

BB Block

Lauren Gao Comtech

EdgeQAM Design Architecture

BB Interface: control the data between the previous module and BB block

BB: Input symbol rate: 3 to 6.952Msps

Output rate:21.33Msps.

One can support 16 channels

DAC Interface: control the data between DUC and DAC

DUC Output: 4096Msps

BB Block Architecture

BB Block Port Definition

		Configu	ration Port
Port	Direction	Date Type	Description
PCLK	In	std_logic	Configuration clock (Lower frequency)
WA	In	Ufix_7_0	Configuration address
DI	In	Ufix_32_0	Configuration data
WE	In	Bool	Configuration enable (High effective)
	Po	rt Related wi	th Symbol Control
CLK	ln	std_logic	System clock
I	ln	2xFix_5_4	Input symbol I&Q, both are Fix_5_4
VI	ln	Bool	Input symbol valid flag (High effective)
RE	Out	Bool	Read enable for FIFO (BB Interface)
СН	Out	Ufix_4_0	Select which channel data sent to BB
0	Out	2xFix_16_14	BB Block output data I&Q, both are Fix_16_14
VO	Out	Bool	BB Block output data valid flag (High effective)

BB, GAIN, MIXBB Configuration Method I (Supposed using two BBs each support 16 channels)

		The F	First BB Block Configura	tion Parameters	
		Configuration	Control Signal	Configuration Data	Module
WEB0	WE	WA(6) = 0	WA(5 downto 4) = 0	DI(31 downto 0)	BB/TIMER (Symbol Rate)
WEG0	WE	WA(6) = 0	WA(5 downto 4) = 1	DI(15 downto 0)	GAIN
WEF0	WE	WA(6) = 0	WA(5 downto 4) = 2	DI(31 downto 0)	MIXBB
WA(3 down	to 0) = 0~	15 indicate the c	hannel number		
		The Se	cond BB Block Configur	ration Parameters	
		Configuration	Control Signal	Configuration Data	Note
WEB1	WE	WA(6) = 1	WA(5 downto 4) = 0	DI(31 downto 0)	BB/TIMER (Symbol Rate)
WEG1	WE	WA(6) = 1	WA(5 downto 4) = 1	DI(15 downto 0)	GAIN
WEF1	WE	WA(6) = 1	WA(5 downto 4) = 2	DI(31 downto 0)	MIXBB
WA(3 down	to 0) = 0~	15 indicate the c	hannel number		

BB, GAIN, MIXBB Configuration Method II (Supposed using two BBs each support 16 channels)

- WEB0: symbol rate configuration enable signal for the first BB block (WEB1 similar to WEB0)
- WEG0: Gain configuration enable signal for the first GAIN block (WEG1 similar to WEG0)
- WEF0: Mix configuration enable signal for the first MIXBB block (WEF1 similar to WEF0)

```
WEB0 <= WE and WA(6)='0' and WA(5 downto 4) = 0;
WEG0 <= WE and WA(6)='0' and WA(5 downto 4) = 1;
WEF0 <= WE and WA(6)='0' and WA(5 downto 4) = 2;
```

```
WEB1<= WE and WA(6)='1' and WA(5 downto 4) = 0;
WEG1<= WE and WA(6)='1' and WA(5 downto 4) = 1;
WEF1<= WE and WA(6)='1' and WA(5 downto 4) = 2;
```


How to Compute Configuration Data

Symbol	M-code	2*round(R/12*2^31)+1
Rate	VHDL	TO_UNSIGNED(INTEGER((R/12.0)*2.0**31),31)&"1"
Gain	M-code	round(10^(-G/20)*2^16-1)
Gairi	VHDL	TO_UNSIGNED(INTEGER(10.0**(-G/20.0)*2.0**16-1.0),32)
Mix	M-code	round(F/24*2^32)
Freq	VHDL	UNSIGNED(TO_SIGNED(INTEGER(FI/24.0*2.0**DI_TEMP'length),32))

Example:

R = 6.175339, DI = 32'h83BD95B1 G = 3, DI = 32'h0000B53B F = 0.912, DI = 32'h09BA5E35

Configuration Timing

Note:

- 1. VI should be FALSE and WE should be TRUE during configuration
- 2. Configuration clock is PCLK
- 3. VI should be TRUE and WE should be FALSE after configuration

Some Notes in Timer

- When configurate symbol rate, the LSB of DI is always '1' which is used as input data enable signal
- The MSB of ACC is used to indicate overflow of accumulator. Because RE is related to it, the MSB of ACC decides the symbol update rate (EN_SYMB_2x is just the MSB of ACC in the below figure)

₩ VR	false	false	false		true	false	false
→ RE	false	false	\true	/false	false		true
 EΝ	false	false	\true	true	false	/false	(true
™ EN16D	false	false		true		false	
→ EN_SYMB_2x		false	true	/false	\true	false	true
→ EN_SYMB	false	false	true	/false	false		true
₩ ACC	0A1A	(\)(083BD95B0	X1077B2B60	√08B38C110	(10EF656C0	(092B3EC70	(116718220

Work Flow of BB Block

BB Interface Diagram

SRRC Performance C_SRRC_15

SRRC Magnitude Response with Roll-off Factor 0.15

SRRC Output Frequency Domai with Blackman window

Delay Unit

- BDelay.vhd
- UDelay.vhd
- Delay.vhd
- All the delay unit has the same function. That is to delay the input data with predefined clock period.
- The parameter "SIZE" determines the delay taps.
- BDelay: input data type => boolean
- UDelay: input data type => unsigned
- Delay : input data type => std_logic_vector

Resource Estimation for One BB Block (In PlanAhead after Elaborate)

Macro type	Fl	Flop		LUT		BRAM		DSP48	3
Bitwise Log	gic		0	2			0		0
Arithmetic		0		1236			0		16
Multiplexers		0		1770			0		0
Storage		5037		2469		16		0	
Total		5037		5477		16		16	
Child	Flop		LUI		BR	AM	DSI	248	
Control of the Control	Flop		LVI		BR	cen ,	DSI		
bd	Flop	3		4	BR	AM 0	DSI	P48 0 16	
Child bd fi sr	-	3		4	BR	0	DSI	0	
bd fi	118 374	3		4 784	BR	0 16	DSI	0 16	
bd fi sr	118 374	388		4 784 608	BRA	0 16 0	DSI	0 16 0	

Resource Estimation for Two BB Block (In PlanAhead, After Synthesis)

Simulation Hierarchy

bb_sym: Generate Pseudo-random QAM256 Symbol

