

Informe N°9: Curvas características de bomba centrifuga

Laboratorio de Máquinas

Profesores

Cristóbal Galleguillos Ketterer Tomás Herrera Muñoz

Alumno

Héctor Muzio Harris

Resumen

En este ensayo, se realizaron diferentes mediciones a una bomba centrifuga, se efectuaron 3 sets de mediciones a 3070, 2900 y 2700 RPM. En estos sets de mediciones se variaba el caudal, con el fin de poder encontrar los puntos de operación de la bomba uy de esta manera obtener las curvas características que permiten determinar las propiedades de la bomba.

Índice

Introducción	4
Objetivo	5
Trabajo de laboratorio	5
Tabla de valores medidos	6
Fórmulas	8
Tabla de valores calculados	. 10
Desarrollo	. 12
Genere la Curva Rendimiento Vs Q	. 12
Genere la Curva Potencia en el eje VS Q	. 12
¿Cuáles son las condiciones óptimas de operación de esta bomba?	. 13
¿Las curvas tienen la forma esperada?	. 13
¿Cuál es la potencia máxima consumida?	. 13
¿Qué tipo de curvas son?	. 13
Genere la Curva φ vs Ψ	. 14
¿La nube de puntos que conforman esta curva son muy dispersos?	. 14
Calcule la velocidad específica y determine si las características constructivas y operacionales son concordantes con esa velocidad específica y su respuesta	
Conclusión	. 16
Referencias	. 17

Introducción

Las bombas centrífugas son las más comunes en el mercado como también en las distintas aplicaciones industriales, por lo que es interesante poder entender su funcionamiento, como también entender su comportamiento a diferentes regímenes de trabajo.

Para ello, mediante herramientas gráficas se pueden establecer diferentes tipos de curvas que nos permiten expresar de manera clara como es la evolución de los diferentes parámetros de funcionamiento, estas curvas son denominadas las curvas características y son las que se obtendrán en el siguiente trabajo.

Objetivo

Analizar el comportamiento de una bomba centrífuga mediante sus curvas características.

Trabajo de laboratorio

Revisar y poner en marcha la instalación, con las válvulas de aspiración y descarga totalmente abiertas. Regular la velocidad a la indicada por el profesor.

Luego de inspeccionar los instrumentos y su operación y esperar un tiempo prudente para que se estabilice su funcionamiento, tome las siguientes medidas:

- n velocidad de ensayo, [rpm].
- nx velocidad de la bomba, en [rpm].
- pax% presión de aspiración, en [%].
- pdx% presión de descarga, en [%].
- Δhx caudal de la bomba, presión diferencial en el venturímetro en [mmHg].
- Fx fuerza medidas en la balanza, en [kp].
- ta temperatura de agua en el estanque, en [°C].
- Patm presión atmosférica, en [mmHg].

Manteniendo la velocidad constante, repetir las mediciones tantas veces como fuera necesario para recorrer completamente la curva característica de la bomba y tener los valores apropiados para trazar las curvas que se indican. Para obtener las distintas condiciones de operación, se modifica la curva característica del sistema estrangulando la descarga de la bomba.

Se repite lo anterior para otras dos velocidades de ensayo.

Mida los valores siguientes:

cpax altura piezométrica del manómetro de aspiración respecto del eje de la bomba, en [mm].

cpdx altura piezométrica del manómetro de descarga respecto del eje de la bomba, en [mm].

Tabla de valores medidos

	VALORES MEDIDOS 3070 [rpm]									
	n	срах	cpdx	nx	pax	pdx	∆hx	Fx	Т	P _{atm}
	[rpm]	[m]	[m]	[rpm]	[%]	[%]	[mm _{Hg}]	[kp]	[°C]	[mm _{Hg}]
1	3070	115	165	3075	89,5	6,5	146	1,54	16	758,7
2	3070	115	165	3076	92	13,6	133	1,68	16	758,7
3	3070	115	165	3076	94,8	19,4	118	1,79	16	758,7
4	3070	115	165	3076	97	24,5	104	1,85	16	758,7
5	3070	115	165	3077	99,4	29,1	91	1,89	16	758,7
6	3070	115	165	3078	101,7	34,4	76	1,91	16	758,7
7	3070	115	165	3078	105,2	41,3	59	1,92	16	758,7
8	3070	115	165	3078	107,6	46,2	45	1,89	16	758,7
9	3070	115	165	3078	110	49,2	32	1,83	16	758,7
10	3070	115	165	3077	112,5	54,4	17	1,69	16	758,7
11	3070	115	165	3078	114,3	56,9	9	1,55	16	758,7
12	3070	115	165	3078	120,5	62,1	0	1,13	16	758,7

Tabla 1

	VALORES MEDIDOS									
					2900	[rpm]				
	n	срах	cpdx	nx	pax	pdx	∆hx	Fx	Т	Patm
	[rpm]	[m]	[m]	[rpm]	[%]	[%]	[mm _{Hg}]	[kp]	[°C]	[mm _{Hg}]
1	2900	115	165	2903	91,5	6,2	134	1,37	16	758,7
2	2900	115	165	2903	93,9	12,7	121	1,47	16,5	758,7
3	2900	115	165	2903	96,3	16,4	109	1,55	16,5	758,7
4	2900	115	165	2903	98,7	21,4	95	1,62	17	758,7
5	2900	115	165	2903	100,5	26,1	82	1,65	17	758,7
6	2900	115	165	2902	103,4	30,5	70	1,68	17	758,7
7	2900	115	165	2904	105,6	35,5	56	1,69	17	758,7
8	2900	115	165	2902	108,1	40,2	43	1,68	17	758,7
9	2900	115	165	2903	110	44,3	30	1,6	17	758,7
10	2900	115	165	2903	112,3	48,1	17	1,49	17	758,7
11	2900	115	165	2904	114,6	51,2	8	1,37	17	758,7
12	2900	115	165	2904	119,5	56,1	0	0,94	17	758,7

	VALORES MEDIDOS										
					2700	[rpm]					
	n	срах	cpdx	nx	pax	pdx	∆hx	Fx	Т	Patm	
	[rpm]	[mm]	[mm]	[rpm]	[%]	[%]	[mm _{Hg}]	[kp]	[°C]	[mm _{Hg}]	
1	2700	115	165	2702	94,3	5,8	118	1,16	17	758,7	
2	2700	115	165	2703	96,8	10,5	106	1,24	17	758,7	
3	2700	115	165	2703	98,5	14,5	95	1,3	17	758,7	
4	2700	115	165	2703	100	18,1	84	1,34	17	758,7	
5	2700	115	165	2702	102,4	22,6	72	1,38	17	758,7	
6	2700	115	165	2703	104,8	26,9	60	1,4	17	758,7	
7	2700	115	165	2703	107,1	32,1	47	1,4	17	758,7	
8	2700	115	165	2702	109,1	36,1	35	1,38	17	758,7	
9	2700	115	165	2702	111,3	39,9	23	1,3	17	758,7	
10	2700	115	165	2703	113,6	43,5	11	1,18	17	758,7	
11	2700	115	165	2703	114,9	45,3	5	1,05	17	758,7	
12	2700	115	165	2703	119,6	49,1	0	0,78	17	758,7	

Fórmulas

Caudal:

De gráfico del venturímetro adjunto se determina el caudal para cada línea de mediciones: Qx

Caudal corregido:

$$Q = Qx \left(\frac{n}{nx}\right) \quad \left[\frac{m^3}{h}\right]$$

Presión de aspiración:

$$pax = 0.1 pax\% - 10 - \frac{cpax}{1000} [m_{ca}]$$

cpax = 115 [mm]

cpdx=165 [mm]

Presión de descarga:

$$pdx = 0.4 pdx\% + \frac{cpdx}{1000} [m_{ca}]$$

Altura:

$$Hx = -pax + pdx$$
 $[m_{ca}]$

Altura corregida:

$$H = Hx \left(\frac{n}{nx}\right)^2 \quad \left[m_{ca}\right]$$

Potencia en el eje de la bomba:

$$Nex = 0,0007355 Fxnx$$
 [kW]

Potencia en el eje de la bomba corregida:

$$Ne = Nex \left(\frac{n}{nx}\right)^3$$
 [kW]

Potencia hidráulica:

$$Nh = \gamma \frac{QH}{3600}$$
 [kW]

γ peso específico del agua en [N/m³] Rendimiento global:

$$\eta_{gl} = \frac{Nh}{Ne} 100 \quad [\%]$$

Velocidad tangencial del rodete en la descarga:

$$U_2 = \frac{\pi}{60} n D_2 \left[\frac{m}{s} \right]$$

Velocidad meridional de descarga:

$$cm_2 = \frac{Q}{3600\pi D_2 B_2} \quad \left[\frac{m}{s}\right]$$

D₂ diámetro exterior del rodete

B2 ancho exterior del rodete

Phi:

$$\phi = \frac{cm_2}{U_2} \quad [-]$$

Psi:

$$\psi = \frac{2gH}{U_2^2} \quad [-]$$

Tabla de valores calculados

	VALORES Calculados												
						3070	[rpm]						
Qx	Q	рах	pdx	Hx	Н	Nex	Ne	Nh	ngl	U2	cm2	ф	Ψ
m3/h	m3/h	mca	mca	mca	mca	Kw	Kw	Kw	-	m/s	m/s	-	-
118,8	118,607	-1,165	2,765	3,930	3,917	3,483	3,466	1,265	36,491	21,701	3,197	0,147	0,163
108	107,789	-0,915	5,605	6,520	6,495	3,801	3,779	1,906	50,433	21,701	2,905	0,134	0,271
100,8	100,603	-0,635	7,925	8,560	8,527	4,050	4,026	2,335	58,001	21,701	2,712	0,125	0,355
97,2	97,010	-0,415	9,965	10,380	10,340	4,185	4,161	2,731	65,622	21,701	2,615	0,120	0,431
90	89,795	-0,175	11,805	11,980	11,926	4,277	4,248	2,915	68,620	21,701	2,420	0,112	0,497
79,2	78,994	0,055	13,925	13,870	13,798	4,324	4,290	2,967	69,158	21,701	2,129	0,098	0,575
72	71,813	0,405	16,685	16,280	16,195	4,347	4,313	3,166	73,410	21,701	1,936	0,089	0,675
64,8	64,632	0,645	18,645	18,000	17,907	4,279	4,245	3,151	74,209	21,701	1,742	0,080	0,746
57,6	57,450	0,885	19,845	18,960	18,862	4,143	4,111	2,950	71,760	21,701	1,548	0,071	0,786
36	35,918	1,135	21,925	20,790	20,696	3,825	3,799	2,024	53,270	21,701	0,968	0,045	0,862
28,8	28,725	1,315	22,925	21,610	21,498	3,509	3,482	1,681	48,282	21,701	0,774	0,036	0,896
0	0,000	1,935	25,005	23,070	22,950	2,558	2,538	0,000	0,000	21,701	0,000	0,000	0,956

Tabla 4

	VALORES Calculados												
	2900 [rpm]												
Qx	Q	pax	pdx	Нх	Н	Nex	Ne	Nh	ngl	U2	cm2	ф	Ψ
m3/h	m3/h	mca	mca	mca	mca	Kw	Kw	Kw	-	m/s	m/s	-	-
108	107,888	0,965	2,645	3,610	3,603	2,925	2,916	1,058	36,283	20,499	2,908	0,142	0,168
104,4	104,292	- 0,725	5,245	5,970	5,958	3,139	3,129	1,691	54,057	20,499	2,811	0,137	0,278
97,2	97,100	- 0,485	6,725	7,210	7,195	3,309	3,299	1,902	57,645	20,499	2,617	0,128	0,336
		-											
93,6	93,503	0,245	8,725	8,970	8,951	3,459	3,448	2,278	66,077	20,499	2,520	0,123	0,418
86,4	86,311	0,065	10,605	10,670	10,648	3,523	3,512	2,502	71,234	20,499	2,326	0,113	0,497
75,6	75,548	0,225	12,365	12,140	12,123	3,586	3,578	2,493	69,675	20,499	2,036	0,099	0,566
68,4	68,306	0,445	14,365	13,920	13,882	3,610	3,595	2,581	71,805	20,499	1,841	0,090	0,648
64,8	64,755	0,695	16,245	15,550	15,529	3,586	3,578	2,737	76,496	20,499	1,745	0,085	0,725
54	53,944	0,885	17,885	17,000	16,965	3,416	3,406	2,491	73,150	20,499	1,454	0,071	0,792
36	35,963	1,115	19,405	18,290	18,252	3,181	3,172	1,787	56,341	20,499	0,969	0,047	0,852
28,8	28,760	1,345	20,645	19,300	19,247	2,926	2,914	1,507	51,710	20,499	0,775	0,038	0,899
0	0,000	1,835	22,605	20,770	20,713	2,008	1,999	0,000	0,000	20,499	0,000	0,000	0,967

	VALORES Calculados												
	2700 [rpm]												
Qx	Q	pax	pdx	Нх	Н	Nex	Ne	Nh	ngl	U2	cm2	ф	Ψ
m3/h	m3/h	mca	mca	mca	mca	Kw	Kw	Kw	-	m/s	m/s	-	-
100,8	100,725	-0,685	2,485	3,170	3,165	2,305	2,300	0,868	37,733	19,085	2,715	0,142	0,170
97,2	97,092	-0,435	4,365	4,800	4,789	2,465	2,457	1,266	51,521	19,085	2,617	0,137	0,258
93,6	93,496	-0,265	5,965	6,230	6,216	2,584	2,576	1,582	61,421	19,085	2,520	0,132	0,335
90	89,900	-0,115	7,405	7,520	7,503	2,664	2,655	1,836	69,159	19,085	2,423	0,127	0,404
79,2	79,141	0,125	9,205	9,080	9,067	2,743	2,736	1,953	71,382	19,085	2,133	0,112	0,488
72	71,920	0,365	10,925	10,560	10,537	2,783	2,774	2,063	74,364	19,085	1,938	0,102	0,568
68,4	68,324	0,595	13,005	12,410	12,382	2,783	2,774	2,303	83,022	19,085	1,842	0,096	0,667
61,2	61,155	0,795	14,605	13,810	13,790	2,743	2,736	2,296	83,892	19,085	1,648	0,086	0,743
46,8	46,765	1,015	16,125	15,110	15,088	2,584	2,578	1,921	74,511	19,085	1,260	0,066	0,813
32,4	32,364	1,245	17,565	16,320	16,284	2,346	2,338	1,435	61,359	19,085	0,872	0,046	0,877
25,2	25,172	1,375	18,285	16,910	16,872	2,087	2,081	1,156	55,571	19,085	0,678	0,036	0,909
0	0,000	1,845	19,805	17,960	17,920	1,551	1,546	0,000	0,000	19,085	0,000	0,000	0,965

Desarrollo

Genere la Curva Rendimiento Vs Q

Gráfico 1

Genere la Curva Potencia en el eje VS Q

Gráfico 2

¿Cuáles son las condiciones óptimas de operación de esta bomba?

Las condiciones optimas de rendimientos se estiman para los valores de mayor eficiencia, por ende, y debido a los datos obtenidos a la velocidad de 2700 [RPM] y cerca de 62 [m3/h], se obtiene el mayor rendimiento el cual es cerca del 84%.

¿Las curvas tienen la forma esperada?

Las curvas tienen la forma esperada con respecto a lo señalado por los profesores en referencia 1, puede ser que los resultados varían en algún porcentaje, debido a que para determinar el Qx, se recurrió a una tabla la cual, al interceptar las curvas necesarias, se pudieron tomar valores con una pequeña diferencia.

¿Cuál es la potencia máxima consumida?

La potencia máxima consumida se obtuvo a las 3070 RPM, con un caudal de 72 [m3/h], y su valor fue de 4,313 [Kw].

¿Qué tipo de curvas son?

Tanto la curva de Rendimiento Vs Q, como la curva de Potencia en el eje VS Q, son curvas crecientes-decrecientes. Sus valores van ascendiendo hasta llegar a un punto máximo, para después de este ir disminuyendo. Importante destacar que la primera curva no inicia desde cero, en contraposición de la segunda que si lo hace.

Genere la Curva φ vs Ψ

Gráfico 3

¿La nube de puntos que conforman esta curva son muy dispersos?

Los datos que conforman estas 3 curvas están bien aglomerados, por lo que se puede decir que no son datos dispersos entre las diferentes RPM del ensayo.

Calcule la velocidad específica y determine si las características constructivas y operacionales son concordantes con esa velocidad específica y su respuesta

3070 RPM	2900 RPM	2700 RPM
Ns	Ns	Ns
10.351	9.924	9.835
6.756	6.691	7.080
5.321	5.604	5.714
4.522	4.668	4.865
3.910	3.938	3.959
3.289	3.341	3.373
2.781	2.872	2.913
2.447	2.569	2.541
2.218	2.195	2.077
1.636	1.697	1.633
1.422	1.459	1.402
0	0	0

Tabla 7

Se calcularon todas las velocidades específicas, pero se tomó en cuenta solo la de máximo rendimiento, debido a esto, y en base a referencia 2, se puede decir que esta bomba correspondería a una de tipo Radial o Francis.

Conclusión

A modo de cierre, se debe hacer referencia que las curvas características de las bombas nos permiten entender cual es su comportamiento a medida que van cambiando algunos de sus elementos de funcionamiento, entre los cuales destacan caudal, RPM, entre otros.

Teniendo estos datos, se puede obtener información muy relevante que mediante la velocidad especifica y las tablas pertinentes, podamos saber con exactitud con que tipo de bomba se está trabajando.

Referencias

- 1. Tomás Ignacio Herrera Muñoz, PPT CURVAS CARACTERÍSTICAS DE UNA BOMBA CENTRÍFUGA
- 2. Francisco de Miranda, Máquinas hidráulicas, Universidad Nacional Experimental, encontrar en: https://es.slideshare.net/eylinmachuca7/presentacin-bombas-centrfugas

Nota: Las tablas y gráficos no referenciados corresponden a autoría propia, con excepción de las tablas 1,2,3 que fueron entregadas por los profesores.