Predator-Prey Systems

Neil Slavishak, Roberto Defazio, Yuang Wang, Wenxuan Lu, Max Barrett

Math 1270

October 29, 2024

The Predator Prey System

- -The Lotka-Volterra predator-prey model is a pair of two variable, second and first-order nonlinear differential equations.
- -The populations change through time according to the prey of equations $\frac{dx}{dt} = 9x \alpha x^2 3xy$ and the population changes of predator is $\frac{dy}{dt} = -2y + xy$ where the variable x is the population (in some scaled units) of prey and y is the population of predators.
- -Parameter α , where $0 \le \alpha$, may affect prey's population other than predator. We may treat it as an unknown exogenous condition that affects the prey population.

Equilibrium Points

-In order to get equilibrium points, we have to find the nullcline first, which means we have to treat this two differential equations to be equal zero such that $\frac{dx}{dt}=9x-\alpha x^2-3xy=0$ and $\frac{dy}{dt}=-2y+xy=0$. -For $x^{'}=0$, $x(9-\alpha x-3y)=0$, then x=0 or $y=3-\frac{\alpha}{3}x$. For $y^{'}=0$, y(-2+x)=0 then we have x=2 or y=0

-The way we find equilibrium points is to combine the solution during when they intersect. Such that we can treat y both equals to 0 and $3-\frac{\alpha}{3}x$.

-Then we know that $3-\frac{\alpha}{3}x=0$, then x can only be equal to $\frac{9}{\alpha}$. However, we can not treat x to equal 2 and 0 simultaneously. Then, we can find that there are three equilibrium points (0,0) $(\frac{9}{\alpha},0)$ $(2,\frac{9-2\alpha}{3})$.

◆ロト ◆部ト ◆恵ト ◆恵ト ・恵 ・ 釣へ○

Jacobian matrix

- -The purpose of the Jacobian is to determine the stability of equilibria for systems of differential equations. It can approximate the behavior near an equilibrium point.
- -After we get the Jacobian matrix, we can plug the number (for x and y) we want into the matrix and calculate the trace and the determinant. which can tell us the value for 'T-D plane'
- -In order to get Jacobian matrix, we first treat $\frac{dx}{dt}$ as f(x) and $\frac{dy}{dt}$ as g(x).

 -Then the Jacobian Matrix for the entire system is $\begin{bmatrix} \frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} \\ \frac{\partial g}{\partial x} & \frac{\partial g}{\partial y} \end{bmatrix}$ which also

equals to
$$\begin{bmatrix} 9 - 2\alpha x - 3y & -3x \\ y & -2 + x \end{bmatrix}$$

Equilibrium at x = 0 and y = 0

-Using linearization, the Jacobian for this system at (0,0) becomes:

$$\begin{bmatrix} 9 & 0 \\ 0 & -2 \end{bmatrix}$$

- -And so T = 7, and D = -18, which is a saddle
- -The equilibrium point at x = 0 and y = 0 occurs for all values of α .
- -At this point, x and y are the respective populations of the prey and predator, both populations are zero.
- -When initial conditions are on either axis, we see differing behavior.
- -When $x_i = 0$, the solutions tend to (0,0). (No Prey)
- -But, when $y_i=0$, the solutions tend to infinity as $t\to\infty$, when there is no α term. (No Predators)

A special Case when $\alpha = 0$

Figure: Phase portrait

- -The equilibrium points in this case occur at (0,0) and (2,3).
- -The Jacobians for each are then $\begin{bmatrix} 9 & 0 \\ 0 & -2 \end{bmatrix}$

and $\begin{bmatrix} 0 & -6 \\ 3 & 0 \end{bmatrix}$. In the first, T = 7 and D = -18 which gives a saddle. The

second gives T=0 and D=18, giving a center solution,

x(t) and y(t) when $\alpha = 0$

Solutions at $\alpha = 1$ and $\alpha = 2$

- -When $\alpha=1$ the equilibria aside from (0,0) are (9,0) which is a saddle and (2, $\frac{7}{3}$) which is a spiral sink.
- -Similarly, when $\alpha=2$ the equilibria are $(\frac{9}{2},0)$ which is a saddle and $(2,\frac{5}{3})$ which is a spiral sink.

x(t) and y(t) when $\alpha=1$ and $\alpha=2$

Bifurcation at 2.7

-At $\alpha \sim$ 2.7, we see a bifurcation at the equilibrium point $(2,\frac{6}{5})$

$$-J(2, \frac{6}{5}) = \begin{bmatrix} \frac{-27}{5} & -6\\ \frac{6}{5} & 0 \end{bmatrix} \text{ with } T = \frac{-27}{5}, D = \frac{36}{5}$$

-In this case, $\frac{T^2}{4} = \frac{(\frac{-27}{5})^2}{4} \sim \frac{36}{5} = D$, meaning the equilibrium point is crossing the parabola on the T-D Plane

Solutions at $\alpha = 3$ and $\alpha = 4$

- -When $\alpha=3$ the equilibria aside from (0,0) are (3,0) which is a saddle and (2, 1) which is a nodal sink.
- -Similarly, when $\alpha=4$ the equilibria are $(\frac{9}{4},0)$ which is a saddle and $(2,\frac{1}{3})$ which is a nodal sink.

x(t) and y(t) when $\alpha = 3$ and $\alpha = 4$

Bifurcation at 4.5

- -At $\alpha =$ 4.5, we see changes to the solutions at both equilibrium points
- Since 9 $2\alpha \leq$ 0 for $\alpha \geq$ 4.5, the point (2, $\frac{9-2\alpha}{3})$ leaves the first quadrant
- For $(\frac{9}{\alpha},0)$, $J(2,0)=\begin{bmatrix} -9 & -6\\ 0 & 0 \end{bmatrix}$, which yields T=-9 and D=0. So the point crosses the D-axis, meaning that the equilibrium point goes from

a saddle to a nodal sink

The Solution at $\alpha = 5$

-When $\alpha=5$ the equilibria aside from (0,0) are $(\frac{9}{5},0)$ which is a nodal sink and $(2,\frac{-1}{3})$ which is unimportant

x(t) and y(t) when $\alpha = 5$

Bifurcation Analysis

- At lpha= 0, the populations of all species will continuously oscillate forever
- -At this point, there are no environmental factors, the populations compete for all t.
- At $0 \le \alpha \le 2.7$, the populations spirally sink as t approaches infinity toward $(2, \frac{9-2\alpha}{3})$
- At 2.7 $\leq \alpha \leq$ 4.5, the populations will reach equilibrium much faster as it is a nodal sink
- At 4.5 $\leq \alpha$, the predator populations will reach extinction

Conclusions about this Model

- Unless there's no prey to begin with, since each equilibrium is either a saddle point, nodal sink, or spiral sink, the predators and prey never actually reach $\mathbf{0}$
- -The Lotka-Volterra model is useful framework for understanding how two species may interact, and can also be used in economics by tracking two direct competitors within the market
- This system may fail to be accurate in real-world applications due to many other animals sharing the same environment, the density of the space that these animals live in, and constant predator/prey interactions over time