Project Risk Management

Learning Objectives

- Understand risk and the importance of good project risk management
- Discuss the elements of planning risk management and the contents of a risk management plan
- List common sources of risks on information technology (IT) projects
- Describe the process of identifying risks and create a risk register
- Discuss qualitative risk analysis and explain how to calculate risk factors, create probability/impact matrixes, and apply the Top Ten Risk Item Tracking technique to rank risks

Learning Objectives (cont'd)

- Explain quantitative risk analysis and how to apply decision trees, simulation, and sensitivity analysis to quantify risks
- Provide examples of using different risk response planning strategies to address both negative and positive risks
- Discuss how to control risks
- Describe how software can assist in project risk management

The Importance of Project Risk Management

- Project risk management is the art and science of identifying, analyzing, and responding to risk throughout the life of a project and in the best interests of meeting project objectives
- Risk management is often overlooked in projects, but it can help improve project success by helping select good projects, determining project scope, and developing realistic estimates

Benefits from Software Risk Management Practices*

Education to take you

Negative Risk

- A dictionary definition of risk is "the possibility of loss or injury"
- Negative risk involves understanding potential problems that might occur in the project and how they might impede project success
- Negative risk management is like a form of insurance; it is an investment

Risk Can Be Positive

- Positive risks are risks that result in good things happening; sometimes called opportunities
- A general definition of project risk is an uncertainty that can have a negative or positive effect on meeting project objectives
- The goal of project risk management is to minimize potential negative risks while maximizing potential positive risks

Best Practice

- Some organizations make the mistake of only addressing tactical and negative risks when performing project risk management
- David Hillson, (www.risk-doctor.com) suggests overcoming this problem by widening the scope of risk management to encompass both strategic risks and upside opportunities, which he refers to as integrated risk management

Risk Utility

- Risk utility or risk tolerance is the amount of satisfaction or pleasure received from a potential payoff
 - Utility rises at a decreasing rate for people who are risk-averse
 - Those who are risk-seeking have a higher tolerance for risk and their satisfaction increases when more payoff is at stake
 - The risk-neutral approach achieves a balance between risk and payoff

Risk Utility Function and Risk Preference

Project Risk Management Processes

- Planning risk management: Deciding how to approach and plan the risk management activities for the project
- Identifying risks: Determining which risks are likely to affect a project and documenting the characteristics of each
- Performing qualitative risk analysis: Prioritizing risks based on their probability and impact of occurrence

Project Risk Management Processes (cont'd)

- Performing quantitative risk analysis: Numerically estimating the effects of risks on project objectives
- Planning risk responses: Taking steps to enhance opportunities and reduce threats to meeting project objectives
- Controlling risk: Monitoring identified and residual risks, identifying new risks, carrying out risk response plans, and evaluating the effectiveness of risk strategies throughout the life of the project

Project Risk Management Summary

Planning

Process: Plan risk management Outputs: Risk management plan

Process: **Identify risks**Outputs: Risk register

Process: Perform qualitative risk analysis

Outputs: Project documents updates

Process: Perform quantitative risk analysis

Outputs: Project documents updates

Process: Plan risk responses

Outputs: Project management plan updates, project documents updates

Monitoring and Controlling

Process: Control risks

Outputs: Work performance information, change requests, project

management plan updates, project documents updates,

organizational process assets updates

Project Start

Project Finish

Planning Risk Management

- The main output of this process is a risk
 management plan—a plan that documents the
 procedures for managing risk throughout a project
- The project team should review project documents and understand the organization's and the sponsor's approaches to risk
- The level of detail will vary with the needs of the project

Topics Addressed in a Risk Management Plan

- Methodology
- Roles and responsibilities
- Budget and schedule
- Risk categories
- Risk probability and impact
- Revised stakeholders' tolerances
- Tracking
- Risk documentation

Contingency and Fallback Plans, Contingency Reserves

- Contingency plans are predefined actions that the project team will take if an identified risk event occurs
- Fallback plans are developed for risks that have a high impact on meeting project objectives, and are put into effect if attempts to reduce the risk are not effective
- Contingency reserves or allowances are provisions held by the project sponsor or organization to reduce the risk of cost or schedule overruns to an acceptable level;
 management reserves are funds held for unknown risks

Common Sources of Risk in Information Technology Projects

- Several studies show that IT projects share some common sources of risk
- The Standish Group developed an IT success potential scoring sheet based on potential risks
- Other broad categories of risk help identify potential risks

Success Potential Scoring Sheet

Success Criterion	Relative Importance			
User Involvement	19			
Executive Management support	16			
Clear Statement of Requirements	15			
Proper Planning	11			
Realistic Expectations	10			
Smaller Project Milestones	9			
Competent Staff	8			
Ownership	6			
Clear Visions and Objectives	3			
Hard-Working, Focused Staff	3			
Total	100			

Education to take you places

United States International University-Africa

Broad Categories of Risk

- Market risk
- Financial risk
- Technology risk
- People risk
- Structure/process risk

Risk Breakdown Structure

- A risk breakdown structure is a hierarchy of potential risk categories for a project
- Similar to a work breakdown structure but used to identify and categorize risks

Sample Risk Breakdown Structure

Potential Negative Risk Conditions Associated With Each Knowledge Area

Knowledge Area	Risk Conditions
Integration	Inadequate planning; poor resource allocation; poor integration management; lack of post-project review
Scope	Poor definition of scope or work packages; incomplete definition
Time	Errors in estimating time or resource availability; errors in determining the critical path; poor allocation and management of float; early release of competitive products
Cost	Estimating errors; inadequate productivity, cost, change, or contingency
Quality	Poor attitude toward quality; substandard design, materials, and workmanship; inadequate quality assurance program
Human resource	Poor conflict management; poor project organization and definition of responsibilities; absence of leadership
Communications	Carelessness in planning or communicating
Risk	Ignoring risk; unclear analysis of risk; poor insurance management
Procurement	Unenforceable conditions or contract clauses; adversarial relations
Stakeholders	Lack of consultation with key stakeholder

University-Africa

Identifying Risks

- Identifying risks is the process of understanding what potential events might hurt or enhance a particular project
- Another consideration is the likelihood of advanced discovery
- Risk identification tools and techniques include:
 - Brainstorming
 - The Delphi Technique
 - Interviewing
 - SWOT analysis

Brainstorming

- Brainstorming is a technique by which a group attempts to generate ideas or find a solution for a specific problem by amassing ideas spontaneously and without judgment
- An experienced facilitator should run the brainstorming session
- Be careful not to overuse or misuse brainstorming.
 - Psychology literature shows that individuals produce a greater number of ideas working alone than they do through brainstorming in small, face-to-face groups
 - Group effects often inhibit idea generation

Delphi Technique

- The **Delphi Technique** is used to derive a consensus among a panel of experts who make predictions about future developments
- Provides independent and anonymous input regarding future events
- Uses repeated rounds of questioning and written responses and avoids the biasing effects possible in oral methods, such as brainstorming

United States International University-Africa

Interviewing

- Interviewing is a fact-finding technique for collecting information in face-to-face, phone, e-mail, or instant-messaging discussions
- Interviewing people with similar project experience is an important tool for identifying potential risks

SWOT Analysis

- SWOT analysis (strengths, weaknesses, opportunities, and threats) can also be used during risk identification
- Helps identify the broad negative and positive risks that apply to a project

Risk Register

- The main output of the risk identification process is a list of identified risks and other information needed to begin creating a risk register
- A risk register is:
 - A document that contains the results of various risk management processes and that is often displayed in a table or spreadsheet format
 - A tool for documenting potential risk events and related information
- Risk events refer to specific, uncertain events that may occur to the detriment or enhancement of the project

Risk Register Contents

- An identification number for each risk event
- A rank for each risk event
- The name of each risk event
- A description of each risk event
- The category under which each risk event falls
- The root cause of each risk

Risk Register Contents (cont'd)

- Triggers for each risk; triggers are indicators or symptoms of actual risk events
- Potential responses to each risk
- The risk owner or person who will own or take responsibility for each risk
- The probability and impact of each risk occurring.
- The status of each risk

Sample Risk Register

No.	RANK	R ISK	DESCRIPTION	CATEGORY	Rоот	TRIGGERS	POTENTIAL	Risk	PROBABILITY IMPACT STATUS		
					CAUSE		RESPONSES	O WNER			
R44	1										
R21	2										
R7	3										

• No.: R44

• Rank: 1

• Risk: New customer

- Description: We have never done a project for this organization before and don't know too much about them. One of our company's strengths is building good customer relationships, which often leads to further projects with that customer. We might have trouble working with this customer because they are new to us.
- Category: People risk
- Etc.

Performing Qualitative Risk Analysis

- Assess the likelihood and impact of identified risks to determine their magnitude and priority
- Risk quantification tools and techniques include:
 - Probability/impact matrixes
 - The Top Ten Risk Item Tracking
 - Expert judgment

Probability/Impact Matrix

- A probability/impact matrix or chart lists the relative probability of a risk occurring on one side of a matrix or axis on a chart and the relative impact of the risk occurring on the other
- List the risks and then label each one as high, medium, or low in terms of its probability of occurrence and its impact if it did occur
- Can also calculate risk factors:
 - Numbers that represent the overall risk of specific events based on their probability of occurring and the consequences to the project if they do occur

United States International University-Africa

Sample Probability/Impact Matrix

Chart Showing High-, Medium-, and Low-Risk Technologies

Top Ten Risk Item Tracking

- Top Ten Risk Item Tracking is a qualitative risk analysis tool that helps to identify risks and maintain an awareness of risks throughout the life of a project
- Establish a periodic review of the top ten project risk items
- List the current ranking, previous ranking, number of times the risk appears on the list over a period of time, and a summary of progress made in resolving the risk item

Example of Top Ten Risk Item Tracking

MONTHLY RANKING				
RISK EVENT	RANK This Month	Rank Last Month	NUMBER OF MONTHS IN TOP TEN	RISK RESOLUTION PROGRESS
Inadequate planning	1	2	4	Working on revising the entire project management plan
Poor definition	2	3	3	Holding meetings with project customer and sponsor to clarify scope
Absence of leadership	3	1	2	After previous project manager quit, assigned a new one to lead the project
Poor cost estimates	4	4	3	Revising cost estimates
Poor time estimates	5	5	3	Revising schedule estimates

International University-Africa

Watch List

- A watch list is a list of risks that are low priority, but are still identified as potential risks
- Qualitative analysis can also identify risks that should be evaluated on a quantitative basis

Performing Quantitative Risk Analysis

- Often follows qualitative risk analysis, but both can be done together
- Large, complex projects involving leading edge technologies often require extensive quantitative risk analysis
- Main techniques include:
 - Decision tree analysis
 - Simulation
 - Sensitivity analysis

Decision Trees and Expected Monetary Value (EMV)

- A decision tree is a diagramming analysis technique used to help select the best course of action in situations in which future outcomes are uncertain
- Estimated monetary value (EMV) is the product of a risk event probability and the risk event's monetary value
- You can draw a decision tree to help find the

Expected Monetary Value (EMV) Example

Simulation

- Simulation uses a representation or model of a system to analyze the expected behavior or performance of the system
- Monte Carlo analysis simulates a model's outcome many times to provide a statistical distribution of the calculated results
- To use a Monte Carlo simulation, you must have three estimates (most likely, pessimistic, and optimistic) plus an estimate of the likelihood of the estimate being between the most likely and optimistic values

Steps of a Monte Carlo Analysis

- 1. Assess the range for the variables being considered
- Determine the probability distribution of each variable
- 3. For each variable, select a random value based on the probability distribution
- 4. Run a deterministic analysis or one pass through the model
- 5. Repeat steps 3 and 4 many times to obtain the probability distribution of the model's results

Sample Monte Carlo Simulation Results for Project Schedule

Date: 1/14 11:13:56 AM Number of Samples: 250

Unique ID: 1 Name: Widget

Completion Std Deviation: 5.2d 95% Confidence Interval: 0.6d

Each bar represents 2d

Completion Probability Table

Prob	Date	Prob	Date
0.05	2/4	0.55	2/17
0.10	2/8	0.60	2/18
0.15	2/9	0.65	2/19
0.20	2/10	0.70	2/22
0.25	2/11	0.75	2/22
0.30	2/12	0.80	2/23
0.35	2/15	0.85	2/24
0.40	2/15	0.90	2/25
0.45	2/16	0.95	2/26
0.50	2/17	1.00	3/10

Sensitivity Analysis

- Sensitivity analysis is a technique used to show the effects of changing one or more variables on an outcome
- For example, many people use it to determine what the monthly payments for a loan will be given different interest rates or periods of the loan, or for determining break-even points based on different assumptions
- Spreadsheet software, such as Excel, is a common tool for performing sensitivity analysis

Planning Risk Responses

- After identifying and quantifying risks, you must decide how to respond to them
- Four main response strategies for negative risks:
 - Risk avoidance
 - Risk acceptance
 - Risk transference
 - Risk mitigation

General Risk Mitigation Strategies for Technical, Cost, and Schedule Risks

TECHNICAL RISKS	Cost Risks	SCHEDULE RISKS
Emphasize team support and avoid stand-alone project structure	Increase the frequency of project monitoring	Increase the frequency of project monitoring
Increase project manager authority	Use WBS and CPM	Use WBS and CPM
Improve problem handling and communication	Improve communication, project goals understanding, and team support	Select the most experienced project manager
Increase the frequency of project monitoring	Increase project manager authority	
Use WBS and CPM		

United States International University-Africa

Response Strategies for Positive Risks

- Risk exploitation
- Risk sharing
- Risk enhancement
- Risk acceptance

Residual and Secondary Risks

- It's also important to identify residual and secondary risks
- Residual risks are risks that remain after all of the response strategies have been implemented
- Secondary risks are a direct result of implementing a risk response

Controlling Risks

- Involves executing the risk management process to respond to risk events and ensuring that risk awareness is an ongoing activity performed by the entire project team throughout the entire project
- Workarounds are unplanned responses to risk events that must be done when there are no contingency plans
- Main outputs of risk control are:
 - Work performance information
 - change requests
 - updates to the project management plan, other project documents, and organizational process assets

Using Software to Assist in Project Risk Management

- Risk registers can be created in a simple Word or Excel file or as part of a database
- More sophisticated risk management software, such as Monte Carlo simulation tools, help in analyzing project risks
- You can purchase add-ons for Excel and Project 2010 to perform simulations

Summary

- Project risk management is the art and science of identifying, analyzing, and responding to risk throughout the life of a project and in the best interests of meeting project objectives
- Main processes include:
 - Plan risk management
 - Identify risks
 - Perform qualitative risk analysis
 - Perform quantitative risk analysis
 - Plan risk responses
 - Control risks

