

Importing the libraries

In [469]:

```
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
```

Question 1

Problem Statement & Goal

- Netflix is one of the most popular media and video streaming platforms. They have over 10000 movies or tv shows available on their platform, as of mid-2021, they have over 222M Subscribers globally
- Our goal is to analyze the data and generate insights that could help Netflix in deciding which type of shows/movies to produce and how they can grow the business in different countries

Analysing basic metrics

In [470]:

```
##loading the dataset
df = pd.read_csv("netflix.csv")
##top 5 rows
df.head()
```

Out[470]:

	show_id	type	title	director	cast	country	date_added	ate_added release_year	
0	s 1	Movie	Dick Johnson Is Dead	Kirsten Johnson	NaN	United States	September 25, 2021	2020	PG 1
1	s2	TV Show	Blood & Water	NaN	Ama Qamata, Khosi Ngema, Gail Mabalane, Thaban	South Africa	September 24, 2021	2021	TV M/
2	s3	TV Show	Ganglands	Julien Leclercq	Sami Bouajila, Tracy Gotoas, Samuel Jouy, Nabi	NaN	September 24, 2021	2021	TV M/
3	s4	TV Show	Jailbirds New Orleans	NaN	NaN	NaN	September 24, 2021	2021	TV M/
4	s 5	TV Show	Kota Factory	NaN	Mayur More, Jitendra Kumar, Ranjan Raj, Alam K	India	September 24, 2021	2021	TV M/
4									•

Question 2

Observations on the shape of data, data types of all the attributes

In [471]:

```
print(df.info())
print("Shape:",df.shape)
print("Dimension" ,df.ndim)
print("Size",df.size)
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 8807 entries, 0 to 8806
Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype
0	show_id	8807 non-null	object
1	type	8807 non-null	object
2	title	8807 non-null	object
3	director	6173 non-null	object
4	cast	7982 non-null	object
5	country	7976 non-null	object
6	date_added	8797 non-null	object
7	release_year	8807 non-null	int64
8	rating	8803 non-null	object
9	duration	8804 non-null	object
10	listed_in	8807 non-null	object
11	description	8807 non-null	object
dtyp	es: int64(1),	object(11)	
memo	ry usage: 825.	8+ KB	
None			

Shape: (8807, 12)

Dimension 2 Size 105684

The data contains total 12 columns, only release year(numerical) is type int rest are object(categorical)

In [472]:

```
df.count() ##no of records in each column , including NaN, null values
```

Out[472]:

show_id	8807
type	8807
title	8807
director	6173
cast	7982
country	7976
date_added	8797
release_year	8807
rating	8803
duration	8804
listed_in	8807
description	8807
dtype: int64	

In [473]:

df.nunique() ##unique values present in each column

Out[473]:

show_id	8807
type	2
title	8807
director	4528
cast	7692
country	748
date_added	1767
release_year	74
rating	17
duration	220
listed_in	514
description	8775
dtype: int64	

Conversion of categorical attributes to 'category'

In [474]:

df.head(5)

Out[474]:

	show_id	type	title	director	cast	country	date_added	release_year	ratinç
0	s 1	Movie	Dick Johnson Is Dead	Kirsten Johnson	NaN	United States	September 25, 2021	2020	PG 1
1	s2	TV Show	Blood & Water	NaN	Ama Qamata, Khosi Ngema, Gail Mabalane, Thaban	South Africa	September 24, 2021	2021	TV M#
2	s3	TV Show	Ganglands	Julien Leclercq	Sami Bouajila, Tracy Gotoas, Samuel Jouy, Nabi	NaN	September 24, 2021	2021	TV M/
3	s4	TV Show	Jailbirds New Orleans	NaN	NaN	NaN	September 24, 2021	2021	TV M/
4	s5	TV Show	Kota Factory	NaN	Mayur More, Jitendra Kumar, Ranjan Raj, Alam K	India	September 24, 2021	2021	TV M/
4									•

Columns type, ratings and listed_in can be put under category data type

In [475]:

```
df["type"]=df["type"].astype("category")
df["rating"]=df["rating"].astype("category")
df["listed_in"]=df["listed_in"].astype("category")
```

In [476]:

```
df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 8807 entries, 0 to 8806
Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype
0	show_id	8807 non-null	object
1	type	8807 non-null	category
2	title	8807 non-null	object
3	director	6173 non-null	object
4	cast	7982 non-null	object
5	country	7976 non-null	object
6	date_added	8797 non-null	object
7	release_year	8807 non-null	int64
8	rating	8803 non-null	category
9	duration	8804 non-null	object
10	listed_in	8807 non-null	category
11	description	8807 non-null	object
dtyp	es: category(3), int64(1), obj	ect(8)
memo	ry usage: 674.	7+ KB	

Missing value detection

In [477]:

df.isna().sum().sort_values(ascending=False) ##missing values in each column

Out[477]:

director	2634
country	831
cast	825
date_added	10
rating	4
duration	3
show_id	0
type	0
title	0
release_year	0
listed_in	0
description	0
dtype: int64	

In [478]:

df.isna().sum()[df.isna().sum()>0].plot(kind='bar',ylabel="count",xlabel="Columns with r

Out[478]:

<Axes: xlabel='Columns with null values in DF', ylabel='count'>

Statistical summary

In [479]:

df.describe(include='all') ##statiscal summary of all columns

Out[479]:

	show_id	type	title	director	cast	country	date_added	release_year
count	8807	8807	8807	6173	7982	7976	8797	8807.000000
unique	8807	2	8807	4528	7692	748	1767	NaN
top	s 1	Movie	Dick Johnson Is Dead	Rajiv Chilaka	David Attenborough	United States	January 1, 2020	NaN
freq	1	6131	1	19	19	2818	109	NaN
mean	NaN	NaN	NaN	NaN	NaN	NaN	NaN	2014.180198
std	NaN	NaN	NaN	NaN	NaN	NaN	NaN	8.819312
min	NaN	NaN	NaN	NaN	NaN	NaN	NaN	1925.000000
25%	NaN	NaN	NaN	NaN	NaN	NaN	NaN	2013.000000
50%	NaN	NaN	NaN	NaN	NaN	NaN	NaN	2017.000000
75%	NaN	NaN	NaN	NaN	NaN	NaN	NaN	2019.000000
max	NaN	NaN	NaN	NaN	NaN	NaN	NaN	2021.000000
4								•

Question 3

Value counts and unique attributes

In [480]:

```
df.nunique() ##unique values in each columns
```

Out[480]:

8807 show_id type 2 title 8807 director 4528 7692 cast country 748 date_added 1767 release_year 74 rating 17 duration 220 listed in 514 description 8775 dtype: int64

In [481]:

```
df["type"].value_counts()
```

Out[481]:

Movie 6131 TV Show 2676

Name: type, dtype: int64

In [482]:

```
df["country"].value_counts()
```

Out[482]:

United States	2818
India	972
United Kingdom	419
Japan	245
South Korea	199
Romania, Bulgaria, Hungary	1
Uruguay, Guatemala	1
France, Senegal, Belgium	1
Mexico, United States, Spain, Colombia	1
United Arab Emirates, Jordan	1
Name: country, Length: 748, dtype: int64	

```
In [483]:
```

```
df["rating"].value_counts()
```

Out[483]:

TV-MA	3207	
TV-14	2160	
TV-PG	863	
R	799	
PG-13	490	
TV-Y7	334	
TV-Y	307	
PG	287	
TV-G	220	
NR	80	
G	41	
TV-Y7-FV	6	
UR	3	
NC-17	3	
74 min	1	
84 min	1	
66 min	1	
Name: rating	dtyne.	in

Name: rating, dtype: int64

In [484]:

```
df["listed_in"].value_counts()
```

Out[484]:

Dramas, International Movies Documentaries Stand-Up Comedy Comedies, Dramas, International Movies	362 359 334 274
Dramas, Independent Movies, International Movies	252
	• • •
Cult Movies, Dramas, International Movies	1
Cult Movies, Dramas, Music & Musicals	1
Cult Movies, Dramas, Thrillers	1
Cult Movies, Horror Movies, Thrillers	1
Crime TV Shows, TV Action & Adventure, TV Sci-Fi & Fantasy Name: listed_in, Length: 514, dtype: int64	1

Pre-processing of the data

- · Pre-processing involves unnesting of the data in columns like cast, director, country
- Also we will be filling the null/missing/NaN values
- Less significant NaN/null counts will be dropped, date_added,rating,duration

Replace blank directors and cast with "Anonymous"

```
In [485]:

df["director"]=df["director"].fillna("Anonymous")
df["cast"]=df["cast"].fillna("Cast unavailable")
```

Replace blank countries with the mode (most common) country

```
In [486]:

df['country'] = df['country'].fillna(df['country'].mode()[0])
```

Dropping other na values with lesser na count

```
In [487]:
```

df.dropna(inplace=True) ##total 17 rows are dropped as part of this reducing the number

Changing the dtype of column date_added from object to datetime and adding more columnd derived from date_added

In [488]:

```
df["date_added"] = pd.to_datetime(df['date_added'])

df['month_added']=df['date_added'].dt.month.astype('int64')

df['month_name_added']=df['date_added'].dt.month_name()

df['year_added'] = df['date_added'].dt.year.astype('int64')

df['day_added'] = df['date_added'].dt.day_name()

df.head(3)
```

Out[488]:

	show_id	type	title	director	cast	country	date_added	release_year	ri
0	s 1	Movie	Dick Johnson Is Dead	Kirsten Johnson	Cast unavailable	United States	2021-09-25	2020	
1	s2	TV Show	Blood & Water	Anonymous	Ama Qamata, Khosi Ngema, Gail Mabalane, Thaban	South Africa	2021-09-24	2021	
2	s3	TV Show	Ganglands	Julien Leclercq	Sami Bouajila, Tracy Gotoas, Samuel Jouy, Nabi	United States	2021-09-24	2021	
4)	>

```
In [489]:
```

```
df.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 8790 entries, 0 to 8806
Data columns (total 16 columns):
    Column
                      Non-Null Count Dtype
                      -----
_ _ _
0
    show id
                     8790 non-null object
 1
                     8790 non-null category
    type
                    8790 non-null object
8790 non-null object
 2
    title
 3
    director
 4
    cast
                     8790 non-null object
 5
    country
                     8790 non-null
                                      object
 6
    date_added
                     8790 non-null datetime64[ns]
    release_year 8790 non-null int64
 7
                     8790 non-null category
 8
    rating
                    8790 non-null object
8790 non-null category
8790 non-null object
 9
    duration
 10 listed_in
 11 description
                     8790 non-null int64
 12 month added
 13 month_name_added 8790 non-null object
 14 year_added
                      8790 non-null int64
                      8790 non-null object
 15 day_added
dtypes: category(3), datetime64[ns](1), int64(3), object(9)
memory usage: 1016.7+ KB
In [490]:
df.drop_duplicates(inplace= True)
```

Unnesting/exploding the columns

Explode country

Creating a copy of orginal dataframe

In [491]:

```
df_country=df.copy()
df_country["country"] = df_country["country"].map(str)
df_country["country"]=df_country["country"].str.split(",").apply(lambda x: [e.strip() for df_country=df_country.explode("country",ignore_index=True)
df_country.head(3)
```

Out[491]:

	show_id	type	title	director	cast	country	date_added	release_year	ra
0	s1	Movie	Dick Johnson Is Dead	Kirsten Johnson	Cast unavailable	United States	2021-09-25	2020	_
1	s2	TV Show	Blood & Water	Anonymous	Ama Qamata, Khosi Ngema, Gail Mabalane, Thaban	South Africa	2021-09-24	2021	
2	s3	TV Show	Ganglands	Julien Leclercq	Sami Bouajila, Tracy Gotoas, Samuel Jouy, Nabi	United States	2021-09-24	2021	
4								•	•

Explode cast

In [492]:

```
df_cast=df_country.copy()
df_cast["cast"] = df_cast["cast"].map(str)
df_cast["cast"]=df_cast["cast"].str.split(",").apply(lambda x: [e.strip() for e in x])
df_cast=df_cast.explode("cast",ignore_index=True)
df_cast.head(3)
```

Out[492]:

	show_id	type	title	director	cast	country	date_added	release_year	rati
0	s1	Movie	Dick Johnson Is Dead	Kirsten Johnson	Cast unavailable	United States	2021-09-25	2020	Р
1	s2	TV Show	Blood & Water	Anonymous	Ama Qamata	South Africa	2021-09-24	2021	T N
2	s2	TV Show	Blood & Water	Anonymous	Khosi Ngema	South Africa	2021-09-24	2021	T N
4									•

Explode directors

In [493]:

```
df_director=df_cast.copy()
df_director["director"] = df_director["director"].map(str)
df_director["director"]=df_director["director"].str.split(",").apply(lambda x: [e.strip(df_director=df_director.explode("director",ignore_index=True)
df_director.head(3)
```

Out[493]:

	show_id	type	title	director	cast	country	date_added	release_year	rati
0	s1	Movie	Dick Johnson Is Dead	Kirsten Johnson	Cast unavailable	United States	2021-09-25	2020	Р
1	s2	TV Show	Blood & Water	Anonymous	Ama Qamata	South Africa	2021-09-24	2021	T N
2	s2	TV Show	Blood & Water	Anonymous	Khosi Ngema	South Africa	2021-09-24	2021	T N
4									•

Explode listed_in as Genre

In [494]:

```
df_new = df_director.copy()
df_genre = df_new.copy()
df_genre["listed_in"] = df_genre["listed_in"].map(str)
df_genre["listed_in"]=df_genre["listed_in"].str.split(",").apply(lambda x: [e.strip() for df_genre=df_genre.explode("listed_in",ignore_index=True)
df_genre.head(3)
```

Out[494]:

	show_id	type	title	director	cast	country	date_added	release_year	rati
0	s1	Movie	Dick Johnson Is Dead	Kirsten Johnson	Cast unavailable	United States	2021-09-25	2020	Р
1	s2	TV Show	Blood & Water	Anonymous	Ama Qamata	South Africa	2021-09-24	2021	T 1
2	s2	TV Show	Blood & Water	Anonymous	Ama Qamata	South Africa	2021-09-24	2021	٦ ١
4									•

Question 4

Visual Analysis

Univariate

4.1 For continuous variable(s): Distplot, countplot, histogram for univariate analysis

Content added each year in Netflix using histogram

In [495]:

```
plt.hist(df['year_added'],bins=12)
plt.title("Content added each year in Netflix")
plt.show()
```


 Most of the content is added 2019 onwards, and dropped during 2020, this coincides with peak-time of COVID-19

Content released each year using histplot

In [496]:

```
plt.figure(figsize=(12,8))
sns.histplot(df['release_year'],binwidth=5,kde=True)
plt.title("Content released each year")
plt.show()
```


• Most of the content is relesed between 2015-2020 onwards, there is a growing trend in content released/produced from year 2000 onwards,however there is a spike during 2015-2020, this trend correlates with onset of 4G networks and social media like Instagram, Snapchat etc

Content added each month using countplot

In [497]:

```
sns.countplot(data=df,x="month_name_added",order = df['month_name_added'].value_counts()
plt.xticks(rotation=90,fontsize=12)
plt.title("Content added each month")
plt.show()
```


- Most of the content is added during July and December(Festival season in US)
- More content should be added considering the holidays/festival in each country, For eg in India appropriate content should be added around Diwali

How has the number of movies released per year changed over the last 20-30 years?

In [498]:

```
movies=df.loc[df["type"]=="Movie"]
tv_shows=df.loc[df["type"]=="TV Show"]
```

In [499]:

```
sns.kdeplot(movies["release_year"])
sns.kdeplot(tv_shows["release_year"])
plt.xlim(left=1990,right=2021)
plt.xticks(np.arange(1990, 2021, 3),rotation=90)
plt.title("Number of Movies/TV Shows released each year")
plt.legend(['Movies','TV Shows'],loc='upper left')
plt.grid()
plt.show()
```

Number of Movies/TV Shows released each year

- We see a slow start for Netflix over several years.
- Things begin to pick up in 2014 and then there is a rapid increase from 2016.
- It looks like content additions have slowed down in 2020, likely due to the COVID-19 pandemic

4.2 For categorical variable(s):

Comparison of tv shows vs. movies.

Categorical variables-Content Type using countplot

In [500]:

```
sns.countplot(data=df,x="type",order = df["type"].value_counts().index)
plt.xticks(rotation=90,fontsize=12)
plt.title("Comparison between Movies and TV Shows")
plt.show()
```


- More number of movies compared to TV Show are present in Netflix
- · More number of TV Shows should be focussed on

Rating distribution

In [501]:

```
sns.countplot(data=df,x="rating",order = df["rating"].value_counts().index)
plt.xticks(rotation=90,fontsize=12)
plt.title("Rating Distribution")
plt.show()
```


- Most of the content on Amazon is for Adults(TV-MA) and Older Kids(TV-PG)
- Netflix should focus on putting more content for kids and teens with offers on subsrciption simlar to Amazon's back to school/student campaign

Genre/listed_in distribution

In [502]:

```
data=df_genre.loc[df_genre["listed_in"].value_counts()]
```

In [503]:

data.head(3)

Out[503]:

	show_id	type	title	director	cast	country	date_added	release_year	ratin
29799	s1216	Movie	Romantik Komedi	Ketche	Burcu Kara	Turkey	2021-03-12	2010	T\.
28243	s1141	Movie	Universal Soldier: The Return	Mic Rodgers	Kiana Tom	United States	2021-04-01	1999	I
20829	s829	Movie	Collateral Beauty	David Frankel	Kate Winslet	United States	2021-05-28	2016	PG 1
4									•

In [504]:

```
sns.countplot(data=data,x="listed_in",order = data["listed_in"].value_counts().index)
plt.xticks(rotation=90,fontsize=12)
plt.title("Genre Distribution")
plt.show()
```


- Dramas, Action&Adventure, Thrillers are most watched genres
- · More focus should be given on Comdied and Romantic genre or , preferred genre across each country

Bivariate

4.1 For continuous variable(s): Distplot, countplot, histogram for univariate analysis (10 Points)

Here we will be considering the N-N or continous-continous type of variables

In [505]:

```
plt.figure(figsize=(12,8))
sns.scatterplot(data=df,x="release_year",y="year_added")
plt.xlim(left=2008,right=2020)
plt.title("Release Year vs Year added")
plt.show()
```


 From 2016 onwards only, content was started adding in Netflix, there on content has been added regularly as it was released

4.2 For categorical variable(s): Boxplot (10 Points)

In [506]:

```
top5_genre=df_genre.loc[df_genre['listed_in'].isin(df_genre["listed_in"].value_counts().
plt.figure(figsize=(12,8))
sns.boxplot(data=top5_genre,x='listed_in',y='release_year')
plt.title("Top 5 genres production didtribution")
plt.xlabel("Genre")
plt.show()
```


· Action and Adventure movies took longer to be produced compared to Interenational TV Shows

What type of content is available in different countries? Understanding what content is available in different countries

Content by country

Here we will be considering bivariate analysis for two catergorical variable content and country

In [507]:

```
top10_countries=df_country["country"].value_counts().index[:10]
top10_countries_data = df_country[(df_country["country"].isin(top10_countries))]
top10_countries_data.head(3)
```

Out[507]:

	show_id	type	title	director	cast	country	date_added	release_year ra
0	s 1	Movie	Dick Johnson Is Dead	Kirsten Johnson	Cast unavailable	United States	2021-09-25	2020
2	s3	TV Show	Ganglands	Julien Leclercq	Sami Bouajila, Tracy Gotoas, Samuel Jouy, Nabi	United States	2021-09-24	2021
3	s4	TV Show	Jailbirds New Orleans	Anonymous	Cast unavailable	United States	2021-09-24	2021
4								•

In [508]:

```
plt.figure(figsize=(10,4))
sns.countplot(data=top10_countries_data,x='country',hue='type')
plt.title("Content in top 10 countries")
plt.show()
```


- · United States and India are the leading countries for Movies
- However TV shows are very less comapred to movies in these two leading countries
- More content should be released in United Kingdom and the other remaining countries

4.3 For correlation: Heatmaps, Pairplots

In [509]:

```
sns.heatmap(top10_countries_data.corr(),annot=True,cmap='Purples')
```

C:\Users\krama\AppData\Local\Temp\ipykernel_7196\982102484.py:1: FutureWa
rning: The default value of numeric_only in DataFrame.corr is deprecated.
In a future version, it will default to False. Select only valid columns
or specify the value of numeric_only to silence this warning.
 sns.heatmap(top10_countries_data.corr(),annot=True,cmap='Purples')

Out[509]:

<Axes: >

Release year and year added are lightly correlated

What is the best time to launch a TV show?

In [510]:

tv_shows.head(3)

Out[510]:

	show_id	type	title	director	cast	country	date_added	release_year ra
1	s2	TV Show	Blood & Water	Anonymous	Ama Qamata, Khosi Ngema, Gail Mabalane, Thaban	South Africa	2021-09-24	2021
2	s3	TV Show	Ganglands	Julien Leclercq	Sami Bouajila, Tracy Gotoas, Samuel Jouy, Nabi	United States	2021-09-24	2021
3	s4	TV Show	Jailbirds New Orleans	Anonymous	Cast unavailable	United States	2021-09-24	2021
4								•

In [511]:

```
plt.figure(figsize=(12,8))
sns.histplot(data=tv_shows , x='year_added',hue="month_name_added")
plt.xlim(left=2014,right=2021)
plt.xticks(np.arange(2014, 2022, 1),rotation=90)
plt.show()
```


In [512]:

```
plt.figure(figsize=(12,8))
sns.histplot(data=tv_shows , x='year_added',y="month_name_added",color="red")
plt.xlim(left=2014,right=2021)
plt.show()
```


If the latest year 2019 is considered, January and December were the months when comparatively much less content was released. Therefore, these months may be a good choice for the success of a new release!

Analysis of actors/directors of different types of shows/movies.

In [513]:

df_cast.head(2)

Out[513]:

	show_id	type	title	director	cast	country	date_added	release_year	rati
0	s1	Movie	Dick Johnson Is Dead	Kirsten Johnson	Cast unavailable	United States	2021-09-25	2020	Р
1	s2	TV Show	Blood & Water	Anonymous	Ama Qamata	South Africa	2021-09-24	2021	T N
4									•

In [514]:

```
cast_movie=df_cast.loc[df_cast["type"]=="Movie"]
cast_tv_show=df_cast.loc[df_cast["type"]=="TV Show"]
top20actorsmovies=cast_movie["cast"].value_counts().index[:5]
top20actorsshow=cast_tv_show["cast"].value_counts().index[:5]
```

In [515]:

```
top20actorsmoviesdata=df_cast.loc[df_cast["cast"].isin(top20actorsmovies)]
top20actorsshowsdata=df_cast.loc[df_cast["cast"].isin(top20actorsshow)]
```

In [516]:

```
sns.countplot(data=top20actorsmoviesdata,x='cast')
plt.xticks(rotation=90,fontsize=12) ## to avoid overlapping labels
plt.title("Top 5 actors - Movies")
plt.show()
```


Bollywood actor Shahrukh Khan is the most popular

In [517]:

```
sns.countplot(data=top20actorsshowsdata,x='cast')
plt.xticks(rotation=90,fontsize=12) ## to avoid overlapping labels
plt.title("Top 5 actors - TV Shows")
plt.show()
```


Top 5 directors TV Shows/Movies

In [518]:

```
top10_dir=df_cast["director"].value_counts().index[:10]
```

In [519]:

```
top10_dir_data=df_cast[df_cast["director"].isin(top10_dir)]
```

In [520]:

```
sns.countplot(data=top10_dir_data,x='director',hue="type")
plt.xticks(rotation=90,fontsize=12) ## to avoid overlapping labels
plt.title("Top 10 directors")
plt.show()
```


Steven Speilberg is the most popular/productive director across all content type

Does Netflix has more focus on TV Shows than movies in recent years

In [521]:

```
sns.kdeplot(movies["release_year"])
sns.kdeplot(tv_shows["release_year"])
plt.xlim(left=1990,right=2021)
plt.xticks(np.arange(1990, 2021, 3),rotation=90)
plt.title("Number of Movies/TV Shows released each year")
plt.legend(['Movies','TV Shows'],loc='upper left')
plt.grid()
plt.show()
```

Number of Movies/TV Shows released each year

We can clearly see that from year 2017 onwards there is an increase in number of tv show compared to movies