Deep Learning

Jérôme Pasquet

December 5, 2019

Une inspiration biologique ?

Du MLP au CNN...transition

Poids partagés

$$\frac{\delta E}{\delta w_{ii}^{(l)}} = \sigma_i^{(l-1)} \phi_j^{(l)}$$

Rappel:
$$\frac{\delta E}{\delta w_{ij}^{(l)}} = \sigma_i^{(l-1)} \phi_j^{(l)}$$

$$\phi_j^{(l)} = \sigma_j^{(l)} \begin{cases} (\sigma_j^{(l)} - t_j^{(l)}) & \text{Si l couche de sortie} \\ \sum_{k \in C_{l+1}} (w_{jk}^{(l+1)} \phi_k^{(l+1)}) & \text{Si couche cachée} \end{cases}$$

Détailler les formules pour $w_{i,1}^{(1)}$, que se passe-t-il si $w_{1,1}^{(1)} = w_{1,2}^{(1)}$? Attention à la notation qui change ! [cf cours 1R]

Poids partagés

$$\frac{\delta E}{\delta w_{1,1}^{(1)}} = x_1 \phi_1^{(1)} = x_1 \sigma_1'^{(I)}.(w_{13}^{(2)}.\phi_3^{(2)})$$

$$\frac{\delta E}{\delta w_{1,2}^{(1)}} = x_1 \phi_2^{(1)} = x_1 \sigma_2'^{(I)}.(w_{23}^{(2)}.\phi_3^{(2)})$$

$$\frac{\delta E}{\delta w_{*,1}^{(1)}} = x_1 \sum_{p=Partage} \sigma_p'^{(I)} f'(w_{p3}^{(2)}) \phi_3^{(2)}$$

Du MLP au CNN...transition

Les CNN

Les cartes de caractéristiques sont les images résultantes des convolutions.

Le CNN

La convolution

Un peu de vocabulaire : le stride (le pas), le padding (la marge) et le kernel (le noyau).

La convolution

La convolution

0	1	1	0	0	1	2	0
2	0	1	1	0	1	1	1
1	0	2	1	0	1	1	0
2	4	0	0	1	2	0	0
0	1	0	1	0	0	1	0
1	0	3	2	3	1	0	1
0	1	0	0	0	0	0	0
0	1	1	0	2	3	1	4

1	0	1
0	1	0
2	1	0

3	4	7	3	4	5
11	11	2	3	6	7
8	3	3	5	3	2
5	7	7	7	8	5
1	7	2	4	2	0
6	5	8	5	10	9

La convolution étendue

 $+.007 \times$

Une classification robuste?

A lire au second semestre: Explaining and harnessing adversarial examples - Ian J. Goodfellow, Jonathon Shlens & Christian Szegedy

x
"panda"
57.7% confidence

 $sign(\nabla_{\boldsymbol{x}}J(\boldsymbol{\theta},\boldsymbol{x},y))$ "nematode"
8.2% confidence

 $\begin{matrix} \boldsymbol{x} + \\ \epsilon \mathrm{sign}(\nabla_{\boldsymbol{x}} J(\boldsymbol{\theta}, \boldsymbol{x}, y)) \\ \text{"gibbon"} \\ 99.3 \% \text{ confidence} \end{matrix}$

Tensorflow

```
tf.nn.conv2d(: fonction allouant le poids et faisant la
convolution.
input, : tenseur en entrée
filters, : taille des filtres
strides, : pas du kernel
padding, : "VALID" ou "SAME"
data_format='NHWC' )
```

Tensorflow

```
tf.nn.conv2d( : fonction allouant le poids et faisant la
convolution.
input, : tenseur en entrée
filters, : taille des filtres
strides, : pas du kernel
padding, : "VALID" ou "SAME"
data_format='NHWC' )
tf.nn.bias_add( : rajouter le biais à des features map
value, : tenseur auquel on souhaite appliquer un biais
bias ) : tenseur de biais.
```