Back propagation

The key to training a Neural Network is find the weights \mathbf{W}^* that minimize the average loss

$$\mathbf{W}^* = \operatorname*{argmin}_W L(\hat{\mathbf{y}}, \mathbf{y}; \mathbf{W})$$

and Gradient Descent is the tool we use.

Let's quickly review minimizing a function using <u>Gradient Descent</u> (<u>Gradient Descent.ipynb#Gradient-Descent:-Overview</u>)

Although this minimization sounds simple, there are substantial details and pitfalls to be aware of.
Let's explore Back propagation (Training Neural Network Backprop.ipynb)

Analytical derivatives made easy

In order for the magic of Gradient Descent to work, we need to compute derivatives of a function.

As explained in the first lecture on Neural Networks

- We prefer *analytical* derivatives
- To numerical derivatives

Numerical differentiation applies the mathematical definition of the gradient

$$rac{\partial f(x)}{\partial x} = rac{f(x+\epsilon)-f(x)}{\epsilon}$$

- ullet It evaluates the function twice: at f(x) and $f(x+\epsilon)$
- Is expensive and is only an approximation (exact only in the limit)

Analytical derivatives are how you learned differentiation in school

• As a collection of rules, e.g.,

$$rac{\partial (a+b)}{\partial x} = rac{\partial a}{\partial x} + rac{\partial b}{\partial x}$$

This is very efficient.

Tensorflow and other toolkits implement analytical derivatives. Let's explore the simple trick that makes this <u>possible</u> (Training Neural Network Operation Forward and Backward Pass.ipynb)

```
In [3]: print("Done")
```

Done