```
import pandas as pd
```

import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

sat=pd.read_csv('https://github.com/ybifoundation/Dataset/raw/main/SAT%20GPA.csv')

sat.head()

₽		SAT	GPA
	0	1270	3.4
	1	1220	4.0
	2	1160	3.8
	3	950	3.8
	4	1070	4.0

sat.describe()

	SAT	GPA
count	1000.000000	1000.000000
mean	1033.290000	3.203700
std	142.873681	0.542541
min	530.000000	1.800000
25%	930.000000	2.800000
50%	1030.000000	3.200000
75%	1130.000000	3.700000
max	1440.000000	4.500000

sat.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1000 entries, 0 to 999
Data columns (total 2 columns):
# Column Non-Null Count Dtype
--- 0 SAT 1000 non-null int64
```

1 GPA 1000 non-null float64

dtypes: float64(1), int64(1)

memory usage: 15.8 KB

sat.corr()

	SAT	GPA
SAT	1.000000	0.429649
GPA	0.429649	1.000000

sns.pairplot(sat)

sat.columns

y=sat['SAT']

y.shape

(1000,)

x=sat[['GPA']]

x.shape

(1000, 1)

```
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,train_size=0.7,random_state=2529)
x_train.shape,x_test.shape,y_train.shape,y_test.shape
     ((700, 1), (300, 1), (700,), (300,))
x_train
           GPA
      669
            3.7
      583
            3.7
      688
            2.8
      422
            3.9
      825
            4.0
       ...
      740
           2.5
      399
           2.6
      828
            3.2
      562
           2.7
      352
           3.0
     700 rows × 1 columns
from sklearn.linear_model import LinearRegression
reg=LinearRegression()
reg.fit(x_train,y_train)
     LinearRegression()
reg.intercept_
     673.2291896122774
reg.coef_
     array([111.01584994])
```

```
y_pred=reg.predict(x_test)
```

from sklearn.metrics import mean_absolute_error,mean_absolute_percentage_error,r2_score

mean_absolute_error(y_test,y_pred)

105.93877473699905

mean_absolute_percentage_error(y_test,y_pred)

0.10467104034918914

r2_score(y_test,y_pred)

0.18785383761597474

sns.regplot(x='GPA',y='SAT',data=sat)

Multiple Regression

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

df=pd.read_csv('https://github.com/ybifoundation/Dataset/raw/main/Boston.csv')

df.head()

	CRIM	ZN	INDUS	CHAS	NX	RM	AGE	DIS	RAD	TAX	PTRATIO	E
0	0.00632	18.0	2.31	0	0.538	6.575	65.2	4.0900	1	296.0	15.3	396.90
1	0.02731	0.0	7.07	0	0.469	6.421	78.9	4.9671	2	242.0	17.8	396.90
2	0.02729	0.0	7.07	0	0.469	7.185	61.1	4.9671	2	242.0	17.8	392.83
3	0.03237	0.0	2.18	0	0.458	6.998	45.8	6.0622	3	222.0	18.7	394.63
4	0.06905	0.0	2.18	0	0.458	7.147	54.2	6.0622	3	222.0	18.7	396.90
- ◀ -												>

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 506 entries, 0 to 505
Data columns (total 14 columns):

#	Column	Non-Null Count	Dtype
0	CRIM	506 non-null	float64
1	ZN	506 non-null	float64
2	INDUS	506 non-null	float64
3	CHAS	506 non-null	int64
4	NX	506 non-null	float64
5	RM	506 non-null	float64
6	AGE	506 non-null	float64
7	DIS	506 non-null	float64
8	RAD	506 non-null	int64
9	TAX	506 non-null	float64
10	PTRATIO	506 non-null	float64
11	В	506 non-null	float64
12	LSTAT	506 non-null	float64
13	MEDV	506 non-null	float64

dtypes: float64(12), int64(2)

memory usage: 55.5 KB

df.describe()

	CRIM	ZN	INDUS	CHAS	NX	RM	
count	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.00
mean	3.613524	11.363636	11.136779	0.069170	0.554695	6.284634	68.57
std	8.601545	23.322453	6.860353 0.253994 0.1		0.115878	0.702617	28.14
min	0.006320	0.000000	0.460000	0.000000	0.385000	3.561000	2.90
25%	0.082045	0.000000	5.190000	0.000000	0.449000	5.885500	45.02
50%	0.256510	0.000000	9.690000	0.000000	0.000000 0.538000		77.50
75%	3.677083	12.500000	18.100000	0.000000	0.624000	6.623500	94.07
max	88.976200	100.000000	27.740000	1.000000	0.871000	8.780000	100.00

sns.pairplot(df)

```
df.columns
```

y=df['MEDV']

x=df[['CRIM', 'ZN', 'INDUS', 'CHAS', 'NX', 'RM', 'AGE', 'DIS', 'RAD', 'TAX',

'PTRATIO', 'B', 'LSTAT']]

(506, 13)

from sklearn.model_selection import train_test_split

x_train,x_test,y_train,y_test=train_test_split(x,y,train_size=0.7,random_state=2529)

from sklearn.preprocessing import StandardScaler

x train

	CRIM	ZN	INDUS	CHAS	NX	RM	AGE	DIS	RAD	TAX	PTRATIO	
310	2.63548	0.0	9.90	0	0.544	4.973	37.8	2.5194	4	304.0	18.4	35
202	0.02177	82.5	2.03	0	0.415	7.610	15.7	6.2700	2	348.0	14.7	39
76	0.10153	0.0	12.83	0	0.437	6.279	74.5	4.0522	5	398.0	18.7	37
152	1.12658	0.0	19.58	1	0.871	5.012	88.0	1.6102	5	403.0	14.7	34
186	0.05602	0.0	2.46	0	0.488	7.831	53.6	3.1992	3	193.0	17.8	39
228	0.29819	0.0	6.20	0	0.504	7.686	17.0	3.3751	8	307.0	17.4	37
399	9.91655	0.0	18.10	0	0.693	5.852	77.8	1.5004	24	666.0	20.2	33
316	0.31827	0.0	9.90	0	0.544	5.914	83.2	3.9986	4	304.0	18.4	39
50	0.08873	21.0	5.64	0	0.439	5.963	45.7	6.8147	4	243.0	16.8	39
352	0.07244	60.0	1.69	0	0.411	5.884	18.5	10.7103	4	411.0	18.3	39

354 rows × 13 columns

```
from sklearn.linear model import LinearRegression
model=LinearRegression()
model.fit(x_train,y_train)
     LinearRegression()
model.intercept_
     34.21916368863014
model.coef_
     array([-1.29412069e-01, 3.65184937e-02, 1.54418944e-02, 2.35486887e+00,
            -2.04171489e+01, 4.41356565e+00, 4.61075512e-03, -1.58626723e+00,
             2.51478665e-01, -9.59591213e-03, -9.64169204e-01, 1.00972679e-02,
            -5.43198745e-01])
df.columns
     Index(['CRIM', 'ZN', 'INDUS', 'CHAS', 'NX', 'RM', 'AGE', 'DIS', 'RAD', 'TAX',
            'PTRATIO', 'B', 'LSTAT', 'MEDV'],
           dtype='object')
y_pred=model.predict(x_test)
from sklearn.metrics import mean_absolute_percentage_error,r2_score
mean_absolute_percentage_error(y_test,y_pred)
     0.16355935882218034
r2_score(y_test,y_pred)
     0.6551914852365506
```

×