Ex. 3.1 and Ex. 3.2:

 $\int_{1}^{2} m^{2} e^{-m^{2}} dm = 46^{2} \int_{1}^{\infty} (\sqrt{m})^{2} \left(\frac{1}{2\sqrt{m}}\right) e^{-m} dm$ $\left(\text{using change of variables } 2e^{2} = m\right)$ $\frac{1}{2} m^{\binom{2}{2}} e^{-m} dm = 46^{2} \cdot 1 \cdot \Gamma\left(\frac{3}{2}\right) = 6^{2}$ $\frac{1}{\sqrt{\pi}} e^{-m^{2}} dm = 6^{2} \cdot 1 \cdot \Gamma\left(\frac{3}{2}\right) = 6^{2}$.

Ex 4.3
From (3,4)
umy (fmEAly3)
= lim = lim P[y = y + ay f m = A }] P[f m = A }] P[y = y' = y + ay]
B[y \ y' \ y + \ y]
= $\lim_{\Delta y \to 0} \frac{\mathbb{P}[y \le y' = y + \Delta y, \{m \in A\}]}{\mathbb{P}[\{m \in A\}]}$
P[y ≤ y' ≤ y + ≤y]
SAT (M, y) dm Sy SAT (M) dm SAT (M) dm
$= \lim_{\text{ord} \to 0} \int_{A} \pi(m) dm$
T(y) ay
$=$ $\frac{\mathcal{L}(y m) \mathcal{L}(m)}{}$
TLY)

Ex. 5.2:

Ex. 5.3:

Ex 5.3 $\int_{A} \pi_{yobs|m} (yobs|m) dyobs$ def Myobs|m (A) $= Me (B) \qquad \text{where } B \stackrel{d}{=} s g(yobs, h(m)) | yobs \in A3$ $= \int_{B} \pi e \left[g(yobs, h(m)) \right] \frac{\partial g}{\partial yobs} dyobs$ $\Rightarrow \pi_{yobs|m} = \frac{\partial g}{\partial yobs} \pi_{e} \left[g(yobs, h(m)) \right]$

Ex. 5.1:

EX. 5.1	given, IE[mly]. Im II (mly) dm
	Prove IE[m]: IE[m y] II(y) dy = \int (m y) dm II(y) dy
7	Is sm TT (m/y) dm TT(y) dy = sm TT(m,y) dm Tt(y) dy (TT(y) does not defend on m
	= \int (m, y) dm dy
	= ((m) Thm, w) du dm (By Fubini)
	5 T marginal distribution definition
	= marginal distribution definition = marginal distribution definition = marginal distribution definition
	5 J T
	$= \int_{S} m \pi(m) dm = \mathbb{E}[m]$
-	
	*

To make the prior less strong, the parameter \Box can be changed. Higher values of \Box lead to more contribution from the data misfit, as is shown in the plot below.

At higher values of \Box (chosen to be $5\Box$), the boundary conditions are better satisfied than the default case. However, it is clear that the uncertainty increases, as seen above. This is because the variance is proportional to the value of \Box , given the fact that the posterior distribution is also Gaussian.

```
% discretize the deblurring kernel
beta = 0.05;
a = 1/sqrt(2*pi*beta^2)*exp(-0.5*(1/beta^2)*t.^2);
A = 1/n*toeplitz(a);
% Truth
xtrue = 10*(t-0.5).*exp(-0.5*1e2*(t-0.5).^2) -0.8 + 1.6*t;
%%-----additive noise-----
noise = 5; % Noise level in percentages of the max. of noiseless signal
y0 = A*xtrue; % Noiseless signal
sigma = max(abs(y0))*noise/100;
                                               % STD of the additive noise
y = y0 + sigma*randn(n+1,1);
%%-----Prior construction-----
% standard deviation of the innovation
gamma = 1/(1*n);
% Construct the L D matrix
if PriorFlag == 1
  L = diag(ones(n+1,1)) - diag(0.5*ones(n,1),1) - diag(0.5*ones(n,1),-1);
elseif PriorFlag == 2
  L_D = diag(ones(n+1,1)) - diag(0.5*ones(n,1),1) - diag(0.5*ones(n,1),-1);
  \mbox{\$} you should never do this, but we do it anyway for convenience
  L Dinv = inv(L D);
  Dev = sqrt(gamma^2 * diag(L Dinv * L Dinv'));
  delta = gamma./ Dev(floor(n/2));
  L = L D;
  L(1,:) = 0; L(1,1) = delta;
  L(end,:) = 0; L(end,end) = delta;
else
  error('not supported')
end
% Calculating the MAP estimate and posterior variances, by least squares
xmean = [(1/sigma)*A; 1/gamma*L] \setminus [(1/sigma)*y; zeros(n+1,1)];
Gamma post = inv((1/sigma^2)*A'*A + 1/gamma^2*L'*L);
\mbox{\ensuremath{\$}} Plotting the MAP estimate and the 2*STD envelope
% Defining different shades of blue for plotting
 shades = [176 224 230;
            135 206 235;
            135 206 255;
            126 192 238;
            108 166 205];
   shades = 1/255*shades;
STD = sqrt(diag(Gamma_post));
xhigh = xmean + 2*STD;
xlow = xmean - 2*STD;
%% New gamma
gamma = 5/(1*n);
% Construct the L D matrix
if PriorFlag == 1
  L = diag(ones(n+1,1)) - diag(0.5*ones(n,1),1) - diag(0.5*ones(n,1),-1);
elseif PriorFlag == 2
  L D = diag(ones(n+1,1)) - diag(0.5*ones(n,1),1) - diag(0.5*ones(n,1),-1);
  % you should never do this, but we do it anyway for convenience
```

```
L_Dinv = inv(L_D);
  Dev = sqrt(gamma^2 * diag(L Dinv * L Dinv'));
  delta = gamma./ Dev(floor(n/2));
  L = L D;
  L(1,:) = 0; L(1,1) = delta;
  L(end,:) = 0; L(end,end) = delta;
else
  error('not supported')
end
% Calculating the MAP estimate and posterior variances, by least squares
xmean2 = [(1/sigma)*A;1/gamma*L] \setminus [(1/sigma)*y;zeros(n+1,1)];
Gamma post2 = inv((1/sigma^2)*A'*A + 1/gamma^2*L'*L);
\mbox{\ensuremath{\$}} Plotting the MAP estimate and the 2*STD envelope
% Defining different shades of blue for plotting
 shades2 = [224 176 230;
             206 135 235;
             206 135 255;
             192 126 238;
             166 108 205];
 shades2 = 1/255*shades2;
STD = sqrt(diag(Gamma post2));
xhigh2 = xmean2 + 2*STD;
xlow2 = xmean2 - 2*STD;
figure
axes('fontsize',12);
fill([t;t(n+1:-1:1)],[xlow2;xhigh2(n+1:-1:1)],shades2(1,:))
fill([t;t(n+1:-1:1)],[xlow;xhigh(n+1:-1:1)],shades(1,:))
plot(t,xmean2,'b-','LineWidth',2)
plot(t,xmean,'r-','LineWidth',2)
plot(t,xtrue,'k-','LineWidth',1.5)
legend('uncertainty (5 \gamma)','uncertainty','MAP (5 \gamma)','MAP','truth','location','best')
```

For different values of \square and σ , the results are as shown below. For the first case, σ is kept constant at 5%, whereas for the second case, \square in taken to be 1/n.


```
clear all
close all
rand('state',20);
randn('state',18);
% Mesh
n = 100;
s = linspace(0,1,n+1)'; t = s;
% Prior flag
PriorFlag = 2; % 1: L_D
             % 2: L_A
% discretize the deblurring kernel
beta = 0.05;
a = 1/sqrt(2*pi*beta^2)*exp(-0.5*(1/beta^2)*t.^2);
A = 1/n*toeplitz(a);
xtrue = 10*(t-0.5).*exp(-0.5*1e2*(t-0.5).^2) -0.8 + 1.6*t;
%%-----additive noise-----
noise = 5;
               \ensuremath{\,\%\,} Noise level in percentages of the max. of noiseless signal
               % Noiseless signal
y0 = A*xtrue;
sigma = max(abs(y0))*noise/100;
                                          % STD of the additive noise
```

```
y = y0 + sigma*randn(n+1,1);
%%-----Prior construction-----
% standard deviation of the innovation
gamma = 5/(1*n);
shades = [176 224 230;
                 206 135 235;
                 255 206 135;
                 16 10 238;
                 10 166 2051;
       shades = 1/255*shades;
figure(1);
axes('fontsize',12);
hold on
plot(t,xtrue,'k-','LineWidth',1.5)
legendInfo{1} = ['true'];
for i = 1:3
    if PriorFlag == 1
      L = diag(ones(n+1,1)) - diag(0.5*ones(n,1),1) - diag(0.5*ones(n,1),-1);
    elseif PriorFlag == 2
      L D = diag(ones(n+1,1)) - diag(0.5*ones(n,1),1) - diag(0.5*ones(n,1),-1);
      % you should never do this, but we do it anyway for convenience
      L Dinv = inv(L D);
      Dev = sqrt(gamma^2 * diag(L Dinv * L Dinv'));
      delta = gamma./ Dev(floor(n/2));
      L = L D;
      L(1,:) = 0; L(1,1) = delta;
      L(end,:) = 0; L(end,end) = delta;
    else
      error('not supported')
    end
    \mbox{\ensuremath{\$}} Calculating the MAP estimate and posterior variances, by least squares
    xmean = [(1/sigma)*A;1/gamma*L] \setminus [(1/sigma)*y;zeros(n+1,1)];
    Gamma post = inv((1/sigma^2)*A'*A + 1/gamma^2*L'*L);
    STD = sqrt(diag(Gamma_post));
    xhigh = xmean + 2*STD;
    xlow = xmean - 2*STD;
    h = fill([t;t(n+1:-1:1)], [xlow;xhigh(n+1:-1:1)], shades(i,:));
    set(h,'facealpha',.3)
    plot(t,xmean,'LineWidth',2)
    legendInfo{2*i}=['uncertainty, \gamma = ' num2str(gamma*n) '/n'];
    legendInfo{2*i+1} = ['MAP, \gamma = ' num2str(gamma*n) '/n'];
    qamma = qamma/5;
end
legend(legendInfo,'location','best')
figure(2);
axes('fontsize',12);
hold on
noise = 16;
gamma = 1/(1*n);
% xtrue = [0;xtrue];
plot(t,xtrue,'k-','LineWidth',1.5)
legendInfo{1} = ['true'];
for i = 1:3
```

```
y0 = A*xtrue;
                  % Noiseless signal
   sigma = max(abs(y0))*noise/100;
                                                  % STD of the additive noise
   y = y0 + sigma*randn(n+1,1);
   if PriorFlag == 1
     L = diag(ones(n+1,1)) - diag(0.5*ones(n,1),1) - diag(0.5*ones(n,1),-1);
   elseif PriorFlag == 2
     L D = diag(ones(n+1,1)) - diag(0.5*ones(n,1),1) - diag(0.5*ones(n,1),-1);
     % you should never do this, but we do it anyway for convenience
     L Dinv = inv(L D);
     Dev = sqrt(gamma^2 * diag(L_Dinv * L_Dinv'));
     delta = gamma./ Dev(floor(n/2));
     L = L D;
     L(1,:) = 0; L(1,1) = delta;
     L(end,:) = 0; L(end,end) = delta;
   else
     error('not supported')
    end
   % Calculating the MAP estimate and posterior variances, by least squares
   xmean = [(1/sigma)*A;1/gamma*L] \setminus [(1/sigma)*y;zeros(n+1,1)];
   Gamma_post = inv((1/sigma^2)*A'*A + 1/gamma^2*L'*L);
   STD = sqrt(diag(Gamma post));
   xhigh = xmean + 2*STD;
   xlow = xmean - 2*STD;
   h = fill([t;t(n+1:-1:1)], [xlow;xhigh(n+1:-1:1)], shades(i,:));
   set(h,'facealpha',.2)
   plot(t,xmean,'LineWidth',2)
   legendInfo{2*i}=['uncertainty, \sigma = ' num2str(noise) '%'];
   legendInfo{2*i+1} = ['MAP, \sigma = ' num2str(noise) '%'];
   noise = noise/2;
legend(legendInfo,'location','best')
```

Ex. 7.6:

For the deterministic inversion, a conjugate gradient method is used as in HW #1 with Mozorov's discrepancy principle is used as a stopping criterion. ($\sigma = 5\%$, $\Box = 1/n$).

The results are shown below.

The deterministic inversion scheme cannot extract the true solution because of the noisy data.

```
clear all
close all

% explore the posterior with smooth priors and without hyper-parameters.

rand('state',20);
randn('state',18);

% Mesh
n = 100;
s = linspace(0,1,n+1)'; t = s;

% Prior flag
PriorFlag = 2; % 1: L_D
% 2: L_A
```

```
% discretize the deblurring kernel
beta = 0.05;
a = 1/sqrt(2*pi*beta^2)*exp(-0.5*(1/beta^2)*t.^2);
A = 1/n*toeplitz(a);
% Truth
xtrue = 10*(t-0.5).*exp(-0.5*1e2*(t-0.5).^2) -0.8 + 1.6*t;
%%-----additive noise-----
             % Noise level in percentages of the max. of noiseless signal
noise = 5;
y0 = A*xtrue; % Noiseless signal
sigma = max(abs(y0))*noise/100;
                                              % STD of the additive noise
y = y0 + sigma*randn(n+1,1);
%%-----Prior construction-----
% standard deviation of the innovation
gamma = 1/(1*n);
% Construct the L D matrix
if PriorFlag == 1
  L = diag(ones(n+1,1)) - diag(0.5*ones(n,1),1) - diag(0.5*ones(n,1),-1);
elseif PriorFlag == 2
  LD = diag(ones(n+1,1)) - diag(0.5*ones(n,1),1) - diag(0.5*ones(n,1),-1);
  % you should never do this, but we do it anyway for convenience
  L Dinv = inv(L D);
  Dev = sqrt(gamma^2 * diag(L Dinv * L Dinv'));
  delta = gamma./ Dev(floor(n/2));
  L = L D;
  L(1,:) = 0; L(1,1) = delta;
  L(end,:) = 0; L(end,end) = delta;
  error('not supported')
end
% Calculating the MAP estimate and posterior variances, by least squares
xmean = [(1/sigma)*A;1/gamma*L] \setminus [(1/sigma)*y;zeros(n+1,1)];
\label{eq:Gamma_post} \mbox{Gamma_post = inv((1/sigma^2)*A'*A + 1/gamma^2*L'*L);}
% Plotting the MAP estimate and the 2*STD envelope
% Defining different shades of blue for plotting
 shades = [176 224 230;
             135 206 235;
             135 206 255;
            126 192 238;
            108 166 205];
   shades = 1/255*shades;
STD = sqrt(diag(Gamma post));
xhigh = xmean + 2*STD;
xlow = xmean - 2*STD;
[xObsCG,idx] = CGLS(A,y,xtrue,sigma,n);
figure
axes('fontsize',12);
hold on
fill([t;t(n+1:-1:1)],[xlow;xhigh(n+1:-1:1)],shades(1,:))
plot(t,xmean,'r-','LineWidth',2)
plot(t,xtrue,'k-','LineWidth',1.5)
plot(t,xObsCG,'b-','LineWidth',2)
legend('uncertainty','MAP','truth','DI','location','best')
```

Ex. 7.7:

With decreasing values of \square and θ , the following results can be seen. For the first case, θ is maintained at a constant value of 1. For the second case, \square = 1.


```
clear all
% explore the posterior with non-smooth prior and without hyper-parameters.
rand('state',20);
randn('state',18);
% Mesh
n = 100;
s = linspace(0,1,n+1)'; t = s(2:end);
% discretize the kernel
beta = 0.05;
a = 1/sqrt(2*pi*beta^2)*exp(-0.5*(1/beta^2)*t.^2);
A = 1/n*toeplitz(a);
% Truth
xtrue = zeros(n,1);
xtrue(70:end) = 10;
%%-----additive noise-----
noise = 5;
              % Noise level in percentages of the max. of noiseless signal
                % Noiseless signal
y0 = A*xtrue;
sigma = max(abs(y0))*noise/100;
                                             % STD of the additive noise
y = y0 + sigma*randn(n,1);
%%-----Prior construction-----
```

```
% standard deviation of the innovation
gamma = 1;
thetaVal = 1;
t = [0;t];
shades = [176 224 230;
                 206 135 235;
                 255 206 135;
                 126 10 238;
                 10 166 205];
       shades = 1/255*shades;
figure(1);
axes('fontsize',12);
hold on
xtrue = [0;xtrue];
plot(t,xtrue,'k-','LineWidth',1.5)
legendInfo{1} = ['true'];
for i = 1:5
    L = eye(n) - diag(ones(n-1,1),-1);
    theta = thetaVal*ones(n,1);
    theta(70) = 10;
    M = diag(1./sqrt(theta));
    L = M * L;
    % Calculating the MAP estimate and posterior variances by least squares
    xmean = [(1/sigma)*A;1/gamma*L] \setminus [(1/sigma)*y;zeros(n,1)];
    Gamma post = inv((1/sigma^2)*A'*A + 1/gamma^2*L'*L);
    % Plotting the MAP estimate and the 2*STD envelope
    % Defining different shades of blue for plotting
    STD = sqrt(diag(Gamma_post));
    xhigh = xmean + 2*STD;
    xlow = xmean - 2*STD;
    xlow = [0;xlow];
    xhigh = [0; xhigh];
    xmean = [0; xmean];
    h = fill([t;t(n+1:-1:1)], [xlow;xhigh(n+1:-1:1)], shades(i,:));
    set(h,'facealpha',.3)
    plot(t, xmean, 'LineWidth', 2)
    legendInfo{2*i}=['uncertainty, \theta = ' num2str(thetaVal)];
    legendInfo{2*i+1} = ['MAP, \theta = ' num2str(thetaVal)];
    thetaVal = thetaVal/100;
legend(legendInfo,'location','best')
qamma = 1;
thetaVal = 1;
shades = [176 224 230;
                 206 135 235;
                 255 206 135;
                 126 10 238;
                 10 166 205];
       shades = 1/255*shades;
figure(2);
axes('fontsize',12);
hold on
plot(t,xtrue,'k-','LineWidth',1.5)
legendInfo{1} = ['true'];
```

```
for i = 1:5
    L = eye(n) - diag(ones(n-1,1),-1);
    theta = thetaVal*ones(n,1);
    theta(70) = 10;
    M = diag(1./sqrt(theta));
    L = M * L;
    % Calculating the MAP estimate and posterior variances by least squares
    xmean = [(1/sigma)*A;1/gamma*L] \setminus [(1/sigma)*y;zeros(n,1)];
    \label{eq:Gamma_post} \mbox{Gamma_post = inv((1/sigma^2)*A'*A + 1/gamma^2*L'*L);}
    % Plotting the MAP estimate and the 2*STD envelope
    \mbox{\ensuremath{\$}} Defining different shades of blue for plotting
    STD = sqrt(diag(Gamma post));
    xhigh = xmean + 2*STD;
    xlow = xmean - 2*STD;
    xlow = [0; xlow];
    xhigh = [0; xhigh];
    xmean = [0; xmean];
    h = fill([t;t(n+1:-1:1)], [xlow;xhigh(n+1:-1:1)], shades(i,:));
    set(h,'facealpha',.3)
    plot(t,xmean,'LineWidth',2)
    legendInfo{2*i}=['uncertainty, \gamma = ' num2str(gamma)];
    legendInfo{2*i+1} = ['MAP, \gamma = ' num2str(gamma)];
    gamma = gamma/100;
legend(legendInfo,'location','best')
```

Ex. 7.8:

Again, we use the same scheme as in Ex. 7.6 for deterministic inversion. The results are shown below for θ = 1e-08, \Box = 1.


```
clear all
% explore the posterior with non-smooth prior and without hyper-parameters.
rand('state',20);
randn('state',18);
% Mesh
n = 100;
s = linspace(0,1,n+1)'; t = s(2:end);
% discretize the kernel
beta = 0.05;
a = 1/sqrt(2*pi*beta^2)*exp(-0.5*(1/beta^2)*t.^2);
A = 1/n*toeplitz(a);
% Truth
xtrue = zeros(n,1);
xtrue(70:end) = 10;
```

```
%%-----additive noise-----
noise = 5; % Noise level in percentages of the max. of noiseless signal
y0 = A*xtrue; % Noiseless signal
sigma = max(abs(y0))*noise/100;
                                               % STD of the additive noise
y = y0 + sigma*randn(n,1);
%%-----Prior construction-----
% standard deviation of the innovation
gamma = 1;
L = eye(n) - diag(ones(n-1,1),-1);
theta = 1.e-8*ones(n,1);
theta(70) = 10;
M = diag(1./sqrt(theta));
L = M * L;
% Calculating the MAP estimate and posterior variances by least squares
xmean = [(1/sigma)*A;1/gamma*L] \setminus [(1/sigma)*y;zeros(n,1)];
\label{eq:Gamma_post} \mbox{Gamma_post = inv((1/sigma^2)*A'*A + 1/gamma^2*L'*L);}
% Plotting the MAP estimate and the 2*STD envelope
\ensuremath{\$} Defining different shades of blue for plotting
 shades = [176 224 230;
             135 206 235;
             135 206 255;
             126 192 238;
             108 166 205];
   shades = 1/255*shades;
STD = sqrt(diag(Gamma post));
xhigh = xmean + 2*STD;
xlow = xmean - 2*STD;
[xObsCG,idx] = CGLS(A,y,xtrue,sigma,n);
t = [0;t];
xlow = [0;xlow];
xhigh = [0; xhigh];
xmean = [0; xmean];
xtrue = [0;xtrue];
xObsCG = [0; xObsCG];
figure
axes('fontsize',12);
fill([t;t(n+1:-1:1)],[xlow;xhigh(n+1:-1:1)],shades(1,:))
plot(t,xmean,'r-','LineWidth',2)
plot(t,xtrue,'k-','LineWidth',1.5)
plot(t,xObsCG,'b-','LineWidth',2)
legend('uncertainty','MAP','truth','DI','location','best')
function [mObsCG,i] = CGLS(kernel, YObs, mActual, sigma, NObs)
mObsCG = zeros(size(mActual));
d = YObs;
r = kernel'*YObs;
p = r;
t = kernel*p;
for i = 1:10000
    if norm((kernel*mObsCG - YObs),2)^2 < sigma^2*NObs</pre>
        break;
```

```
end
alpha = norm(r,2)^2/norm(t,2)^2;
mObsCG = mObsCG + alpha*p;
d = d - alpha*t;
rOld = r;
r = kernel'*d;
beta = norm(r,2)^2/norm(rOld,2)^2;
p = r + beta*p;
t = kernel*p;
end
```

Pi Estimation:

The code for estimating the value of Pi using a circle inscribed in a square is shown below, with results for six runs.

Code:

```
clear all
numPred = 100000;
piPred = 0;
count = 0;
for i = 1:numPred
   x = rand;
   y = rand;
   if (x^2 + y^2 - 1 \le 0)
       count = count + 1;
end
piPred = 4*count/numPred;
disp(piPred)
>> pi_estimation
   3.14080
>> pi_estimation
   3.14828
>> pi_estimation
   3.14768
>> pi estimation
   3.14748
>> pi estimation
   3.13940
>> pi_estimation
```

3.15384

Ex 4:1	Show that
A.F	dv(x)=f(x)=F(x) Takeef(x) & Fdox)
/e.7.47	Radon - Nikodym theorem: Let (I, F) be a measurable
loces News	space and μ , ν are two of finite measures on it, with $\nu << \mu$. Then there exists a unique (up to a e equivelent measurable function $f: \Sigma \rightarrow [o, \infty)$ such that
	V(A) = S & f du + A E F
	The function of is called Radon-Wikodým desivative
	$\frac{d\mu}{dt} = \frac{d\nu}{dt}$
	Genen v according to theorem 4.2,
h.4.2	Euppose F: IR - o IR is 1) non-decreasing 2) Right- There is unique measure v on (IR, B(IK)) continuous such that
	V((a,b]) = F(b) - F(a)

So we have

$$V([a,b]) = \int \int d\lambda = F(b) - F(a)$$
 [Theolem 4.2

 $\frac{\partial V}{\partial \lambda} = f = F'$ (00E) Applying fundamental theorem of Calculus

nearly nebel believes in the most real of

Ex 7.2	To the	7 m =	e o				
	A	7 m =	e Cl App	98			
	A		0				
V and			Ь				
	Normal eq	wation	olso as				
		A m = A		43 (1) (1)	soped h		
- C	=) · m =		No.	(0.7)		= L-1/5	
	=>m = (LAT II		1 A 6	[IAT	1 n-T/2)	(1 Y
	$= \left(\frac{1}{6^2} \right)$	ATA +	5 ²	7 1 A Ty	061		
	0	1 (1 ATA.	+ 1 17-1) A	for yobs		
	2 Y	MAP		<u> </u>			

E273	Show that posterior mean, which is in fact the
	conditional mean, is precisely the MAPpoint.
A.	From 1 yobs) x exp (-1 m - 1 H-1 A Tyobs 2 2 m - 1 H-1 A Tyobs 1 m
	E [mly] = \int mly]dm
	S
	$=\int_{\overline{J}_{2}\pi} \exp\left(-\frac{1}{2} \frac{11}{m} - \frac{1}{2} \frac{H^{-1} H^{T} y^{0} bs}{m}\right) dm \frac{f_{0}^{2}}{m}$
	$= \int_{\overline{M}} \exp\left(-\frac{1}{2} \ \mathbf{m} - \mathbf{m}\ _{H}^{2}\right) d\mathbf{m}$
	= m (hnce this is gaussian distribution so from Ex 4.02)
	[[m/y] = 1 H A Tyobs [x 4.2)
	E[mly] = mmap
•	

Ex. 6.1 - 6.4:

To save space here are both modifications to the code from 6.1 and 6.4 together

- 6.1 Modify BayesianPriorElicitation.m to take in parameters for the more general scheme.
- 6.4 Modify BayesianPriorElicitation.m to take in parameters for multiple jumps

```
function BayesianPriorElicitation(lambda, t)
      rand('state',20);
      randn('state',18);
     gamma = 0.05;
      % Mesh
     n = 160;
      s = linspace(0,1,n+1)';
      % Construct the L D matrix
      %% 6.1 Modification
      %Put lambdas in columnwise and then take the transpose to get the correct matrix
      LD = diag(ones(n+1,1)) - lambda.*diag(ones(n,1),1) - (1-lambda).*diag(ones(n,1),-1)
     L D = L D'
      %Draw the Random Samples
      nv = 5;
      xn = randn(n+1,nv);
      %% 6.4 Modification
      %Scale by Theta to add jumps
      %(non-zero Dirichlet conditions can also be added and scaled through here)
      L O = diag(t) * L D;
      L Oinv = inv(L O);
      x = gamma * (L Oinv * xn);
      Dev = sqrt(gamma^2 * diag(L_Oinv * L Oinv'));
      figure
```

```
axes('fontsize',12);
plot(s,Dev,'linewidth',2)
legend('Standard deviation','location','northwest')
hold on
plot(s,x)
```

6.1 Show new priors that were not presented in the text

Heavily weighted to the left

Changing Lambdas halfway through

6.2 Construct a prior with a non-zero (uncertain) Dirichlet boundary condition at s=0 and a zero Neumann boundary condition at s=1.

6.3 Construct priors with 2 or more sudden jumps

Ex. 7.1:

•	
7.1	Show Troost is gaussian.
	$I(m y^{obs}) = \exp(-\frac{1}{2\sigma^2} y^{obs} - Am ^2 + \frac{1}{2\gamma^2} T^{-1/2}m ^2) = \exp(T)$ The Theorem Symmetric.
T=	imerior terms: -1/202 (yobstyobs - yobstAm - mTATyobs + mTATAm) 1/282 (mTPTm)
Collect	quadratic in m. Let $C = \frac{1}{262}$, $D = \frac{1}{272}$. $m^{T}(CA^{T}A + D\Gamma^{-1})m + 2(-C)(m^{T}A^{T}y^{obs}^{T}A)m + (y^{obs}^{T}y^{obs}$
Comple	ete the square: $(m + \frac{a^{-1}b}{2})^{T}a(M + \frac{a^{-1}b}{2}) + C$ $a = \frac{1}{2}H$ $a' = -2H^{-1}$
	$m + \frac{2H^{-1} 2(\frac{1}{2\sigma^2})y^{obs^T}A}{2} = \left(m + \frac{H^{-1}y^{obs^T}A}{\sigma^2}\right)$
=> -	$T = -\frac{1}{2} \left(m - \frac{H^{-1} y^{obs} A}{\sigma^{2}} \right)^{T} + \left(m - \frac{H^{-1} y^{obs} A}{\sigma^{2}} \right) + \left(-\frac{1}{2\sigma^{2}} y^{obs} \right)^{T}$
Tipos	$+(m y^{obs}) = \exp(-\frac{1}{2} m - \frac{H^{-1}y^{obs}}{62} ^{2}) \exp(-\frac{1}{2}o^{2}y^{obs} ^{2}y^{obs})$ $\propto \exp(-\frac{1}{2} m - \frac{H^{-1}y^{obs}}{62} ^{2})$
wh	ich is gaussian in m

Lecture 3 (Handwritten) Problem:

	Lecture 3 (Handwritten)
	Hw1.
	Let your Am + e
	Find Three (a) $\vec{e} \sim N(\vec{e}, \sigma^2 I)$ (b) $\vec{e} \sim N(\vec{e}, \Sigma)$
	(a) $\pi_{like} = \frac{1}{\sqrt{(2\pi)^3 \sigma^2}} \exp\left(-\frac{1}{2\sigma^2} \left(\vec{y}^{obs} - \vec{A}\vec{m} - \vec{e}\right)^T \left(\vec{y}^{obs} - \vec{A}\vec{m} - \vec{e}\right)\right)$
0	(b) $\pi_{ijke} = \pi_{e}(\vec{y}^{obs} - A\vec{m})$ = $1 \exp(-\frac{1}{2}(\vec{y}^{obs} - A\vec{m}\vec{e})^{T} Z^{-1}(\vec{y}^{obs} - A\vec{m} - \vec{e}))$ $\sqrt{(2\pi)^{d} Z }$
	1 (Handwritten)

Lecture 4 (Handwritten) Problem:

Lechvu 4.	given $\vec{\lambda} = \begin{bmatrix} \vec{\lambda}_1 \\ \vec{\lambda}_2 \end{bmatrix} \sim N \begin{bmatrix} \vec{\lambda}_1 \\ \vec{\lambda}_2 \end{bmatrix}, \begin{bmatrix} A_1 & A_2 \\ A_1^{\top} & A_3 \end{bmatrix}$
	To Find marginal density of M, T(M,)
	$T(x_1) = \frac{1}{(2\pi)^{\frac{n+m}{2}} \mathbf{\Sigma} ^{\frac{1}{2}}} \exp\left(-\frac{1}{2}(x_1 - x_1) + \frac{1}{2}(x_2 - x_1)\right) dx_2$
	$\angle t \leq^{-1} = \begin{bmatrix} v_1 & v_2 \\ v_2^T & v_3 \end{bmatrix}$
- 1 a 1 b	$\Rightarrow \pi(x_1)^2 = \exp\left(-\left[\frac{1}{2}\left(\vec{x}_1 - \vec{x}_1\right)^{\top} V_1\left(\vec{x}_1 - \vec{x}_1\right) + \frac{1}{2}\left(\vec{x}_1 - \vec{x}_1\right)^{\top} V_2\left(\vec{x}_2 - \vec{x}_2\right)\right]$ $= \frac{1}{2} \exp\left(-\left[\frac{1}{2}\left(\vec{x}_1 - \vec{x}_1\right)^{\top} V_1\left(\vec{x}_1 - \vec{x}_1\right) + \frac{1}{2}\left(\vec{x}_1 - \vec{x}_1\right)^{\top} V_2\left(\vec{x}_2 - \vec{x}_2\right)\right]$
	$\frac{1}{2} \left(\frac{\chi_2 - \chi_2}{2} \right) \cdot \frac{1}{2} \left(\frac{\chi_1 - \chi_1}{2} \right) + \frac{1}{2} \left(\frac{\chi_2 - \chi_2}{2} \right) $ $\frac{1}{2} \left(\frac{\chi_2 - \chi_2}{2} \right) \cdot \frac{1}{2} \left(\frac{\chi_1 - \chi_1}{2} \right) + \frac{1}{2} \left(\frac{\chi_2 - \chi_2}{2} \right) \cdot \frac{1}{2} \left(\frac{\chi_2 - \chi_2}{2} $
	Now, using completion of squares [2] and taking out turns from the \frac{1}{2}(\hat{y} + P - \hat{q})^T P (\hat{y} + P - \hat{q}) + P \frac{1}{2}(\hat{y} + P - \hat{q})^T P (\hat{y} + P - \hat{q}) + P \frac{1}{2}(\hat{y} + P - \hat{q})^T P (\hat{y} + P
	$\vec{y} = \vec{z}, -\vec{\vec{x}}, \rho = v, q = v, \tau (\vec{x}, -\vec{z}, \tau)$ $r = I(\vec{z}, -\vec{z}, \tau) \tau v, (\vec{z}, -\vec{z}, \tau)$
= 1.0	$\pi(x_1) = \frac{1}{2} e^{-\frac{1}{2} \cdot \left(\vec{x}_1 - \frac{\vec{x}_1}{\vec{x}_1}\right)^{T} \left(\vec{y}_1 - \vec{y}_2 \cdot \vec{y}_3^{T} \cdot \vec{y}_1^{T}\right) \left(\vec{x}_1 - \frac{\vec{x}_1}{\vec{x}_1}\right)}$
,	$\frac{1}{\left(\frac{1}{2}\left(\vec{x}_{2}-\vec{x}_{2}\right)^{T}\left(v_{3}\right)\left(\vec{x}_{1}-\vec{x}_{2}\right)\right)dx}$
	$\vec{\chi}_{i} = \overline{\vec{\chi}}_{i} - V_{3}^{-1} V_{i}^{T} \left(\vec{x}_{i} - \overline{\vec{x}}_{i} \right)$
	yoursion integral with closed-form solution equal to $(2\pi)^{\frac{m}{2}} V_3 ^{\frac{1}{2}}$
=)	$\pi(\chi_1) = \frac{1}{2} \left(\frac{1}{2} \left(\vec{\chi}_1 - \vec{\bar{\chi}}_1 \right)^T \left(V_1 - V_2 V_3 \vec{V}_2 \right) \left(\vec{\chi}_1 - \vec{\bar{\chi}}_1 \right) \right)$
	yoursian with mean as \vec{n} , as covariance matrix $(Y_1 - V_2 V_2^{-1} V_2^{-1})^T$

> A, - (V, - V, Y, - V, +) >) T(n,) is a youssian with mean \$\frac{1}{20}, and covariance matrix A. Similarly, T(72) is a gaussian with moon in and covarione matrix he