PREDICTING BLOOD PRESSURE WITH RNNS APS360 Group 12

Sophia Tao #1008048569, Alex Liu #1007030008, Haroon Akram #1007001968, Lisa Tang #1007711843

TABLE OF CONTENTS

01 Problem

02

Data Processing

03 Model

04

Results

05 Discussion

Problem Statement

Why is this important?

Blood pressure is an essential indicator of cardiovascular health

Blood pressure cuffs:

• Fails to capture continuous fluctuation

Goal: Predict blood pressure "cuffless" with Deep Learning

Definitions

- Measure of blood volume changes in tissues
- Collected with a sensor that detects variations in by blood flow.

- Electrical activity of the heart over time
- Collected by placing electrodes on the skin

Blood Pressure (BP)

- The force exerted by circulating blood on the walls of the arteries
- Collected using an inflatable cuff
- Deep learning model

What data is used?

Train/Validation: UCI Machine Learning Repository "Cuff-Less Blood Pressure Estimation"

Total of 3000 subjects

Dataset 2: MIMIC-IV Waveform Database

More than 10000 records

It's extremely difficult to collect those data ourselves!

Preprocessing data

How?

- Clean up
- Normalize
- Time Series Structure

Limitations...

- All data is collected in ICU
- Computationally inefficient

Model

Model Design

- Time-series data -> RNN
- Long Short-Term Memory (LSTM) model
- Learns long-term dependencies

Architecture

Final Model Hyperparameters

- Random search hyperparameter tuning.
- Less data caused overfitting, more data caused noisy predictions.
- Utilized a Savitzky-Golay low-pass filter to "smooth" our predictions.

Parameter	Description	Value
input_size	The number of features expected in our input	2
hidden_size	The number of features in the model's hidden state	128
num_layers	The number of recurrent layers. Essentially, the number of LSTMs we have stacked on each other.	3
batch_first	Whether the input and output tensors are provided by us	True

Results

Validation and Training Results

Demo

Qualitative Results

Quantitative Results

	Mean Squared Error (MSE)
Training	0.0185
Validation	0.0234
Testing	0.0629

Discussion

Key Takeaways

- Trade off between overfitting and noisy prediction
- Accuracy at peaks and troughs are most important
- Explore transformer model as an alternative
- Ethical considerations

GitHub Repository Link: https://github.com/eliza bethtang/APS360Project

References

- InformedHealth.org, "What is blood pressure and how is it measured?," 23-May-2019. [Online]. Available: https://www.ncbi.nlm.nih.gov/books/NBK279251/. [Accessed: 15-Jun-2023]
- M. Kachuee, M. Kiani, H. Mohammadzade, and M. Shabany, "Cuff-Less Blood Pressure Estimation," UCI Machine Learning Repository, 2015. [Online]. Available: https://doi.org/10.24432/C5B602.
- B. Moody, S. Hao, B. Gow, T. Pollard, W. Zong, and R. Mark, "MIMIC-IV Waveform Database (version 0.1.0)," PhysioNet, 2022. [Online]. Available: https://doi.org/10.13026/9mw-f949.

