Бустинг

Виктор Китов

victorkitov.github.io

Победитель конкурса VK среди курсов по IT

Курс поддержан фондом 'Интеллект'

Бустинг1

Строится линейная композиция:

$$G_M(x) = f_0(x) + c_1 f_1(x) + ... + c_M f_M(x)$$

Регрессия: $\widehat{y}(x) = G_M(x)$

Классификация: $g_{y}(x) = G_{M}(x)$, $\widehat{y}(x) = \text{sign } G_{M}(x)$

- $f_1(x), ... f_M(x)$ базовые модели (base learners, base models).
- Сложно оптимизировать $f_0(x), f_1(x), ... f_M(x)$ и $c_1, ... c_M$ одновременно.
- Упрощение: настраиваем $f_0(x)$, потом последовательно $(f_m(x), c_m)$ для m = 1, 2, ...M.

 $^{^{1}}$ Какую модель получим, если применим бустинг к линейным моделям?

Алгоритм бустинга

• Настраиваем начальное приближение

$$f_0(x) = \arg\min_{f} \sum_{n=1}^{N} \mathcal{L}(f(x_n), y_n)$$

- ② Для m = 1, 2, ...M:
 - находим коррекцию:

$$(c_m, f_m) := \arg\min_{f,c} \sum_{n=1}^{N} \mathcal{L}(G_{m-1}(x_n) + cf(x_n), y_n)$$

• обновляем ансамбль:

$$G_m(x) := G_{m-1}(x) + c_m f_m(x)$$

 \odot Возвращаем $G_M(x)$.

Бэггинг и бустинг

Бэггинг и бустинг

Интуиция бустинга

Аналогия с игрой в гольф

Интуиция бустинга

Аналогия с разложением в ряд Тейлора

Зависимость от M

Зависимость средних потерь от M:

M контролирует сложность ансамбля. Настраиваем #базовых моделей стратегией ранней остановки (early stopping), когда качество на валидации стало уменьшаться.

Комментарии

- Точнее усреднение по большему числу $f_m(x)$.
- Каждый $f_m(x)$ должен быть простым, чтобы оставлять возможности последующим моделям.
 - $f_0(x) \equiv 0$ или $f_0(x) \equiv const$
 - настройка $f_m(x)$ может быть неточной
 - $f_m(x)$ должны быть простыми моделями

Содержание

- Adaboost
- 2 Градиентный бустинг
- В Расширения
- Фармантный бустинг деревьев

Adaboost (дискретная версия)

Предположения:

- ullet бинарная классификация $y \in \{+1, -1\}$
- функция потерь $\mathcal{L}(G(x), y) = e^{-yG(x)}$
 - неустойчива к выбросам, их нужно фильтровать по весам
- $f_m(x) \in \{+1, -1\}$, способны настраиваться на взвешенной обучающей выборке.
- ullet настраивается $\widehat{y}(x) = \mathrm{sign}\left(\sum_{m=1}^{M} c_m f_m(x)\right)$
- М внешний параметр.

Возможно аналитическое решение.

Adaboost (дискретная версия): алгоритм

- **1** Инициализируем веса объектов $w_n = 1/N$, n = 1, 2, ...N.
- ② Для каждого m = 1, 2, ...M:
 - **1** настраиваем $f_m(x)$ по выборке с весами $\{w_n\}_{n=1}^N$
 - вычисляем взвешенную частоту ошибок:

$$E_{m} = \frac{\sum_{n=1}^{N} w_{n} \mathbb{I}[f_{m}(x_{n}) \neq y_{n}]}{\sum_{n=1}^{N} w_{n}}$$

- ullet если $E_m > 0.5$ либо $E_m = 0$: останавливаем построение ансамбля.
- $oldsymbol{0}$ вычисляем $c_m = rac{1}{2} \ln \left((1 E_m) / E_m
 ight)$ $E_m < 0.5 = > c_m > 0$
- **5** увеличиваем веса объектов, где $f_m(x)$ ошиблась:

$$w_n \leftarrow w_n e^{2c_m} = w_n \left(rac{1-E_m}{E_m}
ight),$$
 для $n: f_m(x_n)
eq y_n$

Задаем
$$G_0(x) \equiv 0$$
.
Для каждого $m = 1, 2, ...M$:

$$(c_m, f_m) = \arg \min_{c_m, f_m} \sum_{n=1}^{N} \mathcal{L}(G_{m-1}(x_n) + c_m f_m(x_n), y_n)$$

$$= \arg \min_{c_m, f_m} \sum_{n=1}^{N} e^{-y_n G_{m-1}(x_n)} e^{-c_m y_n f_m(x_n)}$$

$$= \arg \min_{c_m, f_m} \sum_{i=1}^{N} w_n^m e^{-c_m y_n f_m(x_n)}, \quad w_n^m := e^{-y_n G_{m-1}(x_n)}$$

$$\frac{\partial L(c_m)}{\partial c_m} = -\sum_{n=1}^{N} w_n^m e^{-c_m y_n f_m(x_n)} y_n f_m(x_n) = 0$$

$$-\sum_{n: f_m(x_n) = y_n} w_n^m e^{-c_m} + \sum_{n: f_m(x_n) \neq y_n} w_n^m e^{c_m} = 0$$

$$e^{2c_m} = \frac{\sum_{n: f_m(x_n) = y_n} w_n^m}{\sum_{n: f_m(x_n) \neq y_n} w_n^m}$$

$$c_{m} = \frac{1}{2} \ln \frac{\left(\sum_{n:f_{m}(x_{n})=y_{n}} w_{n}^{m}\right) / \left(\sum_{n=1}^{N} w_{n}^{m}\right)}{\left(\sum_{n:f_{m}(x_{n})\neq y_{n}} w_{n}^{m}\right) / \left(\sum_{n=1}^{N} w_{n}^{m}\right)} = \frac{1}{2} \ln \frac{1 - E_{m}}{E_{m}} > 0,$$

$$\sum_{n=1}^{N} w_{n}^{m} e^{-c_{m}y_{n}f_{m}(x_{n})} = \sum_{n:f_{m}(x_{n})=y_{n}} w_{n}^{m} e^{-c_{m}} + \sum_{n:f_{m}(x_{n})\neq y_{n}} w_{n}^{m} e^{c_{m}}$$

$$= e^{-c_{m}} \sum_{n:f_{m}(x_{n})=y_{n}} w_{n}^{m} + e^{c_{m}} \sum_{n:f_{m}(x_{n})\neq y_{n}} w_{n}^{m}$$

$$= e^{-c_{m}} \sum_{n=1}^{N} w_{n}^{m} - e^{-c_{m}} \sum_{n:f_{m}(x_{n})\neq y_{n}} w_{n}^{m} + e^{c_{m}} \sum_{n:f_{m}(x_{n})\neq y_{n}} w_{n}^{m}$$

$$= e^{-c_{m}} \sum_{n} w_{n}^{m} + (e^{c_{m}} - e^{-c_{m}}) \sum_{n:f_{m}(x_{n})\neq y_{n}} w_{n}^{m}$$

Поскольку $c_m > 0$, $f_m(\cdot)$ находится из условия

$$f_m(\cdot) = \arg\min_{f} \sum_{n=1}^{N} w_n^m \mathbb{I}[f(x_n) \neq y_n]$$

Пересчет весов:

$$w_n^{m+1} \stackrel{def}{=} e^{-y_n G_m(x_n)} = e^{-y_n G_{m-1}(x_n)} e^{-y_n c_m f_m(x_n)} = w_n^m e^{-y_n c_m f_m(x_n)}$$

 Т.к. $y_n f_m(x_n) = 1 - 2\mathbb{I}[f_m(x_n) \neq y_n]$, получим:
$$w_n^{m+1} = w_n^m e^{c_m(2\mathbb{I}[f_m(x_n) \neq y_n] - 1)} = w_n^m e^{2c_m \mathbb{I}[f_m(x_n) \neq y_n]} e^{-c_m}$$

$$\propto w_n^m e^{2c_m \mathbb{I}[f_m(x_n) \neq y_n]} = w_n^m \left(\frac{1 - E_m}{E_m}\right)^{\mathbb{I}[f(x_n) \neq y_n]} > w_n^m$$

- Веса нормируются => сократили общий множитель.
- $w_n^{m+1} = w_n^m$ для $n: f_m(x_n) = y_n$.
- $w_n^{m+1} > w_n^m$ для $n: f_m(x_n) \neq y_n$.
 - последующие модели уделят объектам повышенное внимание

Использование AdaBoost

```
from sklearn.ensemble import AdaBoostClassifier
from sklearn.metrics import accuracy score
from sklearn.metrics import brier score loss
X train, X test, Y train, Y test =
      get demo classification data()
model = AdaBoostClassifier(n estimators=50)
# для регрессии есть AdaBoostRegressor
model. fit (X train, Y train) # обучение модели
Y hat = model.predict(X test) # построение прогнозов
print(f'Точность прогнозов: \
   {100*accuracy score(Y test, Y hat):.1 f}%')
P hat = model.predict proba(X test)
loss = brier score loss(Y test, P hat[:,1])
print(f'Ошибка Бриера: {loss:.2f}')
```

Больше информации. Полный код.

Содержание

- Adaboost
- 2 Градиентный бустинг
- 3 Расширения
- 4 Градиентный бустинг деревьев

Мотивация

- Проблема: для ф-ции потерь общего вида пересчет модели/весов не может быть решен аналитически.
- Аналогия с минимизацией ф-ций: если нет аналитического решения, находим численное решение
- Градиентный бустинг: аналогия градиентного спуска в пространстве функций.

• Решаем задачу подбора $f_{m+1}(x)$ (пока без c_m):

$$L(f_m) = \frac{1}{N} \sum_{n=1}^{N} \mathcal{L}\left(G_m(x_n) + f_m(x_n), y_n\right) \to \min_{f_m}$$

• Если $[f_m(x_1), f_m(x_2), ... f_m(x_N)] \rightarrow [u_1, u_2, ... u_N] \in \mathbb{R}^N$:

$$L(u) = L(u_1, ...u_N) = \frac{1}{N} \sum_{n=1}^{N} \mathcal{L}(G_m(x_n) + u_n, y_n) \to \min_{u_1, u_2, ...u_N}$$

• Решаем задачу подбора $f_{m+1}(x)$ (пока без c_m):

$$L(f_m) = \frac{1}{N} \sum_{n=1}^{N} \mathcal{L}\left(G_m(x_n) + f_m(x_n), y_n\right) \to \min_{f_m}$$

ullet Если $[f_m(x_1), f_m(x_2), ... f_m(x_N)]
ightarrow [u_1, u_2, ... u_N] \in \mathbb{R}^N$:

$$L(u) = L(u_1, ...u_N) = \frac{1}{N} \sum_{n=1}^{N} \mathcal{L}(G_m(x_n) + u_n, y_n) \to \min_{u_1, u_2, ...u_N}$$

• В линейном приближении можно решить, положив

$$u_1 = -\frac{\partial L(G_m(x_1), y_1)}{\partial G}; \cdots u_N = -\frac{\partial L(G_m(x_N), y_N)}{\partial G}$$

• Решаем задачу подбора $f_{m+1}(x)$ (пока без c_m):

$$L(f_m) = \frac{1}{N} \sum_{n=1}^{N} \mathcal{L}\left(G_m(x_n) + f_m(x_n), y_n\right) \to \min_{f_m}$$

ullet Если $[f_m(x_1), f_m(x_2), ... f_m(x_N)]
ightarrow [u_1, u_2, ... u_N] \in \mathbb{R}^N$:

$$L(u) = L(u_1, ...u_N) = \frac{1}{N} \sum_{n=1}^{N} \mathcal{L}(G_m(x_n) + u_n, y_n) \to \min_{u_1, u_2, ...u_N}$$

• В линейном приближении можно решить, положив

$$u_1 = -\frac{\partial L(G_m(x_1), y_1)}{\partial G}; \quad \dots \quad u_N = -\frac{\partial L(G_m(x_N), y_N)}{\partial G}$$

• Следовательно, следует выбирать $f_m(x)$ так, чтобы

$$f_m(x_1) \approx -\frac{\partial \mathcal{L}(G_m(x_1), y_1)}{\partial G}; \cdots f_m(x_N) \approx -\frac{\partial \mathcal{L}(G_m(x_N), y_N)}{\partial G}$$

• Шагу градиентного спуска при минимизации $\mathcal{L}(\mathsf{u})$:

$$u := u - \varepsilon \nabla L(u)$$

будет приближённо соответствовать обновление ансамбля:

$$G_{m+1}(x) := G_m(x) + \varepsilon f_m(x)$$

- $\nabla L(u) \in \mathbb{R}^N$ соответствует $[f_m(x_1), f_m(x_2), ... f_m(x_N)].$
- ε шаг обучения (learning rate).

Локальная линейная аппроксимация

Линейная аппроксимация
$$\mathcal L$$
 с $g(x)=\left. rac{\partial \mathcal L(G,y)}{\partial G} \right|_{G=G(x)}$:

Локальная линейная аппроксимация

Линейная аппроксимация
$$\mathcal{L}$$
 с $g(x)=\left.\frac{\partial \mathcal{L}(G,y)}{\partial G}\right|_{G=G(x)}$:
$$\mathcal{L}(G(x)+f(x),\,y)\approx \mathcal{L}(G(x),y)+g(x)f(x)$$

$$rg \min_{f(x)} \sum_{n=1}^N \mathcal{L}(G(x_n) + f(x_n), y_n)$$
 $pprox rg \min_{f(x)} \sum_{n=1}^N \mathcal{L}(G(x_n), y_n) + g(x_n)f(x_n)$ $= rg \min_{f(x)} \sum_{n=1}^N g(x_n)f(x_n) = rg \max_{f(x)} \sum_{n=1}^N g(x_n)f(x_n)$ $=> f(x)$ должна настраиваться на $-g(x)$, т.к.

 $rg \min_{f: \|f\| \leq \|g\|} \langle f, g
angle = -g$

Пример: регрессия

$$\sum_{n=1}^{N} \left(f_m(x_n) + \frac{\partial \mathcal{L}(G, y_n)}{\partial G} |_{G = G_{m-1}(x_n)} \right)^2 \to \min_{f_m}$$

Пример: регрессия

$$\sum_{n=1}^{N} \left(f_m(x_n) + \frac{\partial \mathcal{L}(G, y_n)}{\partial G} \Big|_{G = G_{m-1}(x_n)} \right)^2 \to \min_{f_m}$$

$$\mathcal{L} = \frac{1}{2} (G - y)^2 : \ f(x) \approx -\frac{\partial \mathcal{L}(G, y)}{\partial G} = -(G - y)$$

$$G_m(x_n) := G_{m-1}(x_n) + \varepsilon f(x) \approx G_{m-1}(x_n) + \varepsilon (y_n - G_{m-1}(x_n))$$

Иллюстрация

Пример: классификация

$$\sum_{n=1}^{N} \left(f_m(x_n) + \frac{\partial \mathcal{L}(G, y_n)}{\partial G} |_{G = G_{m-1}(x_n)} \right)^2 \to \min_{f_m}$$

Пример: классификация

$$\sum_{n=1}^{N} \left(f_m(x_n) + \frac{\partial \mathcal{L}(G, y_n)}{\partial G} |_{G = G_{m-1}(x_n)} \right)^2 \to \min_{f_m}$$

$$\mathcal{L} = [-Gy]_+ : f_m(x) \approx -\frac{\partial \mathcal{L}(G, y)}{\partial G} = \begin{cases} y, & Gy < 0 \\ 0, & Gy \ge 0 \end{cases}$$

$$G_m(x_n) := G_{m-1}(x_n) + \varepsilon f_m(x) \approx G_{m-1}(x_n) + \begin{cases} \varepsilon y_n, & G(x_n) y_n < 0 \\ 0, & G(x_n) y_n \ge 0 \end{cases}$$

Иллюстрация

Вход: обучающая выборка $X, Y = \{(x_n, y_n)\}_{n=1}^N$,; функция потерь $\mathcal{L}(f, y)$ и число базовых моделей M.

lacktriangle Настраиваем начальную модель $G_0(x)$ по X,Y.

Вход: обучающая выборка $X, Y = \{(x_n, y_n)\}_{n=1}^N$,; функция потерь $\mathcal{L}(f, y)$ и число базовых моделей M.

- lacktriangle Настраиваем начальную модель $G_0(x)$ по X,Y.
- ② Для каждого m = 1, 2, ... M:

Вход: обучающая выборка $X, Y = \{(x_n, y_n)\}_{n=1}^N$,; функция потерь $\mathcal{L}(f, y)$ и число базовых моделей M.

- lacktriangle Настраиваем начальную модель $G_0(x)$ по X,Y.
- ② Для каждого m = 1, 2, ...M:
 - $oldsymbol{0}$ вычисляем градиенты: $g_n = rac{\partial \mathcal{L}(G_{m-1}(x_n),y_n)}{\partial G}$

Вход: обучающая выборка $X, Y = \{(x_n, y_n)\}_{n=1}^N$,; функция потерь $\mathcal{L}(f, y)$ и число базовых моделей M.

- lacktriangle Настраиваем начальную модель $G_0(x)$ по X,Y.
- ② Для каждого m = 1, 2, ...M:

 - вычисляем градиенты: $g_n = \frac{\partial \mathcal{L}(G_{m-1}(x_n), y_n)}{\partial G}$ настраиваем $f_m(\cdot)$ на $\{(x_n, -g_n)\}_{n=1}^N$, например

$$\sum_{n=1}^{N} (f_m(x_n) + g_n)^2 \to \min_{f_m}$$

Вход: обучающая выборка $X, Y = \{(x_n, y_n)\}_{n=1}^N$; функция потерь $\mathcal{L}(f, y)$ и число базовых моделей M.

- lacktriangle Настраиваем начальную модель $G_0(x)$ по X,Y.
- ② Для каждого m = 1, 2, ...M:

 - вычисляем градиенты: $g_n = \frac{\partial \mathcal{L}(G_{m-1}(x_n), y_n)}{\partial G}$ настраиваем $f_m(\cdot)$ на $\{(x_n, -g_n)\}_{n=1}^N$, например

$$\sum_{n=1}^{N} (f_m(x_n) + g_n)^2 \to \min_{f_m}$$

настраиваем шаг (в sklearn - константный):

$$\varepsilon_m = \underset{\varepsilon>0}{\arg\min} \sum_{n=1}^N \mathcal{L}\left(G_{m-1}(x_n) + \varepsilon f_m(x_n), y_n\right)$$

Вход: обучающая выборка $X, Y = \{(x_n, y_n)\}_{n=1}^N$,; функция потерь $\mathcal{L}(f, y)$ и число базовых моделей M.

- lacktriangle Настраиваем начальную модель $G_0(x)$ по X,Y.
- ② Для каждого m = 1, 2, ...M:

 - вычисляем градиенты: $g_n = \frac{\partial \mathcal{L}(G_{m-1}(x_n), y_n)}{\partial G}$ настраиваем $f_m(\cdot)$ на $\{(x_n, -g_n)\}_{n=1}^N$, например

$$\sum_{n=1}^{N} (f_m(x_n) + g_n)^2 \to \min_{f_m}$$

настраиваем шаг (в sklearn - константный):

$$\varepsilon_m = \underset{\varepsilon>0}{\arg\min} \sum_{n=1}^N \mathcal{L}\left(G_{m-1}(x_n) + \varepsilon f_m(x_n), y_n\right)$$

4 обновляем $G_m(x) = G_{m-1}(x) + \varepsilon_m f_m(x)$

Алгоритм градиентного бустинга

Вход: обучающая выборка $X, Y = \{(x_n, y_n)\}_{n=1}^N$; функция потерь $\mathcal{L}(f, y)$ и число базовых моделей M.

- lacktriangle Настраиваем начальную модель $G_0(x)$ по X,Y.
- ② Для каждого m = 1, 2, ...M:

 - вычисляем градиенты: $g_n = \frac{\partial \mathcal{L}(G_{m-1}(x_n), y_n)}{\partial G}$ настраиваем $f_m(\cdot)$ на $\{(x_n, -g_n)\}_{n=1}^N$, например

$$\sum_{n=1}^{N} (f_m(x_n) + g_n)^2 \to \min_{f_m}$$

настраиваем шаг (в sklearn - константный):

$$\varepsilon_m = \underset{\varepsilon>0}{\arg\min} \sum_{n=1}^N \mathcal{L}\left(G_{m-1}(x_n) + \varepsilon f_m(x_n), y_n\right)$$

 $\mathbf{G}_m(x) = G_{m-1}(x) + \varepsilon_m f_m(x)$

Выход: композиция $G_M(x)$.

Содержание

- Adaboost
- 2 Градиентный бустинг
- 3 Расширения
- Ф Градиентный бустинг деревьев

Сжатие, обучение на подвыборках

- Перенастройка линейной регрессией весов по признакам $f_1(x), ... f_M(x)$.
- Сжатие шага (shrinkage):

$$G_m(x) = G_{m-1}(x) + \alpha \varepsilon_m f_m(x)$$

- $\alpha \downarrow \implies M \uparrow (\alpha M \approx const)$
- $\alpha \in (0,1]$ искусственно увеличиваем # шагов и # базовых моделей для \uparrow точности.
- ullet настраиваем все параметры, потом используем lpha и M:=M/lpha.
- \bullet Обучение $f_m(x)$ на подвыборках (subsampling)
 - объекты и признаки сэмплируются без возвращения
 - ускоряет настройку
 - повышает разнообразие $f_m(x)$ и точность композиции.

Пример: использование сжатия

Пример: обучение на части объектов

Пример: обучение на части признаков

Все настройки одновременно

- Настройка по α однозначна.
 - чем меньше, тем лучше (но вычислительно сложнее)
- Опт. доля используемых объектов и признаков неоднозначна.
 - нужна тщательная настройка по кросс-валидации

Локальная квадратичная аппроксимация

Квадратичная аппроксимация
$$\mathcal{L}$$
, используя $g(x)=\frac{\partial \mathcal{L}(G(x),y)}{\partial G}$, $h(x)=\frac{\partial^2 \mathcal{L}(G(x),y)}{\partial G^2}$:

Локальная квадратичная аппроксимация

Квадратичная аппроксимация \mathcal{L} , используя $g(x) = \frac{\partial \mathcal{L}(G(x),y)}{\partial G}$, $h(x) = \frac{\partial^2 \mathcal{L}(G(x),y)}{\partial G^2}$:

$$\mathcal{L}(G(x) + f(x), y) \approx \mathcal{L}(G(x), y) + g(x)f(x) + \frac{1}{2}h(x)(f(x))^{2} = \frac{1}{2}h(x)\left(f(x) + \frac{g(x)}{h(x)}\right)^{2} + const(f(x))$$

$$\arg \min_{f(x)} \sum_{n=1}^{N} \frac{1}{2}h(x_{n})\left(f(x_{n}) + \frac{g(x_{n})}{h(x_{n})}\right)^{2} + const(f(x))$$

$$= \arg \min_{f(x)} \sum_{n=1}^{N} h(x_{n})\left(f(x_{n}) + \frac{g(x_{n})}{h(x_{n})}\right)^{2}$$

Следовательно $f(x_n) \approx -g(x_n)/h(x_n)$ с весом $h(x_n)$.

• $h(x) \ge 0$ в окрестности локального минимума L.

Содержание

- Adaboost
- 2 Градиентный бустинг
- 3 Расширения
- 4 Градиентный бустинг деревьев

Преимущества решающих деревьев

Преимущества решающих деревьев:

- нелинейная модель с гибкой настройкой сложности
 - по глубине и др. критериям
- вычислительная эффективность прогнозов
- встроенный обзор признаков
- инвариантны к масштабу признаков
- инвариантны к монотонным преобразованиям признаков
- обладают универсальной применимостью к признакам разной природы
 - бинарные, вещественные, порядковые категориальные
 - категориальные->бинарные (one-hot) или вещественные (mean-value encoding)
 - категориальные->порядковые, упорядочив категории по \overline{y} при условии категории
- позволяют вычислять важность признаков

Вход: обучающая выборка $(x_n, y_n), n = 1, 2, ...N$; ф-ция потерь $\mathcal{L}(f, y)$ и # базовых моделей M.

Начальная аппроксимация-константа:

$$G_0(x) = \arg\min_{\gamma} \sum_{n=1}^{N} \mathcal{L}(\gamma, y_n)$$

Вход: обучающая выборка (x_n, y_n) , n = 1, 2, ...N; ф-ция потерь $\mathcal{L}(f, y)$ и # базовых моделей M.

1 Начальная аппроксимация-константа: $G_0(x) = \arg\min_{\gamma} \sum_{n=1}^{N} \mathcal{L}(\gamma, y_n)$

② Для каждого m = 1, 2, ...M:

Вход: обучающая выборка (x_n, y_n) , n = 1, 2, ...N; ф-ция потерь $\mathcal{L}(f, y)$ и # базовых моделей M.

- Начальная аппроксимация-константа:
 - $G_0(x) = \arg\min_{\gamma} \sum_{n=1}^{N} \mathcal{L}(\gamma, y_n)$
- ② Для каждого m = 1, 2, ...M:
 - $oldsymbol{0}$ вычисляем градиенты $g_n = rac{\partial \mathcal{L}(G_{m-1}(x_n),y_n)}{\partial G}$

Вход: обучающая выборка (x_n, y_n) , n = 1, 2, ...N; ф-ция потерь $\mathcal{L}(f, y)$ и # базовых моделей M.

- Начальная аппроксимация-константа:
 - $G_0(x) = \arg\min_{\gamma} \sum_{n=1}^{N} \mathcal{L}(\gamma, y_n)$
- ② Для каждого m = 1, 2, ... M:
 - $oldsymbol{0}$ вычисляем градиенты $g_n = rac{\partial \mathcal{L}(G_{m-1}(x_n),y_n)}{\partial G}$
 - **2** настраиваем решающее дерево $f_m(\cdot)$ на $\{(x_n, -g_n)\}_{n=1}^N$, получаем разбиение пр-ва признаков $\{R_k\}_{k=1}^K$.

Вход: обучающая выборка (x_n, y_n) , n = 1, 2, ...N; ф-ция потерь $\mathcal{L}(f, y)$ и # базовых моделей M.

- **1** Начальная аппроксимация-константа: $G_0(x) = \arg\min_{\gamma} \sum_{n=1}^{N} \mathcal{L}(\gamma, y_n)$
- ② Для каждого m = 1, 2, ...M:
 - **0** вычисляем градиенты $g_n = \frac{\partial \mathcal{L}(G_{m-1}(x_n), y_n)}{\partial G}$
 - **2** настраиваем решающее дерево $f_m(\cdot)$ на $\{(x_n, -g_n)\}_{n=1}^N$, получаем разбиение пр-ва признаков $\{R_k\}_{k=1}^K$.
 - **3** для каждого прямоугольника R_k , k = 1, 2, ... K пересчитываем прогнозы:

$$\gamma_k = \arg\min_{\gamma>0} \sum_{x \in R_k} \mathcal{L}(F_{m-1}(x_n) + \gamma, y_n)$$

Вход: обучающая выборка (x_n, y_n) , n = 1, 2, ...N; ф-ция потерь $\mathcal{L}(f, y)$ и # базовых моделей M.

- **1** Начальная аппроксимация-константа: $G_0(x) = \arg\min_{\gamma} \sum_{n=1}^{N} \mathcal{L}(\gamma, y_n)$
- ② Для каждого m = 1, 2, ...M:
 - **①** вычисляем градиенты $g_n = \frac{\partial \mathcal{L}(G_{m-1}(x_n), y_n)}{\partial G}$
 - **2** настраиваем решающее дерево $f_m(\cdot)$ на $\{(x_n, -g_n)\}_{n=1}^N$, получаем разбиение пр-ва признаков $\{R_k\}_{k=1}^K$.
 - **3** для каждого прямоугольника R_k , k=1,2,...K пересчитываем прогнозы:

$$\gamma_k = \arg\min_{\gamma>0} \sum_{x_n \in R_k} \mathcal{L}(F_{m-1}(x_n) + \gamma, y_n)$$

 $m{0}$ обновляем $G_m(x) := G_{m-1}(x) + \sum_{k=1}^K \gamma_k \mathbb{I}[x \in R_k]$

Вход: обучающая выборка (x_n, y_n) , n = 1, 2, ...N; ф-ция потерь $\mathcal{L}(f, y)$ и # базовых моделей M.

- Начальная аппроксимация-константа:
 - $G_0(x) = \arg\min_{\gamma} \sum_{n=1}^{N} \mathcal{L}(\gamma, y_n)$
- ② Для каждого m = 1, 2, ...M:
 - **1** вычисляем градиенты $g_n = \frac{\partial \mathcal{L}(G_{m-1}(x_n), y_n)}{\partial G}$
 - **2** настраиваем решающее дерево $f_m(\cdot)$ на $\{(x_n, -g_n)\}_{n=1}^N$, получаем разбиение пр-ва признаков $\{R_k\}_{k=1}^K$.
 - **3** для каждого прямоугольника R_k , k=1,2,...K пересчитываем прогнозы:

$$\gamma_k = \arg\min_{\gamma>0} \sum_{x \in R_k} \mathcal{L}(F_{m-1}(x_n) + \gamma, y_n)$$

3 обновляем $G_m(x) := G_{m-1}(x) + \sum_{k=1}^K \gamma_k \mathbb{I}[x \in R_k]$

Выход: композиция $G_M(x)$.

- Индивидуальная настройка прогноза в каждом R_i^m .
 - ullet подбирать общий множитель $arepsilon_m$ уже не нужно
 - повышает гибкость настройки
- ullet Охватываем взаимодействие K признаков, если
 - макс. глубина дерева К
 - ullet либо макс. # листьев K+1
- Обычно подбирают $2 \le K \le 8$ по валидации.
- Англ. gradient boosting on decision trees (GBDT).
- Один из самых точных алгоритмов для неоднородных данных (признаки разной природы)
- Для однородных данных со структурой (текст, звук, изображения, видео) - лучше нейросети.

Случай
$$y \in \{1, 2, ...C\}$$

Используем обобщение: один-против-всех, один-против-одного, коды, исправляющие ошибки.

Случай $y \in \{1, 2, ...C\}$

Используем обобщение: один-против-всех, один-против-одного, коды, исправляющие ошибки.

Альтернативно, можно оптимизировать $\mathcal{L}(G(x),y)$, $G(x) \in \mathbb{R}^C$. Пример:

- $G(x) = \{p(y=c|x)\}_{c=1}^C$, y one-hot закодированный класс,
- Решаем задачу С-мерной регрессии:
 - Минимизация потерь $\mathcal{L}(\cdot)$:

$$f_m(x_n) \approx -\frac{\partial \mathcal{L}(G_{m-1}(x_n), y_n)}{\partial G} \in \mathbb{R}^C$$

Максимизация качества $S(\cdot)$:

$$f_m(x_n) \approx \frac{\partial \mathcal{S}(G_{m-1}(x_n), y_n)}{\partial G} \in \mathbb{R}^C$$

Пример

$$G_{m-1}(x) = [p_1, ... p_C]$$

$$S(G_{m-1}(x), y) = \ln p(y|x) = \sum_{c=1}^{C} \mathbb{I}[y = c] \ln p_c$$

$$f_m(x_n) \approx \begin{pmatrix} \frac{1}{p_1} \mathbb{I}[y = 1|x] \\ \frac{1}{p_2} \mathbb{I}[y = 2|x] \\ ... \\ \frac{1}{p_C} \mathbb{I}[y = C|x] \end{pmatrix}$$

 $p := p + f_m(x)$, потом перенормировать.

Использование градиентного бустинга (регрессия)

```
from sklearn.ensemble import
            GradientBoostingRegressor
from sklearn.metrics import mean absolute error
X train, X test, Y train, Y test =
   get demo regression data()
# инициализация (базовые модели—всегда деревья)
model = GradientBoostingRegressor(
   n estimators=1000, # число базовых моделей
   learning rate = 0.1, # шаг обучения
   subsample = 1.0, # доля объектов для обучения
   max features = 1.0) # доля признаков для обучения
model. fit (X train, Y train) # обучение модели
Y hat = model.predict(X test) # прогнозирование
print(f'Средний модуль ошибки (МАЕ): \
   {mean absolute error(Y test, Y hat):.2f}')
```

Использование градиентного бустинга (класс-ция)

```
from sklearn.ensemble import GradientBoostingClassifier
from sklearn.metrics import accuracy score
from sklearn metrics import brier score loss
X train, X test, Y train, Y test =
   get demo classification data()
model = GradientBoostingClassifier(n estimators=1000,
   learning rate = 0.1, subsample = 1.0, max features = 1.0)
model. fit (X train, Y train) # обучение модели
Y hat = model.predict(X test) # построение прогнозов
print(f'Точность прогнозов: {100*accuracy score(Y test,
    Y hat):.1 f}%')
P hat = model.predict proba(X test) # вер—ти классов
loss = brier score loss(Y test, P hat[:,1])
print(f'Средняя ошибка прогноза вероятностей (по мере
   Бриера): {loss:.2f}')
```

Больше информации. Полный код.

Продвинутые реализации бустинга

- Продвинутые реализации бустинга:
 - CatBoost
 - разработано Яндексом, документация на русском
 - специальная обработка категориальных признаков
 - xgBoost
 - аппроксимация 2го порядка, дискретизация признаков
 - гибкая регуляризация деревьев: $L_0 + L_2$
 - ullet деревья настраиваются на пользовательскую ${\mathcal L}$
 - LightGBM
 - ускорение: оптимизация на меньшем #объектов и признаков
- Эффективная реализация с параллелизацией на ядрах процессора и видеокарте.

Заключение

- Бустинг линейная композиция последовательно настраиваемых алгоритмов.
- В редких случаях есть аналитическое решение (AdaBoost).
- В общем случае используется градиентный бустинг.
- Градиентный бустинг над решающими деревьями один из самых точных методом ML.
 - менее гибок, чем нейросети, но
 - проще, не нужно подбирать архитектуру сети
 - меньше предобработки данных (универсальность деревьев)
 - интерпретируемый (можно считать важности признаков)
- Полезные надстройки:
 - сжатие (shrinking) больше базовых алгоритмов
 - обучение на подвыборках объектов и признаков повышение разнообразия
- Можно использовать квадратичную, а не линейную аппроксимацию.