

Report Number ONR-NR093064-TR2

SUMMARY

ANNUAL REPORT

QUANTUM CHEMICAL INVESTIGATIONS OF THE MECHANISM OF CATIONIC

POLYMERIZATION

and

THEORETICAL PREDICTION OF CRYSTAL DENSITIES

and

DECOMPOSITION PATHWAYS OF ENERGETIC MOLECULES

Joyce J. Kaufman, Principal Investigator The Johns Hopkins University Baltimore, Maryland 21218

Contract N00014-80-C-0003 Office of Naval Research Dr. Richard Miller, ONR Contract Monitor Dr. David R. Squire, ARO Contract Monitor DTIC DEC 1 1 1981

Period Covered October 1, 1980 - September 30, 1981

October 15, 1981

Approved for public release; distribution unlimited

Reproduction in whole or in part is permitted for any purpose of the United States government. The research was sponsored by the Office of Naval Research, Contract NO0014-80-C-0003 and by the Army Research Office through ONR.

E FILE COF

17/1-

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered) READ INSTRUCTIONS
BEFORE COMPLETING FORM REPORT DOCUMENTATION PAGE 1. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER AD-A108520 ONR-NR093064-TR2 4. TITLE (end Subtitle) 5. TYPE OF REPORT & PERIOD COVERED Quantum Chemical Investigations of the Summary Dct. 1, 1980 - Sept. 30, 1981 Mechanism of Cationic Polymerization and 6. PERFORMING ORG. REPORT NUMBER Theoretical Prediction of Crystal Densities and Decomposition Pathways of Energetic Molecules S. CONTRACT OR GRANT NUMBER(s) Joyce J. Kaufman N00014-80-C-003 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS The Johns Hopkins University NR 093-064 Charles and 34th Streets Baltimore, Maryland 21218 11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE Office of Naval Research October 15, 1981 Code 473 13. NUMBER OF PAGES 60 pages Arlington, Virginia 22217 14. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office) 15. SECURITY CLASS. (of this report) Mr. Richard Main **Unclassified** ONRR, George Washington University 2110 G St. 15a. DECLASSIFICATION/DOWNGRADING SCHEDULE Washington, D.C. 20037 16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; Distribution Unlimited. 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report) 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary and identify by block number) molecular orbital cationic polymerization oxetanes intermolecular interactions crystal densities quantum chemical nitroexplosives energetic compounds electrostatic molecular potential contour maps nitrocompounds cyclic ethers 20. ABSTRACT (Continue on reverse side if recessary and identify by block number) Please see reverse side

DD 1 JAN 73 1473

EDITION OF 1 NOV 65 IS OBSOLETE 5/N 0102-LF-014-6601

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

20 - Con 12: 15.

- I. Ab-initio quantum chemical investigations of the mechanism of cationic polymerization.
- II. Development of theoretical procedures for prediction of crystal structures and densities.
- III. Ab-initio quantum chemical MODPOT/VRDDO/MERGE calculations on nitroexplosives.
- IV. Decomposition pathways of energetic compounds.

Quantum chemical calculations on the large molecules have been carried out with our own programs which also incorporate several desirable options for calculations on large molecules.

I. In the research on part I of this project we are carrying out ab-initio quantum chemical calculations and generating electrostatic molecular potential maps for cationic polymerization.

There are two major steps in the polymerization of cyclic ethers, the initiation step proportional to basicity and ring strain of the cyclic ether and the propagation step, attributed by experimentalists to the electrophilicity of the propagating carbocation. Electrostatic molecular potential contour maps generated from our ab-initio MODPOT/VRDDO calculations on the cyclic ethers prove to be reliable indicators of the relative basicities of these ethers and their propensity to undergo cationic polymerization. We are continuing such calculations both on the cyclic ethers themselves and on the proton attack on these ethers to get a coherent overview of the initiation problem. These maps also indicate good copolymer coordinates. These maps now form a semi-quantitative guide to the ease of polymerizability of energetic cyclic ethers.

The opening of the ring is influenced by ring strain. We also developed a theoretical index which is indicative of ring strain.

We derived several theoretical indices which should be indicative of electrophilicity and carried out these calculations on oxetane with various energetic substituent groups. By all the criteria the carbocation from dinitrooxetane should be the most electrophilic. However, since oxetane, which has the least electrophilic carbocation, polymerizes easily under conventional Lewis acid catalysis using a BF3 catalyst and dinitrooxetane does not polymerize under those conditions, but only much more difficultly using a PF5 catalyst, it is the initiation step which dominates the ease of polymerizability - not the propagation step.

- II. We have derived and coded a program for the prediction of crystal structures and densities. The program is based on calculating the various intermolecular interaction terms from ab-initio SCF wave functions and the dispersion term and then using these to construct the crystal structure. Tests are now underway.
- III. Ab-initio SCF quantum chemical calculations have been carried out on all of the large nitroexplosive molecules whose crystal sturctures had been determined experimentally and on a number of nitropolyhedranes. The wave functions for a total of 61 such molecules have been calculated to date.
- IV. Preliminary ab-initio SCF, GVB and MC-SCF/CI calculations were carried out for the dissociation of HNO2 and SCF and GVB calculations were carried out for the dissociation of CH3NO2 as prototypes of R--NO2 decomposition. Multi-determinant reference states turn out to be necessary to describe HNO2 and CH3NO2 even at their equilibrium geometries and even larger multideterminant reference states are necessary to describe dissociation properly.

Unclassified

QUANTUM CHEMICAL INVESTIGATIONS OF THE MECHANISM OF CATIONIC POLYMERIZATION AND THEORETICAL PREDICTION OF CRYSTAL DENSITIES AND DECOMPOSITION PATHWAYS OF ENERGETIC MOLECULES

Joyce J. Kaufman, Principal Investigator CONCISE SUMMARY

- I. Ab-initio quantum chemical investigations of the mechanism of cationic polymerization.
- II. Development of theoretical procedures for prediction of crystal structures and densities.
- III. Ab-initio quantum chemical MODPOT/VRDDO/MERGE calculations on nitroexplosives.
- IV. Decomposition pathways of energetic compounds.

ST THE ST IS

Quantum chemical calculations on the large molecules have been carried out with our own programs which also incorporate several desirable options for calculations on large molecules.

I. In the research on part I of this project we are carrying out abinitio quantum chemical calculations and generating electrostatic molecular potential maps for cationic polymerization.

There are two major steps in the polymerization of cyclic ethers, the initiation step proportional to basicity and ring strain of the cyclic ether and the propagation step, attributed by experimentalists to the electrophilicity of the propagating carbocation. Electrostatic molecular potential contour maps generated from our ab-initio MODPOT/VRDDO calculations on the cyclic ethers prove to be reliable indicators of the relative basicities of these ethers and their propensity to undergo cationic polymerization. We are continuing such calculations both on the cyclic ethers themselves and on the proton attack on these ethers to get a coherent overview of the initation problem. These maps also indicate good copolymer coordinates. These maps now form a semi-quantitative guide to the ease of polymerizability of energetic cyclic ethers.

The opening of the ring is influenced by ring strain. We also developed a theoretical index which is indicative of ring strain.

We derived several theoretical indices which should be indicative of electrophilicity and carried out these calculations on oxetane with various energetic substituent groups. By all the criteria the carbocation from dinitrooxetane should be the most electrophilic. However, since oxetane, which has the least electrophilic carbocation, polymerizes easily under conventional Lewis acid catalysis using a BF $_3$ catalyst and dinitrooxetane does not polymerize under those conditions, but only much more difficultly using a PF $_5$ catalyst, it is the initiation step which dominates the ease of polymerizability – not the propagation step.

Distributions/
Availability-Codes
Dist: Sepoint

- II. We have derived and coded a program for the prediction of crystal structures and densities. The program is based on calculating the various intermolecular interaction terms from ab-initio SCF wave functions and the dispersion term and then using these to construct the crystal structure. Tests are now underway.
- III. Ab-initio SCF quantum chemical calculations have been carried out on all of the large nitroexplosive molecules whose crystal structures had been determined experimentally and on a number of nitropolyhedranes. The wave functions for a total of 61 such molecules have been calculated to date.
- IV. Preliminary ab-initio SCF, GVB and MC-SCF/CI calculations were carried out for the dissociation of HNO2 and SCF and GVB calculations were carried out for the dissociation of CH_3NO_2 as prototypes of $R-NO_2$ decomposition. Multideterminant reference states turn out to be necessary to describe HNO_2 and CH_3NO_2 even at their equilibrium geometries and even larger multideterminant reference states are necessary to describe dissociation properly.

QUANTUM CHEMICAL INVESTIGATIONS OF THE MECHANISM OF CATIONIC POLYMERIZATION AND THEORETICAL PREDICTION OF CRYSTAL DENSITIES AND DECOMPOSITION PATHWAYS OF ENERGETIC MOLECULES

Joyce J. Kaufman, Principal Investigator

TABLE OF CONTENTS

Con	cise Summary	1
I.	Ab-Initio Quantum Chemical Investigations of the Mechanism of Cationic Polymerization	3
II.	Development of Theoretical Procedures for Prediction of Crystal Structures and Densities	8
III.	Ab-Initio Quantum Chemical MODPOT/VRDDO/MERGE Calculations on Nitroexplosives.	9
	Molecules Calculated - Structures and Computational Characteristics	11
IV.	Decomposition Pathways of Energetic Compounds	12
٧.	Other Program Development	13
VI.	Lectures Presented on this Research	15
VII.	Papers on this Research	16
III.	Additional Information of Interest	17
IX.	Project Personnel	18
Die	tribution list	10

QUANTUM CHEMICAL INVESTIGATIONS OF THE MECHANISM OF CATIONIC POLYMERIZATION AND THEORETICAL PREDICTION OF CRYSTAL DENSITIES AND DECOMPOSITION PATHWAYS OF ENERGETIC MOLECULES

Joyce J. Kaufman, Principal Investigator

- I. Ab-initio quantum chemical investigations of the mechanism of cationic polymerization.
- II. Development of theoretical procedures for prediction of crystal structures and densities.
- III. Ab-initio quantum chemical MODPOT/VRDDO/MERGE calculations on nitroexplosives.
- IV. Decomposition pathways of energetic compounds.

Complete sex

I. Ab-Initio Quantum Chemical Investigations of the Mechanism of Cationic Polymerization

There are several steps in the cationic polymerization mechanism of cyclic ethers. First is initiation by attack of a proton or Lewis acid on the ring oxygen, then opening of the ring at the C-O bond and propagation by attack of the protonated species on the next molecule of cyclic ether.

The propensity for polymerization had been demonstrated experimentally by Aoki, et al., to be influenced by the basicities and ring strains of the cyclic ethers. Electrostatic molecular potential contour maps generated from our ab-initio MODPOT/VRDDO calculations on the cyclic ethers prove to be reliable indicators of the relative basicities of these ethers and their propensity to undergo cationic polymerization. We are continuing such calculations both on the cyclic ethers themselves and on the proton attack on these ethers to get a coherent overview of the initiation problem.

The opening of the ring is influenced by the ring strain. We have derived a semi-quantitative theoretical index which allows us to compare relative ring strains not only among differently substituted cyclic ethers with rings with the same number of ring atoms but also between rings with different numbers of atoms. The influence of substituents on the relative ring strains in rings with the same number of ring atoms is neglibible compared to the differences in ring strain in rings with different numbers of ring atoms.

The propensity for propagation of a protonated species was suggested by experimental polymer chemists as being influenced by the "electrophilicity" of the protonated species or by the positive charge localized at the end carbon. Quantum chemical calculations on the protonated ring-opened species indicated that neither the "electrophilicity" as reflected in electrostatic molecular potential contour maps nor the positive charge

localized on the end carbon differed very much as a function of substituent on the oxetane (4-membered) ring at the 3 position.* On the other hand, "electrophilicity" as reflected in unoccupied molecular orbital energies was significantly different.* Thus, since unsubstituted oxetane (the most basic, with the least electrophilic protonated ring-opened species) does undergo cationic polymerization easily with conventional Lewis acid BF3 catalyst and 3,3-dinitrooxetane (the least basic species, with the most electrophilic protonated ring-opened species) only undergoes cationic polymerization with difficulty with a Lewis acid PF5 catalyst, it is the initiation step which is dominant in preventing the cationic polymerization of 3,3-dinitrooxetane under conventional Lewis acid catalyst conditions.

For the new energetic cyclic ethers, when there is experimental kinetic data against which to compare, our theoretical indices are expected to enable a semi-quantitative ranking of propensity to polymerize and will indicate which of the steps dominates.

Technical manuscripts are being written up on various aspects of this research. One manuscript has already appeared and several more have been accepted for publication and are in press. Presentations of this research on cationic polymerization have been given at a number of national and international meetings. Our paper on "Ab-Initio MODPOT/VRDDO/MERGE Calculations and Electrostatic Molecular Potential Contour Maps for Mechanism of Cationic Polymerization" presented at the International Sanibel Symposium on Atomic, Molecular and Solid State Theory, Palm Coast, Florida, March 1981 was awarded first place as the best paper presented at that meeting.

Molecular electrostatic potential contour maps have been calculated for a number of additional energetic cyclic ethers, protonated cyclic ethers and the ring opened protonated carbocations after optimization of their geometries. Calculations are also being carried out at present on additional energetic cyclic ethers and attack of protons on these to optimize their geometries prior to calculating their molecular electrostatic potential contour maps.

^{*} See Tables following page 7.

 $[\]Delta$ A preprint copy of that manuscript is enclosed with this technical report.

CALCULATIONAL STATUS

Geometry optimizations being carried out

PARENT RING SYSTEM

MOLECULE

2-Ethyloxirane
(N-Nitro-N-methylamino)methyloxirane
(2-Fluoro-2,2-dinitroethoxy)methyloxirane
(1-Fluoro-1,1-dinitroeth-2-oxy)oxirane
(2-Azido-2,2-dinitroeth-2-oxy)oxirane

2,3-Bis(azidomethyl)oxetane 3-Methyl-3-(1,1-dinitroprop-3-oxy)oxetane

3-(2,2-Dinitropropyl)oxolane 2-Methyloxolane 2-Ethyloxolane 0xolan-2-ol

2-Ethyloxane

CALCULATIONAL STATUS

Electrostatic Molecular Potential Contour Maps

Cyclic ethers

PARENT RING SYSTEM

$$C_{\frac{1}{2}}$$

$$\alpha C_{4}$$
 β
 C_{3}
 C_{2}
 C_{α}

C5 3Cβ 1 1 C6 2Cα

MOLECULE

2-(Azidomethyl)oxirane 2-Methylazidooxirane

2-Methyloxirane

2-Methyloxetane

2-Ethyloxetane

3-Fluorooxetane

3-Nitrooxetane

3,3-Bis(azidomethyl)oxetane BAMO for a number of different choices for starting geometries to be optimized

3-(2,2-Dinitropropyl)oxetane
3-(2-Fluoro-2,2-dinitroethoxymethyl)-3methyloxetane

3-(2-Fluoro-2,2-dinitroeth-l-oxy)oxetane 0xetan-2-ol

2-Methyloxane Oxan-2-ol

(continued on next page)

CALCULATIONAL STATUS

Electrostatic Molecular Potential Contour Maps (Continued)

Protonated

Oxetane

$$\alpha C_{4}$$
 β
 C_{3}
 C_{4}
 C_{4}
 C_{4}

Propanolyl positive ion

$$HO - CH_2 - C - CH_2^+$$

Note that the standard convention for numbering is now different between the two species. These calculations were run in each case both for the tetrahedral and planar arrangement of atoms around carbon 3

	<u>X</u>	<u>Ā</u>
oxetane	н	н
3-azidooxetane	N ₃	н
3-fluorooxetane	F	н
3-nitrooxetane	NO ₂	н
3-fluoro-3-nitrooxetane	F	NO ₂
3,3-dinitrooxetane	NO ₂	NO ₂
3,3-bis(azidomethyl)oxetane	$^{\mathrm{CH}_{2}\mathrm{N}_{3}}$	CH ₂ N ₃

For some of these protonated oxetanes further geometry optimizations are being carried out since these are difficultly convergent calculations.

ESTIMATE OF COMPARATIVE RING STRAIN RING TOTAL OVERLAP POPULATIONS/ # ATOMS IN RING

		CYCLIC ETHERS			
			Protonated		
Ring Size	B ΣΤΟΡ/n	B + NB ΣTOP/n	Β Σ ΤΟΡ/ η	B + NB $\Sigma TOP/n$	
3- OXIRANE	. 3705	. 3705	.3461	. 3461	
4- OXETANE	.5690	.4180	. 5239	. 4016	
5- OXOLANE	. 5974	. 4805	.5500		
6- Oxane	.6189	. 4622	.5750		

EXPERIMENTAL

Stability (Comparative)

B = Bonded Ring Atoms

B + N = Bonded + Non-Bonded Ring Atoms

2-X-2-Y-OXETANES PROTONATED 2-X-2-Y-PROPAN-1-OL CARBOCATIONS

AB-INITIO MODPOT/VRDDO/MERGE ENERGIES AND GROSS ATOMIC POPULATIONS

$$H_{01} = \begin{pmatrix} H & X \\ C_{1} & C_{2} \\ H & Y \end{pmatrix}$$

Non-Standard Numbering for Comparison to Propan-1-ol's

					GAP's	
<u>x</u>	<u>Y</u>	Geom	Energy(a.u.)	$\frac{c_2}{}$	01	H ₀₁
н	Н	t	-35.733807	4.023	6.536	0.607
		р	-35.746961	4.013	6.535	0.607
		prot	-35.811184	4.193	6.449	0.500
F	н	t	-59.030070	4.026	6.535	0.601
		р	-59.041364	4.019	6.534	0.601
NO ₂	н	t	-75.988651	4.000	6.534	0.595
_		p	-75.999395	3.995	6.533	0.595
NO ₂	NO ₂	t	-116.227994	3.975	6.532	0.586
۷	2	р	-116.237806	3.975	6.531	0.586
		prot	-116.289185	4.173	6.444	0.478
F	NO ₂	t	-99.280104	3.995	6.533	0.588
	2	р	-99.290046	3.993	6.533	0.589
		prot	-99.371903	4.197	6.441	0.478
н	N ₃	t				
	3	р	-63.915196	4.152	6.537	0.605
		prot	-63.991020	4.187	6.446	0.497

t = tetrahedral arrangement around C_3 p = planar arrangement around C_3 prot = protonated oxetane ring

PROTONATED OXETANES AND CORRESPONDING RING-OPENED PROPAN-1-OL CARBOCATIONS AB-INITIO MODPOT/VRDDO/MERGE

ORBITAL ENERGIES (a.u.) HOMO AND 3 LUMO's

v	v	C	11040	3 - 4 - 1 1840	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
<u>X</u>	<u>Y</u>	Geom	HOMO	1st LUMO	2nd LUMO	3rd LUMO
Н	Н	prot	-0.723853	-0.058360	+0.064974	+0.197895
		t	-0.645764	-0.273129	+0.127244	+0.136488
		р	-0.645804	-0.270947	+0.109784	+0.220072
Н	N_3	prot	-0.571073	-0.065085	-0.040998	-0.019661
		t				
		p	-0.599636	-0.281461	-0.075991	-0.051255
F	NO ₂	prot	-0.598276	-0.134358	-0.104127	+0.017668
	-	t	-0.624579	-0.328564	-0.158542	+0.063826
		р	-0.620561	-0.325604	-0.155066	+0.042692
NO ₂	NO ₂	prot	-0.601068	-0.162007	-0.126256	-0.121584
Ĺ	_	t	-0.636031	-0.337011	-0.188754	-0.157300
		D	-0.632170	-0.334192	-0.184982	-0.153796

II. Development of Theoretical Procedures for Prediction of Crystal Structures and Densities

Detonation velocity is influenced by crystal density. For hypothetical energetic molecules suggested for synthesis it is of interest to try to predict in advance at least the upper limit of their crystal densities.

For this we have formulated and implemented methods for partitioning the calculated ab-initio intermolecular interaction energies into their separate components and fitting these components separately to potential functions. Comparison of the electrostatic contribution to the molecular interaction energy calculated from partitioning of the ab-initio SCF interaction energy with that calculated by the customary atomic monopole-atomic monopole expression indicated that only about 10-20% of the electrostatic interaction energy came from the atomic monopole-atomic monopole contribution and to calculate the full electrostatic contribution to intermolecular interaction energies from the atomic charges on two (or more) molecules it is necessary to include higher atomic multipole contributions and the programs for these have been coded and added to the programs. We have also coded routines for fitting the various intermolecular interaction energy terms to functional forms and for minimization of the calculated total crystal energy.

We have meshed in the strategy for the overall symmetry operation transformations necessary to generate the coordinates of all molecules in the unit cell and in any specified number of shells of unit cells around the primary unit cell. The coding for specific symmetry transformations for the particular crystal symmetries in which various explosive molecules are observed to crystallize has been included explicitly. The specific transformations for any other desired crystal symmetries can be included as found necessary.* The entire code is together and being tested.

The preliminary testing will be on smaller molecules whose crystal structures are known since for the tests we will carry out from about 40 to several hundred ab-initio SCF calculations for the molecular pairs partitioned into the various intermolecular interaction terms to check the reliability of the various functional forms for each type of energy component.

As a prelude to testing the method for known nitroexplosive crystals we carried out ab-initio MODPOT/VRDDO/MERGE calculations on all of the energetic nitrocompounds (cyclic nitramines, nitroaromatics and miscellaneous compounds) for which crystal structures have been determined. These are described in the next section.

* Credit for the crystal symmetry portion is due to Dr. Alfred Lowrey, Naval Research Laboratory, who is working with us collaboratively on the project as a fellow-by-courtesy of The Johns Hopkins University.

1

III. Ab-Initio Quantum Chemical MODPOT/VRDDO/MERGE Calculations on Nitroexplosives.

Ab-initio MODPOT/VRDDO/MERGE calculations have been carried out for all of the nitroexplosives for which crystal structures have been determined experimentally plus for a number of new and some hypothetical polyhedrane nitroexplosives. These calculations were the necessary first step for calculating the ab-initio MODPOT/VRDDO/MERGE SCF calculations for various conformations of the dimers and trimers of these nitroexplosives in order to perform the energy decomposition of these latter SCF wave functions to obtain the magnitudes of the various types of interaction energies to use as input for calculating the crystal energies. These ab-initio MODPOT/VRDDO/MERGE SCF calculations on the nitroexplosive molecules themselves are also the necessary first step for calculations of molecular decomposition at beyond the SCF Hartree-Fock level. As described in more detail in the following section (IV). we discovered on carrying out ab-initio SCF, GVB (Generalized Valence Bond) and MC-SCF/CI (Multiconfiguration SCF/Configuration Interaction) calculations on HNO2 and SCF and GVB calculations on CH3NO2 as prototype R-NO₂ compounds that these R-NO₂ compounds do not have simple single determinant ground states. Even at their equilibrium geometries these R-NO2 compounds have 2-configuration ground states. We are in the process of comparing the occupied and virtual molecular orbital character of these large nitroexplosives with those of HNO2 and CH₂NO₂ to ascertain the probabilities that these large nitroexplosives might also have 2-configuration ground states (or multi-configuration ground states if there is more than one NO2 group in the molecule).

The calculations for some of these molecules (especially the polynitropolyhedranes) were difficult to converge. We were able to obtain convergence for these molecules using special extrapolation and damping techniques which we had written.

The question had arisen as to the effect that substitution of nitrogroups would have on the strengths of the various C-C bonds in the polyhedranes. Adding nitrogroups to cubane affects different bonds in the cubane structures differently. Depending on the position of substitution and the geometrical conformation, various C-C bonds in the cubane skeleton can be either strengthened or weakened. The same holds true for various C-C bonds in nitroadamantanes and for various C-C and C-N bonds in nitroazaadamantanes. To get an indication of whether substitution of nitrogroups would strengthen or weaken the polyhedrane skeleton we have done some preliminary investigations using a theoretical index we had derived several years ago for heterocyclic explosives, the concept of a skeletal molecular total overlap population (MTOP). The skeletal MTOP for the unsubstituted cubane is smaller in magnitude

than for nitrosubstituted cubanes and the skeletal MTOP for the unsubstituted adamantane or azaadamantanes is smaller in magnitude than for the nitrosubstituted compounds. There are also further subtle differences depending on the positions of substitution and geometrical conformations. Thus, for the systems we have investigated so far apparently the effect of nitrosubstitution is to strengthen the polyhedrane skeleton. This concept will be explored in more depth.

Calculations have been run on a total of 61 molecules and for different geometrical conformations. The molecules for which these calculations have been performed, their structures and computational characteristics are listed on the following pages. These molecules include saturated nitroheterocyclics (such as the nitramines RDX and HMX), nitroaromatics (with various combinations of substituents including the aminonitrobenzenes), nitrocubanes, nitroadamantanes, nitroazaadamantanes, and other types of nitrocompounds.

AB-INITIO, MODPOT/VRDDO

			III	ING (SECS	<u>)</u>
MOLECULE	NBF	#2E INT	2E INT	SCE	LINS
HEXAHYDRO-1,3,5-	66	833,905	779.95	547.18	14 [≠]
TRINITRO-1,3,5-				742.60	19*
TRIAZINE (RDX)					
$c_3 H_6 N_6 0_6$					

OCTAHYDRO-1,3,5,7-TETRANITRO-1,3,5,7-TETRAZINE (&HMX) C4H8N8O8

88 934,680 1565.67 1429.16 19*

 $^{\neq}$ 5 x 10⁻⁵ A.U. Conv. * 1 x 10⁻⁶ A.U. Conv.

AB-INITIO, MODPOT/VRDDO

			IIMI	NG(SECS)	
MOLECULE	NBE	#2E INT	2E INI	SCE	LINS
OCTAHYDRO-1,3,5,7-TETRANITRO-1,3,5,7-TETRAZINE (α HMX) $C_4H_8N_8O_8$	88	982,406	1690.85	1258.58	17*

Octahydro-1,3,5,7-tetranitro- 88 1,046,595 1688.56 1392.64 17* 1,2,5,7-tetrazine (sHMX)

 * 1 x 10 $^{-6}$ A.U. Conv.

AB INTITO HODION TIMES	AB-INITIO.	MODPOT/VRDDO
------------------------	------------	--------------

			TIMING (SECS)			
MOLECULE	NBF.	#2E INT	2E INT	SCE	IINS	
1,3-DIAMINO-2,4,6- TRINITROBENZENE (DATB)	73	442,985	923.35	631.63 1040.33	17 ≠ 28*	

 $C_6H_5N_5O_6$

1,3,5-TRIAMINO-2,4,6- 78 542,795 1147.69 738.65 16 #
TRINITROBENZENE (TATB) 1061.81 23*

 $C_6 H_6 N_6 O_6$

 $^{\neq}$ 5 x 10⁻⁵ A.U. Conv. * 1 x 10⁻⁶ A.U. Conv.

AB-INITIO, MODPOT/VRDDO

MOLECULE NISE #2E INI 2E INI SCF ITNS 4-NITROANILINE 46 154,893 320.32 127.32 $10^{\frac{1}{7}}$ $C_6H_6N_2O_2$ 216.44 17^* $C_6H_6N_2O_2$ 216.44 17^* $C_6H_4N_4O_6$ 68 389,057 766.75 424.35 $13^{\frac{1}{7}}$ $C_6H_4N_4O_6$ 685.48 21^*				TIM	ING (SECS)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	MOLECULE	NBF	#2E INT			
2,4,6-Trinitroaniline 68 389,057 766.75 424.35 $13 \neq 0.05$ 685.48 $21*$	4-NITROANILINE	46	154,893	320.32	127.32	10≠
2,4,6-Trinitroaniline 68 389,057 766.75 424.35 $13^{\frac{1}{2}}$ C ₆ H ₄ N ₄ O ₆ 685.48 21*	C_6H_6N_2O_2				216.44	17*
2,4,6-Trinitroaniline 68 389,057 766.75 424.35 $13^{\frac{1}{2}}$ C ₆ H ₄ N ₄ O ₆ 685.48 21*	H2 HP					
2,4,6-Trinitroaniline 68 389,057 766.75 424.35 $13^{\frac{1}{2}}$ C ₆ H ₄ N ₄ O ₆ 685.48 21*	74 Y					
$01 \ 02$ 2,4,6-Trinitroaniline 68 389,057 766.75 424.35 13^{\neq} $C_6H_4N_4O_6$ 685.48 21*	" 6 1 2 111					
$01 \ 02$ 2,4,6-Trinitroaniline 68 389,057 766.75 424.35 13^{\neq} $C_6H_4N_4O_6$ 685.48 21*	H3 15 4 3 H2					
2,4,6-Trinitroaniline 68 389,057 766.75 424.35 $13 \neq C_6H_4N_4O_6$ 685.48 21*	Ţ					
$C_6H_4N_4O_6$ 685.48 21*	01 02					
061 HI HZ 062 NI 021 061 NE 1 NZ 022	2,4,6-TRINITROANILINE	68	389,057	766.75	424.35	13≠
061 Nb N1 021 Nb N2 022	$C_{6}H_{4}N_{4}O_{6}$				685.48	21*
061 No						
Obl No N2 C022	062 V					
	M1 621					
1. 43	I VI VIII VI					
HS 15 4 3 H3	HS 15 4 31 H3					
nd T	1					
OUI 042	041 042					
2,3,4,6-TETRANITRO- 79 598,750 1135.05 853.74 13 [#]	2,3,4,6-TETRANITRO-	79	598 ,75 0	1135.05	653.74	13≠
ANILINE 1056.05 21*	ANILINE				1056.05	21*
$c_{6}H_{3}N_{5}o_{8}$	$C_6H_3N_5O_8$					
HI HIS						
al NL N2 C021						
NL 12 N2 L OZZ	N6 1 2 N2 - 012					
15 4 3 N3 C 031	5 3 N3 (03)					
$\neq 5 \times 10^{-5} \text{ A.U. Conv.}$	NY 032			≠ 5 x 10) ⁻⁵ A.U. Co	ONV.
* 1 x 10 ⁻⁶ A.U. Conv.	^			* 1 x 10) ⁻⁶ A.U. C	ONV.

AB-INITIO,	MODPOT/VRDDO
------------	--------------

			I	IMING (SEC	:S)
MOLECULE	NBE	#2E_INT	2EINI	SCF	ITMS
N-METHYL-N,2,4,6-	85	893,087	1368.63	990.83	14≠
TETRANITROANILINE (TE	TRYL)			1344.69	19*
С ₇ Н ₅ № ₅ 0 ₈					

N(β , β , β -TRIFLUORETHYL)- 100 1,007,993 1892.39 1545.54 18 \neq N,2,4,6-TETRANITRO- 2661.76 31*

 $C_8H_4N_5O_8F_3$

 $_{5}^{\neq}$ x 10⁻⁵ A.U. Conv. $_{1}^{*}$ x 10⁻⁶ A.U. Conv.

	AB-INITIO,	MODPOT/VRDDO		TIMING (SE	:cs)
MOLECULE	NBE	#2E INT	2E INT	SCF	IINS
4-NITROPYRIDINE-	44	116,854	276.01	158.40	16 ≠
N-oxide				247.49	25*
$C_5H_4N_1O_3$					
H10 N9 6 H6 H9 10 N9 6 H7					
c2 03 P-NITROPHENOL (a)	45	146,445	294.90	145.06	12 ≠
$C_6H_5N_1O_3$				205.51	17*
of (β)	45	143,923	297.96	120.96	10 ≠
H6 1 2 H2 H5 5 4 3 H3 03 H				205.63	17*
O-NITROBENZALDEHYDE	49	215,286	374.65	254.55	15 ≠
$C_7H_5N_1O_3$ O_7O_2 O_7O) 		≠ 5 x :	356.37 10 ⁻⁵ A.U. (10 ⁻⁶ A.U. (21* Conv.
нч			I X	TO _ Y'O' (ONV.

AB-INITIO, MODPOT/VRDDO

			7	riming (sec	cs)
MOLECULE	NBF	#2E INT	2E INT	SCF	ITNS
O-NITROPEROXYBENZOIC	57	283,960	497.18	343.45	15 ≠
C7H5N105 O1 H1 O3 N1 5 4 3 H3 H5 O4 O5 H4				549.52	24*
BENZOTRIFUROXAN	72	454,853	987.62	693.26	18 ≠
06 N6 06 01 N6 02 03 N6 04 05 N6 04				962.87	25*
4,4'-DINITRODIPHENYL	80	629,251	1159.87	1037.93	20 ≠
$C_{12}H_8N_2O_4$				1401.21	27*
OI' H5' H6' H2 H3 OI' NI' H'3' H2' H6 H5	NI <01		≠ 5 x 10 * 1 x 10) ^{−5} A.U. Co) ^{−6} A.U. Co	ONV.

AB-INITIO, MODPOT/VRDDO

TIMING (SECS) MOLECULE 2E INT NBF #2E INT SCF ITHS 269,104 10* 366.34 175.10 CUBANE FLEISCHER STRUCTURE 40

NITROCUBANE STRUCTURE	Apex					
	ECLIPSED	51	398,868	595.66	357.38	13*
C ₈ H ₇ NO ₂	STAGGERED	51	419,025	596.28	425.16	15*

 * 1 x 10⁻⁶ A.U. Conv.

AB-INITIO, MODPOT/VRDDO TIMING (SECS) SCF ITNS MOLECULE 2E INT #2E_INT NBF 983.89 1678.46 36* 692,708 62 DINITROCUBANE ON C2A AND C1B2 $C_8H_6N_2O_4$ 412 CIA3 413 CIA2 CIAI HII 977.59 1731.83 37* DINITROCUBANE ON C2A 62 678,472 AND C1B3 $C_8H_5N_2O_4$ CIRS H13 CIAZ CJA NI CZ OI CIRI HII

* 1 x 10⁻⁶ A.U. Conv.

AB-INITIO, MODPOT/VRDDO TIMING (SECS) N₃F #2E INI 2E INI SCF IINS DINITROCUBANE ON C2A 62 549,773 972.94 1650.20 37*

AND C2B

C8H6N2O4

MOLECULE

DINITROCUBANE ON C1A3 62 AND C2A

634,844 899.83

1009.12 23*

C8H6N2O4

*1 x 10⁻⁶ A.U. Conv.

AB-INITIO, MODPOT/VRDDO

TIMING (SECS) ITHS

MOLECULE	NBE	#2E INT	2E INI
1,2,5-TRINITROCUBANE	73	856,357	1262.02
C ₈ H ₅ N ₃ O ₆			

2.02 1286.11 21*

SCE

80/0 70104 C1B H22 NIO CIAS H13 CIAZ N13-013A C2A N9 09A 09B CIAI DIDB HII

> 1282.38 21 * 1261.84 1,3,5-TRINITROCUBANE 858,682 73 C8H5N3O6

 1×10^{-6} A.U. Conv.

AB-INITIO, MODPOT/VRDDO

TIMING (SECS)

SCF

MOLECULE

NBE

84

#2E INT

2E INT

ITIS

1,2,4,6-TETRANITROCUBANE

1,157,701 1797.38

40* 3324.84

C8H4N4O8

1,2,3,4-TETRANITROCUBANE 84 C8H4N4O8

1,221,725 1874.57 2213.63 25*

* 1×10^{-6} A.U. Conv.

AB-INITIO, MODPOT/VRDDO

TIMING (SECS)

MOLECULE

NBE

#2E INT

2E INT

SCF

ITNS

1,2,3,5 -TETRANITROCUBANE

34

120,941

1825.10

2191.79 25*

1,2,3,6-Tetranitrocubane 84 1,373,694 1892.73 2217.93 25* $C_8H_4N_4O_8$

* 1 x 10^{-6} A.U. Conv.

AB-INITIO, MODPOT/VRDDO

TIMING (SECS)

MOLECULE

MBE

#2E INT

2E INT

SCF

ITHS

25*

1,2,3,7 -TETRANITROCUBANE

84

1,347,287 1834,72

2182.71

C8H4N4O8

1,2,3,8 -TETRANITROCUBANE 84 $C_{8}H_{4}N_{4}O_{8}$

1,356,319 1868.69 2195.10 25*

* 1×10^{-6} A.U. Conv.

	AB-INITIO, MO	DPOT/VRDDO	TIMING (SECS)			
MOLECULE	NBF	#2E INT	2E INT	SCF	ITHS	
Adamantane C ₁₀ H ₁₆	56	649,528	1004.94	332.29	7*	
H19 C10 C2 H23 H19 C4 C4 H23 H26 C9 C6 H24 H22 H21						
Nitroadamantane, Secondary Carbon $^{\rm C}_{10}{}^{\rm H}_{15}{}^{\rm NO}_{2}$	67	962,892	1479.84	1533.22	22*	

* 1×10^{-6} A.U. Conv.

AB-INITIO, MODPOT/VRDDO

TIMING (SECS)

				17110	
MOLECULE	<u>NBF</u>	#2E INT	2E INT	SCE	IINS
NITROADAMANTANE,	67	1,014,762	1507.27	1003.25	15*
TERTIARY CARBON					
$C_{10}H_{15}NO_2$					
oz Hig Hip					
NIO 25 H23					
C10 C4 H13					
11 C2 LIN					
H20 HIR HIR					
H25 Ch 18 H24					
H21 H22					
•					

 $*1 \times 10^{-6}$ A.U. Conv.

Ав-	TIMING (SECS)				
MOLECULE	NBE	#2E INT			ITHS
,2-Dinitroadamantane C ₁₀ H ₁₄ N ₂ O ₄	78	356,400	1994.10	1310.78	14*

1,

1,4-DINITROADAMANTANE 78 1,361,395 2020.49 1385.26 15*
$$C_{10}H_{14}N_2O_4$$

 $^*1 \times 10^{-6}$ A.U. Conv.

AB-INITIO, MODPOT/VRDDO

			IJ	MING (SEC	<u>s)</u>
MOLECULE	NBE	#2E INT	2E INT	<u>SCF</u>	ITNS
7,8-Dinitroadamantane	78	1,279,906	1843.97	1814.39	21*
$C_{10}H_{14}N_2O_4$					

1,7-Dinitroadamantane 78 1,378,340 1991.32 1931.72 21*
$$C_{10}H_{14}N_2O_4$$

AB-INITIO, MODPOT/VRDDO

TIMING(SECS)

MOLECULE

NBF #2E INT 2E INT SCF ITNS

1,2-DINITROADAMANTANE(E,A) 78 1,376,766 1995.79 2272.87 25*

C10H14N2O4

HID C3 H12

C4 H23

C4 H23

C9 012A ONBI

C9 0

1,8-DINITROADAMANTANE (A,E) 78 1,328,614 1919.65 1367.15 21* C₁₀H₁₄N₂O₄

H19 C3 H16

H19 C3 H18

C4 H18

C4 H18

C4 H18

C5 N24-024

H26 C6 H22

H21

AB-INITIO, MO	DPOT/VRDDO	TIM	ING (SECS)
NBE	#2E INI			
64	814,630	1148.51	1326.88	24*

1-NITRO-4,5,6-TRIAZAADAMANTANE (E)

MOLECULE

AB-INIT	Μ۵ ر۱۱۵	טעעאי/דסקמנ	TIN	ING (SECS	2)
	NBE	#2E INI	2E INT	SCF	ITNS
	64	797,853	1148.54	827.02	15*

2-Nitro-4,5,6-TRIAZAADAMANTANE (A)

MOLECULE

C7H12N4O6

HILL HIS

C7

C7

C7

H23

H14

C8

H14

C8

H24

H22

H24

H22

9-Nitro-4,5,6-TRIAZAADAMANTANE (E) C7H₁₂N₄O₆

MOLECULE	Ab-Initio, 1 <u>NBF</u>	MODPOT/VRDDO #2e_INT	2E INT	TIMING (SE SCE	ics) ITNS
7-NITRO-4,5,6,- TRIAZAADAMANTANE (E) C7H12N4O2 H10 H15 023A C10 C2 H17 C2 H17 C10 H17 C2 H17 C10 H17 C2 H17 H17 C2 H17 H17 C2 H17	64	796,578	1131.00	813.93	15*
8-Nitro-4,5,6- triazaadamantane (_E)	64	761,083	1093.97	1050.07	20*

 $C_7H_{12}N_4O_2$

NITROEXPLOSIVES AB-INITIO, MODPOT/VRDDO

MOLECULE NBF #2E INT SCF ITNS
4,5,6-TRINITRO-4,5,6- 86 1,713,704 2516.19 1589.11 14*
TRIAZAADAMANTANE (A,E,E)
C7H10N6O8

4,5,6-TRINITRO-4,5,6- 86 1,372,581 2076.55 3264.39 34* TRIAZAADAMANTANE (A,A,A) C7H₁₀N₆O₈

AB-INITIO, MODPOT/VRDDO

			III	<u> (ING(SECS)</u>	-
MOLECULE	NBF	#2E INT	2E INT	<u>SCF</u>	<u>ITNS</u>
1,2-DINITRO-8,9,10- TRIAZAADAMANTANE (E, A) C7H10N504 HIS C3 HIS C4 HIS C5 HIS C4 HIS C4 HIS C4 HIS C4 HIS C4 HIS C4 HIS C5 HIS C4 HIS C5 HIS C6 HIS C7 HIS C7 HIS C8	7 5	1,117,715	1619.25	1594.88	21*

4,5-DINITRO-8,9,10- 75 1,082,738 1582.56 1562.26 21* TRIAZAADAMANTANE (A,A) C7H₁₀N₅0₄

AB-INITIO, MODPOT/VRDDO

TIMING(SECS)

NBF MOLECULE 4,5-DINITRO-8,9,10-TRIAZAADAMANTANE (A,E)

#2E INI

2E INI

SCE

ITHS

38*

1,160,795 1695.32 2939.63 75

C7H12N504

4,5-DINITRO-8,9,10-TRIAZAADAMANTANE (E,A)

75

1,085,605 1584.23

1875.20

25*

C7H11N504

AB-INITIO, MODPOT/VRDDO TIMING (SECS)

MOLECULE NBF #2E INT 2E INT SCF ITMS

1,2-DINITRO-7,8,9,10- 74 1,081,493 1600.30 2936.87 40*
TETRAAZAADAMANTANE (A,A)

HZI HZZ

1,2-DINITRO-7,8,9,10- 74 1,007,307 1477.44 1335.35 19*

C₆H₁₀N₆O₄

AB-INITIO, MODPOT/VRDDO

MOLECULE

NBF

74

#2E INI

1,012,453

2E INT

1477.37

TIMING(SECS)
SCF

1473.16

ITNS

21*

1,2-DINITRO-7,8,9,10-TETRAAZAADAMANTANE (E,4)

C6H13N6O4

1,1-DINITRO-7,8,9,10-TETRAAZAADAMANTANE (A,E)

74

1,041,540 1510.67

1279.83

13*

 $C_6H_{13}N_6O_4$

 $^*1 \times 10^{-6}$ A.U. Conv.

CAHINN604

AB-INITIO, MODPOT/VRDDO

TIMING (SECS)

ITNS

21*

MOLECULE NBF #2E INT SCF

1,2-Dinitro-7,8,9,10- 74 1,012,453 1477.37 1473.15

TETRAAZAADAMANTANE (E,A)

C₅H₁₀N₆O₄

1,4-Dinitro-7,8,9,10- 74 1,010,318 1460.35 1051.65 15* $C_6H_{10}N_6O_4$

74

AB-INITIO, MODPOT/VRDDO

TIMING(SECS)

974.71

MOLECULE

#2E INT NBE 1,361,395

2E INI

1456.75

SCE

IINS

14*

1,4-DINITRO-7,8,9,10-TETRAAZAADAMANTANE (A,A) $C_6H_{13}N_6O_4$

- H23

1-NITRO-7,8,9,10-TETRAAZAADAMANTANE (E) $C_6H_{11}N_5O_2$

63

751,136 1048.93 831.44

16*

 $^*1 \times 10^{-6}$ A.U. CONV.

IV. Decomposition Pathways of Energetic Compounds

A. Ab-Initio SCF, GVB and MC-SCF/CI Calculations on HNO₂ and CH₃NO₂ as Prototypes of R-NO₂ Dissociation Pathways

In order to trace the decomposition pathways of energetic compounds it is necessary to go to beyond-the-SCF-Hartree-Fock method. There are several approaches [many-body perturbation-theory (MBPT) and/or coupled cluster or configuration interaction (CI)]. While each method has some advantages, however, at present if there is the possibility that multi-determinant reference states may be important then CI calculations are necessary to sort out the states.

Preliminary ab-initio SCF, GVB (generalized valence bond) and MC-SCF/CI (multiconfiguration SCF/configuration interaction) calculations were also carried out for the dissociation of HNO₂ (H--NO₂) as the prototype of R--NO2 dissociation. The GVB calculations indicated and MC-SCF/CI calculations confirmed that HNO2 like the isolectronic 0₃ (for which in 1971 we had carried out very large scale ab-initio CI calculations) had a two configuration ground state. The highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) at the equilibrium geometry and for a portion of the dissociation curves were π -orbitals located out of plane to the NO₂ group. At the equilibrium distance the ground configuration weight of 0.9160 $(\pi)^2$ and 0.4013 $(\pi^*)^2$ in the GVB calculation and 0.9106 $(\pi)^2$ and 0.3992 $(\pi^*)^2$ respectively in the MC-SCF/CI calculation which allowed all possible singlet combinations $\pi \rightarrow \pi^*$ and $\sigma(H--NO_2) \rightarrow \sigma^*(H--NO_2)$ for all four molecular orbitals. This close correspondence of results from the two methods is very encouraging for the use of GVB as reliable preliminary screen for the necessity of multideterminant reference states.

Part way out along the H--NO₂ dissociation curve the HOMO and LUMO became σ orbitals which were respectively bonding and anti-bonding between H--NO₂ and for proper dissociation this system also needs at least an additional two configurations corresponding to mixing of these σ and σ^* orbitals. Thus multideterminant reference states are a necessity to describe dissociation properly.

Preliminary calculations were carried out on localizing various combinations of molecular orbitals to see which ones might be suitable for tracing dissociation pathways. This is a new untested approach and much exploration and examination remains to be done.

To check whether this might be a general phenomenon for dissociation of R--NO $_2$ compounds we next carried out ab-initio SCF and GVB calculations on CH $_3$ NO $_2$. The GVB calculations at the equilibrium distance indicated there was also mixing of the HOMO and LUMO where these orbitals were again $\pi\text{--like}$ orbitals located out of plane to the NO $_2$ group and that

this system also had a two configuration ground state. At the equilibrium distance the coefficients of the two configurations were $0.9204~(\pi\mbox{-}like)^2\mbox{and}~-0.3909~(\pi\mbox{*-}like)^2$. Again for the dissociation of CH3--N02, as with the dissociation of H--N02, part way along the CH3--N02 dissociation curve the H0M0 and LUMO changed character and became $\sigma\mbox{-}like$ bonding and anti-bonding orbitals between the CH3 and the N02 and again at least two additional configurations will now be necessary to describe properly the dissociating system.

These preliminary calculations on HNO_2 and CH_3NO_2 were carried out by Dr. Kaufman on a visit to NRC^2 (with collaboration of Dr. Michael Dupuis) and are being continued at the Johns Hopkins University.

To examine this mixing of configurations in more detail for these systems and for larger systems, the program is being enlarged at the Johns Hopkins University to handle more basis functions and also our ab-initio integral MODPOT/VRDDO/MERGE options will be meshed in with GVB and MC-SCF/CI programs to enable tractable calculations on large molecules.

B. Desirable New Strategies

The major bottleneck in any beyond-the-Hartree-Fock method on vary large systems is the transformation from integrals over atomic orbitals to integrals over molecular orbitals. We have been implementing a large scale version of this step as well as exploring new strategies for this problem. A note on some of these new strategies, "Improved Strategies for Ab-Initio Computations on Large Molecules," was presented at the Texas Conference on Theoretical Approaches to Chemical Dynamics, Austin, Texas, March 1981 and at the International Sanibel Symposium on Atomic, Molecular and Solid State Theory, Palm Coast, Florida, March 1981. A note on this has been accepted for publication and is in press, in the Symposium Issue.

V. Other Program Development

We have been developing both software and programs for our Computer Automation Naked Mini and plotter. To plot our electrostatic molecular potential contour maps we have written special spline routines with tension to interpolate smoothly. We have also written software for our Naked Mini to communicate directly with the CDC since this will make an "intelligent" terminal capable of storing and manipulating data in addition to just data communicating as with ordinary terminals. We have also put our geometry generating programs on the Naked Mini. The instant turn around that this affords has been most valuable especially for the complicated cyclic ethers and large nitrocompounds.

- VI. Lectures Presented on this Research (*Invited Lectures)
 - A. Lectures Presented at the following National or International Meetings: Joyce J. Kaufman.
 - * "Improved Strategies for Ab-Initio Computations on Large Molecules," Texas Conference on Theoretical Approaches to Chemical Dynamics, Austin, Texas, March 1981.
 - * "Ab-Initio MODPOT/VRDDO/MERGE Calculations and Electrostatic Molecular Potential Contour Maps for Mechanism of Cationic Polymerization," International Sanibel Symposium on Atomic, Molecular and Solid State Theory, Palm Coast, Florida, March 1981.
 - * "Ab-Initio Quantum Chemical Calculations Permit Prediction of Propensities of Substituted Cyclic Ethers to Polymerize,"
 Division of Polymer Chemistry, 181st American Chemical Society National Meeting, Atlanta, Georgia, March 1981.

"Ab-Initio Quantum Chemical Calculations and Electrostatic Molecular Potential Contour Maps for the Mechanism of Cationic Polymerization," American Physical Society Meeting, Baltimore, Maryland, April 1981.

"Ab-Initio Quantum Chemical Calculations on Nitro Compounds,"
American Physical Society Meeting, Baltimore, Maryland, April 1981.

* "Ab-Initio Quantum Chemical Calculations on Large Molecules Using Improved Computational Strategies," NRCC Workshop on Effective Potential Methods in Quantum Chemistry, Los Alamos, New Mexico, June 1981.

"Ab-Initio Quantum Chemical Calculations on Large Molecules Using Desirable Computational Strategies," American Conference on Theoretical Chemistry, University of Colorado, Boulder, Colorado, June 1981.

- B. Lectures Scheduled to be Presented at the Following National or International Meetings: Joyce J. Kaufman
- "Ab-Initio MODPOT/VRDDO/MERGE Calculations on Large Nitroexplosives," International Sanibel Symposium on Atomic, Molecular and Solid State Theory, Palm Coast, Florida, March 1982.
- * "Ab-Initio Calculations and Partitioned Energy Contributions for Calculations on Crystals," International Sanibel Symposium on Atomic, Molecular and Solid State Theory, Palm Coast, Florida, March 1982.

"Ab-Initio Calculations on Large Nitrocompounds," Division of Physical Chemistry, American Chemical Society National Meeting, Las Vegas, Nevada, March 1982.

- * "Ab-Initio MODPOT/VRDDO/MERGE Calculations on Large Nitrocompounds," 4th International Congress of Quantum Chemistry, Uppsala, Sweden, June, 1982.
- C. Invited Lectures Presented at ONR or DOD Meetings

"Ab-Initio Quantum Chemical Calculations of the Decomposition of Energetic Materials and Their Subsequent Reactions," Workshop on Fundamental Research Directions for Decomposition of Energetic Materials (also was overall Chairman of the Section on Theoretical Aspects of Energy Transfer and Reactive Pathways), University of California, Berkeley, California, January 1981, Joyce J. Kaufman.

"Prediction of Polymerization Propensities of Energetic Substituted Ethers from Ab-Initio Quantum Chemical Calculations and Electrostatic Molecular Potential Contour Maps", Symposium on the Chemistry and Synthesis and Characterization of Energetic Monomers and Prepolymers, The Johns Hopkins University Applied Physics Laboratory, Columbia, Maryland, July 1981, P. C. Hariharan.

- D. Other Trips Related to this Research Contract
 - 1. At the request of our contract monitor Dr. Richard Miller, Dr. Kaufman visited SRI with him in January 1981 to interact on new developments in polymer propagation.
 - 2. At the invitation of ARO, Dr. Kaufman participated in the meeting on High Energy Molecules, Their Synthesis and Reactions, Hilton Head, South Carolina, April 1981 as an expert on quantum chemical computational methods.
 - 3. At the request of our contract monitor, Dr. Richard Miller, Dr. Walter S. Koski and Dr. P. C. Hariharan participated in the Symposium on the Chemistry and Synthesis and Characterization of Energetic Monomers and Prepolymers, The Johns Hopkins University Applied Physics Laboratory, Columbia, Maryland, July 1981, and in an informal technical exchange at ONR to discuss high density explosives research, July 1981.

VII. Papers on this Research

- A. Accepted for publication, in press.
 - "Ab-Initio MODPOT/VRDDO/MERGE Calculations on Energetic Compounds. I. Mechanism of Initiation of Cationic Polymerization from Electrostatic Molecular Potential Contour Maps*," Frank L. Tobin, P. C. Hariharan, Joyce J. Kaufman, and Richard S. Miller. An invited paper presented at the International Sanibel Symposium on Atomic, Molecular and Solid State Theory, Palm Coast, Florida, March 1981. In press, Int. J. Quantum Chem., Symposium Issue.

"Paper XIII in the Series "Molecular Calculations With the Non-Empirical Ab-Initio MODPOT/VRDDO/MERGE Procedures."

- 2. "Symposium Notes: Additional New Computational Strategies for Ab-Initio Calculations on Large Molecules," Joyce J. Kaufman, P.C. Hariharan and Herbert E. Popkie. Part of an invited paper presented at the International Sanibel Symposium on Atomic, Molecular and Solid State Theory, Palm Coast, Florida, March 1981. In press, Int. J. Quantum Chem., Symposium Issue.
- 3. "Reliable Ab-Initio Calculations for Energetic Species,"
 Joyce J. Kaufman. An invited lecture presented at the NATO
 Advanced Study Institute on Fast Reactions in Energetic
 Systems, Preveza Beach, Greece, July 1980. In press in the
 Proceedings

B. Already published

4. "Electrostatic Molecular Potential Contour Maps from Ab-Initio Calculations. 1. Biologically Significant Molecules. 2. Mechanism of Cationic Polymerization," Joyce J. Kaufman, P.C. Hariharan, F.L. Tobin and C. Petrongolo. An invited lecture presented at the 179th American Chemical Society National Meeting at the Symposium on Electrostatic Potentials in Biology and Chemistry. In CHEMICAL APPLICATIONS OF ATOMIC AND MOLECULAR ELECTROSTATIC POTENTIALS. REACTIVITY, STRUCTURE, SCATTERING AND ENERGETICS OF ORGANIC, INORGANIC AND BIOLOGICAL SYSTEMS, Eds. P. Politzer, and D.G. Truhlar, Plenum Press, New York, N.Y. 198], pp. 335-380.

VIII. Additional Information of Interest

Dr. Joyce Kaufman has just been elected a Membre Correspondant de L'Academie Europeenne des Sciences, des Arts et des Lettres, March 1981.

IX. Project Personnel

Joyce J. Kaufman, Ph.D., Principal Investigator

Frank C. Tobin, Ph.D.

The majority of the quantum chemical calculations on the energetic polymers were due to him.

P. C. Hariharan, Ph.D.

Development of the program for predicting crystal structure and testing of it.

Quantum chemical calculations on the nitrocompounds and energetic polymers.

Development of software and programs for the minicomputer.

Victor Lewchenko, Ph.D.

Joined our group recently. Working part time on the program for predicting crystal structure and testing of it.

W. Andrezj Sokalski

A visitor to our group who collaborated with the project on the development of the program for partitioning of the SCF energy into its various components.

ENERGETIC MATERIALS RESEARCH

DISTRIBUTION LIST

Ũ	lo. Copies	No.	Copies
Assistant Secretary of the Navy (R, E, and S) Attn: Dr. R.E. Reichenbach	1	AFATL Eglin AFB, FL 3254? Attn: Dr. Otto K. Heiney	1
Room 5E787 Pentagon Washington, DC 20350	10	AFRPL Code PACC Edwards AFB, CA 93523 Attn: Mr. W. C. Andrepont	1
Office of Naval Research Code 473 Arlington, VA 22217 Attn: Dr. R. Miller		AFRPL Code CA Edwards AFB, CA 93523 Attn: Dr. R. R. Weiss	1
Office of Naval Research Code 200B Arlington, VA 22217 Attn: Dr. J. Enig	1	Code AFRPL MKPA Edwards AFB, CA 93523 Attn: Mr. R. Geisler	1
Office of Naval Research Code 260 Arlington, VA 22217 Attn: Mr. D. Siegel	1	Code AFRPL MKPA Edwards AFB, CA 93523 Attn: Dr. F. Roberto	1
Office of Naval Research Western Office 1030 East Green Street Pasadena, CA 91106	1	AFSC Andrews AFB, Code DLFP Washington, DC 20334 Attn: Mr. Richard Smith	1
Attn: Dr. T. Hall Office of Naval Research Eastern Central Regional Office 495 Summer Street Boston, Ma 02210	2	Air Force Office of Scientific Research Directorate of Chemical & Atmospheric Sciences Bolling Air Force Base Washington, DC 20332	1
Attn: Dr. L. Peebles Dr. A. Wood Office of Naval Research San Francisco Area Office One Hallidie Plaza Suite 601 San Francisco, CA 94104	1	Air Force Office of Scientific Research Directorate of Aero- space Sciences Bolling Air Force Base Washington, DC 20332 Attn: Dr. L. H. Caveny	1
Attn: Dr. P. A. Miller Defense Technical Informatio Center DTIC-DDA-2 Cameron Station Alexandria, V° 22314	n 12	Anal-Syn Lab Inc. P.O. Box 547 Paoli, PA 19301 Attn: Dr. V. J. Keenan	1

	No. Copies	No. Copies
Army Ballistic Research Labs Code DRDAR-BLP Aberdeen Proving Ground, MD 21005 Attn: Mr. L. A. Watermeier	1	Hercules Inc. Eglin 1 AFATL/DLDL Eglin AFB, FL 32542 Attn: Dr. Ronald L. Simmons
Army Ballistic Research Labs ARRADCOM Code DRDAR-BLP Aberdeen Proving Ground, MD 21005	1	Hercules Inc. Magna 1 Bacchus Works P.O. Box 98 Magna, UT 84044 Attn: Mr. E. H. DeButts
Attn: Dr. Ingo W. May Army Ballistic Research Labs ARRADCOM Code DRDAR-BLT Aberdeen Proving Ground, MD	1	Hercules Inc. Magna 1 Bacchus Works P.O. Box 98 Magna, UT 84044 Attn: Dr. James H. Thacher
21005 Attn: Dr. Philip Howe Army Missile Command Code DRSME-RK Redstone Arsenal, AL 35809 Attn: Dr. R. G. Rhoades Dr. W. W. Wharton	2	HQ US Army Material Development 1 Readiness Command Code DRCDE-DW 5011 Eisenhower Avenue Room 8N42 Alexandria, VA 22333 Attn: Mr. S. R. Matos
Atlantic Research Corp. 5390 Cherokee Avenue Alexandria, VA 22314 Attn: Dr. C. B. Henderson	1	Johns Hopkins University APL 1 Chemical Propulsion Information Agency Johns Hopkins Road Laurel, MD 20810
Ballistic Missile Defense Advanced Technology Center P.O. Box 1500 Huntsville, AL 35807 Attn: Dr. David C. Sayles	1	Attn: Mr. Theodore M. Gilliland Lawrence Livermore Laboratory I University of California Livermore, CA 94550 Attn: Dr. M. Finger
Ballistic Research Laboratory USA ARRADCOM DRDAR-BLP Aberdeen Proving Ground, MD	, 1	Lawrence Livermore Laboratory 1 University of California Livermore, CA 94550 Attn. Dr. R. McGuire
21005 Attn: Dr. A. W. Barrows		Lockheed Missiles and Space Co. 1 P.O. Box 504 Sunnyvale, CA 94088
Hercules Inc. Cumberland Aerospace Division Allegheny Ballistics Lab P.O. Box 210 Cumberland, MD 21502 Attn: Dr. Rocco Musso	2	Attn: Dr. Jack Linsk Org. 83-10 Bldg. 154

<u> </u>	o. Copies	No. Copies
Lockheed Missile & Space Co. 3251 Hanover Street Palo Alto, CA 94304 Attn: Dr. H. P. Marshall	1	Naval Research Lab I Code 6100 Washington, DC 20375
Dept. 52-35		Naval Sea Systems Command 1 Washington, DC 20362
Los Alamos Scientific Lab P.O. Box 1663 Los Alamos, NM 87545 Attn: Dr. R. Rogers, WX-2	1	Attn: Mr. G. Edwards, Code 62R3 Mr. J. Murrin, Code 62R2 Mr. W. Blaine, Code 62R
Los Alamos Scientific Lab P.O. Box 1663 Los Alamos, NM 87545 Attn: Dr. B. Craig, M Division	1	Naval Sea Systems Command 1 Washington, DC 20362 Attn: Mr. R. Beauregard SEA 64E
Naval Air Systems Command Code 330 Washington, DC 20360	1	Naval Surface Weapons Center 1 Code R11 White Oak, Silver Spring, MD 20910
Attn: Mr. R. Heitkotter Mr. R. Brown		Attn: Dr. H. G. Adolph
Naval Air Systems Command Code 310 Washington, DC 20360 Attn: Dr. H. Mueller Dr. H. Rosenwasser	1	Naval Surface Weapons Center 1 Code R13 White Oak, Silver Spring, MD 20910 Attn: Dr. R. Bernecker
Naval Explosive Ordnance Disposal Facility Indian Head, MD 20640 Attn: Lionel Dickinson Code D	1	Naval Surface Weapons Center 1 Code R10 White Oak, Silver Spring, MD 20910 Attn: Dr. S. J. Jacobs
Naval Ordnance Station Code 5034 Indian Head, MD 20640 Attn: Mr. S. Mitchell	1	Naval Surface Weapons Center 1 Code R11 White Oak, Silver Spring, MD 20910 Attn: Dr. M. J. Kamlet
Naval Ordnance Station Code PM4 Indian Head, MD 20640 Attn: Mr. C. L. Adams	1	Naval Surface Weapons Center 1 Code RO4 White Oak, Silver Spring, MD 20910
Dean of Research Naval Postgraduate School Monterey, CA 93940 Attn: Dr. William Tolles	1	Attn: Dr. D. J. Pastine Naval Surface Weapons Center 1 Code R13 White Oak, Silver Spring, MD 20910
Naval Research Lab Code 6510 Washington, DC 20375 Attn: Dr. J. Schnur	1	Attn: Dr. E. Zimet

	No. Copies	No. Copies
Naval Surface Weapons Center Code R101 Indian Head, MD 20640 Attn: Mr. G. L. MacKenzie	1	Naval Weapons Center 1 Code 388 China Lake, CA 93555 Attn: D. R. Derr
Naval Surface Weapons Center Code R17 Indian Head, MD 20640 Attn: Dr. H. Haiss	1	Naval Weapons Center 1 Code 388 China Lake, CA 93555 Attn: Dr. R. Reed, Jr.
Naval Surface Weapons Center Code R11 White Oak, Silver Spring, MD 20910	1	Naval Weapons Center 1 Code 385 China Lake, CA 93555 Attn: Dr. A. Nielsen
Attn: Dr. K. F. Mueller Naval Surface Weapons Center Code R16 Indian Head, MD 20640	1	Naval Weapons Center 1 Code 3858 China Lake, CA 93555 Attn: Mr. E. Martin
Attn: Dr. T. D. Austin Naval Surface Weapons Center Code R122 White Oak, Silver Spring, MD	1	Naval Weapons Center 1 China Lake, CA 93555 Attn: Mr. R. McCarten
20910 Attn: Mr. L. Roslund Naval Surface Weapons Center Code R121	1	Naval Weapons Support Center 1 Code 5042 Crane, Indiana 47522 Attn: Dr. B. Douda
White Oak, Silver Spring, MD 20910 Attn: Mr. M. Stosz		Rohm and Haas Company l 723-A Arcadia Circle Huntsville, Alabama 35801 Attn: Dr. H. Shuey
Naval Weapons Center Code 3853 China Lake, CA 93555 Attn: Dr. R. Atkins	1	Strategic Systems Project Office 1 Dept. of the Navy Room 901 Washington, DC 20376
Naval Weapons Center Code 3205 China Lake, CA 93555 Attn: Dr. L. Smith	1	Attn: Dr. J. F. Kincaid Strategic Systems Project Office 2 Dept. of the Navy Room 1048
Naval Weapons Center Code 3205 China Lake, CA 93555 Attn: Dr. C. Thelen	1	Washington, DC 20376 Attn: Mr. E. L. Throckmorton Mr. R. Kinert
Naval Weapons Center Code 385 China Lake, CA 93555 Attn: Dr. A. Amster	1	Thiokol Chemical Corp. Brigham 1 City Wasatch Division Brigham City, UT 84302 Attn: Dr. G. Thompson

5

	No. Copies	No. Copies
USA ARRADCOM DRDAR-LCE Dover, NJ 07801 Attn: Dr. R. F. Walker	ī	Univ. of Massachusetts 1 Department of Chemistry Amherst, MA 03003 Attn: Professor P. Lillya
USA ARRADCOM DRDAR-LCE Dover, NJ 07801 Attn: Dr. N. Slagg	1	Office of Naval Research I 800 N. Quincy St. Arlington, VA 22217 Attn: Dr. G. Neece, Code 472
U.S. Army Research Office Chemistry Division P.O. Box 12211 Research Triangle Park, NC 27709	1	SRI International 1 333 Ravenswood Ave. Menlo Park, CA 94025 Attn: Dr. D.L. Ross
Fluorochem, Inc. 680 South Ayon Ave. Azusa, CA 91702 Attn: Dr. Kurt Baum Univ. of Illinois at Chicago	l Circle 1	U.S. Army Research Office 1 Chemistry Division P.O. Box 12211 Research Triangle Park, NC 27709 Attn: Dr. David Squire
Dept. of Chemistry Box 4348 Chicago, Illinois 60680 Attn: Professor J.H. Boyer	Circle 1	Dr. Ingo W. May Army Ballistic Research Lab ARRADCOM Code DRDAR-BLI Aberdeen Proving Ground, MD 21005
University of Massachusetts Department of Chemistry Amherst, MA 03003 Attn: Professor J.C. Chien	1	Professor Curt Wittig 1 University of Southern CA Dept. of Electrical Engineering
Rockwell International Rocketdyne Division	1	University Park Los Angeles, Ca 90007
6633 Canoga Avenue Canoga Park, Ca 91304 Attn: Dr. Karl O. Christe Rockwell International	1	Professor S. S. Penner 1 University of California Energy Center Mail Code B-010 La Jolla, CA 92093
Rocketdyne Division 6633 Canoga Ave. Canoga Park, CA 91304 Attn: Dr. M.B. Frankel	·	Professor M. Nicol 1 Department of Chemistry 405 Hilgard Avenue
Polysciences, Inc. Paul Valley Industrial Park Warrington, PA 18976 Attn: Dr. B. David Halpern	1	University of California Los Angeles, CA 90024

	No. Copies	No. Copies
Professor Y.T. Lee University of California Department of Chemistry Berkeley, CA 94720	1	Professor Barry Kunz 1 College of Sciences & Arts Department of Physics Michigan Technological Univ. Houghton, MI 49931
Dr. P. Rentzepis Bell Laboratories Murrary Hill, NJ 07971	1	Dr. R. Bernecker 1 Code R13
Dr. R. J. Bartlett Batelle Columbus Laboratories	1	Naval Surface Weapons Center White Oak, Silver Spring, MD 20910
505 King Avenue Columbus, Ohio 43201		Dr. C. S. Coffey 1 Naval Surface Weapons Center Code R13
Dr. Merrill K. King Atlantic Research Corp.	1	White Oak, Silver Spring, MD 20910
5390 Cherokee Avenue Alexandria, VA 22314		Professor B.S. Rabinovitch 1 University of Washington Department of Chemistry
E. J. Palm Commander	ī	Seattle, Washington 98195
Army Missile Command DRSMI-RK Redstone Arsenal, AL 35898		Professor G. D. Duvall 1 Washington State University Dept. of Physics Pullman, WA 99163
Dr. Kenneth O. Hartmna Hercules Aerospace Division Hercules Incorporated Allegany Ballistics Lab P.O. Box 210 Cumberland, MD 21502	1	U. S. Army Research Office 1 Metallurgy & Materials Sci. Div. Box 12211 Research Triangle Park, NC 27709
Dr. John K. Dienes T-3, MS-216	1	U.S. Army Research Office 1 Engineering Division Box 12211
Los Alamos National Lab P.O. Box 1663		Research Triangle Park, NC 27709
Los Alamos, NM 87544		Mr. M. Hill SRI International
Dr. H. P. Marshall Dept. 52-35, Bldg. 204.2 Lockheed Missile & Space Co.	1	333 Ravenswood Avenue Menlo Park, CA 94025
3251 Hanover Street Palo Alto, CA 94304		Dr. M. Farber Space Sciences, Inc.
Professor John Deutsch MIT Department of Chemistry Cambridge, MA 02139	1	135 West Maple Avenue Monrovia, CA 91016

,

	No. Copies		No. Copies
Prof. H. A. Rabitz Princeton University Department of Chemistry Princeton, NH 08540	1	Dr. R. L. Lou Aerojet Strategic Propuls P.O. Box 15699C Sacremento, CA 95813	ion Co.
Dr. B. Junker Office of Naval Research Code 421 Arlington, VA 22217	1	Dr. W. D. Stephens Atlantic Research Corp. Pine Ridge Plant 7511 Wellington Rd. Gainesville, VA 22065	1
Mr. K. J. Graham Naval Weapons Center Code 3835 China Lake, CA 93555	1	Dr. C. M. Frey Chemical Systems Division P.O. Box 358 Sunnyvale, CA 94086	1
Dr. W. L. Elban Code R13 Naval Surface Weapons Center White Oak, Silver Spring, MD	1 20910	Professor F. Rodriguez Cornell University School of Chemical Engine Olin Hall, Ithaca, NY 14	
Dr. L. V. Schmidt Assistant Secretary of the Nav (R, E, and S) Room 5E 731 Pentagon Washington, DC 20350	l Y	Dr. J. Hinshaw Thiokol/Wasatch Div. P.O. Box 524 Brigham City, Utah 84302	1
Dr. A. L. Slafkosky Scientific Advisor Commandant of the Marine Corps Code RD-1 Washington, DC 20380	1	Dr. R. Rogers, WX-2 Los Alamos Scientific Lab P.O. Box 1663 Los Alamos, NM 87545	1
Dr. R. J. Marcus Office of Naval Research Western Office 1030 East Green Street Pasadena, CA 91106	1	Dr. R. L. Rabie WX-2, MS-952 Los Alamos National Lab P.O. Box 1663 Los Alamos, NM 87545	1
Mr. Donald L. Ball Air Force Office of Scientific Research		Mr. C. L. Adams Naval Ordnance Station Code PM4 Indian Head, MD 20640	1
Directorate of Chemical Science Bolling Air Force Base Washington, DC 20332	es	Dr. Lionel Dickinson Naval Explosive Ordnance Disposal Tech. Center	1
Dr. John S. Wilkes, Jr. FJSRL/NC USAF Academy, CO 80840	1	Code D Indian Head, MD 20640	

	No. Copies	No. Copies
Dr. L. R. Rothstein Assistant Director Naval Explosives Dev. Engineering Dept. Naval Weapons Station Yorktown, VA 23691	1	Dr. G. Bosmajian 1 Applied Chemistry Division Naval Ship Research & Development Center Annapolis, MD 21401
Mr. B. Sobers Naval Air Systems Command Code 03P25 Washington, DC 20360	1	Dr. T. F. Davidson 1 Technical Director Thiokol Corporation Government Systems Group P.O. Box 9258
Mr. John Boyle Materials Branch Naval Ship Engineering Cente Philadelphia, PA 19112	1 r	Odgen, Utah 84409 Mr. E. S. Sutton 1 Thiokil Corporation Elkton Division P.O. Box 241
Dr. T. Hall Code R-11 Naval Surface Weapons Center White Oak Laboratory	1	Elkton, MD 21921 Mr. G. F. Mangum Thiokol Corporation
Silver Spring, MD 20910 Mr. J. Murrin Naval Sea Systems Command Code 62R2	1	Huntsville Division Huntsville, AL 35807 Dr. D. A. Flanigan 1 Thiokol
Washington, DC 20362 Dr. A. Faulstich Chief of Naval Technology MAT Code 0716	1	Huntsville Division Huntsville, AL 35807 Strategic Systems Project Office 1 Propulsion Unit
Washington, DC 20360 LCDR J. Walker Chief of Naval Material	1	Code SP2731 Department of the Navy Washington, DC 20376
Office of Naval Technology MAT Code 0712 Washington, DC 20360 Mr. Joe McCartney	1	Dr. C. W. Vriesen 1 Thiokol Elkton Division P.O. Box 241 Elkton, MD 21921
Naval Ocean Systems Center San Diego, CA 92152 Dr. S. Yamamoto	1	Dr. J. C. Hinshaw 1 Thiokol Wasatch Division P.O. Box 524 Brigham City, Utah 83402
Marine Sciences Division Naval Ocean Systems Center San Diego, Ca 91232	·	U.S. Army Research Office 1 Chemical & Biological Sciences Division P.O. Box 12211 Research Triangle Park, NC 27709

No. Copies

	No. Copies	
Dr. R. F. Walker USA ARRADCOM DRDAR-LCE Dover, NJ 07801	1	Dr Na Co Ch
Dr. T. Sinden Munitions Directorate Propellants and Explosives Defence Equipment Staff British Embassy 3100 Massachusetts Ave. Washington, DC 20008	1	My SF St De Wa
Capt. S. Shackelford AFRPL/LKLR Edwards AFB, CA 93523	1	
Dr. J. Karle Naval Research Laboratory Code 6030 Washington, DC 20375	1	
Prof. Richard A. Reinhardt Naval Postgraduate School Physics & Chemistry Department Monterey, CA 93940	1 nt	
Dr. C. Coon Lawrence Livermore Lab University of California P.O. Box 808 Livermore, CA 94550	1	
Mr. Ed van Ribbink Space Ordnance Systems 25977 San Canyon Road Canyon Country, CA 91351	1	
Dr. R. A. Rhein Naval Weapons Center Code 3244 China Lake, CA 93555	1	
Dr. May L. Chan Naval Weapons Center Code 3244 China Lake, CA 93555	1	

Or. T. B. Joyner 1
Naval Weapons Center
Code 3264
China Lake, CA 93555
Mr. M. Baron 1
SP 27314

SP 27314 Strategic Systems Project Office Department of the Navy Washington, DC 20376