Automata and Grammars (BIE-AAG)

12. Pushdown automata

Jan Holub

Department of Theoretical Computer Science
Faculty of Information Technology
Czech Technical University in Prague

© Jan Holub, 2011

BIE-AAG (2011/2012) - J. Holub: 12. Pushdown automata - p. 1/23

Pushdown automaton

Configuration of PDA R: $(q, w, \alpha) \in Q \times T^* \times G^*$, where q is the current state,

 \boldsymbol{w} is the yet unprocessed part of input string,

 $\boldsymbol{\alpha}$ is the pushdown store content.

Initial configuration of PDA R: $(q_0, w, Z_0), w \in T^*$

 $\delta(q,a,\alpha)=\{(p_1,\gamma_1),(p_2,\gamma_2),...,(p_m,\gamma_m)\}$: PDA in state q reads symbol a, goes into state $p_i\ (i=1,2,...,m)$ and string α on top of the pushdown store is replaced by string γ_i .

 $\delta(q, \varepsilon, \alpha) = \{(p_1, \gamma_1), (p_2, \gamma_2), ..., (p_m, \gamma_m)\}$: transition into a new state and change of pushdown store content without reading an input symbol.

Pushdown automaton

Definition

Pushdown automaton is a 7-tuple $R = (Q, T, G, \delta, q_0, Z_0, F)$, where:

- ullet Q is a finite set of states,
- T is a finite input alphabet,
- G is a finite pushdown store alphabet,
- δ is a mapping from $Q \times (T \cup \{\varepsilon\}) \times G^*$ into set of finite subsets $Q \times G^*$,
- g₀ is the initial state,
- $ightharpoonup Z_0$ is the initial pushdown store symbol,
- $m{\mathcal{F}}\subseteq Q$ is a set of final states.

BIE-AAG (2011/2012) - J. Holub: 12. Pushdown automata - p. 2

Pushdown automaton

Definition

Transition of a pushdown automaton R is a relation on the set of configurations:

$$(q, aw, \alpha\beta) \vdash (p, w, \gamma\beta) \text{ if } (p, \gamma) \in \delta(q, a, \alpha), \\ a \in T \cup \{\varepsilon\}, \alpha, \beta, \gamma, \in G^*.$$

 \vdash^k : k-th power of relation \vdash ,

 \vdash^+ : transitive closure of relation \vdash ,

 \vdash^* : transitive and reflexive closure of relation \vdash

Pushdown automaton

Definition

Language defined (accepted) by PDA $R = (Q, T, G, \delta, q_0, Z_0, F)$:

1. by transition into a final state

$$L(R) = \{w : (q_0, w, Z_0) \vdash^* (q, \varepsilon, \gamma), \ \gamma \in G^*, q \in F, w \in T^*\},\$$

2. by empty pushdown store

$$L_{\varepsilon}(R) = \{ w : (q_0, w, Z_0) \vdash^* (q, \varepsilon, \varepsilon), \ q \in Q, w \in T^* \}.$$

BIE-AAG (2011/2012) - J. Holub: 12. Pushdown automata - p. 5/2:

Basic properties of PDA

Theorem

Let $P=(Q,T,G,\delta,q_0,Z_0,F)$ be a PDA. If $(q,w,A)\vdash_P^n(q',\varepsilon,\varepsilon)$, then $(q,w,A\,\alpha)\vdash_P^n(q',\varepsilon,\alpha)$ for all $A\in G$ a $\alpha\in G^*$.

Pushdown automaton

Example

PDA that accepts language $L(\text{PDA}) = \{ww^R : w \in \{a,b\}^*\}: R = (\{q,p\},\{a,b\},\{a,b,S,Z\},\delta,q,Z,\{p\}), \text{ where } \delta(q,a,\varepsilon) = \{(q,a)\}, \\ \delta(q,b,\varepsilon) = \{(q,b)\}, \\ \delta(q,\varepsilon,\varepsilon) = \{(q,S)\}, \\ \delta(q,\varepsilon,aSa) = \{(q,S)\}, \\ \delta(q,\varepsilon,bSb) = \{(q,S)\}, \\ \delta(q,\varepsilon,SZ) = \{(p,\varepsilon)\}.$

For input string aabbaa the automaton R performs this sequence of transitions:

$$\begin{array}{lll} (q,aabbaa,Z) & \vdash (q,abbaa,aZ) & \vdash (q,bbaa,aaZ) \\ \vdash (q,baa,baaZ) & \vdash (q,baa,SbaaZ) & \vdash (q,aa,bSbaaZ) \\ \vdash (q,aa,SaaZ) & \vdash (q,a,aSaaZ) & \vdash (q,a,SaZ) \\ \vdash (q,\varepsilon,aSaZ) & \vdash (q,\varepsilon,SZ) & \vdash (p,\varepsilon,\varepsilon) \end{array}$$

BIE-AAG (2011/2012) - J. Holub: 12. Pushdown automata - p. 6/

Basic properties of PDA

Theorem

 $L=L(P_1)$ is language accepted by PDA P_1 by empty pushdown store iff $L=L(P_2)$ is language accepted by PDA P_2 by transition into a final state.

Proof: First we show that from $L=L(P_2)\Rightarrow L=L(P_1)$, i.e. $L(P_2)\subseteq L(P_1)$.

Let $P_2=(Q,T,G,\delta,q_0,Z_0,F)$ be a PDA such that $L=L(P_2)$. Let $P_1=(Q\cup\{q_\varepsilon,q_0'\},T,G\cup\{X\},\delta',q_0',X,\emptyset)$, where δ' is defined thusly:

- 1. $\delta'(q'_0, \varepsilon, X) = \{(q_0, Z_0 X)\},\$
- 2. $\delta'(q, a, Z) = \delta(q, a, Z), \forall q, a, Z, q \in Q, a \in T \cup \{\varepsilon\}, Z \in G,$
- 3. $\delta'(q, \varepsilon, Z) = \{(q_{\varepsilon}, \varepsilon)\}, \forall q, Z, q \in F, Z \in G \cup \{X\},$
- 4. $\delta'(q_{\varepsilon}, \varepsilon, Z) = \{(q_{\varepsilon}, \varepsilon)\}, \forall Z, Z \in G \cup \{X\}.$

Basic properties of PDA

Theorem

 $L = L(P_1)$ is language accepted by PDA P_1 by empty pushdown store iff $L = L(P_2)$ is language accepted by PDA P_2 by transition into a final state.

Proof (cont.): We now show that from $L = L(P_1) \Rightarrow L = L(P_2)$. Let $P_1 = (Q, T, G, \delta, q_0, Z_0, \emptyset)$ be a PDA such that $L = (P_1)$. Let $P_2 = (Q \cup \{q'_0, q_f\}, T, G \cup \{X\}, \delta, q'_0, X, \{q_f\})$, where δ' is defined thusly:

- 1. $\delta'(q_0', \varepsilon, X) = \{(q_0, Z_0X)\},\$
- 2. $\delta'(q, a, Z) = \delta(q, a, Z), \forall q, a, Z, q \in Q, a \in T \cup \{\varepsilon\}, Z \in G,$
- 3. $\delta'(q, \varepsilon, X) = \{q_f, \varepsilon\}, \forall q, q \in Q.$

BIF-AAG (2011/2012) - J. Holub: 12. Pushdown automata - p. 9/23

Relationshiop betw. CFG and PDA

Example

CFG $G = (\{E, T, F\}, \{+, *, (,), a\}, P, E)$, where P:

(1)
$$E \rightarrow E + T$$

(2)
$$E \to T$$

$$(1) E \to E + T \qquad (2) E \to T \qquad (3) T \to T * F$$

$$(4) T \rightarrow F$$

$$(5) F \to (E) \qquad (6) F \to a.$$

(6)
$$F \rightarrow a$$

PDA $R = (\{q\}, \{+, *, (,), a\}, \{+, *, (,), a, E, T, F\}, \delta, q, E, \emptyset),$ where δ :

$$\begin{split} &\delta(q,\varepsilon,E) = \{(q,E+T),(q,T)\}\\ &\delta(q,\varepsilon,T) = \{(q,T*F),(q,F)\}\\ &\delta(q,\varepsilon,F) = \{(q,(E)),(q,a)\}\\ &\delta(q,b,b) = \{(q,\varepsilon)\}, \forall b,b \in \{a,+,*,(,)\}. \end{split}$$

Relationship betw. CFG and PDA

Theorem

If a CFG G = (N, T, P, S) is given, we can create a PDA R such that L(G) = L(R).

A. Construction of PDA (model of top-down syntactic analysis): $R = (\{q\}, T, N \cup T, \delta, q, S, \emptyset)$, where δ :

1.
$$\delta(q, \varepsilon, A) = \{(q, \alpha) : A \to \alpha \in P\}, \forall A, A \in N \text{ (expansion)},$$

2.
$$\delta(q, a, a) = \{(q, \varepsilon)\}, \forall a, a \in T \text{ (comparison)}.$$

Top of the pushdown store for this type of automaton is always on the left.

Relationship betw. CFG and PDA

Example (cont.)

Sentence a + a * a has the following left derivation in grammar G:

$$E \Rightarrow E + T \tag{1}$$
$$\Rightarrow T + T \tag{2}$$

$$\Rightarrow F + T \tag{4}$$

$$\Rightarrow a + T \tag{6}$$

$$\Rightarrow a + T \tag{6}$$
$$\Rightarrow a + T * F \tag{3}$$

$$\Rightarrow a + F * F$$
 (4)

$$\Rightarrow a + a * F$$
 (6)

$$\Rightarrow a + a * a$$
 (6)

Relationship betw. CFG and PDA

Example (cont.)

```
(q, a + a * a, E) \vdash (q, a + a * a, E + T)
                                           (1)
              \vdash (q, a+a*a, T+T)
                 (q, a+a*a, F+T)
                                           (4)
                 (q, a+a*a, a+T)
                                           (6)
                 (q, +a*a,
                 (q,
                                   T
                     a*a,
                 (q,
                     a*a, T*F
                                           (3)
                     a*a, F*F
                                           (4)
                                           (6)
                     a*a, a*F
                           *a.
                            a.
                 (q,
                            a
                                           (6)
                 (q,
                                    \varepsilon)
                            \varepsilon,
```

BIF-AAG (2011/2012) - J. Holub: 12. Pushdown automata - p. 13/23

Relationship betw. CFG and PDA

B. Construction of PDA (bottom-up syntactic analysis): $R = (\{q, r\}, T, N \cup T \cup \{\#\}, \delta, q, \#, \{r\}), \text{ where } \delta$:

- 1. $\delta(q, a, \varepsilon) = \{(q, a)\}, \forall a, a \in T, \text{ (shift)},$
- 2. $\delta(q, \varepsilon, \alpha) = \{(q, A) : A \to \alpha \in P\}$ (reduce),
- 3. $\delta(q, \varepsilon, \#S) = \{(r, \varepsilon)\}$ (přijetí).

Top of the pushdown store for this type of automaton is always on the right.

Relationship betw. CFG and PDA

Example (cont.)

Rules applied in the left derivation of sentence a + a * a: 1, 2, 4, 6, 3, 4, 6, 6.

BIF-AAG (2011/2012) - J. Holub: 12. Pushdown automata - p.

Relationship betw. CFG and PDA

Example

Let us have CFG $G = (\{E, T, F\}, \{+, *, (,), a\}, P, E)$, where P:

(1)
$$E \to E + T$$
 (2) $E \to T$ (3) $T \to T * F$

$$(2) E \rightarrow T$$

$$(3) T \rightarrow T * F$$

$$(4) T \rightarrow F$$

$$(5) F \to (E) \qquad (6) F \to a.$$

(6)
$$F \rightarrow a$$

$$R = (\{q,r\},\{+,*,(,),a\},\{E,T,F,+,*,(,),a,\#\},\delta,q,\#,\{r\}),$$
 where:

$$\delta(q, b, \varepsilon) = \{(q, b)\}, \forall b, b \in \{a, +, *, (,)\}$$

$$\delta(q, \varepsilon, E + T) = \{(q, E)\}$$

$$\delta(q, \varepsilon, T) = \{(q, E)\}$$

$$\delta(q, \varepsilon, T) = \{(q, E)\}$$

$$\delta(q, \varepsilon, T * F) = \delta(q, E)$$

$$\delta(q, \varepsilon, T * F) = \{(q, T)\}\$$

$$\delta(q, \varepsilon, F) = \{(q, T)\}$$

$$\delta(q, \varepsilon, (E)) = \{(q, F)\}\$$

$$\delta(q, \varepsilon, a) = \{(q, F)\}\$$

$$\delta(q, \varepsilon, \#E) = \{(r, \varepsilon)\}.$$

Relationship betw. CFG and PDA

Example (cont)

Sentence a + a * a has the following right derivation in grammar G:

$$E \Rightarrow E + T \qquad (1)$$

$$\Rightarrow E + T * F \qquad (3)$$

$$\Rightarrow E + T * a \qquad (6)$$

$$\Rightarrow E + F * a \qquad (4)$$

$$\Rightarrow E + a * a \qquad (6)$$

$$\Rightarrow T + a * a \qquad (2)$$

$$\Rightarrow F + a * a \qquad (4)$$

$$\Rightarrow a + a * a \qquad (6)$$

BIE-AAG (2011/2012) - J. Holub: 12. Pushdown automata - p. 17/23

Relationship betw. CFG and PDA

Example (cont.)

Rules applied in the left derivation of sentence a + a * a: 6, 4, 2, 6, 4, 6, 3, 1.

Relationship betw. CFG and PDA

Example (cont.)

```
(q, a + a * a, \#) \vdash (q, +a * a, \#a)
                  (q, +a*a, \#F)
                                               (6)
                                              (4)
                  (q, +a*a, \#T)
                                              (2)
                  (q, +a*a, \#E)
                      a*a, \#E+
                      *a, \#E+a
                       *a, \#E+F
                                              (6)
                      *a, \#E+T
                                            ) (4)
                      a, \#E+T*
                 (q, \qquad \varepsilon, \quad \#E + T * a)
                           \varepsilon, \#E+T*F
                                               (6)
                                               (3)
                                               (1)
```

BIE-AAG (2011/2012) - J. Holub: 12. Pushdown automata - p. 18/2

Deterministic PDA

Definition

Pushdown automaton $R=(Q,T,G,\delta,q_0,Z_0,F)$ is deterministic, if the following holds:

- 1. $|\delta(q, a, \gamma)| \leq 1, \forall q, a, \gamma, q \in Q, a \in (T \cup \{\varepsilon\}), \gamma \in G^*$.
- 2. If $\delta(q, a, \alpha) \neq \emptyset$, $\delta(q, a, \beta) \neq \emptyset$ and $\alpha \neq \beta$, then α is not a suffix of β and β is not a suffix of α (i.e. $\gamma\alpha \neq \beta$, $\alpha \neq \gamma\beta$).
- 3. If $\delta(q, a, \alpha) \neq \emptyset$, $\delta(q, \varepsilon, \beta) \neq \emptyset$, then α is not a suffix of β and β is not a suffix of α (i.e. $\gamma \alpha \neq \beta, \alpha \neq \gamma \beta$).

Deterministic PDA

Construction of det. PDA by the top-down method (A) for CFG in Greibach normal form:

(Greibach normal form: all rules are in the form $A \to a\alpha$, where $a \in T, \alpha \in N^*$)

$$R = (\{q\}, T, N, \delta, q, S, \emptyset)$$
, where $\delta(q, a, A) = \{(q, \alpha) : A \rightarrow a\alpha \in P\}, \forall A, A \in N$.

BIE-AAG (2011/2012) - J. Holub: 12. Pushdown automata - p. 21/23

Relationship betw. CFG and PDA

Example (cont.)

PDA is nondeterministic due to shifts by (1). These shifts can be made depending on the contents of the pushdown store:

$$(1)' \quad \delta(q,a,A) = \{(q,Aa)\} \text{ - symbol } a \text{ is present in the sentential form only after symbol } A,$$

$$\delta(q,b,B) = \{(q,Bb)\} \text{ --symbol } b \text{ is present in the sentential form only after symbol } B.$$

$$\delta(q, c, \#) = \{(q, \#c)\},\$$

$$\delta(q,d,\#) = \{(q,\#d)\}$$
 – symbols $c,\ d$ can be present only at the beginning of the sentential form.

BIE-AAG (2011/2012) - J. Holub: 12. Pushdown automata - p. 23/23

Deterministic PDA

Construction of determinitic PDA by a bottom-up method (B):

Example

CFG
$$G = (\{S, A, B\}, \{a, b, c, d\}, P, S)$$
, where $P: S \rightarrow Aa \qquad A \rightarrow Bb \mid c \qquad B \rightarrow d$

 $R = (\{q,r\}, \{a,b,c,d\}, \{S,A,B,a,b,c,d,\#\}, \delta,q,\#, \{r\}),$ where δ :

(1)
$$\delta(q, a, \varepsilon) = (q, a)$$

 $\delta(q, b, \varepsilon) = (q, b)$
 $\delta(q, c, \varepsilon) = (q, c)$
 $\delta(q, d, \varepsilon) = (q, d)$

(2)
$$\delta(q, \varepsilon, Aa) = (q, S)$$

 $\delta(q, \varepsilon, Bb) = (q, A)$
 $\delta(q, \varepsilon, c) = (q, A)$
 $\delta(q, \varepsilon, c) = (q, B)$

(3) $\delta(a \in \#S) - (r \in S)$

BIE-AAG (2011/2012) - J. Holub: 12. Pushdown automata - p. 22