Calibration Laboratory of Schmid & Partner Engineering AG Zaughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Sporton (Auden)

Accreditation No.: SCS 108

Certificate No: D835V2-499_Mar08

CALIBRATION CERTIFICATE D835V2 - SN: 499 Object QA CAL-05.V7 Calibration procedure(s) Calibration procedure for dipole validation kits March 17, 2008 Calibration date: Condition of the calibrated item In Tolerance This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (Si). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)*C and humidity < 70%. Calibration Equipment used (M&TE ontical for calibration) Primary Standards Cal Date | Calibrated by, Certificate No. | Scheduled Calibration Power meter EPM-442A GB37480704 04-Oct-07 (METAS, No. 217-00736) Power sensor HP 8481A 04-Oct-97 (METAS, No. 217-00736) Oct-08 US37292783 Reference 20 dB Attenuator SN: 5086 (20g) 07-Aug-07 (METAS, No 217-00718) Aug-08 Reference Probe ES3DV2 SN: 3025 01-Mar-08 (SPEAG, No. ES3-3025_Mar08) Mar-09 DAE4 03-Sep-07 (SPEAG, No. DAE4-909_Sep07) Sep-08 SN 909 Secondary Standards DH Check Date (in house) Scheduled Check Power sensor HP 8481A MY41092317 18-Oct-02 (SPEAG, in house check Oct-07) In house check: Oct-09 RF generator R&5 SMT-06 100005 04-Aug-99 (SPEAG, in house check Oct-07) In house check: Oct-09 Network Analyzer HP B753E US37390585 S4206 18-Oct-01 (SPEAG, in house check Oct-07) In house check: Oct-08 Function Calibrated by: Claudio Leubler Laboratory Technician Approved by: Katja Pokovit Technical Manager issued March 17, 2008. This calibration certificate shall not be reproduced except in full without written approval of the laboratory

Certificate No: D835V2-499 Mar08

Page 1 of 9

Calibration Laboratory of Schmid & Partner Engineering AG Zaughausstrasse 43, 8004 Zurich, Switzerland

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilatoral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid
ConvF sensitivity in TSL / NORM x,y,z
N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)". February 2005.
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss. These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Cartificate No: DB35V2-499_Mar08

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY4	V4.7
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V4.9	
Distance Dipole Genter - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	835 MHz ± 1 MH2	

Head TSL parameters

The following parameters and calculations were applied

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22,0 ± 0.2) °C	41.5±6%	0.90 mho/m ± 6 %
Head TSL temperature during test	(22.0 ± 0.2) °C		_

SAR result with Head TSL

SAR averaged over 1 cm3 (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.29 mW / g
SAR normalized	normalized to 1W	9.16 mW/g
SAR for nominal Head TSL parameters 1	normalized to 1W	9.16 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.50 mW / g
SAR normalized	normalized to 1W	6.00 mW / g
SAR for nominal Head TSL parameters 1	normalized to 1W	6.00 mW / g ± 16.5 % (k=2)

Correction to nominal TSL parameters according to d), chapter 'SAR Sensitivities'

Body TSL parameters The following parameters

The following parameters and calculations were applied

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	54.0 ± 8 %	1.00 mho/m ± 6 %
Body TSL temperature during test	(22.0 ± 0.2) °C		

SAR result with Body TSL

SAR averaged over 1 cm3 (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.46 mW/g
SAR normalized	normalized to 1W	9.84 mW / g
SAR for nominal Body TSL parameters *	normalized to 1W	9.52 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm3 (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.63 mW / g
SAR normalized	normalized to 1W	6.52 mW/g
SAR for nominal Body TSL parameters *	normalized to 1W	6.37 mW / g ± 16.5 % (h=2)

Certificate No: D835V2-499_Mar08

⁷ Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.9 Ω - 2.3 JO
Return Loss	- 26.9 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	49.2 Ω - 3.3 jΩ	
Return Loss	- 29.3 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.392 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged;

Additional EUT Data

Manufactured by	SPEAG	
Manufactured on	July 10, 2003	

Certificate No: D835V2-499_Mar08

Page 5 of 9

DASY4 Validation Report for Head TSL

Date/Time: 17.03.2008 11:32:45

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:499

Communication System: CW-835; Frequency; 835 MHz; Duty Cycle: 1:1

Medium; HSL 900 MHz;

Medium parameters used: f = 835 MHz; $\sigma = 0.9$ mho/m; $\epsilon_r = 41.5$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

- Probe: ES3DV2 SN3025; ConvF(6.09, 6.09, 6.09); Calibrated: 01.03.2008
- Sensor-Surface: 3.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn909; Calibrated: 03.09.2007
- · Phantom: Flat Phantom 4.9L, Type: QD000P49AA; ;
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 172

Unnamed procedure/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 54.9 V/m; Power Drift = -0.005 dB

Peak SAR (extrapolated) = 3.34 W/kg

SAR(1 g) = 2.29 mW/g; SAR(10 g) = 1.5 mW/g Maximum value of SAR (measured) = 2.58 mW/g

0 dB = 2.58 mW/g

Impedance Measurement Plot for Head TSL 17 Mar CHI S11 1 U FS U 52.053 6 -2.2691 n 83.269 pF

START 535,000 000 MHz

17 Mar 2008 11:38:45

935,000 000 MH±

STOP 1 188,888 888 MHz

Certificate No: D835V2-499_Mar08

DASY4 Validation Report for Body TSL

Date/Time: 10.03.2008 12:48:36

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:499

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: MSL900;

Medium parameters used: f = 835 MHz; $\sigma = 1$ mho/m; $\epsilon_r = 54$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

- Probe: ES3DV2 SN3025; ConvF(5.85, 5.85, 5.85); Calibrated: 01.03.2008
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn909; Calibrated: 03.09.2007
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; ;
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 172

Pin = 250mW, d = 15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 51.8 V/m; Power Drift = 0.036 dB

Peak SAR (extrapolated) = 3.59 W/kg

SAR(1 g) = 2.46 mW/g; SAR(10 g) = 1.63 mW/g

Maximum value of SAR (measured) = 2.64 mW/g

0 dB = 2.64mW/g

Impedance Measurement Plot for Body TSL

Certificate No: D835V2-499_Mar08

Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client Sporton (Auden)

Accreditation No.: SCS 108

Certificate No: D835V2-4d091_Nov09

CALIBRATION CERTIFICATE

Object D835V2 - SN: 4d091

Calibration procedure(s) QA CAL-05.v7

Calibration procedure for dipole validation kits

Calibration date: November 23, 2009

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	06-Oct-09 (No. 217-01086)	Oct-10
Power sensor HP 8481A	US37292783	06-Oct-09 (No. 217-01086)	Oct-10
Reference 20 dB Attenuator	SN: 5086 (20g)	31-Mar-09 (No. 217-01025)	Mar-10
Type-N mismatch combination	SN: 5047.2 / 06327	31-Mar-09 (No. 217-01029)	Mar-10
Reference Probe ES3DV3	SN: 3205	26-Jun-09 (No. ES3-3205_Jun09)	Jun-10
DAE4	SN: 601	07-Mar-09 (No. DAE4-601_Mar09)	Mar-10
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-09)	In house check: Oct-11
RF generator R&S SMT-06	100005	4-Aug-99 (in house check Oct-09)	In house check: Oct-11
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-09)	In house check: Oct-10

Calibrated by: Jeton Kastrati

Function Laboratory Technician

Signature

Approved by:

Katja Pokovic

Technical Manager

Issued: November 24, 2009

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D835V2-4d091_Nov09

Page 1 of 9

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- · SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D835V2-4d091_Nov09

Page 2 of 9

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V5.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V4.9	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.2 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	41.6 ± 6 %	0.89 mho/m ± 6 %
Head TSL temperature during test	(22.0 ± 0.2) °C	****	****

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.38 mW / g
SAR normalized	normalized to 1W	9.52 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	9.60 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.56 mW / g
SAR normalized	normalized to 1W	6.24 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	6.28 mW /g ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.2 ± 6 %	1.01 mho/m ± 6 %
Body TSL temperature during test	(21.8 ± 0.2) °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.55 mW / g
SAR normalized	normalized to 1W	10.2 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	9.80 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.67 mW / g
SAR normalized	normalized to 1W	6.68 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	6.49 mW / g ± 16.5 % (k=2)

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.0 Ω - 1.4 jΩ
Return Loss	- 32.3 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	48.5 Ω - 3.1 jΩ	
Return Loss	- 29.2 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.406 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG	
Manufactured on	September 15, 2008	

DASY5 Validation Report for Head TSL

Date/Time: 23.11.2009 10:32:03

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d091

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: HSL900

Medium parameters used: f = 835 MHz; $\sigma = 0.89$ mho/m; $\varepsilon_r = 41.6$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: ES3DV3 SN3205; ConvF(6.04, 6.04, 6.04); Calibrated: 26.06.2009
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 07.03.2009
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001
- Measurement SW: DASY5, V5.2 Build 157; SEMCAD X Version 14.0 Build 57

Pin=250 mW /d=15mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7)/Cube 0: Measurement

grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 57.3 V/m; Power Drift = 0.020 dB

Peak SAR (extrapolated) = 3.56 W/kg

SAR(1 g) = 2.38 mW/g; SAR(10 g) = 1.56 mW/g

Maximum value of SAR (measured) = 2.78 mW/g

0 dB = 2.78 mW/g

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body

Date/Time: 16.11.2009 10:48:20

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d091

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: MSL900

Medium parameters used: f = 835 MHz; $\sigma = 1.01$ mho/m; $\varepsilon_r = 53.2$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: ES3DV3 SN3205; ConvF(5.97, 5.97, 5.97); Calibrated: 26.06.2009
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronies: DAE4 Sn601; Calibrated: 07.03.2009
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001
- Measurement SW: DASY5, V5.2 Build 157; SEMCAD X Version 14.0 Build 57

Pin250 mW /d=15mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7)/Cube 0: Measurement

grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 55.7 V/m; Power Drift = 0.016 dB

Peak SAR (extrapolated) = 3.79 W/kg

SAR(1 g) = 2.55 mW/g; SAR(10 g) = 1.67 mW/g

Maximum value of SAR (measured) = 2.95 mW/g

0 dB = 2.95 mW/g

Certificate No: D835V2-4d091_Nov09 Page 8 of 9

Impedance Measurement Plot for Body TSL

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Client Sporton (Auden)

Certificate No: D1800V2-2d076 Jul09

Accreditation No.: SCS 108

	ERTIFICATE	to the second second	
Object	D1800V2 - SN: 2	2d076	
Calibration procedure(s)	QA CAL-05.v7 Calibration proce	dure for dipole validation kits	
Calibration date:	July 20, 2009		
Condition of the calibrated item	In Tolerance		
Calibration Equipment used (M&)	ΓE critical for calibration)		
Primary Standards	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
	ID # GB37480704	Cal Date (Calibrated by, Certificate No.) 08-Oct-08 (No. 217-00898)	Scheduled Calibration Oct-09
ower meter EPM-442A			
Power meter EPM-442A Power sensor HP 8481A	GB37480704	08-Oct-08 (No. 217-00898)	Oct-09
Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator	GB37480704 US37292783	08-Oct-08 (No. 217-00898) 08-Oct-08 (No. 217-00898)	Oct-09 Oct-09
Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV2	GB37480704 US37292783 SN: 5086 (20g)	08-Oct-08 (No. 217-00898) 08-Oct-08 (No. 217-00898) 31-Mar-09 (No. 217-01025)	Oct-09 Oct-09 Mar-10
Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV2	GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327	08-Oct-08 (No. 217-00898) 08-Oct-08 (No. 217-00898) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029)	Oct-09 Oct-09 Mar-10 Mar-10
Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV2 DAE4	GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3025	08-Oct-08 (No. 217-00898) 08-Oct-08 (No. 217-00898) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 30-Apr-09 (No. ES3-3025_Apr09)	Oct-09 Oct-09 Mar-10 Mar-10 Apr-10
Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV2 DAE4 Secondary Standards	GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3025 SN: 601	08-Oct-08 (No. 217-00898) 08-Oct-08 (No. 217-00898) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 30-Apr-09 (No. ES3-3025_Apr09) 07-Mar-09 (No. DAE4-601_Mar09)	Oct-09 Oct-09 Mar-10 Mar-10 Apr-10 Mar-10
Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV2 DAE4 Secondary Standards Power sensor HP 8481A	GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3025 SN: 601	08-Oct-08 (No. 217-00898) 08-Oct-08 (No. 217-00898) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 30-Apr-09 (No. ES3-3025_Apr09) 07-Mar-09 (No. DAE4-601_Mar09) Check Date (in house)	Oct-09 Oct-09 Mar-10 Mar-10 Apr-10 Mar-10 Mar-10 Scheduled Check
Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV2 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06	GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3025 SN: 601	08-Oct-08 (No. 217-00898) 08-Oct-08 (No. 217-00898) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01025) 30-Apr-09 (No. ES3-3025_Apr09) 07-Mar-09 (No. DAE4-601_Mar09) Check Date (in house)	Oct-09 Oct-09 Mar-10 Mar-10 Apr-10 Mar-10 Mar-10 Scheduled Check In house check: Oct-09
Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV2 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06	GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3025 SN: 601 ID # MY41092317 100005	08-Oct-08 (No. 217-00898) 08-Oct-08 (No. 217-00898) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 30-Apr-09 (No. ES3-3025_Apr09) 07-Mar-09 (No. DAE4-601_Mar09) Check Date (in house) 18-Oct-02 (in house check Oct-07) 4-Aug-99 (in house check Oct-07)	Oct-09 Oct-09 Mar-10 Mar-10 Apr-10 Mar-10 Scheduled Check In house check: Oct-09 In house check: Oct-09
Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV2 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E	GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3025 SN: 601 ID # MY41092317 100005 US37390585 S4206	08-Oct-08 (No. 217-00898) 08-Oct-08 (No. 217-00898) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 30-Apr-09 (No. ES3-3025_Apr09) 07-Mar-09 (No. DAE4-601_Mar09) Check Date (in house) 18-Oct-02 (in house check Oct-07) 4-Aug-99 (in house check Oct-07) 18-Oct-01 (in house check Oct-08)	Oct-09 Oct-09 Mar-10 Mar-10 Apr-10 Mar-10 Scheduled Check In house check: Oct-09 In house check: Oct-09 In house check: Oct-09
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV2 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP-8753E Calibrated by:	GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3025 SN: 601 ID # MY41092317 100005 US37390585 S4206 Name	08-Oct-08 (No. 217-00898) 08-Oct-08 (No. 217-00898) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 30-Apr-09 (No. ES3-3025_Apr09) 07-Mar-09 (No. DAE4-601_Mar09) Check Date (in house) 18-Oct-02 (in house check Oct-07) 4-Aug-99 (in house check Oct-07) 18-Oct-01 (in house check Oct-08)	Oct-09 Oct-09 Mar-10 Mar-10 Apr-10 Mar-10 Scheduled Check In house check: Oct-09 In house check: Oct-09 In house check: Oct-09

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage Servizio svizzero di taratura

Accreditation No.: SCS 108

S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid
ConvF sensitivity in TSL / NORM x,y,z
N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V5.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1800 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	41.0 ± 6 %	1.37 mho/m ± 6 %
Head TSL temperature during test	(22.0 ± 0.2) °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	condition	
SAR measured	250 mW input power	9.65 mW /g
SAR normalized	normalized to 1W	38.6 mW /g
SAR for nominal Head TSL parameters 1	normalized to 1W	39.3 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm3 (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.12 mW /g
SAR normalized	normalized to 1W	20.5 mW /g
SAR for nominal Head TSL parameters 1	normalized to 1W	20.7 mW / g ± 16.5 % (k=2)

¹ Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.6 ± 6 %	1.48 mho/m ± 6 %
Body TSL temperature during test	(21.4 ± 0.2) °C		

SAR result with Body TSL

SAR averaged over 1 cm3 (1 g) of Body TSL	condition	
SAR measured	250 mW input power	9.53 mW /g
SAR normalized	normalized to 1W	38.1 mW /g
SAR for nominal Body TSL parameters 2	normalized to 1W	38.8 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.07 mW /g
SAR normalized	normalized to 1W	20.3 mW /g
SAR for nominal Body TSL parameters 2	normalized to 1W	20.5 mW / g ± 16.5 % (k=2)

² Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	48.9 Ω - 4.0 jΩ
Return Loss	- 27.5 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	44.7 Ω - 4.0 jΩ
Return Loss	- 23.1 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.210 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG	
Manufactured on	May 26, 2003	

DASY5 Validation Report for Head TSL

Date/Time: 20.07.2009 12:17:31

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1800 MHz; Type: D1800V2; Serial: SN:2d076

Communication System: CW; Frequency: 1800 MHz; Duty Cycle: 1:1

Medium: HSL U11 BB

Medium parameters used: f = 1800 MHz; $\sigma = 1.37 \text{ mho/m}$; $\varepsilon_r = 41.1$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC)

DASY5 Configuration:

Probe: ES3DV2 - SN3025; ConvF(4.93, 4.93, 4.93); Calibrated: 30.04.2009

Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 07.03.2009

Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45

Pin = 250 mW; dip = 10 mm, scan at 3.0mm/Zoom Scan (dist=3mm, probe 0deg)

(7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 94.7 V/m; Power Drift = 0.067 dB

Peak SAR (extrapolated) = 17.4 W/kg

SAR(1 g) = 9.65 mW/g; SAR(10 g) = 5.12 mW/gMaximum value of SAR (measured) = 11.9 mW/g

0 dB = 11.9 mW/g

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date/Time: 14.07.2009 14:24:29

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1800 MHz; Type: D1800V2; Serial: SN:2d076

Communication System: CW; Frequency: 1800 MHz; Duty Cycle: 1:1

Medium: MSL U10 BB

Medium parameters used: f = 1800 MHz; $\sigma = 1.48 \text{ mho/m}$; $\epsilon_r = 53.7$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC)

DASY5 Configuration:

Probe: ES3DV2 - SN3025; ConvF(4.62, 4.62, 4.62); Calibrated: 30.04.2009

Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 07.03.2009

Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002

Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45

Pin = 250 mW; dip = 10 mm, scan at 3.0mm/Zoom Scan (dist=3.0mm, probe 0deg)

(7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 93.5 V/m; Power Drift = 0.042 dB

Peak SAR (extrapolated) = 16.6 W/kg

SAR(1 g) = 9.53 mW/g; SAR(10 g) = 5.07 mW/g Maximum value of SAR (measured) = 12 mW/g

0 dB = 12 mW/g

Impedance Measurement Plot for Body TSL

Calibration Laboratory of Schmid & Partner Engineering AG Zaughausstrasse 43, 6004 Zurich, Switzerland

S Schweizerlscher Kalibrierdienst
G Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Appreditation No.: SCS 10B

Client Sporton (Aud

Curtificate No: D1900V2-5d041 Mar08

Object	D1900V2 - SN: 5	d041	
Calibration protecture(s)	QA CAL-05.v7 Calibration proce	dure for dipole validation kits	
Calibration date:	March 18, 2008		
Condition of the calibrated item	In Tolerance		
All calibrations have been condu	cted in the closed laborator	y facility; environment temperature (22 ± 3)°C arr	d humidity < 70%.
	TE critical for calibration)		
Calibration Equipment used (M&	TE critical for calibration)	Cel Date (Calibrated by Certificate No.)	Screduled Calabration
	1	Cal Date (Calibrated by, Certificate No.) 04-Oct-0* (McTAS, No. 217-00755)	Scrieduled Calibration
Calibration Equipment used (M& Primary Standards Power meter EPM-142A Power sensor HP 8481A	ID#		
Calibration Equipment used (M& Primury Standards Power moter EPM-142A Power sensor HP 8481A Reference 20 dB Attenuator	ID# G837480704 US37282783 SN: 5086 (20g)	04-Oct-07 (METAS, No. 217-00736) 04-Oct-07 (METAS, No. 217-00738) 07-Aug-07 (METAS, No. 217-00718)	Oct-06 Oct-06 Aug-08
Calibration Equipment used (M& Primary Standards Power moter EPM-142A Power sensor HP 8461A Reference 20 dB Attenuator Reference 10 dB Attenuator	ID# GB3/480/U4 U537292783 SN: 5086 (20g) SN: 5047.2 (10r)	04-Oct-07 (METAS: No. 217-00756) 04-Oct-07 (METAS: No. 217-00736) 07-Aug-07 (METAS: No. 217-00718) 07-Aug-07 (METAS: No. 217-00718)	Oct-06 Oct-06 Aug-08 Aug-08
Calibration Equipment used (M& Primury Standards Power moter EPM-142A Power sensor HP 8481A Reference 20 dB Attenuator	ID# G837480704 US37282783 SN: 5086 (20g)	04-Oct-07 (METAS, No. 217-00736) 04-Oct-07 (METAS, No. 217-00738) 07-Aug-07 (METAS, No. 217-00718)	Oct-06 Oct-06 Aug-08
Calibration Equipment used (M& Primary Standards Power mater ERM-142A Power sensor HP 8481A Reference 20 dB Attenuator Reference 10 dB Attenuator Reference Probe ES3DV2	ID# GB3/480/04 US37292783 SN: 5086 (20g) SN: 5047.Z (10r) SN: 3025	04-Oct-07 (METAS: No. 217-00796) 04-Oct-07 (METAS: No. 217-00798) 07-Aug-07 (METAS: No. 217-00718) 07-Aug-07 (METAS: No. 217-00718) 01-Mar-03 (SPEAG: No. ES3-3025 [Mar-08)	Oct-06 Oct-06 Aug-08 Aug-08 Mar-00
Calibration Equipment used (M& Primary Standards Power motor EPM-442A Power sensor HP 8461A Reference 20 dB Attenuator Reference 10 dB Attenuator Reference Probe ES30V2 DAE4 Secondary Standards Power sensor HP 8481A	ID# GB3748U704 US37292783 SN: 5086 (20g) SN: 5047.Z (10r) SN: 3025 SN 909	04-Oct-07 (METAS, No. 217-00736) 04-Oct-07 (METAS, No. 217-00736) 07-Aug-07 (METAS, No. 217-00718) 07-Aug-07 (METAS, No. 217-00718) 01-Mar-03 (SPEAG, No. ES3-3025 Mar-08) 3-Sep-08 (SPEAG, No. DAE4-909 Sep-77) Check Data (in house) 18-Oct-02 (SPEAG, In house check Oct-07)	Oct-08 Oct-06 Aug-08 Aug-08 Mer-00 Sec-07 Scheduled Check in house check: Oct-08
Calibration Equipment used (M& Primary Standards Power moter EPM-442A Power sensor HP 8461A Reference 10 dB Attenuator Reference Probe ES3DV2 DAS4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06	ID# GB3748U704 U537292783 SN: 5086 (20g) SN: 5047.Z (10r) SN: 3025 SN 909 ID# MY41092317 100005	04-Oct-07 (METAS, No. 217-00736) 04-Oct-07 (METAS, No. 217-00736) 07-Aug-07 (METAS, No. 217-00718) 07-Aug-07 (METAS, No. 217-00718) 01-Mar-03 (SPEAG, No. ES3-3025_Mar08) 3-Sep-08 (SPEAG, No. DAE4-909_Sep77) Check Data (in house) 18-Oct-02 (SPEAG, in house check Oct-07) 4-Aug-99 (SPEAG, in house check Oct-07)	Oct-08 Oct-08 Aug-08 Aug-08 Aug-08 Mer-00 Sec-07 Scheduled Check In house check; Oct-08 In house check; Oct-08
Calibration Equipment used (M& Primary Standards Power motor EPM-442A Power sensor HP 8461A Reference 20 dB Attenuator Reference 10 dB Attenuator Reference Probe ES30V2 DAE4 Secondary Standards Power sensor HP 8481A	ID# GB3748U704 US37292783 SN: 5086 (20g) SN: 5047.Z (10r) SN: 3025 SN 909	04-Oct-07 (METAS, No. 217-00736) 04-Oct-07 (METAS, No. 217-00736) 07-Aug-07 (METAS, No. 217-00718) 07-Aug-07 (METAS, No. 217-00718) 01-Mar-03 (SPEAG, No. ES3-3025 Mar-08) 3-Sep-08 (SPEAG, No. DAE4-909 Sep-77) Check Data (in house) 18-Oct-02 (SPEAG, In house check Oct-07)	Oct-08 Oct-06 Aug-08 Aug-08 Mer-00 Sec-07 Scheduled Check in house check: Oct-08
Calibration Equipment used (M& Primary Standards Power sensor HP 8481A Reference 20 dB Attenuator Reference 10 dB Attenuator Reference Probe ES30V2 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 6750F	ID# GB3748U704 US37292783 SN: 5086 (20g) SN: 5047.Z (10r) SN: 3025 SN 909 ID# MY41092317 100005 US37390585 S4706 GB37480704	04-Oct-07 (METAS: No. 217-00736) 04-Oct-07 (METAS: No. 217-00736) 07-Aug-07 (METAS: No. 217-00718) 07-Aug-07 (METAS: No. 217-00718) 01-Mar-93 (SPEAG: No. ES3-3025 [Mar-08) 3-Sep-08 (SPEAG: No. DAE4-909 [Sep-77) Check Data (in house) 18-Oct-02 (SPEAG: In house check Oct-07) 4-Aug-99 (SPEAG: In house check Oct-07) 18-Oct-01 (SPEAG: In house check Oct-07) 04-Oct-07 (METAS: No. 217-00738)	Oct-08 Oct-08 Aug-08 Aug-08 Aug-08 Mer-00 See-07 Scheduled Check In house check: Oct-08 In house check: Oct-08 In house check: Oct-08 Oct-08
Calibration Equipment used (M& Primary Standards Power sensor HP 8481A Reference 20 dB Attenuator Reference 10 dB Attenuator Reference Probe ES30V2 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8750F Power meter EPM-442A	ID# GB3748U704 US37292783 SN: 5086 (20g) SN: 5047.Z (10r) SN: 3025 SN 909 ID# MY41092317 100005 US37390585 S4706 GB37480704	04-Oct-07 (METAS: No. 217-00736) 04-Oct-07 (METAS: No. 217-00736) 07-Aug-07 (METAS: No. 217-00718) 07-Aug-07 (METAS: No. 217-00718) 01-Mar-03 (SPEAG: No. ES3-3025 Mar-08) 3-Sep-08 (SPEAG: No. DAE4-809 Sep-07) Check Date (in house) 18-Oct-02 (SPEAG: In house check Oct-07) 4-Aug-99 (SPEAG: In house check Oct-07) 18-Oct-01 (SPEAG: In house check Oct-07) 04-Oct-07 (METAS: No. 217-00738)	Oct-08 Oct-08 Aug-08 Aug-08 Aug-08 Mer-00 Sec-07 Scheduled Check in house check; Oct-08 In house check; Oct-08 Oct-08 Signature
Calibration Equipment used (M& Primary Standards Power sensor HP 8481A Reference 20 dB Attenuator Reference 10 dB Attenuator Reference Probe ES30V2 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 6750F	ID# GB3748U704 US37292783 SN: 5086 (20g) SN: 5047.Z (10r) SN: 3025 SN 909 ID# MY41092317 100005 US37390585 S4706 GB37480704	04-Oct-07 (METAS: No. 217-00736) 04-Oct-07 (METAS: No. 217-00736) 07-Aug-07 (METAS: No. 217-00718) 07-Aug-07 (METAS: No. 217-00718) 01-Mar-93 (SPEAG: No. ES3-3025 [Mar-08) 3-Sep-08 (SPEAG: No. DAE4-909 [Sep-77) Check Data (in house) 18-Oct-02 (SPEAG: In house check Oct-07) 4-Aug-99 (SPEAG: In house check Oct-07) 18-Oct-01 (SPEAG: In house check Oct-07) 04-Oct-07 (METAS: No. 217-00738)	Oct-08 Oct-08 Aug-08 Aug-08 Aug-08 Mer-00 See-07 Scheduled Check In house check: Oct-08 In house check: Oct-08 In house check: Oct-08 Oct-08

Certificate No: D1900V2-5d041_Mar08

Page 1 of 9

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zerich, Switzerland

Accreditation No.: SCS 108

Accreding by the Swiss Federal Office of Netrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Mullilatural Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spallal-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) CENELEC EN 50361, "Basic standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300 MHz - 3 GHz), July 2001
- c) Federal Communications Commission Office of Engineering & Technology (FCC DET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions. Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- . SAR measured: SAR measured at the stated antenna input power
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the entenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Cartificate No. D1900V2-50041_Mar06

Page 2 or 9

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY4	V4.7
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz = 1 MHz	

Head TSL parameters
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.2 ± 6 %	1.47 mho/m ± 6 %
Head TSL temperature during test	(21 1 ± 0 2) °C	_	

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	condition	
SAR measured	250 mW input power	10.1 mV// g
SAR normalized	normalized to 1W	40:4 mW/g
SAR for nominal Head TSL parameters	normalized to 1W	39.5 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	250 mW Input power	5 20 mW / g
SAR normalized	normalized to 1W	20,8 mW/g
SAR for nominal Head TSL parameters	normalized to 1W	20.6 mW/g ± 16.5 % (k=2)

Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1,52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	61.6±6%	1.57 mho/m ± 6 %
Body TSL temperature during test	(21.4 ± 0.2) °C	-	-

SAR result with Body TSL

SAR averaged over 1 cm² (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	10.4 mV// g
SAR normalized	normalized to 1W	41.6 mW/g
SAR for nominal Body TSL parameters 1	normalized to 1W	40.1 mW/g±17.0 % (k=2)

SAR averaged over 10 cm² (10 g) of Body TSL.	condition	
SAR measured	250 mW input power	5.44 mW / g
SAR normalized	normalized to 1W	21.8 mW/g
SAR for nominal Body TSL parameters *	normalized to 1W	21.3 mW / g ± 16.5 % (k=2)

Certificate No: D1900V2-5d041_Mar08

Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	54.0.01 + 5.1 j(2
Return Loss	-24.2 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	48.0 Ω + 6.1 µΩ	
Return Loss	- 23.6 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.199 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semingid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the

feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	July 04, 2003

DASY4 Validation Report for Head TSL

Date/Time: 18,03,2008 12:05:10

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d041

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: HSL U10 BB;

Medium parameters used: f = 1900 MHz; $\sigma = 1.47 \text{ mho/m}$; $\epsilon_r = 40.2$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

- Probe: ES3DV2 SN3025; ConvF(4.9, 4.9, 4.9); Calibrated; 01.03.2008
- Sensor-Surface: 3.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn909; Calibrated: 03.09.2007
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA:
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 172

Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 91.7 V/m; Power Drift = 0.013 dB

Peak SAR (extrapolated) = 19.1 W/kg

SAR(1 g) = 10.1 mW/g; SAR(10 g) = 5.2 mW/g Maximum value of SAR (measured) = 11.8 mW/g

0 dB = 11.8mW/g

Impedance Measurement Plot for Head TSL

DASY4 Validation Report for Body TSL

Date/Time: 14.03,2008 13:22:24

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d041

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: MSL U10 BB;

Medium parameters used: f = 1900 MHz; $\sigma = 1.57 \text{ mho/m}$; $\epsilon_r = 51.7$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

- Probe: ES3DV2 SN3025; ConvF(4.5, 4.5, 4.5). Calibrated: 01 03,2008.
- Sensor-Surface: 3.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn909; Calibrated: 03.09.2007
- Phantom: Flat Phantom 5.0 (front), Type: QD000P50AA;;
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 172.

Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 89.7 V/m; Power Drift = 0,004 dB

Peak SAR (extrapolated) = 18.6 W/kg

SAR(1 g) = 10.4 mW/g; SAR(10 g) = 5.44 mW/g Maximum value of SAR (measured) = 12.0 mW/g

0 dB = 12.0mW/g

Certificate No: D1900V2-5d041_Mar08

Page 9 of 9