Soluciones

2. Semana 2

- 2.1. Inversos modulares. Teorema chino del resto. Cifrado afín II
 - 1. a) $3^{-1} \equiv 9 \mod 26$. Comprobación: $3 \cdot 9 = 27 \equiv 1 \mod 26$.
 - b) $\not\exists 22^{-1} \mod 28$.
 - c) $15^{-1} \equiv 15 \mod 28$. Comprobación: $15 \cdot 15 = 225 \equiv 1 \mod 28$.
 - 2. De la primera ecuación: $b \equiv 23 4a \mod 26$.

Restando la primera ecuación de la segunda: $15a \equiv -3 \equiv 23 \mod 26$.

$$15a \equiv 23 \mod 26 \Rightarrow a \equiv 15^{-1} \cdot 23 \equiv 7 \cdot 23 \equiv 5 \mod 26,$$
 $a \equiv 5 \mod 26, \quad b \equiv 3 \mod 26.$

- 3. a) $4x \equiv 4y \mod 28 \Leftrightarrow 28 \mid (4x 4y) \Leftrightarrow$ existe un entero k tal que $4x - 4y = 28k \Leftrightarrow$ existe un entero k tal que $x - y = 7k \Leftrightarrow$ $7 \mid (x - y) \Leftrightarrow x \equiv y \mod 7.$
 - b) (i) $4a' \equiv 4 \mod 28 \Leftrightarrow a' \equiv 1 \mod 7$. Por tanto las soluciones son

$$a' \equiv 1 \mod 28$$
 ó $a' \equiv 8 \mod 28$

ó
$$a' \equiv 15 \mod 28$$
 ó $a' \equiv 22 \mod 28$.

(ii) $12a' \equiv 8 \mod 28 \Leftrightarrow 3a' \equiv 2 \mod 7 \Leftrightarrow a' \equiv 3^{-1} \cdot 2 \mod 7$.

$$a' \equiv 5 \cdot 2 \equiv 10 \equiv 3 \mod 7.$$

Por tanto las soluciones son

$$a' \equiv 3 \mod 28$$
 ó $a' \equiv 10 \mod 28$

ó
$$a' \equiv 17 \mod 28$$
 ó $a' \equiv 24 \mod 28$.

4. a) (Z₁₂, +) es un grupo conmutativo: (+) es asociativa, conmutativa, tiene elemento neutro (0) y todo elemento a ∈ Z₁₂ tiene simétrico para (+) (opuesto): el opuesto de a es 12 − a ∈ Z₁₂.
(Z₁₂ \ {0},·) no es un grupo conmutativo porque no todo elemento tiene simétrico para (·) (inverso). Por ejemplo, no existe 2⁻¹ mód 12 porque mcd(2, 12) ≠ 1. Por tanto, (Z₁₂, +,·) no es cuerpo.

b)
$$2 \cdot 6 \equiv 3 \cdot 4 \equiv 3 \cdot 8 \equiv 4 \cdot 6 \equiv 4 \cdot 9 \equiv 6 \cdot 6 \equiv 6 \cdot 8 \equiv 6 \cdot 10$$

 $\equiv 8 \cdot 9 \equiv 0 \mod 12.$

- c) $\phi(12) = 4$.
- d) $\mathbb{Z}_{12}^* = \{1, 5, 7, 11\}$. $(\mathbb{Z}_{12}^*, \cdot)$ es grupo: (\cdot) es asociativa, tiene elemento neutro (1) y todo elemento $a \in \mathbb{Z}_{12}^*$ tiene simétrico para (\cdot) (inverso).
- 5. a) $4^{10} \equiv 1 \mod 11$, $5^{10} \equiv 1 \mod 11$. $5^{20} \equiv 1 \mod 11$, $5^{21} \equiv 5 \mod 11$. (Hay que tener en cuenta que $5^{20} = (5^{10})^2$).
 - b) $19^{186} \equiv 32 \mod 47$. (Hay que tener en cuenta que $19^{186} = 19^{46 \cdot 4 + 2} = (19^{46})^4 \cdot 19^2$).
- 6. a) $\phi(85) = 16 \cdot 4 = 64$.
 - b) $11^{64} \equiv 1 \mod 85$, $11^{129} \equiv 11 \mod 85$. (Hay que tener en cuenta que $11^{129} = 11^{64 \cdot 2 + 1} = (11^{64})^2 \cdot 11$).
- 7. a) Sea $a \equiv a_p \mod p$ y $x \equiv x_p \mod (p-1)$. Hay que probar

$$a^x \equiv a_p^{x_p} \mod p$$
.

$$a^x \equiv \overbrace{a \cdot a \cdot \cdots a}^{x \text{ veces}} \equiv \overbrace{(a \mod p) \cdot \cdots \cdot (a \mod p)}^{x \text{ veces}} \equiv \underbrace{a_p^x \cdot \cdots \cdot a_p}^{x \text{ veces}} \equiv a_p^x \mod p.$$

$$x \equiv x_p \mod (p-1) \Rightarrow x = k(p-1) + x_p, \text{ con } k \text{ entero.}$$

$$a^x\equiv a^x_p\equiv a^{k(p-1)+x_p}_p\equiv a^{k(p-1)}_p\cdot a^{x_p}_p\equiv (a^{(p-1)}_p)^k\cdot a^{x_p}_p\mod p.$$

 \bullet Si $\operatorname{mcd}(a_p,p)=1,$ entonces por el pequeño Teorema de Fermat, $a_p^{(p-1)}\equiv 1\mod p.$ Por tanto,

$$a^x \equiv a^x_p \equiv (a^{(p-1)}_p)^k \cdot a^{x_p}_p \equiv 1^k \cdot a^{x_p}_p \equiv a^{x_p}_p \mod p.$$

■ Si $\operatorname{mcd}(a_p, p) \neq 1$ entonces, como p es primo, $\operatorname{mcd}(a_p, p) = p$. Luego $p \mid a_p$ y, por tanto, $a \equiv a_p \equiv 0 \mod p$. Por tanto, en este caso,

$$a^x \equiv a_p^{x_p} \equiv 0 \mod p.$$

- b) $1002^{34} \equiv 4 \mod 5$.
- 8. $x = qq_1a + pp_1b \equiv (qq_1 \mod p)a + (pp_1 \mod p)b \equiv 1 \cdot a + 0 \cdot b \equiv a \mod p$. Análogamente,

$$x = qq_1a + pp_1b \equiv (qq_1 \mod q)a + (pp_1 \mod q)b \equiv 0 \cdot a + 1 \cdot b \equiv b \mod q.$$

9. $x \equiv 35 \mod 60$.

Comprobación:

10. $x \equiv 40 \mod 42$.

Comprobación: $40 \equiv 5 \mod 7$, $40 \equiv 4 \mod 6$.

También $82 \equiv 5 \mod 7$, $82 \equiv 4 \mod 6$, etc.

- 11. a) (a', b') = (15, 19).
 - b) "CRIPTOANALISIS".
- 12. b' = 10, "ELDIAD".
- 13. (a', b') = (397, 269), "CRIPTO".
- 14. (a', b') = (23, 33), "ES UN PROBLEMA".

2.2. Características del cifrado en flujo. Generación de secuencias pseudoaleatorias

1. Clave = 1011101010. $M_2 = 01100000$.

2.

$$C(0) = C(10) = 1$$

$$C(1) = C(9) = -3/5$$

$$C(2) = C(8) = 1/5$$

$$C(3) = C(7) = -1/5$$

$$C(4) = C(6) = 1/5$$

$$C(5) = -1/5$$

3.

$$\sum_{i=0}^{t-1} (2s_i - 1)(2s_{i+T-t} - 1) = \sum_{j=T-t}^{T-1} (2s_{j+t-T} - 1)(2s_j - 1) = \sum_{j=T-t}^{T-1} (2s_{j+t} - 1)(2s_j - 1),$$

$$\sum_{i=t}^{T-1} (2s_i - 1)(2s_{i+T-t} - 1) = \sum_{i=0}^{T-t-1} (2s_{j+t} - 1)(2s_{j+T} - 1) = \sum_{i=0}^{T-t-1} (2s_{j+t} - 1)(2s_j - 1).$$

Por tanto,

$$C(T-t) = \frac{1}{T} \left(\sum_{i=0}^{t-1} (2s_i - 1)(2s_{i+T-t} - 1) + \sum_{i=t}^{T-1} (2s_i - 1)(2s_{i+T-t} - 1) \right)$$

$$= \frac{1}{T} \left(\sum_{j=T-t}^{T-1} (2s_{j+t} - 1)(2s_j - 1) + \sum_{j=0}^{T-t-1} (2s_{j+t} - 1)(2s_j - 1) \right)$$

$$= \frac{1}{T} \sum_{j=0}^{T-1} (2s_{j+t} - 1)(2s_j - 1) = C(t).$$

2.3. Generadores congruenciales

- 1. a) $a=2\not\equiv 1\mod 13$. Por tanto, las secuencias que origina no poseen período máximo.
 - b) 4|12 y $a=7\equiv 3\not\equiv 1\mod 4$. Por tanto, las secuencias que origina no poseen período máximo.
- 2. a) 1, 6, 2, 8, 6, 2, 8, 6, Período=3, preperíodo=1. No presenta período máximo.

 $\operatorname{mcd}(b,m)=2\neq 1$. Además, los divisores primos de 14 son 2, 7 y $2\equiv 0\not\equiv 1\mod 2,\quad 2\equiv 2\not\equiv 1\mod 7.$

 $b) \ 2, 10, 16, 16, \ldots$ Período=1, preperíodo= 2. No presenta período máximo

 $\operatorname{mcd}(b,m)=2\neq 1.$ Además, los divisores primos de 18 son 2, 3 y $3\equiv 0\not\equiv 1\mod 3.$

- c) $1, 4, 7, 10, 0, 3, 6, 9, 12, 2, 5, 8, 11, 1, \dots$ Período: 13, preperíodo: 0.
- 3. a = 1 o a = 31 o a = 61.
- 4. $x_3 = 16$, $x_4 = 9$.