2024年10月

Table 5.1

Tuble 5.1				
_		Typical Parameter Value		
Parameter Symbol	Parameter Description	n-Channel	p-Channel	Units
V_{T0}	Threshold	0.7	-0.8	V
	voltage(V _{BS} =0)			
K	Transconductance	134	50	$\mu { m A/V^2}$
	parameter(in			
	saturation)			
γ	Bulk threshold	0.45	0.4	$\mathbf{V}^{1/2}$
	parameter			
λ	Channel length	0.1	0.2	V-1
	modulation parameter			
$2 \phi_F $	Surface potential at	0.9	0.8	V
	strong inversion			

 $K = \mu C_{OX}$

5.1.

5.1 Assume that W/L ratios of Figure 5.1 are $(W/L)_1 = 2\mu m/1\mu m$ and $(W/L)_2 = (W/L)_3 = (W/L)_4 = 1\mu m/1\mu m$. Find the dc value of v_{IN} that will give a dc current in M1 of 110 μ A. Calculate the small signal voltage gain and output resistance using the parameters of Table 5.1. Assume $\lambda = \gamma = 0$.

- 5.2 Suppose the common-source stage of Fig 5.2 is to provide an output swing from 1V to 2.5V. Assume that $(W/L)_1 = 50/0.5$, $R_D = 2k\Omega$, $V_{DD} = 3V$ and $\lambda = 0$. Use model parameters in Table
 - a) Calculate the input voltages that yield $V_{out} = 1V$ and $V_{out} = 2.5V$.
 - b) Calculate the drain current and the transconductance of M₁ for both cases.
 - c) How much does the small-signal gain, $g_m R_D$, vary as the output goes from 1V to 2.5V?

Figure 5.2

- 5.3 Consider the circuit of Fig 5.3 with $(W/L)_1 = 50/0.5$ and $(W/L)_2 = 10/0.5$. Assume that $\lambda = \gamma = 0$, $V_{DD} = 3V$.
 - a) At what input voltage is M_1 at the edge of the triode region? What is the small-signal gain under this condition?
 - b) When V_{out} is 0.66 V, what is the small-signal gain under this condition?

Figure 5.3

5.4 In the circuit of Fig 5.4, $(W/L)_1 = 20/0.5$, $I_1 = 1mA$, and $I_S = 0.75mA$. Assuming $\lambda = 0$, $V_{DD} = 3V$, calculate $(W/L)_2$ such that M_1 is at the edge of triode region. What is the small-signal voltage gain under this condition? Use model parameters in Table 5.1.

Figure 5.4

- 5.5 Consider the circuit of Fig 5.5 with $(W/L)_1 = 50/0.5$, $R_D = 2k\Omega$, and $R_S = 200~\Omega$, $V_{DD} = 3V$. Use model parameters in Table 5.1.
 - a) Calculate the small-signal voltage gain if $I_D = 0.5 \text{mA}$.
 - b) Assuming that $\lambda = \gamma = 0$, calculate the input voltage that places M1 at the edge of the triode region. What is the gain under this condition?

Figure 5.5