PRAVOUHLÝ TROJUHOLNÍK

- Pytagorova veta
- Goniometrické funkcie
- Euklidove vety

Goniometrické funkcie

• Koľko pravouhlých trojuholníkov, ktorých jeden vnútorný uhol má veľkosť 35°, existuje?

• pomer dĺžok konkrétnych dvoch strán daného pravouhlého trojuholníka je číslo, ktoré závisí iba od veľkosti uhla α a je pre ktorýkoľvek z podobných pravouhlých trojuholníkov rovnaké

$$\sin \alpha = -$$

$$\cos \alpha = -$$

$$\cot \alpha = -$$

Úlohy

1. V pravouhlom trojuholníku ABC s pravým uhlom pri vrchole C platí c=6 cm a $\sin\alpha=\frac{3}{4}$. Určte dĺžku strany a.

2. Dĺžka ramena rovnoramenného trojuholníka je trojnásobkom dĺžky jeho základne. Vypočítajte veľkosti jeho vnútorných uhlov

3. Vypočítajte hodnoty goniometrických funkcií pre uhly 30°, 45°, 60°

	30°	45° 60°	
$\sin \alpha$	1-2,	马回	7 2 3
cosα	131	(F) 1,	
$tg \alpha$	(F)	1 (53	8946 - sinh
$\cot \alpha$	3	1 3	3 2/2
		Ü	1960° = 13 = 213 = 2

4. V pravouhlom trojuholníku ABC sa $\alpha = 60^{\circ}$, $\gamma = 30^{\circ}$ a c = 3. Na strane BC leží boď D tak, že platí 2|BD| = |CD|. Vypočítajte dĺžku strany AD.

5. Daná je kružnica k(S; 3 cm). Vypočítajte veľkosť uhla, ktorý zvierajú dotyčnice ku kružnici vedené jej vonkajším bodom M; |MS| = 7 cm.

6. Odvoď te vzorec pre výpočet obsahu trojuholníka $S = \frac{1}{2}b.c.\sin\alpha = \frac{1}{2}a.c.\sin\beta = \frac{1}{2}a.b.\sin\gamma$

Euklidove vety

• o výške ~~ ∿ - ^ > ;

Obsah štvorca zostrojeného nad výškou pravouhlého trojuholníka sa rovná obsahu obdĺžnika zostrojeného z oboch úsekov prepony $v_c^2 = c_a.c_b$

https://www.geogebra.org/geometry/vwdhrruv

o odvesne

Obsah štvorca zostrojeného nad odvesnou pravouhlého trojuholníka sa rovná obsahu obdĺžnika zostrojeného z prepony a priľahlého úseku $a^2 = c. c_a$; $b^2 = c. c_b$

https://www.geogebra.org/geometry/nkjszd8y

Pytagorova veta e-sale (grajes) PV (2-2+6)

Úlohy

7,05 le 2-1 (2 à daze)

1. Vypočítajte strany a uhly v pravouhlom trojuholníku ABC ($\gamma = 90^{\circ}$), ak je dané:

a.
$$C = 10$$
, $C_b = 6$

(DS) (b.)
$$a = 3, v = \sqrt{5}$$

$$2-648cib^{2}=c.cb$$
 $b=10.cb$
 $c=100-c0$
 $c=100$
 $c=100$
 $c=100$
 $c=100$
 $c=100$
 $c=100$
 $c=100$

2. Vypočítajte strany a uhly v pravouhlom trojuholníku ABC ($\alpha = 90^{\circ}$) ak je dané:

a.
$$c = \sqrt{6}$$
, $a = 3$

3. V pravouhlom trojuholníku ABC ($\gamma=90^\circ$) je $t_a=4$, $t_b=\sqrt{19}$. Vypočítajte dĺžky strán tohto trojuholníka.

$$2-3cs_{b} \rightarrow |3S_{b}|^{2} = a^{2} + \frac{b^{2}}{4} \rightarrow 19 = a^{2} + \frac{b^{2}}{4}$$

$$2-4cs_{a} \rightarrow |4S_{a}|^{2} = b^{2} + \frac{a^{2}}{4} \rightarrow 16 = b^{2} + \frac{a^{2}}{4}$$

$$x = a^{2} \qquad y = b^{2} \qquad 19 = x + \frac{34}{4}$$

$$19 = x + \frac{34}{4}$$

$$10 = a^{2} \qquad 12 = b^{2}$$

$$10 = a^{2} \qquad 10 = a^{2} + \frac{b^{2}}{4}$$

$$10 = a^{2} \qquad 10 = a^{2} + \frac{b^{2}}{4}$$

$$10 = a^{2} \qquad 10 = a^{2} + \frac{b^{2}}{4}$$

$$10 = a^{2} \qquad 10 = a^{2} + \frac{b^{2}}{4}$$

$$10 = a^{2} \qquad 10 = a^{2} + \frac{b^{2}}{4}$$

$$10 = a^{2$$

4. Rozhodnite, či každý trojuholník so stranami 2n, 2n+1, 2n-1, kde(n>1) je pravouhlý. Ktorá z uvedených strán je jeho preponou?

- 5. Je daná kružnica k (S ; r=2) a ľubovoľný bod A taký, že platí |SA|=4. Z bodu A sú zostrojené dotyčnice ku kružnici k a body dotyku týchto dotyčníc sú T_{1} , T_{2} . Vypočítajte
 - a. $|AT_1|$
 - b. vzdialenosť stredu S od úsečky T_1T_2

c. $|T_1T_2|$

6. V pravouhlom trojuholníku je dĺžka jednej odvesny 10, dĺžka výšky na preponu je 4. Vypočítajte

dĺžku druhej odvesny.

