Backtesting a Random Forest

MGMT 767 / BUSI 449: Data-Driven Investments: Equity

Kerry Back and Kevin Crotty, Rice University

Overview of Backtesting

- We want to evaluate a model for combining characteristics to predict stock returns.
- A model has parameters (coefficients) that must be estimated from past data. It must be "trained."
- It may also have hyperparameters that should be tuned from past data (more later).
- If we wanted to apply a model today, we would use all past data to estimate the parameters. Then look at today's characteristic values and run them through the model to predict returns.

To evaluate how a model would have worked in the past, we should recreate this at each past portfolio revision date:

- Estimate the parameters (train the model) based on the data prior to that date.
- Look at the characteristic values at that date and run them through the model to predict returns.
- Form a portfolio based on the predictions.
- Calculate the return of the portfolio up to the next portfolio revision date.
- Rinse and repeat.

Once we've computed historical returns from training and applying the model in this way, we need to evaluate them.

- Average return
- Sharpe ratio
- CAPM alpha
- Factor model attribution and alpha
- Maximum drawdown

Examples of models

- Linear regression
- Penalized linear regression (LASSO, ridge regression, elastic net)
- Random forests
- Boosted trees
- Neural networks

Introduction to Random Forests

Random forest

- From your data set, generate random "pseudo data sets" by bootstrapping.
 - Randomly choose rows from the original set with replacement until you have as many rows as in the original.
 - Do this, say, 100 times, to create 100 pseudo data sets.
- Fit a decision tree (more coming) to each pseudo data sets.
- Average the predictions from the 100 decision trees.

Decision tree example

- ullet Generate some simple random data: predictors x_1 and x_2 and outcome y
- Fit a decision tree to predict y from x_1 and x_2 .

```
import numpy as np
import pandas as pd

np.random.seed(0)
x1 = np.random.normal(size=100)
x2 = np.random.normal(size=100)
e = np.random.normal(size=100)
y = 2*x1 + 3*x2 + e
df = pd.DataFrame(
    dict(x1=x1, x2=x2, y=y)
)
```


In [3]: df

Out[3]:

	x1	х2	У
0	1.764052	1.883151	8.808375
1	0.400157	-1.347759	-3.482342
2	0.978738	-1.270485	-0.754319
3	2.240893	0.969397	8.045240
4	1.867558	-1.173123	0.855877
•••	•••	•••	•••
95	0.706573	-0.171546	2.035399
96	0.010500	0.771791	2.434097
97	1.785870	0.823504	6.625207
98	0.126912	2.163236	6.344083
99	0.401989	1.336528	5.183618

100 rows × 3 columns

Fit and view a decision tree


```
In [4]: from sklearn.tree import DecisionTreeRegressor, plot_tree
    tree = DecisionTreeRegressor(max_depth=3)
    tree.fit(X=df[["x1", "x2"]], y=df.y)

Out[4]:    DecisionTreeRegressor
    DecisionTreeRegressor(max_depth=3)
```



```
import matplotlib.pyplot as plt
plt.figure(figsize=(20, 8))
plot_tree(tree, fontsize=12)
plt.show()
```


Fit a random forest and view goodness of fit


```
In [6]: from sklearn.ensemble import RandomForestRegressor
forest = RandomForestRegressor(max_depth=3)
forest.fit(X=df[["x1", "x2"]], y=df.y)
predict = forest.predict(X=df[["x1", "x2"]])
```



```
import seaborn as sns
sns.set_style("whitegrid")

sns.regplot(x=df.y, y=predict, ci=None)
plt.xlabel("Actual y")
plt.ylabel("Predicted y")
plt.show()
```


Data for Backtesting Example


```
In [9]: df = pd.read_csv("02_data.csv", index_col=["ticker", "date"])
    df = pd.read_csv(
        "https://www.dropbox.com/s/km8tb71md3a5m1r/02_data.csv?dl=1",
        index_col=["ticker", "date"]
)
"""
    df.head()
```

Out[9]:

		pb	marketcap	lastupdated	close	ret	mom
ticker	date						
AA	2019-08-23	0.7	3436.5	2019-08-19	18.52	-0.015660	-0.434685
	2019-08-30	0.7	3382.7	2019-08-27	18.23	-0.058148	-0.451343
	2019-09-06	0.7	3186.0	2019-09-04	17.17	0.025635	-0.472985
	2019-09-13	0.7	3267.7	2019-09-09	17.61	0.281083	-0.535282
	2019-12-06	0.8	3793.1	2019-12-02	20.44	-0.033275	-0.359533

Relative predictors and returns

- To control for variation over time in levels of predictors, use deviations from medians.
- We want to predict relative performance (which stocks will do better than others), so use deviation from median return as the target.

Backtest Random Forest

Overview

- max_depth is a hyperparameter that we could "tune," but today just try max_depth=2
- For speed, train only once per year.
- Use trained model to make predictions weekly.
- Pick best 50 stocks each week and hold equally weighted until end of week.
- Repeat until end of year.
- Then retrain and repeat.
- First, make some changes to the dataframe (put date and ticker in columns, add year, and sort).


```
In [10]: df = df.reset_index()
    df["date"] = pd.to_datetime(df.date)
    df["year"] = df.date.map(lambda x: x.year)
    df = df.sort_values(by=["date", "ticker"])
```



```
In [11]: df2 = None
          forest = RandomForestRegressor(max_depth=2)
          for year in range(2014, 2024):
              print(year)
              start = df[df.year == year].date.min()
              past = df[df.date < start]</pre>
              future = df[df.year == year].copy()
              forest.fit(X=past[["mom_adjusted", "pb_adjusted"]], y=past["ret_adjusted"
              future["predict"] = forest.predict(X=future[["mom_adjusted", "pb_adjusted")]
              df2 = pd.concat((df2, future))
          2014
          2015
          2016
          2017
          2018
          2019
          2020
          2021
          2022
          2023
```


In [12]: df2.head()

Out[12]:

	ticker	date	pb	marketcap	lastupdated	close	ret	mon
81	I 1 AAIC	2014- 01-03	0.9	455.6	2020-10-26	27.44	-0.018456	0.395965
113	86 AAMC	2014- 01-03	582.3	2050.2	2023-11-01	902.00	0.025155	8.951573
235	57 AAON	2014- 01-03	7.4	1202.4	2023-08-17	32.72	-0.031758	1.180593
308	30 AAT	2014- 01-03	1.9	1269.7	2018-10-18	31.39	0.015607	0.184788
405	52 AAWW	2014- 01-03	0.8	1011.3	2018-10-18	40.39	0.019064	-0.172344

50 best stocks each week

Worst stocks and all stocks

