ST 705 Linear models and variance components Homework problem set 5

February 3, 2020

- 1. (2 points) Prove that a (square) matrix that is both orthogonal and upper triangular must be a diagonal matrix.
- 2. (2 points) Suppose that $v_1, \ldots, v_p \in \mathbb{R}^n$ are a set of linearly independent vectors, and $w_1, \ldots, w_p \in \mathbb{R}^n$ are the orthogonal vectors obtained from v_1, \ldots, v_p by the Gram-Schmidt process. Furthermore, denote by u_1, \ldots, u_p the normalized vectors corresponding to w_1, \ldots, w_p , and define the matrix $R \in \mathbb{R}^{p \times p}$ by

$$R_{ij} := \begin{cases} ||w_j|| & \text{if } i = j \\ \langle v_j, u_i \rangle & \text{if } i < j \\ 0 & \text{if } i > j \end{cases}$$

Prove that V = UR, where V is the matrix with columns v_1, \ldots, v_p and U is the matrix with columns u_1, \ldots, u_p .

- 3. (2 points) In the notation of the previous problem, suppose that p = n. Further, assume that $V = U_1 R_1 = U_2 R_2$, where U_1 and U_2 are orthogonal matrices and R_1 and R_2 are upper triangular. Prove that the matrix $R_2 R_1^{-1}$ is orthogonal and diagonal.
- 4. (2 points) Exercise 2.22 from Monahan.
- 5. (2 points) Exercise 2.23 from Monahan.
- 6. (2 points) Exercise 2.24 from Monahan.
- 7. (2 points) Exercise 3.7 from Monahan.