HVDN Communicator

Linux Distro Build Guide

Hudson Valley Digital Network 7 February 2020

v0.7

Introduction

This is a guide on how to build the distribution image for the HVDN Communicator. All reference to "RPi" in this guide are an abbreviation for the Raspberry Pi Zero W hardware. The desktop operating system used in preparing the build is assumed to be a Debian or Debian derivative distribution. Ubuntu 18.04 was use din the preparation of this guide.

Preparing Media

- From your PC mount an 8GB SD Card
- Run <u>sudo gparted</u> partitioning software
- From <u>Gparted</u> menu select **Devices** and SD card inserted
- Any existing partitions on the SD card right click and select **Delete**
- Right click on unallocated, select new, select FAT32 as file system. Click add
- Click check mark to apply all operations
- Note only up to 8GB of the SD Card will be formatted
- Download Raspbian and Extract from ZIP file
- Install Raspbian on freshly formatted SD card

wget --max-redirect=3 https://downloads.raspberrypi.org/raspbian_lite_latest

sudo dd bs=4M if=2019-09-26-raspbian-buster-lite.img of=/dev/sdg conv=fsync

Pi Connectivity

Via connected keyboard, monitor and mouse	
 Change to your home directory, run sync as sudo, and unmount the SD card Remove the SD card 	cd ~ sudo sync umount /media/sd-card/root umount /media/sd-card/boot

Via IP through Wireless Connection	
 You can use this method if you wish to access the RPi via an existing WiFi network Change to the boot directory on the SD card Enable ssh access by creating a blank file named ssh 	cd /media/sd-card/boot touch ssh
Within the boot directory, create a file called wpa_supplicant.conf and edit	vi wpa_supplicant.conf
 When you have opened the new file, add the configuration at right and save Be sure to replace SSID with your local wireless network SSID 	country=US ct1_interface=DIR=/var/run/wpa_supplicant GROUP=netdev update_config=1 network={ ssid="MyWiFiNetwork" psk="aVeryStrongPassword" key_mgmt=WPA-PSK }
 Change to your home directory, run sync as sudo, and unmount the SD card Remove the SD card 	cd ~ sudo sync umount /media/sd-card/root umount /media/sd-card/boot

Via IP through USB connection	
-------------------------------	--

- In this configuration you will be powering the RPi via the USB cable to your PC. Be sure to use the correct USB cable
- On your Linux host you need to add a USB Network Interface and a network with the Pi on the USB interface. Give it a static address (ie 169.254.15.1)

Change to the boot directory on the SD card

Edit the config.txt file

cd /media/sd-card/boot

vi config,txt

Append the following line:

dtoverlay=dwc2

Then save the file.

While in the boot directory, edit the cmdline.txt file, replace a line, then save file.

vi cmdline,txt

Replace with the following all as one continuous line:

dwc_otg.lpm_enable=0 console=serial0,115200 console=tty1 root=/dev/mmcblk0p2 rootfstype=ext4 elevator=deadline fsck.repair=yes rootwait modules-load=dwc2,g_ether quiet init=/usr/lib/raspi-config/init_resize.sh

Than save the file.

Remaining in the boot directory, enable ssh access by creating a blank file named ssh

touch ssh

- Change to the **rootfs** directory
- Edit the interfaces file

cd /media/sd-card/rootfs/etc/network vi interfaces

Append the following lines:

allow-hotplug usb0 iface usb0 inet static address 169.254.15.2 netmask 255.255.255.0 network 169.254.15.0 broadcast 169.254.15.255 gateway 169.254.15.1

Then save the file

- Change to your home directory, run sync as sudo, and unmount the SD card
- Remove the SD card

sudo sync

umount /media/sd-card/root umount /media/sd-card/b

Initial Pi Setup

 Install Adafruit Radio Bonnet and Antenna Insert SD card Connect RPI and Power on Log in with default pi:raspberry 	If accessing via IP over USB, connect PC USB port to RPi USB Data port (next to mini-HDMI port) If connecting via SSH for first time click yes to accept fingerprint
Run Configuration tool	sudo raspi-config
Navigate through each menu making selections as noted then exit tool	1. Change User Password to <something> 2. Network options N1 Change hostname to your call + number [1-15] yourcall-5 3. Boot Options B1 Desktop/CLI choose B1 Console 4. Localization I1 Change Local to en_US.UTF-8 I2 Change Timezone 5. Interfacing options P2 Enable SSN P4 Enable SSPI P5 Enable I2C 7. Advanced Options A3 memory Split Reduce GPU from 64 to 16 8. Update</something>
Run sync as sudo, and reboot	sudo sync sudo reboot

HAS Violet Install

A build script has been provided on the GitHub HAS Violet repo in the build directory (hvdn_hasviolet_install.sh) that automates the following sections. You have the option of running it or following the instructions in the following sections.

Install Raspbian Packages	
 Log back into the RPi. Ensure you are in the home directory Install the following packages pip3 – Python Package Index Git – For cloning repositories 	cd ~ sudo apt-get install python3-pip sudo apt-get install git

Install Python Libraries	
 Install the following Python libraries Python Image Library APRS and APRSlib Adafruit Radio Bonnet Libraries 	sudo apt-get install python3-pil sudo pip3 install aprs sudo pip3 install aprslib sudo pip3 install adafruit-circuitpython-rfm69 sudo pip3 install adafruit-circuitpython-rfm9x sudo pip3 install adafruit-circuitpython-ssd1306 sudo pip3 install adafruit-circuitpython-framebuf
Install HVDN Repository	
Ensure you are in the nome directory	cd ~ mkdir hvdn-comm mkdir hvdn-repo cd hvdn-repo git clone https://github.com/hudsonvalleydigitalnetwork/hasviolet.git cp /home/pi/hvdn-repo/hasviolet/stable /home/pi/hvdn-comm

Using HVDN Communicator

HVDN Communicator is data only currently designed to be used on local LoRa networks. It is installed in /home/pi/hvdn-comm

HVDN Communicator is built with Python. Applications include;

- hvdn_lora-beacon.py sends a repeating broadcast message
- hvdn_lora-chat.py is a half-duplex messaging app
- hvdn_lora-tx.py sends a message to another LoRa station
- hvdn_lora-rx.py listens for messages from other LoRa stations

Three files dependend by all applications are;

- hvdn-comm.ini is a configuration file
- rf95.py is a Python Library for the HOPE RFM95 modules on the Raspberry Radio Bonnet
- font5x8.bin used by the OLED on the Adafruit Radio Bonnet

hvdn_lora-beacon.py

Beacon a LoRa message

Usage: hvdn_lora-beacon.py -c COUNT -t DELAY "message"

OPTIONS

- -c Number of times to repeat MESSAGE
- -t NUmber of seconds before repeat MESSAGE

MESSAGE is message to be send within double quotes

hvdn_lora-chat.py

Half-duplex LoRa messaging app

Usage: ./hvdn_lora-chat [-r] [-s]

OPTIONS

- -h, --help show this help message and exit
- -r, --raw_data Receive raw data
- -s, --signal Signal Strength
 - Starts and loops in Listening Mode
 - •CTRL-Z to send a message, CTRL-C to exit program
 - •When in send mode
 - •Recipient is node id (255 = broadcast address)
 - •Message is whatever message followed by enter
 - •Message is sent, return to listening mode

hvdn_lora-tx.py

Send a LoRa message

Usage: hvdn_lora-tx.py -d DESTINATION "message"

OPTIONS

-d Destination ID

MESSAGE is message to be send within double quotes

hvdn_lora-rx.py

Listens for messages from other LoRa stations

Usage: ./hvdn_lora-rx.py -r -s

OPTIONS

-h, --help show this help message and exit

-r, --raw_data Receive raw data

-s, --signal Signal Strength