Unifying Data, Model and Hybrid Parallelism in Deep Learning via Tensor Tiling

Minjie Wang, Chien-chin Huang, Jinyang Li [ARXIV18]

Outline

- Background & Motivation
- Problem Setup & Challenge
- Tofu solution
 - Single Operator
 - Whole Graph
- Experiments

Deep Learning

"Deep Learning" trend in the past 10 years

State-of-art DL system is based on dataflow

```
import tensorflow as tf
... # generate data and weight
act1 = tf.matmult(data, w1)
act2 = tf.matmult(act1, w2)
...
grad_act2 = tf.matmult(w3.T, grad_act3)
grad_act1 = tf.matmult(w2.T, grad_act2)
...
grad_w2 = tf.matmult(act1.T, grad_act2)
grad_w1 = tf.matmult(data.T, grad_act1)
... # update weights using gradients
```


- Backward propagation (input gradients)
- Backward propagation (weight gradients)

What if I have many GPUs?

Data parallelism with manual distribution

```
GPU#0
import tensorflow as tf
... # generate data and weight
                                                                          Parameter Server
                                                       weights
data1, data2 = tf.split(data, axis=0)
with tf.device('/gpu:0'):
   grad1 = compute_grad(data1, weights)
                                                                          GPU#0
                                              data
with tf.device('/gpu:1'):
                                                                compute_grad
   grad2 = compute grad(data2, weights)
                                                                                     sum
with tf.device('/ps'):
                                          data
                                                                          GPU#1
    grad = aggregate(grad1, grad2)
    ... # update weights using gradients
                                                                compute_grad
                                                                                    grad
```

Manual Distribution & Device assignment

Scalability secret of data parallelism

Training: NVIDIA® Tesla® K80 synthetic data (1,8,16,32, and 64)

Options	InceptionV3	ResNet-50	ResNet-152	Alexnet	VGG16
Batch size per GPU	64	64	64	512	64
Optimizer	sgd	sgd	sgd	sgd	sgd

^{*} Numbers from https://www.tensorflow.org/performance/benchmarks

Large batch size harms model accuracy

Inception Network on Cifar-10 dataset

Data parallelism bottlenecked by communication

An alternative way: Model Parallelism

- Forward propagation
 - Backward propagation (input gradients)

MP is hard to program

```
1 # Original MLP code.
 2 def mlp(data, weights):
     # Forward Propagation.
     fwd = [data]
     for i in xrange(FLAGS.num layers):
       fwd.append(tf.matmul(fwd[-1], weights[i])) # forward matmult
     # Backward Propagation.
     targets = []
     last = fwd[-1]
     for i in reversed(xrange(FLAGS.num layers)):
       dw = tf.matmul(fwd[i], last, transpose a=True) # matmult: grad
11
       last = tf.matmul(last, w[i], transpose b=True) # matmult: bp
12
13
       # update
14
       targets.append(dw)
     return targets
```



```
1 # Manual Model Parallelism implementation for a MLP network.
    def model par mlp(data, weights):
      # Partition weights on row.
      w = []
      for i in xrange(FLAGS.num layers):
        w.append([])
        for j in xrange(FLAGS.num workers):
          with tf.device('/job:worker/task:%d' % j):
            w[i].append(tf.get variable(
                  name='w%d' % j.
11
                  shape=[slice size,feature size],
12
                   trainable=True))
13
      # Forward Propagation.
      fwd = []
15
      last = data
      for i in xrange(FLAGS.num layers):
        with tf.name scope('fc ff%d' % i):
17
18
          fwd.append(last)
          tmp = []
20
          for j in xrange(FLAGS.num workers):
            with tf.device('/iob:worker/task:%d' % i):
22
              y = tf.matmul(last[j], w[i][j]) # forward matmult
23
              # split the result so we can do balanced reduction.
24
              tmp.append(tf.split(split_dim=1, num_split=FLAGS.num_workers, value=y))
25
          # Reduce the result.
26
          red = []
          for j in xrange(FLAGS.num workers):
27
            with tf.device('/job:worker/task:%d' % j):
29
              red.append(tf.accumulate n([s[i] for s in tmp]))
30
          last = red
31
      # Backward Propagation.
32
       targets = []
33
      for i in reversed(xrange(FLAGS.num layers)):
34
        with tf.name_scope('fc_bp%d' % i):
35
          # Concatenate input tensors.
36
          tmp = []
          for j in xrange(FLAGS.num workers):
38
            with tf.device('/job:worker/task:%d' % j):
39
              tmp.append(tf.concat(concat dim=1, values=last))
40
          last = []
          for j in xrange(FLAGS.num workers):
41
            with tf.device('/job:worker/task:%d' % j):
42
43
              dy = tf.matmul(tmp[j], w[i][j], transpose_b=True) # matmult: bp
              last.append(dv)
              dw = tf.matmul(fwd[i][j], tmp[j], transpose a=True) # matmult: grad
              targets.append(dw) # update
      return targets
```

Outline

- Background & Motivation
- Problem Setup & Challenge
- Tofu solution
 - Single Operator
 - Whole Graph
- Experiments

What is the best strategy for distribution?

- No one-size-fits-all
 - DP and MP suit different situations (parameter shapes, batch sizes).
 - Different layers might be suited for different strategies (hybrid parallelism).
 - Use data parallelism for convolution layers; use model parallelism for fullyconnected layers.

Can we find an optimal distributed execution plan?

Parallelism in Deep Learning

- Exploring Hidden Dimensions in Parallelizing Convolutional Neural Networks [ICML18, Stanford & MSR]
- Unifying Data, Model and Hybrid Parallelism in Deep Learning via Tensor Tiling [NYU, May 10]
- PipeDream: Fast and Efficient Pipeline Parallel DNN Training [MSR&Stanford&CMU, June 8]
- Beyond Data and Model Parallelism for Deep Neural Networks [Stanford, July 14]
- GPipe: Efficient Training of Giant Neural Networks using Pipeline Parallelism [Google Brain, Nov 20]

Outline

- Background & Motivation
- Problem Setup & Challenge
- Tofu solution
 - Single Operator
 - Whole Graph
- Experiments

Tofu automatically distributes DL training

Figure 3: Overview of SOYBEAN's design.

Parallelism unified as tensor tiling:

Figure 5: Top: forward propagation of one layer in a MLP model. Bottom: how matrices are tiled in the forward propagation for different parallelisms.

Aligned Tilings

Figure 6: Three forms of aligned tilings for matrix multiplication. The resulting partition of the third form is an intermediate one red, and requires an extra reduction.

Example of different strategies

Different matrix multiplications may choose different strategies.

Example of different strategies

No communication if the output matrix satisfies the input partition.

Example of different strategies

Communication happens when matrices need to be re-partitioned.

Communication Cost

- Communication happens when matrices need to be re-partitioned.
- Communication cost == partition conversion cost.

R

Finding optimal strategy with minimal communication

- Each operator has several distribution decisions.
 - DP and MP are one of them.
- Looking at one operator at a time is **not** optimal.
- Finding strategy with minimal communication cost for a general graph is NP-Complete.
- Tofu finds optimal strategy for deep learning in polynomial time:
 - "Layer-by-layer" propagations → graph with long diameter.
 - Use dynamic programming algorithm to find optimal strategy.

Find combined strategies

- Solve the problem recursively.
- Proved to be optimal.

Step 1: Partition to two groups

Step 2: Apply the algorithm again on one of the group

Step 3: Apply the same strategy to the other group due to symmetry.

Which One is Better?

- ✓ Data Parallelism
 - 500K * 2 * 4B * 16 = 64MB
- ✓ Model Parallelism
 - 300K * 2 * 4B * 16 = 38.4MB
- ✓ Hybrid Parallelism
 - 4 groups of GPUs, each group has 4 GPUs
 - Model Parallelism among groups
 - 300K * 2 * 4B * 4 = 9.6MB
 - Data Parallelism within each group
 - 500K / 4 * 2 * 4B * 4 = 4MB
 - 9.6MB + 4 * 4MB = 25.6MB
 - Save 33.3% communications!

Outline

- Background & Motivation
- Problem Setup & Challenge
- Tofu solution
 - Single Operator
 - Whole Graph
- Experiments

Tofu Evaluation Setup

- Implemented in MXNet's NNVM dataflow optimization library.
- Multi-GPU evaluation
 - Amazon p2.8xlarge instance
 - 8 NVIDIA GK210 GPUs (4 K80)
 - 12GB memory per card
 - Connected by PCI-e (160Gbps bandwidth)

Communication Overhead Evaluation

- Per batch running time of a 4-layer MLP for DP, MP and TOFU.
- Hidden layer size: 8K/12K; Batch size: 512/2K

Figure 8: Runtime comparison of a 4-layer MLP for DP, MP, and SOYBEAN with different batch sizes and hidden sizes.

Communication Overhead Evaluation

- Per batch running time of a 5-layer CNN for DP and TOFU.
- Filter size: 2048/512

Figure 9: Runtime comparison of training a 5-layer convolutional neural network using DP, MP, and SOYBEAN. The batch size is 256.

Real Deep Neural Networks Evaluation

- Experimental setup: 1 machine, 8 cards.
- Baseline: 1 card

Figure 10: Throughtput comparison of SOYBEAN and data parallelism on 8 GPUs.

Tofu's tiling for VGG-19 on 8 GPUs

Data Parallelism

Hybrid Parallelism

- 8 GPUs into 4 groups
- Data parallelism among groups
- Model parallelism within each group (tile on channel)

Model Parallelism

Tile on both row and column for weight matrices

Recap

- Data parallelism suffers from batch-size-dilemma.
- Other parallelisms exist but are hard to program.
 - Model parallelism, hybrid parallelism, combined parallelism, etc.
- Tofu automatically parallelizes deep learning training
 - Figure out distributed strategies for each operator.
 - Combine strategies recursively.
 - Proved to have least communication cost.

Implemented in TVM (we may use ②)

Q & A

Single Card Different Tilings

- Per batch running time for a 4-layers MLP network.
- Hidden layer size: 8192
- Partition dataflow to 8 workers but put them on the same GPU.

Batch Size	Single GPU	Single GPU w/ Tofu partitions
512	0.31s	0.19s
1024	0.56s	0.39s
2048	1.13s	0.73s

- ✓ Fast GPU kernels
- ✓ Parallelism
- ✓ Fast interconnections

Portability Flexibility

- ✓ Low memory consumption
- ✓ Multi-language support

- ✓ Flexible interface
- Debug & visualization

Construct Parallel Execution Graph

Three-phase computation

Execution dataflow

Construct Parallel Execution Graph

Dataflow graph for tiling conversion.

One-cut Tiling Algorithm

- Given a dataflow graph G, find \mathcal{T}_{min} : $M_G \mapsto \{R,C,r\}$ such that the communication cost of *all* matrix multiplications are minimized.
- Case #1:

$$XW_0W_1 \dots W_n = Y$$

Dynamic Programming

One-cut Tiling Algorithm

Case #2:

$$\begin{array}{c} XW_0W_1...W_n = Y \\ dX = YW_n^TW_{n-1}^T...W_0^T \end{array}$$

Dynamic Programming

One-cut Tiling Algorithm

- Organize nodes in the dataflow graph into levels, such that for any node, all its neighbors are contained in the adjacent levels.
- BFS is one way to produce such levels.
- Dynamic Programming:

Initial condition:

$$g_0(\tau_0) = \text{level_cost}_0(\phi, \tau_0)$$

DP equation $(l \ge 1)$:

$$g_l(\tau_l) = \min_{\tau_{l-1}} \left\{ \text{level_cost}_l(\tau_{l-1}, \tau_l) + g_{l-1}(\tau_{l-1}) \right\}$$

Different ways of distributing matrix multiplication

- Activation Matrix (lower layer) is row-partitioned
- Weight Matrix is replicated
- Acitvation Matrix (higher layer) is row-partitioned
- Data parallelism

Different ways of distributing matrix multiplication

Which One is Better?

- ✓ Data Parallelism
 - 500K * 2 * 4B * 16 = 64MB
- ✓ Model Parallelism
 - 300K * 2 * 4B * 16 = 38.4MB
- ✓ Hybrid Parallelism?