Вероятностный подход для задачи предсказания биологической активности ядерных рецепторов

Володин Сергей Евгеньевич

Московский физико-технический институт

Курс: Численные методы обучения по прецедентам (практика, В.В. Стрижов)/Группа 374, осень 2016

Цель исследования

Предсказание взаимодействия двух типов молекул: лиганд и рецепторов. Необходимо оценить вероятность связывания.

Проблема

События реакции лиганда с различными рецепторами не независимы.

Задача

Необходимо построить вероятностную модель, учитывающую зависимости между классами, а также построить бинарный классификатор.

Проблема

Литература

- Olexandr Isayev Sherif Farag Stephen J. Capuzzi, Regina Politi and Alexander Tropsha. Qsar modeling of tox21 challenge stress response and nuclear receptor signaling toxicity assays.
- @ Geoff Holmes Eibe Frank Jesse Read, Bernhard Pfahringer. Classifier chains for multi-label classification.
- Eyke H.0 Krzysztof Dembczynski, Weiwei Cheng. Bayes optimal multilabel classification via probabilistic classifier chains. 2010.

4 / 12

Постановка задачи

Задана выборка $\mathfrak{D}=\{(\mathbf{x}_i,\mathbf{y}_i)\}=\mathfrak{L}\sqcup\mathfrak{T}.\ \mathbf{x}_i\in\mathbb{R}^n.\ \mathbf{y}_i\in\{0,1,\square\}^I,$

— пропуск в данных.

 ${f X}, {f Y}$ — случайные величины, между классами есть зависимости.

Модель классификации: функция f: $\mathbf{W} \times \mathbf{X} \times \mathbf{Y} \rightarrow [0,1]$,

$$f(\mathbf{w}, \mathbf{x}, \mathbf{y}) = P(\mathbf{Y} = \mathbf{y} | \mathbf{X} = \mathbf{x}; \mathbf{w})$$

Функция потерь — логарифм правдоподобия

$$Q(f|\mathbf{w}, \mathcal{Z}) = -\sum_{(\mathbf{x}, \mathbf{y}) \in \mathcal{Z}} \log f(\mathbf{w}, \mathbf{x}, \mathbf{y}) P(\mathbf{X} = \mathbf{x})$$

Требуется минимизировать Q:

$$\mathbf{w}^* = \underset{\mathbf{w} \in \mathbf{W}}{\arg\min} Q(\mathbf{f}|\mathbf{w}, \mathfrak{L})$$

Для оценки конкретной модели используется AUC.

Решение

Цель эксперимента

- Сравнение различных моделей по критерию AUC для различных классов.
- Выбор гиперпараметров исходя из внешних требований к решению задачи.

Сравниваемые модели

- Binary Relevance
- РСС предлагаемое решение
- Random Forest

Зависимость от гиперпараметров

Вычислительный эксперимент Результаты эксперимента

Рецептор	Binary Relevance	PCC	Random Forest
NR-AhR	$\boldsymbol{0.83} \pm 0.03$	0.83	0.93
NR-AR-LBD	$\boldsymbol{0.86} \pm 0.08$	0.90	0.88
NR-AR	$\boldsymbol{0.83} \pm 0.09$	0.84	0.83
SR-MMP	$\boldsymbol{0.87} \pm 0.03$	0.87	0.95
NR-ER	$\boldsymbol{0.78} \pm 0.04$	0.78	0.81
SR-HSE	$\boldsymbol{0.79} \pm 0.04$	0.78	0.86
SR-p53	$\boldsymbol{0.79} \pm 0.07$	0.80	0.88
NR-PPAR-gamma	$\boldsymbol{0.79} \pm 0.04$	0.81	0.86
SR-ARE	$\boldsymbol{0.78} \pm 0.02$	0.78	0.84
NR-Aromatase	$\boldsymbol{0.81} \pm 0.05$	0.82	0.84
SR-ATAD5	$\boldsymbol{0.81} \pm 0.06$	0.80	0.83
NR-ER-LBD	$\boldsymbol{0.80} \pm 0.07$	0.82	0.83

Заключение

- Предложена модель для предсказания взаимодействия, учитывающая зависимости между классами
- Проведено сравнение модели с другими по критерию AUC
- Базовая модель BR имеет худшие показатели AUC, чем Random Forest
- РСС лучше BR для большинства классов по критерию AUC при верных значениях гиперпараметров