Kabinet výuky obecné fyziky, UK MFF

Fyzikální praktikum I

Úloha č. 9

Název úlohy: Měření modulu pružnosti v tahu

Jméno: Jonáš Venc

Datum měření: 15. 3. 2024

Připomínky opravujícího:

	Možný počet bodů	Udělený počet bodů
Teoretická část	0-2	
Výsledky a zpracování měření	0–9	
Diskuse výsledků	0-4	
Závěr	0–1	
Použitá literatura	0-1	
Celkem	max. 17	

Posuzoval: dne:

1 Pracovní úkoly

- 1. Změřte modul pružnosti v tahu E oceli z protažení drátu.
- 2. Změřte modul pružnosti v tahu E oceli a mosazi z průhybu trámku.
- 3. Výsledky měření graficky znázorněte, modul pružnosti určete pomocí lineární regrese.

2 Teoretická část

2.1 Protažení drátu

Pro měření modulu pružnosti E využijeme Hookův zákon

$$\sigma = E \cdot \varepsilon \tag{1}$$

kde σ je normálové napětí a ε relativní prodloužení. Tento zákon platí pouze v oblasti pružné deformace, proto budeme měření provádět i zpětně, abychom ověřili, že je deformace vratná a my jsme tak nepřekročili mez pružnosti. Na obrázku 1 je znázorněno schéma aparatury této metody.

Obr. 1: Aparatura měření protažení drátu

Působíme silou F na drát délky l_0 o průřezu S pomocí závaží zavěšených na jeden konec drátu. Na druhém konci je drát pevně upevněn. Potom pro prodloužení drátu Δl platí

$$\Delta l = \frac{1}{E} \frac{l_0 F}{S} \tag{2}$$

Napětí σ lze vyjádřit jako

$$\sigma = \frac{F}{S} \tag{3}$$

a relativní prodloužení ε jako

$$\varepsilon = \frac{\Delta l}{l_0} \tag{4}$$

Odtud můžeme modul pružnosti E spočítat jako

$$E = \frac{l_0 F}{\Delta l \cdot S} \tag{5}$$

Pro určení délky prodloužení drátu využijeme zrcátka, které je upevněno na kladce přes kterou je veden drát. Dalekohledem pozorujeme odrazem od zrcátka stupnici. V závislosti na otočení zrcátka odečteme počet dílků na stupnici, o které se zrcátko pootočilo.

Úhel pootočení zrcátka $\Delta \alpha$ udává prodloužení drátu jako

$$\Delta l = r \cdot \Delta \alpha \tag{6}$$

kde r je poloměr kladky.

Pro výpočet úhlu $\Delta \alpha$ z rozdílu délek stupnice před a po zatížení $n-n_0$ využijeme

$$tg(2\Delta\alpha) = \frac{n - n_0}{L} \tag{7}$$

kde L je vzdálenost dalekohledu od zrcátka.

Protože se pohybujeme nízkých hodnotách úhlu $\Delta \alpha$ můžeme aproximovat $tg(\alpha) \approx \alpha$ a dostáváme tedy

$$\Delta \alpha \approx \frac{n - n_0}{2L} \tag{8}$$

2.2 Průhyb trámku

Ve druhé metodě využijeme prohnutí trámku upevněného břity na jeho koncích, který je uprostřed své délky zatížen. Toto schéma popisuje obrázek 2. Vzdálenost mezi břity označme l a výšku a šířku trámku s obdélníkovým kolmým průřezem jako výšku b a šířku a.

Obr. 2: Aparatura měření prohnutí trámku

Pro velikost průhybu y, který vznikne působením síly F ve středu, platí

$$y = \frac{Fl^3}{48EI_p} \tag{9}$$

kde I_p se nazývá plošný moment setrvačnosti průřezové plochy tyče vzhledem k vodorovné ose. Odvozením z předchozí rovnice pro výpočet modulu pružnosti použijeme

$$E = \frac{Fl^3}{4yab^3} \tag{10}$$

kde y je velikost pohnutí, a šířka a b výška obdélníkového průřezu tyče.

3 Výsledky a zpracování měření

3.1 Laboratorní podmínky

Měření bylo prováděno za laboratorních podmínek uvedených v tabulce 1.

t / °C	p / hPa	vlhkost / %RH
23,6(4)	948,9(20)	40,6(25)

Tab. 1: Laboratorní podmínky

3.2 Měření modulu E z protažení drátu

V tabulce 2 jsou uvedeny naměřené vzdálenosti jednotlivých částí aparatury. Nepřesnost měření délky l_0 je nadhodnocena, než by ve skutečnosti přesnost svinovacího metru dovolovala, protože není přesně určeno místo, odkud kam se má drát měřit a navíc je obtížné přesné měření. Vzdálenost je tedy brána od konce upevnění drátu a na druhé straně je odhadnutý bod na kladce, kde působí maximální normálová síla na drát a nedochází zde k prokluzování drátu na kladce. Průměr kladky byl změřen posuvným měřidlem. Zde byl průměr měřen uprostřed kladky v místě, kudy prochází drát. K určení vzdálenosti L byl použit svinovací metr a k určení průměru drátu d mikrometr. Průměr drátu byl změřen třikrát v různých místech a s různě nakloněným mikrometrem, vždy byla ale změřena přesně stejná hodnota.

Délka drátu l_0/m	1,16(1)
Průměr kladky 2r / m	0,0383(1)
Vzdálenost stupnice od zrcátka L / m	0,895(1)
Průměr drátu d / m	0,0005(01)

Tab. 2: Naměřené výchozí vzdálenosti

Odtud můžeme určit obsah kruhového průřezu drátu

$$S = 0.20(1) \ mm^2 = 2(01) \cdot 10^{-7} \ m^2$$

V tabulce 3 a 4 níže jsou uvedeny závislosti velikosti zatížení a protažení tyče. Působící síla je spočtena jako síla gravitační $F=m\cdot g$, kde $g=9.81m\cdot s^{-2}$ podle [2]. Hodnota $n-n_0$ udává rozdíl dílků na stupnici z aktuálního a počátečního zatížení při 1 kg. Změna délky struny je odtud dopočtena podle (6) a (8). První tabulka odpovídá postupnému zatěžování a tabulka druhá zkracování struny.

Hmotnost závaží / kg	Síla / N	n - n_0 / cm	Změna délky struny / cm
milotilost zavazi / kg	,	_ ′	- ,
1	9,8	0	0,0000
1,5	14,7	1,3	0,0139(1)
1,6	15,7	1,6	0,0171(1)
1,7	16,7	1,8	0,0193(1)
1,8	17,7	2,2	0,0235(1)
1,9	18,6	2,4	0,0257(1)
2	19,6	2,7	0,0289(2)
2,1	20,6	2,9	0,0310(2)
2,2	21,6	3,2	0,0342(2)
2,3	22,6	3,5	0,0374(2)
2,4	23,5	3,7	0,0396(2)
2,5	24,5	4	0,0428(2)
2,6	25,5	4,2	0,0449(2)
2,7	26,5	4,5	0,0481(3)
2,8	27,5	4,8	0,0514(3)
2,9	28,4	5	0,0535(3)

Tab. 3: Zvyšování hmotnosti závaží

Hmotnost závaží / kg	Síla / N	n - n_0 / cm	Změna délky struny / cm
2,9	28,4	5	0,0535(3)
2,8	27,5	4,7	0,0503(3)
2,7	26,5	4,5	0,0481(3)
2,6	25,5	4,2	0,0449(2)
2,5	24,5	3,9	0,0417(2)
2,4	23,5	3,7	0,0396(2)
2,3	22,6	3,4	0,0364(2)
2,2	21,6	3,2	0,0342(2)
2,1	20,6	2,9	0,0310(2)
2	19,6	2,7	0,0289(2)
1,9	18,6	2,4	0,0257(1)
1,8	17,7	2,1	0,0225(1)
1,7	16,7	1,9	0,0203(1)
1,6	15,7	1,6	0,0171(1)
1,5	14,7	1,3	0,0139(1)
1	9,8	0	0

Tab. 4: Snižování hmotnosti závaží

Nepřesnost změny délky struny je dána podle metody přenosu chyb jako

$$\sigma_{\Delta l} = \Delta l \sqrt{\frac{\sigma_r^2}{r^2} + \frac{\sigma_L^2}{L^2}} \tag{11}$$

Modul pružnosti spočítáme nejprve podle rovnice (5)

$$E = 207(4) \; GPa$$

kde chyba je určena metodou přenosu chyb

$$\sigma_E = E\sqrt{\frac{\sigma_{l0}^2}{l_0^2} + \frac{\sigma_{\Delta l}^2}{\Delta l^2} + \frac{\sigma_S^2}{S^2}}$$
 (12)

Závislost na obrázku 3 byla lineárně fitována v programu Origin přímkou s předpisem y = ax + b se standardní chybou. Směrnice a je rovna

$$a = 0.0290(3)$$

Ze vztahu (2) můžeme spočítat modul pružnosti E ze směrnice

$$a = \frac{l_0}{ES}$$

a odtud

$$E = 200(3) \; GPa$$

kde chyba modulu je dána jako

$$\sigma_E = E\sqrt{\frac{\sigma_{l\ 0}^2}{l_0^2} + \frac{\sigma_a^2}{a^2} + \frac{\sigma^S}{S^2}}$$
 (13)

Obr. 3: Závislost změny délky struny na působící síle

3.3 Měření modulu E z průhybu trámku

Tabulka 5 níže popisuje naměřené rozměry.

Délka tyče / m	0,41(1)
Výška ocelové tyče / m	0,00195(1)
Šířka ocelové tyče / m	0,01195(1)
Výška mosazné tyče / m	0,00202(1)
Šířka mosazné tyče / m	0,01170(1)

Tab. 5: Rozměry aparatury

V tabulce 6 jsou uvedeny naměřené závislosti prohnutí na zatížení u ocelové tyče. V levé části je zatěžování a na prvé odlehčování tyče.

A v tabulce 7 podobně pro mosaznou tyč.

Hmotnost / kg	Prohnutí / m	Hmotnost / kg	Prohnutí / mm
0	0,7	0,9	9,6
0,1	1,7	0,8	8,7
0,2	2,7	0,7	7,7
0,3	3,6	0,6	6,7
0,4	4,6	0,5	5,7
0,5	5,6	0,4	4,7
0,6	6,6	0,3	3,7
0,7	7,6	0,2	2,8
0,8	8,6	0,1	1,8
0,9	9,6	0	0,8

Tab. 6: Prohnutí ocelové tyče

Hmotnost / kg	Prohnutí / m	Hmotnost / kg	Prohnutí / mm
0	0,7	0,9	9,6
0,1	1,7	0,8	8,7
0,2	2,7	0,7	7,7
0,3	3,6	0,6	6,7
0,4	4,6	0,5	5,7
0,5	5,6	0,4	4,7
0,6	6,6	0,3	3,7
0,7	7,6	0,2	2,8
0,8	8,6	0,1	1,8
0,9	9,6	0	0,8

Tab. 7: Prohnutí mosazné tyče

Nepřesnost určení prohnutí v objektivovém mikrometru je 0,1 mm.

Níže na obrázcích 4 a 5 jsou znázorněny obě závislosti.

Opět směrnice přímek lineární regrese jsou

$$a_{oceli} = 9,\!87(3)$$

$$a_{mosazi} = 18,4(07)$$

Modul pružnosti spočítáme podle (10)

$$E_{oceli} = 179(4) \ GPa$$

$$E_{mosazi} = 75(3) GPa$$

Nepřesnost E je vypočtena podle metody přenosu chyb jako

$$\sigma_E = E\sqrt{9\frac{\sigma_l^2}{l^2} + \frac{\sigma_y^2}{y^2} + \frac{\sigma_a^2}{a^2} + 9\frac{\sigma_b^2}{b^2}}$$
 (14)

Obr. 4: Prohnutí oceli

Obr. 5: Prohnutí mosazi

4 Diskuse výsledků

Při tomto měření byla použita závaží, u kterých byla ověřena jejich skutečná hmotnost. Byla náhodně vybrána tři závaží k jejich vážení. Hmotnost se téměř úplně shodovala, proto není nikde uvažována nepřesnost závaží.

Při měření modulu E v první metodě byly chyby nadhodnoceny než by měřidla umožňovala, jak je to popsáno výše. Způsob měření neumožňuje dosáhnout přesnost měřidla a je třeba tedy uvažovat systematickou chybu. I s touto chybou jsou výsledky poměrně přesné a vypovídající.

Způsob, jak ověřit kvalitu měření, je porovnat výsledné hodnoty E s tabulkovými hodnotami uvedenými v [2]. Modul pružnosti oceli se pohybuje kolem 200 GPa v závislosti na druhu oceli. Výsledek v první i druhé metodě se tedy shoduje s očekávanou tabulkovou hodnotou. Udávaná hodnota mosazi je přibližně 100 GPa. My dostáváme hodnotu o trochu nižší, což může být způsobeno také druhem a složením mosazi. Skutečnost, že mosaz má modul pružnosti nižší, potvrzuje i pozorování, kde docházelo k prohnutí tyče pří nižší zátěži než u oceli.

U všech měření jsme provedli také měření při zpětném průchodu a oba výsledky zaneseny do grafu. To, že tyto hodnoty téměř splývají, nám potvrzuje, že jsme nepřekročili mez pružnosti a tedy, že naše závislosti jsou lineární. Kdybychom tuto mez překročili, již bychom nemohli použít tyto výpočty.

5 Závěr

V tomto měření jsme změřili modul pružnosti E v tahu z protažení drátu na přibližně E = 200(3) GPa pomocí velikosti protažení a také podle směrnice na grafu.

Dále jsme změřili tento modul oceli a mosazi z průhybu trámku.

Nakonec jsme tyto závislosti graficky znázornili a určili jejich lineární regresi.

6 Použitá literatura

- [1] MFF. Studijní text: [Online]. [cit. 17. března 2024]. https://physics.mff.cuni.cz/vyuka/zfp/_media/zadani/texty/txt_109.pdf
- [2] MIKULČÁK, Jiří; KLIMEŠ, Bohdan; ŠIROKÝ, Jaromír; ŠŮLA, Václav a ZEMÁNEK, František. *Matematické, fyzikální a chemické tabulky pro střední školy.* 5. vydání. Pomocné knihy pro žáky (Prometheus). Praha: Prometheus, 2020. ISBN 978-80-7196-481-0. [cit. 17. března 2024]
- [3] MFF. Zadání: [Online]. [cit. 17. března 2024]. https://physics.mff.cuni.cz/vyuka/zfp/zadani/109
- [4] ČÍŽEK, Jakub. *Přenos chyb:* [Online]. [cit. 17. března 2024]. https://physics.mff.cuni.cz/kfnt/vyuka/upf/cizek/prednaska8.pdf