LittlevGL Documentation

Release 6.0

Gabor Kiss-Vamosi

CONTENTS

English (en) - (zh-CN) - Français (fr) - Magyar (hu) - Türk (tr)

Version PDF: LittlevGL.pdf

LittlevGL est une bibliothèque graphique gratuite et à code source ouvert offrant tout ce dont vous avez besoin pour créer une interface graphique embarquée avec des éléments graphiques faciles à utiliser, de superbes effets visuels et une faible empreinte mémoire.

Site Internet · Git Hub · Forum · Démonstration en ligne · Simulateur · Blog

CONTENTS 1

POINTS FORTS

- Eléments de base évolués tels que boutons, graphiques, listes, curseurs, images, etc.
- Graphiques avancés avec animations, anti-crénelage, opacité, défilement doux
- Périphériques d'entrée variés tels que pavé tactile, souris, clavier, encodeur, etc.
- Prise en charge multilingue avec encodage UTF-8
- Prise en charge de plusieurs écrans, c-à-d utilisation simultanée d'un écran TFT et d'un écran monochrome
- Eléments graphiques entièrement personnalisables
- Indépendant du matériel : utilisable avec n'importe quel microcontrôleur ou écran
- Adaptable pour fonctionner avec peu de mémoire (64 ko de mémoire Flash, 16 ko de MEV)
- SE, mémoire externe et GPU pris en charge mais non requis
- Fonctionne avec un seul tampon d'affichage même avec des effets graphiques avancés
- Ecrit en C pour une compatibilité maximale (compatible C++)
- Simulateur pour débuter sur PC la conception d'interface graphique embarquée sans le matériel embarqué
- Tutoriels, exemples, thèmes pour une conception rapide
- Documentation disponible en ligne et hors ligne
- Gratuit et à code source ouvert, sous licence MIT

ELÉMENTS REQUIS

- Microcontrôleur ou processeur 16, 32 ou 64 bits
- Une vitesse d'horloge supérieure à 16 MHz est recommandée
- Flash/MEM : une taille supérieure à 64 ko pour les composants essentiels (une taille supérieure à 180 ko est recommandée)
- MEV:
 - Utilisation de MEV statique : approximativement 8 à 16 ko en fonction des types d'objets et des fonctionnalités utilisés
 - Pile : taille supérieure à 2 ko (une taille supérieure à 4 ko est recommandée)
 - Données dynamiques (tas): taille supérieure à 4 ko (une taille supérieure à 16 ko est recommandée si plusieurs objets sont utilisés). Défini par LV_MEM_SIZE dans lv_conf.h.
 - Tampon d'affichage : taille supérieure à "résolution horizontale" pixels (une taille supérieure à 10 × "résolution horizontale" est recommandée)
- Compilateur conforme à C99 ou plus récent
- Connaissances de bases en C (ou C++): pointeurs, structures, fonctions de rappel.

Notez que l'utilisation de la mémoire peut varier en fonction de l'architecture, du compilateur et des options de compilation.

CHAPTER

THREE

FAQ

3.1 Où commencer?

- Pour un aperçu général de LittlevGL, visitez littlevgl.com
- Accédez à la section *Démarrer* pour essayer des démonstrations en ligne dans votre navigateur, en savoir plus sur le simulateur et les bases de LittlevGL.
- Vous trouverez un guide de portage détaillé dans la section *Portage*.
- Pour savoir comment LittlevGL fonctionne, accédez à Vue d'ensemble.
- Pour lire des tutoriels ou partager vos propres expériences, accédez au Blog
- Pour découvrir le code source de la bibliothèque, consultez-le sur GitHub : https://github.com/littlevgl/lvgl/.

3.2 Où puis-je poser des questions ?

Pour poser des questions sur le forum : https://forum.littlevgl.com/.

Nous utilisons le suivi des problèmes de GitHub pour les discussions relatives au développement. Vous ne devez donc l'utiliser que si votre question ou votre problème est étroitement lié au développement de la bibliothèque.

3.3 Est-ce que mon microcontrôleur/matériel est supporté ?

Chaque microcontrôleur capable de piloter un affichage via un port parallèle, SPI, une interface RVB ou autre, et conforme aux éléments requis, est pris en charge par LittlevGL.

Cela comprend:

- Les microcontrôleurs "courants" tels que les STM32F, STM32H, NXP Kinetis, LPC, iMX, dsPIC33, PIC32, etc.
- Les modules Bluetooth, GSM, WiFi tels que les Nordic NRF et Espressif ESP32
- Le tampon de trame de Linux comme /dev/fb0 ce qui inclut également les ordinateurs monocartes comme le Raspberry Pi
- Et tout ce qui possède un microcontrôleur suffisamment puissant et le nécessaire pour piloter un écran

3.4 Mon écran est-il supporté?

LittlevGL nécessite uniquement un simple pilote pour copier un tableau de pixels dans une zone donnée de l'affichage. Si vous pouvez le faire avec votre écran, vous pouvez utiliser cet écran avec LittlevGL.

Cela comprend:

- Les TFT avec une profondeur de couleur de 16 ou 24 bits
- Les moniteurs avec port HDMI
- Les petits écrans monochromes
- Les écrans à affichages en niveaux de gris
- Les matrices LED
- Ou tout autre affichage où vous pouvez contrôler la couleur/l'état des pixels

Consultez la section *Portage* pour en savoir plus.

3.5 LittlevGL est-il libre ? Comment puis-je l'utiliser dans un produit commercial ?

LittlevGL est fourni sous licence MIT, ce qui signifie que vous pouvez le télécharger et l'utiliser à vos fins sans obligation.

3.6 Rien ne se passe, mon pilote d'affichage n'est pas appelé. Qu'est-ce que j'ai raté ?

Assurez-vous que vous appelez $lv_tick_inc(x)$ dans une interruption et $lv_task_handler$ () dans votre boucle principale while (1).

Apprenez-en plus dans les sections *Tic* et *Gestionnaire de tâche*.

3.7 Pourquoi le pilote d'affichage n'est appelé qu'une seule fois ? Seule la partie supérieure de l'écran est actualisée.

Assurez-vous que vous appelez lv_disp_flush_ready(drv) à la fin de votre fonction de rappel du pilote d'affichage.

3.8 Pourquoi je ne vois que des parasites à l'écran?

Il y a probablement un bogue dans votre pilote d'affichage. Essayez le code suivant sans utiliser LittlevGL:

```
#define BUF_W 20
#define BUF_H 10
lv_color_t buf[BUF_W * BUF_H];
lv_color_t * buf_p = buf;
```

(continues on next page)

(continued from previous page)

```
uint16_t x, y;
for(y = 0; y < BUF_H; y++) {
    lv_color_t c = lv_color_mix(LV_COLOR_BLUE, LV_COLOR_RED, (y * 255) / BUF_H);
    for(x = 0; x < BUF_W; x++) {
        (*buf_p) = c;
        buf_p++;
    }
}
lv_area_t a;
a.x1 = 10;
a.x1 = 40;
a.x2 = a.x1 + BUF_W - 1;
a.y2 = a.y1 + BUF_H - 1;
my_flush_cb(NULL, &a, buf);</pre>
```

3.9 Pourquoi vois-je des couleurs incorrectes à l'écran?

Le format de couleur de LittlevGL n'est probablement pas compatible avec le format de couleur de votre écran. Vérifiez LV_COLOR_DEPTH dans $lv_conf.h$.

Si vous utilisez des couleurs 16 bits avec SPI (ou toute autre interface orientée octets), vous devez probablement définir LV_COLOR_16_SWAP 1 dans *lv_conf.h*. Les octets supérieurs et inférieurs des pixels seront échangés.

3.10 Comment accélérer mon interface utilisateur ?

- Activez les optimisations du compilateur
- Augmentez la taille du tampon d'affichage
- Utilisez 2 tampons d'affichage et transférez le tampon en DMA (ou une technique similaire) en arrièreplan
- Augmentez la vitesse de fonctionnement des ports SPI ou parallèle si vous les utilisez pour piloter l'affichage
- Si votre écran dispose d'un port SPI, envisagez de passer à un modèle avec port parallèle, car son débit est beaucoup plus élevé.
- Conservez le tampon d'affichage dans la MEV interne (pas dans la SRAM externe) car LittlevGL l'utilise intensivement ce qui implique un temps d'accès minimal.

3.11 Comment réduire l'utilisation de mémoire flash/MEM ?

Vous pouvez désactiver toutes les fonctionnalités (animations, système de fichiers, GPU, etc.) et les types d'objet non utilisés dans $lv_conf.h.$

Si vous utilisez GCC, vous pouvez ajouter

- -fdata-sections -ffunction-sections aux options du compilateur
- --gc-sections aux options de l'éditeur de liens

pour supprimer les fonctions et variables inutilisées.

3.12 Comment réduire l'utilisation de la MEV

- Réduisez la taille du tampon d'affichage
- Réduisez LV_MEM_SIZE dans *lv_conf.h*. Cette mémoire est utilisée lorsque vous créez des objets tels que des boutons, des étiquettes, etc.
- Pour travailler avec un LV_MEM_SIZE réduit, vous pouvez créer les objets uniquement à l'utilisation et les supprimer lorsqu'ils ne sont plus nécessaires.

3.13 Comment travailler avec un système d'exploitation?

Pour travailler avec un système d'exploitation où les tâches peuvent s'interrompre, vous devez protéger les appels de fonctions liés à LittlevGL avec un mutex. Consultez la section Système d'exploitation et interruption pour en savoir plus.

3.14 Comment contribuer à LittlevGL?

Il y a plusieurs façons de contribuer à LittlevGL :

- Ecrivez quelques lignes sur votre projet pour inspirer les autres
- Répondez aux questions des autres
- Signalez et/ou corrigez des bogues
- Suggérez et/ou implémentez de nouvelles fonctionnalités
- Améliorez et/ou traduisez la documentation
- Ecrivez un article de blog sur vos expériences

Pour en savoir plus, consultez le Guide de contribution

3.15 Comment LittlevGL est-il versionné?

LittlevGL suit les règles de gestion sémantique de version :

- Versions majeures pour les modifications incompatibles de l'API. P.ex. 5.0.0, 6.0.0
- Versions mineures pour des fonctionnalités nouvelles mais compatibles avec les versions antérieures. P.ex. 6.1.0, 6.2.0
- Versions correctives pour les corrections de bogues à compatibilité ascendante. P.ex. 6.1.1, 6.1.2

Les nouvelles versions sont développées dans les branches dev-X.Y sur GitHub. Elles peuvent être clonées pour tester les fonctionnalités les plus récentes. Cependant, tout peut être modifié dans ces branches.

Les corrections de bogues sont ajoutées directement à la branche master sur GitHub et une version de correction de bogues est créée chaque mois.

3.16 Où puis-je trouver la documentation de la version précédente (5.3) ?

Vous pouvez la télécharger ici et l'ouvrir hors ligne :

Docs-v5-3.zip

3.16.1 Démarrer

Démonstrations en ligne

Vous pouvez découvrir à quoi ressemble LittlevGL sans installer ou télécharger quoi que ce soit, sur la plateforme cible ou sur l'ordinateur de développement. Il existe des interfaces utilisateurs prêtes à être essayées facilement dans votre navigateur.

Allez à la page Démonstrations en ligne et choisissez la démonstration qui vous intéresse.

Simulateur sur PC

Vous pouvez essayer LittlevGL en utilisant uniquement votre PC (c'est-à-dire sans carte de développement). LittlevGL fonctionnera sur un environnement de simulation sur le PC dans lequel il est possible d'écrire et d'expérimenter de réelles applications LittlevGL.

Le simulateur sur PC présente les avantages suivants :

- Indépendant du matériel Écrivez du code, exécutez-le sur PC et visualisez le résultat sur le moniteur du PC.
- Multi-plateforme Tous les ordinateurs Windows, Linux ou OS X peuvent exécuter le simulateur PC.
- Portabilité Le code écrit est portable, ce qui signifie qu'il suffit de le copier pour l'utiliser sur un matériel embarqué.
- Validation facile Le simulateur est également très utile pour signaler des bogues car il représente une plateforme commune pour chaque utilisateur. C'est donc une bonne idée de reproduire un bogue dans le simulateur et d'utiliser l'extrait de code dans le forum.

Choisir un EDI

Le simulator est portés sur plusieurs EDIs (Environnement de Développement Intégré). Choisissez votre EDI préféré, lisez son README sur GitHub, téléchargez le projet, et chargez le dans EDI.

Vous pouvez utiliser n'importe quel EDI pour le développement mais, pour des raisons de simplicité, ce didacticiel est axé sur la configuration d'Eclipse CDT. La section suivante décrit la configuration d'Eclipse CDT de manière plus détaillée.

Note : si vous utilisez Windows, il est généralement préférable d'utiliser Visual Studio ou CodeBlocks. Ils fonctionnent directement sans nécessiter d'étapes supplémentaires.

Configurer Eclipse CDT

Installer Eclipse CDT

Eclipse CDT iest un IDE C/C++.

Eclipse est un logiciel écrit en Java de ce fait, soyez certain que l'environnement d'exécution Java est installé sur votre système.

Sur les distribution basée sur Debian (p.ex. Ubuntu) : sudo apt-get install default-jre

Note : si vous utilisez d'autres distributions, installez un 'Java Runtime Environment' adapté à votre distribution.

Vous pouvez télécharger Eclipse CDT à partir de : https://eclipse.org/cdt/downloads.php. Démarrez l'installeur est choisissez *Eclipse CDT* dans la liste.

Installer SDL 2

Le simulateur PC utilise la librairie multi-plateforme SDL 2 pour simuler un écran TFT et un pavé tactile.

Linux

Sur Linux vous pouvez installer facilement SDL 2 à partir d'un terminal :

- 1. Trouvez la version actuelle de SDL 2: apt-cache search libsdl2 (e.g. libsdl2-2.0-0)
- 2. Installez SDL 2 : sudo apt-get install libsdl2-2.0-0 (remplacez par la version trouvée)
- 3. Installez le paquet de dévellopement de SDL 2 : sudo apt-qet install libsdl2-dev
- Si les paquets de construction essentiels ne sont pas déjà installés : sudo apt-get install build-essential

Windows

Si vous utilisez **Windows** vous devez en premier lieu installer MinGW (version 64 bits). Après ça, effectuez les étapes suivantes pour ajouter SDL 2 :

- 1. Téléchargez les libraries de développement de SDL.Allez sur https://www.libsdl.org/download-2.0.php et téléchargez Development Libraries: SDL2-devel-2.0.5-mingw.tar.gz
- 2. Décompressez l'archive et allez dans le répertoire $x86_64$ -w64-mingw32 (pour MinGW 64 bits) ou i686-w64-mingw32 (pour MinGW 32 bits)
- 3. Copiez le répertoire _...mingw32/include/SDL2 vers C:/MinGW/.../x86_64-w64-mingw32/include
- 4. Copiez le contenu de ...mingw32/lib/ dans C:/MinGW/.../x86 64-w64-mingw32/lib
- 5. Copiez __...mingw32/bin/SDL2.dll dans {eclipse_workspace}/pc_simulator/Debug/. Faites le plus tard quand Eclipse est installé.

Note : si vous utilisez **Microsoft Visual Studio** à la place d'Eclipse alors vous n'avez pas besoin d'installer MinGW.

OS X

Sur OS X vous pouvez facilement installer SDL 2 avec brew: brew install sdl2

Si quelque chose ne fonctionne pas, alors référez-vous à ce tutoriel pour débuter avec SDL.

Projet pré-configuré

Un projet pré-configuré pour la librairie graphique, basé sur la dernière version publiée, est toujours disponible. Vous pouvez trouver le plus récent sur GitHub ou sur la page de téléchargement. Notez que le projet est configuré pour Eclipse CDT.

Ajouter le projet pré-configuré à Eclipse CDT.

Lancez Eclipse CDT. Une boîte de dialogue au sujet du **chemin de l'espace de travail** est affichée. Avant de la valider, vérifiez le chemin et copiez à cet emplacement, puis décompressez, le projet pré-configuré préalablement téléchargé. Après ça vous pouvez accepter le chemin de l'espace de travail. Bien entendu, ce chemin peut être modifié mais dans ce cas il faut copier le projet vers l'emplacement correspondant.

Fermez la fenêtre de démarrage et allez à Fichier->Importer... et choisissez Généralités->Projets existants dans l'espace de travail. Allez au répertoire racine du projet et cliquez Terminer

Sur Windows vous devez effectuer deux actions additionnelles :

- Copiez le fichier SDL2.dll dans le répertoire Debug du projet
- Faites un clic droit sur le projet -> Propriétés -> Génération C/C++ -> Paramètres -> Bibliothèques -> Ajouter... et ajoutez *mingw32* au-dessus de SDLmain et SDL. L'ordre est important : mingw32, SDLmain, SDL

Compilation et exécution

Vous êtes maintenant prêt à utiliser la librairie graphique LittlevGL sur votre PC. Cliquer sur l'icône Marteau de la barre de menu pour compiler le projet. Si vous avez tout fait correctement aucune erreur ne se produira. Notez que sur certains systèmes des étapes additionnelles peuvent être requises pour qu'Eclipse prenne en compte SDL 2, mais dans la plupart des cas, la configuration du projet téléchargé est suffisante.

Après avoir compiler avec succès, cliquez sur le bouton Jouer de la barre de menu pour démarrer le projet. Maintenant une fenêtre doit apparaître au milieu de l'écran.

Tout est prêt pour utiliser la librairie graphique LittlevGL pour l'apprentissage ou pour débuter le développement sur votre PC.

Aperçu rapide

Here you can learn the most important things about LittlevGL. Vous devriez le lire en premier pour avoir une impression générale, puis les sections détaillées *Portage* et *Vue d'ensemble* après cela.

Ajouter LittlevGL à votre projet

The following steps show how to setup LittlevGL on an embedded system with a display and a touchpad. You can use the *Simulators* to get 'ready to use' projects which can be run on your PC.

- Téléchargez ou clonez la librairie
- Copiez le répertoire lvgl dans votre projet
- Copy lvgl/lv_conf_templ.h as lv_conf.h next to the lvgl folder and set at least LV_HOR_RES_MAX, LV_VER_RES_MAX and LV_COLOR_DEPTH macros.
- Incluez lvgl/lvgl.h quand vous devez utiliser les fonctions de LittlevGL.
- Appelez lv_tick_inc(x) chaque x millisecondes à partir d'une horloge ou d'une tâche (x doit être compris entre 1 et 10). Ceci est requis pour la synchronisation interne de LittlevGL.
- Appelez lv init()
- Créez un tampon d'affichage pour LittlevGL

• Implémentez et enregistrez une fonction qui copie un tableau de pixels vers une zone de l'écran :

```
lv_disp_drv_t disp_drv;
                                     /* Descripteur du pilote d'affichage */
lv_disp_drv_init(&disp_drv);
                                    /* Initialisation de base */
disp_drv.flush_cb = my_disp_flush; /* Définit la fonction du pilote */
                                    /* Définit le tampon d'affichage */
disp drv.buffer = &disp buf;
lv disp drv register(&disp drv);
                                   /* Finalement, enregistre le pilote */
void my_disp_flush(lv_disp_t * disp, const lv_area_t * area, lv_color_t * color_p)
   int32_t x, y;
   for(y = area->y1; y <= area->y2; y++) {
       for(x = area->x1; x <= area->x2; x++) {
           set pixel(x, y, *color p); /* Définit la couleur d'un pixel de l'écran.*/
           color p++;
       }
   }
   lv disp flush ready(disp);
                              /* Indique que les données peuvent être
→transférées à l'écran */
}
```

• Implémentez et enregistrez une fonction qui peut lire un périphérique d'entrée. P.ex. pour un pavé tactile :

(continues on next page)

(continued from previous page)

```
data->state = touchpad_is_pressed() ? LV_INDEV_STATE_PR : LV_INDEV_STATE_REL;
if(data->state == LV_INDEV_STATE_PR) touchpad_get_xy(&last_x, &last_y);

/* Définit les coordonnées (si relâché, les dernières coordonnées quand pressé) */
data->point.x = last_x;
data->point.y = last_y;

return false; /* Retourne `faux` car pas de tampon et plus de données à lire */
}
```

• Call lv_task_handler() periodically every few milliseconds in the main while(1) loop, in Timer interrupt or in an Operation system task. It will redraw the screen if required, handle input devices etc.

Apprendre les bases

Les objets (éléments visuels)

Les éléments graphiques tels que les boutons, les étiquettes, les curseurs, les graphiques, etc. sont appelés des objets dans LittlevGL. Allez à [Types d'objet] (/object-types/index) pour voir la liste complète des types disponibles.

Chaque objet possède un objet parent. L'objet enfant se déplace avec le parent et si vous supprimez le parent, les enfants seront également supprimés. Les enfants ne peuvent être visibles que sur leurs parents.

The *screen* is the "root" parent. To get the current screen call lv_scr_act().

You can create a new object with <code>lv_<type>_create(parent, obj_to_copy)</code>. It will return an <code>lv_obj_t *</code> variable which should be used as a reference to the object to set its parameters. The first parameter is the desired <code>parent</code>, the second parameters can be an object to copy (<code>NULL</code> is unused). Par exemple:

```
lv_obj_t * slider1 = lv_slider_create(lv_scr_act(), NULL);
```

Pour définir certains attributs de base les fonctions lv_obj_set_<parameter_name>(obj, <value>) peuvent être utilisées. Par exemple :

```
lv_obj_set_x(btn1, 30);
lv_obj_set_y(btn1, 10);
lv_obj_set_size(btn1, 200, 50);
```

Les objets ont également des paramètres spécifiques au type qui peuvent être définis par les fonctions lv_<type>_set_<parameter_name>(obj, <valeur>). Par exemple :

```
lv_slider_set_value(slider1, 70, LV_ANIM_ON);
```

Pour voir l'API complète, consultez la documentation des types d'objet ou le fichier d'en-tête associé (p.ex. lvgl/src/lv objx/lv slider.h).

Styles

Styles can be assigned to the objects to changed their appearance. A style describes the appearance of rectangle-like objects (like a button or slider), texts, images and lines at once.

Voici comment créer un nouveau style :

Pour appliquer un nouveau style à un objet, utilisez les fonctions lv_<type>set_style(obj, LV_<TYPE>_STYLE_<NOM>, &my_style). Par exemple :

```
lv_slider_set_style(slider1, LV_SLIDER_STYLE_BG, &slider_bg_style);
lv_slider_set_style(slider1, LV_SLIDER_STYLE_INDIC, &slider_indic_style);
lv_slider_set_style(slider1, LV_SLIDER_STYLE_KNOB, &slider_knob_style);
```

Si le style d'un objet est NULL, il héritera du style de son parent. Par exemple, le style des étiquettes est NULL par défaut. Si vous les placez sur un bouton, elles utiliseront les propriétés style.text du style du bouton

Apprenez-en plus dans la section Styles.

Evénements

Events are used to inform the user if something has happened with an object. You can assign a callback to an object which will be called if the object is clicked, released, dragged, being deleted etc. It should look like this:

Learn more about the events in the *Event overview* section.

Examples

Bouton avec étiquette

(continued from previous page)

Button

Bouton avec styles

Ajoutez des styles au bouton de l'exemple précédent :

```
static lv style t style btn rel;
                                                       /* Une variable pour.
→enregistrer le style relâché */
lv style copy(&style btn rel, &lv style plain);
                                                      /* Initialise à partir d'un...
→style intégré */
style btn rel.body.border.color = lv color hex3(0x269);
style btn rel.body.border.width = 1;
style btn rel.body.main color = lv color hex3(0xADF);
style btn rel.body.grad color = lv color hex3(0x46B);
style btn rel.body.shadow.width = 4:
style btn rel.body.shadow.type = LV SHADOW BOTTOM;
style_btn_rel.body.radius = LV_RADIUS_CIRCLE;
style btn rel.text.color = lv color hex3(0xDEF);
static lv style t style btn pr;
                                                       /* Une variable pour.
→enregistrer le style pressé */
lv style copy(&style btn pr, &style btn rel);
                                                       /* Initialise à partir du
⇒style relâché */
style btn pr.body.border.color = lv color hex3(0x46B);
style btn pr.body.main color = lv color hex3(0x8BD);
style btn pr.body.grad color = lv color hex3(0x24A);
style btn pr.body.shadow.width = 2;
style btn pr.text.color = lv color hex3(0xBCD);
lv_btn_set_style(btn, LV_BTN_STYLE_REL, &style_btn_rel); /* Définit le style_
→relâché du bouton */
lv_btn_set_style(btn, LV_BTN_STYLE_PR, &style_btn_pr);
                                                          /* Définit le style
→pressé du bouton */
```


Curseur et alignement de l'objet

```
lv obj t * label;
. . .
/* Crée un curseur au centre de l'affichage */
lv_obj_t * slider = lv_slider_create(lv_scr_act(), NULL);
lv_obj_set_width(slider, 200);
                                                      /* Définit la largeur */
lv_obj_align(slider, NULL, LV_ALIGN_CENTER, 0, 0);
                                                     /* Aligne au centre du parent
→(écran) */
lv_obj_set_event_cb(slider, slider_event_cb);
                                                    /* Affecte une fonction de.
→rappel */
/* Crée une étiquette sous le curseur */
label = lv label create(lv scr act(), NULL);
lv label set text(label, "0");
lv_obj_set_auto_realign(slider, true);
lv_obj_align(label, slider, LV_ALIGN_OUT_BOTTOM_MID, 0, 10);
void slider_event_cb(lv_obj_t * slider, lv_event_t event)
    if(event == LV_EVENT_VALUE_CHANGED) {
        static char buf[4];
                                                            /* Maximum 3 octets pour.
→le nombre plus 1 octet final nul */
        snprintf(buf, 4, "%u", lv_slider_get_value(slider));
        lv label set text(slider label, buf);
                                                            /* Actualise le texte */
    }
}
```


76

Liste et thèmes

```
/* Textes des éléments de la liste */
const char * txts[] = {"First", "Second", "Third", "Fourth", "Fifth", "Sixth", NULL};
/* Initialise et définit un thème. `LV THEME NIGHT` doit être activé dans lv conf.h.,
lv_theme_t * th = lv_theme_night_init(20, NULL);
                                                                        (continues on next page)
```

(continued from previous page)

```
lv_theme_set_current(th);
/* Crée une liste */
lv_obj_t* list = lv_list_create(lv_scr_act(), NULL);
lv obj set size(list, 120, 180);
lv_obj_set_pos(list, 10, 10);
/* Ajoute des boutons */
uint8_t i;
for(i = 0; txts[i]; i++) {
   lv_obj_t * btn = lv_list_add_btn(list, LV_SYMBOL_FILE, txts[i]);
    lv obj set event cb(btn, list event);
                                             /* Affecte une fonction de rappel */
    lv btn set toggle(btn, true);
                                                /* Active la fonction de bascule */
}
/* Initialise et définit un autre thème. `LV_THEME_MATERIAL` doit être activé dans lv_
→conf.h.
* Si `LV THEME LIVE UPDATE 1` alors le style de la liste précédente sera également,
→mis à jour. */
th = lv_theme_material_init(210, NULL);
lv_theme_set_current(th);
/* Crée une autre liste */
list = lv_list_create(lv_scr_act(), NULL);
lv obj set size(list, 120, 180);
lv_obj_set_pos(list, 150, 10);
/* Ajoute des boutons avec les mêmes textes */
for(i = 0; txts[i]; i++) {
    lv_obj_t * btn = lv_list_add_btn(list, LV_SYMBOL_FILE, txts[i]);
    lv obj set event cb(btn, list event);
    lv_btn_set_toggle(btn, true);
}
. . .
static void list_event(lv_obj_t * btn, lv_event_t e)
    if(e == LV EVENT CLICKED) {
        printf("%s\n", lv_list_get_btn_text(btn));
    }
}
```


Utiliser LittlevGL avec Micropython

Apprenez-en plus sur Micropython.

```
# Crée un bouton et une étiquette
scr = lv.obj()
btn = lv.btn(scr)
btn.align(lv.scr_act(), lv.ALIGN.CENTER, 0, 0)
label = lv.label(btn)
label.set_text("Button")

# Charge l'écran
lv.scr_load(scr)
```

Contribuer

LittlevGL uses the Forum to ask and answer questions and GitHub's Issue tracker for development-related discussion (such as bug reports, feature suggestions etc.).

There are many opportunities to contribute to LittlevGL such as:

- Aidez les autres sur le forum.
- Inspirez les gens en parlant de votre projet dans la catégorie Mon projet du forum ou en l'ajoutant à la rubrique [Références](https://blog.littlevgl.com/2018-12-26/references)
- Améliorez et/ou traduisez la documentation. Visitez le dépôt Documentation pour en apprendre plus Écrivez un article de blog sur vos expériences. Regardez comment faire dans le dépôt [Blog] (https://github.com/littlevgl/blog).
- Signalez et/ou corrigez des bogues avec l'outil de suivi des problèmes de GitHub
- Aidez au développement. Vérifiez les problèmes en cours, en particulier ceux avec la mention Aide demandée et partagez vos idées sur un sujet ou implémentez une fonctionnalité.

If you are interested in contributing to LittlevGL, then please read the guides below to get started.

• Contributing guide

• Coding style guide

Micropython

Qu'est-ce que Micropython?

Micropython est une version de Python destinées aux microcontrôleurs. Using Micropython, you can write Python3 code and run it even on a bare metal architecture with limited resources.

Highlights of Micropython

- Compact Fits and runs within just 256k of code space and 16k of RAM. No OS is needed, although you can also run it with an OS, if you want.
- Compatible Strives to be as compatible as possible with normal Python (known as CPython).
- Versatile Supports many architectures (x86, x86-64, ARM, ARM Thumb, Xtensa).
- Interactif le cycle compilation-programmation-démarrage n'est pas nécessaire. Avec REPL (l'invite interactive) vous pouvez entrer des commandes et les exécuter immédiatement, lancer des scripts etc.
- **Popular** Many platforms are supported. The user base is growing bigger. Notable forks: MicroPython, CircuitPython, MicroPython_ESP32_psRAM_LoBo
- Orienté embarqué fourni avec des modules spécifiques aux systèmes embarqués, comme le module machine pour accéder au matériel bas-niveau (broches d'E/S, CAN, UART, SPI, I2C, RTC, horloges etc.)

Pourquoi Micropython + LittlevGL ?

Currently, Micropython does not have a good high-level GUI library by default. LittlevGL is an Object Oriented Component Based high-level GUI library, which seems to be a natural candidate to map into a higher level language, such as Python. LittlevGL is implemented in C and its APIs are in C.

Voici quelques avantages à utiliser LittlevGL avec Micropython :

- Développez des interfaces graphiques en Python, language de haut-niveau très populaire. Utilisez des paradigmes tels que la programmation orientée objet.
- Usually, GUI development requires multiple iterations to get things right. With C, each iteration consists of Change code > Build > Flash > Run.In Micropython it's just Change code > Run! You can even run commands interactively using the REPL (the interactive prompt)

Micropython + LittlevGL peuvent être utilisés pour :

- Le prototypage rapide d'interface graphique.
- Réduire le cycle de modification et d'optimisation de l'interface graphique.

- Modéliser l'interface graphique d'une manière plus abstraite en définissant des objets composites réutilisables, en tirant avantage des fonctionnalités du langage Python telles que l'héritage, les clôtures, les listes en compréhension, les générateurs, la gestion d'exception, les entiers multiprécision et autres.
- Rendre LittlevGL accessible à une plus large audience. Aucun besoin de connaître le C dans le but de créer une interface graphique fonctionnelle sur un système embarqué. C'est également vrai pour CircuitPython vision. CircuitPython a été conçu avec l'éducation à l'esprit, pour rendre plus facile à des utilisateurs, nouveaux ou inexpérimentés, de débuter avec le développement embarqué.
- Creating tools to work with LittlevGL at a higher level (e.g. drag-and-drop designer).

So what does it look like?

TL;DR: C'est très similaire à l'API C, mais orienté objet pour les composants de LittlevGL.

Plongeons droit dans un exemple!

Un exemple simple

```
import lvgl as lv
lv.init()
scr = lv.obj()
btn = lv.btn(scr)
btn.align(lv.scr_act(), lv.ALIGN.CENTER, 0, 0)
label = lv.label(btn)
label.set_text("Button")
lv.scr_load(scr)
```

Comment l'utiliser?

Simulateur en ligne

Si vous souhaitez expérimenter LittlevGL + Micropython sans télécharger quoi que ce soit - vous pouvez utiliser notre simulateur en ligne !C'est un ensemble LittlevGL + Micropython entièrement fonctionnel qui s'exécute dans le navigateur et permet d'éditer et d'exécuter un script Python.

Click here to experiment on the online simulator

Simulateur PC

Micropython is ported to many platforms. One notable port is "unix", which allows you to build and run Micropython (+LittlevGL) on a Linux machine. (On a Windows machine you might need Virtual Box or WSL or MinGW or Cygwin etc.)

Click here to know more information about building and running the unix port

Embedded platform

Au final, le but est d'exécuter sur une plateforme embarquée. Micropython et LittlevGL peuvent être utilisés sur de nombreuses architectures embarquées, telles que STM32, ESP32 etc. You would also need display and input drivers. We have some sample drivers (ESP32+ILI9341, as well as some other examples), but most chances are you would want to create your own input/display drivers for your specific purposes. Les pilotes peuvent être implémentés soit en C en tant que module Micropython, soit en Micropython pur !

Où trouver plus d'informations ?

- Dans le sujet du Blog
- Dans le README lv micropython
- Dans le README lv_binding_micropython
- Sur le forum LittlevGL (n'hésitez pas à demander quoi que ce soit!)
- Dans la documentation et sur le forum Micropython

3.16.2 Portage

Aperçu système

Application Votre application qui crée l'interface graphique et gère les tâches spécifiques.

LittlevGL The graphics library itself. Your application can communicate with the library to create a GUI. It contains a HAL (Hardware Abstraction Layer) interface to register your display and input device drivers.

Pilote Besides your specific drivers, it contains functions to drive your display, optionally to a GPU and to read the touchpad or buttons.

Depending on the MCU, there are two typical hardware set-ups. One with built-in LCD/TFT driver periphery and another without it. In both cases, a frame buffer will be required to store the current image of the screen.

1. Microcontrôleur avec contrôleur TFT/LCD Si votre microcontrôleur dispose d'un contrôleur TFT/LCD, vous pouvez connecter un écran directement via une interface RVB. Dans ce cas, le tampon d'affichage peut résider dans la MEV interne (si le microcontrôleur dispose de suffisamment de MEV) ou dans la MEV externe (si la microcontrôleur a une interface mémoire).

2. Contrôleur d'affichage externe If the MCU doesn't have TFT/LCD driver interface then an external display controller (E.g. SSD1963, SSD1306, ILI9341) has to be used. In this case, the MCU can communicate with the display controller via Parallel port, SPI or sometimes I2C. The frame buffer is usually located in the display controller which saves a lot of RAM for the MCU.

Configurer un projet

Obtenir la librairie

LittlevGL Graphics Library est disponible sur GitHub: https://github.com/littlevgl/lvgl.

Vous pouvez la cloner ou télécharger la dernière version de la librairie depuis GitHub ou vous pouvez également utiliser la page [Télécharger] (https://littlevgl.com/download).

La librairie graphique est le répertoire lvgl qui doit être copié dans votre projet.

Fichier de configuration

Il existe un fichier d'en-tête de configuration pour LittlevGL appelé lv_conf.h. Il définit le comportement de base de la bibliothèque, désactive les modules et fonctionnalités inutilisés, ajuste la taille des tampons au moment de la compilation, etc.

Copiez lvgl/lv_conf_template.h au même niveau que le répertoire lvgl et renommez-le en lv_conf.h. Ouvrez le fichier et changez le #if 0 du début en #if 1 pour activer son contenu.

lv_conf.h * peut également être copié à d'autres emplacements, mais vous devez ensuite ajouter
 LV_CONF_INCLUDE_SIMPLE à vos options de compilation (p.ex. -DLV_CONF_INCLUDE_SIMPLE pour gcc) et définir le chemin d'inclusion manuellement.

Dans le fichier de configuration, les commentaires expliquent la signification des options. Vérifiez au moins ces trois options de configuration et modifiez-les en fonction de votre matériel :

- 1. LV_HOR_RES_MAX la résolution horizontale de votre écran
- 2. LV_VER_RES_MAX la résolution verticale de votre écran
- 3. LV COLOR DEPTH 8 pour (RG332), 16 pour (RGB565) ou 32 pour (RGB888 et ARGB8888).

Initialisation

Pour utiliser la librairie graphique, vous devez l'initialiser ainsi que les autres composants. Voici l'ordre d'initialisation :

- 1. Appelez $lv_init()$
- 2. Initialisez vos pilotes
- 3. Enregistrez les pilotes de périphérique d'affichage et d'entrée dans LittlevGL. En savoir plus sur l'enregistrement : Affichage et Périphérique d'entrée.
- 4. Appelez lv_tick_inc(x) toutes les x millisecondes dans une interruption pour indiquer le temps écoulé. En savoir plus.
- 5. Appelez lv_task_handler() périodiquement toutes les quelques millisecondes pour gérer les tâches liées à LittlevGL. *En savoir plus*.

Interface d'affichage

Pour configurer un affichage, les variables lv disp buf t et lv disp drv t doivent être initialisées.

- $lv_disp_buf_t$ contient le(s) tampon(s) graphique(s) interne(s).
- ** lv_disp_drv_t ** contient les fonctions de rappel pour interagir avec l'affichage et manipuler des éléments liés au dessin.

Tampon d'affichage

lv_disp_buf_t peut être initialisé comme ceci :

```
/* Une variable statique ou globale pour mémoriser les tampons */
    static lv_disp_buf_t disp_buf;

/* Tampon(s) statique(s) ou global(aux). Le second tampon est optionnel */
    static lv_color_t buf_1[MY_DISP_HOR_RES * 10];
    static lv_color_t buf_2[MY_DISP_HOR_RES * 10];

/* Initialise `disp_buf` avec le(s) tampon(s) */
    lv_disp_buf_init(&disp_buf, buf_1, buf_2, MY_DISP_HOR_RES*10);
```

Voici les configurations possibles concernant la taille de la mémoire tampon :

- 1. Un tampon LittlevGL dessine le contenu de l'écran dans un tampon et l'envoie à l'affichage. Le tampon peut être plus petit que l'affichage. Dans ce cas, les zones les plus grandes seront redessinées en plusieurs parties. Si seules de petites zones changent (p.ex. appui sur un bouton), seules ces zones seront actualisées.
- 2. Deux tampons de taille différente de l'écran ayant deux tampons LittlevGL peut dessiner dans un tampon tandis que le contenu de l'autre tampon est envoyé à l'écran en arrière-plan. Le DMA ou une autre méthode doit être utilisé pour transférer les données à l'écran afin de permettre au CPU de dessiner dans le même temps. De cette manière, le rendu et le rafraîchissement de l'affichage deviennent parallèles. De même que pour *Un tampon*, LittlevGL dessine le contenu de l'affichage en fragments si le tampon est plus petit que la zone à actualiser.
- 3. Deux tampons de la taille d'un écran. Contrairement à Deux tampons de taille différente de l'écran LittlevGL fournira toujours tout le contenu de l'affichage, pas seulement des fragments. De cette façon, le pilote peut simplement changer l'adresse du tampon d'affichage par celle du tampon préparé par LittlevGL. Par conséquent, cette méthode est la meilleure lorsque le microcontrôleur dispose d'une interface LCD/TFT et que le tampon d'affichage est un emplacement dans la MEV.

Pilote d'affichage

Une fois l'initialisation des tampons effectuée, les pilotes d'affichage doivent être initialisés. Dans le cas le plus simple, seuls les deux champs suivants de lv_disp_drv_t doivent être définis :

- buffer pointeur sur une variable lv_disp_buf_t initialisée.
- **flush_cb** une fonction de rappel permettant de copier le contenu d'un tampon dans une zone spécifique de l'écran.

Il y a quelques champs de données optionnels :

- hor_res résolution horizontale de l'écran. (LV HOR RES MAX par défaut à partir de lv_conf.h)
- ver_res résolution verticale de l'écran. (LV_VER_RES_MAX par défaut à partir de $lv_conf.h$)

- color_chroma_key une couleur qui sera dessinée de manière transparente sur les images incrustées. LV COLOR TRANSP par défaut à partir de $lv_conf.h$)
- ** user_data ** donnée utilisateur personnalisée pour le pilote. Son type peut être modifié dans $lv_conf.h.$
- ** anti-aliasing ** utilise un anti-crénelage (lissage des bords). LV_ANTIALIAS par défaut à partir de $lv\ conf.h$
- rotated si 1 permute hor_res et ver_res'. LittlevGL dessine dans le même sens dans les deux cas (lignes du haut vers le bas); le pilote doit donc également être reconfiguré pour modifier le sens de remplissage de l'écran.
- screen_transp si 1 l'écran peut avoir un style transparent ou opaque. LV_COLOR_SCREEN_TRANSP doit être activé dans $lv_conf.h$

Pour utiliser un GPU, les fonctions de rappel suivantes peuvent être utilisées :

- gpu_fill_cb remplis une zone en mémoire avec une couleur
- gpu_blend_cb combine deux tampons en mémoire avec gestion de l'opacité.

Notez que ces fonctions doivent dessiner en mémoire (MEV) et non directement sur l'affichage.

Certaines autres fonctions de rappel facultatives facilitent et optimisent l'utilisation des écrans monochromes, à niveaux de gris ou autres écrans RVB non standard :

- rounder_cb arrondit les coordonnées des zones à redessiner. P.ex. une zone de 2 x 2 px peut être convertie en 2 x 8 px. Utile si la carte graphique ne peut actualiser que les zones ayant une hauteur ou une largeur spécifique (généralement une hauteur de 8 px avec des écrans monochromes).
- set_px_cb une fonction personnalisée pour écrire le tampon d'affichage. Utile pour enregistrer les pixels de manière plus compacte si l'affichage présente un format de couleur spécial. (par exemple monochrome 1 bit, échelle de gris 2 bit, etc.) This way the buffers used in lv_disp_buf_t can be smaller to hold only the required number of bits for the given area size. set_px_cb is not working with Two screen-sized buffers display buffer configuration.
- monitor cb indique combien de pixels ont été actualisés et en combien de temps.

Pour définir les champs de la variable $lv_disp_drv_t$, celle-ci doit être initialisée avec $lv_disp_drv_init(\&disp_drv)$. Et enfin, pour enregistrer un affichage pour LittlevGL, $lv_disp_drv_register(\& disp_drv)$ doit être appelée.

Dans l'ensemble, cela ressemble à ceci :

Voici quelques exemples simples de fonctions de rappel:

continues on next page

(continued from previous page)

```
int32_t x, y;
    for(y = area->y1; y <= area->y2; y++) {
        for(x = area->x1; x <= area->x2; x++) {
            put_px(x, y, *color_p)
            color p++;
        }
    }
    /* IMPORTANT !!!
    * Informe la librairie graphique que vous êtes prêt pour le transfert */
   lv_disp_flush_ready(disp);
}
void my_gpu_fill_cb(lv_disp_drv_t * disp_drv, lv_color_t * dest_buf, const lv_area_t_
→* dest_area, const lv_area_t * fill_area, lv_color_t color);
   /* Cet exemple de code devrait être effectué par un GPU */
   uint32 t x, y;
   dest buf += dest width * fill area->y1; /* Aller à la première ligne */
    for(y = fill_area->y1; y < fill_area->y2; y++) {
        for(x = fill_area->x1; x < fill_area->x2; x++) {
            dest buf[x] = color;
        dest buf+=dest width;
                              /* Aller à la ligne suivante */
    }
}
void my_gpu_blend_cb(lv_disp_drv_t * disp_drv, lv_color_t * dest, const lv_color_t *_

¬src, uint32_t length, lv_opa_t opa)
    /* Cet exemple de code devrait être effectué par un GPU */
   uint32_t i;
   for(i = 0; i < length; i++) {
        dest[i] = lv_color_mix(dest[i], src[i], opa);
    }
}
void my_rounder_cb(lv_disp_drv_t * disp_drv, lv_area_t * area)
 /* Modifie les zones en fonction des besoins. Agrandir uniquement.
  * Par exemple, pour toujours avoir des lignes de 8 px de hauteur : */
  area->y1 = area->y1 & 0 \times 07;
   area->y2 = (area->y2 & 0 \times 07) + 8;
}
void my set_px_cb(lv_disp_drv_t * disp_drv, uint8_t * buf, lv_coord_t buf_w, lv_coord_
→t x, lv_coord_t y, lv_color_t color, lv_opa_t opa)
   /* Écrit dans le tampon comme requis par l'affichage.
* Ecrit seulement 1 bit pour les écrans monochromes orientés verticalement : * /
buf += buf w * (y >> 3) + x;
if(lv\ color\ brightness(color) > 128)\ (*buf) \mid = (1 << (y % 8));
else (*buf) &= \sim (1 << (y % 8));
```

(continues on next page)

(continued from previous page)

```
void my_monitor_cb(lv_disp_drv_t * disp_drv, uint32_t time, uint32_t px)
{
   printf("%d px refreshed in %d ms\n", time, ms);
}
```

API

Display Driver HAL interface header file

Typedefs

```
typedef struct _disp_drv_t lv_disp_drv_t
```

Display Driver structure to be registered by HAL

typedef struct __disp__t lv_disp_t

Display structure. $lv_disp_drv_t$ is the first member of the structure.

Functions

```
void lv disp drv init(lv disp drv t*driver)
```

Initialize a display driver with default values. It is used to have known values in the fields and not junk in memory. After it you can safely set only the fields you need.

Parameters

• driver: pointer to driver variable to initialize

```
void \mathbf{lv\_disp\_buf\_init}(\mathit{lv\_disp\_buf\_t}\ *\mathit{disp\_buf},\ \mathrm{void}\ *\mathit{buf1},\ \mathrm{void}\ *\mathit{buf2},\ \mathrm{uint32\_t}\ \mathit{size\_in\_px\_cnt}) Initialize a display buffer
```

Parameters

- disp buf: pointer lv disp buf t variable to initialize
- buf1: A buffer to be used by LittlevGL to draw the image. Always has to specified
 and can't be NULL. Can be an array allocated by the user. E.g. static lv_color_t
 disp_buf1[1024 * 10] Or a memory address e.g. in external SRAM
- buf2: Optionally specify a second buffer to make image rendering and image flushing (sending to the display) parallel. In the disp_drv->flush you should use DMA or similar hardware to send the image to the display in the background. It lets LittlevGL to render next frame into the other buffer while previous is being sent. Set to NULL if unused.
- size_in_px_cnt: size of the buf1 and buf2 in pixel count.

```
lv_disp_t *lv_disp_drv_register(lv_disp_drv_t *driver)
```

Register an initialized display driver. Automatically set the first display as active.

Return pointer to the new display or NULL on error

Parameters

• driver: pointer to an initialized 'lv_disp_drv_t' variable (can be local variable)

```
\label{eq:condition} \operatorname{void} \ \mathsf{lv\_disp\_drv\_update} (\mathit{lv\_disp\_t} * \mathit{disp\_drv\_t} * \mathit{new\_drv})
```

Update the driver in run time.

Parameters

- disp: pointer to a display. (return value of lv disp drv register)
- new drv: pointer to the new driver

void lv_disp_remove(lv_disp_t *disp)

Remove a display

Parameters

• disp: pointer to display

void lv disp set default(lv_disp_t *disp)

Set a default screen. The new screens will be created on it by default.

Parameters

• disp: pointer to a display

lv_disp_t *lv_disp_get_default(void)

Get the default display

Return pointer to the default display

lv_coord_t lv_disp_get_hor_res(lv_disp_t *disp)

Get the horizontal resolution of a display

Return the horizontal resolution of the display

Parameters

• disp: pointer to a display (NULL to use the default display)

lv_coord_t lv_disp_get_ver_res(lv_disp_t *disp)

Get the vertical resolution of a display

Return the vertical resolution of the display

Parameters

• disp: pointer to a display (NULL to use the default display)

bool lv disp get antialiasing(lv_disp_t*disp)

Get if anti-aliasing is enabled for a display or not

Return true: anti-aliasing is enabled; false: disabled

Parameters

• disp: pointer to a display (NULL to use the default display)

$lv \ disp \ t *lv \ disp \ get \ next(lv \ disp \ t *disp)$

Get the next display.

Return the next display or NULL if no more. Give the first display when the parameter is NULL

Parameters

• disp: pointer to the current display. NULL to initialize.

$lv \ disp \ buf \ t *lv \ disp \ get \ buf(lv \ disp \ t *disp)$

Get the internal buffer of a display

Return pointer to the internal buffers

Parameters

• disp: pointer to a display

uint16_t lv_disp_get_inv_buf_size(lv_disp_t *disp)

Get the number of areas in the buffer

Return number of invalid areas

$void lv_disp_pop_from_inv_buf(lv_disp_t * disp, uint16_t num)$

Pop (delete) the last 'num' invalidated areas from the buffer

Parameters

• num: number of areas to delete

bool lv_disp_is_double_buf(lv_disp_t *disp)

Check the driver configuration if it's double buffered (both buf1 and buf2 are set)

Return true: double buffered; false: not double buffered

Parameters

• disp: pointer to to display to check

bool lv_disp_is_true_double_buf(lv_disp_t *disp)

Check the driver configuration if it's TRUE double buffered (both buf1 and buf2 are set and size is screen sized)

Return true: double buffered; false: not double buffered

Parameters

• disp: pointer to to display to check

struct lv_disp_buf_t

#include <lv_hal_disp.h> Structure for holding display buffer information.

Public Members

```
void *buf1
```

First display buffer.

void *buf2

Second display buffer.

void *buf act

uint32 t size

lv area t area

volatile uint32_t flushing

struct _disp_drv_t

#include <lv_hal_disp.h> Display Driver structure to be registered by HAL

Public Members

```
lv_coord_t hor_res
```

Horizontal resolution.

lv_coord_t ver_res

Vertical resolution.

lv_disp_buf_t *buffer

Pointer to a buffer initialized with $lv_disp_buf_init()$. LittlevGL will use this buffer(s) to draw the screens contents

uint32_t antialiasing

1: antialiasing is enabled on this display.

uint32 t rotated

1: turn the display by 90 degree.

Warning Does not update coordinates for you!

uint32_t screen_transp

Handle if the the screen doesn't have a solid (opa == LV_OPA_COVER) background. Use only if required because it's slower.

void (*flush_cb)(struct __disp__drv__t *disp__drv, const lv__area__t *area, lv__color__t *color__p)

MANDATORY: Write the internal buffer (VDB) to the display. 'lv_disp_flush_ready()' has to be called when finished

void (*rounder_cb)(struct _disp_drv_t *disp_drv, lv_area_t *area)

OPTIONAL: Extend the invalidated areas to match with the display drivers requirements E.g. round **y** to, 8, 16 ..) on a monochrome display

OPTIONAL: Set a pixel in a buffer according to the special requirements of the display Can be used for color format not supported in LittelvGL. E.g. 2 bit -> 4 gray scales

Note Much slower then drawing with supported color formats.

void (*monitor_cb) (struct _disp_drv_t *disp_drv, uint32_t time, uint32_t px)

OPTIONAL: Called after every refresh cycle to tell the rendering and flushing time + the number of flushed pixels

void (*gpu_blend_cb)(struct __disp__drv_t *disp__drv, lv__color__t *dest, const lv__color__t *src, uint32_t length, lv__opa_t opa)

OPTIONAL: Blend two memories using opacity (GPU only)

void (*gpu_fill_cb)(struct __disp__drv__t *disp__drv, lv__color__t *dest__buf, lv__coord__t dest__width, const lv__area__t *fill__area, lv__color__t color)

OPTIONAL: Fill a memory with a color (GPU only)

lv_color_t color_chroma_key

On CHROMA_KEYED images this color will be transparent. LV_COLOR_TRANSP by default. $(lv_conf.h)$

lv_disp_drv_user_data_t user_data Custom display driver user data

struct disp t

 $\#include < lv_hal_disp.h > Display structure.$ $lv_disp_drv_t$ is the first member of the structure.

Public Members

lv disp drv t driver

< Driver to the display A task which periodically checks the dirty areas and refreshes them

lv_task_t *refr_task

Interface de périphérique d'entrée

Types de périphériques d'entrée

Pour configurer un périphérique d'entrée, une variable lv indev drv t doit être initialisée :

type peut être

- LV_INDEV_TYPE_POINTER pavé tactile ou souris
- LV_INDEV_TYPE_KEYPAD clavier
- LV_INDEV_TYPE_ENCODER encodeur avec options gauche, droite et appui
- LV INDEV TYPE BUTTON bouton externe

read_cb est une fonction de rappel qui sera appelé périodiquement pour indiquer l'état actuel d'un périphérique d'entrée. Les données peuvent être placées dans un tampon, la fonction retourne false lorsqu'il ne reste plus de données à lire ou true lorsque le tampon n'est pas vide.

Visitez Périphériques d'entrée pour en savoir plus sur les périphériques d'entrée en général.

Pavé tactile, souris ou autre pointeur

Les périphériques d'entrée pouvant cliquer sur des points de l'écran appartiennent à cette catégorie.

```
indev_drv.type = LV_INDEV_TYPE_POINTER;
indev_drv.read_cb = my_input_read;
...

bool my_input_read(lv_indev_drv_t * drv, lv_indev_data_t*data)
{
    data->point.x = touchpad_x;
    data->point.y = touchpad_y;
    data->state = LV_INDEV_STATE_PR or LV_INDEV_STATE_REL;
    return false; /* Pas de tampon donc plus de données à lire */
}
```

Important: Les pilotes de pavé tactile doivent renvoyer les dernières coordonnées X/Y même lorsque l'état est LV INDEV STATE REL.

Pour définir un curseur de souris, utilisez lv_indev_set_cursor(my_indev, &img_cursor) (my_indev est la valeur de retour de lv_indev_drv_register).

Clavier

Les claviers complets avec toutes les lettres ou plus simples avec quelques boutons de navigation sont décrits ici.

Pour utiliser un clavier :

- Enregistrez une fonction read cb avec le type LV INDEV TYPE KEYPAD.
- Activez LV_USE_GROUP dans *lv_conf.h*
- Un groupe d'objets doit être créé: lv_group_t * g = lv_group_create() et des objets doivent y être ajoutés avec lv_group_add_obj(g, obj)
- Le groupe créé doit être affecté à un périphérique d'entrée : lv_indev_set_group(my_indev,g) (my_indev est la valeur de retour de lv_indev_drv_register)
- Utilisez LV_KEY_... pour naviguer parmi les objets du groupe. Voir lv_core/lv_group.h pour les touches disponibles.

Encodeur

Avec un encodeur, vous pouvez réaliser 4 actions :

- 1. Appuyer son bouton
- 2. Appuyer longuement son bouton
- 3. Tourner à gauche
- 4. Tourner à droite

En bref, les encodeurs fonctionnent comme ceci :

- En tournant l'encodeur, vous pouvez sélectionner l'objet suivant/précédent.
- Lorsque vous appuyez sur l'encodeur sur un objet simple (comme un bouton), vous cliquez dessus.
- Si vous appuyez sur l'encodeur sur un objet complexe (comme une liste, une boîte de message, etc.), l'objet passera en mode édition. Vous pouvez alors naviguer dans l'encodeur en le tournant.
- Pour quitter le mode édition, appuyez longuement sur le bouton.

Pour utiliser un encodeur (comme un clavier), des objets doivent être ajoutés aux groupes.

```
indev_drv.type = LV_INDEV_TYPE_ENCODER;
indev_drv.read_cb = my_input_read;
...

bool encoder_read(lv_indev_drv_t * drv, lv_indev_data_t*data){
   data->enc_diff = enc_get_new_moves();

   if(enc_pressed()) data->state = LV_INDEV_STATE_PR;
   else data->state = LV_INDEV_STATE_REL;

   return false; /* Pas de tampon donc plus de données à lire */
}
```

Bouton

Bouton signifie bouton "matériel" externe à côté de l'écran, affecté à des coordonnées spécifiques de l'écran. Si un bouton est pressé, il simule l'appui sur la coordonnée attribuée (comme un pavé tactile)

Pour affecter des boutons aux coordonnées, utilisez $lv_indev_set_button_points(my_indev, points_array).points_array doit ressembler à const <math>lv_point_t points_array[] = \{ \{12, 30\}, \{60, 90\}, \dots \}$

Important: The points_array can't go out of scope. Either declare it as a global variable or as a static variable inside a function.

```
indev_drv.type = LV_INDEV_TYPE_BUTTON;
indev_drv.read_cb = my_input_read;
...
bool button_read(lv_indev_drv_t * drv, lv_indev_data_t*data){
```

(continues on next page)

(continued from previous page)

```
static uint32 t last btn = 0;
                                    /* Mémorise le dernier bouton pressé */
                                    /* Obtient l'ID (0, 1, 2 ...) du bouton pressé */
    int btn_pr = my_btn_read();
    if(btn_pr >= 0) {
                                    /* Un bouton est-il pressé ? P.ex. -1 indique qu
→ 'aucun bouton n'est pressé */
                                    /* Sauvegarde l'ID du bouton pressé */
       last btn = btn pr;
       data->state = LV_INDEV_STATE_PR; /* Définit l'état pressé */
       data->state = LV_INDEV_STATE_REL; /* Définit l'état relâché */
   data->btn = last_btn;
                                     /* Enregistre le dernier bouton */
    return false;
                                     /* Pas de tampon donc plus de données à lire */
}
```

Autres fonctionnalités

Outre <code>read_cb</code>, une autre fonction de rappel <code>feedback_cb</code> peut également être spécifiée dans <code>lv_indev_drv_t</code>. <code>feedback_cb</code> est appelée lorsqu'un événement, quel qu'il soit, est envoyé par les périphériques d'entrée. (indépendamment de leur type). Cela permet de faire un retour à l'utilisateur, par exemple. jouer un son sur <code>LV_EVENT_CLICK</code>.

La valeur par défaut des paramètres suivants peut être définie dans $lv_conf.h$ mais la valeur par défaut peut être surchargée dans $lv_indev_drv_t$:

- drag_limit Nombre de pixels à parcourir avant de faire glisser l'objet
- drag_throw Ralentissement du glissé après lâché en [%]. Une valeur haute signifie un ralentissement plus rapide
- long_press_time Temps d'appui avant de générer LV EVENT LONG PRESSED (en millisecondes)
- long_press_rep_time Intervalle de temps entre deux envois LV_EVENT_LONG_PRESSED_REPEAT (en millisecondes)
- read_task pointeur sur l'objet lv_task qui lit le périphérique d'entrée. Ses paramètres peuvent être modifiés avec les fonctions lv task ...()

Chaque périphérique d'entrée est associé à un affichage. Par défaut, un nouveau périphérique d'entrée est ajouté à l'affichage créé en dernier ou explicitement sélectionné (à l'aide de lv_disp_set_default()). L'affichage associé est sauvegardé et peut être modifié dans le champ disp du pilote.

API

Input Device HAL interface layer header file

Typedefs

typedef struct _lv_indev_proc_t lv_indev_proc_t

Run time data of input devices Internally used by the library, you should not need to touch it.

typedef struct _lv_indev_t lv_indev_t

The main input device descriptor with driver, runtime data ('proc') and some additional information

Enums

enum [anonymous]

Possible input device types

Values:

LV_INDEV_TYPE_NONE

Uninitialized state

LV INDEV TYPE POINTER

Touch pad, mouse, external button

LV_INDEV_TYPE_KEYPAD

Keypad or keyboard

LV_INDEV_TYPE_BUTTON

External (hardware button) which is assigned to a specific point of the screen

LV_INDEV_TYPE_ENCODER

Encoder with only Left, Right turn and a Button

enum [anonymous]

States for input devices

Values:

$LV_INDEV_STATE_REL = 0$

LV_INDEV_STATE_PR

Functions

void lv indev drv init(lv indev drv t*driver)

Initialize an input device driver with default values. It is used to surly have known values in the fields ant not memory junk. After it you can set the fields.

Parameters

• driver: pointer to driver variable to initialize

lv indev t *lv indev drv register(lv indev drv t *driver)

Register an initialized input device driver.

Return pointer to the new input device or NULL on error

Parameters

• driver: pointer to an initialized 'lv_indev_drv_t' variable (can be local variable)

void lv indev_drv_update(lv_indev_t *indev, lv_indev_drv_t *new_drv)

Update the driver in run time.

Parameters

• indev: pointer to a input device. (return value of lv indev drv register)

• new drv: pointer to the new driver

lv_indev_t *lv_indev_get_next(lv_indev_t *indev)

Get the next input device.

Return the next input devise or NULL if no more. Give the first input device when the parameter is NULL

Parameters

• indev: pointer to the current input device. NULL to initialize.

```
bool lv indev read(lv indev t *indev, lv indev data t *data)
```

Read data from an input device.

Return false: no more data; true: there more data to read (buffered)

Parameters

- indev: pointer to an input device
- data: input device will write its data here

struct lv_indev_data_t

#include <lv_hal_indev.h> Data structure passed to an input driver to fill

Public Members

```
lv point t point
```

For LV_INDEV_TYPE_POINTER the currently pressed point

uint32 t key

For LV_INDEV_TYPE_KEYPAD the currently pressed key

uint32 t btn id

For LV_INDEV_TYPE_BUTTON the currently pressed button

int16 t enc diff

For LV INDEV TYPE ENCODER number of steps since the previous read

lv_indev_state_t state

LV_INDEV_STATE_REL or LV_INDEV_STATE_PR

struct lv indev drv t

#include <lv_hal_indev.h> Initialized by the user and registered by 'lv_indev_add()'

Public Members

```
lv_indev_type_t type
```

< Input device type Function pointer to read input device data. Return 'true' if there is more data to be read (buffered). Most drivers can safely return 'false'</p>

```
bool (*read_cb)(struct_lv_indev_drv_t *indev_drv, lv_indev_data_t *data)
```

Called when an action happened on the input device. The second parameter is the event from lv event t

lv_indev_drv_user_data_t user_data

struct __disp__t *disp

< Pointer to the assigned display Task to read the periodically read the input device

$lv_task_t *read_task$

Number of pixels to slide before actually drag the object

uint8_t drag_limit

Drag throw slow-down in [%]. Greater value means faster slow-down

uint8_t drag_throw

Long press time in milliseconds

uint16 t long press time

Repeated trigger period in long press [ms]

uint16_t long_press_rep_time

struct _lv_indev_proc_t

 $\#include < lv_hal_indev.h >$ Run time data of input devices Internally used by the library, you should not need to touch it.

Public Members

```
lv\_indev\_state\_t state
```

Current state of the input device.

lv_point_t act_point

Current point of input device.

lv_point_t last_point

Last point of input device.

lv_point_t vect

Difference between act point and last point.

lv_point_t drag_sum

lv_point_t drag_throw_vect

struct _lv_obj_t *act obj

struct _lv obj t *last obj

struct <u>lv_obj_t</u>*last pressed

uint8_t drag_limit_out

uint8 t drag in prog

struct _lv_indev_proc_t::[anonymous]::[anonymous] pointer

lv_indev_state_t last_state

uint32_t last_key

struct _lv_indev_proc_t::[anonymous]::[anonymous] keypad

union _lv_indev_proc_t::[anonymous] types

uint32_t pr_timestamp

Pressed time stamp

uint32_t longpr_rep_timestamp

Long press repeat time stamp

uint8 t long pr sent

uint8_t reset_query

```
uint8_t disabled
uint8_t wait_until_release
```

struct _lv_indev_t

#include <lv_hal_indev.h> The main input device descriptor with driver, runtime data ('proc') and some additional information

Public Members

Interface tic

LittlevGL a besoin d'un tic système pour connaître le temps écoulé pour l'animation et d'autres tâches.

Vous devez appeler la fonction lv_tick_inc(tick_period) périodiquement et indiquer la période d'appel en millisecondes. Par exemple, si elle est appelée chaque milliseconde : lv_tick_inc(1).

lv_tick_inc doit être appelée dans une routine de priorité supérieure à lv_task_handler() (par exemple, dans une interruption) pour connaître avec précision les millisecondes écoulées, même si l'exécution de lv task handler prend plus de temps.

Sur FreeRTOS, lv tick inc peut être appelée dans vApplicationTickHook.

Sur les systèmes d'exploitation basés sur Linux (par exemple, sur Raspberry), lv_tick_inc peut être appelée dans un fil d'exécution :

API

Provide access to the system tick with 1 millisecond resolution

Functions

```
uint32_t lv_tick_get(void)
```

Get the elapsed milliseconds since start up

Return the elapsed milliseconds

```
uint32 t lv_tick_elaps(uint32_t prev_tick)
```

Get the elapsed milliseconds since a previous time stamp

Return the elapsed milliseconds since 'prev_tick'

Parameters

• prev_tick: a previous time stamp (return value of systick_get())

Gestionnaire de tâche

Pour gérer les tâches de LittlevGL, vous devez appeler <code>lv_task_handler()</code> régulièrement à partir d'un des éléments suivants :

- boucle while(1) de la fonction main()
- interruption périodique d'une horloge (priorité plus basse que lv tick inc())
- une tâche périodique du SE

Le délai n'est pas critique, mais il faut environ 5 millisecondes pour que le système reste réactif.

Exemple:

```
while(1) {
    lv_task_handler();
    my_delay_ms(5);
}
```

Pour en savoir plus sur les tâches, visitez la section Tâches.

Gestion du sommeil

Le microcontrôleur peut s'endormir lorsque aucune intervention de l'utilisateur n'est effectuée. Dans ce cas, la boucle principale while (1) devrait ressembler à ceci :

Vous devez également ajouter ces lignes à la fonction de lecture de votre périphérique d'entrée si un appui est effectué :

En plus de lv_disp_get_inactive_time(), vous pouvez vérifier lv_anim_count_running() pour voir si toutes les animations sont terminées.

Système d'exploitation et interruptions

LittlevGL n'est pas compatible avec les fils d'exécution par défaut.

Cependant, dans les cas suivants, il est valide d'appeler des fonctions liées à LittlevGL :

- Dans les $\acute{e}v\acute{e}nements$. Apprenez-en plus dans $Ev\acute{e}nements$.
- Dans *lv_tasks*. Apprenez-en plus dans *Tâches*.

Tâches et fils d'exécution

Si vous avez besoin d'utiliser de vraies tâches ou des fils d'exécution, vous avez besoin d'un mutex qui doit être acquis avant l'appel de <code>lv_task_handler</code> et libéré ensuite. Par ailleurs, vous devez utiliser ce mutex dans les autres tâches et fils d'exécution lors de chaque appel de fonction et code liés à LittlevGL (<code>lv_..</code>). De cette façon, vous pouvez utiliser LittlevGL dans un environnement réellement multitâche. Utilisez simplement un mutex pour éviter l'appel concurrent des fonctions LittlevGL.

Interruptions

Essayez d'éviter d'appeler les fonctions LittlevGL à partir d'une interruption (sauf lv_tick_inc() et lv_disp_flush_ready ()). Mais si vous avez vraiment besoin de le faire, vous devez désactiver l'interruption qui utilise les fonctions LittlevGL pendant que lv_task_handler est en cours d'exécution. Il est préférable de positionner un indicateur ou toute autre valeur et de le vérifier périodiquement dans une lv task.

Journalisation

LittlevGL a un module journal intégré pour informer l'utilisateur de ce qui se passe dans la librairie.

Niveau de détail

Pour activer la journalisation, définissez LV_USE_LOG 1 dans $lv_conf.h$ et définissez LV_LOG_LEVEL sur l'une des valeurs suivantes :

- LV_LOG_LEVEL_TRACE Beaucoup de messages pour donner des informations détaillées
- LV_LOG_LEVEL_INFO Consigne les événements importants
- LV_LOG_LEVEL_WARN Journalise si quelque chose d'inattendu s'est produit mais n'a pas causé de problème
- LV_LOG_LEVEL_ERROR Uniquement les problèmes critiques, lorsque le système peut planter
- LV_LOG_LEVEL_NONE Ne journalise rien

Les événements dont le niveau est supérieur au niveau de journalisation défini seront également consignés. P. ex. si vous activez LV_LOG_LEVEL_WARN, les erreurs seront également consignées.

Journalisation avec printf

Si votre système prend en charge printf, il vous suffit d'activer LV_LOG_PRINTF dans *lv_conf.h* pour traiter les journaux avec printf.

Fonction de journalisation personnalisée

If you can't use printf or want to use a custom function to log you can register a "logger" callback with lv log register print cb().

Par exemple:

```
void my log cb(lv log level t level, const char * file, int line, const char * dsc)
 /* Envoie les messages via le port série */
 if(level == LV LOG LEVEL ERROR) serial send("ERROR: ");
 if(level == LV LOG LEVEL WARN) serial send("WARNING: ");
 if(level == LV_LOG_LEVEL_INFO) serial_send("INFO: ");
 if(level == LV LOG LEVEL TRACE) serial send("TRACE: ");
 serial send("File: ");
 serial_send(file);
 char line str[8];
 sprintf(line_str,"%d", line);
 serial send("#");
 serial_send(line_str);
 serial_send(": ");
 serial send(dsc);
 serial_send("\n");
}
. . .
lv log register print cb(my log cb);
```

Ajouter des messages

Vous pouvez également utiliser le module de journalisation via les fonctions LV_LOG_TRACE/INFO/WARN/ERROR(description).

3.16.3 Vue d'ensemble

Objets

Dans LittlevGL, les **éléments de base** d'une interface utilisateur sont les objets, également appelés *éléments visuels*. Par exemple, un *Bouton*, une *Etiquette*, une *Image*, une *Liste*, un *Graphique* ou une *Zone de texte*.

Découvrez tous les Types d'objet ici.

Attributs d'objet

Attributs de base

Les objets ont des attributs de base communs indépendamment de leur type :

- Position
- Taille
- Parent
- Autorisation du glissé
- Autorisation du clic etc.

Vous pouvez définir/obtenir ces attributs avec les fonctions lv_obj_set _... et lv_obj_get _.... Par exemple :

Pour voir toutes les fonctions disponibles, visitez la documentation de l'objet de base.

Attributs spécifiques

Les types d'objet ont aussi des attributs spéciaux. Par exemple, un curseur a

- Des valeurs minimum et maximum
- Une valeur courante
- Des styles personnalisés

Pour ces attributs, chaque type d'objet possède des fonctions API uniques. Par exemple pour un curseur :

Les API des types d'objet sont décrites dans leur *Documentation* mais vous pouvez également consulter les fichiers d'en-tête respectifs (p.ex. $lv_objx/lv_slider.h$).

Mécanismes de fonctionnement de l'objet

Structure parent-enfant

Un objet parent peut être considéré comme le conteneur de ses enfants. Chaque objet a exactement un objet parent (à l'exception des écrans), mais un parent peut avoir un nombre illimité d'enfants. Il n'y a pas de contrainte pour le type du parent, mais il existe des objets parent typiques (p.ex. un bouton) et enfants (p.ex. une étiquette).

Se déplacer ensemble

Si la position du parent est modifiée, les enfants se déplaceront avec lui. Par conséquent, toutes les positions sont relatives au parent.

Les coordonnées (0, 0) signifient que les objets resteront dans le coin supérieur gauche du parent indépendamment de la position du parent.

Modifiez la position du parent :


```
lv_obj_set_pos(par, 50, 50); /* Déplacez le parent. L'enfant va bouger avec. */
```

Pour simplifier, la définition des couleurs des objets n'est pas montrée dans l'exemple.

Visibilité uniquement sur le parent

Si un enfant est partiellement ou complètement hors de son parent, les parties extérieures ne seront pas visibles.

lv_obj_set_x(obj1, -30); /* Déplace l'enfant en partie en dehors du parent */

Créer - supprimer des objets

Dans LittlevGL, les objets peuvent être créés et supprimés dynamiquement à l'exécution. Cela signifie que seuls les objets actuellement créés consomment de la MEV. Par exemple, si vous avez besoin d'un graphique, vous pouvez le créer à l'utilisation et le supprimer s'il n'est pas visible ou plus nécessaire.

Chaque type d'objet a sa propre fonction **create** avec une signature unifiée. Deux paramètres sont nécessaires :

- un pointeur sur l'objet parent. Pour créer un écran, donnez NULL en tant que parent.
- éventuellement un pointeur sur un autre objet du même type pour copie. Peut être *NULL* pour ne pas copier un autre objet.

Indépendamment du type d'objet, un type de variable commun lv_obj_t est utilisé. Ce pointeur peut être utilisé ultérieurement pour définir ou obtenir les attributs de l'objet.

Les fonctions de création ressemblent à ceci :

```
lv_obj_t * lv_ <type>_create(lv_obj_t * parent, lv_obj_t * copy);
```

Il existe une fonction commune de **suppression** pour tous les types d'objet. Il supprime l'objet et tous ses enfants.

```
void lv_obj_del(lv_obj_t * obj);
```

<code>lv_obj_del</code> supprimera immédiatement l'objet. Si pour une quelconque raison vous ne pouvez pas supprimer l'objet immédiatement, vous pouvez utiliser <code>lv_obj_del_async(obj)</code>. Utile, p.ex. si vous voulez supprimer le parent d'un objet dans le traitement de l'événement <code>LV_EVENT_DELETE</code>.

Vous pouvez supprimer uniquement les enfants d'un objet mais laissez l'objet lui-même "vivant":

```
void lv_obj_clean(lv_obj_t * obj);
```

Ecran - le parent le plus élémentaire

Les écrans sont des objets spéciaux qui n'ont pas d'objet parent. Il est donc créé ainsi :

```
lv_obj_t * scr1 = lv_obj_create(NULL, NULL);
```

Il y a toujours un écran actif affiché. Par défaut, la librairie en crée et en charge un. Pour obtenir l'écran actuellement actif, utilisez la fonction lv_scr_act() pour en charger un nouveau, utilisez lv scr load(scr1).

Les écrans peuvent être créés avec n'importe quel type d'objet. Par exemple, un *Objet de base* ou une image pour créer un fond d'écran.

Les écrans sont créés sur l'affichage par défaut. L'écran par défaut est le dernier écran enregistré avec lv_disp_drv_register (s'il n'y a qu'un seul écran, alors c'est celui-ci) ou vous pouvez explicitement sélectionner l'affichage avec lv_disp_set_default (disp). lv_scr_act() et lv_scr_load() fonctionnent sur l'écran courant par défaut.

Visitez Support multi-affichage pour en savoir plus.

Couches

Ordre de création

L'objet créé le plus tôt (et ses enfants) sera dessiné le plus tôt (au plus près de l'arrière-plan). En d'autres termes, le dernier objet créé sera au-dessus de ses frères et sœurs. C'est très important, l'ordre est calculé entre les objets de même niveau ("frères et sœurs").

Des couches peuvent être facilement ajoutées en créant 2 objets (qui peuvent être transparents). D'abord 'A' et ensuite 'B'. 'A' et tous les objets qu'il contient seront à l'arrière-plan et pourront être couverts par 'B' et ses enfants.


```
/* Crée un écran */
lv_obj_t * scr = lv_obj_create(NULL, NULL);
lv_scr_load(scr);
                        /* Charge l'écran */
/* Crée 2 boutons */
lv_obj_t * btn1 = lv_btn_create(scr, NULL);
                                                  /* Crée un bouton sur l'écran */
lv_btn_set_fit(btn1, true, true);
                                                   /* Permet de définir
→automatiquement la taille en fonction du contenu */
lv_obj_set_pos(btn1, 60, 40);
                                                     /* Définit la position du
→bouton */
lv_obj_t * btn2 = lv_btn_create(scr, btn1);
                                                  /* Copie le premier bouton */
lv_obj_set_pos(btn2, 180, 80);
                                                /* Définit la position du bouton */
/* Ajoute des étiquettes aux boutons */
lv_obj_t * label1 = lv_label_create(btn1, NULL);
                                                     /* Crée une étiquette sur le.
→premier bouton */
                                                       /* Définit le texte de l
lv label set text(label1, "Button 1");
→'étiquette */
lv_obj_t * label2 = lv_label_create(btn2, NULL); /* Crée une étiquette suru
→le deuxième bouton */
lv_label_set_text(label2, "Button 2");
                                                        /* Définit le texte de l
→'étiquette */
```

(continues on next page)

(continued from previous page)

```
/* Supprime la deuxième étiquette */
lv_obj_del(label2);
```

Amener au premier plan

Il y a plusieurs façons d'amener un objet au premier plan :

- Utilisez lv_obj_set_top(obj, true). Si vous cliquez sur obj ou l'un de ses enfants, LittlevGL amènera automatiquement l'objet au premier plan. Cela fonctionne de manière similaire aux fenêtres sur PC. Lorsque vous cliquez sur une fenêtre en arrière-plan, elle apparaît automatiquement au premier plan.
- Utilisez lv_obj_move_foreground(obj) et lv_obj_move_background(obj) pour indiquer explicitement à la librairie de placer un objet au premier plan ou de le passer à l'arrière-plan.
- Quand lv_obj_set_parent(obj, new_parent) est utilisé, obj sera au premier plan sur le nouveau parent.

Couches supérieure et système

Il y a deux couches spéciales appelées layer_top et layer_sys. Les deux sont visibles et identiques sur tous les écrans d'un affichage. layer_top est au-dessus de "l'écran normal" et layer_sys lui-même au-dessus de layer top.

layer_top peut être utilisé par l'utilisateur pour créer du contenu visible partout. Par exemple, une barre de menus, une fenêtre contextuelle, etc. Si l'attribut click est activé, layer_top absorbera tous les clics de l'utilisateur et agira comme modal.

```
lv_obj_set_click(lv_layer_top(), true);
```

layer_sys est utilisé par LittlevGL. Par exemple, la librairie y place le curseur de la souris pour s'assurer qu'il est toujours visible.

Evénements

Dans LittlevGL, des événements sont déclenchés s'il se produit quelque chose d'intéressant pour l'utilisateur. Par exemple un objet

- est cliqué
- est déplacé
- sa valeur a changé, etc.

L'utilisateur peut affecter une fonction de rappel à un objet pour voir ces événements. Dans la pratique, cela ressemble à ceci :

```
lv_obj_t * btn = lv_btn_create(lv_scr_act(), NULL);
lv_obj_set_event_cb(btn, my_event_cb); /* Assigne une fonction de rappel */
...
static void my_event_cb(lv_obj_t * obj, lv_event_t event)
{
```

(continues on next page)

(continued from previous page)

```
switch(event) {
        case LV_EVENT_PRESSED:
            printf("Pressed\n");
            break;
        case LV EVENT SHORT CLICKED:
            printf("Short clicked\n");
            break;
        case LV EVENT CLICKED:
            printf("Clicked\n");
            break;
        case LV EVENT LONG PRESSED:
            printf("Long press\n");
            break;
        case LV EVENT LONG PRESSED REPEAT:
            printf("Long press repeat\n");
            break;
        case LV_EVENT_RELEASED:
            printf("Released\n");
            break;
    }
       /* Etc. */
}
```

Plusieurs objets peuvent utiliser la même fonction de rappel.

Types d'événements

Les types d'événements suivants existent :

Evénements génériques

Tout objet peut recevoir ces événements indépendamment de son type. C-à- d. ces événements sont envoyés aux boutons, aux étiquettes, aux curseurs, etc.

Liés au périphérique d'entrée

Envoyés lorsqu'un objet est pressé, relâché, etc. par l'utilisateur. Ils sont utilisés pour les périphériques d'entrée clavier, encodeur et bouton, ainsi que pour les pointeurs. Consultez la section Périphériques d'entrée pour en savoir plus à leur sujet.

- LV_EVENT_PRESSED L'objet a été pressé
- LV_EVENT_PRESSING L'objet est pressé(envoyé continuellement pendant l'appui)
- LV_EVENT_PRESS_LOST Toujours pressé mais hors de l'objet
- LV_EVENT_SHORT_CLICKED Relâché avant LV_INDEV_LONG_PRESS_TIME. Pas généré si l'objet est déplacé.

- LV_EVENT_LONG_PRESSED Pressé durant LV_INDEV_LONG_PRESS_TIME. Pas généré si l'objet est déplacé.
- LV_EVENT_LONG_PRESSED_REPEAT Généré après LV_INDEV_LONG_PRESS_TIME à chaque LV_INDEV_LONG_PRESS_REP_TIME ms. Pas généré si l'objet est déplacé.
- LV_EVENT_CLICKED Généré au relâché si l'objet n'est pas déplacé (indépendamment d'un appui long)
- LV_EVENT_RELEASED Généré dans tous les cas lorsque l'objet a été relâché, même s'il a été déplacé. Non généré si il y a eu déplacement pendant l'appui et si le relâché intervient hors de l'objet. Dans ce cas, LV EVENT PRESS LOST est généré.

Liés au pointeur

Ces événements sont envoyés uniquement par des périphériques d'entrée de type pointeur (p.ex. souris ou pavé tactile).

- LV_EVENT_DRAG_BEGIN le glissé de l'objet a débuté,
- LV_EVENT_DRAG_END le glissé de l'objet est terminé (lancé inclus),
- LV_EVENT_DRAG_THROW_BEGIN le lancé de l'objet a débuté (généré après un glissé avec "élan")

Liés au clavier et à l'encodeur

Ces événements sont envoyés par les périphériques d'entrée clavier et encodeur. En savoir plus sur les *groupes* dans la section [Périphériques d'entrée] (overview/indev).

- LV_EVENT_KEY Une touche* est envoyée à l'objet. Typiquement quand elle a été pressée ou répétée après un appui long
- LV_EVENT_FOCUSED L'objet est activé dans son groupe
- LV_EVENT_DEFOCUSED L'objet est désactivé dans son groupe

Evénements généraux

Autres événements généraux envoyés par la librairie.

• LV_EVENT_DELETE L'objet est en cours de suppression. Libérez les données associées allouées par l'utilisateur.

Evénements spéciaux

Ces événements sont spécifiques à un type particulier d'objet.

- LV_EVENT_VALUE_CHANGED La valeur de l'objet a changé (p.ex. pour un Curseur)
- LV_EVENT_INSERT Quelque chose est inséré dans l'objet (typiquement à une Zone de texte)
- LV_EVENT_APPLY "Ok", "Appliquer" ou un bouton spécifique similaire a été cliqué (typiquement à partir d'un objet *Clavier*)
- LV_EVENT_CANCEL "Fermer", "Annuler" ou un bouton spécifique similaire a été cliqué (typiquement à partir d'un objet *Clavier*)

• LV_EVENT_REFRESH Demande à actualiser l'objet. Jamais généré par la lirbarie mais peut l'être par l'utilisateur.

Pour voir exactement quels événements sont utilisés par un type d'objet, voir la documentation des *Types d'objet*.

Données personnalisées

Certains événements peuvent comporter des données personnalisées. Par exemple, LV_EVENT_VALUE_CHANGED indique dans certains cas la nouvelle valeur. Pour plus d'informations, voir la documentation des *Types d'objet*. Pour obtenir les données personnalisées dans la fonction de rappel, utilisez lv_event_get_data().

Le type des données personnalisées dépend de l'objet, mais si c'est un

- entier alors c'est un $uint32_t * ou un int32_t *$
- texte alors c'est un char * ou un const char *

Envoyer des événements manuellement

Pour envoyer manuellement des événements à un objet, utilisez lv_event_send(obj, LV_EVENT_..., &custom_data).

Cela peut être utilisé par exemple pour fermer manuellement une boîte de message en simulant un appui sur un bouton :

```
/* Simuler l'appui du premier bouton (les index partent de zéro) */
uint32_t btn_id = 0;
lv_event_send(mbox, LV_EVENT_VALUE_CHANGED, &btn_id);
```

Ou pour demander une actualisation de manière générique.

```
lv_event_send(label, LV_EVENT_REFRESH, NULL);
```

Styles

Les *styles* sont utilisés pour définir l'apparence des objets. Un style est une variable structurée avec des attributs tels que couleurs, marges, opacité, police, etc.

Il existe un type de style commun nommé ly style t pour chaque type d'objet.

En définissant les champs des variables <code>lv_style_t</code> et en les affectant à un objet, vous pouvez modifier l'apparence des objets.

Important: Les objets mémorisent uniquement un pointeur vers un style. Le style ne peut donc pas être une variable locale détruite après la sortie de la fonction. Vous devez utiliser des variables statiques, globales ou allouées dynamiquement.

(continues on next page)

(continued from previous page)

Utiliser les styles

Les objets ont un *style principal* qui détermine l'apparence de leur arrière-plan ou de leur partie principale. Cependant, certains types d'objet ont aussi des styles supplémentaires.

Certains objets ont un seul style. P.ex.

- Etiquette
- Image
- Ligne, etc

Par exemple, un curseur a 3 styles :

- Arrière-plan (style principal)
- Indicateur
- Bouton

Chaque type d'objet a ses propres fonctions de gestion des styles. Par exemple

```
const lv_style_t * btn_style = lv_btn_get_style(btn, LV_BTN_STYLE_REL);
lv_btn_set_style(btn, LV_BTN_STYLE_REL, &new_style);
```

Pour voir les styles pris en charge par un type d'objet (LV = OBJ = TYPE > STYLE < STYLE = TYPE >) vérifier la documentation du Type d'objet particulier.

Si vous **modifiez un style déjà utilisé** par un ou plusieurs objets, les objets doivent être avertis du changement de style. Vous avez deux possibilités pour le faire :

```
/* Notifie un objet que son style est modifié */
void lv_obj_refresh_style(lv_obj_t * obj);

/* Notifie tous les objets avec un style donné (NULL pour notifier tous les objets) */
void lv_obj_report_style_mod(void * style);
```

lv obj report style mod ne peut actualiser que les styles principaux.

Héritage de styles

Si le *style principal* d'un objet est NULL, son style sera hérité du style de son parent. Cela facilite la création d'une interface cohérente. N'oubliez pas qu'un style décrit beaucoup de propriétés en même temps. Ainsi, par exemple, si vous définissez le style d'un bouton et créez une étiquette avec le style NULL, l'étiquette sera rendue en fonction du style du bouton. En d'autres termes, le bouton garantit à ses enfants une apparence correcte.

La définition de la propriété de style glass empêchera d'hériter ce style. Vous devez l'utiliser si le style est transparent pour que les enfants utilisent les couleurs et autres des grands-parents.

Propriétés de style

Un style comporte 5 parties principales : commun, corps, texte, image et ligne. Un objet utilisera les champs qui le concernent. Par exemple, les *lignes* ne se soucient pas de *letter_space*. Pour voir quels champs sont utilisés par un type d'objet, voir la documentation des *Types d'objet*.

Les champs d'une structure de style sont les suivants :

Propriétés communes

• glass 1: Ne pas hériter de ce style

Propriétés de style de corps

Utilisé par les objets rectangulaires

- body.main_color Couleur principale (couleur du haut)
- body.grad_color Dégradé de couleur (couleur de fond)
- body.radius Rayon pour arrondir les angles (LV RADIUS CIRCLE pour dessiner un cercle)
- body.opa Opacité (0..255 ou LV_OPA_TRANSP , LV_OPA_10 , LV_OPA_20 .. LV_OPA_COVER)
- body.border.color Couleur de bord
- body.border.width Largeur de bord
- body.border.part Segments de bord (LV_BORDER_LEFT/RIGHT/TOP/BOTTOM/FULL ou 'OR' de plusieurs valeurs)
- body.border.opa Opacité du bord (0..255 ou $LV_OPA_TRANSP,\ LV_OPA_10,\ LV_OPA_20$... $LV_OPA_COVER)$
- body.shadow.color Couleur de l'ombre
- body.shadow.width Largeur de l'ombre
- body.shadow.type Type d'ombre (LV_SHADOW_BOTTOM/FULL)
- body.padding.top Marge haute
- body.padding.bottom Marge basse
- body.padding.left Marge gauche
- body.padding.right Marge droite
- body.padding.inner Marge intérieure (entre les éléments constitutifs ou les enfants)

Propriétés de style de texte

Utilisés par les objets qui affichent du texte

• text.color Couleur de texte

- text.sel_color Couleur de texte sélectionné
- text.font Pointeur vers une police
- text.opa Opacité du texte (0..255 ou LV_OPA_TRANSP, LV_OPA_10, LV_OPA_20 ... LV_OPA_COVER*)
- text.letter_space Espace de lettre
- text.line_space Espace de ligne

Propriétés de style d'image

Utilisé par les objets de type image ou les icônes sur les objets

- image.color Couleur pour la re-coloration de l'image en fonction de la luminosité des pixels
- image.intense Intensité de re-coloration (0..255 ou LV_OPA_TRANSP , LV_OPA_10 , LV_OPA_20 ... LV_OPA_COVER)
- image.opa Opacité de l'image (0..255 ou LV_OPA_TRANSP , LV_OPA_10 , LV_OPA_20 ... LV_OPA_COVER)

Propriétés de style de ligne

Utilisé par des objets contenant des lignes ou des éléments de type ligne

- line.color Couleur de ligne
- line.width Largeur de ligne
- line.opa Opacité de ligne (0..255 or LV_OPA_TRANSP , LV_OPA_10 , LV_OPA_20 ... LV_OPA_COVER)

Styles intégrés

Il existe plusieurs styles intégrés dans la librairie :

Comme vous pouvez le constater, il existe un style pour les écrans, un pour les boutons, des styles simples ou améliorés et des styles transparents.

Les styles lv_style_transp, lv_style_transp_fit et lv_style_transp_tight diffèrent uniquement par les marges : pour lv_style_transp_tight les marges sont nulles, pour lv_style_transp_fit seules les marges horizontales et verticalles sont nulles mais il y a une marge intérieure.

Important: Les styles intégrés transparents ont glass = 1 par défaut, ce qui signifie que ces styles (les couleurs, par exemple) ne seront pas hérités par les enfants.

Les styles intégrés sont des variables globales lv style t. Vous pouvez les utiliser ainsi :

```
lv_btn_set_style(obj, LV_BTN_STYLE_REL, &lv_style_btn_rel)
```

Créer de nouveaux styles

Vous pouvez modifier les styles intégrés ou en créer de nouveaux.

Lors de la création de nouveaux styles, il est recommandé de copier d'abord un style intégré avec lv_style_copy(&dest_style, &src_style) pour s'assurer que tous les champs sont initialisés avec une valeur appropriée.

N'oubliez pas que le style créé doit être **statique** ou global. Par exemple :

```
static lv_style_t my_red_style;
lv_style_copy(&my_red_style, &lv_style_plain);
my_red_style.body.main_color = LV_COLOR_RED;
my_red_style.body.grad_color = LV_COLOR_RED;
```

Animations de style

Vous modifiez les styles avec des animations en utilisant la fonction <code>lv_style_anim_...</code> (). Deux styles sont requis pour représenter les états *initial* et *final*, et un troisième style qui sera animé. Voici un exemple pour montrer comment cela fonctionne.

Pour découvrir l'intégralité de l'API des animations de style, voir lv core/lv style.h.

Ici, vous pouvez en apprendre plus sur les Animations.

Exemple de style

L'exemple ci-dessous illustre l'utilisation des styles.


```
/* Crée un style */
static lv style t style1;
lv_style_copy(&style1, &lv_style_plain);
                                           /* Copie un style intégré pour
⇒initialiser le nouveau style */
style1.body.main_color = LV_COLOR_WHITE;
style1.body.grad_color = LV_COLOR_BLUE;
style1.body.radius = 10;
style1.body.border.color = LV COLOR GRAY;
style1.body.border.width = 2;
style1.body.border.opa = LV OPA 50;
style1.body.padding.left = \overline{5};
                                         /* Marge horizontale, utilisée par l
→ 'indicateur de barre ci-dessous */
style1.body.padding.right = 5;
style1.body.padding.top = 5;
                                        /* Marge verticale, utilisée par l'indicateur.
→de barre ci-dessous */
style1.body.padding.bottom = 5;
style1.text.color = LV COLOR RED;
/* Crée un simple objet */
```

(continues on next page)

(continued from previous page)

```
lv_obj_t *obj1 = lv_obj_create(lv_scr_act(), NULL);
lv obj set style(obj1, &style1);
                                                         /* Applique le style créé */
lv_obj_set_pos(obj1, 20, 20);
                                                         /* Définit la position */
/* Crée une étiquette sur l'objet. Le style de l'étiquette est NULL par défaut */
lv obj t *label = lv label create(obj1, NULL);
lv obj align(label, NULL, LV ALIGN CENTER, 0, 0);
                                                         /* Aligne l'étiquette au...
⊶milieu */
/* Crée une barre */
lv_obj_t *bar1 = lv_bar_create(lv_scr_act(), NULL);
lv bar set style(bar1, LV BAR STYLE INDIC, &style1);
                                                        /* Modifie le style de l
→ 'indicateur */
lv_bar_set_value(bar1, 70);
                                                         /* Définit la valeur de la.
→barre */
```

Thèmes

Il est difficile de créer des styles pour votre interface graphique, car vous avez besoin d'une profonde compréhension de la librairie et de compétences en matière de conception. En outre, il faut beaucoup de temps pour créer autant de styles.

Pour accélérer la conception les thèmes sont introduits. Un thème est une collection de styles contenant les styles requis pour chaque type d'objet. Par exemple, 5 styles de boutons décrivant leurs 5 états possibles. Consultez les [Thèmes] (https://littlevgl.com/themes) existants ou essayez-les dans la section [Démonstration en ligne] (https://littlevgl.com/live-demo).

Pour être plus précis, un thème est une variable structurée qui contient beaucoup de champs lv_style_t*. Pour les boutons :

```
theme.btn.rel /* Style de bouton relâché */
theme.btn.pr /* Style de bouton pressé */
theme.btn.tgl_rel /* Style de bouton bascule relâché */
theme.btn.tgl_pr /* Style de bouton bascule pressé */
theme.btn.ina /* Style de bouton inactif */
```

Un thème peut être initialisé par : lv_theme_<nom>_init(hue, font). Où hue est une valeur de teinte de l'[espace colorimétrique HSV] (https://en.wikipedia.org/wiki/Hue) (0..360) et font est la police appliquée dans le thème (NULL utilise LV_FONT_DEFAULT)

Quand un thème est initialisé, ses styles peuvent être utilisés comme ceci :


```
/* Crée un curseur par défaut */
lv_obj_t *slider = lv_slider_create(lv_scr_act(), NULL);
lv_slider_set_value(slider, 70);
lv_obj_set_pos(slider, 10, 10);
```

(continues on next page)

(continued from previous page)

```
/* Initialise le thème alien avec une teinte rouge */
lv_theme_t *th = lv_theme_alien_init(10, NULL);

/* Crée un nouveau curseur et applique les styles du thèmes */
slider = lv_slider_create(lv_scr_act(), NULL);
lv_slider_set_value(slider, 70);
lv_obj_set_pos(slider, 10, 50);
lv_slider_set_style(slider, LV_SLIDER_STYLE_BG, th->slider.bg);
lv_slider_set_style(slider, LV_SLIDER_STYLE_INDIC, th->slider.indic);
lv_slider_set_style(slider, LV_SLIDER_STYLE_KNOB, th->slider.knob);
```

Vous pouvez demander à la librairie d'appliquer automatiquement les styles d'un thème lorsque vous créez de nouveaux objets. Pour ce faire, utilisez lv_theme_set_current(th):

```
/* Initialise le thème alien avec une teinte rouge */
lv_theme_t *th = lv_theme_alien_init(10, NULL);
lv_theme_set_current(th);

/* Crée un curseur. Il utilisera le style du thème actuel. */
slider = lv_slider_create(lv_scr_act(), NULL);
```

Les thèmes peuvent être activés ou désactivés individuellement dans lv_conf.h.

Mise à jour automatique

Par défaut, si lv_theme_set_current(th) est appelé à nouveau, les styles des objets existants ne seront pas actualisés. Pour activer la mise à jour automatique des thèmes, activez LV_THEME_LIVE_UPDATE dans lv_conf.h.

La mise à jour automatique mettra à jour uniquement les objets dont le style provient du thème, c'està-dire créés après le premier appel de lv_theme_set_current(th) ou dont les styles ont été définis manuellement.

Périphériques d'entrée

En général périphériques d'entrée signifie :

- Périphériques de type pointeur tels que pavé tactile ou souris
- Claviers, normal ou simple pavé numérique
- Encodeurs avec mouvement rotatif à gauche / droite et bouton
- Boutons matériels externes affectés à des points spécifiques de l'écran

Important: Avant de poursuivre votre lecture, veuillez lire la section [Portage](/porting/indev) sur les périphériques d'entrée

Pointeurs

Les périphériques d'entrée de type pointeur peuvent avoir un curseur (typiquement pour les souris).

Notez que l'objet curseur devrait avoir lv_obj_set_click(cursor_obj, false). Pour les images cliquer est désactivé par défaut.

Clavier et encodeur

Vous pouvez contrôler entièrement l'interface utilisateur sans pavé tactile ou souris à l'aide d'un clavier ou d'un ou de plusieurs encodeurs. Cela fonctionne de manière similaire lorsque vous appuyez sur la touche TAB sur un PC pour sélectionner l'élément dans une application ou une page Web.

Groupes

Les objets que vous souhaitez contrôler avec un clavier ou un encodeur doivent être ajoutés à un groupe. Dans chaque groupe, il y a exactement un seul objet focalisé qui reçoit les notifications de touche pressée ou les actions du codeur. Par exemple, si une Zone de texte est sélectionnée et que vous appuyez sur une lettre d'un clavier, les codes sont envoyés et traités par la zone de texte. Ou si un Curseur est sélectionnée et que vous appuyez sur les flèches gauche ou droite, la valeur du curseur sera modifiée.

Vous devez associer un périphérique d'entrée à un groupe. Un périphérique d'entrée peut envoyer les codes à un seul groupe, mais un groupe peut recevoir des données de plusieurs périphériques d'entrée.

Pour créer un groupe, utilisez $lv_group_t g = lv_group_create()$ et pour ajouter un objet au groupe, utilisez lv_group add obj(g, obj).

Pour associer un groupe à un périphérique d'entrée, utilisez lv_indev_set_group(indev, g), où indev est la valeur de retour de lv indev drv register()

Codes

Certains codes prédéfinis ont une signification particulière :

- LV_KEY_NEXT Sélectionne l'objet suivant
- LV KEY PREV Sélectionne l'objet précédant
- LV_KEY_ENTER Génère les événements LV EVENT PRESSED/CLICKED/LONG PRESSED etc
- LV_KEY_UP Augmente la valeur ou se déplace vers le haut
- LV_KEY_DOWN Diminue la valeur ou se déplace vers le bas
- LV_KEY_RIGHT Augmente la valeur ou se déplace vers la droite
- LV_KEY_LEFT Diminue la valeur ou se déplace vers la gauche
- LV_KEY_ESC Ferme ou quitte (p.ex. ferme une Liste déroulante)

- LV_KEY_DEL Supprime (p.ex. le caractère à droite dans une Zone de texte)
- LV_KEY_BACKSPACE Supprime le caractère à gauche (p.ex. dans une Zone de texte)
- LV_KEY_HOME Se déplace au début ou en haut (p.ex. dans une Zone de texte)
- LV_KEY_END Se déplace à la fin (p.ex. dans une Zone de texte)

Les codes spéciaux les plus importants sont : LV_KEY_NEXT/PREV, LV_KEY_ENTER et LV_KEY_UP/DOWN/LEFT/RIGHT. Dans votre fonction read_cb, vous devez traduire certaines de vos codes en ces codes spéciaux pour naviguer dans le groupe et interagir avec l'objet sélectionné.

Habituellement, il suffit d'utiliser uniquement LV_KEY_LEFT/RIGHT car la plupart des objets peuvent être entièrement contrôlés avec eux.

Avec un encodeur, vous devez utiliser uniquement LV_KEY_LEFT, LV_KEY_RIGHT et LV_KEY_ENTER.

Edition et navigation

Avec les claviers, il y a beaucoup de touches, il est donc facile de naviguer entre les objets et de les éditer. Cependant, les encodeurs ont un nombre très limité de "touches". Afin de prendre en charge efficacement les encodeurs également, les modes navigation et édition sont créés.

En mode navigation, les LV_KEY_LEFT/RIGHT des encodeurs sont traduits en LV_KEY_NEXT/PREV. Par conséquent, l'objet suivant ou précédent sera sélectionné en tournant l'encodeur. Un appui sur LV_KEY_ENTER passera en mode édition.

En mode édition, LV_KEY_NEXT/PREV sont utilisés normalement pour éditer l'objet. En fonction du type d'objet, une pression courte ou longue de LV_KEY_ENTER repasse en mode navigation. Généralement, un objet sur lequel vous ne pouvez pas appuyer (comme un Curseur) quitte le mode édition en cas de clic bref, mais avec un objet pour lequel un clic court a une signification (par exemple, Bouton) un appui long est requis.

Styliser l'objet sélectionné

Pour mettre en évidence visuellement l'élément sélectionné, son [Style principal] (/overview/style#utiliser-les-styles) sera mis à jour. Par défaut, de l'orange est mélangé aux couleurs d'origine du style. Une fonction de rappel pour modifier le style est définie par lv_group_set_style_mod_cb(g, my_style_mod_cb). Cette fonction reçoit un pointeur sur un groupe d'objet et un style à modifier. Le modificateur de style par défaut ressemble à ceci (légèrement simplifié) :

(continues on next page)

(continued from previous page)

```
/* Colorise les images */
if(style->image.intense < LV_OPA_MIN) {
    style->image.color = LV_COLOR_ORANGE;
    style->image.intense = LV_OPA_40;
}
```

Cette fonction de rappel modificateur de style est utilisée pour les claviers et encodeurs en mode navigation. En mode édition, une autre fonction de rappel est utilisée qui peut être définie avec lv group set style mod edit cb(). Par défaut, il utilise la couleur verte.

Démonstration en ligne

Essayez cette Démonstration en ligne pour voir comment une navigation de groupe sans pavé tactile fonctionne dans la pratique.

API

Périphérique d'entrée

Functions

```
void lv_indev_init(void)
```

Initialize the display input device subsystem

```
void lv_indev_read_task(lv_task_t *task)
```

Called periodically to read the input devices

Parameters

• task: pointer to the task itself

```
lv_indev_t *lv_indev_get_act(void)
```

Get the currently processed input device. Can be used in action functions too.

Return pointer to the currently processed input device or NULL if no input device processing right now

```
lv indev type t lv indev get type(const lv indev t*indev)
```

Get the type of an input device

Return the type of the input device from lv_hal_indev_type_t (LV_INDEV_TYPE_...)

Parameters

• indev: pointer to an input device

```
void lv_indev_reset(lv_indev_t *indev)
```

Reset one or all input devices

Parameters

• indev: pointer to an input device to reset or NULL to reset all of them

```
void lv_indev_reset_long_press(lv_indev_t *indev)
```

Reset the long press state of an input device

Parameters

• indev proc: pointer to an input device

void lv_indev_enable(lv_indev_t *indev, bool en)

Enable or disable an input devices

Parameters

- indev: pointer to an input device
- en: true: enable; false: disable

void lv indev set cursor(lv indev t*indev, lv_obj_t*cur_obj)

Set a cursor for a pointer input device (for LV_INPUT_TYPE_POINTER and LV_INPUT_TYPE_BUTTON)

Parameters

- indev: pointer to an input device
- cur_obj: pointer to an object to be used as cursor

void lv_indev_set_group(lv_indev_t *indev, lv_group_t *group)

Set a destination group for a keypad input device (for LV_INDEV_TYPE_KEYPAD)

Parameters

- indev: pointer to an input device
- group: point to a group

void lv_indev_set_button_points(lv_indev_t *indev, const lv_point_t *points)

Set the an array of points for LV_INDEV_TYPE_BUTTON. These points will be assigned to the buttons to press a specific point on the screen

Parameters

- indev: pointer to an input device
- group: point to a group

void lv indev get point(const lv_indev_t *indev, lv_point_t *point)

Get the last point of an input device (for LV_INDEV_TYPE_POINTER and LV_INDEV_TYPE_BUTTON)

Parameters

- indev: pointer to an input device
- point: pointer to a point to store the result

uint32_t lv_indev_get_key(const lv_indev_t *indev)

Get the last pressed key of an input device (for LV_INDEV_TYPE_KEYPAD)

Return the last pressed key (0 on error)

Parameters

• indev: pointer to an input device

bool lv_indev_is_dragging(const lv_indev_t *indev)

Check if there is dragging with an input device or not (for LV_INDEV_TYPE_POINTER and LV_INDEV_TYPE_BUTTON)

Return true: drag is in progress

Parameters

• indev: pointer to an input device

void lv_indev_get_vect(const lv_indev_t *indev, lv_point_t *point)

Get the vector of dragging of an input device (for LV_INDEV_TYPE_POINTER and LV_INDEV_TYPE_BUTTON)

Parameters

- indev: pointer to an input device
- point: pointer to a point to store the vector

void lv indev wait release(lv_indev_t *indev)

Do nothing until the next release

Parameters

• indev: pointer to an input device

lv_task_t *lv_indev_get_read_task(lv_disp_t *indev)

Get a pointer to the indev read task to modify its parameters with lv_task_... functions.

Return pointer to the indev read refresher task. (NULL on error)

Parameters

• indev: pointer to an inout device

lv_obj_t *lv_indev_get_obj_act(void)

Gets a pointer to the currently active object in indev proc functions. NULL if no object is currently being handled or if groups aren't used.

Return pointer to currently active object

Groupes

Typedefs

```
typedef uint8_t lv_key_t typedef void (*lv_group_style_mod_cb_t)(struct _lv_group_t *, _lv_style_t *) typedef void (*lv_group_focus_cb_t)(struct _lv_group_t *) typedef struct _lv_group_t lv_group_t
```

Groups can be used to logically hold objects so that they can be individually focused. They are NOT for laying out objects on a screen (try lv_cont for that).

```
typedef uint8 tlv group refocus policy t
```

Enums

enum [anonymous]

Values:

```
\begin{split} \mathbf{LV\_KEY\_UP} &= 17 \\ \mathbf{LV\_KEY\_DOWN} &= 18 \\ \mathbf{LV\_KEY\_RIGHT} &= 19 \\ \mathbf{LV\_KEY\_LEFT} &= 20 \end{split}
```

```
LV_KEY_ESC = 27
     LV_KEY_DEL = 127
     LV_KEY_BACKSPACE = 8
     LV_KEY_ENTER = 10
     LV_KEY_NEXT = 9
     LV_KEY_PREV = 11
     LV KEY HOME = 2
     LV KEY END = 3
enum [anonymous]
     Values:
      {\color{red} \mathbf{LV\_GROUP\_REFOCUS\_POLICY\_NEXT}} = 0 
     LV GROUP REFOCUS POLICY PREV =1
Functions
void lv group init(void)
     Init. the group module
     Remark Internal function, do not call directly.
lv_group_t *lv_group_create(void)
     Create a new object group
     Return pointer to the new object group
void lv_group_del(lv_group_t *group)
     Delete a group object
     Parameters
           • group: pointer to a group
void lv group add obj(lv_group_t*group, lv_obj_t*obj)
     Add an object to a group
     Parameters
           • group: pointer to a group
           • obj: pointer to an object to add
void lv_group_remove_obj (lv_obj_t *obj)
     Remove an object from its group
     Parameters
           • obj: pointer to an object to remove
void lv_group_remove_all_objs(lv_group_t *group)
     Remove all objects from a group
     Parameters
           • group: pointer to a group
void lv_group_focus_obj (lv_obj_t *obj)
     Focus on an object (defocus the current)
```

Parameters

• obj: pointer to an object to focus on

void lv_group_focus_next(lv_group_t *group)

Focus the next object in a group (defocus the current)

Parameters

• **group**: pointer to a group

void lv_group_focus_prev(lv_group_t *group)

Focus the previous object in a group (defocus the current)

Parameters

• group: pointer to a group

void lv_group_focus_freeze(lv_group_t *group, bool en)

Do not let to change the focus from the current object

Parameters

- group: pointer to a group
- en: true: freeze, false: release freezing (normal mode)

$lv_res_t \ \textbf{lv_group_send_data(} \ lv_group_t \ *group, \ uint 32_t \ c\textbf{)}$

Send a control character to the focuses object of a group

Return result of focused object in group.

Parameters

- group: pointer to a group
- C: a character (use LV_KEY_.. to navigate)

$$\begin{tabular}{lll} void $lv_group_set_style_mod_cb (lv_group_t & $*group, & $lv_group_style_mod_cb_t$ \\ & style & mod & cb) \end{tabular}$$

Set a function for a group which will modify the object's style if it is in focus

Parameters

- group: pointer to a group
- style mod cb: the style modifier function pointer

$$\begin{tabular}{lll} void $lv_group_set_style_mod_edit_cb($lv_group_t & *group, & lv_group_style_mod_cb_t \\ & style_mod_edit_cb) \end{tabular}$$

Set a function for a group which will modify the object's style if it is in focus in edit mode

Parameters

- group: pointer to a group
- style mod edit cb: the style modifier function pointer

$void \ \textbf{lv_group_set_focus_cb} (\textit{lv_group_t *group}, \textit{lv_group_focus_cb_t focus_cb})$

Set a function for a group which will be called when a new object is focused

Parameters

- group: pointer to a group
- focus cb: the call back function or NULL if unused

$void \ \textbf{lv_group_t} * group_t * group_t * group_t * group_refocus_policy_t \ policy_t$

Set whether the next or previous item in a group is focused if the currently focussed obj is deleted.

Parameters

- group: pointer to a group
- new: refocus policy enum

void lv_group_set_editing(lv_group_t *group, bool edit)

Manually set the current mode (edit or navigate).

Parameters

- group: pointer to group
- edit: true: edit mode; false: navigate mode

void lv_group_set_click_focus(lv_group_t *group, bool en)

Set the click focus attribute. If enabled then the object will be focused then it is clicked.

Parameters

- group: pointer to group
- en: true: enable click focus

void lv_group_set_wrap(lv_group_t *group, bool en)

Set whether focus next/prev will allow wrapping from first->last or last->first object.

Parameters

- group: pointer to group
- en: true: wrapping enabled; false: wrapping disabled

lv_style_t *lv_group_mod_style(lv_group_t *group, const lv_style_t *style)

Modify a style with the set 'style_mod' function. The input style remains unchanged.

Return a copy of the input style but modified with the 'style_mod' function

Parameters

- group: pointer to group
- style: pointer to a style to modify

lv_obj_t *lv_group_get_focused(const lv_group_t *group)

Get the focused object or NULL if there isn't one

Return pointer to the focused object

Parameters

• **group**: pointer to a group

lv_group_user_data_t *lv_group_get_user_data(lv_group_t *group)

Get a pointer to the group's user data

Return pointer to the user data

Parameters

• group: pointer to an group

$\textit{lv_group_style_mod_cb_t} \ \textbf{lv_group_get_style_mod_cb(const} \ \textit{lv_group_t*group})$

Get a the style modifier function of a group

Return pointer to the style modifier function

Parameters

• **group**: pointer to a group

lv_group_style_mod_cb_t lv_group_get_style_mod_edit_cb(const lv_group_t *group)

Get a the style modifier function of a group in edit mode

Return pointer to the style modifier function

Parameters

• **group**: pointer to a group

$\textit{lv_group_focus_cb_t} \ \textbf{lv_group_get_focus_cb(const} \ \textit{lv_group_t} \ *\textit{group})$

Get the focus callback function of a group

Return the call back function or NULL if not set

Parameters

• group: pointer to a group

bool lv_group_get_editing(const lv_group_t *group)

Get the current mode (edit or navigate).

Return true: edit mode; false: navigate mode

Parameters

• group: pointer to group

bool lv_group_get_click_focus(const lv_group_t *group)

Get the click focus attribute.

Return true: click focus is enabled; false: disabled

Parameters

• group: pointer to group

bool lv group get wrap(lv_group_t *group)

Get whether focus next/prev will allow wrapping from first->last or last->first object.

Parameters

- group: pointer to group
- en: true: wrapping enabled; false: wrapping disabled

void lv_group_report_style_mod(lv_group_t *group)

Notify the group that current theme changed and style modification callbacks need to be refreshed.

Parameters

• group: pointer to group. If NULL then all groups are notified.

struct _lv_group_t

 $\#include < lv_group.h >$ Groups can be used to logically hold objects so that they can be individually focused. They are NOT for laying out objects on a screen (try lv_cont for that).

Public Members

lv_ll_t obj_ll

Linked list to store the objects in the group

lv_obj_t **obj focus

The object in focus

```
lv_group_style_mod_cb_t style_mod_cb
```

A function to modifies the style of the focused object

lv_group_style_mod_cb_t style_mod_edit_cb

A function which modifies the style of the edited object

lv_group_focus_cb_t focus_cb

A function to call when a new object is focused (optional)

lv style t style tmp

Stores the modified style of the focused object

lv_group_user_data_t user_data

uint8 t frozen

1: can't focus to new object

uint8_t editing

1: Edit mode, 0: Navigate mode

uint8_t click_focus

1: If an object in a group is clicked by an indev then it will be focused

uint8_t refocus_policy

1: Focus prev if focused on deletion. 0: Focus next if focused on deletion.

uint8 t wrap

1: Focus next/prev can wrap at end of list. 0: Focus next/prev stops at end of list.

Affichage

Important: Le concept de base d'affichage dans LittlevGL est expliqué dans la section [Portage](/porting/display). Donc, avant de continuer à lire, veuillez lire cette section en premier.

Dans LittlevGL, vous pouvez avoir plusieurs affichages, chacun avec ses propres pilotes et objets.

Il est facile de créer plus d'affichages : il suffit d'initialiser les tampons d'affichage et d'enregistrer les pilotes pour chaque affichage. Lorsque vous créez l'interface utilisateur, utilisez <code>lv_disp_set_default(disp)</code> pour indiquer à la librairie dans quel affichage afficher l'objet.

Mais dans quels cas pouvez-vous utiliser le support multi-affichages? Voici quelques exemples:

- Avoir un écran TFT "normal" avec une interface utilisateur locale et créer des écrans "virtuels" sur VNC à la demande (vous devez ajouter votre propre pilote VNC).
- Avoir un grand écran TFT et un petit écran monochrome.
- Avoir des écrans plus petits et simples dans un grand appareil
- Avoir deux grands écrans TFT : un pour le client et un pour le vendeur

Utiliser un seul affichage

L'utilisation de plusieurs affichages peut être utile, mais dans la plupart des cas, cela n'est pas nécessaire. Par conséquent, le concept de multi-affichages est complètement masqué si vous ne déclarez qu'un seul affichage. Par défaut, l'affichage créé en dernier (le seul) est utilisé par défaut.

lv_scr_act(), lv_scr_load(scr), lv_layer_top(), lv_layer_sys(), LV_HOR_RES et LV VER RES sont toujours appliqués sur l'affichage créé en dernier (par défaut). Si vous passez NULL

en tant que paramètre disp de fonctions associées à l'affichage, l'affichage par défaut sera utilisé. P.ex. lv_disp_trig_activity(NULL) déclenchera une activité utilisateur sur l'affichage par défaut (voir cidessous dans *Inactivité*).

Affichage miroir

Pour refléter l'image de l'affichage sur un autre affichage, vous n'avez pas besoin d'utiliser le support multiaffichages. Transférez simplement le tampon reçu dans drv.flush cb vers un autre affichage.

Division d'image

Vous pouvez créer un affichage plus grand à partir de plus petits. Voici comment faire :

- 1. Définissez la résolution des affichages à celle désirée
- 2. Dans $drv.flush_cb$, tronquez et modifiez le paramètre area pour chaque affichage
- 3. Envoyez le contenu du tampon à chaque affichage pour la zone tronquée

Ecrans

Chaque affichage possède son propre ensemble d' Ecrans et d'objets à l'écran.

Les écrans peuvent être considérés comme les conteneurs de plus haut niveau sans parent. La taille de l'écran est toujours égale à celle de son affichage et sa position est (0,0). Par conséquent, les coordonnées des écrans ne peuvent pas être modifiées, c-à-d $lv_obj_set_pos()$, $lv_obj_set_size()$ ou les fonctions similaires ne peuvent pas être utilisées sur les écrans.

Un écran peut être créé à partir de n'importe quel type d'objet, mais les deux types les plus courants sont Objet de base et Image (pour créer un fond d'écran).

Pour créer un écran, utilisez lv_obj_t * scr = lv_<type>_create(NULL, copy). copy peut être un autre écran à copier.

Pour charger un écran, utilisez lv_scr_load(scr). Pour obtenir l'écran actif utilisez lv_scr_act(). Ces fonctions agissent sur l'affichage par défaut. Pour spécifier l'affichage, utilisez lv_disp_get_scr_act(disp) et lv_disp_load_scr(disp, scr).

Les écrans peuvent être supprimés avec <code>lv_obj_del(scr)</code> mais assurez-vous de ne pas supprimer l'écran actuellement chargé.

Ecran opaque

Habituellement, l'opacité de l'écran est LV_OPA_COVER afin de fournir un fond solide et totalement couvrant pour les enfants. Cependant, dans certains cas particuliers, vous voudrez peut-être un écran transparent. Par exemple, si vous avez un lecteur vidéo qui restitue les images vidéo sur un calque mais sur un autre calque, vous souhaitez créer un menu OSD (au-dessus de la vidéo) à l'aide de LittlevGL. Dans ce cas, le style de l'écran doit avoir body.opa = LV_OPA_TRANSP ou image.opa = LV_OPA_TRANSP (ou d'autres valeurs LV_OPA_...) pour rendre l'écran transparent. Pour gérer correctement l'opacité des écrans, LV_COLOR_SCREEN_TRANSP doit être activé. Notez que cela ne fonctionne qu'avec LV_COLOR_DEPTH = 32. Le canal alpha des couleurs 32 bits sera 0 lorsqu'il n'y a pas d'objets et 255 en cas d'objets solides.

Fonctionnalités des affichages

Inactivité

L'inactivité de l'utilisateur est surveillée pour chaque affichage. Chaque utilisation d'un *Périphérique d'entrée* (s'il est associé à l'affichage) compte comme une activité. Pour obtenir le temps écoulé depuis la dernière activité, utilisez <code>lv_disp_get_inactive_time(disp)</code>. Si <code>NULL</code> est passé comme paramètre, le temps d'inactivité le plus petit de tous les affichages sera retourné.

Vous pouvez simuler une activité en utilisant lv_disp_trig_activity(disp). Si disp est NULL, l'affichage par défaut sera utilisé.

Couleurs

Le module couleur gère toutes les fonctions liées aux couleurs telles que la modification de la profondeur de couleur, la création de couleurs à partir de code hexadécimal, la conversion entre les profondeurs de couleur, le mélange de couleurs, etc.

Les types de variable suivants sont définis par le module couleur :

- lv_color1_t Enregistre une couleur monochrome. Pour la compatibilité, il possède également des champs R, G, B mais ils sont tous identiques (1 octet)
- lv_color8_t Une structure pour enregistrer R (3 bits), G (3 bits), B (2 bits) composantes d'une couleur 8 bits (1 octet)
- lv_color16_t Une structure pour enregistrer R (5 bits), G (6 bits), B (5 bits) composantes d'une couleur 16 bits (2 octets)
- lv_color32_t Une structure pour enregistrer R (8 bits), G (8 bits), B (8 bits) composantes d'une couleur 24 bits (4 octets)
- lv_color_t Equivaut à lv color1/8/16/24 t selon le paramètre de profondeur de couleur
- lv_color_int_t uint8_t, uint16_t ou uint32_t selon le paramètre de profondeur de couleur. Utilisé pour construire des tableaux de couleurs à partir de valeurs numériques.
- lv_opa_t Un simple type uint8 t pour définir l'opacité.

Les types lv_color_t, lv_color1_t, lv_color8_t, lv_color16_t et lv_color32_t ont quatre champs :

- ch.red canal rouge
- ch.green canal vert
- ch.blue canal bleu
- full rouge + vert + bleu en une seule valeur

Vous pouvez définir la profondeur de couleur actuelle dans $lv_conf.h$ en définissant la valeur LV COLOR DEPTH sur 1 (monochrome), 8, 16 ou 32.

Conversion de couleur

Vous pouvez convertir une couleur de la profondeur de couleur actuelle en une autre. Les fonctions de conversion retourne un nombre, vous devez donc utiliser le champ full :

```
lv color t c;
c.red = 0x38;
c.green = 0 \times 70;
c.blue = 0xCC;
lv_color1_t c1;
c1.full = lv color to1(c);
                               /* Retourne 1 pour les couleurs claires, 0 pour les
→couleurs sombres */
lv color8 t c8;
c8.full = lv_color_to8(c); /* Donne un nombre de 8 bits avec la couleur_
→convertie */
lv_color16_t c16;
c16.full = lv color to16(c); /* Donne un nombre de 16 bits avec la couleur convertie,
lv_color32_t c32;
c32.full = lv_color_to32(c); /* Donne un nombre de 32 bits avec la couleur_
→convertie */
```

Permutation 16 bits

Vous pouvez définir LV_COLOR_16_SWAP dans $lv_conf.h$ pour permuter les octets de couleurs RGB565. C'est utile si vous transférez les couleurs 16 bits via une interface orientée octet comme SPI. Comme les nombres de 16 bits sont stockés au format Little Endian (octet le moins significatif à l'adresse la plus basse), l'interface envoie d'abord l'octet le moins significatif. Cependant, les écrans ont généralement besoin de l'octet le plus significatif en premier. Une non-concordance dans l'ordre des octets entraînera une altération des couleurs.

Créer et mélanger les couleurs

Vous pouvez créer des couleurs avec la profondeur de couleur actuelle à l'aide de la macro LV_COLOR_MAKE . Il faut 3 arguments (rouge, vert, bleu) sous forme de nombres de 8 bits. Par exemple, pour créer une couleur rouge clair : my color = COLOR MAKE(0xFF, 0x80,0x80).

Les couleurs peuvent aussi être créées à partir de codes hexadécimaux : $my_color = lv_color_hex(0x288ACF)$ ou $my_color = lv_color_hex(0x28C)$.

Le mélange de deux couleurs est possible avec mixed_color = lv_color_mix(color1, color2, ratio). Le ratio peut être 0..255. 0 donne entièrement color2, 255 donne entièrement color1.

Les couleurs peuvent aussi être créées avec l'espace HSV en utilisant lv_color_hsv_to_rgb(hue, saturation, value). hue devrait être dans la plage 0..360, saturation et value dans la plage 0..100.

Opacité

Pour décrire l'opacité, le type <code>lv_opa_t</code> est créé comme équivalent d'un <code>uint8_t</code>. Quelques définitions sont également introduites :

- LV_OPA_TRANSP Valeur : 0, l'opacité rend la couleur totalement transparente.
- LV_OPA_10 Valeur : 25, signifie que la couleur est un peu couvrante

- LV_OPA_20 ... OPA_80 viennent logiquement
- LV_OPA_90 Valeur : 229 signifie que la couleur est presque entièrement couvrante
- LV_OPA_COVER Valeur : 255, signifie que la couleur couvre entièrement

Vous pouvez également utiliser les définitions LV_OPA_* dans lv_color_mix() en tant que ratio.

Couleurs intégrées

Le module couleur définit les couleurs les plus basiques :

- #000000 LV COLOR BLACK
- #808080 LV_COLOR_GRAY
- #c0c0c0 LV COLOR SILVER
- #ff0000 LV_COLOR_RED
- #800000 LV_COLOR_MARRON
- #00ff00 LV_COLOR_LIME
- #008000 LV COLOR GREEN
- #808000 LV_COLOR_OLIVE
- #0000ff LV_COLOR_BLUE
- #000080 LV_COLOR_NAVY
- #008080 LV_COLOR_TAIL
- #00ffff LV_COLOR_CYAN
- #00ffff LV_COLOR_AQUA
- #800080 LV_COLOR_PURPLE
- #ff00ff LV_COLOR_MAGENTA
- #ffa500 LV_COLOR_ORANGE
- #ffff00 LV_COLOR_YELLOW

ainsi que LV_COLOR_WHITE.

API

Affichage

Functions

```
lv\_obj\_t *lv\_disp\_get\_scr\_act(lv\_disp\_t *disp)
```

Return with a pointer to the active screen

Return pointer to the active screen object (loaded by 'lv_scr_load()')

Parameters

• disp: pointer to display which active screen should be get. (NULL to use the default screen)

void lv_disp_load_scr(lv_obj_t *scr)

Make a screen active

Parameters

• scr: pointer to a screen

lv_obj_t *lv_disp_get_layer_top(lv_disp_t *disp)

Return with the top layer. (Same on every screen and it is above the normal screen layer)

Return pointer to the top layer object (transparent screen sized ly obj)

Parameters

• disp: pointer to display which top layer should be get. (NULL to use the default screen)

lv_obj_t *lv_disp_get_layer_sys(lv_disp_t *disp)

Return with the sys. layer. (Same on every screen and it is above the normal screen and the top layer)

Return pointer to the sys layer object (transparent screen sized lv_obj)

Parameters

• disp: pointer to display which sys. layer should be get. (NULL to use the default screen)

$void lv_disp_assign_screen(lv_disp_t*disp, lv_obj_t*scr)$

Assign a screen to a display.

Parameters

- disp: pointer to a display where to assign the screen
- SCT: pointer to a screen object to assign

lv_task_t *lv_disp_get_refr_task(lv_disp_t *disp)

Get a pointer to the screen refresher task to modify its parameters with lv_task_... functions.

Return pointer to the display refresher task. (NULL on error)

Parameters

• disp: pointer to a display

uint32_t lv_disp_get_inactive_time(const lv_disp_t *disp)

Get elapsed time since last user activity on a display (e.g. click)

Return elapsed ticks (milliseconds) since the last activity

Parameters

• disp: pointer to an display (NULL to get the overall smallest inactivity)

void lv disp trig activity(lv_disp_t*disp)

Manually trigger an activity on a display

Parameters

• disp: pointer to an display (NULL to use the default display)

static lv_obj_t *lv scr act(void)

Get the active screen of the default display

Return pointer to the active screen

```
static lv_obj_t *lv_layer_top(void)
     Get the top layer of the default display
     Return pointer to the top layer
static lv_obj_t *lv_layer_sys(void)
     Get the active screen of the deafult display
     Return pointer to the sys layer
static void lv_scr_load(lv_obj_t *scr)
Couleurs
Typedefs
typedef uint32_t lv_color_int_t
typedef lv color32 t lv color t
typedef uint8_t lv_opa_t
Enums
enum [anonymous]
     Opacity percentages.
     Values:
     LV OPA TRANSP = 0
     LV OPA 0 = 0
     \mathbf{LV\_0PA\_10} = 25
     LV OPA 20 = 51
     \mathbf{LV} \mathbf{.OPA} \mathbf{.30} = 76
     LV_OPA_40 = 102
     LV_0PA_50 = 127
     \mathbf{LV\_0PA\_60} = 153
     LV_0PA_70 = 178
     \mathbf{LV\_0PA\_80} = 204
     LV_0PA_90 = 229
     LV OPA 100 = 255
     LV_OPA_COVER = 255
Functions
static uint8_t lv_color_to1(lv_color_t color)
union lv_color1_t
```

```
Public Members
     uint8_t blue
     uint8_t green
     uint8 t red
     uint8\_t~\textbf{full}
union lv_color8_t
     Public Members
     uint8\_t \ \textbf{blue}
     uint8_t green
     uint8_t red
     struct \ lv\_color8\_t::[anonymous] ch
     uint8\_t full
union lv_color16_t
     Public Members
     uint16_t blue
     uint16_t green
     uint16\_t red
     uint16_t green_h
     uint16_t green_l
     struct lv_color16_t::[anonymous] ch
     uint16 t full
union lv_color32_t
     Public Members
     uint8 t blue
     uint8\_t green
     uint8_t red
     uint8_t alpha
     struct lv_color32_t::[anonymous] ch
     uint32_t full
struct lv_color_hsv_t
```

Public Members

```
uint16_t h
uint8_t s
uint8 t v
```

Polices

Dans LittlevGL, les polices sont des collections d'images matricielles et d'autres informations nécessaires au rendu des images des lettres (glyphes). Une police est stockée dans une variable lv_font_t et peut être affectée au champ text.font du style. Par exemple :

```
my_style.text.font = &lv_font_roboto_28; /* Définit une police plus grande */
```

Les polices ont une propriété **bpp** (**Bits Par Pixel**). Il indique combien de bits sont utilisés pour décrire un pixel dans la police. La valeur enregistrée pour un pixel détermine l'opacité du pixel. De cette façon, avec un *bpp* plus important, les bords de la lettre peuvent être lissés. Les valeurs de *bpp* possibles sont 1, 2, 4 et 8 (une valeur plus élevée signifie une meilleure qualité).

Le * bpp * affecte également la taille de la mémoire requise pour utiliser la police. P.ex. bpp = 4 rend la police environ 4 fois plus volumineuse que bpp = 1.

Support Unicode

LittlevGL prend en charge les caractères Unicode codés **UTF-8**. Vous devez configurer votre éditeur pour qu'il enregistre votre code/texte au format UTF-8 (généralement par défaut) et assurez-vous que LV_TXT_ENC est défini sur LV_TXT_ENC_UTF8 dans $lv_conf.h$ (ceci est la valeur par défaut).

Pour le vérifier, essayez

```
lv_obj_t * label1 = lv_label_create(lv_scr_act(), NULL);
lv_label_set_text(label1, LV_SYMBOL_OK);
```

Si tout fonctionne bien, un caractère ✓ devrait être affiché.

Polices intégrées

Il existe plusieurs polices intégrées de différentes tailles qui peuvent être activées dans lv_conf.h par la définition de constantes symboliques $LV_FONT_...$:

- LV FONT ROBOTO 12 12 px
- LV_FONT_ROBOTO_16 16 px
- LV FONT ROBOTO 22 22 px
- LV FONT ROBOTO 28 28 px

Les polices intégrées sont des variables globales portant des noms tels que lv_font_roboto_16 pour une police de 16 pixels de haut. Pour les utiliser dans un style, ajoutez simplement un pointeur sur une variable de police, comme indiqué ci-dessus.

Les polices intégrées ont bpp = 4, contiennent les caractères ASCII et utilisent la police Roboto.

Outre la plage ASCII, les symboles suivants sont également ajoutés aux polices intégrées à partir de la police FontAwesome.

- LV_SYMBOL_AUDIO
- Ⅲ LV_SYMBOL_VIDEO
- LV_SYMBOL_LIST
- ✓ LV_SYMBOL_OK
- ★ LV_SYMBOL_CLOSE
- U LV_SYMBOL_POWER
- LV_SYMBOL_SETTINGS
- ♠ LV_SYMBOL_HOME
- ▲ LV_SY BOL_DOWNLOAD
- LV_SYMBOL_DRIVE
- ∠ LV_SYMBOL_REFRESH
- LV_SYMBOL_MUTE
- LV_SYMBOL_VOLUME_MID
- LV_SYMBOL_VOLUME_MAX
- LV SYMBOL IMAGE
- LV_SYMBOL_EDIT
- LV_SYMBOL_PREV
- LV_SYMBOL_PLAY
- LV_SYMBOL_PAUSE
- LV_SYMBOL_STOP
- ▶ LV_SYMBOL_NEXT
- ▲ LV_SYMBOL_EJECT
- **⟨** LV_SYMBOL_LEFT
- > LV_SYMBOL_RIGHT
- + LV_SYMBOL_PLUS
- LV_SYMBOL_MINUS
- ▲ LV_SYMBOL_WARNING
- □ LV_SYMBOL_SHUFFLE
- ▲ LV_SYMBOL_UP
- LV_SYMBOL_DOWN
- LV_SYMBOL_LOOP
- LV_SYMBOL_DIRECTORY
- LV_SYMBOL_UPLOAD
- LV_SYMBOL_CALL
- ≥

 LV_SYMBOL_CUT
- ♠ LV_SYMBOL_COPY
- LV_SYMBOL_SAVE
- \$ LV_SYMBOL_CHARGE
- ▲ LV_SYMBOL_BELL
- LV_SYMBOL_KEYBOARD
- ◀ LV_SYMBOL_GPS
- LV_SYMBOL_FILE
- ♠ LV_SYMBOL_WIFI
- LV_SYMBOL_BATTERY_FULL
- LV_SYMBOL_BATTERY_3
- LV_SYMBOL_BATTERY_2
- LV_SYMBOL_BATTERY_1
- □ LV_SYMBOL_BATTERY_EMPTY
- LV_SYMBOL_BLUETOOTH

Les symboles peuvent être utilisés ainsi :

```
lv_label_set_text(my_label, LV_SYMBOL_OK);
```

Ou avec des chaînes :

```
lv_label_set_text(my_label, LV_SYMBOL_OK "Apply");
```

Ou plusieurs symboles ensemble :

```
lv_label_set_text(my_label, LV_SYMBOL_OK LV_SYMBOL_WIFI LV_SYMBOL_PLAY);
```

Ajouter une nouvelle police

Il y a plusieurs manières d'ajouter une nouvelle police à votre projet :

- 1. Le moyen le plus simple consiste à utiliser le Convertisseur de polices en ligne. Il suffit de définir les paramètres, de cliquer sur le bouton *Convert*, de copier la police dans votre projet et de l'utiliser.
- 2. Utilisez le [Convertisseur de polices hors ligne] (https://github.com/littlevgl/lv_font_conv) (nécessite l'installation de Node.js).
- 3. Si vous voulez créer quelque chose comme les polices intégrées (police Roboto et symboles) mais de tailles et/ou de plages différentes, vous pouvez utiliser le script built_in_font_gen.py du dossier lvgl/scripts/built in font. Il nécessite que Python et lv font conv soient installés.

Pour déclarer la police dans un fichier, utilisez LV_FONT_DECLARE(my_font_name).

Pour rendre les polices disponibles globalement, ajoutez-les à LV_FONT_CUSTOM_DECLARE dans $lv_conf.h.$

Ajouter de nouveaux symboles

Les symboles intégrés sont créés à partir de la police FontAwesome. Pour ajouter de nouveaux symboles à partir de la police FontAwesome, procédez comme suit :

- 1. Recherchez un symbole sur [https://fontawesome.com] (https://fontawesome.com). Par exemple le symbole ${\tt USB}$
- 2. Ouvrez le Convertisseur de polices en ligne, ajoutez [FontAwesome.ttf] (https://littlevgl.com/tools/FontAwesome.ttf) et ajoutez l'ID Unicode du symbole au champ plage. P.ex. 0xf287 pour le symbole USB. Plusieurs symboles peuvent être énumérés séparés par , .
- 3. Convertissez la police et copiez-la dans votre projet.
- 4. Convertissez la valeur Unicode en UTF8. Vous pouvez le faire, par exemple, sur ce [site] (http://www.ltg.ed.ac.uk/~richard/utf-8.cgi?input=f287&mode=hex). Pour 0xf287, les octets hexadécimaux UTF-8 sont EF 8A 87.
- 5. Créez un définition de constante symbolique à partir des valeurs UTF8 : #define MY USB SYMBOL "\ xEF \ x8A \ x87"
- 6. Utilisez le symbole comme les symboles intégrés. lv_label_set_text (label, MY_USB_SYMBOL)

Ajouter un nouveau moteur de polices

L'interface de police de LittlevGL est conçue pour être très flexible. Vous n'avez pas besoin d'utiliser le moteur de polices interne de LittlevGL, mais vous pouvez ajouter le vôtre. Par exemple, utilisez [FreeType] (https://www.freetype.org/) pour restituer les glyphes en temps réel à partir de polices TTF ou utilisez une mémoire flash externe pour sauvegarder les images matricielles de la police et les lire lorsque la librairie en a besoin.

Pour ce faire, une variable lv_font_t personnalisée doit être créée :

```
/* Décrit les propriétés d'une police */
lv font t my font;
my_font.get_glyph_dsc = my_get_glyph_dsc_cb;
                                                   /* Définit une fonction de rappel...
→pour obtenir des informations sur les glyphes */
my_font.get_glyph_bitmap = my_get_glyph_bitmap_cb;
                                                   /* Définit une fonction de rappel
→pour obtenir l'image matricielle d'un glyphe */
my font.line height = height;
                                                    /* La hauteur réelle de la ligne.
→où le texte s'inscrit */
my_font.base_line = base_line;
                                                   /* La ligne de base mesurée à...
⇒partir du haut de la ligne */
                                                    /* Enregistre ici toutes les
my_font.dsc = something_required;
→données spécifiques à l'implémentation */
my font.user data = user data;
                                                   /* Éventuellement des données.
→utilisateur supplémentaires */
/* Obtient des informations sur le glyphe de `unicode_letter` dans la police `font`.
* Enregistre le résultat dans `dsc_out`.
* La lettre suivante (`unicode_letter_next`) peut être utilisée pour calculer lau
→largeur requise par ce glyphe (crénage)
bool my_get_glyph_dsc_cb(const lv_font_t * font, lv_font_glyph_dsc_t * dsc_out,_
→uint32_t unicode_letter, uint32_t unicode_letter_next)
   /* Votre code ici */
   /* Enregistre le résultat.
    * Par exemple ...
    */
   dsc out->adv_w = 12;
                             /* Espace horizontal requis par le glyphe en [px] */
   dsc_out->box_h = 8;
                               /* Hauteur de l'image en [px] */
   dsc out->box_w = 6;
                               /* Largeur de l'image en [px] */
   dsc\_out->ofs\_x = 0;
                               /* Déplacement X de l'image en [px] */
   dsc_out->ofs_y = 3;
                               /* Déplacement Y de l'image mesuré depuis la ligne de ...
→base */
   dsc out->bpp = 2;
                               /* Bits par pixel : 1/2/4/8 */
    return true;
                               /* true : glyphe trouvé; false : glyphe non trouvé */
}
/* Obtient l'image matricielle de `unicode letter` à partir de `font`.*/
const uint8_t * my_get_glyph_bitmap_cb(const lv_font_t * font, uint32_t unicode
→letter)
    /* Votre code ici */
```

(continues on next page)

(continued from previous page)

```
/* L'image matricielle doit être un flux continu de bits où
  * chaque pixel est représenté par `bpp` bits */
return bitmap; /* Ou NULL si non trouvé */
}
```

Images

Une image peut être un fichier ou une variable qui enregistre l'image elle-même et des métadonnées.

Enregistrer des images

Vous pouvez enregistrer des images à deux endroits

- en tant que variable en mémoire interne (MEV ou MEM)
- en tant que fichier

Variables

Les images enregistrées dans une variable ont le type $lv_img_dsc_t$ avec les champs suivants :

- header
 - cf Format de couleur. Voir ci-dessous
 - w largeur en pixels (≤ 2048)
 - -h hauteur en pixels (≤ 2048)
 - always zero 3 bits qui doivent toujours être à zéro
 - reserved réservé pour une utilisation future
- datapointeur sur un tableau où l'image elle-même est enregistrée
- data_size longueur de data en octets

Fichiers

Pour traiter les fichiers, vous devez ajouter un lecteur à LittlevGL. En bref, un lecteur est une collection de fonctions (open, read, close, etc.) enregistrées dans LittlevGL pour effectuer des opérations sur les fichiers. Vous pouvez ajouter une interface à un système de fichiers standard (FAT32 sur une carte SD) ou créer votre propre système de fichiers pour lire des données à partir d'une mémoire Flash SPI. Dans tous les cas, un lecteur n'est qu'une abstraction pour lire et/ou écrire des données dans une mémoire. Voir la section Système de fichiers pour en apprendre plus.

Formats de couleur

Divers formats de couleur intégrés sont pris en charge:

• LV_IMG_CF_TRUE_COLOR Enregistre simplement les couleurs RVB

- LV_IMG_CF_TRUE_COLOR_ALPHA Enregistre les couleurs RVB mais ajoute également un octet Alpha pour chaque pixel
- LV_IMG_CF_TRUE_COLOR_CHROMA_KEYED Enregistre les couleurs RVB, mais si un pixel prend la valeur LV_COLOR_TRANSP (défini dans *lv_conf.h*), le pixel sera transparent
- LV_IMG_CF_INDEXED_1/2/4/8BIT Utilise une palette avec 2, 4, 16 ou 256 couleurs et enregistre chaque pixel sur 1, 2, 4 ou 8 bits
- LV_IMG_CF_ALPHA_1/2/4/8BIT Enregistre uniquement la valeur Alpha sur 1, 2, 4 ou 8 bits. Dessine les pixels avec la couleur style.image.color et l'opacité définie. L'image source doit avoir un canal alpha.

Les octets des images Couleurs vraies 32 bits sont enregistrés dans l'ordre suivant

- Byte 0: Bleu
- Byte 1: Vert
- Byte 2: Rouge
- Byte 3: Alpha

Pour une profondeur de couleur de 16 bits

- Byte 0: Vert 3 bits de poids faible, Bleu 5 bits
- Byte 1: Rouge 5 bits, Vert 3 bits de poids fort
- Byte 2: octet Alpha (seulement avec LV_IMG_CF_TRUE_COLOR_ALPHA)

Pour une profondeur de couleur de 8 bits

- Byte 0: Rouge 3 bits, Vert 3 bits, Bleu 2 bits
- Byte 2: octet Alpha (seulement avec LV_IMG_CF_TRUE_COLOR_ALPHA)

Vous pouvez enregistrer des images au format brut pour indiquer qu'il ne s'agit pas d'un format de couleur intégré et qu'un $D\acute{e}codeur$ d'images doit être utilisé pour décoder l'image.

- LV_IMG_CF_RAW Une image brute, p.ex. une image PNG ou JPG
- LV_IMG_CF_RAW_ALPHA Indique que l'image a un canal alpha et qu'un octet Alpha est ajouté pour chaque pixel
- LV_IMG_CF_RAW_CHROME_KEYED Indique que l'image a une couleur transparente comme indiqué par LV_IMG_CF_TRUE_COLOR_CHROMA_KEYED ci-dessus.

Ajouter et utiliser des images

Vous pouvez ajouter des images à LittlevGL de deux manières :

- utiliser le convertisseur en ligne
- créer manuellement des images

Convertisseur en ligne

Le convertisseur d'image en ligne est disponible ici.

Vous devez sélectionner une image *BMP*, *PNG* ou *JPG*, lui donner un nom, sélectionner le *Format de couleur*, sélectionner le type (fichier ou variable) et cliquer sur le bouton *Convert*. Le fichier de résultat est téléchargé.

Dans le cas de tableaux C (variables), les données de l'image sont incluses pour toutes les profondeurs de couleurs (1, 8, 16 ou 32) et les données à utiliser seront sélectionnées lors de la compilation en fonction de LV COLOR DEPTH dans $lv_conf.h.$

Dans le cas de fichiers, vous devez indiquer le format de couleur souhaité

- Binary RGB332 pour une profondeur de couleur de 8 bits
- Binary RGB565 pour une profondeur de couleur de 16 bits
- Binary RGB565 pour une profondeur de couleur de 16 bits (les deux octets sont permutés)
- Binary RGB888 pour une profondeur de couleur de 32 bits

Créer une image manuellement

Si vous réalisez une image au moment de l'exécution, vous pouvez créer une variable d'image pour l'afficher. Par exemple :

```
uint8_t my_img_data[] = {0x00, 0x01, 0x02, ...};

static lv_img_dsc_t my_img_dsc = {
    .header.always_zero = 0,
    .header.w = 80,
    .header.h = 60,
    .data_size = 80 * 60 * LV_COLOR_DEPTH / 8,
    .header.cf = LV_IMG_CF_TRUE_COLOR,
    .data = my_img_data,
};
```

Si le format de couleur est LV_IMG_CF_TRUE_COLOR_ALPHA, vous pouvez définir data_size comme 80 * 60 * LV IMG PX SIZE ALPHA BYTE.

Une autre option pour créer une image au moment de l'exécution consiste à utiliser l'objet Canvas.

Utiliser des images

Le moyen le plus simple d'utiliser une image dans LittlevGL consiste à l'afficher avec un objet Image:

```
lv_obj_t * icon = lv_img_create(lv_scr_act(), NULL);

/* A partir d'une variable */
lv_img_set_src(icon, &my_icon_dsc);

/* A partir d'un fichier */
lv_img_set_src(icon, "S:my_icon.bin");
```

Si l'image a été convertie avec le convertisseur en ligne, vous devez utiliser LV IMG DECLARE(my icon dsc) pour déclarer l'icône dans le fichier où vous souhaitez l'utiliser.

Décodeur d'images

Comme vous pouvez le voir dans la section [Formats de couleur] (#formats-de-couleur), LittlevGL prend en charge plusieurs formats d'image intégrés. Cependant, il ne supporte pas par exemple les formats PNG ou JPG. Pour gérer les formats d'image non intégrés, vous devez utiliser des librairie externes et les attacher à LittlevGL via l'interface décodeur d'images.

Le décodeur d'image comprend 4 fonctions :

- info obtient des informations de base sur l'image (largeur, hauteur et format de couleur)
- open ouvre l'image : enregistre l'image décodée. NULL indique que l'image peut être lue ligne par ligne
- read si *open* ne traite pas complètement l'image, cette fonction devrait retourner les données décodées (maximum 1 ligne) à partir d'une position donnée.
- close ferme l'image ouverte, libére les ressources allouées.

Vous pouvez ajouter n'importe quel nombre de décodeurs d'image. Quand une image doit être dessinée, la librairie essaiera tout les décodeurs d'images enregistrés jusqu'à en trouver un capable d'ouvrir l'image, c-à-d de manipuler le format.

Les formats LV_IMG_CF_TRUE_COLOR_..., LV_IMG_INDEXED_... and LV_IMG_ALPHA_... sont connus par le décodeur intégré.

Formats d'image personnalisés

Le moyen le plus simple de créer une image personnalisée consiste à utiliser le convertisseur d'image en ligne et à définir le format Raw, Raw with alpha ou Raw with chrome keyed. Le convertisseur prendra tous les octets de l'image sélectionnée et les écrira en tant que données d'image. header.cf sera respectivement LV_IMG_CF_RAW, LV_IMG_CF_RAW_ALPHA ou LV_IMG_CF_RAW_CHROME_KEYED. Vous devez choisir le bon format en fonction de vos besoins : image normale, utilisation de canal alpha ou de couleur transparente.

Après décodage, les formats bruts sont considérés comme des couleurs vraies. En d'autres termes, le décodeur d'image doit décoder les images brutes en vraies couleurs conformément au format décrit dans la section Formats de couleur.

Si vous voulez créer une image vraiment personnalisée, vous devez utiliser les formats de couleur LV_IMG_CF_USER_ENCODED_0..7. Cependant, la librairie peut dessiner les images uniquement au format couleurs vraies (ou brut, mais finalement, elles sont supposées être au format couleurs vraies). Donc, les formats LV_IMG_CF_USER_ENCODED_... ne sont pas connus de la librairie. Ils doivent donc être décodés dans l'un des formats connus de la section Formats de couleur. Il est possible de décoder d'abord l'image dans un format de couleur non vraie, par exemple LV_IMG_INDEXED_4BITS, puis d'appeler les fonctions du décodeur intégré pour la convertir en couleurs vraies.

Pour les formats *encodés par l'utilisateur*, le format de couleur (dsc-> header.cf) doit être modifié en conséquence, dans la fonction open.

Enregistrer un décodeur d'image

Par exemple, si vous voulez que LittlevGL "comprenne" les images PNG, vous devez créer un nouveau décodeur d'images et définir certaines fonctions pour ouvrir/fermer les fichiers PNG. Voici à quoi cela devrait ressembler :

```
/* Crée un nouveau décodeur et enregistre les fonctions */
lv_img_decoder_t * dec = lv_img_decoder_create();
lv_img_decoder_set_info_cb(dec, decoder_info);
lv_img_decoder_set_open_cb(dec, decoder_open);
lv_img_decoder_set_close_cb(dec, decoder_close);
/**
```

(continues on next page)

(continued from previous page)

```
* Obtient les informations sur une image PNG
 * @param decoder pointeur vers le décodeur auquel cette fonction appartient
* @param src peut être un nom de fichier ou un pointeur sur un tableau C
* @param header enregistre l'information ici
* @returnLV RES OK : pas d'erreur ; LV RES INV : impossible d'obtenir l'information
static lv_res_t decoder_info(lv_img_decoder_t * decoder, const void * src, lv_img_
→header t * header)
  /* Vérifie si le type `src` est connu du décodeur */
 if(is_png(src) == false) return LV_RES_INV;
 header->cf = LV IMG CF RAW ALPHA;
 header->w = width;
 header->h = height;
}
* Ouvre une image PNG et retourne l'image décodée
* @param decoder pointeur vers le décodeur auquel cette fonction appartient
* @param dsc pointeur sur le descripteur de cette session de décodage
* @returnLV RES OK : pas d'erreur ; LV RES INV : impossible d'obtenir l'information
static lv res t decoder open(lv img decoder t * decoder, lv img decoder dsc t * dsc)
 /* Vérifie si le type `src` est connu du décodeur */
 if(is png(src) == false) return LV RES INV;
 /* Décode et enregistre l'image. Si `dsc->img_data` est `NULL`, la fonction `read_
→line` sera appelée pour obtenir les données de l'image ligne par ligne */
 dsc->img_data = my_png_decoder(src);
 /* Change le format de couleur si nécessaire. Pour le PNG, généralement un format
→'brut' convient */
 dsc->header.cf = LV IMG CF ...
 /* Appelle une fonction de décodeur intégré si nécessaire. Ce n'est pas nécessaire.
→si `my png decoder` a décodé l'image au format couleurs vraies. */
 lv res t res = lv img decoder built in open(decoder, dsc);
 return res;
}
* Décode `len` pixels à partir des coordonnées fournies `x`, `y` et enregistre-les...
→dans `buf`.
* Requis uniquement si la fonction "open" ne peut pas décoder l'intégralité du.
→tableau de pixels (dsc->img data == NULL).
* @param decoder pointeur vers le décodeur associé à la fonction
* @param dsc pointeur vers le descripteur de décodeur
* @param x coordonnée x de début
* @param y coordonnée y de début
* @param len nombre de pixels à décoder
```

(continues on next page)

(continued from previous page)

```
* @param buf un tampon pour enregistrer les pixels décodés
 * @return LV RES OK : ok ; LV RES INV : échec
lv_res_t decoder_built in read line(lv_img_decoder_t * decoder, lv_img_decoder_dsc_t_
\rightarrow* dsc, lv coord t x,
                                                  lv coord t y, lv coord t len, uint8
→t * buf)
   /* Avec PNG, ce n'est généralement pas nécessaire */
  /* Copie `len` pixels à partir des coordonnées `x` et `y` au format couleurs
→vraies dans `buf` */
}
* Libère les ressources allouées
* @param decoder pointeur vers le décodeur auquel cette fonction appartient
* @param dsc pointeur sur le descripteur de cette session de décodage
static void decoder_close(lv_img_decoder_t * decoder, lv_img_decoder_dsc_t * dsc)
/* Libère toutes les données allouées */
 /* Appelle la fonction intégrée de fermeture si les fonctions intégrées open/read
→line ont été utilisées */
 lv_img_decoder_built_in_close(decoder, dsc);
}
```

Donc en résumé :

- Dans decoder_info, vous devez collecter les informations de base sur l'image et les mémoriser dans header.
- Dans decoder_open, vous devez essayer d'ouvrir la source de l'image indiquée par dsc-> src. Son type est déjà dans dsc->src_type == LV_IMG_SRC_FILE/VARIABLE. Si le format/type n'est pas pris en charge par le décodeur, retournez LV_RES_INV. Autrement, si vous pouvez ouvrir l'image, un pointeur sur l'image couleurs vraies décodée doit être défini dans dsc-> img_data. Si le format est géré mais que vous ne voulez pas décoder l'ensemble de l'image (p.ex. pas de mémoire), définissez dsc->img_data = NULL pour appeler read line afin d'obtenir les pixels.
- Dans decoder_close, vous devez libérer toutes les ressources allouées.
- decoder_read est optionnel. Le décodage de l'ensemble de l'image nécessite de la mémoire et des calculs supplémentaires. Cependant, si vous pouvez décoder une ligne de l'image sans décoder toute l'image, vous pouvez économiser de la mémoire et du temps. Pour indiquer que la fonction line read doit être utilisée, définissez dsc->img data = NULL dans la fonction open.

Utiliser manuellement un décodeur d'image

LittlevGL utilisera automatiquement les décodeurs d'images enregistrés, mais vous pouvez également les utiliser manuellement. Créez une variable $lv_img_decoder_dsc_t$ pour décrire la session de décodage et appelez $lv_img_decoder_open()$ et $lv_img_decoder_close()$.

```
lv_res_t res;
lv_img_decoder_dsc_t dsc;
res = lv_img_decoder_open(&dsc, &my_img_dsc, &lv_style_plain);

if(res == LV_RES_OK) {
    /* Faites quelque chose avec `dsc->img_data` */
    lv_img_decoder_close(&dsc);
}
```

Mise en cache des images

Parfois, il faut beaucoup de temps pour ouvrir une image. Continuellement décoder une image PNG ou charger des images à partir d'une mémoire externe lente serait inefficace. LittlevGL place donc en cache un certain nombre d'images. La mise en cache signifie que certaines images resteront ouvertes, ce qui permet à LittlevGL d'y accéder rapidement à partir de dsc->img data au lieu de les décoder à nouveau.

Taille du cache

Le nombre d'entrées du cache peut être défini par LV_IMG_CACHE_DEF_SIZE dans *lv_conf.h*. La valeur par défaut est 1, de sorte que seule la dernière image utilisée reste ouverte. La taille du cache peut être modifiée en cours d'exécution avec lv img cache set size(entry num)

Valeur des images

Si vous utilisez un grand nombre d'images, LittlevGL ne peut pas toutes les mettre en cache. Au lieu de cela, si une nouvelle image doit être ouverte mais qu'il n'y a pas de place dans le cache, la librairie supprimera une image pour libérer de la place. Pour décider quelle image supprimer, LittlevGL a mesuré combien de temps il a fallu pour ouvrir chaque image. Les images dont l'ouverture prend le plus de temps sont favorisées et LittlevGL essaie de les conserver en cache le plus longtemps. Vous pouvez définir manuellement la valeur temps d'ouverture dans la fonction d'ouverture du décodeur dans dsc->time_to_open = temps en ms pour attribuer une valeur supérieure ou inférieure à l'image (laissez inchangé pour laisser LittlevGL le gérer).

Chaque entrée de cache a une valeur "durée de vie". À chaque ouverture d'image par la mémoire cache, la durée de vie de toutes les entrées est réduite pour les rendre plus anciennes. Lorsqu'une image en cache est utilisée, sa durée de vie est augmentée de la valeur de temps d'ouverture pour la rendre plus importante.

S'il n'y a plus d'espace dans la mémoire cache, l'entrée avec la plus petite durée de vie sera supprimée.

Utilisation de la mémoire

Notez que l'image en cache peut consommer de la mémoire en permanence. Par exemple, si 3 images PNG sont mises en cache, elles consomment de la mémoire pendant le temps où elle sont ouvertes. Par conséquent, il incombe à l'utilisateur de s'assurer qu'il y a assez de MEV pour mettre en cache de grandes images en même temps.

Nettoyer le cache

Supposons que vous ayez chargé une image PNG dans une variable lv_img_dsc_t my_png et que vous l'utilisiez dans un objet lv imq. Si l'image est déjà mise en cache et que vous modifiez my png->

data, vous devez avertir LittlevGL de mettre en cache l'image à nouveau. Pour ce faire, utilisez lv_img_cache_invalidate_src(&my_png). Si NULL est passé en paramètre, tout le cache sera nettoyé.

API

Décodeur d'image

Typedefs

```
typedef uint8_t lv_img_src_t
typedef uint8_t lv_img_sf t
```

 $\label{typedef} \textbf{typedef} \ \ \textbf{uint} 8_\textbf{t} \ \ \textbf{lv_img_cf_t}$

Get info from an image and store in the header

Return LV_RES_OK: info written correctly; LV_RES_INV: failed

Parameters

- src: the image source. Can be a pointer to a C array or a file name (Use lv img src get type to determine the type)
- header: store the info here

Open an image for decoding. Prepare it as it is required to read it later

Parameters

- decoder: pointer to the decoder the function associated with
- dsc: pointer to decoder descriptor. src, style are already initialized in it.

Decode len pixels starting from the given x, y coordinates and store them in buf. Required only if the "open" function can't return with the whole decoded pixel array.

Return LV_RES_OK: ok; LV_RES_INV: failed

Parameters

- decoder: pointer to the decoder the function associated with
- dsc: pointer to decoder descriptor
- X: start x coordinate
- **y**: start y coordinate
- len: number of pixels to decode
- buf: a buffer to store the decoded pixels

Close the pending decoding. Free resources etc.

Parameters

- decoder: pointer to the decoder the function associated with
- dsc: pointer to decoder descriptor

typedef struct _lv_img_decoder lv_img_decoder_t

typedef struct $lv\ imq\ decoder\ dsc\ lv\ img\ decoder\ dsc\ t$

Describe an image decoding session. Stores data about the decoding

Enums

enum [anonymous]

Source of image.

Values:

LV IMG SRC VARIABLE

LV_IMG_SRC_FILE

Binary/C variable

LV_IMG_SRC_SYMBOL

File in filesystem

LV_IMG_SRC_UNKNOWN

Symbol (lv_symbol_def.h)

enum [anonymous]

Values:

LV IMG CF UNKNOWN = 0

LV IMG CF RAW

Contains the file as it is. Needs custom decoder function

LV IMG CF RAW ALPHA

Contains the file as it is. The image has alpha. Needs custom decoder function

LV IMG CF RAW CHROMA KEYED

Contains the file as it is. The image is chroma keyed. Needs custom decoder function

LV IMG CF TRUE COLOR

Color format and depth should match with LV COLOR settings

LV IMG CF TRUE COLOR ALPHA

Same as LV IMG CF TRUE COLOR but every pixel has an alpha byte

LV_IMG_CF_TRUE_COLOR_CHROMA_KEYED

Same as LV IMG CF TRUE COLOR but LV_COLOR_TRANSP pixels will be transparent

LV IMG CF INDEXED 1BIT

Can have 2 different colors in a palette (always chroma keyed)

LV IMG CF INDEXED 2BIT

Can have 4 different colors in a palette (always chroma keyed)

LV_IMG_CF_INDEXED_4BIT

Can have 16 different colors in a palette (always chroma keyed)

LV IMG CF INDEXED 8BIT

Can have 256 different colors in a palette (always chroma keyed)

LV IMG CF ALPHA 1BIT

Can have one color and it can be drawn or not

LV_IMG_CF_ALPHA_2BIT

Can have one color but 4 different alpha value

LV_IMG_CF_ALPHA_4BIT

Can have one color but 16 different alpha value

LV_IMG_CF_ALPHA_8BIT

Can have one color but 256 different alpha value

LV_IMG_CF_RESERVED_15

Reserved for further use.

LV_IMG_CF_RESERVED_16

Reserved for further use.

LV_IMG_CF_RESERVED_17

Reserved for further use.

LV IMG CF RESERVED 18

Reserved for further use.

LV_IMG_CF_RESERVED_19

Reserved for further use.

LV_IMG_CF_RESERVED_20

Reserved for further use.

LV_IMG_CF_RESERVED_21

Reserved for further use.

LV_IMG_CF_RESERVED_22

Reserved for further use.

LV IMG CF RESERVED 23

Reserved for further use.

LV_IMG_CF_USER_ENCODED_0

User holder encoding format.

LV_IMG_CF_USER_ENCODED_1

User holder encoding format.

LV_IMG_CF_USER_ENCODED_2

User holder encoding format.

LV IMG CF USER ENCODED 3

User holder encoding format.

LV_IMG_CF_USER_ENCODED_4

User holder encoding format.

LV IMG CF USER ENCODED 5

User holder encoding format.

LV IMG CF USER ENCODED 6

User holder encoding format.

LV_IMG_CF_USER_ENCODED_7

User holder encoding format.

Functions

void lv img decoder init(void)

Initialize the image decoder module

lv_res_t lv_img_decoder_get_info(const char *src, lv_img_header_t *header)

Get information about an image. Try the created image decoder one by one. Once one is able to get info that info will be used.

Return LV_RES_OK: success; LV_RES_INV: wasn't able to get info about the image

Parameters

- src: the image source. Can be 1) File name: E.g. "S:folder/img1.png" (The drivers needs to registered via lv_fs_add_drv()) 2) Variable: Pointer to an lv_img_dsc_t variable 3) Symbol: E.g. LV SYMBOL OK
- header: the image info will be stored here

Open an image. Try the created image decoder one by one. Once one is able to open the image that decoder is save in dsc

Return LV_RES_OK: opened the image. dsc->img_data and dsc->header are set. LV_RES_INV: none of the registered image decoders were able to open the image.

Parameters

- dsc: describe a decoding session. Simply a pointer to an lv img decoder dsc t variable.
- src: the image source. Can be 1) File name: E.g. "S:folder/img1.png" (The drivers needs to registered via lv_fs_add_drv()) 2) Variable: Pointer to an lv_img_dsc_t variable 3) Symbol: E.g. LV_SYMBOL_OK
- style: the style of the image

Read a line from an opened image

Return LV_RES_OK: success; LV_RES_INV: an error occurred

Parameters

- dsc: pointer to lv img decoder dsc t used in lv img decoder open
- X: start X coordinate (from left)
- y: start Y coordinate (from top)
- len: number of pixels to read
- buf: store the data here

void lv_img_decoder_close(lv_img_decoder_dsc_t *dsc)

Close a decoding session

Parameters

• dsc: pointer to lv img decoder dsc t used in lv img decoder open

lv_img_decoder_t *lv_img_decoder_create(void)

Create a new image decoder

Return pointer to the new image decoder

void lv_img_decoder_delete(lv_img_decoder_t *decoder)

Delete an image decoder

Parameters

• decoder: pointer to an image decoder

Set a callback to get information about the image

Parameters

- decoder: pointer to an image decoder
- info cb: a function to collect info about an image (fill an lv img header t struct)

Set a callback to open an image

Parameters

- decoder: pointer to an image decoder
- open cb: a function to open an image

$$\begin{tabular}{ll} void $lv_img_decoder_set_read_line_cb($lv_img_decoder_t$ & $*decoder, $lv_img_decoder_read_line_f_t$ read_line_cb) \\ \end{tabular}$$

Set a callback to a decoded line of an image

Parameters

- decoder: pointer to an image decoder
- read line cb: a function to read a line of an image

$$\begin{tabular}{ll} void $lv_img_decoder_set_close_cb($lv_img_decoder_t *decoder, $lv_img_decoder_close_f_t$ \\ $close_cb($) \end{tabular}$$

Set a callback to close a decoding session. \overline{E} .g. close files and free other resources.

Parameters

- decoder: pointer to an image decoder
- close cb: a function to close a decoding session

Get info about a built-in image

Return LV_RES_OK: the info is successfully stored in header; LV_RES_INV: unknown format or other error.

Parameters

- **decoder**: the decoder where this function belongs
- Src: the image source: pointer to an lv img dsc t variable, a file path or a symbol
- header: store the image data here

$$lv_res_t$$
 $lv_img_decoder_built_in_open(lv_img_decoder_t*decoder, lv_img_decoder_dsc_t*dsc)$

Open a built in image

Return LV_RES_OK: the info is successfully stored in header; LV_RES_INV: unknown format or other error.

Parameters

- decoder: the decoder where this function belongs
- dsc: pointer to decoder descriptor. src, style are already initialized in it.

Decode len pixels starting from the given x, y coordinates and store them in buf. Required only if the "open" function can't return with the whole decoded pixel array.

Return LV_RES_OK: ok; LV_RES_INV: failed

Parameters

- decoder: pointer to the decoder the function associated with
- dsc: pointer to decoder descriptor
- X: start x coordinate
- y: start y coordinate
- len: number of pixels to decode
- buf: a buffer to store the decoded pixels

```
\label{eq:void_lv_img_decoder_t} \begin{tabular}{ll} void $lv\_img\_decoder\_built\_in\_close($lv\_img\_decoder\_t$ *$decoder, $lv\_img\_decoder\_dsc\_t$ *$dsc) $\end{tabular}
```

Close the pending decoding. Free resources etc.

Parameters

- decoder: pointer to the decoder the function associated with
- dsc: pointer to decoder descriptor

struct lv_img_header_t

 $\#include < lv_img_decoder.h >$ LittlevGL image header

Public Members

```
uint32_t cf
uint32_t always_zero
uint32_t reserved
uint32_t w
uint32_t h
```

struct lv img dsc t

 $\#include < lv_img_decoder.h >$ Image header it is compatible with the result from image converter utility

Public Members

```
lv_img_header_t header
uint32_t data_size
```

const uint8 t *data

struct _lv_img_decoder

Public Members

```
lv_img_decoder_info_f_t info_cb
lv_img_decoder_open_f_t open_cb
lv_img_decoder_read_line_f_t read_line_cb
lv_img_decoder_close_f_t close_cb
```

lv_img_decoder_user_data_t user_data

struct _lv_img_decoder_dsc

 $\#include < lv_img_decoder.h >$ Describe an image decoding session. Stores data about the decoding

Public Members

lv img decoder t*decoder

The decoder which was able to open the image source

const void *src

The image source. A file path like "S:my_img.png" or pointer to an $lv_img_dsc_t$ variable

const lv_style_t *style

Style to draw the image.

lv_img_src_t src_type

Type of the source: file or variable. Can be set in **open** function if required

lv_img_header_t header

Info about the opened image: color format, size, etc. MUST be set in open function

const uint8_t *img_data

Pointer to a buffer where the image's data (pixels) are stored in a decoded, plain format. MUST be set in open function

uint32 t time to open

How much time did it take to open the image. [ms] If not set lv_img_cache will measure and set the time to open

const char *error msg

A text to display instead of the image when the image can't be opened. Can be set in open function or set NULL.

void *user data

Store any custom data here is required

Cache d'images

Functions

lv_img_cache_entry_t *lv_img_cache_open(const void *src, const lv_style_t *style)

Open an image using the image decoder interface and cache it. The image will be left open meaning if the image decoder open callback allocated memory then it will remain. The image is closed if a new image is opened and the new image takes its place in the cache.

Return pointer to the cache entry or NULL if can open the image

Parameters

- $src: source of the image. Path to file or pointer to an <math>lv_img_dsc_t$ variable
- style: style of the image

void lv img cache set size(uint16 t new slot num)

Set the number of images to be cached. More cached images mean more opened image at same time which might mean more memory usage. E.g. if 20 PNG or JPG images are open in the RAM they consume memory while opened in the cache.

Parameters

• new_entry_cnt: number of image to cache

void lv img cache invalidate src(const void *src)

Invalidate an image source in the cache. Useful if the image source is updated therefore it needs to be cached again.

Parameters

• **src**: an image source path to a file or pointer to an $lv_img_dsc_t$ variable.

struct lv_img_cache_entry_t

#include <lv_img_cache.h> When loading images from the network it can take a long time to download and decode the image.

To avoid repeating this heavy load images can be cached.

Public Members

int32 t life

Count the cache entries's life. Add $time_tio_open$ to life when the entry is used. Decrement all lifes by one every in every $lv_img_cache_open$. If life ==0 the entry can be reused

Système de fichiers

LittlevGL a un module d'abstraction de système de fichiers qui permet d'attacher tout type de système de fichiers. Les systèmes de fichiers sont identifiés par une lettre. Par exemple, si la carte SD est associée à la lettre 'S', un fichier peut être localisé par "S:path/to/file.txt".

Ajouter un pilote

Pour ajouter un pilote, un $lv_fs_drv_t$ doit être initialisé comme ceci :

(continued from previous page)

```
/* Fonction de rappel pour indiquer si le.
drv.ready_cb = my_ready_cb;
→lecteur est prêt à être utilisé */
drv.open_cb = my_open_cb;
                                         /* Fonction de rappel pour ouvrir un.
→fichier */
                                         /* Fonction de rappel pour fermer un
drv.close cb = my close cb;
→fichier */
drv.read_cb = my_read_cb;
                                         /* Fonction de rappel pour lire un fichier.
→*/
drv.write_cb = my_write_cb;
                                         /* Fonction de rappel pour écrire un
→fichier */
drv.seek_cb = my_seek_cb;
                                         /* Fonction de rappel pour se déplacer dans
→un fichier (déplacer le curseur) */
drv.tell cb = my tell cb;
                                         /* Fonction de rappel pour donner la
→position du curseur */
drv.trunc_cb = my_trunc_cb;
                                         /* Fonction de rappel pour supprimer un
⊶fichier */
drv.size_cb = my_size_cb;
                                         /* Fonction de rappel pour donner la taille
→d'un fichier */
drv.rename cb = my size cb;
                                         /* Fonction de rappel pour renommer un.
→fichier */
drv.dir_open_cb = my_dir_open_cb;
                                        /* Fonction de rappel pour ouvrir un
⊶répertoire et lire son contenu */
drv.dir read cb = my dir read cb;
                                        /* Fonction de rappel pour lire le contenu d
→ 'un répertoire */
drv.dir_close_cb = my_dir_close_cb;
                                         /* Fonction de rappel pour fermer un
→répertoire */
drv.free_space_cb = my_size_cb;
                                        /* Fonction de rappel pour donner l'espace...
→libre d'un lecteur */
drv.user data = my user data;
                                         /* Toute donnée personnalisée si nécessaire.
→*/
                                         /* Finalement enregistre le lecteur */
lv fs drv register(&drv);
```

N'importe laquelle des fonctions de rappel peut être **NULL** pour indiquer que l'opération n'est pas prise en charge.

Si vous utilisez $lv_fs_open(\&file, "S:/folder/file.txt", LV_FS_MODE_WR)$ LittlevGL effectue les opérations suivantes

- 1. vérifie s'il y a un lecteur avec la lettre 'S'
- 2. vérifie si open cb est implémentée (pas NULL)
- 3. appelle open cb avec le chemin "folder/file.txt".

Exemple d'utilisation

L'exemple ci-dessous montre comment lire à partir d'un fichier :

```
lv_fs_file_t f;
lv_fs_res_t res;
res = lv_fs_open(&f, "S:folder/file.txt", LV_FS_MODE_RD);
```

(continued from previous page)

```
if(res != LV_FS_RES_OK) my_error_handling();
uint32_t read_num;
uint8_t buf[8];
res = lv_fs_read(&f, buf, 8, &read_num);
if(res != LV_FS_RES_OK || read_num != 8) my_error_handling();
lv_fs_close(&f);
```

Le mode dans lv_fs_open peut être LV_FS_MODE_WR pour ouvrir en écriture ou LV_FS_MODE_RD | LV FS MODE WR pour lecture/écriture

Cet exemple montre comment lire le contenu d'un répertoire. Il appartient au pilote de marquer les répertoires, mais il peut être judicieux d'insérer un "/" devant le nom du répertoire.

```
lv fs dir t dir;
lv fs res t res;
res = lv_fs_dir_open(&dir, "S:/folder");
if(res != LV_FS_RES_OK) my_error_handling();
char fn[256];
while(1) {
    res = lv fs dir read(&dir, fn);
    if(res != LV_FS_RES_0K) {
        my_error_handling();
        break;
    }
    /* fn est vide s'il n'y a plus d'entrée à lire */
    if(strlen(fn) == 0) {
        break;
    printf("%s\n", fn);
lv_fs_dir_close(&dir);
```

Utiliser les pilotes pour les images

Les objets Image peuvent également être ouverts à partir de fichiers (en plus des variables stockées dans la mémoire Flash)

Pour initialiser un pilote pour les images, les fonction de rappel suivantes sont requises :

- open
- close
- read
- seek
- tell

API

Typedefs

```
typedef uint8_t lv_fs_res_t
typedef uint8_t lv_fs_mode_t
typedef struct _lv_fs_drv_t lv_fs_drv_t
```

Enums

enum [anonymous]

Errors in the filesystem module.

Values:

LV_FS_RES_OK = 0

LV_FS_RES_HW_ERR

LV_FS_RES_FS_ERR

LV_FS_RES_NOT_EX

LV_FS_RES_FULL

LV_FS_RES_LOCKED

LV_FS_RES_DENIED

LV_FS_RES_BUSY

LV_FS_RES_TOUT

LV_FS_RES_NOT_IMP

LV_FS_RES_OUT_OF_MEM

LV_FS_RES_INV_PARAM

enum [anonymous]

Filesystem mode.

LV FS RES UNKNOWN

Values:

$$\label{eq:local_local_wr} \begin{split} \textbf{LV_FS_MODE_WR} &= 0x01 \\ \textbf{LV_FS_MODE_RD} &= 0x02 \end{split}$$

Functions

void lv_fs_init(void)

Initialize the File system interface

void lv fs drv init(lv_fs_drv_t*drv)

Initialize a file system driver with default values. It is used to surly have known values in the fields ant not memory junk. After it you can set the fields.

Parameters

• drv: pointer to driver variable to initialize

void lv_fs_drv_register(lv_fs_drv_t *drv_p)

Add a new drive

Parameters

• drv_p: pointer to an lv_fs_drv_t structure which is inited with the corresponding function pointers. The data will be copied so the variable can be local.

lv_fs_drv_t *lv_fs_get_drv(char letter)

Give a pointer to a driver from its letter

Return pointer to a driver or NULL if not found

Parameters

• letter: the driver letter

bool lv fs is ready(char letter)

Test if a drive is rady or not. If the ready function was not initialized true will be returned.

Return true: drive is ready; false: drive is not ready

Parameters

• letter: letter of the drive

$$lv_fs_res_t$$
 $lv_fs_open(lv_fs_file_t *file_p, const char *path, lv_fs_mode_t mode)$
Open a file

Return LV_FS_RES_OK or any error from lv_fs_res_t enum

Parameters

- file_p: pointer to a *lv_fs_file_t* variable
- path: path to the file beginning with the driver letter (e.g. S:/folder/file.txt)
- mode: read: FS_MODE_RD, write: FS_MODE_WR, both: FS_MODE_RD | FS_MODE_WR

Close an already opened file

Return LV FS RES OK or any error from lv fs res t enum

Parameters

• file p: pointer to a lv_fs_file_t variable

lv_fs_res_t lv_fs_remove(const char *path)

Delete a file

Return LV_FS_RES_OK or any error from lv_fs_res_t enum

Parameters

• path: path of the file to delete

$$lv_fs_res_t$$
 $lv_fs_read(lv_fs_file_t *file_p, void *buf, uint32_t btr, uint32_t *br)$ Read from a file

Return LV_FS_RES_OK or any error from lv_fs_res_t enum

Parameters

- file p: pointer to a *lv_fs_file_t* variable
- buf: pointer to a buffer where the read bytes are stored

- btr: Bytes To Read
- br: the number of real read bytes (Bytes Read). NULL if unused.

$$lv_fs_res_t$$
 $lv_fs_write(lv_fs_file_t *file_p, const void *buf, uint32_t btw, uint32_t *bw)$
Write into a file

Return LV FS RES OK or any error from lv fs res t enum

Parameters

- file p: pointer to a *lv_fs_file_t* variable
- buf: pointer to a buffer with the bytes to write
- btr: Bytes To Write
- br: the number of real written bytes (Bytes Written). NULL if unused.

$$lv_fs_res_t$$
 lv_fs_seek($lv_fs_file_t$ * $file_p$, uint32_t pos)

Set the position of the 'cursor' (read write pointer) in a file

Return LV FS RES OK or any error from lv fs res t enum

Parameters

- file p: pointer to a lv_fs_file_t variable
- pos: the new position expressed in bytes index (0: start of file)

Give the position of the read write pointer

Return LV_FS_RES_OK or any error from 'fs_res_t'

Parameters

- file p: pointer to a *lv_fs_file_t* variable
- pos p: pointer to store the position of the read write pointer

lv_fs_res_t lv_fs_trunc(lv_fs_file_t *file_p)

Truncate the file size to the current position of the read write pointer

Return LV FS RES OK: no error, the file is read any error from lv fs res t enum

Parameters

• file p: pointer to an 'ufs_file_t' variable. (opened with lv_fs_open)

$$lv_fs_res_t$$
 $lv_fs_size(lv_fs_file_t *file_p, uint32_t *size)$

Give the size of a file bytes

Return LV_FS_RES_OK or any error from lv_fs_res_t enum

Parameters

- file p: pointer to a *lv_fs_file_t* variable
- **size**: pointer to a variable to store the size

$\textit{lv_fs_res_t lv_fs_rename(const } \textit{char *} \textit{oldname}, \textit{const } \textit{char *} \textit{newname})$

Rename a file

Return LV_FS_RES_OK or any error from 'fs_res_t'

Parameters

• oldname: path to the file

• **newname**: path with the new name

lv_fs_res_t lv_fs_dir_open(lv_fs_dir_t *rddir_p, const char *path)

Initialize a 'fs_dir_t' variable for directory reading

Return LV_FS_RES_OK or any error from lv_fs_res_t enum

Parameters

- rddir p: pointer to a 'fs_read_dir_t' variable
- path: path to a directory

lv_fs_res_t lv_fs_dir_read(lv_fs_dir_t *rddir_p, char *fn)

Read the next filename form a directory. The name of the directories will begin with '/'

Return LV FS RES OK or any error from lv fs res t enum

Parameters

- rddir p: pointer to an initialized 'fs rdir t' variable
- fn: pointer to a buffer to store the filename

lv_fs_res_t lv_fs_dir_close(lv_fs_dir_t *rddir_p)

Close the directory reading

Return LV_FS_RES_OK or any error from lv_fs_res_t enum

Parameters

• rddir p: pointer to an initialized 'fs dir t' variable

$lv_fs_res_t$ $lv_fs_free_space$ (char letter, $uint32_t$ * $total_p$, $uint32_t$ * $free_p$)

Get the free and total size of a driver in kB

 ${\bf Return} \ \, {\it LV_FS_RES_OK} \ \, {\it or} \ \, {\it any} \ \, {\it error} \ \, {\it from} \ \, {\it lv_fs_res_t} \ \, {\it enum}$

Parameters

- letter: the driver letter
- total_p: pointer to store the total size [kB]
- free p: pointer to store the free size [kB]

char *lv fs get letters(char *buf)

Fill a buffer with the letters of existing drivers

Return the buffer

Parameters

• buf: buffer to store the letters ('\0' added after the last letter)

const char *lv fs get ext(const char *fn)

Return with the extension of the filename

Return pointer to the beginning extension or empty string if no extension

Parameters

• fn: string with a filename

char *lv_fs_up(char *path)

Step up one level

Return the truncated file name

Parameters

• path: pointer to a file name

const char *lv_fs_get_last(const char *path)

Get the last element of a path (e.g. U:/folder/file -> file)

Return pointer to the beginning of the last element in the path

Parameters

• buf: buffer to store the letters ('\0' added after the last letter)

struct lv fs drv t

Public Members

struct lv_fs_file_t

```
char letter
uint16 t file size
uint16 t rddir size
bool (*ready_cb)(struct _lv_fs_drv_t *drv)
lv fs res_t (*open cb)(struct _lv fs drv t *drv, void *file p, const char *path,
                       lv\_fs\_mode\_t mode)
lv_fs_res_t (*close_cb)(struct _lv_fs_drv_t *drv, void *file_p)
lv_fs_res_t (*remove_cb)(struct _lv_fs_drv_t *drv, const char *fn)
lv\_fs\_res\_t (*read_cb)(struct \_lv\_fs\_drv\_t *drv, void *file_p, void *buf, uint32 t btr,
                       uint32 t*br)
lv fs res t (*write cb)(struct lv fs drv t *drv, void *file p, const void *buf,
                        uint32 t btw, uint32 t *bw)
lv_fs_res_t (*seek_cb)(struct _lv_fs_drv_t *drv, void *file_p, uint32_t pos)
lv_fs_res_t (*tell_cb)(struct_lv_fs_drv_t*drv, void *file_p, uint32_t *pos_p)
lv_fs_res_t (*trunc_cb)(struct _lv_fs_drv_t *drv, void *file_p)
lv fs res t (*size cb)(struct lv fs drv t *drv, void *file p, uint32 t *size p)
lv fs res t (*rename cb)(struct lv fs drv t *drv, const char *oldname, const char
                          *newname)
lv_fs_res_t (*free_space_cb)(struct _lv_fs_drv_t *drv, uint32_t *total_p, uint32_t
                               *free p)
lv_fs_res_t (*dir_open_cb)(struct_lv_fs_drv_t*drv, void *rddir_p, const char *path)
lv_fs_res_t (*dir_read_cb)(struct _lv_fs_drv_t *drv, void *rddir_p, char *fn)
lv fs res t (*dir close cb)(struct lv fs drv t *drv, void *rddir p)
lv\_fs\_drv\_user\_data\_t~\textbf{user\_data}
    Custom file user data
```

Public Members

```
void *file_d
lv_fs_drv_t *drv
struct lv_fs_dir_t

Public Members
void *dir_d
lv_fs_drv_t *drv
```

Animations

Vous pouvez faire évoluer automatiquement la valeur d'une variable entre une valeur initiale et une valeur finale en utilisant les animations. L'animation est réalisée par l'appel périodique d'une fonction "animateur" avec comme paramètre la valeur correspondante.

La fonction "animateur" a la signature suivante :

```
void func(void * var, lv_anim_var_t value);
```

Cette signature est compatible avec la plupart des fonctions set de LittlevGL. Par exemple lv_obj_set_x(obj, value) ou lv_obj_set_width(obj, value)

Créer une animation

Pour créer une animation, une variable lv_anim_t doit être initialisée et configurée avec les fonctions lv_anim_set_...().

```
lv anim t a;
lv_anim_set_exec_cb(&a, btn1, lv_obj_set_x); /* Définit la fonction animateur et_
→la variable à animer */
lv_anim_set_time(&a, duration, delay);
                                              /* Définit les valeurs initiale et ...
lv anim set values(&a, start, end);
→finale. P. ex. 0, 150 */
lv_anim_set_path_cb(&a, lv_anim_path_linear); /* Définit le chemin à partir d'une..
→des fonctions `lv_anim_path_...` ou d'une fonction spécifique. */
lv_anim_set_ready_cb(&a, ready_cb);
                                              /* Définit une fonction de rappel à
→exécuter quand l'animation est prête (optionnel). */
lv_anim_set_playback(&a, wait_time);
                                             /* Active le déroulé de l'animation.
→après un délai `wait time` */
                                              /* Active la répétition d'une...
lv anim set repeat(&a, wait time);
→animation après un délai `wait time`. Peut être associé à la fonction `lv anim set
→playback`*/
                                               /* Débute l'animation */
lv_anim_create(&a);
```

Vous pouvez appliquer de **multiples différentes animations** à la même variable au même moment. Par exemple animer les coordonnées x et y avec <code>lv_obj_set_x</code> et <code>lv_obj_set_y</code>. Cependant, une seule animation peut exister avec une variable et une fonction données. Par conséquent, <code>lv_anim_create()</code> supprimera les animations variable/fonction déjà existantes.

Chemin d'animation

Vous pouvez déterminer le **chemin de l'animation**. Dans les cas les plus simples, il est linéaire ce qui veut dire que la valeur entre *start* et *end* évolue linéairement. Un *chemin* est une fonction qui calcule la prochaine valeur à assigner, basée sur le statut actuel de l'animation. Actuellement, les chemins suivants sont prédéfinis :

- lv_anim_path_linear animation linéaire
- lv_anim_path_step change en une seule fois à la fin
- lv_anim_path_ease_in lent au début
- lv_anim_path_ease_out lent à la fin
- lv_anim_path_ease_in_out lent au début et à la fin
- lv_anim_path_overshoot dépasse la valeur finale
- lv_anim_path_bounce rebondit un peu sur la valeur finale (comme en frappant un mur)

Vitesse et durée

Par défaut, vous pouvez définir la durée de l'animation. Mais dans certains cas, il est plus pratique d'utiliser la **vitesse d'animation**.

La fonction <code>lv_anim_speed_to_time(speed, start, end)</code> calcule la durée requise en millisecondes pour atteindre la valeur finale à partir de la valeur initiale avec une vitesse donnée. La vitesse est interprétée en <code>unité/seconde</code>. Par exemple <code>lv_anim_speed_to_time(20, 0, 100)</code> donnera 5000 millisecondes. Par exemple dans le cas de <code>lv_obj_set_x</code> l'unité est le pixel donc <code>20</code> signifie une vitesse de <code>20</code> px/s.

Supprimer des animations

Vous pouvez **supprimer une animation** par lv_anim_del(var, func) en indiquant la variable animée et sa fonction animateur.

API

Périphérique d'entrée

Typedefs

```
typedef void (*lv anim exec xcb t) (void *, lv anim value t)
```

Generic prototype of "animator" functions. First parameter is the variable to animate. Second parameter is the value to set. Compatible with <code>lv_xxx_set_yyy(obj, value)</code> functions The <code>x</code> in <code>_xcb_t</code> means its not a fully generic prototype because it doesn't receive <code>lv_anim_t *</code> as its first argument

```
typedef void (*lv_anim_custom_exec_cb_t)(struct _lv_anim_t *, lv_anim_value_t)

Same as lv_anim_exec_xcb_t but receives lv_anim_t * as the first parameter. It's more consistent but less convenient. Might be used by binding generator functions.
```

```
typedef lv anim value t (*lv anim path cb t)(const struct \underline{lv} anim t *)
```

Get the current value during an animation

typedef void (*lv_anim_ready_cb_t)(struct _lv_anim_t *)

Callback to call when the animation is ready

typedef struct <u>lv_anim_t</u> lv_anim_t

Describes an animation

Enums

enum [anonymous]

Can be used to indicate if animations are enabled or disabled in a case

Values:

LV ANIM OFF

LV ANIM ON

Functions

void lv_anim_core_init(void)

Init. the animation module

void lv anim init(lv anim t *a)

Initialize an animation variable. E.g.: ly anim t a; ly anim init(&a); ly anim set ...(&a); ly anim create(&a);

Parameters

• a: pointer to an lv anim t variable to initialize

static void lv_anim_set_exec_cb(lv_anim_t *a, void *var, lv_anim_exec_xcb_t exec_cb)

Set a variable to animate function to execute on var

Parameters

- a: pointer to an initialized lv anim t variable
- var: pointer to a variable to animate
- exec cb: a function to execute. LittelyGL's built-in functions can be used. lv_obj_set_x

static void lv_anim_set_time(lv_anim_t *a, uint16_t duration, uint16_t delay)

Set the duration and delay of an animation

Parameters

- a: pointer to an initialized lv anim t variable
- duration: duration of the animation in milliseconds
- **delay**: delay before the animation in milliseconds

static void lv_anim_set_values(lv_anim_t *a, lv_anim_value_t start, lv_anim_value_t

Set the start and end values of an animation

Parameters

• a: pointer to an initialized lv anim t variable

- start: the start value
- end: the end value

Similar to <code>lv_anim_set_var_and_cb</code> but <code>lv_anim_custom_exec_cb_t</code> receives <code>lv_anim_t*</code> as its first parameter instead of <code>void *</code>. This function might be used when <code>LittlevGL</code> is binded to other languages because it's more consistent to have <code>lv_anim_t *</code> as first parameter.

Parameters

- a: pointer to an initialized lv_anim_t variable
- exec_cb: a function to execute.

$\textbf{static} \ \operatorname{void} \ \textbf{lv_anim_set_path_cb} (\textit{lv_anim_t} *a, \textit{lv_anim_path_cb_t} \ \textit{path_cb})$

Set the path (curve) of the animation.

Parameters

- a: pointer to an initialized lv_anim_t variable
- path_cb: a function the get the current value of the animation. The built in functions starts with lv anim path ...

$\verb|static| void lv_anim_set_ready_cb| (\mathit{lv}_a\mathit{nim}_t *a, \mathit{lv}_a\mathit{nim}_ready_cb_t \; \mathit{ready}_cb)|$

Set a function call when the animation is ready

Parameters

- a: pointer to an initialized lv_anim_t variable
- ready_cb: a function call when the animation is ready

static void lv_anim_set_playback(lv_anim_t *a, uint16_t wait_time)

Make the animation to play back to when the forward direction is ready

Parameters

- a: pointer to an initialized lv_anim_t variable
- wait time: time in milliseconds to wait before starting the back direction

static void lv_anim_clear_playback(lv_anim_t *a)

Disable playback. (Disabled after lv anim init())

Parameters

• a: pointer to an initialized lv_anim_t variable

static void lv_anim_set_repeat(lv_anim_t *a, uint16_t wait_time)

Make the animation to start again when ready.

Parameters

- a: pointer to an initialized lv anim t variable
- wait_time: time in milliseconds to wait before starting the animation again

static void lv_anim_clear_repeat(lv_anim_t *a)

Disable repeat. (Disabled after lv anim init())

Parameters

• a: pointer to an initialized lv_anim_t variable

void lv_anim_create(lv_anim_t *a)

Create an animation

Parameters

• a: an initialized 'anim_t' variable. Not required after call.

bool lv anim del (void *var, lv anim exec xcb t exec cb)

Delete an animation of a variable with a given animator function

Return true: at least 1 animation is deleted, false: no animation is deleted

Parameters

- var: pointer to variable
- exec_cb: a function pointer which is animating 'var', or NULL to ignore it and delete all the animations of 'var

static bool lv_anim_custom_del(lv_anim_t *a, lv_anim_custom_exec_cb_t exec_cb)

Delete an aniamation by getting the animated variable from a. Only animations with <code>exec_cb</code> will be deleted. This function exist becasue it's logical that all anim functions receives an <code>lv_anim_t</code> as their first parameter. It's not practical in C but might makes the API more conequent and makes easier to genrate bindings.

Return true: at least 1 animation is deleted, false: no animation is deleted

Parameters

- a: pointer to an animation.
- exec_cb: a function pointer which is animating 'var', or NULL to ignore it and delete all the animations of 'var

uint16_t lv_anim_count_running(void)

Get the number of currently running animations

Return the number of running animations

```
uint16_t lv_anim_speed_to_time(uint16_t speed, lv_anim_value_t start, lv_anim_value_t end)
```

Calculate the time of an animation with a given speed and the start and end values

Return the required time [ms] for the animation with the given parameters

Parameters

- speed: speed of animation in unit/sec
- start: start value of the animation
- end: end value of the animation

lv_anim_value_t lv_anim_path_linear(const lv_anim_t *a)

Calculate the current value of an animation applying linear characteristic

Return the current value to set

Parameters

• a: pointer to an animation

lv_anim_value_t lv_anim_path_ease_in(const lv_anim_t *a)

Calculate the current value of an animation slowing down the start phase

Return the current value to set

Parameters

• a: pointer to an animation

lv_anim_value_t lv_anim_path_ease_out(const lv_anim_t *a)

Calculate the current value of an animation slowing down the end phase

Return the current value to set

Parameters

• a: pointer to an animation

lv_anim_value_t lv_anim_path_ease_in_out(const lv_anim_t *a)

Calculate the current value of an animation applying an "S" characteristic (cosine)

Return the current value to set

Parameters

• a: pointer to an animation

lv_anim_value_t lv_anim_path_overshoot(const lv_anim_t *a)

Calculate the current value of an animation with overshoot at the end

Return the current value to set

Parameters

• a: pointer to an animation

lv_anim_value_t lv_anim_path_bounce(const lv_anim_t *a)

Calculate the current value of an animation with 3 bounces

Return the current value to set

Parameters

• a: pointer to an animation

lv anim value t lv anim path step(const <math>lv anim t *a)

Calculate the current value of an animation applying step characteristic. (Set end value on the end of the animation)

Return the current value to set

Parameters

• a: pointer to an animation

struct _lv_anim_t

 $\#include < lv_anim.h > Describes an animation$

Public Members

void *var

Variable to animate

$$lv_anim_exec_xcb_t$$
 exec_cb

Function to execute to animate

$$lv_anim_path_cb_t$$
 path_cb

Function to get the steps of animations

lv_anim_ready_cb_t ready_cb

Call it when the animation is ready

```
int32 t start
    Start value
int32 t end
    End value
uint16 t time
    Animation time in ms
int16 t act time
    Current time in animation. Set to negative to make delay.
uint16_t playback pause
    Wait before play back
uint16 t repeat pause
    Wait before repeat
lv anim user data t user data
    Custom user data
uint8 t playback
    When the animation is ready play it back
uint8\_t \ \textbf{repeat}
    Repeat the animation infinitely
uint8 t playback now
    Play back is in progress
uint32 t has run
    Indicates the animation has run in this round
```

Tâches

LittlevGL a un système intégré de tâches. Vous pouvez enregistrer une fonction pour l'appeler périodiquement. Les tâches sont gérées et appelées dans <code>lv_task_handler()</code>, qui doit être appelée périodiquement toutes les quelques millisecondes. Voir *Portage* pour plus d'informations.

Les tâches sont non-préemptives, ce qui signifie qu'une tâche ne peut en interrompre une autre. Par conséquent, vous pouvez appeler n'importe quelle fonction liée à LittlevGL dans une tâche.

Créer une tâche

Pour créer une nouvelle tâche, utilisez lv_task_create(task_cb, period_ms, LV_TASK_PRIO_OFF/LOWEST/LOW/MID/HIGH/HIGHEST, user_data). Une variable lv_task_t * est créée qui peut être utilisée ultérieurement pour modifier les paramètres de la tâche. lv_task_create_basic () peut également être utilisée pour créer une nouvelle tâche sans spécifier de paramètre.

La fonction de rappel d'une tâche doit avoir la signature void (* $lv_task_cb_t$)(lv_task_t *).

Par exemple:

```
void my_task(lv_task_t * task)
{
   /* Utilise les données de l'utilisateur */
   uint32_t * user_data = task->user_data;
```

(continues on next page)

(continued from previous page)

```
printf("my_task called with user data: %d\n", *user_data);

/* Fait quelque chose avec LittlevGL */
if(something_happened) {
    something_happened = false;
    lv_btn_create(lv_scr_act(), NULL);
}
}
...
static uint32_t user_data = 10;
lv_task_t * task = lv_task_create(my_task, 500, LV_TASK_PRIO_MID, &user_data);
```

Exécution et réinitialisation

lv_task_ready(task) fait exécuter la tâche lors du prochain appel de lv_task_handler().

lv_task_reset(task) réinitialise la période d'une tâche. La tâche sera appelée après un délai égal à la période définie.

Paramètres

Vous pouvez modifier ultérieurement certains paramètres des tâches :

- lv_task_set_cb(task, new_cb)
- lv task set period(task, new period)
- lv task set prio(task, new priority)

Tâches uniques

Vous pouvez faire en sorte qu'une tâche ne soit exécutée qu'une seule fois en appelant lv_task_once(task). La tâche sera automatiquement supprimée lors du premier appel.

Mesurer le temps d'inactivité

Vous pouvez obtenir le pourcentage de temps d'inactivité de lv_task_handler avec lv_task_get_idle(). Notez que cela ne mesure pas le temps d'inactivité de l'ensemble du système, mais seulement de lv_task_handler. Cela peut être trompeur si vous utilisez un système d'exploitation et appelez lv_task_handler dans une tâche.

Appels asynchrones

Dans certains cas, vous ne pouvez pas faire une action immédiatement. Par exemple, vous ne pouvez pas supprimer un objet pour le moment, car quelque chose d'autre l'utilise encore ou vous ne voulez pas bloquer l'exécution maintenant. Dans ces cas, vous pouvez utiliser lv_async_call(my_function, data_p) pour que ma_fonction soit appelée lors du prochain appel de lv_task_handler. data_p sera passé à fonction lorsqu'elle sera appelée. Notez que seul le pointeur des données est enregistré. Vous devez donc

vous assurer que la variable sera "à portée" lors de l'appel de la fonction. Pour cela, vous pouvez utiliser des données *statiques*, globales ou allouées dynamiquement.

Par exemple:

API

Typedefs

Enums

enum [anonymous]

Possible priorities for lv_tasks

Values:

```
LV_TASK_PRIO_OFF = 0
LV_TASK_PRIO_LOWEST
LV_TASK_PRIO_LOW
LV_TASK_PRIO_MID
LV_TASK_PRIO_HIGH
LV_TASK_PRIO_HIGHEST
_LV_TASK_PRIO_NUM
```

Functions

void lv_task_core_init(void)

Init the lv task module

lv_task_t *lv task create basic(void)

Create an "empty" task. It needs to initialized with at least $lv_task_set_cb$ and $lv_task_set_period$

Return pointer to the craeted task

Create a new ly task

Return pointer to the new task

Parameters

- task_xcb: a callback which is the task itself. It will be called periodically. (the 'x' in the argument name indicates that its not a fully generic function because it not follows the func_name(object, callback, ...) convention)
- period: call period in ms unit
- prio: priority of the task (LV_TASK_PRIO_OFF means the task is stopped)
- user data: custom parameter

void lv_task_del(lv_task_t *task)

Delete a lv task

Parameters

• task: pointer to task cb created by task

void lv_task_set_cb(lv_task_t *task, lv_task_cb_t task_cb)

Set the callback the task (the function to call periodically)

Parameters

- task: pointer to a task
- task_cb: the function to call periodically

void lv task set prio(lv task t *task, lv task prio t prio)

Set new priority for a lv_task

Parameters

- task: pointer to a lv_task
- prio: the new priority

void lv task set period(lv task t *task, uint32 t period)

Set new period for a lv_task

Parameters

- task: pointer to a lv task
- period: the new period

void lv task ready(lv_task_t *task)

Make a lv_task ready. It will not wait its period.

Parameters

• task: pointer to a lv task.

void lv_task_once(lv_task_t *task)

Delete the ly task after one call

Parameters

• task: pointer to a lv task.

void lv_task_reset(lv_task_t *task)

Reset a ly task. It will be called the previously set period milliseconds later.

Parameters

• task: pointer to a lv task.

void lv task enable(bool en)

Enable or disable the whole ly task handling

Parameters

• en: true: lv_task handling is running, false: lv_task handling is suspended

uint8_t lv_task_get_idle(void)

Get idle percentage

Return the lv_task idle in percentage

struct _lv_task_t

#include <lv_task.h> Descriptor of a lv_task

Public Members

uint32_t period

How often the task should run

uint32 t last run

Last time the task ran

$lv_task_cb_t$ task_cb

Task function

void *user_data

Custom user data

uint8 t prio

Task priority

$uint8_t$ once

1: one shot task

Dessin

Avec LittlevGL, vous n'avez pas besoin de dessiner quoi que ce soit manuellement. Créez simplement des objets (comme des boutons et des étiquettes), déplacez-les et modifiez-les. LittlevGL actualisera et redessinera les éléments requis.

Cependant, il peut être utile d'avoir une compréhension de base de la façon dont le dessin est effectué dans LittlevGL.

Le concept de base est de ne pas dessiner directement à l'écran, mais d'abord dans un tampon interne, puis de le copier sur l'écran lorsque le rendu est prêt. Cela présente deux avantages principaux :

- 1. Évite le scintillement pendant que des couches de l'interface utilisateur sont dessinées. P.ex. lorsque vous dessinez un arrière-plan + bouton + texte, chaque "étape" sera visible pendant un court instant.
- 2. C'est plus rapide, car lorsque les pixels sont redessinés plusieurs fois (p.ex. arrière-plan + bouton + texte), il est plus rapide de modifier un tampon dans la MEV et d'écrire physiquement le pixel une seule fois que de lire/écrire un affichage directement sur chaque accès pixel (p.ex. via un contrôleur d'affichage avec interface SPI).

Types de tampons

Comme vous l'avez peut-être déjà appris dans la section Portage, il existe 3 techniques d'utilisation de tampon :

- 1. Un tampon LittlevGL dessine le contenu de l'écran dans un tampon et l'envoie à l'affichage. Le tampon peut être plus petit que l'affichage. Dans ce cas, les zones les plus grandes seront redessinées en plusieurs parties. Si seules de petites zones changent (p.ex. appui sur un bouton), seules ces zones seront actualisées.
- 2. Deux tampons de taille différente de l'écran ayant deux tampons LittlevGL peut dessiner dans un tampon tandis que le contenu de l'autre tampon est envoyé à l'écran en arrière-plan. Le DMA ou une autre méthode doit être utilisé pour transférer les données à l'écran afin de permettre au CPU de dessiner dans le même temps. De cette manière, le rendu et le rafraîchissement de l'affichage deviennent parallèles. De même que pour *Un tampon*, LittlevGL dessine le contenu de l'affichage en fragments si le tampon est plus petit que la zone à actualiser.
- 3. Deux tampons de la taille d'un écran. Contrairement à Deux tampons de taille différente de l'écran LittlevGL fournira toujours tout le contenu de l'affichage, pas seulement des fragments. De cette façon, le pilote peut simplement changer l'adresse du tampon d'affichage par celle du tampon préparé par LittlevGL. Par conséquent, cette méthode est la meilleure lorsque le microcontrôleur dispose d'une interface LCD/TFT et que le tampon d'affichage est un emplacement dans la MEV.

Mécanisme de rafraîchissement de l'écran

- 1. Quelque chose se passe dans l'interface graphique qui nécessite de redessiner. P.ex. un bouton a été pressé, un graphique a été modifié ou une animation s'est produite, etc.
- 2. LittlevGL enregistre l'ancienne et la nouvelle zone de l'objet modifié dans un tampon appelé tampon de zone non valide. Pour l'optimisation, dans certains cas, des objets ne sont pas ajoutés au tampon :
- Les objets cachés ne sont pas ajoutés
- Les objets complètement en-dehors de leur parent ne sont pas ajoutés
- Les zones partiellement hors du parent sont limitées à la zone du parent
- Les objets sur d'autres écrans ne sont pas ajoutés
- 1. A chaque $LV_DISP_DEF_REFR_PERIOD$ (définie dans $lv_conf.h$):
- LittlevGL vérifie les zones non valides et joint les zones adjacentes sécantes
- Prend la première zone jointe si elle est plus petite que le tampon d'affichage, puis dessine simplement le contenu de la zone dans la tampon d'affichage. Si la zone ne rentre pas dans le tampon, dessine autant de lignes que possible dans le tampon d'affichage.
- Quand la zone est dessinée, appelle flush_cb du pilote d'affichage pour actualiser l'affichage
- Si la zone était plus grande que le tampon, redessine également les parties restantes.

• Fait la même chose avec toutes les zones jointes.

Lorsqu'une zone est redessinée, la librairie recherche l'objet le plus haut couvrant la zone à redessiner et commence à dessiner à partir de cet objet. Par exemple, si l'étiquette d'un bouton a changée, la librairie verra qu'il suffit de dessiner le bouton sous le texte et qu'il n'est pas nécessaire de dessiner l'arrière-plan également.

La différence entre les types de tampons en ce qui concerne le mécanisme de dessin est la suivante :

- 1. Un tampon LittlevGL doit attendre lv_disp_flush_ready() (appelée à la fin de flush_cb) avant de commencer à redessiner la partie suivante.
- 2. Deux tampons de taille différente de l'écran LittlevGL peut immédiatement utiliser le second tampon lorsque le premier est envoyé à flush_cb car le transfert doit être effectué par DMA (ou une autre méthode) en arrière-plan.
- 3. Deux tampons de la taille de l'écran Après avoir appelé flush_cb, un premier tampon est affiché. Son contenu est copié dans le second tampon et toutes les modifications sont dessinées dessus.

3.16.4 Types d'objet (éléments visuels)

Objet de base (lv_obj)

Vue d'ensemble

L'objet de base contient les attributs les plus fondamentaux des objets :

- coordonnées
- objet parent
- enfants
- style principal
- des attributs tels que Clic autorisé, Glissé autorisé, etc.

Coordonnées

La taille de l'objet peut être modifiée avec lv_obj_set_width(obj, new_width) et lv_obj_set_height(obj, new_height) ou en une seule fonction avec lv_obj_set_size(obj, new_width, new_height).

Vous pouvez définir les coordonnées x et y relativement au parent avec $lv_obj_set_x(obj, new_x)$ et $lv_obj_set_y(obj, new_y)$ ou en une seule fonction avec $lv_obj_set_pos(obj, new_x, new_y)$.

Vous pouvez aligner l'objet sur un autre avec lv_obj_align(obj, obj_ref, LV_ALIGN _..., x_shift, y_shift). Le deuxième argument est un objet sur lequel **obj** sera aligné. Si obj_ref = NULL, le parent de **obj** sera Le troisième argument est le type d'alignement. Voici les options possibles:

Les types d'alignement sont construits comme LV ALIGN OUT TOP MID.

Les deux derniers arguments spécifient un décalage x et y après l'alignement.

Par exemple, pour aligner un texte sous une image: lv_obj_align(text, image, LV_ALIGN_OUT_BOTTOM_MID, 0, 10). Ou pour aligner un texte au milieu de son parent : lv obj align(text, NULL, LV ALIGN CENTER, 0, 0).

lv_obj_align_origo fonctionne de manière similaire à lv_obj_align mais il aligne le point central de l'objet. Par exemple, lv_obj_align_origo(btn, image, LV_ALIGN_OUT_BOTTOM_MID, 0, 0) alignera le centre du bouton sur le bas de l'image.

Les paramètres de l'alignement seront sauvegardés dans l'objet si $LV_USE_OBJ_REALIGN$ est activé dans $lv_conf.h$. Vous pouvez réaligner les objets manuellement avec $lv_obj_realign(obj)$. Cela revient à appeler lv_obj_align à nouveau avec les mêmes paramètres.

Si l'alignement a eu lieu avec lv obj align origo, il sera utilisé lorsque l'objet sera réaligné.

Si lv_obj_set_auto_realign(obj, true) est utilisé, l'objet sera réaligné automatiquement si sa taille change dans les fonctions lv obj set width/height/size().

C'est très utile lorsque des animations de taille sont appliquées à l'objet et que la position d'origine doit être conservée.

Notez que les coordonnées des écrans ne peuvent pas être modifiées. Tenter d'utiliser ces fonctions sur les écrans entraînera un comportement indéfini.

Parents et enfants

Vous pouvez définir un nouveau parent pour un objet avec lv_obj_set_parent(obj, new_parent). Pour obtenir le parent actuel, utilisez lv_obj_get_parent(obj).

Pour obtenir les enfants d'un objet, utilisez lv_obj_get_child (obj, child_prev) (du dernier au premier) ou lv_obj_get_child_back(obj, child_prev) (du premier au dernier). Pour obtenir le premier enfant, passez NULL en tant que second paramètre et utilisez la valeur de retour pour parcourir les enfants. La fonction retournera NULL s'il n'y a plus d'enfants. Par exemple:

```
lv_obj_t * child;
child = lv_obj_get_child(parent, NULL);
while(child) {
    /* Fait quelque chose avec l'"enfant" */
    child = lv_obj_get_child(parent, child);
}
```

lv_obj_count_children(obj) indique le nombre d'enfants d'un objet. lv_obj_count_children_recursive(obj) indique également le nombre d'enfants mais compte récursivement les enfants d'enfants.

Ecrans

Lorsque vous avez créé un écran avec lv_obj_create(NULL, NULL), vous pouvez le charger avec lv_scr_load(screen1). La fonction lv_scr_act() vous donne un pointeur sur l'écran actuel.

Si vous avez plusieurs d'affichages, il est important de savoir que ces fonctions opèrent sur l'affichage créé en dernier ou explicitement sélectionné (avec lv_disp_set_default).

Pour obtenir l'écran d'un objet, utilisez la fonction lv obj get screen(obj).

Couches

Il y a deux couches générées automatiquement :

- la couche supérieure
- la couche système

Elles sont indépendantes des écrans et les mêmes couches seront affichées sur chaque écran. La couche supérieure est au-dessus de chaque objet à l'écran et la couche système est également au-dessus de la couche supérieure. Vous pouvez ajouter librement n'importe quelle fenêtre contextuelle à la couche supérieure. Mais la couche système est réservée aux éléments de niveau système (par exemple, le curseur de la souris y sera placé par lv_indev_set_cursor()).

Les fonctions lv_layer_top() et lv_layer_sys() retournent un pointeur sur la couche supérieure ou la couche système.

Vous pouvez déplacer un objet au premier plan ou à l'arrière-plan avec $lv_obj_move_foreground(obj)$ et $lv_obj_move_background(obj)$.

Lisez la section *Couches* pour en savoir plus sur les couches.

Style

L'objet de base mémorise le *style principal* de l'objet. Pour définir un nouveau style, utilisez la fonction <code>lv_obj_set_style(obj, & new_style)</code>. Si <code>NULL</code> est défini comme style, l'objet héritera du style de son parent.

Notez que vous ne devriez pas utiliser <code>lv_obj_set_style</code> pour "les objets évolués". Chaque type d'objet a sa propre fonction de jeu de styles qui doit être utilisée pour eux. P.ex. pour le bouton <code>lv_btn_set_style()</code>

Si vous modifiez un style déjà utilisé par des objets afin d'actualiser les objets affectés, vous pouvez utiliser <code>lv_obj_refresh_style(obj)</code> ou notifier tous les objets avec un style donné

lv_obj_report_style_mod(&style). Si le paramètre de lv_obj_report_style_mod est NULL,
tous les objets seront notifiés.

Lisez la section Styles pour en savoir plus sur les styles.

Evènements

Pour définir une fonction de rappel d'événement pour un objet, utilisez lv_obj_set_event_cb(obj, event cb)

Pour envoyer manuellement un événement à un objet, utilisez lv_event_send(obj, LV_EVENT_..., data)

Lisez Evénements pour en savoir plus sur les événements.

Attributs

Certains attributs peuvent être activés/désactivés avec lv_obj_set_...(obj, true/false) :

- hidden Cache l'objet. Il ne sera pas dessiné et sera considéré comme s'il n'existait pas. Ses enfants seront également cachés.
- **click** Activé pour cliquer sur l'objet via les périphériques d'entrée. Si désactivé, l'objet derrière cet objet sera cliqué. (P.ex. les *Etiquettes* ne sont pas cliquables par défaut)
- top Si activé, alors quand on clique sur cet objet ou sur l'un de ses enfants, cet objet passe au premier plan.
- glisser Active le glissé (déplacement par un périphérique d'entrée)
- drag_dir Active le glissé uniquement dans certaines directions. Peut être LV_DRAG_DIR_HOR/VER/ALL.
- drag_throw Active le "lâcher" avec le glissé comme si l'objet avait une impulsion
- ** drag_parent ** Si activé, le parent de l'objet sera déplacé pendant le glissé. Similaire à un glissé du parent. Agit récursivement, peut donc se propager également aux grands-parents.
- parent_event Propage également les évènements aux parents. Agit récursivement, peut donc se propager également aux grands-parents.
- opa_scale_enable Activer la mise à l'échelle de l'opacité. Voir la section Echelle d'opacité.

Echelle d'opacité

Si lv_obj_set_opa_scale_enable(obj, true) est défini pour un objet, l'opacité de l'objet et de tous ses enfants peut être ajustée avec lv_obj_set_opa_scale(obj, LV_OPA_...). Les opacités enregistrées dans les styles seront modifiées par ce facteur.

C'est très utile pour estomper/révéler un objet avec des enfants en utilisant une Animation.

Un peu de technique : pendant le processus de rendu, l'objet et ses parents sont examinés de manière récursive pour trouver un parent avec *opa_scale_enable* actif. Si un objet est trouvé avec *opa_scale_enable* actif, alors ce sera également utilisée par l'objet rendu. Par conséquent, si vous souhaitez désactiver ce mécanisme, activez simplement la mise à l'échelle d'opacité pour l'objet et définissez sa valeur sur LV_OPA_COVER. Les paramètres du parent seront écrasés.

Protection

Certaines actions spécifiques se produisent automatiquement dans la librairie. Pour empêcher un ou plusieurs types d'actions, vous pouvez protéger l'objet. Les protections suivantes existent:

- LV_PROTECT_NONE Aucune protection
- LV_PROTECT_POS Empêche le positionnement automatique (p.ex. mise en page dans les Conteneurs)
- LV_PROTECT_FOLLOW Empêche que l'objet soit suivi (effectue un "saut de ligne") dans un ordre automatique (p.ex. mise en page dans les *Conteneurs*)
- LV_PROTECT_PARENT Empêche le changement de parent automatique (p.ex. *Page* déplace les enfants créés sur l'arrière-plan vers la zone de défilement)
- LV_PROTECT_PRESS_LOST Evite de perdre un appui lors d'un déplacement hors de l'objet. (P.ex. un *Bouton* peut être relâché en dehors s'il est pressé)
- LV_PROTECT_CLICK_FOCUS Empêche la sélection automatique de l'objet s'il se trouve dans un groupe et que la sélection sur clic est activé.
- LV_PROTECT_CHILD_CHG Désactive le signal de changement d'enfant. Utilisé en interne par la librairie

Les fonctions lv_obj_set/clear_protect(obj, LV_PROTECT_...) active/désactive la protection. Vous pouvez également combiner les valeurs des types de protection avec 'OU'.

Groupes

Une fois qu'un objet est ajouté à *group* avec lv_group_add_obj(group, obj), le groupe courant de l'objet peut être obtenu avec lv_obj_get_group(obj).

lv_obj_is_focused(obj) indique si l'objet est actuellement sélectionné dans son groupe. Si l'objet n'est pas membre d'un groupe, false sera renvoyé.

Lisez le Périphériques d'entrée pour en savoir plus sur les groupes.

Zone étendue de clic

Par défaut, les objets ne peuvent être cliqués que sur leur surface, cependant cette zone peut être étendue avec lv_obj_set_ext_click_area(obj, left, right, top, bottom). left/right/top/bottom indique les extensions de la zone dans chaque direction.

Cette fonctionnalité doit être activée dans $lv_conf.h$ avec $\mathsf{LV_USE_EXT_CLICK_AREA}$. Les valeurs possibles sont :

- LV_EXT_CLICK_AREA_FULL mémorise les 4 coordonnées en lv coord t
- LV_EXT_CLICK_AREA_TINY n'enregistre que les coordonnées horizontales et verticales (utilise la plus grande valeur de gauche/ droite et haut/bas) en uint8_t
- LV EXT CLICK AREA OFF Désactive cette fonctionnalité

Styles

Utilisez lv_obj_set_style(obj, &style) pour définir un style pour un objet de base.

Toutes les propriétés style.body sont utilisées. Le style par défaut pour les écrans est lv_style_scr et lv_style_plain_color pour les objets normaux

Evénements

Les Evénements génériques sont envoyés par ce type d'objet.

Apprenez-en plus sur les Evénements.

Touches

Aucune touche n'est traitée par ce type d'objet.

Apprenez-en plus sur les touches.

Exemple

C

Base obejcts with custom styles

code

(continues on next page)

(continued from previous page)

```
lv_obj_set_style(obj1, &lv_style_plain_color);
    lv_obj_align(obj1, NULL, LV_ALIGN_CENTER, -60, -30);
    /*Copy the previous object and enable drag*/
    lv obj t * obj2;
    obj2 = lv_obj_create(lv_scr_act(), obj1);
    lv_obj_set_style(obj2, &lv_style_pretty_color);
    lv_obj_align(obj2, NULL, LV_ALIGN_CENTER, 0, 0);
    static lv style t style shadow;
    lv_style_copy(&style_shadow, &lv_style_pretty);
    style shadow.body.shadow.width = 6;
    style shadow.body.radius = LV RADIUS CIRCLE;
   /*Copy the previous object (drag is already enabled)*/
   lv_obj_t * obj3;
    obj3 = lv_obj_create(lv_scr_act(), obj2);
    lv obj set style(obj3, &style shadow);
    lv obj_align(obj3, NULL, LV_ALIGN_CENTER, 60, 30);
}
```

MicroPython

No examples yet.

API

Typedefs

The design callback is used to draw the object on the screen. It accepts the object, a mask area, and the mode in which to draw the object.

```
typedef uint8_t lv_event_t
```

Type of event being sent to the object.

```
typedef void (*lv event cb t)(struct lv obj t *obj, lv event t event)
```

Event callback. Events are used to notify the user of some action being taken on the object. For details, see lv_event_t .

```
typedef uint8_t lv_signal_t
typedef lv_res_t (*lv_signal_cb_t)(struct _lv_obj_t *obj, lv_signal_t sign, void *param)
typedef uint8_t lv_align_t
typedef uint8_t lv_drag_dir_t
typedef struct _lv_obj_t lv_obj_t
typedef uint8 t lv protect t
```

Enums

enum [anonymous]

Design modes

Values:

LV DESIGN DRAW MAIN

Draw the main portion of the object

LV DESIGN DRAW POST

Draw extras on the object

LV DESIGN COVER CHK

Check if the object fully covers the 'mask_p' area

enum [anonymous]

Values:

LV EVENT PRESSED

The object has been pressed

LV EVENT PRESSING

The object is being pressed (called continuously while pressing)

LV EVENT PRESS LOST

User is still pressing but slid cursor/finger off of the object

LV EVENT SHORT CLICKED

User pressed object for a short period of time, then released it. Not called if dragged.

LV_EVENT_LONG_PRESSED

Object has been pressed for at least LV INDEV LONG PRESS TIME. Not called if dragged.

LV EVENT LONG PRESSED REPEAT

Called after LV_INDEV_LONG_PRESS_TIME in every LV_INDEV_LONG_PRESS_REP_TIME ms. Not called if dragged.

LV EVENT CLICKED

Called on release if not dragged (regardless to long press)

LV EVENT RELEASED

Called in every cases when the object has been released

LV EVENT DRAG BEGIN

LV_EVENT_DRAG_END

LV_EVENT_DRAG_THROW_BEGIN

LV_EVENT_KEY

LV EVENT FOCUSED

LV_EVENT_DEFOCUSED

LV_EVENT_VALUE_CHANGED

The object's value has changed (i.e. slider moved)

LV_EVENT_INSERT

LV_EVENT_REFRESH

LV EVENT APPLY

"Ok", "Apply" or similar specific button has clicked

LV_EVENT_CANCEL

"Close", "Cancel" or similar specific button has clicked

LV_EVENT_DELETE

Object is being deleted

enum [anonymous]

Signals are for use by the object itself or to extend the object's functionality. Applications should use $lv_obj_set_event_cb$ to be notified of events that occur on the object.

Values:

LV SIGNAL CLEANUP

Object is being deleted

LV SIGNAL CHILD CHG

Child was removed/added

LV SIGNAL CORD CHG

Object coordinates/size have changed

LV SIGNAL PARENT_SIZE_CHG

Parent's size has changed

LV_SIGNAL_STYLE_CHG

Object's style has changed

LV_SIGNAL_REFR_EXT_DRAW_PAD

Object's extra padding has changed

LV SIGNAL GET TYPE

LittlevGL needs to retrieve the object's type

LV SIGNAL PRESSED

The object has been pressed

LV SIGNAL PRESSING

The object is being pressed (called continuously while pressing)

LV SIGNAL PRESS LOST

User is still pressing but slid cursor/finger off of the object

LV SIGNAL RELEASED

User pressed object for a short period of time, then released it. Not called if dragged.

LV SIGNAL LONG PRESS

Object has been pressed for at least LV_INDEV_LONG_PRESS_TIME. Not called if dragged.

LV SIGNAL LONG PRESS REP

Called after LV_INDEV_LONG_PRESS_TIME in every LV_INDEV_LONG_PRESS_REP_TIME ms. Not called if dragged.

LV SIGNAL DRAG BEGIN

LV SIGNAL DRAG END

LV SIGNAL FOCUS

LV_SIGNAL_DEFOCUS

LV_SIGNAL_CONTROL

LV_SIGNAL_GET_EDITABLE

enum [anonymous]

Object alignment.

Values:

 $LV_ALIGN_CENTER = 0$

LV_ALIGN_IN_TOP_LEFT

LV_ALIGN_IN_TOP_MID

LV_ALIGN_IN_TOP_RIGHT

LV_ALIGN_IN_BOTTOM_LEFT

LV ALIGN IN BOTTOM MID

LV ALIGN IN BOTTOM RIGHT

LV_ALIGN_IN_LEFT_MID

LV ALIGN IN RIGHT MID

LV_ALIGN_OUT_TOP_LEFT

LV_ALIGN_OUT_TOP_MID

LV_ALIGN_OUT_TOP_RIGHT

LV_ALIGN_OUT_BOTTOM_LEFT

LV_ALIGN_OUT_BOTTOM_MID

LV_ALIGN_OUT_BOTTOM_RIGHT

LV_ALIGN_OUT_LEFT_TOP

LV ALIGN OUT LEFT MID

LV_ALIGN_OUT_LEFT_BOTTOM

LV_ALIGN_OUT_RIGHT_TOP

LV_ALIGN_OUT_RIGHT_MID

LV ALIGN OUT RIGHT BOTTOM

enum [anonymous]

Values:

LV DRAG DIR HOR = 0x1

Object can be dragged horizontally.

LV DRAG DIR VER = 0x2

Object can be dragged vertically.

LV DRAG DIR ALL = 0x3

Object can be dragged in all directions.

enum [anonymous]

Values:

$LV_PROTECT_NONE = 0x00$

$LV_PROTECT_CHILD_CHG = 0x01$

Disable the child change signal. Used by the library

LV PROTECT PARENT = 0x02

Prevent automatic parent change (e.g. in lv_page)

LV PROTECT POS = 0x04

Prevent automatic positioning (e.g. in lv_cont layout)

$LV_PROTECT_FOLLOW = 0x08$

Prevent the object be followed in automatic ordering (e.g. in lv_cont PRETTY layout)

$LV_PROTECT_PRESS_LOST = 0x10$

If the indev was pressing this object but swiped out while pressing do not search other object.

LV PROTECT CLICK FOCUS = 0x20

Prevent focusing the object by clicking on it

Functions

void lv_init(void)

Init. the 'lv' library.

$$lv_obj_t *lv_obj_create(lv_obj_t *parent, const lv_obj_t *copy)$$

Create a basic object

Return pointer to the new object

Parameters

- parent: pointer to a parent object. If NULL then a screen will be created
- copy: pointer to a base object, if not NULL then the new object will be copied from it

Delete 'obj' and all of its children

Return LV_RES_INV because the object is deleted

Parameters

• obj: pointer to an object to delete

void lv obj del async(struct _lv obj t *obj)

Helper function for asynchronously deleting objects. Useful for cases where you can't delete an object directly in an LV_EVENT_DELETE handler (i.e. parent).

See ly async call

Parameters

• **obj**: object to delete

void lv_obj_clean(lv_obj_t *obj)

Delete all children of an object

Parameters

• obj: pointer to an object

void lv_obj_invalidate(const lv_obj_t *obj)

Mark the object as invalid therefore its current position will be redrawn by 'lv refr task'

Parameters

• obj: pointer to an object

void lv_obj_set_parent(lv_obj_t *obj, lv_obj_t *parent)

Set a new parent for an object. Its relative position will be the same.

Parameters

- **obj**: pointer to an object. Can't be a screen.
- parent: pointer to the new parent object. (Can't be NULL)

void $lv_obj_move_foreground(lv_obj_t *obj)$

Move and object to the foreground

Parameters

• obj: pointer to an object

void lv_obj_move_background(lv_obj_t *obj)

Move and object to the background

Parameters

• **obj**: pointer to an object

void $lv_obj_set_pos(lv_obj_t *obj, lv_coord_t x, lv_coord_t y)$

Set relative the position of an object (relative to the parent)

Parameters

- **obj**: pointer to an object
- X: new distance from the left side of the parent
- y: new distance from the top of the parent

void lv obj set
$$x(lv_obj_t*obj, lv coord tx)$$

Set the x coordinate of a object

Parameters

- obj: pointer to an object
- X: new distance from the left side from the parent

void lv obj set
$$y(lv obj t *obj, lv coord t y)$$

Set the y coordinate of a object

Parameters

- **obj**: pointer to an object
- y: new distance from the top of the parent

Set the size of an object

Parameters

- **obj**: pointer to an object
- W: new width
- h: new height

void **lv obj set width** $(lv_obj_t*obj$, lv coord t w)

Set the width of an object

Parameters

- obj: pointer to an object
- W: new width

void $lv_obj_set_height(lv_obj_t *obj, lv_coord_t h)$

Set the height of an object

Parameters

- obj: pointer to an object
- h: new height

void $lv_obj_align(lv_obj_t *obj$, const $lv_obj_t *base$, $lv_align_t align$, $lv_coord_t x_mod$, $lv_coord_t y mod$)

Align an object to an other object.

Parameters

- **obj**: pointer to an object to align
- base: pointer to an object (if NULL the parent is used). 'obj' will be aligned to it.
- align: type of alignment (see 'lv_align_t' enum)
- x_mod: x coordinate shift after alignment
- y_mod: y coordinate shift after alignment

void
$$lv_obj_align_origo(lv_obj_t *obj_t *obj_t *base, lv_align_t align, lv_coord_t x_mod, lv_coord_t y_mod)$$

Align an object to an other object.

Parameters

- **obj**: pointer to an object to align
- base: pointer to an object (if NULL the parent is used). 'obj' will be aligned to it.
- align: type of alignment (see 'lv_align_t' enum)
- x_{mod} : x coordinate shift after alignment
- y mod: y coordinate shift after alignment

void lv_obj_realign(lv_obj_t *obj)

Realign the object based on the last lv_obj_align parameters.

Parameters

• **obj**: pointer to an object

void lv obj set auto realign(lv_obj_t*obj, bool en)

Enable the automatic realign of the object when its size has changed based on the last lv_obj_align parameters.

Parameters

- **obj**: pointer to an object
- en: true: enable auto realign; false: disable auto realign

Set the size of an extended clickable area

Parameters

- **obj**: pointer to an object
- left: extended clickable are on the left [px]
- right: extended clickable are on the right [px]
- top: extended clickable are on the top [px]

• bottom: extended clickable are on the bottom [px]

void lv_obj_set_style(lv_obj_t *obj, const lv_style_t *style)

Set a new style for an object

Parameters

- **obj**: pointer to an object
- style_p: pointer to the new style

void lv_obj_refresh_style(lv_obj_t *obj)

Notify an object about its style is modified

Parameters

• **obj**: pointer to an object

void lv_obj_report_style_mod(lv_style_t *style)

Notify all object if a style is modified

Parameters

• style: pointer to a style. Only the objects with this style will be notified (NULL to notify all objects)

void lv_obj_set_hidden(lv_obj_t *obj, bool en)

Hide an object. It won't be visible and clickable.

Parameters

- **obj**: pointer to an object
- en: true: hide the object

void lv_obj_set_click(lv_obj_t *obj, bool en)

Enable or disable the clicking of an object

Parameters

- **obj**: pointer to an object
- en: true: make the object clickable

Enable to bring this object to the foreground if it or any of its children is clicked

Parameters

- obj: pointer to an object
- en: true: enable the auto top feature

void lv obj set drag(lv_obj_t*obj , bool en)

Enable the dragging of an object

Parameters

- **obj**: pointer to an object
- en: true: make the object dragable

void lv_obj_set_drag_dir(lv_obj_t *obj, lv_drag_dir_t drag_dir)

Set the directions an object can be dragged in

Parameters

• **obj**: pointer to an object

• drag dir: bitwise OR of allowed drag directions

void lv_obj_set_drag_throw(lv_obj_t*obj, bool en)

Enable the throwing of an object after is is dragged

Parameters

- **obj**: pointer to an object
- en: true: enable the drag throw

void lv_obj_set_drag_parent(lv_obj_t*obj, bool en)

Enable to use parent for drag related operations. If trying to drag the object the parent will be moved instead

Parameters

- obj: pointer to an object
- en: true: enable the 'drag parent' for the object

void lv_obj_set_parent_event(lv_obj_t*obj, bool en)

Propagate the events to the parent too

Parameters

- obj: pointer to an object
- en: true: enable the event propagation

void lv_obj_set_opa_scale_enable(lv_obj_t *obj, bool en)

Set the opa scale enable parameter (required to set opa_scale with lv obj set opa scale())

Parameters

- obj: pointer to an object
- en: true: opa scaling is enabled for this object and all children; false: no opa scaling

$\label{eq:cobj_set_opa_scale} \begin{picture}(t) void $$ $lv_obj_set_opa_scale(tv_obj_t*obj, tv_opa_t opa_scale)$ \end{picture}$

Set the opa scale of an object. The opacity of this object and all it's children will be scaled down with this factor. lv_obj_set_opa_scale_enable(obj, true) needs to be called to enable it. (not for all children just for the parent where to start the opa scaling)

Parameters

- **obj**: pointer to an object
- opa scale: a factor to scale down opacity [0..255]

void lv obj set protect($lv \ obj \ t * obj$, uint8 t prot)

Set a bit or bits in the protect filed

Parameters

- obj: pointer to an object
- prot: 'OR'-ed values from lv protect t

void lv obj clear protect(lv_obj_t*obj, uint8 t prot)

Clear a bit or bits in the protect filed

Parameters

- obj: pointer to an object
- prot: 'OR'-ed values from lv protect t

void lv_obj_set_event_cb(lv_obj_t*obj, lv_event_cb_t event_cb)

Set a an event handler function for an object. Used by the user to react on event which happens with the object.

Parameters

- **obj**: pointer to an object
- event_cb: the new event function

lv_res_t $lv_event_send(lv_obj_t*obj, lv_event_t\ event, const\ void*data)$

Send an event to the object

Return LV_RES_OK: obj was not deleted in the event; LV_RES_INV: obj was deleted in the event

Parameters

- **obj**: pointer to an object
- event: the type of the event from lv_event_t.
- data: arbitrary data depending on the object type and the event. (Usually NULL)

lv_res_t $lv_event_send_func(lv_event_cb_t event_xcb, lv_obj_t *obj, lv_event_t event, const void *data)$

Call an event function with an object, event, and data.

Return LV_RES_OK: obj was not deleted in the event; LV_RES_INV: obj was deleted in the event

Parameters

- event_xcb: an event callback function. If NULL LV_RES_0K will return without any actions. (the 'x' in the argument name indicates that its not a fully generic function because it not follows the func_name(object, callback, ...) convention)
- \bullet obj: pointer to an object to associate with the event (can be NULL to simply call the $event_cb)$
- event: an event
- data: pointer to a custom data

const void *lv_event_get_data(void)

Get the data parameter of the current event

Return the data parameter

void lv obj set signal cb(lv obj t *obj, lv signal cb t signal cb)

Set the a signal function of an object. Used internally by the library. Always call the previous signal function in the new.

Parameters

- **obj**: pointer to an object
- signal cb: the new signal function

void lv_signal_send(lv_obj_t *obj, lv_signal_t signal, void *param)

Send an event to the object

Parameters

- obj: pointer to an object
- event: the type of the event from lv_event_t.

void lv_obj_set_design_cb(lv_obj_t *obj, lv_design_cb_t design_cb)

Set a new design function for an object

Parameters

- **obj**: pointer to an object
- design cb: the new design function

void *lv_obj_allocate_ext_attr(lv_obj_t *obj, uint16_t ext_size)

Allocate a new ext. data for an object

Return pointer to the allocated ext

Parameters

- obj: pointer to an object
- ext_size: the size of the new ext. data

void lv_obj_refresh_ext_draw_pad(lv_obj_t *obj)

Send a 'LV_SIGNAL_REFR_EXT_SIZE' signal to the object

Parameters

• **obj**: pointer to an object

lv_obj_t *lv_obj_get_screen(const lv_obj_t *obj)

Return with the screen of an object

Return pointer to a screen

Parameters

• **obj**: pointer to an object

lv_disp_t *lv_obj_get_disp(const lv_obj_t *obj)

Get the display of an object

Return pointer the object's display

Parameters

• scr: pointer to an object

lv_obj_t *lv_obj_get_parent(const lv_obj_t *obj)

Returns with the parent of an object

Return pointer to the parent of 'obj'

Parameters

• **obj**: pointer to an object

$lv_obj_t *lv_obj_get_child(const lv_obj_t *obj, const lv_obj_t *child)$

Iterate through the children of an object (start from the "youngest, lastly created")

Return the child after 'act_child' or NULL if no more child

Parameters

- **obj**: pointer to an object
- child: NULL at first call to get the next children and the previous return value later

lv_obj_t *lv_obj_get_child_back(const lv_obj_t *obj, const lv_obj_t *child)

Iterate through the children of an object (start from the "oldest", firstly created)

Return the child after 'act child' or NULL if no more child

Parameters

- **obj**: pointer to an object
- child: NULL at first call to get the next children and the previous return value later

uint16_t lv_obj_count_children(const lv_obj_t *obj)

Count the children of an object (only children directly on 'obj')

Return children number of 'obj'

Parameters

• **obj**: pointer to an object

uint16_t lv_obj_count_children_recursive(const lv_obj_t *obj)

Recursively count the children of an object

Return children number of 'obj'

Parameters

• obj: pointer to an object

void lv_obj_get_coords(const lv_obj_t *obj, lv_area_t *cords_p)

Copy the coordinates of an object to an area

Parameters

- **obj**: pointer to an object
- cords p: pointer to an area to store the coordinates

void lv_obj_get_inner_coords(const lv_obj_t *obj, lv_area_t *coords_p)

Reduce area retried by $lv_obj_get_coords()$ the get graphically usable area of an object. (Without the size of the border or other extra graphical elements)

Parameters

• coords_p: store the result area here

lv coord t lv obj get x(const lv_obj_t*obj)

Get the x coordinate of object

Return distance of 'obj' from the left side of its parent

Parameters

• obj: pointer to an object

lv_coord_t lv_obj_get_y(const lv_obj_t *obj)

Get the v coordinate of object

Return distance of 'obj' from the top of its parent

Parameters

• obj: pointer to an object

lv coord t lv obj get width(const lv_obj_t *obj)

Get the width of an object

Return the width

Parameters

• **obj**: pointer to an object

lv_coord_t lv_obj_get_height(const lv_obj_t *obj)

Get the height of an object

Return the height

Parameters

• **obj**: pointer to an object

lv_coord_t lv_obj_get_width_fit(lv_obj_t *obj)

Get that width reduced by the left and right padding.

Return the width which still fits into the container

Parameters

• **obj**: pointer to an object

lv_coord_t lv_obj_get_height_fit(lv_obj_t *obj)

Get that height reduced by the top an bottom padding.

Return the height which still fits into the container

Parameters

• **obj**: pointer to an object

bool lv_obj_get_auto_realign(lv_obj_t *obj)

Get the automatic realign property of the object.

Return true: auto realign is enabled; false: auto realign is disabled

Parameters

• **obj**: pointer to an object

lv_coord_t $lv_obj_get_ext_click_pad_left(const$ $lv_obj_t*obj)$

Get the left padding of extended clickable area

Return the extended left padding

Parameters

• **obj**: pointer to an object

lv_coord_t lv_obj_get_ext_click_pad_right(const lv_obj_t *obj)

Get the right padding of extended clickable area

Return the extended right padding

Parameters

• obj: pointer to an object

lv_coord_t lv_obj_get_ext_click_pad_top(const lv_obj_t *obj)

Get the top padding of extended clickable area

 ${f Return}$ the extended top padding

Parameters

• **obj**: pointer to an object

lv_coord_t lv_obj_get_ext_click_pad_bottom(const lv_obj_t *obj)

Get the bottom padding of extended clickable area

Return the extended bottom padding

Parameters

• obj: pointer to an object

lv_coord_t lv_obj_get_ext_draw_pad(const lv_obj_t *obj)

Get the extended size attribute of an object

Return the extended size attribute

Parameters

• **obj**: pointer to an object

const lv_style_t *lv_obj_get_style(const lv_obj_t *obj)

Get the style pointer of an object (if NULL get style of the parent)

Return pointer to a style

Parameters

• **obj**: pointer to an object

bool lv_obj_get_hidden(const lv_obj_t *obj)

Get the hidden attribute of an object

Return true: the object is hidden

Parameters

• **obj**: pointer to an object

bool lv_obj_get_click(const lv_obj_t *obj)

Get the click enable attribute of an object

Return true: the object is clickable

Parameters

• **obj**: pointer to an object

bool lv obj get top(const lv_obj_t*obj)

Get the top enable attribute of an object

Return true: the auto top feature is enabled

Parameters

• **obj**: pointer to an object

bool lv_obj_get_drag(const lv_obj_t *obj)

Get the drag enable attribute of an object

Return true: the object is dragable

Parameters

• **obj**: pointer to an object

lv_drag_dir_t lv_obj_get_drag_dir(const lv_obj_t *obj)

Get the directions an object can be dragged

Return bitwise OR of allowed directions an object can be dragged in

Parameters

• **obj**: pointer to an object

bool lv_obj_get_drag_throw(const lv_obj_t *obj)

Get the drag throw enable attribute of an object

Return true: drag throw is enabled

Parameters

• **obj**: pointer to an object

bool lv_obj_get_drag_parent(const lv_obj_t *obj)

Get the drag parent attribute of an object

Return true: drag parent is enabled

Parameters

• obj: pointer to an object

bool lv_obj_get_parent_event(const $lv_obj_t *obj$)

Get the drag parent attribute of an object

Return true: drag parent is enabled

Parameters

• **obj**: pointer to an object

lv_opa_t lv_obj_get_opa_scale_enable(const $lv_obj_t *obj$)

Get the opa scale enable parameter

Return true: opa scaling is enabled for this object and all children; false: no opa scaling

Parameters

• **obj**: pointer to an object

lv_opa_t lv_obj_get_opa_scale(const lv_obj_t *obj)

Get the opa scale parameter of an object

Return opa scale [0..255]

Parameters

• obj: pointer to an object

uint8_t lv_obj_get_protect(const lv_obj_t *obj)

Get the protect field of an object

Return protect field ('OR'ed values of lv protect t)

Parameters

• **obj**: pointer to an object

bool lv_obj_is_protected(const lv_obj_t *obj, uint8_t prot)

Check at least one bit of a given protect bitfield is set

Return false: none of the given bits are set, true: at least one bit is set

Parameters

- obj: pointer to an object
- prot: protect bits to test ('OR'ed values of lv protect t)

$lv_signal_cb_t$ lv_obj_get_signal_cb(const $lv_obj_t *obj$)

Get the signal function of an object

Return the signal function

Parameters

• obj: pointer to an object

 $lv_design_cb_t$ lv_obj_get_design_cb(const lv_obj_t *obj)

Get the design function of an object

Return the design function

Parameters

• **obj**: pointer to an object

lv_event_cb_t lv_obj_get_event_cb(const lv_obj_t *obj)

Get the event function of an object

Return the event function

Parameters

• obj: pointer to an object

void *lv_obj_get_ext_attr(const lv_obj_t *obj)

Get the ext pointer

Return the ext pointer but not the dynamic version Use it as ext->data1, and NOT da(ext)->data1

Parameters

• **obj**: pointer to an object

void lv_obj_get_type(lv_obj_t *obj, lv_obj_type_t *buf)

Get object's and its ancestors type. Put their name in type_buf starting with the current type. E.g. buf.type[0]="lv_btn", buf.type[1]="lv_cont", buf.type[2]="lv_obj"

Parameters

- **obj**: pointer to an object which type should be get
- buf: pointer to an $lv_obj_type_t$ buffer to store the types

$lv_obj_user_data_t \ \textbf{lv_obj_get_user_data} (\textit{lv_obj_t} * obj)$

Get the object's user data

Return user data

Parameters

• **obj**: pointer to an object

lv_obj_user_data_t *lv_obj_get_user_data_ptr(lv_obj_t *obj)

Get a pointer to the object's user data

Return pointer to the user data

Parameters

• **obj**: pointer to an object

void lv_obj_set_user_data(lv_obj_t *obj, lv_obj_user_data_t data)

Set the object's user data. The data will be copied.

Parameters

- **obj**: pointer to an object
- data: user data

void *lv_obj_get_group(const lv_obj_t *obj)

Get the group of the object

Return the pointer to group of the object

Parameters

• obj: pointer to an object

bool lv_obj_is_focused(const lv_obj_t *obj)

Tell whether the object is the focused object of a group or not.

Return true: the object is focused, false: the object is not focused or not in a group

Parameters

• obj: pointer to an object

struct lv_reailgn_t

Public Members

```
const struct \_lv\_obj\_t *base
```

lv coord t xofs

lv_coord_t yofs

lv_align_t align

uint8_t auto_realign

uint8_t origo_align

1: the origo (center of the object) was aligned with lv obj align origo

struct _lv_obj_t

Public Members

struct lv obj t *par

Pointer to the parent object

lv_ll_t child_ll

Linked list to store the children objects

lv_area_t coords

Coordinates of the object (x1, y1, x2, y2)

lv_event_cb_t event_cb

Event callback function

$lv_signal_cb_t$ signal_cb

Object type specific signal function

$lv_design_cb_t$ design_cb

Object type specific design function

void *ext attr

Object type specific extended data

const lv_style_t *style_p

Pointer to the object's style

void *group_p

Pointer to the group of the object

uint8 t ext click pad hor

Extra click padding in horizontal direction

uint8_t ext_click_pad_ver

Extra click padding in vertical direction

lv_area_t ext_click_pad

Extra click padding area.

uint8 t click

1: Can be pressed by an input device

uint8 t drag

1: Enable the dragging

uint8_t drag_throw

1: Enable throwing with drag

uint8_t drag_parent

1: Parent will be dragged instead

uint8 t hidden

1: Object is hidden

uint8 t top

1: If the object or its children is clicked it goes to the foreground

uint8_t opa_scale_en

1: opa_scale is set

uint8_t parent_event

1: Send the object's events to the parent too.

lv_drag_dir_t drag_dir

Which directions the object can be dragged in

uint8 t reserved

Reserved for future use

uint8_t protect

Automatically happening actions can be prevented. 'OR'ed values from lv_protect_t

lv_opa_t opa_scale

Scale down the opacity by this factor. Effects all children as well

lv_coord_t ext_draw_pad

EXTtend the size in every direction for drawing.

lv_reailgn_t realign

Information about the last call to lv_obj_align .

lv_obj_user_data_t user_data

Custom user data for object.

struct lv_obj_type_t

 $\#include < lv_obj.h > Used by lv_obj_get_type()$. The object's and its ancestor types are stored here

Public Members

const char *type[LV MAX ANCESTOR NUM]

[0]: the actual type, [1]: ancestor, [2] #1's ancestor ... [x]: "lv_obj"

Arc (lv_arc)

Vue d'ensemble

L'objet arc trace un arc entre les angles de début et de fin dans une certaine épaisseur.

Angles

Pour définir les angles, la fonction lv_arc_set_angles(arc, start_angle, end_angle) est utilisée. Le degré zéro est en bas de l'objet et les degrés s'incrémentent dans la direction des aiguilles d'une montre. Les angles doivent être compris dans l'intervalle [0;360].

Notes

Les largeur et hauteur de l'arc doivent être identiques.

Actuellement, l'objet arc ne prend pas en charge l'anticrénelage.

Styles

Pour définir le style d'un objet *arc* la fonction lv_arc_set_style(arc, LV_ARC_STYLE_MAIN, &style) est utilisée

- line.rounded rend les extrémités arrondies (l'opacité ne fonctionnera pas correctement si elle est définie à 1)
- line.width l'épaisseur de l'arc
- line.color la couleur de l'arc.

Evénements

Les événements génériques sont les seuls à être envoyés par ce type d'objet.

Apprenez-en plus sur les événements.

Touches

Aucune touche n'est traitée par ce type d'objet.

Apprenez-en plus sur les touches.

Exemple

C

Simple Arc

code

Loader with Arc

code

```
#include "lvgl/lvgl.h"
* An `lv_task` to call periodically to set the angles of the arc
* @param t
static void arc_loader(lv_task_t * t)
   static int16_t a = 0;
   a+=5;
   if(a >= 359) a = 359;
   if(a < 180) lv_arc_set_angles(t->user_data, 180-a ,180);
   else lv_arc_set_angles(t->user_data, 540-a ,180);
   if(a == 359) {
        lv_task_del(t);
        return;
    }
}
* Create an arc which acts as a loader.
void lv_ex_arc_2(void)
 /*Create style for the Arcs*/
 static lv style t style;
 lv_style_copy(&style, &lv_style_plain);
 style.line.color = LV_COLOR_NAVY;
                                              /*Arc color*/
```

(continues on next page)

(continued from previous page)

MicroPython

No examples yet.

API

Typedefs

```
typedef uint8_t lv_arc_style_t
```

Enums

$\begin{array}{c} \textbf{enum} \ [\textbf{anonymous}] \\ Values: \end{array}$

LV_ARC_STYLE_MAIN

Functions

```
lv\_obj\_t *lv\_arc\_create(lv\_obj\_t *par, const lv\_obj\_t *copy)
Create a arc objects
```

Return pointer to the created arc

Parameters

- par: pointer to an object, it will be the parent of the new arc
- copy: pointer to a arc object, if not NULL then the new object will be copied from it

```
void lv_arc_set_angles(lv_obj_t *arc, uint16_t start, uint16_t end)
```

Set the start and end angles of an arc. 0 deg: bottom, 90 deg: right etc.

Parameters

- arc: pointer to an arc object
- start: the start angle [0..360]
- end: the end angle [0..360]

```
void lv\_arc\_set\_style(lv\_obj\_t*arc, lv\_arc\_style\_t type, const lv\_style\_t*style) Set a style of a arc.
```

Parameters

- arc: pointer to arc object
- type: which style should be set
- style: pointer to a style

uint16_t lv_arc_get_angle_start(lv_obj_t *arc)

Get the start angle of an arc.

Return the start angle [0..360]

Parameters

• arc: pointer to an arc object

uint16_t lv_arc_get_angle_end(lv_obj_t *arc)

Get the end angle of an arc.

Return the end angle [0..360]

Parameters

• arc: pointer to an arc object

$\textbf{const} \ lv_style_t \ *\textbf{lv}_arc_get_style(\textbf{const} \ \textit{lv}_\textit{obj}_t \ *\textit{arc}, \ \textit{lv}_\textit{arc}_\textit{style}_t \ \textit{type})$

Get style of a arc.

Return style pointer to the style

Parameters

- arc: pointer to arc object
- type: which style should be get

struct lv_arc_ext_t

Public Members

```
lv_coord_t angle_start
lv coord t angle end
```

Barre (lv_bar)

Vue d'ensemble

L'objet barre possède deux parties principales :

- 1. un **fond**, l'objet lui-même
- 2. un **indicateur** dont la forme est similaire à celle du fond mais dont les largeur et hauteur peuvent être ajustée.

L'orientation de la barre peut être verticale ou horizontale selon le rapport largeur/hauteur. Logiquement, sur les barres horizontales, la largeur de l'indicateur est modifiable. Sur les barres verticales, c'est la hauteur de l'indicateur qui peut être modifiée.

Valeur et intervalle

Une nouvelle valeur peut être définie par lv_bar_set_value(bar, new_value, LV_ANIM_ON/OFF). La valeur est comprise dans un intervalle (valeurs minimale et maximale) qui peut être modifié avec lv bar set range(bar, min, max). L'intervalle par défaut est 1..100.

La nouvelle valeur définie par <code>lv_bar_set_value</code> est affichée avec ou sans animation selon la valeur du dernier paramètre (<code>LV_ANIM_ON/OFF</code>). La durée de l'animation peut être ajustée par <code>lv_bar_set_anim_time(bar, 100)</code>. L'unité de durée est la milliseconde.

Symétrique

La barre peut être dessinée symétriquement par rapport à zéro (de zéro vers la gauche ou la droite, le haut ou le bas) si cela est activé par lv bar set sym(bar, true)

Styles

Pour définir le style d'un objet barre lv_bar_set_style(arc, LV_BAR_STYLE_MAIN, &style) est utilisée.

- LV_BAR_STYLE_BG est un *objet de base* de ce fait, il utilise ses éléments de style. Son style par défaut est: lv_style_pretty.
- LV_BAR_STYLE_INDIC est similaire au fond. Il utilise les marges left, right, top et bottom pour conserver un peu d'espace sur les bords du fond. Son style par défaut est lv_style_pretty_color.

Evénements

Les événements génériques sont les seuls à être envoyés par ce type d'objet.

Apprenez-en plus sur les événements.

Touches

Aucune touche n'est traitée par ce type d'objet.

Apprenez-en plus sur les touches.

Exemple

C

Simple Bar


```
#include "lvgl/lvgl.h"

void lv_ex_bar_1(void)
{
    lv_obj_t * bar1 = lv_bar_create(lv_scr_act(), NULL);
    lv_obj_set_size(bar1, 200, 30);
    lv_obj_align(bar1, NULL, LV_ALIGN_CENTER, 0, 0);
    lv_bar_set_anim_time(bar1, 1000);
    lv_bar_set_value(bar1, 100, LV_ANIM_ON);
}
```

MicroPython

Simple Bar

code

```
bar1 = lv.bar(lv.scr_act())
bar1.set_size(200, 30);
bar1.align(None, lv.ALIGN.CENTER, 0, 0);
bar1.set_anim_time(1000);
bar1.set_value(100, lv.ANIM.ON);
```

API

Typedefs

typedef uint8_t lv_bar_style_t

Enums

enum [anonymous]

Bar styles.

Values:

LV_BAR_STYLE_BG

LV_BAR_STYLE_INDIC

Bar background style.

Functions

```
lv\_obj\_t *lv\_bar\_create(lv\_obj\_t *par, const lv\_obj\_t *copy)
Create a bar objects
```

Return pointer to the created bar

Parameters

- par: pointer to an object, it will be the parent of the new bar
- copy: pointer to a bar object, if not NULL then the new object will be copied from it

void lv_bar_set_value(lv_obj_t*bar, int16_t value, lv_anim_enable_t anim)

Set a new value on the bar

Parameters

- bar: pointer to a bar object
- value: new value
- anim: LV_ANIM_ON: set the value with an animation; LV_ANIM_OFF: change the value immediately

void lv_bar_set_range(lv_obj_t *bar, int16_t min, int16_t max)

Set minimum and the maximum values of a bar

Parameters

- bar: pointer to the bar object
- min: minimum value
- max: maximum value

void lv_bar_set_sym(lv_obj_t *bar, bool en)

Make the bar symmetric to zero. The indicator will grow from zero instead of the minimum position.

Parameters

- bar: pointer to a bar object
- en: true: enable disable symmetric behavior; false: disable

void lv_bar_set_anim_time(lv_obj_t *bar, uint16_t anim_time)

Set the animation time of the bar

Parameters

- bar: pointer to a bar object
- anim_time: the animation time in milliseconds.

 $\label{local_void_local_void_local_void_local} \begin{subarray}{ll} void $lv_bar_set_style(lv_obj_t*bar, lv_bar_style_t type, const lv_style_t*style) \end{subarray}$

Set a style of a bar

Parameters

- bar: pointer to a bar object
- type: which style should be set
- style: pointer to a style

int16_t lv_bar_get_value(const lv_obj_t *bar)

Get the value of a bar

Return the value of the bar

Parameters

• bar: pointer to a bar object

int16_t lv_bar_get_min_value(const lv_obj_t *bar)

Get the minimum value of a bar

Return the minimum value of the bar

Parameters

• bar: pointer to a bar object

int16_t lv_bar_get_max_value(const lv_obj_t *bar)

Get the maximum value of a bar

Return the maximum value of the bar

Parameters

• bar: pointer to a bar object

bool lv_bar_get_sym(lv_obj_t *bar)

Get whether the bar is symmetric or not.

Return true: symmetric is enabled; false: disable

Parameters

• bar: pointer to a bar object

uint16_t lv_bar_get_anim_time(lv_obj_t*bar)

Get the animation time of the bar

Return the animation time in milliseconds.

Parameters

• bar: pointer to a bar object

$\textbf{const} \ lv_style_t \ *\textbf{lv_bar_get_style} (\textbf{const} \ \textit{lv_obj_t} \ *\textit{bar}, \ \textit{lv_bar_style_t} \ \textit{type})$

Get a style of a bar

Return style pointer to a style

Parameters

- bar: pointer to a bar object
- type: which style should be get

struct lv_bar_ext_t

#include $<\!\!lv_bar.h\!\!>$ Data of bar

Public Members

```
int16\_t cur_value int16\_t min_value
```

 $int16_t$ max_value

 $lv_anim_value_t$ anim_start

 $lv_anim_value_t$ anim_end

lv_anim_value_t anim_state

lv_anim_value t anim time

 $uint8_t \text{ sym}$

const lv_style_t *style_indic

Bouton (lv_btn)

Vue d'ensemble

Les boutons sont de simples objets rectangulaires dont le style et l'état changent quand ils sont pressés ou relâchés.

Etats

Les boutons peuvent prendre l'un des 5 états possibles :

- LV_BTN_STATE_REL état relâché
- LV BTN STATE PR état pressé
- LV_BTN_STATE_TGL_REL état bascule relâché
- LV_BTN_STATE_TGL_PR état bascule pressé
- LV_BTN_STATE_INA état désactivé

L'état passe automatiquement de ..._REL à ..._PR quand le bouton est pressé et inversement quand il est relâché.

L'état peut être défini par programmation avec lv btn set state(btn, LV BTN STATE ...).

Bascule

Les boutons peuvent être configurés comme bouton bascule aveclv_btn_set_toggle(btn, true). Dans ce cas, au relâchement, le bouton prend l'état bascule relâché.

Mise en page et adaptation

De la même manière que les conteneurs, les boutons ont des attributs de mise en page et d'adaptation.

- lv_btn_set_layout(btn, LV_LAYOUT_...) définit une mise en page. La valeur par défaut est LV_LAYOUT_CENTER. Ainsi, si vous ajoutez une étiquette, elle sera automatiquement alignée au milieu et ne pourra pas être déplacée avec lv_obj_set_pos(). La mise en page peut être désactivée avec lv btn set layout(btn, LV LAYOUT OFF)
- lv_btn_set_fit/fit2/fit4(btn, LV_FIT_..) permet d'adapter automatiquement la largeur et/ou la hauteur du bouton en fonction des enfants, du parent et du type d'adaptation.

Effet d'encre

Vous pouvez activer une animation spéciale sur les boutons : quand un bouton est pressé, l'état pressé est tracé dans un cercle grandissant à partir de l'endroit de l'appui. C'est comme une gouttelette d'encre qui s'étale dans l'eau. Lorsque le bouton est relâché, l'état relâché est visualisé en estompant le cercle. C'est comme si l'encre s'était complètement mélangée à l'eau et devenait invisible.

Pour contrôler cette animation, utilisez les fonctions suivantes :

- lv btn set ink in time(btn, time ms) temps de croissance du cercle
- lv_btn_set_ink_wait_time(btn, time_ms) durée minimum d'affichage du cercle complet à l'état pressé
- lv btn set ink out time(btn, time ms) temps de passage à l'état relâché

Cette fonctionnalité doit être activée avec LV BTN INK EFFECT 1 dans lv conf.h.

Styles

Un bouton peut avoir 5 styles indépendants pour les 5 états. Vous pouvez les définir via : lv_btn_set_style(btn, LV_BTN_STYLE_..., &style). Les styles utilisent les propriétés style. body.

- LV_BTN_STYLE_REL style de l'état relâché. Défaut : lv_style_btn_rel
- LV_BTN_STYLE_PR style de l'état pressé. Défaut : lv style btn pr
- LV_BTN_STYLE_TGL_REL style de l'état bascule relâché. Défaut lv_style_btn_tgl_rel
- LV_BTN_STYLE_TGL_PR style de l'état bascule pressé. Défaut : lv style btn tgl pr
- LV_BTN_STYLE_INA style de l'état désactivé. Défaut : lv style btn ina

Quand vous créez une étiquette sur un bouton, la bonne pratique consiste à définir les propriétés style. text du bouton. Comme les étiquettes ont style = NULL par défaut, elles héritent du style du parent, le bouton. De ce fait, vous n'avez pas besoin de créer un nouveau style pour l'étiquette.

Evénements

Outre les [événements génériques](/overview/event.html #evenements-generiques), les événements spéciaux suivants sont envoyés par les boutons :

• LV_EVENT_VALUE_CHANGED envoyé lorsque le bouton est basculé.

Notez que les événements génériques liés au périphérique d'entrée (tels que LV_EVENT_PRESSED) sont également envoyés dans l'état désactivé. Vous devez vérifier l'état avec lv_btn_get_state(btn) pour ignorer les événements des boutons désactivés.

Apprenez-en plus sur les événements.

Touches

Les touches suivantes sont traitées par les boutons:

- LV_KEY_RIGHT/UP passe à l'état bascule pressé si le mode bascule est activé
- LV_KEY_LEFT/DOWN passe à l'état bascule relâché si le mode bascule est activé

Notez que, comme d'habitude, l'état de LV_KEY_ENTER est traduit en LV_EVENT_PRESSED/PRESSING/RELEASED etc.

Apprenez-en plus sur les touches.

Exemple

C

Simple Buttons

code

```
#include "lvgl/lvgl.h"
#include <stdio.h>
static void event_handler(lv_obj_t * obj, lv_event_t event)
    if(event == LV EVENT CLICKED) {
       printf("Clicked\n");
   else if(event == LV_EVENT_VALUE_CHANGED) {
       printf("Toggled\n");
    }
}
void lv_ex_btn_1(void)
   lv_obj_t * label;
   lv_obj_t * btn1 = lv_btn_create(lv_scr_act(), NULL);
    lv_obj_set_event_cb(btn1, event_handler);
    lv_obj_align(btn1, NULL, LV_ALIGN_CENTER, 0, -40);
    label = lv_label_create(btn1, NULL);
   lv_label_set_text(label, "Button");
    lv_obj_t * btn2 = lv_btn_create(lv_scr_act(), NULL);
    lv_obj_set_event_cb(btn2, event_handler);
    lv_obj_align(btn2, NULL, LV_ALIGN_CENTER, 0, 40);
```

(continues on next page)

(continued from previous page)

```
lv_btn_set_toggle(btn2, true);
lv_btn_toggle(btn2);
lv_btn_set_fit2(btn2, LV_FIT_NONE, LV_FIT_TIGHT);

label = lv_label_create(btn2, NULL);
lv_label_set_text(label, "Toggled");
}
```

MicroPython

No examples yet.

API

Typedefs

```
typedef uint8_t lv_btn_state_t
typedef uint8_t lv_btn_style_t
```

Enums

enum [anonymous]

Possible states of a button. It can be used not only by buttons but other button-like objects too

Values:

LV_BTN_STATE_REL

Released

LV_BTN_STATE_PR

Pressed

LV_BTN_STATE_TGL_REL

Toggled released

LV_BTN_STATE_TGL_PR

Toggled pressed

LV BTN STATE INA

Inactive

LV BTN STATE NUM

Number of states

enum [anonymous]

Styles

Values:

LV_BTN_STYLE_REL

Release style

LV_BTN_STYLE_PR

Pressed style

LV BTN STYLE TGL REL

Toggle released style

LV_BTN_STYLE_TGL_PR

Toggle pressed style

LV_BTN_STYLE_INA

Inactive style

Functions

 $lv_obj_t *lv_btn_create(lv_obj_t *par, const lv_obj_t *copy)$

Create a button object

Return pointer to the created button

Parameters

- par: pointer to an object, it will be the parent of the new button
- copy: pointer to a button object, if not NULL then the new object will be copied from it

void lv_btn_set_toggle(lv_obj_t *btn, bool tgl)

Enable the toggled states. On release the button will change from/to toggled state.

Parameters

- btn: pointer to a button object
- tgl: true: enable toggled states, false: disable

Set the state of the button

Parameters

- btn: pointer to a button object
- state: the new state of the button (from ly btn state t enum)

void lv_btn_toggle(lv_obj_t *btn)

Toggle the state of the button (ON->OFF, OFF->ON)

Parameters

• btn: pointer to a button object

static void lv_btn_set_layout(lv_obj_t*btn, lv_layout_t layout)

Set the layout on a button

Parameters

- btn: pointer to a button object
- layout: a layout from 'lv cont layout t'

static void lv_btn_set_fit4(lv_obj_t *btn, lv_fit_t left, lv_fit_t right, lv_fit_t top, lv_fit_t bottom)

Set the fit policy in all 4 directions separately. It tells how to change the button size automatically.

- btn: pointer to a button object
- left: left fit policy from lv fit t

- right: right fit policy from lv_fit_t
- top: top fit policy from lv_fit_t
- bottom: bottom fit policy from lv_fit_t

static void **lv_btn_set_fit2**(lv_obj_t*btn, lv_fit_t hor, lv_fit_t ver)

Set the fit policy horizontally and vertically separately. It tells how to change the button size automatically.

Parameters

- btn: pointer to a button object
- hor: horizontal fit policy from lv fit t
- ver: vertical fit policy from lv_fit_t

static void lv_btn_set_fit(lv_obj_t*btn, lv_fit_t fit)

Set the fit policy in all 4 direction at once. It tells how to change the button size automatically.

Parameters

- btn: pointer to a button object
- fit: fit policy from lv_fit_t

void lv_btn_set_ink_in_time(lv_obj_t*btn, uint16_t time)

Set time of the ink effect (draw a circle on click to animate in the new state)

Parameters

- btn: pointer to a button object
- time: the time of the ink animation

void lv_btn_set_ink_wait_time(lv_obj_t*btn, uint16_t time)

Set the wait time before the ink disappears

Parameters

- btn: pointer to a button object
- time: the time of the ink animation

void lv_btn_set_ink_out_time(lv_obj_t *btn, uint16_t time)

Set time of the ink out effect (animate to the released state)

Parameters

- btn: pointer to a button object
- time: the time of the ink animation

void lv_btn_set_style(lv_obj_t *btn, lv_btn_style_t type, const lv_style_t *style)

Set a style of a button.

Parameters

- btn: pointer to button object
- type: which style should be set
- style: pointer to a style

lv_btn_state_t lv_btn_get_state(const lv_obj_t *btn)

Get the current state of the button

Return the state of the button (from ly btn state t enum)

Parameters

• btn: pointer to a button object

bool lv_btn_get_toggle(const lv_obj_t *btn)

Get the toggle enable attribute of the button

Return true: toggle enabled, false: disabled

Parameters

• btn: pointer to a button object

static lv_layout_t lv_btn_get_layout(const lv_obj_t *btn)

Get the layout of a button

Return the layout from 'lv_cont_layout_t'

Parameters

• btn: pointer to button object

static lv_fit_t lv_btn_get_fit_left(const lv_obj_t *btn)

Get the left fit mode

Return an element of lv_fit_t

Parameters

• btn: pointer to a button object

static lv_fit_t lv_btn_get_fit_right(const lv_obj_t *btn)

Get the right fit mode

 ${f Return}$ an element of ${f lv_fit_t}$

Parameters

• btn: pointer to a button object

static lv_fit_t lv_btn_get_fit_top(const lv_obj_t *btn)

Get the top fit mode

Return an element of lv fit t

Parameters

• btn: pointer to a button object

static lv_fit_t **lv**_**btn**_**get**_**fit**_**bottom**(**const** lv_obj_t *btn)

Get the bottom fit mode

 ${f Return}$ an element of ${f lv_fit_t}$

Parameters

• btn: pointer to a button object

uint16 t lv btn get ink in time(const lv_obj_t*btn)

Get time of the ink in effect (draw a circle on click to animate in the new state)

Return the time of the ink animation

Parameters

• btn: pointer to a button object

uint16_t lv_btn_get_ink_wait_time(const lv_obj_t*btn)

Get the wait time before the ink disappears

Return the time of the ink animation

Parameters

• btn: pointer to a button object

uint16_t lv_btn_get_ink_out_time(const lv_obj_t *btn)

Get time of the ink out effect (animate to the releases state)

Return the time of the ink animation

Parameters

• btn: pointer to a button object

const $lv_style_t *lv_btn_get_style(const <math>lv_obj_t *btn, lv_btn_style_t \ type)$ Get style of a button.

Return style pointer to the style

Parameters

- btn: pointer to button object
- type: which style should be get

struct lv_btn_ext_t

 $\#include < lv_btn.h >$ Extended data of button

Public Members

```
lv_cont_ext_t cont
    Ext. of ancestor

const lv_style_t *styles[_LV_BTN_STATE_NUM]
    Styles in each state
uint16_t ink_in_time
    [ms] Time of ink fill effect (0: disable ink effect)
uint16_t ink_wait_time
    [ms] Wait before the ink disappears
uint16_t ink_out_time
    [ms] Time of ink disappearing
lv_btn_state_t state
    Current state of the button from 'lv_btn_state_t' enum
uint8_t toggle
    1: Toggle enabled
```

Matrice de boutons (lv_btnm)

Vue d'ensemble

Les objets matrice de boutons peuvent afficher plusieurs boutons en lignes et en colonnes.

Texte du bouton

Il y a un texte sur chaque bouton. Pour les spécifier, un tableau de chaînes, appelé *mappe*, doit être utilisé. La mappe peut être définie avec <code>lv_btnm_set_map(btnm, my_map)</code>. La déclaration d'une mappe doit ressembler à <code>const char * map[] = { "btn1", "btn2", "btn3", "" }</code>. Notez que le dernier élément doit être une chaîne vide!

Utilisez "\n" dans la mappe pour faire **un saut de ligne**. P.ex. '{ "btn1", "btn2", "\n", "btn3", ""}. La largeur du bouton est recalculée dans chaque ligne afin de remplir toute la ligne.

Contrôle des boutons

La largeur des **boutons** peut être définie par rapport aux autres boutons de la même ligne avec lv_btnm_set_btn_width(btnm, btn_id, width) P.ex. dans une ligne avec deux boutons : btnA, width = 1 et btnB, width = 2, btnA occupera 33% et *btnB * occupera 66% de la largeur de la ligne.

En plus de la largeur, chaque bouton peut être personnalisé avec les paramètres suivants :

- LV_BTNM_CTRL_HIDDEN cache le bouton
- LV_BTNM_CTRL_NO_REPEAT désactive la répétition lors d'un appui long
- LV_BTNM_CTRL_INACTIVE désactive le bouton
- LV_BTNM_CTRL_TGL_ENABLE active le mode bascule d'un bouton
- LV_BTNM_CTRL_TGL_STATE définit l'état basculé
- LV_BTNM_CTRL_CLICK_TRIG si 0 le bouton réagira à l'appui, si 1 réagira au relâché

Pour définir ou effacer un attribut de contrôle d'un bouton utilisez lv_btnm_set_btn_ctrl(btnm, btn_id, LV_BTNM_CTRL_...) et lv_btnm_clear_btn_ctrl(btnm, btn_id, LV_BTNM_CTRL_...) respectivement. Plusieurs LV_BTNM_CTRL_... peuvent combinées avec OU

Pour définir ou effacer un attribut de contrôle pour tous les boutons d'une matrice de boutons utilisez lv_btnm_set_btn_ctrl_all(btnm, btn_id, LV_BTNM_CTRL_...) et lv_btnm_clear_btn_ctrl_all(btnm, btn_id, LV_BTNM_CTRL_...).

Pour définir une mappe de contrôle pour une matrice de boutons (comme pour le texte), utilisez lv_btnm_set_ctrl_map(btnm, ctrl_map). Un élément de ctrl_map devrait ressembler à ctrl_map[0] = width | LV_BTNM_CTRL_NO_REPEAT | LV_BTNM_CTRL_TGL_ENABLE. Le nombre d'éléments doit être égal au nombre de boutons (en excluant les caractères de saut de ligne).

Une bascule

La fonctionnalité "Une bascule" peut être activée avec lv_btnm_set_one_toggle(btnm, true) pour autoriser un seul bouton basculé à la fois.

Recolorer

Les **textes** sur les boutons peuvent être **recolorés** de manière semblable à la recoloration de l'objet *Etiquette*. Pour activer cette fonctionnalité, utilisez <code>lv_btnm_set_recolor(btnm, true)</code>. Après cela, un bouton avec le texte <code>#FF0000 Red#</code> sera rouge.

Notes

L'objet Matrice de boutons est très léger, car les boutons ne sont pas créés mais simplement dessinés à la volée. De cette façon, 1 bouton utilise seulement 8 octets supplémentaires au lieu des \sim 100-150 octets d'un objet Bouton normal.

Styles

La Matrice de boutons fonctionne avec 6 styles : un arrière-plan et 5 styles de boutons pour chaque état. Vous pouvez définir les styles avec lv_btnm_set_style(btn, LV_BTNM_STYLE_..., &style). L'arrière-plan et les boutons utilisent les propriétés style.body. Les étiquettes utilisent les propriétés style.text des styles de bouton.

- LV_BTNM_STYLE_BG style d'arrière-plan. Utilise toutes les propriétés *style.body*, y compris *padding* Par défaut : *lv_style_pretty*
- LV_BTNM_STYLE_BTN_REL style des boutons relâchés. Défaut : lv_style_btn_rel
- LV_BTNM_STYLE_BTN_PR style des boutons pressés. Défaut : $lv_style_btn_pr$

- LV_BTNM_STYLE_BTN_INA style des boutons inactifs. Défaut : lv_style_btn_ina

Evénements

Outre les [événements génériques](/overview/event.html #evenements-generiques), les événements spéciaux suivants sont envoyés par les matrices de boutons :

• LV_EVENT_VALUE_CHANGED envoyé lorsque le bouton est enfoncé/relâché ou répété après un appui prolongé. Les données d'événement sont l'ID du bouton enfoncé/relâché.

Apprenez-en plus sur les événements.

Touches

Les touches suivantes sont traitées par les boutons :

- LV_KEY_RIGHT/UP/LEFT/RIGHT Pour naviguer parmi les boutons pour en sélectionner un
- LV_KEY_ENTER Pour appuyer/relâcher le bouton sélectionné

Apprenez-en plus sur les touches.

Exemple

C

Simple Button matrix

code

```
#include "lvgl/lvgl.h"
#include <stdio.h>
static void event_handler(lv_obj_t * obj, lv_event_t event)
   if(event == LV_EVENT_VALUE_CHANGED) {
       const char * txt = lv_btnm_get_active_btn_text(obj);
       printf("%s was pressed\n", txt);
   }
}
"Action1", "Action2", ""};
void lv_ex_btnm_1(void)
   lv_obj_t * btnm1 = lv_btnm_create(lv_scr_act(), NULL);
   lv_btnm_set_map(btnm1, btnm_map);
   lv_btnm_set_btn_width(btnm1, 10, 2);
                                         /*Make "Action1" twice as wide as
→"Action2"*/
   lv_obj_align(btnm1, NULL, LV_ALIGN_CENTER, 0, 0);
   lv_obj_set_event_cb(btnm1, event_handler);
}
```

MicroPython

No examples yet.

API

Typedefs

```
typedef uint16_t lv_btnm_ctrl_t
typedef uint8_t lv_btnm_style_t
```

Enums

enum [anonymous]

Type to store button control bits (disabled, hidden etc.)

Values:

LV BTNM CTRL HIDDEN = 0x0008

Button hidden

$LV_BTNM_CTRL_NO_REPEAT = 0x0010$

Do not repeat press this button.

LV BTNM CTRL INACTIVE = 0x0020

Disable this button.

LV BTNM CTRL TGL ENABLE = 0x0040

Button can be toggled.

LV BTNM CTRL TGL STATE = 0x0080

Button is currently toggled (e.g. checked).

LV BTNM CTRL CLICK TRIG = 0x0100

1: Send LV EVENT SELECTED on CLICK, 0: Send LV EVENT SELECTED on PRESS

enum [anonymous]

Values:

LV_BTNM_STYLE_BG

LV BTNM STYLE BTN REL

LV BTNM STYLE BTN PR

LV_BTNM_STYLE_BTN_TGL_REL

LV_BTNM_STYLE_BTN_TGL_PR

LV_BTNM_STYLE_BTN_INA

Functions

$$lv_obj_t *lv_btnm_create(lv_obj_t *par, const lv_obj_t *copy)$$

Create a button matrix objects

Return pointer to the created button matrix

- par: pointer to an object, it will be the parent of the new button matrix
- COPY: pointer to a button matrix object, if not NULL then the new object will be copied from it

void $lv_btnm_set_map(const lv_obj_t *btnm, const char *map[])$

Set a new map. Buttons will be created/deleted according to the map. The button matrix keeps a reference to the map and so the string array must not be deallocated during the life of the matrix.

Parameters

- btnm: pointer to a button matrix object
- map: pointer a string array. The last string has to be: "". Use "\n" to make a line break.

void lv_btnm_set_ctrl_map(const lv_obj_t *btnm, const lv_btnm_ctrl_t ctrl_map[])

Set the button control map (hidden, disabled etc.) for a button matrix. The control map array will be copied and so may be deallocated after this function returns.

Parameters

- btnm: pointer to a button matrix object
- ctrl_map: pointer to an array of lv_btn_ctrl_t control bytes. The length of the array and position of the elements must match the number and order of the individual buttons (i.e. excludes newline entries). An element of the map should look like e.g.: ctrl_map[0] = width | LV BTNM CTRL NO REPEAT | LV BTNM CTRL TGL ENABLE

void lv btnm set pressed(const lv_obj_t*btnm, uint16 t id)

Set the pressed button i.e. visually highlight it. Mainly used a when the btnm is in a group to show the selected button

Parameters

- btnm: pointer to button matrix object
- id: index of the currently pressed button (LV_BTNM_BTN_NONE to unpress)

void $lv_btnm_set_style(lv_obj_t*btnm, lv_btnm_style_t type, const lv_style_t*style)$ Set a style of a button matrix

Parameters

- btnm: pointer to a button matrix object
- type: which style should be set
- style: pointer to a style

void lv_btnm_set_recolor(const lv_obj_t *btnm, bool en)

Enable recoloring of button's texts

Parameters

- btnm: pointer to button matrix object
- en: true: enable recoloring; false: disable

void lv_btnm_set_btn_ctrl(const lv_obj_t*btnm, uint16_t btn_id, lv_btnm_ctrl_t ctrl)

Set the attributes of a button of the button matrix

Parameters

- btnm: pointer to button matrix object
- btn id: 0 based index of the button to modify. (Not counting new lines)

$\label{eq:const_lv_obj_t*btnm} \textbf{void} \ \textbf{lv_btnm_ctrl_t} \ \textit{ctrl} \textbf{(const} \ \textit{lv_obj_t} \ *btnm, \ \text{uint} 16_t \ \textit{btn_id}, \ \textit{lv_btnm_ctrl_t} \ \textit{ctrl} \textbf{)}$

Clear the attributes of a button of the button matrix

- btnm: pointer to button matrix object
- btn id: 0 based index of the button to modify. (Not counting new lines)

void lv_btnm_set_btn_ctrl_all(lv_obj_t*btnm, lv_btnm_ctrl_t ctrl)

Set the attributes of all buttons of a button matrix

Parameters

- btnm: pointer to a button matrix object
- ctrl: attribute(s) to set from lv_btnm_ctrl_t. Values can be ORed.

void lv btnm clear btn ctrl all(lv_obj_t*btnm, lv_btnm_ctrl_t ctrl)

Clear the attributes of all buttons of a button matrix

Parameters

- btnm: pointer to a button matrix object
- ctrl: attribute(s) to set from lv_btnm_ctrl_t. Values can be ORed.
- en: true: set the attributes; false: clear the attributes

void lv_btnm_set_btn_width(const lv_obj_t*btnm, uint16_t btn_id, uint8_t width)

Set a single buttons relative width. This method will cause the matrix be regenerated and is a relatively expensive operation. It is recommended that initial width be specified using lv btnm set ctrl map and this method only be used for dynamic changes.

Parameters

- btnm: pointer to button matrix object
- btn_id: 0 based index of the button to modify.
- width: Relative width compared to the buttons in the same row. [1..7]

void lv btnm set one toggle(lv_obj_t*btnm, bool one_toggle)

Make the button matrix like a selector widget (only one button may be toggled at a time).

Toggling must be enabled on the buttons you want to be selected with lv_btnm_set_ctrl or lv_btnm_set_btn_ctrl_all.

Parameters

- btnm: Button matrix object
- one_toggle: Whether "one toggle" mode is enabled

const char **lv btnm get map array(const lv obj t *btnm)

Get the current map of a button matrix

Return the current map

Parameters

• btnm: pointer to a button matrix object

bool lv btnm get recolor(const lv_obj_t*btnm)

Check whether the button's text can use recolor or not

Return true: text recolor enable; false: disabled

Parameters

• btnm: pointer to button matrix object

uint16_t lv_btnm_get_active_btn(const lv_obj_t*btnm)

Get the index of the lastly "activated" button by the user (pressed, released etc) Useful in the the event_cb to get the text of the button, check if hidden etc.

Return index of the last released button (LV_BTNM_BTN_NONE: if unset)

Parameters

• btnm: pointer to button matrix object

const char *lv_btnm_get_active_btn_text(const lv_obj_t *btnm)

Get the text of the lastly "activated" button by the user (pressed, released etc) Useful in the the ${\tt event_cb}$

Return text of the last released button (NULL: if unset)

Parameters

• btnm: pointer to button matrix object

uint16 t lv btnm get pressed btn(const lv_obj_t*btnm)

Get the pressed button's index. The button be really pressed by the user or manually set to pressed with $lv\ btnm\ set\ pressed$

Return index of the pressed button (LV_BTNM_BTN_NONE: if unset)

Parameters

• btnm: pointer to button matrix object

const char *lv btnm get btn text(const lv obj t*btnm, uint16 t btn id)

Get the button's text

Return text of btn_index' button

Parameters

- btnm: pointer to button matrix object
- btn_id: the index a button not counting new line characters. (The return value of lv btnm get pressed/released)

bool lv btnm get btn ctrl(lv obj t*btnm, uint16 t btn id, lv btnm ctrl t ctrl)

Get the whether a control value is enabled or disabled for button of a button matrix

Return true: long press repeat is disabled; false: long press repeat enabled

Parameters

- btnm: pointer to a button matrix object
- btn_id: the index a button not counting new line characters. (E.g. the return value of lv_btnm_get_pressed/released)
- ctrl: control values to check (ORed value can be used)

$\textbf{const} \ \text{lv_style_t} \ *\textbf{lv_btnm_get_style} (\textbf{const} \ \textit{lv_obj_t} \ *btnm, \ \textit{lv_btnm_style_t} \ \textit{type})$

Get a style of a button matrix

Return style pointer to a style

- btnm: pointer to a button matrix object
- type: which style should be get

```
bool lv_btnm_get_one_toggle(const lv_obj_t *btnm)
```

Find whether "one toggle" mode is enabled.

Return whether "one toggle" mode is enabled

Parameters

• btnm: Button matrix object

struct lv_btnm_ext_t

Public Members

```
const char **map_p
lv_area_t *button_areas
lv_btnm_ctrl_t *ctrl_bits
const lv_style_t *styles_btn[_LV_BTN_STATE_NUM]
uint16_t btn_cnt
uint16_t btn_id_pr
uint16_t btn_id_act
uint8_t recolor
uint8_t one_toggle
```

Calendrier (lv_calendar)

Vue d'ensemble

L'objet calendrier est un calendrier classique qui peut :

- mettre en évidence le jour et la semaine en cours,
- mettre en évidence les dates définies par l'utilisateur,
- afficher le nom des jours,
- aller au mois suivant/précédent en cliquant sur un bouton,
- mettre en évidence le jour cliqué.

Pour manipuler les dates dans le calendrier, le type <code>lv_calendar_date_t</code> est utilisé. Il s'agit d'une structure avec des champs <code>année</code>, <code>mois</code> et <code>jour</code>.

Date courante

Pour définir la date du jour (aujourd'hui), utilisez la fonction lv_calendar_set_today_date(calendar, &today_date).

Date affichée

Pour définir la date affichée, utilisez lv_calendar_set_shown_date(calendar, &shown_date).

Jours mis en évidence

La liste des dates à mettre en évidence doit être mémorisée dans un tableau lv_calendar_date_t et chargé par lv_calendar_set_highlighted_dates(calendar, &highlight_dates). Seul le pointeur sur le tableau sera enregistré. Le tableau doit donc être une variable statique ou globale.

Nom des jours

Le nom des jours peut être spécifié avec lv_calendar_set_day_names(calendar, day_names) où day_names ressemble à const char * day_names [7] = { "Di", "Lu", ... };

Nom des mois

De même que pour le nom des jours, le nom des mois peut être défini avec lv calendar set month names (calendar, month names array).

Styles

Vous pouvez définir les styles avec lv_calendar_set_style(btn, LV_CALENDAR_STYLE_..., &style).

- LV_CALENDAR_STYLE_BG Style de l'arrière-plan utilisant les propriétés body et style des nombres de date utilisant les propriétés text. body.padding.left/rigth/bottom seront ajoutés autour des numéros de date.
- LV_CALENDAR_STYLE_HEADER style de l'en-tête où sont affichés l'année et le mois en cours. Les propriétés body et text sont utilisées.
- LV_CALENDAR_STYLE_HEADER_PR Style d'en-tête utilisé lorsque vous appuyez sur le bouton du mois précédent/suivant. Les propriétés text sont utilisées par les flèches.
- LV_CALENDAR_STYLE_DAY_NAMES Style des noms de jour. Les propriétés text sont utilisées par les textes de jour et body.padding.top détermine l'espace au-dessus des noms de jour.
- LV_CALENDAR_STYLE_HIGHLIGHTED_DAYS Les propriétés text sont utilisées pour ajuster le style des jours mis en évidence
- LV_CALENDAR_STYLE_INACTIVE_DAYS Les propriétés text sont utilisées pour ajuster le style des jours visibles du mois précédent/suivant.
- LV_CALENDAR_STYLE_WEEK_BOX Les propriétés body sont utilisées pour définir le style de la boîte de la semaine
- LV_CALENDAR_STYLE_TODAY_BOX Les propriétés body et text sont utilisées pour définir le style de la boîte du jour

Evénements

Outre les [événements génériques](/overview/event.html #evenements-generiques), les événements spéciaux suivants sont envoyés par les calendriers : LV_EVENT_VALUE_CHANGED est envoyé lorsque le mois en cours a changé.

Parmi les événements *liés au périphérique d'entrée* lv_calendar_get_pressed_date(calendar) indique quel jour est actuellement sélectionnée ou retourne NULL si aucune date n'est sélectionnée.

Touches

Aucune touche n'est traitée par ce type d'objet.

Apprenez-en plus sur les touches.

Exemple

C

Calendar with day select

code

```
#include "lvgl/lvgl.h"

static void event_handler(lv_obj_t * obj, lv_event_t event)
{
    if(event == LV_EVENT_CLICKED) {
        lv_calendar_date_t * date = lv_calendar_get_pressed_date(obj);
        if(date) {
            lv_calendar_set_today_date(obj, date);
        }
    }

void lv_ex_calendar_1(void)
{
    lv_obj_t * calendar = lv_calendar_create(lv_scr_act(), NULL);
    lv_obj_set_size(calendar, 230, 230);
    lv_obj_align(calendar, NULL, LV_ALIGN_CENTER, 0, 0);
    lv_obj_set_event_cb(calendar, event_handler);
```

(continues on next page)

(continued from previous page)

```
/*Set the today*/
    lv_calendar_date_t today;
    today.year = 2018;
    today.month = 10;
    today.day = 23;
    lv_calendar_set_today_date(calendar, &today);
    lv_calendar_set_showed_date(calendar, &today);
   /*Highlight some days*/
    static lv_calendar_date_t highlihted_days[3];
                                                    /*Only it's pointer will be
⇒saved so should be static*/
    highlihted days[0].year = 2018;
    highlihted_days[0].month = 10;
   highlihted_days[0].day = 6;
    highlihted_days[1].year = 2018;
    highlihted days[1].month = 10;
   highlihted_days[1].day = 11;
    highlihted_days[2].year = 2018;
   highlihted_days[2].month = 11;
   highlihted_days[2].day = 22;
    lv calendar set highlighted dates(calendar, highlihted days, 3);
}
```

MicroPython

No examples yet.

API

Typedefs

```
typedef uint8_t lv_calendar_style_t
```

Enums

enum [anonymous]

Calendar styles

Values:

LV_CALENDAR_STYLE_BG

Background and "normal" date numbers style

LV CALENDAR STYLE HEADER

LV_CALENDAR_STYLE_HEADER_PR

Calendar header style

LV CALENDAR STYLE DAY NAMES

Calendar header style (when pressed)

LV_CALENDAR_STYLE_HIGHLIGHTED_DAYS

Day name style

LV_CALENDAR_STYLE_INACTIVE_DAYS

Highlighted day style

LV_CALENDAR_STYLE_WEEK_BOX

Inactive day style

LV_CALENDAR_STYLE_TODAY_BOX

Week highlight style

Functions

lv_obj_t *lv_calendar_create(lv_obj_t *par, const lv_obj_t *copy)

Create a calendar objects

Return pointer to the created calendar

Parameters

- par: pointer to an object, it will be the parent of the new calendar
- copy: pointer to a calendar object, if not NULL then the new object will be copied from it

Set the today's date

Parameters

- calendar: pointer to a calendar object
- today: pointer to an *lv_calendar_date_t* variable containing the date of today. The value will be saved it can be local variable too.

$\label{localendar_set_showed_date} \begin{picture}(lv_obj_t * calendar, lv_calendar_date_t * showed)(lv_obj_t * calendar_date_t * showed)(lv_obj_t * showed)(lv_obj_t$

Set the currently showed

Parameters

- calendar: pointer to a calendar object
- **showed**: pointer to an $lv_calendar_date_t$ variable containing the date to show. The value will be saved it can be local variable too.

$\begin{tabular}{ll} void $\tt lv_calendar_set_highlighted_dates($\it lv_obj_t$ *\it calendar_date_t$ *\it highlighted, uint16_t$ $\it date_num) \end{tabular}$

Set the highlighted dates

Parameters

- calendar: pointer to a calendar object
- highlighted: pointer to an *lv_calendar_date_t* array containing the dates. ONLY A POINTER WILL BE SAVED! CAN'T BE LOCAL ARRAY.
- date num: number of dates in the array

void lv_calendar_set_day_names(lv_obj_t*calendar, const char **day_names)

Set the name of the days

Parameters

• calendar: pointer to a calendar object

• day_names: pointer to an array with the names. E.g. const char * days[7] = {"Sun", "Mon", ...} Only the pointer will be saved so this variable can't be local which will be destroyed later.

void lv_calendar_set_month_names(lv_obj_t *calendar, const char **day_names)

Set the name of the month

Parameters

- calendar: pointer to a calendar object
- day_names: pointer to an array with the names. E.g. const char * days[12] = {"Jan", "Feb", ...} Only the pointer will be saved so this variable can't be local which will be destroyed later.

void **lv_calendar_set_style**(*lv_obj_t *calendar, lv_calendar_style_t type*, **const** lv_style_t *style)

Set a style of a calendar.

Parameters

- calendar: pointer to calendar object
- type: which style should be set
- style: pointer to a style

 $lv_calendar_date_t *lv_calendar_get_today_date(const \ lv_obj_t *calendar) \\ Get the today's date$

Return return pointer to an *lv_calendar_date_t* variable containing the date of today.

Parameters

• calendar: pointer to a calendar object

 $lv_calendar_date_t * lv_calendar_get_showed_date(const \ lv_obj_t * calendar)$ Get the currently showed

Return pointer to an lv calendar date t variable containing the date is being shown.

Parameters

• calendar: pointer to a calendar object

 $lv_calendar_date_t *lv_calendar_get_pressed_date(const \ lv_obj_t *calendar)$ Get the pressed date.

Return pointer to an lv_calendar_date_t variable containing the pressed date. NULL if not date pressed (e.g. the header)

Parameters

• calendar: pointer to a calendar object

 $lv_calendar_date_t *lv_calendar_get_highlighted_dates (const \ lv_obj_t *calendar)$ Get the highlighted dates

Return pointer to an lv_calendar_date_t array containing the dates.

Parameters

• calendar: pointer to a calendar object

uint16_t lv_calendar_get_highlighted_dates_num(const lv_obj_t*calendar)

Get the number of the highlighted dates

Return number of highlighted days

Parameters

• calendar: pointer to a calendar object

const char **lv_calendar_get_day_names(const lv_obj_t *calendar)

Get the name of the days

Return pointer to the array of day names

Parameters

• calendar: pointer to a calendar object

const char **lv_calendar_get_month_names(const lv_obj_t *calendar)

Get the name of the month

Return pointer to the array of month names

Parameters

• calendar: pointer to a calendar object

Get style of a calendar.

Return style pointer to the style

Parameters

- calendar: pointer to calendar object
- type: which style should be get

struct lv calendar date t

#include <lv_calendar.h> Represents a date on the calendar object (platform-agnostic).

Public Members

```
uint16_t year
int8_t month
int8_t day
```

struct lv_calendar_ext_t

Public Members

```
lv_calendar_date_t today
lv_calendar_date_t showed_date
lv_calendar_date_t *highlighted_dates
uint8_t highlighted_dates_num
int8_t btn_pressing
lv_calendar_date_t pressed_date
const char **day_names
const char **month_names
const lv_style_t *style_header
```

```
const lv_style_t *style_header_pr
const lv_style_t *style_day_names
const lv_style_t *style_highlighted_days
const lv_style_t *style_inactive_days
const lv_style_t *style_week_box
const lv_style_t *style_today_box
```

Canvas (Iv_canvas)

Vue d'ensemble

Un canevas est comme une *image* où l'utilisateur peut dessiner ce qu'il souhaite.

Tampon

Le canevas a besoin d'un tampon qui mémorise l'image dessinée. Pour affecter un tampon à un canevas, utilisez lv_canvas_set_buffer(canvas, buffer, width, height, LV_IMG_CF_...). buffer est un tampon statique (pas seulement une variable locale) destiné à contenir l'image du canevas. Par exemple static lv_color_t buffer[LV_CANVAS_BUF_SIZE_TRUE_COLOR(width, height)]. Les macros LV_CANVAS_BUF_SIZE_... aident à calculer la taille du tampon pour différents formats de couleur.

Le canvas prend en charge tous les formats de couleur intégrés tels que LV_IMG_CF_TURE_COLOR ou LV_IMG_CF_INDEXED_2BIT. Consultez la liste complète dans la section formats de couleur.

Palette

Pour les formats de couleur LV_IMG_CF_INDEXED_... une palette doit être initialisée. Par exemple, lv canvas set palette(canvas, 3, LV COLOR RED) colore les pixels avec *index* = 3 en rouge.

Dessin

Pour tracer un pixel sur la toile, utilisez lv_canvas_set_px(canvas, x, y, LV_COLOR_RED). Avec LV_IMG_CF_INDEXED_... ou LV_IMG_CF_ALPHA_... l'indice de la couleur ou la valeur alpha doit être passé en tant que couleur. P.ex. lv color t c; c.full = 3;

lv canvas fill bg(canvas, LV COLOR BLUE) remplit tout le canvas en bleu.

Un tableau de pixels peut être copié sur le canvas avec lv_canvas_copy_buf(canvas, buffer_to_copy, x, y, width, height). Le format de couleur du tampon et du canevas doivent correspondre.

Pour dessiner sur le canvas, utilisez

- lv canvas draw rect(canvas, x, y, width, heigth, &style),
- lv_canvas_draw_text(canvas, x, y, max_width, &style, txt, LV_LABEL_ALIGN_LEFT/CENTER/RIGTH),
- lv_canvas_draw_img(canvas, x, y, &img_src, &style),

- lv_canvas_draw_line(canvas, point_array, point_cnt, &style),
- lv_canvas_draw_polygon(canvas, points_array, point_cnt, &style),
- lv_canvas_draw_arc(canvas, x, y, radius, start_angle, end_angle, &style).

Ces fonctions ne peuvent dessiner que dans des tampons LV_IMG_CF_TRUE_COLOR, LV_IMG_CF_TRUE_COLOR_CHROMA_KEYED et LV_IMG_CF_TRUE_COLOR_ALPHA. LV_IMG_CF_TRUE_COLOR_ALPHA fonctionne uniquement avec LV_COLOR_DEPTH 32.

Rotation

Une image peut être ajoutée au canvas après rotation avec lv_canvas_rotate(canvas, &img_dsc, angle, x, y, pivot_x, pivot_y). L'image spécifiée par img_dsc est transformé par rotation autour du pivot puis copiée dans le canvas aux coordonnées x, y. Au lieu de img_dsc, un autre canevas peut être utilisé par lv_canvas_get_img(canvas).

Notez que la rotation d'un canvas ne peut se fairesur lui-même. Vous avez besoin d'une source, image ou canevas, et d'un canvas de destination.

Styles

Vous pouvez définir les styles avec lv_canvas_set_style(btn, LV_CANVAS_STYLE_MAIN, &style). style.image.color est utilisé pour spécifier la couleur de base avec les formats de couleur LV IMG CF ALPHA

Evénements

Seuls les événements génériques sont envoyés par ce type d'objet.

Apprenez-en plus sur les événements.

Touches

Aucune touche n'est traitée par ce type d'objet.

Apprenez-en plus sur les touches.

Exemple

C

Drawing on the Canvas and rotate

code

```
#include "lvgl/lvgl.h"
#define CANVAS WIDTH 200
#define CANVAS_HEIGHT 150
void lv_ex_canvas_1(void)
    static lv style t style;
    lv_style_copy(&style, &lv_style_plain);
    style.body.main_color = LV_COLOR_RED;
    style.body.grad_color = LV_COLOR_MAROON;
    style.body.radius = 4;
    style.body.border.width = 2;
    style.body.border.color = LV_COLOR_WHITE;
    style.body.shadow.color = LV COLOR WHITE;
    style.body.shadow.width = 4;
    style.line.width = 2;
    style.line.color = LV COLOR BLACK;
    style.text.color = LV COLOR BLUE;
    static lv color t cbuf[LV CANVAS BUF SIZE TRUE COLOR(CANVAS WIDTH, CANVAS
→HEIGHT)];
    lv obj t * canvas = lv canvas create(lv scr act(), NULL);
    lv_canvas_set_buffer(canvas, cbuf, CANVAS_WIDTH, CANVAS_HEIGHT, LV_IMG_CF_TRUE_
→COLOR);
    lv_obj_align(canvas, NULL, LV_ALIGN_CENTER, 0, 0);
    lv canvas fill bg(canvas, LV COLOR SILVER);
    lv_canvas_draw_rect(canvas, 70, 60, 100, 70, &style);
```

(continues on next page)

(continued from previous page)

Transparent Canvas with chroma keying

code

```
#include "lvgl/lvgl.h"

#define CANVAS_WIDTH 50
#define CANVAS_HEIGHT 50

/**
   * Create a transparent canvas with Chroma keying and indexed color format (palette).
   */
void lv_ex_canvas_2(void)
{
```

(continues on next page)

(continued from previous page)

```
/*Create a button to better see the transparency*/
   lv_btn_create(lv_scr_act(), NULL);
   /*Create a buffer for the canvas*/
    static lv_color_t cbuf[LV_CANVAS_BUF_SIZE_INDEXED_1BIT(CANVAS_WIDTH, CANVAS_
→HEIGHT)];
    /*Create a canvas and initialize its the palette*/
   lv_obj_t * canvas = lv_canvas_create(lv_scr_act(), NULL);
    lv_canvas_set_buffer(canvas, cbuf, CANVAS_WIDTH, CANVAS_HEIGHT, LV_IMG_CF_INDEXED_
→1BIT);
    lv canvas set palette(canvas, 0, LV COLOR TRANSP);
    lv canvas set palette(canvas, 1, LV COLOR RED);
   /*Create colors with the indices of the palette*/
   lv_color_t c0;
   lv_color_t c1;
    c0.full = 0;
    c1.full = 1;
   /*Transparent background*/
   lv_canvas_fill_bg(canvas, c1);
   /*Create hole on the canvas*/
   uint32 t x;
   uint32_t y;
    for(y = 10; y < 30; y++) {
        for(x = 5; x < 20; x++) {
            lv_canvas_set_px(canvas, x, y, c0);
    }
}
```

MicroPython

No examples yet.

API

Typedefs

```
typedef uint8_t lv_canvas_style_t
```

Enums

```
\begin{array}{c} \textbf{enum} \ [\textbf{anonymous}] \\ Values: \end{array}
```

```
LV_CANVAS_STYLE_MAIN
```

Functions

 $lv_obj_t *lv_canvas_create(lv_obj_t *par, const lv_obj_t *copy)$ Create a canvas object

Return pointer to the created canvas

Parameters

- par: pointer to an object, it will be the parent of the new canvas
- copy: pointer to a canvas object, if not NULL then the new object will be copied from it

Set a buffer for the canvas.

Parameters

- buf: a buffer where the content of the canvas will be. The required size is (lv_img_color_format_get_px_size(cf) * w * h) / 8) It can be allocated with lv_mem_alloc() or it can be statically allocated array (e.g. static lv_color_t buf[100*50]) or it can be an address in RAM or external SRAM
- canvas: pointer to a canvas object
- W: width of the canvas
- h: height of the canvas
- cf: color format. LV IMG CF ...

void $lv_canvas_set_px(lv_obj_t*canvas, lv_coord_t x, lv_coord_t y, lv_color_t c)$ Set the color of a pixel on the canvas

Parameters

- · canvas:
- X: x coordinate of the point to set
- y: x coordinate of the point to set
- C: color of the point

void lv_canvas_set_palette(lv_obj_t *canvas, uint8_t id, lv_color_t c)

Set the palette color of a canvas with index format. Valid only for LV IMG CF INDEXED1/2/4/8

Parameters

- canvas: pointer to canvas object
- id: the palette color to set:
 - for LV IMG CF INDEXED1: 0..1
 - for LV IMG CF INDEXED2: 0..3
 - for LV_IMG_CF_INDEXED4: 0..15
 - for LV_IMG_CF_INDEXED8: 0..255
- C: the color to set

void $lv_canvas_set_style(lv_obj_t*canvas, lv_canvas_style_t type, const lv_style_t *style)$ Set a style of a canvas.

- canvas: pointer to canvas object
- type: which style should be set
- style: pointer to a style

lv_color_t lv_canvas_get_px(lv_obj_t *canvas, lv_coord_t x, lv_coord_t y)

Get the color of a pixel on the canvas

Return color of the point

Parameters

- · canvas:
- X: x coordinate of the point to set
- y: x coordinate of the point to set

 $lv_img_dsc_t *lv_canvas_get_img(lv_obj_t *canvas)$

Get the image of the canvas as a pointer to an $lv_img_dsc_t$ variable.

Return pointer to the image descriptor.

Parameters

• canvas: pointer to a canvas object

Return style pointer to the style

Parameters

- canvas: pointer to canvas object
- type: which style should be get

void **lv_canvas_copy_buf** (*lv_obj_t*canvas*, **const** void *to_copy, lv_coord_t x, lv_coord_t y, lv_coord_t w, lv_coord_t h)

Copy a buffer to the canvas

Parameters

- canvas: pointer to a canvas object
- to copy: buffer to copy. The color format has to match with the canvas's buffer color format
- X: left side of the destination position
- y: top side of the destination position
- W: width of the buffer to copy
- h: height of the buffer to copy

```
void <code>lv_canvas_rotate(lv_obj_t *canvas, lv_img_dsc_t *img, int16_t angle, lv_coord_t offset_x, lv_coord_t offset_y, int32_t pivot_x, int32_t pivot_y)</code>
Rotate and image and store the result on a canvas.
```

- canvas: pointer to a canvas object
- img: pointer to an image descriptor. Can be the image descriptor of an other canvas too (lv canvas get img()).
- angle: the angle of rotation (0..360);

- offset x: offset X to tell where to put the result data on destination canvas
- offset y: offset X to tell where to put the result data on destination canvas
- pivot_x: pivot X of rotation. Relative to the source canvas Set to source width / 2 to rotate around the center
- pivot_y: pivot Y of rotation. Relative to the source canvas Set to source height / 2 to rotate around the center

void lv_canvas_fill_bg(lv_obj_t*canvas, lv_color_t color)

Fill the canvas with color

Parameters

- canvas: pointer to a canvas
- color: the background color

Draw a rectangle on the canvas

Parameters

- canvas: pointer to a canvas object
- X: left coordinate of the rectangle
- y: top coordinate of the rectangle
- W: width of the rectangle
- h: height of the rectangle
- style: style of the rectangle (body properties are used except padding)

Draw a text on the canvas.

Parameters

- canvas: pointer to a canvas object
- X: left coordinate of the text
- y: top coordinate of the text
- max w: max width of the text. The text will be wrapped to fit into this size
- style: style of the text (text properties are used)
- txt: text to display
- align: align of the text (LV_LABEL_ALIGN_LEFT/RIGHT/CENTER)

Draw an image on the canvas

- canvas: pointer to a canvas object
- src: image source. Can be a pointer an $lv_img_dsc_t$ variable or a path an image.
- style: style of the image (image properties are used)

```
void lv_canvas_draw_line(lv_obj_t *canvas, const lv_point_t *points, uint32_t point_cnt, const lv style t *style)
```

Draw a line on the canvas

Parameters

- canvas: pointer to a canvas object
- points: point of the line
- point_cnt: number of points
- style: style of the line (line properties are used)

Draw a polygon on the canvas

Parameters

- canvas: pointer to a canvas object
- points: point of the polygon
- point cnt: number of points
- style: style of the polygon (body.main color and body.opa is used)

```
 \begin{array}{c} \text{void $\mathsf{lv\_canvas\_draw\_arc(} $\mathit{lv\_obj\_t*canvas}$, $\mathsf{lv\_coord\_t}$ $\mathit{x}$, $\mathsf{lv\_coord\_t}$ $\mathit{y}$, $\mathsf{lv\_coord\_t}$ $\mathit{r}$, $\mathsf{int}32\_t$ } \\ & start\_angle, \ \mathsf{int}32\_t \ \mathit{end\_angle}$, $\mathsf{const}$ \ \mathsf{lv\_style\_t*style}$)} \end{array}
```

Draw an arc on the canvas

Parameters

- canvas: pointer to a canvas object
- X: origo x of the arc
- y: origo y of the arc
- r: radius of the arc
- start_angle: start angle in degrees
- end angle: end angle in degrees
- style: style of the polygon (body.main_color and body.opa is used)

struct lv_canvas_ext_t

Public Members

```
lv\_img\_ext\_t img lv\_img\_dsc\_t dsc
```

Case à cocher (lv_cb)

Vue d'ensemble

Les objets case à cocher sont construits à partir d'un bouton en arrière-plan qui contient un second bouton (la marque) et une $\acute{e}tiquette$ pour créer une case à cocher classique.

Texte

Le texte peut être modifié par la fonction <code>lv_cb_set_text(cb, "Nouveau texte")</code>. Le texte est alloué dynamiquement.

Pour définir un texte statique utilisez lv_cb_set_static_text(cb, txt). De cette façon, seul un pointeur vers txt sera sauvegardé. Il ne doit pas être désalloué tant que la case à cocher existe.

Cocher/décocher

Vous pouvez manuellement cocher/décocher la case à cocher via lv_cb_set_checked(cb, true/false).

Désactiver

Pour désactiver la case à cocher utilisez lv_cb_set_inactive(cb, true).

Styles

Les styles de case à cocher peuvent être modifiés avec lv_cb_set_style(cb, LV_CB_STYLE_..., &style).

- LV_CB_STYLE_BG style d'arrière-plan. Utilise toutes les propriétés style.body. Le style de l'étiquette provient de style.text. Défaut : lv_style_transp.
- LV_CB_STYLE_BOX_REL style de la marque décochée relâchée. Utilise les propriétés style. body. Défaut : lv style btn rel.
- LV_CB_STYLE_BOX_PR style de la marque décochée pressée. Utilise les propriétés style. body. Défaut : lv_style_btn_pr.
- LV_CB_STYLE_BOX_TGL_REL style de la marque cochée relâchée. Utilise les propriétés style.body. Défaut : lv_style_btn_tgl_rel
- LV_CB_STYLE_BOX_TGL_PR style de la marque cochée pressée. Utilise les propriétés style.body. Défaut : lv_style_btn_tgl_pr
- LV_CB_STYLE_BOX_INAstyle de la marque désactivée. Utilise les propriétés style.body. Défaut : lv_style_btn_ina

Evénements

Outre les [événements génériques](/overview/event.html #evenements-generiques), les événements spéciaux suivants sont envoyés par les cases à cocher :

• LV_EVENT_VALUE_CHANGED envoyé lorsque la case à cocher est inversée.

Notez que les événements génériques liés au périphérique d'entrée (tels que LV_EVENT_PRESSED) sont également envoyés dans l'état désactivé. Vous devez vérifier l'état avec lv_cb_is_inactive(cb) pour ignorer les événements des cases à cocher désactivées.

Apprenez-en plus sur les événements.

Touches

Les touches suivantes sont traitées par les cases à cocher:

- LV_KEY_RIGHT/UP passe à l'état coché
- LV_KEY_LEFT/DOWN passe à l'état décoché

Notez que, comme d'habitude, l'état de LV_KEY_ENTER est traduit en LV_EVENT_PRESSED/PRESSING/RELEASED etc.

Apprenez-en plus sur les touches.

Exemple

C

Simple Checkbox

I agree to terms and conditions.

code

```
#include "lvgl/lvgl.h"
#include <stdio.h>

static void event_handler(lv_obj_t * obj, lv_event_t event)
{
    if(event == LV_EVENT_VALUE_CHANGED) {
        printf("State: %s\n", lv_cb_is_checked(obj) ? "Checked" : "Unchecked");
    }
}

void lv_ex_cb_1(void)
{
    lv_obj_t * cb = lv_cb_create(lv_scr_act(), NULL);
```

(continues on next page)

(continued from previous page)

```
lv_cb_set_text(cb, "I agree to terms and conditions.");
lv_obj_align(cb, NULL, LV_ALIGN_CENTER, 0, 0);
lv_obj_set_event_cb(cb, event_handler);
}
```

MicroPython

No examples yet.

API

Typedefs

typedef uint8_t lv_cb_style_t

Enums

enum [anonymous]

Checkbox styles.

Values:

LV_CB_STYLE_BG

Style of object background.

LV_CB_STYLE_BOX_REL

Style of box (released).

LV CB STYLE BOX PR

Style of box (pressed).

LV_CB_STYLE_BOX_TGL_REL

Style of box (released but checked).

LV_CB_STYLE_BOX_TGL_PR

Style of box (pressed and checked).

LV CB STYLE BOX INA

Style of disabled box

Functions

```
lv\_obj\_t *lv\_cb\_create(lv\_obj\_t *par, const lv\_obj\_t *copy)
```

Create a check box objects

Return pointer to the created check box

Parameters

- par: pointer to an object, it will be the parent of the new check box
- COPY: pointer to a check box object, if not NULL then the new object will be copied from it

```
void lv cb set text(lv \ obj \ t *cb, const char *txt)
```

Set the text of a check box. txt will be copied and may be deallocated after this function returns.

Parameters

- cb: pointer to a check box
- txt: the text of the check box. NULL to refresh with the current text.

void lv_cb_set_static_text(lv_obj_t*cb, const char *txt)

Set the text of a check box. txt must not be deallocated during the life of this checkbox.

Parameters

- cb: pointer to a check box
- txt: the text of the check box. NULL to refresh with the current text.

static void **lv_cb_set_checked**(lv_obj_t *cb, bool checked)

Set the state of the check box

Parameters

- cb: pointer to a check box object
- checked: true: make the check box checked; false: make it unchecked

static void lv_cb_set_inactive(lv_obj_t *cb)

Make the check box inactive (disabled)

Parameters

• **cb**: pointer to a check box object

void lv_cb_set_style(lv_obj_t *cb, lv_cb_style_t type, const lv_style_t *style)

Set a style of a check box

Parameters

- cb: pointer to check box object
- type: which style should be set
- style: pointer to a style

const char *lv_cb_get_text(const lv_obj_t *cb)

Get the text of a check box

Return pointer to the text of the check box

Parameters

• cb: pointer to check box object

static bool lv cb is checked (const $lv \ obj \ t * cb$)

Get the current state of the check box

Return true: checked; false: not checked

Parameters

• cb: pointer to a check box object

static bool lv cb is inactive(const lv_obj_t *cb)

Get whether the check box is inactive or not.

Return true: inactive; false: not inactive

Parameters

• cb: pointer to a check box object

Return style pointer to the style

Parameters

- **cb**: pointer to check box object
- type: which style should be get

struct lv_cb_ext_t

Public Members

```
lv_btn_ext_t bg_btn
lv_obj_t *bullet
lv_obj_t *label
```

Graphique (lv_chart)

Vue d'ensemble

Les graphiques ont un arrière-plan rectangulaire avec des lignes de division horizontales et verticales et des séries de données représentées par des lignes, colonnes de points ou zones.

Série de données

Vous pouvez ajouter un nombre quelconque de séries aux graphiques avec lv_chart_add_series(chart, color). Cette fonction alloue la mémoire pour une structure lv chart series t qui contient la couleur choisie et un tableau pour les points.

Type de série

Les types de données suivants existent :

- LV CHART TYPE NONE ne pas afficher de données. Utilisé pour masquer une série.
- LV_CHART_TYPE_LINE tracer des lignes entre les points.
- LV_CHART_TYPE_COL dessine des barres.
- LV_CHART_TYPE_POINT dessine des points.
- LV_CHART_TYPE_AREA dessine des zones (remplit la zone en dessous des lignes qui relient les points).
- LV_CHART_TYPE_VERTICAL_LINE Dessine uniquement des lignes verticales pour relier les points. Utile si la largeur du graphique est égale au nombre de points.

Vous pouvez spécifier le type de données avec lv_chart_set_type(chart, LV_CHART_TYPE_...). Les types peuvent être combinés par 'OU' (comme LV_CHART_TYPE_LINE | LV_CHART_TYPE_POINT).

Modifier le données

Vous avez plusieurs possibilités pour définir les données de la série :

- 1. Définir les valeurs manuellement dans le tableau comme ser1->points[3] = 7 et actualiser le graphique avec lv chart refresh(chart).
- 2. Utiliser lv chart set next(chart, ser, value).
- 3. Initialiser tous les points avec une valeur donnée : lv_chart_init_points(chart, ser, value).
- 4. Définir tous les points à partir d'un tableau : lv_chart_set_points(chart, ser, value_array).

Utilisez LV_CHART_POINT_DEF comme valeur pour indiquer à la librairie de ne pas tracer un point, une colonne ou un segment de ligne.

Modes de mise à jour

lv_chart_set_next peut se comporter de deux manières selon le *mode de mise à jour* :

- LV_CHART_UPDATE_MODE_SHIFT déplacer les anciennes données vers la gauche et ajoute la nouvelle à droite,
- LV_CHART_UPDATE_MODE_CIRCULAR Ajoute les nouvelles données de manière circulaire (comme un ECG).

Le mode de mise à jour peut être changé avec lv_chart_set_update_mode(chart, LV CHART UPDATE MODE ...).

Nombre de points

Le nombre de points de la série peut être modifié par lv_chart_set_point_count(chart, point_num). La valeur par défaut est 10.

Plage verticale

Vous pouvez spécifier des valeurs minimum et maximum dans la direction y avec lv_chart_set_range(chart, y_min, y_max). La valeur des points sera mise à l'échelle proportionnellement. La plage par défaut est : 0..100.

Quadrillage

Le nombre de lignes horizontales et verticales du quadrillage peut être modifié par lv_chart_set_div_line_count(chart, hdiv_num, vdiv_num). Les valeurs par défaut sont 3 lignes horizontales et 5 lignes verticales.

Apparence de la série Pour définir l'épaisseur de ligne et le rayon des points de la série, utilisez la fonction lv chart set series width(chart, size). La valeur par défaut est : 2.

L'opacité des lignes de données peut être spécifiée par lv_chart_set_series_opa(chart, opa). La valeur par défaut est : OPA_COVER.

Vous pouvez appliquer un assombrissement au bas des colonnes et des points avec la fonction ly chart set series darking(chart, effect). Le niveau par défaut est OPA 50.

Graduation et étiquettes

Des graduations et étiquettes peuvent être ajoutés.

lv_chart_set_x_tick_text(chart, list_of_values, num_tick_marks,
LV_CHART_AXIS_...) définit les graduations et les textes sur l'axe des x. list_of_values est
une chaîne de textes pour les graduations délimités par des '\n' (excepté le dernier). P.ex. const char
* list_of_values = "premier\ndeuxième\ntroisième". list_of_values peut être NULL.
Si list_of_values est défini alors num_tick_marks indique le nombre de graduations entre deux
étiquettes. Si list of values est NULL alors il spécifie le nombre total de graduations.

Lorsque du texte est ajouté des *lignes principales* de quadrillage sont dessinées, ailleurs des *lignes secondaires*. lv_chart_set_x_tick_length(chart, major_tick_len, minor_tick_len) définit l'épaisseur des lignes de graduation sur l'axe des x.

Les mêmes fonctions existent aussi pour l'axe des y : $lv_chart_set_y_tick_text$ et $lv_chart_set_y_tick_length$

lv_chart_set_margin(chart, 20) doit être utilisée pour ajouter un espace supplémentaire autour du graphique pour les graduations et les textes.

Styles

Vous pouvez définir les styles avec lv_chart_set_style(btn, LV_CHART_STYLE_MAIN, &style).

- style.body définit l'apparence de l'arrière-plan,
- style.line définit l'apparence du quadrillage,
- style.text définit l'apparence des étiquettes des axes.

Evénements

Seuls les événements génériques sont envoyés par ce type d'objet.

Apprenez-en plus sur les événements.

Touches

Aucune touche n'est traitée par ce type d'objet.

Apprenez-en plus sur les touches.

Exemple

C

Line Chart

code

```
#include "lvgl/lvgl.h"
void lv ex chart 1(void)
    /*Create a chart*/
    lv_obj_t * chart;
    chart = lv_chart_create(lv_scr_act(), NULL);
    lv obj set size(chart, 200, 150);
    lv_obj_align(chart, NULL, LV_ALIGN_CENTER, 0, 0);
    lv_chart_set_type(chart, LV_CHART_TYPE_POINT | LV_CHART_TYPE_LINE);
                                                                           /*Show.
→lines and points too*/
   lv_chart_set_series_opa(chart, LV_OPA_70);
                                                                           /*Opacity...
→of the data series*/
                                                                           /*Line
   lv_chart_set_series_width(chart, 4);
→width and point radious*/
    lv_chart_set_range(chart, 0, 100);
   /*Add two data series*/
   lv_chart_series_t * ser1 = lv_chart_add_series(chart, LV_COLOR_RED);
    lv chart series t * ser2 = lv chart add series(chart, LV COLOR GREEN);
    /*Set the next points on 'dl1'*/
    lv_chart_set_next(chart, ser1, 10);
    lv_chart_set_next(chart, ser1, 10);
    lv_chart_set_next(chart, ser1, 10);
    lv_chart_set_next(chart, ser1, 10);
    lv chart set next(chart, ser1, 30);
```

(continues on next page)

(continued from previous page)

```
lv_chart_set_next(chart, ser1, 70);
lv_chart_set_next(chart, ser1, 90);

/*Directly set points on 'dl2'*/
ser2->points[0] = 90;
ser2->points[1] = 70;
ser2->points[2] = 65;
ser2->points[3] = 65;
ser2->points[4] = 65;
ser2->points[5] = 65;
ser2->points[6] = 65;
ser2->points[7] = 65;
ser2->points[8] = 65;
ser2->points[9] = 65;
```

MicroPython

No examples yet.

API

```
Typedefs
```

```
typedef uint8_t lv_chart_type_t
typedef uint8_t lv_chart_update_mode_t
typedef uint8_t lv_chart_axis_options_t
typedef uint8_t lv_chart_style_t
```

Enums

enum [anonymous]

Chart types

Values:

```
\textbf{LV\_CHART\_TYPE\_NONE} = 0x00
```

Don't draw the series

LV CHART TYPE LINE =0x01

Connect the points with lines

 $LV_CHART_TYPE_COLUMN = 0x02$

Draw columns

LV CHART TYPE POINT = 0x04

Draw circles on the points

LV CHART TYPE VERTICAL LINE =0x08

Draw vertical lines on points (useful when chart width == point count)

$LV_CHART_TYPE_AREA = 0x10$

Draw area chart

enum [anonymous]

Chart update mode for lv_chart_set_next

Values

LV_CHART_UPDATE_MODE_SHIFT

Shift old data to the left and add the new one o the right

LV CHART UPDATE MODE CIRCULAR

Add the new data in a circular way

enum [anonymous]

Data of axis

Values:

$LV_CHART_AXIS_SKIP_LAST_TICK = 0x00$

don't draw the last tick

$LV_CHART_AXIS_DRAW_LAST_TICK = 0x01$

draw the last tick

enum [anonymous]

Values:

LV_CHART_STYLE_MAIN

Functions

Create a chart background objects

Return pointer to the created chart background

Parameters

- par: pointer to an object, it will be the parent of the new chart background
- COPY: pointer to a chart background object, if not NULL then the new object will be copied from it

lv chart series t*lv chart add series(lv obj t*chart, lv color t color)

Allocate and add a data series to the chart

Return pointer to the allocated data series

Parameters

- chart: pointer to a chart object
- color: color of the data series

void lv_chart_clear_serie(lv_obj_t *chart, lv_chart_series_t *serie)

Clear the point of a serie

Parameters

- chart: pointer to a chart object
- serie: pointer to the chart's serie to clear

void lv_chart_set_div_line_count(lv_obj_t*chart, uint8_t hdiv, uint8_t vdiv)

Set the number of horizontal and vertical division lines

Parameters

- chart: pointer to a graph background object
- hdiv: number of horizontal division lines
- vdiv: number of vertical division lines

void lv_chart_set_range(lv_obj_t*chart, lv_coord_t ymin, lv_coord_t ymax)

Set the minimal and maximal y values

Parameters

- chart: pointer to a graph background object
- ymin: y minimum value
- ymax: y maximum value

void lv chart set type(lv_obj_t*chart, lv_chart_type_t type)

Set a new type for a chart

Parameters

- chart: pointer to a chart object
- type: new type of the chart (from 'lv_chart_type_t' enum)

void lv_chart_set_point_count(lv_obj_t *chart, uint16_t point_cnt)

Set the number of points on a data line on a chart

Parameters

- chart: pointer r to chart object
- point cnt: new number of points on the data lines

void lv_chart_set_series_opa(lv_obj_t*chart, lv_opa_t opa)

Set the opacity of the data series

Parameters

- chart: pointer to a chart object
- opa: opacity of the data series

void lv_chart_set_series_width(lv_obj_t *chart, lv_coord_t width)

Set the line width or point radius of the data series

Parameters

- chart: pointer to a chart object
- width: the new width

 $\label{eq:void_lv_obj_t*chart_lv_opa_t} void \ \textbf{lv_chart_set_series_darking(} \ \textit{lv_obj_t*chart,} \ \textit{lv_opa_t} \ \textit{dark_eff}\textbf{)}$

Set the dark effect on the bottom of the points or columns

Parameters

- chart: pointer to a chart object
- dark eff: dark effect level (LV OPA TRANSP to turn off)

 $\label{eq:coord_ty} \mbox{void $lv_chart_init_points} \mbox{(lv_obj_t *$chart, $lv_chart_series_t$ *$ser, lv_coord_t y)}$

Initialize all data points with a value

Parameters

- chart: pointer to chart object
- ser: pointer to a data series on 'chart'
- y: the new value for all points

void $lv_chart_set_points(lv_obj_t*chart, lv_chart_series_t*ser, lv_coord_t y_array[])$ Set the value of points from an array

Parameters

- chart: pointer to chart object
- ser: pointer to a data series on 'chart'
- y array: array of 'lv_coord_t' points (with 'points count' elements)

void **lv_chart_set_next**(*lv_obj_t*chart*, *lv_chart_series_t*ser*, lv_coord_t *y*)
Shift all data right and set the most right data on a data line

Parameters

- chart: pointer to chart object
- ser: pointer to a data series on 'chart'
- y: the new value of the most right data

void **lv_chart_set_update_mode**(lv_obj_t *chart, lv_chart_update_mode_t update_mode) Set update mode of the chart object.

Parameters

- chart: pointer to a chart object
- update: mode

static void **lv_chart_set_style**(*lv_obj_t* **chart*, *lv_chart_style_t* type, **const** lv_style_t **style*)

Set the style of a chart

Parameters

- chart: pointer to a chart object
- type: which style should be set (can be only LV CHART STYLE MAIN)
- style: pointer to a style

 $\label{eq:chart_set_x_tick_len} \begin{tabular}{ll} void $lv_chart_set_x_tick_len for $_tick_len$, $uint8_t$ $major_tick_len, $uint8_t$ $minor_tick_len$. \\ \end{tabular}$

Set the length of the tick marks on the \overline{x} axis

Parameters

- chart: pointer to the chart
- major_tick_len: the length of the major tick or LV_CHART_TICK_LENGTH_AUTO to set automatically (where labels are added)
- minor_tick_len: the length of the minor tick, LV_CHART_TICK_LENGTH_AUTO to set automatically (where no labels are added)

void $lv_chart_set_y_tick_length(lv_obj_t *chart, uint8_t major_tick_len, uint8_t minor_tick_len)$ Set the length of the tick marks on the v axis

Parameters

- chart: pointer to the chart
- major_tick_len: the length of the major tick or LV_CHART_TICK_LENGTH_AUTO to set automatically (where labels are added)
- minor_tick_len: the length of the minor tick, LV_CHART_TICK_LENGTH_AUTO to set automatically (where no labels are added)

Set the x-axis tick count and labels of a chart

Parameters

- chart: pointer to a chart object
- list_of_values: list of string values, terminated with , except the last
- num_tick_marks: if list_of_values is NULL: total number of ticks per axis else number of ticks between two value labels
- options: extra options

```
void lv_chart_set_y_tick_texts(lv_obj_t *chart, const char *list_of_values, uint8_t num_tick_marks, lv_chart_axis_options_t options)
```

Set the y-axis tick count and labels of a chart

Parameters

- chart: pointer to a chart object
- list_of_values: list of string values, terminated with , except the last
- num_tick_marks: if list_of_values is NULL: total number of ticks per axis else number of ticks between two value labels
- options: extra options

void lv_chart_set_margin(lv_obj_t *chart, uint16_t margin)

Set the margin around the chart, used for axes value and ticks

Parameters

- chart: pointer to an chart object
- margin: value of the margin [px]

$\mathit{lv_chart_type_t} \ \textbf{lv_chart_get_type} (\texttt{const} \ \mathit{lv_obj_t} \ *\mathit{chart})$

Get the type of a chart

Return type of the chart (from 'lv_chart_t' enum)

Parameters

• chart: pointer to chart object

uint16_t lv_chart_get_point_cnt(const lv_obj_t *chart)

Get the data point number per data line on chart

Return point number on each data line

Parameters

• chart: pointer to chart object

lv_opa_t lv_chart_get_series_opa(const lv_obj_t *chart)

Get the opacity of the data series

Return the opacity of the data series

Parameters

• chart: pointer to chart object

lv_coord_t lv_chart_get_series_width(const lv_obj_t *chart)

Get the data series width

Return the width the data series (lines or points)

Parameters

• chart: pointer to chart object

lv_opa_t lv_chart_get_series_darking(const lv_obj_t *chart)

Get the dark effect level on the bottom of the points or columns

Return dark effect level (LV_OPA_TRANSP to turn off)

Parameters

• chart: pointer to chart object

static const lv_style_t *lv_chart_get_style(const lv_obj_t *chart, lv_chart_style_t tume)

Get the style of an chart object

Return pointer to the chart's style

Parameters

- chart: pointer to an chart object
- type: which style should be get (can be only LV CHART STYLE MAIN)

uint16 t lv chart get margin(lv obj t*chart)

Get the margin around the chart, used for axes value and labels

Parameters

- chart: pointer to an chart object
- return: value of the margin

void lv_chart_refresh(lv_obj_t *chart)

Refresh a chart if its data line has changed

Parameters

• chart: pointer to chart object

struct lv chart series t

Public Members

```
lv_coord_t *points
lv_color_t color
uint16_t start_point
struct lv_chart_axis_cfg_t
```

Public Members

Public Members

```
lv ll t series ll
lv_coord_t ymin
lv_coord_t ymax
uint8_t hdiv_cnt
uint8_t vdiv_cnt
uint16_t point_cnt
lv_chart_type_t type
lv\_chart\_axis\_cfg\_t y_axis
lv_chart_axis_cfg_t x axis
uint16 t margin
uint8_t update_mode
lv coord t width
uint8 t num
lv\_opa\_t opa
lv_opa_t dark
struct lv_chart_ext_t::[anonymous] series
```

Conteneur (Iv_cont)

Vue d'ensemble

Les conteneurs sont des *objets rectangulaires** avec quelques particularités.

Mise en page

Vous pouvez appliquer une mise en page aux conteneurs pour disposer automatiquement leurs enfants. L'espacement des éléments provient des propriétés **style.body.padding....** . Les options de mise en page possibles sont :

- LV_LAYOUT_OFF pas d'alignement des enfants,

- LV_LAYOUT_CENTER dispose les enfants au centre et laisse un espace padding.inner entre eux,
- LV_LAYOUT_COL_: dispose les enfants dans une colonne justifiée à gauche. Conservepadding. left à gauche, pad.top en haut et padding.inner entre les enfants,
- LV_LAYOUT_COL_M dispose les enfants dans une colonne au centre. Conserve padding.top en haut et padding.inner entre les enfants,
- LV_LAYOUT_COL_R dispose les enfants dans une colonne justifiée à droite. Conserve padding.right à droite, padding.top en haut et padding.inner entre les enfants,
- LV_LAYOUT_ROW_T dispose les enfants dans une ligne justifiée en haut. Conserve padding. left à gauche, padding.top en haut et padding.inner entre les enfants,
- LV_LAYOUT_ROW_M dispose les enfants dans une ligne au centre. Conserve padding.left à gauche et padding.inner entre les enfants,
- LV_LAYOUT_ROW_B dispose les enfants dans une ligne en bas. Conserve padding.left à gauche, padding.bottom en bas et padding.inner entre les enfants,
- LV_LAYOUT_PRETTY place autant d'objets que possible sur une ligne (avec au moins les espaces padding.inner et padding.left/right sur les côtés). Divise l'espace de chaque ligne à parts égales entre les enfants. Conserve les espaces padding.top en haut et pad.inner entre les lignes,
- LV_LAYOUT_GRID semblable à LV_LAYOUT_PRETTY mais ne divise pas également l'espace horizontal, il suffit de laisser padding.left/right sur les bords et l'espace padding.inner entre les éléments.

Ajustement automatique

Le conteneur possède des fonctionnalités d'ajustement qui peuvent changer automatiquement la taille du conteneur en fonction de ses enfants et/ou de son parent. Les options suivantes existent :

- LV_FIT_NONE ne change pas la taille automatiquement,
- LV_FIT_TIGHT définit la taille de manière à disposer tous les enfants en conservant les espaces padding.top/bottom/left/right sur les côtés,
- LV_FIT_FLOOD calque la taille sur celle du parent en conservant les espaces padding.top/bottom/left/right (à partir du style du parent),
- LV_FIT_FILL utilise LV_FIT_FL00D quand le conteneur est plus petit que le parent et LV_FIT_TIGHT quand plus grand.

Pour définir l'ajustement automatique utilisez lv_cont_set_fit(cont, LV_FIT_...). Cela définira le même comportement dans toutes les directions. Pour utiliser différents ajustements automatiques horizontalement et verticalement, utilisez lv_cont_set_fit2(cont, hor_fit_type, ver_fit_type). Pour utiliser différents ajustements automatiques dans les 4 directions, utilisez lv_cont_set_fit4(cont, left_fit_type, right_fit_type, top_fit_type, bottom_fit_type).

Styles

Vous pouvez définir les styles avec lv_cont_set_style(cont, LV_CONT_STYLE_MAIN, &style).

• style.body est utilisé.

Evénements

Les événements génériques sont les seuls à être envoyés par ce type d'objet.

Apprenez-en plus sur les événements.

Touches

Aucune touche n'est traitée par ce type d'objet.

Apprenez-en plus sur les touches.

Exemple

C

Container with auto-fit

Short text It is a long text Here is an even longer text

code

(continues on next page)

(continued from previous page)

```
lv_obj_t * label;
    label = lv_label_create(cont, NULL);
    lv_label_set_text(label, "Short text");
    label = lv_label_create(cont, NULL);
    lv_label_set_text(label, "It is a long text");
    label = lv_label_create(cont, NULL);
    lv_label_set_text(label, "Here is an even longer text");
}
```

MicroPython

No examples yet.

API

Typedefs

```
typedef uint8_t lv_layout_t
typedef uint8_t lv_fit_t
typedef uint8_t lv_cont_style_t
```

Enums

enum [anonymous]

Container layout options

Values:

LV LAYOUT OFF = 0No layout

LV_LAYOUT_CENTER

Center objects

LV_LAYOUT_COL_L

Column left align

LV_LAYOUT_COL_M

Column middle align

LV_LAYOUT_COL_R

Column right align

LV_LAYOUT_ROW_T

Row top align

LV LAYOUT ROW M

Row middle align

LV_LAYOUT_ROW_B

Row bottom align

LV_LAYOUT_PRETTY

Put as many object as possible in row and begin a new row

LV LAYOUT GRID

Align same-sized object into a grid

LV_LAYOUT_NUM

enum [anonymous]

How to resize the container around the children.

Values:

LV FIT NONE

Do not change the size automatically

LV FIT TIGHT

Shrink wrap around the children

LV FIT FLOOD

Align the size to the parent's edge

LV_FIT_FILL

Align the size to the parent's edge first but if there is an object out of it then get larger

_LV_FIT_NUM

enum [anonymous]

Values:

Functions

```
lv\_obj\_t *lv\_cont\_create(lv\_obj\_t *par, const lv\_obj\_t *copy)
```

Create a container objects

Return pointer to the created container

Parameters

- par: pointer to an object, it will be the parent of the new container
- copy: pointer to a container object, if not NULL then the new object will be copied from it

```
void lv cont set layout(lv_obj_t*cont, lv_layout_t layout)
```

Set a layout on a container

Parameters

- cont: pointer to a container object
- layout: a layout from 'lv_cont_layout_t'

void lv cont_set_fit4(lv_obj_t*cont, lv_fit_t left, lv_fit_t right, lv_fit_t top, lv_fit_t bottom)

Set the fit policy in all 4 directions separately. It tell how to change the container's size automatically.

Parameters

- cont: pointer to a container object
- left: left fit policy from lv_fit_t
- right: right fit policy from lv fit t
- top: top fit policy from lv_fit_t

• bottom: bottom fit policy from lv_fit_t

static void **lv_cont_set_fit2**(lv_obj_t*cont, lv_fit_t hor, lv_fit_t ver)

Set the fit policy horizontally and vertically separately. It tells how to change the container's size automatically.

Parameters

- cont: pointer to a container object
- hor: horizontal fit policy from lv fit t
- ver: vertical fit policy from lv fit t

static void lv cont set fit(lv_obj_t*cont, lv_fit_t fit)

Set the fit policy in all 4 direction at once. It tells how to change the container's size automatically.

Parameters

- cont: pointer to a container object
- fit: fit policy from lv_fit_t

Set the style of a container

Parameters

- cont: pointer to a container object
- type: which style should be set (can be only LV CONT STYLE MAIN)
- style: pointer to the new style

lv_layout_t lv_cont_get_layout(const lv_obj_t *cont)

Get the layout of a container

Return the layout from 'lv_cont_layout_t'

Parameters

• cont: pointer to container object

lv_fit_t lv_cont_get_fit_left(const lv_obj_t *cont)

Get left fit mode of a container

Return an element of lv_fit_t

Parameters

• cont: pointer to a container object

lv_fit_t lv cont get fit right(const lv_obj_t *cont)

Get right fit mode of a container

Return an element of lv_fit_t

Parameters

• cont: pointer to a container object

lv fit t lv cont get fit top(const lv obj t*cont)

Get top fit mode of a container

Return an element of lv_fit_t

Parameters

• cont: pointer to a container object

lv_fit_t lv_cont_get_fit_bottom(const lv_obj_t *cont)

Get bottom fit mode of a container

Return an element of lv fit t

Parameters

• cont: pointer to a container object

```
 \textbf{static const} \ lv\_style\_t \ *\textbf{lv\_cont\_get\_style} (\textbf{const} \ lv\_obj\_t \ *cont, \ lv\_cont\_style\_t \ type)
```

Get the style of a container

Return pointer to the container's style

Parameters

- cont: pointer to a container object
- type: which style should be get (can be only LV_CONT_STYLE_MAIN)

struct lv cont ext t

Public Members

```
uint8_t layout
uint8_t fit_left
uint8_t fit_right
uint8_t fit_top
uint8_t fit_bottom
```

Liste déroulante (lv_ddlist)

Vue d'ensemble

Les listes déroulantes vous permettent de sélectionner simplement un élément parmi plusieurs. La liste déroulante est fermée par défaut et permet d'afficher le texte actuellement sélectionné. Si vous cliquez dessus, la liste s'ouvre et tous les éléments sont affichés.

Définir les éléments

Les éléments sont transmis à la liste déroulante sous forme de chaîne avec lv_ddlist_set_options(ddlist, options). Les éléments doivent être séparés par \n. Par exemple : "Premier\nDeuxième\nTroisième".

Vous pouvez sélectionner un élément manuellement avec lv_ddlist_set_selected(ddlist, id), où id est l'index d'un élément.

Obtenir l'élément sélectionné

Pour obtenir l'élément actuellement sélectionné, utilisez lv_ddlist_get_selected(ddlist). La fonction retourne l'index de l'élément sélectionné.

lv_ddlist_get_selected_str(ddlist, buf, buf_size) copie le texte de l'élément sélectionnée
dans buf.

Aligner les éléments

Pour aligner le texte horizontalement, utilisez lv_ddlist_set_align(ddlist, LV_LABEL_ALIGN_LEFT/CENTER/RIGHT).

Hauteur et largeur

Par défaut, la hauteur de la liste est ajustée automatiquement pour afficher tous les éléments. $lv_delist_set_fix_height(ddlist, height)$ définit une hauteur fixe pour la liste ouverte. 0 utilise la hauteur automatique.

La largeur est également ajustée automatiquement. Pour éviter cela, utilisez lv ddlist set fix width(ddlist, width). O utilise la largeur automatique.

Barres de défilement

Comme pour une page de hauteur fixe, la liste déroulante prend en charge divers modes d'affichage avec barres de défilement. Le mode est défini par lv ddlist set sb mode(ddlist, LV SB MODE ...).

Durée d'animation

La durée d'animation d'ouverture/fermeture de la liste déroulante est spécifié par lv_ddlist_set_anim_time(ddlist, anim_time). Une durée d'animation à zéro supprime l'animation.

Flèche décorative

Une flèche vers le bas peut être ajoutée à gauche de la liste déroulante avec lv_ddlist_set_draw_arrow(ddlist, true).

Rester ouvert

Vous pouvez forcer la liste déroulante à rester **ouverte** lorsqu'un élément est sélectionné avec lv_ddlist_set_stay_open(ddlist, true).

Styles

lv_ddlist_set_style(ddlist, LV_DDLIST_STYLE_..., &style) définit les styles d'une liste
déroulante.

- LV_DDLIST_STYLE_BG style de l'arrière plan. Toutes les propriétés style.body sont utilisées. style.text est utilisé pour le libellé de l'élément. Par défaut : lv_style_pretty,
- LV_DDLIST_STYLE_SEL Style de l'élément sélectionné. Les propriétés style.body sont utilisées. L'élément sélectionné sera colorée avec text.color. Par défaut : lv style plain color,

• LV_DDLIST_STYLE_SB style de la barre de défilement. Les propriétés style.body sont utilisées. Par défaut : lv_style_plain_color.

Evénements

Outre les [événements génériques](/overview/event.html #evenements-generiques), les événements spéciaux suivants sont envoyés par les listes déroulantes :

• LV_EVENT_VALUE_CHANGED envoyé lorsque un nouvel élément est sélectionné.

Apprenez-en plus sur les événements.

Touches

Les touches suivantes sont traitées par les listes déroulantes :

- LV_KEY_RIGHT/DOWN sélectionne l'élément suivant,
- LV_KEY_LEFT/UP sélectionne l'élément précédent,
- LY_KEY_ENTER valide l'élément sélectionné (envoie l'événement LV_EVENT_VALUE_CHANGED et ferme la liste déroulante).

Exemple

C

Simple Drop down list

code

```
#include "lvgl/lvgl.h"
#include <stdio.h>
static void event_handler(lv_obj_t * obj, lv_event_t event)
    if(event == LV_EVENT_VALUE_CHANGED) {
        char buf[32];
        lv ddlist get selected str(obj, buf, sizeof(buf));
        printf("Option: %s\n", buf);
    }
}
void lv ex ddlist 1(void)
    /*Create a drop down list*/
    lv_obj_t * ddlist = lv_ddlist_create(lv_scr_act(), NULL);
    lv_ddlist_set_options(ddlist, "Apple\n"
            "Banana\n"
            "Orange\n"
            Melon\n
            "Grape\n"
            "Raspberry");
    lv_ddlist_set_fix_width(ddlist, 150);
    lv_ddlist_set_draw_arrow(ddlist, true);
    lv_obj_align(ddlist, NULL, LV_ALIGN_IN_TOP_MID, 0, 20);
    lv_obj_set_event_cb(ddlist, event_handler);
```

Drop "up" list

code

```
#include "lvgl/lvgl.h"
#include <stdio.h>
* Create a drop UP list by applying auto realign
void lv ex ddlist 2(void)
   /*Create a drop down list*/
    lv_obj_t * ddlist = lv_ddlist_create(lv_scr_act(), NULL);
    lv_ddlist_set_options(ddlist, "Apple\n"
            "Banana\n"
            "Orange\n"
            Melon\n
            "Grape\n"
            "Raspberry");
   lv_ddlist_set_fix_width(ddlist, 150);
   lv_ddlist_set_fix_height(ddlist, 150);
    lv ddlist set draw arrow(ddlist, true);
   /* Enable auto-realign when the size changes.
    * It will keep the bottom of the ddlist fixed*/
   lv_obj_set_auto_realign(ddlist, true);
    /*It will be called automatically when the size changes*/
    lv_obj_align(ddlist, NULL, LV_ALIGN_IN_BOTTOM_MID, 0, -20);
```

MicroPython

No examples yet.

API

Typedefs

```
typedef uint8_t lv_ddlist_style_t
```

Enums

```
enum [anonymous]
     Values:
     LV_DDLIST_STYLE_BG
     LV_DDLIST_STYLE_SEL
     LV_DDLIST_STYLE_SB
```

Functions

lv_obj_t *lv_ddlist_create(lv_obj_t *par, const lv_obj_t *copy)

Create a drop down list objects

Return pointer to the created drop down list

Parameters

- par: pointer to an object, it will be the parent of the new drop down list
- copy: pointer to a drop down list object, if not NULL then the new object will be copied from it

void lv_ddlist_set_options(lv_obj_t *ddlist, const char *options)

Set the options in a drop down list from a string

Parameters

- ddlist: pointer to drop down list object
- options: a string with ' 'separated options. E.g. "One\nTwo\nThree"

void lv_ddlist_set_selected(lv_obj_t*ddlist, uint16_t sel_opt)

Set the selected option

Parameters

- ddlist: pointer to drop down list object
- **sel_opt**: id of the selected option (0 ... number of option 1);

void lv_ddlist_set_fix_height(lv_obj_t *ddlist, lv_coord_t h)

Set a fix height for the drop down list If 0 then the opened ddlist will be auto. sized else the set height will be applied.

Parameters

- ddlist: pointer to a drop down list
- h: the height when the list is opened (0: auto size)

void lv ddlist set fix width($lv \ obj \ t *ddlist$, $lv \ coord \ t \ w$)

Set a fix width for the drop down list

Parameters

- ddlist: pointer to a drop down list
- W: the width when the list is opened (0: auto size)

void lv ddlist set draw arrow(lv_obj_t*ddlist, bool en)

Set arrow draw in a drop down list

Parameters

- ddlist: pointer to drop down list object
- en: enable/disable a arrow draw. E.g. "true" for draw.

void lv_ddlist_set_stay_open(lv_obj_t *ddlist, bool en)

Leave the list opened when a new value is selected

Parameters

- ddlist: pointer to drop down list object
- en: enable/disable "stay open" feature

static void lv_ddlist_set_sb_mode(lv_obj_t *ddlist, lv_sb_mode_t mode)

Set the scroll bar mode of a drop down list

Parameters

- ddlist: pointer to a drop down list object
- **sb_mode**: the new mode from 'lv_page_sb_mode_t' enum

static void **lv_ddlist_set_anim_time**(lv_obj_t *ddlist, uint16_t anim_time)

Set the open/close animation time.

Parameters

- ddlist: pointer to a drop down list
- anim_time: open/close animation time [ms]

void **lv_ddlist_set_style**(*lv_obj_t* **ddlist, lv_ddlist_style_t type*, **const** lv_style_t **style*) Set a style of a drop down list

Parameters

- ddlist: pointer to a drop down list object
- type: which style should be set
- style: pointer to a style

void lv_ddlist_set_align(lv_obj_t *ddlist, lv_label_align_t align)

Set the alignment of the labels in a drop down list

Parameters

- ddlist: pointer to a drop down list object
- align: alignment of labels

$\verb|const| char *lv_ddlist_get_options(const| \mathit{lv}_\mathit{obj}_t *\mathit{ddlist})|$

Get the options of a drop down list

Return the options separated by ''-s (E.g. "Option1\nOption2\nOption3")

Parameters

• ddlist: pointer to drop down list object

uint16_t lv_ddlist_get_selected(const lv_obj_t *ddlist)

Get the selected option

Return id of the selected option (0 ... number of option - 1);

Parameters

• ddlist: pointer to drop down list object

void lv ddlist get selected str(const lv_obj_t*ddlist, char *buf, uint16 t buf_size)

Get the current selected option as a string

Parameters

- **ddlist**: pointer to ddlist object
- buf: pointer to an array to store the string
- buf_size: size of buf in bytes. 0: to ignore it.

lv_coord_t lv_ddlist_get_fix_height(const lv_obj_t *ddlist)

Get the fix height value.

Return the height if the ddlist is opened (0: auto size)

Parameters

• ddlist: pointer to a drop down list object

bool lv_ddlist_get_draw_arrow(lv_obj_t*ddlist)

Get arrow draw in a drop down list

Parameters

• ddlist: pointer to drop down list object

bool lv_ddlist_get_stay_open(lv_obj_t *ddlist)

Get whether the drop down list stay open after selecting a value or not

Parameters

• ddlist: pointer to drop down list object

static lv_sb_mode_t lv_ddlist_get_sb_mode(const lv_obj_t *ddlist)

Get the scroll bar mode of a drop down list

Return scrollbar mode from 'lv_page_sb_mode_t' enum

Parameters

• ddlist: pointer to a drop down list object

static uint16_t lv_ddlist_get_anim_time(const lv_obj_t *ddlist)

Get the open/close animation time.

Return open/close animation time [ms]

Parameters

• ddlist: pointer to a drop down list

${\tt const} \ lv_style_t \ *lv_ddlist_get_style (const \ \mathit{lv_obj_t} \ *\mathit{ddlist}, \ \mathit{lv_ddlist_style_t} \ \mathit{type})$

Get a style of a drop down list

Return style pointer to a style

Parameters

- ddlist: pointer to a drop down list object
- type: which style should be get

lv_label_align_t lv_ddlist_get_align(const lv_obj_t *ddlist)

Get the alignment of the labels in a drop down list

Return alignment of labels

Parameters

• ddlist: pointer to a drop down list object

void lv ddlist open(lv_obj_t*ddlist, lv_anim_enable_t anim)

Open the drop down list with or without animation

Parameters

- ddlist: pointer to drop down list object
- anim_en: LV_ANIM_ON: use animation; LV_ANOM_OFF: not use animations

void lv_ddlist_close(lv_obj_t *ddlist, lv_anim_enable_t anim)

Close (Collapse) the drop down list

Parameters

- ddlist: pointer to drop down list object
- anim_en: LV_ANIM_ON: use animation; LV_ANOM_OFF: not use animations

struct lv_ddlist_ext_t

Public Members

```
lv_page_ext_t page
lv_obj_t *label
const lv_style_t *sel_style
uint16_t option_cnt
uint16_t sel_opt_id
uint16_t sel_opt_id_ori
uint8_t opened
uint8_t force_sel
uint8_t draw_arrow
uint8_t stay_open
lv_coord_t fix_height
```

Jauge (lv_gauge)

Vue d'ensemble

La jauge est semi-circulaire, présente une échelle graduée, des étiquettes et des aiguilles.

Echelle graduée

Vous pouvez utiliser la fonction lv_gauge_set_scale(gauge, angle, line_num, label_cnt) pour ajuster l'angle, les graduations et les étiquettes de l'échelle graduée. Les paramètres par défaut sont 220 degrés, 21 graduations et 6 étiquettes.

Aiguilles

La jauge peut montrer plus d'une aiguille. Utilisez la fonction <code>lv_gauge_set_needle_count(gauge, needle_num, color_array)</code> pour définir le nombre d'aiguilles et un tableau de couleurs pour chaque aiguille. Le tableau doit être une variable statique ou globale car seul son pointeur est sauvegardé.

Vous pouvez utiliser lv_gauge_set_value(gauge, needle_id, value) pour définir une aiguille.

Plage

La plage de la jauge peut être spécifiée par lv_gauge_set_range(gauge, min, max). La plage par défaut est 0..100.

Valeur critique

Pour définir une valeur critique, utilisez lv_gauge_set_critical_value(gauge, value). La couleur des graduations sera changée en line.color après cette valeur (défaut : 80).

Styles

La jauge utilise un style qui peut être défini par lv_gauge_set_style(gauge, LV_GAUGE_STYLE_MAIN, &style). Les propriétés de la jauge sont dérivées des attributs de style suivants :

- body.main_color la couleur des graduations au début de l'échelle graduée,
- body.grad_color la couleur des graduations à la fin de l'échelle graduée (dégradé avec la couleur principale),
- body.padding.left longueur de graduation,
- body.padding.inner distance de l'étiquette par rapport à l'échelle graduée,
- body.radius rayon du cercle d'origine de l'aiguille.
- line.width épaisseur de graduation
- line.color couleur de graduation après la valeur critique,
- text.font/color/letter_space attributs de l'étiquette.

Evénements

Seuls les événements génériques sont envoyés par ce type d'objet.

Apprenez-en plus sur les événements.

Touches

Aucune touche n'est traitée par ce type d'objet.

Apprenez-en plus sur les touches.

Exemple

C

Simple Gauge

code

```
#include "lvgl/lvgl.h"
void lv ex gauge 1(void)
    /*Create a style*/
    static lv style t style;
    lv_style_copy(&style, &lv_style_pretty_color);
    style.body.main color = lv color hex3(0x666);
                                                      /*Line color at the beginning*/
    style.body.grad_color = lv_color_hex3(0x666);
                                                      /*Line color at the end*/
    style.body.padding.left = 10;
                                                       /*Scale line length*/
    style.body.padding.inner = 8 ;
                                                      /*Scale label padding*/
    style.body.border.color = lv_color_hex3(0x333);
                                                      /*Needle middle circle color*/
    style.line.width = 3;
    style.text.color = lv_color_hex3(0x333);
    style.line.color = LV COLOR RED;
                                                      /*Line color after the critical...
   /*Describe the color for the needles*/
    static lv_color_t needle_colors[] = {LV_COLOR_BLUE, LV_COLOR_ORANGE, LV_COLOR_
→PURPLE};
    /*Create a gauge*/
    lv obj t * gauge1 = lv gauge create(lv scr act(), NULL);
    lv_gauge_set_style(gauge1, LV_GAUGE_STYLE_MAIN, &style);
    lv_gauge_set_needle_count(gauge1, 3, needle_colors);
    lv obj set size(gauge1, 150, 150);
    lv_obj_align(gauge1, NULL, LV_ALIGN_CENTER, 0, 20);
    /*Set the values*/
    lv gauge set value(gauge1, 0, 10);
    lv gauge set value(gauge1, 1, 20);
```

(continues on next page)

(continued from previous page)

```
lv_gauge_set_value(gauge1, 2, 30);
}
```

MicroPython

No examples yet.

API

Typedefs

```
typedef uint8_t lv_gauge_style_t
```

Enums

enum [anonymous]

Values:

LV_GAUGE_STYLE_MAIN

Functions

```
lv\_obj\_t *lv\_gauge\_create(lv\_obj\_t *par, const lv\_obj\_t *copy)
Create a gauge objects
```

Return pointer to the created gauge

Parameters

- par: pointer to an object, it will be the parent of the new gauge
- copy: pointer to a gauge object, if not NULL then the new object will be copied from it

```
void lv_gauge_set_needle_count(lv_obj_t *gauge, uint8_t needle_cnt, const lv_color_t colors[])
```

Set the number of needles

Parameters

- gauge: pointer to gauge object
- needle cnt: new count of needles
- colors: an array of colors for needles (with 'num' elements)

 $\label{eq:void_lv_gauge_set_value} void \ \textbf{lv}_\textbf{gauge}_\textbf{set_value}(\textit{lv}_\textit{obj}_\textit{t} *\textit{gauge}, \textit{uint8}_\textit{t} \textit{needle}_\textit{id}, \textit{int16}_\textit{t} \textit{value})$

Set the value of a needle

Parameters

- gauge: pointer to a gauge
- needle_id: the id of the needle
- value: the new value

static void **lv_gauge_set_range**(lv_obj_t *gauge, int16_t min, int16_t max)

Set minimum and the maximum values of a gauge

Parameters

- gauge: pointer to he gauge object
- min: minimum value
- max: maximum value

static void **lv_gauge_set_critical_value**(*lv_obj_t*gauge*, int16_t *value*)

Set a critical value on the scale. After this value 'line.color' scale lines will be drawn

Parameters

- gauge: pointer to a gauge object
- value: the critical value

void **lv_gauge_set_scale**(lv_obj_t *gauge, uint16_t angle, uint8_t line_cnt, uint8_t label_cnt)

Set the scale settings of a gauge

Parameters

- gauge: pointer to a gauge object
- angle: angle of the scale (0..360)
- line_cnt: count of scale lines. The get a given "subdivision" lines between label, line_cnt = $(sub_div + 1) * (label_cnt 1) + 1$
- label cnt: count of scale labels.

$\textbf{static} \ \operatorname{void} \ \textbf{lv_gauge_set_style} (\ \mathit{lv_obj_t} \ *\mathit{gauge}, \ \mathit{lv_gauge_style_t} \ \mathit{type}, \ \mathit{lv_style_t} \ *\mathit{style} \textbf{)}$

Set the styles of a gauge

Parameters

- gauge: pointer to a gauge object
- type: which style should be set (can be only LV GAUGE STYLE MAIN)
- style: set the style of the gauge

int16_t lv_gauge_get_value(const lv_obj_t *gauge, uint8_t needle)

Get the value of a needle

Return the value of the needle [min,max]

Parameters

- qauge: pointer to gauge object
- needle: the id of the needle

uint8_t lv_gauge_get_needle_count(const lv_obj_t *gauge)

Get the count of needles on a gauge

Return count of needles

Parameters

• gauge: pointer to gauge

static int16_t lv_gauge_get_min_value(const lv_obj_t *lmeter)

Get the minimum value of a gauge

 ${\bf Return}\;\;{\rm the\;minimum\;value\;of\;the\;gauge}$

Parameters

• gauge: pointer to a gauge object

static int16_t lv_gauge_get_max_value(const lv_obj_t *lmeter)

Get the maximum value of a gauge

Return the maximum value of the gauge

Parameters

• gauge: pointer to a gauge object

static int16_t lv_gauge_get_critical_value(const lv_obj_t *gauge)

Get a critical value on the scale.

Return the critical value

Parameters

• gauge: pointer to a gauge object

$wint8_t lv_gauge_get_label_count(const lv_obj_t *gauge)$

Set the number of labels (and the thicker lines too)

Return count of labels

Parameters

• gauge: pointer to a gauge object

static uint8_t lv_gauge_get_line_count(const lv_obj_t *gauge)

Get the scale number of a gauge

Return number of the scale units

Parameters

• gauge: pointer to a gauge object

$\verb|static uint16_t lv_gauge_get_scale_angle(const | lv_obj_t * gauge)|$

Get the scale angle of a gauge

Return angle of the scale

Parameters

• gauge: pointer to a gauge object

Get the style of a gauge

Return pointer to the gauge's style

Parameters

- gauge: pointer to a gauge object
- type: which style should be get (can be only LV GAUGE STYLE MAIN)

struct lv_gauge_ext_t

Public Members

```
lv_lmeter_ext_t lmeter
int16_t *values
const lv_color_t *needle_colors
uint8_t needle_count
uint8_t label_count
```

Image (Iv_img)

Vue d'ensemble

Les images sont les objets de base pour afficher des images.

Image source

Pour offrir un maximum de flexibilité, la source de l'image peut être :

- une variable dans le code (un tableau C avec les pixels),
- un fichier enregistré sur support externe (comme une carte SD),
- un texte avec symboles.

Pour définir la source d'une image, utilisez lv img set src(img, src)

Pour générer un tableau de pixels à partir d'une image PNG, JPG ou BMP, utilisez le convertisseur d'images en ligne et définissez l'image convertie avec son pointeur : lv_img_set_src(img1, &converted_img_var). Pour rendre la variable visible dans le fichier C, vous devez la déclarer avec LV_IMG_DECLARE(converted_img_var).

Pour utiliser des fichiers externes, vous devez également convertir les fichiers image à l'aide de l'outil de conversion en ligne, mais vous devez dans ce cas sélectionner le format de sortie binaire. Vous devez également utiliser le module de système de fichiers de LittlevGL et enregistrer un pilote avec certaines fonctions pour le fonctionnement de base des fichiers. Allez dans *Système de fichiers* pour en savoir plus. Pour définir une source d'image à partir d'un fichier, utilisez lv img set src(img, "S:folder1/my img.bin").

Vous pouvez définir un **symbole** de la même manière que pour les *étiquettes*. Dans ce cas, l'image sera rendue sous forme de texte conformément à la *police* spécifiée dans le style. Cela permet d'utiliser des "lettres" monochromes lègères au lieu d'images réelles. Pour définir une source d'image à partir d'un symbole, utilisez lv img set src(img1, LV SYMBOL OK).

Etiquette comme image

Les images et les étiquettes ont parfois la même utilisation. P.ex., décrire ce que fait un bouton. Par conséquent, les images et les étiquettes sont quelque peu interchangeables. Pour gérer cela, les images peuvent même afficher des textes en utilisant LV_SYMBOL_DUMMY comme préfixe du texte. Par exemple lv img set src(img, LV SYMBOL DUMMY "Some text").

Transparence

Les images internes (variables) et externes prennent en charge 2 méthodes de traitement de la transparence :

- couleur transparente les pixels avec la couleur LV_COLOR_TRANSP (lv_conf.h) seront transparents,
- canal alpha un canal alpha est ajouté à chaque pixel.

Palette et index alpha

Outre le format de couleur couleurs vraies (RVB), les formats suivants sont également pris en charge :

- indexé l'image a une palette,
- **alpha indexé ** seules les valeurs alpha sont enregistrées.

Ces options peuvent être sélectionnées dans le convertisseur d'images. Pour en savoir plus sur les formats de couleur, lisez la section *Images*.

Coloration

Les images peuvent être re-colorées au moment de l'exécution en n'importe quelle couleur en fonction de la luminosité des pixels. C'est très utile pour montrer différents états (sélectionné, désactivé, pressé, etc.) d'une image sans enregistrer plusieurs de versions de la même image. Cette fonctionnalité peut être activée dans le style en définissant img.intense de LV_OPA_TRANSP (pas de coloration, valeur : 0) à LV_OPA_COVER (coloration totale, valeur : 255). La valeur par défaut est LV_OPA_TRANSP, cette fonctionnalité est donc désactivée.

Taille automatique

Il est possible de définir automatiquement la taille de l'objet image à la largeur et la hauteur de la source de l'image si ceci est activée par la fonction <code>lv_img_set_auto_size(image, true)</code>. Si la taille automatique est activée, lorsqu'un nouveau fichier est défini, la taille de l'objet est automatiquement modifiée. Plus tard, vous pouvez modifier la taille manuellement. La taille automatique est activée par défaut si l'image n'est pas un écran

Mosaïque

Si la taille de l'objet est supérieure à la taille de l'image dans n'importe quelle direction, l'image sera répétée comme une mosaïque. C'est une fonctionnalité très utile pour créer une grande image à partir d'une source plus petite. Par exemple, vous pouvez avoir une image $300 \ x \ 1$ avec un dégradé spécial et la définir comme fond d'écran à l'aide de la fonction mosaïque.

Décalage

Avec lv_img_set_offset_x(img, x_ofs) etlv_img_set_offset_y(img, y_ofs)vous pouvez ajouter un décalage à l'image affichée. Cela est utile si la taille de l'objet est inférieure à la taille de la source de l'image. En utilisant le paramètre décalage un atlas de texture ou un effet d'"image mouvante" peut être créer en animant le décalage x ou y.

Styles

Les images utilisent un style qui peut être défini par lv_img_set_style(lmeter, LV_IMG_STYLE_MAIN, &style). Toutes les propriétés style.image sont utilisées :

- image.intense intensité de coloration (0..255 ou LV_OPA_...),
- image.color couleur pour colorer ou couleur des images indexées alpha,
- image.opa opacité globale de l'image.

Lorsque l'objet Image affiche un texte, les propriétés **style.text** sont utilisées. Voir étiquette pour plus d'informations.

Le style par défaut des images est NULL donc elles héritent du style du parent.

Evénements

Seuls les événements génériques sont envoyés par ce type d'objet.

Apprenez-en plus sur les événements.

Touches

Aucune touche n'est traitée par ce type d'objet.

Apprenez-en plus sur les touches.

Exemple

C

Image from variable and symbol

code

```
#include "lvgl/lvgl.h"

LV_IMG_DECLARE(cogwheel);

void lv_ex_img_1(void)
{
    lv_obj_t * img1 = lv_img_create(lv_scr_act(), NULL);
    lv_img_set_src(img1, &cogwheel);
    lv_obj_align(img1, NULL, LV_ALIGN_CENTER, 0, -20);

    lv_obj_t * img2 = lv_img_create(lv_scr_act(), NULL);
    lv_img_set_src(img2, LV_SYMBOL_OK "Accept");
    lv_obj_align(img2, img1, LV_ALIGN_OUT_BOTTOM_MID, 0, 20);
}
```

Image reoloring

code

```
* @file lv_ex_img_2.c
*/
/********
      INCLUDES
*******************
#include "lvgl/lvgl.h"
/***********
   DEFINES
*******************
#define SLIDER_WIDTH 40
/***********
* TYPEDEFS
*******************/
/********
* STATIC PROTOTYPES
**********************
static void create_sliders(void);
static void slider_event_cb(lv_obj_t * slider, lv_event_t event);
/********
* STATIC VARIABLES
*********************/
static lv_obj_t * red_slider, * green_slider, * blue_slider, * intense_slider;
static lv_obj_t * img1;
```

```
static lv_style_t img_style;
LV IMG DECLARE(cogwheel);
/*********
      MACROS
*******************
/****************
   GLOBAL FUNCTIONS
*******************
void lv ex img 2(void)
   /*Create 4 sliders to adjust RGB color and re-color intensity*/
   create_sliders();
   /* Now create the actual image */
   img1 = lv img create(lv scr act(), NULL);
   lv_img_set_src(img1, &cogwheel);
   lv_obj_align(img1, intense_slider, LV_ALIGN_OUT_RIGHT_MID, 10, 0);
   /* Create a message box for information */
   static const char * btns[] ={"0K", ""};
   lv obj t * mbox = lv mbox create(lv scr act(), NULL);
   lv_mbox_set_text(mbox, "Welcome to the image recoloring demo!\nThe first three_
→sliders control the RGB value of the recoloring.\nThe last slider controls the
→intensity.");
   lv_mbox_add_btns(mbox, btns);
   lv obj align(mbox, NULL, LV ALIGN CENTER, 0, 0);
    /* Save the image's style so the sliders can modify it */
   lv_style_copy(&img_style, lv_img_get_style(img1, LV_IMG_STYLE_MAIN));
}
/********
* STATIC FUNCTIONS
******************
static void slider_event_cb(lv_obj_t * slider, lv_event_t event)
   if(event == LV EVENT VALUE CHANGED) {
       /* Recolor the image based on the sliders' values */
       img style.image.color = lv color make(lv slider get value(red slider), lv
→slider_get_value(green_slider), lv_slider_get_value(blue_slider));
       img_style.image.intense = lv_slider_get_value(intense_slider);
       lv_img_set_style(img1, LV_IMG_STYLE_MAIN, &img_style);
   }
}
static void create sliders(void)
   /* Create a set of RGB sliders */
   /* Use the red one as a base for all the settings */
   red_slider = lv_slider_create(lv_scr_act(), NULL);
```

```
lv slider set range(red slider, 0, 255);
   lv_obj_set_size(red_slider, SLIDER_WIDTH, 200); /* Be sure it's a vertical slider...
<u></u>*/
   lv obj set event cb(red slider, slider event cb);
   /* Create the intensity slider first, as it does not use any custom styles */
   intense slider = lv_slider_create(lv_scr_act(), red_slider);
   lv_slider_set_range(intense_slider, LV_OPA_TRANSP, LV_OPA_COVER);
   /* Create the slider knob and fill styles */
   /* Fill styles are initialized with a gradient between black and the slider's,
→respective color. */
   /* Knob styles are simply filled with the slider's respective color. */
   static lv_style_t slider_red_fill_style, slider_red_knob_style;
   lv_style_copy(&slider_red_fill_style, lv_slider_get_style(red_slider, LV_SLIDER_
→STYLE INDIC));
   lv_style_copy(&slider_red_knob_style, lv_slider_get_style(red_slider, LV_SLIDER_
→STYLE KNOB));
   slider_red_fill_style.body.main_color = lv_color_make(255, 0, 0);
   slider red fill style.body.grad color = LV COLOR BLACK;
   slider red knob style.body.main color = slider red knob style.body.grad color = ...
→slider red fill style.body.main color;
   static lv style t slider green fill style, slider green knob style;
   lv_style_copy(&slider_green_fill_style, &slider_red_fill_style);
   lv_style_copy(&slider_green_knob_style, &slider_red_knob_style);
   slider green fill style.body.main color = lv color make(0, 255, 0);
   slider green knob style.body.main color = slider green knob style.body.grad color,
⇒= slider_green_fill_style.body.main_color;
   static lv_style_t slider_blue_fill_style, slider_blue_knob style;
   lv style copy(&slider blue fill style, &slider red fill style);
   lv style copy(&slider blue knob style, &slider red knob style);
   slider blue fill style.body.main color = lv color make(0, 0, 255);
   slider blue knob style.body.main color = slider blue knob style.body.grad color = ...
⇒slider blue fill style.body.main color;
   /* Setup the red slider */
   lv_slider_set_style(red_slider, LV_SLIDER_STYLE_INDIC, &slider_red_fill_style);
   lv_slider_set_style(red_slider, LV_SLIDER_STYLE_KNOB, &slider_red_knob_style);
   /* Copy it for the other two sliders */
   green slider = lv slider create(lv scr act(), red slider);
   lv slider set style(green slider, LV SLIDER STYLE INDIC, &slider green fill
→stvle):
   lv slider set style(green slider, LV SLIDER STYLE KNOB, &slider green knob style);
   blue slider = lv slider create(lv scr act(), red slider);
```

```
lv_slider_set_style(blue_slider, LV_SLIDER_STYLE_INDIC, &slider_blue_fill_style);
lv_slider_set_style(blue_slider, LV_SLIDER_STYLE_KNOB, &slider_blue_knob_style);
lv_obj_align(red_slider, NULL, LV_ALIGN_IN_LEFT_MID, 10, 0);
lv_obj_align(green_slider, red_slider, LV_ALIGN_OUT_RIGHT_MID, 10, 0);
lv_obj_align(blue_slider, green_slider, LV_ALIGN_OUT_RIGHT_MID, 10, 0);
lv_obj_align(intense_slider, blue_slider, LV_ALIGN_OUT_RIGHT_MID, 10, 0);
}
```

MicroPython

No examples yet.

API

Typedefs

```
typedef uint8 tlv img style t
```

Enums

```
enum [anonymous]
Values:
```

LV_IMG_STYLE_MAIN

Functions

```
lv\_obj\_t *lv\_img\_create(lv\_obj\_t *par, const lv\_obj\_t *copy)
Create an image objects
```

Return pointer to the created image

Parameters

- par: pointer to an object, it will be the parent of the new button
- copy: pointer to a image object, if not NULL then the new object will be copied from it

```
void lv_img_set_src(lv_obj_t *img, const void *src_img)
```

Set the pixel map to display by the image

Parameters

- imq: pointer to an image object
- data: the image data

```
void lv_img_set_auto_size(lv_obj_t *img, bool autosize_en)
```

Enable the auto size feature. If enabled the object size will be same as the picture size.

- img: pointer to an image
- en: true: auto size enable, false: auto size disable

void $lv_img_set_offset_x(lv_obj_t*img, lv_coord_t x)$

Set an offset for the source of an image. so the image will be displayed from the new origin.

Parameters

- img: pointer to an image
- X: the new offset along x axis.

void lv_img_set_offset_y(lv_obj_t *img, lv_coord_t y)

Set an offset for the source of an image. so the image will be displayed from the new origin.

Parameters

- img: pointer to an image
- y: the new offset along y axis.

$\textbf{static} \ \text{void} \ \textbf{lv_img_set_style} (\textit{lv_obj_t} * \textit{img}, \textit{lv_img_style_t} \ \textit{type}, \ \textbf{const} \ \text{lv_style_t} \ * \textit{style})$

Set the style of an image

Parameters

- img: pointer to an image object
- type: which style should be set (can be only LV_IMG_STYLE_MAIN)
- style: pointer to a style

const void *lv_img_get_src(lv_obj_t *img)

Get the source of the image

Return the image source (symbol, file name or C array)

Parameters

• img: pointer to an image object

const char *lv img get file name(const lv_obj_t *img)

Get the name of the file set for an image

Return file name

Parameters

• img: pointer to an image

bool lv img get auto size(const lv obj t*img)

Get the auto size enable attribute

Return true: auto size is enabled, false: auto size is disabled

Parameters

• img: pointer to an image

lv coord t lv img get offset $x(lv_obj_t*img)$

Get the offset.x attribute of the img object.

Return offset.x value.

Parameters

• imq: pointer to an image

```
lv_coord_t lv_img_get_offset_y(lv_obj_t *img)
```

Get the offset.y attribute of the img object.

Return offset.y value.

Parameters

• imq: pointer to an image

```
static const lv_style_t *lv_img_get_style(const lv_obj_t *img, lv_img_style_t type)

Get the style of an image object
```

Get the style of all image object

Return pointer to the image's style

Parameters

- img: pointer to an image object
- type: which style should be get (can be only LV_IMG_STYLE_MAIN)

struct lv_img_ext_t

Public Members

```
const void *src
lv_point_t offset
lv_coord_t w
lv_coord_t h
uint8_t src_type
uint8_t auto_size
uint8_t cf
```

Bouton image (lv_imgbtn)

Vue d'ensemble

Le bouton Image est très similaire à l'objet bouton simple. La seule différence est qu'il affiche des images définies par l'utilisateur pour chaque état au lieu de dessiner un bouton. Avant de lire ceci, veuillez lire la section sur l'objet bouton.

Images sources

Pour définir l'image d'un état, utilisez lv_imgbtn_set_src(imgbtn, LV_BTN_STATE_..., &img_src).Les images sources fonctionnent comme décrit dans l'objet image.

Si LV IMGBTN TILED est activé dans lv conf.h trois sources peuvent être définies pour chaque état :

- gauche,
- centre,
- droit.

L'image centre sera répétée pour remplir l'objet sur toute sa largeur. Par conséquent, avec LV_IMGBTN_TILED, vous pouvez définir la largeur du bouton Image, sans quoi la largeur sera toujours identique à la largeur de l'image source.

Etats

Les états sont semblables à ceux de l'objet bouton. Il peut être défini avec lv imgbtn set state(imgbtn, LV BTN STATE ...).

Bascule

La fonctionnalité bascule peut être activée avec lv imgbtn set toggle(imgbtn, true).

Styles

Comme pour les boutons normaux, les boutons image ont également 5 styles indépendants pour les 5 états. Vous pouvez les définir via lv_imgbtn_set_style(btn, LV_IMGBTN_STYLE_..., &style). Les styles utilisent les propriétés style.image.

- LV_IMGBTN_STYLE_REL style de l'état relâché. Défaut : lv style btn rel,
- LV_IMGBTN_STYLE_PR style de l'état pressé. Défaut : lv_style_btn_pr,
- LV_IMGBTN_STYLE_TGL_REL style de l'état bascule relâché. Défaut lv_style_btn_tgl_rel,
- LV_IMGBTN_STYLE_TGL_PR style de l'état bascule pressé. Défaut lv_style_btn_tgl_pr,
- LV_IMGBTN_STYLE_INA style de l'état inactif. Défaut : lv style btn ina.

Quand vous créez une étiquette sur un bouton image, la bonne pratique consiste à définir les propriétés style.text du bouton image. Comme les étiquettes ont style = NULL par défaut, elles héritent du style du parent, le bouton image. De ce fait, vous n'avez pas besoin de créer un nouveau style pour l'étiquette.

Evénements

Outre les [événements génériques](/overview/event.html #evenements-generiques), les événements spéciaux suivants sont envoyés par les boutons image :

• LV EVENT VALUE CHANGED envoyé lorsque le bouton image est basculé.

Notez que les événements génériques liés au périphérique d'entrée (tels que LV_EVENT_PRESSED) sont également envoyés dans l'état inactif. Vous devez vérifier l'état avec lv_imgbtn_get_state(imgbtn) pour ignorer les événements des boutons inactifs.

Apprenez-en plus sur les événements.

Touches

Les touches suivantes sont traitées par les cases à cocher:

• LV KEY RIGHT/UP passe à l'état bascule pressé si le mode bascule est actif

• LV_KEY_LEFT/DOWN passe à l'état bascule relâché si le mode bascule est actif

Notez que, comme d'habitude, l'état de LV_KEY_ENTER est traduit en LV_EVENT_PRESSED/PRESSING/RELEASED etc.

Apprenez-en plus sur les touches.

Exemple

C

Base obejcts with custom styles

code

```
#include "lvgl/lvgl.h"

void lv_ex_obj_1(void)
{
    lv_obj_t * obj1;
    obj1 = lv_obj_create(lv_scr_act(), NULL);
    lv_obj_set_size(obj1, 100, 50);
    lv_obj_set_style(obj1, &lv_style_plain_color);
    lv_obj_align(obj1, NULL, LV_ALIGN_CENTER, -60, -30);

/*Copy the previous object and enable drag*/
    lv_obj_t * obj2;
    obj2 = lv_obj_create(lv_scr_act(), obj1);
    lv_obj_set_style(obj2, &lv_style_pretty_color);
    lv_obj_align(obj2, NULL, LV_ALIGN_CENTER, 0, 0);

static lv_style_t style_shadow;
    lv_style_copy(&style_shadow, &lv_style_pretty);
```

```
style_shadow.body.shadow.width = 6;
style_shadow.body.radius = LV_RADIUS_CIRCLE;

/*Copy the previous object (drag is already enabled)*/
lv_obj_t * obj3;
obj3 = lv_obj_create(lv_scr_act(), obj2);
lv_obj_set_style(obj3, &style_shadow);
lv_obj_align(obj3, NULL, LV_ALIGN_CENTER, 60, 30);
}
```

MicroPython

No examples yet.

API

Typedefs

```
typedef uint8_t lv_imgbtn_style_t
```

Enums

```
enum [anonymous]

Values:

LV_IMGBTN_STYLE_REL
```

Same meaning as ordinary button styles.

```
LV_IMGBTN_STYLE_PR
LV_IMGBTN_STYLE_TGL_REL
LV_IMGBTN_STYLE_TGL_PR
LV_IMGBTN_STYLE_INA
```

Functions

```
lv\_obj\_t *lv\_imgbtn\_create(lv\_obj\_t *par, const lv\_obj\_t *copy)
Create a image button objects
```

Return pointer to the created image button

Parameters

- par: pointer to an object, it will be the parent of the new image button
- COPY: pointer to a image button object, if not NULL then the new object will be copied from it

```
void lv\_imgbtn\_set\_src(lv\_obj\_t*imgbtn, lv\_btn\_state\_t state, const void *src)
Set images for a state of the image button
```

- imgbtn: pointer to an image button object
- state: for which state set the new image (from lv btn state t) '
- Src: pointer to an image source (a C array or path to a file)

Set images for a state of the image button

Parameters

- imgbtn: pointer to an image button object
- state: for which state set the new image (from lv_btn_state_t) '
- src_left: pointer to an image source for the left side of the button (a C array or path to a file)
- src_mid: pointer to an image source for the middle of the button (ideally 1px wide) (a C array or path to a file)
- src_right: pointer to an image source for the right side of the button (a C array or path to a file)

static void lv_imgbtn_set_toggle(lv_obj_t *imgbtn, bool tgl)

Enable the toggled states. On release the button will change from/to toggled state.

Parameters

- imgbtn: pointer to an image button object
- tgl: true: enable toggled states, false: disable

static void lv_imgbtn_set_state(lv_obj_t *imgbtn, lv_btn_state_t state)

Set the state of the image button

Parameters

- imgbtn: pointer to an image button object
- state: the new state of the button (from lv_btn_state_t enum)

static void lv imgbtn toggle(lv_obj_t*imgbtn)

Toggle the state of the image button (ON->OFF, OFF->ON)

Parameters

• imgbtn: pointer to a image button object

```
void lv\_imgbtn\_set\_style(lv\_obj\_t*imgbtn, lv\_imgbtn\_style\_t type, const lv\_style\_t*style)
Set a style of a image button.
```

Parameters

- imgbtn: pointer to image button object
- type: which style should be set
- style: pointer to a style

$\textbf{const} \ \operatorname{void} \ *\textbf{lv_imgbtn_get_src} (\mathit{lv_obj_t} \ *\mathit{imgbtn}, \ \mathit{lv_btn_state_t} \ \mathit{state})$

Get the images in a given state

Return pointer to an image source (a C array or path to a file)

Parameters

• imgbtn: pointer to an image button object

• state: the state where to get the image (from lv_btn_state_t) '

const void *lv_imgbtn_get_src_left(lv_obj_t *imgbtn, lv_btn_state_t state)

Get the left image in a given state

Return pointer to the left image source (a C array or path to a file)

Parameters

- imqbtn: pointer to an image button object
- state: the state where to get the image (from lv_btn_state_t) '

const void *lv_imgbtn_get_src_middle(lv_obj_t *imgbtn, lv_btn_state_t state)

Get the middle image in a given state

Return pointer to the middle image source (a C array or path to a file)

Parameters

- imgbtn: pointer to an image button object
- state: the state where to get the image (from lv btn state t) '

const void *lv_imgbtn_get_src_right(lv_obj_t *imgbtn, lv_btn_state_t state)

Get the right image in a given state

Return pointer to the left image source (a C array or path to a file)

Parameters

- imgbtn: pointer to an image button object
- state: the state where to get the image (from lv btn state t) '

static lv_btn_state_t lv_imgbtn_get_state(const lv_obj_t *imgbtn)

Get the current state of the image button

Return the state of the button (from ly btn state t enum)

Parameters

• imgbtn: pointer to a image button object

static bool lv imgbtn get toggle(const lv_obj_t *imgbtn)

Get the toggle enable attribute of the image button

Return ture: toggle enabled, false: disabled

Parameters

• imgbtn: pointer to a image button object

const lv_style_t *lv_imgbtn_get_style(const lv_obj_t *imgbtn, lv_imgbtn_style_t type) Get style of a image button.

Return style pointer to the style

Parameters

- imgbtn: pointer to image button object
- type: which style should be get

struct lv_imgbtn_ext_t

Public Members

```
lv_btn_ext_t btn
const void *img_src[_LV_BTN_STATE_NUM]
const void *img_src_left[_LV_BTN_STATE_NUM]
const void *img_src_mid[_LV_BTN_STATE_NUM]
const void *img_src_right[_LV_BTN_STATE_NUM]
lv_img_cf_t act_cf
```

Clavier (lv_kb)

Vue d'ensemble

L'objet clavier est une *matrice de boutons* spéciale avec des dispositions de touches prédéfinies et autres fonctionnalités qui implémente un clavier virtuel pour écrire du texte.

Modes

Les claviers ont deux modes:

- LV_KB_MODE_TEXT affiche lettres, chiffres et des caractères spéciaux,
- LV_KB_MODE_NUM affiche chiffres, signe +/- et point décimal.

Pour définir le mode, utilisez lv kb set mode (kb, mode). Le défaut est LV KB MODE TEXT.

Zone de texte

Vous pouvez attribuer une zone de texte au clavier pour insérer automatiquement les caractères sur lesquels vous avez cliqué. Pour définir la zone de texte, utilisez.lv kb set ta(kb, ta).

Le curseur de la zone de texte peut être géré par le clavier : lorsque le clavier est lié, le curseur de la zone de texte est masqué et un nouveau est affiché. Lorsque le clavier est fermé avec les touches Ok ou Fermer, le curseur est également masqué. La fonctionnalité de gestion du curseur est activée par $lv_kb_set_cursor_manage(kb, true)$. La valeur par défaut est non géré.

Nouvelle disposition de touches

Vous pouvez spécifier une nouvelle disposition pour le clavier avec <code>lv_kb_set_map(kb, map)</code> et <code>lv_kb_set_ctrl_map(kb, ctrl_map)</code>. Apprenez en plus sur le sujet avec l'objet matrice de boutons N'oubliez pas que l'utilisation des mots clés suivants aura le même effet qu'avec la disposition de touches d'origine:

- LV_SYMBOL_OK appliquer,
- SYMBOL_CLOSE fermer,
- LV_SYMBOL_LEFT déplacer le curseur à gauche,
- LV_SYMBOL_RIGHT déplacer le curseur à droite,
- "ABC" charger la disposition des touches majuscules,

- "abc" charger la disposition des touches minuscules,
- *"Enter"*nouvelle ligne,
- "Bkps" suppression à gauche.

Styles

Les claviers fonctionnent avec 6 styles : un arrière-plan et 5 styles de boutons pour chaque état. Vous pouvez définir les styles avec lv_kb_set_style(cont, LV_KB_STYLE_MAIN, &style). L'arrière-plan et les boutons utilisent les propriétés style.body. Les étiquettes utilisent les propriétés style.text des styles de boutons.

- LV_KB_STYLE_BG style d'arrière-plan. Utilise toutes les propriétés style.body, y compris padding. Par défaut : lv_style_pretty
- LV_KB_STYLE_BTN_REL style des boutons relâchés. Défaut : lv_style_btn_rel
- LV_KB_STYLE_BTN_PR style des boutons pressés. Défaut : lv_style_btn_pr
- LV_KB_STYLE_BTN_TGL_REL style des boutons bascules relâchés. Défaut : lv_style_btn_tgl_rel,
- LV_KB_STYLE_BTN_TGL_PR style des boutons bascules pressés. Défaut : lv style btn tgl pr
- LV KB STYLE BTN INA style des boutons inactifs. Défaut : lv style btn ina.

Evénements

Outre les [événements génériques](/overview/event.html #evenements-generiques), les événements spéciaux suivants sont envoyés par les claviers :

- LV_EVENT_VALUE_CHANGED envoyé lorsque le bouton est enfoncé/relâché ou répété après un appui prolongé. Les données d'événement sont l'ID du bouton enfoncé/relâché.
- LV_EVENT_APPLY le bouton Ok est cliqué
- LV_EVENT_CANCEL le bouton Close est cliqué

Le clavier a une **fonction de rappel par défaut** du gestionnaire d'événements appelée <code>lv_kb_def_event_cb</code>. Cette fonction gère l'appui sur les boutons, le changement de disposition, la zone de texte liée, etc. Vous pouvez écrire votre gestionnaire d'événements personnalisé et vous pouvez utiliser <code>lv_kb_def_event_cb</code> au début de votre gestionnaire pour conserver un comportement par défaut pour certains événements.

Apprenez-en plus sur les événements.

Touches

Les touches suivantes sont traitées par les boutons :

- LV_KEY_RIGHT/UP/LEFT/RIGHT pour naviguer parmi les boutons et en sélectionner un,
- LV_KEY_ENTER pour presser/relâcher le bouton sélectionné.

Apprenez-en plus sur les touches.

Exemples

C

Keyboard with text area

code

```
#include "lvgl/lvgl.h"
void lv_ex_kb_1(void)
   /*Create styles for the keyboard*/
   static lv_style_t rel_style, pr_style;
    lv_style_copy(&rel_style, &lv_style_btn_rel);
    rel_style.body.radius = 0;
    rel_style.body.border.width = 1;
    lv_style_copy(&pr_style, &lv_style_btn_pr);
    pr_style.body.radius = 0;
   pr_style.body.border.width = 1;
   /*Create a keyboard and apply the styles*/
   lv_obj_t *kb = lv_kb_create(lv_scr_act(), NULL);
    lv kb set cursor manage(kb, true);
    lv_kb_set_style(kb, LV_KB_STYLE_BG, &lv_style_transp_tight);
    lv_kb_set_style(kb, LV_KB_STYLE_BTN_REL, &rel_style);
    lv_kb_set_style(kb, LV_KB_STYLE_BTN_PR, &pr_style);
    /*Create a text area. The keyboard will write here*/
    lv_obj_t *ta = lv_ta_create(lv_scr_act(), NULL);
    lv_obj_align(ta, NULL, LV_ALIGN_IN_TOP_MID, 0, 10);
    lv_ta_set_text(ta, "");
```

```
/*Assign the text area to the keyboard*/
lv_kb_set_ta(kb, ta);
}
```

MicroPython

No examples yet.

API

Typedefs

```
typedef uint8_t lv_kb_mode_t
typedef uint8_t lv_kb_style_t
```

Enums

enum [anonymous]

Current keyboard mode.

Values:

LV_KB_MODE_TEXT
LV_KB_MODE_NUM

enum [anonymous]

Values:

LV_KB_STYLE_BG

LV_KB_STYLE_BTN_REL

LV_KB_STYLE_BTN_PR

LV_KB_STYLE_BTN_TGL_REL

LV_KB_STYLE_BTN_TGL_PR

LV_KB_STYLE_BTN_INA

Functions

```
lv\_obj\_t *lv\_kb\_create(lv\_obj\_t *par, const lv\_obj\_t *copy)
Create a keyboard objects
```

Return pointer to the created keyboard

- par: pointer to an object, it will be the parent of the new keyboard
- copy: pointer to a keyboard object, if not NULL then the new object will be copied from it

void lv_kb_set_ta(lv_obj_t *kb, lv_obj_t *ta)

Assign a Text Area to the Keyboard. The pressed characters will be put there.

Parameters

- kb: pointer to a Keyboard object
- ta: pointer to a Text Area object to write there

void $lv_kb_set_mode(lv_obj_t*kb, lv_kb_mode_t mode)$

Set a new a mode (text or number map)

Parameters

- kb: pointer to a Keyboard object
- mode: the mode from 'lv kb mode t'

void lv_kb_set_cursor_manage(lv_obj_t *kb, bool en)

Automatically hide or show the cursor of the current Text Area

Parameters

- kb: pointer to a Keyboard object
- en: true: show cursor on the current text area, false: hide cursor

static void $lv_kb_set_map(lv_obj_t^*kb, const char *map[])$

Set a new map for the keyboard

Parameters

- kb: pointer to a Keyboard object
- map: pointer to a string array to describe the map. See 'lv_btnm_set_map()' for more info.

static void lv kb set ctrl map(lv_obj_t*kb, const lv_btnm_ctrl_t ctrl_map[])

Set the button control map (hidden, disabled etc.) for the keyboard. The control map array will be copied and so may be deallocated after this function returns.

Parameters

- kb: pointer to a keyboard object
- ctrl_map: pointer to an array of lv_btn_ctrl_t control bytes. See: lv_btnm_set_ctrl_map for more details.

void lv_kb_set_style(lv_obj_t*kb, lv_kb_style_t type, const lv_style_t *style)

Set a style of a keyboard

Parameters

- **kb**: pointer to a keyboard object
- type: which style should be set
- style: pointer to a style

lv obj t*lv kb get ta(const lv obj t*kb)

Assign a Text Area to the Keyboard. The pressed characters will be put there.

Return pointer to the assigned Text Area object

Parameters

• kb: pointer to a Keyboard object

lv_kb_mode_t lv_kb_get_mode(const lv_obj_t *kb)

Set a new a mode (text or number map)

Return the current mode from 'lv kb mode t'

Parameters

• kb: pointer to a Keyboard object

bool lv_kb_get_cursor_manage(const $lv_obj_t *kb$)

Get the current cursor manage mode.

Return true: show cursor on the current text area, false: hide cursor

Parameters

• kb: pointer to a Keyboard object

static const char **lv_kb_get_map_array(const lv_obj_t *kb)

Get the current map of a keyboard

Return the current map

Parameters

• kb: pointer to a keyboard object

const lv_style_t *lv_kb_get_style(const lv_obj_t *kb, lv_kb_style_t type)

Get a style of a keyboard

Return style pointer to a style

Parameters

- kb: pointer to a keyboard object
- type: which style should be get

void lv kb def event cb(lv_obj_t*kb, lv_event_t event)

Default keyboard event to add characters to the Text area and change the map. If a custom event_cb is added to the keyboard this function be called from it to handle the button clicks

Parameters

- kb: pointer to a keyboard
- event: the triggering event

struct lv_kb_ext_t

Public Members

```
lv_btnm_ext_t btnm
lv_obj_t *ta
lv_kb_mode_t mode
uint8_t cursor_mng
```

Etiquette (lv_label)

Vue d'ensemble

Les étiquettes sont les objets de base pour afficher du texte.

Définir le texte

Vous pouvez modifier le texte en cours d'exécution à tout moment avec lv_label_set_text(label, "Nouveau texte"). Le texte sera alloué dynamiquement.

Les étiquettes peuvent afficher du texte à partir d'un **texte statique**. Utilisez lv_label_set_static_text(label, text). Dans ce cas, le texte n'est pas enregistré dans la mémoire dynamique, mais le texte est utilisé directement. Gardez à l'esprit que le texte ne peut pas être une variable locale, détruit lorsque la fonction se termine.

Vous pouvez également utiliser un **tableau de caractères** comme texte d'étiquette. Le tableau ne doit pas obligatoirement être terminé par "\ 0". Dans ce cas, le texte sera enregistré dans la mémoire dynamique. Pour définir un tableau de caractères, utilisez la fonction lv label set array text(label, array).

Saut de ligne

Vous pouvez utiliser \n pour faire un saut de ligne. Par exemple: "ligne 1\nligne 2\n\nligne 4".

Modes d'adaptation au texte

La taille de l'objet étiquette peut être automatiquement étendue à la taille du texte ou le texte peut être manipulé selon plusieurs règles de mode :

- LV_LABEL_LONG_EXPAND augmente la taille de l'objet à la taille du texte (par défaut),
- LV_LABEL_LONG_BREAK conserve la largeur de l'objet, découpe les lignes trop longues et augmente la hauteur de l'objet,
- LV_LABEL_LONG_DOTS conserve la taille de l'objet, découpe le texte et écrit des points en fin de dernière ligne,
- LV_LABEL_LONG_SROLL conserve la taille de l'objet et fait défiler le texte en avant et en arrière,
- LV_LABEL_LONG_SROLL_CIRC conserve la taille de l'objet et fait défiler le textede manière circulaire,
- LV_LABEL_LONG_CROP conserve la taille et coupe le texte en dehors.

Pour spécifier le mode d'adaptation au texte, utilisez $lv_label_set_long_mode(label, LV_LABEL_LONG_...)$

Il est important de noter que lorsqu'une étiquette est créée et que son texte est défini, la taille de l'étiquette est déjà étendue à la taille du texte. L'utilisation des fonctions <code>lv_obj_set_width/height/size()</code> avec le mode d'adaptation du texte par défaut <code>LV_LABEL_LONG_EXPAND</code> ne produit aucun effet. Vous devez donc d'abord changer le mode d'adaptation du texte puis définir la taille avec <code>lv_obj_set_width/height/size()</code>.

Alignement du texte

Le texte de l'étiquette peut être aligné à gauche, à droite ou au milieu avec lv_label_set_align(label, LV LABEL ALIGN LEFT/RIGHT/CENTER)

Dessin d'arrière-plan

Vous pouvez activer le dessin de l'arrière-plan de l'étiquette avec lv_label_set_body_draw(label, draw)

L'arrière-plan sera plus grand dans toutes les directions de la valeur de body.padding.top/bottom/left/right. Cependant, l'arrière-plan n'est dessiné que "virtuellement" et ne rend pas l'étiquette plus grande. Par conséquent, lorsque l'étiquette est positionnée, les coordonnées de l'étiquette sont prises en compte et non celles de l'arrière-plan.

Coloration du texte

Dans le texte, vous pouvez utiliser des commandes pour colorer des parties du texte. Par exemple : "Ecrire un mot #ff0000 rouge#". Cette fonctionnalité peut être activée individuellement pour chaque étiquette à l'aide de la fonction lv_label_set_recolor().

Notez que la coloration ne fonctionne que sur une seule ligne. C.-à-d. il ne peut pas y avoir de \n dans le texte ou il ne peut être formaté par LV_LABEL_LONG_BREAK, sinon le texte de la nouvelle ligne ne sera pas coloré.

Très long textes

LittlevGL peut gérer efficacement les très longs textes (> 40k caractères) en enregistrant des données supplémentaires (environ 12 octets) pour accélérer le dessin. Pour activer cette fonctionnalité, définissez $LV_LABEL_LONG_TXT_HINT$ 1 dans $lv_conf.h$.

Symboles

Les étiquettes peuvent afficher des symboles en plus des lettres. Lisez la section police pour en savoir plus sur les symboles.

Styles

Les étiquettes utilisent un style qui peut être défini par lv_label_set_style(label, LV_LABEL_STYLE_MAIN, &style). A partir du style, les propriétés suivantes sont utilisées :

- toutes les propriétés de style.text,
- pour le dessin de l'arrière-plan les propriétés de style.body. padding n'augmentera la taille que de manière visuelle, la taille de l'objet réel ne sera pas modifiée.

Le style par défaut des étiquettes est NULL. Elles héritent donc du style du parent.

Evénements

Seuls les événements génériques sont envoyés par ce type d'objet.

Apprenez-en plus sur les événements.

Touches

Aucune touche n'est traitée par ce type d'objet.

Apprenez-en plus sur les touches.

Exemple

C

Label recoloring and scrolling

Re-color words of a label and wrap long text automatically.

It is a circularly scr

code

```
lv_obj_t * label2 = lv_label_create(lv_scr_act(), NULL);
lv_label_set_long_mode(label2, LV_LABEL_LONG_SROLL_CIRC); /*Circular scroll*/
lv_obj_set_width(label2, 150);
lv_label_set_text(label2, "It is a circularly scrolling text. ");
lv_obj_align(label2, NULL, LV_ALIGN_CENTER, 0, 30);
}
```

Text shadow

A simple method to create shadows on text It even works with

newlines and spaces.

code

```
/*Set the same text for the shadow label*/
lv_label_set_text(shadow_label, lv_label_get_text(main_label));

/* Position the main label */
lv_obj_align(main_label, NULL, LV_ALIGN_CENTER, 0, 0);

/* Shift the second label down and to the right by 1 pixel */
lv_obj_align(shadow_label, main_label, LV_ALIGN_IN_TOP_LEFT, 1, 1);
}
```

Align labels

A text with multiple lines

A text with multiple lines

A text with multiple lines

code

```
#include "lvgl/lvgl.h"
static void text_changer(lv_task_t * t);
lv_obj_t * labels[3];

/**
    * Create three labels to demonstrate the alignments.
    */
void lv_ex_label_3(void)
{
        /*`lv_label_set_align` is not required to align the object itslef.
            * It's used only when the text has multiple lines*/

            /* Create a label on the top.
            * No additional alignment so it will be the reference*/
            labels[0] = lv_label_create(lv_scr_act(), NULL);
            lv_obj_align(labels[0], NULL, LV_ALIGN_IN_TOP_MID, 0, 5);
```

```
lv_label_set_align(labels[0], LV_LABEL_ALIGN_CENTER);
   /* Create a label in the middle.
    * `lv_obj_align` will be called every time the text changes
    * to keep the middle position */
    labels[1] = lv_label_create(lv_scr_act(), NULL);
    lv_obj_align(labels[1], NULL, LV_ALIGN_CENTER, 0, 0);
   lv_label_set_align(labels[1], LV_LABEL_ALIGN_CENTER);
    /* Create a label in the bottom.
    * Enable auto realign. */
   labels[2] = lv label create(lv scr act(), NULL);
    lv obj set auto realign(labels[2], true);
    lv_obj_align(labels[2], NULL, LV_ALIGN_IN_BOTTOM_MID, 0, -5);
    lv_label_set_align(labels[2], LV_LABEL_ALIGN_CENTER);
    lv_task_t * t = lv_task_create(text_changer, 1000, LV_TASK_PRIO_MID, NULL);
    lv task ready(t);
static void text_changer(lv_task_t * t)
   const char * texts[] = {"Text", "A very long text", "A text with\nmultiple\nlines
→", NULL};
   static uint8 t i = 0;
    lv_label_set_text(labels[0], texts[i]);
    lv_label_set_text(labels[1], texts[i]);
   lv_label_set_text(labels[2], texts[i]);
    /*Manually realaign `labels[1]`*/
   lv obj align(labels[1], NULL, LV ALIGN CENTER, 0, 0);
    if(texts[i] == NULL) i = 0;
}
```

MicroPython

No examples yet.

API

Typedefs

```
typedef uint8_t lv_label_long_mode_t
typedef uint8_t lv_label_align_t
typedef uint8_t lv_label_style_t
```

Enums

enum [anonymous]

Long mode behaviors. Used in 'lv_label_ext_t'

Values:

LV LABEL LONG EXPAND

Expand the object size to the text size

LV_LABEL_LONG_BREAK

Keep the object width, break the too long lines and expand the object height

LV LABEL LONG DOT

Keep the size and write dots at the end if the text is too long

LV_LABEL_LONG_SROLL

Keep the size and roll the text back and forth

LV_LABEL_LONG_SROLL_CIRC

Keep the size and roll the text circularly

LV LABEL LONG CROP

Keep the size and crop the text out of it

enum [anonymous]

Label align policy

Values:

LV_LABEL_ALIGN_LEFT

Align text to left

LV_LABEL_ALIGN_CENTER

Align text to center

LV LABEL ALIGN RIGHT

Align text to right

enum [anonymous]

Label styles

Values:

LV_LABEL_STYLE_MAIN

Functions

lv_obj_t *lv_label_create(lv_obj_t *par, const lv_obj_t *copy)

Create a label objects

Return pointer to the created button

Parameters

- par: pointer to an object, it will be the parent of the new label
- copy: pointer to a button object, if not NULL then the new object will be copied from it

void lv_label_set_text(lv_obj_t *label, const char *text)

Set a new text for a label. Memory will be allocated to store the text by the label.

- label: pointer to a label object
- text: '\0' terminated character string. NULL to refresh with the current text.

void lv_label_set_array_text(lv_obj_t*label, const char *array, uint16_t size)

Set a new text for a label from a character array. The array don't has to be '\0' terminated. Memory will be allocated to store the array by the label.

Parameters

- label: pointer to a label object
- array: array of characters or NULL to refresh the label
- size: the size of 'array' in bytes

void lv label set static text(lv_obj_t*label, const char *text)

Set a static text. It will not be saved by the label so the 'text' variable has to be 'alive' while the label exist.

Parameters

- label: pointer to a label object
- text: pointer to a text. NULL to refresh with the current text.

void lv_label_set_long_mode(lv_obj_t*label, lv_label_long_mode_t long_mode)

Set the behavior of the label with longer text then the object size

Parameters

- label: pointer to a label object
- long_mode: the new mode from 'lv_label_long_mode' enum. In LV_LONG_BREAK/LONG/ROLL the size of the label should be set AFTER this function

void lv label set align(lv obj t*label, lv label align t align)

Set the align of the label (left or center)

Parameters

- label: pointer to a label object
- align: 'LV LABEL ALIGN LEFT' or 'LV LABEL ALIGN LEFT'

void lv_label_set_recolor(lv_obj_t *label, bool en)

Enable the recoloring by in-line commands

Parameters

- label: pointer to a label object
- en: true: enable recoloring, false: disable

void lv_label_set_body_draw(lv_obj_t *label, bool en)

Set the label to draw (or not draw) background specified in its style's body

Parameters

- label: pointer to a label object
- en: true: draw body; false: don't draw body

void lv_label_set_anim_speed(lv_obj_t*label, uint16_t anim_speed)

Set the label's animation speed in LV_LABEL_LONG_SROLL/SCROLL CIRC modes

- label: pointer to a label object
- anim speed: speed of animation in px/sec unit

Set the style of an label

Parameters

- label: pointer to an label object
- type: which style should be get (can be only LV_LABEL_STYLE_MAIN)
- style: pointer to a style

void lv_label_set_text_sel_start(lv_obj_t *label, uint16_t index)

Set the selection start index.

Parameters

- label: pointer to a label object.
- index: index to set. LV LABEL TXT SEL OFF to select nothing.

void lv_label_set_text_sel_end(lv_obj_t *label, uint16_t index)

Set the selection end index.

Parameters

- label: pointer to a label object.
- index: index to set. LV LABEL TXT SEL OFF to select nothing.

char *lv_label_get_text(const lv_obj_t *label)

Get the text of a label

Return the text of the label

Parameters

• label: pointer to a label object

$\textit{lv_label_long_mode_t} \ \textbf{lv_label_get_long_mode} (\ \textbf{const} \ \textit{lv_obj_t} \ * \textit{label})$

Get the long mode of a label

Return the long mode

Parameters

• label: pointer to a label object

lv_label_align_t lv_label_get_align(const lv_obj_t *label)

Get the align attribute

Return LV_LABEL_ALIGN_LEFT or LV_LABEL_ALIGN_CENTER

Parameters

• label: pointer to a label object

bool lv_label_get_recolor(const lv_obj_t *label)

Get the recoloring attribute

Return true: recoloring is enabled, false: disable

• label: pointer to a label object

bool lv_label_get_body_draw(const lv_obj_t *label)

Get the body draw attribute

Return true: draw body; false: don't draw body

Parameters

• label: pointer to a label object

uint16_t lv_label_get_anim_speed(const lv_obj_t *label)

Get the label's animation speed in LV_LABEL_LONG_ROLL and SCROLL modes

Return speed of animation in px/sec unit

Parameters

• label: pointer to a label object

void lv_label_get_letter_pos(const lv_obj_t *label, uint16_t index, lv_point_t *pos)

Get the relative x and y coordinates of a letter

Parameters

- label: pointer to a label object
- index: index of the letter [0 ... text length]. Expressed in character index, not byte index (different in UTF-8)
- **pos**: store the result here (E.g. index = 0 gives 0;0 coordinates)

uint16_t lv_label_get_letter_on(const lv_obj_t *label, lv_point_t *pos)

Get the index of letter on a relative point of a label

Return the index of the letter on the 'pos_p' point (E.g. on 0;0 is the 0. letter) Expressed in character index and not byte index (different in UTF-8)

Parameters

- label: pointer to label object
- pos: pointer to point with coordinates on a the label

bool lv_label_is_char_under_pos(const lv_obj_t *label, lv_point_t *pos)

Check if a character is drawn under a point.

Return whether a character is drawn under the point

Parameters

- label: Label object
- pos: Point to check for characte under

static const lv style t *lv label get style(const lv obj t *label, lv label style t type)

Get the style of an label object

Return pointer to the label's style

Parameters

- label: pointer to an label object
- type: which style should be get (can be only LV_LABEL_STYLE_MAIN)

uint16 t lv label get text sel start(const lv obj t*label)

Get the selection start index.

Return selection start index. LV_LABEL_TXT_SEL_0FF if nothing is selected.

Parameters

• label: pointer to a label object.

uint16_t lv_label_get_text_sel_end(const lv_obj_t *label)

Get the selection end index.

Return selection end index. LV LABEL TXT SEL OFF if nothing is selected.

Parameters

• label: pointer to a label object.

void lv_label_ins_text(lv_obj_t *label, uint32_t pos, const char *txt)

Insert a text to the label. The label text can not be static.

Parameters

- label: pointer to a label object
- pos: character index to insert. Expressed in character index and not byte index (Different in UTF-8) 0: before first char. LV_LABEL_POS_LAST: after last char.
- txt: pointer to the text to insert

void lv_label_cut_text(lv_obj_t *label, uint32_t pos, uint32_t cnt)

Delete characters from a label. The label text can not be static.

Parameters

- label: pointer to a label object
- pos: character index to insert. Expressed in character index and not byte index (Different in UTF-8) 0: before first char.
- cnt: number of characters to cut

struct lv label ext t

 $\#include < lv_label.h > Data of label$

Public Members

```
char *text
char *tmp_ptr
char tmp[sizeof(char *)]
union lv_label_ext_t::[anonymous] dot
uint16_t dot_end
lv_point_t offset
lv_draw_label_hint_t hint
uint16_t anim_speed
uint16_t txt_sel_start
uint16_t txt_sel_end
lv_label_long_mode_t long_mode
```

```
uint8_t static_txt
uint8_t align
uint8_t recolor
uint8_t expand
uint8_t body_draw
uint8_t dot_tmp_alloc
```

LED (lv_led)

Vue d'ensemble

Les LEDs sont des objets rectangulaires (ou circulaires).

Luminosité

Vous pouvez régler leur luminosité avec lv_led_set_bright(led, bright). La luminosité doit être comprise entre 0 (plus sombre) et 255 (plus clair).

Bascule

Utilisez lv_led_on(led) et lv_led_off(led) pour régler la luminosité sur des valeurs prédéfinies ON ou OFF. La fonction lv_led_toggle (led) alterne entre les états ON et OFF.

Styles

Les LEDs utilisent un style qui peut être défini par lv_led_set_style(led, LV_LED_STYLE_MAIN, &style). Pour déterminer l'apparence, les propriétés de style.body sont utilisées.

Les couleurs sont assombries et la largeur de l'ombre est réduite lorsque la luminosité est faible et les valeurs nominales sont utilisées à la luminosité 255 afin de simuler un effet d'éclairage.

Le style par défaut est lv_style_pretty_color. Notez que la LED ne ressemble pas vraiment à une LED avec le style par défaut, vous devez donc créer votre propre style. Voir l'exemple ci-dessous.

Evénements

Seuls les événements génériques sont envoyés par ce type d'objet.

Apprenez-en plus sur les événements.

Touches

Aucune touche n'est traitée par ce type d'objet.

Apprenez-en plus sur les touches.

Exemple

C

LED with custom style

code

```
#include "lvgl/lvgl.h"
void lv_ex_led_1(void)
   /*Create a style for the LED*/
    static lv style t style led;
    lv style copy(&style led, &lv style pretty color);
    style led.body.radius = LV RADIUS CIRCLE;
    style led.body.main color = LV COLOR MAKE(0xb5, 0x0f, 0x04);
    style_led.body.grad_color = LV_COLOR_MAKE(0x50, 0x07, 0x02);
    style_led.body.border.color = LV_COLOR_MAKE(0xfa, 0x0f, 0x00);
    style led.body.border.width = 3;
    style led.body.border.opa = LV OPA 30;
    style_led.body.shadow.color = LV_COLOR_MAKE(0xb5, 0x0f, 0x04);
    style_led.body.shadow.width = 5;
   /*Create a LED and switch it ON*/
   lv_obj_t * led1 = lv_led_create(lv_scr_act(), NULL);
    lv obj set style(led1, &style led);
    lv obj align(led1, NULL, LV ALIGN CENTER, -80, 0);
    lv_led_off(led1);
   /*Copy the previous LED and set a brightness*/
    lv_obj_t * led2 = lv_led_create(lv_scr_act(), led1);
    lv obj align(led2, NULL, LV ALIGN CENTER, 0, 0);
```

```
lv_led_set_bright(led2, 190);
/*Copy the previous LED and switch it OFF*/
lv_obj_t * led3 = lv_led_create(lv_scr_act(), led1);
lv_obj_align(led3, NULL, LV_ALIGN_CENTER, 80, 0);
lv_led_on(led3);
```

MicroPython

No examples yet.

API

Typedefs

```
typedef uint8 t lv led style t
```

Enums

enum [anonymous]

Values:

LV_LED_STYLE_MAIN

Functions

```
lv\_obj\_t *lv\_led\_create(lv\_obj\_t *par, const lv\_obj\_t *copy)
     Create a led objects
```

Return pointer to the created led

Parameters

- par: pointer to an object, it will be the parent of the new led
- COPY: pointer to a led object, if not NULL then the new object will be copied from it

```
void lv_led_set_bright(lv_obj_t *led, uint8_t bright)
```

Set the brightness of a LED object

Parameters

- led: pointer to a LED object
- bright: 0 (max. dark) ... 255 (max. light)

```
void lv_led_on(lv_obj_t *led)
```

Light on a LED

Parameters

• led: pointer to a LED object

```
void lv_led_off(lv_obj_t * led)
     Light off a LED
```

Parameters

• led: pointer to a LED object

void lv_led_toggle(lv_obj_t *led)

Toggle the state of a LED

Parameters

• led: pointer to a LED object

```
static void lv_led_set_style(lv_obj_t*led, lv_led_style_t type, const lv_style_t *style) Set the style of a led
```

Parameters

- led: pointer to a led object
- type: which style should be set (can be only LV_LED_STYLE_MAIN)
- style: pointer to a style

uint8_t lv_led_get_bright(const lv_obj_t *led)

Get the brightness of a LEd object

Return bright 0 (max. dark) ... 255 (max. light)

Parameters

• led: pointer to LED object

```
\textbf{static const} \ lv\_style\_t \ *\textbf{lv}\_\textbf{led}\_\textbf{get}\_\textbf{style}(\textbf{const} \ lv\_obj\_t \ *led, \ lv\_led\_style\_t \ type)
```

Get the style of an led object

Return pointer to the led's style

Parameters

- led: pointer to an led object
- type: which style should be get (can be only LV_CHART_STYLE_MAIN)

struct lv_led_ext_t

Public Members

```
uint8 t bright
```

Ligne (lv_line)

Vue d'ensemble

L'objet ligne sert à tracer des lignes droites entre un ensemble de points.

Ensemble de points

Les points doivent être enregistrés dans un tableau lv_point_t et transmis à l'objet par la fonction lv_line_set_points(line, point_array, point_cnt).

Dimensionnement automatique

Il est possible de définir automatiquement les dimensions de l'objet ligne en fonction de ses points. Vous pouvez l'activer avec la fonction lv_line_set_auto_size(line, true). Si activé, alors lorsque les points sont définis, la largeur et la hauteur de l'objet seront modifiées en fonction des coordonnées x et y maximales des points. Le dimensionnement automatique est activé par défaut.

Y inversé

Par défaut, le point y == 0 est en haut de l'objet, mais vous pouvez inverser les coordonnées y avec $lv_line_set_y_invert$ (line, true). Le y inversé est désactivé par défaut.

Styles

La ligne utilise un style qui peut être défini par lv_line_set_style(line, LV_LINE_STYLE_MAIN, &style) et utilise toutes les propriétés style.line.

Evénements

Seuls les événements génériques sont envoyés par ce type d'objet.

Apprenez-en plus sur les événements.

Touches

Aucune touche n'est traitée par ce type d'objet.

Apprenez-en plus sur les touches.

Exemple

C

Simple Line

code

```
#include "lvgl/lvgl.h"
void lv_ex_line_1(void)
    /*Create an array for the points of the line*/
    static lv_point_t line_points[] = { {5, 5}, {70, 70}, {120, 10}, {180, 60}, {240,__
→10} };
    /*Create new style (thick dark blue)*/
    static lv_style_t style_line;
    lv_style_copy(&style_line, &lv_style_plain);
    style_line.line.color = LV_COLOR_MAKE(0 \times 00, 0 \times 3b, 0 \times 75);
    style_line.line.width = 3;
    style_line.line.rounded = 1;
    /*Copy the previous line and apply the new style*/
    lv obj t * line1;
    line1 = lv_line_create(lv_scr_act(), NULL);
    lv_line_set_points(line1, line_points, 5);
                                                   /*Set the points*/
    lv_line_set_style(line1, LV_LINE_STYLE_MAIN, &style_line);
    lv obj align(line1, NULL, LV ALIGN CENTER, 0, 0);
```

MicroPython

No examples yet.

API

Typedefs

typedef uint8_t lv_line_style_t

Enums

enum [anonymous]

Values:

LV LINE STYLE MAIN

Functions

lv_obj_t *lv line create(lv_obj_t *par, const lv_obj_t *copy)

Create a line objects

Return pointer to the created line

Parameters

• par: pointer to an object, it will be the parent of the new line

void **lv_line_set_points** (*lv_obj_t* **line*, **const** lv_point_t *point_a*[], uint16_t *point_num*) Set an array of points. The line object will connect these points.

Parameters

- line: pointer to a line object
- point_a: an array of points. Only the address is saved, so the array can NOT be a local variable which will be destroyed
- point num: number of points in 'point a'

void lv line set auto size(lv_obj_t*line, bool en)

Enable (or disable) the auto-size option. The size of the object will fit to its points. (set width to x max and height to y max)

Parameters

- line: pointer to a line object
- en: true: auto size is enabled, false: auto size is disabled

void lv_line_set_y_invert(lv_obj_t *line, bool en)

Enable (or disable) the y coordinate inversion. If enabled then y will be subtracted from the height of the object, therefore the y=0 coordinate will be on the bottom.

Parameters

- line: pointer to a line object
- en: true: enable the y inversion, false:disable the y inversion

static void $lv_line_set_style(lv_obj_t*line, lv_line_style_t type, const lv_style_t*style)$ Set the style of a line

- line: pointer to a line object
- type: which style should be set (can be only LV LINE STYLE MAIN)

• style: pointer to a style

bool lv_line_get_auto_size(const lv_obj_t *line)

Get the auto size attribute

Return true: auto size is enabled, false: disabled

Parameters

• line: pointer to a line object

bool lv_line_get_y_invert(const lv_obj_t *line)

Get the y inversion attribute

Return true: y inversion is enabled, false: disabled

Parameters

• line: pointer to a line object

```
\textbf{static const} \ lv\_style\_t \ *\textbf{lv\_line\_get\_style} (\textbf{const} \ lv\_obj\_t \ *line, \ lv\_line\_style\_t \ type)
```

Get the style of an line object

Return pointer to the line's style

Parameters

- line: pointer to an line object
- type: which style should be get (can be only LV_LINE_STYLE_MAIN)

struct lv_line_ext_t

Public Members

```
const lv_point_t *point_array
uint16_t point_num
uint8_t auto_size
uint8_t y_inv
```

Liste (lv_list)

Vue d'ensemble

Les listes sont construites à partir d'une page d'arrière-plan sur laquelle sont placés des boutons on it. Les boutons contiennent une image comme icône optionnelle (qui peut être un symbole aussi) et une étiquette. Lorsque la liste est suffisamment longue, vous pouvez la faire défiler.

Ajouter des boutons

Vous pouvez ajouter de nouveaux éléments de liste avec <code>lv_list_add_btn(list, &icon_img, "Text")</code> ou avec symbole <code>lv_list_add_btn(list, SYMBOL_EDIT, "Edit text")</code>. Si vous ne souhaitez pas ajouter d'image, utilisez <code>NULL</code> comme source d'image. La fonction retourne un pointeur sur le bouton créé pour permettre d'autres configurations.

La largeur des boutons est fixée au maximum de la largeur de l'objet. La hauteur des boutons est ajustée automatiquement en fonction du contenu ($content\ height + padding.top + padding.bottom$).

Les étiquettes sont créées avec le mode LV_LABEL_LONG_SROLL_CIRC pour faire défiler automatiquement les libellés longs de manière circulaire.

Vous pouvez utiliser lv_list_get_btn_label(list_btn) and lv_list_get_btn_img(list_btn) pour obtenir le libellé et l'image d'un bouton de liste. Vous pouvez obtenir le texte directement avec lv_list_get_btn_text(list_btn).

Supprimer des boutons

Pour supprimer un élément de la liste, utilisez simplement $lv_obj_del(btn)$ sur la valeur de retour de $lv_obj_del(btn)$ sur la valeur de $lv_obj_del(btn)$

Pour vider la liste (supprimer tous les boutons), utilisez lv list clean(list)

Navigation manuelle

Vous pouvez naviguer manuellement dans la liste avec lv_list_up(list) et lv_list_down(list).

Vous pouvez accéder directement à un bouton en utilisant lv list focus(btn, LV ANIM ON/OFF).

La **durée d'animation** des déplacements haut/bas/accès direct peut être définie via : lv_list_set_anim_time(list, anim_time). Zéro supprime les animations.

Mise en évidence du bord

L'animation d'un cercle peut être affichée quand la liste atteint les positions supérieure ou inférieure. lv_list_set_edge_flash(list, en) active cette fonctionnalité.

Propagation du défilement

Si la liste est créée sur un autre objet défilant (comme une *page*) et que la liste ne peut pas être défilées plus, le **défilement peut être propagé au parent**. De cette manière, le défilement sera poursuivi sur le parent. Cela peut être activé avec lv list set scroll propagation(list, true).

SI les bouton ont lv_btn_set_toggle activé alors lv_list_set_single_mode(list, true) est utilisé pour s'assurer qu'un seul bouton ne peut être dans l'état basculé à un instant donné.

Styles

La fonction lv_list_set_style(list, LV_LIST_STYLE _..., &style) définit les styles d'une liste.

- LV_LIST_STYLE_BG style d'arrière-plan de liste. Valeur par défaut : lv_style_transp_fit
- LV_LIST_STYLE_SCRL style de la partie défilante. Valeur par défaut : lv style pretty
- LV_LIST_STYLE_SB style de la barre de défilement. Valeur par défaut : lv_style_pretty_color. Pour plus de détails voir l'objet page
- LV_LIST_STYLE_BTN_REL style des boutons relâchés. Valeur par défaut : lv_style_btn_rel
- LV LIST STYLE BTN PR style des boutons pressés. Valeur par défaut : lv style btn pr

- LV_LIST_STYLE_BTN_TGL_REL style des boutons bascules relâchés. Valeur par défaut : lv style btn tgl rel,
- LV_LIST_STYLE_BTN_INA style des boutons inactifs. Valeur par défaut : lv style btn ina.

Étant donné que BG a un style transparent par défaut s'il n'y a que quelques boutons, la liste paraîtra plus courte mais pourra défiler lorsque plusieurs éléments de la liste sont ajoutés.

Pour modifier la hauteur des boutons, ajustez les champs body.padding.top/bottom des styles relatifs (LV_LIST_STYLE_BTN_REL/PR/...).

Evénements

Seuls les événements génériques sont envoyés par ce type d'objet.

Apprenez-en plus sur les événements.

Touches

Les touches suivantes sont traitées par les listes :

- LV_KEY_RIGHT/DOWN sélectionne le bouton suivant,
- LV_KEY_LEFT/UP sélectionne le bouton précédent,

Notez que, comme d'habitude, l'état de LV_KEY_ENTER est traduit en LV_EVENT_PRESSED/PRESSING/RELEASED etc.

Les boutons sélectionnés sont dans l'état LV BTN STATE PR/TG PR.

Pour sélectionner manuellement un bouton, utilisez lv_list_set_btn_selected(list, btn). Lorsque la liste est défocalisée et focalisée à nouveau, le dernier bouton sélectionné est restauré.

Apprenez-en plus sur les touches.

Exemple

C

Simple List

code

```
#include "lvgl/lvgl.h"
#include <stdio.h>
static void event_handler(lv_obj_t * obj, lv_event_t event)
    if(event == LV EVENT CLICKED) {
        printf("Clicked: %s\n", lv_list_get_btn_text(obj));
}
void lv_ex_list_1(void)
    /*Create a list*/
   lv_obj_t * list1 = lv_list_create(lv_scr_act(), NULL);
    lv_obj_set_size(list1, 160, 200);
    lv_obj_align(list1, NULL, LV_ALIGN_CENTER, 0, 0);
   /*Add buttons to the list*/
   lv_obj_t * list_btn;
   list btn = lv list add btn(list1, LV SYMBOL FILE, "New");
   lv_obj_set_event_cb(list_btn, event_handler);
    list_btn = lv_list_add_btn(list1, LV_SYMBOL_DIRECTORY, "Open");
   lv_obj_set_event_cb(list_btn, event_handler);
    list btn = lv list add btn(list1, LV SYMBOL CLOSE, "Delete");
    lv_obj_set_event_cb(list_btn, event_handler);
    list btn = lv list add btn(list1, LV SYMBOL EDIT, "Edit");
```

(continues on next page)

(continued from previous page)

```
lv_obj_set_event_cb(list_btn, event_handler);
    list_btn = lv_list_add_btn(list1, LV_SYMBOL_SAVE, "Save");
    lv_obj_set_event_cb(list_btn, event_handler);
}
```

MicroPython

No examples yet.

API

Typedefs

```
typedef uint8_t lv_list_style_t
```

Enums

enum [anonymous]

List styles.

Values:

LV_LIST_STYLE_BG

List background style

LV_LIST_STYLE_SCRL

List scrollable area style.

LV_LIST_STYLE_SB

List scrollbar style.

LV_LIST_STYLE_EDGE_FLASH

List edge flash style.

LV_LIST_STYLE_BTN_REL

Same meaning as the ordinary button styles.

```
LV_LIST_STYLE_BTN_PR
```

LV_LIST_STYLE_BTN_TGL_REL

LV_LIST_STYLE_BTN_TGL_PR

LV_LIST_STYLE_BTN_INA

Functions

```
lv\_obj\_t *lv\_list\_create(lv\_obj\_t *par, const lv\_obj\_t *copy)
```

Create a list objects

Return pointer to the created list

Parameters

• par: pointer to an object, it will be the parent of the new list

• copy: pointer to a list object, if not NULL then the new object will be copied from it

void lv_list_clean(lv_obj_t *obj)

Delete all children of the scrl object, without deleting scrl child.

Parameters

• **obj**: pointer to an object

lv_obj_t*lv list add btn(lv_obj_t*list, const void *img_src, const char *txt)

Add a list element to the list

Return pointer to the new list element which can be customized (a button)

Parameters

- list: pointer to list object
- img fn: file name of an image before the text (NULL if unused)
- txt: text of the list element (NULL if unused)

bool lv list remove(const lv_obj_t *list, uint16 t index)

Remove the index of the button in the list

Return true: successfully deleted

Parameters

- list: pointer to a list object
- index: pointer to a the button's index in the list, index must be 0 <= index < lv list ext t.size

void lv_list_set_single_mode(lv_obj_t *list, bool mode)

Set single button selected mode, only one button will be selected if enabled.

Parameters

- list: pointer to the currently pressed list object
- mode: enable(true)/disable(false) single selected mode.

void lv list set btn selected(lv_obj_t*list, lv_obj_t*btn)

Make a button selected

Parameters

- list: pointer to a list object
- btn: pointer to a button to select NULL to not select any buttons

static void lv list set sb mode(lv obj t*list, lv sb mode t mode)

Set the scroll bar mode of a list

Parameters

- list: pointer to a list object
- sb mode: the new mode from 'lv page sb mode t' enum

static void lv list set scroll propagation(lv_obj_t*list, bool en)

Enable the scroll propagation feature. If enabled then the List will move its parent if there is no more space to scroll.

Parameters

• list: pointer to a List

• en: true or false to enable/disable scroll propagation

static void **lv_list_set_edge_flash**(*lv_obj_t*list*, bool *en*)

Enable the edge flash effect. (Show an arc when the an edge is reached)

Parameters

- list: pointer to a List
- en: true or false to enable/disable end flash

static void **lv_list_set_anim_time**(lv_obj_t *list, uint16_t anim_time)

Set scroll animation duration on 'list up()' 'list down()' 'list focus()'

Parameters

- list: pointer to a list object
- anim_time: duration of animation [ms]

$\label{eq:const_void} \ \textbf{lv_list_style} (\textit{lv_obj_t *list}, \textit{lv_list_style_t type}, \ \textbf{const} \ \textit{lv_style_t *style})$

Set a style of a list

Parameters

- list: pointer to a list object
- type: which style should be set
- style: pointer to a style

bool lv_list_get_single_mode(lv_obj_t *list)

Get single button selected mode.

Parameters

• list: pointer to the currently pressed list object.

const char *lv list get btn text(const lv_obj_t *btn)

Get the text of a list element

Return pointer to the text

Parameters

• btn: pointer to list element

$lv_obj_t *lv_list_get_btn_label(const <math>lv_obj_t *btn)$

Get the label object from a list element

Return pointer to the label from the list element or NULL if not found

Parameters

• btn: pointer to a list element (button)

lv_obj_t *lv_list_get_btn_img(const lv_obj_t *btn)

Get the image object from a list element

Return pointer to the image from the list element or NULL if not found

Parameters

• btn: pointer to a list element (button)

$lv_obj_t *lv_list_get_prev_btn(const \ lv_obj_t *list, \ lv_obj_t *prev_btn)$

Get the next button from list. (Starts from the bottom button)

Return pointer to the next button or NULL when no more buttons

Parameters

- list: pointer to a list object
- prev_btn: pointer to button. Search the next after it.

$lv_obj_t *lv_list_get_next_btn(const \ lv_obj_t *list, \ lv_obj_t *prev_btn)$

Get the previous button from list. (Starts from the top button)

Return pointer to the previous button or NULL when no more buttons

Parameters

- list: pointer to a list object
- prev btn: pointer to button. Search the previous before it.

int32_t lv_list_get_btn_index(const lv_obj_t *list, const lv_obj_t *btn)

Get the index of the button in the list

Return the index of the button in the list, or -1 of the button not in this list

Parameters

- list: pointer to a list object. If NULL, assumes btn is part of a list.
- btn: pointer to a list element (button)

uint16_t lv_list_get_size(const lv_obj_t *list)

Get the number of buttons in the list

Return the number of buttons in the list

Parameters

• list: pointer to a list object

lv_obj_t *lv_list_get_btn_selected(const lv_obj_t *list)

Get the currently selected button. Can be used while navigating in the list with a keypad.

Return pointer to the selected button

Parameters

• list: pointer to a list object

$\verb|static|| lv_sb_mode_t| lv_list_get_sb_mode(const|| lv_obj_t|*list)|$

Get the scroll bar mode of a list

 ${\bf Return} \ \ {\bf scrollbar} \ \ {\bf mode} \ \ {\bf from} \ \ {\bf `lv_page_sb_mode_t' enum}$

Parameters

• list: pointer to a list object

static bool lv_list_get_scroll_propagation(lv_obj_t *list)

Get the scroll propagation property

Return true or false

Parameters

• list: pointer to a List

static bool lv_list_get_edge_flash(lv_obj_t *list)

Get the scroll propagation property

Return true or false

Parameters

• list: pointer to a List

static uint16_t lv_list_get_anim_time(const lv_obj_t *list)

Get scroll animation duration

Return duration of animation [ms]

Parameters

• list: pointer to a list object

const lv_style_t *lv_list_get_style(const lv_obj_t *list, lv_list_style_t type)

Get a style of a list

Return style pointer to a style

Parameters

- list: pointer to a list object
- type: which style should be get

void lv_list_up(const lv_obj_t *list)

Move the list elements up by one

Parameters

• list: pointer a to list object

void lv_list_down(const lv_obj_t *list)

Move the list elements down by one

Parameters

• list: pointer to a list object

void lv_list_focus(const lv_obj_t *btn, lv_anim_enable_t anim)

Focus on a list button. It ensures that the button will be visible on the list.

Parameters

- btn: pointer to a list button to focus
- anim: LV_ANOM_ON: scroll with animation, LV_ANIM_OFF: without animation

struct lv_list_ext_t

Public Members

```
lv_page_ext_t page
const lv_style_t *styles_btn[_LV_BTN_STATE_NUM]
const lv_style_t *style_img
uint16_t size
uint8_t single_mode
lv_obj_t *last_sel
lv_obj_t *selected_btn
```

Compteur (lv_lmeter)

Vue d'ensemble

L'objet compteur est constitué de quelques lignes radiales qui dessinent une échelle.

Définir la valeur

Lors de la définition d'une nouvelle valeur avec lv_lmeter_set_value(lmeter, new_value), la partie proportionnelle de l'échelle sera recolorée.

Intervalle et angles

La fonction lv_lmeter_set_range(lmeter, min, max) définit l'intervalle du compteur linéaire.

Vous pouvez définir l'angle de l'échelle et le nombre de lignes à l'aide de : lv_lmeter_set_scale(lmeter, angle, line_num). L'angle par défaut est 240 et le nombre de ligne par défaut est 31.

Styles

Le compteur utilise un style qui peut être défini par lv_lmeter_set_style(lmeter, LV_LMETER_STYLE_MAIN, &style). Les propriétés du compteur sont dérivées des attributs de style suivants :

- line.color la couleur des "lignes inactives" qui sont supérieure à la valeur actuelle
- body.main_color couleur de la "ligne active" au début de l'échelle
- body.grad_color couleur de la "ligne active" à la fin de l'échelle (dégradé avec la couleur principale)
- body.padding.hor longueur des lignes
- line.width largeur des lignes

Le style par défaut est lv style pretty color.

Evénements

Seuls les événements génériques sont envoyés par ce type d'objet.

Apprenez-en plus sur les événements.

Touches

Aucune touche n'est traitée par ce type d'objet.

Apprenez-en plus sur les touches.

Exemple

C

Simple Line meter

code

```
#include "lvgl/lvgl.h"
void lv_ex_lmeter_1(void)
    /*Create a style for the line meter*/
    static lv style t style lmeter;
    lv_style_copy(&style_lmeter, &lv_style_pretty_color);
    style_lmeter.line.width = 2;
    style_lmeter.line.color = LV_COLOR_SILVER;
    style_lmeter.body.main_color = lv_color_hex(0x91bfed);
                                                                   /*Light blue*/
    style_lmeter.body.grad_color = lv_color_hex(0x04386c);
                                                                   /*Dark blue*/
                                                                   /*Line length*/
    style lmeter.body.padding.left = 16;
    /*Create a line meter */
    lv_obj_t * lmeter;
    lmeter = lv_lmeter_create(lv_scr_act(), NULL);
    lv_lmeter_set_range(lmeter, 0, 100);
                                                           /*Set the range*/
                                                           /*Set the current value*/
    lv_lmeter_set_value(lmeter, 80);
    lv lmeter set scale(lmeter, 240, 31);
                                                           /*Set the angle and number.
→of lines*/
    lv_lmeter_set_style(lmeter, LV_LMETER_STYLE_MAIN, &style_lmeter);
→*Apply the new style*/
    lv_obj_set_size(lmeter, 150, 150);
    lv_obj_align(lmeter, NULL, LV_ALIGN_CENTER, 0, 0);
}
```

MicroPython

No examples yet.

API

Typedefs

```
typedef uint8_t lv_lmeter_style_t
```

Enums

enum [anonymous]

Values:

LV_LMETER_STYLE_MAIN

Functions

```
lv\_obj\_t *lv\_lmeter\_create(lv\_obj\_t *par, const lv\_obj\_t *copy)
```

Create a line meter objects

Return pointer to the created line meter

Parameters

- par: pointer to an object, it will be the parent of the new line meter
- copy: pointer to a line meter object, if not NULL then the new object will be copied from it

```
void lv_lmeter_set_value(lv_obj_t *lmeter, int16_t value)
```

Set a new value on the line meter

Parameters

- lmeter: pointer to a line meter object
- value: new value

void lv_lmeter_set_range(lv_obj_t *lmeter, int16_t min, int16_t max)

Set minimum and the maximum values of a line meter

Parameters

- lmeter: pointer to he line meter object
- min: minimum value
- max: maximum value

void lv_lmeter_set_scale(lv_obj_t *lmeter, uint16_t angle, uint8_t line_cnt)

Set the scale settings of a line meter

- lmeter: pointer to a line meter object
- angle: angle of the scale (0..360)
- line_cnt: number of lines

Parameters

- lmeter: pointer to a line meter object
- type: which style should be set (can be only LV_LMETER_STYLE_MAIN)
- style: set the style of the line meter

$int16_t$ lv_lmeter_get_value(const lv_obj_t *lmeter)

Get the value of a line meter

Return the value of the line meter

Parameters

• lmeter: pointer to a line meter object

int16_t lv_lmeter_get_min_value(const lv_obj_t *lmeter)

Get the minimum value of a line meter

Return the minimum value of the line meter

Parameters

• lmeter: pointer to a line meter object

int16_t lv_lmeter_get_max_value(const lv_obj_t *lmeter)

Get the maximum value of a line meter

Return the maximum value of the line meter

Parameters

• lmeter: pointer to a line meter object

uint8 t lv lmeter get line count(const lv_obj_t*lmeter)

Get the scale number of a line meter

Return number of the scale units

Parameters

• lmeter: pointer to a line meter object

uint16_t lv_lmeter_get_scale_angle(const lv_obj_t *lmeter)

Get the scale angle of a line meter

Return angle of the scale

Parameters

• lmeter: pointer to a line meter object

Get the style of a line meter

Return pointer to the line meter's style

Parameters

- lmeter: pointer to a line meter object
- type: which style should be get (can be only LV_LMETER_STYLE_MAIN)

struct lv_lmeter_ext_t

Public Members

```
uint16_t scale_angle
uint8_t line_cnt
int16_t cur_value
int16_t min_value
int16_t max_value
```

Boîte de message (lv_mbox)

Vue d'ensemble

Les boîtes de message font office de fenêtres contextuelles. Elles sont construites à partir d'un *conteneur* de fond, d'un *label* et d'une *matrice de boutons*.

Le texte sera automatiquement divisé en plusieurs lignes (mode LV_LABEL_LONG_MODE_BREAK) et la hauteur sera définie automatiquement pour afficher le texte et les boutons (LV_FIT_TIGHT ajustement automatique vertical)-

Définir le texte

Pour définir le texte, utilisez la fonction ly mbox set text(mbox, "My text").

Ajouter des boutons

Pour ajouter des boutons, utilisez la fonction <code>lv_mbox_add_btns(mbox, btn_str)</code>. Vous devez spécifier le texte des boutons ainsi <code>const char * btn_str[] = {"Apply", "Close", ""}</code>. Pour plus d'informations, consultez la documentation de la <code>matrice de boutons</code>.

Fermeture automatique

Avec lv_mbox_start_auto_close(mbox, delay) la boîte de message peut être fermée automatiquement après delay millisecondes avec une animation. La fonction lv_mbox_stop_auto_close(mbox) arrête une fermeture automatique en cours.

La durée de l'animation de fermeture peut être définie par $lv_mbox_set_anim_time(mbox, anim_time)$.

Styles

Utilisez lv_mbox_set_style(mbox, LV_MBOX_STYLE _..., &style) pour définir un nouveau style pour un élément de la boîte de message :

- LV_MBOX_STYLE_BG spécifie le style du conteneur d'arrière-plan. style.body définit l'arrière-plan et style.label définit l'apparence du texte. Valeur par défaut : lv_style_pretty
- LV_MBOX_STYLE_BTN_BG style de l'arrière-plan de la matrice de boutons. Valeur par défaut : lv_style_trans

- LV_MBOX_STYLE_BTN_REL style des boutons relâchés. Valeur par défaut : lv style btn rel
- LV_MBOX_STYLE_BTN_PR style des boutons pressés. Valeur par défaut : lv_style_btn_pr
- LV_MBOX_STYLE_BTN_TGL_REL style des boutons bascules relâchés. Valeur par défaut : lv_style_btn_tgl_rel,
- LV_MBOX_STYLE_BTN_INA style des boutons inactifs. Valeur par défaut : lv style btn ina.

La hauteur de la zone des boutons est égal à $font\ height\ +\ padding.top\ +\ padding.bottom$ de LV_MBOX_STYLE_BTN_REL.

Evénements

Outre les [événements génériques](/overview/event.html #evenements-generiques), les événements spéciaux suivants sont envoyés par les boîtes de message :

• LV_EVENT_VALUE_CHANGED envoyé lorsque le bouton est cliqué. Les données d'événement sont l'ID du bouton cliqué.

La boîte de message a une fonction de rappel par défaut qui la referme lorsqu'un clic est effectué sur un bouton.

Apprenez-en plus sur les événements.

Touches

Les touches suivantes sont traitées par les boutons :

- LV_KEY_RIGHT/DOWN sélectionne le bouton suivant,
- LV_KEY_LEFT/UP sélectionne le bouton précédent,
- LV_KEY_ENTER pour clique le bouton sélectionné.

Apprenez-en plus sur les touches.

Exemple

C

Simple Message box

code

```
#include "lvgl/lvgl.h"
#include <stdio.h>

static void event_handler(lv_obj_t * obj, lv_event_t event)
{
    if(event == LV_EVENT_VALUE_CHANGED) {
        printf("Button: %s\n", lv_mbox_get_active_btn_text(obj));
    }
}

void lv_ex_mbox_1(void)
{
    static const char * btns[] ={"Apply", "Close", ""};

    lv_obj_t * mbox1 = lv_mbox_create(lv_scr_act(), NULL);
    lv_mbox_set_text(mbox1, "A message box with two buttons.");
    lv_mbox_add_btns(mbox1, btns);
    lv_obj_set_width(mbox1, 200);
    lv_obj_set_event_cb(mbox1, event_handler);
    lv_obj_align(mbox1, NULL, LV_ALIGN_CENTER, 0, 0); /*Align to the corner*/
}
```

Modal

code

```
* @file lv_ex_mbox_2.c
/*************
      INCLUDES
******************
#include "lvgl/lvgl.h"
/************
* STATIC PROTOTYPES
**************************/
static void mbox_event_cb(lv_obj_t *obj, lv_event_t evt);
static void btn_event_cb(lv_obj_t *btn, lv_event_t evt);
* STATIC VARIABLES
static lv_obj_t *mbox, *info;
static const char welcome info[] = "Welcome to the modal message box demo!\n"
                                  "Press the button to display a message box.";
static const char in_msg_info[] = "Notice that you cannot touch "
                                "the button again while the message box is open.";
```

(continues on next page)

(continued from previous page)

```
/*************
    GLOBAL FUNCTIONS
void lv ex mbox 2(void)
        /* Create a button, then set its position and event callback */
       lv_obj_t *btn = lv_btn_create(lv_scr_act(), NULL);
       lv_obj_set_size(btn, 200, 60);
       lv_obj_set_event_cb(btn, btn_event_cb);
       lv_obj_align(btn, NULL, LV_ALIGN_IN_TOP_LEFT, 20, 20);
        /* Create a label on the button */
       lv_obj_t *label = lv_label_create(btn, NULL);
       lv_label_set_text(label, "Display a message box!");
        /* Create an informative label on the screen */
        info = lv label create(lv scr act(), NULL);
        lv_label_set_text(info, welcome_info);
       lv label set long mode(info, LV LABEL LONG BREAK); /* Make sure text will,
→wrap */
       lv_obj_set_width(info, LV_HOR_RES - 10);
       lv_obj_align(info, NULL, LV_ALIGN_IN_BOTTOM_LEFT, 5, -5);
}
/***********
    STATIC FUNCTIONS
*******************
static void mbox event cb(lv obj t *obj, lv event t evt)
        if(evt == LV EVENT DELETE && obj == mbox) {
               /* Delete the parent modal background */
               lv_obj_del_async(lv_obj_get_parent(mbox));
               mbox = NULL; /* happens before object is actually deleted! */
               lv_label_set_text(info, welcome_info);
       } else if(evt == LV EVENT VALUE CHANGED) {
               /* A button was clicked */
               lv mbox_start_auto_close(mbox, 0);
       }
}
static void btn event cb(lv obj t *btn, lv event t evt)
       if(evt == LV EVENT CLICKED) {
                static lv_style_t modal_style;
               /* Create a full-screen background */
               lv_style_copy(&modal_style, &lv_style_plain_color);
               /* Set the background's style */
               modal style.body.main color = modal style.body.grad color = LV COLOR
→BLACK:
               modal style.body.opa = LV OPA 50;
               /* Create a base object for the modal background */
```

(continues on next page)

(continued from previous page)

```
lv_obj_t *obj = lv_obj_create(lv_scr_act(), NULL);
                lv_obj_set_style(obj, &modal_style);
                lv_obj_set_pos(obj, 0, 0);
                lv_obj_set_size(obj, LV_HOR_RES, LV_VER_RES);
                lv_obj_set_opa_scale_enable(obj, true); /* Enable opacity scaling for_
→the animation */
                static const char * btns2[] = {"0k", "Cancel", ""};
                /* Create the message box as a child of the modal background */
                mbox = lv_mbox_create(obj, NULL);
                lv_mbox_add_btns(mbox, btns2);
                lv mbox set text(mbox, "Hello world!");
                lv_obj_align(mbox, NULL, LV_ALIGN_CENTER, 0, 0);
                lv_obj_set_event_cb(mbox, mbox_event_cb);
                /* Fade the message box in with an animation */
                lv anim t a;
                lv_anim_init(&a);
                lv_anim_set_time(\&a, 500, 0);
                lv_anim_set_values(&a, LV_OPA_TRANSP, LV_OPA_COVER);
                lv_anim_set_exec_cb(&a, obj, (lv_anim_exec_xcb_t)lv_obj_set_opa_

    scale);
                lv_anim_create(&a);
                lv label set text(info, in msg info);
            lv_obj_align(info, NULL, LV_ALIGN_IN_BOTTOM_LEFT, 5, -5);
        }
}
```

MicroPython

No examples yet.

API

Typedefs

typedef uint8_t lv_mbox_style_t

Enums

```
enum [anonymous]
```

Message box styles.

Values:

LV MBOX STYLE BG

LV MBOX STYLE BTN BG

Same meaning as ordinary button styles.

LV_MBOX_STYLE_BTN_REL

LV_MBOX_STYLE_BTN_PR
LV_MBOX_STYLE_BTN_TGL_REL
LV_MBOX_STYLE_BTN_TGL_PR
LV_MBOX_STYLE_BTN_INA

Functions

 $lv_obj_t *lv_mbox_create(lv_obj_t *par, const lv_obj_t *copy)$

Create a message box objects

Return pointer to the created message box

Parameters

- par: pointer to an object, it will be the parent of the new message box
- COPY: pointer to a message box object, if not NULL then the new object will be copied from it

void lv_mbox_add_btns(lv_obj_t *mbox, const char **btn_mapaction)

Add button to the message box

Parameters

- mbox: pointer to message box object
- btn_map: button descriptor (button matrix map). E.g. a const char *txt[] = {"ok", "close", ""} (Can not be local variable)

void $lv_mbox_set_text(lv_obj_t *mbox, const char *txt)$

Set the text of the message box

Parameters

- mbox: pointer to a message box
- txt: a '\0' terminated character string which will be the message box text

void lv_mbox_set_anim_time(lv_obj_t *mbox, uint16_t anim_time)

Set animation duration

Parameters

- mbox: pointer to a message box object
- anim time: animation length in milliseconds (0: no animation)

void lv_mbox_start_auto_close(lv_obj_t *mbox, uint16_t delay)

Automatically delete the message box after a given time

Parameters

- mbox: pointer to a message box object
- delay: a time (in milliseconds) to wait before delete the message box

void lv_mbox_stop_auto_close(lv_obj_t *mbox)

Stop the auto. closing of message box

Parameters

• mbox: pointer to a message box object

void **lv_mbox_set_style**(lv_obj_t *mbox, lv_mbox_style_t type, **const** lv_style_t *style) Set a style of a message box

Parameters

- mbox: pointer to a message box object
- type: which style should be set
- style: pointer to a style

void lv_mbox_set_recolor(lv_obj_t *mbox, bool en)

Set whether recoloring is enabled. Must be called after lv mbox add btns.

Parameters

- btnm: pointer to button matrix object
- en: whether recoloring is enabled

const char *lv_mbox_get_text(const lv_obj_t *mbox)

Get the text of the message box

Return pointer to the text of the message box

Parameters

• mbox: pointer to a message box object

uint16_t lv_mbox_get_active_btn(lv_obj_t *mbox)

Get the index of the lastly "activated" button by the user (pressed, released etc) Useful in the the $event_cb$.

Return index of the last released button (LV_BTNM_BTN_NONE: if unset)

Parameters

• btnm: pointer to button matrix object

const char *lv_mbox_get_active_btn_text(lv_obj_t *mbox)

Get the text of the lastly "activated" button by the user (pressed, released etc) Useful in the the event_cb.

Return text of the last released button (NULL: if unset)

Parameters

• btnm: pointer to button matrix object

uint16_t lv_mbox_get_anim_time(const lv_obj_t *mbox)

Get the animation duration (close animation time)

Return animation length in milliseconds (0: no animation)

Parameters

• mbox: pointer to a message box object

const lv style t *lv mbox get style(const lv obj t *mbox, lv mbox style t type)

Get a style of a message box

Return style pointer to a style

- mbox: pointer to a message box object
- type: which style should be get

bool lv_mbox_get_recolor(const lv_obj_t *mbox)

Get whether recoloring is enabled

Return whether recoloring is enabled

Parameters

• mbox: pointer to a message box object

```
lv_obj_t *lv_mbox_get_btnm(lv_obj_t *mbox)
```

Get message box button matrix

Return pointer to button matrix object

Remark return value will be NULL unless lv_mbox_add_btns has been already called

Parameters

• mbox: pointer to a message box object

struct lv_mbox_ext_t

Public Members

```
lv\_cont\_ext\_t bg lv\_obj\_t *text lv\_obj\_t *btnm uint16\_t anim time
```

Page (Iv_page)

Overview

The Page consist of two *Containers* on each other:

- a background (or base)
- a top which is **scrollable**.

The background object can be referenced as the page itself like: lv obj set width(page, 100).

If you create a child on the page it will be automatically moved to the scrollable container. If the scrollable container becomes larger than the background it can be *scrolled by dragging (like the lists on smartphones).

By default, the scrollable's has LV_FIT_FILLauto fit in all directions. It means the scrollable size will be the same as the background's size (minus the paddings) while the children are in the background. But when an object is positioned out of the background the scrollable size will be increased to involve it.

Scrollbars

Scrollbars can be shown according to four policies:

- LV_SB_MODE_OFF Never show scrollbars
- LV_SB_MODE_ON Always show scrollbars
- LV_SB_MODE_DRAG Show scrollbars when the page is being dragged
- LV_SB_MODE_AUTO Show scrollbars when the scrollable container is large enough to be scrolled

You can set scroll bar show policy by: $lv_page_set_sb_mode(page, SB_MODE)$. The default value is $LV_set_sb_mode(page, SB_MODE)$.

Glue object

You can glue children to the page. In this case, you can scroll the page by dragging the child object. It can be enabled by the <code>lv_page_glue_obj(child, true)</code>.

Focus object

You can focus on an object on a page with <code>lv_page_focus(page, child, LV_ANIM_ONO/FF)</code>. It will move the scrollable container to show a child. The time of the animation can be set by <code>lv_page_set_anim_time(page, anim_time)</code> in milliseconds.

Manual navigation

You can move the scrollable object manually using lv_page_scroll_hor(page, dist) and lv page scroll ver(page, dist)

Edge flash

A circle-like effect can be shown if the list reached the most top/bottom/left/right position. lv_page_set_edge_flash(list, en) enables this feature.

Scroll propagation

If the list is created on an other scrollable element (like an other page) and the Page can't be scrolled further the scrolling can be propagated to the parent to continue the scrolling on the parent. It can be enabled with lv_page_set_scroll_propagation(list, true)

Scrollable API

There are functions to directly set/get the scrollable's attributes:

- lv page get scrl()
- lv page set scrl fit/fint2/fit4()
- lv page set scrl width()
- lv_page_set_scrl_height()
- lv page set scrl layout()

Notes

The background draws its border when the scrollable is drawn. It ensures that the page always will have a closed shape even if the scrollable has the same color as the Page's parent.

Styles

Use lv_page_set_style(page, LV_PAGE_STYLE_..., &style) to set a new style for an element of the page:

- LV_PAGE_STYLE_BG background's style which uses all style.body properties (default: lv_style_pretty_color)
- LV_PAGE_STYLE_SCRL scrollable's style which uses all style.body properties (default: lv_style_pretty)
- LV_PAGE_STYLE_SB scrollbar's style which uses all style.body properties. padding. right/bottom sets horizontal and vertical the scrollbars' padding respectively and the padding. inner sets the scrollbar's width. (default: lv_style_pretty_color)

Events

Only the Generic events are sent by the object type.

The scrollable object has \mathbf{a} default event callback which propagates followbackground object: LV EVENT PRESSED, LV EVENT PRESSING. ing events to the LV EVENT PRESS LOST, LV EVENT RELEASED, LV EVENT SHORT CLICKED, LV EVENT CLICKED, LV EVENT LONG PRESSED, LV EVENT LONG PRESSED REPEAT

Learn more about *Events*.

##Keys

The following *Keys* are processed by the Page:

• LV_KEY_RIGHT/LEFT/UP/DOWN Scroll the page

Learn more about Keys.

Example

C

Page with scrollbar

code

```
#include "lvgl/lvgl.h"
void lv ex page 1(void)
    /*Create a scroll bar style*/
    static lv style t style sb;
    lv_style_copy(&style_sb, &lv_style_plain);
    style sb.body.main color = LV COLOR BLACK;
    style_sb.body.grad_color = LV_COLOR_BLACK;
    style sb.body.border.color = LV COLOR WHITE;
    style sb.body.border.width = 1;
    style_sb.body.border.opa = LV_OPA_70;
    style sb.body.radius = LV RADIUS CIRCLE;
    style_sb.body.opa = LV_OPA_60;
    style sb.body.padding.right = 3;
    style sb.body.padding.bottom = 3;
    style sb.body.padding.inner = 8;
                                           /*Scrollbar width*/
   /*Create a page*/
   lv_obj_t * page = lv_page_create(lv_scr_act(), NULL);
    lv obj set size(page, 150, 200);
    lv obj align(page, NULL, LV ALIGN CENTER, 0, 0);
    lv page set style(page, LV PAGE STYLE SB, &style sb);
                                                                    /*Set the
→scrollbar style*/
    /*Create a label on the page*/
    lv_obj_t * label = lv_label_create(page, NULL);
    lv label set long mode(label, LV LABEL LONG BREAK);
                                                                   /*Automatically
→break long lines*/
    lv obj set width(label, lv page get fit width(page));
                                                                   /*Set the label...
→width to max value to not show hor. scroll bars*/
```

(continues on next page)

(continued from previous page)

MicroPython

No examples yet.

API

Typedefs

```
typedef uint8_t lv_sb_mode_t
typedef uint8_t lv_page_edge_t
typedef uint8_t lv_page_style_t
```

Enums

enum [anonymous]

Scrollbar modes: shows when should the scrollbars be visible

Values:

```
LV SB MODE OFF = 0x0
```

Never show scrollbars

LV SB MODE ON =0x1

Always show scrollbars

LV SB MODE DRAG = 0x2

Show scrollbars when page is being dragged

 $LV_SB_MODE_AUTO = 0x3$

Show scrollbars when the scrollable container is large enough to be scrolled

 $LV_SB_MODE_HIDE = 0x4$

Hide the scroll bar temporally

 $LV_SB_MODE_UNHIDE = 0x5$

Unhide the previously hidden scrollbar. Recover it's type too

enum [anonymous]

Edges: describes the four edges of the page

Values:

$$\label{eq:LV_PAGE_EDGE_LEFT} \begin{split} \textbf{LV_PAGE_EDGE_TOP} &= 0x1 \\ \textbf{LV_PAGE_EDGE_RIGHT} &= 0x4 \\ \textbf{LV_PAGE_EDGE_BOTTOM} &= 0x8 \\ \end{split}$$

enum [anonymous]

Values:

LV_PAGE_STYLE_BG
LV_PAGE_STYLE_SCRL
LV_PAGE_STYLE_SB
LV_PAGE_STYLE_EDGE_FLASH

Functions

 $lv_obj_t *lv_page_create(lv_obj_t *par, const lv_obj_t *copy)$

Create a page objects

Return pointer to the created page

Parameters

- par: pointer to an object, it will be the parent of the new page
- copy: pointer to a page object, if not NULL then the new object will be copied from it

void lv page clean (lv obj t *obj)

Delete all children of the scrl object, without deleting scrl child.

Parameters

• obj: pointer to an object

lv_obj_t *lv_page_get_scrl(const lv_obj_t *page)

Get the scrollable object of a page

Return pointer to a container which is the scrollable part of the page

Parameters

• page: pointer to a page object

uint16_t lv_page_get_anim_time(const lv_obj_t *page)

Get the animation time

Return the animation time in milliseconds

Parameters

• page: pointer to a page object

 $void lv_page_set_sb_mode(lv_obj_t *page, lv_sb_mode_t sb_mode)$

Set the scroll bar mode on a page

- page: pointer to a page object
- sb mode: the new mode from 'lv page sb.mode t' enum

void lv_page_set_anim_time(lv_obj_t *page, uint16_t anim_time)

Set the animation time for the page

Parameters

- page: pointer to a page object
- anim_time: animation time in milliseconds

void lv page set scroll propagation(lv_obj_t*page, bool en)

Enable the scroll propagation feature. If enabled then the page will move its parent if there is no more space to scroll.

Parameters

- page: pointer to a Page
- en: true or false to enable/disable scroll propagation

void lv_page_set_edge_flash(lv_obj_t *page, bool en)

Enable the edge flash effect. (Show an arc when the an edge is reached)

Parameters

- page: pointer to a Page
- en: true or false to enable/disable end flash

Set the fit policy in all 4 directions separately. It tell how to change the page size automatically.

Parameters

- page: pointer to a page object
- left: left fit policy from lv fit t
- right: right fit policy from lv fit t
- top: bottom fit policy from lv_fit_t
- bottom: bottom fit policy from lv fit t

static void lv page set scrl fit2(lv_obj_t*page, lv_fit_t hor, lv_fit_t ver)

Set the fit policy horizontally and vertically separately. It tell how to change the page size automatically.

Parameters

- page: pointer to a page object
- hot: horizontal fit policy from lv fit t
- ver: vertical fit policy from lv fit t

static void lv_page_set_scrl_fit(lv_obj_t *page, lv_fit_t fit)

Set the fit policyin all 4 direction at once. It tell how to change the page size automatically.

- page: pointer to a button object
- fit: fit policy from lv_fit_t

static void lv page set scrl width(lv_obj_t*page, lv_coord_tw)

Set width of the scrollable part of a page

Parameters

- page: pointer to a page object
- W: the new width of the scrollable (it has no effect is horizontal fit is enabled)

static void lv page set scrl height(lv obj t*page, lv coord t h)

Set height of the scrollable part of a page

Parameters

- page: pointer to a page object
- h: the new height of the scrollable (it has no effect is vertical fit is enabled)

static void lv_page_set_scrl_layout(lv_obj_t *page, lv_layout_t layout)

Set the layout of the scrollable part of the page

Parameters

- page: pointer to a page object
- layout: a layout from 'lv_cont_layout_t'

void **lv_page_set_style**(lv_obj_t *page, lv_page_style_t type, **const** lv_style_t *style) Set a style of a page

Parameters

- page: pointer to a page object
- type: which style should be set
- style: pointer to a style

lv sb mode t lv page get sb mode(const lv_obj_t *page)

Set the scroll bar mode on a page

Return the mode from 'lv page sb.mode t' enum

Parameters

• page: pointer to a page object

bool $lv_page_get_scroll_propagation(lv_obj_t *page)$

Get the scroll propagation property

Return true or false

Parameters

• page: pointer to a Page

bool lv page get edge flash(lv_obj_t*page)

Get the edge flash effect property.

Parameters

• page: pointer to a Page return true or false

lv_coord_t lv_page_get_fit_width(lv_obj_t *page)

Get that width which can be set to the children to still not cause overflow (show scrollbars)

Return the width which still fits into the page

• page: pointer to a page object

lv_coord_t lv_page_get_fit_height(lv_obj_t *page)

Get that height which can be set to the children to still not cause overflow (show scrollbars)

Return the height which still fits into the page

Parameters

• page: pointer to a page object

static lv_coord_t lv_page_get_scrl_width(const lv_obj_t *page)

Get width of the scrollable part of a page

Return the width of the scrollable

Parameters

• page: pointer to a page object

static lv_coord_t lv_page_get_scrl_height(const lv_obj_t *page)

Get height of the scrollable part of a page

Return the height of the scrollable

Parameters

• page: pointer to a page object

static lv_layout_t lv_page_get_scrl_layout(const lv_obj_t *page)

Get the layout of the scrollable part of a page

Return the layout from 'lv_cont_layout_t'

Parameters

• page: pointer to page object

$\verb|static|| \mathit{lv_fit_t} \ \verb|lv_page_get_scrl_fit_left(const|| \mathit{lv_obj_t} * \mathit{page})|$

Get the left fit mode

Return an element of lv_fit_t

Parameters

• page: pointer to a page object

static lv_fit_t lv_page_get_scrl_fit_right(const lv_obj_t *page)

Get the right fit mode

 ${f Return}$ an element of ${f lv_fit_t}$

Parameters

• page: pointer to a page object

static lv_fit_t lv_page_get_scrl_fit_top(const lv_obj_t *page)

Get the top fit mode

Return an element of lv_fit_t

Parameters

• page: pointer to a page object

static lv_fit_t lv_page_get_scrl_fit_bottom(const lv_obj_t *page)

Get the bottom fit mode

Return an element of lv fit t

Parameters

• page: pointer to a page object

$\verb|const| lv_style_t *lv_page_get_style| (\verb|const| lv_obj_t *page, lv_page_style_t type|)|$

Get a style of a page

Return style pointer to a style

Parameters

- page: pointer to page object
- type: which style should be get

bool lv_page_on_edge(lv_obj_t *page, lv_page_edge_t edge)

Find whether the page has been scrolled to a certain edge.

 ${\bf Return}\;\;{\bf true}\;{\bf if}\;{\bf the}\;{\bf page}\;{\bf is}\;{\bf on}\;{\bf the}\;{\bf specified}\;{\bf edge}$

Parameters

- page: Page object
- edge: Edge to check

void lv_page_glue_obj (lv_obj_t *obj, bool glue)

Glue the object to the page. After it the page can be moved (dragged) with this object too.

Parameters

- **obj**: pointer to an object on a page
- glue: true: enable glue, false: disable glue

$void lv_page_focus(lv_obj_t *page, const lv_obj_t *obj, lv_anim_enable_t anim_en)$

Focus on an object. It ensures that the object will be visible on the page.

Parameters

- page: pointer to a page object
- **obj**: pointer to an object to focus (must be on the page)
- anim_en: LV_ANIM_ON to focus with animation; LV_ANIM_OFF to focus without animation

void lv_page_scroll_hor(lv_obj_t *page, lv_coord_t dist)

Scroll the page horizontally

Parameters

- page: pointer to a page object
- **dist**: the distance to scroll (< 0: scroll left; > 0 scroll right)

void lv_page_scroll_ver(lv_obj_t *page, lv_coord_t dist)

Scroll the page vertically

Parameters

- page: pointer to a page object
- **dist**: the distance to scroll (< 0: scroll down; > 0 scroll up)

void lv_page_start_edge_flash(lv_obj_t *page)

Not intended to use directly by the user but by other object types internally. Start an edge flash animation. Exactly one $ext->edge_flash.xxx_ip$ should be set

Parameters

· page:

struct lv_page_ext_t

Public Members

```
lv_cont_ext_t bg
lv\_obj\_t *scrl
const lv_style_t *style
lv_area_t hor_area
lv area t ver area
uint8 t hor draw
uint8_t ver_draw
lv\_sb\_mode\_t \ \mathbf{mode}
struct lv_page_ext_t::[anonymous] sb
lv_anim_value_t state
uint8\_t enabled
uint8_t top_ip
uint8_t bottom_ip
uint8_t right_ip
uint8\_t left_ip
struct lv_page_ext_t::[anonymous] edge_flash
uint16 t anim time
uint8 t scroll prop
uint8_t scroll_prop_ip
```

Indicateur de chargement (lv_preload)

Vue d'ensemble

L'objet indicateur de chargement est un arc en rotation sur une bordure circulaire.

```
\#\#\#\mathrm{Longueur} de l'arc La longueur de l'arc peut être ajustée par \mathsf{lv\_preload\_set\_arc\_length(preload, deg)}.
```

Vitesse de rotation

La vitesse de rotation peut être ajustée par lv_preload_set_spin_time(preload, time_ms).

Types de rotation

Vous pouvez choisir parmi plusieurs types de rotation :

- LV_PRELOAD_TYPE_SPINNING_ARC rotation de l'arc avec ralentissement au sommet du cercle
- LV_PRELOAD_TYPE_FILLSPIN_ARC rotation de l'arc avec ralentissement au sommet du cercle mais étire également l'arc

Pour appliquer un type, utilisez lv preload set type(preload, LV PRELOAD TYPE ...)

Direction de rotation

Le sens de rotation peut être changé avec lv_preload_set_dir(preload, LV_PRELOAD_DIR_FORWARD/BACKWARD).

Styles

Vous pouvez définir les styles avec lv_preload_set_style(btn, LV_PRELOAD_STYLE_MAIN, &style). Il décrit à la fois le style de l'arc et celui de la bordure :

- arc est décrit par les propriétés line
- border est décrit par les propriétés body.border notamment body.padding.left/top pour donner un rayon plus petit à la bordure (le plus petit est utilisé).

Evénements

Seuls les événements génériques sont envoyés par ce type d'objet.

Touches

Aucune touche n'est traitée par ce type d'objet.

Apprenez-en plus sur les touches.

Exemple

C

Preloader with custom style

code

```
#include "lvgl/lvgl.h"
void lv_ex_preload_1(void)
    /*Create a style for the Preloader*/
    static lv_style_t style;
    lv_style_copy(&style, &lv_style_plain);
    style.line.width = 10;
                                                   /*10 px thick arc*/
    style.line.color = lv_color_hex3(0x258);
                                                   /*Blueish arc color*/
    style.body.border.color = lv_color_hex3(0xBBB); /*Gray background color*/
    style.body.border.width = 10;
    style.body.padding.left = 0;
   /*Create a Preloader object*/
    lv_obj_t * preload = lv_preload_create(lv_scr_act(), NULL);
    lv_obj_set_size(preload, 100, 100);
    lv_obj_align(preload, NULL, LV_ALIGN_CENTER, 0, 0);
    lv_preload_set_style(preload, LV_PRELOAD_STYLE_MAIN, &style);
```

MicroPython

No examples yet.

MicroPython

Pas encore d'exemple.

API

Typedefs

```
typedef uint8_t lv_preload_type_t
typedef uint8_t lv_preload_dir_t
typedef uint8 t lv preload style t
```

Enums

enum [anonymous]

Type of preloader.

Values:

LV_PRELOAD_TYPE_SPINNING_ARC
LV_PRELOAD_TYPE_FILLSPIN_ARC

enum [anonymous]

Direction the preloader should spin.

Values:

LV_PRELOAD_DIR_FORWARD LV_PRELOAD_DIR_BACKWARD

enum [anonymous]

Values:

LV_PRELOAD_STYLE_MAIN

Functions

```
lv\_obj\_t *lv\_preload\_create(lv\_obj\_t *par, const lv\_obj\_t *copy)
```

Create a pre loader objects

Return pointer to the created pre loader

Parameters

- par: pointer to an object, it will be the parent of the new pre loader
- copy: pointer to a pre loader object, if not NULL then the new object will be copied from it

```
void lv_preload_set_arc_length(lv_obj_t*preload, lv_anim_value_t deg)
```

Set the length of the spinning arc in degrees

- preload: pointer to a preload object
- deg: length of the arc

void lv_preload_set_spin_time(lv_obj_t *preload, uint16_t time)

Set the spin time of the arc

Parameters

- preload: pointer to a preload object
- time: time of one round in milliseconds

$\label{eq:const_void_lv_preload_style} $$ \text{void} \ \textbf{lv_preload_style_t} \ \ \text{type}, \ \ \textbf{const} \ \ \textbf{lv_style_t} \\ *style) $$$

Set a style of a pre loader.

Parameters

- preload: pointer to pre loader object
- type: which style should be set
- style: pointer to a style

$\label{eq:cond_set_type} \mbox{void $lv_preload_type_t type} \mbox{)} \mbox{$lv_preload_type_t type} \mbox{)}$

Set the animation type of a preloader.

Parameters

- preload: pointer to pre loader object
- type: animation type of the preload

void lv_preload_set_dir(lv_obj_t *preload, lv_preload_dir_t dir)

Set the animation direction of a preloader

Parameters

- preload: pointer to pre loader object
- direction: animation direction of the preload

$lv_anim_value_t$ lv_preload_get_arc_length(const lv_obj_t *preload)

Get the arc length [degree] of the a pre loader

Parameters

• preload: pointer to a pre loader object

uint16 t lv preload get spin time(const lv_obj_t *preload)

Get the spin time of the arc

Parameters

• preload: pointer to a pre loader object [milliseconds]

Return style pointer to the style

Parameters

- preload: pointer to pre loader object
- type: which style should be get

lv_preload_type_t lv_preload_get_type(lv_obj_t*preload)

Get the animation type of a preloader.

Return animation type

Parameters

• preload: pointer to pre loader object

```
lv_preload_dir_t lv_preload_get_dir(lv_obj_t *preload)
```

Get the animation direction of a preloader

Return animation direction

Parameters

• preload: pointer to pre loader object

void lv_preload_spinner_anim(void *ptr, lv_anim_value_t val)

Animator function (exec_cb) to rotate the arc of spinner.

Parameters

- ptr: pointer to preloader
- val: the current desired value [0..360]

struct lv preload ext t

Public Members

```
lv_arc_ext_t arc
lv_anim_value_t arc_length
uint16_t time
lv_preload_type_t anim_type
lv_preload_dir_t anim_dir
```

Roller (lv_roller)

Overview

Roller allows you to simply select one option from more with scrolling. Its functionalities are similar to Drop down list.

Set options

The options are passed to the Roller as a string with <code>lv_roller_set_options(roller, options, LV_ROLLER_MODE_NORMAL/INFINITE)</code>. The options should be separated by <code>\n.</code> For example: <code>"First\nSecond\nThird"</code>.

 ${\tt LV_ROLLER_MODE_INIFINITE~make~the~roller~circular.}$

You can select an option manually with lv_roller_set_selected(roller, id), where *id* is the index of an option.

Get selected option

The get the currently selected option use lv_roller_get_selected(roller) it will return the *index* of the selected option.

lv_roller_get_selected_str(roller, buf, buf_size) copy the name of the selected option to buf.

Align the options

To align the label horizontally use lv_roller_set_align(roller, LV_LABEL_ALIGN_LEFT/CENTER/RIGHT).

Height and width

You can set the number of visible rows with lv_roller_set_visible_row_count(roller, num)

The width is adjusted automatically according to the width of the options. To prevent this apply lv roller set fix width(roller, width). 0 means to use auto width.

Animation time

When the Roller is scrolled and doesn't stop exactly on an option it will scroll to the nearest valid option automatically. The time of this scroll animation can be changed by <code>lv_roller_set_anim_time(roller, anim_time)</code>. Zero animation time means no animation.

Styles

The lv roller set style(roller, LV ROLLER STYLE ..., &style) set the styles of a Roller.

- LV_ROLLER_STYLE_BG Style of the background. All style.body properties are used. style.text is used for the option's label. Default: lv style pretty
- LV_ROLLER_STYLE_SEL Style of the selected option. The style.body properties are used. The selected option will be recolored with text.color. Default: lv_style_plain_color

Events

Besides, the Generic events the following Special events are sent by the Drop down lists:

• LV_EVENT_VALUE_CHANGED sent when a new option is selected

Learn more about *Events*.

Keys

The following *Keys* are processed by the Buttons:

- LV_KEY_RIGHT/DOWN Select the next option
- LV_KEY_LEFT/UP Select the previous option

• LY_KEY_ENTER Apply the selected option (Send LV_EVENT_VALUE_CHANGED event)

Example

C

Simple Roller

code

```
#include "lvgl/lvgl.h"
#include <stdio.h>
static void event_handler(lv_obj_t * obj, lv_event_t event)
    if(event == LV_EVENT_VALUE_CHANGED) {
        char buf[32];
        lv roller get selected str(obj, buf, sizeof(buf));
        printf("Selected month: %s\n", buf);
    }
}
void lv_ex_roller_1(void)
    lv_obj_t *roller1 = lv_roller_create(lv_scr_act(), NULL);
    lv_roller_set_options(roller1,
                         "January\n"
                         "February\n"
                        "March\n"
                         "April\n"
                        "May\n"
                         "June\n"
```

(continues on next page)

(continued from previous page)

MicroPython

No examples yet.

API

Typedefs

```
typedef uint8_t lv_roller_mode_t
typedef uint8 t lv roller style t
```

Enums

enum [anonymous]

Roller mode.

Values:

LV ROLLER MODE NORMAL

Normal mode (roller ends at the end of the options).

LV_ROLLER_MODE_INIFINITE

Infinite mode (roller can be scrolled forever).

enum [anonymous]

Values:

```
LV_ROLLER_STYLE_BG
LV_ROLLER_STYLE_SEL
```

Functions

```
lv\_obj\_t *lv\_roller\_create(lv\_obj\_t *par, const lv\_obj\_t *copy)
Create a roller object
```

Return pointer to the created roller

Parameters

• par: pointer to an object, it will be the parent of the new roller

• copy: pointer to a roller object, if not NULL then the new object will be copied from it

void **lv_roller_set_options** (*lv_obj_t*roller*, **const** char *options, *lv_roller_mode_t mode*) Set the options on a roller

Parameters

- roller: pointer to roller object
- options: a string with '' separated options. E.g. "One\nTwo\nThree"
- mode: LV ROLLER MODE NORMAL or LV ROLLER MODE INFINITE

void lv_roller_set_align(lv_obj_t *roller, lv_label_align_t align)

Set the align of the roller's options (left, right or center[default])

Parameters

- roller: pointer to a roller object
- align: one of lv_label_align_t values (left, right, center)

void $lv_roller_set_selected(lv_obj_t *roller, uint16_t sel_opt, lv_anim_enable_t anim)$ Set the selected option

Parameters

- roller: pointer to a roller object
- **sel_opt**: id of the selected option (0 ... number of option 1);
- anim: LV ANOM ON: set with animation; LV ANIM OFF set immediately

void lv_roller_set_visible_row_count(lv_obj_t *roller, uint8_t row_cnt)

Set the height to show the given number of rows (options)

Parameters

- roller: pointer to a roller object
- row cnt: number of desired visible rows

static void lv_roller_set_fix_width(lv_obj_t *roller, lv_coord_t w)

Set a fix width for the drop down list

Parameters

- roller: pointer to a roller obejct
- W: the width when the list is opened (0: auto size)

static void lv roller set anim time(lv obj t*roller, uint16 t anim time)

Set the open/close animation time.

Parameters

- roller: pointer to a roller object
- anim_time: open/close animation time [ms]

void $lv_roller_set_style(lv_obj_t *roller, lv_roller_style_t type, const lv_style_t *style)$ Set a style of a roller

- roller: pointer to a roller object
- type: which style should be set

• style: pointer to a style

uint16_t lv_roller_get_selected(const lv_obj_t *roller)

Get the id of the selected option

Return id of the selected option (0 ... number of option - 1);

Parameters

• roller: pointer to a roller object

Get the current selected option as a string

Parameters

- roller: pointer to roller object
- buf: pointer to an array to store the string
- buf size: size of buf in bytes. 0: to ignore it.

lv_label_align_t lv_roller_get_align(const lv_obj_t *roller)

Get the align attribute. Default alignment after _create is LV_LABEL_ALIGN_CENTER

LV_LABEL_ALIGN_RIGHT

or

Parameters

• roller: pointer to a roller object

static const char *lv_roller_get_options(const lv_obj_t *roller)

Get the options of a roller

Return the options separated by ''-s (E.g. "Option1\nOption2\nOption3")

Parameters

• roller: pointer to roller object

static uint16_t lv_roller_get_anim_time(const lv_obj_t *roller)

Get the open/close animation time.

Return open/close animation time [ms]

Parameters

• roller: pointer to a roller

bool lv_roller_get_hor_fit(const lv_obj_t *roller)

Get the auto width set attribute

Return true: auto size enabled; false: manual width settings enabled

Parameters

• roller: pointer to a roller object

${\tt const} \ lv_style_t \ *lv_roller_get_style (\ const \ \mathit{lv_obj_t} \ *\mathit{roller}, \ \mathit{lv_roller_style_t} \ \mathit{type})$

Get a style of a roller

Return style pointer to a style

Parameters

• roller: pointer to a roller object

• type: which style should be get

struct lv_roller_ext_t

Public Members

```
lv_ddlist_ext_t ddlist
lv_roller_mode_t mode
```

Curseur (lv_slider)

Vue d'ensemble

L'objet curseur ressemble à une barre complété par un bouton. Le bouton peut être déplacé pour définir une valeur. Le curseur peut également être vertical ou horizontal.

Valeur et intervalle

Pour définir une valeur initiale, utilisez lv_slider_set_value(slider, new_value, LV_ANIM_ON/OFF).lv_slider_set_anim_time(slider, anim_time) définit la durée d'animation en millisecondes.

Pour spécifier l'intervalle (valeurs minimum et maximum) la fonction lv_slider_set_range(slider, min , max) est utilisée.

Placement du bouton

Le bouton peut être placé de deux manières :

- sur l'arrière-plan
- sur les bords aux valeurs minimum/maximum

Utilisez $lv_slider_set_knob_in(slider, true/false)$ choisir entre les modes $(knob_in = false)$ est la valeur par défaut).

Styles

Vous pouvez modifier les styles du curseur avec lv_slider_set_style(slider, LV_SLIDER_STYLE_..., &style).

- LV_SLIDER_STYLE_BG style de l'arrière plan. Toutes les propriétés style.body sont utilisées. Les valeurs padding rendent le bouton plus grand que l'arrière-plan (les valeurs négatives le rendent plus grand)
- LV_SLIDER_STYLE_INDIC style de l'indicateur. Toutes les propriétés style.body sont utilisées. Les valeurs padding rendent l'indicateur plus petit que l'arrière-plan.
- LV_SLIDER_STYLE_KNOB style du bouton. Toutes les propriétés style.body sont utilisées sauf padding.

Evénements

Outre les [événements génériques] (/overview/event.html #evenements-generiques), les événements spéciaux suivants sont envoyés par le curseur :

• LV_EVENT_VALUE_CHANGED envoyé quand le curseur est déplacé ou modifié avec les touches.

Touches

- LV_KEY_UP, LV_KEY_RIGHT incrémente la valeur du curseur de 1.
- LV_KEY_DOWN, LV_KEY_LEFT décrémente la valeur du curseur de 1.

Apprenez-en plus sur les touches.

Exemple

C

Slider with custo mstyle

code

```
#include "lvgl/lvgl.h"
#include <stdio.h>

static void event_handler(lv_obj_t * obj, lv_event_t event)
{
   if(event == LV_EVENT_VALUE_CHANGED) {
      printf("Value: %d\n", lv_slider_get_value(obj));
}
```

(continues on next page)

(continued from previous page)

```
}
}
void lv ex slider 1(void)
    /*Create styles*/
    static lv_style_t style_bg;
    static lv_style_t style_indic;
    static lv_style_t style_knob;
    lv style copy(&style bg, &lv style pretty);
    style bg.body.main color = LV COLOR BLACK;
    style_bg.body.grad_color = LV_COLOR_GRAY;
    style_bg.body.radius = LV_RADIUS_CIRCLE;
    style_bg.body.border.color = LV_COLOR_WHITE;
    lv style copy(&style indic, &lv style pretty color);
    style indic.body.radius = LV RADIUS CIRCLE;
    style indic.body.shadow.width = 8;
    style_indic.body.shadow.color = style_indic.body.main_color;
    style_indic.body.padding.left = 3;
    style indic.body.padding.right = 3;
    style_indic.body.padding.top = 3;
    style indic.body.padding.bottom = 3;
    lv style copy(&style knob, &lv style pretty);
    style knob.body.radius = LV RADIUS CIRCLE;
    style_knob.body.opa = LV_OPA_70;
    style_knob.body.padding.top = 10 ;
    style knob.body.padding.bottom = 10 ;
    /*Create a slider*/
    lv_obj_t * slider = lv_slider_create(lv_scr_act(), NULL);
    lv_slider_set_style(slider, LV_SLIDER_STYLE_BG, &style_bg);
    lv_slider_set_style(slider, LV_SLIDER_STYLE_INDIC,&style_indic);
    lv_slider_set_style(slider, LV_SLIDER_STYLE_KNOB, &style_knob);
    lv obj align(slider, NULL, LV ALIGN CENTER, 0, 0);
    lv obj set event cb(slider, event handler);
}
```

Set value with slider

Welcome to the slider+label demo! Move the slider and see that the label updates to match it.

code

```
* @file lv_ex_slider_2.c
/*************
      INCLUDES
*******************
#include "lvgl/lvgl.h"
#include <stdio.h>
/***************
* DEFINES
****************************
/************
     TYPEDEFS
******************
/********
* STATIC PROTOTYPES
*******************/
static void slider_event_cb(lv_obj_t * slider, lv_event_t event);
/***********
* STATIC VARIABLES
static lv_obj_t * slider_label;
                                                              (continues on next page)
```

(continued from previous page)

```
/*********
      MACROS
*******************
/********
   GLOBAL FUNCTIONS
*******************
void lv ex slider 2(void)
   /* Create a slider in the center of the display */
   lv obj t * slider = lv slider create(lv scr act(), NULL);
   lv_obj_set_width(slider, LV_DPI * 2);
   lv_obj_align(slider, NULL, LV_ALIGN_CENTER, 0, 0);
   lv_obj_set_event_cb(slider, slider_event_cb);
   lv_slider_set_range(slider, 0, 100);
   /* Create a label below the slider */
   slider_label = lv_label_create(lv_scr_act(), NULL);
   lv_label_set_text(slider_label, "0");
   lv_obj_set_auto_realign(slider_label, true);
   lv_obj_align(slider_label, slider, LV_ALIGN_OUT_BOTTOM_MID, 0, 10);
   /* Create an informative label */
   lv obj t * info = lv label create(lv scr act(), NULL);
   lv_label_set_text(info, "Welcome to the slider+label demo!\n"
                           "Move the slider and see that the label\n"
                           "updates to match it.");
   lv_obj_align(info, NULL, LV_ALIGN_IN_TOP_LEFT, 10, 10);
}
/********
   STATIC FUNCTIONS
******************
static void slider_event_cb(lv_obj_t * slider, lv_event_t event)
   if(event == LV EVENT VALUE CHANGED) {
       static char buf[4]; /* max 3 bytes for number plus 1 null terminating byte */
       snprintf(buf, 4, "%u", lv_slider_get_value(slider));
       lv_label_set_text(slider_label, buf);
   }
}
```

MicroPython

No examples yet.

API

Typedefs

typedef uint8_t lv_slider_style_t

Enums

enum [anonymous]

Built-in styles of slider

Values:

LV_SLIDER_STYLE_BG

LV_SLIDER_STYLE_INDIC

Slider background style.

LV SLIDER STYLE KNOB

Slider indicator (filled area) style.

Functions

lv_obj_t *lv_slider_create(lv_obj_t *par, const lv_obj_t *copy)

Create a slider objects

Return pointer to the created slider

Parameters

- par: pointer to an object, it will be the parent of the new slider
- copy: pointer to a slider object, if not NULL then the new object will be copied from it

 $\textbf{static} \ \operatorname{void} \ \textbf{lv_slider_set_value} (\mathit{lv_obj_t} \ *slider, \ \operatorname{int} 16_t \ \mathit{value}, \ \mathit{lv_anim_enable_t} \ \mathit{anim})$

Set a new value on the slider

Parameters

- slider: pointer to a slider object
- value: new value
- anim: LV_ANIM_ON: set the value with an animation; LV_ANIM_OFF: change the value immediately

static void **lv_slider_set_range**(lv_obj_t *slider, int16_t min, int16_t max)

Set minimum and the maximum values of a bar

Parameters

- slider: pointer to the slider object
- min: minimum value
- max: maximum value

static void **lv_slider_set_anim_time**(lv_obj_t *slider, uint16_t anim_time)

Set the animation time of the slider

Parameters

- slider: pointer to a bar object
- anim time: the animation time in milliseconds.

void lv_slider_set_knob_in(lv_obj_t *slider, bool in)

Set the 'knob in' attribute of a slider

Parameters

• slider: pointer to slider object

• in: true: the knob is drawn always in the slider; false: the knob can be out on the edges

void lv_slider_set_style(lv_obj_t *slider, lv_slider_style_t type, const lv_style_t *style)
Set a style of a slider

Parameters

- slider: pointer to a slider object
- type: which style should be set
- style: pointer to a style

int16_t lv_slider_get_value(const lv_obj_t *slider)

Get the value of a slider

Return the value of the slider

Parameters

• slider: pointer to a slider object

$\verb|static| int 16_t lv_slider_get_min_value(const \mathit{lv}_\mathit{obj}_\mathit{t} *\mathit{slider})|$

Get the minimum value of a slider

Return the minimum value of the slider

Parameters

• slider: pointer to a slider object

$\verb|static| int16_t| lv_slider_get_max_value(const| lv_obj_t| *slider)|$

Get the maximum value of a slider

Return the maximum value of the slider

Parameters

• slider: pointer to a slider object

bool lv_slider_is_dragged(const lv_obj_t *slider)

Give the slider is being dragged or not

Return true: drag in progress false: not dragged

Parameters

• slider: pointer to a slider object

bool lv_slider_get_knob_in(const lv_obj_t *slider)

Get the 'knob in' attribute of a slider

Return true: the knob is drawn always in the slider; false: the knob can be out on the edges

Parameters

• slider: pointer to slider object

${\tt const} \ lv_style_t \ *lv_slider_get_style (const \ \mathit{lv_obj_t} \ *slider, \ \mathit{lv_slider_style_t} \ type)$

Get a style of a slider

Return style pointer to a style

- slider: pointer to a slider object
- type: which style should be get

struct lv_slider_ext_t

Public Members

```
lv_bar_ext_t bar
const lv_style_t *style_knob
int16_t drag_value
uint8 t knob in
```

Spinbox (Iv_spinbox)

Vue d'ensemble

The Spinbox contains a number as text which can be increased or decreased by *Keys* or API functions. The Spinbox is a modified *Text area*.

Set format

lv_spinbox_set_digit_format(spinbox, digit_count, separator_position) set the format of the number. digit_count sets the number of digits. Leading zeros are added to fill the space on
the left. separator_position sets the number of digit before the decimal point. 0 means no decimal
point.

 $\label{local_spinbox_set_padding_left(spinbox, cnt)} \ \mathrm{add} \ cnt \ \mathrm{``space''} \ \mathrm{characters} \ \mathrm{between} \ \mathrm{the} \ \mathrm{sign} \ \mathrm{an} \\ \mathrm{the} \ \mathrm{most} \ \mathrm{left} \ \mathrm{digit}.$

Value and ranges

lv spinbox set range(spinbox, min, max) sets the range of the Spinbox.

lv spinbox set value(spinbox, num) sets the Spinbox's value manually.

lv_spinbox_increment(spinbox) and lv_spinbox_decrement(spinbox) increments/decrements the value of the Spinbox.

lv spinbox set step(spinbox, step) sets the amount to increment decrement.

Style usage

The lv_spinbox_set_style(roller, LV_SPINBOX_STYLE_..., &style) set the styles of a Spinbox.

- LV_SPINBOX_STYLE_BG Style of the background. All style.body properties are used. style.text is used for label. Default: lv_style_pretty
- LV_SPINBOX_STYLE_SB Scrollbar's style which uses all style.body properties. padding. right/bottom sets horizontal and vertical the scrollbars' padding respectively and the padding. inner sets the scrollbar's width. (default: lv_style_pretty_color)
- LV_SPINBOX_STYLE_CURSOR Style of the cursor which uses all style.body properties including padding to make the cursor larger then the digits.

Events

Besides the Generic events the following Special events are sent by the Drop down lists:

- LV_EVENT_VALUE_CHANGED sent when the value has changed. (the value is set as event data as int32_t)
- LV_EVENT_INSERT sent by the ancestor Text area but shouldn't be used.

Learn more about *Events*.

Keys

The following *Keys* are processed by the Buttons:

- LV_KEY_LEFT/RIGHT With Keypad move the cursor left/right. With Encoder decrement/increment the selected digit.
- LY_KEY_ENTER Apply the selected option (Send LV_EVENT_VALUE_CHANGED event and close the Drop down list)
- LV_KEY_ENTER With Encoder got the net digit. Jump to the first after the last.

Example

C

Simple Spinbox

code

```
#include "lvgl/lvgl.h"
#include <stdio.h>
static void event_handler(lv_obj_t * obj, lv_event_t event)
    if(event == LV_EVENT_VALUE_CHANGED) {
        printf("Value: %d\n", lv spinbox get value(obj));
   else if(event == LV EVENT CLICKED) {
        /*For simple test: Click the spinbox to increment its value*/
        lv spinbox increment(obj);
    }
}
void lv_ex_spinbox_1(void)
    lv_obj_t * spinbox;
    spinbox = lv_spinbox_create(lv_scr_act(), NULL);
    lv_spinbox_set_digit_format(spinbox, 5, 3);
    lv_spinbox_step_prev(spinbox);
    lv obj set width(spinbox, 100);
    lv_obj_align(spinbox, NULL, LV_ALIGN_CENTER, 0, 0);
    lv_obj_set_event_cb(spinbox, event_handler);
}
```

MicroPython

No examples yet.

API

Typedefs

typedef uint8_t lv_spinbox_style_t

Enums

```
enum [anonymous]
    Values:
    LV_SPINBOX_STYLE_BG
    LV_SPINBOX_STYLE_SB
    LV_SPINBOX_STYLE_CURSOR
```

Functions

```
 lv\_obj\_t * \textbf{lv\_spinbox\_create} (lv\_obj\_t * par, \textbf{const} \ lv\_obj\_t * copy) \\ \text{Create a spinbox objects}
```

Return pointer to the created spinbox

- par: pointer to an object, it will be the parent of the new spinbox
- copy: pointer to a spinbox object, if not NULL then the new object will be copied from it

static void **lv_spinbox_set_style**(*lv_obj_t *spinbox, lv_spinbox_style_t type*, lv_style_t *style)

Set a style of a spinbox.

Parameters

- templ: pointer to template object
- type: which style should be set
- style: pointer to a style

void lv_spinbox_set_value(lv_obj_t *spinbox, int32_t i)

Set spinbox value

Parameters

- spinbox: pointer to spinbox
- i: value to be set

Set spinbox digit format (digit count and decimal format)

Parameters

- spinbox: pointer to spinbox
- digit_count: number of digit excluding the decimal separator and the sign
- separator_position: number of digit before the decimal point. If 0, decimal point is not shown

void lv_spinbox_set_step(lv_obj_t *spinbox, uint32_t step)

Set spinbox step

Parameters

- spinbox: pointer to spinbox
- step: steps on increment/decrement

$\label{eq:condition} \mbox_{\tt set_range} (\mbox_{\it obj_t} *spinbox, \mbox, \mbox_{\it trange_min}, \mbox_{\it trange_max})$

Set spinbox value range

Parameters

- spinbox: pointer to spinbox
- range_min: maximum value, inclusive
- range max: minimum value, inclusive

${\tt void} \ \textbf{lv_spinbox_set_padding_left} (\textit{lv_obj_t *spinbox}, \ {\tt uint8_t} \ \textit{padding})$

Set spinbox left padding in digits count (added between sign and first digit)

- spinbox: pointer to spinbox

Get style of a spinbox.

Return style pointer to the style

Parameters

- templ: pointer to template object
- type: which style should be get

int32_t lv_spinbox_get_value(lv_obj_t *spinbox)

Get the spinbox numeral value (user has to convert to float according to its digit format)

 ${\bf Return}\;\;{\bf value}\;{\bf integer}\;{\bf value}\;{\bf of}\;{\bf the}\;{\bf spinbox}\;$

Parameters

• spinbox: pointer to spinbox

void lv_spinbox_step_next(lv_obj_t *spinbox)

Select next lower digit for edition by dividing the step by 10

Parameters

• spinbox: pointer to spinbox

void lv_spinbox_step_prev(lv_obj_t *spinbox)

Select next higher digit for edition by multiplying the step by 10

Parameters

• spinbox: pointer to spinbox

void lv_spinbox_increment(lv_obj_t *spinbox)

Increment spinbox value by one step

Parameters

• spinbox: pointer to spinbox

void lv_spinbox_decrement(lv_obj_t *spinbox)

Decrement spinbox value by one step

Parameters

• spinbox: pointer to spinbox

struct lv_spinbox_ext_t

Public Members

```
lv_ta_ext_t ta
int32_t value
int32_t range_max
int32_t range_min
int32_t step
uint16_t digit_count
uint16_t dec_point_pos
```

uint16_t digit_padding_left

Example

Commutateur (lv_sw)

Vue d'ensemble

Le commutateur peut être utilisé pour activer/désactiver quelque chose. Il ressemble à un petit curseur.

Changer d'état

Pour changer l'état du commutateur

- · Cliquer dessus,
- Le faire glisser,
- Utiliser les fonctions lv_sw_on(sw, LV_ANIM_ON/OFF), lv_sw_off(sw, LV_ANIM_ON/OFF) ou lv_sw_toggle(sw, LV_ANOM_ON/OFF).

Durée d'animation

La durée des animations quand le commutateur change d'état peut être ajusté avec lv sw set anim time(sw, anim time ms).

Styles

Vous pouvez définir les styles du commutateur avec lv_sw_set_style(sw, LV_SW_STYLE_..., &style).

- LV_SW_STYLE_BG style de l'arrière plan. Toutes les propriétés style.body sont utilisées. Les valeurs padding rendent le commutateur plus petit que le bouton (une valeur négative le rend plus grand).
- LV_SW_STYLE_INDIC style de l'indicateur. Toutes les propriétés style.body sont utilisées. Les valeurs padding rendent l'indicateur plus petit que l'arrière-plan.
- LV_SW_STYLE_KNOB_OFF style du bouton lorsque le commutateur est désactivé. Les propriétés style.body sont utilisées sauf padding.
- LV_SW_STYLE_KNOB_ON Style du bouton lorsque le commutateur est activé. Les propriétés style.body sont utilisées sauf padding.

Evénements

Outre les [événements génériques](/overview/event.html #evenements-generiques), les événements spéciaux suivants sont envoyés par les commutateurs :

• LV_EVENT_VALUE_CHANGED envoyé lorsque le commutateur change d'état.

Touches

- LV_KEY_UP, LV_KEY_RIGHT active le commutateur.
- LV_KEY_DOWN, LV_KEY_LEFT désactive le commutateur.

Apprenez-en plus sur les touches.

Exemple

C

Simple Switch

code

```
#include "lvgl/lvgl.h"
#include <stdio.h>

static void event_handler(lv_obj_t * obj, lv_event_t event)
{
    if(event == LV_EVENT_VALUE_CHANGED) {
        printf("State: %s\n", lv_sw_get_state(obj) ? "On" : "Off");
    }
}

void lv_ex_sw_1(void)
{
    /*Create styles for the switch*/
    static lv_style_t bg_style;
    static lv_style_t indic_style;
    static lv_style_t knob_on_style;
    static lv_style_t knob_off_style;
    static lv_style_t knob_off_style;
```

(continues on next page)

(continued from previous page)

```
lv_style_copy(&bg_style, &lv_style_pretty);
    bg_style.body.radius = LV_RADIUS_CIRCLE;
    bg_style.body.padding.top = 6;
    bg style.body.padding.bottom = 6;
    lv_style_copy(&indic_style, &lv_style_pretty_color);
    indic_style.body.radius = LV_RADIUS_CIRCLE;
    indic_style.body.main_color = lv_color_hex(0x9fc8ef);
    indic_style.body.grad_color = lv_color_hex(0x9fc8ef);
    indic_style.body.padding.left = 0;
    indic style.body.padding.right = 0;
    indic style.body.padding.top = 0;
    indic style.body.padding.bottom = 0;
    lv_style_copy(&knob_off_style, &lv_style_pretty);
    knob_off_style.body.radius = LV_RADIUS_CIRCLE;
    knob off style.body.shadow.width = 4;
    knob off style.body.shadow.type = LV SHADOW BOTTOM;
    lv_style_copy(&knob_on_style, &lv_style_pretty_color);
    knob_on_style.body.radius = LV_RADIUS_CIRCLE;
    knob_on_style.body.shadow.width = 4;
    knob_on_style.body.shadow.type = LV_SHADOW_BOTTOM;
    /*Create a switch and apply the styles*/
    lv_obj_t *sw1 = lv_sw_create(lv_scr_act(), NULL);
    lv_sw_set_style(sw1, LV_SW_STYLE_BG, &bg_style);
    lv_sw_set_style(sw1, LV_SW_STYLE_INDIC, &indic_style);
    lv_sw_set_style(sw1, LV_SW_STYLE_KNOB_ON, &knob_on_style);
    lv_sw_set_style(sw1, LV_SW_STYLE_KNOB_OFF, &knob_off_style);
lv_obj_align(sw1, NULL, LV_ALIGN_CENTER, 0, -50);
    lv_obj_set_event_cb(sw1, event_handler);
    /*Copy the first switch and turn it ON*/
    lv_obj_t *sw2 = lv_sw_create(lv_scr_act(), sw1);
    lv_sw_on(sw2, LV_ANIM_ON);
    lv obj align(sw2, NULL, LV ALIGN CENTER, 0, 50);
}
```

MicroPython

No examples yet.

API

Typedefs

typedef uint8_t lv_sw_style_t

Enums

enum [anonymous]

Switch styles.

Values:

LV_SW_STYLE_BG

Switch background.

LV_SW_STYLE_INDIC

Switch fill area.

LV SW STYLE KNOB OFF

Switch knob (when off).

LV_SW_STYLE_KNOB_ON

Switch knob (when on).

Functions

 $lv_obj_t *lv_sw_create(lv_obj_t *par, const lv_obj_t *copy)$

Create a switch objects

Return pointer to the created switch

Parameters

- par: pointer to an object, it will be the parent of the new switch
- copy: pointer to a switch object, if not NULL then the new object will be copied from it

void lv sw on(lv obj t *sw, lv anim enable t anim)

Turn ON the switch

Parameters

- SW: pointer to a switch object
- anim: LV_ANIM_ON: set the value with an animation; LV_ANIM_OFF: change the value immediately

void $lv_sw_off(lv_obj_t^*sw, lv_anim_enable_t^*anim)$

Turn OFF the switch

Parameters

- SW: pointer to a switch object
- anim: LV_ANIM_ON: set the value with an animation; LV_ANIM_OFF: change the value immediately

bool lv_sw_toggle(lv_obj_t *sw, lv_anim_enable_t anim)

Toggle the position of the switch

Return resulting state of the switch.

- SW: pointer to a switch object
- anim: LV_ANIM_ON: set the value with an animation; LV_ANIM_OFF: change the value immediately

```
void lv\_sw\_set\_style(lv\_obj\_t *sw, lv\_sw\_style\_t type, const lv\_style\_t *style)
Set a style of a switch
```

Parameters

- SW: pointer to a switch object
- type: which style should be set
- style: pointer to a style

void lv_sw_set_anim_time(lv_obj_t *sw, uint16_t anim_time)

Set the animation time of the switch

Return style pointer to a style

Parameters

- SW: pointer to a switch object
- anim_time: animation time

static bool lv sw get state(const $lv_obj_t *sw$)

Get the state of a switch

Return false: OFF; true: ON

Parameters

• SW: pointer to a switch object

const lv_style_t *lv_sw_get_style(const lv_obj_t *sw, lv_sw_style_t type)

Get a style of a switch

Return style pointer to a style

Parameters

- SW: pointer to a switch object
- type: which style should be get

uint16_t lv_sw_get_anim_time(const lv_obj_t *sw)

Get the animation time of the switch

Return style pointer to a style

Parameters

• SW: pointer to a switch object

struct lv sw ext t

Public Members

lv slider ext t slider

const lv_style_t *style_knob_off

Style of the knob when the switch is OFF

const lv_style_t *style_knob_on

Style of the knob when the switch is ON (NULL to use the same as OFF)

lv_coord_t start_x

uint8_t changed

uint8_t slided
uint16_t anim_time

Table (lv_table)

Vue d'ensemble

Comme d'habitude, les tables sont construites à partir de lignes, de colonnes et de cellules contenant des textes.

L'objet table est très léger, car seuls les textes sont enregistrés. Aucun objet réel n'est créé pour les cellules, elles sont simplement dessinées à la volée.

Llignes et colonnes

Pour définir le nombre de lignes et de colonnes, utilisez lv_table_set_row_cnt(table, row_cnt) et lv_table_set_col_cnt(table, col_cnt).

Largeur et hauteur

La largeur des colonnes peut être définie avec lv_table_set_col_width(table, col_id, width). La largeur totale de l'objet table sera définie par la somme des largeurs des colonnes.

La hauteur est calculée automatiquement à partir des styles des cellule (police, marges, etc.) et du nombre de lignes.

Définir la valeur de la cellule

Les cellules peuvent enregistrer uniquement du texte, il est donc nécessaire de convertir les nombres en texte avant de les afficher dans une table.

lv_table_set_cell_value(table, row, col, "Content"). Le texte est sauvegardé par la table et peut donc être une variable locale.

Le saut de ligne peut être utilisé dans le texte comme "Value n60.3".

Alignement

L'alignement du texte dans les cellules peut être ajusté individuellement avec lv_table_set_cell_align(table, row, col, LV_LABEL_ALIGN_LEFT/CENTER/RIGHT).

Type de cellule

Vous pouvez utiliser 4 types de cellules différents. Chacun a son propre style.

Les types de cellules peuvent être utilisés pour ajouter un style différent, par exemple pour :

- en-tête de table
- première colonne

- mise en évidence d'une cellule
- etc

Le type peut être sélectionné avec lv_table_set_cell_type(table, row, col, type) type peut être 1, 2, 3 ou 4.

Fusionner des cellules

Les cellules peuvent être fusionnées horizontalement avec lv_table_set_cell_merge_right(table, col, row, true). Pour fusionner davantage de cellules adjacentes, appliquez cette fonction à chaque cellule.

Crop text

Par défaut, des retours à la ligne sont insérés pour permettre aux texte de s'inscrire dans la largeur de la cellule, et la hauteur de la cellule est définie automatiquement. Pour désactiver ce comportement et conserver le texte tel qu'il est, activez <code>lv_table_set_cell_crop(table, row, col, true)</code>.

Défilement

Pour pouvoir faire défiler la table, placez-la sur une page

Styles

Utilisez lv_table_set_style(table, lv_table_set_style..., &style) pour définir un nouveau style pour un élément de la table :

- LV_PAGE_STYLE_BG style de l'arrière-plan qui utilise toutes les propriétés style.body (valeur par défaut : lv style plain color).
- LV_PAGE_STYLE_CELL1/2/3/4 4 styles pour les 4 types de cellules. Toutes les propriétés style.body sont utilisées. (valeur par défaut : lv_style_plain).

Evénements

Seuls les événements génériques sont envoyés par ce type d'objet.

Apprenez-en plus sur les événements.

Touches

Aucune touche n'est traitée par ce type d'objet.

Apprenez-en plus sur les touches.

Exemple

C

Simple table

Name	Price
Apple	\$7
Banana	\$4
Citron	\$6

code

```
#include "lvgl/lvgl.h"
void lv_ex_table_1(void)
   /*Create a normal cell style*/
    static lv style t style cell1;
    lv_style_copy(&style_cell1, &lv_style_plain);
    style_cell1.body.border.width = 1;
    style_cell1.body.border.color = LV_COLOR_BLACK;
   /*Crealte a header cell style*/
    static lv_style_t style_cell2;
    lv_style_copy(&style_cell2, &lv_style_plain);
    style cell2.body.border.width = 1;
    style_cell2.body.border.color = LV_COLOR_BLACK;
    style_cell2.body.main_color = LV_COLOR_SILVER;
    style_cell2.body.grad_color = LV_COLOR_SILVER;
    lv obj t * table = lv table create(lv scr act(), NULL);
    lv_table_set_style(table, LV_TABLE_STYLE_CELL1, &style_cell1);
    lv_table_set_style(table, LV_TABLE_STYLE_CELL2, &style_cell2);
    lv_table_set_style(table, LV_TABLE_STYLE_BG, &lv_style_transp_tight);
    lv_table_set_col_cnt(table, 2);
    lv_table_set_row_cnt(table, 4);
    lv obj align(table, NULL, LV ALIGN CENTER, 0, 0);
```

(continues on next page)

(continued from previous page)

```
/*Make the cells of the first row center aligned */
lv_table_set_cell_align(table, 0, 0, LV_LABEL_ALIGN_CENTER);
lv_table_set_cell_align(table, 0, 1, LV_LABEL_ALIGN_CENTER);
/*Make the cells of the first row TYPE = 2 (use `style cell2`) */
lv_table_set_cell_type(table, 0, 0, 2);
lv_table_set_cell_type(table, 0, 1, 2);
/*Fill the first column*/
lv_table_set_cell_value(table, 0, 0, "Name");
lv_table_set_cell_value(table, 1, 0, "Apple");
lv_table_set_cell_value(table, 2, 0, "Banana");
lv_table_set_cell_value(table, 3, 0, "Citron");
/*Fill the second column*/
lv_table_set_cell_value(table, 0, 1, "Price");
lv_table_set_cell_value(table, 1, 1, "$7");
lv_table_set_cell_value(table, 2, 1, "$4");
lv_table_set_cell_value(table, 3, 1, "$6");
```

MicroPython

No examples yet.

MicroPython

Pas encore d'exemple.

API

Typedefs

```
typedef uint8_t lv_table_style_t
```

Enums

```
enum [anonymous]
Values:

LV_TABLE_STYLE_BG

LV_TABLE_STYLE_CELL1

LV_TABLE_STYLE_CELL2

LV_TABLE_STYLE_CELL3

LV_TABLE_STYLE_CELL4
```

Functions

$lv_obj_t *lv_table_create(lv_obj_t *par, const lv_obj_t *copy)$

Create a table object

Return pointer to the created table

Parameters

- par: pointer to an object, it will be the parent of the new table
- copy: pointer to a table object, if not NULL then the new object will be copied from it

void **lv_table_set_cell_value**(lv_obj_t *table, uint16_t row, uint16_t col, **const** char *txt) Set the value of a cell.

Parameters

- table: pointer to a Table object
- **row**: id of the row [0 .. row_cnt -1]
- col: id of the column [0 .. col_cnt -1]
- txt: text to display in the cell. It will be copied and saved so this variable is not required after this function call.

void lv_table_set_row_cnt(lv_obj_t*table, uint16_t row_cnt)

Set the number of rows

Parameters

- table: table pointer to a Table object
- row cnt: number of rows

void lv_table_set_col_cnt(lv_obj_t *table, uint16_t col_cnt)

Set the number of columns

Parameters

- table: table pointer to a Table object
- col cnt: number of columns. Must be < LV TABLE COL MAX

void lv_table_set_col_width(lv_obj_t *table, uint16_t col_id, lv_coord_t w)

Set the width of a column

Parameters

- table: table pointer to a Table object
- col_id: id of the column [0 .. LV_TABLE_COL_MAX -1]
- W: width of the column

$\begin{table} void $\tt lv_table_set_cell_align(\it lv_obj_t *table, uint16_t \it row, uint16_t \it col, \it lv_label_align_t \it align) \end{table}$

Set the text align in a cell

- table: pointer to a Table object
- **row**: id of the row [0 .. row cnt -1]
- col: id of the column [0 .. col cnt -1]

- align: LV_LABEL_ALIGN_LEFT or LV_LABEL_ALIGN_CENTER or LV LABEL ALIGN RIGHT
- void **lv_table_set_cell_type**(lv_obj_t *table, uint16_t row, uint16_t col, uint8_t type) Set the type of a cell.

Parameters

- table: pointer to a Table object
- **row**: id of the row [0 .. row_cnt -1]
- col: id of the column [0 .. col cnt -1]
- type: 1,2,3 or 4. The cell style will be chosen accordingly.
- void **lv_table_set_cell_crop**($lv_obj_t *table$, uint16_t row, uint16_t col, bool crop) Set the cell crop. (Don't adjust the height of the cell according to its content)

Parameters

- table: pointer to a Table object
- row: id of the row $[0 .. row_cnt -1]$
- col: id of the column [0 .. col_cnt -1]
- **crop**: true: crop the cell content; false: set the cell height to the content.
- void **lv_table_set_cell_merge_right**($lv_obj_t*table$, uint16_t row, uint16_t col, bool en) Merge a cell with the right neighbor. The value of the cell to the right won't be displayed.

Parameters

- table: table pointer to a Table object
- **row**: id of the row [0 .. row_cnt -1]
- col: id of the column [0 .. col cnt -1]
- en: true: merge right; false: don't merge right
- void **lv_table_set_style**(*lv_obj_t* **table*, *lv_table_style_t* type, **const** lv_style_t **style*) Set a style of a table.

Parameters

- table: pointer to table object
- type: which style should be set
- style: pointer to a style
- const char *lv_table_get_cell_value(lv_obj_t *table, uint16_t row, uint16_t col)
 Get the value of a cell.

Return text in the cell

Parameters

- table: pointer to a Table object
- **row**: id of the row [0 .. row cnt -1]
- col: id of the column [0 .. col_cnt -1]

uint16_t lv_table_get_row_cnt(lv_obj_t *table)

Get the number of rows.

Return number of rows.

Parameters

• table: table pointer to a Table object

$uint16_t$ lv_table_get_col_cnt(lv_obj_t *table)

Get the number of columns.

Return number of columns.

Parameters

• table: table pointer to a Table object

lv_coord_t lv_table_get_col_width(lv_obj_t*table, uint16_t col_id)

Get the width of a column

Return width of the column

Parameters

- table: table pointer to a Table object
- col_id: id of the column [0 .. LV_TABLE_COL_MAX -1]

lv_label_align_t lv_table_get_cell_align(lv_obj_t *table, uint16_t row, uint16_t col)
Get the text align of a cell

Return LV_LABEL_ALIGN_LEFT (default in case of error) or LV_LABEL_ALIGN_CENTER or LV LABEL ALIGN RIGHT

Parameters

- table: pointer to a Table object
- **row**: id of the row [0 .. row_cnt -1]
- col: id of the column [0 .. col cnt -1]

 $lv_label_align_t$ lv_table_get_cell_type(lv_obj_t *table, uint16_t row, uint16_t col) Get the type of a cell

Return 1,2,3 or 4

Parameters

- table: pointer to a Table object
- **row**: id of the row [0 .. row_cnt -1]
- col: id of the column [0 .. col cnt -1]

 $lv_label_align_t$ lv_table_get_cell_crop(lv_obj_t *table, uint16_t row, uint16_t col) Get the crop property of a cell

Return true: text crop enabled; false: disabled

Parameters

- table: pointer to a Table object
- **row**: id of the row [0 .. row cnt -1]
- col: id of the column [0 .. col_cnt -1]

bool $lv_table_get_cell_merge_right(lv_obj_t*table, uint16_t row, uint16_t col)$ Get the cell merge attribute.

Return true: merge right; false: don't merge right

Parameters

- table: table pointer to a Table object
- **row**: id of the row [0 .. row_cnt -1]
- col: id of the column [0 .. col cnt -1]

Return style pointer to the style

Parameters

- table: pointer to table object
- type: which style should be get

union lv_table_cell_format_t

 $\#include < lv_table.h >$ Internal table cell format structure.

Use the lv_table APIs instead.

Public Members

```
uint8_t align
uint8_t right_merge
uint8_t type
uint8_t crop
struct lv_table_cell_format_t::[anonymous] s
uint8_t format_byte
struct lv_table_ext_t
```

Public Members

```
uint16_t col_cnt
uint16_t row_cnt
char **cell_data
const lv_style_t *cell_style[LV_TABLE_CELL_STYLE_CNT]
lv_coord_t col_w[LV_TABLE_COL_MAX]
```

Classeur d'onglets (lv_tabview)

Vue d'ensemble

L'objet classeur d'onglets peut être utilisé pour organiser du contenu dans des onglets.

Ajouter un onglet

Vous pouvez ajouter de nouveaux onglets avec lv_tabview_add_tab(tabview, "Tab name"). La fonction retourneun pointeur sur un objet page dans lequel vous pouvez ajouter le contenu de l'onglet.

Changer d'onglet

Pour sélectionner un nouvel onglet, vous pouvez :

- Cliquer dessus dans la partie en-tête
- Glisser horizontalement
- Utiliser la fonction lv_tabview_set_tab_act(tabview, id, LV_ANIM_ON/OFF)

Le glissement manuel peut être désactivé avec ly tabview set sliding(tabview, false).

Position des boutons d'onglet

Par défaut, les boutons de sélection des onglets sont placés en haut du classeur d'onglets. Cela peut être changé avec lv_tabview_set_btns_pos(tabview, LV_TABVIEW_BTNS_POS_TOP/BOTTOM/LEFT/RIGHT)

Notez que vous ne pouvez pas modifier la position de haut ou bas vers gauche ou droite lorsque des onglets sont déjà ajoutés.

Cacher des onglets

Les boutons peuvent être cachés par lv tabview set btns hidden(tabview, true)

Durée d'animation

La durée d'animation est ajustée par lv_tabview_set_anim_time(tabview, anim_time_ms). Cela est utilisé lorsque le nouvel onglet est affiché.

Styles

Utilisez lv_tabview_set_style(tabview, LV_TABVIEW_STYLE_..., &style) pour définir un nouveau style pour un élément du classeur d'onglets :

- LV_TABVIEW_STYLE_BG arrière-plan principal qui utilise toutes les propriétés style.body (valeur par défaut : lv_style_plain).
- LV_TABVIEW_STYLE_INDIC un fin rectangle pour indiquer l'onglet courant. Utilise toutes les propriétés style.body. Sa hauteur provient de body.padding.inner (valeur par défaut: lv_style_plain_color).
- LV_TABVIEW_STYLE_BTN_BG style de l'arrière-plan des boutons d'onglets. Utilise toutes les propriétés style.body. La hauteur de l'en-tête sera définie automatiquement en fonction de body.padding.top/bottom (valeur par défaut : lv style transp).
- LV_TABVIEW_STYLE_BTN_REL style des boutons d'onglets relâchés. Utilise toutes les propriétés style.body (valeur par défaut : lv_style_tbn_rel).

- LV_TABVIEW_STYLE_BTN_PR style des boutons d'onglets pressés. Utilise toutes les propriétés style.body (valeur par défaut : lv style tbn pr).
- LV_TABVIEW_STYLE_BTN_TGL_REL style des boutons d'onglets sélectionnés relâchés. Utilise toutes les propriétés style.body (valeur par défaut : lv_style_tbn_tgl_rel).
- LV_TABVIEW_STYLE_BTN_TGL_PR style des boutons d'onglets sélectionnés pressés. Utilise toutes les propriétés style.body (valeur par défaut : lv_style_tbn_tgl_pr).

La hauteur de l'en-tête est calculée ainsi : font height + padding.top + padding.bottom à partir de LV_TABVIEW_STYLE_BTN_REL + padding.top + padding bottom à partir de LV_TABVIEW_STYLE_BTN_BG

Evénements

Outre les [événements génériques](/overview/event.html #evenements-generiques), les événements spéciaux suivants sont envoyés par le classeur d'onglets :

• LV_EVENT_VALUE_CHANGED envoyé lorsque un nouvel onglet est sélectionné par glissé ou clic sur le bouton d'onglet.

Apprenez-en plus sur les événements.

Touches

Les touches suivantes sont traitées par le classeur d'onglets :

- LV_KEY_RIGHT/LEFT sélectionne un onglet.
- LV_KEY_ENTER passe à l'onglet sélectionné

Apprenez-en plus sur les touches.

Exemple

C

Simple Tabview

#include "lvgl/lvgl.h"

void lv_ex_tabview_1(void) /*Create a Tab view object*/ lv_obj_t *tabview; tabview = lv_tabview_create(lv_scr_act(), NULL); /*Add 3 tabs (the tabs are page (lv_page) and can be scrolled*/ lv_obj_t *tab1 = lv_tabview_add_tab(tabview, "Tab 1"); lv_obj_t *tab2 = lv_tabview_add_tab(tabview, "Tab 2"); lv_obj_t *tab3 = lv_tabview_add_tab(tabview, "Tab 3"); /*Add content to the tabs*/ lv obj t * label = lv label create(tab1, NULL); lv_label_set_text(label, "This the first tab\n\n" "If the content\ \mathbf{n} " "of a tab\n" "become too long\n" "the it $\n"$ "automatically\n" "become\n" "scrollable."); label = lv label create(tab2, NULL);

lv_label_set_text(label, "Second tab");

label = lv_label_create(tab3, NULL);
lv_label_set_text(label, "Third tab");

MicroPython

No examples yet.

API

Typedefs

```
typedef uint8_t lv_tabview_btns_pos_t
typedef uint8_t lv_tabview_style_t
```

Enums

enum [anonymous]

Position of tabview buttons.

Values:

LV_TABVIEW_BTNS_POS_TOP
LV_TABVIEW_BTNS_POS_BOTTOM
LV_TABVIEW_BTNS_POS_LEFT
LV_TABVIEW_BTNS_POS_RIGHT

enum [anonymous]

Values:

LV_TABVIEW_STYLE_BG
LV_TABVIEW_STYLE_INDIC
LV_TABVIEW_STYLE_BTN_BG
LV_TABVIEW_STYLE_BTN_REL
LV_TABVIEW_STYLE_BTN_PR
LV_TABVIEW_STYLE_BTN_TGL_REL
LV_TABVIEW_STYLE_BTN_TGL_PR

Functions

```
lv\_obj\_t *lv\_tabview\_create(lv\_obj\_t *par, const lv\_obj\_t *copy)
Create a Tab view object
```

Return pointer to the created tab

Parameters

- par: pointer to an object, it will be the parent of the new tab
- copy: pointer to a tab object, if not NULL then the new object will be copied from it

```
void lv_tabview_clean(lv_obj_t *obj)
```

Delete all children of the scrl object, without deleting scrl child.

• **obj**: pointer to an object

lv_obj_t *lv_tabview_add_tab(lv_obj_t *tabview, const char *name)

Add a new tab with the given name

Return pointer to the created page object (lv_page). You can create your content here

Parameters

- tabview: pointer to Tab view object where to ass the new tab
- name: the text on the tab button

void lv_tabview_set_tab_act(lv_obj_t *tabview, uint16_t id, lv_anim_enable_t anim)

Set a new tab

Parameters

- tabview: pointer to Tab view object
- id: index of a tab to load
- anim: LV_ANIM_ON: set the value with an animation; LV_ANIM_OFF: change the value immediately

void lv_tabview_set_sliding(lv_obj_t *tabview, bool en)

Enable horizontal sliding with touch pad

Parameters

- tabview: pointer to Tab view object
- en: true: enable sliding; false: disable sliding

void lv_tabview_set_anim_time(lv_obj_t *tabview, uint16_t anim_time)

Set the animation time of tab view when a new tab is loaded

Parameters

- tabview: pointer to Tab view object
- anim_time: time of animation in milliseconds

$$\begin{tabular}{ll} void $lv_tabview_set_style($lv_obj_t$ *tabview, $lv_tabview_style_t$ type, $const lv_style_t$ *style) \\ \end{tabular}$$

Set the style of a tab view

Parameters

- tabview: pointer to a tan view object
- type: which style should be set
- style: pointer to the new style

void lv tabview set btns pos(lv_obj_t*tabview, lv_tabview_btns_pos_t btns_pos)

Set the position of tab select buttons

Parameters

- tabview: pointer to a tab view object
- btns pos: which button position

void lv_tabview_set_btns_hidden(lv_obj_t *tabview, bool en)

Set whether tab buttons are hidden

- tabview: pointer to a tab view object
- en: whether tab buttons are hidden

uint16_t lv_tabview_get_tab_act(const lv_obj_t *tabview)

Get the index of the currently active tab

Return the active tab index

Parameters

• tabview: pointer to Tab view object

uint16_t lv_tabview_get_tab_count(const lv_obj_t *tabview)

Get the number of tabs

Return tab count

Parameters

• tabview: pointer to Tab view object

$lv_obj_t *lv_tabview_get_tab(const lv_obj_t *tabview, uint16_t id)$

Get the page (content area) of a tab

Return pointer to page (lv_page) object

Parameters

- tabview: pointer to Tab view object
- id: index of the tab (>=0)

bool lv_tabview_get_sliding(const lv_obj_t *tabview)

Get horizontal sliding is enabled or not

Return true: enable sliding; false: disable sliding

Parameters

• tabview: pointer to Tab view object

uint16_t lv_tabview_get_anim_time(const lv_obj_t *tabview)

Get the animation time of tab view when a new tab is loaded

Return time of animation in milliseconds

Parameters

• tabview: pointer to Tab view object

const lv style t *lv tabview get style(const lv obj t *tabview, lv tabview style t type)

Get a style of a tab view

Return style pointer to a style

Parameters

- tabview: pointer to a ab view object
- type: which style should be get

lv_tabview_btns_pos_t lv_tabview_get_btns_pos(const lv_obj_t *tabview)

Get position of tab select buttons

Parameters

• tabview: pointer to a ab view object

bool lv_tabview_get_btns_hidden(const lv_obj_t *tabview)

Get whether tab buttons are hidden

Return whether tab buttons are hidden

Parameters

• tabview: pointer to a tab view object

struct lv tabview ext t

Public Members

```
lv_obj_t *btns
lv_obj_t *indic
lv_obj_t *content
const char **tab_name_ptr
lv_point_t point_last
uint16_t tab_cur
uint16_t tab_cnt
uint16_t anim_time
uint8_t slide_enable
uint8_t draging
uint8_t drag_hor
uint8_t scroll_ver
uint8_t btns_hide
lv_tabview_btns_pos_t btns_pos
```

Zone de texte (lv_ta)

Vue d'ensemble

The Text Area is a *Page* with a *Label* and a cursor on it. Texts or characters can be added to it. Long lines are wrapped and when the text becomes long enough the Text area can be scrolled-

Ajouter du texte

Vous pouvez insérer du texte ou des caractères à la position du curseur actuel avec :

- lv ta add char(ta, 'c')
- lv_ta_add_text(ta, "insert this text")

Pour ajouter des caractères étendus comme 'á', 'ß' ou des caractères CJK utilisez lv_ta_add_text(ta, "á").

lv ta set text(ta, "New text") change le texte en totalité.

Substitutif

Vous pouvez spécifier un texte de substitution qui s'affiche lorsque la zone de texte est vide aveclv_ta_set_placeholder_text(ta, "Placeholder text")

Supprimer un caractère

Pour supprimer un caractère à gauche de la position actuelle du curseur, utilisez lv_ta_del_char(ta). Pour supprimer à droite, utilisez lv ta del char forward(ta).

Déplacer le curseur

La position du curseur peut être modifiée directement avec lv_ta_set_cursor_pos(ta, 10). La position 0 signifie "avant les premiers caractères ", LV_TA_CURSOR_LASTsignifie "après le dernier caractère".

Vous pouvez déplacer le curseur d'un caractère avec

- lv ta cursor right(ta)
- lv ta cursor left(ta)
- lv_ta_cursor_up(ta)
- lv ta cursor down(ta)

Si lv_ta_set_cursor_click_pos(ta, true) est appelé le curseur se déplacera à la position où la zone de texte a été cliquée.

Types de curseur

Il existe plusieurs types de curseur. Vous pouvez en choisir un avec : $lv_ta_set_cursor_type(ta, LV_CURSOR_...)$

- LV_CURSOR_NONE pas de curseur
- LV_CURSOR_LINE une simple ligne verticale
- LV_CURSOR_BLOCK un rectangle plein sur le caractère courant
- LV_CURSOR_OUTLINE une bordure rectangulaire autour du caractère courant
- LV_CURSOR_UNDERLINE souligne le caractère courant

Vous pouvez faire un ou logique de n'importe quel type de curseur avec LV_CURSOR_HIDDEN pour le masquer temporairement .

La durée de clignotement du curseur peut être réglée avec lv_ta_set_cursor_blink_time(ta, time_ms).

Mode une ligne

La zone de texte peut être configurée en mode une ligne avec lv_ta_set_one_line(ta, true). Dans ce mode, la hauteur est calculée automatiquement pour afficher une seule ligne, les caractères de fin de ligne sont ignorés et le retour à la ligne est désactivé.

Mode mot de passe

La zone de texte gère un mode de mot de passe qui peut être activé avec <code>lv_ta_set_pwd_mode(ta,true)</code>. En mode mot de passe, les caractères saisis sont convertis en * après un certain temps ou lorsqu'un nouveau caractère est entré.

En mode mot de passe lv_ta_get_text(ta) donne le texte réel et non les astérisques.

La durée de visibilité peut être ajustée avec lv ta set pwd show time(ta, time ms).

Alignement du texte

Le texte peut être aligné à gauche, au milieu ou à droite avec lv_label_set_align(label, LV LABEL ALIGN LEFT/CENTER/RIGHT).

En mode une ligne, le texte ne peut défiler horizontalement que si le texte est aligné à gauche.

Caractères autorisés

Vous pouvez définir une liste de caractères autorisés avec lv_ta_set_accepted_chars(ta, "0123456789.+-"). Les autres caractères seront ignorés.

Longueur de texte maximum.

Le nombre maximum de caractères peut être limité avec lv ta set max length(ta, max char num)

Très long texte

S'il y a un texte très long dans la zone de texte (> 20000 caractères) le défilement et l'affichage pourraient être lents. Cependant, en activant LV_LABEL_LONG_TXT_HINT 1 dans $lv_conf.h$ cela peut être grandement amélioré. Cela enregistre des informations sur l'étiquette pour accélérer son affichage. En utilisant LV_LABEL_LONG_TXT_HINT le défilement et l'affichage sont aussi rapides qu'avec des textes courts "normaux".

Sélection de texte

Une partie du texte peut être sélectionnée si la fonctionnalité est activée avec lv_ta_set_text_sel (ta, true). Cela fonctionne comme lorsque vous sélectionnez un texte sur votre PC avec votre souris.

Barres de défilement

Les barres de défilement peuvent être affichées selon différentes stratégies définies par $lv_ta_set_sb_mode(ta, LV_SB_MODE_...)$. Apprenez-en plus sur l'objet page.

Propagation du défilement

Lorsque la zone de texte défile sur un autre objet défilant (comme une page) et que le défilement a atteint le bord de la zone de texte, le défilement peut être propagé au parent. En d'autres termes, lorsque la zone de texte ne peut continuer à défiler, le parent sera défilé à la place.

Cela peut être activé avec lv_ta_set_scroll_propagation(ta, true).

Apprenez-en plus sur l'objet page.

Mise en évidence du bord

Lorsque vous faites défiler la zone de texte jusqu'à une bordure, l'animation d'un cercle peut être affichée si cela est activé aveclv_ta_set_edge_flash(ta, true)

Styles

Utilisez lv_ta_set_style(page, LV_TA_STYLE_..., &style) pour définir un nouveau style pour un élément de la zone de texte :

- LV_TA_STYLE_BG style de l'arrière-plan qui utilise toutes les propriétés style.body. L'étiquette utilise style.label de ce style (valeur par défaut : lv_style_pretty).
- LV_TA_STYLE_SB style de la barre de défilement qui utilise toutes les propriétés style.body (valeur par défaut : lv_style_pretty_color).
- LV_TA_STYLE_CURSOR style du curseur. Si NULL alors la librairie définit automatiquement un style en fonction de la couleur et de la police de l'étiquette.
 - LV_CURSOR_LINE: a style.line.width wide line but drawn as a rectangle as style.
 body. padding.top/left makes an offset on the cursor
 - LV_CURSOR_BLOCK: a rectangle as Style.body padding makes the rectangle larger
 - $LV_CURSOR_OUTLINE:$ an empty rectangle (just a border) as ${\tt style.body}$ padding makes the rectangle larger
 - LV_CURSOR_UNDERLINE: a style.line.width wide line but drawn as a rectangle as style.body.padding.top/left makes an offset on the cursor

Evénements

Outre les [événements génériques](/overview/event.html #evenements-generiques), les événements spéciaux suivants sont envoyés par la zone de texte :

- LV_EVENT_INSERT envoyé avant l'insertion d'un caractère. La donnée d'événement est le texte qu'il est prévu d'insérer. lv_ta_set_insert_replace(ta, "New text") remplace le texte à insérer. Le nouveau texte ne peut être une variable locale, détruite lorsque la fonction de rappel se termine. " " annule l'insertion.
- LV_EVENT_VALUE_CHANGED envoyé quand le contenu de la zone de texte a été modifié.

Touches

- LV_KEY_UP/DOWN/LEFT/RIGHT déplace le curseur
- Tout caractère insère le caractère à la position du curseur

Apprenez-en plus sur les touches.

Exemple

C

Simple Text area

A text in a Text Area

You can scroll it if the text is long enough.

code

```
void lv_ex_ta_1(void)

tal = lv_ta_create(lv_scr_act(), NULL);
    lv_obj_set_size(tal, 200, 100);
    lv_obj_align(tal, NULL, LV_ALIGN_CENTER, 0, 0);
    lv_ta_set_cursor_type(tal, LV_CURSOR_BLOCK);
    lv_ta_set_text(tal, "A text in a Text Area");    /*Set an initial text*/
    lv_obj_set_event_cb(tal, event_handler);
}
```

Text are with password field

Password: Text: Hello

code

```
**************************
/*************
      TYPEDEFS
*******************
/********
* STATIC PROTOTYPES
******************
static void kb_event_cb(lv_obj_t * event_kb, lv_event_t event);
static void ta_event_cb(lv_obj_t * ta, lv_event_t event);
/********
* STATIC VARIABLES
******************
static lv_obj_t * kb;
     MACROS
*******************
/************
   GLOBAL FUNCTIONS
void lv_ex_ta_2(void)
   /* Create the password box */
   lv_obj_t * pwd_ta = lv_ta_create(lv_scr_act(), NULL);
   lv_ta_set_text(pwd_ta, "");
   lv ta set pwd mode(pwd ta, true);
   lv_ta_set_one_line(pwd_ta, true);
   lv_obj_set_width(pwd_ta, LV_HOR_RES / 2 - 20);
   lv_obj_set_pos(pwd_ta, 5, 20);
   lv_obj_set_event_cb(pwd_ta, ta_event_cb);
   /* Create a label and position it above the text box */
   lv obj t * pwd label = lv label create(lv scr act(), NULL);
   lv label set text(pwd label, "Password:");
   lv_obj_align(pwd_label, pwd_ta, LV_ALIGN_OUT_TOP_LEFT, 0, 0);
   /* Create the one-line mode text area */
   lv obj t * oneline ta = lv ta create(lv scr act(), pwd ta);
   lv_ta_set_pwd_mode(oneline_ta, false);
   lv_ta_set_cursor_type(oneline_ta, LV_CURSOR_LINE | LV_CURSOR_HIDDEN);
   lv_obj_align(oneline_ta, NULL, LV_ALIGN_IN_TOP_RIGHT, -5, 20);
   /* Create a label and position it above the text box */
   lv_obj_t * oneline_label = lv_label_create(lv_scr_act(), NULL);
   lv label set text(oneline label, "Text:");
   lv_obj_align(oneline_label, oneline_ta, LV_ALIGN_OUT_TOP_LEFT, 0, 0);
   /* Create a keyboard and make it fill the width of the above text areas */
   kb = lv_kb_create(lv_scr_act(), NULL);
   lv_obj_set_pos(kb, 5, 90);
```

```
lv_obj_set_event_cb(kb, kb_event_cb); /* Setting a custom event handler stops the_
→ keyboard from closing automatically */
   lv_obj_set_size(kb, LV_HOR_RES - 10, 140);
    lv kb set ta(kb, pwd ta); /* Focus it on one of the text areas to start */
    lv_kb_set_cursor_manage(kb, true); /* Automatically show/hide cursors on text__
→areas */
}
/***********
   STATIC FUNCTIONS
*******************
static void kb_event_cb(lv_obj_t * event_kb, lv_event_t event)
   /* Just call the regular event handler */
    lv_kb_def_event_cb(event_kb, event);
static void ta_event_cb(lv_obj_t * ta, lv_event_t event)
    if(event == LV_EVENT_CLICKED) {
        /* Focus on the clicked text area */
       if(kb != NULL)
           lv kb set ta(kb, ta);
   }
   else if(event == LV_EVENT_INSERT) {
       const char * str = lv_event_get_data();
       if(str[0] == '\n') {
           printf("Ready\n");
       }
    }
}
```

MicroPython

No examples yet.

API

Typedefs

```
typedef uint8_t lv_cursor_type_t
typedef uint8_t lv_ta_style_t
```

Enums

enum [anonymous]

Style of text area's cursor.

Values:

LV CURSOR NONE

No cursor

LV CURSOR LINE

Vertical line

LV CURSOR BLOCK

Rectangle

LV_CURSOR_OUTLINE

Outline around character

LV_CURSOR_UNDERLINE

Horizontal line under character

$LV_CURSOR_HIDDEN = 0x08$

This flag can be ORed to any of the other values to temporarily hide the cursor

enum [anonymous]

Possible text areas tyles.

Values:

LV_TA_STYLE_BG

Text area background style

LV_TA_STYLE_SB

Scrollbar style

LV_TA_STYLE_CURSOR

Cursor style

LV TA STYLE EDGE FLASH

Edge flash style

LV TA STYLE PLACEHOLDER

Placeholder style

Functions

$lv_obj_t *lv_ta_create(lv_obj_t *par, const lv_obj_t *copy)$

Create a text area objects

Return pointer to the created text area

Parameters

- par: pointer to an object, it will be the parent of the new text area
- copy: pointer to a text area object, if not NULL then the new object will be copied from it

void lv ta add char($lv \ obj \ t *ta$, uint32 t c)

Insert a character to the current cursor position. To add a wide char, e.g. 'Á' use 'lv_txt_encoded_conv_wc('Á')'

Parameters

- ta: pointer to a text area object
- C: a character (e.g. 'a')

void $lv_ta_add_text(lv_obj_t *ta, const char *txt)$

Insert a text to the current cursor position

- ta: pointer to a text area object
- txt: a '\0' terminated string to insert

void lv_ta_del_char(lv_obj_t *ta)

Delete a the left character from the current cursor position

Parameters

• ta: pointer to a text area object

void lv_ta_del_char_forward(lv_obj_t *ta)

Delete the right character from the current cursor position

Parameters

• ta: pointer to a text area object

void lv_ta_set_text(lv_obj_t *ta, const char *txt)

Set the text of a text area

Parameters

- ta: pointer to a text area
- txt: pointer to the text

void lv ta set placeholder text($lv \ obj \ t *ta$, const char *txt)

Set the placeholder text of a text area

Parameters

- ta: pointer to a text area
- txt: pointer to the text

void $lv_ta_set_cursor_pos(lv_obj_t *ta, int16_t pos)$

Set the cursor position

Parameters

- **obj**: pointer to a text area object
- pos: the new cursor position in character index < 0: index from the end of the text LV_TA_CURSOR_LAST: go after the last character

void lv_ta_set_cursor_type(lv_obj_t*ta, lv_cursor_type_t cur_type)

Set the cursor type.

Parameters

- ta: pointer to a text area object
- cur_type: element of 'lv_cursor_type_t'

void lv_ta_set_cursor_click_pos(lv_obj_t *ta, bool en)

Enable/Disable the positioning of the the cursor by clicking the text on the text area.

Parameters

- ta: pointer to a text area object
- en: true: enable click positions; false: disable

void lv ta set pwd mode($lv \ obj \ t *ta$, bool en)

Enable/Disable password mode

- ta: pointer to a text area object
- en: true: enable, false: disable

void lv_ta_set_one_line(lv_obj_t *ta, bool en)

Configure the text area to one line or back to normal

Parameters

- ta: pointer to a Text area object
- en: true: one line, false: normal

void lv_ta_set_text_align(lv_obj_t *ta, lv_label_align_t align)

Set the alignment of the text area. In one line mode the text can be scrolled only with LV_LABEL_ALIGN_LEFT. This function should be called if the size of text area changes.

Parameters

- ta: pointer to a text are object
- align: the desired alignment from lv_label_align_t. (LV_LABEL_ALIGN_LEFT/CENTER/RIGHT)

void lv_ta_set_accepted_chars(lv_obj_t *ta, const char *list)

Set a list of characters. Only these characters will be accepted by the text area

Parameters

- ta: pointer to Text Area
- list: list of characters. Only the pointer is saved. E.g. "+-.,0123456789"

$void lv_ta_set_max_length(lv_obj_t*ta, uint16_t num)$

Set max length of a Text Area.

Parameters

- ta: pointer to Text Area
- num: the maximal number of characters can be added (lv ta set text ignores it)

void lv_ta_set_insert_replace(lv_obj_t *ta, const char *txt)

In LV_EVENT_INSERT the text which planned to be inserted can be replaced by an other text. It can be used to add automatic formatting to the text area.

Parameters

- ta: pointer to a text area.
- txt: pointer to a new string to insert. If "" no text will be added. The variable must be live after the event_cb exists. (Should be global or static)

static void lv ta set sb mode(lv_obj_t*ta, lv_sb_mode_t mode)

Set the scroll bar mode of a text area

Parameters

- ta: pointer to a text area object
- **sb mode**: the new mode from 'lv_page_sb_mode_t' enum

static void lv_ta_set_scroll_propagation(lv_obj_t *ta, bool en)

Enable the scroll propagation feature. If enabled then the Text area will move its parent if there is no more space to scroll.

- ta: pointer to a Text area
- en: true or false to enable/disable scroll propagation

static void lv_ta_set_edge_flash(lv_obj_t *ta, bool en)

Enable the edge flash effect. (Show an arc when the an edge is reached)

Parameters

- page: pointer to a Text Area
- en: true or false to enable/disable end flash

void lv_ta_set_style(lv_obj_t *ta, lv_ta_style_t type, const lv_style_t *style)

Set a style of a text area

Parameters

- ta: pointer to a text area object
- type: which style should be set
- style: pointer to a style

void lv_ta_set_text_sel(lv_obj_t *ta, bool en)

Enable/disable selection mode.

Parameters

- ta: pointer to a text area object
- en: true or false to enable/disable selection mode

void lv_ta_set_pwd_show_time(lv_obj_t *ta, uint16_t time)

Set how long show the password before changing it to '*'

Parameters

- ta: pointer to Text area
- time: show time in milliseconds. 0: hide immediately.

void lv ta set cursor blink time(lv_obj_t*ta, uint16 t time)

Set cursor blink animation time

Parameters

- ta: pointer to Text area
- time: blink period. 0: disable blinking

const char *lv_ta_get_text(const lv_obj_t *ta)

Get the text of a text area. In password mode it gives the real text (not '*'s).

Return pointer to the text

Parameters

• ta: pointer to a text area object

const char *lv_ta_get_placeholder_text(lv_obj_t *ta)

Get the placeholder text of a text area

Return pointer to the text

Parameters

• ta: pointer to a text area object

lv_obj_t *lv_ta_get_label(const lv_obj_t *ta)

Get the label of a text area

Return pointer to the label object

Parameters

• ta: pointer to a text area object

uint16_t lv_ta_get_cursor_pos(const lv_obj_t *ta)

Get the current cursor position in character index

Return the cursor position

Parameters

• ta: pointer to a text area object

$lv_cursor_type_t$ $lv_ta_get_cursor_type(const$ lv_obj_t *ta)

Get the current cursor type.

Return element of 'lv_cursor_type_t'

Parameters

• ta: pointer to a text area object

bool lv_ta_get_cursor_click_pos(lv_obj_t *ta)

Get whether the cursor click positioning is enabled or not.

Return true: enable click positions; false: disable

Parameters

• ta: pointer to a text area object

bool lv ta get pwd mode(const lv_obj_t*ta)

Get the password mode attribute

Return true: password mode is enabled, false: disabled

Parameters

• ta: pointer to a text area object

bool lv_ta_get_one_line(const lv_obj_t *ta)

Get the one line configuration attribute

Return true: one line configuration is enabled, false: disabled

Parameters

• ta: pointer to a text area object

const char *lv ta get accepted chars(lv_obj_t *ta)

Get a list of accepted characters.

Return list of accented characters.

Parameters

• ta: pointer to Text Area

$uint16_t$ lv_ta_get_max_length(lv_obj_t *ta)

Set max length of a Text Area.

Return the maximal number of characters to be add

• ta: pointer to Text Area

static lv_sb_mode_t lv_ta_get_sb_mode(const lv_obj_t *ta)

Get the scroll bar mode of a text area

Return scrollbar mode from 'lv_page_sb_mode_t' enum

Parameters

• ta: pointer to a text area object

static bool lv_ta_get_scroll_propagation(lv_obj_t *ta)

Get the scroll propagation property

Return true or false

Parameters

• ta: pointer to a Text area

static bool lv_ta_get_edge_flash(lv_obj_t *ta)

Get the scroll propagation property

Return true or false

Parameters

• ta: pointer to a Text area

const lv_style_t *lv_ta_get_style(const lv_obj_t *ta, lv_ta_style_t type)

Get a style of a text area

Return style pointer to a style

Parameters

- ta: pointer to a text area object
- type: which style should be get

bool lv_ta_text_is_selected(const lv_obj_t *ta)

Find whether text is selected or not.

Return whether text is selected or not

Parameters

• ta: Text area object

bool lv ta get text sel en($lv \ obj \ t *ta$)

Find whether selection mode is enabled.

Return true: selection mode is enabled, false: disabled

Parameters

• ta: pointer to a text area object

uint16 tlv ta get pwd show time(lv_obj_t*ta)

Set how long show the password before changing it to '*'

Return show time in milliseconds. 0: hide immediately.

Parameters

• ta: pointer to Text area

uint16_t lv_ta_get_cursor_blink_time(lv_obj_t *ta)

Set cursor blink animation time

Return time blink period. 0: disable blinking

Parameters

• ta: pointer to Text area

void lv_ta_clear_selection(lv_obj_t *ta)

Clear the selection on the text area.

Parameters

• ta: Text area object

void lv_ta_cursor_right(lv_obj_t *ta)

Move the cursor one character right

Parameters

• ta: pointer to a text area object

void lv_ta_cursor_left(lv_obj_t *ta)

Move the cursor one character left

Parameters

• ta: pointer to a text area object

void lv_ta_cursor_down(lv_obj_t *ta)

Move the cursor one line down

Parameters

• ta: pointer to a text area object

void $lv_ta_cursor_up(lv_obj_t *ta)$

Move the cursor one line up

Parameters

• ta: pointer to a text area object

struct lv_ta_ext_t

Public Members

 $\begin{array}{l} lv_page_ext_t \text{ page} \\ lv_obj_t \text{ *label} \end{array}$

lv_obj_t *placeholder

char *pwd_tmp

const char *accapted_chars

uint16_t max_length

uint16_t pwd_show_time

const lv_style_t *style

lv_coord_t valid_x

 $uint16_t$ pos

```
uint16_t blink_time
lv_area_t area
uint16_t txt_byte_pos
lv_cursor_type_t type
uint8_t state
uint8_t click_pos
struct lv_ta_ext_t::[anonymous] cursor
uint16_t tmp_sel_start
uint16_t tmp_sel_end
uint8_t text_sel_in_prog
uint8_t text_sel_en
uint8_t pwd_mode
uint8_t one_line
```

Mosaïque (lv_tileview)

Vue d'ensemble

La mosaïque est un objet conteneur dans lequel ses éléments, appelés *tuiles*, peuvent être organisés sous forme de grille. En balayant l'utilisateur peut naviguer entre les tuiles.

Si la mosaïque est de la taille de l'écran, elle fournit une interface utilisateur que vous avez peut-être vue sur les montres intelligentes.

Positions valides

Les tuiles ne doivent pas nécessairement former une grille complète où chaque élément existe. La grille peut comporter des trous, mais elle doit être continue, c'est-à-dire qu'il ne peut y avoir une ligne ou une colonne vide.

Avec $lv_tileview_set_valid_positions(tileview, valid_pos_array, array_len)$, les positions valides peuvent être définies. Le défilement ne sera possible que vers ces positions. L'indice 0,0 représente la tuile en haut à gauche. Par exemple lv_point_t valid_pos_array [] = { { 0, 0 }, { 0, 1 }, { 1, 1 }, { LV_COORD_MIN , LV_COORD_MIN } } donne une mosaïque en forme de "L". Cela indique qu'il n'y a pas de tuile dans { 1,0 } et que l'utilisateur ne peut donc pas s'y déplacer.

En d'autres termes, $valid_pos_array$ indique où se trouvent les tuiles. Il peut être modifié à la volée pour désactiver certaines positions pour des tuiles spécifiques. Par exemple, il peut exister une grille 2×2 où toutes les tuiles sont présentes, où la première ligne (y=0) est la "ligne principale" et la deuxième ligne (y=1) contient des options pour la tuile située au-dessus. Supposons que le défilement horizontal est possible uniquement dans la ligne principale et impossible entre les options de la deuxième ligne . Dans ce cas, $valid_{pos_array}$ doit être modifié lorsqu'une nouvelle tuile principale est sélectionnée :

- pour la première tuile principale : { 0, 0 }, { 0, 1 }, { 1, 0 } pour désactiver la tuile d'option { 1, 1 }
- pour la deuxième tuile principale : { 0, 0 }, { 0, 1 }, { 1, 1 } pour désactiver la tuile d'option { 0, 1 }

Ajouter un élément

Pour ajouter des éléments, il suffit de créer un objet sur la mosaïque et d'appeler lv_tileview_add_element(tileview, element).

L'élément doit avoir la même taille que la mosaïque et doit être positionné manuellement à la position souhaitée.

La fonctionnalité de propagation de défilement des objets de type page (comme *liste*) peut très bien être utilisée ici. Par exemple, l'utilisateur peut faire défiler les éléments d'une liste et quand le premier ou le dernier élément de la liste est atteint, c'est la mosaïque qui défile à la place.

lv_tileview_add_element(tileview, element) devrait être utilisé pour permettre de faire défiler (glisser) la mosaïque par un de ces éléments. Par exemple, s'il y a un bouton sur une tuile, le bouton doit être explicitement ajouté à la mosaïque pour permettre à l'utilisateur de faire défiler la mosaïque avec le bouton.

Cela vaut aussi pour les boutons d'une *liste*. Chaque bouton de la liste et la liste elle-même doivent être ajoutés avec lv tileview add element.

Définir la tuile

Pour définir la tuile visible, utilisez lv_tileview_set_tile_act tileview, x_id, y_id, LV_ANIM_ON/OFF).

Durée d'animation

La durée d'animation quand une tuile

- est sélectionnée par lv tileview set tile act
- est légèrement déplacé, puis relâché (revient à la tuile d'origine)
- est déplacé sur plus de la moitié de sa taille, puis relâché (affiche la tuile suivante)

peut être fixée avec lv_tileview_set_anim_time(tileview, anim_time).

Mise en évidence du bord

Un effet de "mise en évidence du bord" peut être ajouté lorsque la mosaïque atteint une position non valide ou une des extrémités lors du défilement.

Utilisez lv tileview set edge flash(tileview, true) pour activer cette fonctionnalité.

Styles

La mosaïque a un seul style qui peut être changé avec lv_tileview_set_style(slider, LV_TILEVIEW_STYLE_MAIN, &style).

• LV_TILEVIEW_STYLE_MAIN style de l'arrière plan. Toutes les propriétés style.body sont utilisées.

Evénements

Outre les [événements génériques](/overview/event.html #evenements-generiques), les événements spéciaux suivants sont envoyés par la mosaïque :

• LV_EVENT_VALUE_CHANGED envoyé quand une nouvelle tuile est affichée par défilement ou appel de la fonction lv_tileview_set_act. Les données d'événement sont définies sur l'index de la nouvelle tuile dans valid pos array (le type est uint32 t *).

Touches

- LV_KEY_UP, LV_KEY_RIGHT incrémente l'index de la tuile de 1.
- LV_KEY_DOWN, LV_KEY_LEFT décrémente l'index de la tuile de 1.

Apprenez-en plus sur les touches.

Exemple

C

Tileview with content

code

```
#include "lvgl/lvgl.h"

void lv_ex_tileview_1(void)
{
    static lv_point_t valid_pos[] = {{0,0}, {0, 1}, {1,1}};
    lv_obj_t *tileview;
```

```
tileview = lv_tileview_create(lv_scr_act(), NULL);
lv_tileview_set_valid_positions(tileview, valid_pos, 3);
lv_tileview_set_edge_flash(tileview, true);
lv_obj_t * tile1 = lv_obj_create(tileview, NULL);
lv_obj_set_size(tile1, LV_HOR_RES, LV_VER_RES);
lv_obj_set_style(tile1, &lv_style_pretty);
lv_tileview_add_element(tileview, tile1);
/*Tile1: just a label*/
lv_obj_t * label = lv_label_create(tile1, NULL);
lv label set text(label, "Tile 1");
lv_obj_align(label, NULL, LV_ALIGN CENTER, 0, 0);
/*Tile2: a list*/
lv_obj_t * list = lv_list_create(tileview, NULL);
lv_obj_set_size(list, LV_HOR_RES, LV_VER_RES);
lv obj set pos(list, 0, LV VER RES);
lv_list_set_scroll_propagation(list, true);
lv_list_set_sb_mode(list, LV_SB_MODE_OFF);
lv_tileview_add_element(list, list);
lv obj t * list btn;
list_btn = lv_list_add_btn(list, NULL, "One");
lv tileview add element(tileview, list btn);
list btn = lv list add btn(list, NULL, "Two");
lv_tileview_add_element(tileview, list_btn);
list_btn = lv_list_add_btn(list, NULL, "Three");
lv tileview add element(tileview, list btn);
list btn = lv list add btn(list, NULL, "Four");
lv_tileview_add_element(tileview, list_btn);
list btn = lv list add btn(list, NULL, "Five");
lv_tileview_add_element(tileview, list_btn);
list btn = lv list add btn(list, NULL, "Six");
lv_tileview_add_element(tileview, list_btn);
list_btn = lv_list_add_btn(list, NULL, "Seven");
lv tileview add element(tileview, list btn);
list btn = lv list add btn(list, NULL, "Eight");
lv_tileview_add_element(tileview, list_btn);
/*Tile3: a button*/
lv_obj_t * tile3 = lv_obj_create(tileview, tile1);
lv_obj_set_pos(tile3, LV_HOR_RES, LV_VER_RES);
lv tileview add element(tileview, tile3);
lv obj t * btn = lv btn create(tile3, NULL);
lv_obj_align(btn, NULL, LV_ALIGN_CENTER, 0, 0);
label = lv label create(btn, NULL);
```

```
lv_label_set_text(label, "Button");
}
```

MicroPython

No examples yet.

API

Typedefs

```
typedef uint8_t lv_tileview_style_t
```

Enums

enum [anonymous]

Values:

LV_TILEVIEW_STYLE_MAIN

Functions

```
\mathit{lv\_obj\_t} * \texttt{lv\_tileview\_create}(\mathit{lv\_obj\_t} * \mathit{par}, \texttt{const} \; \mathit{lv\_obj\_t} * \mathit{copy})
```

Create a tileview objects

Return pointer to the created tileview

Parameters

- par: pointer to an object, it will be the parent of the new tileview
- copy: pointer to a tileview object, if not NULL then the new object will be copied from it

```
void lv tileview add element(lv_obj_t*tileview, lv_obj_t*element)
```

Register an object on the tileview. The register object will able to slide the tileview

Parameters

- tileview: pointer to a Tileview object
- element: pointer to an object

```
void lv\_tileview\_set\_valid\_positions(lv\_obj\_t *tileview, const lv\_point\_t *valid\_pos, uint16 t valid pos cnt)
```

Set the valid position's indices. The scrolling will be possible only to these positions.

Parameters

- tileview: pointer to a Tileview object
- valid_pos: array width the indices. E.g. lv_point_t p[] = {{0,0}, {1,0}, {1,1}. Only the pointer is saved so can't be a local variable.
- valid pos cnt: numner of elements in valid pos array

void $lv_tileview_set_tile_act(lv_obj_t *tileview, lv_coord_t x, lv_coord_t y, lv_anim enable t anim)$

Set the tile to be shown

Parameters

- tileview: pointer to a tileview object
- **x**: column id (0, 1, 2...)
- y: line id (0, 1, 2...)
- anim: LV_ANIM_ON: set the value with an animation; LV_ANIM_OFF: change the value immediately

static void lv_tileview_set_edge_flash(lv_obj_t*tileview, bool en)

Enable the edge flash effect. (Show an arc when the an edge is reached)

Parameters

- tileview: pointer to a Tileview
- en: true or false to enable/disable end flash

static void **lv_tileview_set_anim_time**(lv_obj_t*tileview, uint16_t anim_time)

Set the animation time for the Tile view

Parameters

- tileview: pointer to a page object
- anim_time: animation time in milliseconds

$$\label{eq:const_void_lv_tileview_style} \begin{tabular}{ll} v_tileview_style_t & type, & const_lv_style_t \\ & *style) \end{tabular}$$

Set a style of a tileview.

Parameters

- tileview: pointer to tileview object
- type: which style should be set
- style: pointer to a style

static bool lv tileview get edge flash(lv_obj_t*tileview)

Get the scroll propagation property

Return true or false

Parameters

• tileview: pointer to a Tileview

static uint16_t lv_tileview_get_anim_time(lv_obj_t*tileview)

Get the animation time for the Tile view

Return animation time in milliseconds

Parameters

• tileview: pointer to a page object

Get style of a tileview.

Return style pointer to the style

- tileview: pointer to tileview object
- type: which style should be get

struct lv_tileview_ext_t

Public Members

```
lv_page_ext_t page
const lv_point_t *valid_pos
uint16_t valid_pos_cnt
uint16_t anim_time
lv_point_t act_id
uint8_t drag_top_en
uint8_t drag_left_en
uint8_t drag_left_en
uint8_t drag_right_en
uint8_t drag_hor
uint8_t drag_ver
```

Fenêtre (lv_win)

Vue d'ensemble

Les fenêtres sont l'un des objets les plus complexes du type conteneur. Ils sont construits à partir de deux parties principales :

- 1. un en-tête conteneur en haut
- 2. une page pour le contenu situé sous l'en-tête.

Titre

Sur l'en-tête, il y a un titre qui peut être modifié par : lv_win_set_title(win, "Nouveau titre"). Le titre hérite toujours du style de l'en-tête.

Boutons de contrôle

Vous pouvez ajouter des boutons de contrôle à la droite de l'en-tête avec : lv_win_add_btn(win, LV_SYMBOL_CLOSE). Le deuxième paramètre est une *image* source.

ly win close event cb peut être utilisé comme fonction de rappel d'événement pour fermer la fenêtre.

Vous pouvez modifier la taille des boutons de contrôle avec la fonction lv_win_set_btn_size(win, new size).

Barres de défilement

Le comportement de la barre de défilement peut être défini par lv_win_set_sb_mode(win, LV_SB_MODE _...). Voir [page](/object-types/page pour plus de détails.

Défilement manuel et focus

Pour faire défiler la fenêtre directement, vous pouvez utiliser lv_win_scroll_hor(win, dist_px) ou lv win scroll ver(win, dist px).

Pour que la fenêtre affiche un de ses objets, utilisez lv_win_focus (win, child, LV_ANIM_ON/OFF). La durée des animations de défilement et de focus peut être ajusté avec lv_win_set_anim_time(win, anim time ms).

Mise en page

Pour définir une disposition du contenu, utilisez lv_win_set_layout (win, LV_LAYOUT_...). Voir conteneur pour plus de détails.

Styles

Utilisez lv_win_set_style(win, LV_WIN_STYLE_..., &style) pour définir un nouveau style pour un élément de la fenêtre :

- LV_WIN_STYE_BG arrière-plan principal (l'en-tête et la page de contenu sont placés dessus) qui utilise toutes les propriétés style.body (valeur par défaut : lv style plain)
- LV_WIN_STYLE_CONTENT partie déroulante de la page de contenu qui utilise toutes les propriétés style.body (valeur par défaut : lv_style_transp)
- LV_WIN_STYLE_SB le style de la barre de défilement qui utilise toutes les propriétés style. body. body.padding.left/top définit les marges des barres de défilement et body.inner. padding définit la largeur de la barre de défilement (valeur par défaut: lv style pretty color)
- LV_WIN_STYLE_HEADER style de l'en-tête qui utilise toutes les propriétés style.body (valeur par défaut : lv_style_plain_color)
- LV_WIN_STYLE_BTN_REL style du bouton relâché (sur l'en-tête) qui utilise toutes les propriétés style.body (valeur par défaut : lv_style_btn_rel)
- LV_WIN_STYLE_BTN_PR style du bouton pressé (sur l'en-tête) qui utilise toutes les propriétés style.body (valeur par défaut : lv style btn pr)

La hauteur de l'en-tête est définie par la plus grande valeur de hauteur des boutons (définie par lv_win_set_btn_size) et hauteur de titre (provenant de header_style.text.font), plus les éléments body.padding.top et body.padding.bottom du style de l'en-tête.

Evénements

Seuls les événements génériques sont envoyés par ce type d'objet.

Apprenez-en plus sur les événements.

Touches

Les touches suivantes sont traitées par la page :

• LV_KEY_RIGHT/LEFT/UP/DOWN font défiler la page

Apprenez-en plus sur les touches.

Exemple

C

Simple window

This is the content of the window

You can add control buttons to the window header

The content area becomes automatically scrollable is it's large enough.

code

```
#include "lvgl/lvgl.h"

void lv_ex_win_1(void)
{
    /*Create a window*/
    lv_obj_t * win = lv_win_create(lv_scr_act(), NULL);
    lv_win_set_title(win, "Window title");    /*Set the title*/

    /*Add control button to the header*/
    lv_obj_t * close_btn = lv_win_add_btn(win, LV_SYMBOL_CLOSE);    /*Add_u
    --close button and use built-in close action*/
    lv_obj_set_event_cb(close_btn, lv_win_close_event_cb);
    lv_win_add_btn(win, LV_SYMBOL_SETTINGS);    /*Add a setup button*/

    /*Add some dummy content*/
    lv_obj_t * txt = lv_label_create(win, NULL);
```

MicroPython

No examples yet.

API

Typedefs

typedef uint8_t lv_win_style_t

Enums

enum [anonymous]

Window styles.

Values:

LV WIN STYLE BG

Window object background style.

LV_WIN_STYLE_CONTENT

Window content style.

LV_WIN_STYLE_SB

Window scrollbar style.

LV WIN STYLE HEADER

Window titlebar background style.

LV_WIN_STYLE_BTN_REL

Same meaning as ordinary button styles.

LV WIN STYLE BTN PR

Functions

```
lv\_obj\_t * \texttt{lv\_win\_create} (lv\_obj\_t * par, \texttt{const} \ lv\_obj\_t * copy)
```

Create a window objects

Return pointer to the created window

Parameters

• par: pointer to an object, it will be the parent of the new window

• copy: pointer to a window object, if not NULL then the new object will be copied from it

void lv_win_clean(lv_obj_t *obj)

Delete all children of the scrl object, without deleting scrl child.

Parameters

• **obj**: pointer to an object

$lv_obj_t *lv_win_add_btn(lv_obj_t *win, const void *img_src)$

Add control button to the header of the window

Return pointer to the created button object

Parameters

- win: pointer to a window object
- img_src: an image source ('lv_img_t' variable, path to file or a symbol)

void lv_win_close_event_cb(lv_obj_t *btn, lv_event_t event)

Can be assigned to a window control button to close the window

Parameters

- btn: pointer to the control button on teh widows header
- evet: the event type

void lv win set title(lv obj t*win, const char *title)

Set the title of a window

Parameters

- win: pointer to a window object
- title: string of the new title

void lv win set btn size(lv_obj_t*win , lv_coord_t size)

Set the control button size of a window

Return control button size

Parameters

• win: pointer to a window object

void lv_win_set_layout(lv_obj_t *win, lv_layout_t layout)

Set the layout of the window

Parameters

- win: pointer to a window object
- layout: the layout from 'lv_layout_t'

$void lv_win_set_sb_mode(lv_obj_t *win, lv_sb_mode_t sb_mode)$

Set the scroll bar mode of a window

Parameters

- win: pointer to a window object
- **sb mode**: the new scroll bar mode from 'lv_sb_mode_t'

void lv_win_set_anim_time(lv_obj_t *win, uint16_t anim_time)

Set focus animation duration on lv win focus()

Parameters

- win: pointer to a window object
- anim_time: duration of animation [ms]

void lv_win_set_style(lv_obj_t *win, lv_win_style_t type, const lv_style_t *style)

Set a style of a window

Parameters

- win: pointer to a window object
- type: which style should be set
- style: pointer to a style

void lv win set drag(lv_obj_t *win, bool en)

Set drag status of a window. If set to 'true' window can be dragged like on a PC.

Parameters

- win: pointer to a window object
- en: whether dragging is enabled

const char *lv_win_get_title(const lv_obj_t *win)

Get the title of a window

Return title string of the window

Parameters

• win: pointer to a window object

lv_obj_t *lv_win_get_content(const lv_obj_t *win)

Get the content holder object of window (lv page) to allow additional customization

Return the Page object where the window's content is

Parameters

• win: pointer to a window object

lv_coord_t lv_win_get_btn_size(const lv_obj_t *win)

Get the control button size of a window

Return control button size

Parameters

• win: pointer to a window object

$lv \ obj \ t *lv \ win get from btn(const <math>lv \ obj \ t *ctrl \ btn)$

Get the pointer of a widow from one of its control button. It is useful in the action of the control buttons where only button is known.

Return pointer to the window of 'ctrl btn'

Parameters

• ctrl btn: pointer to a control button of a window

lv_layout_t lv_win_get_layout(lv_obj_t *win)

Get the layout of a window

Return the layout of the window (from 'lv_layout_t')

Parameters

• win: pointer to a window object

$lv_sb_mode_t$ lv_win_get_sb_mode(lv_obj_t *win)

Get the scroll bar mode of a window

Return the scroll bar mode of the window (from 'lv_sb_mode_t')

Parameters

• win: pointer to a window object

uint16_t lv_win_get_anim_time(const lv_obj_t *win)

Get focus animation duration

Return duration of animation [ms]

Parameters

• win: pointer to a window object

lv_coord_t lv_win_get_width(lv_obj_t *win)

Get width of the content area (page scrollable) of the window

Return the width of the content area

Parameters

• win: pointer to a window object

const lv_style_t *lv_win_get_style(const lv_obj_t *win, lv_win_style_t type)

Get a style of a window

Return style pointer to a style

Parameters

- win: pointer to a button object
- type: which style window be get

static bool lv win get drag(const lv_obj_t *win)

Get drag status of a window. If set to 'true' window can be dragged like on a PC.

Return whether window is draggable

Parameters

• win: pointer to a window object

void $lv_win_focus(lv_obj_t *win, lv_obj_t *obj, lv_anim_enable_t anim_en)$

Focus on an object. It ensures that the object will be visible in the window.

Parameters

- win: pointer to a window object
- **obj**: pointer to an object to focus (must be in the window)
- anim_en: LV_ANIM_ON focus with an animation; LV_ANIM_OFF focus without animation

static void lv win scroll hor(lv_obj_t *win, lv_coord_t dist)

Scroll the window horizontally

Parameters

- win: pointer to a window object
- **dist**: the distance to scroll (< 0: scroll right; > 0 scroll left)

Parameters

- win: pointer to a window object
- **dist**: the distance to scroll (< 0: scroll down; > 0 scroll up)

struct lv_win_ext_t

Public Members

```
lv\_obj\_t *page lv\_obj\_t *header lv\_obj\_t *title const lv\_style\_t *style_btn_rel const lv\_style\_t *style_btn_pr lv\_coord\_t btn_size
```