Delegatable Anonymous Credentials from Mercurial Signatures

Elizabeth Crites (Edinburgh) and Anna Lysyanskaya (Brown)

Certificate: public keys and signatures

Prior Work on Delegatable Anonymous Credentials

- [CL06]: proof-of-concept construction
- [BCC+09]: efficiency improvement but not practical
- [CKLM13]: stronger security but as inefficient as [BCC+09]
- [CDD17]: no anonymity in delegation

Why is our solution interesting?

Mercurial Signatures: Definition

Standard Signatures [GMR88]

Sign(pk, sk, M) $\rightarrow \sigma$

Verify(pk, M, σ) \rightarrow 0/1

Correctness:

Verify(pk, M, σ) \rightarrow 1

M = M

Security: (EUF-CMA)

Standard Signatures [GMR88]

Signatures on Equivalence Classes [FHS19]

Sign(pk, sk, M) $\rightarrow \sigma$

Verify(pk, M, σ) \rightarrow 0/1

Correctness:

Verify(pk, M, σ) \rightarrow 1

 $M \approx M$

Security:

Verify(pk, M*, σ *) \rightarrow 1

 $M^* \not\approx M_i \ \forall M_i \in Q$

[FHS19] Construction:

$$\mathbf{M} = (g^{\mu \cdot a}, g^{\mu \cdot b}, g^{\mu \cdot c}) \approx \mathbf{M} = (g^a, g^b, g^c)$$

Mercurial Signatures [CL19]

Sign(pk, sk, M) $\rightarrow \sigma$

Verify(pk, M, σ) \rightarrow 0/1

Correctness:

Verify(pk, M, σ) \rightarrow 1

 $M \approx M, pk \approx pk$

Security:

Verify(pk*, M*, σ *) \rightarrow 1

 $M^* \not\approx M_i \ \forall M_i \in Q \land pk^* \approx pk$

Property: Class-Hiding

Message Class-Hiding:

 $M \approx M?$

Hard to tell.

Public Key Class-Hiding:

$$pk \approx pk$$
?

Hard to tell - even when given signatures under both.

Property: Origin-Hiding

- Transformed $(\tilde{\sigma}, \tilde{pk})$ should be distributed like a fresh signature under [pk]
- Transformed (σ', pk') should be distributed like a fresh signature on [M]

Mercurial Signatures

Transformation:

```
(pk, M, \sigma) \rightarrow (pk, M, \sigma')
```

such that

pk, pk unlinkable

M, M unlinkable

$$\sigma = (Z, Y, \hat{Y}) \text{ in } \mathbb{G}_1 \times \mathbb{G}_1 \times \mathbb{G}_2$$

$$Z = (\prod_{i=1}^{\ell} P^{m_i \cdot x_i})^{\gamma}, Y = P^{1/\gamma}, \hat{Y} = \hat{P}^{1/\gamma}$$

$$\prod_{i=1}^{\ell} e(P^{m_i}, \hat{P}^{x_i}) = e(Z, \hat{Y})$$

$$e(Y, \hat{P}) = e(P, \hat{Y})$$

Results [CL19]

(Certain) Mercurial Signatures

Delegatable Anonymous Credentials

First direct construction.

Proven in the generic group model.

Mercurial Signatures for Variable-Length Messages

Why variable-length?

$$\underbrace{(\mathsf{pk}_{\mathsf{A}},\mathsf{attr}_{\mathsf{A}})}_{\mathscr{E}} = (\hat{P}^{x_1},...,\hat{P}^{x_\ell},P^a)$$

$$\underbrace{(pk_B, attr_B)}_{\ell-1} = (P^{z_1}, ..., P^{z_{\ell-1}}, P^b)$$

Mercurial Signatures for Variable-Length Messages: Construction

Signing Variable-Length Messages

$$m = (\hat{g}, u_1, ..., u_n) \text{ in } \mathbb{G}_1$$

Break into *n* messages:

$$M_{1} = (\tilde{g}, \tilde{g}^{1}, \tilde{g}^{n}, \tilde{h}, \tilde{u}_{1})$$

$$M_{2} = (\tilde{g}, \tilde{g}^{2}, \tilde{g}^{n}, \tilde{h}, \tilde{u}_{2})$$

$$\vdots$$

$$M_{n} = (\tilde{g}, \tilde{g}^{n}, \tilde{g}^{n}, \tilde{h}, \tilde{u}_{n})$$

If $m'\approx m$ gets signed, $M_i'\approx M_i$ $\forall i$. Sign each with original scheme [CL19] for $\ell=5$.

How To Build Glue

$$m = (\hat{g}, u_1, \dots, u_n)$$
 in \mathbb{G}_1

$$u_i = \hat{g}^{m_i} \ \forall i$$

$$p_m(x) = m_1 + m_2 x + m_3 x^2 + \dots + m_n x^{n-1}$$

Evaluate $p_m(x)$ at secret point \hat{x} and compute glue as:

$$\hat{h} = \hat{g}^{p_m(\hat{x})}$$

How To Build Glue

Sample random w and set:

$$\tilde{g} = \hat{g}^{W}, \tilde{u}_{i} = u_{i}^{W} \forall i$$
 $\tilde{m} = (\tilde{g}, \tilde{u}_{1}, ..., \tilde{u}_{n})$

Compute glue using secret y as:

$$\tilde{h} = \tilde{g}^{y \cdot p_m(\hat{x})} = \left(\prod_{i=1}^n \tilde{u}_i^{\hat{x}^{i-1}}\right)^y$$

Output \tilde{m} and signature (\tilde{h}, σ) .

MS for Variable-Length Messages

$$\mathsf{pk}_{\mathsf{A}} = (\hat{P}^{x_1}, \dots, \hat{P}^{x_5}, \hat{P}^{x_6}, \hat{P}^{x_6}, \hat{P}^{x_6}, \hat{P}^{x_8}, \hat{P}^{x_8}, \hat{P}^{x_8}, \hat{P}^{x_8}, \hat{P}^{x_8}), y = y_1 \cdot y_2$$

$$(\tilde{h}, \sigma = \sigma_1, \dots, \sigma_n)$$

$$(\hat{P}^{x_1}, \dots, \hat{P}^{x_5}), M_i = (\tilde{g}, \tilde{g}^i, \tilde{g}^n, \tilde{h}, \tilde{u}_i), \sigma_i \quad \text{[CL19]}, \ell = 5$$

$$(\tilde{h}, \sigma = \sigma_1, \ldots, \sigma_n)$$

$$(\hat{P}^{x_1}, ..., \hat{P}^{x_5}), M_i = (\tilde{g}, \tilde{g}^i, \tilde{g}^n, \tilde{h}, \tilde{u}_i), \sigma_i$$
 [CL19], $\ell = 5$

MS for Variable-Length Messages

Unforgeability ?

Message Class-Hiding

Public Key Class-Hiding

Origin-Hiding of (pk, σ) \rightarrow (pk, $\tilde{\sigma}$) ?

Origin-Hiding of $(m, \sigma) \rightarrow (m', \sigma')$?

Interactive Signing Protocol

$$m = (\hat{g}, u_1, \dots, u_n)$$

[Signer \leftrightarrow Receiver] \rightarrow (\tilde{h}, σ)

Step 1. Receiver gives ZKPoK of m_i 's such that $u_i = \hat{g}^{m_i} \ \forall i$.

Step 2. Signer computes \tilde{h} and σ .

Step 3. Signer gives ZKPoK that \tilde{h} was computed correctly.

EUF-CoMA: existential unforgeability against chosen <u>open</u> message attacks (Step 1) [FG18].

Results [CL21]

Mercurial signatures for variable-length messages for the equivalence relation

$$(g^{\mu \cdot a}, g^{\mu \cdot b}, g^{\mu \cdot c}) \approx (g^a, g^b, g^c)$$

that are secure in the generic group model (under ABDDH).

Thank you!

elizabeth_crites@alumni.brown.edu