Revision Notes on Chemical Kinetics:

Rate of Reaction:

- Rate of change of extent of reaction is the rate of reaction.
- Rate of reaction is positive for product and negative for reactant.
- For reaction aA □bB
 Rate =1/b(Δ[B]/ Δ t) = -1/a (Δ [A]/ Δt)
- It goes on decreasing as the reaction progress due to decrease in the concentration(s) of the reactant(s).

- Unit of rate of reaction: mol L⁻¹ s⁻¹
- The rate measured over a long time interval is called average rate and the rate measured for an infinitesimally small time interval is called instantaneous rate.
- In a chemical change, reactants and products are involved. As the chemical reaction proceeds, the concentration of the reactants decreases, i.e., products are produced.
- The rate of reaction (average rate) is defined as the change of concentration of any one of its reactants (or products) per unit time.

Order of Reaction

For reaction aA + bB + a cC+

$$_{R \square [A]} \mathbf{m}_{[B]} \mathbf{n}_{or R = k[A]} \mathbf{m}_{[B]} \mathbf{n}_{....}$$

m is order of reaction with respect to A and n is the order of reaction with respect to B.

m + n + ... is the overall order of the reaction.

Elementary Reaction:

- It is the reaction which completes in a single step.
- A reaction may involve more than one elementary reactions or steps also.
- Overall rate of reaction depends on the slowest elementary step and thus it is known as rate determining step.

Molecularity of Reaction:

- Number of molecules taking part in an elementary step is known as its molecularity.
- Order of an elementary reaction is always equal to its molecularity.
- Elementary reactions with molecularity greater than three are not known because collisions in which more than three particles come together simultaneously are rare.

Chemical Reaction	Molecularity
PCl ₅ → PCl ₃ + Cl ₂	Unimolecular
2HI → H ₂ + I ₂	Bimolecular
$2SO_2 + O_2 \rightarrow 2SO_3$	Trimolecular
$NO + O_3 \rightarrow NO_2 + O_2$	Bimolecular
2CO + O ₂ → 2CO ₂	Trimolecular
2FeCl ₃ + SnCl ₂ → SnCl ₂ + 2FeCl ₂	Trimolecular

Differential and Integrated Rate Laws:

Zero Order Reactions:

For Reaction: A \square Product

 $[A]_0-[A]_t = k_0 t$

Where,

 $[A]_0$ = Initial concentration of A

 $[A]_t$ = Concentration of A at time t.

 k_0 = Rate constant for zero order reaction.

Half Life:

$$t_{1/2} = [A]_0/2k$$

Unit of rate constant = $mol dm^{-3}s^{-1}$

Examples:

- Enzyme catalyzed reactions are zero order with respect to substrate concentration.
- Decomposition of gases on the surface of metallic catalysts like decomposition of HI on gold surface.

First Order Reactions:

A 🛮 Product

 $(\Delta [A]/A) = -k_1 \Delta t$

or $k_1 = (2.303/t)\log([A]_0/[A]_t)$

Half Life:

$$t_{1/2} = 0.693/k_1$$

Half life is independent of the initial concentration of the reactant for a first order reaction.

Units of $k_1 = s^{-1}$

Examples:

$$N_2O_5 \rightarrow 2NO_2 + 1/2O_2$$

Br₂ ☐ 2Br

2HNO₃ ☐ 2NO + H₂O

 H_2O_2 $H_2O + 1/2O_2$

Pseudo First Order Reactions:

These are the reactions in which more than one species is involved in the rate determining step but still the order of reaction is one.

Examples:

- Acid hydrolysis of ester: CH₃COOEt + H₃O⁺

 CH₃COOH + EtOH
- Inversion of cane sugar:

$$\begin{array}{c} C_{12}H_{22}O_{11} \,+\, H_2O \xrightarrow{\quad H^+ \quad} C_6H_{12}O_6 \,\,+\,\, C_6H_{12}O_6 \\ \text{(Sucrose)} \end{array} \,+\, C_6H_{12}O_6 \\ \text{(Fructose)} \end{array}$$

Decomposition of benzenediazonium halides C₆H₅N=NCl +H₂O □ C₆H₅OH +N₂ +HCl

Half - Life of a nth Order Reaction:

$$kt_{1/2} = (2^{n-1}-1)/(n-1)[A_0]^{n-1}$$

Where, $n = order of reaction \neq 1$

Parallel Reactions:

The reactions in which a substance reacts or decomposes in more than one way are called parallel or side reactions.

If we assume that both of them are first order, we get.

$$-\frac{d[A]}{dt} = (k_1 + k_2)[A] = k_{av}[A]$$

 k_1 = fractional yield of B × k_{av}

 k_2 = fractional yield of C × k_{av}

If $k_1 > k_2$ then

A 🛮 B main and

A 🛮 C is side reaction

Let after a definite interval x mol/litre of B and y mol/litre of C are formed.

$$\frac{x}{y} = \frac{k_1}{k_2}$$

i.e

$$\frac{\frac{d[B]}{dt}}{\frac{d[C]}{dt}} = \frac{k_1}{k_2}$$

This means that irrespective of how much time is elapsed, the ratio of concentration of B to that of C from the start (assuming no B and C in the beginning) is a constant equal to k_1/k_2 .

Parallel Reactions

• Substance reacts or decomposes in more than one way.

Sequential reactions

 Proceeds from reactants to final products through one or more intermediate stages.

Sequential Reactions:

This reaction is defined as that reaction which proceeds from reactants to final products through one or more intermediate stages. The overall reaction is a result of several successive or consecutive steps.

A 🛮 B 🖺 C and so on

$$A \stackrel{k_1}{\rightarrow} B \stackrel{K_2}{\rightarrow} C$$

$$-\frac{d[A]}{dt} = k_1[A]_{.....(i)}$$

$$\frac{d[B]}{dt} = k_1[A] - K_2[B]$$
.....(ii)

$$\frac{d[C]}{dt} = k_2[B] \tag{iii}$$

Integrating equation (i), we get

$$[A] - [A]_o e^{-k_1 t}$$

$$[B] = \frac{k_1[A]_0}{k_2 - k_1} \Big[e^{-k_1 t} - e^{-k_2 t} \Big]$$

[C]=
$$\frac{[A]_0}{k_2-k_1} \left[k_2 (1-e^{-k_1 t}) - k_1 (1-e^{-k_2 t}) \right]$$

$$t_{\max} = \frac{1}{k_1 - k_2} \ln \frac{k_1}{k_2}$$

$$\mathbf{B_{max}} = \left[\mathbf{A}\right]_o \left[\frac{\mathbf{k_2}}{\mathbf{k_1}}\right]^{\mathbf{k_2}/\mathbf{k_1} - \mathbf{k_2}}$$

Arrhenius Equation:

 $k = A \exp(-E_a/RT)$

Where, k = Rate constant

A = pre-exponential factor

E_a = Activation energy

Temperature Coefficient:

The temperature coefficient of a chemical reaction is defined as the ratio of the specific reaction rates of a reaction at two temperature differing by 10°C.

 μ = Temperature coefficient= $k_{(r+10)}/k_t$

Let temperature coefficient of a reaction be ' μ ' when temperature is raised from T_1 to T_2 ; then the ratio of rate constants or rate may be calculated as

$$\frac{k_{T2}}{k_{T1}} = \mu^{\frac{T_2 - T_1}{10}} = \mu^{\frac{\Delta T}{10}}$$

$$log\frac{k_{T2}}{k_{T1}}=\mu^{\frac{T_2-T_1}{10}}=\Delta Tlog\mu$$

$$\frac{k_{T2}}{k_{T1}} = antilog[\frac{\Delta T}{10}]log\mu$$

Its value lies generally between 2 and 3.

Collision Theory of Reaction Rate

- A chemical reaction takes place due to collision among reactant molecules.
- The number of collisions taking place per second per unit volume of the reaction mixture is known as collision frequency (Z).

- The value of collision frequency is very high, of the order of 10^{25} to 10^{28} in case of binary collisions.
- Every collision does not bring a chemical change.
- The collisions that actually produce the products are effective collisions.
- The effective collisions which bring chemical change are few in comparison to the form a product are ineffective elastic collisions, i.e., molecules just collide and
- disperse in different directions with different velocities.
- For a collision to be effective, the following two barriers are to be cleared.
 - 1. Energy Barrier
 - 2. Orientation Barrier

Radioactivity:

All radioactive decay follow 1St order kinetics

For radioactive decay A ->B

 $-(dN_A/dt) = |N_A|$

Where, I = decay constant of reaction

 N_A = number of nuclei of the radioactive substance at the time when rate is calculated.

Arrhenius equation is not valid for radioactive decay.

Integrated Rate Law: $N_t = N_o e^{-lt}$

Half Life: $t_{1/2}$ = 0.693/ λ

Average life time: Life time of a single isolated nucleus, t_{av} = 1/ λ

Activity: Rate of decay

 $A = dN_A/dt$, Also, $A_t = A_0 e^{-lt}$

Specific Activity: activity per unit mass of the sample.

$$Specific \ activity = \frac{\left(\lambda \times \frac{W}{M} \times Av\right)}{W} = \frac{\lambda \times Av}{M}$$

Units: dps or Becquerrel