Homework 9

Introduction to Model Theory

Due 2021-12-2

1. Show that the following structure is not a field.

+	0	1	a	b
0	0	1	a	b
1	1	a	b	0
a	a	b	0	1
b	b	0	1	a

×	0	1	a	b
0	0	0	0	0
1	0	1	a	b
a	0	a	b	1
b	0	b	1	a

- 2. Let $\varphi(x)$ be the formula $\exists y \ (x \cdot y + y = 1)$. Find a quantifier-free formula $\psi(x)$ equivalent to $\varphi(x)$ in all algebraically closed fields.
- 3. Let $\varphi(x, y, z)$ be the formula $\exists w \ (x \cdot w^2 + y \cdot w + z = 0)$. Find a quantifier-free formula $\psi(x, y, z)$ equivalent to $\varphi(x, y, z)$ in all algebraically closed fields.
- 4. If M is a structure and $\varphi(x)$ is a formula in one variable, then $\varphi(M)$ denotes the set $\{a \in M : M \models \varphi(a)\}$. Show that if $M \preceq N$ and $\varphi(M)$ is finite, then $\varphi(N) = \varphi(M)$. Warning: this typically fails when $\varphi(M)$ is infinite.
- 5. Let T be a theory with quantifier elimination. Let M be a structure and N be an extension (not necessarily an elementary extension). Suppose that M and N are both models of T. Let $\varphi(\bar{x})$ be a quantifier-free L(M)-formula in several variables. Suppose that $N \models \exists \bar{x} \ \varphi(\bar{x})$. Show that $M \models \exists \bar{x} \ \varphi(\bar{x})$. Hint: more generally, you can show that N is an elementary extension of M.
- 6. Let K be an algebraically closed field. Let $L \supseteq K$ be an extension field. Let P(x, y, z), Q(x, y, z), and R(x, y, z) be polynomials over K. Suppose that the system of equations

$$P(x, y, z) = 0$$

$$Q(x, y, z) = 0$$

$$R(x, y, z) = 0$$

has a solution in L. Show that it has a solution in K. Hint: at a minimum you will need quantifier elimination in ACF. You may use the following fact:

Fact. If F is a field, then there is an extension field $M \supseteq F$ such that M is algebraically closed.

1