CS204: Discrete Mathematics

Ch 1. The Foundations: Logic and Proofs Formal Logic – Classical Logic

Sungwon Kang

Acknowledgement

- [Rosen 19] Kenneth H. Rosen, for Discrete Mathematics & Its Applications (8th Edition), Lecture slides
- [Hunter 11] David J. Hunter, Essentials of Discrete Mathematics, 2nd Edition, Jones & Bartlett Publishers, 2011, Lecture Slides

To study formal logic, let's begin with statements.

Definition

A *statement* (also known as a *proposition*) is a declarative sentence that is either true or false, but not both.

Examples of statements:

- 7 is odd.
- 1 + 1 = 4
- If it is raining, then the ground is wet.
- Our professor is from Mars.

To study formal logic, let's begin with statements.

Definition

A *statement* (also known as a *proposition*) is a declarative sentence that is either true or false, but not both.

Examples of statements:

- 7 is odd.
- 1+1=4
- If it is raining, then the ground is wet.
- Our professor is from Mars.

What about "How beautiful this flower is!" or "Please close the door"?

Definition

A *statement* (also known as a *proposition*) is a declarative sentence that is either true or false, but not both.

How can a declarative sentence fail to be a statement?

- (1) has a unspecified term **Example** "x is even."
- (2) is self-referential **Example** "This sentence is false."

Definition

A *statement* (also known as a *proposition*) is a declarative sentence that is either true or false, but not both.

How can a declarative sentence **fail** to be a statement?

- (1) has a unspecified term **Example** "x is even."
- (2) is self-referential **Example** "This sentence is false." -- (S)

Then it must be false. →←
So it cannot be true and it must be false.
If false, it must be true,
which contradicts the assumption
that it is false. →←
Therefore S is neither true nor false.
However, the sentence
"This sentence is true" is not a contradiction.
For if it is false, it is a false sentence.
If it is true, then there is no contradiction. 5

Suppose S is true.

Classical Logic (as opposed to Modern Logic) (1/3)

- Classical Logic = Aristotelian Logic
 - focuses on relations of "classes of things"

Aristotle 384– 322 BC

Example

All swans are mammals.

All black swans are swans.

All black swans are mammals.

Is this argument (logically) valid?

Classical Logic (as opposed to Modern Logic) (2/3)

- Classical Logic = Aristotelian Logic
 - focuses on relations of "classes of things"

Example

All swans are mammals.

All black swans are swans.

All black swans are mammals.

Is this argument (logically) valid?

Classical Logic (as opposed to Modern Logic) (3/3)

- Classical Logic = Aristotelian Logic
 - focuses on relations of "classes of things"

Example

All swans are mammals.

All black swans are swans.

All black swans are mammals.

Is this argument (logically) valid?

Categorical Propositions

Class (= Category) : A collection of all objects that have some characteristic in common

Classes can be related in one of the following three ways:

- 1. All of one class may be completely included in another class.
- 2. Some, but not all, of the member of one class may be included in another class.
- 3. Two classes may have no members in common.

Categorical Proposition: The propositions that state the relations between one category and some other category.

Standard-Form Categorical Propositions

Among categorical propositions, there are four standard form.

<u> </u>	<u>i i oposition</u>	
A (Universal affirmative)	All S is P.	
E (Universal negative)	No S is P.	S: Subject term
I (Particular affirmative)	Some S is P.	P: predicate term

Some S is not P.

Proposition

Example	All bats can fly.	
	Socrates is a bat.	
	Socrates can fly.	

Form

O (Particular negative)

Categorical Syllogism

Syllogism: A deductive argument in which a conclusion is inferred from two premises.

Categorical Syllogism: A deductive argument consisting of three categorical propositions that together contain exactly three terms, each of which occurs in exactly two of the constituent propositions.

Example

Quiz 02-1

- [1] Which of the following is true about the inference below?
 - (a) It is valid.
 - (b) It is invalid.
 - (c) It can be either.
 - (d) We cannot know.

All bats can fly.

Socrates is a bat.

Socrates can fly.

