Applications linéaires

Exercices

3.1. Exercices

Exercice 3.1. Parmi les applications de \mathbb{R}^2 dans \mathbb{R}^2 définies par les relations qui suivent, déterminer lesquelles sont linéaires.

$$f_1(x,y) = (x+y,x-y)$$
 $f_2(x,y) = (|x|+|y|,2)$ $f_3(x,y) = (x,-y)$
 $f_4(x,y) = (xy,y)$ $f_5(x,y) = (x-y+1,x)$ $f_6(x,y) = \left(\frac{1}{x},\frac{1}{y}\right)$

pour tous $x, y \in \mathbf{R}$.

Exercice 3.2. Pour chacune des applications ci-dessous, démontrer qu'elle est linéaire, et determiner son noyau, son image ainsi qu'une base de chacun de ces sous-espaces.

$$f_{1}: \mathbf{R}^{2} \longrightarrow \mathbf{R}^{2}$$

$$(x,y) \longmapsto (2x+3y,3x-y)$$

$$f_{2}: \mathbf{R}^{2} \longrightarrow \mathbf{R}^{2}$$

$$(x,y) \longmapsto (2x+3y,-4x-6y)$$

$$f_{3}: \mathbf{R}^{3} \longrightarrow \mathbf{R}$$

$$(x,y,z) \longmapsto (2x+y+z)$$

$$f_{4}: \mathbf{R}^{3} \longrightarrow \mathbf{R}^{2}$$

$$(x,y,z) \longmapsto (x+y+z,2x+y-z)$$

Exercice 3.3. Soit f une application linéaire de \mathbb{R}^n dans \mathbb{R}^m .

- 1. Rappeler la définition de « f est injective » (resp. surjective, bijective).
- 2. (Question de cours) Démontrer que f est injective si et seulement si $\ker(f) = \{0\}$.
- 3. On suppose dans cette question que n=m. Démontrer que f est injective si et seulement si elle est surjective.
- 4. Démontrer que si f est injective alors $n \leq m$.
- 5. Démontrer que si f est surjective alors $n \ge m$.
- 6. Les réciproques des deux implications précédentes sont elles vraies?

Exercice 3.4. Soient E et F des \mathbf{R} -espaces vectoriels. Soit $(\vec{e_1}, \ldots, \vec{e_n})$ une base de E. Soit $(\vec{u_1}, \ldots, \vec{u_n})$ une famille de vecteurs F. On note φ l'unique application de E dans F telle que $\varphi(\vec{e_i}) = \vec{u_i}$ pour $i \in \{1, \ldots, n\}$.

- 1. (Question de cours) Déterminer l'image par φ d'un point de coordonnées (x_1, \ldots, x_n) dans la base $(\vec{e_1}, \ldots, \vec{e_n})$.
- 2. Démontrer que φ est injective si et seulement si $(\vec{u}_1, \dots, \vec{u}_n)$ est une famille libre.
- 3. Démontrer que φ est surjective si et seulement si $(\vec{u}_1, \dots, \vec{u}_n)$ est une famille génératrice de F.

Exercice 3.5. Soit $\varphi: E \to F$ une application linéaire. Soit $(\vec{u}_1, \dots, \vec{u}_n)$ une famille de vecteurs de E. La famille $(\varphi(\vec{u}_1), \dots, \varphi(\vec{u}_n))$ est appelée *l'image* de la famille $(\vec{u}_1, \dots, \vec{u}_n)$ par l'application φ .

- 1. Démontrer que l'image d'une famille libre par une application linéaire injective est libre.
- 2. Démontrer que l'image d'une famille génératrice par une application linéaire surjective est génératrice.
- 3. Démontrer qu'une application linéaire est un isomorphisme si et seulement si elle envoie une base sur une base.

Exercice 3.6. Soient E un \mathbf{R} -espace vectoriel de dimension n et f un endomorphisme de E. On définit par récurrence $f^{\circ k}$ de la façon suivante : $f^{\circ 0} = \mathrm{Id}_E$ et, si $n \geq 1$, $f^{\circ n} = f \circ f^{\circ (n-1)}$. En particulier $f^{\circ 1} = f$. On dit que f est nilpotente s'il existe un entier $k \geq 1$ tel que $f^{\circ k}$ est l'application constante nulle. L'ordre de nilpotence de f est alors le plus petit entier $m \geq 1$ tel que $f^{\circ m} = 0$.

- 1. On suppose que $f \circ f$ est l'application constante nulle. Démontrer que $\mathrm{Im}(f) \subset \mathrm{Ker}(f)$.
- 2. Démontrer la réciproque.
- 3. On suppose que Im(f) = Ker(f). Démontrer que la dimension n est un entier pair.
- 4. On suppose maintenant que $n \ge 1$ et que f est nilpotente d'ordre m. Démontrer qu'il existe un vecteur $v \in E$ tel que $f^{\circ (m-1)}(v) \ne 0$. Pour un tel vecteur v démontrer que $(v, f(v), \ldots, f^{\circ (m-1)}(v))$ est libre.
- 5. En déduire que si f est nilpotente, alors $f^{\circ n} = 0$.

Exercice 3.7. Rappelons que $\mathbf{R}[X]$ désigne l'espace vectoriel des applications polynomiales de \mathbf{R} dans \mathbf{R} .

- 1. Démontrer que la dérivation $D: f \mapsto f'$ est un endomorphisme de l'espace vectoriel $\mathbf{R}[X]$.
- 2. Déterminer son image.
- 3. Déterminer son noyau.
- 4. L'application D est-elle surjective, injective, bijective?
- 5. En utilisant un raisonnement par l'absurde, déduire de la question précédente que l'espace vectoriel $\mathbf{R}[X]$ n'est pas de dimension finie.

Exercice 3.8. Dans chacun des exemples suivants, justifier rapidement pourquoi la partie considérée est un sous-espace vectoriel de \mathbb{R}^2 ou de \mathbb{R}^3 , en donner la dimension et trouver une base du sous-espace vectoriel.

- 1. $E = \{ (x, y) \in \mathbf{R}^2 \mid x + y = 0 \}.$
- 2. $F = \{ (x, y) \in \mathbf{R}^2 \mid x = y \}.$
- 3. $G = \{ (x, y, z) \in \mathbf{R}^3 \mid x + y + z = 0 \}.$
- 4. $H = \{ (x, y, z) \in \mathbf{R}^3 \mid x = y = z \}.$

Exercice 3.9. Polynômes d'interpolation de Lagrange. Soit $d \in \mathbb{N}$. On rappelle que $\mathbb{R}[X]_{\leq d}$ désigne l'ensemble des applications $P: \mathbb{R} \to \mathbb{R}$ telles qu'il existe des nombres réels (a_0, \ldots, a_d) tels que

$$\forall x \in \mathbf{R}, \quad P(x) = \sum_{k=0}^{d} a_k x^k.$$

On note $\mathbf{t} = (t_0, \dots, t_d)$ une famille de d+1 nombres réels deux à deux distincts. On note év_t l'application de $\mathbf{R}[X]_{\leq d}$ dans \mathbf{R}^{d+1} qui envoie une application P sur le (d+1)-uplet $(P(t_0), P(t_1), \dots, P(t_d))$.

- 1. Démontrer que $(1, ..., X^d)$ est une base de $\mathbf{R}[X]_{\leq d}$, quelle est la dimension de cet espace?
- 2. Démontrer que év $_t$ est linéaire.
- 3. On considère l'application polynomiale P_i donnée par

$$t \longmapsto \prod_{\substack{0 \leqslant k \leqslant d \\ k \neq i}} \frac{t - t_k}{t_i - t_k}$$

- (a) Déterminer $\text{\'ev}_{\boldsymbol{t}}(P_i)$.
- (b) Que peut-on en déduire sur l'application év $_t$?
- (c) Que peut-on dire de la famille (P_0, \ldots, P_d) ?

Exercice 3.10. Dans l'exercice 2.8, on a défini l'espace vectoriel $\mathbf{R}^{(\mathbf{N})}$ formé des suites de nombres réels $(a_n)_{n\in\mathbf{N}}$ tel que $\{n\in\mathbf{N}\mid a_n\neq 0\}$ est fini. Soit $P=(a_i)_{i\in\mathbf{N}}$ un élément de $\mathbf{R}^{(\mathbf{N})}$. On note $p\in\mathbf{N}$ un entier tel que $a_k=0$ si k>p. On considère l'application f_P de \mathbf{R} dans \mathbf{R} donnée par $x\mapsto\sum_{i=0}^p a_ix^i$. Démontrer que l'application $P\mapsto f_P$ définit un isomorphisme d'espace vectoriel de $\mathbf{R}^{(\mathbf{N})}$ sur l'espace vectoriel des applications polynomiales de \mathbf{R} dans \mathbf{R} .

Exercice 3.11* On note $\mathscr{C}^2(\mathbf{R}, \mathbf{R})$ l'ensemble des applications $f : \mathbf{R} \to \mathbf{R}$ qui sont deux fois dérivables et dont la dérivée seconde f'' est continue. On note a, b des nombres réels.

- 1. Démontrer que $\mathscr{C}^2(\mathbf{R}, \mathbf{R})$ est un sous-espace vectoriel de l'espace vectoriel $\mathbf{R}^{\mathbf{R}}$ des applications de \mathbf{R} dans \mathbf{R} .
- 2. Démontrer que l'application $f \mapsto f'' + af' + bf$ est linéaire. On note E le noyau de cette application linéaire.
- 3. Soit $\alpha \in \mathbf{R}$. À quelle condition $t \mapsto e^{\alpha t}$ appartient-elle à l'espace E?
- 4. On considère l'application φ de E dans \mathbf{R}^2 qui à une application f associe le couple (f(0), f'(0)). Démontrer que φ une application linéaire.
- 5. On suppose que l'équation $X^2 + aX + b = 0$ a deux solutions réelles distinctes. Démontrer que φ est surjective.
- 6. Soit f un élément du noyau de φ .
 - (a) Que vaut f''(0)?
 - (b) Démontrer qu'il existe une constante $\eta < 1$ telle que pour tout $x \in]-\eta, \eta[$, on ait $|f'(x)| \leq |x|$ et $|f(x)| \leq \frac{1}{2}|x|^2$. (On pourra éventuellement utiliser qu'une application dérivable dont la dérivée est positive sur un intervalle est croissante sur cet intervalle en l'appliquant à la différence entre des applications bien choisies).
 - (c) Notons C = |a| + |b|. Déduire de la question précédente que $|f''(x)| \le C|x|$ pour $x \in]-\eta, \eta[$.
 - (d) Démontrer par récurrence sur n que pour tout $n \in \mathbb{N}$ et tout $x \in]-\eta, \eta[, |f(x)| \leq C^n |x|^{n+2}$
 - (e) Démontrer qu'il existe un intervalle contenant 0 tel que la restriction de f à I soit la fonction constante nulle
- 7. Soit $f \in E$ et $a \in \mathbf{R}$ soit $T_a(f)$ l'application $t \mapsto f(t-a)$.
 - (a) Démontrer que $T_a(f) \in E$.
 - (b) Démontrer que T_a est linéaire. Quel est son noyau? Quelle est la composée $T_{-a} \circ T_a$? Quelle est son image?
 - (c) Exprimer simplement $\varphi(T_a(f))$.
- 8. soit $f \in \text{Ker}(\varphi)$. On considère

$$A = \{ t \in \mathbf{R}_+ \mid \forall x \in [0, t[, f(x) = f'(x) = 0 \} \}$$

- (a) Démontrer que $A = \mathbf{R}_+$ (On pourra raisonner par l'absurde et considérer la borne supérieure de A).
- (b) Démontrer que f est l'application constante nulle.
- 9. Démontrer que φ est injective.
- 10. Que peut-on en déduire sur la dimension de l'espace E?
- 11. On suppose maintenant que l'équation $X^2 + aX + b$ n'a pas de solutions réelles. Soit $\alpha + i\theta$ une des deux solutions complexes.
 - (a) Donner l'autre solution complexe.
 - (b) Vérifier que l'application $t \mapsto e^{\alpha t} \cos(\theta t)$ appartient à l'espace E.
 - (c) Donner dans ce cas une base de l'espace vectoriel E.
- 12. Étudier le cas où l'équation $X^2 + aX + b$ n'a qu'une solution.