DISTRIBUCIONES DE PROBABILIDAD

2023-11-10

Contents

DISTRIBUCIONES DISCRETAS	
DISTRIBUCIÓN BINOMIAL	
DISTRIBUCIÓN GEOMÉTRICA	4
DISTRIBUCIÓN HIPERGEOMÉTRICA	5
DISTRIBUCIÓN DE POISON	6

DISTRIBUCIONES DISCRETAS

DISTRIBUCIÓN BINOMIAL

Mide el número de éxitos en una secuencia de n ensayos de Bernoulli independientes entre sí con una probabilidad p de éxito entre los ensayos.

$$P(X = x) = \binom{n}{x} p^x (1 - p)^{n - x}$$

Es la probabilidad de tener x éxitos en n ensayos.

EJEMPLO

La probabilidad de que un jugador de baloncesto enceste un triple es del 30 %, es decir, p = 0.3. Suponemos que lanza 5 veces, n = 5.

a) Si quieremos calcular la probabilidad de que enceste tres tiros (P(X=3)):

```
dbinom(3, size = 5, prob = 0.3)
## [1] 0.1323
```

b) Si queremos calcular todas las probabilidades de golpe en forma de tabla:

```
RBinom <- data.frame(Pr = dbinom(0:5, size = 5, prob = 0.3))
rownames(RBinom) <- 0:5
RBinom
```

```
## Pr
## 0 0.16807
## 1 0.36015
## 2 0.30870
## 3 0.13230
## 4 0.02835
## 5 0.00243
```

c) La probabilidad de encestar más de 3 triples $(P(X \ge 3))$:

```
pbinom(3, size = 5, prob = 0.3, lower.tail = FALSE)
```

```
## [1] 0.03078
```

d) Si queremos saber todas las probabilidades acumuladas (más de 0, más de 1, ...), calculamos la cola derecha (P(X > x)):

```
pbinom(0:5, size = 5, prob = 0.3, lower.tail = FALSE)
```

```
## [1] 0.83193 0.47178 0.16308 0.03078 0.00243 0.00000
```

e) Si queremos calcular las colas izquierdas $(P(X \le x))$, esto es, la probabilidad de encestar menos de 1, menos de 2, . . . :

```
pbinom(0:5, size = 5, prob = 0.3, lower.tail = TRUE)
```

- ## [1] 0.16807 0.52822 0.83692 0.96922 0.99757 1.00000
- f) La probabilidad de encestar menos de dos tiros $(P(X \le 1))$:

```
pbinom(1, size = 5, prob = 0.3, lower.tail = TRUE)
```

```
## [1] 0.52822
```

g) Para representar gráficamente la función de probabilidad:

Distribución binomial (n = 5, p = 0.3)

h) Para representar gráficamente la función de probabilidad acumulada:

DISTRIBUCIÓN GEOMÉTRICA

Describe la probabilidad del número de ensayos de Bernoulli necesarios para obtener un éxito.

$$P(X = x) = (1 - p)^{x-1}p$$

$$P(X \le x) = F(x) = 1 - (1 - p)^x$$

En este caso, x es el número de intento en el que el jugador tendrá éxito (encestará el triple) y p es la probabilidad de encestar.

EJEMPLO

Definimos una variable aleatoria X, que será el número del intento en el que el jugador encesta el primer triple, es decir, el número de ensayos necesarios hasta encestar.

a) Si queremos saber la probabilidad de que el primer triple que enceste sea en el sexto intento con una probabilidad de encestar de p = 0.3 ($P(X \le 6) = F(6)$):

[1] 0.882351

Donde el primer número (5) es el **número de fallos** antes del primer acierto, esto es x-1. Estamos calculando la **cola izquierda** $(P(X \le x))$.

b) Para hacer la representación gráfica tomando 20 como el número máximo de intentos antes de acertar, definimos primero el vector x que contiene el número de intentos, y el vector y, que contiene la probabilidad de acertar el primer triple en el i-ésimo tiro:

Distribución geométrica (p = 0.3)

Número de errores hasta acertar

DISTRIBUCIÓN HIPERGEOMÉTRICA

Se da cuando las observaciones no son independientes. Supongamos que tenemos una muestra de N bolas, de las cuales N_1 son verdes y N_2 son rojas, de modo que $N_1 + N_2 = N$. Si extraemos n bolas (sin retorno), la variable X será el número de bolas verdes obtenidas.

$$P(X = x) = \frac{\binom{N_1}{x} \binom{N_2}{n-x}}{\binom{N}{n}}$$

EJEMPLO

Un estudiante de oposiciones ha preparado doce de los dieciocho temas de los que consta el examen. La prueba consiste en tres temas elegidos de manera aleatoria. ¿Qué probabilidad tiene el estudiante de conocer los tres temas? Sabemos que $N_1 = 12$, $N_2 = 6$ y N = 18. Además, la extracción es n = 3.

```
RHiper <- data.frame(Pr = dhyper(0:3, m = 12, n = 6, k = 3))
rownames(RHiper) <- 0:3
RHiper
```

```
## Pr
## 0 0.0245098
## 1 0.2205882
```

```
## 2 0.4852941
## 3 0.2696078
```

La probabilidad de que los tres temas que ha estudiado entren en el examen es del 26.9 %. La probabilidad más alta es P(X=2)=0.485, es decir, que haya estudiado dos de los tres temas que saldrán.

a) Si queremos saber la probabilidad de que sepa como mínimo dos temas $(P(X \ge 2))$, necesitamos la probabilidad acumulada de la cola derecha. R calcula P(X > x), así que tendremos que calcular la función de distribución con x = 1 porque $P(X > 1) = P(X \ge 2)$:

```
phyper(1, m = 12, n = 6, k = 3, lower.tail = FALSE)
```

```
## [1] 0.754902
```

Esto significa que tiene una probabilidad del 75 % de que conozca dos o tres temas en el examen.

DISTRIBUCIÓN DE POISON

Como las anteriores, también se deriva de la distribución binomial.

EJEMPLO