

The American Mathematical Monthly

ISSN: 0002-9890 (Print) 1930-0972 (Online) Journal homepage: https://www.tandfonline.com/loi/uamm20

An Irreducibility Criterion for Polynomials Over the Integers

W. S. Brown & R. L. Graham

To cite this article: W. S. Brown & R. L. Graham (1969) An Irreducibility Criterion for Polynomials Over the Integers, The American Mathematical Monthly, 76:7, 795-797, DOI: 10.1080/00029890.1969.12000326

To link to this article: https://doi.org/10.1080/00029890.1969.12000326

References

- 1. Errett Bishop, Holomorphic completions, analytic continuations and the interpolation of seminorms, Ann of Math., 78 (1963) 468-500.
- 2. J. L. Kelley, Isaac Namioka, et al., Linear Topological Spaces, Van Nostrand, Princeton, 1963.
- 3. Shoshichi Kobayashi, Invariant distances on complex manifolds and holomorphic mappings, J. Math. Soc. Japan, 19 (1967) 460-480.
- 4. Walter Rudin, The closed ideals in an algebra of analytic functions, Canadian J. Math., 9 (1957) 426-434.

AN IRREDUCIBILITY CRITERION FOR POLYNOMIALS OVER THE INTEGERS

W. S. Brown and R. L. Graham, Bell Telephone Laboratories

1. Introduction. If P(x) is a reducible polynomial of degree $d \ge 1$ with integer coefficients, we should not expect the sequence

$$S(P) = (\cdots, P(-1), P(0), P(1), \cdots)$$

to have many noncomposite (that is, prime or unit) elements. By making this idea precise, we shall obtain an irreducibility criterion. A special case of our main result is that if S(P) contains p primes and u units with p+2u>d+4, then P is irreducible.

2. Fatness. Let P(x) be any polynomial of degree $d \ge 1$ with integer coefficients, and let u be the number of units in S(P). We define the fatness of P to be

$$f(P) = u - d,$$

and we say that P is fat if f(P) > 0.

If ϵ is a unit (that is, +1 or -1), and if a_1, \dots, a_d are distinct integers, then the polynomial $(x-a_1) \cdots (x-a_d) + \epsilon$ has fatness at least 0. If P is fat, then clearly S(P) must contain units of both signs.

Note that all polynomials in the set

$$\Im(P) = \big\{ \pm P(\pm x + b) \big\},\,$$

where b ranges over the integers and where all possible choices of signs are taken, have the same fatness.

3. Notation. If P(x) is a polynomial, we define

$$d = d(P)$$
 = degree of P
 $p = p(P)$ = number of primes in $S(P)$
 $u = u(P)$ = number of units in $S(P)$
 $u_{+} = u_{+}(P)$ = number of positive units in $S(P)$
 $u_{-} = u_{-}(P)$ = number of negative units in $S(P)$
 $f = f(P)$ = fatness of P .

Thus $u = u_+ + u_-$, and f = u - d.

4. Classification of fat polynomials.

THEOREM 1. Let P(x) be a fat polynomial (with $d \ge 1$). Then $u \le 4$, $d \le 3$, $f \le 2$; and one of the following holds:

(a)
$$P(x) \in \mathfrak{I}(x), u_+ = 1, u_- = 1, d = 1, f = 1$$

(b)
$$P(x) \in 5(x^2 + x - 1), u_+ = 2, u_- = 2, d = 2, f = 2$$

(c)
$$P(x) \in 5(x^3 + 2x^2 - x - 1), u_{\pm} = 3, u_{\mp} = 1, d = 3, f = 1$$

(d)
$$P(x) \in 3(2x-1), u_+ = 1, u_- = 1, d = 1, f = 1$$

(e)
$$P(x) \in 5(2x^2 - 1)$$
, $u_{\pm} = 2$, $u_{\mp} = 1$, $d = 2$, $f = 1$.

Proof. We first prove that $u \le 4$. Since P is fat, we have seen that $u_+ \ge 1$ and $u_- \ge 1$. Clearly P may be written

$$P(x) = (x - a_1) \cdot \cdot \cdot (x - a_{u+})Q(x) + 1,$$

where $a_1 < \cdots < a_{u_+}$. Now if P(b) = -1, we have $(b-a_1) \cdots (b-a_{u_+})Q(b) = -2$, $\{b-a_1, \cdots, b-a_{u_+}\} \subseteq \{-2, -1, 1, 2\}$. By the first of these relations, at least $u_+ - 1$ of the distinct integers $b-a_1, \cdots, b-a_{u_+}$ must be ± 1 . Hence $1 \le u_+ \le 3$, and similarly $1 \le u_- \le 3$. If $u_+ = 3$, there is at most one integer b for which the second relation holds, so $u_- = 1$. If $u_+ = 2$, there are at most two such integers, so $u_- \le 2$. Thus in every case $u \le 4$.

Since P is fat, d < u, and therefore $d \le 3$. Since $u \le 4$ and $d \ge 1$, we have $f \le 3$; however, we shall see that the case f = 3 does not occur, and therefore $f \le 2$.

Next we prove that d(Q) = 0. We may assume $u_+ \ge u_-$, (otherwise replace P by -P). Since $u \le 4$, it follows that $u_- \le 2$. Since P is fat, $d(Q) < u_-$, and therefore d(Q) = 0 or 1. If d(Q) = 1, then $u_+ = u_- = 2$. Hence, for some $b_1 \ne b_2$,

$$(b_1 - a_1)(b_1 - a_2)Q(b_1) = (b_2 - a_1)(b_2 - a_2)Q(b_2) = -2,$$

$$\{b_1 - a_1, b_1 - a_2, b_2 - a_1, b_2 - a_2\} \subseteq \{-2, -1, 1, 2\}.$$

Since $\{b_1-a_1, b_1-a_2\}$ is a translate of $\{b_2-a_1, b_2-a_2\}$, it follows that $(b_1-a_1)(b_1-a_2)=(b_2-a_1)(b_2-a_2)$ and $Q(b_1)=Q(b_2)$. Hence Q(x) is constant.

We now have

$$P(x) = c(x - a_1) \cdot \cdot \cdot (x - a_{u+}) + 1.$$

Since $u_{-} \ge 1$, we may assume P(0) = -1; that is, $(-1)^{u_{+}} c a_{1} \cdot \cdot \cdot a_{u_{+}} = -2$. It follows that |c| = 1 or 2.

If |c|=1, then $a_1 \cdot \cdot \cdot a_{u_+} = \pm 2$, so either $a_1=-2$ or $a_{u_+}=2$. We may assume $a_1=-2$. (Otherwise replace P(x) by P(-x).) If $u_+=1$, then $ca_1=2$, c=-1, and P(x)=-(x+2)+1=-(x+1), so -P(x-1)=x. If $u_+=2$, then $ca_1a_2=-2$, $ca_2=1$, $a_2=c=\pm 1$, and P(x)=c(x+2)(x-c)+1. If c=1, then $P(x)=x^2+x-1$. If c=-1, then P(x)=-(x+2)(x+1)+1, so $-P(x-1)=x^2+x-1$. Finally, if $u_+=3$, then $ca_1a_2a_3=2$, $ca_2a_3=-1$, $a_2=-1$, $a_3=1$, c=1, and $P(x)=x^3+2x^2-x-1$.

If |c| = 2, then $a_1 \cdot \cdot \cdot \cdot a_{u_+} = \pm 1$, so $u_+ = 1$ or 2. If $u_+ = 1$, then $ca_1 = 2$, $c = \pm 2$, $a_1 = \pm 1$, and $P(\pm x) = 2x - 1$. If $u_+ = 2$, then $ca_1a_2 = -2$, $a_1 = -1$, $a_2 = 1$, c = 2, and $P(x) = 2x^2 - 1$. This completes the proof.

COROLLARY 1. If P is a fat polynomial with d=1 or 2, then there is an integer b such that $P(-x) = (-1)^d P(x-b)$.

5. Irreducibility criterion.

THEOREM 2. Let P(x) be a polynomial with $p+2u>d \ge 2$. Then either P is irreducible or P=QR with $f(Q)+f(R)\ge p+2u-d$.

Proof. If P is reducible, we can write P = QR with $f(Q) \ge f(R)$. Now for each integer n such that P(n) is prime, either Q(n) or R(n) must be a unit, while for each n such that P(n) is a unit, both Q(n) and R(n) must be units. Therefore $u(Q) + u(R) \ge p + 2u$, and $f(Q) + f(R) \ge p + 2u - d$, as was to be shown.

COROLLARY 2: If p+2u>d+4, then P is irreducible.

6. Example. Let
$$P(x) = x^5 - x^4 + 2x^3 - x^2 + x - 1$$
. Then

$$P(0) = -1$$

 $P(1) = 1$
 $P(2) = 29$
 $P(4) = 883$
 $P(-1) = -7$
 $P(-2) = -71$
 $P(-4) = -1429$.

Thus $p \ge 5$, $u \ge 2$, and $p + 2u - d \ge 4$. Hence if P is reducible, we have P = QR with f(Q) = f(R) = 2. But this implies d = 4, which is a contradiction, so P is irreducible.

If we fail to notice that P(4) and P(-4) are prime, then we have $p \ge 3$, $u \ge 2$, and $p+2u-d \ge 2$. In this case, if P is reducible, we have P=QR with $f(Q)+f(R)\ge 2$. Thus either f(Q)=f(R)=1 or f(Q)=2. In the first case we may assume d(Q)=2, and therefore $Q \in \mathfrak{I}(2x^2-1)$. But this is impossible because P is monic. Therefore f(Q)=2, and $Q \in \mathfrak{I}(x^2+x-1)$. Now by Corollary 1 we have $Q(x)=(x-b)^2+(x-b)-1$, and so x^2+x-1 divides P(x+b). However the remainder of P(x+b) modulo x^2+x-1 is $R_1(b)+xR_2(b)$, where

$$R_1(b) = b^5 - b^4 + 12b^3 - 17b^2 + 21b - 9$$

$$R_2(b) = 5b^4 - 14b^3 + 32b^2 - 31b + 14.$$

Since R_1 and R_2 have no common integer root, the remainder cannot vanish for any integer b. This contradiction proves that P is irreducible.

We thank the referee for his very helpful suggestions.