Einführung in Computational Engineering

Grundlagen der Modellierung und Simulation

6. Vorlesung: Zeitkontinuierliche Modellierung und Simulation

18. November 2013

Prof. Dr. Jan Peters

Bitte von der Meise...

- Vergesst nicht: Jeder Prof hat 'ne Meise! Meine dürft Ihr füttern!
- Habt ein Herz für Meisen !!![Zitat aus dem Meisenhaus]
- Meine Meise ist immer noch hungrig ... gebt doch bitte mehr Feedback!!!

Meisenantworten

- Gleichgewichtslösung in Vorlesung 4 nicht erklärt? Doch! Sektion 3.3.1, Folien 25-27
- Moodle Fragezeiten besser an Fragen anpassen? Werde mich bemühen...
- Die Fragen nicht so lange erklären? OK...
- Bitte korrekte Lösungen in Moodle? Werde mich bemühen...
- Mehr Beispiele, Geschichten und Anekdoten? Werde mich bemühen...
- Pause! Vorlesungszeit nicht mehr als 90min! Könnt Ihr mich drann errinern?
- Verschiedene Stiftfarben? Fällt mir ein Wenig schwer...
- Die Übungen sind schwer... Das ist gut für Euch und erlaubt es uns "netter" zu benoten!
- Fragen an Chris und Herke werden von Beiden beantwortet...

Überblick der Vorlesungsinhalte

- 1. Einführung
- 2. Diskrete Modellierung und Simulation
- 3. Zeitkontinuierliche Modellierung und Simulation
- 4. Teilschritte einer Simulationsstudie
- 5. Interpretation und Validierung
- 6. Modulare und objektorientierte Modellierung und Simulation
- 7. Parameteridentifikation von Modellen

MOODLE FRAGE

$$\dot{X}_1 = -X_2$$

$$\dot{X}_2 = +X_1$$

$$\dot{X}_2 = +X_1$$

Not
$$(A - \lambda t) = \lambda t - \lambda t = \lambda t + 1 = 0$$

Bitte jetzt auf Moodle eine Frage

beantworten!

Grundlagen der Modellierung und Simulation

ZEITKONTINUIERLICHE MODELLIERUNG UND SIMULATION

Rundungsfehler

- 4. Juni 1996
- Ariane 5 mit 4 Satelliten

http://www.youtube.com/watch?v=gp_D8r-2hwk

Rundungsfehler

- Verlust 500 Millionen U\$D
- Entwicklungskosten 7 Milliarden U\$D
- Durch heftige Aktivitäten der Schubdüsen vom Kurs abgekommen
- Selbstzerstörung, weil durch aerodynamische Kräfte die Triebwerke abzubrechen drohten

Rundungsfehler

- Der eingebettete Prozessor versuchte, eine 64-Bit Gleitkommazahl (die horizontale Geschwindigkeit) in eine 16-Bit ganze Zahl zu konvertieren
- Die Gleitkommazahl war zu groß, weil Ariane 5 schneller flog als Ariane 4 Überlauf!
- Backup-Prozessor mit exakt derselben Software stürzte ebenfalls ab
- Viele spannende Beispiele auf http://www.dradio.de/aktuell/791580/

3.4.1 Zahlendarstellung

 Reelle Zahlen werden auf dem Computer als <u>normalisierte Gleitpunktzahlen</u> dargestellt

- Festpunktdarstellung
- John von Nemer
- Beispiel z = 30.01109 (Dezimalzahl)

- Normalisierte Dezimalzahl
 - Erste Stelle vor dem Dezimalpunkt P ungleich Null
 - Alle Stellen vor P gleich Null
 - Beispiel $z = 3.001109 \cdot 10^{1}$

Mit 3.4.7 weitermachen!!! Andrej; 11.11.2013 **A7**

3.4.1 Zahlendarstellung: Normalisierte Gleitpunktzahlen

Matise

allgemeine Darstellung

$$z = \pm (d_1 \cdot B^0 + d_2 \cdot B^{-1} + \dots + d_t \cdot B^{-t+1}) \cdot B^E$$

$$= \frac{1}{2} \text{ if } \{a_n \ ("Aisit")\}$$
Bask Expones

- Basis *B*
- Exponent E ganze Zahl und beschränkt $E_{min} \le E \le E_{max}$
- Ziffern $d_i \in \{0,1,2,...,B-1\}$
 - $z ext{ normalisiert} \Rightarrow \underline{d_1 \neq 0} ext{ falls } z \neq 0$
- Länge der Mantisse t
- Mantisse M: $d_1d_2 ... d_t$

Beispiel:
$$z = 3.001109 \cdot 10^{1}$$

Mantisse Basis Exponent

3.4.1 Zahlendarstellung: Normalisierte Gleitpunktzahlen

- Reelle Zahlen werden auf heutigen Computern (fast immer) als Binärzahlen dargestellt
- Bei bisher gängigen Rechnern mit 32-Bit Speicherwortlänge wird dieses häufig folgendermaßen interpretiert

		255W	kk f
1	Bit	8 Bits	23 Bits
	S	Exponent E	Mantisse M
_			

Vorzeichen

• Wert der Zahl:
$$(-1)^S \times M \times 2^E$$

3.4.1 Zahlendarstellung: Normalisierte Gleitpunktzahlen

- Mehr Bits für Mantisse ergibt höhere Genauigkeit
- Mehr Bits für Exponent ergibt größeren Bereich
- IEEE 754 Gleitpunktstandard (1985)
 - 32 bit 64611 Einfache Genauigkeit (single): 8 Bit Exponent, 23 Bit Mantisse
 - Doppelte Genauigkeit (double): 11 Bit Exponent, 52 Bit Mantisse
 - Oberstes Bit der Mantisse ist implizit, d.h. muss wegen normalisierter Mantisse nicht gespeichert werden

1 Mach dem Viorma spejchen, da erste Ziffer ters | 13

3.4.1 Zahlendarstellung: Normalisierte Gleitpunktzahlen

- Wert der Zahl: $(-1)^S \times (1+M) \times 2^{E-bias}$
 - bias = 127 (single)
 - bias = 1023 (double)

- Beispiel (single)

 - Dezimal: $-0.75 = -3 \times 2^{-2}$ Binär: $-0.11 = -1.1 \times 1^{-1}$
 - Gleitpunkt: Exponent E = 126
 - IEEE einfache Genauigkeit

3.4.1 Zahlendarstellung: Sonderfälle

- Gleitpunktdarstellung von 0 und 1
 - 0: Alle 32 Bits sind 0 (reservierter Sonderfall!)

$$1 = +1.0 \times 2^0 = (-1)^0 \times (1+0.0) \times 2^{127-127}$$

IEEE einfache Genauigkeit

3.4.1 Zahlendarstellung: Alle Werte des IEEE 754

Exponent	Mantisse	dargestelltes Objekt	
0000	0000	0	
1-254	beliebig	± normalisierte Gleitpunktzahl	
0000	beliebig, von Null verschieden	± sub-normale Zahl (ohne Exponent)	tln f
255	0000	± ∞ Unendlich (infinity)	
255	beliebig, von Null verschieden	NaN (not a number)	-NaN

- Mit sub-normalen Zahlen können noch kleinere, positive
 Zahlen dargestellt werden, bis zu 2⁻¹⁴⁹
- Normalerweise wird bei Unterlauf Ausnahmebehandlung angestoßen

3.4.1 Zahlendarstellung: Alle Werte des IEEE 754

- Überlauf und Division durch Null wird zu ±∞, dadurch ist Ausnahmebehandlung möglich
- "0/0" und "∞ ∞" ergeben "NaN", dadurch ist Ausnahmebehandlung möglich

MOODLE FRAGE

Bitte jetzt auf Moodle eine Frage

haantworten!

Apprehieuskynde Asstande!

beantworten!

3.4.1 Zahlendarstellung: Bemerkungen

- Kleinste positive normalisierte Zahl $2^{-2} = 0.25$
- Größte positive normalisierte Zahl 15

3.4.1 Zahlendarstellung: Bemerkungen

Beispiel:

$$(B = 2, bias = 2)$$

- Die Gleitpunktzahlen liegen zwischen 2^e und 2^{e+1}
- Abstand 2^{e-3} mit e = -2, ..., +3
- Größter Abstand bei den größten Zahlen: 2⁰ = 1
- Kleinster Abstand bei den kleinsten Zahlen: $2^{-5} = 0.03125$

3.4.1 Zahlendarstellung: Bemerkungen

Beispiel:

$$(B = 2, bias = 2)$$

- Abstand zwischen 1 und 2 ist 2⁻³
- Relative Maschinengenauigkeit: $\varepsilon_{\text{mach}} = 2^{-3}$
- IEEE single precision: $\varepsilon_{\rm mach} = 2^{-\frac{23}{2}} \approx 1.19 \times 10^{-7}$
- IEEE double precision: $\varepsilon_{\rm mach} = 2^{-52} \approx 2.2 \times 10^{-16}$

3.4.2 Zahlendarstellung: Eigenschaften

- Grundlegende Eigenschaften bei endlicher Mantisse und endlichem Exponenten
 - Es gibt nur endlich viele Gleitpunktzahlen
 - Es gibt keine beliebig großen und keine beliebig kleinen (positiven) Zahlen
 - Es gibt keine beliebig nahe benachbarten Zahlen
 - Die Gleitpunktzahlen sind ungleichmäßig verteilt
 - Summe/Differenz, Produkt/Quotient von Gleitpunktzahlen müssen i.Allg. gerundet werden

Addition zweier Gleitkommazahlen mit vierstelliger Mantisse

$$9.999 \times 10^{1} + 1.611 \times 10^{-1}$$

- 1.Schritt: Angleichen der Dezimalkomma-Position durch Rechts-Shift der Zahl mit dem kleineren Exponenten
 - Durch Verschieben verliert man bei fester Stellenzahl für die Mantisse an Genauigkeit!

$$9.999 \times 10^{1} + 0.016 \times 10^{1}$$

- 2.Schritt: Durchführen der Addition
 - Summe kann zwei Stellen vor dem Komma enthalten.

$$9.999 \times 10^{1} + 0.016 \times 10^{1} 10.015 \times 10^{1}$$

- 3.Schritt: Normalisieren des Ergebnisses durch Verschieben
 - Beim Rechts-Shift Exponenten anpassen und Über-/Unterlauf für Exponenten beachten!

$$\begin{array}{r}
 9.999 \times 10^{1} \\
 + 0.016 \times 10^{1} \\
 \hline
 \hline
 1.0015 \times 10^{2}
 \end{array}$$

- 4. Schritt: Anpassen der Mantisse an verfügbare Stellenzahl
 - Runden!
 - Bei Rundung müssen auch aus der Darstellung geschobene Ziffern berücksichtigt werden!

$$1.002 \times 10^{2}$$

3.4.3 Rundungsfehler: Beispiel Multiplikation

Multiplikation von zwei Dezimal-Gleitkommazahlen

$$1.110 \times 10^{10} \times 9.200 \times 10^{-5}$$

1.Schritt: Berechnung des Produkt-Exponenten durch Addition

der Exponenten

$$10 + (-5) = 5$$

- Achtung!
 - Bei Exzess-Darstellung muss der bias-Wert von der Summe abgezogen werden

3.4.3 Rundungsfehler: Beispiel Multiplikation

2.Schritt: Multiplikation der Mantissen

- Zwischenergebnis also 10.212 × 10⁵
- Achtung!
 - Bei fester Länge der Mantissendarstellung müssen einige Stellen vom Produkt geopfert werden

3.4.3 Rundungsfehler: Beispiel Multiplikation

3.Schritt: Normalisierung der Zahlendarstellung

$$10.212 \times 10^5 = 1.0212 \times 10^6$$

- Achtung!
 - Bei Exponentenanpassung Über-/Unterlauf beachten! → Ashalmehaally!
- 4.Schritt: Rundung

1.021
$$\times$$
 10⁶ = 1.021 \times 10⁶
+1 +1 3+1
chen ermitteln
$$S_{1} Y S_{2} = (-1)(-1)(-1)(-1) + (-1)(-1)(-1)(-1)$$

5.Schritt:Vorzeichen ermitteln

$$(+1.110 \times 10^{10}) \times (+9.200 \times 10^{-5}) = +1.021 \times 10^{6}$$

3.4.3 Rundungsfehler

- Nur endliche Menge von Gleitpunktzahlen g ist verfügbar
- Jede reelle Variable x muss auf die "am nächsten liegende"
 Maschinenzahl abgebildet werden
- Diese Abbildung nennt man Rundung

$$|x - \operatorname{rd}(\underline{x})| \le |x - g|, \quad \forall g$$

3.4.3 Rundungsfehler

- Nach IEEE 754 gibt es 4 Rundungsarten
 - (R1) immer aufrunden ("nach rechts")
 - (R2) immer abrunden ("nach links")
 - (R3) Runden durch Abschneiden ("nach Null") truck
 - (R4) Runden zur nächsten geraden Gleitpunktzahl ("zum Nächsten") rouge
 - Bei Unentschieden wird Maschinenzahl mit letztem Bit=0 genommen
 - (R4) ist der Standard-Rundungsmodus, (R1,2) wichtig für Intervallarithmetik

3.4.4 Relativer Rundungsfehler

- Relativer Rundungsfehler
 - Für alle reellen x, außer bei Exponentenüber-/unterlauf

$$\varepsilon(x) \coloneqq x - \frac{\operatorname{rd}(x)}{x} \Leftrightarrow \operatorname{rd}(x) = x(1 - \varepsilon(x)), \quad \operatorname{mit} |\varepsilon(x)| \le \varepsilon_{\operatorname{mach}}$$

Das Ergebnis einer arithmetischen Operation ist im Allgemeinen keine Maschinenzahl

3.4.4 Relativer Rundungsfehler

- Für die Implementierung der elementaren, arithmetischen Gleitpunktoperatoren +, -, \times , / gilt in IEEE-Arithmetik
 - $gl(x+y) = (x+y)(1+\varepsilon_1)$
 - $gl(x y) = (x y)(1 + \varepsilon_2)$
 - $gl(x \times y) = (x \times y)(1 + \varepsilon_3)$
 - $gl(x/y) = (x/y)(1 + \varepsilon_4)$
 - $|\varepsilon_i| \le \varepsilon_{\text{mach}}$, $\varepsilon_i = \varepsilon_i(x, y)$

$$gl(xoy) = (xoy)(1+\xi_0)$$

$$1\xi_0 \leq \xi_{mach}$$

3.4.5 Fortpflanzung von Rundungsfehlern

Ein (mathematischer) Algorithmus f sei aus einer endlichen
 Anzahl von Elementaroperationen zusammengesetzt

$$f = f^{(r)} \circ f^{(r-1)} \circ \cdots \circ f^{(1)} \circ f^{(0)} \quad mit \ f^{(i)} : D_i \to D_{i+1}, \qquad D_i \subseteq R^n$$
The an breshy = Talk fortpflangs

Wie wirken sich Rundungsfehler auf das Ergebnis aus?

3.4.5 Fortpflanzung von Rundungsfehlern

- Erste Erkenntnis: Assoziativ- und Distributivgesetz gelten nicht für Gleitpunktarithmetik!
- Beispiel (x+y)-z = #(y-z) $\operatorname{gl}(\operatorname{gl}(x+y)-z) \neq \operatorname{gl}(x+\operatorname{gl}(y-z))$
- $gl(a \circ b)$ sei die Gleitpunktimplementierung der entsprechenden arithmetischen Operation $a \circ b$

3.4.5 Fortpflanzung von Rundungsfehlern

- Möglichkeit zur Fehleranalyse
- In allen Ausdrücken $gl(x \circ y) = (x \circ y)(1 \varepsilon)$ sukzessive ersetzen.
- Daraus Ermittlung einer Darstellung

$$gl(f) = f \cdot (1 + (\dots)\varepsilon_1 + (\dots)\varepsilon_2 + \dots)$$

Eingangsdaten abhängige Verstärkungsfaktoren (...)

MOODLE FRAGE

$$C = 0.0005$$

Bitte jetzt auf Moodle eine Frage

beantworten!

3.4.6 Auslöschung: Beispiel des Kosinus

Kosinus mit Taylor-Reihe berechnen

$$\cos x = \sum_{k=0}^{\infty} \frac{(-1)^k x^{2k}}{(2k)!} = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots$$

- Berechnung mit einfacher Genauigkeit
 - Aufruf mit $x = 3.1415926 \ (\approx \pi) \implies -1.000000 \ E+00$
 - Aufruf mit $x = 31.4159265 (\approx 10\pi) \Rightarrow -8.59 \dots E + 04$

Ursache: Auslöschung! (cancellation)

Mehr Erläuterungen

	Ь	12			
k	(2k)!	3.14^{2k}	a _k	(2k)!	31.4^{2k}
0	1.0000e+00	1.0000e+00	1	1.0000e+00	1.0000e+00
1	2.0000e+00	9.8596e+00	25	2.0000e+00	9.8596e+02
2	2.4000e+01	9.7212e+01		2.4000e+01	9.7212e+05 W
3	7.2000e+02	9.5847e+02	i	7.2000e+02	9.5847e+08
4	4.0320e+04	9.4501e+03	1	4.0320e+04	9.4501e+11
5	3.6288e+06	9.3174e+04	\	3.6288e+06	9.3174e+14
6	4.7900e+08	9.1866e+05		4.7900e+08	9.1866e+17
7	8.7178e+10	9.0576e+06		8.7178e+10	9.0576e+20
8	2.0923e+13	8.9305e+07	8	2.0923e+13	8.9305e+23
9	6.4024e+15	8.8051e+08	10-0	6.4024e+15	8.8051e+26
10	2.4329e+18	8.6815e+09		2.4329e+18	8.6815e+29 IV

3.4.6 Auslöschung: Beispiel Approximation der Ableitung

- Approximation einer Funktion f(x) an der Stelle x
- Vorwärtsdifferenzenquotient mit Schrittweite h > 0

$$f'(x) \approx \frac{f(x+h) - f(x)}{h}$$

- Problem A
 - h ist eine so kleine Gleitpunktzahl, so dass in Gleitpunktarithmetik x + h = x gilt
 - f(x+h) = f(x) immer für h < Maschinengenauigkeit $\varepsilon_{\text{mach}}$

$$f'(x) = 0$$

3.4.6 Auslöschung: Beispiel Approximation der Ableitung

- Problem B
 - h ist größer als in Problem A aber es gilt $f(x + h) \approx f(x)$
 - f(x+h) f(x) hat weniger signifikante Ziffern in Gleitpunktdarstellung als f(x) und f(x+h)

$$3.1234666 \times 10^{0}$$
 -3.1234555×10^{0}
 0.0000111×10^{0}
 $1.11????? \times 10^{-5}$ (Normalisierung)

Auslöschung!

- Wie wirken sich Rundungsfehler in Eingabedaten x einer Berechnung y = f(x) auf das Ergebnis aus?
- Sei $f: D \subseteq \mathbb{R}^n \to \mathbb{R}^n$ mindestens einmal stetig differenzierbar
- Absoluter Fehler in x: $\Delta x_j = |rd(x_j) x_j|$
- Relativer Fehler in x: $\varepsilon_{x_j} = \frac{\Delta x_j}{x_j}$

- Absoluter Fehler in y: $\Delta y_j = |\operatorname{rd}(y_j) y_j| = |f_i(\operatorname{rd}(x)) f_i(y)|$
- Taylor-Entwicklung liefert für y

$$\Delta y_i = f_i(\operatorname{rd}(x)) - f_i(x) = \sum_{j=1}^n \Delta x_j \cdot \frac{\partial f_i(x)}{\partial x_j} + O(\|\Delta x\|^2)$$

$$\varepsilon_{y_{i}} = \frac{\Delta y_{i}}{y_{i}} \approx \sum_{j=1}^{n} \left(\frac{x_{j}}{f_{i}(x)} \underbrace{\Delta x}_{x_{j}} \right) \cdot \frac{\partial f_{i}(x)}{\partial x_{j}} = \sum_{j=1}^{n} \left(\frac{x_{j}}{f_{i}(x)} \cdot \frac{\partial f_{i}(x)}{\partial x_{j}} \right) \cdot \varepsilon_{x_{j}}$$

$$\varepsilon_{y_i} \approx \sum_{j=1}^{n} \left(\frac{x_j}{f_i(x)} \cdot \frac{\partial f_i(x)}{\partial x_j} \right) \cdot \varepsilon_{x_j}$$

Verstärkungsfaktoren

- Die Beträge der Verstärkungsfaktoren des relativen Fehlers in den Eingabedaten nennt man "Konditionszahlen"
- Sind diese "groß", ist das Problem "schlecht konditioniert"
- Sind diese "klein", ist das Problem "gut konditioniert"

■ "Schlecht konditioniert" bedeutet, dass kleine Änderungen Δx in x immer große Änderungen in f(x) bewirken

- Die Konditionszahlen hängen nur von f ab, d.h. nur von deren Eigenschaften
 - Hängt nicht davon ab wie f ausgewertet wird (Algorithmus)
 - Hängt nicht von der Rechnerarithmetik ab

3.4.7 Kondition: Beispiel

- Konditionszahlen $\left| \frac{x_j}{f_i(x)} \cdot \frac{\partial f_i(x)}{\partial x_j} \right|$
- Arithmetische Operationen

•
$$f_1(x_1, x_2) = x_1 \cdot x_2 \Longrightarrow \varepsilon_{f_1} = \varepsilon_{x_1} + \varepsilon_{x_2}$$

•
$$f_2(x_1, x_2) = x_1/x_2 \Longrightarrow \varepsilon_{f_2} = \varepsilon_{x_1} - \varepsilon_{x_2}$$

•
$$f_3(x_1, x_2) = x_1 \pm x_2 \Longrightarrow e_{f_3} = \frac{x_1}{x_1 \pm x_2} \varepsilon_{x_1} \pm \frac{x_2}{x_1 \pm x_2} \varepsilon_{x_2}$$

•
$$f_4(x_1, x_2) = \sqrt{x_1} \Longrightarrow \varepsilon_{f_4} = \varepsilon_{x_1}/2$$

3.4.7 Kondition: Beispiel

- Multiplikation, Division, Quadratwurzel gut konditioniert
 - relative Fehler in den Eingabedaten werden im Ergebnis nicht wesentlich verstärkt
- Addition bei Zahlen mit gleichem Vorzeichen gut konditioniert

3.4.7 Kondition: Beispiel

 Subtraktion bei Zahlen mit gleichen Vorzeichen schlecht konditioniert

$$\frac{\left|\frac{x_1}{x_1 \pm x_2}\right|, \left|\frac{x_2}{x_1 \pm x_2}\right| > 1$$

■ Extreme Verstärkung (Auslöschung) bei $x_1 \approx x_2$

3.4.8 Numerische Stabilität

- Gegeben sei eine gut konditionierte Aufgabenstellung y = f(x)
- Ein Berechnungsverfahren für f nennt man <u>numerisch stabil</u>,
 falls die relevanten Eingabefehler nicht verstärkt werden
- Ein Berechnungsverfahren, nennt man <u>numerisch instabil</u>, falls große relative Fehler im Ergebnis erzeugt werden

3.4.8 Numerische Stabilität

3.4.8 Numerische Stabilität: Beispiel

- Gegeben sei $f(x) = 1 \sqrt{1 x^2}$
- Konditionszahl

$$\operatorname{cond}_{f}(x) = \left| \frac{x}{f(x)} \cdot \frac{\partial f(x)}{\partial x} \right| = \left| \frac{x}{1 - \sqrt{1 - x^2}} \cdot \frac{x}{\sqrt{1 - x^2}} \right|$$

• Für kleine Werte $x \approx 0$ gut konditioniert, weil

$$\operatorname{cond}_f(x) \to 2 \qquad \text{mit } x \to 0$$

3.4.8 Numerische Stabilität: Beispiel

- Trotzdem erhält man für Werte $x \approx 0$ numerische Ergebnisse mit extrem großen Rundungsfehlern
- Ursache: Das Berechnungsverfahren mit direkter
 Implementierung der Formel ist <u>numerisch instabil</u>

3.4.8 Numerische Stabilität: Beispiel

Auslöschung im letzten Berechnungsschritt hat große Wirkung

• Mathematisch äquivalente Umformung, die numerisch stabil ist $1 + (\sqrt{1-\chi^2}) = \chi^2$

$$f(x) = 1 - \sqrt{1 - x^2} = \frac{(1 - \sqrt{1 - x^2})(1 + \sqrt{1 - x^2})}{(1 + \sqrt{1 - x^2})} = \frac{x^2}{1 + \sqrt{1 - x^2}} = \frac{0^2}{1 + \sqrt{1 - x^2}}$$

3.4.8 Numerische Stabilität: 2.Beispiel

- Gegeben sei $f(x) = e^x$
- Konditionszahl

$$\operatorname{cond}_{f}(x) = \left| \frac{x}{f(x)} \cdot \frac{\partial f(x)}{\partial x} \right| = \left| \frac{x}{e^{x}} e^{x} \right| = |x|$$

Numerische Berechnung mittels Reihenentwicklung

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$$

• Numerisch stabil für (nicht zu große) x > 0

3.4.8 Numerische Stabilität: 2.Beispiel

- Für x < 0 trotz gleicher Konditionszahl instabil!
- Für x < 0 äquivalente numerisch stabile Umformung

$$e^{x} = \frac{1}{e^{-x}} = \frac{1}{1 + |x| + \frac{|x|^{2}}{2!} + \frac{|x|^{3}}{3!} + \cdots}$$

• Mit Fallunterscheidung für x > 0, x < 0 numerisch stabile Berechnung

MOODLE FRAGE

$$f(x) = 5x \qquad \frac{\partial f}{\partial x} = 5$$

$$N = cond(f) = \left| \frac{x}{f(x)} \frac{\partial f}{\partial x} \right| = \left| \frac{x}{5x} \frac{\partial f}{\partial x} \right| = 1$$
Bitte jetzt auf Moodle eine Frage

beantworten!

$$f(x) = x^2$$

$$\frac{\partial f}{\partial x} = 2x$$

$$V_{|x_1|} = (ond(f(x_2)) = \frac{x}{x^2} 2x = 2$$

Moodle Lösung

$$\frac{\partial y_1}{\partial p} + \frac{\partial y_2}{\partial p} = 1
\frac{\partial y_1}{\partial p} y_2 + y_1 \frac{\partial y_2}{\partial p} = 0$$

$$\Rightarrow \frac{\partial y_2}{\partial p} = \frac{y_2}{y_2 - y_1}, \quad \frac{\partial y_1}{\partial p} = \frac{y_1}{y_2 - y_1}
\frac{\partial y_1}{\partial q} + \frac{\partial y_2}{\partial q} = 0
\frac{\partial y_1}{\partial q} y_2 + y_1 \frac{\partial y_2}{\partial q} = 1$$

$$\Rightarrow \frac{\partial y_1}{\partial q} = \frac{1}{y_1 - y_2} = -\frac{\partial y_2}{\partial q}$$

$$k_{11} = \frac{\partial y_1}{\partial p} \frac{p}{y_1} = \frac{y_1}{y_2 - y_1} \frac{p}{y_1} = \frac{y_1 + y_2}{y_1 - y_2} = \frac{1 + y_2/y_1}{1 - y_2/y_1}$$

$$k_{12} = \frac{\partial y_1}{\partial q} \frac{q}{y_1} = \frac{1}{y_1 - y_2} \frac{q}{y_1} = \frac{y_2}{y_1 - y_2} = \frac{1}{1 - y_2/y_1}$$

Moodle Lösung

$$p=4\,,\quad q=3.999\,,\quad y_{1,2}=2\pm0.01\,,$$

$$k_{12} = \frac{1}{1 - y_1/y_2} = 99.5 \Rightarrow fast 100-fache Fehlerverstärkung.$$

3.4.9 Zusammenfassung

- Numerisches Simulationsproblem kann durch mathematisch äquivalente Formulierungen gelöst werden
 - Äquivalente Umformung, die Rundungsfehler möglichst wenig verstärkt
- Vorgehen
 - Analyse der Kondition
 - Auswahl eines mathematisch äquivalenten und numerisch stabilen Berechnungsalgorithmus, der die über die Kondition verursachten Rundungsfehlerverstärkungen nicht verschlechtert

3.4.9 Zusammenfassung

- Vorsicht
 - Bei Subtraktion von nahezu gleich großen Zahlen
 - Bei Berechnung mit relativ großen Zwischenwerten, wobei das Endergebnis relativ klein ist

- Was sollte man bei einem schlecht konditionierten Problem machen?
 - Durchführung der Berechnung in höherer Genauigkeit (d.h. double statt single, quadruple statt double)
 - Modifikation des "schlecht gestellten" Ausgangsproblems, so dass die Konditionszahl kleiner wird ("Regularisierung")

