2 - Mathe - MD - Besprechung am:

Übungsserie - Zahlenfolgen

- 1. Berechne die ersten 5 Glieder.

- a) $a_n = 4n 1$ b) $b_n = -2n + 3$ c) $c_n = n^2 3n$ d) $d_n = (n+1)^{-1}$

- e) $e_n = n!$ f) $f_n = \frac{2^n}{n!}$ g) $g_n = \frac{(n+1)!}{n!}$ h) $h_n = (n+1)! n!$
- 2. Berechne das 5. Glied.
- a) $a_1 = 6$, $a_{n+1} = a_n + 8$ b) $b_1 = 1$, $b_{n+1} = 3b_n$ c) $c_1 = 3$, $c_n = 2c_{n-1} + n$
- 3. Welches ist das grösste Glied?
- a) $a_n = -3n^2 + 42n 7$ b) $b_n = -3n^2 32n$

- 4. Gesucht ist das kleinste n, für welches $x_n < 0.1$.

 - a) $x_n = 0.9^n$ b) $x_n = 0.999^n$
- 5. $a_n = n$. Berechne die Summe der ersten 1000 Glieder dieser Folge.
- 6. $a_n = n(n-1)(n+1)(n+2) + 1$. Beweise, dass alle Glieder der Folge (a_n) Quadratzahlen sind.
- 7. $a_n = \sin(n\frac{\pi}{\epsilon})$; wie viele verschiedene Werte nimmt die Folge an?
- 8. Definiere die Folge sowohl explizit als auch rekursiv.
 - a) $(a_n) = \{1, 4, 7, 10, 13, ...\}$ b) $(b_n) = \{6, 13, 20, 27, 34, ...\}$

 - c) $(c_n) = \{6, 12, 24, 48, 96, ...\}$ d) $(d_n) = \{3, 33, 333, 3333, ...\}$
- 9. Definiere die Folge rekursiv.
 - a) $(a_n) = \{0.1, 0.01, 0.001, 0.0001, ...\}$
- b) $(b_n) = \{1, 101, 10101, 1010101, ...\}$
- c) $c_n = 3n 1$ d) $d_n = 2 \cdot 3^n$
- 10. Ist die Folge divergent oder konvergent? Falls konvergent, gib den Grenzwert a an. Ab welcher n_{ϵ} ist die Folge im Intervall $[a - \epsilon; a + \epsilon]$ eingeschlossen? Berechne n_{ϵ} für $\epsilon = 10^{-3}$.

 - a) $a_n = \frac{3n}{n+1}$ b) $b_n = \frac{n^7 + 6n}{3n^5}$ c) $c_n = \frac{1}{n^2}$ d) $d_n = \log \frac{n+3}{2n}$

11. Gleich wie 10 für $a_n = \sqrt[n]{n}$ (schwierig?)

2 - Mathe - MD - Besprechung am:

Übungsserie - Zahlenfolgen

- 1. Berechne die ersten 5 Glieder.

 - a) $a_n = 4n 1$ b) $b_n = -2n + 3$
- c) $c_n = n^2 3n$
- d) $d_n = (n+1)^{-1}$

- e) $e_n = n!$ f) $f_n = \frac{2^n}{n!}$
- g) $g_n = \frac{(n+1)!}{n!}$ h) $h_n = (n+1)! n!$

- 2. Berechne das 5. Glied.
 - a) $a_1 = 6$, $a_{n+1} = a_n + 8$ b) $b_1 = 1$, $b_{n+1} = 3b_n$ c) $c_1 = 3$, $c_n = 2c_{n-1} + n$

- 3. Welches ist das grösste Glied?
- a) $a_n = -3n^2 + 42n 7$ b) $b_n = -3n^2 32n$

- 4. Gesucht ist das kleinste n, für welches $x_n < 0.1$.

 - a) $x_n = 0.9^n$ b) $x_n = 0.999^n$
- 5. $a_n = n$. Berechne die Summe der ersten 1000 Glieder dieser Folge.
- 6. $a_n = n(n-1)(n+1)(n+2) + 1$. Beweise, dass alle Glieder der Folge (a_n) Quadratzahlen sind.
- 7. $a_n = \sin(n\frac{\pi}{\epsilon})$; wie viele verschiedene Werte nimmt die Folge an?
- 8. Definiere die Folge sowohl explizit als auch rekursiv.
 - a) $(a_n) = \{1, 4, 7, 10, 13, ...\}$ b) $(b_n) = \{6, 13, 20, 27, 34, ...\}$
 - c) $(c_n) = \{6, 12, 24, 48, 96, ...\}$
- d) $(d_n) = \{3, 33, 333, 3333, ...\}$
- 9. Definiere die Folge rekursiv.
 - a) $(a_n) = \{0.1, 0.01, 0.001, 0.0001, ...\}$
- b) $(b_n) = \{1, 101, 10101, 1010101, ...\}$
- c) $c_n = 3n 1$ d) $d_n = 2 \cdot 3^n$
- 10. Ist die Folge divergent oder konvergent? Falls konvergent, gib den Grenzwert a an. Ab welcher n_{ϵ} ist die Folge im Intervall $[a - \epsilon; a + \epsilon]$ eingeschlossen? Berechne n_{ϵ} für $\epsilon = 10^{-3}$.

- a) $a_n = \frac{3n}{n+1}$ b) $b_n = \frac{n^7 + 6n}{3n + 5}$ c) $c_n = \frac{1}{n^2}$ d) $d_n = \log \frac{n+3}{2n}$
- 11. Gleich wie 10 für $a_n = \sqrt[n]{n}$ (schwierig?)