

FORMATION AFPA - DEVELOPPEUR LOGICIEL -

(NIVEAU III)

JJP

ALGORITHME ET PSEUDO-CODE

EXERCICES: 7.1 à 7.6

Exercice 7.1

Ecrivez un algorithme qui permette de saisir un nombre quelconque de valeurs, et qui les range au fur et à mesure dans un tableau. Le programme, une fois la saisie terminée, doit dire si les éléments du tableau sont tous consécutifs ou non.

Par exemple, si le tableau est :

12	13	14	15	16	17	18
1						

ses éléments sont tous consécutifs. En revanche, si le tableau est :

9 10 11 15 16 17 18

ses éléments ne sont pas tous consécutifs.

Exercice 7.2

Ecrivez un algorithme qui trie un tableau dans l'ordre décroissant.

Vous écrirez bien entendu deux versions de cet algorithme, l'une employant le tri par insertion, l'autre le tri à bulles.

Exercice 7.3

Ecrivez un algorithme qui inverse l'ordre des éléments d'un tableau dont on suppose qu'il a été préalablement saisi (« les premiers seront les derniers... »)

FORMATION AFPA - DEVELOPPEUR LOGICIEL -

(NIVEAU III)

JJP

ALGORITHME ET PSEUDO-CODE

Exercice 7.4

Ecrivez un algorithme qui permette à l'utilisateur de supprimer une valeur d'un tableau préalablement saisi. L'utilisateur donnera l'indice de la valeur qu'il souhaite supprimer. Attention, il ne s'agit pas de remettre une valeur à zéro, mais bel et bien de la supprimer du tableau lui-même! Si le tableau de départ était:

12	8	4	45	64	9	2
----	---	---	----	----	---	---

Et que l'utilisateur souhaite supprimer la valeur d'indice 4, le nouveau tableau sera :

12	8	4	45	9	2

Exercice 7.5

Ecrivez l'algorithme qui recherche un mot saisi au clavier dans un dictionnaire. Le dictionnaire est supposé être codé dans un tableau préalablement rempli et trié.

Exercice 7.6

- a) Ecrire un algorithme qui calcule le plus grand écart dans un tableau de X entiers positifs.
- b) Ecrire un algorithme qui calcule le plus grand écart dans un tableau de X entiers positifs, comme négatifs.

Exercice 7.7

Écrivez un algorithme qui fusionne deux tableaux (déjà existants) dans un troisième, qui devra être trié.

Attention! On présume que les deux tableaux de départ sont préalablement triés: il est donc irrationnel de faire une simple concaténation des deux tableaux de départ, puis d'opérer un tri: comme quand on se trouve face à deux tas de papiers déjà triés et qu'on veut les réunir, il existe une méthode bien plus économique (et donc, bien plus rationnelle...)