Symmetric Encryption

Lesson Introduction

- Block cipher primitives
- DES
- AES
- Encrypting large message
- Message integrity

Block Cipher Scheme

Block Cipher Primitives

Ensure that if one gets the cipher text, they cannot read the real meaning.

Confusion:

An encryption operation
 where the relationship between the key
 and ciphertext is obscured

 Achieved with substitution letters will not be encoded with itself

Block Cipher Primitives

Diffusion:

 An encryption operation where the influence of one plaintext bit is spread over many ciphertext bits with the goal of hiding statistical properties of the plaintext

Achieved with permutation

Block Cipher Primitives

- Both confusion and diffusion by
 themselves cannot provide (strong enough) security
- Round: combination of substitution and permutation, and do so often enough so that a bit change can affect every output bit

- Published in 1977, standardized in 1979
- **Key:** 64 bit quantity=8-bit parity+56-bit key
 - Every 8th bit is a parity bit
- •64 bit input, 64 bit output

parity bit: gives you an easy way to do checking.

Bit Permutation (1-to-1)

A DES Round take the right and copy it down as left

Decryption

- Apply the same operations key sequence in reverse:
 - Round 1 of decryption uses key of the last round in encryption
- Each round:
 - •Input: $R_{n+1}|L_{n+1}$
 - Due to the swap operation at the end of encryption
 - •Output: $R_n | L_n$
- •The swap operation at the end will produce the correct result: L | R

Mangler Function

S-Box (Substitute and Shrink)

- 48 bits => 32 bits. (8*6 => 8*4)
- 2 bits used to select amongst 4 substitutions for the rest of the 4-bit quantity

Security of DES

- Key space is too small (2⁵⁶ keys)
 - Exhaustive key search relative easy with today's computers

 The overall security of this was called into question.
- •S-box design criteria have been kept secret
- Highly resistant to cryptanalysis techniques
 published years after DES

Triple DES

- K₁=K₃ results in an equivalent 112-bit DES which provides a sufficient key space
 Usually, two keys are used.
- Distinct K₁, K₂, K₃ results in an even stronger 168-bit DES
- Can run as a single DES with K₁ = K₂

Triple DES is still not secure. From the processing perspective, it needs more space and more processing time.

Advanced Encryption Standard

- •In 1997, the U.S. National Institute for Standards and Technology (NIST) put out a public call for a replacement to DES
- It narrowed down the list of submissions to five finalists, and ultimately chose an algorithm (Rijndael) that is now known as the Advanced Encryption Standard (AES)
- •New (Nov. 2001) symmetric-key NIST standard, replacing DES
- Processes data in 128 bit blocks
- Key length can be 128, 192, or 256 bits

Advanced Encryption Standard

- Break a message into blocks
- Apply block cipher on the blocks
- •Is that it?

Electronic Code Book (ECB)

ECB Problem #1

$$(M_1 == M_3) => (C_1 == C_3)$$

A potential vulnerability: providing the association between same characters in the plain text.

ECB Problem #2

- Lack the basic protection against integrity attacks on the ciphertext at message level (i.e., multiple cipher blocks)
- Without additional integrity protection
 - cipher block substitution and rearrangement attacks
 - •fabrication of specific information

All of these are associated, you can take a single piece out.

Protecting Message Integrity

- Only send last block of CBC (CBC residue) along with the plaintext
- Any modification in plaintext result in a CBC residue computed by the receiver to be different from the CBC residue from the sender
 - Ensures integrity

run through it with the second key and checks if it gives me with the same CBC. If yes, the I can decrypt it with the first key.

So you can ensure that the plaintext is the same as the one from the original sender.

Protecting Message Integrity

- Simply sending all CBC blocks (for confidentiality) replicating last CBC block (for integrity) does not work
- •Should use two separate secret keys: one for encryption and the other for generating residue (two encryption passes)
- Or, CBC (message | hash of message)

Symmetric Encryption

Lesson Summary

- Need both confusion and diffusion
- DES: input 64-bit, key 56-bit; encryption and decryption same algorithms but reversed per-round key sequence
- AES: input 128-bit, key 128/192/256 bits; decryption the reverse/inverse of encryption
- Use cipher-block-chaining to encrypt a large message
- Last CBC block can be use as MIC; use different keys for integrity and confidentiality