Knowledge Elicitation and Ontology-Based Visualization of Business Ecosystems: A Case Study from the Green Energy Ecosystem

Alican Tüzün
1,2[0009-0009-8017-5487] and Georgios $\frac{\text{Meditskos}^{1[0000-0003-4242-5245]}}{\text{Meditskos}^{1[0000-0003-4242-5245]}}$

 School of Informatics, Aristotle University of Thessaloniki, Thessaloniki, Greece
Josef Ressel Centre for Data-Driven Business Model Innovation, University of Applied Sciences Upper Austria, Wehrgrabengasse 1-4, 4400, Steyr, Austria lncs@springer.com

http://www.springer.com/gp/computer-science/lncs

Abstract. The abstract should briefly summarize the contents of the paper in 150–250 words.

 $\textbf{Keywords:} \ \ Business \ Ecosystem \cdot Knowledge \ Representation \cdot Symbolic \\ Artifical \ Intelligence.$

1 Introduction

- 1.1 Challange
- 1.2 Business ecosystems
- 1.3 Green Energy Ecosystem
- 1.4 Research Question

How can organizational interactions in the wind energy ecosystem systematically captured and translated into structured formal knowledge representations to enable data-driven decisions?

2 Methology

- 2.1 Semi-Structured Survey
- 2.2 OWL2
- 2.3 Ontological Commitments
- ClassAssertion
- ClassHierarchyAssertion
- ClassDisjointnessAssertion
- ObjectPropertyAssertion
- PropertyCharacteristicAssertions
- Methodological Limitations

F. Author et al.

2

 ${\bf Table~1.~Relationships~and~Theoretical~Foundations}$

Relationship Type	Theoretical Foundation	Logical Charecteristics
Product & Service Delivery	Supply Chain Management (Chopra & Meindl, 2016); Value Chain Analysis (Porter, 1985); Business Ecosystems (Adner, 2017)	Irreflexive, Transitive
Payment	Business Model Ontology (Osterwalder & Pigneur, 2005); Value Network Analysis (Allee, 2008); Input-Output Economics (Leontief, 1986)	Irreflexive
Data	Knowledge-Based View (Grant, 1996); Digital Ecosystem Theory (Tiwana, 2013)	Irreflexive
Information	Knowledge-Based View (Grant, 1996)	Irreflexive
Collaboration	Resource-Based View (Barney, 1991)	Irreflexive, Symmetric
Conflict	Stakeholder Theory (Freeman, 1984)	Irreflexive, A Symmetric
Competition	Porter's Five Forces (Porter, 1979)	Irreflexive, Symmetric
Coopetition (Implicit)	Coopetition Theory (Brandenburger & Nalebuff, 1996)	Irreflexive

Visualization

 $\mathbf{j}\mathbf{s}$

- 3 Results&Discussion
- 3.1 Survey Results&Discussion
- 3.2 Ontology Development
- 3.3 Information Retrieval with Sparql
- 3.4 Visualization Results
- 4 Conclusion
- 5 Appendix
- A Semi-Structured Survey
- B Source Code for Ontology
- C Source Code for Visualization

References