Assignment - 2

Assignment Date	25 September 2022
Student Name	SASIKUMAR.S
Student Roll Number	820319205032
Maximum Marks	2 Marks

1. Download the dataset: Dataset

2. Load the dataset

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.preprocessing import LabelEncoder
from sklearn.preprocessing import MinMaxScaler
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
df =pd.read_csv("gdrive/My Drive/Churn_Modelling.csv")
df.head()
```

	RowNumb	er	Custome	rId	Surname	CreditScore	Geography	Gender	Age	\
0		1	15634	602	Hargrave	619	France	Female	42	
1		2	15647	311	Hill	608	Spain	Female	41	
2		3	15619	304	Onio	502	France	Female	42	
3		4	15701	354	Boni	699	France	Female	39	
4		5	15737	888	Mitchell	850	Spain	Female	43	
	Tenure		Balance	Num	OfProducts	HasCrCard	IsActiveMe	mber \		
0	2		0.00		1	1		1		
1	1	8	3807.86		1	0		1		
2	8	15	9660.80		3	1		0		
3	1		0.00		2	0		0		
4	2	12	5510.82		1	1		1		

```
EstimatedSalary Exited
0 101348.88 1
```

```
1
        112542.58
                         0
2
        113931.57
                         1
3
         93826.63
                         0
         79084.10
                         0
from google.colab import drive
drive.mount('/content/gdrive')
Mounted at /content/gdrive
#dropping row number columns as we already have index column by default
ds=dataset.drop(['RowNumber'], axis=1,inplace=True)
```

3. Visualizations

```
import matplotlib.pyplot as plt
import seaborn as sns
```

Univariate Analysis

```
# plt.scatter(churn.index,churn["Age"])
# plt.show()

# Age Histogram
sns.histplot(x='Age', data=dataset)

OUTPUT:
<matplotlib.axes._subplots.AxesSubplot at 0x7f76872b9410>
```


Geography Histogram

sns.histplot(x='Geography', data=dataset)

OUTPUT:

<matplotlib.axes._subplots.AxesSubplot at 0x7f76864b6390>


```
# Geography Histogram
sns.histplot(x='Gender', data=dataset)
```

<matplotlib.axes._subplots.AxesSubplot at 0x7f7685fdee90>

sns.kdeplot(x='Age', data=churn, hue='Exited')
sns.histplot(x='Age', data=dataset, kde=True)

<matplotlib.axes._subplots.AxesSubplot at 0x7f7685ba8290>

sns.kdeplot(x='Age', data=churn, hue='IsActiveMember')
sns.histplot(x='CreditScore', data=dataset, kde=True)

<matplotlib.axes._subplots.AxesSubplot at 0x7f768597f2d0>

sns.boxplot(x=dataset['Balance'])

OUTPUT:

<matplotlib.axes._subplots.AxesSubplot at 0x7f7686032110>

dataset['Gender'].value_counts().plot.bar()

OUTPUT:

<matplotlib.axes._subplots.AxesSubplot at 0x7f7682e1ea50>

dataset['Geography'].value_counts().plot.bar()

<matplotlib.axes._subplots.AxesSubplot at 0x7f7683120d90>

Bi - Variate Analysis

OUTPUT:

import matplotlib.pyplot as plt

```
#create scatterplot of hours vs. score
plt.scatter(dataset.Age[:30], dataset.Balance[:30])
plt.title('Age vs. Balance')
```

```
plt.xlabel('Age')
plt.ylabel('Balance')
```

Text(0, 0.5, 'Balance')

dataset.plot.hexbin(x='Age', y='CreditScore', gridsize=10)

OUTPUT:

<matplotlib.axes._subplots.AxesSubplot at 0x7f7682d84690>

Multi-variate Analysis

dataset.corr()

OUTPUT:

	CustomerId C	reditScore	Age	Tenure	Balance \	
CustomerId	1.000000	0.005308	0.009497	-0.014883	-0.012419	
CreditScore	0.005308	1.000000	-0.003965	0.000842	0.006268	
Age	0.009497	-0.003965	1.000000	-0.009997	0.028308	
Tenure	-0.014883	0.000842	-0.009997	1.000000	-0.012254	
Balance	-0.012419	0.006268	0.028308	-0.012254	1.000000	
NumOfProducts	0.016972	0.012238	-0.030680	0.013444	-0.304180	
HasCrCard	-0.014025	-0.005458	-0.011721	0.022583	-0.014858	
IsActiveMember	0.001665	0.025651	0.085472	-0.028362	-0.010084	
EstimatedSalary	0.015271	-0.001384	-0.007201	0.007784	0.012797	
Exited	-0.006248	-0.027094	0.285323	-0.014001	0.118533	
	NumOfProducts	HasCrCard	IsActive	eMember Es	stimatedSalary	\
CustomerId	NumOfProducts 0.016972			eMember Es .001665	stimatedSalary 0.015271	١
CustomerId CreditScore		-0.014025	0.		•	\
	0.016972	-0.014025 -0.005458	6 0. 8 0.	.001665	0.015271	\
CreditScore	0.016972 0.012238	-0.014025 -0.005458 -0.011721	0 . 0 . 0 .	.001665 .025651	0.015271 -0.001384	\
CreditScore Age	0.016972 0.012238 -0.030680	-0.014025 -0.005458 -0.011721 0.022583	0. 0. 0.	.001665 .025651 .085472	0.015271 -0.001384 -0.007201	\
CreditScore Age Tenure	0.016972 0.012238 -0.030680 0.013444	-0.014025 -0.005458 -0.011721 0.022583 -0.014858	6 0. 6 0. - 0. 6 - 0.	.001665 .025651 .085472 .028362	0.015271 -0.001384 -0.007201 0.007784	\
CreditScore Age Tenure Balance	0.016972 0.012238 -0.030680 0.013444 -0.304180	-0.014025 -0.005458 -0.011721 0.022583 -0.014858 0.003183	. 0. . 0. 0. 0.	.001665 .025651 .085472 .028362 .010084	0.015271 -0.001384 -0.007201 0.007784 0.012797	\
CreditScore Age Tenure Balance NumOfProducts	0.016972 0.012238 -0.030680 0.013444 -0.304180 1.000000	-0.014025 -0.005458 -0.011721 0.022583 -0.014858 0.003183 1.000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.001665 .025651 .085472 .028362 .010084 .009612	0.015271 -0.001384 -0.007201 0.007784 0.012797 0.014204	\
CreditScore Age Tenure Balance NumOfProducts HasCrCard	0.016972 0.012238 -0.030680 0.013444 -0.304180 1.000000 0.003183	-0.014025 -0.005458 -0.011721 0.022583 -0.014858 0.003183 1.000000 -0.011866	0. 0. 0. -0. 0. 0.	.001665 .025651 .085472 .028362 .010084 .009612 .011866	0.015271 -0.001384 -0.007201 0.007784 0.012797 0.014204 -0.009933	\

Exited

```
CustomerId
                -0.006248
CreditScore
                -0.027094
                 0.285323
Age
Tenure
                -0.014001
Balance
                 0.118533
NumOfProducts
                -0.047820
HasCrCard
                -0.007138
IsActiveMember
                -0.156128
EstimatedSalary 0.012097
Exited
                 1.000000
```

```
sns.set(font_scale=0.50)
plt.figure(figsize=(8,4))
sns.heatmap(dataset.corr(),cmap='RdBu_r', annot=True, vmin=-1, vmax=1)
<matplotlib.axes._subplots.AxesSubplot at 0x7f7680979950>
```



```
#Three variables - Multivaraiate
sns.barplot(x='Age', y='Geography', data=dataset,
palette='bright',hue='Gender')
```

<matplotlib.axes._subplots.AxesSubplot at 0x7f767ec905d0>

4. Descriptive statistics

import statistics as st

dataset[['Age', 'Balance', 'EstimatedSalary']].mean()

OUTPUT:

Age 38.921800 Balance 76485.889288 EstimatedSalary 100090.239881

dtype: float64

dataset.info()

OUTPUT:

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10000 entries, 0 to 9999
Data columns (total 13 columns):

- 0. 0 0.				
#	Column	Non-Null Count		
0	CustomerId	10000 non-null	int64	
1	Surname	10000 non-null	object	
2	CreditScore	10000 non-null	int64	
3	Geography	10000 non-null	object	

```
4
   Gender
                    10000 non-null object
5
                    10000 non-null int64
   Age
6
   Tenure
                    10000 non-null int64
7
   Balance
                    10000 non-null float64
8
                    10000 non-null int64
   NumOfProducts
   HasCrCard
                    10000 non-null int64
10 IsActiveMember
                    10000 non-null int64
11 EstimatedSalary 10000 non-null float64
12 Exited
                    10000 non-null int64
```

dtypes: float64(2), int64(8), object(3)

memory usage: 1015.8+ KB

dataset.describe()

,	CustomerId	CreditScore	Age	Tenure	Balance
\ count	1.000000e+04	10000.000000	10000.000000	10000.000000	10000.000000
mean	1.569094e+07	650.528800	38.921800	5.012800	76485.889288
std	7.193619e+04	96.653299	10.487806	2.892174	62397.405202
min	1.556570e+07	350.000000	18.000000	0.000000	0.000000
25%	1.562853e+07	584.000000	32.000000	3.000000	0.000000
50%	1.569074e+07	652.000000	37.000000	5.000000	97198.540000
75%	1.575323e+07	718.000000	44.000000	7.000000	127644.240000
max	1.581569e+07	850.000000	92.000000	10.000000	250898.090000
IIIax	1.3013036107	830.00000	32.000000	10.000000	230030.030000
	NumOfProducts	HasCrCard	IsActiveMember	· EstimatedSa	lary \
count	10000.000000	10000.00000	10000.000000		
mean	1.530200	0.70550	0.515100		
std	0.581654	0.45584	0.499797	57510.49	2818
min	1.000000	0.00000	0.000000	11.58	80000
25%	1.000000	0.00000	0.000000	51002.11	0000
50%	1.000000	1.00000	1.000000	100193.91	5000
75%	2.000000	1.00000	1.000000	149388.24	7500
max	4.000000	1.00000	1.000000	199992.48	0000
	Exited				
count	10000.000000				
mean	0.203700				
std	0.402769				
min	0.000000				
25%	0.000000				
50%	0.000000				
75%	0.000000				
max	1.000000				

```
dataset['Age'].median()
37.0

standard_deviation = dataset['CreditScore'].std()
print(standard_deviation)
96.65329873613035

st.mode(dataset['Geography'])
{"type":"string"}
st.median(dataset['Age'])
37.0

st.variance(dataset['CreditScore'])
9341.860156575658
```

5. Handle Missing Values

dataset.isnull().sum() #no missing values

OUTPUT:

CustomerId Surname 0 CreditScore 0 Geography 0 Gender 0 Age 0 Tenure 0 Balance 0 NumOfProducts HasCrCard IsActiveMember 0 EstimatedSalary 0 Exited dtype: int64

6. Find and replace outliers

```
Visualize Outliers
sns.boxplot(dataset['CreditScore'],data=dataset)
OUTPUT:
```

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

FutureWarning

<matplotlib.axes._subplots.AxesSubplot at 0x7f767ebd9d90>

dataset['Balance'].hist()

<matplotlib.axes._subplots.AxesSubplot at 0x7f767ebbefd0>

for col in num_cols[1:]:
 print('skewness value of ',col,dataset[col].skew())

#Skewness should be in the range of -1 to 1, any columns with skewness outside of that range would have outliers

OUTPUT:

```
skewness value of CreditScore -0.07160660820092675
skewness value of Age 1.0113202630234552
skewness value of Tenure 0.01099145797717904
skewness value of Balance -0.14110871094154384
skewness value of NumOfProducts 0.7455678882823168
skewness value of HasCrCard -0.9018115952400578
skewness value of IsActiveMember -0.06043662833499078
skewness value of EstimatedSalary 0.0020853576615585162
skewness value of Exited 1.4716106649378211
Q1=dataset['Age'].quantile(0.25)
Q3=dataset['Age'].quantile(0.75)
IQR=Q3-Q1
IQR
```

12.0

Removing Outliers

#Values above than the upper bound and below than the lower bound are considered outliers

```
upper = dataset['Age'] >= (Q3+1.5*IQR)
# print("Upper bound:",upper)
print(np.where(upper))
lower = dataset['Age'] <= (Q1-1.5*IQR)</pre>
# print("Lower bound:", lower)
print(np.where(lower))
OUTPUT:
(array([ 58,
                85,
                     104,
                           158,
                                 181,
                                        230,
                                              234,
                                                    243,
                                                          252,
                                                                276,
                                                                       310.
                    385,
                          387,
                                399,
                                       538,
                                             559,
                                                   567,
                                                         602,
        364,
              371,
                                                               612,
                          736,
                                766,
                                      769,
                                                   811,
        658,
              678,
                    696,
                                             807,
                                                         823,
                                                               859,
                    952,
                          957,
                                963,
                                      969,
                                             997, 1009, 1039, 1040, 1055,
       1114, 1205, 1234, 1235, 1246, 1252, 1278, 1285, 1328, 1342, 1387,
       1407, 1410, 1433, 1439, 1457, 1519, 1543, 1607, 1614, 1642, 1790,
       1810, 1866, 1901, 1904, 1907, 1933, 1981, 1996, 2002, 2012, 2039,
       2053, 2078, 2094, 2108, 2154, 2159, 2164, 2244, 2274, 2433, 2458,
       2459, 2519, 2553, 2599, 2615, 2659, 2670, 2713, 2717, 2760, 2772,
       2778, 2791, 2855, 2877, 2901, 2908, 2925, 2926, 3008, 3033, 3054,
       3110, 3142, 3166, 3192, 3203, 3229, 3305, 3308, 3311, 3314, 3317,
       3346, 3366, 3368, 3378, 3382, 3384, 3387, 3396, 3403, 3434, 3462,
       3497, 3499, 3527, 3531, 3541, 3559, 3573, 3575, 3593, 3602, 3641,
       3646, 3647, 3651, 3690, 3691, 3702, 3719, 3728, 3733, 3761, 3813,
       3826, 3880, 3881, 3888, 3909, 3910, 3927, 3940, 3980, 3994, 4010,
       4025, 4048, 4051, 4095, 4142, 4147, 4157, 4162, 4170, 4241, 4244,
       4256, 4273, 4280, 4297, 4313, 4318, 4335, 4360, 4366, 4378, 4387,
       4396, 4435, 4438, 4463, 4490, 4501, 4506, 4559, 4563, 4590, 4595,
       4644, 4698, 4747, 4751, 4801, 4815, 4832, 4849, 4931, 4947, 4966,
       4992, 5000, 5020, 5038, 5068, 5132, 5136, 5148, 5159, 5197, 5223,
       5225, 5235, 5255, 5299, 5313, 5368, 5377, 5405, 5457, 5490, 5508,
       5514, 5576, 5577, 5581, 5655, 5660, 5664, 5671, 5698, 5777, 5783,
       5817, 5825, 5840, 5867, 5907, 5957, 5996, 6046, 6116, 6152, 6166,
       6167, 6173, 6212, 6230, 6278, 6289, 6315, 6357, 6366, 6373, 6375,
       6410, 6443, 6515, 6530, 6532, 6581, 6612, 6626, 6706, 6709, 6715,
       6721, 6759, 6763, 6812, 6899, 6970, 6997, 7008, 7057, 7058, 7063,
       7071, 7078, 7094, 7138, 7139, 7142, 7156, 7194, 7202, 7238, 7243,
       7272, 7302, 7362, 7375, 7392, 7499, 7514, 7523, 7526, 7548, 7552,
       7624, 7629, 7692, 7694, 7709, 7715, 7719, 7720, 7727, 7773, 7776,
       7784, 7788, 7802, 7813, 7851, 7894, 7898, 7933, 7956, 7995, 8019,
       8037, 8094, 8098, 8156, 8193, 8207, 8217, 8304, 8321, 8385, 8394,
       8444, 8458, 8467, 8469, 8478, 8488, 8562, 8568, 8577, 8602, 8674,
       8686, 8689, 8711, 8759, 8761, 8768, 8787, 8793, 8822, 8865, 8900,
       8917, 8930, 9018, 9062, 9080, 9112, 9116, 9162, 9223, 9279, 9292,
       9309, 9318, 9324, 9332, 9333, 9351, 9380, 9402, 9425, 9428, 9438,
       9472, 9490, 9506, 9555, 9557, 9582, 9587, 9589, 9593, 9646, 9671,
       9673, 9681, 9686, 9688, 9718, 9733, 9734, 9736, 9747, 9753, 9765,
       9832, 9879, 9894, 9936]),)
(array([], dtype=int64),)
```

```
# IQR
Q1 = np.percentile(dataset['Age'], 25,
                   interpolation = 'midpoint')
Q3 = np.percentile(dataset['Age'], 75,
                   interpolation = 'midpoint')
IQR = Q3 - Q1
print("Old Shape: ", dataset.shape)
# Upper bound
upper = np.where(dataset['Age'] >= (Q3+1.5*IQR))
# Lower bound
lower = np.where(dataset['Age'] <= (Q1-1.5*IQR))</pre>
''' Removing the Outliers '''
dataset.drop(upper[0], inplace = True)
dataset.drop(lower[0], inplace = True)
print("New Shape: ", dataset.shape)
OUTPUT:
Old Shape: (10000, 13)
New Shape: (9589, 13)
dataset
                                                             Age Tenure \
      CustomerId
                    Surname CreditScore Geography Gender
                                             France Female
0
        15634602
                   Hargrave
                                     619
                                                              42
                                                                       2
1
        15647311
                       Hill
                                     608
                                             Spain Female
                                                              41
                                                                       1
2
                                             France Female
                                                                       8
        15619304
                       Onio
                                     502
                                                              42
3
                                                                       1
                                     699
                                             France Female
        15701354
                       Boni
                                                              39
                   Mitchell
                                             Spain Female
                                                                       2
4
                                     850
                                                              43
        15737888
                                     . . .
                                                             . . .
9995
        15606229
                   Obijiaku
                                     771
                                            France
                                                       Male
                                                              39
                                                                       5
9996
                                                       Male
                                                              35
        15569892
                  Johnstone
                                     516
                                            France
                                                                      10
9997
        15584532
                        Liu
                                     709
                                            France Female
                                                              36
                                                                       7
9998
                                     772
                                                                       3
        15682355
                  Sabbatini
                                            Germany
                                                       Male
                                                              42
9999
        15628319
                     Walker
                                     792
                                            France Female
                                                              28
        Balance NumOfProducts HasCrCard IsActiveMember
                                                            EstimatedSalary
0
           0.00
                             1
                                        1
                                                         1
                                                                  101348.88
1
                             1
                                                         1
       83807.86
                                        0
                                                                  112542.58
2
      159660.80
                             3
                                        1
                                                                  113931.57
                                                         0
3
                             2
           0.00
                                        0
                                                         0
                                                                   93826.63
```

#Removing outliers based off Age column

```
125510.82
                             1
                                        1
                                                        1
                                                                  79084.10
. . .
           . . .
                           . . .
                                      . . .
                                                      . . .
                                                                       . . .
                                                                  96270.64
9995
          0.00
                             2
                                        1
                                                        0
9996 57369.61
                             1
                                                        1
                                                                 101699.77
                                        1
9997
          0.00
                            1
                                        0
                                                        1
                                                                  42085.58
9998 75075.31
                             2
                                        1
                                                        0
                                                                  92888.52
9999 130142.79
                             1
                                                        0
                                                                  38190.78
      Exited
0
           1
1
           0
2
           1
3
4
           0
9995
           0
9996
           0
9997
          1
9998
9999
[9589 rows x 13 columns]
for col in num cols[1:]:
  print('skewness value of ',col,dataset[col].skew())
# Now we have reduced the Age column's skewness values within -1 to 1 range
# We left the Exited column's skewness value as it is the dependent variable
OUTPUT:
skewness value of CreditScore -0.07274225895185718
skewness value of Age 0.44721544739487257
skewness value of Tenure 0.008085830714996462
skewness value of Balance -0.1409005824644143
skewness value of NumOfProducts 0.7470530176747141
skewness value of HasCrCard -0.9034483996482451
skewness value of IsActiveMember -0.008552881368996219
skewness value of EstimatedSalary -0.0025661797132480266
skewness value of Exited 1.4798502461410206
```

7. Check for Categorical columns and perform encoding

```
##Label encoding and One Hot encoding
```

```
dataset.reset_index(inplace=True)
```

```
from sklearn.preprocessing import LabelEncoder from sklearn.preprocessing import OneHotEncoder from sklearn.compose import ColumnTransformer
```

```
categorical_feature_mask = dataset.dtypes==object
categorical_cols = dataset.columns[categorical_feature_mask].tolist()

categorical_cols=categorical_cols[1:]
categorical_cols

['Geography', 'Gender']

le = LabelEncoder()
dataset[categorical_cols] = dataset[categorical_cols].apply(lambda col:
le.fit_transform(col))
dataset[categorical_cols].head(10)
```

	Geography	Gender
0	0	0
1	2	0
2	0	0
3	0	0
4	2	0
5	2	1
6	0	1
7	1	0
8	0	1
9	0	1

categorical_feature_mask

False
False
True
False
True
True
False

```
enc=OneHotEncoder()
enc_data=pd.DataFrame(enc.fit_transform(dataset[['Geography','Gender']]).toar
ray())
enc_data
```

```
0
           1
                2
                    3
0
     1.0 0.0 0.0 1.0
                       0.0
     0.0 0.0 1.0
1
                   1.0 0.0
2
     1.0 0.0 0.0
                   1.0
                       0.0
3
     1.0 0.0 0.0
                   1.0
                       0.0
4
     0.0 0.0 1.0
                   1.0 0.0
          . . .
              . . .
                   . . .
     . . .
9584 1.0 0.0
             0.0
                   0.0
                       1.0
9585 1.0 0.0 0.0
                   0.0
                       1.0
9586 1.0 0.0 0.0
                   1.0 0.0
9587 0.0 1.0 0.0
                   0.0 1.0
9588 1.0 0.0 0.0
                   1.0 0.0
```

[9589 rows x 5 columns]

#First three columns of enc_data is for Geography and the next two columns is for Gender, we can replace the already existing categorical columns with these encoded values

```
#Dropping already existing Geography and Gender columns
dataset.drop(['Geography'], axis=1,inplace=True)
dataset.drop(['Gender'], axis=1,inplace=True)
```

```
dataset.insert(2, "Geography_France", enc_data.iloc[:,0], True)
dataset.insert(3, "Geography_Germany", enc_data.iloc[:,1], True)
dataset.insert(4, "Geography_Spain", enc_data.iloc[:,2], True)
dataset.insert(5, "Gender_Female", enc_data.iloc[:,3], True)
dataset.insert(6, "Gender_Male", enc_data.iloc[:,4], True)
```

dataset

	index	CustomerId	Geography_France	Geography_Germany	Geography_Spain
\					
0	0	15634602	1.0	0.0	0.0
1	1	15647311	0.0	0.0	1.0
2	2	15619304	1.0	0.0	0.0
3	3	15701354	1.0	0.0	0.0
4	4	15737888	0.0	0.0	1.0
	• • •	• • •	• • •	• • •	• • •
9584	9995	15606229	1.0	0.0	0.0
9585	9996	15569892	1.0	0.0	0.0
9586	9997	15584532	1.0	0.0	0.0
9587	9998	15682355	0.0	1.0	0.0
9588	9999	15628319	1.0	0.0	0.0

```
Gender_Female
                      Gender_Male
                                        Surname
                                                  CreditScore
                                                                 Age
                                                                       Tenure
0
                  1.0
                                0.0
                                       Hargrave
                                                           619
                                                                  42
                                                                            2
1
                  1.0
                                0.0
                                           Hill
                                                           608
                                                                  41
                                                                            1
2
                  1.0
                                0.0
                                           Onio
                                                           502
                                                                  42
                                                                            8
3
                                0.0
                                                                  39
                                                                            1
                  1.0
                                            Boni
                                                           699
4
                  1.0
                                0.0
                                       Mitchell
                                                           850
                                                                  43
                                                                            2
                  . . .
                                                            . . .
                                 . . .
                                             . . .
                                                                 . . .
                 0.0
                                1.0
                                       Obijiaku
                                                           771
                                                                  39
                                                                            5
9584
9585
                  0.0
                                1.0
                                      Johnstone
                                                           516
                                                                  35
                                                                           10
                                0.0
                                                                            7
9586
                  1.0
                                             Liu
                                                           709
                                                                  36
9587
                  0.0
                                1.0
                                      Sabbatini
                                                           772
                                                                  42
                                                                            3
                                         Walker
                                                                  28
                                                                            4
9588
                  1.0
                                0.0
                                                           792
                                                                  EstimatedSalary
                 NumOfProducts HasCrCard IsActiveMember
         Balance
0
            0.00
                                                                         101348.88
                                1
                                             1
                                                               1
1
                                1
                                                               1
                                            0
       83807.86
                                                                         112542.58
2
      159660.80
                                3
                                             1
                                                               0
                                                                         113931.57
3
                                2
                                             0
                                                               0
            0.00
                                                                          93826.63
4
      125510.82
                                1
                                             1
                                                               1
                                                                          79084.10
             . . .
. . .
9584
                                2
                                             1
                                                               0
                                                                          96270.64
            0.00
9585
       57369.61
                                1
                                             1
                                                               1
                                                                         101699.77
9586
                                1
                                             0
                                                               1
            0.00
                                                                          42085.58
9587
       75075.31
                                2
                                             1
                                                               0
                                                                          92888.52
                                1
                                             1
9588
      130142.79
                                                               0
                                                                          38190.78
      Exited
0
            1
1
            0
2
            1
3
            0
4
            0
. . .
9584
            0
9585
            0
            1
9586
9587
            1
9588
            0
```

[9589 rows x 17 columns]

We drop some irrelevant columns that does not contribute to prediction
dataset.drop(columns="CustomerId",axis=1,inplace=True)
dataset.drop(columns="Surname",axis=1,inplace=True)
dataset.drop(columns="index",axis=1,inplace=True)

dataset

0 1 2 3 4 9584 9585 9586 9587 9588	Geography_Fra	ance Geograp 1.0 0.0 1.0 1.0 0.0 1.0 0.0 1.0 1.0 1.0	hy_Ger	many 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Geogra	phy_Spain 0.0 1.0 0.0 1.0 0.0 0.0 0.0	Gender_Fer	nale 1.0 1.0 1.0 1.0 1.0 0.0 1.0 0.0	\
0 1 2 3 4 9584 9585 9586 9587 9588	Gender_Male 0.0 0.0 0.0 0.0 1.0 0.0 1.0 0.0	CreditScore 619 608 502 699 850 771 516 709 772 792	Age 42 41 42 39 43 39 35 36 42 28	Tenure 2 1 8 1 2 5 10 7 3 4	838 1596 1255 573 750	lance Num 0.00 07.86 60.80 0.00 10.82 0.00 69.61 0.00 75.31	nOfProducts 1 1 3 2 1 2 1 1 2	\	
0 1 2 3 4 9584 9585 9586 9587 9588	HasCrCard Is 1 0 1 0 1 1 0 1 1 1 1 1 1	sActiveMember 1 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0	Est	11254 1139 938 7906 962 10166 4206 928	alary 48.88 42.58 31.57 26.63 84.10 70.64 99.77 85.58 88.52	Exited 1 0 1 0 0 0 0 1 1 0 0			

[9589 rows x 14 columns]

8 . Split the data into dependent and independent variables

```
X= dataset.iloc[:,:-1].values #Indepedent variables
y= dataset.iloc[:,-1].values #Dependent variables
```

Χ

```
array([[1.0000000e+00, 0.0000000e+00, 0.0000000e+00, ..., 1.0000000e+00,
        1.0000000e+00, 1.0134888e+05],
       [0.0000000e+00, 0.0000000e+00, 1.0000000e+00, ..., 0.0000000e+00,
        1.0000000e+00, 1.1254258e+05],
       [1.0000000e+00, 0.0000000e+00, 0.0000000e+00, ..., 1.0000000e+00,
        0.0000000e+00, 1.1393157e+05],
       [1.0000000e+00, 0.0000000e+00, 0.0000000e+00, ..., 0.0000000e+00,
        1.0000000e+00, 4.2085580e+04],
       [0.0000000e+00, 1.0000000e+00, 0.0000000e+00, ..., 1.0000000e+00,
       0.0000000e+00, 9.2888520e+04],
       [1.0000000e+00, 0.0000000e+00, 0.0000000e+00, ..., 1.0000000e+00,
        0.0000000e+00, 3.8190780e+04]])
У
OUTPUT:
array([1, 0, 1, ..., 1, 1, 0])
9. Scale the independent variable
from sklearn.preprocessing import StandardScaler
scale= StandardScaler()
X = scale.fit_transform(X)
Х
OUTPUT:
array([[ 0.99718823, -0.57955796, -0.57297497, ..., 0.64561166,
         0.99573337, 0.01997639],
       [-1.0028197, -0.57955796, 1.74527693, ..., -1.54891873,
         0.99573337, 0.21465635],
       [0.99718823, -0.57955796, -0.57297497, ..., 0.64561166,
        -1.00428491, 0.23881355],
       [0.99718823, -0.57955796, -0.57297497, ..., -1.54891873,
         0.99573337, -1.01072631],
       [-1.0028197, 1.72545295, -0.57297497, ..., 0.64561166,
       -1.00428491, -0.12716553],
       [0.99718823, -0.57955796, -0.57297497, ..., 0.64561166,
        -1.00428491, -1.07846436]])
10. Split the data into training and testing
from sklearn.model_selection import train_test_split
```

We use train_test_split function to split the data such that 25% is used

for testing while the remaining 75% is used for training
X_train, X_test, y_train, y_test = train_test_split(X,y ,

random_state=104,test_size=0.25, shuffle=True)

```
X_train
```

```
OUTPUT:
```

```
array([[ 0.99718823, -0.57955796, -0.57297497, ..., 0.64561166, 0.99573337, -1.74019169],
[-1.0028197, -0.57955796, 1.74527693, ..., -1.54891873, -1.00428491, -1.39787901],
[-1.0028197, 1.72545295, -0.57297497, ..., -1.54891873, 0.99573337, -1.48817335],
...,
[ 0.99718823, -0.57955796, -0.57297497, ..., 0.64561166, -1.00428491, 0.71481237],
[ 0.99718823, -0.57955796, -0.57297497, ..., -1.54891873, -1.00428491, 0.60834563],
[ -1.0028197, 1.72545295, -0.57297497, ..., 0.64561166, 0.99573337, 0.0525285 ]])
X_test
```

y_test

OUTPUT:

array([0, 1, 0, ..., 0, 0, 1])