Santander Product Recommendation

ECS 171 PROJECT TEAM 2

XINYI HOU, YINGXI YU, YUAN XU, WENYU LI, QIAOJUAN NIU, HUIYU BI, MENG LI, ZHONGYU FAN, AORAN ZHANG, YUAN TIAN, WANG MIAO, BOWEN HE, MARKHAM ANDERSON, CHARLTON LIN, ZORAN DABIC

Introduction

Approaches

We tried 4 different machine learning methods: XGBoost, Random Forest, SVM, Logistic Regression. Since the data size is large and there is also no clear response in the training set, different subgroup used their own subset of the original training set and response variables.

Results

The logistic regression and SVM subteams both built 24 classifiers for the 24 products and the accuracy rate is above 90%. In contrast, SVM and XGBoost team both only build on multiclass classifier. The accuracy are 0.9 and 0.63 respectively. However, these two teams were using different cleaning method and response variable, merely comparing the accuracy rate is not meaningful. In summary, all four methods could provide reasonable prediction.

XGBoost

XGBoost is short for "Extreme Gradient Boosting". In this case, the classifier is a collection of weak classifiers which are decision trees.

Example: 20 students cooperate on one exam

$$Obj(\Theta) = L(\theta) + \Omega(\theta)$$

 $L(\theta)$: predictive performance,

 $\Omega(\theta)$: model complexity

Adding new trees: gradient descent

XGBoost-Data Pre-processing

Since there are many missing values and outliers, the first thing is to delete 27334 records with 9 consecutive NA values and extreme values (for an instance, the 99 percent quantile of the age variable is 88 years old). Then, we decide to only use 32 features to predict the response. For the "age", "antiguedad" and "renta", we cut them into 5 intervals and they also become categorical features now.

The response is the additional product which the customer would add in the next month. If the customer adds more than one product, we only randomly pick one of them. To make the data size smaller and the problem easier, we subset the samples with nonzero response, which means we only consider the records with additional product.

XGBoost

Hyperparameter tuning

Total Number of Trees: 10,50,100

Depth of a tree: 5-7

Shrinkage: {0.1, 0.5, 1}

Optimal combination: 100 trees with depth equals 6 and shrinkage equals 0.5

Results

64.8% on training set and 62.94% on test set.

Kaggle: 665 out of 995, temporarily the best one over all subgroups

Random Forest

- Is an ensemble machine learning method.
- Produces many decision trees using bagging with replacement.
- At each split a random subset of features are selected without replacement
- Allowed to grow without pruning.
- Each tree results in a classification.
- SKlearn takes the class with the highest mean probability estimate.

The ensemble model

Forest output probability
$$p(c|\mathbf{v}) = \frac{1}{T} \sum_{t}^{T} p_t(c|\mathbf{v})$$

Random Forest-Flattening

Sample Month	Customer ID	Demographic Columns	Behavioral Columns
1	1		
1	2		
1	3		
2	1		
2	2		
2	3		

N 1 N 2 N 3

Random Forest-Flattening

Sample Month	Customer ID	Demographic Columns	Behavioral Columns
1	1		
1	2		
1	3		
2	1		
2	2		
2	3		
N	1		
N	2		
N	3		

Random Forest-Flattening

Sample Month	Customer ID	Demographic Columns	Behavioral Columns					
	1							
1	2							
1	3				Customer	Demographic	Past Behavior	Month
2	1				ID	Aggregates	Aggregates	Beha
2	2				1			
2	3				2			
		:			3			
		:		· 				
N	1							
N	2							
N	3							

Accuracy Score:

Trees: 1, 10, 100;

Depth: 10, 100, infinity;

Best accuracy: 90.44%

with trees = 100,

depth = 100

SVM - Data Processing

1. Independent Variable Selection

- > Delete discrete variables with too many classes.
- > Leave out independent variables with repeated information.
- Removed variables with predominantly missing values.

Remove: pais residencia, fecha alta, indext, conyuemp, canal entrada, tipodom, cod prov and nomprov.

2. Missing values

3. Data Transformation

- > Transform categorical variables to dummy variables.
- > Standardize the continuous variables.

SVM-Model

Introduce slack variables that allow samples to be misclassified or be within the margin.

To make the samples more separable, we introduce the idea of kernel.

Decision function: $f(x) = \sum_i \alpha_i \phi(x_i) \phi(x) + b = \sum_i \alpha_i K(x_i, x) + b$

Dual function: $\min P(w, b) = \frac{1}{2} || \sum_{i=1}^{m} \alpha_i \phi(x_i) ||^2 + C \sum_i [H_1 y_i f(x_i)]$

SVM -Result

Criterion:

$$Accuracy = \frac{TP + TN}{P + N}$$

For each of the 24 estimation, the accuracy is higher than 99%

Discussion Highly skewed classes Problem

- Class 0 is predominant (more than 98%) in every response variable, therefore the sym classifier tends to predict 0.
- Confusion matrix for response variable ind_cco_fin_ult1

	Really True	Really False
Predicted True	0	0
Predicted False	558	99442

- Accuracy is 99.44%, recall is 0, precision is NA, the model is useless.
- First priority is recall, since the bank wants to predict what additional products a customer will purchase.

Solution

- Stratified Sampling to make the distribution of two classes more balanced in training set
- Adding weights to the two classes which are inverse proportional to their fractions.

	Really True	Really False
Predicted True	558	33488
Predicted False	0	65954

Accuracy is 66.51%, recall is 100%, precision is 1.64%

ROC comparison for adding weights and no weights

Why choose logistic regression?

- Classification Problem
- Large Data Scale
- Easy to understand

X (Predictors)

Features of Current Month

Purchase History

Y (Predictions)

Difference of products held between Current and Next Month

ETL:

1. Y-labels:

Binary, 1 if the purchase took place in the month after the data of sample, 0 otherwise.

Product Month	1	2	3	(4 to 21)	22	23	24
Month of that Sample (Ex: Jan)	1	0	0		1	0	1
The next month (Ex: Feb)	1	1	0		1	0	1
Y-Label for that sample	0	1	0		0	0	0

ETL:

- 2. X-values (417 features):
- 1) **Purchase History**: For each product, add one column to hold number of months since the customer first had this product till the sample date.

Product Month	1	2	3	(4 to 21)	22	23	24
The purchase Month (Ex: Jan)	1	0	0		1	0	1
The next month (Ex: Feb)	1	1	0		1	0	1
The history for that sample	2	1	0		2	0	2

ETL:

- 2) **Memberdays**: difference between "fecha_alta" (the date in which the customer first acquired a contract with the bank) and "fecha_dato" (the sample date).
- 3) Catergorial variables: replaced with dummy variables.
- 4) **Renta**: missing values filled by using averages based on province code.
- 5) Omitted: "tipodom", "nomcodpers", "fecha_dato", "nom_prov".
- 6) Eliminated 27334 rows which had exactly 9 NAs in all the same columns

MSE = 0	ahor_fin:	cder_fin:	deme_fin:	hip_fin:	viv_fin:		
	0	0	0	0	0		
0 < MSE < 0.001	$ctma_fin:$	ctop_fin:	deco_fin:	fond_fin:	plan_fin:	reca_fin:	valo_fin:
	0.000303	0.000455	0.000253	0.000253	0.000101	0.000707	0.000354
0.001 < MSE < 0.01	cco_fin:	cno_fin:	ecue_fin:	$dela_fin:$	tjcr_fin:	nomina:	nom_pens:
	0.006567	0.002576	0.001667	0.001061	0.005203	0.005607	0.006921
0.01 <mse <1<="" th=""><th>ctju_fin:</th><th>ctpp_fin:</th><th>recibo:</th><th></th><th></th><th></th><th></th></mse>	ctju_fin:	ctpp_fin:	recibo:				
	0.999949	0.999899	0.011517				
MSE = 1	aval_fin:	pres_fin:					
		1	1				

5 y-variables with zero error

2 y-variables with max error

Steepest Descent: Choosing the learning rate on an update-by-update basis

Conclusion-Kaggle Results

	Method	Score
1	XGboost	0.0178739
2	SVD Ensemble	0.0159378
3	Logistic Regression	0.0142893
4	Naïve Bayes	0.0122565
5	Random Forest	0.0103280
6	SVM	0.0094804
7	ANN	0.0092623
8	Collaborative Filtering	0.0057200

Q&A