ВЪВЕДЕНИЕ В КОМУНИКАЦИОННАТА И КОМПЮТЪРНАТА ТЕХНИКА И ТЕХНОЛОГИИ

УСТРОЙСТВО НА ПЕРСОНАЛЕН КОМПЮТЪР

Устройство на персонален компютър

- о Основни градивни елементи
- о Процесорен модул (дънна платка)
- о Компютърна периферия
- Технология за проектиране и производство на печатни платки (??)

Основни градивни елементи

- о Пасивни градивни елементи:
- о резистори;
- о кондензатори;
- о кварцови резонатори;
- о бобини и др.
- Активни градивни елементи:
- - ДИОДИ;
- о транзистори;
- о тиристори;
- о интегрални схеми.

Да си припомним

- Електрически величини.
- Обозначаване и основни мерни единици.
- Напрежение: U, u; [V; mV; kV]
- Τοκ: I, i; [A, mA, μA, (nA)]
- Съпротивление: R; [Ω; kΩ; MΩ]
- Капацитет: С; [F; pF; nF; µF]
- Мощност: P; [W; mW]

Да си припомним

о Закон на Ом

$$I = \frac{U_{12}}{R}$$

 U_{12} – е големината на пада на напрежението на разглеждания участък, V; R – постоянна величина, наречена активно съпротивление на участъка, Ω .

$$R = \frac{U}{I}$$

$$U = I.R$$

Резистори

 ОСНОВНИ ПАРАМЕТРИ И КЛАСИФИКАЦИЯ НА РЕЗИСТОРИТЕ

Мерни единици

Използвани мерни единици за съпротивление са: Ω , $k\Omega$, $M\Omega$. Основната мерна единица е Ом.

$$1 \ k\Omega = 1000 \ \Omega = 1 * 10^3 \ \Omega$$

 $1 \ M\Omega = 1000 \ k\Omega = 1 \ 000 \ 000 \ \Omega = 1 * 10^6 \ \Omega$

За да добиете представа за големината на резистор с $R = 1 \Omega$:

$$1\Omega = \frac{1V}{1A}$$

Съпротивление на проводник:

$$R = \rho \frac{l}{S}$$

ho – специфичното съпротивление на проводника (съпротивителния материал), Ω/m ; I – неговата дължина, m; S – неговото напречно сечение, mm^2 .

- Основни параметри:
- номинално съпротивление;
- толеранс (допустимо отклонение от номиналната стойност);
- номинална мощност (разсейвана мощност);
- собствен капацитет;
- собствена индуктивност;
- собствени шумове;
- о температурен коефициент на съпротивлението;
- пробивно напрежение;
- стабилност на съпротивлението и др.

о графично означение на резистор :

\circ Номинална стойност на съпротивлението RH, Ω :

Основни (базови) стойности по които се произвеждат елементите.

Разликата между две последователни стандартни стойности е приблизително равно на удвоения толеранс.

Номиналната стойност се маркирана върху елемента – резистора

Номиналното стойност и толеранса трябва да бъдат обезателно обозначени върху елемента.

При по-големите по габарити елементи (резистори) се означава и тяхната номинална мощност. При кондензаторите максималното допустимо работно напрежение.

о Толеранс

Допустимо отклонение от номиналната стойност — разликата между номиналното и действителното съпротивление изразено в % по отношение на $\mathbf{R}\mathbf{h}$, в %: (от \pm 0.1% до \pm 30%)

Номинална разсейвана мощност Рн

максимално допустимата мощност, която резисторите могат да разсейват при определена температура на околната среда и при продължително натоварване с напрежение, не поголямо от номиналното. Измерва се в W; (от 0.05 W до 300 W и от 0.01 W до 500 W).

Номинална разсейвана мощност
 Рн

$$P = U * I = I^2 * R = \frac{U^2}{R}$$

R – съпротивление на резистора, Ω ;

I – токът протичащ през него, А;

U – напрежение в краищата му, V.

о Номинални стойности на съпротивленията по класовете E6, E12, E24 и E48

Ред	E6	E12		E24				E48							
Доп уск	±20%	±10 %		±5 %				± 2 %							
Rн	1.00	1.00	3.30	1.00	1.80	3.30	5.60	1.00	1.30	1.80	2.40	3.30	4.30	5.60	7.50
	1.50	1.20	3.90	1.10	2.00	3.60	6.20	1.05	1.40	1.90	2.55	3.45	4.50	5.90	7.85
	2.20	1.50	4.70	1.20	2.20	3.90	6.80	1.10	1.50	2.00	2.70	3.60	4.70	6.20	8.20
	3.30	1.80	5.60	1.30	2.40	4.30	7.50	1.15	1.55	2.10	2.85	3.75	4.90	6.50	8.60
	4.70	2.20	6.80	1.50	2.70	4.70	8.20	1.20	1.60	2.20	3.00	3.90	5.10	6.80	9.10
	6.80	2.70	8.20	1.60	3.00	5.10	9.10	1.25	1.70	2.30	3.15	4.10	5.35	7.15	9.55

Основни градивни елементи

о Кондензатори

о графично означение на кондензатор :

- Кондензаторите се характеризират със следните основни данни:
- стойност на номиналния капацитет;
- допустими отклонения;
- изолационно съпротивление;
- диелектрична якост;
- температурен коефициент на капацитета;
- гранична работна температура;
- минимално допустимо атмосферно налягане при определено работно напрежение;
- допустима реактивна мощност;
- собствена индуктивност и др.

- Основна класификация в зависимост от това, дали се изменя или не капацитетът им. Те се делят на:
- о постоянни;
- променливи;
- о полупроменливи.

Кондензаторите във всяка от тези групи се класифицират в зависимост от вида на използвания диелектрик.

Мерни единици

```
Основна единица е - F;
Кратни единици:
```

$$mF = 1.10^{-3} F;$$

$$\mu F = 1.10^{-6} F;$$

$$nF = 1.10^{-9} F;$$

$$pF = 1.10^{-12} F;$$

 Капацитета на един плосък кондензатор се определя по формулата

$$C = \frac{\varepsilon_0 * \varepsilon * S}{d}$$

 $\varepsilon_0 = 8.85*10^{-12} \ F/m$, е диелектрична проницаемост на вакуума

 ε – относителната диелектрична проницаемост на диелектрика между плочите, F/m;

S - площта на плочата, m^2 ;

d - дебелината на диелектрика (разстоянието между плочите).

 Капацитета на един плосък кондензатор с п плочи може да се изчисли по формулата

$$C = \frac{\mathcal{E}_0 * \mathcal{E} * S}{d * (n - 1)}$$

Номинално напрежение Uн :

постоянно работно напрежение или ефективната стойност на променливото напрежение с номинална честота, което може да бъде приложено към изводите на кондензатора при която и да е температура от температурния обхват на съответната климатична категория.

Ъгълът на диелектричните загуби :

ъгълът, допълващ до 90° ъгъла между тока и напрежението в една кондензаторна верига. Тангенсът от този ъгъл е мярка за загубите на енергия в кондензатора по време на неговата работа при променлив ток. Най-качествени са кондензаторите с най-малък tg δ .

• Номинални стойности на съпротивленията по класовете E6, E12, E24 и E48

E6	E12		E24				E48							
± 20%	±10 %		± 5 %				±2 %							
1.0	1.0	3.3	1.0	1.8	3.3	5.6	1.00	1.40	1.87	1.49	3.32	4.42	5.90	7.87
1.5	1.2	3.9	1.1	2.0	3.6	6.2	1.05	1.47	1.96	2.61	3.48	4.64	6.19	8.25
2.2	1.5	4.7	1.2	2.2	3.9	6.8	1.15	1.54	2.05	2.74	3.65	4.87	6.49	8.66
3.3	1.8	5.6	1.3	2.4	4.3	7.5	1.21	1.62	2.15	2.87	3.83	5.11	6.81	8.66
4.7	2.2	6.8	1.5	2.7	4.7	8.2	1.27	1.69	2.26	3.01	4.02	5.36	7.15	9.09
6.8	2.7	8.2	1.6	3.0	5.1	9.1	1.33	1.78	2.37	3.16	4.22	5.62	7.50	9.53

Маркировка на резистори и кондензатори

- **Маркировката** на резисторите и кондензаторите се извършва по следните правила:
- Наименованието или знака на производителя;
- Кодираното означение на номинално стойност и допуска му;
- Използване на буквено цифров код за означаване номиналната стойност;
- Буквен код за означаване толерансите (допуска) на капацитетите.
- о месеца и година на производство.

Маркировка на резистори

Маркировката на резисторите – **различия**:

- о номиналната мощност;
- означението на групата по шумово напрежение (само за група А);
- На малогабаритни (L<=10mm и D<=5mm) резистори се маркира само Rн и допускат им.

Маркировка на кондензатори

Маркировката на кондензаторите – **различия**:

- о номиналното напрежение;
- о тяхното пробивно напрежение и др. данни.

Маркировка на резистори и кондензатори

Кодиране на номиналната стойност:

 Кодова буква означава мястото на десетичната точка

за ре	зисторите	за кондензаторите				
R	Ω	р	pF			
K	kΩ	n	nF			
M	$M\Omega$	μ	μF			
код	множител	код	множител			

Маркировка на резистори

	Стойности на	Код на	Стойности на	Код на
	съпротивлението,	означение	съпротивлението,	означение
	Ω		Ω	
<u></u>	0.1 Ω	R10	$3.32~\mathrm{k}\Omega$	3K32
	$0.15~\Omega$	R15	33.2 k Ω	33K2
	1.0 Ω	1R0	59.0 kΩ	59K
	$100~\Omega$	100R	1 MΩ	1M0
	1kΩ	1K0	1.5 M Ω	1M5
	10 k Ω	10K	10 M Ω	10M
	150k Ω	150K	100 GΩ	100G

Маркировка на кондензатори

Стойност	Код	Стойност	Код
0.1 pF	p10	100 nF	100n
0.15 pF	p15	150 nF	150n
0.332 pF	p332	332 nF	332n
1.5 pF	1p5	1.5 F	1.5
1 pF	1p0	10 F	10
100 pF	100p	100 F	100
15 nF	15n	150 nF	150n

Маркировка на допуска

допуска, %	кодова буква
±0.1	В
±0.25	С
±0.5	D
±1	F
±2	G
±5	J
±10	K
±20	M
±30	N

Цветен код за маркиране на резистори

Схеми на свързване резистори

Успоредно свързване на резистори

Схеми на свързване резистори

Успоредно свързване на резистори

Еквивалентното съпротивление на n на брой успоредно (паралелно) свързани

резистори е
$$\frac{1}{R_e} = \frac{1}{R_1} + \frac{1}{R_2} + \dots + \frac{1}{R_n}$$

$$R_e = \frac{R_1 R_2}{R_1 + R_2}$$

Успоредно свързване на кондензатори

Еквивалентното капацитет на n на брой успоредно (паралелно) свързани кондензатори се намира по формулата:

Успоредно свързване на кондензатори

$$C_e = C_1 + C_2 + \dots + C_n$$

$$C_e = C_1 + C_2$$

Схеми на свързване резистори

Последователно свързване на резистори

Еквивалентното съпротивление на **n** на брой последователно свързани резистори се намира по формулата:

$$R_{e} = R_{1} + R_{2} + ... + R_{n}$$

$$R_e = R_1 + R_2$$

Последователно свързване на кондензатори

Еквивалентното капацитет на **n** на брой последователно свързани кондензатори се намира по формулата :

Последователно свързване на кондензатори

$$\frac{1}{C_e} = \frac{1}{C_1} + \frac{1}{C_2} + \dots + \frac{1}{C_n}$$

$$C_{e} = \frac{C_{1}C_{2}}{C_{1} + C_{2}}$$

Активни елементи

- о ДИОДИ
- о ТРАНЗИСТОРИ
- о ТИРИСТОРИ
- о ИНТЕГРАЛНИ СХЕМИ