Chapitre 22

Espaces de dimension finie

22	Espaces de dimension finie	1
	22.3 Nombre maximal de vecteurs linéairement indépendants	2
	22.5 Algroithme de la base incomplète	2

22.3 Nombre maximal de vecteurs linéairement indépendants

Propostion 22.3

Soit E un \mathbb{K} -ev de dimension finie engendré par n éléments. Alors toute partie libre de E possède au plus n éléments.

Soit G une famille génératrice de E avec $G = (g_1, \ldots, g_n)$. Soit \mathcal{L} une famille libre de E. Supposons par l'absurde que $|\mathcal{L}| > n$. Pour $k \in [1, n]$, on note :

P(k): "E est engendré par n-k vecteurs de G et k vecteurs de \mathcal{L} "

Pour k = 0, la famille convient.

On suppose que pour $k \in [0, n-1]$, $E = Vect(\underbrace{g_1, \dots, g_{n-k}}_{\in G}, \underbrace{l_1, \dots, l_k}_{\in L})$

Comme $l_{k+1} \in E$, on écrit $l_{k+1} = \sum_{i=1}^{n-k} \alpha_i g_i + \sum_{i=1}^k \beta_i l_j$.

Comme \mathcal{L} est libre, $l_{k+1} \notin Vect(l_1, \ldots, l_k)$.

Donc il existe $i \in [1, n-k], \alpha_i \neq 0$ et quitte à renommer les g_i , on peut supposer $\alpha_{n-k} \neq 0$ et ainsi :

$$g_{n-k} \in Vect(g_1, \dots, g_{n-k}, l_1, \dots, l_k, l_n + 1)$$

Ainsi:

$$E = Vect(g_1, \dots, g_{n-k}, l_1, \dots, l_k, l_{k+1})$$

Par récurrence, P(k) est vraie pour $k \in [0, n]$, en particulier, P(n) est vraie. $(l1, \ldots, l_n)$ est une base de E. Or $l_{n+1} \in E$ et (l_1, \ldots, l_{n+1}) libre. Absurde.

22.5 Algroithme de la base incomplète

Théorème 22.5

Soit $E \neq \{0\}$ un \mathbb{K} -ev de dimension finie et $\{x_i\}_{1 \leq i \leq n}$ une partie génératrice de E dont les p premiers vecteurs sont linéairement indépendants. Dans ces conditions, E possède une base constituée des vecteurs x_1, \ldots, x_p et de certains vecteurs x_{p+1}, \ldots, x_n .

On utilise l'algorithme suivant :

On initialise $\mathcal{F} = (x_1, \dots, x_p)$. Pour tout $k \in [p+1, n]$:

- Si $x_k \in Vect(\mathcal{F})$, on laisse \mathcal{F} invariant.
- Si $x_k \notin Vect(\mathcal{F})$, on remplace \mathcal{F} par $\mathcal{F} \cup \{x_k\}$.

L'algorithme s'arrête en temps fini.

La famille \mathcal{F} obtenue est libre, elle est également génératrice car :

$$\forall i \in [1, n], x_i \in \mathcal{F} \text{ ou } x_i \in Vect(\mathcal{F})$$

Donc $E = Vect(x_i)_{i \in [\![1,n]\!]} \subset Vect(\mathcal{F}) \subset E$. Donc \mathcal{F} est une base.