Chap. 4 – PH des SOLUTIONS AQUEUSES

• • •

Plante acidophile: l'hortensia

Plante basophile : la lavande

I- Solutions aqueuses d'acides forts et de bases fortes

1. Les monoacides forts

	АН	+ H ₂ O	\rightarrow	A- +	H ₃ O ⁺
E.I.	\mathbf{C}_{a}	Excès		0	0
E.F	0	Excès		\mathbf{C}_{a}	\mathbf{C}_{a}

Par définition : $pH = -log [H_3O^+]$

Pour un acide fort : $[H_3O^+] = C_a$

On déduit donc que pour un acide fort : $pH = -logC_a = pC_a$

Formule valable si $10^{-6.5}$ < C_a < 10^{-1} mol. L^{-1}

I- Solutions aqueuses d'acides forts et de bases fortes

2. Les monobases fortes

	В	+ H_2O \rightarrow	BH+ +	HO ⁻
E.I.	C_b	Excès	0	0
E.F	0	Excès	C_{b}	C _b

Par définition: pOH = -log [HO-]

Pour une base forte: [HO⁻] = C_b

On déduit donc que pour une base forte: $pOH = -logC_b = pC_b$

$$pH = 14 - pOH = 14 - pC_b$$

Formule valable si $10^{-6.5}$ < C_b < 10^{-1} mol. L^{-1}

I- Solutions aqueuses d'acides forts et de bases fortes

3. Diagramme de Flood

1. Cas des monoacides faibles

On posera $[H_3O^+]=h$

$$AH + H_2O \iff A^- + H_3O^+$$
E.I. C_a Excès 0 0
Eq. C_a - αC_a Excès αC_a αC_a

$$= C_a - h = h$$

$$h = \alpha C_a$$

$$K_{a} = \frac{h \cdot [A^{-}]}{[HA]} = \frac{h^{2}}{C_{a} - h} = \frac{\alpha^{2} \cdot C_{a}}{1 - \alpha}$$

1. Cas des monoacides faibles

• 1er cas : si l'acide n'est pas trop dilué et le p K_a pas trop faible, on fait l'hypothèse que la dissociation de l'acide est inférieure à 10% soit α < 0,1

$$K_a \approx \alpha^2 C_a \approx \frac{h^2}{C_a} \implies pH \approx \frac{1}{2} [pK_a + pC_a]$$

Le calcul fait, il faut vérifier l'hypothèse càd que l'on est bien dans le cas α < 0,1 :

- soit on calcule $\alpha = h/C_a$ et on vérifie qu'il est < 0,1;
- soit on vérifie que $pH < pK_a$ 1 qui est une condition équivalente.

1. Cas des monoacides faibles

1er cas : si l'acide n'est pas trop dilué et le pK_a pas trop faible, on fait l'hypothèse que la dissociation de l'acide est inférieure à 10% soit α < 0,1

$$K_a \approx \alpha^2 C_a \approx \frac{h^2}{C_a} \implies pH \approx \frac{1}{2} [pK_a + pC_a]$$

Le calcul fait, il faut vérifier l'hypothèse càd que l'on est bien dans le cas α < 0,1:

- soit on calcule $\alpha = h/C_a$ et on vérifie qu'il est < 0,1;
- soit on vérifie que **pH < pK_a-1** qui est une condition équivalente.
- 2ème cas: le pKa est petit et/ou l'acide est très dilué, ce qui laisse présager $\alpha > 0,1$, ou bien la formule approchée que l'on a appliquée dans un 1^{er} temps ne convient pas: $K_a = \frac{h^2}{C_a - h}$

Il faut résoudre l'équation du 2nd degré

1. Cas des monoacides faibles

2. Cas des monobases faibles

On posera [HO $^{-}$] = ω

$$\omega = \alpha C_b$$

$$K_b = \frac{\omega BH^+}{[B]} = \frac{\omega^2}{C_b - \omega} = \frac{\alpha^2 C_b}{1 - \alpha}$$

2. Cas des monobases faibles

• 1er cas: le pK_b n'est pas trop petit et la base n'est pas trop diluée, on fait l'hypothèse que moins de 10% de la base a réagi avec l'eau soit α < 0,1

$$K_b \approx \alpha^2 C_b \approx \frac{\omega^2}{C_b} \implies pOH \approx \frac{1}{2} [pK_b + pC_b]$$

puis $pH = 14 - pOH$

Le calcul fait, il faut vérifier l'hypothèse càd que l'on est bien dans le cas α < 0,1 :

- soit on calcule $\alpha = \omega / C_b$ et on vérifie qu'il est < 0,1;
- soit on vérifie que $pH > pK_a + 1$ qui est une condition équivalente.

2. Cas des monobases faibles

• 1er cas: le pK_b n'est pas trop petit et la base n'est pas trop diluée, on fait l'hypothèse que moins de 10% de la base a réagi avec l'eau soit α < 0,1

$$K_b \approx \alpha^2 C_b \approx \frac{\omega^2}{C_b} \implies pOH \approx \frac{1}{2} [pK_b + pC_b]$$

puis $pH = 14 - pOH$

Le calcul fait, il faut vérifier l'hypothèse càd que l'on est bien dans le cas α < 0,1 :

- soit on calcule $\alpha = \omega / C_b$ et on vérifie qu'il est < 0,1;
- soit on vérifie que $pH > pK_a + 1$ qui est une condition équivalente.
- 2ème cas: le pK_b est petit et/ou la base est très diluée, ce qui laisse présager α > 0,1, ou bien la formule approchée que l'on a appliquée dans un 1^{er} temps ne convient pas

Il faut résoudre l'équation du 2nd degré :

2. Cas des monobases faibles

III- Solutions de polyacides et de polybases - Mélanges d'acides - Mélanges de bases

1. Cas des polyacides et des polybases

Quand $\Delta pK_a > 3$ ou 4, le pH (ou le pOH) est donné par l'acidité la plus forte (ou la basicité la plus forte).

2. Cas d'un mélange de 2 acides ou de 2 bases

Quand $\Delta pK_a > 3$ ou 4 et quand les concentrations sont voisines, le pH (pOH) est donné par l'acide (la base) le (la) plus fort(e).

IV- PH d'une solution ampholyte

$$H_2CO_3/HCO_3$$
 pK_{a1} = 6,4

$$HCO_3^-/CO_3^{2-}$$
 pK_{a2} = 10,3

Quand la concentration C de l'ampholyte n'est pas trop faible, une seule

R.P., la réaction de l'ampholyte avec lui-même

Ex:
$$2 HCO_3^- + H_2CO_3 + CO_3^{2-}$$

$$\Rightarrow pH \approx \frac{1}{2} [pK_{a1} + pK_{a2}]$$

V- Mélange d'un acide faible et de sa base conjuguée : solutions tampons

1. Solution tampon

- Un MELANGE d'ACIDE FAIBLE et de BASE FAIBLE CONJUGUEE à des concentrations voisines et pas trop faibles constitue une solution TAMPON.
- Le pH d'une solution TAMPON varie peu quand on lui ajoute :
 - une quantité modérée d'acide fort
 - une quantité modérée de base forte
 - une certaine quantité d'eau.
- Quand la solution ne remplit qu'un ou deux critère(s) et non les 3, on dit qu'elle est PSEUDO TAMPON.

V- Mélange d'un acide faible et de sa base conjuguée : solutions tampons

2. pH du mélange

RP:
$$HA + A^{-} + HA$$

$$pH = pK_a + log \frac{[A^-]_{\acute{e}q}}{[AH]_{\acute{e}q}} = pK_a + log \frac{[A^-]_i}{[AH]_i}$$

Rem : quand $[AH]_i = [A^-]_i$ le pH du mélange est pH = p K_a

V- Mélange d'un acide faible et de sa base conjuguée : solutions tampons

3. Comment préparer des solutions tampons

2 méthodes:

Méthode 1 : on réalise des mélanges d'acide faible et de base faible conjuguée

Méthode 2 : on réalise des dosages et on s'arrête quand dans le bécher on est en présence d'acide et de base faible conjuguée, càd autour de la demi-équivalence.

