Optimal Domain-Based Stratified Sampling Allocations Developed in Shiny

Jeff Schneider, RSSC 11/9/2016

Opinions are those of the Author and do not necessarily represent the Defense Department

Background

- Defense Research, Surveys and Statistics Center
- Responsible for conducting large scale military surveys
 - Congressionally mandated
 - Policy implications
- Topical surveys
 - Don't Ask Don't Tell
 - Sexual Assault
 - Absentee Voting

Presentation Overview

- Background on military surveys
 - Domains
 - Domain Estimation Problem
- Optimization
 - Develop optimal sample allocation
- Process
- Shiny!

What are Domains?

- The Active Duty military has ~ 1.3 million people
- Policy makers want to know more than the attitudes and opinions for the Active Duty as a whole
 - Domain Examples: Gender, Age, Education, Race, Pay
 - Gender x Age x Race
- A typical RSSC survey can have 70 domains!
- Our goal:
 - Who to sample
 - How many people to sample

Domain Estimation

- Considering the domains of interest, stratify the population into homogenous groups
 - Condense the problem
 - Efficiency

Domain Estimation

- We can still make really good strata though!
 - Example: Stratify by Service x Pay x Gender
 - Stratum 1: Army_JrEnlisted_Male
 - Stratum 2: Army_SrEnlisted_Male
 - Stratum 3: Army_JrOfficer_Male
 - ...
- Domains are related to strata characteristics
 - 92% of Stratum 3 have a college degree
 - 4% of Stratum 1 have a college degree

Strata - Domain Link

Stratum 1: Army_JrEnlisted_Male

Domain Estimation (contd)

- Strata have varied response rates
 - Younger, newer members of the military are much less likely to respond compared to their older counterparts

Follow-up Plan

Send invitation
1st Reminder
2nd Reminder
1st Call
2nd Call
Send silly cartoon
Beg
Hire goons
Release hounds

Sampling Objective: Recap

- Develop the best sample allocation for all domains of interest
 - Condensed problem into strata
 - How many people do we need to sample from each stratum
- Minimize cost (burden and \$)
- Meet precision (margin of error)
 - Multiple domain solution proposed by Chromy (1987)

Optimization Solution

- Minimize Cost:
- $Cost = \sum_{h=1}^{H} C(h)x(h)$
 - C(h) is the cost of sampling from stratum h
 - x(h) is the sample size for stratum h

Follow-up Plan
-Send-invitation—
1st Reminder
-2nd Reminder
-1st Call
2nd Call
Send Silly cartoon
Beg
Hire goons
Release hounds

Stratum 1: Army_JrEnlisted_Male

- Subject To:
- $\sum_{h=1}^{H} \frac{V(k,h)}{x(h)} \le V(k)^*$ for k = 1,2,... k where k = DOMAINS
 - - Iterative process

Optimization Solution (Contd)

- Treating as equality constraint
- $f(x) = \sum_{h=1}^{H} C(h)x(h) + \sum_{k=1}^{K} \lambda_i(k) \sum_{h=1}^{H} \left(\frac{V(k,h)}{x(h)} V^*(k) \right)$
- $\frac{df}{dx(h)} = C(h) + \lambda \left(\frac{-V(k,h)}{x(h)^2}\right)$
- Algebraically:

•
$$x_i(h) = \left[\sum_{k=1}^K \lambda_i(k) \frac{V(k,h)}{C(h)}\right]^{\frac{1}{2}}$$

Optimization Solution (contd)

- Resulting variance:
- $V_i(k) = \sum_{h=1}^{H} \frac{V(k,h)}{x_i(h)}$
- Update Lambda based on relationship between current V(k) And V(k)*
- $\lambda_{i+1}(k) = \lambda_i \left[\frac{V_i(k)}{V(k)^*} \right]^2$
- Result from Chromy (pg. 197)

$$\lambda_{i+1}(k)$$

Process

- Input source files (Map strata to domains)
- Calculate Costs
- Define precision constraints for domains (e.g., ± 5)
- Initiate Optimization Solution
 - Based on Lambda, assign sample for each stratum
 - Based on sample assigned, compare current variance to variance constraint – Update Lambda
 - Continue iterations until criteria met
- Use the optimal sample allocation to conduct the survey

Input: Source Data

Domain Variables

Row#	Service	Pay	Gender	Race	Location	Marital	Education	Enlisted	Count	Strat
1	1	1	1	1	0	0	0	1	5	1
2	1	1	1	1	1	1	0	1	2	1
3	1	1	1	1	1	0	0	1	143	1
4	1	1	1	1	1	0	1	1	18	1
5	1	1	2	1	0	0	0	1	10	2
										••

• Stratum 1: Army_JrEnlisted_Male

Strata Variables

Input: Constraints

Domain	Domain Variable 1	Domain Variable 2	V*(k): Precision
Army	Service = 1		±3
Navy	Service = 2		±5
E1-E4 (Jr. Enlisted)	Paygrade = 1		±5
E5-E9 (Sr. Enlisted)	Paygrade = 2		±5
O4-O6 (Sr. Officer)	Paygrade = 5		±5
Army * Enlisted (Jr. & Sr. Enlisted)	Service = 1	Paygrade = 1 & 2	±5
Single	Marital = 0		±5

Input: Response Rates

Strata	Predicted (Historical) Response Rate
1	12%
2	15%
3	40%
4	60%

Cost Model Calculations

- How much does it cost to get a response?
- Example

Strata Predicted (Historic Response Rate	
1	12%

•
$$C(h) = C\left(\frac{1}{RR}\right)$$

RR=Response Rate

•
$$C(1) = C\left(\frac{1}{0.12}\right) = \sim 8C$$

Sampling Tool with R & Shiny

- Objective of the tool:
 - Provide an easy platform for the statistician
 - SAS based organization
 - Generate useful insights and visualizations

Sampling Tool: Inputs

Population	1,348,423
Strata	178
Records	53,236
Variables	21

Sampling Tool: Inputs

Sampling Tool: Domains

Leverages HandsOnTable

Sampling Tool: Domains

Sampling Tool: Strata-Domains

Sampling Tool: Strata-Domains

Sampling Tool: Strata-Domains

DMDC Sampling Tool

≛ Start

Constraints \$\infty\$

Map Data

Results

i About

Allocation Assumptions

Minimum per Strata:

2

Convergence Criterion:

0.0001

Maximum Iterations:

55

Optimization Method

Chromy

Run

Allocation	Domain Impact	Convergence				
Strata 🌲	Exp Respondents $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	Sample Size 🌲	Strata Size 🌲	Response Rate 🍦	Pct Sampled	
1	14	115	3,712	0.122186	0.031	
2	16	109	3,120	0.146421	0.035	
3	245	2,674	107,452	0.091606	0.025	
4	2	15	363	0.137361	0.041	
5	23	167	6,424	0.137887	0.026	
6	2	15	263	0.132374	0.057	
7	16	131	5,174	0.121752	0.025	
8	22	165	4,879	0.132995	0.034	

Initial to Final Lambda Ratio

Serving Those Who Serve Our Country

Sampling Tool: Results

Roadmap

- Goals:
 - Reproducible (generate a markdown)
 - Generalize (work for any survey topic!)
 - More sampling designs
 - More optimization methods
 - Generate stratification based on domains

References

- Bond. (1995). "Results of Using Chromy's Algorithm for the Annual Survey of Manufacturers"
- Chromy. (1987). "Design Optimization with Multiple Objectives"
- Choudhry. (2012). "On sample allocation for efficient domain estimation"
- DMDC. (2003). "Sample Planning Tool"
- Mason. (1995). "Sample Allocation for the Status of the Armed Forces Surveys"
- Langford. (2006). "Sample Size Calculation for Small-Area Estimation"
- Williams. (2004). "Survey Designs to Optimize Efficiency for Multiple Objectives: Methods and Applications"

Acknowledgements

- David McGrath, Statistics Branch Chief, RSSC
- Eric Falk, Statistics Branch Team Lead, RSSC
- Tim Markham, Statistician, Leo Burnett

Questions?

