Problema A

Faça um programa em C que leia uma letra minúscula do alfabeto e imprima quatro letras à frente. Por exemplo, se o usuário digitar 'a', o programa deve imprimir 'e'. Caso chegue no fim do alfabeto, deve-se voltar a letra 'a'. Por exemplo, se o usuário digitar 'z', o programa deve imprimir 'd'. <u>Você não pode usar comandos condicionais (if, switch) ou repetição (for, while)!</u>

Entrada

A entrada é composta de um único caractere minúsculo do alfabeto (a-z).

Saída

A letra que está quatro posições à frente da letra lida, conforme especificado, seguida de uma quebra de linha.

Exemplo de entrada	Exemplo de saída
а	е

Exemplo de entrada	Exemplo de saída
z	d

Exemplo de entrada	Exemplo de saída
у	С

Dica: Experimente rodar o seguinte trecho de código:

```
char x = 'a' + 4;
printf("%c\n", x);
x = 'e' - 'a';
printf("%d\n", x);
x = 'a' + (28%26);
printf("%c\n", x);
```

Letra	Código ASC II
а	97
b	98
С	99
d	100
е	101
f	102
g	103
h	104
i	105
j	106
k	107
I	108
m	109
n	110
О	111
р	112
q	113
r	114
s	115
t	116
u	117
v	118
w	119
x	120
у	121
Z	122

Problema B

Faça um programa em C que leia um número inteiro e imprima 1 se o número é par ou 0 se o número é impar. <u>Você não pode usar comandos</u> <u>condicionais (if, switch) ou repetição (for, while)!</u>

Entrada

A entrada é composta de um único número inteiro.

Saída

Imprimir 1 se o número lido for par ou 0 se for ímpar.

Exemplo de entrada	Exemplo de saída
75	0

Exemplo de entrada	Exemplo de saída
76	1

Problema C

Faça um programa em C que leia o tamanho S da aresta de um cubo e calcule a sua área.

Entrada

A entrada é composta de um único número decimal S (double) que representa o tamanho da aresta do cubo.

Saída

Imprimir a área do cubo com precisão de 2 casas decimais, seguido de uma quebra de linha.

Exemplo de entrada	Exemplo de saída
1.0	6.00

Exemplo de entrada	Exemplo de saída
2.5	37.50

Problema D

Podemos compor qualquer tabela verdade usando apenas OU, E e Negação (!). Uma estratégia é:

- Para cada saída que é 1 (verdade), nós produzimos um termo fazendo a lógica E entre as entradas e negando aquelas que sejam 0 (falso).
- Unimos todos os termos com o operador OU.

Por exemplo, suponha que você tenha a seguinte tabela verdade:

Α	В	Saída
0	0	1
0	1	0
1	0	1
1	1	0

Aplicado os passos acima, temos:

- Linha 1 (A=0 e B=0) é 1: fazemos a lógica E entre A e B. Porém como A e B são 0, temos que negar ambos. Dessa forma, o termo produzido pela Linha 1 será !A E !B
- Linha 3 (A=1 e B=0) é 1: fazemos a lógica E entre A e B. Porém como somente B é 0, negamos apenas ele. Dessa forma, o termo produzido pela Linha 3 será A E !B
- Unimos os termos produzidos com o operador OU. Dessa forma, a expressão da tabela verdade é (!A E !B) OU (A E !B)

De forma esquemática, temos:

Agora é a sua vez. Suponha que você tenha a seguinte tabela verdade:

Α	В	Saída
0	0	0
0	1	1
1	0	1
1	1	0

Faça um programa C que receba A e B, e imprima a saída desejada. <u>Você</u> <u>não pode usar comandos condicionais (if, switch) ou repetição (for, while)</u>

Entrada

A entrada é composta de dois números inteiros que representam A e B. Os valores possíveis de A e de B é somente 0 ou 1, seguido de uma quebra de linha.

Saída

Imprimir a saída de acordo com a tabela verdade.

Exemplo de entrada	Exemplo de saída
1 1	0

Exemplo de entrada	Exemplo de saída
0 1	1

Em C, o operador E é &&, o operador OU é || e o operador negação é !

Problema E

Considere o programa abaixo. Este programa tem o objetivo de imprimir o resultado da divisão entre x e y com precisão de 2 casas decimais. Porém, o número impresso é diferente do esperado. Modifique o programa para que seja impresso a divisão entre x e y com precisão de 2 casas decimais. Você só pode modificar a região cinza.

```
#include <stdio.h>
int main(){
  int x, y;
  scanf("%d %d", &x, &y);
  float z = x/y;
  printf("%.3f\n", z);
  return 0;
}
```

Entrada

A entrada é composta de dois números inteiros que representam x e y.

Saída

Imprimir o resultado da divisão de x por y com precisão de 2 casas decimais.

Exemplo de entrada	Exemplo de saída
1 2	0.50

Problema F

Faça um programa em C que receba o preço original de um produto e o valor pago, e calcule o percentual de desconto ofertado pela loja.

Entrada

A entrada é composta de dois números decimais (float) que representam, respectivamente, o valor original e o valor pago.

Saída

Imprimir o percentual de desconto com 2 casas decimais, seguindo de "%" e uma quebra de linha.

Exemplo de entrada	Exemplo de saída
100 50	50.00%

Exemplo de entrada	Exemplo de saída
80 50	37.50%

Exemplo de entrada	Exemplo de saída
10 8.5	15.00%

dica: %%