Programming Assignment Report Automata Theory Monsoon 2024, IIIT Hyderabad

Student Name: Ayush Sheta Roll Number: 2023101057 Submission Date: 8 Sept 24

Table of Contents:

- 1. Introduction
- 2. Question 1: DFA Based PRNG
 - o 1.1 Approach
 - 1.2 Assumptions
 - o 1.3 Results
- 3. Question 2: Simulating L-Systems
 - o 2.1 Mirrorball
 - o 2.2 Tree
 - 2.3 Anything that can happen will happen
 - 2.4 Content without context is noise
 - 2.5 Assumptions
 - o 2.6 Images
- 4. Question 3: L-Systems Axiom
 - o 3.1 Stick Plant
 - o 3.2 Santa K(I)osh
 - o 3.3 Assumptions
 - o 3.4 Side by Side Comparison
- 5. How to Run the Code
- 6. Conclusion

1. Introduction

This report covers the solutions to the programming assignment for Automata Theory Monsoon 2024. The assignment consists of three main questions:

- 1. DFA-based pseudo-random number generator (PRNG).
- 2. Simulation of L-systems to produce graphical outputs.
- 3. Deriving production rules based on given images of L-systems.

Question 1: DFA Based PRNG

1.1 Approach

For this question, I designed a Python program to simulate a DFA-based pseudo-random number generator (PRNG). The DFA transitions are processed iteratively to output the states, and the frequencies of each state are recorded.

1.2 Assumptions

- No dead states.
- All transitions are deterministic, meaning each state transitions to exactly one other state.
- For transitions that don't appear in the input, they are considered irrelevant and unreachable.

1.3 Results

The results for each test case include the frequency count of each state in the range [1, N].

Question 2: Simulating L-Systems

2.1 Mirrorball

For the "Mirrorball" L-system, the provided rules and axiom were iterated **9 times**, and the corresponding fractal-like image was generated.

2.2 Tree

For the "Tree" L-system, the rules were iterated **4 times** based on the angle calculations. The pattern produced closely resembles the branching structure of a tree.

2.3 Anything that can happen will happen

The random nature of the rules generated 5 different configurations for this part, and their images were captured after **4 iterations**.

2.4 Content without context is noise

Using the axiom and production rules, I iterated the system 9 times to generate the final pattern.

2.5 Assumptions

- I assumed that the provided rules for each sub-part were complete and accurate, meaning no further adjustments to the rules were needed.
- The angle calculations for the "Tree" system were computed using the provided formula and were tested for correct application during iterations.

Question 3: L-Systems Axiom

3.1 Stick Plant

After examining the graphical outputs, I derived the following axiom and production rules for the Stick Plant system.

3.2 Santa K(I)osh

For the Santa K(I)osh pattern, I identified the axiom and the production rules by analyzing the iterations shown.

3.3 Assumptions

- In stick_plant.json I have made a new rule 'G' which is the same as 'F' (as in the question).
- In santa.json I have modified the 'F' rule. After modification, if 'F' appears then first it will rotate right by 75 deg, then move forward and draw a line on that path and then rotate left by 75 deg.

3.4 Side by Side Comparison

Given images :

For stick

(a) after 2 iterations

(b) after 3 iterations

For Santa:

(a) after 4 iterations

(b) after 5 iterations

Figure 2: Santa K(l)osh

How to Run the Code

Question 1: PRNG

To run the PRNG code:

1. Navigate to the q1 directory.

Execute the following command:

python3 prng.py

2. Provide input according to the sample input format.

Question 2: L-Systems

To generate the images:

- 1. Use the appropriate software (i use vs code -> live server, open with live server or as a normal html file)
- 2. Navigate to the corresponding directory (e.g., q2/mirrorball.html) and run the program to generate the image.

Question 3: L-Systems Axiom

To generate the JSON output for the axiom:

- 1. Navigate to the q3 directory.
- 2. The JSON files for Stick Plant and Santa K(I)osh are located in stick_plant.json and santa.json.

Conclusion

This report summarizes my approach and solutions for each question in the Automata Theory assignment. The output for each section was tested and verified based on the problem requirements.