WYDZIAŁ NAUK ŚCISŁYCH I TECHNICZNYCH

Adam Talarczyk, Krystian Budulski, Mateusz Wrzoł

Symulacja Monte Carlo

Spis treści

1	Zadanie 1																						
	1.1	Rozwiązanie .																					
	1.2	Kod źródłowy																					
		Wnioski																					
2	Zadanie 2																						
	2.1	Rozwiązanie .																					
	2.2	Kod źródłowy																					
	$^{2.3}$	Wnioski																					

1 Zadanie 1

Należy zmodyfikować kod dla aproksymacji stałej PI, aby sprawdzić jak rozmiar próbki wpływa na błąd aproksymacji. Błąd aproksymacji obliczamy jako wartość bezwględną różnicy, pomiędzy aproksymacją PI i wartością rzeczywistą PI (3.14159265). Należy przygotować wykres [Rysunek 1]

Rysunek 1: Przykład wykresu

1.1 Rozwiązanie

Opis rozwiązania

1.2 Kod źródłowy

Listingi

1.3 Wnioski

Wnioski

2 Zadanie 2

Zaprogramować symulację Monte Carlo (np. w jęyku R), która pozwoli obliczyć pole powierzchni szarego obszaru, przedstawionego na poniższym rysunku [Rysunek 2]. Obliczyć błąd uzyskanego wyniku.

Rysunek 2: Figura

2.1 Rozwiązanie

Opis rozwiązania

2.2 Kod źródłowy

Listingi

2.3 Wnioski

Wnioski