LECTURE 28: THE STRUCTURE OF COMPACT LIE GROUPS

1. STRUCTURE OF COMPACT LIE ALGEBRAS

Let \mathfrak{g} be a Lie algebra. Recall that a subset $\mathfrak{h} \subset \mathfrak{g}$ is an *ideal* if $[\mathfrak{g}, \mathfrak{h}] \subset \mathfrak{h}$. In particular any ideal is a Lie subalgebra.

Example. The center $Z(\mathfrak{g})$ is an ideal because $[\mathfrak{g}, Z(\mathfrak{g})] = 0$.

Example. The derived Lie subalgebra $\mathfrak{g}' = \operatorname{span}\{[g,h] \mid g,h \in \mathfrak{g}\}\$ is an ideal of \mathfrak{g} .

Definition 1.1. Let \mathfrak{g} be a Lie algebra.

- (1) \mathfrak{g} is *simple* if it has no nonzero proper ideals and if dim $\mathfrak{g} > 1$.
- (2) g is semisimple if it is a direct sum of simple Lie algebras.
- (3) \mathfrak{g} is *reductive* if it is a direct sum of a semisimple Lie algebra and an abelian Lie algebra.

Our first theorem shows that the Lie algebra of a compact Lie group is reductive.

Theorem 1.2. Let G be a compact Lie group, then \mathfrak{g} is reductive. More explicitly,

$$\mathfrak{g} = \mathfrak{g}' \oplus Z(\mathfrak{g}),$$

where $Z(\mathfrak{g})$ is abelian, and \mathfrak{g}' is semisimple.

Proof. Choose any adjoint invariant inner product on \mathfrak{g} . Then we have seen earlier, ad_X is skew-symmetric for any $X \in \mathfrak{g}$. It follows that if \mathfrak{a} is an ideal of \mathfrak{g} , so is \mathfrak{a}^{\perp} . As a consequence, \mathfrak{g} can be decomposed into a direct sum of minimal ideals

$$\mathfrak{g} = \mathfrak{s}_1 \oplus \cdots \oplus \mathfrak{s}_k \oplus \mathfrak{z}_1 \oplus \cdots \oplus \mathfrak{z}_l,$$

where dim $\mathfrak{s}_i > 1$ and dim $\mathfrak{z}_i = 1$. Obviously

$$\mathfrak{s} = \mathfrak{s}_1 \oplus \cdots \oplus \mathfrak{s}_k$$

is semisimple, and

$$\mathfrak{z} = \mathfrak{z}_1 \oplus \cdots \oplus \mathfrak{z}_l$$

is abelian. It remains to show $\mathfrak{s} = \mathfrak{g}'$ and $\mathfrak{z} = Z(\mathfrak{g})$.

First notice that $[\mathfrak{s}_i,\mathfrak{z}_j] \subset \mathfrak{s}_i \cap \mathfrak{z}_j = \{0\}$ for any i,j. So $[\mathfrak{s}_i,\mathfrak{z}_j] = 0$ for any i,j. Similarly $[\mathfrak{z}_i,\mathfrak{z}_j] = 0$ for all $i \neq j$. Moreover, $[\mathfrak{z}_i,\mathfrak{z}_i] = 0$ for any i since dim $\mathfrak{z}_i = 1$. So $[\mathfrak{g},\mathfrak{z}_i] = 0$ for all i. In other words, $\mathfrak{z} = \mathfrak{z}_1 \oplus \cdots \oplus \mathfrak{z}_l \subset Z(\mathfrak{g})$. Conversely, suppose $Z \in Z(\mathfrak{g})$. Decompose Z as

$$Z = S_1 + \dots + S_k + Z_1 + \dots + Z_l$$

where $S_i \in \mathfrak{s}_i$, and $Z_i \in \mathfrak{z}_i$. Then $0 = [Z, \mathfrak{s}_i] = [S_i, \mathfrak{s}_i]$, i.e., $S_i \in Z(\mathfrak{s}_i)$. Since \mathfrak{s}_i is a minimal ideal of dimension dim $\mathfrak{s}_i > 1$, we must have $S_i = 0$. So $Z \in \mathfrak{z}$. This proves $\mathfrak{z} = Z(\mathfrak{g})$.

Similarly for $i \neq j$, $[\mathfrak{s}_i, \mathfrak{s}_j] = 0$. We claim that for any i, $\mathfrak{s}'_i = \operatorname{span}[\mathfrak{s}_i, \mathfrak{s}_i] = \mathfrak{s}_i$. In fact, since $\dim \mathfrak{s}_i > 1$ and $\mathfrak{s}_i \cap Z(\mathfrak{g}) = \{0\}$, $\dim \mathfrak{s}'_i \geq 1$. So $\dim \mathfrak{s}'_i = \dim \mathfrak{s}_i$, otherwise it is a nonzero proper ideal. Now it follows that

$$\operatorname{span}[\mathfrak{g},\mathfrak{g}] = \operatorname{span}[\mathfrak{s}_1,\mathfrak{s}_1] \oplus \cdots \oplus \operatorname{span}[\mathfrak{s}_k,\mathfrak{s}_k] = \mathfrak{s}_1 \oplus \cdots \oplus \mathfrak{s}_k,$$

or in other words, $\mathfrak{s} = \mathfrak{g}'$.

2. The Commutator Subgroup

Recall that for any group G, its commutator subgroup G' is the normal subgroup generated by elements of the form $g_1g_2g_1^{-1}g_2^{-1}$.

Theorem 2.1. Let G be a compact connected Lie group. Then G' is a connected closed normal Lie subgroup of G with Lie algebra \mathfrak{g}' .

Proof. Since G is compact, it is a closed Lie subgroup of $\mathrm{U}(N)$ for some N. Decompose the standard representation of G on \mathbb{C}^N into irreducible ones,

$$\mathbb{C}^N = \mathbb{C}^{n_1} \oplus \cdots \oplus \mathbb{C}^{n_k}.$$

where $n_1 + \cdots + n_k = N$, and denote by π_i the irreducible representation of G on \mathbb{C}^{n_i} . Consider the map

$$\varphi: G \to (S^1)^k, \quad g \mapsto (\det \pi_1(g), \cdots, \det \pi_k(g)).$$

Then this is a Lie group homomorphism. It follows that $H = \ker(\varphi)$ is a closed Lie subgroup of G with Lie algebra $\mathfrak{h} = \ker(d\varphi)$. We will show that $\mathfrak{h} = \mathfrak{g}'$, and $H^0 = G'$, which will finish the proof.

We first show $\mathfrak{h} = \mathfrak{g}'$. Suppose $Z \in Z(\mathfrak{g})$, then $e^{tZ} \in Z(G)$. By Schur's lemma, $\pi_i(e^{tZ}) = c_i(t)$ Id for some scalar $c_i(t)$ with $c_i(0) = 1$. So if we think of G as a closed subgroup of $U(n_1) \times \cdots \times U(n_k)$, then Z is given by the diagonal matrix

$$\frac{d}{dt}\Big|_{t=0} (\pi_1 \oplus \cdots \oplus \pi_k)(e^{tZ}) = \operatorname{diag}(c'_1(0), \cdots, c'_1(0), \cdots, c'_k(0), \cdots, c'_k(0)).$$

It follows that

$$d\varphi(Z) = \left(d\det\frac{d}{dt}\bigg|_{t=0} \pi_1(e^{tZ}), \cdots, d\det\frac{d}{dt}\bigg|_{t=0} \pi_k(e^{tZ})\right) = (n_1c_1'(0), \cdots, n_kc_k'(0)).$$

As a consequence, $\ker(d\varphi) \cap Z(\mathfrak{g}) = \{0\}$. On the other hand, since $\operatorname{tr}(AB) = \operatorname{tr}(BA)$, for any $X \in \mathfrak{g}'$ we must have $\operatorname{tr}(d\pi_i(X)) = 0$. So $\det \pi_i(e^{tX}) \equiv 1$. We thus get $d\varphi(X) = 0$ for all $X \in \mathfrak{g}'$, i.e. $\mathfrak{g}' \subset \ker(d\varphi)$. Combine this with $\ker(d\varphi) \cap Z(\mathfrak{g}) = \{0\}$, we conclude $\ker(d\varphi) = \mathfrak{g}'$.

Finally we show $H^0 = G'$. Obviously $G' \subset H$ since determinant is multiplicative. G' is connected since $G' = \bigcup_i U^j$, where $U = \{g_1g_2g_1^{-1}g_2^{-1} \mid g_1, g_2 \in G\}$ is connected,

and $e \in U^j$ for all j. So $G' \subset H^0$. It remains to show $H^0 \subset G'$, or equivalently, to show G' contains a neighborhood of e in H. According to theorem 1.2 in lecture 8, for any $X, Y \in \mathfrak{h}$, [X, Y] is the tangent vector of the curve

$$t \mapsto c_{X,Y}(t) = \exp(\sqrt{t}X) \exp(\sqrt{t}Y) \exp(-\sqrt{t}X) \exp(-\sqrt{t}Y)$$

at t=0. Now let $\{[X_1,Y_1],\cdots,[X_m,Y_m]\}$ be a basis of \mathfrak{g}' . Consider the map

$$c: \mathbb{R}^m \to H, \quad (t_1, \cdots, t_m) \mapsto c_{X_1, Y_1}(t_1) \cdots c_{X_m, Y_m}(t_m).$$

Then dc_0 is an isomorphism onto \mathfrak{h} . So c is locally a diffeomorphism near 0. Thus the image of c contains a neighborhood of e in H. This completes the proof since the image of c is contained in G'.

Corollary 2.2. $G' \cap Z(G)$ is a finite group.

Proof. We have just seen in the proof that for any $g \in Z(G)$, $\pi(g)$ must be a diagonal matrix of the form $\operatorname{diag}(c_1, \dots, c_1, \dots, c_k, \dots, c_k)$. If we also have $g \in G' = (\ker(\varphi))^0$, then $c_1^{n_1} = \dots = c_k^{n_k} = 1$. So c_i is an n_i^{th} -root of unity. It follows that $G' \cap Z(G)$ is a finite group.

Proposition 2.3. Let $\mathfrak{g}' = \mathfrak{s}_1 \oplus \cdots \oplus \mathfrak{s}_k$ be the decomposition of \mathfrak{g}' into simple ideals and let $S_i = \exp \mathfrak{s}_i$. Then

- (1) S_i is a connected closed Lie subgroup of G' with Lie algebra \mathfrak{s}_i .
- (2) Any proper closed normal Lie subgroup of S_i are finite and lies in the center of S_i .

Proof. (1) Let $K_i = \{g \in G' \mid \mathrm{Ad}_g|_{\mathfrak{s}_j} = \mathrm{Id}, \forall j \neq i\}^0$. Then K_i is a connected closed Lie subgroup of G'. We will show $K_i = S_i$. In fact, if we denote the Lie algebra of K_i by \mathfrak{t}_i , then

$$X \in \mathfrak{k}_i \iff \exp(tX) \in K_i, \forall t \in \mathbb{R}$$

 $\iff \exp(t \operatorname{ad}_X)|_{s_j} = \operatorname{Ad}_{\exp(tX)}|_{\mathfrak{s}_j} = \operatorname{Id}, \forall j \neq i$
 $\iff \operatorname{ad}_X(\mathfrak{s}_j) = 0, \forall j \neq i$
 $\iff [X, \mathfrak{s}_j] = 0, \forall j \neq i.$

So $\mathfrak{s}_i \subset \mathfrak{k}_i$. Conversely, if $X \in \mathfrak{k}_i$, then projection of X onto \mathfrak{s}_j , $j \neq i$, must be zero. So $\mathfrak{k}_i = \mathfrak{s}_i$. It follows $K_i = \exp(\mathfrak{k}_i) = \exp(\mathfrak{s}_i) = S_i$.

(2) Suppose N is a proper closed normal Lie subgroup of S_i , i.e. $sNs^{-1} = N$ for all $s \in S_i$. Taking derivative, we get $\mathrm{Ad}_s \mathfrak{n} = \mathfrak{n}$ for any $s \in S_i$, where \mathfrak{n} is the Lie algebra of N. Taking derivative again, we have $\mathrm{ad}_X \mathfrak{n} \subset \mathfrak{n}$ for any $X \in \mathfrak{s}_i$. So \mathfrak{n} is an ideal of \mathfrak{s}_i . It follows that $\mathfrak{n} = \{0\}$, i.e. N is discrete. Since N is closed, it is also compact. So N is finite.

To show N lies in the center of S_i , for each $n \in N$ we consider

$$C_n = \{sns^{-1} \mid s \in S_i\}.$$

It is connected since S_i is connected. Since N is normal, $C_n \subset N$. So C_n contains only one element since N is discrete. It follows that $C_n = \{n\}$, and thus n lies in the center of S_i .

3. The Structure of Compact Lie Groups

Theorem 3.1. Let G be a compact connected Lie group. Then

(1) G is the product of a semisimple Lie group with an abelian Lie group,

$$G = G'Z(G)^0$$
.

(2) Let $F = \{(g, g^{-1}) \mid g \in G' \cap Z(G)^0\}$, then F is finite and

$$G \cong (G' \times Z(G)^0)/F$$
.

(3) There is a finite abelian subgroup F' of $S_1 \times \cdots \times S_k$ such that

$$G' \cong (S_1 \times \cdots \times S_k)/F'.$$

Proof. (1) Since G' is closed, it is compact. So $G' = \exp \mathfrak{g}'$, and

$$G = \exp \mathfrak{g} = \exp(\mathfrak{g}' \oplus Z(\mathfrak{g})) = G'Z(G)^0.$$

(2) F is finite since $G' \cap Z(G)^0 \subset G' \cap Z(G)$ and the later is finite. From (1), the Lie group homomorphism

$$G' \times Z(G)^0 \to G, \quad (q, z) \mapsto qz$$

is surjective. The kernel of this map is F. So $G \cong (G' \times Z(G)^0)/F$.

(3) Since $[\mathfrak{s}_i, \mathfrak{s}_j] = 0$ for $i \neq j$,

$$G' = \exp \mathfrak{g}' = \exp(\mathfrak{s}_1 \oplus \cdots \oplus \mathfrak{s}_k) = S_1 \cdots S_k.$$

So the Lie group homomorphism

$$S_1 \times \cdots \times S_k \to G', \quad (s_1, \cdots, s_k) \mapsto s_1 \cdots s_k$$

is surjective. Moreover, its differential at e is the identity map. So the kernel of this map is a discrete normal closed subgroup, which has to be finite and lies in the center.