	1	4	2	2	3	488	4	-17	5	4
90-91	6	6	7	72.8	8	243	9	8	10	50
Individual	11	-4	12	6	13	17	14	13	15	73
	16	338350	17	192	18	7	19	10	20	45

90-91	1	9	2	98	3	10	4	32767	5	174
Group	6	6	7	1601	8	41	9	25	10	110

Individual Events

II Find the value of $\log_3 14 - \log_3 12 + \log_3 486 - \log_3 7$.

$$\log_3 14 - \log_3 12 + \log_3 486 - \log_3 7$$

$$= \log_3 \frac{14 \times 486}{12 \times 7}$$

$$=\log_3 81 = 4$$

A scientist found that the population of a bacteria culture doubled every hour. At 4:00 pm, he found that the number of bacteria was 3.2×10^8 . If the number of bacteria in that culture at noon on the same day was $N \times 10^7$, find N.

$$N \times 10^7 \times 2^4 = 3.2 \times 10^8$$

$$16N = 32$$

$$\Rightarrow N = 2$$

I3 If $x + \frac{1}{x} = 8$, find the value of $x^3 + \frac{1}{x^3}$. (**Reference: 2018 FI1.4**)

$$\left(x + \frac{1}{x}\right)^2 = 64$$

$$\Rightarrow x^2 + \frac{1}{x^2} = 62$$

$$x^{3} + \frac{1}{x^{3}} = \left(x + \frac{1}{x}\right)\left(x^{2} - 1 + \frac{1}{x^{2}}\right)$$

$$= 8 \times (62 - 1) = 488$$

If the equations 2x + 3y + a = 0 and bx - 2y + 1 = 0 represent the same line, find the value of 6(a + b).

$$\frac{2}{b} = \frac{3}{-2} = \frac{a}{1}$$

$$a = -\frac{3}{2}$$
, $b = -\frac{4}{3}$

$$6(a+b) = -9 - 8 = -17$$

A boy walks from home to school at a speed of 2 metres per second and runs back at x metres per second. His average speed for the whole journey is $2\frac{2}{3}$ metres per second. Find x.

Let the distance between his home and the school be d m.

$$\frac{2d}{\frac{d}{2} + \frac{d}{x}} = 2\frac{2}{3}$$

$$\frac{4x}{x+2} = \frac{8}{3}$$

$$3x = 2x + 4$$

$$x = 4$$

I6 The straight line $\frac{ax}{3} - \frac{2by}{5} = 2a + b$ passes through a fixed point P. Find the x-coordinate of P.

Reference: 1990 HI5, 1996 HI6

$$a\left(\frac{x}{3}-2\right) = b\left(\frac{2y}{5}+1\right)$$

Put
$$b = 0$$
, $a = 1$, $x = 6$

If the diameter of a sphere is increased by 20%, its volume will be increased by x %. Find x. Let the radius be r.

When the diameter is increased by 20%, the radius is also increased by 20%

Percentage increase in volume

$$= \frac{\frac{4}{3}\pi(1.2r)^3 - \frac{4}{3}\pi r^3}{\frac{4}{3}\pi r^3} \times 100\% = 72.8\%$$

$$x = 72.8$$

I8 If $\log_7[\log_5(\log_3 x)] = 0$, find *x*.

$$\log_5(\log_3 x) = 1$$

$$log_3 x = 5$$

$$x = 3^5 = 243$$

I9 If $\frac{7-8x}{(1-x)(2-x)} = \frac{A}{1-x} + \frac{B}{2-x}$ for all real numbers x where $x \ne 1$ and $x \ne 2$, find A + B.

$$7 - 8x \equiv A(2 - x) + B(1 - x)$$

$$2A + B = 7 \dots (1)$$

$$A + B = 8 \dots (2)$$

$$(1) - (2)$$
: $A = -1$

Put
$$A = -1$$
 into (2): $B = 9$

$$A + B = 8$$

I10 The marked price of an article is p% above its cost price. At a sale, the shopkeeper sells the article at 20% off the marked price. If he makes a profit of 20%, find p.

Let the cost be \$x.

$$(1 + p\%)x(1 - 20\%) = (1 + 20\%)x$$

$$1 + 0.01p = 1.5$$

$$p = 50$$

I11 If a < 0 and $2^{2a+4} - 65 \times 2^a + 4 = 0$, find a.

$$16(2^a)^2 - 65(2^a) + 4 = 0$$

$$(16 \times 2^a - 1)(2^a - 4) = 0$$

$$2^a = \frac{1}{16}$$
 or 4

$$\therefore a < 0 \therefore a = -4$$

II2 If one root of the equation $(x^2 - 11x - 10) + k(x + 2) = 0$ is zero, find the other root.

Put
$$x = 0$$
, $-10 + 2k = 0$

$$\Rightarrow k = 5$$

$$x^2 - 6x = 0$$

The other root is 6.

I13 [x] denotes the greatest integer less than or equal to x. For example, [6] = 6, [8.9] = 8, etc.

If
$$[\sqrt[4]{1}] + [\sqrt[4]{2}] + \dots + [\sqrt[4]{n}] = n + 2$$
, find n. (**Reference 1989 HI6**)

If
$$n \le 15$$
, $\left[\sqrt[4]{1}\right] + \left[\sqrt[4]{2}\right] + \dots + \left[\sqrt[4]{n}\right] = n$

If
$$16 \le n \le 80$$
, $\left| \sqrt[4]{1} \right| + \left| \sqrt[4]{2} \right| + \dots + \left| \sqrt[4]{n} \right| = 15 + 2(n - 15) = 2n - 15$

$$2n - 15 = n + 2$$

$$\Rightarrow n = 17$$

I14 a, b are two different real numbers such that $a^2 = 6a + 8$ and $b^2 = 6b + 8$. Find the value of

$$\left(\frac{4}{a}\right)^2 + \left(\frac{4}{b}\right)^2$$
.

Reference: 1989 HG1

a and *b* are the roots of $x^2 = 6x + 8$; i.e. $x^2 - 6x - 8 = 0$

$$a + b = 6$$
; $ab = -8$

$$\left(\frac{4}{a}\right)^{2} + \left(\frac{4}{b}\right)^{2} = 16\left(\frac{1}{a^{2}} + \frac{1}{b^{2}}\right)$$

$$= \frac{16\left[(a+b)^{2} - 2ab\right]}{(ab)^{2}}$$

$$= \frac{16\left[6^{2} - 2(-8)\right]}{(-8)^{2}} = 13$$

I15
$$3^{12} - 1$$
 is divisible by an integer which is greater than 70 and smaller than 80. Find the integer. $3^{12} - 1 = (3^6 + 1)(3^6 - 1) = (3^2 + 1)(3^4 - 3^2 + 1)(3^2 - 1)(3^4 + 3^2 + 1)$

$$= 10 \times 73 \times 8 \times 9$$

The integer is 73.

I16 It is known that

$$2^3 - 1^3 = 3 \times 1^2 + 3 \times 1 + 1$$

$$3^3 - 2^3 = 3 \times 2^2 + 3 \times 2 + 1$$

$$4^3 - 3^3 = 3 \times 3^2 + 3 \times 3 + 1$$

:

$$101^3 - 100^3 = 3 \times 100^2 + 3 \times 100 + 1$$

Find the value of $1^2 + 2^2 + 3^2 + \dots + 100^2$.

Add up these 100 equations: $101^3 - 1 = 3(1^2 + 2^2 + \dots 100^2) + \frac{3}{2}(1+100)\cdot 100 + 100$

$$1030301 - 1 = 3(1^2 + 2^2 + \dots 100^2) + 15150 + 100$$

$$1^2 + 2^2 + \dots 100^2 = 338350$$

In figure 1, PQ = PR = 8 cm and $\angle QPR = 120^{\circ}$. A, D are the mid-points of PQ, PR respectively. If ABCD is a rectangle of area \sqrt{x} cm², find x.

Fold $\triangle PAD$ along AD, $\triangle QAB$ along AB, $\triangle RCD$ along DC.

It is easy to show the area of $ABCD = \frac{1}{2}$ area of ΔPQR

$$=\frac{1}{2} \cdot \frac{1}{2} \cdot 8 \cdot 8 \cdot \sin 120^{\circ} = 8\sqrt{3} = \sqrt{192} \Rightarrow x = 192$$

I18 In figure 2, XA = 10 cm, AB = 2 cm, XD = 8 cm and

DC = x cm. Find the value of x.

 $\angle XAD = \angle XCB$ (ext. \angle , cyclic quad.)

 $\angle AXD = \angle CXB$ (common)

 $\angle XDA = \angle XBC$ (ext. \angle , cyclic quad.)

 $\Delta XAD \sim \Delta XCB$ (equiangular)

XA: XD = XC: XB (ratio of sides, $\sim \Delta$)

$$10 \times (10 + 2) = 8 \times (8 + x)$$

$$\Rightarrow x = 7$$

I19 In figure 3, AB = AC = 6 cm and BC = 9.6 cm. If the diameter of the circumcircle of $\triangle ABC$ is x cm, find x.

$$\cos B = \frac{9.6 \div 2}{6} = 0.8$$

$$\Rightarrow \sin B = 0.6$$

By sine rule,
$$\frac{b}{\sin B} = 2R$$

$$\Rightarrow 2R = \frac{6}{0.6} = 10$$

 $AE \times ED = BE \times EC$ (intersecting chords theorem)

$$ED = 6.4 \text{ cm}$$

$$\Rightarrow AD = 10 \text{ cm}$$

$$\Rightarrow x = 10$$

I20 In figure 4, $\angle ABC = 90^{\circ}$, AK = BC and E, F are the mid-points of AC, KB respectively. If $\angle AFE = x^{\circ}$, find x.

Let AE = y = EC, AK = t = BC, KF = n = FB.

Draw EG // CB, cutting AB at G.

AG = GB (intercept theorem)

$$GB = \frac{1}{2}(t+2n)$$

$$GF = \frac{1}{2}(t+2n) - n = \frac{1}{2}t$$

$$GE = \frac{1}{2}t$$
 (mid point theorem)

$$\angle EGF = 90^{\circ} \text{ (int. } \angle \text{s, } EG \text{ // } CB)$$

 \therefore $\triangle EGF$ is a right-angled isosceles triangle x = 45

(Figure 2)

(Figure 3)

Group Events

G1 Find the units digit of 1357⁷⁸⁹⁰. (**Reference 1990 HI11**) $7^1 = 7$, $7^2 = 49$, $7^3 = 343$, $7^4 = 2401$

The pattern of units digit repeats for every multiples of 4.

 $1357^{7890} \equiv (7^4)^{1972} \cdot 7^2 \equiv 9 \mod 10$

The units digit is 9.

- **G2** If $\frac{1}{2} + \frac{1}{6} + \frac{1}{12} + \frac{1}{20} + \frac{1}{30} + \frac{1}{42} + \dots + \frac{1}{2450} = \frac{x}{100}$, find x. $\frac{1}{2} + \frac{1}{6} + \frac{1}{12} + \frac{1}{20} + \frac{1}{30} + \frac{1}{42} + \dots + \frac{1}{2450}$ $=\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+\frac{1}{5\times6}+\frac{1}{6\times7}+\cdots+\frac{1}{49\times50}$ $=\left(1-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+\cdots+\left(\frac{1}{49}-\frac{1}{50}\right)$ $=1-\frac{1}{50}=\frac{49}{50}=\frac{98}{100}$
- G3 $\frac{a}{2}$, $\frac{b}{4}$ and $\frac{c}{6}$ are three proper fractions in their simplest form, where a, b and c are positive

integers. If c is added to the numerator of each fraction, then the sum of the fractions formed will be equal to 6. Find the value of a + b + c.

 $\frac{a}{2}$, $\frac{b}{4}$ and $\frac{c}{6}$ are three proper fractions in their simplest form

$$\therefore a = 1 \text{ or } 2, b = 1 \text{ or } 3, c = 1 \text{ or } 5 \dots (1)$$

$$\frac{a+c}{3} + \frac{b+c}{4} + \frac{c+c}{6} = 6$$

$$4(a+c) + 3(b+c) + 2(2c) = 72$$

$$4a + 3b + 11c = 72 \dots (2)$$

$$a = 2$$
, $b = 3$, $c = 5$ is a solution

$$a+b+c=10$$

Study the Pascal's triangle shown below: **G4**

Find the sum of all the numbers from Row 1 to Row 15.

Sum of the first row = 2^0

Sum of the second row = 2^1

Sum of the third row = 2^2

.....

Sum of the fifteen row = 2^{14}

Sum of all numbers from row 1 to row $15 = 2^0 + 2^1 + ... + 2^{14} = \frac{2^{15} - 1}{2 \cdot 1} = 32767$

G5 In the multiplication $\square\square\square \times \square\square = \square\square \times \square\square = 5568$, each of the above boxes represents an integer from 1 to 9. If the integers for the nine boxes above are all different, find the number represented by $\square\square\square$.

$$5568 = 2^6 \times 3 \times 29 = 174 \times 32 = 96 \times 58$$

 $\square\square\square=174$

G6 Find the remainder when $1997^{1990} - 1991$ is divided by 1996.

$$1997^{1990} - 1991 = (1996 + 1)^{1990} - 1991$$

= $1996m + 1 - 1991$ (Binomial theorem, *m* is an integer)
= $1996(m - 1) + 6$

The remainder is 6.

G7 Find the least positive integral value of *n* such that $\sqrt{n} - \sqrt{n-1} < \frac{1}{80}$.

$$\sqrt{n} - \sqrt{n-1} < \frac{1}{80}$$

$$\Rightarrow \left(\sqrt{n} - \sqrt{n-1}\right) \cdot \frac{\left(\sqrt{n} + \sqrt{n-1}\right)}{\left(\sqrt{n} + \sqrt{n-1}\right)} < \frac{1}{80}$$

$$\frac{1}{\sqrt{n} + \sqrt{n-1}} < \frac{1}{80}$$

$$\Rightarrow 80 < \sqrt{n} + \sqrt{n-1} < 2\sqrt{n}$$

$$\Rightarrow 40 < \sqrt{n}$$

$$1600 < n$$

The least positive integral value of n = 1601.

G8 One of the solutions of the equation 32x + 59y = 3259 in positive integers is given by (x, y) = (100, 1). It is known that there is exactly one more pair of positive integers (a, b) $(a \ne 100 \text{ and } b \ne 1)$ such that 32a + 59b = 3259. Find a. (**Reference: 1989 HG4**)

The line has a slope of
$$-\frac{32}{59} = \frac{y_2 - y_1}{x_2 - x_1}$$

Given that (100, 1) is a solution.

$$-\frac{32}{59} = \frac{y_2 - 1}{x_2 - 100}$$

Let $y_2 - 1 = -32t$; $x_2 - 100 = 59t$, where t is an integer.

$$y_2 = 1 - 32t$$
, $x_2 = 100 + 59t$

For positive integral solution of (x_2, y_2) , 1 - 32t > 0 and 100 + 59t > 0

$$-\frac{100}{59} < t < \frac{1}{32}$$

 $\therefore t \text{ is an integer } \therefore t = 0 \text{ or } -1$

When
$$t = -1$$
, $x_2 = 41$, $y_2 = 33$

 \Rightarrow Another positive integral solution is (41, 33)

$$a = 41$$

H

G9 In figure 1, XY is a diameter of a cylindrical glass, 48 cm in base circumference. On the outside is an ant at A, 2 cm below X and on the inside is a small drop of honey at H, 5 cm below Y. If the length of the shortest path for the ant to reach the drop of honey is x cm, find x. (Neglect the thickness of the glass.)

Reference: 1983 FG8.1, 1993 HI1, 1996 HG9

Cut the cylinder along a plane through *XY* perpendicular to the base. Unfold the curved surface of the semi-cylinder as a rectangle as shown.

The length of semi-circular arc of the rim XY = 24 cm When the ant climbs over the rim somewhere at P, and then to H, then AX = 2 cm, YH = 5 cm.

For the shortest distance from A to H, A, P, H must be collinear. Let C be the foot of perpendicular drawn from A onto HY produced. Then AXYC is a rectangle.

$$AC = 24 \text{ cm}, CH = (2 + 5)\text{cm} = 7 \text{ cm}$$

 $x^2 = 24^2 + 7^2 \text{ (Pythagoras' theorem)}$
 $x = 25$

G10 In figure 2, two chords AOB, COD cut at O. If the tangents at A and C meet at X, the tangents at B and D meet at Y and $\angle AXC = 130^{\circ}$, $\angle AOD = 120^{\circ}$, $\angle BYD = k^{\circ}$, find k.

XC = XA (tangent from ext. point)

 $\therefore \Delta XAC$ is an isosceles triangle

$$\angle XAC = \angle XCA \text{ (base } \angle s \text{ isosceles } \Delta)$$
$$= \frac{180^{\circ} - 130^{\circ}}{2} = 25^{\circ} \text{ (} \angle \text{ sum of } \Delta XAC \text{)}$$

$$\angle ADC = \angle XAC = 25^{\circ} (\angle \text{ in alt. segment})$$

$$\angle DAO = 180^{\circ} - 120^{\circ} - 25^{\circ} = 35^{\circ} (\angle \text{ sum of } \triangle AOD)$$

$$\angle BDY = \angle DBY = 35^{\circ} \ (\angle \text{ in alt. segment})$$

$$\angle BYD = 180^{\circ} - 35^{\circ} - 35^{\circ} = 110^{\circ} \ (\angle \text{ sum of } \Delta BDY)$$

 $k = 110$

