# Ph20 Assignment 1

Ung Shu Fay

February 2, 2018

## 1 Lissajous Figures

$$X(t) = A_x \cos(2\pi f_x t) \tag{1}$$

$$Y(t) = A_y \sin(2\pi f_y t + \phi) \tag{2}$$

$$Z(t) = X(t) + Y(t) \tag{3}$$

If  $f_x/f_y$  is a rational number, the graph of X(t) against Y(t) is a closed curve.



Figure 1: Plots of X(t) against Y(t) for rational  $f_x/f_y$ . The values of  $f_x$  and  $f_y$  were selected randomly. Graphs were generated with  $A_x = A_y = 1$ ,  $\phi = 0.1$ ,  $\Delta t = 0.001$  and N = 1000.

### 1.1 $f_x/f_y$ and the Shape of the Curve

For  $f_x/f_y < 1$ , the ratio of the number of times X(t) achieves an extrema to the number of times Y(t) achieves an extrema is equal to  $f_x/f_y$ . This is because in a fixed time interval, where  $f_x/f_y$  is an irreducible fraction, X(t) oscillates  $f_x$  times while Y(t) oscillates  $f_y$  times.



Figure 2: Plots of X(t) against Y(t) for  $f_x/f_y < 1$ . Graphs were generated with  $f_y = 5$ ,  $A_x = A_y = 1$ ,  $\phi = 0.1$ ,  $\Delta t = 0.001$  and N = 1000 for  $f_x/f_y = 0.2, 0.4, 0.6, 0.8$ .

For  $f_x/f_y > 1$ , the curves resemble overlapping sinusoids with the endpoints connected together. As the ratio increases, the number of peaks and the number of points of intersection increase.



Figure 3: Plots of X(t) against Y(t) for  $f_x/f_y > 1$ . Graphs were generated with  $f_y = 5$ ,  $A_x = A_y = 1$ ,  $\phi = 1$ ,  $\Delta t = 0.0001$  and N = 2000 for  $f_x/f_y = 3$ , 6, 9, 12.

For  $f_x/f_y$  irrational, the curves are not closed.



Figure 4: Plots of X(t) against Y(t) for  $f_x/f_y=\pi, e, \sqrt{2}, \sqrt{7}$ . Graphs were generated with  $f_y=2, A_x=A_y=1, \phi=0.1, \Delta t=0.001$  and N=3000.



Figure 5: Same as Figure 4, but with N = 5000.

#### 1.2 $\phi$ and the Shape of the Curve

Setting  $f_x = f_y$ , the shape of the curve was observed while the phase  $\phi$  was varied. The plots trace out ellipses for  $n \neq k/2$  where k is odd, and straight lines when n = k/2. This is due to the fact that the graphs of sin and cos are shifted by a phase of  $\pi/2$ .



Figure 6: Plots of X(t) against Y(t) for different values of phase  $\phi$ . Graphs were generated with  $f_x=f_y=1$ ,  $A_x=A_y=1,\ \phi=1,\ \Delta t=0.001$  and N=1000 for  $\phi=n\pi$  where  $n=0,\ \frac{1}{4},\ \frac{1}{2},\ 1,\ \frac{5}{4},\ \frac{3}{2}.$ 

In electronic circuits, if two alternative currents are out of phase by  $\phi$ , plotting the currents against each other and adjusting them until a horizontal ellipse is seen on the oscilloscope means they are in phase or in antiphase with each other.

### 2 Beats



Figure 7: Plots of Z(t) against t. Beats produced by setting similar values for  $f_x$  and  $f_y$ . Graphs were generated with  $A_x = A_y = 1$ ,  $\phi = 0$ ,  $\Delta t = 0.01$  and N = 2000 for  $f_x = 1$  and  $f_y = 0.1$ , 0.3, 0.7, 0.9, 1.1, 1.2. The modulation frequency seen in the beats is  $w_1 - w_2$ , not  $(w_1 - w_2)/2$ . This is because  $(w_1 - w_2)/2$  is the frequency at which the sinusoid for the amplitude varies, but a beat occurs whenever the amplitude is a maximum or a minimum, hence the frequency of the beats is twice that of the frequency of the amplitude modulation.

## 3 Thoughts

The programming was rather fun to do, especially in investigating the properties of the graphs. The assignments were not too difficult.

I havn't really programmed in other languages other than Python, but taking CS2 this term in C++ made me appreciate the simplicity and level of abstraction Python provides for the user. I do agree with Guido Van Rossum - Python is incredibly powerful and is pleasurable work with (no segmentation faults!).