Abalone Age Prediction

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

Load the dataset

```
data=pd.read_csv("/content/sample_data/abalone.csv")
data.head()
```

Sex weight	Length	Diameter	Height	Whole weight	Shucked weight	Viscera
0 M 0.1010	0.455	0.365	0.095	0.5140	0.2245	
1 M 0.0485	0.350	0.265	0.090	0.2255	0.0995	
2 F 0.1415	0.530	0.420	0.135	0.6770	0.2565	
3 M 0.1140	0.440	0.365	0.125	0.5160	0.2155	
4 I 0.0395	0.330	0.255	0.080	0.2050	0.0895	

	Shell w	<i>r</i> eight	Rings
0		0.150	15
1		0.070	7
2		0.210	9
3		0.155	10
4		0.055	7

```
Age=1.5+data.Rings
```

```
data["Age"]=Age
```

data=data.drop(columns=["Rings"],axis=1
data.head()

	_	Height	Whole_weight	Shucked_weight
Viscera_we	•			
-	.455 0.365	0.095	0.5140	0.2245
0.1010				
1 M 0	.350 0.265	0.090	0.2255	0.0995
0.0485				
2 F 0	.530 0.420	0.135	0.6770	0.2565
0.1415				
3 M 0	.440 0.365	0.125	0.5160	0.2155

```
0.1140
    Ι
        0.330
                   0.255
                            0.080
                                          0.2050
                                                            0.0895
0.0395
   Shell_weight
                   Age
0
           0.150
                  16.5
1
           0.070
                   8.5
2
           0.210
                  10.5
3
           0.155
                  11.5
           0.055
                   8.5
```

#Univariate Analysis

sns.displot(data["Age"])

<seaborn.axisgrid.FacetGrid at 0x7fd9225619d0>

#Bi-Variate Analysis

sns.barplot(x=data.Whole_weight,y=data.Age)

<matplotlib.axes._subplots.AxesSubplot at 0x7fd91fbc3950>

sns.scatterplot(x=data.Whole_weight,y=data.Height)
<matplotlib.axes._subplots.AxesSubplot at 0x7fd91f1651d0>

#Multi-variate Analysis

sns.pairplot(data=data[["Length","Diameter","Height","Whole_weight","S
hucked_weight","Viscera_weight","Shell_weight","Age",]])

<seaborn.axisgrid.PairGrid at 0x7fd91fbe93d0>

#Descriptive statistics

data.describe(include='all')

	Sex	Length	Diameter	Height	Whole_weight	\
count	4177	4177.000000	4177.000000	4177.000000	4177.000000	
unique	3	NaN	NaN	NaN	NaN	
top	М	NaN	NaN	NaN	NaN	
freq	1528	NaN	NaN	NaN	NaN	
mean	NaN	0.523992	0.407881	0.139516	0.828742	
std	NaN	0.120093	0.099240	0.041827	0.490389	
min	NaN	0.075000	0.055000	0.000000	0.002000	
25%	NaN	0.450000	0.350000	0.115000	0.441500	
50%	NaN	0.545000	0.425000	0.140000	0.799500	
75%	NaN	0.615000	0.480000	0.165000	1.153000	

max	NaN	0.815000	0.650	900 1.	130000	2.825500
count unique top freq mean std min 25% 50% 75% max	0 0 0 0 0 0	_weight V .000000 NaN NaN NaN .359367 .221963 .001000 .186000 .336000 .502000 .488000	I	900 4177 NaN NaN S94 0 614 0 500 0 500 0	_weight .000000 NaN NaN NaN .238831 .139203 .001500 .130000 .234000 .329000	Age 4177.000000 NaN NaN NaN 11.433684 3.224169 2.500000 9.500000 10.500000 12.500000 30.500000
data.co	rr()					
Shucked Length 0.897914 Diamete 0.893162 Height 0.774972 Whole_we 0.969409 Shucked 1.000000 Viscera 0.931963 Shell_we 0.882612 Age 0.420884	4 r 2 eight 5 _weight 1 eight 7	Length 1.000000 0.986812 0.827554 0.925261 0.897914 0.903018 0.897706 0.556720	Diameter 0.986812 1.000000 0.833684 0.925452 0.893162 0.899724 0.905330 0.574660	Height 0.827554 0.833684 1.000000 0.819221 0.774972 0.798319 0.817338 0.557467	0.92 0.83 1.00 0.96 0.96	eight 25261 25452 19221 90000 59405 56375 55355
Length Diameter Height Whole_we Shucked Viscera Shell_we Age	eight _weight _weight	0.8 0.7 0.9 0.9 1.0	eight She 03018 99724 98319 66375 31961 00000 07656 03819	ll_weight 0.897706 0.905330 0.817338 0.955355 0.882617 0.907656 1.0000000 0.627574	Age 0.556720 0.574660 0.557467 0.540390 0.420884 0.503819 0.627574 1.000000	9 9 7 9 1 9

sns.heatmap(data.corr(),annot=True)

<matplotlib.axes._subplots.AxesSubplot at 0x7fd9180453d0>

#Handle The Missing values

data.isnull().sum()

Sex 0 Length Diameter 0 Height 0 Whole weight 0 0 Shucked weight Viscera weight 0 0 Shell weight 0 Age dtype: int64

#Find the outliers

outliers=data.quantile(q=(0.25,0.75)) outliers

	Length	Diameter	Height	Whole_weight	Shucked_weight
Visce	ra_weigh	t \			
0.25	$\overline{0}.450$	0.35	0.115	0.4415	0.186
0.093	5				
0.75	0.615	0.48	0.165	1.1530	0.502

```
0.2530
```

```
Shell_weight
                      Age
0.25
             0.130
                      9.5
0.75
             0.329
                    12.5
a = data.Age.quantile(0.25)
b = data.Age.quantile(0.75)
c = b - a
lower limit = a - 1.5 * c
data.median(numeric_only=True)
Length
                    0.5450
Diameter
                    0.4250
Height
                    0.1400
Whole weight
                    0.7995
Shucked weight
                    0.3360
Viscera weight
                    0.1710
Shell weight
                    0.2340
                   10.5000
Age
dtype: float64
data['Age'] = np.where(data['Age'] < lower_limit, 7, data['Age'])</pre>
sns.boxplot(x=data.Age)
```


#Categorical colums and encoding
data.head()

```
Height
                                  Whole weight Shucked weight
  Sex Length Diameter
Viscera weight
               \
        0.455
   М
                   0.365
                           0.095
                                         0.5140
                                                         0.2245
0.1010
                   0.265
                           0.090
                                         0.2255
1
    М
        0.350
                                                         0.0995
0.0485
        0.530
                   0.420
                           0.135
                                         0.6770
                                                         0.2565
2
    F
0.1415
   М
        0.440
                  0.365
                           0.125
                                        0.5160
                                                         0.2155
0.1140
        0.330
                   0.255
                           0.080
                                         0.2050
                                                         0.0895
4
    Ι
0.0395
   Shell weight
                  Age
          0.150
0
                 16.5
1
          0.070
                  8.5
2
          0.210
                 10.5
3
          0.155
                 11.5
          0.055
                  8.5
from sklearn.preprocessing import LabelEncoder
labenc = LabelEncoder()
data.Sex = labenc.fit transform(data.Sex)
data.head()
   Sex Length
                Diameter
                           Height
                                   Whole weight
                                                  Shucked weight \
0
         0.455
                    0.365
                            0.095
     2
                                          0.5140
                                                          0.2245
1
     2
         0.350
                    0.265
                            0.090
                                                          0.0995
                                          0.2255
2
                    0.420
                                                          0.2565
         0.530
                            0.135
                                          0.6770
     0
3
     2
         0.440
                    0.365
                            0.125
                                          0.5160
                                                          0.2155
4
     1
         0.330
                    0.255
                            0.080
                                          0.2050
                                                          0.0895
                   Shell weight
   Viscera weight
                                   Age
0
           0.1010
                           0.150
                                  16.5
1
           0.0485
                           0.070
                                   8.5
2
           0.1415
                           0.210
                                  10.5
3
           0.1140
                           0.155
                                  11.5
4
           0.0395
                           0.055
                                   8.5
#Split the data into dependent and independent variables.
x=data.drop(columns=["Sex"],axis=1)
y = data["Sex"]
print(x.head())
print(y.head())
                     Height Whole weight Shucked weight
   Length
           Diameter
Viscera weight
    0.455
              0.365
                       0.095
                                    0.5140
                                                     0.2245
0.1010
    0.350
              0.265
                       0.090
                                    0.2255
                                                     0.0995
```

```
0.0485
              0.420
                      0.135
                                    0.6770
2
    0.530
                                                    0.2565
0.1415
   0.440
              0.365
                      0.125
                                    0.5160
                                                    0.2155
0.1140
    0.330
              0.255
                      0.080
                                    0.2050
                                                     0.0895
0.0395
   Shell weight
                  Age
0
          0.150
                 16.5
1
          0.070
                 8.5
2
          0.210
                10.5
3
          0.155
                11.5
4
          0.055
                  8.5
0
     2
     2
1
2
     0
3
     2
4
     1
Name: Sex, dtype: int64
#Scale the independent variables
from sklearn.preprocessing import scale
X Scaled = pd.DataFrame(scale(x), columns=x.columns)
X Scaled.head()
     Length Diameter
                         Height Whole weight Shucked weight
Viscera weight
0 -0.574558 -0.432149 -1.064424
                                     -0.641898
                                                      -0.607685
0.726212
1 -1.448986 -1.439929 -1.183978
                                     -1.230277
                                                      -1.170910
1.205221
2 0.050033 0.122130 -0.107991
                                     -0.309469
                                                      -0.463500
0.356690
3 -0.699476 -0.432149 -0.347099
                                     -0.637819
                                                      -0.648238
0.607600
4 -1.615544 -1.540707 -1.423087
                                     -1.272086
                                                      -1.215968
1.287337
   Shell weight
0
      -0.638217
                1.577830
1
      -1.212987 -0.919022
2
      -0.207139 -0.294809
3
      -0.602294
                 0.017298
      -1.320757 -0.919022
#Split the data into training and testing
```

from sklearn.model selection import train test split

X_Train, X_Test, Y_Train, Y_Test = train_test_split(X_Scaled, y,

```
test size=0.2, random state=0)
X_Train.shape,X_Test.shape
((3341, 8), (836, 8))
Y Train.shape, Y Test.shape
((3341,), (836,))
X Train.head()
                                     Whole weight
                Diameter
                                                    Shucked weight
        Length
                             Height
3141 -2.864726 -2.750043 -1.423087
                                        -1.622870
                                                         -1.553902
3521 -2.573250 -2.598876 -2.020857
                                        -1.606554
                                                         -1.551650
                                         1.145672
883
      1.132658
                1.230689
                          0.728888
                                                          1.041436
3627
      1.590691
                1.180300
                           1.446213
                                         2.164373
                                                          2.661269
2106
      0.591345
                0.474853
                          0.370226
                                         0.432887
                                                          0.255175
      Viscera weight
                      Shell weight
                                          Age
3141
           -1.583867
                          -1.644065 -1.543234
3521
                          -1.626104 -1.387181
           -1.565619
883
            0.286552
                           1.538726
                                     1.577830
3627
            2.330326
                           1.377072
                                     0.017298
2106
            0.272866
                          0.906479
                                     1.265723
X Test.head()
                                     Whole weight
                                                    Shucked weight
        Length
                Diameter
                             Height
668
      0.216591
                0.172519
                          0.370226
                                         0.181016
                                                         -0.368878
1580 -0.199803 -0.079426 -0.466653
                                        -0.433875
                                                         -0.443224
3784
      0.799543
                0.726798
                          0.370226
                                         0.870348
                                                          0.755318
463
     -2.531611 -2.447709 -2.020857
                                        -1.579022
                                                         -1.522362
2615
      1.007740 0.928354
                                         1.390405
                          0.848442
                                                          1.415417
                      Shell weight
      Viscera weight
                                          Age
                                     0.953617
668
            0.569396
                           0.690940
1580
           -0.343004
                          -0.325685 -0.606915
3784
            1.764639
                          0.565209
                                     0.329404
463
           -1.538247
                          -1.572219 -1.543234
                          0.996287
2615
            1.778325
                                     0.641511
Y Train.head(),Y Test.head()
(3141)
         1
 3521
         1
 883
         2
         2
 3627
 2106
 Name: Sex, dtype: int64, 668
                                   2
 1580
         1
         2
 3784
 463
         1
```

```
2615
         2
 Name: Sex, dtype: int64)
Build the Model
from sklearn.ensemble import RandomForestClassifier
model = RandomForestClassifier(n estimators=10,criterion='entropy')
model.fit(X Train,Y Train)
RandomForestClassifier(criterion='entropy', n_estimators=10)
y predict = model.predict(X Test)
y predict train = model.predict(X Train)
Training and Testing Model
#train the model
from sklearn.metrics import
accuracy score, confusion matrix, classification report
print('Training accuracy: ',accuracy score(Y Train,y predict train))
Training accuracy: 0.9823406165818617
#test the model
print('Testing accuracy: ',accuracy_score(Y_Test,y_predict))
Testing accuracy: 0.5394736842105263
#Measure the performance using metrics
pd.crosstab(Y Test,y predict)
col 0
              1
                   2
Sex
                 104
0
       115
             30
1
        41
            216
                  34
2
                 120
       122
             54
print(classification report(Y Test,y predict))
              precision
                            recall f1-score
                                               support
           0
                   0.41
                              0.46
                                        0.44
                                                   249
           1
                   0.72
                              0.74
                                        0.73
                                                   291
           2
                   0.47
                              0.41
                                        0.43
                                                   296
    accuracy
                                        0.54
                                                   836
                                                   836
                   0.53
                              0.54
                                        0.53
   macro avq
```

weighted avg 0.54 0.54 0.54 836