Lecture 1: Gaussian Random Element

Tianpei Xie

Jul. 8th., 2015

Contents

1	Gau	ussian Vector and its Distributions	2
	1.1	Univariate Case	2
	1.2	Multivariate Case	3
2 Ga		ıssian Random Element	5
	2.1	Gaussian Random Element in Topological Vector Space	5
	2.2	Examples of Gaussian Random Elements	6
	2.3	Gaussian Random Process	9
	2.4	Examples of Gaussian Random Processes	10

1 Gaussian Vector and its Distributions

1.1 Univariate Case

• Definition (Gaussian Random Variable)

Let $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ be a measurable space, where $\mathcal{B}(\mathbb{R})$ is the Borel σ -algebra on \mathbb{R} . A real-valued random variable X is **Normally distributed** or **Gaussian** with expectation $\mu \in \mathbb{R}$ and variance $\sigma^2 > 0$, if its **distribution density** with respect to Lebesgue measure is

$$p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right).$$

- Remark The followings are properties to the Gaussian distribution
 - 1. The c.d.f. for the standard Normal distribution $\mathcal{N}(0,1)$ is

$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} \exp(-u^2/2) du$$

- 2. p(x) is **unimodal**, **symmetric** about the mean μ and it is **uniformly bounded** on \mathbb{R} . which has a **unique maximum** $\frac{1}{\sqrt{2\pi\sigma^2}}$ at the mean $x = \mu$.
- 3. The Normal distribution has *super-exponential decay tail*; that is, when x moves away from μ , p(x) decreases *monotonically* and *very fast*.
- 4. The **barycenter** (or the center of gravity) of $\mathcal{N}(\mu, \sigma^2)$ is $x = \mu$ due to $\int (x-\mu)p(x)dx = 0$; and the **second central moment** $\int (x-\mu)^2p(x)dx = \sigma^2$.
- 5. The characteristic function (Fourier transforms) and moment generating function (Laplace transforms)

$$\mathcal{F}\left\{p\right\} = \mathbb{E}_p\left[\exp(i\omega x)\right] = \exp\left(i\mu\omega - \frac{1}{2}\omega^2\sigma^2\right)$$
$$\mathcal{L}\left\{p\right\} = \mathbb{E}_p\left[\exp(sx)\right] = \exp\left(s\mu + \frac{1}{2}s^2\sigma^2\right)$$

6. $\mathcal{N}(\mu_1, \sigma_1^2) * \mathcal{N}(\mu_2, \sigma_2^2) = \mathcal{N}(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$, where * is the **convolution operation**. In other words, the family $\{\mathcal{N}(\mu, \sigma^2)\}$ is **stable** with respect to convolutions

$$\mathcal{P}_1 * \mathcal{P}_2(A) \equiv \int_r \mathcal{P}_1(A-r)\mathcal{P}_2(dr), \ A \in \mathcal{B}^1.$$

7. The **Gaussian measure** is **convex**. (Note not the density function p(x) but the measure $d\mathcal{P} = p(x)dx$). That is, for any sets $A, B \in \mathcal{B}(\mathbb{R})$, and each $\gamma \in [0, 1]$,

$$\gamma g(\mathcal{P}(A)) + (1 - \gamma)g(\mathcal{P}(B)) \le g(\mathcal{P}(\gamma A + (1 - \gamma)B))$$

where $g: \mathbb{R}_+ \to \mathbb{R}_+$ is a normalizing function. For Gaussian measure, $g = \Phi^{-1}$ the inverse c.d.f.

2

1.2 Multivariate Case

• Definition (Standard Gaussian Random Vector) A random vector $X = (X_j)_{j=1}^n \in \mathbb{R}^n$ is called <u>standard Gaussian</u>, if its components are independent and have a standard normal distribution. The distribution of X has a density

$$p(\boldsymbol{x}) = \frac{1}{(2\pi)^n} \exp\left(-\frac{1}{2}\boldsymbol{x}^T\boldsymbol{x}\right), \text{ for } \boldsymbol{x} \in \mathbb{R}^n.$$
 (1)

• Definition (Gaussian Random Vector)

A random vector $Y \in \mathbb{R}^n$ is called <u>Gaussian</u>, if it can be represented as Y = a + LX, where X is a standard Gaussian vector, $\mathbf{a} \in \mathbb{R}^n$, and $L : \mathbb{R}^n \to \mathbb{R}^n$ is a **linear mapping**.

Equivalently,

Definition (Gaussian Random Vector)

A random vector $Y \in \mathbb{R}^n$ is called <u>Gaussian</u>, if $\langle v, Y \rangle$ is a Normal random variable for each $v \in \mathbb{R}^n$.

• Definition (Covariance Operator for Gaussian Random Vector) Given a Gaussian random vector $X = (X_j)_{j=1}^n$, define the <u>covariance operator</u> as a linear mapping $K_X : \mathbb{R}^n \to \mathbb{R}^n$ such that

$$cov(\langle u, X \rangle, \langle v, X \rangle) = \langle u, K_X(v) \rangle.$$

The matrix representation of K_X is called a **covariance matrix**

$$\mathbf{K} = [K(i,j)]_{i,j=1}^n \in \mathbb{R}^{n \times n}, \quad \text{where } K(i,j) = \langle e_i, K_X(e_j) \rangle.$$

• Remark (The Covariance Operator is Self-Adjoint and Positive)

The covariance operator K is self-adjoint $(K_X^* = K_X)$, positive semi-definite $K \succeq 0$.

This is due to the symmetry and positive definiteness property of inner product.

Equivalently, the covariance matrix K is symmetric, positive semi-definite.

• Remark (Density for Multivariate Gaussian) In the case, when the linear mapping L is invertible (non-degenerate), the multivariate Normal distribution $\mathcal{N}(\mu, K)$ can be defined via its density function w.r.t. the Lebesgue measure on \mathbb{R}^n

$$p(\boldsymbol{x}) = \frac{1}{\sqrt{(2\pi)^n \det(|\Sigma|)}} \exp\left(-\frac{1}{2}(\boldsymbol{x} - \boldsymbol{\mu})^T \boldsymbol{K}^{-1}(\boldsymbol{x} - \boldsymbol{\mu})\right)$$
(2)

• Remark The expression for density in (2) holds only if the linear operator L is invertible; that is, the general definition used is the linear projection definition. [Lifshits, 2013]

If L is singular, K is singular, i.e., det K = 0; there is no proper density expression as (2). On the other hand, for every K nonnegative definite, $L = K^{1/2}$ exists and is nonnegative definite as well.

• Remark (The Characteristic Function of Multivariate Gaussian)

The characteristic functions of $\mathcal{N}(\boldsymbol{\mu}, K)$ is determined by its one-dimension projection

$$\varphi(\boldsymbol{v}) = \int \exp\left(i\langle \boldsymbol{x}, \boldsymbol{v}\rangle\right) \mathcal{P}(d\boldsymbol{x})$$

$$= \int \exp\left(ir\right) \mathcal{P}^{\boldsymbol{v}}(dr)$$

$$= \exp\left(i\mu^{\boldsymbol{v}}\omega - \frac{1}{2}\sigma^{2}(\boldsymbol{v})\omega^{2}\right)\Big|_{\omega=1}$$

$$= \exp\left(i\langle \boldsymbol{\mu}, \boldsymbol{v}\rangle - \frac{1}{2}\langle K\boldsymbol{v}, \boldsymbol{v}\rangle\right)$$
(3)

The equation (3) is known as the *characteristic functional* of measure \mathcal{P} .

Use the affine mapping $\mu + L\mathcal{P}_0$, the characteristic functional is given by

$$\varphi(\boldsymbol{v}) = \int \exp\left(i\left\langle \boldsymbol{\mu} + L\boldsymbol{x}, \, \boldsymbol{v}\right\rangle\right) \mathcal{P}_0(d\boldsymbol{x})$$

$$= \exp\left(i\left\langle \boldsymbol{\mu}, \, \boldsymbol{y}\right\rangle\right) \int \exp\left(i\left\langle L\boldsymbol{x}, \, \boldsymbol{v}\right\rangle\right) \mathcal{P}_0(d\boldsymbol{x})$$

$$= \exp\left(i\left\langle \boldsymbol{\mu}, \, \boldsymbol{y}\right\rangle\right) \int \exp\left(i\left\langle \boldsymbol{x}, \, L^*\boldsymbol{v}\right\rangle\right) \mathcal{P}_0(d\boldsymbol{x})$$

$$= \exp\left(i\left\langle \boldsymbol{\mu}, \, \boldsymbol{y}\right\rangle - \frac{1}{2}\left\langle L^*\boldsymbol{v}, \, L^*\boldsymbol{v}\right\rangle\right)$$

$$= \exp\left(i\left\langle \boldsymbol{\mu}, \, \boldsymbol{y}\right\rangle - \frac{1}{2}\left\langle LL^*\boldsymbol{v}, \, \boldsymbol{v}\right\rangle\right)$$

$$= \exp\left(i\left\langle \boldsymbol{\mu}, \, \boldsymbol{y}\right\rangle - \frac{1}{2}\left\langle LL^*\boldsymbol{v}, \, \boldsymbol{v}\right\rangle\right)$$

And the density is computed, for L invertible, by change of variable for $y = \mu + Lx$

$$p_{\boldsymbol{\mu},K}(\boldsymbol{y}) = \left| \det L \right|^{-1} p(\boldsymbol{x})$$
$$= (2\pi)^{n/2} \left| \boldsymbol{K} \right|^{-1/2} \exp\left(-\left\langle K^{-1}(\boldsymbol{y} - \boldsymbol{\mu}), \, \boldsymbol{y} - \boldsymbol{\mu} \right\rangle / 2 \right)$$

- Proposition 1.1 (Existence and Uniqueness of Gaussian Distribution) [Lifshits, 2013] Let \mathcal{P} be a Gaussian distribution in \mathbb{R}^n . Then the mean value μ and the covariance operator K of the measure \mathcal{P} exist and are uniquely defined. The operator K is symmetric and positive definite.
- Proposition 1.2 (Gaussian Random Vector from Kernel) [Lifshits, 2013] Assume $\mu \in \mathbb{R}^n$ and $K : \mathbb{R}^n \to \mathbb{R}^n$ is nonnegative definite linear operator. Then there exists a unique Gaussian distribution $\mathcal{N}(\mu, K)$ with mean μ and covariance operator K. The characteristic functional of $\mathcal{N}(\mu, K)$ has the form of (3). If the operator K is non-singular, the distribution $\mathcal{N}(\mu, K)$ is absolutely continuous with respect to the Lebesgue measure, and its density is of form (2). There are no other Gaussian distribution in \mathbb{R}^n , except for the form $\mathcal{N}(\mu, K)$.

2 Gaussian Random Element

2.1 Gaussian Random Element in Topological Vector Space

Definition (Random Element in Topological Vector Space)
Let (Ω, F, P) be a probability space, (X, B) be a topological vector space with σ-algebra
B. A random element in X is a F/B-measurable function X : Ω → X so that

$$X^{-1}(A) \in \mathscr{F}, \quad \forall A \in \mathscr{B}.$$

We write $X \in \mathcal{X}$.

• Definition (Duality)

Let \mathcal{X}^* be the dual space of \mathcal{X} , i.e. the space of bounded linear functional on \mathcal{X} .

We denote $\langle f, x \rangle$ the **duality** between the spaces X and X*, i.e.

$$\langle f, x \rangle := f(x), \quad \forall f \in X^*, x \in X.$$

Note that we **do not confuse this notation with inner product**. In inner product $\langle x, y \rangle$ both arguments are from the same space.

• Definition (Gaussian Random Element in Topological Vector Space) A random element $X \in \mathcal{X}$ is called Gaussian, if

$$\langle f\,,\,X\rangle:=f(X)$$

is a *Normal random variable*, for all $f \in \mathcal{X}^*$.

• Definition (*Expectation*)

A vector $a \in \mathcal{X}$ is called **expectation** of a random element $X \in \mathcal{X}$, if

$$\mathbb{E}\left[\langle f, X \rangle\right] = \langle f, a \rangle$$

for all $f \in \mathcal{X}^*$. We write $a = \mathbb{E}[X]$.

• Definition (Covariance Operator)

A linear operator $K: \mathcal{X}^* \to \mathcal{X}$ is called <u>covariance operator</u> of a random vector $X \in \mathcal{X}$, if

$$cov(\langle f, X \rangle, \langle g, X \rangle) = \langle f, K g \rangle.$$

for all $f, g \in X^*$. We write K = cov(X).

Remark (Covariance as Function-Valued Linear Transformation on Dual Space) The covariance operator $K: \mathcal{X}^* \to \mathcal{X}$ acts on linear functional on \mathcal{X} and returns an element (function) in \mathcal{X}

$$f(Kq) := cov(f(X), q(X))$$

• Remark (Covariance Operator is Self-Adjoint and Positive)

Covariance operator is self-adjoint, due to symmetric property of covariance in R.

$$\left\langle f\,,\,Kg\right\rangle =\left\langle g\,,\,Kf\right\rangle ,\quad\forall f,g\in X^{\ast },$$

and it is **positive** (semi-definite), i.e.

$$\langle f, Kf \rangle = \text{var}(f(X)) \ge 0, \quad \forall f \in X^*.$$

• Remark (Topological Constraints on \mathcal{X} for Gaussian Element) [Lifshits, 2012] From the definition of Gaussian element, we see that it only makes sense when the space of continuous linear functionals on \mathcal{X} is rich enough. For example, if $\mathcal{X}^* = \{0\}$, then any vector satisfies this definition rendering it senseless.

Therefore, usually one of three situations of increasing generality is considered.

- 1. \mathcal{X} is a **separable Banach space**, for example, $\mathcal{C}[0,1]$, $L^p[0,1]$ etc;
- 2. \mathcal{X} is a <u>complete separable locally convex metrizable</u> topological vector space, for example, $\mathcal{C}[0,\infty)$, \mathbb{R}^{∞} etc.
- 3. \mathcal{X} is a <u>locally convex topological vector space</u> and a vector X is such that its distribution is a <u>Radon measure</u>.

In cases (1) and (2) every **finite measure** is a **Radon measure**, thus case (3) is the most general one. These assumptions are called usual assumptions in [Lifshits, 2012, 2013]

- Proposition 2.1 (Existence of Covariance Operator) [Lifshits, 2013] Under usual assumptions on \mathcal{X} , every Gaussian random element in \mathcal{X} possesses an expectation and a covariance operator. In other words, the distribution of Gaussian elements in \mathcal{X} is of the form $\mathcal{N}(a, K)$.
- Remark (Distribution and Characteristic Function of Gaussan Random Element) The pair (a, K) determines the distribution of a Gaussian variable $\langle f, x \rangle$ as

$$\mathcal{N}(\langle f, a \rangle, \langle f, Kf \rangle),$$

and we find $\emph{the characteristic function}$ of $\langle f\,,\,x\rangle$

$$\begin{split} \varphi(\langle f\,,\,X\rangle) &= \mathbb{E}\left[\exp\left\{i\omega\,\langle f\,,\,x\rangle\right\}\right] \\ &= \exp\left(i\omega\,\langle f\,,\,a\rangle - \frac{1}{2}\omega^2\,\langle f\,,\,Kf\rangle\right) \\ &:= \exp\left(i\omega f(a) - \frac{1}{2}\omega^2 f(Kf)\right) \end{split}$$

Any Radon distribution in \mathcal{X} is determined by its characteristic function. Therefore, distribution $\mathcal{N}(a, K)$ is **unique**.

2.2 Examples of Gaussian Random Elements

• Example (Standard Gaussian Measure in \mathbb{R}^{∞})
Consider the space $\mathcal{X} = \mathbb{R}^{\infty}$ of all countable infinite sequence (x_1, x_2, \ldots) equipped with the **product topology**. The product topology induces a metric as

$$\rho(\{x_n\}_{n=1}^{\infty}, \{y_n\}_{n=1}^{\infty}) = \sup_{n} \left\{ \frac{\min |x_n - y_n|, 1}{n} \right\}.$$

 \mathbb{R}^{∞} is a **complete separable metric space** under the product topology. The dual space $\mathcal{X}^* = c_0$ is the space of sequences (f_1, f_2, \ldots) with $f_n = 0$ for all but finite number of n. The duality

$$\langle f, x \rangle = \sum_{n=1}^{\infty} f_n x_n < \infty.$$

Consider a sequence of i.i.d. $\mathcal{N}(0,1)$ -distributed random variables as a vector $X \in \mathcal{X}$, i.e. $X := (X_n)_{n=1}^{\infty}, X_n \sim \mathcal{N}(0,1)$. Due to stability of normal distribution, for any $f \in \mathcal{X}^*$ the random variable

$$\langle f, X \rangle = \sum_{n=1}^{\infty} f_n X_n \sim \mathcal{N}(0, \sigma^2)$$

where $\sigma^2 = \sum_{n=1}^{\infty} f_n^2 < \infty$. Therefore, X is a **Gaussian element**. It is clear that $\mathbb{E}[X] = 0$.

Embedding operator serves as **covariance operator** for X, i.e.

$$K = \iota : c_0 \hookrightarrow \mathbb{R}^{\infty}.$$

To show that

$$\operatorname{cov}(\langle f, X \rangle, \langle g, X \rangle) = \mathbb{E}\left[\langle f, X \rangle \langle g, X \rangle\right]$$

$$= \mathbb{E}\left[\left(\sum_{n=1}^{\infty} f_n X_n\right) \left(\sum_{n=1}^{\infty} g_n X_n\right)\right]$$

$$= \mathbb{E}\left[\sum_{n,m=1}^{\infty} f_n g_m X_n X_m\right]$$

$$= \sum_{n,m=1}^{\infty} f_n g_m \mathbb{E}\left[X_n X_m\right] = \sum_{n,m=1}^{\infty} f_n g_m \,\delta_{n,m}$$

$$= \sum_{n=1}^{\infty} f_n g_n := \langle f, Kg \rangle$$

We call the distribution of X a standard Gaussian measure in \mathbb{R}^{∞} .

• Example (Gaussian Elements in a Hilbert space \mathcal{H}) [Lifshits, 2012] Let $\mathcal{X} = \mathcal{H}$ be a separable Hilbert space whose inner product will be denoted by $\langle \cdot, \cdot \rangle_{\mathcal{H}}$. By the Riesz representation theorem, we can identify its dual space \mathcal{H}^* with \mathcal{H} , i.e. for each $f \in \mathcal{H}^*$, there exists a unique $x_f \in \mathcal{H}$ such that

$$\langle f, x \rangle = f(x) = \langle x, x_f \rangle_{\mathcal{H}}, \quad \forall x \in \mathcal{H}.$$

Define $h: \mathcal{H}^* \to \mathcal{H}$ as an isometric isomorphism that maps $f \mapsto x_f$.

In order to construct a Gaussian element in \mathcal{H} , consider a *complete orthonormal basis* $\{\varphi_n\}_{n=1}^{\infty}$ on \mathcal{H} , a sequence of *independent* $\mathcal{N}(0,1)$ -distributed random variables $\{\xi_n\}_{n=1}^{\infty}$, and a sequence of *non-negative numbers* $\{\sigma_n\}_{n=1}^{\infty}$ satisfying assumption $\sum_{n=1}^{\infty} \sigma_n^2 < \infty$ so that the series

$$\sum_{n=1}^{\infty} \sigma_n \xi_n(\omega) \varphi_n$$

is **convergent** in $\|\cdot\|_{\mathcal{H}}$ -norm almost surely in \mathcal{H} . Define a random element $X:\Omega\to\mathcal{H}$ as the limit of the series

$$X = \sum_{n=1}^{\infty} \sigma_n \xi_n \varphi_n \tag{4}$$

This representation is called *Karhunen-Loève expansion*.

For any linear functional $f \in \mathcal{H}^*$, we can its corresponding vector $x_f = h(f) \in \mathcal{H}$ and $x_f = \sum_{n=1}^{\infty} f_n \varphi_n$. Thus the random variable

$$\langle f, X \rangle = \langle X, x_f \rangle_{\mathcal{H}} = \left\langle \sum_{n=1}^{\infty} \sigma_n \xi_n \varphi_n, \sum_{n=1}^{\infty} f_n \varphi_n \right\rangle_{\mathcal{H}}$$

$$= \sum_{n,m=1}^{\infty} \sigma_n \bar{f_m} \xi_n \langle \varphi_n, \varphi_m \rangle_{\mathcal{H}}$$
by orthonormal $\langle \varphi_n, \varphi_m \rangle_{\mathcal{H}} = \delta_{n,m}$

$$= \sum_{n=1}^{\infty} \sigma_n \bar{f_n} \xi_n \sim \mathcal{N}(0, \sigma^2)$$

where $\sigma^2 := \sum_{n=1}^{\infty} \sigma_n^2 f_n^2 \le (\sum_{n=1}^{\infty} \sigma_n^2) \sup_n |f_n|^2 < \infty$. Therefore, X is a **Gaussian random element** in \mathcal{H} and $\mathbb{E}[X] = 0$. In order to find **the covariance operator** of X, let us compute

$$\operatorname{cov}\left(\left\langle f\,,\,X\right\rangle\left\langle g\,,\,X\right\rangle\right) = \mathbb{E}\left[\left\langle f\,,\,X\right\rangle\left\langle g\,,\,X\right\rangle\right]$$

$$= \mathbb{E}\left[\left(\sum_{n=1}^{\infty}\sigma_{n}\bar{f}_{n}\xi_{n}\right)\left(\sum_{n=1}^{\infty}\sigma_{n}\bar{g}_{n}\xi_{n}\right)\right]$$

$$= \sum_{n,m=1}^{\infty}\bar{f}_{n}\bar{g}_{m}\sigma_{n}\sigma_{m}\mathbb{E}\left[\xi_{n}\xi_{m}\right]$$

$$\operatorname{since}\,\mathbb{E}\left[\xi_{n}\xi_{m}\right] = \delta_{n,m}$$

$$= \sum_{n=1}^{\infty}\sigma_{n}^{2}\bar{f}_{n}\bar{g}_{n} = \left\langle f\,,\,Kg\right\rangle$$

By plugging in the basis, we have

$$K: g \to \sum_{n=1}^{\infty} \sigma_n^2 g_n \varphi_n = \sum_{n=1}^{\infty} \sigma_n^2 \langle g, \varphi_n \rangle \varphi_n$$
 (5)

$$\Rightarrow \widetilde{K} = K \circ h^{-1} = \sum_{n=1}^{\infty} \sigma_n^2 \langle \cdot , \varphi_n \rangle_{\mathcal{H}} \varphi_n$$
 (6)

Therefore σ_n^2 and φ_n are the **eigenvalues** and **eigenfunctions** of $\widetilde{K} = K \circ h^{-1}$ and \widetilde{K} is a **positive**, **compact operator** on \mathcal{H} since $\operatorname{tr}(\widetilde{K}) = \sum_{n=1}^{\infty} \sigma_n^2 < \infty$.

One can show that any Gaussian element in a Hilbert space admits a representation (4) [Lifshits, 2012]. This means that a Gaussian distribution with covariance operator K exists if and only if the induced linear operator $\widetilde{K} = K \circ h^{-1} \in \mathcal{L}(\mathcal{H})$ is a self-adjoint, positive, trace-class operator (which is compact).

• Remark (Equivalent Definition of Covariance Operator on Hilbert Space) In the previous example, we see that the covariance operator on Hilbert space can be equivalently defined via linear operator $\widetilde{K}: \mathcal{H} \to \mathcal{H}$ so that

$$\operatorname{cov}\left(\langle f_h, X \rangle_{\mathcal{H}}, \langle g_h, X \rangle_{\mathcal{H}}\right) = \left\langle \widetilde{K} f_h, g_h \right\rangle_{\mathcal{H}}.$$

Note that $\widetilde{K} \succeq 0$ is **self-adjoint** and **positive** and it has **finite** trace $tr(\widetilde{K})$ so it is **traceclass operator** which is **compact**. And, conversely, for any **positive trace-class operator** $K \in \mathcal{B}_1(\mathcal{H})$, there exists **Gaussian element** in \mathcal{H} with distribution $\mathcal{N}(0,K)$.

• Remark (Identity Operator is Not Covariance Operator on Hilbert Space) For identity operator $I: \mathcal{H} \to \mathcal{H}$, we see that its trace $\operatorname{tr}(I) = \infty$, this means that it does not admit a Gaussian distribution as $\mathcal{N}(0,I)$ on infinite dimensional space \mathcal{H} . In fact, we can see that $\mathbb{E}\left[|X(t)|^2\right] = \infty$.

2.3 Gaussian Random Process

• Definition (Random Process)

Let $(\Omega, \mathscr{F}, \mathcal{P})$ be a probability space and T be a parametric set called *index set*. A random process X on T is a family of random variables $X(t, \omega), t \in T$, defined on the common probability space $(\Omega, \mathscr{F}, \mathcal{P})$. For each $\omega \in \Omega$,

$$X(\omega) := \{X_t(\omega) : t \in T\}$$

is called a **sample function** of (X_t) and if T is one-dimensional, they are often called **sample paths** of the process (X_t) .

- Remark Determined by index set T, we have:
 - 1. if $T \subset \mathbb{R}$, $\{X_t\}_{t \in T}$ is called a **random process**.
 - 2. if $T \subset \mathbb{R}^n$, $\{X_t\}_{t \in T}$ is called a *random field*.
 - 3. if $T = \mathbb{N}$, $\{X_t\}_{t \in T}$ is called a **random sequence**.
- ullet Definition (Gaussian Random Process)

A process $(X_t)_{t\in T}$ is called <u>Gaussian</u> if for any $t_1, \ldots, t_n \in T$ the distribution of the random vector

$$(X(t_1),\ldots,X(t_n))$$

is a *Gaussian distribution* in \mathbb{R}_n .

The properties of a *Gaussian process* are *completely determined* by its *expectation* $\mathbb{E}[X(t)], t \in T$, and *covariance* $cov(X(s), X(t)), s, t \in T$.

• Remark (Gaussian Random Process as Gaussian Element on Function Space) Consider the topological vector space $\mathcal{X} \subset \mathbb{R}^T$ as a function space on T, then the Gaussian random element in \mathcal{X} is a Gaussian process:

$$X: \Omega \to \mathcal{X} \subset \mathbb{R}^T$$

\Rightarrow X(\omega)(t) = X(\omega, t), \forall t \in T

• Definition (Continuous Sample Path)
If T is a topological space, we say that $\{X_t\}_{t\in T}$ has continuous sample paths, if the function $X(\cdot,\omega)$ is continuous on T for \mathcal{P} -almost every $\omega \in \Omega$.

2.4 Examples of Gaussian Random Processes

• Example (Continuous Sample Path Gaussian Process) [Lifshits, 2012]

Let T be a <u>compact metric space</u>, let $\mathcal{X} = \mathcal{C}(T)$ denote the Banach space of all continuous functions on T equipped with supremum norm

$$||x||_{\infty} := \sup_{t \in T} |x(t)|$$

and with the corresponding topology of uniform convergence. By Riesz-Markov theorem, the dual space $\mathcal{X}^* = \mathcal{M}(T)$ is a space of <u>signed Radon measures</u> of finite variations on T. The duality is given by

$$\langle \mu, f \rangle = \int_T f \ d\mu, \quad \forall f \in \mathcal{X}, \forall \mu \in \mathcal{M}(T) = \mathcal{X}^*.$$

Let $\{X(t), t \in T\}$, be a *Gaussian random process* with <u>continuous sample paths</u> on the parametric set T. It is *completely characterized* by the functions

$$a(t) := \mathbb{E}[X(t)], \quad K(s,t) := \operatorname{cov}(X(s), X(t)).$$

Then we can view at $X := \{X(t), t \in T\}$ as a **Gaussian random element** of \mathcal{X} . The **expectation** of X is computed as

$$\mathbb{E}\left[X\right] = a := (a(t))_{t \in T},$$

and the **covariance operator** $K: \mathcal{M}(T) \to \mathcal{C}(T)$ can be calculated by

$$(K\nu)(s) = \int_T K(s,t)\nu(dt). \tag{7}$$

This is because

$$\begin{split} \operatorname{cov}\left(\left\langle \mu\,,\,X\right\rangle\,,\,\left\langle \nu\,,\,X\right\rangle\right) &= \mathbb{E}\left[\left\langle \mu\,,\,(X-a)\right\rangle\left\langle \nu\,,\,(X-a)\right\rangle\right] \\ &= \mathbb{E}\left[\int_{T}(X-a)d\mu\int_{T}(X-a)d\nu\right] \\ &= \mathbb{E}\left[\int_{T\times T}(X(s)-a(s))(X(t)-a(t))\mu(ds)\nu(dt)\right] \\ &= \int_{T}\int_{T}\mathbb{E}\left[(X(s)-a(s))(X(t)-a(t))\right]\mu(ds)\nu(dt) \\ &= \int_{T}\left(\int_{T}K(s,t)\nu(dt)\right)\mu(ds) := \left\langle \mu\,,\,K\nu\right\rangle, \end{split}$$

thus we have (7).

• Example (Wiener Process) [Lifshits, 2012]

We will now consider T = [0, 1] and $\mathcal{X} = \mathcal{C}[0, 1]$ with dual $\mathcal{M}[0, 1]$. Define a Gaussian element composed of the sample paths of a **Wiener process**

$$\mathcal{W} := \mathcal{W}(t), \quad 0 \le t \le 1,$$

i.e. of a process satisfying assumptions

$$\mathbb{E}[\mathcal{W}(t)] = 0, \quad \mathbb{E}[\mathcal{W}(s)\mathcal{W}(t)] = \min\{s, t\}.$$

It is just a special case of previous example, so we can find the expectation of \mathcal{W} by

$$\mathbb{E}\left[\left\langle \mu\,,\,\mathcal{W}\right\rangle \right] = \mathbb{E}\left[\int_{[0,1]}\mathcal{W}d\mu\right] = \int_0^1 \mathbb{E}\left[\mathcal{W}(t)\right]\mu(dt) = 0$$

we have $\mathbb{E}[\mathcal{W}] = 0$. Moreover, the *covariance operator* $K : \mathcal{M}([0,1]) \to \mathcal{C}([0,1])$

$$(K\nu)(s) = \int_0^1 K(s,t)\nu(dt)$$
$$= \int_0^1 \min\{s,t\} \nu(dt). \quad \blacksquare$$

Remark Finally, we recall the properties of Wiener process W(t): [Lifshits, 2012]

1. It is 1/2-self-similar, i.e. for any c > 0 the process

$$Y(t) := \frac{\mathcal{W}(ct)}{\sqrt{c}}$$

is also a *Wiener process*;

- 2. It has *stationary increments*;
- 3. It has *independent increments*;
- 4. It is a *Markov process*;
- 5. It admits *time inversion*: the process

$$Z(t) := t\mathcal{W}\left(\frac{1}{t}\right)$$

is also a Wiener process.

References

Mikhail Lifshits. Lectures on gaussian processes. In Lectures on Gaussian Processes, pages 1–117. Springer, 2012.

Mikhail Antolevich Lifshits. $Gaussian\ random\ functions,$ volume 322. Springer Science & Business Media, 2013.