6 июня 2022 г. 15:24

Уравнения Лапласа и Пуассона. Примеры стационарных явлений. Потенциалы (электростатический, потенциал скоростей и др.). Постановка краевых задач. Задачи Дирихле и Неймана.

Уравнение Лапласа:

$$\Lambda u = 0$$

В декартовых:

В декартовых: В сферических: В сферических: В сферических:
$$U_{XX} + U_{XY} + U_{ZZ} = 0$$
 $\frac{1}{r^2} \frac{3}{2r} V^2 \frac{3u}{3r} + \frac{1}{r^2} \frac{3u}{3r} \frac{3u}{r^2} + \frac{1}{r^2} \frac{3u}{r^2} \frac{3u}{r$

Уравнение Пуассона:

Примеры стационарных явлений:

Memбрана: gutt = divTVu+F

Рассмотрим задачу, если нет зависимости от времени в Е и проекция внешних сил на плоскость

мембраны равна 0, тогда получим: $\Delta U = -\frac{F}{F}$

Tuz div, a div D= D

Это уравнение Пуассона будет описывать стационарный прогиб мембраны.

Уравнение теплопроводности в твёрдом теле:

Рассмотрим задачу, если мощность источников тепла Q не зависит от времени и k постоянно,

тогда получим: DU=- 1

Это уравнение Пуассона будет описывать стационарное распределение температуры внутри твёрдого тела.

Потенциалы:

объемная плотность электрических зарядов $\Delta \mathcal{M} = -\frac{4\pi}{\epsilon} \int_{-\infty}^{\infty} du$ диэлектрическая проницаемость, не зависит от Электростатический потенциал: пространственных координат т.к. электростатика, то о времени очевидно ничего не зависит

Потенциал стационарного тока: $\Delta V = 0$

Всюду, вне источников тока, предполагая проводимость С не зависящей от пространственных координат, он удовлетворяет уравнению Лапласа.

Потенциал скорости:

Уравнение непрерывности для идеальной жидкости: $\frac{\partial P}{\partial t} + div P \vec{J} = 0$

Если жидкость несжимаема, то $\frac{90}{9t} = 0$. Введём потенциал скоростей $\frac{1}{3} = -70$. Подставим в исходное уравнение и поличии изс Подставим в исходное уравнение и получим что потенциал будет удовлетворять уравнению Лапласа.

Постановка краевых задач.

У нас есть несколько видов задач: внешние и внутренние

Внутренние ставятся в **ограниченной области** и **граница** этой области **обязательно** должна быть **замкнутой**.

Как пример постановки такой задачи можно привести:

One battob
$$f[n] \equiv g(n)$$
, We D

where $f(n) = f(m)$ we D

where $f(n) = g(n)$ we D

where $f(n) = g(n) = g(n)$ and $f(n) = g(n)$ and $f(n$

Внешние ставятся на **неограниченной области** и, в отличии от внутренней задачи при постановке внешних задач требуют **регулярность решения на бесконечности**.

Для чего это надо? А для того чтобы мы могли выделить единственное решение задачи.

Т.е. постановка будет выглядеть аналогично, однако рассмотрим это условие регулярности отдельно:

В **трёхмерном случае** решение задачи этого будет недостаточно, необходимо потребовать, чтобы функция $\bigcup_{k \in \mathbb{N}} (M_k)$ на бесконечности равномерно стремилась к нулю. Записать это можно так:

$$\lim_{M\to\infty} |u(M)| < g(r), g(r) \to 0$$
 muso $\lim_{M\to\infty} |u(M)| < \frac{A}{r}, A = unst < +\infty$

На практике обычно хватит просто $\lim_{N\to\infty} |u(N)| = 0$

Задачи Дирихле и Неймана.

Задача Дирихле это внутренняя или внешняя краевая задача для уравнения Лапласа или Пуассона с граничным условием первого рода, например:

$$\int U | S = M(M)' W \in \mathbb{Z}$$

+условие регулярности для внешней задачи.

Задача Неймана это внутренняя или внешняя краевая задача для уравнения Лапласа или Пуассона с граничным условием второго рода, например: