

PFC306

Performance Tuning EC2 Instances

Brendan Gregg, Performance Engineering, Netflix

November 12, 2014 | Las Vegas, NV

Brendan Gregg

- Senior Performance Architect, Netflix
 - Linux and FreeBSD performance
 - On the Performance Engineering Team, led by Coburn Watson (and we're hiring!)

Recent work:

Linux perf-tools, using ftrace & perf_events

Previous work includes:

- USE Method, flame graphs, heat maps, DTrace tools
- Sysadmin, training, kernel engineering, performance

NETFLIX

- Massive Amazon EC2 Linux cloud
 - Tens of thousands of server instances
 - Auto scale by ~3k each day
 - CentOS and Ubuntu
- FreeBSD for content delivery
 - Approx. 33% of US Internet traffic at night
- Performance is critical
 - Customer satisfaction: now over 50M subscribers
 - \$\$\$ price/performance
 - Develop tools for cloud-wide and instance analysis

Netflix Performance Engineering Team

- Evaluate technology
 - Instance types, Amazon EC2 options
- Recommendations & best practices
 - Instance kernel tuning, assist app tuning
- Develop performance tools
 - Develop tools for observability and analysis
- Project support
 - New database, programming language, software change
- Incident response
 - Performance issues, scalability issues

Agenda

- 1. Instance Selection
- 2. Amazon EC2 Features
- Kernel Tuning
- 4. Observability

Performance Tuning on Amazon EC2

- In the Netflix cloud, everything is a tunable
 - Including instance type
- Performance wins have immediate benefits
 - Great place to do performance engineering!

WARNINGS

- This is what's in our medicine cabinet
- Consider these "best before: 2015"
- Take only if prescribed by a performance engineer

1. Instance Selection

The Netflix Cloud

 Many different application workloads: compute, storage, caching...

Current Generation Instance Families

- i2: Storage-optimized
 - SSD large capacity storage
- r3: Memory optimized
 - Lowest cost/Gbyte
- c3: Compute-optimized
 - Latest CPUs, lowest price/compute perf
- m3: General purpose
 - Balanced
- Plus some others

i2.8xlarge

Instance Sizes

- Ranges from medium to 8xlarge, depending on type
- Netflix has over 30 instance types in use
- Traditional:
 - Tune the workload to match the server
- Cloud:
 - Find an ideal workload and instance type combination
 - Instead of: given A, optimize B; this is optimize A+B
 - Greater flexibility, best price/performance

Netflix Instance Type Selection

- Flow Chart
- By-Resource
- Brute Force

Instance Selection Flow Chart

Netflix AWS Environment

- Elastic Load Balancing allows instance types to be tested with real load
 - Single instance canary, then,
 - Auto Scaling Group
- Much better than micro-benchmarking alone, which is extremely error prone

By-Resource Approach

1. Determine bounding resource

- Eg: CPU, disk I/O, or network I/O
- Found using:
 - Estimation (expertise)
 - Resource observability with an existing real workload
 - Resource observability with a benchmark or load test (experimentation)

2. Choose instance type for the bounding resource

- If disk I/O, consider caching, and a memory-optimized type
- We have tools to aid this choice: Nomogram Visualization

Nomogram Visualization Tool

Nomogram Visualization Tool

Nomogram Visualization Tool

By-Resource Approach, cont.

- This focuses on optimizing a given workload
- More efficiency can be found by adjusting the workload to suit different instance types

Brute Force Choice

- Run load test on ALL instance types
 - Optionally different workload configurations as well
- 2. Measure throughput
 - And check for acceptable latency
- 3. Calculate price/performance for all types
- 4. Choose most efficient type