Lesson 5.2.2

5-35. $z = \frac{75.09 - 78.28}{2.13} = -1.50;$

 $P(z > -1.50) = \text{normalcdf}(-1.5, 10^9, 0, 1);$

P(z > -1.50) = 0.9332; P(X > 75.09) = normalcdf(75.09,

 $10^99, 78.28, 2.13 = 0.9329$. See graph at right.

Standard Normal Curve

5-36. $z = \frac{343.61-396.53}{105.84} = -0.5;$

 $P(z < -0.5) = \text{normalcdf}(-10^99, -0.5, 0, 1);$

P(z < -0.5) = 0.3085; P(X < 343.61) =

 $normalcdf(-10^99, 343.61, 396.53, 105.84) = 0.3085$. See graph below.

- 5-37. a. Raymond's calculator functions require unique mean and standard deviation as inputs but his dad's method always uses 0 and 1 for those measures.
 - b. $z_1 = \text{invNorm}(0.21, 0, 1) = -0.80663; z_2 = \text{invNorm}(0.83, 0, 1) = 0.95411$

c.

Standard Normal Curve

d. $-0.80663 = \frac{2.5389 - \mu}{\sigma}$; $2.5389 = \mu + (-0.80663)\sigma$; $0.95411 = \frac{3.2027 - \mu}{\sigma}$; $3.2027 = \mu + (0.95411)\sigma$; $\mu = 2.843$ lbs; $\sigma = 0.377$ lbs.

5-38. 5th percentile: $z_1 = \text{invNorm}(0.05, 0, 1) = -1.64493$; $-1.64493 = \frac{54.685 - \mu}{\sigma}$; $54.685 = \mu + (-1.64493)\sigma$. See graph below left. 60^{th} percentile: $z_2 = \text{invNorm}(0.60,0,1) = 0.25333$; $0.25333 = \frac{61.234 - \mu}{\sigma}$; $61.234 = \mu + (0.25333)\sigma$. See graph below right. $\mu = 60.36$ bpm; $\sigma = 3.45$ bpm.

5-39. $z_1 = \text{invNorm}(0.85, 0, 1) = 1.0365;$ $1.0365 = \frac{80.431-73.02}{\sigma}; \ \sigma = \frac{80.431-73.02}{1.0365} \approx 7.150 \text{ cm}.$ See graph at right.

5-41. a. $P(X < 100) = \text{normalcdf}(-10^99, 100, 185, 36) \approx 0.0091$

b. $P(X > 250) = \text{normalcdf}(250, 10^9, 185, 36) \approx 0.035$

c. $P(X < 160) = \text{normalcdf}(-10^99, 160, 185, 36) \approx 0.244 \text{ or the } 24^{\text{th}} \text{ percentile}$

5-42. a. An observational study is all that is necessary since researchers would simply need to observe the online behavior of students.

b. A stratified random sample will account for the differences between boys and girls. Divide the students at City High into two groups based on gender and take a simple random sample from each. Ask students in the sample whether or not they have met a friend online.