Benutzerhinweise für die Verwendung des Kalypso-2D Netz-/ Ergebnisformates in RMA-10S

Im folgenden wird das Format der Netzdatei und die einzelnen Datenzeilen beschrieben. Unter Verwendung der Formate, die dringend zum korrekten Lesen der Datei einzuhalten sind, wird die Bedeutung der einzelnen Parameter kurz aufgelistet, soweit sie für die Verwendung in RMA 10S wichtig sind:

1 Allgemeine Modellangaben

Datenzeile 00 Titelzeile

Es wird der Kommentar aus der Steuerdatei in der Kommandozeile TI angegeben.

Format:

01-02	A2	ID	"00"

Datenzeile RS Restartdateiname (Änderungen)

Name der Netzdatei und der Restartdatei

Format:

01-02	A2	ID	"RS"
03-42	A40	modellein	Name der Netzdatei
43-82	A40	modellrst	Name der Restartdatei

Datenzeile DA Datumsangabe im RMA-10S Format (Neu)

Datumsangabe zu Beginn der Berechnung im RMA-10S Format

Format:

01-02	A2	ID	"DA"
03-12	I10	IYRR	Jahr des Simulationsstarts
13-32	R20.7	TETT	absolute Stunde im Simulationsjahr

Datenzeile TI Datumsangabe im Kalypso-2D Format

Datumsangabe zu Beginn der Berechnung im Kalypso-2D Format

Format:

01-02	A2	ID	"TI"
03-22	R20.7	TET	aktueller Zeitpunkt nach Simulation
23-32	I10	icyc	Schrittzähler (0 für stationäre Berechnung)

2 Modelldefinition

2.1 allgemeine Geometrie

Datenzeile FP Knotendefinition

Definition von Modellkanten für 1D- und 2D-Netze.

Format:

01-02	A2	ID	"FP"
03-12	I10	i	ID-Nummer des Knotens
13-32	R20.7	cord(i,1)	x-Koordinate (Rechtswert) z. B. in [m]
33-52	R20.7	coed(i,2)	y-Koordinate (Hochwert) z. B. in [m]
53-72	R20.7	ao(i)	z-Koordinate der Sohlhöhe z. B. in [mNN]
73-92	f20.7	kmx(i)	Kilometrierung (Flusskilometer)

Datenzeile AR Kantendefinition (Bedeutungsänderungen)

Definition von Modellkanten für 1D- und 2D-Netze. Aus der Kantendefinition wird das Elementdatenfeld NOP generiert.

Format:

01-02	A2	ID	"AR"
03-12	I10	i	ID-Nummer der Kante
13-22	I10	arctmp(i,1)	1. Knoten
23-32	I10	arctmp(i,2)	2. Knoten

33-42	I10	arctmp(i,3)	ID des linken Elements der Kante (Null bedeutet kein Element auf der Seite, Modellrand)
43-52	I10	arctmp(i,4)	ID des rechten Elements der Kante (Null bedeutet kein Element auf der Seite, Modellrand)
Achtung:			Wenn linkes und rechtes Element gleich sind, liegt ein 1D-Element vor
53-62	I10	arctmp(i,5)	Mittseitenknoten der Kante (optional)

Datenzeile FE Elementinformationen (Bedeutungsänderungen)

Informationen zu den durch die Kanten definierten Elementen

\mathbf{r}		
г	ormat:	

01-02	A2	ID	"FE"
13-22	I10	i	ID-Nummer des Elements
23-32	I10	imat(i)	Rauhigkeitsklasse des Elements
33-42	I10	imato(i)	Rauhigkeitsklasse des Elements im vorigen Zeitschritt (nicht verwendet in RMA-10S)
43-52	I10	nfixh(i)	Eliminierungsnummer im Lösungsalgorithmus
53-62	I10	reweir	1. Knoten bei der Abhandlung von 2D-Wehrelementen. 2D-Wehrelemente sind stets Rechtecke. Der erste Knoten ist der rechte Eckknoten von Oberwasser auf das Wehrelement blickend (siehe Abbildung 1)

Abbildung 1 Definitionsrichtung von 2D-Wehrelementen (Fang [2007])

Datenzeile TE Übergangselemente zwischen 1D und 2D Modellbereichen; <u>Element-zu-Element-Kopplung</u> (Neu)

Definition von Übergangselementen, die sich aus einem 1D-Elementteil und einer 2D-Kante zusammensetzen.

Format:			
01-02	A2	ID	"TE"
13-22	I10	$trans_nodes(i,1)$	Element-ID des Übergangselements
23-32	I10	trans_nodes(i,2)	1. Knoten des 1D-Elementteils
33-42	I10	trans_nodes(i,3)	Mittseitenknoten des 1D-Elementteils
43-52	I10	trans_nodes(i,4)	2. Knoten des 1D-Elementteils; gleichzeitig Mittseitenknoten der angeschlossenen 2D-Kante
53-62	I10	trans_nodes(i,5)	Eckknoten des angeschlossenen 2D-Elements rechtsseitig des 1D-Elementteils
43-52	I10	trans_nodes(i,6)	Eckknoten des angeschlossenen 2D-Elements linksseitig des 1D-Elementteils

Datenzeile TL Übergangselemente zwischen 1D und 2D Modellbereichen mittels Kontinuitätslinie; Element-zu-Linien-Kopplung (Neu)

Definition von Modellübergängen mittels des Konstruktes der Kontinuitätslinie.

F	ormat:

01-02	A2	ID	"TL"
03-12	I10	i	Kopplungs-ID
13-22	I10	trans_lines(i,1)	Element-ID des koppelnden 1D-Elements
23-32	I10	trans_lines(i,2)	ID der koppelnden Kontinuitätslinie; Definitionsnummer aus Steuerdatei entnehmen. Alternativ kann die Kontinuitätslinie auch in der Modelldatei (*.2d) definiert werden.
33-42	I10	trans_lines(i,3)	Knoten des 1D-Elementes, welcher mit der Kontinuitätslinie verbunden werden soll.

Datenzeile CCn Definition von Kontinuitätslinien (2. Priorität)

Es ist möglich auch Kontinuitätslinien in der *.2d-Modelldatei zu definieren. Sie besitzen allerdings zweite Priorität. Das bedeutet, wenn in der Steuerdatei (*.R10) eine

Kontinuitätslinie der gleichen ID-Nr. definiert ist, dann wird die in der *.2d-Datei definierte Kontinuitätslinie überschrieben. Für die Praxis bei der Verwendung der Kontinuitätsliniendefinition bedeutet dies, dass die ID-Nummerierung der in der *.2d-Datei definierten Kontinuitätslinien an der Nummerierung aus der Steuerdatei anknüpfen! Als praktisches Beispiel wäre ein Gesamtmodell zu nennen, in dem 5 Kontinuitätslinien vorkommen, von denen 2 in der Modelldatei zu definieren sind. Diese müssen dann die ID-Nummern 4 und 5 tragen!

_	
E	
Format	
1 Ommai	

01-02	A2	ID	"CC"		
03	I1	n	Definitionszeilennummer einer Kontinuitätslinie		
04-08	I10	i	Kontinuitätslinien-ID		
09-80	9*I8	line(i,j)	Eckknoten-ID der Kontinuitätslinie. Es dürfen keine Mittseitenknoten von Elementkanten aufgenommen werden. Die Knoten müssen in der Reihenfolge der auftretenden Knoten angegeben werden. Die Richtung ist beliebig.		

2.2 Profildaten für Elemente/ Knoten für eindimensionale Berechnungen mit dem Trapezprofilansatz; <u>direkte Geometrie</u>

Datenzeile CS Querschnittswerte für eindimensionale Netzbereiche

Knotenbezogene Definition von Querschnitsswerten, die für die eindimensionale Berechnung in RMA-10S verwendet werden.

Format:			
01-02	A2	ID	"CS"
13-22	I10	i	Knoten-ID des eindimensionalen Knotens
23-32	R10.1	width(i)	Breite der Sohle des Flussschlauches in [m]
33-42	R10.3	ss1(i)	Neigung der ersten Böschung (Seite nicht definiert), als Steigungsquotient, Neigung Null bedeutet vertikale Böschung
43-52	R10.3	ss2(i)	Neigung der zweiten Böschung (Seite nicht definiert), als Steigungsquotient, Neigung Null bedeutet vertikale Böschung
53-62	R10.2	wids(i)	Breite des Speichers bei Übertreten des Ufers (Summe aus beiden Vorländern)

43-52	R10.2	widbs(i)	Übertretungshöhe des Ufers, entspricht geringster Höhe des Wasserstands im Hochwasserspeicher
53-62	R10.2	wss(i)	Neigung der Böschung des Hochwasserspeichers als Steigungsquotient, Neigung Null bedeutet vertikale Böschung.

2.3 Profildaten für Elemente/ Knoten für eindimensionale Berechnungen mit dem Polynomansatz; <u>indirekte Geometrie</u>

Die folgenden Datenzeilen sind zur Definition von eindimensionalen Modellbereichen nach dem Polynomansatz. Die Datenzeilen zur Verwendung der Beiwertpolynomkoeffizienten sind dabei optional. Dies richtet sich nach dem Eintrag in der Steuerdatei. Es müssen entweder die Polynome des Impulsstrombeiwertes oder Energiestrombeiwertes eingegeben werden. Alternativ kann dieser Beiwert vollständig außen vor bleiben, so dass diese Datenzeilen nicht beachtet werden müssen.

Datenzeile MM min. und max. Wasserstand für Gültigkeit der Polynome

Definition des min. und max. Wasserstandes für die Gültigkeit der Polynome an den Knoten. Das Einhalten der Grenzen wird in coefldFE überprüft

Format			
01-02	a2	ID	"MM"
03-12	i10	i	ID-Nummer des Knotens
13-32	f20.7	hhmin(i)	minimaler Wasserstand für Gültigkeit der Polynome
33-52	f20.7	hhmax(i)	maximaler Wasserstand für Gültigkeit der Polynome

Datenzeile AP1 Flächenpolynomkoeffizienten

Definition der Flächenpolynomkoeffizienten an den Knoten. Die Berechnung des Fließquerschnittes mithilfe der Flächenpolynomkoeffizienten erfolgt in coef1dFE.

<u>Format</u>			
01-03	a3	ID	"AP1"
04-12	i9	I	ID-Nummer des Knotens
13-32	f20.7	apoly(i,1)	Flächenpolynomkoeffizient 0. Grades
33-52	f20.7	apoly(i,2)	Flächenpolynomkoeffizient 1. Grades
53-72	f20.7	apoly(i,3)	Flächenpolynomkoeffizient 2. Grades
73-92	f20.7	apoly(i,4)	Flächenpolynomkoeffizient 3. Grades

93-112 f20.7 apoly(i,5) Flächenpolynomkoeffizient 4. Grades

Datenzeile AP2 Flächenpolynomkoeffizienten

Definition der Flächenpolynomkoeffizienten an den Knoten. Die Berechnung des Fließquerschnittes mithilfe der Flächenpolynomkoeffizienten erfolgt in coef1dFE.

<u>Format</u>			
01-03	a3	ID	"AP2"
04-12	i9	I	ID-Nummer des Knotens
13-32	f20.7	apoly(i,6)	Flächenpolynomkoeffizient 5. Grades
33-52	f20.7	apoly(i,7)	Flächenpolynomkoeffizient 6. Grades
53-72	f20.7	apoly(i,8)	Flächenpolynomkoeffizient 7. Grades
73-92	f20.7	apoly(i,9)	Flächenpolynomkoeffizient 8. Grades
93-112	f20.7	apoly(i,10)	Flächenpolynomkoeffizient 9. Grades

Datenzeile AP3 Flächenpolynomkoeffizienten

Definition der Flächenpolynomkoeffizienten an den Knoten. Die Berechnung des Fließquerschnittes mithilfe der Flächenpolynomkoeffizienten erfolgt in coef1dFE.

<u>Format</u>			
01-03	a3	ID	"AP3"
04-12	i9	I	ID-Nummer des Knotens
13-32	f20.7	apoly(i,11)	Flächenpolynomkoeffizient 10. Grades
33-52	f20.7	apoly(i,12)	Flächenpolynomkoeffizient 11. Grades
53-72	f20.7	apoly(i,13)	Flächenpolynomkoeffizient 12. Grades

Datenzeile QP1 Schlüsselkurvenkoeffizienten

Definition der Schlüsselkurvenkoeffizienten an den Knoten. Die Schlüsselkurve ist eine Wasserpiegel-Durchflussbeziehung(Q(h)-Kurve). Die Berechnung des Durchflusses aus dem Wasserstand mithilfe der Schlüsselkurvenkoeffizienten erfolgt in coef1dFE.

т	¬ _			
ı	¹()	rr	nz	П

01-03 a3 ID "QP1"

04-12	i9	i	ID-Nummer des Knotens
13-32	f20.7	qgef(i)	verwendetes Referenzgefälle bei der Ermittlung der Schlüsselkurve
33-52	f20.7	qpoly(i,1)	Schlüsselkurvenkoeffizient 0. Grades
53-72	f20.7	qpoly(i,2)	Schlüsselkurvenkoeffizient 1. Grades
73-92	f20.7	qpoly(i,3)	Schlüsselkurvenkoeffizient 2. Grades
93-112	f20.7	qpoly(i,4)	Schlüsselkurvenkoeffizient 3. Grades

Datenzeile QP2 Schlüsselkurvenkoeffizienten

Definition der Schlüsselkurvenkoeffizienten an den Knoten. Die Schlüsselkurve ist eine Wasserpiegel-Durchflussbeziehung(Q(h)-Kurve). Die Berechnung des Durchflusses aus dem Wasserstand mithilfe der Schlüsselkurvenkoeffizienten erfolgt in coef1dFE.

<u>Format</u>			
01-03	a3	ID	"QP2"
04-12	i9	i	ID-Nummer des Knotens
13-32	f20.7	qpoly(i,5)	Schlüsselkurvenkoeffizient 4. Grades
33-52	f20.7	qpoly(i,6)	Schlüsselkurvenkoeffizient 5. Grades
53-72	f20.7	qpoly(i,7)	Schlüsselkurvenkoeffizient 6. Grades
73-92	f20.7	qpoly(i,8)	Schlüsselkurvenkoeffizient 7. Grades
93-112	f20.7	qpoly(i,9)	Schlüsselkurvenkoeffizient 8. Grades

Datenzeile QP3 Schlüsselkurvenkoeffizienten

Definition der Schlüsselkurvenkoeffizienten an den Knoten. Die Schlüsselkurve ist eine Wasserpiegel-Durchflussbeziehung(Q(h)-Kurve). Die Berechnung des Durchflusses aus dem Wasserstand mithilfe der Schlüsselkurvenkoeffizienten erfolgt in coef1dFE.

H	01	rn	<u> 1a</u>	t

01-03	a3	ID	"QP3"
04-12	i9	i	ID-Nummer des Knotens
13-32	f20.7	qpoly(i,10)	Schlüsselkurvenkoeffizient 9. Grades

33-52	f20.7	qpoly(i,11)	Schlüsselkurvenkoeffizient 10. Grades
53-72	f20.7	qpoly(i,12)	Schlüsselkurvenkoeffizient 11. Grades
73-92	f20.7	qpoly(i,13)	Schlüsselkurvenkoeffizient 12. Grades

Datenzeile HB Bordvollhöhe des Profils

Definition der Bordvollhöhe des Profils am Knoten i

Format

01-03	a2	ID	"HB"
04-12	i10	i	ID-Nummer des Knotens
13-32	f20.7	hbordv(i)	Bordvollhöhe

Datenzeile AD Koeffizienten des Übergangspolynoms des Energiestrombeiwertes α

Definition der Polynomkoeffizienten an den Knoten für Berechnungen des Energiestrombeiwert für den Übergangsbereich von Bordvollhöhe bis alphah(i).

Format

01-03	a2	ID	"AD"
04-12	i10	i	ID-Nummer des Knotens
13-32	f20.7	alphah(i)	Höhe des Übergangsbereiches für α (Energie)
33-52	f20.7	alphad(i,1)	Polynomkoeffizient α (Energie)-Übergang 0. Grades
53-72	f20.7	alphad(i,2)	Polynomkoeffizient α (Energie)-Übergang 1. Grades
73-92	f20.7	alphad(i,3)	Polynomkoeffizient α (Energie)-Übergang 2. Grades
93-112	f20.7	alphad(i,4)	Polynomkoeffizient α (Energie)-Übergang 3. Grades

Datenzeile AK1 Koeffizienten des Polynom für den Energiestrombeiwert a

Definition der Polynomkoeffizienten an den Knoten für Berechnungen mit dem Energiestrombeiwert.

Format

01-03 a3 ID "AK1"

04-12	i9	i	ID-Nummer des Knotens
13-32	f20.7	alphapk(i,1)	Polynomkoeffizient α (Energie) 0. Grades
33-52	f20.7	alphapk(i,2)	Polynomkoeffizient α (Energie) 1. Grades
53-72	f20.7	alphapk(i,3)	Polynomkoeffizient α (Energie) 2. Grades
73-92	f20.7	alphadk(i,4)	Polynomkoeffizient α (Energie) 3. Grades
93-112	f20.7	alphapk(i,5)	Polynomkoeffizient α (Energie) 4. Grades

Datenzeile AK2 Koeffizienten des Polynom für den Energiestrombeiwert α

Definition der Polynomkoeffizienten an den Knoten für Berechnungen mit dem Energiestrombeiwert.

<u>Format</u>			
01-03	a3	ID	"AK2"
04-12	i9	i	ID-Nummer des Knotens
13-32	f20.7	alphapk(i,6)	Polynomkoeffizient α (Energie) 5. Grades
33-52	f20.7	alphapk(i,7)	Polynomkoeffizient α (Energie) 6. Grades
53-72	f20.7	alphapk(i,8)	Polynomkoeffizient α (Energie) 7. Grades
73-92	f20.7	alphadk(i,9)	Polynomkoeffizient α (Energie) 8. Grades
93-112	f20.7	alphapk(i,10)	Polynomkoeffizient α (Energie) 9. Grades

Datenzeile AK3 Koeffizienten des Polynom für den Energiestrombeiwert α

Definition der Polynomkoeffizienten an den Knoten für Berechnungen mit dem Energiestrombeiwert.

<u>Format</u>			
01-03	a3	ID	"AK3"
04-12	i9	i	ID-Nummer des Knotens
13-32	f20.7	alphapk(i,11)	Polynomkoeffizient α (Energie) 10. Grades
33-52	f20.7	alphapk(i,12)	Polynomkoeffizient α (Energie) 11. Grades
53-72	f20.7	alphapk(i,13)	Polynomkoeffizient α (Energie) 12. Grades

Datenzeile BD Koeffizienten des Übergangspolynoms des Impulsstrombeiwertes β

Definition der Polynomkoeffizienten an den Knoten für Berechnungen mit dem Impulsstrombeiwert für den Übergang bis h.

<u>Format</u>			
01-03	a2	ID	"BD"
04-12 i	i10	i	ID-Nummer des Knotens
13-32	f20.7	betah(i)	Höhe des Übergangsbereiches für b (Impuls)
33-52	f20.7	betad(i,1)	Polynomkoeffizient β (Impuls) -Übergang 0. Grades
53-72	f20.7	betad(i,2)	Polynomkoeffizient β (Impuls) -Übergang 1. Grades
73-92	f20.7	betad(i,3)	Polynomkoeffizient β (Impuls) -Übergang 2. Grades
93-112	f20.7	betad(i,4)	Polynomkoeffizient β (Impuls) -Übergang 3. Grades

Datenzeile BK1 Koeffizienten des Polynom für den Impulsstrombeiwert β

Definition der Polynomkoeffizienten an den Knoten für Berechnungen mit dem Energiestrombeiwert.

<u>Format</u>			
01-03	a3	ID	"BK1"
04-12	i9	i	ID-Nummer des Knotens
13-32	f20.7	betapk(i,1)	Polynomkoeffizient β (Impuls) 0. Grades
33-52	f20.7	betapk(i,2)	Polynomkoeffizient β (Impuls) 1. Grades
53-72	f20.7	betapk(i,3)	Polynomkoeffizient β (Impuls) 2. Grades
73-92	f20.7	betadk(i,4)	Polynomkoeffizient β (Impuls) 3. Grades
93-112	f20.7	betapk(i,5)	Polynomkoeffizient β (Impuls) 4. Grades

Datenzeile BK2 Koeffizienten des Polynom für den Impulsstrombeiwert β

Definition der Polynomkoeffizienten an den Knoten für Berechnungen mit dem Energiestrombeiwert.

<u>Format</u>			
01-03	a3	ID	"BK2"
04-12	i9	i	ID-Nummer des Knotens
13-32	f20.7	betapk(i,6)	Polynomkoeffizient β (Impuls) 5. Grades
33-52	f20.7	betapk(i,7)	Polynomkoeffizient β (Impuls) 6. Grades
53-72	f20.7	betapk(i,8)	Polynomkoeffizient β (Impuls) 7. Grades
73-92	f20.7	betadk(i,9)	Polynomkoeffizient β (Impuls) 8. Grades
93-112	f20.7	betapk(i,10)	Polynomkoeffizient β (Impuls) 9. Grades

$Datenzeile \quad BK3 \quad Koeffizienten \ des \ Polynom \ f\"ur \ den \ Impulsstrombeiwert \ \beta$

Definition der Polynomkoeffizienten an den Knoten für Berechnungen mit dem Energiestrombeiwert.

<u>Format</u>			
01-03	a3	ID	"BK3"
04-12	i9	i	ID-Nummer des Knotens
13-32	f20.7	betapk(i,11)	Polynomkoeffizient β (Impuls) 10. Grades
33-52	f20.7	betapk(i,12)	Polynomkoeffizient β (Impuls) 11. Grades
53-72	f20.7	betapk(i,13)	Polynomkoeffizient β (Impuls) 12. Grades

3 Ergebnisse

Datenzeile	VA	Ergebnisse der Freiheitsgrade v_x , v_y , h	
Format:			
01-02	A2	ID	"VA"
13-22	I10	i	Knoten-ID der angegebenen Ergebnisse
23-32	R20.7	vel(1,i)	Fließgeschwindigkeit in globaler x-Richtung
33-42	R20.7	vel(2,i)	Fließgeschwindigkeit in globaler y-Richtung

43-52	R20.7	vel(3,i)	Wassertiefe
53-62	R20.7	rausv(3,i)	absoluter Wasserstand über Bezugniveau; kann im Falle des Marsh-Algorithmus auch unterhalb der Sohlhöhe liegen
Datenzeile	DA	Ableitungen der	Freiheitsgrade v_x , v_y , h
01-02	A2	ID	"DA"
13-22	I10	i	Knoten-ID der angegebenen Ergebnisse
23-32	R20.7	vdot(1,i)	Ableitung der Fließgeschwindigkeit in globaler x-Richtung nach der Zeit
33-42	R20.7	vdot(2,i)	Ableitung der Fließgeschwindigkeit in globaler y- Richtung nach der Zeit
43-52	R20.7	vdot(3,i)	Ableitung der Wassertiefe nach der Zeit
Datenzeile	vo	Ergebnisse der F	Treiheitsgrade v_x , v_y , h des vergangenen Zeitschritts
Format:			
01-02	A2	ID	"VO"
13-22	I10	i	Knoten-ID der angegebenen Ergebnisse
23-32	R20.7	vold(1,i)	Fließgeschwindigkeit in globaler x-Richtung des vorherigen Zeitschrittes
33-42	R20.7	vold(2,i)	Fließgeschwindigkeit in globaler y-Richtung des vorherigen Zeitschrittes
43-52	R20.7	vold(3,i)	Wassertiefe des vorherigen Zeitschrittes
Datenzeile	DA	Ableitungen der Freiheitsgrade v_x , v_y , h des vergangenen Zeitschritts	
01-02	A2	ID	"DA"
13-22	I10	i	Knoten-ID der angegebenen Ergebnisse
23-32	R20.7	vdoto(1,i)	Ableitung der Fließgeschwindigkeit in globaler x- Richtung nach der Zeit des vorherigen Zeitschritts
33-42	R20.7	vdoto(2,i)	Ableitung der Fließgeschwindigkeit in globaler y-

43-52 R20.7 vdoto(3,i) Ableitung der Wassertiefe nach der Zeit des vorherigen Zeitschritts

Datenzeile DF Ergebnisse der restlichen vier Freiheitsgrade in RMA-10S (Neu)

Ergebnisdefintionen, die für weitere Berechnungen in RMA 10S verwendet werden. Sie sind als zukunftsorientierte Datenzeilen gedacht, die für die Verwendung für Konzentrationsprobleme oder dreidimensionale Berechnungen benötigt werden. Die Datenzeile sollte bei RESTART-Berechnungen stets angegeben werden und für die Temperatur den Wert 20,0°C enthalten.

01-02	A2	ID	"DF"
13-22	I10	i	Knoten-ID der angegebenen Ergebnisse
23-32	R20.7	vel(4,i)	Salzkonzentration
33-42	R20.7	vel(5,i)	Temperatur
43-52	R20.7	vel(6,i)	Sedimentkozentration

4 bisher unbenutzte Datenzeilen in RMA-10S

R20.7 vel(7,i)

Die folgend aufgeführten Datenzeilen werden nur dargestellt, um zu zeigen, welche Möglichkeiten weiter bestehen. Sie werden in RMA 10S bisher nicht verwendet.

???; nicht vertikale Geschwindigkeit!!!

Datenzeile ZU Zusatzinformationen zu den Knoten für ein Ergebnis

Datenzeile RK Informationen zu den Rauhigkeitsklassen ohne Bedeutung für die Berechnung in RMA 10S

5 Literatur

Format:

53-62

Für internen Gebrauch kurz: Diplomarbeiten Schrage, Falke; Master-Thesis Fang