CPE301 - SPRING 2018

Design Assignment X

DO NOT REMOVE THIS PAGE DURING SUBMISSION:

The student understands that all required components should be submitted in complete for grading of this assignment.

NO	SUBMISSION ITEM	COMPLETED (Y/N)	MARKS (/MAX)
1	COMPONENTS LIST AND CONNECTION BLOCK DIAGRAM w/ PINS		
2.	INITIAL CODE OF TASK 1/A		
3.	INCREMENTAL / DIFFERENTIAL CODE OF TASK 2/B		
3.	INCREMENTAL / DIFFERENTIAL CODE OF TASK 3/C		
3.	INCREMENTAL / DIFFERENTIAL CODE OF TASK 4/D		
3.	INCREMENTAL / DIFFERENTIAL CODE OF TASK 5/E		
4.	SCHEMATICS		
5.	SCREENSHOTS OF EACH TASK OUTPUT		
5.	SCREENSHOT OF EACH DEMO		
6.	VIDEO LINKS OF EACH DEMO		
7.	GOOGLECODE LINK OF THE DA		

1. COMPONENTS LIST AND CONNECTION BLOCK DIAGRAM w/ PINS

The components used for this assignment-

- Atmega328P
- Switch
- Breadboard
- Resistors (mainly 100 ohms)
- LED (red)
- Power supply

2. INITIAL/DEVELOPED CODE OF TASK 1/A (assembly)

```
.org 0
       LDI R16, (1<<2)
       SBI DDRB , 2
                                  ;set PB2 as an output
       LDI R17 , 0
                                  ; using for out
       out PORTB, R17
begin:
                              ;calling timer to wait 0.25 sec
;xor to toggle the LED
       RCALL delay
       EOR R17, R16
       out PORTB, R17
       RJMP begin
delay:
       LDS R29, TCNT1H ;loading upper bit of counter to R29
       LDS R28, TCNT1L
                                   ;loading lower bit of counter to R28
       LDI R20, 0
                           ;using control timer register
;set prescaler of 8
;start the clock
;comparing if lower is 0x08
       STS TCCR1A, R20
       LDI R20, 2
      STS TCCR1B, R20
       CPI R28,0x08
                                   ;comparing if lower is 0x08
       BRSH body
       RJMP delay
body:
       CPI R29,0x3D
                                   ;comparing if upper bits is 0x3D
       BRSH done
       RJMP delay
done:
       LDI R20,0x00
                             ;resetting the counter to 0 for next round
       STS TCNT1H,R20
       LDI R20,0x00
       STS TCNT1L,R20
                                   ;resetting the counter to 0 for next round
       RET
```

3. INITIAL/DEVELOPED CODE OF TASK 1/B (C)

4. INITIAL/DEVELOPED CODE OF TASK 2/A (assembly)

```
.org 0
       SBI DDRB, 2
                            ;PB2 as output
       LDI R17,0
                            ;needed to toogle led
       OUT PORTB, R17
       CBI DDRD, 2
       SBI PORTD, 2
                           ;port D2 pull up
       LDI R20,3
                           ;to set prescaler
       STS TCCR1B,R20
                           ;Prescaler: 64
start:
       SBIC
              PIND, 2
                                  ; skip when PIND2 is low
       RJMP
              start
                     PORTB, 2
                                  ; Turn on the LED
       SBI
       SBIC
              PIND, 2
                                   ; skip when PIND2 is low
       RJMP
              start
       CALL
              DELAY
                                  ; Delay for 1 second
       CBI
                     PORTB, 2
                                  ; Turn off the LED
       RJMP
              start
delay:
       LDS R29, TCNT1H
                                   ;loading upper bit of counter to R29
       LDS R28, TCNT1L
                                   ;loading lower bit of counter to R28
       CPI R28,0x84
                                  ;comparing if lower is 0x84
       BRSH body
       RJMP delay
body:
       CPI R29,0x1E
       BRSH done
       RJMP delay
done:
       LDI R20,0x00
       STS TCNT1H, R20
                                  ;resetting the counter to 0 for next round
       LDI R20,0x00
       STS TCNT1L,R20
                                   ;resetting the counter to 0 for next round
       RET
```

5. INITIAL/DEVELOPED CODE OF TASK 2/B (C)

```
#include <avr/io.h>
       #include <avr/interrupt.h>
       #define F_CPU 500000UL
                                  //frequency 0.5MHz
       #include <util/delay.h>
       int main()
       {
             DDRB |=(1<<2);
             DDRD &= ~(1<<2);
             while (1)
              {
                            if (PIND & 0x04){
                                                               //if switch pressed
                                  PORTB |= (1<<2); //turn on LED at port B2
                                  _delay_ms (1000);
                                                       //wait one sec
                            }
                            else {
                                  PORTB &= ~(1<<2);
                                                       //turn the LED off
                            }
             }
       }
Calculation of TCNT value for task 2:
```

```
TCNT = (500, 000/64)*1-1= 7812 (1E84)
```

INITIAL/DEVELOPED CODE OF TASK 3/A (assembly) 6.

```
.include "M328DEF.INC"
.org 0
      LDI R16, (1<<2)
      SBI DDRB , 2
                                  ;set PB2 as an output
      LDI R17 , 0
                                  ; using for out
      OUT PORTB, R17
begin:
      RCALL delay
                                  ;calling timer to wait 0.25 sec
      EOR R17, R16
                                  ;xor to toggle the LED
      out PORTB, R17
      RJMP begin
delay:
                                  ;load 134 (TCNT value) to the register
      LDI R28, 0x86
      OUT TCNT0, R28
                                  ;load the value to TCNT0
      LDI R20, 0
      OUT TCCR0A, R20
      LDI R20, 5
                                  ;5- 1024 prescaler (make the value less than 255- 8
bits)
      OUT TCCR0B, R20
                                  ;Timer0, normal mode, int clk, 1024 prescaler
```

7. INITIAL/DEVELOPED CODE OF TASK 3/B (C)

```
#include <avr/io.h>
void delay();
int main()
{
       DDRB |= 0x04; //set DE2 as an output
PORTB = 0x00; //initialize output to zero
       while (1)
       {
       delay();
                           // calling delay function
       PORTB ^= 0x04;
                            //xor to toggle LED portb 2
       }
}
void delay (){
                           //normal mode, counts up to 134
       TCNT0 = 0x86;
       TCCR0A |= 0;
       TCCR0B |= (1 << CS02) | (1 << CS00); //1024 prescaler
       while ((TIFR0 & 0x01)== 0)
       {
              //DO nothing
       TCCR0A = 0x00;
                                   //stop timer
       TIFR0 |= (1<<TOV0);
                                  //reset flag
}
```

8. INITIAL/DEVELOPED CODE OF TASK 4/A (assembly)

```
.include "M328DEF.INC"
.org 0
      jmp main
.org 0X20
      jmp TIMER0_OV_ISR
.org 0x100
main:
      LDI R20, HIGH(RAMEND)
                             ;initalize the stack
      OUT SPH, R20
      LDI R20, LOW(RAMEND)
      OUT SPL, R20
      LDI R16, (1<<2)
      SBI DDRB , 2
                                ;set PB2 as an output
      LDI R17 , 0
                                ; using for out
      OUT PORTB, R17
begin:
                               ;load 134 (TCNT value) to the register
      LDI R28, 134
      OUT TCNT0, R28
                                ;load the value to TCNT0
      ;timer int init
      LDI R20, (1<<TOIE0)
      STS TIMSK0, R20
      SEI
                                 ;enable interrupt
      LDI R20, 0
      OUT TCCR0A, R20
      LDI R20, 5
                                 ;5- 1024 prescaler (make the value less than 255- 8
bits)
      OUT TCCR0B, R20
                                ;Timer0, normal mode, int clk, 1024 prescaler
lp:
      RJMP lp
                                 ;an infinit loop
TIMERO_OV_ISR:
      LDI R20, (1<<TOV0)
                               ;clear flag by writing 1 to TIFR
      OUT TIFR0, R20
      EOR R17, R16
                                ;xor to toggle the LED
      OUT PORTB, R17
                                ;load 134 (TCNT value) to the register
      LDI R28, 134
      OUT TCNT0, R28
                                ;load the value to TCNT0
      RETI
```

9. INITIAL/DEVELOPED CODE OF TASK 4/B (C)

```
#include <avr/io.h>
#include <avr/interrupt.h>
volatile int counter = 0;
int main()
{
                           //set DE2 as an output
       DDRB = 0x02;
      PORTB = 0 \times 00;
                           //initialize output to zero
                           //load 134 to the counter
      TCNT0 = 134;
      TIMSK0 = (1<<TOIE0); //start timer</pre>
      TCCR0A = 0;
       TCCR0B = 5;
                                   //timer0, normal mode, prescaler of 1024
       sei();
                                   //interrupt
      while (1)
       {
              // do nothing
       }
}
ISR (TIMER1_OVF_vect) {
       TIFR0 = (1<<0);
       if (counter == 134) {
              PORTB ^= (1<<2);
                                        //toggle the LED portb 2
              counter = 0;
       }
       else
              counter++;
       }
```

10. INITIAL/DEVELOPED CODE OF TASK 5/A (assembly)

```
.include "M328DEF.INC"
.org 0
      jmp main
.org 0X02
                                 ;location for ext_int0
      jmp EX_int0
main:
      LDI R20, HIGH(RAMEND)
                                  ;initalize the stack
      OUT SPH, R20
      LDI R20, LOW(RAMEND)
      OUT SPL, R20
      SBI DDRB, 2
                                  ;PB2 as output
      LDI R17,0
                                  ;needed to toogle led
      OUT PORTB, R17
      LDI R20,3
                                 ;to set prescaler
      STS TCCR1B,R20
                                  ;Prescaler: 64
      LDI R20, (1<<INT0)
                                  ;set external interrupt
      STS EIMSK, R20
      SEI
here:
      jmp here
delay:
```

```
LDS R29, TCNT1H
                                 ;loading upper bit of counter to R29
      LDS R28, TCNT1L
                                ;loading lower bit of counter to R28
                                 ;comparing if lower is 0x84
      CPI R28,0x84
      BRSH body
      RJMP delay
body:
      CPI R29,0x1E
      BRSH done
      RJMP delay
EX_int0:
                    PORTB, 2 ; Turn on the LED
      SBI
begin:
      SBIS PIND2, 2
      RJMP begin
      call delay
                                ; Turn off the LED
                    PORTB, 2
      LDI R21, (1<<INTF0)
      STS EIFR, R21
      RETI
done:
      LDI R20,0x00
      STS TCNT1H,R20
                             ;resetting the counter to 0 for next round
      LDI R20,0x00
      STS TCNT1L,R20
                                ;resetting the counter to 0 for next round
      ret
```

11. INITIAL/DEVELOPED CODE OF TASK 5/B (C)

```
#include <avr/io.h>
#include <avr/interrupt.h>
#define F_CPU 1000000UL
                          //frequency 1MHz
#include <util/delay.h>
int main()
{
       DDRB |=(1<<2);
                                  //portb sets as an output
      DDRD &= \sim(1<<2);
                                  //protd as an input
       EIMSK = (1 << INT0);
                                  //int0 is pin B2
       EICRA = (1<<ISC01) | (1<<ISC00); //rising edge</pre>
       sei ();
                                 //enable interrupt
      while (1)
       {
             //do nothing
       }
ISR (INT0 vect)
                           //interrupt, turn on LED
       EIFR |=(1<<INTF0);</pre>
       PORTB |= (1<<2);
                          //turn on LED at port B2
       delay ms (1000); //wait one sec
      PORTB &= ~(1<<2); //turn the LED off
```

}

12. SCHEMATICS

Task 1:

13. SCREENSHOTS OF EACH TASK OUTPUT (ATMEL STUDIO OUTPUT)

Task 1:

Na	me	Address	Value	Bits
I/O	PINB	0x23	0x00	0000000
I/O	DDRB	0x24	0x04	
I/O	PORTB	0x25	0x00	0000000

Figure 1 toggle LED

Program Counter	0x00000005
Stack Pointer	0x08FF
X Register	0x0000
Y Register	0x3D08
Z Register	0x0000
Status Register	ITHSVN Z C
Cycle Counter	125039
Frequency	0.500 MHz
Stop Watch	250,070.00 μs

Figure 2 required delay of 0.25 after reset stop watch

Task 1b:

₩O PINB	0x23 0x24		00000
₩ PORTB	0x25	0x04	00000

Figure 3 toggle LED

Program Counter	0x0000004D
Stack Pointer	0x08FD
X Register	0x0000
Y Register	0x08FF
Z Register	0x0000
Status Register	OTHSVNZC
Cycle Counter	1250017
Frequency	0.500 MHz
Stop Watch	2,500,004.00 μs

Figure 4 delay of 2.5 second after resetting the stop watch

Task 2:

Program Counter	0x0000000F
Stack Pointer	0x08FF
X Register	0x0000
Y Register	0x1E84
Z Register	0x0000
Status Register	ITHSVN Z C
Cycle Counter	499997
Frequency	0.500 MHz
Stop Watch	999,962.00 μs

Figure 5 delay of 1 second after resetting the watch

Task 3:

Program Counter	0x00000005
Stack Pointer	0x08FF
X Register	0x0000
Y Register	0x0086
Z Register	0x0000
Status Register	OTHSVNZC
Cycle Counter	124953
Frequency	0.500 MHz
Stop Watch	249,898.00 μs

Figure 6 delay of 0.25 sec after resetting the stop watch

Nam	ne	Address	Value	Bits
I/O P	INB	0x23	0x00	00000000
1/0	DRB	0x24	0x04	
NO b	ORTB	0x25	0x00	00000000

Figure 7 toggle LED

Task 3- C code (measuring the delay after resetting the stop watch)

Program Counter	0x00000049
Stack Pointer	0x08FB
X Register	0x0000
Y Register	0x0804
Z Register	0x0000
Status Register	UTHSVNZC
Cycle Counter	124958
Frequency	0.500 MHz
Stop Watch	249,868.00 μs

Name	Address	Value	Bits
₩ PINB	0x23	0x00	0000000
⊮ DDRB	0x24	0x04	
⊮ ○ PORT	B 0x25	0x00	0000000

Task 4 (C code) – results of the delay (0.25) seconds and toggle LED

Program Counter	0x00000050
Stack Pointer	0x08FD
X Register	0x0102
Y Register	0x08FF
Z Register	0x0000
Status Register	ITHSVN Z C
Cycle Counter	125022
Frequency	0.500 MHz
Stop Watch	249,964.00 μs

Name	Address	Value	Bits
WO PINB	0x23	0x00	0000000
⊮ ○ DDRB	0x24	0x02	
₩ PORTB	0x25	0x00	0000000

14. SCREENSHOT OF EACH DEMO (BOARD SETUP)

15. VIDEO LINKS OF EACH DEMO

Task 1- https://youtu.be/4F8kpBeYBOw
Task 2- https://youtu.be/73utptmEqtw

16. GITHUB LINK OF THIS DA

git@github.com:EilatAvidan/microcon.git

Student Academic Misconduct Policy

http://studentconduct.unlv.edu/misconduct/policy.html

"This assignment submission is my own, original work".

Eilat Avidan