Universidade Federal de Santa Maria – UFSM Disciplina: ELC123 – Comunicação de Dados Prof. Carlos Raniery P. dos Santos

NOTA:

Prof. Carlos Raniery P. dos Santo Prova I - Data: 30/04/2015

Aluno: _____

- 1) (Valor = 0,5) CDs de áudio digital (CD-DA) utilizam um padrão conhecido como Red Book, que especifica os seguintes parâmetros de amostragem: 2 canais de 16-bit PCM, 44.1kHz cada. Aproximadamente quanto tempo de música seria possível gravar em um CD de 700 MBytes?
 - a. 130 min
 - b. 45 min
 - c. 65 min
 - d. 80 min
 - e. 100 min
- 2) (Valor = 0,5) Um sinal com 200 miliwatts de potência na saída passa por 10 dispositivos, cada um deles com um nível de ruído médio de 2 microwatts. Qual a relação sinal ruído medida em decibéis?
 - a 10
 - b. 20
 - c. 30
 - d. 40
 - e. 50
- 3) (Valor = 0,5) Quantos bits por baud podemos enviar se a constelação do sinal tiver 1024 pontos?
 - a. 10 bits/baud
 - b. 16 bits/baud
 - c. 4 bits/baud
 - d. 32 bits/baud
 - e. 64 bits/baud
- 4) (Valor = 0,5) Marque qual das seguintes afirmações sobre transmissão Assíncrona é **INCORRETA.**
 - a. Os dados são transmitidos em quadros.
 - b. Não há sincronização entre o transmissor e o receptor.
 - c. Não há bits de start/stop.
 - d. A velocidade de transmissão é menor do que na transmissão síncrona.
 - e. O receptor não sabe quando chegarão os dados.
- 5) (Valor = 2,0) Dez fontes, seis com taxa de bits de 200 kbps e quatro de 400 kbps são combinadas usando-se TDM multinível sem emprego de bits de sincronização. Responda às seguintes perguntas sobre o estágio final da multiplexação considerando que 1 bit é multiplexado por vez:
 - a. Qual é o tamanho em bits de um frame?
 - b. Qual é a taxa de frames?
 - c. Qual é a duração de um frame?
 - d. Oual é a taxa de dados?
 - e. Qual o comprimento do bit no enlace?

- 6) (Valor = 2,0) Calcule a taxa de transmissão (bauds) para as seguintes taxas de bits e mecanismos de modulação digital-analógico.
 - a. 2.000 bps FSK
 - b. 4.000 bps ASK
 - c. 6.000 bps QPSK
 - d. 36.000 bps 64-QAM
- 7) (Valor = 2,0) Faça a distinção entre TDM multinível, TDM de múltiplos slots e TDM com inserção de bits.
- 8) (Valor = 2,0) Represente o sinal digital transmitido nos seguintes casos:

	1	0	1	1	0	0	0	0	1	1	0	1	0	1	1	0
AMI Bipolar		 														
Pseudoternário		 							1				 	 		
Manchester		1 1 1 1 1 1 1 1							1 1 1 1 1 1 1 1				; ; ; ; ; ; ;	; ; ; ; ; ; ;		
Manchester Diferencial						 								 		
AMI/HDB3									 					 		

9) **QUESTÃO EXTRA** (2,0 pontos). Substituir questão _____. Qual o objetivo e vantagens de se utilizar espalhamento espectral? Explique conceitualmente e exemplificando o funcionamento de 2 técnicas existentes.

Equações úteis:
f = 1 / t
$\lambda = c/f$
Número de bits por nível = \log_2^N
$SNR_{db} = 10 \log_{10} \frac{(P2/P1)}{}$
Taxa de transferência do canal sem ruído = $2 * largura de banda x log_2^L$
Capacidade do canal com ruído = largura de banda * log ₂ (1+SNR)
Velocidade de propagação = 3 * 10 ⁸ (luz)
Erro de quantização (SNR $_{\rm p}$) = (6.02n + 1.76)dB