Isomorphism classes of principally polarized abelian varieties over finite fields

Marseglia Stefano

Stockholms Universitet

22 December 2015

Marseglia Stefano

22 December 2015

Abelian varieties

Definition

An **abelian variety** A over a field k is a connected and complete group variety over k, that is a k-variety A together with morphisms $m: A \times A \to A$ and $\iota: A \to A$ and a identity element $e \in A(k)$ such that the quadruple (A, m, ι, e) is a group in the category of varieties.

Abelian varieties

Definition

An **abelian variety** A over a field k is a connected and complete group variety over k, that is a k-variety A together with morphisms $m: A \times A \to A$ and $\iota: A \to A$ and a identity element $e \in A(k)$ such that the quadruple (A, m, ι, e) is a group in the category of varieties.

It turns out that:

- A is non-singular;
- A is projective;
- the group law on A is commutative;
- a morphism $f: A \to B$ is the composition of homomorphism $h: A \to B$ and a translation t_b , for some $b = -f(e_A) \in B(k)$.

Example

One-dimensional abelian varieties are called **elliptic curves**.

Example

One-dimensional abelian varieties are called elliptic curves.

Example

If char(k) $\neq 2, 3$ consider $C: y^2 = x^3 + ax + b$, with $4a^3 + 27b^2 \neq 0$. In this case we can describe explicitly the group law:

Figure: www.limited-entropy.com

Isogenies

Definition

A homomorphism $f: A \to B$ is called **isogeny** if it is surjective and with finite kernel. The **degree** of f is the degree of the kernel of f (as a finite group scheme).

Isogenies

Definition

A homomorphism $f: A \to B$ is called **isogeny** if it is surjective and with finite kernel. The **degree** of f is the degree of the kernel of f (as a finite group scheme).

In particular:

- if $A \simeq B$ then dim $A = \dim B$;
- $\deg(f \circ g) = \deg(f) \deg(g)$;
- if $\deg(f) = n$ then there exists an isogeny $g : B \to A$ such that $f \circ g = n_A : a \mapsto na$ for every $a \in A(k)$;
- $A \simeq \prod_i A_i^{e_i}$, with the A_i 's are **simple** and non-isogenous.

Dual abelian variety

Put: $\operatorname{Pic}^0(A) = \left\{ \mathcal{L} \text{ inv. sheaf} : t_a^* \mathcal{L} \approx \mathcal{L} \text{ on } A_{\bar{k}} \text{ for all } a \in A(\bar{k}) \right\} / \approx .$

Definition

An abelian variety A^{\vee} is the **dual** abelian variety of A and an invertible sheaf \mathcal{P} on $A \times A^{\vee}$ is the **Poincarè** sheaf if:

Dual abelian variety

Put:
$$\operatorname{Pic}^0(A) = \left\{ \mathcal{L} \text{ inv. sheaf} : t_a^* \mathcal{L} \approx \mathcal{L} \text{ on } A_{\bar{k}} \text{ for all } a \in A(\bar{k}) \right\} / \approx .$$

Definition

An abelian variety A^{\vee} is the **dual** abelian variety of A and an invertible sheaf \mathcal{P} on $A \times A^{\vee}$ is the **Poincarè** sheaf if:

 $\bullet \ \mathcal{P}|_{\{e\}\times A^{\vee}} \text{ is trivial and } \mathcal{P}|_{A\times \{a\}} \text{ lies in } \mathrm{Pic}^{0}(A_{k(a)}) \text{ for all } a\in A^{\vee}; \text{ and }$

Dual abelian variety

Put: $\operatorname{Pic}^0(A) = \left\{ \mathcal{L} \text{ inv. sheaf} : \ t_a^* \mathcal{L} pprox \mathcal{L} \text{ on } A_{\bar{k}} \text{ for all } a \in A(\bar{k}) \right\} / \approx .$

Definition

An abelian variety A^{\vee} is the **dual** abelian variety of A and an invertible sheaf \mathcal{P} on $A \times A^{\vee}$ is the **Poincarè** sheaf if:

- $\bullet \ \mathcal{P}|_{\{e\}\times A^{\vee}} \text{ is trivial and } \mathcal{P}|_{A\times \{a\}} \text{ lies in } \mathrm{Pic}^{0}(A_{k(a)}) \text{ for all } a\in A^{\vee}; \text{ and }$
- ② for every k-scheme T and invertible sheaf $\mathcal L$ on $A \times T$ such that $\mathcal L|_{\{e\} \times A^{\vee}}$ is trivial and $\mathcal L|_{A \times \{t\}}$ lies in $\operatorname{Pic}^0(A_{k(t)})$ for all $t \in T$, there is a unique morphism $f: T \to A^{\vee}$ such that $(1 \times f)^*\mathcal P \approx \mathcal L$.

5 / 19

Marseglia Stefano 22 December 2015

Polarizations

In particular:

- (A^{\vee}, \mathcal{P}) is uniquely determined up to a unique isomorphism;
- $A^{\vee}(\bar{k}) = \operatorname{Pic}^{0}(A_{\bar{k}})$ and every element of $\operatorname{Pic}^{0}(A_{\bar{k}})$ is represented uniquely once in the family $(\mathcal{P}_{a})_{a \in A(\bar{k})}$;
- $A^{\vee\vee}=A$.

Polarizations

In particular:

- (A^{\vee}, \mathcal{P}) is uniquely determined up to a unique isomorphism;
- $A^{\vee}(\bar{k}) = \operatorname{Pic}^{0}(A_{\bar{k}})$ and every element of $\operatorname{Pic}^{0}(A_{\bar{k}})$ is represented uniquely once in the family $(\mathcal{P}_{a})_{a \in A(\bar{k})}$;
- $A^{\vee\vee}=A$.

Definition

A **polarization** λ on A is an isogeny $\lambda:A\to A^\vee$ such that $\lambda_{\bar k}=\varphi_{\mathcal L}:a\mapsto t_a^*{\mathcal L}\otimes{\mathcal L}^{-1}$ for some ample invertible sheaf ${\mathcal L}$ on $A_{\bar k}$. If $\deg(\lambda)=1$ we say that A is **principally polarized**.

Polarizations

In particular:

- (A^{\vee}, \mathcal{P}) is uniquely determined up to a unique isomorphism;
- $A^{\vee}(\bar{k}) = \operatorname{Pic}^{0}(A_{\bar{k}})$ and every element of $\operatorname{Pic}^{0}(A_{\bar{k}})$ is represented uniquely once in the family $(\mathcal{P}_{a})_{a \in A(\bar{k})}$;
- $A^{\vee\vee}=A$.

Definition

A **polarization** λ on A is an isogeny $\lambda:A\to A^\vee$ such that $\lambda_{\bar k}=\varphi_{\mathcal L}:a\mapsto t_a^*{\mathcal L}\otimes{\mathcal L}^{-1}$ for some ample invertible sheaf ${\mathcal L}$ on $A_{\bar k}$. If $\deg(\lambda)=1$ we say that A is **principally polarized**.

• The automorphism group of (A, λ) is finite.

4 D > 4 A > 4 B > 4 B > B 9 9 9

Marseglia Stefano

6 / 19

Over
$$k = \mathbb{C}$$
 ...

If $k = \mathbb{C}$ the situation is simpler!

If $k = \mathbb{C}$ the situation is simpler! An abelian variety over \mathbb{C} of dimension g is a **complex torus** $A = V/\Lambda$ with a **non-degenarete Riemann form** $H: V \times V \to \mathbb{C}$, where:

If $k = \mathbb{C}$ the situation is simpler!

An abelian variety over $\mathbb C$ of dimension g is a **complex torus** $A = V/\Lambda$ with a **non-degenarete Riemann form** $H: V \times V \to \mathbb C$, where:

- V = a g-dimensional \mathbb{C} -vector space;
- $\Lambda = a$ lattice of rank 2g (inside V);
- H is Hermitian and E = Im H is integer valued on Λ .

If $k = \mathbb{C}$ the situation is simpler!

An abelian variety over $\mathbb C$ of dimension g is a **complex torus** $A=V/\Lambda$ with a **non-degenarete Riemann form** $H:V\times V\to \mathbb C$, where:

- V = a g-dimensional \mathbb{C} -vector space;
- $\Lambda = a$ lattice of rank 2g (inside V);
- H is Hermitian and $E = \operatorname{Im} H$ is integer valued on Λ .

The **dual** variety is $A^{\vee} = V^*/\Lambda^*$, where:

- $V^* =$ antilinear functionals on V, and
- $\Lambda^* = \{ f \in V^* | \langle f, t \rangle := \operatorname{Im}(f(t)) \in \mathbb{Z} \text{ for all } t \in \Lambda \}.$

If $k = \mathbb{C}$ the situation is simpler!

An abelian variety over $\mathbb C$ of dimension g is a **complex torus** $A=V/\Lambda$ with a **non-degenarete Riemann form** $H:V\times V\to \mathbb C$, where:

- V = a g-dimensional \mathbb{C} -vector space;
- $\Lambda = a$ lattice of rank 2g (inside V);
- *H* is Hermitian and E = Im H is integer valued on Λ .

The **dual** variety is $A^{\vee} = V^*/\Lambda^*$, where:

- $V^* =$ antilinear functionals on V, and
- $\Lambda^* = \{ f \in V^* | \langle f, t \rangle := \operatorname{Im}(f(t)) \in \mathbb{Z} \text{ for all } t \in \Lambda \}.$

A **polarization** is an equivalence class of Riemann forms (containing a non-degenerate one), where $H_1 \sim H_2 \iff \exists n_1, n_2 \in \mathbb{N} : n_1H_1 = n_2H_2$.

 ✓ □ ➤ ✓ □ ➤ ✓ □ ➤ ✓ □ ➤ ✓ □ ➤ ✓ □ ➤ ✓ □
 ½
 ✓ ○

 Marseglia Stefano
 22 December 2015
 7 / 19

• Serre: when char(k) = p > 0 it is **not** possible to functorially attach a free abelian group of rank 2g to a g-dimensional abelian variety A.

Marseglia Stefano

8 / 19

- Serre: when char(k) = p > 0 it is **not** possible to functorially attach a free abelian group of rank 2g to a g-dimensional abelian variety A.
- Weil: for $l \neq p$: $A[l^m](\bar{k}) \simeq (\mathbb{Z}/l^m\mathbb{Z})^{2g}$;

- Serre: when char(k) = p > 0 it is **not** possible to functorially attach a free abelian group of rank 2g to a g-dimensional abelian variety A.
- Weil: for $l \neq p$: $A[l^m](\bar{k}) \simeq (\mathbb{Z}/l^m\mathbb{Z})^{2g}$;
- but: $A[p^m](\bar{k}) \simeq (\mathbb{Z}/p^m\mathbb{Z})^f$ for some $0 \le f \le g$.

Marseglia Stefano

8 / 19

Let's move to finite fields:

Let's move to finite fields:

Definition

Let A be an abelian variety over \mathbb{F}_q . The **Frobenius** morphism of A is the morphism $\pi_A:A\to A$ which is the identity on the underlying topological space and is the map $x\mapsto x^q$ on \mathcal{O}_A . It is an isogeny of degree q.

Let's move to finite fields:

Definition

Let A be an abelian variety over \mathbb{F}_q . The **Frobenius** morphism of A is the morphism $\pi_A:A\to A$ which is the identity on the underlying topological space and is the map $x\mapsto x^q$ on \mathcal{O}_A . It is an isogeny of degree q.

Theorem

Let h_A be the **characteristic** polynomial of π_A (on $T_IA := \varprojlim A[I^m](\bar{k})$). Write $h_A(X) = \prod_{i=0}^{2g} (X - \alpha_i)$. The roots α_i are called q-Weil numbers. Then

Let's move to finite fields:

Definition

Let A be an abelian variety over \mathbb{F}_q . The **Frobenius** morphism of A is the morphism $\pi_A:A\to A$ which is the identity on the underlying topological space and is the map $x\mapsto x^q$ on \mathcal{O}_A . It is an isogeny of degree q.

Theorem

Let h_A be the **characteristic** polynomial of π_A (on $T_IA := \varprojlim A[I^m](\bar{k})$).

Write $h_A(X) = \prod_{i=0}^{2g} (X - \alpha_i)$. The roots α_i are called *q*-Weil numbers. Then

- $h_A(X) \in \mathbb{Z}[X]$;
 - $\#A(\mathbb{F}_{q^m}) = \prod (1 \alpha_i^m)$, for all $m \ge 1$;
 - $|\alpha_i| = \sqrt{q}$.

- 4 ロ ト 4 昼 ト 4 差 ト - 差 - 夕 Q @

Classification up to isogeny: Honda-Tate theory

Theorem (Tate)

The abelian varieties A and B over \mathbb{F}_q are isogenous if and only if $h_A = h_B$.

Classification up to isogeny: Honda-Tate theory

Theorem (Tate)

The abelian varieties A and B over \mathbb{F}_q are isogenous if and only if $h_A = h_B$.

Recall: two algebraic numbers α and β are conjugate if and only if $\mathbb{Q}(\alpha) \simeq \mathbb{Q}(\beta)$.

Theorem (Honda)

There is a bijection between conjugacy classes of q-Weil numbers and isogeny classes of simple abelian varieties over \mathbb{F}_q

Deligne's category

Definition

We say that A is **ordinary** if one of the following equivalent conditions holds:

Deligne's category

Definition

We say that *A* is **ordinary** if one of the following equivalent conditions holds:

- $\#A[p](\bar{k})=p^g$;
- exactly half of the roots of h_A are p-adic units;
- the middle coefficient of h_A is coprime to p.

Deligne's category

Definition

We say that A is **ordinary** if one of the following equivalent conditions holds:

- $\#A[p](\bar{k})=p^g$;
- exactly half of the roots of h_A are p-adic units;
- the middle coefficient of h_A is coprime to p.

Definition

Let \mathcal{D}_q be the category of pairs (T, F), with

- T is a free \mathbb{Z} -module of even rank and F is an endomorphism of T;
- $F \otimes \mathbb{Q}$ is semi-simple and its eigenvalues have complex-size \sqrt{q} ;
- half of the roots of the characteristic polynomial of F are p-adic units;

11 / 19

• exists an endomorphism V such that FV = q.

Marseglia Stefano 22 December 2015

Theorem (Deligne ('69))

There is an equivalence of categories T between the category of ordinary abelian varieties over \mathbb{F}_q and \mathcal{D}_q .

Theorem (Deligne ('69))

There is an equivalence of categories T between the category of ordinary abelian varieties over \mathbb{F}_q and \mathcal{D}_q .

• Let \tilde{A} be the canonical Serre-Tate lift of A to the ring of Witt-vectors $W(\overline{\mathbb{F}}_q)$;

Theorem (Deligne ('69))

There is an equivalence of categories T between the category of ordinary abelian varieties over \mathbb{F}_q and \mathcal{D}_q .

- Let \tilde{A} be the canonical Serre-Tate lift of A to the ring of Witt-vectors $W(\overline{\mathbb{F}}_q)$;
- choose and embedding $\varepsilon:W(\overline{\mathbb{F}}_q)\hookrightarrow\mathbb{C};$

Theorem (Deligne ('69))

There is an equivalence of categories T between the category of ordinary abelian varieties over \mathbb{F}_q and \mathcal{D}_q .

- Let \tilde{A} be the canonical Serre-Tate lift of A to the ring of Witt-vectors $W(\overline{\mathbb{F}}_q)$;
- ullet choose and embedding $arepsilon:W(\overline{\mathbb{F}}_q)\hookrightarrow\mathbb{C};$
- define $T(A) := H_1(\tilde{A} \otimes_{\epsilon} \mathbb{C})$ and F the lift of π_A .

Theorem (Deligne ('69))

There is an equivalence of categories T between the category of ordinary abelian varieties over \mathbb{F}_q and \mathcal{D}_q .

- Let \tilde{A} be the canonical Serre-Tate lift of A to the ring of Witt-vectors $W(\overline{\mathbb{F}}_q)$;
- ullet choose and embedding $arepsilon:W(\overline{\mathbb{F}}_q)\hookrightarrow\mathbb{C};$
- define $T(A) := H_1(\tilde{A} \otimes_{\epsilon} \mathbb{C})$ and F the lift of π_A .

Observe: Rank
$$(T(A)) = 2 \dim(A)$$
 and $T(\pi_A) = F(A)$.

Construction of the equivalence

Theorem (Deligne ('69))

There is an equivalence of categories T between the category of ordinary abelian varieties over \mathbb{F}_q and \mathcal{D}_q .

- Let \tilde{A} be the canonical Serre-Tate lift of A to the ring of Witt-vectors $W(\overline{\mathbb{F}}_q)$;
- ullet choose and embedding $arepsilon:W(\overline{\mathbb{F}}_q)\hookrightarrow\mathbb{C};$
- define $T(A) := H_1(\tilde{A} \otimes_{\epsilon} \mathbb{C})$ and F the lift of π_A .

Observe: Rank
$$(T(A)) = 2 \dim(A)$$
 and $T(\pi_A) = F(A)$.

Dual varieties in \mathcal{D}_q

Dual varieties in \mathcal{D}_q

Definition

The **dual** of $(T, F) \in \mathcal{D}_q$ is (\hat{T}, \hat{F}) , where

- $\hat{T} = \operatorname{Hom}_{\mathbb{Z}}(T, \mathbb{Z});$
- $\hat{F}: \psi \mapsto \psi \circ V$.

Dual varieties in \mathcal{D}_q

Definition

The **dual** of $(T, F) \in \mathcal{D}_q$ is (\hat{T}, \hat{F}) , where

- $\hat{T} = \operatorname{Hom}_{\mathbb{Z}}(T, \mathbb{Z});$
- $\hat{F}: \psi \mapsto \psi \circ V$.

Theorem (Howe '95)

Deligne's equivalence respects duality.

Let $(T,F) \in \mathcal{D}_q$. Put $R = \mathbb{Z}[F,V] \subseteq \operatorname{End}((T,F))$.

Marseglia Stefano

14 / 19

Let $(T, F) \in \mathcal{D}_q$. Put $R = \mathbb{Z}[F, V] \subseteq \operatorname{End}((T, F))$. Observe: $K = R \otimes \mathbb{Q}$ is a product of CM-fields.

Let $(T,F) \in \mathcal{D}_q$. Put $R = \mathbb{Z}[F,V] \subseteq \operatorname{End}((T,F))$.

Observe: $K = R \otimes \mathbb{Q}$ is a product of CM-fields.

Let v be the p-adic valuation induced by the embedding $\varepsilon:W(\overline{\mathbb{F}}_q)\hookrightarrow\mathbb{C}$.

Let $(T, F) \in \mathcal{D}_q$. Put $R = \mathbb{Z}[F, V] \subseteq \text{End}((T, F))$.

Observe: $K = R \otimes \mathbb{Q}$ is a product of CM-fields.

Let v be the p-adic valuation induced by the embedding $\varepsilon:W(\overline{\mathbb{F}}_q)\hookrightarrow\mathbb{C}$.

Define the CM-type $\Phi := \{ \varphi : K \to \mathbb{C} | v(\varphi(F)) > 0 \}.$

Let $(T,F) \in \mathcal{D}_q$. Put $R = \mathbb{Z}[F,V] \subseteq \operatorname{End}((T,F))$.

Observe: $K = R \otimes \mathbb{Q}$ is a product of CM-fields.

Let v be the p-adic valuation induced by the embedding $\varepsilon:W(\overline{\mathbb{F}}_q)\hookrightarrow\mathbb{C}$.

Define the CM-type $\Phi := \{ \varphi : K \to \mathbb{C} | v(\varphi(F)) > 0 \}.$

Let $\iota \in K$ such that $\varphi(\iota)$ is positive imaginary for every $\varphi \in \Phi$.

Marseglia Stefano

14 / 19

Let $(T,F) \in \mathcal{D}_q$. Put $R = \mathbb{Z}[F,V] \subseteq \operatorname{End}((T,F))$.

Observe: $K = R \otimes \mathbb{Q}$ is a product of CM-fields.

Let v be the p-adic valuation induced by the embedding $\varepsilon:W(\overline{\mathbb{F}}_q)\hookrightarrow\mathbb{C}$.

Define the CM-type $\Phi := \{ \varphi : K \to \mathbb{C} | \nu(\varphi(F)) > 0 \}.$

Let $\iota \in K$ such that $\varphi(\iota)$ is positive imaginary for every $\varphi \in \Phi$.

Fact: an isogeny $\lambda: (T,F) \to (\hat{T},\hat{F})$ induces a pairing $b: T \times T \to \mathbb{Z}$.

Let $(T,F) \in \mathcal{D}_q$. Put $R = \mathbb{Z}[F,V] \subseteq \operatorname{End}((T,F))$.

Observe: $K = R \otimes \mathbb{Q}$ is a product of CM-fields.

Let v be the p-adic valuation induced by the embedding $\varepsilon:W(\overline{\mathbb{F}}_q)\hookrightarrow\mathbb{C}.$

Define the CM-type $\Phi := \{ \varphi : K \to \mathbb{C} | v(\varphi(F)) > 0 \}.$

Let $\iota \in K$ such that $\varphi(\iota)$ is positive imaginary for every $\varphi \in \Phi$.

Fact: an isogeny $\lambda: (T,F) \to (\hat{T},\hat{F})$ induces a pairing $b: T \times T \to \mathbb{Z}$.

Definition

The isogeny λ is a **polarization** if:

- b is alternating, and
- the pairing $(x, y) \mapsto b(\iota x, y)$ on $T \times T$ is symmetric and positive definite.

Let $(T,F) \in \mathcal{D}_q$. Put $R = \mathbb{Z}[F,V] \subseteq \operatorname{End}((T,F))$.

Observe: $K = R \otimes \mathbb{Q}$ is a product of CM-fields.

Let v be the p-adic valuation induced by the embedding $\varepsilon:W(\overline{\mathbb{F}}_q)\hookrightarrow\mathbb{C}.$

Define the CM-type $\Phi := \{ \varphi : K \to \mathbb{C} | v(\varphi(F)) > 0 \}.$

Let $\iota \in K$ such that $\varphi(\iota)$ is positive imaginary for every $\varphi \in \Phi$.

Fact: an isogeny $\lambda: (T,F) \to (\hat{T},\hat{F})$ induces a pairing $b: T \times T \to \mathbb{Z}$.

Definition

The isogeny λ is a **polarization** if:

- b is alternating, and
- the pairing $(x, y) \mapsto b(\iota x, y)$ on $T \times T$ is symmetric and positive definite.

Theorem (Howe '95)

Deligne's equivalence sends polarizations to polarizations.

Fix an irreducible ordinary q-Weil polynomial h and let F be a root.

Fix an irreducible ordinary q-Weil polynomial h and let F be a root. Let \mathcal{I} be the isogeny class corresponding to h in \mathcal{D}_q .

Fix an irreducible ordinary q-Weil polynomial h and let F be a root. Let \mathcal{I} be the isogeny class corresponding to h in \mathcal{D}_q . Put $R = \mathbb{Z}[F, V]$. It is an order in the number field $K = \mathbb{Q}[X]/h(X)$.

Fix an irreducible ordinary q-Weil polynomial h and let F be a root. Let \mathcal{I} be the isogeny class corresponding to h in \mathcal{D}_q .

Put $R = \mathbb{Z}[F, V]$. It is an order in the number field $K = \mathbb{Q}[X]/h(X)$.

Proposition (Howe)

 $\{ \text{Deligne modules in } \mathcal{I} \} \longleftrightarrow \{ \text{Fractional ideals of } R \}$

Fix an irreducible ordinary q-Weil polynomial h and let F be a root.

Let $\mathcal I$ be the isogeny class corresponding to h in $\mathcal D_q$.

Put $R = \mathbb{Z}[F, V]$. It is an order in the number field $K = \mathbb{Q}[X]/h(X)$.

Proposition (Howe)

 $\{ \text{Deligne modules in } \mathcal{I} \} \longleftrightarrow \{ \text{Fractional ideals of } R \}$

Let I be a fractional R-ideal corresponding to a Deligne module (T, F).

Fix an irreducible ordinary q-Weil polynomial h and let F be a root.

Let $\mathcal I$ be the isogeny class corresponding to h in $\mathcal D_q$.

Put $R = \mathbb{Z}[F, V]$. It is an order in the number field $K = \mathbb{Q}[X]/h(X)$.

Proposition (Howe)

 $\{ \text{Deligne modules in } \mathcal{I} \} \longleftrightarrow \{ \text{Fractional ideals of } R \}$

Let I be a fractional R-ideal corresponding to a Deligne module (T, F). Then (\hat{T}, \hat{F}) corresponds to \bar{I}^t , where $I^t = \{x \in K : \operatorname{Tr}_{K/\mathbb{Q}}(xI) \subseteq \mathbb{Z}\}$ is the **trace dual** of I and $\bar{\cdot}$ is the CM-conjugation of K.

Fix an irreducible ordinary q-Weil polynomial h and let F be a root.

Let $\mathcal I$ be the isogeny class corresponding to h in $\mathcal D_q$.

Put $R = \mathbb{Z}[F, V]$. It is an order in the number field $K = \mathbb{Q}[X]/h(X)$.

Proposition (Howe)

 $\{ \text{Deligne modules in } \mathcal{I} \} \longleftrightarrow \{ \text{Fractional ideals of } R \}$

Let I be a fractional R-ideal corresponding to a Deligne module (T,F). Then (\hat{T},\hat{F}) corresponds to \bar{I}^t , where $I^t = \{x \in K : \operatorname{Tr}_{K/\mathbb{Q}}(xI) \subseteq \mathbb{Z}\}$ is the **trace dual** of I and $\bar{\cdot}$ is the CM-conjugation of K. Moreover a **polarization** of (T,F) is $\lambda \in K^*$ such that

- $\lambda I \subset \overline{I}^t$;
- λ is totally imaginary;
- $\varphi(\lambda)$ is positive imaginary for every $\varphi \in \Phi$.

4 D > 4 A > 4 B > 4 B > B 9 Q Q

 Marseglia Stefano
 22 December 2015
 15 / 19

Goal: count the isomorphism classes, with polarizations.

Goal: count the isomorphism classes, with polarizations. We get

 $\begin{cases} \text{Isomorphism classes of} \\ \text{abelian varieties in } \mathcal{I} \end{cases} \longleftrightarrow \{ \textbf{Ideal class monoid of } R \}$

Recall: $I \simeq J \iff \exists x \in K^* : I = xJ$.

Goal: count the isomorphism classes, with polarizations. We get

$$\begin{cases} \text{Isomorphism classes of} \\ \text{abelian varieties in } \mathcal{I} \end{cases} \longleftrightarrow \{ \textbf{Ideal class monoid of } R \}$$

Recall: $I \simeq J \iff \exists x \in K^* : I = xJ$.

Problem: it is not known how to compute efficiently the ICM(R) when R is not maximal (not Dedekind), because there are **non-invertible classes**.

Goal: count the isomorphism classes, with polarizations. We get

$$\begin{cases} \text{Isomorphism classes of} \\ \text{abelian varieties in } \mathcal{I} \end{cases} \longleftrightarrow \{ \textbf{Ideal class monoid of } R \}$$

Recall: $I \simeq J \iff \exists x \in K^* : I = xJ$.

Problem: it is not known how to compute efficiently the ICM(R) when R is not maximal (not Dedekind), because there are **non-invertible classes**. Let $[I] \in ICM(R)$ such that $xI = \overline{I}^t$ for some $x \in K^*$.

Goal: count the isomorphism classes, with polarizations. We get

 $\begin{cases} \text{Isomorphism classes of} \\ \text{abelian varieties in } \mathcal{T} \end{cases} \longleftrightarrow \{ \text{Ideal class monoid of } R \}$

Recall: $I \simeq J \iff \exists x \in K^* : I = xJ$.

Problem: it is not known how to compute efficiently the ICM(R) when R is not maximal (not Dedekind), because there are non-invertible classes.

Let $[I] \in ICM(R)$ such that $xI = \overline{I}^t$ for some $x \in K^*$.

If for some $u \in (I:I)^{\times}$ we have xu is totally imaginary and $\varphi(xu)$ is positive imaginary for every $\varphi \in \Phi$ then $\lambda := xu$ is a polarization of I.

Number of polarizations and automorphisms

Assume that I has a polarization λ . Then:

Number of polarizations and automorphisms

Assume that I has a polarization λ . Then:

$$\left\{ \begin{array}{l} \text{number of non-isomorphic} \\ \text{polarizations on } I \end{array} \right\} \longleftrightarrow \frac{\left\{ \text{totally positive } u \in (I:I)^{\times} \right\}}{\left\{ v\bar{v} : v \in (I:I)^{\times} \right\}}$$

Number of polarizations and automorphisms

Assume that I has a polarization λ . Then:

$$\left\{ \begin{array}{l} \text{number of non-isomorphic} \\ \text{polarizations on } I \end{array} \right\} \longleftrightarrow \frac{ \left\{ \text{totally positive } u \in (I:I)^{\times} \right\} }{ \left\{ v \bar{v} : v \in (I:I)^{\times} \right\} }$$

and

$$Aut((I, \lambda)) \longleftrightarrow \{torsion units u \in (I : I)^{\times}\}$$

Computations

Abelian surfaces over \mathbb{F}_3 with **irreducible ordinary (and Clifford)** polynomials:

Computations

Abelian surfaces over \mathbb{F}_3 with **irreducible ordinary (and Clifford)** polynomials:

$$x^{4} - 4x^{3} + 8x^{2} - 12x + 9 = [8]$$

$$x^{4} - 2x^{3} + x^{2} - 6x + 9 = [6]$$

$$x^{4} - 2x^{3} + 4x^{2} - 6x + 9 = [2, 2]$$

$$x^{4} - x^{3} - 2x^{2} - 3x + 9 = [6]$$

$$x^{4} - x^{3} + 2x^{2} - 3x + 9 = [2, 2]$$

$$x^{4} - 5x^{2} + 9 = [4]$$

$$x^{4} + x^{2} + 9 = [2, 2]$$

$$x^{4} + x^{3} - x^{2} + 3x + 9 = [2]$$

$$x^{4} + x^{3} + 5x^{2} + 3x + 9 = [2]$$

$$x^{4} - 3x^{3} + 5x^{2} - 9x + 9 = [2]$$

$$x^{4} - 2x^{3} + 2x^{2} - 6x + 9 = [2, 4]$$

$$x^{4} - 2x^{3} + 5x^{2} - 6x + 9 = [2]$$

$$x^4 - x^3 - x^2 - 3x + 9 = [2]$$

$$x^4 - x^3 + 5x^2 - 3x + 9 = [2]$$

$$x^4 - x^2 + 9 = [2, 2]$$

$$x^4 + x^3 - 2x^2 + 3x + 9 = [6]$$

$$x^4 + x^3 + 2x^2 + 3x + 9 = [2, 2]$$

$$x^4 + 2x^3 + x^2 + 6x + 9 = [6]$$

. . .

Thank you for your attention.