FICHE DE COURS 15

Ondes progressives sinusoïdales

Ce que je dois être capable de faire après avoir appris mon cours

Définir les notions de signal, d'onde et d'onde unidimensionnelle.
Caractériser une onde progressive unidimensionnelle par sa célérité et démontrer sa dépendance mathématique vis-à-vis d'une variable spatio-temporelle dont la définition dépend du sens de propagation.
Prévoir l'évolution temporelle d'une onde en une position donnée (représentation graphique).
Prévoir la forme de l'onde à un instant donné (représentation graphique).
Donner la forme mathématique d'une onde progressive unidimensionnelle sinusoïdale (OPUS) en fonction des pulsations spatiale et temporelle ainsi que d'une amplitude et d'une phase à l'origine, suivant son sens de propagation.
Citer quelques ordres de grandeur de fréquence et de célérité dans les domaines acoustiques et électromagnétiques.
Donner et utiliser les équations de dispersion pour relier les grandeurs spatiales et temporelles (période, fréquence et pulsation).
Définir le déphasage entre deux signaux sinusoïdaux de même fréquence en indiquant son domaine de définition.
Donner et utiliser l'expression du déphasage entre deux signaux sinusoïdaux de même fréquence en fonction du retard temporel pour calculer et prévoir un retard ou une avance de phase.
Indiquer comment déterminer graphiquement le déphasage entre deux signaux sinusoïdaux de même fréquence.
Identifier des situations de phase, de quadrature de phase et d'opposition de phase sur un chronogramme ou dans une représentation graphique de type Lissajoux (XY).
Utiliser les conditions de phase entre deux signaux synchrones pour déterminer la longueur d'onde d'une OPUS et en déduire sa célérité à partir de sa fréquence ou de sa période temporelles.

Les relations sur lesquelles je m'appuie pour développer mes calculs

☐ Évolution d'une onde progressive dans le temps et dans l'espace :

$$\begin{cases} t_B - t_A = \tau_{B/A} = \frac{(x_B - x_A)}{c} = \frac{\delta_{B/A}}{c} & \text{si l'onde se propage selon les } x \text{ croissants} \\ t_B - t_A = \tau_{B/A} = -\frac{(x_B - x_A)}{c} = -\frac{\delta_{B/A}}{c} & \text{si l'onde se propage selon les } x \text{ décroissants} \end{cases}$$

 $\tau_{B/A}$ est le retard temporel de l'onde en B par rapport à A. $\delta_{B/A}$ est la différence de marche associée à l'onde de B par rapport à A.

 $\hfill \square$ Expression d'une onde progressive unidimensionnelle sinusoïdale (OPUS) :

$$\begin{cases} s(x,t) = A_0 \cos{(\omega t - kx + \varphi_0)} & \text{si l'onde se propage selon les } x \text{ croissants} \\ \\ s(x,t) = A_0 \cos{(\omega t + kx + \varphi_0)} & \text{si l'onde se propage selon les } x \text{ décroissants} \end{cases}$$

 $\hfill \square$ Périodes, pulsations et fréquences :

$$T = \frac{2\pi}{\omega}$$
 ; $\lambda = \frac{2\pi}{k}$; $\nu = \frac{1}{T}$; $\sigma = \frac{1}{\lambda}$

☐ Relations de dispersion :

$$k = \frac{\omega}{c}$$
 ; $\sigma = \frac{\nu}{c}$; $\lambda = cT$

 $\hfill \Box$ Déphasage entre deux signaux sur un chronogramme :

$$\varphi_{B/A} = -\frac{2\pi}{T} \tau_{B/A}$$

☐ Cas particuliers :

 $\star~\varphi_{B/A}=0$ soit $\tau_{B/A}=0$: signaux en phase, droite de pente positive en XY

$$\star~\varphi_{B/A}=\frac{\pi}{2}$$
 soit $\tau_{B/A}=-\frac{T}{4}$: signal B en quadrature avance sur signal A

$$\star~\varphi_{B/A}=-\frac{\pi}{2}$$
soit $\tau_{B/A}=\frac{T}{4}$: signal B en quadrature retard sur signal A

$$\star \varphi_{B/A} = \pm \pi$$
 soit $\tau_{B/A} = \pm \frac{T}{2}$: signaux en opposition de phase, droite de pente négative en XY

☐ Mesure de longueur d'onde :

$$d_n = n\lambda$$

où n est le nombre de remises en phase observées lorsqu'un récepteur est déplacé sur une distance d_n