

## SMO - Vorrunde 2017

Lausanne, Lugano, Zürich - 14. Januar 2017

Zeit: 3 Stunden

Schwierigkeit: Die Aufgaben eines Themenbereichs sind der Schwierigkeit nach geordnet.

Punkte: Jede Aufgabe ist 7 Punkte wert.

## Geometrie

- G1) Sei ABC ein Dreieck mit  $AB \neq AC$  und Umkreis k. Die Tangente an k durch A schneide BC in P. Die Winkelhalbierende von  $\angle APB$  schneide AB in D und AC in E. Zeige, dass das Dreieck ADE gleichschenklig ist.
- G2) Sei ABC ein rechtwinkliges Dreieck mit Hypotenuse AB. Ein Kreis um C schneide die Strecke AB zweimal in den Punkten P und Q, wobei P zwischen A und Q liegt. Sei R der Punkt auf der Strecke BC mit  $\angle RAC = \frac{1}{2} \angle PCQ$  und sei S der Punkt auf der Strecke AC mit  $\angle CBS = \frac{1}{2} \angle PCQ$ . Weiter sei T der Schnittpunkt der Strecken CP und AR, und U der Schnittpunkt der Strecken CQ und BS. Zeige, dass RSTU ein Sehnenviereck ist.

## Kombinatorik

**K1)** Was ist die maximale Anzahl an Skew-Tetrominos, die auf einem 8×9 Rechteck überlappungsfrei platziert werden können?



Bemerkung: Die Tetrominos dürfen gedreht und gespiegelt werden.

**K2)** Seien  $m, n \geq 2$  natürliche Zahlen. Wir haben vier Farben und wollen jedes Feld eines  $m \times n$  Rechtecks mit einer davon einfärben, sodass in jedem  $2 \times 2$  Quadrat alle vier Farben vorkommen. Wie viele verschiedene Möglichkeiten gibt es dafür?

Bemerkung: Wir zählen zwei Möglichkeiten als verschieden, wenn es mindestens ein Feld gibt, das unterschiedliche Farben erhalten hat.

## Zahlentheorie

**Z1**) Bestimme alle Paare (m, n) natürlicher Zahlen, für die gilt:

$$kgV(m,n) - ggT(m,n) = \frac{mn}{5}.$$

**Z2**) Seien a und b natürliche Zahlen, sodass

$$\frac{3a^2 + b}{3ab + a}$$

eine ganze Zahl ist. Bestimme alle Werte, die obiger Ausdruck annehmen kann.