$\begin{array}{c} ARPP \\ H=20 \end{array}$	Emis. Reg.	Global	Tropics	NHML	NHHL	SHML	SHHL
SO_2	NHML US East Asia India Europe	$-4.3e-06 \pm 1.7e-06$ $-4.9e-06 \pm 2.1e-06$ $-2.4e-06 \pm 1.2e-06$ $-1.5e-06 \pm 8.8e-07$ $-5.6e-06 \pm 2.3e-06$	$-4.5e-06 \pm 1.7e-06$ $-5.0e-06 \pm 2.1e-06$ $-1.6e-06 \pm 7.8e-07$ $-9.8e-07 \pm 5.8e-07$ $-6.4e-06 \pm 2.7e-06$	$-4.5e-06 \pm 1.7e-06$ $-5.7e-06 \pm 2.4e-06$ $-4.8e-06 \pm 2.3e-06$ $-2.9e-06 \pm 1.7e-06$ $-6.2e-06 \pm 2.6e-06$	$-8.9e-06 \pm 3.4e-06$ $-1.3e-05 \pm 5.4e-06$ $-1.4e-05 \pm 6.5e-06$ $-8.2e-06 \pm 4.9e-06$ $-1.0e-05 \pm 4.3e-06$	$-1.9e-06 \pm 7.3e-07$ $-1.3e-06 \pm 5.3e-07$ $2.0e-07 \pm 9.6e-08$ $1.2e-07 \pm 7.1e-08$ $-9.1e-07 \pm 3.8e-07$	$\begin{array}{l} -4.2 \mathrm{e}\text{-}06 \pm 1.6 \mathrm{e}\text{-}06 \\ -4.9 \mathrm{e}\text{-}06 \pm 2.0 \mathrm{e}\text{-}06 \\ 7.8 \mathrm{e}\text{-}07 \pm 3.8 \mathrm{e}\text{-}07 \\ 4.7 \mathrm{e}\text{-}07 \pm 2.8 \mathrm{e}\text{-}07 \\ -5.2 \mathrm{e}\text{-}06 \pm 2.2 \mathrm{e}\text{-}06 \end{array}$
BC	Global Asia	$2.6e-05 \pm 1.3e-05$ $4.1e-05 \pm 2.3e-05$	$3.8e-05 \pm 1.8e-05$ $3.5e-05 \pm 2.0e-05$	$9.7e-05 \pm 4.7e-05$ $4.1e-05 \pm 2.3e-05$	$-6.7e-05 \pm 3.2e-05$ $-4.7e-06 \pm 2.6e-06$	$-2.2e-05 \pm 1.0e-05$ $7.4e-05 \pm 4.2e-05$	$-4.4e-05 \pm 2.1e-05$ $3.4e-05 \pm 1.9e-05$
CH_4	Global	$9.8e-07 \pm 5.2e-07$	$9.1e-07 \pm 4.9e-07$	$9.8e-07 \pm 5.2e-07$	$1.8e-06 \pm 9.8e-07$	$5.4e-07 \pm 2.9e-07$	$1.7e-06 \pm 9.0e-07$
CO_2	Global	5.6e-09 ± 6.8e-09	4.5e-09 ± 5.4e-09	4.8e-09 ± 5.8e-09	1.2e-08 ± 1.5e-08	4.2e-09 ± 5.1e-09	1.3e-08 ± 1.6e-08