Engineering Circuits Analysis (ICE2002) Chapter 7. Response of First-Order RL and RC Circuit – Part 1/2/3/4

Contents

- Natural Response of an RL Circuit
- Natural Response of an RC Circuit
- Step Response of RL and RC Circuits
- General Solution for Step and Natural Responses

In Chapter 7

- We will focus on circuits that consists only of source, resistors (R), and either inductors (L) or capacitors (C).
- Natural response: we consider the currents and voltage that arises when sored energy in an inductor or capacitor is suddenly released to a resistive network. This happens when the inductor or capacitor is abruptly disconnected from its DC source.
- Step response: wen consider when the current and voltage that arises when energy is being acquired by an inductor or capacitor due to the sudden application of a DC voltage or current source.

Natural Response

Two forms of the circuit for natural response: RL and RC Circuits

RL circuit when given initial current, I₀

RC circuit when given initial voltage, V₀

First-Order Circuits

- RL and RC circuits are known as first-order circuits, because their voltage and currents are described by first-order differential equations >> most equations become 1st order differential equations.
- 1st order circuits may be reduced to a Thevenin (or Norton) equivalent

Thevenin equivalent (a and c) to Norton equivalent (b and d) connected with an inductor and a capacitor

Natural response

: Response of a circuit due to the initial condition. We will be looking at single time-constant circuit.

i.e. circuits whose storage elements can be reduced to a single, equivalent storage element and whose resistors can be reduced to a single to a single, equivalent resistance.

Assuming that the switch is open at t=0

And find i(t) t>0

$$i(0) = I_s \uparrow \begin{cases} \frac{1}{i} \\ L \end{cases} R \begin{cases} v \\ - \end{cases}$$

$$-L\frac{di}{dt} + Ri = 0$$

$$- \ln \frac{i(t)}{i(0)} = -\frac{R}{L}t$$

Current i(t) t>0

$$\bullet i(t) = i(0)e^{-(R/L)t}$$

$$\bullet i(0^-) = i(0^+) = I_0$$

•
$$i(0^-) = i(0^+) = I_0$$

• $i(t) = I_0 e^{-(R/L)t}, t \ge 0$

Voltage

•
$$v = iR = I_0 R e^{-(R/L)t}$$
, $t \ge 0^+$

$$v(0^-) = 0, \ v(0^+) = I_0 R$$

Power and energy

■
$$p = vi = i^2 R = \frac{v^2}{R}$$

$$= I_0^2 R e^{-2(R/L)t}, \qquad t \ge 0^+$$

$$w = \int_0^t p dx = \int_0^t I_0^2 R e^{-2(R/L)x} dx$$

$$= \frac{1}{2(R/L)} I_0^2 R (1 - e^{-2(R/L)t})$$

$$=\frac{1}{2}LI_0^2(1-e^{-2(R/L)t}), \qquad t\geq 0$$

- Natural response is the current and voltages that exist when stored energy is released to a circuit that contains no independent sources.
- Time constant of an RL circuit equals the equivalent inductance divided by the Thevenin resistance.

$$i(t) = i_0 e^{-\left(\frac{R}{L}\right)t}, \quad t \ge 0 \qquad \tau = \frac{L}{R}$$

Natural response of an RL circuit

Time constant for RL circuit

$$\bullet i(t) = I_0 e^{-t/\tau}, \quad t \ge 0$$

•
$$v(t) = I_0 R e^{-t/\tau}, \qquad t \ge 0^+$$

$$p = I_0^2 Re^{-2t/τ}, t ≥ 0^+$$

•
$$w = \frac{1}{2}LI_0^2(1 - e^{-2t/\tau}), \quad t \ge 0$$

- Calculating the natural response of an RL circuit can be summarized as follows:
- 1. Find the initial current, i_0 , through the inductor.
- 2. Find the time constant of the circuit, $\tau = L/R$.
- 3. Use $i(t) = i_0 e^{-t/\tau}$, $t \ge 0$, to generate i(t) from i_0 and τ .

Find i_L , i_0 , v_0 , and the percentage of the total energy stored in 2H inductor that is dissipated in the 10 ohm resistor

t<0

Find i_L , i_0 , v_0 , and the percentage of the total energy stored in 2H inductor that is dissipated in the 10 ohm resistor

Find i_L , i_0 , v_0 , and the percentage of the total energy stored in 2H inductor that is dissipated in the 10 ohm resistor

Find i_1 , i_2 , i_3 and calculate the initial energy stored in the parallel inductors.

Find i_1 , i_2 , i_3 and

calculate the initial energy stored in the parallel inductors.

Find i_1 , i_2 , i_3 and

calculate the initial energy stored in the parallel inductors.

Natural response

: Response of a circuit due to the initial condition. We will be looking at single time-constant circuit.

i.e. circuits whose storage elements can be reduced to a single, equivalent storage element and whose resistors can be reduced to a single to a single, equivalent resistance.

Assuming that the switch is open at t=0

And find v(t) t>0

voltage v(t) t>0

$$C\frac{dv}{dt} + \frac{v}{R} = 0$$

•
$$v(t) = v(0)e^{-t/RC}$$
 , $t \ge 0$

$$v(0^-) = v(0^+) = V_0$$

$$\tau = RC$$

$$\tau = RC$$

$$v(t) = V_0 e^{-t/\tau} , t \ge 0$$

Similarity of the RL and RC Circuits

RL Circuit

$$i(0) = I_s \uparrow \begin{cases} 1 & \text{if } \\ 1 & \text{if } \\ 1 & \text{if } \end{cases}$$

$$\tau = \frac{L}{R}$$

$$L\frac{di}{dt} + Ri = 0$$

$$\bullet i(0^-) = i(0^+) = I_0$$

•
$$i(0^-) = i(0^+) = I_0$$

• $i(t) = I_0 e^{-t/\tau}, \quad t \ge 0$

RC Circuit

$$C \xrightarrow{+} V_g v i \downarrow \\ R \qquad \tau = RC$$

$$C\frac{dv}{dt} + \frac{v}{R} = 0$$

$$v(0^-) = v(0^+) = V_0$$

$$v(0^{-}) = v(0^{+}) = V_{0}$$

 $v(t) = V_{0}e^{-t/\tau}$, $t \ge 0$

voltage v(t) t>0

$$C\frac{dv}{dt} + \frac{v}{R} = 0$$

•
$$v(t) = v(0)e^{-t/RC}$$
 , $t \ge 0$

$$v(0^-) = v(0^+) = V_0$$

$$\tau = RC$$

$$\tau = RC$$

$$v(t) = V_0 e^{-t/\tau} , t \ge 0$$

Current

Power and energy

$$i(t) = \frac{v(t)}{R} = \frac{V_0}{R} e^{-t/\tau}, \qquad t \ge 0^+$$

•
$$w = \int_0^t p dx = \int_0^t \frac{V_0^2}{R} e^{-2x/\tau} dx$$

$$= \frac{1}{2}CV_0^2(1 - e^{-2t/\tau}), \qquad t \ge 0$$

- Natural response is the current and voltages that exist when stored energy is released to a circuit that contains no independent sources.
- Time constant of an RL circuit equals the equivalent inductance divided by the Thevenin resistance.

$$v(t) = V_0 e^{-t/\tau}, t \ge 0$$

 $\tau = RC$

Natural response of an RC circuit

Time constant for RC circuit

•
$$v(t) = V_0 e^{-t/\tau}$$
 , $t \ge 0$

•
$$i(t) = \frac{v(t)}{R} = \frac{V_0}{R} e^{-t/\tau}, \qquad t \ge 0^+$$

■
$$p = vi = \frac{V_0^2}{R}e^{-2t/\tau}$$
, $t \ge 0^+$

•
$$w = \frac{1}{2}CV_0^2(1 - e^{-2t/\tau}), \quad t \ge 0$$

- Calculating the natural response of an RC circuit can be summarized as follows:
- 1. Find the initial voltage, V_0 , across the capacitor.
- 2. Find the time constant of the circuit, $\tau = RC$.
- 3. Use, $v(t) = V_0 e^{-t/\tau}$, $t \ge 0$ to generate v(t) from V_0 and τ .

Find $v_c(t)$, $v_0(t)$, $i_0(t)$ and the total energy dissipated in the 60 kohm resistor

Find $v_c(t)$, $v_0(t)$, $i_0(t)$ and the total energy dissipated in the 60 kohm resistor

Find $v_c(t)$, $v_0(t)$, $i_0(t)$ and the total energy dissipated in the 60 kohm resistor

a) Find $v_1(t)$, $v_2(t)$, and v(t) and i(t).

- b) Calculate the initial energy stored in the capacitor C1 and C2.
- c) How much energy is stored in the capacitor as t goes infinity.

d) Show that the total energy delivered to the 250 kohm resistor is the difference between the results obtained in (b) - (c)

Summary (Part 1 / 2)

Natural Response of an RL Circuit

■
$$i(t) = I_0 e^{-t/\tau}, \quad t \ge 0$$

■ $v(t) = I_0 R e^{-t/\tau}, \quad t \ge 0^+$
■ $p = I_0^2 R e^{-2t/\tau}, \quad t \ge 0^+$

•
$$w = \frac{1}{2}LI_0^2(1 - e^{-2t/\tau}), \quad t \ge 0$$

Natural Response of an RC Circuit

•
$$v(t) = V_0 e^{-t/\tau}$$
 , $t \ge 0$ $\tau = \text{RC}$

•
$$i(t) = \frac{v(t)}{R} = \frac{V_0}{R} e^{-t/\tau}, \qquad t \ge 0^+$$

•
$$p = vi = \frac{V_0^2}{R}e^{-2t/\tau}, \qquad t \ge 0^+$$

•
$$w = \frac{1}{2}CV_0^2(1 - e^{-2t/\tau}), \quad t \ge 0$$

The Step Response of RL and RC Circuits

Step Response

The response of a circuit to the sudden application of a const voltage or current source is called the step response of the circuit.

The Step Response of an RL Circuit

$$V_S = Ri + L \frac{di}{dt}$$

$$di = \frac{-R}{L} \left(i - \frac{V_S}{R} \right) dt$$

The Step Response of an RL Circuit

■
$$\ln \frac{i(t) - (V_S/R)}{I_0 - (V_S/R)} = \frac{-R}{L}t$$

$$\ln \frac{i(t) - (V_S/R)}{I_0 - (V_S/R)} = \frac{-R}{L}t$$

$$\frac{i(t) - (V_S/R)}{I_0 - (V_S/R)} = e^{-(R/L)t}$$

$$i(t) = \frac{V_S}{R} + \left(I_0 - \frac{V_S}{R}\right)e^{-(R/L)t}$$

when
$$I_0 = 0$$

$$i(t) = \frac{V_S}{R} - \frac{V_S}{R} e^{-(R/L)t}$$

The Step Response of an RL Circuit

$$i(t) = \frac{V_s}{R} + \left(I_0 - \frac{V_s}{R}\right)e^{-(R/L)t}$$

$$v = L \frac{di}{dt}$$

$$v = L\left(\frac{-R}{L}\right)\left(I_0 - \frac{V_S}{R}\right)e^{-(R/L)t}$$

$$= (V_S - I_0R)e^{-(R/L)t} \qquad (t \ge 0^+)$$

$$v = 0 \qquad (t < 0)$$

when
$$I_0 = 0$$

$$v = V_S e^{-(R/L)t}$$

a) i(t) for t>=0 and b) v(t) for t>=0+

a) i(t) for t>=0 and b) v(t) for t>=0+

The Step Response of an RC Circuit

$$C\frac{dv_C}{dt} + \frac{v_C}{R} = I_S$$

$$\frac{di}{dt} + \frac{R}{L}i = \frac{V_S}{L} \implies i$$

$$\frac{di}{dt} + \frac{R}{L}i = \frac{V_S}{L} \quad \Longrightarrow \quad i \quad = \frac{V_S}{R} + \left(I_0 - \frac{V_S}{R}\right)e^{-(R/L)t}$$

$$\frac{dv_C}{dt} + \frac{v_C}{RC} = \frac{I_S}{C}$$

$$\Rightarrow v = I_s R + (V)$$

"RC circuit"
$$\frac{dv_C}{dt} + \frac{v_C}{RC} = \frac{I_S}{C} \implies v = I_S R + (V_0 - I_S R) e^{-t/RC}$$

$$v = L \frac{di}{dt}$$

$$\Rightarrow v = (V_s -$$

$$v = L \frac{di}{dt}$$
 $\Rightarrow v = (V_S - I_0 R) e^{-(R/L)t}$

$$i = C \frac{dv}{dt}$$

$$i = C \frac{dv}{dt}$$
 $\Longrightarrow i = \left(I_S - \frac{V_0}{R}\right) e^{-t/RC}$

a) $v_0(t)$ for t>=0 and b) $i_0(t)$ for t>=0+

a) $v_0(t)$ for t>=0 and b) $i_0(t)$ for t>=0+

a) $v_0(t)$ for t>=0 and b) $i_0(t)$ for t>=0+

Summary (Part 3)

- Natural Response of an RL Circuit
- Natural Response of an RC Circuit
- Step Response of an RL and RC Circuits

 General approach to find either the natural response or the step response of the first-order RL and RC circuits.

RL circuit
$$\frac{dv}{dt} + \frac{R}{L}v = 0$$
RL circuit
$$\frac{di}{dt} + \frac{R}{L}i = \frac{V_S}{L}$$

$$\frac{dv_C}{dt} + \frac{v_C}{RC} = \frac{I_S}{C}$$

$$\frac{di}{dt} + \frac{1}{RC}i = 0$$

$$\frac{dx}{dt} + \frac{x}{\tau} = K$$

$$at \quad t \to \infty \quad \frac{dx}{dt} \to 0, \quad \frac{x_f}{\tau} = K, \quad x_f = \tau \cdot K$$

$$\frac{dx}{dt} = K - \frac{x}{\tau}$$

$$\frac{dx}{dt} = \frac{1}{\tau} (K\tau - x)$$

$$dx = \frac{1}{\tau} (K\tau - x) dt$$

$$dx = \frac{1}{\tau} (x_f - x) dt$$

$$\frac{dx}{x_f - x} = \frac{1}{\tau} dt$$

$$\int_{x(t_0)}^{x(t)} \frac{dx}{x_f - x} = \int_{t_0}^{t} \frac{1}{\tau} dt$$

$$-\ln(x_f - x)\Big|_{x(t_0)}^{x(t)} = \frac{t}{\tau}\Big|_{t_0}^{t}$$

$$-\ln(x_f - x(t)) + \ln(x_f - x(t_0)) = \frac{t - t_0}{\tau}$$

$$\ln \frac{x_f - x(t)}{x_f - x(t_0)} = \frac{-(t - t_0)}{\tau}$$

$$\frac{x_f - x(t)}{x_f - x(t_0)} = e^{-(t - t_0)/\tau}$$

$$x_f - x(t) = \left[x_f - x(t_0)\right] \cdot e^{-(t - t_0)/\tau}$$

$$-x(t) = -x_f + \left[x_f - x(t_0)\right] \cdot e^{-(t - t_0)/\tau}$$

$$x(t) = x_f + \left[x(t_0) - x_f\right] \cdot e^{-(t - t_0)/\tau}$$

The unknown variables as a function of time $x(t) = x_f + [x(t_0) - x_f]e^{-\frac{(t-t_0)}{\tau}}$ Time constant

The final value of The initial value of The final value of the variable the variable

- Identify the variable of interest for the circuit. For RC circuits, it is most convenient to choose the capacitive voltage; for RL circuits, it is best to choose the inductive current.
- Determine the initial value of the variable, which is its value at t₀.
- 3) Calculate the final value of the variable, which is its value as $t \to \infty$.
- 4) Calculate the time constant for the circuit.

a) $v_c(t)$ for t>=0 + and b) i(t) for <math>t>=0

a) i(t) for t>=0 and b) v(t) for t>=0+

Summary (Part 4)

- Natural Response of an RL Circuit
- Natural Response of an RC Circuit
- Step Response of an RL and RC Circuits
- General Solution for Step and Natural Responses

The unknown variables as a function of time
$$x(t) = x_f + [x(t_0) - x_f] e^{-\frac{(t - t_0)}{\tau}}$$
 Time constant

The final value of The initial value of The final value of the variable the variable

