1 Exponentielle de matrice

1

2 EDL scalaires d'ordres 1 et 2

$\mathbf{2}$

1 Exponentielle de matrice

Exercice 1:

- 1. $B = \begin{pmatrix} 1 & 1 \\ 0 & -1 \end{pmatrix}$. Déterminer $A \in \mathcal{M}_2(\mathbb{C})$ tel que $\exp(A) = B$, et montrer qu'il n'existe pas $A \in \mathcal{M}_2(\mathbb{R})$ tel que $\exp(A) = B$.
- 2. Mêmes questions avec $B = \begin{pmatrix} -1 & 1 \\ 0 & -1 \end{pmatrix}$

Exercice 2: $A \in \mathcal{M}_n(\mathbb{C})$.

- 1. Si A est diagonalisable, à quelle CNS a-t-on $\exp(tA) \xrightarrow[t \to +\infty]{} 0$, à quelle CNS a-t-on $\{\exp(tA) \mid t \in \mathbb{R}^+\}$ borné?
- 2. $M = \lambda I_p + N$, avec N nilpotent. Justifier que, si $t \in R$, $\exp(tM) = e^{t\lambda} \exp(tN)$. Montrer qu'il existe un entier k tel que $||\exp(tN)|| \underset{t \to +\infty}{=} O(t^k)$. En déduire que, si $Re(\lambda) < 0$, $\exp(tM) \underset{t \to +\infty}{\longrightarrow} 0$
- 3. On suppose que $\forall \lambda \in Sp(A), Re(\lambda) < 0$. Montrer que $\exp(tA) \xrightarrow[t \to +\infty]{} 0$. On utilisera une trigonalisation par bloc de A.
- 4. Montrer que les conditions suivantes sont équivalentes :
 - (a) $\forall \lambda \in Sp(A), Re(\lambda) < 0.$
 - (b) Toutes les solutions de x' = Ax $(x \in \mathcal{C}^1(\mathbb{R}, \mathbb{C}^n))$ tendent vers 0 en $+\infty$.

Exercice 3: $\exp(\mathcal{M}_n(\mathbb{C})) = GL_n(\mathbb{C})$

- 1. Soit $g: \mathbb{R} \to \mathcal{M}_n(\mathbb{C})$ de classe \mathcal{C}^1 telle que $\forall t \in \mathbb{R}, g(t)g'(t) = g'(t)g(t)$. Si $n \in \mathbb{N}^*$, montrer que $(g^n)'(t) = ng'(t)(g(t))^{n-1}$. Montrer que $h: t \mapsto \exp(g(t))$ est \mathcal{C}^1 et que $\forall t \in \mathbb{R}, h'(t) = g'(t) \exp(g(t))$.
- 2. $U \in \mathcal{M}_n(\mathbb{C})$ est nilpotente. Si $t \in \mathbb{R}$, on pose $f(t) = \sum_{k=1}^{n-1} \frac{(-1)^{k+1} t^k}{k} U^k$.
 - (a) Calculer $(I_n + tU)f'(t)$.
 - (b) Soit g la fonction définie sur \mathbb{R} par $g(t) = \exp(f(t))$. Montrer que $(I_n + tU)g'(t) = Ug(t)$, puis que g'' = 0. En déduire $g(t) = I_n + tU$.

Ainsi
$$I_n + U = g(1) = \exp(f(1))$$
 est une exponentielle de matrice

- (c) Soit $\lambda \in \mathbb{C}^*$. Montrer qu'il existe $W \in \mathcal{M}_n(\mathbb{C})$ telle que $e^W = \lambda I_n + U$.
- 3. En déduire que exp : $\mathcal{M}_n(\mathbb{C}) \to GL_n(\mathbb{C})$ est surjective.

Exercice 4: $\| \|_2$ est la norme sur \mathbb{R}^n issue du produit scalaire canonique, qui est noté <, >.

1.
$$A = \begin{pmatrix} 0 & -1 & 1 \\ 1 & 0 & -1 \\ -1 & 1 & 0 \end{pmatrix}$$
.

Montrer que toutes les solutions de X'(t) = AX(t) sont bornées sur \mathbb{R} . $(X \in \mathcal{C}^1(\mathbb{R}, \mathbb{R}^3))$.

On se fixe désormais une matrice antisymétrique quelconque $A \in \mathcal{M}_n(\mathbb{R})$ ($^tA = -A$).

- 2. Soit $X \in \mathcal{C}^1(\mathbb{R}, \mathbb{R}^3)$ telle que $\forall t \in \mathbb{R}, \ X'(t) = AX(t)$. Montrer que $||X||_2$ est constante.
- 3. $B \in \mathcal{C}(\mathbb{R}, \mathbb{R}^n)$ vérifie $||B(t)||_2 \underset{t \to \pm \infty}{=\!\!\!=\!\!\!=} O(1/t^2)$. Montrer que toutes les solutions de X'(t) = AX(t) + B(t) sont bornées sur \mathbb{R} .
- 4. Soit $g \in \mathcal{C}^1(\mathbb{R}, \mathbb{R})$ et $h \in \mathcal{C}(\mathbb{R}, \mathbb{R})$ telles que $g' \leq hg$. Montrer que $\forall x, y \in \mathbb{R}, y \geq x \Rightarrow g(y) \leq g(x) \exp\left(\int_x^y h(t)dt\right)$.
- 5. Soit $C \in \mathcal{M}_n(\mathbb{R})$. Montrer que toutes les solutions de $X'(t) = \left(A + \frac{1}{1+t^2}C\right)X(t)$ sont bornées sur \mathbb{R} .

2 EDL scalaires d'ordres 1 et 2

Exercice 5: Résolutions

Résoudre, sur des intervalles à préciser, les équations différentielles suivantes :

- 1. $4xy'' 2y' + 9x^2y = 0$ (séries entières)
- 2. $(x^2 + 3)y'' + xy' y = 1$
- 3. $y'' y' e^{2x}y = e^{3x}$ (changement $u = e^x$)
- $4. y'' + y = \cot(x)$

Exercice 6: f est continue intégrable sur \mathbb{R} . (E): y'-y+f=0

- 1. Montrer que (E) admet une unique solution bornée sur \mathbb{R} , que l'on note g.
- 2. Montrer que g est intégrable sur $\mathbb R$ et que $\int_{\mathbb R} g = \int_{\mathbb R} f$

Exercice 7: Soit (E): $y'' + \frac{1}{x^2 + 4x^3 + 3}y = 0$, équation différentielle que l'on considère sur \mathbb{R}^+ .

- 1. Soit f une solution bornée de (E). Montrer que f' admet une limite finie en $+\infty$, et que cette limite est 0.
- 2. Montrer que (E) admet une solution non bornée. (Considérer un système fondamental de solutions et le wronskien associé)

Exercice 8:

Soient (E): $y'' + \cos(x)y' - x^2y = e^x$ et (E_0) : $y'' + \cos(x)y' - x^2y = 0$, équations différentielles que l'on considère sur [0,1].

- 1. Soit f une solution de (E_0) telle que f(0) = f(1) = 0. Montrer que f = 0. (considérer les extrema de f)
- 2. On note S_0 l'ensemble des solutions de (E_0) . Utilisant $\Phi: f \in S_0 \mapsto (f(0), f(1))$, montrer que $\forall (a, b) \in \mathbb{R}^2$, il existe une unique solution f de (E_0) vérifiant f(0) = a et f(1) = b.

- 3. Montrer que $\forall (a,b) \in \mathbb{R}^2$, il existe une unique solution f de (E) vérifiant f(0) = a et f(1) = b.
- 4. Donner un exemple d'équation différentielle linéaire d'ordre 2 sur [0,1] n'admettant pas de solution f vérifiant f(0) = 0 et f(1) = 1.

Exercice 9:

Soit l'équation différentielle (E): y'' + xy' + (x+1)y = 0. Soit $f: x \mapsto \sum_{n=0}^{\infty} a_n x^n$ une solution sur un intervalle non trivial centré en 0.

- 1. Donner les relations entre les a_n .
- 2. Montrer que (a_n) est bornée. Qu'en conclure?
- 3. Soit b > 0. Montrer que pour n assez grand $|a_{n+2}| \le b \max(|a_{n-1}|, |a_n|)$.
- 4. Montrer que toute solution de (E) est développable en série entière sur \mathbb{R} .

Exercice 10 : propriété de Sturm

- 1. Soient q_1 et q_2 dans $\mathcal{C}(I,\mathbb{R})$ telles que $q_1 \leq q_2$. Soient f_1 une solution de $y'' + q_1 y = 0$, et f_2 une solution de $y'' + q_2 y = 0$. Soient a < b dans I tels que $f_1(a) = f_1(b) = 0$ et f_1 ne s'annule pas dans]a,b[. On veut montrer que f_2 s'annule dans [a,b]. Par l'absurde on suppose $\forall x \in [a,b]$, $f_2(x) \neq 0$.
 - (a) Justifier que l'on peut se ramener au cas $f_2 > 0$ sur [a, b], et $f_1 > 0$ sur [a, b].
 - (b) Montrer que $w = f_1 f'_2 f'_1 f_2$ est décroissante sur [a, b].
 - (c) En regardant w(a) et w(b), trouver une contradiction.
- 2. Soit $q \in \mathcal{C}(\mathbb{R}, \mathbb{R})$ telle $q \geq 1$, et f une solution de y'' + qy = 0. Si $a, b \in \mathbb{R}$ avec $b a \geq \pi$, montrer que f s'annule dans [a, b].

Exercice 11:

On considère sur \mathbb{R}^+ l'équation différentielle (E): $f''(x) - (x^4 + 1)f(x) = 0$. Soit f_0 la solution de (E) telle que $f_0(0) = 1$ et $f'_0(0) = 1$. On note $g = (f_0)^2$.

- 1. Montrer que g est convexe. Donner les valeurs de g(0) et g'(0).
- 2. Montrer que $\forall t \in \mathbb{R}^+, f_0(t) \geq 1$.
- 3. Montrer que $\frac{1}{f_0^2}$ est intégrable sur \mathbb{R}^+ .

On pose
$$f_1: x \in \mathbb{R}^+ \mapsto f_0(x) \int_x^{+\infty} \frac{1}{f_0^2}$$
.

- 4. Montrer que f_1 est solution de (E). (Note : f_1 s'obtient avec la méthode du wronskien)
- 5. Montrer que $f_1' \leq 0$ et que f_1 est bornée.
- 6. Quelles sont les solutions bornées de (E)?

Exercice 12:

Soient (E): (1-x)y''-y=0 et f la solution de (E) sur]-1,1[telle que f(0)=0 et f'(0)=1.

1. Montrer que $\forall x \in \mathbb{R}^+$, $f'(x) \ge 1$. On pourra considérer $\sup\{d \in [0,1[\mid \forall x \in [0,d], f'(x) \ge 1\}$.

On pose, si
$$x \in [0,1[, h(x) = \int_0^x \left(1 + \int_0^t \frac{2u}{1-u} du\right) dt$$
.
On admet qu'une étude montre que $\forall x \in [0,1[, h(x) \le 2x]$.

- 2. En déduire que f est bornée, et étudier le comportement de f en 1.
- 3. Montrer que f est développable en série entière sur]-1,1[.

Exercice 13:

Soit
$$f \in \mathcal{C}^2(\mathbb{R}, \mathbb{R})$$
 telle que $f + f'' \ge 0$.
Montrer que $\forall x \in \mathbb{R}, f(x) + f(x + \pi) \ge 0$.

Exercice 14:

1. Soient (a_n) et (b_n) deux suites de $\mathbb{R}^{\mathbb{N}}$ vérifiant :

$$\forall n \in \mathbb{N}, \ a_{n+1} = \frac{a_n}{(n+1)^2} \text{ et } b_{n+1} = \frac{b_n}{(n+1)^2} + 2\frac{a_{n+1}}{n+1}$$

Calculer a_n , et montrer qu'il existe $C \in \mathbb{R}_+^*$ tel que $\forall n \in \mathbb{N}^*$, $|b_n| \leq \frac{C}{n^4}$

2. Soient $a, b \in \mathbb{R}$. Montrer qu'il existe $f \in \mathcal{C}^2(\mathbb{R}^+, \mathbb{R})$ telle que $\forall x \in \mathbb{R}^+, f''(x) = e^{-x}f(x)$ et $f(x) - (ax + b) \xrightarrow[x \to +\infty]{} 0$.

On cherchera f formellement sous la forme $f(x) = \sum_{n=0}^{+\infty} (a_n x + b_n) e^{-nx}$, et on s'intéressera à la convergence et au caractère \mathcal{C}^2 ensuite.

3. Soient $a, b \in \mathbb{R}$. Montrer qu'il existe une unique fonction $f \in \mathcal{C}^2(\mathbb{R}, \mathbb{R})$ telle que $\forall x \in \mathbb{R}$, $f''(x) = e^{-x} f(x)$ et $f(x) - (ax + b) \xrightarrow[x \to +\infty]{} 0$.

Exercice 15:

Si
$$\lambda \in \mathbb{C}$$
, on note $(E_{\lambda}): y'' + 2xy' + (1 - \lambda + x^2)y = 0$.
On s'intéresse aux solutions complexes de (E_{λ})
Soit $V = \mathcal{C}^{\infty}(\mathbb{R}, \mathbb{C})$ et $\Phi: f \in V \mapsto (x \mapsto f'(x) + xf(x)) \in V$.
 Φ est trivialement linéaire, et donc $\Phi \in \mathcal{L}(V)$.
 $\Phi^2 = \Phi \circ \Phi$.

- 1. Si $\lambda \in \mathbb{C}$, résoudre l'ED $\Phi(f) = \lambda f$, et donner f_{λ} telle $Ker(\Phi \lambda id) = vect(f_{\lambda})$.
- 2. Si $f \in V$, calculer $\Phi^2(f)(x)$. Si $\lambda \in \mathbb{C}$, Que sait-on de dim $(Ker(\Phi^2 - \lambda id))$?
- 3. Si $\lambda \in \mathbb{C}^*$, donner une base de $Ker(\Phi^2 \lambda id)$. On introduira $\mu \in \mathbb{C}$ tel que $\mu^2 = \lambda$.
- 4. Résoudre (E_0) .

Exercice 16: Soit
$$f(x) = \int_{t=0}^{+\infty} \frac{e^{-xt}}{1+t^2} dt$$
.

- 1. Montrer que f est définie et continue sur \mathbb{R}^+ .
- 2. Montrer que f est \mathbb{C}^2 sur \mathbb{R}_+^* et vérifie $\forall x > 0, f(x) + f''(x) = 1/x$.

3. Résoudre l'équation précédente par la méthode de variation des constantes.

On utilisera :
$$C(x) = \int_{t=x}^{+\infty} \frac{\cos t}{t} dt$$
 et $S(x) = \int_{t=x}^{+\infty} \frac{\sin t}{t} dt$ (rappeler pourquoi ces intégrales existent)

4. En déduire :
$$\forall x > 0, f(x) = \int_{t=0}^{+\infty} \frac{\sin t}{t+x} dt.$$

5. En déduire :
$$\int_{t=0}^{+\infty} \frac{\sin t}{t} dt = \frac{\pi}{2}$$
 (rappeler pour
quoi l'intégrale existe).

Exercice 17:

 \mathcal{C}_1 est l'espace des fonctions continues de \mathbb{R} dans \mathbb{R} 1-périodiques, \mathcal{C}_1^2 est l'espace des fonctions de classe \mathcal{C}^2 de \mathbb{R} dans \mathbb{R} 1-périodiques, \mathcal{C} est l'espace des fonctions continues de \mathbb{R} dans \mathbb{R} , \mathcal{C}^2 est l'espace des fonctions de classe C^2 de \mathbb{R} dans \mathbb{R} .

$$a, b, c \in \mathcal{C}_1$$
 vérifient $a > 0, c \le 0$ et $c \ne 0$.

Si
$$f \in \mathcal{C}^2$$
, on pose $T(f) = af'' + bf' + cf$.

On pose
$$E = \{ f \in \mathcal{C}^2 \mid T(f) = 0 \}.$$

- 1. Soit $f \in \mathcal{C}^2$. On suppose que f admet en un $x_0 \in \mathbb{R}$ un maximum local tel que $f(x_0) \geq 0$. Quel est le signe de $T(f)(x_0)$?
- 2. Justifier que l'image de \mathcal{C}^2 par T est \mathcal{C} .
- 3. Soit $g \in \mathcal{C}^2$ telle que $T(g) \geq 0$. Montrer que $\forall [x,y] \subset \mathbb{R}, \max_{[x,y]} g \leq \max(0,g(x),g(y)).$

On pourra commencer par le cas T(g) > 0 et utiliser la question 2 pour le cas général.

- 4. Montrer que la restriction de T à \mathcal{C}_1^2 est injective.
- 5. Montrer que l'application $f \mapsto (f(0) f(1), f'(0) f'(1))$, de E dans \mathbb{R}^2 , est un isomorphisme.
- 6. Montrer que l'application $f \mapsto T(f)$, de \mathcal{C}_1^2 dans \mathcal{C}_1 est un isomorphisme.

Exercice 18:

On note (E) l'équation différentielle $\forall x \in \mathbb{R}, f''(x) + q(x)f(x) = 0$ où $q(x) = 1 + \frac{1}{1 + x^2 + x^4}$ et S l'ensemble des fonctions $f: \mathbb{R} \to \mathbb{R}$ deux fois dérivables sur \mathbb{R} solutions de (E).

- 1. Si $f \in S$, montrer que f est de classe \mathcal{C}^{∞} .
- 2. Inégalité de Gronwall

Soient $h \in \mathcal{C}^1(\mathbb{R}, \mathbb{R})$ et $a \in \mathcal{C}(\mathbb{R}, \mathbb{R})$ telles que $\forall x \in \mathbb{R}, h'(x) \leq a(x)h(x)$.

Montrer que
$$\forall (x,y) \in \mathbb{R}^2, \ x \leq y \Longrightarrow h(y) \leq h(x) \exp\left(\int_x^y a(t)dt\right).$$

On pourra étudier he^{-A} où A est une primitive de a

On pourra étudier he^{-A} , où A est une primitive de a

Dans la suite, f est une solution de (E)

3. Les solutions sont bornées.

Soit
$$h = f^2 + (f')^2$$
. (ce sont des carrés, pas des composées)

(a) Montrer que
$$\forall x \in \mathbb{R}, h'(x) \leq (q(x) - 1)h(x)$$
.

- (b) Montrer que h, puis f et f', sont bornées sur \mathbb{R}^+ .
- (c) En utilisant $w: x \mapsto f(-x)$, montrer que f et f' sont bornées sur \mathbb{R}^- , et donc finalement sur \mathbb{R} .

4. Comparaison avec les solution de l'équation limite y'' + y = 0 a l'infini

(a) Donner les solutions réelles de (F): y'' + y = 0.

On va montrer que f s'approche en $+\infty$ par une solution de (F).

(b) Montrer qu'il existe d'uniques fonctions a, b de classe \mathcal{C}^{∞} et bornées telles que pour tout $x \in \mathbb{R}$,

$$\begin{cases} f(x) = a(x)\cos(x) + b(x)\sin(x) \\ f'(x) = -a(x)\sin(x) + b(x)\cos(x) \end{cases}$$

- $\begin{cases} f(x) = a(x)\cos(x) + b(x)\sin(x) \\ f'(x) = -a(x)\sin(x) + b(x)\cos(x) \end{cases}$ (c) Montrer que $\forall x \in \mathbb{R}$, $\begin{cases} a'(x) = (q(x) 1)\sin(x)f(x) \\ b'(x) = (1 q(x))\cos(x)f(x) \end{cases}$
- (d) Montrer que a et b admettent des limites finies en $+\infty$ et $-\infty$
- (e) Montrer qu'il existe $\alpha, \beta \in \mathbb{R}$ tels que $f(x) \alpha \cos(x) \beta \sin(x) \xrightarrow[r \to +\infty]{} 0$.

Exercice 19: q est une fonction continue π -périodique de \mathbb{R} dans \mathbb{C} . On considère l'équation différentielle (1) : x''(t) - q(t)x(t) = 0. Soit S l'ensemble des solutions de (1) sur \mathbb{R} à valeurs complexes.

Partie I : généralités

- 1. Que savez-vous de S?
- 2. Si x_1 et x_2 sont dans S, et $w = x_1x_2' x_1'x_2$ est le wronskien associé, montrer que w est contant.
- 3. Justifier qu'existent d'uniques x_1 et x_2 dans S vérifiant $(x_1(0), x_1'(0)) = (1, 0)$ et $(x_2(0), x_2'(0)) = (0, 1)$. Montrer que (x_1, x_2) est une base de S.

Pour toute la suite x_1 et x_2 désignent ces solutions de S

Partie II : opérateur de translation

On définit l'opérateur T de translation par π comme l'application de $\mathcal{C}(\mathbb{R},\mathbb{C})$ dans lui-même définie par

$$\forall t \in \mathbb{R}, \ \forall f \in \mathcal{C}(\mathbb{R}, \mathbb{C}), \ T(f)(t) = f(t + \pi)$$

- 1. Montrer que T est un automorphisme de $\mathcal{C}(\mathbb{R}, \mathbb{C})$.
- 2. Soit $f \in \mathcal{C}(\mathbb{R}, \mathbb{C})$ une fonction propre (ie vecteur propre) de $T: f \neq 0$ et $T(f) = \lambda f$,
 - (a) Si $|\lambda| = 1$, montrer que f est bornée, et $f(t) \xrightarrow{t \to \infty} 0$.
 - (b) Si $|\lambda| < 1$, montrer que $f(t) \xrightarrow[t \to +\infty]{} 0$.
 - (c) Si $|\lambda| > 1$, montrer que f est non bornée.
- 3. Montrer que, si $f \in S$, $T(f) \in S$. On note pour la suite $W: S \to S$ l'endomorphisme induit par T sur S.

4. Montrer que W est un automorphisme de S.

Partie III: solutions stables et fortement stables de (1)

Une solution x de (1) est dite stable si elle est bornée, fortement stable si $x(t) \xrightarrow[t \to +\infty]{} 0$, instable si elle est non bornée.

On va étudier ces trois notions à l'aide de l'opérateur de translation W introduit dans la partie \mathbf{II} . On note M la matrice de W dans la base (x_1, x_2) de S

- 1. Montrer que $M = \begin{pmatrix} x_1(\pi) & x_2(\pi) \\ x_1'(\pi) & x_2'(\pi) \end{pmatrix}$. On note pour la suite $\Delta = \frac{1}{2}Tr(M)$.
- 2. Montrer que le polynôme caractéristique de M est $X^2-2\Delta X+1$.

On suppose pour la suite Δ réel.

- 3. On suppose ici $|\Delta| \neq 1$.
 - (a) Montrer que W est diagonalisable.
 - (b) Si $|\Delta| < 1$, montrer que toute solution de (1) est stable.
 - (c) $|\Delta| > 1$, montrer qu'existe une solution de (1) fortement stable. Est-elle unique? Existe-t-il des solutions stables non fortement stables? Existe-t-il des solutions instables?
- 4. On suppose ici $|\Delta| = 1$.
 - (a) Montrer qu'existe une base (y_1, y_2) de S dans laquelle la matrice de W est de la forme $\begin{pmatrix} \Delta & a \\ 0 & \Delta \end{pmatrix}$ avec $a \in \mathbb{C}$.
 - (b) On suppose $a \neq 0$. Montrer qu'existe une solution de (1) stable mais non fortement stable. Déterminer les solutions fortement stables de (1).
 - (c) On suppose a = 0. Que dire des solutions de (1) en terme de stabilité?