

SRM Institute of Science and Technology College of Engineering and Technology

DEPARTMENT OF ECE

SRM Nagar, Kattankulathur - 603203, Chengalpattu District, Tamil Nadu

Academic Year: 2024-25 (ODD)

Test: CLAT-II

Date: 26/06/2024

Course Code & Title: 18ECC301T Wireless Communications

Duration: 9:40 AM to 11.30 AM

Year & Sem: IV/VII

Max. Marks: 50

Course Articulation Matrix:

	18ECC301T - Wireless Communication Program Outcomes (POs)							PSO								
	Course Outcomes (COs)	Graduate Attributes													3	
COs		1	2	3	4	5	6	7	8	9	10	11	12	1 2	3	
CO-1	Interpret the concepts of Wireless communication and basic cellular networks	3	-	-	3	-	-	-	-	-	-	-	2		-	-
CO-2	Analyze different Radio wave propagation models for cellular communication		3	-	3	-	-	-	-	-	-	-	-		-	3
CO-3	Apply different multipath propagation channel models in wireless systems		3	3	•	-					•				-	3
CO-4	Illustrate the Link performance improvement techniques	•	3	-	-	-		2						2	_	3
CO-5	Summarize different wireless communication standards and systems		-	2	-	-	2				•			2	_	

	Part – A $(10 \times 1 = 10 \text{ Marks})$ [Instructions: Answe	r ALL Qu	estions		
Q. No.	Question	Marks	BL	CO	PO
1	Find the far – field distance (in metres) for an antenna with maximum dimension of 1 m and operating frequency of 3000 MHz (a) 20 (b) 40	1	2	2	4
2	(c) 60 (d) 80 occurs when a propagating electromagnetic wave impinges upon a rain drop (a) Refraction (b) Diffraction (c) Reflection (d) Scattering	1	1	2	2
3	If a transmitter produces 100 W of power, express the transmit power in units of dBm and dBw. (a) 17 and 47 (b) 19 and 49 (c) 50 and 20 (d) 47 and 17	. 1	1	2	4
4	A mobile is located 10 km away from a base station and uses a vertical $\lambda/4$ monopole antenna with a gain of 2.55 dB to receive cellular radio signals. The E field at 1 km from the transmitter is measured to be 10-3 V/m. The carrier frequency used for this system is 900 MHz, calculate the length (in metres) of the receiving antenna. (a) 0.093 (b) 1.083 (c) 0.077 (d) 0.083	1	2	2	4
	Model uses diffraction to predict average signal strength at street level. (a) Okumara (b) Walfish and Bertoni (c) Hata (d) Durkins	1	1	2	2
	small scale multipath measurement uses a wideband pulsed bistatic radar that transmits a repetitive pulse width. (a) Spread spectrum (b) Indirect RF pulse (c) Direct RF pulse (d) Envelope detector	1	1	3	2
	In slow fading channels, Doppler spread of the channel is much less than theof baseband signal (a) Bandwidth (b) Time (c) Phase (d) Symbol period	1	1	3	2
	If coherence bandwidth is smaller than the bandwidth of the signal, fading occurs. (a)Flat (b) Frequency selective (c) Fast fading (d) Time selective	1	1	3	3

9	The distribution present in envelope of sum of two quadrature	1	1	3	2
	gaussian noise is				
	(a) Rayleigh (b) Ricean				
	(c) Gaussian (d) Normal				
10	The maximum excess delay of the channel is given by	1	1	3	3
	(a) $N\Delta \tau$ (b) $\Delta \tau/N$ (c) $2 N\Delta \tau$ (d) $(N-1)\Delta \tau$		1	,	,
	Part - B1 (2 × 4 = 8 Marks) [Instructions: Answer an	w TWO	Questi	onel	
11	Calculate the ratio of the Brewster angle with respect to two dielectrics	4	2	2	1 2
	with dielectric constants of 5 and 6.	*	2	2	2
12	For a wireless system, using Friis transmission formula and free space	4	3	2	2
	path loss model, deduce the path loss for the receiver to be placed at a	4	3	2	2
	distance 'd'.				
13	Elaborate on how an amoeba cell is evolved.	1	2	2	
1	Endotate on now an amocoa cen is evolved,	4	2	2	4
	Part - B2 (2 × 4 = 8 Marks) [Instructions: Answer an	v TWO	Questic	nsl	
14	List the factors influencing the small scale fading.	4	1	3	2
15	Draw the block diagram of Frequency domain channel sounding	4	2	3	2
	system and brief about its significance in small scale fading				
	measurements.				
16	Brief about the significance of Ricean fading and when will it	4	2	3	3
	degenerate back to Rayleigh mode?				
	$Part - C (2 \times 12 = 24 Marks)$)			
17	(a) Using necessary equations, derive the path loss for a wireless	12	3	2	2
	system using two ray model.				
	(OR)				
	(b) Elaborate on Okumara model and calculate the mean path loss				
	using the aforementioned model for the distance d = 50 km, height				
	of the transmitter and receiver to be 50m and 5m respectively in				
	a suburban environment. If the base station transmitter radiates an				
	EIRP of 1KW at a carrier frequency of 900 MHz, Find the EIRP				
	(dBm) and the power received at the receiver where gain at the				
	receiving antenna is 20 dB. Assume the following data for	6+6	3	2	4
	computations (from the Okumura curves A_{mu} (f, d) = 43 dB and	0+0	3	2	4
18	$G_{Area} = 9 \text{ dB}$).	10	2	2	
10	(a) For the scenario of small scale fading, derive the baseband	12	3	3	2
	impulse response model with relevant expressions.				
	(OR)				
	(b) Consider an aircraft is moving at a constant velocity 'v', along a				
	path segment having length 'd' between the points X and Y, while				
	it receives signals from a remote source 'P'. Derive the path				
	length, phase change in the received signal and the apparent	8+4	3	3	3
	change in the doppler frequency. With the aid of the	014	3	,	
	aforementioned derivation, assuming the speed of an aircraft				
	(which is moving towards the airport control tower with an				
	elevation angle of 25 deg) to be 1000 km/hr. What is the expected				
	doppler shift of the received signal if the communication between				
	the aircraft and control tower operations are at 200 MHz?				
THE PERSON NAMED IN	and and control tower operations are at 200 112121				

Course Outcome (CO) and Bloom's level (BL) Coverage in Questions

