

Bacharelado em Ciência da Computação

CLASSIFICAÇÃO DE REGRAS DE AUTÔMATOS CELULARES ELEMENTARES APLICADAS EM REDES DO TIPO SMALLWORLD

Sergio Souza Novak

Orientador: Dr. Heverton Barros de Macêdo

Na natureza há muitos fenômenos modelados a partir de equações, obtidas através de observação. Contudo, há fenômenos da natureza em que é difícil modelar através de equações.

Nesse sentido, foram desenvolvidas modelagens utilizando **Sistemas Complexos.**

Modelos muito estudados na área de sistemas complexos são os Autômatos Celulares, que são utilizados para modelagem de comportamentos:

- Sociais.
- Ambientais.
- Biológicos.
- Computacionais.

Figura 1: Uma espécie de caracol marinho.

Figura 2: Representação diagramática de um Autômato Celular.

No estudo dos Autômatos Celulares destaca-se o matemático Wolfram (1896), que observando o comportamento dos Autômatos Celulares, criou:

- O Modelo de Autômato Celular, que serve de referência, o Autômato Celular Elementar.
- Uma classificação muito utilizada para Autômatos Celulares.

OBJETIVO

Classificar o comportamento dinâmico das regras elementares quando sua estrutura de conexão entre as células vizinhas é alterada para redes do tipo Smallworld.

JUSTIFICATIVA

- Nos últimos anos os Autômatos Celulares têm sido muito estudados e sua ascensão na academia gera diversas aplicações.
- O modelo de Wolfram n\u00e3o \u00e9 adequado para estruturas em rede.

REVISÃO DE LITERATURA: O Autômato Celular

O Autômato Celular consiste em uma grade d-dimensional finita ou infinita de células, onde cada celula recebe um valor discreto denominado estado.

Figura 3: Condições de contorno periódicas, visão em vetor.

REVISÃO DE LITERATURA: O Autômato Celular

O Autômato Celular consiste em uma grade d-dimensional finita ou infinita de células, onde cada celula recebe um valor discreto denominado estado, que pertence ao de estados possíveis

Figura 4: Condições de contorno periódicas, visão em vetor circular.

REVISÃO DE LITERATURA: O Autômato Celular

No Autômato Celular as células atualizam seus estados ao longo da evolução do autômato de acordo com uma determinada regra local

Vizinhança n=3 (r = 1) (Autômato Celular Elementar)

Vizinhança n=5 (r=2)

Vizinhança n=7 (r=3)

Vizinhança n = (2r) + 1

Autômato Elementar com um reticulado de 100 células

REVISÃO DE LITERATURA: Classificação de Wolfram

Wolfram classificou o comportamento das regras do Autômato Celular Elementar em quatro classes distintas

Classe	Denominação	Comportamento			
1	Homogêneas ou de Ponto Fixo	Comportamento simples e convergindo para um estado final com todas as células 0 ou 1.	(a) regra 250	(b) regra 32	(c) regra 254
2	Heterogêneas ou Periódicas	Comportamento com diferentes estados finais possíveis, porém consistindo em um conjunto simples de estruturas que se repetem para sempre ou se repetem por muitos passos de tempo.	(a) regra 178	(b) regra 204	(c) regra 218
3	Caóticas ou Desordenadas	Comportamento mais complicado e em muitos aspectos parecendo randômico, algumas estruturas parecidas com triângulos são vistas.	(a) regra 122	(b) regra 182	(c) regra 254
4	Complexas	Comportamento envolvendo uma mistura de estruturas ordenadas e aleatórias, onde estruturas locais são produzidas, porém interagem umas com as outras de maneira complicada.	(a) regra 110	(b) regra 193	(c) regra 106

REVISÃO DE LITERATURA: Redes SmallWorld

As redes Smallworld são redes que é possível estabelecer parâmetros a fim de controlar a aleatóriedade das conexões da rede.

INSTITUTO FEDERAL Goiano

MATERIAL E MÉTODOS: Fase de experimento

MATERIAL E MÉTODOS: Fase de Análise

$$A_{i} = \begin{pmatrix} a_{0,1} & a_{0,2} & a_{0,3} \\ a_{1,1} & a_{1,2} & a_{1,3} \\ a_{2,1} & a_{2,2} & a_{2,3} \\ a_{3,1} & a_{3,2} & a_{3,3} \\ \vdots & & & \vdots \\ a_{255,1} & a_{255,2} & a_{255,3} \end{pmatrix} \xrightarrow{moda} \begin{pmatrix} x_{0} \\ x_{1} \\ x_{2} \\ x_{3} \\ \vdots \\ x_{255} \end{pmatrix}$$

MATERIAL E MÉTODOS: Fase de Tratamento de exceções

Segundo Morettin (2015), a moda entre três valores pode trazer valores inconclusivos, por exemplo no caso da moda x(1,2,3). Nessa etapa foram feitos mais diagramas para validar as redes que foram inconclusivas.

RESULTADOS E DISCUSSÃO

O principal resultado desse trabalho consiste na classificação dinâmica das regras de Autômatos Celulares Elementares quando aplicadas às redes SmallWorld e à rede aleatória.

Autômato Celular Elementar

Rede SmallWorld 2

Rede SmallWorld 1

Rede SmallWorld 3

RESULTADOS E DISCUSSÃO

- A regra 8 foi classificada como 1 nas três redes SmallWorld e na rede Aleatória. No Autômato Celular de Wolfram (1994) essa regra pertence à classe 1

 A regra 131 foi classificada como 2 nas três redes SmallWorld e na rede Aleatória. No Autômato Celular de Wolfram (1994) essa regra pertence à classe 2

RESULTADOS E DISCUSSÃO

3 23% 12% 2 62%

Autômato Celular Elementar

Rede Aleatória

CONCLUSÕES

A mudança para a estrutura de rede produziu, no caso das redes SmallWorld:

- Uma alta na quantidade de regras da classe 1.
- Possibilidade de Utilização na Destruição de Dados Sensíveis.

CONCLUSÕES

A mudança para a estrutura de rede produziu, no caso da rede Aleatória:

- Uma alta na quantidade de regras da classe 3.
- Possibilidade de aplicação em sistemas criptográficos.

CONCLUSÕES

Devido a grande quantidade de redes possíveis é necessário o refinamento do problema para redes específicas como as Redes SmallWorld.

Trabalhos Futuros

- Aprimorar o processo de classificação dos diagramas.
- Verificar a Computação Universal das Redes de Autômato Celular.
- Regras reversíveis em Redes de Autômato Celular.
- Tarefa de classificação da densidade.

Materiais Consultados

WOLFRAM, S. Theory and applications of cellular automata. World Scientific, Elsevier, v. 1, n. 1, 1986.

WOLFRAM, S.Universality and Complexity in Cellular Automata. 1. ed. 6000 BrokenSound Parkway NW, Suite 300: Westview Press,

Materiais Consultados

MORETTIN, P.Basic Statistics (Estatistica Basica, in Portuguese). [S.I.: s.n.], 2015.

TOMASSINI, M. Generalized automata networks. In: . [S.l.: s.n.], 2006. p. 14–28.

Materiais Consultados

GUTOWITZ, H. Cryptography with dynamical systems. 08 1996.

