Convolutional Autoencoders for Dimensionality Reduction

By Luke Harwood | Kevin Paganini

Type of machine learning problem

Main Purpose: Reducing Complexity/Dimensionality of Feature Space

- Unsupervised learning technique
- Used in regression or classification
- Performs Feature Extraction (or Feature Transformation)
- Input and output are the same image

Model Architecture

Model consists of three main parts

- The Encoder
- Latent Layer
- The Decoder

Input Image: 128, 128, 3

Output Image (same): 128, 128, 3

Latent Space: 1024

Train Image Shapes:

Model implementation

Used keras + tensorflow to implement the sequential model Image preprocessing: CV2 → Resizing images to 128, 128, 3 Encoder: Conv2D, MaxPooling2D, GlobalMaxPooling2D, Dense

Decoder: Conv2D, UpSampling2D, Reshape

Image display: Matplotlib

(150, 150,	3)	13986
(113, 150,	3)	7
(111, 150,	3)	3
(135, 150,	3)	3
(144, 150,	3)	2
(123, 150,	3)	2
(142, 150,	3)	2
(146, 150,	3)	2
(143, 150,	3)	2
(134, 150,	3)	2
(136, 150,	3)	2
(108, 150,	3)	2
(105, 150,	3)	1
(97, 150,	3)	1
(131, 150,	3)	1
(147, 150,	3)	1
(81, 150,	3)	1
(145, 150,	3)	1
(141, 150,	3)	1
(100, 150,	3)	1
(103, 150,	3)	1
(76, 150,	3)	1
(120, 150,	3)	1
(102, 150,	3)	1
(119, 150,	3)	1
(133, 150,	3)	1
(115, 150,	3)	1
(124, 150,	3)	1
(110, 150,	3)	1
(149, 150,	3)	1
(140, 150,	3)	1
Jan.,	C A	

Encoder Architecture

- Goes from high-dimensional space to low-dimensional space
- 5 Convolutional layers with increasing filter number
- 4 MaxPooling layers
- 1 GlobalMaxPooling
- Latent Layer: 1024 Dense layer

Layer (type) Output Shape Param # conv2d (Conv2D) (None, 128, 128, 32) 896 max pooling2d (MaxPooling2D (None, 64, 64, 32) conv2d 1 (Conv2D) (None, 64, 64, 64) 18496 max pooling2d 1 (MaxPooling (None, 32, 32, 64) conv2d 2 (Conv2D) (None, 32, 32, 128) 73856 max pooling2d 2 (MaxPooling (None, 16, 16, 128) 2D) conv2d 3 (Conv2D) (None, 16, 16, 256) 295168 max pooling2d 3 (MaxPooling (None, 8, 8, 256) conv2d 4 (Conv2D) (None, 8, 8, 512) 1180160 global max pooling2d (Globa (None, 512) 1MaxPooling2D) dense 6 (Dense) (None, 1024) 525312 Total params: 2,093,888 Trainable params: 2,093,888 Non-trainable params: 0

Latent Layer

Decoder Architecture

- Goes from low-dimensional space to high-dimensional space
- Similar but in reverse
- 1 Reshape layer
- 6 Convolutional layers
- 3 UpSampling layers

Upsampling is the opposite of Pooling

Layer (type)	Output Shape	Param #	
reshape_1 (Reshape)			
conv2d_5 (Conv2D)	(None, 16, 16, 512)	18944	
up_sampling2d (UpSampling2D)	(None, 32, 32, 512)	0	
conv2d_6 (Conv2D)	(None, 32, 32, 256)	1179904	
up_sampling2d_1 (UpSampling 2D)	(None, 64, 64, 256)	0	
conv2d_7 (Conv2D)	(None, 64, 64, 128)	295040	
up_sampling2d_2 (UpSampling 2D)	(None, 128, 128, 128)	0	
conv2d_8 (Conv2D)	(None, 128, 128, 64)	73792	
conv2d_9 (Conv2D)	(None, 128, 128, 32)	18464	
conv2d_10 (Conv2D)	(None, 128, 128, 3)	867	

Trainable params: 1,587,011
Trainable params: 1,587,011
Non-trainable params: 0

Hyperparameters

- Number and makeup of hidden layers
- Cost Function
- Optimizer
- Bottleneck layer size
- Data Augmentation
- Image Size

```
Conv2D(filters=32,kernel_size = (3, 3),strides=1,padding='same', activation='selu', kernel_initializer='lecun_normal'))
```

```
\label{loss-tf.keras.losses.MeanSquaredError(), optimizer=tf.keras.optimizers.Adam(), metrics=[rounded\_accuracy])} \\
```

```
deep_e.add(keras.layers.Dense(1024,activation='selu', kernel_initializer='lecun_normal'))
```

```
resample_x = 128
resample_y = 128
resample_z = 3
```

Cost function and Model fitting

Cost function: Pixel by Pixel - Mean squared error Result: ~ 0.015 MSE (1 is bad, 0 is good) Optimizer: Adam optimizer (form of gradient descent) MSE for one image:

$$\frac{\sum_{i=1}^{n} (y_i - \hat{y}_i)^2}{n}$$

Input

kaggle

Intel Image Dataset

~14000 training instances ~3000 test instances Balanced dataset Image size: 150, 150, 3 6 classes of images Total number of train buildings instances: 2191
Total number of train forest instances: 2271
Total number of train glacier instances: 2404
Total number of train mountain instances: 2512
Total number of train sea instances: 2274
Total number of train street instances: 2382

Total number of test buildings instances: 437
Total number of test forest instances: 474
Total number of test glacier instances: 553
Total number of test mountain instances: 525
Total number of test sea instances: 510
Total number of test street instances: 501

Glacier

1st Convolution

2nd Convolution

3rd Convolution

4th Convolution

Last Convolution

32 x 32 x 1

Encoding

Latent Space on Validation Data

Reduced from 1024 to 3 dimensions with TSNE

Visualisation of latent space of four samples

Notice: ordering of pixels in latent space does not matter it was reshaped into this format for display purposes

Applications

- Preprocessing Data (Dimensionality Reduction)
- Image denoising
- Anomaly Detection
- Generation of new images

Image Denoising

- Example: Trained model on the MNIST handwritten digits dataset

https://miro.medium.com/max/1100/1*GFd9K-88w06YK0EqphGMng.png

Anomaly Detection

- Detect outliers in dataset
- Based on reconstruction error
- Can be passed to another model
 - (e.g. Linear Classifier, etc.)

https://aws.amazon.com/blogs/machine-learning/deploying-variational-autoencoders-for-anomaly-detection-with-tensorflow-serving-on-amazon-sagemaker/

Decision Boundary

Averaging two latent spaces together

Notice: ordering of pixels in latent space does not matter it was reshaped into this format for display purposes

Average of two pictures

Advantages / Disadvantages

Advantages

- Able to handle more complex relationships (non-linear)
- Not as 'lossy' as PCA
- Clear metric to evaluate the model
- Less computationally expensive compared to a dense network

- Disadvantages

- Slow training process (Our autoencoder took about 90 minutes for 50 epochs)
- A lot of model and hyperparameter tuning
- Encoding into very low dimensions (PCA or TSNE is better at lower dimensions <50)
- Requires lots of data

PCA compression

PCA Input Image

Encoding

32 x 32 x 1

PCA Inverse Transform

128 x 128 x 1

128 x 128 x 1

Fails while making this project

Sources

- https://www.v7labs.com/blog/autoencoders-guide
- https://www.kaggle.com/datasets/puneet6060/intel-image-classification
- https://towardsdatascience.com/dimensionality-reduction-pca-versus-autoencoders-338f
 caf3297d
- https://keras.io/guides/transfer_learning/
- https://aws.amazon.com/blogs/machine-learning/deploying-variational-autoencoders-for-anomaly-detection-with-tensorflow-serving-on-amazon-sagemaker/
- https://towardsdatascience.com/auto-encoder-what-is-it-and-what-is-it-used-for-part-1-3e 5c6f017726
- https://www.kaggle.com/code/abdelrhamanfakhry/cnn-data-augmentation-early-stop-lr-r eduction

MSOE AI Club