Improved Masking for Tweakable Blockciphers with Applications to Authenticated Encryption

Robert Granger¹, Philipp Jovanovic¹, Bart Mennink², Samuel Neves³

¹École Polytechnique Fédérale de Lausanne, Switzerland
²KU Leuven, Belgium
³University of Coimbra, Portugal

Eurocrypt 2016 Vienna, Austria

Tweakable Blockciphers

Tweakable Blockciphers

- ► Tweak T: adds flexibility to the cipher
- ► Different tweak ⇒ different permutation

Authenticated Encryption

- ► Ciphertext *C* is encryption of message *M*
- ► Tag *T* authenticates associated data *A* and message *M*
- ▶ Nonce *N* randomizes the scheme (similar to a tweak)

Tweakable Blockciphers in OCBx

- ► Generalized OCB by Rogaway et al. [RBBK01,Rog04,KR11]
- ightharpoonup Internally based on tweakable blockcipher \widetilde{E}

Tweakable Blockciphers in OCBx

- ► Generalized OCB by Rogaway et al. [RBBK01,Rog04,KR11]
- ▶ Internally based on tweakable blockcipher \widetilde{E}
- ► Tweak (*N*, *t*):
 - ▶ Unique for every evaluation
 - Different blocks always transformed by different tweaks

Tweakable Blockciphers in OCBx

- ► Generalized OCB by Rogaway et al. [RBBK01,Rog04,KR11]
- ightharpoonup Internally based on tweakable blockcipher \widetilde{E}
- ► Tweak (*N*, *t*):
 - Unique for every evaluation
 - ▶ Different blocks always transformed by different tweaks
 - ► Change should be efficient

Tweakable Blockciphers

- 1998: Hasty Pudding Cipher [Sch98]:
 - AES submission
 - "first tweakable cipher"
- 2001: Mercy [Cro01] (disk encryption)
- 2007: Threefish [FLS+07] in SHA-3 submission Skein
- 2014: TWEAKEY [JNP14] in CAESAR submissions:
 - Deoxys
 - Joltik
 - KIASU

Tweakable Blockciphers

- 1998: Hasty Pudding Cipher [Sch98]:
 - ► AES submission
 - "first tweakable cipher"
- 2001: Mercy [Cro01] (disk encryption)
- 2007: Threefish [FLS+07] in SHA-3 submission Skein
- 2014: TWEAKEY [JNP14] in CAESAR submissions:
 - Deoxys
 - Joltik
 - KIASU

Our focus: generic tweakable blockcipher design

Masking-Based Tweakable Blockciphers

Blockcipher-Based

Masking-Based Tweakable Blockciphers

Blockcipher-Based

Permutation-Based

Masking-Based Tweakable Blockciphers

Blockcipher-Based

typically 128 bits

Permutation-Based

much larger: 256-1600 bits

Powering-Up Masking

► Tweak (simplified): $(\alpha, \beta, \gamma, N)$

Powering-Up Masking

- ► Tweak (simplified): $(\alpha, \beta, \gamma, N)$
- Used in OCB2 and various CAESAR candidates

Powering-Up Masking

- Update of mask: shift and conditional XOR
- ► Variable time computation
- ► Expensive on certain platforms

Word-based Powering-Up Masking

- ▶ By Chakraborty and Sarkar [CS06]
- ► Tweak: (*i*, *N*)

Word-based Powering-Up Masking

- ▶ By Chakraborty and Sarkar [CS06]
- ► Tweak: (*i*, *N*)
- Tower of fields:
 - $ightharpoonup z^i \in \mathbb{F}_{2^w}[z]/g \text{ for } z \in \{0,1\}^w \dots$
 - ... instead of $x^i \in \mathbb{F}_2[x]/f$

Word-based Powering-Up Masking

- By Chakraborty and Sarkar [CS06]
- ► Tweak: (*i*, *N*)
- Tower of fields:
 - $ightharpoonup z^i \in \mathbb{F}_{2^w}[z]/g ext{ for } z \in \{0,1\}^w \dots$
 - ... instead of $x^i \in \mathbb{F}_2[x]/f$
- Similar drawbacks as regular powering-up

Gray Code Masking

- ▶ Used in OCB1 and OCB3
- ► Tweak: (*i*, *N*)
- ▶ Updating: $G(i) = G(i-1) \oplus 2^{\mathsf{ntz}(i)} \cdot E_K(N)$

Gray Code Masking

- Used in OCB1 and OCB3
- ► Tweak: (*i*, *N*)
- ▶ Updating: $G(i) = G(i-1) \oplus 2^{\mathsf{ntz}(i)} \cdot E_K(N)$
 - ► Single XOR
 - ▶ log₂ *i* field doublings (precomputation possible)

Gray Code Masking

- Used in OCB1 and OCB3
- ► Tweak: (*i*, *N*)
- ▶ Updating: $G(i) = G(i-1) \oplus 2^{\mathsf{ntz}(i)} \cdot E_K(N)$
 - ► Single XOR
 - ▶ $log_2 i$ field doublings (precomputation possible)
- ▶ More efficient than powering-up [KR11]

High-Level Contributions

Masked Even-Mansour

- Improved masking of tweakable blockciphers
- Simpler to implement and more efficient
- Constant time (by default)
- ▶ Relies on breakthroughs in discrete log computation

High-Level Contributions

Masked Even-Mansour

- Improved masking of tweakable blockciphers
- Simpler to implement and more efficient
- Constant time (by default)
- Relies on breakthroughs in discrete log computation

Application to Authenticated Encryption

- ► Nonce-respecting AE in 0.55 cpb
- ► Misuse-resistant AE in 1.06 cpb

Masked Even-Mansour (MEM)

- ▶ Fixed LFSRs: φ_i
- ▶ Tweak (simplified): $(\alpha, \beta, \gamma, N)$

Masked Even-Mansour (MEM)

- ▶ Fixed LFSRs: φ_i
- ► Tweak (simplified): $(\alpha, \beta, \gamma, N)$
- Combines advantages of:
 - Powering-up masking
 - ► Word-based LFSRs

Masked Even-Mansour (MEM)

- ▶ Fixed LFSRs: φ_i
- ▶ Tweak (simplified): $(\alpha, \beta, \gamma, N)$
- Combines advantages of:
 - ► Powering-up masking
 - Word-based LFSRs
- ► Simpler, more efficient, constant-time (by default)

Design Considerations

- Particularly suited for large states (permutations)
- ► Low operation counts by clever choice of LFSR

Design Considerations

- Particularly suited for large states (permutations)
- ▶ Low operation counts by clever choice of LFSR
- ► Sample LFSRs (state size *b* as *n* words of *w* bits):

b	W	n	φ
128	8	16	$(x_1,\ldots,x_{15},(x_0\ll 2)\oplus((x_4\parallel x_3)\gg 3)$
128	32	4	$(x_1,\ldots,x_3,\ (x_0\ll 5)\oplus x_1\oplus (x_1\ll 13))$
128	64	2	$(x_1, (x_0 \ll 4) \oplus ((x_1 \parallel x_0) \gg 25)$
256	64	4	$(x_1,\ldots,x_3,\ (x_0\ll 3)\oplus (x_3\gg 5))$
512	32	16	$(x_1,\ldots,x_{15},(x_0\ll 5)\oplus(x_3\gg 7))$
512	64	8	$(x_1,\ldots,x_7,\ (x_0\ll 29)\oplus (x_1\ll 9))$
1024	64	16	$(x_1,\ldots,x_{15},(x_0\ll 53)\oplus(x_5\ll 13))$
1600	32	50	$(x_1,\ldots,x_{49},(x_0\ll 3)\oplus(x_{23}\gg 3))$
1600	64	25	$(x_1,\ldots,x_{24},(x_0\ll 14)\oplus((x_1\parallel x_0)\gg 13)$
:	:	:	<u>:</u>
:	:	:	:

Design Considerations

- Particularly suited for large states (permutations)
- Low operation counts by clever choice of LFSR
- ▶ Sample LFSRs (state size *b* as *n* words of *w* bits):

ь	W	n	arphi
128	8	16	$(x_1,\ldots,x_{15},(x_0\ll 2)\oplus((x_4\parallel x_3)\gg 3)$
128	32	4	$(x_1,\ldots,x_3,\ (x_0\ll 5)\oplus x_1\oplus (x_1\ll 13))$
128	64	2	$(x_1, (x_0 \ll 4) \oplus ((x_1 \parallel x_0) \gg 25)$
256	64	4	$(x_1,\ldots,x_3,\ (x_0\ll 3)\oplus (x_3\gg 5))$
512	32	16	$(x_1,\ldots,x_{15},(x_0\ll 5)\oplus(x_3\gg 7))$
512	64	8	$(x_1,\ldots,x_7,\ (x_0\ll 29)\oplus (x_1\ll 9))$
1024	64	16	$(x_1,\ldots,x_{15},(x_0\ll 53)\oplus(x_5\ll 13))$
1600	32	50	$(x_1,\ldots,x_{49},(x_0\ll 3)\oplus(x_{23}\gg 3))$
1600	64	25	$(x_1,\ldots,x_{24},(x_0\ll 14)\oplus((x_1\parallel x_0)\gg 13)$
:	:	:	:
-			•

Work exceptionally well for ARX primitives

Uniqueness of Masking

Intuitively, masking goes well as long as

$$\varphi_2^{\gamma} \circ \varphi_1^{\beta} \circ \varphi_0^{\alpha} \neq \varphi_2^{\gamma'} \circ \varphi_1^{\beta'} \circ \varphi_0^{\alpha'}$$

for any $(\alpha, \beta, \gamma) \neq (\alpha', \beta', \gamma')$

- ▶ Challenge: set proper domain for (α, β, γ)
- ► Requires computation of discrete logarithms

Intuitively, masking goes well as long as

$$\varphi_2^{\gamma} \circ \varphi_1^{\beta} \circ \varphi_0^{\alpha} \neq \varphi_2^{\gamma'} \circ \varphi_1^{\beta'} \circ \varphi_0^{\alpha'}$$

for any $(\alpha, \beta, \gamma) \neq (\alpha', \beta', \gamma')$

- ▶ Challenge: set proper domain for (α, β, γ)
- ► Requires computation of discrete logarithms

Intuitively, masking goes well as long as

$$\varphi_2^{\gamma} \circ \varphi_1^{\beta} \circ \varphi_0^{\alpha} \neq \varphi_2^{\gamma'} \circ \varphi_1^{\beta'} \circ \varphi_0^{\alpha'}$$

for any $(\alpha, \beta, \gamma) \neq (\alpha', \beta', \gamma')$

- ▶ Challenge: set proper domain for (α, β, γ)
- ► Requires computation of discrete logarithms

Intuitively, masking goes well as long as

$$\varphi_2^{\gamma} \circ \varphi_1^{\beta} \circ \varphi_0^{\alpha} \neq \varphi_2^{\gamma'} \circ \varphi_1^{\beta'} \circ \varphi_0^{\alpha'}$$

for any $(\alpha, \beta, \gamma) \neq (\alpha', \beta', \gamma')$

- ▶ Challenge: set proper domain for (α, β, γ)
- ► Requires computation of discrete logarithms

Intuitively, masking goes well as long as

$$\varphi_2^{\gamma} \circ \varphi_1^{\beta} \circ \varphi_0^{\alpha} \neq \varphi_2^{\gamma'} \circ \varphi_1^{\beta'} \circ \varphi_0^{\alpha'}$$

for any $(\alpha, \beta, \gamma) \neq (\alpha', \beta', \gamma')$

- ▶ Challenge: set proper domain for (α, β, γ)
- Requires computation of discrete logarithms

solved in this work using breakthroughs in discrete log computation

Intuitively, masking goes well as long as

$$\varphi_2^{\gamma} \circ \varphi_1^{\beta} \circ \varphi_0^{\alpha} \neq \varphi_2^{\gamma'} \circ \varphi_1^{\beta'} \circ \varphi_0^{\alpha'}$$

for any $(\alpha, \beta, \gamma) \neq (\alpha', \beta', \gamma')$

- ▶ Challenge: set proper domain for (α, β, γ)
- Requires computation of discrete logarithms

solved in this work using breakthroughs in discrete log computation

▶ Logs for 2¹¹, 2¹², 2¹³ easily doable with latest techniques

"Bare" Implementation Results

- Mask computation in cycles per update
- ▶ In most pessimistic scenario (for ours):

Masking	Sandy Bridge	Haswell		
Powering-up	13.108	10.382		
Gray code	6.303	3.666		
Ours	2.850	2.752		

► Differences may amplify/diminish in a mode

Application to AE: OPP

- ► Offset Public Permutation (OPP)
- Security against nonce-respecting adversaries

Application to AE: MRO

- ► Misuse-Resistant OPP (MRO)
- ► Fully nonce-misuse resistant version of OPP

- ► State size *b* = 1024
- ▶ LFSR on 16 words of 64 bits:

$$\varphi(x_0,\ldots,x_{15})=(x_1,\ldots,x_{15},(x_0\ll 53)\oplus(x_5\ll 13))$$

▶ P: BLAKE2b permutation with 4 or 6 rounds

- ► State size *b* = 1024
- ▶ LFSR on 16 words of 64 bits:

$$\varphi(x_0,\ldots,x_{15})=(x_1,\ldots,x_{15},(x_0\ll 53)\oplus(x_5\ll 13))$$

- ▶ *P*: BLAKE2b permutation with 4 or 6 rounds
- ▶ Main implementation results (more in paper):

	nonce-respecting					misuse-resistant
Platform	AES-GCM	OCB3	$Deoxys^{\neq}$	OPP ₄	OPP ₆	
Cortex-A8	38.6	28.9	_	4.26	5.91	
Sandy Bridge	2.55	0.98	1.29	1.24	1.91	
Haswell	1.03	0.69	0.96	0.55	0.75	

- ► State size *b* = 1024
- ▶ LFSR on 16 words of 64 bits:

$$\varphi(x_0,\ldots,x_{15})=(x_1,\ldots,x_{15},(x_0 \ll 53) \oplus (x_5 \ll 13))$$

- ▶ *P*: BLAKE2b permutation with 4 or 6 rounds
- ▶ Main implementation results (more in paper):

	nonce-respecting				misuse-resistant				
Platform	AES-GCM	OCB3	Deoxys≠	OPP ₄	OPP ₆	GCM-SIV	Deoxys=	MRO ₄	MRO ₆
Cortex-A8	38.6	28.9	_	4.26	5.91	-	-	8.07	11.32
Sandy Bridge	2.55	0.98	1.29	1.24	1.91	-	2.58	2.41	3.58
Haswell	1.03	0.69	0.96	0.55	0.75	1.17	1.92	1.06	1.39

- ▶ State size b = 1024
- ▶ LFSR on 16 words of 64 bits:

$$\varphi(x_0,\ldots,x_{15})=(x_1,\ldots,x_{15},(x_0 \ll 53) \oplus (x_5 \ll 13))$$

- ▶ *P*: BLAKE2b permutation with 4 or 6 rounds
- ▶ Main implementation results (more in paper):

	nonce-respecting					misuse-resistant			
Platform	AES-GCM	OCB3	Deoxys≠	OPP ₄	OPP ₆	GCM-SIV	Deoxys=	MRO ₄	MRO ₆
Cortex-A8	38.6	28.9	-	4.26	5.91	-	-	8.07	11.32
Sandy Bridge	2.55	0.98	1.29	1.24	1.91	-	2.58	2.41	3.58
Haswell	1.03	0.69	0.96	0.55	0.75	1.17	1.92	1.06	1.39

▶ OPP: \approx 6.36 GiBps, MRO: \approx 3.30 GiBps

▶ LFSR on 16 words of 64 bits:

$$\varphi(x_0,\ldots,x_{15})=(x_1,\ldots,x_{15},(x_0\ll 53)\oplus(x_5\ll 13))$$

▶ LFSR on 16 words of 64 bits:

$$\varphi(x_0,\ldots,x_{15})=(x_1,\ldots,x_{15},(x_0\ll 53)\oplus(x_5\ll 13))$$

▶ LFSR on 16 words of 64 bits:

$$\varphi(x_0,\ldots,x_{15})=(x_1,\ldots,x_{15},(x_0\ll 53)\oplus(x_5\ll 13))$$

▶ Begin with state $L_i = [x_0, ..., x_{15}]$ of 64-bit words

► $x_{16} = (x_0 \ll 53) \oplus (x_5 \ll 13)$

▶ LFSR on 16 words of 64 bits:

$$\varphi(x_0,\ldots,x_{15})=(x_1,\ldots,x_{15},(x_0\ll 53)\oplus(x_5\ll 13))$$

- $x_{16} = (x_0 \ll 53) \oplus (x_5 \ll 13)$
- ► $x_{17} = (x_1 \ll 53) \oplus (x_6 \ll 13)$

▶ LFSR on 16 words of 64 bits:

$$\varphi(x_0,\ldots,x_{15})=(x_1,\ldots,x_{15},(x_0\ll 53)\oplus(x_5\ll 13))$$

- $x_{16} = (x_0 \ll 53) \oplus (x_5 \ll 13)$
- $x_{17} = (x_1 \ll 53) \oplus (x_6 \ll 13)$
- ► $x_{18} = (x_2 \ll 53) \oplus (x_7 \ll 13)$

▶ LFSR on 16 words of 64 bits:

$$\varphi(x_0,\ldots,x_{15})=(x_1,\ldots,x_{15},(x_0\ll 53)\oplus(x_5\ll 13))$$

- $> x_{16} = (x_0 \ll 53) \oplus (x_5 \ll 13)$
- ► $x_{17} = (x_1 \ll 53) \oplus (x_6 \ll 13)$
- $> x_{19} = (x_3 \ll 53) \oplus (x_8 \ll 13)$

▶ LFSR on 16 words of 64 bits:

$$\varphi(x_0,\ldots,x_{15})=(x_1,\ldots,x_{15},(x_0\ll 53)\oplus(x_5\ll 13))$$

- $x_{16} = (x_0 \ll 53) \oplus (x_5 \ll 13)$
- $> x_{17} = (x_1 \ll 53) \oplus (x_6 \ll 13)$
- $x_{18} = (x_2 \ll 53) \oplus (x_7 \ll 13)$
- $x_{19} = (x_3 \ll 53) \oplus (x_8 \ll 13)$
- ► Parallelizable and word-sliceable (AVX2)

Conclusion

Masked Even-Mansour

- ► Simple, efficient, constant-time (by default)
- Justified by breakthroughs in discrete log computation
- ► MEM-based AE is able to outperform its closest competitors

Conclusion

Masked Even-Mansour

- Simple, efficient, constant-time (by default)
- Justified by breakthroughs in discrete log computation
- ► MEM-based AE is able to outperform its closest competitors

More Info

- https://eprint.iacr.org/2015/999 (full version)
- ▶ https://github.com/MEM-AEAD

Conclusion

Masked Even-Mansour

- Simple, efficient, constant-time (by default)
- Justified by breakthroughs in discrete log computation
- ► MEM-based AE is able to outperform its closest competitors

More Info

- https://eprint.iacr.org/2015/999 (full version)
- ▶ https://github.com/MEM-AEAD

Support: Masking Function Search

Basis:

$$M = \begin{pmatrix} 0 & I & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & I \\ X_0 & X_1 & \cdots & X_{n-1} \end{pmatrix} \in \mathbb{F}_{2^{nw}} \times \mathbb{F}_{2^{nw}}$$

with $X_i \in \{0, I, SHL_c, SHR_c, ROT_c, AND_c\}$, $dim(X_i) = w$

- ► Check: minimal polynomial of *M* is primitive of degree *b*
- ▶ Then: $\varphi^i(L) = M^i \cdot L$ has period $2^b 1$
- Note:

$$\varphi:(x_0,\ldots,x_{n-1})\mapsto(x_1,\ldots,x_{n-1},f(x_0,\ldots,x_{n-1}))$$

Support: Tweak Space Domain Separation

Lemma

 $\varphi: \{0,1\}^{1024} \mapsto \{0,1\}^{1024}$, with

$$\varphi(x_0,\ldots,x_{15})=(x_1,\ldots,x_{15},(x_0 <\!\!<\! 53) \oplus (x_5 <\!\!< 13))$$

and associated transformation matrix M

- $\qquad \qquad \varphi_0^{i_0}(L) = M^{i_0} \cdot L,$

The tweak space

$$\mathcal{T} = \mathcal{T}_0 \times \mathcal{T}_1 \times \mathcal{T}_2 = \{0, 1, \dots, 2^{1020} - 1\} \times \{0, 1, 2, 3\} \times \{0, 1\}$$

is b-proper relative to the function set $\{\varphi_0^{i_0}, \varphi_1^{i_1}, \varphi_2^{i_2}\}$.

Support: Tweak Space Domain Separation via Lattices

▶ Lattice spanned by rows of

$$\begin{pmatrix} K \cdot 1 & w_0 & 0 & 0 \\ K \cdot l_1 & 0 & w_1 & 0 \\ K \cdot l_2 & 0 & 0 & w_2 \\ K \cdot m & 0 & 0 & 0 \end{pmatrix}$$

for integers K, $m = 2^b - 1$, weights w_i , and dlogs l_1, l_2

► Then

$$(\Delta i_0 + \Delta i_1 I_1 + \Delta i_2 I_2 + km, \Delta i_0 w_0, \Delta i_1 w_1, \Delta i_2 w_2)$$

is shortest vector if

$$\Delta i_0 + \Delta i_1 I_1 + \Delta i_2 I_2 \equiv 0 \pmod{2^n - 1}$$

► For $(w_0, w_1, w_2) = (1, 2^{1019}, 2^{1022})$, similar tweak space as in Lemma on last slide