Il Teorema di Gauss-Bonnet

Relatore: Prof. Andrea Loi Candidato: Francesco Falqui

Università degli Studi di Cagliari

28 Novembre 2016

Teorema di Gauss-Bonnet

Sia M^2 una varietà differenziabile, bidimensionale ,compatta e orientata. Sia X un campo di vettori differenziabile su M con punti singolari isolati $p_1, ..., p_k$, di indici rispettivamente $I_1, ..., I_k$. Allora, per ogni metrica Riemanniana su M,

$$\int_M K d\sigma = 2\pi \sum_{i=1}^N I_i$$

Per le varietà bidimensionali con bordo ∂M avente spigoli $s_1, ..., s_n$, di angoli esterni rispettivamente $\alpha_1, ..., \alpha_n$, vale un risultato più generale

$$\int_M K d\sigma + \int_{\partial M} k_g ds + \sum_{i=1}^n lpha_j = 2\pi \sum_{i=1}^N I_i = 2\pi \chi(M)$$

Dove $\chi(M)$ è la Caratteristica di Eulero-Poincare.

Per ogni punto p appartenente a una varietà Riemaniana M^2 , possiamo scegliere un intorno $U \subset M$ in cui possiamo definire due campi di vettori ortonormali $\{e_1, e_2\}$, detto riferimento.

Ad ogni frame possiamo associare due 1-forme $\{\omega_1, \omega_2\}$ attraverso la condizione $\omega_i(e_j) = \delta_i j$, detto riferimento duale.

Teorema di Levi-Civita

Sia M^2 una varietà Riemanniana. Sia $U \subset M$ un aperto in cui è definito un riferimento $\{e_1, e_2\}$, e sia $\{\omega_1, \omega_2\}$ il riferimento duale associato. Allora esiste una 1-forma univoca $\omega_{12} = -\omega_{21}$, tale che

$$dw_1 = \omega_{12} \wedge \omega_2 \qquad d\omega_2 = \omega_{21} \wedge \omega_2$$

Prop. 1 (Curvatura Gaussiana)

Sia M^2 una varietà Riemanniana. Per ogni $p \in M$, possiamo definire il numero K(p) scegliendo un riferimento e_1, e_2 in un intorno di p e ponendo

$$d\omega_{12}(p) = -K(p)(\omega_1 \wedge \omega_2)(p) = -K\sigma$$

Allora K(p) non dipende dal riferimento scelto, ed è chiamato Curvatura Gaussiana di M in p.

Prop. 2 (Differenziale funzione angolo)

Sia $\gamma: I \to U \subset M$ una curva su una varietà Riemanniana. Siano $\{\bar{e}_1, \bar{e}_2\}$, $\{e_1, e_2\}$ due riferimenti, aventi la stessa orientazione, definiti in U.

Sia $\varphi(t)$, $t \in I$, l'angolo tra \bar{e}_1 ed e_1 , allora

$$\bar{\omega}_{12} = \omega_{12} + d\varphi$$

Indice di un campo di vettori

Dato un campo X definito sulla superficie, diciamo che p è un punto singolare se X(p) = 0, se inoltre esiste un intorno $U \subset M$ contenente p e che non contiene altri punti singolari, allora diciamo che p è un punto singolare isolato.

Def. 1

Sia X un campo di vettori su una varietà M^2 , e sia p un punto singolare isolato, consideriamo una curva semplice e chiusa C, tale che sia il bordo di una ragione compatta che contiene p e nessun altro punto singolare. Siano $\{\bar{e}_1 = X/|X|, \bar{e}_2\}$, $\{e_1, e_2\}$ due riferimenti. Allora

$$\int_C darphi = 2\pi I$$

L'intero I è detto indice di X in p.

Figura: Indici campi vettoriali piani

Applicazioni Teorema di Gauss-Bonnet

1 Esempio.

Non esiste una metrica Riemanniana sul toro T, tale che K sia non nullo e non cambi segno.

Se infatti consideriamo il toro immerso in ${\bf R^3}$, con la parametrizzazione

$$X(u,v) = \{(R + r\cos u)\cos v, (R + r\cos u)\sin v, r\sin u\}$$

il campo di vettori $X_u = \{-r\cos v\sin u, -r\sin u\sin v, r\cos u\}$ non ha nessun punto singolare. Quindi

$$\int_T K d\sigma = \sum_i^3 I_i = 0$$

Figura: Campo $\boldsymbol{X_u}$ sul Toro

Applicazioni Teorema di Gauss-Bonnet

2 Esempio.

La somma degli angoli interni di un triangolo geodetico T è:

- 1. Uquale a π se K = 0.
- 2. Maggiore di π se K > 0.
- 3. Minore di π se K < 0.

Applicando Gauss-Bonnet su un triangolo geodetico si ottiene

$$\int_T K d\sigma + \sum_i^3 heta_i = 2\pi$$

Siano $\phi_1=\pi-\theta_1,\,\phi_2=\pi-\theta_2,\,\phi_3=\pi-\theta_3$ gli angoli interni. Quindi,

$$\int_T K d\sigma = 2\pi - \sum_i^3 (\pi - heta_i) = -\pi + \sum_i^3 \phi_i$$

Figura: Esempi triangoli geodetici

Ingredienti per la dimostrazione

Lemma. 1

 $m{I}$ non dipende dalla curva $m{C}$.

Lemma. 2

I non dipende dalla scelta dell'orientamento $\{e_1, e_2\}$. Inoltre, sia $S_r = \partial B_r$ il bordo di una palla di raggio r centrato in p. Allora, il limite

$$\lim_{r o 0}\int_{S_r}\omega_{12}=2\piar{I}$$

esiste, e $\bar{I} = I$.

Lemma. 3

I non dipende dalla metrica.

Dimostrazione Teorema di Gauss-Bonnet

Consideriamo in $M \setminus \bigcup_i \{p_i\}$ il riferimento $\{\bar{e}_1 = X/|X|, \bar{e}_2\}$ orientato secondo M. Indichiamo con B_i una palla centrata in p_i tale che non contenga altri punti singolari oltre p_i .

Considero l'integrale

$$\int_{M \ ackslash \bigcup_i \{B_i\}} K \omega_1 \wedge \omega_2 = - \int_{M \ ackslash \bigcup_i \{B_i\}} d\omega_{12}$$

Dal teorema di Stokes, abbiamo che

$$-\int_{M\setminus \bigcup_i\{B_i\}}d\omega_{12}=\int_{\bigcup_i\{\partial B_i\}}\omega_{12}=\sum_i\int_{\partial B_i}\omega_{12}$$

Facendo tendere i raggi $\boldsymbol{r_i}$ a
0, e applicando il Lemma 2 otteniamo la tesi

$$\int_M K \omega_1 \wedge \omega_2 = 2\pi \sum_i I_i$$

Q.E.D.