Math 4 Exam 2 February 2, 1999

Nam	eInstru	actor
Shov	all work for partial credit. Be neat.	
1. (6)	Find the equation of the line that is perpendicular to $2x + 3y = 12$ and has the same y-intercept.	
2.	Write the equation of the line that passes through the given points.	
(3)	a) (3,-1) (-4,-1)	
(3)	b) (2,4) (4,-4)	
(3)	c) (2,-1) (2,-6)	
3. (8)	Find a mathematical expression to model the following: z varies directly as the square of x and inversely as y .	
	If $z = 4$ when $x = -2$ and $y = 5$, what is k ?	

k = _____

4. I	Let $f(x) = 2x^2 - 1$; $g(x) = 2 - x$; $h(x) =$	$\begin{cases} 3 - x^2, \\ 3 + 2x. \end{cases}$	$x \ge 0.$ $x < 0$	Calculate and simplify the following.	Show intermediate steps
------	---	---	-----------------------	---------------------------------------	-------------------------

(5) a) $(f \circ g)(2.3)$

(5) b) h(3) - h(-3)

(5) c) $\frac{f(x+2)-f(x)}{2}$

(5) d) $\left(\frac{g}{h}\right)-1$

(5) e) $(g \circ h)(-1)$

.....

- 5. Is the given function even or odd?
- (3) a) $f(x) = -x^4 + 2x^2 1$

(3) b) $f(x) = 2x^3 + 3x^2$

(3) c) $f(x) = 4x^3 + 3x$

Over which interval(s) is the function increasing? $f(x) = 2x^3 + 3x^2 - 12x$ 6.

$$f(x) = 2x^3 + 3x^2 - 12x$$

Use the graph of $y = x^3$ to write an equation for the function y = f(x) as graphed. 7.

(5)

$$f(x) =$$

Given $f(x) = \sqrt{2x-1}$, state the domain of f(x). Find $f^{-1}(x)$. 8.

$$f^{-1}(x) =$$

Let f(x) = 3 - x and $g(x) = x^3$. Find $(g^{-1} \circ f^{-1}) - 5$. 9.

$$f^{-1}(x) =$$

$$g^{-1}(x) =$$

$$(g^{-1} \circ f^{-1}) - 5) = \underline{\hspace{1cm}}$$

10. (8)	Given $y = -2x^2 - 4x - 5$. Write in standard form for a parabola and determine the maximum or minimum value.		
		aquation:	
11. (5)	Find the quadratic function that has a maximum point at (-1,2) and passes through (0,1).	equation.	
12 (5)	Find the intercepts of $y = x^2 - 4x + 3$.		

x-intercepts _______

Bonus: Find a relationship between x and y so that (x, y) is equidistant from the two points (4,-1) and (-2,3).

(5)