EJERCICIO 6, CAPÍTULO 3

Sea \otimes la operación definida sobre los números enteros como $a \otimes b = 2.a.b$. Demostrar que $(\mathbb{Z}, +, \otimes)$ es un anillo.

Recordemos primero que un anillo es una terna ordenada (A,+, .), donde A es un conjunto y "+" y "." son dos operaciones binarias que cumplen:

- 1. (A,+) es un grupo conmutativo
- 2. La operación "." es una operación cerrada y asociativa.
- 3. La operación "." es distributiva con respecto a "+".

Para probar que $(\mathbb{Z},+,\otimes)$ es un anillo. Tendremos que ver entonces que:

1. El conjunto \mathbb{Z} de los números enteros con la operación binaria suma, que escribimos: $(\mathbb{Z},+)$ es un grupo conmutativo (está demostrado en el ejemplo 1.1 de la página 3, lo transcribimos).

La operación suma tiene en este conjunto las siguientes propiedades:

 Cerrada: para cualquier par de números enteros su suma da un número entero:

$$Si \ a \in \mathbb{Z} \ y \ b \in \mathbb{Z} \ entonces \ a+b \in \mathbb{Z}.$$

 Asociativa: para cualquier terna de números enteros el resultado de sumarlos da lo mismo asociando los dos primeros o los dos últimos:

Si
$$a \in \mathbb{Z}$$
 $y b \in \mathbb{Z}$ $y c \in \mathbb{Z}$ entonces $(a+b)+c=a+(b+c)$.

 Existencia de elemento neutro: ya que existe un único número tal que sumado a cualquier otro da como resultado el mismo número. El elemento neutro es el 0 pues existe el 0 en Z tal que:

Si
$$a \in \mathbb{Z}$$
 entonces $a+0=0+a=a$.

 Existencia de elemento opuesto: ya que para todo número entero existe otro número entero, único, que sumado a él da como resultado el elemento neutro:

Si
$$a \in \mathbb{Z}$$
 entonces existe - $a \in \mathbb{Z}$ tal que $a+(-a)=(-a)+a=0$.

Por estas propiedades de la suma en \mathbb{Z} , decimos que $(\mathbb{Z},+)$ tiene estructura de **grupo**.

Además, la operación suma cumple la propiedad:

• *Conmutativa*: para cualquier par de números enteros el resultado de sumarlos da lo mismo en cualquier orden:

Si
$$a \in \mathbb{Z}$$
 y $b \in \mathbb{Z}$ entonces $a+b=b+a$.

Por eso decimos que $(\mathbb{Z},+)$ tiene estructura de grupo conmutativo o abeliano.

- 2. La operación multiplicación o producto ⊗ en el conjunto de números enteros cumple las siguientes propiedades:
 - *Cerrada:* ya que para cualquier par de números enteros su producto ⊗ da un número entero.

$$Si \ a \in \mathbb{Z} \ y \ b \in \mathbb{Z} \ entonces \ a \otimes b = 2.a.b \in \mathbb{Z},$$

pues $2 \in \mathbb{Z}$ y el producto de enteros es una operación cerrada.

• Asociativa: el producto ⊗ es una operación asociativa ya que para cualquier terna de números enteros el resultado de multiplicarlos ⊗ da lo mismo asociando los dos primeros o los dos últimos:

Si
$$a \in \mathbb{Z}$$
 y $b \in \mathbb{Z}$ y $c \in \mathbb{Z}$ entonces $(a \otimes b) \otimes c = a \otimes (b \otimes c)$.

Veamos la demostración de la última igualdad, para ello calculamos ambos miembros por separado y veamos que dan lo mismo. Por un lado, tenemos que

$$(a \otimes b) \otimes c = (2 a.b) \otimes c = 2.(2.a.b).c = 4.a.b.c$$

La última igualdad se cumple porque el producto de números enteros es asociativo. Por otro lado,

$$a \otimes (b \otimes c) = a \otimes (2.b.c) = 2.a.(2.b.c) = 4.a.b.c,$$

donde la última igualdad también es verdadera debido a la conmutatividad del producto de números enteros. Como ambos miembros valen *4.a.b.c* entonces son iguales.

3. Distributiva del producto con respecto a la suma: ya que para cualquier terna de números enteros el resultado de multiplicar ⊗ uno de ellos por la suma de los otros dos da el mismo resultado que multiplicar ⊗ cada uno de ellos y después sumarlos:

Si
$$a \in \mathbb{Z}$$
 y $b \in \mathbb{Z}$ y $c \in \mathbb{Z}$ entonces $a \otimes (b+c) = a \otimes b+a \otimes c$.

Probemos esta última igualdad, para ello, como antes, calculamos cada miembro. El primero es

$$a \otimes (b+c) = 2.a. (b+c) = 2.a.b + 2.a.c$$

pues el producto de números enteros es distributivo en la suma. Calculando el segundo miembro

$$a \otimes b + a \otimes c = 2.a.b + 2.a.c.$$

Lo que nos muestra que el producto \otimes es distributivo en la suma de números enteros. Decimos entonces que $(\mathbb{Z}, +, \otimes)$, por cumplir todas las propiedades antes mencionadas tiene estructura de **Anillo.**