Déduction Naturelle Propriétés et tactiques

Benjamin Wack

Université Grenoble Alpes

Février 2025

Au dernier cours

Déduction naturelle

- Règles
- Contexte
- ► Preuves

Rappel des règles

Implication

Conjonction

Disjonction

 \perp

Introdu	uction	Élimination	
[A]			
		<u>A A⇒B</u> B	$\Rightarrow E$
$\frac{B}{A \Rightarrow B}$	$\Rightarrow I$		
$\frac{A}{A \wedge B}$	$\wedge I$	$rac{A \wedge B}{A} \ A \wedge B$	∧ <i>E</i> 1
		$\frac{A \wedge B}{B}$	∧ <i>E</i> 2
$\frac{A}{A \vee B}$	∨ <i>I</i> 1		
$\frac{B}{A \vee B}$	∨ <i>I</i> 2	$A \lor B A \Rightarrow C B \Rightarrow C$	∨ <i>E</i>
	Rè	gle du faux	
		$\frac{\perp}{A}$ Efq	
Règ	Règle de réduction à l'absurde		
$\frac{\neg \neg A}{A}$ RAA			

Un exemple avec environnement

Prouvez que $\neg A$ dans l'environnement $\neg (A \lor B)$

environnement				
référe	ence	formule		
(i)		$\neg (A \lor B)$		
contexte	numero	preuve	justification	
1	1	Supposons A		
1	2	$A \vee B$	∨ <i>I</i> 1 1	
1	3	<u> </u>	$\Rightarrow E$ (i),2	
	4	Donc ¬A	⇒ <i>I</i> 1,3	

Théorème

Théorème 3.3.1

Si une formule A est déduite d'un environnement de formules Γ ($\Gamma \vdash A$) alors A est une conséquence de Γ ($\Gamma \models A$).

Toute preuve écrite dans un environnement Γ est correcte! Preuve par récurrence sur le nombre de lignes d'une preuve P:

- ▶ On note H_i le contexte et C_i la conclusion de la i^e ligne de P.
- ▶ On montre que pour tout k on a Γ , $H_k \models C_k$.

D'où pour la dernière ligne n de la preuve $\Gamma \models A$. (H_n est vide et $C_n = A$.)

Règles standard

Preuve de la forme :

contexte	numero	preuve	justification
:	i i	:	:
Γ, H_k	i i	:	:
Γ, H_k	k	C_k	R i,j

7 / 34

où les prémisses i et j sont :

- utilisables à la ligne précédente
- ou font partie de l'environnement Γ.

Par hypothèse de récurrence, les formules i et j sont conséquences de Γ , H_k (en fait, d'un contexte contenu dans Γ , H_k).

On vérifie que pour toutes les règles, la conclusion est conséquence des prémisses (par exemple $D, E \models D \land E$).

Par transitivité Γ , $H_k \models C_k$.

Cas particulier : la dernière règle est $\Rightarrow I$

Preuve de la forme :

contexte	Ν°	preuve	justification
:	:	:	:
Γ, H_k, B	÷	:	:
Γ, H_k	k	Donc $B\Rightarrow D$	$\Rightarrow Ii,j$

où D est utilisable sur la ligne précédente (ou fait partie de Γ).

Par hypothèse de récurrence D est conséquence de Γ , H_k , B (en fait, d'un contexte contenu dans Γ , H_k , B).

On a donc Γ , H_k , $B \models D$ ce qui revient à dire que Γ , $H_k \models B \Rightarrow D$.

Théorème

Théorème 3.4.1

Soient Γ un ensemble fini de formules et A une formule.

Si $\Gamma \models A$ alors $\Gamma \vdash A$.

Idée de la preuve

On décompose

- \triangleright A
- ou une formule de Γ

pour pouvoir appliquer l'hypothèse de récurrence.

Par exemple : si
$$\Gamma \vDash B \lor C$$
 alors $\Gamma, \neg B \vDash C$.
si $\Gamma, B \Rightarrow C \vDash A$ alors $\Gamma, \neg B \vDash A$ et $\Gamma, C \vDash A$.

10 / 34

Subtilités de la démonstration

Cas de base :

- ightharpoonup A est indécomposable si A est \perp ou une variable.
- Γ est indécomposable si Γ est une liste de littéraux ou comprend la formule | .
- ► Si on décompose une formule en ses sous-formules on ne retrouve pas toujours une règle de la déduction naturelle
- il faut donc parfois « compléter » la preuve.
- Il faut pondérer les connecteurs pour assurer qu'on réduit la taille du problème. par exemple $m(B \vee C) > m(\neg B) + m(C)$.

B. Wack (UGA) Déduction Naturelle Février 2025 11 / 34

Remarque 3.4.2

La preuve de complétude est constructive, c'est-à-dire qu'elle donne un algorithme pour construire une preuve de A dans Γ .

Cependant les preuves ainsi construites peuvent être longues.

L'outil

```
http://teachinglogic.univ-grenoble-alpes.fr/DN/construit des preuves plus efficaces.
```

Il utilise les tactiques « optimisées » présentées section 3.2.

Par exemple, pour prouver $B \lor C$:

- Essayez d'abord de prouver B.
- ► Si vous échouez, essayez de prouver C.
- ▶ Sinon, utilisez la tactique 10 (prouver C sous l'hypothèse $\neg B$).

On cherche à prouver A dans l'environnement Γ .

Liste de 13 tactiques à utiliser dans l'ordre!

- ► Tactiques 1 à 3 : la preuve est terminée
- ► Tactiques 4 à 6 : preuve guidée par la formule à prouver (règles I)
- ► Tactiques 7 à 9 : preuve guidée par l'environnement (règles E)
- ► Tactiques 10 à 13 : raisonnement par l'absurde

Tactique 1 (trivial)

Si $A \in \Gamma$ alors la preuve obtenue est vide.

Tactique 2 (trivial + intro)

Si A est la conséquence d'une règle dont les prémisses sont dans Γ , alors la preuve obtenue est « A ».

Tactique 3 (Efq)

Si Γ comporte une contradiction, c'est-à-dire une formule B et une formule $\neg B$,

alors la preuve obtenue est $\ll \perp$, $A \gg$.

Si
$$A = B \wedge C$$
 alors:

contexte	preuve	justification
Γ	:	:
Γ	В	
Г	i	:
Γ	С	
Γ	$B \wedge C$	$\wedge I$

Les preuves peuvent échouer (si $\Gamma \not\models A$). Ici, si la preuve de B ou C échoue, celle de A aussi.

Par la suite on ne signale plus les cas d'échecs, sauf s'il faut essayer une autre preuve.

Si $A = B \Rightarrow C$, alors prouver C sous l'hypothèse B:

contexte	preuve	justification
Γ,Β	Supposons B	
Γ, <i>B</i>	:	:
Γ, <i>B</i>	С	
Γ	Donc $B\Rightarrow C$	$\Rightarrow I$

Si $A = B \lor C$, alors prouver B:

contexte	preuve	justification
Г	÷	:
Γ	В	
Γ	$B \lor C$	∨ <i>I</i> 1

Si la preuve de *B* échoue alors prouver *C* :

contexte	preuve	justification
Г	:	:
Γ	С	
Г	$B \lor C$	∨ <i>I</i> 2

Si la preuve de *C* échoue aussi, essayer les tactiques suivantes.

20 / 34

Prouver une disjonction (non-triviale) (exemple 3.1.12)

Prouver que $\neg A \lor B$ dans l'environnement $A \Rightarrow B$.

environnement				
référence		formule		
(i)		$A \Rightarrow B$		
contexte	numero	preuve	justification	
1	1	Supposons $\neg(\neg A \lor B)$		
1,2	2	Supposons A		
1,2	3	В	⇒ <i>E (i)</i> , 2	
1,2	4	$\neg A \lor B$	∨ <i>I</i> 2 3	
1,2	5	上	\Rightarrow E 1, 4	
1	6	Donc ¬A	\Rightarrow 12, 5	
1	7	$\neg A \lor B$	∨ <i>I</i> 1 6	
1	8	<u></u>	$\Rightarrow E$ 1, 7	
	9	Donc $\neg\neg(\neg A \lor B)$	⇒ <i>I</i> 1, 8	
	10	$\neg A \lor B$	RAA 9	

Arbre (exemple 3.1.12)

Donnez la représentation en arbre de la preuve précédente :

(exemple 3.1.12)

la représentation en arbre de la preuve précédente :
$$\frac{(i)A \Rightarrow B \quad (2)A}{(3)B} \Rightarrow E$$

$$\frac{(1)\neg(\neg A \lor B)}{(4)\neg A \lor B} \xrightarrow{(4)\neg A \lor B} \lor 2$$

$$\frac{(5)\bot}{(6)\neg A} \Rightarrow I[2]$$

$$\frac{(5)\bot}{(7)\neg A \lor B} \lor 1$$

$$\frac{(8)\bot}{(7)\neg A \lor B} \Rightarrow E$$

$$\frac{(8)\bot}{(9)\neg \neg(\neg A \lor B)} \Rightarrow I[1]$$

$$\frac{(9)\neg \neg(\neg A \lor B)}{(10)\neg A \lor B} \xrightarrow{RAA}$$
nement est constitué des formules portées par les feuilles vées

L'environnement est constitué des formules portées par les feuilles non-enlevées.

Intuitionnisme et constructivisme (Brouwer, 1881-1966)

Dans la suite de Poincaré, il fonde (en 1918) la philosophie **intuitionniste** : les mathématiques doivent manipuler des objets accessibles à l'intuition.

- refus des objets infinis comme dans la théorie des ensembles
- en particulier notion de réel constructible = algorithme qui produit ses décimales

Exemple de preuve non constructive : supposons P(0) et $\neg P(2)$. Alors $\exists x (P(x) \land \neg P(x+1))$... mais on ne sait pas dire si x=0 ou x=1 est le « bon » témoin pour cette propriété.

Les règles d'introduction du \vee explicitent lequel des cas est vrai : suivre le raisonnement pas à pas constitue un *algorithme*!

En revanche la règle $\frac{\neg \neg A}{A}$ permet de contourner cette contrainte.

Si $B \wedge C$ est dans l'environnement, alors prouver A à partir des formules B, C, qui remplacent $B \wedge C$ dans l'environnement :

contexte	preuve	justification
Γ, <i>B</i> ∧ <i>C</i>	В	<i>∧E</i> 1
Γ , $B \wedge C$	С	<i>∧E</i> 2
$\Gamma, B \wedge C$	÷	:
$\Gamma, B \wedge C$	Α	

Si $B \lor C$ est dans l'environnement, alors :

▶ prouver *A* sous l'hypothèse *B* puis sous l'hypothèse *C*

contexte	preuve	justification
$\Gamma, B \lor C, B$	Supposons B	
Γ, <i>B</i> ∨ <i>C</i> , <i>B</i>	:	:
Γ, <i>B</i> ∨ <i>C</i> , B	Α	
$\Gamma, B \lor C$	Donc $B \Rightarrow A$	$\Rightarrow I$
$\Gamma, B \lor C, C$	Supposons $oldsymbol{\mathcal{C}}$	
$\Gamma, B \lor C, C$	Ė	:
$\Gamma, B \lor C, C$	Α	
$\Gamma, B \lor C$	Donc $C \Rightarrow A$	$\Rightarrow I$
$\Gamma, B \lor C$	Α	∨E

Une preuve avec une disjonction comme hypothèse

Montrez que $\neg A \lor \neg B \Rightarrow \neg (A \land B)$.

contexte	numéro	preuve	justification
1	1	Supposons $\neg A \lor \neg B$	
1,2	2	Supposons $A \wedge B$	
1,2	3	A	∧ <i>E</i> 2
1,2	4	В	∧ <i>E</i> 2
1,2,5	5	Supposons ¬A	
1,2,5	6	<u></u>	$\Rightarrow E$ 3,5
1,2	7	Donc $\neg A \Rightarrow \bot$	<i>⇒ I</i> 5,6
1,2,8	8	Supposons $\neg B$	
1,2,8	9	<u></u>	$\Rightarrow E 4.8$
1,2	10	Donc $\neg B \Rightarrow \bot$	⇒ <i>I</i> 8,9
1,2	11	<u></u>	∨ <i>E</i> 1,7,10
1	12	Donc $\neg (A \land B)$	⇒ <i>I</i> 2,11
	13	Donc $\neg A \lor \neg B \Rightarrow \neg (A \land B)$	⇒ <i>I</i> 1,12

Tactiques 9 à 13 (tiers exclus)

Si:

- ▶ une autre formule est dans l'environnement $(\neg(B \lor C), \neg(B \land C), \neg(B \Rightarrow C), B \Rightarrow C)$
- ou si A = B ∨ C et qu'on n'a pas réussi à prouver B ni C directement

Alors:

- ▶ on remplace ces formules par des formules plus simples $(\neg B, \neg C, \dots$ selon les cas)
- on complète la preuve par les sous-preuves P1, P2, ...P7
 (demandées à l'exercice 59)

Exemple : la formule de Peirce $((p \Rightarrow q) \Rightarrow p) \Rightarrow p$

- 1. Tactique 5 (\Rightarrow I)
- 2. Tactique 13
- 3. Tactique 12
- 4. Tactique 1

```
Supposons (p \Rightarrow q) \Rightarrow p
   Preuve P2 de \neg(p \Rightarrow q) \lor p à partir de (p \Rightarrow q) \Rightarrow p
    Supposons \neg(p \Rightarrow q)
     preuve P6 de p à partir de \neg(p \Rightarrow q)
   Donc \neg(p \Rightarrow q) \Rightarrow p
    Supposons p
     preuve vide (car p est dans les hypothèses)
   Donc p \Rightarrow p
Donc ((p \Rightarrow q) \Rightarrow p) \Rightarrow p
```

28 / 34

L'exemple du cours en Déduction Naturelle

contexte	numero	preuve	justification
1	1	Supposons	
		$(p \Rightarrow \neg j) \land (\neg p \Rightarrow j) \land (j \Rightarrow m)$	
1	2	$\neg p \Rightarrow j$	<i>∧E</i> 1
1	3	$j \Rightarrow m$	∧ <i>E</i> 1
1,4	4	Supposons $\neg (m \lor p)$	
1,4,5	5	Supposons <i>p</i>	
1,4,5	6	$m \lor p$	∨ <i>1</i> 5
1,4,5	7	<u></u>	\Rightarrow E 4,6
1,4	8	Donc ¬ p	⇒ <i>I</i> 5,7
1,4	9	j	⇒ <i>E</i> 2, 8
1,4	10	m	\Rightarrow E 3, 9
1,4	11	$m \lor p$	<i>∨I</i> 10
1,4	12	<u></u>	\Rightarrow E 4, 11
1	13	Donc $\neg\neg(m\lor p)$	⇒ <i>I</i> 4, 13
1	14	$m \lor p$	<i>RAA</i> 13

29 / 34

Aujourd'hui

- ► La Déduction Naturelle propositionnelle est correcte et complète.
- ► Tactiques pour la construction d'une preuve

Preuves automatiques

Pour produire automatiquement des preuves sous forme de tableau, on recommande d'utiliser le logiciel (il implémente les treize tactiques précédentes):

```
http://teachinglogic.univ-grenoble-alpes.fr/DN/
```

Plan du Semestre

- ► Logique propositionnelle
- Résolution propositionnelle
- Déduction naturelle propositionnelle *
- ► Pas de cours le 20/2 (forum des poursuites d'études)
- Logique du premier ordre

PARTIEL

- Base de la démonstration automatique (« résolution au premier ordre »)
- Déduction naturelle au premier ordre

EXAMEN

Quizz d'entraînement

```
Chapitre 1:
   https:
   //moodle.caseine.org/mod/quiz/view.php?id=77877

Chapitre 2:
   https:
   //moodle.caseine.org/mod/quiz/view.php?id=78253

Chapitre 3:
   https:
   //moodle.caseine.org/mod/quiz/view.php?id=78255
```