Università degli Studi dell'Aquila

Seconda Prova Parziale di Algoritmi e Strutture Dati con Laboratorio

Martedì 14 Gennaio 2020 – Prof. Guido Proietti (Modulo di Teoria)

Scrivi i tuoi dati \Longrightarrow	Cognome:	Nome:	Matricola:	PUNTI
ESERCIZIO 1	Risposte Esatte:	Risposte Omesse:	Risposte Errate:	

ESERCIZIO 1 (Domande a risposta multipla): Questa parte è costituita da 10 domande a risposta multipla. Per ciascuna domanda vengono fornite 4 risposte, di cui soltanto una è corretta. Per rispondere utilizzare la griglia annessa, barrando con una x la casella corrispondente alla risposta prescelta. È consentito omettere la risposta. In caso di errore, contornare con un cerchietto la \times erroneamente apposta (ovvero, in questo modo ⊗) e rifare la × sulla nuova risposta prescelta. Se una domanda presenta più di una risposta, verrà considerata omessa. Per tutti i quesiti verrà attribuito un identico punteggio, e cioè: risposta esatta 3 punti, risposta omessa 0 punti, risposta sbagliata -1 punto. Il voto relativo a questa parte è ottenuto sommando i punti ottenuti e normalizzando su base 30. Se tale somma è negativa, verrà assegnato 0.

- 1. Dato un AVL T di n elementi, quale delle seguenti affermazioni è vera:
 - a) Per ogni nodo, il numero di elementi nel sottoalbero in esso radicato è $\Theta(n)$;
 - b) Per ogni nodo, l'altezza del sottoalbero in esso radicato è pari ad $O(\log n)$;
 - c) La lunghezza di ogni cammino da un nodo dell'AVL verso la radice è $\Theta(\log n)$;
 - d) Il numero di foglie dell'AVL è pari al numero di nodi interni più 1.
- 2. Si supponga di inserire la sequenza di chiavi 3,7,4,2 (in quest'ordine) in una tavola hash di lunghezza m=4 (ovvero con indici (0,1,2,3) utilizzando l'indirizzamento aperto con funzione hash $h(k)=k \mod 4$, e risolvendo le collisioni con il metodo della scansione lineare. Quale sarà la tavola hash finale?
 - a) A = [2, 4, 7, 3]
- b) A = [4, 2, 7, 3]
- c) A = [7, 4, 3, 2]
- 3. Quanti archi vanno aggiunti al grafo in figura per renderlo Euleriano?
 - a) 0 b) 1 c) 2 d) 3
- Dato il grafo di Domanda 3, si applichi su di esso l'algoritmo di Dijkstra con sorgente il nodo a. Qual è la sequenza di nodi aggiunti alla soluzione?
 - a) a, e, d, b, c
- b) a, e, b, d, c c) a, b, c, d, e d) a, e, b, c, d
- Dato il grafo di Domanda 3, si enumerino i vertici in ordine alfabetico, e si applichi l'algoritmo di Floyd&Warshall. Qual è la lunghezza del cammino minimo 2-vincolato tra il nodo a e il nodo e?
 - $a) + \infty$ b) 11 c) 1
- 6. L'algoritmo di Bellman e Ford applicato ad un grafo pesato con un numero di archi $m = \Theta(n \log n)$, ha complessità:
- c) $\Theta(n^3)$ d) $O(n^2 \log n)$ a) $\Theta(n^2)$ b) $\Theta(n+m)$
- 7. Sia dato un grafo non diretto G con n vertici, numerati da 1 ad n, ed n-1 archi, disposti in modo arbitrario, ma in modo tale da garantire la connessione. Si orientino ora gli archi in modo arbitrario, e si applichi l'algoritmo di ordinamento topologico rispetto al nodo sorgente etichettato 1. La complessità risultante è pari a:
 - a) $\Theta(n^2)$
 - b) $\Theta(n)$
- c) $\Theta(n \log n)$

d) 2

- d) indefinita (non è detto che l'algoritmo possa essere applicato)
- 8. Dato il grafo di Domanda 3, si applichi l'algoritmo di Prim con nodo sorgente il nodo c. Qual è la sequenza di nodi aggiunti alla soluzione?
 - a) c, b, a, e, d
- b) c, b, d, a, e c) c, b, d, e, a d) c, b, a, d, e
- 9. Dato un grafo connesso di n nodi ed m archi, per quale valore (asintotico) di m si ha che l'implementazione di Prim con heap di Fibonacci è meno efficiente dell'implementazione di Kruskal con alberi QuickUnion con euristica di bilanciamento union by size?
 - a) $m = \Theta(n)$
- b) sempre
- c) mai
- d) $m = \omega(n)$
- 10. Dato un grafo connesso con n vertici ed m archi, il numero minimo di archi che l'algoritmo di Borůvka aggiunge alla soluzione alla fine della prima passata è pari a:
 - a) n 1
- b) $\log n$
- c) 1
- d) $\lceil n/2 \rceil$

Griglia Risposte

	Domanda									
Risposta	1	2	3	4	5	6	7	8	9	10
a										
b										
c										
d										