Stock Index Prediction with Machine Learning and Deep Learning Models

Hong Thanh Hoai, Mai Hoang Lan, Nguyen Thi Hong Phuc

Vingroup Big Data Institute

December 18, 2020

Table of Contents

- Problem Overview
- 2 Project Objectives
- 3 Data Overview
- 4 ARIMA Model Results
- **5** LSTM Model Results
- 6 CNN Model Results
- LSTM-CNN Model Results
- 8 Future Work
- Reference

Problem Overview

Why Predict Stock?

- Maximize profits
- Predict the economy
- Implement suitable economic policies

Challenges

- Stochastic nature
- Multiple factors

Project Objectives

What are the Goals?

- Build a working ARIMA (Autoregressive Moving Average) model
- Build a working LSTM model
- Build a working CNN model
- Build a working feature fusion LSTM CNN model
- Outputs: predicted daily closing for Dow Jones Industrial Average (DJIA)

$$DJIA = \frac{\sum stock \ price}{d}$$
; Dow divisor: $d \approx 0.152$

Data Overview - Dow Jones 2009-2019

	Date	Open	High	Low	Close	Adj Close	Volume
0	2009-01- 02	8772.250000	9065.280273	8760.780273	9034.690430	9034.690430	213700000
1	2009-01- 05	9027.129883	9034.370117	8892.360352	8952.889648	8952.889648	233760000
2	2009-01- 06	8954.570313	9088.059570	8940.950195	9015.099609	9015.099609	215410000
3	2009-01- 07	8996.940430	8996.940430	8719.919922	8769.700195	8769.700195	266710000
4	2009-01- 08	8769.940430	8770.019531	8651.190430	8742.459961	8742.459961	226620000

Data Overview - Dow Jones 2009-2019

Data Overview - Dow Jones 2009-2019 (normalized with logarithm)

Dickey-Fuller test results

```
Test Statistic 0.220418
p-value 0.973384
# of lags 26.000000
# of obs 2740.000000
dtype: float64
Critical value at 1%: -3.43274
Critical value at 5%: -2.86260
Critical value at 10%: -2.56733
```

Figure: Test for Data Stationarity

Figure: First Order of Differencing and PACF plot

	timestamp	h	prediction	actual
0	9/12/16	t+1	18085.450160	18325.07031
1	9/13/16	t+1	18233.487478	18066.75000
2	9/14/16	t+1	18285.197045	18034.76953
3	9/15/16	t+1	18028.113227	18212.48047
4	9/16/16	t+1	18132.328241	18123.80078

Figure: Predictions from ARIMA

Figure: Plot of Actual and Predicted Values

LSTM Model Results

Previous 30 Days Data $\xrightarrow{\mathsf{LSTM}}$ 5 Days Prediction

LSTM Model Results

Figure: Simple 1-layer LSTM architecture

LSTM Model Results (Training)

Figure: CNN Model on Training Set

LSTM Model Results (Validation)

Figure: CNN Model on Validation Set

LSTM Model Results (Testing)

Figure: CNN Model on Test Set

CNN Model Results

CNN Model Results (Training)

Figure: CNN Model on Training Set

CNN Model Results (Validation)

Figure: CNN Model on Validation Set

CNN Model Results (Testing)

Figure: CNN Model on Test Set

LSTM-CNN Model Results

LSTM-CNN Model Results (Training)

Figure: LSTM-CNN Model on Training Set

LSTM-CNN Model Results (Validation)

Figure: LSTM-CNN Model on Validation Set

LSTM-CNN Model Results (Testing)

Figure: LSTM-CNN Model on Test Set

Future Work

- Implement sentiment analysis to extract relevant stock news.
- Implement Generative Adversarial Network (GAN) with LSTM.
- Use Deep Reinforcement Learning (DRL) for deciding GAN's hyper-parameters.

Reference

- H.Q.Thang. Vietnam Stock Index Trend Prediction using Gaussian Process Regression and Autoregressive Moving Average Model. Research and Development on Information and Communication Technology, HUST, 2018.
- Kim T, Kim HY. Forecasting stock prices with a feature fusion LSTM-CNN model using different representations of the same data. PLoS ONE 14(2): e0212320. https://doi.org/10.1371/journal.pone.0212320, 2019.
- Hao Y, Gao Q. Predicting the Trend of Stock Market Index Using the Hybrid Neural Network Based on Multiple Time Scale Machine Learning. MDPI Appl. Sci. 2020, 10(11), 3961. https://doi.org/10.3390/app10113961, 2020.

- CS231n. Convolutional Neural Networks (CNNs / ConvNets). https: //cs231n.github.io/convolutional-networks/.
- Aston Zhang, Zachary C. Lipton. Dive into Deep Learning.
- Understanding LSTM Network. https://colah.github.io/posts/2015-08-Understanding-LSTMs/, 2015