多元线性回归分析的实例研究

张宇山

(广东商学院数学与计算科学系 广东 广州 510320)

【摘 要】通过运用 SAS 统计软件,针对一实际例子,编程建立线性回归模型,并通过方差分析和共线性判断等对模型参数进行检验,调整模型形式,最后得到与原数据比较拟和的模型。

【关键词】SAS;多元线性回归;多重共线性;方差膨胀因子

[Abstract] By making programmings in SAS, this paper sets up three linear regression models based on real-world data. After analyzing their respective variance and estimating multicollinearity of variables, the models are adjusted to be more adaptive to the data.

[Key words] SAS; Linear analysis; Multicollinearity; Variance inflation factor

1.统计软件 SAS 简介

SAS 是美国 SAS 软件研究所研制的一套大型集成应用软件系统,具有完备的数据存取、数据管理、数据分析和数据展现功能。尤其是创业产品—统计分析系统部分,由于其具有强大的数据分析能力,在数据处理和统计分析领域,被誉为国际上的标准软件和最权威的优秀统计软件包,广泛应用于政府行政管理、科研、教育、生产和金融等不同领域,发挥着重要的作用。SAS 系统操作以编程为主,人机对话界面不太友好,系统地学习和掌握 SAS,需要花费一定的时间和精力。但无论从速度或功能等各个方面,SAS 作为专业统计软件中的巨无霸,现在还很难有什么统计软件足以与之抗衡。

本文使用的是 SAS For Windows 6.12。

2 实例背景

本文使用的数据来源于 www.statitistics.com 中 Industry 的数据资料库。

某成品的密度可作为衡量该产品的指标,它由生产过程中的 5 个变量所决定:

X₁ = 该成品所含水量

 $X_2 =$ 该成品生产过程中所包含的重复使用材料数

 $X_3 =$ 生产过程的平均温度

X₄ = 烘干炉中的温度

X₅ = 原材料的质量指标

现有 48 组数据如表 1。

3.回归分析

首先对 48 组数据进行简单的描述统计量的计算,见表 2。

3.1 模型(1)

首先从最简单的线性回归模型入手,假设回归模型形式如下:

 $y=\beta_0+\beta_1x_1+\beta_2x_2+\beta_3x_3+\beta_4x_4+\beta_5x_5+\epsilon$

表 1

X1	X2	Х3	X4	X5	Y	X1	X2	Х3	X4	X5	Y
0	800	135	578	13.195	104	75	800	135	550	12.745	103
0	800	135	578	13.195	102	75	800	135	550	12.745	111
0	800	135	578	13.195	100	75	800	135	550	12.745	111
0	800	135	578	13.195	96	75	800	135	550	12.745	107
0	800	135	578	13.195	93	75	800	135	550	12.745	112
0	800	135	578	13.195	103	75	800	135	550	12.745	106
0	800	150	585	13.180	118	75	800	150	595	13.885	111
0	800	150	585	13.180	113	75	800	150	595	13.885	107
0	800	150	585	13.180	107	75	800	150	595	13.885	104
0	800	150	585	13.180	114	75	800	150	595	13.885	103
0	800	150	585	13.180	110	75	800	150	595	13.885	104
0	800	150	585	13.180	114	75	800	150	595	13.885	103
0	1000	135	590	13.440	97	75	1000	135	530	11.705	116
0	1000	135	590	13.440	87	75	1000	135	530	11.705	108
0	1000	135	590	13.440	92	75	1000	135	530	11.705	104
0	1000	135	590	13.440	85	75	1000	135	530	11.705	116
0	1000	135	590	13.440	94	75	1000	135	530	11.705	112
0	1000	135	590	13.440	102	75	1000	135	530	11.705	111
0	1000	150	590	13.600	104	75	1000	150	590	13.835	110
0	1000	150	590	13.600	102	75	1000	150	590	13.835	115
0	1000	150	590	13.600	101	75	1000	150	590	13.835	114
0	1000	150	590	13.600	104	75	1000	150	590	13.835	114
0	1000	150	590	13.600	98	75	1000	150	590	13.835	114
0	1000	150	590	13.600	101	75	1000	150	590	13.835	114

其中 x_1 , \dots , x_5 表示数据中的自变量 , y 为表示产品密度的因变量 。 进行方差分析和参数检验 , 得到结果见表 3 。

从图 2 结果可以看到,决定系数 R-Square = 0.6375,表明方程模拟得并不理想,回归方程的显著性检验 p 值虽然较理想(<.0001),但回归系数的显著性检验表明除了常数项和 x3 的系数高度显著外,其余系数都不十分显著,特别是 x4 和 x5。另外我们通过绘制残差图,可以看到:

图 1 模型(1)的残差图

可以看到,在 \hat{y} =105,残差都在零线以下。所以综合上述,模型(1)并不是一个与原数据拟和十分理想的模型。

=	\sim
ᅏ	~

		,	Simple Statisti	cs		
Variable	N	Mean	Std Dev	Sum	Minimum	Maximum
X1	48	37.5000	37.8968	1800.0	0	75.0000
X2	48	900.0	101.1	43200.0	0.008	1000,0
хз	48	142.5	7.5794	6840.0	135.0	150.0
X4	48	576.0	22.1004	27648.0	530.0	595.0
X5	48	13,1981	0.6715	633.5	11.7050	13.8850
Y	48	105.7	7.7875	5073.0	85.0000	118.0

表 3

		Analysis of Variance				
Source	DF	Sum of Squares	Mean Squ	are	F-value	Pr>F
Model	5	1817.10716	363.42.14	3	14.77	< .0001
Error	42	1033.20534	24.60013			
Corrected Total	47	2850.31250				
Root MS	E	4.95985	R-Square	0.637	5.	
Depende	nt Mean	105.68750	Adj R-sq	0.594	4.	
Coeff Va	ri:	4.69294				
		Pa	rameter Estimat	es		
Variable	DF	Parameter Estimate	Standard	Error	t Value	Pr> t

Variable	DF	Parameter Estimate	Standard Error	t Value	Pr> t
Intercept	1	134.25774	39.66120	3.39	0.0016
X1	1	0.06032	0.03638	1.38	0.1739
X2	1	-0.01168	0.00726	-1.61	0.1152
X3	1	0.83426	0.14259	5.85	< .0001
X4	1	-0.15384	0.20740	-0.74	0.4624
X5	1	-3.80429	5.87173	-0.65	0.5206

3.2 调整模型的思路

在多元线性回归的应用中可能碰到这样的问题 : (1) 在某个检验 水平 α 下,整个回归方程的统计检验小于 α ,而方程的各偏回归系数的检验却大于 α ; (2) 根据专业知识,某自变量与因变量间关系密切,但 检验 结果 大于 α 。 在统计学中这种 现象 称为 多 重 共线性 (multicollinearity)。当自变量间存在近似的线性关系,即某个自变量能近似的由其它自变量的线性函数来描述,就会造成参数估计的误差急剧增大,从而导致了上述的问题。

如何识别自变量组 $(X1,X2,\cdots,Xn)$ 是否存在多重共线性,首先想到以 $X1,X2,\cdots,Xn$ 中的一个(如 Xi) 为因变量,其他的 $Xj(j\neq i)$ 为自变量建立回归方程,看此回归方程的决定系数(记为 $Ri^2)$ 是否较大,若 Ri^2 较大,说明 Xi 的变异基本由其它 Xj 的线性回归所决定。对于 n 个自变量相应的就可求得 n 个 Ri^2 ,只要其中有一个 Ri^2 较大,该组自变量就存在多重共线现象。而在实际中并不需要建立 n 个回归方程来求 Ri^2 ,而是把方差膨胀因子(variance inflation factor,记为 VIF)作为衡量标准。设 $X1,X2,\cdots,Xn$ 的相关矩阵 CORRx,可以证明 Ri^2 与 $(CORRx)^{-1}$ 的对角线元素 fii 有对应关系 : $f_{ii}=(1-R_i^2)^{-1}$

fii 就称为 Xi 的方差膨胀因子, 它与 Ri² 有如下关系.

当 $Ri^2=0$,即 Xi 与其他自变量不线性相关时,VIFi=1;当 $0<Ri^2<1$ 时,VIFi>1;当 $Ri^2=1$,即 Xi 与其他自变量完全线性相关时, $VIFi=\infty$ 。所有自变量中最大的 VIFi 通常用来作为多重共线性严重程度的指标,如果 $max\{VIFi\}>10$,说明共线性可能严重影响了最小二乘估计值,就要进行自变量的筛选等来调整原方程。

在模型(1)中出现了类似于问题(1)的结果,以下为其 VIF 结果。

Variance Variable	DF	Inflation
Intercept	1	0
X1	1	3.63163
X2	1	1.02953
X3	1	2.23149
X4	1	40.14088
X5	1	29.70489

很明显, VIF4 和 VIF5 都太大了。

以下的 Pearson 系数相关矩阵 (Pearson correlation coefficients matrix)反映了各变量之间的关系。

		Pearson C	orrelation Co	oefficients		
		Prob > R u	nder Ho: Rho	o=0 / N = 48		
	X1	X2	Х3	X4	X5	Υ
X1	1.00000	0.00000	0.00000	-0.44584	-0.23420	0.51638
	0.0	1.0000	1.0000	0.0015	0.1091	0.0002
X2	0.00000	1.00000	0.00000	-0.04573	-0.07995	-0.10544
	1.0000	0.0	1.0000	0.7576	0.5891	0.4757
Х3	0.00000	0.00000	1.00000	0.64018	0.64240	0.32172
	1.0000	1.0000	0.0	< .0001	< .0001	0.0258
X4	-0.44584	-0.04573	0.64018	1.00000	0.95716	-0.33305
	0.0015	0.7576	< .0001	0.0	< .0001	0.0207
X5	-0.23420	-0.07995	0.64240	0.95716	1.00000	-0.26957
	0.1091	0.5891	< .0001	< .0001	0.0	0.0639
Υ	0.51638	-0.10544	0.32172	-0.33305	-0.26957	1.00000
	0.0002	0.4757	0.0258	0.0207	0.0639	0.0

由上面的数据可看出,X4 和 X5 有很强的相关性,且 X4 与 y 更相关。由此考虑去除 x4 或把 x4 和 x5 都去除。

3.3 模型(2)和模型(3)

基于上述分析 ,从 R^2 和 C_p 两方面考虑变量的选择 。 统计量 C_n

$$= \left(\frac{4 \stackrel{\frown}{q} \stackrel{\frown}{p} \stackrel{\frown}{p} \stackrel{\frown}{p} \% \\ \% \underbrace{(包括截距) 的子集模型的残差平方和}_{ 完全模型的误差方差的估计}\right) - (n-2p)$$

即若用 SSEP 表示 k 个自变量中的 p 个自变量建立的方程的剩余平方和 ,则

$$C_p = \frac{SSE_p}{MSE} - (n-2p-2)$$

如果每个数对 $(p+1,C_p)$ 表示一个预测变量的子集,则数对 (p,C_p) 的 曲线图显示了预测观察响应的模型的好坏,一般的好的模型其 $(p+1,C_p)$ 点靠近 45 度直线。也就是按照 C_p 准则选择除完全模型外 C_p 值与(p+1)最接近的模型。

同时兼顾 R^2 和 VIF 两方面的考虑,编写 SAS 程序反复迭代,得到模型(2)和模型(3):

模型(2):
$$y=\beta_0+\beta_3x_3+\beta_{12}x_1x_2+\beta_{23}x_2x_3+\beta_4x_4^2+\varepsilon$$
 (2)

该模型是在所有剔除 X5 后由 $X_1, X_2, X_3, X_4, X_1^2, X_2^2, X_3^2, X_4^2$,以及 X_1X_2, \dots, X_3X_4 组成的所有可能的自变量组所建立的回归方程中选择出来的。

模型(3): $y=\beta_0+\beta_2x_2+\beta_{22}x_2x_3+\beta_{13}x_1x_3+\beta_{123}x_1x_2x_3+\epsilon$ (3)该模型是从将 x4 和 x5 都剔除了的回归方程中选取出来的。但是模型(3)的 VIF 还是明显偏大,如下:

Variable	DF	Variance Inflation
INTERCEP	1	0.00000000
X2	1	6.38480145
X13	1	82.00000000
X23	1	5.41736289
X123	1	82.99728629
THE THE AND A STOLE	* ~ = +	

而模型(2)则符合要求:

		Standardized	Variance
Variable	DF	Estimate	Inflation

INTERCEP	1	0.00000000	0.00000000
X3	1	0.88567868	2.33109818
X1X2	1	0.21251572	1.60950648
X2X3	1	-0.17327640	1.23935515
X4*X4	1	-0.76078293	2.72263588

所以模型(2)比模型(3)好,以下为模型(1)和(2)的 R^2 和 MSE 的 比较。

MODEL	K-Square	Root MSE
Model(1)	0.6375	4.95985
Model(2)	0.6964	4.81775

可看出,模型(2)优于模型(1),由模型(2)的残差图也说明了这一 点。

图 2 模型(2)的残差图

至于模型的回归诊断,以下为残差的 0-0图。图中的"+"号表示 标准正态 ц值的参考直线,"*"号表示实际残差数据点,如果残差服从 正态分布,则观测值数据"*"构成的直线与参考直线基本重合。在图 中,残差值与参考直线基本重合所以可以认为误差服从正态分布。

4.结论

SCIENCE & TECHNOLOGY INFORMATION

通过三个模型的比较,可以认为模型(2)最好。

把模型(2)的各系数代入方程得:

 $y=64.33222+0.909998x_3+0.000047934x_1x_2-0.000084587x_2x_3-0.000238x_4^2$ 即为所求得的回归方程。

【参考文献】

- [1] 王孝仁, 王松桂编译. 实用多元统计分析 [M]. 上海科学技术出版社, 1990, 195-264.
- [2]上海师范大学数学系概率统计教研组编,回归分析及其试验设计[M],上海教 育出版社,1978
- [3]沈其君主编.SAS 统计分析[M].东南大学出版社
- [4]SAS DOC INSIGHT. http://rss.acs.unt.edu/sasdoc/insight.
- [5]SAS 6.12 教程. http://medguider.51.net/data/sas/index.htm.

作者简介:张宇山(1975.5一),男,汉族,广东兴宁人,广东商学院数学与计 算科学学院讲师,硕士,主要从事应用数学和数理统计的研究。

[责任编辑:韩铭]

(上接第97页)找到了这种幻觉。

大学生在找工作时要特别注意:1) 通过正规的招聘单位寻找工 作。各高校与教育行政部门所安排的就业招聘需要严格审查单位资 质,可靠性比较高。2)通过其他途径找到的工作要严格审查公司的资 质与信用,包括从网上、营业地的工商部门查询,要求对方出示营业执 照和组织机构代码证书、开户许可证书、税务登记证书和代理授权书。 3)"朋友不言商",传销多通过同学、朋友等熟人进行,不要因朋友感情 害了自己。4)仔细弄清直销与传销的区别:有无入门费、有无依托优质 产品、产品是否在市场上销售、有无退货保障制度、销售人员结构有无 超越性 有无店铺经营,

随着社会、经济的发展,新形势下的大学生安全问题也出现了一 些新的特征。我们一方面要从现实之中多加观察、提高警惕性、警觉 性,对于大学生的安全教育工作严抓不懈,做到"防患于未燃";另一个 方面又要能很好的处理突发事故,一旦发生,学校与学生都能沉着应 对,采取相应的策略。

[责任编辑:田瑞鑫]