Ecole Nationale des Ponts et Chaussées

2005-2006

Stage Scientifique

Prnom Nom

Titre

Projet réalisé en collaboration avec le CERMICS Ecole Nationale des Ponts et Chaussées 6 et 8 avenue Blaise Pascal Cité Descartes - Champs sur Marne 77455 Marne la Vallée Cedex 2

Tuteur: Gabriel Stoltz

26 avril 2022

Rï
; $\frac{1}{2}$ sumï; $\frac{1}{2}$ des travaux.

Table des matières

Chapitre 1

La simulation moli; ½ culaire

Nous nous int $\ddot{\imath}_{\dot{\iota}}^{\frac{1}{2}}$ ressons dans le cadre de cette $\ddot{\imath}_{\dot{\iota}}^{\frac{1}{2}}$ tude $\ddot{\imath}_{\dot{\iota}}^{\frac{1}{2}}$ la mod $\ddot{\imath}_{\dot{\iota}}^{\frac{1}{2}}$ lisation de syst $\ddot{\imath}_{\dot{\iota}}^{\frac{1}{2}}$ mes mol $\ddot{\imath}_{\dot{\iota}}^{\frac{1}{2}}$ culaires. Par exemple, on pourrait appliquer les r $\ddot{\imath}_{\dot{\iota}}^{\frac{1}{2}}$ sultats obtenus $\ddot{\imath}_{\dot{\iota}}^{\frac{1}{2}}$ un gaz parfait, inerte, comme l'argon.

Il n'est pas possible de conna \ddot{i}_{l} tre les solutions exactes des \ddot{i}_{l} quations diff \ddot{i}_{l} rentielles qui \ddot{i}_{l} gissent la dynamique mol \ddot{i}_{l} 1culaire. Ainsi, on a recours \ddot{i}_{l} 1 a simulation num \ddot{i}_{l} 1rique, op \ddot{i}_{l} 1 ration qui consiste en la discr \ddot{i}_{l} 1 tisation des lois fondamentales du probl \ddot{i}_{l} 1 me; on obtient alors pour \ddot{i}_{l} 2 sultats des photographies de la solution \ddot{i}_{l} 1 des instants \ddot{i}_{l} 2 guliers. L'augmentation de la puissance des moyens informatiques permet de \ddot{i}_{l} 2 aliser des simulations sur des temps de plus en plus longs, et les sch \ddot{i}_{l} 2 mas d'int \ddot{i}_{l} 2 gration atteignent le million voire le milliard d'it \ddot{i}_{l} 2 rations.

Il est important alors que les $m\ddot{\imath}_{2}^{\frac{1}{2}}$ thodes d'approximation choisies puissent conserver des propri $\ddot{\imath}_{2}^{\frac{1}{2}}$ t $\ddot{\imath}_{2}^{\frac{1}{2}}$ s qualitatives de la solution. L'approche $g\ddot{\imath}_{2}^{\frac{1}{2}}$ om $\ddot{\imath}_{2}^{\frac{1}{2}}$ trique de l'int $\ddot{\imath}_{2}^{\frac{1}{2}}$ gration apportera des $r\ddot{\imath}_{2}^{\frac{1}{2}}$ ponses $\ddot{\imath}_{2}^{\frac{1}{2}}$ ce probl $\ddot{\imath}_{2}^{\frac{1}{2}}$ me central. On insistera alors sur les notions cl $\ddot{\imath}_{2}^{\frac{1}{2}}$ s qu'il convient de retenir comme crit $\ddot{\imath}_{2}^{\frac{1}{2}}$ res de $s\ddot{\imath}_{2}^{\frac{1}{2}}$ lection d'un bon int $\ddot{\imath}_{2}^{\frac{1}{2}}$ grateur.

L'�tude par m�thodes num�riques des syst�mes mol�culaires pourra aussi �tre valid�e par le calcul de moyennes de grandeurs physiques du syst�me, comme la temp�rature, la capacit� calorifique ou la pression. Ainsi, on saura si la mod�lisation est bonne ou non lorsque les moyennes calcul�es correspondront \ddot{i} ;½ nos attentes thi¿½oriques.

1.1 Description des syst�mes mol�culaires

On considï; $\frac{1}{2}$ re un systï; $\frac{1}{2}$ me formï; $\frac{1}{2}$ de N particules (typiquement, des atomes), dï; $\frac{1}{2}$ crit par une configuration $q=(q_1,...,q_N)$ (avec $q_i \in \mathbb{R}^d$, oï; $\frac{1}{2}$ d=1,2,3 est la dimension de l'espace ambiant). Chaque particule, de masse m_i , a une impulsion $p_i=m_i\dot{q}_i$. On note $p=(p_1,...,p_N)$, et M la matrice de masse du systï; $\frac{1}{2}$ me, c'est- $\frac{1}{2}$; $\frac{1}{2}$ -dire $M=\mathrm{Diag}(m_1,\ldots,m_N)$.

Les interactions entre les particules sont $\mathrm{d}\ddot{\imath}_{\dot{\iota}}^{\frac{1}{2}}$ crites par une fonction $V \equiv V(q)$, appel $\ddot{\imath}_{\dot{\iota}}^{\frac{1}{2}}$ nergie potentielle. Toute la physique du syst $\ddot{\imath}_{\dot{\iota}}^{\frac{1}{2}}$ me est contenue dans V. Ainsi, pour un gaz parfait tel que l'argon, les interactions entre les atomes sont bien $\mathrm{d}\ddot{\imath}_{\dot{\iota}}^{\frac{1}{2}}$ crites par un potentiel de paire de type Lennard-Jones. Dans ce cas,

$$V(q) = \sum_{1 \le i < j \le N} \mathcal{V}(|q_i - q_j|)),$$

avec

$$\mathcal{V}(r) = \epsilon \left(\left(\frac{\sigma}{r} \right)^{12} - \left(\frac{\sigma}{r} \right)^{6} \right).$$

Pour l'argon, $\epsilon/k_{\rm B} = 120$ K, et $\sigma = 3.405$ Å.

L'�nergie totale, somme de l'�nergie potentielle et de l'energie cin�tique, est suppos�e pouvoir s'�crire

$$H(q,p) = V(q) + \frac{1}{2}p^{T}M^{-1}p.$$

La fonction H(q, p) est le Hamiltonien du systï; $\frac{1}{2}$ me.

On postule que la dynamique du systi; $\frac{1}{2}$ me est ri; $\frac{1}{2}$ gie par la dynamique de Newton :

$$\begin{cases} \dot{q} = M^{-1} p \\ \dot{p} = -\nabla V(q) \end{cases}$$
 (1.1)

qui peut aussi s'ï; ½ crire matriciellement sous la forme :

$$\frac{dy}{dt} = J\nabla H$$

oï; $\frac{1}{2}$ J est la matrice rï; $\frac{1}{2}$ elle carrï; $\frac{1}{2}$ e de taille 2Nd:

$$J = \begin{pmatrix} 0 & I \\ -I & 0 \end{pmatrix},$$

y repri $;\frac{1}{2}$ sentant le vecteur (q,p) de \mathbb{R}^{2Nd} . Par la suite, on fera l'hypothi $;\frac{1}{2}$ se qu'il y a une et une seule solution $\ddot{i};\frac{1}{2}$ (??). Ceci est le cas par exemple si le champ de force ∇V est globalement lipschitzien (par application du th $\ddot{i};\frac{1}{2}$ or $\ddot{i};\frac{1}{2}$ me de Cauchy-Lipschitz).

1.2 Observables

1.2.1 Dï; $\frac{1}{2}$ finition

On peut dï \underline{i}_{2} crire le systï \underline{i}_{2} me de particules de N particules de maniï \underline{i}_{2} re dï \underline{i}_{2} terministe en rï \underline{i}_{2} solvant les ï \underline{i}_{2} quations de la mï \underline{i}_{2} canique. L'ï \underline{i}_{2} volution du systï \underline{i}_{2} me est alors dï \underline{i}_{2} crite par une trajectoire dans un espace ï \underline{i}_{2} 6Nd dimensions appelï \underline{i}_{2} espace des phases. A chaque instant, le systï \underline{i}_{2} me est complï \underline{i}_{2} tement dï \underline{i}_{2} crit par la connaissance du 6Nd-uplet $(q_{1},...,q_{N},p_{1},...,p_{N})$, oï \underline{i}_{2} q_{i} , p_{i} \in \mathbb{R}^{d} , oï \underline{i}_{2} d = 1, 2, 3 est la dimension de l'espace ambiant.

On peut \ddot{r}_{i}^{2} soudre les \ddot{i}_{i}^{2} quations du mouvement. Mais ceci n'est possible que pour des syst \ddot{i}_{i}^{2} mes d'au mieux une centaine de milliers de mol \ddot{i}_{i}^{2} cules et sur des temps $t\ddot{r}_{i}^{2}$ s courts, de l'ordre de 10^{-8} s. Pour un syst \ddot{i}_{i}^{2} me macroscopique, le nombre de particules est de l'ordre du nombre d'Avogadro $\mathcal{N}_{A}=6,02\times10^{23}$. Il est donc totalement inenvisageable de simuler compl \ddot{i}_{i}^{2} tement un syst \ddot{i}_{i}^{2} me macroscopique.

On adoptera ainsi une approche statistique du probli $\underline{i}_{\underline{1}}$ me. On ne s'inti $\underline{i}_{\underline{1}}$ ressera pas aux micro- $\overline{i}_{\underline{i}}$ tats, mais $\overline{i}_{\underline{i}}$ leur probabilit $\overline{i}_{\underline{i}}$, ce qui nous permettra d'acc $\overline{i}_{\underline{i}}$ der $\overline{i}_{\underline{i}}$ des grandeurs moyenn $\overline{i}_{\underline{i}}$ es sur l'ensemble du syst $\overline{i}_{\underline{i}}$ me, aussi appel $\overline{i}_{\underline{i}}$ es observables.

A l'�chelle macroscopique, le syst�me est d�crit par des grandeurs globales A, comme par exemple la temp�rature T ou la pression P. Chacune de ces grandeurs �volue vers sa moyenne $\langle A \rangle$. Si le syst�me subit une l�g�re fluctuation, ces grandeurs reviendront � leur valeur moyenne. Elles d�finissent un �tat d'�quilibre macroscopique, que l'on appellera macro-�tat.

1.2.2 Quelques exemples

Chaleur spi; $\frac{1}{2}$ cifique i; $\frac{1}{2}$ volume constant C_V

Pour un fluide dont le comportement est ri; $\frac{1}{2}$ gi par un potentiel de paire de type Lennard-Jones, on di; $\frac{1}{2}$ finit la chaleur spi; $\frac{1}{2}$ cifique i; $\frac{1}{2}$ volume constant par :

$$C_V = \frac{N_A}{Nk_bT^2}(\langle H^2 \rangle - \langle H \rangle^2).$$

Pression P dans un liquide

La pression P dans un liquide peut $\ddot{\imath}_{\underline{i}}^{\underline{1}}$ tre $d\ddot{\imath}_{\underline{i}}^{\underline{1}}$ finie comme une moyenne $P = \langle A \rangle$, $o\ddot{\imath}_{\underline{i}}^{\underline{1}}$

$$A = \frac{1}{3V} \sum_{i=1}^{N} \left(\frac{p_i^2}{m_i} - q_i \cdot \partial_{q_i} V(q) \right),$$

oï; $\frac{1}{2}$ V est le volume occupï; $\frac{1}{2}$ par le fluide.

1.3 Ensemble microcanonique

1.3.1 Dï; $\frac{1}{2}$ finition

Proprii; $\frac{1}{2}$ ti; $\frac{1}{2}$ 1 (Conservation du Hamiltonien le long d'une trajectoire) On montre facilement que la dynamique (??) est telle que l' $\ddot{i}_{\partial \overline{z}}$ nergie totale H(q,p) est $pr\ddot{i}_{\partial \overline{z}}$ serv $\ddot{i}_{\partial \overline{z}}$ e le long de la trajectoire. En effet,

$$\frac{dH(q(t),p(t))}{dt} = \partial_q H(q(t),p(t)) \cdot \dot{q}(t) + \partial_p H(q(t),p(t)) \cdot \dot{p}(t).$$

Utilisant alors (??) et la d \ddot{i}_{∂} finition (??) du Hamiltonien H,

$$\frac{dH(q(t),p(t))}{dt} = \nabla V(q(t)) \cdot M^{-1}p(t) + M^{-1}p(t) \cdot \left(-\nabla V(q(t))\right) = 0.$$

 $Ceci\ montre\ que\ H(q(t),p(t))=H(q^0,p^0)\ pour\ tout\ temps\ t.$

FIGURE 1.1 – Exemple de figure.

Voir la Figure ?? ou ??.

Chapitre 2

Echantillonnage de la mesure microcanonique

 ${
m etc...}$

Bibliographie

[1] E. HAIRER, CH. LUBICH, AND G. WANNER, Geometric Numerical Integration, Structure-Preserving Algorithms For Ordinary Differential Equations, Springer Series in Computational Mathematics 31 (Springer-Verlag, Berlin, 2002).