Formulae

uniformly accelerated motion,

 $s = ut + \frac{1}{2}at^2$

 $v^2 = u^2 + 2as$

work done on/by a gas,

 $W = p\Delta V$

gravitational potential,

 $\phi = -\frac{Gm}{r}$

hydrostatic pressure,

 $p = \rho gh$

pressure of an ideal gas,

 $p = \frac{1}{3} \frac{Nm}{V} < c^2 >$

simple harmonic motion,

 $a = -\omega^2 x$

velocity of particle in s.h.m.,

 $v = v_0 \cos \omega t$ $v = \pm \omega \sqrt{x_0^2 - x^2}$

electric potential,

 $V = \frac{Q}{4\pi\varepsilon_0 r}$

capacitors in series,

 $1/C = 1/C_1 + 1/C_2 + \dots$

capacitors in parallel,

 $C = C_1 + C_2 + \dots$

energy of charged capacitor,

 $W = \frac{1}{2}QV$

resistors in series,

 $R = R_1 + R_2 + \dots$

resistors in parallel,

 $1/R = 1/R_1 + 1/R_2 + \dots$

alternating current/voltage,

 $x = x_0 \sin \omega t$

radioactive decay,

 $x = x_0 \exp(-\lambda t)$

decay constant,

 $\lambda = \frac{0.693}{t_{\frac{1}{2}}}$

www.PapaCambridge.com