SUITES NUMÉRIQUES

Étudier les suites définies par : 1.

a.
$$u_{n+1} = \sqrt{1 + u_n}$$

b.
$$u_{n+1} = \sqrt{2 - u_n}$$

$$\mathbf{c.} \quad u_{n+2} = \sqrt{u_{n+1}u_n}$$

a.
$$u_{n+1} = \sqrt{1 + u_n}$$
 b. $u_{n+1} = \sqrt{2 - u_n}$ **c.** $u_{n+2} = \sqrt{u_{n+1}u_n}$ **d.** $u_n = \sum_{p=1}^n \sin\left[\frac{p}{n^2}\right]$

$$\mathbf{e.} \quad u_n = \left[\frac{(2n)!}{n! \, n^n} \right]^{\frac{1}{2}}$$

f.
$$u_{n+1} = u_n - u_n^2$$

e.
$$u_n = \left[\frac{(2n)!}{n! n^n} \right]^{\frac{1}{n}}$$
 f. $u_{n+1} = u_n - u_n^2$ **g.** $u_{n+1} = \ln \left(\frac{e^{u_n} - 1}{u_n} \right)$.

Déterminer la limite l de la suite (u_n) définie par : 2.

 $u_1 = 1$ et $\forall n \in \mathbb{N}^*$, $u_{n+1} = (n + u_n^{n-1})^{\frac{1}{n}}$ (il pourra être bon d'envisager une suite auxiliaire).

Déterminer ensuite un équivalent de $u_n - l$.

- Prouver que l'équation $x^n nx + 1 = 0$ possède, pour tout entier n supérieur ou égal à 3, une unique racine c_n dans]0,1[. Déterminer la limite de la suite (c_n) , et donner un équivalent de c_n – $\lim c_n$.
- (4.) On donne deux réels strictement positifs u_0 et u_1 , et on construit par récurrence une suite en posant, pour tout entier

$$u_{n+2} = \sqrt{u_{n+1}} + \sqrt{u_n}$$
.

- a. Déterminer les seules limites possibles de la suite (u_n) et prouver que l'une peut être exclue.
- **b.** On pose $\Delta_n = |u_n L|$ où L est la seule limite possible de la suite (u_n) . Prouver l'existence d'un réel k tel que 0 < k < 1/2, et vérifiant pour tout $n : \Delta_{n+2} \le k(\Delta_{n+1} + \Delta_n)$.
 - **c.** On considère une suite (δ_n) définie par $\delta_0 = \Delta_0$, $\delta_1 = \Delta_1$, et $\forall n$, $\delta_{n+2} = k(\delta_{n+1} + \delta_n)$. Etudier la limite de la suite (δ_n) , et conclure.
- On définit une suite (u_n) par la donnée de u_0 dans **R** et la relation de récurrence : $u_{n+1} = \frac{u_n}{3-2u}$.
 - **a.** On suppose momentanément que u_0 est tel que la suite soit entièrement définie.

Quelles sont ses limites possibles ?

Prouver que si $u_0 \neq 1$, $u_n \neq 1 \,\forall n$. On pose alors $v_n = \frac{u_n}{u_n-1}$.

Quelle est la nature de la suite (v_n) ?

Achever alors l'étude de la suite (u_n) .

- **b.** Pour quelles valeurs de u_0 la suite (u_n) est-elle entièrement définie ?
- **a.** Montrer que l'ensemble des entiers n tels que $2^{n^2} < (4n)!$ est fini. 6.
 - **b.** Calculer $\lim_{n} \left(\lim_{k} \frac{n^k}{(n+1)^k} \right)$ et $\lim_{k} \left(\lim_{n} \frac{n^k}{(n+1)^k} \right)$.
 - c. Les crochets désignant la partie entière et α un réel, calculer $\lim_{n} \frac{[\alpha] + [2\alpha] + ... + [n\alpha]}{n^2}$.
 - **d.** Prouver que la suite $\left(\sin(2+\sqrt{3})^n\pi\right)$ tend vers 0!

SÉRIES

1. Étudier les séries de termes généraux suivants

a.
$$\sqrt[n]{n+1} - \sqrt[n]{n}$$
 b. $\frac{e^{-1/n}}{\sqrt[n]{n+1}}$ **c.** $e^{-(\ln \ln n)^3}$

b.
$$\frac{e^{-1/n}}{\sqrt[n]{n+1}}$$

$$\mathbf{c.} \quad \mathrm{e}^{-(\ln \ln n)^3}$$

d.
$$\left(\frac{\pi}{2}\right)^{3/5} - \left(\operatorname{Arctg} n\right)^{3/5}$$
 d'. $\frac{\operatorname{ch} n}{\operatorname{ch} 2n}$

d'.
$$\frac{\cosh n}{\cosh 2n}$$

e.
$$\sqrt{\sin \frac{1}{n}} - \sqrt{\sin \frac{1}{n+1}}$$
 f. $\left(1 + \frac{1}{n}\right)^n - e$ **g.** $\frac{(-1)^n}{\ln n}$ **h.** $\arccos\left(\frac{n^3 + 1}{n^3 + 2}\right)$ **h'.** $\frac{(3n+3)x^{3n+1}}{\ln n(1+x^n)}$

f.
$$\left(1+\frac{1}{n}\right)^n-\epsilon$$

$$\mathbf{g.} \quad \frac{(-1)^n}{\ln n}$$

h.
$$\operatorname{arccos}\left(\frac{n^3+1}{n^3+2}\right)$$

h'.
$$\frac{(3n+3)x^{3n+1}}{\ln n(1+x^n)}$$

i.
$$\ln \left[\frac{\sqrt{n+(-1)^n}}{\sqrt{n+a}} \right]$$

$$\mathbf{j.} \quad \frac{1}{(\ln n)^{\ln n}}$$

k. Arcsin
$$\left(\frac{\sqrt{2}}{2} + \frac{(-1)^n}{n^\alpha}\right) - \frac{\pi}{4}$$

i.
$$\ln \left[\frac{\sqrt{n} + (-1)^n}{\sqrt{n+a}} \right]$$
 j. $\frac{1}{(\ln n)^{\ln n}}$ k. $Arcsin \left(\frac{\sqrt{2}}{2} + \frac{(-1)^n}{n^{\alpha}} \right) - \frac{\pi}{4}$ k'. $u_n = \frac{(-1)^n}{n^{3/4} + (-1)^n \sqrt{n} (\ln n)^{1/3}}$

$$1. \quad \sin\left(\frac{n^3+1}{n^2+1}\pi\right)$$

m.
$$a^{-n^{\alpha}}$$

$$\mathbf{n.} \quad \frac{\sin n}{\sqrt{n^3 + n \cos \frac{1}{n}}}$$

$$\mathbf{o.} \quad \frac{\sum_{k=1}^{n} \sin \frac{1}{k^2}}{\sum_{k=1}^{n} \sqrt{k}}$$

1.
$$\sin\left(\frac{n^3+1}{n^2+1}\pi\right)$$
 m. $a^{-n^{\alpha}}$ **n.** $\frac{\sin n}{\sqrt{n^3+n}\cos\frac{1}{n}}$ **o.** $\frac{\sum_{k=1}^n\sin\frac{1}{k^2}}{\sum_{k=1}^n\sqrt{k}}$ **o'.** $\left(1-\frac{1}{\ln n}\right)^{\ln^p n}$

$$\mathbf{p.} \quad n! x^{n^2} \quad (x \text{ réel})$$

q.
$$\frac{(-1)^n}{n^{\alpha} + (-1)^n}$$

$$\mathbf{r.} \quad \frac{1}{n \ln n \ln \ln^2 n}$$

p.
$$n!x^{n^2}$$
 (x réel) **q.** $\frac{(-1)^n}{n^{\alpha} + (-1)^n}$ **r.** $\frac{1}{n \ln n \ln \ln^2 n}$ **s.** $\frac{(-1)^n}{\ln n + \sin(2n\pi/3)}$

Soit $\sum a_n$ une série *convergente* à termes positifs. Étudier les séries :

$$\sum \frac{a_n}{1+a_n}$$
 , $\sum \frac{a_n}{1-a_n}$, $\sum a_n^2$, $\sum \frac{\sqrt{a_n}}{n}$

Soit $\sum a_n$ une série divergente à termes positifs. Étudier les séries :

$$\sum \frac{a_n}{1+a_n}$$
, $\sum a_n^2$, $\sum \frac{a_n}{1+na_n}$

Convergence et, s'il y a lieu, somme des séries suivantes :

$$\sum \frac{4n-3}{n(n^2-4)} , \frac{[\sqrt{n+1}]-[\sqrt{n}]}{n} , \sum \frac{n^4+2n-1}{n!} , \sum \sum_{k=1}^{n-1} \frac{1}{[k(n-k)]^{\alpha}} , \sum \left[\frac{\pi}{4} - \left(1 - \frac{1}{3} + \dots + \frac{(-1)^n}{2n+1}\right) \right]$$

(5.) Soit (u_n) une suite de réels positifs tendant vers $+\infty$ en croissant. Étudier, en minorant par une intégrale, les séries :

$$\sum \frac{u_{n+1} - u_n}{u_n}$$
 puis $\sum \frac{u_{n+1} - u_n}{u_{n+1}}$.

Convergence et somme (s'il y a lieu!) de la série de terme général : $u_n = \ln(n+2) + a \ln(n+1) + b \ln n$. 6.

On considère la série de terme général $u_n = \frac{4^n}{n \binom{2n}{n}}$ Le but de cet exercice est d'étudier cette série de trois façons.

a. Donner une étude directe de la série $\sum u_n$ grâce à un équivalent de u_n .

b. En faisant une comparaison logarithmique (?) de u_n avec le terme général d'une série de Riemann quelconque a*priori*, puis en choisissant l'exposant intelligemment, donner le comportement de $\sum u_n$

(c.) Déterminer le développement limité à l'ordre 2 de $\ln\left(\frac{u_{n+1}}{u_n}\right)$, et en déduire l'existence d'un réel non nul a et d'un réel α tels que $u_n \approx \frac{a}{n^{\alpha}}$. Conclure.

8. Étudier les séries de termes généraux u_n et v_n suivantes :

a.
$$u_n = n^{\alpha} \prod_{k=2}^n \left(1 + \frac{(-1)^k}{k} \right).$$

(b.)
$$v_n = n^{\alpha} \prod_{k=2}^{n} \left(1 + \frac{(-1)^k}{\sqrt{k}} \right)$$

9. Soit (u_n) une suite de réels positifs telle que la suite $\left(\sqrt[n]{u_n}\right)$ ait une limite l dans $\mathbf{R}^+ \cup \{+\infty\}$. Discuter, suivant la valeur de l, la nature de la série $\sum u_n$.

Montrer que cette règle (dite "de Cauchy") est plus précise que celle de d'Alembert, en ce sens que si la suite $\left(\frac{u_{n+1}}{u_n}\right)$ a une limite l, alors la suite $\left(\sqrt[n]{u_n}\right)$ converge aussi vers l, mais que la réciproque est inexacte.

- **10.** Soit *E* une algèbre normée complète. Prouver que l'ensemble *U* de ses éléments inversibles est un ouvert. Prouver que pour *a* élément de *U*, et *h* assez petit, on a $(a + h)^{-1} = a^{-1} a^{-1}ha^{-1} + o(||h||)$.
- 11. Étudier la *suite* de terme général $u_n = \frac{n^a n!}{a(a+1)...(a+n)}$
- 12. On se donne une fonction f de classe C^1 de $[a,+\infty[$ dans C, telle que f' soit sommable sur $[a,+\infty[$. Pour n entier assez grand, on pose $d_n = \int\limits_{n-1}^n f(t) \mathrm{d}t f(n)$. Prouver que $d_n = \int\limits_{n-1}^n (n+1-t)f'(t) \mathrm{d}t$. En déduire la convergence absolue de la série $\sum d_n$, puis une condition nécessaire et suffisante de convergence de la série $\sum f(n)$.

Applications : Étudier la convergence des séries $\sum \frac{\cos \ln n}{n}$ et $\sum \frac{\cos \sqrt{n}}{n}$.

13. Soit une suite (u_n) de réels strictement positifs telle que $\frac{u_{n+1}}{u_n} = 1 - \frac{a}{n} + o\left(\frac{1}{n}\right)$. Prouver, par comparaison à une série de Riemann, que la série $\sum u_n$ converge pour a > 1, et diverge pour a < 1 (règle de Raabe-Duhamel).

On suppose ici que a=1, et que le quotient $\frac{u_{n+1}}{u_n}$ possède un développement limité au second ordre. Prouver, en la comparant à une série de la forme $\sum \frac{1}{n+\alpha}$ que la série diverge.

14. Prouver, pour tout réel x de]-1,1[, la convergence de la série $\sum (-1)^n \frac{x^{2n+1}}{2n+1}$ et prouver que sa somme est égale à Arctgx. Donner une majoration du reste de cette série.

Application: Prouver la formule de John Machin, selon laquelle $\frac{\pi}{4} = 4 \text{Arctg} \frac{1}{5} - \text{Arctg} \frac{1}{239}$. À quel ordre doit-on arrêter les sommes partielles pour obtenir une valeur approchée de π avec un million de décimales exactes?

- **15.** Peut-on empiler 100 pièces de 1 € de telle sorte que la dernière soit entièrement en porte à faux (c'est à dire que sa projection sur un plan horizontal ne se superpose pas avec la première pièce) ?
- **16.** a. Prouver la convergence de la série $\sum \frac{1}{n \ln^2 n}$, ainsi que l'encadrement $\frac{1}{\ln(n+1)} \le S S_n \le \frac{1}{\ln n}$.
- **b.** Prouver que si la somme partielle S_n fournit une approximation de la somme totale S à 10^{-3} près, alors $n > 10^{434}$. Temps de calcul nécessaire à un ordinateur faisant un milliard d'opérations à la seconde ?
 - **c.** Calculer $S \ge 10^{-3}$ près.

- 7. Prouver que l'équation $\tan x = x$ possède une unique solution x_n dans tout intervalle de la forme $[n\pi, n\pi + \pi/2]$, et donner un développement asymptotique à 3 termes de x_n .
- **8.** a. On se donne un réel $u_0 > 0$, et on définit une suite (u_n) par : $\forall n \in \mathbb{N}, \ u_{n+1} = \ln(1+u_n)$. Déterminer la limite de la suite (u_n) , et donner un équivalent de u_n en appliquant Cesáro à $v_n = \frac{1}{u_{n+1}} \frac{1}{u_n}$.

Que dire de la suite (u_n) si $u_0 < 0$?

- **b.** De même, on choisit un réel $u_0 \in]0, \pi[$ et on définit une suite (u_n) par $\forall n \in \mathbb{N}, u_{n+1} = \sin u_n$. Étudier la suite (u_n) , et en donner un équivalent.
- **9.** On considère la suite (u_n) définie par :

$$u_0 = \frac{11}{2}$$
, $u_1 = \frac{61}{11}$, et $\forall n \in \mathbb{N}$, $u_{n+2} = 111 - \frac{1130}{u_{n+1}} + \frac{3000}{u_n u_{n+1}}$.

- a. A partir du calcul des premiers termes de la suite, postuler la forme générale des u_n .
- **b.** Quelle limite une calculatrice suggère-t-elle pour la suite (u_n) ?
- **c.** Calculer la limite de la suite (u_n) . Que s'est-il passé?
- (10.) a. Prouver qu'une suite de réels possédant une unique valeur d'adhérence dans $\mathbf{R} \cup \{-\infty, +\infty\}$ converge vers cette valeur d'adhérence.
- **b.** Soient (p_n) et (q_n) deux suites d'entiers positifs telles que la suite de rationnels $\left(\frac{p_n}{q_n}\right)$ converge vers un irrationnel α . Prouver que ces deux suites tendent vers $+\infty$.
- **c.** On définit sur [0,1] une fonction f par f(x) = 0 si x est irrationnel, et $f(x) = \frac{1}{q}$ si x est un rationnel admettant la représentation irréductible $\frac{p}{q}$. Étudier les points de continuité de f.