Thus, defining c_{ij} such that

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj},$$

for $1 \le i \le m$, and $1 \le j \le p$, we have

$$z_i = \sum_{j=1}^p c_{ij} x_j \tag{4}$$

Identity (4) shows that the composition of linear maps corresponds to the product of matrices.

Then given a linear map $f: E \to F$ represented by the matrix $M(f) = (a_{ij})$ w.r.t. the bases (u_1, \ldots, u_n) and (v_1, \ldots, v_m) , by Equation (1), namely

$$y_i = \sum_{j=1}^n a_{ij} x_j \quad 1 \le i \le m,$$

and the definition of matrix multiplication, the equation y = f(x) corresponds to the matrix equation M(y) = M(f)M(x), that is,

$$\begin{pmatrix} y_1 \\ \vdots \\ y_m \end{pmatrix} = \begin{pmatrix} a_{1\,1} & \dots & a_{1\,n} \\ \vdots & \ddots & \vdots \\ a_{m\,1} & \dots & a_{m\,n} \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}.$$

Recall that

$$\begin{pmatrix} a_{1\,1} & a_{1\,2} & \dots & a_{1\,n} \\ a_{2\,1} & a_{2\,2} & \dots & a_{2\,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m\,1} & a_{m\,2} & \dots & a_{m\,n} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = x_1 \begin{pmatrix} a_{1\,1} \\ a_{2\,1} \\ \vdots \\ a_{m\,1} \end{pmatrix} + x_2 \begin{pmatrix} a_{1\,2} \\ a_{2\,2} \\ \vdots \\ a_{m\,2} \end{pmatrix} + \dots + x_n \begin{pmatrix} a_{1\,n} \\ a_{2\,n} \\ \vdots \\ a_{m\,n} \end{pmatrix}.$$

Sometimes, it is necessary to incorporate the bases (u_1, \ldots, u_n) and (v_1, \ldots, v_m) in the notation for the matrix M(f) expressing f with respect to these bases. This turns out to be a messy enterprise!

We propose the following course of action:

Definition 4.2. Write $\mathcal{U} = (u_1, \dots, u_n)$ and $\mathcal{V} = (v_1, \dots, v_m)$ for the bases of E and F, and denote by $M_{\mathcal{U},\mathcal{V}}(f)$ the matrix of f with respect to the bases \mathcal{U} and \mathcal{V} . Furthermore, write $x_{\mathcal{U}}$ for the coordinates $M(x) = (x_1, \dots, x_n)$ of $x \in E$ w.r.t. the basis \mathcal{U} and write $y_{\mathcal{V}}$ for the coordinates $M(y) = (y_1, \dots, y_m)$ of $y \in F$ w.r.t. the basis \mathcal{V} . Then

$$y = f(x)$$