

AMC Introduction

Erzhuo Wang July 6,2024

Youth STEM Academy

Basic Information

The American Mathematics Competitions(AMC) is the preeminent math competition for students K-12. Today, over 300,000 students in 50 states and over 30 countries take the AMC to bolster their confidence and passion for math.

Your Mathematical Journey: AMC to IMO

- Begin your adventure with the AMC 8 for an introductory challenge or the AMC 10/12 for a chance to advance further in competitive mathematics.
- American Invitational Mathematics Examination (AIME): Excel in the AMC 10/12 to qualify for the AIME, a more challenging examination that tests your problem-solving prowess and mathematical ingenuity.

Your Mathematical Journey: AMC to IMO

- USA Mathematical Olympiad and USA Junior Mathematical Olympiad (USAMO/USAJMO): Achieve high scores in the AIME and AMC 10/12 to earn an invitation to the USAMO or USAJMO, where the nation's top mathematical talents compete in proof-based problems.
- Mathematical Olympiad Program (MOP): Outstanding performance in the USAMO or USAJMO could lead to participation in the MOP, an intensive training camp designed to prepare the best young mathematicians for international competition.

Rules

	AMC 8	AMC 10	AMC 12
Grade	≤ 8	≤ 10	≤ 12
Form	25 questions	25 questions	25 questions
Time	40 minutes	75 minutes	75 minutes
Total Score	25	150	150
Scoring Criteria	(1,0,0)	(6,1.5,0)	(6,1.5,0)

• (x, y, z) means x points for 1 correct answer, y points for 1 blank answer and z points for 1 wrong answer.

	AMC 8	AMC 10	AMC 12
年级	≤ 8	≤ 10	≤ 12
形式	25 道题	25 道题	25 道题
事件	40 分钟	75 分钟	75 分钟
总分	25	150	150
判分方法	(1,0,0)	(6,1.5,0)	(6,1.5,0)

● (x, y, z) 为对一个题 x 分, 不填 y 分, 答错 z 分.

Range for AMC 8

- Algebra: integer, rational number, real number, linear equation, inequality, number sequence, factorial, ratio.
- \bullet Combination: basic probability, Combinatorial number $\binom{n}{k}$
- Geometry: triangle, circle, rectangle, area, angle
- Number Theory: odd and even number, divisor, GCD(greatest common divisor)

AMC 8 考察范围

- 代数: 整数, 有理数, 实数, 线性方程, 不等式, 数列, 阶乘, 比率.
- 组合: 概率, 组合数
- 几何: 三角形, 圆形, 矩形, 面积, 角度
- 数列: 奇数偶数, 整除, 最大公约数, 唯一因子分解

Algebra(代数)

- 完全平方公式 $(x + y)^2 = x^2 + 2xy + y^2$
- 平方差公式 $(x + y)(x y) = x^2 y^2$
- 线性方程求解

$$x + y = 3$$
$$x - y = 1$$

- 等差数列求和 (1+3+5+7+9+···+101 是多少?)
- 等差数列求项数 (1,4,7,11,...,100 共多少项?)
- 开根号 $\sqrt{9} = ?$
- 阶乘(5! =?)

Number Theory(数论)

- 整除(如何判断一个数能不能被 3 整除)
- 最大公约数, 最小公倍数 (24 和 16 最小公倍数是多少)
- 唯一因子分解, 勒让德公式
- ullet 数论函数: 除数个数函数, 除数和函数 $\sigma(n), \tau(n)$

Combinnation(组合)

- 组合数 (ⁿ_k)
- 古典概型
- 条件概率 P(A|B)

Geometry(**几何**)

- 图形的面积, 周长
- 勾股定理 $(a^2 + b^2 = c^2)$
- 三角形相似, 等腰直角三角形,30,60,90 度的三角形
- 直线的方程, 圆的方程

Question

How many odd three-digit integers have three distinct digits? 有多少个奇三位数, 其个位十位百位各不相同?

Question

How many odd three-digit integers have three distinct digits? 有多少个奇三位数, 其个位十位百位各不相同?

Proof: If *n* is odd, we have 5 choices 1, 3, 5, 7, 9 for its unit digits,

Case 1: tens digit = 0, there are $5 \times 1 \times 8$ numbers.

Case 2: tens digit \neq 0, there are 5 \times 8 \times 7 numbers.

Handshakes

Question

Seven women and five men attend a party. At this party each man shakes hands with each other person once. Each woman shakes hands only with men. How many handshakes took place at the party? 七女五男参加一个聚会。在这个聚会中,每个男人会和其他人都握一次手. 每个女人只和男人握手,请问这个聚会上会有多少次握手?

Handshakes

Question

Seven women and five men attend a party. At this party each man shakes hands with each other person once. Each woman shakes hands only with men. How many handshakes took place at the party? 七女五男参加一个聚会。在这个聚会中,每个男人会和其他人都握一次手,每个女人只和男人握手,请问这个聚会上会有多少次握手?

Proof: Firstly, let all the people shake hands with each other, then we get $\binom{12}{2} = 66$ times handshakes. The total amount equals to 66 minis the amount of handshakes between woman, that is $66 - \binom{7}{2} = 45$.

Solve this Euqation!

Question (AMC 8, 2019-20)

How many different real numbers x satisfy the equation 有多少不同的实数 x 满足这个方程

$$(x^2 - 5)^2 = 16$$

Double Factorial (AMC 8, 2022-17)

If n is an even positive integer, the double factorial notation n!! represents the product of all the even integers from 2 to n. For example, $8!! = 2 \cdot 4 \cdot 6 \cdot 8$. What is the units digit of the following sum?

$$2!! + 4!! + 6!! + \cdots + 2018!! + 2020!! + 2022!!$$

July 6.2024

Two Mountains(AMC 8, 2022-24)

如下图, 阴影部分面积为 183, 求 h.

July 6,2024

双阶乘 (AMC 8, 2022-17)

如果 n 是一个偶数, n!! 定义为从 2 到 n 所有偶数的乘积. 例如, $8!! = 2 \cdot 4 \cdot 6 \cdot 8$. 请问如下求和的个位数?

$$2!! + 4!! + 6!! + \cdots + 2018!! + 2020!! + 2022!!$$

Solution

Notice that once n > 8, the units digit of n !! will be 0 because there will be a factor of 10 . Thus, we only need to calculate the units digit of

$$2!! + 4!! + 6!! + 8!! = 2 + 8 + 48 + 48 \times 8 = 442$$

July 6,2024

Segment Coloring(AMC 8, 2024-23)

在平面直角坐标系上,画一条从 (2000,3000) 到 (5000,8000) 的线段, 这 条线段经过了多少个 1×1 的小方格 (必须进入该方格的内部).

July 6.2024

Segment Coloring(AMC 8, 2024-23)

Rodrigo has a very large sheet of graph paper. First he draws a line segment connecting point (0,4) to point (2,0) and colors the 4 cells whose interiors intersect the segment, as shown below. Next Rodrigo draws a line segment connecting point (2000, 3000) to point (5000, 8000). How many cells will he color this time?

Solution

Draw a line in the lattice which from (2,3) to (5,8), notice that the line crossed 7 blocks in this pattern. Such a pattern is repeated 1000 times between (2000, 3000) and (5000, 8000), then the answer is 7000.

July 6.2024

Jumping Cricket(AMC 8, 2022-25)

A cricket randomly hops between 4 leaves, on each turn hopping to one of the other 3 leaves with equal probability. After 4 hops what is the probability that the cricket has returned to the leaf where it started?

跳跃的蟋蟀 (AMC 8, 2022-25)

- 一个蟋蟀随意的在四片叶子上跳跃,每次等概率得跳向其他三片叶子之
- 一, 求蟋蟀跳四次后返回最初这片叶子的概率.

July 6,2024

Solution

Let p_n be the probability that the cricket returns to the leaf after n times jumping. q_n be the probability that the cricket doesn't retrun to the leaf. We have the recursion equations

$$p_n + q_n = 1$$

and

$$p_n = \frac{1}{3}q_{n-1}$$

Hence

$$p_1 = 0, p_2 = \frac{1}{3}, p_3 = \frac{2}{9}, p_4 = \frac{7}{27}$$