PredSet-1Step: Distribution-Free Prediction Sets Adaptive to Unknown Covariate Shift

Hongxiang Qiu, Edgar Dobriban, Eric Tchetgen Tchetgen

Department of Statistics & Data Science, The Wharton School, University of Pennsylvania

Background

- Uncertainty quantification for prediction is a key issue in modern statistics: prediction sets, tolerance regions, conformal inference, etc
- Data: n observations consisting of Population indicator: source (A = 1), target (A = 0); Covariate: X; outcome/label to be predicted: Y
- Goal: Asymptotically Probably

 Approximately Correct (APAC) prediction set \hat{C} in the target population:

$$\Pr(\Pr(Y \notin \hat{C}(X) \mid \hat{C}, A = 0) \le \alpha_{\text{error}})$$

 $\ge 1 - \alpha_{\text{conf}} - o(1)$

- Interpretation: with high confidence approaching $1-\alpha_{\rm conf}$, the coverage error of \hat{C} is below $\alpha_{\rm error}$
- Y missing in target population (A = 0)
- Key assumption: covariate shift $p(Y \mid X, A = 0) = p(Y \mid X, A = 1)$
- Connection with causal inference & missing data: equivalent to missing at random & no unmeasured confounding
- Applications: predict individual treatment effect (ITE) Y(1) Y(0); predict Y in a different target population
- A key quantity: likelihood ratio

$$w_0(x) := \frac{p(X = x \mid A = 0)}{p(X = x \mid A = 1)}$$

■ Previous PAC prediction set works assume $known w_0$ (ref in preprint); lack methods when w_0 is unknown

Procedure of cross-fit one-step estimator of coverage error corresponding to threshold au

Prediction set coverage error estimator

- Fixed arbitrary scoring function s(X,Y)E.g., estimated $Pr(Y \mid X)$ or $p(Y \mid X)$ using separate source population data
- Candidate prediction set: $C_{\tau}(x) = \{y : s(x,y) \ge \tau\}$ (threshold τ in finite grid T_n)
- Under nonparametric model, coverage error $\psi_{0,\tau} \coloneqq \Pr(Y \notin C_{\tau}(X) \mid A = 0)$ in target population is pathwise differentiable with gradient (similar to ATT)

$$(a,x,y) \mapsto \frac{a}{1-\gamma_0} \frac{1-g_0(x)}{g_0(x)} \big[I\big(y \notin C_\tau(x)\big) - Q_{0,\tau}(x) \big] + \frac{1-a}{1-\gamma_0} \big[Q_{0,\tau}(x) - \psi_{0,\tau} \big]$$

 $Q_{0,\tau}: x \mapsto \Pr(Y \notin C_{\tau}(X) \mid X = x)$ is the conditional coverage error; $g_0: x \mapsto \Pr(A = 1 \mid X = x)$ is the propensity score; $\gamma_0 \coloneqq \Pr(A = 1)$

- Cross-fit one-step corrected estimator $\psi_{n, au}$: split data into V folds, for each fold v,
 - 1. estimate $(Q_{0,\tau}, g_0)$ with $(Q_{n,\tau}^{-\nu}, g_n^{-\nu})$ using data out of fold ν
 - 2. estimator with one-step correction based on gradient:

$$\psi_{n,\tau}^{v} = \frac{\sum_{i \in \text{fold } v} \left\{ (1 - A_i) Q_{n,\tau}^{-v}(X_i) + A_i \frac{1 - g_n^{-v}(X_i)}{g_n^{-v}(X_i)} \left[I(Y_i \notin C_{\tau}(X_i)) - Q_{n,\tau}^{-v}(X_i) \right] \right\}}{\sum_{i \in \text{fold } v} (1 - A_i)}$$

Average over folds: $\psi_{n,\tau} = \sum_{\nu} \psi_{n,\tau}^{\nu} / V$

• Corrected estimator $\psi_{n,\tau}$ is asymptotically normal: $\sqrt{n}(\psi_{n,\tau}-\psi_{0,\tau})\overset{a}{\to}N(0,\sigma_{\tau}^2)$

Threshold selection

• Wald $(1-\alpha_{\rm conf})$ -confidence upper bound for coverage error $\psi_{0,\tau}$

$$\lambda_n(\tau) = \psi_{n,\tau} + z_{\alpha} \cot \times \frac{\sigma_{n,\tau}}{\sqrt{n}}$$

• Select the max threshold in \mathcal{T}_n such that all confidence upper bounds for smaller thresholds are below α_{error} :

$$\hat{\tau}_n := \max\{\tau \in \mathcal{T}_n : \lambda_n(\tau') < \alpha_{\text{error}}, \\ \forall \tau' \in \mathcal{T}_n \text{ such that } \tau' \leq \tau\}$$

- $C_{\hat{\tau}_n}$ is APAC in the target population
- The o(1) term is of order

$$n^{1/4} \|g_n^{-v} - g_0\|_2^{1/2} \|Q_{n,\tau}^{-v} - Q_{0,\tau}\|_2^{1/2}$$

Simulation: prob of coverage error $\leq \alpha_{\rm error}$ (with CI) Dashed line: target confidence level $1-\alpha_{\rm conf}$ plug-in: PredSet-1Step without one-step correction inductive CP: inductive (split) conformal prediction assuming no covariate shift

arXiv preprint:

Supported in part by NSF DMS, NIH, Analytics at Wharton

