Machine Vision

Homework#1

Deadline: 2024/03/20 23:59:59

Robot Vision Lab (Room 1421)

TAs: 魏士涵 t112598058@ntut.edu.tw

賴靖嫺 t112598008@ntut.edu.tw

- 1. Image Quantization(binary, gray, index-color)
 - 1-1. Convert the color image to the grayscale image
 - Formula: $(0.3 \times R) + (0.59 \times G) + (0.11 \times B)$.
 - 1-2. Convert the grayscale image to the binary image
 - Choose a appropriate threshold by yourself.
 - 1-3. Convert the color image to the index-color image
 - Define your own colormap of 16 type colors.

2. Resizing Image

2-1. Resizing image to $\frac{1}{2}$ and 2 times without interpolation

		10	10	20	20
10	20	10	10	20	20
30	40	30	30	40	40
		30	30	40	40

10	15	20	17			
19	21	14	16		10	20
30	26	40	45	·	30	40
39	35	36	37			

2. Resizing Image

- 2-2. Resizing image to $\frac{1}{2}$ and 2 times with interpolation
 - You can use bilinear or bicubic interpolation.

- Report
 - Student ID
 - Name
 - Describe the main part of your method
 - Result images and colormaps
 - Explain the results you get

- Rules in using C/C++ OpenCV Lib
 - ➤ Use OpenCV-2.x version

>Allow use:

- 1. Read, save, show image (cvLoadImage, cvShowImage, ...)
- 2. Define image (Mat)
- 3. Get image size (cvSize, cvGetSize)

➤ Not Allow use:

1. Cannot use the function of Lib to do the main part of homework.

Example: cvtColor(image, gray, CV_RGB2GRAY); // convert RGB to Gray

• Rules in using Python OpenCV Lib

➤ Allow use:

- 1. Read, save, show image (cv2.imread, cv2.imshow, ...)
- 2. Define image
- 3. Get image size

➤ Not Allow use:

1. Cannot use the function of Lib to do the main part of homework.

Example: cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) // convert RGB to Gray

- Grade
 - Program(80%)
 - Q1-1(10%)
 - Q1-2(10%)
 - Q1-3(20%)
 - Q2-1(15%)
 - Q2-2(25%)
 - Report(20%)

- Folder Structure
 - There are 21 images in the results folder.
 - >Write all questions in one program

```
C/C++
Python
112598058 hw1/
                                        112598058 hw1/
   images/
                                           project hw1/
      · img1.jpg
                                              images/
     - img2.jpg
                                                - img1.jpg
     - img3.jpg
                                                - img2.jpg
   results/
                                                - img3.jpg
     - img1 q1-1.jpg
                                              results/
      img1 q1-2.jpg
                                                - img1 q1-1.jpg
      img1 q1-3.jpg
                                                - img1 q1-2.jpg
                                                - img1_q1-3.jpg
      - img1 q2-1-half.jpg
      img1_q2-1-double.jpg
                                                img1_q2-1-half.jpg
      img1 q2-2-half.jpg
                                                 img1 q2-1-double.jpg
      · img1 q2-2-double.jpg
                                                - img1 q2-2-half.jpg
                                                - img1 q2-2-double.jpg
      - img3 q2-2-double.jpg
    112598058_hw1.py
                                                - img3 q2-2-double.jpg
    112598058 hw1.pdf
                                              include/
   Readme.txt (Optional)
                                              └─ func.h
                                             - func.cpp
                                              main.cpp
                                           112598058 hw1.pdf
                                           Readme.txt (Optional)
```

- Please compress your files.
 - > Example: 112598058_hw1.zip
- Deadline: 2024/3/20 23:59:59
 - For each hour late, 10% of the total score will be deducted.
- Don't share your code and your report with other students.
 Do it by yourself.