2.152 Nonlinear Control System Design Fall 2020

Solutions to the Midterm

Problem 1:

(a) (5 points)

If A is Hurtwitz, then for any positive definite $Q \in \mathbb{R}^{\kappa \times \kappa}$, there exists a unique positive definite $P \in \mathbb{R}^{\kappa \times \kappa}$ that satisfies Lyapunovs equation

$$PA + A^T P = -Q.$$

Thus, we can choose Q to be the identity matrix and use the resulting P in our quadratic Lyapunov function.

- (b) (5 points) $x_2(t) = x_2(0)e^{bt}$ and thus $\dot{x}_1(t) + x_1(t) = x_2(0)e^{(b+a)t}$. The system is unstable if b > 0 or if $b \le 0$, then the system is unstable if a > -b. The system is marginally stable if b = 0 and $a \le -b$ or if b < 0 and a = -b. The system is stable if b < 0 and a < -b.
- c) (5 points)
 Ignoring initial conditions, we have that:

$$|\tilde{x}(t)| \le \frac{\phi}{\lambda^{n-1}}.$$

See review notes for proof.

D) (5 points)
In general this is not a good strategy. To satisfy the persistent excitation condition (page 366 in the textbook), the desired trajectory must be sufficiently rich.

Problem 2:

(a) (10 points)

The only equilibrium point is x = 0. With the radially unbounded positive definite Lyapunov function

$$V = 1/2x^2$$

we get

$$\dot{V} = x\dot{x} = -4x^{10} + 2x^4\sin^6 x < 0$$
 if $x \neq 0$

Using Lyapunov's direct method, we therefore know that the origin is globally asymptotically stable.

(b) (10 points)

The system has a unique equilibrium point at x = 0. Let $a(\dot{x}) = \dot{x}^4 + 1$, $b(\dot{x}) = \dot{x}^5(\cos(3\dot{x})^4 + 1)$ and $c(x) = 3x(\sin^4 x + 1)e^{-3x}$. Notice that $a(\dot{x}) > 0$, $\forall \dot{x} \in \mathbb{R}$. We have that $\dot{x}b(\dot{x})$ and xc(x) are positive definite. Consider the positive definite scalar

$$V = \int_0^{\dot{x}} za(z)dz + \int_0^x c(y)dy$$

with a negative semi-definite time derivative

$$\dot{V} = -\dot{x}b(\dot{x}) \le 0$$

which is zero if $\dot{x} = 0$. The second derivate at $\dot{x} = 0$ is

$$\ddot{x} = -c(x)$$

and hence only vanishes when x=0. Using the Invariant Set Theorem, we conclude $[x,\dot{x}]^T=[0,0]^T$ is an asymptotical stable equilibrium point. Note that the term $\int_0^x c(y)dy$ does not approach ∞ as $x\to\infty$, thus we cannot conclude global asymptotic stability.

(c) (15 points)

The system is given as

$$\dot{x}_1 = (2\beta + 3)x_1 - 2.5x_2
\dot{x}_2 = 2.5x_1 + (-e^{\alpha} - \sin(t))x_2$$

Let's put this in matrix notation

$$\dot{\mathbf{x}} = \begin{bmatrix} 2\beta + 3 & -2.5 \\ 2.5 & -e^{\alpha} - \sin(t) \end{bmatrix} \mathbf{x}$$

So if we choose

$$V = \mathbf{x}^T \mathbf{x}$$

$$\dot{V} = \mathbf{x}^T \dot{\mathbf{x}} + \dot{\mathbf{x}}^T \mathbf{x}$$

$$= \mathbf{x}^T \mathbf{A} \mathbf{x} + \mathbf{x}^T \mathbf{A}^T \mathbf{x}$$

$$= \mathbf{x}^T (\mathbf{A} + \mathbf{A}^T) \mathbf{x} \le -\lambda_0 \mathbf{x}^T \mathbf{x} = -\lambda_0 V$$

Therefore we know that

$$V = \mathbf{x}^T \mathbf{x} \le e^{-\lambda_0 t} V(0)$$

and therefore

$$||\mathbf{x}|| \le ||\mathbf{x}(\mathbf{0})|| e^{\frac{-\lambda_0}{2}t}.$$

We see that the convergence of \mathbf{x} to the origin is determined by $\frac{\lambda_0}{2}$. To guarantee the convergence of \mathbf{x} with a convergence rate ≥ 2 we need the following constraint on the maximum eigenvalue of $\mathbf{A} + \mathbf{A}^T$

$$\frac{-\lambda_0}{2} \le -2 \qquad \Rightarrow \qquad -\lambda_0 \le -4$$

So, now looking at $\mathbf{A} + \mathbf{A}^T$

$$\mathbf{A} + \mathbf{A}^T = \begin{bmatrix} 2(2\beta + 3) & 0 \\ 0 & 2(-e^{\alpha} - \sin(t)) \end{bmatrix}$$

The eigenvalues are obviously $s_1 = 2(2\beta + 3), s_2 = 2(-e^{\alpha} - \sin(t))$ and

$$s_1 = 2(2\beta + 3) \le -4$$

$$s_2 = 2(-e^{\alpha} - \sin(t)) \le -4$$

Therefore we get

$$-e^{\alpha} - \sin(t) \le -2 \quad \Rightarrow \quad \alpha \ge \ln 3$$

 $2\beta + 3 < -2 \quad \Rightarrow \quad \beta < 2.5$

Thus a value for α and β will guarantee an exponential convergence of **x** to the origin with a convergence rate ≥ 2 .

Problem 3: (20 points)

The system is given as

$$\ddot{x} + \ddot{x} + (1+b^3)\dot{x} + 2\cos(c)\cos(x)x^2 = u$$

Taking $\alpha_1 = (1 + b^3)$ and $\alpha_2 = 2\cos(c)$ we have

$$-7 \le \alpha_1 \le 9 \quad \Rightarrow \quad \hat{\alpha_1} = 1 \quad , \quad |\tilde{\alpha_1}| \le A_1 = 8$$
$$-2 \le \alpha_2 \le 2 \quad \Rightarrow \quad \hat{\alpha_2} = 0 \quad , \quad |\tilde{\alpha_2}| \le A_2 = 2$$

Define the sliding surface

$$s = \left(\frac{d}{dt} + \lambda\right)^2 \tilde{x} = \ddot{\tilde{x}} + 2\lambda \dot{\tilde{x}} + \lambda^2 \tilde{x} = \ddot{x} - \ddot{x}_r, \quad \text{where } \ddot{x}_r = \ddot{x}_d - 2\lambda \dot{\tilde{x}} - \lambda^2 \tilde{x}$$

with $\tilde{x} = x - x_d$. Its dynamics are

$$\dot{s} = \ddot{x} - \ddot{x}_r = -\ddot{x} - \alpha_1 \dot{x} - \alpha_2 \cos(x) x^2 + u - \ddot{x}_r$$

Determine the best estimate for the control input \hat{u} by substituting the best estimates of the model and forcing $\dot{s} = 0$. This leads to

$$\hat{u} = \ddot{x} + \hat{\alpha_1}\dot{x} + \hat{\alpha_2}\cos(x)x^2 + \ddot{x}_r$$

To take care of the uncertainty add a switching term, resulting in the control law

$$u = \hat{u} - k \operatorname{sgn}(s)$$

Inserting this into the dynamics of s, we have

$$\dot{s} = -\ddot{x} - \alpha_1 \dot{x} - \alpha_2 \cos(x) x^2 + \hat{u} - k \operatorname{sgn}(s) - \ddot{x}_r$$
$$= \tilde{\alpha}_1 \dot{x} + \tilde{\alpha}_2 \cos(x) x^2 - k \operatorname{sgn}(s),$$

where $\tilde{\alpha}_1 = \hat{\alpha}_1 - \alpha_1$ and $\tilde{\alpha}_2 = \hat{\alpha}_2 - \alpha_2$. To guarantee a rate of attraction η to the surface, the controller must satisfy

$$\frac{d}{dt}\frac{1}{2}s^2 = s\dot{s} \le -\eta \,|s|$$

and hence

$$s\dot{s} = s(\tilde{\alpha_1}\dot{x} + \tilde{\alpha_2}\cos(x)x^2) - k|s| \le -\eta|s|$$

so that the choice of k is limited by

$$k \ge \eta + \left| \tilde{\alpha_1} \dot{x} + \tilde{\alpha_2} \cos(x) x^2 \right|$$

This is satisfied if

$$k = \eta + A_1|\dot{x}| + A_2|\cos(x)|x^2 = \eta + 8|\dot{x}| + 2|\cos(x)|x^2$$

Problem 4: (25 points)

(a) (15 points)

Define the sliding surface as

$$s = \dot{\tilde{x}} + \lambda \tilde{x} = \dot{x} - \dot{x}_r, \qquad \dot{x}_r = \dot{x}_d - \lambda \tilde{x}$$

with $\tilde{x} = x - x_d$. Its dynamics are described by

$$m\dot{s} = m\ddot{x} - m\ddot{x}_r = -b\cos xe^{-t}\dot{x}^9 + d + u - kx + kl - m\ddot{x}_r$$

= $u - \mathbf{Ya}$,

where

$$\mathbf{Y} = [\cos x e^{-t} \dot{x}^9 \quad -1 \quad x \quad \ddot{x}_r] \quad , \quad \mathbf{a} = [b \quad d + kl \quad k \quad m]^T$$

The best estimate for the control input \hat{u} is determined by substituting the best estimates of the model and forcing $\dot{s} = 0$. This leads to

$$\hat{u} = \mathbf{Y}\hat{\mathbf{a}}$$

The control law adds a negative feedback term for convergence, so that

$$u = \hat{u} - Ks = \mathbf{Y}\hat{\mathbf{a}} - Ks$$

Substituting this control law into the dynamics of \dot{s} , we get

$$m\dot{s} = Y\tilde{a} - Ks$$

where $\tilde{\mathbf{a}} = \hat{\mathbf{a}} - \mathbf{a}$.

Using the Lyapunov function

$$V = \frac{m}{2}s^2 + \frac{1}{2}\tilde{\mathbf{a}}^T \Gamma^{-1}\tilde{\mathbf{a}}$$

where Γ is a positive definite matrix, leads to

$$\dot{V} = ms\dot{s} + \dot{\tilde{\mathbf{a}}}^T \Gamma^{-1} \tilde{\mathbf{a}} = -Ks^2 + (s\mathbf{Y} + \dot{\tilde{\mathbf{a}}}^T \Gamma^{-1}) \tilde{\mathbf{a}},$$

where we have used the fact that $\dot{\hat{\mathbf{a}}} = \dot{\tilde{\mathbf{a}}}$. Using the adaptation law

$$\dot{\hat{\mathbf{a}}} = -\Gamma \mathbf{Y}^T s$$

results in

$$\dot{V} = -Ks^2 < 0$$

To verify convergence, we have to use Barbalat's Lemma. We need to show that \dot{V} is uniformly continuous by showing that $\ddot{V} = -2Ks\dot{s}$ is bounded.

First we notice that the Lyapunov function V is positive definite and \dot{V} is negative semi-definite. This implies that V is bounded and therefore s and $\tilde{\mathbf{a}}$ are also bounded. From the definition of s we can then conclude that \tilde{x} and $\dot{\tilde{x}}$ are bounded. Assuming the the desired trajectory and its derivatives are bounded implies that \mathbf{Y} is bounded. From the dynamics of s and the control law we finally get $\dot{s} + Ks = \mathbf{Y}\tilde{\mathbf{a}}$, which bounds \dot{s} . This shows that \ddot{V} is indeed bounded. From Barbalat's Lemma we can conclude that \dot{V} and thus s will converge to zero. From the definition of s as a stable filter, we also know that \tilde{x} will converge to zero.

(b) (10 points)

If d is replaced by $d\sin(2t + \phi)$, **Y** and **a** must change accordingly. Using the identity

$$\sin(x + \phi) = \sin(x) \cos(\phi) + \cos(x) \sin(\phi)$$

this can be rewritten as

$$d\sin(2t + \phi) = d\sin(2t)\cos(\phi) + d\cos(2t)\sin(\phi)$$

Using the same sliding surface as in part (a), we get

$$m\dot{s} = m\ddot{x} - m\ddot{x}_r = -b\sin xe^{-t}\dot{x}^7 + u + kl - kx - m\ddot{x}_r + d\cos(\phi)\sin(2t) + d\sin(\phi)\cos(2t)$$

= $u - \mathbf{Ya}$,

where

$$\mathbf{Y} = \begin{bmatrix} \sin x e^{-t} \dot{x}^7 & \ddot{x}_r & -\sin(2t) & -\cos(2t) & -1 & x \end{bmatrix}, \quad \mathbf{a} = \begin{bmatrix} b & m & \alpha_1 & \alpha_2 & kl & k \end{bmatrix}^T$$
 and $\alpha_1 = d\cos(\phi)$ and $\alpha_2 = d\sin(\phi)$.

The rest follows part (a) using the updated ${\bf Y}$ and ${\bf a}$.