

BUNDESREPUBLIK DEUTSCHLAND

10 Offenlegungsschrift _® DE 43 05 027 A 1

(51) · Int. Cl.5: C 22 C 37/04

PATENTAMT

Aktenzeichen: P 43 05 027.1 Anmeldetag:

18. 2.93

43 Offenlegungstag: 19. 8.93

30 Unionspriorität: 22 33 31

18.02.92 BR 9200615

(71) Anmelder:

Cofap-Companhia Fabricadora de Pecas, Santo André, BR

(74) Vertreter:

Hagemann, H., Dipl.-Chem. Dr.rer.nat.; Kehl, G., Dipl.-Phys., 8000 München; Braun, D., Dipl.-Ing., Pat.-Anwälte, 3000 Hannover

(72) Erfinder:

Vatavuk, Jan, Sao Caetano do Sul, BR

📵 Kugelgraphitgußeisen und Verfahren zu seiner Herstellung

Kugelgraphitgußeisen und Verfahren zur Herstellung desselben, wobei das Kugelgraphitgußeisen umfaßt: eine metallische Bainit-, Martensit-, Pearlit- oder Ferrit-Matrix einer Reinheit von etwa 99,6%, in der die Schwefel- und Phosphorgehalte unter 0,015% bzw. 0,04% gehalten werden, 10 bis 12 Vol.-% Graphitteilchen und etwa 0,2 bis 1,2 Vol.-% Carbidteilchen großer Härte des MC-Typs, wobei die Teilchen in der geschmolzenen metallischen Matrix dispergiert sind und M mindestens eines der Elemente, ausgewählt aus der aus Ti, Ta, Zr, Hf, V und Nb bestehenden Gruppe, ist. Die Erfindung betrifft auch ein Verfahren zur Herstellung von Kugelgraphitgußeisen, das die Schritte umfaßt: Zugeben zu einem Bad von weniger als 0,015% Schwefel und weniger als 0,04% Phosphor enthaltendem Graugußeisen einer Beladung von etwa 0,2 bis 1,2%, bezogen auf das Gewicht des Bades, mindestens einer Ferrolegierung der Formel Fe-FeM oder Fe-MC, worin M mindestens eines der Elemente. ausgewählt aus der aus Ti, Ta, Zr, Ht, V und Nb bestehenden Gruppe, ist, Durchführen mindestens einer Pelletierung des Bades durch Animpfen mit Ferrosilicium-Magnesium und Abstechen des pelletierten metallischen Bades in die Formen:

· DE 43 05 027

Beschreibung

Die vorliegende Erfindung betrifft eine neue Kugelgraphitgußeisenzusammensetzung, die insbesondere bei der Herstellung von Kolbenringen für Verbrennungsmotoren verwendbar ist, und ein Verfahren zur Herstellung dieses neuen Kugelgraphitgußeisens.

Die Verwendung von Kugelgraphitgußeisen mit guten mechanischen Eigenschaften ähnlich denen von Stahl ist bei der Herstellung von Kolbenringen für Verbrennungsmotoren bereits bekannt. Trotz dieser guten mechanischen Eigenschaften entsprechen diese bekannten Kolbenringe aus Kugelgraphitgußeißen jedoch nicht immer den Anforderungen der Verschleißfestigkeit in den Verbrennungsmotoren.

Es ist daher eine Aufgabe der vorliegenden Erfindung, eine neue Kugelgraphitgußeisenzusammensetzung mit

besonderer Eignung bei der Herstellung von Kolbenringen für Verbrennungsmotoren bereitzustellen, die eine gegenüber den bisher bekannten Teilen aus Kugelgraphitgußeisen optimierte Verschleißfestigkeit aufweist.

Eine andere Aufgabe der vorliegenden Erfindung ist die Bereitstellung eines Verfahrens zur Herstellung dieses Kugelgraphitgußeisens.

Eine weitere Aufgabe der vorliegenden Erfindung ist die Bereitstellung eines aus Kugelgraphitgußeisen

hergestellten Kolbenringes, der verschleißfester ist.

Gemäß dem ersten Aspekt der vorliegenden Erfindung wird das fragliche Kugelgraphitgußeisen durch eine Bainit-, Martensit-, Pearlit- oder Ferrit-Matrix einer Reinheit von etwa 99,6% gebildet, die 10 bis 12 Vol.-% kugelige Gaphitteilchen darin dispergiert und etwa 0,2 bis 1,2 Vol.-% Carbidteilchen großer Härte des MC-Typs enthält, worin M mindestens eines der Elemente ist, ausgewählt aus der aus Ti, Ta, Zr, Hf, V und Nb bestehenden

Das oben genannte Kugelgraphitgußeisen weist in der metallischen Matrix dispergierte harte Teilchen auf, wodurch eine wesentlich erhöhte Beständigkeit gegen Abriebverschleiß erzielbar ist, weil während der Verwendung eines mit diesem Material hergestellten Stückes die harten Teilchen allmählich aus der Verschleißfläche

der umgebenden Matrix hervortreten.

Im besonderen Fall von Kolbenringen für Verbrennungsmotoren neigt die aus Kugelgraphitgußeisen hergestellte metallische Matrix im Bereich der äußersten Kante des Ringes zu einem Abriebverschleiß. Dieser Verschleiß wird im erfindungsgemäßen Material jedoch durch die aus der Oberfläche hervortretenden Teilchen oder Inseln eines wesentlich härteren Materials verringert. Es ist auch eine Verringerung des Kontaktdruckes in der Matrix erreichbar, wodurch der Haftungsverschleiß minimiert wird.

Zusammensassend kann gesagt werden, daß während des Abriebverschleißes eines mit dem erfindungsgemä-Ben Material hergestellten Stückes die Teilchen aus hartem Material als blockierende Elemente wirken, die Verschleißkratzer aufhalten, welche für die allmähliche Entfernung des Materials aus der Matrix verantwortlich

sind, wodurch eine Beschädigung durch Verkratzen vermieden wird.

Obgleich in dieser Beschreibung nicht näher diskutiert, sollte festgestellt werden die B die Teilchen aus hartem Material auch dazu neigen, den durch korrosiven Verschleiß verursachten Abrieb der mit dem neuen Kugelgraphitgußeisen hergestellten Stücke zu verringern.

Gemäß einem zweiten Aspekt der vorliegenden Erfindung umfaßt das Verfahren zur Herstellung des fragli-

chen Kugelgraphitgußeisens die Schritte:

a) Zugeben zu einem Bad von weniger als 0,015% Schwefel und weniger als 0,04% Phosphor enthaltendem Graugußeisen einer Beladung von etwa 0,2 bis 1,2%, bezogen auf das Badgewicht, mindestens einer Ferrolegierung der Formel Fe-FeM oder Fe-MC, worin M mindestens eines der Elemente ist, ausgewählt der aus Ti, Ta, Zr, Hf, V und Nb bestehenden Gruppe,

b) Durchführen mindestens einer Pelletierung des Bades durch Einführen von Ferrosilicium-Magnesium.

Durch Anwendung des obigen Verfahrens kann man das erfindungsgemäße Kugelgraphitgußeisen erhalten: weiter wurde festgestellt, daß die Pelletierung des Graugußeisenbades, das noch in nur einer Phase das oder die die harten Teilchen bildenden Elemente enthält, nach Gießen des Stückes, insbesondere, wenn M Niobium ist, zu einer dramatischen Änderung der Morphologie der MC-Carbide führt, und zwar von der Form eines chinesischen Schriftzeichens zur Bildung idiomorpher polygonaler Inseln, die nach dem Erstarren des Bades zu einem Gußstück eine harte Phase aufweisen.

Diese in der Kugelgraphitgußeisenmatrix dispergierten idiomorphen polygonalen Inseln aus hartem Material sind diskontinuierlich und bilden keine Wege einer Rißausbreitung, wie dies mit den harten Phasen vom Typ eines chinesischen Schriftzeichens im Graugußeisen der Fall ist. Ferner haben diese idiomorphen polygonalen Inseln aus hartem Material eine durchschnittliche Breite, die etwas größer als die der Kratzer des Abriebverschleißes ist, die auf den mit dem erfindungsgemäßen Kugelgraphitgußeisen hergestellten Stücken auftreten.

Die Erfindung wird nun mit Bezug auf die beiliegenden Zeichnungen beschrieben, worin:

Fig. 1 in metallographischer Darstellung Niobiumcarbid(NbC)-inseln veranschaulicht, die als harte Phase in einer Matrix aus bekanntem Kugelgraphitgraugußeisen dispergiert sind; diese Inseln zeigen die Morphologie eines chinesischen Schriftzeichens:

Fig. 2 veranschaulicht in metallographischer Darstellung Niobiumcarbid(NbC)-inseln, die als harte Phase in einer Matrix aus erfindungsgemäßen Kugelgraphitgraußgußeisen dispergiert sind, wobei diese Inseln eine idiomorphe polygonale Morphologie zeigen;

Fig. 3 veranschaulicht in vergrößerter metallographischer Darstellung eine Matrix aus Kugelgraphitgußeisen von angelassenem Martensit, die idiomorphe polygonale Inseln von Niobiumcarbid enthält, die die Kratzer eines Abriebverschleißes, dem das Stück ausgesetzt wurde, aufhalten, und

Fig. 4 veranschaulicht in metallographischer Darstellung eine Situation ähnlich der in Fig. 3 gezeigten, wobei

35

DE 43 05 027 A1

der Mechanismus zum Unterbrechen der Verschleißkratzer im Stück angegeben wird; dieser Mechanismus wird durch die harten Niobiumcarbidteilchen in der Matrix des Kugelgraphitgußeißens von angelassenem Martensit definiert.

Wie in Fig. 1 dargestellt, führt die Zugabe der MC-Carbide zum Graugußeisen (lamellarer Graphit) zur Bildung von Gußstücken mit Teilchen eines wesentlich härteren Materials, wie Niobiumcarbid, die in der Gußeisenmatrix in Form verlängerter Linien vom Typ eines chinesischen Schriftzeichens dispergiert sind. Diese verlängerten Linien aus wesentlich härterem Material definieren natürliche Wege für die Ausbreitung von Rissen in dem Stück, und sie haben eine geringere Breite, so daß ihre Fähigkeit, die Kratzer eines Abriebverschleißes in dem mit dem Material gebildeten Stück aufzuhalten, begrenzt ist.

Fig. 1 veranschaulicht die lamellaren Graphitinseln und die verlängerten Linien des in der Matrix von Graugußeisen (FoFo) dispergierten Niobiumcarbids (NbC).

In Fig. 2 sind die durch MC-Carbide gebildeten Teilchen aus viel härterem Material in der Matrix von Kugelgraphitgußeisen (Kugelgraphit FoFo) in Form von Inseln diskontinierlicher Morphologie dispergiert und bilden eine mittlere Fläche, deren Querschnitt größer als die Breite der Verschleißkratzer ist, wie in den Fig. 3 und 4 dargestellt.

Das in den Fig. 2, 3 und 4 dargestellte Beispiel bezieht sich auf eine Matrix von angelassenem Martensit, die Niobiumcarbid-(NbC)-teilchen in Dispersion enthält. Selbstverständlich kann der gleiche Effekt jedoch auch für andere Matrices erwartet werden, wie z. B. solche von Bainit, Pearlit und sogar Ferrit großer Härte. Die Ferromatrix sollte eine solche Reinheit aufweisen. daß Schwefel unter 0,015% und Phosphor unter 0,04% vorliegt.

Unter den zur Verwendung in Gußeisen verfügbaren Legierungselementen sind einige von besonderem Interesse, wie z. B. solche, die mit Kohlenstoff Verbundstoffe großer Härte und hohen Schmelzpunktes bilden und die Reaktionen des Gußeisens in festem und flüssigem Zustand nur minimal stören und wenig Abänderung in der Herstellungsschritten erfordern, wenn die anderen Legierungselemente unverändert bleiben. Elemente mit derartigen Eigenschaften sind die Bildner von Carbiden des MC-Typs, worin M mindestens eines der folgenden Elemente umfassen kann: Ti, Ta, Zr, Hf, V und Nb, und zwar mit einer breiten gegenseitigen Löslichkeit.

Von den oben genannten Elementen wurde Niobium als MC-Bildner aufgrund seiner Verfügbarkeit auf dem Markt sowie seiner besonders interessanten Eigenschaften gewählt, wobei es wenig Störung bei den Pelletierungsreaktionen gibt, wodurch es den oben beschriebenen idealen Bedingungen sehr nahe kommt. Niobium reagiert mit Kohlenstoff bei hoher Temperatur und hat in der Carbidform ferner eine geringe Löslichkeit in der Ferromatrix, was durch Untersuchung des Produktes der Löslichkeit dieses Elementes in diesem Material festgestellt werden kann; ein weiterer Vorteil ist eine 90%ige Rückgewinnung in den Zuschlägen.

Das Verfahren zur Herstellung des erfindungsgemäßen Kugelgraphitgußeisens umfaßt den Anfangsschritt der Bereitstellung eines Bades von Graugißeisen einer solchen Reinheit, daß die Mengen an Schwefel und Phosphor kleiner als 0,015% bzw. 0,04% sind; dieses Bad besteht aus einer festen metallischen Beladung, die dem für ein Gießen desselben angepaßten Ofen, z. B. einem Drei-Phasen-Elektrobogenofen, zugeführt wird. Diese metallische Beladung wird als Funktion des herzustellenden Endproduktes berechnet und umfaßt eine aus Roheisen. Stahl und Abfall (Ausschuß, Chips und Spritzern) bestehende Grundbeladung.

Nach der Beladung des Öfens wird die Grundbeladung geschmolzen; dann erhält sie einen Zuschlag von etwa 0,2 bis 1,2% von Ferrolegierungen auf Si-, Ni-, Mo- und Na-Grundlage, wobei die Legierungskomponenten chemisch analysiert werden, um die gewünschte Endzusammensetzung zu erhalten. Die Elemente C und Si können gegebenenfalls gewisse Korrekturen erfahren.

Im vorigen Absatz wurde der Zuschlag einer Ferrolegierung auf Niobiumgrundlage neben den bereits für derartige Zuschläge bekannten Ferrolegierungen erwähnt, wie Ferrosilicium, Ferronickel und Ferromolybdär. Wie bereits erwähnt, kann das neue Element der Ferrolegierung jedoch aus mindestens einem der Elemente bestehen, ausgewählt aus der aus Ti, Ta, Zr, Hf, V und Nb bestehenden Gruppe.

Die Korrektur des Endbades kann im Elektroofen (Hochofen) erfolgen, in welchen Niobium (in Ferrolegierung) eingeführt wird, da es zum Lösen eine hohe Temperatur erfordert. Nur geringfügige Endkorreturen von Niobium (oder anderer Elemente der Zuschlaglegierung) können später außerhalb des Ofens und vor dem Abstechen in die Formen erfolgen.

Im Fall des Niobiumzuschlags wurde es als zweckmäßiger gefunden, mit einer etwa 60 bis 85% Niobium enthaltenden Ferrolegierung zu arbeiten.

Nach dem vollständigen Schmelzen der Zuschlaglegierungen mit der metallischen Grundbeladung wird das Bad durch einen Schmelztiegel zu einem anderen Ofen, z. B. einem Detroit-Ofen, überführt, wo noch gewisse geringfügige Endeinstellungen der neuen Ferrolegierung gemacht werden können.

Die Pelletierung des schmelzenden Eisenbades erfolgt, mindestens in einem ersten Schritt, in einem flachen Reaktionsbehälter durch Animpfen des Bades mit einer bestimmten Menge Eisen, Silicium und Magnesium (Fe, Si, Mg).

Der Anteil der pelletierenden Legierung wird nach bekannten Verfahren vorbestimmt und ist eine Funktion der Menge der in der Reaktion herzustellenden Gußeinheiten.

Unmittelbar nach der ersten Phase der Pelletierung wird das Bad in weniger als 3 min durch Steuern der Metalltemperatur in der Pelletierungsreaktion, der Temperatur der Schreckform, der Menge der auf die Schreckform aufgebrachten Schutzfarbe und der chemischen Analyse des zu schmelzenden Metalls zum Endabstich geführt.

Während des Metallabstichs in die Formen wird die schmelzende Beladung einer zweiten Phase des Animpfens unterzogen, und zwar durch einen zweiten Schritt der Fe-Si-Impfung.

Nach Entfernen aus den Formen werden die Kugelgraphitgußeisenstücke normalerweise einem Strahlblasen

43 05 027 A1 DE

unterworfen und pro Charge identifiziert. Bei jeder Charge erfolgt eine metallographische Analyse des zuletzt geformten Stückes, wobei diese Art der Analyse eine 100%ige Bewertung der Reaktionen zuläßt.

Bei den so hergestellten Stücken können ihre ferritischen Eigenschaften zur weiteren maschinellen Bearbeitung des Kolbenringes noch verbessert werden; dieser wird auch abgeschreckt und angelassen.

Tabelle 1 zeigt typische Härtewerte für einige Carbide sowie metallische Matrices.

Tabelle 1

Physika	lische Eigenschaften eini	ger Carbide und "Phasen"	
Zustand	Carbide	Vickers Härte	Schmelzen (°C)
	TaC	1800	3067
	NPC	2400	3420
	TiC	2500	3928
reine Kohlen-	VC	2800	2648
stoffpartikel	w ₂ c	3000	3600
	WC	2400	3983
	Cr ₃ C ₂	1300	2760
	Cr ₂₃ C ₆	1300	
komplexe Koh-	M ₆ C	1100-1650	
enstoffpartikel	MC	1800-2200	
Ferrit		200	
Matrix Perli	t .	350	
angel	ass. Martensit	450	

Tabelle 2 zeigt die erhöhte Verschleißfestigkeit, wenn Niobium im Bereich von 0,2 bis 1,2%, bezogen auf das 40 Gewicht des Kugelgraphitgußeisens, zugefügt wird, verglichen mit anderen Kugelgraphitmaterialien, wobei die anderen Variablen unverändert sind. Der Verschleiß wurde an einem Ölring (077 h. 2 mm) gemessen, der 94 h in einem 4-Zylinder-Ottomotor (1,6 l, 60 KW) getestet worden war; es wurden zwei Ringe für jedes Material verwendet.

Tabelle 2

Verschleißergebnisse in Ringen mit oder ohne NbC

	DIMENSIONS VE	randerungen der Ringe (mm)*	•	
	Position reines Kugelgraphit-		Kugelgraphitmaterial	
:		material	mit Nb	
55	Radial-	0,038	0,032	
• • •	Spalt	0,23	0,19	

- 60 Durchschnitt bei einem Paar. Messungen Ring in radialer Richtung ·
- . Tabelle 3 zeigt die Grundzusammensetzung der getesteten Legierungen.

DE 43 05 027 A1

Tabelle 3

Analyse der chemischen Zusammensetzung (Gew.-%)

Legierung	<u>1</u>	<u>2</u>	5
С	3,62	3,63	
Si	2,14	2,17	
Mn	0,21	0,21	10
P	0,038	0,038	
A	0,016	0,022	
Ni	0,54	0,54	15
Мо	0,18	0,18	
Mg	0,053	0,53	
Nb	-	0,2-1,2 %	20

Die Niobiumgehalte variieren innerhalb der obigen Bereiche entsprechend den Verwendungserfordernissen Strengeren Anforderungen entsprechen Niobiumgehalte im oberen Bereich.

Dieses Konzept der Erhöhung der Verschleißfestigkeit eignet sich für Dimensionsveränderungen in radialer Richtung für Kompressionsringe und Ölringe sowie zum Minimieren des Höhenverlustes von Kompressionsringen in der ersten Rille.

Patentansprüche

1. Kugelgraphitgußeisen, dadurch gekennzeichnet, daß es umfaßt: eine metallische Bainit-, Martensit-, Pearlit- oder Ferrit- Matrix einer Reinheit von etwa 99,6%, in der die Schwefel- und Phosphorgehalte unter 0.015% bzw. 0.04% gehalten werden, 10 bis 12 Vol.-% Graphitteilchen und etwa 0.2 bis 1.2 Vol.-% Carbidteilchen großer Härte des Schwefel- und etwa 0.2 bis 1.2 Vol.-% Carbidteilchen großer Härte des Schwefel- und etwa 0.2 bis 1.2 Vol.-% Carbidteilchen großer Härte des Schwefel- und etwa 0.2 bis 1.2 Vol.-% Carbidteilchen großer Härte des Schwefel- und etwa 0.2 bis 1.2 Vol.-% Carbidteilchen großer Härte des Schwefel- und etwa 0.2 bis 1.2 Vol.-% Carbidteilchen großer Härte des Schwefel- und etwa 0.2 bis 1.2 Vol.-% Carbidteilchen großer Härte des Schwefel- und etwa 0.2 bis 1.2 Vol.-% Carbidteilchen großer Härte des Schwefel- und etwa 0.2 bis 1.2 Vol.-% Carbidteilchen großer Härte des Schwefel- und etwa 0.2 bis 1.2 Vol.-% Carbidteilchen und etwa 0.2 bis 1.2 Vol.-% Carbidteilchen und etwa 0.2 bis 1.2 Vol.-% Carbidteilchen großer Härte des Schwefel- und etwa 0.2 bis 1.2 Vol.-% Carbidteilchen großer Härte des Schwefel- und etwa 0.2 bis 1.2 Vol.-% Carbidteilchen großer Härte des Schwefel- und etwa 0.2 bis 1.2 Vol.-% Carbidteilchen großer Härte des Schwefel- und etwa 0.2 bis 1.2 Vol.-% Carbidteilchen großer Härte des Schwefel- und etwa 0.2 bis 1.2 Vol.-% Carbidteilchen großer Härte des Schwefel- und etwa 0.2 bis 1.2 Vol.-% Carbidteilchen großer Härte des Schwefel- und etwa 0.2 bis 1.2 Vol.-% Carbidteilchen großer Härte des Schwefel- und etwa 0.2 bis 1.2 Vol.-% Carbidteilchen großer Härte des Schwefel- und etwa 0.2 bis 1.2 Vol.-% Carbidteilchen großer Härte des Schwefel- und etwa 0.2 bis 1.2 Vol.-% Carbidteilchen großer hat 1.2

2. Kugelgraphitgußeisen nach Anspruch 1, dadurch gekennzeichnet, daß die metallische Matrix von angelassenem Martensit Niobiumcarbid(NbC)-teilchen in Dispersion enthält.

3. Verfahren zur Herstellung von Kugelgraphitgußeisen, dadurch gekennzeichnet, daß es die Schritte umfaßt: Zugeben zu einem Bad eines weniger als 0,015% Schwefel und weniger als 0,04% Phosphor enthaltenden Graugußeisens einer Beladung von etwa 0,2 bis 1,2%, bezogen auf das Gewicht des Bades, mindestens einer Ferrolegierung der Formel Fe-FeM oder Fe-MC, worin M mindestens eines der Elemente ist, ausgewählt aus der aus Ti, Ta, Zr, Hf, V und Nb bestehenden Gruppe, Durchführen mindestens einer Pelletierung des Bades durch Animpfen mit niedrigen Ferrosilicium-Magnesium und Abstechen des pelletierten metallisches Bades in die Formen 4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß die Pelletierung in mindestens zwei Schritten durch Animpfen des metallischen Bades mit niedrigem Ferrosilicium-Magnesium erreicht wird, wobei das zweite Animpfen während des Abstichs des Bades erfolgt.

5. Verfahren nach Anspruch 3. dadurch gekennzeichnet, daß man das Bad aus Graugußeisen erhält, indem man einem Grundbad aus Roheisen, Stahl und Ausschluß Ferrolegierungen auf Si-, Ni- und Mo-Grundlage und mindestens eines der Elemente, ausgewählt aus der aus Ti, Ta, Zr, Hf, V und Nb bestehenden Gruppe, zufügt

6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß die Ferrolegierungen eine Ferrolegierung mit etwa 60 bis 85% Niobium einschließen.

Hierzu 2 Seite(n) Zeichnungen

0.

55

- Leerseite -

Nummer: Int. Cl.⁵: Offenlegungstag: DE 43 05 027 A1 C 22 C 37/04 19: August 1993

FIG. 1 STAND DER TECHNIK

308 033/546

Numm r: Int. Cl.⁵: Offenl gungstag:

DE 43 05 027 A1 C 22 C 37/04 19 August 1993

FIG. 4