Questions de cours

- 1 Énoncer et démontrer la formule du produit de deux matrices élémentaires.
- 2 Montrer que si A et B sont deux matrices diagonales, alors AB est aussi une matrice diagonale.
- 3 Montrer que si A est une matrice inversible, alors A^{-1} est aussi inversible et $(A^{-1})^{-1} = A$. Montrer également que si A et B sont deux matrices inversibles, alors AB est inversible et $(AB)^{-1} = B^{-1}A^{-1}$.

Exercices

Exercice 1:

Soient $a \in \mathbb{R}$ et $M = \begin{pmatrix} a & 1 & 1 \\ 1 & a & 1 \\ 1 & 1 & a \end{pmatrix}$.

- 1 Montrer que M^2 est une combinaison linéaire de M et I_3 .
- 2 En déduire que si $(-a^2 a + 2) \neq 0$, alors M est inversible et préciser M^{-1} .
- 3 En discutant selon la valeur de a, résoudre le système $M\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$.

Soient $m \in \mathbb{R}^*$ et $A = \begin{pmatrix} 0 & m & m^2 \\ m^{-1} & 0 & m \\ m^{-2} & m^{-1} & 0 \end{pmatrix}$.

- 1 Calculer A^2 et en déduire $(A + I_3)(A 2I_3)$.
- 2 On pose $B = \frac{1}{3}(A + I_3)$ et $C = \frac{1}{3}(A 2I_3)$. Préciser B^n et C^n pour tout $n \in \mathbb{N}^*$.

3 - En déduire A^n en fonction de B et C pour tout $n \in \mathbb{N}^*$. Le résultat est-il encore vrai pour n=0 et n=-1?

Exercice 3:

On note $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ les suites définies par $u_0=2, v_0=1$ et

$$\forall n \in \mathbb{N}, \begin{cases} u_{n+1} = u_n + 8v_n \\ v_{n+1} = 2u_n + v_n \end{cases}$$

Pour tout $n \in \mathbb{N}$, on pose $X_n = \begin{pmatrix} u_n \\ v_n \end{pmatrix}$.

1 - Vérifier que $X_{n+1}=AX_n$ avec $A=\begin{pmatrix} 1 & 8 \\ 2 & 1 \end{pmatrix}$. En déduire un expression de X_n en fonction de A et de X_0 .

- 2 On pose $P = \begin{pmatrix} 2 & -2 \\ 1 & 1 \end{pmatrix}$.
 - a) Calculer P^{-1} puis vérifier que $P^{-1}AP$ est une matrice diagonale notée D.
 - b) Démontrer que pour tout $n \in \mathbb{N}$, $A^n = PD^nP^{-1}$.
 - c) Calculer A^n puis X_n . En déduire l'expression générale de u_n et v_n .

On considère la matrice $A = \begin{pmatrix} -1 & -2 \\ 3 & 4 \end{pmatrix}$.

- 1 Calculer A^2 puis montrer qu'on peut l'exprimer en fonction de A et de I_2 .
- 2 En déduire un polynôme annulateur P de A que l'on donnera explicitement.
- 3 En déduire que A est inversible et exprimer A^{-1} en fonction de A et de I_2 .
- 4 Démontrer qu'il existe deux suites $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$, que l'on déterminera, telles que:

$$\forall n \in \mathbb{N}, \ A^n = a_n A + b_n I_2$$

- 5 Démontrer que $(a_n)_{n\in\mathbb{N}}$ est une suite récurrente linéaire d'ordre 2 à coefficients constants puis donner son expression ainsi que celle de $(b_n)_{n\in\mathbb{N}}$.
- 6 En déduire l'expression de A^n en fonction de A et de I_2 . Vérifiez si cette expression est aussi vraie pour n=-1.
- 7 Déterminer le reste de la division euclidienne de X^n par P(X). Retrouvez alors l'expression de A^n donnée à la question 6.
- 8 Application : On considère les suites $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ définies par $u_0=2$ et

$$\forall n \in \mathbb{N}, \begin{cases} u_{n+1} = -u_n - 2v_n \\ v_{n+1} = 3u_n + 4v_n \end{cases}$$

Déterminer l'expression générale de $(u_n)_{n\in\mathbb{N}}$ et de $(v_n)_{n\in\mathbb{N}}$.

Exercice 5:

Pour tout réel t, on pose :

$$A(t) = \begin{pmatrix} 1 - t & -t & 0 \\ -t & 1 - t & 0 \\ -t & t & 1 - 2t \end{pmatrix}$$

On note $\mathcal E$ l'ensemble des matrices de cette forme.

- 1 Donner A(1) et montrer que $Q = \begin{pmatrix} \frac{1}{2} & -\frac{1}{2} & 0 \\ -\frac{1}{2} & \frac{1}{2} & 0 \\ -\frac{1}{2} & \frac{1}{2} & 0 \end{pmatrix} \in \mathcal{E}.$
- 2 Soient s et t deux réels.

Démontrez que $A(s)A(t) \in \mathcal{E}$. Déterminer le réel u tel que A(s)A(t) = A(u) et en déduire que A(s) et A(t) commutent.

- 3 a) Trouver une matrice $X \in \mathcal{M}_{3,1}(\mathbb{R})$ non nulle telle que QX = 0 et en déduire que Q n'est pas inversible.
 - b) Montrer que si $t \neq \frac{1}{2}$, alors $A(t) \in GL_3(\mathbb{R})$.

- 4 Déterminer les matrices S de $\mathcal E$ solutions de $S^2=A\left(-\frac{3}{2}\right)$.
- 5 On pose J = A(-1).
 - a) Montrer qu'il existe une suite $(t_n)_{n\in\mathbb{N}}$ telle que :

$$\forall n \in \mathbb{N}, \ J^n = A(t_n)$$

- b) Déterminer alors une relation de récurrence entre t_{n+1} et t_n .
- c) En déduire J^n en donnant ses coefficients.