Protostellar Outflow-Driven Turbulence

Michael Gorelick Christopher Matzner

BACKGROUND

- + Why: Star formation is a slow process
 - Observed: SFT_# ≈ .19
 - Theory: SFT_{ff} = 1
- + How: Supersonic turbulence in the cloud could be changing environment
- + What: Any source of momentum
 - Protostellar outflows
 - Supernovae (more rare)

Theory:

Stars in their early phases of life, protostars, eject mass through bipolar jets. These jets feedback onto the cloud and create supersonic turbulence. This turbulence acts as a pseudo-pressure inhibiting high star formation rates

PROJECT

- + Model turbulence in cloud numerically and verify predictions
 - Isothermal
 - Coupling factor of outflows
 - Energy Spectrum
 - Line Widths
 - Channel Maps
- + Approximate outflows with spherical regions with impulse
 - Phi dependant impulse for collimation
- + Pseudo-andom outflow injection with respect to space-time
 - Rate parameter: $S \sim \rho^n$
- + Isolate physics to hydrodynamics in order to verify effects are solely caused by outflows

CURRENT

- + Total Variation Diminishing (TVD) Code
 - Strictly momentum Conserving
 - Resolved shocks well
- + Large grid
 - MPI/openmp
 - 200x200x200
- + Constant impulse injection with varied collimation at a constant rate
- + Preliminary Analysis
 - Kinetic Energy
 - Line Widths
- + Numerical Study
 - Verify integrity of results
 - Robertson Interpolation

FUTURE

- + Finish!
- + Further analysis
- + Massive Grid
 - -600^3
 - 1000³?
- + MHD
 - Identify contribution of magnetism
- + Gravity
 - Identify contribution of gravitation
 - More realistic outflow injection

