ECUACIONES DIFERENCIALES II Problemas 3

- Je considera el problema de Cauchy $\dot{x}=X|t_1x)$, $x|t_0\rangle=x_0$ donde $X:\mathbb{R}\times\mathbb{R}\to\mathbb{R}$ es continua y cumple que para cada $t\in\mathbb{R}$, la función $x\mapsto X(t,x)$ es monótona no decreciente. Demuestra que hay unicidad hacia el pasado; es deix, si $x_i:I_i\to\mathbb{R}, i=I_12$ son dos voluciones, entonces $x_1|t\rangle=x_2|t\rangle$ si $t\in I_1\cap I_2\cap I_2\cap I_3$. (Sugerencia: usa la función $(x_1(t)-x_2(t))^2$).
- (15) Consideramos la serración x = x 1/3.
 - a) Si $x: I \to \mathbb{R}$ es una volución que cumple x(E) = 0 para algún $t \in I$, entonces x(t) = 0 Si $t \in I$, $t \leq T$.
 - b) Demuestra que hay unicidad para el problema de valores. iniciales con condición inicial $x|t_0\rangle = x_0 \neq 0$.
 - c) Generaliza lo antervir a la emaint $\dot{x} = g(x)$ donde $g \in C(R) \cap C'(R_1\{0\})$, g(0) = 0, g'(x) > 0 Si $x \neq 0$.
- (16) Se considera un sistema del tipo $\dot{x} = X(t,x)$ donde $X: \mathbb{R} \times \mathbb{R}^d \rightarrow \mathbb{R}^d$ está en $C^{0,1}$ y es 2π -periódica en t, $X(t+2\pi,x) = X(t,x)$ $\forall (t,x) \in \mathbb{R} \times \mathbb{R}^d$.

 $C^{0,1}$: X continua + $J \frac{\partial X}{\partial x}$, $(t,x) \mapsto \frac{\partial X}{\partial x} (t,x)$ continua

- a) Una Johnion X:R-, Rd es 2TT-periódica si y John Si XIO)=X(2TT)
- b) La función $x(t) = t^2 + sent$ no puede ser solución de una ecuación de las consideradas en este ejercició (d=1).
- c) Una funior $x \in C(R, R^d)$ es solución 2π -periódice si y solo si cumple la ecuación integral $x(t) = x(2\pi) + \int_{-\infty}^{t} x(s,x(s)) ds, t \in \mathbb{R}.$
- (17) Remelre les emaciones intégrales signientes

i)
$$\times (t) = \times (2\pi) + \int_0^t \times (s) sens ds$$

ii)
$$x(t) = x(0) + \int_0^t sen x(s) ds$$

$$(iii)$$
 $\times (t) = \times (2\pi) + \int_0^t \operatorname{Jen} \times (s) ds$

$$W$$
) $\times (t) = \int_{1}^{t} \times (s) (1-x(s)) ds$

$$V) \times (t) = X(2) + \int_{1}^{t} x(s)^{2} ds$$

(18) Resuelve los problemas de valores iniciales siguientes

(i)
$$\dot{x} = 2x^+, x(t_o) = x_o$$

$$(\bar{u})$$
 $\stackrel{\circ}{\times} = \left(\frac{\times}{t}\right)^{+}$, $\times (1) = 0$

donde
$$\xi^{\dagger} = \max(\xi, 0)$$
.