LED 流量表MODBUS_RTU 通讯协议

- 1、数据传输格式: 1 位起始位、8 位数据位、1 位停止位、无奇偶校验位。
- 2、 仪表数据格式: 双字节=寄存器数高字节+寄存器低字节 浮点数(IEEE754)地址顺序为2,1,4,3
- 3、 仪表通讯帧格式: (内部二级参数 Un=2) 读寄存器命令格式:

1	2	3	4	5	6	7~8
DE	3	起始寄存器高位	起始寄存器低位	寄存器数高位	寄存器数低位	CRC
	应答	•				

1	2	3	4~5	6~7	•••	M*2+2~M*2+3	M*2+4~M*2+5
DE	3	<i>字节计数</i> M*2	寄存器数据 1	寄存器数据 2	•••	<i>寄存器数据</i> M	CRC

举例说明:

MODBUS_RTU 通讯协议(十六进制格式) 发

送: 01,03,00,00,00,10,44,06

00, 0E, 8A, 00, 00, 8A, 0E, 77, 00, 00, 60, 9C

DE: 设备地址 (1~200) 单字节

CRC: 校验字节 采用CRC-16 循环冗余错误校验

(以上举例仅作参考,以实际通讯数据内容为准。)

仪表动态数据格式(MODBUS RTU 协议)

编号	参数名称	数据格式	类型	备注
1	仪表类型代码 (唯一码)	无符号双字节数	0000	
2	仪表状态字	双字节数	0001	
3	温度测量值	四字节浮点数	0002	
4	压力测量值	四字节浮点数	0004	
5	流量测量值	四字节浮点数	0006	
6	瞬时流量/质量值	四字节浮点数	0008	因通讯是以秒为单位,故:仪表实
7	瞬时热量值	四字节浮点数	000A	际值(单位:小时)=通讯采集值×3600
8	流量/质量累计值	八字节浮点数	000C	通讯将八字节分为前四字节和后四字节,故:
9	热量累计值	八字节浮点数	0010	仪表实际值=前四字节×100+后四字节
10	本次累计值	八字节浮点数	0014	
11	冷端补偿温度	双字节数	0018	
12	报警输出/状态	双字节数	0019	
13	采样上、下限溢出标志	双字节数	001A	
14	AL1:第一报警值	四字节浮点数	0022	读/写
15	AL2:第二报警值	四字节浮点数	0024	读/写
16	AH1:第一报警回差值	四字节浮点数	0026	读/写
17	AH2: 第二报警回差值	四字节浮点数	0028	读/写

在 MODBUS 数字通讯中,我们采用 16 进制数据格式,其中的数据采用定点数和浮点数(数量 范围较大)数据格式对于数量范围较大的数据,我们采用 IEEE-754 标准(32位)数据格式的浮点数表示,其格式如下:

- 1 位符号
- 8位指数位
- 23 位尾数 符号位是最高位, 尾数为最低的位, 内存中按字节存贮如下:

地址 1 2 3 4

内容: MMMM MMMM B MMMM S EEE EEEE

其中: S: 符号位, 1=负, 0=正 E:: 指数 (在两个字节中), 偏移为 127 M: 23

位尾数,最高位"1"

换算代码: $(-1)^{s} * 2^{(E-127)} * (1 + \frac{M}{2^{23}})$

例如: 0X00004841

其中: 指数为 0x82, 尾数为 0x480000, 数值计算如下,

 $(1+0x480000/0x800000) *2^(0x82-127)) = 1.5625 *8 = 12.5$