1 Arealsetningen

Idag skal vi lære om arealsetningen

Gitt en trekant ABC der vi kjenner lengdene $q=AB,\,p=AC$ der vinkelen mellom disse er θ , da har vi at arealet A er gitt ved:

$$A = \frac{1}{2}pq\sin\theta$$

1.1 Eksempel 1:

Vi vil regne ut arealet av tomta som er gitt i figuren ved siden av. Vi kjenner vinkelen mellom de to sidene samt lengen. Da bruker vi sinussetningen til å vise at :

$$A = \frac{1}{2}AC \cdot BC \cdot \sin \theta = \frac{1}{2}36 \cdot 48 \cdot \sin 132 \approx 640.$$

1.2 Bevis

Del beviset inn i 2 deler

1.2.1 $\theta < 90^{\circ}$

- \bullet Trekk en linje h ned langs midten.
- Utrykk h ved hjelp av $\sin \theta$ og q.
- Plugg inn i formel for areal.

1.2.2 $\theta > 90^{\circ}$

- Trekk en linje ned fra toppen og dann en rettviklet trekant.
- Finn h ved hjelp av supplementvinkelen til θ .
- plugg dette inn i formelen for areal.

1.3 Eksemepel 2

Finn alle trekanter ABC med areal lik 3.5cm der AB=3.2cm og AC=2.5cm. Vi bruker formelen og finner at $\theta=61^\circ$ og finner supplementvinkelen.

2 Cosinus setningen

Gitt en trekant som ikke er nødvendigivis rettvinklet. Da har vi at:

$$a^2 = b^2 + c^2 - 2bc\cos\theta$$

2.1 Eksempel 1

I denne figuren kjenner vi to sider og vinkelen mellom sidene. Vi kan da bruke cosinussetningen til å finne ut av hva den siste siden må være.

$$x^2 = 36^2 + 48^2 - 2 \cdot 36 \cdot 48 \cdot \cos 132^\circ \approx 5912, 5$$

 $x = \sqrt{5912, 5} \approx 77$

2.2 Bevis

Dette er kun bevist for $\theta < 90^{circ}$ For trekanten ABC der θ tilhører \$A\$

- ullet Trekk først en linje ned fra C ned til A og la x være avastenden fra der denne linja treffer AB.
- $\bullet\,$ Observer så at

$$b^2 = x^2 + h^2$$
 $\cos \theta = \frac{x}{b}$ $x = b \cos \theta$

Bruk pythagorias til å vise at $a^2=h^2+(c-x)^2$. Da får vi at $a^2=h^2+c^2-2cx+x^2=b^2+c^2-2cb\cos\theta$

For å komme frem til dette er stattet vi $h^2+x^2 \bmod b^2$ og brukte at $x=b\cos\theta$