ENR-325/325L Principles of Digital Electronics and Laboratory

Xiang Li Fall 2025

Hamming codes can be done in the EE way

Before that, we need to acquire some basic skillsets.

Pre-step: Data forms

Step 1: Data manipulation

Step 2: Information storage

Step 3: Interface

3.1 Information flow

3.2 Physical contacts (better stuff to talk about in PCB designs)

Understanding SR latch with truth table and timing diagram

SR latch

SR latch truth table

	Output (Q)	R	S
(HOLD)	Previous State	0	0
	0	1	0
	1	0	1
	0 (Invalid)	1	1

SR Latch Timing Diagram (NOR Gates)

A latch with a "single" input

https://en.wikipedia.org/wiki/Flip-flop_(electronics)

D latch truth table

D	E	Output (Q)
X	0	Previous State
0	1	0
1	1	1

A gated D latch

A latch with a "single" input

A gated D latch

Also known as: D latch/data latch

Gated D latch

A clocked D latch

Timing diagram code:

Rising edge-triggered flip flops: synchronizing (timed trigger) achieved

Also known as: Master-slave D type flip flop

Rising edge-triggered flip flops: synchronizing (timed trigger) achieved

Falling edge-triggered flip flops: synchronizing (timed trigger) achieved

Also known as: Master-slave D type flip flop

Timing diagram is in HW#7.

One more application with D flip-flops

So, this is a (4 bit) shift register

- Serial In (SI), Serial Out (SO)
- How about SIPO, PISO, and PIPO?

Dynamic discipline: handling the interface between logics and time

- A clock signal (with its edges if it's a flip-flop) to define transitions.
- Stable inputs during that transition window. (So, some setup time t_{su} and some hold time t_h)
- Thus, guaranteed viable output other than its own switching delays.

Dynamic discipline: handling the interface between logics and time

 Unlike propagation delay (t_{pd}) and contamination delay (t_{cd}), the setup time t_{su} and hold time t_h are intentional.

So, the final time constraint for sequential logics is:

Minimum clock period: $T_c \geq \Sigma t_{pd} + t_{su}$

Minimum delay constraint: $\Sigma t_{cd} \ge t_h$

Dynamic discipline:

Timing Requirements (Over Recommended Operating Free-air Temperature Range (unless otherwise noted)) (see Figure 2)

		SN54LVTH16646			SN74LVTH16646						
		V _{cc} = : ± 0.3	Action and the second	V _{CC} = 2.7 V		V _{cc} = 3.3 V ± 0.3 V		V _{cc} = 2.7 V		UNIT	
			MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
f _{clock}	Clock frequency			150		150		150		150	MHz
t _w	t _w Pulse duration, CLK high or low		3.3		3.3		3.3		3.3		ns
+	Setup time,	Data high	1.2		1.5		1.2		1.5		ne
L _{SU}	t _{su} A or B before CLKAB↑ or CLKBA↑		2		2.8		2		2.8		ns
Hold time,	Data high	0.5		0		0.5		0		ne	
^t h	t _h A or B after CLKAB↑ or CLKBA↑		0.5		0.5		0.5		0.5		ns

Figure 14. Example Timing-Requirements Section

MUX:

Typical symbol you'll see

Typical switching schematic you'll see

Typical logic schematic you'll see

2-input Multiplexer Design

Same truth table?

Α	I ₁	l ₂	Q
0	0	X	0
0	1	X	1
1	X	0	0
1	Х	1	1

Same truth table?

Α	Q
0	I ₁
1	l ₂

MUX IRL:

TMUX5411, TMUX5412, TMUX5413 SCDS485A – JULY 2025 – REVISED SEPTEMBER 2025

TMUX541x 50V, 21Ω, 1:1 (SPST) 4-Channel Switches with 1.8V Logic

No logic schematics?

7.2 Functional Block Diagram

7.4.1 Truth Tables

TMUX5412 Truth Table provides the truth table for TMUX541x.

Table 7-1. TMUX5411 Truth Table

SEL x ⁽¹⁾	CHANNEL x
0	Channel x ON
1	Channel x OFF

Table 7-2. TMUX5412 Truth Table

SEL x ⁽¹⁾	CHANNEL x
0	Channel x OFF
1	Channel x ON

Table 7-3. TMUX5413 Truth Table

SEL1	SEL2	SEL3	SEL4	ON / OFF CHANNELS ⁽¹⁾
0	X	X	X	CHANNEL 1 OFF
1	X	Х	Х	CHANNEL 1 ON
X	0	Х	Х	CHANNEL 2 ON
X	1	Х	Х	CHANNEL 2 OFF
X	X	0	Х	CHANNEL 3 ON
X	Х	1	Х	CHANNEL 3 OFF
X	Х	Х	0	CHANNEL 4 OFF
X	X	Х	1	CHANNEL 4 ON

(1) x denotes 1, 2, 3, or 4 for the corresponding channel.