Confusion matrix and evaluation metrics

Justin

1. Confusion matrix

		Actuality	
		Р	N
Prediction	Р	TP (hit)	FP (false alarm, type I error)
	N	FN (miss, type II error)	TN (correct rejection)

Total is the sum of TP, FP, FN and FN

Sensitivity, hit rate, recall, TPR (no miss → high recall):

$$Recall = TPR = \frac{TP}{P} = \frac{TP}{TP + FN}$$

Precision (no false alarm → high precision):

$$Precision = \frac{TP}{TP + FP}$$

Accuracy:

$$Accuracy = \frac{TP + FN}{Total}$$

FPR:

$$FPR = \frac{FP}{N} = \frac{FP}{FP + TN}$$

F1 score:

$$F1 = 2 \frac{Precision \cdot Recall}{Precision + Recall}$$

Figure 1. Just one way to visualize the confusion matrix

2. Errors

a. Type I error (false positive, false alarm)

Type I error occurs when **rejecting the null hypothesis when it's true**. The type I error rate or significant level α is usually set to 5%, implying that it is acceptable to have a 5% probability of incorrectly rejecting the null hypothesis.

b. Type II error (miss)

Type II error occurs when failing to reject the null hypothesis when it's false. The type II error rate is denoted by β , and is related to the power of a test (which is $1 - \beta$).

3. Receiver operating characteristic (ROC, TPR vs FPR)

Figure 2. Note when TPR == FPR, the prediction is worthless!