Aprendizado de Máquina e Reconhecimento de Padrões 2021.2

Hyperparameter Optimization (Fine-tuning)

Prof. Dr. Samuel Martins (Samuka)

samuel.martins@ifsp.edu.br

Model Hyperparameters

Properties that are **external** to the model and whose value **cannot be estimated/learned from data.**

Examples:

- Imputer's strategy: 'median'
- Number of neighbors for KNN: 3

Model Parameters

Properties that are **internal** to the model and whose value **can be estimated/learned from data**.

Examples:

- Estimated value for missing values: 20 (median)
- Estimated coefficients of a linear regression.

Filling in missing values (imputer)

Hyperparameter Optimization (Fine-tuning)

• It is the problem of choosing a set of **optimal values for hyperparameters** for a **learning algorithm** and **data**.

A B 1 9 3 14 4 12 8 18

$$\mathbf{\phi}^* = \operatorname{argmax}_{\mathbf{\phi}_i \in \Psi} f(\mathbf{\phi})$$

 Ψ : all hyperparameter combinations/sets

 ϕ_i : i-th hyperparameter combination/set from Ψ

 $f(oldsymbol{\phi})$: training and validation of the ML algorithm with $oldsymbol{\phi}$

 ϕ^* : optimum hyperparameter combination

Holdout Strategy

Holdout Strategy

Choose the hyperparameter combination with the best metric

φ*: A 1 18 B

k-Fold Strategy

Set aside the test set and split the train set into k folds

Por each hyperparameter combination $φ_i ε Ψ$

hyperparameters

TRAIN TEST fold 1 fold 2 fold 3 fold k typically 5 or 10 $\epsilon_i^{(\phi_i)}$: validation metric in **split** j for development set **VALIDATION TRAIN-DEV** hyperpameter set φ_i validation metric $\epsilon_1^{(oldsymbol{\phi}_1)}$ $\epsilon_1^{(\mathbf{\phi}_2)}$ fold k fold 2 fold 3 fold 1 split 1 ••• $\epsilon_2^{(oldsymbol{\phi}_1)}$ $\epsilon_2^{(\mathbf{\phi}_2)}$ fold 1 fold 2 fold 3 fold k cross-validation metric split 2 ••• $\bar{\epsilon}^{(\phi_1)}$ $\bar{\epsilon}^{(\phi_2)}$ ••• ••• ••• ••• $\epsilon_k^{(\mathbf{\phi}_1)}$ $\epsilon_k^{(\mathbf{\phi}_2)}$ fold 1 fold 2 fold 3 fold k split k ••• ••• average train a model compute metric on validation

Choose the hyperparameter combination with the best metric

φ*: **A** 1 18 B

k-Fold Strategy

Set aside the test set and split the train set into k folds

hyperparameters

Choose the hyperparameter combination with the best metric

φ*: **A** 1 18 B

Search Space for Fine-Tuning

Grid Search

Randomized Search

Aprendizado de Máquina e Reconhecimento de Padrões 2021.2

Hyperparameter Optimization (Fine-tuning)

Prof. Dr. Samuel Martins (Samuka)

samuel.martins@ifsp.edu.br

