#HW1 Successive Approximation summary report

♦ Group member

- 1. Department ESS, Name 林士登, ID: 110011207
- 2. Department EE , Name 陳立珩, ID : 110011222

♦ Contribution

- 1. 林士登 Software Program, Verilog RTL code, Testbench, Synthesis, Layout testing and Simulations, Final summary report
- 2. 陳立珩 Verilog RTL code, Testbench, Synthesis, Layout testing and Simulations

♦ Outline

- 1. Software code simulation
- 2. Verilog code / RTL simulation
- 3. Gate-level synthesis / Gate simulation report
- 4. Layout generation
- 5. Post-layout simulation report
- 6. Waveform comparison (RTL / pre-layout / post-layout)

♦ Results and Analysis

1. Software program - C

('hw1.c' file is included in the submit area)

```
PS C:\Users\User\Desktop\verilog_test> cd "c:\Users\User\Desktop\verilog_test\"; if ($?) { gcc hw1.c -o hw1 }; if ($?) { .\hw1 }
Corresponding y: 549.60
Closest x: 104
Closest x binary: 01101000

Corresponding y: 799.20
Closest x: 208
Closest x binary: 11010000
```

The picture above is the output result of two input y values of 550 and 800, which are 104 and 208, which makes y=104*2.4+300=549.6 and y=208*2.4+300=799.2 the closest values to the inputs.

Algorithm: To find the corresponding x, start with initializing the guessing number x, secondly, utilize the successive approximation and binary search concept with variables such as upper, lower and mid, and finally the latest result mid variable passes to the output x.

2. Verilog code and RTL simulation

('hw1.v' Verilog code file is included in the submit area)

The picture above is the simulation result of RTL coding, including inputs of clk with a period of 10ns, rst_n, start, state[1:0], done, y_input[9:0] and an output x guess[7:0].

Algorithm: The algorithm is similar to the C code and adds additional states inclusive of IDLE, CALC and FINISH to form a FSM. The initial state IDLE waits for the start signal to pull up, x_guess is reset to 0 and when start is pulled up to 1, y_input is subsequently read in. The second state CALC then do the calculations, if the calculations are not done then jump back to itself, otherwise jump to FINISH state, and done is ultimately pulled up to 1 and the final x_guess represents the answer.

3. Synthesized netlist and Gate-level-simulation

('hwl syn.v' synthesized code file is included in the submit area)

The picture above is the simulation result of sythesized netlist hw1_syn.v The maximum operating speed is period = 6ns

Area Report

```
Number of ports:
                                                  362
     Number of
               nets:
                                                 1716
15
16
     Number of cells:
                                                 1303
     Number of combinational cells:
                                                 1242
17
     Number of sequential cells:
                                                   26
18
19
     Number of macros/black boxes:
                                                    A
     Number of buf/inv:
                                                  318
28
     Number of references:
                                                   71
22
     Combinational area:
                                         5833.900868
23
     Buf/Inv area:
                                           681.609622
                                           430.416008
     Noncombinational area:
25
     Macro/Black Box area:
26
                                             0.000000
                                               (No wire load specified)
     Net Interconnect area:
                                   undefined
28
     Total cell area:
                                         6264.316876
```

- 1. The total area shown in the 'hw1_syn.report' file is 6264.316876 um².
- 2. The number of final gate count is 6264.316876 / 2.8224 = 2219.5.

Power Report

194		Internal	Switching	Leakage	Total		
195	Power Group	Power	Power	Power	Power	(%)
196							
197	io_pad	0.0000	0.0000	0.0000	0.0000	(0.00%)
198	memory	0.0000	0.0000	0.0000	0.0000	(0.00%)
199	black_box	0.0000	0.0000	0.0000	0.0000	(0.00%)
200	clock_network	0.0000	0.0000	0.0000	0.0000	(0.00%)
201	register	3.3694e-02	6.0592e-04	1.1759e+06	3.5476e-02	(33.55%)
202	sequential	0.0000	0.0000	0.0000	0.0000	(0.00%)
203	combinational	2.6790e-02	1.6128e-02	2.7361e+07	7.0279e-02	(66.45%)
204							
205	Total	6.0484e-02 mW	1.6734e-02 mW	2.8537e+07 pW	0.1058	mW	

- 1. Cell Internal Power = $60.4845 \,\mathrm{uW}$ (78%)
- 2. Net Switching Power = 16.7336 uW (22%)
- 3. Total Dynamic Power = $60.4845 + 16.7336 = 77.2181 \,\text{uW} (100\%)$
- 4. Cell Leakage Power = 28.5369 uW
- 5. Total Power = 0.1058 mW

4. Layout generation

1. Physical view

2. Floorplan view

3. Amoeba view

Area Report

Layout total area = 6044.170 um^2 .

innovus 1> report_area										
Hinst Name	Module Name	Inst Count	Total Area							
for this and which		4202								
functional_unit		1202	6044.170							
add_54	functional_unit_DW01_add_4	10	139.709							
add_66	functional_unit_DW01_inc_2	7	69.149							
add_93	functional_unit_DW01_inc_1	7	74.088							
add_97	functional_unit_DW01_inc_0	7	69.149							
div_55	functional_unit_DW_div_uns_2	85	402.192							
div_82	functional_unit_DW_div_uns_10	166	590.587							
div_93	functional_unit_DW_div_uns_0	98	450.878							
r450	functional_unit_DW_div_uns_3	88	408.542							
sub_56_2	functional_unit_DW01_sub_6	15	170.050							
sub_57_2	functional_unit_DW01_sub_5	15	170.050							
sub_83	functional_unit_DW01_sub_7	95	306.936							
sub_84	functional_unit_DW01_sub_3	15	170.050							
sub_94	functional_unit_DW01_sub_1	14	169.344							
sub_95	functional_unit_DW01_sub_0	18	176.400							

Power Report

```
Total Power: 0.64205708 51.7831%
Total Switching Power: 0.57938851 46.7288%
Total Leakage Power: 0.01845083 1.4881%
Total Power: 1.23989642

Ended Static Power Report Generation: (cpu=0:00:00, real=0:00:00, mem(process/total/peak)=1228.34MB/2775.43MB/1228.37MB)

Begin Creating Binary Database
Ended Creating Binary Database: (cpu=0:00:00, real=0:00:00, mem(process/total/peak)=1744.95MB/3553.85MB/1744.96MB)

Output file is .//functional_unit.rpt
```

- 1. Total Internal Power = 0.64206 mW
- 2. Total Switching Power = 0.579389 mW
- 3. Total Leakage Power = 0.018451 mW
- 4. Total Power = 1.239896 mW

5. Post-layout simulation

('hwl apr.v' post-layout netlist file is included in the submit area)

The picture above is the simulation result of post-layout netlist hw1_apr.v The maximum operating speed is period = 6ns

6. Waveform comparison

- 1. Done is not shown during the first two clock periods of gate-sim and post-sim.
- 2. Noise emerged during gate-sim and post-sim.