18.369 Problem Set 3

Due Thursday, 12 March 2020.

Problem 0: Scattering and energy

As in the course notes, we can write Maxwell's equations for the 6-component fields ψ as $\frac{\partial \psi}{\partial t} = \hat{C}\psi - \frac{\partial \phi}{\partial t} - \xi$, where the 6-component polarizations $\phi = \chi * \psi$ are a convolution in time with a (passive and causal) linear susceptibility $\chi(\mathbf{x},t)$ at each point \mathbf{x} in space. Now, suppose we have the situation depicted in Fig. 1: sources $(\xi \neq 0)$ lying *outside* some bounded volume Ω produce an incident wave ψ_{inc} that scatters off materials $(\chi \neq 0)$ *inside* of Ω to produce a scattered wave ψ_{scat} . Outside of Ω there are no materials $(\chi = 0)$, while inside of Ω there are no sources $(\xi = 0)$.

- (a) Write the total fields as $\psi = \psi_{\text{inc}} + \psi_{\text{scat}}$, where $\psi_{\text{inc}} = \begin{pmatrix} \mathbf{E}_{\text{inc}} \\ \mathbf{H}_{\text{inc}} \end{pmatrix}$ satisfies $\frac{\partial \psi_{\text{inc}}}{\partial t} = \hat{C}\psi_{\text{inc}} \xi$ (Maxwell's equations with the same currents but no materials), and the initial conditions at $t = -\infty$ are $\psi = \psi_{\text{inc}} = \psi_{\text{scat}} = 0$.
 - (i) What differential¹ equation must ψ_{scat} satisfy?

¹Technically, if you include a convolution $\chi *$ then you have a "pseudodifferential" operator.

Figure 1: Schematic of an incident wave ψ_{inc} created by sources ξ that are only $\neq 0$ *outside* some volume Ω , interacting with materials $\chi \neq 0$ that lie *inside* Ω to produce an outgoing scattered wave ψ_{scat} .

- (ii) Fourier transform in time to find equations for $\hat{\psi}_{\rm inc}(x,\omega)$ and $\hat{\psi}_{\rm scat}$ (in terms of $\hat{\xi}$ and $\hat{\chi}$); equivalently, look for time-harmonic solutions $\hat{\psi}_{\rm inc}e^{-i\omega t}$ and $\hat{\psi}_{\rm scat}e^{-i\omega t}$ from a time-harmonic source $\hat{\xi}(\mathbf{x})e^{-i\omega t}$.
- (b) Applying Poynting's theorem and passivity to your time-harmonic fields, show that $\iint_{\partial\Omega} \operatorname{Re}[\hat{\mathbf{E}}_{\mathrm{inc}}^* \times \hat{\mathbf{H}}_{\mathrm{inc}}] \cdot d\mathbf{A} = 0 \text{ and } P_{\mathrm{abs}} = \oiint_{\partial\Omega} \operatorname{Re}[\hat{\mathbf{E}}^* \times \hat{\mathbf{H}}] \cdot d\mathbf{A} \geq 0 \text{ (the absorbed power = inward total flux). (Note that here, <math>\Omega$ is a subset of the whole domain!)
- (c) In order to ensure $P_{\text{scat}} = \oiint_{\partial\Omega} \text{Re}[\hat{\mathbf{E}}_{\text{scat}}^* \times \hat{\mathbf{H}}_{\text{scat}}] \cdot d\mathbf{A} \geq 0$ (the scattered power = outward scattered flux), we need something more: an *outgoing boundary condition* (or "radiation" boundary condition): if we consider *any point* on sphere of radius R (around any point in Ω), then *in the limit* as $R \to \infty$ we require that $R^2 \text{Re}[\hat{\mathbf{E}}_{\text{scat}}^* \times \hat{\mathbf{H}}_{\text{scat}}]$ must point *radially outward*. Use Poynting's theorem to show that such a radiation boundary condition implies $\oiint_{\partial\Omega} \text{Re}[\hat{\mathbf{E}}_{\text{scat}}^* \times \hat{\mathbf{H}}_{\text{scat}}] \cdot d\mathbf{A} \geq 0.^2$
- (d) Show that the "extinguished power" $P_{\rm ext} = P_{\rm abs} + P_{\rm scat}$ can be written in terms of an integral over $\partial \Omega$ involving $\hat{\mathbf{E}}_{\rm inc}^* \times \hat{\mathbf{H}}_{\rm scat}$ and $\hat{\mathbf{E}}_{\rm scat}^* \times \hat{\mathbf{H}}_{\rm inc}$ only. This is a version of a famous result known as the **optical theorem**.
- (e) Derive an alternative form of the optical theorem: show that $P_{\rm ext}$ can be written as an integral over Ω involving *only* $\hat{\psi}_{\rm inc}^*\hat{\phi}$. (Hint: use Poynting's theorem to relate $P_{\rm abs}$ and $P_{\rm scat}$ to work on polarization currents, and write $\psi_{\rm scat} = \psi \psi_{\rm inc}$.)

Problem 1: Periodic waveguides

In class, we showed by a variational proof that any $\varepsilon(y)$, in two dimensions, gives rise to at least one guided mode whenever $\varepsilon(y)^{-1} = \varepsilon_{\text{lo}}^{-1} - \Delta(y)$ for $\int \Delta > 0$ and $\int |\Delta| < \infty$. At least, we showed it for the TE polarization (**H** in the $\hat{\mathbf{z}}$ direction). Now, you

²We also will also need some boundary condition to uniquely determine ψ_{inc} . Not necessarily an outgoing boundary condition, however—often it is convenient to have an incident wave coming in "from infinity", such as an incident planewave, perhaps with no explicit sources ($\xi = 0$) and just appropriate boundary conditions.

 $^{^3}$ As in class, the latter condition on Δ will allow you to swap limits and integrals for any integrand whose magnitude is bounded above by some constant times $|\Delta|$ (by Lebesgue's dominated convergence theorem).

will show the same thing much more generally, but using the same basic technique.

- (a) Let $\varepsilon(x,y)^{-1}=1-\Delta(x,y)$ be a periodic function $\Delta(x,y)=\Delta(x+a,y)$, with $\int |\Delta|<\infty$ and $\int_0^a \int_{-\infty}^\infty \Delta(x,y) dx dy>0$. Prove that at least one TE guided mode exists, by choosing an appropriate (simple!) trial function of the form $\mathbf{H}(x,y)=u(x,y)e^{ikx}\hat{\mathbf{z}}$. That is, show by the variational theorem that $\omega^2< c^2k^2$ for the lowest-frequency eigenmode. (It is sufficient to show it for $|k|\leq \pi/a$, by periodicity in k-space; for $|k|>\pi/a$, the light line is not $\omega=c|k|$.)
- (b) Prove the same thing as in (a), but for the TM polarization (**E** in the $\hat{\mathbf{z}}$ direction). Hint: you will need to pick a trial function of the form $\mathbf{H}(x,y) = [u(x,y)\hat{\mathbf{x}} + v(x,y)\hat{\mathbf{y}}]e^{ikx}$ where u and v are some (simple!) functions such that $\nabla \cdot \mathbf{H} = 0.4$

Problem 2: 2d Waveguide Modes

Consider the two-dimensional dielectric waveguide of thickness *h* that we first introduced in class:

$$\varepsilon(y) = \left\{ \begin{array}{ll} \varepsilon_{hi} & |y| < h/2 \\ \varepsilon_{lo} & |y| \ge h/2 \end{array} \right.,$$

where $\varepsilon_{hi} > \varepsilon_{lo}$. Look for solutions with the "TM" polarization $\mathbf{E} = E_z(x,y)\mathbf{\hat{z}}e^{-i\omega t}$. The boundary conditions are that E_z is continuous and $\partial E_z/\partial y$ ($\sim H_x$) is continuous, and that we require the fields to be finite at $x,y\to\pm\infty$,

- (a) Prove that we can set $\varepsilon_{lo} = 1$ without loss of generality, by a change of variables in Maxwell's equations. In the subsequent sections, therefore, set $\varepsilon_{lo} = 1$ for simplicity.
- (b) Find the guided-mode solutions $E_z(x,y) = e^{ikx}E_k(y)$, where the corresponding eigenvalue $\omega(k) < ck$ is below the light line.
 - (i) Show for the |y| < h/2 region the solutions are of sine or cosine form, and that for |y| > h/2 they are decaying exponentials. (At this point, you can't easily prove that the arguments of the sines/cosines are

Figure 2: Schematic for problem 1. *Left*: a time-harmonic point source J above a periodic surface. *Right*: the problem can be reduced to solving a set of problems with point sources in a single unit cell, with periodic boundary conditions on the fields.

- real, but that's okay—you will be able to rule out the possibility of imaginary arguments below.)
- (ii) Match boundary conditions (E_z and H_x are continuous) at $y = \pm h/2$ to obtain an equation relating ω and k. You should get a transcendental equation that you cannot solve explicitly. However, you can "solve" it graphically and learn a lot about the solutions—in particular, you might try plotting the left and right hand sides of your equation (suitably arranged) as a function of $k_{\perp} = \sqrt{\frac{\omega^2}{c^2} \varepsilon_{hi} k^2}$, so that you have two curves and the solutions are the intersections (your curves will be parameterized by k, but try plotting them for one or two typical k).
- (iii) From the graphical picture, derive an exact expression for the number of guided modes as a function of k. Show that there is exactly one guided mode, with even symmetry, as $k \rightarrow 0$, as we argued in class.

Problem 3: Point sources & periodicity

Suppose we are in 2d (xy plane), working with the TM polarization (**E** out of plane), and have a periodic (period a) surface shown in Fig 1(left). Above the surface is a time-harmonic point source $\mathbf{J} = \delta(x)\delta(y)e^{-i\omega t}\hat{z}$ (choosing the origin to be the location of the point source, for convenience). As you saw in pset 2, you can define a frequency-domain problem $(\nabla \times \nabla \times -\omega^2 \varepsilon)\mathbf{E} = i\omega \mathbf{J}$ (setting $\mu_0 = \varepsilon_0 = 1$ for convenience) for the time-harmonic fields in response to this current.

In this problem, you will explain how to take ad-

⁴You might be tempted, for the TM polarization, to use the **E** form of the variational theorem that you derived in problem 1, since the proof in that case will be somewhat simpler: you can just choose $\mathbf{E}(x,y) = u(x,y)e^{ikx}\hat{\mathbf{z}}$ and you will have $\nabla \cdot \varepsilon \mathbf{E} = 0$ automatically. However, this will lead to an inequivalent condition $\int (\varepsilon - 1) > 0$ instead of $\int \Delta = \int \frac{\varepsilon - 1}{\varepsilon} > 0$.

vantage of the fact that the structure (but not the source or fields!) is periodic, by reducing it to a set of problems of the form shown in Fig. 1(right): solving for the fields of the *same* point source **J**, but in a *single unit cell* of the structure with *Bloch-periodic boundary conditions* on the fields.

(a) Show that the total resulting electric field **E**can be written as a superposition of solutions \mathbf{E}_k to $(\nabla \times \nabla \times - \boldsymbol{\omega}^2 \boldsymbol{\varepsilon}) \mathbf{E}_k = i \boldsymbol{\omega} \mathbf{J}$ in a unit-cell domain with Bloch-periodic boundary conditions. Hint, the following identity is useful:

$$\delta(x) = \frac{a}{2\pi} \int_0^{2\pi/a} \left[\sum_{n=-\infty}^{\infty} \delta(x - na) e^{ikna} \right] dk$$

and recall conservation of irrep.

- (b) Instead of considering an infinite domain, it is often useful to consider a "supercell:" suppose that we have N periods, with periodic boundary conditions $\mathbf{E}(x+Na)=\mathbf{E}(x)$ and $\mathbf{J}(x+Na)=\mathbf{J}(x)$. Show that we can *still* write this \mathbf{E} as a superposition of Bloch-periodic \mathbf{E}_k solutions in individual unit cells, exactly as in the previous part, but with some restriction on k.
- (c) Suppose that we want to compute the radiated power P (per unit z) from \mathbf{J} by integrating the Poynting flux through a plane above the current $(y = y_0 > 0)$:

$$P = \frac{1}{2} \int_{-\infty}^{\infty} \hat{\mathbf{y}} \cdot \text{Re} \left[\mathbf{E}^*(x, y_0) \times \mathbf{H}(x, y_0) \right] dx.$$

Show that $P = \frac{a}{2\pi} \int_0^{2\pi/a} P_k dk$, a simple integral of powers P_k computed *separately* for each periodic subproblem above.

(Hint: orthogonality of partner functions. These infinite integrals can be somewhat awkward to work with, so it might be easier to consider P for a supercell with N periods, and then take the limit as $N \to \infty$ of your final expression.)