Constrained optimization

A general constrained optimization problem has the form

$$\min_{\mathbf{x}} \ f(\mathbf{x})$$
s.t. $g_i(\mathbf{x}) \leq 0$ $i = 1, \dots, m$
 $h_i(\mathbf{x}) = 0$ $i = 1, \dots, p$

where $\mathbf{x} \in \mathbb{R}^d$

The Lagrangian function is given by

$$L(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\nu}) := f(\mathbf{x}) + \sum_{i=1}^{m} \lambda_i g_i(\mathbf{x}) + \sum_{i=1}^{p} \nu_i h_i(\mathbf{x})$$

Primal and dual optimization problems

Primal:
$$\min_{\mathbf{x}} \max_{\boldsymbol{\lambda}, \boldsymbol{\nu}: \lambda_i \geq 0} L(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\nu})$$

Dual:
$$\max_{\lambda,\nu:\lambda_i\geq 0} \min_{\mathbf{x}} L(\mathbf{x},\lambda,\nu)$$

Weak duality:
$$d^* := \max_{\lambda, \nu: \lambda_i \geq 0} \min_{\mathbf{x}} L(\mathbf{x}, \lambda, \nu)$$

$$\leq \min_{\mathbf{x}} \max_{\lambda, \nu: \lambda_i \geq 0} L(\mathbf{x}, \lambda, \nu) =: p^*$$

Strong duality: For convex problems with affine constraints $d^* = p^*$

Saddle point property

If $(\mathbf{x}^*, \boldsymbol{\lambda}^*, \boldsymbol{\nu}^*)$ are primal/dual optimal with zero duality gap, they are a **saddle point** of $L(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\nu})$, i.e.,

$$L(\mathbf{x}^*, \boldsymbol{\lambda}, \boldsymbol{\nu}) \leq L(\mathbf{x}^*, \boldsymbol{\lambda}^*, \boldsymbol{\nu}^*) \leq (\mathbf{x}, \boldsymbol{\lambda}^*, \boldsymbol{\nu}^*)$$

for all $\mathbf{x} \in \mathbb{R}^d$, $\boldsymbol{\lambda} \in \mathbb{R}^m_+$, $\boldsymbol{\nu} \in \mathbb{R}^p$

KKT conditions: The bottom line

If a constrained optimization problem is

- differentiable
- convex

then the KKT conditions are necessary and sufficient for primal/dual optimality (with zero duality gap)

In this case, we can use the KKT conditions to find a solution to our optimization problem

i.e., if we find $(\mathbf{x}^*, \boldsymbol{\lambda}^*, \boldsymbol{\nu}^*)$ satisfying the conditions, we have found solutions to both the primal and dual problems

The KKT conditions

1.
$$\nabla f(\mathbf{x}^*) + \sum_{i=1}^{m} \lambda_i^* \nabla g_i(\mathbf{x}^*) + \sum_{i=1}^{p} \nu_i^* \nabla h_i(\mathbf{x}^*) = 0$$

2.
$$g_i(\mathbf{x}^*) \leq 0, \quad i = 1, ..., m$$

3.
$$h_i(\mathbf{x}^*) = 0, \quad i = 1, \dots, p$$

4.
$$\lambda_i^* \geq 0, \quad i = 1, ..., m$$

5.
$$\lambda_i^* g_i(\mathbf{x}^*) = 0$$
 $i = 1, ..., m$ (complementary slackness)

Soft-margin classifier

$$\min_{\mathbf{w},b,\xi} \frac{1}{2} ||\mathbf{w}||^2 + \frac{C}{n} \sum_{i=1}^n \xi_i$$
s.t. $y_i(\mathbf{w}^T \mathbf{x}_i + b) \ge 1 - \xi_i \quad i = 1, \dots, n$

$$\xi_i \ge 0 \quad i = 1, \dots, n$$

This optimization problem is differentiable and convex

- the KKT conditions and necessary and sufficient conditions for primal/dual optimality (with zero duality gap)
- we can use these conditions to find a relationship between the solutions of the primal and dual problems
- the dual optimization problem will be easy to "kernelize"

Forming the Lagrangian

Begin by converting our problem to the standard form

$$\min_{\mathbf{w},b,\xi} \frac{1}{2} ||\mathbf{w}||^2 + \frac{C}{n} \sum_{i=1}^n \xi_i$$
s.t. $y_i(\mathbf{w}^T \mathbf{x}_i + b) \ge 1 - \xi_i$ $i = 1, \dots, n$

$$\xi_i \ge 0 \quad i = 1, \dots, n$$

$$\min_{\mathbf{w},b,\xi} \frac{1}{2} ||\mathbf{w}||^2 + \frac{C}{n} \sum_{i=1}^n \xi_i$$
s.t. $1 - \xi_i - y_i(\mathbf{w}^T \mathbf{x}_i + b) \le 0$ $i = 1, \dots, n$

$$-\xi_i < 0 \quad i = 1, \dots, n$$

Forming the Lagrangian

The Lagrangian function is then given by

Lagrange multipliers/dual variables
$$L(\mathbf{w}, b, \boldsymbol{\xi}, \boldsymbol{\alpha}, \boldsymbol{\beta})$$

$$= \frac{1}{2} \mathbf{w}^T \mathbf{w} + \frac{C}{n} \sum_{i=1}^n \xi_i$$

$$+ \sum_{i=1}^n \alpha_i (1 - \xi_i - y_i (\mathbf{w}^T \mathbf{x}_i + b)) - \sum_{i=1}^n \beta_i \xi_i$$

Soft-margin dual

The Lagrangian dual is thus

$$L_D(\boldsymbol{\alpha}, \boldsymbol{\beta}) = \min_{\mathbf{w}, b, \boldsymbol{\xi}} L(\mathbf{w}, b, \boldsymbol{\xi}, \boldsymbol{\alpha}, \boldsymbol{\beta})$$

and the dual optimization problem is

$$\max_{oldsymbol{lpha},oldsymbol{eta}:lpha_i,eta_i\geq \mathsf{0}} L_D(oldsymbol{lpha},oldsymbol{eta})$$

Let's compute a simplified expression for $L_D(\alpha, \beta)$ How?

Using the KKT conditions!

Taking the gradient

$$L(\mathbf{w}, b, \boldsymbol{\xi}, \boldsymbol{\alpha}, \boldsymbol{\beta})$$

$$= \frac{1}{2}\mathbf{w}^T\mathbf{w} + \frac{C}{n}\sum_{i=1}^n \xi_i$$

$$+ \sum_{i=1}^n \alpha_i (1 - \xi_i - y_i(\mathbf{w}^T\mathbf{x}_i + b)) - \sum_{i=1}^n \beta_i \xi_i$$

$$\nabla_{\mathbf{w}} L(\mathbf{w}, b, \boldsymbol{\xi}, \boldsymbol{\alpha}, \boldsymbol{\beta}) = \mathbf{w} - \sum_{i=1}^{n} \alpha_i y_i \mathbf{x}_i = 0$$

$$\frac{\partial}{\partial b}L(\mathbf{w},b,\boldsymbol{\xi},\boldsymbol{\alpha},\boldsymbol{\beta}) = -\sum_{i=1}^{n} \alpha_i y_i = 0$$

$$\frac{\partial}{\partial \xi_i} L(\mathbf{w}, b, \boldsymbol{\xi}, \boldsymbol{\alpha}, \boldsymbol{\beta}) = \frac{C}{n} - \alpha_i - \beta_i = 0$$

Plugging this in

The dual function is thus

$$L_D(\boldsymbol{\alpha}, \boldsymbol{\beta}) = -\frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y_i y_j \mathbf{x}_i^T \mathbf{x}_j + \sum_i \alpha_i$$

And the dual optimization problem can be written as

$$\max_{\alpha,\beta} -\frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y_i y_j \mathbf{x}_i^T \mathbf{x}_j + \sum_i \alpha_i$$
s.t.
$$\sum \alpha_i y_i = 0$$

$$\alpha_i + \beta_i = \frac{C}{n}$$
 $\alpha_i, \beta_i \ge 0$ $i = 1, \dots, n$

Soft-margin dual quadratic program

We can eliminate $oldsymbol{eta}$ to obtain

$$\max_{\alpha} -\frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y_i y_j \mathbf{x}_i^T \mathbf{x}_j + \sum_i \alpha_i$$
s.t.
$$\sum_i \alpha_i y_i = 0$$

$$0 \le \alpha_i \le \frac{C}{n} \qquad i = 1, \dots, n$$

Note: Input patterns are only involved via inner products

Recovering w*

Given α^* (the solution to the soft-margin dual), can we recover the optimal \mathbf{w}^* and b^* ?

Yes! Use the KKT conditions

From KKT condition 1, we know that

$$\mathbf{w}^* - \sum_{i=1}^n \alpha_i^* y_i \mathbf{x}_i = 0$$

And thus the optimal normal vector is just a linear combination of our input patterns

$$\mathbf{w}^* = \sum_{i=1}^n \alpha_i^* y_i \mathbf{x}_i$$

 b^st is a little less obvious - we'll return to this in a minute

Support vectors

From KKT condition 5 (complementary slackness) we also have that for all i,

$$\alpha_i^* \left(1 - \xi_i^* - y_i \left(\mathbf{w}^{*T} \mathbf{x}_i + b^* \right) \right) = 0$$

The \mathbf{x}_i for which $y_i(\mathbf{w}^{*T}\mathbf{x}_i + b^*) = 1 - \xi_i^*$ are called support vectors

These are the points on or inside the margin of separation

Useful fact:

By the KKT conditions, $\alpha_i^* \neq 0$ if and only if \mathbf{x}_i is a support vector!

Empirical fact

It has been widely demonstrated (empirically) that in typical learning problems, only a small fraction of the training input patterns are support vectors

Thus, support vector machines produce a hyperplane with a *sparse* representation

$$\mathbf{w}^* = \sum_{\substack{\text{support} \\ \text{vectors}}} \alpha_i^* y_i \mathbf{x}_i$$

This is advantageous for efficient storage and evaluation

What about b^* ?

Another consequence of the KKT conditions (condition 5) is that for all i, $\beta_i^* \xi_i^* = 0$

Since
$$\alpha_i^* + \beta_i^* = \frac{C}{n}$$
, this implies that if $\alpha_i^* < \frac{C}{n}$, then $\xi_i^* = 0$

Recall that if $\alpha_i^* > 0$ we also have that \mathbf{x}_i is a support vector, and hence

$$y_i(\mathbf{w}^{*T}\mathbf{x}_i + b^*) = 1 - \xi_i^*$$

How can we combine these two facts to determine b^* ?

Recovering b^*

For any i such that $0 < \alpha_i^* < \frac{C}{n}$, we have

$$y_i(\mathbf{w}^{*T}\mathbf{x}_i + b^*) = 1$$

$$b^* = y_i - \mathbf{w}^{*T}\mathbf{x}_i$$

In practice, it is common to average over several such $\,i\,$ to counter numerical imprecision

Support vector machines

Given an inner product kernel k, we can write the SVM classifier as

$$\hat{h}(\mathbf{x}) = \operatorname{sign}\left(\sum_{i} \alpha_{i}^{*} y_{i} k(\mathbf{x}, \mathbf{x}_{i}) + b^{*}\right)$$

where $lpha^*$ is the solution of

$$\max_{\alpha} -\frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y_i y_j k(\mathbf{x}_i, \mathbf{x}_j) + \sum_i \alpha_i$$

s.t.
$$\sum_{i} \alpha_i y_i = 0$$
, $0 \le \alpha_i \le \frac{C}{n}$ $i = 1, \ldots, n$

and
$$b^* = y_i - \sum_i \alpha_j^* y_j k(\mathbf{x}_i, \mathbf{x}_j)$$
 for some i s.t. $0 < \alpha_i^* < \frac{C}{n}$

Remarks

- The final classifier depends only on the x_i with $\alpha_i > 0$, i.e., the *support vectors*
- The size (number of variables) of the dual QP is n, independent of the kernel k, the mapping Φ , or the space ${\mathcal F}$
 - remarkable, since the dimension of ${\mathcal F}$ can be *infinite*
- The soft-margin hyperplane was the first machine learning algorithm to be "kernelized", but since then the idea has been applied to many, many other algorithms
 - kernel ridge regression
 - kernel PCA

-

Solving the quadratic program

How can we actually compute the solution to

$$\max_{\alpha} -\frac{1}{2} \sum_{i,j} \alpha_i \alpha_j q_{ij} + \sum_i \alpha_i$$

$$s + \sum_i \alpha_i u_i = 0 \quad 0 < \alpha_i < \frac{C}{2} \quad i = 1 \quad r$$

s.t.
$$\sum_{i} \alpha_{i} y_{i} = 0$$
, $0 \leq \alpha_{i} \leq \frac{C}{n}$ $i = 1, \ldots, n$

where $q_{ij} := y_i y_j k(\mathbf{x}_i, \mathbf{x}_j)$?

There are several general approaches to soling quadratic programs, and many can be applied to solve the SVM dual

We will focus on a particular example that is very efficient and capitalizes on some of the unique structure in the SVM dual, called sequential minimal optimization (SMO)

Sequential minimal optimization

SMO is an example of a *decomposition* algorithm

Sequential minimal optimization

Initialize: $\alpha = 0$

Repeat until stopping criteria satisfied

- (1) Select a pair $i, j, 1 \leq i, j \leq n$
- (2) Update α_i and α_j by optimizing the dual QP, holding all other $\alpha_k, k \neq i, j$ fixed

The reason for decomposing this to a two-variable subproblem is that this subproblem can be solved *exactly* via a simple *analytic* update

The update step

Choose α_i and α_j to solve

$$\max_{\alpha_{i},\alpha_{j}} -\frac{1}{2} \left(\alpha_{i}^{2} q_{ii} + \alpha_{j}^{2} q_{jj} + 2\alpha_{i} \alpha_{j} q_{ij} \right) + c_{i} \alpha_{i} + c_{j} \alpha_{j}$$
s.t.
$$\alpha_{i} y_{i} + \alpha_{j} y_{j} = -\sum_{k \neq i,j} \alpha_{k} y_{k}$$

$$0 \leq \alpha_{i}, \alpha_{j} \leq \frac{C}{n}$$

where
$$c_i = 1 - rac{1}{2} \sum_{k
eq i,j} lpha_k q_{ik}$$
 and similarly for c_j

SMO in practice

- Several strategies have been proposed for selecting (i,j) at each iteration
- Typically based on heuristics (often using the KKT conditions) that predict which pair of variables will lead to the largest change in the objective function
- For many of these heuristics, the SMO algorithm is proven to converge to the global optimum after finitely many iterations
- The running time is $O(n^3)$ in the worst case, but tends to be more like $O(n^2)$ in practice

Alternative algorithms

SMO is one of the predominant strategies for training an SVM, but there are important alternatives to consider on very large datasets

- modern variants for solving the dual based on stochastic gradient descent
 - closely related to SMO
- directly optimizing the primal
 - makes most sense when the dimension of the feature space is small compared to the size of the dataset
 - some algorithms very similar to PLA and stochastic gradient descent version of logistic regression