Feuille d'exercices 13 : Équations différentielles linéaires.

Exercice 13.1 : (niveau 1)

Résoudre l'équation différentielle (E) : $y' + 2y = 4e^{2t}$, avec la condition de Cauchy y(0) = 0.

Exercice 13.2 : (niveau 1)

Résoudre $(1+x^2)y'(x) - 2xy(x) = xe^{\frac{1}{1+x^2}}$.

Exercice 13.3 : (niveau 1)

Résoudre l'équation différentielle (E) : $y'' - 10y' + 41y = 170 \sin t$.

Exercice 13.4 : (niveau 1)

Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ une application deux fois dérivable telle que

$$\forall x \in \mathbb{R} \ f''(x) - 2f'(x) + f(x) = 2e^x.$$

- 1°) Montrez que si pour tout $t \in \mathbb{R}$, $f'(t) \ge 0$, alors pour tout $t \in \mathbb{R}$, $f(t) \ge 0$.
- 2°) La réciproque est-elle vraie?

Exercice 13.5 : (niveau 1)

On considère l'équation différentielle suivante

(E) :
$$x(x^2 - 1)y' + 2y = x^2$$
,

où y est une fonction de x.

- 1°) Résoudre cette équation différentielle lorsque y est définie sur un intervalle I ne contenant aucun des réels -1, 0 et 1.
- **2°)** Montrer que y est une solution de (E) si et seulement si $x \mapsto y(-x)$ est une solution de (E).
- **3°)** Déterminer les solutions de (E) sur \mathbb{R}_+^* et sur \mathbb{R}_-^* .
- **4**°) Déterminer les solutions de (E) sur]-1,1[.

Exercice 13.6 : (niveau 2)

Déterminez les applications $f: \mathbb{R} \longrightarrow \mathbb{R}$, continues et telles que :

$$\forall x \in \mathbb{R} \ f(x) + \int_0^x (x - t)f(t)dt = 1.$$

Exercice 13.7 : (niveau 2)

Résoudre l'équation $(E): y' = \frac{y}{2t} + \frac{1}{2yt}$.

Indication : On pourra poser $z = y^2$.

Exercice 13.8 : (niveau 2)

Soit $q \in \mathbb{R}_+^*$. Résoudre l'équation différentielle

(E): $(t^2+1)y''+ty'-q^2y=0$ à l'aide du changement de variable $t=\operatorname{sh}(x)$.

Exercice 13.9 : (niveau 2)

Soient b et c deux applications continues de \mathbb{R} dans \mathbb{R} .

On considère l'équation différentielle (E) : y' + b(x)y = c(x).

 1°) Résoudre (E) à l'aide d'intégrales.

2°) Soit $T \in \mathbb{R}_{+}^{*}$. On suppose que b et c sont T-périodiques.

a) Montrer qu'une solution y de (E) est T-périodique si et seulement si y(0) = y(T).

b) Montrer que (E) possède une unique solution T-périodique si et seulement si $\int_0^T b(t)dt \neq 0.$

Exercice 13.10 : (niveau 2)

Résoudre (E): $f''(x) + f(-x) = x + \cos x$.

Exercice 13.11 : (niveau 2)

Soit $\lambda \in \mathbb{R}$.

Déterminer les applications f de classe C^1 de \mathbb{R} dans \mathbb{R} , telles que pour tout $x \in \mathbb{R}$, $f'(x) = f(\lambda - x)$.

Exercice 13.12 : (niveau 2)

Résoudre l'équation différentielle $(E): x^2y'' + xy' - 4y + 4x^2 = 0$.

On pourra utiliser le changement de variable suivant :

$$t = \ln|x|.$$

On précisera quelles sont les solutions définies sur \mathbb{R} en entier.

Exercice 13.13: (niveau 2)

Résoudre l'équation (E) : $y'' + 6y' + 9y = \frac{e^{-3x}}{\sqrt{x^2 + 1}}$.

Exercice 13.14: (niveau 3)

Déterminer les applications $f: \mathbb{R} \longrightarrow \mathbb{R}$, continues, telles que, pour tout $x \in \mathbb{R}$, $f(x) = x^2 + \int_0^x t f(x-t) dt$.

Exercice 13.15 : (niveau 3)

On souhaite résoudre le problème de Cauchy suivant :

$$y'' + |y| = 0$$
 avec $y(0) = a$ et $y'(0) = 0$.

On admettra qu'il possède une unique solution définie sur \mathbb{R} que l'on notera y.

- 1°) Montrer que pour tout $x \in \mathbb{R}$, $y(x) \leq a$.
- 2°) Déterminer y lorsque $a \leq 0$.

Pour la suite, on suppose que a > 0.

- **3°)** Montrer que y s'annule en exactement deux points $b_- < 0$ et $b_+ > 0$.
- 4°) Achever la résolution de l'exercice.

Exercice 13.16: (niveau 3)

Soit $n \in \mathbb{N}$ et $a \in \mathbb{R}$.

On note E l'espace vectoriel des fonctions de classe C^{∞} de \mathbb{R} dans \mathbb{R} .

On note (E) l'équation différentielle $\sum_{k=0}^{\infty} a_k y^{(k)} = 0$, en l'inconnue $y \in E$,

où
$$(a_k)_{0 \le k \le n} \in \mathbb{R}^{n+1}$$
 vérifie $\sum_{k=0}^n a_k X^k = (X-a)^n$.

- 1°) Montrer que l'opérateur dérivation $D: E \longrightarrow E$ défini par D(f) = f' est un endomorphisme sur E.
- **2°)** Pour tout $\lambda \in \mathbb{R}$, $f \in E$ et $x \in \mathbb{R}$, on note $M_{\lambda}(f)(x) = e^{\lambda x} f(x)$. Calculer $M_a \circ D \circ M_{-a}$.
- **3°)** Quel est le lien entre l'équation (E) et $Ker((D aId_E)^n)$?
- **4°)** Calculer $(M_a \circ D \circ M_{-a})^n$ et en déduire l'ensemble des solutions de (E).

Exercices supplémentaires

Exercice 13.17 : (niveau 1)

Résoudre sur \mathbb{R}_+^* l'équation différentielle x(xy'+y-x)=1.

Exercice 13.18: (niveau 1)

Résoudre $(E): y'-y=\sin t$.

Exercice 13.19 : (niveau 1)

Résoudre l'équation différentielle $(E): y'-3t^2y=t^2$, avec la condition de Cauchy y(0)=0.

Exercice 13.20: (niveau 1)

Résoudre l'équation différentielle (E) : $y'' + 2y' - 8y = 7e^{3t}$.

Exercice 13.21 : (niveau 2)

Résoudre (E) : yy' + x = 0.

Exercice 13.22 : (niveau 2)

Résoudre (E): $(1 + y^2)y' - xy = 0$.

Exercice 13.23 : (niveau 2)

(E) $x^2y' + y = x^2$ sur \mathbb{R}_+^* . Limite en 0 des solutions.

Exercice 13.24 : (niveau 2)

Résoudre (E) : $2xyy' = x^2 + y^2$, avec y(1) = 2.

Exercice 13.25 : (niveau 2)

Résoudre (E): (2x+1)y'' + (4x-2)y' - 8y = 0, sachant qu'elle admet une solution de la forme $x \mapsto e^{ax}$.

Exercice 13.26: (niveau 2)

Déterminer les applications $f: \mathbb{R} \longrightarrow \mathbb{R}$, continues et telles que :

$$\forall x \in \mathbb{R} \ f(x) - 2 \int_0^x \cos(x - t) f(t) dt = 1.$$

Exercice 13.27 : (niveau 2)

Résoudre l'équation différentielle (E) : $(t^2+1)y'=4ty+4t\sqrt{y}$.

Exercice 13.28 : (niveau 2)

Notons f l'application de \mathbb{R} dans \mathbb{R} définie par f(0) = 0 et, pour $x \neq 0$ $f(x) = x^4 sin(x^{-3})$. Résoudre sur \mathbb{R} l'équation (E) : xy' + 3y = f(x).

Exercice 13.29 : (niveau 2)

Résoudre l'équation différentielle réelle suivante : $(1+x^2)^2y'' + 2x(1+x^2)y' + y = 0$ en utilisant le changement de variable $t = \arctan(x)$.

Exercice 13.30 : (niveau 3)

Le but de l'exercice est de déterminer les applications $f: \mathbb{R} \longrightarrow \mathbb{R}$ continues, non identiquement nulles, s'annulant en au moins un point et telles que

$$\forall (x,y) \in \mathbb{R}^2 \ f(x+y) + f(x-y) = 2f(x)f(y).$$

- ${f 1}^{\circ}$) Soit f une solution. Montrer que f est paire, puis qu'elle admet une primitive F impaire.
- **2°**) Montrer qu'il existe $x_0 \in \mathbb{R}$ tel que

$$\forall y \in \mathbb{R} \ f(y) = \frac{F(x_0 + y) + F(x_0 - y)}{2F(x_0)}.$$

En déduire que f est de classe C^{∞} .

- **3°)** Montrer qu'il existe μ tel que $\forall x \in \mathbb{R}$ $F''(x) = \mu F(x)$.
- 4°) Achever la résolution de l'exercice.

Exercice 13.31 : (niveau 3)

Déterminer les applications f de classe C^1 , de \mathbb{R}^* dans \mathbb{R} , telles que pour tout $x \in \mathbb{R}^*$, $f'(-\frac{1}{x}) = f(x)$.