CSc 320: Foundations of Computer Science (Summer 2022) Alex Holland Assignment 1

Question 1

* indicates the total coin amount (¢) that the user has inputted into the candy machine.

Informal state diagram assumptions:

- The user does not input an amount that the machine cannot provide change for. E.g. the user cannot input 60° because the machine can not give change in 5° amounts.
- Only one candy can be bought and dispensed at a time.
- The user does not input excessive coin amounts that exceed the cost of the candy (55°) . E.g. the user wont input more then three 25° coins because it is already enough to purchase a candy.
- 10, 10 indicates a change amount of 20° .

Question 2

 $L_A = \{w \in \Sigma^* | w \text{ contains the substring } bba\}.$ State diagram:

Transition Table:

δ	a	b
q_1	q_1	q_2
q_2	q_1	q_3
q_3	q_4	q_3
q_4	q_4	q_4

 $L_B = \{w \in \Sigma^* | w \text{ each pair of consecutive } bs \text{ in } w \text{ is separated by a substring of } as \text{ that is of length } 3i, i > 0\}.$

Transition Table:

δ	a	b
q_1	q_1	q_2
q_2	q_3	q_7
q_3	q_4	q_7
q_4	q_5	q_7
q_5	q_4	q_6
q_6	q_4	q_7
q_7	q_7	q_7

Assumptions:

• "each pair of consecutive bs in w is separated by a substring of as" means that if we have 2 bs next to each other as a pair, they will be separated by a substring of 3i, i > 0 as. E.g. baaab is an accepted string.

Question 3

The state diagram F1 recognizes strings that have a maximum of one '1' symbol and unlimited '0' symbols. If more then one '1' symbol in the string ω is used in the F1, the input will become stuck in the transition state C.

Examples of strings (ω) accepted by F1:

Examples of strings (ω) not accepted by F1:

Question 4

 $\omega_1 = \epsilon$

The automation stays in q1 state (initial state), which is an accepted state. Hence, ω_1 is accepted by D.

 $\omega_2 = 0111$

Start in q_1 , read 0 Start in q_3 , read 1 Start in q_4 , read 1 Start in q_3 , read 1 In q_4

The string ω_2 is accepted in D.

 $\omega_3 = 100000100$

Start in q_1 , read 1 Start in q_4 , read 0 Start in q_2 , read 0 Start in q_4 , read 0 Start in q_4 , read 0 Start in q_4 , read 0 Start in q_2 , read 1 Start in q_3 , read 0 Start in q_1 , read 0 In q_3

The string ω_3 is not accepted in D.

$$\omega_4 = 1010110$$

Start in q_1 , read 1 Start in q_4 , read 0 Start in q_2 , read 1 Start in q_3 , read 0 Start in q_4 , read 1 Start in q_3 , read 0 In q_1

The string ω_4 is accepted in D.

$$\omega_5 = 11111111$$

Start in q_1 , read 1 Start in q_4 , read 1 Start in q_3 , read 1 Start in q_4 , read 1 Start in q_4 , read 1 Start in q_4 , read 1 Start in q_3 , read 1 In q_4

The string ω_5 is accepted in D.

Question 5

 $M = (\{p, q, r, s\}, \{0, 1\}, \delta_M, p, \{s\})$

 $N = (\{a, b\}, \{0, 1\}, \delta_N, a, \{a, b\})$

 $A = (\{p,q,r,s,a,b\}, \Sigma, \delta, (p,a), \{(p,a), (q,a), (r,a), (s,a), (p,b), (q,b), (r,b)(s,b)\})$

Transition Table:

δ_A	0	1
(p,a)	(q,b)	(r,a)
(r,a)	(s,b)	(p,a)
(s,a)	(p,b)	(p, a)
(q,a)	(q,b)	(s,a)
(p,b)	(q, a)	(r,b)
(r,b)	(s, a)	(p,b)
(s,b)	(p, a)	(p,b)
(q,b)	(q, a)	(s,b)

Regular languages are closed under union, and since N accepts all strings (all of it's states are accept states), determining $L(A) = L(M) \cup L(N)$ must mean that all states of A are accept states.

State Diagram:

