

BFS(S,G): Visited = [= Jalse] + 1 VI q. put ((s,0)) While not of empty (): V, w= 9. get () for u in G(V): H (r(v) if not visited [u]: q. pat ((u, w+1)) Visited [u] = W

Foreu D/-5 (neigh

Zadanie 1: Detekcja cyklu Napisz algorytm sprawdzający, czy graf nieskierowany posiada cykl.

Zadanie 3: Jeziora

Dana jest dwuwymiarowa tablica N x N, w której każda komórka ma wartość "W" - reprezentującą wodę lub "L" - ląd. Grupę komórek wody połączonych ze sobą brzegami nazywamy jeziorem.

- a) Policz, ile jezior jest w tablicy
- b) Policz, ile komórek zawiera największe jezioro

-							- 1		
		0 1						$\overline{}$	
	L	٧	L	L	L	L	L	اــ	
	П	W	П	W	W	П	П	Г	
	L	L	L	W	W	L	W	L	
	L	W	W	W	W	L	W	L	
	L	L	W	W	L	L	Ĺ	L	
	L	W	L	L	L	L	W	W	
	W	W	L	W	W	L	W	L	
	L	L	L	W	L	L	L	L	-

᠕

Bit Algo START

Zadanie 3: Jeziora - cd.

- c) Zakładając, że pola o indeksach [0][0] i [n-1][n-1] są lądem, sprawdź czy da się przejść drogą lądową z pola [0][0] do pola [n-1][n-1]. Można chodzić tylko na boki, nie na ukos.
- d) Znajdź najkrótszą ścieżkę między tymi punktami.
 Wypisz po kolei indeksy pól w tej ścieżce

Zadanie 4: Sklejanie przedziałów

Dany jest ciąg przedziałów postaci [a_i, b_i]. Dwa przedziały można skleić, jeśli mają dokładnie jeden punkt wspólny. Podaj algorytm, który sprawdza, czy da się uzyskać przedział [a, b] poprzez sklejanie odcinków.

Zadanie 6: Rozmiary poddrzew

Dostajemy na wejściu listę krawędzi drzewa (niekoniecznie binarnego!) oraz wyróżniony wierzchołek - korzeń. Każdy wierzchołek tworzy swoje własne poddrzewo. Dla każdego wierzchołka, wyznacz ilość wierzchołków w jego poddrzewie.

Zadanie 8: Średnica drzewa

Średnicą drzewa nazywamy odległość między jego najbardziej oddalonymi od siebie wierzchołkami. Napisz algorytm, który przyjmując na wejściu drzewo (niekoniecznie binarne!) w postaci listy krawędzi zwróci jego średnicę.