Introduction

Syracuse University, Physics 211 Spring 2021 Walter Freeman

February 11, 2021

The beginning: Free fall

My purpose is to set forth a very new science dealing with a very ancient subject. There is, in nature, perhaps nothing older than motion, concerning which the books written by philosophers are neither few nor small nevertheless I have discovered by experiment some properties of it which are worth knowing and which have not hitherto been either observed or demonstrated....

So far as I know, no one has yet pointed out that the distances traversed, during equal intervals of time, by a body falling from rest, stand to one another in the same ratio as the odd numbers beginning with unity.

-Galileo Galilei, Dialogues and Mathematical Demonstrations Concerning Two New Sciences, 1638

Galileo's observation

Can we understand this?

Physics 211 Forces and Motion

Walter Freeman, professor Mario Olivares, lead TA Adam Aly, lead coach

Course webpage:

http://walterfreeman.github.io/phy211/

Overview of today

Non-physics stuff:

- Welcome and reminders
- Recitation recap / questions and answers
- Announcements
- How to succeed in this course

Physics stuff:

- How do we describe motion?
- How do position, velocity, and acceleration relate to each other *conceptually*?
- How do position, velocity, and acceleration relate to each other *graphicaly*?
- How do position, velocity, and acceleration relate to each other algebraically?

Remember, the recitation is the $most\ important$ part of this course.

Remember, the recitation is the *most important* part of this course.

How did it go yesterday?

Remember, the recitation is the *most important* part of this course.

How did it go yesterday?

What questions do you have about recitation before tomorrow?

Remember, the recitation is the *most important* part of this course.

How did it go yesterday?

What questions do you have about recitation before tomorrow?

Asynchronous students: We will send you all detailed instructions tonight.

Announcements

- Homework 1 is posted on the course website and Blackboard; it will be due next Friday.
- We are working to accommodate more people for in-person recitations. There will be another survey this weekend and more capacity available starting next Wednesday.
- I will be holding office hours tomorrow morning from 9:30-12:00 on the same Zoom link used for class. Come ask questions! I will physically be in room B126, if you want to say hi in person.
- Lecture recordings will be available starting today; they will be available automatically on Twitch. I'll make YouTube links available too.

W. Freeman Introduction February 11, 2021 8/36

How do we describe motion – words, graphs, symbols, numbers

W. Freeman February 11, 2021 9/36

W. Freeman Introduction February 11, 2021 12/36

x, v, a – algebraically, for a constant

Adding these numbers together gives us 1, 4, 9, 16, 25... The calculus above explains this: distance is proportional to *time squared!*

The remaining slides are "copies" of the stuff we will do on the chalkboard. (This is what I used in the auditorium last year.)

They are provided as an accessibility service to students who may find them useful.

Equations of motion

Complete description of motion: "Where is my object at each point in time?"

This corresponds to a mathematical function. Two ways to represent these. Suppose I drop a ball off a building, putting the origin at the ground and calling "up" the positive direction:

Graphical representation

Algebraic representation

$$y(t) = (40 \,\mathrm{m}) - Ct^2$$

(C is some number; we'll learn what it is Thursday)

Both let us answer questions like "When does the object hit the ground?"

$$\rightarrow$$
 ... the curve's x-intercept

$$\rightarrow$$
 ... when $y(t) = 0$

Velocity: how fast position changes

The slope of the position vs. time curve has a special significance. Here's one with a constant slope:

Velocity: how fast position changes

The slope of the position vs. time curve has a special significance. Here's one with a constant slope:

Slope is $\frac{\text{rise}}{\text{run}} = \frac{\Delta x}{\Delta t} = \frac{2 \text{ m}}{1 \text{ s}} = 2 \text{ meters per second (positive; it could well be negative!)}$

W. Freeman Introduction February 11, 2021

Velocity: how fast position changes

The slope of the position vs. time curve has a special significance. Here's one with a constant slope:

Slope is $\frac{\text{rise}}{\text{run}} = \frac{\Delta x}{\Delta t} = \frac{2 \text{ m}}{1 \text{ s}} = 2$ meters per second (positive; it could well be negative!)

 \rightarrow The slope here – change in position over change in time – is the **velocity**! Note that it can be positive or negative, depending on which way the object moves.

W. Freeman Introduction February 11, 2021

Constant-velocity motion: connecting graphs to algebra

If an object moves with constant velocity, its position vs. time graph is a line:

We know the equation of a straight line is is x = mt + b (using t and x as our axes).

- m is the slope, which we identified as the velocity
- b is the vertical intercept, which we recognize as the value of x when t=0

We can thus change the variable names to be more descriptive:

$$x(t) = vt + x_0$$
 (constant-velocity motion)

W. Freeman Introduction February 11, 2021

Going from "equations of motion" to answers

 $x(t) = vt + x_0$ is called an equation of motion; in this case, it is valid for constant-velocity motion.

It gives you the same information as a position vs. time graph, but in algebraic form.

To solve real problems, we need to be able to translate physical questions into algebraic statements:

• "If a car starts at milepost 30 and drives at 50 mph, where is it an hour later?"

Going from "equations of motion" to answers

 $x(t) = vt + x_0$ is called an equation of motion; in this case, it is valid for constant-velocity motion.

It gives you the same information as a position vs. time graph, but in algebraic form.

To solve real problems, we need to be able to translate physical questions into algebraic statements:

- "If a car starts at milepost 30 and drives at 50 mph, where is it an hour later?"
 - Using $x(t) = x_0 + vt$, with $x_0 = 30$ mi and $v = 50 \frac{\text{mi}}{\text{hr}}$, calculate x at t = 1 hr

Asking the right questions

"I drop an object from a height h. When does it hit the ground?" How do I do this? (Take $x_0 = h$ and upward to be positive.)

Remember, we want to ask a question in terms of our physical variables. This question has the form:

"What is _____ when ____ equals ____?"

Fill in the blanks.

A: v, x, 0

B: t, x, h

C: x, t, 0

D: t, x, 0

E: x, v, 0

Asking the right questions

"At what location do two moving objects meet?"

A: "At what time does $x_1 = x_2$?"

B: "At what time does $v_1 = v_2$?"

C: "What is x_1 at the time when $x_1 = x_2$?"

D: "What is x_1 when $t_1 = t_2$?"

Velocity, acceleration, and calculus

Constant-velocity motion: $x(t) = x_0 + vt$

- Came from looking at the equation of a line
- We can understand this in a different framework, too:
- Velocity is the rate of change of position
 - Graphical representation: Velocity is the slope of the position vs. time graph
 - Mathematical language: Velocity is the derivative of position

We know we need to know about acceleration ("F=ma") – what is it?

• Acceleration is the rate of change of velocity

Position, velocity, and acceleration

Position

(take the derivative)
take the rate of change of

Velocity

Position, velocity, and acceleration

Position

(take the derivative)
take the rate of change of

Velocity

(take the derivative) take the rate of change of

Acceleration

Kinematics: how does acceleration affect movement?

Newton's law a = F/m tells us that acceleration – the second derivative of position – is what results from forces.

W. Freeman Introduction February 11, 2021 24/36

Kinematics: how does acceleration affect movement?

Newton's law a = F/m tells us that acceleration – the second derivative of position – is what results from forces.

All freely falling objects have a constant acceleration downward.

This number is so important we give it a letter: $g = 9.81 \text{ m/s}^2$

A calculus review

If velocity is the rate of change of position, why is the area under the v vs. t curve equal to displacement? 10 Velocity (m/s)0 5 10 15 Time (s)

Now what is Δs ? What is the area of the shaded region?

Does this work? How do we fix it?

A calculus review

The area between the t-axis and the velocity curve is the distance traveled. (The area below the t-axis counts negative: "the thing is going backwards"

In calculus notation:
$$\int v(t) dt = \delta x = x(t) - x_0$$

W. Freeman February 11, 2021 28/36

Position, velocity, and acceleration

```
Position (take the derivative of)
take the rate of change of

take the area under the curve of

(take the integral of)

Velocity
```

Position, velocity, and acceleration

W. Freeman February 11, 2021 29/36

Particularly interesting situation:

- Free fall (as you saw)
- Any time the force is constant: $F = ma \rightarrow a = F/m...$

Particularly interesting situation:

- Free fall (as you saw)
- Any time the force is constant: $F = ma \rightarrow a = F/m...$

Plan of attack:

- We know what the acceleration curve looks like (it's just flat)
- Figure out the area under the acceleration curve to get the velocity curve
- Figure out the area under the velocity curve to get the position curve

Particularly interesting situation:

- Free fall (as you saw)
- Any time the force is constant: $F = ma \rightarrow a = F/m...$

Plan of attack:

- We know what the acceleration curve looks like (it's just flat)
- Figure out the area under the acceleration curve to get the velocity curve
- Figure out the area under the velocity curve to get the position curve

Remember the area under the curve of (velocity, acceleration) just gives the *change in* (position, velocity) -i.e. initial minus final.

We'll start by assuming x_0 and v_0 are zero.

What's the area under the curve out to time t, which gives the change in the velocity – $\Delta v = v(t) - v_0$?

A: $\Delta v = at$

B: $\Delta v = at + v_0$

C: $\Delta v = \frac{1}{2}at^2$

D: $\Delta v = a$

W. Freeman

February 11, 2021

What's the area under the curve out to time t, which gives the change in the velocity – $\Delta v = v(t) - v_0$?

W. Freeman February 11, 2021

What's the area under the curve out to time t, which gives the change in the velocity $-\Delta v = v(t) - v_0$?

 Δv , the change in velocity, is $v(t) - v_0 = at$, so $v(t) = at + v_0$

W. Freeman February 11, 2021

Same thing again to get position

Now the area under the velocity curve gives the change in position: $\Delta x = x(t) - x_0$. What is that?

A:
$$\Delta x = at$$

C:
$$\Delta x = \frac{1}{2}at^2$$

B:
$$\Delta x = vt$$

D:
$$\Delta x = v$$

Same thing again to get position

Now the area under the velocity curve gives the change in position: $\Delta x = x(t) - x_0$. What is that?

A: $\Delta x = at$

B: $\Delta x = vt$

C: $\Delta x = \frac{1}{2}at^2$

D: $\Delta x = v$

W. Freeman Introduction

Now if v_0 is not zero...

Now if v_0 is not zero...

Area under green part: $\frac{1}{2}c$

Area under green part: $\frac{1}{2}at^2$ Total change in position: $x(t) - x_0 = \frac{1}{2}at^2 + v_0t$

Thus,
$$x(t) = \frac{1}{2}at^2 + v_0t + x_0$$

W. Freeman Introduction February 11, 2021

For those who are familiar with calculus:

$$a(t) = \text{const.}$$

$$v(t) = \int a \, dt \qquad = at + C_1$$

$$x(t) = \int v \, dt = \int (at + C_1) dt \qquad = \frac{1}{2}at^2 + C_1t + C_2$$

A little thought reveals that C_1 is the initial velocity v_0 and C_2 is the initial position x_0 . This gives us the things we just derived, but much more easily:

$$v(t) = at + v_0$$

$$x(t) = \frac{1}{2}at^2 + v_0t + x_0$$

Adding these numbers together gives us 1, 4, 9, 16, 25... The calculus above explains this: distance is proportional to *time squared!*