AGENT-BASED SYSTEMS SEMINAR #1

PAOLO TURRINI

1. Strategies

1.1. **Chess.** Zermelo's theorem is formulated for chess. But what is really specific to chess in the theorem? Can you use the same result for other games?

Consider now a variant of the game of chess where either the game terminates with a win for White, or a win for Black or it goes on forever. Does Zermelo's theorem work for this variant? Prove it, or give a counterexample.

2. Knowledge

- 2.1. **Epistemic models.** Let $\{w_1, w_2, w_3\}$ be a set of worlds and $N = \{Ann, Bob\}$ be a set of agents ¹.
 - (1) Let $E = \{w_1\}$ be a fact. Find an indistinguishability relation for each agent so that, at w_1 , fact E is distributed knowledge at w_1 .
 - (2) Let $E = \{w_1\}$ be a fact. Find an indistinguishability relation for each agent so that, at w_1 , fact E is common knowledge at w_1 .
 - (3) Let $E = \{w_1\}$ be a fact. Find an indistinguishability relation for each agent so that, at w_1 , fact E is distributed knowledge at w_1 but not common knowledge at w_1 .
 - (4) Is it possible to find a fact and an indistinguishability relation such that (1) w_3 is disconnected from all the other worlds by the indistinguishability relation of either agent and (2) at some world, that fact is general knowledge but not common knowledge? Explain.
- 2.2. Facts in need of proofs. The following statements are true. Prove it.
 - (1) $K_i E \subseteq E$
 - (2) $K_iE \subseteq K_iK_iE$
 - (3) $\neg K_i E \subseteq K_i \neg K_i E^2$
 - (4) If $E \subseteq F$ then $K_i E \subseteq K_i F$

¹This question appeared in a previous exam paper of mine

 $^{^{2}}$ Reflect on the last three statements. Can you see a connection with the 'axioms' we imposed on the indistinguishability relation?

- (5) $(K_iE \cap K_iF) \subseteq K_i(E \cap F)$
- (6) $CKE \subseteq E$
- (7) $CKE \subseteq K_iCKE$
- 2.3. True of false? Consider now the converse 3 of the statements above. Do they hold? Prove it, or give a counterexample.

 $^{^3\}mathrm{Either}$ reverse the subset sign or the implication.