1 Uvod

1.1 Uvod

Diskriminantna analiza se že dolga leta uporablja za določevanje lastnosti, ki poudarjajo razlike med razredi. Definirana je kot optimizacijski problem, ki vključuje kovariančne matrike, ki predstavljajo razpršenost podatkov znotraj posameznega razreda in razpršenost oziroma ločenost posameznih razredov. Diskriminantna analiza pa sama po sebi zahteva, da je ena od teh kovariančnih matrik nesingularna, kar omejuje njeno uporabo na matrikah določenih dimenzij. V nadaljevanju tako preučimo več različnih optimizacijskih kriterijev in poskušamo njihovo uporabo razširiti na vse matrike z uporabo posplošenega singularnega razcepa. Na ta način se izognemo pogoju nesingularnosti, ki ga zahteva diskriminantna analiza. Tako pridemo do posplošene diskriminantne analize, ki jo lahko uporabimo tudi, kadar je ena od kovariančnih matrik singularna (v nadaljevanju lahko vidimo, da je matrika singularna, kadar je velikost vzorca manjša, kot pa je dimenzija posamezne meritve). V delu diplomskega seminarja bomo testirali učinkovitost posplošene diskriminantne analize in jo, kjer bo to mogoče, primerjali tudi z običajno diskriminantno analizo.

1.2 Matematični uvod

Cilj diskriminantne analize je združiti lastnosti originalnih podatkov na način, ki kar najučinkoviteje ločuje med razredi, v katerih so podatki. Pri takšnem združevanju lastnosti podatkov se dimenzija danih podatkov zmanjša tako, da se struktura podatkov in določenih razredov kar najbolje ohrani.

Predpostavimo, da so podatki zloženi v matriko $A \in \mathbb{R}^{m \times n}$, kjer m predstavlja dimenzijo posamezne meritve, n pa predstavlja število meritev oz. podatkov. Denimo, da so podatki v matriki A iz k različnih razredov. Tako so stolpci a_1, a_2, \ldots, a_n matrike A združeni v k podmatrik, ki predstavljajo razrede, v katerih so podatki:

$$A = \begin{bmatrix} A_1, & A_2, & \dots, & A_k \end{bmatrix}, \text{ kjer } A_i \in \mathbb{R}^{m \times n_i}.$$

Tu število n_i predstavlja moč indeksne množice razreda i. To indeksno množico razreda i označimo z N_i . Očitno velja tudi

$$\sum_{i=1}^{k} n_i = n.$$

Matriko A lahko poleg delitve na podmatrike razdelimo tudi na stolpce. Matrika $A = [a_{i,j}] \in \mathbb{R}^{m \times n}$ je tako sestavljena iz n posameznih stolpcev, kjer i-ti stolpec označimo z a_i :

$$a_i = \begin{bmatrix} a_{1,i} \\ a_{2,i} \\ \vdots \\ a_{m,i} \end{bmatrix}.$$

Cilj diskriminantne analize je najti linearno preslikavo iz \mathbb{R}^m v \mathbb{R}^ℓ , ki v novem prostoru kar najbolje poudari razrede, v katerih so podatki. Tu navadno velja $\ell \leq m-1$, kar pomeni, da je prostor, v katerega ta linearna preslikava slika, manjdimenzionalen kot prvotni prostor. Iskano linearno preslikavo predstavimo z matriko $G^T \in \mathbb{R}^{\ell \times m}$. Za preslikavo G^T torej velja

$$G^T: \mathbb{R}^m \to \mathbb{R}^\ell$$

Cilj je poiskati tako preslikavo G^T , ki izbran m-dimenzionalen vektor preslika v nov vektor v ℓ -dimezionalnem prostoru, v katerem so razredi podatkov poudarjeni, razpršenost podatkov znotraj razredov je zmanjšana, razlike med razredi pa so povečane.

Za nadaljnje izračune moramo definirati tudi centroid i-tega razreda, ki je izračunan kot povprečje stolpcev v i-tem razredu,

$$c^{(i)} = \frac{1}{n_i} \sum_{j \in N_i} a_j,$$

in centroid celotnih podatkov, ki je izračunan kot povprečje vseh stolpcev, to je

$$c = \frac{1}{n} \sum_{j=1}^{n} a_j.$$

Razpršenost podatkov znotraj posameznih razredov, razpršenost vseh podatkov ter razpršenost oziroma razlike med razredi je smiselno predstaviti s pomočjo matrik. Zato v nadaljevanju definiramo matriko

$$S_W = \sum_{i=1}^k \sum_{j \in N_i} (a_j - c^{(i)}) (a_j - c^{(i)})^T,$$

ki predstavlja matriko razpršenosti podatkov znotraj razredov, matriko

$$S_B = \sum_{i=1}^k \sum_{i \in N_i} (c^{(i)} - c)(c^{(i)} - c)^T = \sum_{i=1}^k n_i (c^{(i)} - c)(c^{(i)} - c)^T,$$

ki predstavlja matriko razpršenosti oziroma razlik med razredi in matriko

$$S_M = \sum_{j=1}^{n} (a_j - c)(a_j - c)^T,$$

ki pradstavlja matriko celotne razpršenosti podatkov. Vse tri matrike so velikosti $m \times m$. S pomočjo preslikave G^T pa jih preslikamo v matrike velikosti $\ell \times \ell$ na sledeč način:

$$S_W^\ell = G^T S_W G, \ S_B^\ell = G^T S_B G, \ S_M^\ell = G^T S_M G.$$

Iz danih matrik razpršenosti podatkov bi radi tvorili kriterij kvalitete strukture razredov. Kriterij kvalitete strukture razredov mora imeti visoko vrednost,

kadar so razredi, v katerih so podatki, strnjeni in dobro ločeni med seboj. Opazimo lahko, da $sled(S_W)$ predstavlja, kako skupaj so si podatki v posameznem razredu, saj velja

$$sled(S_W) = \sum_{t=1}^m \left[\sum_{i=1}^k \sum_{j \in N_i} (a_{t,j} - c_t^{(i)})^2 \right] = \sum_{i=1}^k \sum_{j \in N_i} \left[\sum_{t=1}^m (a_{t,j} - c_t^{(i)})^2 \right]$$
$$= \sum_{i=1}^k \sum_{j \in N_i} \left\| a_j - c^{(i)} \right\|_2^2.$$

Podobno $sled(S_B)$ predstavlja ločenost med razredi, saj velja

$$sled(S_B) = \sum_{t=1}^m \left[\sum_{i=1}^k \sum_{j \in N_i} (c_t^{(i)} - c_t)^2 \right] = \sum_{i=1}^k \sum_{j \in N_i} \left[\sum_{t=1}^m (c_t^{(i)} - c_t)^2 \right]$$
$$= \sum_{i=1}^k \sum_{j \in N_i} \left\| c^{(i)} - c \right\|_2^2 = \sum_{i=1}^k n_i \left\| c^{(i)} - c \right\|_2^2.$$

Optimalna preslikava G^T tako maksimizira $sled(S_B^{\ell})$ in minimizira $sled(S_W^{\ell})$. Smiselen maksimizacijski kriterij se tako zdi

$$sled(G^TS_BG)/sled(G^TS_WG),$$

ki pa ga zaradi lažjega računanja aproksimiramo kar s kriterijem

$$sled((S_W^{\ell})^{-1}S_B^{\ell}).$$

Kljub temu, da je ta optimizacijski kriterij lažje izračunljiv ima svoje pomanj
kljivosti. Opazimo lahko, da kriterija ne moremo uporabiti, ko je matrika
 S_W^ℓ singularna, torej kadar je njena determinanta enaka 0.

#1 – *Tu popravkov ne razumem najbolje - torej če tu dodam tisti del bo kar uredu? Ker pozneje govorim o singularnosti S_W - ali naj tudi ta del izbrišem - ali naj pozneje pišem kar S_W^ℓ ?*–

Do te situacije pa lahko pride kar precej pogosto. Matrika $S_W \in \mathbb{R}^{m \times m}$ je namreč singularna v vseh primerih, ko za matriko $A \in \mathbb{R}^{m \times n}$ velja m > n, saj je potem po definiciji sestavljena kot vsota n matrik z rangom 1. Matrika S_W , ki je dimezij $m \times m$, ima tako rang manjši ali enak n, iz česar sledi, da je njena determinanta enaka 0. Na primer, do tega problema pride v primeru, ko je pridobivanje podatkov drago oz. zahtevno in so pridobljeni podatki visokih dimenzij (dimenzija posameznega podatka je večja od števila vseh pridobljenih podatkov).

Obstaja več načinov, kako aplicirati diskriminantno analizo na matriki $A \in \mathbb{R}^{m \times n}$ z m > n. V grobem jih ločimo na tiste, kjer dimenzijo podatkov zmanjšamo v dveh korakih, in na tiste, kjer dimenzijo podatkov zmanjšamo v enem koraku. Pri prvem načinu se faza diskriminante analize nadaljuje v fazo, v kateri

zanemarimo oblike posameznih razredov. Najpopularnejša metoda za prvi del tega procesa je zmanjšanje ranga matrike s pomočjo singularnega razcepa. To je tudi glavno orodje metode imenovane metoda glavnih komponent. Kakorkoli, učinkovitost dvostopenjskih načinov se precej razlikuje glede na način zmanjšanje dimenzije v prvi fazi. V diplomskem delu se bomo osredotočili na način, ki posploši diskriminantno analizo tako, da teoretično optimalno zmanjša dimenzijo podatkov, brez da bi uvedel dodaten korak. V ta namen bomo obravnavali kriterij

$$sled((S_2^{\ell})^{-1}S_1^{\ell})$$
,

kjer matriki S_2 in S_1 predstavljata poljubno matriko izmed S_W , S_B in S_M . Kadar je matrika S_2 nesingularna, klasična diskriminantna analiza predstavi svojo rešitev s pomočjo posplošenega problema lastnih vrednosti. S prestrukturiranjem problema in uporabo posplošenega singularnega razcepa, pa lahko razširimo uporabnost diskriminantne analize tudi na primer, ko je matrika S_2 singularna.

2 Matematična priprava - posplošeni singularni razcep

Originalna definicija posplošenega singularnega razcepa (Van Loan) je sledeča.

Izrek 1 (Posplošeni singularni izrek (Van Loan)). Za matriki $K_A \in \mathbb{R}^{p \times m}$ z $p \geq m$ in $K_B \in \mathbb{R}^{n \times m}$ obstajata ortogonalni matriki $U \in \mathbb{R}^{p \times p}$ in $V \in \mathbb{R}^{n \times n}$ ter nesingularna matrika $X \in \mathbb{R}^{m \times m}$, da velja

$$U^{T}K_{A}X = \begin{bmatrix} \alpha_{1} & & \\ & \ddots & \\ & & \alpha_{m} \end{bmatrix} \quad in \ V^{T}K_{B}X = \Sigma_{B_{q}},$$

 $kjer\ je\ q = \min(n, m),$

$$\Sigma_{B_q} = \begin{bmatrix} \beta_1 & & & & \\ & \ddots & & & \\ & & \beta_q & & \\ & & & 0_{n-q,q} & & 0_{n-q,m-q} \end{bmatrix},$$

 $\alpha_i \ge 0$ za $1 \le i \le m$, $\beta_i \ge 0$ za $1 \le i \le q$ in $\beta_1 \ge \beta_2 \ge \ldots \ge \beta_q$.

Dokaz. Iz matrik K_A in K_B tvorimo združeno $(p+n) \times m$ matriko $K = \begin{bmatrix} K_A \\ K_B \end{bmatrix}$, za katero izračunamo singularni razcep. Iz singularnega razcepa dobimo matriki

 $Q \in \mathbb{R}^{(p+n)\times(p+n)}$ in matriko $Z_1 \in \mathbb{R}^{m\times m}$, tako da velja

$$Q^{T} \begin{bmatrix} K_{A} \\ K_{B} \end{bmatrix} Z_{1} = \begin{bmatrix} \gamma_{1} \\ \ddots \\ \vdots \\ 0_{p+n-m,m} \end{bmatrix}, \tag{1}$$

kjer za k = rang(K) velja $\gamma_1 \ge ... \ge \gamma_k > \gamma_{k+1} = ... \gamma_m = 0$.

Matriko Z_1 razdelimo na dve matriki, matriko $Z_{11} \in \mathbb{R}^{m \times k}$, ki je sestavljena iz prvih k stolpcev matrike Z_1 in matriko $Z_{12} \in \mathbb{R}^{m \times (m-k)}$, ki je sestavljena iz preostalih m-k stolpcev matrike Z_1 . Pišemo

$$Z_1 = [Z_{11} \ Z_{12}].$$

Po predpostavki velja $p \geq m$ in ker je očitno tudi $m \geq k$, sledi $p \geq m \geq k$. Sedaj definirajmo matriko

$$D := diag(\gamma_1, ..., \gamma_k) \in \mathbb{R}^{k \times k}$$
.

Tako iz zgornje enačbe (1) dobimo

$$\begin{bmatrix} K_A Z_{11} & K_A Z_{12} \\ K_B Z_{11} & K_B Z_{12} \end{bmatrix} = Q \begin{bmatrix} D & 0_{k,m-k} \\ 0_{p+n-k,k} & 0_{p+n-k,m-k} \end{bmatrix}, \tag{2}$$

od koder sledi

$$\begin{bmatrix} K_A Z_{11} \\ K_B Z_{11} \end{bmatrix} = Q \begin{bmatrix} D \\ 0 \end{bmatrix}.$$

 ${\bf V}$ kolikor še matriko Qrazdelimo na podmatrike na naslednji način

$$Q = \begin{bmatrix} Q_{11} & Q_{12} \\ Q_{21} & Q_{22} \end{bmatrix},$$

kjer je matrika $Q_{11} \in \mathbb{R}^{p \times k}$, matrika $Q_{12} \in \mathbb{R}^{p \times (p+n-k)}$, matrika $Q_{21} \in \mathbb{R}^{n \times k}$ in matrika $Q_{22} \in \mathbb{R}^{n \times (p+n-k)}$, ugotovimo, da je

$$Q \begin{bmatrix} D \\ 0 \end{bmatrix} = \begin{bmatrix} Q_{11} & Q_{12} \\ Q_{21} & Q_{22} \end{bmatrix} \begin{bmatrix} D \\ 0 \end{bmatrix} = \begin{bmatrix} Q_{11}D \\ Q_{21}D \end{bmatrix}.$$

Iz tega neposredno sledi enakost

$$K_A Z_{11} = Q_{11} D \implies K_A Z_{11} D^{-1} = Q_{11} =: K_{A_1} \in \mathbb{R}^{p \times k}$$

in enakost

$$K_B Z_{11} = Q_{21} D \implies K_B Z_{11} D^{-1} = Q_{21} =: K_{B_1} \in \mathbb{R}^{n \times k}.$$

Sedaj singularni razcep naredimo na matriki K_{B_1} . Za matriko K_{B_1} vemo, da ima isti rang kot matrika K_B , saj velja, da je matrika Z_{11} polnega ranga (je namreč podmatrika ortogonalne matrike Z) in vemo, da je matrika D^{-1} polnega ranga.

Označimo $r=rang(K_B)=rang(K_{B_1})$. Iz singularnega razcepa za matriko K_{B_1} dobimo ortogonalni matriki $V\in\mathbb{R}^{n\times n}$ in $Z_2\in\mathbb{R}^{k\times k}$, da velja

$$V^T K_{B_1} Z_2 = \Sigma_{B_t}, \tag{3}$$

kjer je
$$t=\min\{n,k\},\ \Sigma_{B_t}=\left[\begin{array}{c|c}\beta_1&&&&\\&\ddots&&0_{t,k-t}\\&&\beta_t&&\\&&0_{n-t,t}&&0_{n-t,k-t}\end{array}\right]$$
 in velja $\beta_1\geq\beta_2\geq$

 $\ldots \ge \beta_r > \beta_{r+1} = \ldots = \beta_t = 0.$ Iz enačbe (2) sledi, da je

$$K_B Z_{12} = 0_{n,m-k}$$
.

Opazimo, da velja tudi

Če za $q = \min\{n, m\}$ dodatno definiramo še $\beta_{t+1} = \ldots = \beta_q = 0$, dobimo ravno

$$V^{T}K_{B}Z_{1}\begin{bmatrix}D^{-1}Z_{2} & 0\\ 0 & I_{m-k}\end{bmatrix} = \begin{bmatrix}\beta_{1} & & & & \\ & \ddots & & & \\ & & \beta_{q} & & \\ & & & 0_{n-q,m-q}\end{bmatrix},$$

kar je pa ravno matrika Σ_{B_q} iz izreka. Matriko Xtako definiramo na sledeči način

$$X:=Z_1\begin{bmatrix}D^{-1}Z_2&0\\0&I_{m-k}\end{bmatrix}.$$

Dokazati pa moramo še, da zgornja matrika X ustreza tudi enačbi iz izreka za matriko K_A , torej, da obstaja tudi taka matrika U, da velja

$$U^T K_A X = \begin{bmatrix} \alpha_1 & & & \\ & \ddots & & \\ & & \alpha_m \end{bmatrix}.$$

Ker je matrika Q ortogonalna, dodatno velja $K_{A_1}^TK_{A_1}+K_{B_1}^TK_{B_1}=I_k$, kjer je I_k identična matrika dimenzije $k\times k$. To enakost lahko pokažemo tako, da razpišemo spodnjo enačbo

$$\begin{split} Q^TQ &= \begin{bmatrix} Q_{11}^T & Q_{21}^T \\ Q_{12}^T & Q_{22}^T \end{bmatrix} \begin{bmatrix} Q_{11} & Q_{12} \\ Q_{21} & Q_{22} \end{bmatrix} = \begin{bmatrix} Q_{11}^TQ_{11} + Q_{21}^TQ_{21} & Q_{11}^TQ_{12} + Q_{21}^TQ_{22} \\ Q_{12}^TQ_{11} + Q_{22}^TQ_{21} & Q_{12}^TQ_{12} + Q_{22}^TQ_{22} \end{bmatrix} \\ &= \begin{bmatrix} K_{A_1}^TK_{A_1} + K_{B_1}^TK_{B_1} & Q_{11}^TQ_{12} + Q_{21}^TQ_{22} \\ Q_{12}^TQ_{11} + Q_{22}^TQ_{21} & Q_{12}^TQ_{12} + Q_{22}^TQ_{22} \end{bmatrix} = I = \begin{bmatrix} I_k & 0 \\ 0 & I_{p+n-k} \end{bmatrix}. \end{split}$$

Definirajmo matriko G, ki jo dobimo s preoblikovanjem enačbe (3):

$$G := K_{B_1} Z_2 = V \Sigma_{B_t} \in \mathbb{R}^{n \times k}$$
.

Za matriko $K_{A_1}Z_2$ izračunamo razširjen QR razcep, $K_{A_1}Z_2 = UR$, kjer je $U \in \mathbb{R}^{p \times p}$ ortogonalna matrika in $R \in \mathbb{R}^{p \times k}$ zgornja trapezna matrika. Tak razcep lahko naredimo na primer z uporabo Householderjevih zrcaljenj.

Opazimo lahko, da so stolpci matrike $K_{A_1}Z_2$ medsebojno ortogonalni, saj velja

kjer smo dodatno definirali še $\beta_{t+1} = \ldots = \beta_k = 0$. Iz tega sledi, da je matrika R oblike

$$R = \begin{bmatrix} \sqrt{1 - \beta_1^2} & & & \\ & \ddots & & \\ & & \sqrt{1 - \beta_k^2} \\ & & 0_{n-k} \ k \end{bmatrix},$$

saj velja

$$(K_{A_1}Z_2)^T(K_{A_1}Z_2) = R^TU^TUR = R^TR = diag(1-\beta_1^2,\ldots,1-\beta_k^2).$$

Velja tudi

$$\begin{split} U^T K_A X &= U^T K_A Z_1 \begin{bmatrix} D^{-1} Z_2 & 0 \\ 0 & I_{m-k} \end{bmatrix} = U^T K_A \begin{bmatrix} Z_{11} & Z_{12} \end{bmatrix} \begin{bmatrix} D^{-1} Z_2 & 0 \\ 0 & I_{m-k} \end{bmatrix} = \\ U^T K_A \begin{bmatrix} Z_{11} D^{-1} Z_2 & Z_{12} \end{bmatrix} &= \begin{bmatrix} U^T K_A Z_{11} D^{-1} Z_2 & U^T K_A Z_{12} \end{bmatrix} = \\ \begin{bmatrix} U^T K_{A_1} Z_2 & 0_{p,m-k} \end{bmatrix} &= \begin{bmatrix} U^T U R & 0_{p,m-k} \end{bmatrix} &= \begin{bmatrix} R & 0_{p,m-k} \end{bmatrix} = \\ \begin{bmatrix} \alpha_1 & & & & \\ & \ddots & & & \\ & & \alpha_k & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & &$$

kjer smo definirali $\alpha_i = \sqrt{1-\beta_i^2}$ za $i=1,\ldots,k$ in $\alpha_{k+1}=\ldots=\alpha_m=0$. S tem smo pokazali, da matrika

$$X = Z_1 \begin{bmatrix} D^{-1} Z_2 & 0\\ 0 & I_{m-k} \end{bmatrix}$$

zadošča tako razcepu matrike K_A kot tudi razcepu matrike K_B iz izreka, kar zaključuje dokaz.

Problem tega izreka pa je, da se ga ne da uporabiti, kadar dimenzije matrike K_A niso ustrezne. Zaradi tega pretirano zavezujočega pogoja se odločita C.C. Paige in M.A. Saunders ta posplošeni singularni izrek še dodatno posplošiti. Tako dobimo naslednji izrek:

Izrek 2 (Posplošeni singularni razcep (Paige in Saunders)). Naj bosta dani matriki $K_A \in \mathbb{R}^{p \times m}$ in $K_B \in \mathbb{R}^{n \times m}$. Potem za $K = \begin{bmatrix} K_A \\ K_B \end{bmatrix}$ in k = rang(K) obstajajo ortogonalne matrike $U \in \mathbb{R}^{p \times p}$, $V \in \mathbb{R}^{n \times n}$, $W \in \mathbb{R}^{k \times k}$ in $Q \in \mathbb{R}^{m \times m}$, da velja

$$U^T K_A Q = \Sigma_A \left[\begin{array}{ccc} W^T R, & 0 \end{array} \right] \quad \text{ in } \quad V^T K_B Q = \Sigma_B \left[\begin{array}{ccc} W^T R, & 0 \end{array} \right], \quad (4)$$

kjer sta

$$\Sigma_A = egin{bmatrix} I_A & & & & \\ & D_A & & & \\ & & 0_A \end{bmatrix} \quad in \quad \Sigma_B = egin{bmatrix} 0_B & & & \\ & D_B & & \\ & & I_B \end{bmatrix},$$

 $R \in \mathbb{R}^{k \times k}$ je nesingularna matrika, matriki $I_A \in \mathbb{R}^{r \times r}$ in $I_B \in \mathbb{R}^{(k-r-s) \times (k-r-s)}$ identični matriki, kjer je

$$r = rang(K) - rang(K_B)$$
 in $s = rang(K_A) + rang(K_B) - rang(K)$.

Dalje sta $0_A \in \mathbb{R}^{(p-r-s)\times(k-r-s)}$ in $0_B \in \mathbb{R}^{(n-k+r)\times r}$ ničelni matriki, ki imata lahko tudi ničelno število vrstic ali stolpcev, matriki $D_A = diag(\alpha_{r+1},...,\alpha_{r+s})$ in $D_B = diag(\beta_{r+1},...,\beta_{r+s})$ pa sta diagonalni matriki, ki zadoščata pogoju

$$1 > \alpha_{r+1} \ge \ldots \ge \alpha_{r+s} > 0$$
 in $0 < \beta_{r+1} \le \ldots \le \beta_{r+s} < 1$

pri

$$\alpha_i^2 + \beta_i^2 = 1$$
 za $i = r + 1, \dots, r + s.$ (5)

Dokaz. Izračunamo singularni razcep matrike K. Tako dobimo ortogonalni matriki $P \in \mathbb{R}^{(p+n)\times(p+n)}$ in $Q \in \mathbb{R}^{m\times m}$, da velja

$$K = P \begin{bmatrix} R & 0_{k,m-k} \\ 0_{n+p-k,k} & 0_{n+p-k,m-k} \end{bmatrix} Q^T,$$
 (6)

kjer je $R \in \mathbb{R}^{k \times k}$ diagonalna matrika ranga k. Matriki Q^T in P razdelimo na podmatrike

$$Q^T = \begin{bmatrix} Q_1^T \\ Q_2^T \end{bmatrix} \quad \text{in} \quad P = \begin{bmatrix} P_1 & P_2 \end{bmatrix} = \begin{bmatrix} P_{11} & P_{12} \\ P_{21} & P_{22} \end{bmatrix},$$

njer je matrika $Q_1 \in \mathbb{R}^{m \times m}$ sestavljena iz prvih k stolpcev matrike Q, matrika $Q_2 \in \mathbb{R}^{m \times (m-k)}$ pa iz preostalih m-k stolpcev matrike Q, podmatrike matrike P pa so sledečih dimenzij: $P_{11} \in \mathbb{R}^{p \times k}, \ P_{12} \in \mathbb{R}^{p \times (p+n-k)}, \ P_{21} \in \mathbb{R}^{n \times k}$ in $P_{22} \in \mathbb{R}^{n \times (p+n-k)}$. kjer je matrika $Q_1 \in \mathbb{R}^{m \times k}$ sestavljena iz prvih k stolpcev matrike Q, matrika

 Ker je Portogonalna matrika, velja $\left\Vert P\right\Vert _{2}\leq1$ in posledično tudi $\left\Vert P_{11}\right\Vert _{2}\leq$ $||P_1||_2 \le ||P||_2 \le 1$. Posledično nobena singularna vrednost matrike P_{11} ni večja

Singularni razcep podobno kot na matriki K naredimo tudi na matriki P_{11} . Tako dobimo ortogonalni matriki $U \in \mathbb{R}^{p \times p}$ in $W \in \mathbb{R}^{k \times k}$, da velja

$$P_{11} = U \Sigma_A W^T$$
,

kjer je

$$\Sigma_A = \begin{bmatrix} I_r & & \\ & D_A & \\ & & 0_A \end{bmatrix},$$

kjer je r geometrična večkratnost singularne vrednosti 1, matrika I_r identična

matrika dimenzije
$$r \times r$$
, matrika $D_A = \begin{bmatrix} \alpha_{r+1} \\ & \ddots \\ & & \alpha_{r+s} \end{bmatrix}$ diagonalna matrika, kjer $r+s$ predstavlja rang matrike P_{11} in $0_A \in \mathbb{R}^{(p-r-s)\times(k-r-s)}$ je ničelna matrika, kjer vertije ski ima lakka ničelna vertije ski ima ničelna vertije sk

matrika, ki ima lahko ničelno število vrstic ali stolpcev.

Matriko $P_{21}W$ množimo z ortogonalnimi transformacijami tako, da uničimo vse elemente v zgornjem delu matrike $P_{21}W$. Tako dobimo ortogonalno matriko $V^T \in \mathbb{R}^{n \times n}$, da velja

$$V^T P_{21} W = (\ell_{ij})_{i,j} = L,$$

kjer je matrika $L \in \mathbb{R}^{n \times k}$ v primeru, ko velja $n \geq k$, spodnje trapezna matrika z nenegativnimi diagonalnimi elementi, v primeru ko velja pa n < k, ima obliko

$$L = [L_1 \ L_2],$$

kjer je L_1 poljubna $(k-n) \times n$ dimenzionalna matrika realnih števil, matrika $L_2 \in \mathbb{R}^{n \times n}$ pa spodnje trikotna matrika z nenegativnimi diagonalnimi elementi. Za elemente matrike L tako velja $\ell_{ij} = 0$, ko velja n-i > k-j, ter $\ell_{ij} \geq 0$, ko velja n-i = k-j. Matrika ortogonalnih transformacij V je tu lahko sestavljena kar kot produkt Householderjevih zrcaljenj $\tilde{P}_1, \tilde{P}_2, \ldots, \tilde{P}_k$, ki jih dobimo tako, da začnemo elemente zgornjega dela matrike $P_{21}W$ uničevati iz desne proti levi (najprej torej sestavimo matriko \tilde{P}_k , nato matriko \tilde{P}_{k-1} , itd.) in za to uporabimo manj stabilno verzijo Householderjevih zrcaljenj, tako, da je zadoščeno pogoju, da so diagonalni elementi matrike L nenegativni. Velja torej

$$V^T = \tilde{P}_1 \tilde{P}_2 \dots \tilde{P}_k.$$

Podrobnejši opis razcepa je podan v nadaljevanju (glej **Primer 2.1.**). Opazimo lahko, da velja spodnja enakost

$$\begin{bmatrix} U^T & \mathbf{0}_{m,n} \\ \mathbf{0}_{n,m} & V^T \end{bmatrix} \begin{bmatrix} P_{11} \\ P_{21} \end{bmatrix} W = \begin{bmatrix} U^T P_{11} W \\ V^T P_{21} W \end{bmatrix} = \begin{bmatrix} \Sigma_A \\ L \end{bmatrix}.$$

Zgornja matrika $\begin{bmatrix} \Sigma_A \\ L \end{bmatrix}$ je ortogonalna, saj je produkt ortogonalnih matrik. Za matriko L iz ortonormiranosti stolpcev matrike $\begin{bmatrix} \Sigma_A \\ L \end{bmatrix}$ velja, da je levih r stolpcev enakih nič in tako ima matrika L sledečo obliko

$$L = \begin{bmatrix} 0_{n-k+r,r} & 0_{n-k+r,k-r} \\ 0_{k-r,r} & L_1 \end{bmatrix},$$

kjer je $L_1 \in \mathbb{R}^{(k-r)\times (k-r)}$ spodnje trikotna matrika z nenegativnimi diagonalnimi elementi. Ker je desnih k-r-s stolpcev matrike Σ_A ničelnih, stolpci matrike $\begin{bmatrix} \Sigma_A \\ L \end{bmatrix}$ so pa po normi enaki 1, mora imeti desnih k-r-s stolpcev matrike \bar{L}_1 normo ena. Prav tako morajo biti stolpci matrike L_1 medsebojno pravokotni. Ker pa je matrika L_1 spodnje trikotna z nenegativnimi diagonalnimi elementi, je desnih k-r-s diagonalnih elementov matrike L_1 enakih 1. To lahko bolje vidimo tako, da začnemo dopolnjevati matriko L_1 iz desne proti levi. Desni spodnji element matrike L_1 mora biti po prajšnjem enak 1 (zaradi pogoja, da imajo stolpci matrike $\begin{bmatrix} \Sigma_A \\ L \end{bmatrix}$ normo enako 1, ter pogoja, da so vsi ostali elementi zadnje stolpca matrike L enaki 0). Posledično iz ortogonalnosti $\begin{bmatrix} \Sigma_A \\ L \end{bmatrix}$ sledi, da so vsi preostali elementi zadnje vrstice matrike stolpcev matrike L_1 enaki 0, saj v kolikor bi bil katerikoli neničelen, bi kršili pogoj ortogonalnosti stolpcev. Tako nadaljujemo na naslednjem levem stolpcu in podobno pridemo do ugotovitve, da mora biti predzadnji element tega stolpca enak 1. Enako lahko določimo vrednosti vseh k-r-s desnih stolpcev matrike L_1 . Podobno lahko določimo vrednosti tudi za slevih stol
pcev matrike $L_1.\ {\bf V}$ s-tem stolpcu matrike mora biti zaradi ortonormiranosti stolpcev $\begin{bmatrix} \Sigma_A \\ L \end{bmatrix}$ vrednost $\beta_{r+s} := \sqrt{1 - \alpha_{r+s}^2}$, kjer zaradi pogoja nenegativnosti diagonalnih elementov matrike L_1 vzamemo pozitiven predznak. Podobno lahko pokažemo za vseh s levih stolpcev matrike L_1 .

To implicira obliko matrike $\begin{bmatrix} \Sigma_A \\ L \end{bmatrix}$, torej

$$\begin{bmatrix} \Sigma_A \\ L \end{bmatrix} = \begin{bmatrix} I_r & D_A \\ 0_{p-k+r,r} & 0_{m-r-s,k-r-s} \\ D_B & I_{k-r-s,k-r-s} \end{bmatrix},$$

kjer je matrika D_B diagonalna matrika, $D_B = \begin{bmatrix} \beta_{r+1} & & & \\ & \ddots & & \\ & & \beta_{r+s} \end{bmatrix}$, matrika

 $I_{k-r-s,k-r-s}$ identična matrika ter matrika $0_{p-k+r,r}$ ničelna matrika, ki ima lahko ničelno število vrstic ali stolpcev. Iz ortogonalnosti matrike $\begin{bmatrix} \Sigma_A \\ L \end{bmatrix}$ sledi tudi, da so njeni stolpci ortonormirani, iz česar sledi $\alpha_{r+i}^2 + \beta_{r+i}^2 = 1$ za $i = 1, \ldots, s$. Matriko L sedaj preimenujmo v Σ_B .

Iz enačbe (6) in enakosti

$$P_{11} = U\Sigma_A W^T$$
 in $P_{21} = V\Sigma_B W^T$

dobimo

$$\begin{bmatrix} K_A \\ K_B \end{bmatrix} Q = \begin{bmatrix} P_{11} & P_{12} \\ P_{21} & P_{22} \end{bmatrix} \begin{bmatrix} R & 0_{k,m-k} \\ 0_{n+p-k,k} & 0_{n+p-k,m-k} \end{bmatrix} = \\
\begin{bmatrix} P_{11}R & 0_{p,m-k} \\ P_{21}R & 0_{n,m-k} \end{bmatrix} = \begin{bmatrix} U\Sigma_A W^T R & 0_{p,m-k} \\ V\Sigma_B W^T R & 0_{n,m-k} \end{bmatrix}.$$
(7)

Če začetno enačbo iz enačbe (7) pomnožimo z leve z matriko $\begin{bmatrix} U^T & 0_{p,n} \\ 0_{n,p} & V^T \end{bmatrix},$ dobimo

$$\begin{bmatrix} U^T & \mathbf{0}_{p,n} \\ \mathbf{0}_{n,p} & V^T \end{bmatrix} \begin{bmatrix} K_A \\ K_B \end{bmatrix} Q = \begin{bmatrix} U^T & \mathbf{0}_{p,n} \\ \mathbf{0}_{n,p} & V^T \end{bmatrix} \begin{bmatrix} U \Sigma_A W^T R & \mathbf{0}_{p,m-k} \\ V \Sigma_B W^T R & \mathbf{0}_{n,m-k} \end{bmatrix},$$

iz česar sledi

$$\boldsymbol{U}^T K_A \boldsymbol{Q} = \boldsymbol{\Sigma}_A \left[\begin{array}{ccc} \boldsymbol{W}^T \boldsymbol{R}, & \boldsymbol{0} \end{array} \right] \quad \text{in} \quad \boldsymbol{V}^T K_B \boldsymbol{Q} = \boldsymbol{\Sigma}_B \left[\begin{array}{ccc} \boldsymbol{W}^T \boldsymbol{R}, & \boldsymbol{0} \end{array} \right],$$

s čimer smo dokazali izrek.

Na enostavnem primeru ponazorimo razcep, ki smo ga v zgornjem dokazu uporabili na matriki $P_{21}W$, tako da smo dobili matriko L željene oblike.

Primer 2.1. Vzemimo 4×2 dimenzionalno matriko

$$P_{21}W = \begin{bmatrix} 1 & 0 \\ 2 & 1 \\ 2 & 1 \\ 0 & 0 \end{bmatrix}.$$

Tu za matriko $P_{21}W \in \mathbb{R}^{n \times k}$ (v našem primeru n = 4 in k = 2) velja $n \geq k$, tako, da iščemo ortogonalno matriko $V^T \in \mathbb{R}^{n \times n}$, da velja $V^T P_{21}W = L$, kjer je L spodnje trapezna matrika.

Sedaj izračunajmo manj stabilno različico Householderjevih zrcaljenj. V prvem koraku za

$$x_2 = \begin{bmatrix} 0 \\ 1 \\ 1 \\ 0 \end{bmatrix}$$

izračunamo

$$w_2 = x_2 - \|x_2\|_2 e_n = \begin{bmatrix} 0 \\ 1 \\ 1 \\ 0 \end{bmatrix} - \sqrt{2} \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 1 \\ -\sqrt{2} \end{bmatrix}.$$

Iz vektorja w_2 pa lahko izračunamo Householderjeva zrcaljenja

$$P_2 = I - \frac{2}{w_2^T w_2} w_2 w_2^T = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} - \frac{2}{4} \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & -\sqrt{2} \\ 0 & 1 & 1 & -\sqrt{2} \\ 0 & -\sqrt{2} & -\sqrt{2} & 2 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 1 & -1 & \sqrt{2} \\ 0 & -1 & 1 & \sqrt{2} \\ 0 & \sqrt{2} & \sqrt{2} & 0 \end{bmatrix}.$$

Na prvem koraku za P_2 razglasimo kar P_2 . Izračunajmo sedaj produkt

$$\tilde{P_2}P_{21}W = \frac{1}{2} \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 1 & -1 & \sqrt{2} \\ 0 & -1 & 1 & \sqrt{2} \\ 0 & \sqrt{2} & \sqrt{2} & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 2 & 1 \\ 2 & 1 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 0 & 0 \\ 0 & 0 \\ 4\sqrt{2} & 2\sqrt{2} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 0 \\ 2\sqrt{2} & \sqrt{2} \end{bmatrix}.$$

Na drugem koraku vzamemo za x_1 naslednji levi stolpec nastalega produkta $\tilde{P}_2P_{21}W$, kjer izpustimo toliko elementov tega stolpca, kolikor je število predhodno narejenih korakov. Tako za vektor

$$x_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$

izračunamo

$$w_1 = x_1 - ||x_1|| e_{n-1} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} - \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix},$$

kjer na i-tem (v tem primeru na drugem) koraku uporabimo vektor e_{n-i+1} (v tem primeru torej e_{n-1}), ki predstavlja ničelni vektor dimenzije n-i+1, ki ima le na zadnjem mestu enico. S pomočjo izračunanega vektorja w_1 sedaj izračunajmo Householderjeva zrcaljenja

$$P_1 = I - \frac{2}{w_1^T w_1} w_1 w_1^T = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} - \frac{2}{2} \begin{bmatrix} 1 & 0 & -1 \\ 0 & 0 & 0 \\ -1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}.$$

Definiramo

$$\tilde{P}_1 = \begin{bmatrix} P_1 & 0 \\ 0 & I_{1,1} \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$

V splošnem na i-tem koraku za matriko \tilde{P}_i vzamemo $\begin{bmatrix} P_i & 0 \\ 0 & I_{i-1,i-1} \end{bmatrix}$. Sedaj lahko poračunamo matriko

$$\tilde{P_1}\tilde{P_2}P_{21}W = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 0 \\ 2\sqrt{2} & \sqrt{2} \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 1 & 0 \\ 2\sqrt{2} & \sqrt{2} \end{bmatrix}$$

Opazimo, da je dobljen produkt spodnje trapezna matrika. Definiramo

$$V^T := \tilde{P}_1 \tilde{P}_2 = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \frac{1}{2} \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 1 & -1 & \sqrt{2} \\ 0 & -1 & 1 & \sqrt{2} \\ 0 & \sqrt{2} & \sqrt{2} & 0 \end{bmatrix} = \begin{bmatrix} 0 & -\frac{1}{2} & \frac{1}{2} & \frac{\sqrt{2}}{2} \\ 0 & \frac{1}{2} & -\frac{1}{2} & \frac{\sqrt{2}}{2} \\ 1 & 0 & 0 & 0 \\ 0 & \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & 0 \end{bmatrix}$$

in dobili smo ravno iskano ortogonalno matriko. Enak postopek lahko uporabimo tudi na poljubni matriki $P_{21}W \in \mathbb{R}^{n \times k}$, kjer velja n < k, in tako dobimo matriko L, ki ima obliko

$$L = [L_1 \ L_2],$$

kjer je L_1 poljubna $(k-n)\times n$ dimenzionalna matrika realnih števil, matrika $L_2\in\mathbb{R}^{n\times n}$ pa spodnje trikotna matrika z nenegativnimi diagonalnimi elementi. \triangle

Iz posplošenega singularnega razcepa, ki sta ga definirala Paige in Saunders neposredno sledi Van Loanova posplošitev singularnega razcepa. S preoblikovanjem enačbe (4), dobimo

$$U^T K_A Q = \left[\begin{array}{cc} \Sigma_A, & 0 \end{array} \right] \begin{bmatrix} W^T R & 0 \\ 0 & I \end{array} \right].$$

Inverz matrike $\begin{bmatrix} W^TR & 0\\ 0 & I \end{bmatrix}$ je kar matrika $\begin{bmatrix} R^{-1}W & 0\\ 0 & I \end{bmatrix}$, saj veljata obe enakosti iz definicije inverza, torej

$$\begin{bmatrix} R^{-1}W & 0 \\ 0 & I \end{bmatrix} \begin{bmatrix} W^TR & 0 \\ 0 & I \end{bmatrix} = I \quad \text{in} \quad \begin{bmatrix} W^TR & 0 \\ 0 & I \end{bmatrix} \begin{bmatrix} R^{-1}W & 0 \\ 0 & I \end{bmatrix} = I.$$

Očitno sledi

$$U^T K_A Q \begin{bmatrix} R^{-1} W & 0 \\ 0 & I \end{bmatrix} = \left[\begin{array}{cc} \Sigma_A, & 0 \end{array} \right].$$

Nesingularno matriko X definiramo kot

$$Q \begin{bmatrix} R^{-1}W & 0 \\ 0 & I \end{bmatrix} \tag{8}$$

in dobimo ravno Van Loanovo posplošitev razcepa

$$U^T K_A X = \left[\begin{array}{cc} \Sigma_A, & 0 \end{array} \right]. \tag{9}$$

Podobno lahko pokažemo tudi za matriko K_B , za katero iz enačbe (4) dobimo

$$V^T K_B X = \left[\begin{array}{cc} \Sigma_B, & 0 \end{array} \right]. \tag{10}$$

Tako je definirana matrika X ravno iskana matrika iz prve posplošitve singularnega razcepa in matriki [Σ_A , 0] ter [Σ_B , 0] ravno iskani diagonalni matriki.

Za nadaljnje delo definirajmo matrike

$$H_W := \left[A_1 - c^{(1)} e^{(1)^T}, \dots, A_k - c^{(k)} e^{(k)^T} \right], \tag{11}$$

$$H_B := \left[(c^{(1)} - c)e^{(1)^T}, \dots, (c^{(k)} - c)e^{(k)^T} \right]$$
(12)

in

$$H_M := [a_1 - c, \dots, a_n - c] = A - ce^T = H_W + H_B,$$

kjer velja
$$e^{(i)} = (1, \dots, 1)^T \in \mathbb{R}^{n_i \times 1}$$
 in $e = (1, \dots, 1)^T \in \mathbb{R}^{n \times 1}$.

S pomočjo teh matrik lahko definiramo tudi matrike razpršenosti podatkov. Matriko S_W lahko definiramo kot produkt matrike H_W z njeno transponiranko, torei

$$S_W = H_W H_W^T, (13)$$

matriko S_B lahko definiramo na podoben način kot

$$S_B = H_B H_B^T, (14)$$

prav tako pa tudi matriko S_M

$$S_M = H_M H_M^T. (15)$$

Z uporabo enačbe (13) lahko tudi na drugačen način pokažemo prejšnjo ugotovitev, da je matrika S_W , kadar velja m>n, singularna. Razvidno je namreč, da je matrika S_W definirana kot produkt matrik H_W in H_W^T , kjer je matrika H_W dimenzije $m \times n$, matrika H_W^T pa dimenzije $n \times m$. V kolikor velja m>n, sta tako ti dve matriki največ ranga n. Ker pa za rang matrike velja, da je rang produkta dveh matrik navzgor omejen z manjšim izmed rangov teh dveh posameznih matrik (torej rang $(AB) \leq \min(\operatorname{rang}(A), \operatorname{rang}(B))$, je posledično tudi matrika S_W največ ranga n in je torej (ker velja m>n) očitno singularna.

3 Matematična rešitev problema

V tem poglavju prikažemo uporabo posplošenega singularnega razcepa v namen razširjene uporabe posplošene diskriminantne analize.

3.1 Maksimizacija optimizacijskega kriterija $J_1 = \text{sled}\left((S_2^\ell)^{-1}S_1^\ell\right)$ za nesingularno matriko S_2

Izhajamo iz maksimizacije optimizacijskega kriterija

$$J_1(G) = \text{sled}\left((G^T S_2 G)^{-1} (G^T S_1 G) \right)$$

z izbiro optimalne preslikave G, kjer sta matriki S_1 in S_2 izbrani izmed matrik S_W , S_B in S_M . Matrika S_2 je sestavljena kot produkt matrike in transponiranke te matrike in zato je simetrično pozitivno semidefinitna (posledično so vse lastne vrednosti te matrike nenegativne). Ko pa je matrika S_2 nesingularna (vse lastne vrednosti matrike so različne 0), je zato simetrično pozitivno definitna in posledično so vse lastne vrednosti te matrike pozitivne. Za simetrično pozitivno definitno matriko pa obstaja razcep Choleskega, to je obstaja spodnjetrikotna matrika V s pozitivnimi elementi na diagonali, da velja

$$S_2 = VV^T$$
.

Oglejmo si posplošeni problem lastnih vrednosti za matriki S_2 in S_1 , kjer za ti dve matriki iščemo takšen $\lambda_i \in \mathbb{R}$ in takšen neničelen vektor $x_i \in \mathbb{R}^m$, da velja

$$S_1 x_i = \lambda_i S_2 x_i. \tag{16}$$

Če sedaj matriko S_2 nadomestimo z matriko $VV^T,$ ki jo dobimo iz razcepa Choleskega, dobimo

$$S_1 x_i = \lambda_i V V^T x_i = V \lambda_i V^T x_i,$$

kar lahko z leve pomnožimo z $V^{-1},$ saj vemo, da za matriko Vobstaja inverz. Tako dobimo

$$V^{-1}S_1x_i = \lambda_i V^T x_i.$$

Enačbo lahko dodatno razčlenimo

$$V^{-1}S_1V^{-T}V^Tx_i = \lambda_i V^Tx_i.$$

Ker je matrika S_1 simetrična, je tudi matrika $V^{-1}S_1V^{-T}$ simetrična, saj velja

$$(V^{-1}S_1V^{-T})^T = (V^{-T})^T S_1^T (V^{-1})^T = V^{-1}S_1V^{-T}.$$

Simetrično matriko pa lahko diagonaliziramo v bazi ortonormiranih lastnih vektorjev in tako dobimo takšno matriko Y, da velja $YY^T=Y^TY=I$ in

$$V^{-1}S_1V^{-T} = Y\Lambda Y^T,$$

kjer je $\Lambda=\mathrm{diag}\,(\lambda_1,\ldots,\lambda_m)$ diagonalna matrika. S preoblikovanjem zgornje enačbe pa dobimo

 $S_1 = VY\Lambda Y^T V^T = X^{-T}\Lambda X^{-1},$

kjer smo dodatno definirali matriko $X := V^{-T}Y^{-T}$. Poleg matrike S_1 pa lahko preoblikujemo tudi matriko S_2 ,

$$S_2 = VV^T = VYY^TV^T = X^{-T}X^{-1}.$$

Zgornji enačbi lahko tudi obrnemo, tako da je $X^TS_1X=\Lambda$ in $X^TS_2X=I_m.$

Iz posplošenega problema lastnih vrednosti (16) lahko vidimo, da sta λ_i in x_i ravno lastna vrednost in pripadajoči lastni vektor za matriko $S_2^{-1}S_1$. Ker je matrika S_1 simetrično pozitivno semidefinitna, saj je sestavljena kot produkt matrike in transponiranke te matrike, so vse njene lastne vrednosti $\lambda_i \geq 0$ za $i=1,\ldots,m$. Z uporabo permutacijskih matrik, lahko matriko Λ preuredimo tako, da za $q=\mathrm{rang}\,(S_1)$ velja $\lambda_1\geq\ldots\geq\lambda_q>\lambda_{q+1}=\ldots=\lambda_m=0$.

Optimizacijski kriterij ima tako sledečo obliko

$$J_{1}(G) = \operatorname{sled}\left((G^{T}S_{2}G)^{-1}G^{T}S_{1}G\right)$$

$$= \operatorname{sled}\left((G^{T}X^{-T}X^{-1}G)^{-1}G^{T}X^{-T}\Lambda X^{-1}G\right)$$

$$= \operatorname{sled}\left(G^{-1}XX^{T}G^{-T}G^{T}X^{-T}\Lambda X^{-1}G\right)$$

$$= \operatorname{sled}\left(\tilde{G}^{-1}(\tilde{G}^{T})^{-1}\tilde{G}^{T}\Lambda\tilde{G}\right)$$

$$= \operatorname{sled}\left((\tilde{G}^{T}\tilde{G})^{-1}\tilde{G}^{T}\Lambda\tilde{G}\right),$$

$$(17)$$

kjer je matrika $\tilde{G}:=X^{-1}G\in\mathbb{R}^{m\times\ell}$. Ker vemo, da ima matrika X poln rang, ima matrika \tilde{G} rang enak številu stolpcev (torej ℓ) in tako lahko na njej naredimo QR razcep in tako dobimo matriko $Q\in\mathbb{R}^{m\times\ell}$, ki ima ortonormirane stolpce in nesingularno matriko $R\in\mathbb{R}^{\ell\times\ell}$, da velja $\tilde{G}=QR$. Tako lahko zgornjo enačbo (17) dodatno preoblikujemo

$$J_1(G) = \operatorname{sled} \left(((QR)^T QR)^{-1} (QR)^T \Lambda QR \right)$$

$$= \operatorname{sled} \left((R^T Q^T QR)^{-1} R^T Q^T \Lambda QR \right)$$

$$= \operatorname{sled} \left((R^T R)^{-1} R^T Q^T \Lambda QR \right)$$

$$= \operatorname{sled} \left(R^{-1} Q^T \Lambda QR \right).$$

Ker pa vemo, da imata podobni matriki enako sled velja

$$J_1(G) = \operatorname{sled}\left(R^{-1}Q^T\Lambda QR\right) = \operatorname{sled}\left(Q^T\Lambda Q\right).$$

Tako lahko vidimo, da je po diagonalizaciji matrik S_1 in S_2 maksimizacija optimizacijskega kriterija odvisna le še od matrike Q, ki predstavlja ortonormirano bazo za matriko $X^{-1}G$, torej

$$\max_{G} J_1(G) = \max_{Q^T Q = I} \operatorname{sled} \left(Q^T \Lambda Q \right).$$

Ker pa vemo, da je sled matrike enaka vsoti lastnih vrednosti in da ima matrika Q ortonormirane stolpce, velja

$$\max_{Q^T Q = I} \operatorname{sled}\left(Q^T \Lambda Q\right) \le \lambda_1 + \dots + \lambda_q = \operatorname{sled}\left(S_2^{-1} S_1\right).$$

Za vsak $\ell \geq q$ optimizacijski kriterij doseže svoj maksimum pri izbiri

$$Q = \begin{bmatrix} I_\ell \\ 0_{m-\ell,\ell} \end{bmatrix} \quad \text{oziroma za} \quad G = X \begin{bmatrix} I_\ell \\ 0_{m-\ell,\ell} \end{bmatrix} R.$$

Preslikava G, za katero maksimizacijski kriterij doseže svoj maksimum, pa ni enolična, saj za katerokoli nesingularno matriko $W\in\mathbb{R}^{\ell\times\ell}$ velja

$$J_1(GW) = \text{sled} \left((W^T G^T S_2 G W)^{-1} W^T G^T S_1 G W \right)$$

= sled $\left(W^{-1} (G^T S_2 G)^{-1} W^{-T} W^T G^T S_1 G W \right)$
= sled $\left(W^{-1} (G^T S_2 G)^{-1} G^T S_1 G W \right)$.

Ker pa velja, da imata podobni matriki enako sled, lahko zgornjo enačbo množimo iz leve zWin iz desne z W^{-1} in tako dobimo

$$J_1(GW) = J_1(G).$$

V kolikor za nesingularno matriko W izberemo R^{-1} (ta obstaja, saj je R po definiciji nesingularna), je maksimum optimizacijskega kriterija $J_1(G)$ dosežen tudi za

$$G = X \begin{bmatrix} I_{\ell} \\ 0_{m-\ell,\ell} \end{bmatrix}.$$

Tako smo ugotovili, da za $\ell \geq q = rang(S_1)$ velja

$$\operatorname{sled}\left((G^TS_2G)^{-1}G^TS_1G\right) = \operatorname{sled}\left(S_2^{-1}S_1\right),$$

v kolikor preslikavo $G \in \mathbb{R}^{m \times \ell}$ sestavimo iz ℓ lastnih vektorjev matrike $S_2^{-1}S_1$, ki pripadajo ℓ največjim lastnim vrednostim te matrike.

Po ugotovitvi iz prvega poglavja, je matrika S_2 lahko nesingularna le, ko velja $m \leq n$, oziroma, ko je število pridobljenih podatkov večje od dimenzije posameznega podatka. V nasprotnem primeru trenutne rešitve za maksimizacijski kriterij ne moremo uporabiti. Za nadaljevanje zapišimo λ_i iz enačbe (16) kot α_i^2/β_i^2 in tako se naš problem posploši na

$$\beta_i^2 S_1 x_i = \alpha_i^2 S_2 x_i. \tag{18}$$

V naslednjem poglavju maksimizacijo optimizacijskega kriterija $J_1(G)$ posplošimo tudi na primer, ko je matrika S_2 singularna.

3.2 Posplošitev optimizacijskega kriterija za singularno matriko S_2

V nadaljevanju obravnavajmo maksimizacijo prejšnjega optimizacijskega kriterija J_1 , kjer matrik S_1 in S_2 ne izbiramo več, temveč te določimo kot $S_1 = S_B$ in $S_2 = S_W$. Iščemo preslikavo G, ki zadošča pogojema

$$\min_{G} \operatorname{sled} \left(G^{T} S_{W} G \right) \quad \text{in} \quad \max_{G} \operatorname{sled} \left(G^{T} S_{B} G \right). \tag{19}$$

Za iskanje vektorjev x_i iz enačbe (18) uporabimo posplošeni singularni razcep. In sicer izračunamo posplošen singularen razcep, podan v izreku $\mathbf{2}$ in enačbah (8), (9) in (10) na matriki $K:=\begin{bmatrix} H_B^T \\ H_W^T \end{bmatrix} \in \mathbb{R}^{2n\times m}$. Tako dobimo ortogonalne matrike $U\in\mathbb{R}^{n\times n}$, $V\in\mathbb{R}^{n\times n}$ in $X\in\mathbb{R}^{m\times m}$ ter matriki Σ_A in Σ_B , da velja

$$H_B^T = U \left[\Sigma_A, \quad 0 \right] X^{-1} \tag{20}$$

in

$$H_W^T = V \left[\Sigma_B, \ 0 \right] X^{-1}, \tag{21}$$

kjer sta matriki Σ_A in Σ_B sledečih oblik

$$\Sigma_A = \begin{bmatrix} I_r & & & \\ & D_A & & \\ & & 0_{n-r-s,k-r-s} \end{bmatrix} , \quad \Sigma_B = \begin{bmatrix} 0_{n-k+r,r} & & & \\ & D_B & & \\ & & I_{k-r-s} \end{bmatrix} ,$$

matriki D_A in D_B pa sta oblike

$$D_A = \begin{bmatrix} \alpha_{r+1} & & \\ & \ddots & \\ & & \alpha_{r+s} \end{bmatrix}, \quad D_B = \begin{bmatrix} \beta_{r+1} & & \\ & \ddots & \\ & & \beta_{r+s} \end{bmatrix},$$

kjer je $r = \operatorname{rang}(K) - \operatorname{rang}(H_W^T)$, $s = \operatorname{rang}(H_B^T) + \operatorname{rang}(H_W^T) - \operatorname{rang}(K)$ ter $k = \operatorname{rang}(K)$. Za elemente matrik D_A in D_B pa velja $1 > \alpha_{r+1} \ge \ldots \ge \alpha_{r+s} > 0$ in $0 < \beta_{r+1} \le \ldots \le \beta_{r+s} < 1$. Sedaj si podrobneje oglejmo matriki $S_B = H_B H_B^T$ in $S_W = H_W H_W^T$. Za produkt matrik $H_B H_B^T$ po (20) velja

$$H_B H_B^T = X^{-T} \begin{bmatrix} \Sigma_A^T \\ 0^T \end{bmatrix} U^T U \begin{bmatrix} \Sigma_A, & 0 \end{bmatrix} X^{-1}$$
$$= X^{-T} \begin{bmatrix} \Sigma_A^T \Sigma_A & 0 \\ 0 & 0 \end{bmatrix} X^{-1},$$

kjer je matrika $\Sigma_A^T \Sigma_A \in \mathbb{R}^{k \times k}$ enaka diagonalni matriki diag $(\alpha_1^2, \dots, \alpha_k^2)$. V kolikor tu gledamo le *i*-ti stolpec obrnljive matrike X, ki ga označimo z x_i , ter dodatno definiramo $\alpha_i = 0$ za $i = k+1, \dots, m$, dobimo

$$x_i^T H_B H_B^T x_i = \alpha_i^2 , \quad i = 1, 2, \dots, m.$$
 (22)

Za produkt matrik $H_W H_W^T$ po podobnem izračunu kot za $H_B H_B^T$ velja

$$H_W H_W^T = X^{-T} \begin{bmatrix} \Sigma_B^T \Sigma_B & 0 \\ 0 & 0 \end{bmatrix} X^{-1}.$$

Prav tako velja tudi

$$x_i^T H_W H_W^T x_i = \beta_i^2 , \quad i = 1, 2, \dots, m,$$
 (23)

kjer smo dodatno definirali $\beta_i = 0$ za i = k + 1, ..., m. Če združimo enačbi (22) in (23), dobimo enačbo

$$\frac{1}{\beta_i^2} x_i^T H_W H_W^T x_i = \frac{1}{\alpha_i^2} x_i^T H_B H_B^T x_i,$$

ki jo z leve množimo z inverznim vektorjem vektorja x_i^T (ta obstaja, saj je matrika X, in posledično tudi matrika X^T , obrnljiva) in tako dobimo

$$\alpha_i^2 H_W H_W^T x_i = \beta_i^2 H_B H_B^T x_i. \tag{24}$$

Tako dobimo enak problem kot v (18). Najprej bomo potegnili vzporednice med to metodo in metodo iz prejšnjega poglavja, ki velja le za nesingularno matriko S_W , nato pa si bomo pogledali primer rešitve tega problema za singularno matriko S_W .

3.2.1 Matrika H_W polnega ranga

V tem primeru bo zagotovo veljalo n>m. Matrika H_W^T bo v tem primeru imela poln stolpični rang, torej rang $(H_W^T)=m$, iz česar pa sledi r=m-m=0, $s={\rm rang}(H_B^T)+m-m={\rm rang}(H_B^T)$ ter k=m. Od tod dobimo, da je $\beta_i\neq 0$ za $\forall\ i=1,\ldots,m$. Posledično lahko enačbo (24) delimo z β_i in dobimo

$$\frac{\alpha_i^2}{\beta_i^2} H_W H_W^T x_i = H_B H_B^T x_i.$$

Ker pa nam posplošeni singularni razcep vrne pare singularnih vrednosti (α_i, β_i) urejene v sledečem vrstnem redu $1 > \alpha_{r+1} \ge \ldots \ge \alpha_{r+s} > 0$ in $0 < \beta_{r+1} \le \ldots \le \beta_{r+s} < 1$, velja, da so koeficienti $\lambda_i = \frac{\alpha_i^2}{\beta_i^2}$ v padajočem vrstnem redu, saj za poljuben $i \in 1, \ldots, s$ velja

$$\frac{\alpha_{r+i}}{\beta_{r+i}} = \frac{\alpha_{r+i}}{\beta_{r+i+1}} \frac{\beta_{r+i+1}}{\beta_{r+i}} \ge \frac{\alpha_{r+i}}{\beta_{r+i+1}} \ge \frac{\alpha_{r+i+1}}{\beta_{r+i+1}}.$$

Dodatno iz $\alpha_i \geq 0$ in $\beta_i \geq 0$ za i = 1, ..., m sledi, da so tudi koeficienti $\frac{\alpha_i^2}{\beta_i^2}$ v padajočem vrstnem redu. Sledi, da za optimalno preslikavo G potrebujemo le prvih k-1 stolpcev matrike X, saj v tem primeru velja kar k=m, mi pa iščemo preslikavo, ki slika v prostor dimenzije manjše od m.

3.2.2 Matrika H_W nepolnega ranga

Do primera, ko je matrika H_W nepolnega ranga, pride vedno, ko velja m > n. Tu tako ne moremo definirati lastnih vektorjev matrike $S_W^{-1}S_B$ in tako klasična diskriminantna analiza odpove. Recimo, da imamo singularni vektor x_i , ki leži v jedru matrike S_W (torej $x_i \in \ker(S_W)$). Iz (18) vidimo, da potem velja ena izmed možnosti: ta vektor leži tudi v jedru matrike S_B ali pa je pripadajoča singularna vrednost β_i enaka 0. Ločimo torej dve možnosti:

1. $x_i \in \ker(S_W) \cap \ker(S_B)$

V tem primeru je enačbi (18) zadoščeno za poljubna α_i in β_i . To bo primer za m-k desnih stolpcev preslikave X. Ti stolpci so očitno v jedru preslikave S_W , saj se po (6) preslikajo v 0. Premislimo, ali se nam te stolpce preslikave X splača vključiti v preslikavo G. Velja

$$\operatorname{sled}(G^T S_B G) = \sum_{j=1}^{\ell} g_j^T S_B g_j \text{ in } \operatorname{sled}(G^T S_W G) = \sum_{j=1}^{\ell} g_j^T S_W g_j,$$

kjer g_j predstavlja j-ti stolpec preslikave G. Ker velja $x_i^T S_W x_i = 0$ in $x_i^T S_B x_i = 0$, dodajanje teh stolpev v preslikavo G ne bo imelo vpliva niti na maksimizacijo sled $(G^T S_W G)$, niti na minimizacijo sled $(G^T S_B G)$ iz (19). Posledično teh stolpev x_i ne vključimo v G.

2. $x_i \in \ker(S_W) - \ker(S_B) \Rightarrow \beta_i = 0$

Iz $\beta_i=0$ in (5) sledi, da je $\alpha_i=1$, iz česar sledi $\lambda_i=\infty$. Ti vektorji x_i bodo predstavljali najbolj leve stolpce matrike X. Če te stolpce vključimo v preslikavo G, bomo na pogoje iz (19) vplivali tako, da bomo sled (G^TS_BG) povečali, medtem, ko bo sled (G^TS_WG) ostala nespremenjena. Tako lahko sklepemo, da te stolpce vključimo v G.

Iz opisanega zaključimo, da tudi, ko je matrika S_W singularna, preslikavo $G \in \mathbb{R}^{m \times \ell}$ sestavimo iz ℓ levih stolpcev matrike X. Od tod sledi naslednji algoritem.

4 Algoritem

Algorithm 1 Posplošena linearna diskriminantna analiza z uporabo posplošenega singularnega razcepa

Vhod: Matrika $A \in \mathbb{R}^{m \times n}$, katere podatki so k razredih in vektor $a \in \mathbb{R}^{m \times 1}$, katerega razred je neznan.

Izhod: Preslikava $G \in \mathbb{R}^{m \times \ell}$, ki ohranja strukturo razredov podatkov z maksimizacijo $J_1(G) = \text{sled}\left((G^T S_W G)^{-1} G^T S_B G\right)$ ter poračuna ℓ -dimenzionalno preslikavo y vektorja a.

1: Iz matrike A poračunamo matriki H_B in H_W z uporabo formule

$$H_B = \left[\sqrt{n_1}(c^{(1)} - c), \ \sqrt{n_2}(c^{(2)} - c), \dots, \ \sqrt{n_k}(c^{(k)} - c) \right]$$
 (25)

in formule (11).

2: Izračunamo matriki P in Q iz singularnega razcepa matrike $K := \begin{bmatrix} H_B^T \\ H_W^T \end{bmatrix},$

$$K = P \begin{bmatrix} R & 0_{k,m-k} \\ 0_{n+p-k,k} & 0_{n+p-k,m-k} \end{bmatrix} Q^{T}.$$

- 3: Označimo $k := \operatorname{rang}(K)$.
- 4: Matriko P razdelimo

$$P = [P_1 \ P_2] = \begin{bmatrix} P_{11} & P_{12} \\ P_{21} & P_{22} \end{bmatrix},$$

kjer so podmatrike matrike P pa so sledečih dimenzij: $P_{11} \in \mathbb{R}^{p \times k}$, $P_{12} \in \mathbb{R}^{p \times (p+n-k)}$, $P_{21} \in \mathbb{R}^{n \times k}$ in $P_{22} \in \mathbb{R}^{n \times (p+n-k)}$.

5: Izračunamo matriko W iz singularnega razcepa matrike P_{11} ,

$$P_{11} = U \begin{bmatrix} \Sigma_A & 0 \end{bmatrix} W^T.$$

6: ZaGrazglasimo prvih ℓ stolpcev matrike $X = Q \begin{bmatrix} R^{-1}W & 0 \\ 0 & I \end{bmatrix}$.

7: $y = G^T a$

Opomba 4.1. Algoritem v drugem koraku namesto matrike H_B iz (12) uporabimo matriko $H_B := \left[\sqrt{n_1}(c^{(1)}-c), \sqrt{n_2}(c^{(2)}-c), \ldots, \sqrt{n_k}(c^{(k)}-c) \right]$, saj ta matrika na enak način določa razpršenost podatkov med posamezni razredi. Sled matrike, ki jo maksimiziramo, se tako le sorazmerno zmanjša, saj je razlika med centroidom posameznega razreda in centroida celotnih podatkov otežena s korenom števila podatkov v posameznem razredu. To lahko naredimo, saj vemo, da je koren na intervalu $[0,\infty)$ injektivna preslikava. Matiko H_B tu zamenjamo z namenom olajšanja računske zahtevnosti algoritma, saj je nova matrika dimenzije $m \times k$, kar je občutno manj, prav tako so tudi elementi matrike manjši.

5 Uporaba algoritma

6 Priloge

Izrek 3 (Singularni razcep). Za vsako matriko $A \in \mathbb{R}^{m \times n}$, z lastnostjo $m \ge n$, obstaja singularni razcep

$$A = U\Sigma V^T$$
.

kjer sta $U \in \mathbb{R}^{m \times m}$ in $V \in \mathbb{R}^{n \times n}$ ortogonalni matriki, $\Sigma \in \mathbb{R}^{m \times n}$ je oblike

$$\Sigma = \begin{bmatrix} \sigma_1 & & & \\ & \ddots & & \\ & & \sigma_n \end{bmatrix}$$

in $\sigma_1 \geq \sigma_2 \geq \ldots \geq \sigma_n \geq 0$ so singularne vrednosti matrike A.

Dokaz.Ker je A^TA simetrična pozitivno semidefinitna matrika, so vse njene lastne vrednosti nenegativne. Označimo in uredimo jih kot

$$\sigma_1^2 \ge \sigma_2^2 \ge \ldots \ge \sigma_n^2 \ge 0.$$

Ustrezni ortonormirani lastni vektorji v_1,\ldots,v_n zadoščajo $A^TAv_i=\sigma_i^2v_i$ za $i=1,\ldots,n$. Naj bo $\sigma_r>0$ in $\sigma_{r+1}=\cdots=\sigma_n=0$. Matriko V razdelimo na $V_1=[v_1,\ldots,v_r]$ in $V_2=[v_{r+1},\ldots,v_n]$. Iz

$$(AV_2)^T (AV_2) = V_2^T A^T A V_2 = V_2^T [0, \dots, 0] = 0$$

sledi $AV_2=0$. Sedaj definiramo $u_i:=\frac{1}{\sigma_i}Av_i$ za $i=1,\ldots,r$. Vekorji u_1,\ldots,u_r so ortonormirani, saj je

$$u_i^T u_j = \frac{1}{\sigma_i \sigma_j} v_i^T A^T A v_j = \frac{\sigma_j}{\sigma_i} v_i^T v_j = \delta_{ij}, \quad i, j = 1, \dots, r,$$

kjer smo v zapisu uporabili t.i. Kroneckerjev delta, definiran z $\delta_{ij}=1$ za i=j in $\delta_{ij}=0$ za $i\neq j$. Označimo $U_1=[u_1\ \cdots\ u_r]$ in dopolnimo z $U_2=[u_{r+1}\ \cdots\ u_n]$, da je $U=[U_1\ U_2]$ ortogonalna matrika. Matrika U^TAV ima obliko

$$U^T A V = \begin{bmatrix} U_1^T A V_1 & U_1^T A V_2 \\ U_2^T A V_1 & U_2^T A V_2 \end{bmatrix}.$$

Desna bloka sta zaradi $AV_2=0$ enaka 0. Za $i=1,\ldots,r$ in $k=1,\ldots,m$ velja

$$u_k^T A v_i = \sigma_i u_k^T u_i = \sigma_i \delta_{ik},$$

torej $U_2^T A V_1 = 0$ in $U_1^T A V_1 = diag(\sigma_1, \dots, \sigma_r)$. Dobimo singularni razcep $A = U \Sigma V^T$, kjer je $S = diag(\sigma_1, \dots, \sigma_r)$ in

$$\Sigma = \begin{bmatrix} S & 0 \\ 0 & 0 \end{bmatrix}.$$

V primeru, ko velja n>m, dobimo singularni razcep za $A\in\mathbb{R}^{m\times n}$ tako, da transponiramo singularni razcep matrike $A^T.$

7 Viri