Nitrogen oxides in the global upper troposphere interpreted with cloud-sliced NO₂ from the Ozone Monitoring Instrument

E. A. Marais, D. J. Jacob, S. Choi, J. Joiner, M. Belmonte-Rivas, R. C. Cohen, T. B. Ryerson, A. J. Weinheimer, A. Volz-Thomas, L. T. Murray, V. Shah, L. Jaeglé, S. Beirlie

EGU, Session AS3.12 Vienna, Austria 26 April 2017

Eloise A. Marais University of Birmingham, UK e.a.marais@bham.ac.uk

Nitrogen oxides impact ozone chemistry in the upper troposphere

 NO_x (NO + NO_2) has a high ozone production efficiency (OPE) in the upper troposphere where ozone is a powerful greenhouse gas

Longer NO_x lifetime at higher altitude, so sources there have greatest OPE

0.8 0.7 OMI UT NO 0.5 0.3 0.2 0.1 0.0 -0.1 -0.2 Latitude [degrees N]

[Aghedo et al., 2011]

Aircraft observations to constrain upper troposphere NO_x are limited to summertime aircraft campaigns in North America and commercial aircraft at cruise altitude

Global UT OMI NO₂: new dataset to better understand UT NO_x

Exploit differences in cloud height to retrieve partial NO₂ columns (VCD) and calculate vertically resolved NO₂ concentrations (VMR).

APPROACH

NO₂ Cloud Surface

Use cloud height variability to derive pseudoprofiles

[Choi et al., 2014]

NO₂ volume mixing ratio (VMR) between clouds at p1 and p2

$$NO_2 VMR = \frac{\Delta VCD}{\Delta p} \times \frac{k_B g}{R_{air}}$$

Two global UT OMI NO₂ products: KNMI and NASA

Seasonal mean OMI NO₂ from KNMI (~380 hPa) and NASA (~350 hPa) Data are at $8^{\circ} \times 5^{\circ}$ (longitude × latitude)

Evaluate OMI UT NO₂ with aircraft observations

NO₂ is challenging to measure in UT: NO₂ concentrations relatively low and susceptible to contamination from thermal decomposition of NO_x reservoir species (PANs, HNO₄)

Flight tracks at midday (11h00-16h00) in the UT (280-450 hPa) and without stratospheric influence (CO: O_3 < 1.25)

Majority of flights to evaluate OMI UT NO₂ are in summer over North America

Evaluate OMI UT NO₂ with aircraft observations

Comparison of May-August OMI and aircraft UT NO₂ during DC8 campaigns

NASA OMI and TD-LIF aircraft NO₂

80°N

[Aircraft NO₂ from T. Ryerson, R. Cohen, A. Weinheimer]

[pptv]

80

NASA OMI and chemiluminescence aircraft NO₂

NASA product is more consistent with aircraft measurements than KNMI (KNMI is consistently lower).

40

60

20

Compare GEOS-Chem and NASA OMI UT NO₂

Difference between NASA OMI and GEOS-Chem UT NO₂ (GEOS-Chem minus NASA)

BLUE: model too low

RED: model too high

Notable regional discrepancies

Reactive Nitrogen Chemistry Uncertainties

Uncertainties in NO_x chemistry have implications for relative (NO:NO₂) and total NO_x abundances and NO_x lifetimes.

Uncertain reaction rates that impact NO:NO₂ and NO_x abundances. Updating these increases NO₂ abundances.

Compare GEOS-Chem and NASA OMI UT NO₂

Updating chemistry increases UT NO₂, predominantly in the tropics and the Southeast US (Jun-Aug), exacerbating model overestimates in these locations.

Lightning NO_x as a source of discrepancy

In GEOS-Chem lightning location is imposed with climatology of lightning flashes from OTD-LIS and vertical profiles from the literature [Murray et al., 2012]

Total GEOS-Chem lightning NO_x emissions for 2006: **5.4 Tg N**

What is the effect of accounting for lightning flash interannual variability?

Lightning activity interannual variability (IAV)

Lightning flash rate interannual variability from LIS (40S-40N viewing domain). OTD only available until 2000.

Again, does little to reduce the discrepancy in the model

NO_x production per lightning flash

Single value (260 moles NO per flash) used in GEOS-Chem based on limited observations, so represents an under constrained parameter

Scale 260 mol/fl by the discrepancy between the model and OMI to estimate spatially resolved NO_x production per flash (*Data are at 8°* × 5°)

NO_x per flash as a function of lightning intensity

Combine OMI-derived NO per flash and OTD- and LIS-derived lightning footprints

Extensive lightning footprint is associated with high flash intensity and long flash duration [Beirle et al., 2014]. The reason is not clear.

Linear relationship between lightning NO_x production rate and flash footprint.

Potential to move towards a more mechanistic representation of NO_x production rates.

Summary and Concluding Remarks

Used new OMI products from NASA and KNMI to provide constraints on upper troposphere (UT) NO_x where production efficiency and global warming potential of ozone are high.

- NASA OMI UT NO₂ observations are more consistent with aircraft DC8 observations than is KNMI
- GEOS-Chem chemical transport model UT NO₂ has large regional discrepancies when compared to NASA UT NO₂
- Uncertainties in chemistry and accounting for lightning flash interannual variability (IAV) does not address model biases
- Likely culprit in the model is the assumption that the NO production rate per flash is the same throughout the world (260 mol NO per flash)
- We find a robust linear relationship between OMI-derived lightning NO_x production per flash and LIS flash footprints
- Next steps: independently evaluate with NO₂ observations from the ATom aircraft campaign and determine the implications for UT ozone
- Caveats: the northern hemisphere wintertime (Dec-Feb) discrepancy remains