CIW Blatt 01, Aufgabe 3

Abgabe: 04.05.2020

Alexander Rahlf, Inken Fender, Jan Fröchtling

a)

Formeln aus der Vorlesung:

$$\Delta G = R * T * ln(K_i)$$

$$\Leftrightarrow K_i = e^{\frac{\Delta G}{RT}}$$

$$\Delta G = \Delta H - T \Delta S$$

Beispielrechnung für Ligand 1 bei einem pH von 7,4:

$$\Delta G = -8870 \frac{cal}{mol} - 300K * 2,83 \frac{cal}{K*mol}$$
$$\Leftrightarrow \Delta G = -9719 \frac{cal}{mol}$$

$$K_i = e^{\frac{-9719 \frac{cal}{mol}}{1.987 \frac{cal}{K*mol}*300K}}, \ mit \ R = 1.987 \frac{cal}{K*mol}$$

$$\Leftrightarrow K_i = 8.3*10^{-8}M$$

Ligand	рН	$\Delta H[\frac{kcal}{mol}]$	$\Delta S[\frac{cal}{K*mol}]$	$\Delta G[\frac{cal}{mol}]$	$ K_i[M] $
1	7.4	-8.87	2.83	-9719	8.3 * 10 ⁻⁸
	8.5	-10.41	-5.79	-8673	4.8 * 10 ⁻⁷
2	7.4	6.03	50.91	-9243	1.8 * 10 ⁻⁷
	8.5	2.91	37.93	-8469	6.8 * 10 ⁻⁷
3	7.4	1.65	38.85	-10005	5.1 * 10 ⁻⁸
	8.5	-4.76	14.39	-9077	2.4 * 10 ⁻⁷
4	7.4	-9.98	-8.44	-7448	3.8 * 10 ⁻⁶
	8.5	-10.24	-9.27	-7459	3.7 * 10 ⁻⁶

b)

Quelle [1] (Kapitel 4)

- Oberflächeneigenschaften von Ligand und Protein müssen genau zueinander passen (Schlüssel-Schloss-Prinzip)
- · Beim Binden des Substrats: flexible Anpassung

- Abstreifen der Wasserhülle von Ligand und Protein durch brechen der Wasserstoffbrückenbindungen [2]
- Übergangszustand entsteht, der durch die Funktionellen Gruppen des Proteins stabilisiert wird
- Konformationsänderung des Proteins

c)

Die Enthalpie ΔH beschreibt die Energieänderung einer Reaktion oder eines Prozesses verringert um die Volumenarbeit. Die Entropieänderung ΔS beschreibt, ob ein System nach der Reaktion in einen ungeordneteren Zustand übergegangen ist als vor der Reaktion. Sowohl ΔH als auch ΔS treiben die Reaktion, weshalb sie in der freien Bindungsenthalpie ΔG zusammengefasst werden. Diese berücksichtigt sowohl die Energiebilanz, als auch die Entropieänderung. [1]

$$\Delta G = \Delta H - T\Delta S$$

Die Ligand-Protein-Interaktion erfolgt bei den Liganden 1-4 höchstwahrscheinlich über Wasserstoffbrückenbindungen zum Protein. Wie an den K_i-Werten zu erkennen ist, bindet Ligand 4 am schwächsten von allen. Dieser hat als einziger kein Stickstoff, das ein freies Elektronenpaar besitzt und als Wasserstoffbrückenbindungsakzeptor dienen könnte.

References

- [1] *Protein-Ligand-Wechselwirkungen als Grundlage der Arzneistoffwirkung*, chapter 4. Spektrum Akademischer Verlag, Heidelberg, 2009. ISBN 978-3-8274-2213-2. doi: 10.1007/978-3-8274-2213-2. 5. URL https://doi.org/10.1007/978-3-8274-2213-2_5.
- [2] Matthias Rarey. CIW Vorlesung: Kapitel 1 Einführung. ZBH Uni Hamburg, 2020.