Biodiversity data wrangling: Linking large phylogenies with species traits and ecologies

Module: Phylogenetic Community Ecology

Daijiang Li

Botany 2024

Phylogeny: evolutionary relationships among species

- 1. Comparative methods among species
- 2. Community ecology

Community ecology

What species are present/absent in different communities?

Why use phylogenies in community ecology?

Phylogenies can be surrogates for missing trait data

Even if relevant traits are unknown, related species should have similar trait values

Phylogeny tells which species will likely have similar traits

Phylogeny tells which species will likely have similar traits

Phylogenetically related species will occur in the same sites

Phylogeny tells which species will likely have similar traits

Phylogeny is a surrogate for traits

Outline

Phylogenetic diversity

 Phylogenetic Generalized Linear Mixed Models (PGLMMs)

BAYFIELD LANGLADE FOREST TAYLOR MENOMINEE CLARK EAU CLAIRE BUFFALO OUTAGAMIE WINNEBAGO CALUMET & 3083 JEFFERSON KENOSHA

Dataset

species

sites

Functional traits

- Woody
- Biotic Pollination
- Shade Tolerance
- Plant Height
- Seed Mass
- Specific Leaf Area (SLA, leaf area/dry mass)
- Leaf Carbon Content (LCC)
- Leaf Nitrogen Content (LNC)
- Stem Dry Mass Content (SDMC)

Tucker et al. 2016, Biological Reviews

Common Phylogenetic Diversity Metrics

Environmental variable

Model-based methods

• Why?

- No aggregation to one value/site
- Integrate multiple source of information (and their interactions)
- Model validation/selection/prediction ...
- Deeper understanding of community dynamics

This section has a lot of equations in it.

I want to show how useful it is to analyze data with <u>models</u>.

The models look complicated only because the questions are complicated.

Preliminaries

Incorporating phylogenies into statistical models

Turning phylogenies into variances

Total variance

Matrix giving phylogenetic covariances among species

$$\Psi = \begin{pmatrix} 1 & 0.5 & 0 \\ 0.5 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

1. Are related species more likely to occur in the same sites?

species

2. Is this because they share functional traits?

Li et al., 2017 New Phytologist

$$Y_i = a_{\text{spp}[i]} + a_{\text{spp}[i]} + c_{\text{site}[i]} + d_i + e_i$$

$$a \sim \text{Gaussian}(\mathbf{0}, \sigma_a^2 \mathbf{I}_n)$$

$$a^p \sim \text{Gaussian}(\mathbf{0}, \sigma_{ap}^2 \Psi)$$

$$c \sim \text{Gaussian}(\mathbf{0}, \sigma_{\text{site}}^2 \mathbf{I}_m)$$

$$d \sim \text{Gaussian}(\mathbf{0}, \text{kron}(\mathbf{I}_m, \sigma^2_{\text{attract}} \mathbf{\Psi}))$$

$$e \sim \text{Gaussian}(\mathbf{0}, \sigma^2 \mathbf{I})$$

$$Y_i = a_{\text{spp}[i]} + a_{\text{spp}[i]} + c_{\text{site}[i]} + d_i + e_i$$

$$\boldsymbol{a} \sim \text{Gaussian}(\mathbf{0}, \, \sigma^2_{a} \mathbf{I}_n)$$

differences in abundance

$$a^p \sim \text{Gaussian}(\mathbf{0}, \sigma^2_{ap} \Psi)$$

...that depend on phylogeny

$$Y_i = a_{\text{spp}[i]} + a_{\text{spp}[i]}^p + c_{\text{site}[i]}^p + d_i + e_i$$

$$c \sim \text{Gaussian}(\mathbf{0}, \sigma^2_{\text{site}}\mathbf{I}_m)$$

differences among sites

$$Y_i = a_{\text{spp}[i]} + a_{\text{spp}[i]}^p + c_{\text{site}[i]} + d_i + e_i$$

$$d \sim \text{Gaussian}(\mathbf{0}, \text{kron}(\mathbf{I}_m, \sigma^2_{\text{attract}} \mathbf{\Psi}))$$

phylogenetic attraction within sites

Sites contain phylogenetically related species

attraction within sites

$$Y_i = a_{\text{spp}[i]} + a_{\text{spp}[i]}^p + c_{\text{site}[i]} + d_i + \boxed{e_i}$$

$$e \sim \text{Gaussian}(\mathbf{0}, \sigma^2 \mathbf{I})$$

residual variation

$$Y_i = a_{\text{spp}[i]} + a_{\text{spp}[i]}^p + c_{\text{site}[i]} + d_i + e_i$$

$$\boldsymbol{a} \sim \text{Gaussian}(\mathbf{0}, \, \sigma^2_{\mathbf{a}} \mathbf{I}_n)$$

$$a^p \sim \text{Gaussian}(\mathbf{0}, \sigma_{ap}^2 \Psi)$$

$$c \sim \text{Gaussian}(\mathbf{0}, \sigma_{\text{site}}^2 \mathbf{I}_m)$$

$$d \sim \text{Gaussian}(\mathbf{0}, \text{kron}(\mathbf{I}_m, \sigma^2_{\text{attract}} \mathbf{\Psi}))$$

$$e \sim \text{Gaussian}(\mathbf{0}, \sigma^2 \mathbf{I})$$

$$Y_i = a_{\text{spp}[i]} + a_{\text{spp}[i]}^p + c_{\text{site}[i]} + d_i + e_i$$

$$\sigma_{\rm a} = 0.997$$

$$\sigma_{ap} = 0.001$$

High variation among species in abundance but almost no phylogenetic signal

$$Y_i = a_{\text{spp}[i]} + a_{\text{spp}[i]}^p + c_{\text{site}[i]} + d_i + e_i$$

$$\sigma_{a} = 0.997$$

$$\sigma_{ap} = 0.001$$

$$\sigma_{site} = 0.004$$

Little site-to-site variation in mean abundance of species

$$Y_i = a_{\text{spp}[i]} + a_{\text{spp}[i]}^p + c_{\text{site}[i]} + d_i + e_i$$

$$\sigma_{a} = 0.997$$

$$\sigma_{ap} = 0.001$$

$$\sigma_{site} = 0.004$$

$$\sigma_{attract} = 0.096 \quad (P < 0.001)$$

Significant phylogenetic attraction: related species are more likely to have high abundance in the same site

Phylogenetic attraction: related species occur in the same sites

Are there traits that explain the phylogenetic attraction?

$$Y_i = a_{\text{spp}[i]} + a_{\text{spp}[i]}^p + c_{\text{site}[i]} + d_i + f_{\text{site}[i]} trait_{\text{spp}[i]} + e_i$$

$$f \sim \text{Gaussian}(\beta, \sigma^2_{\text{trait}} \mathbf{I}_m))$$

$$Y_i = a_{\text{spp}[i]} + a_{\text{spp}[i]}^p + c_{\text{site}[i]} + d_i + f_{\text{site}[i]} trait_{\text{spp}[i]} + e_i$$

$$f \sim \text{Gaussian}(\beta, \sigma^2_{\text{trait}} \mathbf{I}_m))$$

$$Y_i = a_{\text{spp}[i]} + a_{\text{spp}[i]}^p + c_{\text{site}[i]} + d_i + f_{\text{site}[i]} trait_{\text{spp}[i]} + e_i$$

Do traits explain (remove) the effect of phylogeny?

$$Y_i = a_{\text{spp}[i]} + a_{\text{spp}[i]}^p + c_{\text{site}[i]} + d_i + f_{\text{site}[i]} trait_{\text{spp}[i]} + e_i$$

$$\sigma_{\text{leaf width}} = 0.076$$

$$\sigma_{\text{leaf circularity}} = 0.29$$

$$\sigma_{\text{leaf thickness}} = 0.0006$$

$$\sigma_{\rm dispersal} = 0.087$$

$$\sigma_{\text{attract}} = 0.00016$$

There is almost no remaining phylogenetic attraction

Are there traits that explain the phylogenetic attraction?

Are there traits that explain the phylogenetic attraction?

Yes

Go through R code