Md Sadman Haliz Matrix Chain Rele Assignment

Since
$$f(z) = leje (1+2)$$
 where $z = \chi T \chi$, $\chi \in \mathbb{R}^d$
where of $\alpha = \begin{bmatrix} \chi_1 \\ \chi_2 \end{bmatrix}$ hun $\chi T = \begin{bmatrix} \chi_1 \\ \chi_2 \end{bmatrix}$

Now,
$$\chi T \chi = \begin{bmatrix} \chi_1 \\ \chi_2 \\ \chi_3 \\ 1 \end{bmatrix}$$

$$= \begin{bmatrix} \chi_1 + \chi_2 + \cdots \\ \chi_4 \end{bmatrix}$$

Applying chain rule:

$$\frac{df}{dx} = \frac{df}{dx} \cdot \frac{dx}{dx}$$

$$= \frac{d}{d2} \left(\log_{e} \left(1 + 2 \right) \right) \cdot \frac{d}{d2} \left(\chi T_{\lambda} \right)$$

=
$$\frac{1}{1+2} \left(\frac{d}{dz} 2 \right) \cdot \frac{d}{dx} \left(\chi_{1}^{2} + \chi_{2}^{2} - \cdot \chi_{3}^{2} \right)$$

$$=\frac{1}{1+2}\left(2\chi_{1}+2\chi_{2}-2\chi_{d}\right)$$

2.
$$f(z) = e^{-\frac{\pi}{2}}$$
, where $g = g(y)$, $g(y) = y^{-\frac{\pi}{2}}y$, $y = h(n)$, $h(n) = n - 4$

We know,

$$\frac{df}{dx} = \frac{df}{dx} \cdot \frac{dx}{dy} \cdot \frac{dy}{dx}$$
 $\frac{df}{dx} = \frac{df}{dx} \cdot \frac{dx}{dy} \cdot \frac{dy}{dx}$
 $\frac{df}{dx} = \frac{d}{dx} \left(\frac{e^{-\frac{3}{2}}}{2} \right) = -\frac{e^{-\frac{3}{2}}}{2}$
 $\frac{df}{dy} = \frac{d}{dy} \left(\frac{y}{y} + \frac{5}{y} \right) = -\frac{e^{-\frac{3}{2}}}{2}$
 $\frac{df}{dx} = \frac{df}{dx} \cdot \frac{dx}{dx} \cdot \frac{dy}{dx}$
 $\frac{df}{dx} = \frac{df}{dx} \cdot \frac{dx}{d$

Now, $\frac{dy}{dx} = \frac{d(x-u)}{dx} = \frac{1}{2}$ df = df dr dy $\frac{1}{2} - \frac{2}{2} \cdot (575' + 5'9) \cdot 1$ $\frac{1}{2} \cdot \frac{2}{2} \cdot \frac{1}{2} \cdot (5749)$ $\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2$ (C) 2 (Ami) (C) B - (D+ +C)6 (d+E) 2(d+TE) 315 0 + 7 5 P+ 45 1-5 6 3-1376