

Analyzing and predicting crime in the city is very important for people

- ♦ The idea of this study is to help people planning their journey in the San Francisco. It will help them to choose the right route where the crime is low.
- ♦ This project can help people investigate crime rate in their cities.

Data analysis

After preparing the data we decided to analyze the data- we visualized a different charts We will analyze:

- **⋄** Number of crimes per month
- ♦ Number of crimes occurring on each day
- ♦ Number of crimes occurring on each hour

Number of crimes per month

Number of crimes occurring on each day

Number of crimes occurring on each hour

Predictive Modeling

There are of 4 different models to predict new crimes:

- Logistic Regression
- Random forest
- kNN (k Nearest Neighbor)
- Decision Tree

Firstly I selected the best parameters for models (e.x. the number of neighbors for kNN), and then used these parameters. I used the accuracy metric to control the models.

k Nearest Neighbor


```
from sklearn.metrics import f1_score
from sklearn.metrics import accuracy_score
#K Nearest Neighbor(KNN)
model = KNeighborsClassifier(n_neighbors = 6)
model.fit(X_train, y_train)
y_pred=model.predict(X_test)
accuracy_score(y_test, y_pred)
```

0.51

Result: The accuracy score is equal 0.51. It is low, we will not use this model

Random forest

Result: The accuracy score is equal 0.89. It is the highest score. This model is convenient to us.

Logistic Regression


```
#Logistic Regression
model = LogisticRegression(C = 3.1622776601683795 , solver = 'liblinear')
model.fit(X_train, y_train)
y_pred=model.predict(X_test)
ccuracy_score(y_test, y_pred)

C:\Users\slava\Anaconda3\lib\site-packages\sklearn\linear_model\logistic.py:469:
nged to 'auto' in 0.22. Specify the multi_class option to silence this warning.
"this warning.", FutureWarning)
0.3389090909090909
```

Result: The accuracy score is equal 0.34. It is low, we will not use this model.

Decision Tree


```
#Decision Tree
model = DecisionTreeClassifier(criterion = "entropy", max_depth = 100)
model.fit(X_train, y_train)
y_pred=model.predict(X_test)
accuracy_score(y_test, y_pred)
```

0.6321

Result: The accuracy score is equal 0.6321. It is low, we will not use this model.

Conclusions

In this study, I analyzed the history of crimes in Chicago. I found dependencies between crimes and hours or days. After that I build a few models to predict a new crimes.

I hope my this research will help people planning their journey in the San Francisco. If I visit San Francisco, firstly, I will use this my research. And some people can use this program to analyze and predict the crimes in their city (as for me I can use it to analyze cities in my country).