

Lecture slides by Kevin Wayne
Copyright © 2005 Pearson-Addison Wesley
Copyright © 2013 Kevin Wayne

http://www.cs.princeton.edu/~wayne/kleinberg-tardos

4. GREEDY ALGORITHMS II

- Dijkstra's algorithm
- minimum spanning trees
- Prim, Kruskal, Boruvka
- single-link clustering
- min-cost arborescences

SECTION 4.4

4. GREEDY ALGORITHMS II

- Dijkstra's algorithm
- minimum spanning trees
- Prim, Kruskal, Boruvka
- ▶ single-link clustering
- min-cost arborescences

Shortest-paths problem

Problem. Given a digraph G = (V, E), edge lengths $\ell_e \ge 0$, source $s \in V$, and destination $t \in V$, find the shortest directed path from s to t.

1 Problem - definition - English/Math

2 Problem - example - diagram/math destination t

length of path = 9 + 4 + 1 + 11 = 25

Car navigation

Shortest path applications

- PERT/CPM.
- Map routing.
- Seam carving.
- Robot navigation.
- Texture mapping.
- Typesetting in LaTeX.
- Urban traffic planning.
- Telemarketer operator scheduling.
- Routing of telecommunications messages.
- Network routing protocols (OSPF, BGP, RIP).
- Optimal truck routing through given traffic congestion pattern.

Reference: Network Flows: Theory, Algorithms, and Applications, R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Prentice Hall, 1993.

4 Problem - applications - list

Dijkstra's algorithm

5. Algorithm – analogy – English Greedy approach. Maintain a set of explored nodes S for which algorithm has determined the shortest path distance d(u) from S to U.

- Initialize $S = \{ s \}, d(s) = 0.$
- Repeatedly choose unexplored node v which minimizes

$$\pi(v) = \min_{e = (u,v): u \in S} d(u) + \ell_e,$$

shortest path to some node u in explored part, followed by a single edge (u, v)

6 Algorithm - definition - English/math/diagram

Dijkstra's algorithm

Greedy approach. Maintain a set of explored nodes S for which algorithm has determined the shortest path distance d(u) from S to U.

- Initialize $S = \{ s \}, d(s) = 0.$
- Repeatedly choose unexplored node v which minimizes

$$\pi(v) = \min_{e = (u,v): u \in S} d(u) + \ell_e,$$

add v to S, and set $d(v) = \pi(v)$.

shortest path to some node u in explored part, followed by a single edge (u, v)

Dijkstra's algorithm: proof of correctness

7 Algorithm - proof - English/diagram/math Invariant. For each node $u \in S$, d(u) is the length of the shortest $s \rightarrow u$ path. Pf. [by induction on |S|]

Base case: |S| = 1 is easy since $S = \{ s \}$ and d(s) = 0.

Inductive hypothesis: Assume true for $|S| = k \ge 1$.

- Let v be next node added to S, and let (u, v) be the final edge.
- The shortest $s \rightarrow u$ path plus (u, v) is an $s \rightarrow v$ path of length $\pi(v)$.
- Consider any $s \rightarrow v$ path P. We show that it is no shorter than $\pi(v)$.
- Let (x, y) be the first edge in P that leaves S, and let P' be the subpath to x.
- *P* is already too long as soon as it reaches *y*.

$$\ell(P) \geq \ell(P') + \ell(x,y) \geq d(x) + \ell(x,y) \geq \pi(y) \geq \pi(v) \quad \blacksquare$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow$$

$$\text{nonnegative inductive definition Dijkstra chose v instead of y}$$

Dijkstra's algorithm: efficient implementation

8 Implementation – idea – English/math Critical optimization 1. For each unexplored node v, explicitly maintain $\pi(v)$ instead of computing directly from formula:

$$\pi(v) = \min_{e = (u,v): u \in S} d(u) + \ell_e.$$

- For each $v \notin S$, $\pi(v)$ can only decrease (because S only increases).
- More specifically, suppose u is added to S and there is an edge (u, v) leaving u. Then, it suffices to update:

$$\pi(v) = \min \{ \pi(v), d(u) + \ell(u, v) \}$$

9 Implementation - idea - English

Critical optimization 2. Use a priority queue to choose the unexplored node that minimizes $\pi(v)$.

Dijkstra's algorithm: efficient implementation

Implementation.

- Algorithm stores d(v) for each explored node v.
- Priority queue stores $\pi(v)$ for each unexplored node v.
- Recall: $d(u) = \pi(u)$ when u is deleted from priority queue.
- 10 Implementation definition list/pseudocode

```
DIJKSTRA (V, E, s)
```

Create an empty priority queue.

FOR EACH
$$v \neq s$$
: $d(v) \leftarrow \infty$; $d(s) \leftarrow 0$.

FOR EACH $v \in V$: insert v with key d(v) into priority queue.

WHILE (the priority queue *is not empty*)

 $u \leftarrow delete-min$ from priority queue.

FOR EACH edge $(u, v) \in E$ leaving u:

If
$$d(v) > d(u) + \ell(u, v)$$

decrease-key of v to $d(u) + \ell(u, v)$ in priority queue.

$$d(v) \leftarrow d(u) + \ell(u, v).$$

Dijkstra's algorithm: which priority queue?

11 Implementation - performances -

Performance: Depends on PQ: n insert, n delete-min, m decrease-key.

- Array implementation optimal for dense graphs.
- Binary heap much faster for sparse graphs.
- 4-way heap worth the trouble in performance-critical situations.
- Fibonacci/Brodal best in theory, but not worth implementing.

PQ implementation	insert	delete-min	decrease-key	total
unordered array	<i>O</i> (1)	O(n)	<i>O</i> (1)	$O(n^2)$
binary heap	$O(\log n)$	$O(\log n)$	$O(\log n)$	$O(m \log n)$
d-way heap (Johnson 1975)	$O(d \log_d n)$	$O(d \log_d n)$	$O(\log_d n)$	$O(m \log_{m/n} n)$
Fibonacci heap (Fredman-Tarjan 1984)	<i>O</i> (1)	$O(\log n)$ [†]	<i>O</i> (1) †	$O(m + n \log n)$
Brodal queue (Brodal 1996)	<i>O</i> (1)	$O(\log n)$	<i>O</i> (1)	$O(m + n \log n)$

Extensions of Dijkstra's algorithm

Dijkstra's algorithm and proof extend to several related problems:

- Shortest paths in undirected graphs: $d(v) \le d(u) + \ell(u, v)$.
- Maximum capacity paths: $d(v) \ge \min \{ \pi(u), c(u, v) \}$.
- Maximum reliability paths: $d(v) \ge d(u) \times \gamma(u, v)$.
- ...

Key algebraic structure. Closed semiring (tropical, bottleneck, Viterbi).

