Rapport de khôlle n°2

Adrien Lauze

TB: 9/10

Question de cours

Énoncer et démontrer le théorème fondamental de l'analyse. On se place dans le cas où f est monotone et à valeurs réelles.

Soit $f: I \longrightarrow \mathbb{C}$ continue et soit $x_0 \in I$. Alors $F: I \longrightarrow \mathbb{C}$, $x \mapsto \int_{x_0}^x f(t) dt$ est la primitive de f s'annulant en x_0 .

<u>Démonstration</u>: Soit $F: I \longrightarrow \mathbb{C}, \ x \mapsto \int_{\mathbb{C}}^{x} f(t) dt$ et f à valeurs réelles, par exemple croissante. D'après la relation de Chasles, $\forall x>x_0, \frac{F(x)-F(x_0)}{x-x_0}=\frac{1}{x-x_0}\int_{x_0}^x f(t)\,\mathrm{d}t. \text{ Or } f \text{ est croissante et pour tout } t\in[x_0,x], \ f(x_0)\leqslant f(t)\leqslant f(x). \text{ Donc par croissance de l'intégrale, } \int_{x_0}^x f(x_0)\,\mathrm{d}t\leqslant \int_{x_0}^x f(t)\,\mathrm{d}t\leqslant \int_{x_0}^x f(t)\,\mathrm{d}t. \text{ On a donc } f(x_0)(x-x_0)\leqslant F(x)-F(x_0)\leqslant f(x)(x-x_0). \text{ Comme } x-x_0>0, \text{ on a } f(x_0)\leqslant \frac{F(x)-F(x_0)}{x-x_0}\leqslant f(x). \text{ Or par continuité de } f \text{ en } x_0, \ f(x)\xrightarrow[x>x_0]{x\to x_0} f(x_0). \text{ Par théorème d'encadrement, } f(x_0)\leqslant f(x_0)$

 $\frac{F(x)-F(x_0)}{x-x_0} \xrightarrow[x>x_0]{x\to x_0} f(x_0)$. On reproduit la même démarche pour tout x strictement inférieur à x_0 , et on retrouve par encadrement,

 $\frac{F(x)-F(x_0)}{x-x_0} \xrightarrow[x < x_0]{x \to x_0} f(x_0).$ Donc le taux d'accroissement de F en x_0 admet une limite finie en x_0 , donc F est dérivable en x_0 et

 $F'(x_0)=f(x_0)$ et ce pour tout élément x_0 de I. Donc F est dérivable sur I et F'=f.

La parité permet

2) En déduire la valeur de $\int_0^1 \arcsin(\sqrt{t}) dt$.

Exercice de restreindre à [0,pi/2] de F(x) où $F: x \mapsto \int_0^{\sin^2(x)} \arcsin\left(\sqrt{t}\right) \mathrm{d}t + \int_0^{\cos^2(x)} \arccos\left(\sqrt{t}\right) \mathrm{d}t.$

2) En déduire la valeur de $\int_0^{\infty} \arcsin(\sqrt{t}) dt$. 3) Retrouver ce résultat par un calcul direct en faisant le changement de variable $t = \sin^2(u)$. $\sin^2(-x) = \sin^2(x)$

1) Cherchons tout d'abord à restreindre l'intervalle d'étude de F. Remarquons que pour tout réel x, F est paire car F(x) = F(-x). Aussi, comme sir $(x + \pi) = -\sin(x)$, par élévation au carré, on a $\sin^2(x + \pi) = \sin^2(x)$; et que $\cos(x + \pi) = -\cos(x)$, par élévation au carré, on a $\cos^2(x + \pi) = \cos^2(x)$, on en déduit que $F(x + \pi) = F(x)$ donc F est π -périodique. On peut ainsi l'étudier sur l'intervalle $[-\frac{t}{2}, \frac{\pi}{2}]$. De plus, $t \mapsto \arcsin(\sqrt{t})$ est définie et co**et la racine carrée** de deux fonctions continues sur [0, 1], donc cette fonction admet une primitive φ sur [0, 1]. De mêm envoie [0, 1] dans [0, 1] continue sur [0, 1] par composées de deux fonctions continues sur [0, 1], donc cette fonction admet envoie [0, 1] dans [0, 1] continue sur [0, 1] par composées de deux fonctions continues sur [0, 1], donc cette fonction admet envoie [0, 1] dans [0, 1] continue sur [0, 1] par composées de deux fonctions continues sur [0, 1], donc cette fonction admet envoie [0, 1] dans [0, 1] continue sur [0, 1] par composées de deux fonctions continues sur [0, 1], donc cette fonction admet envoie [0, 1] dans [0, 1] continue sur [0, 1] par composées de deux fonctions continues sur [0, 1], donc cette fonction admet envoie [0, 1] dans [0, 1] continue sur [0, 1] par composées de deux fonctions continues sur [0, 1], donc cette fonction admet envoie [0, 1] dans [0, 1] continue sur [0, 1] par composées de deux fonctions continues sur [0, 1] par composées de deux fonctions continues sur [0, 1] continue sur [0, 1] par composées de deux fonctions continues sur [0, 1] par composées de deux fonctions continues sur [0, 1] continue sur [0, 1] par composées de deux fonctions continues sur [0, 1] par composées de deux fonctions continues sur [0, 1] par composées de deux fonctions continues sur [0, 1] par composées de deux fonctions continues sur [0, 1] par composées de deux fonctions continues sur [0, 1] par composées de deux fonctions continues sur [0, 1] par composées de deux fonctions continues sur [0, 1] par composées de deux fonctions continues sur [0, 1] par composées de deux fonctions continues sur [0, 1] par composées de deux fonctions continues sur [0, 1] par composées de deux fonctions continues sur [0, 1] par composées de deux fonctions continues sur [0, 1] par composées de deux fonctions continues sur [0, 1] par composées de deux fonctions continues sur [0, 1] par composées de deux fonctions continues sur [0, 1] par composées de deux fonctions continues sur [0, 1] par composées de deux fonctions continues sur [0, 1] par composées de de et \cos^2 sont dérivables sur \mathbb{R} , donc par composées de fonctions dérivables, F est dérivable sur \mathbb{R} . Alors pour tout $x \in [-\frac{\pi}{2}, \frac{\pi}{2}],$

$$F'(x) = 2\sin(x)\cos(x)\arcsin\left(\sqrt{\sin^2(x)}\right) - 2\sin(x)\cos(x)\arccos\left(\sqrt{\cos^2(x)}\right)$$
$$= 2\sin(x)\cos(x)(\arcsin|\sin x| - \arccos|\cos x|)$$

Dans le cas où $x \in [0, \frac{\pi}{2}]$, le sinus et le cosinus sont positifs, donc $F'(x) = 2\sin(x)\cos(x)(\arcsin(\sin x) - \arccos(\cos x))$. Or comme x appartient à $[0, \frac{\pi}{2}]$, $\arcsin(\sin x) = x$ et $\arccos(\cos x) = x$, donc F'(x) = 0. Comme $[0, \frac{\pi}{2}]$ est un intervalle, F est

constante sur cet intervalle. Pour déterminer cette constante, on évalue F en $\frac{\pi}{4}$: $F(\frac{\pi}{4}) = \int_0^{\frac{1}{2}} \arcsin\left(\sqrt{t}\right) dt + \int_0^{\frac{1}{2}} \arccos\left(\sqrt{t}\right) dt = \int_0^{\frac{1}{2}} \left(\arcsin\left(\sqrt{t}\right) + \arccos\left(\sqrt{t}\right)\right) dt$. Or, $\arcsin\left(\sqrt{t}\right) + \arccos\left(\sqrt{t}\right) = \frac{\pi}{2}$, donc $F(\frac{\pi}{4}) = \frac{\pi}{4}$. Ainsi, sur $[0, \frac{\pi}{2}]$, $F(x) = \frac{\pi}{4}$. Très bien

Dans le cas où $x \in [-\frac{\pi}{2}, 0]$, le sinus est négatif et le cosinus est positif. Donc $F'(x) = 2\cos(x)\sin(x)(\arcsin(-\sin x) - \arccos(\cos x)) = -2\cos(x)\sin(x)(\arcsin(\sin x) + \arccos(\cos x))$ par imparité de l'arcsinus. Comme $x \in [-\frac{\pi}{2}, 0]$, arcsin $(\sin x) = x$ arccos $(\cos(-x)) = \arccos(\cos x) = -x$. Donc F'(x) = 0. Comme $[-\frac{\pi}{2}, 0]$ est un intervalle, F est constante sur d'esquiver cette évalue de même F en $[-\frac{\pi}{4}]$ qui vaut encore $[-\frac{\pi}{4}]$ par parité de F. Alors, pour tout $[-\frac{\pi}{4}]$ qui vaut encore $[-\frac{\pi}{4}]$ on en conclut, par parité et $[-\frac{\pi}{4}]$ que pour tout $[-\frac{\pi}{4}]$ et un intervalle, $[-\frac{\pi}{4}]$ et un intervalle,

- 2) On évalue F en $\frac{\pi}{2}$: $F(\frac{\pi}{2}) = \int_0^1 \arcsin\left(\sqrt{t}\right) dt + 0 = \frac{\pi}{4}$. Donc $\int_0^1 \arcsin\left(\sqrt{t}\right) dt = \frac{\pi}{4}$.
- 3) Pour tout $t \in [0,1]$, on effectue le changement de variable, $t = \sin^2(u)$. D'où $\frac{\mathrm{d}t}{\mathrm{d}u} = 2\sin(u)\cos(u) = \sin(2u)$. Lorsque t = 0, $\sin^2(u) = 0$ donc en particulier u = 0 et lorsque t = 1, $\sin^2(u) = 1$ donc en particulier $u = \frac{\pi}{2}$. On obtient alors l'intégrale : $\int_0^{\frac{\pi}{2}} \arcsin|\sin u|\sin(2u)\,\mathrm{d}u$. Or $u \in [0,\frac{\pi}{2}]$, donc le sinus est positif sur cet intervalle et $\arcsin(\sin u) = u$. Il vient alors : $\int_0^{\frac{\pi}{2}} u\sin(2u)\,\mathrm{d}u$. On procède ensuite à une intégration par parties. Alors $\int_0^{\frac{\pi}{2}} u\sin(2u)\,\mathrm{d}u = \left[-u\frac{\cos(2u)}{2}\right]_0^{\frac{\pi}{2}} + \frac{1}{2}\int_0^{\frac{\pi}{2}} \cos(2u)\,\mathrm{d}u = \frac{\pi}{4} + \frac{1}{2}\left[\frac{\sin(2u)}{2}\right]_0^{\frac{\pi}{2}} = \frac{\pi}{4}$ car le deuxième terme est nul. On retrouve bien le même résultat qu'à la question précédente.

Très bien

* *