PRS Analysis for WSL

Lukas Graz

2025-02-14

Release Notes

V_{0.2}

- Transformations of GIS variables (mostly sqrt)
- Machine Learning in mlr3 framework:
 - Testing prediction quality of GIS_vars \rightarrow Mediators \rightarrow PRS_vars
 - * comparing performances + inference
 - Linear models, Random Forests, XGBoost (with parameter tuning)
- Improved code structure by separating data preparation, machine learning, and hypothesis testing
- Hypothethis testing:
 - 1. Train data X imputation using MissForest (simplified approach as uncertainties not needed for feature selection)
 - 2. Feature selection based on correlation/VIF analysis
 - 3. Feature selection implemented due to high VIF
 - 4. Additionally inspecting all interactions

V_{0.1}

- Initial release (Technical Setup)
- Data Preparation
 - Conducted sanity checks on data (duplications, type consistency, comparison with df_varlookup_for_lukas.xlsx)
 - Performed type encoding
 - Created 14 dictionaries for translating ordinal categorical variables to numeric (e.g., Very:5, Quite:4, Fair:3, Little:2, Not:1)

- Filtered observations according to criteria in _INFO_for_Lukas.docx
- Missing Values
 - Checked patterns of missingness for PRS-Variables, Mediators, and GIS-Variables
 - For PRS-Variables: Compared imputation methods (MissForest, column-wise mean, observation-wise mean)
 - Imputed missing values using MissForest (each chunk separately) to be done separately for train/test data
- Initial modeling completed results to be updated with imputed data and PC1-4

Data Preparation

Main Analysis

Response Variable Selection

Initial approach: - Aggregated MEAN - LA (Fascination) - BA (Being Away) - EC (Extent Coherence) - ES (Compatibility)

PCA Verification of this approach. Key findings:

- Data can be well approximated with 3-4 dimensions
- First dimension is close to weighted average of all variables (correlation >0.99)
- EC (Extent Coherence) shows most divergence (see PC2)
- LA (Fascination) and BA (Being Away) show similarity (see PC1-PC3)
- Aggregated PRS variables justified by PCA results (similar rotation values), supporting use of mean

PCA projections will be further investigated as alternative response variables (alongside LA-4).

Prediction Analysis

Details in the notebook.

Following RESTORE project approach, investigating links between PRS, Mediators, and GIS variables using: - Linear Models - XGBoost (with trees + parameter tuning) - Random Forests

Evaluation: Percentage of explained variance on hold-out data. Missing values imputed with MissForest (no p-values \rightarrow no assumptions needed).

Results

- GIS shows limited predictive power for PRS on ES (5% variance explained)
- GIS + Mediators explain 25% of PRS variance
- Mediators alone explain majority of PRS variance
 - GIS primarily helps with ES through tree-based methods
 - Suggests GIS effect is more interaction-based than direct
 - Similar reduction in tree-based methods observed in BA

Hypothesis Testing

Details in the notebook.

Process: 1. Train data X imputation using MissForest (simplified approach as uncertainties not needed for feature selection) 2. Feature selection based on correlation/VIF analysis 3. Feature selection implemented due to high VIF

Results

- Continuous mediator outperforms categorical (scaled to mean 0, sd 1)
- HM_NOISELVL not significant (pre-p-adjustment)
- Full mice NA-handling likely unnecessary
 - Models use few variables
 - Only LNOISE shows high NA count
 - Information detection still fails
- Significant edges remain in SEM (see all interactions)