目次

1	はじめに	1
2	Linux コンテナにおける資源管理	3
3 3.1 3.2	journaling file system journaling の意味	5 5 5
4	Linux コンテナに対する DDoS 攻撃	6
5	コンテナにおける資源管理の脆弱性解析	7
6	関連研究	8
7	まとめ	9

1 はじめに

近年,マルチテナント型のクラウドにコンテナ技術が利用されている.マルチテナント型のクラウドの例として,Amazon Web Services や Google Cloud Platform がある.こういったクラウドを管理する場合に,isolation が重要である.ここで,isolation と throttle との違いを明確にしておく.ディスクへの書き込みを 15% に制限しているが, 30% 必要としているプロセスと, 85% に制限しているが 50% しか必要としていないプロセスを実行したとする.throttle であれば,前者はディスクへの書き込みを 15% ,後者は 50% の割合で使う.一方,isolation では,余っている分を自由に利用できるので,後者が 50% しか利用していないため,前者は必要としている 30% 分を使うことができる.

図 1.1 throttle と isolation との違い

コンテナ技術の一つとして , Linux コンテナ (LXC) がある . LXC は linux カーネル機能の一つである cgroup を利用して , コンテナ毎の資源管理を行っている . また , それによってコンテナ間の isolation を保っている . しかし , cgroup による isolation は不完全である . 2 個のコンテナを用意する . 片方のコンテナでは cgroup によって disk I/O 使用率を 85% に制限し , Flexible IO(FIO) write benchmark を実行する . もう一方のコンテナでは , disk I/O 使用率を 15% に制限し , FIO write benchmark を 100 命令に一回 fsync しながら実行する . この状況では , disk I/O 使用率を 85% に制限している方は , 本来は 85% 使えるはずが 40% しか使えなかった

コンテナ環境における isolation の不完全性は ,DDoS 攻撃への脆弱性となる可能性がある.本論文では ,実際にコンテナ環境において利用される ,MySQL と varmail に対して攻撃が可能であることを示し ,その解析を行う.MySQL への攻撃が可能であるか検証するためコンテナを 2 つ用意する.片方のコンテナで ,disk I/O 使用率を 85% に制限して MySQL benchmark を実行する.もう一方のコンテナで ,disk I/O 使用率を 15% に制限して,ファイルのメタデータを頻繁に更新するスクリプトと FIO read benchmark を実行する. この時 ,MySQL は,本来 disk I/O を 85% 使えるはずが,50% しか使えていなかった.よって ,MySQL に対して攻撃が可能だと言える.同様に ,varmail への攻撃が可能であるか検証するためにコンテナを 2 つ用意する.片方のコンテナで disk I/O 使用率を 85% に制限して varmail benchmark を実行する.もう一方のコンテナで ,disk I/O 使用率を 15% に制限して,ファイルのメタデータを頻繁に更新するスクリプトと FIO read benchmark を実行する.この時 ,varmail は,本来 disk I/O を 85% 使えるはずが ,50% しか使えていなかった.よって ,varmail に対して攻撃が可能だと言える.

cgroup による isolation が不完全な原因は, journal であった. LXC ではコンテナ間で file system を共有し

ているため,複数のコンテナの disk I/O が,一つの journal でシリアライズされる.攻撃側は,頻繁に fsync を呼び,メタデータを更新しようとしている.攻撃側の頻繁な更新リクエストにより, journal に負荷がかかる.これによって, disk I/O の遅延時間が増加するようになるが,一つの journal で管理していることによって,すべてのコンテナでこの影響を受ける.したがって,攻撃対象の遅延時間を増やし,パフォーマンスを下げることが出来たのだと考える.また,攻撃側の,メタデータの更新リクエストの頻度を上げるほど,攻撃対象の遅延時間は増加する傾向にあった.

本論文の構成を以下に示す. 第 2 章では,LXC の資源管理の仕組みについて説明する. 第 3 章では,journaling file system の仕組みについて説明する. 第 4 章では,現在のコンテナ環境において,DDoS 攻撃が可能であることを示す. 第??章では,DDoS 攻撃が可能である原因を解析する. 第??章では,本研究に関連する研究について紹介する. 第??章では,まとめと今後の課題について述べる.

2 Linux コンテナにおける資源管理

近年,仮想化技術としてコンテナが注目されている.コンテナを実現する技術の一つに Linux コンテナ (LXC) がある.本章では,LXC の資源管理の仕組みについて説明をする.

LXC は , 一つのマシン上にコンテナという隔離空間を作り出す . LXC は , Linux カーネル機能の一つである cgroup を使い , コンテナへの資源の割り当てを管理している .

cgroup は,OS が管理する資源を一元的に管理できる Linux カーネル機能である.cgroup は,プロセス,ファイルシステム, CPU ,メモリ, block I/O デバイスなどの各種デバイスといった多くのものを管理できる.cgroup はサブシステムによって,これら資源を管理している. cgroup は資源のグループ化を行い,グ

表 2.1 cgroup のサブシステムとその機能

システムタ 機能

サブシステム名	機能
blkio	ブロックデバイスへの入出力アクセスの制限を設定する
cpu	CPU コアの時間配分の割合を設定する
cpuacet	タスクが消費する CPU 時間をレポートする
cpuset	使用可能な CPU コア数を設定する
devices	デバイスへのアクセスを制御する
freezer	タスクの一時停止と再開を制御する
hugetlb	cgroup からの hugetlb の使用
memory	タスクによって使用されるメモリの制限を設定する
net_cls	プロセスが発信するパケットに識別子を付与し,制御する
net_prio	タスクのネットワークの優先度を動的に設定する
pids	起動するプロセス数を制限する

ループごとに資源利用の優先度を決めたり,利用できる資源を制限したりしている.さらに,グループを隔離することで,他のグループから中が見えないようにしている.

図 2.1 cgroup によるグループ化

- 3 journaling file system
- 3.1 journaling の意味
- 3.2 journaling の手順

4 Linux コンテナに対する DDoS 攻撃

5 コンテナにおける資源管理の脆弱性解析

6 関連研究

7 まとめ