Exact Exponential Algorithms

- Under Dr. N.R. Aravind

Taha Adeel Mohammed

Indian Institute of Technology Hyderabad

May 1, 2024

Problem Statement

 Understand and analyse the different existing exponential algorithmic techniques.

Problem Statement

- Understand and analyse the different existing exponential algorithmic techniques.
- ullet Study the PPSZ algorithm for solving the $\kappa\text{-SAT}$ problem.

Problem Statement

- Understand and analyse the different existing exponential algorithmic techniques.
- Study the PPSZ algorithm for solving the K-SAT problem.
- Attempt to improve the current best known time complexity upper bound for the MATCHING CUT problem.

Matching Cut

MATCHING CUT Problem

- Given a graph G = (V, E).
- Decide whether it can be partitioned into two sets A and B.
- $\forall v \in A$, v has ≤ 1 neighbour in B and vice versa.

¹Komusiewicz et al (2019). *Matching Cut: Kernelization, Single-Exponential Time FPT, and Exact Exponential Algorithms.* 10.1016/j.dam.2019.12.010.

²NR Aravind et al (2021). An FPT algorithm for Matching Cut and d-cut. arXiv:2101.06998

Matching Cut

MATCHING CUT Problem

- Given a graph G = (V, E).
- Decide whether it can be partitioned into two sets A and B.
- $\forall v \in A$, v has ≤ 1 neighbour in B and vice versa.

Approaches

- SAT-free Branching Algorithm: $O^*(1.3803^n)$
- Reduction to 3-SAT: $O^*(1.3071^n)$
- FPT algorithm for d-CUT:² $O^*(2^{O(k \log k)})$ ($k = \max \text{ edge-cut size}$)

¹Komusiewicz et al (2019). *Matching Cut: Kernelization, Single-Exponential Time FPT, and Exact Exponential Algorithms.* 10.1016/j.dam.2019.12.010.

²NR Aravind et al (2021). An FPT algorithm for Matching Cut and d-cut. arXiv:2101.06998

k-SAT

K-SAT Problem

Given a CNF formula with max k literals per clause, decide if there exists an assignment that satisfies all clauses.

MATCHING CUT to 3-SAT

• We add the constraint that for each $v \in V$, and its two neighbours u_1, u_2 , they cannot be in different parts of the matching cut.

$$\phi(G) = \bigwedge_{v \in V} \bigwedge_{u_1, u_2 \in N(v)} (v \vee \neg u_1 \vee \neg u_2) \wedge (\neg v \vee u_1 \vee u_2)$$
 (1)

• $|Variables| = O(n), |Clauses| = O(n^3)$

PPSZ Algorithm³

<u>Def</u>ⁿ: Let F be a CNF formula and $D \in \mathbb{N}$. We say F **D-implies** u if $\exists G \subseteq F$ with $|G| \leq D$ that implies u.

Algorithm

- ullet Randomly choose permutation π of $\mathit{vbl}(F)$ and assignment $eta \in \{0,1\}^n$
- Process variables in π order, setting each variable according to β , unless it is D-implied.

Timeline

³Ramamohan Paturi, Pavel Pudlak, Michael E. Saks, and Francis Zane. An improved exponential-time algorithm for k-SAT. J.ACM, 52(3):337364, 2005

PPSZ Analysis for Unique k-SAT⁴

<u>**Def**</u>ⁿ: A variable v is called **forced** if it is D-implied in F by α (the unique satisfying assgn.) and variables before v in π , else it is **guessed**.

$$\Pr_{\beta,\pi}[\mathsf{ppsz} \; \mathsf{returns} \; \alpha] = \mathbb{E}_{\pi}[2^{-|\mathsf{Guessed}(F,\alpha,\pi,D)|}] \ge 2^{-\sum_{\mathsf{x}} \mathsf{Pr}[\mathsf{x} \; \mathsf{is} \; \mathsf{guessed}]} \tag{2}$$

⁴Paturi, Pudlak, Saks, and Zane. Chapter 6*: The PPSZ Algorithm

PPSZ Analysis for Unique k-SAT⁴

<u>**Def**</u>ⁿ: A variable v is called **forced** if it is D-implied in F by α (the unique satisfying assgn.) and variables before v in π , else it is **guessed**.

$$\Pr_{\beta,\pi}[\mathsf{ppsz} \; \mathsf{returns} \; \alpha] = \mathbb{E}_{\pi}[2^{-|\mathsf{Guessed}(F,\alpha,\pi,D)|}] \ge 2^{-\sum\limits_{x}\mathsf{Pr}[x \; \mathsf{is} \; \mathsf{guessed}]} \tag{2}$$

Critical Clause Tree

- T_x Clause tree with var-label(root) = x. Each node u also has a clause-label(u) and assignment $\beta(u)$ based on the tree construction.
- Represents how x can become D-implied in F.
- Reachable(T_x, α, π): Set of all nodes u s.t. $\pi(v) \ge \alpha \ \forall \ v \in path(x, u)$.
- Clause Tree Lemma: $|\text{Reachable}(T_x, \pi(x), \pi)| \leq D \Rightarrow x$ is forced.

⁴Paturi, Pudlak, Saks, and Zane. Chapter 6*: The PPSZ Algorithm

PPSZ Analysis for Unique k-SAT⁴

<u>**Def**</u>ⁿ: A variable v is called **forced** if it is D-implied in F by α (the unique satisfying assgn.) and variables before v in π , else it is **guessed**.

$$\Pr_{\beta,\pi}[\mathsf{ppsz} \; \mathsf{returns} \; \alpha] = \mathbb{E}_{\pi}[2^{-|\mathsf{Guessed}(F,\alpha,\pi,D)|}] \ge 2^{-\sum\limits_{\mathsf{x}}\mathsf{Pr}[\mathsf{x} \; \mathsf{is} \; \mathsf{guessed}]} \tag{2}$$

Critical Clause Tree

- T_x Clause tree with var-label(root) = x. Each node u also has a clause-label(u) and assignment $\beta(u)$ based on the tree construction.
- Represents how x can become D-implied in F.
- Reachable(T_x, α, π): Set of all nodes u s.t. $\pi(v) \ge \alpha \ \forall \ v \in \text{path}(x, u)$.
- Clause Tree Lemma: $|\text{Reachable}(T_x, \pi(x), \pi)| \leq D \Rightarrow x$ is forced.

Using above clause tree, distinct label lemma, extending T_x' to T_∞ , and expectation calculations, we get:

$$O^*(ppsz) = O^*(2^{(2\ln 2 - 1)n}) = O^*(1.30704^n)$$
 (3)

⁴Paturi, Pudlak, Saks, and Zane. Chapter 6*: The PPSZ Algorithm

Hertli's Analysis for general k-SAT⁵

Definitions

- x is called a frozen variable if it has the same value in all satisfying assignments; liquid otherwise.
- SL(F): Set of all satisfying literals. |SL(F)| = |frozen| + 2|frozen|

⁵Timon Hertli. *3-SAT Faster and Simpler - Unique-SAT Bounds for PPSZ Hold in General.* IEEE, 2011.

Hertli's Analysis for general k-SAT⁵

Definitions

- x is called a frozen variable if it has the same value in all satisfying assignments; liquid otherwise.
- SL(F): Set of all satisfying literals. |SL(F)| = |frozen| + 2|frozen|

Modified PPSZ Algorithm

Instead of strictly following π , after each step, all D-implied variables are immediately set.

⁵Timon Hertli. *3-SAT Faster and Simpler - Unique-SAT Bounds for PPSZ Hold in General.* IEEE, 2011.

Hertli's Analysis for general k-SAT⁵

Definitions

- x is called a frozen variable if it has the same value in all satisfying assignments; liquid otherwise.
- SL(F): Set of all satisfying literals. |SL(F)| = |frozen| + 2|frozen| +

Modified PPSZ Algorithm

Instead of strictly following π , after each step, all D-implied variables are immediately set.

Theorem-1

If x is a frozen variable, then $p_{\text{guessed}}(F, x, \alpha, D) \leq S_k + \epsilon_k(D)$, where $S_k = \int_0^1 \frac{t^{1/(k-1)} - t}{1-t}$, and $\epsilon_k(D) \to 0$ as $D \to \infty$. $(S_3 = 2 \ln 2 - 1)$

⁵Timon Hertli. *3-SAT Faster and Simpler - Unique-SAT Bounds for PPSZ Hold in General.* IEEE, 2011.

Hertli's Analysis for general k-SAT

AssignSL(F)

- Random process that generates a satisfying assignment.
- $\alpha = \{\}$; while $|\alpha| < n$: pick $\ell \in_R SL(F)$ and add it to α ; return α ;
- $\underline{\mathbf{Def^n}}$: $p(F, \alpha) = \text{Probability that AssignSL}(F) \text{ returns } \alpha$.

$$p(F,\alpha) = \frac{1}{|SL(F)|} \sum_{\ell \in \alpha} p(F^{[\ell]},\alpha)$$
 (4)

Hertli's Analysis for general k-SAT

AssignSL(F)

- Random process that generates a satisfying assignment.
- $\alpha = \{\}$; while $|\alpha| < n$: pick $\ell \in_R SL(F)$ and add it to α ; return α ;
- $\underline{\mathbf{Def^n}}$: $p(F, \alpha) = \text{Probability that AssignSL}(F) \text{ returns } \alpha$.

$$p(F,\alpha) = \frac{1}{|SL(F)|} \sum_{\ell \in \alpha} p(F^{[\ell]},\alpha)$$
 (4)

Cost Function

For variable x in F, cost is defined as

$$c(F,x) = \begin{cases} S_k & \text{if } x \text{ is liquid} \\ \sum_{\alpha \in sat(F)} p(F,\alpha) p_{\text{guessed}}(F,x,\alpha,D) & \text{if } x \text{ is frozen} \end{cases}$$
 (5)

• Cost of F is defined as $c(F) = \sum_{x \in vbl(F)} c(F, x)$.

$$\implies c(F) \le nS_k$$
 (6)

Hertli's Analysis for general k-SAT

Expectation of cost function (Theorem-2)

$$\mathbb{E}_{\ell}[c(F^{[\ell]})] \le c(F) - |\mathsf{liquid}| \frac{2S_k}{|SL(F)|} - |\mathsf{frozen}| \frac{S_k}{|SL(F)|}$$
 (7)

Success Probability

$$p_{\text{success}}(F) \ge 2^{-c(F)}$$
 (8)

Proof by induction: Base case trivial.

$$\begin{aligned} p_{\mathsf{success}}(F) &= \frac{1}{2n} \sum_{\ell \in SL(F)} p_{\mathsf{success}}(F^{[\ell]}) \; \geq \; \frac{1}{2n} \sum_{\ell \in SL(F)} 2^{-c(F^{[\ell]})} \\ &\geq \frac{|SL(F)|}{2n} \mathbb{E}_{\ell}[2^{-c(F^{[\ell]})}] \; \geq \; \frac{|SL(F)|}{2n} 2^{-\mathbb{E}_{\ell}[c(F^{[\ell]})]} \\ \implies p_{\mathsf{success}}(F) \geq 2^{\log \frac{|SL(F)|}{2n} - \mathbb{E}_{\ell}[c(F^{[\ell]})]} \; \geq \; 2^{-c(F)} \end{aligned}$$

Matching Cut using P_3 Double Dominating Set

P₃ Double Dominating Set

- Let $S \subseteq V$ s.t. every P_3 of $G[V \setminus S]$ has a vertex with atleast 2 neighbours in S.
- **Proposition:** Let G be a n-vertex graph without leaves or adjacent degree-2 vertices. Then $\exists S$ s.t. $|S| \leq \left\lceil \frac{2n}{5} \right\rceil$, which can be found quickly.

Matching Cut using P_3 Double Dominating Set

P₃ Double Dominating Set

- Let $S \subseteq V$ s.t. every P_3 of $G[V \setminus S]$ has a vertex with atleast 2 neighbours in S.
- **Proposition:** Let G be a n-vertex graph without leaves or adjacent degree-2 vertices. Then $\exists S$ s.t. $|S| \leq \left\lceil \frac{2n}{5} \right\rceil$, which can be found quickly.

Algorithm

Brute-force vertices in S in $O(2^{|S|})$ and check for Matching Cut by reduction to 2-SAT:

- **1** For $v \in S$, add clause (x_v) or $(\neg x_v)$ based on $v \in A$ or $v \in B$.
- ② For $v \in V \setminus S$ and $u_1, u_2 \in N(v)$,
 - If $x_{u_1} = x_{u_2}$, then $x_v = x_{u_1}$, i.e. add (x_v) or $(\neg x_v)$ appropriately.
 - Else if $x_{u_1} = x_{u_2}$, then $\forall u \in N(v) \setminus \{u_1, u_2\}$, we have the condition $x_u = x_v$, i.e. add $(x_v \vee \neg x_u) \wedge (\neg x_v \vee x_u)$.

Thank You!