Exercice 1

Soit A et B deux ensembles, montrer :

$$\overline{(A \cup B)} = \overline{A} \cap \overline{B}$$

et

$$\overline{(A \cap B)} = \overline{A} \cup \overline{B}$$
.

$$x \in \overline{(A \cup B)} \iff x \notin A \cup B$$

$$\Leftrightarrow$$
 x \in A et x \in B

$$\Leftrightarrow$$
 x $\in \bar{A}$ et x $\in B$

$$\Leftrightarrow$$
 x $\in \bar{A} \cap \bar{B}$

$$x \in \overline{(A \cap B)} \Leftrightarrow x \notin A \cap B$$

$$\Leftrightarrow x \notin A \text{ ou } x \notin B$$

$$\Leftrightarrow$$
 x $\in \bar{A}$ ou x $\in \bar{B}$

$$\Leftrightarrow$$
 x $\in \bar{A} \cup \bar{B}$

Exercice 2

Soient les quatre propositions suivantes :

(a)
$$\exists x \in R \ \forall y \in R \ x+y > 0$$
; (b) $\forall x \in R \ \exists y \in R \ x+y > 0$;

(c)
$$\forall x \in R \ \forall y \in R \ x+y > 0$$
; (d) $\exists x \in R \ \forall y \in R \ y \in > x$:

- 1. Les propositions a, b, c, d sont-elles vraies ou fausses ?
- 2. Donner leur négation.
- 1. (a) est fausse. Car sa négation qui est $\forall x \in R \ \exists y \in R \ x+y \le 0$ est vraie. Étant donné $x \in R$ il existe toujours un $y \in R$ tel que

 $x+y \le 0$, par exemple on peut prendre y = -(x+1) et alors $x+y = x-x-1 = -1 \le 0$.

- 2. (b) est vraie, pour un x donné, on peut prendre (par exemple) y = -x + 1 et alors x + y = 1 > 0. La négation de (b) est $\exists x \in R \ \forall y \in R \ x + y \le 0$.
- 3. (c) : $\forall x \in R \ \forall y \in R \ x+y > 0$ est fausse, par exemple x = -1, y = 0. La négation est $\exists x \in R \ \exists y \in R \ x+y \le 0$.
- 4. (d) est vraie, on peut prendre x = -1. La négation est : $\forall x \in R \ \exists y \in R \ y^2 \le x$.