#9 02-2**6**-02

PATENT

THE UNITED STATES PATENT AND TRADEMARK OFFICE (Case No. 98,766) (NAL Case No. NAL-018)

In the Application of:

Jianzhong Jiao
Matthew Lekson

Serial No.: 09/513,040

Filing Date: February 25, 2000

For: TUBULAR LIGHT SOURCE

Commissioner for Patents Washington, DC 20231

REFLECTOR AND LIGHTING DEVICE)

DECLARATION PURSUANT TO 37 C.F.R. § 1.131

Dear Sir:

We, Jianzhong Jiao, residing at 22535 Fuller Drive, Novi, Michigan, 48374, and Matthew A. Lekson, residing at 23110 Cora Avenue, Farmington Hills, Michigan, 48336, hereby declare:

- 1. We are the named inventors on United States Patent Application Serial No. 09/513,040, filed on February 25, 2000.
- 2. The invention disclosed in the above-captioned patent application was conceived and reduced to practice prior to August 9, 1999.
- 3. Accompanying this Declaration is a photocopy of pages of our laboratory notebooks and design documentation illustrating a reduction to practice of our invention.
 - 4. The invention was conceived and reduced to practice in the United States.
- 5. The date has been redacted from these photocopies; however the date is before August 9, 1999, the filing date of United States Patent No. 6,168,293.

6. We hereby declare further that all statements made herein of our own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or any patent issuing thereon.

Date: Feb. 7, 200

Signed:

Jianzhong Jiao

Date: 12002

Signed:

Matthew A. Lekson

APPENDIX of DECLARATION PURSUANT TO 37 C.F.R. § 1.131

where
$$P_i = (x_i, y_i)$$

 $P_2 = (x_2, y_i)$

$$y_{1} = tg(\overline{z} - 0) x_{1} = ctg 0 x_{1}$$

$$y_{1} - b = tg(\overline{z} - \alpha) x_{1} = ctg \alpha x_{1}$$

$$x_{1} (ctg 0 - ctg \alpha) = b$$

$$x_{1} (\underline{sin}(\alpha - 0)) = b$$

$$\chi_1 = 6 \frac{\sin \alpha_1 \sin \alpha_1}{\sin \alpha_2}$$

$$\chi_1 = \frac{\chi_1}{+ \frac{1}{2} \Theta_1}$$

$$e_{x}$$
 $e_{x} = 52.5^{\circ}$ $e_{y} = 15$
 $e_{x} = 37.5^{\circ}$
 $e_{x} = 69$
 $e_{y} = 6.29$

0,=02

$$\frac{2}{\sqrt{2}} = \frac{-\sqrt{2}}{\sqrt{2}} = \frac{\sqrt{2}}{\sqrt{2}} = \frac{\sqrt{2}}{\sqrt{2}}$$

$$= -ctg(0, +\alpha_2 + \beta_1)$$

$$= ctg(0, +\alpha_1 - \beta_1 + \beta_1) = ctg(\alpha_1 + \beta_1)$$

$$y_2 - y_1 = -\epsilon t_2(\alpha_1 \pm \beta_1)(\alpha_2 - \alpha_1)$$

$$\chi_{2}[\operatorname{ctg}_{20}, -\operatorname{ctg}(\alpha_{1}+\beta_{1})] = \gamma_{1} - \operatorname{ctg}(\alpha_{1}+\beta_{1}) \chi_{1}$$

$$\frac{x_2}{\sin(\alpha_1+\beta_1-20_1)} = y_1 - \frac{x_1}{\tan(\alpha_1+\beta_1)\sin(20_1)}$$

$$\chi_2 \frac{\sin \alpha_3}{\sin (\alpha_1 + \beta_1) \sin 2\alpha_1} = \gamma_1 - \frac{\alpha_1}{\sqrt{3}(\alpha_1 + \beta_2)}$$

$$\begin{cases} \chi_2 = \left(\frac{\chi_1}{1 - \frac{\chi_2}{1 - \frac{\chi_2}{1$$

X 2= 4.6

$$\frac{3}{3}, \quad \frac{1}{3} = \cot_{3}(30,) \times_{3}$$
...
$$\frac{1}{3} - \frac{1}{3}z = \cot_{3}(x_{3} + \beta_{2} + 20,)$$
...
$$\frac{1}{3} - \frac{1}{3}z = \cot_{3}(x_{3} + \beta_{2} + 20,)$$
...

=
$$ct_{g}(\alpha_{1}+\beta_{2}-20+\beta_{2}-20.)=ct_{g}(\alpha_{1}+2\beta_{1})$$

$$\mathcal{J}_3 - \mathcal{J}_2 = \mathcal{C}_3(d_1 + 2\beta_1)(\chi_3 - \chi_2)$$

$$\chi_3 \left[ct_3 30, -ct_3(\alpha_1 + 2\beta_2) \right] = \theta_2 - \frac{\alpha_2}{\sqrt{5}(\alpha_1 + 2\beta_2)}$$

$$\chi_{3} = \left[\frac{\chi_{2} - \frac{\chi_{2}}{4g(\alpha_{1} + \gamma \beta_{1})}}{\frac{\sin(\alpha_{1} + 2\beta_{1}) \sin(\alpha_{1} + 2\beta_{1}) \sin(\alpha_{1} + 2\beta_{1})}{\sin(\alpha_{2} + 2\beta_{1}) \sin(\alpha_{2} + 2\beta_{1}) \sin(\alpha_{1} + 2\beta_{1}) \sin(\alpha_{2} +$$

$$\begin{cases} \chi_{i} = \left[y_{i-1} - \frac{\chi_{i-1}}{+ 5(\alpha_{i} + (i-1)\beta_{i})} \right] \frac{\sin(\alpha_{i} + (i-1)\beta_{i})}{\sin(\alpha_{i+1} + (i-1)\beta_{i})} \frac{\sin(\alpha_{i} + (i-1)\beta_{i})}{\sin(\alpha_{i+1} + (i-1)\beta_{i})} \frac{\sin(\alpha_{i} + (i-1)\beta_{i})}{\sin(\alpha_{i} + (i-1)\beta_{i})} \frac{\sin(\alpha_{i}$$

If
$$0_1 = 0_2 = -- = 0$$

 $\beta_1 = \beta_2 = -- = \beta$

$$= \alpha_1 + 2\beta - 30$$

$$\alpha_1 = \left(\frac{\pi}{2} + 0\right) / 2$$

$$\beta = \frac{0}{2}$$

1 52.5° 2 37.5+7.5=45 2 30+7.5=575

+ 5 ? -67

ĺ≥2.

52.5000 0.8433 3.1470

37.5000 2.3038 3.9903

15° Case.

30.0000 5.1828 5.1828

22.5000 12.2627 7.0798

15.0000 40.0997 10.7446

7.5000 0.0000 0.0000

R = 2.5 mm for the light Source tube T = 10.7446 01 D = 21.5 mm for -1 (in) - p.

Reflector and FMVSS Requirments for a CHMSL

-E-Reflector w/ neon tube. Angle рЭ

Page 1