Formulaire Transformées de Fourier :

$$f: \mathbb{R} \to \mathbb{R}; \qquad \mathcal{F}: f \mapsto \mathcal{F}f; \qquad \mathcal{F}f: \mathbb{R} \to \mathbb{C}$$

Propriété	Fonction	Transformée de Fourier
Définition	f(t)	$\mathcal{F}f(u) = \int_{\mathbb{R}} f(t). e^{-2i\pi u t} dt$
	f paire	$\mathcal{F}f(u) = \int_{\mathbb{R}} f(t) \cdot e^{-2i\pi ut} dt$ $\mathcal{F}f(u) = 2 \int_{0}^{+\infty} f(t) \cdot \cos(2\pi ut) dt$
	f impaire	$\mathcal{F}f(u) = -2i \int_0^{+\infty} f(t) \cdot \sin(2\pi ut) dt$
Linéarité	$\lambda . f(t) + \beta . g(t)$	$\lambda . \mathcal{F} f(u) + \beta . \mathcal{F} g(u)$
Dérivation (temporelle)	$f^{(k)}(t)$	$(2i\pi u)^k . \mathcal{F} f(u)$
Dérivation (fréquentielle)	$t^k.f(t)$	$\left(\frac{i}{2\pi}\right)^k \cdot \frac{d^k \mathcal{F} f(u)}{du^k}$
ou multiplication par $oldsymbol{t}^k$	ι . , (ι)	$\left(\frac{1}{2\pi}\right) \cdot \frac{1}{du^k}$
Translation (temporelle)	$f(t-a)$ $a \in \mathbb{R}_+^*$	$e^{-2i\pi au}.\mathcal{F}f(u)$
Modulation (temporelle) ou translation (fréquentielle)	$e^{2i\pi at}.f(t)$	$\mathcal{F}f(u-a)$
Changement d'échelle	$f(\omega t)$	$\frac{1}{ \omega } \cdot \mathcal{F}f\left(\frac{u}{\omega}\right)$
ou dilatation	$\omega \in \mathbb{R}^*$	
Conjugaison complexe	$f^*(t)$	$(\mathcal{F}f(-u))^*$
Produit de convolution	(f + g)(t)	(Tf Ta)(a)
(temporel)	(f*g)(t)	$(\mathcal{F}f.\mathcal{F}g)(u)$
Produit ou produit de convolution (fréquentiel)	(f.g)(t)	$(\mathcal{F}f*\mathcal{F}g)(u)$
Inversion	$\mathcal{F}f(u)$	f(-t)

$$\Pi(t) = \begin{cases} 1 & si \ t \in \left[-\frac{1}{2}, \frac{1}{2}\right] \\ 0 & sinon \end{cases}; \qquad \Lambda(t) = \begin{cases} 1 - |x| & si \ t \in [-1, 1] \\ 0 & sinon \end{cases}; \qquad \mathbb{I}_E(t) = \begin{cases} 1 & si \ t \in E \\ 0 & si \ t \notin E \end{cases}$$

Fonction	Fonction Transformée de Fourier	
$\Pi(t)$ (porte)	$sinc(\pi u)$	
$\Lambda(t)$ (triangle)	$sinc^2(\pi u)$	
$e^{-a t }$ $a \in \mathbb{R}_+^*$	$\frac{2a}{a^2 + 4\pi^2 u^2}$	Valable même si $\mathcal{R}e(a)>0$
$\frac{1}{a^2+t^2}$ (Lorentzienne)	$\frac{\pi}{a}e^{-2\pi a u }$	Valable même si $\mathcal{R}e(a)>0$
e^{-at^2} (Gaussienne) $lpha\in\mathbb{R}^*$	$\sqrt{\frac{\pi}{a}} \cdot e^{-\frac{\pi^2}{a}u^2}$	a réel
e^{-at} . $\mathbb{I}_{\mathbb{R}^+}(t)$ $a \in \mathbb{R}_+^*$	$\frac{1}{a+2i\pi u}$	Valable même si $\mathcal{R}e(a)>0$
$t^n e^{-at}$. $\mathbb{I}_{\mathbb{R}^+}(t)$ $a \in \mathbb{R}_+^*$	$\frac{n!}{(a+2i\pi u)^{n+1}}$	Valable même si $\mathcal{R}e(a)>0$