Esercitazione 1

Olivieri Daniele

21 agosto 2019

Valutare lo scambio di lavoro meccanico e di energia termica delle seguenti trasformazioni:

- Compressione adiabatica isoentropica di 1 kg di aria da 1 bar e 288.15 K a 2.5 bar.
- Compressione adiabatica reale di 1 kg di aria da 1 bar e 288.15 K a 2.5 bar con η_{pc} pari a 0.755
- Compressione politropica di 1 kg di aria da 1 bar e 288.15 K a 2.5 bar con la condizione termodinamica finale coincidente con quella dell'adiabatica reale
- Compressione isoterma di 1 kg di aria da 1 bar e 288.15 K a 2.5 bar
- Compressione di 1 kg di acqua da 1 bar e 288.15 K a 2.5 bar

1 Trasformazione isoentropica

Analizziamo la prima trasformazione utilizzando le relazioni per le trasformazioni reversibili, per prima cosa si determina lo stato del gas prima e dopo l'espansione mediante l'equazione di stato dei gas

$$pv = RT \tag{1}$$

Lo stato iniziale è interamente determinato dato che conosciamo sia la temperatura che la pressione mentre per il secondo dobbiamo utilizzare la politropica per trasformazioni reversibili, in questo caso x è proprio uguale a k, la costante del gas pari a Cp/Cv

$$p \cdot v^x = \cos t \tag{2}$$

Possiamo quindi ricavare v_2 tramite

$$v_2 = v_1/(\beta^{1/k})$$

Determinato v_2 utilizzando ancora la (1) calcoliamo il valore della temperatura T_2 in uscita dal compressore.

Il lavoro necessario alla compressione sarà interamente speso per l'aumento di entalpia del gas e potrà quindi essere calcolato con

$$L_{is} = m \cdot \Delta h = m \cdot C_p(T_2 - T_1) \tag{3}$$

esso sarà pari a $86.65 \ kJ$

Considerando la trasformazione adiabatica, il calore scambiato sarà nullo. Tabella degli stati

stato	p(bar)	$v (m^3/kg)$	T (° C)
1	1	0.827	15
2	2.5	0.429	101.2

2 Trasformazione adiabatica reale

Anche in questo caso la trasformazione è adiabatica ma viene fornito un valore del rendimento politropico di compressione $\eta_{pc} = 0.755$, definito come

$$\eta_{pc} \stackrel{def}{=} \frac{\frac{n}{n-1}RT_1\left(1-\beta^{\frac{n-1}{n}}\right)}{C_p\left(T_1-T_2\right)} = \frac{L_{pc}}{L_r} \tag{4}$$

o equivalentemente

$$\eta_{pc} = \frac{n}{n-1} \frac{k-1}{k} \tag{5}$$

si può quindi ricavare il valore dell'esponente n della politropica oppure sostituire direttamente il rendimento politropico nella definizione del rendimento adiabatico e quindi calcolarne il valore.

$$\eta_{ad-c} \stackrel{def}{=} \frac{L_{is}}{L_r} = \frac{C_p T_1 \left(1 - \beta \frac{k-1}{k}\right)}{C_p T_1 \left(1 - \beta \frac{n-1}{n}\right)} = \frac{\frac{k-1}{k}}{1 - \beta \frac{k-1}{k\eta_{pc}}}$$
(6)

svolgendo i calcoli si trova quindi un valore del rendimento adiabatico pari a $\eta_{ad-c}=0.722$. Il lavoro necessario alla trasformazione adiabatica reale sarà quindi il rapporto tra il lavoro necessario alla precedente trasformazione isoentropica e il rendimento adiabatico

$$L_r = \frac{L_{is}}{\eta_{ad-c}}$$

e sarà pari a 120 kJ. Anche in questo caso il calore scambiato è considerato nullo.

3 Trasformazione politropica

La terza trasformazione richiede il calcolo delle condizioni termodinamiche dello stato finale della compressione adiabatica reale, possiamo calcolare la politropica passante per gli stessi punti dato che ci viene fornito il rendimento. Riferendoci quindi alla (2) dobbiamo calcolare il valore dell'esponente incognito ricavabile dalla (5) che sarà uguale a

$$n = \frac{\eta_{pc}}{\eta_{pc} - \frac{k-1}{k}} \tag{7}$$

in questo caso pari a 1.609, maggiore del valore k=1.4 per l'aria, com'era da aspettarsi. Rieseguendo i calcoli svolti nella sezione 1 possiamo creare la nuova tabella degli stati termodinamici:

stato	p(bar)	$v (m^3/kg)$	T (° C)
1	1	0.827	15
2	2.5	0.468	134.4

temperatura e volume specifico sono maggiori rispetto alle condizioni successive alla trasforamzione isoentropica. Il lavoro necessario per la trasformazione politropica è ricavabile dalla definizione del rendimento politropico (4) ed è pari a 90.6 kJ, per raggiungere lo stato termodinamico 2 però è necessario fornire una quantità di calore al gas pari alla differenza tra il lavoro reale e quello politropico ossia 29.4 kJ di calore.

4 Trasformazione isoterma

La compressione isoterma implica una sottrazione di calore continua al fine di mantenere la temperatura costante durante la compressione, tecnicamente irrealzzabile a causa della geometria dei compressori fortemente adiabatici, si può ottenere invece una interrefrigerazione dividendo la compressione in più stadi. Utilizzando ancora la (2) e ponendo l'esponente pari ad 1 si ottiene l'equazione dell'isoterma

$$p \cdot v = \cos t \tag{8}$$

Ricaviamo quindi gli stati termodinamici come fatto in precedenza

stato	p(bar)	$v (m^3/kg)$	T (°C)
1	1	0.827	15
2	2.5	0.331	15

Il lavoro necessario alla compressione è pari al calore scambiato dal sistema dato che l'energia interna U di un gas perfetto è funzione della sola temperatura, resta quindi anch'essa costante, ciò implica che Q=L. Il lavoro è facilmente calcolabile come

$$L = \int_{v_1}^{v_2} p \cdot dV \tag{9}$$

utilizzando la (1) e sostituendo p si ricava:

$$L = mRT \ln \left(\frac{1}{\beta}\right) \tag{10}$$

Il lavoro di compressione isotermo è quindi pari a 75.8 kJ così come anche il calore uscente necessario a mantenere la temperatura costante.

5 Compressione di un liquido

Valutare lo scambio di lavoro meccanico ed energia termica necessari alla compressione di 1 kg di acqua da 1 bar e 288.15K a 2.5 bar.