Eliciting a Suitable Voting Rule via Rank-Vectors

Olivier Cailloux Ulle Endriss

LAMSADE, Université Paris-Dauphine & ILLC, University of Amsterdam

21st February, 2017

Introduction

Context Our goal

Context

- A committee (a group of decision makers)
 - a panel attributing a research price
 - a management committee
- Recurring decisions
- A decision is taken using a voting rule
- Voting rule: a systematic way of aggregating different opinions and decide

Our goal

We want to help the committee choose a suitable voting rule.

Voting rule

Input

- ullet A set of possible alternatives (options) ${\cal A}$
- Each voter $i \in N$ has a linear order of preference over \mathcal{A}
- A profile R associates each i to such an order.

Voting rule

Associates to each profile R winning alternatives $A \subseteq A$.

Our goal

Making decisions involves two steps.

- Establish a constitution: choose a voting rule.
- ② Solve a decision problem: apply the voting rule.

Our goal

We focus on step 1: help the committee choose a voting rule.

- Class of functions \mathcal{F} (the set of all voting rules)
- Preference elicitation in order to choose a function $f \in \mathcal{F}$.
- We want to ask *simple* questions: example-based.

A naïve attempt

A first attempt

Simply give a profile \mathbf{R} and ask for $f(\mathbf{R})$. Then iterate.

• Completely general: all functions in \mathcal{F} can be reached.

But...

- One question brings very little information.
- Questions may be difficult to answer.

General idea

- Ask good (informative, example-based) questions.
- Restrict the class of a priori acceptable functions to $\mathcal{F}' \subset \mathcal{F}$.

Outline

- Context
- Asking good questions
- Restrict the class of functions
- 4 Which questions to ask?
- Conclusion

Outline

- Context
- Asking good questions
- Restrict the class of functions
- 4 Which questions to ask?
- Conclusion

A different view of a profile

- ullet We want to ask more informative questions about f
- We look at profiles under a different angle
- A rank-vector maps voters to ranks, $x: N \rightarrow [1, m]$
- All rank-vectors: $[1, m]^N$

Rank-profile function

Rank-profiles

- Rank-profile $x \in ([1, m]^N)^A$ maps alternatives to rank-vectors
- To each profile R corresponds a rank-profile x_R
- Voting rule f maps R to $A \subseteq A$
- Rank-profile voting rule f_{r-p} maps x to $A \subseteq A$
- Rank-profile voting rule f_{r-p} corresponds to voting rule f iff $f_{\mathsf{r-n}}(\boldsymbol{x}_{\boldsymbol{R}}) = f(\boldsymbol{R})$

Rank-profiles correspond to *some* combinations of rank-vectors

- Some sets of rank-vectors do not form a rank-profile
- We assume preferences are strict
- Thus, for a given voter: ranks must be all different

Not a rank-profile:

1 1

2 3

2 2

Rank-profiles

Symmetries of rank-profile functions

- A rule is *neutral* iff it treats the alternatives equally:
- ullet after renaming alternatives, f selects the renamed alternatives
- In that case, f_{r-p} only requires a *set* of rank-vectors: $f_{r-p}(x^1 = \begin{bmatrix} 1 & 2 \end{bmatrix}, x^2 = \begin{bmatrix} 2 & 1 \end{bmatrix}) = \dots$
- A rule satisfies anonymity iff it treats the voters equally:
- renaming the voters does not change the winners
- No similar simplification of the input of f_{r-p}

Condorcet property

Rank-profiles

Definition (Condorcet property)

- A rank-profile voting rule satisfies Condorcet iff it picks the Condorcet winner if it exists
- x^1 beats x^2 iff more than half of the positions satisfy $x_i^1 < x_i^2$
- x is a Condorcet winner in x iff it beats all other $x' \in x$

Example (Condorcet with 3 voters, 3 alternatives)

$$\begin{array}{cccc}
1 & 2 & 3 \\
a & \boxed{1 & 2 & 2} \\
b & \boxed{2 & 3 & 1} \Rightarrow 3 \\
c & \boxed{3 & 1 & 3}
\end{array}$$

Condorcet property

Rank-profiles

Definition (Condorcet property)

- A rank-profile voting rule satisfies Condorcet iff it picks the Condorcet winner if it exists
- x^1 beats x^2 iff more than half of the positions satisfy $x_i^1 < x_i^2$
- x is a Condorcet winner in x iff it beats all other $x' \in x$

Example (Condorcet with 3 voters, 3 alternatives)

$$\begin{array}{cccc}
1 & 2 & 3 \\
a & 1 & 2 & 2 \\
b & 2 & 3 & 1 \\
c & 3 & 1 & 3
\end{array}
\Rightarrow ? a$$

Informational view about profiles

- Sen [1977]
- Voter i has evaluation function $W_i: \mathcal{A} \to \mathbb{R}$
- ullet Social welfare functional: associates $\{W_i\}$ to ranking over ${\mathcal A}$
- Subject to invariance requirement
- ullet Example: changing $\{W_i\}$ but respecting order does not change the output

Representing the preferences of the committee

- We can now ask for the preference status of, e.g., 3 | versus | 2 | 2 |
- Sets of such questions permit to identify a voting rule
- Assuming the committee reasons in a specific way
- We assume the committee can answer each such question
- With one of >, \sim , <
- Meaning: when $x^1 > x^2$, the voting rule must select x^1 rather than x^2 if both are present (and similarly for $x^1 < x^2$)
- The preference \geq = > \cup ~ of the committee over rank-vectors is transitive

Weak-order based rules

Definition (Weak-order based rules)

- \succeq a weak-order (transitive, reflexive, connected) over $[1, m]^N$.
- The rule f_{\geq} , at x, selects those alternatives having maximal rank-vectors in x according to \geq .

A rule f is weak-order based (WOB) if there exists \geq st $f = f_{>}$.

Example of a WOB rule

	w	f (x)
	x_1	$f_{\succeq}(\mathbf{x}_1)$
a	1 2	✓
b	2 1	✓
c	3 3	
	\boldsymbol{x}_2	$f_{\succeq}(\mathbf{x}_2)$
a	x2 1 3	$f_{\succeq}(\mathbf{x}_2)$
а b		$f_{\succeq}(\mathbf{x}_2)$
	1 3	$f_{\geq}(x_2)$

Incomplete question sets

- We do not want to ask every possible questions!
- Can we get away with only some answers?

Definition (Robust rules)

- \gtrsim a preorder (transitive, reflexive) over $[1, m]^N$.
- Look at all weak-orders ≥ extending ≥.
- The robust rule F_{\geq} , at R, selects those alternatives winning in some f_{\geq} (for some \geq extension of \geq).

A rule f is *robust* if there exists \gtrsim st $f = F_{>}$.

Example of a robust rule

Outline

- Contex
- Asking good questions
- Restrict the class of functions
- 4 Which questions to ask?
- Conclusion

Our restriction over possible functions

- We assume the committee reasons in some specific way
- Restricts the class of rules
- Bad news: we are not fully general any more
- Good news: we have restricted our class of functions

The WOB class

- The committee has a weak-order ≥ over rank-vectors "in mind"
- ullet This represents a WOB rule f_{\succ}
- $\bullet \ WOB = \left\{ \ f_{\succeq}, \succeq \ \text{a weak-order over} \ [1,m]^N \ \right\} \text{ instead of } \mathcal{F}$

WOB rules are neutral

- If f is WOB, f is neutral
- Because $f_{>}$ selects those alternatives with highest rank-vectors
- ullet Thus, we care only about the set of rank-vectors as input of f
- And the rank-vector it selects

```
f is a WOB rule iff f:
```

- Assigns a score $s(x) \in \mathbb{R}$ to each rank-vector $x \in [1, m]^N$
- Selects the rank-vectors having highest scores

Scoring rules are WOB rules

- Every scoring rule (e.g. Borda) is a WOB rule
- s(x) is the sum of the partial-scores $s_r(i)$ of individual components of x
- Score of $\boxed{1 \quad 3 \quad 4} = s_r(1) + s_r(3) + s_r(4)$

Indifference to permutation is sufficient for anonymity

- Assume \geq is indifferent to permutations of x
- E.g. 1 3 ~ 3 1
- It follows that $f_{>}$ satisfies anonymity:
- Permuting the voters permutes all rank-vectors
- f must still select the same (reordered) rank-vectors

Weak-orders and WOB rules

- Relationship between \succeq and f_{\succeq} may be counter-intuitive!
- Is indifference to permutation in ≥ required for anonymity of f>?

Example (A weak-order yielding a neutral WOB rule)

Two weak-orders, one WOB rule

$$f_{\succ^1} = f_{\succ^2}$$

Bucklin

Bucklin: a WOB rule that is not a scoring rule

Definition (Bucklin)

- Look at rank r (starting with 1)
- Is there a majority for ranking an alternative at r or better?
- ullet Iterate, stop when found a suitable rank r
- Select those alternatives that have most persons ranking them at r or better

Bucklin

Bucklin: a WOB rule that is not a scoring rule

Definition (Bucklin)

- Look at rank r (starting with 1)
- Is there a majority for ranking an alternative at r or better?
- ullet Iterate, stop when found a suitable rank r
- ullet Select those alternatives that have most persons ranking them at r or better

Some WOB rules are not scoring rules

- Bucklin is a WOB rule
- Proof idea: let's build a score s(x) to be minimized
- $s(x) = \text{rank } m_x \text{ required plus frac. missing for unanimity at } m_x$
- Define m_x as the "median" of x lowest nb n st more than half the numbers are $\leq n$

$$s(x) = m_x + \frac{\#x_i > m_x}{\#x_i}$$

Example (Bucklin scores)

WOB compared to other classes of rules

- Every scoring rule is a WOB rule
- Some WOB rules are not scoring rules
- Many Condorcet rules are not WOB rules

Some relationships between classes of rules

Scoring \subset WOB; Condorcet \cap WOB = \emptyset (for $n = 3k, m \ge 4$).

The class of robust rules

Some robust rules are not WOB rules

Robust rules compared to other classes of rules

Some relationships between classes of rules

Scoring \subset WOB \subset Robust

Outline

- 4 Which questions to ask?

- Assume the committee has a weak-order ≥ in mind
- We want to discover much information using few questions
- Different questions bring different amount of information

Definition (Elicitation strategy)

An elicitation strategy tells us which question should be asked considering our current knowledge

A strategy:

- computes the fitness of asking about a pair of rank-vectors, for each pair
- chooses the fittest pair

We ask q questions, then compare our approximation F_{\succ} to f_{\succ}

Which questions to ask?

Which strategy?

We tested three strategies

optimistic fitness of (x, y) proportional to the number of rank-vectors dominated by x or y, but not both

pessimistic a variant of the previous strategy, using the min operator rather than the sum

likelihood fitness proportional to the likelihood of a profile occurring where both rank-vectors are possible winners (depends on the probability distribution over profiles, we assumed impartial culture)

We assume pareto-dominance and indifference to permutations

Comparison of strategies

- Optimistic not better than random!
- Likelihood much better than pessimistic

How many questions must be asked for a useful approximation?

- Our approximation has all the true winners: $f_{\geq}(\mathbf{R}) \subseteq F_{\geq}(\mathbf{R})$
- But it may have supplementary winners
- We are interested in the ratio of approximated VS true winners: $\frac{|F_{\succeq}(R)|}{|F_{\gt}(R)|}$
- We average it over all profiles: $\frac{1}{|\mathcal{R}|} \sum_{R \in \mathcal{R}} \frac{|F_{\gtrsim}(R)|}{|f_{>}(R)|}$

For 6 voters, 6 alternatives, using the likelihood strategy:

	Target rule		
nb q	Borda	$Random \succeq$	
0	1.9	2.2	
25	1.3	1.7	
99	1.0	1.3	

Outline

- Conclusion

Conclusion

We propose to help a committee choose a voting rule.

- We introduce a different look at a profile [see also Sen, 1977]
- We use it to ask simple questions to elicit preferences
- We analyse the class of rules reachable by our questioning process
- A robust voting rule may be defined to give all possible winners [inspired by Dias et al., 2002]
- We compare and analyse several elicitation strategies

Future work

- The committee could have a preorder in mind
- Or the stable part of the w-o might be a preorder
- Behavioural interpretation of the constraints given by the committee
- Further analysis of the classes WOB, Robust rules
- Explore approximation with robust rules more generally
- Better elicitation strategies with active learning techniques

Thank you for your attention!

References Air

References I

- L. Dias, V. Mousseau, J. Figueira, and J. Clímaco. An aggregation/disaggregation approach to obtain robust conclusions with ELECTRE TRI. European Journal of Operational Research, 138(2):332–348, 2002. URL http://www.sciencedirect.com/science/article/pii/S0377221701002508.
- A. Sen. On weights and measures: Informational constraints in social welfare analysis. *Econometrica*, 45(7):1539–1572, 1977. ISSN 0012-9682. doi:10.2307/1913949. URL http://www.jstor.org/stable/1913949.

More general aim

- Choose a rule: from axioms?
- Difficult to consider the implications of the axioms
- Incompatibilities, paradoxes...
- We want to help a committee choose a voting rule
- Do not limit to ask which axioms are suitable
- We should use the power of the axiomatic analysis
- But leave the axioms implicit