Trajectory-Compare 说明书

一、代码使用方法

进入 main.py 所在目录,运行下面代码:[源代码与 config 位于同一目录下]

python main.py config.ini

二、config 文件说明

节点	参数值	可使用值	备注
[Dir]			
	groundtruth_dir		参考轨迹的绝对路径及名称
	estimator_dir		估计轨迹的绝对路径及名称
	result_dir		输出路径
[Mode]			
		ECEF/XYZ	真实轨迹位置形式,ECEF 支持地心地固坐标或大
			地坐标系坐标[自动识别],如:
	groundtruth_		[-2267408.160,5008839.446,3222007.963]
	coordinatemode		[30.524,114.382, 34.456](deg,deg,m)
			[0.532,1.995,34.456](rad,rad,m)
			XYZ 意为除 ECEF 之外的任何三维坐标形式
	estimator_	ECEF/XYZ	估计轨迹位置形式,使用方式与
	coordinatemode		groundtruth_coorinatemode 相同
	compare_mode	Adjust	轨迹对比的方式
		Adjust_Yaw	Adjust:进行坐标拟合,常用于 SLAM 估计器结果

		Translate	与真值进行比较
			Adjust_Yaw: 在 Adjust 的基础上,在求解拟合参
			数时认为两条轨迹仅存在水平面的旋转变换
			Translate:两轨迹位于同一坐标系下,具有相同的
			坐标原点,常用于含有 GNSS 信息的估计值与真
			值的比较
	A 12	0.1:0.1:1	整体拟合时采用轨迹长度的百分比
	Adjust_percentage		如 0.5 为取轨迹的前 50%与真值计算拟合参数
	start_time		开始时间,小于该时间的轨迹信息不会被录入
	end_time		结束时间,大于该时间的轨迹信息不会被录入
[Status]			
	ls_use_pos	True	位置信息不可缺少
	ls_use_vel	True/False	是否使用速度信息
	ls_use_att	True/False	是否使用姿态信息
	gt_vel_mode	ENU/ECEF/XYZ	真值轨迹的速度形式
			ENU:载体的速度为东北天
			ECEF:载体的速度为 e 系速度
			XYZ:前两者之外的任何速度形式
	es_vel_mode ENU/ECEF/XYZ		估计轨迹的速度形式,使用方法与 gt_vel_mode
		相同	
	gt_att_mode	Euler/Quaternion	真值轨迹的姿态形式
			Euler:欧拉角形式,顺序要求见 Index 说明
			Quaternion:四元数形式,顺序要求见 Index 说明

	es_att_mode	Euler/Quaternion	估计轨迹姿态形式,使用方法与 gt_att_mode 相同
	gt_interval	各种符号或空格	真实轨迹数据间隔符,如#.,\
	es_interval	各种符号或空格	估计轨迹数据间隔符,如#.,\
[Index]			索引均从第0列开始,间隔符为空格或者逗号
			真实轨迹时间索引
	gt_time_index		例如时间位于第一列时,其 index 为 0
	gt_pos_index		真实轨迹位置索引
			例如位置位于第 2,3,4 列时,其 index 为 1,2,3
	at vol indov		真实轨迹速度索引
	gt_vel_index		例如速度位于第 5,6,7 列时,其 index 为 4,5,6
	gt_att_index		真实轨迹姿态索引
			Quaternion:参数个数为 4,要求顺序为 wxyz
			Euler:参数个数为 3,要求顺序为 yaw,pitch,roll
			单位为度,两种轨迹的欧拉角适配同一种计算方法
			即可
	es_time_index		估计轨迹时间索引
	es_pos_index		估计轨迹位置索引
	es_vel_index		估计轨迹速度索引
	es_att_index		估计轨迹姿态索引
[Plot]			
	xlabel	Time/Distance	位置、速度、姿态误差图的横坐标设置项
			Time:横坐标为数据时间

			Distance:横坐标为载体运动里程
			真值和估计值之间存在固定误差修正项,例如 RTK
			和 PPP 的结果存在基站基准坐标的固定差。
fix	fixed differences		该值会在真值读入时减去
	fixed_differences		groundtruth-fixed_differneces
			例固定误差在三轴上为 3m,4m,5m, 则该项应写
			作 3,4,5

二、输出文件说明

absolute_error.txt #time dpos dvel datt 1403637132.8883 00000 -0.14924 -0.10732 0.09537 0.00000 0.00000 0.11667 -0.67717 -0.00808 1403637132.8883 0.0000 -0.14929 -0.10715 0.09524 0.00000 0

三、参考示例

详见 example 文件下给出的三个示例数据

四、注意事项

- ① 在运行示例数据时,记得根据自己的文件路径修改 config 中各种轨迹的路径
- ② 姿态输入是欧拉角时,只支持单位为度的角度输入
- ③ 支持 BLH 的度或者弧度的输入形式,程序会自动识别
- ④ 支持 18 维 SLAM 中常用是 linux 系统时间输出
- ⑤ 程序中可能有未知 bug,有问题及时找李圣雨,及时修正~

四、参考文献

- [1] Zhang Z , Scaramuzza D . A Tutorial on Quantitative Trajectory Evaluation for Visual(-Inertial)

 Odometry[C]// 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE,

 2019.
- [2] Delmerico J , Scaramuzza D . A Benchmark Comparison of Monocular Visual-Inertial Odometry Algorithms for Flying Robots[C]// IEEE International Conference on Robotics & Automation. IEEE, 2018:2502-2509.
- [3] Sturm J , Engelhard N , Endres F , et al. A benchmark for the evaluation of RGB-D SLAM systems[C]//

Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ International Conference on. IEEE, 2012.

当前版本	V1.0
完成时间	2020.7.24
作者	李圣雨