Universidade do Minho

Departamento de Matemática e Aplicações

Lic. em Ciências da Computação 21 de novembro de 2014

Teste de Álgebra Linear CC

(versão A) duração: 2 horas

Nome do aluno: Número: _

Ι

Relativamente às questões deste grupo, indique, para cada alínea, se a afirmação é verdadeira (V) ou falsa (F), assinalando a opção conveniente. Cada resposta certa conta 0,5 valores e cada resposta errada desconta 0,3 valores.

1. Sejam

$$A = \left[\begin{array}{ccc} 1 & 1 & 0 \\ 2 & 0 & -1 \\ 1 & 3 & 0 \end{array} \right]$$

e B e C matrizes sobre o mesmo corpo K tais que B é uma matriz do tipo $4 \times (m+3)$ e C é uma matriz do tipo $(n+2) \times (m+3)$, onde $m, n \in \mathbb{N}$.

- V F
- a) A expressão BC^TB define uma matriz só se n=2.
- \Box b) Se m=1 e n=1 a expressão BC^TB define uma matriz.
- \Box c) $(AA^{T} 2I_{3})_{1,2} = 2 \text{ e } (AA^{T} 2I_{3})_{3,3} = 8.$ \Box d) A matriz $AA^{T} 2I_{3}$ não é simétrica.
- 2. Sejam A, B matrizes quadradas de ordem $n \geq 2$,

$$C = \begin{bmatrix} 1 & 2 & \beta \\ 1 & \alpha + 1 & 2 \\ 2 & 4 & 4 \end{bmatrix}, \text{ onde } \alpha, \beta \in \mathbb{R}, \text{ e } x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}.$$

- V
- \Box a) Se $\beta = 2$, a matriz C é invertível.
- \Box b) Se a matriz C é invertível, então $\alpha \neq 1$.
- c) Se A e B são invertíveis, então car(A) = car(B).
- d) Se car(A) = car(B) = n, então $car(AB) = n^2$.
- 3. Sejam $u_1 = (1, 2, 3, -1), u_2 = (2, 4, 6, -2), u_3 = (3, 6, 9, -3), u_4 = (1, 1, 1, 1)$ vetores do espaço vetorial real \mathbb{R}^4 , V um subespaço vetorial de \mathbb{R}^4 de dimensão 3, $\{v_1, v_2, v_3\}$ um conjunto gerador de V e $v \in V$.
 - V F
 - a) Os vetores u_1 , u_2 , u_3 , u_4 são linearmente independentes.
 - \Box b) O vetor u_4 é combinação linear dos vetores u_1, u_2, u_3 .
 - \Box c) $\{v_1, v_2, v_3, v\}$ não é um conjunto gerador de V.
 - d) Os vetores v_1 v_2 são linearmente independentes.

As questões deste grupo devem ser resolvidas numa folha em separado. Justifique convenientemente todas as suas respostas.

- 5. Sejam A e B matrizes quadradas de ordem n, onde $n \in \mathbb{N}$. Mostre que se A e B são matrizes ortogonais, então a matriz AB também é ortognal.
- 6. Para cada $\alpha, \beta \in \mathbb{R}$, considere o sistema de equações lineares $A_{\alpha,\beta}x = b_{\beta}$, onde:

$$A_{\alpha,\beta} = \begin{bmatrix} 1 & -\alpha & 1 \\ 1 & -1 & \beta + 1 \\ 1 & -1 & 1 \end{bmatrix} \in \mathcal{M}_{3\times 3}(\mathbb{R}), \quad b_{\beta} = \begin{bmatrix} -\beta \\ 1 \\ -\beta \end{bmatrix} \in \mathcal{M}_{3\times 1}(\mathbb{R}) \quad \text{e} \quad x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}.$$

- (a) Discuta o sistema $A_{\alpha,\beta}x = b_{\beta}$, em função dos parâmetros $\alpha \in \beta$. (2,0 valores)
- (b) Utilizando o método de eliminação de Gauss, determine o conjunto de soluções do sistema $A_{1,2}x=b_2$.
- (c) Dê exemplo de, ou justifique que não existe, $c \in \mathcal{M}_{3\times 1}(\mathbb{R})$ tal que o sistema $A_{2,2}x = c$ seja impossível.
- 7. Sejam $k \in \mathbb{R}$, $S_k = \{(a, b, c, k^2 4) \in \mathbb{R}^4 : a = b c \in \mathbb{R}\}$ um suconjunto de \mathbb{R}^4 e $u_1 = (1, 1, 0, 0), u_2 = (1, 2, 1, 0), u_3 = (0, 1, 1, 0)$ vetores de \mathbb{R}^4 .
 - (a) Determine os valores de k para os quais S_k é um subespaço vetorial de \mathbb{R}^4 . (2,0 valores)
 - (b) Considere k=2.
 - i. Verifique que $S_2 = \langle u_1, u_2, u_3 \rangle$. (1,75 valores)
 - ii. Diga se a sequência (u_1, u_2, u_3) é uma base de S_2 . (1,25 valores)
 - iii. Indique a dimensão de S_2 . (1,25 valores)
 - iv. Determine um suplementar de S_2 relativamente a \mathbb{R}^4 . (1,75 valores)

Universidade do Minho

Departamento de Matemática e Aplicações

Lic. em Ciências da Computação 21 de novembro de 2014

Teste de Álgebra Linear CC

(versão B) duração: 2 horas

Nome do aluno: Número: _

Ι

Relativamente às questões deste grupo, indique, para cada alínea, se a afirmação é verdadeira (V) ou falsa (F), assinalando a opção conveniente. Cada resposta certa conta 0,5 valores e cada resposta errada desconta 0,3 valores.

1. Sejam

$$A = \left[\begin{array}{rrr} 1 & 1 & 0 \\ 1 & 3 & 0 \\ 2 & 0 & -1 \end{array} \right]$$

e B e C matrizes sobre o mesmo corpo K tais que B é uma matriz do tipo $8 \times (m+2)$ e C é uma matriz do tipo $(n+3) \times (m+2)$, onde $m, n \in \mathbb{N}$.

- V F
- a) A expressão BC^TB define uma matriz só se n=5.
- \Box b) Se m=2 e n=2 a expressão BC^TB define uma matriz.
- \Box c) $(AA^{T} 4I_{3})_{1,2} = 4 \text{ e } (AA^{T} 4I_{3})_{3,3} = 1.$ \Box d) A matriz $AA^{T} 4I_{3}$ é simétrica.
- 2. Sejam A, B matrizes quadradas de ordem $n \geq 2$,

$$C = \begin{bmatrix} 1 & 4 & \beta \\ 1 & \alpha + 1 & 2 \\ 2 & 8 & 8 \end{bmatrix}, \text{ onde } \alpha, \beta \in \mathbb{R}, \text{ e } x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}.$$

- V \mathbf{F}
- \Box a) Se $\alpha = 3$, a matriz C é invertível.
- \Box b) Se a matriz C é invertível, então $\beta \neq 4$.
- c) Se A e B são invertíveis, então car(A) = car(B).
- d) Se car(A) = car(B) = n, então $car(AB) = n^2$.
- 3. Sejam $u_1 = (1, 2, 3, -1), u_2 = (2, 4, 6, -2), u_3 = (3, 6, 9, -3), u_4 = (1, 1, 1, 1)$ vetores do espaço vetorial real \mathbb{R}^4 , V um subespaço vetorial de \mathbb{R}^4 de dimensão 3, $\{v_1, v_2, v_3\}$ um conjunto gerador de V e $v \in V$.
 - V F
 - a) Os vetores u_1 , u_2 , u_3 , u_4 são linearmente independentes.
 - \Box b) O vetor u_4 é combinação linear dos vetores u_1, u_2, u_3 .
 - \Box c) $\{v_1, v_2, v_3, v\}$ não é um conjunto gerador de V.
 - \Box d) Os vetores v_1 v_2 são linearmente independentes.

As questões deste grupo devem ser resolvidas numa folha em separado. Justifique convenientemente todas as suas respostas.

- 5. Sejam A e B matrizes quadradas de ordem n, onde $n \in \mathbb{N}$. Mostre que se A e B são matrizes ortogonais, então a matriz AB também é ortognal.
- 6. Para cada $\alpha, \beta \in \mathbb{R}$, considere o sistema de equações lineares $A_{\alpha,\beta}x = b_{\beta}$, onde:

$$A_{\alpha,\beta} = \begin{bmatrix} 1 & -\alpha & 1 \\ 1 & -1 & \beta + 1 \\ 1 & -1 & 1 \end{bmatrix} \in \mathcal{M}_{3\times 3}(\mathbb{R}), \quad b_{\beta} = \begin{bmatrix} -\beta \\ 1 \\ -\beta \end{bmatrix} \in \mathcal{M}_{3\times 1}(\mathbb{R}) \quad \text{e} \quad x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}.$$

- (a) Discuta o sistema $A_{\alpha,\beta}x = b_{\beta}$, em função dos parâmetros $\alpha \in \beta$. (2,0 valores)
- (b) Utilizando o método de eliminação de Gauss, determine o conjunto de soluções do sistema $A_{1,3}x=b_3$.
- (c) Dê exemplo de, ou justifique que não existe, $c \in \mathcal{M}_{3\times 1}(\mathbb{R})$ tal que o sistema $A_{3,3}x = c$ seja impossível.
- 7. Sejam $k \in \mathbb{R}$, $S_k = \{(a, b, c, k^2 9) \in \mathbb{R}^4 : a = b c \in \mathbb{R}\}$ um suconjunto de \mathbb{R}^4 e $u_1 = (1, 1, 0, 0), u_2 = (1, 2, 1, 0), u_3 = (0, 1, 1, 0)$ vetores de \mathbb{R}^4 .
 - (a) Determine os valores de k para os quais S_k é um subespaço vetorial de \mathbb{R}^4 . (2,0 valores)
 - (b) Considere k=3.
 - i. Verifique que $S_3 = \langle u_1, u_2, u_3 \rangle$. (1,75 valores)
 - ii. Diga se a sequência (u_1, u_2, u_3) é uma base de S_3 . (1,25 valores)
 - iii. Indique a dimensão de S_3 . (1,25 valores)
 - iv. Determine um suplementar de S_3 relativamente a \mathbb{R}^4 .