

TRIGONOMETRY

Chapter 6

Razones Trigonométricas de Ángulos Compuestos

TRIGONOMETRY

indice

01. Motivating Strategy 🕞

03. Helico Practice

02. Helico Theory

04. Helico WorsKhop 🕑

APORTES DE LOS ÁRABES A LA MATEMÁTICA

"Los árabes adoptaron y desarrollaron la trigonometría hindú".

- Al-Battani (astrónomo) siglo IX fue el primero que aplicó el álgebra a la trigonometría.
- En el siglo X hicieron su aparición la secante y la cosecante.
- Las funciones seno y coseno fueron incorporadas de los hindúes.
- Las funciones tangente y cotangente sí son de origen árabe.

MOTIVATING STRATEGY

Material Digital

Resumen O

HELICO THEORY

IDENTIDADES TRIGONOMÉTRICAS DE ÁNGULOS COMPUESTOS

I) PARA LA SUMA DE DOS ÁNGULOS:

$$sen(\alpha + \beta) = sen\alpha cos\beta + cos\alpha sen\beta$$

$$cos(\alpha + \beta) = cos\alpha cos\beta - sen\alpha sen\beta$$

$$\tan(\alpha + \beta) = \frac{\tan\alpha + \tan\beta}{1 - \tan\alpha \cdot \tan\beta}$$

II) PARA LA DIFERENCIA DE DOS ÁNGULOS:

$$sen(\alpha - \beta) = sen\alpha cos\beta - cos\alpha sen\beta$$

$$\cos(\alpha - \beta) = \cos\alpha \cos\beta + \sin\alpha \sin\beta$$

$$\tan(\alpha - \beta) = \frac{\tan\alpha - \tan\beta}{1 + \tan\alpha \cdot \tan\beta}$$

DE ÁNGULOS COMPUESTOS

$$sen(x + y).sen(x - y) = sen^2x - sen^2y$$

$$\cos(x+y).\cos(x-y) = \cos^2 x - \sin^2 y$$

$$tan x + tan y + tan(x + y).tan x.tan y = tan(x + y)$$

$$tan x - tan y - tan(x - y).tan x.tan y = tan(x - y)$$

Resolución de Problemas

Problema 01 2

Problema 02 2

Problema 03⁽²⁾

Problema 04 2

Problema 05 🕑

HELICO PRACTICE

Problema 01 🗵

Calcule el valor de sen16°.

Resolución

Recordar:

$$sen(\alpha - \beta) = sen\alpha cos\beta - cos\alpha sen\beta$$

sen16° =
$$\frac{4}{5} \cdot \frac{4}{5} - \frac{3}{5} \cdot \frac{3}{5} = \frac{16}{25} - \frac{9}{25}$$

$$\mathbf{sen16}^{\circ} = \frac{7}{25}$$

4

Problema 02 💿

 $k = sen50^{\circ}.cos20^{\circ} - sen20^{\circ}.cos50^{\circ}$

Resolución

 $k = sen50^{\circ}. cos20^{\circ} - sen20^{\circ}. cos50^{\circ}$

Recordar:

 $sen\alpha cos\beta - sen\beta cos\alpha = sen(\alpha - \beta)$

$$\Rightarrow$$
 K = sen($50^{\circ} - 20^{\circ}$)

$$K = sen30^{\circ}$$

$$K = \frac{1}{2}$$

Problema 03 2

Resolución

3

Si α y β son ángulos agudos, calcule

$$sen(\alpha + \beta) si$$

$$sen\alpha = \frac{12}{13} y tan\beta = \frac{3}{4}$$

$$sen \alpha = \frac{12}{13}$$

$$\Rightarrow \frac{13}{\alpha}$$

$$12$$

$$5$$

$$\tan \beta = \frac{3}{4}$$

sen(
$$\alpha + \beta$$
) = $\frac{12}{13} \cdot \frac{4}{5} + \frac{5}{13} \cdot \frac{3}{5} = \frac{48}{65} + \frac{15}{65}$

$$\operatorname{sen}(\alpha + \beta) = \frac{63}{65}$$

Resolución

Problema 04 🗇

Sarita ha planeado salir con sus amigas al cine y para esto pidió a sus papás que le adelanten sus propinas por sus buenas calificaciones, a lo que ellos con alegría le dieron 100M soles.

Determine la cantidad de dinero que le dieron si :

$$M = \frac{sen(\alpha - \theta) + sen\theta . cos\alpha}{sen\alpha . cos\theta}$$

Resolución

Recordar:

$$sen(\alpha - \beta) = sen\alpha cos\beta - cos\alpha sen\beta$$

Luego:

$$M = \frac{sen\alpha . cos\theta - cos\alpha . sen\theta + sen\theta . cos\alpha}{sen\alpha . cos\theta}$$

$$\mathbf{M} = \frac{\mathbf{sen}\alpha \cdot \mathbf{cos}\theta}{\mathbf{sen}\alpha \cdot \mathbf{cos}\theta} \implies \mathbf{M} = \mathbf{1}$$

Entonces:
$$100M = 100(1) = 100$$

: A Sarita le dieron 100 soles.

Problema 05 🗇

Jesús va a salir con sus amigos del trabajo y desea sacar efectivo del cajero; para esto recordó que cada botella de gaseosa está a 10M soles. Si durante la cena comprarán 6 botellas de gaseosa, determine el gasto total si:

$$M = \frac{sen3x cos2x + sen2x cos3x}{sen4x cosx + senx cos4x}$$

Resolución

$$M = \frac{\text{sen3x cos2x} + \text{sen2x cos3x}}{\text{sen4x cosx} + \text{senx cos4x}}$$

Recordar:

 $sen\alpha cos\beta + cos\alpha sen\beta = sen(\alpha + \beta)$

Luego:
$$M = \frac{\text{sen}(3x + 2x)}{\text{sen}(4x + x)} = \frac{\text{sen}5x}{\text{sen}5x} \implies M = 1$$

Gasto = 6 (10M soles) = 6 (10.1 soles)

∴ El gasto total fue de 60 soles.

Problemas Propuestos

Problema 06 🗵

Problema 07 2

Problema 08 🕑

Problema 09⁽²⁾

Problema 10 2

HELICO WORKSHOP

Problema 06 ②

Problema 08 ②

A)
$$\frac{\sqrt{6} + \sqrt{2}}{4}$$

$$B) \frac{\sqrt{6} - \sqrt{2}}{4}$$

C)
$$\frac{\sqrt{3} + \sqrt{1}}{2}$$

$$D) \frac{\sqrt{3} - \sqrt{1}}{2}$$

E)
$$\frac{\sqrt{3}}{2}$$

Reduzca.

C)
$$\frac{\sqrt{2}}{2}$$

D)
$$\frac{\sqrt{3}}{2}$$
 E) $\frac{1}{2}$

Si sen
$$\alpha = \frac{4}{5}$$
 y
sec $\beta = \frac{5}{3}$;
calcule $\cos(\alpha - \beta)$.

- A) 7/25 B) 24/25
- C) 1
- D) 12/13 E) 3/5

Problema 09 🗇

Problema 10 ⊘

Guillermo estaba discutiendo con su compañero Pablo, pues dice que los "1000E" soles que reciben es poco y que deberían recibir el doble. **Determine la cantidad** de soles que deberían recibir según Guillermo,

Si: $E = \frac{\sin(\alpha + \theta) - \sin \alpha \cdot \cos \theta}{\sin \theta \cdot \cos \alpha}$

A) 1000 soles B) 2000 soles

C) 3000 soles D) 1200 soles

E) 2300 soles

Maxi hablaba con su compañero Javier y le reclamaba que le debía de una pollada de "15Pcot(10x)" soles. Determine cuánto tiene que pagar Javier a Maxi, si:

$$P = \frac{\text{sen}7x \cdot \cos 3x + \sin 3x \cdot \cos 7x}{\cos 7x \cdot \cos 3x - \sin 7x \cdot \sin 3x}$$

A) 10 soles B) 20 soles

C) 15 soles D) 30 soles

E) 25 soles.

