Polar Coordinates — Part2

Slope of the Tangent Line to the graph of $r = r(\theta)$

$$m = \frac{\frac{dr}{d\theta}sin\theta + rcos\theta}{\frac{dr}{d\theta}cos\theta - rsin\theta}$$

Length in Polar Coordinates

$$L = \int_{\alpha}^{\beta} \sqrt{r^2 + \left(\frac{dr}{d\theta}\right)^2} \, d\theta$$

Area in Polar Coordinates

$$Area = \int_{\alpha}^{\beta} \frac{1}{2} r^2 d\theta$$

Consider the polar curve $r = 4sin\theta$.

- 1. Find the tangent line to this curve at $\theta = \frac{\pi}{3}$.
- 2. Find the length of this curve

Consider the polar curve $r = 8sec\theta$.

Find the length of this curve for
$$-\frac{\pi}{4} \le \theta \le \frac{\pi}{4}$$

Example#3

Find the length of this curve $r=\theta^2-1$, from $\theta=1$ to $\theta=2$

Find the area of one petal of the graph $r = \sin 3\theta$

Find the area of the intersection of the graphs $r = \sin\theta$ and $r = \cos\theta$

Example#6

Find the area that is inside the curve r=3 and outside the $r=3-3cos\theta$

Graph the polar curve $r = 1 + \cos\theta$ and $r = 3\cos\theta$.

Find the area that is inside the curve $r = 3\cos\theta$ and outside the $r = 1 + \cos\theta$