Survival Analysis Pipeline

This notebook implements a survival analysis workflow using clinical and molecular data. We will preprocess the data, create enhanced features, train **Coxnet** and **Random Survival Forest** models, evaluate performance using **concordance index**, and generate predictions for the test set.

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sksurv.util import Surv
from sksurv.linear_model import CoxnetSurvivalAnalysis
from sksurv.ensemble import RandomSurvivalForest
from sksurv.metrics import concordance_index_ipcw, concordance_index_censored
from sklearn.impute import SimpleImputer
from sklearn.preprocessing import StandardScaler, PolynomialFeatures
from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn.pipeline import Pipeline
```

Load Data

We load the clinical, molecular (MAF), and target datasets.

We also clean the target by converting OS_YEARS to numeric and OS_STATUS to boolean.

```
In []: df = pd.read_csv("./X_train/clinical_train.csv")
    df_eval = pd.read_csv("./X_test/clinical_test.csv")
    maf_df = pd.read_csv("./X_train/molecular_train.csv")
    maf_eval = pd.read_csv("./X_test/molecular_test.csv")
    y_df = pd.read_csv("./target_train.csv")

# Clean target
    y_df.columns = y_df.columns.str.strip()
    y_df.dropna(subset=['OS_YEARS','OS_STATUS'], inplace=True)
    y_df['OS_YEARS'] = pd.to_numeric(y_df['OS_YEARS'], errors='coerce')
    y_df['OS_STATUS'] = y_df['OS_STATUS'].astype(bool)
In [53]: # Select numeric columns in your clinical data
```

```
In [53]: # Select numeric columns in your clinical data
   numeric_cols = df.select_dtypes(include='number').columns.tolist()

# Plot distributions
plt.figure(figsize=(8, len(numeric_cols)*2))
for i, col in enumerate(numeric_cols, 1):
    plt.subplot(len(numeric_cols), 1, i)
    plt.hist(df[col].dropna(), bins=50, color='skyblue', edgecolor='black')
    plt.title(f'Distribution of {col}')
    plt.xlabel(col)
    plt.ylabel('Count')
    plt.tight_layout()
```

plt.show()

Preprocessing Function

This function performs:

- Adding mutation counts (Nmut)
- Biochemical feature transformations (log, sqrt, square)
- Feature ratios
- Cytogenetic feature extraction
- High-risk and epigenetic gene mutations
- Variant allele frequency (VAF) features
- Imputation and scaling

It can be used both for training (fit=True) and evaluation (fit=False).

```
In [ ]: def preprocess(df_proc, maf_df, imputer=None, scaler=None, fit=False):
            if 'Nmut' in df_proc.columns:
                 df_proc = df_proc.drop(columns=['Nmut'])
            tmp = maf_df.groupby('ID').size().reset_index(name='Nmut')
            df_proc = df_proc.merge(tmp, on='ID', how='left').fillna({'Nmut':0})
            for col in ['BM_BLAST', 'WBC', 'PLT', 'ANC', 'HB']:
                 if col in df_proc.columns:
                    df_proc[col+'_log'] = np.log1p(df_proc[col])
                    df_proc[col+'_sqrt'] = np.sqrt(df_proc[col])
                    df_proc[col+'_square'] = df_proc[col]**2
            basic features = []
            for col in ['BM_BLAST', 'HB', 'PLT', 'WBC', 'ANC', 'MONOCYTES', 'Nmut']:
                 if col in df proc.columns:
                    basic_features.append(col)
                    for suffix in ['_log','_sqrt','_square']:
                         feat = col + suffix
                         if feat in df proc.columns:
                             basic_features.append(feat)
            for col in ['WBC', 'HB', 'PLT', 'ANC', 'BM_BLAST', 'MONOCYTES']:
                 if col not in df_proc.columns:
                    df_proc[col] = 0
            df_proc['WBC_to_HB'] = df_proc['WBC'] / (df_proc['HB']+1e-5)
            df_proc['PLT_to_ANC'] = df_proc['PLT'] / (df_proc['ANC']+1e-5)
            df_proc['BLAST_to_WBC'] = df_proc['BM_BLAST'] / (df_proc['WBC']+1e-5)
            df_proc['ANC_to_MONOCYTES'] = df_proc['ANC'] / (df_proc['MONOCYTES']+1e-5)
            df_proc['PLT_to_HB'] = df_proc['PLT'] / (df_proc['HB']+1e-5)
            df proc['BLAST to ANC'] = df proc['BM BLAST'] / (df proc['ANC']+1e-5)
            df_proc['BLAST_to_PLT'] = df_proc['BM_BLAST'] / (df_proc['PLT']+1e-5)
            df_proc['MONO_to_WBC'] = df_proc['MONOCYTES'] / (df_proc['WBC']+1e-5)
            ratio_cols = ['WBC_to_HB','PLT_to_ANC','BLAST_to_WBC','ANC_to_MONOCYTES',
                           'PLT_to_HB', 'BLAST_to_ANC', 'BLAST_to_PLT', 'MONO_to_WBC']
            for col in ratio cols:
```

```
df_proc[col+'_log'] = np.log1p(df_proc[col])
ratio log cols = [col+' log' for col in ratio cols]
df_proc['CYTOGENETICS'] = df_proc.get('CYTOGENETICS','').fillna('')
df_proc['MONOSOMY_7'] = df_proc['CYTOGENETICS'].str.contains(r'-7', na=False).a
df_proc['TRISOMY_8'] = df_proc['CYTOGENETICS'].str.contains(r'\+8', na=False).a
df_proc['COMPLEX_KARYO'] = df_proc['CYTOGENETICS'].str.count(',').ge(3).astype(
df proc['CYTO SCORE'] = df proc[['MONOSOMY 7','TRISOMY 8','COMPLEX KARYO']].sum
common_cytos = ['del5q','t(8;21)','inv(16)']
for ab in common_cytos:
    df_proc[ab] = df_proc['CYTOGENETICS'].str.contains(ab, regex=False, na=Fals
df_proc['MONO7_COMPLEX'] = df_proc['MONOSOMY_7'] * df_proc['COMPLEX_KARYO']
cyto features = ['MONOSOMY 7', 'TRISOMY 8', 'COMPLEX KARYO', 'CYTO SCORE'] + commo
high_risk_genes = ['TP53','RUNX1','ASXL1']
for gene in high_risk_genes:
    df_proc[gene+'_MUT'] = df_proc['ID'].map(
        maf_df.loc[maf_df['GENE'] == gene].groupby('ID').size()
    ).fillna(0)
df_proc['HIGH_RISK_MUT'] = df_proc[[g+'_MUT' for g in high_risk_genes]].max(axi
epigenetic_genes = ['ASXL1','TET2','DNMT3A']
for g in epigenetic_genes:
    df_proc[g+'_MUT'] = df_proc['ID'].map(
        maf_df.loc[maf_df['GENE'] == g].groupby('ID').size()
    ).fillna(0)
df_proc['EPIGENETIC_MUT'] = df_proc[[g+'_MUT' for g in epigenetic_genes]].sum(a
mut features = [g+' MUT' for g in high risk genes] + ['HIGH RISK MUT', 'EPIGENET
df_proc['TP53_RUNX1'] = df_proc['TP53_MUT'] * df_proc['RUNX1_MUT']
df_proc['TP53_ASXL1'] = df_proc['TP53_MUT'] * df_proc['ASXL1_MUT']
df_proc['RUNX1_ASXL1'] = df_proc['RUNX1_MUT'] * df_proc['ASXL1_MUT']
mut_features += ['TP53_RUNX1','TP53_ASXL1','RUNX1_ASXL1']
vaf features = []
if 'VAF' in maf df.columns:
    for gene in high_risk_genes:
        vaf_gene = maf_df[maf_df['GENE'] == gene].groupby('ID')['VAF'].mean()
        df_proc[gene+'_MUT_VAF'] = df_proc['ID'].map(vaf_gene).fillna(0)
        vaf_features.append(gene+'_MUT_VAF')
    vaf_stats = maf_df.groupby('ID')['VAF'].agg(['max','mean','sum']).reset_ind
    vaf_stats.rename(columns={'max':'VAF_MAX','mean':'VAF_MEAN','sum':'VAF_SUM'
    df_proc = df_proc.merge(vaf_stats, on='ID', how='left').fillna({'VAF MAX':0
    for col in ['VAF_MAX','VAF_MEAN','VAF_SUM']:
        df_proc[col+'_log'] = np.log1p(df_proc[col])
    vaf_features += [col for col in ['VAF_MAX','VAF_MEAN','VAF_SUM']] + [col+'_
else:
    for col in ['VAF_MAX','VAF_MEAN','VAF_SUM']:
        df_proc[col] = 0
        df_proc[col+'_log'] = 0
        vaf_features += [col, col+'_log']
features = basic features + cyto features + ratio log cols + mut features + vaf
```

```
df_features = df_proc[features].copy()

if fit:
    imputer = SimpleImputer(strategy='median')
    df_features = pd.DataFrame(imputer.fit_transform(df_features), columns=df_f
    scaler = StandardScaler()
    df_features = pd.DataFrame(scaler.fit_transform(df_features), columns=df_fe
    return df_features, imputer, scaler

else:
    df_features = pd.DataFrame(imputer.transform(df_features), columns=df_featured df_features = pd.DataFrame(scaler.transform(df_features), columns=df_features)
    return df_features
```

Preprocess Training and Evaluation Data

We apply the preprocessing function to both training and test datasets.

We also align the target data (y) and prepare the Surv object for survival analysis.

```
In [ ]: X_train_final, imputer, scaler = preprocess(df.copy(), maf_df.copy(), fit=True)
    X_eval_final = preprocess(df_eval.copy(), maf_eval.copy(), imputer=imputer, scaler=

    df_2 = df.copy().merge(y_df[['ID','OS_STATUS','OS_YEARS']], on='ID', how='left').dr
    df_2['OS_STATUS'] = df_2['OS_STATUS'].astype(bool)
    y = Surv.from_dataframe('OS_STATUS','OS_YEARS',df_2)
    X_train_final_aligned = X_train_final.loc[df_2.index].reset_index(drop=True)
```

Polynomial Features

We enhance biochemical features (BM_BLAST, HB, PLT, WBC, ANC, MONOCYTES) using polynomial transformations.

This helps capture nonlinear relationships and interactions.

```
In [39]: # Polynomial features
biochem_features = ['BM_BLAST','HB','PLT','WBC','ANC','MONOCYTES']
poly = PolynomialFeatures(degree=3, interaction_only=True, include_bias=False)
X_poly = poly.fit_transform(X_train_final_aligned[biochem_features])
X_rest = X_train_final_aligned.drop(columns=biochem_features).reset_index(drop=True)
X_poly_df = pd.DataFrame(X_poly, columns=[f'poly_{i}' for i in range(X_poly.shape[1])
X_train_enhanced = pd.concat([X_poly_df, X_rest], axis=1)

# Eval set
X_eval_poly = poly.transform(X_eval_final[biochem_features])
X_eval_rest = X_eval_final.drop(columns=biochem_features).reset_index(drop=True)
X_eval_poly_df = pd.DataFrame(X_eval_poly, columns=[f'poly_{i}' for i in range(X_eval_poly_df, X_eval_rest], axis=1)
```

Correlation heatmap

```
In [40]: import seaborn as sns
         import matplotlib.pyplot as plt
         import numpy as np
         # Compute the absolute correlation matrix
         corr_matrix = X_train_enhanced.corr().abs()
         # Plot correlation heatmap
         plt.figure(figsize=(14, 10))
         sns.heatmap(corr_matrix, cmap='coolwarm', center=0, square=True, linewidths=0.5)
         plt.title("Feature Correlation Heatmap", fontsize=16)
         plt.show()
         # Identify highly correlated features (corr > 0.9)
         upper_tri = corr_matrix.where(np.triu(np.ones(corr_matrix.shape), k=1).astype(bool)
         to_drop = [col for col in upper_tri.columns if any(upper_tri[col] > 0.9)]
         # Drop them from the dataset
         X_train_filtered = X_train_enhanced.drop(columns=to_drop, errors='ignore')
         X_eval_filtered = X_eval_enhanced.drop(columns=to_drop, errors='ignore')
         print(f"\nDropped {len(to_drop)} highly correlated features (|corr| > 0.9):")
         if to drop:
             print(to_drop)
         else:
             print("No features dropped.")
```


Dropped 20 highly correlated features (|corr| > 0.9):
['poly_20', 'poly_30', 'poly_32', 'poly_36', 'poly_39', 'poly_40', 'BM_BLAST_sqrt',
'HB_log', 'HB_sqrt', 'HB_square', 'PLT_sqrt', 'WBC_sqrt', 'ANC_sqrt', 'ANC_square',
'MONO7_COMPLEX', 'WBC_to_HB_log', 'PLT_to_HB_log', 'VAF_MAX_log', 'VAF_MEAN_log', 'V
AF_SUM_log']

1. Train/Test Split

We split the enhanced training data into training and validation sets.

2. Coxnet Model (Elastic Net Regularized Cox Proportional Hazards)

We use the **Cox Proportional Hazards model**:

$$h(t \mid X) = h_0(t) \, \exp(eta^T X)$$

- $h(t \mid X)$: hazard at time t given covariates X
- $h_0(t)$: baseline hazard
- β : regression coefficients

Coxnet applies **Elastic Net regularization** to the partial likelihood:

$$\hat{eta} = rg \min_{eta} \left(-\ell(eta) + \lambda \Big(lpha \|eta\|_1 + (1-lpha) rac{1}{2} \|eta\|_2^2 \Big)
ight)$$

- $\ell(\beta)$: partial log-likelihood of the Cox model
- λ : overall regularization strength
- α (I1_ratio): balance between L1 (Lasso) and L2 (Ridge) penalties

We optimize over I1_ratio (α) and alpha_min_ratio (controls λ grid).

Evaluation metric: Concordance index (C-index), measuring how well predicted risk rankings agree with observed survival times.

```
In [ ]: # Split filtered features into train/test
        X_train_final, X_test_final, y_train_final, y_test_final = train_test_split(
            X_train_filtered, y, test_size=0.3, random_state=42
        # COXNET PIPELINE
        pipe = Pipeline([
            ('coxnet', CoxnetSurvivalAnalysis(max_iter=5000))
        1)
        param_grid = {
             'coxnet__l1_ratio': [0.1, 0.3, 0.5, 0.7],
             'coxnet__alpha_min_ratio': [0.001, 0.01, 0.1]
        # Concordance index scorer
        def cindex_scorer(estimator, X, y):
            pred = estimator.predict(X)
            return concordance_index_censored(y['OS_STATUS'], y['OS_YEARS'], pred)[0]
        # Grid Search
        grid_search = GridSearchCV(
            pipe,
            param_grid,
            cv=3,
            scoring=cindex_scorer,
            n_{jobs}=-1,
            verbose=1
        grid_search.fit(X_train_final, y_train_final)
        print(f"Best parameters: {grid_search.best_params_}")
        best coxnet = grid_search.best_estimator_
        # Predictions & Concordance Index
        train_preds = best_coxnet.predict(X_train_final)
        test_preds = best_coxnet.predict(X_test_final)
        cindex train = concordance index censored(y train final['OS STATUS'], y train final
```

```
cindex_test = concordance_index_censored(y_test_final['OS_STATUS'], y_test_final['O
print(f"Coxnet Concordance Index | Train: {cindex_train:.3f}, Test: {cindex_test:.3}
Fitting 3 folds for each of 12 candidates, totalling 36 fits
Best parameters: {'coxnet__alpha_min_ratio': 0.01, 'coxnet__l1_ratio': 0.1}
Coxnet Concordance Index | Train: 0.740, Test: 0.733
```

Random Survival Forest (RSF)

The **Random Survival Forest (RSF)** builds an ensemble of survival trees and aggregates their survival estimates.

The ensemble survival function is:

$$\hat{S}(t \mid X) = rac{1}{B} \sum_{b=1}^{B} \hat{S}_b(t \mid X)$$

- B: number of trees
- $\hat{S}_b(t \mid X)$: survival curve estimated by tree b

Splitting in each tree commonly uses a **log-rank statistic** to find partitions that separate survival outcomes.

Advantages:

- Captures nonlinearities and interactions
- No proportional hazards assumption required
- Robust with high-dimensional or noisy data

Evaluation metric: Concordance index (C-index), comparing predicted risk rankings with observed survival outcomes.

```
cindex_test_rsf = concordance_index_censored(
    y_test_final['OS_STATUS'], y_test_final['OS_YEARS'], test_preds_rsf
)[0]
print(f"RSF Concordance Index | Train: {cindex_train_rsf:.3f}, Test: {cindex_test_r
```

RSF Concordance Index | Train: 0.894, Test: 0.731

Predictions on Test Set

We use the best Coxnet model to predict risk scores for the evaluation dataset and save the submission file.

```
In [47]: # Predict on evaluation set using filtered features
    prediction_on_eval = best_coxnet.predict(X_eval_filtered)

# Prepare submission
    submission = pd.Series(prediction_on_eval, index=df_eval['ID'], name='risk_score')
    submission.to_csv('./final_submission.csv', index=True)

    print("Submission file saved as 'final_submission.csv'.")
```

Submission file saved as 'final_submission.csv'.