Towards a Compositional Typed Semantics for Universal Dependencies

Siva Reddy

School of Informatics
The University of Edinburgh

People

Mirella Lapata

Mark Steedman

People

Mirella Lapata

Mark Steedman

Oscar Täckström

Dipanjan Das

Tom Kwiatkowski

Michael Collins

Slav Petrov

kotini aratipandu tinindi monkey banana eat

kotini aratipandu tinindi monkey banana eat

Syntax in humans?

Studies on Peruvian Indian bilinguals indicate Quechua word order influences the local varieties of Spanish [Odlin, 1989]

Syntax in humans?

Studies on Peruvian Indian bilinguals indicate Quechua word order influences the local varieties of Spanish [Odlin, 1989]

Arabs show strong preference for SVO in Dutch, whereas Turks for SOV [Jansen et al., 1981; Appel, 1984]

Universal Dependencies

Homogeneous syntactic representation across languages

Pixar Disney 2006 in acquired

Universal Dependencies

Homogeneous syntactic representation across languages

 $\exists z. \text{company}(\text{Pixar}) \land \text{located}(z_e) \land \text{arg}_2(z_e, \text{Pixar}) \land \text{arg}_{\text{in}}(z_e, \text{CA})$

 $\exists z. company(Pixar) \land located(z_e) \land arg_2(z_e, Pixar) \land arg_{in}(z_e, CA)$

$$(case \quad CA \quad in) \\ \lambda f g x. f(x) \quad \lambda x. CA(x_a) \quad \lambda x. empty(x) \\ \hline \\ \lambda x. CA(x_a)$$

 $\wedge \operatorname{arg_{in}}(z_e, x_a)$

$$\lambda z.\operatorname{located}(z_e) \wedge \operatorname{CA}(x_a) \wedge \operatorname{arg_{in}}(z_e, x_a)$$

$$\begin{array}{ccc} (acl & \text{company} & \text{located in CA}) \\ \lambda fgx.\exists z. & \lambda x. \text{compay}(x_a) & \\ f(x) \wedge g(x) \wedge & & \lambda gz.\exists x. \text{located}(z_e) \wedge \text{CA}(x_a) \wedge \text{arg}_{\text{in}}(z_e, x_a) \\ \\ \text{arg}_2(z_e, x_a) & & \end{array}$$

 $\lambda x.\exists yz. \text{company}(x_a) \land \text{located}(z_e) \land \text{CA}(y_a) \land \arg_2(z_e, x_a) \land \arg_{\text{in}}(z_e, y_a)$

 $\exists z. \text{company}(\text{Pixar}) \land \text{located}(z_e) \land \text{arg}_2(z_e, \text{Pixar}) \land \text{arg}_{\text{in}}(z_e, \text{CA})$

Synchronous Syntax-Semantics Interfaces

Derive semantics from syntactic derivation

- ► CCG [Bos et al., 2004; Lewis & Steedman, 2013]
- ► HPSG [Copestake et al., 2001]
- ► LFG [Dalrymple et al., 1995]
- ► TAG [Joshi et al., 1995]

CCG has been a popular choice

- No treebanks for many languages
- Syntactic categories differ in each language

Why from Universal Dependencies?

Treebanks in more than 40 languages

Very accurate parsers

[Andor et al., 2016; Chen & Manning, 2014]

Universal Types, both syntactic and semantic

$$\lambda z. \exists xy. \operatorname{acquired}(z_e) \land \operatorname{Pixar}(y_a) \land \operatorname{Disney}(x_a) \land \operatorname{arg}_1(z_e, x_a) \land \operatorname{arg}_2(z_e, y_a)$$

Our Approach

Let dependency labels drive the composition

Our Approach

Our Approach

Our Approach

10/26

Our Approach

(nsubj (dobj acquired Pixar) Disney)

Our Approach

(nsubj (dobj acquired Pixar) Disney)

Our Approach

(nsubj (dobj acquired Pixar) Disney)

$$\lambda z. \exists xy. \text{acquired}(z_e) \land \text{Pixar}(y_a) \land \text{Disney}(x_a) \land \\ \arg_1(z_e, x_a) \land \arg_2(z_e, y_a)$$

Lambda Calculus

Lambda Calculus Basic Types

- ▶ Individuals: **Ind** (also denoted by .a)
- Events: Event (also denoted by .e)
- Truth values: Bool

Lambda Calculus

Lambda Expression for words

$$\operatorname{acquired} \Rightarrow \lambda x. \operatorname{acquired}(x_e)$$

 $Pixar \Rightarrow \lambda x. Pixar(x_a)$

Lambda Calculus

Lambda Expression for dependency labels

$$\text{dobj} \Rightarrow \lambda f \ g \ z \ . \ \exists x \ . \ f(z) \quad \land \quad g(x) \quad \land \quad arg_2(z_e, x_a)$$

Lambda Calculus

Lambda Expression for dependency labels

$$\text{dobj} \Rightarrow \lambda f \ g \ z \ . \ \exists x \ . \ f(z) \quad \land \quad g(x) \quad \land \quad arg_2(z_e, x_a)$$

This operation mirrors the tree structure

Composition

Composition

Composition

Composition

Composition

(nsubj (dobj acquired Pixar) Disney)

$$\lambda f g z. \exists x.$$
 $\longrightarrow \lambda x. \text{Disney}(x_a)$
 $f(z) \wedge g(x) \wedge \lambda z. \exists y. \text{acquired}(z_e) \wedge \text{Pixar}(y_a)$
 $\arg_1(z_e, x_a) \wedge \arg_2(z_e, y_a)$

Composition

$$\begin{array}{cccc} (\textbf{nsubj} & (\textbf{dobj acquired Pixar}) & \textbf{Disney}) \\ \lambda f g z. \; \exists x. & & & \\ f(z) \wedge g(x) \wedge & \lambda z. \; \exists y. \; \text{acquired}(z_e) \wedge \text{Pixar}(y_a) \\ \arg_1(z_e, x_a) & & \wedge \arg_2(z_e, y_a) \end{array}$$

$$\lambda gz.\exists xy.\operatorname{acquired}(z_e) \wedge \operatorname{Pixar}(y_a) \wedge \operatorname{g}(x) \wedge \operatorname{arg}_1(z_e, x_a) \wedge \operatorname{arg}_2(z_e, y_a)$$

Composition

$$\begin{array}{c|cccc}
(\text{nsubj} & (\text{dobj acquired Pixar}) & \text{Disney}) \\
\lambda f g z. \; \exists x. & & & \\
f(z) \land g(x) \land & \lambda z. \; \exists y. \; \text{acquired}(z_e) \land \text{Pixar}(y_a) \\
& \arg_1(z_e, x_a) & & \land \arg_2(z_e, y_a)
\end{array}$$

$$\frac{\lambda g z. \exists x y. \; \text{acquired}(z_e) \land \text{Pixar}(y_a) \land g(x) \land \arg_1(z_e, x_a) \land \arg_2(z_e, y_a)}{\alpha rg_1(z_e, x_a) \land \arg_2(z_e, y_a)}$$

 $\lambda z. \exists xy. \operatorname{acquired}(z_e) \land \operatorname{Pixar}(y_a) \land \operatorname{Disney}(x_a) \land \operatorname{arg}_1(z_e, x_a) \land \operatorname{arg}_2(z_e, y_a)$

Composition

(nsubj (dobj acquired Pixar) Disney)

 $\lambda z. \exists xy. \operatorname{acquired}(z_e) \land \operatorname{Pixar}(y_a) \land \operatorname{Disney}(x_a) \land \operatorname{arg}_1(z_e, x_a) \land \operatorname{arg}_2(z_e, y_a)$

$$appos = \\ Disney \qquad the company \qquad \lambda fgx. f(x) \land g(x)$$

$$\begin{array}{c|c} & \textit{partmod} = \\ & \text{company} & \text{located in CA} & \lambda fgx. \, \exists z. f(x) \land g(z) \land \arg_2(z_e, x_a) \end{array}$$

Comparison with CCG

Disney	acquired	Pixar		
\overline{NP}	$\overline{S \backslash NP/NP}$	NP		
Disney	$\begin{array}{c} \lambda y \lambda x \lambda e. \ \operatorname{acquired}(e) \\ \wedge \ \operatorname{arg}_1(e,x) \\ \wedge \ \operatorname{arg}_2(e,y) \end{array}$	Pixar		
	$S \backslash NP$			
$ \begin{array}{c} \lambda x \lambda e. \ \mathrm{acquired}(e) \\ \wedge \ \mathrm{arg}_1(e,x) \wedge \ \mathrm{arg}_2(e,\mathrm{Pixar}) \end{array} $				
λe . acc	$\frac{S}{\text{quired}(e) \land \arg_1(e, \text{Disno})}$	$\exp(\wedge \operatorname{arg}_2(e,\operatorname{Pixar}))$		

CCG	DepLambda
Lexicalized semantics	Simple lexical semantics
$S\NP/NP: \lambda y \lambda x \lambda e. acquired(e) \wedge arg_1(e,x) \wedge arg_2(e,y)$	λx . acquired (x_e)
Words drive composition	Dependencies drive composition
Language specific types	Mostly universal

Argument adjunct distinction $S \setminus NP/PP/NP$ vs. $(S \setminus NP) \setminus (S \setminus NP)/NP$

Every dependent is an adjunct

Lexicalized semantics

 $S\NP/NP : \lambda y \lambda x \lambda e. acquired(e) \wedge arg_1(e,x) \wedge arg_2(e,y)$

Simple lexical semantics

 λx . acquired(x_e)

Words drive composition

Language specific types

Dependencies drive composition

Mostly universal

Argument adjunct distinction

 $S \backslash NP/PP/NP$ vs. $(S \backslash NP) \backslash (S \backslash NP)/NP$

Every dependent is an adjunct

With "complex types" comes power

 $(S[dcl]\NP)/(S[to]\NP_{\mathbf{X}})/NP_{\mathbf{X}}$

Single-type system is robust, but restricted

 $\lambda \mathit{fgx}\ldots$ i.e., $\eta \to \eta \to \eta$ for all labels

Relative clause in CCG

company	which	Disney	acquired
N λx.company(x)	$(N_{\mathbf{x}}N_{\mathbf{x}})/(S_{\mathrm{dcl}}/N_{\mathbf{x}}P)$ $\lambda p \lambda q \lambda x. q(x) \wedge \exists e[p(x,e)]$	N	$(S_{dcl}\NP)/NP$ $\lambda x \lambda y \lambda e. acquire(e) \Lambda A0(y,e) \Lambda A1(x,e)$
		NP disney	
	,	$S_X/(S_X \setminus NP)$ $\lambda p \lambda e. p(disney, e)$)
		<i>хх</i> хе.асq	S _{dcl} /NP uire(e) 1/A0(disney,e) 1/A1(x,e)
	λ <i>ρλ</i> χ. <i>p</i> (x) Λ	N\I ∃e[acquire(e)/	N AAO(disney,e) AA1(x,e)]
		N	

 $\lambda x.company(x) \land \exists e[acquire(e) \land AO(disney,e) \land A1(x,e)]$

Relative Clause in DepLambda

following Carpenter (1998)

DepLambda in a nutshell

Dependency tree is a series of compositions

- Dependency label defines the composition function
- Each function takes two typed-semantic sub-expressions
- Returns typed-semantics of the larger expression

Function could be any computation

e.g., a neural network

Richer context-sensitive types will allow richer composition functions

- e.g., neural networks with tensors/neural networks
- directly to the target-application semantics

DepLambda in a nutshell

Dependency tree is a series of compositions

- Dependency label defines the composition function
- Each function takes two typed-semantic sub-expressions
- Returns typed-semantics of the larger expression

Function could be any computation

e.g., a neural network

Richer context-sensitive types will allow richer composition functions

- e.g., neural networks with tensors/neural networks
- directly to the target-application semantics

DepLambda in a nutshell

Dependency tree is a series of compositions

- Dependency label defines the composition function
- Each function takes two typed-semantic sub-expressions
- Returns typed-semantics of the larger expression

Function could be any computation

e.g., a neural network

Richer context-sensitive types will allow richer composition functions

- e.g., neural networks with tensors/neural networks
- directly to the target-application semantics

Recap

$$\ldots > \mathsf{dobj} > \cdots > \mathsf{nsubj} > \ldots$$

lambda expression composition

 $\exists z. \text{company}(\text{Pixar}) \land \text{located}(z_e) \land \text{arg}_2(z_e, \text{Pixar}) \land \text{arg}_{\text{in}}(z_e, \text{CA})$

Grounded Semantic Parsing

Titanic

1997 · Drama film/Romance · 3h 30m

7.7/10 · IMDb

88% · Rotten Tomatoes

James Cameron's "Titanic" is an epic, action-packed romance set against the ill-fated maiden voyage of the R.M.S. Titanic; the pride and joy of the White Star Line and, at the time, the larg... More

Initial release: November 18, 1997 (London)

Director: James Cameron

Featured song: My Heart Will Go On

Leonardo DiCaprio Jack Dawson

Kate Winslet Rose DeWitt

Billy Zane Caledon Hockley

Gloria Stuart Rose DeWitt Bukater

Kathy Bat Molly Brown

Leonardo DiCaprio starred as Jack in Titanic which was directed by James Cameron.

Titanic

1997 · Drama film/Romance · 3h 30m

7.7/10 · IMDb

88% · Rotten Tomatoes

James Cameron's "Titanic" is an epic, action-packed romance set against the ill-fated maiden voyage of the R.M.S. Titanic; the pride and joy of the White Star Line and, at the time, the larg... More

Initial release: November 18, 1997 (London)

Director: James Cameron

Featured song: My Heart Will Go On

Leonardo DiCaprio Jack Dawson

Winslet Pose DeWitt Rukater

Billy Zane Caledon Hockley

Gloria Stuart

Pose DeWitt Rukater

Leonardo DiCaprio starred as Jack in Titanic which was directed by James Cameron.

cast(TITANIC, DICAPRIO, JACK) ∧ director(TITANIC, CAMERON)

Titanic

1997 · Drama film/Romance · 3h 30m

7.7/10 · IMDb

88% · Rotten Tomatoes

James Cameron's "Titanic" is an epic, action-packed romance set against the ill-fated maiden voyage of the R.M.S. Titanic: the pride and joy of the White Star Line and, at the time, the larg... More

Initial release: November 18, 1997 (London)

Director: James Cameron

Featured song: My Heart Will Go On

Leonardo Winslet DiCaprio Jack Dawson Pose DeWitt Rukater

Hockley

Billy Zane Caledon

Gloria Stuart Pose DeWitt

Molly Brown Rukater

Leonardo DiCaprio starred as Jack in Titanic which was directed by James Cameron.

cast(TITANIC, DICAPRIO, JACK) A director(TITANIC, CAMERON)

TRUE

Titanic

1997 · Drama film/Romance · 3h 30m

7.7/10 · IMDb

88% · Rotten Tomatoes

James Cameron's "Titanic" is an epic, action-packed romance set against the ill-fated maiden voyage of the R.M.S. Titanic: the pride and joy of the White Star Line and, at the time, the larg... More

Initial release: November 18, 1997 (London)

Director: James Cameron

Featured song: My Heart Will Go On

Leonardo Winslet DiCaprio Jack Dawson Pose DeWitt Rukater

Caledon Hockley

Gloria Stuart Pose DeWitt Rukater

Kathy Bates Molly Brown

[Berant et al., 2013, Kwiatkowski et al., 2013]

Question

Who is the director of Titanic?

Answer

{James Cameron}

[Berant et al., 2013, Kwiatkowski et al., 2013]

Question

Who is the director of Titanic?

Logical Form λx . film.diletent_by(Titanic, x)

Answer

{James Cameron}

Logical Form to Ungrounded Graph

Cameron directed Titanic in 1997 $\lambda e. \text{directed.arg1}(e, \textcolor{red}{\textbf{Cameron}}) \land \text{directed.arg2}(e, \textcolor{red}{\textbf{Titanic}}) \land \\ \text{directed.in}(e, \textcolor{red}{\textbf{1997}})$

Titanic

Cameron

1997

Logical Form to Ungrounded Graph

Cameron directed Titanic in 1997

 λe .directed.arg1(e, Cameron) \wedge directed.arg2(e, Titanic) \wedge directed.in(e, 1997)

Logical Form to Ungrounded Graph

Cameron directed Titanic in 1997

Graph Matching

Ungrounded Graph

film.directed by TITANI film.initial_release _date.arg1 film.directed_by film.initial_re film.directed_by.arg $2(m, CAMERON) \land$ film.directed_by.arg1(m, TITANIC) \land film.initial_release_date.arg1(n, TITANIC) \land

Grounded Graph

film.initial_release_date.arg2(n, 1997)

Graph Matching

directed.arg1(e, Cameron) \land directed.arg2(e, Titanic) \land directed.in(e, 1997)

Ungrounded Graph

Grounded Graph

Graph Matching

directed.arg1(e, Cameron) \land directed.arg2(e, Titanic) \land directed.in(e, 1997)

film.directed.by TITANIC film.initial_release _date.argl film.directed.by CAMERON m.initial_rele

 $\begin{array}{ll} {\rm film.directed_by.arg2}(m,{\rm CAMERON}) \; \land \\ {\rm film.directed_by.arg1}(m,{\rm TITANIC}) \; \land \\ {\rm film.initial_release_date.arg1}(n,{\rm TITANIC}) \; \land \\ {\rm film.initial_release_date.arg2}(n,1997) \end{array}$

Ungrounded Graph

Grounded Graph

Graph Matching

 $\frac{\text{directed.arg1}(e, \text{Cameron}) \land}{\text{directed.arg2}(e, \text{Titanic}) \land \text{directed.in}(e, 1997)}$

 $\begin{array}{l} {\rm film.directed_by.arg2}(m,{\rm CAMERON}) \; \land \\ {\rm film.directed_by.arg1}(m,{\rm TITANIC}) \; \land \\ {\rm film.initial_release_date.arg1}(n,{\rm TITANIC}) \; \land \\ {\rm film.initial_release_date.arg2}(n,1997) \end{array}$

Freebase Semantic Parsing

Freebase Semantic Parsing

Baselines

SIMPLEGRAPH: All entities connected to a single event

Does not handle compositional questions

CCGGRAPH: CCG logical forms

DEPTREE: Directly transduce a dependency tree to target graph

Baselines

SIMPLEGRAPH: All entities connected to a single event

Does not handle compositional questions

CCGGRAPH: CCG logical forms

DEPTREE: Directly transduce a dependency tree to target graph

Baselines

SIMPLEGRAPH: All entities connected to a single event

Does not handle compositional questions

CCGGRAPH: CCG logical forms

DEPTREE: Directly transduce a dependency tree to target graph

Results on Free917

Summary

- Lambda Calculus for converting Dependencies to Logical Forms
- Semantic parsing as Graph Transduction
- State-of-the-art results on Free917 and competitive results on WebQuestions
- Work in progress: DepLambda for multiple languages

Rules available from
https://github.com/sivareddyg/deplambda
Thank You!

Summary

- Lambda Calculus for converting Dependencies to Logical Forms
- Semantic parsing as Graph Transduction
- State-of-the-art results on Free917 and competitive results on WebQuestions
- Work in progress: DepLambda for multiple languages

Rules available from

https://github.com/sivareddyg/deplambda
Thank You!

Summary

- Lambda Calculus for converting Dependencies to Logical Forms
- Semantic parsing as Graph Transduction
- State-of-the-art results on Free917 and competitive results on WebQuestions
- Work in progress: DepLambda for multiple languages

Rules available from https://github.com/sivareddyg/deplambda Thank You!

Structured Perceptron: Ranks a pair of grounded and ungrounded graph

$$(\hat{g}, \hat{u}) = \arg\max_{g,u} \Phi(g, u, q, KB) \cdot \theta$$

Features: Φ is defined over sentence, grounded and ungrounded graph

Training: Use a surrogate graph (dynamic oracle) to update weights

$$\theta \leftarrow \theta + \Phi(g^+, u^+, q, KB) - \Phi(\hat{g}, \hat{u}, q, KB)$$

Structured Perceptron: Ranks a pair of grounded and ungrounded graph

$$(\hat{g}, \hat{u}) = \arg\max_{g,u} \Phi(g, u, q, KB) \cdot \theta$$

Features: Φ is defined over sentence, grounded and ungrounded graph

Training: Use a surrogate graph (dynamic oracle) to update weights

$$\theta \leftarrow \theta + \Phi(g^+, u^+, q, KB) - \Phi(\hat{g}, \hat{u}, q, KB)$$

Structured Perceptron: Ranks a pair of grounded and ungrounded graph

$$(\hat{g}, \hat{u}) = \arg\max_{g,u} \Phi(g, u, q, KB) \cdot \theta$$

Features: Φ is defined over sentence, grounded and ungrounded graph

Training: Use a surrogate graph (dynamic oracle) to update weights

$$\theta \leftarrow \theta + \Phi(g^+, u^+, q, KB) - \Phi(\hat{g}, \hat{u}, q, KB)$$

Oracle Graphs: Search for all the grounded graphs reachable via the ungrounded graph.

Pick all the graphs with minimal F_1 -loss against the gold answer.

Surrogate Gold Graph:

$$(u^+, g^+) = \underset{(u,g) \in O_{KB,A}(q)}{\operatorname{arg\,max}} \theta^t \cdot \Phi(u, g, q, KB),$$

Beam Search: Limit the predictions to 100 graph pairs, and choose the best prediction for update.

Single Type System

All constituents are of the same lambda expression type

TYPE[acquired] = TYPE[Pixar] = TYPE[(dobj acquired Pixar)]

Single Type System

All **words** have a *lambda expression* of type η

- ► TYPE[acquired] = η
- ► **TYPE**[Pixar] = η
- ► TYPE[(dobj acquired Pixar)] = η

Single Type System

All **constituents** have a *lambda expression* of type η

- ► TYPE[acquired] = η
- ► **TYPE**[Pixar] = η
- ► TYPE[(dobj acquired Pixar)] = η

Single Type System

All **constituents** have a *lambda expression* of type η

- ► TYPE[acquired] = η
- ► **TYPE**[Pixar] = η
- ► **TYPE**[(dobj acquired Pixar)] = η

$$\implies$$
 TYPE[dobj] = $\eta \rightarrow \eta \rightarrow \eta$

Lambda Calculus for Single Type System

Lambda Expression for words

acquired
$$\Rightarrow \lambda x_e$$
. acquired(x_e)
Pixar $\Rightarrow \lambda x_a$. Pixar(x_a)

Lambda Calculus for Single Type System

Lambda Expression for words

$$\begin{array}{ll} \operatorname{acquired} \Rightarrow \lambda x_e. \operatorname{acquired}(x_e) & \Rightarrow \operatorname{TYPE} = \operatorname{Event} \to \operatorname{Bool} \\ \operatorname{Pixar} \Rightarrow \lambda x_a. \operatorname{Pixar}(x_a) & \Rightarrow \operatorname{TYPE} = \operatorname{Ind} \to \operatorname{Bool} \end{array}$$

Here $TYPE[acquired] \neq TYPE[Pixar] X$

Lambda Calculus for Single Type System

Lambda Expression for words

$$\operatorname{acquired} \Rightarrow \lambda \mathbf{x_a} x_e$$
. $\operatorname{acquired}(x_e)$

 $Pixar \Rightarrow \lambda x_a \mathbf{x_e}$. $Pixar(x_a)$

Lambda Calculus for Single Type System

Lambda Expression for words

$$\begin{array}{ll} \operatorname{acquired} \Rightarrow \lambda \mathbf{x_a} x_e. \operatorname{acquired}(x_e) & \Rightarrow \mathsf{TYPE} = \mathbf{Ind} \times \mathbf{Event} \to \mathbf{Bool} \\ \operatorname{Pixar} \Rightarrow \lambda x_a \mathbf{x_e}. \operatorname{Pixar}(x_a) & \Rightarrow \mathsf{TYPE} = \mathbf{Ind} \times \mathbf{Event} \to \mathbf{Bool} \end{array}$$

Here $\eta = \text{TYPE}[\text{acquired}] = \text{TYPE}[\text{Pixar}] \checkmark$

More dependency labels

(appos Disney the_company)

$$appos = \lambda fgx.f(x) \land g(x)$$

This function unifies two nodes

(partmod a_company acquired_by_Disney)

$$partmod = \lambda fgx. \exists z. f(x) \land g(z) \land \arg_1(z_e, x_a)$$

This function reverses the dependency arc direction, but still returns the head

More dependency labels

(appos Disney the_company)

$$appos = \lambda fgx.f(x) \land g(x)$$

This function unifies two nodes

(partmod a_company acquired_by_Disney)

$$partmod = \lambda fgx. \exists z. f(x) \land g(z) \land \arg_1(z_e, x_a)$$

This function reverses the dependency arc direction, but still returns the head

More dependency labels

(conj Disney_and Pixar)

$$conj = \lambda fgz. \exists xy. f(x) \land g(y) \land \mathbf{coord}(z, x, y)$$

This function creates a struct with two variables

(rcmod Disney which_acquired_Pixar)

```
(rcmod Disney (wh-dobj (BIND f (nsubj (dobj acquired f) Pixar)) which))
```

More dependency labels

(conj Disney_and Pixar)

$$conj = \lambda fgz. \exists xy. f(x) \land g(y) \land \mathbf{coord}(z, x, y)$$

This function creates a struct with two variables

(rcmod Disney which_acquired_Pixar)

CCG to Logical Forms

Steedman, 2000, 2012; Bos et al., 2004; Lewis & Steedman, 2013; Reddy et al., 2014

Disney	acquired	Pixar
\overline{NP}	$\overline{S \backslash NP/NP}$	\overline{NP}
Disney	$\begin{array}{c} \lambda y \lambda x \lambda e. \ \operatorname{acquired}(e) \\ \wedge \ \operatorname{arg}_1(e,x) \\ \wedge \ \operatorname{arg}_2(e,y) \end{array}$	Pixar
	$\overline{S \backslash NP}$	
$\begin{array}{c} \lambda x \lambda e. \ \operatorname{acquired}(e) \\ \wedge \ \operatorname{arg}_1(e,x) \wedge \ \operatorname{arg}_2(e,\operatorname{Pixar}) \end{array}$		
$\frac{S}{\lambda e.\ \text{acquired}(e) \land \text{arg}_1(e, \text{Disney}) \land \text{arg}_2(e, \text{Pixar})}$		

Challenges


```
The obvious idea
```

```
if proper noun then  \operatorname{assign} \lambda x.\operatorname{word}(x)  else if \operatorname{verb} with \operatorname{subject} and \operatorname{object} then  \operatorname{assign} \lambda fge. \exists xy. f(x) \wedge g(y) \wedge \operatorname{word}(e) \wedge \operatorname{arg}_1(e,x) \wedge \operatorname{arg}_2(e,y)  end if
```

Challenges

The obvious idea

```
if proper noun then  \operatorname{assign} \lambda x.\operatorname{word}(x)  else if \operatorname{verb} with \operatorname{subject} and \operatorname{object} then  \operatorname{assign} \lambda fge. \exists xy. f(x) \land g(y) \land \operatorname{word}(e) \land \operatorname{arg}_1(e,x) \land \operatorname{arg}_2(e,y)  end if
```

But, what about?

Dependencies to Logical Forms

Problems

- 1. Rules ∝ dependency label permutations
- 2. Complex lexical semantics
- 3. Highly sensitive to parse errors
- 4. Prone to type collisions

Comparison with CCG

Handling of control verbs is painful.

Sentence:

John persuaded Jim to acquire Pixar.

Binarized Tree:

(nsubj (xcomp (dobj persuaded Jim) to_acquire_Pixar) John)

Elegant handling in CCG persuaded: $((S[dcl]\NP)/(S[to]\NP_x))/NP_x$

Comparison with CCG

Handling of control verbs is painful.

Sentence:

John persuaded Jim to acquire Pixar.

Binarized Tree:

(nsubj (xcomp (dobj persuaded Jim) to_acquire_Pixar) John)

Elegant handling in CCG

persuaded: $((S[dcl]\NP)/(S[to]\NP_x))/NP_x$

Conjunctions

Sentence:

Eminem signed to Interscope and discovered 50 Cent.

Binarized tree:

(nsubj (conj-vp (cc s_to_l and) d_50) Eminem)

Substitution:

$$\operatorname{conj-vp} \Rightarrow \lambda fgx. \exists yz. f(y) \land g(z) \land \operatorname{coord}(x, y, z)$$

Logical Expression:

$$\lambda w. \exists xyz. \text{Eminem}(x_a) \land \text{coord}(w, y, z) \\ \land \text{arg}_1(w_e, x_a) \land \text{s_to_I}(y) \land \text{d_50}(z)$$

Post processing:

$$\lambda e. \exists xyz. \operatorname{Eminem}(x_a) \wedge \operatorname{arg}_1(y_e, x_a) \\ \wedge \operatorname{arg}_1(z_e, x_a) \wedge \operatorname{s_to_I}(y) \wedge \operatorname{d_50}(z)$$

Conjunctions

Sentence:

Eminem signed to Interscope and discovered 50 Cent.

Binarized tree:

(nsubj (conj-vp (cc s_to_l and) d_50) Eminem)

Substitution:

$$conj-vp \Rightarrow \lambda fgx. \exists yz. f(y) \land g(z) \land coord(x,y,z)$$

Logical Expression:

$$\lambda w$$
. $\exists xyz$. Eminem $(x_a) \wedge \text{coord}(w, y, z)$
 $\wedge \arg_1(w_e, x_a) \wedge \text{s_to_I}(y) \wedge \text{d_50}(z)$

Post processing:

$$\lambda e$$
. $\exists xyz$. Eminem $(x_a) \land \arg_1(y_e, x_a)$
 $\land \arg_1(z_e, x_a) \land s$ _to_ $I(y) \land d$ _50 $(z$

Conjunctions

Sentence:

Eminem signed to Interscope and discovered 50 Cent.

Binarized tree:

(nsubj (conj-vp (cc s_to_l and) d_50) Eminem)

Substitution:

$$conj-vp \Rightarrow \lambda fgx. \exists yz. f(y) \land g(z) \land coord(x,y,z)$$

Logical Expression:

$$\lambda w$$
. $\exists xyz$. Eminem $(x_a) \land \text{coord}(w, y, z)$
 $\land \text{arg}_1(w_e, x_a) \land \text{s_to_I}(y) \land \text{d_50}(z)$

Post processing:

$$\lambda e. \exists xyz. \text{ Eminem}(x_a) \land \arg_1(y_e, x_a) \\ \land \arg_1(z_e, x_a) \land \text{s_to_I}(y) \land \text{d_50}(z)$$

Relative Clause

```
following Moortgat (1988); Pereira (1990); Carpenter (1998)
Sentence:
                        Apple which Jobs founded
Binarized tree:
  (rcmod Apple
         (wh-dobj (BIND f (nsubj (dobj founded f) Jobs))
                  which))
```

Relative Clause

following Moortgat (1988); Pereira (1990); Carpenter (1998)

Sentence:

Apple which Jobs founded

Binarized tree:

Substitution:

wh-dobj
$$\Rightarrow \lambda fgz.f(z)$$

rcmod $\Rightarrow \lambda fgz.f(z) \land g(z)$

Logical Expression:

$$\lambda u$$
. $\exists xy$. founded $(x_e) \land \text{Jobs}(y_a)$
 $\land \arg_1(x_e, y_a) \land \arg_2(x_e, u_a) \land \text{Apple}(u_a)$

Expressivity

How isomorphic are the representations compared to Knowledge Graph?

Average Oracle F_1 Table.

Search Space

How many ways to reach an answer? Average Oracle F_1 Table.

Graph Transformation: CONTRACT operation

What is the name of the company which Disney acquired in 2006?

Ungrounded graph

Grounded graph

Graph Mismatch: EXPAND operation

What to do Washington DC December?

Before EXPAND

▶ λz . $\exists xyw$. TARGET $(x_a) \land do(z_e) \land arg_1(z_e, x_a) \land$ Washington_DC $(y_a) \land$ December (w_a)

After EXPAND

► λz . $\exists xyw$. TARGET $(x_a) \land \operatorname{do}(z_e) \land \operatorname{arg}_1(z_e, x_a) \land$ Washington_DC $(y_a) \land \operatorname{dep}(z_e, y_a) \land \operatorname{December}(w_a) \land \operatorname{dep}(z_e, w_a)$