EE288 Data Conversions/Analog Mixed-Signal ICs Spring 2018

Lecture 4: Quantization

Prof. Sang-Soo Lee sang-soo.lee@sjsu.edu ENG-259

Course Schedule – Subject to Change

			_
	Date	Topics	
	24-Jan	Course introduction and ADC architectures	
	29-Jan	Converter basics: AAF, Sampling, Quantization, Reconstruction	
	31-Jan	ADC dynamic performance metrics, Spectrum analysis using FFT	4 0
	5-Feb	ADC & DAC static performance metrics, INL and DNL	Quantization
	7-Feb	OPAMP and bias circuits review	Performance Me
	12-Feb	SC circuits review	
	14-Feb	Sample and Hold Amplifier - Reading materials	
	19-Feb	Flash ADC and (arrator Regenerative atch	
No c	2 - Feb	Con ar tors: atten ff e p eamp, aut 4 ero Finish rash AuC	ext Wed.
	28-Feb	DAC Architectures - Resistor, R-2R	
	5-Mar	DAC Architectures - Current steering, Segmented	
	7-Mar	DAC Architectures - Capacitor-based	
	12-Mar	SAR ADC with bottom plate sampling	
	14-Mar	SAR ADC with top plate sampling	
	19-Mar	Midterm Review	*Midterm Exan
	21-Mar	Midterm exam	
	26-Mar	Spring break	are approxima
	28-Mar	Spring break	subject to cha
	2-Apr	Pipelined ADC stage - comparator, MDAC, x2 gain	with reasonab
	4-Apr	Pipelined ADC bit sync and alignment using Full adders	
	9-Apr	Pipelined ADC 1.5bit vs multi-bit structures	
	11-Apr	Fully-differential OPAMP and Switched-capacitor CMFB	
	16-Apr	Single-slope ADC	
	18-Apr	Oversampling & Delta-Sigma ADCs	
	23-Apr	Second- and higher-order Delta-Sigma Modulator.	
	25-Apr	Hybrid ADC - Pipelined SAR	
	30-Apr	Hybrid ADC - Time-Interleaving	_
	2-May	ADC testing and FoM	_
	7-May	Project presentation 1	_
	8-May	Project presentation 2	1
		Fig. 1 p i	I .

14-May

20-May

Quantization & Performance Metrics

> *Midterm Exam dates are approximate and subject to change with reasonable notice.

Final Review

Project Report Due by 6 PM

Quantization

- Quantization = division + normalization + truncation
- Full-scale range (V_{FS}) is determined by V_{ref}

Quantization Error

$$\Delta = \frac{V_{FS}}{2^N} = LSB$$

$$V_{in} \in [0, V_{FS}]$$

$$\epsilon = D_{out} \Delta - V_{in} = D_{out} \left(\frac{V_{FS}}{2^N} \right) - V_{in}$$

$$-\frac{\Delta}{2} \le \varepsilon \le \frac{\Delta}{2}$$

"Random" quantization error is usually regarded as noise

Quantization Noise

Assumptions:

- N is large
- $0 \le V_{in} \le V_{FS}$ and $V_{in} >> \Delta$
- V_{in} is active
- ε is Uniformly distributed
- Spectrum of ε is white

$$\sigma_{\epsilon}^{2} = \int_{-\Delta/2}^{\Delta/2} \epsilon^{2} \cdot \frac{1}{\Delta} \cdot d\epsilon = \frac{\Delta^{2}}{12}$$

Ref: W. R. Bennett, "Spectra of quantized signals," Bell Syst. Tech. J., vol. 27, pp. 446-472, July 1948.

Signal-to-Quantization Noise Ratio (SQNR)

Assume V_{in} is sinusoidal with $V_{p-p} = V_{FS}$,

SQNR =
$$\frac{V_{FS}^{2}/8}{\sigma_{\epsilon}^{2}} = \frac{(2^{N}\Delta)^{2}/8}{\frac{\Delta^{2}}{12}} = 1.5 \times 2^{2N}$$
,

$$SQNR = 6.02 \times N + 1.76 \, dB$$

Ν	SQNR		
(bits)	(dB)		
8	49.9		
10	62.0		
12	74.0		
14	86.0		

- SQNR depicts the theoretical performance of an ideal ADC
- In reality, ADC performance is limited by many other factors:
 - Electronic noise (thermal, 1/f, coupling/substrate, etc.)
 - Distortion (measured by THD, SFDR, IM3, etc.)

ADC Characterization

DFT

 DFT takes a block of N time domain samples (spaced T_s=1/f_s) and yields a set of N frequency bins

$$X(k) = \sum_{n=0}^{N-1} x(n)e^{-j2\pi kn/N}$$

- Bin k represents frequency content at k·f_s/N [Hz]
- DFT frequency resolution
 - Proportional to 1/(N·T_s) in [Hz/bin]
 - N·T_s is total time spent gathering samples
- A DFT with N=2^{integer} can be found using a computationally efficient algorithm
 - FFT = Fast Fourier Transform

FFT MATLAB Example 1

```
clear all; close all; clc;
N = 100:
                                 % FFT size
fs = 10000;
                                 % Sampling rate
                                % Input signal tone
fx = 100;
                                % Full Scale (actually half)
FS = 1:
t = 0:N-1;
x = FS*cos(2*pi*fx/fs*t);
s = abs(fft(x));
                                % FFT and take absolute
                                % remove redundant half of spectrum
s = s(1:end/2);
s = 20*log10(2*s/N/FS);
                                % dB relative to full-scale
                                % frequency vector
f = [0:N/2-1]/N;
plot(f, s, 'linewidth', 2);
xlabel('Frequency [f/fs]');
ylabel('DFT Magnitude [dBFS]');
title(strcat(num2str(N),' points FFT'));
```


fft_p51.m

grid on;