THE UNIVERSITY OF MELBOURNE SCHOOL OF COMPUTING AND INFORMATION SYSTEMS COMP30026 Models of Computation

Sample Answers to Tutorial Exercises, Week 4

15. The connective \Leftrightarrow is part of the language that we study, namely the language of propositional logic. So $A \Leftrightarrow B$ is just a propositional formula.

The symbol \equiv belongs to a *meta-language*. The meta-language is a language which we use when we reason *about* some language. In this case we use \equiv to express whether a certain relation holds between formulas in propositional logic.

More specifically, $\Phi \equiv \Psi$ means that we have both $\Phi \models \Psi$ and $\Psi \models \Phi$. In other words, Φ and Ψ have the same value for every possible assignment of truth values to their variables. The two formulas are logically equivalent.

On the other hand $\Phi \Leftrightarrow \Psi$ is just a propositional formula (assuming Φ and Ψ are propositional formulas). For some values of the variables involved, $\Phi \Leftrightarrow \Psi$ may be false, for other values it may be true. By the definition of validity, $\Phi \Leftrightarrow \Psi$ is *valid* iff it is true for *every* assignment of propositional variables in Φ and Ψ .

We want to show that $\Phi \equiv \Psi$ iff $\Phi \Leftrightarrow \Psi$ is valid.

- (a) Suppose $\Phi \equiv \Psi$. Then Φ and Ψ have the same values for each truth assignment to their variables¹. But that means that, when we construct the truth table for $\Phi \Leftrightarrow \Psi$, it will have a t in every row, that is, $\Phi \Leftrightarrow \Psi$ is valid.
- (b) Suppose $\Phi \Leftrightarrow \Psi$ is valid. That means we find a t in each row of the truth table for $\Phi \Leftrightarrow \Psi$. But we get a t for $\Phi \Leftrightarrow \Psi$ iff the values for Φ and Ψ agree, that is, either both are f, or both are t. In other words, Φ and Ψ agree for every truth assignment. Hence $\Phi \equiv \Psi$.

You may think that this relation between validity and biimplication is obvious and should always be expected, and indeed we will see that it carries over to first-order predicate logic. But there are (still useful) logics in which it does not hold.

16. Let us draw the truth tables.

(a)

P	Q	P	\Leftrightarrow	((P	\Rightarrow	Q)	\Rightarrow	P)
t	t	t	t		t	t	t	t
t	f t	t	t	t	f	f	t	t
f	t	f	t	f	t	t	f	f
f	f	f	t	f	t	f	f	f
			\uparrow					

Hence satisfiable, and in fact valid (all t).

¹We should perhaps be more careful here, because Φ and Ψ can be logically equivalent without Φ having the exact same set of variables as Ψ —can you see how? So we should say that we consider both of Φ and Ψ to be functions of the *union* of their variables.

(b)

P	Q	(P	\Rightarrow	_	Q)	\wedge	((P	V	Q)	\Rightarrow	P)
t	t	t	f	f	t	f	t	t	t	t	t
t	f	t	t	t	f	t	t	t	f	t	t
f	t	f	t	f	t	f	f	t	t	f	f
							f				
						\uparrow					

Hence satisfiable (at least one t), but not valid (not all t). The truth table shows the formula is equivalent to $\neg Q$.

(c)

P	Q	(P)	\Rightarrow	Q)	\Rightarrow	Q)	\wedge	(Q	\oplus	(P	\Rightarrow	Q))
t	t	t	t	t	t	t	f	t	f	t	t	t
t	f	t	f	f	t	t	f	f	f	t	f	f
f	t	f	t	t	t	t	f	t	f	f	t	t
f	f	f	t	f	f	f	f	f	t	f	t	f
							\uparrow					

Hence not satisfiable (and so certainly not valid).

17. If you negate a satisfiable proposition, you can never get a tautology, since at least one truth table row will yield false.

You will get another satisfiable proposition iff the original proposition is not valid. For example, P is satisfiable (but not valid), and indeed $\neg P$ is satisfiable.

Finally, if we have a satisfiable formula which is also valid, its negation will be a contradiction. Example: $P \vee \neg P$.

18. (a)

The result is now in reduced CNF.

(b)

$$\begin{array}{ll} A \vee (\neg B \wedge (C \vee (\neg D \wedge \neg A))) \\ (A \vee \neg B) \wedge (A \vee C \vee (\neg D \wedge \neg A)) & \text{(distribute } \vee \text{ over } \wedge) \\ (A \vee \neg B) \wedge (A \vee C \vee \neg D) \wedge (A \vee C \vee \neg A) & \text{(distribute } \vee \text{ over } \wedge) \end{array}$$

The result is in CNF but not RCNF. To get RCNF we need to eliminate the last clause which is a tautology, and we end up with $(A \lor \neg B) \land (A \lor C \lor \neg D)$.

(c)

$$\begin{array}{l} (A \vee B) \Rightarrow (C \wedge D) \\ \neg (A \vee B) \vee (C \wedge D) \\ (\neg A \wedge \neg B) \vee (C \wedge D) \\ (\neg A \vee (C \wedge D)) \wedge (\neg B \vee (C \wedge D)) \\ (\neg A \vee C) \wedge (\neg A \vee D) \wedge (\neg B \vee C) \wedge (\neg B \vee D) \end{array} \right. \\ \text{(distribute } \vee \text{ over } \wedge)$$

The result is in RCNF. We could have chosen different orders for the distributions.

$$A \wedge (B \Rightarrow (A \Rightarrow B))$$

 $A \wedge (\neg B \vee \neg A \vee B)$ (unfold both occurrences of \Rightarrow)
 A (rightmost clause is tautological: remove it)

19. Let us follow the method given in a lecture, except we do the double-negation elimination aggressively, as soon as opportunity arises:

$$\neg((\neg B \Rightarrow \neg A) \Rightarrow ((\neg B \Rightarrow A) \Rightarrow B))$$

$$\neg(\neg(B \lor \neg A) \lor \neg(B \lor A) \lor B)$$
 (unfold \Rightarrow and eliminate double negation)
$$(B \lor \neg A) \land (B \lor A) \land \neg B$$
 (de Morgan for outermost neg; elim double neg)

This is RCNF without further reductions.

We could also have used other transformations—sometimes this can shorten the process. For example, we could have rewritten the sub-expression $\neg B \Rightarrow \neg A$ as $A \Rightarrow B$ (the contraposition principle). You may want to check that this does not change the result.

The resulting formula, written as a set of sets of literals:

$$\{\{\neg A, B\}, \{A, B\}, \{\neg B\}\}\$$

We can now construct the refutation:

20. Here is a refutation:

From this we conclude that $(A \lor B \lor \neg C) \land \neg A \land (A \lor B \lor C) \land (A \lor \neg B)$ is unsatisfiable.

21. (a) $(P \lor Q) \Rightarrow (Q \lor P)$. First negate the formula (why?), to get $\neg((P \lor Q) \Rightarrow (Q \lor P))$. Then we can use the usual techniques to convert the negated proposition to RCNF. Here is a useful shortcut, combining \Rightarrow -elimination with one of de Morgan's laws:

$$\neg (A \Rightarrow B) \equiv A \land \neg B.$$

So:

$$\neg((P \lor Q) \Rightarrow (Q \lor P))
(P \lor Q) \land \neg(Q \lor P) \qquad \text{(shortcut)}
(P \lor Q) \land \neg Q \land \neg P \qquad \text{(de Morgan)}$$

The result allows for a straight-forward refutation:

(b) $(\neg P \Rightarrow P) \Rightarrow P$. Again, first negate the formula, to get $\neg((\neg P \Rightarrow P) \Rightarrow P)$. Then turn the result into RCNF:

$$\begin{array}{ll} \neg((\neg P\Rightarrow P)\Rightarrow P) \\ (\neg P\Rightarrow P) \land \neg P & \text{(shortcut from above)} \\ (\neg \neg P \lor P) \land \neg P & \text{(unfold \Rightarrow)} \\ (P \lor P) \land \neg P & \text{(eliminate double negation)} \\ P \land \neg P & \text{(\lor-absorption)} \\ \end{array}$$

The resolution proof is immediate; we will leave it out.

(c) $((P \Rightarrow Q) \Rightarrow P) \Rightarrow P$. Again, negate the formula, to get $\neg(((P \Rightarrow Q) \Rightarrow P) \Rightarrow P)$. Then turn the result into RCNF:

Again this gives an immediate refutation: just resolve $\{P\}$ against $\{\neg P\}$.

(d) $P \Leftrightarrow ((P \Rightarrow Q) \Rightarrow P)$. Negating the formula, we get $P \oplus ((P \Rightarrow Q) \Rightarrow P)$. Let us turn the resulting formula into RCNF:

$$\begin{array}{ll} P \oplus ((P \Rightarrow Q) \Rightarrow P) \\ (P \vee ((P \Rightarrow Q) \Rightarrow P)) \wedge (\neg P \vee \neg ((P \Rightarrow Q) \Rightarrow P)) & \text{(eliminate } \oplus) \\ (P \vee ((P \Rightarrow Q) \Rightarrow P)) \wedge (\neg P \vee ((P \Rightarrow Q) \wedge \neg P)) & \text{(shortcut from above)} \\ (P \vee (\neg (\neg P \vee Q) \vee P)) \wedge (\neg P \vee ((\neg P \vee Q) \wedge \neg P)) & \text{(\Rightarrow-elimination)} \\ (P \vee (\neg \neg P \wedge \neg Q) \vee P) \wedge (\neg P \vee ((\neg P \vee Q) \wedge \neg P)) & \text{($de Morgan)} \\ (P \vee (P \wedge \neg Q) \vee P) \wedge (\neg P \vee ((\neg P \vee Q) \wedge \neg P)) & \text{($double negation)} \\ P \wedge (P \vee \neg Q) \wedge (\neg P \vee ((\neg P \vee Q) \wedge \neg P)) & \text{(\vee-absorption, distribution)} \\ P \wedge (P \vee \neg Q) \wedge (\neg P \vee Q) \wedge \neg P & \text{(\vee-absorption, distribution)} \\ \end{array}$$

Once again, now just resolve $\{P\}$ against $\{\neg P\}$.

- 22. (a) $\{\{A, B\}, \{\neg A, \neg B\}, \{\neg A, B\}\}\$ stands for the formula $(A \lor B) \land (\neg A \lor \neg B) \land (\neg A \lor B)$. This is satisfiable by $\{A \mapsto \mathbf{f}, B \mapsto \mathbf{t}\}$.
 - (b) $\{\{A, \neg B\}, \{\neg A\}, \{B\}\}\}$ stands for $(A \vee \neg B) \wedge \neg A \wedge B$. A refutation is easy:

- (c) $\{\{A\},\emptyset\}$ stands for $A \wedge \mathbf{f}$, which is clearly not satisfiable.
- (d) We have $\{\{A,B\}, \{\neg A, \neg B\}, \{B,C\}, \{\neg B, \neg C\}, \{A,C\}, \{\neg A, \neg C\}\}\$. This set is not satisfiable, as a proof by resolution shows:

- 27. These are the clauses generated:
 - (a) For each node i generate the clause $B_i \vee G_i \vee R_i$. That comes to n+1 clauses of size 3 each
 - (b) For each node i generate three clauses: $(\neg B_i \lor \neg G_i) \land (\neg B_i \lor \neg R_i) \land (\neg G_i \lor \neg R_i)$. That comes to 3n+3 clauses of size 2 each.
 - (c) For each pair (i,j) of nodes with i < j we want to express $E_{ij} \Rightarrow (\neg(B_i \land B_j) \land \neg(G_i \land G_j) \land \neg(R_i \land R_j)$. This means for each pair (i,j) we generate three clauses: $(\neg E_{ij} \lor \neg B_i \lor \neg B_j) \land (\neg E_{ij} \lor \neg G_i \lor \neg G_j) \land (\neg E_{ij} \lor \neg R_i \lor \neg R_j)$. There are n(n+1)/2 pairs, so we generate 3n(n+1)/2 clauses, each of size 3.

Altogether we generate 3n + 3 + 6n + 6 + 9n(n+1)/2 literals, that is, 9(n+1)(n/2+1).