RECOMMENDER SYSTEMS COURSE

KAGGLE CHALLENGE - 2017/18

IL POLLO DEL PROFILO

LUCA BUTERA - 878595

GIADA CONFORTOLA - 898540

BACKGROUND AND OBJECTIVES

Background and Objectives

Dataset Analysis

Dataset Refactoring

Testing

Modelling Choices

Our Solution

Content Based

User Based

Item Based

Ensembling Choices

Final Solution

Parameters and Results

A Recommender System is a system whose purpose is to predict the ratings a set of users would give to a set of items, given the ratings over a subset of such items.

Our objective is to develop one for songs recommendation over playlists, aiming to the best MAP score possible.

Background and Objectives

> **Dataset Analysis**

Dataset Refactoring

Testing

Modelling Choices

Our Solution

Content Based

User Based

Item Based

Ensembling Choices

Final Solution

Parameters and Results

DATASET ANALYSIS

The dataset contains two main information groups:

Playlists data

playlist_id title numtracks duration created_at owner

Seemingly not useful, indeed not used.

Songs data

track_id	artist_id	duration	playcount	album	tags
----------	-----------	----------	-----------	-------	------

Useful data, needing some preprocessing.

Song-playlist pairs used as they are.

playlist_id

track id

DATASET REFACTORING

Background and Objectives

Dataset Analysis

Dataset Refactoring

Testing

Modelling Choices

Our Solution

Content Based

User Based

Item Based

Ensembling Choices

Final Solution

Parameters and Results

As said, data needed some formatting.

Playcount and Duration have been transformed to be more meaningful.

High Playcount (>= 8000)

Avg Playcount (< 8000)

TESTING

Background and Objectives

Dataset Analysis

Dataset Refactoring

Testing

Modelling Choices

Our Solution

Content Based

User Based

Item Based

Ensembling Choices

Final Solution

Parameters and Results

To evaluate recommender performances a train set and a test set have been created from given data.

Cross-validation avoided, due to high computational time and no relevant advantage.

MODELLING CHOICES

Background and Objectives

Dataset Analysis

Dataset Refactoring

Testing

Modelling Choices

Our Solution

Content Based

User Based

Item Based

Ensembling Choices

Final Solution

Parameters and Results

We tried different approaches to our problem.

Content Based Filtering
User Based Filtering
Item Based Filtering

Complex models

Matrix Factorization S.L.I.M.

But complex models revealed to be:

A single run required lots of time, as well as writing optimized low level code to speed up computation.

Hard to tune

Obtaining satisfying results relied on tuning a vast number of parameters. This, coupled with the time intensive aspect, was a major disadvantage.

So our choice was to focus on simple models and their optimization.

OUR SOLUTION

Background and Objectives

Dataset Analysis

Dataset Refactoring

Testing

Modelling Choices

Our Solution

Content Based

User Based

Item Based

Ensembling Choices

Final Solution

Parameters and Results

For our final solution we chose an ensemble combining three models, in order to extend their expressive power and achieve better results.

CONTENT BASED

Background and Objectives

Dataset Analysis

Dataset Refactoring

Testing

Modelling Choices

Our Solution

Content Based

User Based

Item Based

Ensembling Choices

Final Solution

Parameters and Results

Content Based approach is mostly caracterized by a set of attributes for each item and a similarity measure.

Chosen attributes

Similarity matrix

Built with dot product

Regularized with IDF

Thresholded to top 120 similarities per item

USER BASED

Background and Objectives

Dataset Analysis

Dataset Refactoring

Testing

Modelling Choices

Our Solution

Content Based

User Based

Item Based

Ensembling Choices

Final Solution

Parameters and Results

User Based approach takes into account the similarity between users (playlists) to extract recommendations.

Playlist characterization

Similarity matrix

Built with simplified cosine for implicit data sets

Shrinkage factor of 10

Thresholded to top 10 similarities per item

ITEM BASED

Background and Objectives

Dataset Analysis

Dataset Refactoring

Testing

Modelling Choices

Our Solution

Content Based

User Based

Item Based

Ensembling Choices

Final Solution

Parameters and Results

Item Based approach takes into account the similarity between items (songs) to extract recommendations.

Song characterization

Similarity matrix

Built with dot product

Regularized with IDF

Thresholded to top 140 similarities per item

ENSEMBLING CHOICES

Background and Objectives

Dataset Analysis

Dataset Refactoring

Testing

Modelling Choices

Our Solution

Content Based

User Based

Item Based

Ensembling Choices

Final Solution

Parameters and Results

First ensemble idea was to combine similarity matrices.

But not all similarity matrices can be combined this way. So we tried hybrid combination.

But in the end the best solution was to directly combine recommendations.

FINAL SOLUTION

Background and Objectives

Dataset Analysis

Dataset Refactoring

Testing

Modelling Choices

Our Solution

Content Based

User Based

Item Based

Ensembling Choices

Final Solution

Parameters and Results

Final results were obtained by directly combining the normalized recommendations of each model.

PARAMETERS AND RESULTS

Background and Objectives

Dataset Analysis

Dataset Refactoring

Testing

Modelling Choices

Our Solution

Content Based

User Based

Item Based

Ensembling Choices

Final Solution

Parameters and Results

Best score parameters

CBF

Attributes: artist_id, album

S measure: dot product

S threshold: 120

IDF: True

UBF

S measure: implicit cos

Shrinkage: 10 S threshold: 10

IDF: False

IBF

S measure: dot product

S threshold: 140

IDF: True

Ensemble

CBF coefficient: 0.4

UBF coefficient: 0.1

IBF coefficient: 0.5

CBF Shrinkage: 60

IBF Shrinkage: 10

Test MAP score

0.0899

Kaggle MAP score

0.097

THANKS FOR WATCHING

Next team