Formation of the ionosphere: photochemical equilibrium

Additional reading: Rishbeth & Garriott book, Intro to ionospheric physics, Ch. 3

Sources of ionization

- Solar extreme ultraviolet (EUV).
- Solar X-ray radiation.
- Photons above 12 eV can ionise atmospheric components.
- Energetic particles from magnetosphere (e.g., auroras) can be important at high latitudes.
- Cosmic rays from galactic sources.

Fig. 4.5. Spectral distribution of the solar irradiance, and its variation with solar activity. The logarithmic representation emphasizes the contribution of x-rays and extreme ultraviolet radiation. After Smith and Gottlieb (1974).

Neutral and ionized components

Balance of ionization

Continuity equation

$$\frac{\partial N}{\partial t} = q - l(N) - div(N\mathbf{V})$$

Below ~250 km the transport term is not important

Photochemical equilibrium: q = l(N)

Basic theory of photoionization

- The radiation is monochromatic, its photon flux I(h)
- Single absorbing gas, n(h)
- The atmosphere is plane and horizontally stratified

Production rate per unit volume:

$$q = I\eta\sigma n$$

- with $\eta I \sigma$ being probability per unit time of producing an ion pair (=ionization rate)
- σ cross section for the absorption of radiation
- η ionisation efficiency

Increment of optical depth au

$$-\frac{dI}{I} = d\tau = \sigma n ds$$

$$I = I_{\infty}e^{-\tau}$$

So the optical depth is the distance on which the incident flux reduces by 1/e

For horizontally stratified atmosphere: $ds = -dh \sec \chi \ (\chi - \text{zenith angle})$

$$-\frac{d(\ln I)}{dh} = \frac{d\tau}{dh} = -\sigma n \sec \chi$$

So the optical depth becomes

$$\tau(h,\chi) = \int_{h}^{\infty} \sigma n \sec \chi dh = \sigma n(h) H \sec \chi$$

And production per unit volume

$$q(h,\chi) = I_{\infty} \eta \sigma n(h) e^{-\tau(h,\chi)}$$

Chapman layer

The production rate is

$$q(z,\chi) = q_0 \exp[1 - z - e^{-z} \sec \chi]$$

with $q_0 = \frac{\eta I_{\infty}}{eH}$ for overhead sun.

Assuming recombination rate αN^2 , we get the production function

$$N(z) = (q_0/\alpha)^{1/2} \exp \frac{1}{2} (1 - z - e^{-z} \sec \chi)$$

known as Chapman layer, or Chapman alpha

From here the critical frequency f_0 (in

Hz) relates to the peak concentration

$$N_m$$
 (in m^{-3})

$$f_0 = 9 N_m^{1/2} = 9(q_0/\alpha)^{1/4} (\cos \chi)^{1/4}$$

Production of ionospheric layers

Height of unit optical depth for vertically incident radiation, as a function of wavelength.

Solar flux for several wavelength bands. The area below the broken lines indicates photon flux; the area below the full lines indicates energy flux.

Production of F- and E-regions

F-region:

- 500-600 A range with unit optical depth at 170km, including the strong line emission He I (584 A), also He II (304 A) and O V (630 A).
- The long wavelength limit for F-region ionization is at ~796 A.

E-region:

- Production by X-rays band in the range 8-140
 A and by 796-1027 A UV band.
- Relative importance of the X-ray and UV contributions may vary with the solar cycle.
- The photoelectrons produced by X-rays can produce secondary ionization, so the production is complex.

Fig. 24. Electron production profiles q(h) for the E and F regions, for vertically incident radiation at sunspot number R = 60. The curves refer to the following wavelength bands: X(E), 8-140 Å; UV(E) 796-1027 Å; E = UV(E) + X(E); F, 140-796 Å; E + F, total 8-1027 Å [after Allen (1965)]. [Note: 1 cm⁻³ s⁻¹ = 10⁶ m⁻³ s⁻¹.]

Production of D-region

D-region:

- Lyman α (first spectral line of hydrogen).
- Cosmic rays from galactic sources.
- Energetic particles from the magnetosphere.
- Ionization sources vary strongly over solar cycle.

Fig. 25. Production profiles q(h) for the D region, for vertically incident radiation. The arrows indicate the heights of peak production for four X-ray wavelength bands. Curve A represents quiet conditions at sunspot number R = 60, the contribution of Lyman α being shown. Curve B represents the additional production due to a moderate solar flare (importance 2) [after Allen (1965)]. The dashed curves indicate production rates due to galactic cosmic rays, at magnetic latitude 50° , at sunspot minimum and maximum [after Webber (1962)].

Corpuscular (particle) ionization

Sources of energetic particles:

- Solar energetic proton events.
- Magnetospheric storms and substorms (mainly auroral electrons, 10s of keV).
- Earth's radiation belts (relativistic electrons,100s keVs- MeVs).

Ionization rates due to electron precipitations

Recombination mechanisms

Ion-ion recombination (coefficient α_i):

$$X^+ + Y^- \rightarrow X + Y$$

Mainly in D-region, otherwise not enough negative ions

Electron-ion recombination (coefficient α_e):

Three-body: $X^+ + e + M \rightarrow X + M$

Can take place in D-region, but higher up are unimportant

Radiative: $X^+ + e \rightarrow X^* \rightarrow X + hv$

Slow, could only become the fastest process in the upper F-region

Dissociative: $XY^+ + e \rightarrow X^* + Y^*$

Fastest recombination process in the E-region and the lower F-region

Formation of molecular ions and detachments

Large proportion of the ions in the E- and F-regions are atomic, so dissociative recombination must be preceded by reactions involving formation of molecular ions

Ion-atom interchange (rate coefficient γ):

$$X^+ + YZ \rightarrow XY^+ + Z$$

Thus primary loss in the E- and F-regions is ion-atom exchange followed by dissociative recombination.

Various detachment processes could be important

$$X^- + M \rightarrow X + e + M$$
: collisional detachment (coefficient δ)

$$X^- + Y \rightarrow XY + e$$
: associative detachment (usually included in δ)

$$X^- + hv \rightarrow X + e$$
: photo detachment (coefficient ρ)

Process	Contribution to continuity equation (reactions/unit volume/unit time) and rough values of coefficients	D Region 50-90 km (approx.)	E Region 90–150 km (approx.)	F Region 150–600 km (approx.)
PRODUCTION		- " " "-	EUV 911–1027 Å	EUV 170-911 Å
Solar photoionization (principal radiations shown [])	q(h)	[Ly α 1216 Å] (ionizes NO) X-rays 1–10 Å	[Ly β 1026 Å] O ₃ ionized by λ < 1027 Å X-rays 10–170 Å	[He II 304 Å, He I 584 Å] O ionized by $\lambda < 911$ Å N ₂ ionized by $\lambda < 796$ Å
Corpuscular ionization (more important at high latitudes, especially auroral zone) LOSS	q(h)	Electrons > 30 keV Protons > 1 MeV Cosmic rays	Electrons 1-30 keV cause some nighttime and sporadic E ionization	Electrons ≤ 1 keV (probably small; might be significant at night)
Ion-ion recombination	$\alpha_i N_+ N$ $\alpha_i \sim 10^{-7} \text{ cm}^3 \text{ s}^{-1} = 10^{-18} \text{ m}^3 \text{ s}^{-1}$	Important	Few negative ions exist	Very few negative ions exist
Electron-ion recombination Three-body recombination Radiative recombination Dissociative recombination Ion-atom interchange (NA+ = atomic ion concentration)	$\alpha_e N_+ N_e$ $\alpha_e - \alpha(h)$ $\alpha_e \sim 10^{-12} \text{ cm}^3 \text{ s}^{-1} = 10^{-18} \text{ m}^3 \text{ s}^{-1}$ $\alpha_e \sim 10^{-7} \text{ cm}^3 \text{ s}^{-1} = 10^{-13} \text{ m}^3 \text{ s}^{-1}$ $\beta(h) N_A^+ \equiv \gamma n [M] N_A^+$ $\gamma \sim 10^{-11} \text{ cm}^3 \text{ s}^{-1} = 10^{-17} \text{ m}^3 \text{ s}^{-1}$	Important Insignificant Important Not important, because few atomic ions exist	Gas densities too low Not important Principal loss mechanism Important	Gas densities too low Not important Principal loss mechanism Important
Attachment	$a(h) N_e \equiv a_r n[X] N_e + a_t n[X] n[M] N_e$	Three-body attach- ment is most im- portant	Can maintain some negative ions at night	Radiative attachment pro- vides a very weak source of negative ions
Radiative Three-body	$a_r \sim 10^{-15} \text{ cm}^3 \text{ s}^{-1} = 10^{-21} \text{ m}^3 \text{ s}^{-1}$ $a_t \sim 10^{-30} \text{ cm}^6 \text{ s}^{-1} = 10^{-42} \text{ m}^6 \text{ s}^{-1}$	•		
Collisional detachment, etc.	$\delta(h) N_e \equiv \kappa n[M] N$	Important, especially at night	Fairly important	Insignificant
Collisional detachment Associative detachment Detachment by metastable molecules	$\kappa \sim 10^{-20} \text{ cm}^3 \text{ s}^{-1} = 10^{-26} \text{ m}^3 \text{ s}^{-1}$ $\kappa \sim 10^{-10} \text{ cm}^3 \text{ s}^{-1} = 10^{-16} \text{ m}^3 \text{ s}^{-1}$ $\kappa \sim 10^{-10} \text{ cm}^3 \text{ s}^{-1} = 10^{-16} \text{ m}^3 \text{ s}^{-1}$			
Photodetachment by solar visible and long UV radiation	ρN $\rho \sim 1 \text{ s}^{-1}$	Main cause of day/ night change of N/N_e	Effective by day	Largely responsible for absence of negative ions

D-region balance

- Transport of ionization may be neglected in lower ionosphere.
- Only photochemical terms appear in the continuity equations.

Continuity equations

$$\begin{split} dN_{+}/dt &= q - \alpha_{e}N_{+}N_{e} - \alpha_{i}N_{+}N_{-} \\ &= q - \left(\alpha_{e} + \lambda\alpha_{i}\right)N_{+}N_{e} \\ dN_{e}/dt &= q - \alpha_{e}N_{+}N_{e} - aN_{e} + \left(\rho + \delta\right)N_{-} \\ dN_{-}/dt &= aN_{e} - \left(\rho + \delta\right)N_{-} - \alpha_{i}N_{+}N_{-} \\ + \text{ quasi-neutrality } N_{+} &= N_{-} + N_{e} = \left(1 + \lambda\right)N_{e} \end{split}$$

Balance equation

$$(1 + \lambda) dN_e/dt = q - (1 + \lambda) (\alpha_e + \lambda \alpha_i) N_e^2$$
$$= q - \alpha_E N_e^2$$

Effective recombination $\alpha_{\rm E}$ approaches $\alpha_{\rm e}$ with altitude

E- and F-region balance

Continuity equations for electrons, atomic ions and molecular ions

(γ is Ion-atom interchange rate and α is mainly dissociative recombination rate)

$$dN/dt = q - \alpha N N_{\rm M^+}$$

$$dN_{\rm A^+}/dt = q - \gamma n \left[{\rm M} \right] N_{\rm A^+}$$

$$dN_{\rm M^+}/dt = \gamma n \left[{\rm M} \right] N_{\rm A^+} - \alpha N N_{\rm M^+}$$
+ quasi-neutrality $N = N_{\rm A^+} + N_{\rm M^+}$
assume equilibrium conditions $(d/dt = 0)$ and write $\beta = \gamma n \left[{\rm M} \right]$

$$N_{\rm A^+}/N_{\rm M^+} = \alpha N/\beta \ \, \Rightarrow {\rm quadratic\ eqn\ for\ electron\ concentration:} \ \, \alpha \beta N^2 - \alpha q N - \beta q = 0$$

Two limiting cases

$$q=\alpha N^2$$
 if $\beta \gg \alpha N$, so that $N_{\rm M^+}\gg N_{\rm A^+}$ faster quadratic loss at lower altitudes $q=\beta N$ if $\beta \ll \alpha N$, so that $N_{\rm M^+}\ll N_{\rm A^+}$ slow linear loss at higher altitudes β depends on neutral concentration