

Presentation on Structure and Architecture of a Scientific Paper

Philosophy of Science and Good Scientific Practice

Puneetha Jangir Lok Ram Jangir – S. M. Mahmudul Haque –

Wednesday, 2022 January 05

Emerging Big Data Sources for Public Transport Planning: A Systematic Review on Current State of Art and Future Research Directions. [1]

Motivation

- Overview of the contemporary research related to the application of Big data on Public Transport Planning
- Future research direction regarding the application of emerging data sources for Public Transport Planning

[2]

Overview - Transport Planning

Methodology

Data Sources: Scopus, Web of Science, Science Direct, Wiley Online Library, Taylor & Francis, and Google scholar.

Keywords: Big Data, Smart Card, Mobile Phone, Social Media, Passive Data, Public Transport, Transportation, Planning.

272 articles screened - 47 articles considered for review

Contribution to the Domain along with research gap

Emerging data sources available for transport planning

Smart Card Data

Bus with smart card reader and GPS planned routes and [5] « SIVT » server Smart card issuing locations (4) user data boarding data Smart card reloading locations (20) planned routes financial transactions Service operation Accounting system information system

- Mobile Phone Data
 - CDR data
 - GSM data

GPS and AVL Data

[7]

Present State of Big Data in PT Planning

 Individual travel pattern Analysis (mode choice, departure time choice, destination choice)

• Performance assessment of public transport services

[10]

[10]

[11]

Benefits of Big Data compared to traditional data sources

- Provide updated and near or real time spatial and temporal information.
- Large amount of individual level data with greater detail and higher accuracy at lower cost.
- Allow to develop panel data for a large sample size and longer observation period.

Challenges of using Big data in Public Transport Planning

- Presence of data gap.
- Absence of personal or socio-demographic information.
- Some details (e.g., trip purposes, accompanying travelers) are not explicitly recorded.
- Data are generated by non-transport activity (e.g., during phone call, text message etc.); hence, cannot be converted directly to mobility data for transport studies.

Future Research Direction

- Reviewed articles are focused on investigating traditional planning topics (e.g. O-D estimation, mode choice etc.), future research can focus more on dynamic transport modelling.
- Application of multiple big data sources (big data and traditional data) to improve the accuracy in travel behaviour prediction is still infancy.
- Majority of the studies are assumption based, very few studies worked on the validity of the proposed method.
- Big data has been used in transport research predominantly in context of developed countries.

Conclusion

- Cross-cutting research is needed to explain the applicability of big data in transport planning research domain.
- Application of big data in the context of developing countries need to explore the dynamic landscape of developing countries.
- Useful guide for fellow researchers.

References

- [1] Zannat, K., Choudhury, C.F. Emerging Big Data Sources for Public Transport Planning: A Systematic Review on Current State of Art and Future Research Directions. J Indian Inst Sci 99, 601–619 (2019). https://doi.org/10.1007/s41745-019-00125-9
- [2] http://icet-usa.org/big-data-and-transport
- [3] Bwambale, A., Choudhury, C. F., & Hess, S. (2019). Modelling departure time choice using mobile phone data. Transportation research part A: policy and practice, 130, 424-439.
- [4] https://en.wikipedia.org/wiki/File:Oyster_Card.jpeg
- [5] Pelletier, M. P., Trépanier, M., & Morency, C. (2011). Smart card data use in public transit: A literature review. Transportation Research Part C: Emerging Technologies, 19(4), 557-568.
- [6] Jacques, D. C. (2018). Mobile phone metadata for development. arXiv preprint arXiv:1806.03086.
- [7] https://commons.wikimedia.org/wiki/File:Gsm_structures.svg
- [8] https://img.etimg.com/photo/msid-61791390,quality-100/.jpg
- [9] https://thehackernews.com/2018/01/gps-location-tracking.html

References (Cont.)

[10] Zannat et al.

[11] https://en.wikipedia.org/wiki/Public_transport

Thank You