PROBLEM DEFINITION

- Multiple marginal matching (M³) problem aims at learning mappings to match a source domain to multiple target domains.
- \bullet **Application:** M³ problem has attracted great attention in many applications, such as multi-domain image translation.

Figure 1: An example of the multi-domain image translation task.

Multi-marginal Wasserstein GAN

Jiezhang Cao^{1*}, Langyuan Mo^{1*}, Yifan Zhang¹, Kui Jia¹, Chunhua Shen³, Mingkui Tan^{1,2}† ¹South China University of Technology, ²Peng Cheng Laboratory, ³The University of Adelaide

MULTI-MARGINAL WASSERSTEIN GAN (MWGAN)

Objective Function. Given a discriminator $f \in \mathcal{F}$ and generators $g_i \in \mathcal{G}$, we define the multi-marginal Wasserstein distance as

$$W\left(\hat{\mathbf{P}}_{s}, \hat{\mathbf{P}}_{\theta_{1}}, \dots, \hat{\mathbf{P}}_{\theta_{N}}\right) = \max_{f} \mathbb{E}_{\mathbf{x} \sim \hat{\mathbf{P}}_{s}} \left[f(\mathbf{x}) \right] - \sum_{i} \lambda_{i}^{+} \mathbb{E}_{\hat{\mathbf{x}} \sim \hat{\mathbf{P}}_{\theta_{i}}} \left[f(\hat{\mathbf{x}}) \right],$$

s.t. $\hat{P}_{\theta_i} \in \mathcal{D}_i$, $f \in \Omega$, where \hat{P}_s is the real source distribution, and the distribution \hat{P}_{θ_i} is generated by g_i in the *i*-th domain.

- Inner-domain constraints: the generated distribution should belong to the corresponding domain.
- Inter-domain constraints: the discriminator should satisfy the inequality constraints w.r.t.the cost function.

Theorem 1 (Generalization bound) Given the continuous real and generated distributions P_s and P_{θ_i} , $i \in \mathcal{I}$, and the empirical versions \hat{P}_s and \hat{P}_{θ_i} , $i \in \mathcal{I}$ with at least n samples in each domain, there is a universal constant C such that $n \ge C\kappa\Delta^2\log(L\kappa/\epsilon)/\epsilon^2$ with the error ϵ , the generalization bound is satisfied with probability ($\geq 1-e^{-\kappa}$),

$$\left| W\left(\hat{\mathbf{P}}_{s}, \hat{\mathbf{P}}_{\theta_{1}}, \dots, \hat{\mathbf{P}}_{\theta_{N}}\right) - W(\mathbf{P}_{s}, \mathbf{P}_{\theta_{1}}, \dots, \mathbf{P}_{\theta_{N}}) \right| \leq \epsilon.$$

- Existing generalization analysis methods study only on two domains and non-trivial for multiple domains.
- MWGAN has a good generalization ability with enough training data when minimizing the multi-domain Wasserstein distance.

ALGORITHM OF MWGAN

Algorithm 1 Multi-marginal WGAN.

Input: Training data $\{\mathbf{x}_j\}_{j=1}^{n_0}$ in the initial domain, $\{\hat{\mathbf{x}}_j^{(i)}\}_{j=1}^{n_i}$ in the *i*-th target domain; batch size m_{bs} ; the number of iterations of the discriminator per generator iteration $n_{\rm critic}$; Uniform distribution U[0,1]

Output: The discriminator f, the generators $\{g_i\}_{i\in[N]}$ and the classifier ϕ .

- while not converged do
- Sample $\mathbf{x} \sim \hat{\mathbb{P}}_s$ and $\hat{\mathbf{x}} \sim \hat{\mathbb{P}}_{\theta_i}$, $\forall i$, and $\tilde{\mathbf{x}} \leftarrow \rho \mathbf{x} + (1-\rho)\hat{\mathbf{x}}$, $\rho \sim U[0, 1]$
- Update discriminator f by ascending the gradient:

$$\nabla_{w} \left[\mathbb{E}_{\mathbf{x} \sim \hat{\mathbb{P}}_{s}} \left[f\left(\mathbf{x}\right) \right] - \sum_{i} \lambda_{i}^{+} \mathbb{E}_{\hat{\mathbf{x}} \sim \hat{\mathbb{P}}_{\theta_{i}}} \left[f\left(\hat{\mathbf{x}}\right) \right] + \mathcal{R}_{\tau}(f) \right]$$

- Update classifier ϕ by descending the gradient $\nabla_v \mathcal{C}_{\alpha}(\phi)$
- end for
- Update each generator g_i by descending the gradient:

$$\nabla_{\theta_i} \left[-\lambda_i^+ \mathbb{E}_{\hat{\mathbf{x}} \sim \hat{\mathbb{P}}_{\theta_i}} \left[f\left(\hat{\mathbf{x}}\right) \right] - \mathcal{M}_{\alpha}(g_i) \right]$$

8: end while

MOTIVATION

- Existing methods neglect to jointly optimize the multi-marginal distance among domains, and thus cannot guarantee the generalization performance and may lead to distribution mismatching issue.
- StarGAN and UFDN essentially measure the distance between an input distribution and a mixture of all target distributions
- Existing methods ignore correlations among target domains, and are hard to fully capture information to improve the performance.

Figure 2: Comparisons of different distribution measures.

BALANCED IMAGE TRANSLATION RESUTLS

Figure 3: Comparisons of attribute translation on CelebA

- Single attribute translation task: MWGAN has a better or comparable performance than baseline methods.
- Multi-attributes translation task: MWGAN achieves the highest visual quality, and has good generalization performance.

IMBALANCED IMAGE TRANSLATION RESULTS

- Edge→CelebA task: MWGAN generates the most natural-looking facial images with the corresponding attributes from edge images.
- Style transfer task: MWGAN generates painting images with higher visual quality.

QUANTITATIVE RESULTS

Table 1: Comparisons of FID and classification accuracy (%) on single facial attribute translation.

Method	Hair		Eyeglass		Mustache		Pale skin	
	FID	Accuracy (%)	FID	Accuracy (%)	FID	Accuracy (%)	FID	Accuracy (%)
CycleGAN	20.45	95.07	23.69	96.94	24.94	93.89	18.09	80.75
UFDN	65.06	92.01	69.30	79.34	76.04	97.18	53.11	83.33
StarGAN	23.47	96.00	25.36	99.51	23.75	99.06	18.12	92.48
MWGAN	19.63	97.65	22.94	99.53	23.69	98.35	15.91	93.66

Table 2: Comparisons of classification accuracy (%) on multi-attribute synthesis. (B: Blond hair, facial attribute (different colors of hair) on the E: Eyeglasses, M: Mustache, P: Pale skin.)

Table 3: Comparisons of the FID value for each Edge→CelebA translation task.

Method	В+Е	B+M	B+M+E	B+M+E+P	Method	Black hair	Blond hair	Brown hair
ycleGAN	66.43	33.33	11.03	2.11	CycleGAN	65.10	81.59	65.79
UFDN	72.53	51.40	23.00	8.54	UFDN	131.65	144.78	88.40
StarGAN	66.66	62.20	45.77	6.10	StarGAN	53.41	81.00	57.51
IWGAN	75.82	69.01	53.75	19.95	MWGAN	33.81	51.87	35.24

- In Tables 1 and 3, MWGAN achieves the lowest FID and comparable accuracy and thus produces the realistic single-attribute.
- In Table 2, MWGAN achieves the highest accuracy and thus synthesizes the most realistic multi-attribute images.

CONTRIBUTIONS

- We propose a novel MWGAN to optimize the multi-marginal distance among different domains.
- We define and analyze the generalization performance of MWGAN for the multiple domain translation task.
- Extensive experiments demonstrate the effectiveness of MWGAN on balanced and imbalanced translation tasks.

TOY EXPERIMENT

CONTACT INFORMATION

Name: Jiezhang Cao

• Code: https://github.com/caojiezhang

• MWGAN matches the target domain distributions very well, since its discriminator provides correct gradients to update the generators.