Unit 3: Inferential Statistics for Continuous Data Statistics for Linguists with R – A SIGIL Course

Designed by Marco Baroni¹ and Stefan Evert²

¹Center for Mind/Brain Sciences (CIMeC) University of Trento, Italy

 $^2 \hbox{Corpus Linguistics Group} \\ Friedrich-Alexander-Universit\"{a}t \ Erlangen-N\"{u}rnberg, \ Germany \\$

Outline

Inferential statistics

Preliminaries

One-sample tests

Testing the mean Testing the variance Student's t test Confidence intervals

Two-sample tests

Comparing the means of two samples Comparing the variances of two samples The paired t test for related samples Multiple comparisons

Outline

Inferential statistics Preliminaries

One-sample tests

Testing the mean
Testing the variance
Student's t test
Confidence intervals

Two-sample tests

Comparing the means of two samples Comparing the variances of two samples The paired t test for related samples Multiple comparisons

Inferential statistics for continuous data

- ► Goal: infer (characteristics of) population distribution from small random sample, or test hypotheses about population
 - problem: overwhelmingly infinite coice of possible distributions
 - lacktriangle can estimate/test characteristics such as mean μ and s.d. σ
 - ightharpoonup but H_0 doesn't determine a unique sampling distribution
 - only makes sense for parametric model

Inferential statistics for continuous data

- Goal: infer (characteristics of) population distribution from small random sample, or test hypotheses about population
 - problem: overwhelmingly infinite coice of possible distributions
 - lacktriangle can estimate/test characteristics such as mean μ and s.d. σ
 - \blacktriangleright but H_0 doesn't determine a unique sampling distribution
 - only makes sense for parametric model
- ▶ In this session, we assume a Gaussian population distribution
 - estimate/test parameters μ and σ of this distribution
 - sometimes a scale transformation is necessary (e.g. lognormal)

Inferential statistics for continuous data

- Goal: infer (characteristics of) population distribution from small random sample, or test hypotheses about population
 - problem: overwhelmingly infinite coice of possible distributions
 - ightharpoonup can estimate/test characteristics such as mean μ and s.d. σ
 - ▶ but *H*₀ doesn't determine a unique sampling distribution
 - only makes sense for parametric model
- ▶ In this session, we assume a Gaussian population distribution
 - estimate/test parameters μ and σ of this distribution
 - sometimes a scale transformation is necessary (e.g. lognormal)
- ▶ Nonparametric tests need fewer assumptions, but . . .
 - cannot test hypotheses about μ and σ (instead: median, IQR = inter-quartile range, etc.)
 - more complicated and computationally expensive procedures
 - correct interpretation of results often difficult

4 / 44

- Rationale similar to binomial test for frequency data: measure observed statistic in sample, which is compared against expected value → if difference is large, reject H₀
- Crucial question: what is "large enough"?
 reject if difference is unlikely to arise by chance

- Rationale similar to binomial test for frequency data: measure observed statistic in sample, which is compared against expected value → if difference is large, reject H₀
- Crucial question: what is "large enough"?
 reject if difference is unlikely to arise by chance
- lacktriangleright Measuring the extremeness of a single item sampled from Ω
 - ▶ If someone is 195 cm tall, would we consider him unusual?

- Rationale similar to binomial test for frequency data: measure observed statistic in sample, which is compared against expected value → if difference is large, reject H₀
- Crucial question: what is "large enough"?
 reject if difference is unlikely to arise by chance
- \blacktriangleright Measuring the extremeness of a single item sampled from Ω
 - ▶ If someone is 195 cm tall, would we consider him unusual?
 - No absolute scale → "ordinary" defined by central range, i.e. how tall the majority of people we meet are (say, 95%)
 - lacktriangle for Gaussian distribution: range from $\mu-1.96\sigma$ to $\mu+1.96\sigma$

- ▶ Rationale similar to binomial test for frequency data: measure observed statistic in sample, which is compared against expected value \rightarrow if difference is large, reject H_0
- Crucial question: what is "large enough"? reject if difference is unlikely to arise by chance
- \blacktriangleright Measuring the extremeness of a single item sampled from Ω
 - ▶ If someone is 195 cm tall, would we consider him unusual?
 - ▶ no absolute scale → "ordinary" defined by central range, i.e. how tall the majority of people we meet are (say, 95%)
 - for Gaussian distribution: range from $\mu 1.96\sigma$ to $\mu + 1.96\sigma$
- ► This suggests the **z-score** measure of extremeness:

$$Z(\omega) := \frac{X(\omega) - \mu}{\sigma}$$

with central range characterised by $|Z| \leq 1.96$

Notation for random samples

- ▶ Random sample of $n \ll m$ items
 - e.g. participants of survey, Wikipedia sample, . . .
 - recall importance of completely random selection
- ► Sample described by observed values of r.v. X, Y, Z, . . .:

$$x_1,\ldots,x_n; \quad y_1,\ldots,y_n; \quad z_1,\ldots,z_n$$

(don't know which $\omega \in \Omega$ were selected $\rightarrow x_i$ instead of $X(\omega)$)

Notation for random samples

- ▶ Random sample of $n \ll m$ items
 - e.g. participants of survey, Wikipedia sample, . . .
 - recall importance of completely random selection
- ▶ Sample described by observed values of r.v. X, Y, Z, ...:

$$x_1,\ldots,x_n; \quad y_1,\ldots,y_n; \quad z_1,\ldots,z_n$$

(don't know which $\omega \in \Omega$ were selected $\rightarrow x_i$ instead of $X(\omega)$)

▶ Mathematically, x_i, y_i, z_i are realisations of random variables

$$X_1,\ldots,X_n$$
; Y_1,\ldots,Y_n ; Z_1,\ldots,Z_n

- ▶ $X_1, ..., X_n$ are independent from each other and each one has the same distribution $X_i \sim X \rightarrow i.i.d.$ random variables
 - this is the formal definition of a random sample

Outline

One-sample tests

Testing the mean

Student's t test

The paired t test for related samples

A simple test for the mean

► Consider simplest possible *H*₀: a **point hypothesis**

$$H_0: \ \mu = \mu_0, \ \sigma = \sigma_0$$

- together with normality assumption, population distribution is completely determined
- ▶ How would you test whether $\mu = \mu_0$ is correct?

A simple test for the mean

► Consider simplest possible *H*₀: a **point hypothesis**

$$H_0: \ \mu = \mu_0, \ \sigma = \sigma_0$$

- together with normality assumption, population distribution is completely determined
- ▶ How would you test whether $\mu = \mu_0$ is correct?
- ► An intuitive test statistic is the sample mean

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$
 with $\bar{x} \approx \mu_0$ under H_0

- ▶ Reject H_0 if difference $\bar{x} \mu_0$ is sufficiently large
 - \square need to work out sampling distribution of \bar{X}

The sampling distribution of \bar{X}

► The sample mean is also a random variable:

$$\bar{X} = \frac{1}{n}(X_1 + \dots + X_n)$$

 \blacktriangleright \bar{X} is a sensible test statistic for μ because it is **unbiased**:

$$E[\bar{X}] = E\left[\frac{1}{n}\sum_{i=1}^{n}X_{i}\right] = \frac{1}{n}\sum_{i=1}^{n}E[X_{i}] = \frac{1}{n}\sum_{i=1}^{n}\mu = \mu$$

The sampling distribution of X

▶ The sample mean is also a random variable:

$$\bar{X} = \frac{1}{n}(X_1 + \dots + X_n)$$

 \blacktriangleright \bar{X} is a sensible test statistic for μ because it is **unbiased**:

$$E[\bar{X}] = E\left[\frac{1}{n}\sum_{i=1}^{n}X_{i}\right] = \frac{1}{n}\sum_{i=1}^{n}E[X_{i}] = \frac{1}{n}\sum_{i=1}^{n}\mu = \mu$$

An important property of the Gaussian distribution: if $X \sim N(\mu, \sigma_1^2)$ and $Y \sim N(\mu, \sigma_2^2)$ are independent, then

$$X + Y \sim N(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$$

 $r \cdot X \sim N(r\mu_1, r^2\sigma_1^2)$ for $r \in \mathbb{R}$

The sampling distribution of \bar{X}

▶ Since $X_1, ..., X_n$ are i.i.d. with $X_i \sim N(\mu, \sigma^2)$, we have

$$X_1 + \cdots + X_n \sim N(n\mu, n\sigma^2)$$

 $\bar{X} = \frac{1}{n}(X_1 + \cdots + X_n) \sim N(\mu, \frac{\sigma^2}{n})$

- ▶ \bar{X} has Gaussian distribution with same μ but smaller s.d. than the original r.v. X: $\sigma_{\bar{X}} = \sigma/\sqrt{n}$
 - explains why normality assumptions are so convenient
 - larger samples allow more reliable hypothesis tests about μ

The sampling distribution of \bar{X}

▶ Since $X_1, ..., X_n$ are i.i.d. with $X_i \sim N(\mu, \sigma^2)$, we have

$$X_1 + \dots + X_n \sim N(n\mu, n\sigma^2)$$

 $\bar{X} = \frac{1}{n}(X_1 + \dots + X_n) \sim N(\mu, \frac{\sigma^2}{n})$

- ▶ \bar{X} has Gaussian distribution with same μ but smaller s.d. than the original r.v. X: $\sigma_{\bar{X}} = \sigma/\sqrt{n}$
 - explains why normality assumptions are so convenient
 - lacktriangleright larger samples allow more reliable hypothesis tests about μ
- ▶ If the sample size n is large enough, $\sigma_{\bar{X}} = \sigma/\sqrt{n} \to 0$ and the sample mean \bar{x} becomes an accurate estimate of the true population value μ (law of large numbers)

The z test

Now we can quantify the extremeness of the observed value \bar{x} , given the null hypothesis $H_0: \mu = \mu_0, \sigma = \sigma_0$

$$z = \frac{\bar{x} - \mu_0}{\sigma_{\bar{X}}} = \frac{\bar{x} - \mu_0}{\sigma_0 / \sqrt{n}}$$

► Corresponding r.v. Z has a standard normal distribution if H_0 is correct: $Z \sim N(0,1)$

The z test

Now we can quantify the extremeness of the observed value \bar{x} , given the null hypothesis $H_0: \mu = \mu_0, \sigma = \sigma_0$

$$z = \frac{\bar{x} - \mu_0}{\sigma_{\bar{X}}} = \frac{\bar{x} - \mu_0}{\sigma_0 / \sqrt{n}}$$

- \triangleright Corresponding r.v. Z has a standard normal distribution if H_0 is correct: $Z \sim N(0,1)$
- We can reject H_0 at significance level α if

$$\alpha = .05$$
 .01 .001
 $|z| > 1.960$ 2.576 3.291 $-qnorm(\alpha/2)$

The z test

Now we can quantify the extremeness of the observed value \bar{x} , given the null hypothesis $H_0: \mu = \mu_0, \sigma = \sigma_0$

$$z = \frac{\bar{x} - \mu_0}{\sigma_{\bar{X}}} = \frac{\bar{x} - \mu_0}{\sigma_0 / \sqrt{n}}$$

- ▶ Corresponding r.v. Z has a standard normal distribution if H_0 is correct: $Z \sim N(0,1)$
- We can reject H_0 at significance level α if

$$\alpha = .05$$
 .01 .001
 $|z| > 1.960$ 2.576 3.291 $-qnorm(\alpha/2)$

- ► Two problems of this approach:
 - 1. need to make hypothesis about σ in order to test $\mu = \mu_0$
 - 2. H_0 might be rejected because of $\sigma \gg \sigma_0$ even if $\mu = \mu_0$ is true

Outline

Inferential statistics

Preliminaries

One-sample tests

Testing the mean

Testing the variance

Student's *t* test Confidence intervals

Two-sample tests

Comparing the means of two samples Comparing the variances of two samples The paired t test for related samples Multiple comparisons

▶ An intuitive test statistic for σ^2 is the sum of squares

$$V = (X_1 - \mu)^2 + \cdots + (X_n - \mu)^2$$

- ▶ Squared error $(X \mu)^2$ is σ^2 on average → $E[V] = n\sigma^2$
 - reject $\sigma = \sigma_0$ if $V \gg n\sigma_0^2$ (variance larger than expected)
 - reject $\sigma = \sigma_0$ if $V \ll n\sigma_0^2$ (variance smaller than expected)
 - sampling distribution of V shows if difference is large enough

• An intuitive test statistic for σ^2 is the sum of squares

$$V = (X_1 - \mu)^2 + \cdots + (X_n - \mu)^2$$

- ▶ Squared error $(X \mu)^2$ is σ^2 on average → $E[V] = n\sigma^2$
 - reject $\sigma = \sigma_0$ if $V \gg n\sigma_0^2$ (variance larger than expected)
 - reject $\sigma = \sigma_0$ if $V \ll n\sigma_0^2$ (variance smaller than expected)
 - \square sampling distribution of V shows if difference is large enough
- Rewrite V in the following way:

$$V = \sigma^2 \left[\left(\frac{X_1 - \mu}{\sigma} \right)^2 + \dots + \left(\frac{X_n - \mu}{\sigma} \right)^2 \right]$$
$$= \sigma^2 (Z_1^2 + \dots + Z_n^2)$$

with $Z_i \sim N(0,1)$ i.i.d. standard normal variables

▶ Statisticians have worked out the distribution of $\sum_{i=1}^{n} Z_i^2$ for i.i.d. $Z_i \sim N(0,1)$, known as the **chi-squared distribution**

$$\sum_{i=1}^n Z_i^2 \sim \chi_n^2$$

with n degrees of freedom (df = n)

► The χ_n^2 distribution has expectation $\mathbb{E}\left[\sum_i Z_i^2\right] = n$ and variance $\operatorname{Var}\left[\sum_i Z_i^2\right] = 2n$ → confirms $\mathbb{E}[V] = n\sigma^2$

▶ Under H_0 : $\sigma = \sigma_0$, we have

$$\frac{V}{\sigma_0^2} = Z_1^2 + \dots + Z_n^2 \sim \chi_n^2$$

- ▶ Appropriate rejection thresholds for the test statistic V/σ_0^2 can easily be obtained with R
 - χ_n^2 distribution is not symmetric, so one-sided tail probabilities are used (with $\alpha' = \alpha/2$ for two-sided test)

▶ Under H_0 : $\sigma = \sigma_0$, we have

$$\frac{V}{\sigma_0^2} = Z_1^2 + \dots + Z_n^2 \sim \chi_n^2$$

- ▶ Appropriate rejection thresholds for the test statistic V/σ_0^2 can easily be obtained with R
 - χ_n^2 distribution is not symmetric, so one-sided tail probabilities are used (with $\alpha' = \alpha/2$ for two-sided test)
- Again, there are two problems:
 - 1. need to make hypothesis about μ in order to test $\sigma = \sigma_0$
 - 2. H_0 easily rejected for $\mu \neq \mu_0$, even though $\sigma = \sigma_0$ may be true

- R can compute density functions and tail probabilities or generate random numbers for a wide range of distributions
- Systematic naming scheme for such functions:

```
dnorm() density function of Gaussian (normal) distribution
```

```
pnorm() tail probability
```

```
qnorm() quantile = inverse tail probability
```

```
rnorm() generate random numbers
```

- Available distributions include Gaussian (norm), chi-squared (chisq), t (t), F (f), binomial (binom), Poisson (pois), ...
 - you will encounter many of them later in the course
- Each function accepts distribution-specific parameters

```
> x < -rnorm(50, mean=100, sd=15) \# random sample of 50 IQ scores
> hist(x, freq=FALSE, breaks=seq(45,155,10)) # histogram
> xG <- seq(45, 155, 1) # theoretical density in steps of 1 IQ point
> yG <- dnorm(xG, mean=100, sd=15)
> lines(xG, yG, col="blue", lwd=2)
# What is the probability of an IQ score above 150?
# (we need to compute an upper tail probability to answer this question)
> pnorm(150, mean=100, sd=15, lower.tail=FALSE)
```

What does it mean to be among the bottom 25% of the population? > qnorm(.25, mean=100, sd=15) # inverse tail probability

Now do the same for a chi-squared distribution with 5 degrees of freedom # (hint: the parameter you're looking for is df=5)

```
# Now do the same for a chi-squared distribution with 5 degrees of freedom
# (hint: the parameter you're looking for is df=5)
> xC < - seq(0, 10, .1)
> yC <- dchisq(xC, df=5)
> plot(xC, yC, type="1", col="blue", lwd=2)
# tail probability for \sum_i Z_i^2 \geq 10
> pchisq(10, df=5, lower.tail=FALSE)
# What is the appropriate rejection criterion for a variance test with \alpha = 0.05?
> gchisg(.05, df=5, lower.tail=FALSE) # one-sided test
```

▶ Idea: replace true μ by sample value \bar{X} (which is a r.v.!)

$$V' = (X_1 - \bar{X})^2 + \cdots + (X_n - \bar{X})^2$$

terms are no longer i.i.d. because \bar{X} depends on all X_i

▶ Idea: replace true μ by sample value \bar{X} (which is a r.v.!)

$$V' = (X_1 - \bar{X})^2 + \cdots + (X_n - \bar{X})^2$$

- terms are no longer i.i.d. because \bar{X} depends on all X_i
- ▶ We can work out the distribution of V' for n = 2:

$$V' = (X_1 - \bar{X})^2 + (X_2 - \bar{X})^2$$

$$= (X_1 - \frac{X_1 + X_2}{2})^2 + (X_2 - \frac{X_1 + X_2}{2})^2$$

$$= (\frac{X_1 - X_2}{2})^2 + (\frac{X_2 - X_1}{2})^2 = \frac{1}{2}(X_1 - X_2)^2$$

where $X_1-X_2\sim N(0,2\sigma^2)$ for i.i.d. $X_1,X_2\sim N(\mu,\sigma^2)$ one can also show that X_1-X_2 and \bar{X} are independent

▶ We now have

$$V' = \sigma^2 \left(\frac{X_1 - X_2}{\sigma \sqrt{2}} \right)^2 = \sigma^2 Z^2$$

with $Z^2 \sim \chi_1^2$ because of $X_1 - X_2 \sim \textit{N}(0, 2\sigma^2)$

► We now have

$$V' = \sigma^2 \left(\frac{X_1 - X_2}{\sigma \sqrt{2}} \right)^2 = \sigma^2 Z^2$$

with $Z^2 \sim \chi_1^2$ because of $X_1 - X_2 \sim N(0, 2\sigma^2)$

For n > 2 it can be shown that

$$V' = \sum_{i=1}^{n} (X_i - \bar{X})^2 = \sigma^2 \sum_{j=1}^{n-1} Z_j^2$$

with $\sum_{i} Z_{i}^{2} \sim \chi_{n-1}^{2}$ independent from \bar{X}

- proof based on multivariate Gaussian and vector algebra
- ▶ notice that we "lose" one degree of freedom because one parameter ($\mu \approx \bar{x}$) has been estimated from the sample

Sample variance and the chi-squared test

▶ This motivates the following definition of sample variance S^2

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2}$$

with sampling distribution $(n-1)S^2/\sigma^2 \sim \chi^2_{n-1}$

• S^2 is an unbiased estimator of variance: $E[S^2] = \sigma^2$

Sample variance and the chi-squared test

▶ This motivates the following definition of sample variance S^2

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2}$$

with sampling distribution $(n-1)S^2/\sigma^2 \sim \chi_{n-1}^2$

- S^2 is an unbiased estimator of variance: $E[S^2] = \sigma^2$
- ▶ We can use S^2 to test H_0 : $\sigma = \sigma_0$ without making any assumptions about the true mean $\mu \rightarrow \text{chi-squared test}$
- Remarks
 - ▶ sample variance $\left(\frac{1}{n-1}\right)$ vs. population variance $\left(\frac{1}{m}\right)$
 - $ightharpoonup \chi^2$ distribution doesn't have parameters σ^2 etc., so we need to specify the distribution of S^2 in a roundabout way
 - independence of S^2 and \bar{X} will play an important role later

21 / 44

Sample data for this session

```
# Let us take a reproducible sample from the population of Ingary
> library(SIGIL)
> Census <- simulated.census()
> Survey <- Census[1:100, ]

# We will be testing hypotheses about the distribution of body heights
> x <- Survey$height # sample data: n items
> n <- length(x)</pre>
```

Chi-squared test of variance in R

```
# Chi-squared test for a hypothesis about the s.d. (with unknown mean)
\# H_0: \sigma = 12 (one-sided test against \sigma > \sigma_0)
> sigma0 <- 12 # you can also use the name \sigma0 in a Unicode locale
> S2 <- sum((x - mean(x))^2) / (n-1) # unbiased estimator of \sigma^2
> S2 <- var(x) # this should give exactly the same value
> X2 <- (n-1) * S2 / sigma0^2 # has \chi^2 distribution under H_0
> pchisq(X2, df=n-1, lower.tail=FALSE)
# How do you carry out a one-sided test against \sigma < \sigma_0?
# Here's a trick for an approximate two-sided test (try e.g. with \sigma_0 = 20)
> alt.higher <- S2 > sigma0^2
> 2 * pchisq(X2, df=n-1, lower.tail=!alt.higher)
```

Outline

Inferential statistics

Preliminaries

One-sample tests

Testing the mean Testing the variance

Student's t test

Confidence intervals

Two-sample tests

Comparing the means of two samples Comparing the variances of two samples The paired t test for related samples Multiple comparisons

- Now we have the ingredients for a test of $H_0: \mu = \mu_0$ that does not require knowledge of the true variance σ^2
- ▶ In the z-score for \bar{X}

$$Z = \frac{\bar{X} - \mu_0}{\sigma / \sqrt{n}}$$

replace the unknown true s.d. σ by the unbiased sample estimate $\hat{\sigma} = \sqrt{S^2}$, resulting in a so-called **t-score**:

$$T = \frac{\bar{X} - \mu_0}{\sqrt{S^2/n}}$$

▶ William S. Gosset worked out the precise sampling distriution of *T* and published it under the pseudonym "Student"

▶ Because \bar{X} and S^2 are independent, we find that

$$T \sim t_{n-1}$$
 under $H_0: \mu = \mu_0$

Student's t distribution with df = n - 1 degrees of freedom

▶ Because \bar{X} and S^2 are independent, we find that

$$T \sim t_{n-1}$$
 under $H_0: \mu = \mu_0$

Student's t distribution with df = n - 1 degrees of freedom

▶ In order to carry out a one-sample t test, calculate the statistic

$$t = \frac{\bar{x} - \mu_0}{\sqrt{s^2/n}}$$

and reject H_0 : $\mu = \mu_0$ if |t| > C

▶ Because \bar{X} and S^2 are independent, we find that

$$T \sim t_{n-1}$$
 under $H_0: \mu = \mu_0$

Student's t distribution with df = n - 1 degrees of freedom

▶ In order to carry out a one-sample t test, calculate the statistic

$$t = \frac{\bar{x} - \mu_0}{\sqrt{s^2/n}}$$

and reject H_0 : $\mu = \mu_0$ if |t| > C

▶ Rejection threshold C depends on df = n-1 and desired significance level α (in R: $-qt(\alpha/2, n-1)$)

 \square close to z-score thresholds for n > 30

Student's t distribution characterizes the quantity

$$\frac{Z}{\sqrt{V/k}} \sim t_k$$

where $Z \sim N(0,1)$ and $V \sim \chi_k^2$ are independent r.v.

Student's t distribution characterizes the quantity

$$\frac{Z}{\sqrt{V/k}} \sim t_k$$

where $Z \sim N(0,1)$ and $V \sim \chi_k^2$ are independent r.v.

▶ $T \sim t_{n-1}$ under $H_0: \mu = \mu_0$ because the unknown population variance σ^2 cancels out between the independent r.v. \bar{X} and S^2

$$T = \frac{\bar{X} - \mu_0}{\sqrt{S^2/n}}$$

Student's t distribution characterizes the quantity

$$\frac{Z}{\sqrt{V/k}} \sim t_k$$

where $Z \sim N(0,1)$ and $V \sim \chi_k^2$ are independent r.v.

▶ $T \sim t_{n-1}$ under $H_0: \mu = \mu_0$ because the unknown population variance σ^2 cancels out between the independent r.v. \bar{X} and S^2

$$T = \frac{\bar{X} - \mu_0}{\sqrt{S^2/n}} = \frac{\frac{\bar{X} - \mu_0}{\sigma}}{\sqrt{\frac{S^2}{n\sigma^2}}}$$

Student's t distribution characterizes the quantity

$$\frac{Z}{\sqrt{V/k}} \sim t_k$$

where $Z \sim N(0,1)$ and $V \sim \chi^2_{k}$ are independent r.v.

▶ $T \sim t_{n-1}$ under $H_0: \mu = \mu_0$ because the unknown population variance σ^2 cancels out between the independent r.v. \bar{X} and S^2

$$T = \frac{\bar{X} - \mu_0}{\sqrt{S^2/n}} = \frac{\frac{\bar{X} - \mu_0}{\sigma}}{\sqrt{\frac{S^2}{n\sigma^2}}} = \frac{\frac{\bar{X} - \mu_0}{\sigma/\sqrt{n}}}{\sqrt{\frac{S^2}{\sigma^2}}}$$

Student's t distribution characterizes the quantity

$$\frac{Z}{\sqrt{V/k}} \sim t_k$$

where $Z \sim N(0,1)$ and $V \sim \chi^2_{k}$ are independent r.v.

▶ $T \sim t_{n-1}$ under $H_0: \mu = \mu_0$ because the unknown population variance σ^2 cancels out between the independent r.v. \bar{X} and S^2

$$T = \frac{\bar{X} - \mu_0}{\sqrt{S^2/n}} = \frac{\frac{\bar{X} - \mu_0}{\sigma}}{\sqrt{\frac{S^2}{n\sigma^2}}} = \frac{\frac{\bar{X} - \mu_0}{\sigma/\sqrt{n}}}{\sqrt{\frac{S^2}{\sigma^2}}} = \frac{\frac{\bar{X} - \mu_0}{\sigma/\sqrt{n}}}{\sqrt{\frac{(n-1)S^2}{\sigma^2}/(n-1)}}$$

Student's t distribution characterizes the quantity

$$\frac{Z}{\sqrt{V/k}} \sim t_k$$

where $Z \sim N(0,1)$ and $V \sim \chi_k^2$ are independent r.v.

▶ $T \sim t_{n-1}$ under $H_0: \mu = \mu_0$ because the unknown population variance σ^2 cancels out between the independent r.v. \bar{X} and S^2

$$T = \frac{\bar{X} - \mu_0}{\sqrt{S^2/n}} = \frac{\frac{\bar{X} - \mu_0}{\sigma}}{\sqrt{\frac{S^2}{n\sigma^2}}} = \frac{\frac{\bar{X} - \mu_0}{\sigma/\sqrt{n}}}{\sqrt{\frac{S^2}{\sigma^2}}} = \frac{\frac{\bar{X} - \mu_0}{\sigma/\sqrt{n}}}{\sqrt{\frac{(n-1)S^2}{\sigma^2}/(n-1)}}$$

with
$$Z=rac{ar{X}-\mu_0}{\sigma/\sqrt{n}}\sim N(0,1)$$
 and $V=rac{(n-1)S^2}{\sigma^2}\sim \chi^2_{n-1}$

One-sample t test in R

```
# we will use the same sample x of size n as in the previous example
# Student's t-test for a hypothesis about the mean (with unknown s.d.)
\# H_0: \mu = 165 \text{ cm}
> m_{11}0 < -165
> x.bar <- mean(x) # sample mean \bar{x}
> s2 <- var(x) # sample variance s^2
> t.score <- (x.bar - mu0) / sqrt(s2 / n) # t statistic
> print(t.score) # positive indicates \mu > \mu_0, negative \mu < \mu_0
> -qt(0.05/2, n-1) # two-sided rejection threshold for |t| at \alpha = .05
> 2 * pt(abs(t.score), n-1, lower=FALSE) # two-sided p-value
# Mini-task: plot density function of t distribution for different d.f.
```

.

Note that t.test() also provides a confidence interval for the true $\mu!$

> t.test(x, mu=165) # agrees with our "manual" t-test

Outline

Inferential statistics

Preliminaries

One-sample tests

Testing the mean
Testing the variance
Student's t test

Confidence intervals

Two-sample tests

Comparing the means of two samples Comparing the variances of two samples The paired t test for related samples Multiple comparisons

Confidence intervals

- ▶ If we do not have a specific H_0 to start from, estimate confidence interval for μ or σ^2 by inverting hypothesis tests
 - ▶ in principle same procedure as for binomial confidence intervals
 - ▶ implemented in R for t test and chi-squared test
- Confidence interval has a particularly simple form for the t test

Confidence intervals

- ▶ If we do not have a specific H_0 to start from, estimate confidence interval for μ or σ^2 by inverting hypothesis tests
 - ▶ in principle same procedure as for binomial confidence intervals
 - ▶ implemented in R for t test and chi-squared test
- Confidence interval has a particularly simple form for the t test
- ▶ Given H_0 : $\mu = a$ for some $a \in \mathbb{R}$, we reject H_0 if

$$|t| = \left| \frac{\bar{x} - a}{\sqrt{s^2/n}} \right| > C$$

with $C \approx 2$ for $\alpha = .05$ and n > 30

Confidence intervals

- ▶ If we do not have a specific H_0 to start from, estimate confidence interval for μ or σ^2 by inverting hypothesis tests
 - ▶ in principle same procedure as for binomial confidence intervals
 - ▶ implemented in R for t test and chi-squared test
- Confidence interval has a particularly simple form for the t test
- ▶ Given H_0 : $\mu = a$ for some $a \in \mathbb{R}$, we reject H_0 if

$$|t| = \left| \frac{\bar{x} - a}{\sqrt{s^2/n}} \right| > C$$

with $C \approx 2$ for $\alpha = .05$ and n > 30

$$\bar{x} - C \frac{s}{\sqrt{n}} \le \mu \le \bar{x} + C \frac{s}{\sqrt{n}}$$

this is the origin of the "±2 standard deviations" rule of thumb

Outline

Inferential statistics

Preliminaries

One-sample tests

Testing the mean
Testing the variance
Student's t test
Confidence intervals

Two-sample tests

Comparing the means of two samples

Comparing the variances of two samples The paired t test for related samples Multiple comparisons

Outline

Inferential statistics

Preliminaries

One-sample tests

Testing the mean
Testing the variance
Student's t test
Confidence intervals

Two-sample tests

Comparing the means of two samples

Comparing the variances of two samples

The paired *t* test for related samples Multiple comparisons

Comparing the variances of two samples

Comparing the variances of two samples

Outline

Inferential statistics

Preliminaries

One-sample tests

Testing the mean
Testing the variance
Student's t test
Confidence intervals

Two-sample tests

Comparing the means of two samples Comparing the variances of two samples

The paired t test for related samples

Multiple comparisons

The paired t test for related samples

Outline

Inferential statistics

Preliminaries

One-sample tests

Testing the mean
Testing the variance
Student's t test
Confidence intervals

Two-sample tests

Comparing the means of two samples Comparing the variances of two samples The paired t test for related samples

Multiple comparisons