

RecSys 01 - 공룡알

김은혜

kimeunh3

장원준

(7 jwj51720

이수경

41ow1ives

정준환

Jeong-Junhwan

류명현

? ryubright

목차

Table of Contents

Goal

팀원 모두의 **고른** 성장

- 최종 프로젝트를 위해 팀원 모두가 프로젝트 전반에 대한 깊은 이해 필요
- 본인이 자신 있는 부분이 아니라 자신 없는 부분을 맡으며 부족한 능력 배양하기

베이스라인 코드 직접 작성

제공된 베이스라인, 파이토치 템플릿을 활용해 팀만의 베이스라인 구축 2

PM 로테이션제

이틀에 한 번씩 PM을 돌아가면서 맡음으로써 프로젝트 전반에 대한 이해 도모 3

팀 로테이션제

팀을 나누어 운영함에 있어 이틀에 한 번씩 팀을 바꾸며 프로젝트 진행 속도 공유 4

강의와 실습 내용 온전히 파악하기

제공된 강의와 실습 내용의 EDA, 전처리 방식을 최대한 이해하며 활용하기 Goal

팀원 모루**EAM2 고른** 성장 PM

로젝트를 위해 팀원 모두기

▶ 본 사자신 있는 부분이 아니라 기

전**받에 대**한 깊은 이해 필요

값은 부분을 맡으며 부족한 능력 배양하기

1

TEAM2

TEAM1

4

베이스라인 코드 직접 작성

제공된 베이스라인, 파이토치 템플릿을 활용해 팀만의 베이스라인 구축 PM 로테이션제

이틀에 한 번씩 PM을 돌아가면서 맡음으로써 프로젝트 전반에 대한 이해 도모 팀 로테이션제

팀을 나누어 운영함에 있어 이틀에 한 번씩 팀을 바꾸며 프로젝트 진행 속도 공유 강의와 실습 내용 온전히 파악하기

제공된 강의와 실습 내용의 EDA, 전처리 방식을 최대한 이해하며 활용하기

Project와 Issue 활용 Milestones 브랜치 전략

Dkt 프로젝트 안에서 할 것, 진행 중인 것, 완료된 것, pr 등을 개별 이슈로 정리하여 프로젝트 진행 상황을 한 눈에 볼 수 있습니다.

Project와 Issue 활용 Milestones 브랜치 전략

Milestone이란, 여러개의 issue를 카테고리화 해서 나누는 단계

EDA, 전처리, 베이스라인, 모델링으로 나뉘어져 해당하는 milestone을 만들고 issue를 해당 milestone에 등록해 프로젝트의 완성도를 눈으로 볼 수 있도록 했습니다.

Project와 Issue 활용

Milestones

브랜치 전략

데이터 버전 관리

모델 결과 공유

w. W&B

DKT dataset

■ Table ⊘ 파일과 미디어 Aa 이름 ∷를 태그 🕮 주인장 ☴ 설명 ③ 장원준 [11/23] train_data.csv에서 feature 가공 및 추가 data_v1_1 train_v1.1.csv 🧨 data v1.1 Data1.1 traintest_v1.1.csv 📵 류명현 traintest_v1.2.zip data_v1.2 Data1.2 💼 류명현 dataset_v1.3.zip data_v1.3 Data1.3 🚱 쑤교 traintest v2.1.csv data_v2.1 Data2.1 [11/25] elapsed_time 변경 반영 data_v2.2 👳 류명현 traintest_v2.2.csv Data2.2 [11/25] elapsed_time 변경에 따른 feature 수정 준환 정 traintest v3.0.csv [12/06] elapsed_time 문제 해결 data_v3.0 Data3.0 ✍️ 준환 정 [12/07] 정답률 추가, 시간 추가 traintest_v3.1.csv data_v3.1 Data3.1 ⋘ 준환 정 [12/08] 문제의 난이도, 유저의 실력 추가 traintest v3.2.csv / data_v3.2 Data3.2 💼 류명현 traintest_v3.3.csv [12/08] elo feature 추가 data_v3.3 Data3.3 🚱 쑤교 traintest v4.0.csv [12/08] column명 정리 IIII data v4.0 Data4.0 + New

데이터 버전 관리

모델 결과 공유

w. W&B

Aa wandb이름	◈ 모델		i≡ cat_col	i≡ num_col	# val_auroc	# val_loss	# epoch	≣ 비고
XGBoost	XGBoost	3.1	assessmentItemID test_id week_num KnowledgeTag question_number question_numslen test_month test_day test_cat testId	ALL	0.8427	0.775	69	
2022-12- 07_20:15_sssu> <	GRUTransformer	3.1	assessmentItemID test_id question_number KnowledgeTag test_day test_month	elapsed_time ans_cumsum ans_cumavg time_question_median tag_acc elapsed_time_mean elapsed_time_median KnowledgeTag_et_mean KnowledgeTag_et_std test_acc test_hour hour_acc exp_tag KnowledgeTag_aC_mean	0.8499	0.3957	50	
2022-12- 07_20:09_ryubri ght	GTN	3.0			0.8434	0.3799	50	fold 10
2022-12- 07_22:04_eunhy e	GRUTransformer	3.1	assessmentItemID test_id question_number KnowledgeTag	elapsed_time ans_cumavg ans_cumsum time_question_median	0.8541	0.3135	50	

Timeline

EDA를 통해 얻은 인사이트 보다도 직관적으로 접근 하여 피쳐를 생성하고자 함

'question_number', 'test_cat', 'test_day', 'test_hour', 'test_month', 'week_day', 'Timestamp_day', 'Timestamp_week', 'Timestamp_hour', 'question_numslen', 'post_Timestamp', 'elapsed_time', 'elapsed_time_log', 'elapsed_time_cat', 'test_acc', 'test_cat_acc', 'alD_acc', 'tag_acc', 'org_user_acc', 'week_day_acc', 'question_number_acc', 'shift', 'org_user_ans_cumsum', 'org_user_time_acc', 'test_time_acc', 'test_cat_time_acc', 'test_cat_et_std', 'test_cat_et_std', 'test_cat_et_std', 'test_cat_et_std', 'test_cat_et_std', 'test_cat_et_std', 'test_log_mean', 'knowledgeTag_et_mean', 'KnowledgeTag_et_mean', 'week_day_et_std', 'test_cat_et_log_std', 'test_log_mean', 'alD_et_log_std', 'alD_et_log_mean', 'knowledgeTag_et_log_std', 'knowledgeTag_et_log_std', 'test_cat_et_log_mean', 'alD_et_std', 'week_day_et_log_mean', 'org_user_exp_tag', 'userID_theta', 'assessmentItemID_beta', 'KnowledgeTag_elo'

'testId_elo', 'KnowledgeTag_elo'

Elapsed time의 log transform

< KnowledgeTag의 elapsed time >

200 200 300 400

< TestId의 elapsed time > 200 300 400

A020000172

A020172001 < assessmentItemID의 elapsed time > 200 300 400 elapsed_time_now

Mean과 median의 활용

시험지 대분류/ 문제 번호에 따른 정답률에 유의미한 차이가 있다고 판단

시간의 흐름을 고려한 피쳐

< 특정 시험의 시간 흐름에 따른 정답률 변화 양상 >

규칙성은 파악하지 못했지만 시간의 흐름에 따른 차이가 유의미하다고 판단하여 시간의 흐름에 따른 정답률/elapsed time 피쳐 또한 생성

03. 베이스라인

04. 모델링 Overview 모델소개

대분류 모델 프로젝트 -> 소분류 fold 단위로 wandb에 학습내역 출력 보수적 기록을 위해 최소 auroc가 나온 fold를 노션에 기록

k-fold 진행 시 shuffle을 하지 않고 wandb 찍어본 결과 fold 별 경향성이 크게 다른 것 확인

public과의 align을 위해서는 valid 데이터를 잘 만드는 것이 중요하다고 판단함 k-fold shuffle 후 wandb 찍어본 결과 폴드 별 경향성 안정되는 것 확인

public 제출 결과와도 어느 정도 align됨

TransformerLSTM

TransformerGRU

GRUTransformer

GTN

강의에서 소개한 Riiid대회의 1등솔루션인 TransformerLSTM을 만들기 위한 Transformer, LSTM 단독 모델 제작

Feature Embedding

Categorical feature와 numerical feature를 나누어 embedding 한 후 concat

GTNGRU

TransformerLSTM

TransformerGRU

GRUTransformer

GTN

GTNGRU

Riiid vs 우리대회

상대적인 데이터 부족

-> 전체 시퀀스에 대한 loss 계산

- Sequential 특징을 반영하기 위한 LSTM 모델 병합

Positional Encoding을 제외한 transformer 모델

- 1. 마지막 문제를 예측하는 것이 목표인 만큼
- 2. LSTM 단에서 sequential 정보를 반영하는데 두 번 반영하면 좋지 않은 영향이 있을 것이라 판단

TransformerLSTM

TransformerGRU

GRUTransformer

GTN

GTNGRU

---- LSTM의 개선 모델인 GRU를 활용함으로써 모델 학습 속도 개선

학습 속도는 빠르지만 성능은 거의 유사함을 확인

TransformerLSTM

TransformerGRU

GRUTransformer

GTN

GTNGRU

Sequential 정보를 반영하는 LSTM계열의 모델을 Positional encoding을 제거한 트랜스포머 보다 먼저 사용해 본다면?

TransformerGRU와 동일 조건으로 성능 비교한 결과 약간의 성능 개선

TransformerLSTM

TransformerGRU

GRUTransformer

GTN

GTNGRU

Transformer 성능이 준수한 것을 확인
Transformer 관련 모델을 더 써보는 것을 시도

Gated Transformer Network

Positional Embedding이 있는 모델과 Positional Embedding이 없는 모델을 concat 하는 모델

- LSTM 계열 모델을 사용하지 않아 속도 개선
- 기존 모델들과 비슷한 성능

TransformerLSTM

TransformerGRU

GRUTransformer

GTN

GTNGRU

LSTM과 같이 sequential 특징을 반영하는 모델이 준수한 성능을 냈음

Gated Transformer Network + GRU

GTN 뒤에 GRU를 부착해 sequential 정보를 한 번 더 반영

- Auroc는 기존 모델들과 유사한 양상
- Accuracy가 불안정해 최종 모델로 채택 하지 않음

약 60개 이상의 feature를 생성한 만큼 중복되거나 의미 없는 피쳐를 제거 할 필요 다양한 방법을 통해 feature들의 중요도 확인

XGBoost

Feature importance aID_time_acc org_user_time_acc org_user_acc test_cat_time_acc 1427.0 -1301.0 elapsed tim -1083.0 org_user_ans_cumsum userID_theta assessmentItemID_eld assessmentitemic KnowledgeTag elo testid elo test_time_acc Timestamp_hour testid_et_log_std tag_time_acc mentitemiD_beta Timestamp_day assessmentitemIF 743.0 660.0 Timestamp da alD_acc elapsed_time_log test_day alD_et_log_std 328.0 326.0 317.0 309.0 testid -testid_et_std -owledgeTag_et_std -alD_et_log_mean -alD et_std -testid_beta -261.0 -261.0 -260.0 -256.0 -250.0 -247.0 -246.0 227.0 alD et std. KnowledgeTag_beta elapsed_time_cat tag_acc question_number 181.0 week_day_acc -week_day -Timestamp_week -question_numslen ek_day_et_mean F score

RandomForest

Stepwise Feature Selection

Feature Correlation

Ensemble

Inference 결과의 bias를 줄여주기 위함

유사한 성능을 내지만 correlation이 낮은 inference 결과끼리 앙상블 해야 한다!

비슷한 계열의 모델들 끼리의 correlation 결과는 모두 0.92~0.99

=> 실제로 LB 제출 결과 성능 개선이 이루어지지 않았음

 상대적으로 성능은 조금 낮았으나 correlation이 낮은 XGBoost와의 앙상블

=> Private 점수 확인 결과 오히려 다른 앙상블 결과 보다 좋은 성능을 보임

with 1 :	0.8674299193178432
with 2 :	0.8737356738910386
with 3 :	0.8790969074440186
with 4 :	0.897702086572
with 5 :	0.87848705977° $0.8266 \rightarrow 0.8620$ $0.7473 \rightarrow 0.7796$
with 6 :	0.0000
with 7 :	0.873386950463
with 8 :	0.905381673564 $0.8274 \rightarrow 0.8620$ $0.7473 \rightarrow 0.7796$
with 9 :	0.864148511914
with 10	0.8824410388 $0.8274 \rightarrow 0.8617$ $0.7500 \rightarrow 0.7823$
with 11	0.87578755194
with 12	0.8777420657557229
with 13	0.8736658379733481

Wandb sweep을 이용해 파라미터 튜닝

- Feature의 importance와 성능과의 correlation 파악
- 파라미터의 대략적인 척도를 잡는데 도움이 됐음

User 수경

두 가지 augmentation 진행

max seq len보다 더 많은 문제를 푼 유저를 새로운 여러명의 유저로 구분

User 은혜 User 명현 p200 User 부덕이 User 준환 p001 | p002 | · · · · p500 p201 p202 · · · · · p300 User 원준 > p301 | p302 | · · · · | p400 |

▶ p401 p402 p500

한 유저 안에서 문제의 순서를 섞은 새로운 유저 생성

6. 최종 결과

