ML0101EN-Reg-Polynomial-Regression-Co2-py-v1

April 3, 2019

Polynomial Regression

About this Notebook

In this notebook, we learn how to use scikit-learn for Polynomial regression. We download a dataset that is related to fuel consumption and Carbon dioxide emission of cars. Then, we split our data into training and test sets, create a model using training set, evaluate our model using test set, and finally use model to predict unknown value.

Table of contents

```
    <a href="#download_data">Downloading Data</a>
    <a href="#polynomial_regression">Polynomial regression</a>
    <a href="#evaluation">Evaluation</a>
    <a href="#practice">Practice</a>
```

0.0.1 Importing Needed packages

```
In [12]: import matplotlib.pyplot as plt
    import pandas as pd
    import pylab as pl
    import numpy as np
    %matplotlib inline
```

Downloading Data

To download the data, we will use !wget to download it from IBM Object Storage.

2019-04-03 13:41:38 (1.64 MB/s) - FuelConsumption.csv saved [72629/72629]

Did you know? When it comes to Machine Learning, you will likely be working with large datasets. As a business, where can you host your data? IBM is offering a unique opportunity for businesses, with 10 Tb of IBM Cloud Object Storage: Sign up now for free

0.1 Understanding the Data

0.1.1 FuelConsumption.csv:

We have downloaded a fuel consumption dataset, FuelConsumption.csv, which contains model-specific fuel consumption ratings and estimated carbon dioxide emissions for new light-duty vehicles for retail sale in Canada. Dataset source

- MODELYEAR e.g. 2014
- MAKE e.g. Acura
- MODEL e.g. ILX
- VEHICLE CLASS e.g. SUV
- ENGINE SIZE e.g. 4.7
- CYLINDERS e.g 6
- TRANSMISSION e.g. A6
- FUEL CONSUMPTION in CITY(L/100 km) e.g. 9.9
- FUEL CONSUMPTION in HWY (L/100 km) e.g. 8.9
- FUEL CONSUMPTION COMB (L/100 km) e.g. 9.2
- **CO2 EMISSIONS (g/km)** e.g. 182 --> low --> 0

0.2 Reading the data in

```
In [14]: df = pd.read_csv("FuelConsumption.csv")
         # take a look at the dataset
         df.head()
Out[14]:
           MODELYEAR MAKE
                                   MODEL VEHICLECLASS ENGINESIZE CYLINDERS
                 2014 ACURA
                                                              2.0
                                     ILX
                                              COMPACT
         1
                 2014 ACURA
                                     ILX
                                              COMPACT
                                                              2.4
                                                                           4
         2
                 2014 ACURA ILX HYBRID
                                              COMPACT
                                                              1.5
                                                                            4
         3
                 2014 ACURA
                               MDX 4WD SUV - SMALL
                                                              3.5
                                                                           6
                 2014 ACURA
                                 RDX AWD SUV - SMALL
                                                              3.5
           TRANSMISSION FUELTYPE FUELCONSUMPTION_CITY FUELCONSUMPTION_HWY \
         0
                    AS5
                               Ζ
                                                   9.9
                                                                        6.7
         1
                    М6
                               Ζ
                                                  11.2
                                                                        7.7
                    AV7
                               Z
         2
                                                   6.0
                                                                        5.8
         3
                    AS6
                               Ζ
                                                  12.7
                                                                        9.1
                    AS6
                                                  12.1
                                                                        8.7
```

FUELCONSUMPTION_COMB FUELCONSUMPTION_COMB_MPG CO2EMISSIONS

0	8.5	33	196
1	9.6	29	221
2	5.9	48	136
3	11.1	25	255
4	10.6	27	244

Lets select some features that we want to use for regression.

Out[15]:	ENGINESIZE	CYLINDERS	FUELCONSUMPTION_COMB	CO2EMISSIONS
0	2.0	4	8.5	196
1	2.4	4	9.6	221
2	1.5	4	5.9	136
3	3.5	6	11.1	255
4	3.5	6	10.6	244
5	3.5	6	10.0	230
6	3.5	6	10.1	232
7	3.7	6	11.1	255
8	3.7	6	11.6	267

Lets plot Emission values with respect to Engine size:

