Модульная арифметика. Сравнимость по модулю, полная и приведенная системы вычетов. Теоремы Эйлера и Ферма

Лесников Юрий, ceagest

1 Сравнимость по модулю

Определение 1.1. Будем рассматривать целые числа в связи с их остатками от деления на данное целое положительное т, которое назовём модулем. Каждому целому числу соответствует определённый остаток от деления его на т. Если двум целым а и в соответствует один и тот же остаток r, то они называются равноостаточными по модулю т или сравнимыми по модулю т. Сравнимость чисел а и в по модулю т записывается так:

$$a \equiv b \pmod{m}$$

Теорема 1.1. Следующие утверждения эквивалентны:

- 1. $a \equiv b \pmod{m}$
- 2. (a b) : m
- 3. a = b + mt, $\epsilon \partial e \ t \in \mathbb{Z}$

Доказательство. $1 \iff 2$ очевидно из определения. $2 \iff 3$ легко получается из того, что $(a-b) \stackrel{.}{:} m \iff a-b=mt$, где $t \in \mathbb{Z}$.

1.1 Свойства сравнений по модулю

- 1. Два числа, сравнимые с третьим, сравнимы между собой.
- 2. Сравнения можно почленно складывать.
- 3. Слагаемое, стоящее в какой-либо части сравнения, можно переносить в другую часть, переменив знак на обратный.
- 4. Сравнения можно почленно перемножать.
- 5. Обе части сравнения можно возвести в одну степень.
- 6. К каждой части сравнения можно добавить число, кратное модулю.
- 7. Обе части сравнения можно умножить на одно и то же целое.
- 8. Обе части сравнения и их модуль можно разделить на их общий делитель.
- 9. Обе части сравнения и их модуль можно умножить на одно и то же целое.
- 10. Обе части сравнения можно разделить на их общий делитель, если он взаимно прост с модулем.
- 11. Если сравнение имеет место по модулю m, то оно имеет место и по модулю d любому делителю числа m
- 12. Если одна часть сравнения и модуль делятся на какое-либо число, то и другая часть сравнения должна делиться на то же число.
- 13. Если $a \equiv b \pmod{m}$, то (a, m) = (b, m).

Доказательство. 1. Очевидно из определения.

2. Пусть a_1, a_2 и b_1, b_2 таковы, что $\forall i \in \{1, 2\}$ \hookrightarrow $a_i \equiv b_i \pmod{m}$. Тогда из теоремы 1.1:

$$\begin{cases} a_1 = b_1 + mt_1 \\ a_2 = b_2 + mt_2 \end{cases}$$

Отсюда получаем, что $a_1+a_2=b_1+b_2+m(t_1+t_2)\iff a_1+a_2\equiv b_1+b_2\pmod m$

- 3. Пусть $a+b \equiv c \pmod m \iff (a+b)-c \ni m \iff a-(c-b)\ni m \iff a \equiv c-b \pmod m$
- 4. Пусть a_1, a_2 и b_1, b_2 таковы, что $\forall i \in \{1, 2\}$ \hookrightarrow $a_i \equiv b_i \pmod{m}$. Тогда из теоремы 1.1:

$$\begin{cases} a_1 = b_1 + mt_1 \\ a_2 = b_2 + mt_2 \end{cases}$$

Отсюда получаем, что $a_1a_2=(b_1+mt_1)(b_2+mt_2)=b_1b_2+m(b_1+b_2+mt_1t_2)\iff a_1a_2\equiv b_1b_2\pmod m$

- 5. Лёгкое следствие свойства 4.
- 6. Лёгкое следствие свойства 2.
- 7. Лёгкое следствие свойства 4.
- 8. Пусть $a \equiv b \pmod{m}, a = a_1d, b = b_1d, m = m_1d$. Тогда $a = b + mt \iff a_1d = b_1d + m_1dt \iff a_1 = b_1 + m_1t \iff a_1 \equiv b_1 \pmod{m_1}$
- 9. Доказательство аналогично пункту 8
- 10. Легкое следствие из того, что $a \equiv b \pmod{m} \iff (a-b) \stackrel{.}{:} m$
- 11. Легкое следствие из того, что $a \equiv b \pmod{m} \iff (a-b) \stackrel{.}{:} m$
- 12. Легкое следствие из того, что $a \equiv b \pmod{m} \iff a = b + mt$
- 13. Легкое следствие из того, что $a \equiv b \pmod{m} \iff a = b + mt$

2 Полная система вычетов

Определение 2.1. Числа, сравнимые по модулю m, образуют класс чисел по модулю m. Всем числам класса соответствует один u тот же остаток $r \Longrightarrow$ все числа класса по модулю m имеют вид mq+r, где $q \in \mathbb{Z}$. Соответственно m различным значениям r имеем m классов чисел по модулю m.

Определение 2.2. Любое число класса называется вычетом по модулю m по отношению ко всем числам того же класса. Вычет, получаемый при q=0, равный самому остатку r, называется наименьшим неотрицательным вычетом. Вычет p, самый малый по абсолютной величине, называется абсолютно наименьшим вычетом.

Определение 2.3. Взяв от каждого класса по одному вычету, получим полную систему вычетов по модулю m.

Теорема 2.1. Любые m чисел, попарно несравнимые по модулю m, образуют полную систему вычетов по этому модулю.

Доказательство. Действительно, будучи несравнимыми, эти числа принадлежат к различным классам, а так как их m, то есть столько же, сколько и классов, то в каждый класс попадет по одному числу.

Теорема 2.2. Если (a, m) = 1 и x пробегает полную систему вычетов по модулю m, то ax + b, где $b \in \mathbb{Z}$, тоже пробегает полную систему вычетов по модулю m.

Доказательство. Действительно, чисел ax+b будет столько же, сколько и чисел x, то есть m штук. Предположим, что $x_1 \not\equiv x_2$ и $ax_1+b \equiv ax_2+b \pmod m \iff a(x_1-x_2) \vdots m$. Но $(a,m)=1 \implies (x_1-x_2) \vdots m \iff x_1 \equiv x_2 \pmod m$. Получаем противоречие. Итого, числа ax+b попрано несравнимы по модулю m, и при этом их ровно m штук. Значит по теореме 2.1 получаем требуемое.

3 Приведённая система вычетов

Определение 3.1. Числа одного и того же класса по модулю т имеют с модулем один и тот же НОД. Особенно важны классы, для которых этот НОД равен единице, то есть классы, содержащие числа, вза-имно простые с модулем. Взяв от каждого такого класса по одному вычету, получим приведенную систему вычетов по модулю т.

Теорема 3.1. Любые $\varphi(m)$ чисел, попарно несравнимых по модулю m и взаимно простых c модулем, образуют приведенную систему вычетов по модулю m.

Доказательство. Действительно, будучи несравнимыми и взаимно простыми с модулем, эти числа тем самым принадлежат к различным классам, содержащим числа, взаимно простые с модулем а, так как их $\varphi(m)$, то в каждый класс попадет ровно по одному числу.

4 Теорема Эйлера

Теорема 4.1. Пусть $m > 1, m \in \mathbb{Z}, (a, m) = 1$. Тогда:

$$a^{\varphi(m)} \equiv 1 \pmod{m}$$

Доказательство. Пусть x пробегает приведенную систему вычетов, составленную из наименьших неотрицательных вычетов:

$$r_1, r_2, ..., r_k, k = \varphi(m)$$

Тогда наименьшие неотрицательные вычеты чисел ax, будут проходить ту же систему, возможно, в другом порядке $\rho_1, \rho_2, ..., \rho_k$. Перемножим почленно сравнения вида $ar_i \equiv \rho_i \pmod{m} \quad \forall i \in \{1, 2, ..., k\}$ и сократим на $r_1r_2...r_k = \rho_1\rho_2...\rho_k$. Получим требуемое.

5 Теорема Ферма

Теорема 5.1. Пусть p – простое u а не делится на p. Тогда:

$$a^{p-1} \equiv 1 \pmod{p}$$

Доказательство. Лёгкое следствие из теоремы Эйлера