Algebra e matematica discreta, a.a. 2020/2021,

Scuola di Scienze - Corso di laurea:

Informatica

ESERCIZIO TIPO 14

Siano
$$\mathbf{A} = \begin{pmatrix} 0 & 0 & -3i \\ 0 & 3 & 0 \\ 3i & 0 & 0 \end{pmatrix} \mathbf{e} \ \mathbf{B} = \begin{pmatrix} 0 & 0 & -3i \\ 0 & 3 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

Si trovino:

- i loro autovalori,
- le loro molteplicità algebriche,
- le loro molteplicità geometriche,
- basi dei loro autospazi.

Il polinomio caratteristico di A è:

$$p_{\mathbf{A}}(x) = \operatorname{Det}(\mathbf{A} - x\mathbf{I}_3) = \operatorname{Det}\begin{pmatrix} -x & 0 & -3i \\ 0 & 3-x & 0 \\ 3i & 0 & -x \end{pmatrix} =$$

$$= (-1)^{2+2}(3-x)\operatorname{Det}\begin{pmatrix} -x & -3i \\ 3i & -x \end{pmatrix} =$$

$$= (3-x)[(-x)^2 - (-3i) \cdot 3i] = (3-x)(x^2 + 9i^2) = (3-x)(x^2 - 9) =$$

$$= (-3-x)(3-x)^2.$$

Gli autovalori di $\bf A$ sono gli zeri del polinomio caratteristico $p_{\bf A}(x)$ di $\bf A$, ossia le soluzioni dell'equazione $p_{\bf A}(x)=0$. Dal momento che le soluzioni dell'equazione

$$(-3 - x)(3 - x)^2 = 0$$

sono -3 e 3, gli autovalori di ${\bf A}$ sono:

$$\lambda_1 = -3$$
 e $\lambda_2 = 3$.

Siano m_1 ed m_2 le molteplicità algebriche e d_1 e d_2 le molteplicità geometriche di λ_1 e λ_2 rispettivamente. Da

$$p_{\mathbf{A}}(x) = (-3 - x)(3 - x)^2 = (\lambda_1 - x)^{m_1}(\lambda_2 - x)^{m_2}$$

otteniamo:

$$m_1 = 1$$
 e $m_2 = 2$.

Infine, da $1 \le d_i \le m_i = 1$ per i = 1, 2, otteniamo:

$$d_1 = 1$$
 e $1 \le d_2 \le 2$.

$$E_{\mathbf{A}}(\lambda_1) = E_{\mathbf{A}}(-3) = N(\mathbf{A} - (-3)\mathbf{I}_3) = N(\mathbf{A} + 3\mathbf{I}_3) = N\begin{pmatrix} 3 & 0 & -3i \\ 0 & 6 & 0 \\ 3i & 0 & 3 \end{pmatrix}$$

Da una E.G. su $\mathbf{A} + 3\mathbf{I}_3$:

$$\begin{pmatrix} 3 & 0 & -3i \\ 0 & 6 & 0 \\ 3i & 0 & 3 \end{pmatrix} \xrightarrow{E_{31}(-3i)E_1(\frac{1}{3})} \begin{pmatrix} 1 & 0 & -i \\ 0 & 6 & 0 \\ 0 & 0 & 0 \end{pmatrix} \xrightarrow{E_2(\frac{1}{6})} \begin{pmatrix} 1 & 0 & -i \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix},$$

segue che

$$E_{\mathbf{A}}(-3) = N\Big(\begin{pmatrix} 3 & 0 & -3i \\ 0 & 6 & 0 \\ 3i & 0 & 3 \end{pmatrix}\Big) = N\Big(\begin{pmatrix} 1 & 0 & -i \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}\Big) = \Big\{\begin{pmatrix} ih \\ 0 \\ h \end{pmatrix} \Big| h \in \mathbb{C}\Big\},$$

e quindi $\left\{ \begin{pmatrix} i \\ 0 \\ 1 \end{pmatrix} \right\}$ è una base di $E_{\mathbf{A}}(\lambda_1) = E_{\mathbf{A}}(-3)$.

$$E_{\mathbf{A}}(\lambda_2) = E_{\mathbf{A}}(3) = N(\mathbf{A} - 3\mathbf{I}_3) = N\left(\begin{pmatrix} -3 & 0 & -3i\\ 0 & 0 & 0\\ 3i & 0 & -3 \end{pmatrix}\right)$$

Da una E.G. su $\mathbf{A} - 3\mathbf{I}_3$:

$$\begin{pmatrix} -3 & 0 & -3i \\ 0 & 0 & 0 \\ 3i & 0 & -3 \end{pmatrix} \quad \xrightarrow{E_{31}(-3i)E_1(-\frac{1}{3})} \quad \begin{pmatrix} 1 & 0 & i \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix},$$

segue che

$$E_{\mathbf{A}}(3) = N\Big(\begin{pmatrix} -3 & 0 & -3i \\ 0 & 0 & 0 \\ 3i & 0 & -3 \end{pmatrix}\Big) = N\Big(\begin{pmatrix} 1 & 0 & i \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}\Big) = \Big\{\begin{pmatrix} -ih \\ k \\ h \end{pmatrix} \Big| h, k \in \mathbb{C}\Big\},$$

e quindi

 $d_2 = \dim(E_{\mathbf{A}}(3)) = \text{ [numero di colonne di } (\mathbf{A} - 3\mathbf{I}_3)] - \mathrm{rk}(\mathbf{A} - 3\mathbf{I}_3) = 3 - 1 = 2$

e
$$\left\{ \begin{pmatrix} -i \\ 0 \\ 1 \end{pmatrix}; \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \right\}$$
è una base di $E_{\mathbf{A}}(\lambda_2) = E_{\mathbf{A}}(3)$.

 ${\bf B}$ è una matrice triangolare, per cui i suoi autovalori sono i suoi elementi diagonali:

$$\lambda_1 = 0 \text{ e } \lambda_2 = 3.$$

(Infatti, il polinomio caratteristico di B è:

$$p_{\mathbf{B}}(x) = \text{Det}(\mathbf{B} - x\mathbf{I}_3) = \text{Det}\begin{pmatrix} -x & 0 & -3i \\ 0 & 3 - x & 0 \\ 0 & 0 & -x \end{pmatrix} =$$
$$= (-1)^{3+3}(-x)\text{Det}\begin{pmatrix} -x & 0 \\ 0 & 3 - x \end{pmatrix} =$$
$$= (-x)(-x)(3-x) = x^2(3-x),$$

e gli autovalori di ${\bf B}$ sono gli zeri del polinomio caratteristico $p_{\bf B}(x)$ di ${\bf B}$, ossia le soluzioni dell'equazione $x^2(3-x)=0.$

Siano m_1 ed m_2 le molteplicità algebriche e d_1 e d_2 le molteplicità geometriche di λ_1 e λ_2 rispettivamente. Da

$$p_{\mathbf{B}}(x) = x^2(3-x) = (\lambda_1 - x)^{m_1}(\lambda_2 - x)^{m_2}$$

otteniamo:

$$m_1 = 2$$
 e $m_2 = 1$.

Infine, da $1 \le d_i \le m_i = 1$ per i = 1, 2, otteniamo:

$$1 \le d_1 \le 2$$
 e $d_2 = 1$.

$$E_{\mathbf{B}}(\lambda_1) = E_{\mathbf{B}}(0) = N(\mathbf{B} - 0\mathbf{I}_3) = N(\mathbf{B})$$

Da una E.G. su $\, {f B} \,$:

$$\begin{pmatrix} 0 & 0 & -3i \\ 0 & 3 & 0 \\ 0 & 0 & 0 \end{pmatrix} \xrightarrow{E_2(\frac{1}{3}i)E_1(\frac{1}{3})E_{12}} \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix},$$

segue che

$$E_{\mathbf{B}}(\lambda_1) = E_{\mathbf{B}}(0) = N(\mathbf{B}) = N\left(\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}\right) = \left\{\begin{pmatrix} h \\ 0 \\ 0 \end{pmatrix} \middle| h \in \mathbb{C}\right\},$$

e quindi

$$d_1 = \dim(E_{\mathbf{B}}(\lambda_1)) = \text{ (numero di colonne di } \mathbf{B}) - \mathrm{rk}(\mathbf{B}) = 3 - 2 = 1$$

e
$$\left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \right\}$$
 è una base di $E_{\mathbf{B}}(\lambda_1) = E_{\mathbf{B}}(0)$.

$$E_{\mathbf{B}}(\lambda_2) = E_{\mathbf{B}}(3) = N(\mathbf{B} - 3\mathbf{I}_3) = N\left(\begin{pmatrix} -3 & 0 & -3i\\ 0 & 0 & 0\\ 0 & 0 & -3 \end{pmatrix}\right)$$

Da una E.G. su $\mathbf{B} - 3\mathbf{I}_3$:

$$\begin{pmatrix} -3 & 0 & -3i \\ 0 & 0 & 0 \\ 0 & 0 & -3 \end{pmatrix} \xrightarrow{E_3(-\frac{1}{3})E_{23}E_1(-\frac{1}{3})} \begin{pmatrix} 1 & 0 & i \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix},$$

segue che

$$E_{\mathbf{B}}(3) = N\Big(\begin{pmatrix} -3 & 0 & -3i \\ 0 & 0 & 0 \\ 0 & 0 & -3 \end{pmatrix}\Big) = N\Big(\begin{pmatrix} 1 & 0 & i \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}\Big) = \Big\{\begin{pmatrix} 0 \\ h \\ 0 \end{pmatrix} \Big| h \in \mathbb{C}\Big\},$$

e quindi $\left\{ \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \right\}$ è una base di $E_{\mathbf{B}}(\lambda_2) = E_{\mathbf{B}}(3)$.