1. Generating Function

Let

$$g(x,t) = \exp\left[\frac{x}{2}\left(t - \frac{1}{t}\right)\right] \tag{1}$$

then we define, for each order n, the Bessel function of the first kind $J_n(x)$ in terms of the expansion

$$g(x,t) = \sum_{n=-\infty}^{\infty} J_n(x)t^n$$
 (2)

We can match $J_n(x)$ to each of the t^n power terms in the expansion of (1)

$$g(x,t) = e^{xt/2} \cdot e^{-x/2t}$$

$$= \left[\sum_{p=0}^{\infty} \frac{\left(\frac{x}{2}\right)^p t^p}{p!} \right] \cdot \left[\sum_{q=0}^{\infty} \frac{(-1)^q \left(\frac{x}{2}\right)^q t^{-q}}{q!} \right]$$

$$= \sum_{p,q=0}^{\infty} \frac{(-1)^q \left(\frac{x}{2}\right)^{p+q} t^{p-q}}{p!q!}$$
(3)

Now the double sum of p and q runs through all the grid points of the p-q plane's first quadrant. If we define n=p-q, we can convert the double sum $\sum_{p=0}^{\infty}\sum_{q=0}^{\infty}$ into a double sum whose outer sum runs through all the diagonal rays representing different n (from $-\infty$ to ∞), and whose inner sum runs through all different grid points along the diagonal ray for a given n. But depending on whether $n \ge 0$ or n < 0, the inner sum's index will be chosen differently (see figure below).

The sum in (3) is equivalent to

$$g(x,t) = \sum_{n=-\infty}^{-1} \sum_{n=0}^{\infty} \frac{(-1)^{p-n} \left(\frac{x}{2}\right)^{2p-n} t^n}{p!(p-n)!} + \sum_{n=0}^{\infty} \sum_{q=0}^{\infty} \frac{(-1)^q \left(\frac{x}{2}\right)^{2q+n} t^n}{q!(q+n)!}$$
(4)

Compare (4) with (2), we can easily see that for $n \ge 0$,

$$J_n(x) = \sum_{q=0}^{\infty} \frac{(-1)^q \left(\frac{x}{2}\right)^{2q+n}}{q!(q+n)!}$$
 (5)

$$J_{-n}(x) = (-1)^n J_n(x) \tag{6}$$

2. Non-integer Order

Now we consider to generalize $J_n(x)$ to non-integer orders, denoted $J_\nu(x)$, where ν is real but not necessarily an integer. Our starting point is (5) where $(x/2)^{2q+\nu}$ is already well defined, so we only need to generalize $(q+\nu)!$. The natural generalization of factorial is the Γ-function (keep in mind that $\Gamma(n+1) = n!$ for positive integer n). Therefore we define, for arbitrary real order ν , the Bessel function of the first kind $J_\nu(x)$ as

$$J_{\nu}(x) = \sum_{q=0}^{\infty} \frac{(-1)^q \left(\frac{x}{2}\right)^{2q+\nu}}{q!\Gamma(q+\nu+1)}$$
 (7)

Since Γ function is singular at non-positive integers, this means when ν is a negative integer -n, for (7) to be well defined, we have to restrict q to avoid those singularities. I.e., when $\nu=-n$, the sum has to be $\sum_{q=n}^{\infty}$ instead of $\sum_{q=0}^{\infty}$.

The new definition (7) is compatible with (6), since when v = -n, by (7) we have (note we have shifted q to start from n instead of 0 given the comments above)

$$J_{-n}(x) = \sum_{q=n}^{\infty} \frac{(-1)^q \left(\frac{x}{2}\right)^{2q-n}}{q!\Gamma(q-n+1)}$$
 (relabel $q' = q-n$)
$$= \sum_{q'=0}^{\infty} \frac{(-1)^{q'+n} \left(\frac{x}{2}\right)^{2q'+n}}{(q'+n)!\Gamma(q'+1)}$$
 (note $(q'+n)! = \Gamma(q'+n+1), \Gamma(q'+1) = q'!$)
$$= (-1)^n J_n(x)$$
 (8)

3. Recurrence Relations

There are many recurrence relations for $J_{\nu}(x)$, here we prove one (which can be used to give the exact form of spherical Bessel functions later).

$$J_{\nu+1}(x) = \frac{2\nu}{x} J_{\nu}(x) - J_{\nu-1}(x) \tag{9}$$

Proof. By definition (7), we have

$$\left(\frac{x}{2}\right)J_{\nu+1}(x) = \left(\frac{x}{2}\right)\sum_{q=0}^{\infty} \frac{(-1)^q \left(\frac{x}{2}\right)^{2q+\nu+1}}{q!\Gamma(q+\nu+2)}
= \sum_{q=0}^{\infty} \frac{(-1)^q \left(\frac{x}{2}\right)^{2(q+1)+\nu}}{q!\Gamma(q+\nu+2)} \qquad (\text{relabel } q'=q+1)
= \sum_{q'=1}^{\infty} \frac{-(-1)^{q'} q' \left(\frac{x}{2}\right)^{2q'+\nu}}{q'!\Gamma(q'+\nu+1)} \qquad (\text{add } q'=0 \text{ term })
= \sum_{q'=0}^{\infty} \frac{-(-1)^{q'} q' \left(\frac{x}{2}\right)^{2q'+\nu}}{q'!\Gamma(q'+\nu+1)}
= \sum_{q=0}^{\infty} \frac{(-1)^q \left(\frac{x}{2}\right)^{2q+\nu-1}}{q!\Gamma(q+\nu)}
= \sum_{q=0}^{\infty} \frac{(-1)^q \left(\frac{x}{2}\right)^{2q+\nu}}{q!\Gamma(q+\nu)}$$

$$(11)$$

Adding (10) and (11) gives

$$\left(\frac{x}{2}\right)[J_{\nu+1}(x) + J_{\nu-1}(x)] = \sum_{q=0}^{\infty} \left[\frac{1}{q!\Gamma(q+\nu)} - \frac{q}{q!\Gamma(q+\nu+1)}\right] (-1)^q \left(\frac{x}{2}\right)^{2q+\nu} \qquad \text{(note } \Gamma(x+1) = x\Gamma(x)\text{)}$$

$$= \sum_{q=0}^{\infty} \left[\frac{q+\nu}{q!\Gamma(q+\nu+1)} - \frac{q}{q!\Gamma(q+\nu+1)}\right] (-1)^q \left(\frac{x}{2}\right)^{2q+\nu}$$

$$= \nu \cdot \sum_{q=0}^{\infty} \frac{(-1)^q \left(\frac{x}{2}\right)^{2q+\nu}}{q!\Gamma(q+\nu+1)}$$

$$= \nu J_{\nu}(x)$$
(12)

4. Bessel Equation

We claim $J_{\nu}(x)$ satisfies the Bessel equation

$$x^{2}F''(x) + xF'(x) + (x^{2} - v^{2})F(x) = 0$$
(13)

Proof. By taking the derivative of $J_{\nu}(x)$, we have

$$xJ_{\nu}'(x) = x \cdot \sum_{q=0}^{\infty} \frac{(-1)^q \left(\frac{2q+\nu}{2}\right) \left(\frac{x}{2}\right)^{2q+\nu-1}}{q!\Gamma(q+\nu+1)}$$

$$= \sum_{q=0}^{\infty} \frac{(-1)^q (2q+\nu) \left(\frac{x}{2}\right)^{2q+\nu}}{q!\Gamma(q+\nu+1)}$$

$$x^2 J_{\nu}''(x) = x^2 \cdot \sum_{q=0}^{\infty} \frac{(-1)^q \left[\frac{(2q+\nu)(2q+\nu-1)}{2 \cdot 2}\right] \left(\frac{x}{2}\right)^{2q+\nu-2}}{q!\Gamma(q+\nu+1)}$$

$$= \sum_{q=0}^{\infty} \frac{(-1)^q (2q+\nu)(2q+\nu-1) \left(\frac{x}{2}\right)^{2q+\nu}}{q!\Gamma(q+\nu+1)}$$
(15)

Adding (14) and (15) gives

$$xJ_{\nu}'(x) + x^{2}J_{\nu}''(x) = \sum_{q=0}^{\infty} \frac{(-1)^{q}(2q+\nu)^{2} \left(\frac{x}{2}\right)^{2q+\nu}}{q!\Gamma(q+\nu+1)}$$
(16)

On the other hand

$$x^{2}J_{\nu}(x) = x^{2} \sum_{q=0}^{\infty} \frac{(-1)^{q} \left(\frac{x}{2}\right)^{2q+\nu}}{q!\Gamma(q+\nu+1)}$$

$$= \sum_{q=0}^{\infty} \frac{(-1)^{q} 4\left(\frac{x}{2}\right)^{2(q+1)+\nu}}{q!\Gamma(q+\nu+1)} \qquad \text{(relabel } q' = q+1\text{)}$$

$$= \sum_{q'=0}^{\infty} \frac{-(-1)^{q'} 4q'(q'+\nu)\left(\frac{x}{2}\right)^{2q'+\nu}}{q'!\Gamma(q'+\nu+1)} \qquad (17)$$

Finally (13) is proved by adding (16) and (17) since $(2q + v)^2 - 4q(q + v) = v^2$.

5. Orthonormality

The notion of orthonormality between Bessel functions is different than usual. Let $J_{\nu}(x)$ be a Bessel function of real order ν , and let $\alpha_{\nu l}$ and $\alpha_{\nu k}$ be its l-th and k-th root. Then the orthonormality condition claims

$$\int_{0}^{L} J_{\nu} \left(\alpha_{\nu l} \frac{x}{L} \right) J_{\nu} \left(\alpha_{\nu k} \frac{x}{L} \right) x dx = \frac{1}{2} L^{2} [J_{\nu}'(\alpha_{\nu k})]^{2} \delta_{lk}$$

$$\tag{18}$$

Note that it applies to Bessel functions of the same order ν , whose arguments are scaled by different roots.

Proof. Since the order v is fixed, it will be omitted from the subscripts in this proof. The Bessel equation (13) can be rewritten as

$$xJ''(x) + J'(x) + \left(x - \frac{v^2}{x}\right)J(x) = 0 \qquad \Longrightarrow \qquad$$

$$\frac{d}{dx} \left[x \frac{dJ(x)}{dx} \right] + \left(x - \frac{v^2}{x}\right)J(x) = 0 \qquad (19)$$

Now for a given real number β , define $x = \beta y$, then (19) can be rewritten as

Denote $J(\beta y) = J_{\beta}(y)$, and similarly define $J_{\gamma}(y)$ for another factor γ , together we have

$$\frac{d}{dy}\left[y\frac{dJ_{\beta}(y)}{dy}\right] + \left(\beta^{2}y - \frac{v^{2}}{y}\right)J_{\beta}(y) = 0$$
(21)

$$\frac{d}{dy} \left[y \frac{dJ_{\gamma}(y)}{dy} \right] + \left(\gamma^2 y - \frac{v^2}{y} \right) J_{\gamma}(y) = 0$$
 (22)

Multiply (21) by J_{γ} and multiply (22) by J_{β} and subtract

$$J_{\gamma} \frac{d}{dy} \left(y \frac{dJ_{\beta}}{dy} \right) - J_{\beta} \frac{d}{dy} \left(y \frac{dJ_{\gamma}}{dy} \right) = \left(\gamma^2 - \beta^2 \right) y J_{\beta} J_{\gamma} \tag{23}$$

Integrate (23) from 0 to L, we have

$$\int_{0}^{L} \left[J_{\gamma} \frac{d}{dy} \left(y \frac{dJ_{\beta}}{dy} \right) - J_{\beta} \frac{d}{dy} \left(y \frac{dJ_{\gamma}}{dy} \right) \right] dy = \left(\gamma^{2} - \beta^{2} \right) \int_{0}^{L} J_{\beta} J_{\gamma} y dy \tag{24}$$

whose LHS gives

LHS =
$$\left[J_{\gamma}y\frac{dJ_{\beta}}{dy}\Big|_{0}^{L} - \int_{0}^{L}y\frac{dJ_{\beta}}{dy}\frac{dJ_{\gamma}}{dy}dy\right] - \left[J_{\beta}y\frac{dJ_{\gamma}}{dy}\Big|_{0}^{L} - \int_{0}^{L}y\frac{dJ_{\gamma}}{dy}\frac{dJ_{\beta}}{dy}dy\right]$$
$$= J_{\gamma}(L)L\frac{dJ_{\beta}}{dy}\Big|_{L} - J_{\beta}(L)L\frac{dJ_{\gamma}}{dy}\Big|_{L}$$
(25)

Then (24) becomes

$$J_{\gamma}(L)L\frac{dJ_{\beta}}{dy}\Big|_{L} - J_{\beta}(L)L\frac{dJ_{\gamma}}{dy}\Big|_{L} = \left(\gamma^{2} - \beta^{2}\right)\int_{0}^{L} J_{\beta}J_{\gamma}ydy \tag{26}$$

When we take $\beta = \alpha_l/L$ and $\gamma = \alpha_k/L$, where $l \neq k$ and α_l, α_k are roots of J(x), LHS of (24) vanishes, which implies the integral on the RHS must vanish, proving orthogonality.

Now choose $\gamma = \alpha/L$ and $\beta = \alpha_k/L$, where α is not necessarily a root, (26) becomes

$$J\left(\alpha \frac{L}{L}\right) L \frac{dJ(x)}{dx/\beta} \bigg|_{x=\alpha_{k}} = \frac{\alpha^{2} - \alpha_{k}^{2}}{L^{2}} \int_{0}^{L} J\left(\alpha \frac{y}{L}\right) J\left(\alpha_{k} \frac{y}{L}\right) y dy \qquad \Longrightarrow$$

$$\int_{0}^{L} J\left(\alpha \frac{y}{L}\right) J\left(\alpha_{k} \frac{y}{L}\right) y dy = J(\alpha) \alpha_{k} J'(\alpha_{k}) \frac{L^{2}}{\alpha^{2} - \alpha_{k}^{2}} = \underbrace{\left[\frac{J(\alpha) - J(\alpha_{k})}{\alpha - \alpha_{k}}\right]}_{(\Delta J/\Delta \alpha)|_{x}} \frac{\alpha_{k} L^{2}}{\alpha + \alpha_{k}} J'(\alpha_{k}) \qquad (27)$$

(18) is proved by taking the limit $\alpha \to \alpha_k$.

6. Bessel Function of the Second Kind

The Bessel equation (13) is a second order ODE, so it should have two linearly independent solutions. Since (13) is dependent on v^2 , it's clear that both $J_{\nu}(x)$ and $J_{-\nu}$ are solutions. It is also easy to see that for non-integer ν , the two solutions J_{ν} and $J_{-\nu}$ are linearly independent. This is because by definition

$$J_{\nu}(x) = \sum_{q=0}^{\infty} \frac{(-1)^q \left(\frac{x}{2}\right)^{2q+\nu}}{q!\Gamma(q+\nu+1)}$$

$$J_{-\nu}(x) = \sum_{q=0}^{\infty} \frac{(-1)^q \left(\frac{x}{2}\right)^{2q-\nu}}{q!\Gamma(q-\nu+1)}$$

they cannot be related by a multiplicative factor unless they have the same set of x power terms, i.e., there must be q, q' to satisfy

$$2q + \nu = 2q' - \nu \implies \nu = q' - q$$

in other words, ν must be integer for $J_{\pm\nu}$ to be linearly dependent. In fact, due to (6), this condition is also sufficient. Thus for ν a non-integer, we have two linearly independent solutions $J_{\nu}(x)$ and $J_{-\nu}(x)$. But the Bessel function of the second kind is defined as

$$Y_{\nu}(x) = \frac{J_{\nu}(x)\cos\nu\pi - J_{-\nu}(x)}{\sin\nu\pi} \qquad (\nu \text{ non-integer})$$
 (28)

Note $Y_{\nu}(x)$, being an linear combination of $J_{\pm\nu}(x)$, is indeed a solution of (13).

Such a definition will yield convenient relations when the order is half integer v = n + 1/2:

$$J_{-(n+1/2)}(x) = (-1)^{n+1} Y_{n+1/2}(x)$$
(29)

$$Y_{-(n+1/2)}(x) = (-1)^n J_{n+1/2}(x)$$
(30)

which follow trivially from (28).

In these notes, we will omit the discussion of Y_{ν} where ν is integer. Subsequent discussion will focus on spherical Bessel functions which are defined using half-integer order Bessel functions of both kinds.

7. Spherical Bessel Functions

The radial part of the wave function of a free particle is the solution to the equation (see Sakurai eq (3.281)):

$$\frac{d^2R}{d\rho^2} + \frac{2}{\rho} \frac{dR}{d\rho} + \left[1 - \frac{l(l+1)}{\rho^2}\right] R = 0$$
 (31)

If we write $R(\rho) = \rho^{-1/2}u(\rho)$, we will have

$$R' = -\frac{1}{2}\rho^{-3/2}u + \rho^{-1/2}u' \qquad \Longrightarrow \qquad (32)$$

$$\frac{2}{\rho}R' = -\rho^{-5/2}u + 2\rho^{-3/2}u'$$

$$R'' = \frac{3}{4}\rho^{-5/2}u - 2 \cdot \frac{1}{2}\rho^{-3/2}u' + \rho^{-1/2}u''$$
(33)

$$\left[1 - \frac{l(l+1)}{\rho^2}\right] R = \rho^{-1/2} u - l(l+1)\rho^{-5/2} u \tag{34}$$

Add (32)-(34):

$$\rho^{-1/2}u'' + \rho^{-3/2}u' + \left\{\rho^{-1/2} - \left[l(l+1) + \frac{1}{4}\right]\rho^{-5/2}\right\}u = 0$$
(35)

Multiply $\rho^{5/2}$ to both sides

$$\rho^{2}u'' + \rho u' + \left[\rho^{2} - \left(l + \frac{1}{2}\right)^{2}\right]u = 0$$
(36)

which is exactly (13) with v = l + 1/2. This means

$$R(\rho) = \frac{1}{\sqrt{\rho}} J_{\pm(l+1/2)}(\rho)$$
 (37)

will be the solutions of (31).

We call

$$j_l(x) = \sqrt{\frac{\pi}{2x}} J_{l+1/2}(x)$$
 (38)

$$y_l(x) = \sqrt{\frac{\pi}{2x}} Y_{l+1/2}(x) = (-1)^{l+1} \sqrt{\frac{\pi}{2x}} J_{-(l+1/2)}(x)$$
(39)

the Spherical Bessel Functions of order 1. They are the two linearly independent solutions to equation (31).

8. Closed Form of Spherical Bessel Functions

Unlike ordinary Bessel functions, spherical Bessel functions can be written in closed forms. First, let's calculate $j_0(x)$.

$$j_{0}(x) = \sqrt{\frac{\pi}{2x}} \sum_{q=0}^{\infty} \frac{(-1)^{q} \left(\frac{x}{2}\right)^{2q+1/2}}{q! \Gamma(q+3/2)}$$

$$= \sqrt{\frac{\pi}{4}} \sum_{q=0}^{\infty} \frac{(-1)^{q} \left(\frac{x}{2}\right)^{2q}}{q! \Gamma(q+3/2)}$$

$$= \sqrt{\frac{\pi}{4}} \sum_{q=0}^{\infty} \frac{(-1)^{q} \left(\frac{x^{2q}}{4^{q}}\right)}{q! \frac{(2q+2)!}{4^{q+1}(q+1)!}} \sqrt{\pi}$$

$$= \frac{1}{2} \sum_{q=0}^{\infty} \frac{(-1)^{q} x^{2q} 4(q+1)}{(2q+2)!}$$

$$= \frac{1}{x} \sum_{q=0}^{\infty} \frac{(-1)^{q} x^{2q+1}}{(2q+1)!} = \frac{\sin x}{x}$$

$$(40)$$

where in the third line, we have used $\Gamma(n+\frac{1}{2})=\sqrt{\pi}(2n)!/(4^n n!)$. Similarly, for $y_0(x)$:

$$y_{0}(x) = -\sqrt{\frac{\pi}{2x}} \sum_{q=0}^{\infty} \frac{(-1)^{q} \left(\frac{x}{2}\right)^{2q-1/2}}{q! \Gamma(q+1/2)}$$

$$= -\frac{\sqrt{\pi}}{x} \sum_{q=0}^{\infty} \frac{(-1)^{q} \left(\frac{x}{2}\right)^{2q}}{q! \Gamma(q+1/2)}$$

$$= -\frac{\sqrt{\pi}}{x} \sum_{q=0}^{\infty} \frac{(-1)^{q} \left(\frac{x^{2q}}{4^{q}}\right)}{q! \frac{(2q)!}{4^{q}q!} \sqrt{\pi}}$$

$$= -\frac{1}{x} \sum_{q=0}^{\infty} \frac{(-1)^{q} x^{2q}}{(2q)!} = -\frac{\cos x}{x}$$
(41)

Here we see that the $\sqrt{\pi/2}$ factor in the definition of spherical Bessel functions is to give j_0 and y_0 a "normalized" form.

We can use (9) to continue to obtain $j_1(x)$, $y_1(x)$:

$$j_1(x) = \sqrt{\frac{\pi}{2x}} J_{3/2}(x) = \sqrt{\frac{\pi}{2x}} \left[\frac{1}{x} J_{1/2}(x) - J_{-1/2}(x) \right] = \sqrt{\frac{\pi}{2x}} \sqrt{\frac{2x}{\pi}} \left[\frac{1}{x} j_0(x) + y_0(x) \right] = \frac{\sin x}{x^2} - \frac{\cos x}{x}$$
(42)

$$y_1(x) = \sqrt{\frac{\pi}{2x}} J_{-3/2}(x) = \sqrt{\frac{\pi}{2x}} \left[-\frac{1}{x} J_{-1/2}(x) - J_{1/2}(x) \right] = \sqrt{\frac{\pi}{2x}} \sqrt{\frac{2x}{\pi}} \left[\frac{1}{x} y_0(x) - j_0(x) \right] = -\frac{\cos x}{x^2} - \frac{\sin x}{x}$$
(43)

The general recurrence relation for j_l , y_l can be obtained from (9), (38) and (39):

$$J_{l+3/2} = \frac{2l+1}{x} J_{l+1/2} - J_{l-1/2} \qquad \Longrightarrow \qquad j_{l+1} = \frac{2l+1}{x} j_l - j_{l-1} \tag{44}$$

$$J_{-(l+3/2)} = -\frac{2l+1}{x}J_{-(l+1/2)} - J_{-(l-1/2)} \qquad \Longrightarrow \qquad y_{l+1} = \frac{2l+1}{x}y_l - y_{l-1} \tag{45}$$

We can then calculate the closed form formula for any spherical Bessel functions j_l , y_l using (40)-(45).

9. Rayleigh's Formulae

There is neat differential relation of spherical Bessel functions, called Rayleigh's Formulae

$$j_{l}(x) = (-x)^{l} \left(\frac{1}{x} \frac{d}{dx}\right)^{l} \frac{\sin x}{x} = (-x)^{l} \left(\frac{1}{x} \frac{d}{dx}\right)^{l} j_{0}(x)$$
(46)

$$y_{l}(x) = (-x)^{l+1} \left(\frac{1}{x} \frac{d}{dx}\right)^{l} \frac{\cos x}{x} = (-x)^{l} \left(\frac{1}{x} \frac{d}{dx}\right)^{l} y_{0}(x)$$
(47)

Proof. Since they are of the same form, we are going to use f_l to denote either j_l or y_l . Now define

$$g_l(x) = \frac{f_l(x)}{(-x)^l} \tag{48}$$

We are going to use induction for the proof, for which the l = 0, 1 cases are trivially true (for both j and y). Now the goal is to inductively prove

$$g_{l+1}(x) = \frac{f_{l+1}(x)}{(-x)^{l+1}} = \frac{1}{x} \frac{d}{dx} \left[\left(\frac{1}{x} \frac{d}{dx} \right)^l f_0(x) \right] = \frac{1}{x} g_l'(x)$$
 (49)

To prove (49), we first establish the differential equation $g_l(x)$ must satisfy. Take the first and second derivative of (48), we have

$$f_l' = -l(-x)^{l-1}g_l + (-x)^l g_l'$$
(50)

$$f_{l}^{"} = l(l-1)(-x)^{l-2}g_{l} - 2l(-x)^{l-1}g_{l}^{'} + (-x)^{l}g_{l}^{"}$$
(51)

Then (31) becomes

$$0 = x^{2} f_{l}^{"} + 2x f_{l}^{'} + [x^{2} - l(l+1)] f_{l}$$

$$= x^{2} [l(l-1)(-x)^{l-2} g_{l} - 2l(-x)^{l-1} g_{l}^{'} + (-x)^{l} g_{l}^{"}] + 2x [-l(-x)^{l-1} g_{l} + (-x)^{l} g_{l}^{'}] + [x^{2} - l(l+1)](-x)^{l} g_{l}$$

$$= (-x)^{l+2} g_{l}^{"} + (-x)^{l+1} (-2l-2) g_{l}^{'} + (-x)^{l} [l(l-1) + 2l + x^{2} - l(l+1)] g_{l}$$

$$= (-x)^{l+2} g_{l}^{"} - 2(l+1)(-x)^{l+1} g_{l}^{'} + (-x)^{l+2} g_{l}$$
(52)

After canceling the common factor $(-x)^{l+1}$, we get the differential equation satisfied by all g_l s:

$$xg_l'' + 2(l+1)g_l' + xg_l = 0 (53)$$

To prove (49), by (44) or (45), it's equivalent to prove

$$\frac{2l+1}{x}(-x)^{l}g_{l} - (-x)^{l-1}g_{l-1} = (-x)^{l+1}\frac{1}{x}g'_{l} \qquad \text{(by canceling } (-x)^{l-1}) \qquad \iff \\ -(2l+1)g_{l} - g_{l-1} = xg'_{l} \qquad \text{(by induction assumption } g_{l} = \frac{1}{x}g'_{l-1}) \qquad \iff \\ -\frac{2l+1}{x}g'_{l-1} - g_{l-1} = x\left(\frac{1}{x}g''_{l-1} - \frac{1}{x^{2}}g'_{l-1}\right) \qquad \iff \\ xg''_{l-1} + 2lg'_{l-1} + xg_{l-1} = 0 \qquad (54)$$

which is exactly what we have shown in (53) with $l \rightarrow l - 1$.