41. Мера на многообразии. Интеграл первого рода на многообразии. Частные случаи интеграла I рода на многообразии: криволинейный и поверхностный, вычислительные формулы для них

Мера на многообразии μ_M

Пусть $M \in M_{kn}^{(1)}$, $E \in A_M$.

- 1. Если E малое, U- стандартная окрестность, $E\subset U$, arphi- параметризация U, то $\mu_M E=\int_{arphi^{-1}(E)}\sqrt{D_arphi}d\mu_k.$
- 2. Если $E=\bigcup_{
 u}E_{
 u}$ (дизъюнктные малые измеримые множества), то $\mu_M E=\sum_{
 u}\mu_M E_{
 u}.$

Функция μ_M называется мерой на многообразии M.

Смысл:

Эта мера обобщает понятие длины (для кривых) или площади (для поверхностей) на произвольные гладкие многообразия. Она определяется через локальные параметризации, где $\sqrt{D_{\varphi}}$ корректирует искажение объёма/площади при отображении из параметрической области. Аддитивность позволяет измерять большие множества.

Криволинейный интеграл первого рода

Пусть Γ — гладкая кривая (k=1), заданная параметризацией $x=\gamma(t)$, $t\in\langle a,b
angle$. Тогда:

• Мера (длина) кривой:

$$\mu\Gamma = \int_a^b |\gamma'(t)| dt$$
.

• Криволинейный интеграл первого рода:

$$\int_{\Gamma} f d\mu_{\Gamma} = \int_{a}^{b} (f \circ \gamma)(t) \cdot |\gamma'(t)| dt.$$

Классическое обозначение: $\int_{\Gamma} f ds$, где ds — элемент длины дуги.

Это интеграл скалярной функции f вдоль кривой Γ . Множитель $|\gamma'|$ (скорость движения по кривой) обеспечивает инвариантность относительно параметризации: результат зависит только от геометрии кривой и значений f. Физически может выражать массу неоднородной нити с плотностью f.

Поверхностный интеграл первого рода

Пусть S- гладкая поверхность (k=n-1), заданная параметризацией $\varphi:G\subset\mathbb{R}^{n-1}\to\mathbb{R}^n$. По формуле Вине–Коши:

$$\sqrt{D_{arphi}} = \sqrt{\sum_{j=1}^n (\det arphi_j')^2} = |\mathcal{N}_{arphi}|,$$

где \mathcal{N}_{arphi} — вектор нормали к поверхности. Тогда:

• Мера (площадь) поверхности:

$$\mu S = \int_{G} |\mathcal{N}_{\varphi}| d\mu_{n-1}.$$

• Поверхностный интеграл первого рода:

$$\int_S f d\mu_S = \int_G (f \circ \varphi) \cdot |\mathcal{N}_{\varphi}| d\mu_{n-1}.$$

Смысл:

Это интеграл скалярной функции f по поверхности S. Величина $|\mathcal{N}_{\varphi}|$ задаёт элемент площади поверхности в параметрической области G, обеспечивая инвариантность относительно выбора параметризации. Применяется для вычисления массы поверхности с плотностью f или потока без учёта направления.

42. Ориентация многообразий. Понятия: одинаково ориентирующие параметризации, ориентация окрестностей, согласованные ориентации окрестностей, ориентированное многообразие, ориентируемое многообразие. Возможное количество ориентаций связного многообразия

Одинаково ориентирующие параметризации

Две параметризации φ и ψ стандартной окрестности U многообразия M называются согласованными (или одинаково ориентирующими), если для перехода $L:\Pi\to\Pi$ между ними якобиан $\det L'>0$ на всей области Π . Если $\det L'<0$, параметризации называются противоположно ориентирующими.

Смысл:

Знак якобиана перехода между параметризациями определяет, сохраняют ли они "направление" на многообразии. Положительный якобиан означает, что параметризации согласованы и задают одинаковую локальную ориентацию. Это важно для корректного определения глобальной ориентации.

Ориентация окрестностей

Ориентация окрестности U — это выбор класса эквивалентности параметризаций, для которых переходы имеют положительный якобиан. Параметризации этого класса называются положительно ориентирующими, а остальные — отрицательно ориентирующими.

Смысл:

Ориентация окрестности позволяет локально определить "направление" на многообразии. Например, на плоскости можно выбрать ориентацию "против часовой стрелки". Это необходимо для согласованного определения интегралов и дифференциальных форм.

Согласованные ориентации окрестностей

Две ориентированные окрестности U и V называются согласованными, если либо их пересечение пусто, либо для любых положительно ориентирующих параметризаций φ (для U) и ψ (для V) переход L между ними имеет $\det L'>0$ в области пересечения.

Смысл:

Согласованность гарантирует, что ориентации разных окрестностей не противоречат друг другу. Это позволяет "склеить" локальные ориентации в единую глобальную структуру, что важно для работы с целым многообразием.

Ориентированное многообразие

Многообразие M называется ориентированным, если существует набор попарно согласованных ориентаций всех его стандартных окрестностей. Такой набор называется ориентацией многообразия.

Ориентированное многообразие имеет единое глобальное "направление". Примеры: сфера, тор. Неориентируемые многообразия (например, лист Мёбиуса) не допускают такой структуры. Ориентация критична для многих теорем анализа и топологии.

Ориентируемое многообразие

Многообразие M называется ориентируемым, если существует хотя бы одна его ориентация (т.е. если его можно превратить в ориентированное многообразие выбором подходящих локальных ориентаций).

Смысл:

Ориентируемость — это свойство многообразия "допускать" согласованную ориентацию. Например, все поверхности без "перекрутов" (как сфера) ориентируемы, а лист Мёбиуса — нет. Это фундаментальное топологическое свойство.

Количество ориентаций связного многообразия

Если многообразие M связно и ориентируемо, то оно имеет ровно две ориентации: исходную и противоположную (где во всех окрестностях выбран "обратный" класс параметризаций).

Смысл:

Связность означает, что многообразие "цельное", и выбор ориентации в одной точке однозначно распространяется на всё многообразие. Противоположная ориентация соответствует "зеркальному отражению". Например, у окружности есть только две ориентации: по и против часовой стрелки.

43. Понятие направления, лемма о существовании направлений

Кривая как одномерное многообразие

При k=1 гладкое многообразие M в \mathbb{R}^n называется кривой. Это означает, что локально кривая устроена как интервал числовой прямой.

Кривая - это одномерный геометрический объект, который в каждой своей точке выглядит как прямая линия (аналог того, как поверхность выглядит как плоскость). Примеры: прямая, окружность, спираль в пространстве.

Параметрическое задание кривой

Кривая Γ задаётся параметризацией $\gamma \in C^{(1)}((a,b) o \mathbb{R}^n)$, где:

- 1. γ инъективна (кроме, возможно, концов для замкнутых кривых)
- 2. γ регулярна ($\gamma'(t) \neq 0$ для всех t)
- 3. $\Gamma = \gamma((a,b))$

Смысл:

Кривую можно представить как траекторию движущейся точки, где параметр t - это время, а $\gamma(t)$ - положение точки в момент t. Условия гарантируют, что кривая не имеет "острых углов" и самопересечений.

Определение направления на кривой

Пусть Γ — гладкая кривая в \mathbb{R}^n . Отображение $au\in C(\Gamma o\mathbb{R}^n)$ называется направлением на Γ , если:

$$orall x \in \Gamma \quad au(x) \in T_x \Gamma \quad \mathrm{if} \quad | au(x)| = 1,$$

где $T_x\Gamma$ — касательное пространство к Γ в точке x.

Смысл:

Направление — это непрерывное поле единичных векторов, касательных к кривой в каждой её точке. Оно задает ориентацию кривой, указывая "положительное" направление движения вдоль неё (аналогично стрелке на проводе).

Лемма о существовании двух направлений

На связной гладкой кривой Γ , заданной параметризацией γ (соотношения (12.6)), существуют ровно два направления:

$$au_{\pm} = \pm rac{\gamma'}{|\gamma'|} \circ \gamma^{-1}.$$

(Для замкнутого пути γ под $\gamma^{-1}(\gamma(a))$ можно понимать как a, так и b).

Смысл:

На связной кривой возможны только две противоположные ориентации. Они задаются единичными векторами, параллельными производной параметризации γ' (скорости), но направленными в противоположные стороны. Связность гарантирует, что нельзя "переключить" направление в какой-то точке непрерывно.

44. Сторона поверхности, лемма о существовании стороны

Определение двусторонней поверхности и Стороны

Связная поверхность S в \mathbb{R}^n называется *двусторонней*, если существует непрерывное отображение $\mathcal{N} \in C(S \to \mathbb{R}^n)$ (называемое *стороной* поверхности S), такое что для всех $x \in S$:

$$\mathcal{N}(x) \perp T_x S$$
 и $|\mathcal{N}(x)| = 1.$

Смысл:

Поверхность двусторонняя, если можно непрерывно выбрать единичную нормаль в каждой её точке. Это означает, что поверхность имеет "две стороны", как лист бумаги.

Лемма о связи двусторонности и ориентируемости

Для того чтобы связная поверхность S была двусторонней, необходимо и достаточно, чтобы она была ориентируемой. При этом S имеет ровно две стороны.

Смысл:

Двусторонность поверхности эквивалентна её ориентируемости. Если поверхность можно ориентировать (согласованно выбрать "положительное" направление в касательных пространствах), то на ней можно задать непрерывное поле нормалей, и наоборот. Такая поверхность допускает ровно два противоположных выбора стороны (нормали).

Построение стороны через параметризацию

Если $\varphi:G o U\subset S$ — параметризация стандартной окрестности U, то сторона U задаётся формулой:

$$\mathcal{N}_{\pm}(x)=\pmrac{\mathcal{N}_{arphi}}{|\mathcal{N}_{arphi}|}\circarphi^{-1}(x),$$

где \mathcal{N}_{arphi} — векторное произведение частных производных:

$$\mathcal{N}_{arphi} = rac{\partial arphi}{\partial u^1} imes rac{\partial arphi}{\partial u^2} imes \cdots imes rac{\partial arphi}{\partial u^{n-1}}.$$

Смысл:

В локальной карте, заданной параметризацией φ , нормаль строится как нормированное векторное произведение векторов, касательных к координатным линиям. Знак \pm соответствует двум возможным согласованным ориентациям окрестности. При изменении параметризации на положительную (с положительным якобианом перехода) эта нормаль сохраняется.

45. Теорема о крае многообразия и его ориентации. Понятие ориентации края, согласованной с ориентацией многообразия. Пример согласованных ориентаций на поверхности и ограничивающей кривой.

Теорема о крае многообразия

Если M-k-мерное многообразие класса $C^{(r)}$, то его край ∂M является (k-1)-мерным многообразием класса $C^{(r)}$ без края.

Если M ориентируемо, то ∂M также ориентируемо.

Смысл:

Край многообразия наследует его гладкость и теряет одну размерность. Ориентация многообразия автоматически задаёт согласованную ориентацию края. Это важно для интегральных теорем (например, Стокса), где ориентация края влияет на знак результата.

Понятие ориентации края, согласованной с ориентацией многообразия

Ориентация края ∂M , заданная формулой $ilde{arphi}_x(ilde{u})=arphi_x(0, ilde{u})$ (где $arphi_x$ — параметризация M и $ilde{u}\in\Pi_{k-1}$), называется индуцированной или согласованной с ориентацией M.

Смысл:

При переходе от многообразия к краю "отбрасывается" первая координата параметризации. Для согласованности нужно, чтобы матрица Якоби перехода между параметризациями сохраняла положительный определитель. Это гарантирует, что ориентация края согласована с "направлением наружу" от многообразия.

Пример согласованных ориентаций

Пусть $G\subset \mathbb{R}^2$ — область с гладкой границей S. Если G ориентирована естественным образом (якобиан > 0), то согласованная ориентация S задаётся касательным вектором τ , при котором G остаётся слева при обходе границы. Нормаль $\mathcal N$ направлена наружу.

Смысл:

Для поверхности в \mathbb{R}^3 внешняя нормаль \mathcal{N} определяет ориентацию края через векторное произведение. В 2D это соответствует правилу "обход против часовой стрелки". Пример иллюстрирует, как ориентация края связана с направлением нормали и выбором параметризации.

Доп

 $\Pi_{k-1}=(-1,1)^{k-1}$ - это открытый (k-1)-мерный куб в пространстве параметров $\tilde u=(u_2,\dots,u_k)$, используемый для параметризации края $\partial M.$

46. Полилинейные формы, кососимметрические формы - определения и элементарные свойства, внешнее произведение форм

Полилинейные формы

Определение полилинейной формы

Пусть X,Y — векторные пространства над полем $K,p\in\mathbb{N}$. Отображение $F:X^p\to Y$ называется p-линейным, если оно линейно по каждому аргументу. Если Y=K, то F называется p-формой на X. Множество всех p-форм обозначается $\mathcal{F}_p(X)$. При p=0 под 0 -формами понимаются элементы Y.

Разложение по базису

Если $\dim X = n < +\infty$ и e^1, \ldots, e^n — базис X, то для $F \in \mathcal{F}_p(X)$:

$$F = \sum_{i_1,\ldots,i_p=1}^n a_{i_1,\ldots,i_p} \pi_{i_1} \otimes \ldots \otimes \pi_{i_p},$$

где π_i — проектор на i-ю координату, а коэффициенты $a_{i_1,\ldots,i_p}=F(e^{i_1},\ldots,e^{i_p}).$

Смысл

Полилинейные формы обобщают линейные отображения на случай нескольких аргументов. Они позволяют выражать многомерные линейные зависимости, например, объёмы или детерминанты. Коэффициенты a_{i_1,\ldots,i_p} зависят от выбора базиса и полностью определяют форму.

Кососимметрические формы

Определение кососимметричности

Форма $F \in \mathcal{F}_p(X)$ называется кососимметрической, если для любых двух аргументов:

$$F(x^1,\ldots,x^i,\ldots,x^j,\ldots,x^p) = -F(x^1,\ldots,x^j,\ldots,x^i,\ldots,x^p).$$

Множество таких форм обозначается $\mathcal{E}_p(X)$. При p>n все формы нулевые.

Базис в $\mathcal{E}_p(X)$

Для $p \leq n$ форма F раскладывается как:

$$F = \sum_{1 \leq i_1 < \ldots < i_p \leq n} a_{i_1,\ldots,i_p} \pi_{i_1} \wedge \ldots \wedge \pi_{i_p},$$

где \wedge — внешнее произведение, а $\pi_{i_1} \wedge \ldots \wedge \pi_{i_p}$ вычисляется через определитель матрицы из координат векторов.

Смысл

Кососимметрические формы "чувствуют" ориентацию и линейную зависимость векторов. Например, если два вектора совпадают, форма обращается в ноль. Они тесно связаны с определителями и используются в интегрировании (дифференциальные формы).

Внешнее произведение форм

Определение внешнего произведения

Для $F\in\mathcal{E}_p(X)$ и $G\in\mathcal{E}_q(X)$ их внешнее произведение $F\wedge G\in\mathcal{E}_{p+q}(X)$ определяется на базисных формах как:

$$(\pi_{i_1}\wedge\ldots\wedge\pi_{i_p})\wedge(\pi_{j_1}\wedge\ldots\wedge\pi_{j_q})=\pi_{i_1}\wedge\ldots\wedge\pi_{i_p}\wedge\pi_{j_1}\wedge\ldots\wedge\pi_{j_q},$$

а затем продолжается по линейности.

Формула для коэффициентов

Если F и G заданы в виде (12.19), то:

$$F\wedge G=\sum_{1\leq i(j)_1<\ldots< i(j)_p\leq n}a_{i_1,\ldots,i_p}b_{j_1,\ldots,j_q}\pi_{i_1}\wedge\ldots\wedge\pi_{i_p}\wedge\pi_{j_1}\wedge\ldots\wedge\pi_{j_q}.$$

Смысл

Внешнее произведение комбинирует формы, увеличивая их степень. Оно аналогично векторному произведению, но для многомерных объектов. Например, в геометрии с его помощью строят формы для вычисления гиперобъёмов.

47. Дифференциальные формы; координатное представление дифференциальных форм. Внешнее дифференциальных форм

Определение дифференциальной формы

Пусть $G\subset \mathbb{R}^n$, $p\in \mathbb{N}$. Дифференциальной формой степени p (p-формой) на G называется функция $\omega:G\times (\mathbb{R}^n)^p\to \mathbb{R}$, такая что для всех $x\in G$ функция $\omega(x;\cdot)$ принадлежит пространству $\mathcal{E}_p(\mathbb{R}^n)$ (является кососимметрической p-линейной формой). 0-формой называется функция $f:G\to \mathbb{R}$.

Смысл:

Дифференциальная форма — это математический объект, который в каждой точке области G задает кососимметрическую многомерную "линейную меру". 0-формы — это просто обычные скалярные функции. Формы обобщают понятия функций, векторных полей и их обобщений на многомерные поверхности.

Координатное представление дифференциальных форм

Пусть $p\in\mathbb{N}$. Дифференциальная p-форма ω в открытом множестве $G\subset\mathbb{R}^n$ может быть записана в виде:

$$\omega = \sum_{1 \leq i_1 < \dots < i_p \leq n} a_{i_1 \dots i_p}(x) dx_{i_1} \wedge \dots \wedge dx_{i_p},$$

где $a_{i_1\dots i_p}:G o\mathbb{R}$ — коэффициенты формы, а $dx_{i_1}\wedge\dots\wedge dx_{i_p}$ — базисные внешние произведения дифференциалов координат. Для p=n форма имеет вид $\omega=a(x)dx_1\wedge\dots\wedge dx_n$.

Смысл:

Это представление показывает, как форма раскладывается по базисным антисимметричным "объемам", образованным внешними произведениями дифференциалов координат. Суммирование идет только по возрастающим мультииндексам $i_1 < \cdots < i_p$ из-за кососимметричности. Запись dx_i оправдана поведением при операциях (как дифференциалы).

Внешнее дифференцирование дифференциальных форм

Пусть G открыто в \mathbb{R}^n , $p\in\mathbb{Z}_+$, $r\in\mathbb{N}\cup\{\infty\}$. Внешнее дифференцирование — это оператор $d:\Omega_p^{(r)}(G)\to\Omega_{p+1}^{(r-1)}(G)$, определяемый так:

1. Для 0-формы $\omega=f\in C^{(r)}(G)$:

$$df = \sum_{i=1}^n rac{\partial f}{\partial x_i} dx_i.$$

2. Для p-формы $\omega = \sum_I a_I(x) dx_I$ (где $I = (i_1 < \cdots < i_p)$):

$$d\omega = \sum_I da_I \wedge dx_I = \sum_I \left(\sum_{j=1}^n rac{\partial a_I}{\partial x_j} dx_j
ight) \wedge dx_I.$$

Свойства:

- 1. d линейно.
- 2. $d(\omega \wedge \lambda) = d\omega \wedge \lambda + (-1)^{\deg \omega} \omega \wedge d\lambda$ для форм ω, λ .
- 3. $d^2\omega = d(d\omega) = 0$.

Смысл:

Внешнее дифференцирование обобщает понятие градиента, ротора и дивергенции на формы произвольной степени. Оно увеличивает степень формы на 1 и измеряет её "локальное изменение". Свойство $d^2=0$ (локальная точность) является фундаментальным и лежит в основе теории де Рама и интегральных теорем (Стокса).

48. Перенос дифференциальных форм. Теорема о свойствах переноса форм

Определение переноса дифференциальных форм

Пусть G — открытое множество в \mathbb{R}^n , U — открытое множество в \mathbb{R}^m , $p\in\mathbb{Z}_+$, $\omega\in\Omega_p(G)$, $T\in C^{(1)}(U\to G)$. Перенесённая форма $T^*\omega$ определяется равенством:

$$(T^*\omega)(u;du^1,\ldots,du^p)=\omega(T(u);T'(u)du^1,\ldots,T'(u)du^p),$$

где $u\in U$, $du^1,\dots,du^p\in\mathbb{R}^m$. Отображение T^* называется переносом форм или заменой переменных.

Смысл:

Перенос форм позволяет "перетянуть" дифференциальную форму из пространства G в пространство U с помощью отображения T. Это аналогично замене переменных в интеграле, где форма адаптируется к новым координатам через производную T'. Например, при переходе от декартовых к полярным координатам.

Свойства переноса форм

- 1. Линейность: $T^*(\alpha\omega+\beta\lambda)=\alpha T^*\omega+\beta T^*\lambda$.
- 2. Умножение на функцию: $T^*(f\omega)=(f\circ T)T^*\omega$ для $f\in C^{(r)}(G)$.
- 3. Внешнее произведение: $T^*(\omega \wedge \lambda) = T^*\omega \wedge T^*\lambda$ для $\lambda \in \Omega_q^{(r)}$.
- 4. Дифференциал: $T^*d\omega=dT^*\omega$ при $r\geq 1$.
- 5. Явная формула: Для $\omega = \sum a_{i_1,\ldots,i_p} dx_{i_1} \wedge \ldots \wedge dx_{i_p}$,

$$T^*\omega = \sum (a_{i_1,\ldots,i_p}\circ T)\cdot \det\left(rac{\partial T_{i_k}}{\partial u_{j_1}}
ight)du_{j_1}\wedge\ldots\wedge du_{j_p}.$$

6. Композиция: $(T\circ S)^\omega=S^(T^*\omega)$, если V открыто в $\mathbb{R}^i,S\in C^{(1)}(V o U)$.

Смысл:

Эти свойства показывают, что перенос форм согласован с базовыми операциями (линейностью, произведением, дифференцированием). Например, пункт 4 означает, что дифференцирование и перенос коммутируют, а пункт 5 обобщает правило замены переменных в интеграле через якобиан. Это удобно для вычислений в новых координатах.

49 Поверхностный интеграл второго рода. Выражением поверхностного интеграла второго рода через поверхностный интеграл первого рода. Выражения для интеграла 2го рода в случае размерностей многообразия 1 и 2. Примеры. Лемма Пуанкаре в общем случае (без док-ва)

Определение интеграла второго рода

Пусть G открыто в \mathbb{R}^n , $M\subset G$ — ориентированное k-мерное многообразие класса $\mathbb{M}^{(1)}_{k,n}$, $\omega\in\Omega_k(G)$ — дифференциальная форма степени $k,E\in\mathbb{A}_M$ — малое измеримое множество. Тогда интеграл второго рода определяется как:

$$\int_E \omega = \int_{arphi^{-1}(E)} \widehat{arphi^*\omega} \, d\mu_k,$$

где φ — положительно ориентирующая параметризация стандартной окрестности U, содержащей E, а $\varphi^*\omega$ — pullback формы ω .

Смысл:

Интеграл второго рода обобщает понятие криволинейного и поверхностного интеграла для дифференциальных форм. Он позволяет вычислять "поток" формы через многообразие, используя локальные параметризации. Для малых множеств интеграл сводится к обычному крайнему интегралу от pullback формы.

Связь с интегралом первого рода

Для малого множества E и формы $\omega = \sum a_{i_1 \dots i_k} dx_{i_1} \wedge \dots \wedge dx_{i_k}$ интеграл второго рода выражается через интеграл первого рода:

$$\int_E \omega = \int_E \left\langle a, rac{\det arphi'}{\sqrt{\mathcal{D}_arphi}} \circ arphi^{-1}
ight
angle d\mu_M,$$

где $\mathcal{D}_{arphi} = \sum (\det arphi'_{j_1 \dots j_k})^2$ — грамиан параметризации.

Смысл:

Эта формула позволяет перейти от абстрактного интеграла от формы к интегралу от функции по мере на многообразии. Множитель $\frac{\det \varphi'}{\sqrt{\mathcal{D}_{\varphi}}}$ учитывает искажение объема и ориентацию при параметризации. Это ключ к практическим вычислениям, например, в задачах физики.

Примеры для размерностей 1 и 2:

- Для k=1 (кривая): $\int_E \omega = \int_E \langle a, au
 angle d\mu_1$, где au единичный касательный вектор.
- Для k=2, n=3 (поверхность):

$$\int_S \omega = \int_S \langle F, N
angle d\mu_S, \quad F = (P, Q, R), \, N$$
 — единичная нормаль.

Теорема Пуанкаре (без доказательства):

Если G — звездная область в \mathbb{R}^n и ω — замкнутая форма ($d\omega=0$), то ω точна ($\exists \eta:\omega=d\eta$). Для форм класса C^r первообразная также C^r .

В размерности 2 интеграл сводится к потоку векторного поля через поверхность. Лемма Пуанкаре гарантирует существование потенциала для замкнутых форм в "хороших" областях, что важно для теории поля (например, в электродинамике).

50. Общая формула Стокса. Частные случаи и следствия общей формулы Стокса: формула Ньютона-Лейбница для криволинейных интегралов, формула Грина, классическая формула Стокса, формула Гаусса-Остроградского

Общая формула Стокса для многообразий

Пусть $M\in \mathbb{M}_{kn}^{(2)}$ — компактное u ориентированное многообразие, G — открытое множество в \mathbb{R}^n , $M\subset G$, $\omega\in \Omega_{k-1}^{(1)}(G)$. Тогда:

$$\int_M d\omega = \int_{\partial M} \omega.$$

Смысл:

Эта теорема обобщает идею связи интеграла по области с интегралом по её границе. Она показывает, что дифференцирование формы ω внутри M соответствует интегрированию самой формы по границе ∂M . Формула универсальна и применяется в многомерном анализе, например, для расчётов потоков и циркуляции полей.

Формула Грина

Пусть D — ограниченная область в \mathbb{R}^2 с гладкой границей ∂D , G открыто в \mathbb{R}^2 , $\overline{D} \subset G$, $P,Q \in C^{(1)}(G)$. Тогда:

$$\iint_D (Q_x'-P_y')\,dx\,dy = \int_{\partial D} P\,dx + Q\,dy.$$

Это двумерный случай формулы Стокса, связывающий двойной интеграл по области с криволинейным интегралом по её границе. Используется, например, для вычисления работы векторного поля вдоль контура или площади фигуры через граничный интеграл.

Классическая формула Стокса

Пусть S — компактная ориентированная поверхность класса $C^{(2)}$ в \mathbb{R}^3 с краем ∂S , G открыто в \mathbb{R}^3 , $S\subset G$, $P,Q,R\in C^{(1)}(G)$. Тогда:

$$\iint_S (R_y'-Q_z')dy\wedge dz + (P_z'-R_x')dz\wedge dx + (Q_x'-P_y')dx\wedge dy = \int_{\partial S} P\,dx + Q\,dy + R\,dz.$$

Смысл:

Это трёхмерный аналог формулы Грина. Она связывает поток ротора векторного поля через поверхность с циркуляцией поля по её границе. Применяется в физике для расчётов электромагнитных полей и гидродинамики.

Формула Гаусса-Остроградского

Пусть V- ограниченная область в \mathbb{R}^3 с гладкой границей ∂V , G открыто в \mathbb{R}^3 , $V\subset G$, $P,Q,R\in C^{(1)}(G)$. Тогда:

$$\iiint_V (P'_x + Q'_y + R'_z) \, dx \, dy \, dz = \iint_{\partial V} P \, dy \wedge dz + Q \, dz \wedge dx + R \, dx \wedge dy.$$

Смысл:

Эта формула связывает тройной интеграл дивергенции поля по объёму с потоком поля через границу этого объёма. Она широко используется в теории поля для расчётов, например, потока тепла или заряда через замкнутую поверхность.

51: Неравенства Минковского и Гёльдера, существенный супремум, пространства $L_p(X,\mu)$

Теорема (Неравенство Гёльдера):

Пусть (X,\mathbb{A},μ) — пространство с мерой, $E\in\mathbb{A}$, функции f и g измеримы на E, существует $\int_E fg\ d\mu,\, 1< p<+\infty,\, \frac{1}{p}+\frac{1}{q}=1.$ Тогда:

$$\left|\int_E fg\,d\mu
ight| \leq \left(\int_E |f|^p\,d\mu
ight)^{1/p} \left(\int_E |g|^q\,d\mu
ight)^{1/q}.$$

Смысл:

Неравенство Гёльдера обобщает идею "взвешенного среднего" для интегралов. Оно связывает интеграл произведения двух функций с произведениями их норм в L_p и L_q . Это ключевой инструмент для доказательства сходимости и ограниченности в функциональных пространствах, например, при изучении рядов Фурье или операторов.

Неравенство Минковского для интегралов

Теорема (Неравенство Минковского):

Пусть (X,\mathbb{A},μ) — пространство с мерой, $E\in\mathbb{A}$, функции f и g измеримы, конечны почти везде на $E,1\leq p<+\infty$. Тогда:

$$\left(\int_E |f+g|^p\,d\mu
ight)^{1/p} \leq \left(\int_E |f|^p\,d\mu
ight)^{1/p} + \left(\int_E |g|^p\,d\mu
ight)^{1/p}.$$

Смысл:

Это аналог неравенства треугольника для норм в L_p . Оно показывает, что норма суммы не превосходит суммы норм, что важно для доказательства линейности и метрических свойств пространств L_p . Доказательство часто опирается на неравенство Гёльдера.

Существенный супремум функции

Для измеримой функции $f:E o\overline{\mathbb{R}}$ почти везде на пространстве с мерой (X,\mathbb{A},μ) существенный супремум:

$$\operatorname{ess\,sup}_{x\in E}f(x)=\inf\{A\in\mathbb{R}:f(x)\leq A$$
 почти везде на $E\}.$

(Если таких A нет, полагаем $+\infty$.)

Смысл:

Существенный супремум игнорирует "выбросы" функции на множествах нулевой меры. Например, для функции, равной 1 на рациональных числах и 0 на иррациональных, $\operatorname{ess\,sup} = 0$, так как рациональные числа имеют меру Лебега ноль. Это понятие критично для определения нормы в L_{∞} .

Пространства $L_p(X,\mu)$

Для $1 \leq p < +\infty$:

$$L_p(E,\mu) = \left\{ f:$$
 н.в. $E o \mathbb{R}$ измеримы, $\int_E |f|^p \, d\mu < +\infty
ight\}.$

Для $p=+\infty$:

$$L_{\infty}(E,\mu)=\{f:$$
 н.в. $E o\mathbb{R}$ измеримы, $\operatorname{ess\,sup}|f|<+\infty\}$.

Норма:
$$\|f\|_p = \left(\int_E |f|^p\,d\mu\right)^{1/p}$$
 (для $L_\infty - \operatorname{ess\,sup}|f|$).

Смысл:

Пространства L_p — это множества функций с конечной "энергией" (интегралом от p-й степени). Они являются полными нормированными пространствами (банаховыми), что позволяет применять методы функционального анализа. Примеры: L_2 для рядов Фурье, L_∞ для ограниченных функций.

52: Вложения пространств Лебега $L_p(X,\mu)$ и пространств ℓ_p . Несравнимость пространств L_p

Вложение $L_q \subset L_p$ при конечной мере

Если мера пространства $\mu E<+\infty$ и индексы удовлетворяют условию $1\leq p< q\leq +\infty$, то $L_q(E,\mu)\subset L_p(E,\mu)$. Более того, для любой функции $f\in L_q(E,\mu)$ выполняется неравенство:

$$\|f\|_{L_p(E,\mu)} \leq (\mu E)^{1/p-1/q} \|f\|_{L_q(E,\mu)}.$$

При конечной мере "более требовательные" пространства L_q (с большим q) вкладываются в "менее требовательные" L_p (с меньшим p). Множитель $(\mu E)^{1/p-1/q}$ компенсирует разницу в условиях интегрируемости. Это позволяет оценить норму функции в "слабом" пространстве через её норму в "сильном".

Несравнимость L_p при бесконечной мере

Если $\mu E=+\infty$, то пространства $L_p(E,\mu)$ могут не быть вложены друг в друга. Контрпример: $E=(0,+\infty)$ с мерой Лебега,

- $f_1(x)=rac{1}{x+1}$: $f_1\in L_2(E)$ ho $f_1
 otin L_1(E)$.
- $f_2(x)=rac{1}{\sqrt{x}}\chi_{(0,1)}(x)$: $f_2\in L_1(E)$ ho $f_2
 otin L_2(E)$.

Смысл:

При бесконечной мере не существует общего вложения $L_q\subset L_p$ или $L_p\subset L_q$ для $p\neq q$. Функция f_1 "спадает" недостаточно быстро, чтобы быть интегрируемой в L_1 , но её квадрат уже интегрируем. Функция f_2 "взрывается" в нуле, что мешает интегрируемости её квадрата на конечном интервале, но сама она интегрируема.

Пространства ℓ_p и вложение периодических L_p

Пространство ℓ_p состоит из последовательностей $x=(x_k)_{k=1}^\infty$ с конечной нормой:

$$\|x\|_p = egin{cases} (\sum_{k=1}^\infty |x_k|^p)^{1/p}\,, & 1 \leq p < +\infty, \ \sup_{k \in \mathbb{N}} |x_k|, & p = +\infty. \end{cases}$$

Для 2π -периодических функций на $\mathbb R$ с мерой Лебега на $[-\pi,\pi]$ верно вложение пространств:

$$C \subset L_{\infty} \subset \ldots \subset L_2 \subset \ldots \subset L_1$$
,

где C — пространство непрерывных 2π -периодических функций с нормой $\|f\|_{\infty}=\max_{x\in[-\pi,\pi]}|f(x)|$, совпадающей с L_{∞} -нормой для непрерывных функций.

Смысл:

Пространства ℓ_p — это дискретный аналог L_p для последовательностей. Для *периодических* функций, рассматриваемых на *конечном* интервале периода ($\mu[-\pi,\pi]=2\pi<\infty$), работает теорема о вложении: чем строже условия (больше p), тем "меньше" пространство. Непрерывные функции (C) образуют самое узкое из этих пространств, вложенное в L_∞ .

53. Полнота пространства C(K)

Определение полного нормированного пространства

Нормированное пространство X называется полным (банаховым), если любая фундаментальная последовательность в X сходится к некоторому элементу из X. Последовательность $(x_n)\subset X$ фундаментальна, если $\forall \epsilon>0\ \exists N\colon \forall n,m\geq N$ выполняется $\|x_n-x_m\|_X<\epsilon$.

Смысл:

Полнота означает, что в пространстве "хватает" пределов для всех сходящихся последовательностей. Это ключевое свойство банаховых пространств, гарантирующее корректность многих методов анализа (например, решения уравнений).

Пространство непрерывных функций C(K)

Пусть K — компактное топологическое пространство. Пространство C(K) состоит из всех непрерывных функций $f:K \to \mathbb{C}$ (или \mathbb{R}), с нормой $\|f\|_{C(K)} = \sup_{x \in K} |f(x)|$. Обозначается $C_{\mathbb{C}}(K)$ или $C_{\mathbb{R}}(K)$ в зависимости от поля.

Смысл:

Это пространство функций, непрерывных на компакте K. Норма — это максимальное значение модуля функции на K. Компактность K обеспечивает существование супремума и его достижение.

Теорема о полноте C(K)

Пространство C(K) полно.

54. Критерий полноты нормированного пространства

Определение полного нормированного пространства (банахово пространство)

Нормированное пространство $(X,\|\cdot\|)$ называется полным, если любая фундаментальная последовательность в X сходится к элементу этого пространства. Полное нормированное пространство также называют банаховым.

Смысл:

Полнота означает, что в пространстве "нет дыр" — любая последовательность, которая "хочет" сходиться (фундаментальная), действительно имеет предел внутри этого пространства. Это важно для анализа, так как гарантирует, что предельные переходы не выводят нас за рамки рассматриваемого пространства. Пример — пространство непрерывных функций C[a,b] с нормой максимума полно, а пространство многочленов на отрезке — нет.

Критерий полноты через абсолютную сходимость ряда

Нормированное пространство X полно тогда и только тогда, когда любой абсолютно сходящийся ряд в X сходится, то есть:

$$x_k \in X, \sum_{n=1}^\infty \|x_k\| < +\infty \implies \sum_{n=1}^\infty x_k$$
 сходится в $X.$

Смысл:

Этот критерий связывает полноту со сходимостью рядов. Если сумма норм членов ряда конечна (ряд "абсолютно сходится"), то сам ряд должен сходиться к элементу пространства. Это удобный инструмент для проверки полноты, так как позволяет работать с рядами вместо последовательностей. Например, в пространстве ℓ^1 (пространство абсолютно суммируемых последовательностей) этот критерий выполняется.

55 Полнота пространств $L^p(X,\mu)$ при $p\in [1,+\infty]$

Определение пространства $L^p(X,\mu)$

Пусть (X,\mathcal{A},μ) — пространство с мерой, $p\in[1,+\infty]$. Пространство $L^p(X,\mu)$ - полное, состоит из измеримых функций $f:X\to\mathbb{R}$ (или \mathbb{C}), для которых конечна норма:

- при $p<+\infty$: $\|f\|_p=\left(\int_X|f|^p\,d\mu\right)^{1/p}$,
- при $p=+\infty$: $\|f\|_{\infty}=\operatorname{ess\ sup}_{x\in X}|f(x)|$.

Пространства L^p — это функциональные пространства, где "размер" функции измеряется интегралом её степени p. Они обобщают понятие \mathbb{R}^n на бесконечномерный случай, позволяя работать с функциями, для которых интеграл $|f|^p$ конечен.

Критерий полноты пространства L^p

Пространство $L^p(X,\mu)$ полно при $p\in [1,+\infty]$, то есть любая фундаментальная последовательность $\{f_n\}\subset L^p$ сходится к некоторой функции $f\in L^p$ по норме $\|\cdot\|_p$.

Смысл:

Полнота означает, что если последовательность функций $\{f_n\}$ "сходится сама к себе" (фундаментальна), то её предел тоже лежит в L^p . Это аналог полноты \mathbb{R}^n , но для интегральных норм. Без полноты многие методы анализа (например, предельные переходы) были бы неприменимы.

Теорема Рисса-Фишера

Любое нормированное пространство $L^p(X,\mu)$ при $p\in [1,+\infty]$ является банаховым (полным). В частности, если $\{f_n\}$ — фундаментальна в L^p , то существует $f\in L^p$, такая что $\|f_n-f\|_p\to 0$.

Смысл:

Эта теорема — основа для анализа в L^p . Она гарантирует, что пределы "хороших" последовательностей не выходят за рамки пространства. Например, в матфизике это позволяет корректно решать уравнения, используя приближения. Для p=2 (гильбертов случай) это особенно важно в квантовой механике.

56. Плотность ступенчатых функций в L^p

Определение плотного множества в метрическом пространстве

Подмножество K_0 метрического пространства (X,d) называется **плотным** в X, если его замыкание совпадает с X:

$$\overline{K_0} = X$$
.

Смысл:

Это означает, что любая точка пространства X либо принадлежит K_0 , либо является предельной точкой для K_0 . Эквивалентно: каждый открытый шар в X содержит хотя бы одну точку из K_0 .

Определение ступенчатой функции

Функция $g:X \to \mathbb{R}$ называется ступенчатой (обозначается $g\in \mathrm{step}(X,\mu)$), если она представима в виде:

$$g=\sum_{k=1}^n c_k\cdot \chi_{E_k},$$
 где $\mu(E_k)<\infty,$ $c_k\in \mathbb{R}.$

Смысл:

Ступенчатые функции — простейшие "строительные блоки" анализа: они принимают конечное число значений на множествах конечной меры. Используются для аппроксимации сложных функций.

Теорема о плотности в L^p для $1 \leq p < \infty$

Пусть (X,\mathcal{A},μ) — пространство с мерой, и $1\leq p<\infty$. Тогда для любой $f\in L^p(X,\mu)$ и $\varepsilon>0$ существует ступенчатая функция $g\in \mathrm{step}(X,\mu)$ такая, что:

$$\|f-g\|_p где $\|h\|_p=\left(\int_X |h|^p d\mu
ight)^{1/p}.$$$

Смысл:

Функции из L^p можно сколь угодно точно приблизить ступенчатыми функциями по норме $\|\cdot\|_p$. Основная идея: для $f\geq 0$ строится $g\geq 0$ с $\int |f|^p-|g|^pd\mu<\varepsilon^p$.

57. Плотность $C_0(\mathbb{R}^n)$ в $L^p(\mathbb{R}^n)$, плотность $C_{2\pi}$ в $L^p_{2\pi}$

Аппроксимация характеристических функций ограниченных множеств

Для ограниченного измеримого множества $E\subset \mathbb{R}^n$ с $\lambda_n(E)<\infty$ и $\chi_E\in L^p(\mathbb{R}^n)$ ($1\leq p<\infty$), существует функция $g\in C_0(\mathbb{R}^n)$ такая, что:

$$\|\chi_E-g\|_p\leq 2\epsilon.$$

Конструкция:

$$g(x) = 1 - rac{d(x, \mathbb{R}^n \setminus U)}{d(x, \mathbb{R}^n \setminus U) + d(x, E)},$$

где $U\supset E$ — открытое множество с $\lambda_n(U\setminus E)<\epsilon.$

Смысл:

Характеристическую функцию χ_E можно приблизить непрерывной функцией с компактным носителем, используя регуляризацию меры Лебега. Функция g(x) "сглаживает" скачок на границе E, а оценка нормы следует из малой меры симметрической разности $U\setminus E$.

Аппроксимация простых функций

Любая простая функция $f=\sum_{k=1}^N c_k\chi_{E_k}$ с $\lambda_n(E_k)<\infty$ аппроксимируется функцией $g\in C_0(\mathbb{R}^n)$:

$$\|f-g\|_p < \epsilon,$$
 где $g = \sum_{k=1}^N c_k g_k,$

и для каждого k: $\|\chi_{E_k} - g_k\|_p < rac{\epsilon}{N \cdot \max(|c_k|)}$.

Смысл:

Поскольку простые функции плотны в L^p , достаточно показать их аппроксимацию. Конечность меры $\lambda_n(E_k)$ позволяет применить пункт 1 к каждому χ_{E_k} . Сумма g остаётся в $C_0(\mathbb{R}^n)$, а

оценка нормы следует из линейности интеграла.

Плотность $C_0(\mathbb{R}^n)$ в $L^p(\mathbb{R}^n)$ и $C_{2\pi}$ в $L^p_{2\pi}$

- Для $L^p(\mathbb{R}^n)$: $orall f \in L^p(\mathbb{R}^n)$ и $\epsilon>0$ $\exists g \in C_0(\mathbb{R}^n): \|f-g\|_p<\epsilon.$
- Для $L^p_{2\pi}$ (периодические функции): $\forall f \in L^p_{2\pi} \ \exists g \in C_{2\pi} : \|f-g\|_{L^p_{2\pi}} < \epsilon$, где $C_{2\pi}$ непрерывные 2π -периодические функции.

Смысл:

В непериодическом случае аппроксимация следует из плотности простых функций и пункта 2. Для периодических функций используется сужение f на [-z,z] с последующим периодическим продолжением, где z выбирается так, чтобы норма "хвоста" f вне [-z,z] была мала. Равномерная непрерывность на компакте обеспечивает близость к непрерывной периодической функции.

58 Теорема о непрерывности сдвига

Определение Оператора Сдвига

Пусть $h \in \mathbb{R}^m$. Оператор сдвига на вектор h определяется как отображение, действующее на функцию f по правилу:

$$(au_h f)(x) = f(x+h).$$

Смысл:

Этот оператор "передвигает" график функции f на вектор -h в пространстве. Он позволяет изучать, как меняется значение функции при смещении её аргумента, что важно для анализа свойств функций, таких как непрерывность или периодичность.

Теорема о Непрерывности Сдвига в L^p

Пусть $1 \leq p < +\infty$ и $f \in L^p(\mathbb{R}^m)$. Тогда оператор сдвига непрерывен по норме пространства L^p , то есть:

$$\lim_{|h| o 0} \| au_h f - f\|_p = \lim_{|h| o 0} \left(\int_{\mathbb{R}^m} |f(x+h) - f(x)|^p dx
ight)^{1/p} = 0.$$

Теорема утверждает, что малые сдвиги аргумента функции из L^p приводят к сколь угодно малым изменениям самой функции в среднем (в смысле нормы L^p). Это означает, что функции в L^p "непрерывны в среднем" и их поведение устойчиво к малым возмущениям аргумента.

59. Гильбертовы пространства. Непрерывность скалярного произведения. Скалярное умножение в $L^2(X,\mu)$. Примеры ортогональных систем в $L^2(X,\mu)$

Гильбертовы пространства

Полное линейное пространство H, снабженное скалярным произведением $\langle \cdot, \cdot \rangle$, относительно нормы $\|x\| = \sqrt{\langle x, x \rangle}$.

Смысл:

Гильбертовы пространства — это обобщение евклидовых пространств на бесконечномерный случай. Они играют ключевую роль в функциональном анализе, квантовой механике и теории приближений, так как позволяют работать с рядами Фурье и ортогональными разложениями.

Непрерывность скалярного произведения

Если
$$x_n o x$$
 и $y_n o y$ в H , то $\langle x_n, y_n
angle o \langle x, y
angle$.

Смысл:

Непрерывность скалярного произведения означает, что малые изменения векторов приводят к малым изменениям их скалярного произведения. Это свойство критично для доказательств сходимости рядов и устойчивости численных методов.

Скалярное умножение в $L^2(X,\mu)$

Для $f,g\in L^2(X,\mu)$ скалярное произведение задается формулой:

$$\langle f,g
angle = \int_X f(x) \overline{g(x)}\, d\mu(x).$$

 \overline{g} обозначает комплексно сопряжённое значение. Например, для g=a+bi, верно $\overline{g}=a-bi$.

Смысл:

Пространство L^2 состоит из функций с конечной энергией (интегрируемых с квадратом). Скалярное умножение здесь аналогично стандартному, но заменяет сумму на интеграл, что позволяет работать с функциями как с бесконечномерными векторами.

Ортогональные системы в $L^2(X,\mu)$

Система функций $\{\phi_k\}\subset L^2(X,\mu)$ называется ортогональной, если:

$$\langle \phi_m,\phi_n
angle=0$$
 при $m
eq n.$

Если дополнительно $\|\phi_k\|=1$ для всех k, система называется ортонормированной.

Примеры ортогональных систем в $L^2(X,\mu)$

- 1. Тригонометрическая система $\{e^{inx}\}_{n\in\mathbb{Z}}$ в $L^2([-\pi,\pi])$.
- 2. Многочлены Лежандра $\{P_n\}$ в $L^2([-1,1])$.
- 3. Функции Хаара на отрезке.

Смысл:

Ортогональные системы позволяют раскладывать функции в ряды (например, ряд Фурье), что упрощает решение дифференциальных уравнений и анализ сигналов. Каждая система выбирается под конкретную задачу, например, тригонометрическая — для периодических функций.

60. Теорема Пифагора для гильбертовых пространств и критерий сходимости ортогонального ряда

Лемма о почленном умножении сходящегося ряда

Пусть $\sum_{k=1}^{\infty} x_k$ — сходящийся ряд в гильбертовом пространстве \mathcal{H} . Тогда для любого вектора $y \in \mathcal{H}$ выполняется:

$$\left\langle \sum_{k=1}^{\infty} x_k, y
ight
angle = \sum_{k=1}^{\infty} \langle x_k, y
angle.$$

Смысл:

Эта лемма утверждает, что скалярное произведение можно "разнести" по бесконечной сумме векторов. Это следует из непрерывности скалярного произведения: если ряд сходится, то его можно почленно умножать на любой вектор, и результат останется корректным.

Критерий сходимости ортогонального ряда

Ортогональный ряд $\sum_{k=1}^{\infty} x_k$ в гильбертовом пространстве $\mathcal H$ сходится тогда и только тогда, когда сходится числовой ряд $\sum_{k=1}^{\infty} \|x_k\|^2$. При этом выполняется равенство:

$$\left\| \sum_{k=1}^{\infty} x_k \right\|^2 = \sum_{k=1}^{\infty} \|x_k\|^2.$$

Смысл:

Этот критерий связывает сходимость ряда ортогональных векторов со сходимостью ряда их норм. Фактически, он обобщает теорему Пифагора на бесконечномерные пространства: квадрат нормы суммы равен сумме квадратов норм, если векторы ортогональны.

Теорема Пифагора для гильбертовых пространств

Для любого конечного набора ортогональных векторов $\{x_k\}_{k=1}^N$ в $\mathcal H$ выполняется:

$$\left\| \sum_{k=1}^N x_k
ight\|^2 = \sum_{k=1}^N \|x_k\|^2.$$

Смысл:

Это прямое обобщение классической теоремы Пифагора. Если векторы ортогональны, то квадрат длины их суммы равен сумме квадратов их длин. В бесконечномерном случае это свойство сохраняется при условии сходимости ряда норм.