

OMEGA SIGNAL COVERAGE PREDICTION DIAGRAMS FOR 10.2 kHz.

VOLUME III. COMPOSITE DIAGRAMS.

Radha R/Gupta
Stephen F./Donnelly
Paul M./Creamer
Suzanne/Sayer

THE ANALYTIC SCIENCES CORPORATION
One Jacob Way
Reading, Massachusetts 01867

(14) TASC-TR-3\$77-2-VOL-3

(12) 56

October 180

FINAL REPORT: Sy 114 9 1 80

15) DOICG-951480-A

Document is available to the U.S. public through the National Technical Information Service, Springfield, Virginia 22161

Prepared for

U.S. DEPARTMENT OF TRANSPORTATION UNITED STATES COAST GUARD Omega Navigation System Operations Detail, Washington, D.C. 20593

404565 2 80 12 08 002

FILE COPY

NOTICE

This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its contents or use thereof.

delta pi

1. Resert Ne. 2. Severnment Accession No.	3. Recipient's Catalog No.			
AD-A092743				
4. Litte ene Suatitie	3. Resert Date October 1980			
CMEGA SIGNAL COVERAGE PREDICTION DIAGRAMS FOR 10.2 kHz	5. Parisming Organization Code			
	8. Performing Organization Report No.			
7. Aumer's: R.R. Gupta, S.F. Donnelly, P.M. Creamer, and S. Sayer	TR-3077-2			
9. Performing Organization Name and Address	10. Werk Unit No. (TRAIS)			
THE ANALYTIC SCIENCES CORPORATION One Jacob Way Reading, Massachusetts 01867	11. Contract of Grant No. DOT-CG-951480-A			
-	13. Type of Report and Period Covered			
U.S. Department of Transportation U.S. Coast Guard	Final Report Sept. 1979 - Oct. 1980			
Omega Navigation System Operations Detail Washington, D.C. 20593	14. Sponsoring Agency Code			

Individual Omega station and composite (Omega Navigation System) 10.2 kHz signal coverage prediction diagrams have been developed for eight times. The diagrams show the global accessibility of "usable" 10.2 kHz signals at eight fixed diurnal/seasonal times for two usable signal access criteria. Criterion I requires: signal-to-noise ratio (SNR) > -20 dB (in a 100 Hz noise bandwidth) > and \(\Delta \oldsymbol{\left} \left \Delta \text{ cec} \right), where \(\Delta \oldsymbol{\left} \text{ is the modal interference-induced phase deviation in the signal phase relative to the reference signal phase. Criterion II differs from Criterion I in that the SNR(\Delta -30 dB. Volume I presents the diagram development methodology and contains individual station nighttime modal interference diagrams. Each modal interference diagram identifies regions throughout the world where \(\Delta \oldsymbol{\left} \left \Delta \text{ cec} \) cec for nighttime propagation conditions.

Volume II presents 64 individual Omega station diagrams (Mercator projection): eight selected coverage times for each of eight stations. Each diagram displays the SNR and 10 contours for a designated signal access criterion and coverage time.

CMEGA Very Low Frequency Propage Cmega Signal Coverage Dia Cmega Modal Interference	Document is available to the U.S. public through the National Technical Information Service Springfield, Virginia 22161			
19. Security Classif. (of this report) UNCLASSIFIED	UNCLASS		21. No. of Papes	22. Price

SECURITY CLASSIFICATION OF THIS PAGE (The Date Entered)

16. ABSTRACT (Continued)

Volume III contains 48 composite coverage diagrams which embody the eight coverage times, two signal access criteria, and three different projections (North and South pole centered Azimuthal Equal Distance, and Mercator). Each diagram displays the global accessibility of usable signals from the system for a designated signal access criterion and coverage time.

Volume IV tabulates the bearing angles of great circles to each Omega station. These angles are computed at latitude/longitude grid points having a uniform spacing of four degrees.

Acces	con Fo	r						
NTIS	GRA&I	\times						
DTIC !	LAB	1						
	ounced							
Justi	Justification							
Bv								
	ibution	4						
Avai	labilit	y Codes						
	Avail a	and/or						
Dist	Spec	ial						
Λ	Ì							
IH		:						
1								

PREFACE

This volume contains 48 composite (full system) 10.2 kHz signal coverage prediction diagrams: eight selected coverage times (0600 and 1800 GMT in February, May, August and November) for each of two usable signal access criteria and three cartographic projections. The two criteria are based on threshold values of signal-to-noise ratio (SNR) and modal interference-induced deviations in the signal phase ($\Delta \phi$). Both criteria require $\Delta \phi \leq 20$ cec (centicycles). Criteria I and II require SNR \geq -20 dB (decibels) and SNR \geq -30 dB, respectively.

The composite diagrams display the global accessibility of usable 10.2 kHz signals from the full system (all Omega stations) at a selected time based on one of the two signal access The composite coverage at each selected time is discriteria. played in a Mercator projection and in two Azimuthal Equal Distance (AED) projections, centered at the North and South Pole. In each diagram, the combination of signals that can be accessed in a region is indicated by the set of letters within the contours enclosing the region. For example, in the composite diagram shown on page 1, the expected coverage in Iceland is from stations A, B, D, F and H. Some regions display a number indicating the number of signals that can be received in that These stations, however, can be readily determined as each coverage contour is labeled with a station designator and an arrow in the direction of the accessibility of the usable signal from the labeled station. For example, the region around the Norway station in the diagram shown on page 1 is labeled with a 6. Coverage in this region is from stations B, C, D, E, F and H. The coverage diagrams also indicate (with shading) areas with at least three usable signals, but where all possible combinations of three signals yield a geometric dilution of precision which is above the prescribed threshold value of one kilometer of radial position error per centicycle of line-of-position phase error.

In all diagrams, the receiver noise bandwidth is assumed to be $100~\mathrm{Hz}$ and the radiated power of each transmitting station is taken to be $10~\mathrm{kW}$. The key for locating a composite coverage diagram at a selected time and signal access criterion is given in the Table of Contents.

METRIC CONVERSION FACTORS

	į	1.2	* 11		333		**			i. i		•		
k Mesures	3		111		oquae fazlas oquae yada oquae adlos	•		,	111		~	Patrontesh	* # G	9.0
Approximete Conversions from Metric Mosuuses	Matter tr LENGTH	3.3	111	AREA	:2::	MASS (weight)	8 23	YOUNE	325	1,2	TEMPERATURE (exect)	E Z	1-	- 00 m
Approximate Com	When You Lann	a (((m)))	Autoro Allementer	I	oques contrabtes oques mater oques bitemeter hectore (19,000 m	ı		1				Colotic	2	2 2 2
	i	1 8	Las		ት ጉሽ 1		•2-		1	-77		٥		, , T 60
			### P## 17# 1##											
.1.1.1.			7	1111				' ' '	' ' ' ' '	'1' '1' <u>'</u>	!' ' <u> </u>	'l' 'l'	" " " " 	' ' ' '
	1		55.1		ננייו	•	.2.		111		.ጉን		۰	ž.
Mesures	1				Special Contracts		H		######################################	1111				1
Approximate Conversions to Matric Measures	i	LENGTH	2,22	AREA	2322	MASS (melghs)	# 3 3	VOLUME	-22	7047	33	TEMPERATURE (ouset)	218	malune and muse described 80 Combay No. C13.10.200
Approximate Con	Mes Tes Loca	I	isti				1118	.		Hii	3 3			*1 to + 2.54 (marchy). For other entiti commentum and must describe labors, one Units of Bugins and Iberaruss, Price 16.28, 50 Certical Its., C13.10.250.
	į		1411		ንኔንን		14		:1:	. 2 . 1	ኔ ን	,	•	'1 to - 2.54 pr. Units of Respite
							iv							

TABLE OF CONTENTS

Page

Composite 10.2 kHz Signal Coverage Prediction Diagrams

1-48

Coverage Time		Signal		
Month	<u>GMT</u>	Access Criterion	Projection	Page No.
February	0600	ι	Mercator AED (N Pole)	1 2
		II	AED (S Pole) Mercator AED (N Pole)	1 2 3 4 5 6 7 8 9
	1800	I	AED (S Pole) Mercator	6 7
			AED (N Pole) AED (S Pole)	8 9
		II	Mercator AED (N Pole) AED (S Pole)	10 11 12
May	0600	I	Mercator AED (N Pole)	13 14
		II	AED (N Pole) AED (S Pole) Mercator	15 16
	1000	_	AED (N Pole) AED (S Pole)	17 18
	1800	I	Mercator AED (N Pole) AED (S Pole)	19 20 21
		II	Mercator AED (N Pole) AED (S Pole)	22 23 24
August	0600	I	Mercator	25
		11	AED (N Pole) AED (S Pole) Mercator	26 27 28
		11	AED (N Pole) AED (S Pole)	29 30

TABLE OF CONTENTS (Continued

Coverage Time		Signal Access		
Month	<u>GMT</u>	Criterion	Projection	Page No.
August (Cont.)	1800	I	Mercator AED (N Pole) AED (S Pole)	31 32 33
		II	Mercator AED (N Pole) AED (S Pole)	34 35 36
November	0600	I	Mercator AED (N Pole) AED (S Pole)	37 38 39
		II	Mercator AED (N Pole) AED (S Pole)	40 41 42
	1800	I	Mercator AED (N Pole) AED (S Pole)	43 44 45
		II	Mercator AED (N Pole) AED (S Pole)	46 47 48

AZ EQ DIST (N POLE) -20 dB SNR FEBRUARY 0600 GMT

AZ EQ DIST (S POLE) -30 dB SNR FEBRUARY 0600 GMT

AZ EQ DIST (N POLE) -20 dB SNR FEBRUARY 1800 GMT

AZ EQ DIST
(S POLE)
-20 dB SNR
FEBRUARY
1800 GMT

AZ EQ DIST
(N POLE)
-30 dB SNR
FEBRUARY
1800 GMT

AZ EQ DIST (S POLE) -30 dB SNR FEBRUARY 1800 GMT

AZ EQ DIST (N POLE) -20 dB SNR MAY 0600 GMT

AZ EQ DIST (S POLE) -20 dB SNR MAY .0600 GMT

AZ EQ DIST (N POLE) -30 dB SNR MAY 0600 GMT

AZ EQ DIST (S POLE) -30 dB SNR MAY 0600 GMT

AZ EQ DIST (N POLE) -20 dB SNR MAY 1800 GMT

AZ EQ DIST (S POLE) -20 dB SNR MAY 1800 GMT

AZ EQ DIST
(N POLE)
-30 dB SNR
MAY
1800 GMT

AZ EQ DIST (S POLE) -30 dB SNR MAY 1800 GMT

AZ EQ DIST
(N POLE)
-20 dB SNR
AUGUST
0600 GMT

AZ EQ DIST
(S POLE)
-20 dB SNR
AUGUST
. 06000 GMT

AZ EQ DIST (N POLE) -30 dB SNR 0600 GMT AUGUST

AZ EQ DIST
(S POLE)
-30 dB SNR
AUGUST
0600 GMT

AZ EQ DIST (N POLE) -20 dB SNR AUGUST 1800 GMT

AZ EQ DIST (S POLE) -20 dB SNR AUGUST 1800 GMT

-30 dB SNR 1800 CMT AUGUST

AZ EQ DIST
(S POLE)
-30 dB SNR
AUGUST
1800 GMT

AZ EQ DIST
(N POLE)
-20 dB SNR
NOVEMBER
0600 GMT

AZ EQ DIST (S POLE) -20 dB SNR NOVEMBER 0600 GMT

AZ EQ DIST
(N POLE)
-30 dB SNR
NOVEMBER
0600 GMT

AZ EQ DIST (S POLE) -30 dB SNR NOVEMBER 0600 GMT

AZ EQ DIST (N POLE) -20 dB SNR NOVEMBER 1800 GMT

AZ EQ DIST (S POLE) -20 dB SNR NOVEMBER 1800 GMT

AZ EQ DIST (N POLE) -30 dB SNR NOVEMBER 1800 GMT

AZ EQ DIST (S POLE) -30 dB SNR NOVEMBER 1800 GMT

