

Московский государственный университет имени М.В. Ломоносова
Факультет вычислительной математики и кибернетики
Кафедра оптимального управления

Царьков Денис Владимирович

Применения методов обучения с подкреплением для определения дозировки инсулина

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА

Научный руководитель:

ассистент кафедры ОУ А.И. Смирнов

Содержание

1	Введение			2
2	Обі	цая ст	руктура модели S2008	3
	2.1	Подко	ожное введение инсулина	3
	2.2	Глюко	озная система	4
	2.3	Погла	ощение углеводов	6
	2.4	Интер	остициальный инсулин	7
3	Пар	аметр	ры модели	8
4	Метрики оценки гликемического контроля в SimGlucose			
	4.1	Time	in Range (TIR)	8
	4.2	LBGI	(Low Blood Glucose Index)	9
	4.3	HBGI	(High Blood Glucose Index)	9
	4.4	Прим	ечания	10
5	Иследование применения алгоритма Deep Q-Network (DQN) для для опре-			
	дел	целения дозировки инсулина		
	5.1	Алгор	ритм Deep Q-Network (DQN)	11
		5.1.1	Основные концепции	11
		5.1.2	Математическая постановка	11
		5.1.3	Архитектура алгоритма	11
		5.1.4	Имплементация среды для обучения RL агента	12
		5.1.5	Проектирование агента	12
	5.2	Описания алгоритма BBController		
		5.2.1	Базовый PID-компонент	13
		5.2.2	Фильтрация данных CGM	13
		5.2.3	Коррекция на углеводы (СНО)	13
		5.2.4	Динамические коэффициенты PID	13
		5.2.5	Ограничение скорости инфузии	14
		5.2.6	Защита от гипогликемии	14
		5.2.7	Итоговая формула BBController	14
	5.3	Сравн	нение результатов BBController и DQN	15
		5.3.1	Реакция на приёмы пищи	15
		5.3.2	Стабильность контроля	16
		5.3.3	Вычислительная эффективность	16
		5.3.4	Практические рекомендации	16
Л	итера	атура		17

1 Введение

Модель UVA/Padova Type 1 Diabetes Metabolic Simulator (T1DMS) 2008 года (S2008) представляет собой наиболее полную и детализированную математическую модель глюкозо-инсулиновой системы при диабете 1 типа. Данная модель была разработана на основе фундаментальных работ [1] и впоследствии расширена в исследованиях [2], где была представлена виртуальная популяция из 300 пациентов с различными метаболическими параметрами.

Основу модели составляют система нелинейных дифференциальных уравнений, описывающих:

- кинетику подкожно вводимого инсулина
- динамику всасывания углеводов из желудочно-кишечного тракта
- взаимодействие глюкозы и инсулина на уровне периферических тканей
- почечную экскрецию глюкозы
- эндогенную продукцию глюкозы печенью

В работе [3] модель была дополнительно усовершенствована, что позволило более точно воспроизводить клинические данные. Особое внимание было уделено описанию:

- задержкам действия инсулина
- индивидуальной вариабельности параметров
- нелинейным эффектам взаимодействия подсистем

В данной работе представлен полный вывод уравнений модели S2008 с подробными пояснениями каждого компонента. Особый акцент сделан на анализе:

- структурной идентифицируемости параметров
- чувствительности модели к вариациям ключевых коэффициентов
- возможностям упрощения системы уравнений без потери точности

Полученные результаты позволяют глубже понять механизмы регуляции гликемии и могут быть использованы для разработки новых алгоритмов управления уровнем глюкозы в системах искусственной поджелудочной железы.

2 Общая структура модели S2008

Модель S2008 состоит из следующих подсистем:

- 1. Подкожное введение инсулина (фармакокинетика инсулина).
- 2. Глюкозная система (эндогенная продукция, утилизация, почечная экскреция).
- 3. Поглощение углеводов (скорость появления глюкозы из пищи, Ra).
- 4. Интерстициальный инсулин (действие инсулина на глюкозу).
- 5. Виртуальная популяция (индивидуальные параметры для 300 субъектов).

Модель описывается системой из **13 дифференциальных уравнений** с примерно 30–40 параметрами, которые варьируются для каждого виртуального субъекта. Параметры извлечены из клинических данных и задаются в виде распределений.

2.1 Подкожное введение инсулина

Эта подсистема описывает абсорбцию подкожного инсулина в плазму. Она состоит из двух компартментов для подкожного инсулина и одного для плазменного инсулина.

$$\begin{split} \dot{I}_{sc1}(t) &= -(k_d + k_{a1})I_{sc1}(t) + u(t), \quad I_{sc1}(0) = 0 \quad \text{(pmol/kg)} \\ \dot{I}_{sc2}(t) &= k_dI_{sc1}(t) - k_{a2}I_{sc2}(t), \quad I_{sc2}(0) = 0 \quad \text{(pmol/kg)} \\ \dot{I}_p(t) &= k_{a2}I_{sc2}(t) - k_eI_p(t), \quad I_p(0) = I_{pb} \quad \text{(pmol/L)} \\ I(t) &= \frac{I_p(t)}{V_I} \quad \text{(pmol/L)} \end{split}$$

Описание:

- I_{sc1}, I_{sc2} масса инсулина в двух подкожных компартментах (пмоль/кг).
- I_p масса инсулина в плазме (пмоль).
- I(t) концентрация инсулина в плазме (пмоль/л).
- u(t) скорость введения инсулина (пмоль/кг/мин).
- k_d константа диффузии между подкожными компартментами (мин $^{-1}$).
- k_{a1}, k_{a2} константы абсорбции (мин⁻¹).
- k_e константа элиминации инсулина (мин⁻¹).
- V_I объём распределения инсулина (л/кг).

• I_{pb} — базовый уровень плазменного инсулина (пмоль/л).

Примечание: В S2008 подразумевается, что при диабете 1 типа эндогенная секреция инсулина отсутствует, поэтому весь инсулин поступает извне (u(t)).

2.2 Глюкозная система

Эта подсистема описывает динамику глюкозы в плазме и тканях, включая эндогенную продукцию (EGP), утилизацию (U), скорость появления глюкозы из пищи (Ra) и почечную экскрецию (E).

$$\begin{split} \dot{Q}_1(t) &= -[F_{01} + X(t)]Q_1(t) + k_{12}Q_2(t) - E(t) + Ra(t) + EGP(t), \quad Q_1(0) = Q_{1b} \quad (\text{mg/kg}) \\ \dot{Q}_2(t) &= -[k_{21} + Y(t)]Q_2(t) + k_{12}Q_1(t), \quad Q_2(0) = Q_{2b} \quad (\text{mg/kg}) \\ G_p(t) &= \frac{Q_1(t)}{V_g} \quad (\text{mg/dL}) \\ G_t(t) &= \frac{Q_2(t)}{V_t} \quad (\text{mg/dL}) \end{split}$$

Описание:

- Q_1, Q_2 масса глюкозы в плазме и тканях соответственно (мг/кг).
- G_p, G_t концентрация глюкозы в плазме и тканях (мг/дл).
- ullet V_g, V_t объёмы распределения глюкозы в плазме и тканях (дл/кг).
- F_{01} инсулин-независимая утилизация глюкозы (мин $^{-1}$).
- k_{12}, k_{21} константы обмена глюкозы между плазмой и тканями (мин $^{-1}$).
- X(t) инсулин-зависимая утилизация в плазме (мин $^{-1}$).
- Y(t) инсулин-зависимая утилизация в тканях (мин $^{-1}$).
- E(t) почечная экскреция глюкозы (мг/кг/мин).
- Ra(t) скорость появления глюкозы из пищи (мг/кг/мин).
- EGP(t) эндогенная продукция глюкозы (мг/кг/мин).
- Q_{1b}, Q_{2b} базовые значения массы глюкозы.

Инсулин-зависимая утилизация:

$$\dot{X}(t) = -p_{2U}X(t) + p_{3U}(I(t) - I_b), \quad X(0) = 0 \quad (\min^{-1})$$

 $\dot{Y}(t) = -p_{2U}Y(t) + p_{3U}(I(t) - I_b), \quad Y(0) = 0 \quad (\min^{-1})$

Где:

- p_{2U}, p_{3U} параметры, описывающие динамику действия инсулина на утилизацию.
- I_b базовая концентрация инсулина (пмоль/л).

Эндогенная продукция глюкозы (EGP):

$$EGP(t) = \max(0, EGP_b - k_{p1}[G_p(t) - G_{pb}] - k_{p2}I_d(t)), \quad I_d(0) = 0 \quad (\text{mg/kg/min})$$

$$\dot{I}_d(t) = -k_iI_d(t) + k_i(I(t) - I_b), \quad I_d(0) = 0 \quad (\text{pmol/L})$$

Где:

- EGP_b базовая продукция глюкозы (мг/кг/мин).
- k_{p1} параметр подавления EGP глюкозой (мин $^{-1}$).
- k_{p2} параметр подавления EGP инсулином (мг/кг/мин на пмоль/л).
- $I_d(t)$ отсроченное действие инсулина на EGP (пмоль/л).
- k_i константа скорости действия инсулина на EGP (мин $^{-1}$).
- G_{pb} базовая концентрация глюкозы в плазме (мг/дл).

Почечная экскреция:

$$E(t) = \begin{cases} k_{e1}(G_p(t) - k_{e2}), & \text{if } G_p(t) > k_{e2} \\ 0, & \text{otherwise} \end{cases}$$
 (mg/kg/min)

Где:

- k_{e1} константа скорости экскреции (мин⁻¹).
- ullet k_{e2} порог глюкозы для экскреции (мг/дл).

2.3 Поглощение углеводов

Эта подсистема моделирует абсорбцию глюкозы из пищи через желудок и кишечник.

$$\dot{Q}_{sto1}(t) = -k_{gri}Q_{sto1}(t) + D\delta(t), \quad Q_{sto1}(0) = 0 \quad (\text{mg})$$

$$\dot{Q}_{sto2}(t) = k_{gri}Q_{sto1}(t) - k_{empt}(Q_{sto})Q_{sto2}(t), \quad Q_{sto2}(0) = 0 \quad (\text{mg})$$

$$Q_{sto}(t) = Q_{sto1}(t) + Q_{sto2}(t) \quad (\text{mg})$$

$$k_{empt}(Q_{sto}) = k_{min} + \frac{k_{max} - k_{min}}{2} \left[\tanh(\alpha(Q_{sto} - bD)) - \tanh(\beta(Q_{sto} - cD)) \right] \quad (\text{min}^{-1})$$

$$Ra(t) = \frac{fk_{empt}(Q_{sto})Q_{sto2}(t)}{BW} \quad (\text{mg/kg/min})$$

Описание:

- Q_{sto1}, Q_{sto2} масса глюкозы в желудке и кишечнике (мг).
- Q_{sto} общая масса глюкозы в желудочно-кишечном тракте (мг).
- k_{gri} константа скорости перехода из желудка в кишечник (мин $^{-1}$).
- k_{empt} константа скорости опорожнения кишечника, зависящая от Q_{sto} (мин $^{-1}$).
- k_{max}, k_{min} максимальная и минимальная скорости опорожнения (мин $^{-1}$).
- α, β, b, c параметры, определяющие форму зависимости k_{empt} .
- \bullet f доля абсорбированной глюкозы (безразмерная).
- D количество углеводов (мг).
- *BW* масса тела (кг).
- ullet $\delta(t)$ импульсный ввод углеводов.

2.4 Интерстициальный инсулин

- In Silico Sensor
- Преобразование плазменной глюкозы G_p в интерстициальную G_{int} (Interstitial Delay):

$$\dot{G}_{int}(t) = -\frac{1}{\tau}G_{int}(t) + \frac{1}{\tau}G_p(t), \quad G_{int}(0) = G_p(0) \quad (\text{M}\Gamma/\text{Д}\pi)$$
 (1)

где

$$G_p(t)=rac{Q_1(t)}{V_a}, \quad V_gpprox 0.16\,{
m дл/кг}, \quad aupprox 5-15\,{
m мин}$$

характеризует задержку диффузии глюкозы из плазмы в интерстициальную жидкость.

• Учёт ошибок (Calibration Errors, Loss of Sensitivity):

$$G_{measured}(t) = \text{sensitivity}(t) \cdot G_{int}(t) + \text{error}(t) \quad (\text{мг/дл})$$
 (3)

где

sensitivity
$$(t) = 1 - \kappa t$$
, $\kappa \approx 0.001 \,\mathrm{gehs}^{-1}$ (4)

$$\operatorname{error}(t) \sim \mathcal{N}(0, \sigma), \quad \sigma \approx 5-10\% \text{ or } G_{int}$$
 (5)

Результат: $G_{measured}$ передаётся в Controller с учётом задержек и ошибок.

3 Параметры модели

Модель S2008 включает множество параметров, которые варьируются для каждого из 300 виртуальных субъектов (100 взрослых, 100 подростков, 100 детей). Примеры параметров и их типичные значения (для взрослого субъекта):

- V_g : 1.45 дл/кг (объём распределения глюкозы)
- V_I : 0.04 л/кг (объём распределения инсулина)
- k_{a1}, k_{a2} : 0.025, 0.055 мин⁻¹ (абсорбция инсулина)
- k_e : 0.138 мин⁻¹ (элиминация инсулина)
- EGP_b : 1.5–2.0 мг/кг/мин (базовая продукция глюкозы)
- k_{p1} : 0.0005 мин⁻¹ (подавление EGP глюкозой)
- k_{p2} : 0.02 мг/кг/мин на пмоль/л (подавление EGP инсулином)
- k_{e1} : 0.0005 мин⁻¹ (скорость экскреции)
- k_{e2} : 180 мг/дл (порог экскреции)
- k_{gri} : 0.055 мин^{-1} (переход из желудка)
- k_{max}, k_{min} : 0.055, 0.008 мин $^{-1}$ (опорожнение кишечника)
- f: 0.9 (доля абсорбированной глюкозы)

Эти параметры задаются в виде совместных распределений, основанных на клинических данных, чтобы отразить межиндивидуальную вариабельность.

4 Метрики оценки гликемического контроля в SimGlucose

4.1 Time in Range (TIR)

Мера времени нахождения глюкозы в целевом диапазоне (70–180 мг/дл):

$$TIR = \frac{1}{N} \sum_{t=1}^{N} \mathbb{I}_{[70,180]}(G(t)) \times 100\%$$
(6)

где $\mathbb{I}_{[70,180]}$ — индикаторная функция (1 при $G(t) \in [70,180]$, иначе 0).

Интерпретация:

- $\bullet > 70\%$ отличный контроль
- 50-70% удовлетворительный контроль
- $\bullet < 50\%$ неудовлетворительный контроль

4.2 LBGI (Low Blood Glucose Index)

Индекс риска гипогликемии ($G(t) < 70 \,\mathrm{Mr/дл}$):

$$LBGI = \frac{1}{N} \sum_{\substack{t=1\\G(t) < 70}}^{N} 10 \cdot (1.509 \cdot (\ln G(t))^{1.084} - 5.381)^{2}$$
 (7)

Клиническая значимость:

- Прогнозирует риск тяжелых гипогликемий (<54 мг/дл)
- Учитывает нелинейную зависимость риска от уровня глюкозы

Нормы:

- \bullet <2.5 низкий риск
- **2.5–5.0** умеренный риск
- $\bullet >$ 5.0 высокий риск

4.3 HBGI (High Blood Glucose Index)

Индекс риска гипергликемии ($G(t) > 180 \,\mathrm{Mr}/\mathrm{дл}$):

$$HBGI = \frac{1}{N} \sum_{\substack{t=1\\G(t)>180}}^{N} 10 \cdot (1.509 \cdot (\ln G(t))^{1.084} - 5.381)^{2}$$
(8)

Клиническая значимость:

- Отражает риск долгосрочных осложнений
- Коррелирует с уровнем гликированного гемоглобина (HbA1c)

Нормы:

- \bullet <5.0 низкий риск
- **5.0–10.0** умеренный риск
- $\bullet > 10.0$ высокий риск

4.4 Примечания

- Все метрики рассчитываются по завершении периода наблюдения (обычно 24 часа)
- ullet Для CGM-данных рекомендуемый период анализа 2 недели
- Оптимальные целевые значения:
 - TIR >70%, CV <36%
 - LBGI $<\!2.5,\,\mathrm{HBGI}<\!5.0$

Иследование применения алгоритма Deep Q-Network (DQN) для для определения дозировки инсулина

5.1 Алгоритм Deep Q-Network (DQN)

5.1.1 Основные концепции

Алгоритм Deep Q-Network (DQN) [14] представляет собой комбинацию методов обучения с подкреплением (Reinforcement Learning, RL) и глубоких нейронных сетей. Он был разработан для решения задач принятия решений в условиях больших пространств состояний. Основная идея заключается в аппроксимации функции ценности действия (Q-функции) с помощью глубокой нейронной сети.

5.1.2 Математическая постановка

В основе DQN лежит Bellman equation для оптимальной Q-функции:

$$Q^*(s,a) = \mathbb{E}_{s' \sim \mathcal{P}} \left[r + \gamma \max_{a'} Q^*(s',a') \mid s, a \right], \tag{9}$$

где:

- s текущее состояние,
- а выбранное действие,
- r полученное вознаграждение,
- γ коэффициент дисконтирования ($0 \le \gamma < 1$),
- s' следующее состояние,
- \mathcal{P} модель перехода между состояниями.

5.1.3 Архитектура алгоритма

Основные компоненты DQN:

- 1. **Experience Replay**: Буфер воспроизведения опыта для хранения переходов (s_t, a_t, r_t, s_{t+1}) , что позволяет:
 - Уменьшить корреляцию между последовательными выборками
 - Повысить эффективность использования данных
- 2. **Target Network**: Отдельная сеть для вычисления целевых значений, которая обновляется периодически:

$$y_i = r_i + \gamma \max_{a'} Q(s_{i+1}, a'; \theta^-)$$
 (10)

где θ^- – параметры целевой сети.

3. Глубокая нейронная сеть: Аппроксимирует Q-функцию:

$$Q(s, a; \theta) \approx Q^*(s, a) \tag{11}$$

5.1.4 Имплементация среды для обучения RL агента

На базе библиотеки Simglucose создана модифицированная среда SafeT1DEnv с ключевыми улучшениями:

- Введены **безопасные дозы инсулина** (0, 0.05, 0.1, 0.2 ЕД) вместо непрерывного пространства действий
- Реализован **механизм блокировки инсулина** при признаках гипогликемии (глюкоза <80 мг/дл или резкий спад)
- Расширено пространство наблюдений за счет:
 - Истории глюкозы за последние 10 измерений
 - Учета активного инсулина в крови
 - Тренда изменения глюкозы (Δg /мин)

5.1.5 Проектирование агента

- Использована нейросеть с архитектурой MLP (3 скрытых слоя по 64 нейрона)
- Реализована адаптивная стратегия исследования:
 - Уменьшение дозы при стабильной глюкозе
 - Автоматическое увеличение дозы при гипергликемии
- Введена штрафная система:
 - Жесткий штраф (-20) за гипогликемию
 - Прогрессивный штраф за гипергликемию
 - Бонус (+5) за нахождение в целевом диапазоне 80-140 мг/дл

5.2 Описания алгоритма BBController

5.2.1 Базовый PID-компонент

Классическая PID-формула модифицирована:

$$u_{\text{PID}}(t) = K_p \cdot e(t) + K_i \cdot \int_0^t e(\tau) \, d\tau + K_d \cdot \frac{de(t)}{dt},$$

где:

- $e(t) = G_{\text{target}} G_{\text{CGM}}(t)$ ошибка (разница между целевой и текущей глюкозой),
- $G_{\text{CGM}}(t)$ данные сенсора с шумом и задержкой,
- K_p, K_i, K_d коэффициенты, **адаптирующиеся** в зависимости от контекста.

5.2.2 Фильтрация данных CGM

BBController сглаживает зашумленные данные CGM перед расчетом ошибки:

$$G_{\text{filtered}}(t) = \alpha \cdot G_{\text{CGM}}(t) + (1 - \alpha) \cdot G_{\text{filtered}}(t - 1),$$

где $\alpha \in (0,1)$ — параметр фильтра (например, 0.7 для Dexcom).

5.2.3 Коррекция на углеводы (СНО)

Учитывает будущий рост глюкозы из-за еды:

$$u_{\text{CHO}}(t) = \beta \cdot \text{CHO}_{\text{active}}(t),$$

где:

- \bullet CHO $_{\rm active}(t)$ активные углеводы в крови (моделируются с задержкой 15–60 мин),
- β эмпирический коэффициент (например, 0.5 для подростков).

5.2.4 Динамические коэффициенты PID

Коэффициенты меняются в зависимости от уровня глюкозы:

$$K_p(t) = egin{cases} K_p^{ ext{high}} & ext{если } G(t) > 180, \ K_p^{ ext{mid}} & ext{если } 70 \leq G(t) \leq 180, \ K_p^{ ext{low}} & ext{если } G(t) < 70, \end{cases}$$

5.2.5 Ограничение скорости инфузии

Предотвращает резкие скачки дозы:

$$u_{\text{final}}(t) = \text{clip}(u_{\text{PID}}(t) + u_{\text{CHO}}(t), u_{\text{min}}, u_{\text{max}}),$$

где:

- $u_{\min} = 0$ (нельзя отменить инсулин),
- $u_{\rm max}=2$ ЕД/5 мин (лимит помпы).

5.2.6 Защита от гипогликемии

Если $G_{\text{filtered}}(t) < 70$:

$$u_{\text{final}}(t) = 0$$
 (инсулин не вводится).

5.2.7 Итоговая формула BBController

$$u(t) = \begin{cases} 0 & \text{если } G_{\text{filtered}}(t) < 70, \\ \text{clip}\left(K_p(t) \cdot e(t) + K_i(t) \cdot \int e(t)dt + K_d(t) \cdot \frac{de}{dt} + \beta \cdot \text{CHO}_{\text{active}}(t), 0, 2\right) & \text{иначе.} \end{cases}$$

5.3 Сравнение результатов BBController и DQN

• 24-часовая симуляция с приемом пищи

Рис. 1: Результаты 24-часовой симуляции для DQN

Рис. 2: Результаты 24-часовой симуляции для BBController

На представленных графиках clearly видны ключевые различия в работе двух подходов:

5.3.1 Реакция на приёмы пищи

- **BBController** демонстрирует предсказуемую реакцию на углеводную нагрузку, что соответствует его детерминированной природе. На графике чётко видны:
 - Плавные изменения дозы инсулина
 - Систематический отклик на приёмы пищи (СНО)
- DQN показывает более адаптивное поведение:
 - Вариабельный отклик на аналогичные приёмы пищи
 - Нелинейная динамика введения инсулина

5.3.2 Стабильность контроля

- **BBController** поддерживает глюкозу в целевом диапазоне (70-180 мг/дл) с минимальными отклонениями, что подтверждает его надёжность для стандартных сценариев
- DQN демонстрирует:
 - Более агрессивные колебания при гипергликемии
 - Лучшую адаптацию к экстремальным значениям
 - Эпизодические резкие изменения дозировок

5.3.3 Вычислительная эффективность

- Простота **BBController** видна в плавных, легко интерпретируемых кривых дозирования инсулина
- DQN требует сложных вычислений, что проявляется в:
 - Неочевидных корреляциях между приёмами пищи и дозами
 - Изменчивой стратегии управления

5.3.4 Практические рекомендации

- Для систем реального времени с ограниченными ресурсами предпочтителен BBController
- В сложных случаях с нестандартными паттернами питания стоит рассмотреть \mathbf{DQN} , несмотря на:
 - Высокие требования к обучению
 - Потенциальную нестабильность

Список литературы

- [1] Dalla Man C., Rizza R.A., Cobelli C. Meal simulation model of the glucose-insulin system. // IEEE Transactions on Biomedical Engineering, 2007, vol. 54, pp. 1740–1749.
- [2] Kovatchev B.P., Breton M., Dalla Man C., Cobelli C. In silico preclinical trials: A proof of concept in closed-loop control of type 1 diabetes. // Journal of Diabetes Science and Technology, 2009, vol. 3, pp. 44–55.
- [3] Dalla Man C., Micheletto F., Lv D., Breton M., Kovatchev B., Cobelli C. The UVA/PADOVA Type 1 Diabetes Simulator: New features. // Journal of Diabetes Science and Technology, 2014, vol. 8, pp. 26–34.
- [4] Sutton R.S., Barto A.G. Reinforcement Learning: An Introduction. 2nd ed. MIT Press, 2018.
- [5] Szepesvári C. Algorithms for Reinforcement Learning. Morgan & Claypool Publishers, 2010.
- [6] Cobelli C., Dalla Man C., Sparacino G., Magni L., De Nicolao G., Kovatchev B.P. Diabetes: Models, Signals, and Control. // IEEE Reviews in Biomedical Engineering, 2011, vol. 2, pp. 54–96.
- [7] Bequette B. W. Process Control: Modeling, Design and Simulation. Prentice Hall, 2003.
- [8] Carson E., Cobelli C. Modeling Methodology for Physiology and Medicine. 2nd ed. Academic Press, 2013.
- [9] Wang Y., et al. Optimizing glycemic control in type 2 diabetes using reinforcement learning. // Nature Medicine, 2023, vol. 29, pp. 112–125.
- [10] Zhu T., et al. Deep reinforcement learning for basal insulin control in type 1 diabetes. // Journal of Biomedical Informatics, 2021, vol. 120, 103843.
- [11] Ahmad E., et al. Deep RL-based bolus calculator for artificial pancreas systems. // IEEE Transactions on Biomedical Engineering, 2024 (in press).
- [12] Tejedor M., et al. Evaluation of deep Q-learning algorithms for glucose control in type 1 diabetes. // Artificial Intelligence in Medicine, 2023, vol. 135, 102475.
- [13] Gu S., Wang X. Multi-step deep reinforcement learning for insulin dosing considering delayed action. // Computers in Biology and Medicine, 2024, vol. 168, 107722.
- [14] Mnih V., et al. Human-level control through deep reinforcement learning. // Nature, 2015, vol. 518, pp. 529–533.
- [15] Hasselt H., Guez A., Silver D. Deep Reinforcement Learning with Double Q-learning. // AAAI, 2016.