Resultados recentes sobre as equações de Navier-Stokes para fluidos incompressíveis

Ricardo M. S. Rosa Instituto de Matemática Universidade Federal do Rio de Janeiro (IM-UFRJ)

I EBED

Escola Brasileira de Equações Diferenciais 9 a 13 de junho de 2003 IMECC - Unicamp

1

Resultados recentes sobre as equações de Navier-Stokes para fluidos incompressíveis

Tópicos:

- 1. As equações de Navier-Stokes, equações correlatas e algumas questões fundamentais
- 2. Aspectos matemáticos das equações de Navier-Stokes
- 3. Teoria estatística convencional de turbulência
- 4. Soluções estatísticas das equações de Navier-Stokes
- 5. Aplicações das soluções estatísticas em turbulência

Equações de Navier-Stokes (escoamento compressível)

$$\begin{cases} \rho \left(\frac{\partial u_i}{\partial t} + \sum_{j=1}^3 u_j \frac{\partial u_i}{\partial x_j} \right) = \frac{\partial \sigma_{ij}}{\partial x_j} + f_i, & i = 1, 2, 3, \\ \frac{\partial \rho}{\partial t} + \sum_{j=1}^3 \frac{\partial (\rho u_j)}{\partial x_j} = 0, \end{cases}$$

 $\left(u_{1},u_{2},u_{3}
ight)=% \left(u_{1},u_{2},u_{3}
ight) =\left(u_{1},u_{2},u_{3}
ight) =\left(u_{1},u_{3},u_{3}
ight) =\left(u_{1},u_{3}
ight$

 $(x_1,x_2,x_3)=$ posição, $(f_1,f_2,f_3)=$ força de volume,

 $ho = \,$ densidade, $\sigma_{ij} = \,$ tensor de stress.

3

Tensor de stress e pressão

$$\frac{\mathrm{d}}{\mathrm{d}t}(\mathrm{momento}) = \overbrace{\int_{V(t)} \mathbf{f}}^{\mathrm{fc} \ \mathrm{volume}} + \overbrace{\int_{\partial V(t)} \boldsymbol{\sigma} \cdot \mathbf{n}}^{\mathrm{fc} \ \mathrm{superficie}} = \int_{V(t)} \left(\mathbf{f} + \mathrm{div} \ \boldsymbol{\sigma} \right).$$

 $\sigma_{ij} = -p\delta_{ij} + d_{ij}, \quad p \stackrel{\mathsf{def}}{=} \frac{\sigma_{kk}}{3} \quad \delta_{ij} \stackrel{\mathsf{def}}{=} \mathsf{delta} \; \mathsf{de} \; \mathsf{Kronecker},$

$$d_{ij}=2\mu\left(e_{ij}-rac{e_{kk}}{3}\delta_{ij}
ight)$$
 (escoamento Newtoniano),

$$e_{ij} \stackrel{\text{def}}{=} \frac{1}{2} \left(\frac{\partial u_i}{\partial x_i} + \frac{\partial u_j}{\partial x_i} \right) = \text{tensor rate-of-strain.}$$

 $(p=\ {
m press\~ao}\ {
m hidrost\'atica},\ \sigma_{ij}=-p\delta_{ij},\ {
m caso}\ {
m fluido}\ {
m est\'atico})\,.$

Escoamentos Newtonianos

Newton (1687): $d = \mu \frac{\partial u_1}{\partial x_2}$, caso laminar —

$$\mathbf{u} = \begin{pmatrix} u_1(x_2) \\ 0 \\ 0 \end{pmatrix} \implies d_{ij} = \begin{bmatrix} 0 & d & 0 \\ d & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \ d = d_{12} = d_{21}.$$

- ▶ Euler (1755): $d_{ij} = 0$ (fluido "ideal") \Rightarrow eqs. de Euler;
- Navier (1822), Cauchy (1828), Poisson (1829),
 Saint-Venant (1843) e Stokes (1845):

$$d_{ij} = 2\mu \left(e_{ij} - \frac{e_{kk}}{3}\delta_{ij}\right) \Rightarrow$$
 equações de Navier-Stokes.

5

Equações de Navier-Stokes

- Navier (1822): $\mu = \text{função do espaçamento molecular},$ sem significado físico;
- ► Cauchy (1828), Poisson (1829): idem;
- Saint-Venant (1843): derivação das equações com mais fundamento físico, valendo para escoamentos não necessariamente laminares;
- Stokes (1845): idem, da forma feita atualmente, com $\mu = \text{viscosidade molecular (atrito)}.$

A ponte suspensa de Navier (Pont des Invalides)

"Navier: Blow-up and Collapse", AMS Notices, Janeiro 2003.

Navier: professor École des Ponts et Chaussées, Paris.

Pontes Suspensas: Finley, pioneiro, nos EUA (\approx 1800), depois engenheiros da Grã-Bretanha, finalmente Navier na França, sob incentivo de seus superiores e do governo...

Navier: Após estudar pontes da Grã-Bretanha, entre 1821 e 1823, escreve tratado sobre pontes usando "métodos matemáticos modernos" (equações diferenciais simples e séries de Fourier, uma de suas especialidades).

7

Navier: Em 1823, apresenta projeto com cálculos "precisos", sem necessidade de exagerar na estrutura para compensar aproximações e erros "típicos" da engenharia.

A ponte: Em 1826, 5 semanas antes da conclusão, um suporte dos cabos da ponte racha, devido a um vazamento de água próximo. A ponte foi eventualmente desmontada.

Oscilações induzidas pelo vento (turbulento, em certos casos) são difíceis de serem calculadas; provavelmente o modelo usado não tinha a precisão necessária.

Equações de Navier-Stokes (compressível - vetorial)

$$\begin{cases} \rho \left(\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla) \mathbf{u} \right) + \nabla p = \mu \Delta \mathbf{u} + \frac{\mu}{3} \nabla (\nabla \cdot \mathbf{u}) + \mathbf{f}, \\ \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{u}) = 0. \end{cases}$$

$$\mathbf{u} = (u_1, u_2, u_3), \quad \mathbf{x} = (x_1, x_2, x_3) \quad \mathbf{f} = (f_1, f_2, f_3),$$

$$\nabla \cdot \boldsymbol{\sigma} = -\nabla p + \mu \Delta \mathbf{u} + \frac{\mu}{3} \nabla (\nabla \cdot \mathbf{u}),$$

$$\boldsymbol{\sigma} = (\sigma_{ij})_{ij}, \quad \sigma_{ij} = -p \delta_{ij} + 2\mu (e_{ij} + \frac{1}{3} (\nabla \cdot \mathbf{u}) \delta_{ij}),$$

Q

Escoamentos incompressíveis e homogêneos

Variação de volume:

$$\frac{\mathrm{d}}{\mathrm{d}t} \int_{V(t)} \, \mathrm{d}V = \int_{\partial V(t)} \mathbf{u} \cdot \mathbf{n} \, \, \mathrm{d}S = \int_{V(t)} \mathbf{\nabla} \cdot \mathbf{u} \, \, \mathrm{d}V.$$

Escoamentos incompressíveis (densidade independente de variações na pressão): $\nabla \cdot \mathbf{u} = 0$ e

$$0 = \frac{\partial \rho}{\partial t} + \boldsymbol{\nabla} \cdot (\rho \mathbf{u}) = \frac{\partial \rho}{\partial t} + (\mathbf{u} \cdot \boldsymbol{\nabla})\rho + \rho \boldsymbol{\nabla} \cdot \mathbf{u} = \frac{\mathsf{D}\rho}{\mathsf{D}t}.$$

Escoamentos incompressíveis e homogêneos:

$$\nabla \cdot \mathbf{u} = 0$$
 e $\rho \equiv \rho_0$ (constante).

Equações de Navier-Stokes (incompressível e homogêneo)

$$\begin{cases} \rho_0 \left(\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla) \mathbf{u} \right) + \nabla p = \mu \Delta \mathbf{u} + \mathbf{f}, \\ \nabla \cdot \mathbf{u} = 0. \end{cases}$$

Dividindo por ρ_0 e substituindo p/ρ_0 por p e \mathbf{f}/ρ_0 por \mathbf{f} :

$$\begin{cases} \frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \mathbf{\nabla})\mathbf{u} + \mathbf{\nabla}p = \nu \Delta \mathbf{u} + \mathbf{f}, \\ \mathbf{\nabla} \cdot \mathbf{u} = 0. \end{cases}$$

 $\mathbf{u} = (u_1, u_2, u_3) = \text{ campo de velocidades,}$

p = pressão cinemática,

 $\mathbf{f} = (f_1, f_2, f_3) = \text{ densidade das forças de volume,}$

 $\nu = \text{ viscosidade cinemática.}$

11

Algumas questões fundamentais

- Existência e unicidade de soluções globais (o prêmio de US\$ $1,00 \times 10^6$ da Fundação Clay);
- ▶ Limite de Euler (Re $\rightarrow \infty$);
- Derivação das equações via mecânica estatística;
- ▶ Estabilidade, instabilidade e transição para turbulência;
- ► Turbulência completamente desenvolvida;
- ightharpoonup α -model ou equações de Camassa-Holm;
- ► Estruturas coerentes (vórtices linhas, folhas, etc.);
- Variedade inercial (lenta), aprox numérica, inicialização;
- ▶ Escoamentos geostróficos, no. Rossby e fça de Coriolis.

Prêmio: US $\$1,00 \times 10^6$ da Clay Foundation

Problema A: (Solução global) Dado \mathbf{u}_0 suave, com $\nabla \cdot \mathbf{u}_0 = 0$ e $|\partial_{x_i}^k \mathbf{u}_0(\mathbf{x})| \leq c_{km} (1+|\mathbf{x}|)^{-m}, \ k,m \in \mathbb{N}, \ \mathbf{x} \in \mathbb{R}^3$, achar soluções suaves $\mathbf{u} = \mathbf{u}(t,\mathbf{x}), \ p = p(t,\mathbf{x})$ das ENS em \mathbb{R}^3 , com $\mathbf{u}, p \in \mathcal{C}^{\infty}([0,\infty) \times \mathbb{R}^3)$, $\int_{\Omega} |\mathbf{u}(t,\mathbf{x})|^2 \, \mathrm{d}\mathbf{x} \leq C, \ \forall t \geq 0$, e $\mathbf{u}(0,\mathbf{x}) = \mathbf{u}_0(\mathbf{x})$.

Problema B: (explosão em tempo finito) Mostrar existência de \mathbf{u}_0 e \mathbf{f} suaves, com $\nabla \cdot \mathbf{u}_0 = 0$ e

$$|\partial_{x_i}^k \mathbf{u}_0(\mathbf{x})| \le c_{km} (1+|\mathbf{x}|)^{-m}, \ |\partial_t^r \partial_{x_i}^k \mathbf{u}_0(\mathbf{x})| \le c_{rkm} (1+t+|\mathbf{x}|)^{-m},$$

 $r,k,m\in\mathbb{N},t\geq0,\ \mathbf{x}\in\mathbb{R}^3$, tais que que não existam soluções das ENS em \mathbb{R}^3 como acima.

Problemas A', B': com condições de contorno periódicas.

13

Resultados conhecidos

- Existência global (no tempo) de soluções fracas (não necessariamente suaves ou únicas)
- ▶ Existência local (no tempo) de soluções suaves
- ▶ Um pouco de regularidade $(L^s(0,T;L^r(\Omega)^3), r>3$, $2/s+3/r\leq 1$, Serrin (1962)) implica em soluções locais suaves e únicas
- Existência e unicidade global de soluções suaves em duas dimensões
- Estimativas "fractais" do conjunto de singularidades (" $\nabla \otimes \mathbf{u} = \infty$ ") no tempo, $d_H(S_t) \leq 1/2$ (dimensão de Hausdorff), e no espaço-tempo, $\mathcal{P}_1(S_{e:t}) = 0$ (medida de Hausdorff parabólica, "tempo conta dobrado")

Escoamentos geostróficos

$$\begin{cases} \frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla)\mathbf{u} + 2\mathbf{\Omega} \times \mathbf{u} + \nabla p = \nu \Delta \mathbf{u} + \nabla \Phi + \mathbf{f}, \\ \nabla \cdot \mathbf{u} = 0. \end{cases}$$

 $\Phi=\phi+\phi_c=$ potenciais gravitacional + fç centrífuga $2{f \Omega} imes {f u}=$ força de Coriolis

 $\Omega = \text{ velocidade angular (direção e magnitude)}$

15

Escoamentos com rápida rotação

$$2\mathbf{\Omega} \times \mathbf{u} \longmapsto \frac{1}{\epsilon} \mathbf{e}_{\Omega} \times \mathbf{u}, \qquad \mathbf{e}_{\Omega} = \frac{\mathbf{\Omega}}{\Omega}, \quad \Omega = |\mathbf{\Omega}|$$

$$arepsilon=rac{U}{2\Omega L}=$$
 número de Rossby
$$arepsilon_{ heta}=rac{U_{ heta}}{2\Omega L_{ heta}\sin heta}=$$
 número de Rossby local (latitude $heta$)

- ightharpoonup Escoamentos geostróficos longe do equador: $arepsilon\sim0.1$
- ► Grande interesse em escoamentos com rápida rotação pela comunidade de meteorologia e climatologia.
- ► Escoamentos com rápida rotação são quase 2D ("2 1/2"): existência e unicidade global de soluções suaves (Babin, Malahov, Nicolaenko)

Equações primitivas da atmosfera

- ▶ Densidade varia com a altura;
- Aproximação de Boussinesq;
- ► Altura relativamente pequena em relação ao globo;
- ► Falta existência e unicidade global mesmo em duas dimensões (escoamento latitudinal ou longitudinal), no caso sem viscosidade vertical.
- Outros componentes: temperatura, salinidade (no oceano), substâncias químicas, calotas polares, etc.

17

α -model ou equações de Camassa-Holm (viscosas)

$$\begin{cases} \frac{\partial \mathbf{v}}{\partial t} + (\mathbf{u} \cdot \nabla)\mathbf{v} + (\nabla \mathbf{u}^{\mathsf{t}}) \cdot \mathbf{v} + \nabla p = \nu \Delta \mathbf{v} + \mathbf{f}, \\ \nabla \cdot \mathbf{u} = 0, \qquad \mathbf{v} = (I - \alpha^2 \Delta)\mathbf{u}. \end{cases}$$

- Existência e unicidade global em 3D conhecidas;
- ▶ Utilizado como modelo para fechamento turbulento;
- ► Semelhanças com a regularização de Leray: $\mathbf{v} = (I + \alpha(-\Delta)^{1/2})\mathbf{u}$ e sem o termo $(\nabla \mathbf{u}^{\mathsf{t}}) \cdot \mathbf{v}$.
- $ightharpoonup \alpha$ -Euler = Camassa-Holm sem visc., 3D em aberto
- Marsden, Foias, etc.

Transição para turbulência - bifurcações

Figure 2.2. Flow past a sphere. (a) Laminar flow (small Reynolds number). (b) Appearance of the von Kårmån vortices in the wake behind the sphere (stationary flow). (c) Time-periodic flow: the vortices behind the sphere are moving to the right in an (apparently) time-periodic manner. (d) Fully turbulent flow in the wake behind the sphere at large Reynolds numbers.

19

O problema de Couette-Taylor

Couette: $\omega_i = 0$, $\omega_e \neq 0$

Mallock, Taylor: $\omega_i \neq 0$, $\omega_e = 0$

Escoamentos turbulentos: várias escalas presentes, se movendo de maneira imprevisível, mas bem comportadas em um sentido estatístico.

Figure 1.3 Instantaneous and time averaged views of a jet in cross flow. The jet exits from the wall at left into a stream flowing from bottom to top (Su & Mungal, 1999).

23

Estruturas coerentes e intermitência

- Estruturas coerentes: filamentos de vórtices com baixa dissipação de energia, diâmetro da ordem de ℓ_{ϵ} , comprimento $\in (\ell_T, \ell_0)$.
- Universalidade questionada devido a variações intermitentes na dissipação de energia.

Figure VI-6: DNS of forced isotropic 3D turbulence. Evidence of coherent vortices displayed by vorticity-modulus isosurfaces; a) Siggia (1981), b) Vincent and Meneguzzi, 1991 b (courtesy J. Fluid Mech. and Kluwer)

Mais estruturas coerentes

Plate 10: vorticity modulus in the LES of a temporal mixing layer; a) quasi two-dimensional random initial forcing; b) 3D isotropic forcing (courtesy J. Silvestrini, Grenoble).

25

Atrator global

órbita

Exemplo 1

▶ Invariante: S(t)A = A, $\forall t \in \mathbb{R}$

► Atrai todas as órbitas, uniformemente para condições iniciais limitadas

Dimensão do atrator global

- ▶ Sendo compacto, A pode ser aproximado por subespaços afins de dimensão finita
- \blacktriangleright Na maioria dos casos, $\mathcal A$ tem dimensão fractal finita
- ightharpoonup Nesses casos, $\mathcal A$ pode ser imerso em variedades euclidianas de dimensão finita
- Possibilidade de se obter sistemas finitos de EDOs com o mesmo comportamento assintótico

27

Dimensão do atrator das ENS

- lacktriangle dim $_f \mathcal{A} \lesssim$ graus de liberdade Landau-Lifchitz
- $\blacktriangleright \ \ \text{ENS 2D periódico:} \ \ \dim_f \mathcal{A} \lesssim \left(\frac{\ell_0}{\ell_{\bar{\eta}}}\right)^2 \left(1 + \ln\left(\frac{\ell_0}{\ell_{\bar{\eta}}}\right)\right)^{1/3}$
- lacksquare ENS 2D com aderência na fronteira: $\dim_f \mathcal{A} \lesssim \left(rac{\ell_0}{\ell_{ar{\epsilon}'}}
 ight)^2$
- ▶ ENS 3D, para conjuntos invariantes regulares \mathcal{V} : $\dim_f \mathcal{V} \lesssim \left(\frac{\ell_0}{\ell_{\bar{\epsilon}}}\right)^3$
- ightharpoonup onde $\bar{\eta}$ e $\bar{\epsilon}'$ similares a

$$\bar{\epsilon} = \nu \limsup_{T \to \infty} \sup_{\mathbf{u}_0 \in \mathcal{V}} \frac{1}{T} \int_0^T \int_{\Omega} |\mathbf{\nabla} \otimes \mathbf{u}(t, \mathbf{x})|^2 \, \mathrm{d}\mathbf{x} \mathrm{d}t$$

28

Variedade inercial

- ▶ Variedade Lipschitz de dimensão finita
- ▶ Positivamente invariante, i.e. $S(t)\mathcal{M} \subset \mathcal{M}$, $\forall t \geq 0$
- ► Atrai todas as órbitas exponencialmente e uniformemente para condições iniciais limitadas

29

Completude assintótica de variedades inerciais

ightharpoonup Em geral, para toda solução $\mathbf{u}=\mathbf{u}(t)$, existe solução $\mathbf{v}=\mathbf{v}(t)\in\mathcal{M}$ com o mesmo comportamento assintótico

$$\lim_{t\to\infty} |\mathbf{u}(t) - \mathbf{v}(t)| = 0 \quad \text{e} \quad \omega(\mathbf{u}) = \omega(\mathbf{v})$$

lackbox Atração exponencial $\Rightarrow \mathcal{M}$ captura boa parte do comportamento transiente

Existência de variedades inerciais

- Requer forte dissipação (contração uniforme de volumes)
- ► Existência demonstrada para várias equações em uma dimensão espacial e em casos especiais em 2D
- ▶ Em aberto para NSE 2D e 3D
- ► Transformada de Kwak ainda incompleta
- ▶ Relação com variedades lentas em meteorologia

31

Aproximação de variedades inerciais

- Métodos numéricos mais precisos baseados em aproximações de variedades inerciais
- Eficiência depende da regularidade das soluções e do objetivo do estudo
- Apropriado para estudos da dinâmica (e.g. captura de ligações heteroclínicas)

Atrator exponencial

- ▶ Intermediário entre atrator global e variedade inercial
- Aproxima exponencialmente as órbitas mas não é variedade euclidiana
- Existência para várias equações, inclusive ENS 2D
- ▶ Parametrização por mapeamentos Hölder-contínuos
- ► Resultados parciais sobre existência de sistemas de dimensão finita com dinâmica equivalente

33

Modos determinantes, nódulos determinantes, etc.

Sejam

- ightharpoonup H= espaço de fase
- $ightharpoonup X_n =$ espaço de dimensão finita
- $ightharpoonup P: H
 ightharpoonup X_n$ (Galerkin, diferenças finitas, etc.)

Questões:

- $ightharpoonup P\mathbf{u}(t)-P\mathbf{v}(t)
 ightarrow 0, t
 ightarrow \infty$, implica em $\mathbf{u}(t)-\mathbf{v}(t)
 ightarrow 0$?
- ▶ P restrito ao atrator é bijetivo?

Relacionado com reconstrução de atratores.

Resultados recentes sobre as equações de Navier-Stokes para fluidos incompressíveis

Ricardo M. S. Rosa Instituto de Matemática Universidade Federal do Rio de Janeiro (IM-UFRJ)

I EBED

Escola Brasileira de Equações Diferenciais 9 a 13 de junho de 2003 IMECC - Unicamp

Aula 2 - 10 de junho

37

Resultados recentes sobre as equações de Navier-Stokes para fluidos incompressíveis

Tópicos:

- 1. As equações de Navier-Stokes, equações correlatas e algumas questões fundamentais
- 2. Aspectos matemáticos das equações de Navier-Stokes
- 3. Teoria estatística convencional de turbulência
- 4. Soluções estatísticas das equações de Navier-Stokes
- 5. Aplicações das soluções estatísticas em turbulência

Equações de Navier-Stokes

- ightharpoonup Região $\Omega\subset\mathbb{R}^3$ ocupada pelo fluido
- ▶ Variáveis espacial $\mathbf{x} = (x_1, x_2, x_3) \in \Omega$ e temporal $t \geq 0$
- lacksquare Campo de velocidades $\mathbf{u} = \mathbf{u}(t, \mathbf{x}) = (u_1, u_2, u_3) \in \mathbb{R}^3$
- $lackbox{ Pressão } p=p(t,\mathbf{x})\in\mathbb{R}$ e força de volume $\mathbf{f}=(f_1,f_2,f_3)$
- ▶ Equações de Navier-Stokes (ENS) para um escoamento incompressível e homogêneo, viscosidade cinemática ν :

$$\begin{cases} \frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \mathbf{\nabla})\mathbf{u} + \mathbf{\nabla}p = \nu \Delta \mathbf{u} + \mathbf{f}, \\ \mathbf{\nabla} \cdot \mathbf{u} = 0. \end{cases}$$

39

Formulação matemática das ENS - Leray (1933,34)

Eliminar pressão, considerando espaços de divergente nulo, para obter equação de evolução envolvendo somente ${\bf u}$.

Se p e \mathbf{v} suaves, com $\nabla \cdot \mathbf{v} = 0$ e condições apropriadas de contorno para \mathbf{v} (livre, aderência, periódica, etc.), então

$$\int_{\Omega} (\mathbf{\nabla} p) \cdot \mathbf{v} \, dV = \int_{\Omega} p(\mathbf{\nabla} \cdot \mathbf{v}) \, dV + \int_{\partial \Omega} p(\mathbf{v} \cdot \mathbf{n}) \, dS = 0$$

onde $\mathbf{n} = \text{normal exterior a } \Omega$.

Portanto, o termo da pressão desaparece na formulação fraca e na formulação funcional, em espaços de divergente nulo.

Espaços de função básicos

Condições naturais para o campo de velocidades (com condições apropriadas de contorno):

$$\begin{split} &\int_{\Omega} |\mathbf{u}(\mathbf{x})|^2 \, \mathrm{d}\mathbf{x} < \infty \quad \Leftrightarrow \quad \text{energia cinética finita} \\ &\int_{\Omega} |\boldsymbol{\nabla} \otimes \mathbf{u}|^2 \, \mathrm{d}\mathbf{x} = \int_{\Omega} |\boldsymbol{\omega}|^2 \, \mathrm{d}\mathbf{x} < \infty \quad \Leftrightarrow \quad \text{enstrofia finita} \end{split}$$

onde
$$\nabla \otimes \mathbf{u} = (\partial_{x_i} u_j)_{i,j=1}^3$$
 e $\boldsymbol{\omega} = \operatorname{curl} \mathbf{u} = \nabla \times \mathbf{u}$.

► Espaços de partida:

$$\mathbb{L}^{2}(\Omega) = \left\{ \mathbf{u} : \Omega \to \mathbb{R}^{3}, \ |\mathbf{u}|^{2} \stackrel{\mathsf{def}}{=} \int_{\Omega} |\mathbf{u}(\mathbf{x})|^{2} \ \mathsf{d}\mathbf{x} < \infty \right\}$$
$$\mathbb{H}^{1}(\Omega) = \left\{ \mathbf{u} \in \mathbb{L}^{2}(\Omega), \ \|\mathbf{u}\|^{2} \stackrel{\mathsf{def}}{=} \int_{\Omega} |\mathbf{\nabla} \otimes \mathbf{u}|^{2} \ \mathsf{d}\mathbf{x} < \infty \right\}$$

41

Espaços de divergente nulo

Partimos de funções suaves:

$$\mathcal{V} = \left\{ \mathbf{u} \in \mathcal{C}_0^{\infty}(\Omega)^3; \ \nabla \cdot \mathbf{u} = 0 \right\}$$

e definimos por completamento:

$$H = \text{ fecho de } \mathcal{V} \text{ em } \mathbb{L}^2(\Omega),$$

$$V=$$
 fecho de $\mathcal V$ em $\mathbb H^1(\Omega)$.

Em certos domínios regulares e limitados, é possível caracterizar melhor esses espaços.

Caracterização dos espaços em Ω limitado de classe \mathcal{C}^2

ightharpoonup Espaço de divergente em L^2 :

$$E = \left\{ \mathbf{u} \in \mathbb{L}^2(\Omega); \mathbf{\nabla} \cdot \mathbf{u} \in L^2(\Omega) \right\}$$

▶ Se $\mathbf{u} \in E$, então existe o traço $\mathbf{u} \cdot \mathbf{n} \in H^{-1/2}(\partial\Omega)$, com

$$\int_{\Omega} \mathbf{u} \cdot \boldsymbol{\nabla} \varphi \; \mathrm{d}V = -\int_{\Omega} (\boldsymbol{\nabla} \cdot \mathbf{u}) \varphi \; \mathrm{d}S + \int_{\partial \Omega} \varphi \mathbf{u} \cdot \mathbf{n} \; \mathrm{d}V$$

► Então

$$H = \left\{ \begin{aligned} \mathbf{u} \in \mathbb{L}^2(\Omega); \; \mathbf{\nabla} \cdot \mathbf{u} &= 0, \; \text{ou} \\ \mathbf{u} \cdot \mathbf{n} &= 0, \; \text{ou} \\ \mathbf{u} \cdot \mathbf{n} &= \; \text{anti-periódico} \end{aligned} \right\}$$
$$V = \left\{ \begin{aligned} \mathbf{u} \in \mathbb{H}^1(\Omega); \; \mathbf{\nabla} \cdot \mathbf{u} &= 0, \; \text{ou} \\ \mathbf{u} &= 0, \; \text{ou} \\ \mathbf{u} &= \; \text{periódico} \end{aligned} \right\}$$

43

Decomposição de Leray-Helmholtz

- ightharpoonup H é um subespaço vetorial fechado de \mathbb{L}^2
- ▶ Decomposição ortogonal $\mathbb{L}^2 = H \oplus H^{\perp}$ (Helmholtz: $\Omega = \mathbb{R}^3$, Leray: Ω mais geral)

$$\mathbf{v} = \mathbf{u} + \nabla p, \qquad \nabla \cdot \mathbf{u} = 0$$

▶ p dado por problema de Neumann (aplicando $\nabla \cdot$):

$$\Delta p = \nabla \mathbf{v}$$
, em Ω $\partial p/\partial \mathbf{n} = \mathbf{v} \cdot \mathbf{n}$, em $\partial \Omega$

 $ightharpoonup \Omega$ aberto qualquer:

$$H^{\perp} = \left\{ \mathbf{w} \in \mathbb{L}^2(\Omega), \ \mathbf{w} = \mathbf{\nabla} p, \ p \in L^2_{\mathsf{loc}}(\Omega) \right\}$$

Projeção das equações de Navier-Stokes

- lacksquare Projeção ortogonal $P_{\mathsf{LH}}: \mathbb{L}^2 o H$ e $Q_{\mathsf{LH}} = I P_{\mathsf{LH}}$
- ▶ Decomposição das ENS (assumindo $P_{\mathsf{LH}}\mathbf{f} = \mathbf{f}$):

$$\begin{cases} P_{\mathsf{LH}} \left(\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \boldsymbol{\nabla}) \mathbf{u} - \nu \Delta \mathbf{u} + \boldsymbol{\nabla} p - \mathbf{f} \right) = 0 \\ Q_{\mathsf{LH}} \left(\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \boldsymbol{\nabla}) \mathbf{u} - \nu \Delta \mathbf{u} + \boldsymbol{\nabla} p - \mathbf{f} \right) = 0 \end{cases}$$

▶ Então, como $P_{\mathsf{LH}} \nabla p = 0$ e $Q_{\mathsf{LH}} \partial_t \mathbf{u} = 0$,

$$\begin{cases} \frac{\partial \mathbf{u}}{\partial t} + P_{\mathsf{LH}}(\mathbf{u} \cdot \boldsymbol{\nabla})\mathbf{u} - \nu P_{\mathsf{LH}}\Delta\mathbf{u} = \mathbf{f} & \text{(eq. evolução para } \mathbf{u}) \\ Q_{\mathsf{LH}}(\mathbf{u} \cdot \boldsymbol{\nabla})\mathbf{u} - \nu Q_{\mathsf{LH}}\Delta\mathbf{u} + \boldsymbol{\nabla}p = 0 & \text{(eq. } p = p(\mathbf{u})) \end{cases}$$

45

Formulação funcional das ENS

- ▶ Operador de Stokes $A\mathbf{u} = -\nu P_{\mathsf{LH}}\Delta\mathbf{u}$
- ► Termo inercial $B(\mathbf{u}, \mathbf{u}) = P_{\mathsf{LH}}(\mathbf{u} \cdot \nabla)\mathbf{u}$
- ightharpoonup Espaço dual $V\subset H\subset V'$:

$$(\mathbf{u}, \mathbf{v}) \stackrel{\mathrm{def}}{=} \int_{\Omega} \mathbf{u}(\mathbf{x}) \cdot \mathbf{v}(\mathbf{x}) \; \mathrm{d}\mathbf{x} \quad \longrightarrow \quad \langle \mathbf{u}, \mathbf{v} \rangle_{V', V}.$$

- ▶ Temos $A: V \rightarrow V', \ B: V \times V \rightarrow V'$ contínuos
- ► Forma funcional das ENS:

$$\frac{\mathrm{d}\mathbf{u}}{\mathrm{d}t} + \nu A\mathbf{u} + B(\mathbf{u}, \mathbf{u}) = \mathbf{f}$$

Formulação variacional (fraca) das ENS

Multiplicar ENS por função teste ${\bf v}$ de divergente nulo e suporte compacto em Ω e integrar em Ω :

$$\int_{\Omega} \left(\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla) \mathbf{u} - \nu \Delta \mathbf{u} + \nabla p \right) \cdot \mathbf{v} \, d\mathbf{x} = 0;$$

▶ Integrando por partes e usando que $\nabla \cdot \mathbf{v} = 0$,

$$\frac{\mathrm{d}}{\mathrm{d}t} \int_{\Omega} \mathbf{u} \cdot \mathbf{v} \ \mathrm{d}\mathbf{x} + \int_{\Omega} [((\mathbf{u} \cdot \boldsymbol{\nabla})\mathbf{u}) \cdot \mathbf{v})] \ \mathrm{d}\mathbf{x} + \nu \int_{\Omega} \boldsymbol{\nabla} \oplus \mathbf{u} : \boldsymbol{\nabla} \oplus \mathbf{v} \ \mathrm{d}\mathbf{x} = 0;$$

▶ Ou, em notação compacta, e incluindo f,

$$\frac{\mathsf{d}}{\mathsf{d}t}(\mathbf{u}, \mathbf{v}) + b(\mathbf{u}, \mathbf{u}, \mathbf{v}) + a(\mathbf{u}, \mathbf{v}) = (\mathbf{f}, \mathbf{v}), \qquad \forall \mathbf{v} \in V.$$

47

Ortogonalidade do termo inercial

Obter estimativas de energia usando ortogonalidade do termo inercial:

$$b(\mathbf{u}, \mathbf{v}, \mathbf{v}) = \int_{\Omega} ((\mathbf{u} \cdot \nabla) \mathbf{v}) \cdot \mathbf{v} \, dV = \sum_{i,j=1}^{3} \int_{\Omega} u_{i} \frac{\partial v_{j}}{\partial x_{i}} v_{j} \, dV$$

$$= \sum_{i,j=1}^{3} \int_{\Omega} u_{i} \frac{\partial}{\partial x_{i}} \left(\frac{v_{j}^{2}}{2} \right) \, dV = -\sum_{i,j=1}^{3} \int_{\Omega} \frac{\partial u_{i}}{\partial x_{i}} \frac{v_{j}^{2}}{2} \, dV$$

$$= -\int_{\Omega} (\nabla \cdot \mathbf{u}) \frac{1}{2} |\mathbf{v}|^{2} \, dV = 0$$

Em particular,

$$b(\mathbf{u}, \mathbf{u}, \mathbf{u}) = 0$$
 e $b(\mathbf{u}, \mathbf{v}, \mathbf{w}) = -b(\mathbf{u}, \mathbf{w}, \mathbf{v}).$

Desigualdade de energia para aproximação de Galerkin

ightharpoonup Via método de Galerkin, obter aproximações ${f u}^{(n)}$ em espações de Galerkin V_n de dimensão finita,

$$\frac{\mathsf{d}}{\mathsf{d}t}(\mathbf{u}^{(n)}, \mathbf{v}) + b(\mathbf{u}^{(n)}, \mathbf{u}^{(n)}, \mathbf{v}) + a(\mathbf{u}^{(n)}, \mathbf{v}) = (\mathbf{f}, \mathbf{v}), \quad \forall \mathbf{v} \in V_n.$$

Fazendo $\mathbf{v} = \mathbf{u}^{(n)}$:

$$\frac{1}{2}\frac{\mathsf{d}}{\mathsf{d}t}|\mathbf{u}^{(n)}|^2 + \nu \|\mathbf{u}^{(n)}\|^2 = (\mathbf{f}, \mathbf{v})$$

▶ Usando Cauchy-Schwarz e Young no último termo,

$$\frac{\mathsf{d}}{\mathsf{d}t}|\mathbf{u}^{(n)}|^2 + \nu \|\mathbf{u}^{(n)}\|^2 \leq \frac{1}{\nu\lambda_1}|\mathbf{f}|^2,$$

onde $\lambda_1 > 0$ primeiro autovalor do operador de Stokes

49

Estimativas globais

ightharpoonup Assumindo ${f f}$ independente de t (ou ${f f}\in L^2(0,T;V')$),

$$|\mathbf{u}^{(n)}(t)|^2 \le |\mathbf{u}_0|^2 e^{-\nu\lambda_1 t} + \frac{1}{\nu^2 \lambda_1^2} |\mathbf{f}|^2 (1 - e^{-\nu\lambda_1 t})$$

▶ Para a enstrofia,

$$\frac{\nu}{T} \int_0^T \|\mathbf{u}^{(n)}(t)\|^2 \, \mathrm{d}t \le \frac{1}{T} |\mathbf{u}_0|^2 + \frac{1}{\nu \lambda_1} |\mathbf{f}|^2$$

ightharpoonup Para a derivada temporal de ${f u}^{(n)}$, usando

$$-b(\mathbf{u}, \mathbf{u}, \mathbf{v}) = b(\mathbf{u}, \mathbf{v}, \mathbf{u}) \le |\mathbf{u}|_{L^4}^2 ||\mathbf{v}|| \le |\mathbf{u}|^{1/2} ||\mathbf{u}||^{3/2} ||\mathbf{v}||,$$

temos $||B(\mathbf{u}, \mathbf{u})||_{V'}^{4/3} \le |\mathbf{u}|^{2/3} ||\mathbf{u}||^2$, logo

$$\frac{1}{T} \int_0^T \|\partial_t \mathbf{u}^{(n)}(t)\|_{V'}^{4/3} \, \mathrm{d}t \le C$$

- ▶ Obtemos convergência (forte) em $L^2(0,T;H)$, suficiente para a passagem ao limite no termo bilinear.
- ▶ **Aubin (1963):** Sejam $E_1
 otin E_2
 otin E_3$, E_1, E_3 reflexivos. Se $\{\mathbf{u}_n\}_n$ for limitado em $L^p(0,T;E_1)$ e $\{\mathbf{u}_n'\}_n$ limitado em $L^q(0,T;E_3)$, p,q>1, então $\{\mathbf{u}_n\}$ é compacto em $L^p(0,T;E_2)$.
- ▶ **Temam (1983):** Sejam $E_1
 otin E_2$ (não necessariamente reflexivos). Se $\{\mathbf{u}_n\}_n$ for limitado em $L^1(0,T;E_1)$ e em $L^p(0,T;E_2)$, p>1, e

$$\lim_{h \to 0} \sup_{n} \int_{0}^{T-h} |\mathbf{u}_{n}(s+h) - \mathbf{u}_{n}(s)|_{E_{2}}^{p} ds = 0,$$

então $\{\mathbf{u}_n\}_n$ é compacto em $L^p(0,T;E_2)$.

▶ Tartar (1999): p = 1 e "integral" $\leq M|h|^{\theta}$, $\theta > 0$.

51

Solução fraca de Leray-Hopf

Após a passagem ao limite, obtemos solução fraca:

- $\mathbf{u} \in L^{\infty}(0,T;H) \cap L^{2}(0,T;V);$
- $ightharpoonup \partial \mathbf{u}/\partial t \in L^{4/3}(0,T;V');$
- ▶ $\mathbf{u} \in \mathcal{C}([0,T]; H_{\mathsf{W}})$, onde H_{W} : topologia fraca;
- ightharpoonup $\mathbf{u}(t)
 ightarrow \mathbf{u}_0, \ \mathsf{em} \ H$, quando t
 ightarrow 0;
- ightharpoonup u é solução das ENS no sentido fraco (e funcional)
- ightharpoonup u satisfaz a desigualdade de energia no sentido das distribuições em (0,T):

$$\frac{1}{2}\frac{\mathrm{d}}{\mathrm{d}t}|\mathbf{u}(t)|^2 + \nu\|\mathbf{u}(t)\|^2 \leq (\mathbf{f},\mathbf{u}(t))$$

Recuperação da pressão

- ▶ Defina $\mathbf{U}(t) = \int_0^t \mathbf{u}(s) \, \mathrm{d}s$, $\boldsymbol{\beta}(t) = \int_0^t B(\mathbf{u}(s), \mathbf{u}(s)) \, \mathrm{d}s$ e $\mathbf{F}(t) = \int_0^t \mathbf{f}(s) \, \mathrm{d}s$, todos pertencem a $\mathcal{C}(0, T; V')$.
- ▶ Da formulação fraca, para todo $\mathbf{v} \in V$ e todo $t \in [0,T]$, $\langle \mathbf{u}(t) \nu \Delta \mathbf{U}(t) + \boldsymbol{\beta}(t) \mathbf{F}(t) \mathbf{u}_0, \mathbf{v} \rangle = 0$.
- ightharpoonup Da versão para distribuições da caracterização de H^{\perp} ,

$$\exists P(t) \in \mathcal{C}([0,T]; \mathbb{L}^2(\Omega)), \text{ com } -\nu \Delta \mathbf{U}(t) + \nabla P(t) = \mathbf{g}(t),$$

onde
$$\mathbf{g}(t) = \mathbf{F}(t) - \boldsymbol{\beta}(t) - \mathbf{u}(t) + \mathbf{u}_0 \in \mathcal{C}(0, T; V').$$

A derivada $p(t) = \partial P(t)/\partial t$ em \mathcal{D}' satisfaz (em \mathcal{D}') $\frac{\partial \mathbf{u}}{\partial t} - \nu \Delta \mathbf{u} + (\mathbf{u} \cdot \nabla) \mathbf{u} + \nabla p = \mathbf{f}.$

53

Unicidade

A regularidade das soluções fracas não é suficiente para garantir a unicidade. Se ${\bf u}_1$ e ${\bf u}_2$ são soluções, ${\bf u}={\bf u}_2-{\bf u}_1$ satisfaz

$$\frac{d\mathbf{u}}{dt} + \nu A\mathbf{u} + B(\mathbf{u}, \mathbf{u}_2) + B(\mathbf{u}_1, \mathbf{u}) = 0$$

Mas falta ortogonalidade, logo

$$\frac{1}{2}\frac{\mathrm{d}}{\mathrm{d}t}|\mathbf{u}|^2 + \nu \|\mathbf{u}\|^2 + b(\mathbf{u}, \mathbf{u}_2, \mathbf{u}) = 0.$$

Precisa de regularidade de pelo menos uma das soluções (soluções regulares são únicas na classe de soluções fracas).

Ladyzhenskaya (1969): Não unicidade de soluções fracas, mas com o domínio variando com t e com condições de contorno não homogêneas.

Regularidade

Para mais regularidade, estimar enstrofia (usando base de autovalores para a aproximação de Galerkin)

Solução fraca satisfaz

$$\frac{\mathsf{d}}{\mathsf{d}t}(\mathbf{u}, \mathbf{v}) + b(\mathbf{u}, \mathbf{u}, \mathbf{v}) + a(\mathbf{u}, \mathbf{v}) = (\mathbf{f}, \mathbf{v}), \qquad \forall \mathbf{v} \in V.$$

ightharpoonup Tomando $\mathbf{v} = A\mathbf{u}^{(n)}$,

$$\frac{\mathsf{d}}{\mathsf{d}t}(\mathbf{u}^{(n)}, A\mathbf{u}^{(n)}) + b(\mathbf{u}^{(n)}, \mathbf{u}^{(n)}, A\mathbf{u}^{(n)}) + a(\mathbf{u}^{(n)}, A\mathbf{u}^{(n)})$$

$$= (\mathbf{f}, A\mathbf{u}^{(n)}),$$

$$\implies \frac{1}{2} \frac{\mathsf{d}}{\mathsf{d}t} \|\mathbf{u}^{(n)}\|^2 + \frac{\nu}{2} |A\mathbf{u}^{(n)}|^2 + b(\mathbf{u}^{(n)}, \mathbf{u}^{(n)}, A\mathbf{u}^{(n)}) = \frac{1}{2} |\mathbf{f}|^2$$

55

▶ Para estimar o termo $b(\mathbf{u}^{(n)}, \mathbf{u}^{(n)}, A\mathbf{u}^{(n)})$, fazemos

$$|b(\mathbf{u}^{(n)}, \mathbf{u}^{(n)}, A\mathbf{u}^{(n)})| \leq |\mathbf{u}^{(n)}|_{L^{6}} |\nabla \otimes \mathbf{u}^{(n)}|_{L^{3}} |A\mathbf{u}^{(n)}|$$

$$\leq ||\mathbf{u}^{(n)}|| \left(||\mathbf{u}^{(n)}||^{1/2} |A\mathbf{u}^{(n)}|^{1/2} \right) |A\mathbf{u}^{(n)}|^{1/2}$$

$$\leq ||\mathbf{u}^{(n)}||^{3/2} |A\mathbf{u}^{(n)}|^{3/2} \leq C ||\mathbf{u}^{(n)}||^{6} + \frac{\nu}{4} |A\mathbf{u}^{(n)}|^{2}.$$

- ► Assim, $\frac{\mathrm{d}}{\mathrm{d}t} \|\mathbf{u}^{(n)}\|^2 + \frac{\nu}{2} |A\mathbf{u}^{(n)}|^2 \le C \|\mathbf{u}^{(n)}\|^6 + |\mathbf{f}|^2.$
- ▶ Utilizando $\lambda_1 \|\mathbf{u}\|^2 \leq |A\mathbf{u}|^2$, chegamos a

$$\frac{\mathsf{d}}{\mathsf{d}t} \|\mathbf{u}^{(n)}\|^2 + \frac{\lambda_1 \nu}{2} \|\mathbf{u}^{(n)}\|^2 \le C \|\mathbf{u}^{(n)}\|^6 + |\mathbf{f}|^2,$$

que é da forma $r' + r \le r^3 + k$, para $r = \|\mathbf{u}^{(n)}\|^2$.

A solução de $r'+r=r^3+k$ explode em tempo finito, se $r>r^*$, e é limitada, se $0\leq r\leq r^*$, onde r^* é a maior raiz de r^3-r+k .

► Conclusão:

- existência de soluções regulares locais;
- existência de soluções regulares globais para forças externas e dados iniciais pequenos.

57

Singularidades no tempo

- ► As estimativas anteriores indicam a possibilidade de explosão em tempo finito de soluções regulares;
- ▶ Possibilidade de perda de regularidade das soluções fracas em certos instantes de tempo (singularidades temporais - a enstrofia (vorticidade total) deixa de ser limitada):

► Segundo Leray, essas singularidades estariam associadas a escoamentos turbulentos.

Estimativa da "quantidade" de singularidades temporais

- ► Considere solução fraca $\mathbf{u} = \mathbf{u}(t), \ t \ge 0$, e o conjunto de singularidades temporais $S = \{t \ge 0; \ \|\mathbf{u}(t)\| = \infty\}$;
- $lackbox{ Como } \int_0^T \|\mathbf{u}(t)\|^2 \ \mathrm{d}t < \infty, \ \mathrm{temos} \ S \ \mathrm{de \ medida \ nula;}$
- ightharpoonup Quão grande pode ser S? Denso na reta? Discreto?
- ▶ S não é denso: pela existência local de soluções regulares, o conjunto de instantes regulares $(\|\mathbf{u}(t)\| < \infty)$ é união de intervalos semi-abertos e de medida cheia.
- ► Como podemos medir o "tamanho" de S?

59

Dimensão de Hausdorff

- lacktriangle Quantificar o tamanho de S pela dimensão de Hausdorff
- ightharpoonup Medida de dimensão D de Hausdorff de S

$$\mu_D(S) = \lim_{\epsilon \searrow 0} \mu_{D,\epsilon}(S) = \sup_{\epsilon > 0} \mu_{D,\epsilon}(S),$$

onde
$$\mu_{D,\epsilon} = \inf_{\bigcup_{j}(t_{j}^{-},t_{j}^{+})\supset S,\;|t_{j}^{+}-t_{j}^{-}|\leq \epsilon} \sum_{j} (t_{j}^{+}-t_{j}^{-})^{D};$$

- ▶ Dimensão de Hausdorff $\dim_H(S) = \inf\{D; \ \mu_D(S) = 0\};$
- ightharpoonup dim $_H$ pode ser definida em várias dimensões e coincide com a dimensão euclidiana de subvariedades euclidianas

cobertura: $\epsilon \mapsto \epsilon/2$ nº de "bolas": $n_\epsilon \mapsto 2^d n_\epsilon$ d= dimensão euclidiana $\mu_{D,\epsilon/2^j} = 2^{j(d-D)} \mu_{D,\epsilon}$

Estrutura das soluções fracas - Leray (1934)

ightharpoonup Seja $\mathbf{u}(t)$ solução fraca em [0,T] e defina

$$R = [0, T] \setminus S = \{ t \in [0, T]; \mathbf{u}(t) \in V \},$$

$$R_0 = \{ t \in (0, T); \exists \varepsilon > 0, \mathbf{u}(t) \in \mathcal{C}((t - \varepsilon, t + \varepsilon), V) \}$$

- ▶ R_0 é aberto, logo $R_0 = \bigcup_{j \in \mathbb{N}} I_j$, com $I_j = (t_j^-, t_j^+)$ disjuntos.
- ▶ Para cada $t \in R$, temos $t \in R_0$ ou $t = t_j^-$ para algum j, logo $R \setminus R_0$ é enumerável.
- ▶ Como $\mathbf{u} \in L^2(0,T;V)$, temos |R|=T, logo $|R_0|=T$, onde $|\cdot|=$ medida de Lebesgue
- ightharpoonup Vamos estimar o comprimento de cada $(t_j^-,t_j^+)...$

61

▶ Da inequação $r'+r \leq r^3+k$ para enstrofia $r=\frac{1}{2}\|\mathbf{u}\|^2$ temos soluções definidas para

$$0 \le t - t_0 < \alpha/(1 + r_0)^2$$
, $r_0 = r(t_0)$, $\alpha > 0$;

- ▶ Integrando no tempo:

$$(t^+ - t^-)^{1/2} = \int_{t^-}^{t^+} \frac{\mathrm{d}t}{2(t^+ - t)^{1/2}} \le \int_{t^-}^{t^+} \frac{1 + \|\mathbf{u}(t)\|^2}{2\sqrt{\alpha}} \; \mathrm{d}t;$$

▶ Somando em todos os intervalos (Leray (1934)):

$$\sum_{\substack{\text{intervalos} \\ \text{regulares}}} (t_j^+ - t_j^-)^{1/2} \le \int_0^T \|\mathbf{u}(t)\|^2 \ \mathrm{d}t < \infty;$$

Dimensão das singularidades em t - Scheffer (1976)

- ▶ Temos $S \subset [0,T] \setminus \bigcup_{j=1}^m I_j$, que escrevemos como união finita de intervalos fechados disjuntos $\bigcup_{j=1}^{k_m} K_j^{(m)}$.
- ▶ Se $I_j \cap K_n^{(m)} \neq \emptyset$ com j > m, então $I_j \subset K_n^{(m)}$, pois os extremos de $K_n^{(m)}$ são extremos de outros $I_{j'}$ e não podem estar no interior de I_j .

 $\left(\begin{array}{c|c}I_1&&\\\hline\\K_1^{(3)}&&\\\hline\\K_2^{(3)}&\\\hline\end{array}\right)$

lacksquare Assim, $\cup_{n=1}^{k_m} K_j^{(m)} \subset \cup_{j>m} I_j$ e

$$\sum_{n=1}^{k_m} |K_n^{(m)}| \le \sum_{j>m} |I_j|^{1/2} = \sum_{j>m} (t_j^+ - t_j^-)^{1/2} \underset{m \to \infty}{\longrightarrow} 0,$$

▶ Como $\cup_{n=1}^{k_m} K_j^{(m)}$ é uma cobertura de S, temos da estimativa acima que $\mu_{1/2}(S)=0$ e $\dim_H(S)\leq 1/2$.

63

Singularidades espaço-temporais - Scheffer (1976), Caffareli, Khon, Nirenberg (1982), Lin (1998), ...

- Análise mais precisa no conjunto E de singularidades espaço-temporais (de "suitable weak solutions"): $\{(t^*, \mathbf{x}^*), \ \mathbf{u}(t, \mathbf{x}) \ \text{ilimitado em vizinhanças de } (t^*, \mathbf{x}^*)\};$
- $\qquad \qquad \exists \epsilon > 0, \limsup_{R \to 0} R^{-1} \int_{Q_R(t,\mathbf{x})} |\mathbf{\nabla} \otimes \mathbf{u}|^2 < \epsilon \ \Rightarrow \ (t,\mathbf{x}) \text{ regular;}$
- $\mathcal{P}_1(E)=0$, onde \mathcal{P}_D é uma versão parabólica da medida de Hausdorff (com cilindros parabólicos $Q_\epsilon=I_{\epsilon^2}\times B_\epsilon$ ao invés de bolas);
- \blacktriangleright \sharp singularidade tipo vórtice pontual existindo em um intervalo de tempo (tb. dimensão dois devido a I_{ϵ^2}).

Suitable weak solutions

▶ Sohr e von Wahl (1986): Leray-Hopf solutions

$$p \in L^{5/3}(\mathbb{R}^3 \times (0, T).$$

► Caffarelli, Kohn, Nirenberg (1982): ∃ suitable weak solutions

$$p\in L^{5/4}(\Omega\times(0,T)) \quad \left(\text{de fato, } p\in L^{5/4}_tL^{5/3}_x\right).$$

► F. H. Lin (1998) e Ladyzhenskaya e Seregin (1999): ∃ suitable weak solutions

$$p \in L^{3/2}((0,T) \times \Omega).$$

65

- Condições para a regularidade ou explosão foram obtidas e têm sido refinadas;
- Condições geométricas sobre o alinhamento de vórtices são particularmente interessantes:

$$(\partial_t + \mathbf{u} \cdot \nabla - \nu \delta) |\boldsymbol{\omega}|^2 + \nu |\boldsymbol{\nabla} \otimes \boldsymbol{\omega}|^2 = S \boldsymbol{\omega} \cdot \boldsymbol{\omega} = \alpha |\boldsymbol{\omega}|^2,$$

$$\alpha(\mathbf{x}) = \frac{3}{4\pi} P.V. \int D(\mathbf{y}/|\mathbf{y}|, \boldsymbol{\xi}(\mathbf{x} + \mathbf{y}), \boldsymbol{\xi}(\mathbf{x})) |\boldsymbol{\omega}(\mathbf{x} + \mathbf{y})| \, d\mathbf{y}/|\mathbf{y}|^3$$

$$\boldsymbol{\xi} = \boldsymbol{\omega}/|\boldsymbol{\omega}|, \ D(\boldsymbol{s}_1, \boldsymbol{s}_2, \boldsymbol{s}_3) = (\boldsymbol{s}_1 \cdot \boldsymbol{s}_3) \det(\boldsymbol{s}_1, \boldsymbol{s}_2, \boldsymbol{s}_3), \ \forall |\boldsymbol{s}_i| = 1;$$

 φ = ângulo entre $\xi(\mathbf{x} + \mathbf{y})$ e $\xi(\mathbf{x})$, então $|D| \le |\sin \varphi|$ e ângulo local pequeno reduz α , associado ao crescimento de singularidades;

Resultados condicionais de regularidade

► Constantin-Fefferman (1993):

 $|\sin \varphi(\mathbf{y})| \le c|\mathbf{y}|$ em $\Omega_{t,M} \Rightarrow \nexists$ explosão em t = T.

$$\Omega_{t,M} = \{(t, \mathbf{x}) \in (0, T) \times \Omega; \ |\boldsymbol{\omega}(t, \mathbf{x})| \ge M\}$$

▶ Beirão da Veiga-Berselli (2002):

$$|\sin \varphi(\mathbf{y})| \le c|\mathbf{y}|^{1/2}$$
 em $\Omega_{t,M} \Rightarrow \nexists$ explosão em $t = T$.

▶ Ruzmaikina e Grujić (2003): Para $q \ge 2$,

$$|\boldsymbol{\omega}|_{\mathbb{L}^q(\Omega)}^{q/(q-1)} \in L^1(0,T)$$
 e $|\sin \varphi(\mathbf{y})| \le c|\mathbf{y}|^{1/q}$ em $\Omega_{t,M}$ $\Rightarrow \nexists$ explosão em $t=T$.

67

Regularidade eventual de Leray

- ▶ Considere o caso sem força externa, $\mathbf{f} = 0$;
- Nesse caso $2\nu \int_0^T \|\mathbf{u}(t)\|^2 dt \le |\mathbf{u}_0|^2, \quad \forall T > 0;$
- ▶ Então, $\liminf_{t\to\infty} \|\mathbf{u}(t)\| = 0$, i.e. a solução assume valores arbitrariamente pequenos de enstrofia;
- Pelo resultado de regularidade global para dados iniciais com enstrofia suficientemente pequena, segue que a solução ${\bf u}$ é regular a partir de algum tempo $t \geq T_L$ suficientemente grande.

Regularidade assintótica?

- ▶ Para $\mathbf{f} \neq 0$, não há, necessariamente, regularidade eventual;
- ▶ Um possível resultado intermediário de regularidade é o conjunto ω -limite fraco ter enstrofia limitada;
- Outro, mais fraco, seria o suporte de medidas invariantes ("soluções estatísticas" em 3D) ter enstrofia limitada;
- ► Este último resultado tem relação com o esperado decaimento exponencial do espectro, na teoria estatística de turbulência, associado ao espectro de funções analíticas.

69

Atrator global fraco

As estimativas a priori obtidas na teoria de existência das ENS são suficientes para mostrar a existência de um atrator global na topologia fraca:

$$\mathcal{A}_{\mathsf{W}}\!=\!\{\mathbf{u}_0\in H;\;\exists\,\mathsf{solu}\tilde{\mathsf{pao}}\;\mathsf{global},\;\sup_{t\in\mathbb{R}}|\mathbf{u}(t)|\!<\!\infty,\mathbf{u}(0)=\mathbf{u}_0\};$$

- Pelas estimativas, A_w é limitado em H e atrai todas as soluções na topologia fraca, uniformemte para condições iniciais limitadas.
- ▶ Se $A_{\mathsf{W}} \subset V$ (regularidade assintótica), então todas as soluções são atraídas na topologia forte.

Resultados recentes sobre as equações de Navier-Stokes para fluidos incompressíveis

Ricardo M. S. Rosa Instituto de Matemática Universidade Federal do Rio de Janeiro (IM-UFRJ)

I EBED

Escola Brasileira de Equações Diferenciais 9 a 13 de junho de 2003 IMECC - Unicamp

Aula 3 - 11 de junho

73

Resultados recentes sobre as equações de Navier-Stokes para fluidos incompressíveis

Tópicos:

- 1. As equações de Navier-Stokes, equações correlatas e algumas questões fundamentais
- 2. Aspectos matemáticos das equações de Navier-Stokes
- 3. Teoria estatística convencional de turbulência
- 4. Soluções estatísticas das equações de Navier-Stokes
- 5. Aplicações das soluções estatísticas em turbulência

Teoria estatística convencional de turbulência

- Ordem e médias estatísticas
- ▶ Turbulência homogênea e isotrópica
- Espectro de energia
- ▶ Cascata de energia
- ▶ A teoria homogêna isotrópica local de Kolmogorov
- estruturas coerentes e intermitência
- ► Graus de liberdade
- ▶ Lei de dissipação de energia
- Número de Reynolds, lei de Moore e DNS
- ► Cascata de enstrofia e espectro de Kraichnan em 2D

75

Equações de Navier-Stokes

- ightharpoonup Região $\Omega\subset\mathbb{R}^3$ ocupada pelo fluido
- ▶ Variáveis espacial $\mathbf{x} = (x_1, x_2, x_3) \in \Omega$ e temporal $t \geq 0$
- $lackbox{Campo de velocidades } \mathbf{u} = \mathbf{u}(t,\mathbf{x}) = (u_1,u_2,u_3) \in \mathbb{R}^3$
- $lackbox{ Pressão } p=p(t,\mathbf{x})\in\mathbb{R}$ e força de volume $\mathbf{f}=(f_1,f_2,f_3)$
- ▶ Equações de Navier-Stokes (ENS) para um escoamento incompressível e homogêneo, viscosidade cinemática ν :

$$\begin{cases} \frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla)\mathbf{u} + \nabla p = \nu \Delta \mathbf{u} + \mathbf{f}, \\ \nabla \cdot \mathbf{u} = 0. \end{cases}$$

Escoamentos turbulentos: várias escalas presentes, se movendo de maneira imprevisível, mas bem comportadas em um sentido estatístico.

Figure 1.3 Instantaneous and time averaged views of a jet in cross flow. The jet exits from the wall at left into a stream flowing from bottom to top (Su & Mungal, 1999).

77

Reynolds (1895):

Decomposição do escoamento em

escoamento médio + flutuações

Escoamento médio previsível?

Tipos de média:

Média temporal: $\mathbf{U}(\mathbf{x}) \approx \frac{1}{T} \int_0^T \mathbf{u}(t, \mathbf{x}) dt$

Média amostral: $\mathbf{U}(\mathbf{x}) \approx \frac{1}{N} \sum_{n=1}^{N} \mathbf{u}^{(n)}(t, \mathbf{x})$

Média espacial: $\mathbf{U}(\mathbf{x}) \approx \frac{1}{N} \sum_{n=1}^{N} \mathbf{u}(t, \mathbf{x} + \boldsymbol{\ell}^{(n)})$

Hipótese ergódica: Os valores médios independem do tipo de média considerada, inspirada em mecânica estatística.

Reynolds (1895): Operação formal de média, satisfazendo propriedades de linearidade.

79

Quantidades médias - notação

$$\overline{\varphi(\mathbf{u})}$$
 ou $\langle \varphi(\mathbf{u}) \rangle = \frac{1}{N} \sum_{n=1}^{N} \varphi(\mathbf{u}^{(n)})$

onde $\mathbf{u} = \mathbf{u}(t, \mathbf{x})$ e $\varphi = \varphi(\mathbf{u})$.

Exemplos:

$$\overline{u_1}(t, \mathbf{x}), \qquad \langle u_1(t, \mathbf{x}) \rangle, \qquad \frac{\rho_0}{2} \langle |\mathbf{u}(t, \mathbf{x})|^2 \rangle$$

Linearidade:

$$\begin{split} \overline{\frac{\partial u_3}{\partial x_2}} &= \frac{\partial \overline{u_3}}{\partial x_2}, \qquad \langle \int_{\Omega} \mathbf{u}(t,\mathbf{y}) \; \mathrm{d}\mathbf{y} \rangle = \int_{\Omega} \langle \mathbf{u}(t,\mathbf{y}) \rangle \; \mathrm{d}\mathbf{y}, \\ & \text{mas } \langle u_1(\mathbf{x}) u_2(\mathbf{y}) \rangle \neq \langle u_1(\mathbf{x}) \rangle \, \langle u_2(\mathbf{y}) \rangle \end{split}$$

► Escoamento médio

$$U(\mathbf{x},t) = \langle \mathbf{u}(t,\mathbf{x}) \rangle = \frac{1}{N} \sum_{n=1}^{N} \mathbf{u}^{(n)}(t,\mathbf{x})$$

▶ Energia cinética média por unidade de massa:

$$e(t, \mathbf{x}) = \frac{1}{2} \langle |\mathbf{u}(t, \mathbf{x})|^2 \rangle = \frac{1}{N} \sum_{n=1}^{N} \frac{1}{2} |\mathbf{u}^{(n)}(t, \mathbf{x})|^2$$

▶ Razão de dissipação viscosa de energia por unidade de tempo e unidade de massa:

$$\epsilon(t, \mathbf{x}) = \nu \langle |\nabla \otimes \mathbf{u}(t, \mathbf{x})|^2 \rangle = \frac{\nu}{N} \sum_{n=1}^{N} \sum_{i,j=1}^{3} \left(\frac{\partial u_i^{(n)}}{\partial x_j} \right)^2$$

81

Equação de energia

energia

► Equações de Navier-Stokes:

dissipação

$$\frac{\partial \mathbf{u}}{\partial t} - \nu \Delta \mathbf{u} + (\mathbf{u} \cdot \nabla) \mathbf{u} + \nabla p = \mathbf{f}, \qquad \nabla \cdot \mathbf{u} = 0,$$

lacktriangle Multiplicando as ENS por ${f u}$ e integrando no domínio:

$$\int_{\Omega} (\mathbf{ENS}) \cdot \mathbf{u} \, d\mathbf{x} = 0$$

lackbox Usando condição de incompressibilidade e mult. por ho_0 :

$$\frac{\mathrm{d}}{\mathrm{d}t} \underbrace{\frac{\rho_0}{2} \int_{\Omega} |\mathbf{u}|^2 + \nu \rho_0 \int_{\Omega} |\nabla \otimes \mathbf{u}|^2 + \left(\text{termos} \atop \text{no bordo} \right) = \left(\text{termos de} \atop \text{produção} \atop \text{de energia} \right)$$

Equações de Reynolds para o escoamento médio

► Equações de Navier-Stokes:

$$\frac{\partial \mathbf{u}}{\partial t} - \nu \Delta \mathbf{u} + (\mathbf{u} \cdot \nabla) \mathbf{u} + \nabla p = 0, \qquad \nabla \cdot \mathbf{u} = 0.$$

ightharpoonup Substituindo $\mathbf{u} = \mathbf{U} + \mathbf{u}'$ e tomando a média:

$$\frac{\partial \mathbf{U}}{\partial t} - \nu \Delta \mathbf{U} + (\mathbf{U} \cdot \nabla) \mathbf{U} + \nabla P = -\nabla \cdot \overline{(\mathbf{u}' \otimes \mathbf{u}')}, \quad \nabla \cdot \mathbf{U} = 0.$$

 $ho_0\overline{(\mathbf{u}'\otimes\mathbf{u}')}=
ho_0(\overline{\mathbf{u}_i'\mathbf{u}_j'})_{i,j=1}^3= ext{tensor de Reynolds}.$

83

Escoamentos turbulentos médios

Em canais:

Várias camadas com diferentes perfis de velocidade média (simplificação do tensor de Reynolds via simetrias, análise dimensional, argumentos fenomenológicos, ...)

Analogamente para outras geometrias (tubos, etc.)

Correlações e métodos estatísticos - Taylor (1921,35)

Correlações (de 2 pontos): $\langle u_i(\mathbf{x})u_i(\mathbf{x}+\boldsymbol{\ell})\rangle$

- ▶ $\mathbf{u}^{(n)}(\mathbf{x} + \boldsymbol{\ell})$ e $\mathbf{u}^{(n)}(\mathbf{x})$ apontam freqüentemente na mesma direção e mesmo sentido $\Rightarrow \langle u_i(\mathbf{x})u_i(\mathbf{x} + \boldsymbol{\ell})\rangle > 0$ e as velocidades estão correlacionadas.
- ▶ $\mathbf{u}^{(n)}(\mathbf{x} + \boldsymbol{\ell})$ e $\mathbf{u}^{(n)}(\mathbf{x})$ apontam em direções arbitrariamente diferentes $\Rightarrow \langle u_i(\mathbf{x})u_i(\mathbf{x} + \boldsymbol{\ell})\rangle = 0$ e as velocidades não estão correlacionadas.

85

Turbulência homogênea - Taylor (1935)

Em certos escoamentos, correlações são homogêneas:

 $\langle u_i(\mathbf{x})u_j(\mathbf{x}+\boldsymbol{\ell})\rangle =$ função apenas de $\boldsymbol{\ell},$ independe de \mathbf{x}

Figure I-3: turbulence created in a wind tunnel behind a grid. Here turbulence fills the whole apparatus, and a localized source of smoke has been placed on the grid to visualize the development of turbulence (picture by J.L. Balint, M. Ayrault and J.P. Schon, Ecole Centrale de Lyon; from Lesieur (1982), courtesy "La Recherche")

Comprimento de Taylor (1921,1935)

Correlação lateral de segunda ordem normalizada:

$$g(\ell) = \frac{\langle u_1(\mathbf{x})u_1(\mathbf{x} + \ell \mathbf{e}_2)\rangle}{\langle u_1(\mathbf{x})^2\rangle}, \qquad \ell \in \mathbb{R}$$

- g(0) = 1
- ▶ Homogeneidade implica em $g(-\ell) = g(\ell)$, logo $g'(0) = g'''(0) = \ldots = 0$.
- $g(\ell) = 1 \left(\frac{\ell}{\ell_T}\right)^2 + \mathcal{O}\left(\left(\frac{\ell}{\ell_T'}\right)^4\right)$
- $ightharpoonup \ell_T = \text{comprimento de Taylor}$

87

Comprimento de Taylor - verificação experimental

$$g(\ell) = \frac{\langle u_1(\mathbf{x})u_1(\mathbf{x} + \ell \mathbf{e}_2)\rangle}{\langle u_1(\mathbf{x})^2\rangle} = 1 - \left(\frac{\ell}{\ell_T}\right)^2 + \mathcal{O}\left(\left(\frac{\ell}{\ell_T'}\right)^4\right)$$

 $\ell_T=$ "comprimento médio dos menores turbilhões responsáveis pela dissipação de energia pela viscosidade"

Turbulência homogênea isotrópica - Taylor (1935)

Em certos escoamentos turbulentos, em particular quando o escoamento médio é desprezível, as correlações são homogêneas e *isotrópicas* no espaço, isto é independentes de translações e rotações do conjunto de pontos.

$$\langle u_i(\mathbf{x})u_j(\mathbf{x}+\boldsymbol{\ell}) \rangle = \left\{ egin{array}{l} \mbox{função apenas do módulo } \ell = |\boldsymbol{\ell}|, \mbox{independe de } \mathbf{x} \mbox{ e da direção } rac{\boldsymbol{\ell}}{|\boldsymbol{\ell}|}. \end{array}
ight.$$

89

Consequências da isotropia

Kármán e Howarth (1937): em escoamentos homogêneos isotrópicos, correlações de segunda ordem podem ser escritas em termos de apenas uma correlação

$$\left(\frac{\langle u_i(\mathbf{x})u_j(\mathbf{x}+\boldsymbol{\ell})\rangle}{\langle u(\mathbf{x})^2\rangle}\right)_{i,j=1}^3 = \frac{f(\ell)-g(\ell)}{\ell^2}\ell\otimes\ell+g(\ell)\delta_{i,j},$$

onde

$$f(\ell) = \frac{\langle u_1(\mathbf{x})u_1(\mathbf{x} + \ell \mathbf{e}_1)\rangle}{\langle u(\mathbf{x})^2\rangle}, \quad g(\ell) = \frac{\langle u_1(\mathbf{x})u_1(\mathbf{x} + \ell \mathbf{e}_2)\rangle}{\langle u(\mathbf{x})^2\rangle}$$

e, da condição de incompressibilidade,

$$f(\ell) + \frac{\ell}{2}f'(\ell) = g(\ell).$$

Verificado experimentalmente por Taylor (1937).

Espectro de energia e correlações - Taylor (1938)

▶ Traço do tensor de correlações

$$\operatorname{Tr} R(\ell) = R_{11}(\ell) + R_{22}(\ell) + R_{33}(\ell), \quad R_{ij} = \langle u_i(\mathbf{x})u_j(\mathbf{x} + \ell) \rangle$$

▶ Transformada de Fourier $Q(\kappa)$ de Tr $R(\ell)$

$$\operatorname{Tr} R(\boldsymbol{\ell}) = \frac{1}{(2\pi)^{3/2}} \int_{\mathbb{R}^3} Q(\boldsymbol{\kappa}) e^{i\boldsymbol{\ell}\cdot\boldsymbol{\kappa}} \; \mathrm{d}\boldsymbol{\kappa}$$

► Espectro de energia (segundo Batchelor (1953))

$$\begin{split} S(\kappa) &= \frac{1}{2} \frac{1}{(2\pi)^{3/2}} \int_{|\boldsymbol{\kappa}| = \kappa} Q(\boldsymbol{\kappa}) \; \mathrm{d} \Sigma(\boldsymbol{\kappa}) \\ \Longrightarrow &\quad e = \frac{1}{2} \langle |\mathbf{u}(\mathbf{x})|^2 \rangle = \frac{1}{2} \mathrm{Tr} \, R(0) = \int_0^\infty S(\kappa) \; \mathrm{d} \kappa \end{split}$$

91

Cascata de energia - Richardson (1922)

injeção de energia

transferência/cascata de energia

dissipação de energia

Transferência de energia/enstrofia

93

Número de Reynolds

- ▶ Escala de comprimento: *L*
- ightharpoonup Escala de velocidade: U
- ▶ Dimensão física do termo inercial: $(\mathbf{u} \cdot \nabla)\mathbf{u} \sim \frac{U^2}{L}$
- lackbox Dimensão física do termo viscoso: $u\Delta\mathbf{u}\sim rac{
 u U}{L^2}$
- Razão entre os dois termos:

$$Re = \frac{inercial}{viscoso} = \frac{LU}{\nu}$$

- ightharpoonup Re $\gg 1 \Rightarrow$ termo inercial domina (grandes escalas)
- ▶ Re $\ll 1 \Rightarrow$ viscosidade domina (pequenas escalas)

Teoria de Kolmogorov

- ightharpoonup Produção de energia nas grandes escalas $\ell \sim \ell_0$
- No intervalo de equilíbrio, $\ell \ll \ell_0$, o escoamento tem um comportamento universal, independente das características de produção de energia e dependentes apenas de ν e ϵ . O escoamento "perde a memória" das grandes escalas, devido à cascata turbulenta de energia.
- A viscosidade se torna importante apenas a partir de escalas muito menores, da ordem do **comprimento de** Kolmogorov, $\ell_{\epsilon} = (\nu^3/\epsilon)^{1/4}$.
- No intervalo inercial, $\ell_0 \gg \ell \gg \ell_\epsilon$, a viscosidade é desprezível em relação às forças de inercia (cinéticas), com o espectro de energia $S(\kappa) \sim \epsilon^{2/3} \kappa^{-5/3}$.

95

Teoria de turbulência homogênea isotrópica local - Kolmogorov (1941)

- ► Correlações de *diferenças* de velocidades são homogêneas e isotrópicas no espaço e em equilíbrio estatístico (homogêneas) no tempo.
- ▶ Homogeneidade $\Rightarrow \epsilon = \frac{\nu}{2} \langle |\nabla \otimes \mathbf{u}(t, \mathbf{x})|^2 \rangle$ independe de t, x.
- ▶ 1ª hipótese de similaridade: correlações dependem apenas de ϵ e ν (nas escalas suficientemente menores que as de produção de energia, ℓ_0)
- \blacktriangleright 2º hipótese de similaridade: Há um subintervalo de escalas no qual as correlações dependem apenas de ϵ

Comprimento de Kolmogorov (1941)

É o comprimento ℓ_{ϵ} para o qual os efeitos de viscosidade e inércia são comparáveis e significativos.

Pela transformação $\ell'=\ell/\lambda$, t'=t/ au, temos

$$\nu' = \frac{\tau}{\lambda^2} \nu, \qquad \epsilon' = \frac{\tau^3}{\lambda^2} \epsilon.$$

$$\epsilon' = 1 \Rightarrow \tau = \left(\frac{\lambda^2}{\epsilon}\right)^{1/3}, \quad \nu' = 1 \Rightarrow \tau = \frac{\lambda^2}{\nu}, \qquad \frac{\epsilon'}{\nu'} = \frac{\tau^2 \epsilon}{\nu} = \frac{\lambda^4 \epsilon}{\nu^3},$$

Portanto, ϵ'/ν' diminui com λ^4 e

$$\nu' \sim 1 \sim \epsilon' \quad \iff \quad \lambda \sim \ell_{\epsilon} \stackrel{\text{def}}{=} \left(\frac{\nu^{3}}{\epsilon}\right)^{1/4}$$

$$\nu' \ll \epsilon' \sim 1 \quad \iff \quad \lambda \gg \ell_{\epsilon}$$

$$\epsilon' \ll \nu' \sim 1 \quad \iff \quad \lambda \ll \ell_{\epsilon}.$$

97

A lei de potência 2/3 de Kolmogorov (1941)

Pela segunda hipótese de similaridade, as correlações para $\ell_\epsilon \ll \ell \ll \ell_0$ só dependem de ϵ .

$$S_2(\ell) = \langle \left((\mathbf{u}(\mathbf{x} + \boldsymbol{\ell}) - \mathbf{u}(\mathbf{x})) \cdot \frac{\boldsymbol{\ell}}{|\boldsymbol{\ell}|} \right)^2 \rangle = g(\ell, \epsilon).$$

Pela similaridade, $S_2'(\ell') = g(\ell', \epsilon')$, logo

$$\frac{\tau^2}{\lambda^2} S_2(\ell) = g(\frac{\ell}{\lambda}, \frac{\tau^3}{\lambda^2} \epsilon).$$

Tomando

$$\frac{\ell}{\lambda} = 1, \qquad \frac{\tau^3}{\lambda^2} \epsilon = 1,$$

$$\implies \quad \underline{S_2(\ell)} = g(1,1) \frac{\lambda^2}{\tau^2} = g(1,1) \frac{\ell^2}{(\ell^{2/3}/\epsilon^{1/3})^2} = \text{const.} \, (\epsilon \ell)^{2/3}.$$

O espectro -5/3 de Kolmogorov

- $ightharpoonup S(\kappa) = {
 m espectro \ de \ energia} \Rightarrow {
 m dimens\~ao} = rac{L^3}{T}$
- ullet ϵ = razão de dissipação de energia no tempo = $\frac{L^2}{T^3}$
- ▶ Hipótese de similaridade $\Rightarrow S(\kappa)$ depende de ϵ e κ (no intervalo inercial)
- ▶ Intervalo inercial: $\kappa_0 \ll \kappa \ll \kappa_\epsilon$, $\kappa_0 = \ell_0^{-1}$, $\kappa_\epsilon = \ell_\epsilon^{-1}$
- ► Análise dimensional ⇒

$$S(\kappa) = \text{const.} \ \epsilon^{2/3} \kappa^{-5/3}, \qquad \kappa_0 \ll \kappa \ll \kappa_{\epsilon}$$

99

Espectro de energia - mecanismo de Oboukhof (1941)

▶ Energia cinética média para os turbilhões de comprimento $\ell=1/\kappa$:

$$e_{\kappa} = S(\kappa)\kappa$$

► Tempo característico para esses turbilhões:

$$\tau_{\kappa} = (S(\kappa)\kappa^3)^{1/2}$$

- No intervalo inercial, energia cinética é transferida para as escalas menores, à razão temporal da ordem da razão de dissipação de energia: $\frac{e_\kappa}{\tau_{\cdot\cdot\cdot}}\sim\epsilon$
- ▶ Logo, $\frac{S(\kappa)\kappa}{(S(\kappa)\kappa^3)^{1/2}} \sim \epsilon$ \Longrightarrow $S(\kappa) \sim \epsilon^{2/3}\kappa^{-5/3}$

Estruturas coerentes e intermitência

- ▶ Universalidade questionada devido a variações intermitentes na dissipação de energia ϵ
- ► Estruturas coerentes: filamentos de vórtices com baixa dissipação de energia, diâmetro da ordem do comprimento de Kolmogorov e comprimento variando entre comprimento de Taylor e escala integral.

103

Intermitência, leis de potência e lei -4/5

▶ Via análise dimensional ou similaridade:

$$S_p(\ell) = \langle \left((\mathbf{u}(\mathbf{x} + \boldsymbol{\ell}) - \mathbf{u}(\mathbf{x})) \cdot \frac{\boldsymbol{\ell}}{|\boldsymbol{\ell}|} \right)^p \rangle \sim (\epsilon \ell)^{p/3}.$$

- lacktriangle Intermitência \Rightarrow diferentes dissipações locais ϵ_j
- \blacktriangleright Então, para a correlação longitudinal 2-pts de ordem p:

$$S_p(\ell) = \frac{1}{J} \sum_{j=1}^{J} S_p^{(j)}(\ell) = \frac{1}{J} \sum_{j=1}^{J} (\epsilon_j \ell)^{p/3} \neq \left(\frac{1}{J} \sum_{j=1}^{J} \epsilon_j \ell\right)^{p/3} = (\epsilon \ell)^{p/3},$$

exceto quando p=3, que é o único valor para o qual Kolmogorov obteve uma lei de potência sem usar similaridade (lei -4/5 de Kolmogorov): $S_3(\ell)=-\frac{4}{5}\epsilon\ell$

Graus de liberdade - Landau e Lifchitz (1971)

- ▶ Teoria de Kolmogorov: escalas $\ell \ll \ell_\epsilon$ são dominadas pela dissipação e irrelevantes para o movimento
- lacktriangle Basta representarmos as escalas de ordem até ℓ_ϵ
- lacktriangle Basta uma malha de espaçamento $\sim \ell_0/\ell_\epsilon$
- ▶ Graus de liberdade: $(\ell_0/\ell_\epsilon)^3$

105

Lei de dissipação de energia

- ightharpoonup Comprimento típico das grandes escalas: ℓ_0
- lacktriangle Velocidade típica das grandes escalas: U_0
- \blacktriangleright Energia cinética das grandes escalas: $e_0=U_0^2/2$
- lacktriangle Tempo de circulação das grandes escalas: $au_0=\ell_0/U_0$
- Razão de dissipação de energia:

$$\epsilon \sim rac{e_0}{ au_0} \quad \Rightarrow \quad \epsilon \sim rac{U_0^3}{\ell_0}$$
 (lei de dissipação de energia)

Mais precisamente, lei considerada para a velocidade turbulenta $U_0' = \langle u_1(\mathbf{x})^2 \rangle^{1/2}$ e a escala integral

$$\ell_0' = rac{1}{\langle u_1^2
angle} \int_0^\infty \langle u_1(\mathbf{x}) u_1(\mathbf{x} + \ell \mathbf{e} 1)
angle \; \mathrm{d}\ell$$

Graus de liberdade em termos do número de Reynolds

- ightharpoonup Número de Reynolds das grandes escalas: Re $=\ell_0 U_0/
 u$
- ▶ Comprimento de Kolmogorov: $\ell_{\epsilon} = (\nu^3/\epsilon)^{1/4}$
- ▶ Lei de dissipação de energia: $\epsilon \sim U_0^3/\ell_0$
- ▶ Logo, $\ell_0/\ell_\epsilon \sim \mathrm{Re}^{3/4}$
- Graus de liberdade:

$$N \sim \left(rac{\ell_0}{\ell_\epsilon}
ight)^3 \sim {
m Re}^{9/4}$$

107

Exemplos de números de Reynolds de escoamentos

- ▶ Túnel de vento $\ell_0\sim 2m,\ U_0\sim 5m/s,\ \nu\sim 10^{-5}m^2/s$ $\Rightarrow {\rm Re}\sim 10^6,\quad N\sim 10^{13},\quad \ell_\epsilon\sim 0.1mm$
- ▶ Escoamentos geofísicos $\ell_0 \sim 10000km, U_0 \sim 100km/h$,

$$\Rightarrow {\rm Re} \sim 10^{12}, ~~ N \sim 10^{27}, ~~ \ell_{\epsilon} \sim 1 cm$$

Obs: estimativas aproximadas, pois não estamos considerando a escala integral e a intensidade turbulenta.

Número de Reynolds e CFD

- ▶ Para a representação espacial apropriada do escoamento: $N \sim \mathrm{Re}^{9/4}$ graus de liberdade.
- ▶ Para escoamentos periódicos 3D (via fft): $N \ln N$ operações de ponto flutuante (flop) por iteração.
- Como a escala de tempo dos menores turbilhões é $\tau_\epsilon = (\ell_\epsilon^2/\epsilon)^{1/3} = (\nu/\epsilon)^2 \text{, precisamos (usando } \epsilon \sim U_0/\ell_0) \text{, de } \\ \tau_0/\tau_\epsilon = (\ell_0 U_0/\nu)^{1/2} = \text{Re}^{1/2} \text{ iterações para integração em um ciclo de circulação das grandes escalas, logo} \\ N^{11/9} \ln N \sim \text{Re}^{11/4} \ln \text{Re flop para cada ciclo.}$
- ▶ Com os supercomputadores teraflop (10^{12} flop/s), podemos chegar a aproximadamente Re $\sim 10^4$.
- ▶ Para escoamentos com simetria: Re $\sim 10^5, 10^6$.

109

- **Lei de Moore:** performance $\times 1.58$ por ano.
- ightharpoonup Mudanças na arquitetura: performance imes 1.82 por ano.

Figure 3. Extrapolation from recent performance growth rates seen in the Top500.

Previsão para DNS: $Re=10^{13}$ em 2100?

- ▶ Para simulação DNS homogênea: $P \sim \text{Re}^3$ flop/s.
- ▶ Como a "performance" $P \sim \mathrm{Re}^{4/11}$ se multiplica por 1.82 por ano, temos Re se multiplica por $(1.82)^{4/11} \approx 1.243$.

111

Turbulência em duas dimensões

- ▶ Conservação de enstrofia: $\frac{1}{2} \int_{\Omega} |\boldsymbol{\omega}(\mathbf{x})|^2 d\mathbf{x}$
- ► Cascata de enstrofia para as escalas menores
- ► Cascata inversa de energia para as escalas maiores

O espectro de Kraichnan (1967)

- ightharpoonup Injeção de enstrofia nas escalas $\kappa \sim \kappa_f$
- ightharpoonup Razão de dissipação de enstrofia η
- lacksquare Comprimento de Kraichnan $\kappa_{\eta}=(\eta/
 u^3)^{1/6}$
- lacktriangle Dissipação de enstrofia nas escalas $\kappa \gtrsim \kappa_\eta$
- ▶ Cascata de enstrofia em $\kappa_f \ll \kappa \ll \kappa_\eta$
- ▶ Espectro de Kraichnan $S(\kappa) \sim \eta^{2/3} \kappa^{-3}$ em $\kappa_f \ll \kappa \ll \kappa_\eta$
- lacktriangle Cascata inversa de energia em $\kappa_0 \ll \kappa \ll \kappa_f$
- ▶ Espectro de Kolmogorov $S(\kappa) \sim \epsilon^{2/3} \kappa^{-5/3}$ em $\kappa_0 \ll \kappa \ll \kappa_f$

113

Resultados recentes sobre as equações de Navier-Stokes para fluidos incompressíveis

Ricardo M. S. Rosa Instituto de Matemática Universidade Federal do Rio de Janeiro (IM-UFRJ)

I EBED

Escola Brasileira de Equações Diferenciais 9 a 13 de junho de 2003 IMECC - Unicamp

Aula 4 - 12 de junho

117

Resultados recentes sobre as equações de Navier-Stokes para fluidos incompressíveis

Tópicos:

- 1. As equações de Navier-Stokes, equações correlatas e algumas questões fundamentais
- 2. Aspectos matemáticos das equações de Navier-Stokes
- 3. Teoria estatística convencional de turbulência
- 4. Soluções estatísticas das equações de Navier-Stokes
- 5. Aplicações das soluções estatísticas em turbulência

Formalização do conceito de média amostral

As médias amostrais são definidas a partir de N escoamentos $\mathbf{u}^{(n)}(t,\mathbf{x}),\ n=1,\ldots,N$:

$$\langle \varphi(\mathbf{u}) \rangle = \frac{1}{N} \sum_{n=1}^{N} \varphi(\mathbf{u}^{(n)})$$

ightharpoonup Em termos probabilísticos: N escoamentos considerados, cada um com peso 1/N.

119

▶ Mais geralmente: podemos ter escoamentos com pesos diferentes θ_n , com $\sum_n \theta_n = 1$,

$$\langle \varphi(\mathbf{u}) \rangle = \sum_{n=1}^{N} \varphi(\mathbf{u}^{(n)}) \theta^n$$

ightharpoonup Ou uma infinidade de escoamentos $\mathbf{u}^{(\omega)}$, com densidade de probabilidade d $\rho(\omega)$,

$$\langle \varphi(\mathbf{u}) \rangle = \int \varphi(\mathbf{u}^{(\omega)}) \, \mathrm{d}\rho(\omega)$$

- Podemos usar probabilidades $\rho = \rho(\omega)$ em um espaço de probabilidades $(\mathcal{P}, \Sigma, \rho)$ e considerar variáveis aleatórias $\mathbf{u} = \mathbf{u}(\omega)$ para representar os possíveis escoamentos.
- ightharpoonup Ou podemos usar medidas de probabilidade μ em algum espaço "natural" para escoamentos, e.g. H da teoria de Leray:

$$\langle \varphi(\mathbf{u}) \rangle = \int_{H} \varphi(\mathbf{v}) \, \mathrm{d}\mu(\mathbf{v}).$$

Nesse caso, ${\bf v}$ é uma variável de integração e, na verdade, $\langle \varphi({\bf u}) \rangle = \langle \varphi \rangle$, com ${\bf u}$ "virtual" (φ é função do escoamento, representado por ${\bf u}$).

▶ Em termos de espaço de probabilidade, temos $\mathcal{P}=H$, $\Sigma=$ borelianos de H e $\mu=$ medida de probabilidade de Borel em H.

121

Medidas relevantes

- As medidas μ podem depender do tempo ($\mu = \mu_t$, e.g. turbulência em decaimento), ou não (turbulência estatisticamente estacionária)
- As informações estatísticas do escoamento estão contidas em μ . Os *momentos generalizados*, são as expressões

$$\langle \varphi(\mathbf{u}) \rangle = \int_{H} \varphi(\mathbf{v}) \; \mathrm{d}\mu(\mathbf{v})$$

de onde podemos tirar os momentos clássicos, para funções polinomiais apropriadas, e.g. $\varphi(\mathbf{u}) = (\mathbf{u} - \langle \mathbf{u} \rangle)^k$.

- ▶ Quais são as medidas relevantes para um escoamento?
- ightharpoonup Equação para μ ou μ_t ?

Evolução de medidas em sistemas dinâmicos

ightharpoonup Se $\mathbf{u}'=\mathbf{F}(\mathbf{u})$ gera sistema dinâmico $\{S(t)\}_{t\geq 0}$, dada uma distribuição inicial μ_0 de condições iniciais, é natural que a evolução dessa distribuição seja dada por

$$\mu_t = S(t)\mu_0$$
, i.e. $\mu_t(\mathcal{E}) = \mu_0(S(t)^{-1}\mathcal{E})$,

▶ Assim, para os momentos generalizados ($\mathbf{v} = S(t)\mathbf{w}$):

$$\frac{d}{dt} \int_{H} \varphi(\mathbf{v}) d\mu_{t}(\mathbf{v}) = \frac{d}{dt} \int_{H} \varphi(S(t)\mathbf{w}) d\mu_{0}(\mathbf{w})$$

$$= \int_{H} \varphi'(S(t)\mathbf{w}) \circ \frac{d}{dt} S(t)\mathbf{w} d\mu_{0}(\mathbf{w})$$

$$= \int_{H} \langle \mathbf{F}(S(t)\mathbf{w}), \varphi(S(t)\mathbf{w}) \rangle_{V',V} d\mu_{0}(\mathbf{w})$$

$$= \int_{H} \langle \mathbf{F}(\mathbf{v}), \varphi'(\mathbf{v}) \rangle_{V',V} d\mu_{t}(\mathbf{v}).$$

123

Outra dedução para a evolução dos momentos

▶ Se pensarmos na média amostral de N escoamentos com peso, os momentos generalizados $\varphi: H \to \mathbb{R}$ satisfazem

$$\frac{\mathrm{d}}{\mathrm{d}t} \langle \varphi(\mathbf{u}(t)) \rangle = \frac{\mathrm{d}}{\mathrm{d}t} \sum_{n=1}^{N} \theta_{n} \varphi(\mathbf{u}^{(n)}(t)) = \sum_{n=1}^{N} \theta_{n} \frac{\mathrm{d}}{\mathrm{d}t} \varphi(\mathbf{u}^{(n)}(t))$$

$$= \sum_{n=1}^{N} \theta_{n} \varphi'(\mathbf{u}^{(n)}(t)) \circ \frac{\mathrm{d}}{\mathrm{d}t} \mathbf{u}^{(n)}(t)$$

$$= \sum_{n=1}^{N} \theta_{n} \varphi'(\mathbf{u}^{(n)}(t))) \circ \mathbf{F}(\mathbf{u}^{(n)}(t))$$

$$= \sum_{n=1}^{N} \theta_{n} \langle \mathbf{F}(\mathbf{u}^{(n)}(t)), \varphi'(\mathbf{u}^{(n)}(t)) \rangle_{V',V}.$$

 \blacktriangleright Em termos de medida de probabilidade em H, podemos escrever

$$\mu_t = \sum_{n=1}^N \theta_n \delta_{\mathbf{u}^{(n)}(t)},$$

onde $\delta_{\mathbf{u}} =$ medida de Dirac em \mathbf{u} . Dessa forma,

$$\langle \varphi(\mathbf{u}(t)) \rangle = \sum_{n=1}^{N} \theta_n \varphi(\mathbf{u}^{(n)}(t)) = \int_{H} \varphi(\mathbf{v}) \, \mathrm{d}\mu_t(\mathbf{v})$$

► Assim, podemos reescrever a equação anterior:

$$\frac{\mathrm{d}}{\mathrm{d}t} \sum_{n=1}^{N} \theta_n \varphi(\mathbf{u}^{(n)}(t)) = \sum_{n=1}^{N} \theta_n \left(\mathbf{F}(\mathbf{u}^{(n)}(t)), \varphi'(\mathbf{u}^{(n)}(t)) \right)$$

$$\mathsf{como} \quad \frac{\mathrm{d}}{\mathrm{d}t} \int_{H} \varphi(\mathbf{v}) \, \mathrm{d}\mu_t(\mathbf{v}) = \int_{H} \left(\mathbf{F}(\mathbf{v}), \varphi'(\mathbf{v}) \right) \, \mathrm{d}\mu_t(\mathbf{v})$$

125

A formulação obtida elimina a dependência explícita na solução das ENS, introduzindo uma variável de integração ${\bf v}$ e a incógnita μ_t :

$$\frac{\mathrm{d}}{\mathrm{d}t} \int_{H} \varphi(\mathbf{v}) \, \mathrm{d}\mu_{t}(\mathbf{v}) = \int_{H} \left(\mathbf{F}(\mathbf{v}), \varphi'(\mathbf{v}) \right) \, \mathrm{d}\mu_{t}(\mathbf{v})$$

- Essa equação para μ_t é em termos dos momentos generalizados (a regra para medidas) e é linear(!) em μ_t
- ► Equação do tipo Liouville da mecânica estatística e pode ser chamada de equação de Liouville-Foias-Prodi ou equação de Navier-Stokes estatística
- ▶ O termo $\mathbf{F}(\mathbf{u}) = \mathbf{f} \nu A \mathbf{u} B(\mathbf{u}, \mathbf{u})$ "mora" no espaço dual V', logo só os momentos com $\varphi'(\mathbf{v})$ em V podem ser considerados

Funções teste "cilíndricas"

▶ Na equação dos momentos generalizados,

$$\frac{\mathrm{d}}{\mathrm{d}t} \int_{H} \Phi(\mathbf{v}) \; \mathrm{d}\mu_{t}(\mathbf{v}) = \int_{H} \left(\mathbf{F}(\mathbf{v}), \Phi'(\mathbf{v}) \right) \; \mathrm{d}\mu_{t}(\mathbf{v})$$

serão consideradas funções cilíndricas $\Phi: H \to \mathbb{R}$ da forma

$$\Phi(\mathbf{u}) = \phi((\mathbf{u}, \mathbf{g}_1), \dots, (\mathbf{u}, \mathbf{g}_k)),$$

onde $k \in \mathbb{N}$, $\phi \in \mathcal{C}^1_{\mathsf{C}}(\mathbb{R}^k)$, $\mathbf{g}_1, \dots, \mathbf{g}_k \in V$.

ightharpoonup A diferential Φ' em H tem a forma

$$\Phi'(\mathbf{u}) = \sum_{j=1}^k \partial_j \phi((\mathbf{u}, \mathbf{g}_1), \dots, (\mathbf{u}, \mathbf{g}_k)) \mathbf{g}_j,$$

com $\Phi'(\mathbf{u}) \in V$, pois $\mathbf{g}_j \in V$.

127

Soluções estatísticas das ENS - Foias (1972)

Família $\{\mu_t\}_{t\geq 0}$ de medidas de probabilidade de Borel:

- $lackbox{ } [0,\infty)\ni t\mapsto \int_{H} \varphi(\mathbf{v})\;\mathrm{d}\mu_{t}(\mathbf{v})\;\mathrm{continuo,}\;\forall arphi\in\mathcal{C}_{\mathrm{bdd}}(H_{\mathrm{W}})$
- lacksquare $t\mapsto \int_H |\mathbf{v}|^2 \,\mathrm{d}\mu_t(\mathbf{v})$ em $L^\infty(0,\infty)$ e contínuo em t=0
- lacksquare $t\mapsto \int_H \|\mathbf{v}\|^2 \; \mathrm{d}\mu_t(\mathbf{v}) \; \mathrm{em} \; L^1_{\mathrm{loc}}(0,\infty)$
- \blacktriangleright Inequação de energia no sentido das distribuições em $(0,\infty)$:

$$\frac{1}{2}\frac{\mathrm{d}}{\mathrm{d}t}\int_{H}|\mathbf{v}|^{2}\,\mathrm{d}\mu_{t}(\mathbf{v})+\nu\int_{H}\|\mathbf{v}\|^{2}\,\mathrm{d}\mu_{t}(\mathbf{v})\leq\int_{H}(\mathbf{f},\mathbf{v})\,\mathrm{d}\mu_{t}(\mathbf{v});$$

Satisfaz as ENS estatísticas no sentido das distribuições em $(0,\infty)$, para toda função teste Φ .

Inequação de energia "em níveis".

A inequação de energia anterior parece natural, mas uma outra inequação, mais precisa e útil, pode ser exigida:

$$\frac{1}{2} \frac{d}{dt} \int_{H} \psi(|\mathbf{u}|^{2}) d\mu_{t}(\mathbf{u}) + \nu \int_{H} \psi'(|\mathbf{u}|^{2}) ||\mathbf{v}||^{2} d\mu_{t}(\mathbf{v})
\leq \int_{H} \psi'(|\mathbf{u}|^{2}) (\mathbf{f}, \mathbf{v}) d\mu_{t}(\mathbf{v}),$$

para todo $\psi \in \mathcal{C}^1([0,\infty))$, $0 \le \psi'(r) \le c < \infty$.

Segue da inequação correspondente para sols. individuais:

$$\frac{1}{2}\frac{\mathsf{d}}{\mathsf{d}t}\psi(|\mathbf{u}|^2) = \frac{1}{2}\psi'(|\mathbf{u}|^2)\frac{\mathsf{d}}{\mathsf{d}t}|\mathbf{u}|^2 \leq \psi'(|\mathbf{u}|^2)\left((\mathbf{f},\mathbf{u}) - \nu\|\mathbf{u}\|^2\right).$$

129

Soluções estatísticas sentido Vishik-Fursikov (1977)

- ▶ Seja $\mathcal{X}_T(R) = \mathcal{C}([0,T]; B_H(R)_{\mathsf{W}})$ (esp. métrico completo)
- ▶ Seja $\mathcal{U}_T(R) = \{\mathbf{u} \in \mathcal{X}(R); \ \mathbf{u}(\cdot) \text{ solução fraca em } [0,T]\}$ (subconjunto compacto de $\mathcal{X}_T(R)$).
- ▶ Uma solução estatística de Vishik-Fursikov é uma medida de probabilidade μ em $\mathcal{U}_T(R)$.
- Pela continuidade das soluções em H_w , podemos aplicar Teorema da Representação de Kakutani-Riesz e obter solução estatística de Foias-Prodi:

$$\int_{\mathcal{U}(R)} \varphi(\mathbf{u}(t)) \, d\mu(\mathbf{u}) = \int_{H} \varphi(\mathbf{v}) \, d\mu_t(\mathbf{u}).$$

para todo $\varphi \in \mathcal{C}(H_{\mathsf{W}})$. $(\varphi(\mathbf{u}(t)) = \varphi \circ \delta_t(\mathbf{u})$.)

Existência de soluções estatísticas

Dada uma medida de Borel de probabilidade μ_0 em H, com energia cinética média finita $\int_H |\mathbf{v}|^2 \, \mathrm{d}\mu_0(\mathbf{v}) < \infty$

 $(\mu_0$ representando a distribuição de probabilidades do campo inicial de velocidades)

- Foias (1972), Foias-Prodi (1976), Vishik-Fursikov (1977): Existência via método de Galerkin, passando ao limite as medidas definidas por $\mu_t^{(n)}(t)(E) = \mu_0(S^{(n)}(-t)E)$, para qualquer boreliano $E \subset H$, onde $\{S^{(n)}(t)\}_{t\geq 0}$ é o operador solução associado à aproximação de Galerkin
- ► Foias, Manley, Rosa, Temam (2001): Ou via Teorema de Krein-Milman...

131

Existência via Teorema de Krein-Milman

- Aproximar μ_0 por combinação convexa de pontos extremos, que são deltas de Dirac $\delta_{\mathbf{u}_0^{(n)}}$, $n=1,\ldots,N$.
- ▶ Considerar aproximações $\mu_t^{(N)}$ definidas como as combinações convexas das deltas de Dirac $\delta_{\mathbf{u}^{(n)}(t)}$, nas soluções fracas correspondes das ENS, e passar ao limite quando $N \to \infty$

Aproximação da medida inicial via Krein-Milman

- ▶ (K-M): Sejam $K \subset X =$ espaço vetorial topológico localmente convexo. Seja E = pontos extremos de K. Então os fechos convexos coincidem: $\overline{\mathsf{co}}E = \overline{\mathsf{co}}K$.
- ▶ Seja $\mathcal{M}_0(R_0) = \{\text{medidas de probabilidade em } B_H(R_0)\}.$
- $ightharpoonup \mathcal{M}_0(R_0)$ limitado fechado convexo em Ictvs $\mathcal{C}(B_H(R_0)_w)'$.
- ightharpoonup Extremos de $\mathcal{M}_0(R_0)$ são deltas $\delta_{\mathbf{u}_0}$, com $\mathbf{u}_0 \in B_H(R_0)$.
- ▶ Dado μ_0 em $\mathcal{M}_0(R_0)$, existem $\mu_{0n} \in \mathcal{M}_0(R_0)$,

$$\mu_{0n} \stackrel{\text{def}}{=} \sum_{j=1}^{J(n)} \theta_j^{(n)} \delta_{\mathbf{u}_{0j}^{(n)}} \stackrel{*}{\rightharpoonup} \mu_0, \qquad \text{em } \mathcal{M}_0(R_0),$$

com $J(n) \in \mathbb{N}$, $\mathbf{u}_{0j}^{(n)} \in B_H(R_0)$, $\theta_j^{(n)} \in (0,1]$, e $\sum_{j=1}^{J(n)} = 1$.

133

Soluções estatísticas aproximadas

- Para cada condição inicial $\mathbf{u}_{0j}^{(n)}$, considere uma solução fraca $\mathbf{u}_{j}^{(n)} = \mathbf{u}_{j}^{(n)}(t)$ com $\mathbf{u}_{j}^{(n)}(0) = \mathbf{u}_{0j}^{(n)}$.
- lackbox Cada solução fraca $\mathbf{u}_j^{(n)}$ pertence a $\mathcal{U}_T(R_0)$ e define uma medida de probabilidade $\delta_{\mathbf{u}_i^{(n)}}$ em $\mathcal{M}_T(R_0)$.
- ightharpoonup Como $\mathcal{M}_T(R_0)$ é convexo, temos que

$$\mu_n \stackrel{\text{def}}{=} \sum_{j=1\cdots J(n)} \theta_j^{(n)} \delta_{\mathbf{u}_j^{(n)}}$$
 pertence a $\mathcal{M}_T(R_0)$.

▶ Como $\mathcal{M}_T(R_0)$ é compacto (fraco-estrela), temos

$$\mu_{n'} \stackrel{*}{\rightharpoonup} \mu$$
, com $\mu \in \mathcal{M}_T(R_0)$,

com $\mu = \text{solução estatística de V-F e } \{\mu_t\}_t$ de F-P.

Observações

- Demonstração acima (e definição de Vishik-Fursikov) válida para medida inicial de suporte limitado em H. Caso geral tem que trabalhar mais um pouco.
- ► As soluções estatísticas acima são importantes para o tratamento de turbulência dependente do tempo, como turbulência em decaimento.
- ► Versão estacionária útil para turbulência em equilíbrio estatístico no tempo (estacionária).
- ▶ Para o tratamento de turbulência homogênea, pode-se usar o caso periódico.
- Para o tratamento de turbulência homogênea isotrópica é necessário considerar o caso ilimitado, i.e. $\Omega = \mathbb{R}^3$.

135

Soluções estatísticas homogêneas em \mathbb{R}^3

- Soluções estatísticas homogêneas tem energia infinita (caso contrario a energia decairia no infinito e a homogeneidade não seria válida).
- ▶ Vishik-Fursikov (1978): Considerar soluções individuais das ENS em \mathbb{R}^3 em espaços com peso e energia infinita. Dificuldade: perde ortogonalidade do termo bilinear.
- ▶ Foias-Temam (1980): Aproximar pelo caso periódico e passar ao limite nas soluções estatísticas com o período $L \to \infty$ (Passagem ao limite delicada, usando teorema de representação em $L^1(0,T;X)'$, teorema de compactificação de Čech-Stone, etc.)

Soluções estatísticas homogêneas em \mathbb{R}^3

► Energia e enstrofia médias são definidas localmente:

$$\begin{split} e(\mu) &= \frac{1}{2} \int_{H} \frac{1}{|Q|} \int_{Q} |\mathbf{u}(\mathbf{x})|^{2} \, d\mathbf{x} \, d\mu(\mathbf{u}), \\ E(\mu) &= \frac{1}{2} \int_{H} \frac{1}{|Q|} \int_{Q} |\nabla \otimes \mathbf{u}(\mathbf{x})|^{2} \, d\mathbf{x} \, d\mu(\mathbf{u}), \end{split}$$

independentes de Q pois μ é homogênea.

- ▶ Desigualdade de energia: $e(\mu_t) + \nu \int_0^t E(\mu_s) ds \le e(\mu_0)$.
- ▶ Define-se soluções auto-semelhantes $\{\mu_t^{\nu,\epsilon}\}_t$ em ν,ϵ satisfazendo leis de potência. São caracterizadas por soluções estatísticas estacionárias de

$$\frac{\partial \mathbf{v}}{\partial s} - \frac{1}{2}\mathbf{v} - \frac{1}{2}(\mathbf{y} \cdot \nabla)\mathbf{v} + (\mathbf{v} \cdot \nabla)\mathbf{v} - \Delta\mathbf{v} + \nabla q = 0$$

Existência de solução com ω -limite não trivial???

137

Solução estatística estacionária

Medida de probabilidade de Borel μ em H, satisfazendo

- lacksquare Energia cinética média finita: $\int_H |\mathbf{v}|^2 \ \mathrm{d}\mu(\mathbf{v}) < \infty$
- lacksquare Enstrofia média finita: $\int_H \|\mathbf{v}\|^2 \, \mathrm{d}\mu(\mathbf{v}) < \infty$
- ▶ Inequação de energia

$$\int_{\{e_1 \le \frac{1}{2} |\mathbf{v}|^2 < e_2\}} \left\{ \nu \|\mathbf{v}\|^2 - (\mathbf{f}, \mathbf{v}) \right\} \, \mathrm{d}\mu(\mathbf{v}) \le 0,$$

para todos os níveis de energia $0 \le e_1 \le e_2 \le \infty$

► Equação de NS estatística estacionária:

$$\int_{H} (\mathbf{F}(\mathbf{v}), \Phi'(\mathbf{v})) \ \mathrm{d}\mu(\mathbf{v}) = 0,$$

para as funções teste.

Limite generalizado de Banach

- ▶ Para o tratamento das médias temporais e para evitar a hipótese ergódica, utilizamos o limite generalizado de Banach, que estende, via Teorema de Hahn-Banach, o conceito de limite para qualquer função limitada (é um funcional linear no espaço vet. das funções limitadas)
- ► Limite generalizado não satisfaz propriedade do limite de produto ser o produto dos limites e não é único
- ▶ Para funções periódicas, é a média dos valores assumidos, ponderada pelo número de vezes assumido

139

Soluções estatísticas estacionárias e médias temporais

- ▶ Seja $\mathbf{u} = \mathbf{u}(t), t \geq 0$, solução fraca e seja $\varphi \in \mathcal{C}(H_w)$.
- ► Então $\varphi(\mathbf{u}(t))$ é limitado em $t \ge 0$, assim como $(0,\infty) \ni T \mapsto \frac{1}{T} \int_0^T \varphi(\mathbf{u}(t)) \, \mathrm{d}t.$
- ▶ O limite generalizado existe e define funcional linear positivo em $C(H_W)$, com H_W localmente compacto:

$$\varphi\mapsto \mathrm{Lim}_{T\to\infty}\frac{1}{T}\int_0^T \varphi(\mathbf{u}(t))\;\mathrm{d}t.$$

ightharpoonup Teorema da Representação de Kakutani-Riesz: existe medida de Borel $\mu=\mu_{\mathbf{u}}$ em H_w tal que

$$\operatorname{Lim}_{T \to \infty} \frac{1}{T} \int_0^T \varphi(\mathbf{u}(t)) \, \mathrm{d}t = \int_H \varphi(\mathbf{v}) \, \mathrm{d}\mu_{\mathbf{u}}(\mathbf{v}).$$

Suporte de solução estatística de média temporal

▶ Seja $\mathbf{u} = \mathbf{u}(t)$ solução fraca e SSS associada $\mu_{\mathbf{u}}$:

$$\operatorname{Lim}_{T\to\infty} \frac{1}{T} \int_0^T \varphi(\mathbf{u}(t)) \, dt = \int_H \varphi(\mathbf{v}) \, d\mu(\mathbf{v}).$$

- ▶ Seja $\omega_{\mathsf{W}}(\mathbf{u})$ conjunto limite (fraco) de \mathbf{u} em H_{W} .
- ▶ Então supp $(\mu_{\mathbf{u}}) \subset \omega_{\mathsf{W}}(\mathbf{u})$. De fato...
- $ightharpoonup \exists R > 0, \ \omega_{\mathsf{W}}(\mathbf{u}) \subset B_H(R) \ (\mathsf{limitado})$
- ▶ $B_H(R)_W$ Hausdorff compacto, então podemos separar o fracamente fechado $\omega_W(\mathbf{u})$ do fracamente fechado $B_H(R)_W \setminus \mathcal{O}$, onde \mathcal{O} é vizinhança fraca de $\omega_W(\mathbf{u})$, com outro aberto fraco \mathcal{O}' entre eles.

141

- ▶ Lema de Urysohn $\Rightarrow \exists \varphi : B_H(R)_{\mathsf{W}} \to \mathbb{R}$ contínuo, com $0 \leq \varphi \leq 1$, $\varphi|_{\overline{\mathcal{O}'}^{\mathsf{W}} \subset B_H(R)_{\mathsf{W}}} \equiv 1$ e $\varphi|_{B_H(R)_{\mathsf{W}} \setminus \mathcal{O}} \equiv 0$.
- ► Como $\omega_{\mathsf{W}}(\mathbf{u})$ atrai $\mathbf{u}(t)$ fracamente, temos $\mathbf{u}(t) \subset \mathcal{O}'$ para $t \geq T$ grande. Além disso, $\varphi \geq 0$ sempre, com $\varphi = 1$ em $\mathcal{O}' \subset B_H(R)_{\mathsf{W}}$, logo

$$\mu(\mathcal{O}) \ge \mu(\mathcal{O}') \ge \lim_{T \to \infty} \frac{1}{T} \int_0^T \varphi(\mathbf{u}(t)) \, dt = \dots = 1.$$

► Como \mathcal{O} é aberto fraco arbitrário contendo $\omega_{\mathsf{W}}(\mathbf{u})$ e μ é regular, temos $\mu(\omega_{\mathsf{W}}(\mathbf{u})) = \inf\{\mu(\mathcal{O})\} = 1$, e como $\omega_{\mathsf{W}}(\mathbf{u})$ é fechado, temos supp $(\mu) \subset \omega_{\mathsf{W}}(\mathbf{u})$

Teoremas de topologia

- ▶ Urysohn: $A, B \subset X$ fechados disjuntos em X = esp. top. normal. Então, $\exists f: X \mapsto \mathbb{R}$ contínuo tq. $0 \le f(x) \le 1$, f(A) = 0, f(B) = 1.
- ▶ **Tietze:** $A \subset X$ fechado em X = esp. top. normal; $f: A \mapsto \mathbb{R}$ contínuo limitado. Então \exists extensão $F: X \to \mathbb{R}$ contínua limitada, F(x) = f(x) em A, e $\sup_{x \in X} |F(x)| = \sup_{x \in A} |f(x)|$.
- ▶ Čech-Stone: X = esp. top. completamente regular (pontos são fechados e $\forall A = \{x_0\}, B \subset X$ fechados disjuntos, $\exists \varphi$ como em Urysohn), então X é homeomorfo a subconjunto denso de um espaço de Hausdorff compacto \check{X} tq. \forall função contínua limitada em X possui extensão única para uma fç cont. em \check{X} .

143

Turbulência em equilíbrio estatístico

- Médias amostrais associadas a escoamentos turbulentos em equilíbrio estatístico (no tempo, i.e. estatisticamente estacionária) são interpretadas como médias em relação a soluções estatísticas estacionárias
- ▶ As soluções estatísticas estacionárias das ENS colocam as médias amostrais em um contexto rigoroso
- ▶ A partir desse conceito, são considerados rigorosamente os conceitos da teoria estatística convencional de turbulência.
- As soluções estatísticas estacionárias (em particular as obtidas via médias temporais) não são necessariamente únicas (as médias temporais podem depender da solução fraca não há prova de ergodicidade).

Algumas questões em andamento

- Regularização assintótica: mais regularidade para as soluções estatísticas estacionárias?
- ▶ Limites de Euler e de alta rotação das sol. estatísticas.
- Medidas físicas (tipo SRB), entropia, etc.
- ► Teoria convencional de turbulência em vários contextos, ENS, ENS com rotação, Bénard, eqs. quasi-geostróficas, etc.
- Controle ótimo estatístico.
- ► Existência de soluções estatísticas homogêneas auto-semelhantes.

145

Por vir

Com o conceito de solução estatística, iremos definir e estudar rigorosamente quantidades e relações físicas relevantes em turbulência:

- ► Equações de Reynolds e de fluxo de energia.
- fluxo de energia entre escalas e cascata de energia.
- Lei de dissipação de energia.
- ▶ Relação entre números de onda de Kolmogorov, de Taylor e número de Reynolds.
- ► Similares em 2D, incluindo condições para a existência do espectro de Kraichnan em 2D.
- ▶ Sol. estatísticas auto-semelhantes e leis de potência.

Resultados recentes sobre as equações de Navier-Stokes para fluidos incompressíveis

Ricardo M. S. Rosa Instituto de Matemática Universidade Federal do Rio de Janeiro (IM-UFRJ)

I EBED

Escola Brasileira de Equações Diferenciais 9 a 13 de junho de 2003 IMECC - Unicamp

Aula 5 - 13 de junho

149

Resultados recentes sobre as equações de Navier-Stokes para fluidos incompressíveis

Tópicos:

- 1. As equações de Navier-Stokes, equações correlatas e algumas questões fundamentais
- 2. Aspectos matemáticos das equações de Navier-Stokes
- 3. Teoria estatística convencional de turbulência
- 4. Soluções estatísticas das equações de Navier-Stokes
- 5. Aplicações das soluções estatísticas em turbulência

Aplicações em turbulência

- Constantin, Foias, Manley (1994): Condições para a existência do espectro de Kraichnan em turbulência forçada.
- ▶ Bercovici, Constantin, Foias, Manley (1995): Decaimento exponencial do espectro de potência.
- ► Foias, Manley, Rosa, Temam (2001a,b,c), Rosa (2002): Cascata de energia e confirmação parcial de estimativas heurísticas em 3D.
- ► Foias, Jolly, Manley, Rosa (2002,2003): Em 2D: cascata de enstrofia, confirmação parcial de estimativas heurísticas, condições para existência de espectro de Kraichnan, redução na dimensão do atrator para escoamentos turbulentos com espectro de Kraichnan.

151

Equações de Navier-Stokes

- $lackbox{ Domínio }\Omega\subset\mathbb{R}^d, d=2,3$, aberto, limitado
- ► Condições de aderência com fronteira rígida, periódicas, ou combinação delas, como em um canal periódico:

► Equações de Navier-Stokes:

$$\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla)\mathbf{u} + \nabla p = \nu \Delta \mathbf{u} + \mathbf{f}, \qquad \nabla \cdot \mathbf{u} = 0.$$

▶ Formulação funcional, com $\mathbf{f} \in V'$:

$$\frac{\mathrm{d}\mathbf{u}}{\mathrm{d}t} + \nu A\mathbf{u} + B(\mathbf{u}, \mathbf{u}) = \mathbf{f}.$$

Solução estatística estacionária

Medida de probabilidade de Borel μ em H, satisfazendo

- lacksquare Energia cinética média finita: $\int_H |\mathbf{v}|^2 \, \mathrm{d}\mu(\mathbf{v}) < \infty$
- lacksquare Enstrofia média finita: $\int_H \|\mathbf{v}\|^2 \ \mathrm{d}\mu(\mathbf{v}) < \infty$
- ▶ Inequação de energia

$$\int_{\{e_1 \le \frac{1}{2} |\mathbf{v}|^2 < e_2\}} \left\{ \nu \|\mathbf{v}\|^2 - (\mathbf{f}, \mathbf{v}) \right\} \, \mathrm{d}\mu(\mathbf{v}) \le 0,$$

para todos os níveis de energia $0 \le e_1 \le e_2 \le \infty$

Equação de NS estatística estacionária:

$$\int_{H} (\mathbf{F}(\mathbf{v}), \Phi'(\mathbf{v})) \ \mathrm{d}\mu(\mathbf{v}) = 0,$$

para as funções teste cilíndricas Φ .

153

Funções teste "cilíndricas"

▶ Na equação dos momentos generalizados,

$$\frac{\mathrm{d}}{\mathrm{d}t} \int_{H} \Phi(\mathbf{v}) \; \mathrm{d}\mu_{t}(\mathbf{v}) = \int_{H} \left(\mathbf{F}(\mathbf{v}), \Phi'(\mathbf{v}) \right) \; \mathrm{d}\mu_{t}(\mathbf{v})$$

são consideradas funções cilíndricas $\Phi: H \to \mathbb{R}$ da forma

$$\Phi(\mathbf{u}) = \phi((\mathbf{u}, \mathbf{g}_1), \dots, (\mathbf{u}, \mathbf{g}_k)),$$

onde $k \in \mathbb{N}$, $\phi \in \mathcal{C}^1_{\mathsf{C}}(\mathbb{R}^k)$, $\mathbf{g}_1, \dots, \mathbf{g}_k \in V$.

ightharpoonup A diferential Φ' em H tem a forma

$$\Phi'(\mathbf{u}) = \sum_{j=1}^k \partial_j \phi((\mathbf{u}, \mathbf{g}_1), \dots, (\mathbf{u}, \mathbf{g}_k)) \mathbf{g}_j,$$

com $\Phi'(\mathbf{u}) \in V$, pois $\mathbf{g}_i \in V$.

As equações médias de Reynolds - versão fraca

► As soluções estatísticas estacionárias satisfazem

$$\int_{H} \langle \mathbf{F}(\mathbf{v}), \Phi'(\mathbf{v}) \rangle_{V',V} \, \, \mathrm{d}\mu(\mathbf{v}) \qquad (\forall \Phi \ \mathrm{teste})$$

▶ Tomando $\Phi(\mathbf{u}) = \psi((\mathbf{u}, \mathbf{w}))$, onde $\mathbf{w} \in V$ e ψ é \mathcal{C}^1 e de suporte compacto, temos

$$\int_{H} \psi'((\mathbf{u}, \mathbf{w})) \langle \mathbf{f} - \nu A \mathbf{v} - B(\mathbf{v}, \mathbf{v}), \mathbf{w} \rangle_{V', V} \, d\mu(\mathbf{v}) = 0.$$

▶ Fazendo, $\psi' \rightarrow 1$, obtemos

$$\langle \langle \mathbf{f} - \nu A \mathbf{v} - B(\mathbf{v}, \mathbf{v}), \mathbf{w} \rangle_{V', V} \rangle = 0,$$

que é a versão fraca das equações médias de Reynolds.

155

O escomento médio e outras quantidades médias

- ▶ Até agora, as médias que fazem sentido são as de momentos escalares $\varphi: H_{\mathsf{W}} \to \mathbb{R}$, contínuos e limitados
- ▶ Pela regularidade de μ (suporte limitado em H e de enstrofia finita), as médias podem ser estendidas para

$$|\varphi(\mathbf{u})| \le C(|\mathbf{u}|)(1+\nu^{-2}\kappa_0^{-1}||\mathbf{u}||^2), \quad \forall \mathbf{u} \in V,$$

▶ Por dualidade, podemos definir as médias do campo de velocidades, $\langle \mathbf{u} \rangle$, do termo bilinear, $\langle B(\mathbf{u}, \mathbf{u}) \rangle$, etc.

$$\begin{split} (\langle \mathbf{u} \rangle, \mathbf{w}) &= \int_{H} (\mathbf{v}, \mathbf{w}) \, d\mu(\mathbf{v}), \\ (\langle B(\mathbf{u}, \mathbf{u}) \rangle, \mathbf{w}) &= \int_{H} (B(\mathbf{v}, \mathbf{v}), \mathbf{w}) \, d\mu(\mathbf{v}) \end{split}$$

As equações médias de Reynolds - versão funcional

▶ Da versão fraca, obtemos a versão funcional,

$$\langle \langle \mathbf{f} - \nu A \mathbf{v} - B(\mathbf{v}, \mathbf{v}), \mathbf{w} \rangle_{V', V} \rangle = 0,$$

$$\implies \nu A \langle \mathbf{u} \rangle + \langle B(\mathbf{u}, \mathbf{u}) \rangle = \mathbf{f} \qquad \text{(em } V')$$

com $\langle \mathbf{u} \rangle \in V$, $\langle B(\mathbf{u}, \mathbf{u}) \rangle \in D(A^{-3/8})$, para $\mathbf{f} \in V'$.

▶ A versão clássica pode, então, ser recuperada:

$$-\nu\Delta\mathbf{U} + (\mathbf{U}\cdot\boldsymbol{\nabla})\mathbf{U} + \boldsymbol{\nabla}P = \mathbf{f} - \boldsymbol{\nabla}\cdot\langle\mathbf{u}'\otimes\mathbf{u}'\rangle, \quad \boldsymbol{\nabla}\cdot\mathbf{U} = 0.$$
 onde $\mathbf{U} = \langle\mathbf{u}\rangle$ e $\mathbf{u}' = \mathbf{u} - \mathbf{U}$.

▶ Equação de Hopf (para a função característica de μ − transformada de Fourier $\hat{\mu}$) segue, também, rigorosa.

157

Números característicos

- ▶ Comprimento macroscópico $\ell_0>0$ dado (tipicamente da ordem de $\lambda_1^{-1/2}$, com número de onda $\kappa_0=1/\ell_0$
- $ho_0=$ densidade de massa (uniforme) do fluido
- ightharpoonup unidade de massa $ho_0\ell_0^3=
 ho_0/\kappa_0^3$
- ▶ Energia cinética média por unidade de massa

$$e = \frac{\kappa_0^3}{2} \langle |\mathbf{u}|^2 \rangle$$

Razão média de dissipação de energia por unidade de tempo, por unidade de massa

$$\epsilon = \nu \kappa_0^3 \langle \|\mathbf{u}\|^2 \rangle$$

Mais números característicos

- ▶ Velocidade média característica (r.m.s) $U = 2e^{1/2}$
- Número de Reynolds

$$\operatorname{Re} = \frac{\ell_0 U}{\nu} = \frac{\kappa_0^{1/2} \langle |\mathbf{u}|^2 \rangle^{1/2}}{\nu}$$

- lacktriangle Número de onda de Kolmogorov $\kappa_\epsilon = (\epsilon/
 u^3)^{1/4}$
- Número de onda de Taylor

$$\kappa_{\tau} = \left(\frac{\langle \|\mathbf{u}\|^2 \rangle}{\langle |\mathbf{u}|^2 \rangle}\right)^{1/2} = \left(\frac{\epsilon}{2\nu e}\right)^{1/2}$$

Não exatamento o número de Taylor original, $\kappa_T=1/\ell_T$, mas assumindo homogeneidade e isotropia, $\kappa_\tau=\sqrt{15}\kappa_T$

159

Decomposição espectral do escoamento

- ▶ Para as equações de fluxo de energia, precisamos decompor o escoamento em diferentes escalas.
- Decomposição espectral em autofunções do operador de Stokes,

$$A\mathbf{w}_j = \lambda_j \mathbf{w}_j, \qquad 0 < \lambda_1 \le \lambda_2 \le \ldots \le \lambda_n \to \infty.$$

então

$$\mathbf{u} = \sum_{j=0}^{\infty} \alpha_j \mathbf{w}_j.$$

Decomposição em número de onda

- ▶ Para cada autovalor λ , que tem dimensão $1/L^2$, onde L= comprimento, associamos número de onda $\kappa=\lambda^{1/2}.$
- ▶ Para cada número de onda κ , a componente \mathbf{u}_{κ} com esse número de onda é

$$\mathbf{u}_{\kappa} = \sum_{\lambda_j = \kappa^2} \alpha_j \mathbf{w}_j$$

▶ E o componente $\mathbf{u}_{\kappa',\kappa''}$ com os números de onda $(\kappa',\kappa'']$:

$$\mathbf{u}_{\kappa',\kappa''} = \sum_{\kappa' < \kappa \le \kappa''} \mathbf{u}_{\kappa}$$

161

Equações de fluxo médio de energia

▶ Analogamente ao feito para a equação de Reynolds, de

$$\int_{H} \langle \mathbf{F}(\mathbf{u}), \Phi'(\mathbf{u}) \rangle_{V',V} \, d\mu(\mathbf{u})$$

fazendo $\Phi'(\mathbf{u}) \to \mathbf{u}_{\kappa,\kappa'}$,

$$\int_{H} \left\{ (\mathbf{f}, \mathbf{u}_{\kappa', \kappa''}) - \nu \|\mathbf{u}_{\kappa', \kappa''}\|^{2} - b(\mathbf{u}, \mathbf{u}, \mathbf{u}_{\kappa', \kappa''}) \right\} \, \mathrm{d}\mu(\mathbf{u}) = 0$$

▶ Logo, para todo $0 \le \kappa' < \kappa'' < \infty$, e multiplicando por κ_0^3 para interpretação física:

$$\nu \kappa_0^3 \langle \|\mathbf{u}_{\kappa',\kappa''}\|^2 \rangle + \kappa_0^3 \langle b(\mathbf{u},\mathbf{u},\mathbf{u}_{\kappa',\kappa''}) \rangle = \kappa_0^3 \langle (\mathbf{f},\mathbf{u}_{\kappa',\kappa''}) \rangle.$$

Equação de fluxo de energia nos modos $(\kappa',\kappa'']$, $\kappa''<\infty$

Fluxo de energia cinética

ightharpoonup Escrevendo $\mathbf{u}_{\kappa',\kappa''}=\mathbf{u}_{\kappa',\infty}-\mathbf{u}_{\kappa'',\infty}$, temos

$$-b(\mathbf{u}, \mathbf{u}, \mathbf{u}_{\kappa', \kappa''}) = -b(\mathbf{u}, \mathbf{u}, \mathbf{u}_{\kappa', \infty}) + b(\mathbf{u}, \mathbf{u}, \mathbf{u}_{\kappa'', \infty})$$

- ▶ O termo $\mathfrak{e}_{\kappa}(\mathbf{u}) \stackrel{\text{def}}{=} -\kappa_0^3 b(\mathbf{u}, \mathbf{u}, \mathbf{u}_{\kappa,\infty})$ representa o fluxo por unidade de tempo de quantidade de energia cinética por unidade de massa transferida, pelos efeitos de inércia (advecção), para os modos altos $\mathbf{u}_{\kappa,\infty}$.
- ▶ Interpretação pela equação determinística:

$$\frac{\mathrm{d}}{\mathrm{d}t}\underbrace{\frac{\kappa_0^3}{2}|\mathbf{u}_{\kappa',\kappa''}|^2}_{\mathrm{energ. cinética}} = -\underbrace{\nu\kappa_0^3\|\mathbf{u}_{\kappa',\kappa''}\|^2}_{\mathrm{dissipação}} + \underbrace{\kappa_0^3(\mathbf{f},\mathbf{u}_{\kappa',\kappa''})}_{\mathrm{injeção}} + \underbrace{\varepsilon_{\kappa'}(\mathbf{u}) - \varepsilon_{\kappa''}(\mathbf{u})}_{\mathrm{c}}.$$

163

Equações de fluxo médio de energia - modos finitos

ightharpoonup Pela condição de ortogonalidade $b(\mathbf{u}, \mathbf{v}, \mathbf{v}) = 0$, temos

$$\langle \mathfrak{e}_{\kappa}(\mathbf{u}) \rangle = -\kappa_0^3 b(\mathbf{u}_{0,\kappa}, \mathbf{u}_{0,\kappa}, \mathbf{u}_{\kappa,\infty}) + \kappa_0^3 b(\mathbf{u}_{\kappa,\infty}, \mathbf{u}_{\kappa,\infty}, \mathbf{u}_{0,\kappa}).$$

identificando a contribuição dos modos altos e baixos no fluxo.

▶ A equação de fluxo médio de energia toma a forma

$$\nu \kappa_0^3 \langle \|\mathbf{u}_{\kappa',\kappa''}\|^2 \rangle = \kappa_0^3 \langle (\mathbf{f}_{\kappa',\kappa''}, \mathbf{u}_{\kappa',\kappa''}) \rangle + \langle \mathfrak{e}_{\kappa'}(\mathbf{u}) \rangle - \langle \mathfrak{e}_{\kappa''}(\mathbf{u}) \rangle.$$

▶ No caso $\kappa' = 0$ and $\kappa'' = \kappa$,

$$\nu \kappa_0^3 \langle \|\mathbf{u}_{0,\kappa}\|^2 \rangle = \kappa_0^3 \langle (\mathbf{f}_{0,\kappa}, \mathbf{u}_{0,\kappa}) \rangle - \langle \mathbf{e}_{\kappa}(\mathbf{u}) \rangle$$

$$-\langle \mathbf{e}_{\kappa}(\mathbf{u}) \rangle$$

$$-\langle \mathbf{e}_{\kappa}(\mathbf{u}) \rangle$$

Subtraindo da desigualdade de energia total,

$$\nu \kappa_0^3 \langle \|\mathbf{u}\|^2 \rangle \le \kappa_0^3 \langle (\mathbf{f}, \mathbf{u}) \rangle, \quad \text{obtemos}$$

$$\nu \kappa_0^3 \langle \|\mathbf{u}_{\kappa, \infty}\|^2 \rangle \le \kappa_0^3 \langle (\mathbf{f}_{\kappa, \infty}, \mathbf{u}_{\kappa, \infty}) \rangle + \langle \mathfrak{e}_{\kappa}(\mathbf{u}) \rangle.$$

que estende eq. para $\kappa''=\infty$, mas com desigualdade (possível "vazamento" de energia cinética para $\kappa''=\infty$ devido à potencial falta de regularidade da solução estatística, similar a potencial perda de regularidade das soluções fracas)

165

Fluxo de energia restrito

▶ Os seguintes limites existem (MCT e LDCT)

$$\lim_{\kappa \to \infty} \langle \|\mathbf{u}_{0,\kappa}\|^2 \rangle = \langle \|\mathbf{u}\|^2 \rangle, \qquad \lim_{\kappa \to \infty} \langle (\mathbf{f}_{0,\kappa}, \mathbf{u}_{0,\kappa}) \rangle = \langle (\mathbf{f}, \mathbf{u}) \rangle.$$

Defina

$$\begin{split} \langle \boldsymbol{\mathfrak{e}}(\mathbf{u}) \rangle_{\infty} &\stackrel{\mathsf{def}}{=} \lim_{\kappa \to \infty} \langle \boldsymbol{\mathfrak{e}}_{\kappa}(\mathbf{u}) \rangle \\ &= \lim_{\kappa \to \infty} \left\{ \kappa_0^3 \langle (\mathbf{f}_{0,\kappa}, \mathbf{u}_{0,\kappa}) \rangle - \nu \kappa_0^3 \langle \|\mathbf{u}_{0,\kappa}\|^2 \rangle \right\} \\ &= \kappa_0^3 \langle (\mathbf{f}, \mathbf{u}) \rangle - \nu \kappa_0^3 \langle \|\mathbf{u}\|^2 \rangle \geq 0. \end{split}$$

▶ E defina o fluxo de energia restrito:

$$\mathfrak{e}_{\kappa}^*(\mathbf{u}) = \mathfrak{e}_{\kappa}(\mathbf{u}) - \langle \mathfrak{e}(\mathbf{u}) \rangle_{\infty}.$$

Equação de fluxo de energia "com modos altos"

▶ Da equação do fluxo de energia para $\kappa'' < \infty$,

$$\nu \kappa_0^3 \langle \|\mathbf{u}_{\kappa',\kappa''}\|^2 \rangle = \kappa_0^3 \langle (\mathbf{f}_{\kappa',\kappa''},\mathbf{u}_{\kappa',\kappa''}) \rangle + \langle \mathfrak{e}_{\kappa'}(\mathbf{u}) \rangle - \langle \mathfrak{e}_{\kappa''}(\mathbf{u}) \rangle$$

▶ Tomando $\kappa' = \kappa$ e fazendo $\kappa'' \to \infty$:

$$\nu \kappa_0^3 \langle \|\mathbf{u}_{\kappa,\infty}\|^2 \rangle = \kappa_0^3 \langle (\mathbf{f}, \mathbf{u}_{\kappa,\infty}) \rangle + \langle \mathfrak{e}_{\kappa}^*(\mathbf{u}) \rangle.$$

Sem "vazamento" de energia para infinito.

Para soluções estatísticas regulares (e.g. suporte limitado em V, como as provenientes de limites generalizados de médias temporais de soluções regulares globais), $\langle \mathfrak{e}(\mathbf{u}) \rangle_{\infty} = 0$ e $\langle \mathfrak{e}_{\kappa}^*(\mathbf{u}) \rangle = \langle \mathfrak{e}_{\kappa}(\mathbf{u}) \rangle$.

167

Cascata de energia

▶ Como

$$\lim_{\kappa \to \infty} \kappa_0^3 \langle (\mathbf{f}, \mathbf{u}_{\kappa, \infty}) \rangle = 0, \quad \lim_{\kappa \to 0} \nu \kappa_0^3 \langle \| \mathbf{u}_{\kappa, \infty} \|^2 \rangle = \nu \kappa_0^3 \langle \| \mathbf{u} \|^2 \rangle = \epsilon,$$

podemos definir números de onda $\underline{\kappa}_i$ e $\overline{\kappa}_i$ como o menor e, respectivamente, o maior, tais que

$$\left|\kappa_0^3\langle(\mathbf{f},\mathbf{u}_{\kappa,\infty})\rangle\right|\ll\epsilon,\ \ \forall\kappa\geq\underline{\kappa}_i,\quad \ \ \, \mathbf{e}\quad \nu\kappa_0^3\langle\|\mathbf{u}_{\overline{\kappa}_i,\infty}\|^2\rangle\approx\epsilon,$$
 injeção de energia abaixo de $\underline{\kappa}_i$ dissipação de energia acima de $\overline{\kappa}_i$

▶ Em geral nada garante que $\underline{\kappa}_i < \overline{\kappa}_i$, mas esta é a hipótese fundamental na Teoria de Kolmogorov.

Quantificando «

- Podemos quantificar as relações anteriores com a ajuda de um parâmetro adimensional δ representando a ordem de precisão nas relações (e.g. $0.01,\ 10^{-10},\ ...$).
- ightharpoonup Assim, $\overline{\kappa}_i$ é o maior número de onda tal que

$$\nu \kappa_0^3 \langle \|\mathbf{u}_{\overline{\kappa}_i,\infty}\|^2 \rangle \ge (1-\delta)\epsilon,$$

ightharpoonup E $\underline{\kappa}_i$ é o menor número de onda tal que

$$\left|\kappa_0^3\langle(\mathbf{f},\mathbf{u}_{\kappa,\infty})\rangle\right| \leq \delta\epsilon, \quad \forall \kappa \geq \underline{\kappa}_i.$$

169

Cascata de energia

- ► Uma base para a teoria de Kolmogorov é a separação entre as escalas de injeção e de dissipação de energia
- ▶ Se $\underline{\kappa}_i < \overline{\kappa}_i$, então para $\underline{\kappa}_i \le \kappa \le \overline{\kappa}_i$, segue de

$$\nu \kappa_0^3 \langle \|\mathbf{u}_{\kappa,\infty}\|^2 \rangle = \kappa_0^3 \langle (\mathbf{f}, \mathbf{u}_{\kappa,\infty}) \rangle + \langle \mathfrak{e}_{\kappa}^*(\mathbf{u}) \rangle,$$

$$\operatorname{que}\, \langle \mathfrak{e}_{\kappa}^*(\mathbf{u}) \rangle = \nu \kappa_0^3 \langle \|\mathbf{u}_{\kappa,\infty}\|^2 \rangle - \kappa_0^3 \langle (\mathbf{f},\mathbf{u}_{\kappa,\infty}) \rangle \left\{ \begin{array}{l} \geq (1-2\delta)\epsilon, \\ \leq (1+\delta)\epsilon. \end{array} \right.$$

- ▶ Logo, $-\delta \leq 1 \frac{\langle \mathfrak{e}_{\kappa}^*(\mathbf{u}) \rangle}{\epsilon} \leq 2\delta$. ou seja, no intervalo $[\underline{\kappa}_i, \overline{\kappa}_i]$, $\langle \mathfrak{e}_{\kappa}^*(\mathbf{u}) \rangle \approx \epsilon$ (cascata de energia).
- ightharpoonup Quanto maior $[\underline{\kappa}_i,\overline{\kappa}_i]$, mais significativa a cascata

Condições suficientes para existência da cascata

▶ Para qualquer número de onda $\kappa > 0$,

$$\nu \kappa_0^3 \langle \|\mathbf{u}_{0,\kappa}\|^2 \rangle \leq \nu \kappa_0^3 \kappa^2 \langle |\mathbf{u}_{0,\kappa}|^2 \rangle \leq \nu \kappa_0^3 \kappa^2 \langle |\mathbf{u}|^2 \rangle \leq \left(\frac{\kappa}{\kappa_\tau}\right)^2 \epsilon.$$

Se $\kappa^2 \ll \kappa_{\tau}^2$, então $\nu \kappa_0^3 \langle \|\mathbf{u}_{0,\kappa}\|^2 \rangle \ll \epsilon$, logo, $\overline{\kappa}_i \geq \delta^{1/2} \kappa_{\tau}$.

- ▶ Se $\kappa_{\tau}^2 \gg \underline{\kappa}_i^2$, então $\overline{\kappa}_i \geq \underline{\kappa}_i$, com um pequeno intervalo de cascata
- ▶ Se $\kappa_{\tau} \gg \underline{\kappa}_{i}$, então $\delta \geq \underline{\kappa}_{i}/\kappa_{\tau}$, e $\overline{\kappa}_{i} \geq \underline{\kappa}_{i}^{1/2}\kappa_{\tau}^{1/2}$, e uma cascata existe com $\overline{\kappa}_{i}^{2} \gg \underline{\kappa}_{i}^{2}$.
- ▶ Se $\kappa_{\tau}^{2/3} \gg \underline{\kappa}_{i}^{2/3}$, então $\delta \geq \underline{\kappa}_{i}^{2/3}/\kappa_{\tau}^{2/3}$, logo $\overline{\kappa}_{i} \geq \underline{\kappa}_{i}^{1/3}\kappa_{\tau}^{2/3}$, e uma ampla cascata de energia existe, com $\overline{\kappa}_{i} \gg \underline{\kappa}_{i}$.

171

Confirmação parcial de estimativas heurísticas

ightharpoonup Para ${f f}$ em V, considere o número de onda característico

$$\kappa_f = (|A^{1/2}\mathbf{f}|/|A^{-1/2}\mathbf{f}|)^{1/2}$$

▶ Para $\kappa_f \leq C\kappa_0$, e para Reynolds suficientemente grande,

$$\epsilon \leq c\kappa_0 U^3, \ \kappa_\epsilon \leq c\kappa_0 \mathrm{Re}^{3/4}, \ \kappa_\tau \leq c\kappa_0^{1/3}\kappa_\epsilon^{2/3}, \ \kappa_\tau \leq c\kappa_0 \mathrm{Re}^{1/2},$$

confirmando parcialmente (e com quantidades definidas de maneira precisa) as estimativas heurísticas da teoria de Kolmogorov:

$$\epsilon \sim \kappa_0 U^3, \quad \frac{\kappa_\epsilon}{\kappa_0} \sim \mathrm{Re}^{3/4}, \quad \kappa_\tau \sim \kappa_0^{1/3} \kappa_\epsilon^{2/3}, \quad \frac{\kappa_\tau}{\kappa_0} \sim \mathrm{Re}^{1/2}.$$

Equação de Reynolds com f em V

ightharpoonup Se $\mathbf{f} \in V$, então

$$-\nu A\langle \mathbf{u}\rangle + \langle B(\mathbf{u}, \mathbf{u})\rangle = \mathbf{f}$$

vale em $D(A^{-1/3})$.

ightharpoonup Multiplicando por $A^{-1}\mathbf{f}$,

$$|A^{-1/2}\mathbf{f}|^2 = \nu(\langle \mathbf{u} \rangle, \mathbf{f}) + (\langle B(\mathbf{u}, \mathbf{u}) \rangle, A^{-1}\mathbf{f})$$

$$\leq \nu|\langle \mathbf{u} \rangle||\mathbf{f}| - \langle b(\mathbf{u}, A^{-1}\mathbf{f}, \mathbf{u}) \rangle$$

$$\leq \nu\kappa_f \langle |\mathbf{u}|^2 \rangle^{1/2} |A^{-1/2}\mathbf{f}| + c\kappa_f^{3/2} \langle |\mathbf{u}|^2 \rangle |A^{-1/2}\mathbf{f}|,$$

onde $\kappa_f \stackrel{\text{def}}{=} (|A^{1/2}\mathbf{f}|/|A^{-1/2}\mathbf{f}|)^{1/2}.$

► Então $|A^{-1/2}\mathbf{f}| \le \nu \kappa_f \langle |\mathbf{u}|^2 \rangle^{1/2} + c \kappa_f^{3/2} \langle |\mathbf{u}|^2 \rangle$.

173

Lei de dissipação de energia

▶ Temos a lei para a razão de dissipação de energia

$$\begin{split} \epsilon &= \nu \kappa_0^3 \langle \|\mathbf{u}\|^2 \rangle = \kappa_0^3 \langle (\mathbf{f}, \mathbf{u}) \rangle \le \kappa_0^3 |\mathbf{f}| |\langle \mathbf{u} \rangle| \\ &\le \kappa_0^3 \kappa_f |A^{-1/2} \mathbf{f}| \langle |\mathbf{u}|^2 \rangle^{1/2} \\ &\le \nu \kappa_0^3 \kappa_f^2 \langle |\mathbf{u}|^2 \rangle + c \kappa_0^3 \kappa_f^{5/2} \langle |\mathbf{u}|^2 \rangle^{3/2} \\ &\le C(\mathsf{Re}, \kappa_0 / \kappa_f) \left(\frac{\kappa_f}{\kappa_0} \right)^{5/2} \kappa_0 U^3, \end{split}$$

onde $C(\operatorname{Re}, \kappa_0/\kappa_f) = c + \operatorname{Re}^{-1}(\kappa_0/\kappa_f)^{1/2}$

Segue, também, para o número de Kolmogorov,

$$\kappa_{\epsilon} = \left(\frac{\epsilon}{\nu^3}\right)^{1/4} \leq C(\mathsf{Re}, \kappa_0/\kappa_f)^{1/4} \left(\frac{\kappa_f}{\kappa_0}\right)^{5/8} \kappa_0 \mathsf{Re}^{3/4}.$$

- ► Em 3D, transferência inversa de energia das escalas de injeção para as escalas maiores também pode ser provada
- ► Em 2D, condições similares para a existência de cascata direta de enstrofia e de cascata inversa de energia
- ► Em 2D, o número de onda que faz o papel do de Taylor é

$$\kappa_{\sigma} = \left(\frac{\langle |A\mathbf{u}|^2 \rangle}{\langle ||\mathbf{u}||^2 \rangle}\right)^{1/2} = \left(\frac{\nu}{\epsilon}\right)^{1/2}$$

► Equação de fluxo de enstrofia em 2D:

$$\nu\langle|A\mathbf{u}_{\kappa',\kappa''}|^2\rangle = \langle(\mathbf{f}_{\kappa',\kappa''},A\mathbf{u}_{\kappa',\kappa''})\rangle + \langle\mathfrak{E}_{\kappa'}(\mathbf{u})\rangle - \langle\mathfrak{E}_{\kappa''}(\mathbf{u})\rangle,$$
 para $\kappa_0 < \kappa' < \kappa'' < \infty$,

175

Transferência de enstrofia x transferência de energia

- ► Em 2D, pode-se mostrar que a transferência de energia para os modos mais altos é muito mais "fraca" que a de enstrofia, justificando a existência da cascata de enstrofia ao invés da de energia
- ▶ De fato, temos

$$\frac{\kappa_{\tau}^2}{\kappa_{\sigma}^2} = \frac{\langle \|\mathbf{u}\|^2 \rangle^2}{\langle |\mathbf{u}|^2 \rangle \langle |A\mathbf{u}|^2 \rangle} \le \frac{\langle |\mathbf{u}||A\mathbf{u}| \rangle^2}{\langle |\mathbf{u}|^2 \rangle \langle |A\mathbf{u}|^2 \rangle} \le 1.$$

e para $\overline{\kappa}_f \leq \kappa \ll \kappa_\sigma$,

$$\frac{1 - \frac{\kappa_0^2 \langle \mathfrak{E}_{\kappa}(\mathbf{u}) \rangle}{\eta}}{1 - \frac{\kappa_0^2 \langle \mathfrak{e}_{\kappa}(\mathbf{u}) \rangle}{\epsilon}} = \frac{\epsilon}{\eta} \frac{\eta - \kappa_0^2 \langle \mathfrak{E}_{\kappa}(\mathbf{u}) \rangle}{\epsilon - \kappa_0^2 \langle \mathfrak{e}_{\kappa}(\mathbf{u}) \rangle} = \frac{1}{\kappa_\sigma^2} \frac{\langle |A\mathbf{u}_{\kappa_0,\kappa}|^2 \rangle}{\langle ||\mathbf{u}_{\kappa_0,\kappa}||^2 \rangle} \le \frac{\kappa^2}{\kappa_\sigma^2} \ll 1.$$

onde $\overline{\kappa}_f$ é o maior número de onda em ${f f}$.

Condições para a cascata de enstrofia

► Em 2D, vale

$$\kappa_{\sigma}^{2} = \frac{r_{+}\kappa_{+}^{2} - r_{-}\kappa_{-}^{2}}{r_{+} - r_{-}},$$

$$r_{+} = \kappa_{0}^{2} \sum_{\kappa>0} \langle (\mathbf{f}_{\kappa}, \mathbf{u}_{\kappa}) \rangle^{+}, \qquad r_{-} = \kappa_{0}^{2} \sum_{\kappa>0} \langle (\mathbf{f}_{\kappa}, \mathbf{u}_{\kappa}) \rangle^{-},$$

$$\kappa_{+}^{2} = \frac{\kappa_{0}^{2} \sum_{\kappa>0} \kappa^{2} \langle (\mathbf{f}_{\kappa}, \mathbf{u}_{\kappa}) \rangle^{+}}{r_{+}}, \quad \kappa_{-}^{2} = \frac{\kappa_{0}^{2} \sum_{\kappa>0} \kappa^{2} \langle (\mathbf{f}_{\kappa}, \mathbf{u}_{\kappa}) \rangle^{-}}{r_{-}},$$

▶ Se $r_-=0$, é possível mostrar que $\kappa_\sigma^2\lesssim\underline{\kappa}_i^2$, comprometendo a cascata de enstrofia