作品名稱:mnist 手寫數字辨識

一、說明

深度學習就是透過各種類神經網路,本專題會使用多層感知器(MLP)、卷積神經網路(CNN)、循環神經網路(RNN)透過 mnist 資料集產出訓練出來的值,將一大堆的數據輸入神經網路中,讓電腦透過大量數據的訓練找出規律自動學習,最後讓電腦能依據自動學習累積的經驗作出預測。

二、論文

多層感知器(MLP):多層感知器是由多層人工神經元組成的類神經網路,在 MINST 資料集的手寫數字辨識中要用到的 MLP 為如下具有輸入層,一個隱藏層,以及輸出層的類神經網路。

為了提高學習的準確率,神經網路更發展到有一個輸入層、一個或多個隱藏層及一個輸出層的多層感知器(MLP)。

- 輸入層:數字圖片是一張 28*28 的圖片、共有 784 個神經元所組成了神經網路 第一層,數值的範圍介於 0~1 之間。灰階 0 代表灰色、1 代表白色,又稱為激勵 值,數值越大則該神經元就越亮。
- 輸出層:完成輸入層後先不管其他層的內容,我們來看看他最右方的輸入層, 也就是最後判斷的結果,其中有10個神經元,各代表數字0~9,其中也有代表的激勵值。
- 隱藏層:為了方便說明,在這裡我們設計了兩個隱藏層,每層有 16 個神經元。 在真實的案例中可依據需求設置調整隱藏層與神經元的數量。

卷積神經網路(CNN):它是目前深度神經網路(Deep Neural Network)領域發展的主力,在圖片辨別上甚至可以做到比人類還精準之程度。

● 結構圖,和多層感知器相比較,卷積神經網路增加卷積層 1、池化層 1、卷積層 2、池化層 2,提取特徵後再以平坦層將特徵輸入神經網路中。以下使用 MNIST 資料及進行說明:

圖片中最上方有卷積層 1、池化層 1、卷積層 2、池化層 2,將原始的圖片以卷積、 池化處理後產生更多的特徵小圖片,作為輸入的神經元。

- 卷積層:是將原始圖片與特定的濾鏡(Feature Detector)進行卷積運算,你也可以將卷積運算看成是原始圖片濾鏡特效的處理,filters可以設定濾鏡數目, kernel_size可以設定濾鏡(filter)大小,每一個濾鏡都會以亂數處理的方式產 生不同的卷積運算,因此可以得到不同的濾鏡特效效果,增加圖片數量。
- 池化層:是採用 Max Pooling,指挑出矩陣當中的最大值,相當於只挑出圖片局 部最明顯的特徵,這樣就可以縮減卷積層產生的卷積運算圖片數量。 循環神經網路(RNN):它是「自然語言處理」領域最常使用的神經網路模型,LSTM 因為 RNN 前面的輸入和後面的輸入具有關連性,即可以建立回饋迴路。也可以用於 語言翻譯、情緒分析、氣象預測及股票交易等。
- 結構圖:循環神經網路中主要有三種模型,分別是 SimpleRNN、LSTM 和 GRU。因為 SimpleRNN 超簡單,效果不夠好,記不住長期的事情,所以又發展出長短記憶網路(LSTM),然後 LSTM 又被簡化為閘式循環網路 GRU。

如圖共有三個時間點依序是 t-1、t、t+1,在t的時間點:

- X1 是神經網路 t 時間點的輸入, Ot 是神經網路 t 時間點的輸出。
- (U, V, W)都是神經網路共用的參數, W 參數是神經網路 t-1 時間點輸出,並且也作為神經網路 t 時間點的輸入。
- S1 是隱藏狀態,代表神經網路上的記憶,是神經網路目前時間點的輸入 X1 加上上個時間點的狀態 St-1,再加上 U與 W 的參數,共同評估之結果:

St = f(U * Xt + W * St-1)

簡單來說就是前面的狀態會影響現在的狀態,現在的狀態也會影響以後的狀態。

三、實作

MNIST 資料集是由紐約大學 Yann Le Cun 教授蒐集整理很多 0~9 的手寫數字圖片所形成的資料集,這是一個大型手寫數字資料庫,對於機器學習學者來說是初學者,圖片每張大小為 28*28、皆為灰階影像,每個像素為 0~255 之數值、資料庫當中包含了 60000 筆的訓練資料、10000 筆的測試資料。在 MNIST 資料集中,每一筆資料都是由下載好的 mnist 的資料實作出成果。

7210414959

- 1. 使用多層感知(MLP)進行辨識訓練:
- (1) 建立模型與資料結構:

#導入相關套件

import os

os.environ['TF CPP MIN LOG LEVEL'] = '2'

from keras.datasets import mnist # keras.datasets: 載入 MNIST 資料集

from keras. models import Sequential # Keras:建立訓練模型

from keras. layers import Dense, Activation, Dropout

from keras.utils import np_utils

import numpy as np # Numpy: 矩陣運算

%matplotlib inline # matplotlib.pyplot 將資料視覺化,可以圖表呈現結果

```
import matplotlib. pyplot as plt
(x_train_image, y_train_label), (x_test_image, y_test_label) =
mnist.load data() # 呼叫 load data() 載入 MNIST 資料集
nb_classes = 10 # 類別的數目
x_train_image = x_train_image.reshape(60000, 784).astype('float32')
x test image = x test image.reshape(10000, 784).astype('float32')
#壓縮圖片顏色至0~1
x train image /= 255
x test image /= 255
#依分類數量將圖片標籤轉換格式的陣列
y_train_cat = np_utils. to_categorical(y_train_label, nb_classes)
y_test_cat = np_utils. to_categorical(y_test_label, nb_classes)
model = Sequential()
model.add(Dense(50, input_shape=(784,)))
model.add(Dense(units=nb classes))
model.add(Activation('softmax'))
# 定義定義損失函數、優化函數及成效衡量指標
model.compile(loss='categorical_crossentropy', optimizer='SGD',
metrics=['accuracy'])
model.summary()
```

Layer (type)	Output Shape	Param #
dense_1 (Dense)	(None, 50)	39250
dense_2 (Dense)	(None, 10)	510
activation_1 (Activation)	(None, 10)	0

Total params: 39,760 Trainable params: 39,760 Non-trainable params: 0

(2)開始訓練:

epochs = 10

history = model.fit(x_train_image, y_train_cat, epochs=epochs, batch size=128, verbose=1)

```
Epoch 1/10
 60000/60000 [============] - 0s 8us/step - loss: 1.0253 - acc: 0.7352
 Epoch 2/10
 60000/60000 [============] - 0s 6us/step - loss: 0.5316 - acc: 0.8648
 Epoch 3/10
 Epoch 4/10
 Epoch 5/10
 60000/60000 [==============] - 0s 6us/step - loss: 0.3766 - acc: 0.8963
 Epoch 6/10
 60000/60000 [=============] - 0s 6us/step - loss: 0.3605 - acc: 0.9000
 Epoch 7/10
 Epoch 8/10
 Epoch 9/10
 Epoch 10/10
 60000/60000 [==
       (3)執行後結果:
```

```
#訓練完成後設定周期數與相關設定
```

- plt.figure(figsize=(8,6))
- plt. plot(history. epoch, history. history['loss'])
- plt. title('loss')
- plt.figure(figsize=(8,6))
- plt. plot(history. epoch, history. history['acc'])
- plt. title('acc')
- #測試資料後的評估模型準確率
- scores = model.evaluate(x_test_image, y_test_cat, verbose=2)
- print("accuracy = {:2.2f}%".format(scores[1]*100.0))

accuracy = 91.22%

- 2. 使用卷積神經網路(CNN)進行辨識訓練:
- (1)建立模型與資料結構:
- # 導入相關套件

import os

```
os.environ['TF CPP MIN LOG LEVEL'] = '2'
import numpy as np # Numpy:矩陣運算
import pandas as pd
from keras.utils import np_utils
from keras.datasets import mnist # keras.datasets: 載入 MNIST 資料集
from keras. models import Sequential # Keras:建立訓練模型
from keras. layers import Dense, Dropout, Flatten, Conv2D, MaxPooling2D
(x_Train, y_Train), (x_Test, y_Test) = mnist.load_data()
# 影像特徵值轉換為4維矩陣
x_Train4D = x_Train.reshape(x_Train.shape[0], 28, 28,
1). astype('float32')
x_Test4D = x_Test. reshape(x_Test. shape[0], 28, 28, 1). astype('float32')
#壓縮圖片顏色至0~1
x_Train4D_normalize = x_Train4D / 255
x_Test4D_normalize = x_Test4D / 255
#依分類數量將圖片標籤轉換格式的陣列
y_TrainOne = np_utils. to_categorical(y_Train)
y_TestOne = np_utils. to_categorical(y_Test)
model = Sequential()
# 新增卷積層
model.add(Conv2D(filters=16, kernel_size=(5,5), padding='same',
input_shape=(28, 28,1), activation='relu'))
# 新增池化層
model.add(MaxPooling2D(pool_size=(2, 2)))
# 新增卷積層
model.add(Conv2D(filters=16, kernel_size=(5,5), padding='same',
activation='relu'))
# 新增池化層
model.add(MaxPooling2D(pool_size=(2, 2)))
# 防止過擬合
model.add(Dropout(0.25))
# 全連接層局部
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(10, activation='softmax'))
model.summary()
執行結果:
```

Layer (type)	Output	Shape	Param #
conv2d_3 (Conv2D)	(None,	28, 28, 16)	416
max_pooling2d_3 (MaxPooling2	(None,	14, 14, 16)	0
conv2d_4 (Conv2D)	(None,	14, 14, 16)	6416
max_pooling2d_4 (MaxPooling2	(None,	7, 7, 16)	0
dropout_3 (Dropout)	(None,	7, 7, 16)	0
flatten_2 (Flatten)	(None,	784)	0
dense_3 (Dense)	(None,	128)	100480
dropout_4 (Dropout)	(None,	128)	0
dense_4 (Dense)	(None,	10)	1290

Total params: 108,602 Trainable params: 108,602 Non-trainable params: 0

(2)開始訓練:

定義定義損失函數、優化函數及成效衡量指標

model.compile(loss='categorical_crossentropy',

optimizer='adam', metrics=['acc'])

train_history = model.fit(x=x_Train4D_normalize, y=y_Train0ne, validation_split=0.2, epochs=10, batch_size=300, verbose=1)

```
Train on 48000 samples, validate on 12000 samples
48000/48000 [=
        Epoch 3/10
                ====] - 1530s 32ms/step - loss: 0.1228 - acc: 0.9632 - val_loss: 0.0593 - val_acc: 0.982
48000/48000
Epoch 4/10
        48000/48000
48000/48000
                  =] - 1531s 32ms/step - loss: 0.0865 - acc: 0.9739 - val_loss: 0.0479 - val_acc: 0.986
Epoch 6/10
                   - 1532s 32ms/step - loss: 0.0783 - acc: 0.9764 - val_loss: 0.0463 - val_acc: 0.985
Epoch 9/10
       =============================== ] - 1529s 32ms/step - loss: 0.0609 - acc: 0.9815 - val_loss: 0.0362 - val_acc: 0.990
Epoch 10/10
```

(3)訓練後結果:

```
def show_train_history(train_history, train, validation):
    plt.plot(train_history.history[train])
    plt.plot(train_history.history[validation])
    plt.title('Train History')
    plt.ylabel(train)
    plt.xlabel('Epoch')
    plt.legend(['train', 'validation'], loc='upper left')
    plt.show()
import matplotlib.pyplot as plt
show_train_history(train_history, 'acc', 'val_acc')
show_train_history(train_history, 'loss', 'val_loss')
```

執行結果:

(4)預測值及混淆矩陣:

loss, acc = model.evaluate(x_Test4D_normalize, y_Test0ne)

print("\nLoss: %.2f, Accuracy: %.2f%%" %(loss, acc* 100))
import pandas as pd
prediction=model.predict_classes(x_Test4D_normalize)
pd.crosstab(y_Test, prediction, rownames=['label'], colnames=['predict'])

執行結果:

10000/10000 [===========] - 1s 144us/step

Loss: 0.03, Accuracy: 99.02%

predict	0	1	2	3	4	5	6	7	8	9
label										
0	975	0	0	0	0	0	2	1	2	0
1	0	1132	2	0	0	0	1	0	0	0
2	1	0	1028	0	0	0	0	3	0	0
3	0	0	2	999	0	5	0	2	2	0
4	0	0	1	0	976	0	0	0	0	5
5	1	0	0	2	0	886	2	1	0	0
6	4	2	0	0	1	1	949	0	1	0
7	0	1	7	1	0	1	0	1012	1	5
8	5	0	3	1	1	1	1	2	957	3
9	1	3	1	0	4	4	0	6	2	988

(5)建立模型與資料結構(調整模式):

(x_Train, y_Train),(x_Test, y_Test) = mnist.load_data() # 呼叫 load_data() 載入 MNIST 資料集

- # 影像特徵值轉換為4維矩陣
- x_Train4D=x_Train.reshape(x_Train.shape[0], 28, 28, 1).astype('float32')
- x_Test4D=x_Test. reshape(x_Test. shape[0], 28, 28, 1). astype('float32')
- #壓縮圖片顏色至0~1
- x Train4D normalize = x Train4D / 255
- x Test4D normalize = x Test4D / 255
- # 依分類數量將圖片標籤轉換格式的陣列
- y_TrainOneHot = np_utils. to_categorical(y_Train)
- y_TestOneHot = np_utils. to_categorical(y_Test)

model = Sequential()

新增卷積層

model.add(Conv2D(filters=16, kernel_size=(5,5), padding='same',
input_shape=(28,28,1), activation='relu'))

新增池化層
model.add(MaxPooling2D(pool_size=(2,2)))
新增卷積層
model.add(Conv2D(filters=36, kernel_size=(5,5), padding='same',
activation='relu'))
新增池化層
model.add(MaxPooling2D(pool_size=(2,2)))
防止過擬合
model.add(Dropout(0.25))
全連接層局部
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(10, activation='softmax'))
model.summary()

執行結果:

Layer (type)	Output	Shape	Param #
	======		
conv2d_3 (Conv2D)	(None,	28, 28, 16)	416
max_pooling2d_3 (MaxPooling2	(None,	14, 14, 16)	0
conv2d_4 (Conv2D)	(None,	14, 14, 36)	14436
max_pooling2d_4 (MaxPooling2	(None,	7, 7, 36)	0
dropout_3 (Dropout)	(None,	7, 7, 36)	0
flatten_2 (Flatten)	(None,	1764)	0
dense_3 (Dense)	(None,	128)	225920
dropout_4 (Dropout)	(None,	128)	0
dense_4 (Dense)	(None,	10)	1290

Total params: 242,062 Trainable params: 242,062 Non-trainable params: 0

(6)再次開始訓練:

定義定義損失函數、優化函數及成效衡量指標 model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])

```
# 開始訓練
train_history=model.fit(x=x_Train4D_normalize,
y=y_TrainOneHot, validation_split=0.2, epochs=10,
batch_size=300, verbose=2)
執行結果:
  Train on 48000 samples, validate on 12000 samples
  Epoch 1/10
   - 1520s - loss: 0.4809 - acc: 0.8480 - val_loss: 0.1001 - val_acc: 0.9705
  Epoch 2/10
   - 1520s - loss: 0.1349 - acc: 0.9598 - val_loss: 0.0626 - val_acc: 0.9803
  Epoch 3/10
   - 1521s - loss: 0.0979 - acc: 0.9710 - val_loss: 0.0512 - val_acc: 0.9853
  Epoch 4/10
   - 1521s - loss: 0.0758 - acc: 0.9765 - val_loss: 0.0470 - val_acc: 0.9858
  Epoch 5/10
   - 1522s - loss: 0.0665 - acc: 0.9803 - val_loss: 0.0404 - val_acc: 0.9886
  Epoch 6/10
   - 1523s - loss: 0.0559 - acc: 0.9828 - val_loss: 0.0428 - val_acc: 0.9883
  Epoch 7/10
   - 1517s - loss: 0.0544 - acc: 0.9830 - val_loss: 0.0361 - val_acc: 0.9893
  Epoch 8/10
   - 1516s - loss: 0.0461 - acc: 0.9858 - val_loss: 0.0363 - val_acc: 0.9896
  Epoch 9/10
   - 1523s - loss: 0.0420 - acc: 0.9869 - val loss: 0.0327 - val acc: 0.9903
  Epoch 10/10
   - 1521s - loss: 0.0383 - acc: 0.9881 - val_loss: 0.0335 - val_acc: 0.9898
(7). 訓練後結果(準確率變化):
def show_train_history(train_history, train, validation):
    plt.plot(train history.history[train])
    plt. plot(train_history. history[validation])
    plt. title('Train History')
    plt.ylabel('train')
    plt.xlabel('Epoch')
    plt.legend(['train', 'validation'], loc='center right')
    plt.show()
import matplotlib. pyplot as plt
show train history(train history, 'acc', 'val acc')
show_train_history(train_history, 'loss','val_loss')
```


(8)混淆矩陣(改變過程):

#訓練後結果

loss, accuracy = model.evaluate(x_Test4D_normalize, y_Test0neHot) print("\nLoss: %.2f, Accuracy: %.2f%" % (loss, accuracy* 100)) #混淆矩陣

import pandas as pd

 $prediction = model.\ predict_classes(x_Test4D_normalize)$

pd. crosstab(y_Test, prediction, rownames=['label'],

colnames=['predict'])

執行結果:

10000/10000 [============] - 2s 167us/step

Loss: 0.02, Accuracy: 99.18%

predict	0	1	2	3	4	5	6	7	8	9
label										
0	977	0	1	0	0	1	0	1	0	0
1	0	1134	1	0	0	0	0	0	0	0
2	1	0	1030	0	0	0	0	1	0	0
3	0	0	1	1006	0	1	0	1	1	0
4	0	1	0	0	977	0	0	1	0	3
5	1	0	0	11	0	877	2	0	0	1
6	5	2	1	0	1	3	946	0	0	0
7	0	2	7	1	0	0	0	1018	0	0
8	2	0	2	3	0	1	0	1	961	4
9	1	4	0	0	3	2	0	5	2	992

- 3. 使用循環神經網路(RNN)進行辨識訓練:
- (1)建立模型與資料結構:

```
#導入相關套件
import os
os.environ['TF CPP MIN LOG LEVEL'] = '2'
from keras.datasets import mnist # keras.datasets: 載入 MNIST 資料集
from keras. models import Sequential # Keras:建立訓練模型
from keras. layers import Dense, Activation, Dropout
from keras. layers. recurrent import SimpleRNN, LSTM, GRU
from keras. utils import np utils
%matplotlib inline
# matplotlib.pyplot 將資料視覺化,可以圖表呈現結果
import numpy as np # Numpy:矩陣運算
import matplotlib. pyplot as plt
(x_train, y_train), (x_test, y_test) = mnist.load_data() # 呼叫
load_data() 載入 MNIST 資料集
nb_classes = 10 # 類別的數目
img_rows, img_cols = 28, 28 # 圖片的長與寬
x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
#壓縮圖片顏色至0~1
x train /= 255
x_test /= 255
# 依分類數量將圖片標籤轉換格式的陣列
y_train = np_utils. to_categorical(y_train, nb_classes)
y_test = np_utils. to_categorical(y_test, nb_classes)
nb_units = 50 # 隱藏層節點數值
model = Sequential() # 建立簡單的線性執行模型
model.add(LSTM(nb_units, input_shape=(img_rows, img_cols))) # 二個維度
model.add(Dense(units=nb_classes))
model.add(Activation('softmax'))
# 定義定義損失函數、優化函數及成效衡量指標
model.compile(loss='categorical_crossentropy', optimizer='SGD',
metrics=['accuracy'])
model.summary()
```

Output Shape	Param #
(None, 50)	15800
(None, 10)	510
(None, 10)	0
	(None, 50) (None, 10)

Total params: 16,310 Trainable params: 16,310 Non-trainable params: 0

(2)開始訓練:

```
epochs = 10
history = model.fit(x_train, y_train, epochs=epochs, batch_size=128,
verbose=1)
```

執行結果:

```
Epoch 1/10
60000/60000 [===========] - 6s 102us/step - loss: 2.2746 - acc: 0.2060
Epoch 2/10
Epoch 3/10
60000/60000 [============== ] - 5s 91us/step - loss: 1.9442 - acc: 0.3556
Epoch 4/10
60000/60000 [============== ] - 5s 92us/step - loss: 1.6969 - acc: 0.4666
Epoch 5/10
60000/60000 [============= - 5s 90us/step - loss: 1.4425 - acc: 0.5607
Epoch 6/10
60000/60000 [============= ] - 6s 94us/step - loss: 1.1935 - acc: 0.6274
Epoch 7/10
60000/60000 [============= ] - 6s 99us/step - loss: 0.9810 - acc: 0.6919
Epoch 8/10
60000/60000 [============= ] - 6s 97us/step - loss: 0.8103 - acc: 0.7493
Epoch 9/10
60000/60000 [============= ] - 6s 93us/step - loss: 0.6774 - acc: 0.7952
Epoch 10/10
60000/60000 [============== ] - 5s 91us/step - loss: 0.5737 - acc: 0.8280
```

(3)訓練後結果:

```
#訓練完成後設定周期數設定
plt. figure(figsize=(5,3))
plt. plot(history. epoch, history. history['loss'])
plt. title('loss')

plt. figure(figsize=(5,3))
plt. plot(history. epoch, history. history['acc'])
plt. title('acc');
#測試資料後的評估模型準確率
```

scores = model.evaluate(x_test, y_test, verbose=2)
print("accuracy = {:2.2f}%".format(scores[1]*100.0))

執行結果: 結果偏低需要再次提高數值後訓練

accuracy = 82.71%

(4)建立模型與資料結構(調整模式):

load_data() 載入 MNIST 資料集

nb_classes = 10 # 類別的數目

img_rows, img_cols = 28, 28 # 圖片的長與寬

x train = x train.astype('float32')

x_test = x_test.astype('float32')

#壓縮圖片顏色至0~1

x train /= 255

x test /= 255

依分類數量將圖片標籤轉換格式的陣列

y train = np utils. to categorical(y train, nb classes)

y_test = np_utils. to_categorical(y_test, nb_classes)

nb units = 128 # 調整隱藏層節點數值

model = Sequential() # 建立簡單的線性執行模型

model.add(LSTM(nb_units, input_shape=(img_rows, img_cols))) # 新增LSTM 維度

model.add(Dense(units=nb classes))

model.add(Activation('softmax'))

model.compile(loss='categorical crossentropy', optimizer='adam',

metrics=['accuracy']) #優化函數改成 adam

model.summary()

Layer (type)	Output Shape	Param #
lstm_3 (LSTM)	(None, 128)	80384
dense_3 (Dense)	(None, 10)	1290
activation_3 (Activation)	(None, 10)	0
Total params: 81 674		

Total params: 81,674 Trainable params: 81,674 Non-trainable params: 0

(5)再次開始訓練:

```
epochs = 10
history = model.fit(x_train, y_train, epochs=epochs, batch_size=128,
verbose=1)
```

執行結果:

```
Epoch 1/10
Epoch 2/10
Epoch 3/10
Epoch 4/10
Epoch 5/10
60000/60000 [============= ] - 9s 142us/step - loss: 0.0650 - acc: 0.9800
Epoch 6/10
60000/60000 [============] - 9s 144us/step - loss: 0.0525 - acc: 0.9842
Epoch 7/10
60000/60000 [============ ] - 9s 142us/step - loss: 0.0456 - acc: 0.9865
Epoch 8/10
60000/60000 [============ ] - 9s 144us/step - loss: 0.0416 - acc: 0.9877
Epoch 9/10
60000/60000 [===========] - 9s 144us/step - loss: 0.0347 - acc: 0.9890
Epoch 10/10
60000/60000 [============== ] - 9s 151us/step - loss: 0.0319 - acc: 0.9902
```

(6)訓練後結果(準確率提高):

```
#訓練完成後設定周期數設定
plt. figure(figsize=(5, 3))
plt. plot(history. epoch, history. history['loss'])
plt.title('loss')
plt. figure(figsize=(5,3))
plt. plot(history. epoch, history. history['acc'])
plt. title('acc');
#測試資料後的評估模型準確率
```

scores = model.evaluate(x_test, y_test, verbose=2)
print("accuracy = {:2.2f}%".format(scores[1]*100.0))

執行結果:

accuracy = 98.38%

四、結論

每一種的類神經網路都會有不同的執行結果,MLP 辨識出來的結果為 91.22%,使用了三大層面就能夠很快地辨識出結果出來,運算結構較為初始化。CNN 執行後會很就,必須要透過龐大的運算,對結構圖是分析的非常清楚,再由卷積層、池化層做出精緻的運算,就像是大張圖片濃縮成小張圖片,最後依據混淆矩陣來判斷出辨識出了的結果且數值為 99.18%。RNN 執行速度跟 MLP 差不多,需要調整隱藏層節點數值及 LSTM 維度數值後重新執行,結果就會提高至 98.38%。所以最好的辨識為 CNN。

五、參考

巨匠電腦 python 機器學習開發

巨匠電腦 python 深度學習開發

基峰 Python 機器學習與深度學習特訓班