Санкт-Петербургский Политехнический Университет Петра Великого Институт компьютерных наук и технологий Кафедра компьютерных систем и программных технологий

Телекоммуникационные технологии

Отчет по лабораторной работе №3 "Ряд Фурье. Преобразование Фурье. Корреляция"

Работу выполнил: Федосеенков Н.Ю. Группа: 33501/3 Преподаватель: Богач Н.В.

1. Цель работы

Получить представление о спектрах телекоммуникационных сигналов.

2. Постановка задачи

- Для сигналов, построенных в лабораторной работе №1, выполнить расчет преоразования Фурье. Перечислить свойства преобразования Фурье.
- С помощью функции корреляции найти позицию синхропосылки [101] в сигнале [0001010111000010]. Получить пакет данных, если известно, что его длина составляет 8 бит без учета синхропосылки. Вычислить корреляцию прямым методом, воспользоваться алгоритмом быстрой корреляции, сравнить время работы обоих алгоритмов.

3. Теоретическая часть

Свойства преобразования Фурье Основные свойства преобразования Фурье ($\Pi\Phi$):

- 1. Суммирование функций
 - $\Pi\Phi$ линейной комбинации некоторых функций равно аналогичной линейной комбинации $\Pi\Phi$ этих функций.
- 2. Смещение функции
 - При смещении функции по аргументу на t_0 ее П Φ умножается на $e^{j2\pi ft_0}$.
- 3. Изменения масштаба аргумента функции Если аргумент функции y(t) заменить на at, где a постоянный коэффициент, то $\Pi\Phi$ с Y(f) изменится на $\frac{1}{|a|}Y(\frac{f}{a})$.
- 4. Перемножение функций
 - $\Pi\Phi$ произведения двух функций равно свертке их $\Pi\Phi$: $F[x(t)y(t)] = \frac{1}{2\pi}[X(f)*Y(f)]$
- 5. Свертывание функций
 - $\Pi\Phi$ свертки двух функций равно произведению $\Pi\Phi$ свертываемых функции: F[x(t)*y(t)] = X(f)Y(f)
- 6. Дифференцирование функции
 - При дифференцировании функции y(t) ее $\Pi\Phi$ умножается на $j2\pi f$.
- 7. Интегрирование функции
 - При интегрировании от $-\infty$ до t функции, имеющей равную нулю постоянную составляющую, ее $\Pi\Phi$ делится на $j2\pi f$.
- 8. Обратимость
 - $\Pi\Phi$ обратимо с точностью до знака аргумента.

Корреляция Корреляция используется для того, чтобы определить степень независимости одного процесса от другого или установить сходство одного набора данных с другим. Дискретной кросс-корреляцией функций f(t) и g(t) называется следующая операция:

$$corr(f,g)[n] = \sum_{m=-\infty}^{\infty} f(m)g(n+m)$$

, где m — величина задержки.

Кросс-корреляция чаще всего применяется в обработке сигналов, при этом f считается образцом, а g – сигналом, содержащим образец. Результат – это вектор чисел, показывающих, насколько сильно образец выражен в сигнале.

Расчет корреляции можно ускорить, используя теорему о корреляции, которая формулируется следующим образом:

$$r_{12}(j) = \frac{1}{N} F_D^{-1}[X(k)Y(k)]$$

, где F_D^{-1} обозначает обратное дискретное преобразование Фурье. Данный подход требует выполнения двух дискретных пробразований Фурье и одного обратного, что легче всего сделать, используя алгоритм БПФ. Если число членов в последовательностях достаточно велико, данный метод БПФ дает результат быстрее, чем непосредственный расчет взаимной корреляции.

4. Ход работы

Для нахождения позиции синхропосылки в сигнале воспользуемся алгоритмами кросс-корреляции и быстрой корреляции. Сгенерируем сигнал [0001010111000010] и синхропосылку [101].

```
close all;
clear; clc;
x = zeros(1,17);
x(4) = 1;
x(6) = 1;
x(8) = 1;
x(9) = 1;
x(10) = 1;
x(15) = 1;
figure ('Name', 'Исходный сигнал');
t = 0:16;
stairs(t, x);
axis([0 \ 17 \ -0.1 \ 1.1]);
y = zeros(1, 17);
y(1) = 1;
y(3) = 1;
[r, lag] = xcorr(x, y);
figure ('Name', 'Кросскорреляция—');
stairs(lag, r);
axis([0 \ 17 \ -0.1 \ 2.1]);
X = \mathbf{fft}(x);
Y = conj(fft(y));
XY = Y \cdot * X;
r = ifft(XY)/16;
figure ('Name', 'Быстрая_корреляция');
stairs (t, r);
N = 500000;
s1 = randint(1, N, [0,1]);
s2 = randint(1, N, [0,1]);
tic;
r1 = x corr(s1, s2);
t1 = \mathbf{toc};
tic;
S1 = \mathbf{fft} (s1);
S2 = conj(fft(s2));
S1S2 = S2 \cdot *S1;
r2 = ifft(S1S2)/N;
t2 = \mathbf{toc};
disp(t1);
disp(t2);
```


Рис.1 Исходный сигнал

Рис.2 Результат выполнения кросс-корреляции

Рис. 3 Результат выполнения быстрой корреляции

Сравим время работы двух алгоритмов для случайных сигналов длины N. Таблица 1

N	t_{xcorr} ,c	t_{fast} ,c
50	0.000403	0.0000279
100	0.000422	0.0000474
500	0.000533	0.0000762
1000	0.000623	0.00012
5000	0.0021	0.0005126
10000	0.0035	0.0010
50000	0.0198	0.0056
100000	0.1520	0.0887
500000	0.2824	0.1293

Для сигналов небольшой длины алгоритм быстрой корреляции работает примерно в 10 раз быстрее кросс-корреляции, для сигналов длиной от 50000 - в 2 раза быстрее.

5. Выводы

Преобразование Фурье является математической основой спектрального анализа сигналов, который, в свою очередь, находит широкое применение в телекоммуникационных технологиях. Например, государственные регулирующие структуры распределяют различные частоты для разных радио-служб: телевизионное и радиовещание, сотовая связь, связь правоохранительных органов и спасательных служб, а также множество других организаций и приложений. Важно, чтобы каждая служба работала на предназначенной для нее частоте и оставалась в пределах выделенной полосы канала.