Blatt 3

Repetitorium Theoretische Quantenmechanik, WS 08/09

3.1 Spin im zeitabhängigen Magnetfeld

Ein Spin- $\frac{1}{2}$ -Teilchen mit magnetischem Moment $\mathbf{M}=-g\frac{e}{2m}\mathbf{S}$ befindet sich in einem zeitabhängigen Magnetfeld

$$\mathbf{B} = B_0 \mathbf{e}_z + B_1 \cos(\omega t) \mathbf{e}_x + B_1 \sin(\omega t) \mathbf{e}_y$$

1. Benutzen Sie die Darstellung des Spinzustandes als Linearkombination $|\chi(t)\rangle = a(t)|\uparrow\rangle + b(t)|\downarrow\rangle$ und zeigen Sie, dass die zeitabhängigen Koeffizienten folgende Differentialgleichung erfüllen:

$$i\hbar \left(\begin{array}{c} \dot{a}(t) \\ \dot{b}(t) \end{array} \right) = \frac{g\mu_B}{2} \left(\begin{array}{cc} B_0 & B_1 e^{-i\omega t} \\ B_1 e^{i\omega t} & -B_0 \end{array} \right) \left(\begin{array}{c} a(t) \\ b(t) \end{array} \right)$$

2. Um die Zeitentwicklung des Spins im Magnetfeld zu berechnen ist es günstig, eine Koordinatentransformation U(t) durchzuführen. Wir betrachten den transformierten Spinzustand $|\eta\rangle = \alpha(t)|\uparrow\rangle + \beta(t)|\downarrow\rangle$ mit $|\eta\rangle = U(t)|\chi\rangle \iff |\chi\rangle = U^+(t)|\eta\rangle$. Zeigen Sie durch einsetzen von $|\chi\rangle = U^+(t)|\eta\rangle$ in die Zeitabhängige Schrödingergleichung $i\hbar\partial_t|\chi(t)\rangle = \mathcal{H}|\chi(t)\rangle$, dass für $|\eta\rangle$ folgende Gleichung gilt:

$$i\hbar\partial_t|\eta\rangle = \left[U\mathcal{H}U^+ - i\hbar U(\partial_t U^+)\right]|\eta\rangle$$

dabei ist \mathcal{H} der Hamiltonoperator im ursprünglichen System.

3. Benutzen Sie die Transformation

$$U(t) = e^{\frac{i}{\hbar}\omega t S_z} = \begin{pmatrix} e^{\frac{1}{2}i\omega t} & 0\\ 0 & e^{-\frac{1}{2}i\omega t} \end{pmatrix}$$

sowie die Größen ω_0 und ω_1 mit $\hbar\omega_0 = g\mu_B B_0$ und $\hbar\omega_1 = g\mu_B B_1$. Zeigen Sie, dass die Koeffizienten $\alpha(t)$ und $\beta(t)$ (in $|\eta\rangle = \alpha(t)|\uparrow\rangle + \beta(t)|\downarrow\rangle$) folgende Differentialgleichung erfüllen:

$$i\hbar \begin{pmatrix} \dot{\alpha}(t) \\ \dot{\beta}(t) \end{pmatrix} = \frac{\hbar}{2} \begin{pmatrix} \omega_0 - \omega & \omega_1 \\ \omega_1 & -(\omega_0 - \omega) \end{pmatrix} \begin{pmatrix} \alpha(t) \\ \beta(t) \end{pmatrix}$$
 (1)

4. Betrachten Sie nun den Resonanzfall $\omega_0 = \omega$, bei dem die Frequenz des oszillierenden Magnetfeldes mit der freien Präzessionsfrequenz $\omega_0 = g\mu_B B_0/\hbar$ im konstanten Magnetfeld übereinstimmt. Zum Zeitpunkt t=0 befindet sich das Teilchen im Eigenzustand von S_z zum Eigenwert $+\hbar/2$. Bestimmen Sie die Zeitentwicklung dieses Zustands, indem Sie die Gleichung (1) lösen. Zeigen Sie

$$\begin{pmatrix} \alpha(t) \\ \beta(t) \end{pmatrix} = \begin{pmatrix} \cos\left(\frac{\omega_1 t}{2}\right) \\ -\sin\left(\frac{\omega_1 t}{2}\right) \end{pmatrix}$$

und bestimmen Sie daraus die Koeffizienten a(t), b(t) im ursprünglichen Koordinatensystem über

$$\begin{pmatrix} a(t) \\ b(t) \end{pmatrix} = \underbrace{\begin{pmatrix} e^{-\frac{1}{2}i\omega t} & 0 \\ 0 & e^{\frac{1}{2}i\omega t} \end{pmatrix}}_{U(t)} \begin{pmatrix} \alpha(t) \\ \beta(t) \end{pmatrix}$$

5. Berechnen Sie die Zeitentwicklung von $\langle S_x \rangle, \langle S_y \rangle$ und $\langle S_z \rangle$.

3.2 Matrizen für Spin- $\frac{3}{2}$

Bestimmen Sie für Spin- $\frac{3}{2}$ -Teilchen die Matrixdarstellung der Spinoperatoren S_x, S_y und S_z in der Basis der Eigenzustände von S_z .

3.3 Spin im Magnetfeld (DVP 2006)

Gegeben sei ein ruhendes Elektron, welches sich im normierten Eigenzustand des Operators

$$S_y = \frac{\hbar}{2} \left(\begin{array}{cc} 0 & -i \\ i & 0 \end{array} \right)$$

mit Eigenwert $+\frac{\hbar}{2}$ befindet. Die Quantisierungsachse ist die z-Achse, zu welcher die zugehörigen Eigenzustände $|\uparrow\rangle$ und $|\downarrow\rangle$ lauten.

- 1. Drücken Sie den Zustand, in dem sich das Elektron befindet, durch $|\uparrow\rangle$ und $|\downarrow\rangle$ aus.
- 2. Betrachten Sie nun den Fall, dass sich das Elektron in einem konstanten Magnetfeld B befindet, welches in z-Richtung zeigt, d.h. der zugehörige Hamilton-Operator hat die Form

$$\mathcal{H} = -\mu B S_z$$
 mit $S_z = \frac{\hbar}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$

Die zeitliche Entwicklung des Zustandes ist gegeben durch

$$|\chi(t)\rangle = a(t)|\uparrow\rangle + b(t)|\downarrow\rangle$$

Berechnen Sie die zeitabhängigen Koeffizienten a(t) und b(t). Wie groß ist die Wahrscheinlichkeit, das Elektron nach der Zeit t im Zustand $|\uparrow\rangle$ zu finden?

3. Wann befindet sich das Elektron in dem Eigenzustand mit Eigenwert $-\frac{\hbar}{2}$ bzgl. des Operators S_u (Spinflip)?

3.4 Spin-Kopplung

Ein System aus zwei Spin- $\frac{1}{2}$ -Teilchen wird durch einen Hamiltonoperator der Form

$$\mathcal{H} = A(S_{1z} + S_{2z}) + B\mathbf{S}_1 \cdot \mathbf{S}_2 \qquad A, B = \text{const}$$

beschrieben. Bestimmen Sie alle Energieniveaus des Systems. Hinweis: Sie müssen nicht die Eigenzustände nochmals bestimmen. Wählen Sie als Basis die gemeinsamen Eigenzustände von $\mathbf{S}^2 = (\mathbf{S}_1 + \mathbf{S}_2)^2$, S_z , \mathbf{S}_1^2 und \mathbf{S}_2^2 aus dem Beispiel aus der Vorlesung.

3.5 Zwei Teilchen im Potentialtopf

Betrachten Sie zwei nichtwechselwirkende Teilchen, beide mit der Masse m, in einem unendlichen hohen Potentialtopf $(V(x) = 0 \text{ für } 0 \le x \le a \text{ und } \infty \text{ sonst})$. Bestimmen Sie

1. die Wellenfunktion, den Energieeigenwert und die Entartung des Grundzustands und des ersten angeregten Zustands, falls die Teilchen unterscheidbar sind.

- 2. die Wellenfunktion, den Energieeigenwert und die Entartung des Grundzustands und des ersten angeregten Zustands, falls die Teilchen identische Bosonen sind.
- 3. die Wellenfunktion und den Energieeigenwert des Grundzustands, falls die Teilchen identische Fermionen sind.