Zmniejszamy zadłużenie

Sobotnie Koło Naukowe, Grupa III. Dostępna pamięć: 64 MB.

14.12.2013

Rząd Bajtocji walczy z zadłużeniem państwa. Aktualna kwota obciążeń wynosi:

$$k = p_1^{\alpha_1} \cdot p_2^{\alpha_2} \cdot p_3^{\alpha_3} \cdot \ldots \cdot p_n^{\alpha_n}$$

Liczbę k podano jako iloczyn potęg kolejnych liczb pierwszych, gdzie p_i oznacza i-tą liczbę pierwszą, a α_i jej wykładnik. Okazało się, że istnieje urządzenie, które potrafi manipulować zadłużeniem. Otóż liczbę k można dowolnie wiele razy podzielić przez $p_x \cdot p_y$ ($x \neq y$), o ile $p_x \cdot p_y \mid k$. Naszym celem jest zminimalizować zadłużenie.

Wejście

W pierwszym wierszu standardowego wejścia zapisano jedną liczbę całkowitą n ($1 \le n \le 10^5$) – oznacza ona, że największą liczbą pierwszą użytą do zapisu k jest p_n . W drugim wierszu podano n liczb z przedziału $[0; 10^6]$, gdzie i-ta liczba oznacza α_i .

Wyjście

W pierwszym wierszu standardowego wyjścia powinna znaleźć się minimalna wartość liczby k po modyfikacjach. Wynik należy podać modulo $10^9 + 7$.

Przykłady

Wejście:	Wejście:	Wejście:
5	6	5
2 1 1 1 2	3 0 2 1 0 3	2 3 2 3 1000000
Wyjście:	Wyjście:	Wyjście:
2	2	115813154