0.1. 三角関数 1

0.1 三角関数

0.1.1 円周率

すべての円は、お互いを拡大もしくは縮小した関係にある。

円 C_2 が、円 C_1 を k 倍に拡大したものだとすると、その直径や円周も C_1 の k 倍となる。

$$d_2 = k \cdot d_1$$
$$l_2 = k \cdot l_1$$

この2つの式を各辺どうし割ることで、kが約分されて消え、直径と円周の比が等しくなることがわかる。

$$\frac{d_2}{l_2} = \frac{d_1}{l_1}$$

円の直径と円周の比すべての円において、直径と円周の長さの比は一定である。

そして、この一定の比率は、円周率πとして知られている。

 π の定義式を変形すると、円周の長さを求める式が得られる。 半径をrとすると、直径 d=2r であるから、

$$l = \pi \cdot d = 2\pi r$$

	1 9-	
$t = 2\pi r$	$t = 2\pi r$	

0.1.2 直角三角形の相似

ある図形のすべての辺をr倍したとき、元の図形とr倍後の図形は相似であるという。

元の図形の辺の比をa:b:cとすると、r 倍後の図形の辺の比はra:rb:rc=a:b:cとなる。 このように、相似な図形同士の辺の比は等しい。

2 つの角が一致する三角形同士は相似

三角形の内角の和は 180° であるから、2 つの角の大きさが等しければ、もう 1 つの角の大きさも等しくなる。

つまり、2 つの角の大きさが一致する 2 つの三角形は、辺の間の角度は変わらず、各辺の長さを一 定倍したものなので、相似といえる。

「辺の間の角度がすべて同じ」ことと「各辺の長さが一定倍されている」ことがうまく結びつか ない人は、次の図を見てみよう。

もしも辺の長さの拡大率が辺によって異なるとしたら、辺の間の角度を変えない限り、頂点として辺同士を結ぶことができない。

0.1. 三角関数 3

1 つの鋭角が一致する直角三角形同士は相似

ある1つの角が直角である三角形を、直角三角形という。

2つの角が一致する三角形同士が相似であるなら、直角三角形の場合は、1つの鋭角が一致するだけで相似であることがわかる。

つまり、鋭角が等しいすべての直角三角形は、お互いを拡大もしくは縮小した関係(互いに相似の関係)にあり、3辺の比も等しくなる。

言い換えれば、

直角三角形の3辺の比は、1つの鋭角の大きさで決まる

ということになる。

0.1.3 三角比

0.1.4 扇形の弧長と角

扇形の弧の長さ

扇形の弧長と半径による中心角の表現