超越计算极限 人工智能搜索

JIANG, Yanyan Nanjing University

计算机具有了何种"智能"?

模式识别。无论是人像、笔迹、指纹还是语音,都有对应的技术。

计算机具有了何种"智能"? (cont.)

- 形式化推理(机器证明)。
- ▶ 1977年中国科学院的平面几何机械化证明首次取得成功。
- ▶ 传说中FMSong带去的若干难题被瞬间解出。
- ▶ 还有很多.....

强人工智能与弱人工智能

- 强人工智能观点认为有可能制造出真正能推理 (Reasoning)和解决问题(Problem_solving)的智能 机器,并且,这样的机器能将被认为是有知觉的,有自我 意识的。
- 弱人工智能观点认为不可能制造出能真正地推理 (Reasoning)和解决问题(Problem_solving)的智能 机器,这些机器只不过看起来像是智能的,但是并不真正 拥有智能,也不会有自主意识。

今天的主要内容

- 本来是想给大家介绍更多一些人工智能的内容,有人告诉我说,考前最好不要学新东西,于是还是把重点放在搜索上了。
- ▶ 搜索策略: DFS, BFS, DFSID
- ▶ 启发式搜索: A*, IDA*
- ▶ 优化策略: Dancing Links

DFS, BFS & DFS-ID

DFS vs. BFS

- ▶ 搜索往往是在一个图或是树中进行的。
- 考虑树的情况。

DFS vs. BFS (cont.)

▶ 在树中, 总能找到解。在图中就未必了。

- 于是需要判重。
- > 对于BFS, 重复判断开销和队列开销是同一数量级的。
- ▶ 对于DFS, 重复判断是一种很大的浪费。

DFS vs. BFS (cont.)

- ▶ 究竟哪一种更好?
- ▶ BFS总是能找到最优解。而实际上往往要求最优解。
- ▶ 但有时候队列开销过大。
- ▶ 试图将DFS改进为可以获得最优解的BFS!

DFS-ID

▶ 迭代加深 (iterative deepening)

DFS-ID (cont.)

▶ 假设每个状态有k个子状态, BFS总共需要扩展

$$1 + k + k^{2} + \ldots + k^{d} = \frac{k^{d+1} - 1}{k - 1}$$

▶ 个结点。DFS-ID则是

$$1 + (1 + k) + \ldots + (1 + k + \ldots + k^{d}) = ?$$

DFS-ID (cont.)

$$1 + (1+k) + \dots + (1+k+\dots + k^{d})$$

$$= \sum_{i=0}^{d} \frac{k^{i+1} - 1}{k-1}$$

$$= \frac{1}{k-1} \left[k \left(\frac{k^{d+1} - 1}{k-1} \right) - (d+1) \right]$$

$$= \frac{k^{d+2} - 2k - kd + d + 1}{(k-1)^{2}} \le \frac{k^{d+2}}{(k-1)^{2}}$$

$$= \frac{k}{k-1} \frac{k^{d+1}}{k-1}$$

DFS-ID (cont.)

- ho 比BFS多产生了 $\frac{1}{k-1}$ 倍的结点。
- > 实际这个数字很小。而且DFS比BFS有着不可比拟的优势: 内存!
- 下面给大家补充存储器相关的内容。

存储器结构

存储器结构

存储器结构

- ▶ L1-Cache的访问周期与CPU相同。
- Cache缺失时,需访问主存。往往损失数百个时钟周期。
- ▶ 主存缺失时,需访问磁盘。损失的时间以ms计算,非常 多。

两个程序效率相差很大。 N越大,效率相差越大。

DFS-ID vs. BFS

- DFS-ID比BFS多产生了 $\frac{1}{k-1}$ 倍的结点。
-)换来的是程序的局部访问。DFS中深度不会非常大,L2-Cache完全可容纳,局部频繁访问的总是可以在L1中找到。
- ▶ 当BFS仅仅需要几MB内存的时候,这个差异并不明显,甚至BFS可能会略快一些。但除非找到非常好的启发途径,现实中的问题是没有那么便宜的。采用DFS-ID至少不会引起溢出和换页所导致的时间损失。

Example

连火星人都知道的八数码问题。

同时不要忘记

- 双向搜索也许成为解决的关键。将反向BFS得到的结果保存在Hash表中备查,同时在正向做DFS-ID,对于确定目标状态的搜索问题是很有效的。
- 另外可做一些可行性剪枝,截去明显不可能的状态。但这一点应用比较灵活,每个问题的分析方式都不相同。
- ▶ 注意以上两点均可以在随后介绍的A*算法中应用。

A* & IDA*

启发式搜索

- 我们可以人为估计一个状态的好坏。
- 用启发函数 f 代表结点的好坏,约定 f 比较小时,结果比较理想。
- 往往,

$$\widehat{f}(n) = \widehat{g}(n) + \widehat{h}(n)$$

-)其中 $\hat{g}(n)$ 是从开始结点到n的路径长度, $\hat{h}(n)$ 表示对结点n的启发,即从当前结点到目标结点距离的估计。数值越小表明离目的越近。
- $ightharpoonup A*算法总是选择 <math>\widehat{f}$ 最小的那个结点进行扩展。

启发式搜索

- ▶ 两个特殊情况:

- ▶ A*算法实际上是盲目搜索的扩展。

可接纳性定理

- > 若搜索图中权值非负,且对搜索图中的所有结点有 $\hat{h}(n) \leq h(n)$
- 则第一个被选中的目标结点确定了到达目标的最优路径。
- 与Dijkstra算法非常类似。

可接纳性定理(cont.)

- ▶ 引理: 在A*终止前的每一步,总有一个结点n*,满足:
- ▶ (1) n*在到达目标的一条最佳路径上
- ▶ (2) A*已经发现了到达n*的最佳路径
- (3) $\hat{f}(n^*) \leq h(n_0)$
- ▶ 证明采用数学归纳法。

可接纳性定理(cont.)

- > 接下来证明可接纳性定理。反证法:
- ▶ 假设算法终止时并非最优解g2。对于最优解g1,有

$$f(n_{g1}) = f(n_0)$$

- 上在g2终止时, $\hat{f}(n_{g2}) \geq f(n_{g2}) > f(n_0)$ 。
- ▶ 根据引理,此时队列中一定存在

$$\widehat{f}(n^*) \leq f(n_0)$$

A*算法总是寻找最小权值的结点扩展,于是得出矛盾,可 接纳性定理得证。

可接纳性定理(cont.)

可见,启发函数的数值不能大于从当前状态到目标状态的最优值,在此限制下,启发函数越大越好。越大表明与正确的贪心算法越接近。

超越计算极限 - 人工智能搜索

IDA*

- A*算法需要维护一个优先队列。通常用堆实现,取最小操作将耗费很多的时间,还需要判重以减少队列中的元素个数。这个算法与Dijkstra算法非常的类似。
- ▶ 同样,可以把DFS-ID中的思路放到A*算法中。
- ▶ 每次选择启发函数最小的点进行DFS,当深度到达某个限制时回溯。但IDA*的最大优势在于,无需维护全局最小值和判重!
- 它成为求解启发式搜索的理想工具。

IDA* (cont.)

▶ 在Heap-A*中采用优先队列,IDA*中则是将估价函数作 为<mark>剪枝条件</mark>。当

$$\hat{g}(n) + \hat{h}(n) > L$$

▶ 时,由于

$$\hat{g}(n) + \hat{h}(n) \le g(n) + h(n)$$

)有

$$g(n) + h(n) > L$$

所以无论如何也无法得到预期的解,则剪枝。

双向搜索

> 双向的启发式搜索可能引起不正确的结果:

双向搜索(cont.)

观察启发函数的形式

$$\widehat{f}(n) = \widehat{g}(n) + \widehat{h}(n)$$

以及需要满足的条件

$$\hat{h}(n) \leq h(n)$$

- \rightarrow 当 h(n)可知时,用h(n) 代替 $\hat{h}(n)$ 会收到较好的效果。
- ▶ 这一点同样可以应用在Heap-A*和IDA*上。

启发式搜索例题

15-puzzle

启发函数

$$\begin{split} \widehat{h}(n) & \leq h(n) \\ \widehat{h}(n) & = \max\{\widehat{h}_1(n), \widehat{h}_2(n), \ldots\} \end{split}$$

▶ 曼哈顿距离和。易见它满足条件,但不够精确:

1	2	3	4
5	6	7	8
9	10	11	12
13	15	14	

启发函数(cont.)

- 交换两个数字的位置,无论如何,2步都是无法达到的。(不考虑其他数字的情况)
- 考虑两个数字已经在目的地所在的那一行了,则至少需要增加两次的移动(让出位置)。这个性质对列也同样。
- ▶ 可以用曼哈顿距离加上这个数值作为较好的ĥ(n)。
- 还可以考虑任何其他的可行的启发方式,包括双向搜索。

15数码问题

 15
 14
 13
 12

 11
 10
 9
 8

 7
 6
 5
 4

 3
 1
 2

1	2	3	4
5	6	7	8
9	10	11	12
13	14	15	

Destroying Squares

▶ 消灭方块, n<=10。以下是一个3x3的例子。

试图做一种特殊的探索

- > 给定一个二分图,用最少数量的左边结点支配右边结点!
- 可以将它归约到一个NPC问题。
- ▶ 那就试图设计一个满足 $\hat{h}(n) \leq h(n)$ 的启发函数。
- 启发函往往贪心算法将得到一个上界。这个上界可以用于 剪枝(明显无法达到),但不能用作启发函数。
- 数需要估计一个下界。

一个实际效果很好的启发函数

- > 对于当前状态,已经选择了部分左边点。
- (1) ans = 0
- ▶ (2) 如果所有右边点都被覆盖,结束
- (3) ans = ans + 1
- (4)任选一个未被覆盖的右边点,将关联它的左边点全部 选中,这将引起其他右边点被覆盖
- ▶ (5) 转(2)
- 在右边点的选取上,可以优先取关联的左边点较少的那些, 增加估计函数的值。用这个启发可以很轻松地解决这个问 题。

更强的算法

> 是否能回忆起,很多最小值问题的近似算法都存在

$$A^* \leq \rho A$$

这样形式的界。变形后得到

$$A \ge \frac{1}{\rho}A^*$$

▶ 作为估计函数,利用

$$\hat{h}(n) = \max\{\hat{h}_1(n), \hat{h}_2(n), \ldots\}$$

加强优化。

解决这个问题的意义

- 这个模型是个很广泛的模型,甚至很多存在P算法的问题, 都可以避免建模过程直接暴力构造这样的模型进行求解。
- ▶ IDA*的效果有多好,请同学们自己动手实践!
- 配合接下来的常数优化,效果将更好。

讨论题: 15-puzzle II

- ▶ 1-16这些数字填入了一个4x4的方格
- ▶ 每次允许将一行或一列进行旋转操作:
- 1 2 3 4 => 2 3 4 1
- 1 2 3 4 => 4 1 2 3
- 问初始状态到目标状态至少需要多少步。

讨论题: Sokuban

▶ 推箱子, n,m<=8(含边界)


```
6 7
######
.
#+#+@#.
#Bb..##
#.#.b.#
#...#
```

Dancing Links & DFS Speedup

加速动机

```
▶ 全排列:
void dfs(int l) {
     for (i = 0; i < n; i ++)
           if (!used[i]) {
                 number[I] = i;
                 used[i] = false;
                 dfs(I + 1);
▶ 循环处当层数增加时,空转严重!
```

双向链表实现

- ▶ 用A[n]表示一个长度为n的链表
- ▶ L[u] 表示u左边的结点
- ▶ R[u] 表示u右边的结点
- ▶ 删除:
- L[R[u]] = L[u];
- ▶ 注意u并未被删除

双向链表实现

- ▶ 用A[n]表示一个长度为n的链表
- ▶ L[u] 表示u左边的结点
- ▶ R[u] 表示u右边的结点
- ▶ 恢复:
- L[R[u]] = u;
- ightharpoonup R[L[u]] = u;

> 只要按栈的规则进行删除、恢复,链表被原样保持!

全排列

```
void dfs(int l) {
    for (i = R[0]; i!= -1; i = R[i]) {
        remove(i);
        number[l] = i;
        dfs(l + 1);
        restore(i);
    }
}
```

remove, restore 均为O(1)操作,提高了效率

推广到二维

- ▶ 如果用十字链表存储 二维矩阵,则同样可 以用Dancing Links 进行删除与恢复。
- 做法是在行上做一次, 再在列上做一次。

Exact Cover Problem

给定01矩阵,选择一些行,使得选出那些行中,每一列 仅有一个1。

```
      0
      0
      1
      0
      1
      0
      1
      0
      1
      0
      1
      0
      1
      0
      0
      1
      0
      0
      1
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
```

```
\left(\begin{array}{ccccccccc}
0 & 0 & 1 & 0 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 1
\end{array}\right)
```

Exact Cover Problem (cont.)

- > 算法:
- ▶ [1] if (A空) 返回一组解;
- ▶ [2] 选择一个未被覆盖的列c
- ▶[3] 将所有与c相关的行删除
- ▶ [4] 对每一个与c相关的行,执行DFS
- ▶ [5] 恢复那些行
- ▶ 可以体会一下Dancing Links的应用!
- 要注意恢复的顺序与删除的顺序应当保持栈的关系。

Exact Cover Problem (cont.)

- **▶** 更多的优化:
- ▶ [1] if (A空) 返回一组解;
- ▶ [2] 选择一个未被覆盖的列c
- 在这里可以选择包含行数最少的列,以减少搜索分支数。
- ▶ [3] 将所有与c相关的行删除
- ▶ [4] 对每一个与c相关的行,执行DFS
- > 这里选择哪些行比较好呢?
- ▶ [5] 恢复那些行

Sudoku

▶ 加强版, 保证唯一解

		Α	Г	0 0			С	100			0-3		0		I
	J			A		В		P	3	C	G	F		Н	Г
		D			F		Ι	000	E		Ι.			P	
	G		E	L		Н	5 . 72	Ĭ,			М		J		
				Е			6 - 8	23-	С			G		8 8	
	I			K		G	A		В				E		J
D		G	Ρ			J		F					Α		
	E				С		В			D	P		Г	0	
E	8-3		F	8 - 8	M		6-8	D	8 - 8		L		K	8-8	A
	C							-		0		I	Г	L	Г
Н		P		С			F	00	Α			В	Г		Г
			G		0	D	5 /2	20		J			Г		H
K		- 5		J			-8	23	Н		Α		P	8 8	I
	i i	В			P		2	E			K	ij		Α	
	Н			В			K			F	I		С		Г
		F				С			D			н		N	Г

F	P	A	H	M	J	E	С	N	L	В	D	K	0	G	I
0	J	М	I	Α	N	В	D	P	K	С	G	F	L	Н	E
L	N	D	K	G	F	0	Ι	J	E	Α	H	M	В	P	C
В	G	С	E	L	K	H	P	0	F	Ι	М	Α	J	D	N
M	F	Н	В	E	L	P	0	Α	С	K	J	G	N	Ι	D
C	I	L	N	K	D	G	Α	Н	В	М	0	P	E	F	J
D	0	G	P	I	Н	J	М	F	N	L	E	С	Α	K	В
J	E	K	A	F	C	N	В	G	I	D	P	L	Н	0	M
E	В	0	F	P	М	Ι	J	D	G	Н	L	N	K	С	A
N	С	J	D	Н	В	Α	E	K	М	0	F	I	G	L	P
H	М	P	L	C	G	K	F	Ι	Α	E	N	В	D	J	0
A	K	Ι	G	N	0	D	L	В	P	J	С	E	F	М	Н
K	D	E	М	J	I	F	N	С	Н	G	Α	0	P	В	L
G	L	В	С	D	P	М	Н	E	0	N	K	J	Ι	Α	F
P	Н	N	0	В	Α	L	K	М	J	F	I	D	С	E	G
I	Α	F	J	0	E	C	G	L	D	P	В	Н	М	N	K

a) Sudoku grid

Figure 1. Sudoku

b) Solution

Sudoku \Rightarrow Exact Cover Problem

- ▶ 行:
- $16 \times 16 \times 16 = 4096$
- ▶ 一共16 x 16小格,每小格有16种可能(A..P)
- ▶ 列:
- ▶ (16 + 16 + 16) x 16:每个字母都需要占据一个行、列 或大块
- ▶ 16 x 16:每个小块只能放在一个小格中(这一个条件的加入是为了填满整个棋盘)
- ▶ A[i][j] = 1 当且仅当 行i 可以放在 列j 处。
- ▶ 你认为不可能出解吗? 试验一下你就知道了!

还可以做什么呢?

- ▶ Dancing Links还可以用在IDA*上。
- Destroying Squares就可以采用这个方法减少搜索常数, 进一步提高效率。
- ▶ 几乎任何DFS模型的搜索都可以套用Dancing Links进行 优化,而且获得很大的效率提升。作为一个附加性的通用 算法,加上代码简洁,这个优化途径很值得采纳。

总结

- > 有两种算法:
- ▶[1] 保证正确,但为了得到正确的结果,可能需要很多的时间,如IDA*
- ▶ [2] 不保证正确,很快可以求出一个不错的解,可以求很 多次,如随机调整、遗传算法等
- ▶ 应当如何选择?

推荐的练习

- ▶ [1] Dancing Links优化的实现。可以直接尝试Exact Cover,也可以从全排列开始,比较各种算法的效率。
- ▶ [2] 用Dancing Links和IDA*实现二分图特殊支配问题。
- [3] 用这两个模型解决一些其他问题。
- ▶ [4] 尝试构造不同评估函数解决遇到的搜索问题。