DTC	C0210/33	RIGHT REAR SPEED SENSOR
	00210/00	I III GIII II LAII OI LLD OLIIGOII

DTC	C0215/34	LEFT REAR SPEED SENSOR
-----	----------	------------------------

CIRCUIT DESCRIPTION

Refer[]o[]DTC[]C0200/31,[]C0205/32[]on[]page[]05-412.

DTC No.	DTC Detecting Condition	Trouble Area
C0210/33 C0215/34	 (1) All the following conditions continue for at least 1 second. • Vehicle speed is more than 10 km/h (6 mph). • Open or short in vehicle speed sensor signal circuit. (2) Momentary interruption of the sensor signal of faulty wheel has occurred 7 times or more. (3) Sensor signal circuit is open for 0.5 seconds. 	Right rear and left rear speed sensor Each speed sensor circuit Sensor rotor Sensor installation

HINT:

- DTC C0210/33 is for the right rear speed sensor.
- DTC C0215/34 is for the left rear speed sensor.

WIRING DIAGRAM

INSPECTION PROCEDURE

1 | CHECK[HARNESS[AND[CONNECTOR(MOMENTARY[INTERRUPTION)

(a) Using the intelligent tester of the ckflor any momentary interruption in the wire flarness and connector corresponding to a DTC (see page 05-385).

Item	Measurement Item / Range (Display)	Normal Condition
RR Speed Open	RR speed sensor open detection / OPEN or NORMAL	OPEN : Mormentary interruption
RL Speed Open	RL speed sensor open detection / OPEN or NORMAL	OPEN : Mormentary interruption

OK:

There are no momentary interruption.

HINT:

Perform the above inspection before removing the sensor and connector.

NG Go to step 5

OK

2 | READ VALUE OF INTELLIGENT TESTER II(REAR SPEED SENSOR)

- (a) Connect the intelligent tester II to the DLC3.
- (b) Start the engine.
- (c) Select the DATA LIST mode on the intelligent tester II.

Item	Measurement Item / Range (Display)	Normal Condition
RL Wheel Speed	Wheel speed sensor (RL) reading / min.: 0 km/h (0 MPH, max.: 326 km/h (202 MPH)	Actual wheel speed
RR Wheel Speed	Wheel speed sensor (RR) reading / min.: 0 km/h (0 MPH, max.: 326 km/h (202 MPH)	Actual wheel speed

(d) Check that there is no difference between the speed value output from the speed sensor displayed by the intelligent tester II and the speed value displayed on the speedometer when driving the vehicle. **OK:**

There is almost no difference in the displayed speed value.

HINT:

There is tolerance of \pm 10 % in the speedometer indication.

NG Go to step 4

OK

3 INSPECT | SPEED | SENSOR | AND | SENSOR | ROTOR | SERRATIONS

INSPECTION[USING[DSCILLOSCOPE

- (a) Connect the oscilloscope to terminals RR+ RR-or RL+ RL-of the skid control CU.
- (b) Drive the vehicle at approximately 30 km/h 19 mph), and check he signal waveform.

OK:

A waveform as shown in a figure should be output. HINT:

- As the Vehicle speed (wheel fevolution speed) increases, a cycle of the Ververorm framework and the fluctuation in the output Voltage becomes greater.
- When in oise is identified in the waveform on the oscilloscope, error signals are generated due to the speed sensor of to rise scratches, ooseness or for eign matter attached of the

NG	Go[to[step[7

OK

REPLACE[ABS[&[TRACTION[ACTUATOR[ASSY[[SEE[PAGE[32-53]]

NOTICE:

When replacing the ABS & TRACTION actuator assy, perform zero point calibration (see page 05–387).

4 | INSPECT[REAR[\$PEED[\$ENSOR

- (a) Remove the rear seat cushion and seatback.
- (b) Make sure that the speed sensor connector and he wire harness ide connector are securely connected.
- (c) Disconnect he peed sensor connector.
- (d) Measure[he] resistance according to the value (s) in the table below.

Standard:

LH:

Tester[Connection	Specified@ondition
(A34−1) – <u>∏</u> A34−2)	0.6₫₀₫.8№₽

RH:

Tester[C onnection	Specified[Condition
(A33-1) -[IA33-2)	0.6flof1.8fkD

(e) Measure the resistance according to the value (s) in the table below.

Standard:

LH:

Tester[Connection	Specified@condition
(A34-1) -[Body[ground	1 MΩ[or[higher
(A34–2) –[Body[ground	1 MΩ[o̞r[higher

RH:

Tester[Connection	Specified[Condition
(A33−1) –[Body[ground	1 MΩ[þr[ħigher
(A33–2) –[Body[ground	1 MΩ[ð̞r[ʃhigher

NOTICE:

Check[the[speed[sensor[signal[after[replacement (see[page[05-389]).

REPLACE[REAR[\$PEED[\$ENSOR (SEE[PAGE[32-61)

5 CHECK HARNESS AND CONNECTOR(REAR SPEED SENSOR – SKID CONTROL ECU)

- (a) Disconnect the skid control ECU connector and the rear speed sensor connector.
- (b) Measure the resistance according to the value(s) in the table below.

Standard:

LH:

Tester Connection	Specified Condition
S48-20 (RL+) - A34-1 (RL+)	Below 1 Ω
S48-6 (RL-) - A34-2 (RL-)	Below 1 Ω

RH:

Tester Connection	Specified Condition
S48-5 (RR+) - A33-1 (RR+)	Below 1 Ω
S48-19 (RR-) - A33-2 (RR-)	Below 1 Ω

(c) Measure the resistance according to the value(s) in the table below.

Standard:

LH:

Tester Connection	Specified Condition
S48-20 (RL+) - Body ground	1 M Ω or higher
S48-6 (RL-) - Body ground	1 M Ω or higher

RH:

Tester Connection	Specified Condition
S48-5 (RR+) - Body ground	1 MΩ or higher
S48-19 (RR-) - Body ground	1 MΩ or higher

NG REPAIR OR REPLACE HARNESS OR CONNECTOR

OK

6 INSPECT SPEED SENSOR AND SENSOR ROTOR SERRATIONS

INSPECTION USING OSCILLOSCOPE

- (a) Connect he pscilloscope to terminals RR+ RR- pr RL+ RL- pf he kid ontrol CU.
- (b) Drive[the[yehicleatapproximately[30[km/h[]19[mph),and check[the[signal]waveform.

OK:

A waveform as \$hown in a figure \$hould be output.

- As[the[yehicle[speed[]wheel[]evolution[speed)[]ncreases, a@ycle@f[the[]waveform[]narrows@ind[the[f]uctuation[]n[the output[]yoltage[becomes@jreater.
- When noise is identified in the waveform on the oscilloscope, error signals are generated due to the speed sensor rotor scratches, ooseness or for ignight attached for.

NG[]> Go[to[step[]7

REPLACE[ABS]&[TRACTION[ACTUATOR[ASSY[[SEE[PAGE[32-53]]

NOTICE:

When replacing the ABS TRACTION actuator assy, perform zero point calibration (see page 05-387).

7 | INSPECT| REAR | SPEED | SENSOR | INSTALLATION

(a) ☐ Check [the [sensor installation.

OK:

- □ There[is[no[clearance[between]the[sensor[and[rear axle[carrier.
- The[installation[bolt[is[tightened[properly. Torque:[8.0[N⋅m[(82[kgf⋅cm,[71[in.[]bf)

NOTICE:

Check[he[speed[sensor[signal[after[]]]]] the replacement (see[page[05-389]]).

NG□>

REPLACE REAR SPEED SENSOR

ок

REPLACE[ABS[&[TRACTION[ACTUATOR[ASSY[[SEE[PAGE[32-53]]

NOTICE:

When replacing the ABS TRACTION actuator assy, perform zero point calibration (see page 05-387).