Probabilité d'une séquence observée

Comme calculer la probabilité marginale d'une séquence d'observations :

$$P(S_{1:T}) = \sum_{h_{1:T}} P(H_{1:T} = h_{1:T}) P(S_{1:T} \mid H_{1:T} = h_{1:T})$$

- la même séquence observée peut être produite par plusieurs séquences cachées différentes
- en fait, il y a un nombre exponentiel de séquences cachées possibles
- un calcul naïf est donc très inefficace

- Une façon plus efficace de calculer la probabilité d'une séquence observée $s_{1:T}$
- Idée: utiliser la programmation dynamique
 - on définit $\alpha(i,t) = P(S_{1:t} = S_{1:t}, H_t = i)$
 - on note la récursion

$$\begin{split} \alpha(i,t+1) &= P(S_{1:t+1} = s_{1:t+1}, \ \mathsf{H}_{t+1} = i) \\ &= \sum_{j} P(S_{1:t+1} = s_{1:t+1}, \ \mathsf{H}_{t} = j, \ \mathsf{H}_{t+1} = i) = \sum_{j} P(S_{1:t} = s_{1:t}, \ \mathsf{H}_{t} = j, \ \mathsf{H}_{t+1} = i, \ S_{t+1} = s_{t+1}) \\ &= P(S_{t+1} = s_{t+1} \mid \mathsf{H}_{t+1} = i) \sum_{j} P(\mathsf{H}_{t+1} = i \mid \mathsf{H}_{t} = j) \ P(S_{1:t} = s_{1:t}, \ \mathsf{H}_{t} = j) \\ &= P(S_{t+1} = s_{t+1} \mid \mathsf{H}_{t+1} = i) \sum_{j} P(\mathsf{H}_{t+1} = i \mid \mathsf{H}_{t} = j) \ \alpha(j,t) \end{split}$$

on a les valeurs initiales

$$\alpha(i,1) = P(S_1 = s_1, H_1 = i) = P(S_1 = s_1 | H_1 = i) P(H_1 = i) \forall i$$

• Une fois le tableau α calculé, on obtient facilement:

$$P(S_{1:T}=s_{1:T}) = \sum_{i} P(S_{1:T}=s_{1:T}, H_{T}=j) = \sum_{i} \alpha(j,T)$$

- Exemple: décoder un message binaire avec canal bruité (T=4)
 - message observé: $S_1=0$, $S_2=0$, $S_3=0$, $S_4=1$

Modèle d'observation

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Modèle de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.6
$P(H_t=1 \mid H_{t-1})$	0.7	0.4

Distribution initiale

	H ₁ =0	H ₁ =1
$P(H_1)$	0.5	0.5

• initialisation: $\alpha(i,1) = P(S_1 = s_1, H_1 = i) = P(S_1 = s_1 | H_1 = i) P(H_1 = i)$

- Exemple: décoder un message binaire avec canal bruité (T=4)
 - message observé: $S_1=0$, $S_2=0$, $S_3=0$, $S_4=1$

Modèle d'observation

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Modèle de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.6
$P(H_t=1 \mid H_{t-1})$	0.7	0.4

Distribution initiale

	H ₁ =0	H ₁ =1
$P(H_1)$	0.5	0.5

± ,	it	1	2	3	4
χ(i ,1	0	0.45			
J	1				

• initialisation: $\alpha(0,1) = P(S_1=0) H_1 = 0 P(H_1=0) = 0.9 \times 0.5 = 0.45$

- Exemple: décoder un message binaire avec canal bruité (T=4)
 - message observé: $S_1=0$, $S_2=0$, $S_3=0$, $S_4=1$

Modèle d'observation

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Modèle de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.6
$P(H_t=1 \mid H_{t-1})$	0.7	0.4

Distribution initiale

	H ₁ =0	H ₁ =1
$P(H_1)$	0.5	0.5

	it	1	2	3	4
χ(i,1	0	0.45			
	1	0.1			

• initialisation: $\alpha(1,1) = P(S_1=0 \mid H_1=1) P(H_1=1) = 0.2 \times 0.5 = 0.1$

- Exemple: décoder un message binaire avec canal bruité (T=4)
 - message observé: $S_1=0$, $S_2=0$, $S_3=0$, $S_4=1$

Modèle d'observation

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Modèle de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.6
$P(H_t=1 \mid H_{t-1})$	0.7	0.4

Distribution initiale

	H ₁ =0	H ₁ =1
$P(H_1)$	0.5	0.5

₹.	it	1	2	3	4
χ(i ,1	0	0.45	\Rightarrow		
	1	0.1	\Rightarrow		

• récursion (t=1): $\alpha(i,t+1) = P(S_{t+1} = S_{t+1} | H_{t+1} = i) \sum_{i} P(H_{t+1} = i | H_t = j) \alpha(j,t)$

- Exemple: décoder un message binaire avec canal bruité (T=4)
 - message observé: $S_1=0$, $S_2=0$, $S_3=0$, $S_4=1$

Modèle d'observation

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Modèle de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.6
$P(H_t=1 \mid H_{t-1})$	0.7	0.4

Distribution initiale

	H ₁ =0	H ₁ =1
$P(H_1)$	0.5	0.5

. T	it	1	2	3	4
χ(i,1	0	0.45			
	1	0.1			

• récursion: $\alpha(0,2) = P(S_2 = 0 | H_2 = 0)$ ($P(H_2 = 0 | H_1 = 0)$ $\alpha(0,1) + P(H_2 = 0 | H_1 = 1)$ $\alpha(1,1)$)

- Exemple: décoder un message binaire avec canal bruité (T=4)
 - message observé: $S_1=0$, $S_2=0$, $S_3=0$, $S_4=1$

Modèle d'observation

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Modèle de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.6
$P(H_t=1 \mid H_{t-1})$	0.7	0.4

Distribution initiale

	H ₁ =0	H ₁ =1
$P(H_1)$	0.5	0.5

	it	1	2	3	4
χ(i ,1	0	0.45	0.1755		
	1	0.1			

• récursion: $\alpha(0,2) = 0.9 (0.3 \times 0.45 + 0.6 \times 0.1) = 0.1755$

- Exemple: décoder un message binaire avec canal bruité (T=4)
 - message observé: $S_1=0$, $S_2=0$, $S_3=0$, $S_4=1$

Modèle d'observation

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Modèle de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.6
$P(H_t=1 \mid H_{t-1})$	0.7	0.4

	H ₁ =0	H ₁ =1
$P(H_1)$	0.5	0.5

. T.	it	1	2	3	4
χ(i ,1	0	0.45	0.1755		
J	1	0.1-	3		

• récursion: $\alpha(1,2) = P(S_2 = 0 | H_2 = 1)$ ($P(H_2 = 1 | H_1 = 0)$ $\alpha(0,1) + P(H_2 = 1 | H_1 = 1)$ $\alpha(1,1)$)

- Exemple: décoder un message binaire avec canal bruité (T=4)
 - message observé: $S_1=0$, $S_2=0$, $S_3=0$, $S_4=1$

Modèle d'observation

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Modèle de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.6
$P(H_t=1 \mid H_{t-1})$	0.7	0.4

Distribution initiale

	H ₁ =0	H ₁ =1
$P(H_1)$	0.5	0.5

E .	it	1	2	3	4
χ (i ,1	0	0.45	0.1755		
	1	0.1	0.071		

• récursion: $\alpha(1,2) = 0.2 (0.7 \times 0.45 + 0.4 \times 0.1) = 0.071$

- Exemple: décoder un message binaire avec canal bruité (T=4)
 - message observé: $S_1=0$, $S_2=0$, $S_3=0$, $S_4=1$

Modèle d'observation

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Modèle de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.6
$P(H_t=1 \mid H_{t-1})$	0.7	0.4

Distribution initiale

	H ₁ =0	H ₁ =1
$P(H_1)$	0.5	0.5

E.	it	1	2	3	4
χ(i,1	0	0.45	0.1755	\Rightarrow	
J	1	0.1	0.071	\Longrightarrow	

• récursion (t=2): $\alpha(i,t+1) = P(S_{t+1} = s_{t+1} | H_{t+1} = i) \sum_{j} P(H_{t+1} = i | H_t = j) \alpha(j,t)$

- Exemple: décoder un message binaire avec canal bruité (T=4)
 - message observé: $S_1=0$, $S_2=0$, $S_3=0$, $S_4=1$

Modèle d'observation

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Modèle de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.6
$P(H_t=1 \mid H_{t-1})$	0.7	0.4

Distribution initiale

	H ₁ =0	H ₁ =1
$P(H_1)$	0.5	0.5

₩.	it	1	2	3	4
χ(i,1	0	0.45	0.1755	0.085725	
	1	0.1	0.071		

• récursion: $\alpha(0,3) = 0.9 (0.3 \times 0.1755 + 0.6 \times 0.071) = 0.085725$

- Exemple: décoder un message binaire avec canal bruité (T=4)
 - message observé: $S_1=0$, $S_2=0$, $S_3=0$, $S_4=1$

Modèle d'observation

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Modèle de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.6
$P(H_t=1 \mid H_{t-1})$	0.7	0.4

Distribution initiale

	H ₁ =0	H ₁ =1
$P(H_1)$	0.5	0.5

	it	1	2	3	4
χ(i,1	0	0.45	0.1755	0.085725	0.004387
	1	0.1	0.071	0.03025	0.057686

• on continue d'appliquer la récursion jusqu'à la fin (t=4)...

Filtrage dans un HMM

- Exemple: décoder un message binaire avec canal bruité (T=4)
 - message observé: $S_1=0$, $S_2=0$, $S_3=0$, $S_4=1$

. T	it	1	2	3	4
χ(i,1	0	0.45	0.1755	0.085725	0.004387
	1	0.1	0.071	0.03025	0.057686

on peut calculer les probabilités de filtrage

$$P(H_4 = 0 \mid S_1 = 0, S_2 = 0, S_3 = 0, S_4 = 1) = P(H_4 = 0, S_1 = 0, S_2 = 1, S_3 = 0, S_4 = 0)$$

$$\sum_{i} P(H_4 = i, S_1 = 0, S_2 = 1, S_3 = 0, S_4 = 0)$$

$$= \alpha(0,4) / (\alpha(0,4) + \alpha(1,4))$$

$$= 0.004387 / (0.004387 + 0.057686)$$

$$\approx 0.0707$$

$$P(H_4 = 1 \mid S_1 = 0, S_2 = 0, S_3 = 0, S_4 = 1) = 0.057686/(0.004387 + 0.057686)$$

 ≈ 0.9293