スパイラル昇降を可能とする ロープ型クライマーの姿勢制御

神奈川大学大学院 工学研究科 〇野中祐太郎 江上正

目次

- 1. スパイラル昇降とは
- 2. 第54回計測自動制御学会北海道支部学術講演会での 発表内容

スパイラル昇降とは

スパイラル昇降とは

始動時はローラを横倒しにした状態で モータを回転,少しずつローラの角度を 立てることにより螺旋を描くように クライマーが上昇

スパイラル昇降のメリット

- ・始動時のモータトルク低減
- 下降速度制御
- ロープまわりの姿勢制御

スパイラル昇降

過去のスパイラルクライマー

全体図

押し付け部

3輪型スパイラルクライマー

脱輪しやすい 押し付け調整難しい

過去のスパイラルクライマー

2輪型スパイラルクライマー

脱輪問題を解決

過去のスパイラルクライマー

全体図

クライマー昇降速度

下降速度制御は可能

ローラの低速回転ができないため スパイラル上昇はできず

開発したクライマー

神奈川大学

- 2つの駆動部を サーボモータにより回転
- 受動ローラを機体下部に配置し クライマーの昇降速度を測定
- 脱輪防止板により脱輪を防止

Specification of spiral climber

Dimension	320 × 300 × 500mm
Weight	8.54kg

スパイラル昇降

始動トルク低減の効果は確認できず

原因

- ロープが細く、トルクがクライマーに 伝わりにくい
- ・ロープがローラに押し付けられ変形

現在はロープ周りの姿勢制御について研究

第54回計測自動制御学会 北海道支部学術講演会 発表内容

研究背景

宇宙エレベーター

静止軌道上のステーションから 延長したケーブルをクライマーが 昇降することで,地上と宇宙を 簡易に往復可能

ロープテザーを昇降する場合 クライマーがロープまわりに回転

宇宙エレベーターの概念図

研究背景

クライマーが回転する様子

研究背景

リアクションホイール ホイール回転時の 反作用により姿勢制御

角運動量が保存されるため 飽和が避けられない

研究目的

スパイラル推進機構を搭載した ロープ昇降クライマーの開発

ロープ昇降クライマーの 飽和のない姿勢制御

スパイラル推進機構

ロープに接触した駆動ローラを サーボモータにより回転, 摩擦力をロープに対して横方向に分解

> クライマーに対して ロープまわりにトルクが発生

開発したクライマー

- ・ 2つの駆動部を サーボモータにより回転
- 受動ローラを機体下部に配置し クライマーの昇降速度を測定
- 脱輪防止板により脱輪を防止

Specification of spiral climber

Dimension	$320 \times 300 \times 500$ mm
Weight	8.54kg

システム構成

- ローラの回転数をエンコーダで測定
- クライマーのロープ周りの角度は9軸センサを用いて測定

駆動ローラの制御系

2つの駆動ローラの速度が異なる場合 モータの負荷となり、脱輪の可能性も高まる

最適速度同期化制御

駆動ローラモデル

$$J\dot{\omega}_j + D\omega_j = Ki + T_L + d_L$$

tetil $j = 1, 2$

J: 慣性モーメント D: 粘性係数

K:推力定数 $\omega:$ ローラ角速度

i:電流指令值

 T_L : 負荷トルク d_L : 外乱

外乱オブザーバ パラメータ誤差や外乱を等価外乱 として補償

$$J_n\dot{\omega}_j + D_n\omega_j = K_nu_j$$
 nはノミナル値を表す $\omega_j(k+1) = \alpha_j\omega_j(k) + \beta_ju_j(k)$

各モータの速度制御

$$u_{j}(k) = u_{fj}(k) + u_{sj}(k)$$

$$u_{fj}(k) = f_{fj1} \sum_{i=1}^{k} e_{\omega j}(k) + f_{fj2}\omega_{j}(k)$$

 $u_{fj}(k)$:最適速度入力 $u_{sj}(k)$:最適速度同期化入力

各モータの速度制御系を構築

2つのモータの速度同期化制御

最適速度同期化制御

エラーシステム

最適速度制御入力を用いた閉ループ制御系をまとめて表すと

$$\begin{bmatrix} \boldsymbol{X}_{f1}(k+1) \\ \boldsymbol{X}_{f2}(k+1) \end{bmatrix} = \begin{bmatrix} \boldsymbol{\Phi}_{f1} + \boldsymbol{\gamma}_{f1}\boldsymbol{f}_{f1} & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{\Phi}_{f2} + \boldsymbol{\gamma}_{f2}\boldsymbol{f}_{f2} \end{bmatrix} \begin{bmatrix} \boldsymbol{X}_{f1}(k) \\ \boldsymbol{X}_{f2}(k) \end{bmatrix} + \begin{bmatrix} \boldsymbol{\gamma}_{f1} & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{\gamma}_{f2} \end{bmatrix} \begin{bmatrix} \Delta u_{s1}(k) \\ \Delta u_{s2}(k) \end{bmatrix} + \begin{bmatrix} \boldsymbol{\gamma}_{fr} \\ \boldsymbol{\gamma}_{fr} \end{bmatrix} \Delta \omega_r(k+1)$$

または

$$X_{S}(k+1) = \Phi_{S}X_{S}(k) + \Gamma \Delta u_{S}(k) + \Gamma_{r}\Delta \omega_{r}(k+1)$$

相対速度誤差

ローラ1,2の相対速度誤差

$$e_{\omega_{12}}(k) = \omega_1(k) - \omega_2(k) = e_{\omega_2}(k) - e_{\omega_1}(k)$$

最適速度同期化制御

評価関数。

$$J_{s} = \sum_{k=1}^{\infty} \left[e_{\omega 1}^{2}(k) + \gamma_{1} e_{\omega 2}^{2}(k) + \gamma_{2} e_{\omega 12}^{2}(k) + h_{s1} \Delta u_{s1}^{2}(k) + h_{s2} \Delta u_{s2}^{2}(k) \right]$$
速度誤差 相対速度誤差 制御入力の一階差分値
$$= \sum_{k=1}^{\infty} \left[X_{s}^{T}(k) \mathbf{Q}_{s} X_{s}(k) + \Delta \mathbf{u}_{s}^{T}(k) \mathbf{H}_{s} \Delta \mathbf{u}_{s}(k) \right]$$

$$\mathbf{Q}_{s} = \begin{bmatrix} 1 + \gamma_{2} & 0 & -\gamma_{2} & 0 \\ 0 & 0 & 0 & 0 \\ -\gamma_{2} & 0 & \gamma_{1} + \gamma_{2} & 0 \end{bmatrix} \quad \mathbf{H}_{s} = \begin{bmatrix} h_{s1} & 0 \\ 0 & h_{s2} \end{bmatrix}$$

最適速度同期化制御入力

$$\Delta \boldsymbol{u}_{S}(k) = \boldsymbol{F}_{S}\boldsymbol{X}_{S}(k)$$

$$\boldsymbol{F}_{S} = \begin{bmatrix} f_{S11} & f_{S12} & f_{S13} & f_{S14} \\ f_{S21} & f_{S22} & f_{S23} & f_{S24} \end{bmatrix} = -[\boldsymbol{H}_{S} + \boldsymbol{\Gamma}^{T}\boldsymbol{P}_{S}\boldsymbol{\Gamma}]^{-1}\boldsymbol{\Gamma}^{T}\boldsymbol{P}_{S}\boldsymbol{\Phi}_{S}$$

$$\boldsymbol{P}_{S} = \boldsymbol{Q}_{S} + \boldsymbol{\Phi}_{S}^{T}\boldsymbol{P}_{S}\boldsymbol{\Phi}_{S} - \boldsymbol{\Phi}_{S}^{T}\boldsymbol{P}_{S}\boldsymbol{\Gamma}[\boldsymbol{H}_{S} + \boldsymbol{\Gamma}^{T}\boldsymbol{P}_{S}\boldsymbol{\Gamma}]^{-1}\boldsymbol{\Gamma}^{T}\boldsymbol{P}_{S}\boldsymbol{\Phi}_{S}$$

$$u_{sj}(k) = f_{sj1} \sum_{i=1}^{k} e_{\omega 1}(k) + f_{sj2}\omega_1(k) + f_{sj3} \sum_{i=1}^{k} e_{\omega 2}(k) + f_{sj4}\omega_2(k)$$

姿勢制御手法

スパイラル推進機構では、ローラ角度 $\theta_m(k)$ を変えることによって、ローラ周速度v(k)を垂直方向の周速度 $v_y(k)$ 、水平方向の周速度 $v_x(k)$ に分解

ロープ軸周りのクライマー角度誤差 $e_{\theta}(k)$ を入力水平方向の周速度 $v_{x}(k)$ を出力としたPID制御を行い姿勢制御

姿勢制御手法

ローラ目標角速度

v:ローラ周速度 v_y :昇降速度目標値 r:ローラ半径

$$v(k) = \sqrt{v_x^2(k) + v_y^2(k)}$$

$$\omega_r(k) = \frac{v(k)}{r}$$

求められた $\omega_r(k)$ をローラ角速度目標値として 最適速度同期化制御

クライマー制御系

姿勢制御実験

25m上昇実験

Climber ascend target velocity

0~10 sec.	0.0~1.0 m/s
After 10 sec.	1.0 m/s

Climber target angle

0~15 sec.	0 deg.
15~20 sec.	0~90 deg.
After 20 sec.	90 deg.

駆動部の様子

クライマー昇降の様子

実験結果

上 神奈川大学

ローラ速度とクライマー速度

- 2つのローラ速度は最適速度制御により目標値に追従 同期化制御により速度同期
- 受動部によって測定されたクライマー速度は ローラとロープ間のすべりにより目標値を下回る クライマー位置についても目標値を追従できず

実験結果

ロープ周りのクライマー角度

- 角度誤差を±15deg.以内に抑制
- 目標値に対して常に振動

ロープの回転による外乱は完全には抑制できず

制御系のまとめ

速度制御

速度制御によりローラ速度を目標値に追従 速度同期化制御によりローラ速度を同期

クライマー速度はすべりにより目標値に完全には追従できず

速度同期を行うため駆動ローラ速度の フィードバックが必要

クライマーの位置速度制御を行うため受動ローラの フィードバックが必要

すべりを考慮したクライマーの位置速度制御

制御系のまとめ

姿勢制御

PID制御により角度誤差を±15deg.以内に抑制

ロープの回転による外乱は完全には抑制できず

ロープが常に回転し、外乱となる

モデルを構築し、外乱を抑制する姿勢制御