Problema 1.

Apartado A.

Apartado B. Sea B el ancho de banda discreto de la señal x[n] (que, asumiendo que es real, no puede ser superior a 1/2).

Una vez interpolada, la primera réplica de la señal empieza en 1/3-B/3. Por tanto, para que el filtro elimine todas las réplicas debe cumplirse que $1/5 < 1/3 - B/3 \Leftrightarrow B < 1 - 3/5 = 2/5$.

Apartado C. Siguiendo las definiciones:

$$Z(F) = X(3F) \cdot H_0(F)$$

$$Y(F) = Z(2F) = X(6F) \cdot H_0(2F)$$

Apartado D. Si nos basamos en la segunda igualdad del apartado anterior, por inspección simple sería equivalente a interpolar x[n] por 6, y luego filtar con un filtro discreto con respuesta $H_0(2F)$ (tengamos en cuenta que $H_0(F)$ es una función periódica por lo que «arrastramos» una réplica hacia F=1/2).

Problema 2.

Apartado A y B. Queremos obtener una señal donde X(F) habrá sido compactado por 6 (debido a la nueva frecuencia de muestreo) y luego desplazado hacia $F_c = \pm \frac{16 \, \text{kHz}}{48 \, \text{kHz}} = \pm 1/3$. Dado que la señal de salida es real, también estaría replicada en 1 - 1/3 = 2/3 (32 kHz).

Teniendo esto en cuenta, la única opción que tiene sentido es que primero se interpole con 2 y se filtre paso bajo a $f_c = 4 \,\mathrm{kHz}$. Esto dejaría una réplica de la señal en $0 \,\mathrm{kHz}$, $16 \,\mathrm{kHz}$, etc.

Luego se interpola con 3 y se filtra paso alto a $f_c=8\,\mathrm{kHz}$. Esto elimina las réplicas en $0\,\mathrm{kHz}$ y múltiplos, dejando solo la de $16\,\mathrm{kHz}$ y sus reflejos.

Apartado C. Al tratarse de señales reales, la parte negativa de las transformadas se ha omitido por simplicidad.

Problema 3.

Apartado A. El ancho de banda discreto de la señal original es $B=\frac{17\,\mathrm{kHz}}{44.1\,\mathrm{kHz}}$. Una vez interpolada, la señal tendrá un ancho de banda de B/4, y la primera réplica de la señal empezará en la frecuencia 1/4-B/4. Estos valores son respectivamente F_p y F_a . Si los calculamos aproximadamente:

$$F_p \simeq 0.09637$$

 $F_a \simeq 0.15363$

Apartado B. Una vez filtrada, la señal interpolada solo tiene réplicas a $1|F_p$. El ancho de banda de la señal sigue siendo el mismo $(B/4, 17 \, \text{kHz})$, pero la primera réplica de la señal está ahora a 1 - B/4, lo cual son 159.4 kHz. Estas dos frecuencias son, respectivamente, f_p y f_a del filtro reconstructor.

Problema 4.

Apartado A.

Columna (720 Hz - 1080 Hz)
$$^{1080}_{720} = ^{3}_{2} = ^{1}_{M}$$

Fila (1280 Hz - 1920 Hz) $^{1920}_{1280} = ^{3}_{2} = ^{1}_{M}$
 $\times [m]$ 13 $^{1}_{M}$ $^{1}_{M}$ $^{1}_{M}$ $^{1}_{M}$ $^{1}_{M}$

Apartado B. Una vez interpolado, hay una muestra cada 3 muestras. Para que haya interpolación lineal, h[n] debería ser un pulso triangular de 6 muestras de ancho: $h[n] = \Delta(n/3)$