Package 'circhelp'

July 4, 2024

```
Type Package
Title Circular Analyses Helper Functions
Version 1.1
Description Light-weight functions for computing descriptive statistics in different circu-
      lar spaces (e.g., 2pi, 180, or 360 degrees), to handle angle-dependent biases, pad circu-
      lar data, and more. Specifically aimed for psychologists and neuroscientists analyzing circu-
      lar data. Basic methods are based on Jammalamadaka and Sen-
      Gupta (2001) <doi:10.1142/4031>, removal of cardinal biases is based on the approach intro-
      duced in van Bergen, Ma, Pratte, & Jehee (2015) <doi:10.1038/nn.4150> and Chetverikov and Je-
      hee (2023) <doi:10.1038/s41467-023-43251-w>.
URL https://achetverikov.github.io/circhelp/index.html,
      https://github.com/achetverikov/circhelp
BugReports https://github.com/achetverikov/circhelp/issues
License CC0
Encoding UTF-8
LazyData true
Suggests testthat (>= 3.0.0), circular, knitr, rmarkdown, BAMBI, mgcv,
Imports gamlss, MASS, mathjaxr, patchwork
Depends stats, data.table, ggplot2, R (>= 2.10)
Config/testthat/edition 3
RoxygenNote 7.3.2
VignetteBuilder knitr, patchwork, ggplot2, MASS, gamlss, mgcv, ragg
RdMacros mathjaxr
NeedsCompilation no
Author Andrey Chetverikov [aut, cre] (<a href="https://orcid.org/0000-0003-2767-6310">https://orcid.org/0000-0003-2767-6310</a>),
      Eline Van Geert [ctb] (<a href="https://orcid.org/0000-0002-7848-5998">https://orcid.org/0000-0002-7848-5998</a>)
Maintainer Andrey Chetverikov <andrey.chetverikov@uib.no>
Repository CRAN
Date/Publication 2024-07-04 17:10:02 UTC
```

2 angle_diff_rad

Contents

Index		20
	weighted_sem	18
	weighted_circ_mean	17
	vm_kappa_to_circ_sd	
	remove_cardinal_biases_discrete	15
	remove_cardinal_biases	12
	Pascucci_et_al_2019_data	12
	pad_circ	11
	correct_angle_rad	10
	circ_sd_rad	9
	circ_mean_rad	8
	circ_loess	7
	circ_lin_corr	6
	circ_descr	5
	circ_corr	4
	Bae_Luck_2018_data	
	angle_diff_rad	2

angle_diff_rad

Differences between angles in different circular spaces

Description

Differences between angles in different circular spaces

Usage

```
angle_diff_rad(a, b)
angle_diff_360(a, b)
angle_diff_180(a, b)
angle_diff_90(a, b)
angle_diff_180_45(a, b)
angle_diff_360_90(a, b)
```

Arguments

a first angleb second angle

Bae_Luck_2018_data

Details

By default, all functions return values in \pm half-range space (e.g., -pi to pi for 2pi radian space used by angle_diff_rad()) but angle_diff_180_45() and angle_diff_360_90() return values in [-1/4 range, 3/4 range] space

3

Value

difference between a and b

Functions

- angle_diff_rad(): angle difference in radians
- angle_diff_360(): angle difference in 360 degree space
- angle_diff_180(): angle difference in 180 degree space (e.g., line orientation)
- angle_diff_90(): angle difference in 90 degree space
- angle_diff_180_45(): angle difference in 180 degree space from -45 to 135
- angle_diff_360_90(): angle difference in 360 degree space from -90 to 270

Examples

```
angle_diff_180(5, 175)
angle_diff_360(5, 175)
angle_diff_90(5, 175)
angle_diff_rad(5, 175)
angle_diff_360(300, 0)
angle_diff_360_90(300, 0)
```

Bae_Luck_2018_data

Data from a motion estimation task

Description

A dataset with the motion estimation results from Bae & Luck (2018) available from https://osf.io/4m2kb/ (some variables are removed, see the link for the full dataset).

Usage

```
Bae_Luck_2018_data
```

4 circ_corr

Format

A data frame with 20480 rows and 8 variables:

subject_Num observer ID
trial_Num trial number

TargetDirection true motion direction

RespAngle reported motion direction

motionCoh motion coherence

Block block number
Session session number
err estimation error

Source

https://osf.io/4m2kb/download

References

Bae, G.-Y., & Luck, S. J. (2018). Decoding motion direction using the topography of sustained ERPs and alpha oscillations. NeuroImage, 184(August 2018), 242–255. doi:10.1016/J.NEUROIMAGE.2018.09.029

circ_corr

Circular correlation coefficient

Description

Computes a circular correlation coefficient as defined in Jammalamadaka & SenGupta (2001).

Usage

```
circ_corr(a, b, ill_defined = FALSE, mu = NULL, na.rm = FALSE)
```

Arguments

a first variableb second variable

ill_defined is one of the variables mean is not well-defined (e.g., it is uniformly distributed)?

mu fix the mean parameter of both vectors to a certain value

na.rm a logical value indicating whether NA values should be removed before the com-

putation proceeds

Value

correlation coefficient

circ_descr 5

References

Jammalamadaka, S. R., & SenGupta, A. (2001). Topics in Circular Statistics. WORLD SCIENTIFIC. doi:10.1142/4031

Examples

```
requireNamespace("mgcv")
data <- mgcv::rmvn(10000, c(0, 0), V = matrix(c(1, 0.5, 0.5, 1), ncol = 2))
circ_corr(data[, 1], data[, 2])</pre>
```

circ_descr

A set of descriptive statistics for circular data

Description

A set of descriptive statistics for circular data

Usage

```
circ_descr(x, w = NULL, d = NULL, na.rm = FALSE)
```

Arguments

x vector of angles

w weights for the values in the vector

d correction for the bias for data with known spacing

na.rm a logical value indicating whether NA values should be removed before the com-

putation proceeds

Value

a list with descriptive statistics

- mu mean
- sigma standard deviation
- skew_pewsey skewness as defined by Pewsey
- skew_fischer skewness as defined by Fischer
- rho mean resultant length
- skew_rel_to_zero skewness relative to zero

```
x <- c(rnorm(50, 0, 0.5), rnorm(20, 1, 0.5))
circ_descr(x)</pre>
```

6 circ_lin_corr

circ_lin_corr

Circular-linear correlation

Description

Implementation of the circular-linear correlation measure introduced by Mardia (1976) and Johnson and Wehrly (1977) as cited in Jammalamadaka & Sengupta (2001).

Usage

```
circ_lin_corr(circ_x, lin_x, na.rm = FALSE)
```

Arguments

circ_x	circular variable
lin_x	linear variable
na.rm	a logical value indicating whether NA values should be removed before the computation proceeds

Details

This measure is computed as

$$r^2 = (r_{xc}^2 + r_{xs}^2 - 2r_{xc}r_{xs}r_{cs})/(1 - r_{cs}^2)$$

where $r_{xc} = corr(x, cos(\alpha))$, $r_{xs} = corr(x, sin(\alpha))$, $r_{cs} = corr(cos(\alpha), sin(\alpha))$, and α and x are the circular and linear variables, respectively.

Value

circular-linear correlation measure

References

Jammalamadaka, S. R., & SenGupta, A. (2001). Topics in Circular Statistics. WORLD SCIENTIFIC. doi:10.1142/4031

```
x <- rnorm(50)
a <- as.vector(circular::rvonmises(50, 0, 5))
circ_lin_corr(x + a, x)</pre>
```

circ_loess 7

circ_loess	An implementation of circular-linear locally-weighted regress (LOESS)	ion
------------	---	-----

Description

Provides an locally-weighted average when the independent variable is circular and depended variable is linear. Mainly to use with ggplot2.

Usage

```
circ_loess(
  formula = NULL,
  data = NULL,
  angle = NULL,
  y = NULL,
  xseq = NULL,
  circ_space = NULL,
  span = 0.75,
  ...
)
```

Arguments

formula	the formula, e.g., $y \sim x$
data	data to use
angle	a vector of angles (not used if a formula is provided)
у	dependent variable vector (not used if a formula is provided)
xseq	a grid to compute predictions on (optional, the default is to use 500 points spanning the circle)
circ_space	circular space to use (90, 180, 360, or 2*pi)
span	a span to adjust the degree of smoothing
	other arguments (ignored)

Details

Weights for the regression are computed as

$$w = (1 - (d/d_{max})^3)^3$$

where d is the angular difference between the point at which the estimate is computed and the angles in the data, and d_{max} is the maximum possible distance. If span is above 1, all points are included and $d_{max} = circ_space/(4*span)$. Otherwise, a proportion α of the points included based on their distance to the point at which the estimate is computed and d_{max} is the corresponding maximal distance.

8 circ_mean_rad

Value

an object of circ_loess class with the following parameters:

- angle the angles in the data
- y the dependent variable vales in the data
- xseq the grid on which the loess values are estimated
- y_est the estimated loess values
- y_se standard errors
- w weights
- circ_space circular space used
- · span span used

See Also

```
stats::loess()
```

Examples

```
p <- ggplot(Pascucci_et_al_2019_data, aes(x = orientation, y = err)) +
    geom_point(alpha = 0.05) +
    labs(x = "Orientation, deg.", y = "Error, deg.")
p1 <- p + geom_smooth(method = "loess") + ggtitle("Standard LOESS")
p2 <- p + geom_smooth(method = "circ_loess", method.args = list(circ_space = 180, span = 0.5)) +
    ggtitle("Circular LOESS, span = 0.5")
p3 <- p + geom_smooth(method = "circ_loess", method.args = list(circ_space = 180, span = 0.2)) +
    ggtitle("Circular LOESS, span = 0.2")
(p1 + p2 + p3)</pre>
```

circ_mean_rad

Circular mean

Description

Circular mean

Usage

```
circ_mean_rad(x, na.rm = FALSE)
circ_mean_180(x, na.rm = FALSE)
circ_mean_360(x, na.rm = FALSE)
```

circ_sd_rad 9

Arguments

x vector of values

na.rm a logical value indicating whether NA values should be removed before the com-

putation proceeds

Value

mean of values in the vector

Functions

```
• circ_mean_rad(): circular mean in 2pi space
```

- circ_mean_180(): circular mean in 180° space (e.g., line orientation)
- circ_mean_360(): circular mean in 360° space

Examples

```
x <- runif(1000, -pi, pi)
mean(x)
circ_mean_rad(x)</pre>
```

circ_sd_rad

Circular standard deviation

Description

Circular standard deviation

Usage

```
circ_sd_rad(x, na.rm = FALSE)
circ_sd_360(x, na.rm = FALSE)
circ_sd_180(x, na.rm = FALSE)
```

Arguments

x vector of angles

na.rm a logical value indicating whether NA values should be removed before the com-

putation proceeds

Value

standard deviation of values in the vector

10 correct_angle_rad

Functions

- circ_sd_rad(): SD of angles in radians
- circ_sd_360(): SD of angles in 360 degree space
- circ_sd_180(): SD of angles in 180 degree space

Examples

```
circ_sd_rad(rnorm(50))
circ_sd_180(rnorm(50))
```

correct_angle_rad

Get angle value in [-pi, pi] space

Description

Get angle value in [-pi, pi] space

Usage

```
correct_angle_rad(x)
```

Arguments

Х

angle

Value

```
angle in [-pi, pi] space
```

```
correct_angle_rad(4 * pi)
```

pad_circ 11

pad_circ

Pad circular data on both ends

Description

Pad circular data on both ends

Usage

```
pad_circ(
  data,
  circ_var,
  circ_borders = c(-90, 90),
  circ_part = 1/6,
  verbose = FALSE
)
```

Arguments

```
data data.table to pad

circ_var circular variable

circ_borders range of the circular variable

circ_part padding proportion

verbose print extra info
```

Details

Pads the data by adding a part of the data (default: 1/6th) from one end to another end. Useful to roughly account for circularity when using non-circular methods.

Value

```
a padded data.table
```

```
\label{eq:dt-data} $$dt <- data.table(x = runif(1000, -90, 90), y = rnorm(1000))$ $$pad\_circ(dt, "x", verbose = TRUE)$
```

Pascucci_et_al_2019_data

Data from an orientation estimation task

Description

A dataset with the orientation estimation results from Experiment 2 in Pascucci et al. (2019) available from https://doi.org/10.5281/zenodo.2544946.

Usage

```
Pascucci_et_al_2019_data
```

Format

A data frame with 4400 rows and 5 variables:

observer observer IDorientation true orientationreported reported orientationrt response timeerr estimation error

Source

https://zenodo.org/record/2544946/files/Experiment2_rawdata.csv?download=1

References

Pascucci, D., Mancuso, G., Santandrea, E., Libera, C. D., Plomp, G., & Chelazzi, L. (2019). Laws of concatenated perception: Vision goes for novelty, decisions for perseverance. PLoS Biology, 17(3). doi:10.1371/journal.pbio.3000144

remove_cardinal_biases

Remove cardinal biases

Description

Remove cardinal biases

Usage

```
remove_cardinal_biases(
 err,
  Х,
  space = "180",
 bias_type = "fit",
 plots = "hide",
 poly_deg = 4,
 var_sigma = TRUE,
  var_sigma_poly_deg = 4,
  reassign_at_boundaries = TRUE,
  reassign\_range = 2,
 break_points = NULL,
  init_outliers = NULL,
 debug = FALSE,
 do_plots = NULL
)
```

Arguments err

a vector of errors, deviations of response from the true stimuli a vector of true stimuli in degrees (see space) circular space to use (a string: 180 or 360) space bias type to use (fit, card, obl, or custom, see details) bias_type plots a string hide, show, or return to hide, show, or return plots (default: hide) poly_deg degree of the fitted polynomials for each bin (default: 4) allow standard deviation (width) of the fitted response distribution to vary as a var_sigma function of distance to the nearest cardinal (default: True) var_sigma_poly_deg degree of the fitted polynomials for each bin for the first approximation for the response distribution to select the best fitting model (default: 4) reassign_at_boundaries select the bin for the observations at the boundaries between bins based on the best-fitting polynomial (default: True) reassign_range maximum distance to the boundary at which reassignment can occur (default: 2 degrees) can be used to assign custom break points instead of cardinal/oblique ones with break_points bias_type set to custom (default: NULL) a vector determining which errors are initially assumed to be outliers (default: init_outliers NULL) debug print some extra info (default: False) do_plots deprecated, use the parameter plots instead

Details

If the bias_type is set to fit, the function computes the cardinal biases in the following way:

- Create two sets of bins, splitting the stimuli vector into bins centered at cardinal and at oblique directions.
- 2. For each set of bins, fit a nth-degree polynomial for the responses in each bin, optionally allowing the distribution of responses to vary in width as a function of distance to the nearest cardinal (regardless of whether the bins are centered at the cardinal or at the oblique, the width of the response distribution usually increases as the distance to cardinals increase).
- 3. Choose the best-fitting model between the one using cardinal and the one using oblique bins.
- 4. Compute the residuals of the best-fitting model that's your bias-corrected error and the biases (see below).

The bias is computed by flipping the sign of errors when the average predicted error is negative, so, that, for example, if on average the responses are shifted clockwise relative to the true values, the trial-by-trial error would count as bias when it is also shifted clockwise.

If bias_type is set to obl or card, only one set of bins is used, centred at cardinal or oblique angles, respectively.

Value

If plots=='return', returns the three plots showing the biases (combined together with patchwork::wrap_plots()). Otherwise, returns a list with the following elements:

- is_outlier 0 for outliers (defined as ±3*pred_sigma for the model with varying sigma or as ±3*SD for the simple model)
- · pred predicted error
- be_c error corrected for biases (be_c = observed error pred)
- which_bin the numeric ID of the bin that the stimulus belong to
- bias the bias computed as described above
- bias_typ bias type (cardinal or oblique)
- pred_lin predicted error for a simple linear model for comparison
- pred_sigma predicted SD of the error distribution
- coef_sigma_int, coef_sigma_slope intercept and slope for the sigma prediction

References

- Chetverikov, A., & Jehee, J. F. M. (2023). Motion direction is represented as a bimodal probability distribution in the human visual cortex. Nature Communications, 14(7634). doi:10.1038/s4146702343251w
- van Bergen, R. S., Ma, W. J., Pratte, M. S., & Jehee, J. F. M. (2015). Sensory uncertainty decoded from visual cortex predicts behavior. Nature Neuroscience, 18(12), 1728–1730. doi:10.1038/nn.4150

Examples

```
# Data in orientation domain from Pascucci et al. (2019, PLOS Bio),
# https://doi.org/10.5281/zenodo.2544946
ex_data <- Pascucci_et_al_2019_data[observer == 4, ]</pre>
remove_cardinal_biases(ex_data$err, ex_data$orientation, plots = "show")
# Data in motion domain from Bae & Luck (2018, Neuroimage),
# https://osf.io/2h6w9/
ex_data_bae <- Bae_Luck_2018_data[subject_Num == unique(subject_Num)[5], ]</pre>
remove_cardinal_biases(ex_data_bae$err, ex_data_bae$TargetDirection,
 space = "360", plots = "show"
)
# Using a stricter initial outlier boundary
remove_cardinal_biases(ex_data_bae$err, ex_data_bae$TargetDirection,
 space = "360", plots = "show",
 init_outliers = abs(ex_data_bae$err) > 60
)
# We can also use just one bin by setting `bias_type` to custom
# and setting the `break_points` at the ends of the range for x
remove_cardinal_biases(ex_data_bae$err, ex_data_bae$TargetDirection,
 space = "360", bias_type = "custom",
 break_points = c(-180, 180), plots = "show",
 reassign_at_boundaries = FALSE, poly_deg = 8,
 init_outliers = abs(ex_data_bae$err) > 60
)
```

remove_cardinal_biases_discrete

Remove cardinal biases for data with orientation (color, motion, ...) set in discrete steps

Description

Remove cardinal biases for data with orientation (color, motion, ...) set in discrete steps

Usage

```
remove_cardinal_biases_discrete(err, x, space, init_outliers = NULL)
```

Arguments

```
err a vector of errors, deviations of response from the true stimuli x a vector of true stimuli in degrees (see space)
```

vm_kappa_to_circ_sd

```
space circular space to use (a string: 180 or 360)
```

init_outliers a vector determining which errors are initially assumed to be outliers (default:

NULL)

Value

returns a data.table with the following columns:

- is_outlier 0 for outliers (defined as ±3*predicted SD, where SD and mean are computed after excluding initially assumed outliers)
- be_c error corrected for biases (be_c = observed error pred)

vm_kappa_to_circ_sd

Conversion between the circular SD and kappa of von Mises

Description

Conversion between the circular SD and kappa of von Mises

Usage

```
vm_kappa_to_circ_sd(kappa)
vm_kappa_to_circ_sd_deg(kappa)
vm_circ_sd_to_kappa(sd)
vm_circ_sd_deg_to_kappa(sd_deg)
```

Arguments

kappa von Mises kappa parameter

sd circular SD of von Mises (radians)
sd_deg circular SD of von Mises (degrees)

Value

vm_kappa_to_circ_sd and vm_kappa_to_circ_sd_deg return circular SD (in radians or degrees, respectively) corresponding to a given kappa. vm_circ_sd_to_kappa and vm_circ_sd_deg_to_kappa return kappa corresponding to a given circular SD (in radians or degrees, respectively).

Functions

- vm_kappa_to_circ_sd_deg(): get circular SD (in degrees) from kappa
- vm_circ_sd_to_kappa(): get kappa from circular SD (in radians)
- vm_circ_sd_deg_to_kappa(): get kappa from circular SD (in degrees)

weighted_circ_mean 17

Examples

```
vm_kappa <- 5
vm_sd <- vm_kappa_to_circ_sd(vm_kappa)

vm_circ_sd_to_kappa(vm_sd)

x <- circular::rvonmises(10000, mu = circular::circular(0), kappa = vm_kappa)

sprintf("Expected SD: %.2f, actual SD: %.2f", vm_sd, circ_sd_rad(x))</pre>
```

weighted_circ_mean

Weighted circular parameters

Description

Weighted circular parameters

Usage

```
weighted_circ_mean(x, w, na.rm = FALSE)
weighted_circ_mean2(x, w, na.rm = FALSE)
weighted_circ_sd(x, w, na.rm = FALSE)
weighted_circ_rho(x, w, na.rm = FALSE)
```

Arguments

x vector of values (in radians)

w vector of weights

na.rm a logical value indicating whether NA values should be removed before the com-

putation proceeds

Value

weighted mean of values in the vector

Functions

- weighted_circ_mean(): weighted circular mean
- weighted_circ_mean2(): an alternative way to compute weighted circular mean (the results are the same)
- weighted_circ_sd(): weighted circular SD
- weighted_circ_rho(): weighted mean resultant length

18 weighted_sem

Examples

```
x <- rnorm(1000, 0, 0.5)
w <- runif(1000, 0, 1)
weighted.mean(x, w)
weighted_circ_mean(x, w)</pre>
```

weighted_sem

Weighted standard error of the mean (SEM_w)

Description

Computes the variance of a weighted mean following the definitions given by Kirchner (2006).

Usage

```
weighted_sem(x, w, na.rm = FALSE)
```

Arguments

x variable to compute the SEM for

w weights

na.rm should NAs be removed

Details

James Kirchner describes two different cases when the weighted variance is computed. The code here implements Case I where "one wants to give more weight to some points than to others, because they are considered to be more important" and "the weights differ but the uncertainties associated with the individual xi are assumed to be the same" (Kirchner, 2006, p. 1). The formula used is:

$$SEM_w = \sqrt{\left(\sum_{i=1}^{N} (w_i x_i^2) - \bar{x}^2\right) \frac{\sum_{i=1}^{N} w_i^2}{1 - \sum_{i=1}^{N} w_i^2}}$$

The expected error is within 5% of the bootstrapped SEM (at larger sample sizes).

Value

weighted standard error of the mean

References

- Kirchner, J. 2006. Data Analysis Toolkit #12: Weighted averages and their uncertainties. https://seismo.berkeley.edu/~kirchner/Toolkits/Toolkit_12.pdf. Retrieved on 04.07.2024.
- Bevington, P. R. 1969. Data Reduction and Error Analysis for the Physical Sciences. McGraw-Hill, 336 pp.

weighted_sem 19

```
set.seed(1)
n_obs <- 200
w <- runif(n_obs)
w <- w/sum(w)
x <- rnorm(n_obs, sd = 5)
weighted_sem(x, w)</pre>
```

Index

```
* datasets
    Bae_Luck_2018_data, 3
    Pascucci_et_al_2019_data, 12
angle_diff_180 (angle_diff_rad), 2
angle_diff_180_45 (angle_diff_rad), 2
angle_diff_360 (angle_diff_rad), 2
angle_diff_360_90 (angle_diff_rad), 2
angle_diff_90 (angle_diff_rad), 2
angle_diff_rad, 2
Bae_Luck_2018_data, 3
circ_corr, 4
circ_descr, 5
circ_lin_corr, 6
circ_loess, 7
circ_mean_180 (circ_mean_rad), 8
circ_mean_360 (circ_mean_rad), 8
circ_mean_rad, 8
circ_sd_180 (circ_sd_rad), 9
circ_sd_360 (circ_sd_rad), 9
circ_sd_rad, 9
correct_angle_rad, 10
pad_circ, 11
Pascucci_et_al_2019_data, 12
patchwork::wrap_plots(), 14
remove_cardinal_biases, 12
remove_cardinal_biases_discrete, 15
stats::loess(), 8
vm_circ_sd_deg_to_kappa
        (vm_kappa_to_circ_sd), 16
vm_circ_sd_to_kappa
        (vm_kappa_to_circ_sd), 16
vm_kappa_to_circ_sd, 16
vm_kappa_to_circ_sd_deg
        (vm_kappa_to_circ_sd), 16
```