Adressage IP

Département de Mathématiques et Informatique Mathematics and Computer Science Department

Génie informatique Semestre 1 Année universitaire 2019/2020

Plan

- 1. Introduction
- 2. Format de l'adresse IPv4
- 3. Les classes d'adressage
- 4. Adresses IP particulières
- 5.NAT
- 6. Masque de réseau
- 7. Adressage sans classe (CIDR/VLSM)

Introduction

- ☐ Lorsque deux systèmes veulent échanger des données, chacun d'eux doit pouvoir identifier et localiser l'autre.
- ☐ Chaque point de connexion, ou interface, d'un équipement dispose d'une adresse associée à un réseau.
- ☐ L'Internet du point de vue utilisateur :

☐ L'Internet du point de vue réel :

☐ Un routeur fait appel à une adresse IP pour transmettre des paquets du réseau d'origine vers le réseau de destination

Les adresses représentent le chemin des connexions média.

Format de l'adresse IPv4

☐ Une adresse IP est une séquence de 32 bits composée de 1 et de 0

☐ Afin de faciliter leur lecture, les adresses IP sont généralement exprimées sous la forme de quatre nombres décimaux séparés par des points

Concept d'interconnexion

☐ Chaque octet représente une valeur comprise entre 0 et 255

Binaire: 11000000.10101000.000000001.00001000 et 11000000.10101000.00000001.00001001

Décimale: 192.168.1.8 et 192.168.1.9

- Les nombres binaires et décimaux représentent les mêmes valeurs, mais les valeurs décimales permettent une meilleure visibilité.
- □ Il s'agit d'un des problèmes les plus fréquemment rencontrés lorsque des nombres binaires sont directement utilisés (la longue chaîne de 1 et de 0).

Concept d'interconnexion

- ☐ L' IP se décompose en plusieurs réseaux logiques IP
- ☐ L'adresse IP est composée de deux champs
 - ✓ NET_ID : identifiant du réseau IP (utilisé pour le routage)
 - ✓ HOST_ID : identifiant de la machine dans le réseau IP

□ Les adresses réseaux sont distribuées par un organisme international à but non lucratif : ICANN (Internet Corporation for Assigned Names and Numbers) puis décentralisé au niveau de chaque pays

Les classes d'adressage

A.Introduction

☐ Les adresses IP sont regroupées en classes afin de permettre l'adaptation à des réseaux de différentes tailles et de faciliter leur classification:

B.Classe A

- ☐ Réservée aux réseaux de très grande taille, avec plus de 16 millions d'adresses hôte disponibles.
- ☐ Le premier bit d'une adresse de classe A est toujours 0.
- □0 et 127 sont réservées et ne peuvent pas être utilisées.

- ☐ Elles commencent en 0. 0. 0. 0 et se terminent en 127. 255. 255. 255.
- ☐ Il y a donc 128 réseaux de classe A, chacun pouvant accueillir théoriquement jusqu'à (2²⁴ -2) hôtes.(l'adresse réseau et l'adresse de diffusion ne désignent pas d'hôte particulier).
- ☐ Ces 127 adresses sont déjà toutes réservées sur l'Internet

B.Classe B

- ☐ Réservée aux réseaux de taille moyenne ou grande
- ☐ Les deux premiers bits du premier octet d'une adresse de classe B sont toujours 10.
 - 0 8 16 24 31

- □ Elles commencent en 128.0. 0. 0 et se terminent en 191. 255. 255.255.
- □ Il y a donc 16 384 réseaux de classe B, chacun pouvant accueillir jusqu'à 65 534 hôtes.
- ☐ Une grande partie de ces 16 384 adresses réseaux est déjà réservée.

B.Classe C

- ☐ Réservé aux réseaux de petite taille
- ☐ Une adresse de classe C commence par la valeur binaire 110.

- □Elles commencent en 192. 0. 0. 0 et se terminent en 223. 255. 255.255.
- □ Il y a donc 2 097 152 réseaux de classe C, chacun pouvant accueillir jusqu'à 254 hôtes.
- □ Il reste encore suffisamment de classes C pour pouvoir en distribuer encore pendant cinq à dix ans, d'après de récentes analyses fondées sur le taux de croissance estimé de l'Internet.

B.Classe D

- Réservée à la diffusion multicast d'une adresse IP

 Réservée à la diffusion multicast d'une adresse IP

 Multicast

 Multicast
- ☐ On les appelle aussi adresses de groupes multicast. Elles commencent en 224. 0. 0. 0 et se terminent en 239. 255. 255. 255.
- ☐ Ce sont des adresses particulières où la notion de réseau disparaît : elles désignent non pas un hôte particulier, mais un groupe d'hôtes.
- ☐ Tout équipement désirant faire partie d'un groupe peut demander à y adhérer en précisant l'adresse multicast correspondante.
- ☐ A tout moment, tout paquet émis par une machine quelconque sur l'Internet, et à destination d'une adresse multicast particulière, est acheminé vers tous les membres du groupe en question.
- ☐ Certaines adresses du groupe sont déjà attribuées.

B.Classe E

☐ Le groupe IETF (Internet Engineering Task Force) utilise ces adresses à des fins expérimentales. Aucune adresse de classe E n'est disponible sur Internet

- □ Les adresses de classe E débutent en 240. 0. 0. 0 et se terminent en 255. 255. 255. 255.
- ☐ Elles sont réservées par IANA.
- □ Seule 255. 255. 255. 255 est pour l'instant attribuée, elle désigne toutes les machines, et est utilisée lorsqu'on a besoin de s'adresser à tous les équipements directement connectés à un même support : un paquet à destination de cette adresse ne traverse jamais les routeurs.

G.Résumé

A. Adresses réservées (Adresses réseau/Machine)

- ☐ Pour identifier le réseau lui-même
- ✓ **NET_ID>.0**: Adresse utilisée pour désigner le réseau <réseau>
- ✓ 0.<machine> : Adresse du poste <machine> sur "ce réseau"

A. Adresses réservées (Adresses réseau/Machine)

B. Adresses réservées (Adresses de diffusion(broadcast))

☐ Pour diffuser des paquets vers tous les équipements d'un réseau.

C. Adresses réservées (Rebouclage local(loopback)127.x.x.x)

- ☐ Adresse de boucle. Le paquet envoyé avec cette adresse revient à l'émetteur.
 - ✓ Généralement 127.0.0.1 (localhost)
 - ✓ Permet de tester la pile TCP/IP locale sans passer par une interface matérielle.

D. Adresses réservées (Adresse 0.0.0.0)

- ☐ Utilisée par le protocole RARP (@IP de démarrage)
- ☐ Adresse de la route par défaut dans les routeurs

E. Adresses Privées

- ☐ La stabilité d'Internet découle directement de l'unicité des adresses réseau publiques
- ☐ Les adresses IP privées constituent une solution de rechange au problème de pénurie des adresses IP publiques
- ☐ Des adresses qui ne seront jamais attribuées (adresses illégales) et qui
 - ne sont pas routables sur l'Internet
- ☐ La spécification RFC 1918 réserve trois blocs d'adresses IP pour une utilisation privée et interne
 - classe A : de 10.0.0.0 à 10.255.255.255
 - classe B : de 172.16.0.0 à 172.31.255.255
 - classe C : de 192.168.0.0 à 192.168.255.255

E. Adresses Privées

- ☐ Si on adresse ce qui suit, on peu employer des adresses privées à la place d'adresses globales uniques:
 - Un intranet
 - Un labo
 - Un réseau domestique
- ☐ Les adresse privées doivent êtres obtenues auprès d'un provideur avec certains frais.

A. Introduction

- ☐ Si une entreprise qui utilise des adresses privées souhaitent tout de même disposer d'une connexion à l'Internet,
 - ➤ Il faut demander une adresse publique

Translation).

- Faire des conversions adresse privée <--> adresse publique
- ☐ La connexion d'un réseau à Internet par le biais d'adresses publiques nécessite la conversion des adresses privées en adresses publiques. Ce processus de conversion est appelé «NAT» (Network Address

5. Introduction

B. Fonctionnement

- □ NAT (RFC 3022) Network Address Translation
 - ➤ Mise en correspondance d'une adresse privée et d'une adresse publique
 - > Traduction statique ou dynamique (lors de la connexion)
 - Une solution au manque d'adresses IP publiques : quelques adresses IP publiques pour beaucoup d'adresses IP privées.

B. Fonctionnement

- ☐ Une table stockée dans le NAT fait la correspondance
- entre (@IP_src privée, port_src) et une @IP_publique
- ☐ Quand le paquet part : @IP_src devient @IP_publique, port_src
 - devient la référence de l'entrée dans la table
- ☐ Quand la réponse revient : port_dest du paquet permet de
 - retrouver dans la table @IP et port src

C. Le principe NAT statique

- ☐ Le NAT statique, se base sur l'association de n adresses avec n adresses.

 C'est-à-dire pour une adresse IP interne, on associe une adresse IP externe.
- ☐ Dans ce cas, la seule action qui sera effectuée par le routeur sera de remplacer l'adresse source ou destination par l'adresse correspondante

C. Le NAT dynamique

- □ NAT dynamique contrairement au NAT statique, le NAT dynamique associe une seule adresse à n adresses (ou pour être plus précis, m adresses à n adresses, les adresses pour sortir étant choisies dans un pool).
- ☐ En cas de surcharge, ou avec la traduction d'adresses de ports (Port Address Translation PAT), plusieurs adresses IP privées peuvent être mappées sur une adresse IP publique unique.

6. Masque de réseau

Un masque réseau est un ensemble de 4 octets permettant l'identification (filtrage) de l'adresse réseau NetID à partir de l'adresse IP.

6. Masque de réseau

- ☐ Le masque de réseau ou netmask. C'est un nombre à 32 bits qui se
- □ compose d'un ensemble de 1 suivi d'un ensemble de 0:
 - ✓ Les 1 indiquent la partie réseau
 - ✓ Les 0 indiquent la partie machine
- \square Exemples avec nos classes A, B et C:

Classe d'adresses	Bits utili	Notation décimale			
Classe A Classe B Classe C	111111111 111111111 111111111	00000000 11111111 11111111	00000000 00000000 11111111	00000000 00000000	255.0.0.0 255.255.0.0 255.255.255.0

6. Masque de réseau

☐ Distingue l'identificateur de réseau de l'identificateur d'hôte

- ☐ Adresse IP AND Mask = ID réseau
- \square <Adresse-IP> ET <Masque> = <Adresse-réseau>.0

A. CIDR (Classless Inter Domain Routing)

☐ En 1992, les membres de l'IETF ont rencontré de sérieux problèmes à cause de la croissance exponentielle d'Internet et de ce fait de la croissance des tables de routages.
☐ L'IETF était aussi inquiet à cause de l'épuisement éventuel de l'espace d'adresses sur 32 bits d'IPv4.
☐ Des projections ont été faites et cela a indiqué un état critique au niveau de 1994 ou 1995.
☐ La réponse de l'IETF était le concept de Supernetting (agrégation ou CIDR, "cider".

A. CIDR (Classless Inter Domain Routing)

- ☐ Pour les routeurs compatibles à CIDR, les classes d'adresses ne signifient rien.
 - La partie réseau de l'adresse est déterminée par le masque de sous réseau ou le préfixe (/8, /19, etc.)
- Les premiers bits de la partie réseau ne sont pas utilisés pour déterminer les parties réseau et hôte de l'adresse.
- ☐ CIDR aide à réduire la taille des tables de routage d'internet grâce au supernetting et à la réallocation d'adresses IPv4.

A. CIDR (Classless Inter Domain Routing)

- ➤ Élimine les traditionnelles classes A, B, C permettant ainsi une meilleure allocation des adresses IPv4.
- ➤ Supporte l'agrégation de routes (summarization), aussi appelée supernetting, où des milliers de routes peuvent être représentées par une seule dans la table de routage.

•

A. CIDR (Classless Inter Domain Routing)

□ Sans CIDR, un routeur doit maintenir des entrées de table de routage individuelles pour ces réseaux de classe B.

Network Number	First Octet	Second Octet	Third Octet	Fourth Octet
172.24.0.0/16	10101100	00011000	00000000	00000000
172.25.0.0/16	10101100	00011001	00000000	00000000
172.26.0.0/16	10101100	00011010	00000000	00000000
172.27.0.0/16	10101100	00011011	00000000	00000000
172.28.0.0/16	10101100	00011100	00000000	00000000
172.29.0.0/16	10101100	00011101	00000000	00000000
172.30.0.0/16	10101100	00011110	00000000	00000000
172.31.0.0/16	10101100	00011111	00000000	00000000

A. CIDR (Classless Inter Domain Routing)

☐ Avec CIDR, un routeur peut summariser ces routes en utilisant une seule adresse avec un préfixe /13:

Network Number	First Octet	Second Octet	Third Octet	Fourth Octet
172.24.0.0/16	10101100	00011000	00000000	00000000
172.25.0.0/16	10101100	00011001	00000000	00000000
172.26.0.0/16	10101100	00011010	00000000	00000000
172.27.0.0/16	10101100	00011011	00000000	00000000
172.28.0.0/16	10101100	00011100	00000000	00000000
172.29.0.0/16	10101100	00011101	00000000	00000000
172.30.0.0/16	10101100	00011110	00000000	00000000
172.31.0.0/16	10101100	00011111	00000000	00000000

- ☐ Compter le nombre de bits à gauche correspondants, /13 (255.248.0.0)
- ☐ Ajouter tous des 0 après le dernier bit correspondant:
- $172.24.0.0 = 10101100\ 00011000\ 00000000\ 00000000$

A. CIDR (Classless Inter Domain Routing)

☐ Exemple

A. CIDR (Classless Inter Domain Routing)

☐ Exemple

```
200.199.48.32/27 11001000 11000111 00110000 0 0100000 200.199.48.64/27 11001000 11000111 00110000 0 1000000 200.199.48.96/27 11001000 11000111 00110000 0 1100000 200.199.48.0/25 11001000 11000111 00110000 0 0000000
```

(aussi longtemps qu'il n'y a pas de route ailleurs dans le même range)

```
200.199.56.0/24
200.199.57.0/24
200.199.56.0/23
```

A. CIDR (Classless Inter Domain Routing)

☐ Exemple

200.199.48.0/25 200.199.49.0/24

200.199.56.0/23

11001000 11000111 0011 0000 00000000

11001000 11000111 0011 0001 00000000

11001000 11000111 0011 1000 00000000

200.199.48.0/20

11001000 11000111 0011 0000 00000000

(20 bits en commun**)**

A. CIDR (Classless Inter Domain Routing)

☐ Exemple

Addresses	First Octet	Second Oct	tet Third Octet	Fourth Octet
192.168.98.0	11000000	10101000	0110.0010	00000000
192.168.99.0	11000000	10101000	0110 0011	00000000
192.168.100.0	11000000	10101000	0110-0100	00000000
192.168.101.0	11000000	10101000	0110-0101	00000000
192.168.102.0	11000000	10101000	0110-0110	00000000
192.168.105.0	11000000	10101000	0110-1001	00000000

_					
192.168.96.0	11000000	10101000	0110.0000	00000000	

A. CIDR (Classless Inter Domain Routing)

☐ Exemple

Addresses	First Octet	Second Oct	Fourth Octet	
172.16.0.0	10101100	00010000	0000 000	00000000
172.16.2.0	10101100	00010000	00000 010	00000000
172.16.3.128	10101100	00010000	00000 011	10000000
172.16.4.0	10101100	00010000	00000 100	00000000
172.16.4.128	10101100	00010000	00000 100	10000000

•

172.16.0.0/21	10101100	00010000	0000 000	00000000	
---------------	----------	----------	----------	----------	--