Novel transposons associated with *ToxA* and *ToxB* in the tan spot fungus

Ryan Gourlie^a, Megan McDonald^b, Mohamed Hafez^a, Rodrigo Ortega-Polo^a, Kristin E. Low^a, D. Wade Abbott^a, Stephen E. Strelkov^c, Fouad Daayf^d, and Reem Aboukhaddour^a

^aAgriculture and Agri-food Canada, Lethbridge, Alberta, Canada; ^bUniversity of Birmingham, School of Biosciences, Edgbaston, Birmingham, United Kingdom; ^cUniversity of Alberta, Faculty of Agricultural, Life, and Environmental Sciences, Edmonton, Alberta, Canada; dUniversity of Manitoba, Faculty of Agricultural and Food Sciences, Winnipeg, Manitoba, Canada

Agriculture and Agri-Food Canada

Agriculture et Agroalimentaire Canada

Tan spot of wheat

- Pyrenophora tritici-repentis
 (Ptr)
- Three necrotrophic effectors define current race system
- ~5% global losses¹
- Recent emergence driven by ToxA HGT^{2,3}

XA HGT^{2,3}

¹Savary et al. 2019. Nat. Ecol. Evol. 3, 430-439

²Friesen et al. 2006. Nat. Genet. 38, 953-956

³McDonald et al. 2018. Mbio. 10, e01515-19

Ptr genome

- Haploid ~35 to 40 Mb
- Primarily ToxA and ToxC producers sequenced
 - Recently many more released, and 40 of ours will be released soon
- Previous work with pulse field gel electrophoresis with all races showed:
 - plasticity in chromosome number and size
 - ToxA and ToxB never occurred on same chromosome
 - *ToxA* located on same essential chromosome with a couple of **exceptions**

Aboukhaddour et al. 2009. Mol. Plant Pathol. 10, 201-212

Transposable elements

- --- Transposons are *mobile* genetic sequences (i.e they can alter position within a genome)
- --- Confer advantages (e.g drug resistance) or disease (e.g. porphyria)
- --- Some fungi have TE defense known as RIP (<u>r</u>epeat <u>i</u>nduced <u>p</u>oint-mutations) (mutates C:G to T:A in repetitive regions)

Barbara McClintock; Nobel Prize 1983

A unified classification system for eukaryotic transposable elements

Thomas Wicker, François Sabot, Aurélie Hua-Van, Jeffrey L. Bennetzen, Pierre Capy, Boulos Chalhoub, Andrew Flavell, Philippe Leroy, Michele Morgante, Olivier Panaud, Etienne Paux, Phillip SanMiguel and Alan H. Schulman

Nature Reviews Genetics 8, 973–982 (2007)

How TEs are classified

- --- RNA intermediate or DNA only
- --- 'Copy & Paste' or 'Cut & Paste'
- --- Insertion mechanism
- --- Autonomous or non-autonomous
- --- Protein conservation + non-coding domains
- --- Presence and size of target site duplications
 - --- DNA sequence conservation

TEs and pathogen virulence

- --- Link between transposons and virulence is well established
 - --- 1980s prokaryote TE/HGTs explored extensively
 - --- 1990s TEs in eukaryotes and plant pathogens
 - --- 2000s 'two-speed' model in fungal pathogens
 - --- 2010s long-reads available
 - --- 2020s beyond the two-speed model

ToxA, HGT, and ToxhAT

100 Cochliobolus heterostrophus C5

ToxB in other species

See presentation by Mohamed Abdel-Fattah

"ToxB sequence diversity and haplotype network in *Pyrenophora tritici-repentis* and other Ascomycetes species"

Objectives

- Produce high quality long-read assemblies of other races
- Confirm movement of *ToxA* within the Ptr genome
- Identify how *ToxA* moved within Ptr
- Determine if *ToxB* could be mobile
- Determine how *ToxB* replicates within Ptr
- Explore evolution of *ToxB* within Ptr and other species

Methods --- DNA & sequencing

Ptr grown in PDB flasks

DNA extraction

Seq with PacBio RS II

QIAGEN®
Genomic-tip 100/G
Cat. No. 10243
Show of Plants have provided in the Pack of t

@ Genome Quebec

Methods --- de novo assembly

Methods --- genome annotation

Gene annotations FunGAP: fungal Genome Annotation Pipeline

Transposon annotations

oushujun/EDTA

Extensive de-novo TE Annotator

Methods --- alignments

Locate *ToxA* and *ToxB*

Extract *Tox* containing chromosomes

Linear alignments

Circular alignments

Sibelia

Long-read assemblies

I-73-1

- --- R8 Syria
- --- 39.9 Mb
- --- 12,744 genes; BUSCO 99.6%

D308

- --- R3 Canada
- --- 39.6 Mb
- --- 12,501 genes; BUSCO 99.6%

Transposable element content

Intraspecific *ToxA* translocation

- Confirms work with PFGE¹
- 143 kb element
- ToxhAT fully nested
- Nested transposons
 associated with rapid
 evolution²

¹*Mol. Plant Patholo.* **10**, 201-212 (2009) ²*Mol. Sciences.* **20**, 3597 (2019)

ToxA Starship 'Horizon' schematic

Gluck-Thaler et al., 2021. Giant *Starship* elements mobilize accessory genes in fungal genomes. *bioRxiv* preprint doi:10.1101/2021.12.13.472469

ToxB on a putative transposon

- 294 Kb element
- Small 12 Kb region contains 3x copies of *ToxB*
- Aligns nowhere in genome of race 1 isolates
- Edges appear to be <u>t</u>erminal <u>i</u>nverted <u>r</u>epeats
- Target site visible in M4 race 1

ToxB on a putative transposon

- Same element present in race 3 with *toxb*
- *toxb* in same general area but as single copy

ToxB results

Conclusions and future work

- First long-read assemblies of race 3 and race 8
- *ToxA* is nested within multiple transposons: ToxhAT and novel Starship 'Horizon'
- *ToxB* may also be present on massive transposon(s) and may also be or was mobile
- How is *ToxB* replicating? Good chance there is transposon involved!
- Has *ToxB* been involved with a horizontal gene transfer event?
- Recently received long-read data for 17 more isolates!
- Plans for long-read sequencing of other *ToxB* containing species

Ptr pangenome figures

Pre-print available on ResearchGate and bioRxiv

https://www.biorxiv.org/content/10.1101/2022.03.07.483352v2

Dissecting the Pyrenophora tritici-repentis (tan spot of wheat) pangenome

- D Ryan Gourlie, D Megan McDonald, D Mohamed Hafez, Rodrigo Ortega-Polo, Kristin E Low,
- 🔟 D Wade Abbott, 🔟 Stephen Strelkov, 🔟 Fouad Daayf, 🔟 Reem Aboukhaddour

doi: https://doi.org/10.1101/2022.03.07.483352

Let us know what you think on twitter!
@GourlieRyan @McdonaldMeganc @hafez_mnm
@ropolo @sweetmicrobe @ReemWheat

Acknowledgements

- Reem Aboukhaddour
- Megan McDonald
- Rodrigo Ortega-Polo
- Mohamed Hafez
- Stephen Strelkov
- Wade Abbott and Kristin Low
- Fouad Dyaaf
- HPC Biocluster Team
- Funders and Supporters

UNIVERSITY OF **BIRMINGHAM** Kraken2: Wood et al., 2019. Genome Biology 20

SPAdes: Bankevich et al., 2012. Journal of Computation Biology, 19(5), 455-477

Shovill: Seemann, 2019. github.com/tseemann/shovill

MEGAHIT: Li et al., 2015. Bioinformatics, 31(10), 1674-1676

SOAPdenovo2: Luo et al., 2012. Gigascience, 1(1), 18

Flye: Lin et al., 2016. Proceedings of the National Academy of Sciences, 113(52), E8396-E8405

Pylon: Walker et al., 2014. *PloS One*, 9(11), e112963

BUSCO: Simão et al., 2015. Bioinformatics 31(19), 3210-3212

Fungap: Min et al., 2017. Bioinformatics 33(18), 2936-2937

RNA: Moolhuijen et al., 2018. BMC Research Notes, 11(1), 907-909

BUSCO: Simão et al., 2015. Bioinformatics 31(19), 3210-3212

Pangloss: McCarthy & Fitzpatrick, 2019. Genes 10(7), 521

Reference isolate: Manning et al., 2013. *G3* 3(1), 41-63

Hierarchical Sets: Pedersen 2016. *github.com/thomasp85/hierarchicalSets*

Phobius: Käll et al., 2004. Journal of Molecular Biology 338(5), 1027-1036

EffectorP: Sperschneider et al., 2018. Molecular Plant Pathology.

MUSCLE: Edgar, 2004. Nucleic Acid Research 32(5), 1792-1797

RAxML: Stamatakis, 2014. Bioinformatics 30(9), 1312-1313

Mauve: Darling, et al., 2004. *Genome Research 14(7), 1394-1403*

EDTA: Ou et al., 2019. *Genome Biology* 20(1), 1-18

Sibelia: Minkin et al., 2013. Int. Workshop on Algorithms in Bioinformatics, 215-229

CIRCOS: Krzywinski et al., 2009. Genome Research 19(9), 1639-1645

DotPlotly: Poorten, 2018. https://github.com/tpoorten/dotPlotly

Minimap2: Li, 2018. Bioinformatics, 34(18), 3094-3100

Phyre2: Kelley et al., 2015. *Nature Protocols*, 10(6), 845-858