Binôme 2 :

Nom du répertoire :

COMPTE RENDU - TP N°3

Echelle Cœur

- CORRECTION -

Date

25/11/2013

DRAGON

Document de référence : Manuel Utilisateur DRAGON-VERSION4

Travaillez dans un dossier « dragon »

1/jdd A - Coeur REP RZ (coeur2D.d)

Consignes

L'homogénéisation spatiale consiste à définir un milieu homogène dans lequel les quantités isotopiques sont respectées. Pour chaque isotope, la « densité homogénéisée » équivalente est :

$$[i]_{hom} = \frac{\int_{Cellule} [i] dV}{V_{Cellule}}$$

Ci-dessous la géométrie d'une cellule **combustible** REP 900 :

Géo				
cellule carrée	coté	1,26	cm	
pastille	rayon	0,410	cm	
gaine	rayon intérieur	0,418	cm	
gaine	rayon extérieur	0,480	cm	

Ci-dessous la composition d'une cellule **combustible** REP 900 :

	016	II	'016'	4,6131E-02
Pastille	U235	II	'U235'	8,0729E-04
	U238	=	'U238'	2,2258E-02
Gaine	Zr91	=	'Zr91'	3,8324E-02
Eau	H1H2O	=	'H1_H2O'	4,7508E-02
(308°C)	O16H2O	=	'016'	2,3754E-02

Homogénéisez cette cellule combustible

chaque région?

Questions Quel sont les fractions volumiques de

Région	Fraction volumique
Pastille	33,264%
Gaine	11,017%
Eau (308°C)	54,408%

Binôme 2:

COMPTE RENDU - TP N°3

Echelle Cœur

CORRECTION -

25/11/2013

Date

Nom du répertoire :

Quel sont les concentrations des isotopes de la cellule homogénéisée ?

CELL.	ISOT.	COMPO (10^24at/cm3)
	'016'	2,8269E-02
	'U235'	2,6854E-04
COMB	'U238'	7,4039E-03
	'Zr91'	4,2223E-03
	'H1_H2O'	2,5848E-02

Consignes

Ci-dessous la géométrie d'une cellule absorbante de B4C:

Géo				
cellule carrée	coté	1,26	cm	
Pastille B4C	rayon	0,370	cm	

Ci-dessous la composition d'une cellule **absorbante** de B4C:

D. A. III.	B10	=	'B10'	1,5453E-02
Pastille B4C	B11	=	'B11'	6,2200E-02
D4C	С	=	'C0'	1,9391E-02
Eau	H1H2O	П	'H1_H2O'	4,7508E-02
(308°C)	O16H2O	=	'016'	2,3754E-02

Homogénéisez cette cellule absorbante

Questions

Quel sont les fractions volumiques de chaque région ?

<u>Réponses</u>

Région	Fraction volumique	
Pastille B4C	27,620%	
Eau (308°C)	72,380%	

Binôme 2:

COMPTE RENDU - TP N°3

Echelle Cœur

- CORRECTION -

Date

25/11/2013

Nom du répertoire :

Quel sont les concentrations des isotopes de la cellule homogénéisée ?

CELL.	ISOT.	COMPO (10^24at/cm3)
	'B10'	4,2681E-03
	'B11'	1,7180E-02
POISON	'C0'	5,3557E-03
	'H1_H2O'	3,4386E-02
	'016'	1,7193E-02

Consignes

En vous inspirant des jdd déjà étudiés auparavant, construisez un jdd dragon nommé « coeur2D.d » dans lequel sont définis ces deux milieux homogénéisés.

A l'aide du manuel Dragon, ajoutez dans ce jdd la définition de la géométrie suivante « grappes à mi-cœur »:

Enfin, ajoutez les éléments de résolution du flux selon une méthode SN (voir ci-dessous)

```
TRACK := SNT: GCELL ::

EDIT 0

MAXR 1000

DIAM 1 SN 8

SCAT 2

QUAB 7

TITLE 'CORE' ;

LIBMIXS := USS: LIBMIX TRACK :: EDIT 0

GRMAX 1 ARM ;

SYS := ASM: LIBMIXS TRACK :: EDIT 0 ARM ;

FLUX := FLU: SYS LIBMIXS TRACK ::

EDIT 1

TYPE K

EXTE 100 1E-4 THER 10 1E-4 ;
```

(extrait du fichier « SN.d »)

COMPTE RENDU - TP N°3

Echelle Cœur

· CORRECTION -

Date

25/11/2013

Nom du répertoire :

Binôme 2:

Ouestions	
<u>V GODGIOIID</u>	

<u>Réponses</u>

Quel est le Keff obtenu?

- Grappes à mi-cœur
- Grappes en haut du cœur (que du combustible)

Config.	Nom du fichier	Keff
Grappes à mi-cœur	coeur2D.d	0,96046
Grappes extraites	coeur2D.TGE.d	0,99997

Quel est la concentration en Bore critique - enrichi à 20%_{isot} en Bore 10 - dans le cas « grappes extraites » du cœur ? Indiquez les valeurs en :

- 10²⁴ at/cm³
- ppm

La concentration de bore TGE est critique dans le fichier original :

- **[B10] = 1,6E-7** 10^{24} at/cm³
- **[B11] = 6,4E-7** 10^{24} at/cm³

Donc: [B] = [B10]+[B11] = 8,0E-7 10^{24} at/cm³ Sachant que [H20] = 1,2924E-2 10^{24} at/cm³

La Cb est de 38 ppm = ([B]*11000mg)/([H20]*0,018kg]

2/ Effets des grappes

Consignes

Le **poids d'une grappe** est définie par la différence de réactivité entre l'état « grappe extraite » et l'état « grappe insérée» :

 $\rho_{grappe} = \rho_{grappe\ en\ haut\ du\ coeur} - \rho_{grappe\ en\ bas\ du\ coeur}$

La **courbe d'insertion d'antiréactivité d'une grappe** est définie par la différence de réactivité entre l'état « grappe extraite » et l'état « grappe insérée de z cm » :

$$\rho_{grappe}(z) = \rho_{grappe \ a \ 0 \ cm} - \rho_{grappe \ a \ z \ cm}$$

Lorsque deux grappes s'insèrent simultanément, **des phénomènes « d'ombre » et « d'anti-ombre »** occurrent, tout comme des effets de redistribution de flux dans les différentes zones combustibles:

- Ombre : au voisinage de la grappe insérée, le flux est déprimé. Tout poison dans l'environnement « affaibli » par la grappe est « affaibli » à son tour
- Anti-ombre : loin de la grappe insérée, le flux est légèrement augmenté par effet de renormalisation. Tout poison dans l'environnement « renforcé » par la grappe est « renforcé » à son tour.
- Redistribution du flux dans le cœur : dans le cas des RNR particulièrement, une grappe perturbe le flux à grande distance et il s'ensuit une remarquable redistribution du flux dans le cœur : le flux de neutrons peut ainsi être délocalisé dans une zone combustible de plus grande importance neutronique, amoindrissant notablement l'insertion d'antiréactivité .

Faites varier la position des rideaux de grappes.

Questions

<u>Réponses</u>

Quels sont les poids :

- Du rideau intérieur
- Du rideau extérieur
- Des deux rideaux

Config.	Nom du fichier	Poids
Rideau int.	Int.d.result	610
Rideau ext.	Ext.d.result	4035
2 rideaux	TGI.d.result	6454

Binôme 2:

COMPTE RENDU - TP N°3

Echelle Cœur

CORRECTION -

Date

25/11/2013

Nom du répertoire :

Commentez l'effet d'ombre.

On observe que la somme du poids du rideau int. et du rideau ext. est bien plus faible que le poids des 2 rideaux enfoncés simultanément.

Quelle est la courbe d'insertion en antiréactivité des deux rideaux. Tracez-la.

z (cm)	Nom du fichier	$ ho_{grappe}(z)$
0.	TGE.d	0
10.	core_10.d	593
20.	core_20.d	2136
30.	core_30.d	4117
40.	core_40.d	5670
50.	core_50.d	6366
60.	TGI.d	6454

