aboba

Оглавление

Вве	едение	3
1	Построение математической модели	4
1.1	Постановка задачи	4
1.2	Формализация	4
1.3	Построение модели	5
2	Анализ математической модели	11
3	Вычислительные эксперименты	13
3.1	Алгоритм решения	13
3.2	Программа для ЭВМ	13
3.3	Вычислительные эксперименты	14
4	Заключение	19
Спі	исок использованных источников	20

Введение

В нашем мире все процессы зависят от точки зрения наблюдателя. Разные наблюдатели могут видеть одни и те же явления по-разному. Например, если находиться в равномерно движущемся поезде и бросить теннисный мяч вниз, он будет отскакивать от пола, описывая прямолинейную траекторию для пассажира. Однако для наблюдателя, стоящего на земле и не движущегося вместе с поездом, траектория мяча будет выглядеть как парабола.

Аналогично, в случае движения на вращающейся поверхности, например, когда человек идет по карусели или вблизи полюса Земли, восприятие движения будет различаться в зависимости от положения наблюдателя.

Рассмотрим такое движение на вращяющейся поверхности диска и поверхности Земли.

1 Построение математической модели

1.1 Постановка задачи

Цель работы:

- Сформулировать модель движения материальной точки во вращающейся системе координат (диска и Земли).
 - Проанализировать полученную модель
- Провести численные эксперименты с различными параметрами,
 для понимания влияния на траекторию движения.

Дано:

- $-\overrightarrow{r}$ радиус-вектор, проведенный от центра вращения к материальной точке.
- $-\overrightarrow{v'}=(u,v)$ относительная скорость материальной точки $([u]=[v]={\sf m/c}).$
 - $-\phi$ широта на поверхности Земли (град.).
 - ω постоянная уголовая скорость поверхности (рад/с).
 - -m масса материальной точки (кг).

1.2 Формализация

Для вывода математической модели будем использовать полярную систему координат, второй закон Ньютона в дифференциальной форме и кориолисову силу в общей форме.

Пусть сила трения принебрежима мала, но диск/Земля передаёт своё вращение на материальную точку без изменения.

1.3 Построение модели

Рисунок 1 — Движение на покоящейся поверхности.

Если тело движется относительно вращающейся системы отсчета, то на него помимо центробежной силы инерции, действует еще одна сила инерции, которая зависит от относительной скорости движения тела \vec{v} , и от угловой скорости $\vec{\omega}$ вращения системы отсчета. Этот вид инерции открыл Гаспар Кориолис. Соответственно силу называют кориолисовой.

Для выяснения причин, которые вызывают возникновение силы Кориолиса, рассмотрим следующий опыт. Скатим с желоба шарик на центр диска, который может вращаться вокруг вертикальной оси. Таким образом, после скатывания с желоба шарик будет двигаться по радиусу неподвижного диска с постоянной скоростью \vec{v} в направлении точки M.

Рисунок 2 — Движение на вращающейся поверхности.

Если диск привести в движение, то шарик отклонится от первоначальной траектории и придёт в точку N (Рис. 2, а). Причём, при небольшой относительной скорости шарика \vec{v}' диск повернётся на больший угол и может совершить несколько оборотов (Рис. 2, б).

Рисунок 3 — Проекции скоростей на вращающейся поверхности.

Рассмотрим эксперимент более подробно. Пусть шарик двигается равномерно из точки A радиуса OC со скоростью относительной \vec{v}' . Угловая скорость вращения диска равна $\vec{\omega}$ (направление вращение показано на рис. 3 стрелкой). За интервал Δt шарик переместился на расстояние $\Delta l = \vec{v}' \Delta t$. За это же время в неподвижной системе координат радиус OC повернётся на угол $\Delta \alpha = \omega \Delta t$, что перенесет шарик в точку B. В этой точке шарик будет иметь скорость, относительно неподвижной системы отчёта \vec{v} (абсолютная скорость), которая складывается из \vec{v}' и переносной скорости $\vec{v}_s = [\vec{\omega} \times \vec{r}]$:

$$\vec{v} = \vec{v}' + \vec{v}_s \tag{1}$$

Распишем подробнее переносную скорость:

$$ec{v}_s = [ec{\omega} imes ec{r}] = egin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \ 0 & 0 & \omega \ x & y & 0 \end{bmatrix}$$

Теперь вычислим определитель:

$$ec{v}_s = \mathbf{i} egin{bmatrix} 0 & \omega \ y & 0 \end{bmatrix} - \mathbf{j} egin{bmatrix} 0 & \omega \ x & 0 \end{bmatrix} + \mathbf{k} egin{bmatrix} 0 & 0 \ x & y \end{bmatrix}$$

Вычисляя каждый из определителей, получаем:

$$\vec{v}_s = \mathbf{i}(0 - \omega y) - \mathbf{j}(0 - \omega x) + \mathbf{k}(0 - 0)$$

Таким образом, результат будет:

$$\vec{v}_s = -\omega y \mathbf{i} + \omega x \mathbf{j}$$

Таким образом, при равномерном движении вдоль радиуса в неподвижной системе отсчёта будет существовать не только переносное ускорение

$$\vec{a_s} = -\omega^2 \vec{r},$$

которое вызывает изменение направления скорости $\vec{v_s}$, но и нормальное к радиусу ускорение $\vec{a_k}$, вызывающее изменение направления скорости $\vec{v'}$ и модуля скорости $\vec{v_s}$.

Чтобы определить модуль этого ускорения, найдём указанные изменения скоростей за некоторый малый интервал времени Δt . На рис. З изображены векторы относительных и переносных скоростей для двух положений шарика в точках A и B, а также их изменения за рассматриваемый интервал времени $\Delta \vec{v_s}$ и $\Delta \vec{v'}$.

Поскольку нас интересует изменение только модуля вектора скорости в этих положениях, а не его направления, перенесём $\vec{v_s}$ из положения A в положение B и направим вдоль вектора $\vec{v_s}$. Получим отрезок Δv_s , характеризующий изменение модуля скорости. Сумма модулей векторов $\Delta \vec{v_s}$ и $\Delta \vec{v'}$ будет представлять собой полное изменение абсолютной скорости в направлении, перпендикулярном радиусу за время Δt , то есть ускорение движения шарика.

Если за время Δt радиус повернулся на угол $\Delta \alpha = \omega \Delta t$, то

$$\Delta v' = v' \Delta \alpha = v' \omega \Delta t.$$

За это же время шарик вдоль радиуса переместился на расстояние $\Delta r = v'\Delta t$ и при этом скорость $v_s = \omega r$ возросла по величине на

$$\Delta v_s = \omega \Delta r = \omega v' \Delta t.$$

Как видно, оба эти изменения скорости равны по величине и имеют одинаковое направление. Поэтому полное изменение скорости в направлении, перпендикулярном радиусу,

$$\Delta v' + \Delta v_s = 2v'\omega \Delta t.$$

Следовательно, ускорение

$$a_k = \lim_{\Delta t \to 0} \frac{\Delta v' + \Delta v_s}{\Delta t} = 2\omega v'.$$

Это ускорение, зависящее как от относительной скорости v', так и от переносной скорости вращения ω , называется *кориолисовым* ускорением. Направление этого ускорения всегда перпендикулярно к относительной скорости \vec{v}' .

Очевидно, что при изменении направления вращения $(\vec{\omega})$ направление кориолисова ускорения \vec{a}_k изменится на противоположное. Аналогичный результат наблюдается и при изменении направления относительной скорости $\vec{v'}$. Во всех случаях направление \vec{a}_k определяется по правилу правого винта.

Исходя из этих рассуждений, можно сделать вывод, что кориолисово ускорение \vec{a}_k выражается через удвоенное векторное произведение угловой скорости $\vec{\omega}$ и относительной скорости $\vec{v'}$:

$$\vec{a}_k = 2[\vec{\omega}, \vec{v'}].$$

Таким образом, в результате анализа эксперимента установлено, что в неподвижной системе отсчёта шарик движется с абсолютным ускорением, которое является векторной суммой переносного ускорения \vec{a}_s и кориолисова ускорения \vec{a}_k :

$$\vec{a} = \vec{a}_s + \vec{a}_k = -\omega^2 \vec{r} + 2[\vec{\omega}, \vec{v'}].$$

Рассматривая движения шарика относителя наблюдателя, находящегося на диске, можно обнаружить, что возникает кориолисова сила

$$\vec{F}_k = 2m[\vec{v}, \vec{\omega}.] \tag{2}$$

Отметим, что силу кориолиса вызывает обратное кориолисово ускорение:

$$\vec{a} = -2[\vec{\omega}, \vec{v}'] = 2[\vec{v}, \vec{\omega}],$$

- которое появляется при переходе от неподвижной к вращающейся системе отсчета.

Рисунок 4 — Движение под углом к оси вращающения

В общем случае тело может двигаться с относительной скоростью, направленной под произвольным углом α к оси вращения (рис. 4). Разложим вектор скорости \vec{v}' на две составляющие: \vec{v}'_{\perp} , которая лежит в плоскости, перпендикулярной оси вращения, и \vec{v}'_{\parallel} , параллельную оси вращения. Составляющая \vec{v}'_{\parallel} не изменяет переносной скорости тела, потому что угол между \vec{v}'_{\parallel} и $\vec{\omega}$ равен нулю. Поэтому сила Кориолиса обусловлена лишь составляющей $\vec{v}'_{\perp} = \vec{v}' \sin(\alpha)$ (для случая с широтами $\cos(\phi)$).

Таким образом мы получили дифференциальное уравнение второго порядка для движения на вращающейся системе координат:

$$\frac{d^2\vec{r}}{dt^2} = 2\left[\frac{d\vec{r}}{dt}, \vec{\omega}\right] \cos(\phi) \tag{3}$$

Чтобы перейти к дифференциальным уравнениям движения по координатам x и y, нужно разложить ускорение (3) по декартовым осям:

$$\begin{cases} \ddot{x} = 2\omega \dot{y}\cos(\phi), \\ \ddot{y} = -2\omega \dot{x}\cos(\phi). \end{cases}$$
(4)

Получили дифференциальное уравнение второго порядка. Следовательно для нахождения единственного решения следует ввести начальные координаты материальной точки и её относительную скорость по каждой из координат:

$$\begin{cases} x(0) = x_0, & \dot{x}(0) = x_1 \\ y(0) = y_0, & \dot{y}(0) = y_1 \end{cases}$$

2 Анализ математической модели

Тип системы

Данная система представляет собой систему линейных дифференциальных уравнений второго порядка. Если ϕ — постоянная, коэффициенты уравнений также постоянны. Если же $\phi = \phi(t)$, система становится с переменными коэффициентами.

Приведение к матричной форме

Введём вектор состояния:

$$\mathbf{r} = \begin{bmatrix} x \\ y \end{bmatrix}, \quad \mathbf{v} = \begin{bmatrix} \dot{x} \\ \dot{y} \end{bmatrix}.$$

Тогда уравнение можно записать как систему первого порядка:

$$\begin{bmatrix} \dot{v}_x \\ \dot{v}_y \end{bmatrix} = \begin{bmatrix} 0 & 2\omega\cos(\phi) \\ -2\omega\cos(\phi) & 0 \end{bmatrix} \begin{bmatrix} v_x \\ v_y \end{bmatrix}.$$

Матрица системы:

$$A = \begin{bmatrix} 0 & 2\omega\cos(\phi) \\ -2\omega\cos(\phi) & 0 \end{bmatrix}$$

является антисимметричной, что указывает на вращательную динамику.

Собственные числа системы

Собственные числа матрицы A находятся из характеристического уравнения:

$$\det \begin{bmatrix} -\lambda & 2\omega \cos(\phi) \\ -2\omega \cos(\phi) & -\lambda \end{bmatrix} = 0.$$

Вычисляя определитель:

$$\lambda^2 + 4\omega^2 \cos^2(\phi) = 0.$$

Решая квадратное уравнение, получаем:

$$\lambda = \pm 2\omega \cos(\phi)i.$$

Так как собственные значения чисто мнимые, система имеет колебательное поведение.

Динамическое поведение

Так как λ чисто мнимые, движение будет периодическим. Возможны два случая:

- Если ϕ постоянная, решение представляет собой вращательное движение.
- Если $\phi = \phi(t)$ изменяется, возможны переходные режимы и сложные траектории.

Вывод

- Система описывает вращательное движение.
- Решения имеют колебательный характер (круговые или эллиптические траектории).
- Если ϕ меняется со временем, возможны сложные нелинейные эффекты.

3 Вычислительные эксперименты

3.1 Алгоритм решения

Для реализации моделей сделаем замену переменных $u(t) = \dot{x}(t),$ $v(t) = \dot{y}(t),$ и получим систему дифференциальных уравнений первого порядка:

$$\begin{cases} \dot{x} = u, & \dot{y} = v, \\ \dot{u} = 2\Omega v \cos(\phi), & \dot{v} = -2\Omega u \cos(\phi), \\ x(0) = x_0, & y(0) = y_0, \\ u(0) = x_1, & v(0) = y_1. \end{cases}$$

Для численного решения данной системы будем использовать метод Рунге-Кутты[1], что позволит получить решение с заданными параметрами.

Метод Рунге-Кутты четвертого порядка (RK4) обладает порядком точности $O(h^4)$, что означает, что ошибка метода уменьшается пропорционально четвертой степени размера шага h. Локальная ошибка на каждом шаге составляет $O(h^5)$, а глобальная ошибка, накапливаясь после N шагов, составляет $O(h^3)$. Это делает метод RK4 более точным по сравнению с методами более низкого порядка, такими как метод Эйлера и метод Рунге-Кутты второго порядка. Благодаря высокой точности и простоте реализации, RK4 широко используется для численного решения обыкновенных дифференциальных уравнений в различных областях науки и техники.

После вычисления построим фазовый портрет и график изменения угла во времени.

3.2 Программа для ЭВМ

В качестве языка программирования для рассчётов и визуализации был выбран Python с использованием библиотек numpy (вычисления) и matplotlib (визуализация).

```
1 import numpy as np
2 import matplotlib.pyplot as plt
```

```
3
4
5
    class CircleMotion:
6
        def init (self, omega, phi):
             self.omega = omega
7
             self.phi = phi
8
9
        \mathbf{def} \ \mathbf{f} \ (\mathbf{self} \ , \ \mathbf{t} \ , \ \mathbf{x}) :
10
11
             return np.array([
                  x[2],
12
13
                  x[3],
                  2 * self.omega * x[3] * np.cos(self.phi),
14
                  -2 * self.omega * x[2] * np.cos(self.phi),
15
             1)
16
17
18
        def runge kutta(self, y0, t0, tn, h):
19
             num = int(np.ceil((tn - t0) / h))
20
             t values = np.linspace(t0, tn, num=num)
             y \text{ values} = np.zeros((num, len(y0)))
21
22
             y_values[0] = y0
23
24
             for i in range (num -1):
                  k1 = h * self.f(t_values[i], y_values[i])
25
                  k2 = h * self.f(t_values[i] + h / 2, y_values[i] + k1 / 2)
26
                  k3 = h * self.f(t_values[i] + h / 2, y_values[i] + k2 / 2)
27
28
                  k4 = h * self.f(t values[i] + h, y values[i] + k3)
                  y\ values\,[\,i\,+\,1\,]\ =\ y\_values\,[\,i\,]\ +\ (\,k1\ +\ 2\ *\ k2\ +\ 2\ *\ k3\ +\ k4\,)\ /\ 6
29
30
31
             return t values, y values
```

3.3 Вычислительные эксперименты

В эксперименте используются следующие числовые значения параметров:

- Угловая скорость вращения системы: $\Omega = 1$. рад/с.
- Временной шаг численного интегрирования: $\Delta t = 0.01~\mathrm{c}$.
- Общее время моделирования: T = 100 c.
- Широта: 45 град.

Начальные условия

Заданы несколько наборов начальных условий для моделирования движения точки в вращающейся системе отсчёта:

#	x_0 (M)	y_0 (M)	$\dot{x}_0~(\mathrm{m/c})$	$\dot{y}_0~({ m m/c})$
1	1.0	0.0	0.0	1.0
2	0.5	0.5	-0.5	0.5
3	-1.0	0.0	0.0	-1.0
4	5.0	3.0	-3.0	3.0
5	5.0	3.0	-4.0	-2.0
6	5.0	3.0	1.0	-3.0

Каждая строка таблицы представляет один набор начальных условий, включающий координаты точки x_0, y_0 и её начальные проекции скорости \dot{x}_0, \dot{y}_0 .

Рисунок 5 — Траектории при $\omega = 1, \phi = 45$ град.

Увеличим широту ϕ до 72 град и получим:

Рисунок 6 — Траектории при $\omega = 1, \phi = 72$ град.

На рис. 5 - 6 видно, что при увеличении широты сила Кориолиса уменьшается, что влечёт уменьшение влияния на относительную скорость, а следовательно, увеличения радиусов описываемых траекторий.

Увеличим угловую скорость ω в 10 раз и также построим траектории при широтах 45 и 72 град:

Рисунок 7 — Траектории при $\omega = 10, \phi = 45$ град.

Заметим (рис. 7 - 8), что при увеличении угловой скорости, радиусы траекторий значительно уменьшились. Но при увеличении широты заметен эффект уменьшения проекци силы Кориолиса.

Рисунок 8 — Траектории при $\omega = 10, \phi = 72$ град.

4 Заключение

Была разработана математическая модель перемещения материальной точки во вращающейся системе координат, представляющая собой систему из двух дифференциальных уравнений второго порядка.

Проведён анализ модели, представлена вычислительная схема и программа для ЭВМ, которая находит численное решение методом Рунге-Кутты.

Построены графики движения материальной точки с различными параметрами и начальными условиями.

Список использованных источников

1. *Бахвалов, Н. С.* Численные методы / Н. С. Бахвалов. — Наука, 1975.