学号: 123/3/24 姓名: **发达** 日期: 2023.11.14 星期 二 日本午

氢氘光谱实验

一、实验目的

通过对氢原子光谱巴尔末线率在可见光区域内谱线的测量与分析,学习光栅光谱仪的工作原理和谱线测量的基本技术,学习确定里德伯常量的方法。并从氘原子光谱为研究对象,研究获得同位素光谱的实验方法,分析方法及其在微观测量中的应用。

二、实验仪器

氢氘放电管、光栅光谱仪, 先电倍增管、汞灯

三、实验厚理

()里德伯昂曼及氢氘厚子核质比的计算 在氢原子长谱图中可从明星地看到有三个谱线多到,其中在可见光和 近紫外区的谱线多到被都为巴尔末和。1895年,巴尔末根据实验结果,确 定了可见光区域氢光谱的谱线分布规律为

$$\lambda = B \frac{n^2}{n^2 + 4}, n = 3, 4, 5, ---$$

式、小翰为巴尔丰公式,B=3.6965×10°m,是谱线和极限值,即n→∞的凝值。 1896年,里德伯将巴尔丰公式改写成用波数万来表示,可为单位长度波列中波的数目,入是一个周期波的长度,即U=六,频率V=TC,C为光建。氢和美氢原子的巴尔丰线色对应光谱线额波数为

$$\sigma = \frac{2\pi^{2}m_{e}e^{t}Z^{2}}{(4\pi\epsilon_{o})^{2}h^{3}c(1+\frac{m_{e}}{m_{z}})}\left(\frac{1}{2^{2}}-\frac{1}{n^{2}}\right)$$
 (2)

其中加沟原子核质量, Me为电子质量, e为电子电荷, h为普朗克岸量, E。为真空介电岸量, c为光速, 2为原子序数, 因此类氢原子的里德伯岸量可写为

$$R_{z} = \frac{2\pi^{2} m_{e} e^{4} Z^{2}}{(4\pi \varepsilon_{e})^{2} h^{3} c} \cdot \frac{1}{\left(1 + \frac{m_{e}}{m_{z}}\right)}$$
(3)

学号:	姓名	日期	: 星期	□上午 □下午
-----	----	----	------	------------

若Mz>00,即假定厚子核不动,则有

$$R_{\infty} = \frac{2\pi^2 m_e e^4 Z^2}{(4\pi \epsilon_0)^2 h^3 c} \tag{4}$$

在1986年国际激光光谱学会议上发表并被推荐的里德伯昂量值为

$$R_{\infty} = (10973731.534 \pm 0.012) \,\text{m}^{-1}$$

由(3)、(4)两个式子,可求出:

$$R_{z} = \frac{R_{\infty}}{1 + \frac{m_{e}}{m_{z}}} \tag{5}$$

设氢和氘的里德伯学量分别为RH和RD,则氢、氘光镨线的波数可以可分别为

$$\nabla_{H} = R_{H} \left(\frac{1}{2} - \frac{1}{h^{2}} \right) \quad (n = 3, 4, 5, --)$$
(6)

因此,则出氢和氘的波长、求出波数、即可计算出氢气气厚了的里德伯泽量Rn和R。 根据式任了有另外,氢和氚光、镨相应的波长差为

因此,通过实验测得氢波长和氢氘的波长差,根据式的也可从求得Rn和R。根据式(5)有

$$R_{H} = \frac{R_{\infty}}{H \frac{me}{m_{H}}} \qquad (9) \qquad R_{D} = \frac{R_{\infty}}{H \frac{me}{R_{D}}} \qquad (10)$$

其中Mn和Mb分别为氢和氘厚子核的质量,式(n)降以式(9),得

$$\frac{R_{b}}{R_{H}} = \frac{1+\frac{m_{H}}{m_{H}}}{1+\frac{m_{h}}{m_{h}}}$$
 (11) 解(11) 解(11) 解(11) 解(11) (12)

式中船为氢原子核质量与电子质量比,公认值为1836.1515。因此通过将实验测得的入州和入的由式仍得到的是代入式(12),可求得气和氢度子核质量比 册。

学号:		姓名:		日期:		星期		口上	午午	-
-----	--	-----	--	-----	--	----	--	----	----	---

(二) 实验仪器工作原理

人光源

实验中使用氢剂放电管作为光源。该放电管将氢气和气气无入风一管内。当高压施加在两极上时,管内的游离电子获得动能并与氢气气分子碰撞,使其解离为氢原子和气原子并此入激发状态,当它们因到低能级时产生光辐射。

2、光馆仪 光栅光谱仪到用入射光在光栅上的行射将不同波长的光分离。

3、光电倍增管

光电传增管是利用光电子发射效应和二次电子发射效应来实现将 微弱的光信号转化为被强的电信号的光电器件。 四、实验内容

(一) 启动设备,复位光谱仪

(三) 光谱仪的定辞 (Hg灯光谱的测量)

安装Hg灯,将光谱似上负高压调至500V·设置好软件后进行扫描,依次记录谱线中每个峰对地应的波长(共9个峰)。截图见图1.

(三) HD 灯的测量

将光塘似上的负高压调至800V左右。在仓益位置摆放护HD灯罐使得尽可能含的光线进入光谱似。

1.设置好软件,粗扫HD光塘,确定谱线峰值的大致范围。截图见

图2. 2.设置好软件,细扫HD光谱,确定错线,峰值的堆确波长。依次在 n=3、4、5 (即 656 nm、486 nm、434 nm)的3个峰附近±5nm的范围内扫描。目的是将每一个n值(生量子数)对起的H、D谱线峰值分离开,共需测出3组(n=3、4、5)的H、D双峰,记录峰值波长(短波长为D,长波长为H).截图分别见图3 (n=5)、图4 (n=4)。图5 (n=3).

	4 2 4 1 - 1			
学号:	姓名:	日期:	星期	口上午 - 口下午
(图)勒	(据处理		M . th e .	W. A. A.
, /. \$	佛处理 以合修正公式。1	从实验测得Ho	波长为横轴,	在Hg建论版长
纵轴,作场	0,4700619564	1.		
2./	修正实验所则的	多级长和气波	Kanu	
	计算氢的里德伯	L 1		
	付冀气的里德伦		•	
5.4	计算气和氢度子	旅货量比点		
五、数据记录				
少数级别理	始敏据记录表	_		
六、数据处理	从含储正公式			
	人实验测得Holik	长为描绘儿	Ha强级波力	长光纵轴 作图
模拟合得到	刘修正公式	10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ing were the	(10 411 90 , 1 612)
, , , , , , ,	•	5x+2.8069		(13)
(二) 台	冷正实验所测:		し波光	
n 9935 × 433.9	66+2.8069≈ 433.8	55, 0.9935×4	86.33 *+2.8069	2 485.98
	4+2.8069 = 656.9		\$433.97+2.8069	
0.9935×4 3 6.4	f5+2.8069 ≈ 486.0	9, 0.9935 × 1	658.62+2.4069	≈ 657.15
修正波长((nm) n=5	n=4	n=3	
Þ	433.85	485.9	18 656.9	7
Н	433.96	486.0	9 657.15	5
	1 . /			
(2)	†篿氢的里િિα Φσ÷大 及式(6)	得 D = -	1 / 1 = 1	3.4.5,-)
	1	2.0	(本一於)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
RHI= 433.96	x10-x(1-1-1) = 1097	3142.14 m ⁻¹		
RHZ= 486.09	1 ×10-9×(1/2-1/2) = 1097	1905.07 m-1		

RH3 = 1 10956402.65 m-1 RH = RH1 + RH2 + RH3 = 10973142.14+10971905.07+10956402.65 = 10967149.95m7 (四)计算系的里得伯昂量 Ro,新计算平均值 由丁·大及式约1得 Ro= 1/2 (n=3,4,5) Ros = 1 = 10959404.54 m RD = RD1 + RD2 + RD3 = 10975924.31 + 10974398.52 + 10959404.54 = 10969905.79 m (五)计算气和氢厚子核质量比 mb 由光的得型之处 $\frac{\left(\frac{R_{H}}{R_{D}}\right)}{\left(\frac{R_{H}}{R_{D}}\right)} = \frac{\frac{\lambda_{D1}}{\lambda_{H1}} + \frac{\lambda_{D2}}{\lambda_{H2}} + \frac{\lambda_{D3}}{\lambda_{H3}}}{\frac{\lambda_{H3}}{\lambda_{H3}}} = \frac{\frac{433.85}{495.96} + \frac{485.98}{496.09} + \frac{656.97}{657.15}}{\frac{3}{0.9997487716}} = 0.9997487716}$ $\frac{3}{1 - \frac{M_{H}}{M_{H}}} = \frac{\frac{R_{D}}{R_{H}}}{1 - \frac{M_{H}}{M_{e}}(\frac{R_{e}}{R_{H}} - 1)} = \frac{1.857164}{1 - 1836.1515 \times (\frac{1}{0.9997487716} - 1)} = 1.857164$ 七、误差分析

一氢气效电管的成实数像无法恰好落在入射狭缝上

(二)光谱仪的扫描精度有限,且仪器处理的和框空中,理论战用真空光微.

(三) 光在衍射时波长可能发生微小改变, 且存在周围环境中牵光干扰.

八、实验结论

学号: 123 [3 | 24 姓名: 金传车 日期: 203.11. 举14星期 二 日本午

Hy灯波长

407.65 435.75 546.75 577.95 580.05 365.95 测量波长(mm) 365.05 364.55

366.30 404.66 407.78 435.84 546.07 576.96 理论波长(nm) 365.02 365.48

HD灯波长

峰值波长(nm)

1=5

1=4

1=3

D

433.86

486.33

658.44

H

433.97

486.45

658.62 × 11.14

九思考题

巴尔教金

能級3 →能級2: 入=657.1429nm

J = 1.547 × 106 m-1

能级4→能级2: 入=487.0588 nm

0 = 2.0531×106 m-1

能级5→能级2·入=434.8739nm

J = 2.2995x/00m-1

能级6→能级2:

> = 410.9861 nm

0 = 24332 × 10 m-1

