

BUNDESREPUBLIK DEUTSCHLAND

EP04/5239

**Prioritätsbescheinigung über die Einreichung
einer Patentanmeldung**

BEST AVAILABLE COPY

Aktenzeichen: 103 26 109.5

Anmeldetag: 06. Juni 2003

Anmelder/Inhaber: Degussa AG, 40474 Düsseldorf/DE

Bezeichnung: Screeningsverfahren für Hydantoinrazemassen

IPC: C 12 N, C 12 Q

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

München, den 23. Februar 2004
Deutsches Patent- und Markenamt
Der Präsident
 Im Auftrag

**PRIORITY
DOCUMENT**

SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH RULE 19.1(a) OR (b)

Zitzenziger

Screeningverfahren für Hydantoinrazematen

Die vorliegende Erfindung ist auf ein Screeningverfahren zur Detektion verbesserter Hydantoinrazematen, neue Hydantoinrazematen selbst und deren Verwendung zur Herstellung von N-Carbamoyl-Aminosäuren gerichtet.

Diese optisch aktiven Verbindungen sind in der organischen Synthese zur Herstellung von z.B. bioaktiven Wirkstoffen häufig eingesetzte Verbindungen. Sie kommen auch in chiralen Auxiliaren z.B. in Form der Aminoalkohole (Evans-Reagenzien) vor.

Die enzymatische Hydrolyse von 5-substituierten Hydantoinen zu N-Carbamoyl-Aminosäuren und deren Weiterreaktion zu den entsprechenden enantiomerenangereicherten Aminosäuren ist eine Standardmethode in der organischen Chemie ("Enzyme

Catalysis in Organic Synthesis", Eds.: Drauz, Waldmann, VCH, 1st and 2nd Ed.). Die Enantiodifferenzierung kann dabei entweder auf der Stufe der Hydantoinhydrolyse durch Hydantoinasen erfolgen oder aber wahlweise bei der Spaltung der N-Carbamoyl-Aminosäuren mittels enantioselektiver

Carbamoylasen. Da die Enzyme nur jeweils eine optische Antipode der entsprechenden Verbindung umsetzen, wird versucht, die andere im Gemisch (in-situ) zu razemisieren, um den vollständigen Umsatz des razemisch leicht herstellbaren Hydantoins in die korrespondierende

enantiomerenangereicherte Aminosäure zu gewährleisten. Die Razemisierung kann dabei entweder auf der Stufe der Hydantoinen mittels chemischer (Base, Säure, erhöhte Temp.) oder enzymatischer Verfahren erfolgen oder aber auf der Stufe der N-Carbamoyl-Aminosäuren mittels z.B.

Acetylaminosäurerazematen (DE10050124) vonstatten gehen. Letztere Variante funktioniert erfolgreich naturgemäß nur bei Einsatz von enantioselektiven Carbamoylasen. Das nachfolgende Schema veranschaulicht diesen Sachverhalt.

Schema 1:

5

Für aromatische Substrate ist die Geschwindigkeit der chemischen Razemisierung der Hydantoine, wie in Tabelle 1 gezeigt, ausreichend hoch, um hohe Raum-Zeit-Ausbeuten für die Herstellung von Aminosäuren nach dem

10 Hydantoinaseverfahren zu gewährleisten. Für aliphatische Hydantoine wie Isobutyl-, Methyl- und Isopropylhydantoin stellt die Razemisierung jedoch einen erheblichen Engpass bei der Synthese aliphatischer Aminosäuren dar.

Tabelle 1: Razemisierungskonstanten von Hydantoinen bei 40°C, pH 8.5 bestimmt durch Anfangsraten gem. einer Reaktion erster Ordnung ($-k_{rac} = \ln([a]/[a_0])$) aus: Hydrolysis and Formation of Hydantoins (Chpt. B 2.4). Syldatk, C. and Pietzsch, M. In: Enzyme catalysis in organic synthesis (Eds.: K. Drauz & H. Waldmann), VCH, 1st and 2nd Ed.).

5'-substituent	k_{rac} (h ⁻¹)	$t_{1/2}$ (h)
Phenyl	2.59	0.27
Methylthioethyl	0.12	5.82
Isobutyl	0.032	21.42
Methyl	0.02	33.98
Isopropyl	0.012	55.90

Dieses Problem zeigt sich beispielsweise bei der in EP759475 beschriebenen Herstellung von enantiomerenangereichertem tert-Butylhydantoin mittels des Hydantoinaseverfahrens. Hier wurden zur vollständigen Umsetzung von 32mM tert.-Butylhydantoin mit 1,5kU R-Hydantoinase 8 Tage bei pH 8,5 und 4 Tage bei pH 9,5 benötigt. Tatsächlich ist die geringe Raum-Zeit-Ausbeute durch die nur langsame chemische Razemisierung von tert-Butylhydantoin ($k_{rac} = 0.009\text{h}^{-1}$ bei 50°C und pH 8.5) bedingt.

Aus dem Stand der Technik sind Hydantoinrazemasen aus Mikroorganismen der Gattung *Pseudomonas*, *Mikrobacterium*, *Agrobacterium* und *Arthrobacter* bekannt (Lit.: JP04271784; EP1188826; Cloning and characterization of genes from *Agrobacterium* sp. IP I-671 involved in hydantoin degradation. Hils, M.; Muench, P.; Altenbuchner, J.; Syldatk, C.; Mattes, R. Applied Microbiology and Biotechnology (2001), 57(5-6), 680-688; A new razemase for 5-monosubstituted hydantoins. Pietzsch, Markus;

Syldatk, Christoph; Wagner, Fritz. Ann. N. Y. Acad. Sci. (1992), 672(Enzyme Engineering XI), 478-83. Lickefett, Holger; Krohn, Karsten; Koenig, Wilfried A.; Gehrcke, Barbel; Syldatk, Christoph. Tetrahedron: Asymmetry (1993), 5 4(6), 1129-35; Purification and characterization of the hydantoin razemase of *Pseudomonas* sp. strain NS671 expressed in *Escherichia coli*. Watabe, Ken; Ishikawa, Takahiro; Mukohara, Yukuo; Nakamura, Hiroaki. J. Bacteriol. (1992), 174(24), 7989-95).

10 Von den Hydantoinrazematen aus *Arthrobacter aurescens* DSM 3745, *Pseudomonas* sp. NS671 und *Microbacterium liquefaciens* ist bekannt, dass diese Enzyme aliphatische Hydantoine wie beispielsweise Isopropylhydantoin oder Isobutylhydantoin nur schwach razemisieren. Darüber hinaus weiß man, dass die 15 Hydantoinrazematen aus *Arthrobacter aurescens* DSM 3747 aromatische Hydantoine wie Indolylmethylhydantoin oder Benzylhydantoin bevorzugt, wohingegen aliphatische Hydantoine wie Methylthioethylhydantoin vergleichsweise schwach oder im Fall von Isopropylhydantoin überhaupt nicht 20 umgesetzt werden (A new razemase for 5-monosubstituted hydantoins. Pietzsch, Markus; Syldatk, Christoph; Wagner, Fritz. Ann. N. Y. Acad. Sci. (1992), 672(Enzyme Engineering XI), 478-83.).

25 Die niedrige Aktivität von Hydantoinrazematen begrenzt daher häufig das wirtschaftliche Potential dieser Route.

Um in geeigneter Zeit möglichst viele Hydantoinrazematen auf ihr Potential zur Razemisierung von aliphatischen Hydantoine prüfen zu können, lag die Aufgabe der vorliegenden Erfindung unter anderem in der Angabe eines 30 geeigneten Screeningverfahrens für Hydantoinrazematen. Darüber hinaus sollte das erfindungsgemäße Screeningverfahren als Bestandteil für ein Mutagenseverfahren zur Gewinnung neuer und besserer Hydantoinrazematen einsetzbar sein. Ebenfalls Aufgabe der 35 vorliegenden Erfindung war die Angabe neuer

Hydantoinrazemosen, die den Hydantoinrazemosen des Standes der Technik zumindest in Selektivität und/oder Aktivität und/oder Stabilität überlegen sind.

Diese Aufgabe wird anspruchsgemäß gelöst. Anspruch 1
5 bezieht sich auf ein Screeningverfahren für Hydantoinrazemosen. Unteransprüche 2 bis 4 zeigen vorteilhafte Ausführungsformen des Screeningverfahrens auf. Anspruch 5 beschäftigt sich mit einem Mutageneseverfahren zur Herstellung neuer Hydantoinrazemosen unter Anwendung 10 des erfindungsgemäßen Screeningverfahrens. Ansprüche 6 bis 11 beziehen sich auf neue Hydantoinrazemosen sowie die sie codierenden Nukleinsäuresequenzen und deren Verwendung. Ansprüche 12 bis 14 richten sich auf Vehikel, welche die erfindungsgemäßen Hydantoinrazemosen aufweisen, bzw. 15 spezielle Primer für deren Herstellung.

Dadurch, dass man ein Screeningverfahren für Hydantoinrazemosen angibt, bei dem man
a) eine enantioselektive Hydantoinase und
b) die zu prüfende Hydantoinrazemase, welche eine 20 verglichen mit der Hydantoinase unter a) langsamere Umsetzungsrate aufweist, auf
c) ein chirales Hydantoin einwirken lässt, welches in zur Selektivität der Hydantoinase entgegengesetzter enantiomerenangereicherter Form eingesetzt wird, und
d) die resultierende N-Carbamoyl-Aminosäure oder die 25 freigesetzten Protonen zeitabhängig detektiert, gelangt man überraschend einfach und dennoch vorteilhaft zu einer Möglichkeit, viele Hydantoinrazemosen in kurzer Zeit auf ihre Fähigkeit hin zu überprüfen, in verbesserter Weise 30 Hydantoinen razemisieren zu können.

Durch Einsatz eines L-Enantiomers eines 5'-monosubstituierten Hydantoins und Verwendung einer D-selektiven Hydantoinase, welche aufgrund ihrer 35 Enantioselektivität bevorzugt dass entstehende D-Enantiomer

des Hydantoins schnell hydrolysiert, kann durch die Bildung der N-Carbamoyl-D-Aminosäure oder freiwerdende Protonen die Razemisierungsgeschwindigkeit und damit die Aktivität der Hydantoinrazemase auf einfache Weise gemessen werden. Die Quantifizierung der N-Carbamoyl-Aminosäure kann dabei durch dem Fachmann bekannte Methoden wie beispielsweise HPLC oder colorimetrische Methoden erfolgen. Die Quantifizierung über Protonen kann auf einfache Weise über pH Indikatoren, bevorzugt Cresol Rot, erfolgen. Es sei darauf hingewiesen, dass in dem Verfahren sowohl D- als auch L-Enantiomere von Hydantoinen mit unterschiedlichen ggf. aliphatischen 5'-Substituenten eingesetzt werden können. Beim Einsatz der D-Hydantoinen sind dementsprechenden L-selektive Hydantoinasen im Screeningverfahren einzusetzen.

15 Im erfindungsgemäßen Verfahren eingesetzt werden vorteilhaft aliphatische in 5'-Stellung substituierte Hydantoinen. Unter aliphatisch substituierten Hydantoinen wird in diesem Zusammenhang ein System verstanden, welches in 5'-Stellung an dem Hydantoinheterozyklus einen Rest aufweist, der über ein C-Atom mit sp^3 -Hybridisierung an den Heterozyklus gebunden ist. Bevorzugte 5'-Substituenten sind dabei Methyl, Ethyl, Butyl, Propyl, tertiär-Butyl, Isopropyl und Isobutyl. Ganz besonders bevorzugt ist Ethyl-Hydantoin.

25 Als Hydantoinasen können sämtliche in der Literatur bekannten Hydantoinasen eingesetzt werden, welche das über die Hydantoinrazemase gebildete Enantiomer des Hydantoins enantioselektiv hydrolysieren, wobei diese Hydrolyse schneller als die Razemisierungsgeschwindigkeit sein muss. Bevorzugte Hydantoinasen sind dabei die kommerziellen Hydantoinasen 1 & 2 von Roche, die Hydantoinasen der Gattungen *Agrobacterium*, *Arthrobacter*, *Bacillus*, *Pseudomonas*, *Flavobacterium*, *Pasteurella*, *Microbacterium*, *Vigna*, *Ochrobactrum*, *Methanococcus*, *Burkholderia* und *Streptomyces*. (Hils, M.; Muench, P.; Altenbuchner, J.;

Syldatk, C.; Mattes, R. Cloning and characterization of genes from Agrobacterium sp. IP I-671 involved in hydantoin degradation. *Applied Microbiology and Biotechnology* (2001), 57(5-6), 680-688.

5 Soong, C.-L.; Ogawa, J.; Shimizu, S. Cyclic ureide and imide metabolism in microorganisms producing a D-hydantoinase useful for D-amino acid production. *Journal of Molecular Catalysis B: Enzymatic* (2001), 12(1-6), 61-70.

10 Wiese, Anja; Wilms, Burkhard; Syldatk, Christoph; Mattes, Ralf; Altenbuchner, Josef. Cloning, nucleotide sequence and expression of a hydantoinase and carbamoylase gene from Arthrobacter aurescens DSM 3745 in Escherichia coli and comparison with the corresponding genes from Arthrobacter aurescens DSM 3747. *Applied Microbiology and Biotechnology* (2001), 55(6), 750-757.

15 Yin, Bang-Ding; Chen, Yi-Chuan; Lin, Sung-Chyr; Hsu, Wen-Hwei. Production of D-amino acid precursors with permeabilized recombinant Escherichia coli with D-hydantoinase activity. *Process Biochemistry (Oxford)* (2000), 35(9), 915-921.

Park, Joo-Ho; Kim, Geun-Joong; 20 Lee, Seung-Goo; Lee, Dong-Cheol; Kim, Hak-Sung. Purification and characterization of thermostable D-hydantoinase from *Bacillus thermocatenulatus* GH-2. *Applied Biochemistry and Biotechnology* (1999), 81(1), 53-65;

Pozo, C.; Rodelas, B.; de la Escalera, S.; Gonzalez-Lopez, J. D,L-Hydantoinase activity of an *Ochrobactrum anthropi* strain. *Journal of Applied Microbiology* (2002), 92(6), 1028-1034; Chung, Ji Hyung; Back, Jung Ho; Lim, Jae-Hwan; Park, Young In; Han, Ye Sun. Thermostable hydantoinase from a hyperthermophilic archaeon, *Methanococcus jannaschii*. *Enzyme and Microbial Technology* (2002), 30(7), 867-874; Xu, Zhen; Jiang, Weihong; Jiao, Ruishen; Yang, Yunliu. Cloning, sequencing and high expression in *Escherichia coli* of D-hydantoinase gene from *Burkholderia pickettii*. *Shengwu Gongcheng Xuebao* (2002), 18(2), 149-35 154; Las Heras-Vazquez, Francisco Javier; Martinez-Rodriguez, Sergio; Mingorance-Cazorla, Lydia; Clemente-Jimenez, Josefa Maria; Rodriguez-Vico, Felipe.

Overexpression and characterization of hydantoin racemase from *Agrobacterium tumefaciens* C58. Biochemical and Biophysical Research Communications (2003), 303(2), 541-547; DE 3535987; EP 1275723; US 6087136; WO 0281626; US 5 2002045238; DE 4328829; WO 9400577; WO 9321336; JP 04325093; NL 9001680; JP 2003024074; WO 0272841; WO 0119982; WO 9620275).

Ganz besonders bevorzugt ist die Verwendung der Hydantoinase aus *Arthrobacter crystallopoietes*, insbesondere der aus DSM 20117.

Wie schon angedeutet sollte die Umsetzungsgeschwindigkeit der Hydantoinase die der Razemase übertreffen. Vorzugsweise liegt das Verhältnis der Geschwindigkeitskonstanten der Hydantoinase zur Hydantoinrazemase (k_{Hyd}/k_{Raz}) bei >2, 15 besonders bevorzugt bei > 10 und ganz besonders bevorzugt bei >50.

Gegenstand der Erfindung ist ebenfalls ein Verfahren zur Herstellung von verbesserten Hydantoinrazemassen, welches sich dadurch auszeichnet, dass man

- 20 a) die Nukleinsäuresequenz codierend für die Hydantoinrazemase einer Mutagenese unterwirft,
- b) die aus a) erhältlichen Nukleinsäuresequenzen in einen geeigneten Vektor kloniert und diesen in ein geeignetes Expressionssystem transferiert und
- 25 c) die gebildeten Hydantoinrazemassen mit verbesserter Aktivität und/oder Selektivität und/oder Stabilität mittels eines erfindungsgemäßen Screeningverfahrens detektiert und isoliert.

Als Ausgangsgene für die Mutagenese der Hydantoinrazemassen können sämtliche bekannten und in der angeführten Literatur erwähnten Hydantoinrazemasegene dienen. Bevorzugt sind dabei die Hydantoinrazemasegene von *Arthrobacter*, *Pseudomonas*, *Agrobacterium* und *Micrococcus* (Wiese A; Pietzsch M; Syldatk C; Mattes R; Altenbuchner J Hydantoin 35 racemase from *Arthrobacter aurescens* DSM 3747: heterologous

expression, purification and characterization. JOURNAL OF BIOTECHNOLOGY (2000 Jul 14), 80(3), 217-30; Watabe K; Ishikawa T; Mukohara Y; Nakamura H Purification and characterization of the hydantoin racemase of Pseudomonas sp. strain NS671 expressed in Escherichia coli. JOURNAL OF BACTERIOLOGY (1992 Dec), 174(24), 7989-95; Las Heras-Vazquez, Francisco Javier; Martinez-Rodriguez, Sergio; Mingorance-Cazorla, Lydia; Clemente-Jimenez, Josefa Maria; Rodriguez-Vico, Felipe. Overexpression and characterization of hydantoin racemase from Agrobacterium tumefaciens C58. Biochemical and Biophysical Research Communications (2003), 303(2), 541-547; EP 1188826). Ganz besonders bevorzugt ist das Hydantoinrazemasegen aus Arthrobacter aurescens welches für die Proteinsequenz in Seq.ID.Nr. 2 codiert.

Zur Mutagenese der Hydantoinrazemase können sämtliche in der Literatur bekannten Methoden wie beispielsweise Zufallsmutagenese, Sättigungsmutagenes, Kassetten-Mutagenese oder Rekombinationsmethoden verwendet werden (May, Oliver; Voigt, Christopher A.; Arnold, Frances H. Enzyme engineering by directed evolution. Enzyme Catalysis in Organic Synthesis (2nd Edition) (2002), 1 95-138; Bio/Technology 1991, 9, 1073-1077; Horwitz, M. und Loeb, L., Promoters Selected From Random DNA-Sequences, Proc Natl Acad Sci USA 83, 1986, 7405-7409; Dube, D. und L. Loeb, Mutants Generated By The Insertion Of Random Oligonucleotides Into The Active-Site Of The Beta-Lactamase Gene, Biochemistry 1989, 28, 5703-5707; Stemmer, P.C., Rapid evolution of a protein in vitro by DNA shuffling, Nature 1994, 370, 389-391 und Stemmer, P.C., DNA shuffling by random fragmentation and reassembly: In vitro recombination for molecular evolution. Proc Natl Acad Sci USA 91, 1994, 10747-10751).

Die Klonierung und Expression kann wie in der weiter unten angegebenen Literatur durchgeführt werden: Das Verfahren kann mehrmals hintereinander ggf. mit wechselnden Mutagenesestrategien durchgeführt werden.

Gegenstand der Erfindung sind ebenfalls rec-Polypeptide oder die diese codierende Nukleinsäuresequenzen, welche nach dem eben genannten Mutageneseverfahren erhältlich sind.

5 Ebenso ein Aspekt der Erfindung ist die Verwendung der so hergestellten Polypeptide zur Herstellung von chiralen enantiomerenangereicherten N-Carbamoyl-Aminosäuren oder Aminosäuren. Die erfindungsgemäß hergestellten Nukleinsäuresequenzen können zur Herstellung von
10 Ganzzellkatalysatoren dienen.

Einen Teil der vorliegenden Erfindung bilden auch Hydantoinrazematen, welche in Position 79 einen Aminosäureaustausch mit einer Aminosäure ausgewählt aus der Gruppe bestehend aus A, R, N, D, C, Q, E, H, I, L, K, M, F, P, S, T, Y oder V aufweisen. Interessant ist, dass die Aminosäuren, welche diese Position umgeben, für viele Hydantoinrazematen vollständig konserviert sind. Die Konsensussequenz lautet: FX₁DX₂GL (Seq.ID.Nr. 1), wobei X₂ P oder T darstellt und X₁ W oder G darstellt. Bevorzugte
20 Mutanten weisen daher die oben genannte Konsensussequenz auf, wobei X₁ vorzugsweise eine Aminosäure ausgewählt aus der Gruppe bestehend aus A, R, N, D, C, Q, E, H, I, L, K, M, F, P, S, T, Y oder V darstellt. X₁ entspricht dabei der Position 79. Bevorzugte Mutanten sind in Tabelle 2
25 dargestellt.

Tabelle 2:

Mutanten Name	Mutation (codon)	Mutation X ₁ (Aminosäure)	Aktivitätsänderung	Seq.ID Nr.
3CH11	GGG -> GAG	G79E	2	5
1BG7	GGG -> AGG	G79R	2	3
BB5	GGG -> TTG	G79L	4	9
AE3	GGG -> CAG	G79Q	4	7

Weitere äußerst vorteilhafte Kombinationen von X₁ und X₂
 5 Hydantoinrazemases sind in folgender Tabelle 3 aufgeführt.

Tabelle 3: Vorteilhafte Kombinationen von X₁ und X₂ in dem
 Konsensusmotiv FX₁DX₂GL

X ₁	L	E	Q	R	L	E	Q	R
X ₂	P	P	P	P	T	T	T	T

Von besonderem Vorteil ist es, wenn die Hydantoinrazemases
 10 die oben angegebene Konsensusregion und zusätzlich eine
 Homologie von >40% zur Hydantoinrazemase aus DSM 20117
 aufweisen.

Weiterhin Gegenstand der Erfindung sind isolierte
 Nukleinsäuresequenzen codierend für eine Hydantoinrazemase
 15 ausgewählt aus der Gruppe:

- a) einer Nukleinsäuresequenz codierend für eine erfundungsgemäße Hydantoinrazemase,
- b) einer Nukleinsäuresequenz, die unter stringenten Bedingungen mit der Nukleinsäuresequenz codierend für

eine erfindungsgemäße Hydantoinrazemase oder der dazu komplementären Sequenz hybridisiert,

c) einer Nukleinsäuresequenz gemäß den Seq.ID.Nr. 3, 5, 7 oder 9 oder solchen mit einer Homologie von > 80% zu diesen,

5 d) einer Nukleinsäuresequenz aufweisend 15 aufeinanderfolgende Nukleotide der Sequenzen Seq.ID.Nr. 3, 5, 7 oder 9.

In Bezug auf Punkt d) ist es bevorzugt, wenn die
10 erfindungsgemäße Nukleinsäuresequenz 20, mehr bevorzugt 25, weiter bevorzugt 30, 31, 32, 33, 34 und äußerst bevorzugt mehr als 34 identische konsekutive Nukleinsäuren der Sequenzen Seq.ID.Nr. 3, 5, 7 oder 9 aufweist.

Wie gesagt sind von der Erfindung auch
15 Nukleinsäuresequenzen mitumfasst, welche unter stringenten Bedingungen mit den erfindungsgemäßen einzelsträngigen Nukleinsäuresequenzen oder deren komplementären einzelsträngigen Nukleinsäuresequenzen hybridisieren (b) oder solche, die sich in Sequenzabschnitten gleichen (d).
20 Als solche sind z.B. spezielle Gensonden oder die für eine PCR notwendigen Primer anzusehen.

Eine Kopplung von Hydantoinrazemase und Hydantoinase und ggf. Carbamoylase kann dabei durch Zusammengeben der freien bzw. immobilisierten Enzyme erfolgen. Bevorzugt ist jedoch, wenn die Hydantoinase gemeinsam mit der Hydantoinrazemase und/oder der Carbamoylase in der selben Zelle exprimiert wird (Ganzzellkatalysator).

Die erfindungsgemäßen Nukleinsäuresequenzen können daher als Bestandteil eines Gens in analoger Weise wie in
30 DE10234764 und dort zitierter Literatur in einen Ganzzellkatalysator kloniert werden.
Sofern dieser dann auch Gene für eine Hydantoinase und/oder Carbamoylase aufweist, ist er im Stande racemische Hydantoine zur Gänze in enantiomerenangereicherte
35 Aminosäuren umzuwandeln. Ohne ein kloniertes

Carbamoylasegen stoppt die Reaktion auf der Stufe der N-Carbamoyl-Aminosäuren.

Vorzugsweise wird ein Organismus wie in der DE10155928 genannt als Wirtsorganismus eingesetzt. Der Vorteil eines
5 derartigen Organismus ist die gleichzeitige Expression aller beteiligten Enzyme, womit nur noch ein rec-Organismus für die Gesamtreaktion angezogen werden muss.

Um die Expression der Enzyme im Hinblick auf ihre Umsetzungsgeschwindigkeiten abzustimmen, können die
10 entsprechenden codierenden Nukleinsäuresequenzen in unterschiedliche Plasmide mit unterschiedlichen Kopienzahlen kloniert und/oder unterschiedlich starke Promotoren für eine unterschiedlich starke Expression der Nukleinsäuresequenzen verwendet werden. Bei derart
15 abgestimmten Enzymsystemen tritt vorteilhafterweise eine Akkumulation einer ggf. inhibierend wirkenden Zwischenverbindung nicht auf und die betrachtete Reaktion kann in einer optimalen Gesamtgeschwindigkeit ablaufen.
Dies ist dem Fachmann jedoch hinlänglich bekannt

20 (Gellissen, G.; Piontek, M.; Dahlems, U.; Jenzelewski, V.; Gavagan, J. W.; DiCosimo, R.; Anton, D. L.; Janowicz, Z. A.
• (1996), Recombinant Hansenula polymorpha as a biocatalyst. Coexpression of the spinach glycolate oxidase (GO) and the S. cerevisiae catalase T (CTT1) gene, Appl. Microbiol.

25 Biotechnol. 46, 46-54; Farwick, M.; London, M.; Dohmen, J.; Dahlems, U.; Gellissen, G.; Strasser, A. W.; DE19920712). Die Herstellung eines derartigen Ganzzellkatalysators ist dem Fachmann hinlänglich bekannt (Sambrook, J.; Fritsch, E. F. und Maniatis, T. (1989), Molecular cloning: a laboratory manual, 2nd ed., Cold Spring Harbor Laboratory Press, New York; Balbas, P. und Bolivar, F. (1990), Design and construction of expression plasmid vectors in E.coli, Methods Enzymol. 185, 14-37; Rodriguez, R.L. und Denhardt, D. T (eds) (1988), Vectors: a survey of molecular cloning
30 vectors and their uses, 205-225, Butterworth, Stoneham).
35

In einer nächsten Ausgestaltung bezieht sich die Erfindung auf Plasmide oder Vektoren aufweisend eine oder mehrere der erfindungsgemäßen Nukleinsäuresequenzen.

Als Plasmide oder Vektoren kommen im Prinzip alle dem

5 Fachmann für diesen Zweck zur Verfügung stehenden Ausführungsformen in Frage. Derartige Plasmide und Vektoren können z. B. von Studier und Mitarbeiter (Studier, W. F.; Rosenberg A. H.; Dunn J. J.; Dubendorff J. W.; (1990), Use of the T7 RNA polymerase to direct expression of cloned genes, Methods Enzymol. 185, 61-89) oder den Broschüren der Firmen Novagen, Promega, New England Biolabs, Clontech oder Gibco BRL entnommen werden. Weiter bevorzugte Plasmide und Vektoren können gefunden werden in: Glover, D. M. (1985), DNA cloning: a practical approach, Vol. I-III, IRL Press Ltd., Oxford; Rodriguez, R.L. und Denhardt, D. T (eds) (1988), Vectors: a survey of molecular cloning vectors and their uses, 179-204, Butterworth, Stoneham; Goeddel, D. V. (1990), Systems for heterologous gene expression, Methods Enzymol. 185, 3-7; Sambrook, J.; Fritsch, E. F. und Maniatis, T. (1989), Molecular cloning: a laboratory manual, 2nd ed., Cold Spring Harbor Laboratory Press, New York.

Plasmide, mit denen das die erfindungsgemäße Nukleinsäure aufweisende Genkonstrukt in ganz bevorzugter Weise in den

25 Wirtsorganismus kloniert werden kann, sind Derivate von pUC18 und pUC19 (Roche Biochemicals), pKK-177-3H (Roche Biochemicals), pBTac2 (Roche Biochemicals), pKK223-3 (Amersham Pharmacia Biotech), pKK-233-3 (Stratagene) oder pET (Novagen). Weitere bevorzugte Plasmide sind pBR322 (DSM3879), pACYC184 (DSM4439) und pSC101 (DSM6202), welche von der DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Braunschweig, Germany bezogen werden können.

Als bevorzugt anzusehende Plasmide Gleichfalls ist die

35 Erfindung auf Mikroorganismen aufweisend eine oder mehrere erfindungsgemäße Nukleinsäuresequenzen gerichtet.
Der Mikroorganismus, in den die die erfindungsgemäßen

Nukleinsäuresequenzen enthaltenen Plasmide kloniert werden, dient zur Vermehrung und Gewinnung einer ausreichenden Menge des rekombinanten Enzyms. Die Verfahren hierfür sind dem Fachmann wohlbekannt (Sambrook, J.; Fritsch, E. F. und 5 Maniatis, T. (1989), Molecular cloning: a laboratory manual, 2nd ed., Cold Spring Harbor Laboratory Press, New York). Als Mikroorganismen können im Prinzip alle dem Fachmann für diesen Zweck in Frage kommenden Organismen wie z.B. Hefen wie *Hansenula polymorpha*, *Pichia* sp., 10 *Saccharomyces cerevisiae*, Prokaryonten, wie *E. coli*, *Bacillus subtilis* oder Eukaryonten, wie Säugerzellen, Insektenzellen herangezogen werden. Vorzugsweise sind *E. coli*-Stämme für diesen Zweck zu benutzen. Ganz besonders bevorzugt sind: *E. coli* XL1 Blue, W3110, DSM14459 15 (PCT/US00/08159), NM 522, JM101, JM109, JM105, RR1, DH5α, TOP 10⁺ oder HB101. Plasmide, mit denen das die erfindungsgemäß Nukleinsäure aufweisende Genkonstrukt vorzugsweise in den Wirtsorganismus kloniert wird, sind weiter oben angegeben.

20 Ein folgender Aspekt der Erfindung richtet sich auf Primer zur Herstellung der erfindungsgemäß Gensequenzen mittels aller Arten von PCR. Mitumfasst sind die Sense- und Antisense-Primer codierend für die entsprechenden Aminosäuresequenzen, bzw. komplementären DNA-Sequenzen. 25 Geeignete Primer können prinzipiell nach dem Fachmann bekannten Verfahren gewonnen werden. Das Auffinden der erfindungsgemäßen Primer erfolgt durch Vergleich mit bekannten DNA-Sequenzen oder durch Übersetzung der ins Auge gefaßten Aminosäuresequenzen in das bevorzugte Codon des betrachteten Organismus (z.B. für Streptomyces: Wright F. und Bibb M. J. (1992), Codon usage in the G+C-rich 30 Streptomyces genome, Gene 113, 55-65). Gemeinsamkeiten in der Aminosäuresequenz von Proteinen von sogenannten Superfamilien sind hierfür ebenfalls von Nutzen (Firestone, S. M.; Nixon, A. E.; Benkovic, S. J. (1996), Threading your way to protein function, Chem. Biol. 3, 779-783). Weitere 35

Informationen diesbezüglich können gefunden werden in Gait, M. J. (1984), Oligonucleotide synthesis: a practical approach, IRL Press Ltd., Oxford; Innis, M. A.; Gelfound, D. H.; Sninsky, J. J. und White, T.J. (1990), PCR

5 Protocols: A guide to methods and applications, Academic Press Inc., San Diego.

Bevorzugte Primer sind die der Seq.ID.Nr. 11 und 12.

Für die Anwendung können die betrachteten Enzyme (Hydantoinrazemase, Hydantoinasen und/oder Carbamoylasen)

10 wie schon angedeutet in freier Form als homogen aufgereinigte Verbindungen oder als rekombinant (rec-) hergestelltes Enzym verwendet werden. Weiterhin können die Enzyme auch als Bestandteil eines intakten Gastorganismus eingesetzt werden oder in Verbindung mit der 15 aufgeschlossenen und beliebig hoch aufgereinigten Zellmasse des Wirtsorganismus.

Möglich ist ebenfalls die Verwendung der Enzyme in immobilisierter Form (Sharma B. P.; Bailey L. F. und Messing R. A. (1982), Immobilisierte Biomaterialien -

20 Techniken und Anwendungen, Angew. Chem. 94, 836-852). Vorteilhafterweise erfolgt die Immobilisierung durch Lyophilisation (Paradkar, V. M.; Dordick, J. S. (1994), Aqueous-Like Activity of α -Chymotrypsin Dissolved in Nearly Anhydrous Organic Solvents, J. Am. Chem. Soc. 116, 25 5009-5010; Mori, T.; Okahata, Y. (1997), A variety of lipi-coated glycoside hydrolases as effective glycosyl transfer catalysts in homogeneous organic solvents, Tetrahedron Lett. 38, 1971-1974; Otamiri, M.; Adlercreutz, P.; Matthiasson, B. (1992), Complex formation between

30 chymotrypsin and ethyl cellulose as a means to solbilize the enzyme in active form in toluene, Biocatalysis 6, 291-305). Ganz besonders bevorzugt ist die Lyophilisation in Gegenwart von oberflächenaktiven Substanzen, wie Aerosol OT oder Polyvinylpyrrolidon oder Polyethylenglycol (PEG) oder 35 Brij 52 (Diethylenglycol-mono-cetylether) (Kamiya, N.; Okazaki, S.-Y.; Goto, M. (1997), Surfactant-horseradish

peroxidase complex catalytically active in anhydrous benzene, Biotechnol. Tech. 11, 375-378).

Äußerst bevorzugt ist die Immobilisierung an Eupergit®, insbesondere Eupergit C® und Eupergit 250L® (Röhm)

5 (Eupergit.RTM. C, a carrier for immobilization of enzymes of industrial potential. Katchalski-Katzir, E.; Kraemer, D. M. Journal of Molecular Catalysis B: Enzymatic (2000), 10(1-3), 157-176.)

Gleichfalls bevorzugt ist die Immobilisierung an Ni-NTA in
10 Kombination mit dem His-Tag (Hexa-Histidin) ergänzten Polypeptid (Purification of proteins using polyhistidine affinity tags. Bornhorst, Joshua A.; Falke, Joseph J. Methods in Enzymology (2000), 326, 245-254). Die Verwendung als CLECs ist ebenfalls denkbar (St. Clair, N.; Wang, Y.-
15 F.; Margolin, A. L. (2000), Cofactor-bound cross-linked enzyme crystals (CLEC) of alcohol dehydrogenase, Angew. Chem. Int. Ed. 39, 380-383).

Durch diese Maßnahmen kann es gelingen aus Polypeptiden, welche durch organische Solventien instabil werden, solche
20 zu generieren, die in Gemischen von wässrigen und organischen Lösungsmitteln bzw. ganz in Organik stabil sind und arbeiten können.

Ganzzellkatalysatoren werden im Allgemeinen in Form freier oder immobilisierter Zellen eingesetzt. Hierzu wird die aktive Zellmasse in einer hydantoinhaltigen Lösung resuspendiert. Die Zellkonzentration beträgt dabei zwischen 25 1-100g/l. Die Konzentration des Hydantoins liegt zwischen 0,1 und 2 molar. Als Lösungsmittel wird bevorzugt H₂O verwendet, wobei jedoch auch Mischungen von organischen Lösungsmitteln und H₂O einsetzbar sind. Der pH-Wert wird entweder nicht geregelt oder mittels gängiger Puffer bzw.
30 durch kontinuierliche pH-Statisierung zwischen pH6 und pH10 konstant gehalten. Die Reaktionstemperatur liegt typischerweise zwischen 20°C und 90°C. In Abhängigkeit der verwendeten Hydantoinase werden zweiwertige Metall-Ionen in
35 Konzentrationen von 0,1-5mM hinzugesetzt. Bevorzugte

Metallionen sind dabei Mn^{2+} , Zn^{2+} oder Co^{2+} .

In Bezug auf den Einsatz der einzelnen Enzyme kann in äquivalenter Art und Weise verfahren werden.

Die durch den Einsatz der erfindungsgemäßen

5 Hydantoinrazemasen in wie z.B. oben beschriebener Weise hergestellten Produkte werden nach gängigen Verfahren aufgearbeitet. Vorteilhaft ist jedoch die Aufarbeitung durch Ionenaustauschchromatographie. Hierdurch wird das Produkt vom bei der Reaktion entstehenden Salzen befreit.

10 Das Eluat wird ggf. mit Aktivkohle geklärt und die entstandene enantiomerenangereicherte Aminosäure oder N-Carbamoyl-Aminosäure durch Einengung des Lösungsmittels ausgefällt und getrocknet.

Die Kopplung einer enzymatischen Razemisierung mit einer

15 enantioselektiven Hydrolyse zum Screenen von Hydantoinrazemaseaktivitäten wurde bisher nicht zur Erzeugung verbesserter Hydantoinrazemasen angewendet. Für eine besonders erfolgreiche Anwendung des erfindungsgemäßen Verfahrens sollten mehrere Voraussetzungen erfüllt sein:

20 1. Die chemische Razemisierungsgeschwindigkeit des im Screening verwendeten enantiomerenreinen Hydantoins muss sehr viel kleiner sein, als die Geschwindigkeit der enzymatisch katalysierten Reaktion.

25 2. Die enantioselektive enzymatische Hydrolyse mittels der Hydantoinase muss sehr viel schneller erfolgen als die enzymatische Razemisierung des Hydantoins.

Für aliphatisch substituierte Hydantoine ist, durch deren langsame chemische Razemisierung bedingt, Punkt 1 gegeben. Punkt 2 kann durch eine gezielte Auswahl von geeigneten

30 Hydantoinasen (s. weiter vorne) erfüllt werden.

Mit den Aussagen des Standes der Technik wird die vorliegende Erfindung nicht nahegelegt, da diesem keinerlei

Hinweise auf die weiter oben genannten Voraussetzungen zu entnehmen sind.

Sämtliche der gezeigten Mutanten weisen an der Aminosäureposition 79 eine Mutation auf, was die Bedeutung 5 dieser Position für die Enzymfunktion erstmalig aufzeigt. Interessant ist, dass die Aminosäuren, welche diese Position umgeben, für sämtliche bekannten Hydantoinrazemassen vollständig konserviert sind. Hieraus ergibt sich, dass für andere Hydantoinrazemassen welche das 10 oben beschriebene Sequenzmotif enthalten und eine hohe Homologie (>40% Sequenzidentität) aufweisen durch ortsspezifische Mutagenese an Pos. 79 verbesserte Enzymvarianten erzeugt werden können, was bisher aus dem Stand der Technik nicht herleitbar war.

15 Unter optisch angereicherten (enantiomerenangereicherten, enantiomer angereicherten) Verbindungen wird im Rahmen der Erfindung das Vorliegen einer optischen Antipode im Gemisch mit der anderen in >50 mol-% verstanden.

Unter dem Begriff Nukleinsäuresequenzen werden alle Arten 20 von einzelsträngiger oder doppelsträngiger DNA als auch RNA oder Gemische derselben subsumiert.

Die Verbesserung der Aktivität und/oder Selektivität und/oder Stabilität bedeutet erfindungsgemäß, dass die Polypeptide aktiver und/oder selektiver bzw. weniger 25 selektiv oder unter den verwendeten Reaktionsbedingungen stabiler sind. Während die Aktivität und die Stabilität der Enzyme für die technische Anwendung naturgemäß möglichst hoch sein sollte, ist in Bezug auf die Selektivität dann von einer Verbesserung die Rede, wenn entweder die 30 Substratselektivität abnimmt, die Enantioselektivität der Enzyme jedoch gesteigert ist.

Von den beanspruchten Polypeptiden und den Nukleinsäuresequenzen werden erfindungsgemäß auch solche Sequenzen umfaßt, die eine Homologie (exclusive der

natürlichen Degeneration) größer als 70% (in Bezug auf die Nukleinsäuresequenz) bzw. > 40% oder 80% (in Bezug auf die Polypeptide), bevorzugt größer als 90%, 91%, 92%, 93% oder 94%, mehr bevorzugt größer als 95% oder 96% und besonders 5 bevorzugt größer als 97%, 98% oder 99% zu einer dieser Sequenzen aufweisen, sofern die Wirkungsweise bzw. Zweck einer solchen Sequenz erhalten bleibt. Der Ausdruck "Homologie" (oder Identität) wie hierin verwendet, kann durch die Gleichung $H (\%) = [1 - V/X] \times 100$ definiert 10 werden, worin H Homologie bedeutet, X die Gesamtzahl an Nukleobasen/Aminosäuren der Vergleichssequenz ist und V die Anzahl an unterschiedlichen Nukleobasen/Aminosäuren der zu betrachtenden Sequenz bezogen auf die Vergleichssequenz ist. Auf jeden Fall sind mit dem Begriff Nukleinsäuresequenzen, 15 welche für Polypeptide codieren, alle Sequenzen umfaßt, die nach Maßgabe der Degeneration des genetischen Codes möglich erscheinen.

Der Ausdruck "unter stringenten Bedingungen" wird hierin wie bei Sambrook et al. (Sambrook, J.; Fritsch, E. F. und 20 Maniatis, T. (1989), Molecular cloning: a laboratory manual, 2nd ed., Cold Spring Harbor Laboratory Press, New York) beschrieben, verstanden. Bevorzugt liegt eine stringent Hybridisierung gemäß der vorliegenden Erfindung vor, wenn nach Waschen für eine Stunde mit 1 x SSC (150 mM Natriumchlorid, 15 mM Natriumcitrat, pH 7.0) und 0,1 % SDS (Natriumdodecylsulfat) bei 50 °C, bevorzugt bei 55 °C, mehr 25 bevorzugt bei 62 °C und am meisten bevorzugt bei 68 °C und mehr bevorzugt für 1 Stunde mit 0,2 x SSC und 0,1 % SDS bei 50 °C, bevorzugter bei 55 °C, mehr bevorzugt bei 62 °C und am meisten bevorzugt bei 68 °C noch ein positives 30 Hybridisierungssignal beobachtet wird.

Die in dieser Schrift genannten Literaturstellen gelten als von der Offenbarung mitumfaßt.

Der Organismus *Arthrobacter aurescens* DSM3747 wurde durch 35 die Rütgerswerke Aktiengesellschaft am 28.05.86 bei der

030115 AM

21

Deutschen Sammlung für Mikroorganismen GmbH, Mascheroder
Weg 1b, 38124 Braunschweig hinterlegt.

030115 AM

22

SEQUENZPROTOKOLL

<110> Degussa AG

5 <120> Screeningverfahren für Hydantoinrazematen

<130> 030115 AM

<140>

10 <141>

<160> 16

15 <170> Patentin Ver. 2.1

<210> 1

<211> 6

<212> PRT

20 <213> Künstliche Sequenz

<220>

<223> Beschreibung der künstlichen Sequenz:
Konsensussequenz

25 <400> 1

Phe Xaa Asp Xaa Gly Leu

1 5

30 <210> 2

<211> 236

<212> PRT

<213> Arthrobacter crystallopoietes

35 <400> 2

Met Arg Ile Leu Val Ile Asn Pro Asn Ser Ser Ser Ala Leu Thr Glu
1 5 10 15

40 Ser Val Ala Asp Ala Ala Gln Gln Val Val Ala Thr Gly Thr Ile Ile
20 25 30

Ser Ala Ile Asn Pro Ser Arg Gly Pro Ala Val Ile Glu Gly Ser Phe
35 40 45

45 Asp Glu Ala Leu Ala Thr Phe His Leu Ile Glu Glu Val Glu Arg Ala
50 55 60

Glu Arg Glu Asn Pro Pro Asp Ala Tyr Val Ile Ala Cys Phe Gly Asp
65 70 75 80

50 Pro Gly Leu Asp Ala Val Lys Glu Leu Thr Asp Arg Pro Val Val Gly
85 90 95

55 Val Ala Glu Ala Ala Ile His Met Ser Ser Phe Val Ala Ala Thr Phe
100 105 110

Ser Ile Val Ser Ile Leu Pro Arg Val Arg Lys His Leu His Glu Leu
115 120 125

Val Arg Gln Ala Gly Ala Thr Asn Arg Leu Ala Ser Ile Lys Leu Pro
 130 135 140

5 Asn Leu Gly Val Met Ala Phe His Glu Asp Glu His Ala Ala Leu Glu
 145 150 155 160

Thr Leu Lys Gln Ala Ala Lys Glu Ala Val Gln Glu Asp Gly Ala Glu
 165 170 175

10 Ser Ile Val Leu Gly Cys Ala Gly Met Val Gly Phe Ala Arg Gln Leu
 180 185 190

Ser Asp Glu Leu Gly Val Pro Val Ile Asp Pro Val Glu Ala Ala Cys
 195 200 205

15 Arg Val Ala Glu Ser Leu Val Ala Leu Gly Tyr Gln Thr Ser Lys Ala
 210 215 220

20 Asn Ser Tyr Gln Lys Pro Thr Glu Lys Gln Tyr Leu
 225 230 235

<210> 3

<211> 711

25 <212> DNA

<213> Künstliche Sequenz

<220>

<223> Beschreibung der künstlichen Sequenz:1BG7

30 <220>

<221> CDS

<222> (1) .. (711)

35 <400> 3

atg aga atc ctc gtg atc aac ccc aac agt tcc agc gcc ctt act gaa 48
 Met Arg Ile Leu Val Ile Asn Pro Asn Ser Ser Ala Leu Thr Glu
 1 5 10 15

40 tcg gtt gcg gac gca gca caa caa gtt gtc gcg acc ggc acc ata att 96

Ser Val Ala Asp Ala Ala Gln Gln Val Val Ala Thr Gly Thr Ile Ile
 20 25 30

45 tct gcc atc aac ccc tcc aga gga ccc gcc gtc att gaa ggc agc ttt 144

Ser Ala Ile Asn Pro Ser Arg Gly Pro Ala Val Ile Glu Gly Ser Phe
 35 40 45

50 gac gaa gca ctg gcc acg ttc cat ctc att gaa gag gtg gag cgc gct 192

Asp Glu Ala Leu Ala Thr Phe His Leu Ile Glu Glu Val Glu Arg Ala
 50 55 60

55 gag cgg gaa aac ccg ccc gac gcc tac gtc atc gca tgt ttc agg gat 240

Glu Arg Glu Asn Pro Pro Asp Ala Tyr Val Ile Ala Cys Phe Arg Asp
 65 70 75 80

ccg gga ctt gac gcg gtc aag gag ctg act gac agg cca gtg gta gga 288

Pro Gly Leu Asp Ala Val Lys Glu Leu Thr Asp Arg Pro Val Val Gly
 85 90 95

030115 AM

24

gtt	gcc	gaa	gct	gca	atc	cac	atg	tct	tca	ttc	gtc	gcg	gcc	acc	ttc	336	
Val	Ala	Glu	Ala	Ala	Ile	His	Met	Ser	Ser	Phe	Val	Ala	Ala	Thr	Phe		
100								105						110			
5	tcc	att	gtc	agc	atc	ctc	ccg	agg	gtc	agg	aaa	cat	ctg	cac	gaa	ctg	384
	Ser	Ile	Val	Ser	Ile	Leu	Pro	Arg	Val	Arg	Lys	His	Leu	His	Glu	Leu	
	115							120						125			
10	gta	cgg	caa	gct	ggg	gct	acg	aat	cgc	ctc	gcc	tcc	atc	aag	ctc	cca	432
	Val	Arg	Gln	Ala	Gly	Ala	Thr	Asn	Arg	Leu	Ala	Ser	Ile	Lys	Leu	Pro	
	130						135						140				
15	aat	ctg	ggg	gtg	atg	gcc	ttc	cat	gag	gac	gaa	cat	gcc	gca	ctg	gag	480
	Asn	Leu	Gly	Val	Met	Ala	Phe	His	Glu	Asp	Glu	His	Ala	Ala	Leu	Glu	
	145					150				155			160				
20	acg	ctc	aaa	caa	gcc	gcc	aag	gag	gct	cag	gag	gac	ggc	gcc	gag		528
	Thr	Leu	Lys	Gln	Ala	Ala	Lys	Glu	Ala	Val	Gln	Glu	Asp	Gly	Ala	Glu	
	165					170				175			175				
25	tcg	ata	gtg	ctc	gga	tgc	gcc	ggc	atg	gtg	ggg	ttt	gct	cgt	caa	ctg	576
	Ser	Ile	Val	Leu	Gly	Cys	Ala	Gly	Met	Val	Gly	Phe	Ala	Arg	Gln	Leu	
	180					185				190			190				
30	cgc	gtg	gcc	gag	agt	ttg	gtc	gct	ctg	ggc	tac	cag	acc	agc	aaa	gct	672
	Arg	Val	Ala	Glu	Ser	Leu	Val	Ala	Leu	Gly	Tyr	Gln	Thr	Ser	Lys	Ala	
	210					215				220							
35	aac	tcg	tat	caa	aaa	ccg	aca	gag	aag	cag	tac	ctc	tag			711	
	Asn	Ser	Tyr	Gln	Lys	Pro	Thr	Glu	Lys	Gln	Tyr	Leu					
	225					230				235							
40	<210>	4															
	<211>	237															
	<212>	PRT															
	<213>	Künstliche Sequenz															
	<223>	Beschreibung der künstlichen Sequenz:1BG7															
45	<400>	4															
	Met	Arg	Ile	Leu	Val	Ile	Asn	Pro	Asn	Ser	Ser	Ser	Ala	Leu	Thr	Glu	
	1					5				10				15			
50	Ser	Val	Ala	Asp	Ala	Ala	Gln	Gln	Val	Val	Ala	Thr	Gly	Thr	Ile	Ile	
	20					25				30							
	Ser	Ala	Ile	Asn	Pro	Ser	Arg	Gly	Pro	Ala	Val	Ile	Glu	Gly	Ser	Phe	
	35					40				45							
55	Asp	Glu	Ala	Leu	Ala	Thr	Phe	His	Leu	Ile	Glu	Glu	Val	Glu	Arg	Ala	
	50					55				60							
	Glu	Arg	Glu	Asn	Pro	Pro	Asp	Ala	Tyr	Val	Ile	Ala	Cys	Phe	Arg	Asp	
	65					70				75				80			

030115 AM

25

Pro Gly Leu Asp Ala Val Lys Glu Leu Thr Asp Arg Pro Val Val Gly
85 90 95

5 Val Ala Glu Ala Ala Ile His Met Ser Ser Phe Val Ala Ala Thr Phe
100 105 110

Ser Ile Val Ser Ile Leu Pro Arg Val Arg Lys His Leu His Glu Leu
115 120 125

10 Val Arg Gln Ala Gly Ala Thr Asn Arg Leu Ala Ser Ile Lys Leu Pro
130 135 140

Asn Leu Gly Val Met Ala Phe His Glu Asp Glu His Ala Ala Leu Glu
145 150 155 160

15 Thr Leu Lys Gln Ala Ala Lys Glu Ala Val Gln Glu Asp Gly Ala Glu
165 170 175

20 Ser Ile Val Leu Gly Cys Ala Gly Met Val Gly Phe Ala Arg Gln Leu
180 185 190

Ser Asp Glu Leu Gly Val Pro Val Ile Asp Pro Val Glu Ala Ala Cys
195 200 205

25 Arg Val Ala Glu Ser Leu Val Ala Leu Gly Tyr Gln Thr Ser Lys Ala
210 215 220

Asn Ser Tyr Gln Lys Pro Thr Glu Lys Gln Tyr Leu
225 230 235

30 <210> 5
<211> 711
<212> DNA
35 <213> Künstliche Sequenz

<220>
<223> Beschreibung der künstlichen Sequenz: 3CH11

40 <220>
<221> CDS
<222> (1)..(711)

<400> 5

45 atg aga atc ctc gtg atc aac ccc aac agt tcc agc gcc ctt act gaa 48
Met Arg Ile Leu Val Ile Asn Pro Asn Ser Ser Ser Ala Leu Thr Glu
1 5 10 15

50 tcg gtt gcg gac gca gca caa caa gtt gtc gcg acc ggc acc ata att 96
Ser Val Ala Asp Ala Ala Gln Gln Val Val Ala Thr Gly Thr Ile Ile
20 25 30

tct gcc atc aac ccc tcc aga gga ccc gcc gtc att gaa ggc agc ttt 144
Ser Ala Ile Asn Pro Ser Arg Gly Pro Ala Val Ile Glu Gly Ser Phe
55 35 40 45

gac gaa gca ctg gcc acg ttc cat ctc att gaa gag gtg gag cgc gct 192
Asp Glu Ala Leu Ala Thr Phe His Leu Ile Glu Glu Val Glu Arg Ala
50 55 60

030115 AM

26

	gag	cg	gaa	aac	ccg	ccc	gac	gcc	tac	gtc	atc	gca	tgt	ttc	gag	gat		240
	Glu	Arg	Glu	Asn	Pro	Pro	Asp	Ala	Tyr	Val	Ile	Ala	Cys	Phe	Glu	Asp		
5	65			70						75					80			
	ccg	gga	ctt	gac	gcg	gtc	aag	gag	ctg	act	gac	agg	cca	gtg	gta	gga		288
	Pro	Gly	Leu	Asp	Ala	Val	Lys	Glu	Leu	Thr	Asp	Arg	Pro	Val	Val	Gly		
		85					90								95			
10	gtt	gcc	gaa	gct	gca	atc	cac	atg	tct	tca	ttc	gtc	gcg	gcc	acc	ttc		336
	Val	Ala	Glu	Ala	Ala	Ile	His	Met	Ser	Ser	Phe	Val	Ala	Ala	Thr	Phe		
		100					105								110			
15	tcc	att	gtc	agc	atc	ctc	ccg	agg	gtc	agg	aaa	cat	ctg	cac	gaa	ctg		384
	Ser	Ile	Val	Ser	Ile	Leu	Pro	Arg	Val	Arg	Lys	His	Leu	His	Glu	Leu		
		115					120								125			
20	gta	cg	caa	gcg	ggg	g	cg	ac	at	cg	ctc	gc	tcc	atc	aag	ctc	cca	432
	Val	Arg	Gln	Ala	Gly	Ala	Thr	Asn	Arg	Leu	Ala	Ser	Ile	Lys	Leu	Pro		
		130					135								140			
	aat	ctg	ggg	gt	at	g	cc	at	tc	at	g	ac	g	ca	ct	g	ag	480
	Asn	Leu	Gly	Val	Met	Ala	Phe	His	Glu	Asp	Glu	His	Ala	Ala	Leu	Glu		
25		145					150								155			160
	acg	ctc	aaa	caa	gc	cc	aag	gag	gc	gt	c	ag	g	ac	gg	gc	gag	528
	Thr	Leu	Lys	Gln	Ala	Ala	Lys	Glu	Ala	Val	Gln	Glu	Asp	Gly	Ala	Glu		
		165					170								175			
30	tcg	ata	gt	ctc	gg	tg	gc	cc	at	gt	gg	tt	gc	cg	ct	aa	ct	576
	Ser	Ile	Val	Leu	Gly	Cys	Ala	Gly	Met	Val	Gly	Phe	Ala	Arg	Gln	Leu		
		180					185								190			
35	agc	gac	gaa	ctc	ggc	gt	cct	gt	atc	gac	ccc	gt	gag	gc	g	ct	tg	624
	Ser	Asp	Glu	Leu	Gly	Val	Pro	Val	Ile	Asp	Pro	Val	Glu	Ala	Ala	Cys		
		195					200								205			
40	cg	gt	gc	gag	ag	tt	gt	gt	ct	gg	tc	ac	ag	aa	gg		672	
	Arg	Val	Ala	Glu	Ser	Leu	Val	Ala	Leu	Gly	Tyr	Gln	Thr	Ser	Lys	Ala		
		210					215								220			
	aac	tcg	ta	aa	aa	ccg	ac	gag	aag	cag	tac	ctc	tag				711	
	Asn	Ser	Tyr	Gln	Lys	Pro	Thr	Glu	Lys	Gln	Tyr	Leu						
		225					230								235			
45	<210>	6																
	<211>	237																
	<212>	PRT																
50	<213>	Künstliche Sequenz																
	<223>	Beschreibung der künstlichen Sequenz:3CH11																
	<400>	6																
	Met	Arg	Ile	Leu	Val	Ile	Asn	Pro	Asn	Ser	Ser	Ser	Ala	Leu	Thr	Glu		
55		1			5					10					15			
	Ser	Val	Ala	Asp	Ala	Ala	Gln	Gln	Val	Val	Ala	Thr	Gly	Thr	Ile	Ile		
			20				25								30			

Ser Ala Ile Asn Pro Ser Arg Gly Pro Ala Val Ile Glu Gly Ser Phe
 35 40 45

5 Asp Glu Ala Leu Ala Thr Phe His Leu Ile Glu Glu Val Glu Arg Ala
 50 55 60

Glu Arg Glu Asn Pro Pro Asp Ala Tyr Val Ile Ala Cys Phe Glu Asp
 65 70 75 80

10 Pro Gly Leu Asp Ala Val Lys Glu Leu Thr Asp Arg Pro Val Val Gly
 85 90 95

Val Ala Glu Ala Ala Ile His Met Ser Ser Phe Val Ala Ala Thr Phe
 100 105 110

15 Ser Ile Val Ser Ile Leu Pro Arg Val Arg Lys His Leu His Glu Leu
 115 120 125

20 Val Arg Gln Ala Gly Ala Thr Asn Arg Leu Ala Ser Ile Lys Leu Pro
 130 135 140

Asn Leu Gly Val Met Ala Phe His Glu Asp Glu His Ala Ala Leu Glu
 145 150 155 160

25 Thr Leu Lys Gln Ala Ala Lys Glu Ala Val Gln Glu Asp Gly Ala Glu
 165 170 175

Ser Ile Val Leu Gly Cys Ala Gly Met Val Gly Phe Ala Arg Gln Leu
 180 185 190

30 Ser Asp Glu Leu Gly Val Pro Val Ile Asp Pro Val Glu Ala Ala Cys
 195 200 205

Arg Val Ala Glu Ser Leu Val Ala Leu Gly Tyr Gln Thr Ser Lys Ala
 210 215 220

Asn Ser Tyr Gln Lys Pro Thr Glu Lys Gln Tyr Leu
 225 230 235

40 <210> 7
 <211> 711
 <212> DNA
 <213> Künstliche Sequenz

45 <220>
 <223> Beschreibung der künstlichen Sequenz:AE3

50 <220>
 <221> CDS
 <222> (1)..(711)

<400> 7
 atg aga atc ctc gtg atc aac ccc aac agt tcc agc gcc ctt act gaa 48
 55 Met Arg Ile Leu Val Ile Asn Pro Asn Ser Ser Ala Leu Thr Glu
 1 5 10 15

tcg gtt gcg gac gca gca caa caa gtt gtc gcg acc ggc acc ata att 96
 Ser Val Ala Asp Ala Ala Gln Gln Val Val Ala Thr Gly Thr Ile Ile

030115 AM

28

	20	25	30	
5	tct gcc atc aac ccc tcc aga gga ccc gcc gtc att gaa ggc agc ttt Ser Ala Ile Asn Pro Ser Arg Gly Pro Ala Val Ile Glu Gly Ser Phe 35 40 45 144			
10	gac gaa gca ctg gcc acg ttc cat ctc att gaa gag gtg gag cgc gct Asp Glu Ala Leu Ala Thr Phe His Leu Ile Glu Glu Val Glu Arg Ala 50 55 60 192			
15	gag cgg gaa aac ccg ccc gac gcc tac gtc atc gca tgt ttc cag gat Glu Arg Glu Asn Pro Pro Asp Ala Tyr Val Ile Ala Cys Phe Gln Asp 65 70 75 80 240			
20	ccg gga ctt gac gcg gtc aag gag ctg act gac agg cca gtg gta gga Pro Gly Leu Asp Ala Val Lys Glu Leu Thr Asp Arg Pro Val Val Gly 85 90 95 288			
25	gtt gcc gaa gct gca atc cac atg tct tca ttc gtc gcg gcc acc ttc Val Ala Glu Ala Ala Ile His Met Ser Ser Phe Val Ala Ala Thr Phe 100 105 110 336			
30	tcc att gtc agc atc ctc ccg agg gtc agg aaa cat ctg cac gaa ctg Ser Ile Val Ser Ile Leu Pro Arg Val Arg Lys His Leu His Glu Leu 115 120 125 384			
35	gta cgg caa gcg ggg gcg acg aat cgc ctc gcc tcc atc aag ctc cca Val Arg Gln Ala Gly Ala Thr Asn Arg Leu Ala Ser Ile Lys Leu Pro 130 135 140 432			
40	aat ctg ggg gtg atg gcc ttc cat gag gac gaa cat gcc gca ctg gag Asn Leu Gly Val Met Ala Phe His Glu Asp Glu His Ala Ala Leu Glu 145 150 155 160 480			
45	acg ctc aaa caa gcc gcc aag gag gcg gtc cag gag gac ggc gcc gag Thr Leu Lys Gln Ala Ala Lys Glu Ala Val Gln Glu Asp Gly Ala Glu 165 170 175 528			
50	tcg ata gtg ctc gga tgc gcc ggc atg gtg ggg ttt gcg cgt caa ctg Ser Ile Val Leu Gly Cys Ala Gly Met Val Gly Phe Ala Arg Gln Leu 180 185 190 576			
55	agc gac gaa ctc ggc gtc cct gtc atc gac ccc gtc gag gca gct tgc Ser Asp Glu Leu Gly Val Pro Val Ile Asp Pro Val Glu Ala Ala Cys 195 200 205 624			
	cgc gtg gcc gag agt ttg gtc gct ctg ggc tac cag acc agc aaa gcg Arg Val Ala Glu Ser Leu Val Ala Leu Gly Tyr Gln Thr Ser Lys Ala 210 215 220 672			
	aac tcg tat caa aaa ccg aca gag aag cag tac ctc tag Asn Ser Tyr Gln Lys Pro Thr Glu Lys Gln Tyr Leu 225 230 235 711			
	<210> 8 <211> 237 <212> PRT <213> Künstliche Sequenz			

030115 AM

29

<223> Beschreibung der künstlichen Sequenz:AE3

<400> 8

Met Arg Ile Leu Val Ile Asn Pro Asn Ser Ser Ser Ala Leu Thr Glu
5 1 5 10 15

Ser Val Ala Asp Ala Ala Gln Gln Val Val Ala Thr Gly Thr Ile Ile
20 25 30

10 Ser Ala Ile Asn Pro Ser Arg Gly Pro Ala Val Ile Glu Gly Ser Phe
35 40 45

Asp Glu Ala Leu Ala Thr Phe His Leu Ile Glu Glu Val Glu Arg Ala
50 55 60

15 Glu Arg Glu Asn Pro Pro Asp Ala Tyr Val Ile Ala Cys Phe Gln Asp
65 70 75 80

20 Pro Gly Leu Asp Ala Val Lys Glu Leu Thr Asp Arg Pro Val Val Gly
85 90 95

Val Ala Glu Ala Ala Ile His Met Ser Ser Phe Val Ala Ala Thr Phe
100 105 110

25 Ser Ile Val Ser Ile Leu Pro Arg Val Arg Lys His Leu His Glu Leu
115 120 125

Val Arg Gln Ala Gly Ala Thr Asn Arg Leu Ala Ser Ile Lys Leu Pro
130 135 140

30 Asn Leu Gly Val Met Ala Phe His Glu Asp Glu His Ala Ala Leu Glu
145 150 155 160

Thr Leu Lys Gln Ala Ala Lys Glu Ala Val Gln Glu Asp Gly Ala Glu
165 170 175

35 Ser Ile Val Leu Gly Cys Ala Gly Met Val Gly Phe Ala Arg Gln Leu
180 185 190

40 Ser Asp Glu Leu Gly Val Pro Val Ile Asp Pro Val Glu Ala Ala Cys
195 200 205

Arg Val Ala Glu Ser Leu Val Ala Leu Gly Tyr Gln Thr Ser Lys Ala
210 215 220

45 Asn Ser Tyr Gln Lys Pro Thr Glu Lys Gln Tyr Leu
225 230 235

50 <210> 9
<211> 711
<212> DNA
<213> Künstliche Sequenz

55 <220>
<223> Beschreibung der künstlichen Sequenz:BB5
<220>
<221> CDS

030115 AM

30

<222> (1)..(711)

<400> 9

atg aga atc ctc gtg atc aac ccc aac agt tcc agc gcc ctt act gaa 48
5 Met Arg Ile Leu Val Ile Asn Pro Asn Ser Ser Ala Leu Thr Glu
1 5 10 15

tcg gtt gcg gac gca gca caa caa gtt gtc gcg acc ggc acc ata att 96
10 Ser Val Ala Asp Ala Ala Gln Gln Val Val Ala Thr Gly Thr Ile Ile
20 25 30

tct gcc atc aac ccc tcc aga gga ccc gcc gtc att gaa ggc agc ttt 144
Ser Ala Ile Asn Pro Ser Arg Gly Pro Ala Val Ile Glu Gly Ser Phe
15 35 40 45

gac gaa gca ctg gcc acg ttc cat ctc att gaa gag gtg gag cgc gct 192
Asp Glu Ala Leu Ala Thr Phe His Leu Ile Glu Glu Val Glu Arg Ala
50 55 60

20 gag cgg gaa aac ccg ccc gac gcc tac gtc atc gca tgt ttc ttg gat 240
Glu Arg Glu Asn Pro Pro Asp Ala Tyr Val Ile Ala Cys Phe Leu Asp
65 70 75 80

25 ccg gga ctt gac gcg gtc aag gag ctg act gac agg cca gtg gta gga 288
Pro Gly Leu Asp Ala Val Lys Glu Leu Thr Asp Arg Pro Val Val Gly
85 90 95

gtt gcc gaa gct gca atc cac atg tct tca ttc gtc gcg gcc acc ttc 336
Val Ala Glu Ala Ala Ile His Met Ser Ser Phe Val Ala Ala Thr Phe
30 100 105 110

tcc att gtc agc atc ctc ccg agg gtc agg aaa cat ctg cac gaa ctg 384
Ser Ile Val Ser Ile Leu Pro Arg Val Arg Lys His Leu His Glu Leu
115 120 125

35 gta cgg caa gcg ggg gcg acg aat cgc ctc gcc tcc atc aag ctc cca 432
Val Arg Gln Ala Gly Ala Thr Asn Arg Leu Ala Ser Ile Lys Leu Pro
130 135 140

40 aat ctg ggg gtg atg gcc ttc cat gag gac gaa cat gcc gca ctg gag 480
Asn Leu Gly Val Met Ala Phe His Glu Asp Glu His Ala Ala Leu Glu
145 150 155 160

45 acg ctc aaa caa gcc gcc aag gag gcg gtc cag gag gac ggc gcc gag 528
Thr Leu Lys Gln Ala Ala Lys Glu Ala Val Gln Glu Asp Gly Ala Glu
165 170 175

50 tcg ata gtg ctc gga tgc gcc ggc atg gtg ggg ttt gcg cgt caa ctg 576
Ser Ile Val Leu Gly Cys Ala Gly Met Val Gly Phe Ala Arg Gln Leu
180 185 190

55 agc gac gaa ctc ggc gtc cct gtc atc gac ccc gtc gag gca gct tgc 624
Ser Asp Glu Leu Gly Val Pro Val Ile Asp Pro Val Glu Ala Ala Cys
195 200 205

cgc gtg gcc gag agt ttg gtc gct ctg ggc tac cag acc agc aaa gcg 672
Arg Val Ala Glu Ser Leu Val Ala Leu Gly Tyr Gln Thr Ser Lys Ala
210 215 220

030115 AM

31

aac tcg tat caa aaa ccg aca gag aag cag tac ctc tag
Asn Ser Tyr Gln Lys Pro Thr Glu Lys Gln Tyr Leu
225 230 235

711

5

<210> 10
<211> 237
<212> PRT

<213> Künstliche Sequenz

10 <223> Beschreibung der künstlichen Sequenz:BB5

<400> 10

Met Arg Ile Leu Val Ile Asn Pro Asn Ser Ser Ser Ala Leu Thr Glu
1 5 10 15

15

Ser Val Ala Asp Ala Ala Gln Gln Val Val Ala Thr Gly Thr Ile Ile
20 25 30

20

Ser Ala Ile Asn Pro Ser Arg Gly Pro Ala Val Ile Glu Gly Ser Phe
35 40 45

Asp Glu Ala Leu Ala Thr Phe His Leu Ile Glu Glu Val Glu Arg Ala
50 55 60

25

Glu Arg Glu Asn Pro Pro Asp Ala Tyr Val Ile Ala Cys Phe Leu Asp
65 70 75 80

Pro Gly Leu Asp Ala Val Lys Glu Leu Thr Asp Arg Pro Val Val Gly
85 90 95

30

Val Ala Glu Ala Ala Ile His Met Ser Ser Phe Val Ala Ala Thr Phe
100 105 110

35

Ser Ile Val Ser Ile Leu Pro Arg Val Arg Lys His Leu His Glu Leu
115 120 125

Val Arg Gln Ala Gly Ala Thr Asn Arg Leu Ala Ser Ile Lys Leu Pro
130 135 140

40

Asn Leu Gly Val Met Ala Phe His Glu Asp Glu His Ala Ala Leu Glu
145 150 155 160

Thr Leu Lys Gln Ala Ala Lys Glu Ala Val Gln Glu Asp Gly Ala Glu
165 170 175

45

Ser Ile Val Leu Gly Cys Ala Gly Met Val Gly Phe Ala Arg Gln Leu
180 185 190

50

Ser Asp Glu Leu Gly Val Pro Val Ile Asp Pro Val Glu Ala Ala Cys
195 200 205

Arg Val Ala Glu Ser Leu Val Ala Leu Gly Tyr Gln Thr Ser Lys Ala
210 215 220

55

Asn Ser Tyr Gln Lys Pro Thr Glu Lys Gln Tyr Leu
225 230 235

<210> 11

<211> 25
<212> DNA
<213> Künstliche Sequenz

5 <220>
<223> Beschreibung der künstlichen Sequenz: Primer5

<400> 11
gccgcaagga atggtgcatg catcg 25

10 <210> 12
<211> 30
<212> DNA
15 <213> Künstliche Sequenz

<220>
<223> Beschreibung der künstlichen Sequenz: Primer6

20 <400> 12
ggtcagggtgg gtccaccgcg ctactgccgc 30

<210> 13
25 <211> 5777
<212> DNA
<213> Künstliche Sequenz

<220>
30 <223> Beschreibung der künstlichen Sequenz: Plasmid pOM21

<400> 13
aattcttaag aaggagatat acatatgaga atcctcgta tcaaccccaa cagttccagc 60

35 gccc ttactg aatcggttgc ggacgcagca caacaagttg tcgcgaccgg caccataatt 120
tctgccatca acccctccag aggacccgccc gtcattgaag gcagctttga cgaagcactg 180
40 gccacgttcc atctcattga agaggtggag cgcgctgagc gggaaaaccc gccc gacgcc 240
tacgtcatcg catgtttcgg ggatccggga cttgacgcgg tcaaggagct gactgacagg 300
ccagtggttag gagttgccga agctgcaatc cacatgtctt cattcgtcgc ggccaccc 360
45 tccatttgtca gcattcctccc gagggtcagg aaacatctgc acgaactggg acggcaagcg 420
ggggcgacga atcgccctcgc ctccatcaag ctcccaaatc tgggggtgat ggccttccat 480
50 gaggacgaac atgcccgcact ggagacgctc aaacaagccg ccaaggaggc ggtccaggag 540
gacggcgccg agtcgatagt gctcgatgc gcccgcattgg tgggggttgc gctcaactg 600
55 agcgcacgaac tcggcgatccc tgtcatcgac cccgtcgagg cagcttgcgg cgtggccgag 660
aagcagtacc tctagctgca gccaagcttc tggtttggcg gatgagagaa gatttcagc 780
ctgatacaga ttaaatcaga acgcagaagc ggtctgataa aacagaattt gcctggccgc 840

agtagcgcgg tggtcccacc tgaccccatg ccgaactcag aagtgaaacg ccgtagcgcc 900
5 gatggtagtg tgggtctcc ccatgcgaga gtagggaact gccaggcatc aaataaaacg 960
aaaggctcag tcgaaaagact gggccttcg ttttatctgt tgggtgcgg tgaacgctct 1020
cctgagtagg acaaattccgc cgggagcgg a 1080
10 gtggcgggca ggacgccccgc cataaaactgc caggcatcaa attaaggcaga agggcatcct 1140
gacggatggc cttttgcgt ttctacaaac tctttgttt attttctaa atacattcaa 1200
15 atatgtatcc gctcatgaga caataaccct gataaatgct tcaataatat cgtccattcc 1260
gacagcatcg ccagtcacta tggcgtgctg ctgcgtat atgcgttgat gcaattcta 1320
tgccgcaccccg ttctcgagc actgtccgac cgctttgcc gcccggcagt cctgctcgct 1380
20 tcgctacttg gagccactat cgactacgcg atcatggcga ccacacccgt cctgtggatc 1440
ctctacgccc gacgcacgtt ggccggcatc accggcggca caggtgcgg tgcgtggcc 1500
tatatcgccg acatcaccga tgggaagat cgggctcgcc acttcgggct catgagcgct 1560
25 tggttccggcg tgggtatggt ggcaggcccc gtggccgggg gactgttggg cgccatctcc 1620
ttgcatgcac cattccttc ggcggcgggtg ctcaacggcc tcaacctact actggctgc 1680
30 ttcctaattgc aggagtgcga taaggagag cgtgcaccga tgcccttgag agccttcaac 1740
ccagtcagct cttccgggtg ggccggggc atgactatcg tcgcccact tatgactgtc 1800
ttctttatca tgcaactcgt aggacaggtg cggcagcgc tctgggtcat ttccggcgag 1860
35 gaccgccttc gctggagcgc gacgatgatc ggcctgtcgc ttgcggatt cggaatcttgc 1920
cacgcctcg ctcaaggcctt cgtcactggt cccgccacca aacgtttcg cgagaagcag 1980
0 gccattatcg ccggcatggc ggccgacgcg ctggctacg tcttgctggc gttcgcgacg 2040
cgaggctgga tggccttccc cattatgatt cttctcgctt ccggcggcat cgggatgccc 2100
45 gcgttgcagg ccatgctgtc caggcaggta gatgacgacc atcaggaca gcttcaagga 2160
tcgctcgccg ctcttaccag cctaacttcg atcactggac cgctgatcgt cacggcgatt 2220
tatgcccctt cggcgagcac atggaacggg ttggcatgga ttgtaggcgc cggccataac 2280
50 cttgtctgcc tccccgcgtt gcgtcgccgt gcatggagcc gggccacctc gacctaattg 2340
gaagccggcg gcaccccgct aacggattca ccactccaag aattggagcc aatcaattct 2400
tgccggagaac tgtgaatgcg caaaccacc cttggcagaa catatccatc gcgtccgcca 2460
55 tctccagcag ccgcacgcgg cgcatctcg gca gcttgcgg tgcctggcc cgggtgcgc 2520
tgatcgtgct cctgtcggtt aggacccggc taggctggcg ggggtgcctt actgggttagc 2580

agaatgaatc accgatacgc gagcgaacgt gaagcgactg ctgctgcaaa acgtctgcga 2640
cctgagcaac aacatgaatg gtctcggtt tccgtgttc gtaaagtctg gaaacgcgga 2700
5 agtcccctac gtgctgctga agttgcccgc aacagagagt ggaaccaacc ggtgatacca 2760
cgatactatg actgagagtc aacgccatga gcggcctcat ttcttattct gagttacaac 2820
10 agtccgcacc gctgtccggt agctccttcc ggtgggcgca gggcatgact atcgtcgccg 2880
cacttatgac tgtcttctt atcatgcaac tcgttaggaca ggtgccggca ggcggcaaca 2940
gtccccggc cacggggcct gccaccatac ccacgcccga acaagcgccc tgcaccatta 3000
15 tgttccggat ctgcacgcga ggatgctgct ggctaccctg tggAACACCT acatctgtat 3060
taacgaagcg ctaaccgttt ttatcaggct ctgggaggca gaataaatga tcataatcgac 3120
20 aattattacc tccacgggga ggcctgagc aaactggcct caggcatttg agaagcacac 3180
ggtcacactg cttccggtag tcaataaaacc ggtaaaccag caatagacat aagcggtat 3240
ttaacgaccc tgccctgaac cgacgaccgg gtcgaatttg ctttgcattt tctgcatttc 3300
25 atccgcttat tatcacttt tcaggcgttag caccaggggt ttaaggcac caataactgc 3360
cttaaaaaaaa ttacgccccg ccctgccact catgcagta ctgttgtaat tcattaagca 3420
30 ttctggcgcac atggaagcca tcacagacgg catgatgaac ctgaatcgcc agcgccatca 3480
gcaccttgcgc taatatttgc ccatggtaaa aacggggcg aagaagttgt 3540
ccatattggc cacgtttaaa tcaaaactgg tgaaactcac ccaggattt gctgagacga 3600
35 aaaacatatt ctcaataaaac cctttaggaa aataggccag gtttcaccc taacacgcca 3660
catcttgcga atatatgtgt agaaaactgcc ggaaatcgac gtggatttca ctccagagcg 3720
40 atgaaaacgt ttcaagttgc tcatggaaaa cggtgtaaca agggtgaaca ctatccata 3780
tcaccagctc accgtcttcc attgccatac gaattccgga tgagcattca tcaggcggc 3840
aagaatgtga ataaaggccg gataaaactt gtgcttattt ttcttacgg tctttaaaaa 3900
45 ggccgtataa tccagctgaa cggctcggtt ataggtacat tgagcaactg actgaaatgc 3960
ctcaaaatgt tctttacgat gccattggaa tatacaacg gtggtatatc cagtgtttt 4020
50 tttctccatt ttagcttcct tagctcctga aaatctcgat aactaaaaaaaa atacgcccgg 4080
tagtgatctt atttcattat ggtgaaagtt ggaaccttcc acgtgccgat caacgtctca 4140
ttttcgccaa aagttggccc agggcttccc ggtatcaaca gggacaccag gatttattta 4200
55 ttctgcegaag tgatcttccg tcacaggtat ttattcggcg caaaagtgcgt cgggtgatgc 4260
tgccaaactta ctgattttagt gtatgatggt gttttgagg tgctccagtg gcttctgttt 4320
ctatcagctg tccctctgt tcagctactg acgggggtggc gctgtacggc aaaagcaccg 4380

ccggacatca gcgctagcgg agtgtatact ggcttactat gttggcactg atgagggtgt 4440
 cagtgaagtgc ttccatgtgg caggagaaaa aaggctgcac cggtgcgtca gcagaatatg 4500
 5 tgatacagga tatattccgc ttccctcgctc actgactcgc tacgctcggt cgttcgactg 4560
 cggcgagcgg aaatggctta cgaacggggc ggagattcc tggaaagatgc caggaagata 4620
 10 cttaacaggg aagtgagagg gccgcggcaa agccgtttt ccataggctc cgccccctg 4680
 acaagcata cgaatctga cgctcaaatac agtggtgccg aaacccgaca ggactataaa 4740
 15 gataccaggc gtttcccctg gcccgtccct cgtgcgtct cctgttcctg cctttcggt 4800
 taccggtgtc attccgctgt tatggccgctg tttgtctcat tccacgcctg acactcagtt 4860
 cgggtaggc agttcgctcc aagctggact gtatgcacga acccccggt cagtccgacc 4920
 20 gctgcgcctt atccggtaac tatcgcttg agtccaaccc ggaaagacat gcaaaagcac 4980
 cactggcagc agccactggt aattgattta gaggagttag tcttgaagtc atgcgcgg 5040
 25 taaggctaaa ctgaaaggac aagttttggt gactgcgtc ctccaagcca gttacctcg 5100
 ttcaaaagagt tggtagctca gagaacctc gaaaaaccgc cctgcaaggc ggtttttcg 5160
 ttttcagagc aagagattac ggcgcagacca aaacgatctc aagaagatca tcttattaaat 5220
 30 cagataaaat atttcaagat ttcaatgc aaatctttt caaatgtac acctgaagtc 5280
 agccccatac gatataagtt gtaattctca tggcgacag cttatcatcg ataagctta 5340
 35 atgcggtagt ttatcacagt taaattgcta acgcagtcg gcaccgtgt tgaaatctaa 5400
 caatgcgtc atcgatcc tcggcaccgt caccctggat gctgtaggca taggcttgg 5460
 tatgccggta ctgccggcc tcttgcggga ttagtcatgc cccgcgccc cccggagg 5520
 40 ctgactgggt tgaaggctct caagggcatac ggtcgacgct ctccttatg cgactcctgc 5580
 attaggaagc agcccaatgg tagttgagg cggttgagca cccgcgccc aaggaatgg 5640
 gcatgcacatcg atcaccacaa ttcaatgc ttttttttca atcacgttca tctttccctg 5700
 45 gttgccaatg gcccattttc ctgtcagtaa cgagaaggc gcaatttcg ggcgtttta 5760
 gactggtcgt aatgaac 5777
 50 <210> 14
 <211> 7175
 <212> DNA
 55 <213> Künstliche Sequenz
 <220>
 <223> Beschreibung der künstlichen Sequenz: Plasmid pOM22
 <400> 14

aattcttaag aaggagatat acatatgacc ctgcagaaaag cgcaagcgna gcgcatttag 60
aaagagatct gggagcttc cccgttctcg gcggaaaggcc ccgggtttac ccggctgacc 120
5 tacactccag agcatgccgc cgcgccccaa acgctcattt cggctatggaa agcggccgct 180
ttgagcgttc gtgaagacgc ttcggaaac atcatcgccc gacgtgaagg cactgatccg 240
10 cagctccctg cgatcgccgt cggttacacac ttgcattctg tccgaaacgg cggatgttc 300
gatggcactg caggcgtgggt gtgcgcctt gaggctgccc gggatgtct ggagagcggc 360
tacgtgaatc ggcattccatt tgagttcatc gcatcggtt aggaggaagg ggcccgcttc 420
15 agcagtggca tttttggcgg ccggccatt gcaggtttg tcggcgcacag ggaactggac 480
tctttgttg atgaggatgg agtgtccgtt aggcaggcgg ctactgcctt cggcttgaag 540
20 cgggcgaac tgcaggctgc agccgcctcc gcggcggacc tgcgtgttt tatcgaacta 600
cacattgaac aaggaccgat cctcgagcag gagcaaataag agatcggagt tgtgacctcc 660
atcggtggcg ttgcgcatt gcgggttgct gtcaaaggca gaagcgcaca cggccggcaca 720
25 acccccattgc acctgcgcac ggatgcgcgt gtacccggc ctctcatggt gcgggaggc 780
aaccggttcg tcaacgagat cggcgatggc acagtggcta ccgttggcca cctcacagt 840
30 gccccgggtg gcggcaacca ggtccgggg gaggtggagt tcacactggaa cctgcgttct 900
ccgcatgagg agtcgctccg ggtgttgatc aaccgcattt cggcatggt cggcgaggc 960
gcctcgagg ccgggtgtggc tgccgatgtt gatgaatttt tcaatctcag cccgggtgcag 1020
35 ctggctccata ccatggtgga cggcggttcgc gaagcggcct cggccctgca gttcacgcac 1080
cgggatataca gcagtggggc gggccacgc tcgatgttca tggcccgagg cacggacgc 1140
40 ggaatggttt tcgttccaag ccgtgctggc cggagccacg ttcccgaaga atggaccgat 1200
ttcgatgacc ttgcgaaggaa aactgagggtt gtccctccggg taatgaaggc acttgaccgg 1260
ggatcccatc atcatcatca tcattgactg cagccaaatct tctgtttgg cggatgagag 1320
45 aagattttca gcctgataca gattaaatca gaacgcagaa gggctgtat aaaacagaat 1380
ttgcctggcg gcagtagcgc ggtggtccca cctgacccca tgccgaactc agaagtgaaa 1440
50 cggcgtagcg ccgatggtag tgggggtct cccatgcga gagtagggaa ctgcccaggca 1500
tcaaataaaa cgaaaggctc agtcgaaaga ctgggcctt cgttttatct gttgttgtc 1560
ggtgaacgcct ctcctgagta ggacaaatcc gccgggagcg gatttgaacg ttgcgaagca 1620
55 acggcccgga ggggtggcggg caggacgccc gccataaaact gccaggcatc aaattaagca 1680
gaaggccatc ctgacggatg gccttttgc gtttctacaa actctttgt ttattttct 1740
aaatacattc aaatatgtat ccgcctcatga gacaataacc ctgataaaatg cttcaataat 1800

attgaaaaag gaagagtatg agtattcaac atttccgtgt cgcccttatt ccctttttg 1860
5 cggcattttg ctttcctgtt tttgctcacc cagaaacgct ggtgaaaagta aaagatgctg 1920
aagatcagtt ggggcacga gtgggttaca tcgaactgga tctcaacagc ggtaagatcc 1980
ttgagagtt tcgccccgaa gaacgtttc caatgatgag cactttaaa gttctgctat 2040
10 gtggcgcggt attatcccgt gttgacgccc ggcaagagca actcggtcgc cgcatacact 2100
attctcagaa tgacttggtt gagtactcac cagtcacaga aaagcatctt acggatggca 2160
15 tgacagtaag agaattatgc agtgctgcca taaccatgag tgataaacact gcccggcaact 2220
tacttctgac aacgatcgga ggaccgaagg agctaaccgc tttttgcac aacatgggg 2280
atcatgtAAC tcgccttgat cggtggaaac cggagctgaa tgaagccata ccaaaccgacg 2340
20 agcgtgacac cacgatgcct gtagcaatgg caacaacgtt ggcggaaacta ttaactggcg 2400
aactactac tctagcttcc cggcaacaat taatagactg gatggaggcg gataaagttg 2460
25 caggaccact tctgcgctcg gcccttccgg ctggctggtt tattgctgat aaatctggag 2520
ccggtgagcg tgggtctcgc ggtatcattt cagcaactggg gccagatggt aagccctccc 2580
gtatcgtagt tatctacacg acggggagtc aggcaactat ggatgaacga aatagacaga 2640
30 tcgctgagat aggtgcctca ctgattaagc attggtaact gtcagaccaa gtttactcat 2700
atataactta gattgattta aaacttcatt ttaattaa aaggatctag gtgaagatcc 2760
35 ttttgataa tctcatgacc aaaatccctt aacgtgagtt ttcttccac tgagcgtcag 2820
acccctaga aaagatcaaa ggatcttctt gagatcctt tttctgcgc gtaatctgct 2880
gcttgcaaac aaaaaaaccg ccgctaccag cgggggttg tttgccggat caagagctac 2940
0 caactcttt tccgaaggta actggcttca gcagagcgca gataccaaat actgtccttc 3000
tagttagcc gtagtttaggc caccacttca agaactctgt agcacccctt acatacctcg 3060
45 ctctgctaattt cctgttacca gtggctgctg ccagtggcga taagtctgtt cttaccgggt 3120
tggactcaag acgatagttt ccggataagg cgcagcggtc gggctgaacg ggggggttcgt 3180
gcacacagcc cagcttggag cgaacgacct acaccgaact gagataccta cagcgtgagc 3240
50 tatgagaaag cgccacgctt cccgaaggga gaaaggcgga caggtatccg gtaagccggca 3300
gggtcggaac aggagagcgc acgagggagc ttccaggggg aaacgcctgg tatcttata 3360
gtcctgtcgg gtttcgcac ctctgacttg agcgtcgatt tttgtatgc tcgtcagggg 3420
55 ggcggagcct atggaaaaac gccagcaacg cggcctttt acggttcctg gcctttgct 3480
ggcctttgc tcacatgttc tttcctgctt tatccctga ttctgtggat aaccgtatta 3540

ccgccttga gtgagctgat accgctcgcc gcagccgaac gaccgagcgc agcgagtcag 3600
tgagcgagga agcggaaagag cgccctgatgc ggtattttct ccttacgcat ctgtgcggta 3660
5 tttcacacccg catatatggt gcactctcag tacaatctgc tctgatgccg catagttaaag 3720
ccagtataca ctccgctatc gctacgtgac tgggtcatgg ctgcgcggc acacccgcca 3780
10 acacccgctg acgcccctg acgggcttgt ctgctccgg catccgctta cagacaagct 3840
gtgaccgtct ccgggagctg catgtgtcag aggtttcac cgtcatcacc gaaacgcgcg 3900
aggcagctgc ggtaaagctc atcagcgtgg tcgtgaagcg attcacagat gtctgcctgt 3960
15 tcatccgcgt ccagctcggt gagttctcc agaagcgtta atgtctggct tctgataaag 4020
cgggccatgt taagggcggt ttttcctgt ttggtcactt gatgcctccg tgtaaggggg 4080
20 aatttctgtt catggggta atgataccga tgaaacgaga gaggatgctc acgataacggg 4140
ttactgatga tgaacatgcc cggttactgg aacgttgtga gggtaaacaa ctggcggtat 4200
ggatgcggcg ggaccagaga aaaatcactc agggtcaatg ccagcgcttc gttaatacag 4260
25 atgttaggtgt tccacagggt agccagcagc atcctgcgtat gcagatccgg aacataatgg 4320
tgcagggcgc tgacttccgc gtttccagac tttacgaaac acggaaacccg aagaccattc 4380
atgttgttgc tcaggtcgca gacgtttgc agcagcagtc gttcacgtt cgctcgcgta 4440
30 tcggtgattc attctgctaa ccagtaaggc aaccccgcca gcctagccgg gtcctaacf 4500
.acaggagcac gatcatgcgc acccgtggcc aggacccaac gctgcccggag atgcgcggcg 4560
35 tgccgctgct ggagatggcg gacgcgtatgg atatgttctg ccaagggttg gtttgcgcata 4620
tcacagttct ccgcaagaat tgattggctc caattcttgg agtggtaat ccgttagcga 4680
40 ggtgccgccc gttccattc aggtcgaggt ggcccggtc catgcaccgc gacgcaacgc 4740
ggggaggcag acaaggtata gggccggcc tacaatccat gccaaaccgt tccatgtgct 4800
cgccgaggcg gcataaatcg ccgtgacgtat cagcggtcca gtgatcgaag ttaggcttgt 4860
45 aagagccgcg agcgatcctt gaagctgtcc ctgatggctg tcacatctacct gcctggacag 4920
catggcctgc aacgcgggca tcccgatgcc gccggaagcg agaagaatca taatgggaa 4980
50 ggcacatccag cctcgcgatcg cgaacgccag caagacgtat cccagcgatcg cggccgcata 5040
gccggcgata atggcctgat tctcgccgaa acgtttggtg gcgggaccag tgacgaaggc 5100
ttgagcgagg gcgtgcaaga ttccgaatac cgcaagcgcac aggccgatca tcgtcgatcg 5160
55 ccagcgaaag cggtcctcgat cgaaaatgac ccagagcgat gccggcacct gtcctacgag 5220
ttgcgtatgcata aagaagacag tcataagtgc ggcatcgata gtcatgccccc ggcgcacccg 5280
gaaggagctg actgggttga aggctctcaa gggcatcggt cgacgctctc ctttatgcga 5340

ctcctgcatt aggaagcagc ccagtagtag gttgaggccg ttgagcacccg ccggccgcaag 5400
5 gaatggtgca tgcacatcgatc accacaattc agcaaattgt gaacatcatc acgttcatct 5460
ttcccctggtt gccaatggcc catttcctg tcagtaacga gaaggtcgcg aattcaggcg 5520
cttttagac tggtcgtaat gaacaattct taagaaggag atatacatat gtttgacgta 5580
10 atagttaaga actgccgtat ggtgtccagc gacggaatca ccgaggcaga cattctggtg 5640
aaagacggca aagtgcgccgc aatcagctcg gacacaagtg atgttgaggc gagccgaacc 5700
15 attgacgcgg gtggcaagtt cgtgatgccc ggcgtggcg atgaacatgt gcatacatc 5760
gacatggatc tgaagaaccg gtatggccgc ttcgaactcg attccgagtc tgcggccgtg 5820
ggaggcatca ccaccatctt tgagatgccc tttaccttcc cgccccaccac cactttggac 5880
20 gccttcctcg aaaagaagaa gcaggcgaaa cagcggttga aagttgactt cgcgccttat 5940
ggcgggtggag tgccgggaaa cctgcccggag atccgaaaaa tgacacgacgc cggcgcagtg 6000
25 ggcttcaagt caatgatggc agcctcagtt ccgggcatgt tcgacgcccgt cagcgacggc 6060
gaacttttcg aaatcttcca ggagatcgca gcctgtggtt cagtcgcccgt ggtccatgcc 6120
gagaatgaaa cgatcattca agcgctccag aagcagatca aagccgctgg tcgcaaggac 6180
30 atggccgcct acgaggcattc ccaaccagtt ttccaggaga acgaggccat tcagcgtcg 6240
ttactactgc agaaagaagc cggctgtcga ctgattgtgc ttcacgtgag caaccctgac 6300
35 ggggtcgagc tgatacatcg ggcgaatcc gagggccagg acgtccactg cgagtcgggt 6360
ccgcagttatc tgaatatatcac cacggacgac gccgaacgaa tcggaccgta tatgaaggtc 6420
gccccccccg tccgctcagc cgagatgaac gtcagattat gggaaacaact tgagaacggg 6480
0 ctcatcgaca cccttgggtc agaccacggc ggacatcctg tcgaggacaa agaaccggc 6540
tggaggacg tggaaaagc cggcaacgggt ggcgtggcc ttgagacatc cctgcctatg 6600
45 atgctgacca acggagtgaa taaaggcagg ctatccttgg aacgcctcgt cgaggtgatg 6660
tgcgagaaac ctgcgaagct ctggcatac tatccgcaga agggcacgct acaggttgggt 6720
tccgacgcccgt atctgctcat cctcgatctg gatattgaca ccaaagtggta tgcctcgac 6780
50 ttccgatccc tgcataagta cagccgttc gacgggatgc ccgtcacggg tgcaccgggt 6840
ctgacgatgg tgcgcggaaac ggtgggtggca gagaaggag aagttctggt cgagcaggaa 6900
55 ttcggccagt tcgtcacccg tcacgactac gaggcggtcga agtgaggatc tcgacgctct 6960
cccttatgcg actcctgcat taggaagcag cccagtagta ggttgaggcc gttgagcacc 7020
gccggccgcaaa ggaatggtgc atgcacatcgat caccacaattt cagcaaattt tgaacatcat 7080

cacgttcatc ttccctgg tgc~~caatggc~~ ccattt~~cct~~ gtc~~agtaacg~~ agaagg~~tgc~~ 7140
gaattc~~aggc~~ gcttt~~taga~~ ctgg~~tgtaa~~ tgaac 7175

5 <210> 15
<211> 5989
<212> DNA
<213> Künstliche Sequenz

10 10 <220>
<223> Beschreibung der künstlichen Sequenz: Plasmid pDHYH

15 15 aattcttaag aaggagat~~a~~ acat~~atggat~~ gcaaagctac tgg~~ttggcg~~ cactatt~~gtt~~ 60
tcctcgaccg gcaaaatccg agccgacgtg ctgatt~~gaaa~~ acggcaa~~agt~~ cgccgctgtc 120

20 20 ggc~~atgctgg~~ acgccc~~gac~~ gccc~~ggacaca~~ gttgag~~cg~~ ttgact~~gcga~~ cggcaa~~atac~~ 180
gtcatgccc~~g~~ gcggtat~~cga~~ cg~~ttcacacc~~ cacat~~cgact~~ cccccctcat ggggaccacc 240
ac~~cgccgat~~ g attt~~gtcag~~ cg~~gaac~~ gatt~~gc~~ c~~aggccg~~ gta~~ccggcgg~~ aacgaccatc 300

25 25 gtcgatt~~tcg~~ gac~~aggc~~ gact~~cg~~ c~~ggccg~~ caag aac~~ctgctt~~ g aat~~ccgc~~ a~~ga~~ cgc~~gcaccac~~ 360
aaaaagg~~gcgc~~ aggg~~ggaa~~ atc c~~gtcatt~~ gat~~tacgg~~ cttcc~~at~~ at~~atgtgcgt~~ gac~~gaac~~ ctc 420

30 30 t~~atgacaatt~~ tc~~gattt~~ ccc~~a~~ tat~~ggcagaa~~ ctg~~acac~~ agg~~ac~~ g~~atc~~ c~~agtt~~ caag 480
gtctt~~catgg~~ c~~ctacc~~ gg~~a~~ a~~gcct~~ gat~~g~~ at~~caac~~ g~~ac~~ g~~caact~~ gtt~~t~~ cgac~~atc~~ ctc 540

35 35 a~~aggg~~ ag~~gtcg~~ g~~ctcc~~ a~~ggc~~ gg~~ccaa~~ act~~a~~ tg~~cgtcc~~ ac~~g~~ c~~aga~~ ac~~gg~~ cg~~acgt~~ catc 600
gac~~aggat~~ cg~~cccg~~ ac~~ct~~ ct~~acg~~ ccc~~aa~~ gg~~aaaa~~ acc~~g~~ gg~~ccgg~~ gac~~cc~~ ac~~gatc~~ 660

40 40 gc~~acg~~ ccc~~gc~~ c~~gga~~ at~~cg~~ ga~~gt~~ a~~tc~~ g~~cc~~ c~~gg~~ gg~~cc~~ ac~~tc~~ c~~at~~ ca~~ag~~ gat~~t~~ ct~~cccggat~~ g 720
gcc~~gagg~~ gt~~gc~~ cg~~ctgt~~ tatt~~t~~ c~~tc~~ acc~~cc~~ a~~gg~~ g~~gg~~ tc~~ga~~ g~~tc~~ ga~~gg~~ g~~ta~~ g~~ct~~ 780

45 45 g~~ccg~~ c~~gc~~ c~~aga~~ g~~tgacaggat~~ g~~ccaatc~~ g~~gc~~ g~~aaacgt~~ g~~cacccacta~~ c~~c~~ t~~gtcgct~~ t~~g~~ 840
ag~~ccgg~~ g~~aca~~ t~~tacgacca~~ g~~ccgg~~ g~~attc~~ g~~agccgg~~ c~~ca~~ a~~gctgt~~ c~~c~~ t~~acaccac~~ g~~cg~~ 900

50 50 ct~~g~~ g~~gc~~ ac~~ac~~ ag~~gaac~~ ac~~ca~~ gg~~acgcgtt~~ g~~tg~~ g~~agagg~~ ca~~tta~~ ac~~acc~~ gg~~tg~~ g~~ctc~~ a~~gc~~ 960
gt~~cgtc~~ a~~gat~~ c~~cc~~ c~~tt~~ c~~tc~~ g~~tt~~ g~~aggaaa~~ a~~gc~~ a~~g~~ c~~ggat~~ g~~gggg~~ c~~agat~~ 1020

55 55 g~~acttccgg~~ c~~gat~~ c~~ccccc~~ aa~~gg~~ c~~gggg~~ c~~cc~~ g~~gcgtgg~~ g~~ac~~ g~~aatg~~ c~~gt~~ g~~atgttat~~ 1080
g~~agaccgg~~ t~~cg~~ g~~gaa~~ g~~agg~~ a~~aaaat~~ g~~ac~~ g~~aaaat~~ t~~cg~~ t~~cg~~ g~~agg~~ t~~act~~ g~~cc~~ g~~ag~~ 1140
a~~acccgg~~ c~~ca~~ a~~ttc~~ g~~at~~ t~~atgtaccc~~ a~~aaaagg~~ g~~aa~~ ca~~att~~ g~~cacc~~ g~~gg~~ c~~tccgat~~ 1200

60 60 g~~cagacat~~ ca~~t~~ c~~gtgg~~ t~~cg~~ a~~cccaac~~ g~~ga~~ a~~caacc~~ c~~ta~~ t~~cagt~~ g~~cc~~ g~~ca~~ a~~aaaa~~ 1260
ca~~aaacat~~ gg~~actacac~~ g~~ct~~ g~~aaagg~~ c~~tc~~ a~~aaat~~ cc~~g~~ t~~tg~~ c~~tc~~ c~~at~~ c~~g~~ a~~cc~~ a~~gg~~ t~~g~~ 1320

65 65 t~~tctcg~~ g~~cg~~ a~~cct~~ g~~at~~ c~~agcgt~~ c~~aaa~~ g~~gc~~ g~~aaat~~ t~~g~~ t~~ggc~~ a~~cccc~~ g~~cg~~ g~~ccg~~ g~~gg~~ 1380

gaattcatca agcggagcgc ttggagccac ccgcagttcg aaaaataaaa gcttggtgt 1440
5 tttggcgat gagagaagat tttcagcctg atacagatta aatcagaacg cagaagcggt 1500
ctgataaaac agaatttgcc tggcggcagt agcgcggtgg tcccacctga ccccatgccc 1560
aactcagaag tgaaacgccc tagcgcgcgt ggtagtgtgg ggtctccccca tgcgagagta 1620
10 gggaaactgcc aggcatcaaa taaaacgaaa ggctcagtcg aaagactggg ccttcgttt 1680
tatctgttgt ttgtcggtga acgctctcct gagtaggaca aatccgcccgg gaggcgattt 1740
15 gaacgttgcg aagcaacggc ccggagggtg gccccccat aaactgccag 1800
gcatcaaatt aagcagaagg ccacccgtac ggatggcctt tttgcgttcc tacaaactct 1860
tttgttatt tttctaaata catccaaata tgtatccgct catgagacaa taaccctgat 1920
20 aaatgcttca ataatatattga aaaaggaaga gtatgagtat tcaacatttc cgtgtcgccc 1980
ttattccctt ttttgcggca ttttgccttc ctgttttgc tcacccagaa acgctggtga 2040
aagtaaaaga tgctgaagat cagttgggtg cacgagtggg ttacatcgaa ctggatctca 2100
25 acagcggtaa gatccttgag agtttcgccc ccgaagaacg tttccaatg atgagcactt 2160
ttaaagttct gctatgtggc gcggatttat cccgtgttga cggccggcaa gagcaactcg 2220
30 gtcggccat acactattct cagaatgact tggttgagta ctcaccagtc acagaaaagc 2280
atcttacgga tggcatgaca gtaagagaat tatgcagtgc tgccataacc atgagtgata 2340
acactgcggc caacttactt ctgacaacga tcggaggacc gaaggagcta accgctttt 2400
35 tgcacaacat gggggatcat gtaactcgcc ttgatcggtt ggaaccggag ctgaatgaag 2460
ccataccaaa cgacgagcgt gacaccacga tgcctgttagc aatggcaaca acgttgcgca 2520
40 aactattaac tggcgaacta cttactctag cttccggca acaattaata gactggatgg 2580
aggcggataa agttgcagga ccacccctgc gctcgccct tccggctggc tggtttattt 2640
ctgataaaatc tggagccggc gagcgtgggt ctcgcggtat cattgcagca ctggggccag 2700
45 atggtaagcc ctcccgatc gtagttatct acacgacggg gagtcaggca actatggatg 2760
aacgaaatag acagatcgct gagataggtg cctcactgat taagcattgg taactgtcag 2820
50 accaagttt a ctcataata ctttagattt attaaaaact tcattttaa tttaaaagga 2880
tcttaggtgaa gatcctttt gataatctca tgacccaaat cccttaacgt gagtttcgt 2940
tccactgagc gtcagacccc gtagaaaaga tcaaaggatc ttcttgagat ctttttttc 3000
55 tgcgcgtaat ctgctgcttgc aaacaaaaa aaccaccgct accagcgggtg gtttggc 3060
cgatcaaga gctaccaact cttttccga aggttaactgg cttcagcaga gcgagatac 3120

caaatactgt ctttcttagtg tagccgttgt taggccacca cttcaagaac tctgttagcac 3180
cgccctacata cctcgctctg ctaatcctgt taccagtggc tgctgccagt ggcgataagt 3240
5 cgtgtcttac cgggttggac tcaagacgt agttaccgga taaggcgcag cggtcgggct 3300
gaacgggggg ttcgtgcaca cagcccagct tggagcgaac gacctacacc gaactgagat 3360
10 acctacagcg tgagctatga gaaagcgcca cgcttcccgta agggagaaaag gcggacaggt 3420
atccggtaag cgccagggtc ggaacaggag agcgcacgag ggagcttcca gggggaaacg 3480
cctggtatct ttatagtcct gtcgggttcc gccacctctg acttgagcgt cgattttgt 3540
15 gatgctcgtc aggggggcgg agcctatgga aaaacgcac caacgcggcc ttttacggt 3600
tcctggcctt ttgctggcct tttgctcaca ttttcttcc tgcgttatcc cctgattctg 3660
20 tggataaccg tattaccgccc tttgagttag ctgataccgc tcgcccgcagc cgaacgaccg 3720
agcgcagcga gtcagtgagc gaggaagcgg aagagcgcct gatgcggat tttctcccta 3780
cgcatctgtg cggtatttca caccgcata atggtgact ctcagtacaa tctgctctga 3840
25 tgccgcatacg ttaagccagt atacactccg ctatcgctac gtgactgggt catggctgca 3900
ccccgacacc cgccaaacacc cgctgacgcg ccctgacggg cttgtctgct cccggcatcc 3960
30 gcttacagac aagctgtgac cgtctccggg agctgcgtt gtcagagggtt ttcaccgtca 4020
tcaccgaaac gcgcgaggca gctgcggtaa agctcattcag cgtggcgtg aagcgattca 4080
cagatgtctg cctgttcatc cgcgtccagc tcggttagtt tctccagaag cgttaatgtc 4140
35 tggcttctga taaagcgggc catgttaagg gcggttttt cctgtttgggt cacttgatgc 4200
ctccgtgtaa gggggattt ctgttcatgg gggtaatgtat accgatgaaa cgagagagga 4260
40 tgctcacgt acgggttact gatgatgaac atgcccgggt actggAACgt tgtgagggt 4320
aacaactggc ggtatggatg cggcgggacc agagaaaaat cactcagggt caatgccagc 4380
gcttcgttaa tacagatgta ggtgttccac agggtagcca gcagcatcct gcgtatgcaga 4440
45 tccggaacat aatggtgca ggcgctgact tccgcgttcc cagactttac gaaacacgga 4500
aaccgaagac cattcatgtt gttgctcagg tcgcagacgt tttgcagcagc cagtcgttc 4560
50 acgttcgttc gcgtatcggt gattcattct gctaaccagt aaggcaaccc cgccagccta 4620
gccgggtcct caacgcacagg agcacgatca tgcgcacccg tggccaggac ccaacgctgc 4680
ccgagatgcg cgcgtgcgg ctgctggaga tggcggacgc gatggatatg ttctgccaag 4740
55 ggttggtttgcgcattcaca gttctccgca agaattgatt ggctccaatt cttggagtgg 4800
tgaatccgtt agcgagggtgc cgccggcttc cattcagggtc gaggtggccc ggctccatgc 4860
accgcgacgc aacgcgggaa ggcagacaag gtatagggcg gcgcctacaa tccatgcca 4920

cccgttccat gtgctcgccg aggccgcata aatcgccgtg acgatcagcg gtccagtgtat 4980
 cgaagtttagg ctggtaagag ccgcgagcga tccttgaagc tgtccctgat ggctgtcatc 5040
 5 tacctgcctg gacagcatgg cctgcaacgc gggcatccc atgccgcccc aagcgagaag 5100
 aatcataatg gggaggcca tccagcctcg cgtcgcaac gccagcaaga cgtagccag 5160
 10 cgcgtcgcc gccatgccgg cgataatggc ctgcttcgtc cggaaacgtt tggtgccgg 5220
 accagtgacg aaggcttgag cgagggcgtg caagattccg aataccgcaa gcgacaggcc 5280
 15 gatcatcgtc gcgcgtccagc gaaaggcggtc ctcgcccggg atgacccaga gcgcgtccgg 5340
 cacctgtcct acgagttgca tgataaagaa gacagtcata agtgcggcga cgatagtcat 5400
 gccccgcgcc caccggagg agctgactgg gttgaaggct ctcaggcga tcggtcgacg 5460
 20 ctctccctta tgcgactcct gcattaggaa gcagcccagt agtaggttga ggccgttgag 5520
 cacggccgcc gcaaggaaatg gtgcattgtc gatggctacg agggcagaca gtaagtggat 5580
 ttaccataat cccttaattt tacgcaccgc taaaacgcgt tcagcgcgtat cacggcagca 5640
 25 gacaggtaaa aatggcaaca aaccacccta aaaactgcgc gatcgccct gataaatttt 5700
 aaccgtatga atacctatgc aaccagaggg tacaggccac attacccca cttaatccac 5760
 30 tgaagctgcc atttttcatg gtttaccat cccagcgaag gccatgcgt gcatcgaaat 5820
 taatacgacg aaattaatac gactcactat agggcaattt cgatcaccac aattcagcaa 5880
 attgtgaaca tcatcacgtt cattttccc tggttgccaa tggcccatgg tcctgtcagt 5940
 35 aacgagaagg tcgcgaattc aggcgtttt tagactggtc gtaatgaac 5989

0 <210> 16
 <211> 6958
 <212> DNA
 <213> Künstliche Sequenz

<220>

45 <223> Beschreibung der künstlichen Sequenz: Plasmid
pJAVIER16

<400> 16

aattcttaag aaggagatat acatatggcg aaaaacttga tgctcgccgt cgctcaagtc 60
 50 ggcggtatcg atagttcgga atcaagaccc gaagtcgtcg cccgcttgc tggccctgctg 120
 gaagaagcag cttcccaggg cgcggaaactg gtggtcttcc cggaaactcac gctgaccacg 180
 55 ttcttcccgc gtacctgggt cgaagaaggc gacttcgagg aataacttcga taaatccatg 240
 cccaaatgacg acgtcgccgc cttttcgaa cgcggccaaag accttggcgt gggcttctac 300
 ctcggatacg cgaaactgac cagtgtatgag aagcggtaca acacatcaat tctggtaac 360

aagcacggcg acatcgtcgg caagtaccgc aagatgcac tgcggggcca cgccgataac 420
cgggaaggac tacccaaacca gcacccgtgaa aagaaaatact tccgcgaagg agatctcgga 480
5 ttcgggtgtct tcgacttcca cggcgtgcag gtcggaatgt gtctctgcaa cgaccggcga 540
tggccggagg tctaccgctc tttggccctg cagggagcag agctcgctgt cctgggctac 600
10 aacacccccc atttcgttcc cggctggcag gaagagcctc acgcaagat gttcacgcac 660
cttcttcac ttcaggcagg ggcataccag aactcggtat ttgtggcggc tgccggcaag 720
15 tcgggcttcg aagacgggca ccacatgatc ggcggatcag cggtcgcccgc gcccagcggc 780
gaaatcctgg caaaagcagc cggcgaggc gatgaagtgc tcgttgtgaa agcagacatc 840
gacatggca agccctataa ggaaagcgtc ttcgacttgc cggcccatcg ggcggccgac 900
20 gcatacggca tcatacgccga aaggaaaggg cggggcgccc cactgcccgt cccgttcaac 960
gtgaatgact aaggatccga aggagatata catatggatg caaagctact ggttggcggc 1020
actattgttt cctcgaccgg caaaatccga gccgacgtgc tgattgaaaa cggcaaagtc 1080
25 gcccgtgtcg gcatgctgga cggcgacgac cggacacag ttgagcgggt tgactgcgac 1140
ggcaaatacg tcatacgccgg cggtatcgac gttcacaccc acatcgactc cccctcatg 1200
30 gggaccacca cggccgatga ttttgcagc ggaacgattt cagccgtac cggcggaaaca 1260
acgacccatcg tcgatttcgg acagcagctc gccggcaaga acctgctgga atccgcagac 1320
gegcaccacca aaaaggcgca gggaaaatcc gtcattgatt acggcttcca tatgtcgtg 1380
35 acgaacctct atgacaattt cgattccat atggcagaac tgacacagga cgaaatctcc 1440
agtttcaagg tcttcatggc ctaccgccccgga agcctgatga tcaacgacgg cgaactgttc 1500
40 gacatcctca agggagtcgg ctccagcggt gccaaactat gcgtccacgc agagaacggc 1560
gacgtcatcg acaggatcgc cggccgacctc tacgccccaa gaaaaacgg gcccgggacc 1620
cacgagatcg cacgccccggc ggaatcgaa gtcgaagcag tcagccggc catcaagatc 1680
45 tcccgatgg ccgaggtgcc gctgtatttc gtgcattttt ccacccaggg ggccgtcgag 1740
gaagtagctg cccgcagat gacaggatgg ccaatcagcg ccgaaacgtg caccactac 1800
50 ctgtcgctga gccgggacat ctacgaccag cgggattcg agccggccaa agctgtcctc 1860
acaccaccgc tgcgcacaca ggaacaccag gacgcgttgt ggagaggcat taacaccgg 1920
55 gcgctcagcg tcgtcagttc cgaccactgc cccttctgtt ttgaggaaaa gcagcggatg 1980
ggggcagatg acttccggca gatccccaa ggcggggcccg gcgtggagca ccgaatgctc 2040
gtgatgtatg agaccgggtgt cgccgaagga aaaatgacga tcgagaaatt cgtcgaggtg 2100

actgccgaga acccgccaa gcaattcgat atgtacccga aaaagggAAC aattgcaccg 2160
ggctccgatg cagacatcat cgtggtcgac cccaacggAA caaccctcat cagtggcgc 2220
5 acccaaaaAC aaaacatgga ctacacgctg ttcgaaggct tcAAaatccg ttgctccatc 2280
gaccaggTgt tctcgctgg cgacctgatC agcgtcaaAG gcgaatATgt cggcacCCgc 2340
10 ggccgcggcg aattcatcaa gcggagcgcT tggagccacc cgcagttcgA aaaataAAag 2400
cttggctgtt ttggcggatg agagaagatt ttcagcctga tacagattaa atcagaacgc 2460
agaagcggTC tgataAAAaca gaatttgccT ggcggcagTA gcgcggTggT cccacctgac 2520
15 cccatgccga actcagaAGT gaaacgcgcT agcgcgcgatg gtagtgtgg gtctccccat 2580
gcgagagtag ggaactgcca ggcataAAat aaaacgaaAG gctcagtcgA aagactggc 2640
20 ctttcgtttt atctgttgtt tgtcggtaa cgctctcctg agtaggacAA atccgcggg 2700
agcggatttg aacgttgcgA agcaacggcc cggagggtgg cggcaggac gcccggcata 2760
aactgcccagg catcaaatta agcagaaggc catcctgacg gatggcctt ttgcgttct 2820
25 acaaactctt ttgttttattt ttctaaatac attcaaataat gtatccgctc atgagacaat 2880
aacccctgata aatgcttcaa taatattgaa aaaggaagag tatgagtatt caacatttcc 2940
30 gtgtcgccct tattccctt tttgcggcat tttgccttcc tgTTTTgct cacccagaaa 3000
cgctggtgaa agtaaaagat gctgaagatC agttgggtgc acgagtgggt tacatcgAAC 3060
tggatctcaa cagcggtaag atccttgaga gtttcgccc cgaagaacgt ttccaatga 3120
35 tgagcacttt taaagttctg ctatgtggcg cggattatC ccgtgttgac gccggcAAG 3180
agcaactcgg tcgcccata cactattctc agaatgactt ggtttagtac tcaccagtca 3240
40 cagaaaaAGCA tcttacggat ggcatacgAG taagagaatt atgcagtgcT gccaataacca 3300
tgagtgataa cactgcggcc aacttacttc tgacaacgat cggaggaccg aaggagctaa 3360
ccgctttttt gcacaacatg gggatcatg taactcgct tgatcgTTgg gaaccggagc 3420
45 tgaatgaAGC cataccaaAC gacgagcgtg acaccacgat gcctgttagca atggcaacaa 3480
cgTTGCGCAA actattaACT ggcgaactac ttactctagC ttcccgccAA caattaatAG 3540
50 actggatgga ggcggataAA gttgcaggac cacttctgCG ctcggccCTT ccggctggct 3600
ggTTTATTGC tgataAAatct ggagccggTg agcgtgggtc tcgcggTatC attgcagcac 3660
tggggccaga tggtaAGCCC tcccgtatcg tagttatcta cacgacgggg agtcaggcaa 3720
55 ctatggatga acgaaatAGA cagatcgctg agataggtgc ctcactgatt aagcattggT 3780
aactgtcaga ccaagttac tcatatatac ttttagattGA ttAAAactt catttttaat 3840
ttAAAaggat cttagtgaag atccttttG ataatctcat gaccaAAatC ccttaacgtg 3900

agttttcggtt ccactgagcg tcagaccccg tagaaaagat caaaggatct tcttgagatc 3960
cttttttct gcgcgtaatc tgctgcttc aaacaaaaaa accaccgcta ccagcggtgg 4020
5 tttgtttgcc ggatcaagag ctaccaactc tttttccgaa ggtaactggc ttcaagcagag 4080
cgccagatacc aaataactgtc cttctagtgt agccgttagtt agggcaccac ttcaagaact 4140
10 ctgttagcacc gcctacatac ctgcgtctgc taatcctgtt accagtggct gctgccagtg 4200
gcgataagtc gtgtcttacc gggttggact caagacgata gttaccggat aaggcgcagc 4260
ggtcgggctg aacgggggggt tcgtgcacac agcccgagtt ggagcgaacg acctacaccg 4320
15 aactgagata cctacagcgt gagctatgag aaagcgccac gcttcccggaa gggagaaagg 4380
cgacacggta tccggtaagc ggcagggtcg gaacacggaga ggcgcacgggag gagcttccag 4440
0 ggggaaacgc ctggtatctt tatagtcctg tcgggttgc ccacctctga cttgagcgtc 4500
gatttttgtt atgctcgtca gggggcgga gcctatggaa aaacgcccac aacgccccct 4560
25 ttttacggtt cctggccttt tgctggcctt ttgctcacat gtttttcct ggttatccc 4620
ctgattctgt ggataaccgt attaccgcct ttgagtgagc tgataccgct cgccgcagcc 4680
gaacgaccga ggcgcagcgt tcagtgagcg aggaagcgga agagcgccctg atgcggatt 4740
30 ttctccctac gcatctgtgc ggtatttcac accgcataata tggtgactc tcagtcataat 4800
ctgctctgat gcccataagt taagccagta tacactccgc tatcgctacg tgactgggtc 4860
atggctgcgc cccgacacccc gccaacacccc gctgacgcgc cctgacgggc ttgtctgctc 4920
35 ccggcatccg cttacagaca agctgtgacc gtctccggga gctgcattgtt tcagaggttt 4980
tcaccgtcat caccgaaacg cgcgaggcag ctgcggtaaa gctcatcagc gtggcgtga 5040
0 agcgatttcac agatgtctgc ctgttcatcc gcgtccagct cgtttagttt ctccagaagc 5100
gttaatgtct ggcttctgat aaagcgccc atgttaaggg cggttttttc ctgtttggtc 5160
45 acttgatgcc tccgtgttaag gggaaatttc tgttcatggg ggtaatgata ccgatgaaac 5220
gagagaggat gtcacgata cgggttactg atgtgaaca tggccgggtt ctggAACGTT 5280
gtgagggtaa acaactggcg gtatggatgc ggcgggacca gagaaaaatc actcagggtc 5340
50 aatgcacgacg ctgcgttaat acagatgttag gtgttccaca gggtagccag cagcatcctg 5400
cgatgcagat ccggAACATA atggtgcaagg gcgcgtactt ccgcgtttcc agactttacg 5460
aaacacggaa accgaagacc attcatgtt tgctcaggt cgccagacgtt ttgcagcagc 5520
55 agtcgcttca cggtcgctcg cgtatcggtt attcattctg ctaaccagta aggcaacccc 5580
gccagcttag ccgggtccctc aacgacagga gcacgatcat ggcgcacccgt ggccaggacc 5640

caacgctgcc cgagatgcgc cgcgtgcggc tgctggagat ggccggacgcg atggatatgt 5700
tctgccaagg gttggtttgc gcattcacag ttctccgcaa gaattgattg gctccaattc 5760
5 ttggagtggt gaatccgtta gcgaggtgcc gccggctcc attcaggtcg aggtggcccg 5820
gctccatgca ccgcgcacgca acgcggggag gcagacaagg tatagggcgg cgcctacaat 5880
ccatgccaac ccgttccatg tgctcgccga ggcggcataa atcgccgtga cgatcagcgg 5940
10 tccagtgatc gaagtttaggc tggtaagagc cgcgagcgat cttgaagct gtccctgatg 6000
gtcgtcatct acctgcctgg acagcatggc ctgcaacgcg ggcattccgaa tgccggcgg 6060
15 agcgagaaga atcataatgg ggaaggccat ccagcctcgc gtgcgaaacg ccagcaagac 6120
gtagcccagc gcgtcgcccg ccatgcccgc gataatggcc tgcttctcgc cgaaacgttt 6180
20 ggtggcggga ccagtgacga aggcttgcgc gagggcgtgc aagattccga ataccgcaag 6240
cgacaggccg atcatcgatc cgctccagcg aaagcggtcc tcgcccggaaa tgaccagag 6300
cgctgcccggc acctgtccta cgagttgcata gataaagaag acagtcataa gtgcggcgc 6360
25 gatagtcatg ccccgccccc accggaagga gctgactggg ttgaaggctc tcaagggcat 6420
cggtcgacgc tctcccttat gcgactcctg cattaggaag cagcccagta gtaggttgag 6480
30 gccgttgagc accgcccggc caaggaatgg tgcatgctcg atggctacga gggcagacag 6540
taagtggatt taccataatc ctttaattgt acgcaccgct aaaacgcgtt cagcgcgatc 6600
acggcagcag acaggtaaaa atggcaacaa accaccctaa aaactgcgcg atcgccctg 6660
35 ataaatttta accgtatgaa tacctatgca accagagggt acaggccaca ttaccccccac 6720
ttaatccact gaagctgcca ttttcatgg tttcaccatc ccagcgaagg gccatgcata 6780
catcgaaatt aatacgacga aattaatacg actcactata gggcaattgc gatcaccaca 6840
attcagcaaa ttgtgaacat catcacgttc atcttccct gttgccaat ggccatttt 6900
0 cctgtcagta acgagaaggt cgcgaattca ggccgtttt agactggtcg taatgaac 6958

Beispiele**Beispiel 1: Erzeugung Hydantoinrazemasesmutanten - Zufallsmutagenese**

0,25ng des Vektors pOM21 (Plasmidkarte siehe Fig.1; Sequenz
5 siehe Seq.ID.Nr.13) (PCT/US00/08159) wurde als Template in
einem 100 μ l PCR Reaktionsmix bestehend aus PCR-Puffer (10
mM Tris, 1.5 mM MgCl₂, 50 mM KCl, pH 8.5), 200 μ M dTTP, 200
 μ M dGTP, 200 μ M dATP, 200 μ M dCTP, 50 pmol des jeweiligen
Primers (siehe Seq.ID.Nr.11 und 12) und 2,5 U Taq-
10 Polymerase (Roche) eingesetzt. Nach 30 Zyklen wurde das
Amplifikat mittels Gelextraktion (QiaexII Gel-
Extraktionskit) aufgereinigt und in den Vektor pOM21
mittels den Restriktionsenzymen NdeI und PstI subkloniert.
Das Ligationsprodukt wurde zur Transformation von
15 hydantoinasepositiver Stämme verwendet (siehe Beispiel 2).

Beispiel 2: Herstellung von hydantoinasepositiven Stämmen und einer Mutantenbank

Chemisch kompetente E.coli JM109 (z.B. von Promega) wurden
20 mit 10ng des Plasmids pDHYD (siehe Fig.2; siehe Seq.ID.Nr.
15) (**Herstellung?**) transformiert, welches das D-
Hydantoinasegen aus *Arthrobacter crystallopioetes* DSM20117
unter Kontrolle eines Rhamnose-Promotors trägt. Die
vollständige Sequenz des Plasmids ist in Seq.ID.Nr. 15
angegeben. Der so erzeugte hydantoinasepositive Stamm wurde
wiederum chemisch kompetent gemacht und zur Herstellung der
Mutantenbank mit dem Ligationsprodukt der
Hydantoinrazemase-Zufallsmutagenese aus Beispiel 1
transformiert. Die auf Ampicillin- und Chloramphenicol-
30 haltigen Agarplatten ausgestrichenen Kolonien der
Mutantenbank wurden anschliessend einem Screening
unterworfen, welches in Beispiel 3 beschrieben wird.

Beispiel 3: Screening nach Hydantoinrazemasemutanten mit verbesserten Enzymeigenschaften

Einzelne Kolonien der Mutantenbank wurden in 96-Well-Platten überimpft, welche mit 100µl pro Well Rhamnose

5 (2g/l) und ZnCl₂ (1mM) supplementiertem LB-Medium (5g/l Hefeextrakt, 10g/l Trypton, 10g/l NaCl) gefüllt waren. Die Platten wurden für 20 Stunden bei 30°C inkubiert.

Anschliessen wurden 100µl Screening-Substrat (100mM L-Ethylhydantoin, 50mg/l Cresol Rot, pH 8.5) zu jedem Well

10 zugegeben und die Platten für 4 Stunden bei 20°C inkubiert. Wells mit verbesserten Hydantoinrazemasemutanten konnten durch eine intensivere Gelbfärbung im Vergleich zum Wildtyp direkt per Auge, oder unter Verwendung eines Spektralphotometers bei 580nm identifiziert werden.

15

Beispiel 4: Charakterisierung von Hydantoinrazemasemutanten mit verbesserten Enzymeigenschaften

Die im Screening identifizierten Razemasemutanten wurden anschliessend mittels HPLC-Analyse auf ihre Aktivität im

20 Vergleich zum Wildtyp untersucht und die entsprechenden Mutationen mittels Sequenzierung bestimmt. Hierzu wurde von einzelnen Kolonien der unterschiedlichen Klone Plasmide isoliert (Qiagen Mini-Prep Kit) und sequenziert. Die selben Klone wurden zur Herstellung aktiver Biomasse verwendet.

25 Eine Übernachtkultur ($OD_{600}=4$) der jeweiligen Klone wurde hierzu 1:100 in 100ml Rhamnose (2g/l) und ZnCl₂ (1mM) supplementiertem LB-Medium (5g/l Hefeextrakt, 10g/l Trypton, 10g/l NaCl) verdünnt und 18 Stunden bei 30°C und 250UPM inkubiert. Die Biomasse wurde mittels Zentrifugation 30 (10min, 10.000g) pelletiert und der Überstand verworfen. 2g aktive Biomasse wurde anschliessend in 50ml der Substratlösung (100mM L-Ethylhydantoin, pH 8.5) resuspendiert und bei 37°C inkubiert. Nach verschiedenen Zeiten wurden Proben genommen, die Biomasse durch

Zentrifugation (5min, 13.000 UPM) abgetrennt und der Überstand mittels HPLC auf die Konzentration der entstandenen N-Carbamoyl-aminobuttersäure analysiert.

5 Beispiel 5 Herstellung von L-Aminosäuren unter Verwendung verbesserter Hydantoinrazemasesen

Ein mit pOM21-BB5 und pOM22 Fig. 3 (siehe Seq.ID.Nr.14) (PCT/US00/08159) transformierter Stamm von *E.coli* JM109 wurde bei 30°C in Ampicillin (100 μ g/l) und Chloramphenicol (50 μ g/l)-haltigem sowie mit 2g/l Rhamnose versetztem LB-Medium für 18 Stunden unter Schütteln (250 U/min) inkubiert. Die Biomasse wurde durch Zentrifugation pelletiert und mit einem entsprechenden Volumen von 100mM DL-Ethlyhydantoinlösung, pH 8,5 und 1mM CoCl₂ so resuspendiert, dass sich eine Zellkonzentration von 30g/l ergibt. Diese Reaktionslösung wurde für 10 Stunden bei 37°C inkubiert. Anschliessend wurden die Zellen durch Zentrifugation (30 min, 5000g) abgetrennt und der klare Überstand mittels HPLC auf die entstandene Aminosäure analysiert. Zur Aufarbeitung der enstandenen Aminosäure wurde das Volumen des Überstandes auf die Hälfte reduziert und 1:2 mit Methanol versetzt. Die ausgefällte Aminosäure wurde anschliessend filtriert und getrocknet. Die Gesamtausbeute der Aminosäure betrug >60%.

25

Beispiel 6 Herstellung von D-Aminosäuren unter Verwendung verbesserter Hydantoinrazemasesen

Ein mit pOM21-BB5 und pJAVIER16 Fig. 4 (siehe Seq.ID.Nr.16) (**Herstellung?**) transformierter Stamm von *E.coli* JM109 wurde bei 30°C in Ampicillin (100 μ g/l) und Chloramphenicol (50 μ g/l)-haltigem sowie mit 2g/l Rhamnose versetztem LB-Medium für 18 Stunden unter Schütteln (250 U/min) inkubiert. Die Biomasse wurde durch Zentrifugation

pelletiert und mit einem entsprechenden Volumen von 100mM DL-Ethlyhydantoinlösung, pH 8,5 und 1mM CoCl₂ so resuspendiert, dass sich eine Zellkonzentration von 30g/l ergibt. Diese Reaktionslösung wurde für 10 Stunden bei 37°C 5 inkubiert. Anschliessend wurden die Zellen durch Zentrifugation (30 min, 5000g) abgetrennt und der klare Überstand mittels HPLC auf die entstandene Aminosäure analysiert. Zur Aufarbeitung der entstandenen Aminosäure wurde das Volumen des Überstandes auf die Hälfte reduziert 10 und 1:2 mit Methanol versetzt. Die ausgefällte Aminosäure wurde anschliessend filtriert und getrocknet. Die Gesamtausbeute der Aminosäure betrug >60%.

Patentansprüche:

1. Screeningverfahren für Hydantoinrazemases, dadurch gekennzeichnet, dass man
 - a) eine enantioselektive Hydantoinase und
 - b) die zu prüfende Hydantoinrazemase, welche eine verglichen mit der Hydantoinase unter a) langsamere Umsetzungsrate aufweist, auf
 - c) ein chirales Hydantoin einwirken lässt, welches in zur Selektivität der Hydantoinase entgegengesetzter enantiomerenangereicherten Form eingesetzt wird, und
 - d) die resultierende N-Carbamoyl-Aminosäure oder die freigesetzten Protonen zeitabhängig detektiert.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass man ein aliphatisch substituiertes Hydantoin einsetzt.
3. Verfahren nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass man ein Hydantoinase aus *Arthrobacter crystallopoietes* einsetzt.
4. Verfahren nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Verhältnis der Geschwindigkeitskonstanten der Hydantoinase zur Hydantoinrazemase (k_{Hyd}/k_{Raz}) > 2 ist.
5. Verfahren zur Herstellung von verbesserten Hydantoinrazemases, dadurch gekennzeichnet, dass man
 - a) die Nukleinsäuresequenz codierend für die Hydantoinrazemase einer Mutagenese unterwirft,
 - b) die aus a) erhältlichen Nukleinsäuresequenzen in einen geeigneten Vektor kloniert und diesen in ein

geeignetes Expressionssystem transferiert und

5 c) die gebildeten Hydantoinrazemosen mit verbesserter Aktivität und/oder Selektivität und/oder Stabilität mittels eines Verfahrens nach einem oder mehreren der Ansprüche 1 bis 4 detektiert und isoliert.

6. rec-Polypeptide oder diese codierende Nukleinsäuresequenzen erhältlich nach Anspruch 5.

7. Verwendung der Polypeptide gemäß Anspruch 6 zur Herstellung von enantiomerenangereicherten N-Carbamoyl-Aminosäure oder Aminosäuren.

10 8. Verwendung der Nukleinsäuresequenzen gemäß 6 zur Herstellung von Ganzzellkatalysatoren.

9. 15 9. Hydantoinrazemase aufweisend in Position 79 einen Aminosäureaustausch mit einer Aminosäure ausgewählt aus der Gruppe bestehend aus A, R, N, D, C, Q, E, H, I, L, K, M, F, P, S, T, Y oder V.

10. 20 10. Hydantoinrazemosen aufweisend die Konsensussequenz FX₁DX₂GL (Seq. 1), wobei X₂ P oder T darstellt und X₁ in der Position 79 eine Aminosäure ausgewählt aus der Gruppe A, R, N, D, C, Q, E, H, I, L, K, M, F, P, S, T, Y oder V darstellt darstellt.

11. 25 11. Isolierte Nukleinsäuresequenz codierend für eine Hydantoinrazemase ausgewählt aus der Gruppe:

a) einer Nukleinsäuresequenz codierend für eine Hydantoinrazemase gemäß Anspruch 9 und/oder 10,

b) einer Nukleinsäuresequenz, die unter stringenten Bedingungen mit der Nukleinsäuresequenz codierend für eine Hydantoinrazemase gemäß Anspruch 9 und/oder 10 oder der dazu komplementären Sequenz hybridisiert,

c) einer Nukleinsäuresequenz gemäß den Seq.ID.Nr. 3, 5, 7 oder 9 oder solchen mit einer Homologie von > 80% zu diesen.

- d) einer Nukleinsäuresequenz aufweisend 15 aufeinanderfolgende Nukleotide der Sequenzen Seq.ID.Nr. 3, 5, 7 oder 9..
- 12. Ganzzellkatalysator aufweisend ein kloniertes Gen für eine Hydantoinrazemase gemäß den Ansprüchen 9 und/oder 10.
- 13. Plasmide, Vektoren oder Mikroorganismen aufweisend eine Nukleinsäuresequenz gemäß Anspruch 9 und/oder 10.
- 14. Primer zur Herstellung der Nukleinsäuresequenzen nach Anspruch 9 und/oder 10 mittels PCR.

Zusammenfassung:

Die vorliegende Erfindung bezieht sich auf ein Screeningverfahren für Hydantoinrazemassen und neue Hydantoinrazemassen, die sie codierenden Nukleinsäuresequenzen und ein Verfahren zur Mutagenese.

Hydantoinrazemassen sind im Zusammenhang mit der Erzeugung von enantiomerenangereicherten Aminosäuren aus racemischen Hydantoinen von Interesse.

Abb. 1:

Abb. 2:

5

Fig: 3

5

Fig. 4.

