MATH 367 - Week 1 Notes

Jasraj Sandhu

September 2023

Introduction

What is a derivative?

- rate of change of y with respect to x.
- linearization

We write the linearization as $y - f(c) = f'(c) \cdot (x - c)$. With y = L(x), we then get

$$L(x) = f(c) - f'(c) \cdot (x - a) .$$

L(x) is the best linear approximation to f(x) near x=c. That is, f'(c) is the best minimizing quantity for

$$|f(x) - (f(c) + m(x - c))|$$

for x close to c.

In this course, we will look at functions with many input variables and many output variables. Consider the following examples.

(i)
$$f(x, y, z) = xy + z^2$$
 (scalar-valued function)

(ii)
$$\vec{r}(t) = \begin{pmatrix} \cos(t) \\ \sin(t) \\ t \end{pmatrix}$$
 (vector-valued function)

Note that the graph of the range of a vector-valued function is called a **curve**.

(iii)
$$\vec{f}(x,y) = \begin{pmatrix} -y \\ x \end{pmatrix}$$
 (vector field in 2D)
$$\vec{f}(x,y,z) = \frac{1}{\sqrt{x^2 + y^2 + z^2}} \begin{pmatrix} -x \\ -y \\ -z \end{pmatrix}$$
 (vector field in 3D). (# of inputs = # of outputs)

(iv) Suppose A is a an $m \times n$ matrix and define a function

$$\vec{f}(\vec{x}) = A\vec{x} + \vec{b} \in \mathbb{R}^m ,$$

where $\vec{b} \in \mathbb{R}^m$, and $\vec{x} \in \mathbb{R}^n$ is our input. This is a function from $\mathbb{R}^n \to \mathbb{R}^m$, called an <u>affine</u> function. (Note that this is a <u>linear transformation</u> when $\vec{b} = \vec{0}$).

What should be the derivative of \vec{f} ? We want it to be A. Note that the equation above is similar to the slope equation

$$y = mx + b ,$$

whose derivative evaluates to m.

The Basic Topology of \mathbb{R}^n

Definition (Open Ball)

The open ball centered at \vec{x}_0 with radius r > 0 is the set

$$B_r(\vec{x}_0) = {\{\vec{x} \in \mathbb{R}^n : ||\vec{x} - \vec{x}_0|| < r\}} \subseteq \mathbb{R}^n$$
,

where $||\vec{x} - \vec{x}_0||$ is the Euclidean distance between \vec{x} and \vec{x}_0 .

For example, let $\vec{v} = \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix}$ and $\vec{w} = \begin{pmatrix} w_1 \\ \vdots \\ w_n \end{pmatrix}$. Then the euclidean distance between \vec{v} and \vec{w} is given by

$$||\vec{v} - \vec{w}|| = \sqrt{\sum_{j=1}^{n} |v_j - w_j|^2}$$
.

Essentially, an open ball is the set of all vectors $\langle r \rangle$ distance away from the vector \vec{x}_0 , where \vec{x}_0 is the center of the ball whose radius is r.

Consider $B_4(1,1)$ in \mathbb{R}^2 . This is the ball of radius 4 centered at (1,1).

Definition (Closed Ball)

The closed ball of radius r centered at \vec{x}_0 is the set

$$\overline{B_r}(\vec{x}_0) = \{ \vec{x} \in \mathbb{R}^n : ||\vec{x} - \vec{x}_0|| \le r \}$$

If we consider $\overline{B_4}(1,1)$, which is the closed ball of radius 4 centered at (1,1), the image is the same as the one for the open ball $B_4(1,1)$, but with the edge included.

In one variable:

$$B_r(x_0) = (x_0 - r, x_0 + r)$$

 $\overline{B_r} = [x_0 - r, x_0 + r]$

Note that these are intervals, not matrices.

Definition (Interior Point)

Suppose $U \subseteq \mathbb{R}^n$. We say that \vec{x}_0 in U is an **interior point** for U if there is some r > 0 with $B_r(\vec{x}_0) \subseteq U$.

For example,

Definition (Interior)

The set of all interior points for U is called the **interior** of U (often written as U° or $\operatorname{int}(U)$.

Definition (Open Set)

U is **open** if $U^{o} = U$ (that is, every point is interior).

Definition (Closed Set)

U is **closed** if $\mathbb{R}^n \setminus U$ (the complement of U) is open.

Consider the following examples.

This makes sense.

- For the first example above, the set *U* is the inside of the strange shape, and so since every point is an interior point, we say that *U* is indeed an open set (by the definition of open set).
- For the second example above, U is closed. If we consider the complement of the second image (the rectangle), which is the the third image, we see that the complement of U, which we'll call U^{\complement} , is the outside of the rectangle. Since every point is indeed part of U^{\complement} (outside the rectangle), we say that U is indeed a closed set.

Remarks:

- (i) A set is open if and only if it contains **no** boundary points.
- (ii) A set is closed if and only if it contains <u>all</u> boundary points.

Ex: Find and sketch the domain of

$$\vec{f}(x,y) = \begin{pmatrix} \ln(1 - x^2 - y^2) \\ \sqrt{x^2 + y^2 - \frac{1}{4}} \end{pmatrix} .$$

Answer: In order for $(x,y) \in \text{dom}(\vec{f})$, it must be the case that $(x,y) \in \text{dom}(\ln(1-x^2-y^2) \text{ and } (x,y) \in \text{dom}\left(\sqrt{x^2+y^2-\frac{1}{4}}\right)$. So, using the fact that the domain of $\ln(x)$ is $(0,\infty)$ and the domain of \sqrt{x} is $[0,\infty)$, we get that

$$\operatorname{dom}(\vec{f}) = \left\{ (x, y) \in \mathbb{R}^2 : 1 - x^2 - y^2 > 0 \text{ and } x^2 + y^2 - \frac{1}{4} \ge 0 \right\}$$
$$= \left\{ (x, y) \in \mathbb{R}^2 : x^2 + y^2 < 1 \text{ and } x^2 + y^2 \ge \frac{1}{4} \right\}$$
$$= \left\{ (x, y) \in \mathbb{R}^2 : \frac{1}{4} \le x^2 + y^2 < 1 \right\}$$

Recall that $x^2+y^2=r^2$ is the circle of radius r centered at (0,0). The following is the sketch of $x^2+y^2=1$ and $x^2+y^2=\frac{1}{4}$, the circle centered at (0,0) with radii 1 and $\frac{1}{2}$, respectively.

In single variable calculus, we generally define derivatives on the interior of the domain of f (or a subset of the interior). For example,

$$f(x) = \sqrt{x}$$
, $dom(f) = [0, \infty)$
 $f'(x) = \frac{1}{2\sqrt{x}}$, $dom(f') = (0, \infty) = [0, \infty)^{\circ}$

$$g(x) = \sqrt[3]{x}$$
, $dom(g) = \mathbb{R}$
 $g'(x) = \frac{1}{3\sqrt[3]{x^2}}$, $dom(g') = (-\infty, 0) \cup (0, \infty)$

The Derivative

Definition (Derivative)

Suppose $\vec{f}:U\to\mathbb{R}^m$ where $U\subseteq\mathbb{R}^n$. We say that f is differentiable at $\vec{x}_0\in U^{\mathrm{o}}$ if there is an $m\times n$ matrix A such that

$$\lim_{\vec{x} \to \vec{x}_0} \frac{||\vec{f}(\vec{x}) - \vec{f}(\vec{x}_0) - A(\vec{x} - \vec{x}_0)||}{||\vec{x} - \vec{x}_0||} = 0 \ ,$$

where the numerator is the Euclidean distance in \mathbb{R}^m and the denominator is the Euclidean distance in \mathbb{R}^n . When this is the case, A must be unique. We call this matrix the derivative of \vec{f} at \vec{x}_0 and write it as

$$D\vec{f}(\vec{x}_0) = A .$$

We can compare this definition to the single variable derivative definition:

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$
.

We can get this limit definition of a derivative of a single variable in a form similar to that of our definition above.

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

$$0 = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} - f'(x_0)$$

$$0 = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} - \frac{f'(x_0)(x - x_0)}{x - x_0}$$

$$0 = \lim_{x \to x_0} \left| \frac{f(x) - f(x_0) - f'(x_0)(x - x_0)}{x - x_0} \right|.$$