Basic Model Prediction

```
In [1]: import pandas as pd
import numpy as np
import seaborn as sns
```

```
In [3]: dataset = pd.read_csv("C:\\Users\\mdsha\\Downloads\\archive (8)\\Salary_Data.or
```

In [4]: dataset

Out[4]:	YearsExperience	Age	Salary
0	1.1	21.0	39343
1	1.3	21.5	46205
2	1.5	21.7	37731
3	2.0	22.0	43525
4	2.2	22.2	39891
5	2.9	23.0	56642
6	3.0	23.0	60150
7	3.2	23.3	54445
8	3.2	23.3	64445
9	3.7	23.6	57189
10	3.9	23.9	63218
11	4.0	24.0	55794
12	4.0	24.0	56957
13	4.1	24.0	57081
14	4.5	25.0	61111
15	4.9	25.0	67938
16	5.1	26.0	66029
17	5.3	27.0	83088
18	5.9	28.0	81363
19	6.0	29.0	93940
20	6.8	30.0	91738
21	7.1	30.0	98273
22	7.9	31.0	101302
23	8.2	32.0	113812
24	8.7	33.0	109431
25	9.0	34.0	105582
26	9.5	35.0	116969
27	9.6	36.0	112635
28	10.3	37.0	122391
29	10.5	38.0	121872

In [9]: x = dataset[['YearsExperience','Age']]

In [10]: x

Out[10]:		YearsExperience	Age
	0	1.1	21.0
	1	1.3	21.5
	2	1.5	21.7
	3	2.0	22.0
	4	2.2	22.2
	5	2.9	23.0
	6	3.0	23.0
	7	3.2	23.3
	8	3.2	23.3
	9	3.7	23.6
	10	3.9	23.9
	11	4.0	24.0
	12	4.0	24.0
	13	4.1	24.0
	14	4.5	25.0
	15	4.9	25.0
	16	5.1	26.0
	17	5.3	27.0

18

19

20

21 22

23

24

25

26

27 28

29 10.5 38.0

5.9 28.0

6.0 29.0

6.8 30.0

7.1 30.0

7.9 31.0

8.2 32.0

8.7 33.09.0 34.0

9.5 35.0

9.6 36.0

10.3 37.0

In [11]: x = dataset[['YearsExperience','Age']].values

```
In [12]: x
Out[12]: array([[ 1.1, 21. ],
                 [ 1.3, 21.5],
                 [ 1.5, 21.7],
                 [ 2. , 22. ],
                 [ 2.2, 22.2],
                 [ 2.9, 23. ],
                 [ 3. , 23. ],
                 [ 3.2, 23.3],
                 [ 3.2, 23.3],
                 [ 3.7, 23.6],
                 [ 3.9, 23.9],
                 [ 4. , 24. ],
                 [ 4. , 24. ],
                 [ 4.1, 24. ],
                 [ 4.5, 25. ],
                 [ 4.9, 25. ],
                 [ 5.1, 26. ],
                 [ 5.3, 27. ],
                 [ 5.9, 28. ],
                 [ 6. , 29. ],
                 [ 6.8, 30. ],
                 [ 7.1, 30. ],
                 [ 7.9, 31. ],
                 [ 8.2, 32. ],
                 [ 8.7, 33. ],
                 [ 9. , 34. ],
                 [ 9.5, 35. ],
                 [ 9.6, 36. ],
                 [10.3, 37.],
                 [10.5, 38.]])
In [13]: y = dataset[['Salary']]
```

In [14]: y

Out[14]:

Salary

- 46205
- 37731
- 43525
- 39891
- 56642
- 6 60150
- 54445
- 64445
- 57189
- 63218
- 55794
- 56957
- 57081
- 61111
- 67938
- 66029
- 83088
- 81363
- 93940
- 91738
- 98273
- 101302
- 113812
- 109431
- 105582
- 116969
- 112635
- 122391
- 121872

```
In [18]: dataset.isnull().sum
Out[18]: <bound method NDFrame._add_numeric_operations.<locals>.sum of
                                                                         YearsExper
         ience
                 Age
                      Salary
                      False False
                                     False
         1
                      False False
                                     False
         2
                      False False
                                     False
         3
                      False False
                                     False
         4
                      False False
                                     False
         5
                      False False
                                     False
         6
                      False False
                                     False
         7
                      False False
                                     False
         8
                      False False
                                     False
         9
                      False False
                                     False
         10
                      False False
                                     False
                      False False
         11
                                     False
                      False False
                                     False
         12
         13
                      False False
                                     False
         14
                      False False
                                     False
         15
                      False False
                                    False
                      False False
                                     False
         16
         17
                      False False
                                     False
                      False False
                                     False
         18
         19
                      False False
                                     False
                                     False
         20
                      False False
         21
                      False False
                                     False
         22
                      False False
                                     False
         23
                      False False
                                     False
         24
                      False False
                                     False
         25
                      False False
                                     False
         26
                      False False
                                     False
         27
                      False False
                                     False
         28
                      False False
                                     False
         29
                      False False
                                     False>
         from sklearn.model_selection import train_test_split
In [19]:
```

In [20]: x_train,x_test,y_train,y_test =train_test_split(x,y,test_size=0.2,random_state

```
In [21]: x_train
Out[21]: array([[ 9.6, 36. ],
                 [ 4. , 24. ],
                 [5.3, 27.],
                 [ 7.9, 31. ],
                 [ 2.9, 23. ],
                 [5.1, 26.],
                 [ 3.2, 23.3],
                 [ 4.5, 25. ],
                 [ 8.2, 32. ],
                 [ 6.8, 30. ],
                 [ 1.3, 21.5],
                 [10.5, 38.],
                 [ 3. , 23. ],
                 [ 2.2, 22.2],
                 [ 5.9, 28. ],
                 [ 6. , 29. ],
                 [ 3.7, 23.6],
                 [ 3.2, 23.3],
                 [ 9. , 34. ],
                 [ 2. , 22. ],
                 [ 1.1, 21. ],
                 [ 7.1, 30. ],
                 [ 4.9, 25. ],
                [ 4. , 24. ]])
In [22]: x_test
Out[22]: array([[ 1.5, 21.7],
                 [10.3, 37.],
                 [ 4.1, 24. ],
                 [ 3.9, 23.9],
                 [ 9.5, 35. ],
                 [ 8.7, 33. ]])
```

In [23]: y_train

Out[23]:

	Salary
27	112635
11	55794
17	83088
22	101302
5	56642
16	66029
8	64445
14	61111
23	113812
20	91738
1	46205
29	121872
6	60150
4	39891
18	81363
19	93940
9	57189
7	54445
25	105582
3	43525
0	39343

In [24]: y_test

21

15

12

98273

67938

56957

Out[24]:

	Salary
2	37731
28	122391
13	57081
10	63218
26	116969
24	109431

```
from sklearn.linear_model import LinearRegression
In [26]:
In [27]: | lr = LinearRegression()
In [28]:
         lr.fit(x_train,y_train)
Out[28]: LinearRegression()
         In a Jupyter environment, please rerun this cell to show the HTML representation or
         trust the notebook.
          On GitHub, the HTML representation is unable to render, please try loading this page
         with nbviewer.org.
In [29]: lr.predict(x_test)
Out[29]: array([[ 43505.10119893],
                 [124587.04346091],
                 [ 62780.35130369],
                 [ 61459.79568568],
                 [115931.97767592],
                 [107276.91189093]])
In [33]: lr.predict([[ 1.1, 21. ]])
Out[33]: array([[39809.97642761]])
In [35]: lr.predict([[ 1.5, 21.7]])
Out[35]: array([[43505.10119893]])
In [38]: |lr.predict([[5,30]])
Out[38]: array([[80422.40182651]])
```

In []: