	3.7	3.6 . 1	
Cognome	Nome	Matricola	

Informatica Teorica I Esame del 19 luglio 2007 Tempo a disposizione: 90 minuti

Regole del gioco: Libri e quaderni chiusi, vietato scambiare informazioni con altri; indicare su tutti i fogli, con chiarezza, nome e numero di matricola; consegnare solo i fogli con le domande (questi).

Esercizio 1 (20%) Supponi che k linguaggi L_1 , L_2 , ..., L_k soddisfino la condizione del Pumping Lemma, cioè che esistano k indici n_1 , n_2 , ..., n_k tali che, per stringhe di L_i più lunghe di n_i , con i=1, ..., k, valga la condizione del Pumping Lemma.

1.1) Dimostra che il Pumping Lemma vale per il linguaggio $L = L_1 \cup L_2 \cup ... \cup L_k$. Qual è il valore dell'indice n_0 per cui tutte le stringhe di L soddisfano la condizione del Pumping Lemma?

E' sufficiente considerare per n_0 il valore massimo tra gli n_i , con $i=1,\ldots,k$. Infatti presa una qualsiasi stringa $z\in L=L_1\cup L_2\cup\ldots\cup L_k$, con $|z|\geq n_0$, essa apparterrà ad almeno un linguaggio L_j . La validità della condizione del PL per L_j , con $n_j\leq di$ n_0 , garantisce la validità della condizione del PL per la stringa z.

1.2) Dimostra che il Pumping Lemma vale per il linguaggio (aa)*+(aaa)*+(aaaaa)*

Trattandosi dell'unione di tre linguaggi si può applicare quanto è dimostrato nel punto 1.1

In particolare il linguaggio (a^k)* è regolare e soddisfa il PL con n=k Dunque la condizione del PL vale per:

$$(aa)^* con n = 2$$

 $(aaa)^* con n = 3$
 $(aaaa)^* con n = 5$

Ne segue che il PL vale per (aa)*+(aaa)*+(aaaa)* con n = 5

	Mama	M / 1
Cognome	Nome	Matricola
COSHOING	1 (01110	

Esercizio 2 (20%)

2.1) Elenca <u>tutti</u> i motivi per cui questa grammatica non è una grammatica regolare:

$$\begin{cases}
S \to aA \mid bB \mid A \mid B \\
A \to cA \mid c \\
B \to bBb \mid b
\end{cases}$$

Le produzioni
$$S \rightarrow A$$
 $S \rightarrow B$
 $S \rightarrow bBb$
non sono legittime in una grammatica regolare

2.2) Produci una grammatica regolare (priva di ε-produzioni) che genera lo stesso linguaggio della grammatica dell'esercizio **2.1**. (Non c'è una regola fissa di trasformazione, devi inventare un po').

$$S \rightarrow aA \mid bB \mid cA \mid c \mid b$$

$$A \rightarrow cA \mid c$$

$$B \rightarrow bB \mid b$$

2.3) Trasforma la grammatica regolare dell'esercizio **2.2** in espressione regolare (stavolta la regola c'è: applicala).

```
S = aA + bB + cA + c + b
A = cA + c
B = bB + b
S = aA + bB + cA + c + b
A = cA + c = c*c
B = bB + b = b*b
S = a(c*c) + b(b*b) + c(c*c) + c + b = ac*c + bb* + cc*
```

Esercizio 3 (20%)

3.1) Mostra un ASF <u>deterministico</u> che riconosce il linguaggio costituito da stringe su $\Sigma = \{a,b\}$ contenenti un numero pari di "a" ed un numero multiplo di 3 di "b".

Esempi: ε , aaaa, abaabba, bababaabbb, bbbbbbbbb, ...

3.2) Mostra una grammatica regolare che genera il linguaggio dell'esercizio 3.1.

 $S \rightarrow aC \mid bA$

 $A \rightarrow aD' \mid bB$

 $B \rightarrow aE \mid bS \mid b$

 $C \rightarrow aS \mid a \mid bD$

 $D \rightarrow aA \mid bE$

 $E \rightarrow aB \mid bC$

Nuovo assioma S' (per inserire la ε nel linguaggio)

 $S' \rightarrow aC \mid bA \mid \epsilon$

In questo caso sarebbe stato equivalente aggiungere $S \rightarrow \epsilon$

Cognome	. Nome	Matricola
Esercizio 4 (20%) Trova le esp su $\Sigma = \{a,d\}$.	pressioni regolari che o	descrivono i seguenti linguaggi
4.1) Linguaggio $L_1 = \{adda, d\}$	ada, dadda}	
adda+dada+dadda		
4.2) Linguaggio L ₂ tale che ognada, ecc	i " d " è seguita da una '	"a". Per esempio: ε, aa, dada,
(da + a)*		
4.3) Linguaggio L ₃ tale che og da, dada, dadda, ecc	ni " a " è preceduta da	una " d ". Per esempio: ε, ddd ,
(da + d)*		
4.4) Linguaggio L ₄ delle string ada, dad, adad, dada, ecc	ghe alternate di " a " e	"d". Per esempio: ε, ad, da,
$(ad)*(\epsilon+a)+(da)*(\epsilon+d)$		
4.5) Linguaggio $L_5 = L_2 \cap L_3$		
(da)*		

Cognome	Nome	Matricola		
Esercizio 5 (20%) 5.1) Scrivi l'enunciato del Pidgeonhole Principle.				
S.I) Serivi i chanciato de	or reasonmore remerpie			
vedi dispense				
vedi dispense				
50 0 112	10 : 1			
5.2) Scrivi l'enunciato de	el Pumping Lemma.			
11. 11.				
vedi dispense				
5.3) Scrivi l'enunciato de	el teorema di Myhill Ne	rode.		
vedi dispense				