12. 循环码

目录

生成多项式和数学描述 编 码电 路路

路路

数学描述

• 定义12.1: 若 $(v_0, v_1, ..., v_{n-1}) \in C$, 有 $(v_{n-1}, v_0, ..., v_{n-2}) \in C$, 则称线性分组码C为循环码.

• 循环码C的码字可以写作GF(q)上的多项式:

$$(v_0, v_1, ..., v_{n-1}) \rightarrow v_0 + v_1 x + ... + v_{n-1} x^{n-1}$$

$$\overrightarrow{\mathbb{Z}} v_{n-1} x^{n-1} + ... + v_1 x + v_0$$

数学描述

• 例: (7, 4) 循环Hamming Code

0000000

 $\mathbf{0}$

```
      1010001
      0100011
      0110100
      1000110
      1101000
      0011010
      0001101

      1110010
      1100101
      0010111
      0111001
      1001011
      1011100
      0101110

      1111111
      0111010
      0101110
      0101110
      0101110
```

 $1+x^{2}+x^{6} \quad x+x^{5}+x^{6} \quad x+x^{2}+x^{4} \quad 1+x^{4}+x^{5} \quad 1+x+x^{3} \quad x^{2}+x^{3}+x^{5} \quad x^{3}+x^{4}+x^{6}$ $1+x^{2}+x^{5} \quad 1+x+x^{4}+x^{6} \quad x^{2}+x^{4}+x^{5}+x^{6} \quad x+x^{2}+x^{3}+x^{6}$ $1+x^{3}+x^{5}+x^{6} \quad 1+x^{3}+x^{5}+x^{6} \quad x+x^{3}+x^{4}+x^{5}$ $1+x^{2}+x^{3}+x^{4}+x^{5}+x^{6}$

数学描述

• 码字 $(v_0, v_1, ..., v_{n-1})$ 的i次循环移位 $(v_{n-i}, v_{n-i+1}, ..., v_{n-i-1})$ 可以表示为:

$$\begin{split} &(v_0, v_1, \dots, v_{n-1}) \to v(x), \\ &(v_{n-i}, v_{n-i+1}, \dots, v_{n-i-1}) \to v^{(i)}(x), \\ &v^{(i)}(x) \equiv x^i v(x) \bmod (x^n+1) \\ &x^i v(x) \equiv v^{(i)}(x) + q(x)(x^n+1) \end{split} \qquad \begin{matrix} v_0, v_1, \dots, v_{n-1} \\ \hline v_0, v_1, \dots, v_{n-1} \\ \hline v_0, v_1, \dots, v_{n-1} \\ \hline v_{n-i}, v_{n-i+1}, \dots, v_{n-i-1} \\ \end{matrix}$$

例: $1010001 \rightarrow 循环移位6次 \rightarrow 0100011$ [$x^6(1+x^2+x^6)$] $mod(x^7+1) = x+x^5+x^6$

- 码电路 电路

• 生成多项式g(x)

定义12.2: 循环码C中阶次最低、最高次项系数为1的码多项式称为生成多项式g(x). g(x)中常数项是非零的, $\log_0 \neq 0$.

例: (7,4)循环Hamming Code, $g(x)=1+x+x^3$

• 生成多项式g(x)

定理12.1:循环码的生成多项式g(x)是唯一的.

定理12.2: 设g(x)是循环码C的生成多项式, 码多项式 $v(x) \in C$ 的充要条件是 $g(x) \mid v(x)$.

• 生成多项式g(x)

定理12.2证明:

充分性: 若g(x) |v(x),

 $v(x) = q(x) g(x) = (q_{k-1} x^{k-1} + ... + q_1 x + q_0) g(x),$

由循环码的定义和线性码性质可知,

v(x)必为循环码C的码多项式.

必要性: $若v(x) \in C$, $而g(x) \mid v(x)$ 不成立,

有v(x) = q(x)g(x) + r(x), deg[r(x)] < deg[g(x)]

曲于 $v(x), g(x) \in C, q(x)g(x) \in C, 有r(x) \in C$

这与g(x) 定义相矛盾,

因此必有g(x) v(x).

• 生成多项式g(x)

定理12.3: 设g(x)是码长为n的循环码C的生成多项式,则g(x) x^n+1 .

证明: 由
$$v(x) \in C$$
, $v^{(i)}(x) \in C$
有 $g(x) | v(x), g(x) | v^{(i)}(x)$
而 $v^{(i)}(x) + q(x)(x^n+1) = x^i v(x)$
则有 $g(x) | x^n+1$

• 生成多项式g(x)

定理12.4: g(x)是 (n, k) 循环码C的生成多项式, 则 deg[g(x)] = n-k

v(x)=u(x)·g(x) u(x)—信息多项式 deg[u(x)]≤k-1

• 校验多项式h(x)

定义12.3: 校验多项式 $h(x) = (x^n+1)/g(x)$

性质(1): 校验多项式的阶次: 由 $g(x)h(x)=x^n+1$ $\deg[g(x)] = n-k$ 有 $\deg[h(x)] = k$

• 例: (7,4) 循环Hamming Code: $g(x) = x^3 + x + 1$ $h(x) = (x^7+1) / g(x) = x^4 + x^2 + x + 1$

• 校验多项式h(x)

性质(2): 码多项式v(x)系数的递推关系: $若v(x) \in C$ $\mathbb{N} v(x) h(x) = u(x) g(x) h(x)$ $= u(x) (x^n+1)$ 展开式中i次项系数为零 i = k, k+1, ...n-1 共 n-k 项 即 $\sum_{i=k}^{k} h_{i} v_{i-j} = 0 \quad i = k, k+1, \dots, n-1$

生成多项式和数学描述 码电路 电路

• 系统码生成矩阵

$$\mathbf{G} = \begin{bmatrix} r_{0,0} & r_{0,1} & \cdots & r_{0,n-k-1} & 1 & 0 & \cdots & 0 \\ r_{1,0} & r_{1,1} & \cdots & r_{1,n-k-1} & 0 & 1 & \cdots & 0 \\ & & & & & & & & & \\ r_{k-1,0} & r_{k-1,1} & \cdots & r_{k-1,n-k-1} & 0 & 0 & \cdots & 1 \end{bmatrix}$$

其中
$$r_i(x) = \sum_{j=0}^{n-k-1} r_{i,j} x^j$$
是 $g(x)$ 除 x^{n-k+i} 所得余式.

• 系统码生成矩阵

例: (7, 4)循环Hamming Code

$$g(x) = 1 + x + x^{3}$$

$$x^{3} \text{mod}(1 + x + x^{3}) = 1 + x$$

$$x^{4} \text{mod}(1 + x + x^{3}) = x + x^{2}$$

$$x^{5} \text{mod}(1 + x + x^{3}) = 1 + x + x^{2}$$

$$x^{6} \text{mod}(1 + x + x^{3}) = 1 + x^{2}$$

$$\Rightarrow \mathbf{G} = \begin{bmatrix} 1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 & 1 \end{bmatrix}$$

• 系统码校验矩阵

$$\mathbf{H} = \begin{bmatrix} 1 & 0 & \cdots & 0 & r_{0,0} & r_{1,0} & \cdots & r_{k-1,0} \\ 0 & 1 & \cdots & 0 & r_{0,1} & r_{1,1} & \cdots & r_{k-1,1} \\ & & \cdots & & & & \cdots \\ 0 & 0 & \cdots & 1 & r_{0,n-k-1} & r_{1,n-k-1} & \cdots & r_{k-1,n-k-1} \end{bmatrix}$$

• 系统码校验矩阵

例: (7, 4)循环Hamming Code

$$\mathbf{G} = \begin{bmatrix} 1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{H} = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \end{bmatrix}$$

• 由g(x)构成的生成矩阵

$$\mathbf{G} = \begin{bmatrix} g_0 & g_1 & \cdots & g_{n-k} \\ & g_0 & g_1 & \cdots & g_{n-k} \\ & & \cdots & & & \cdots \\ & & g_0 & g_1 & \cdots & g_{n-k} \end{bmatrix}$$

生成多项式g(x)为:

$$g(x) = g_{n-k}x^{n-k} + g_{n-k-1}x^{n-k-1} + \dots + g_1x + g_0$$

• 由g(x)构成的生成矩阵

$$\mathbf{G} = \begin{bmatrix} g_0 & g_1 & \cdots & g_{n-k} \\ & g_0 & g_1 & \cdots & g_{n-k} \\ & & \cdots & & & \cdots \end{bmatrix} \Rightarrow \begin{bmatrix} g(X) \\ \chi g(X) \\ \vdots \\ \chi^{k-1} g(X) \end{bmatrix}$$

$$v = u \cdot G$$

$$\Rightarrow \left(u_0 \quad u_1 \quad \dots \quad u_{k-1}\right) \cdot \begin{pmatrix} g(X) \\ \chi g(X) \\ \vdots \\ \chi^{k-1} g(X) \end{pmatrix}$$

$$= u_0 g(X) + u_1 \chi g(X) + \dots + u_{k-1} \chi^{k-1} g(X)$$

$$= u(X) \cdot g(X)$$

• 由g(x)构成的生成矩阵

例: (7, 4)循环Hamming Code

$$g(\mathbf{x}) = 1 + \mathbf{x} + \mathbf{x}^3$$

$$\mathbf{G} = \begin{bmatrix} 1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 1 \end{bmatrix}$$

• 由h(x)构成的校验矩阵

$$\mathbf{H} = \begin{bmatrix} h_k & h_{k-1} & \cdots & h_0 \\ & h_k & h_{k-1} & \cdots & h_0 \\ & & \cdots & & & \ddots \\ & & h_k & h_{k-1} & \cdots & h_0 \end{bmatrix}$$

校验多项式h(x)为:

$$h(x) = h_k x^k + h_{k-1} x^{k-1} + \dots + h_1 x + h_0$$

$$H \cdot G = 0$$

$$h(x) \cdot g(x) = x^{n} + 1$$

• 由h(x)构成的校验矩阵

例: (7, 4)循环Hamming Code

$$h(x) = (x^7+1) / g(x) = x^4 + x^2 + x + 1$$

$$\mathbf{H} = \begin{bmatrix} 1 & 0 & 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \end{bmatrix}$$

生成多项式和数学描述 码电路 电路

• 按g(x)构造的系统码编码电路

• 按g(x)构造系统码编码电路

- 输入信息多项式u(x),编码器循环反馈移位并同时 输出
- 经过k拍后, 在移位寄存器中得到n-k位余式系数, 对应码字多项式v(x)的低n-k项系数
- 停止输入,经过n-k拍输出移位寄存器中的n-k位余 式系数
- 完成k位信息的编码,输出n位编码码字

• 按h(x)构造系统码编码电路

根据递推公式
$$\sum_{j=0}^{k} h_{j} v_{i-j} = 0 \quad i = k, k+1, \dots, n-1$$
因为 $h_{k} = 1$, $v_{i-k} = \sum_{j=0}^{k-1} h_{j} v_{i-j}$ $i = k, k+1, \dots, n-1$
即 $v_{n-k-1} = h_{0} v_{n-1} + h_{1} v_{n-2} + \dots + h_{k-1} v_{n-k}$

$$= h_{0} u_{k-1} + h_{1} u_{k-2} + \dots + h_{k-1} u_{0}$$

$$v_{n-k-2} = h_{0} v_{n-2} + h_{1} v_{n-3} + \dots + h_{k-1} v_{n-k-1}$$

$$\vdots$$

$$v_{0} = h_{0} v_{k} + h_{1} v_{k-1} + \dots + h_{k-1} v_{1}$$

• 按h(x)构造系统码编码电路

• 按h(x)构造系统码编码电路

- 输入的信息多项式u(x)在全部移入寄存器的同时输出
- · 经k拍移位后,再断开输入并接通反馈开关
- 经过n-k拍的循环反馈移位,得到并输出码字多项式v(x)的后n-k位系数(校验位)

上述的编码电路也可以用来计算相应H矩阵的伴随式.

• 系统码编码电路举例

```
例: (7, 4) 循环Hamming Code
g(x) = x^3 + x + 1
h(x) = (x^7 + 1) / (x^3 + x + 1) = x^4 + x^2 + x + 1
设信息矢量 \mathbf{u} = (1011)
用g(x)去除u(x) \cdot x^{n-k} = (1 + x^2 + x^3) \cdot x^{n-k}
得余式 r(x) = 1
编码码字: v(x) = u(x) \cdot x^{n-k} + r(x) = 1 + x^3 + x^5 + x^6
\mathbf{v} = (1001011)
```

前4拍: K1在位置1, K2闭合

后3拍: K1在位置2, K2打开

K2
2 输出 K1
輸入

• 例(cont.):

输入	反馈	移存器内容			输出
		0	0	0	
1	1	1	1	0	1
1	1	1	0	1	1
0	1	1	0	0	0
1	1	1	0	0	1
					0
					0
					1

根据差分方程

$$\mathbf{v}_{3-i} = 1 \times \mathbf{v}_{7-i} + 1 \times \mathbf{v}_{6-i} + 1 \times \mathbf{v}_{5-i} + 0 \times \mathbf{v}_{4-i}$$
 $\mathbf{i} = 1, 2, 3$
 $\mathbf{l} \mathbf{u} = (1\ 0\ 1\ 1)$, $\mathbf{l} \mathbf{v}_3 = 1$, $\mathbf{v}_4 = 0$, $\mathbf{v}_5 = 1$, $\mathbf{v}_6 = 1$
 $\mathbf{v}_2 = \mathbf{v}_6 + \mathbf{v}_5 + \mathbf{v}_4 = 0$
 $\mathbf{v}_1 = \mathbf{v}_5 + \mathbf{v}_4 + \mathbf{v}_3 = 0$
 $\mathbf{v}_0 = \mathbf{v}_4 + \mathbf{v}_3 + \mathbf{v}_2 = 1$
 $\mathbf{v} = (1\ 0\ 0\ 1\ 0\ 1\ 1)$

生成多项式和数学描述 路路

33

译码电路

• 译码步骤

- (1) 计算伴随多项式 s(x)
- (2) 由s(x)确定错误图案多项式 e(x)
- (3) 输出 $\hat{v}(x) = r(x) e(x)$

译码电路

• 伴随多项式

35

```
接g(x)构造的伴随多项式: 
若v(x) \in 循环码C, 则g(x) \mid v(x) 定义接收多项式r(x)的伴随多项式 s(x) \equiv r(x) \bmod g(x) \deg[s(x)] \leq n-k-1
```

译码电路

• 伴随多项式

性质1: 在以g(x)为除式的除法电路中, 输入 r(x)做n 次循环反馈移位后相当于

r(x) mod g(x) 若r(x) 从最低位(左侧)输入

r(x)·x^{n-k} mod g(x) 若r(x) 从最高位(右侧)输入

• 伴随多项式

性质2: g(x)除法电路中寄存的 $s(x) = r(x) \mod g(x)$ 作一次循环反馈移位得到

$$s^{(1)}(x) \equiv x \ s(x) \ \text{mod} \ g(x)$$

$$= x \ r(x) \ \text{mod} \ g(x) = r^{(1)}(x) \ \text{mod} \ g(x)$$
其中 $r^{(1)}(x)$ 为 $r(x)$ 的一次循环移位.

$$x^{i}v(x) = v^{(i)}(x) + q(x)(x^{n}+1)$$

• 伴随多项式

2019/3/11

• 捕获错误图案

循环移位等价的错误图案多项式, 其伴随多项式也可通过循环反馈移位得到, 简化了 s(x)→e(x) 的计算.

• 捕获错误图案

S_2

• 捕获错误图案

• 如果循环码能纠正单个错误,

若
$$s(x) = 0$$
,则 $e(x) = 0$;

若 $s(x) \neq 0$, 已知 $e_{n-1}(x) = x^{n-1}$ 对应的 $s_{n-1}(x)$

如果某个错误图案e(x)对应的伴随式s(x)循环反馈移位i次后, $s^{(i)}(x) = s_{n-1}(x)$,

则相应的单个错误发生在 (n-1-i) mod n 位上.

• 译码电路举例

例: (7,4) 循环汉明码

• 译码电路举例

例: 设发码 $\mathbf{v} = (1001011)$, $\mathbf{v}(\mathbf{x}) = 1 + \mathbf{x}^3 + \mathbf{x}^5 + \mathbf{x}^6$ 收码 $\mathbf{r} = (1011011)$, $\mathbf{r}(\mathbf{x}) = 1 + \mathbf{x}^2 + \mathbf{x}^3 + \mathbf{x}^5 + \mathbf{x}^6$

	伴随	式寄存器 缓冲寄存器			纠错						
经过7拍移位后	0	0	1	1	0	1	1	0	1	1	0
第1次移位	1	1	0	1	1	0	1	1	0	1	0
第2次移位	0	1	1	1	1	1	0	1	1	0	0
第3次移位	1	1	1	0	1	1	1	0	1	1	0
第4次移位	1	0	1	1	0	1	1	1	0	1	1
第5次移位	0	0	0	0	1	0	1	1	1	0	0
第6次移位	0	0	0	0	0	1	0	1	1	1	0
第7次移位	0	0	0	1	0	0	1	0	1	1	0

• "捕获"译码电路基本结构

生成多项式数学描述 码电路 电路

• 循环Hamming Code

- 主要参数 码长 $n = 2^{m}-1$ 信息位数 $k = 2^{m}-1-m$ 生成多项式是GF(2)上m次本原多项式
- 例: (7,4) 循环Hamming Code: $g(x) = x^3 + x + 1,$ $h(x) = (x^7+1) / g(x) = x^4 + x^2 + x + 1$

• 循环Golay 码

(23, 12) 循环Golay码的生成多项式为:

$$g(x) = x^{11} + x^9 + x^7 + x^6 + x^5 + x + 1$$

码间最小距离 d_{min} = 7

	码字数目	码字数目
重 量	(23, 12)码	(24, 12)码
0	1	1
7	253	0
8	506	759
11	1288	0
12	1288	2576
15	506	0
16	253	759
23	1	0
24	0	1

• 极长码

▶定义14.2: 对于任意整数 m≥3, 都存在具有下列参数的极长码:

码长: $n = 2^m - 1$

信息位: k=m

最小距离: d = 2^{m-1}

生成多项式: $g(x) = (x^{n+1})/p(x)$

p(x)是m阶本原多项式

极长码由一个全零码字和2^m - 1个重量为2^{m-1} 的码字组成

• 极长码

- ▶ 极长码的对偶码
 - 极长码的校验多项式p(x)是m次本原多项式

为生成多项式可生成一个(2^m-1, 2^m-m-1)循环汉明码

▶ (2^m- 1, m)极长码的对偶码是(2^m-1, 2^m-m-1)循环汉明码

• 极长码

$$\mathbf{G} = \begin{bmatrix} g_0 & g_1 & \cdots & g_{n-k} & & & & \\ & g_0 & g_1 & \cdots & g_{n-k} & & & \\ & & \cdots & & & \cdots & & \\ & & g_0 & g_1 & \cdots & g_{n-k} \end{bmatrix} \qquad \mathbf{G}^{\perp} = \begin{bmatrix} h_k & h_{k-1} & \cdots & h_0 & & \\ & h_k & h_{k-1} & \cdots & h_0 & & \\ & & \cdots & & & \cdots & h_k & h_{k-1} & \cdots & h_0 \end{bmatrix}$$

$$\mathbf{H} = \begin{bmatrix} h_k & h_{k-1} & \cdots & h_0 & & & \\ & h_k & h_{k-1} & \cdots & h_0 & & \\ & & h_k & h_{k-1} & \cdots & h_0 & & \\ & & \cdots & & \cdots & & \\ & & h_k & h_{k-1} & \cdots & h_0 \end{bmatrix} \qquad \mathbf{g}^{\perp}(x) = h_0 x^k + h_1 x^{k-1} + \cdots + h_{k-1} x + h_k \\ = x^k h(x^{-1}) = h^*(x)$$

$$h(x) = h_k x^k + h_{k-1} x^{k-1} + \dots + h_1 x + h_0$$

	循环码C	对偶码C [⊥]
生成矩阵	G	$G_{\top}=H$
校验矩阵	H	\rightarrow H $^{\perp}$ =G
生成多项式	g(x) *	$g^{\perp}(x) = h^*(x)$
校验多项式	h(x) ¿	$h^{\perp}(x) = g^*(x)$
举例	循环汉明码 n=2 ^m -1 k=2 ^m -m-1	极长码 n=2 ^m -1 k=m
	生成多项式为m次本元多项式	校验多项式为m次本元多项式

• 极长码

52

- 编码器: 由 h(x)构造的m级循环反馈移位寄存器
- 应用:用作PN码,应用于扰码及扩展频谱信号的产生

• 极长码

例: (7, 3) 极长码, m=3 取 $h(x) = x^3 + x^2 + 1$

	移存	输出		
初值	1	0	0	_
1	1	1	0	0
2	1	1	1	1
3	0	1	1	1
4	1	0	1	1
5	0	1	0	0
6	0	0	1	1
7	1	0	0	0

作业

• 习题12.1, 12.2, 12.3, 12.8