1 Encoding

• Represent the input m as a vector with (k-1) components over \mathbb{Z}_p , where p is prime:

$$m = (a_{k-1}, \dots, a_1);$$

- Choose the polynomial $P(x) = a_{k-1}x^{k-1} + \cdots + a_1x$ (remark that P(0) = 0 this property will be used for decoding);
- Encode m as the vector $y = (P(1), P(2), \dots, P(n))$, where n = k + 2s, $y = (y_1, \dots, y_n)$.

2 Decoding

- Suppose that the input z has at most s errors (i.e., $|\{i \in \{1, ..., n\} | z_i \neq y_i\}| \leq s$ -thus, $|\{i \in \{1, ..., n\} | z_i = y_i\}| \geq k + s$);
- Generate $A \subset \{1, \dots, n\}$, with |A| = k, and compute the free coefficient as

$$fc = \sum_{i \in A} (z_i \cdot \prod_{j \in A \setminus \{i\}} \frac{j}{j-i});$$

• If fc = 0, determine the polynomial P(x) as

$$\sum_{i \in A} (z_i \cdot \prod_{j \in A \setminus \{i\}} \frac{x - j}{i - j});$$

We will have $P(x) = a_{k-1}x^{k-1} + \cdots + a_1x$ and $m = (a_{k-1}, \dots, a_1)$.

Example 1 Let k = 3, s = 1 (n = 5) and p = 11. The message m = 29 will be represented in base p = 11 as $m = (2,7)_{11}$ ($a_2 = 2$, $a_1 = 7$). We will consider the polynomial $P(x) = 2x^2 + 7x$ over \mathbf{Z}_{11} and we will obtain $y_1 = P(1) = 9$, $y_2 = P(2) = 0$, $y_3 = P(3) = 6$, $y_4 = P(4) = 5$, and $y_5 = P(5) = 8$. Thus, m will be encoded as y = (9,0,6,5,8).

Suppose that z=(9,2,6,5,8) (thus, $z_2\neq y_2$ and $z_i=y_i$, for all $i\neq 2$). Then, for any subset A of $\{1,3,4,5\}$ with 3 elements, we will obtain $fc=\sum_{i\in A}(z_i\cdot\prod_{j\in A\setminus\{i\}}\frac{j}{j-i})=0$ and $P(x)=\sum_{i\in A}(z_i\cdot\prod_{j\in A\setminus\{i\}}\frac{x-j}{i-j})=2x^2+7x$. Thus, z will be decoded as m=(2,7).