Local monodromy of Drinfeld modules

M. Mornev*

ETH Zürich

WWU Münster Online Seminar 2021

* Supported by ETH Zürich Postdoctoral Fellowship Program, Marie Skłodowska-Curie Actions COFUND program

Setting

- K, a local field of residual characteristic p
- \bullet K^{sep} , a separable closure of K
- $G = Gal(K^{sep}/K)$

Structure of *G*

Local monodromy of ℓ -adic representations

 $\ell \neq p$, a prime; \mathbb{Q}_{ℓ} -representations of G

The ℓ -adic monodromy theorem (Grothendieck)

Every ℓ -adic representation $\rho \colon G \to GL(V)$ has the following properties:

- **1** The restriction of ρ to an open subgroup of I is unipotent.
- **2** The image $\rho(I^{0+})$ is finite.

In effect:

- $\rho(I^{0+}) = \{1\}$
- the group $I/I^{0+} = \prod_{p' \neq p} \mathbb{Z}_{p'}(1)$ acts through $\mathbb{Z}_{\ell}(1)$
- ullet the action of $\mathbb{Z}_\ell(1)\cong \mathbb{G}_\mathsf{a}(\mathbb{Z}_\ell)$ is algebraic

Weil-Deligne representations

 $W \subset G$, the *Weil group* is the preimage of $\mathbb{Z} \subset \widehat{\mathbb{Z}} = \operatorname{Gal}(\overline{k}/k)$ under the reduction homomorphism $G \twoheadrightarrow \operatorname{Gal}(\overline{k}/k)$.

Fix:

- $\Phi \in W$ a Frobenius element;
- $t \in \mathbb{Z}_{\ell}(1)$ a generator $\rightsquigarrow \chi_t \colon I \twoheadrightarrow \mathbb{Z}_{\ell}$

WD: $V \mapsto (V, N)$

- $N: V(1) \rightarrow V$, $\rho(g) = \exp(\chi_t(g)N)$, $\forall g \in I$ small
- $\mathsf{WD}(\rho)$: $\Phi^n g \mapsto \rho(\Phi^n g) \exp(-\chi_t(g) N)$

Theorem (Deligne)

The functor WD from the category of ℓ -adic representations of G to the category of Weil-Deligne representations in \mathbb{Q}_{ℓ} -vector spaces is fully faithful.

(and the essential image of WD is easy to describe).

Application: *ℓ*-independence

The Weil group W acts on V continuously in the discrete topology.

(V, N) is an "algebraic" object. WD-representations make sense for V over any field (of characteristic 0).

 $X \to \operatorname{\mathsf{Spec}} K \text{ proper smooth } \leadsto \{\operatorname{\mathsf{H}}^i(\overline{X}, \mathbb{Q}_\ell)\}_\ell$

Pick ℓ, ℓ' , embeddings $\mathbb{Q}_{\ell}, \mathbb{Q}_{\ell'} \hookrightarrow \mathbb{C}$.

ℓ-independence conjecture

The representations WD(Hⁱ(\overline{X} , \mathbb{Q}_{ℓ})) and WD(Hⁱ(\overline{X} , $\mathbb{Q}_{\ell'}$)) become isomorphic after base change to \mathbb{C} .

Known for abelian varieties and some other classes.

Weight-monodromy (1)

Pure ℓ -adic rep V of G:

- *V* is *unramified*, i.e. arises from $Gal(\bar{k}/k)$.
- V has weight w: the eigenvalues of the geometric Frobenius are algebraic over \mathbb{Q} and have norm $q^{w/2}$ for every $\mathbb{Q}_\ell \hookrightarrow \mathbb{C}$. (q = # k)

 $X \to \operatorname{Spec} K$ has a smooth proper model over $\mathcal{O}_K \leadsto \operatorname{H}^i(\overline{X},\mathbb{Q}_\ell)$ is pure of weight i (Deligne).

 $X \to \operatorname{\mathsf{Spec}} K$ smooth proper, but not necessary of good reduction.

Rapoport-Zink (up to technicalities): there is a unique increasing filtration on $H^i(\overline{X}, \mathbb{Q}_\ell)$ such that

- the subquotients are pure,
- the weights grow strictly with the level.

Weight-monodromy (2)

$$V = \mathsf{H}^i(\overline{X}, \mathbb{Q}_\ell)$$

Weight-monodromy conjecture

The monodromy operator N determines the weight filtration on V

Jacobson-Morozov: there is a unique increasing filtration $\{M_r\}_{r\in\mathbb{Z}}$ on V such that

- $NM_r \subset M_{r-2}$ for $r \in \mathbb{Z}$,
- the induced map N^r : $\operatorname{gr}_r^M V(r) \xrightarrow{\sim} \operatorname{gr}_{-r}^M V$ is an isomorphism for $r \geqslant 0$.

F-representations

From now on: the characteristic of K is equal to p.

Instead of \mathbb{Q}_{ℓ} work with F, a local field of characteristic p.

E a Drinfeld module over Spec $K \rightsquigarrow V_{\mathfrak{p}}E$ (more generally, t-motives).

Everything breaks down!

- **1** The image of I^{0+} is **typically** infinite.
- ② The group I^{0+} is a free pro-p-group on countably many generators \rightsquigarrow An F-representation of I^{0+} is an essentially arbitrary infinite sequence of elements of $\mathrm{GL}_n(F)$.

End of story? No.

Isocrystals

- \mathbb{F}_q , a finite field of cardinality q.
- F, a local field over \mathbb{F}_q , ring of integers \mathcal{O}_F , maximal ideal \mathfrak{m}_F .
- K, a field over \mathbb{F}_q (not necessarily local).

$$\mathcal{E}_{K,F} = \left(\mathsf{lim}_{n>0} \: K \otimes_{\mathbb{F}_{\!q}} \mathcal{O}_F/\mathfrak{m}_F^n \right) \otimes_{\mathcal{O}_F} F$$

$$F = \mathbb{F}_q((z)) \leadsto \mathcal{E}_{K,F} = K((z))$$

Endomorphism $\sigma \colon \mathcal{E}_{K,F} \to \mathcal{E}_{K,F}$ induced by the *q*-Frobenius of *K*.

Definition

An $\mathcal{E}_{K,F}$ -isocrystal is

- a finitely generated free $\mathcal{E}_{K,F}$ -module M
- equipped with an isomorphism $\tau_M^{\text{lin}} \colon \sigma^*M \xrightarrow{\sim} M$.

Morphisms are σ -equivariant morphisms of underlying modules.

Isocrystals and F-representations (1)

Tate module:

$$T(M) = (\mathcal{E}_{K^{\text{sep}},F} \otimes_{\mathcal{E}_{K,F}} M)^{\tau}, \quad \tau \colon x \otimes m \mapsto \sigma(x) \otimes \tau_{M}^{\text{lin}}(1 \otimes m)$$

Definition

An isocrystal M is unit-root if $\dim_F T(M) = \operatorname{rank}_{\mathcal{E}_{K,F}} M$.

Theorem (Katz)

The functor $M \mapsto T(M)$ is an equivalence of categories of

- unit-root $\mathcal{E}_{K,F}$ -isocrystals,
- *F*-representations of *G*.

Isocrystals and F-representations (2)

Assumption: K is *local*. Ring of integers \mathcal{O}_K .

$$\mathcal{E}_{K,F}^+ = (\text{lim}_{n>0}\,\mathcal{O}_K \otimes_{\mathbb{F}_q} \mathcal{O}_F/\mathfrak{m}_F^n) \otimes_{\mathcal{O}_F} F$$

$$F = \mathbb{F}_q((z)) \leadsto \mathcal{E}_{K,F}^+ = \mathcal{O}_K((z))$$

Theorem

The functor $M\mapsto T(\mathcal{E}_{K,F}\otimes_{\mathcal{E}_{K,F}^+}M)$ is an equivalence of cat-s of

- unit-root $\mathcal{E}_{K,F}^+$ -isocrystals,
- **unramified** *F*-representations of *G*.

Isocrystals and F-representations (3)

$$\mathcal{E}_{K,F}^b = K \otimes_{\mathcal{O}_K} \mathcal{E}_{K,F}^+$$

 $F = \mathbb{F}_q((z)) \rightsquigarrow \mathcal{E}_{K,F}^b \subset \mathcal{E}_{K,F}$ is the subring of series with bounded coefficients.

Power series \rightsquigarrow functions which are bounded on the *open* unit disk.

Theorem (M.)

The functor $M\mapsto \mathcal{E}_{K,F}\otimes_{\mathcal{E}^b_{K,F}}M$ is fully faithful on unit-root $\mathcal{E}^b_{K,F}$ -isocrystals.

Get a full subcategory of F-representations of G.

F-representations arising from A-motives (1)

 $A = \mathbb{F}_q[t]$, the ring of coefficients.

$$A_K = K \otimes_{\mathbb{F}_q} A$$
, $\sigma \colon A_K \to A_K$, $x \otimes a \mapsto x^q \otimes a$.

Definition

An *(effective)* A-motive over K is an A_K -module M equipped with a morphism $\sigma^*M\to M$ such that

- M is finitely generated projective over A_K .
- The cotangent module

$$\Omega_M = \operatorname{coker}(\sigma^* M \to M)$$

is finite-dimensional over K.

Related to *shtukas*. Anderson: Drinfeld modules \rightsquigarrow *A*-motives.

F-representations arising from A-motives (2)

 $\mathfrak{p} \subset A$ a prime $\leadsto F_{\mathfrak{p}}$, the local field of A at \mathfrak{p} .

The rational p-adic completion is

$$M_{\mathfrak{p}}=\mathcal{E}_{K,F_{\mathfrak{p}}}\otimes_{A_K}M$$

 \mathfrak{p} generic $\rightsquigarrow M_{\mathfrak{p}}$ is a unit-root isocrystal.

Proposition (M.)

For every

- A-motive M over K
- prime $\mathfrak{p} \subset A$, \neq the residual characteristic of M the isocrystal $M_{\mathfrak{p}}$ arises from $\mathcal{E}^b_{K,F_{\mathfrak{p}}}$.

$$\mathfrak{p} \neq \text{res. char.}(M) \sim \ell \neq p$$

z-adic monodromy (1)

Upper index ramification filtration I^{ν} , $\nu \in \mathbb{Q}_{\geqslant 0}$ $I^{0+} = \text{closure of } \bigcup_{\nu > 0} I^{\nu}$

Conjecture (the z-adic monodromy theorem)

An F-representation $\rho \colon G \to \operatorname{GL}(V)$ arises from $\mathcal{E}_{K,F}^b$ if and only if

- lacksquare the restriction of ρ to an open subgroup of I is unipotent,
- ② $\rho(I^{v}) = \{1\} \text{ for } v \gg 0.$

In the ℓ -adic case: $\rho(I^{0+})$ is finite.

Property (1) holds for Anderson modules by Gardeyn's analytic monodromy theorem.

Theorem (M.)

Property (2) holds for Drinfeld modules.

z-adic monodromy (2)

Under development:

- analog of Weil-Deligne construction,
- ℓ-independence conjecture,
- weight-monodromy conjecture.
- z-adic de Rham representations.

Classical theory: ℓ -adic and p-adic representations.

z-adic case: there are analogous types of representations, but they share the coefficient field.

Hartl-Kim: Local shtukas \Leftrightarrow a class of z-adic Galois representations (the z-adic analog of crystalline representations).

z-adic de Rham = potentially semi-stable

z-adic monodromy (3)

 $\rho \colon G \to GL(V)$, an *F*-representation of *G*

 $V_0 \subset V$ an unramified representation such that V/V_0 is also unramified. This holds for Drinfeld modules.

z-adic monodromy theorem: $\rho(I^{\nu}) = \{1\}$ for some $\nu \gg 0$.

- J^{ν} , an abelian quotient of I depending only on ν ,
- J^{ν} is finitely generated over $\mathbb{F}_p[[\phi]]$ where $1+\phi$ acts as the Frobenius
- Finite-dimensional $\mathbb{F}_p((\phi))$ -vector space $H = \operatorname{Hom}_F(V_0, V/V_0)$.
- $\rho|_I$ is encoded by an $\mathbb{F}_p[[\phi]]$ -linear homomorphism

$$\chi\colon J^{\mathsf{v}}\to H$$