

School of Electrical Engineering & Telecommunications

ELEC1111 Tutorial 1

Design of the rear lights of a vehicle

Conspicuity for the rear of a vehicle is provided by rear position lamps (also called tail lamps or tail lights). These are required to produce only red light and to be wired such that they are lit whenever the front position lamps are illuminated, including when the headlamps are on. Rear position lamps may be combined with the vehicle's stop lamps or separate from them. In combined-function installations (as the one you will explore today), the lamps produce brighter red light for the stop lamp function and dimmer red light for the rear position lamp function. Regulations worldwide stipulate minimum intensity ratios between the bright (stop) and dim (rear position) modes, so that a vehicle displaying rear position lamps will not be mistakenly interpreted as showing stop lamps, and vice versa.

Light Emitting Diodes (LEDs) are gradually coming to be preferred over filament bulbs as the light sources for vehicle rear lamps.

In this tutorial, you will be given a set of specifications, and an opportunity to design the rear lights of a hybrid vehicle.

Specifications:

The combined stop-rear lights circuit design is to conform to the following specifications:

- 1. Needs to illuminate 12 LEDs distributed in a grid pattern (i.e. X rows × Y columns).
- 2. The intensity ratio between the bright (stop) and dim (rear position) modes is 100/30 (i.e. 100% intensity in stop mode, and 30% intensity in rear position mode).
- 3. All LEDs are to have equal current flowing through them (equal brightness).
- 4. Current through each LED is to be no greater than 75 mA.
- 5. The circuit is to be powered using a 12 V car battery.

Consider issues of cost, robustness, number of components and any other factors in making a good design.

Notes:

- LEDs used for our tail-lights (CP42B-RKS) drop about 2.5 V across terminals for currents around 70 mA.
- We will model the LED as a 2.5 V voltage source.
- You may use any number of switches.
- You may use any number of resistors. Resistors to be used are rated at 0.5 W. If possible, use standard resistor values (see list of standard resistor values on last page).

1. Hybrid vehicle battery analysis

A specific brand of a hybrid vehicle features a high voltage Hybrid Vehicle (HV) battery pack and a 12 V auxiliary battery. High voltage electricity powers the electric motor, generator, air conditioning, compressor, and inverter/converter. All other automotive electrical devices such as the rear lights, horn and radio are powered from a separate 12 V battery.

The HV battery pack is a Nickel Metal Hydride (NiMH) battery pack consisting of 34 low voltage (7.2 V) modules connected in series. The capacity of the battery is 6.5 Ah.

Q1. How much total energy is available from the HV battery pack? Express your answer in joules and KWh.

Answer: w = 1.591 KWh or w= 5728320 J = 5.728 MJ.

Q2. If the vehicle drives for 15 minutes as an all-electric vehicle using only the energy available in the fully charged HV battery pack, what is the average current used when driving? And the average power?

Answer: i = 26 A, p = 6364.8 W

2. Circuit to illuminate a single LED

To help you with the design task, you will start analysing a circuit that illuminates a single LED functioning as stop-rear light.

In the previous circuit, the stop mode occurs when the switch is closed, since the value of the resistance will decrease $(R_1 \parallel R_2 < R_1)$ and the current and brightness of the LEDs will increase.

Q3. Calculate the current in stop mode (i_{stop}) and rear position mode (i_{rear}) if V_{in} = 12V, R_1 = 442 Ω , R_2 = 196 Ω , and V_f = 2.5 V. Check whether these currents conform to the specifications.

Answer: $i_{stop} = 69.95$ mA; $i_{rear} = 21.5$ mA. They conform to the specifications.

Q4. Check whether the resistors meet the power specifications (resistors to be used are rated at 0.5 W).

Answer: $p_{R1} = 0.204$ W; $p_{R2} = 0.46$ W. They meet the power specifications.

3. Rear lights design

The values of R₁ and R₂ in the previous circuit were obtained according to the following design steps:

1. According to the specifications, the current through each LED is to be no greater than 75 mA. We can then choose:

$$i_{stop} = 70 mA$$

 $i_{regr} = 70 \times 0.3 = 21 mA$

Note that the intensity ratio between the bright (stop) and dim (rear position) modes is 100/30.

2. If the car battery provides 12V and we assume ideal behaviour of the LED (V_f = 2.5 V), R₁ can be then calculated as follows:

$$R_1 = \frac{12 - 2.5 V}{0.021 A} = 452.38 \Omega$$

We choose a standard resistor value as close as possible to 452 which meets the current limitation. E.g. $R_1 = 442 \Omega$ (from E48 series).

3. If i_{stop} = 70 mA and i_{rear} = 21 mA, then i_{R_2} = 70 – 21 = 49 mA. R₂ can be then calculated as follows:

$$R_2 = \frac{12 - 2.5 V}{0.049 A} = 193.88 \Omega$$

We choose a standard resistor value as close as possible to 194 which meets the current limitation. E.g. R_2 = 196 Ω (from E48 series).

Q5. Design the rear lights of a hybrid vehicle, conforming to the specifications listed in the first page. Use the single LED circuit functioning as stop-rear light as a starting point, and keep in mind the steps followed to design it.

Consider issues of cost, robustness, number of components and any other factors in making a good design.

Answer: There are many possible correct designs. If you have a design in mind and you want to know whether it is correct out of tutorial hours, you can simulate it using Falstad (http://www.falstad.com/circuit/) or any other simulator of electric circuits. Otherwise, please contact your lecturer to organise an appointment.

NOTE:

- CP42B-RKS price: \$0.28 per unit.
- Resistor price: \$0.75 per package of 5.
- Switch price (e.g. SP0720): \$1.45 per unit.

Note that these are illustrative prices. They might change a bit depending on the provider. Bulk pricing would be lower.

E6	E12	E24	E48	E96	E192	E6	E12	E24	E48	E96	E192	E6	E12	E24	E48	E96	E19
					100						215						46
100	100		400	100	101				215	215	218		470	470	404	464	47
		100	100	402	102		220	220	215	224	221				464	475	47
				102	104					221	223					475	48
				105	105				226	226	226				487	487	48
			105	100	106						229						49
				107	107					232	232					499	49
					109						234						50
		110		110	110			240	237	237	237			510	511	511	51
			110		111						240						51
				113	113					243	243					523	53
				2.9	115						249						53
				115	117				249	249	252					536	54
			115	118	118					255	255						54
					120	220					258	470				549	55
	120	120	121	121	121	220		270	261	261	261	410		560	562	562	56
				121	123					267	264					302	56
				124	124						267					576	57
			_		126						271						58
			127	127	127			17.5		274	274				590	590	59
					129		270		274		277						59
					130					280	280					604	61
					133			300	_	=	287		560	620	619		61
		130	133	133	135					287	291					619	62
					137				287		294						63
				137	138					294	298					634	64
			140	140	140	2			301	301	301				649	649	64
				140	142					301	305					043	65
				143	143					309	309					665	66
				-	145					-	312						67
150	150	150	147	147	147		330	330	316	316	316		680	680	681	681	68
					149						320						69
				150	152					324	328					698	70
					154						332				715		71
			154	154	156				332	332	336					715	72
					158						340					732	73
					160						344					132	74
		160	162	162	162			360		348	348			750	750	750	75
					164				348		352						75
					165						357					768	76
					167				_	1224	361				787	and the	77
				169	169				365	365	365 370					787	78
			169	174	174						374						80
					176	1500000				374	379	20.00				806	81
		180	178		178	330			383		383	680	820	820	825		82
				178	180		390			383	388					825	83
					182					392	392						84
				182	184			390			397					845	85
	180			187	187					402	402					866	86
			187	101	189				402	402	407				866	000	87
				191	191					412	412					887	88
					193						417						89
			196	196	196			430	422	422	422			910		909	90
					198						427					1000	92
				200	200					432	432					931	93
					203						_						94
			205	205	205				442	442	442					953	96
					the same of the same of						453						97
			77.77		210						45.						

http://www.logwell.com/tech/components/resistor_values.html