WLLN: PHEN XIER id then $X_n = \frac{1}{n} \sum_{i=1}^{n} X_i \xrightarrow{p} EXX {X_n : Constraint}}$ CLT: If $X_i \in \mathbb{R}^m$ then $\sqrt{n}(\bar{X}_n - H) = \frac{n - \infty}{J} \times \mathbb{R}^m \setminus \mathbb{R}^m$ Delta Method: $\left[\left[\int h\left(\hat{\theta}=\theta\right)\right] \frac{d}{dt}\right] = hen \left[\left[h\left(\hat{\theta}\right)-h\left(\theta\right)\right] \frac{d}{dt}\right] + hen \left[\left[h\left(\hat{\theta}\right)-h\left(\theta\right)\right] \frac{d}{dt}\right] + hen \left[\left[h\left(\theta\right)-h\left(\theta\right)\right] + hen \left[\left$) If Z~NO, E) then Ho. Z~N(O, H ZoH). This is the case when $0 = \mu = E[X]$, thu, $\hat{\theta} = \overline{X}_n = \frac{1}{n} = \frac{1}{n} = X$; with $\Sigma_0 = Var[X] = EX - M^T$ OR $\theta = E[g(x)]$, thus $\theta = \frac{1}{h} \sum_{i=1}^{h} g(x_i)$ with $\sum_{i=1}^{h} Var[g(x)] = E[g(x) - E[g(x)]) (g(x) - E[g(x)])$ We choose $\hat{\Sigma}_{(0)} = \hat{H}^T \hat{S} \hat{H} = \hat{H}^T \hat{S} \hat{H} = \hat{H}^T \hat{S} \hat{H} = \hat{\Sigma}_{(0)} (2(X_i) - \hat{\theta}) (2(X_i) - \hat{\theta})^T) \cdot \hat{H}(\hat{\theta})$ which is constraint: $\hat{\Sigma}_{(0)} = \hat{\Sigma}_{(0)} = \hat{\Sigma}_{(0)}$