

Guía de actividades y rúbrica de evaluación - Tarea 1 -**Funciones**

Anexo 1 - Ejercicios Tarea 1

A continuación, se presentan los ejercicios asignados para el desarrollo de Tarea 1 - Funciones. Debe seleccionar un grupo de ejercicios A, B, C, D, o, E y enunciarlo en el foro de discusión "Unidad 1 - Tarea 1 -Funciones", ningún miembro del grupo podrá escoger la misma asignación.

EJERCICIOS

- 1. Representar en GeoGebra la función dada y determinar su comprobación analíticamente:
 - a. Tipo de función
 - b. Dominio y rango

Tabla 1 Grupo de ejercicios 1

Ejercicios	Funciones Asignadas
Α	$f(x) = \frac{x-2}{4x-x^2}$
В	$f(x) = \frac{x^3 - 3}{2x^2 + 4x^3}$
С	$f(x) = \frac{6x}{\sqrt{9 - 4x^2}}$
D	$f(x) = \frac{x}{x^2 - 49}$
Е	$f(x) = \frac{7x + 5}{2x^2 - 6}$

Nota. Grupo de ejercicios sobre función, dominio y rango. Fuente autor.

- 2. Dado los tres puntos A, B y C hallar:
 - a. La ecuación de la recta que pasa por el punto C y es perpendicular a la recta \overleftrightarrow{AB}
 - b. Comprobar gráficamente en GeoGebra los cálculos realizados.

Tabla 2 Grupo de ejercicios 2

Ejercicios	Coordenadas de los puntos A, B y C	
Α	A = (-2,3) $B = (4,1)$ $C = (-5,-7)$	
В	A = (-3,2) $B = (2,3)$ $C = (-1,4)$	
С	$A = (2, -7)$ $B = (0,11)$ $C = (\frac{3}{4}, -\frac{1}{3})$	
D	A = (0,2) $B = (2,6)$ $C = (-2,-1)$	
Е	A = (4, -5) $B = (-3,6)$ $C = (-1, -5)$	

Nota. Grupo de ejercicios sobre ecuación de la recta que pasa por un punto dado y es perpendicular a una recta. Fuente autor.

3. Dadas las siguientes ecuaciones logarítmicas y exponenciales, resolverlas analíticamente aplicando la definición y propiedades de los logaritmos y de los exponentes.

Tabla 3 Grupo de ejercicios 3

Ejercicios	Ecuaciones Funciones logarítmicas	Ecuaciones Funciones exponenciales
А	$log_5\left(\frac{1}{x}\right) = 2 + log_5(1-x)$	$\left(\frac{1}{81}\right)^{-x}(9)^{2x} = (27)^{3x-2}$
В	$log_4(x-2) + log_4(x+2) - 2 = 0$	$\frac{7^{(x-1)4}}{343} = 7^{2x}$
С	$2\log_2(x) = \log_2(5x - 6)$	$(4^2)((2^3)^{2x-5}) = 8$
D	$log_5(4x+1) - log_5(2x+10) = 0$	$(64^{-x})(4^{2x+1}) = 1$
Ε	$log_3(8-5x)=2$	$(3^{(23-6x)})(81^{(4x-7)}) = 243$

logarítmicas y Grupo de ejercicios sobre ecuaciones exponenciales. Fuente autor.

4. Para la siguiente función cuadrática, determinar analíticamente, las coordenadas de sus raíces (puntos de intersección con el eje x) y su vértice, comprobando mediante GeoGebra los cálculos realizados.

Tabla 4 *Grupo de ejercicios 4*

Ejercicios	Funciones Asignadas
А	$f(x) = -3x^2 - 6x - 3$
В	$f(x) = 8x^2 - 6x - 7$
С	$f(x) = -3x^2 + 10x - 8$
D	$f(x) = x^2 - 2x - 24$
E	$f(x) = 5x^2 + 10x + 4$

Nota. Grupo de ejercicios sobre función cuadrática. Fuente autor.

EJERCICIOS DE APLICACIÓN.

5. A continuación, se presentan el enunciado que deberá resolver y sustentar por medio de video, representando la función y su respuesta en GeoGebra.

Tabla 5 Grupo de ejercicios 5

Ejercicios	Problemas de Aplicación
	Michael Jordan es un famoso basquetbolista que jugó en los Chicago Bulls en los 90's. Es famoso por sus enormes saltos. Si Jordan salta para encestar el balón y alcanza una altura máxima de 1.07 metros.
	a) ¿Cuál es su velocidad ascendente en metros por segundo cuando sus pies dejan el suelo?
	b) ¿Cuál es la altura que alcanza en el salto?
Α	La velocidad final $v_{\rm 1}$ se relaciona con la velocidad inicial $v_{\rm 0}$ y la altura de acuerdo con
	$v_1^2 = v_0^2 + 2gS$
	c) Concluir sobre los resultados obtenidos.
	Asuma que la aceleración de la gravedad es $g = -9.8 \frac{m}{seg^2}$, y
	que la velocidad final es cero en la altura máxima.
В	Un lanzador de peso puede ser modelado usando la ecuación $y = -0.0345x^2 + 7.2x + 5.5$, donde x es la distancia recorrida (en pies) y y es la altura (también en pies).
	a) ¿Qué tan largo es el tiro? b) ¿Cuál es su altura máxima?
С	Contigo, es una empresa de telefonía móvil que proyecta sus operaciones anuales, $P(t)$, en millones de pesos colombianos. durante los primeros 5 años de operación, mediante la función $P(t) = 2t^2 + 8t - 42$, en donde t es el número de años en operación. Calcular:

	a) La utilidad (o perdida) de la compañía después del		
	primer año.		
	b) Calcular la utilidad (o perdida) de la compañía después		
	de 5 años.		
	c) Calcule el tiempo necesario para que la compañía		
	alcance el punto de equilibrio.		
	alcance el punto de equilibrio.		
	Desde la azotea de un edificio se lanza una pelota al aire.		
	Su altura sobre esa superficie está dada en metros luego de		
	x segundos se encuentra dado por la ecuación:		
	$h(x) = -5x^2 + 10x + 20$		
D			
	a) ¿Cuál era la altura inicial de la pelota?		
	b) ¿Cuándo alcanzó mayor altura la pelota?		
	b) cedando alcanzo mayor alcura la peroca:		
	Una empresa manufacturera vende un cierto producto a un		
	precio de $p(x) = -2x^2 + 40x + 100$ dólares por unidad, donde		
	x es la cantidad demandada. Calcula:		
	2 C3 la cantidad demandada. Calcula.		
E	a) El precio máximo que la empresa puede cobrar por el		
	producto.		
	b) La cantidad demandada cuando el precio es máximo.		
	b) La candidad demandada cuando el precio es maximo.		
	c) La cantidad demandada cuando el precio es cero.		
Note Crups	de ciercicios cobre problemas de aplicación de funciones		

Nota. Grupo de ejercicios sobre problemas de aplicación de funciones. Fuente autor.