Числовые последовательности

конспект от TheLostDesu

11 сентября 2021 г.

1 Числовая последовательность

Задана числовая последовательность $\{a_n\}$, если каждому натуральному числу поставлено в соответствие вещественное число a_n

1.1 Способы задания числовой последовательности

- 1) Формула. Например $a_n = n^2 + 1$. Тогда $a_1 = 2, a_2 = 5, a_3 = 10$
- 2) С помощью рекурентных соотношений. Например последовательность Фибоначчи. $a_1=1,\ a_2=1,\ для\ n\geq 3: a_n=a_{n-1}+a_{n-2}$
- 3) Описание последовательности (словами). Например a_n -

 пное простое число.

1.2 Предел числовой последовательности

Рассмотрим последовательность a_n член которой равен $\frac{1}{n}$. Тогда при n стремящемся к бесконечности a_n стремится к нулю.

 $\lim_{x\to 0} a_n = a$, если для любого $\epsilon > 0$ найдется некоторый номер N, что все числа последовательности отличаются от a не больше чем на ϵ .

∀ - квантор общности. Читается как «Для всех»

∃ - квантор существования. Читается как «Существует»

Тогда в кванторах определение предела выглядит, как

$$\forall \epsilon > 0 \ \exists N \forall n \ge N \Rightarrow |x_n - a| < \epsilon.$$

Утверждение 1.

Если предел x_n равен a при $n \Rightarrow \inf$, то на всем $\{x_n\}$ найдется конечное число точек не принадлежащих окрестности a.

Утверждение 2.

У одной последовательности может быть только один предел¹.

¹Или не существовать ни одного

Доказательство: Пусть есть два предела: a1, a2. Тогда, без потерь общности a1 > a2. Если a1 > a2, то a1 - a2 - положительное число. Тогда пусть $\epsilon = \frac{a1-a2}{3}$. Тогда, окрестности не пересекаются. Но начиная с некоторого номера элементы должны начать попадать в обе окрестности, что невозможно. Следовательно у последовательности всего один предел.

1.3 Ограниченная последовательность

Последовательность $\{x_n\}$ ограничена, если $\exists m, M, \forall n \Rightarrow M \geq x_n \geq m$. Если у последовательности есть конечный предел при $n \to \inf$, то она ограничена.

Тогда, возьмем $\epsilon=1$. А значит, что существует n, такое что $a-1 \leq x_n \leq a+1$. Тогда $M=max(x_1,x_2,x_3...,x_n,a+1)$, а $m=min(x_1,x_2,x_3...,x_n,a-1)$ И последовательность ограничена.