Statistics

Week 4: Hypothesis Testing (Chapter 6)

ESD, SUTD

Term 5, 2017

Established in collaboration with MIT

Hypothesis testing

Please complete the mid-term survey.

Outline

- 1 Hypothesis testing
 - p-value

Hypothesis

A **hypothesis** is a claim. In *hypothesis testing*, we attempt to answer the following:

Given some data from a sample, does it provide statistically significant evidence to prove (beyond reasonable doubt) a hypothesis about the population, or could it have arisen due to random chance?

As a generic example, a hypothesis could be that a particular treatment has a real effect (e.g. better than an existing treatment, or placebo, or doing nothing).

Null and alternative hypotheses

More specifically, using the sample data, we test the validity of a claim about the population, against a counter claim. We set up these two competing claims as follows:

- The **null** hypothesis, H_0 , is the claim of no difference or no effect; usually, H_0 is the status quo.
- The **alternative** hypothesis, H_1 , is the claim that there is a difference or effect (usually it is the claim you are interested to prove).

Rejecting the null hypothesis is a primary task in scientific research.

Exercise: write down H_0 and H_1 for the training technique example from last class.

'Proof' by contradiction

The standard approach is to first assume H_0 is true. Then, perform a calculation to determine whether the data contradicts this assumption beyond reasonable doubt.

- If Yes, then reject H_0 . We may also accept H_1 .
- If No, then do not reject H_0 . We cannot rule out H_0 as an explanation for the data, but we have not proven it either. So we do not accept either hypothesis.

So if we fail to prove H_1 , then it may be because H_0 is true, or it may be the case that H_1 is true, but there is insufficient information to rule out random chance as an alternative explanation for the data.

In this case, we take the conservative stance and 'do not reject' H_0 – the data, after all, may still be consistent with null hypothesis.

Analogies

Analogy 1: in most legal systems, a person is assumed innocent until proven guilty. The burden of proof is on the one who makes the (extraordinary) claim that the person is guilty.

 H_0 : innocent; H_1 : guilty.

If there is not enough evidence to establish guilt, it does not prove that the person is innocent.

Analogy 2: in general, H_0 is usually a negative statement, such as 'telepathy does not exist', and it is very hard to prove negative statements. However, a person who makes the (extraordinary) claim that he is telepathic (H_1) needs to prove it.

'Extraordinary claims require extraordinary evidence.'

Example

Example: a sample of 50 tins of tomatoes are tested, to see if their average weight deviates from the acceptable value of $\mu_0=350 {\rm g}$. State the hypotheses.

Answer: $H_0: \mu = \mu_0; \ H_1: \mu \neq \mu_0.$

Suppose the weights satisfy $\sigma=10$ and $\bar{x}=355.2$. Take 'statistically significant' to mean 95% confidence.

Assuming that H_0 is true, we have

$$P\left(\mu_0 - 1.96 \frac{\sigma}{\sqrt{n}} \le \bar{X} \le \mu_0 + 1.96 \frac{\sigma}{\sqrt{n}}\right) = 0.95,$$

$$P\left(350 - 1.96 \frac{10}{\sqrt{50}} \le \bar{X} \le 350 + 1.96 \frac{10}{\sqrt{50}}\right) = 0.95.$$

Connection with CI

Assuming H_0 , then with 95% probability, the sample mean lies between 347.2 and 352.8. As $\bar{x}=355.2$, we reject H_0 (at the 5% significance level) and accept H_1 .

Note that the inequalities on the last slide are *equivalent* to those involved in the confidence interval calculation for μ . This relationship also holds for one-sided tests and one-sided CIs.

Hypothesis test for μ

We reject H_0 at significance level α if and only if μ_0 falls outside the appropriate $(1-\alpha)$ -level CI for μ .

Meaning of α : type I error

The significance level α is the (maximum) probability of accepting H_1 when H_0 is in fact true.

This type of error is known as a type I error, or a false positive.

Examples: (1) An innocent person is convicted to be guilty.

- (2) A test shows a patient to have a rare disease when in fact she does not have it.
- (3) A spam filter wrongly classifies a legitimate email as spam.

During an experimental set up, and before any hypothesis test is performed, we need to clearly specify H_0 , H_1 , as well as α .

Type II error and power

A **type II error** occurs when a test fails to reject H_0 when H_1 is actually true. It is also known as a false negative. Its probability is denoted by β .

Examples: (1) Baggage screening in airport security fails to pick up explosives.

(2) A person is guilty but the courtroom fails to identify it.

Exercises: (a) Is one type of error always more serious than the other?

- (b) What does (1β) represent?
- $(1-\beta)$ is called the *power* of a test. Usually a power of 80% is acceptable; 90% is desirable.

p-value

We have seen how to perform a hypothesis test using a CI.

Another approach to hypothesis testing is to ask the question: What is the probability of observing a sample statistic at least as extreme as the one observed, assuming H_0 is true?

Intuition for using 'at least as extreme': think of it as an area outside a confidence interval.

This probability is known as the p-value. If the p-value $\leq \alpha$, then reject H_0 .

We have already computed a p-value back in Week 1.

Exercise: Compute the p-value for the tomatoes example.

p-value, properties

- The smaller the p-value, the more significant is the test result.
 Therefore, it is a good practice to quote the p-value after you perform a hypothesis test.
- ullet The p-value is also the smallest lpha at which H_0 can be rejected.
- The p-value computation may be one- or two-sided, depending on the hypotheses.
- Sometimes the p-value is quoted as a number of standard deviations away from the mean in a normal distribution.
 - For example, the 2012 discovery of the Higgs boson has a significance of 5 sigma (p-value $\approx 1/3.5$ million); $n \approx 300$ trillion proton-proton collisions were analyzed.