Κεφάλαιο 5

Μέθοδοι Πρόγνωσης και Πρόβλεψης

Ι. Βλαχάβας, καθηγητήςΤμήμα Πληροφορικής, ΑΠΘ

Forecasting and Prediction¹

Πρόγνωση και Πρόβλεψη

*	Prediction (πρόβλεψη) is a general term, which includes Forecasting.
	 Αναφέρεται στην πρόβλεψη μιας τιμής ή τον χαρακτηρισμό ενός γεγονότος που συμβαίνει τώρα
	🔲 Π.χ. η αναγνώριση μιας τραπεζικής συναλλαγής ως νόμιμης ή όχι (fraud detection)
	 Βασίζεται σε δεδομένα του παρελθόντος, στατικά ή δυναμικά (χρονοσειρές)
*	Forecasting ($\pi\rho\delta\gamma\nu\omega\sigma\eta$) is the process of making predictions <u>about the future</u> based on past and present data
	 Αργότερα αυτές οι προβλέψεις συγκρίνονται με το τι πραγματικά συνέβη
	 Για παράδειγμα μια εταιρεία προβλέπει τα κέρδη της επόμενης χρονιάς και στο τέλος τα συγκρίνει με τις πραγματικές τιμές.
	□ Βασίζεται σε δυναμικά δεδομένα που αναπαριστώνται ως χρονοσειρές (Timeseries)
	They are nevertily to all for meany linds of decision modeling

They are powerful tools for many kinds of decision making.

Risk and uncertainty are central to forecasting and prediction

 \Box it is generally considered a good practice to indicate the degree of uncertainty attaching to forecasts.

☐ In any case, the data must be up to date in order for the forecast/prediction to be as accurate as possible.

Rob J Hyndman and George Athanasopoulos, Monash University, Australia

¹ Forecasting: Principles and Practice (3rd ed): Link

Τύποι Δεδομένων

- Static data does not mention the time being recorded. It is a fixed data set.
 - π.χ. η πιστοληπτική ικανότητα πελατών τράπεζας, οι τιμές ακινήτων μιας περιοχής, η πιθανότητα εμφάνισης μιας ασθένειας, fraud detection, κλπ
 - Usually, these tasks are mentioned as Prediction (πρόβλεψη)
- Dynamic data may change after it is recorded and has to be continually updated.
 - 🔲 π.χ. η τιμή μιας μετοχής, η ισοτιμία νομισμάτων, οι ημερήσιες πωλήσεις ενός αγαθού, κλπ
 - Usually, these tasks are mentioned as Forecasting (πρόγνωση) and the data are represented as Timeseries (χρονοσειρές)

Πρόβλεψη

1

Applications

- Forecasting has applications in a wide range of fields where estimates of future conditions are useful.
 - Supply chain management and customer demand planning
 - ✓ To ensure that the right product is at the right place at the right time.
 - ✓ Accurate forecasting will help retailers reduce excess inventory and thus increase profit margin.
 - Economic forecasting
 - ☐ Earthquake forecasting
 - ☐ Energy forecasting for renewable power integration
 - Land use forecasting
 - Player and team forecasting performance in sports
 - Product forecasting (its success)
 - Political forecasting
 - Sales forecasting
 - Weather forecasting, flood forecasting and meteorology

Χρονοσειρές (Time Series)

- 🏖 Τι είναι χρονοσειρά;
 - Το σύνολο των δεδομένων, τα οποία συλλέγονται διαχρονικά και εκφράζουν την εξέλιξη των τιμών μιας μεταβλητής κατά τη διάρκεια ίσων διαδοχικών χρονικών περιόδων
 - Μια χρονοσειρά αποτελείται από ένα σύνολο παρατηρήσεων μιας μεταβλητής, οι τιμές της οποίας είναι ιεραρχημένες με βάση τη χρονική περίοδο στην οποία αναφέρονται, π.χ. έτος, τρίμηνο, μήνας κ.α.
 - □ Παράδειγμα: μεταβολή ισοτιμίας USD/EUR τα τελευταία έτη

- <u>Κυκλικότητα (cyclicality)</u>: Ανεβοκατεβάσματα τιμών σε συγκεκριμένα χρονικά διαστήματα **χωρίς** σταθερή περιοδικότητα μεταξύ των εναλλαγών (π.χ. εναλλαγές μεταξύ υψηλών/χαμηλών τιμών αγοράς στο χρηματιστήριο).
 - ✓ Δεν εξαρτώνται (μόνο) από το χρόνο, αλλά και από άλλους παράγοντες
- Τυχαιότητα/μη κανονικότητα (irregularity): Απρόβλεπτες αυξομειώσεις των τιμών της χρονοσειράς (π.χ. θόρυβος)

Ανάλυση Χρονοσειρών (συνεχ.)

 \bullet Συνήθως μια χρονοσειρά X_t περιγράφεται ως εξής:

$$X_t = T_t + S_t + R_t$$

όπου Τ: τάση, S: εποχικότητα, R: τυχαιότητα, t: χρονική στιγμή

- ✓ Αν ξέρουμε τις 3 αυτές συνιστώσες, μπορούμε να μοντελοποιήσουμε τη χρονοσειρά!
- 🌣 Εύρεση *τάσης* χρονοσειράς:
 - Μέθοδος διαφορών (differencing). Αφαίρεση προηγούμενης τιμής μεταβλητής από την επόμενη
 - □ Γραμμική/πολυωνυμική παρεμβολή (linear/nonlinear regression)
- ❖ Εύρεση *εποχικότητας* χρονοσειράς:
 - Μέθοδος διαφορών. Αφαίρεση των τιμών μιας μεταβλητής μεταξύ σταθερών χρονικών διαστημάτων
 - ✓ π.χ. αφαίρεση μέσης μηνιαίας θερμοκρασίας για τον κάθε μήνα μέσα στα έτη και παρατήρηση αν η διαφορά είναι κοντά στο 0
 - □ Οπτικοποίηση Περιοδογράμματος (periodogram)
 - ✓ Εφαρμογή Διακριτού Μετασχηματισμού Fourier (Discrete Fourier Transform DFT) στη συνάρτηση αυτοσυνδιακύμανσης (Autocovariance Function ACF) της χρονοσειράς
 - ✓ Μόνο αφού έχει αφαιρεθεί η τάση!

Ανάλυση Χρονοσειρών (συνεχ.)

- Μόλις βρεθεί η τάση και η εποχικότητα, μπορούν να αφαιρεθούν για την εκτίμηση της τυχαιότητας με στατιστικές μεθόδους
 - Η αφαίρεση αυτών των συνιστωσών μετατρέπει τη χρονοσειρά από μη-στάσιμη (non-stationary) σε στάσιμη (stationary)²
 - A time series has stationarity when its statistical properties will not change with time thus they will have constant mean, variance, and covariance.
 - ✓ A time series has stationarity when the observations are not dependent on the time.
 - Cyclic behavior and white noise in time series are stationary
 - ✓ The cyclic behavior of time series will be stationary because the cycles are not of a fixed length, so before we observe the series we cannot be sure where the peaks and troughs of the cycles will be.
 - Non Stationary time series will have nonconstant mean, variance, or covariance.

from statsmodels.tsa.stattools import adfuller
result = adfuller(series, autolag='AIC')
print(f'ADF Statistic: {result[0]}')
print(f'n_lags: {result[1]}')
print(f'p-value: {result[1]}')

Time Series with

constant mean constant variance constant covariance

Πρόβλεψη

² What is Stationarity in Time Series

Ι. Βλαχάβας Τμήμα Πληροφορικής ΑΠΘ for key, value in result[4].items(): print('Critial Values:') print(f' {key}, {value}') p-value > 0.05: The data is non-stationary. p-value <= 0.05: The data is stationary.

Πρόβλεψη

10

Μοντελοποίηση χρονοσειράς

- \Box AutoRegressive (AR) model τάξης p
 - ✓ The autoregressive model specifies that the output variable depends linearly on its own previous values and on a stochastic term (an imperfectly predictable term)
 - ✓ Thus the model is in the form of a stochastic difference equation
 - ✓ [Μοντελοποίηση x_t ως γραμμικά εξαρτώμενη από όλες τις τιμές της μεταβλητής μέχρι **p** χρονικές στιγμές πίσω] + [θόρυβος 3 (υπόθεση κανονικής κατανομής)]
 - $\checkmark x_t = w_t + \varphi_1 x_{t-1} + \varphi_2 x_{t-2} + \dots + \varphi_p x_{t-p}$ $(\varphi_i: βάρη, w_t: θόρυβος τη χρονική στιγμή t)$
- \square Moving Average (MA) model τάξης q
 - ✓ The moving-average model specifies that the output variable is cross-correlated with <u>a non-identical to itself</u> random-variable.
 - ✓ [Μοντελοποίηση τιμής x_t ως γραμμικά εξαρτώμενη από όλες τις τιμές θορύβου μέχρι **q** χρονικές στιγμές πίσω]
 - $\checkmark x_t = w_t + \theta_1 w_{t-1} + \theta_2 w_{t-2} + \ldots + \theta_q w_{t-q}$ $(\theta_i: βάρη, w_t: θόρυβος τη χρονική στιγμή t)$
- AutoRegressive Moving Average (ARMA) model
 - \checkmark Given a time series of data x_t , the ARMA model is a tool for understanding and, perhaps, predicting future values in this series.
 - The AR part involves regressing the variable on its own lagged (i.e., past) values.
 - The MA part involves modeling the error term as a linear combination of error terms occurring contemporaneously and at various times in the past.

³ white noise

Βλαχάβα	Τμήμα Πληροφορικής ΑΠΘ		
	√ Συνδυασμός μοντέλων AR και MA		
	\checkmark Ένα μοντέλο ARMA(p,q) ορίζεται ως εξής:		
	$x_t = w_t + \varphi_1 x_{t-1} + \varphi_2 x_{t-2} + \ldots + \varphi_p x_{t-p} + \theta_1 w_{t-1} + \theta_2 w_{t-2} + \ldots + \theta_q w_{t-q}$		
	AutoRegressive Integrated Moving Average (<u>ARIMA</u>) model		
	√ Γενίκευση του μοντέλου ARMA για <u>μη-στάσιμες</u> χρονοσειρές με τάση		
	 ✓ Ένα μοντέλο ΑRIMA(p,d,q) επεξεργάζεται τη χρονοσειρά με τη μέθοδο διαφορών d φορές και τροφοδοτεί ένα μοντέλο ARMA(p,q) 		
	 ✓ Το αποτέλεσμα του μοντέλου ακολουθεί την αντίστροφή διαδικασία για να μεταπέσει στην αρχική μορφή της χρονοσειράς (πριν την επεξεργασία της) 		
	και διάφορα άλλα μοντέλα, όπως SARIMA (seasonal-ARIMA) κα GARCH (κυρίως για		
	χρηματοοικονομικά δεδομένα)		
• Αξιολόγηση μοντέλων:			
	Akaike Information Criterion (AIC)		
	✓ Given a collection of models for the data, AIC estimates the quality of each model, relative to each of the other models. Thus, AIC provides a means for model selection.		
	Bayesian Information Criterion (BIC)		
	✓ Is a criterion for model selection among a finite set of models; models with lower BIC are generally preferred.		
	✓ It is closely related to the Akaike information criterion (AIC)		
	✓ Both BIC and AIC attempt to resolve this problem by introducing a penalty term for the number of parameters in the model		

Πρόβλεψη

Η μηχανική μάθηση σε σχέση με τη στατιστική

- 🍄 Η Μηχανική Μάθηση:
 - Δεν απαιτεί πρότερη γνώση για την πιθανή υποκείμενη σχέση μεταξύ των μεταβλητών.
 - Το μόνο που χρειάζεται είναι να εισαχθούν όλα τα δεδομένα στον αλγόριθμο ο οποίος τα επεξεργάζεται ανακαλύπτοντας μοντέλα/πρότυπα που μπορεί να χρησιμοποιηθούν για προβλέψεις σε μελλοντικά δεδομένα.
- 🌣 Η στατιστική
 - Πρέπει να γνωρίζει επακριβώς τι αναζητείται και να γίνει η επιλογή των κατάλληλων παραμέτρων που θα βοηθήσουν σε αυτό.
 - Συνήθως εφαρμόζεται σε δεδομένα λίγων διαστάσεων

Γενική μοντελοποίηση πρόβλεψης χρονοσειρών

- Για την πρόβλεψη χρονοσειράς χρησιμοποιούνται κυρίως:
 - Ιστορικές τιμές της ίδιας χρονοσειράς
 - Γνωστές μελλοντικές τιμές άλλων χαρακτηριστικών που επηρεάζουν την χρονοσειρά.
- 🗫 Παράδειγμα από την περιοχή πρόβλεψης πωλήσεων
 - □ Sales(t+1): Η άγνωστη μεταβλητή στόχος που θέλουμε να προβλέψουμε
 - \square Sales($t' \le t$): Ιστορικές τιμές πωλήσεων, γνωστές τη χρονική στιγμή t
 - \Box Promotions(t+1): Μελλοντική πληροφορία που όμως είναι γνωστή τη χρονική στιγμή t
 - F: Το μοντέλο πρόβλεψης
 - \Box Sales(t+1) = F(Sales (t' ≤ t), Promotions(t+1))

Πρόβλεψη με μεθόδους Μηχανικής Μάθησης

- ❖ Οι ίδιοι αλγόριθμοι μπορούν να εφαρμοστούν και στα 2 είδη δεδομένων (static, dynamic)
 - Για την εφαρμογή των κλασσικών αλγορίθμων Μηχανικής Μάθησης σε δυναμικά δεδομένα (χρονοσειρές), θα πρέπει τα δεδομένα να μετατραπούν σε στατικά (μη χρονικά) διανύσματα.
 - Συνήθεις αλγόριθμοι: Linear Regression, Decision Tree, Random Forest, Gradient Boost, Support Vector Machine.
- Τα αναδρομικά νευρωνικά δίκτυα (RNN) εφαρμόζονται μόνο σε δεδομένα χρονοσειρών και δεν απαιτούν κάποιο είδος μετατροπής τους
 - Προηγμένα αναδρομικά νευρωνικά δίκτυα: Long Short-Term Memory (LSTM), Gated Recurrent Unit
 (GRU)

Πρόβλεψη 15

Πρόβλεψη Χρονοσειρών με Μηχανική Μάθηση

- Η Μηχανική Μάθηση εφαρμόζεται στην ανάλυση χρονοσειρών συνήθως για προβλήματα πρόβλεψης (forecasting), anomaly detection, predictive maintenance, κ.α.
- Τεχνικές εφαρμογής κλασσικής Μηχανικής Μάθησης σε χρονοσειρές
 - «Απαλοιφή» της έννοιας του χρόνου με κυλιόμενο παράθυρο, δηλ. μετατροπή της χρονοσειράς σε στατικό σύνολο δεδομένων με χαρακτηριστικά.
 - Δημιουργία μοντέλου για πρόβλεψη της χρονοσειράς (Υ1, Υ2, ..., Υ6).

Input	Output
lagged (i.e., prior) values	
Y1, Y2	Y3
Y2, Y3	Y4
Y3, Y4	Y5
Y4, Y5	Y6

- ✓ Τα χαρακτηριστικά μπορεί να είναι χρονικά (π.χ. ημέρα, μήνας, κλπ.) ή περιγραφικά μιας περιόδου (π.χ. εάν υπήρχε έλλειψη προϊόντος τις προηγούμενες 7 μέρες)
- ✓ Επιλογή χαρακτηριστικών
- ✓ Εφαρμογή παραδοσιακών τεχνικών Μηχανικής Μάθησης στη συνέχεια για τους σκοπούς μας

Ομαδοποίηση

- Static Data
 - Οι περισσότεροι αλγόριθμοι ομαδοποίησης χρησιμοποιούν συνάρτηση απόστασης
 - 🗸 k-Means με ευκλείδεια απόσταση ή απόσταση Manhattan
 - Ιεραρχικοί αλγόριθμοι ομαδοποίησης με ευκλείδεια απόσταση ή απόσταση Manhattan
 - Αλγόριθμοι ομαδοποίησης βασισμένοι στην πυκνότητα (dbscan)
- Timeseries data
 - Μπορούν να εφαρμοστούν οι γνωστοί αλγόριθμοι ομαδοποίησης
 - ✓ k-Means ή Ιεραρχικοί αλγόριθμοι σε συνδυασμό με DTW.
 - Οι κλασσικές μετρικές ομοιότητας δε λαμβάνουν υπόψιν τις χρονικές μετατοπίσεις (shifts) μεταξύ των χρονοσειρών
 - Μέθοδος υπολογισμού ομοιότητας: Dynamic Time Warping (DTW)
 - ✓ Υπολογισμός ομοιότητας μεταξύ χρονοσειρών
 - ✓ DTW has been applied to temporal sequences of video, audio, and graphics data
 - ✓ Any data that can be turned into a one-dimensional sequence can be analyzed with DTW
 - ✓ Κύριο χαρακτηριστικό: μέθοδος αναλλοίωτη ως προς τη μετατόπιση (shift invariant)

...the end

Questions?

