

TRABAJO PRÁCTICO

TECNOLOGÍA DE SENSORES

MATERIA: Sensores y actuadores

PROFESOR: Jorge Morales

ALUMNO: Lisandro Juncos Varalda

Actividad N°2

Buscar un sensor real y dar unas características de este.

Buscar el datasheet del sensor y copiar tabla de características.

A modo de ejemplo, propongo el sensor de Temperatura y Humedad DHT22.

Sensor de peso HX711

El HX711 es un módulo amplificador y convertidor analógico a digital (ADC) diseñado específicamente para aplicaciones de pesaje. Es ampliamente utilizado en proyectos que requieren la medición de pequeñas variaciones en peso, como balanzas electrónicas y sistemas de pesaje de alta precisión.

Características:

- **1. Alta Resolución y Precisión:** El HX711 tiene un convertidor A/D de 24 bits que permite la medición de señales analógicas provenientes de celdas de carga con una alta precisión. Esta alta resolución es crucial para aplicaciones que requieren detectar cambios muy pequeños en el peso.
- **2. Bajo Consumo de Energía:** El HX711 está diseñado para funcionar con un bajo consumo de energía, lo que lo hace ideal para aplicaciones portátiles y dispositivos que funcionan con baterías.
- **3. Facilidad de Integración:** Este módulo es fácil de integrar con microcontroladores como Arduino, ESP32, y Raspberry Pi, gracias a su interfaz digital sencilla basada en dos pines (Data y Clock).
- **4. Amplificación Integrada:** El HX711 tiene un amplificador de ganancia programable que puede ajustarse a 32, 64 o 128, lo que permite amplificar señales de baja intensidad, como las provenientes de una celda de carga, para hacerlas más manejables por el ADC.

Aplicaciones Comunes:

Es comúnmente utilizado en básculas electrónicas, pesaje industrial, sistemas de control de inventario, y otros dispositivos que requieren medir fuerzas o pesos.

Funcionamiento:

El HX711 está diseñado para trabajar con celdas de carga que usan un puente Wheatstone. La celda de carga se conecta al módulo HX711, el cual amplifica la señal analógica y la convierte a una señal digital que puede ser leída por un microcontrolador.

- ◆ Conexión Básica: La celda de carga tiene cuatro cables (o a veces seis, incluyendo los cables de excitación): dos de entrada de señal (E+ y E-), y dos de salida de señal (S+ y S-). Estos cables se conectan directamente a los pines del HX711.
- ◆ **Lectura de Datos**: El microcontrolador lee los datos digitales del HX711 a través de una simple comunicación bit-bang (protocolo serial de dos hilos). Un pin (Data) es utilizado para transmitir la señal de peso digitalizada, mientras que el otro pin (Clock) se utiliza para sincronizar la transmisión de datos.

Módulo amplificador HX711

Balanza digital

Tabla de características del datasheet:

KEY ELECTRICAL CHARACTERISTICS

Parameter	Notes	MIN	TYP	MAX	UNIT
Full scale differential input range	V(inp)-V(inn)		±0.5(AVDD/GAIN)		v
Common mode input		AGND+1.2		AVDD-1.3	v
Output data rate	Internal Oscillator, RATE = 0		10		Hz
	Internal Oscillator, RATE = DVDD		80		
	Crystal or external clock, RATE = 0		f _{clk} /1,105,920		
	Crystal or external clock, RATE = DVDD		f _{clk} /138,240		
Output data coding	2's complement	800000		7FFFFF	HEX
Output settling time (1)	RATE = 0		400		ms
	RATE = DVDD		50		
Input offset drift	Gain = 128		0.2		mV
	Gain = 64		0.4		
Input noise	Gain = 128, RATE = 0		50		nV(rms
	Gain = 128, RATE = DVDD		90		
	Input offset (Gain = 128)		±6		nV/℃
	Gain (Gain = 128)		±5		ppm/°C
Input common mode rejection	Gain = 128, RATE = 0		100		dB
Power supply rejection	Gain = 128, RATE = 0		100		dB
Reference bypass (V _{BG})			1.25		v
Crystal or external clock frequency		1	11.0592	20	MHz
Power supply voltage	DVDD	2.6		5.5	v
	AVDD, VSUP	2.6		5.5	
Analog supply current (including regulator)	Normal		1400		μА
	Power down		0.3		
Digital supply current	Normal		100		μА
	Power down		0.2		

Settling time refers to the time from power up, reset, input channel change and gain change to valid stable output data.