Ingeniería del Conocimiento

Departamento de Ciencias de la Computación

e Inteligencia Artificial Curso 2024/2025

Curso: 3

Cuatrimestre: 2

Tipo: Optativa* en Especialidad de Computación y Sistemas Inteligentes

Nº créditos: 3T + 3 P

Preguntas a responder

- ¿Qué vamos a aprender en esta asignatura?
- ¿Cómo lo vamos a aprender?
- ¿Cómo se va a evaluar lo que hemos aprendido?

Estructura de la asignatura

Profesor teoría:

Juan Luis Castro <u>castro@decsai.ugr.es</u>

Profesores prácticas:

- Juan Luis Castro Peña <u>castro@decsai.ugr.es</u> (Grupo viernes)
- M. Cristina Zuheros Montes <u>czuheros@ugr.es</u>, (Grupos lunes y miércoles)

Web:

http://decsai.ugr.es

Objetivos Formativos

- Conocer la problemática de la adquisición de conocimiento en el diseño de los Sistemas Basados en el Conocimiento (SBC) y cómo ésta puede suponer un auténtico "cuello de botella" para el resto del proceso de diseño.
- Estudiar distintas técnicas de adquisición de conocimiento, las ventajas e inconvenientes de cada una de ellas así como las características que las hacen más apropiadas para un determinado tipo de problema.
- Estudiar distintos modelos de representación de conocimiento y ser capaz de extraer de cada uno de ellos las características más importantes.
- Saber analizar el conocimiento adquirido en un dominio específico e identificar qué modelo de representación es el más apropiado para el problema.
- Conocer los distintos modelos lógicos de representación del conocimiento.
- Conocer los distintos modelos estructurados de representación del conocimiento.
- Conocer los distintos modelos con conocimiento impreciso o incierto de representación del conocimiento.
- Estudiar las ontologías como modelo de representación de conocimiento y las posibilidades de reusabilidad y procesos para compartir de vocabulario que estas proporcionan en un Sistema Basado en el Conocimiento.

Bibliografía y enlaces de interés

- Akerkar, Rajendra; Sajja, Pritti. Knowledge-Based Systems. Jones and Bartlett. 2010
- Kendal, S. y Creen, M. An Introduction to Knowledge Engineering, Springer-Verlag, 2007.
- Giarratano, Joseph C; Riley, Gary D. Expert Systems: Principles and Programming, 4th Edition. Delhi: Cengage Learning, 2019
- Brachman, Ronald; Levesque, Hector. Knowledge Representation and Reasoning. Morgan Kaufmann. 2008
- AI TOPICS (REPRESENTATION & REASONING) → https://aitopics.org/search?filters=taxnodes:%22Technology%7CInformation%20Technology%7CArtificial%20Intelligence%7CRepresentation%20%26%20Reasoning%22
- EXPERT SYSTEM WITH APPLICATIONS JOURNAL → http://www.journals.elsevier.com/expert-systems-with-applications
- PROTEGE → http://protege.stanford.edu/
- CLIPS → http://clipsrules.sourceforge.net/

Evaluación de la asignatura

 La evaluación de la asignatura será continua, y se distribuirá en parte teórica, parte práctica y otras actividades de acuerdo a la siguiente ponderación:

Actividades	Ponderación
Parte Teórica	45%
Parte Práctica	45%
Otros (Seminarios)	10%

Calificación convocatoria ordinaria

- Para la parte de teoría se tendrá en cuenta la asistencia y participación en las clases de teoría (10%), la evaluación de las tareas propuestas por el profesor durante el desarrollo de la asignatura (40%), y la calificación de varias pruebas de evaluación (50%).
- Para la parte de prácticas se tendrá en cuenta la asistencia y participación en las sesiones de prácticas (10%), y la calificación de varios trabajos de prácticas (90%).
- Para la parte de otras actividades se tendrá en cuenta la asistencia y participación en los seminarios.

Teoría

Actividades propuestas (40%)

Pruebas de evaluación (3 pruebas) (50%)

 Asistencia <u>y participación</u> a las clases de teoría (10%)

Pruebas de evaluación

- 25 preguntas tipo test,
- Preguntas serán conceptualmente la mismas de las que han dispuesto para el aprendizaje, pero podrán estar formuladas de forma distinta
- Se realizarán durante los primeros 30 minutos de las clases indicadas en la programación
- Si p es el porcentaje de aciertos, la nota del test NT será

NT=
$$\begin{cases} 5+5*[(p-70)/(100-70)] & \text{si p} > 70 \\ 5*p/70 & \text{si p} \le 70 \end{cases}$$

• Actividades propuestas: Se realizarán en clase y consistirán en una aplicación de lo explicado previamente

Prácticas

- Entregas (90%)
 - Entrega 1 (ejercicios relacionados con el desarrollo de sistemas expertos clásicos) (40%)
 - Entrega 2 (ejercicios relacionados con modelos avanzados) (60%):
- Asistencia <u>y participación</u> a las sesiones formativas (10%)

Ejercicios de prácticas

Entrega 1

- Introducción a los sistemas basados en reglas (2 punto)
- Razonamiento con sistemas basados en reglas (3 puntos)
- Desarrollo de un sistema experto simple (5 puntos)

Entrega 2

- Modelos avanzados de representación del conocimiento (2 puntos)
- Tratamiento de la Incertidumbre (3 puntos)
- Desarrollo de un sistema basado en el conocimiento (5 puntos)

Alternativa excepcional (Prueba única final)

- Para aquellos alumnos que no puedan seguir la evaluación continua por motivos justificados, se realizará una prueba única final.
 - Para acogerse a esta evaluación única, el estudiante deberá solicitarlo al director del departamento en las dos primeras semanas de impartición de la asignatura, alegando y acreditando las razones por las que no puede seguir la evaluación continua.
 - La evaluación única final se realizará en un solo acto académico el día de la convocatoria oficial de examen para la asignatura.
 - Dicha prueba (evaluada de 0 a 10) incluirá preguntas tanto de tipo teórico como práctico que garanticen que el alumno ha adquirido la totalidad de las competencias descritas en esta misma guía docente.

Calificación de examen extraordinario

 En la convocatoria extraordinaria habrá una prueba única (evaluada de 0 a 10) que incluirá preguntas tanto de tipo teórico como práctico.