Tota	al Marks:	30	Name							Total 7	Гime: 20 mi
	[2 pts.] In I	Modeling	g and Simulation	on we co	nvert		_equatior	1	into	data_	
	[2 pts.] In I	Data Min	ning we conver	t	data_			into		_equation	
	[2 pts.] In t	he equat	ion of the regre	ession lin	ie $Y = 1.2$	X - 3.4	, slop is _	1.2_	a	nd y-intercept is	s3.4_
	[2 pts.] The	e equatio	on of the regres	sion line	is Y = 1.2	2X - 3.4	, predict	the Y w	hen X =	52.6	
	[2 pts.] The	e equatio	on of the regress	sion line	is equatio	n Y = 1.	2 X – 3.4	. The re	sidual fo	or the point (7, 6	5) is1_
	[10 pts.] Consider following data set representing width (W) and length (L) of Iris										
	Versicolor Petal. Perform linear regression to construct a model representing										
:	relationshi	p betwee	en W and L.	-			W		L	Sepal	
	•			. V			3		4.5	Sepai	
;	Regression	Equano	$\operatorname{on}(y) = w_0 + w$	<u>1 X </u>		_	3.2		4.7		
	$Slope(w_1)$	$=(N\Sigma X)$	$Y - (\Sigma X)(\Sigma Y)$	$/(N\Sigma X^2)$	$-(\Sigma X)^2$	_	3.5		5		
	Intercept(w	$y_0) = (\sum Y_0)$	Y - b(ΣX)) / N				3.6		5.1		
										VE	ersicolo
;	ΣΧ	=	13.3	ΣΥ		19.3					
	ΣΧΥ	=	64.4	ΣX^2	=	44.45		$(\Sigma X)^2$	=	176.89	
	Slope(w ₁):	= (4 x 64	4.4 – 13.3 x 19	.3) / (4 x	44.45 – 1	76.89)			=	1.0	
	Intercept(w	$v_0) = (19)$.3 – 1 x 13.3) /	′ 4					=	1.5	
	y = 1.5 + x		or	L = V	V + 1.5						
	-		the above data. $w_1 = 0.25$ and				nt descei	nt for sin	mple lin	near regression f	or first instar
	ussuming ,		W1 0.25 und	1041111116	14.0 0.2	-2.					
•											
-											