

AZ-300T04 Module 03: Using Azure Kubernetes Service

Subtitle or speaker name

1

Module 03: Using Azure Kubernetes Service

Lesson 01: Creating an Azure Kubernetes Service Cluster

Kubernetes

- · Manages container-based applications
 - · Along with networking and storage requirements
 - · Focused on application workloads instead of infrastructure components
- Makes it easier to orchestrate large solutions using a variety of containers
 - · Application containers
 - · Storage containers
 - · Middleware containers
 - · Even more...
- · Applications are described declaratively
 - · Use YAML files to describe application
 - · Kubernetes handles management and deployment

3

Kubernetes cluster architecture

- Cluster master
 - · Dedicated nodes provide core Kubernetes services and orchestration
- Nodes
 - · Run application workloads

Kubernetes nodes

- · Each individual node is an Azure virtual machine (VM)
 - · Contains Kubernetes node components needed to communicate with the cluster master and the internet
 - · Contains the container runtime for your applications
 - · In Azure Kubernetes Service, Docker is the container runtime

5

Kubernetes terminology

- Nodes
 - · Individual VM running containerized applications
- Pools
 - · Groups of nodes with identical configurations
- · Pods
 - · Single instance of an application
 - $\cdot\,$ It's possible for a pod to contain multiple containers within the same node
- Deployments
 - · One or more identical pods managed by Kubernetes
- Manifests
 - · YAML file describing a deployment

Azure Kubernetes Service (AKS)

- · Simple management of cluster of VMs by using Kubernetes
 - · Removes infrastructure complication and planning
 - · No cluster charges, just used resources
 - · Secure, reliable, highly scalable
 - · Supports node autoscaling to meet resource utilization
 - · Supports in-place upgrade of clusters to the latest version of Kubernetes
 - · Direct integration with Azure Container Registry for Docker images
 - · Azure Virtual Network integration for isolated network traffic

7

Role-based access control (RBAC)

- · Assign users or groups permissions to manage Kubernetes
- · Permissions include:
 - · Create or modify resources
 - · View logs
 - · Deploy application workloads
- Permissions can be scoped to a single namespace or the entire AKS cluster
- · Permissions can be encapsulated in a RBAC role definition

Security

- Master security
 - · Fully managed by Microsoft without any need for user input
 - · Has a public IP and fully qualified domain name (FQDN) by default, and this can be managed by using RBAC or Azure AD
- · Node security
 - · Automatically deployed with the latest OS security updates and configuration
 - · Azure platform automatically applies OS security updates
 - · If updates require a reboot, you must do this manually
 - · Nodes are deployed into a virtual network private subnet
- · Cluster upgrades
 - · You can trigger an AKS platform upgrade by using the existing orchestration tools
 - · AKS safely drains each node and performs upgrades

9

Networking security

- · Network Security Groups
 - · Built-in Azure service to protect resources within virtual networks
 - · Can define rules to manage:
 - · Destination or source IP ranges
 - · Portals
 - · Protocols
 - · Default rules are created to allow:
 - · TLS traffic to Kubernetes API server
 - · SSH access to individual nodes
 - · Network security group (NSG) is automatically modified by AKS as you create services with:
 - · Ingress routes
 - · Port mappings
 - · Load balancers

Pod

Networking connectivity Services group pods together to provide network connectivity Port 80 Cluster IP Pod Port 80 Port 80 Creates internal-only IP address for Internal Pod use within the cluster Port 80 Pod NodePort Port 31000 Port 80 AKS node Creates a port mapping Port 31000 Port 80 Incoming on a specific node for NodePort AKS node Pod traffic direct access Port 31000

AKS node

11

Networking connectivity (continued)

Services group pods together to provide network connectivity

LoadBalancer

Creates an Azure load balancer resource with an external IP address

ExternalName

Creates a direct DNS entry

Storage

- Local storage on the node is fast and simple to use
 - · Local storage might not be available after the pod is deleted
- Multiple pods may share data volumes
- · Storage could potentially be reattached to another pod

13

Persistent storage volumes

- Pods can use storage that is persistent
 - · Storage exists beyond the lifetime of the pod
 - Storage can be a service such as Azure Files or an Azure Managed Disk

Scaling

- Applications might grow beyond the capacity of a single pod
- Kubernetes has built-in autoscalers to automatically create instances when they are needed
 - · Horizontal pod autoscaler
 - Automatically scale replicas based on metrics
 - · Cluster Autoscaler
 - Adjusts the number of nodes based on the requested compute resources

15

Scaling to Azure Container Instances

If you need to rapidly grow your AKS cluster, you can create new pods in Azure Container Instances (ACI)

Module 03: Using Azure Kubernetes Service

Lesson 02: Deploy an AKS cluster

17

Deploying to AKS by using Azure CLI

```
// Create resource group
az group create --name mygroup --location eastus

// Create AKS cluster
az aks create --resource-group mygroup --name mycluster --node-count 1 --
enable-addons monitoring --generate-ssh-keys
```

Connecting a kubectl client to AKS

```
// Install kubectl command line client locally
az aks install-cli

// Get credentials
az aks get-credentials --resource-group mygroup --name mycluster

// Get a list of cluster nodes
kubectl get nodes
```

19

Deploying application to AKS

```
// Get a list of cluster nodes
kubectl get nodes

// Run the application
kubectl apply -f example.yaml

// Monitor progress of the deployment
kubectl get service nginx-deployment -watch

// View pods related to this deployment
kubectl get pods -l app=nginx
```

Deploying an AKS cluster by using the Azure portal

21

Module 03: Using Azure Kubernetes Service

Lesson 03: Publish a container image to Azure Container Registry

Azure Container Registry (ACR)

- · Managed Docker registry service
 - · Based on the open-source Docker Registry 2.0
- · Stores and manages private Docker container images
- Tight integration with multiple Azure services that support these Docker containers:
 - · Azure App Service
 - · Azure Batch
 - · Azure Service Fabric
 - · Azure Kubernetes Service

23

Key terminology

- · Registry
 - · A service that stores container images
- Repository
 - · A group of related container images
- · Image
 - · A point-in-time snapshot of a Docker-compatible container
- Container
 - · A software application and its dependencies running in an isolated environment

Container Registry SKUs

SKU	Description
Basic	• Ideal for developers learning about Azure Container Registry
	 Same programmatic capabilities as Standard and Premium, however, there are size and usage constraints
Standard	 Same capabilities as Basic, but with increased storage limits and image throughput.
	 Should satisfy the needs of most production scenarios.
Premium	• Higher limits on constraints, such as storage and concurrent operations, including enhanced storage capabilities to support high-volume scenarios.
	 Adds features like geo-replication for managing a single registry across multiple regions

25

Create an ACR account by using Azure CLI

```
// Create an ACR instance
az acr create --resource-group <group> --name <acr-name> --sku Basic
// Login to ACR
az acr login --name <acrName>
```

Build a Docker image for ACR

```
// Tag image with full login server name prefix
docker tag microsoft/aci-helloworld <acrLoginServer>/aci-helloworld:v1
// Push image to ACR
docker push <acrLoginServer>/aci-helloworld:v1
```

27

Azure Container Registry Build (ACR Build)

- Suite of features within Azure Container Registry that provides streamlined and efficient Docker container image builds in Azure
 - · Offloads docker build operations to Azure
 - · Replaces manual build by using Docker tools on your local machine
 - · Build on demand
- · Fully automate builds with source code commit and base image update build triggers

29

Module 04: Understanding Azure Functions Lesson 04: Create and run container images in Azure Container Instances

Azure Container Instances (ACI)

- · Simplest way to run a container in Azure:
 - · Doesn't require laaS provisioning
 - · Doesn't require the adoption of a higher-level service
- · Ideal for one-off, isolated container instances:
 - · Simple applications
 - · Task automation
 - · Build jobs
- · Supports Linux and Windows containers
- · Supports direct mounting of Azure Files shares
- · Container can be provisioned with public IP address and DNS name

31

Azure Container Instances features

Feature	Description
Fast startup times	Containers can start in seconds without the need to provision and manage VMs
Public IP connectivity and DNS name	Containers can be directly exposed to the internet with an IP address and a fully qualified domain name (FQDN)
Hypervisor-level security	Container applications are as isolated in a container as they would be in a VM
Custom sizes	Container nodes can be scaled dynamically to match actual resource demands for an application
Persistent storage	Containers support direct mounting of Azure Files shares
Linux and Windows containers	The same API is used to schedule both Linux and Windows containers
Co-scheduled groups	Supports scheduling of multi-container groups that share host machine resources
Virtual network deployment	Container Instances can be deployed into an Azure virtual network

Build a container prior to ACI deployment

// After building, use the following command to view your new container image
docker images

33

Test container prior to ACI deployment

```
// Run your container locally
docker run -d -p 8080:80 aci-tutorial-app

// View running containers
docker container ls -a
```

LAB [300TO04-M03-01]

1. Migrate On-Premises Container to Azure Container.

35

37

LAB [300TO04-M02-01]

- 1. Migrate On-Premises Container to Azure Container.
 - a. Services, Tools & Code used
 - i. Azure Virtual Machine
 - ii. Docker Container
 - iii. Azure Container Instance
 - iv. Azure Container Registry
 - v. Azure Kubernetes Services (AKS)
 - vi. HTML Code

Duration: 60 mnts.

39

