RF EXPOSURE EVALUATION

According to FCC 1.1310: The criteria listed in the following table shall be used to evaluate the environment impact of human exposure to radio frequency(RF) Radiation as specified in §1.1307(b)

FCC ID: Z52-NASRP01Z1U

EUT Specification

EUT	Repeater				
Frequency band (Operating)	g) WLAN: 2.412GHz ~ 2.462GHz				
	☐ WLAN: 5.18GHz ~ 5.32GHz / 5.50GHz ~ 5.70GHz				
	☐ WLAN: 5.745GHz ~ 5825GHz				
	◯ Others: 908.4MHz & 916MHz				
Device category	☐ Portable (<20cm separation)				
	⊠ Mobile (>20cm separation)				
	□ Others				
Exposure classification	\square Occupational/Controlled exposure (S = 5mW/cm2)				
	⊠ General Population/Uncontrolled exposure (S=1mW/cm2)				
Antenna diversity	⊠ Single antenna				
	☐ Multiple antennas Tx				
	□ diversity				
	☐ Rx diversity				
	☐ Tx/Rx diversity				
Max. output power	908.4 MHz: -35.6 dBm (0.00028mW)&916MHz: -34.78 dBm (0.00033mW)				
Antenna gain (Max)	0 dBi				
Evaluation applied	⋈ MPE Evaluation				
	☐ SAR Evaluation				

Limits for Maximum Permissible Exposure(MPE)

Frequency	Electric Field	Magnetic Field	Power	Average		
Range(MHz)	Strength(V/m)	Strength(A/m)	Density(mW/cm ²)	Time		
(A) Limits for Occupational/Control Exposures						
300-1500		F/300		6		
1500-100000		5		6		
(B) Limits for General Population/Uncontrol Exposures						
300-1500		F/1500		6		
1500-100000			1	30		

Friis transmission formula: Pd=(Pout*G)\(4*pi*R2)

Where

Pd= Power density in mW/cm²

Pout=output power to antenna in Mw

G= gain of antenna in linear scale

Pi=3.1416

R= distance between observation point and center of the radiator in cm

Pd the limit of MPE, 1mW/cm2. If we know the maximum gain of the antenna and total power input to the antenna, through the calculation, we will know the distance where the MPE limit is reached.

Measurement Result

908.4 MHz

Channel	Antenna	Max Output	Max Output	Power	Power
Frequency	Gain	power	power	density at	density
(MHz)	(dBi)	(dBuV/m)	(dBm)	20cm(mW/	Limits
				cm2)	(mW/cm2)
908.4	0	59.66	-35.60	5.3e-05	1

13.56MHz

Channel	Antenna	Max Output	Max Output	Power	Power
Frequency	Gain	power	power	density at	density
(MHz)	(dBi)	(dBuV/m)	(dBm)	20cm(mW/	Limits
				cm2)	(mW/cm2)
916	0	60.48	-34.78	6.4e-05	1

MPE Calculation Method

P = Peak RF output power (W)

G = EUT Antenna numeric gain (numeric)

R = Separation distance between radiator and human body

(m)=0.2m The formula can be changed to

Pd = Pout*G/(4*Pi*R2)

EIRP=E-104.8+20logD=59.66-104.8+20log3=-35.60dBm

The SAR measurement is not necessary.