

TARGTM

Technical Manual 1.1

© 1980 Exidy, Inc. 390 Java Drive, Sunnyvale, California 94086 Telephone: (408) 734-9410 Telex: 357-499

## TABLE OF CONTENTS

|                                                | TARG AA. IntB. AddC. CloD. TonE. WhiF. ExpG. ShoH. SpeI. SumJ. Aud | roductes Die Sequent Sout Sout Ctar | tion Decod vider uence ise ( n/Cra nd Ge (Spec | ing<br>Ge<br>Gene<br>Gener<br>Sial | aner<br>rat<br>Sou<br>ato | d I ato or and or a reger | r<br>Gent) | ut ner   | Dat   | ta<br>or<br>d G | La    | tch   | es    |       |       |   |     |     |     | 1<br>1<br>2<br>2<br>2<br>3<br>3 |   |
|------------------------------------------------|--------------------------------------------------------------------|-------------------------------------|------------------------------------------------|------------------------------------|---------------------------|---------------------------|------------|----------|-------|-----------------|-------|-------|-------|-------|-------|---|-----|-----|-----|---------------------------------|---|
| II.                                            | Logic                                                              | Descr                               | iptio                                          | n a                                | nd                        | 0 p e                     | ra         | tio      | n .   |                 |       |       |       | • • • |       | • |     |     |     | 5                               | , |
| III.                                           | Audio                                                              | Adjus                               | tment                                          | s.                                 |                           |                           |            |          |       |                 |       |       |       | • • • |       | • |     |     | • • | 8                               | i |
| IV.                                            | Power                                                              | Suppl                               | y Ad                                           | ust                                | men                       | ts                        |            |          |       |                 |       |       |       | • • • |       |   |     |     |     | 9                               | , |
|                                                | Mechan<br>A. Con<br>B. Joy<br>C. Mon<br>D. Log                     | itrol<br>vstick<br>iitor            | Pane                                           | l                                  | • • • •                   | • • • •                   | • • •      |          | • • • | <br>            | • •   | • • • | • • • | • • • | • • • | • | • • | • • | • • | 10<br>12<br>12                  |   |
| VI.                                            | Schema                                                             | tics                                | • • • •                                        |                                    |                           |                           |            |          | • •   |                 | • •   |       | • •   | • • • |       | • |     |     | • • | 15                              |   |
| VII.                                           | Parts                                                              | List                                |                                                | I                                  | LIST                      | OF                        | F          | IGU      | RE    | s               |       |       |       |       |       |   |     |     |     |                                 |   |
| Figure<br>Figure<br>Figure<br>Figure<br>Figure | 2<br>3<br>4                                                        | Logic<br>Audio<br>Power<br>Contr    | Boar<br>Supp<br>ol Pa                          | rd A<br>oly<br>anel                | Adju<br>Adj               | ust<br>ust                | nen<br>me  | ts<br>nt | ••    | • • •           | • • • | • • • | • • • | • • • | • • • |   | • • | • • | • • | :                               | 9 |
| Figure                                         |                                                                    | Logic                               |                                                |                                    |                           |                           |            |          |       |                 |       |       |       |       |       |   |     |     |     |                                 |   |

- I. TARG Audio Description of Operation
- A. Introduction

The TARG audio PCB is comprised of the following functionally distinct sections:

Address Decoding and Input Data Latches Clock divider
Tone sequence generator
White noise generator
Explosion/Crash sound generator
Shoot sound generator
Special Target (SPECTAR) sound generator
Summing Amplifier and Integrator
Audio Amplifier

B. Address Decoding and Input Data Latches

A two-to-four line decoder IC at location <u>1D</u> detects the <u>combi</u>nation of the <u>audio</u> board select signal ABSEL and the WRITE signal. The WRITE signal is derived from the CPU read/write signal R/W, logically AND'ed with CPU clock 1/2 (phase two).

Address line AO (Address Zero) is used to route the incoming data byte from the Logic PCB to one of two 8-bit latches, where data are held until new data are written to the same latch. If AO is a logical zero at the time of a write to the audio PCB, the latch at location 2C will receive the data byte. If AO is a logical one at this time, the latch at location 2D will receive the data byte instead.

The bits that comprise these data bytes are directly used as enables for the various sound geration circuits.

#### C. Clock Divider

The clock divider simply divides the 12 (phase two) clock frequency downward approximately near 706 Khz to approximately 10 Khz. This puts the clock frequency in the proper range to generate the musical tone sequence used for the player (Wummel) image movement.

The clock divider consists of counters 1A and 1B, whose preload combination divides the  $\not g$ 2 clock by 71.

#### D. Tone Sequence Generator

This generates the musical tone sequence used for the player (WUMMEL) image movement. The 10 Khz clock provided by counters 1A and 1B is further divided by counters 3A and 3B to a frequency determined by their preload supplied by PROM 2B.

PROM 2B is programmed to supply the necessary preloads, in sequence by address, to generate a half-cycle of desired tones. The addresses of the PROM are incremented by counter 2A, which counts once each time signal NOTE is set to a high (logical one) state. Setting NOTE high also enables the flip-flop segment 5D which receives the terminal count of the counters (from counter 3B). This terminal count is of short duration, so flip flop 5D simultaneously divides the frequency by two and creates a 50 % duty cycle (high time = low time) which is pleasant to the ear. The tone will continue until NOTE is set once again to a low (logical zero) state.

PROM 2B is programmed to supply two different tone sequences. One sequence begins the game and continues until the CPU sets signal UPPER to a high state. This causes the PROM to issue the preloads for the second of the two tone sequences. The second sequence is used when the CPU decides that a sufficient state of tension now exists in the play of the game.

### E. White Noise Generator

This generates the white noise (noise across a wide bandwidth) that is used by the explosion/crash sound generator circuit.

This noise is created by amplifying electron agitation generated in a transistor junction (Q4) which is reverse biased to a degree that causes the junction to "break down".

Transistor Q5 forms a low impedance output source for this noise.

#### F. Explosion/Crash Sound Generator

The crash/explosion sound is generated by active-filtering the white noise, and gating it through to the summing amp at the selected time. The trailing edge of the crash/explosion sound is allowed to dissipate slowly (rather than an abrupt halt) due to the discharge of capacitors C35, C36 through resistor R24. The circuit is enabled by signal CRASH, and the trailing edge length of decay can be changed by the use of signal LONG. In this case, however, (TARG), LONG remains in an enabled state throughout the game.

#### G. Shoot Sound Generator

The SHOOT sound is actually a combination of a triangular wave tone and white noise.

The tone is created by VCO 4B. Its oscillating range is set by pot R10. When signal SHOOT is held low (logic zero state), transistor Q1 is turned on, developing a voltage across its emitter resistor R2. This voltage, applied to the control input of amplitude modulator 4A, inhibits the output of amplitude modulator 4A.

When SHOOT is set high, transistor Ql turns off, enabling the Amplitude Modulator output. This also puts a virtual ground on one side of capacitor C29 and results in dragging the control voltage input of VCO 4B low, raising its frequency of oscillation.

The virtual ground at the control voltage input of VCO 4B lasts only as long as it takes C29 to charge up again, so the frequency out of VCO sweeps from high to low.

The tone is given the "hissing" sound by applying a small white noise signal to the base of transistor Q1, which varies the output amplitude.

When SHOOT is again set low, the output amplitude (out of 4A) decreases at a rate determined by the charge rate of capacitor C14.

#### H. Spectar (Special Target) Sound Generator

Consists of two halves of a 556 timer IC (5A), both configured in a free-running state.

Signal 5SPEC, when set low, enables both oscillators. The charge/discharge ramp at the THRESHOLD input of the first stage is coupled to the CONTROL VOLTAGE input of the second stage to provide a frequency varying tone out of the second stage. Signal 5WARN, when set high, provides a slowly varying frequency output, and when set low provides a rapidly varying frequency output.

#### I. Summing Amplifier and Integrator

Two segments of an LM324 operational amplifier are used here. The first is configured as a summing amplifier. It is the common point at which all the various sounds are algebraically added to become one signal which is the composite of all individually developed sounds. Thus this is also the location of the MASTER VOLUME control (R22).

The second LM324 segment is configured as an INTEGRATOR. Its purpose is to eliminate some of the higher frequencies, in order to make a more pleasant sound and also to aid in the prevention of oscillation due to those higher frequencies.

### J. Audio Amplifier

The final audio amplifer is a single IC (6A) which is configured as a bridge amplifier. The composite audio signal is applied to the input of one of the two internal segments and the output swings in accordance with the input signal. The feedback on this segment is not only fed back to the inverting input of the same segment, but is also applied to the inverting input of the other segment. This creates a condition wherein one segment swings positive, and the other segment simultaneously swings in a negative direction, creating an output twice the voltage of a single segment.

Note that three types of audio amplifier IC's may be found in this position. They are all identical except for total power output and pinout. They are: LM377 DUAL 2W, LM378 Dual 4W, and LM 379 Dual 6W.

#### II. LOGIC DESCRIPTION AND OPERATION

TARG uses a 6502 MICROPROCESSOR. For more detailed information on this processor, refer to MOSTEK publication #6500-10A, MCS Microcomputer Family Hardware Manual.

The memory in this system is mapped as follows:

| 0000-00FF | Base Page RAM                    |
|-----------|----------------------------------|
| 0100-01FF | Stack                            |
| 0200-03FF | Scratch Pad RAM                  |
| 1800-3FFF | Program ROM                      |
| 4000-43FF | Screen RAM                       |
| 4800-4FFF | Character Generator RAM          |
| 5000-503F | Wummel Image Horizontal Position |
| 5040-507F | Wummel Image Vertical Position   |
| 5100      | On Board Dip Switch (Read)       |
| 5100      | Wummel Image Rotation Latch      |
| 5101      | Switch Register                  |
| 5103      | Interrupt Register               |
| 5200      | Audio Board Register             |
| 5201      | Audio Board Register             |
| FFF7-FFFF | Interrupt & Reset vectors        |

Note that this processor does not have a separate I/O structure. Rather, it treats I/O as if it were memory. Base page RAM is used for storage of dynamic variables during program execution. The processor uses stack RAM to hold return addresses and important data during subroutine execution. The program ROM is where the non-variable, actual game program is stored.

The screen RAM consists of 1K bytes which, when not accessed by the processor, are scanned by main timing to display 1024 squares in a matrix of 32 x 32. The data stored in the screen RAM then selects one of 256 (8-element-wide by 8-line-high) images in the character generator RAM. These 8 x 8 bit blocks fit together to form the playfield imagery. (Alphanumeric characters take one block each to be displayed). The Wummel and its missiles are each positioned by two sets of counters (horizontal and vertical). The actual imagery for these is generated by feeding the outputs of the counters, along with data from a special rotation latch, to the hardware moving object ROM. That ROM then places the correct image in the correct place on the screen. The processor controls this operation by preloading the counters and writing to the rotation latch during vertical retrace.

The processor reads data from the control or option switches by gating the data from the appropriate port onto the bus when the correct address is selected.

The processor controls the operation of the audio board by writing data onto the bus when the address for the audio board bus buffer is selected.

Interrupts can come from three different sources. The first is a synchronous hardware generated interrupt. This occurs regularly at the vertical rate and can be detected by reading the 5L256 bit on the interrupt condition latch. This interrupt is important for providing the processor with a known real time interval used to update the screen, time counters, image velocity rates, etc. The remaining event causing interrupts is the presence of a coin signal on either of the two coin inputs. These are obviously asynchronous and are discernable from each other and from the vertical rate interrupt by testing their respective bits on the interrupt condition latch.

Main address decoding is accomplished by using A15 through A5 inputs to a PROM. The 5 outputs of the PROM are further decoded into "blocks" in minimum increments of 2K. The signals associated with these blocks are enables for other address decoding circuits that "break up" those blocks. By using lower order address bits, the blocks break into smaller pieces giving peripheral devices a specific, unique address. This is accomplished by loading data from the screen RAM, character generator RAM and moving object ROM into parallel-in/serial-out data at 256 times the horizontal rate. This is the screen element rate. It therefore follows that 256 elements = 1 horizontal line and 256 horizontal lines make a full screen.



Figure 1:
LOGIC BOARD BLOCK DIAGRAM
TARGTM

#### III. AUDIO ADJUSTMENTS

The following is a diagram of the audio board adjustments.

# TARG AUDIO PCB POT CONFIGURATION (ADJUSTMENTS)



Front (component) side

Figure 2. Audio Board Adjustments

## IV. POWER SUPPLY ADJUSTMENTS

- l. Connect a  $% \left( 1\right) =\left( 1\right) +\left( 1\right$
- 2. Adjust the power supply potentiometer for +5.0  $\pm$  .1 VDC.



Figure 3. Power Supply Adjustment

#### V. MECHANICAL ASSEMBLIES

#### A. Control Panel

To service the Control Panel do the following:

- 1. Unplug the power cord.
- 2. Open and remove the back door.
- 3. From  $% \left( 1\right) =\left( 1\right) \left( 1\right) =\left( 1\right) \left( 1\right)$  inside the cabinet, remove the upper three control panel nuts.
- 4. Open the coin door.
- 5. From the front of the cabinet, swing the control panel out and down; let it rest on the open coin door.
- 6. Check all terminal connections to the pushbuttons and the four-way control.



Figure 4: Control Panel
1 Carriage bolt 4 Control panel
2 Start buttons 5 Four-way joystick
3 Fire button 6 Control harness

#### B. To Service the Four-way Joy Stick

The four-way joy stick is assembled with four long screws and spacers. Four pairs of spring steel cup washers surround the control stick, between the control panel and the top plate (see Figure 4). These cup washers bear against a disk welded to the control stick, and push the stick towards its center (rest) position. Four leaf switches on the bottom plate (activated by the control stick) signal lane changes to the logic board.

Figure 4: Four-way Joy Stick



Do the following to service the Four-way Joy Stick:

- 1. Unplug the power cord.
- 2. Open the control panel by removing 3 black carriage bolts.
- 3. Check the harness connectors to each leaf switch.
- 4. Check the throw of each microswitch; the control stick should activate, but not bottom-out against, each switch.
- 5. If microswitches are broken or switch actuator bent, replace only with Exidy authorized parts. Do not used substitution.
- C. To Remove the Monitor do the following:
  - 1. Unplug the power cord.
  - 2. Open and remove the back door or monitor access panel.
  - 3. Unplug the harness connector from the monitor and the Monitor Power Connector.
  - 4. Remove the four bolts from the monitor chassis flange mounts.
  - 5. Lift the monitor up and slide it out of the cabinet.





77-5374-11 IMAGE STORAGE RAM 6502 GAME LOGIC PCB VD4 VD5 VD4 V02 V01 V00 1029×4 RAM! 2114 1629×9 RAM 2114 12C VAS 15
VAT 17
VAS 2
VAS 4
VAS 4
VAS 4
VAS 5
VAS 6
VAS 6
VAS 7
VAS For Use with PROGRAM generated changeable imagery. CHARACTER GENERATOR IMAGE STORAGE RAMS USED ON "TARG" VD3 VD1 VD0 VD6 VD5 VD5 1024×4 RAM 2114 2 3 2 - 11 W 4 W























NOTES: 1. All wices 22 any insulated wires 22 any colored.
2. Associately NO SUBSICIOUS ON SPECIFIED WIRE COLORS

30-3188 D CONTROL PANEL HARNESS SUMMYALE CA 94086 406-734-9410

11-6-79

COLU HARNESS SCHEMATIC ( OMIVERSAL COM) HARNESS

3 PIU MALE I GRN
Malex consetter 2 GRN
(TO MAIN HARNESS) 3 BLU
PPU MAKEX 63-07-2032

Special D UNIVERSAL COIN HARNESS GOSTALLOIN HARNESS

30-3189

## AC Line Cord Harness Assembly

| PART #     | DESCRIPTION                                  | REFERENCE LOCATION     |
|------------|----------------------------------------------|------------------------|
| 71-2070    | AC line cord                                 | PL1                    |
| 60-6020    | fuse holder                                  | F 1                    |
| 60-6001    | fuse 3AMP slow blo                           | F 1                    |
| 61-8048    | 3 pin molex recept                           | J1                     |
| 61-8055    | individual female pins                       | J1                     |
| 88-4002    | small tie wrap                               | 31                     |
| 61-8051    | fast-on push on terminals.8175"              | E1 E2                  |
| 61-8072    | TFB butt splice                              | E1-E2                  |
| 01-00/2    | wire list attached                           | E 3                    |
|            | wife fist attached                           |                        |
| TARG Audio | <u>Assembly</u>                              |                        |
| 48-2321    | 741LS139                                     | ID                     |
| 48-2314    | 74LS374                                      | 2C,2D                  |
| 48-2071    | 74LS112                                      | 3 D                    |
| 48-2308    | 74LS161                                      | 1A,2A,1B,3B,3A         |
| 48-2210    | 72748 (TI)                                   | 6D                     |
| 48-2342    | LM324                                        | 5 B                    |
| 48-2215    | NE 5 6 6                                     | 4 B                    |
| 48-2212    | NE 5 5 6                                     | 5 A                    |
| 48-2221    | MC3340                                       | 4 A                    |
| 48-2211    | LM379 (Dual 6 w audio AMP)                   | 6 A                    |
| 48-2015    | 7407                                         | 4 C                    |
| 48-2302    | 741804                                       | IC 3C                  |
| 47-3005    | ZN3904                                       | Q1,Q2,Q3,Q4,Q5         |
| 46-3030    | IN4454                                       | CR2,CR3,CR4,CR1        |
| 59-5110    | 2.2 K resistor 1/4w 5%                       | R 7                    |
| 59-5100    | 3.3 K resistor 1/4w 5%                       | R14                    |
| 54-5021    | 100K potentiometer                           | R35                    |
| 54-5019    | 10K potentiometer                            | R1,R10,R22,R23,        |
| 50 5070    |                                              | R29,R38                |
| 59-5070    | 22K resistor 1/4 w 5%                        | R20,R30,R19,           |
| 50 5105    |                                              | R31,R36,R37            |
| 59-5125    | lK resistor 1/4 w 5%                         | R33,R40,R45,R13        |
| 59-5163    | 820K resistor 1/4w 5%                        | R41                    |
| 59-5025    | lmeg ohm resistor 1/4w 5%                    | R9-R16,R17,R42,        |
| EO EO E E  | 177                                          | R47, R50               |
| 59-5055    | 47K resistor 1/4w 5%<br>10K resistor 1/4w 5% | R43                    |
| 59-5080    | 10K resistor 1/4w 5%                         | R8,R12,R34,R41,<br>R48 |
| 59-5140    | 100 ohm resistor 1/4w 5%                     | R44                    |
| 59-5086    | 6.8K resistor 1/4w 5%                        | R11                    |
| 59-5069    | 120K resistor 1/4w 5%                        | R4,R24,                |
| 59-5050    | 68K resistor 1/4w 5%                         | R 3                    |
| 59-5120    | 1.2K resistor 1/4w 5%                        | R2,R25,R5              |
| 59-5095    | 4.7K resistor 1/4w 5%                        | R21,R49,R6             |
| 59-5045    | 100K resistor 1/4w 5%                        | R28,R15                |
| 59-5040    | 150K resistor 1/4w 5%                        | R 2 6                  |

# AC Line Cord Harness Assembly, cont.

| PART #     | DESCRIPTION                                          | REFERENCE LOCATION         |
|------------|------------------------------------------------------|----------------------------|
|            |                                                      |                            |
| 59-5030    | 560K resistor 1/4w 5%                                | R 2 7                      |
| 59-5065    | 33K resistor 1/4w 5%                                 | R18,R39                    |
| 23-4030    | .22uf ceramic disk capacitor                         | C41,C44                    |
| 23-4035    | ·luf ceramic disk capacitor                          | C9,C12,C17,C31,C32         |
|            | -                                                    | C34,C37,C42,C43            |
| 21-4015    | 6.8uf dipped tantalum capacitor                      | C14,C21,C22,C36            |
|            | 25 v                                                 | C40,C46,C47,C50            |
| 21-4020    | 2.2uf dipped tantalum capacitor                      |                            |
|            | 15 <b>v</b>                                          | C48,C49                    |
| 23-4070    | 22pf ceramic disk capacitor                          | C45                        |
| 23-4060    | .00luf ceramic disk capacitor                        | C11,C13                    |
| 23-4050    | .Olf ceramic disk capacitor                          | C1,C2,C3,C4,C6,C7,         |
|            |                                                      | C8,C16,C24,C25,C27         |
|            |                                                      | C23,C30,C33,C38,           |
|            |                                                      | C39                        |
| 21-4010    | 33uf dipped tantalum capacitor                       |                            |
| 22 / 025   | 25V                                                  | C19,C20,C28,C5,C29         |
| 22-4025    | .47uf dipped tantalum capacitor                      | 015 010 025                |
| 61-8042    | -5.                                                  | C15,C10,C35                |
| 68-3041    | 10 pin female connector<br>thermalloy 6072 heat sink | J2, J3                     |
| 00-3041    | thermalloy 6072 heat sink                            | 6A for use only with LM379 |
| 74-2506    | 4-40 x 1/4" machine screw                            | 6A heatsink                |
| 72-3025    | dip package shunt-16 pin                             | OA HEALSTIIK               |
| , 2 3023   | amp p-n 435704-8                                     | 6 B                        |
| 74-5065    | $y:32 \times 5/8$ " nylon standoff                   | between logic and          |
| or         | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,              | audio PCB's                |
| 74-5075    | 6-32 x 1/2" nylon standoff                           | "                          |
| 77-3371    | TARG audio [bare] PCB                                |                            |
| 47-3505    | 6-32 x V4 machine screw                              | board mounting             |
| 23-54040   | .047uf ceramic disc cap                              | C76                        |
| 48-9124-01 | 6331 PROM [MMI] program                              | 2 B                        |
|            | #HRA 2B-1                                            |                            |
|            |                                                      |                            |

# Universal Power Supply PCB

| 77-3190 | printed circuit board                  |
|---------|----------------------------------------|
| 20-4000 | 4000 uf 50v axial lead capacitor       |
| 21-4010 | 33uf 35v dip tantalum capacitor        |
| 21-4015 | 6.8uf 35v dip tantalum capacitor       |
| 46-3016 | 60SI diode                             |
| 47-3004 | MDA 970-I bridge rectifier             |
| 47-3041 | 2N3O55 transistor                      |
| 47-3011 | 2N6246 transistor                      |
| 48-2337 | 7905T negative 5v LM320T-5 regulator   |
| 48-2217 | 7912T negative 12v LM320T-12 regulator |
| 48-2338 | 7812T positive 12v LM340T-12 regulator |
| 68-3041 | thermalloy 6072 heat sink              |

## Universal Power Supply PCB, cont.

| PART #                                                                                                                                                                                                         | DESCRIPTION                                                                                                                                               | REFERENCE LOCATION                                                                                                             |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| 68-2038<br>61-8010<br>74-2514<br>74-5216<br>74-5191                                                                                                                                                            | thermalloy 6015 heat sink<br>12 pin male molex<br>4-40 x 3/8 phillips pan head mac<br>#4 flat metal washer<br>#4-40 kep nut                               | hine screw                                                                                                                     |
| Monitor Iso                                                                                                                                                                                                    | lation Transformer Assembly                                                                                                                               |                                                                                                                                |
| FR 63-4029                                                                                                                                                                                                     | isolation transformer midwest                                                                                                                             |                                                                                                                                |
| 61-8058<br>61-8054<br>61-8057<br>61-8055                                                                                                                                                                       | molex connector 03-09-2032 male molex pins 02-09-2118 molex connector 03-09-1023 female molex pins 02-09-1118                                             | AC input P22<br>P22<br>AC to monitor J23<br>J23                                                                                |
| 6502 Game L                                                                                                                                                                                                    | ogic PCB Assembly                                                                                                                                         |                                                                                                                                |
| 48-2000<br>48-2010<br>48-2015<br>48-2015<br>48-2032<br>48-2332<br>48-23316<br>48-2316<br>48-2045<br>48-2045<br>48-2067<br>48-2071<br>48-2307<br>48-2321<br>48-2307<br>48-2321<br>48-2090<br>48-2095<br>48-2100 | IC 7400 IC 7402 IC 7404 IC 7407 IC 7408 IC 74LS11 IC 7420 IC 74LS21 IC 7427 IC 7432 IC 7474 IC 74LS112 IC 74LS138 IC 74LS139 IC 74LS139 IC 74161 IC 74166 | 3D 15H 1H 6H 8F ID 3F 4D 10F 11F 2C 5E 3H 2F 12F 15E 7F 2H 6F IC 5H 2E 6E 5B 5D 73 16H 14A 14E 1E 2D 4F 5F 12B 12D 13D 14D 15D |
| 48-2115                                                                                                                                                                                                        | IC 74193                                                                                                                                                  | 10E 12E 13F 15F<br>14F 16F 11E 13E                                                                                             |
| 48-2328                                                                                                                                                                                                        | IC 74LS241                                                                                                                                                | 8C 1A 3A 3B 4H 6B<br>7D 9B 9E 15A                                                                                              |
| 48-2350<br>48-2314<br>48-6502<br>48-2334<br>48-9125-01                                                                                                                                                         | IC 74LS 245 IC 74LS 374 6502 microprocessor 2114 [1Kx4] RAM 2708 EPROM [1Kx8] HRL 110-1                                                                   | 3C 4C 6C 15B 13B<br>1F 14B 7C 8E<br>2A<br>4A 5A 7B 8B 11C<br>12C 13C 14C<br>11D [use w/ hdwe                                   |
| 48-9099-01                                                                                                                                                                                                     | 6331 PROM [32x8]                                                                                                                                          | moving objects] 6D                                                                                                             |

# 6502 Game Logic PCB Assembly, cont.

| PART #     | DESCRIPTION                         | REFERENCE LOCATION             |
|------------|-------------------------------------|--------------------------------|
| 48-9099-02 | 6331 PROM [32x8]                    | 14H use w/ hdwe moving objects |
| 48-9099-04 | 6301 PROM [256x4]                   | 5C                             |
| 46-3025    | IN4002 diodes                       | 8F 9E                          |
| 59-5135    | 470 ohm resistor v4w 5%             | 1 D                            |
| 59-5120    | 1.2K ohm resistor 1/4w 5%           | 2C 7H                          |
| 59-5115    | 1.8K ohm resistor 1/4w 5%           | 1C 2C                          |
| 59-5110    | 2.2K ohm resistor 1/4w 5%           | 2 A                            |
| 59-5105    | 2.7K ohm resistor 1/4w 5%           | 1C 2C 5H                       |
| 59-5095    | 4.7K ohm resistor 1/4w 5%           | 5 н                            |
| 59-5080    | 10K 1/4W 5% resistor                | 7 H                            |
| 51-0003    | 220ohm 1/4 w 5% 8 pin resistor      | 9 E                            |
|            | sip                                 |                                |
| 51-0002    | 2.2K 1/4w 5% 8 pin resistor sip     | 16A                            |
| 51-0001    | 4.7K 1/4w 5% 8 pin resistor sip     | 15A                            |
| 51-0004    | 6.8K 1/4w 5% 8 pin resistor sip     | 14A                            |
| 23-4033    | .Olmf ceramic disc capacitor        | 1 D                            |
| 23-4035    | .lmf ceramic disc capacitor         |                                |
| 20-4011    | 6.8uf dipped tantalum capacitor 25v | 1C 6E 15D 6H                   |
| 20-4014    | 33uf dipped tantalum capacitor 25V  | 1C 2C                          |
| 20-4005    | 470uf 10v electrolytic capacitor    | 100                            |
| 72-3025    | dip shunt jumper paks 16 pin        | 4B 10B 10D 11B                 |
| 72-3042    | 8pos dip switch                     | 16A                            |
| 45-3036    | 11.289 mhz crystal                  | 1 D                            |
| 61-8041    | 10 pin male molex connector         | 16C 16E                        |
| 61-8062    | 16 pin low profile dip sockets      | 3E 4E 5C 6C 14H                |
| 77-3361-14 | printed circuit board               |                                |
| 61-8045    | 24 pin low profile dip sockets      | 9A 10A 11D 6A 7A               |
|            | •                                   | 8 A                            |
| 61-8035    | 40 pin low profile dip socket       | 2 A                            |
| 61-3060    | 14 pin low profile dip socket       | 16B                            |
| 48-9126-04 | 2716 EPROM programmed HRL 6A-1      | 6 A                            |
| 48-9126-03 | 2716 EPROM programmed HRL 7A-1      | 7 A                            |
| 48-9126-02 | 2716 EPROM programmed HRL 8A-1      | 8 A                            |
| 48-9126-01 | 2716 EPROM programmed HRL 9A-1      | 9 A                            |
| 48-9126-05 | 2716 EPROM programmed HRL 10A-1     | 10A                            |

# 6502 Color Adapter PCB Assembly

| PART #  | DESCRIPTION                     | REFERENCE LOCATION |
|---------|---------------------------------|--------------------|
|         |                                 |                    |
| 48-2080 | IC 74151                        | 5A 5B 5C           |
| 48-2305 | IC 74LS74                       | 1 A                |
| 48-2321 | IC 74LS139                      | 2 A                |
| 48-2079 | IC 74148                        | 2 B                |
| 48-2341 | IC 74LS86                       | 1C 6A              |
| 48-2333 | IC 74LS174                      | 6 B                |
| 20-4011 | 6.8uf dipped tantalum capacitor | C 1                |
| 59-5136 | resistor 330 ohm 1/4w 5%        | RITHRU R10         |
| 59-5103 | 9 pin sip resistor pak lKohm    | 3A 3B 3C           |
| 23-4033 | .Oluf ceramic disc capacitor    | C2 C4 C5 C6        |
| 61-8203 | 10 pin male molex connector     | P 2                |
|         | .156 center                     |                    |
| 61-8127 | l4 pin socket stan-profile      | Jl                 |
|         | w/lock                          |                    |
| 77-3373 | printed circuit board           |                    |