Maximum Acyclic Subgraph

Никита Лансков

20 декабря 2021 г.

Содержание

1 Основная часть		ювная часть	2	
	1.1	Формулировка задачи распознавания, доказательство ее NP-полноты	2	
2	Час	стные случаи	4	

Введение

Курсовой проект по теории алгоритмов.

1 Основная часть

1.1 Формулировка задачи распознавания, доказательство ее NP-полноты

Формулировка задачи распознавания

Задача 1 (Задача МАЅ)

Дан конечный ориентированный граф D=(V,A) и константа $B\in\mathbb{N}$. Существует ли подмножество $A'\in A$, такое, что подграф D=(V,A') не содержит циклов $u\mid A'\mid>=B$.

Доказательство NP-полноты

Чтобы показать, что задача MAS является NP-полной, требуется:

- 1. Показать, что $MAS \in NP$
- 2. Свести к MAS другую известную задачу, чья NP-полнота уже установлена

Определение 1

Задача распознавания P принадлежит классу NP при схеме кодирования c, если $L\left[P,c\right]\in NP$

Определение 2

Язык L принадлежит классу NP, если существует HMT M, распознающая L, u многочлен $p \in \mathbb{Z}[x]$, такие, что время работы M на любом входе $x \in \Sigma^*$ не превосходит p(|x|)

Таким образом, чтобы доказать что задача MAS является NP полной, нам достаточно убедиться в существовании недетерминированной машины тьюринга, которая бы распознавала язык этой задачи.

Действительно, в качестве подсказки достаточно взять набор нулей и единиц длины |V|, где каждое значение соответствует конкретной вершине $v \in V$, и единицы стоят на местах вершин, которые входят в максимальный ациклический подграф, а на местах оставшихся вершин - нули. Для этого предлагаю свести к задаче MAS задачу о независимом множестве.

Определение 3

G - конечный граф. $W \in V(G)$ - независимое множество, если $\forall u,v \in W(uv \notin E(G))$

Задача 2 (О независимом множестве)

Дан конечный неориентированный граф G и число $B \in \mathbb{N}$. Есть ли в G независимое множество размера не менее B.

Преобразуем неориентированный граф из зачачи о независимом множестве G к ориентированному D следующим образом:

$$V(D) = V(G)$$

$$A(D) = \{\{uv, vu\} \mid \forall uv \in E(G)\}$$

Таким образом, мы строим граф на тех же вершинах, и для каждого ребра исходного графа добавляем две разнонаправленные дуги в наш новый ориентированный граф.

При таком построении, если мы найдем в графе G независимое множество W, то мы также нашли бы максимальный ациклический подграф в D. Это правда, так как добавление любой из оставшихся вершин в подграф появился бы цикл, так как в графе G добавленная вершина была бы связана с одной или несколькими вершинами из независимого множества W.

2 Частные случаи

Список литературы