Prüfungs- und Studienordnung des Bachelorstudiengangs Mathematik mit Informatik an der Ernst-Moritz-Arndt-Universität Greifswald

Vom 8. November 2013

Fundstelle: Hochschulöffentlich bekannt gemacht am 15.11.2013

Änderungen:

§ 8 Abs. 8 aufgehoben durch Artikel 13 der Satzung zur Angleichung wesentlicher Regelungen an die Neufassung der Rahmenprüfungsordnung 2021 vom 21. Juli 2021 (hochschulöffentlich bekannt gemacht am 21.07.2021)

Hinweise:

Die Satzung zur Angleichung wesentlicher Regelungen an die Neufassung der Rahmenprüfungsordnung 2021 vom 21. Juli 2021 tritt am 01. Oktober 2021 in Kraft.

Aufgrund von § 2 Absatz 1 in Verbindung mit § 38 Absatz 1 und § 39 Absatz 1 des Gesetzes über Hochschulen des Landes Mecklenburg-Vorpommern die (Landeshochschulgesetz - LHG M-V) in der Fassung der Bekanntmachung vom 25. Januar 2011 (GVOBI. M-V S. 18), zuletzt geändert durch Artikel 6 des Gesetzes vom 22. Juni 2012 (GVOBI. M-V S. 208, 211), erlässt die Ernst-Moritz-Arndt-Universität Greifswald für den Bachelorstudiengang Mathematik mit Informatik (B. Sc. Mathematik mit Informatik) die folgende Prüfungs- und Studienordnung als Satzung:

Inhaltsverzeichnis

- § 1 Geltungsbereich
- § 2 Ziele und Aufbau des Studiums
- § 3 Veranstaltungsarten
- § 4 § 5 Studienaufnahme
- Teilprüfungen
- § 6 Praktikum, Mobilitätsfenster
- § 7 Module
- § 8 Modulprüfungen
- § 9 Bachelorarbeit
- Bildung der Gesamtnote
- § 10 § 11 Akademischer Grad
- § 12 Inkrafttreten, Übergangsregelungen, Außerkrafttreten

Musterstudienplan Anlage A: Anlage B: Modulkatalog

Anlage C: Diploma Supplement (deutsche und englische Version)

§ 1 Geltungsbereich¹

den Studieninhalt, Studienaufbau Diese Prüfungsordnung regelt und das Prüfungsverfahren im Bachelorstudiengang Mathematik mit Informatik der Ernst-Moritz-Arndt-Universität Greifswald. Im Übrigen gilt für alle weiteren Studien- und Rahmenprüfungsordnung Prüfungsangelegenheiten die der Ernst-Moritz-Arndt-Universität Greifswald (RPO) vom 31. Januar 2012 (Mittl.bl. BM M-V 2012 S. 394) in der jeweils geltenden Fassung unmittelbar.

§ 2 Ziele und Aufbau des Studiums

- (1) Ziel der Ausbildung ist, den künftigen Bachelor of Science in Mathematik mit Informatik mit solchen Kenntnissen, Fähigkeiten und Kompetenzen zu versehen, dass er in Berufen mit informatisch-mathematischen Anforderungsprofilen flexibel einsetzbar ist.
- (2) Die Absolventen des Studienganges sollen
 - a) über solide mathematische Kenntnisse verfügen und befähigt sein, Lösungsmethoden und Algorithmen für mathematische Fragestellungen korrekt einzusetzen.
 - b) umfangreiches Wissen über die praktischen Methoden der Informatik besitzen und deren Einsatz beherrschen,
 - c) kompetent sein, anwendungsorientierte Probleme durch Kombination von mathematischen Methoden und Implementierung von entsprechender Software zu bearbeiten.
- (3) Die Zeit, in der in der Regel das Studium mit dem Grad Bachelor of Science abgeschlossen werden kann (Regelstudienzeit), beträgt sechs Semester.
- (4) Der zeitliche Gesamtumfang, der für den erfolgreichen Abschluss des Studiums erforderlichen regelmäßigen Arbeitslast (workload), beträgt 5400 Stunden. Es sind insgesamt 180 Leistungspunkte (LP) zu erwerben.
- (5) Ein erfolgreiches Studium setzt den Besuch der in den Modulen angebotenen Lehrveranstaltungen voraus. Die Studierenden haben die entsprechende Kontaktzeit eigenverantwortlich durch ein angemessenes Selbststudium zu ergänzen. Die jeweiligen Lehrkräfte geben hierzu für jedes Modul rechtzeitig Studienhinweise, insbesondere Literaturlisten heraus, die sich an den Qualifikationszielen und an der Arbeitsbelastung des Moduls orientieren.
- (6) Unbeschadet der Freiheit der Studierenden, den zeitlichen und organisatorischen Verlauf seines Studiums selbstverantwortlich zu planen, wird der Musterstudienplan (Anlage A) als zweckmäßig empfohlen. Für die qualitativen und quantitativen Beziehungen zwischen der Dauer der Module und der Leistungspunkteverteilung einerseits sowie den Lehrveranstaltungsarten und Semesterwochenstunden andererseits wird ebenfalls auf den Musterstudienplan verwiesen.

2

¹ Soweit für Funktionsbezeichnungen ausschließlich die männliche oder die weibliche Form verwendet wird, gilt diese jeweils auch für das andere Geschlecht.

§ 3 Veranstaltungsarten

Die Studieninhalte werden insbesondere in Vorlesungen, Seminaren und Übungen angeboten. Zur Ergänzung können Veranstaltungsarten wie Kolloquien und Tutorien sowie Exkursionen angeboten werden.

- 1. Vorlesungen dienen der systematischen Darstellung eines Stoffgebietes, der Vortragscharakter überwiegt.
- 2. Seminare sind Lehrveranstaltungen, in denen die Studierenden durch eigene mündliche und schriftliche Beiträge sowie Diskussionen in das selbständige wissenschaftliche Arbeiten eingeführt werden.
- 3. Übungen führen die Studierenden in die praktische wissenschaftliche Tätigkeit bei intensiver Betreuung durch Lehrpersonen ein. Sie vermitteln grundlegende Methoden des wissenschaftlichen Arbeitens in den relevanten Fachgebieten und fördern die Anwendung und Vertiefung der Lehrinhalte.

§ 4 Studienaufnahme

Das Studium im Bachelorstudiengang Mathematik mit Informatik kann nur im Wintersemester aufgenommen werden.

§ 5 Teilprüfungen

- (1) Studierende, die nach Ablauf eines Semesters beabsichtigen, die Universität zu verlassen, und die Lehrveranstaltungen eines semesterübergreifenden Moduls besuchen, können gemäß § 8 Absatz 1 RPO beantragen, am Ende des Semesters eine Prüfung abzulegen, die sich auf die bereits absolvierten Teile des Moduls bezieht. Der Antrag ist spätestens vier Wochen nach Ende der Vorlesungszeit an den Prüfungsausschussvorsitzenden zu richten und im Zentralen Prüfungsamt einzureichen.
- (2) Studierende, denen nach § 43 RPO erbrachte Leistungsnachweise angerechnet werden, die sich nur auf einen Teil einer Modulprüfung beziehen, können über den fehlenden Teil des Moduls eine Teilprüfung ablegen.

§ 6 Praktikum, Mobilitätsfenster

- (1) Während des Studiums kann in der vorlesungsfreien Zeit der Semester 2, 3 und 4 ein selbstständig zu organisierendes 4-wöchiges berufsbezogenes Praktikum absolviert werden. Hierfür werden 6 LP vergeben. Das berufsbezogene Praktikum stellt eines der Wahlmodule gemäß § 7 Absatz 2 dar.
- (2) Auf Antrag des Studierenden entscheidet der Prüfungsausschussvorsitzende rechtzeitig vor Beginn des berufsbezogenen Praktikums über die Eignung der Praktikumsstelle. Der Antrag ist schriftlich an den Vorsitzenden des Prüfungsausschusses zu richten und beim Zentralen Prüfungsamt einzureichen.

- (3) Der Vorsitzende des Prüfungsausschusses steht als Ansprechpartner und Betreuer für das berufsbezogene Praktikum zur Verfügung.
- (4) Als Prüfungsleistung ist eine 3-seitige schriftliche Darstellung der Praktikumstätigkeit (Protokoll/Bericht) anzufertigen. Diese wird von dem Vorsitzenden des Prüfungsausschusses nach Absatz 2 als "bestanden" oder "nicht bestanden" bewertet.
- (5) Nach den Semestern 2 und 4 besteht die Möglichkeit, ein Auslandssemester (Mobilitätsfenster) zu absolvieren.
- (6) Bereits vor dem Studium abgeleistete Praktika können auf Antrag des Studierenden vom Vorsitzenden des Prüfungsausschusses anerkannt werden, wenn sie in direktem Bezug zum Studium stehen und deren Abschluss zum Zeitpunkt der Immatrikulation nicht mehr als ein Jahr zurückliegt. Der Antrag ist schriftlich an den Prüfungsausschussvorsitzenden zu richten und im Zentralen Prüfungsamt einzureichen.

§ 7 Module

(1) Im Bachelorstudiengang werden folgende Module studiert:

Legende:

AB Arbeitsbelastung in Stunden

LP Leistungspunkte

PL Prüfungsleistungen (Umfang nach § 8, Absatz 2)

RPT Regelprüfungstermin mP mündliche Prüfung

Kl Klausur

mP/KI mündliche Prüfung oder Klausur

Üs Übungsschein Sems Seminarschein

Prüfungsleistung ist unbenotet

Modul	Dauer (Semester)	AB	LP	PL (Art und Umfang)	RPT (Semester)
Analysis	2	540	18	2 Üs * 1 mP/KI	1. und 2. 2.
Lineare Algebra und analytische Geometrie	2	540	18	2 Üs * 1 mP/KI	1. und 2. 2.
Algorithmen und Programmierung	1	270	9	1 Üs * 1 mP/KI	1. 1.
Einführung in die Infor- matik/Computeralgebra- Systeme	2	240	8	1 KI 1 Üs *	1. 2.
Theoretische Informatik	1	270	9	1 mP/KI	4.
Optimierung	1	270	9	1 mP/KI	4.
Stochastik	1	270	9	1 mP 1 Üs *	3. 3.
Praxis des Programmierens	1	270	9	1 Üs *	3.

Gewöhnliche Differential-	2	210	7	1 Üs *	3.
gleichungen/Proseminar				1 mP	3.
				1 Sems *	4.
Algebra I	1	270	9	1 Üs *	3.
				1 mP/KI	3.
Numerik I	1	270	9	1 Üs *	4.
				1 mP/KI	4.
Statistik	1	270	9	1 Üs *	4.
				1 mP	4.
Numerik Grundpraktikum	1	180	6	1 Üs *	5.
				1 mP/KI	5.
Datenstrukturen und	1	270	9	1 Üs *	5.
effiziente Algorithmen				1 mP	5.
Praktikum	1	180	6	1 Üs *	6.
Softwaretechnik					
Wahlmodule	1/2	720	24	siehe	5./6.
(siehe Absatz 2)				Absatz 2	
Bachelorarbeit	1	360	12		6.

(2) Es müssen Wahlmodule im Umfang von 24 LP studiert werden. Es werden vier verschiedene Typen von Wahlmodulen angeboten.

Zu Typ 1 gehören:

Modul	Dauer (Semester)	AB	LP	PL (Art und Umfang)
Computergraphik I	1	180	6	1 mP/KI
Datenbanken	1	180	6	1 mP
Differentialgeometrie	1	180	6	1 mP/KI
Finanz- und Versich- erungsmathematik	1	180	6	1 mP/KI
Fourieranalyse/Dis- tributionentheorie	1	180	6	1 mP/KI
Funktionentheorie	1	180	6	1 mP/KI
Mathematische Logik	1	180	6	1 mP
Nichtlineare Optimierung	1	180	6	1 mP/KI
Partielle Differential- gleichungen	1	180	6	1 mP/KI
Randomisierte Algorithmen	1	180	6	1 mP
Spieltheorie	1	180	6	1 mP/KI
Berufsbezogenes Praktikum	4 W	180	6	Praktikums- bericht* (3 S.)

Zu Typ 2 gehören:

Modul	Dauer (Semester)	AB	LP	PL (Art und Umfang)
Algebra II	1	270	9	1 Üs * 1 mP/KI
Funktionalanalysis	1	270	9	1 Üs * 1 mP/KI
Maß- und Integrationstheorie	1	270	9	1 Üs * 1 mP/KI
Multivariate Statistik	1	270	9	1 mP/KI
Numerik II	1	270	9	1 Üs * 1 mP/KI

Typ 3 besteht aus einer Veranstaltung vom Typ 1 zusammen mit einem Seminar:

Modul	Dauer	AB	LP	PL (Art und
	(Semester)			Umfang)
Typ 3	2	270	9	1 mP/KI
				1 Sems *

Typ 4 ist das Vertiefungsmodul, bestehend aus zwei Seminaren:

Modul	Dauer (Semester)	AB	LP	PL (Art und Umfang)
Vertiefungsmodul	2	180	6	2 Sems *

Es muss mindestens ein Modul vom Typ 3 oder vom Typ 4 gewählt werden. Typ 4 darf nur einmal belegt werden.

Typ 5: Spezialvorlesungen

Modul	Dauer (Semester)	AB	LP	PL (Art und Umfang)
Spezialvorlesung I	2	180	6	2 mP/KI
Spezialvorlesung II	1	180	6	mP/KI

(3) Die Qualifikationsziele der einzelnen Module ergeben sich aus der Anlage Modulkatalog.

§ 8 Modulprüfungen

- (1) In Absprache mit dem Studierenden kann eine Modulprüfung auch auf Englisch stattfinden.
- (2) Die Modulprüfungen werden in Form einer 30-minütigen mündlichen Prüfungsleistung, einer 90-minütigen Klausur oder eines 60-minütigen Vortrages

(Seminare) abgelegt. Die Kriterien für den Erhalt eines Übungsscheines legt der Dozent in der ersten Vorlesungswoche fest. Erfolgt keine Festlegung, so sind 50 % der Übungsaufgaben erfolgreich zu bearbeiten.

- (3) Besteht eine Modulprüfung aus mehreren Prüfungsleistungen, muss jede bestanden werden. Nicht bestandene Prüfungsleistungen lassen bestandene Prüfungsleistungen unberührt.
- (4) Soweit eine Wahl zwischen zwei Prüfungsleistungen (mündliche Prüfung oder Klausur) besteht, wird sie vom Prüfer in der ersten Vorlesungswoche getroffen. Erfolgt die Festlegung nicht oder nicht innerhalb der Frist, gilt die in § 7 zuerst genannte Prüfungsform.
- (5) Vor mündlichen Prüfungen ist dem Studierenden die Gelegenheit zur Konsultation einzuräumen.
- (6) Klausuren werden nach der Begutachtung an die Studierenden zurückgegeben.
- (7) In den Modulprüfungen wird geprüft, ob und inwieweit der Studierende die Qualifikationsziele erreicht hat. Schriftliche Prüfungsleistungen werden von einem Prüfer bewertet; wenn es sich um den letzten Wiederholungsversuch handelt, ist ein zweiter Prüfer heranzuziehen (§ 20 Absatz 2 RPO). Mündliche Prüfungen werden von einem Prüfer in Gegenwart eines sachkundigen Beisitzers bewertet.

§ 9 Bachelorarbeit

- (1) Hat der Studierende mindestens 120 LP erworben, kann er die Ausgabe eines Themas für die Bachelorarbeit beantragen. Das Thema der Bachelorarbeit soll spätestens sechs Monate nach Beendigung der letzten Modulprüfung ausgegeben werden. Beantragt der Studierende das Thema später oder nicht, verkürzt sich die Bearbeitungszeit entsprechend. Der Antrag auf Ausgabe des Themas der Arbeit soll spätestens 14 Tage vor dem Beginn der Bearbeitungszeit im Zentralen Prüfungsamt vorliegen (§ 28 Absatz 2 RPO).
- (2) Die Bearbeitungszeit für die Bachelorarbeit beträgt 360 Stunden (12 LP) im Verlauf von sechs Monaten.
- (3) Eine elektronische Fassung ist der Arbeit beizufügen. Zugleich hat der Studierende schriftlich zu erklären, dass von der Arbeit eine elektronische Kopie gefertigt und gespeichert werden darf, um eine Überprüfung mittels einer Plagiatssoftware zu ermöglichen.

§ 10 Bildung der Gesamtnote

- (1) Für die Bachelorprüfung wird eine Gesamtnote gebildet. Die Gesamtnote errechnet sich entsprechend § 33 RPO aus den Noten der in Absatz 2 aufgeführten Modulprüfungen. Die Noten dieser Modulprüfungen gehen mit dem auf den jeweiligen relativen Anteil an Leistungspunkten bezogenen Gewicht ein, die Note für die Bachelorarbeit wird dabei mit dem zweifachen relativen Anteil gewichtet.
- (2) Die Noten der Module

Algorithmen und Programmierung

Einführung in die Informatik/Computeralgebra-Systeme

Theoretische Informatik

Optimierung

Stochastik

Gewöhnliche Differentialgleichungen/Proseminar

Algebra I

Numerik I

Statistik

Numerik Grundpraktikum

Datenstrukturen und effiziente Algorithmen

Bachelorarbeit

und der Wahlmodule vom Typ 1, 2, 3 und 5 gehen in die Gesamtnote ein.

§ 11 Akademischer Grad

Aufgrund der bestandenen Bachelorprüfung wird der akademische Grad eines Bachelor of Science (abgekürzt: B. Sc.) vergeben.

§ 12 Inkrafttreten, Übergangsregelungen, Außerkrafttreten

- (1) Die Prüfungs- und Studienordnung tritt am Tag nach ihrer hochschulöffentlichen Bekanntmachung in Kraft.
- (2) Die Prüfungsordnung gilt erstmals für die Studierenden, die zum Wintersemester 2013/14 im Bachelorstudiengang Mathematik mit Informatik immatrikuliert werden.
- (3) Für vor diesem Zeitpunkt immatrikulierte Kandidaten findet sie Anwendung, wenn der Kandidat dieses beantragt. Der Antrag ist schriftlich und bis zum 30.09.2014 beim Zentralen Prüfungsamt einzureichen und an den Vorsitzenden des Prüfungsausschusses zu richten. Der Antrag ist unwiderruflich.
- (4) Die Prüfungsordnung vom 24. Januar 2012 tritt zum 31.03.2017 außer Kraft.

Ausgefertigt aufgrund des Beschlusses der Studienkommission des Senats der Ernst-Moritz-Arndt-Universität Greifswald vom 8. Oktober 2013 der mit Beschluss des Senats vom 18. April 2012 gemäß §§ 81 Absatz 7 LHG M-V und 20 Absatz 1 Satz 2 der Grundordnung der Ernst-Moritz-Arndt-Universität Greifswald die Befugnis zur Beschlussfassung verliehen wurde, und der Genehmigung der Rektorin vom 8. November 2013.

Greifswald, den 8. November 2013

Die Rektorin der Ernst-Moritz-Arndt-Universität Greifswald Universitätsprofessorin Dr. Johanna Eleonore Weber

Veröffentlichungsvermerk: Hochschulöffentlich bekannt gemacht am 15.11.2013

ERNST-MORITZ-ARNDT-UNIVERSITÄT GREIFSWALD MATHEMATISCH-NATURWISSENSCHAFTLICHE FAKULTÄT

Institut für Mathematik und Informatik

Musterstudienplan

Bachelor of Science Mathematik mit Informatik

Die Modulprüfungen werden in Form einer 30-minütigen mündlichen Prüfungsleistung, einer 90-minütigen Klausur oder eines 60-minütigen Vortrages (Seminare) abgelegt. Die Kriterien für den Erhalt eines Übungs-scheines legt der Dozent in der ersten Vorlesungswoche fest. Erfolgt keine Festlegung, so sind 50 % der Übungsaufgaben erfolgreich zu bearbeiten.

Musterstudienplan Bachelor Mathematik mit Informatik

Semester	Veranstaltung	V	Art U	S	D	Prüfungsart	LP	
1	Analysis 1 Lineare Algebra und analytische Geometrie 1 Algorithmen und Programmierung Einführung in die Informatik	4 4 4 2	2 2 2 2		2 1	Üs Üs mP+Üs/KI+Üs KI	9 9 6	33
2	Analysis 2 Lineare Algebra und analytische Geometrie 2 Optimierung oder Theoretische Informatik Computeralgebrasysteme	4 4 4	2 2 2 2		2	mP+Üs/KI+Üs mP+Üs/KI+Üs mP/KI Üs	9 9 9 2	29
3	Gewöhnliche Differentialgleichungen Stochastik Algebra Praxis des Programmierens	2 4 4 4	1 2 2 2		1 1	mP+Üs mP+Üs mP+Üs/KI+Üs Üs	5 9 9	32
4	Numerik I Statistik Theoretische Informatik oder Optimierung Proseminar	4 4 4	2 2 2	2	1 1	mP+Üs/KI+Üs mP+Üs mP/KI Sems	9 9 9 2	29
5	Numerik Grundpraktikum Datenstrukturen und effiziente Algorithmen Wahlmodul Typ 1 Wahlmodul Typ 1 Seminar (Wahlmodul Typ 4)	2 4 4 4	2 2	2	1 1 1	mP+Üs/KI+Üs mP+Üs mP/KI mP/KI Sems	6 9 6 6 3	30
6	Praktikum Softwaretechnik Wahlmodul Typ 1 Seminar (Wahlmodul Typ 4) Bachelorarbeit	1 4	3	2	1	Üs mP/KI Sems	6 6 3 12	27

Summe

Legende:

Art V: Vorlesung (Umfang in SWS)

Art Ü: Übung (Umfang in SWS)

Art S: Seminar (Umfang in SWS)

Prüfungsart mP/KI: mündliche Prüfung oder Klausur

Prüfungsart mP+Üs/KI+Üs: mündliche Prüfung und Übungsschein oder alternativ Klausur und Übungsschein

Prüfungsart mP: mündliche Prüfung Prüfungsart KI: Klausur Prüfungsart Sems: Seminarschein LP: ECTS-Leistungspunkte D: Dauer des zugehörigen Moduls in Semestern

ERNST-MORITZ-ARNDT-UNIVERSITÄT GREIFSWALD MATHEMATISCH-NATURWISSENSCHAFTLICHE FAKULTÄT Institut für Mathematik und Informatik

Modulkatalog

Bachelor of Science Mathematik mit Informatik

Inhaltsverzeichnis

Priicntmodule			4
Analysis			
Lineare Algebra und Analytische Geometrie			
Algorithmen und Programmierung			
Einführung in die Informatik (EI)/ Computeralgebra-Systeme (CAS)			 . 9
Theoretische Informatik			 . 11
Optimierung			 . 12
Stochastik			 . 13
Praxis des Programmierens			 . 14
Gewöhnliche Differentialgleichungen / Proseminar			 . 15
Algebra I			 . 17
Numerik I			
Statistik			 . 19
Numerik Grundpraktikum			 . 20
Datenstrukturen und effiziente Algorithmen			 . 21
Praktikum Softwaretechnik			
Wahlmodule			23
Algebra II			
Computergrafik I			
Datenbanken			
Differentialgeometrie			
Finanz- und Versicherungsmathematik			 . 28
Fourieranalysis / Distributionentheorie			
Funktionalanalysis			 . 30
Funktionentheorie			 . 31
Maß- und Integrationstheorie			 . 32
Mathematische Logik			 . 33
Multivariate Statistik			 . 34
Nichtlineare Optimierung			 . 35
Numerik II			 . 36
Partielle Differentialgleichungen			
Randomisierte Algorithmen			 . 38
Spieltheorie			 . 39
Spezialvorlesung I			 . 40
Spezialvorlesung II			
Vertiefung			
Berufsbezogenes Praktikum			

Bachelorarbeit																4	4
Bachelorarbeit																4	15

Die Modulprüfungen werden in Form einer 30-minütigen mündlichen Prüfungsleistung, einer 90-minütigen Klausur oder eines 60-minütigen Vortrages (Seminare) abgelegt. Die Kriterien für den Erhalt eines Übungsscheines legt der Dozent in der ersten Vorlesungswoche fest. Erfolgt keine Festlegung, so sind 50 % der Übungsaufgaben erfolgreich zu bearbeiten.

Pflichtmodule

Modul Analysis	
Verantwortlicher	Professur Analysis
Lehrformen	Vorlesung (8 SWS) und Übung (4 SWS)
Dauer/Turnus	2 Sem., jeweils 4+2 SWS im WS und SoSe, beginnend jährlich im WS
A !!(! !! ! . .	

Qualifikationsziele

- Beherrschung der grundlegenden Methoden der Analysis in einem systematischen Aufbau.
- Basiswissen für das gesamte weitere Studium,
- Kompetenzen in den grundlegenden Prinzipien der Analysis, insbesondere die Bedeutung von Grenzübergängen,
- sichere Beherrschung verschiedener Beweistechniken,
- Befähigung zur sicheren Differentiation in mehreren Variablen,
- Befähigung zur Berechnung einfacher mehrdimensionaler Integrale sowie einfacher Kurven- und Flächenintegrale,
- Beherrschung mathematischer Arbeitsweisen (Entwickeln von mathematischer Intuition und deren formale Begründung, mathematische Begriffsbildung),
- grundlegendes Verständnis für die praktische und gesellschaftliche Relevanz von mathematischen Modellen für physikalische und biologische Prozesse,
- Befähigung zur mündlichen Kommunikation durch freie Rede und Diskussion (Übungen).

- Axiomatik der reellen Zahlen und elementaren Funktionen
- Konvergenz von Folgen und Reihen
- Metrische Räume, Banachscher Fixpunktsatz
- Differential- und Integralrechnung von Funktionen in einer oder mehreren Variablen
- Grundbegriffe der Vektoranalysis, Integrale über Kurven und Flächen, Satz von Stokes
- analytische Behandlung von einfachen Modellen für physikalische und biologische Prozesse

Vorkenntnisse	keine
Prüfung	Die Modulprüfung besteht aus einer Klausur oder einer mündlichen Prüfung. Die Kriterien für den Erhalt eines Übungsscheines legt der Dozent in der ersten Vorlesungswoche fest. Erfolgt keine Festlegung, so sind 50 % der Übungsaufgaben erfolgreich zu bearbeiten.
Note	Note der Modulprüfung
Aufwand	540 (Vorlesung: 120, Übung: 60, Selbststudium: 360)
Leistungspunkte	18
Regelprüfungstermine	Übung 1: 1. Sem., Übung 2: 2. Sem., Modulprüfung: 2. Sem
Modulart	Pflichtmodul

Modul Lineare Algebra und Analytische Geometrie		
Verantwortlicher	Professur Algebra und funktionalanalytische Anwendungen,	
	Professur Mathematische Logik und Grundlagen der Mathe-	
	matik	
Lehrformen	Vorlesung (8 SWS) und Übung (4 SWS)	
Dauer/Turnus	2 Sem., jeweils 4+2 SWS im WS und SoSe, beginnend jährlich im WS	

Qualifikationsziele

- Kenntnis und Beherrschung grundlegender Prinzipien algebraischer Strukturen und deren Anwendung auf einfache mathematische Fragestellungen,
- Beherrschung von mathematischem Basiswissen als Grundlage des gesamten weiteren Studiums,
- Befähigung zu mathematischen Arbeitsweisen (Entwicklung mathematischer Intuition, Aneignung der Fähigkeit, formal und verständlich zu begründen, Schulung des Abstraktionsvermögens, Einsicht in den axiomatischen Aufbau mathematischer Fachgebiete anhand durchsichtiger Strukturen),
- Kenntnisse über den strukturellen Aufbau der Mathematik,
- Befähigung zur Erkennung der Zusammenhänge zwischen abstrakten mathematischen Theorien und konkreten Beispielen,
- Befähigung zur Anwendung des Erlernten für praktische Fragestellungen,
- Bereitschaft zur Diskussion und zum gemeinsamen Erarbeiten von Ergebnissen und Kommunikationsfähigkeit durch freie Rede vor einem Publikum.

Inhalt

Gruppen und Körper, Vektorräume, lineare Abbildungen, Matrizen, lineare Gleichungssysteme, Gauß-Algorithmus, Basis und Dimension, Determinanten, Skalarprodukte, euklidische und unitäre Vektorräume, Länge von Vektoren, Winkel, Orthogonalität, Diagonalisierbarkeit, charakteristisches Polynom, Minimalpolynom, Eigenwerte, symmetrische und hermitesche Matrizen, Satz von der Hauptachsentransformation, nilpotente Matrizen, Jordansche Normalform, normale Matrizen, Normalform orthogonaler Matrizen, Exponential einer Matrix, Anwendungen Markov-Ketten, lineare Differentialgleichungen, affine Geometrie, affine und euklidische Punkträume, Kegelschnitte, Tensorprodukte von Vektorräumen, Kodierungstheorie, Satz von Perron-Frobenius

Vorkenntnisse	keine
Prüfung	Die Modulprüfung besteht aus einer Klausur oder einer mündlichen Prüfung. Die Kriterien für den Erhalt eines Übungsscheines legt der Dozent in der ersten Vorlesungswoche fest. Erfolgt keine Festlegung, so sind 50 % der Übungsaufgaben erfolgreich zu bearbeiten.
Note	Note der Modulprüfung
Aufwand	540 (Vorlesung: 120, Übung: 60, Selbststudium: 360)
Leistungspunkte	18
Regelprüfungstermine	Übung 1: 1. Sem., Übung 2: 2. Sem., Modulprüfung: 2. Sem

Modulart	Pflichtmodul

Modul Algorithmen und Programmierung	
Verantwortlicher	Professuren Informatik
Lehrformen	Vorlesung (4 SWS) und Übung (2 SWS)
Dauer/Turnus	1 Sem., jährlich im WS
Qualifikationsziele	

- grundlegendes Verständnis für den Begriff des Algorithmus,
- Kompetenzen in der Bewertung von Algorithmen hinsichtlich Ihrer Leistungsfähigkeit,
- Befähigung zum Entwurf einfacher Algorithmen,
- Befähigung zur Erstellung einfacher Programme in JAVA.

- grundlegende algorithmische Probleme (Suchen, Sortieren)
- elementare Datenstrukturen (Listen, Stacks, Queues, Suchbäume)
- Entwurfstrategien für Algorithmen (Teile und Herrsche, Greedy)
- Analyse von Algorithmen (O-Notation, Laufzeit, Speicherbedarf)
- grundlegende Aspekte der objektorientierten Programmierung in JAVA

Vorkenntnisse	Abitur
Prüfung	Die Modulprüfung besteht aus einer Klausur oder einer mündlichen Prüfung. Die Kriterien für den Erhalt eines Übungsscheines legt der Dozent in der ersten Vorlesungswoche fest. Erfolgt keine Festlegung, so sind 50 % der Übungsaufgaben erfolgreich zu bearbeiten.
Note	Note der Modulprüfung
Aufwand	270 (Vorlesung: 60, Übung: 30, Selbststudium: 180)
Leistungspunkte	9
Regelprüfungstermine	Übung: 1. Sem., Modulprüfung: 1. Sem.
Modulart	Pflichtmodul

Modul Einführung in die Informatik (EI)/ Computeralgebra-Systeme (CAS)	
Verantwortlicher	Professuren Informatik
Lehrformen	Vorlesung (2 SWS) und Übung (4 SWS)
Dauer/Turnus	2 Sem., jährlich, EEDV im WS, CAS im SoSe
Qualifikationsziele	

EI:

- grundlegende Fähigkeiten zum Einsatz von informationsverarbeitenden Systemen sowie Standardanwendungen und -werkzeugen,
- Kenntnisse zu den Möglichkeiten, Grenzen und Risiken.

CAS:

- Befähigung zur Lösung von Standardaufgaben (Faktorisierung, Nullstellenberechnung, Termvereinfachung, Differentiation/Integration) mit Hilfe von Computeralgebrasystemen,
- Befähigung zur Erstellung von einfachen Programmen in Computeralgebrasystemen.
- Befähigung zur Analyse und Bearbeitung komplexer, praktischer Aufgabenstellungen.

Inhalt

EI:

- Aufbau eines Rechners
- Umgang mit Standardsoftware (Tabellenkalkulation, Erstellung von Präsentationen und Grafiken, Bildbearbeitung)
- Umgang mit grundlegenden Werkzeugen unter Linux
- Grundlagen von Netzwerken
- Grundlagen zu Textsatz mit LaTeX und HTML, XML

CAS:

- Nutzung von Computeralgebrasystemen zur Lösung von Standardaufgaben wie: Faktorisierung, Nullstellenbestimmung, Termvereinfachung, Differenzieren/Integrieren
- Erstellung einfacher Programme in einem Computeralgebrasystem

Vorkenntnisse	EEDV: Grundlegende Kenntnisse zum Umgang mit dem
	Computer (Textverarbeitung, Web-Browser, e-Mail)
	CAS: Analysis, Lineare Algebra und analytische Geometrie
Prüfung	Die Modulprüfung besteht aus einer Klausur zum Stoff
	der Vorlesung EEDV. Die Kriterien für den Erhalt eines
	Übungsscheines zu CAS legt der Dozent in der ersten Vorle-
	sungswoche fest. Erfolgt keine Festlegung, so sind 50 % der
	Übungsaufgaben erfolgreich zu bearbeiten.
Note	Note der Modulprüfung
Aufwand	240 (Vorlesung: 30, Übung: 60, Selbststudium: 150)
Leistungspunkte	8
Regelprüfungstermine	Modulprüfung EEDV: 1. Sem., Übung CAS: 2. Sem.

Modulart	Pflichtmodul

Modul Theoretische Informatik	
Verantwortlicher	Professur Mathematische Logik und Grundlagen der Mathe-
	matik
Lehrformen	Vorlesung (4 SWS) und Übung (2 SWS)
Dauer/Turnus	1 Sem., jährlich im SoSe
Qualifikationsziele	

- Kenntnis der grundlegenden Eigenschaften und Grenzen der Berechenbarkeit,
- Verständnis der Bedeutung der Berechenbarkeit für die Informatik,
- Verständnis für mathematische Modelle informationsverarbeitender Systeme und deren Anwendung,
- Befähigung zum Vergleich von Typen formaler Sprachen und zugehöriger Akzeptortypen bezüglich ihrer Leistungsvermögen,
- Verständnis und Beherrschung des Wechselspiels zwischen mathematischer Intuition und ihrer Präzisierung durch formale Systeme,
- Befähigung zur mündlichen Kommunikation durch freie Rede und Diskussion in den Übungen.

- Grundlagen der Berechenbarkeits- und Algorithmentheorie: Intuitiver Algorithmus-Begriff und mathematische Präzisierungen der Berechenbarkeit (goto-, while-, aber auch loop-Programme, Turingmaschinen u.a.), Church-Turing-Hypothese, universelle Funktionen und unlösbare Probleme.
- Endliche Automaten und sequentielle Wortfunktionen, Boolesche Funktionen, Schaltalgebra.
- Formale Sprachen, die Klassen der Chomsky-Hierarchie und ihre Akzeptortypen.

Vorkenntnisse	Lineare Algebra, Analysis, Algorithmen und Programmierung
Prüfung	Die Modulprüfung besteht aus einer Klausur oder einer mündlichen Prüfung. Die aktive Teilnahme an den Übungen wird erwartet. Die Inhalte von Vorlesung und Übung sind Thema der Prüfung.
Note	Note der Modulprüfung
Aufwand	270 (Vorlesung: 60, Übung: 30, Selbststudium: 180)
Leistungspunkte	9
Regelprüfungstermine	4. Sem.
Modulart	Pflichtmodul

Modul Optimierung	
Verantwortlicher	Professur Angewandte Mathematik, Professur Numerische
	Mathematik und Optimierung
Lehrformen	Vorlesung (4 SWS) und Übung (2 SWS)
Dauer/Turnus	1 Sem., jährlich im SoSe
Qualifikationsziele	

- Kenntnisse über die Bedeutung und Herkunft linearer Optimierungsprobleme,
- Kompetenzen zur Lösung linearer Optimierungsprobleme,
- Befähigung zur konkreten Umsetzung der entsprechenden Lösungsmethoden,
- Befähigung zur Weitergabe und Diskussion wissenschaftlicher Ergebnisse,
- Kompetenzen zur mathematischen Modellierung von komplexen Prozessen.

- Grundlagen der linearen Optimierung
- Dualitätstheorie
- Simplexverfahren
- duales Simplexverfahren
- Innere-Punkte-Methoden
- Anwendungprobleme: Transportprobleme, Zuordnungsprobleme

Vorkenntnisse	Analysis I, II; Lineare Algebra I, II
Prüfung	Die Modulprüfung besteht aus einer Klausur oder einer mündlichen Prüfung. Die aktive Teilnahme an den Übungen wird erwartet. Die Inhalte von Vorlesung und Übung sind Thema der Prüfung.
Note	Note der Modulprüfung
Aufwand	270 (Vorlesung: 60, Übung: 30, Selbststudium: 180)
Leistungspunkte	9
Regelprüfungstermine	4. Sem.
Modulart	Pflichtmodul

Modul Stochastik	
Verantwortlicher	Professur Stochastik
Lehrformen	Vorlesung (4 SWS) und Übung (2 SWS)
Dauer/Turnus	1 Sem., jährlich im WS
Qualifikationsziele	

- grundlegendes sicheres Verständnis für stochastische Konzepte und Fragestellungen,
- Befähigung zur Einordnung und adäquaten Lösung von einfachen stochastischen Problemen,
- Verständnis für grundlegende Fakten und Zusammenhänge der Stochastik,
- Befähigung zur Formulierung stochastischer Modelle und zu deren Anwendung in vielfältigen, auch gesellschaftlichen, Zusammenhängen,
- Beherrschung der Grundlagen für die Module Statistik und Randomisierte Algorithmen sowie für verschiedene Wahlpflichtmodule (Finanz- und Versicherungsmathematik, Spieltheorie, multivariate Statistik).

Grundlegende Konzepte und Denkweisen der Stochastik:

- Wahrscheinlichkeitsraum, Ereignisse und Zufallsgrößen
- Verteilung, Verteilungsfunktion und Dichtefunktion, Erwartungswert und Streuung, Quantile
- bedingte Wahrscheinlichkeit, Unabhängigkeit, Korrelation, Regression
- Gesetz der großen Zahlen, Binomial-, Normal- und Poissonverteilung

Weiterführende Fragestellungen:

• Faltung von Zufallsgrößen, Zentraler Grenzwertsatz, Einführung in Markov-Ketten, Grundideen der Statistik, Poisson-Prozess

Vorkenntnisse	Analysis I, Lineare Algebra I
Prüfung	Die Modulprüfung besteht aus einer mündlichen Prüfung. Die Kriterien für den Erhalt eines Übungsscheines legt der Dozent in der ersten Vorlesungswoche fest. Erfolgt keine Festlegung, so sind 50 % der Übungsaufgaben erfolgreich zu bearbeiten.
Note	Note der Modulprüfung
Aufwand	270 (Vorlesung: 60, Übung: 30, Selbststudium: 180)
Leistungspunkte	9
Regelprüfungstermine	Übung: 3. Sem., Modulprüfung: 3. Sem.
Modulart	Pflichtmodul

Modul Praxis des Programmierens	
Verantwortlicher	Professuren Informatik
Lehrformen	Vorlesung (4 SWS) und Übung (2 SWS)
Dauer/Turnus	1 Sem., jährlich im WS
Qualifikationsziele	

- Befähigung zur selbständigen Planung komplexerer Anwendungen einschließlich graphischer Benutzerschnittstelle,
- Beherrschung der Implementierung in einer objektorientierten Programmiersprache (Java oder C++),
- Kenntnisse über gängige Werkzeuge zur Softwareentwicklung und deren Anwendung,
- Fähigkeit, sich selbständig in neue Werkzeuge und Sprachen einzuarbeiten.

- aktuelle Werkzeuge zur Erstellung und Verwaltung komplexerer Softwareprojekte (integrierte Entwicklungsumgebungen, Versionsverwaltung und Programmieren im Team, Debugging, Profiling)
- weiterführende Themen der Programmierung in einer objektorientierten Programmiersprache (GUI, Exceptions, Threads, Typvariablen)

Vorkenntnisse	Einführung in die EDV, Algorithmen und Programmierung
Prüfung	Die Kriterien für den Erhalt eines Übungsscheines legt der Dozent in der ersten Vorlesungswoche fest. Erfolgt keine Festlegung, so sind 50 % der Übungsaufgaben erfolgreich zu bearbeiten.
Note	keine
Aufwand	270 (Vorlesung: 60, Übung: 30, Selbststudium: 180)
Leistungspunkte	9
Regelprüfungstermine	Übung 3. Sem.
Modulart	Pflichtmodul

Modul Gewöhnliche Differentialgleichungen / Proseminar	
Verantwortlicher	Professur Analysis
Lehrformen	Vorlesung (2 SWS) und Übung (1 SWS)
Dauer/Turnus	1 Sem., Gewöhnliche Differentialgleichungen: jährlich im
	WS, Proseminar: jährlich im SoSe

Qualifikationsziele

Gewöhnliche Differentialgleichungen:

- Kenntnisse über die Lösbarkeit gewöhnlicher Differentialgleichungen,
- Befähigung zur Lösung spezieller Typen von Differentialgleichungen,
- Beherrschung von einfachen Problemen aus der Physik, Biologie und Technik, die sich durch gewöhnliche Differentialgleichungen beschreiben lassen,
- Befähigung zur Analyse von dynamischen Prozessen und Verständnis für deren praktische Bedeutung,
- Befähigung zur mündlichen Kommunikation durch freie Rede und Diskussion (Übungen).

Proseminar:

- Befähigung zur selbständigen Beschäftigung mit einem mathematischen Thema,
- Befähigung, einen strukturierten, effizienten und auf die Kompetenzen des Publikums zugeschnittenen Vortrag zu halten,
- Kompetenzen in der Diskussionsführung.

Inhalt

Gewöhnliche Differentialgleichungen:

- Grundbegriffe, Definition, Anfangswertproblem, autonome Differentialgleichungen
- Lösungstheorie: Existenz- und Eindeutigkeit einer Lösung, Abhängigkeit von den Anfangsbedingungen
- lineare Differentialgleichungssysteme: Grundlagen, Beziehung zwischen homogener und inhomogener Gleichung, Exponential von Matrizen, Wronski-Determinante
- Differentialgleichungs-Modelle von dynamischen Prozessen aus Physik und Biologie

Proseminar:

• ergänzende Themen aus der Analysis und der linearen Algebra, aufbauend auf den Vorlesungen Analysis I und II und Lineare Algebra

Vorkenntnisse	Analysis, Lineare Algebra
Prüfung	Gewöhnliche Differentialgleichungen: Die Modulprüfung be-
	steht aus einer mündlichen Prüfung. Die Kriterien für den Er-
	halt eines Übungsscheines legt der Dozent in der ersten Vor-
	lesungswoche fest. Erfolgt keine Festlegung, so sind 50 %
	der Übungsaufgaben erfolgreich zu bearbeiten. Proseminar:
	Die Prüfungsleistung besteht aus einem 45- bis 60-minütigen
	Vortrag zu einem vereinbarten Thema.

Note	Note der Modulprüfung
Aufwand	210 (Vorlesung: 30, Übung: 15, Seminar: 30, Selbststudium:
	135)
Leistungspunkte	7
Regelprüfungstermine	Übung: 3. Sem., Modulprüfung: 3. Sem., Proseminar: 4.
	Sem.
Modulart	Pflichtmodul

Modul Algebra I	
Verantwortlicher	Professur Algebra und funktionalanalytische Anwendungen
Lehrformen	Vorlesung (4 SWS) und Übung (2 SWS)
Dauer/Turnus	1 Sem., jährlich im WS
Qualifikationsziele	

- Verständnis grundlegender Prinzipien algebraischer Strukturen,
- Verständnis für die Anwendbarkeit und den Nutzen algebraischer Strukturen in vielen Bereichen der Mathematik,
- vertieftes Verständnis und Befähigung zur Verwendung der algebraischen Konzepte Gruppen, Ringe, Körper und der Begriffe wie Faktorisierung und Teilbarkeit im abstrakten Kontext,
- Beherrschung von Methoden des axiomatischen Vorgehens,
- Befähigung zu mathematischen Arbeitsweisen (Entwickeln mathematischer Intuition und deren formale Begründung, Schulung des Abstraktionsvermögens),
- Befähigung zur mündlichen Kommunikation durch freie Rede und Diskussion (Übungen).

- Gruppen: Satz von Lagrange, Normalteiler und Faktorgruppen, Isomorphiesätze, zyklische Gruppen, endliche abelsche Gruppen, Permutationsgruppen, Sylowsche Sätze
- Ringe : Ideale und Faktorringe, Polynomringe, euklidische Ringe, Hauptidealringe, Teilbarkeit, Quotientenkörper, faktorielle Ringe
- Körper: Körpererweiterungen

Vorkenntnisse	Lineare Algebra I, II
Prüfung	Die Modulprüfung besteht aus einer Klausur oder einer mündlichen Prüfung. Die Kriterien für den Erhalt eines Übungsscheines legt der Dozent in der ersten Vorlesungswoche fest. Erfolgt keine Festlegung, so sind 50 % der Übungsaufgaben erfolgreich zu bearbeiten.
Note	Note der Modulprüfung
Aufwand	270 (Vorlesung: 60, Übung: 30, Selbststudium: 180)
Leistungspunkte	9
Regelprüfungstermine	Übung: 3. Sem., Modulprüfung: 3. Sem.
Modulart	Pflichtmodul

Modul Numerik I	
Verantwortlicher	Professur Angewandte Mathematik, Professur Numerische
	Mathematik und Optimierung
Lehrformen	Vorlesung (4 SWS) und Übung (2 SWS)
Dauer/Turnus	1 Sem., jährlich im SoSe
A !! (!! ! ! ! . !	

Qualifikationsziele

- Kenntnisse zur Interpretation numerischer Resultate,
- Kenntnisse zur Anwendbarkeit numerischer Approximationsverfahren,
- Kompetenzen beim Einsatz numerischer Software,
- Kompetenzen bei der Entwicklung numerischer Software,
- Befähigung zur Lösung spezieller Grundaufgaben der Numerik,
- Befähigung zur Weitergabe und Diskussion wissenschaftlicher Ergebnisse.

- Grundlagen der Gleitpunktarithmetik
- Fehleranalyse
- Verfahren zur Lösung von linearen und nichtlinearen Gleichungssystemen und Ausgleichsproblemen
- Interpolation (Polynome und Splines) und Quadratur (Newton-Cotes und Gauß)

Vorkenntnisse	Analysis I, II, Lineare Algebra I, II
Prüfung	Die Modulprüfung besteht aus einer Klausur oder einer mündlichen Prüfung. Die Kriterien für den Erhalt eines Übungsscheines legt der Dozent in der ersten Vorlesungswoche fest. Erfolgt keine Festlegung, so sind 50 % der Übungsaufgaben erfolgreich zu bearbeiten.
Note	Note der Modulprüfung
Aufwand	270 (Vorlesung: 60, Übung: 30, Selbststudium: 180)
Leistungspunkte	9
Regelprüfungstermine	Übung: 4. Sem., Modulprüfung: 4. Sem.
Modulart	Pflichtmodul

Modul Statistik	
Verantwortlicher	Professur Biomathematik, Professur Stochastik, Professur
	Algebra und funktionalanalytische Anwendungen
Lehrformen	Vorlesung (4 SWS) und Übung (2 SWS)
Dauer/Turnus	1 Sem., jährlich im SoSe
Qualifikationsziele	

- Verständnis für die grundlegenden Fragestellungen der Statistik,
- Befähigung zur systematischen Formulierung, Einordnung und adäquaten Lösung von einfachen statistischen Problemen,
- Beherrschung von Standardschätz- und Testverfahren und deren Anwendung mithilfe von Statistik-Software,
- Verständnis für die Breite der statistischen Verfahren,
- Kompetenz zur sicheren Beurteilung der Ergebnisse statistischer Standardmethoden,
- Beherrschung des nötigen Grundwissens für fortgeschrittene Lehrveranstaltungen aus dem Bereich Statistik.

- Grundlegende Fragestellungen der deskriptiven und der schließenden Statistik
- Statistische Modellierung und Verteilungsannahmen
- Punktschätzer, Konfidenzbereiche, statistische Tests
- Einfache Gütekriterien für Schätzer und Tests
- Weiterführende Fragestellungen: Varianzanalyse, multiples Testen, robuste Verfahren, nichtparametrische Verfahren, Bootstrap
- Verwendung von Statistik-Software (Übungen)

Vorkenntnisse	Analysis I, II, Lineare Algebra I, Stochastik
Prüfung	Die Modulprüfung besteht aus einer mündlichen Prüfung. Die Kriterien für den Erhalt eines Übungsscheines legt der Dozent in der ersten Vorlesungswoche fest. Erfolgt keine Festlegung, so sind 50 % der Übungsaufgaben erfolgreich zu bearbeiten.
Note	Note der Modulprüfung
Aufwand	270 (Vorlesung: 60, Übung: 30, Selbststudium: 180)
Leistungspunkte	9
Regelprüfungstermine	Übung: 4. Sem., Modulprüfung: 4. Sem.
Modulart	Pflichtmodul

Modul Numerik Grundpraktikum	
Verantwortlicher	Professur Angewandte Mathematik, Professur Numerische
	Mathematik und Optimierung
Lehrformen	Vorlesung (2 SWS) und Übung (2 SWS)
Dauer/Turnus	1 Sem., jährlich im WS
Qualifikationsziele	

- Kenntnisse zum Anwendungsbereich der gewöhnlichen Differentialgleichungen,
- Befähigung zur kritischen Bewertung numerischer Ergebnisse,
- Kompetenzen bei der Auswahl geeigneter Lösungsmethoden,
- Kompetenzen zur Entwicklung numerischer Software für Anfangswertaufgaben,
- Kompetenzen zur Weitergabe und Diskussion wissenschaftlicher Ergebnisse.

- Methoden zur numerischen Lösung von Anfangswertproblemen bei gewöhnlichen Differentialgleichungen
- effiziente Einschrittverfahren (Runge-Kutta Verfahren) mit Schrittweitensteuerung
- effiziente Mehrschrittverfahren mit Schrittweiten- und Ordnungssteuerung
- Konvergenztheorie
- implizite Methoden für steife Probleme

Vorkenntnisse	Analysis I, II; Lineare Algebra I, II; Numerik I
Prüfung	Die Modulprüfung besteht aus einer Klausur oder einer mündlichen Prüfung. Die Kriterien für den Erhalt eines Übungsscheines legt der Dozent in der ersten Vorlesungswoche fest. Erfolgt keine Festlegung, so sind 50 % der Übungsaufgaben erfolgreich zu bearbeiten.
Note	Note der Modulprüfung
Aufwand	180 (Vorlesung: 30, Übung: 30, Selbststudium: 120)
Leistungspunkte	6
Regelprüfungstermine	Übung: 5. Sem., Modulprüfung: 5. Sem.
Modulart	Pflichtmodul

Modul Datenstrukturen und effiziente Algorithmen	
Verantwortlicher	Professuren Informatik
Lehrformen	Vorlesung (4 SWS) und Übung (2 SWS)
Dauer/Turnus	1 Sem., jährlich im WS
Qualifikationsziele	

- Überblick über wichtige komplexere algorithmische Probleme und Datenstruktu-
- Fähigkeit zur Analyse ihrer Leistungsfähigkeit,
- Verständnis für die grundsätzlichen Schwierigkeiten beim Entwurf von Algorithmen für NP-schwere Probleme,
- Kompetenz zum selbständigen Entwurf und der Analyse von Algorithmen für solche Probleme,
- Fähigkeit zum Verwenden von online verfügbaren Quelltextbibliotheken.

- komplexere Datenstrukturen und deren Analyse (Hashing, Heaps, höhenbalancierte Suchbäume)
- Algorithmen zur Suche in Strings
- fortgeschrittene Analysetechniken (amortisierte Analyse)
- Probleme der kombinatorischen Optimierung (kürzeste Wege in Netzwerken, minimale Spannbäume, Matchings, Netzwerkfluss)
- Strategien zur Lösung NP-schwerer Probleme (Approximationsalgorithmen, parametrisierte Algorithmen)
- Implementation einzelner Datenstrukturen und Algorithmen

Vorkenntnisse	Algorithmen und Programmierung, Theoretische Informatik
Prüfung	Die Modulprüfung besteht aus einer mündlichen Prüfung.
	Die Kriterien für den Erhalt eines Übungsscheines legt der
	Dozent in der ersten Vorlesungswoche fest. Erfolgt keine
	Festlegung, so sind 50 % der Übungsaufgaben erfolgreich
	zu bearbeiten.
Note	Note der Modulprüfung
Aufwand	270 (Vorlesung: 60, Übung: 30, Selbststudium: 180)
Leistungspunkte	9
Regelprüfungstermine	Übung: 5. Sem., Modulprüfung: 5. Sem.
Modulart	Pflichtmodul

Modul Praktikum Softwaretechnik	
Verantwortlicher	Professuren Informatik
Lehrformen	Vorlesung (1 SWS) und Praktikum (3 SWS)
Dauer/Turnus	1 Sem., jährlich im SoSe
Qualifikationsziele	

- Kenntnis der wesentlichen Phasen des Prozesses der Erstellung komplexer Software,
- Fähigkeiten in der Abschätzung und Planung der notwendigen Ressourcen zur Umsetzung eines Projekts,
- Kompetenz zur Übernahme von Verantwortung für einen wesentlichen Teil der Entwicklungsarbeit an einem Projekt im Team,
- Fähigkeiten zur Präsentation der Möglichkeiten und Grenzen der erstellten Software.

- Werkzeuge und Methoden zur Entwicklung und Wartung umfangreicher Software-Systeme
- Projektplanung
- Entwurf und Implementierung
- Dokumentation, Testen und Qualitätssicherung

Vorkenntnisse	Praxis des Programmierens
Prüfung	Die Kriterien für den Erhalt eines Übungsscheines legt der Dozent in der ersten Vorlesungswoche fest. Erfolgt keine Festlegung, so sind 50 % der Übungsaufgaben erfolgreich zu bearbeiten.
Note	Note der Modulprüfung
Aufwand	180 (Vorlesung: 15, Übung: 45, Selbststudium: 120)
Leistungspunkte	6
Regelprüfungstermine	6. Sem.

Wahlmodule

Modul Algebra II	
Verantwortlicher	Professur Analysis, Professur Algebra und funktionalanalyti-
	sche Anwendungen
Lehrformen	Vorlesung (4 SWS) und Übung (2 SWS)
Dauer/Turnus	1 Sem., zweijährlich im SoSe ungerade Jahre
Qualifikationsziele	

- Kenntnis der Algebraisierung eines fundamentalen Symmetriebegriffes.
- Kenntnis über das Zusammenwirken geometrischer und algebraischer Methoden,
- Beherrschung des grundlegenden Begriffs der Darstellung und seiner Anwendungen in vielen Gebieten der Mathematik und Naturwissenschaften (Algebra, Operatoralgebren, Physik, Chemie),
- Fähigkeit zur eigenständigen Entwicklung komplexer mathematischer Modelle,
- souveräne Beherrschung mathematischer Arbeitsweisen (Entwicklung mathematischer Intuition und deren formale Begründung, Schulung des Abstraktionsvermögens, Beweisführung),
- Kommunikationsfähigkeit in wissenschaftlicher Diskussion (Übung).

- Lie-Algebren: Nilpotente und auflösbare Lie-Algebren, Satz von Engel, Satz von Lie, Kriterium von Cartan, Halbeinfache Lie-Gruppen, Kriterium für Halbeinfachheit, Klassifikation und Darstellungstheorie halbeinfacher Lie-Algebren oder
- Darstellungstheorie: Darstellungstheorie endlicher Gruppen, vollständige Reduzibilität; Schursches Lemma, Charaktere, irreduzible Darstellungen der symmetrischen Gruppen, Young-Tableaux, Darstellungstheorie der klassischen Matrix-Gruppen, Klassische Gruppen, irreduzible Darstellungen der klassischen Gruppen

Vorkenntnisse	Analysis I, II, Algebra I
Prüfung	Die Modulprüfung besteht aus einer Klausur oder einer mündlichen Prüfung. Die Kriterien für den Erhalt eines Übungsscheines legt der Dozent in der ersten Vorlesungswoche fest. Erfolgt keine Festlegung, so sind 50 % der Übungsaufgaben erfolgreich zu bearbeiten.
Note	Note der Modulprüfung
Aufwand	270 (Vorlesung: 60, Übung: 30, Selbststudium: 180)
Leistungspunkte	9
Regelprüfungstermine	6. Semester
Modulart	Wahlmodul

Modul Computergrafik I	
Verantwortlicher	Professur Informatik
Lehrformen	Vorlesung (2 SWS) und Übung (2 SWS)
Dauer/Turnus	1 Sem., zweijährlich im WS gerade Jahre
Qualifikationsziele	

- Verständnis für die im Kontext der grafischen Darstellung auftretenden Problemstellungen,
- Befähigung zur Lösung entsprechender Probleme mit aktuellen Bibliotheken,
- vertiefte praktische Kompetenzen in der Bearbeitung von Programmieraufgaben und Verwendung von u.a. OpenGL.

- Mathematische Grundlagen der Computergrafik,
- menschliche Farbwahrnehmung,
- Theorie der Bildentstehung,
- OpenGL,
- objektorientierten Grafikprogrammierung,
- Dateiformate,
- OpenGLSL

Vorkenntnisse	Algorithmen und Programmierung, Lineare Algebra und analytische Geometrie, Praxis des Programmierens
Prüfung	Die Modulprüfung besteht aus einer Klausur oder einer mündlichen Prüfung. Die aktive Teilnahme an den Übungen wird erwartet. Die Inhalte von Vorlesung und Übung sind Thema der Prüfung.
Note	Note der Modulprüfung
Aufwand	180 (Vorlesung: 30, Übung: 30, Selbststudium: 120)
Leistungspunkte	6
Regelprüfungstermine	5. Sem.
Modulart	Wahlmodul

Modul Datenbanken	
Verantwortlicher	Professuren Informatik
Lehrformen	Vorlesung (2 SWS) und Übung (2 SWS)
Dauer/Turnus	1 Sem., zweijährlich im WS
Qualifikationsziele	

- Befähigung zum Entwurf eines relationalen Datenbankschemas,
- Kompetenz zur Bewertung eines solchen anhand von objektiven Kriterien wie funktionellen Abhängigkeiten,
- Kompetenz zur Formulierung von Datenbankabfragen, auch bei Verknüpfung mehrerer Tabellen.
- Kenntnis der Datenstrukturen und Methoden, mit denen eine Datenbank intern die Daten organisiert, unter Berücksichtigung von Datensicherheit beim Ausfall von Hardware,
- Kompetenz zur Implementierung von Datenbankanwendungen in wenigstens einer Programmiersprache.

- Datenbankarchitektur
- relationales Datenmodell
- Datenbankabfragesprache SQL
- Entity-Relationship-Modell
- Normalformen
- Dateiorganisation und Indizes
- XML
- Datenbankanwendungen

Vorkenntnisse	Einführung in die EDV, Algorithmen und Programmierung
Prüfung	Die Modulprüfung besteht aus einer mündlichen Prüfung. Die aktive Teilnahme an den Übungen wird erwartet. Die In-
	halte von Vorlesung und Übung sind Thema der Prüfung.
Note	Note der Modulprüfung
Aufwand	180 (Vorlesung: 30, Übung: 30, Selbststudium: 120)
Leistungspunkte	6
Regelprüfungstermine	5. Sem.
Modulart	Wahlmodul

Modul Differentialgeometrie	
Verantwortlicher	Professur Analysis
Lehrformen	Vorlesung (3 SWS) und Übung (1 SWS)
Dauer/Turnus	1 Sem., zweijährlich im SoSe ungerade Jahre
Qualifikationsziele	

- Kenntnisse über Mannigfaltigkeiten und Untermannigfaltigkeiten,
- Kompetenzen im analytischen Umgang mit gekrümmten Objekten,
- Befähigung zur koordinatenfreien Erfassung und Beschreibung von mathematischen Eigenschaften von Mannigfaltigkeiten,
- Kenntnisse über den Zusammenhang geometrischer Extremaleigenschaften mit physikalischen Variationsprinzipien,
- Befähigung zur mündlichen Kommunikation durch freie Rede und Diskussion (Übungen).

- Klassische Kurven- und Flächentheorie, Theorema egregium
- Differenzierbare Mannigfaltigkeiten, Vektorbündel, Tensorkalkül
- (Pseudo-)Riemannsche Mannigfaltigkeiten
- Zusammenhänge auf Vektorbündeln, Levi-Civita-Zusammenhang, Torsion und Krümmung
- physikalische Anwendungen der Differentialgeometrie, z. B. in spezieller oder allgemeiner Relativitätstheorie

Vorkenntnisse	Analysis, Lineare Algebra
Prüfung	Die Modulprüfung besteht aus einer Klausur oder einer mündlichen Prüfung. Die aktive Teilnahme an den Übungen wird erwartet. Die Inhalte von Vorlesung und Übung sind Thema der Prüfung.
Note	Note der Modulprüfung
Aufwand	180 (Vorlesung: 45, Übung: 15, Selbststudium: 120)
Leistungspunkte	6
Regelprüfungstermine	6. Sem.
Modulart	Wahlmodul

Modul Finanz- und Versicherungsmathematik	
Verantwortlicher	Professur Stochastik
Lehrformen	Vorlesung (3 SWS) und Übung (1 SWS)
Dauer/Turnus	1 Sem., zweijährlich im WS ungerade Jahre
Qualifikationsziele	

- Verständnis für die mathematische Modellierung ökonomischer Probleme und für finanzpolitische Fragen,
- Kompetenzen zur selbständigen und sicheren Bewältigung von Problemen der Finanzmathematik,
- Beherrschung der Prinzipien der Lebens- und Sachversicherung und der zugehörigen Konzepte der Stochastik.

- Grundlegende Konzepte der Finanzmathematik: Zins, Barwert, Kurse, Renten, Kredite, Effektivzins
- Lebensversicherung: Äquivalenzprinzip, Bevölkerungsstatistik und Sterbetafeln, Deckungskapital
- Sachversicherung und Risikomanagement: Risiko-Parameter, Portfolios, individuelles und kollektives Modell, Gesetz der großen Zahlen und Satz von Wald, Schadenszahl- und Schadenshöhe-Verteilungen
- Risikoprozess und Ruin-Problem, Satz von Lundberg
- Kapitalmarkt: Marktpreise, Hedging, Finanzderivate

Vorkenntnisse	Analysis I,II, Lineare Algebra I, Stochastik, Statistik
Prüfung	Die Modulprüfung besteht aus einer Klausur oder einer mündlichen Prüfung. Die aktive Teilnahme an den Übungen wird erwartet. Die Inhalte von Vorlesung und Übung sind Thema der Prüfung.
Note	Note der Modulprüfung
Aufwand	180 (Vorlesung: 45, Übung: 15, Selbststudium: 120)
Leistungspunkte	6
Regelprüfungstermine	5. Sem.
Modulart	Wahlmodul

Modul Fourieranalysis / Distributionentheorie	
Verantwortlicher	Professur Analysis
Lehrformen	Vorlesung (4 SWS)
Dauer/Turnus	1 Sem., zweijährlich im SoSe ungerade Jahre
Qualifikationsziele	

- fundierte Kenntnisse über die Fouriertransformation und Sicherheit im Umgang mit dem Distributionenkalkül,
- Kompetenz in den wesentlichen Beweistechniken und Lösungsstrategien der Fourieranalysis,
- Befähigung zur Abstraktion und zur Verwendung mathematischer Arbeitsweisen wie das Umsetzen mathematischer Intuition in formale Begründungen und die mathematische Modellierung physikalischer Probleme,
- Befähigung zum Studium von Forschungsliteratur über partielle Differentialgleichungen und harmonische Analysis,
- Kenntnisse über Querverbindungen und den Erfolg des Zusammenwirkens von Methoden aus unterschiedlichen Bereichen (etwa der Analysis, Funktionentheorie und Funktionalanalysis).

- Konvergenz von Fourierreihen
- Faltungsprodukte
- Fourierinversionsformel, Satz von Plancherel
- Testfunktionenräume und Distributionen
- Schwartzraum, temperierte Distributionen und deren Fouriertransformation
- Sobolevräume, das Konzept schwacher Ableitungen, Einbettungssätze, Hilbertraummethoden
- Anwendungen der Theorie auf partielle Differentialgleichungen, insbesondere solcher aus der mathematischen Physik, Fundamentallösungen
- Anwendungen in der Variationsrechnung, Formulierung von Randwertproblemen

Vorkenntnisse	Analysis I, II; Maß- und Integrationstheorie
Prüfung	Die Modulprüfung besteht aus einer Klausur oder einer
	mündlichen Prüfung.
Note	Note der Modulprüfung
Aufwand	180 (Vorlesung: 60, Selbststudium: 120)
Leistungspunkte	6
Regelprüfungstermine	6. Sem.
Modulart	Wahlmodul

Modul Funktionalanalysis	
Verantwortlicher	Professur Algebra und funktionalanalytische Anwendungen
Lehrformen	Vorlesung (4 SWS) und Übung (2 SWS)
Dauer/Turnus	1 Sem., zweijährlich im SoSe gerade Jahre
Qualifikationsziele	

- fundierte Kenntnisse der typischen Probleme der unendlich dimensionalen Theorie und deren Anwendungen,
- Wissen über die enge Verzahnung von Reiner und Angewandter Mathematik (mathematische Physik, Signaltheorie),
- Befähigung zu mathematischen Arbeitsweisen (Entwicklung mathematischer Intuition und deren formale Begründung, Schulung des Abstraktionsvermögens, Beweisführung),
- Befähigung zur mündlichen Kommunikation durch freie Rede und Diskussion (Übungen).

- Banachräume, Folgenräume, Dualräume, Hilberträume
- Prinzipien der Funktionalanalysis
- kompakte Operatoren
- Spektraltheorie beschränkter Operatoren
- Resolventen
- symmetrische Operatoren
- Funktionalkalkül
- unbeschränkte Operatoren

Vorkenntnisse	Analysis I, II; Lineare Algebra und Analytische Geometrie I, II
Prüfung	Die Modulprüfung besteht aus einer Klausur oder einer mündlichen Prüfung. Die Kriterien für den Erhalt eines Übungsscheines legt der Dozent in der ersten Vorlesungswoche fest. Erfolgt keine Festlegung, so sind 50 % der Übungsaufgaben erfolgreich zu bearbeiten.
Note	Note der Modulprüfung
Aufwand	270 (Vorlesung: 60, Übung: 30, Selbststudium: 180)
Leistungspunkte	9
Regelprüfungstermine	Übung: 6. Sem., Modulprüfung: 6. Sem.
Modulart	Wahlmodul

Modul Funktionentheorie	
Verantwortlicher	Professur Algebra und funktionalanalytische Anwendungen
Lehrformen	Vorlesung (3 SWS) und Übung (1 SWS)
Dauer/Turnus	1 Sem., zweijährlich im WS gerade Jahre
Qualifikationsziele	

- Beherrschung einer eleganten mathematischen Theorie,
- Kenntnisse über die Anwendung komplex-analytischer Methoden zur Lösung von Problemen der reellen Analysis,
- vertieftes Verständnis für die elementaren Funktionen durch die Sicht der komplexen Analysis,
- erweitertes Verständnis für den Aufbau und die Methodik der Mathematik, anhand der geschichtlichen Entwicklung dieses mathematischen Gebietes,
- Beherrschung mathematischer Arbeitsweisen (Entwicklung mathematischer Intuition und deren formale Begründung, Schulung des Abstraktionsvermögens, Beweisführung),
- Befähigung zur mündlichen Kommunikation und wissenschaftlichen Diskussion.

- Komplexe Differenzierbarkeit, Cauchy-Riemannsche Differentialgleichungen, holomorphe Funktionen
- Potenzreihen, analytische Funktionen
- komplexe Kurvenintegrale, Cauchyscher Integralsatz, Cauchysche Integralformel
- Potenzreihenentwicklung, Singularitäten, Laurententwicklung, meromorphe Funktionen
- Residuensatz und seine Anwendungen
- Weierstraßscher Produktsatz, Satz von Mittag-Leffler
- elliptische Funktionen

Vorkenntnisse	Analysis I, II; Lineare Algebra und Analytische Geometrie I,
	II
Prüfung	Die Modulprüfung besteht aus einer Klausur oder einer
	mündlichen Prüfung. Die aktive Teilnahme an den Übungen
	wird erwartet. Die Inhalte von Vorlesung und Übung sind
	Thema der Prüfung.
Note	Note der Modulprüfung
Aufwand	180 (Vorlesung: 45, Übung: 15, Selbststudium: 120)
Leistungspunkte	6
Regelprüfungstermine	5. Sem.
Modulart	Wahlmodul

Modul Maß- und Integrationstheorie	
Verantwortlicher	Professur Analysis, Professur Biomathematik
Lehrformen	Vorlesung (4 SWS) und Übung (2 SWS)
Dauer/Turnus	1 Sem., jährlich im WS
Qualifikationsziele	

- Kenntnis der Stärken und Anwendungen eines abstrakten Maß- und Integrationsbegriffs als Grundlage für ein fortgeschrittenes Studium der Stochastik und Analysis,
- Beherrschung der typischen analytischen und stochastischen Begriffsbildungen und Verständnis ihrer Zusammenhänge,
- Beherrschung fortgeschrittener Beweistechniken,
- Befähigung zur mündlichen Kommunikation durch freie Rede und Diskussion (Übungen).

Grundlagen der Maß- und Integrationstheorie:

- Konstruktion von Maßen
- Lebesguesche Integrationstheorie
- Produktmaße, Satz von Fubini
- Darstellungssätze (Riesz, Radon-Nikodym)
- L_p -Räume

Weiterführende Themen, z.B.

- \bullet Lebesgue-Integral auf Untermannigfaltigkeiten des \mathbb{R}^n , Differentialformen und der Satz von Stokes
- Desintegration und bedingte Erwartungswerte

Vorkenntnisse	Analysis I, II
Prüfung	Die Modulprüfung besteht aus einer Klausur oder einer mündlichen Prüfung. Die Kriterien für den Erhalt eines Übungsscheines legt der Dozent in der ersten Vorlesungswoche fest. Erfolgt keine Festlegung, so sind 50 % der Übungsaufgaben erfolgreich zu bearbeiten.
Note	Note der Modulprüfung
Aufwand	270 (Vorlesung: 60, Übung: 30, Selbststudium: 180)
Leistungspunkte	9
Regelprüfungstermine	Übung: 5. Sem., Modulprüfung: 5. Sem
Modulart	Wahlmodul

Modul Mathematische Logik	
Verantwortlicher	Professur Mathematische Logik und Grundlagen der Mathe-
	matik
Lehrformen	Vorlesung (4 SWS)
Dauer/Turnus	1 Sem., zweijährlich im SoSe gerade Jahre
Qualifikationsziele	

- Kenntnis und Beherrschung grundlegender Präzisierungstechniken für die Syntax und Semantik logischer Systeme,
- vertiefte Beherrschung der mathematischen Fachsprache,
- Kompetenzen bei der Bewertung mathematischer Beweismethoden,
- erweitertes Verständnis für das Wechselspiel zwischen mathematischer Intuition und ihrer Präzisierung durch formale Systeme,
- Verständnis für die Bedeutung grundlegender Erkenntnisse der mathematischen Logik (Kompaktheit, Vollständigkeit, Unvollständigkeit) für die Mathematik.

- Syntax, Semantik und Beweiskalküle der Aussagenlogik und der Prädikatenlogik erster Stufe
- Vollständigkeitssätze, insbesondere Gödelscher Vollständigkeitssatz
- Kompaktheitssätze und Anwendungen/Folgerungen
- elementare und nichtelementare Theorien und Modellklassen
- Motivationen aus und Anwendungen in der Mathematik

Vorkenntnisse	Analysis, Lineare Algebra und analytische Geometrie
Prüfung	Die Modulprüfung besteht aus einer mündlichen Prüfung.
Note	Note der Modulprüfung
Aufwand	180 (Vorlesung: 60, Selbststudium: 120)
Leistungspunkte	6
Regelprüfungstermine	6. Sem.
Modulart	Wahlmodul

Modul Multivariate Statistik	
Verantwortlicher	Professur Stochastik, Professur Biomathematik
Lehrformen	Vorlesung (4 SWS) und Übung (2 SWS)
Dauer/Turnus	1 Sem., zweijährlich im WS ungerade Jahre
Qualifikationsziele	

- umfassende Kenntnisse zu Modellen und Methoden der Multivariaten Statik,
- Kompetenzen zur selbstständigen Auswahl von adäquaten Modellen und Methoden für reale Daten und Befähigung zur Interpretation der Ergebnisse,
- erweiterte Fähigkeiten in der Datenanalyse (Übung).

Grundlagen der Multivariaten Statistik:

- Allgemeine Lineare Modelle
- Generalisierte Lineare Modelle
- Hauptkomponentenanalyse
- Latentstrukturanalyse
- Diskriminanzanalyse
- Clusteranalyse
- Multidimensionale Skalierung

Vorkenntnisse	Stochastik, Statistik
Prüfung	Die Modulprüfung besteht aus einer Klausur oder einer mündlichen Prüfung. Die aktive Teilnahme an der Übung wird erwartet. Die Inhalte von Vorlesung und Übung sind Thema der Prüfung.
Note	Note der Modulprüfung
Aufwand	270 (Vorlesung: 60, Übung: 30, Selbststudium: 180)
Leistungspunkte	9
Regelprüfungstermine	5. Sem.
Modulart	Wahlmodul

Modul Nichtlineare Optimierung	
Verantwortlicher	Professur Angewandte Mathematik, Professur Numerische
	Mathematik und Optimierung
Lehrformen	Vorlesung (4 SWS)
Dauer/Turnus	1 Sem., jährlich im WS

Qualifikationsziele

- grundlegende Kenntnisse der Optimierungstheorie,
- Fähigkeiten zur numerischen Lösung von Optimierungsproblemen,
- Verständnis für die Relevanz von Optimierungsaufgaben für zahlreiche praktische Fragestellungen,
- Kompetenzen in der Klassifikation konkreter Aufgaben und der geeigneten Methodenwahl.

- Notwendige und hinreichende Bedingungen zur Lösung von unbeschränkten und beschränkten, linearen Optimierungsproblemen (Karush-Kuhn-Tucker Theorie)
- Methoden zur numerischen Lösung von entsprechenden, glatten Problemen
- Abstiegsverfahren
- Trust-Region-Verfahren
- Penalty-Verfahren
- Aktive-Mengen-Strategie und SQP-Verfahren

Vorkenntnisse	Analysis I, II; Lineare Algebra I, II; Optimierung
Prüfung	Die Modulprüfung besteht aus einer Klausur oder einer
	mündlichen Prüfung.
Note	Note der Modulprüfung
Aufwand	180 (Vorlesung: 60, Selbststudium: 120)
Leistungspunkte	6
Regelprüfungstermine	5. Sem.
Modulart	Wahlmodul

Modul Numerik II	
Verantwortlicher	Professur Angewandte Mathematik, Professur Numerische
	Mathematik und Optimierung
Lehrformen	Vorlesung (4 SWS) und Übung (2 SWS)
Dauer/Turnus	1 Sem., jährlich im WS
Ouglifikationa-iala	

Qualifikationsziele

- Beherrschung der grundlegenden Methoden zur numerischen Lösung von partiellen Differentialgleichungen,
- Kompetenzen in der Auswahl geeigneter Verfahren für konkrete Aufgabenstellungen,
- Beherrschung der Konvergenztheorie und der Methoden der Fehlerkontrolle,
- Kompetenz in der Umsetzung von numerischen Verfahren in effiziente Software (große Gleichungssysteme),
- Kenntnis der Querverbindungen zu anderen Bereichen wie Analysis, Algebra, Geometrie u.v.m.,
- Beherrschung der wichtigsten Methoden zur Berechnung von Eigenwerten,
- Befähigung zur mündlichen Kommunikation durch freie Rede und wissenschaftliche Diskussion (Übungen).

- Numerik partieller Differentialgleichungen
- Methoden für elliptische, parabolische und hyperbolische Probleme
- Iterative Lösung großer Gleichungssysteme
- Numerik von Eigenwertaufgaben

Vorkenntnisse	Numerik I
Prüfung	Die Modulprüfung besteht aus einer Klausur oder einer mündlichen Prüfung. Die Kriterien für den Erhalt eines Übungsscheines legt der Dozent in der ersten Vorlesungswoche fest. Erfolgt keine Festlegung, so sind 50 % der Übungsaufgaben erfolgreich zu bearbeiten.
Note	Note der Modulprüfung
Aufwand	270 (Vorlesung: 60, Übung: 30, Selbststudium: 180)
Leistungspunkte	9
Regelprüfungstermine	Übung: 5. Sem., Modulprüfung: 5. Sem.
Modulart	Wahlmodul

Modul Partielle Differentialgleichungen	
Verantwortlicher	Professur Analysis
Lehrformen	Vorlesung (3 SWS) und Übung (1 SWS)
Dauer/Turnus	1 Sem., jährlich im WS
Ouglifikationsziala	

kualii ikalionsziele

- Kenntnisse über die fundamentalen Typen von Differentialgleichungen (Laplacegleichung, Wärmeleitungsgleichung, Wellengleichung),
- Befähigung, Probleme mathematisch mit Hilfe partieller Differentialgleichungen zu formulieren,
- Beherrschung analytischer Lösungsmethoden,
- Befähigung zur mündlichen Kommunikation durch freie Rede und Diskussion (Übungen).

Inhalt

Partielle Differentialgleichungen 1. Ordnung:

- Charakteristikenmethode
- Vollständiges Integral
- Hamilton-Jacobi-Theorie

Partielle Differentialgleichungen 2. Ordnung:

- Laplace-Gleichung (Fundamentallösung, Darstellungsformeln, Greensche Funktion, Dirichlet-Problem für die Kugel, Maximumprinzip)
- Wärmeleitungsgleichung (Fundamentallösung, Anfangs-Randwertproblem, Maximumprinzip)
- Wellengleichung (Anfangswertproblem, Duhamelsches Prinzip)
- Hilbertraummethoden bei elliptischen Randwertproblemen (Einführung)

Vorkenntnisse	Analysis, Gewöhnliche Differentialgleichungen
Prüfung	Die Modulprüfung besteht aus einer Klausur oder einer mündlichen Prüfung. Die aktive Teilnahme an den Übungen wird erwartet. Die Inhalte von Vorlesung und Übung sind Thema der Prüfung.
Note	Note der Modulprüfung
Aufwand	180 (Vorlesung: 45, Übung: 15, Selbststudium: 120)
Leistungspunkte	6
Regelprüfungstermine	5. Sem.
Modulart	Wahlmodul

Modul Randomisierte Algorithmen	
Verantwortlicher	Professuren Informatik
Lehrformen	Vorlesung (4 SWS)
Dauer/Turnus	1 Sem., zweijährlich im geraden SoSe
Qualifikationsziele	

- Fähigkeit zur Analyse und zum Entwurf von randomisierten Algorithmen,
- Verständnis für die grundlegenden Probleme, die bei der Analyse und dem Entwurf auftreten,
- Beherrschung einer Palette von Werkzeugen und Techniken, mit deren Hilfe diese Probleme gelöst werden können.

- Grundlegende Begriffe und Techniken (Typen von randomisierten Algorithmen, Laufzeit als Erwartungswert, Chernoff-Schranken, probabilistische Methode, Random Walks)
- Randomisierte Datenstrukturen
- Randomisierte Algorithmen für Probleme auf Graphen
- Randomisierte Algorithmen für Probleme aus der Zahlentheorie
- Randomisierte Approximationsalgorithmen

Vorkenntnisse	Algorithmen und Programmierung, Stochastik, Theoretische Informatik
Prüfung	Die Modulprüfung besteht aus einer mündlichen Prüfung.
Note	Note der Modulprüfung
Aufwand	180 (Vorlesung: 60, Selbststudium: 120)
Leistungspunkte	6
Regelprüfungstermine	6. Sem.
Modulart	Pflichtmodul

Modul Spieltheorie	
Verantwortlicher	Professur Stochastik, Professur Biomathematik
Lehrformen	Vorlesung (3 SWS) und Übung (1 SWS)
Dauer/Turnus	1 Sem., zweijährlich im WS gerade Jahre
Qualifikationsziele	

- Befähigung zu strategischem Denken und zur Formulierung von Gegensätzen von Interessen,
- Beherrschung der Lösungsansätze,
- Verständnis für die Struktur von Konfliktsituationen und deren mathematische Modellierung anhand von Problemen aus Politik, Wirtschaft und Alltag,
- Kenntnis der neueren Ansätze der evolutionären und dynamischen Spieltheorie im Zusammenhang und Gegensatz mit klassischen Lösungskonzepten,
- Verständnis für die Komplexität und Vielfältigkeit der Varianten bei Mehrpersonenspielen,
- Beherrschung einfacher Ansätze wie Kern und Shapley-Index,
- Vertiefte Kenntnisse in Stochastik, Analysis und Optimierung durch neue Anwendungen.

- Lösung kombinatorischer Spiele
- Klassische Zwei-Personen Matrix-Spiele, reine und gemischte Strategien
- Minimax-Lösung und Nash-Gleichgewicht, Existenzsätze
- Evolutionäre Spieltheorie, evolutionär stabile Gleichgewichte
- Dynamische Modellierung von Spielen
- Mehrpersonenspiele, Koalitionsbildung, Kern, Shapley-Indizes

Vorkenntnisse	Analysis, Lineare Algebra, Stochastik
Prüfung	Die Modulprüfung besteht aus einer Klausur oder einer mündlichen Prüfung. Die aktive Teilnahme an den Übungen wird erwartet. Die Inhalte von Vorlesung und Übung sind Thema der Prüfung.
Note	Note der Modulprüfung
Aufwand	180 (Vorlesung: 45, Übung: 15, Selbststudium: 120)
Leistungspunkte	6
Regelprüfungstermine	5. Sem.
Modulart	Wahlmodul

Modul Spezialvorlesun	g I		
Verantwortlicher	Vorsitzender des Prüfungsausschusses		
Lehrformen	Vorlesung (2 SWS) und Vorlesung (2 SWS)		
Dauer/Turnus	2 Sem., nach Bedarf		
Qualifikationsziele			
Grundlegende Kenntniss	Grundlegende Kenntnisse und fundierte Kompetenzen in zwei ausgewählten Spezial-		
gebieten.			
Inhalt			
Spezielle Themen aus Mathematik und Informatik			
Vorkenntnisse	nach Bedarf		
Prüfung			
i ruiulig	Die Modulprüfungen bestehen aus einer Klausur oder einer		
Truiding	Die Modulprüfungen bestehen aus einer Klausur oder einer mündlichen Prüfung.		
Note	mündlichen Prüfung. Durchschnitt der Noten der Modulprüfungen		
	mündlichen Prüfung.		
Note	mündlichen Prüfung. Durchschnitt der Noten der Modulprüfungen		
Note Aufwand	mündlichen Prüfung. Durchschnitt der Noten der Modulprüfungen 180 (Vorlesung: 60, Selbststudium: 120) 6		

Modul Spezialvorlesun	g II
Verantwortlicher	Vorsitzender des Prüfungsausschusses
Lehrformen	Vorlesung (4 SWS)
Dauer/Turnus	1 Sem., nach Bedarf
Qualifikationsziele	
Grundlegende Kenntniss algebiet.	se und fundierte Kompetenzen in einem ausgewählten Spezi-
Inhalt	
Spezielle Themen	aus Mathematik und Informatik
Vorkenntnisse	nach Bedarf
Prüfung	Die Modulprüfung besteht aus einer Klausur oder einer mündlichen Prüfung.
Note	Note des Madules sife uses
NOIE	Note der Modulprüfung
Aufwand	180 (Vorlesung: 60, Selbststudium: 120)
	1 0
Aufwand	180 (Vorlesung: 60, Selbststudium: 120)

Modul Vertiefung	
Verantwortlicher	Professuren der Mathematik und Informatik
Lehrformen	Seminar (4 SWS)
Dauer/Turnus	2 Sem., jedes Semester
Ouglifikationariala	

Qualifikationsziele

- Befähigung zur selbständigen Beschäftigung mit einem mathematischen Thema,
- Befähigung, einen strukturierten, effizienten und auf die Kompetenzen des Publikums zugeschnittenen Vortrag zu halten,
- Kompetenzen in der Diskussionsführung.

Inhalt

• ergänzende Themen aus der Mathematik und Informatik

Vorkenntnisse	Analysis, Lineare Algebra
Prüfung	Die Modulprüfung besteht aus zwei 60-minütigen Vorträgen zu einem vereinbarten Thema.
Note	keine
Aufwand	180 (Seminar: 60, Selbststudium: 120)
Leistungspunkte	6
Regelprüfungstermine	6. Sem.
Modulart	Pflichtmodul

Modul Berufsbezogenes Praktikum	
Verantwortlicher	Vorsitzender des Prüfungsausschusses
Lehrformen	Praktikum
Dauer/Turnus	4 Wochen, in der vorlesungsfreien Zeit
Qualifikationsziele	

- Einsichten in die berufliche Praxis einer/eines Mathematikerin/Mathematikers oder einer/eines Informatikerin/Informatikers,
- Erfahrungen bei der Anwendung fachlicher Kenntnisse in einem unternehmerischen Umfeld,
- Kompetenzen in der Teamarbeit und Kommunikation.

• Praktikum in einem Betrieb mit Mathematik- bzw. Informatik-nahen Aufgabenstellungen

Vorkenntnisse	Grundlagen der Mathematik und Informatik
Prüfung	Als Prüfungsleistung ist ein 3-seitiger Bericht über das Prak-
	tikum zu erstellen.
Note	unbenotet
Aufwand	160
Leistungspunkte	6
Regelprüfungstermine	Semester, in dem das Praktikum absolviert wird.
Modulart	Wahlmodul

Bachelorarbeit

Modul Bachelorarbeit	
Verantwortlicher	Betreuender Hochschullehrer
Lehrformen	Schriftliche Abschlussarbeit
Dauer/Turnus	6 Monate, jederzeit
Qualifikationsziele	
- Defibigues zur Beerbeitung einer methematischen ferschungsgrientierten Ere	

- Befähigung zur Bearbeitung einer mathematischen, forschungsorientierten Fragestellung unter Anleitung durch einen Hochschullehrer in begrenzter Zeit
- Kompetenzen zur Niederschrift der erzielten Ergebnisse in Form einer wissenschaftlichen Arbeit

• je nach Themenstellung

Vorkenntnisse	je nach Themenstellung
Prüfung	Schriftliche Arbeit mit Begutachtung
Note	Gemittelte Note der Gutachter
Aufwand	360 (Selbststudium: 360)
Leistungspunkte	12
Regelprüfungstermine	6. Sem.
Modulart	Pflichtmodul