Chapter 4 - Summarizing Numerical Data

15.075 Cynthia Rudin

Here are some ways we can summarize data numerically.

• Sample Mean:

$$\bar{x} := \frac{\sum_{i=1}^{n} x_i}{n}.$$

Note: in this class we will work with both the population mean μ and the sample mean \bar{x} . Do not confuse them! Remember, \bar{x} is the mean of a sample taken from the population and μ is the mean of the whole population.

• Sample median: order the data values $x_{(1)} \leq x_{(2)} \leq \cdots \leq x_{(n)}$, so then

$$\mathrm{median} := \bar{x} := \left\{ \begin{matrix} x_{(\frac{n+1}{2})} & \mathrm{n} \ \mathrm{odd} \\ \frac{1}{2}[x_{(\frac{n}{2})} + x_{(\frac{n}{2}+1)}] & \mathrm{n} \ \mathrm{even} \end{matrix} \right\}.$$

Mean and median can be very different: $1, 2, 3, 4, \underbrace{500}_{3}$.

The median is more robust to outliers.

- Quantiles/Percentiles: Order the sample, then find \tilde{x}_p so that it divides the data into two parts where:
 - a fraction p of the data values are less than or equal to \tilde{x}_p and
 - the remaining fraction (1-p) are greater than \tilde{x}_p .

That value \tilde{x}_p is the p^{th} -quantile, or $100 \times p^{\text{th}}$ percentile.

• 5-number summary

$$\{x_{\min}, Q_1, Q_2, Q_3, x_{\max}\},\$$

1

where, $Q_1 = \theta_{.25}$, $Q_2 = \theta_{.5}$, $Q_3 = \theta_{.75}$.

- Range: $x_{\text{max}} x_{\text{min}}$ measures dispersion
- Interquartile Range: $IQR := Q_3 Q_1$, range resistant to outliers

• Sample Variance s^2 and Sample Standard Deviation s:

$$s^2 := \frac{1}{\underbrace{n-1}_{\text{see why later}}} \sum_{i=1}^n (x_i - \bar{x})^2.$$

Remember, for a large sample from a normal distribution, $\approx 95\%$ of the sample falls in $[\bar{x}-2s,\bar{x}+2s]$.

Do not confuse s^2 with σ^2 which is the variance of the population.

- Coefficient of variation (CV) := $\frac{s}{\bar{x}}$, dispersion relative to size of mean.
- z-score

$$z_i := \frac{x_i - \bar{x}}{s}.$$

 It tells you where a data point lies in the distribution, that is, how many standard deviations above/below the mean.

E.g. $z_i = 3$ where the distribution is N(0, 1).

 It allows you to compute percentiles easily using the z-scores table, or a command on the computer.

2

Now some graphical techniques for describing data.

 \bullet $Bar\ chart/Pie\ chart$ - good for summarizing data within categories

• Pareto chart - a bar chart where the bars are sorted.

• Histogram

Boxplot and normplot

Scatterplot for bivariate data

Q-Q Plot for 2 independent samples

Hans Rosling

Chapter 4.4: Summarizing bivariate data

Two Way Table

Here's an example:

Respiratory Problem?

1	·		
	yes	no	row total
smokers	25	25	50
non-smokers	5	45	50
column total	30	70	100

Question: If this example is from a study with 50 smokers and 50 non-smokers, is it meaningful to conclude that in the *general population*:

- a) 25/30 = 83% of people with respiratory problems are smokers?
- b) 25/50 = 50% of smokers have respiratory problems?

Simpson's Paradox

- Deals with aggregating smaller datasets into larger ones.
- Simpson's paradox is when conclusions drawn from the smaller datasets are the *opposite* of conclusions drawn from the larger dataset.
- Occurs when there is a *lurking variable* and *uneven-sized groups* being combined

E.g. Kidney stone treatment (Source: Wikipedia)

Which treatment is more effective?

Treatment A	Treatment B
$78\% \frac{273}{350}$	$83\% \frac{289}{350}$

Including information about stone size, now which treatment is more effective?

	Treatment A	Treatment B
small	group 1	group 2
stones	$93\% \frac{81}{87}$	$87\% \frac{234}{270}$
large	group 3	group 4
stones	group 3 $73\% \frac{192}{263}$	$\begin{array}{c} \text{group } 4 \\ 69\% \ \frac{55}{80} \end{array}$
both	$78\% \frac{273}{350}$	$83\% \frac{289}{350}$

What happened!?

Continuing with bivariate data:

• Correlation Coefficient- measures the strength of a <u>linear</u> relationship between two variables:

sample correlation coefficient =
$$r := \frac{S_{xy}}{S_x S_y}$$
,

where

$$S_{xy} = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})$$
$$S_x^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2.$$

This is also called the "Pearson Correlation Coefficient."

- If we rewrite

$$r = \frac{1}{n-1} \sum_{i=1}^{n} \frac{(x_i - \bar{x})}{S_x} \frac{(y_i - \bar{y})}{S_y},$$

you can see that $\frac{(x_i-\bar{x})}{S_x}$ and $\frac{(y_i-\bar{y})}{S_y}$ are the z-scores of x_i and y_i .

- $-r \in [-1,1]$ and is ± 1 only when data fall along a straight line
- sign(r) indicates the slope of the line (do y_i 's increase as x_i 's increase?)
- always plot the data before computing r to ensure it is meaningful

- Correlation does not imply causation, it only implies association (there may be lurking variables that are not recognized or controlled)

For example: There is a correlation between declining health and increasing wealth.

• Linear regression (in Ch 10)

$$\frac{y - \bar{y}}{S_y} = r \frac{x - \bar{x}}{S_x}.$$

5

Chapter 4.5: Summarizing time-series data

• Moving averages. Calculate average over a window of previous timepoints

$$MA_t = \frac{x_{t-w+1} + \dots + x_t}{w},$$

where w is the size of the window. Note that we make window w smaller at the beginning of the time series when t < w.

Example

To use moving averages for forecasting, given x_1, \ldots, x_{t-1} , let the predicted value at time t be $\hat{x}_t = MA_{t-1}$. Then the forecast error is:

$$e_t = x_t - \hat{x}_t = x_t - MA_{t-1}.$$

• The Mean Absolute Percent Error (MAPE) is:

$$MAPE = \frac{1}{T-1} \sum_{t=2}^{T} \left| \frac{e_t}{x_t} \right| \cdot 100\%.$$

The MAPE looks at the forecast error e_t as a fraction of the measurement value x_t . Sometimes as measurement values grow, errors, grow too, the MAPE helps to even this out.

For MAPE, x_t can't be 0.

- Exponentially Weighted Moving Averages (EWMA).
 - It doesn't completely drop old values.

$$EWMA_t = \omega x_t + (1 - \omega)EWMA_{t-1},$$

where $EWMA_0 = x_0$ and $0 < \omega < 1$ is a smoothing constant.

Example

- here ω controls balance of recent data to old data
- called "exponentially" from recursive formula:

$$EWMA_{t} = \omega[x_{t} + (1 - \omega)x_{t-1} + (1 - \omega)^{2}x_{t-2} + \dots] + (1 - \omega)^{t}EWMA_{0}$$

- the forecast error is thus:

$$e_t = x_t - \hat{x}_t = x_t - EWMA_{t-1}$$

- HW? Compare MAPE for MA vs EWMA
- Autocorrelation coefficient. Measures correlation between the time series and a lagged version of itself. The k^{th} order autocorrelation coefficient is:

$$r_k := \frac{\sum_{t=k+1}^{T} (x_{t-k} - \bar{x})(x_t - \bar{x})}{\sum_{t=1}^{T} (x_t - \bar{x})^2}$$

Example

MIT OpenCourseWare http://ocw.mit.edu

15.075 J / ESD.07 J Statistical Thinking and Data Analysis Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.