Lecture 4 - Jan 24, 2023

- Mutt: Arm Bondits
 - · Introduction
 - · Exploration Exploitation Delina
 - · Epsilon-Greedy policy
 - · Optimistic Initial Values
 - · Upper contidence Bound Selection policy
 - · Gradient-Based Selection Policy
 - · Thompson Sampling
- Reinforcemement Learning Preliminaries
 - · State, Action, Reward, Policy

HW1 → Due Jan 28 Project 1 → Due Feb F

TA's office hour: Wendsdays, 12 pm - (pm (in-person))
Fridays, 12 pm - (pm (virtual))

O- Bestinate

I a a \ argmax Q(a) u.p 1-s \ \ Random \{a\cdot_{\cancertemai\cup_{\cdot_{\cinmb}\cancertemai\chon_{\cdot_{\cdot_{\cdot_{\cdot_{\cdot_{\cdot_{\cinmbrie\cup_{\cdot_{\cinmbrie\cup_{\cdot_{\cinmbrie\cup_{\cdot_{\cinmbrie\cdot_{\cdot_{\cinmbrie\cinmbrie\cancertemai\cni_{\cdot_{\cinmbrie\cup_{\cinmbrie\cup_{\cinmbrie\cinmbrie\cin}\cin

Optimistic initial value = Q(a) =0 / large value

2- Upper Confidence Bound Porling

Q(a)=Q(x)+x(R-Q(a))

That = argmax $Q(a) + \sqrt{\frac{\log t}{Na(t)}}$ Green $c \rightarrow Mare explanation$

3- Gradient-Bandit Policy (does not Q)

H(a) = 0 for all a & A

 $\mathcal{H}_{t+1}(A_t) = H_t(A_t) + \alpha [R_t - \bar{R}_t] (l - T_t A_t)$ $\mathcal{H}_{t+1}(A_t) = H_t(A_t) + \alpha [R_t - \bar{R}_t] (l - T_t A_t)$ $\mathcal{H}_{t+1}(A_t) = H_t(A_t) - \alpha [R_t - \bar{R}_t] T_t(A_t)$

Bernouli (P)

 $R^2 = Distribution$

Ri Bernouli (<u>Xi</u>)

Beta Distribution for likelihood of observed wings Beta (di, Bi)

arem 2 Seleted

Win $\rightarrow \alpha g = \alpha_2 + 1$ Loss $\rightarrow \beta_2 = \beta_2 + 1$

$$P(\theta_{\alpha}|D) = \frac{P(D|\theta^{\alpha})P(\theta^{\alpha})}{P(D)}$$

Oxfalgmax Pi

Proof of Gradient Bundit Porlice

$$\mathcal{H}_{t}(\alpha) = \frac{\mathcal{H}_{t}(\alpha)}{\sum_{b \in A} e^{\mathcal{H}_{t}(b)}}$$

Objective: Maximizing Acomulately

Reward $H_{+}(\alpha^{2}) = 0 \quad \text{Tr}(\alpha) = 0.0008$ $H_{+}(\alpha^{2}) = 0$

$$H_{\xi}(a) = 0 \rightarrow \begin{cases} T_{\xi}(a') = \frac{1}{2} \\ T_{\xi}(a') = \frac{1}{2} \end{cases}$$

$$H_{\xi}(a') = 0 \rightarrow \begin{cases} T_{\xi}(a') = \frac{1}{2} \\ T_{\xi}(a') = 0 \end{cases}$$

$$H_{\xi}(a') = 0 \rightarrow \begin{cases} T_{\xi}(a') = 0.000 \end{cases}$$

$$H_{\xi}(a') = 0.000 \end{cases}$$

E[Rt]

E[Rt] Tycal, Tycal) Q(a1)= 5 = E[R+1 H+(a), H+(a2)] Q(a2)=10 = 2 Q(b) T4(b)

$$H_{LH}(a) = H_{L}(a) + \alpha \frac{\partial E[R_t]}{\partial H_{L}(a)}$$
 for all $a \in A$

$$= \underbrace{\sum_{b \in A} \left(Q(b) - \underbrace{\chi_t} \right)}_{b \in A} \underbrace{\frac{8}{5} \chi_t(b)}_{5 H_t(a)}$$

any salar why?

$$\frac{e^{H_{+}(\alpha')}}{e^{H_{+}(\alpha')}} \times \frac{e^{H_{+}(\alpha')}}{e^{H_{+}(\alpha')}} \xrightarrow{\text{local}} \frac{e^{X}}{e^{X}} \xrightarrow{\text{local}} \frac{e^{$$

$$= E \left[\left(Q(b) - \bar{R}_t \right) \frac{\partial \mathcal{T}_{t(b)}}{\partial \mathcal{H}_{t(a)}} / \mathcal{T}_{t(b)} \right]$$

$$\frac{\partial E[R+7]}{\partial H_{+}(\alpha)} \approx \frac{(\Omega(A+) - \overline{R}_{t})}{R_{t}} \frac{\partial T_{+}(A_{t})}{\partial H_{+}(\alpha)} / T_{+}(A_{t})}$$

$$\frac{\partial \mathcal{T}_{t}(A_{t})}{\partial \mathcal{H}_{t}(a_{t})} \xrightarrow{\alpha \neq A_{t}} \mathcal{T}(A_{t}) \left(-\mathcal{T}(a_{t})\right)$$

$$0 = A_{t} \longrightarrow \mathcal{T}(A_{t}) \left(1 - \mathcal{T}(A_{t})\right)$$

$$T(A_t) = \frac{e^{\chi}}{e^{\chi} + e^{\chi}}$$

$$T(A_t) = \frac{e^{\chi}}{e^{\chi} + e^{\chi}}$$

$$\frac{\partial T_k(A_k)}{\partial H_k(A_k)} = \frac{e^{\chi}}{\partial A_k(A_k)} = \frac{e^{\chi}}{e^{\chi} + e^{\chi}}$$

$$\begin{cases} H_{t+1}(A_t) = H_t(A_t) + \alpha \left[R_t - R_t \right] \left(I_n \mathcal{T}_t(A_t) \right) \\ H_t(\alpha) = H_t(\alpha) - \alpha \left[R_t - R_t \right] \mathcal{T}_t(\alpha) \end{cases}$$

Reinforcement Learning - preliminaris							
_	9	10	11	12			
State Space S 5 state	8		14	13			
	7		16	15			
SE S	6	5					
Action Space &	4 Wal	3	2 Bump	1 Goal			
a = { UP, Dam, Lehe]							
Immediate $R: SXAXS \rightarrow Real$ Reward $R(S, a, S')$ $R(3, a = 1)$							
Reward R(S, 9, 5') $R(3, 95/.4)$							
Rewards $ \begin{array}{c} R(3, a=b, 4)=-1-10=-11 \\ \hline \end{array} $ workent Bump							
			moles	ut Bum	P		
S-1 any movement 1-10 Bump 100 Goal R	C3, V,	(1)	mo <i>le</i>	ut Blm	P		
SONUM O		· ·			₽		
J-10 Bump 100 Goal R Goal: Find the best peth	9	10	11	12	ρ 		
Goal: Find the best peth What results in highest	9	· ·	11	12	<i>ρ</i>		
Goal: Find the best peth What results in highest	9 8 7	10	11	12	P		
Goal: Find the best peth	9 8 7 6	10	11 14 16	12 13 15	<i>P</i>		
Goal: Find the best peth What results in highest Accomulated Rouland	9 8 7 6 4	10 5 3	11 14 16	12 13 15			
Goal: Find the best peth What results in highest	9 8 7 6 4	10 5 3	11 14 16	12 13 15			

9	10	11	12	
8		14	13	
7		16	15	
6	5			
4	3	2	1	
Wall Bump Goal				