Matemática Atuarial II

Aula14

Danilo Machado Pires danilo.pires@unifal-mg.edu.br

Leonardo Henrique Costa leonardo.costa@unifal-mg.edu.br

- No caso do status último sobrevivente, as anuidades são calculadas considerando que os benefícios serão pagos no ano caso pelo menos um esteja vivo
 - As probabilidades são em relação ao status e não em relação a uma única vida.
 - Paga 1 real a beneficiário no início de cada ano da sobrevivência do status x, y. Isto é, paga se ambos estão vivos no início de cada ano

Anuidades imediatas temporárias antecipadas para o status último sobrevivente

$$\ddot{a}_{\overline{x,y}:\overline{n}|} = \sum_{t=0}^{n-1} v^t \left({}_{t} \boldsymbol{p}_x + {}_{t} p_y - {}_{t} \boldsymbol{p}_x {}_{t} p_y \right)$$

Anuidades imediatas temporárias postecipadas para o status último sobrevivente

$$a_{\overline{x},\overline{y}:\overline{n}|} = \sum_{t=1}^{n} v^{t} \left({}_{t} \boldsymbol{p}_{x} + {}_{t} p_{y} - {}_{t} \boldsymbol{p}_{x} {}_{t} p_{y} \right)$$

Exemplo 1: Seja duas vidas que têm como probabilidades de mortes modeladas pela seguinte tábua

Idade	\boldsymbol{q}_{x}
25	0,00077
26	0,00081
27	0,00085
28	0,00090
29	0,00095
30	0,00107

Considerando uma taxa de juros de 4% ao ano, calcule o V.P.A. de uma anuidade temporária por 3 anos considerando um status último sobrevivente de uma pessoa de 30 anos de idade e outra de 28 anos de idade (pagamento antecipado).

Exemplo 1: Considerando uma taxa de juros de 4% ao ano, calcule o V.P.A. de uma anuidade temporária por 3 anos considerando um status último sobrevivente de uma pessoa de 30 anos de idade e outra de 28 anos de idade (pagamento antecipado).

x	у	T. vida adicional	Z	$_{t}p_{\overline{x}\overline{y}}$
30	28	t > 0	1	$T_{30} > 0$ ou $T_{28} > 0$
31	29	<i>t</i> > 1	v	$T_{30} > 1$ ou $T_{28} > 1$
32	30	<i>t</i> > 2	v^2	$T_{30} > 2$ ou $T_{28} > 2$

$$\ddot{a}_{30.28:3|} = P(T_{28.30} > 0) + vP(T_{28.30} > 1) + v^2P(T_{28.30} > 2)$$

Exemplo 1: Considerando uma taxa de juros de 4% ao ano, calcule o V.P.A. de uma anuidade temporária por 3 anos considerando um status último sobrevivente de uma pessoa de 30 anos de idade e outra de 28 anos de idade (pagamento antecipado).

<u>x</u>	у	T. vida adicional	Z	$_{t}p_{\overline{x}\overline{y}}$
30	28	t > 0	1	$T_{30} > 0$ ou $T_{28} > 0$
31	29	t > 1	v	$T_{30} > 1$ ou $T_{28} > 1$
32	30	<i>t</i> > 2	v^2	$T_{30} > 2$ ou $T_{28} > 2$

$$\ddot{a}_{\overline{30,28:3}|} = P(T_{\overline{28,30}} > 0) + vP(T_{\overline{28,30}} > 1) + v^2P(T_{\overline{28,30}} > 2)$$

$$\ddot{a}_{30,28:3|} = 1_0 p_{30,28} + v_1 p_{30,28} + v^2_2 p_{30,28}$$

$$\ddot{a}_{30,28:3|} = \sum_{t=0}^{2} v^{t} \left({}_{t} p_{30} + {}_{t} p_{28} - {}_{t} p_{30} {}_{t} p_{28} \right)$$

Anuidades imediatas vitalícias antecipadas para o status último sobrevivente

$$\ddot{a}_{\overline{x},\overline{y}} = \sum_{t=0}^{\infty} v^{t} \left({}_{t} \boldsymbol{p}_{x} + {}_{t} p_{y} - {}_{t} \boldsymbol{p}_{x} {}_{t} p_{y} \right)$$

Anuidades imediatas vitalícias postecipadas para o status último sobrevivente

$$a_{\overline{x},\overline{y}} = \sum_{t=1}^{\infty} v^{t} \left({}_{t} \boldsymbol{p}_{x} + {}_{t} p_{y} - {}_{t} \boldsymbol{p}_{x} {}_{t} p_{y} \right)$$

Anuidades imediatas vitalícias antecipadas para o status último sobrevivente

$$\ddot{a}_{\overline{x},\overline{y}} = \sum_{t=0}^{\infty} v^{t} \left({}_{t} \boldsymbol{p}_{x} + {}_{t} p_{y} - {}_{t} \boldsymbol{p}_{x} {}_{t} p_{y} \right)$$

$$\ddot{a}_{\overline{x},\overline{y}} = \sum_{t=0}^{\infty} v^{t}({}_{t}\boldsymbol{p}_{x}) + v^{t}({}_{t}\boldsymbol{p}_{y}) - v^{t}({}_{t}\boldsymbol{p}_{x}{}_{t}\boldsymbol{p}_{y})$$

$$\ddot{a}_{\overline{x,y}} = \sum_{t=0}^{\infty} v^t({}_{t}\boldsymbol{p}_{x}) + \sum_{t=0}^{\infty} v^t({}_{t}\boldsymbol{p}_{y}) - \sum_{t=0}^{\infty} v^t({}_{t}\boldsymbol{p}_{x}{}_{t}\boldsymbol{p}_{y})$$

. .

$$\ddot{a}_{\overline{x},\overline{y}} = \sum_{t=0}^{\infty} v^t(\mathbf{p}_x) + \sum_{t=0}^{\infty} v^t(\mathbf{p}_y) - \sum_{t=0}^{\infty} v^t(\mathbf{p}_x) + \sum_{t=0}^{\infty} v^t(\mathbf{p}_x)$$

$$\ddot{a}_{\overline{x},\overline{y}} = \ddot{a}_x + \ddot{a}_y - \ddot{a}_{xy}$$

- - -

$$\ddot{a}_{\overline{x,y}} + \ddot{a}_{xy} = \ddot{a}_x + \ddot{a}_y$$

$$\ddot{a}_{\overline{x},\overline{y}} = \ddot{a}_x + \ddot{a}_y - \ddot{a}_{xy}$$

$$a_{\overline{x},\overline{y}} = a_x + a_y - a_{x,y}$$

$$\bar{a}_{\overline{x},\overline{y}} = \bar{a}_x + \bar{a}_y - \bar{a}_{x,y}$$

$$m|\ddot{a}_{\overline{x},\overline{y}} = m|\ddot{a}_x + m|\ddot{a}_y - m|\ddot{a}_{x,y}$$

$$a_{\overline{x},\overline{y}} = a_{\overline{x},\overline{y}} = a_{\overline{x}} + a_{\overline{x}} + a_{\overline{y}} - a_{\overline{x},\overline{y}}$$

Exemplo 2: Considere um casal composto por uma pessoa de idade 24 anos e outra de idade 25 anos, assumindo uma taxa de juros de i=3% ao ano e que T_{24} e T_{25} possam ser modelados pelas tábuas AT2000_M e AT2000_F, respectivamente. Calcule $\ddot{a}_{\overline{24,25}:\overline{21}}$

χ	AT2000_M	l_{x}	AT2000_F	l_{x}
20	0,00055	989332,6	0,00028	993876,5
21	0,00057	988788,5	0,00029	993598,3
22	0,0006	988224,9	0,00031	993310,1
23	0,00063	987631,9	0,00033	993002,2
24	0,00066	987009,7	0,00035	992674,5
25	0,00069	986358,3	0,00037	992327,1
26	0,00071	985677,7	0,00039	991959,9
27	0,00074	984977,9	0,0004	991573
28	0,00076	984249	0,00042	991176,4
29	0,00077	983501	0,00044	990760,1
30	0,00078	982743,7	0,00045	990324,2

$$\ddot{a}_{\overline{24,25}:\overline{2}|} = \sum_{t=0}^{1} v^{t} \left(p_{24} + p_{25} - p_{24} p_{25} \right)$$

\mathcal{X}	AT2000_M	l_{x}	AT2000_F	l_{x}
20	0,00055	989332,6	0,00028	993876,5
21	0,00057	988788,5	0,00029	993598,3
22	0,0006	988224,9	0,00031	993310,1
23	0,00063	987631,9	0,00033	993002,2
24	0,00066	987009,7	0,00035	992674,5
25	0,00069	986358,3	0,00037	992327,1
26	0,00071	985677,7	0,00039	991959,9
27	0,00074	984977,9	0,0004	991573
28	0,00076	984249	0,00042	991176,4
29	0,00077	983501	0,00044	990760,1
30	0,00078	982743,7	0,00045	990324,2

$$\ddot{a}_{\overline{24,25}:\overline{2}|} = 1 + v(p_{24} + p_{25} - p_{24} p_{25}) \approx 1,970874$$

$$\ddot{a}_{\overline{24.25}:\overline{2}|} = 1 + v(p_{24} + p_{25} - p_{24} p_{25}) \approx 1,970874$$

...

Outra opção

$$\ddot{a}_{\overline{24,25}:\overline{2}|} = \ddot{a}_{24:\overline{2}|} + \ddot{a}_{25:\overline{2}|} - \ddot{a}_{24,25:\overline{2}|}$$

$$\ddot{a}_{\overline{24,25}:\overline{2}|} = \sum_{t=0}^{1} v^{t} {}_{t} p_{24} + \sum_{t=0}^{1} v^{t} {}_{t} p_{25} - \sum_{t=0}^{1} v^{t} {}_{t} p_{24,25}$$

$$\ddot{a}_{\overline{24,25}:\overline{2|}} = 1 + vp_{24} + 1 + vp_{25} - 1 - vp_{24}p_{25}$$

$$\ddot{a}_{\overline{24.25}:\overline{2}|} = 1 + v(p_{24} + p_{25} - p_{24} p_{25}) \approx 1,970874$$

- Portal Halley: https://atuaria.github.io/portalhalley/
- Bowers et al. **Actuarial Mathematics**, 2ª edição. SOA, 1997
- D. C. M. Dickson, M. R. Hardy and H. R. Waters.
 Actuarial Mathematics for Life Contingent Risks.
 Cambridge University Press, 2019
- CORDEIRO FILHO, Antônio. Cálculo Atuarial Aplicado: teoria e aplicações, exercícios resolvidos e propostos. São Paulo: Atlas, 2009
- FERREIRA, P. P. Matemática Atuarial: Riscos de Pessoas. Rio de Janeiro: ENS, 2019
- PIRES,M.D.;COSTA,L.H.;FERREIRA,L.;MARQUES,R.
 Fundamentos da matemática atuarial: vida e pensões. Curitiba:CRV,2022

Matemática Atuarial II

Aula15

Danilo Machado Pires danilo.pires@unifal-mg.edu.br

Leonardo Henrique Costa leonardo.costa@unifal-mg.edu.br

Status vida conjunta

O status composto por várias vidas (independentes), onde se trabalha com a regra pré-definida de que ele irá "falhar" com o primeiro sinistro é chamado de *Status* vida.

Status último sobrevivente

O status último sobrevivente (Last survivor status) falha quando a última de n vidas vir a óbito, ou seja, o status estará "ativo" enquanto pelo menos um elemento do grupo estiver vivo.

Resumo

Seja $T_{x,y} = min\{T_x, T_y\}$ então:

$$F_{T_{x,y}}(t) = {}_{t} q_{x} + {}_{t} q_{y} - {}_{t} q_{x} {}_{t} q_{y} = {}_{t} q_{x,y}$$

$$S_{T_{x,y}}(t) = {}_t p_x {}_t p_y = {}_t p_{x,y}$$

$$_t q_{x,y} = 1 - _t p_{x,y}$$

Seja $T_{\overline{x},\overline{y}} = max\{T_x,T_y\}$ então:

$$F_{T_{\overline{x},\overline{y}}}(t) = {}_{t} q_{x} {}_{t} q_{y} = {}_{t} q_{\overline{x},\overline{y}}$$

$$S_{T_{\overline{x},\overline{y}}}(t) = {}_{t}p_{x} + {}_{t}p_{y} - {}_{t}p_{x} {}_{t}p_{y} = {}_{t}p_{\overline{x},\overline{y}}$$

$$_{t}q_{\overline{x},\overline{y}}=1-_{t}p_{\overline{x},\overline{y}}$$

$$= ({}_{t}p_{x})({}_{t}p_{y})(q_{x+t} + q_{y+t} - q_{x+t} q_{y+t})$$

$$t|q_{\overline{x,y}}|$$

$$= (tq_y)_t p_x q_{x+t} + (tq_x)_t p_y q_{y+t} + t p_x_t p_y (q_{x+t}) (q_{y+t})$$

$$_{t}q_{x,y} = _{t}q_{x} + _{t}q_{y} - _{t}q_{\overline{x,y}}$$

$$_t p_{\overline{x,y}} = _t p_x + _t p_y - _t p_{x,y}$$

Resumo

$$T_{x,y} = min\{T(x), T(y)\}$$

$$F_{T_{x,y}}(t) = {}_{t} q_{x} + {}_{t} q_{y} - {}_{t} q_{x} {}_{t} q_{y} = {}_{t} q_{x,y}$$

$$S_{T_{x,y}}(t) = {}_{t} p_{x} {}_{t} p_{y} = {}_{t} p_{x,y}$$

$$\mu(x+t,y+t) = \mu(x+t) + \mu(y+t)$$

$$f_{T_{x,y}}(t) = {}_{t} p_{x,y} \mu(x+t,y+t)$$

$$T_{\overline{x,y}} = max\{T(x), T(y)\}$$

$$F_{T_{\overline{x},\overline{y}}}(t) = {}_{t} q_{x} {}_{t} q_{y} = {}_{t} q_{\overline{x},\overline{y}}$$

$$S_{T_{\overline{x},\overline{y}}}(t) = {}_{t}p_{x} + {}_{t}p_{y} - {}_{t}p_{x} {}_{t}p_{y} = {}_{t}p_{\overline{x},\overline{y}}$$

$$\mu(\overline{x+t,y+t}) = \frac{\mu(x+t) _{t}p_{x t}q_{y} + \mu(y+t) _{t}p_{y t}q_{x}}{1 - _{t}q_{x t}q_{y}}$$

$$f_{T_{\overline{x},\overline{y}}}(t) = {}_{t} p_{\overline{x},\overline{y}} \mu(\overline{x+t},y+t)$$

Relações

$$A_{x,y} + A_{\overline{x,y}} = A_x + A_y$$

$$_{m|}A_{x,y} + _{m|}A_{\overline{x,y}} = _{m|}A_x + _{m|}A_y$$

$$e_{x,y} + e_{\overline{x},\overline{y}} = e_x + e_y$$

$$A_{u^1:\bar{n}|} + A_{\bar{u}^1:\bar{n}|} = A_{x^1:\bar{n}|} + A_{y^1:\bar{n}|}$$

$$_{m|}A_{u^{1}:\bar{n}|} + _{m|}A_{\bar{u}^{1}:\bar{n}|} = _{m|}A_{x^{1}:\bar{n}|} + _{m|}A_{y^{1}:\bar{n}|}$$

em que $u = \{x, y\}$

$$\ddot{a}_{xy} + \ddot{a}_{\overline{x},\overline{y}} = \ddot{a}_x + \ddot{a}_y$$

$$a_{x,y} + a_{\overline{x},\overline{y}} = a_x + a_y$$

$$\bar{a}_{x,y} + \bar{a}_{\overline{x,y}} = \bar{a}_x + \bar{a}_y$$

$$m|\ddot{a}_{x,y} + m|\ddot{a}_{\overline{x},\overline{y}} = m|\ddot{a}_x + m|\ddot{a}_y$$

$$_{m|}a_{x,y} + _{m|}a_{\overline{x,y}} = _{m|}a_x + _{m|}a_y$$

Relação seguro e anuidade

Partindo das relações

$$A_{x,y} + A_{\overline{x,y}} = A_x + A_y$$
$$A_{x,y} = (v - 1)\ddot{a}_{x,y} + 1$$

$$A_x = (v-1)\ddot{a}_x + 1$$
 $A_y = (v-1)\ddot{a}_y + 1$

Temos

$$(v-1)\ddot{a}_{x,y} + 1 + A_{\overline{x,y}} = (v-1)\ddot{a}_x + 1 + (v-1)\ddot{a}_y + 1$$

$$A_{\overline{x,y}} = (v-1)\ddot{a}_x + 1 + (v-1)\ddot{a}_y + 1 - 1 - (v-1)\ddot{a}_{x,y}$$

Status último sobrevivente

. . .

$$A_{\overline{x,y}} = (v-1)\ddot{a}_x + 1 + (v-1)\ddot{a}_y + 1 - 1 - (v-1)\ddot{a}_{x,y}$$

$$A_{\overline{x,y}} = (v-1)(\ddot{a}_x + \ddot{a}_y - \ddot{a}_{x,y}) + 1$$

 $A_{\overline{x},\overline{y}} = (v-1)\ddot{a}_{\overline{x},\overline{y}} + 1$

Status último sobrevivente

$$A_{x} = (v - 1)\ddot{a}_{x} + 1$$

$$A_{x,y} = (v - 1)\ddot{a}_{x,y} + 1$$

 $A_{\overline{x,y}} = (v-1)\ddot{a}_{\overline{x,y}} + 1$

O mesmo vale para os produtos temporários.

Exemplo 1: Considere a Tábua de Vida AT-49 e uma taxa de juros anual de 3%, então calcule o valor de $\ddot{a}_{107,108}$.

Exemplo 1: Considere a Tábua de Vida AT-49 e uma taxa de juros anual de 3%, então calcule o valor de $\ddot{a}_{\overline{107.108}}$.

$$\ddot{a}_{\overline{107,108}} = \sum_{t=0} v^t \left({}_t p_{107} + {}_t p_{108} - {}_t p_{107} \, {}_t p_{108} \right)$$

$$\ddot{a}_{\overline{107,108}}$$

$$= 1 + v(p_{107} + p_{108} - p_{107} p_{108}) + v^2 \left({}_2 p_{107} + {}_2 p_{108} - {}_2 p_{107} \, {}_2 p_{108} \right)$$

$$\ddot{a}_{\overline{107,108}} \approx 1,52538$$

 $\ddot{a}_{\overline{107,108}}$

Exemplo 1: Considere a Tábua de Vida AT-49 e uma taxa de juros anual de 3%, então calcule o valor de $\ddot{a}_{107,108}$ usando a expressão $A_{\overline{107,108}} = (v-1)\ddot{a}_{\overline{107,108}} + 1$ (ENTRTEGAR)

Prêmios nivelados

Princípio da equivalência: O valor total dos compromissos do segurado num certo momento deve ser igual ao valor total dos compromissos do segurador no mesmo momento, obedecendo ao princípio da equivalência.

Compromisso do segurado = Compromisso do segurador Y = Z L = Z - Y

O princípio de equivalência estabelece que :

$$E(L) = 0$$

Prêmios nivelados

Exemplo 2) Qual o valor do prêmio anual (*P*) pago por um status vida conjunta, considerando que duas pessoas desejam contratar um seguro de vida inteiro que paga 1 u.m. ao fim do ano de morte da primeira das duas vidas?

Exemplo 2) Qual o valor do prêmio anual (*P*) pago por um status vida conjunta, considerando que duas pessoas desejam contratar um seguro de vida inteiro que paga 1 u.m. ao fim do ano de morte da primeira das duas vidas?

$$Y = P + Pv + v^{2} + ... Pv^{T_{x,y}} = P\left(\frac{1 - v^{T_{x,y}+1}}{1 - v}\right) = P\ddot{a}_{T_{x,y}+1}, \qquad T_{x,y} \ge 0$$

$$Z_{T_{x,y}} = v^{T_{x,y}+1}, \qquad T_{x,y} \ge 0$$

$$E\left(P\ddot{a}_{\overline{T_{x,y}+1}|}\right) = E\left(Z_{T_{x,y}}\right)$$

$$P = \frac{A_{x,y}}{\ddot{a}_{x,y}}$$

Exemplo 3: Pensemos no exemplo 2 porém agora trata-se de seguro de vida temporário por n anos que será pago também por n anos ou até o status falhar (o que ocorrer primeiro). Calcule o valor do prêmio P.

Exemplo 3: Pensemos no exemplo 2 porém agora trata-se de seguro de vida temporário por n anos que será pago também por n anos ou até o status falhar (o que ocorrer primeiro). Calcule o valor do prêmio P.

$$P = \frac{A_{u^1:\overline{n|}}}{\ddot{a}_{u:\overline{n|}}}$$

em que $u = \{x, y\}.$

Exemplo 4: Caso as vidas x e y (dos exemplos anteriores) tenham interesse em pagar por um seguro temporário por n anos um prêmio P enquanto ambos estiverem vivos. Qual seria o valor de P?

Exemplo 4: Caso as vidas x e y (dos exemplos anteriores) tenham interesse em pagar por um seguro temporário por n anos um prêmio P enquanto ambos estiverem vivos. Qual seria o valor de P? Esse valor é coerente? Podemos cobrá-lo?

$$P = \frac{A_{u^1:\overline{n}|}}{\ddot{a}_{\overline{u}:\overline{n}|}}$$

em que $u = \{x, y\}.$

Prêmios nivelados

Exemplo 5: Dois segurados pendem que seja contratado um seguro de vida inteiro que paga 1 u.m. ao final do ano de morte do último deles (para deixar o benefício para um terceiro). No entanto, eles querem pagar, para contratar esse seguro, somente enquanto os dois estiverem vivos (pois, o prêmio pode ser muito caro para uma pessoa manter sozinha).

Prêmios nivelados

Exemplo 5: Dois segurados pendem que seja contratado um seguro de vida inteiro que paga 1 u.m. ao final do ano de morte do último deles (para deixar o benefício para um terceiro). No entanto, eles querem pagar, para contratar esse seguro, somente enquanto os dois estiverem vivos (pois, o prêmio pode ser muito caro para uma pessoa manter sozinha).

$$P = \frac{A_{\overline{x},\overline{y}}}{\ddot{a}_{x,y}}$$

- Portal Halley: https://atuaria.github.io/portalhalley/
- Bowers et al. **Actuarial Mathematics**, 2ª edição. SOA, 1997
- D. C. M. Dickson, M. R. Hardy and H. R. Waters.
 Actuarial Mathematics for Life Contingent Risks.
 Cambridge University Press, 2019
- CORDEIRO FILHO, Antônio. Cálculo Atuarial Aplicado: teoria e aplicações, exercícios resolvidos e propostos. São Paulo: Atlas, 2009
- FERREIRA, P. P. Matemática Atuarial: Riscos de Pessoas. Rio de Janeiro: ENS, 2019
- PIRES,M.D.;COSTA,L.H.;FERREIRA,L.;MARQUES,R.
 Fundamentos da matemática atuarial: vida e pensões. Curitiba:CRV,2022

