

Visualisierung von vernetztem Wissen als Graph im virtuellen Raum

Zwischenpräsentation

Bearbeiter: Sonja Stefani

Aufgabensteller: Prof. Dr. Helmut Krcmar

Betreuer: Dimitri Vorona, Dr. Matthias Baume

Abgabedatum: 15.03.2018

Technische Universität München

Garching bei München, 05. Februar 2018

Gliederung

- Thema und Motivation
- 2. Aufbau und Komplexität von Wissensnetzwerken
- 3. Übersichtliche Darstellung von Graphen
- 4. Informationen im virtuellen Raum
- 5. Gegenüberstellung von Algorithmen zur Visualisierung von Graphen

Thema und Motivation

Erstellen einer VR-Software zur Darstellung von Wissensplattformen

Unterstützen des Lernens

Modellierung nach Konstruktivismus

Idee des selbstinitiierten Lernprozesses [Terhart, 2009]

Aufbau und Komplexität von Wissensnetzwerken

Dichte Vernetzung vieler Artikel und anderer Seiten

Richtungen der Verlinkungen

Hohe Anzahl an einzelnen Artikeln und daraus resultierender Knoten im Graphen

Aufbau einzelner Seiten aus verschiedenen Elementen, wie

- Texte
- Bilder
- Audiodateien
- Videos

Übersichtliche Darstellung von Graphen

Reduzierung der Komplexität zur Verbesserung der Übersichtlichkeit [Herman et al., 2000]

Darstellung eines kleineren Ausschnitts des gesamten Graphen mit Start bei einem ausgewählten Knoten

Beschränken der dargestellten Knoten und Kanten durch zwei Parameter:

- Anzahl der maximal dargestellten Knoten
- Wert der maximalen Entfernung vom Startknoten

Informationen im virtuellen Raum

Sicherstellen der Zugänglichkeit von dargestellten Informationen

Mitbeachtung der Steuerung im virtuellen Raum

Anpassen der einzelnen Teilelemente eines Artikels an die Darstellung in VR

- Steuerung mit dreidimensionalem Cursor
- Behandeln von Elementen wie Text oder Bild als getrennte Einheiten
- Fokus auch vereinfachte Steuerung und Übersichtlichkeit

Problem der effizienten Berechnung einer akzeptablen Visualisierung eines Graphen

Anpassen eines geeigneten Algorithmus an eine dreidimensionale Umgebung

Grundidee

- Behandeln des Graphen als Kombination aus Ringen (Knoten) und Federn (Kanten)
- Verwenden der simulierten Kräfte an Knoten zur Finden einer übersichtlichen Darstellung
- Berechnen eines Equilibriums

Kamada, Kawai (1989)

- Minimieren des Ungleichgewichts
- Lösen von Differentialgleichungen
- Ursprüngliche Komplexität $O(n^3)$

Davidson, Harel (1996)

- Gedanke des "simulated annealing"
- "Abkühlen" der Knoten beim Iterieren
- Schlechte Performanz

Gajer, Goodrich, Kobourov (2000)

- Finden eines guten Clusterings
- Iterieren über Ebenen des Graphen
- Gute Performanz f
 ür große Graphen

Fruchterman, Reingold (1991)

- Basierend auf Grundgedanken von Federn und Ringen
- Nicht physikalisch korrekt
- Ursprüngliche Laufzeit $O(|V|^2 + |E|)$
- Verbesserung auf O(|V| + |E|) für gleichmäßig verteilte Knoten

Grober Aufbau des Codes

Eingabe: Graph G := (V, E)

- Berechne $fl\ddot{a}che := W * L * H$
- Berechne $k = \sqrt[3]{f \, l\ddot{a} \, che/|V|}$
- Lege fest $f_a(x)$ und $f_r(x)$ in Abhängigkeit von k
- Für alle $v \in V$:
 - Berechne abstoßende Kräfte mit f_r
 - Berechne anziehende Kräfte mit f_a
 - Berechne neue Position in Abhängigkeit von Temperatur t

Fruchterman, Reingold (1991)

Davidson, Harel (1996)

Kamada, Kawai (1989)

Quellen

Ron Davidson and David Harel. Drawing graphs nicely using simulated annealing. *ACM Trans. Graph.*, 15(4):301-331, October 1996.

Pawel Gajer, Michael T Goodrich, and Stephen G Kobourov. A fast multidimensional algorithm for drawing large graphs. In *Graph Drawing'00 Conference Proceedings*, pages 211-221, 2000.

Thomas M. J. Fruchterman and Edward M. Reingold. Graph drawing by force-directed placement. *Softw. Pract. Exper.*, 21(11):1129-1164, November 1991.

Tomihisa Kamada and Satoru Kawai. An algorithm for drawing general undirected graphs. *Information Processing Letters*, 31(1):7-15, 1989.

Quellen

Ivan Herman, Guy Melancon, and M Scott Marshall. Graph visualization and navigation in information visualization: A survey. *IEEE Transactions on visualization and computer graphics*, 6(1):24-43, 2000.

Ewald Terhart. *Allgemeine Didaktik: Traditionen, Neuanfänge, Herausforderungen*, pages 13-34. VS Verlag für Sozialwissenschaften, Wiesbaden, 2009.

Weiterführend - Konstruktivismus