

1 Cel ćwiczenia

Zapoznanie się z zastosowaniem tablic Karnaugh'a do minimalizacji graficznej złożonych funkcji logicznych oraz zaprojektowanie w Multisimie układu cyfrowego zwiększającego o 1 trzybitową liczbę całkowitą oraz wyświetlacza siedmiosegmentowego.

2 Przebieg ćwiczenia

2.1 Układ cyfrowy inkrementujący trzybitową nieujemną liczbę całkowitą

Dla każdego bitu wyjściowego sporządzono tablice Karnaugh'a (od bitu najstarszego do najmłodszego), gdzie bity wejściowe w kolejności starszeństwa to ABC:

C\AB					
0	0	0	0	o	
1	0	0	1	0	
	AB	С			
с∖ав	00	01	11	10	
0	_	0	1	1	
1	0	1	0	1	
	A(C' + B') + A'BC				=A(BC)' + A'(BC
с∖ав	00	01	11	10	
				0	
			_		
1	1	o	0	1	
1	1	0	_		=BC' +B'C
1 C\AB	1 BC	0 + A	'B'(+ AB'C	=BC' +B'C
1	1 BC'	0 + A	'B'(+ AB'C	=BC' +B'C
1 C\AB	1 BC' 00 1	0 + A 01	'B'(+ AB'C	=BC' +B'C
1 C\AB	1 BC' 00 1	0 + A 01 1	11 1	10 1	=BC' +B'C

Następnie w Multisimie stworzono układ odpowiadający wyprowadzeniu i przetestowano go używając wyświetlacza siedmiosegmentowego:

Układ można też zrealizować przy użyciu półsumatorów.

2.2 Minimalizacja funkcji metodą tablic Karnaugha

Zadaną funkcję logiczną przedstawiono w poniższej tabeli, a następnie zminimalizowano korzystając z metody Karnaugh'a. Wynik minimalizacji również znajduje się na poniższym zdjęciu:

W MultiSimie swtworzono model bramki niezminimalizowanej oraz zminimalizowanej. Porównano je Logic Analyzerem i oceniono, że minimalizacja przebiegła pomyślnie:

2.3 Transkoder czterobitowych cyfr

W oparciu o poniższą konfigurację segmentów:

Dla każdego z 7 segmentów zrealizowano tablicę Karnaugh'a prezentującą pożądane zachowanie segmentu, zminimalizowano funkcję logiczną i zbudowano odpowiedni obwód:

Segment a:

Segment b:

			AB		
		00	01	11	10
	00	1	1	1	1
CD	01	1	0	1	0
	11				
	10	1	1		

Segment c:

С						
			AB			
		00	01	11	10	
	00	1	1	1	0	
CD	01	1	1	1	1	
	11					
	10	1	1			
(-A)	+B+C)				

Segment d:

			AB		
		00	01	11	10
	00	1	0	1	1
CD	01	0	1	0	1
	11				
	10	1	1		

Segment e:

	9					
				AB		
			00	01	11	10
		00	1	0	0	1
(CD	01	0	0	0	1
		11				
		10	1	0		

Wszystkie obwody podłączono do wyświetlacza siedmioseg
mentowego i przetestowano.

Wyświetlacz wskazywał przewidywane cyfry:

