WHAT IS CLAIMED IS:

1. A compound of the formula I:

$$R_{4}$$
 R_{5}
 R_{6}
 R_{1}
 R_{2}
 R_{2}
 R_{2}
 R_{3}
 R_{2}
 R_{4}
 R_{5}
 R_{6}
 R_{6}
 R_{6}
 R_{7}
 R_{1}
 R_{2}
 R_{3}
 R_{2}
 R_{4}
 R_{5}
 R_{6}
 R_{6}

(I)

or a pharmaceutically acceptable salt thereof;

wherein X and Y are independently selected from the group consisting of O, CF₂, CH₂, and CHF;

wherein A is independently selected from the group consisting of P(O)OH, CH₂COOH, and CH(COOH)₂;

 R_2 is selected from the group consisting of H, OH, isosteres of OH, C_1 - C_{25} alkyloxy, C_6 - C_{10} aryloxy, C_3 - C_8 cycloalkyloxy, C_3 - C_8 cycloalkyl C_1 - C_6 alkoxy, C_2 - C_{22} alkenyloxy, C_3 - C_8 cycloalkenyloxy, C_7 - C_{32} aralkyloxy, C_7 - C_{32} aralkyloxy, C_9 - C_{32} aralkenyloxy, and C_9 - C_{32} alkenyloxy;

 R_3 - R_6 are independently selected from the group consisting of H, OH, isosteres of OH; and R_1 and R_7 are independently selected from the group consisting of C_1 - C_{25} alkyl, C_6 - C_{10} aryl, C_3 - C_8 cycloalkyl, C_2 - C_{22} alkenyl, C_3 - C_8 cycloalkenyl, C_7 - C_{32} aralkyl, C_7 - C_{32} alkylaryl, C_9 - C_{32} aralkenyl, and C_9 - C_{32} alkenylaryl;

with the provisos that (i) when X is O, Y is O or CH_2 , and R_3 is H, at least one of R_2 and R_4 - R_6 is not OH; (ii) when A is CH_2COOH or $CH(COOH)_2$, X and Y cannot be simultaneously O; and (iii) all of R_2 - R_6 are not simultaneously H.

- 2. The compound of claim 1, wherein A is P(O)OH.
- 3. The compound of claim 1 or 2, which has the formula Ia:

$$\begin{array}{c|c} R_4 & R_3 & R_2 \\ \hline R_5 & 5 & 6 & 1 \\ \hline R_6 & & & \\ \end{array} X \begin{array}{c} OH & OR_7 \\ \hline OR_7 & OR_7 \\ \hline OR_7 & OR_7 \\ \hline \end{array}$$

4. The compound of claim 1 or 2, which has the formula Ib:

$$\begin{array}{c|c} R_4 & R_3 & R_2 \\ \hline R_5 & 5 & 6 & 1 \\ \hline R_6 & & O \end{array} \qquad \begin{array}{c} OH & OR_7 \\ \hline OR_7 & OR_1 \\ \hline OR_7 & OR_1$$

(Ib).

- 5. The compound of any of claims 2-4, wherein X and Y are O.
- 6. The compound of any of claims 1-5, wherein R_1 is a C_1 - C_{25} alkyl.
- 7. The compound of any of claims 1-6, wherein R_1 is a C_{10} - C_{25} alkyl.
- 8. The compound of any of claims 1-7, wherein R_1 is a C_{15} - C_{20} alkyl.
- 9. The compound of any of claims 1-8, wherein R_1 is a C_{18} alkyl.
- 10. The compound of any of claims 1-9, wherein R₇ is a C₁-C₂₅ alkyl.
- 11. The compound of any of claims 1-10, wherein R₇ is a C₁-C₁₅ alkyl.
- 12. The compound of any of claims 1-11, wherein R_7 is a C_1 - C_5 alkyl.
- 13. The compound of any of claims 1-12, wherein R_7 is methyl.
- 14. The compound of any of claims 1-13, wherein R_2 is C_1 - C_{25} alkyloxy.

- 15. The compound of any of claims 1-14, wherein R₂ is C₁-C₁₅ alkyloxy.
- 16. The compound of any of claims 1-15, wherein R_2 is C_1 - C_5 alkyloxy.
- 17. The compound of any of claims 1-16, wherein R_2 is methoxy.
- 18. The compound of any of claims 1-13, wherein R_2 is C_7 - C_{32} aralkyloxy.
- 19. The compound of any of claims 1-13 and 18, wherein R₂ is cyclohexylmethoxy.
- 20. The compound of any of claims 1-13, wherein R_2 is H.
- 21. The compound of any of claims 1-13, wherein R₃ is H.
- 22. The compound of any of claims 1-13, wherein R₄ is H.
- 23. The compound of any of claims 1-13, wherein R₅ is H.
- 24. The compound of any of claims 1-13, wherein R₆ is H.
- 25. The compound of any of claims 1-13, wherein R2 and R3 are H.
- 26. The compound of any of claims 1-13, wherein R₃ and R₄ are H.
- 27. The compound of any of claims 1-13, wherein R_5 and R_6 are H.
- 28. The compound of claim 3, wherein X and Y are O, R_1 is $C_{18}H_{37}$, and R_7 is methyl.
- 29. The compound of claim 28, wherein R_2 is methoxy, R_3 is H, and R_4 - R_6 are OH.
- 30. The compound of claim 28, wherein $R_2\text{-}R_3$ are H and $R_4\text{-}R_6$ are OH.
- 31. The compound of claim 28, wherein R₂-R₃ and R₅-R₆ are OH and R₄ is H.
- 32. The compound of claim 28, wherein R_2 is i-butyloxy, R_3 is H, and R_4 - R_6 are OH.

- 33. The compound of claim 28, wherein R_2 is cyclohexylmethoxy, R_3 is H, and R_4 - R_6 are OH.
- 34. The compound of claim 28, wherein R₂-R₃ and R₆ are OH and R₄-R₅ are H.
- 35. The compound of claim 28, wherein R_2 - R_4 and R_6 are OH and R_5 is H.
- 36. The compound of claim 28, wherein R2, R4, and R6 are OH and R3 and R5 are H.
- 37. A pharmaceutical composition comprising a compound of any of claims 1-36 and a pharmaceutically acceptable carrier.
- 38. A method of preventing or treating a disease, or a condition that predisposes to a disease, which is characterized by the activation of the serine/threonine kinase Akt in an animal comprising administering to the animal a preventive or treatment effective amount of a compound of any of claims 1-36.
- 39. The method of claim 38, wherein the disease is a cancer.
- 40. The method of claim 39, wherein the cancer is breast cancer, lung cancer, ovarian cancer, uterine cancer, brain cancer, sarcoma, melanoma, leukemia, lymphoma, colorectal cancer, prostate cancer, or liver cancer.
- 41. The method of claim 38, wherein the disease is a rheumatologic disease.
- 42. The method of claim 41, wherein the rheumatologic disease is rheumatoid arthritis or osteoarthritis.
- 43. The method of claim 38, wherein the disease is a pulmonary disease.
- 44. The method of claim 43, wherein the pulmonary disease is chronic obstructive pulmonary disease (COPD).
- 45. The method of claim 38, wherein the disease or condition is a precancerous lesion.

- 46. The method of claim 38, wherein the disease is a cardiovascular disease.
- 47. The method of claim 38, wherein the disease is a dermatologic disease.
- 48. The method of claim 38, wherein the disease is a gynecological disease.
- 49. The method of claim 38, wherein the disease is a vascular disease.
- 50. The method of claim 38, wherein the disease is a neurologic disease.
- 51. The method of claim 38, wherein the disease is an infectious disease.
- 52. The method of claim 38, wherein the infectious disease is a bacterial, viral, retroviral, or parasitic disease.
- 53. A method of increasing apoptosis of a cell comprising contacting the cell with a compound of any of claims 1-36.
- 54. A method for inhibiting PH domain binding comprising exposing a material containing an PH domain to a compound of any of claims 1-36.
- 55. A method for determining the presence of a PH domain in a material comprising:
- (a) exposing a sample of said material to a PH domain binding compound and obtaining a first binding result;
- (b) exposing another sample of said material to a compound of any of claims 1-36 and obtaining a second binding result; and
- (c) comparing the first and second binding results to determine whether a PH domain is present in the material.