Homework 10

Sean Eva

April 2021

1. Consider arbitrary singular value for the matrix A, that is to say that for arbitrary singular value σ and eigenvector v, then $(A^*A)v = \sigma^2 v$. Then,

$$A^{-1}Av = A^{-1}\sigma v$$

$$Iv = \sigma^2 (A^*A)^{-1}v$$

$$\frac{1}{\sigma^2}v = (A^*A)^{-1}v.$$

Therefore, the singular value for the inverse of A is $\sqrt{\frac{1}{\sigma^2}} = \frac{1}{\sigma}$. Thus, the singular values for A^{-1} are $\{\frac{1}{\sigma_n},...,\frac{1}{\sigma}\}$.

2. Consider the matrix A such that $A^2 = 0$. The characteristic polynomial of A^2 would then be $(x^3)^2 = 0$. This then implies that the characteristic polynomial of A would be $x^3 = 0$. This then implies that all three eigenvalues of the matrix A are $\lambda = 0$. Therefore, consider the following set of

values of the matrix
$$A$$
 are $\lambda = 0$. This then implies that all three eigenvalues of the matrix A are $\lambda = 0$. Therefore, consider the following set of matrices, $\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$, $\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$, $\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$, $\begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$, $\begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$.

3. (a) Let $B = \{v, Av, ..., A^{n-1}v\} \subseteq \mathbb{R}^n, |B| = n$, so it is sufficient to show that B is linearly independent. Suppose that $a_0v + a_1(Av) + ... + a_{n-1}(A^{n-1}v) = 0$. If we apply A^{n-1} we get $a_i \in \mathbb{F}^n$

$$A^{n-1}(a_0v + \dots + a_{n-1}A^{n-1}v) = 0$$

$$a_0A^{n-1}v + a_1A^nv + \dots + a_{n-1}A^{2n-2}v = 0$$

$$a_0A^{n-1}v = 0$$

$$a_0 = 0.$$

By applying subsequent As we will get that $a_i = 0$ for $0 \le i \le n-1$. Therefore, $a_0 = a_1 = ... = a_{n-1} = 0$ which means that B is linearly independent and is therefore a basis of \mathbb{F}^n .

(b) Let $x \in \mathbb{F}^n \Rightarrow x = a_0 v + a_1 A v + ... + a_{n-1} A^{n-1} v, a_i \in \mathbb{F}^n$. Then, $A^n x = a_0 A^n v + ... + a_{n-1} A^{2n-1} v \\ = a_0(0) + ... +) a_{n-1}(0) \\ A^n x = 0, \forall x \in \mathbb{F}^n.$

Therefore, $A^n = 0$.

(c) If λ is an eigenvalue of $A \Rightarrow \exists v \neq 0 \in \mathbb{F}^n$ such that $Av = \lambda v$. Then,

$$A^n v = \lambda^n$$
$$0 = \lambda^n v$$
$$\lambda^n = 0$$

Therefore, $v \neq 0$. Thus, $\lambda = 0$ is the only eigenvalue of A.

(d)

$$A^{n-1}v \neq 0$$

$$A(A^{m-1}v) \neq 0, \forall m \leq n-1.$$

Therefore, $A^{m-1}v$ is not an eigenvector for A $m \leq n-1$. If $m \leq n-1 \Rightarrow A^{n-1}v \neq 0$ and $A(A^{n-1}v) = A^nv = 0$. A^{n-1} is an eigenvector of A.

(e) Let P be a matrix whose columns are $A^{n-1}v,...,Av,v$. Then,

$$Ap = PI$$
$$P^{-1}AP = I.$$

Then,
$$J = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 1 & \cdots & 0 & 0 \\ 0 & 0 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & 0 & 0 \\ 0 & 0 & 0 & \cdots & 0 & 1 \\ 0 & 0 & 0 & \cdots & 0 & 0 \end{bmatrix}$$
.

4. Task 1: Increasing to n=-50 does not affect the Jordan form of B. However, it will make the size of the Jordan form of A become 5 times smaller, decreasing its factor from 10^{-5} to 10^{-25}

Task 2: The Jordan form of each random matrix is always $J = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$.

The matrix of B^4 does confirm the value of J because of how as each successive product $B, B^2, ...$, the amount of data being stored decreases. This is indicative of why J comes out this way because B continues to lose information through iterations.