Nome: Eder Gabriel da Trindade Félix NUSP: 9778515 Nome: Erica Mayumi Kanashiro NUSP: 9761698

Exercício de programação 2

Detecção de tendências em séries temporais utilizando redes complexas

- Uma tabela contendo, para cada condição de teste (rotulagem/previsão com preços originais e com preços alizados), os seguintes indicadores:
 - (a) O resultado percentual %Δbal obtido pelo modelo (Equação 11);
 - (b) A variação percentual dos preços no período, dada pela equação abaixo:

$$\%\Delta pr = 100 \times \left[\frac{pr_{ts}(T_{ts})}{pr_{ts}(1)} - 1 \right]$$
(15)

(c) A diferença entre %Δbal e %Δpr.

R:

name	Original	Smoothed				
delta_bal	123.392740	153.423707				
delta_prices	75.336052	75.858747				
difference	48.056688	77.564960				

2. Um gráfico de linhas com os resultados do back test para cada condição de teste. Neste gráfico, deverá ser plotada a curva de preços no período de teste, bem como a curva de evolução do patrimônio (vetor bal descrito no Algoritmo 2). Se possível, plotar também os pontos de previsões de alta (+1) e de baixa (-1) com cores diferentes.

R: Sem Alisamento

Com alisamento

 Um histograma (ou tabela de frequências) para cada coluna de X (Equações 8 e 9). Você pode tanto usar a matriz X completa ou somente a matriz X_{tr}.

Este diagnóstico é recomendável para verificar se não há concentrações elevadas de casos em alguns valores. Como essas características são resultantes da padronização dos indicadores originais e sua transformação pela função de distribuição acumulada na Normal padrão, espera-se que a distribuição de frequências seja razoavelmente uniforme entre os valores.

Features do dataset completo

 Um histograma (ou tabela de frequências) da quantidade de dias pertencentes a cada comunidade encontrada na rede.

Você pode apresentar um histograma apenas para o conjunto de treinamento (que foi utilizado para a construção da rede) ou pode também, opcionalmente, incluir um histograma referente ao conjunto de teste. Neste caso, para atribuir uma comunidade a cada dia do conjunto de teste, aplica-se procedimento similar ao usado na Subseção 2.6.

	0	1	2	3	4	5	6	7		8	9	10	11	
partition	49	57	344	5	5 6	241	43	62	305)5	261	8	287	
	12	13	1	4	15	16	17	18	19	20	21	22	23	24
partition	157	217	10	3	40	77	28	6	60	17	4	9	11	8

