

日本国特許庁
JAPAN PATENT OFFICE

KAYAHARA, Toshihiro et al.
July 15, 2003
P61B, LWP
(203) 205-8001
1921-0143P
1 of 4

別紙添付の書類に記載されている事項は下記の出願書類に記載されて
いる事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed
with this Office

出願年月日

Date of Application:

2002年 7月15日

出願番号

Application Number:

特願2002-205303

[ST.10/C]:

[JP2002-205303]

出願人

Applicant(s):

三浦工業株式会社

2003年 6月 2日

特許庁長官
Commissioner,
Japan Patent Office

太田信一郎

出証番号 出証特2003-3042705

【書類名】 特許願
 【整理番号】 PZ0074
 【提出日】 平成14年 7月15日
 【あて先】 特許庁長官殿
 【発明の名称】 低NOxおよび低CO燃焼方法とその装置
 【請求項の数】 5

【発明者】

【住所又は居所】 愛媛県松山市堀江町7番地 三浦工業株式会社 内
 【氏名】 茅原 敏広

【発明者】

【住所又は居所】 愛媛県松山市堀江町7番地 株式会社三浦研究所 内
 【氏名】 田窪 昇

【特許出願人】

【識別番号】 000175272
 【氏名又は名称】 三浦工業株式会社
 【代表者】 白石 省三
 【電話番号】 089-979-7025

【手数料の表示】

【予納台帳番号】 041667
 【納付金額】 21,000円

【提出物件の目録】

【物件名】 明細書 1
 【物件名】 図面 1
 【物件名】 要約書 1
 【ブルーフの要否】 要

【書類名】 明細書

【発明の名称】 低NO_xおよび低CO燃焼方法とその装置

【特許請求の範囲】

【請求項1】 バーナからの燃焼ガスの温度を制御することにより低NO_xおよび低COを実現する低NO_xおよび低CO燃焼方法であって、NO_x発生の抑制を排出CO値低減に優先するように燃焼ガス温度を抑制しNO_x値を所定値以下とする超低NO_x化ステップと、この超低NO_x化ステップからの排出CO値を所定値以下とする低CO化ステップとを具備することを特徴とする低NO_xおよび低CO燃焼方法。

【請求項2】 前記低CO化ステップをCO酸化触媒体により行うことの特徴とする請求項1に記載の低NO_xおよび低CO燃焼方法。

【請求項3】 バーナからの燃焼ガスの温度を抑制することにより低NO_xおよび低COを実現する低NO_xおよび低CO燃焼装置であって、NO_x発生の抑制を排出CO値低減に優先するように燃焼ガス温度を抑制しNO_x値を所定値以下とする超低NO_x化手段と、この超低NO_x化手段からの排出CO値を所定値以下とする低CO化手段とを具備することを特徴とする低NO_xおよび低CO燃焼装置。

【請求項4】 バーナからの燃焼ガスの温度を抑制することにより低NO_xおよび低COを実現する低NO_xおよび低CO燃焼装置であって、燃焼ガス温度の抑制により燃焼完結ガス中のNO_x値を10ppm以下とする超低NO_x化手段と、この超低NO_x化手段からの排出CO値を所定値以下とする低CO化手段とを具備することを特徴とする低NO_xおよび低CO燃焼装置。

【請求項5】 前記低CO化手段をCO酸化触媒体とすることの特徴とする請求項3または4に記載の低NO_xおよび低CO燃焼装置。

【発明の詳細な説明】

【0001】

【発明の属する技術分野】

この発明は、水管ボイラ、吸収式冷凍機の再熱器などに適用される低NO_xおよび低CO燃焼方法とその装置に関する。

【0002】

【従来の技術】

一般に、NOxの発生の抑制原理として、①火炎（燃焼ガス）温度の抑制、②高温燃焼ガスの滞留時間の短縮、③酸素分圧を低くすることなどが知られている。そして、これらの原理を応用した種々の低NOx化技術がある。たとえば、2段燃焼法、濃淡燃焼法、排ガス再循環燃焼法、水添加燃焼法、蒸気噴射燃焼法、水管群による火炎冷却燃焼法などが提案され実用化されている。

【0003】

ところで、水管ボイラなどの比較的容量の小さいNOx発生源に対しても時代と共に排ガス規制が厳しくなり、一層の低NOx化が求められるようになってきている。これらの要請に対する低NOx化技術が、米国特許第6029614号明細書などにて提案されいる。

【0004】

しかしながら、これらの先行技術によるNOx低減は、現実には30ppm程度にとどまり、10ppmを下回る超低NOx化技術はいまだ実用化されていない。その原因是、低NOx化と低CO化とが相反する技術的課題であることがある。すなわち、低NOxを推し進めるために燃焼ガス温度を急激に低下させ、900°C以下の低い温度に抑制すると、COが多量に発生すると共に発生したCOが酸化されないまま排出され、CO排出量が増大してしまう。逆に、COの排出量を少なくするために、燃焼ガス温度を高めに抑制すると、NOxの生成量の抑制が不十分となる。

【0005】

前記先行技術にて提案の低NOx化技術も、低NOx化に伴い発生するCO量ができるだけ少なくするように、また発生したCOが酸化するように燃焼ガス温度を抑制するものである。その結果、前記先行技術は、燃焼ガス温度の抑制が不十分であり、前記超低NOx化を実現するものではなかった。

【0006】

【発明が解決しようとする課題】

この発明が解決しようとする課題は、排出NOx値が10ppmを下回る超低NO

x化と低CO化とを同時に実現できる低NOxおよび低CO燃焼方法とその装置を提供することである。

【0007】

【課題を解決するための手段】

この発明は、前記課題を解決するためになされたもので、請求項1に記載の発明は、バーナからの燃焼ガスの温度を制御することにより低NOxおよび低COを実現する低NOxおよび低CO燃焼方法であって、NOx発生の抑制を排出CO値低減に優先するように燃焼ガス温度を抑制しNOx値を所定値以下とする超低NOx化ステップと、この超低NOx化ステップからの排出CO値を所定値以下とする低CO化ステップとを具備することを特徴としている。

【0008】

請求項2に記載の発明は、請求項1において、前記低CO化ステップをCO酸化触媒体により行うことの特徴としている。

【0009】

請求項3に記載の発明は、バーナからの燃焼ガスの温度を抑制することにより低NOxおよび低COを実現する低NOxおよび低CO燃焼装置であって、NOx発生の抑制を排出CO値低減に優先するように燃焼ガス温度を抑制しNOx値を所定値以下とする超低NOx化手段と、この超低NOx化手段からの排出CO値を所定値以下とする低CO化手段とを具備することを特徴としている。

【0010】

請求項4に記載の発明は、バーナからの燃焼ガスの温度を抑制することにより低NOxおよび低COを実現する低NOxおよび低CO燃焼装置であって、燃焼ガス温度の抑制により燃焼完結ガス中のNOx値を10ppm以下とする超低NOx化手段と、この超低NOx化手段からの排出CO値を所定値以下とする低CO化手段とを具備することを特徴としている。

【0011】

さらに、請求項5に記載の発明は、請求項3または4において、前記低CO化手段をCO酸化触媒体とすることを特徴としている。

【0012】

【発明の実施の形態】

実施の形態を説明する前に、本明細書において使用する用語について説明する。燃焼ガスは、燃焼反応中（燃焼過程）の燃焼ガスと燃焼反応が完結した燃焼ガスとを含む。そして、燃焼反応中ガスは燃焼反応中の燃焼ガスを意味し、燃焼完結ガスは燃焼反応が完結した燃焼ガスを意味する。また、燃焼反応中ガスは、物質概念であるが、一般的には目視可能な火炎を含み火炎状態であるので、状態概念として火炎と称することもできる。よって、本明細書においては、燃焼反応中ガスを火炎または燃焼火炎と称する場合もある。また、排ガスとは伝熱管などによる吸熱作用を受けて温度低下した燃焼完結ガスをいう。

【0013】

また、燃焼ガス温度は、特に断らなければ、燃焼反応中ガスの温度を意味し、燃焼温度あるいは燃焼火炎温度と同義である。さらに、燃焼ガス温度の抑制とは、燃焼ガス（燃焼火炎）温度の最高値を低く抑えることを意味する。なお、通常、燃焼反応は、燃焼完結ガス中においても極微量であるが継続しているので、燃焼完結とは、燃焼反応の100%完結を意味するものではない。

【0014】

さらに、空気比は、実際燃焼空気量／理論燃焼空気量であるが、排ガスO₂（%）（排ガス中の酸素濃度）と所定の関係で対応しているので、排ガスO₂（%）にて表示する。また、NOx値は、排ガス0%O₂換算の値を示し、CO値は、換算値でなく読取値を示す。

【0015】

つぎに、この発明の実施の形態について説明する。この発明は、小型貫流ボイラなどの水管ボイラ、給湯器、吸収式冷凍機の再熱器などの熱機器（燃焼機器と称しても良い。）に適用される。この熱機器は、バーナとこのバーナからの燃焼ガスによって加熱される吸熱体群を有する。

【0016】

この発明の方法の実施の形態は、バーナから噴出される燃焼ガスの温度を制御することにより、低NOxおよび低COを実現する低NOxおよび低CO燃焼方法であって、NOx発生の抑制を排出CO値低減に優先するように、燃焼ガス温度

を抑制し、生成NO_x値を所定値以下とする超低NO_x化ステップと、この超低NO_x化ステップからの排出CO値を所定値以下とする低CO化ステップとを含む。この低NO_xおよび低CO燃焼方法は、NO_xが一度生成するとその後は殆ど消滅しないのに対して、COが生成後に容易に低減できるという特性に着目したものであって、まず生成NO_x値が低減目標NO_x値となるように超低NO_x化ステップを優先して実行し、その後に低CO化ステップを実行するという新規な燃焼方法である。

【0017】

まず、前記超低NO_x化ステップにおいて、超低NO_x化手段により燃焼ガス温度を抑制し、生成NO_x値を所定値以下に低減する。前記所定値は、従来達成されていたNO_x値以下であり、好ましくは10ppm以下である。この超低NO_x化においては、排出CO値の低減、すなわちCOの生成の抑制とCOの酸化の促進に優先して低NO_x化を進める。この優先とは、燃焼の継続を条件に可及的に燃焼ガス温度を抑制し、まずはNO_x低減化を低CO化に先だって行い、NO_x低減化の後にCOの低減化を行うことを意味する。前記超低NO_x化ステップをより具体的に説明する。前記超低NO_x化ステップは、同ステップが有する空気比対NO_x特性において、NO_x値が低減目標NO_x値以下となる空気比を求め、この空気比にて超低NO_x化を行う。この空気比を求める際には前記超低NO_x化ステップが有する空気比対CO特性は考慮しない。

【0018】

ついで、前記低CO化ステップにおいて、前記超低NO_x化ステップにて生成され、排出されるCO値を前記低CO化手段により所定値以下とする。前記排出COの所定値は、50ppmであり、好ましくは20～30ppmである。

【0019】

こうして、排出NO_x値10ppm以下の超低NO_x化と排出CO値50ppm以下の低CO化とを同時に実現できる。

【0020】

つぎに、前記超低NO_x化ステップおよび前記低CO化ステップの構成を説明する。

【0021】

前記超低NOx化ステップは種々の形態を含む。好ましい形態は、完全予混合式のバーナを高空気比で燃焼させることによる燃焼ガス温度の抑制手段（以下、「第一抑制手段」という。）と、吸熱体群による燃焼ガス温度の抑制手段（以下、「第二抑制手段」という。）と、燃焼完結ガスを燃焼反応領域へ再循環させることによる燃焼ガス温度の抑制手段（以下、「第三抑制手段」という。）と、前記燃焼反応領域への水添加または蒸気添加（以下、「水／蒸気添加」という。）による燃焼ガス温度の抑制手段（以下、「第四抑制手段」という。）とを組み合わせて行うステップとする。前記燃焼反応領域とは、燃焼反応中ガスが存在する領域である。

【0022】

前記第一抑制手段は、つぎの原理に基づく。前記バーナを高空気比にて燃焼させると、燃焼用空気による冷却効果により燃焼ガス温度が抑制され、NOx値が低減する。ここにおける高空気比とは、排ガス中に含まれるO₂（%）：5以上であり、好ましくは5.5以上である。この冷却作用は、前記バーナにより形成される燃焼反応領域全体にほぼ均一に作用する。

【0023】

前記第二抑制手段は、つぎの原理に基づく。前記バーナからの燃焼反応中ガス中、すなわち燃焼反応領域に吸熱体を多数配置して構成した吸熱体群の冷却作用により燃焼ガス温度を抑制して、NOx値を低減する。この第二抑制手段は、前記吸熱体群を配置して燃焼反応中ガスを冷却するので、不均一冷却である。そして、前記燃焼反応領域の吸熱体間の隙間においては燃焼が活発に行われている部位もある。特に、前記吸熱体の後流においては、渦流が形成されて、燃焼火炎は伝熱管により保炎される。前記吸熱体は、水管などの伝熱管にて構成されるが、これに限定されるものではない。

【0024】

燃焼反応中ガスの流れに対してどのように前記吸熱体群を配置するかの配置構成として、つぎの二つの形態を含む。その一つは、前記バーナから排ガス出口までは直線状に燃焼ガスが流通する燃焼ガス通路を形成し、前記バーナからの燃

焼反応中ガスと交叉するように前記吸熱体群を互いに燃焼ガスの流通を許容する間隙を存して配置する構成である。他の一つは、吸熱体群を互いに燃焼ガスの流通を許容する間隙を存して環状に配列し、前記バーナからの燃焼ガスを前記環状吸熱体群の内側から前記吸熱体群に向けて放射方向に流通させるように構成して、前記バーナからの燃焼反応中ガス中に前記吸熱体群に配置する構成である。後者の構成は、米国特許第6029614号明細書に示されるものと同様である。

【0025】

前記第三抑制手段は、所謂排ガス再循環燃焼法と称されるもので、前記吸熱体群による吸熱作用を受けて温度低下した後大気へ放出される排ガスの一部が、排ガス再循環通路を介して燃焼用空気に混入される。混入した排ガスの冷却効果により、燃焼ガス温度を抑制して、NO_x値を低減する。この第三抑制手段も燃焼ガスの均一冷却である。

【0026】

前記第四抑制手段は、前記燃焼反応領域への水／蒸気添加である。この水／蒸気添加により、燃焼反応中ガスが冷却され、燃焼ガス温度が抑制され、NO_x値が低減する。この第四抑制手段も燃焼ガスの均一冷却である。前記水／蒸気添加は、実施に応じて前記排ガス循環通路において行うことができる。さらには、前記バーナを完全予混合式バーナとし、送風機により燃焼用空気と排ガスとの混合気を前記バーナへ送る実施の形態においては、前記バーナと前記送風機との間ににおいて蒸気添加を行うことができる。

【0027】

この第一抑制手段から第四抑制手段の組合せによる効果はつぎの通りである。個々の抑制手段の機能を単独に強化すると、各抑制手段の有する欠点が問題化してくるが、4つの抑制手段を組み合わせることで、これらの欠点を問題化することなく、比較的簡単に超低NO_xを実現できる。特に、後述する前記第四抑制手段による不安定特性を緩和して安定した低NO_x化を実現できる。

【0028】

なお、前記第一抑制手段（予混合高空気比燃焼）の機能強化は、空気比を増加させることである。この機能強化により燃焼反応の停止および前記燃焼バーナの

不安定燃焼が発生する。また、前記第二抑制手段（吸熱体群冷却）の機能強化は、前記伝熱管を前記バーナと接触して設けたり、吸熱体群の伝熱面密度を増加することである。この機能強化により、圧力損失が増大したり、振動燃焼などの不安定燃焼を生ずる。

【0029】

また、前記第三抑制手段（排ガス再循環）の機能強化は、排ガス循環量を増加させることである。この機能強化により、前記第三抑制手段が有する不安定特性を增幅する。すなわち、排ガス再循環は、燃焼量の変化や負荷の変化により、排ガス流量や温度が変化する特性を有している。排ガス再循環量を増大させると、これらの不安定特性が増幅される結果、安定した低NO_x化を実現できない。また、前記第三抑制手段の機能強化により、燃焼反応が抑制され、COおよび未燃分の排出増加をもたらすと共に、熱的ロスの増大を招く。また、排ガス再循環量を増大させると、送風機負荷が増加する。

【0030】

また、前記第四抑制手段（水添加／蒸気添加）の機能強化は、付加する水分量を増加させることである。この機能強化により、熱的ロスが増大すると共に結露量が増加し、特に前記吸熱体へ供給する水を排ガスにより予熱する給水予熱器を有するボイラにおいては、前記給水予熱器の結露による腐食が問題となる。

【0031】

前記実施の形態によれば、前記第一抑制手段～第四抑制手段を組み合わせているので、前記各抑制手段の機能を単独に強化することによる問題点の表面化を防止できる。

【0032】

さらに、前記実施の形態においては、好ましくは、前記空気比を所定高空気比に制御する空気比制御手段を付加する。より具体的には、排ガス中の酸素濃度を検出する酸素濃度検出手段を設け、この酸素濃度検出手段による検出酸素濃度が前記所定高空気比に対応する設定値となるように、前記バーナへ燃焼用空気を送風する送風機の回転数を制御する。前記の所定高空気比は、つぎのようにして決められる。NO_x低減目標値を10ppmとすると、前記超低NO_x化ステップの空

気比対NO_x特性において前記目標値に対応する空気比を求め、こうして求めた空気比またはこの空気比以上の値を所定高空気比とする。結局、所定高空気比はNO_x低減目標値に対応する。

【0033】

ここで、前記実施の形態は、つぎの変形例を含む。まず、前記超低NO_x化ステップを実現する手段は、つぎの5つの変形例を含む。①前記第一抑制手段（予混合高空気比燃焼）を除き、前記第二抑制手段（吸熱体群冷却）と前記第三抑制手段（排ガス再循環）と前記第四抑制手段（水／蒸気添加）との三つの抑制手段を組み合せた形態。②前記第一抑制手段（予混合高空気比燃焼）と前記第二抑制手段（水管群冷却）と前記第三抑制手段（排ガス再循環）との三つの抑制手段を組み合せた形態。③前記第一抑制手段（予混合高空気比燃焼）と前記第二抑制手段（吸熱体群冷却）と前記第四抑制手段（水／蒸気添加）との三つの抑制手段を組み合せた形態。④前記第二抑制手段（水管群冷却）と前記第三抑制手段（排ガス再循環）との二つの抑制手段を組み合せた形態。⑤前記第二抑制手段（吸熱体群冷却）と前記第四抑制手段（水／蒸気添加）との二つの抑制手段を組み合せた形態。

【0034】

また、前記空気比制御手段は、つぎの変形例を含む。前記空気比制御手段は、前記送風機の回転数を制御する構成であるが、これに代えて前記送風機の下流または上流に設けたダンパ、弁などの流量調整機構の開度を制御することによって空気比を一定に制御するように構成できる。さらに、実施に応じては、前記酸素濃度検出手段の代わりに、外気温を検出する外気温検出手段を設け、この外気温検出手段により前記送風機または前記流量調整機構を制御して、空気比を一定に制御するように構成することができる。

【0035】

ついで、前記低CO化ステップの構成につき説明する。この低CO化ステップは、前記超低NO_x化ステップにおいて発生し、排出されたCO値を低CO化手段により所定値以下とするステップである。前記低CO化手段としては、COをCO₂に酸化させるCO酸化手段を用い、好ましくはCO酸化触媒体を用いる。

このCO酸化触媒体はCOの酸化だけでなく、未燃分の酸化を行う。前記CO酸化触媒体は、ボイラなどの熱機器への取付け易さ、メンテナンス性、コストの観点から好ましい手段である。

【0036】

前記CO酸化触媒体は、100°C～1000°Cで酸化触媒作用をなすものが選ばれる。下限の100°Cは、前記CO酸化触媒体の活性化温度、すなわち有効な酸化触媒作用を発揮する温度であり、上限の1000°Cは、前記CO酸化触媒体の耐熱性により決められる温度である。前記CO酸化触媒体は、通気性を有する基材に酸化触媒を塗布した構成とする。前記基材としては、ステンレスなどの金属、セラミックが用いられ、排ガスとの接触面積を広くするような表面処理が施される。酸化触媒としては、一般的に白金が用いられるが、実施に応じて、白金族の貴金属またはクロム、マンガン、鉄、コバルト、ニッケルなどの金属酸化物を用いることができる。

【0037】

つぎに、この発明の装置に関する実施の形態につき説明する。この発明は、前記の方法の実施の形態に対応するつぎの装置の実施の形態（1）～（4）を含む。

【0038】

実施の形態（1）：バーナからの燃焼ガスの温度を制御することにより低NO_xおよび低COを実現する低NO_xおよび低CO燃焼装置であって、NO_x発生の抑制を排出CO値低減に優先するように燃焼ガス温度を抑制し、NO_x値を所定値以下とする超低NO_x化手段と、この超低NO_x化手段からの排出CO値を所定値以下とする低CO化手段とを具備することを特徴とする低NO_xおよび低CO燃焼装置。

【0039】

実施の形態（2）：バーナからの燃焼ガスの温度を制御することにより低NO_xおよび低COを実現する低NO_xおよび低CO燃焼装置であって、燃焼ガス温度の抑制により燃焼完結ガス中のNO_x値を10ppm以下とする超低NO_x化手段と、この超低NO_x化手段からの排出CO値を所定値以下とする低CO化手段とを

具備することを特徴とする低NO_xおよび低CO燃焼装置。

【0040】

実施の形態（3）：完全予混合式のバーナを高空気比で燃焼させることによる燃焼ガス温度の抑制手段と、吸熱体群による燃焼ガス温度の抑制手段と、燃焼完結ガスを燃焼ガスの燃焼反応領域へ再循環させることによる燃焼ガス温度の抑制手段と、前記燃焼反応領域への水添加または蒸気添加による燃焼ガスの抑制手段とを組み合わせて行う超低NO_x化手段と、この超低NO_x化手段からの排出COを酸化させてCO値を所定値以下とする低CO化手段とを具備することを特徴とする低NO_xおよび低CO燃焼装置。

【0041】

実施の形態（4）：前記実施の形態（1）から（3）のいずれかにおいて、低CO化手段が、CO酸化触媒体であることを特徴とする低NO_xおよび低CO燃焼装置。

【0042】

さらに、前記装置に関する実施の形態は、さらに、つぎの実施の形態（5）～（7）を含む。

実施の形態（5）：バーナからの燃焼ガスの温度を制御することにより低NO_xおよび低COを実現する低NO_xおよび低CO燃焼装置であって、空気比対NO_x特性が前記バーナの空気比の増加に従い生成NO_x値が減少するものであり、空気比対CO特性が前記空気比の増加に従い排出CO値が増加するものである超低NO_x化手段と、前記バーナの空気比を所定高空気比に制御する空気比制御手段と、前記超低NO_x化手段からの排出CO値を所定値以下とする低CO化手段とを具備したことを特徴とする低NO_xおよび低CO燃焼装置。

【0043】

実施の形態（6）：前記実施の形態（5）において、前記所定空気比がNO_x低減目標値と前記空気比対NO_x特性とから求められることを特徴とする低NO_xおよび低CO燃焼装置。

【0044】

実施の形態（7）：前記実施の形態（5）または（6）において、低CO化手

段が、CO酸化触媒体であることを特徴とする低NO_xおよび低CO燃焼装置。

【0045】

前記実施の形態(3)において、前記超低NO_x化手段を、前記第一抑制手段から第四抑制手段の組合せにより実現させるよう構成しているが、実施に応じては、前記超低NO_x化手段をこの組合せ以外の前記の方法の実施の形態において説明した5つの変形例とすることもできる。前記空気比制御手段は、前記の装置における実施の形態で説明したものと同様である。

【0046】

前記実施の形態(1)～(7)によれば、超低NO_xと低COとを同時に実現できると共に、実施の形態(4)～(7)によれば、外気温が変動しても空気比の一定制御により安定した超低NO_x化を実現できる。

【0047】

また、前記の実施の形態において、前記低NO_x化ステップに、低CO化手段を含ませることができる。この低CO化手段は、吸熱体群中に形成したCO酸化のための伝熱管除去空間(すなわち、CO酸化空間)である。一般にCOは、燃焼ガス温度が1400℃～900℃の温度範囲で、かつ必要な滞留時間を与えると、CO₂に酸化することが知られている。前記空間は、この原理を応用するものであり、伝熱管を複数本除去して形成され、燃焼ガス温度が前記温度範囲となるよう構成した空間である。

【0048】

【実施例】

この発明の低NO_xおよび低CO燃焼方法とその装置を水管ボイラの一種である貰流式の蒸気ボイラに適用した実施例について、以下に図面に従い説明する。図1は、この発明の一実施例を適用した蒸気ボイラの縦断面の説明図であり、図2は、図1のII-II線に沿う断面図であり、図3は、図1のIII-III線に沿う横断面図であり、図4および図5は、それぞれ同実施例の高燃焼時、低燃焼時の空気比対NO_x特性および空気比対CO特性を示す図であり、図6は、同実施例の要部制御回路図であり、図7は同実施例のCO酸化触媒体を排ガスの流れ方向から見た要部構成を示す図である。

【0049】

以下に、この実施例のボイラの全体構成を説明し、ついで特徴部分の構成につき説明する。特徴部分とは、完全予混合式のバーナを高空気比で燃焼させることによる燃焼ガス温度の抑制手段（第一抑制手段），多数の伝熱管による燃焼ガス温度の抑制手段（第二抑制手段），燃焼完結ガスを燃焼反応領域へ再循環させることによる燃焼ガス温度の抑制手段（第三抑制手段）および前記燃焼反応領域への水添加または蒸気添加による燃焼ガス温度の抑制手段（第四抑制手段）を組み合わせて行う超低NO_x化手段と、前記バーナの空気比を所定の高空気比に維持すべく制御する空気比制御手段と、前記超低NO_x化手段から排出されるCOを酸化させて排出CO値を所定値以下とする低CO化手段である。

【0050】

まず、前記蒸気ボイラの全体構成につき説明する。この蒸気ボイラは、高燃焼と低燃焼とを切替えて運転できる。そして、面状の完全予混合式のバーナ1および多数の熱吸収用の伝熱管2, 2, …を有する缶体3と、前記バーナ1へ燃焼用空気を送る送風機4および給気通路5と、ガス燃料供給管6と、前記缶体3から排出される排ガスを排出する排ガス通路（通常煙突と称される。）7と、この排ガス通路7を流通する排ガスの一部を燃焼用空気に混入させて前記バーナ1へ供給する排ガス再循環通路8と、燃焼用空気へ蒸気を添加する蒸気添加管9（図3参照）とを備えている。なお、前記各伝熱管2の外径は、60.5mmである

【0051】

前記缶体3は、上部管寄せ10および下部管寄せ11を備え、この両管寄せ10, 11間に複数の前記各伝熱管2を配置している。図2において、前記缶体3の長手方向の両側部に外側伝熱管12, 12, …を連結部材13, 13…で連結して構成した一対の水管壁14, 14を設け、この両水管壁14, 14と前記上部管寄せ10および下管寄せ11との間に前記バーナ1からの燃焼反応中ガスおよび燃焼完結ガスがほぼ直線的に流通する燃焼ガス通路15を形成している。

【0052】

つぎに、前記各要素間の接続関係を説明する。図1に示すように、前記燃焼ガ

ス通路15の一端には前記バーナ1が設けられ、他端の排ガス出口16には排ガス通路7が接続されている。前記バーナ1には前記給気通路5が接続され、前記給気通路5には前記ガス燃料供給管6が燃料ガスを前記給気通路5内に噴出するよう接続されている。前記ガス燃料供給管6には、高燃焼と低燃焼とで燃料流量を調整する燃料流量調整手段としての第一弁17を備えている。

【0053】

さらに、図3に示すように、前記送風機4の吸込口18には吸気通路19が接続され、この吸気通路19と前記排ガス通路7との間に前記排ガス再循環通路8が接続されている。前記吸気通路19内には前記蒸気添加管9が挿入されている。

【0054】

以上の構成に基づく、前記蒸気ボイラの概略動作は、以下の通りである。前記吸気通路19から供給される燃焼用空気（外気）は、前記ガス燃料供給管6から供給される燃料ガスと前記給気通路5内において予混合され、この予混合気は前記バーナ1から前記缶体3内へ向けて噴出される。予混合気は着火手段（図示しない）により着火され、燃焼する。この燃焼に伴い生ずる燃焼反応中ガスは、上流側の伝熱管2群と交叉して冷却された後、燃焼完結ガスとなり下流側の伝熱管2群と熱交換して吸熱されて排ガスとなる。この排ガスは、前記排ガス通路7から大気中へ排出される。そして、排ガスの一部は、前記排ガス再循環通路8を経て前記バーナ1へ供給され、燃焼ガス温度の抑制に用いられる。

【0055】

また、前記各伝熱管2中の水は、燃焼ガスとの熱交換により加熱され、蒸気化される。この蒸気は、前記上部管寄せ10に接続される蒸気取出手段（図示しない）から蒸気使用設備（図示しない）へ供給されると共に、その一部が前記蒸気添加管9へ供給され、燃焼反応中ガスの冷却に用いられる。

【0056】

つぎに、この実施例の前記特徴部分につき説明する。まず、前記超低NO_x化手段について、前記第一抑制手段につき説明する。この第一の抑制手段は、前記完全予混合式のバーナ1を高空気比で燃焼させる構成である。前記バーナ1を高

空気比にて燃焼させると、燃焼ガス温度が低下し、NO_x値が低下する。前記バーナ1は、大きさ縦60cm、横18cmの矩形状のバーナであり、多数の予混合気噴出口（図示しない）がほぼ均等に形成されている。

【0057】

前記第二抑制手段は、多数の前記伝熱管2を前記バーナ1により形成される燃焼反応領域（燃焼ガス温度が約900℃以上の領域）20のほぼ全域に亘りに燃焼ガスが流通する間隙を存して配設した構成である。前記バーナ1からの燃焼反応中ガスはこれら伝熱管2群により冷却される。この冷却により、燃焼ガス温度が抑制され、NO_x値が下がる。燃焼ガスの冷却度合いに影響を与える前記伝熱管2群の配列ピッチは、時間当たりの燃焼量および圧損などを考慮して決めている

【0058】

前記第三抑制手段は、前記排ガス通路7と前記排ガス再循環通路8と前記給気通路5と前記バーナ1とから構成される排ガス再循環手段である。前記排ガス再循環通路8内の適所には、排ガス再循環量を所定量に調整する排ガス流量調整手段としての第一ダンパ21を設けている。前記バーナ1へ供給される予混合気に排ガスを混入させることで、燃焼ガス温度が抑制され、NO_x値が下がる。再循環される排ガス量と燃焼用空気量（実際燃焼空気量）との比率は、前記第一ダンパ21により調整される。

【0059】

前記第四抑制手段は、図3に示すように、前記蒸気添加管9と前記吸気通路19と前記送風機4と前記給気通路5と前記バーナ1とから構成される。この蒸気添加管9の反添加側端は、蒸気添加量を調整する蒸気流量調整手段としての第二弁22を介して前記上部管寄せ10に接続され、前記蒸気ボイラにて生成される蒸気がそのまま利用されるよう構成されている。前記第二弁22と前記上部管寄せ10との間にはオリフィスなどの減圧機構（図示しない）を設ける。蒸気は、前記バーナ1へ供給される燃焼用空気に均一に混入され、前記バーナ1の多数の予混合気噴出口（図示しない）からほぼ均一に前記缶体3内へ噴出される。その結果、形成される予混合燃焼火炎に対し効果的な冷却がなされる。

【0060】

この実施例の蒸気ボイラは、前記のように高燃焼と低燃焼とを切替えて行うことができる。高燃焼時と低燃焼時の前記第一抑制手段～第四抑制手段の組合せによる超低NO_x化手段の空気比対NO_x特性および空気比対CO特性について説明する。

【0061】

まず、高燃焼時の空気比対NO_x特性および空気比対CO特性は、ある運転条件にて空気比を変化させることでそれぞれ図4の曲線A、曲線Bのように求められる。前記運転条件は、燃料がLPGであり、前記バーナ1の燃焼量が50Nm³/h（前記蒸気ボイラの高燃焼時の燃焼量）であり、排ガス再循環率が4%（排ガス量／実際燃焼空気量）であり、蒸気添加量が17kg/hである。そして、排ガス再循環率4%における実際燃焼空気量および排ガス量は、たとえばO₂（%）：6において、それぞれ1669Nm³/h、67Nm³/hとなる。空気比の変化は、実際燃焼空気量を変化させることで行われる。この実際燃焼空気量の変化は、前記送風機4のファン23を駆動する電動機24（図3参照）の回転数を制御することにより行われる。なお、図4の曲線C、曲線Dは、前記第三抑制手段および第四抑制手段による冷却を行わない対比例の空気比対NO_x特性および空気比対CO特性であって、実施例の曲線A、曲線Bと対比するためのものである。

【0062】

この高燃焼時の超低NO_x化手段の空気比対NO_x特性は、曲線Aに示すように空気比の増加に対してNO_x値が減少するものとなっている。また、空気比対CO特性は、曲線Bに示すように空気比の増加に従い排出CO値が増加し、特に、O₂（%）：5以上で急激に排出CO値が増加するものとなっている。

【0063】

つぎに、低燃焼時の超低NO_x化手段の空気比対NO_x特性および空気比対CO特性について説明する。これらの特性は、高燃焼時のものと同様にそれぞれ図5の曲線E、曲線Fのように求められる。低燃焼時の運転条件は、燃料がLPGであり、前記バーナの燃焼量が25Nm³/h（前記蒸気ボイラの低燃焼時の燃焼量）であり、排ガス再循環率が4%（排ガス量／実際燃焼空気量）であり、蒸気添加

量が8.5 kg/hである。そして、排ガス再循環率4%における実際燃焼空気量および排ガス量は、たとえばO₂ (%) : 6において、それぞれ834 Nm³/h, 33 Nm³/hとなる。なお、図5の曲線G、曲線Hは、前記第三抑制手段および第四抑制手段による冷却を行わない対比例の空気比対NOx特性および空気比対CO特性である。

【0064】

この低燃焼時の超低NOx化手段の空気比対NOx特性も、曲線Eに示すように空気比の増加に対してNOx値が減少するものとなっている。また、空気比対CO値特性は、曲線Fに示すように空気比の増加に従い排出CO値が増加し、特に、O₂ (%) : 5.5以上で急激に排出CO値が増加するものとなっている。

【0065】

前記空気比制御手段は、図6に示すように、前記排ガス通路7に設けた前記酸素濃度検出手段としての酸素濃度センサ25とこの酸素濃度センサ25の出力を入力して、前記電動機24の回転数を制御する制御回路26とから構成される。前記電動機24は、インバータ制御による回転数制御可能なように構成される。前記ファン23の回転数を空気比が所定値となるように制御することで、外気温の変化に対して所定の低NOx効果を維持する。

【0066】

この実施例においては、前記所定値は、NOx低減目標値を10 ppmとした場合、高燃焼時は図4の曲線Aと10 ppmとから、O₂ (%) : 5.8として求められる。勿論、5.8%以上であれば、低減目標値をクリアできるので、前記所定値を例えば6%とすることもできる。低燃焼時は、図4の曲線Eと10 ppmとから、O₂ (%) : 6.25として求められる。

【0067】

ついで、前記低CO化手段につき説明する。この低CO化手段は、前記超低NOx化手段から排出されるCOを酸化し、CO低減目標値以下に低減するものである。実施例の低CO化手段は、CO値を約1/10に低減するCO酸化触媒体27にて構成される。このCO酸化触媒体27によるCO低減特性は、図4の曲線M、図5の曲線Nにて示される。結局、曲線D、曲線Eにて示される排ガス中

のCOは、曲線M、曲線Nのように低減される。

【0068】

このCO酸化触媒体27は、図7に示すような構造のもので、例えば、つぎのようにして形成される。前記基材としての共にステンレス製の平板28および波板29のそれぞれの表面に多数の微小凹凸を形成し、その表面に酸化触媒を塗布する。ついで、前記平板26および波板27を所定の長尺状に切断し、両者を重ね合わせたうえで、螺旋状に巻回してロール状に形成している。このロール状のものを側板30にて包囲し固定している。こうして図7に示すような前記CO酸化触媒体27が形成される。前記酸化触媒としては、白金を用いている。なお、図7においては、前記平板28および前記波板29の一部のみを示している。

【0069】

前記CO酸化触媒体27は、図1に示すように、前記排ガス出口16部に着脱自在に装着される。このCO酸化触媒体27の大きさ及び処理容量は、酸化触媒の性能と、酸化させるべきCOの量と、前記CO酸化触媒体27を排ガスが流通するときに生ずる圧力損失とを考慮して設計している。

【0070】

さらに、前記超低NOx化手段は、図2に示すように、前記CO酸化触媒体27と別の低CO化手段を含んでいる。この低CO化手段は、吸熱体群中に形成される断熱空間と称される伝熱管除去空間31である。そして、図2に示すように、前記伝熱管2群の一部、この実施例では4本の前記伝熱管2を除去して燃焼ガス温度が1400°C以下で、900°C以上の温度範囲となる前記伝熱管除去空間31を形成している。前記伝熱管除去空間31は、高燃焼時に、ほぼ前記温度範囲となるが、低燃焼時には火炎が短い、すなわち燃焼反応領域が狭くなるので、前記温度範囲に入らなくなる。したがって、高燃焼時は、前記CO酸化触媒体27と前記伝熱管除去空間31が低CO化手段として機能し、低燃焼時は、前記伝熱管除去空間31は低CO化手段として機能せず、前記CO酸化触媒体27が低CO化手段として機能する。

【0071】

前記構成の実施例の動作および作用を以下に説明する。前記バーナ1からの燃

焼反応中ガスは、超低NO_x化作用、すなわち前記の第一抑制手段～第四抑制手段による燃焼ガス温度抑制作用を同時に受け、しかも前記空気比制御手段によりO₂（%）を高燃焼時5.8、低燃焼時6.25とする定空気比制御を受ける。

この実施例の燃焼ガス温度抑制作用により、燃焼ガス温度は、前記第三抑制手段および第四抑制手段の作用を受けない前記対比例と比較して、約100°C程度平均的に低下する。その結果、上流側伝熱管2群から流出するの燃焼ガス中のNO_x値は、図4および図5の曲線A、曲線Eに示すように10ppm程度に抑制される。

【0072】

このように、超低NO_x化が優先して行われるが、その際に生成されるCOは、つぎのようにして低減化される。生成されたCOは、高燃焼時においてはまず伝熱管除去空間31にてその一部が酸化され、低燃焼時にはほとんど酸化されない。このCOの酸化は、燃焼ガス温度が900°C以下では、ほとんど行われないので、前記排ガス出口16における排ガス中のCO値は、図4および図5の特性曲線B、曲線Fに示されるように、高燃焼時は約400ppmで、また低燃焼時は約100ppm程度となる。この排ガス中に残存するCOは、前記CO酸化触媒体27により酸化され、図4、5の特性曲線M、Nに示されるようにCO値が約1/10に低減される。

【0073】

この実施例によれば、つぎの作用効果を奏する。超低NO_x化と低CO化とを同時に達成でき、大気汚染防止に大きく寄与できる。前記空気比制御手段により空気比をほぼ一定の高空気比に制御するので、外気温が変動しても安定した低NO_x効果を得ることができる。また、低燃焼時は、前記伝熱管除去空間31は低CO化手段として有効に機能しないが、前記CO酸化触媒体27によりCOが酸化されるので、高燃焼時、低燃焼時に拘わらず、低CO化を実現できる。

【0074】

なお、この発明は前記実施例に限定されるものではなく、つぎの変形例を含む。前記実施例においては、前記第一抑制手段を完全予混合式のバーナとしているが、実施に応じて部分予混合のバーナとすることができます。

【0075】

また、前記実施例においては、前記第二抑制手段の前記各伝熱管2を垂直水管により構成しているが、水平あるいは傾斜して配置される水管により構成することができる。さらに、前記各伝熱管2の形状も前記実施例の真円に限定されるものではなく、実施に応じて橢円などの形状とすることができます。

【0076】

また、前記実施例においては、前記第二抑制手段の前記各伝熱管2を裸管としているが、実施に応じて、前記伝熱管除去空間31の下流の前記各伝熱管2に水平のヒレ状フィンや全周フィン（いずれも図示しない）を取り付けて、熱回収率を向上させるようにすることができます。

【0077】

また、前記実施例においては、前記第四抑制手段の前記蒸気添加管9の蒸気を前記吸気通路19中へ噴出するように構成しているが、実施に応じて、図8に示すように、前記蒸気添加管9を前記バーナ1と前記送風機4との間に蒸気を噴出するように取り付けることができる。この変形例によれば、前記送風機4の下流側にて蒸気を供給しているので、上流側にて供給する前記実施例と比較して前記送風機4の送風負荷の増大を少なくできると共に、結露による前記送風機4の腐食を防止できる。

【0078】

また、実施に応じて、図9に示すように前記蒸気添加管9を前記排ガス再循環通路8に蒸気を噴出するように取り付けることができる。蒸気を前記排ガス再循環通路8に噴出させることにより、結露がしにくくなり、錆の発生を少なくできると共に、蒸気と燃焼用空気との混合の均一化がなされるなどの効果を發揮する。

【0079】

また、前記実施例においては、前記空気比制御手段を前記送風機4の回転数を制御するように構成しているが、実施に応じて、図10に示すように、前記送風機4の下流側に設けた燃焼空気量調整手段としての第二ダンパ32により空気比を制御するように構成できる。

【0080】

また、前記実施例においては、前記空気比制御手段を酸素濃度センサ25の信号により制御するものとしているが、実施に応じて前記蒸気ボイラを設置するボイラ室の温度を検出する前記外気温検出手段としての外気温センサ33を設け、図11に示すように、この外気温センサ33出力により、空気比を制御するよう構成することができる。この場合、所定燃焼量および所定排ガス再循環量において、外気温と空気比との関係を実験にて求め、外気温対送風機回転数の対比テーブルを作成する。そして、この対比テーブルを制御回路34のメモリ（図示しない）に記憶させておき、このテーブルに基づき空気比がほぼ一定となるよう、前記送風機4の電動機24を制御するよう構成することができる。

【0081】

また、前記実施例においては、前記超低NO_x化手段に前記伝熱管除去空間31を含ませているが、実施に応じて、前記伝熱管除去空間31を省略する、すなわち伝熱管を除去しないよう構成することができる。

【0082】

また、前記実施例の蒸気ボイラは、燃焼量を高燃焼と低燃焼とに切替え可能のように構成しているが、実施に応じては燃焼量の切替の無い蒸気ボイラとしてもできる。

【0083】

さらに、前記実施例においては、前記CO酸化触媒体27を前記排ガス出口16部に取り付けているが、給水予熱器（エコノマイザ）を前記排ガス通路7に設けるものにおいては、前記給水予熱器を収容する室において前記給水予熱器の上流側に配置することができる。

【0084】

【発明の効果】

この発明によれば、超低NO_xと低COとを同時に実現でき、時代のニーズに適応した低公害型の技術および商品を提供できるものであり、産業的価値は多大である。

【図面の簡単な説明】

【図1】

図1は、この発明の一実施例を適用した蒸気ボイラの縦断面の説明図である。

【図2】

図2は、図1のII-II線に沿う断面説明図である。

【図3】

図3は、図2のIII-III線に沿う横断面説明図である。

【図4】

図4は、同蒸気ボイラの高燃焼時の空気比対NO_x特性および空気比対CO特性曲線を示す図である。

【図5】

図5は、同蒸気ボイラの低燃焼時の空気比対NO_x特性および空気比対CO特性曲線を示す図である。

【図6】

図6は、同蒸気ボイラの要部制御回路図である。

【図7】

図7は、同蒸気ボイラのCO酸化触媒体の要部構成を示す正面図である。

【図8】

図8は、この発明の他の実施例の第四抑制手段を備えた縦断面の説明図である

【図9】

図9は、この発明の他の実施例の第四抑制手段を備えた縦断面の説明図である

【図10】

図10は、この発明の他の実施例の空気比制御手段を備えた縦断面の説明図である。

【図11】

図11は、この発明の他の実施例の空気比制御手段の要部制御回路図である。

【符号の説明】

1 バーナ

- 2 伝熱管
- 3 缶体
- 4 送風機
- 7 排ガス通路
- 8 排ガス再循環通路
- 9 蒸気添加管
- 27 酸化触媒体

【書類名】 図面

【図1】

【図2】

【図3】

【図4】

【図5】

【図6】

【図7】

【図8】

【図9】

【図10】

【図11】

【書類名】 要約書

【要約】

【課題】 排出NOx値が10ppmを下回る超低NOx化と低CO化とを同時に実現できる低NOxおよび低CO燃焼方法とその装置を提供することである。

【解決手段】 バーナからの燃焼ガスの温度を制御することにより低NOxおよび低COを実現する低NOxおよび低CO燃焼方法であって、NOx発生の抑制を排出CO値低減に優先するように燃焼ガス温度を抑制しNOx値を所定値以下とする超低NOx化ステップと、この超低NOx化ステップからの排出CO値を所定値以下とする低CO化ステップとを具備する。

【選択図】 図1

職権訂正履歴（職権訂正）

特許出願の番号	特願2002-205303
受付番号	50201031698
書類名	特許願
担当官	三浦 有紀 8656
作成日	平成14年 7月17日

<訂正内容1>

訂正ドキュメント

書誌

訂正原因

職権による訂正

訂正メモ

不要な項目【代表出願人】を削除しました。

訂正前内容

【特許出願人】

【代表出願人】

【識別番号】 000175272

【氏名又は名称】 三浦工業株式会社

【代表者】 白石 省三

訂正後内容

【特許出願人】

【識別番号】 000175272

【氏名又は名称】 三浦工業株式会社

【代表者】 白石 省三

次頁無

出願人履歴情報

識別番号 [000175272]

1. 変更年月日 1990年 8月25日

[変更理由] 新規登録

住 所 愛媛県松山市堀江町7番地

氏 名 三浦工業株式会社