Lesson 42: Lyapunov Functions and Global Stability ODE 1 - Prof. Adi Ditkowski

Nonlinear Systems Analysis

1 Lyapunov Stability Concepts

Definition 1 (Lyapunov Stability). The equilibrium point $\mathbf{x} = \mathbf{0}$ of $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x})$ is:

• Lyapunov stable if for every $\epsilon > 0$, there exists $\delta > 0$ such that:

$$||\mathbf{x}(0)|| < \delta \implies ||\mathbf{x}(t)|| < \epsilon \text{ for all } t \ge 0$$

• Asymptotically stable if it is Lyapunov stable AND there exists $\delta_0 > 0$ such that:

$$||\mathbf{x}(0)|| < \delta_0 \implies \lim_{t \to \infty} \mathbf{x}(t) = \mathbf{0}$$

• Globally asymptotically stable if it is asymptotically stable for ALL initial conditions:

$$\lim_{t\to\infty} \mathbf{x}(t) = \mathbf{0} \text{ for all } \mathbf{x}(0) \in \mathbb{R}^2$$

Intuitive Understanding:

- Lyapunov stable: "Stay nearby forever"
- \bullet Asymptotically stable: "Stay nearby and converge"
- Globally asymptotically stable: "Converge from anywhere"

2 Lyapunov Functions

Definition 2 (Lyapunov Function). A continuously differentiable function $V : \mathbb{R}^2 \to \mathbb{R}$ is a **Lyapunov function** for the system $\dot{x} = f(x, y)$, $\dot{y} = g(x, y)$ at the origin if:

- 1. V(0,0) = 0
- 2. V(x,y) > 0 for all $(x,y) \neq (0,0)$ in some neighborhood
- 3. $\dot{V}(x,y) \leq 0$ along trajectories in that neighborhood

where the derivative along trajectories is:

$$\dot{V} = \frac{\partial V}{\partial x} f(x, y) + \frac{\partial V}{\partial y} g(x, y) = \nabla V \cdot \mathbf{f}$$

Critical Distinction:

$$\dot{V} \neq \frac{\partial V}{\partial t}$$

Since V doesn't explicitly depend on time, $\frac{\partial V}{\partial t} = 0$. Instead:

$$\dot{V} = \frac{dV}{dt} \bigg|_{\text{along trajectories}} = \nabla V \cdot \mathbf{f}$$

3 Main Stability Theorems

Theorem 1 (Lyapunov's Direct Method). For the equilibrium at the origin:

- 1. If there exists a Lyapunov function with $\dot{V} \leq 0$, then the origin is **Lyapunov stable**
- 2. If additionally $\dot{V} < 0$ for $(x,y) \neq (0,0)$, then the origin is **asymptotically stable**
- 3. If additionally $V(x,y) \to \infty$ as $||(x,y)|| \to \infty$ (radial unboundedness), then the origin is globally asymptotically stable

Theorem 2 (Instability Theorem). If there exists a function V with V(0,0) = 0 and:

- ullet V can take positive values arbitrarily close to the origin
- $\dot{V} > 0$ where V > 0

then the origin is unstable.

4 LaSalle's Invariance Principle

Theorem 3 (LaSalle's Principle). Let V be a Lyapunov function with $\dot{V} \leq 0$. Define:

$$E = \{(x, y) : \dot{V}(x, y) = 0\}$$

Let M be the largest invariant set contained in E. Then all trajectories starting in a neighborhood of the origin approach M as $t \to \infty$.

LaSalle's principle often upgrades Lyapunov stability to asymptotic stability! If the only invariant set in E is the origin itself, then we have asymptotic stability even when $\dot{V} \leq 0$ (not strictly negative).

5 Construction Methods

Standard Approaches for Finding Lyapunov Functions:

- 1. Quadratic Forms: Try $V = ax^2 + cy^2$ with a, c > 0
- 2. General Quadratic: Try $V = ax^2 + bxy + cy^2$ with:

$$a > 0$$
, $c > 0$, $ac - b^2/4 > 0$

3. Energy Methods: For mechanical systems, use:

V = kinetic energy + potential energy

- 4. Gradient Systems: If $\dot{\mathbf{x}} = -\nabla U(\mathbf{x})$, use V = U
- 5. First Integrals: If H(x,y) is conserved, modifications of H often work
- 6. Trial and Error: Combine terms based on system structure

6 Complete Examples

Example 1 (Quadratic Lyapunov Function). Consider the system:

$$\dot{x} = -x^3 + xy^2, \quad \dot{y} = -y^3 + x^2y$$

Try $V(x, y) = x^2 + y^2$:

Check conditions:

- 1. V(0,0) = 0
- 2. $V(x,y) = x^2 + y^2 > 0$ for $(x,y) \neq (0,0)$
- 3. Compute \dot{V} :

$$\dot{V} = 2x\dot{x} + 2y\dot{y} \tag{1}$$

$$=2x(-x^3+xy^2)+2y(-y^3+x^2y)$$
 (2)

$$= -2x^4 + 2x^2y^2 - 2y^4 + 2x^2y^2 (3)$$

$$= -2(x^4 + y^4) + 4x^2y^2 (4)$$

$$= -2(x^4 + y^4 - 2x^2y^2) (5)$$

$$= -2(x^2 - y^2)^2 \le 0 (6)$$

So the origin is Lyapunov stable. For asymptotic stability, apply LaSalle: $\dot{V} = 0$ only when $x^2 = y^2$, i.e., $x = \pm y$.

On the line x=y: $\dot{x}=0$, $\dot{y}=0$ only at origin. On the line x=-y: $\dot{x}=-2x^3$, $\dot{y}=2y^3$, so trajectories leave unless at origin.

Therefore, $M = \{(0,0)\}$ and the origin is asymptotically stable.

Example 2 (Energy Function for Pendulum). Damped pendulum: $\ddot{\theta} + c\dot{\theta} + \sin\theta = 0$

As a system: $\dot{x} = y$, $\dot{y} = -\sin x - cy$ (where $x = \theta$, $y = \dot{\theta}$)

Energy function: $V(x,y) = \frac{1}{2}y^2 + (1 - \cos x)$

Analysis:

- 1. V(0,0) = 0
- 2. For small x: $1 \cos x \approx \frac{x^2}{2} > 0$, so V > 0 near origin \checkmark

3.
$$\dot{V} = y\dot{y} + \sin x \cdot \dot{x} = y(-\sin x - cy) + \sin x \cdot y = -cy^2 \le 0$$

By LaSalle: $\dot{V} = 0$ when y = 0. The invariant set on $\{y = 0\}$ is just the equilibria. Near the origin, this is only (0,0), giving asymptotic stability.

7 Basin of Attraction

Definition 3 (Basin of Attraction). The basin of attraction of an asymptotically stable equilibrium \mathbf{x}^* is:

$$\mathcal{B}(\mathbf{x}^*) = \{\mathbf{x}_0 : \lim_{t \to \infty} \phi(t, \mathbf{x}_0) = \mathbf{x}^*\}$$

where $\phi(t, \mathbf{x}_0)$ is the solution starting at \mathbf{x}_0 .

Method 1 (Estimating Basins with Lyapunov Functions). If V is a Lyapunov function with $\dot{V} < 0$ for $\mathbf{x} \neq \mathbf{0}$, and $\Omega_c = \{\mathbf{x} : V(\mathbf{x}) \leq c\}$ is bounded and contains only the origin as an equilibrium, then $\Omega_c \subseteq \mathcal{B}(\mathbf{0})$.

8 Comparison: Linearization vs Lyapunov

Aspect	Linearization	Lyapunov
Scope	Local only	Local or global
Applicability	Hyperbolic equilibria	Any equilibrium
Information	Qualitative behavior	Stability + basin
Construction	Automatic (Jacobian)	Requires creativity
Limitations	Fails at centers	May not exist/find

Prof. Ditkowski's Exam Strategy:

- 1. If given V, just verify conditions and compute \dot{V}
- 2. If asked to find V:
 - Start with $V = x^2 + y^2$
 - Try $V = ax^2 + cy^2$ with suitable a, c
 - Look for physical energy if mechanical system
 - Check if gradient system

- 3. Always apply LaSalle when $\dot{V} \leq 0$ (not strictly negative)
- 4. State stability conclusion explicitly

9 Summary Algorithm

Lyapunov Analysis Procedure:

- 1. Identify/construct candidate V(x,y)
- 2. Verify V(0,0) = 0
- 3. Check V(x,y) > 0 for $(x,y) \neq (0,0)$ nearby
- 4. Compute $\dot{V} = \frac{\partial V}{\partial x} f + \frac{\partial V}{\partial y} g$
- 5. Analyze sign of \dot{V} :
 - $\dot{V} \leq 0$: Lyapunov stable

 - $\dot{V} > 0$ somewhere: Check instability theorem
- 6. If $\dot{V} \leq 0$, apply LaSalle's principle
- 7. Check radial unboundedness for global stability