

HEXFET® Power MOSFET

Application(s)

• Load/ System Switch

Features and Benefits

Features

Low $R_{DS(on)}$ (< 21m Ω)
Industry-standard SOT-23 Package
RoHS compliant containing no lead, no bromide and no halogen

Benefits

_	
	Lower conduction losses
results in	Multi-vendor compatibility
\Rightarrow	Environmentally friendly

Absolute Maximum Ratings

Symbol	Parameter	Max.	Units
V_{DS}	Drain-Source Voltage	20	V
I _D @ T _A = 25°C	Continuous Drain Current, V _{GS} @ 10V	6.3	
I _D @ T _A = 70°C	Continuous Drain Current, V _{GS} @ 10V	5.1	Α
I _{DM} Pulsed Drain Current		32	
P _D @T _A = 25°C	Maximum Power Dissipation	1.3	W
P _D @T _A = 70°C Maximum Power Dissipation		0.80] vv
	Linear Derating Factor	0.01	W/°C
V _{GS}	Gate-to-Source Voltage	± 12	V
$T_{J,}T_{STG}$	Junction and Storage Temperature Range	-55 to + 150	°C

Thermal Resistance

Symbol	Parameter	Тур.	Max.	Units
$R_{\theta JA}$	Junction-to-Ambient ③		100	°C/W
$R_{\theta JA}$	Junction-to-Ambient (t<10s) ⊕		99	C/VV

ORDERING INFORMATION:

See detailed ordering and shipping information on the last page of this data sheet.

Notes ① through ④ are on page 10 www.irf.com

1

Electric Characteristics @ $T_J = 25^{\circ}C$ (unless otherwise specified)

Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	20		_	٧	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient		7.8	_	mV/°C	Reference to 25°C, I _D = 1mA
D	Static Drain-to-Source On-Resistance		16.0	21.0	mΩ	$V_{GS} = 4.5V, I_D = 6.3A$ ②
R _{DS(on)}	Static Drain-to-Source On-Resistance		22.0	27.0	11152	$V_{GS} = 2.5V, I_D = 5.1A$ ②
V _{GS(th)}	Gate Threshold Voltage	0.5	0.9	1.1	٧	$V_{DS} = V_{GS}$, $I_D = 10\mu A$
I _{DSS}	Drain-to-Source Leakage Current			1.0		$V_{DS} = 16V, V_{GS} = 0V$
	Dialif-to-Source Leakage Current			150	μA	$V_{DS} = 16V, V_{GS} = 0V, T_{J} = 125^{\circ}C$
I _{GSS}	Gate-to-Source Forward Leakage			100	^	V _{GS} = 12V
	Gate-to-Source Reverse Leakage			-100	nA	V _{GS} = -12V
R _G	Internal Gate Resistance		1.7		Ω	
gfs	Forward Transconductance	17			S	$V_{DS} = 10V, I_D = 6.3A$
Q_g	Total Gate Charge		8.9			$I_D = 6.3A$
Q_{gs}	Gate-to-Source Charge		0.68		nC	V _{DS} =10V
Q_{gd}	Gate-to-Drain ("Miller") Charge		4.4			V _{GS} = 4.5V ②
t _{d(on)}	Turn-On Delay Time		4.9			V _{DD} =10V ^②
t _r	Rise Time		7.5		ns	I _D = 1.0A
t _{d(off)}	Turn-Off Delay Time		19		ris	$R_G = 6.8\Omega$
t _f	Fall Time		12			V _{GS} = 4.5V
C _{iss}	Input Capacitance		700			V _{GS} = 0V
C _{oss}	Output Capacitance		140		pF	V _{DS} = 16V
C _{rss}	Reverse Transfer Capacitance		98			f = 1.0MHz

Source - Drain Ratings and Characteristics

Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions
Is	Continuous Source Current			1.3		MOSFET symbol
	(Body Diode)			1.0	Α	showing the
I _{SM}	Pulsed Source Current		20	32	integral reverse	
	(Body Diode) ①				p-n junction diode.	
V _{SD}	Diode Forward Voltage			1.2	٧	$T_J = 25^{\circ}C$, $I_S = 6.3A$, $V_{GS} = 0V$ ②
t _{rr}	Reverse Recovery Time		12	18	ns	$T_J = 25^{\circ}C, V_R = 15V, I_F=1.3A$
Q _{rr}	Reverse Recovery Charge		5.1	7.7	nC	di/dt = 100A/μs ②

International TOR Rectifier

IRLML6244TRPbF

Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 4. Normalized On-Resistance vs. Temperature

Fig 5. Typical Capacitance vs. Drain-to-Source Voltage

Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 8. Maximum Safe Operating Area

International TOR Rectifier

IRLML6244TRPbF

Fig 9. Maximum Drain Current vs. Ambient Temperature

Fig 10a. Switching Time Test Circuit

Fig 10b. Switching Time Waveforms

Fig 11. Typical Effective Transient Thermal Impedance, Junction-to-Ambient

Fig 12. Typical On-Resistance vs. Gate Voltage

Fig 13. Typical On-Resistance vs. Drain Current

Fig 14a. Basic Gate Charge Waveform

Fig 14b. Gate Charge Test Circuit

International IOR Rectifier

IRLML6244TRPbF

Fig 15. Typical Threshold Voltage vs. Junction Temperature

Fig 16. Typical Power vs. Time

International IOR Rectifier

Micro3 (SOT-23) Package Outline

Dimensions are shown in millimeters (inches)

DIMENSIONS					
SYMBOL	MILLIMETERS		INCH	HES	
STIVIBOL	MIN	MAX	MIN	MAX	
Α	0.89	1.12	0.035	0.044	
A1	0.01	0.10	0.0004	0.004	
A2	0.88	1.02	0.035	0.040	
b	0.30	0.50	0.012	0.020	
С	0.08	0.20	0.003	0.008	
D	2.80	3.04	0.110	0.120	
Е	2.10	2.64	0.083	0.104	
E1	1.20	1.40	0.047	0.055	
е	0.95	BSC	0.037	BSC	
e1	1.90	BSC	0.075	BSC	
L	0.40	0.60	0.016	0.024	
L1	0.54	REF	0.021	REF	
L2	0.25	BSC	0.010	BSC	
0	0	8	0	8	

DIMENSIONING & TOLERANCING PER ANSI Y14.5M-1994
 DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].

3. CONTROLLING DIMENSION: MILLIMETER.

A DATUM PLANE H IS LOCATED AT THE MOLD PARTING LINE.

∠∆DATUM PLANE HIS LOCATED AT THE MICL D PARTINIS LINE.

ADATUM A AND B TO BE DETERMINED AT DATUM PLANE H.

ADMINISIONS D AND BI ARE MEASURED AT DATUM PLANE H. DIMENSIONS DOES
NOT INCLUDE MOLD PROTRUSIONS OR INTERLEAD PLASH MICLD PROTRUSIONS
OR INTERLEAD PLASH SHALL NOT EXCEED 0.25 MI/(10.010 INCH) PER SIDE.

ADMENSION, IS THE LEAD LEASH SHALL SOFT EXCEED 1.25 MI/(10.010 INCH) PER SIDE.

B OUTLINE CONFORMS TO JEDEC OUTLINE TO 226 AB.

Micro3 (SOT-23/TO-236AB) Part Marking Information

Notes: This part marking information applies to devices produced after 02/26/2001

Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/

Micro3™ (SOT-23) Tape & Reel Information

Dimensions are shown in millimeters (inches)

Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/

International

TOR Rectifier

Orderable part number	Package Type	Standard Pack		Note
-		Form	Quantity	
IRLML6244TRPbF	Micro3 (SOT-23)	Tape and Reel	3000	

Qualification information[†]

Qualification level	Consumer ^{††}		
	(per JEDEC JESD47F ^{†††} guidelines)		
Majatura Carajtiritud aval	Micro (COT 00)	MSL1	
Moisture Sensitivity Level	Micro3 (SOT-23)	(per IPC/JEDEC J-STD-020D ^{†††})	
RoHS compliant		Yes	

- † Qualification standards can be found at International Rectifier's web site http://www.irf.com/product-info/reliability
- †† Higher qualification ratings may be available should the user have such requirements. Please contact your International Rectifier sales representative for further information: http://www.irf.com/whoto-call/salesrep/
- ††† Applicable version of JEDEC standard at the time of product release.

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature.
- ② Pulse width \leq 400 μ s; duty cycle \leq 2%.
- 3 Surface mounted on 1 in square Cu board.
- Refer to <u>application note #AN-994.</u>

Data and specifications subject to change without notice.

IR WORLD HEADQUARTERS: 101 N. SEpulveda Blvd., El Segundo, California 90245, USA Tel: (310) 252-7105

TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information.03/12

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.