Introduction to Audio Content Analysis

Module 1.0: Introduction to MIR/ACA

alexander lerch

overview

corresponding textbook section

Chapter 1 — Introduction: pp. 1-6

lecture content

- audio content analysis
- typical applications
- audio content
- processing steps in a typical ACA system

learning objectives

- list goals and applications in ACA
- discuss typical forms of content in an audio signa
- describe the typical signal flow in an ACA system

overview

Georgia Center for Music Tech Technology

corresponding textbook section

Chapter 1 — Introduction: pp. 1–6

lecture content

- audio content analysis
- typical applications
- audio content
- processing steps in a typical ACA system

learning objectives

- list goals and applications in ACA
- discuss typical forms of content in an audio signal
- describe the typical signal flow in an ACA system

Georgia Center for Music Technology

audio content analysis — terminology

- goal
 - analyze audio signal to extract information on musical content
- terminology
 - music information retrieval (MIR)
 - analysis and retrieval of music data
 - includes both audio and symbolic data
 - machine listening & computer audition
 - focus on the recognition and understanding of music
 - computational auditory scene analysis (CASA)
 - focus on human perception & cognition, understanding of the auditory scene

Georgia Center for Music Tech Technology

audio content analysis — terminology

goal

analyze audio signal to extract information on musical content

terminology

- music information retrieval (MIR):
 - analysis and retrieval of music data
 - includes both audio and symbolic data
- machine listening & computer audition
 - focus on the recognition and understanding of music
- computational auditory scene analysis (CASA)
 - focus on human perception & cognition, understanding of the auditory scene

audio content analysis — research field

- interdisciplinary
 - digital signal processing
 - machine learning / data mining
 - musicology
 - psycho-acoustics
 - . . .
- ISMIR communit
 - a annual conference
 - conference papers & Transaction
 - ISMIR-Community mailing list
 - MIPEY: MIP Evaluation oxchange
- a related publication outlet
 - conferences: ISMIP ICASSP ICME SMC DAEV ACM MM
 - oconferences: ISMIR, ICASSP, ICME, SMC, DAFX, ACM MIM, ...

ISMIR

Georgia Center for Music Tech Technology

audio content analysis — research field

interdisciplinary

- digital signal processing
- machine learning / data mining
- musicology
- psycho-acoustics
- . . .

ISMIR community

- annual conferences
- conference papers & Transactions
- ISMIR-Community mailing list
- MIREX: MIR Evaluation eXchange

related publication outlets

- conferences: ISMIR. ICASSP. ICME. SMC. DAFx. ACM MM. . . .
- journals: TISMIR, TASLP, Computer Music, JNMR, JAES, ...

ISMIR

Tech | Technology

introduction audio content analysis — research field

- interdisciplinary
 - digital signal processing
 - machine learning / data mining
 - musicology
 - psycho-acoustics
 - . .

ISMIR community

- annual conferences
- conference papers & Transactions
- ISMIR-Community mailing list
- MIREX: MIR Evaluation eXchange
- related publication outlets
 - conferences: ISMIR, ICASSP, ICME, SMC, DAFx, ACM MM, ...
 - journals: TISMIR, TASLP, Computer Music, JNMR, JAES, ...

ISMIR

- organization in large databases
 - search & retrieval, classification, similarity
- a interfaces to search and retrieva
 - fingerprinting, query-by-humming systems
- music visualization
 - symbolic (bars, harmony, score, ...), similarity mappings
- adaptive processing
 - adaptive effect parametrization or algorithm selection
- adaptive interaction
 - playlist generation, recommendation

- organization in large databases
 - search & retrieval, classification, similarity
- interfaces to search and retrieval
 - fingerprinting, query-by-humming systems
- music visualization
 - symbolic (bars, harmony, score, ...), similarity mappings
- adaptive processing
 - adaptive effect parametrization or algorithm selection
- adaptive interaction
 - playlist generation, recommendation

- organization in large databases
 - search & retrieval, classification, similarity
- interfaces to search and retrieval
 - fingerprinting, query-by-humming systems
- music visualization
 - symbolic (bars, harmony, score, ...), similarity mappings
- adaptive processing
 - adaptive effect parametrization or algorithm selection
- adaptive interaction
 - playlist generation, recommendation

- organization in large databases
 - search & retrieval, classification, similarity
- interfaces to search and retrieval
 - fingerprinting, query-by-humming systems
- music visualization
 - symbolic (bars, harmony, score, ...), similarity mappings
- adaptive processing
 - adaptive effect parametrization or algorithm selection
- adaptive interaction
 - playlist generation, recommendation

- organization in large databases
 - search & retrieval, classification, similarity
- interfaces to search and retrieval
 - fingerprinting, query-by-humming systems
- music visualization
 - symbolic (bars, harmony, score, ...), similarity mappings
- adaptive processing
 - adaptive effect parametrization or algorithm selection
- adaptive interaction
 - playlist generation, recommendation

(commercial) examples

• recommendation, playlist generation

lost.fm

PANDORA

Tech | Technology

Georgia

fingerprinting

score following

• (multi-) pitch detection

audio content sources

Georgia Center for Music Tech Technology

what are the sources of (musical) audio content?

audio content

sources

what are the sources of (musical) audio content?

score:

- definition of musical ideas
- "blue-print" of the music
- examples: melody, key, harmony, rhythmic patterns, . . .

audio content

Georgia Center for Music Tech College of Design

what are the sources of (musical) audio content?

- score:
 - definition of musical ideas
 - "blue-print" of the music
 - examples: melody, key, harmony, rhythmic patterns, . . .
- performance:
 - unique acoustic rendition
 - information in the score is interpreted, modified, added to
 - examples: (micro-)tempo, dynamics, intonation, . . .

audio content

sources

College

what are the sources of (musical) audio content?

Georgia Center for Music Tech Technology

- score:
 - definition of musical ideas
 - "blue-print" of the music
 - examples: melody, key, harmony, rhythmic patterns, . . .
- performance:
 - unique acoustic rendition
 - information in the score is interpreted, modified, added to
 - examples: (micro-)tempo, dynamics, intonation, ...
- production:
 - aesthetic choices
 - editing & processing
 - examples: sound quality (EQ, microphone positioning), changes in timing and pitch

- timbral: related to sound quality
 - examples: instrument(ation), playing technique, venue, audio processing, ...
- intensity-related: related to musical dynamics
 - examples: accents, loudness, . . .
- tonal: related to pitch
 - examples: melody, chords, intonation, vibrato, . .
- temporal: related to rhythm and temporal
 - examples: timing, meter, rhythmic patterns, . .
- statistical & technical: related to signal properties
 - examples: amplitude distribution, number of zero crossings, ...

- timbral: related to sound quality
 - examples: instrument(ation), playing technique, venue, audio processing, ...
- intensity-related: related to musical dynamics
 - examples: accents, loudness, ...
- tonal: related to pitch
 - examples: melody, chords, intonation, vibrato, . . .
- temporal: related to rhythm and temporal
 - examples: timing, meter, rhythmic patterns, ...
- statistical & technical: related to signal properties
 - examples: amplitude distribution, number of zero crossings, ...

- timbral: related to sound quality
 - examples: instrument(ation), playing technique, venue, audio processing, ...
- intensity-related: related to musical dynamics
 - examples: accents, loudness, . . .
- tonal: related to pitch
 - examples: melody, chords, intonation, vibrato, . . .
- temporal: related to rhythm and tempo
 - examples: timing, meter, rhythmic patterns, ...
- statistical & technical: related to signal properties
 - examples: amplitude distribution, number of zero crossings, . .

- timbral: related to sound quality
 - examples: instrument(ation), playing technique, venue, audio processing, ...
- intensity-related: related to musical dynamics
 - examples: accents, loudness, . . .
- **tonal**: related to pitch
 - examples: melody, chords, intonation, vibrato, . . .
- temporal: related to rhythm and tempo
 - examples: timing, meter, rhythmic patterns, . . .
- statistical & technical: related to signal properties
 - examples: amplitude distribution, number of zero crossings, ...

- timbral: related to sound quality
 - examples: instrument(ation), playing technique, venue, audio processing, ...
- intensity-related: related to musical dynamics
 - examples: accents, loudness, . . .
- o tonal: related to pitch
 - examples: melody, chords, intonation, vibrato, . . .
- temporal: related to rhythm and tempo
 - examples: timing, meter, rhythmic patterns, ...
- statistical & technical: related to signal properties
 - examples: amplitude distribution, number of zero crossings, ...

- timbral: related to sound quality
 - examples: instrument(ation), playing technique, venue, audio processing, ...
- intensity-related: related to musical dynamics
 - examples: accents, loudness, . . .
- tonal: related to pitch
 - examples: melody, chords, intonation, vibrato, ...
- temporal: related to rhythm and tempo
 - examples: timing, meter, rhythmic patterns, . . .
- statistical & technical: related to signal properties
 - examples: amplitude distribution, number of zero crossings, ...

audio content analysis

system overview

Georgia Center for Music Tech College of Design

feature extraction

- dimensionality reduction
- meaningful representation

classification

map or convert feature to comprehensible domain

audio content analysis

system overview

feature extraction

- dimensionality reduction
- meaningful representation

classification

map or convert feature to comprehensible domain

audio content analysis

Georgia Center for Music Tech College of Design

feature extraction

- dimensionality reduction
- meaningful representation

classification

 map or convert feature to comprehensible domain

summary lecture content

- music information retrieval and audio content analysis
 - aim at extracting data about the musical content from the music signal

audio content

- can relate to timbre, pitch, intensity, tempo and rhythm (but there is both lower level and higher level content)
- is shaped by the musical ideas (score), the music performance, and the (studio) production
- the flow chart of an ACA system at its most fundamental level shows
 - a feature extraction step to extract meaningful descriptors
 - a classification or inference step to produce a "human" result

