Bibliografía

• Understanding Deep Learning. Capítulo 8.

Aprendizaje Automático II - Grado en Inteligencia Artificial Universidad Rey Juan Carlos

Iván Ramírez Díaz ivan.ramirez@urjc.es

José Miguel Buenaposada Biencinto josemiguel.buenaposada@urjc.es

Tema 2 – Optimización y

Regularización (Parte 4)

Sergey Levine. UC Berkeley.

Curso en youtube.

• Deep Learning: CS 182 2021. Lecture 3, Part 3.

2.5 Estimación del rendimiento

- Ruido, sesgo y varianza
- Reducir la varianza
- Reducir el sesgo y el relación sesgo-varianza
- Doble descenso
- Elegir los hiperparámetros

2.5 Estimación del rendimiento

- Ruido, sesgo y varianza
- Reducir la varianza
- Reducir el sesgo y el relación sesgo-varianza
- Doble descenso
- Elegir los hiperparámetros

Polinomio cúbico (en rojo) que estima la curva con datos de entrenamiento $(f[x;\Phi])$

Ejemplo de regresión

Modelo básico para la estimación

• Modelo que estima tres modelos lineales en el intervalo [0, 1] en tramos de igual longitud.

Ruido, sesgo (bias) y varianza (variance)

- · Posibles causas:
 - Ruido en las medidas
 - Algunas variables del modelo son ocultas
 - Datos mal etiquetados

Ruido, sesgo (bias) y varianza (variance)

Ruido, sesgo (bias) y varianza (variance)

Ruido, sesgo (bias) y varianza (variance)

- La varianza es la incertidumbre en el modelo entrenado debido a la elección del conjunto de datos.
- El sesgo es la desviación sistemática de la media de la verdadera función que estamos estimando debida a las limitaciones de nuestro modelo.
- El ruido es la incertidumbre inherente en la función verdadera que lleva un dato x a una salida y.

Para un problema de mínimos cuadrados ...

Para un problema de mínimos cuadrados ...

$$L[x] = (f[x, \phi] - y[x])^{2}$$

Se puede demostrar que:

Para un problema de clasificación ...

Para un problema de clasificación ...

Para un problema de clasificación ...

2.5 Estimación del rendimiento

- Ruido, sesgo y varianza
- Reducir la varianza
- Reducir el sesgo y el compromiso sesgo-varianza
- Doble descenso
- Elegir los hiperparámetros

Reducir la varianza

Reducir la varianza

Reducir la varianza

2.5 Estimación del rendimiento

- Ruido, sesgo y varianza
- Reducir la varianza
- Reducir el sesgo y la relación sesgo-varianza
- Doble descenso

Aumentando el n.º de

datos de entrenamiento reducimos la varianza.

Elegir los hiperparámetros

Reducir el sesgo

¿Por qué aumenta la varianza?

 $f[x, \Phi]$ (turquesa) describe mejor los datos de entrenamiento, pero no la verdadera curva (en negro), $\mu[x] \to$ Sobreajuste (overfitting)

Reducir el sesgo

Relación sesgo-varianza (bias-variance trade-off)

Relacionado con:

- número de datos de entrenamiento que el modelo puede ajustar sin error
- número de parámetros del modelo

2.5 Estimación del rendimiento

- Ruido, sesgo y varianza
- Reducir la varianza
- · Reducir el sesgo y el relación sesgo-varianza
- Doble descenso
- Elegir los hiperparámetros

Doble descenso

Doble descenso

Cuidado: ¡Esta curva no es la misma que las entrenamiento (pérdida esperada vs epochs)!

Nº parámetros del modelo = Nº datos entrenamiento

Doble descenso

Doble descenso

Doble descenso

En puntos distintos a los de entrenamiento ...

Explicación potencial:

- Con más parámetros estimamos funciones más suaves
- Suavidad fuera de los datos de entrenamiento es algo razonable

¿Explicación del doble descenso?

Todas estas soluciones equivalentes en términos de pérdida esperada.

- ¿Por qué el modelo debería elegir la función más suave en a)?
- Explicaciones potenciales:
 - La inicialización elige funciones suaves y la optimización no se sale de ellas
 - El algoritmo de entrenamiento "prefiere" converger a funciones suaves.

2.5 Estimación del rendimiento

- · Ruido, sesgo y varianza
- Reducir la varianza
- Reducir el sesgo y el compromiso sesgo-varianza
- Doble descenso
- Elegir los hiperparámetros

Algunas preguntas ...

- ¿Cómo saber si estamos sobreajustando o subajustando?
- ¿Cómo elegir el algoritmo de optimización / modelo?
- ¿Cómo elegir los hiperparámetros?
- Idea: elegir lo que haga la pérdida esperada muy baja

Método de trabajo en Aprendizaje Automático

Datos disponibles

Método de trabajo en Aprendizaje Automático

Método de trabajo adecuado

Datos entrenamiento Usar para seleccionar: •• (vía optimización) Hiperparámetros optimización (p.ej. learning rate) Usar para seleccionar: Tipo de modelo (p.ej. Logistic regresion vs otro) Hiperparámetros regularización Selección características

Curvas de aprendizaje

El conjunto de test final

Método de trabajo en Aprendizaje Automático

Resumen

- ¿De dónde vienen los errores?
 - Varianza: demasiada capacidad, información insuficiente para encontrar los parámetros adecuados
 - Sesgo: poca capacidad, no se puede representar la función correcta
 - Error = Variance + Bias² (en regresión)
 - Sobreajuste (overfitting): demasiada varianza
 - Subajuste (underfitting): demasiado sesgo

Resumen

- ¿Cómo seleccionar hiperparámetros?
 - Separación entrenamiento/validación
 - Datos de entrenamiento para optimización (aprendizaje)
 - Datos de validación para seleccionar hiperparámetros
 - ¡Datos de test para obtener el resultado final y nada más!

Resumen

- ¿Cómo equilibrar sesgo y varianza?
 - Seleccionar el tipo de modelo cuidadosamente
 - Seleccionar las características cuidadosamente
 - Regularización: añadida a la función de coste para reducir la varianza