Question1

Solution:

First, write N as binary such as 1001....01101, assume it is a list L with K+1 elements (0 or 1), we can get $K \leq log_2^n$ and $L_K = 1$ (the leftmost element).

So,
$$N = L_K * 2^K + L_{K-1} * 2^{K-1} + \dots + L_1 * 2^1 + L_0 * 2^0$$

Then we can compute that $M^1 = M^1 = M^{20}$

$$M^1 * M^1 = M^2 = M^{2^1}$$

$$M^2 * M^2 = M^4 = M^{2^2}$$

......

$$M^{\frac{2}{T}} * M^{\frac{2}{T}} = M^T = M^{2^K}$$

With at most $\lfloor log_2^n \rfloor$ times multiplications we can get M^{2^0} to M^{2^K} .

$$(M^{L_{K}*2^{K}}) * (M^{L_{K-1}*2^{K-1}}) * \dots * (M^{L_{1}*2^{1}}) * (M^{L_{0}*2^{0}})$$

$$= M^{L_{K}*2^{K} + L_{K-1}*2^{K-1} + \dots + L_{1}*2^{1} + L_{0}*2^{0}}$$

$$= M^{N}$$

Proof:

We can get all M^{2^K} with $\lfloor log_2^n \rfloor$ times multiplications, then compute $\left(M^{L_K*2^K}\right)*\left(M^{L_{K-1}*2^{K-1}}\right)*...*\left(M^{L_1*2^1}\right)*\left(M^{L_0*2^0}\right)$ with at most $2\lfloor log_2^n \rfloor$ times multiplications. So we can get M^N with $O(\log n)$ many multiplications.