1 Basic microbiology

1.1 What are microorganisms?

- 1 Microorganisms (微生物) (also called microbes) are very small organisms. Most of them can only be observed under a microscope. Bacteria, certain protists and certain fungi are microorganisms.
- 2 Microbiology (微生物學) is the scientific study of microorganisms.
- **Viruses** are not classified as organisms, but they are also extensively studied in microbiology due to their small size and their close relationship with living hosts.

1.2 Viruses

1 General structures of viruses:

- 2 Multiplication (增殖) of viruses:
 - **a Attachment**: A virus recognizes and **attaches** to a host cell by binding its surface proteins to specific receptors on the host cell.
 - **b Penetration**: The viral nucleic acid enters the host cell.
 - c Synthesis of viral components: The viral nucleic acid directs the host cell's machinery to produce many copies of the viral nucleic acid and proteins.
 - d Assembly: Viral nucleic acids and proteins assemble into viruses.
 - e Release: Once the resources in the host cell have been exhausted, the newly formed viruses burst the host cell and spread to infect nearby host cells.

- 3 Attachment can only take place when the surface proteins of a virus bind to specific receptors on the surface of a host cell. Thus, viral infection is often **specific**.
- 4 Viruses stay inactive and non-infective when they enter a latent period (潛伏期).
 - Their viral nucleic acid may be **integrated into the host cell's DNA** and **replicated** along with the host cell's DNA during cell division.
 - Most viral genes are not expressed and the host cell can still function normally until the viruses are reactivated.

1.3 Diversity of microorganisms

1 Features of different groups of microorganisms:

	Dastavia	Protists		Fungi	
	Bacteria	Protozoans	Algae	Yeast	Moulds
Cell type	Prokaryotic	Eukaryotic		Eukaryotic	
Unicellular or multicellular	Unicellular	Unicellular	Unicellular or multicellular	Unicellular	Multicellular
Cell wall	Present (with peptidoglycan)	Absent	Present (with cellulose)	Present (without cellulose)	
Mode of nutrition	Saprophytic, autotrophic or parasitic	Heterotrophic (a few are parasitic)	Autotrophic	Saprophytic or parasitic	
Reproduction	Asexual (binary fission)	Asexual (binary fission), sexual	Asexual (binary fission, fragmentation (斷裂生殖)), sexual	Asexual (budding (出芽生殖))	Asexual (spores in spore-forming bodies)

- 2 Some bacteria can form an endospore (內孢子) in order to survive adverse conditions.
 - It has a **tough wall** that can resist heat, low temperatures, dryness and many toxic chemicals.
 - It can remain **dormant** for many years. It will germinate and grow into a bacterial cell when the conditions become favourable again.
- 3 Moulds have thread-like **hyphae**, which can secrete digestive enzymes to penetrate the material on which the moulds grow and carry out **extracellular digestion** (胞外消化).

1.4 Growing microorganisms

1 The growth requirements of microorganisms:

	Conditions	Description
a	Supply of nutrients	
	CarbonNitrogen	 Autotrophic microorganisms use carbon dioxide to produce organic compounds. Some heterotrophic microorganisms obtain carbon in an organic form by feeding on other microorganisms, or by decomposing dead organic matter. Through nitrogen fixation, certain species of bacteria can convert atmospheric
	- Tuttogen	 nitrogen into ammonium compounds. Some bacteria and algae obtain nitrogen from inorganic nitrogenous compounds such as nitrate and ammonium salts. Some bacteria and fungi obtain nitrogen from organic nitrogenous compounds such as proteins and nucleic acids.
b	Temperature	 Each species of microorganisms grows within a specific temperature range. Many microorganisms favour moderate temperatures (25–45 °C), whereas others are cold-loving microorganisms or heat-loving microorganisms.
c	рН	 Each species of microorganisms grows within a specific pH range. Many microorganisms grow best near neutral pH (pH 5.5–7.9), whereas others grow best in more acidic conditions or alkaline conditions.
d	Oxygen availability	 Obligate aerobes (專性需氧生物) can grow only in the presence of oxygen. Facultative anaerobes (兼性厭氧生物) can grow with or without oxygen. Obligate anaerobes (專性厭氧生物) can survive or grow only in the absence of oxygen.
e	Water availability	 The availability of water for microorganisms depends on both the amount of water and the amount of solutes (e.g. salts and sugars) dissolved in the water. Most microorganisms live under hypotonic or isotonic conditions. A few microorganisms can grow well under hypertonic conditions.

2 Microorganisms are usually grown in a **culture medium** (培養基) in a laboratory to study their growth and metabolism. A culture medium can be a liquid or a solid.

	Liquid culture medium	Solid culture medium
Preparation method	Dissolve nutrients in water	Solidify a liquid culture medium using a gelling agent (e.g. agar (瓊脂))
Use	For growing large populations of microorganisms	For observing the appearance of colonies (菌落) of microorganisms
Example	Nutrient broth (營養液體培養基)	Nutrient agar plate (營養瓊脂平板)

- 3 Risk assessment (風險評估) for an investigation involving microorganisms includes:
 - identifying potential hazards of contamination.
 - assessing the possibilities and severity of the hazards.
 - **designing precautions** to minimize the risk of contamination.
 - making contingency plans (應變計劃) in case of accidents.
- **Aseptic techniques** (無菌操作) must be employed before, during and after any investigation involving microorganisms. These techniques serve two purposes:
 - They help **avoid contamination of a microbial culture** with unwanted microorganisms from handlers and the environment.
 - They help avoid contamination of handlers and the environment with microorganisms in a culture.
- 5 Examples of aseptic techniques:

Before the investigation	 Clean all work surfaces and interior surfaces of the equipment involved with disinfectant (消毒劑) (e.g. 70% ethanol). Sterilize culture media and apparatus in an autoclave (高壓滅菌器).
During the investigation	 Sterilize the apparatus used to transfer microorganisms before and after use. For example, flame the inoculating loop (接種環) until it is red hot using a Bunsen flame. Flame the mouths of culture tubes and flasks before and after use.
After the investigation	 Clean work surfaces and equipment with disinfectant. Collect any apparatus contaminated with microorganisms in special containers. The apparatus should then be autoclaved or incinerated.

1.5 Microbial growth

- 1 In microbiology, **growth** often refers to an **increase in the number of microbial cells** in a population. In **bacteria**, its number **doubles** with each binary fission.
 - The time required for a bacterial population to double its size is called the **doubling time** (倍增時間) (or the **generation time**).
 - The number of bacteria in a population increases exponentially. This pattern of population growth is called **exponential growth** (指數生長).
- 2 For microorganisms growing in a **batch culture** (分批培養) (which is a **closed system** with no renewal of nutrients and no removal of metabolic waste), the growth curve is **S-shaped**, which typically shows four phases:

	Lag phase	Exponential phase	Stationary phase	Death phase
Population	No growth or	Growth at its	No growth	Negative growth
growth	little growth	maximum rate		
Rate of cell	Rate of new cell	Rate of new cell	Rate of new cell	Rate of new cell
formation	formation >	formation >>>	formation =	formation <
vs death	Death rate	Death rate	Death rate	Death rate
Explanation	The cells are	The supply of	Depletion of	Further decrease in
	metabolically	nutrients is	nutrients and	the amounts of
	active. They are	adequate and other	accumulation of	nutrients and further
	adapting to the	conditions are	toxic waste make	accumulation of
	new environment	favourable.	the environment	toxic waste make the
	and preparing for		less favourable for	environment harsh for
	growth.		growth.	growth.

3 Methods of measuring microbial growth:

Method	Parameter measured	Result obtained
Total cell count (細胞總數計算)	Number of cells in a known	Estimation of the number of
(using a cell counter (細胞計數器)	volume of liquid sample both living cells and d	
and a light microscope)		cells
Viable cell count (活細胞計算)	Number of colonies on an	Estimation of the number of
(spread plate method (塗佈培養法))	agar plate	living microbial cells only
Biomass	Dry mass of cells	Estimation of the number of
(filtering a sample, drying and		both living cells and dead
weighing the cells)		cells
Turbidity (混濁度)	Turbidity of the sample	Estimation of the number of
(using a spectrophotometer	(expressed in optical density	both living cells and dead
(光譜儀))	(光學密度) (OD) units)	cells

4 If a microbial culture contains too many cells, we can prepare a series of diluted cultures using a technique called **serial dilution** (連續稀釋). One of the diluted cultures may then have an appropriate cell density for cell counting. The **dilution factor** (稀釋因子) should be taken into account when calculating the cell count.

5 Main steps in total cell count:

1 Transfer microbial culture to a cell counter.

2 Count the cells in the four large squares at the corners under a light microscope and obtain an average number.

3 The total cell count of the culture is calculated by:

number of microbial cells (per cm³ of culture) = average number of microbial cells in a large square volume of sample covering a large square (mm³) × 1000

6 Main steps of the spread plate method (塗佈培養法) in viable cell count:

- 0.1 cm³ of a diluted culture is added to a nutrient agar plate.
- The diluted culture is spread evenly over the agar surface.
- The number of colonies on the most appropriate agar plate (a plate with 30–300 colonies) is counted.
- The viable cell count of the original microbial culture is calculated by:

number of living microbial cells = $\frac{\text{number of colonies}}{\text{on the plate}} \times \frac{1}{0.1} \times \text{dilution factor}$

7 Advantages and limitations of different methods of measuring microbial growth:

Method	Advantages	Limitations
Total cell count	- Quick	 Cannot distinguish between living cells and dead cells without the use of special stains Cell debris is easily mistaken for microbial cells Not suitable for microbial cells that are too small to be observed under a light microscope Not suitable for microbial cells that are motile
		 Not suitable for microbial cells that grow in chains or clusters Not suitable for a microbial culture with a low cell density
Viable cell count	 Highly sensitive Particular types of microorganisms in a mixed culture can also be counted using selective culture media and growth conditions 	 Time-consuming because incubation is involved Not suitable for filamentous microorganisms Microbial growth is underestimated when some microorganisms grow in chains or clusters, or a short incubation time is used Can be subject to errors due to cell clumps in the culture, contamination of agar plates, etc.
Biomass	- Suitable for filamentous microorganisms	 Cannot distinguish between living cells and dead cells Time-consuming because it may involve repeated drying and weighing Not suitable for slow-growing microorganisms
Turbidity	 Easy and quick Does not destroy the sample 	 Cannot distinguish between living cells and dead cells Microbial growth is underestimated for cells that form clumps or films on the sides of tubes Not suitable for microbial cultures with a low cell density because such cultures allow almost 100% of light transmission Not suitable for microbial cultures with a high cell density because the light scattered away by one cell may be re-scattered by another back to the detector