

FARO90

Ethanol Blending in Gasoline - Costa Rica

Ethanol Blending in Latin America

There are important fuel quality and environmental impact of vehicle emission challanges in the Region.

- The use of ethanol improves gasoline quality and creates flexibility in gasoline production.
- Ethanol use is a cost-effective way to increase gasoline octane and to replace more expensive gasoline components.
- Ethanol contributes to transport decarbonization and air quality improvement.
- There are opportunities across Latin America to increase the ethanol blend level and implement new policies on the use of gasoline-ethanol blends.

Sixteen countries with potential and additional use of ethanol were studied: 1) gasoline market profiles; 2) Optimization of gasoline blends with ethanol and 3) Environmental impact of gasolines blended with ethanol.

Ethanol Blending in Gasoline - Costa Rica

Costa Rica has two gasoline RON 95 and RON 91, with a market share of 51% for RON 91 and 49% for RON 95 in 2022. As it does not have refining capacity, gasoline blends are made only with components imported mainly from the United States and to a lesser extent from Europe.

Since 2010, it is allowed gasoline blends with up to 10% v/v of ethanol. However, this mandate is not yet reflected on the gasoline market. Current ethanol consumpition is less than 0.2%. In 2022, ethanol production was 4.7 million liters and ethanol exports mainly to Europe was 4.1 millon liters. Introduction of E8 is expected in 2024.

Source: Sepse

Gasoline Demand in Costa Rica

Gasoline Demand by Grade in Costa Rica

Gasoline Imports in Costa Rica

Ethanol Demand in Costa Rica

Ethanol Balance in Costa Rica

Gasoline Quality in Costa Rica

Name	INTE E	EN 228:2012 + A1:2017 (Euro 6 enabling)						
Implementation Date	20	2017						
Applicability	Whole country	All countries						
Selected Grade	RON 91	RON 95	RON 95 E5	RON 95 E10	RON 98 E5	RON 98 E10		
Benzene Content	< 1,5% v/v	< 1,5% v/v	< 1 %v/v	< 1 %v/v	< 1 %v/v	< 1 %v/v		
Aromatics	< 35% v/v	< 35% v/v	< 35 %v/v < 35 %v/v		< 35 %v/v	< 35 %v/v		
Olefins	< 18% v/v	< 18% v/v	< 18 %v/v < 18 %v/v		< 18 %v/v	< 18 %v/v		
Lead Content	< 0,013 g/l	< 0,013 g/l	< 5 mg/l < 5 mg/l		< 5 mg/l	< 5 mg/l		
Manganese	< 2,0 mg/l	< 2,0 mg/l	< 2,0 mg/l < 2,0 mg/l		< 2,0 mg/l	< 2,0 mg/l		
RON	> 91	> 95	> 95 > 95		> 98	> 98		
MON	> 79	> 83	> 85	> 88	> 85	> 88		
AKI								
Sulfur Content	< 50 mg/kg	< 50 mg/kg	< 10 mg/kg	< 10 mg/kg	< 10 mg/kg	< 10 mg/kg		
Oxygen Content	2,7% m/m (3,7% m/m if ethanol is added)	2,7% m/m (3,7% m/m if ethanol is added)	<2,7 % m/m	<3,7 % m/m	<2,7 % m/m	<3,7 % m/m		
Ethanol (EtOH)	< 10% v/v	< 10% v/v	<5 %v/v	<10 %v/v	<5 %v/v	<10 %v/v		
RVP 37.8°C (Summer)	< 69 kPa (< 76 kPa if ethanol is added)	< 69 kPa (< 76 kPa if ethanol is added)	<> 60 - 70 kPa *Depends on the country, RVP is regulated in the EU Fuel Quality Directive					
RVP 37.8 °C(Winter)								
RVP 37.8°C (Transition)								
MTBE	-		-	-	-	-		
Ehters 5 or more C Atoms	-		Based on oxygen content	<22 %v/v	Based on oxygen content	<22 %v/v		

Source: INTECO

Gasoline Component Blending in Latin America

Gasoline is a blend of a base gasoline and other components. This blending is usually done at blending terminals as only 30% of the world's finished gasoline is distributed directly from refineries. Each component provides different properties to the final blend, for example, isomerates, alkylates and butanes increase the octane. The components commonly used in Latin America are:

Gasoline Blending Optimization

In some parts of the world, ethanol is added to gasoline as a blending component. The advantages of ethanol include that it is a renewable fuel made of biomass; that it is an octane booster that helps to dilute sulfur; and that it allows the fulfillment of environmental objectives. To determine the optimal components to be blended with ethanol, a **blending model** was used. This model selects the components to add in the gasoline/ethanol blend based on:

- Components prices,
- Properties each component affects,
- Quality parameters by country, and
- Component availability by country.

Through iterations, the model obtains the %v/v of the components to be blended with 10%, 15%, 20%, 25% and 30% of ethanol, in such a way that the final blend complies with the required properties of a finished gasoline by country.

The blending model uses gasoline component spot average prices January 2022 – February 2023 and provides fuel prices that do not include country distribution costs, local taxes and subsidies and import or gas station margins.

Available Blending Components

Source: Faro90

Ethanol Blending – Gasoline RON 91 – Constant Octane

Alkylate
Raffinate
Reformate
Isomerate
Catalytic Gasoline
Light Primary Naphtha
Heavy Primary Naphtha

Ethanol Blending – Gasoline RON 91 – Octane Increment

Raffinate

Reformate

Catalytic Gasoline Heavy Primary Naphtha

Ethanol Blending – Gasoline RON 95 – Constant Octane

Alkylate

Normal pentane

Reformate

Isomerate

Catalytic Gasoline

Light Primary Naphtha

Heavy Primary Naphtha

Ethanol Blending – Gasoline RON 95 – Octane Increment

Vehicle Emission Impact for Ethanol Gasoline Blending

The model used in this analysis takes as a reference the **International Vehicle Emissions Model (IVE).**

The model uses the Base Emission Rates from IVE model, as well as its Adjustment Factors based on:

- Vehicle technology (cars, trucks, buses, motorcycles),
- Vehicle fleet average age,
- Average traveled distance per vehicle by country, as well as
- Geographical and climatic conditions (altitude, humidity, temperature).

Emissions of criteria pollutants, toxic pollutants, and greenhouse gases (GHG) were calculated and calibrated with emission inventories, using real gasoline quality data. The reduction rates for gasoline/ethanol blends were obtained from various sources (IPCC, US Grains, among others).

Emission estimations for different pollutants for gasoline and gasoline/ethanol blends (10%, 15%, 20%, 25% and 30% ethanol) were determined using the IVE Model. A comparison between the results and the European (Euro 6) requirements is made. Results are also compared with real emissions of the United States vehicle fleet*.

Main Results

^{*}Source: Bureau of transportation statistics.

Gasoline Vehicle Fleet - Costa Rica

Vehicle Fleet: **1,575,585** Average Age: **11 años** Motorcycle: **19.6%**

Source: INEC, analysis Faro 90

Costa Rica – Gasoline Vehicle Emissions

Emissions	E0 g/km	E10 g/km	E15 g/km	E20 g/km	E25 g/km	E30 g/km	E10 - E0	E20 - E0	E30 - E0	Euro 6	TIER USA
со	13.48	12.34	11.97	11.63	11.39	11.06	-8%	-14%	-18%	1	3.5
voc	1.24	1.15	1.12	1.10	1.08	1.06	-7%	-11%	-15%	95	255
VOCevap	0.49	0.49	0.50	0.51	0.52	0.53	0%	4%	7%	0.1	0.273
NOx	0.63	0.44	0.41	0.39	0.36	0.34	-30%	-38%	-46%	0.06	0.203
SOx	0.01	0.01	0.01	0.00	0.00	0.00	-15%	-28%	-41%		
NH3	0.07	0.07	0.07	0.07	0.07	0.07	-2%	0%	1%		
Butadiene	0.01	0.01	0.01	0.01	0.01	0.01	-7%	-11%	-14%		
Acetaldehyde	0.02	0.03	0.04	0.06	0.06	0.08	68%	249%	372%		
Formaldehyde	0.06	0.07	0.08	0.09	0.09	0.10	13%	39%	68%		
Benzene	0.06	0.06	0.06	0.05	0.05	0.05	-9%	-11%	-18%		
CO2	278.82	264.88	259.56	256.92	254.37	249.68	-5%	-8%	-10%		
N2O	0.01	0.01	0.01	0.01	0.01	0.01	-1%	2%	4%		
CH4	0.27	0.27	0.28	0.28	0.29	0.29	0%	4%	7%		
PM 2.5	0.02	0.02	0.02	0.01	0.01	0.01	-22%	-43%	-65%		
PM10	0.03	0.03	0.02	0.02	0.02	0.01	-22%	-43%	-65%	0.005	0.007
THC	0.42	0.43	0.46	0.49	0.51	0.53	3%	16%	26%		

Source: Faro90