2019 怪兽 学堂

虾米

时间: 2019年3月

Outline

- Regression
- Linear regression
 - As optimization → Gradient descent
- Overfitting and bias-variance

What is regression?

Where we are

Regression examples

Stock market

10.000 (10.000

Weather prediction

Predict the temperature at any given location

Linear regression

- Given an input x we would like to compute an output y
- For example:
 - Predict height from age
 - Predict Google's price from Yahoo's price
 - Predict distance from wall from sensors

Linear regression

- Given an input x we would like to compute an output y
- In linear regression we assume that y and x are related with the following equation:

What we are trying to predict $y = wx + \epsilon$

where w is a parameter and ε represents measurement or other noise

Linear regression

- Our goal is to estimate w from a training data of $\langle x_i, y_i \rangle$ pairs
- Optimization goal: minimize squared error (least squares):

$$\arg\min_{w} \sum_{i} (y_{i} - wx_{i})^{2}$$

- Why least squares?
- minimizes squared distance between measurements and predicted line
 - has a nice probabilistic interpretation
 - the math is pretty

Solving linear regression

- To optimize:
- We just take the derivative w.r.t. to w

prediction

$$\frac{\partial}{\partial W} \sum_{i} (y_i - W x_i)^2 = 2 \sum_{i} -x_i (y_i - W x_i)$$

Solving linear regression

- To optimize closed form:
- We just take the derivative w.r.t. to w and set to 0:

$$\frac{\partial}{\partial W} \sum_{i} (y_{i} - Wx_{i})^{2} = 2 \sum_{i} -x_{i} (y_{i} - Wx_{i}) \Rightarrow$$

$$2 \sum_{i} x_{i} (y_{i} - Wx_{i}) = 0 \Rightarrow 2 \sum_{i} x_{i} y_{i} - 2 \sum_{i} Wx_{i} x_{i} = 0$$

$$\sum_{i} x_{i} y_{i} = \sum_{i} Wx_{i}^{2} \Rightarrow$$

$$\sum_{i} x_{i} y_{i}$$

$$W = \frac{\sum_{i} x_{i} y_{i}}{\sum_{i} x_{i}^{2}}$$

Bias term

- So far we assumed that the line passes through the origin
- What if the line does not?
- No problem, simply change the model to

$$y = W_0 + W_1 X + \varepsilon$$

• Can use least squares to determine w₀, w₁

$$W_0 = \frac{\sum_{i} y_i - W_1 x_i}{n}$$

$$W_1 = \frac{\sum_{i} X_i (y_i - W_0)}{\sum_{i} X_i^2}$$

Simpler solution is coming soon...

Bias term

- So far we assumed that the line passes through the origin
- What if the line does not?
- No problem, simply extend the model to

$$y = w_0 + w_1 x + \varepsilon$$

• Can use least squares to determine w₀, w₁

$$W_0 = \frac{\sum_i y_i - W_1 X_i}{n}$$

$$W_1 = \frac{\sum_{i} X_i (y_i - W_0)}{\sum_{i} X_i^2}$$

Multivariate regression

- What if we have several inputs?
 - Stock prices for Yahoo, Microsoft and Ebay for the Google prediction task
- This becomes a multivariate regression problem
- Again, its easy to model:

Multivariate regression

- What if we have several inputs?
 - Stock prices for Yahoo, Microsoft and Ebay for the Google prediction task
- This becomes a multivariate regression problem
- Again, its easy to model:

$$y = w_0 + w_1 x_1 + \cdots + w_k x_k + \varepsilon$$

Not all functions can be approximated by a line/hyperplane...

$$y=10+3x_1^2-2x_2^2+\varepsilon$$

In some cases we would like to use polynomial or other terms based on the input data, are these still linear regression problems?

Non-Linear basis function

- So far we only used the observed values x_1, x_2, \cdots
- However, linear regression can be applied in the same way to functions of these values
 - Eg: to add a term w x_1x_2 add a new variable $z=x_1x_2$ so each example becomes: x_1, x_2, \cdots z
- As long as these functions can be directly computed from the observed values the parameters are still linear in the data and the problem remains a multi-variate linear regression problem

$$y = w_0 + w_1 x_1^2 + \ldots + w_k x_k^2 + \varepsilon$$

Non-Linear basis function

How can we use this to add an intercept term?

Add a new "variable" z=1 and weight w_0

Non-linear basis functions

- What type of functions can we use?
- A few common examples:

- Polynomial:
$$\phi_i(x) = x^j$$
 for $j=0 \cdots n$

- Gaussian:
$$\phi_{j}(\mathbf{X}) = \frac{(\mathbf{X} - \mu_{j})}{2\sigma_{j}^{2}}$$
- Sigmoid:
$$\phi_{j}(\mathbf{X}) = \frac{1}{1 + \exp(-\mathbf{S}_{j}\mathbf{X})}$$

- Sigmoid:
$$\phi_j(\mathbf{X}) = \frac{1}{1 + \exp(-\mathbf{S}_j \mathbf{X})}$$

Any function of the input values can be used. The solution for the parameters of the regression remains the same.

$$\phi_j(\mathbf{X}) = \log(\mathbf{X} + 1)$$
 - Logs:

General linear regression problem

 Using our new notations for the basis function linear regression can be written as

$$y = \sum_{j=0}^{n} W_{j} \phi_{j}(x)$$

- Where $\phi_j(\mathbf{x})$ can be either x_j for multivariate regression or one of the nonlinear basis functions we defined
- ... and $\phi_0(\mathbf{x})=1$ for the intercept term

Learning/Optimizing Multivariate Least Squares

Approach 1: Gradient Descent

Gradient descent

Goal: minimize the following loss function:

predict with:
$$\hat{\mathbf{y}}^{j} = \sum_{j}^{n} \mathbf{w}_{j} \phi_{j}(\mathbf{x}^{j})$$

$$J_{\mathbf{X},\mathbf{y}}(\mathbf{W}) = \sum_{j} (y^{j} - \hat{y}^{j})^{2} = \sum_{j} \left(y^{j} - \sum_{j} w_{j} \phi_{j}(\mathbf{X}^{j})\right)^{2}$$
sum over *n* examples

sum over *k+1* basis vectors

Goal: minimize the following predict with: $\hat{y}' = \sum_{j}^{n} w_{j} \phi_{j}(\mathbf{x}^{j})$ loss function:

$$J_{\mathbf{x},\mathbf{y}}(\mathbf{w}) = \sum_{i} (y^{i} - \hat{y}^{i})^{2} = \sum_{i} (y^{i} - \sum_{j} w_{j} \phi_{j}(\mathbf{x}^{i}))^{2}$$

$$\frac{\partial}{\partial w_{j}} J(\mathbf{w}) = \frac{\partial}{\partial w_{j}} \sum_{i} (y^{i} - \hat{y}^{i})^{2}$$

$$= 2\sum_{i} (y^{i} - \hat{y}^{i}) \frac{\partial}{\partial w_{j}} \hat{y}^{j}$$

$$= 2\sum_{i} (y^{i} - \hat{y}^{i}) \frac{\partial}{\partial w_{j}} \sum_{j} w_{j} \phi_{j}(\mathbf{x}^{i})$$

$$= 2\sum_{i} (y^{i} - \hat{y}^{i}) \phi_{j}(\mathbf{x}^{i})$$

Learning algorithm:

- Initialize weights w=0
- For t=1,... until convergence:
 - Predict for each example \mathbf{x}^i using \mathbf{w} : $\hat{\mathbf{y}}^j = \sum_{i=1}^{K} W_{ji} \phi_{ji}(\mathbf{x}^i)$
 - Compute gradient of loss: $\frac{\partial}{\partial W_j} J(\mathbf{w}) = 2\sum_i (y^i \hat{y}^i) \phi_j(\mathbf{x}^i)$ This is a vector **g**
 - Update: $\mathbf{w} = \mathbf{w} \lambda \mathbf{g}$
 - •λ is the learning rate.

- We can use any of the tricks we used for logistic regression:
 - stochastic gradient descent (if the data is too big to put in memory)
 - regularization

• ...

Linear regression is a *convex* optimization problem

so again gradient descent will reach a global optimum

proof: differentiate again to get the second derivative

Regression and Overfitting

An example: polynomial basis vectors on a small dataset

• From Bishop Ch 1

Oth Order Polynomial

1st Order Polynomial

3rd Order Polynomial

9th Order Polynomial

Over-fitting

Root-Mean-Square (RMS) Error: $E_{\rm RMS} = \sqrt{2E(\mathbf{w}^{\star})/N}$

Polynomial Coefficients

	M=0	M = 1	M = 3	M = 9
$\overline{w_0^{\star}}$	0.19	0.82	0.31	0.35
w_1^{\star}		-1.27	7.99	232.37
w_2^{\star}			-25.43	-5321.83
w_3^{\star}			17.37	48568.31
w_4^{\star}				-231639.30
w_5^{\star}				640042.26
w_6^{\star}				-1061800.52
w_7^{\star}				1042400.18
w_8^{\star}				-557682.99
w_9^\star				125201.43

Data Set Size:

9th Order Polynomial

$$N = 100$$

Regularization

Penalize large coefficient values

$$J_{\mathbf{x},\mathbf{y}}(\mathbf{w}) = \frac{1}{2} \sum_{i} \left(\mathbf{y}^{i} - \sum_{j} w_{j} \phi_{j}(\mathbf{x}^{i}) \right)^{2} - \frac{\lambda}{2} \|\mathbf{w}\|^{2}$$

Understanding Overfitting: Bias-Variance

Example

Tom Dietterich, Oregon St

The true function *f* can't be fit perfectly with hypotheses from our class *H* (lines) → Error₁

Fix: *more* expressive set of hypotheses *H*

What to do with large bias?

- Diagnosis:
 - If your model cannot even fit the training examples, then you have large bias
- For bias, redesign your model:
 - Add more features as input
 - A more complex model

Overfitting

What to do with large variance?

- Diagnosis:
 - If you can fit the training data, but large error on testing data, then you probably have large variance
 Overfitting
- For variance
 - More data: Very effective, but not always practical
 - Regularization

