1. Curves, Surfaces and Hyperbolic Geometry

1.1. Simple closed curves. There is a bijective correspondence

$$\left\{\begin{array}{c} \text{Nontrivial} \\ \text{conjugacy classes} \\ \text{in } \pi_1(S) \end{array}\right\} \longleftrightarrow \left\{\begin{array}{c} \text{Nontrivial free} \\ \text{homotopy classes of oriented} \\ \text{closed curves in } S \end{array}\right\}$$

Definition 1.1 (Primitive and multiple elements). An element g of a group G is *primitive* if there does not exist any $h \in G$ so that $g = h^k$ for |k| > 1. The property of being a primitive is a conjugacy class invariant. In particular, it makes sense to say that a closed curve in a surface is primitive.

A closed curve in S is a multiple if it is a map $S^1 \to S$ that factors through the map $S^1 \stackrel{\times n}{\to} S^1$ for n > 1, i.e., there exists a map $\tilde{\alpha} \colon S^1 \to S$ such that the following diagram commutes:

$$S^1 \xrightarrow{\times n} S^1 \xrightarrow{\alpha} S$$

Definition 1.2 (Lifts). We make a distinction between lifts: let $p \colon \tilde{S} \to S$ be a covering space. By a *lift* of a closed curve α to \tilde{S} we will always mean the image of a lift $\mathbb{R} \to \tilde{S}$ of the map $\alpha \circ \pi$ where $\pi \colon \mathbb{R} \to S^1$ is the usual covering map. I.e., a lift of $\alpha \colon S^1 \to S$ is a map $\tilde{\alpha} \colon \mathbb{R} \to \tilde{S}$ such that the following diagram commutes

$$\mathbb{R} \xrightarrow{\tilde{\alpha}} S^1 \xrightarrow{\alpha} S$$

A lift is different from a path lift which is a proper subset of a lift. Namely, it would be the restriction of $\tilde{\alpha}$ to some interval of \mathbb{R} of length 2π if the covering map π is of the form $t \mapsto e^{it}$.

Now suppose $p \colon \tilde{S} \to S$ is the universal cover and α is a simple closed curve in S that is not a multiple of another closed curve. In this case, there is a bijective correspondence between cosets in $\pi_1(S)$ of the infinite cyclic subgroup $\langle \alpha \rangle$ and the lifts of α . This can be seen as follows: first choose a basepoint $\alpha(1) = x_0 \in S$ and some $\tilde{x_0} \in p^{-1}(x_0)$. There exists a unique lift $\tilde{\alpha}$ of α such that

commutes and such that $\tilde{\alpha}(0) = \tilde{x} \in p^{-1}(\alpha \circ \pi(0))$ for some specific \tilde{x} [Bredon, Cor. 4.2]. But the set $p^{-1}(\alpha \circ \pi(0))$ is in bijective correspondence with the loops in $\pi_1(S)$ by the path lifting lemma. Now, under which path lifts are the lifts the same? The lifts of α to two points $\tilde{x}, \tilde{y} \in p^{-1}(\alpha \circ \pi(0))$ will be the same if $\alpha^k \cdot \tilde{x} = \tilde{y}$ where \cdot denotes the monodromy action of $\pi_1(S)$ on the fiber. Now, there exist γ_x and γ_y in $\pi_1(S)$ such that $\gamma_x \cdot \tilde{x_0} = \tilde{x}$ and $\gamma_y \cdot \tilde{x_0} = \tilde{y}$, so $\alpha^k \gamma_x = \gamma_y$. Hence the lifts corresponding to γ_x and γ_y are the same if and only if $\alpha^k \gamma_x = \gamma_y$ for some k, i.e. if and only if $\gamma_x = \gamma_y$ in $\pi_1(S)/\langle \alpha \rangle$.

As usual, the group $\pi_1(S)$ acts on the set of lifts of α by deck transformations, and this action agrees with the usual left action of $\pi_1(S)$ on the cosets of $\langle \alpha \rangle$. The stabilizer of the lift corresponding to the coset $\gamma \langle \alpha \rangle$ is the cyclic group $\langle \gamma \alpha \gamma^{-1} \rangle$. See figure 1.

FIGURE 1.

Theorem 1.3. When S admits a hyperbolic metric and α is a primitive element of $\pi_1(S)$, we have a bijective correspondence

$$\left\{\begin{array}{c} \textit{Elements of the conjugacy} \\ \textit{class of } \alpha \textit{ in } \pi_1(S) \end{array}\right\} \longleftrightarrow \left\{\begin{array}{c} \textit{Lifts to } \tilde{S} \textit{ of the} \\ \textit{closed curve } \alpha \end{array}\right\}$$

More precisely, we claim that the map which sends the lift given by the coset $\gamma \langle \alpha \rangle$ to $\gamma \alpha \gamma^{-1}$ is bijective and well-defined.

Proof. To show that it is well-defined, suppose $\gamma \langle \alpha \rangle$ and $\beta \langle \alpha \rangle$ give the same lift. Then $\gamma = \beta \alpha^k$. So in particular,

$$\gamma \alpha \gamma^{-1} = \beta \alpha^k \alpha \alpha^{-k} \beta^{-1} = \beta \alpha \beta^{-1}$$

so they do correspond to the same element of the conjugacy class $[\alpha]$. It is clear that this is a surjective map. Now suppose that $\gamma\alpha\gamma^{-1}=\beta\alpha\beta^{-1}$. Then

 $\beta^{-1}\gamma\alpha\left(\beta^{-1}\gamma\right)^{-1}=\alpha$, so in particular, $\beta^{-1}\gamma\in C_{\pi_1(S)}(\alpha)$ which is a cyclic group generated by, say, θ . But then $\theta^l=\alpha$ since α is trivially in the centralizer of α ; however, α is primitive, so l must be ± 1 , but then α generates the centralizer of α , $C_{\pi_1(S)}(\alpha)=\langle\alpha\rangle$, and hence $\gamma=\beta\alpha^l$, so $\gamma\langle\alpha\rangle=\beta\langle\alpha\rangle$.

Remark. If α is any multiple, then we still have a bijective correspondence between elements of the conjugacy class of α and the lifts of α . However, if α is not primitive and not a multiple, then there are more lifts of α than there are conjugates. Indeed, if $\alpha = \beta^k$, where k > 1, then $\beta \langle \alpha \rangle \neq \langle \alpha \rangle$ while $\beta \alpha \beta^{-1} = \alpha$.

Example 1.4. The above correspondence does not hold for the torus T^2 because each closed curve has infinitely many lifts, while each element of $\pi_1(T^2) \approx \mathbb{Z}^2$ is its own conjugacy class because $\pi_1(T^2)$ is abelian.

 $Geodesic\ representatives.$

Proposition 1.5. Let S be a hyperbolic surface. If α is a closed curve in S that is not homotopic into a neighborhood of a puncture, then α is homotopic to a unique geodesic closed curve γ .

References

[Bredon] Glen E. Bredon Geometry and Topology