Programação Linear - dualidade

Investigação Operacional

J.M. Valério de Carvalho vc@dps.uminho.pt

Departamento de Produção e Sistemas Escola de Engenharia, Universidade do Minho

10 de novembro de 2020

Dualidade

antes

 O preço-sombra é um conceito fundamental na análise pós-optimização, relacionado com o valor dos recursos.

Guião

- Os preços-sombra são os valores óptimos das variáveis de um problema, que se designa por problema dual, que tem relações fortes com o problema (primal).
- Quando se resolve um deles, também se resolve o outro.
- Pode dizer-se que s\u00e3o o mesmo problema, visto de perspectivas diferentes.

depois

 Dualidade é usada no cálculo de limites (majorantes ou minorantes) para o valor da solução óptima, muito úteis em programação inteira.

Motivação: relembrar a resolução gráfica do exemplo

Motivação: relembrar a resolução gráfica do exemplo

Valor de uma solução e condição de optimalidade

 O quadro simplex associado ao vértice definido pela matriz B (resultante de um conjunto de variáveis básicas) é:

• O valor da função objectivo do vértice é $c_B B^{-1} b$.

É condição de optimalidade, num problema de maximização,

• todos os elementos dos vectores $c_B B^{-1} A - c$ e $c_B B^{-1}$ serem ≥ 0 .

Objectivo:

• Encontrar o valor mínimo da função objectivo quando o domínio é o conjunto de soluções que cumprem esta condição de optimalidade.

Modelo

- Na linha da função objectivo, A, b e c são dados do problema.
- Só $c_B B^{-1}$ é que representa uma escolha, que resulta da matriz B.

$B^{-1}A$	B^{-1}	$B^{-1}b$
$c_B B^{-1} A - c$	$c_B B^{-1}$	$c_B B^{-1} b$

- Vamos designar por y as variáveis de decisão que representam os elementos do vector $c_B B^{-1} = y = (y_1, ..., y_m)$.
- As restrições que garantem que a solução cumpre a condição de optimalidade são: $yA c \ge 0$ e $y \ge 0$.
- A função objectivo que associa um valor a cada solução y é yb.
- O modelo para encontrar o valor mínimo é:

Exemplo

		max	$30x_1 + 20x_2 + 10x_3$
max	CX		$1x_1 + 1x_2 + 2x_3 \le 40$
	$Ax \le b$		$2x_1 + 2x_2 + 1x_3 \le 150$
	$x \ge 0$		$2x_1 + 1x_2 \leq 20$
			$x_1, x_2, x_3 \ge 0$
min	yb yA ≥ c	min	$\begin{bmatrix} y_1 & y_2 & y_3 \end{bmatrix} * \begin{bmatrix} 40 \\ 150 \\ 20 \end{bmatrix}$
	$y \ge 0$		$\begin{bmatrix} y_1 & y_2 & y_3 \end{bmatrix} * \begin{bmatrix} 1 & 1 & 2 \\ 2 & 2 & 1 \\ 2 & 1 & 0 \end{bmatrix} \ge \begin{bmatrix} 30 & 20 & 10 \end{bmatrix}$
			$y_1, y_2, y_3 \ge 0$
		min	$40y_1 + 150y_2 + 20y_3$
			$1y_1 + 2y_2 + 2y_3 \ge 30$
			$1y_1 + 2y_2 + 1y_3 \ge 20$
			$2y_1 + 1y_2 \ge 10$
			$y_1, y_2, y_3 \ge 0$

Conteúdo

- Problema dual
- Informação primal e dual num quadro simplex
- Relação entre os problemas primal e dual
 - Teorema da dualidade fraca
 - Teorema da dualidade forte
 - Teorema da folga complementar

Problema Dual

• Dado um problema (primal) de programação linear:

$$max \qquad cx$$

$$Ax \le b$$

$$x \ge 0$$

sendo
$$A \in \mathbb{R}^{m \times n}$$
, $b \in \mathbb{R}^{m \times 1}$, $c \in \mathbb{R}^{1 \times n}$, $x \in \mathbb{R}^{n \times 1}$,

 o problema dual é construído associando a cada restrição i do problema (primal), i = 1,...,m, uma variável de decisão dual y_i:

min
$$yb$$

 $yA \ge c$
 $y \ge 0$

sendo $y = (y_1, ..., y_i, ..., y_m) \in \mathbb{R}^{1 \times m}$ um vector de *variáveis duais*.

Para construir o problema dual,

PRIMAL	DUAL				
max <i>cx</i>	min <i>yb</i>				
$Ax \leq b$	<i>yA</i> ≥ <i>c</i>				
<i>x</i> ≥ 0	$y \ge 0$				
max $30x_1 + 20x_2 + 10x_3$	min $40y_1 + 150y_2 + 20y_3$				
$1x_1 + 1x_2 + 2x_3 \le 40$	$1y_1 + 2y_2 + 2y_3 \ge 30$				
$2x_1 + 2x_2 + 1x_3 \le 150$	$1y_1 + 2y_2 + 1y_3 \ge 20$				
$2x_1 + 1x_2 \leq 20$	$2y_1 + 1y_2 \ge 10$				
$x_1, x_2, x_3 \ge 0$	$y_1, y_2, y_3 \ge 0$				

o problema original deve estar na Forma Canónica:

Problema de max com <u>todas</u> as restrições do tipo de ≤.

⁻ no Apêndice, mostra-se como tratar as restrições de igualdade.

O dual do dual é o primal

• Partindo do problema dual, e colocando-o na Forma Canónica:

DUAL	DUAL
min <i>yb</i>	−max −yb
$yA \ge c$	$-yA \le -c$
$y \ge 0$	<i>y</i> ≥ 0
min $40y_1 + 150y_2 + 20y_3$	max $-40y_1 - 150y_2 - 20y_3$
$1y_1 + 2y_2 + 2y_3 \ge 30$	$-1y_1 - 2y_2 - 2y_3 \le -30$
$1y_1 + 2y_2 + 1y_3 \ge 20$	$-1y_1 - 2y_2 - 1y_3 \le -20$
$2y_1 + 1y_2 \ge 10$	$-2y_1 - 1y_2 \leq -10$
$y_1, y_2, y_3 \ge 0$	$y_1, y_2, y_3 \ge 0$

• se se usar a regra do slide anterior, obtém-se o problema primal.

Portanto, basta usar a seguinte regra:

 O dual de um Problema de min com <u>todas</u> as restrições de ≥ é um Problema de max com <u>todas</u> as restrições de ≤.

Elementos do vector $c_B B^{-1} A - c$ são as folgas do dual

Problema dual

$$\begin{array}{rcl} \min z & = & yb & \min z & = & yb \\ & & yA \geq c & \rightarrow & & yA - u = c \\ & & & y \geq 0 & & y, u \geq 0 \end{array}$$

sendo $u \in \mathbb{R}^{1 \times n}_+$ um vector de variáveis de folga da mesma dimensão que $c \in \mathbb{R}^{1 \times n}$.

As variáveis do problema dual são:

- variáveis de decisão: $y = c_B B^{-1}$,
- variáveis de folga: $u = c_B B^{-1} A c$

$$(u = yA - c).$$

• Solução do problema dual é admissível quando $y, u \ge 0$.

Resolver o primal também resolve o dual,

porque o quadro simplex da resolução do primal fornece os valores das:

- variáveis de decisão do dual: $c_B B^{-1} = y = (y_1, y_2, y_3) = (5, 0, 15),$
- variáveis de folga do dual: $c_B B^{-1} A c = u = (u_1, u_2, u_3) = (5, 0, 0),$
- e da função objectivo da solução dual: $yb = (c_B B^{-1})b = 500$.

				s_1			
<i>X</i> 3	-1/2	0	1	1/2	0	-1/2	10
s ₂	-3/2	0	0	-1/2	1	-1/2 -3/2 1	100
<i>x</i> ₂	2	1	0	Ó	0	1	20
	5	0	0	5	0	15	500

 Nota: resolver o problema dual do exemplo de motivação, além de fornecer o valor do vértice óptimo, também permite saber as suas coordenadas (que são os valores das variáveis de decisão e de folga do dual do dual).

Teoremas da dualidade ilustrados com um exemplo

Relação entre os problemas primal e o dual:

- Teorema da dualidade fraca
- Teorema da dualidade forte
- Teorema da folga complementar

Vamos ilustrá-los com o seguinte par:

- Problema do caminho mais curto entre os vértices s e t
- Problema do afastamento máximo dos vértices s e t
- Designaremos o problema de maximização por primal e o de minimização por dual.

Assim:

- o dual é o de minimização: caminho mais curto
- o primal é o de maximização: afastamento máximo dos vértices

Exemplo: caminho mais curto

 Formulação: injectar uma unidade no vértice s que vai usar a sequência de custo mínimo de arcos de custo c_{ij} até chegar a t.

 Para evidenciar o significado do prob. primal, vamos i) multiplicar as restrições por −1, e ii) substituí-las por restrições ≥ (OK neste caso).

Construção do problema primal (dual do dual)

• Variáveis primais: d_j : valor do afastamento do vértice j e $s, \forall j \in V$

Exemplo: interpretação do modelo do problema primal

Restrição do arco (i,j): $d_j \le d_i + c_{ij}$:

• o afastamento de j e s não pode exceder o afastamento de i e s adicionado do comprimento do arco (i,j).

Função objectivo: $d_t - d_s$:

- afastamento dos vértices t e s, que se pretende maximizar.
- Qual o afastamento máximo no exemplo?

Teorema da dualidade fraca

Teorema

O valor da função objectivo $(c\hat{x})$ de qualquer solução admissível \hat{x} do problema primal (de maximização) e

o valor de função objectivo $(\hat{y}b)$ de qualquer solução admissível \hat{y} do problema dual (de minimização)

obedecem à seguinte relação: $c\hat{x} \leq \hat{y}b$

Prova:

- Se \hat{y} é uma solução admissível do dual, então $\hat{y} \ge 0$, e podemos pré-multiplicar por \hat{y} as restrições $A\hat{x} \le b$, obtendo $\hat{y}A\hat{x} \le \hat{y}b$.
- Se \widehat{x} é uma solução admissível do primal, então $\widehat{x} \ge 0$, e podemos pós-multiplicar por \widehat{x} as restrições $\widehat{y}A \ge c$, obtendo $\widehat{y}A\widehat{x} \ge c\widehat{x}$.
- Conjugando as duas relações, obtém-se $c\widehat{x} \leq \widehat{y}A\widehat{x} \leq \widehat{y}b$.

Teorema da dualidade fraca: exemplo 1

PRIMAL	DUAL			
max <i>cx</i>	min <i>yb</i>			
$Ax \leq b$	<i>yA</i> ≥ <i>c</i>			
<i>x</i> ≥ 0	$y \ge 0$			
max $30x_1 + 20x_2 + 10x_3$	min $40y_1 + 150y_2 + 20y_3$			
$1x_1 + 1x_2 + 2x_3 \le 40$	$1y_1 + 2y_2 + 2y_3 \ge 30$			
$2x_1 + 2x_2 + 1x_3 \le 150$	$1y_1 + 2y_2 + 1y_3 \ge 20$			
$2x_1 + 1x_2 \leq 20$	$2y_1 + 1y_2 \ge 10$			
$x_1, x_2, x_3 \ge 0$	$y_1, y_2, y_3 \ge 0$			

- $(\widehat{x}_1, \widehat{x}_2, \widehat{x}_3)^{\top} = (10, 0, 0)^{\top}$ é um ponto admissível do primal.
- $(\hat{y}_1, \hat{y}_2, \hat{y}_3) = (30,0,0)$ é um ponto admissível do dual.
- $c\hat{x} = 30(10) + 20(0) + 10(0) = 300$
- $\hat{y}b = 40(30) + 150(0) + 20(0) = 1200$
- este par de pontos verifica o teorema da dualidade fraca: $c\hat{x} \le \hat{y}b$, i.e., $300 \le 1200$.

Teorema da dualidade fraca: exemplo 2

- Uma solução do dual é um caminho, e o valor da solução é o comprimento do caminho.
- Uma solução do primal é um conjunto de valores de \widehat{d}_j , $\forall j \in V$, e o valor da solução é o afastamento é $\widehat{d}_t \widehat{d}_s$.

Portanto, ...

Teorema da dualidade fraca: exemplo 2

- Uma solução do dual é um caminho, e o valor da solução é o comprimento do caminho.
- Uma solução do primal é um conjunto de valores de \widehat{d}_j , $\forall j \in V$, e o valor da solução é o afastamento é $\widehat{d}_t \widehat{d}_s$.

Portanto, ...

• o afastamento $\widehat{d}_t - \widehat{d}_s$ de qualquer solução primal admissível \leq o comprimento de qualquer caminho.

Corolário da dualidade fraca: valor óptimo ilimitado

Corolário (do teorema da dualidade fraca)

Se o problema primal de maximização tiver uma solução óptima ilimitada, então o problema dual é impossível.

Prova:

- Não pode haver nenhuma solução admissível do dual com um valor de função objectivo maior do que o valor da solução óptima ilimitada do primal.
- Portanto, o domínio do dual tem de ser vazio, e o problema dual é impossível.

e reciprocamente:

Se o problema dual de minimização tiver uma solução óptima ilimitada, então o problema primal é impossível.

Corolário da dualidade fraca: exemplo 2

- Corolário: se a solução óptima do problema primal do afastamento tiver um valor $d_t^* d_s^*$ ilimitado, então o problema dual é impossível.
- Isso acontece quando ...

Corolário da dualidade fraca: exemplo 3

- Corolário: se a solução óptima do problema primal do afastamento tiver um valor $d_t^* d_s^*$ ilimitado, então o problema dual é impossível.
- Isso acontece quando, por exemplo, o grafo tem dois componentes, estando o vértice s num deles e t no outro:
- não havendo restrições que limitem o afastamento dos vértices do mesmo componente que t, o vértice t pode ser colocado a uma distância ilimitada de s;
- o problema dual é impossível: não há caminho entre s e t.

Teorema da dualidade forte

Teorema

Se o problema primal tiver uma solução óptima com valor finito, então o problema dual tem, pelo menos, uma solução óptima com valor finito, e os valores das soluções óptimas são iguais, $cx^* = y^*b$.

sendo

- x*: solução óptima do primal
- y*: solução óptima do dual

Prova: O quadro simplex óptimo apresenta soluções admissíveis para o problema primal e para o problema dual com o mesmo valor <u>finito</u> de função objectivo:

$$y^*b = (c_BB^{-1})b = c_B(B^{-1}b) = cx^*.$$

Teorema da dualidade forte: quadro óptimo

				<i>s</i> ₁			
<i>X</i> 3	-1/2	0	1	1/2	0	-1/2 -3/2 1	10
s 2	-3/2	0	0	-1/2	1	-3/2	100
<i>x</i> ₂	2	1	0	0	0	1	20
	5	0	0	5	0	15	500

- Solução é admissível para o problema primal se:
 - variáveis de decisão e de folga do primal: $B^{-1}b \ge 0$,
 - i.e., todos os elementos do lado direito do quadro simplex não-negativos.
- Solução é admissível para o problema dual se:
 - variáveis de decisão do dual: $y = c_B B^{-1} \ge 0$
 - variáveis de folga do dual: $u = c_B B^{-1} A c \ge 0$,
 - *i.e.*, todos os elementos da linha da função objectivo do quadro simplex não-negativos.
- No quadro óptimo, há pontos admissíveis dos problemas primal e do dual que têm o mesmo valor de função objectivo.
- .: São as soluções óptimas dos respectivos problemas.

Teorema da dualidade forte: exemplo 1

PRIMAL	DUAL				
max <i>cx</i>	min <i>yb</i>				
$Ax \leq b$	<i>yA</i> ≥ <i>c</i>				
<i>x</i> ≥ 0	$y \ge 0$				
max $30x_1 + 20x_2 + 10x_3$	min $40y_1 + 150y_2 + 20y_3$				
$1x_1 + 1x_2 + 2x_3 \le 40$	$1y_1 + 2y_2 + 2y_3 \ge 30$				
$2x_1 + 2x_2 + 1x_3 \le 150$	$1y_1 + 2y_2 + 1y_3 \ge 20$				
$2x_1 + 1x_2 \leq 20$	$2y_1 + 1y_2 \ge 10$				
$x_1, x_2, x_3 \ge 0$	$y_1, y_2, y_3 \ge 0$				

- $x^* = (x_1, x_2, x_3)^{\top} = (0, 20, 10)^{\top}$ é o ponto óptimo do primal.
- $y^* = (y_1, y_2, y_3) = (5, 0, 15)$ é o ponto óptimo do dual.
- $cx^* = 30(0) + 20(20) + 10(10) = 500$
- y*b = 40(5) + 150(0) + 20(15) = 500
- este par de pontos verifica o teorema da dualidade forte: $cx^* = y^*b$, i.e., 500 = 500.

Teorema da dualidade forte: exemplo 2

Portanto, ...

Teorema da dualidade forte: exemplo 2

Portanto, ...

• Afastamento máximo dos vértices s e t = Comprimento do caminho mais curto entre s e t

Teorema da folga complementar

Teorema

No ponto óptimo, se uma variável for positiva, a variável dual correspondente é nula.

Regra de correspondência:

var. folga de uma restrição ê var. decisão dual associada à restrição

PRIMAL	DUAL
max cx	min <i>yb</i>
$Ax + s = b \qquad (y)$	yA - u = c (x)
<i>x</i> ≥ 0	<i>y</i> ≥ 0
max $30x_1 + 20x_2 + 10x_3$	min $40y_1 + 150y_2 + 20y_3$
$1x_1 + 1x_2 + 2x_3 + s_1 = 40 (y_1)$	$1y_1 + 2y_2 + 2y_3 - u_1 = 30 (x_1)$
$2x_1 + 2x_2 + 1x_3 + s_2 = 150 \ (y_2)$	$1y_1 + 2y_2 + 1y_3 - u_2 = 20 (x_2)$
$2x_1 + 1x_2 + s_3 = 20 (y_3)$	$2y_1 + 1y_2 - u_3 = 10 (x_3)$
$x_1, x_2, x_3, s_1, s_2, s_3 \ge 0$	$y_1, y_2, y_3, u_1, u_2, u_3 \ge 0$

Folga complementar no quadro simplex óptimo: exemplo 1

- Se uma variável é básica no problema primal (≥0) ⇒ coeficiente da linha da função objectivo (variável dual correspondente) é 0.
- Se um coeficiente da linha da função objectivo (variável do problema dual) ≥ 0 ⇒ variável primal correspondente é não-básica (igual a 0).

				s_1			
X3	-1/2	0	1	1/2	0	-1/2	10
<i>s</i> ₂	-3/2	0	0	-1/2	1	-3/2	100
<i>x</i> ₂	-1/2 -3/2 2	1	0	0	0	1	20
	5	0	0	5	0	15	500

PRIMAL			DUAL
	$\begin{cases} s_1 = 0 \\ s_2 = 100 \end{cases}$	<i>y</i> ₁ = 5	
var. folga	$\begin{cases} s_2 = 100 \end{cases}$	$y_2 = 0$	var. decisão
	$(s_3 = 0)$	$y_3 = 15$	
	$\int x_1 = 0$	$u_1 = 5$	
var. decisão	$\begin{cases} x_2 = 20 \end{cases}$	$u_2 = 0$	var. folga
	$x_3 = 10$	$u_3 = 0$	

Prova do teorema da folga complementar

Teorema

No ponto óptimo, se uma variável for positiva, a variável dual correspondente é nula.

Prova:

• No óptimo, $cx^* = y^*Ax^* = y^*b$. Há duas equações:

$$\begin{cases} y^*Ax^* &= y^*b \\ cx^* &= y^*Ax^* \end{cases} \begin{cases} y^*(b-Ax^*) &= 0 \\ (y^*A-c) x^* &= 0 \end{cases} \begin{cases} y^*s^* &= 0 \\ u^*x^* &= 0 \end{cases}$$

• Para o produto escalar $y^*s^* = 0$, como $y^* \ge 0$ e $s^* \ge 0$, então necessariamente, i = 1, ..., m:

$$\begin{cases} \text{ se } y_i^* > 0 \Rightarrow s_i^* = 0 \\ \text{ se } s_i^* > 0 \Rightarrow y_i^* = 0 \end{cases}$$

• O mesmo resultado aplica-se à segunda equação $u^*x^* = 0$.

Teorema da folga complementar: exemplo 2

- Se arco (i,j) pertence ao caminho mais curto $(x_{ij}^* = 1 \text{ no problema})$ dual), então
 - a folga da restrição primal $(d_j \le d_i + c_{ij})$ é nula.
- Caminho mais curto: $x_{s1}^* = x_{12}^* = x_{2t}^* = 1$, restantes vars = 0.
- Folgas restrições nulas: $d_1^* = d_s^* + 1$, $d_2^* = d_1^* + 3$, $d_t^* = d_2^* + 1$, *i.e.*, $d_1^* = d_s^* + 1$, $d_2^* = d_s^* + 4$, $d_t^* = d_s^* + 5$.
- Há mais relações de folga complementar.

Em síntese, o teorema fundamental da programação linear:

Teorema (Condições de optimalidade)

Uma solução de um problema de programação linear é óptima se:

- for admissível para o problema primal,
- for admissível para o problema dual, e
- obedecer à folga complementar.

Conclusão

- Existem relações muito fortes entre um problema e o seu dual.
- Eles mostram duas perspectivas diferentes da mesma realidade; até podemos resolver um para obter a solução do outro.
- Há outros exemplos de pares de problemas primal-dual. O problema do produtor de rações é o problema dual do problema da dieta (ver Quiz sobre dualidade).

Apêndice

Variáveis duais associadas a restrições de igualdade

- A variável dual associada a uma restrição de igualdade não tem restrição de sinal, i.e., pode ter valor positivo, nulo ou negativo.
- No LPSolve, a sua declaração seria, por exemplo, Free y1;
- Isto pode ser provado desdobrando a restrição de = em 2 restrições de ≤, e identificando que, no modelo dual, a variável dual é a diferença de 2 variáveis, o que corresponde a uma variável Free.

Uma perspectiva dual da solução do problema primal

- O problema dual encontra os melhores valores que podem ser atribuído aos recursos usados nas actividades.
- As variáveis duais (os preços-sombra) traduzem o valor dos recursos, e explicam como se forma o valor de uma actividade.
- As actividades seleccionadas (no problema primal) s\u00e3o aquelas que atribuem um maior valor aos recursos.

Solução óptima: uso de recursos e valor dos recursos

```
max: 30x1 +20x2 +10x3;

restricao1: 1x1 + 1x2 + 2x3 <= 40;

restricao2: 2x1 + 2x2 + 1x3 <= 150;

restricao3: 2x1 + 1x2 <= 20;
```

• Uso de recursos e valor dos recursos:

	act.1	act.2	act.3	folga	qto	d.rec.	valor rec.
recurso 1:	1(0)	+1(20)	+2(10)		=	40	40(5)
recurso 2:	2(0)	+2(20)	+1(10)	+100	=	150	+150(<mark>0</mark>)
recurso 3:	2(0)	+1(20)			=	20	+20(15)
valor f.obj.:	30(0)	+20(20)	+10(10)				= 500

Como se forma o valor da solução óptima, $c_B B^{-1} b$?

Perspectiva primal:

 $c_B\left(B^{-1}b\right)=\mathsf{f}(\mathsf{valor}\;\mathsf{das}\;\mathsf{vars}\;\mathsf{decis\~ao}\;\left(c_{ij}\right),\;\mathsf{n\'{i}vel}\;\mathsf{das}\;\mathsf{vars}\;\mathsf{decis\~ao}\;\left(x_{ij}\right))$ exemplo:

$$c_B (B^{-1}b) = \begin{bmatrix} 10 & 0 & 20 \\ & 100 & 20 \end{bmatrix} * \begin{bmatrix} 10 \\ & 100 \\ & 20 \end{bmatrix} = 500$$

Perspectiva dual:

 $(c_B B^{-1})$ $b = f(valor dos recursos <math>(y_i)$, nível dos recursos (b_i)) exemplo:

$$(c_B B^{-1})$$
 $b = \begin{bmatrix} 5 & 0 & 15 \\ & 20 \end{bmatrix} * \begin{bmatrix} 40 \\ 150 \\ 20 \end{bmatrix} = 500$

O que significa o valor $c_B B^{-1} A_i - c_i$ da actividade j?

$$c_B B^{-1} A_j = \sum_{i=1}^m (c_B B^{-1})_i \times a_{ij}, \ \forall j,$$

- $(c_B B^{-1})_i$ é o valor para o decisor de uma unidade de recurso i,
- a_{ij} é a quantidade de recurso i usado numa unidade da actividade j.
- Portanto, $c_B B^{-1} A_j$ é o valor dos recursos usados numa unidade da actividade j.
- c_j é o valor de venda de uma unidade da actividade j.

Na solução óptima de um problema de maximização,

- se c_BB⁻¹A_j c_j > 0, o valor dos recursos usados é maior do que o valor da venda; é melhor não fazer esta actividade (variável não-básica); há outras actividades que usam melhor os recursos,
- se $c_B B^{-1} A_j c_j = 0$, o valor de venda iguala o valor dos recursos usados; esta actividade (variável básica) dá o maior valor possível aos recursos.

Exemplo

		z	x_1	<i>x</i> ₂	<i>X</i> 3	<i>s</i> ₁	<i>s</i> ₂	<i>5</i> 3	
Quadro Inicial	<i>s</i> ₁	0	1	1	2	1	0	0	40
	<i>s</i> ₂	0	2	2	1	0	1	0	150
	s 3	0	2	1	0	0	0	1	20
	Z	1	-30	-20	-10	0	0	0	0
Quadro Óptimo		z	<i>x</i> ₁	<i>X</i> 2	<i>X</i> 3	s ₁	s 2	s 3	
	<i>X</i> 3	0	-1/2	0	1	1/2	0	-1/2	10
	<i>s</i> ₂	0	-3/2	0	0	-1/2	1	-3/2	100
	<i>x</i> ₂	0	2	1	0	0	0	1	20
	Z	1	5	0	0	5	0	15	500

Actividade 1:
$$c_B B^{-1} A_1 - c_1 = \begin{bmatrix} 5 & 0 & 15 \end{bmatrix} * \begin{bmatrix} 1 & 2 & -30 = 5 \\ 2 & & & \\ \end{bmatrix}$$
Actividade 2: $c_B B^{-1} A_2 - c_2 = \begin{bmatrix} 5 & 0 & 15 \end{bmatrix} * \begin{bmatrix} 1 & 2 & -20 = 0 \\ 1 & & & \\ \end{bmatrix}$

Fim