Homework 0

In this Homework we will just recall some necessary background material from linear algebra

1 Show that the vectors $\{\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_m\}$ in vector space V are linearly dependent if at least one of these vectors is equal to zero.

2 Show that the ordered set $\{e_1, e_2, e_3\}$ of vectors

$$\begin{array}{lll} \mathbf{e}_1 &= (1, & 2, & 3) \\ \mathbf{e}_2 &= (0, & 1, & 2) \\ \mathbf{e}_3 &= (0, & 0, & 1) \end{array}$$

is a basis in \mathbb{R}^3 .

3 Show that any three vectors $\{\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3\}$ in \mathbf{R}^2 are linearly dependent.

4 Let 3 vectors $\{\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3\}$ in vector space V belong to the span of 2 vectors $\{\mathbf{a}, \mathbf{b}\}$ of this vector space, i.e. vectors $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3$ are expressible as linear combinations of vectors **a** and **b**. Prove that vectors $\{\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3\}$ are linearly dependent.

5 Let $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$ be a basis in 3-dimensional vector space V.

Show that all vectors $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3$ are not equal to zero.

Show that an arbitrary vector \mathbf{x} can be expressed via this basis.

6 Let $\{a, b\}$ be two vectors in the vector space V such that

- i) these vectors are linearly independent
- ii) for an arbitrary vector $\mathbf{x} \in V$ vectors $\{\mathbf{a}, \mathbf{b}, \mathbf{x}\}$ are linearly dependent.

What is a dimension of the vector space V?

Is an ordered set $\{a, b\}$ a basis in the vector space V?

7 Consider the vector space V of all polynomials of order ≤ 2 :

$$V = \{ax^2 + bx + c, a, b, c, \in \mathbf{R}\}.$$

- a) Show that the polynomials $\{1, x, x^2\}$ are linearly independent.
- b) Show that for arbitrary p, q, the polynomials $\{1, x, x^2 + px + q\}$ are linearly independent.
 - c) Show that arbitrary four polynomials in this space are linearly dependent.

What is a dimension of this vector space?

8 Let $\{e_1, e_2, e_3\}$ be a basis of 3-dimensional vector space V. Is a set of vectors $\{\mathbf{e}'_1, \mathbf{e}'_2, \mathbf{e}'_3\}$ a basis of V in the case if

a)
$$\mathbf{e}_1' = \mathbf{e}_2, \, \mathbf{e}_2' = \mathbf{e}_1, \, \mathbf{e}_3' = \mathbf{e}_3;$$

b)
$$\mathbf{e}_1' = \mathbf{e}_1, \, \mathbf{e}_2' = \mathbf{e}_1 + 3\mathbf{e}_3, \, \mathbf{e}_3' = \mathbf{e}_3;$$

c)
$$\mathbf{e}_1' = \mathbf{e}_1 - \mathbf{e}_2, \, \mathbf{e}_2' = 3\mathbf{e}_1 - 3\mathbf{e}_2, \, \mathbf{e}_3' = \mathbf{e}_3;$$

d)
$$\mathbf{e}_1' = \mathbf{e}_2$$
, $\mathbf{e}_2' = \mathbf{e}_1$, $\mathbf{e}_3' = \mathbf{e}_1 + \mathbf{e}_2 + \lambda \mathbf{e}_3$ (where λ is an arbitrary coefficient)?

1