Course Content

Part I. Learning in Bandits

- Multi-armed bandits
- Linear bandits
- Contextual bandits
- Adversarial multi-armed bandits
- Adversarial linear bandits

Part II. Basics of MDPs

- Bellman (optimality) equations
- Value iteration
- Policy iteration

Part III. Learning in MDPs

- Approximate value iteration and variants
 - Least-square value iteration
 - Q-Learning
 - DQN
- Policy evaluation
 - Temporal difference
 - Monte Carlo
- Approximate policy iteration and variants
 - Least-square policy iteration
 - (Natural) policy gradient and actor-critic
 - REINFORCE, A2C, PPO
 - DDPG, SAC

Part IV. Offline RL Student Project Presentation

Course Content

Part I. Learning in Bandits

- Multi-armed bandits
- Linear bandits
- Contextual bandits
- Adversarial multi-armed bandits
- Adversarial linear bandits

Part II. Basics of MDPs

- Bellman (optimality) equations
- Value iteration
- Policy iteration

Part III. Learning in MDPs

- Approximate value iteration and variants
 - Least-square value iteration
 - Q-Learning
 - DQN
- Policy evaluation
 - Temporal difference
 - Monte Carlo
- Approximate policy iteration and variants
 - Least-square policy iteration
 - (Natural) policy gradient and actor-critic
 - REINFORCE, A2C, PPO
 - DDPG, SAC

Part IV. Offline RL
Student Project Presentation

Bandits

Chen-Yu Wei

Contextual Bandits and Non-Contextual Bandits

Policy: $\pi(a)$

A slot machine

One-armed bandit

A row of slot machines

Multi-armed bandit

Given: arm set $\mathcal{A} = \{1, ..., A\}$

For time t = 1, 2, ..., T:

Learner chooses an arm $a_t \in \mathcal{A}$

Learner observes $r_t = R(a_t) + w_t$

Arm = Action

Assumption: R(a) is the (hidden) ground-truth reward function

 w_t is a zero-mean noise

Goal: maximize the total reward $\sum_{t=1}^{T} R(a_t)$ (or $\sum_{t=1}^{T} r_t$)

How to Evaluate an Algorithm's Performance?

- "My algorithm obtains 0.3T total reward within T rounds"
 - Is my algorithm good or bad?
- Benchmarking the problem

Regret :=
$$\max_{\pi} \sum_{t=1}^{T} R(\pi) - \sum_{t=1}^{T} R(a_t) = \max_{a} TR(a) - \sum_{t=1}^{T} R(a_t)$$

The total reward of the best policy

In MAB

 \Rightarrow max $R(a) - \frac{1}{T} \sum_{t=1}^{1} R(a_t) \le \frac{1}{J_T}$

- "My algorithm ensures Regret $\leq 5T^{\frac{3}{4}}$ "
- Regret = o(T) \Rightarrow the algorithm is as good as the optimal policy asymptotically

- Key challenge: Exploration
- The other three challenges we will discuss for RL
 - Generalization (there is no input in MAB)
 - Temporal credit assignments (there is no delayed feedback)
 - Distribution mismatch (there is no pre-collected data)
- We will discuss about three categories of exploration strategies
 - Non-adaptive
 - Mean-adaptive
 - (Mean & Uncertainty)-adaptive

Non-Adaptive Exploration

The Exploration and Exploitation Trade-off in MAB

- To perform as well as the best policy (i.e., best arm) asymptotically, the learner has to pull the best arm most of the time
 - ⇒ need to **exploit**

- To identify the best arm, the learner has to try every arm sufficiently many times
 - ⇒ need to **explore**

A Simple Strategy: Explore-then-Exploit

Explore-then-exploit (Parameter: T_0)

In the first T_0 rounds, sample each arm T_0/A times. (Explore)

Compute the **empirical mean** $\hat{R}(a)$ for each arm a

In the remaining $T - T_0$ rounds, draw $\hat{a} = \operatorname{argmax}_a \hat{R}(a)$ (Exploit)

What is the *right* amount of exploration (T_0) ?

Another Simple Strategy: ϵ -Greedy

Mixing exploration and exploitation in time

ϵ -Greedy (Parameter: ϵ)

In the first A rounds, draw each arm once.

In the remaining rounds t > A,

Take action

$$a_t = \begin{cases} \text{uniform}(\mathcal{A}) & \text{with prob. } \epsilon \\ \text{argmax}_a \, \hat{R}_t(a) & \text{with prob. } 1 - \epsilon \end{cases}$$
 (Exploit)

where $\hat{R}_t(a) = \frac{\sum_{S=1}^{t-1} \mathbb{I}\{a_S=a\} r_S}{\sum_{S=1}^{t-1} \mathbb{I}\{a_S=a\}}$ is the empirical mean of arm a using samples up to time t-1.

Comparison

• ϵ -Greedy is more **robust to non-stationarity** than Explore-then-Exploit

Mathematical analysis for Explore-then-Exploit & ϵ -Greedy

In the exploration phase, we obtain $N = T_0/A$ i.i.d. samples of each arm.

Key Question:

Empirical Mean over N samples

Confidence interval (corresponding to 98% confidence)

In the exploration phase, we obtain $N = T_0/A$ i.i.d. samples of each arm.

Key Question:

In the exploration phase, we obtain $N = T_0/A$ i.i.d. samples of each arm.

Key Question:

With probability at least $1 - \delta$, = 0.98

$$|\hat{R}(a) - R(a)| \le ? f(N, \delta)$$

some decreasing function of N

Empirical mean of *N* i.i.d. samples

True mean

Quantifying the Error: Concentration Inequality

Theorem. Hoeffding's Inequality

Let $X_1, ..., X_N$ be independent σ -sub-Gaussian random variables.

Then with probability at least $1 - \delta$, $\mathbb{F}(x)$

$$\left| \frac{1}{N} \sum_{i=1}^{N} X_i - \frac{1}{N} \sum_{i=1}^{N} X_i - \frac{1}{N} \right| \le \sigma \sqrt{\frac{2 \log(2/\delta)}{N}} .$$

A random variable is called σ -sub-Gaussian if $\mathbb{E}\left[e^{\lambda(X-\mathbb{E}[X])}\right] \leq e^{\lambda^2\sigma^2/2} \quad \forall \lambda \in \mathbb{R}$.

Fact 1. $\mathcal{N}(\mu, \sigma^2)$ is σ -sub-Gaussian.

Fact 2. A random variable $\in [a, b]$ is (b - a)-sub-Gaussian.

Intuition: tail probability $\Pr\{|X - \mathbb{E}[X]| \ge z\}$ bounded by that of Gaussians

With probability at least
$$1 - \delta$$
, $\left| \hat{R}(a) - R(a) \right| = O\left(\sqrt{\frac{\log{(1/\delta)}}{N}}\right)$
Omit constants

With high probability,
$$\left| \hat{R}(a) - R(a) \right| = \tilde{O}\left(\sqrt{\frac{1}{N}}\right)$$
 $\left| \hat{R}(a) - R(a) \right| \lesssim \tilde{J}_{N}^{\perp}$

Omit constants and $log(1/\delta)$ factors

Explore-then-Exploit Regret Bound Analysis

In the first T_0 rounds, sample each arm T_0/A times.

Compute the **empirical mean** $\hat{R}(a)$ for each arm a

In the remaining $T - T_0$ rounds, draw $\hat{a} = \operatorname{argmax}_a \hat{R}(a)$

At fer the exploration phase, we have
$$\left| \left| \hat{R}(a) - R(a) \right| \lesssim \sqrt{\frac{1}{N}} = \sqrt{\frac{A}{T_0}}$$

In the exploitation phase,

At any time
$$t \in expliration place$$
, $R(a^{*}) - R(\hat{a})$

$$= \widehat{R}(a^{*}) - \widehat{R}(\hat{a}) + \left[R(a^{*}) - \widehat{R}(a^{*}) + \left(\widehat{R}(\hat{a}) - R(\hat{a})\right) + \left(\widehat{R}(\hat{a}) - R(\hat{a})\right)\right]$$

$$\leq Cat of exploration = \sum_{k=0}^{\infty} (R(x) - R(x))$$

Regnt
$$\lesssim$$
 cost of explorism + $\sum_{t \in second pure} \left(R(a^t) - R(a^t) \right) \lesssim T_o + \left(T - T_o \right) \cdot 2 \sqrt{\frac{A}{T_o}}$

Regret Bound of Explore-then-Exploit and ϵ -Greedy

Theorem. Regret Bound of Explore-then-Exploit

Suppose that $R(a) \in [0,1]$ and w_t is 1-sub-Gaussian.

Then Explore-then-Exploit ensures with high probability.

Regret
$$\lesssim T_0 + T \sqrt{\frac{A}{T_0}} \approx A^{1/3} T^{2/3} \qquad \left(\overline{T_0} \approx A^{\frac{1}{3}} T^{\frac{1}{3}} \right)$$

Theorem. Regret Bound of ϵ -Greedy (Your Exercise)

Suppose that $R(a) \in [0,1]$ and w_t is 1-sub-Gaussian.

Then ϵ -Greedy ensures

Regret
$$\lesssim \epsilon T + \sqrt{\frac{AT}{\epsilon}} \approx A^{1/3} T^{2/3}$$

Can We Do Better?

a every arm rucives the same amount of exproration

In explore-then-exploit and ϵ -greedy, our exploration strategy is **non-adaptive.**

... Maybe, for those arms that look worse, the amount of exploration on them can be reduced?

One Solution: Refine the amount of exploration for each arm based on the current mean estimation.

(Has to do this carefully to avoid under-exploration)

Mean-Adaptive Exploration

Mean-Adaptive Exploration

Boltzmann Exploration (Parameter: λ_t)

In each round, sample a_t according to

$$p_t(a) \propto \exp(\lambda_t \, \hat{R}_t(a))$$

where $\hat{R}_t(a)$ is the empirical mean of arm a using samples up to time t-1.

Inverse Gap Weighting (Parameter: λ_t)

$$p_t(a) = \frac{1}{\gamma_t - \lambda_t \hat{R}_t(a)}$$
 γ_t is a normalization factor that makes $\sum_a p_t(a) = 1$

Mean-Adaptive Exploration

- Boltzmann Exploration
 - A quite commonly used exploration strategy (like ϵ -greedy)
 - There is no good regret bound we can prove
 - There are bad examples where it suffers from under-exploration Cesa-Bianchi, Gentile, Lugosi, Neu. Boltzmann Exploration Done Right, 2017. Bian and Jun. Maillard Sampling: Boltzmann Exploration Done Optimally. 2021.
- Inverse Gap Weighting
 - Not very well-known
 - We can show a regret bound for it (we'll do this when talking about contextual bandits)
 Foster and Rakhlin. Beyond UCB: Optimal and Efficient Contextual Bandits with Regression Oracles

(Mean and Uncertainty)-Adaptive Exploration

Another Idea: "Optimism in the Face of Uncertainty"

In words:

Act according to the **best plausible world**.

Image source: UC Berkeley CS188

Another Idea: "Optimism in the Face of Uncertainty"

In words:

Act according to the best plausible world.

At time t, suppose that arm a has been drawn for $N_t(a)$ times, with empirical mean $\hat{R}_t(a)$.

What can we say about the true mean R(a)?

$$\left| R(a) - \hat{R}_t(a) \right| \le \sqrt{\frac{2 \log(2/\delta)}{N_t(a)}} \quad \text{w.p.} \ge 1 - \delta$$

What's the most optimistic mean estimation for arm a?

$$\hat{R}_t(a) + \sqrt{\frac{2\log(2/\delta)}{N_t(a)}}$$

Upper Confidence Bound (UCB)

UCB (Parameter: δ)

In the first A rounds, draw each arm once.

For the remaining rounds: in round t, draw

$$a_t = \operatorname{argmax}_a \ \widehat{R}_t(a) + \sqrt{\frac{2 \log(2/\delta)}{N_t(a)}}$$

where $\hat{R}_t(a)$ is the empirical mean of arm a using samples up to time t-1. $N_t(a)$ is the number of samples of arm a up to time t-1.

P Auer, N Cesa-Bianchi, P Fischer. Finite-time analysis of the multiarmed bandit problem, 2002.

Regret Bound of UCB

Theorem. Regret Bound of UCB

UCB ensures with high probability,

Regret
$$\lesssim \sqrt{AT}$$
.

UCB Regret Bound Analysis

Visualizing UCB

True mean: [0.2, 0.4, 0.6, 0.7]

Brief Summary for Exploration Strategies

Summary: Exploration

 $\hat{R}_t(a)$: mean estimation for arm a at time t

 $N_t(a)$: number of samples for arm a at time t

$$a_t = \begin{cases} \text{uniform}(\mathcal{A}) & t \leq T_0 \\ \text{argmax}_a \, \hat{R}_{T_0}(a) & t > T_0 \end{cases}$$

$$\epsilon$$
-Greedy

$$a_t = \begin{cases} \text{uniform}(\mathcal{A}) & \text{with prob. } \epsilon \\ \text{argmax}_a \, \hat{R}_t(a) & \text{with prob. } 1 - \epsilon \end{cases}$$

Boltzmann Exploration

$$p_t(a) \propto \exp(\lambda_t \, \hat{R}_t(a))$$

Inverse Gap Weighting

$$p_t(a) = \frac{1}{\gamma_t - \lambda_t \hat{R}_t(a)}$$

$$a_t = \operatorname{argmax}_a \ \widehat{R}_t(a) + \sqrt{\frac{2\log(2/\delta)}{N_t(a)}}$$

Summary: Exploration

	Regret Bound	Exploration
Explore-then-Exploit ϵ -Greedy	$A^{1/3} T^{2/3}$	Non-adaptive
Boltzmann Exploration Inverse Gap Weighting	None for BE \sqrt{AT} for IGW	Mean-adaptive
Upper Confidence Bound Thompson Sampling	\sqrt{AT}	(Mean and uncertain)-adaptive

Bayesian Setting for MAB

Assumptions:

- At the beginning, the environment draws a parameter θ^* from some prior distribution $\theta^* \sim P_{\rm prior}$
- In every round, the reward vector $\mathbf{r_t} = (r_t(1), ..., r_t(A))$ is generated from $\mathbf{r_t} \sim P_{\theta^*}$

E.g., Gaussian Case

- At the beginning, $\theta^*(a) \sim \mathcal{N}(0,1)$ for all $a \in \{1, ..., A\}$.
- In every round, the reward of arm a is generated by $r_t(a) \sim \mathcal{N}(\theta^*(a), 1)$.

For the learner, P_{prior} is known; θ^* is unknown; P_{θ} is known for any θ .

Thompson Sampling

William Thompson. On the likelihood that one unknown probability exceeds another in view of the evidence of two samples, 1933.

In words:

Randomly pick an arm according to the probability you believe it is the optimal arm.

At time t, after seeing $\mathcal{H}_t = (a_1, r_1(a_1), a_2, r_2(a_2), \dots, a_{t-1}, r_{t-1}(a_{t-1}))$, the learner has a **posterior distribution** for θ^* :

$$P(\theta^* = \theta | \mathcal{H}_t) = \frac{P(\mathcal{H}_t, \theta^* = \theta)}{P(\mathcal{H}_t)} = \frac{P_{\theta}(\mathcal{H}_t) P_{\text{prior}}(\theta)}{P(\mathcal{H}_t)} \propto P_{\theta}(\mathcal{H}_t) P_{\text{prior}}(\theta)$$

In math:

Sample a_t according to $p_t(a) = \int_{\theta} P(\theta | \mathcal{H}_t) \mathbb{I}\{a^{\star}(\theta) = a\} = \mathbb{E}_{\theta \sim P(\cdot | \mathcal{H}_t)}[\mathbb{I}\{a^{\star}(\theta) = a\}]$

Implementation: Sample $\theta_t \sim P(\cdot \mid \mathcal{H}_t)$, and choose $a_t = a^*(\theta_t)$.

Gaussian Thompson Sampling

Gaussian prior $\theta^*(a) \sim \mathcal{N}(0,1) + \text{Gaussian reward } r_t(a) \sim \mathcal{N}(\theta^*(a),1)$:

$$P(\theta^{\star}(a) = \theta(a) \mid \mathcal{H}_t) = \mathcal{N}\left(\hat{R}_t(a), \frac{1}{N_t(a) + 1}\right) \text{ where } \hat{R}_t(a) = \frac{\sum_{s=1}^{t-1} \mathbb{I}\{a_t = a\}r_t(a)}{N_t(a) + 1}$$

Empirical mean assuming 1 fake sample with reward 0

TS vs. UCB

UCB: $a_t \approx \operatorname{argmax}_a \hat{R}_t(a) + c \sqrt{\frac{1}{N_t(a)}}$

Gaussian TS: $a_t \approx \operatorname{argmax}_a \hat{R}_t(a) + c \sqrt{\frac{1}{N_t(a)}} n_t(a)$

with $n_t(a) \sim \mathcal{N}(0,1)$

More on Thompson Sampling

For **Bernoulli** reward, we assume the **Beta** prior: https://gdmarmerola.github.io//ts-for-bernoulli-bandit/

Regret bound analysis for Thompson sampling

Agrawal and Goyal. Near-optimal Regret Bounds for Thompson Sampling. 2017.

Russo and Van Roy. An Information-Theoretic Analysis of Thompson Sampling. 2016.

Thompson sampling is empirically strong

Chapelle and Li. An Empirical Evaluation of Thompson Sampling. 2011.

Yang. A Study on Multi-Arm Bandit Problem with UCB and Thompson Sampling Algorithm. 2024.

Wang and Chen. Thompson Sampling for Combinatorial Semi-Bandits. 2018.