Lab05 PlotFunction

Skyler Halbritter

October 10, 2015

```
library("Lahman")
data(Teams)
```

Question 1. Examine the relationship between Hits and Wins using a scatterplot. Use meaningful labels and a visually appealing style.

```
hits <- Teams$H
wins <- Teams$W
plot(
  x=hits, y=wins,
  xlab="Hits per Year",
  ylab="Wins per Year",
  main="Relationship Between MLB Teams' Seasonal Hits and Wins",
  pch=1,
  col="cadetblue3",
  cex=.75,
  bty="n"
```

Relationship Between MLB Teams' Seasonal Hits and Wins

Question 2. Annotate two outliers on the graph with the team name.

The Identify function was used to identify two outlier points(observations 369 and 875).

```
hits <- Teams$H
wins <- Teams$W
plot(
  x=hits, y=wins,
  xlab="Hits per Season",
  ylab="Wins per Season",
  main="Relationship Between MLB Teams' Seasonal Hits and Wins",
  pch=1,
  col="cadetblue3",
  cex=.75,
  bty="n"
outlier1 <- Teams[369,]</pre>
outlier1.x <- outlier1$H
outlier1.y <- outlier1$W
points( x=outlier1.x, y=outlier1.y, pch=1, cex=2, col="firebrick4" )
text( x=outlier1.x, y=outlier1.y, labels=outlier1$name, pos=1, col="firebrick4" )
outlier2 <- Teams[875,]</pre>
outlier2.x <- outlier2$H
outlier2.y <- outlier2$W
points( x=outlier2.x, y=outlier2.y, pch=1, cex=2, col="firebrick4" )
text( x=outlier2.x, y=outlier2.y, labels=outlier2$name, pos=2, col="firebrick4" )
```

Relationship Between MLB Teams' Seasonal Hits and Wins

Question 3. Examine the relationship between ERA and Wins using a scatterplot. Use meaningful labels and a visually appealing style.

```
era <- Teams$ERA
wins <- Teams$W
plot.era.win <- plot(
    x=era, y=wins,
    xlab="Earned Run Average per Season",
    ylab="Wins per Season",
    main="Relationship Between MLB Teams' Seasonal ERA and Wins",
    pch=1,
    col="lightgoldenrod3",
    cex=1,
    bty="n"
    )</pre>
```

Relationship Between MLB Teams' Seasonal ERA and Wins

Question 4. Annotate two outliers on the graph with the team name.

The Identify function was used to identify two outlier points (observations 22 and 468).

```
era <- Teams$ERA
wins <- Teams$W
plot.era.win <- plot(</pre>
  x=era, y=wins,
  xlab="Earned Run Average per Season",
  ylab="Wins per Season",
  main="Relationship Between MLB Teams' Seasonal ERA and Wins",
  pch=1,
  col="lightgoldenrod3",
  cex=1,
  bty="n"
outlier3 <- Teams[22,]</pre>
outlier3.x <- outlier3$ERA
outlier3.y <- outlier3$W
points( x=outlier3.x, y=outlier3.y, pch=1, cex=2, col="mediumorchid4" )
text( x=outlier3.x, y=outlier3.y, labels=outlier3$name, pos=2, col="mediumorchid4" )
outlier4 <- Teams[468,]
outlier4.x <- outlier4$ERA
outlier4.y <- outlier4$W
points( x=outlier4.x, y=outlier4.y, pch=1, cex=2, col="mediumorchid4" )
text( x=outlier4.x, y=outlier4.y, labels=outlier4$name, pos=4, col="mediumorchid4" )
```

Relationship Between MLB Teams' Seasonal ERA and Wins

Question 5. BONUS - add a trend line to the scatterplot to highlight the relationship.

```
era <- Teams$ERA
wins <- Teams$W
plot.era.win <- plot(
    x=era, y=wins,
    xlab="Earned Run Average per Season",
    ylab="Wins per Season",
    main="Relationship Between MLB Teams' Seasonal ERA and Wins",
    pch=1,
    col="lightgoldenrod3",
    cex=1,
    bty="n"
    )
lines( lowess( era, wins ), col="indianred4", lwd=4 )</pre>
```

Relationship Between MLB Teams' Seasonal ERA and Wins


```
hits <- Teams$H
wins <- Teams$W
plot(
    x=hits, y=wins,
    xlab="Hits per Season",
    ylab="Wins per Season",
    main="Relationship Between MLB Teams' Seasonal Hits and Wins",
    pch=1,
    col="cadetblue3",
    cex=.75,
    bty="n"
    )
lines( lowess( hits, wins ), col="darkgoldenrod2", lwd=4 )</pre>
```

Relationship Between MLB Teams' Seasonal Hits and Wins

