

دانشگاه علم و صنعت دانشکده مهندسی کامپیوتر

شبکه عصبی پیچشی

Convolutional Neural Network (CNN)

مدرس: آرش عبدی هجراندوست

arash_abdi@aut.ac.ir

نيم سال اول ۱۴۰۱–۱۴۰۰

شبكه عصبى ييچشى

اربردها:

- **♦** پردازش سیگنال
 - ❖ پردازش تصویر
- بهبودی بر شبکه عصبی پرسپترون چندلایه
 - افزایش کارایی
 - مرعت اجرا
 - ❖دقت

المالی کا حدودی مقاومت در برابر به هم ریختگی در تصویر ورودی المالی کا تا حدودی مقاومت در برابر به هم ریختگی در تصویر ورودی

توان بازنمایی شبکه عصبی

کاربرد شبکه عصبی چندلایه در پردازش تصویر

- 💠 یک یا چند لایه پنهان
- 💠 تابع فعالسازی سیگموئید

مشكلات شبكه عصبى: مشكل تعداد پارامترها

نعداد پارامترهای قابل یادگیری خیلی زیاد است.

مشكلات شبكه عصبي: حساسيت به تغييرات ورودي

- ابجایی 💠 جابجایی
- 💠 تغيير اندازه
- 💠 تغيير شكل

مشكلات شبكه عصبي: حساسيت به تغييرات ورودي

- ابجایی 💠 جابجایی
- 💠 تغيير اندازه
- 💠 تغيير شكل

154 input change from 2 shift left

77 : black to white77 : white to black

مشکلات شبکه عصبی: تغییر اندازه و تغییرات دیگر در ورودی

مشكلات شبكه عصبى: داده خام

- اختار تصویر (داده) ورودی در نظر گرفته نمی شود
- اندازه بزرگ داده ها به شکل خام استفاده می شوند (اندازه بزرگ)

مشکلات شبکه عصبی: بزرگی داده خام

32 * 32 input image

مشكلات شبكه عصبى: مديريت نويز؟

حل مشكلات فوق با ...

پک شبکه به اندازه کافی بزرگ، میتواند مشکلات فوق را حل کند!

- ♦ زمان اجرا؟
- اندازه شبکه؟
- پارامترهای آزاد؟
- ❖ تعداد دادههای آموزشی؟

Convolutional neural network (CNN)

Yann LeCun, Professor of Computer Science The Courant Institute of Mathematical Sciences New York University Room 1220, 715 Broadway, New York, NY 10003, USA. (212)998-3283 yann@cs.nyu.edu

In 1995, Yann LeCun and Yoshua Bengio introduced the concept of convolutional neural networks.

CNN درباره

الهام گرفته از ساختار نورونهای عصبی در لایه مربوط به بینایی مغز

اختار شبکهای که به صورت غیر مستقیم، ویژگیهایی از تصویر استخراج میکند.

💠 نوعی از شبکه های عصبی چند لایه

CNN درباره

- شبکه ای feed-forward است CNN ❖
- ان تصویر استخراج می کند. په ویژگیهای ساختاری از تصویر استخراج می کند.
 - & یادگیری با Back-Propagation پادگیری با
- کار اصلی این شبکه، تشخیص الگوهای بصری از تصویر خام (پیکسلها)
 با کمترین پیش پردازش
 - الگوی دارای تغییرات زیاد (مثل دست خط) درت تشخیص الگوی دارای

دسته بندي

CNN ساختار

لایه استخراج ویژگی- لایه پیچشی

از بخشهای مختلف تصویر ورودی در بخشهای مختلف تصویر ورودی بخشهای مختلف تصویر ورودی

استخراج ويژگي

❖ هر نورون در لایه نگاشت ویژگی به یک پنجره از تصویر ورودی با یک محموعه وصل است و نتیجتا خروجی تمام این پنجره ها در لایه بعدی ذخیره میشود.

CAMPANIA 10 OUTPUT

4@24x24

28x28 INPUT

استخراج ويژگي

- 💠 وزن مشترک:
- 💠 تمام نورونهای مربوط به یک ویژگی خاص، وزن مشترک دارند (و نه لزوما بایاس مشترک)
- 💠 تمام نورونهای این چنینی، ویژگی یکسانی را در نقاط مختلفی از تصویر استخراج میکنند.
 - 💠 تعداد پارامترهای آزاد مساله کاهش مییابد.

استخراج ويژگي

♦ اگر نورونی در لایه نگاشت ویژگی (Feature Map) فعال شود، یعنی یک الگوی خاص
 در آن نقطه از تصویر تشخیص داده شده است.

- 💠 کاهش رزولوشن هر نگاشت ویژگی
 - 💠 كاهش رزولوشن:
- مقاومت در برابر قدری جابجایی در ورودی
- مقاومت در برابر قدری دگرگونی در ورودی

الله کاهش رزولوشن نگاشت ویژگی

اشتراک وزن در لایه نمونهبرداری نیز اعمال می شود

اثیر نویز، جابجایی و دگرگونی در تصویر ورودی

لایه اتصال کامل

💠 بعد از تعدادی لایه پیچشی و لایه نمونه برداری، در لایه آخر میتوان از اتصال کامل استفاده کرد

- MLP مانند
- 💠 چرا همه لایه های دارای اتصال کامل نباشند؟
 - ♦ امکان بیشتر بیش برازش در شبکه های MLP
- ❖ به عنوان راه حل، در MPL می توان ترم جریمه برای وزن ها در نظر گرفت
- ❖ مثلا تابع خطا شامل مجموع اندازه وزن ها هم باشد تا وزن ها به سمت صفر سوق داده شوند.

***** راه حل CNN:

- استفاده از ساختار سلسله مراتبی الگوهای تصویری
- استفاده از ساختارهای ساده برای رسیدن به ساختارهای پیچیده
- بنابراین نیازی به داشتن اتصال کامل (و در نتیجه پیچیدگی) در لایه های مختلف شبکه نیست.
- ♦ با اتصالات محدود و یکسان (و در نتیجه ساختارهای ساده) میتوان به مرور ساختار های پیچیده تر را نیز ایجاد کرد.

حل مشکل تعداد پارامتر زیاد در CNN

- ❖ در MLP، اگر اندازه تصویر ورودی بزرگ شود، تعداد وزن های ورودی به لایه اول بسیار بالا میرود.
 - **❖** تصویر کوچکی به اندازه ۱۰۰ در ۱۰۰ = ۱۰۰۰۰ وزن لایه اول <u>برای هر نورون!</u>
 - برای لایه های بعدی نیز همین میزان وزن/پارامتر آزاد باید بهینه شود.
 - ❖ تعداد لایه ها از یک حدی بیشتر نمیتواند باشد.

❖ لایه های پیچشی در CNN با کم کردن تعداد پارامترهای آزاد، امکان عمیق تر شدن شبکه فراهم میشود.

ناپدید شدن یا انفجار گرادیان

- انتشار رو به عقب خطا، امکان دو پدیده وجود دارد 💠
 - 💠 ناپدید شدن یا کم اثر شدن گرادیان
 - 💠 تغییرات شدید و ناگهانی (انفجاری) گرادیان
- ❖ در تقسیم سهم خطا بین لایه های قبلی (در روش انتشار رو به عقب خطا)، مشتق تابع فعالساز به عنوان ضریب نقش دارد
 - ♦ مشتق تابع Sigmoid برای مقادیر ورودی کوچک یا بزرگ، خیلی کوچک است.
 - 💠 نتیجتا اگر تعداد لایه های شبکه زیاد باشد، ممکن است خطا بین لایه ها به مرور ناپدید شود.
- ❖ همچنین اگر مشتق بزرگ باشد (یا وزن ها بزرگ باشند) ممکن است در لایههای مختلف این مقادیر بزرگ همافزایی ایجاد کنند و سبب خیلی بزرگ (NaN) شدن خطای منتشر شده شوند.
 - ❖ راه حلها: تغییر تابع فعالساز، دقت در مقدار دهی اولیه وزنها (تصادفی؟ صفر؟ بزرگ؟ کوچک؟)، تغییر معماری شبکه و ...

تابع فعالساز

مساله ناپدید شدن/ انفجار گرادیان در تابع Logistic یا Tanh

Name	\$	

$$f(x) = egin{cases} 0 & ext{for } x \leq 0 \ x & ext{for } x > 0 \end{cases} = \max\{0,x\} = x \mathbf{1}_{x > 0}$$

Rectified

linear unit

(ReLU)[11]

$$f(x) = x\Phi(x) = rac{1}{2}x\left(1+ ext{erf}\left(rac{x}{\sqrt{2}}
ight)
ight)$$

$$f(x) = egin{cases} 0.01x & ext{for } x < 0 \ x & ext{for } x \geq 0 \end{cases}$$

$$f(lpha,x) = egin{cases} lpha x & ext{for } x < 0 \ x & ext{for } x \geq 0 \end{cases}$$

Pooling

- Convolutional networks may include local or global pooling layers to streamline the underlying computation.
- Pooling layers reduce the dimensions of the data by combining the outputs of neuron clusters at one layer into a single neuron in the next layer.
- Local pooling combines small clusters, typically 2 x 2.
- Global pooling acts on all the neurons of the convolutional layer.
- In addition, pooling may compute a max or an average.
 - Max pooling uses the maximum value from each of a cluster of neurons at the prior layer.
 - Average pooling uses the average value from each of a cluster of neurons at the prior layer.

AlexNet (2012)

- Small datasets like CIFAR and Caltech
 - Sufficient for machine learning models to learn basic recognition tasks.
 - Real life is never simple and has many more variables than are captured in these small datasets.
- Large datasets like ImageNet, which consist of hundreds of thousands to millions of labeled images
- * The need for an extremely capable deep learning model.
 - AlexNet

ImageNet

- More than 15 million high-resolution images
- 22 thousand classes
- ImageNet even has its own competition:
 - * the ImageNet Large-Scale Visual Recognition Challenge (ILSVRC). T
 - Uses a subset of ImageNet's images and challenges researchers to achieve the lowest top-1 and top-5 error rates
 - Data is not a problem; there are about 1.2 million training images, 50 thousand validation images, and 150 thousand testing images.
 - The authors enforced a fixed resolution of 256x256 pixels for their images by cropping out the center 256x256 patch of each image.

AlexNet

- The architecture consists of eight layers:
 - five convolutional layers
 - three fully-connected layers.

* ReLU Nonlinearity:

- AlexNet uses Rectified Linear Units (ReLU) instead of the tanh function, which was standard at the time.
- ReLU's advantage is in training time; a CNN using ReLU was able to reach a 25% error on the CIFAR-10 dataset six times faster than a CNN using tanh.

- Multiple GPUs.
 - **♦ What is GPU?**
- Back in the day, GPUs were still rolling around with 3 gigabytes of memory
- This was especially bad because the training set had 1.2 million images.
- AlexNet allows for multi-GPU training by putting half of the model's neurons on one GPU and the other half on another GPU.
 - Bigger model can be trained
 - Cuts down on the training time

- Overlapping Pooling
- CNNs traditionally "pool" outputs of neighboring groups of neurons with no overlapping.
- Introducing the overlap, results in reduction in error by about 0.5%
 - * models with overlapping pooling: harder to overfit

- **The Overfitting Problem**
- AlexNet had 60 million parameters
- * A major issue in terms of overfitting.
- * Two methods were employed to reduce overfitting:
 - Data Augmentation
 - Dropout