Agnostic Learning

Thus far, $c \in H$ is assumed to achieve zero training error of hypotheses. In this setting, $c \in H$ is not assumed. So, agnostic learner L selects hypothesis h^* with minimum training error

How many training examples suffice to guarantee that $error_{Q}(h^{*}) < error_{D}(h^{*}) + \epsilon$ with probability of at least $1 - \delta$?

- 1. $P(error_Q(h) \ge error_D(h) + \epsilon) \le \exp(-2|D|\epsilon^2)$, by Hoeffding's inequality
- 2. $P(\exists h \in H \ error_Q(h) \ge error_D(h) + \epsilon) \le |H| \exp(-2|D|\epsilon^2)$, by union bound
- 3. To determine the no. |D| of training examples required to reduce this probability to be at most δ , $|H| \exp(-2|D|\epsilon^2) \le \delta$.
- 4. Then, $|D| \ge (1/(2\epsilon^2)) (\ln |H| + \ln (1/\delta))$.

Shattering a Set of Instances

Definition. A **dichotomy** $(Y, S \setminus Y)$ of a set S is a partition of S into two disjoint subsets $Y \in 2^S$ and $S \setminus Y$.

Definition. A hypothesis $h \in H$ is **consistent** with a dichotomy $(Y, S \setminus Y)$ of a set S of input instances iff

$$(\forall x \in Y \ h(x) = 1) \land (\forall x \in S \backslash Y \ h(x) = 0)$$
.

Definition. A set of input instances $S \subseteq X$ is **shattered** by hypothesis space H iff for every dichotomy of S, there exists some hypothesis in H that is consistent with this dichotomy.

Vapnik-Chervonenkis (VC) Dimension

Can *H* shatter a large subset *S* of *X*? Larger *S* implies more expressive *H*.

Definition. The **Vapnik-Chervonenkis dimension** VC(H) of hypothesis space H defined over instance space X is the size of the largest finite subset of X shattered by H. If arbitrarily large finite sets of X can be shattered by H, then $VC(H) = \infty$.

Proposition 1. For any finite $H, VC(H) \le \log_2 |H|$.

Implication. Sample complexity can be potentially reduced if the $\ln |H|$ term can be replaced by VC(H). See Theorem 3 later.

Vapnik-Chervonenkis (VC) Dimension

Example 1. $X = \mathbb{R}$, $H = \text{real intervals } (a, b) \text{ where } a, b \in \mathbb{R}$.

Example 2. X = x, y plane, H = linear decision surfaces (recall hypothesis space of perceptron unit with 2 inputs)

How many training examples will ϵ -exhaust $VS_{H,D}$ using VC Dimension?

Theorem 3 (Blumer et al. 1989). Let $0 < \epsilon, \delta \le 1$. If D is a set of independent random examples of some target concept c s.t. $|D| \ge (1/\epsilon)$ (8 $VC(H) \log_2 (13/\epsilon) + 4 \log_2 (2/\delta)$), then the probability that $VS_{H,D}$ is ϵ -exhausted (w.r.t. c) is at least $1 - \delta$:

 $P(\forall h \in VS_{H,D} \ error_Q(h) < \epsilon) \ge 1 - \delta$.