Introduction to Machine Learning

DSAA

Albert Ruiz

What was the first Machine Learning application?

First ML application: the spam filter

How would you code a spam filter?

Traditional approach: the developer learns

Developer does (example):

- Find common words: IBAN , discount , offer , bank , password ...
- Find patterns in introductory phrases: Dear Sir/Madam, Mr/Mrs/Miss ...
- Find patterns in email addresses: @hacker.com , @no-reply.com ...
- Calculate weights

ML approach: the machine learns

What are we going to learn today?

Agenda

- 1. Introduction (5 min)
 - What is ML?
 - Why ML?
- 2. End-to-end ML (45 min)
 - Data
 - Processing
 - Feature extraction
 - Modelling
 - Results
- 3. Hands-on ML (practice, 1h)

Introduction

What is ML?

Machine learning is the field of study that gives computers the ability to learn without being explicitly programmed.

[Arthur L. Samuel, 1959]

AI/ML/DL/DS/BD

Systems performing tasks normally requiring human intelligence **Artificial** Statistics + maths + data analysis Intelligence Systems that can learn and perform a task without being explicitely programmed Machine Learing **Data** Science Deep Learning Algorithms inspired by the structure and function of the brain called artificial neural networks. Big Data is a must in here

ML can help humans learn!

Some modern problems are too complex for traditional approaches:

- Problems that require fine-tuning or long list of rules
- Problems with fluctuating data
- Getting insights from large amounts of data

A wide range of use cases

- Text classification
- Sentiment analysis
- Summarizing long text
- Data extraction from images
- Fraud detection
- Chatbots
- Client segmentation
- Recommending a product to a client
- Speech recognition
- Forecasting

Common steps in a ML project

The common steps

Structured / Unstructured

Processing

Feature extraction

Modelling

Results

Can be displayed in rows, columns and relational databases

Numbers, dates and strings

Estimated 20% of enterprise data (Gartner)

Requires less storage

Easier to manage and protect with legacy solutions

••

Images, audio, emails spreadsheets...

Estimated 80% of enterprise data (Gartner)

Requires more storage

More difficult to manage and protect with legacy solutions

Labelled / Unlabelled

Processing

Feature extraction

Modelling

Results

Labelled

Content	Email	Label
Dear Sir/Madam, we need to validate your user Id and password of your bank account	me@noreply.com	spam
Hello, I am a rich businessman and I need help. My wallet was stolen in the airport	florentino@rmad.com	spam
Hello, I can't find the ML presentation on teams. Can you please send me a link? BR	albert@zurich.com	ham
Congratulations! Because you are our client 1M, you have won the new Nintendo	mike@gifts-tonight.com	spam
Hey buddy, I think today we have a meeting, right? I haven't received any invitation	kim@megacom.com	ham
Your job alert for full stack engineer. 1 new job in LA matches your preferences.	jobalerts@linkedin.com	ham

Unlabelled

Categorical / Quantitative

Processing

Feature extraction

Modelling

Results

Sex

M, F

Age

18, 19, 20, 21, 22, 23 ...

Country

England, France, Spain, Switzerland ...

Temperature (°C)

18, 20.5, 22, 23,5, 25

Status

OK, KO, UNKNOWN

Income (k€)

40.5, 55.0, 65.5, 150.0 ...

Brands

Peugeot, Ferrari, SEAT, Audi, Hispano-Suiza ...

Number of employees

10, 15, 70, 323, 998 ...

Processing

Feature extraction

Modelling

Results

Invest more on data

Microsot article (2001)

And use all data!

Processing

Feature extraction

Modelling

Results

Processing

Feature extraction

Modelling

Results

Poor quality

Weekly electricity demand

Use forms to improve quality

Processing

Feature extraction

Modelling

Results

Name	Surname	Sex	Birthday	Birthplace	Country	Phone	
Max	Rockatasnky	М	10-11-1984	Perth	AU	+61 8 6245 2100	
Immortan	Joe	m	01-02-1949	Canberra	AU	+61 4 1234 5678	
James	Connor	М	1985-02-28	Los Angeles	USA	unknown	
Alex Murphy		М	1979	Detroit	US	tbc	
John	McClane	М	1969-07-17	Los Angeles	US	4242706247	
Pete	Mitchell	MALE	1972-10-10	San Diego	US	tbc	

Processing

Processing

Feature extraction

Modelling

Results

Cleansing

Processing

Feature extraction

Modelling

Results

But... what is exactly cleansing?

Activity	Example
Import	Retrieve data from DB, files, web scraping, APIs
Merge	Combine data, combine tables by indexes, by column values
Handle missing data	Remove entries, substitute with similar values
Normalize	Numeric: Rescale values into [0, 1]
	NLP: Tokenization, Lemmatization, Sentencing
Standardize	Rescale data to have $\mu=0$ and $\sigma=1$
De-duplicate	Drop duplicates
Verify and enrich	For dates, check dates follow the calendar and convert types
Export data	Save in a DB, in a file (formatting)

Processing

Feature extraction

Modelling

Results

Consider removing non-representative data

Processing

Feature extraction

Modelling

Results

Consider removing outliers

Feature extraction

Processing

Feature extraction

Modelling

Results

The bridge

To Modelling

· Derived data· Informa

· Less dimensions

From Processing

- · Original data
- \cdot Clean and processed
- · Not always informative
- · Can be redundant
- · Multi-dimensional

The "bridge" is not as it sounds...

Processing

Feature extraction

Modelling

Results

From Processing

- · Original data
- \cdot Clean and processed
- · Not always informative
- · Can be redundant
- · Multi-dimensional

To Modelling

- · Derived data
- · Informative · Less red

Processing

Feature extraction

Modelling

Results

Example: facial recognition

Facial recognition applications extract key positions from your face and then:

- · Calculates distances
- · Calculates color

Your face becomes a vector of features!

Feature extraction applied to natural language

Processing

Feature extraction

Natural language text cannot be used in any algorithm as it is. It must be converted to numbers:

Modelling

Tokenization

Results

- Lemmatization
- Stemming
- Vectorizers:
 - CountVectorizer

There are several techniques involved

TfldfVectorizer

All these techniques will be reviewed during the hands-on session.

Modelling

Supervised learning / Unsupervised learning

Processing

Feature extraction

Modelling

Results

Built on...

Knowledge of desired output

Dataset

Labelled (class or value)

Goal

Predict label (class or value) of data points

Main applications
Classification, regression

Built on...

Patterns or structures identified in data (no knowledge of output class or value)

Dataset

Unlabelled

Goal

Identify groups of similar data points based on internal criteria

Main applications

Clustering

Supervised learning

Processing

Feature extraction

Modelling

Results

Example of supervised learning: the student

Processing

Feature extraction

Modelling

Results

Supervised learning pipeline

Under-fitting / Robust / Over-fitting

Processing

Feature extraction

Modelling

Results

Some supervised learning algorithms

Processing

Feature extraction

Modelling

Results

Decision Trees

Easy

Support Vector Machines

Medium

Neural Networks

Difficult

Decision Trees

Processing

Feature extraction

Modelling

Results

What

It is a versatile supervied algorithm for both classification and regression tasks.

How

It is based on trees:

- · Each node is a condition
- \cdot Branches are the result of the conition.

Normaly trees are binary trees (i.e. two branches per node), but some adaptations (like ID3) can produce multiple branches.

Weather?

Cloud

Sun

Rain

Decision trees

- · Require little data preparation
- · Produces visual results easy to understand
- \cdot The depth of the tree is configurable

Processing

Feature extraction

Modelling

Results

Support Vector Machines

What

Versatile algorithm that can perform linearand non-linear classification, regression tasks and outlier detection.

How

For classification: finds hyperplanes (i.e. streets) to separate groups of data.

For regression: finds "streets" whith as much data as possible in it.

Benefits

- · Handles well unbalanced data
- · Resistant to overfitting
- \cdot Works very well when identifying boundary regions

Neural networks

Processing

Feature extraction

Modelling

Results

What

It is a classifier modeled loosely after the human brain designed to recognize patterns.

It has a set of neurons (perceptrions) organized in the form of multiple hidden layers, lying between the input layer (input data) and the output layer.

How

Networks are very useful in scenarios where the relationship between input features and output classes appears vague.

Benefits

- · Black box
- · User only has to configure the NN (layers, perceptron/sigmoid...)
- · Ideal for high-dimensional datasets

Unsupervised learning

Example of supervised learning: clustering video-games clients

Processing

Feature extraction

Modelling

Results

Features

Name	Age	Sex	Num. kids	Income	Weight	Smokes
Mike	18	М	0	18000	74	1
Sara	29	F	0	56000	56	1
Paul	43	М	1	49000	82	1

Processing

Feature extraction

Modelling

Results

Unsupervised learning pipeline

Clustering

Processing

Feature extraction

Modelling

Results

What

Clustering is one of the most common forms of unsupervised learning (k-means and hierarchical clustering).

Clustering, is used primarily to:

- · Segment data
- · Detect anomalies
- · Simplify datasets by aggregating variables

How (k-means)

Group by similarity.

How (hierarchichal)

Group all data in one cluster. Then split it until all of the have one sample

Benefits

- · Handles well unbalanced data
- · Resistant to overfitting
- · Works very well when identifying boundary regions

Results

Processing

Feature extraction

Modelling

Results

Results

Hands-on ML (practice)

Go to:

https://colab.research.google.com

Questions?

(albert.ruizalvarez@zurich.com)

Thank you!