

MICROCGRY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS 1953

NAVAL POSTGRADUATE SCHOOL Monterey, California

THESIS

THE USE OF A COMPUTER TO OBTAIN FLIGHT MANUAL DATA

by

Chang Whan Oh

December 1986

Thesis Advisor:

Donald M. Layton

Approved for public release; distribution is unlimited

					REPORT DOCUM	MENTATION	PAGE				
Distribution Availability of Afford Distribution (Assignation authority)	la REPORT SE	CURITY CLASS	IFICATIO	N		16 HESTRICTIVE	MAHNINGS				
Approved for public release; distribution is unlimited 1 PERFORMING ORGANIZATION REPORT NUMBER(S) 5 MONTOWING ORGANIZATION REPORT NUMBER(S) 64 NAME OF PERFORMING ORGANIZATION 85 OFFICE SYMBOL (If applicable) Code 67 Naval Postgraduate School 65 ADDRESS (City, State, and ZIP Code) Monterey, California 93943-5000 85 MANNE OF FUNDING SPONSORING DRAMIZATION 86 OFFICE SYMBOL (If applicable) 10 SOURCE OF FUNDING NUMBERS PROGRAM ACCESSION I 11 SINE (Include Security Classification) THE USE OF A COMPUTER TO OBTAIN PLIGHT MANUAL DATA 12 PERSONAL AUTHOR(S) Oh, Chang W. 13 1976 OF REPORT PROMIT (Vear Month Day) 15 PAGE COUNT 18 SUBJECT TERMS (Continue on reverse of necessary and identify by block number) The one thing among many that must be prepared for every flight is the making of a flight plan. Pilots must use charts or graphs from the flight manual to compute the fuel flow that is essential to flight plan. Since this requires many steps of interpolation to compute the specific conditions that cannot be read directly from flight manual, it is time consuming and increases the probability of making a mistake. This problem obstructs the execution of various mission changes and continuous sorties. A computer program for personal computer or hand-held calculator is developed to compute the desired fuel flow by modifing the equations for an 'IDEAL' airplane. 20 OCCASSINGONAMAIRABILITY OF ABSTRACT DISCUSSIONOMAIRABILITY OF ABSTRACT TO DISCUSSIONOMAIRABILITY OF ABSTRACT TO	Unclassif	ied	N ALITHO	10ITV		2 DISTRIBUTION	LAVAILABILITY O	c acar	707		
is unlimited 4 PERFORMING ORGANIZATION REPORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT NUMBER(S) 64 NAME OF PERFORMING ORGANIZATION Naval Postgraduate School 65 CADORESS (Chp. State. and ZIP Code) Monterey, California 93943-5000 66 ADORESS (Chp. State. and ZIP Code) Monterey, California 93943-5000 67 Monterey, California 93943-5000 68 ADORESS (Chp. State. and ZIP Code) Monterey, California 93943-5000 68 ADORESS (Chp. State. and ZIP Code) Monterey, California 93943-5000 69 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER PROGRAM PROGRAM PROJECT TASK ACCESSION IN THE USE OF A COMPUTER TO OBTAIN PLIGHT MANUAL DATA 17 PERSONAL AUTHORIS) Oh, Chang W. 18 TO 19 PROGRAM PROPRIT (Year Month Day) 19 INFO OR REPORT (Year Month Day) 19 COSATI CODES FELD GROUP SUB-GROUP NATORS PLIGHT MANUAL DRAG INDEX 19 4851RACT (Continue on reverse if necessary and identify by block number) The one thing among many that must be prepared for every flight is the making of a flight plan. Pilots must use charts or graphs from the flight manual to compute the fuel flow that is essential to flight plan. Since this requires many steps of Interpolation to compute the specific conditions that cannot be read directly .rom flight manual, it is time consuming and increases the probability of making a mistake. This problem obstructs the execution of various mission changes and continuous sorties. A computer program for personal computer or hand-held calculator is developed to compute the desired fuel flow by modifing the equations for an 'IDEAL' airplane. 20 OSTRUCTON AVAILABILITY OF ABSTRACT 10 OSTRUCTON AVAILABILITY OF ABSTRACT 11 ABSTRACT SECURITY CLASSMICATION Unclassified	24 SECURITY	CLASSIFICATIO	M AUTHO	JAII 1		1				tribution	
Source of Funding Organization So Office Symbol (If applicable) Naval Postgraduate School Source of Monitoring Organization (If applicable) Naval Postgraduate School Naval Postgraduate S	26 DECLASSIFI	CATION / DOV	VNGRADII	NG SCHEDU	LE						
Naval Postgraduate School (if applicable) (if applicable) (if applicable) Naval Postgraduate School (if applicable) Nonterey, California 93943-5000 8a NAME OF FUNDING/SPONSORING ORGANIZATION 8b OFFICE SYMBOL (if applicable) 8c ADDRESS (City, State, and IIP Code) 8d OFFICE SYMBOL (if applicable) 10 SOURCE OF FUNDING NUMBERS PROGRAM RELEMENT NO NO ACCESSION 1 11 TITLE (Include Security Classification) THE USE OF A COMPUTER TO OBTAIN FLIGHT MANUAL DATA 12 PERSONAL AUTHOR(S) Oh, Chang W. 13a TYPE OF REPORT (Year, Month, Day) 15 PAGE COUNT MASTER'S Thesis FROM TO 1986 December 16 SUPPLEMENTARY NOTATION 17 COSATI CODES FELD GROUP SUB-GROUP NATOPS FLIGHT MANUAL DRAG INDEX 17 BASIFACT (Continue on reverse if necessary and identify by block number) The one thing among many that must be prepared for every flight is the making of a flight plan, Pilots must use charts or graphs from the flight manual to compute the flow that is essential to flight plan, Since this requires many steps of interpolation to compute the specific conditions that cannot be read directly arom flight manual, it is time consuming and increases the probability of making a mistake. This problem obstructs the execution of various mission changes and continuous sorties. A computer program for personal computer or hand-held calculator is developed to compute the desired fuel flow by modifing the equations for an 'IDEAL' airplane. 10 DINGUSTRIBUTION AVAILABILITY OF ABSTRACT COSATI COSSIFICATION Unclassified	4 PERFORMINI	G ÖRGÄNIZAT	ION REPO	ORT NUMBE	R(S)	5 MONITORING	ORGANIZATION R	EPORT	NUMBER(S)	
Naval Postgraduate School 6x ADDRESS (City, State, and IPCode) Monterey, California 93943-5000 8a NAME OF FUNDING/SPONSORING ORGANIZATION 8b OFFICE SYMBOL (If applicable) 6c ADDRESS (City, State, and IPCode) 8d OFFICE SYMBOL (If applicable) 9 PROCUREMENT INSTRUMENT INSTRUMENT IDENTIFICATION NUMBER (PROCURED PROCESS) 10 SOURCE OF FUNDING NUMBERS 11 STUD OFFICE SYMBOL (If applicable) 11 SOURCE OF FUNDING NUMBERS 12 PROSONAL AUTHOR(S) Oh, Chang W. 13 INFECT SERONAL AUTHOR(S) 14 DATE OF REPORT (Year Month, Day) IS PAGE COUNT MASTER'S Thesis FROM TO 1986 December 15 SUBJECT TERMS (Continue on reverse if necessary and identify by block number) 17 COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number) 17 COSATI (Continue on reverse if necessary and identify by block number) 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number) 19 ABSTRACT (Continue on reverse if necessary and identify by block number) 10 DATE OF REPORT (Year Month, Day) IS PAGE COUNT MATCH (Continue on reverse if necessary and identify by block number) 19 ABSTRACT (Continue on reverse if necessary and identify by block number) 10 DATE OF REPORT (Year Month, Day) IS PAGE COUNT MATCH (Continue on reverse if necessary and identify by block number) 10 ADSTRACT (Continue on reverse if necessary and identify by block number) 11 COSATI (Continue on reverse if necessary and identify by block number) 12 ABSTRACT (Continue on reverse if necessary and identify by block number) 13 ABSTRACT (COSATICATION AND ALLABILITY OF ABSTRACT DECEMBER (LICENSITY CLASSIFICATION United	6a. NAME OF	PERFORMING	ORGANIZ	ATION		73 NAME OF M	ONITORING ORGA	NIZATI	ON		
Monterey, California 93943-5000 8a NAME OF FUNDING, SPONSORING (If applicable) 8b OFFICE SYMBOL (If applicable) 8c ADDRESS (City, State, and ZIP Code) 8c ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS PROGRAM ELEMENT NO PROJECT (ASX NO ACCESSION) 11 TITLE (Include Security Classification) THE USE OF A COMPUTER TO OBTAIN FLIGHT MANUAL DATA 12 PERSONAL AUTHOR(S) Oh. Chang W. 13a TYPE OF REPORT (13b TIME COVERD 1986 December 1986 December 88 16 SUPPLEMENTARY NOTATION 17 COSATI CODES (18 SUB-GROUP NATOPS FLIGHT MANUAL DATA) 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number) NATOPS FLIGHT MANUAL DRAG (Indicable) The one thing among many that must be prepared for every flight is the making of a flight plan. Pilots must use charts or graphs from the flight manual to compute the fuel flow that is essential to flight plan. Since this requires many steps of interpolation to compute the specific conditions that cannot be read directly arom flight manual, it is time consuming and increases the probability of making a mistake. This problem obstructs the execution of various mission changes and continuous oxities. A computer program for personal computer or hand-held calculator is developed to compute the desired fuel flow by modifing the equations for an 'IDEAL' airplane. 20 DSTRIBUTION AVAILABILITY OF ABSTRACT (DID UNCLASSIFICATION Unclassified)	Naval Pos	stgraduat	e Scho	001		Naval Post	graduate Sc	hoo1			
88 NAME OF FUNDING SPONSORING ORGANIZATION 86 ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS PROGRAM ELEMENT NO	6c ADDRESS (City, State, an	d ZIP Cod	ie)	<u> </u>	76 ADDRESS (CI	ty, State, and ZIP	(ode)			
BC ADDRESS (City, State, and ZIP Code) BC ADDRESS (City, State, and Zip Code, and Address (City) and Accessory and Identify by Bock number) BC ADDRESS (City, State, and Zip Code, and Accessory and Identify by Bock number) BC ADDRESS (City, State, and Zip Code, and Incompany and Identify by Bock number) BC ADDRESS (City, State, and Accessory and Identify by Bock number) BC ADDRESS (City, State, and Accessory and Identify by Bock number) BC ADDRESS (City, State, and Accessory and Identify by Bock number) BC ADDRESS (City, Andress ADDRESS (City	Monterey,	, Califor	nia	93943-5	000	Monterey,	California	93	943-500	0	
THE USE OF A COMPUTER TO OBTAIN FLIGHT MANUAL DATA 12 PERSONAL AUTHOR(S) Oh, Chang W. 13 IYPE OF PEORT Master's Thesis FROM 10 1986 December 11 1986 December 12 PERSONAL AUTHOR(S) Oh, Chang W. 13 IYPE OF REPORT Master's Thesis FROM 10 1986 December 11 1986 December 12 PERSONAL AUTHOR(S) Oh, Chang W. 13 IYPE OF REPORT Master's Thesis PROM 10 1986 December 11 1986 December 12 PAGE COUNT 13 B SUBJECT TERMS (Continue on reverse if necessary and identify by block number) NATOPS FLIGHT MANUAL DRAG INDEX 13 ABSTRACT (Continue on reverse if necessary and identify by block number) The one thing among many that must be prepared for every flight is the making of a flight plan. Pilots must use charts or graphs from the flight manual to compute the fuel flow that is essential to flight plan. Since this requires many steps of interpolation to compute the specific conditions that cannot be read directly arom flight manual, it is time consuming and increases the probability of making a mistake. This problem obstructs the execution of various mission changes and continuous sorties. A computer program for personal computer or hand-held calculator is developed to compute the desired fuel flow by modifing the equations for an 'IDEAL' airplane. 21 ABSTRACT SECURITY CLASSIFICATION Unclassified	-		NSORING	i	* · · · · · · · · · · · · · · · · · · ·	9 PROCUREMEN	T INSTRUMENT ID	ENTIFIC	CATION NU	MBER	
THE USE OF A COMPUTER TO OBTAIN FLIGHT MANUAL DATA 12 PERSONAL AUTHOR(S) Oh, Chang W. 13 IYPE OF PEORT Master's Thesis FROM 10 1986 December 11 1986 December 12 PERSONAL AUTHOR(S) Oh, Chang W. 13 IYPE OF REPORT Master's Thesis FROM 10 1986 December 11 1986 December 12 PERSONAL AUTHOR(S) Oh, Chang W. 13 IYPE OF REPORT Master's Thesis PROM 10 1986 December 11 1986 December 12 PAGE COUNT 13 B SUBJECT TERMS (Continue on reverse if necessary and identify by block number) NATOPS FLIGHT MANUAL DRAG INDEX 13 ABSTRACT (Continue on reverse if necessary and identify by block number) The one thing among many that must be prepared for every flight is the making of a flight plan. Pilots must use charts or graphs from the flight manual to compute the fuel flow that is essential to flight plan. Since this requires many steps of interpolation to compute the specific conditions that cannot be read directly arom flight manual, it is time consuming and increases the probability of making a mistake. This problem obstructs the execution of various mission changes and continuous sorties. A computer program for personal computer or hand-held calculator is developed to compute the desired fuel flow by modifing the equations for an 'IDEAL' airplane. 21 ABSTRACT SECURITY CLASSIFICATION Unclassified	8c. ADDRESS (C	ity. State, and	ZIP Code	•)	L	10 SOURCE OF	FUNDING NUMBER	S			
THE USE OF A COMPUTER TO OBTAIN FLIGHT MANUAL DATA 12 PERSONAL AUTHOR(S) Oh, Chang W. 13a TYPE OF REPORT Master's Thesis FROM TO 1986 December 15 PAGE COUNT 1986 December 16 SUPPLEMENTARY NOTATION 17 COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number) NATOPS FLIGHT MANUAL DRAG INDEX 19 ABSTRACT (Continue on reverse if necessary and identify by block number) The one thing among many that must be prepared for every flight is the making of a flight plan. Pilots must use charts or graphs from the flight manual to compute the fuel flow that is essential to flight plan. Since this requires many steps of interpolation to compute the specific conditions that cannot be read directly rrom flight manual, it is time consuming and increases the probability of making a mistake. This problem obstructs the execution of various mission changes and continuous sorties. A computer program for personal computer or hand-held calculator is developed to compute the desired fuel flow by modifing the equations for an 'IDEAL' airplane. 20 OSTRIBUTION/AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION Unclassified		•						-		WORK UNIT ACCESSION NO	
THE USE OF A COMPUTER TO OBTAIN FLIGHT MANUAL DATA 12 PERSONAL AUTHOR(S) Oh, Chang W. 13a TYPE OF REPORT Master's Thesis FROM TO 1986 December 15 PAGE COUNT 1986 December 16 SUPPLEMENTARY NOTATION 17 COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number) NATOPS FLIGHT MANUAL DRAG INDEX 19 ABSTRACT (Continue on reverse if necessary and identify by block number) The one thing among many that must be prepared for every flight is the making of a flight plan. Pilots must use charts or graphs from the flight manual to compute the fuel flow that is essential to flight plan. Since this requires many steps of interpolation to compute the specific conditions that cannot be read directly rrom flight manual, it is time consuming and increases the probability of making a mistake. This problem obstructs the execution of various mission changes and continuous sorties. A computer program for personal computer or hand-held calculator is developed to compute the desired fuel flow by modifing the equations for an 'IDEAL' airplane. 20 OSTRIBUTION/AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION Unclassified	11 TiTLE (Inclu	ide Security C	lassificati	on)		L		1		<u> </u>	
Oh, Chang W. 13a TYPE OF REPORT Master's Thesis 15 SUPPLEMENTARY NOTATION 16 SUPPLEMENTARY NOTATION 17 COSATI CODES FIELD GROUP SUB-GROUP NATOPS FLIGHT MANUAL DRAG INDEX 19 ABSTRACT (Continue on reverse if necessary and identify by block number) The one thing among many that must be prepared for every flight is the making of a flight plan. Pilots must use charts or graphs from the flight manual to compute the fuel flow that is essential to flight plan. Since this requires many steps of interpolation to compute the specific conditions that cannot be read directly from flight manual, it is time consuming and increases the probability of making a mistake. This problem obstructs the execution of various mission changes and continuous sorties. A computer program for personal computer or hand-held calculator is developed to compute the desired fuel flow by modifing the equations for an 'IDEAL' airplane. 20 DSTRIBUTION/AVAILABILITY OF ABSTRACT CONCLASSIFIEDUNCIMITED SAME AS RPT DICCUSERS Unclassified		-			N FLIGHT MANUAL	DATA					
Master's Thesis FROM TO 1986 December 88 16 SUPPLEMENTARY NOTATION 17 COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number) NATOPS FLIGHT MANUAL DRAG INDEX 29 ABSTRACT (Continue on reverse if necessary and identify by block number) The one thing among many that must be prepared for every flight is the making of a flight plan. Pilots must use charts or graphs from the flight manual to compute the fuel flow that is essential to flight plan. Since this requires many steps of interpolation to compute the specific conditions that cannot be read directly from flight manual, it is time consuming and increases the probability of making a mistake. This problem obstructs the execution of various mission changes and continuous sorties. A computer program for personal computer or hand-held calculator is developed to compute the desired fuel flow by modifing the equations for an 'IDEAL' airplane. 20 OSTRIBUTION/AVAILABILITY OF ABSTRACT DITIC USERS 21 ABSTRACT SECURITY CLASSIFICATION Unclassified											
18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number) NATOPS FLIGHT MANUAL DRAG INDEX 9 485TRACT (Continue on reverse if necessary and identify by block number) The one thing among many that must be prepared for every flight is the making of a flight plan. Pilots must use charts or graphs from the flight manual to compute the fuel flow that is essential to flight plan. Since this requires many steps of interpolation to compute the specific conditions that cannot be read directly from flight manual, it is time consuming and increases the probability of making a mistake. This problem obstructs the execution of various mission changes and continuous sorties. A computer program for personal computer or hand-held calculator is developed to compute the desired fuel flow by modifing the equations for an 'IDEAL' airplane. 10 Desired Dancian and Computer of the computer of		-	1			14 DATE OF REPO 1986 Decem	ORT (Year, Month, inber	Day)			
PRAG INDEX 9 A8STRACT (Continue on reverse if necessary and identify by block number) The one thing among many that must be prepared for every flight is the making of a flight plan. Pilots must use charts or graphs from the flight manual to compute the fuel flow that is essential to flight plan. Since this requires many steps of interpolation to compute the specific conditions that cannot be read directly from flight manual, it is time consuming and increases the probability of making a mistake. This problem obstructs the execution of various mission changes and continuous sorties. A computer program for personal computer or hand-held calculator is developed to compute the desired fuel flow by modifing the equations for an 'IDEAL' airplane. 20 DSTRIBUTION/AVAILABILITY OF ABSTRACT ABSTRACT SECURITY CLASSIFICATION Unclassified	16 SUPPLEMEN	TATON YRATI	TION								
DRAG INDEX 9 ABSTRACT (Continue on reverse if necessary and identify by block number) The one thing among many that must be prepared for every flight is the making of a flight plan. Pilots must use charts or graphs from the flight manual to compute the fuel flow that is essential to flight plan. Since this requires many steps of interpolation to compute the specific conditions that cannot be read directly from flight manual, it is time consuming and increases the probability of making a mistake. This problem obstructs the execution of various mission changes and continuous sorties. A computer program for personal computer or hand-held calculator is developed to compute the desired fuel flow by modifing the equations for an 'IDEAL' airplane. 20 DESTRIBUTION/AVAILABILITY OF ABSTRACT ABSTRACT SECURITY CLASSIFICATION Unclassified Unclassified	-				•		e if necessary and	dident	ify by bloc	k number)	
The one thing among many that must be prepared for every flight is the making of a flight plan. Pilots must use charts or graphs from the flight manual to compute the fuel flow that is essential to flight plan. Since this requires many steps of interpolation to compute the specific conditions that cannot be read directly from flight manual, it is time consuming and increases the probability of making a mistake. This problem obstructs the execution of various mission changes and continuous sorties. A computer program for personal computer or hand-held calculator is developed to compute the desired fuel flow by modifing the equations for an 'IDEAL' airplane. 20 D-SIRIBUTION/AVAILABILITY OF ABSTRACT SOURCEASSIFIED ONLIMITED SAME AS RPT DOTIC USERS Unclassified	FIELD	GROUP	SUB-	GROUP	NATOPS FLIGH	T MANUAL					
The one thing among many that must be prepared for every flight is the making of a flight plan. Pilots must use charts or graphs from the flight manual to compute the fuel flow that is essential to flight plan. Since this requires many steps of interpolation to compute the specific conditions that cannot be read directly from flight manual, it is time consuming and increases the probability of making a mistake. This problem obstructs the execution of various mission changes and continuous sorties. A computer program for personal computer or hand-held calculator is developed to compute the desired fuel flow by modifing the equations for an 'IDEAL' airplane. 10 Desiriourion availability of abstract					DRAG INDEX						
☑UNCLASSIFIED/UNLIMITED ☐ SAME AS RPT ☐ DTIC USERS Unclassified	The of flight pl flow that to compute is time of obstructs. A compute the com	one thing lan. Pilo is esse te the sp consuming is the exemputer prothe desir	among ts mus ntial ecfic and i cution ogram ed fue	many to to flig condition of var for per cel flow	hat must be pre harts or graphs ht plan. Since ons that cannot s the probabili ious mission ch sonal computer	pared for every from the fitthis required be read did ty of making anges and coor hand-held equations	light manual es many step rectly rom g a mistake. Ontinuous so d calculator for an 'IDEA	to s of flig Thi rtie is L' a	compute interpolation in the manual sprobles. developing and the manual sprobles.	the fuel colation al, it em	
Onc tu sitted					PT DTIC USERS			ATION			
Prof. Donald M. Layton (408) 646-2997 Code 67Ln	228 NAME OF	RESPONSIBLE	NOIVIO			226 TELEPHONE	(Include Area Code) 22c			

RANGES SERVICES (NESSERVE) NESSERVED NESSERVED

Approved for public release; distribution is unlimited.

The Use of a Computer to obtain Flight Manual Data

by

Chang Whan, Oh Major, Republic of Korea Air Force B.S.A.E., Korea Airforce Academy, Seoul, 1977

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN AERONAUTICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL December 1986

Author:	oh chang whom	
	Chang Whan, Oh	
Approved by:	London Kayta	
	Donald M. Layton, Thesis Advisor	
	M. F. Plate	
	Max F. Platzer, Chairman,	_
	Department of Aeronautics	
	In Oyer	_
	/ John N. Dyer,	
	Dean of Science and Engineering	

ABSTRACT

The one thing among many that must be prepared for every flight is the making of a flight plan. Pilots must use charts or graphs from the flight manual to compute the fuel flow that is essential to a flight plan. Since this requires many steps of interpolation to compute the specific conditions that cannot be read directly from flight manual, it is time consuming and increases the probability of making a mistake. This problem obstructs the execution of various mission changes and continuous sorties.

A computer program for personal computer or hand-held calculator is developed to compute the desired fuel flow by modifing the equations for an 'IDEAL' airplane.

the Verpower services endicien necesses periods especial assesses

Acces	on For	•				
	CRA&I	Ø				
DTIC						
	ounced					
Justific	cation					
By Distrib	By Distribution /					
Availability Codes						
Dist	Avaa a Sp. (
H-/						

TABLE OF CONTENTS

IN1	roduction
Α.	BACKGROUND10
В.	FUEL FLOW RATE 10
C.	TOTAL DRAG 10
D.	THRUST 11
E.	FLIGHT PLANNING
API	PROACH TO THE PROBLEM12
A.	STATEMENT OF THE PROBLEM12
B.	BASE LINE APPROACH 12
C.	DETAILED METHODS
	1. Concept of K ₁ and K ₂
	2. Determining the K ₁
	3. Determining the K ₂
	4. Relationship between K ₁ , K ₂ and Variation Factors 29
	5. Factor C
RE	SULT
A.	BASE LINE CONDITION
	1. Converting velocity versus fuel flow to velocity versus drag
	2. Computing the minimum thrust and maximum endurance speed
	3. Computing the K ₁ 52
	4. Computing the K ₂
	5. Converting to fuel flow from drag
В.	VARIATION NUMBER 1 - GROSS WEIGHT 54
C.	VARIATION NUMBER 2 - DRAG INDEX
D.	VARIATION NUMBER 3 - ALTITUDE
E.	VARIATION NUMBER 4 - WEIGHT, DRAG INDEX AND ALTITUDE 70
	A. B. C. D. E. API A. B. C. D.

F.	VARIATION NUMBER 5 - WEIGHT, DRAG INDEX AND ALTITUDE
	1. Gross weight
	2. Drag index
	3. Altitude
IV. CON	CLUSION83
APPENDIX A	COMPUTER PROGRAM (BASIC)84
APPENDIX B:	COMPUTER PROGRAM (HAND-HELD CALCULATOR)85
LIST OF REFI	ERENCES
INITIAL DIST	TRIBUTION LIST

LIST OF TABLES

1.	THRUST REQUIRED AND FUEL FLOW VERSUS VELOCITY 20
2.	THRUST REQUIRED AND FUEL FLOW DEVIATION
3.	DRAG INDEX VS K1
4.	THRUST REQUIRED DEVIATION AT DI 20
5.	THRUST REQUIRED DEVIATION AT DI 60
6.	THRUST REQUIRED DEVIATION AT DI 80
7.	MILITARY THRUST FOR DIFFERENT ALTITUDES43
8.	FUEL FLOW FOR DIFFERENT ALTITUDES47
9.	FUEL FLOW FOR DIFFERENT DRAG INDEXS
10.	FUEL FLOW FOR DIFFERENT GROSS WEIGHTS47
11.	THRUST REQUIRED FOR EACH SPEED
12.	THRUST REQUIRED AND FUEL FLOW AT BASE LINE CONDITION
13.	THRUST REQUIRED AND FUEL FLOW WITH GROSS WEIGHT VARISTION
14.	K1 VALUE VERSUS DRAG INDEX63
15.	THRUST REQUIRED AND FUEL FLOW WITH DRAG INDEX VARIATION
16.	THRUST REQUIRED AND FUEL FLOW WITH ALTITUDE VARIATION
17.	THRUST REQUIRED AND FUEL FLOW WITH ALL CONDITIONS VARIATION

LIST OF FIGURES

2.1	Airplane Thrust and Power Required
2.2	Effect of Weight on Thrust and Power Required
2.3	Effect of Equivalent Parasite Area, f, Thrust and Power Required 18
2.4	Effect of Altitude on Thrust and Power Required
2.5	Fuel Flow Required for Velocity
2.6	Thrust Required for Velocity
2.7	Maximum Endurance Mach Number
2.8	Maximum Endurance Fuel Flow
2.9	Thrust Required for Velocity with Various K1
2.10	Drag Index versus K1
2.11	Drag Index versus Modified K1
2.12	Typical Airplane Drag Curve
2.13	Variation of Cd in Transonic region
2.14	Temperature, Pressure, Density against Geopotential H
2.15	Military Thrust against Altitude
2.16	Relationship between Fuel Flow and Altitude
2.17	Fuel Flow versus Drag Index
2.18	Fuel Flow versus Gross Weight
3.1a	Thrust Required at Base Line condition
3.1b	Fuel Flow at Base Line condition
3.2a	Thrust Required with Gross Weight variation
3.2b	Fuel Flow with Gross Weight variation
3.3	K1 value versus Drag Index
3.4a	Thrust Required with Drag Index variation
3.4b	Fuel Flow with Drag Index variation
3.5a	Thrust Required with Altitude variation
3.5b	Fuel Flow with Altitude variation
3.6a	Thrust Required with All Condition variation

3.6b	Fuel Flow with All Condition variation	78
3.7	Diagram for Desired Fuel Flow	81

ACKNOWLEDGEMENTS

I am heartily thankful to my God and wish to express my appreciation to the Korean Air Force for the opportunity to study. Sincere thanks to Professor Donald M. Layton for his support and guidance. Without his support my effort would never have been completed.

My appreciation is also extended to my wife, Ho Jung and many individuals who prayed for me.

I. INTRODUCTION

A. BACKGROUND

A pilot must be furnished with flight performance information for his aircraft that will permit him to operate the aircraft efficiently at different airspeeds, different altitudes, different values of gross weight and different external loadings.

This information is collated from a combination of theoretical determinations and flight test data and presented to the pilot in a flight handbook in either a tabular format or in a series of graphs, or in combinations of these methods.

B. FUEL FLOW RATE

Probably the most important parameter in optimal performance of an aircraft is the rate at which fuel is consumed. It is obvious that when the fuel is exhausted the aircraft will no longer fly, so the pilot is very interested in the rate at which the fuel is being consumed. But also of importance is the fact that as the fuel is burned the weight of the aircraft is decreased and the performance of the aircraft is changed. It is therefore quite important that the pilot be able to forecast the rate of fuel consumption for each portion of each flight.

Fuel flow rate for a turbo-jet aircraft is a direct function of the thrust required for the specified flight condition, and in equilibrium flight thrust required is equal to the total drag of the aircraft.

C. TOTAL DRAG

The total drag of an aircrast in equilibrium slight may be subdivided into induced drag (the drag associated with the generation of list) and parasite drag (the drag associated with the resistance of the susual to motion through the air). The induced drag is a function of the altitude of the aircrast (air density) and the weight of the aircrast, and the parasite drag is also a function of the altitude as well as being a function of the profile drag of the aircrast. The aircrast drag, which varies with the configuration and external loading (weapons, such tanks, et cetera) is usually expressed in terms of a Drag Index (DI), with the zero Drag Index usually being a measure of the drag of the aircrast in the 'clean' configuration.

D. THRUST

Although it is the thrust of the engines that provides the per state turbo-jet aircraft, as long as there is sufficient thrust available to provide performance, the pilot is more interested for the flight planting in the fuel is

E. FLIGHT PLANNING

To plan a flight, the pilot must determine what will be the loading of the arrival (gross weight) and what effect this loading will have on the drag (Drag Indexed Pipilot then enters the flight handbook to determine the fuel flow rate for the arrival and altitude at which he desires to fly.

If the gross weight, Drag Index and airspeed are exactly the same as values as the in the handbook tables or exactly the same as the valued on the graphical lines, the determination of the fuel flow rate is simply a matter of reading (correctly) the values from the information present in the handbook.

If, however, any of the input parameters are not identical to the handbook data points, the pilot must interpolate between the values presented. If weight, Drag Index, airspeed and altitude are all off-presentation points, the pilot may be forced to do several cross interpolations. This may even involve interpolations between values listed on different pages. Not only is this a time consuming and difficult task, but the possibility for error is expanded with each interpolation.

II. APPROACH TO THE PROBLEM

A. STATEMENT OF THE PROBLEM

A method was sought that would permit the pilot to rapidly obtain the fuel flow rate for various flight combinations of gross weight, Drag Index and airspeed. And, regardless of the ease of access to the information and completeness of the data obtained, this method must provide fuel flow rate at the same degree of accuracy as the flight handbook.

In addition, it was planned that the method of data retrieval should be as simple as possible with an ultimate goal of using a hand-held computer for the solutions.

B. BASE LINE APPROACH

The standard method of using the flight handbook is for the pilot to search and follow several lines and tables of the handbook to determine the required fuel flow rate. This requires that altitude, gross weight and Drag Index must be considered, but this method is too long, takes too much effort and is open to errors.

The procedure can be simplified by computerizing the flight manual. Most attempts at this method have involved the development of curve-fitting routines that will supply numerical modeling of the handbook data. Although the end use of these equations is quite rapid, the development of these routines is a long and arduous task. Inasmuch as each equation usually fits only a small part of the data, the computer programs for such a method are usually quite lengthy.

The approach undertaken in this project was the use of the equations for an 'IDEAL' aircraft to develop simplified equations that can be used in a short computer program.

Three steps were undertaken in the development of these equations:

- a) The fuel flow rate data in the handbook is converted to thrust required.
- b) The thrust required equations are adjusted so that they represent the actual aircraft.
- c) The corrected thrust required equations are then reconverted to flow rate as the program output.

C. DETAILED METHODS

1. Concept of K₁ and K₂

Determinations are made for equilibrium, unaccelerated conditions where drag equals thrust.

The basic drag equations for an ideal aircraft are used [Ref. 1:p. 160]

$$C_D = C_{D_0} + C_{D_i}$$

$$C_{D_i} = C_L^2 / \pi e AR$$

$$D = (1/2)\rho V^2 S C_D$$

All of the principal items of flight performance involve steady state flight conditions and equilibrium of the airplane. For the airplane to remain in steady level flight, equilibrium must be obtained by a lift equal to the airplane weight. And the airplane drag equals the thrust required to maintain steady level flight.

The total drag of the airplane is the sum of the parasite and induced drag. Parasite drag is the sum of pressure and friction drag which is due to the basic configuration and, as defined, is independent of lift. The equation of parasite drag can be expressed as a function of squared velocity.

$$D_o = (1/2)C_{D_o} \rho S V^2$$

Let $K_1 = (1/2)C_{D_o} \rho S$
 $D_o = K_1 V^2$

Induced drag is the undesirable but unavoidable consequence of the development of lift.

In the airfoil, the local lift vector is aligned perpendicular the the local relative wind and hence is inclined behind the vertical by the angle α . Consequently, there is a component of the local lift vector in the direction of V_{∞} ; that is, there is a drag created by the presence of downwash.

This drag is defined as induced drag, denoted by D; [Ref. 1:pp. 152-155]

$$D_i = (1/2)\rho \ S \ V^2 \ C_{D_i}$$

$$C_{D_i} = C_L^2 / (\pi \ e \ AR)$$

$$D_i = (C_L)^2 / (2\pi \ e \ AR)\rho \ S \ V^2$$

=
$$[(2W/\rho S V^2)^2 / (2\pi e AR)] \rho S V^2$$

= $(4W^2 \rho S V^2) / (\rho^2 S^2 V^4 \pi e AR)$
= $[(2W^2) / (\rho S \pi e AR)](1/V^2)$

If the whole item of right side except the squared velocity is changed to some constant, this equation can be expressed function of squared velocity.

Let
$$K_2 = (2W^2) / (\rho S \pi e AR)$$

 $D_i = K_2(1/V^2)$

While the parasite drag predominates at high speed, induced drag predominates at low speed. Figure 2.1 illustrates the variation with speed of the induced, parasite, and total drag for a specific airplane configuration in steady level flight.

The curve of drag or thrust required versus velocity shows the variation of induced, parasite, and total drag. Induced drag predominates at low speeds when the airplane is operated at maximum lift-drag ratio, $(L/D)_{max}$ the total drag is at a minimum and the induced and parasite drags are equal.

The effect of a change in weight on the thrust required is illustrated by Figure 2.2. The changes in the drag curves with variations of airplane weight, configuration, and altitude furnish insight for the variation of range, endurance, climb performance, etc., with these same items.

First, the primary effect of a weight change is a change in the induced drag at any given speed. Thus, the greatest changes in the curves of thrust and power required will take place in the range of low speed flight where the induced effects predominate. The changes in thrust and power required in the range of high speed flight are relatively slight because parasite effects predominate at high speed. The induced effects at high speed are relatively small and changes in these items produce a small effect on the total thrust required. [Ref. 2:p. 99]

Second, Figure 2.3 illustrates the effect on the curve of thrust required of a change in the equivalent parasite area f of the configuration. Since parasite drag predominates in the region of high flight speed, a change in f will produce the greatest change in thrust and power required at high speed. Since parasite drag is relatively

THRUST REQUIRED VS VELOCITY

Figure 2.1 Airplane Thrust and Power Required.

SERVICE STREET, PRODUCT SERVICES

EFFECT OF WEIGHT CHANGE

Figure 2.2 Effect of Weight on Thrust and Power Required.

small in the region of low speed flight, a change in f will produce relatively small changes in thrust required at low speeds. The principal effect of a change in equivalent parasite area of the configuration is to change the parasite drag at any given airspeed. [Ref. 2:p. 101]

Third, a change in altitude can produce significant changes in the curves of thrust required. The effect of altitude on these curves provide a great part c the explanation of the effect of altitude on range and endurance. [Ref. 2:p. 101]

Figure 2.4 illustrates the effect of a change in altitude in the curves of thurst required for a specific airplane configuration and gross weight. As long as compressibility effects are negligible, the principal effect of increased altitude on the curve of thrust required is that specific aerodynamic conditions occur at higher true airspeeds.

As being investigated above, the total drag, same as thrust required, is the function of squared velocity with different constant.

Total drag equation is

D =
$$K_1 V^2 + K_2 / V^2$$

where $K_1 = C_{D_0} \rho S$
 $K_2 = (2 W^2) / (\rho S \pi e AR)$

The first step of this project is to determine the K_1 and K_2 values to obtain the thrust required. It can be seen that the K_1 is the function of altitude and drag index, K_2 is the function of gross weight and altitude. So if K_1 and K_2 values can be computed with any flight condition, the thrust required will be solved at any airspeed.

2. Determining the K₁

To determine the K₁, use the minimum drag concept.

At the minimum drag point, the airplane can be flown maximum endurance and the induced drag and parasite drags are the same.

The first step for determine the K_1 is to investigate the thrust equation. The thrust equation can be established with fuel flow for each airspeed and some factor C.

$$THRUST = FUEL FLOW x C$$

Since the fuel flow of the turbojet powered airplane is proportional to the airspeed, the thrust required is proportional to the fuel flow.

EFFECT OF PARASITE AREA CHANGE

Figure 2.3 Effect of Equivalent Parasite Area,f, Thrust and Power Required.

EFFECT OF ALTITUDE CHANGE

reported between accesses to the second

Figure 2.4 Effect of Altitude on Thrust and Power Required.

MANAGEMENT OF STATES OF THE RESIDENCE OF THE STATES OF THE

The factor C is the value of the military power devided by fuel flow at military thrust.

C = MILITARY THRUST / FUEL FLOW (at military thrust)

The military thrust and fuel flow information for any condition can be obtained from NATOPS FLIGHT MANUAL. With this factor C, the thrust required for each speed can be computed by fuel flow, came from NATOPS FLIGHT MANUAL, multiplies factor C. Table 1 and Figures 2.5 and 2.6 show the relationship and the result between thrust and velocity.

TABLE 1
THRUST REQUIRED AND FUEL FLOW VERSUS VELOCITY

ELOCITY(KTAS)	FUEL FLOW(LBS/H)	THRUST REQUIRED(LBS)
360 400	7,725	6,558 7,652
440	10,623 12,462	9,018 10,579
480 520 560 600	14,65 <u>2</u> 17,377	i 2,438 14,752
600 MIL	21,393 25,680	18,160 21,800

Thus

Thrust required = 0.84891 x Fuel Flow

Maximum endurance speed at specific gross weight, altitude, and drag index can be figured out with the graph of maximum endurance mach number in NATOPS MANUAL Figure 2.7. This true mach number needs to be transferred to KTAS to substitute into the drag equation.

Next step is to compute the minimum drag.

Minimum drag can be computed from the fuel flow at maximum endurance multiplied by the factor C. The maximum endurance fuel flow can be obtained from the NATOPS MANUAL Figure 2.8.

And so the minimum drag is the twice of the parasite drag.

$$D_{total} = 2D_i = 2D_o = T_{min}$$

Figure 2.5 Fuel I-low Required for Velocity.

on bedeed in secretal recessor resident bedeed

Substitution in the substitution of the substitution in the substi

Figure 2.6 Thrust Required for Velocity.

MAX ENDURANCE MACH NUMBER

Figure 2.7 Maximum Endurance Mach Number.

MAX ENDURANCE FUEL FLOW

Figure 2.8 Maximum Endurance Fuel Flow.

Thus the drag equation can be expressed.

$$T_{min} / 2 = D_o = (1/2) C_{D_o} \rho S V^2$$

where ρ = density at given altiude
 V = velocity at minimum drag
 S = wing area of specific airplane

 C_{D_0} can be obtained from the above equation, because all values except C_{D_0} are known, and the drag equation is a function of squared velocity with the known C_{D_0} .

The total value of right side except V^2 is the desired constant K_1 .

3. Determining the K2

The procedure to compute K_2 is just similar to that for computing K_1 . It is convenient to use the same minimum drag concept. At the minimum drag point, the minimum thrust required is twice the induced drag amount.

Use the same maximum endurance velocity and minimum thrust required. The induced drag equation is

$$D_i = T_{min} / 2$$

= $(2W^2) / (\pi e AR \rho S)(1/V^2)$
where $w = Gross$ weight of specific airplane
 $s = Wing$ area of specific airplane
 $\rho = Air$ density at given altitude
 $v = Maximum$ endurance velocity

Since the minimum thrust required and all items of the right side are known value except $1/\pi$ e AR, the value of $1/\pi$ e AR can be solved easily. After obtained the $1/\pi$ e AR value, substitute this value into the above induced drag equation, and calculated the numerical value of the right side except the $1/V^2$. This numerical value is just the desired constant K_2 value.

But if the raw K_1 and K_2 values are used to compute the thrust required, there will exist a deviation of more than 10 percent at high speed. Therefore one needs to modify the K_1 and K_2 to fit the curve to the FLIGHT MANUAL data.

The fitting method used in this project is the trial and error method. The Table 2 and Figure 2.9 illustrates the difference between the modified and raw value of K_1 , K_2 .

TABLE 2
THRUST REQUIRED AND FUEL FLOW DEVIATION

ALTITUDE	0	FT GROSS WEIGHT	НТ	40,000 LBS		DRAG INDEX	20
	THRUST	21,800	LBS			1	
MILITARY	FUEL FLOW	25,680	гвз/н	THRUST	FUEL	FUEL FLOW x 0	0.84891
AIR SPEED	FUEL FLOW	THRUST (LB)	THRUST	THRUST REQUIRED (CAL')	۲.)	DEVIATION	(8) NC
(KTS)	(LBS/H)	HAND BOOK	RAW K	MODIFIED	УК	RAW K	MODIFIED K
360	7,725	6,558	6,125	5 6,507	07	9.9 -	-0.8
400	9,014	7,652	7,083	3 7,804	0.4	- 7.4	1.9
440	10,623	9,018	8,220	0 9,275	75	8.8 -	2.8
480	12,462	10,579	9,518	8 10,912	12	-10.0	3.1
520	14,652	12,438	10,966	6 12,708	80	-11.8	2.2
260	17,377	14,752	12,558	8 14,754	54	-14.9	0.0
009	21,393	18,160	14,286	6 18,007	07	-21.3	-0.8
		FUEL FLOW		2,600			(LBS/H)
MAXIMUM	MAXIMUM ENDURANCE	THRUST (MINIMUM)	MUM)	2,600 x 0	0.84891 =	= 4,754	(LB)
		AIR SPEED		248			(KTAS)
RAW	K	0.0135	X	MODIFIED	K ₁	0.01614	14
	K ₂	4.1755×10 ⁸			K2	2.0×10^{8}	108

Ligure 2.9 Hitust Required for Velocity with Various K1.

PROPERTY THE STANDARD OF THE SECTION OF THE SECTION

Figure 2.10 Drag Index versus K1.

4. Relationship between K₁, K₂ and Variation Factors

Next consideration is to make the equations of K_1 and K_2 functions of drag index, altitude and gross weight.

Since the K_1 is the function of drag index and air density, K_1 will be changed by different drag index and different altitude. Thus it is needed to develop a relationship of K_1 with the drag index and altitude.

To accomplish this, it is convenient to select some reference altitude and gross weight, because the relationship of K_1 and drag index is independent of altitude and gross weight. Each K_1 value for every drag index can be calculated with the previous procedure. After calculation of all of the K_1 values, a graph of K_1 versus drag index is plotted to find the relationship.

In this project, the altitude and gross weight are selected to standard sea level and 40,000 lbs. The final values and relationships are shown in Table 3 and Figure 2.10.

TABLE 3
DRAG INDEX VS K1

Drag Index	K ₁
$\overset{0}{20}$	0.011534 0.013335
40 60	0.014807 0.016780
80 100	0.018480
ĪŽÕ	0.022361

Fortunately, as can be seen in the result of the graph, the relationship between K_1 and the drag index is linear. So the equation K_1 as a function of drag index is

$$K_1 = (0.0115 + 0.0001 \text{ x Drag Index})$$

In this equation, the most important thing is the slope of the graph, because the starting value of K_1 was modified to fit the published data.

The K_1 equation with modified starting value of K_1 is

$$K_1 = (0.014 + 0.0001 \text{ x Drag Index})$$

This equation was verified by calculating the drag at each speed. The results are shown in Tables 4, 5, 6.

TABLE 4
THRUST REQUIRED DEVIATION AT DI 20

ALTITUDE	0 I	T	GROSS WE	EIGH	T	40,	000 LBS	D.I	20	
	THRUST	21,800 LB								
MILITARY	FUEL FLOW	25	5,680 LB/H		łRU	ST	FUEL FI	LOW x (1.8489	
AIR SPEED	FUEL FLOW	T	HRUST (LE	3) 1	HR	UST	(LB)	DEVI	ATION	
(KTS)	(LBS/H)	H.	AND BOOK		CAL	CULA	ATION	(%)	
360	7,725		6,558			6,4	56	-1	. 5	
400	9,014		7,652			7,7	41	1	. 2	
440	10,623		9,018			9,1	98	2.0		
480	12,462		10,579		10,819		19	2.3		
520	14,652		12,438		12,600		00	1.3		
560	17,377		14,752		1	14,536 -1.5		.5		
600	21,393		18,160		1	6,6	,625 -8.5		.5	
		FUEL FLOW			5,600		5,600	(LBS/H)		
MAXIMUM ENDURANCE			THRUST (min) 4,754		1,754	(LB)				
_			AIR SPEED 248		248	(KTAS)				
	AV AF *	К ₁			$0.014+0.0001 \times 20 = 0.016$.016	
VARIATI	ON OF K	K ₂ 2.0 x 10 ⁸								

From Tables 4, 5, 6, the following can be observed.

First, the thrust required, i.e., calculated drag, is almost same as published data at low drag index range, but the thrust required is much less than published data at high drag index range.

TABLE 5
THRUST REQUIRED DEVIATION AT DI 60

ALTITUDE	0 F	FT GROSS WEI			T 40,	000 LBS	D.I	60		
	THRUST	21,800 LB				FUEL FLOW x 0.892				
MILITARY	FUEL FLOW	24,425 LB/H			RUST			0.8925		
AIR SPEED	FUEL FLOW	Т	HRUST (LB) T	HRUST	(LB)	DEVIATION			
(KTS)	(LBS/H)	HAND BOOK			ALCULA	ATION	(%)			
360	9,286	8,288			7,9	35	- 4.3			
400	10,980	9,800			9,5	66	- 2.4			
440	13,118	11,708			11,4	07	- 2.6			
480	15,539	13,369			13,4	49	- 3.0			
520	18,662	16,656			15,6	86	- 5.8			
560.	23,639		21,090		18,1	15	-14.1			
600										
MAXIMUM ENDURANCE			UEL FLOW		6,	200	(LBS/H)			
			HRUST (mi	n)	5,	534	(LB)			
			IR SPEED		24	0	(KTAS)			
VARIATION OF K			К ₁		$0.014+0.0001\times60 = 0.02$					
			К ₂	2	2.0 x 10 ⁸					

Second, in all drag index ranges, the thrust required is much less than published data at high air speed range (approximately above Mach number 0.8).

To compensate for the first problem, that is low thrust required in high drag index range, it is needed to increase the K_1 value, but the thrust required value is

TABLE 6
THRUST REQUIRED DEVIATION AT DI 80

ALTITUDE	o F	T GROSS WEI			GHT 40,000 LBS			D.I	80	
MILITARY	THRUST	2	21,800 LB							
	FUEL FLOW	23	TH	THRUST		FUEL FLOW x 0.916		.9165		
AIR SPEED	FUEL FLOW	THRUST (LB) THRUST (LB)				(LB)	DEVIATION			
(KTS)	(LBS/H)	HAND BOOK			CALCULATION			(%)		
360	10,104	9,261			8,674			- 6.3		
400	12,094	11,085			10,479			- 5.5		
440	14,487	13,278			12,512			- 5.8		
480	17,419	15,965			14,763			- 7.5		
520	21,477			17,228			-12.6			
560.										
600										
MAXIMUM ENDURANCE			FUEL FLOW			6,650			(LBS/H)	
			THRUST (min			6,003			(LB)	
		AIR SPEED			238			(KTAS)		
VARIATION OF K			K ₁		0.014+0.001x80 = 0.022					
			K ₂ 2			2.0 x 10 ⁸				

slightly larger than the published data. The way to compensate in both the low and high drag index range is to increase the slope of the K_1 equation and to decrease the starting value.

The modified equation of K₁ is

$$K_1 = (0.0135 + 0.000132 \text{ x Drag Index})$$

And the change of K₁ equation can be illustrated in Figure 2.11.

The second problem, that the thrust required is much less than the FLIGHT MANUAL data in the speed range higher than Mach number 0.8, can be illustrated as the airplane reaches very high flight speeds, the drag rises in a very rapid fashion due to compressibility. Since the generalized equation for parasite drag does not account for compressibility effects, the actual dr g rise is typified by the dashed line in Figure 2.12.

This phenomenon can be investigated from the viewpoint of drag coefficient. The lift and drag coefficients vary with the Mach number, however, the drag coefficient for a fixed value of lift coefficient does not change until the drag-divergence Mach number is reached, at which time the drag coefficient increases sharply. If wind-tunnel tests of a model of the airplane to be analyzed have been conducted, curves of drag coefficient against Mach number for various values of lift coefficient will be available as shown in Figure 2.13.

Drag data above the divergence Mach number cannot be calculated with precision, and to achieve any accuracy at all, wind-tunnel tests or other empirical data must be relied on. It is noted that even wind-tunnel data may not be reliable in the transonic range, and therefore performance guarantees in the transonic range, based purely on wind-tunnel data and/or calculations, cannot be considered completely dependable.

In most instances, the lift-drag relation may be expressed in an analytic form such as

$$C_D = C_{D_0} + C_L^2 / \pi e AR$$

in which case performance characteristics may be analytically determined if similar analytical expression for power available can be written.

The equation

$$C_D = C_{D_0} + C_L^2 / \pi e AR$$

applies to most aircraft through the Mach number range of 0 to about 4 and a $\rm C_L$ range from 0 to 0.6, for both trimmed and untrummed conditions, however, $\rm C_{D_0}$ and e

Figure 2.11 Drag Index versus Modified K1.

AIRPLANE DRAG VS VELOCITY

Figure 2.12 Typical Airplane Drag Curve.

become functions of Mach number above Mach numbers of about M=0.8. For supersonic aircraft the value of C_{D_0} increases by a factor of 2 to 3 through the transonic region and thereafter generally exhibits a slight decrease. [Ref. 3:pp. 275-278] The span efficiency factor e shows a steady decrease from M=0.8 to about M=2.0 and thereafter remains almost constant at about 50 to 60% of its low speed value. From M=0.8 to M=1.2 the parasite drag curve quite closely resembles a \sin^3 curve, and for approximation analysis may be represented by the following equation

DRAG COEFFICIENT IN TRANSONIC

Figure 2.13 Variation of Cd in Transonic region.

$$C_{D_0} = C_{D_{00}} + (C_{D_{0m}} - C_{D_{00}}) \sin^3 [(M-0.8)/0.8]$$

where $C_{D_{0m}} = \text{maximum value of parasite drag coefficient}$
 $C_{D_{00}} = \text{minimum low speed value of parasite drag coefficient.}$

The variation of e may normally be fitted by the polynomial

$$e = e_0 - e_2 (M - 0.8)^2 + e_3 (M - 0.8)^3$$

where $e_0 = low$ speed value of e_2 , $e_3 = constants$ which depend on the airplane.

With the above theory and parasite drag equation, it is possible to make the drag equation between the Mach number M.8 to M 1.2.

$$D_0 = (1/2) \rho S C_{D_0} V^2$$

at above Mach number M.8, where Mach Drag exist,

$$\begin{split} D_o &= (1/2)\rho \ S \ [C_{D_{oo}} + (C_{D_{om}} - C_{D_{oo}}) \sin^3 \{(M-0.8) \cdot 0.8\} \] \ V^2 \\ K_1 &= (1/2) \rho \ S \ C_{D_o} \\ D_o &= [K_1 + K_1 / C_{D_{oo}} (C_{D_{om}} - C_{D_{oo}}) \sin^3 \{(M-0.8)/0.8\} \] \ V^2 \\ &= K_1 \left[1 + (C_{D_{om}} - C_{D_{oo}})/C_{D_{oo}} \sin^3 \{(M-0.8)/0.8\} \] \ V^2 \end{split}$$

Since K_1 and K_2 are function of air density, it must be considered altitude correction factor of the changing altitude. [Ref. 4]

First consideration is the lapse rate and vertical temperature structure for the standard atmosphere.

The adopted value for the lapse rate(-dT/dH = a) in the troposphere is the following constant

a) In terms of standard geopotential meters

$$a = 0.0065^{\circ} \text{C m}^{-1}$$

b) In terms of standard geopotential feet (a)

$$a = 0.00356616$$
°F ft⁻¹

c) In terms of the c.g.s. unit of H

$$a = 6.628155 \times 10^{-8} \text{ °C cm}^{-2} \text{ sec}^{-2}$$

Accordingly in the troposphere

$$T = T_0 - aH (b)$$

where a,H and To are in consistent unit

Second consideration is the relationship between pressure and vertical displacement.

The following relationships are to be understood as expressed in any system of consistent units.

The air is assumed to obey the perfect gas law, which, in the c.g.s system of units, may be written as

$$\rho = (1/R)(P/T) \tag{c}$$

where

p density of air, gm cm⁻³

p pressure, dynes cm⁻²

T absolute temperature, °K

R gas constant for 1 gram of dry air, ergs gm⁻¹ {°K}⁻¹

And the air is assumed also to be in gydrostatic equilibrium and to satisfy the differential equation

$$dp = -g dz (d)$$

where, in c.g.s units,

P pressure, dynes cm⁻²

ρ density (specific mass), gm cm⁻³

Z vertical distance, cm

g gravitational acceleration, cm sec-2

The vertical displacement is herein expressed in units of geopotential. Geopotential is defined in differential form by the equation

$$G dH = g dz$$
 (e)

where

Z altitude measured positively upwards at a point

g positive (absolute numerical) value of the acceleration due to gravity at the point

H geopotential at the point

G dimensional constant, the amount of which determines the magnitude of the unit of H in terms of length and time.(the dimension of G are in units of gZ per unit of H.)

Substituting equation (b) in equation (c), equation (e) in equation (d), and combining the results gives

$$dP/P = G/R (-dH/T_0 - aH)$$

=
$$G/aR d(T_0 - aH)'(T_0 - aH)$$

Intergrating the right-hand member between limits of 0 and H gives

$$\ln(\ P/P_o\) = G/aR \ln(\ T_o - aH/T_o\)$$
 Let
$$n = G/aR$$
 Then
$$P/P_o = (T_o - aH/T_o\)^n = (\ T/T_o\)^n \qquad (f)$$

From equation (f), using the consistent numerical values of G,a,and R n = 5.2561 (dimensionless)

The Figure 2.14 shows the relationship between temperature, pressure, density and altitude.

With several equation investigated in above, the useful relationship between temperature, pressure change and vertical displacement.

For this project, the useful relationships are written as

$$T/T_0 = 1 - 6.875 \times 10^{-6} \text{ H}$$

 $P/P_0 = (1 - 6.875 \times 10^{-6} \text{ H})^{5.2561}$
 $T = 518.688 \times (1 - 6.875 \times 10^{-6} \text{ H})$
 $a^2 = 1.4 \times 1714.87 \times T$

Finally the relationship between density of air and vertical displacement is

$$\rho/\rho_{O} = (P/RT)/(P_{O}/R_{O}T_{O})$$
$$= (P/P_{O})(T_{O}/T)$$

And it can be seen by computing several cases that the effect of changing altitude becomes larger than normal density changing ratio.

Let
$$K_Q = (\rho/\rho_0)^{1.2}$$

Then, K_1 is proportional to the K_9 and K_2 is inverse proportional to the K_9 .

As was shown in previous equations, K_2 is proportional to the squared gross weight, and the effect of changing gross weight becomes larger than normal gross weight changing ratio, same as altitude change. Thus, if there was a specific reference value of K_2 for specific gross weight, the relationship between arbitrary gross weight and reference gross weight can be made easily as

SPECIFIC VARIATION VS ALTITUDE

. .

PARTY SUCCESSION REPORTS SECTION

Ligure 2.14 Temperature, Pressure, Density against Geopotential II.

$$K_2 = K_{2ref} (W W_{ref})^{2.7}$$

With given three specific conditions, i.e. altitude, gross weight and drag index, the thrust required can be computed for any airspeed condition with equations shown above. K_1 and K_2 values can be computed with specific altitude, gross weight and drag index, and the thrust required for any air speed can be computed with K_1 and K_2 .

The final goal of this project is to compute the fuel flow rate for some given condition, i.e. specific altitude, gross weight, drag index and air speed. The fuel flow is thrust required devided by factor C. The factor C is the value that military power devided by fuel flow of that time, as was shown in previous step.

C = MILITARY THRUST FUEL FLOW (at military thrust)

5. Factor C

To compute factor C, it is necessary to find the relationship military thrust change for different altitude and fuel flow change. This is done in two steps.

a. Computing the military thrust

Altitude is one factor which strongly affects the performance of the turbojet engine. An increase in altitude produces a decrease in density and pressure and, if below the tropopause, a decrease in temperature. If a typical nonafterburning turbojet engine is operated at a constant RPM and true airspeed, the variation of thrust and specific fuel consumption with altitude can be approximated from Figure 2.14. The variation of density in the standard atmosphere is shown by the values of density ratio at various altitudes. Typical values of the density ratio at specific altitudes are as follows

Altitude, ft:	Density ratio
Sea level	1.0000
5,000	0.8617
10,000	0.7385
22,000	0.4976
35,000	0.3099
40,000	0.2462
50,000	0.1532

If the fixed geometry engine is operated at a constant V(TAS) in subscrite flight and constant N(RPM) the inlet velocity, inlet ram, and compressor pressure

ratio are essentially constant with altitude. An increase in altitude then causes the engine air mass flow to decrease in a manner very nearly identical to the altitude density ratio. Of course, this decrease in mass flow will produce a significant effect on the output thrust of the engine. Actually, the variation of thrust with altitude is not quite as severe as the density variation because favorable decreases in temperature occur. The decrease in inlet air temperature will provide a relatively greater combustion gas energy and allow a greater jet velocity. The increase in jet velocity somewhat offsets the decrease in mass flow. Of course, an increase in altitude provides lower temperatures below the tropopause. Above the tropopause, no further favorable decrease in temperature takes place so a more rapid variation of thurst will take place. The approximate variation of thrust with altitude is represented by Figure 2.15 and can be computed with the equation as follows

$$T_{avail} = T_{ssl} \delta \quad \sigma^{(1/2)}$$
where
$$\delta = P_{alt} / P_{ssl}$$

$$\sigma = \rho_{alt} / \rho_{ssl}$$

Some typical values at specific altitudes are as follows

Altitude, ft:	Ratio of (Thrust at altitude/thrust at SSL)
Sea level	1.0000
5,000	0.8960
10,000	0.8003
15,000	0.7114
20,000	0.6296
25,000	0.5544
30,000	0.4855

Since the change in density with altitude is quite rapid at low altitude, turbojet takeoff performance will be greatly affected at high altitude. Also note that the thrust at 35,000 ft. is approximately 39 percent of the sea level value.

The thrust added by the afterburner of a turbojet engine is not affected so greatly by altitude as the basic engine thrust. The use of afterburner may provide a thrust increase of 50 percent at low altitude or as much as 100 percent at high altitude. [Ref. 2 pp. 119-121]

When the inlet ram and compressor pressure ratio is fixed, the principal factor affecting the specific fuel consumption is the inlet air temperature. When the inlet air temperature is lowered, a given heat addition can provide relatively greater changes in pressure or volume. As a result, a given thrust output requires less fuel flow and the specific fuel consumption is reduced. While the effect of altitude on specific fuel consumption does not compare with the effect on thrust output, the variation is large enough to strongly influence a typical variation of specific fuel consumption with altitude. Generally, the specific fuel consumption decreases steadily with altitude until the tropopause is reached and the specific fuel consumption at this point is approximately 80 percent of the sea level value.

Above the tropopause the temperature is constant and altitude slightly above the tropopause causes no further decrease in specific fuel consumption. Actually, altitudes much above the tropopause bring about a general deterioration of overall engine efficiency and the specific fuel consumption begins an increase with altitude. The extreme altitudes above the tropopause produce low combustion chamber pressures, low compressor Reynolds Numbers, low fuel flow, etc, which are not conducive to high engine efficiency.

The available military thrust for this project with various altitude is shown on Table 7 and Figure 2.15.

TABLE 7
MILITARY THRUST FOR DIFFERENT ALTITUDES

Altitude (ft)	Military thrust (lbs)
Sea level 5,000 10,000 15,000 20,000 25,000	21,800 19,533 17,446 15,508 13,725 12,086
30,000	10.584

The appropriate equation for the curve is as follows

 $THRUST = 21,800 - 0.4 \times ALTITUDE$

b. Computing the fuel flow at military thrust

There are three effective factors required to change the fuel flow. One is altitude, another is drag index, and the other is gross weight. To get an appropriate

Figure 2.15 Military Thrust against Altitude.

fuel flow equation as a function of altitude, drag index and gross weight, find the relationship between fuel flow and each effective factor, then combine the relationship totally.

(1) Relationsnip between fuel flow and altitude.

According to the NATOPS FLIGHT MANUAL data, the fuel flow is decreasing gradually with increasing the altitude with other conditions constant. To find a relationship between fuel flow and altitude, specific drag index and gross weight are fixed, to select the available data. Table 8 and Figure 2.16 show the relationship when drag index and gross weight are fixed to zero and 40,000 lbs.

After curve-fitting, the fuel flow equation stated as follows

$$F_1 = 26,000 - 0.64 \text{ x Altitude}$$
 (at below 8,000 ft)
 $F_1 = 20,840 - 0.37 \text{ x (Altitude - 8,000)}$ (at above 8,000 ft)
where

F₁ = Fuel flow considered with different altitude

(2) Relationship between fuel flow and drag index.

According to the NATOPS FLIGHT MANUAL data, the fuel flow is decreased as the drag index increased. As was considered in step (1), a specific altitude and gross weight will be fixed to find the relationship between fuel flow and drag index.

Table 9 and Figure 2.17 show the relationship when altitude and gross weight are fixed to zero and 40,000 lbs.

To find the relationship between fuel flow and drag index with different altitude, the computed fuel flow from step (1) must be used. With above two variable coefficients, the fuel flow equation is

$$F_2 = F_1 - 16.65 \text{ x Drag Index}$$
 (at below Drag Index 20)
 $F_2 = (F_1 + 333.3) - 22.1 \text{ x Drag Index}$ (at above Drag Index 20)
where

 F_1 = Fuel flow came from step (1)

F₂ = Fuel flow considered with different altitude and drag index

(3) Relationship between fuel flow and gross weight.

According to the NATOPS FLIGHT MANUAL, the fuel flow decreased a small amount with increasing gross weight. To find the relationship

Figure 2.16 Relationship between Fuel Flow and Altitude.

TABLE 8
FUEL FLOW FOR DIFFERENT ALTITUDES

Altitude (ft)	Fuel Flow (lbs/hr)
Sea level	26,000
4,000	23,520
8,000	20,840
12,000	19,000

TABLE 9
FUEL FLOW FOR DIFFERENT DRAG INDEXS

Drag Index	Fuel Flow
0 20 40	26,000 25,680
60 80	23,110 24,425 23,785
100 120	23,225 22,745

TABLE 10
FUEL FLOW FOR DIFFERENT GROSS WEIGHTS

Grossweight (lbs)	Fuel Flow (lbs/hr)
35,000	26,000
40,000	26,000
45,000	25,995
50,000	25,990
55,000	25,985
60,000	25,980

between fuel flow and gross weight, a specific altitude and drag index must be selected as in the previous steps. Table 10 and Figure 2.18 show the relationship when altitude and drag index are fixed to standard sea level and zero.

It can be seen from Figure 2.18 that the relationship between fuel flow and gross weight is linear. The final equation of fuel flow with different three variables, i.e., altitude, drag index and gross weight, can be written as follows

$$F_3 = F_2 -0.002x(Gross weight-40,000)$$
 (at heavier than 40,000lbs)
 $F_3 = F_2$ (at lighter than 40,000 lbs)
where
 $F_2 = Fuel Flow came from step (2)$

Figure 2.17 Fuel Flow versus Drag Index.

Figure 2.18 Fuel Flow versus Gross Weight.

F₃ = Fuel Flow considered with different altitude, drag index and gross weight

Now the military thrust and fuel flow for any altitude, drag index and gross weight can be computed with the above step (1) and (2). The desired factor C can be computed with the military thrust and fuel flow.

Factor C = Military thrust/ Fuel Flow

To compute the fuel flow for any various specific condition is the final goal of this project. The fuel flow can be computed with thrust required, i.e. total drag, devided by factor C. The total drag and factor C had been computed in previous step already.

FUEL FLOW = THRUST REQUIRED / FACTOR C

With the above equation, it is possible to find the required fuel flow for different specific conditions without interpolating the flight manual data.

III. RESULT

A. BASE LINE CONDITION

Given condition

Gross weight

40,000 lbs

Drag Index

20

Altitude

Standard Sea Level

1. Converting velocity versus fuel flow to velocity versus drag

Military thrust (at sea level)

21,800 lb

Fuel flow (at military thrust)

25,680 lb/hr

Thrust = Fuel Flow x Factor C

C = Military thrust / Fuel Flow

at military thrust

C = 21,800/25,680 = 0.84891

The thrust required for each velocity can be computed by fuel flow times factor C(0.84891). The Table 11 shows the result.

TABLE 11
THRUST REQUIRED FOR EACH SPEED

VELOCITY(KTAS)	FUEL FLOW(LBS/H)	THRUST REQUIRED(LBS)
360	7,725	6,558
400	9,014	7,652
440	10,623	9,018
480	12,462	10.579
520	14,652	12,438
560	17,377	14,752
600	21,393	18,160
M.H.	25,680	21,800

2. Computing the minimum thrust and maximum endurance speed.

Maximum endurance speed can be obtained from maximum endurance Mach number graph in NAPTOPS FLIGHT MANUAL (see Figure 2.7). The maximum endurance Mach number is M 0.378. And maximum endurance fuel flow can be

obtained from the maximum endurance fuel flow graph in NATOPS MANUAL (see Figure 2.8).

The minimum thrust can be obtained from the maximum endurance fuel flow by multiplying with the factor C computed in step 1.

maximum endurance fuel flow;
$$5,600 \text{ lb/hr}$$

 $T_{\text{min}} = 5,600 \text{ x } 0.84891 = 4,753.9 \text{ lb}$

3. Computing the K₁

At maximum endurance speed, the thrust required is equal to the total drag, that is twice the induced drag or parasite drag, i.e. induced drag and parasite drag are the same at this point.

$$T_{min} = D_{total} = 2D_i = 2D_o$$

$$D_o = C_{D_o}(1/2)\rho V^2 A$$
where $D_o = 4,753.9 / 2 = 2,376.9 \text{ lb}$

$$\rho = 0.0023769 \text{ lb sec}^2/ft^4$$

$$V = 0.378 \text{ x } 1,116.4 \text{ ft/sec}$$

$$A = 530 \text{ ft}^2$$

$$C_{D_o} = 2D_o / (\rho V^2 A)$$

$$= (4,753.9)/(0.0023769 \text{ x } 422.18^2 \text{ x } 530)$$

$$= 0.02117183$$

$$D_o = (0.02117183)(1/2)(0.0023769)(530)V^2$$

$$= 0.01333 V^2$$
Thus $K_1 = 0.01333333$

4. Computing the K₂

Use the same concept as for K₁

$$T_{min} = D_{total} = 2D_i = 2D_o$$

$$D_o = 2W^2 / (\rho A V^2)(1/\pi e A R)$$

$$1/\pi e A R = 2W^2 / (\rho A V^2 D_i)$$

$$= (0.0023769)(530)(422.18)^2(2376.9)/(2 x 40000^2)$$

$$= 0.16677964$$

$$D_i = (2W^2/\rho A)(1/\pi eAR)(1/V^2)$$

= (2 x 40,000² ± 0.0023769 x 530)(0.16677964)(1/V²)

Thus

$$K_2 = 4.2365 \times 10^8$$
 $D_{total} = Thrust required = K_1 V^2 + K_2 V^2$

These K_1 and K_2 values are modified a little to fit the curve of hand book data by the trial and error method introduced in Chapter 2. Thus the thrust required equation can be written as

$$D = 0.01614V^2 + 2.0x10^8/V^2$$

But if there were no consideration about the Mach effects, the drag at high Mach number, i.e. greater than M 0.8, will be much less than the hand book data. C_D becomes a function of Mach number above Mach numbers of about M 0.8. In this region, the parasite drag curve quite closely resembles a \sin^3 curve, and for approximation analysis may be represented by the equation

$$C_{D_0} = C_{D_{00}} + (C_{D_{00}} - C_{D_{00}}) \sin^3 \{(M - 0.8)/0.8\}$$

Thus the drag equation between the Mach number M 0.8 and M 1.2

$$\begin{split} &D_o = 1/2 \, \rho S C_{D_o V} ^2 \\ &D_o = 1/2 \, \rho S \, [C_{D_{oo}} + (C_{D_{om}} - C_{D_{oo}}) \sin^3\{(M - 0.8)/0.8\}] \, V^2 \\ &K_1 = 1/2 \, \rho S C_{D_o} \\ &D_o = [K_1 + K_1/C_{D_{oo}} (C_{D_{om}} - C_{D_{oo}}) \, \sin^3\{(M - 0.8)/0.8\}] \, V^2 \\ &= K_1 [1 + (C_{D_{om}} - C_{D_{oo}})/C_{D_{oo}} \, \sin^3\{(M - 0.8)/0.8\}] \, V^2 \\ &= \text{where } \, C_{D_{om}} - C_{D_{oo}} = 0.55 \\ &C_{D_{oo}} = 0.018 \\ &D_o = K_1 [1 + 0.55/0.018 \, \sin^3\{(M - 0.8)/0.8\}] V^2 \end{split}$$

5. Converting to fuel flow from drag

Fuel flow for each velocity can be computed from thrust required, i.e. total drag, devided by factor C.

C = MILITARY THRUST FUEL FLOW (at military thrust)

Military thrust and fuel flow can be computed with the equation that found in Chapter 2.

Military thrust =
$$21,800 - 0.4 \times Altitude$$

= $21,800 - 0.4 \times 0$
= $21,800$

Fuel flow;

CONTRACT CON

$$F_1 = 26,000 - 0.64 \text{ x Altitude}$$

$$= 26,000 - 0.64 \text{ x 0}$$

$$= 26,000$$

$$F_2 = F_1 - 16.65 \text{ x Drag Index}$$

$$= 26,000 - 16.65 \text{ x 20}$$

$$= 25,667$$

$$F_3 = F_2 - 0.002 \text{ x (Gross weight - 40,000)}$$

$$= 26,667 - 0.002 \text{ x (40,000 - 40,000)}$$

$$= 25,667$$

Thus C = 21,800/25,667= 0.84934

Fuel flow = Thrust required / 0.84934

Table 12 and Figure 3.1 show the results of the calculation and deviation from hand book data.

B. **VARIATION NUMBER 1 - GROSS WEIGHT**

Given condition

Gross weight 50,000 lbs

20 Drag Index

Altitude Standard Sea Level

FABLE 12 THRUST REQUIRED AND FUEL 14 OW AT BASE LINE CONDITION

ALTITUDE						
	0 FT	GROSS WEIGHT	HT. 40,000	LBS	DRAG INDEX	20
MII I TABO	THRUST	21,800	I,B			
TWO I THE	FUEL FLOW	25,680	LBS/H	THRUST	гиер гром х 0.84891	0.84891
AIR SPEED	FUEL FLOW	(LBS/II)	THRUST RE	REQUIRED (LB)	DEVIAT	DEVIATION (8)
(KTAS)	HAND BOOK	CALCULATION	HAND BOOK	CALCULATION	THRUST	FUEL FLOW
360	7,725	7,662	6,557	6,508	-0.4	-0.8
400	9,014	9,188	7,652	7,804	2.0	1.9
440	10,623	10,920	9,018	9,275	2.8	2.8
480	12,462	12,847	10,579	116,01	3.1	3.1
520	14,652	14,962	12,438	12,708	2.2	2.1
260	17,377	17,371	14,751	14,754	-0.0	-0.0
009	21,393	21,201	18,160	18,007	-0.8	6.0-
		FUEL FLOW	5	2,600		(LBS/II)
MAXIMUM ENDURANCE	DURANCE	THRUST (MIN	(MINIMUM) 5	5,600x0.84891	= 4,754	(1.8)
		AIR SPEED	2	250		(KTAS)

233,223

CONTRACTOR CONTRACTOR CONTRACTOR

Ligure 3.1a Thrust Required at Base Line condition.

Figure 3.1b Fuel Flow at Base Line condition.

entrice between sometime contract

The gross weight is changed only from the base line condition. It is necessary to consider the change of K_1 and K_2 .

$$K_1 = 1/2 \rho C_{D_0} S$$

As you can see from the above equation, K_1 is independent of gross weight. Thus there was no change in K_1 .

But K_2 is a function of gross weight (as discussed in chapter 3).

$$K_2 = 2W^2/(\rho S \pi e AR)$$

It can be seen that the K_2 is proportional to the squared gross weight, but the effects of varing gross weight become more largely.

Thus
$$K_{250,0001b} = K_{240,0001b} (50,000/40,000)^{2.7}$$

= $2.0x10^8 \times (1.25)^{2.7}$
= 3.653×10^8
D = $0.0164V^2 + 3.653x10^8/V^2$

Military thrust = 21,800 lb

Fuel flow;

$$F_1 = 26,000 - 0.64 \text{ x Altitude}$$

= 26,000
 $F_2 = F_1 - 16.65 \text{ x Drag index}$
= 26,000 - 16.65 x 20
= 25,667
 $F_3 = F_2 - 0.002 \text{ x (Gross weight - 40,000)}$
= 25,667 - 0.002 x (50,000 - 40,000)
= 25,647
 $C = 21,800/25,647$
= 0.85

Fuel flow = Thrust required / 0.85

Table 13 and Figure 3.2 show the results of calculation and deviation from hand book data.

THRUST REQUIRED AND FUEL FLOW WITH GROSS WEIGHT VARISTION TABLE 13

	,	NOTICINIA THORAT COMO		111011111	MOHEINE	
ALTITUDE	O FT	GROSS WEIGHT	HT 50,000	oc LBS	DRAG INDEX	20
VA ATT TIM	THRUST	21,800	LB			
	FUEL FLOW	25,640	LBS/II	THRUST	FUEL FLOW x 0.85023	0.85023
AIR SPEED	FUEL FLOW	(LBS/H)	THRUST RE	THRUST REQUIRED (LB)	DEVIAT	DEVIATION (8)
(KTAS)	HAND BOOK	CALCULATION	HAND BOOK	CALCULATION	THRUST	FUEL FLOW
360	8,137	8,182	816'9	6,954	0.5	0.5
400	9,349	6,607	7,949	8,116	2.7	2.7
440	10,863	11,264	9,236	9,574	3.6	3.7
480	12,718	13,133	10,813	11,163	3.2	3.3
520	14,840	15,203	12,617	12,922	2.4	2.4
260	17,582	17,575	14,949	14,938	-0.1	-0.0
009	21,656	21,374	18,413	18,168	-1.3	-1.3
		FUEL FLOW	9	009'9		(LBS/H)
MAXIMUM ENDURANCE	NDURANCE	THRUST (MIN	(MINIMUM) 6,	6,600x0.85023 =	5,611	(ГВ)
		AIR SPEED	281			(KTAS)

Figure 3.2a Thrust Required with Gross Weight variation.

Figure 3.2b Fuel Flow with Gross Weight variation.

Foresteel (Section)

HOUSE PROTEST WASHING BYSHOOD JORGANIA

C. VARIATION NUMBER 2 - DRAG INDEX

Given condition

Gross weight 40,000 lbs

Drag Index 40

Altitude Standard Sea Level

If the drag index was changed from base line condition, what will be effect on the result? It is necessary to consider the K_1 and K_2 equation.

$$K_1 = 1/2 \, \rho SC_{D_0}$$

$$K_2 = 2W^2 / (\rho S\pi eAR)$$

As can be seen, K_2 is a function of gross weight, altitude, wing area and aspect ratio, not of drag index, thus K_2 was unchanged. But K_1 is a function of altitude, wing area and drag index. Thus the appropriate K_1 value can be computed with equation

$$K_{1}_{DI40} = K_{1}_{DI20} \times (K_{1}_{DI40}/K_{1}_{DI20})$$

Now it is necessary to find the relationship of K_1 between drag index 20 and drag index 40. Furthermore, if the relationship of K_1 between any drag index and reference drag index, the various K_1 for different drag index can be computed. To figure out the relationship of K_1 for each drag index, let us compute each K_1 value. The computing method is the same as introduced in the base line condition step.

$$T_{min} = 2D_{o}$$

$$D_{o} = 1/2 \rho SC_{D_{o}} V^{2}$$

$$C_{D_{o}} = 2D_{o}/(\rho SV^{2})$$

$$K_{1} = 1/2 \rho SC_{D_{o}}$$

For example

when DI = 0

$$D_o = T_{min}/2 = 4,443.8/2 = 2,221.9$$

$$C_{D_o} = 2(2,221.9)/(0.0023769x530x438.9^2)$$

$$= 0.018132$$

Thus

$$K_1 = 1/2 \rho SC_{D_0}$$

- $= 1/2 (0.0023769 \times 530 \times 0.018132)$
- = 0.011534

Table 14 and Figure 3.3 show the result and the relationship of K_1 for different drag index.

TABLE 14
K1 VALUE VERSUS DRAG INDEX

DI	С	MAXIMUM EN	DURANCE	THRUST (LB)		
		FUEL FLOW	KTAS	MINIMUM	C _{DO}	κ _l
0	0.8385	5,300	260	4,444	0.018	0.012
20	0.8489	5,600	250	4,754	0.021	0.013
40	0.8682	5,920	247	5,140	0.024	0.015
60	0.8925	6,250	241	5,578	0.027	0.017
80	0.9165	6,520	238	5,976	0.029	0.018
100	0.9386	6,800	233	6,383	0.033	0.021
120	0.9584	7,050	230	6,757	0.036	0.022

The K_1 of the base line condition was modified to fit the drag index. As you can see in Figure 3.3 and the investigation in Chapter 2, the relationship between K_1 and drag index is linear and the equation of K_1 , function of drag index is

$$K_1 = 0.0135 + 0.000132 \text{ x Drag Index}$$

Thus

$$K_{1DI40} = 0.0135 + 0.000132 \times 40$$

= 0.01878

Thrust required = $0.01878V^2 + 2x10^8/V^2$

Military thrust = 21,800 lb

Figure 3.3 K1 value versus Drag Index.

Fuel flow;

$$F_1 = 26,000$$
 $F_2 = (F_1 + 333.3) - 22.1 \text{ x Drag Index}$
 $= (26,000 + 333.3) - 22.1 \text{ x } 40$
 $= 25,449.3$
 $F_3 = F_2 - 0.002 \text{ x } (40,000 - 40,000)$
 $= 25,449.3$
 $C = 21,800/25,449.3$
 $= 0.8566$

Fuel flow = Thrust required/0.8566

Table 15 and Figure 3.4 show the results of calculation and deviation from hand book data.

D. VARIATION NUMBER 3 - ALTITUDE

Given condition

Gross weight 40,000 lbs
Drag Index 20
Altitude 4,000 ft

If the altitude will be changed only from the base line condition, how will it affect the K_1 and K_2 ?

The equations of K₁ and K₂ are

$$K_1 = 1/2 \rho SC_{D_0}$$

$$K_2 = 2W^2/(\rho S\pi eAR)$$

As can be seen in the above equation, the K_1 and K_2 both are functions of the air density, and air density is a function of altitude. Thus the K_1 and K_2 must be changed with varying altitude.

The useful relationships came from the ICAO Report written as

$$\rho = P/RT$$

$$T/T_0 = 1 - 6.875 \times 10^{-6} H$$

$$P/P_0 = (1 - 6.875 \times 10^{-6} H)^{5.2561}$$

	HIKUSI KEQ	REQUIRED AND FUEL FLOW WITH DRAG INDEX VARIATION	EL FLOW	WITH	ORAG INDEX	VARIATION	
ALTITUDE	O FT	GROSS WEIGHT	SHT	40,000	LBS	DRAG INDEX	40
MILITARY	THRUST	21,800	LB		-		
	FUEL FLOW	25,110	LBS/H	THRUST		FUEL FLOW X	0.86818
AIR SPEED	FUEL FLOW	(LBS/H)	THRUST	THRUST REQUIRED	TRED (LB)	DEVIATION	(%) NOI
(KTAS)	HAND BOOK	CALCULATION	HAND BC	BOOK	CALCULATION	THRUST	FUEL FLOW
360	8,492	8,736	7,373	57	7,483	1.5	3.2
400	10,000	10,517	8,682	32	600'6	3.8	5.2
440	11,879	12,530	10,313	<u>.</u>	10,733	4.1	5.5
480	13,910	14,763	12,076	9,	12,646	-0.5	6.1
520	16,480	17,212	14,308	80	14,744	3.0	4.4
260	19,688	19,998	17,093	13	17,130	0.2	1.6
009							
		FUEL FLOW		5,920			(LBS/H)
MAXIMUM ENDURANCE	NDURANCE	THRUST (MINIMUM)	IIMUM)	5,920	x 0.86818	= 5,140	(LB)
		AIR SPEED		247			(KTAS)

Figure 3.4a Thrust Required with Drag Index variation.

LECTOR LEGISLES WINDS | PROPERTY

Ligure 3-4b. Fuel I low with Drag Index variation.

$$T = 518.688 \times (1 - 6.875 \times 10^{-6} H)$$

And the relationship between density of air and vertical displacement is

$$\rho/\rho_{O} = (P/RT)(P_{O}/RT_{O})$$
$$= (P/P_{O})(T_{O}/T)$$

Since the effects of changing altitude become larger, it is necessary to modify the equation.

Let
$$K_9 = (\rho/\rho_0)^{1.2}$$

Then K_1 is proportional to the K_9 and K_2 is inverse proportional to the K_9 . Thus in this case

$$\rho \rho_0 = (P, P_0)(T_0/T)$$

$$= (1 - 6.875 \times 10^{-6} \times 4,000)^{5.2561} (1 - 6.875 \times 10^{-6} \times 4,000)$$

$$= 0.88809$$

$$K_1 = K_{1_{ssl}} \times (0.88809)^{1.2}$$

$$= .0139976$$

$$K_2 = K_{2_{ssl}} \times (0.88809)^{1.2}$$

$$= 2.306 \times 10^8$$

Thrust required = $0.0139976V^2 + 2.306x10^8 V^2$

The military thrust will be reduced as discussed in Chapter 2

$$T_{avail} = T_{ssi} \delta \sigma^{(1/2)}$$

$$\delta = P_{4,(MM)ft} P_{ssi}$$

$$= 1.527.69.2.116.22$$

$$= 0.8636578$$

$$\sigma = \rho_{4,(MM)ft} P_{ssi}$$

$$= (0.021109.00022769)$$

$$= (0.021109.00022769)$$

$$= (0.021109.00022769)$$

$$= (0.021109.00022769)$$

Fuel flow:

$$F_1 = 26,000 - 0.64 \text{ x Altitude}$$

= 26,000 - 0.64 x 4,000
= 23,440
 $F_2 = F_1 - 16.65 \text{ x Drag Index}$
= 23,440 - 16.65 x 20
= 23,107
 $F_3 = F_2 - 0.002 \text{ x (Gross weight - 40,000)}$
= 23,107 - 0.002 x (40,000 - 40,000)
= 0.86463

$$C = 19,979 23,107$$

= 0.86463

Fuel flow = Thrust required/0.86463

Table 16 and Figure 3.5 show the results of calculation and deviation from hand book data.

E. VARIATION NUMBER 4 - WEIGHT, DRAG INDEX AND ALTITUDE

Given condition

Gross weight 50,000 lbs

Drag Index 40

Altitude 8,000 ft

If all conditions are changed from base line conditions, it is necessary to consider for each changed condition step by step, same as previous sections.

At first, think about gross weight change. The changing gross weight affects the k_2 only, because K_1 is independent of gross weight.

$$K_2 = 2W^2 (\rho S \pi e A R)$$

As you can see in section 3.2

$$K_{250 \text{ onoths}} = K_{240,00001bs}^{-240,00001bs}$$

= $2.0 \times 10^8 (1.25)^2$
= 3.653×10^5

TABLE 16 THRUST REQUIRED AND FUEL FLOW WITH ALTITUDE VARIATION

	Yan 18 2000	TEACHER AND LOLE LEGW WITH ALTHOUGH VARIATION	LE LEON WI		NOLLAINA	
ALTITUDE	4,000 FT	GROSS WEIGHT		40,000 LBS	DRAG INDEX	20
VOSGITIM	THRUST	626'61	LB			0.0500
	FUEL FLOW	23,280	LBS/H	TRKUST	FUEL FLOW X	7000.0
AIR SPEED	FUEL FLOW	(LBS/H)	THRUST R	REQUIRED (LB)	DEVIAT	DEVIATION (%)
(KTAS)	HAND BOOK	CALCULATION	HAND BOOK	CALCULATION	ON THRUST	FUEL FLOW
360	6,818	6,632	5,851	5,798	6.0-	-2.7
400	7,931	7,886	908'9	6,893	1.3	9.0-
440	9,219	9,320	7,912	8,147	3.0	1.1
480	10,716	10,925	9,196	6,550	3.8	1.9
520	12,686	12,692	10,887	11,095	1.9	0.1
260	15,171	14,797	13,020	12,936	9.0-	-2.5
009	18,641	18,412	15,998	16,095	9.0	-1.2
		FUEL FLOW		5,390		(H/S87H)
MAXIMUM ENDURANCE	NDURANCE	THRUST (MINIMUM)	IMUM)	5,390x0.8582	2 = 4,625	(FB)
		AIR SPEED		267		(KTAS)

Ligure 3.5a Thrust Required with Altitude variation.

Figure 3.5b. Fuel Flow with Altitude variation.

Constitution of the Constitution

Next, think about the drag index change. If the drag index is changed, it is necessary to consider K_1 only, because the K_2 is independent of the drag index change.

K₁ equation, function of drag index is

$$K_1 = 0.0135 + 0.000132 \text{ x Drag Index}$$

Thus

$$K_{1_{D140}} = 0.0135 + 0.000132 \times 40$$

= 0.01878

And finally, think about the altitude change.

As you can see in section 3.4, the altitude change affects both K_1 and K_2 , because K_1 and K_2 are function of air density. The equation in section 3.4 can be used in this step.

$$\rho/\rho_{o} = (P/RT)(P_{o}/RT_{o})$$

$$= (P/P_{o})(T_{o}/T)$$
Let $K_{9} = (\rho/\rho_{o})^{1.2}$

$$K_{1} = f(\rho)$$

$$K_{2} = f(1/\rho)$$

Thus

CONTROL STATES AND ADDRESS OF THE PROPERTY OF THE PARTY O

$$K_{1} = K_{1D140} \times (\rho_{8,000ft}, \rho_{ssl})^{1.2}$$

$$= 0.01878 \times (0.0018683, 0.0023769)^{1.2}$$

$$= 0.01406755$$

$$K_{2} = K_{250,000lbs} / (\rho_{8,000ft}/\rho_{ssl})^{1.2}$$

$$= 3.653 \times 10^{8} / (0.0018683, 0.0023769)^{1.2}$$

$$= 2.9157 \times 10^{8}$$

Thrust required = $0.01407V^2 + 2.9157x10^8 V^2$

The military thrust will be computed as discussed in Chancer 2

$$I_{S,(NM)ft} = I_{ssl}(\delta \sigma^{1/2})$$

$$\delta = P_{S,(NM)ft} P_{ssl}$$

```
= 1571.88 2116.22
              = 0.742777
            \sigma = \rho_{8,000ft} \quad \rho_{ssl}
              = 0.0018683, 0.0023769
              = 0.786024
T_{8,000\text{ft}} = 21,800 \text{ x } (0.742777 \text{ } 0.786024^{1/2})
           = 18.2641b
Fuel flow:
            F_1 = 26,000 - 0.64 \text{ x Altitude}
                = 26,000 - 0.64x8,000
                = 20.880
            F_2 = (F_1 + 333.3) - 22.1 \text{ x Drag Index}
                = 21,213.3 - 22.1 \times 40
                = 20,329.3
            F_3 = F_2 - 0.002 \times (Gross weight - 40,000)
                \approx 20,329.3 - 0.002 \times (50,000 - 40,000)
                = 20,309.3
C = Military thrust / Fuel flow
```

= 18,264,20,309.3

= 0.8993

Fuel flow = Thrust required/0.8993

Table 17 and Figure 3.6 show the results of calculation and deviation from hand book data.

F. VARIATION NUMBER 5 - WEIGHT, DRAG INDEX AND ALTITUDE

We have seen how the fuel flow was changed with various conditions. Not much time is needed to find the fuel flow for conditions which can be read directly from hand book, but most of the conditions do not correspond to the published conditions which can be read directly from the hand book data sheets. Thus to find the fuel flow for specific conditions that are not printed in the hand book, one must spend lots of time to interpolate each item. The specific fuel flow will now be computed by both methods.

TABLE 17
THRUST REQUIRED AND FUEL FLOW WITH ALL CONDITIONS
VARIATION

CONTROL SECONDS CONTROLS CONTROLS

second services services second

ALTITUDE	8,000 FT	GROSS WEIGHT	-	50.000 LBS	DRAG INDEX	•
				1		0.
MILITARY	THRUST	18,264	LB			
	FUEL FLOW	20,180	LBS/H	THRUST	FUEL FLOW x 0.90505	0.90505
AIR SPEED	FUEL FLOW	(LBS/H)	THRUST RI	REQUIRED (LB)	DEVIATION	ION (8)
(KTAS)	HAND BOOK	CALCULATION	HAND BOOK	CALCULATION	THR	
360	7,274	7,119	6,583	6,520	-1.0	-2.1
400	8,135	8,177	7,363	7,489	1.7	0.5
440	9,239	9,447	8,362	8,652	3.5	2.3
480	10,668	10,905	9,655	886'6	3.4	2.2
520	12,512	12,539	11,324	11,483	1.4	0.2
260	15,126	14,639	13,690	13,407	-2.1	-3.2
009						
		FUEL FLOW		0,600		(LBS/H)
MAXIMUM EN	ENDURANCE	THRUST (MIN	(MINIMUM)	6,600×0.90505	= 5,793	(LB)
		AIR SPEED		318		(KTAS)

Contract States

Figure 3.6a Thrust Required with All Condition variation.

Figure 3.6b Fuel Flow with All Condition variation.

Section Section

Given condition

Gross weight 48,000 lbs

Drag Index 27

Altitude 11,000 ft

Velocity 455 KTS

The procedure to compute the K_1 and K_2 is the same as in the previous section. Consider each different condition.

1. Gross weight

$$K_{248,000lbs} = K_{240,000lbs} \times (48,000/40,000)^{2.7}$$

= $2.0 \times 10^8 \times (1.2)^{2.7}$
= 3.27×10^8

K₁ is independent of changing gross weight.

2. Drag index

$$K_1 = 0.0135 + 0.000132 \text{ x Drag Index}$$

= 0.0135 + 0.000132 x 27
= 0.01706

K₂ is independent of changing Drag Index.

3. Altitude

$$K_{1} = K_{1D127} \times (\rho_{11,000ft} / \rho_{ssl})^{1.2}$$

$$= 0.01706 \times (0.0017007/0.0023769)^{1.2}$$

$$= 0.01142$$

$$K_{2} = K_{248,000lb} / (\rho_{11,000ft} / \rho_{ssl})^{1.2}$$

$$= 3.27 \times 10^{8} / (0.0017708/0.0023769)^{1.2}$$

$$= 4.8893 \times 10^{8}$$

Thrust required =
$$0.01142V^2 + 4.8893x10^8/V^2$$

= $0.01142 \times (455x1.69)^2 + 4.8893x10^8/(455x1.69)^2$
= $7,572 \text{ lb}$

Compute the factor C:

Military thrust =
$$21,800 - 0.4 \times Altitude$$

= $21,800 - 0.4 \times 11,000$
= $17,400 \text{ lb}$

Fuel flow;

$$F_1 = 20,840 - 0.37 \text{ x (Altitude - 8,000)}$$

 $= 20,840 - 0.37 \text{ x (11,000 - 8,000)}$
 $= 19,730$
 $F_2 = (F_1 + 333.3) - 22.1 \text{ x Drag Index}$
 $= 20,063.3 - 22.1 \text{ x 27}$
 $= 19,466.6$
 $F_3 = F_2 - 0.002 \text{ x (Gross weight - 40,000)}$
 $= 19,466.6 - 0.002 \text{ x (48,000 - 40,000)}$
 $= 19,450.6$

C = Military thrust Fuel flow

= 17,400 19450.6

= 0.89457

Thus

Now the fuel flow for given conditions will be computed by interpolating the hand book data. Figure 3.7 shows the whole diagram to compute the desired fuel flow of given conditions.

Computations for the steps are:

1) F1 =
$$(8873 - 7988)x(27 - 20) (40 - 20) + 7988 = 8297.75$$

2) F2 = $(10324 - 9223)x(27 - 20) (40 - 20) + 9223 = 9608.35$
3) F3 = $(455 - 440)x(9608.35 - 8297.75) (480 - 440) + 8297.75 = 8789.23$
4) G1 = $(7729 - 6962)x(27 - 20) (40 - 20) + 6962 = 7230.45$
5) G2 = $(8840 - 7933)x(27 - 20) (40 - 20) + 7933 = 8250.45$
6) G3 = $(455 - 440)x(8250.45 - 7230.45) (480 - 440) + 7230.75 = 7613.25$
7) $14 = (11000) - (0000)x(7613.25 - 8789.23) (12000 - 8000) + 8789.23 = 7907.24$
8) H1 = $(9239 - 8366)x(27 - 20) (40 - 20) + 8366 = 8671.55$

DIAGRAM FOR DESIRED FUEL FLOW

			GROSS	WEIGHT 4	0,000 LB	S		
ALTI	TUDE	8,000	FT	11,000 FT	ALTITU	DE 12	2,000	FT
A/S	DRAG	G IND	EX		A/S	DRAC	IND	EX
KTAS	20	27	40		KTAS	20	27	40
440	7988	F1	8873		440	6962	Gl	7729
455		F3		L ₄	455		G ₃	
480	9223	F ₂	10324		480	7933	G ₂	8840

GROSS WEIGHT 50,000 LBS								
ALTI	TUDE	8,000	FT	11,000 FT	ALTITU	JDE 1	2,000	FT
A/S	DRAG	G IND	EX		A/S	DRAG	G IND	EX
KTAS	20	27	40		KTAS	20	27	40
440	8366	H ₁	9239		440	7447	J ₁	8192
455		н ₃		M ₄	455		J ₃	
480	9522	н ₂	10688		480	8315	J ₂	9216

G/WT	40,000 LBS	48,000 LBS	G/WT	50,000 LBS
A/S	DRAG INDEX		A/S	DRAG INDEX
KTAS	27		KTAS	27
455	L ₄	N ₄	455	H ₄

Figure 3.7 Diagram for Desired Fuel Flow.

- (i) He is a substantial of the property of the pr
- (2) (3) ★ (4) (2) (344) (6)25 (36) (46) (3) (4 (342) 6 (344) 6.
- 11 17 = 488 (446 magazines) TECT 18 (466 (446 7767 18 4667 17)
- . 4 М4 Приня міниосусны 53 т3 А[43 5] Приня чения А(42 5) м326 [74]
- 15 24 = 44000 40000 40000 2010 7007 7007 40000 40000 40000 7007 4242
 - Desired tuel flow for given condition is \$,242 lbs hr
 - Thus deviation of the results

 $(8,464 - 8,242)(8,242 \times 100) = (2.7.9)$

IV CONCLUSION

(i) The property of the control o

The sign of electric country is a second configuration of the second configuration of the second country of the second configuration of the se

Thus the computer program to compute the fuel flow rate can not only case time for many conditions. Ahich must be changed continuously during flight four tasks aduces the probability of making a mistake in interposations steps.

It is recommended that a similar computer program be developed for specific light stages, i.e., take-off, climb, or landing, using the same concepts that were used of this program.

APPENDIX A COMPUTER PROGRAM (BASIC)

```
nonio #2+2 ne+os ' #fm ## BASED ON S S L AND GROSS HEIGHT 40000LBS ##
 angen paint timput altitude GROSS WEIGHT, DRAG INDEX, AIR SPEED. A/S INC!
SOBTO INFUT A H 19. VI VP
00040 #1 (0 0135+ 000132#19) ' REM ## K1 VARIES HITH DRAG INDEX ##
03050 D4 1 6 8'56 6#A ' REM ## ICAO SCALE BASE ##
00060 11:518 688#D4 ' REM ## ABSOLUTE TEMP (R) BASED ON ALTITUDE ##
09000 D5:04##5 2561 ' REM ## PRESSURE RATIO BASED ON ALTITUDE ##
19080 AV:(1 4#1714 8'#T1) ' REM ## SPEED OF SOUND (SQUARED) ##
| 1999 | 1910 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 1911 | 
| 10| 10 PRINT TAB(1). 'VEL(KTS)'.TAB(12); 'MACH'; TAB(20); 'PAR DRAG'; | 10| 180 PRINT TAB(34). 'PRO DRAG', TAB(48), 'MACH DRAG'; TAB(62); 'FUEL FLOM'
 90190 V2:V1#1 68894
 00200 M V2/A9##0 5
00210 D8-1 1 REM ** CDO MACH CORRECTION BASE ##
00220 IF My 8 THEN 480
00230 DI=KI#V2##2 ' REM ## PARASITE DRAG (SUBSONIC) ##
 00240 D3-D1#D8 ' REM ## PARASITE DRAG (MACH CDO) ##
 90250 DZ:K2/VZ*#Z ' REM ## INDUCED DRAG ##
05260 DG:D3+D2 ' REM HM MACH DRAG HM
05270 D7:D1+D2 ' REM HM SUBSONIC TOTAL DRAG HM
 00280 T:21800-A#0 4 ! REM ## MIL THRUST OTHER THAN S.S.L. CORRECTION ##
 00270 IF A = 8000 THEN 320
 00300 F1-20840-(A-8000)#0.37! REM ## F/FLOW CORRECTTION ABOVE 8000 FT##
 00310 GO TO 330
 00320 F1=26000-0 64000#A ! REM ## F/FLOW CORRECTION BELOW 8000 FT ##
 00330 IF 19>20 THEN 360
 00340 F2=F1-16 65*I9 ! REM ** F/FLOW CORRECTION BELOW DRAG INDEX 20 **
 00350 GO TO 370
 00360 F2=(F1+335 3)-22.10*19 ! # F/FLOW CORRECTION ABOVE DRAG INDEX 20 #
 00370 IF W<=40000THEN 400
 00380 F3:F2-(W-40000)*0.002 ! REM ** F/FLOW CORRECTION WITH WEIGHT **
 00390 GO TO 410
 00400 F3:F2
00410 C=T/F3 ! REM ** COEFFICIENT FOR FUEL FLOW **
00420 FF=D0/C ! REM ** FUEL FLOW **
00430 PRINT TAB(3):V1;TAB(8);M;TAB(18);D2;TAB(32);D3;TAB(46);D0;
00440 PRINT TAB(60);FF
 00450 V1=V1+VP
00460 IF V1>6
                          V1>610 THEN 510
 00470 GOTO 190
00480 D9=.55*(SIN((M-.8)/.8)**3)/.0180
 00490 D8=1+D9
 00500 GOTO 230
00510 PRINT 'C=';C,'T=';T
 00520 STOP
 00530 END
```

APPENDIX B

COMPUTER PROGRAM (HAND-HELD CALCULATOR)

MINIEL *FF*	51 F 12 H3	161 PCU 15	151 ·	361 PCL 37
P. 1	50 €	100 PCL 13	153 PCL 19	202 • FF = •
67 (TH 24	57 STO 69	1ë? +	157 ★	BET HET! A
PA PC NA	54 POL 04	164 510 17	154 STO 28	2m4 fielem
€E FALT±9#	55 PCL 63	165 PCL 60	!55•LBL *EE*	245 TOP
Po FROMPT	50 /	166 .4	156 FCL el	ZHR THEM WOLL
07 510 00	57 STO #4	107 ●	157 40000	28" PROMET
es pou el	58 2.0 E03	109 CHS	158 -	203 x=07
94 -¥±0+	54 PCL A3	169 21866	159 .002	269 STOP
10 PROMPT	6ë /	11ê +	leë •	216 GTO -VV-
11 370 01	61 STO 10	111 370 18	161 CHS	211 ol BL "PM"
12 PCL 02	62 RCL 01	112 8000	162 PCL 20	212 PCL 12
13 "NI=?"	63 46898	113 PCL 00	163 +	213 .8
14 PROMPT	64 /	114 XC=Y?	164 510 21	214 -
15 570 62	£5 2.7	115 GTO *PF*	165 1 X	215 .8
LEALBL -VV-	66 YTX	116 RCL EE	166 PCL 18	216 /
17 RCL 03	67 PCL 10	117 8000	167 •	217 ENTERY
18 "V(kTS)=?"	6S •	118 -	168 570 22	218 3
19 PROMPT	69 STO 10	119 .37	169 17X	219 YtX
20 570 03	70 RCL 03	120 +	178 RCL 16	220 SIN
21 RCL 02	71 1.68394	121 CHS	171 *	221 .55
22 .000132	72 •	122 20840	172 510 23	222 *
23 •	73 STO 11	123 +	173 PCL 03	223 .018
24 .0135	74 PCL 07	124 STO 19	174 FIX 8	224 /
25 +	75 SERT	125 GTO -LL-	175 TV(FTS)=	205 1
26 STO 04	76 1/X	126+LBL -PP-	176 APCL X	
27 6.875 E- 8 6	77 RCL 11	127 FCL 00	177 AVIEW	226 +
28 RCL 88	78 *	128 .64	178 STOP	207 570 24
29 *	79 570 12	129 *		228 GTO *FF*
36 CHS	8ē .6	138 CHS	179 RCL 12	229 .END.
31 1	81 X/=Y?		190 FIX 3	
32 +	82 GTO "HM"	131 26000	181 *MACH=*	
33 870 05	83+LBL -RP-	132 +	182 APOL X	
34 518.68	84 RCL 11	133 STO 19	183 AVIEN	
35 *	85 xt2	134+LBL -LL-	184 STOP	
	86 RCL 84	135 20	185 RCL 15	
36 STO 06	87 *	136 PCL 02	186 FIX 1	
37 1716.5	88 STO 13	137 X>Y?	187 *D(I)=*	
38 *	89 RCL 24	138 GTO -DD-	183 ARCL X	
39 1.4	90 +	139 16.65	Maiva 681	
48 *	91 STO 14	146 *	190 STOP	
41 STO 07	92 RCL 11	141 CHS	191 RCL 14	
42 RCL 05	93 Xt2	142 RCL 19	192 *D(P)=*	
43 ENTERT		143 +	193 ARCL X	
44 5.2561	94 1/X	144 STO 28	194 AVIEN	
45 YfX	95 RCL 10	145 GTO "EE"	195 STOP	
46 570 98	96 * 97 CTO 15	146+LBL -DD-	196 RCL 16	
47 1116	97 STO 15	147 22.1	197 "D(H)="	
48 X12	98 RCL 14	148 *	198 APCL X	
49 RCL 07	99 +	149 CHS	199 AVIEW	
50 /	100 STO 16	150 333.3	200 STOP	

LIST OF REFERENCES

- 1 Kuethe, Arnold M. and Chow, Chuen-Yen Foundation Of Acrodynamics, 3rd ed., John Wiley & Sons, Inc., 1976
- 2. Hurt, H. H. Jr., Aerodynamic For Naval Aviators, The Office of the Chief of Naval Operations Aviation Training Division, 1968
- Domash, Doniel O. Sherby, Sydney S. and Connolly, Thomas F. Airpiane Aerodynamics, 3rd ed., Pitman, 1961
- 4. NASA Report 1235, National Advisory Committee For Aeronautics, 1955

and the state of t

	$\begin{array}{lll} \left\{ \begin{array}{lll} \mathbf{P}(t) & \mathbf{S}(t) \\ \mathbf{C}_{-1} & \mathbf{S}_{-1} & \mathbf{C}_{-1} & \mathbf{S}_{-1} & \mathbf{S}_{-1} \\ \mathbf{A}_{-1} & \mathbf{S}_{-1} & \mathbf{S}_{-1} & \mathbf{S}_{-1} & \mathbf{S}_{-1} & \mathbf{S}_{-1} & \mathbf{S}_{-1} \\ \end{array} \right.$	
	The state of the s	
	Department of a compact of the compact of the compact of National Compact of the	
4	Prof. Deriald Modern Conductive Dept. of New gradient School School Modern Conductive Market Conductive Death School	
•	On, Chang Whan YumHee 2 Done 195-14, Secodae Moon ku, Secul, Republic of Korea	!•
t	Air Force Central Library Sindaebang Dong, Kwanak Ciu, Seoul, Republic of Korea	
7 .	3rd Department of Air Force College Sindaebang Dong, Kwanak Gu, Seoul, Republic of Korea	2
*	Library of Air Force Academs Chongwon Gun, Chung Cheong Bug Do, Republic of Korea	2

DT/(_