

Pontifícia Universidade Católica do Rio Grande do Sul Escola Politécnica

Fundamentos de Redes de Computadores

Definição do Trabalho Final

Implementar uma aplicação com o protocolo UDP que simule o comportamento de um protocolo de aplicação transferência de arquivos orientado à conexão. Para tanto, os seguintes mecanismos deverão ser implementados pela aplicação:

- Estabelecimento e encerramento da conexão
- Seguenciamento das mensagens
- Controle de erro das mensagens
- Envio de dados (arguivos que serão selecionados pelo usuário).
- Controle de congestionamento

A aplicação deverá implementar três técnicas de controle de congestionamento utilizadas pelo protocolo TCP:

- Slow Start: A técnica Slow Start tem um crescimento exponencial. A ideia é que a aplicação comece com a transmissão de um pacote e vá aumentando a taxa de envio (2, 4, 8, 16...) à medida que as confirmações cheguem do destino.
- Congestion Avoidance: Esta técnica faz um crescimento linear e é utilizada após o Slow Start.

A aplicação terá que definir um **tamanho de janela de congestionamento** durante o **estabelecimento da conexão**, que será o limite do funcionamento da técnica de *Slow Start* e início do *Congestion Avoidance*.

A retransmissão de um pacote poderá acontecer por *timeout*, sendo que a aplicação volta ao início do *Slow Start*, ou seja, começa a retransmissão com 1 pacote e vai crescendo exponencialmente.

Os **números de sequência** devem começar em zero e ir incrementando de acordo com a quantidade de pacotes que está sendo transmitida. O número do ACK representa o número de sequência mais 1, ou seja, indica o número do pacote que o destino deseja receber.

O controle de erro deve ser realizado pela própria aplicação através de um algoritmo de cálculo de CRC já existente. O valor do CRC deve ser incluído no pacote e o destino, ao recebê-lo, deve recalcular o CRC para identificar

se o pacote chegou corretamente. Caso o pacote esteja correto, um ACK do número de sequência mais 1 deve ser enviado. Caso contrário, o destino deve somente descartar o pacote recebido.

Todo o pacote recebido pelo destino deve ser confirmado e o destino deve ter um controle dos números de sequência que já recebeu. Ele não pode confirmar a recepção de um pacote com um determinado número de sequência, se o pacote com número de sequência menor não foi confirmado. Neste caso, um ACK com o número de sequência do último pacote já confirmado deve ter transmitido.

O usuário que utiliza a aplicação deve escolher um **arquivo qualquer** do sistema operacional para enviar para o destino, sendo esse passado como um parâmetro. Este arquivo deverá ser **dividido** em partes de **10 bytes** e enviado para o destino, seguindo a implementação das técnicas de controle de congestionamento mencionadas acima. O **destino**, conforme for recebendo todos os pacotes que fazem parte do arquivo original, deve **remontá-lo** e **salvá-lo** em um arquivo. **Todos os pacotes** do nível de aplicação devem ter **10 bytes**, inclusive o último pacote, assim a aplicação deve controlar o **padding**, caso o último pacote não chegue a esse valor.

Após a transmissão de todo o arquivo, iremos utilizar o comando *md5sum* ou *shasum* (na origem e no destino) para validar o recebimento correto do arquivo.

Quanto ao **tipo de sockets** a ser utilizado na aplicação para a comunicação, deve-se observar que a comunicação deve ser implementada com **socket UDP** (**Datagram Socket**), para envio e recebimento das mensagens.

Para que a perda de pacotes ocorra será necessário implementar um **módulo de inserção de falhas** que force a aplicação a inserir erros aleatoriamente nas mensagens. Este módulo deve trabalhar com alguma probabilidade para inserir erro nas mensagens.

Durante o **envio** e **recebimento** do arquivo, a aplicação deve imprimir um **log** na tela informando o que está acontecendo na transmissão. Será necessário utilizar um **sleep** para que seja possível visualizar a troca das mensagens.

Regras Gerais

Grupos: No máximo 03 alunos.

Data de entrega e apresentação: 17/06

Obs.: Todos participantes devem estar presentes

Entrega final no Moodle:

Código fonte comentado.

IMPORTANTE: Não serão aceitos trabalhos entregues fora do prazo. Trabalhos que não compilam ou que não executam não serão avaliados. Todos os trabalhos serão analisados e comparados. Caso seja identificada cópia de trabalhos, todos os trabalhos envolvidos receberão nota ZERO.