Assignment -4

Python Programming

Assignment Date	28 October 2022
Student Name	Mukil varathan.M
Student Roll Number	721419104027
Maximum Marks	2 Marks

Question-1:

Download the dataset

Output:

Download the dataset from

https://www.kaggle.com/code/kredy10/simple-lstm-for-text-classification/data

Question-2:

Import required library

Output:

```
[1] import numpy as np
  import pandas as pd
  import matplotlib.pyplot as plt
  import seaborn as sns
  import keras
  from sklearn.model_selection import train_test_split
  from sklearn.preprocessing import LabelEncoder
  from keras.models import Model
  from keras.layers import LSTM, Activation, Dense, Dropout, Input, Embedding
  from keras.optimizers import RMSprop
  from keras.preprocessing.text import Tokenizer
  from keras.preprocessing import sequence
  from keras.utils import to_categorical, pad_sequences
  from keras.callbacks import EarlyStopping
  %matplotlib inline
```

Question 3:

Read dataset and do pre-processing

Output:

```
[2] df = pd.read_csv('spam.csv',delimiter=',',encoding='latin-1')
    df.head()
```

	v1	v2	Unnamed: 2	Unnamed: 3	Unnamed: 4
0	ham	Go until jurong point, crazy Available only	NaN	NaN	NaN
1	ham	Ok lar Joking wif u oni	NaN	NaN	NaN
2	spam	Free entry in 2 a wkly comp to win FA Cup fina	NaN	NaN	NaN
3	ham	U dun say so early hor U c already then say	NaN	NaN	NaN
4	ham	Nah I don't think he goes to usf, he lives aro	NaN	NaN	NaN


```
X = df.v2
Y = df.v1
#label encoding for Y
le = LabelEncoder()
Y = le.fit_transform(Y)
Y = Y.reshape(-1,1)

X_train,X_test,Y_train,Y_test = train_test_split(X,Y,test_size=0.20)

max_words = 1000
max_len = 150
tok = Tokenizer(num_words=max_words)
tok.fit_on_texts(X_train)
sequences = tok.texts_to_sequences(X_train)
sequences_matrix = keras.utils.pad_sequences(sequences,maxlen=max_len)
```

Question 4:

Create Model

Output:

```
model = Model(inputs=inputs,outputs=layer)
```

Question 5:

Add Layers (LSTM, Dense-(Hidden Layers), Output)

Output:

```
inputs = Input(name='inputs',shape=[max_len])
layer = Embedding(max_words,50,input_length=max_len)(inputs)
layer = LSTM(64)(layer)
layer = Dense(256,name='FC1')(layer)
layer = Activation('relu')(layer)
layer = Dropout(0.5)(layer)
layer = Dense(1,name='out_layer')(layer)
layer = Activation('sigmoid')(layer)
```

Question 6:

Compile the Model

Output:

```
model.summary()
model.compile(loss='binary_crossentropy',optimizer=RMSprop(),metrics=['accuracy'])
```

Model: "model"

Layer (type)	Output Shape	Param #
inputs (InputLayer)	[(None, 150)]	0
embedding (Embedding)	(None, 150, 50)	50000
lstm (LSTM)	(None, 64)	29440
FC1 (Dense)	(None, 256)	16640
activation (Activation)	(None, 256)	0
dropout (Dropout)	(None, 256)	0
out_layer (Dense)	(None, 1)	257
activation_1 (Activation)	(None, 1)	0
		:======

Total params: 96,337 Trainable params: 96,337 Non-trainable params: 0

Question 7:

Fit the Model

Output:

Question 8:

Save The Model

Output:

```
model.save('spam_lstm_model.h5')
```

Question 9:

Test The Model

Output:

```
test_sequences = tok.texts_to_sequences(X_test)
test_sequences_matrix = keras.utils.pad_sequences(test_sequences,maxlen=max_len)
accr = model.evaluate(test_sequences_matrix,Y_test)
```