```
WRH-6-Solutions
```

14.5: 2, B 14.6: 4, 12 14.7: 5,19 14.8: 4

$$= \frac{(x+3y)\cdot 1 - (x-y)\cdot 1}{(x+2y)^2} = \frac{\pi t}{(x+2y)^2} + \frac{(x+2y)^2}{(x+2y)^2} = \frac{3y}{(x+2y)^2} = \frac{-3x}{(x+2y)^2} + \frac{-3x}{(x+2y)^2} = \frac{3\pi}{(x+2y)^2} + \frac{\pi t}{(x+2y)^2} + \frac{\pi t}{(x+2y)^2} = \frac{3\pi}{(x+2y)^2} = \frac{\pi t}{(x+2y)^2} = \frac{\pi t}{(x$$

$$= \frac{3\pi}{(x+ay)^2} \left(ye^{\pi t} + xe^{-\pi t} \right)$$

When
$$t = 2$$
; $x = g(2) = 4$
So, $p(2) = 5$
 $= 2 \cdot (-3) + 8 \cdot 6 = 42$

14.6

(4)
$$f(x,y) = xy^3 - x^2$$
, $(1,2)$, $\theta = \frac{\pi}{3}$

(4) $D_{u}f(x_0,y_0) = f_{x}(x_0,y_0) \cos \theta + f_{y}(x_0,y_0) \sin \theta$
 $f_{x}(x,y) = y^3 - 2x$
 $f_{y}(x,y) = 3xy^2$
 $f_{x}(1,2) = 3 - 2 = 6$
 $f_{y}(1,2) = 3 \cdot 4 = 12$

(5) $D_{u}f(1,2) = 6 \cdot \cos \frac{\pi}{3} + 12 \sin \frac{\pi}{3} = 6 \cdot \frac{1}{2} + 12 \cdot \frac{\sqrt{3}}{2} = 3 + 6\sqrt{3}$

(12)
$$f(x,y) = \frac{x}{x^2 + y^2}$$
, $(1,2)$, $y = (3,5)$
Du $f(x_0,y_0) = f_x(x_0,y_0)$ $y_1 + f_y(x_0,y_0)y_1$

$$f_{x}(x,y) = \frac{x^{2}+y^{2}-x \cdot 2x}{(x^{2}+y^{2})^{2}} = \frac{x^{2}+y^{2}}{(x^{2}+y^{2})^{2}}$$

$$f_{y}(x,y) = \frac{2xy}{(x^{2}+y^{2})^{2}} = \frac{3}{(x^{2}+y^{2})^{2}}$$

$$f_{x}(1,2) = \frac{-1+1}{(1+1)^{2}} = \frac{3}{25}$$

$$f_{y}(1,2) = \frac{3}{25} = \frac{1}{25}$$

$$0 = \frac{1}{1} = \frac{3}{25} = \frac{3}{25} = \frac{20}{25} = \frac{11}{25}$$

$$0 = \frac{1}{1} = \frac{3}{25} = \frac{3}{25} = \frac{20}{25} = \frac{11}{25}$$

$$0 = \frac{1}{1} = \frac{3}{25} = \frac{3}{25} = \frac{20}{25} = \frac{11}{25}$$

14.7

(5)
$$f(x,y) = x^2 + xy + y^2 + y$$

 $f(x,y) = 2x + y = 0$
 $f(x,y) = x + 2y + 1 = 0$
 $f(x,y) = x + 2y + 1 = 0$
 $f(x,y) = x + 2y + 1 = 0$
 $f(x,y) = x + 2y + 1 = 0$
 $f(x,y) = x + 2y + 1 = 0$
 $f(x,y) = x + 2y + 1 = 0$
 $f(x,y) = x + 2y + 1 = 0$
 $f(x,y) = x + 2y + 1 = 0$
 $f(x,y) = x + 2y + 1 = 0$
 $f(x,y) = x + 2y + 1 = 0$
 $f(x,y) = x + 2y + 1 = 0$
 $f(x,y) = x + 2y + 1 = 0$
 $f(x,y) = x + 2y + 1 = 0$
 $f(x,y) = x + 2y + 1 = 0$
 $f(x,y) = x + 2y + 1 = 0$
 $f(x,y) = x + 2y + 1 = 0$
 $f(x,y) = x + 2y + 1 = 0$
 $f(x,y) = x + 2y + 1 = 0$
 $f(x,y) = x + 2y + 1 = 0$
 $f(x,y) = x + 2y + 1 = 0$
 $f(x,y) = x + 2y + 1 = 0$
 $f(x,y) = x + 2y + 1 = 0$
 $f(x,y) = x + 2y + 1 = 0$
 $f(x,y) = x + 2y + 1 = 0$
 $f(x,y) = x + 2y + 1 = 0$
 $f(x,y) = x + 2y + 1 = 0$
 $f(x,y) = x + 2y + 1 = 0$
 $f(x,y) = x + 2y + 1 = 0$
 $f(x,y) = x + 2y + 1 = 0$
 $f(x,y) = x + 2y + 1 = 0$
 $f(x,y) = x + 2y + 1 = 0$
 $f(x,y) = x + 2y + 1 = 0$
 $f(x,y) = x + 2y + 1 = 0$
 $f(x,y) = x + 2y + 1 = 0$
 $f(x,y) = x + 2y + 1 = 0$
 $f(x,y) = x + 2y + 1 = 0$
 $f(x,y) = x + 2y + 1 = 0$
 $f(x,y) = x + 2y + 1 = 0$
 $f(x,y) = x + 2y + 1 = 0$
 $f(x,y) = x + 2y + 1 = 0$
 $f(x,y) = x + 2y + 1 = 0$
 $f(x,y) = x + 2y + 1 = 0$
 $f(x,y) = x + 2y + 1 = 0$
 $f(x,y) = x + 2y + 1 = 0$
 $f(x,y) = x + 2y + 1 = 0$
 $f(x,y) = x + 2y + 1 = 0$
 $f(x,y) = x + 2y + 1 = 0$
 $f(x,y) = x + 2y + 1 = 0$
 $f(x,y) = x + 2y + 1 = 0$
 $f(x,y) = x + 2y + 1 = 0$
 $f(x,y) = x + 2y + 1 = 0$
 $f(x,y) = x + 2y + 1 = 0$
 $f(x,y) = x + 2y + 1 = 0$
 $f(x,y) = x + 2y + 1 = 0$
 $f(x,y) = x + 2y + 1 = 0$
 $f(x,y) = x + 2y + 1 = 0$
 $f(x,y) = x + 2y + 1 = 0$
 $f(x,y) = x + 2y + 1 = 0$
 $f(x,y) = x + 2y + 1 = 0$
 $f(x,y) = x + 2y + 1 = 0$
 $f(x,y) = x + 2y + 1 = 0$
 $f(x,y) = x + 2y + 1 = 0$

Hence,
$$(\frac{1}{3}, -\frac{2}{3})$$
 is a critical point.

 $0 = f_{xx}(a, b) f_{yy}(a, b) - (f_{xy}(a, b))^2$
 $f_{xx} = 2$
 $f_{xy} = 1$
 $0 = 2 \cdot 2 - 1 = 3 > 0$ for all $(x, y) \in Dom(f)$

Since $0 > 0$ and $f_{xx} > 0$, then

 $f(\frac{1}{3}, -\frac{2}{3})$ is a loc. unin and

 $f(\frac{1}{3}, -\frac{2}{3}) = -\frac{1}{3}$.

(19) $f(x, y) = y^2 - 2y \cos x$
 $-1 = 2x + 2$
 $f_{x} = 2y \sin x = 0$
 $f_{y} = 2y - 2\cos x = 0$
 $f_{y} = 2\cos x$
 $f_{y} = \cos x$
 $f_{y} = \cos x$
 $f_{y} = \cos x$
 $f_{y} = \cos x$

$$f_{x} = 0 = 3$$
 $y = 0$ or $x = 0$, π , 3π

If $y = 0$, then

 $f_{y} : eos x = 0 = 2$ $x = \frac{\pi}{2}$, $\frac{3\pi}{2}$

If $x = 0, 3\pi$, then

 $f_{y} : 3y + 2 = 0 = 3$ $y = 1$

Critical points: $(\frac{\pi}{2}, 0), (\frac{3\pi}{2}, 0), (0, 1), (3\pi, 1), (\pi, -1)$
 $f_{xx} = 3y eos x$
 $f_{yy} = 3 + \frac{3\sin x}{3\sin x}$
 $f_{xy} = 3 \sin x$
 $D = 3y eos x \cdot (3 + \frac{3\sin x}{3\cos x}) - 4\sin^2 x = 4 \cdot (y \cos x - \sin^2 x)$
 $D(\frac{\pi}{2}, 0) = -420$
 $D(\frac{\pi}{2}, 0) = -420$

Hence,
$$f(0,1)$$
, $f(2\pi,1)$, $f(\pi,1)$ are box win and $f(0,1) = f(2\pi,1) = f(\pi,1) = -1$.

Since $D(\Xi,0) < 0$ and $D(\Xi,0) < 0$, then $(\Xi,0)$ and $(\Xi,0)$ are saddle points.

This $f(x,y) = 3x + y$
 $x^2 + y^2 = 10$
 $f(x,y) = 4x + y$
 $f(x,y) = 5x + y$
 $f(x,y) =$