Where to from here?

Biophysical realism
Ion channel physics
Additional channels
Geometry

Simplified models
Fundamental dynamics
Analytical tractability

The electric personalities of neurons

Neuron, what are you trying to tell us?

The integrate-and-fire neuron

Like a passive membrane:

$$C_m \frac{dV}{dt} = -g_L(V - E_i) - I_e$$

but with the additional rule that when $V \rightarrow V_T$, a spike is fired and $V \rightarrow V_{reset}$.

 E_L is the resting potential of the "cell".

How do we make it excitable?

Exponential integrate-and-fire neuron

Fourcaud-Trocmé, Hansel, van Vreeswijk and Brunel.

The theta neuron

$$d\theta/dt = 1 - \cos \theta + (1 + \cos \theta) I(t)$$

Ermentrout and Kopell

$$dV/dt = f(V) + I(t)$$

$$dV/dt = f(V) + I(t) \rightarrow \qquad \qquad dV/dt = F(V) + G(u) + I(t)$$

$$du/dt = -u + H(V)$$

Two-dimensional models

On-line resources about phase plane analysis

Two-dimensional models

The simple model

$$v'=0.04v^2+5v+140-u+1$$
 $u'=a(bv-u)$

if $v = 30 \text{ mV}$,
then $v-c$, $u-u+d$

The simple model

www.izhikevich.com

Where to from here?

Biophysical realism
Ion channel physics
Additional channels
Geometry

Simplified models
Fundamental dynamics
Analytical tractability