Parallelization Approach: Some examples

V. Venkatesh ShenoiHPC - Infrastructure & Ecosystem, C-DAC, Pune venkateshs@cdac.in

High Performance Computing for scientists and engineers

PDE Solver: Soln. Laplace equation

Laplace Equation in two dimensions

$$\frac{\partial^2 U}{\partial x^2} + \frac{\partial^2 U}{\partial y^2} = 0, \text{ with boundary conditions,}$$

$$U(x, 0) = 0, U(x, 1) = 1,$$

$$U(0, y) = 0, U(1, y) = 0$$

$$U(x, 0) = 0, U(x, 1) = 1,$$

 $U(0, y) = 0, U(1, y) = 0.$

Finite Differences method, the solution
$$0 < x < 1, 0 < y < 1$$
 can be obtained.

Discretize along x and y directions, $M \times M$ grid with $\Delta x = \Delta y$, $U(x, y) \equiv U(i, j)$

$$x=i\Delta x,\,i\in[0,\,M],$$
 with $\Delta x=1/M$,

$$y=j\Delta y, j\in [0,\ M]$$
 , with $\Delta y=1/M$,

$$\frac{(U_{i+1, j} - 2U_{i, j} + U_{i-1, j})}{(\Delta x)^2} + \frac{(U_{i, j+1} - 2U_{i, j} + U_{i, j-1})}{(\Delta y)^2} = 0$$

$$U_{i,j} = \frac{1}{4} (U_{i+1,j} + U_{i-1,j} + U_{i,j+1} + U_{i,j-1})$$

5- point stencil: a point and its neighbours

Soln. Laplace equation (stencil computation)

$$U_{i,j}^{(n+1)} = \frac{1}{4} \left(U_{i+1,j}^{(n)} + U_{i-1,j}^{(n)} + U_{i,j+1}^{(n)} + U_{i,j-1}^{(n)} \right)$$

Solution can be obtained **iteratively** $(U_{i,j}^{(n)} \to U_{i,j}^{(n+1)})$ for the points on the grid using the values from previous iteration for the neighbouring points.

$$\text{Error:} \qquad dU_{i,\;j}^{(n+1)} = (U_{i-1,\;j}^{(n)} + U_{i+1,\;j}^{(n)} + U_{i,\;j-1}^{(n)} + U_{i,\;j+1}^{(n)})/4 - U_{i,\;j}^{(n)} = U_{i,\;j}^{(n+1)} - U_{i,\;j}^{(n)} = U_{i,\;j}^{(n+1)} - U_{i,\;j}^{(n)} = U_{i,\;j}^{(n)} - U_{i,\;j}^{(n)} - U_{i,\;j}^{(n)} - U_{i,\;j}^{(n)} = U_{i,\;j}^{(n)} - U_{i,\;$$

Jacobi Solver


```
for (it=1;it<itmax;it++) {
    for (j=1;j<M;j++) {
        for (i=1;i<M;i++) {
            u[i,j]=0.25*(up[i+1,j]+up[i-1,j]+up[i,j+1]+up[i,j-1]);
        }
    }
    up=u;
}</pre>
```

Jacobi solver (serial)

To find $U(x,\,y)$ which satisfies Laplace Equation (two dimensions) in unit square, $0 < x < 1,\, 0 < y < 1$,

$$\frac{\partial^2 U}{\partial x^2} + \frac{\partial^2 U}{\partial y^2} = 0, \text{ with boundary conditions,}$$

$$U(x, 0) = 0, U(x, 1) = \sin(2\pi x),$$

 $U(0, y) = 0, U(1, y) = -\sin(\pi y).$

Analytical solution U(x, y):

$$U(x, y) = \frac{\sinh(2\pi y)\sin(2\pi x)}{\sinh(2\pi)} - \frac{\sinh(\pi x)\sin(\pi y)}{\sinh(\pi)}$$

Sample codes:

- 1. level 0: initialize, data layout, identifying the upper and right boundaries.
- 2. level 1: intialize boundary condition, data for $U(i,\ j)$ with boundaries.
- 3. level 2: evolution of U(i, j) with iterations, interchange read and write grid after every iteration.

Source: from some lecture notes in the web (unknown)

Jacobi solver (serial): code segments


```
// parameters
#define NR 31
                                                           //Jacobi iteration
#define NC 31
                                                            for(iter=1;iter<=itmax;iter++) {</pre>
#define itmax 120
                                                               //Jacobi kernel
// READ, WRITE variables
                                                                for (i=1; i<=NR; i++) {
double *u1;
                                                                    b=i*(NC+2)+1;
double *u2;
                                                                     for (j=1; j<=NC; j++) {
// temporary variable
                                                                         u2[b] = 0.25*(u1[b-1]+u1[b+1]+u1[b-(NC+2)]+u1[b+(NC+2)]);
double *tmp;
                                                                         du[b]=u2[b]-u1[b];
                                                                         b++;
//TWO grids: READ(right) and WRITE(left)
u1=(double *)malloc((NR+2)*(NC+2)*sizeof(double));
u2=(double *) malloc((NR+2)*(NC+2)*sizeof(double));
//Difference between succesive iterations (error)
                                                                // Interchange READ & WRITE => u1<=>u2
du=(double *)malloc((NR+2)*(NC+2)*sizeof(double));
                                                                      tmp=u1;
                                                                      u1=u2;
//Discretization
                                                                      u2=tmp;
dx=1.0/(double)(NC+1);
dy=1.0/(double)(NR+1);
```

Jacobi solver (serial): output

OUTPUI	0:					OUTPU'	г 1:							
layout						layou								
0	1	2	3	4	5	0	1	2	3	4	5			
6	7	8	9	10	11	6	7	8	9	10	11			
12	13	14	15	16	17	12	13	14	15	16	17			
18	19	20	21	22	23	18	19	20	21	22	23			
24	25	26	27	28	29	24	25	26	27	28	29			
30	31	32	33	34	35	30	31	32	33	34	35			
30	0.0000	00				30	0.0000	00	0.0000	000				
31	0.2000	00				31	0.2000		0.9508					
32	0.4000	00				32	0.4000		0.5888					
33	0.6000	00				33	0.6000	00	-0.586	5238				
34	0.8000	00				34	0.8000	00	-0.951	.841				
35	1.0000	00				35	1.0000	00	-0.003	3185				
5	0.0000					5	0.0000	00	-0.000	0000				
11	0.2000					11	0.2000	00	-0.587	528				
17	0.4000					17	0.4000	00	-0.950	859				
23	0.6000					23	0.6000	00	-0.951	.351				
29 35	0.8000					29	0.8000	00	-0.588	8816				
33	1.0000	00				35	1.0000	00	-0.001	.593				
							undary in							
						0.000		0.0000		0.0000		0.000000	0.000000	-0.000000
						0.000		0.0000		0.0000		0.000000	0.000000	-0.587528
						0.000		0.0000		0.0000		0.000000	0.000000	-0.950859
						0.000		0.0000		0.0000		0.000000	0.000000	-0.951351
						0.000		0.0000		0.0000		0.000000	0.000000	-0.588816
						0.000	000	0.9508	59	0.5888	16	-0.586238	-0.951841	-0.001593

Jacobi solver (serial): output

OUTPUT	2:													
layout														
0	1	2	3	4	5				#u2 modified	d:iteration 2				
6	7	8	9	10	11				0.000000	0.000000	0.000000	0.000000	0.000000	-0.000000
12	13	14	15	16	17				0.000000	0.000000	0.000000	-0.036720	-0.206311	-0.587528
18	19	20	21	22	23				0.000000	0.000000	0.000000	-0.059429	-0.333895	-0.950859
24	25	26	27	28	29				0.000000	0.059429	0.036801	-0.096099	-0.393558	-0.951351
30	31	32	33	34	35				0.000000	0.274516	0.169993	-0.206050	-0.481263	-0.588816
									0.000000	0.950859	0.588816	-0.586238	-0.951841	-0.001593
u1														
0.0000		0.0000		0.0000		0.000000	0.000000	0.000000		d:iteration 3				
0.0000		0.0000		0.0000		0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	-0.000000
0.0000		0.0000		0.0000		0.000000	0.000000	0.000000	0.000000	0.000000	-0.009180	-0.066435	-0.239536	-0.587528
0.0000		0.0000		0.0000		0.000000	0.000000	0.000000	0.000000	0.014857	-0.005657	-0.116679	-0.402539	-0.950859
0.0000		0.0000		0.0000		0.000000	0.000000	0.000000	0.000000	0.077829	0.033331	-0.155559	-0.465652	-0.951351
0.0000	00	0.0000	JU	0.0000	00	0.000000	0.000000	0.000000	0.000000	0.295070	0.173521	-0.248402	-0.535066	-0.588816
u2									0.000000	0.950859	0.588816	-0.586238	-0.951841	-0.001593
0.0000	0.0	0.0000	0.0	0.0000	0.0	0.000000	0.000000	0.000000	#u2 modified	d:iteration 4				
0.0000		0.0000		0.0000		0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	-0.000000
0.0000		0.0000		0.0000		0.000000	0.000000	0.000000	0.000000	0.001419	-0.018023	-0.091349	-0.264125	-0.587528
0.0000		0.0000		0.0000		0.000000	0.000000	0.000000	0.000000	0.018043	-0.019418	-0.157547	-0.443182	-0.950859
0.0000	00	0.0000	0.0	0.0000	00	0.000000	0.000000	0.000000	0.000000	0.085814	0.022534	-0.199351	-0.511129	-0.951351
0.0000	00	0.0000	0.0	0.0000	00	0.000000	0.000000	0.000000	0.000000	0.300552	0.167204	-0.275835	-0.563678	-0.588816
									0.000000	0.950859	0.588816	-0.586238	-0.951841	-0.001593
30	0.0000	000	0.000	000										
31	0.2000	000	0.950	859						d:iteration 5				
32	0.4000	000	0.588						0.000000	0.000000	0.000000	0.000000	0.000000	-0.000000
33	0.6000		-0.58						0.000000	0.000005	-0.027337	-0.109924	-0.280514	-0.587528
34	0.8000		-0.95						0.000000	0.016954	-0.033748	-0.188325	-0.470915	-0.950859
35	1.0000	000	-0.00	3185					0.000000	0.085282	0.008562	-0.230495	-0.539390	-0.951351
									0.000000	0.300969	0.159016	-0.295516	-0.581905	-0.588816
_	0 0000		0.00						0.000000	0.950859	0.588816	-0.586238	-0.951841	-0.001593
5	0.0000		-0.000						12	4.14				
11 17	0.2000		-0.58°						0.000000	d:iteration 6 0.000000	0.000000	0.000000	0.000000	-0.000000
23	0.6000		-0.95						0.000000	-0.002596	-0.035917	-0.124044	-0.292092	-0.587528
29	0.8000		-0.58						0.000000	0.012885	-0.047536	-0.211271	-0.489772	-0.950859
35	1.0000		-0.00						0.000000	0.081621	-0.004986	-0.253667	-0.558667	-0.951351
55	1.0000	,,,,	0.00.	1000					0.000000	0.298790	0.150708	-0.309905	-0.593891	-0.588816
u1 bou	ndarv ir	nitialize	4						0.000000	0.950859	0.588816	-0.586238	-0.951841	-0.001593
0.0000	_	0.0000		0.0000	00	0.000000	0.000000	-0.000000						
0.0000		0.0000		0.0000		0.000000	0.000000	-0.587528	#u2 modified	d:iteration 7				
0.0000	00	0.0000	00	0.0000		0.000000	0.000000	-0.950859	0.000000	0.000000	0.000000	0.000000	0.000000	-0.000000
0.0000	00	0.0000		0.0000		0.000000	0.000000	-0.951351	0.000000	-0.005758	-0.043544	-0.134820	-0.300336	-0.587528
0.0000	00	0.0000	0.0	0.0000	00	0.000000	0.000000	-0.588816	0.000000	0.007872	-0.059822	-0.228755	-0.503222	-0.950859
0.0000	00	0.9508	59	0.5888	16	-0.586238	-0.951841	-0.001593	0.000000	0.076672	-0.017218	-0.271207	-0.572170	-0.951351
									0.000000	0.295797	0.143178	-0.320772	-0.602307	-0.588816
#u2 mo	dified								0.000000	0.950859	0.588816	-0.586238	-0.951841	-0.001593
		iteration								d:iteration 8				
0.0000		0.0000		0.0000		0.000000	0.000000	-0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	-0.000000
0.0000		0.0000		0.0000		0.000000	-0.146882	-0.587528	0.000000	-0.008918	-0.050100	-0.143159	-0.306392	-0.587528
0.0000		0.0000		0.0000		0.000000	-0.237715	-0.950859	0.000000	0.002773	-0.070411	-0.242268	-0.513030	-0.950859
0.0000		0.0000		0.0000		0.000000	-0.237838	-0.951351	0.000000	0.071613	-0.027795	-0.284729	-0.582022	-0.951351
0.0000		0.2377		0.1472		-0.146559	-0.385164	-0.588816	0.000000	0.292677	0.136656	-0.329143	-0.608400	-0.588816
0.0000	00	0.9508	09	0.5888	Τ.0	-0.586238	-0.951841	-0.001593	0.000000	0.950859	0.588816	-0.586238	-0.951841	-0.001593

Parallel Jacobi solver

Jacobi Solver (MPI: 1D decomposition)

- Geometric decomposition of the domain (across p processes) 'p' strips.
- Working data for each process includes: its domain + neighbour rows/columns around the domain (ghost regions).
- For computing $(M-1)^2/p$ points, require 2(M-1) points (along i direction) +2(M-1)/p points (along j direction) known as **halo** region.
- Could be boundary points (fixed)/on the neighbour process (changes with every iteration).

Jacobi solver (MPI: 2D decomposition)

- Geometric decomposition of the domain (across p processes) 'p' tiles.
- Working data for each process: its domain + neighbour rows/columns (halo regions).
- For computing $(M-1)^2/p$ points requires $4(M-1)/\sqrt{p}$ points around the subdomain (known as **halo**), with $(M-1)/\sqrt{p}$ pt.s (different neighbour processes).
- Could be boundary points (fixed)/on the neighbour process (changes every iteration).
- Mapped the processes to different subdomains on cartesian grid, given a process (rank), find its coordinates, neighbours as well as enable transfer of data (EIGHT exchanges).

1D decomposition: data exchange

	*	*	*	*	*	*	*	*	*	*	*	*	
*	0	0	0	0	0	0	0	0	0	0	0	0	*
*	0	0	0	0	0	0	0	0	0	0	0	0	*
*	0	0	0	0	0	0	0	0	0	0	0	0	*
	1	1	1	1	1	1	1	1	1	1	1	1	
	0	0	0	0	0	0	0	0	0	0	0	0	
*	1	1	1	1	1	1	1	1	1	1	1	1	*
*	1	1	1	1	1	1	1	1	1	1	1	1	*
*	1	1	1	1	1	1	1	1	1	1	1	1	*
	2	2	2	2	2	2	2	2	2	2	2	2	
	1	1	1	1	1	1	1	1	1	1	1	1	
*	2	2	2	2	2	2	2	2	2	2	2	2	*
*	2	2	2	2	2	2	2	2	2	2	2	2	*
*	2	2	2	2	2	2	2	2	2	2	2	2	*
	3	3	3	3	3	3	3	3	3	3	3	3	
	3	3	3	3	3	3	3	3	3	3	3	3	
	2	2	2	2	2	2	2	2	2	2	2	2	
*													*
*	2	2	2	2	2	2	2	2	2	2	2	2	*
	2 3	2 3	2 3	2 3	2 3	2 3	2 3	2 3	2 3	2 3	2 3	2 3	

 12×12 domain \Rightarrow 4 [3×12 sub-domains, 5×14 domain with boundaries (ghost regions)]

2D decomposition: data exchange

	*	*	*	
*	0	0	0	1
*	0	0	0	1
*	0	0	0	1
	4	4	4	

	*	*	*	
0	1	1	1	2
0	1	1	1	2
0	1	1	1	2
	5	5	5	

	*	*	*	
1	2	2	2	3
1	2	2	2	3
1	2	2	2	3
	6	6	6	

	*	*	*	
2	3	3	3	*
2	3	3	3	*
2	3	3	3	*
	7	7	7	

	0	0	0	
*	4	4	4	5
*	4	4	4	5
*	4	4	4	5
	8	8	8	

	1	1	1	
4	5	5	5	6
4	5	5	5	6
4	5	5	5	6
	9	9	9	

	2	2	2	
5	6	6	6	7
5	6	6	6	7
5	6	6	6	7
	10	10	10	

	3	3	3	
6	7	7	7	*
6	7	7	7	*
6	7	7	7	*
	11	11	11	

	4	4	4	
*	8	8	8	9
*	8	8	8	9
*	8	8	8	9
	12	12	12	

	5	5	5	
8	9	9	9	10
8	9	9	9	10
8	9	9	9	10
	13	13	13	

	6	6	6	
9	10	10	10	11
9	10	10	10	11
9	10	10	10	11
	14	14	14	

	7	7	7	
10	11	11	11	*
10	11	11	11	*
10	11	11	11	*
	15	15	15	

	8	8	8	
*	12	12	12	13
*	12	12	12	13
*	12	12	12	13
	*	*	*	

	9	9	9	
12	13	13	13	14
12	13	13	13	14
12	13	13	13	14
	*	*	*	

	10	10	10	
13	14	14	14	15
13	14	14	14	15
13	14	14	14	15
	*	*	*	

	11	11	11	
14	15	15	15	*
14	15	15	15	*
14	15	15	15	*
	*	*	*	

 12×12 domain \Rightarrow **16** [3×3 sub-domains, 5×5 domain with boundaries (ghost regions)]