

SECI1013: DISCRETE STRUCTURE SEM 1 20242025

 Name
 :

 Section :

 Student ID
 :

 Section :

 Date
 :

ASSIGNMENT 4 – Trees and Finite Automata Group of 3, Due date: 27 Januari 2025

1) Which of these graphs are trees? Justify your answer.

c)

2)

- 3) Represent the expression $((x+2) \uparrow 3)*(y-(3+x))-5$ using a binary tree. Write this expression in pre order, in order and post order notation.

Construct a complete binary tree of height 4 and a full 3-ary tree of height 3.

4) What is the value for the post order notation

AND THE WALL OF THE PARTY OF TH

SECI1013: DISCRETE STRUCTURE SEM 1 20242025

Name	:			
Student ID	:	Section	:	
)ate				

5) Given rooted tree in Figure 1

Figure 1

- a) Which vertex is the root?
- b) Which vertices are internal node?
- c) Which vertices are leaves?
- d) Which vertices are children of j?
- e) Which vertex is the parent of h?
- f) Which vertices are siblings of o?
- g) Which vertices are ancestors of m?
- h) Which vertices are descendants of b?
- 6) How many vertices does a full 5-ary tree with 100 internal vertices have?
- 7) How many leaves does a full 4-ary tree with 1000 vertices have?

SECI1013: DISCRETE STRUCTURE SEM 1 20242025

Name	:				
Student ID	:	Section	:		
Date					

8) Use Kruskal algorithm to find the minimum spanning tree for the following graph in Figure 2

Figure 2

- 9) A chain letter starts with a person sending a letter out to 6 others. Each person is asked to send the letter out to 6 others, and each letter contains a list of the previous four people in the chain. Unless there are fewer than four names in the list, each person sends one dollar to the first person in this list, removes the name of this person from the list, moves up each of the other three names one position, and inserts his or her name at the end of this list. If no person breaks the chain and no one receives more than one letter, how much money will a person in the chain ultimately receive?
- 10) Construct a state transition diagram of a DFA that accepts all strings over $\{a, b, c\}$ that begin with a, contain exactly two b's, and end with c.
- 11) Construct a state transition diagram of a FSM that accepts the given set of strings over $\{a, b\}$:
 - a) contain exactly two b's.
 - b) at least one b.
 - c) odd number of a's

SECI1013: DISCRETE STRUCTURE SEM 1 20242025

Name	:				
Student ID	:	Section	:	•	
Date	:				

12) A description of an automatic telephone answering machine is shown in Table 2. When a call arrives, the phone rings. If the phone is not picked up, then on the third ring, the machine answers. It plays a pre-recorded greeting requesting that the caller leave a message, then records the caller's message, and then automatically hangs up. If the phone is answered before the third ring, the machine does nothing.

Table 2

States		Input		Output		
q_0	idle (nothing is	iı	incoming ringing	0	default output when there is	
	happening)		signal		nothing interesting to say	
q_1	one ring has arrived	i2	a telephone is picked	1	answer the phone and start the	
			up		greeting message	
q_2	two rings have	i3	greeting message is	2	start recording the incoming	
	arrived		finish playing		message	
q ₃	playing the greeting	i4	end of message	3	recorded an incoming message	
	message		detected			
q_4	recording the	i5	no input of interest			
	message					

a) Construct a state transition table by completing table below.

	f_s						fo			
	i_1	i2	i3	i_4	i5	i_I	i_2	i3	i_4	i5
q_0										
q_I										
q_2										
q_3										
q_4										

b) Based on answer in (a), construct a state transition diagram for the telephone answering machine.