OLS 结果汇总 - 模型变量

变量	系数 [a]	标准差	t 统计量	概率 [b]	Robust_SE	Robust_t	Robust_Pr [b]	VIF [c]
截距	-19. 231440	3. 335882	-5. 765024	0. 000000*	3. 080143	-6. 243684	0. 000000*	
ASPECT_MEAN	0. 016027	0. 003457	4. 635850	0. 000005*	0. 002940	5. 450782	0. 000000*	2. 265409
ELEVATION_ME	0. 004299	0. 000583	7. 371806	0. 000000*	0. 000548	7. 838122	0. 000000*	1. 045434
SLOPE_MEAN	-0. 205325	0. 028938	-7. 095274	0. 000000*	0. 018918	-10. 853299	0.000000*	2. 272697
LST_SUM	-0. 018666	0. 000144	-129. 757264	0. 000000*	0. 001206	-15. 476338	0. 000000*	3. 024006
CHIRPS_SUM	0. 001353	0. 000019	72. 693347	0. 000000*	0. 000121	11. 213774	0.000000*	3. 056843

输入要素	merge_snow	因变量	面积
观测值个数	5301	阿凯克信息准则(AICc)['d']	42590. 244696
R 平方的倍数['d']	0. 955968	校正 R 平方['d']	0. 955927
联合 F 统计量['e']	22991. 880484	Prob(>F), (5,5295)自由度	0.000000*
联合卡方统计量['e']	3909. 533049	Prob (>卡方),(5)自由度	0.000000*
Koenker (BP)统计量['f']	771. 366529	Prob (>卡方),(5) 自由度	0.000000*
Jarque-Bera 统计量['g']	5583481. 638672	Prob(>卡方), (2)自由度	0.000000*

解释注意事项

- * 数字旁的星号表示在统计学上具有显著性的 p 值(p < 0.01)。
- [a] 系数:表示每个解释变量与因变量之间的关系的强度和类型。
- [b] 概率和稳健概率(Robust_Pr): 星号(*)表示系数具有统计学上的显著性(p < 0.01); 如果 Koenker (BP)统计量 [f]

具有统计学上的显著性,则使用稳健概率列(Robust_Pr)来确定系数显著性。

- [c] 方差膨胀因子(VIF): 较大的方差膨胀因子(VIF)值(> 7.5)表明解释变量存在冗余。
- [d] R 平方和阿凯克信息准则(AICc): 模型拟合度/性能的测量。
- [e] 联合 F 统计量和卡方统计量: 星号(*)表示整个模型的显著性(p < 0.01); 如果 Koenker (BP)统计量 [f]

具有统计学上的显著性,则使用卡方统计量来确定整个模型的显著性。

- [f] Koenker (BP) 统计量: 当此测试具有统计学上的显著性时(p <
- 0.01),表示建模的关系不一致(由于不稳定性或异方差导致)。您应该依据稳健概率(Robust_Pr)来确定系数显著性以及依据卡方统计量来确定整个模型的显著性。
- [g] Jarque-Bera 统计量: 当此测试具有统计学上的显著性时(p < 0.01), 表示模型预测是片面的(残差未正态分布)。

变量分布和关系

以上显示的是每个解释变量和因变量的直方图和散点图。直方图显示了每个变量的分布方式。OLS 并不要求变量呈正态分布。尽管如此,如果您难以查找对应的模型,则可尝试对偏态分布的变量进行变换以查看是否可以获得 更好的结果。

散点图描述了每个解释变量和因变量之间的关系。较强的关系将显示为对角线,而且倾斜方向会指示关系为正还是为负。如果 发现了任何非线性关系,请尝试转换变量。有关详细信息,请参阅"回归分析基础知识"文档。

标准化残差的直方图

理想情况是残差的直方图与正态曲线相匹配,如上面的蓝色所示。如果直方图与正态曲线之间存在明显差异,则您的模型可能有偏差。如果偏差严重,则模型还可以由具有:显著性的 Jarque-Bera p 值(*)来表示。

此为与预测的因变量值相关的残差图(位于预测值之上或之下的模型)。对于一个正确指定的模型,该分散图几乎不具有结构,呈随机状(参见右图)。如果该图具有结构,则结构的类型可能是帮助您找出下一步发展的重要线索。

普通最小二乘法参数

参数名称	输入值
输入要素	merge_snow
唯一 ID 字段	uuid
输出要素类	
因变量	面积
解释变量	ASPECT_MEAN
	ELEVATION_MEAN
	SLOPE_MEAN
	LST_SUM
	CHIRPS_SUM
选择集	False