Résoudre la loi Entrée – Sortie du transmetteur d'un système

Chap *** - Résolution d'une loi ES

Sciences Industrielles de l'Ingénieur

TD 01

Assistance pour le maniement de charges dans l'indus-

Concours Centrale Supelec TSI 2017

- Res2.C12 : loi entrée sortie géométrique;
 Res2.C12.SF1 : déterminer la loi entrée sortie géométrique d'une chaîne cinématique;
- Res2.C15 : loi entrée sortie cinématique;
- Res2.C15.SF1 : déterminer les relations de fermeture de la chaîne cinématique.

Mise en situation - Assurer le mouvement vertical

Objectif Proposer un modèle de connaissance des éléments réalisant l'exigence fonctionnelle « assurer le mouvement vertical » puis valider les performances attendues listées par le cahier des charges.

Élaboration du modèle géométrique direct et du modèle articulaire inverse

Objectif Élaborer la commande du moteur pilotant le genou à partir d'un mouvement défini dans l'espace opérationnel puis converti dans l'espace articulaire.

Question 1 Déterminer littéralement les coordonnées opérationnelles l_4 et h(t) en fonction des coordonnées articulaires θ_{10} , θ_{21} et des paramètres dimensionnels L et l_1 .

Correction On a $\overrightarrow{AO_1} + \overrightarrow{O_1O_2} + \overrightarrow{O_2O_0} + \overrightarrow{O_0A} = \overrightarrow{0}$ soit $\overrightarrow{Ly_1} + \overrightarrow{l_1} \overrightarrow{y_2} - h(t) \overrightarrow{z_0} + \overrightarrow{l_4} \overrightarrow{y_0} = \overrightarrow{0}$. En projetant sur $\overrightarrow{y_0}$ et $\overrightarrow{z_0}$ on a :

$$\begin{cases} L\cos\theta_{10} + l_1\cos(\theta_{10} + \theta_{21}) + l_4 = 0 \\ L\sin\theta_{10} + l_1\sin(\theta_{10} + \theta_{21}) - h(t) = 0 \end{cases}$$

En projetant sur $\overrightarrow{y_1}$ et $\overrightarrow{z_1}$ on a:

$$\begin{cases} L + l_1 \cos \theta_{21} - h(t) \sin \theta_{10} + l_4 \cos \theta_{10} = 0 \\ l_1 \sin \theta_{21} - h(t) \cos \theta_{10} - l_4 \sin \theta_{10} = 0 \end{cases}$$

Question 2 Déterminer le modèle articulaire inverse θ_{10} et θ_{21} en fonction de l_1 , l_4 , L et h(t).

Correction Pour exprimer θ_{10} , on peut utiliser le premier système d'équation :

$$\begin{cases} L\cos\theta_{10} + l_4 = -l_1\cos(\theta_{10} + \theta_{21}) \\ L\sin\theta_{10} - h(t) = -l_1\sin(\theta_{10} + \theta_{21}) \end{cases}$$

En élevant les expressions au carré, on a alors : $l_1^2 = (L\cos\theta_{10} + l_4)^2 + (L\sin\theta_{10} - h(t))^2 \iff l_1^2 = L^2 + l_4^2 + h(t)^2 + (L\sin\theta_{10} - h(t))^2 \iff l_1^2 = L^2 + l_4^2 + h(t)^2 + (L\sin\theta_{10} - h(t))^2 \iff l_1^2 = L^2 + l_4^2 + h(t)^2 + (L\sin\theta_{10} - h(t))^2 \iff l_1^2 = L^2 + l_4^2 + h(t)^2 + (L\sin\theta_{10} - h(t))^2 \iff l_1^2 = L^2 + l_4^2 + h(t)^2 + (L\sin\theta_{10} - h(t))^2 \iff l_1^2 = L^2 + l_4^2 + h(t)^2 + (L\sin\theta_{10} - h(t))^2 + (L\cos\theta_{10} - h(t))^2 + (L\sin\theta_{10} - h(t))^2 + (L\cos\theta_{10} - h(t))^2$

$$2Ll_4\cos\theta_{10} - 2Lh(t)\sin\theta_{10}$$

$$\Leftrightarrow \frac{l_1^2 - L^2 - l_4^2 - h(t)^2}{2L} = l_4\cos\theta_{10} - h(t)\sin\theta_{10}$$
 En utilisant l'indication, on a :

$$\frac{l_4}{\sqrt{l_4^2 + h(t)^2}} \cos \theta_{10} + \frac{-h(t)}{\sqrt{l_4^2 + h(t)^2}} \sin \theta_{10} = \frac{l_1^2 - L^2 - l_4^2 - h(t)^2}{2L\sqrt{l_4^2 + h(t)^2}}$$

En conséquence, on pose $\cos \varphi = \frac{l_4}{\sqrt{l_4^2 + h(t)^2}}$ et $\sin \varphi = \frac{-h(t)}{\sqrt{l_4^2 + h(t)^2}}$. En conséquences $\tan \varphi = \frac{-h(t)}{l_4}$.

Xavier Pessoles 1 Cvcle xx - xx

Par suite,
$$\cos\left(\theta_{10} - \varphi\right) = \frac{l_1^2 - L^2 - l_4^2 - h(t)^2}{2L\sqrt{l_4^2 + h(t)^2}}$$
. On a donc $\theta_{10} = \arccos\left(\frac{l_1^2 - L^2 - l_4^2 - h(t)^2}{2L\sqrt{l_4^2 + h(t)^2}}\right) + \varphi$. Au final,
$$\theta_{10} = \arccos\left(\frac{l_1^2 - L^2 - l_4^2 - h(t)^2}{2L\sqrt{l_4^2 + h(t)^2}}\right) + \arctan\left(\frac{-h(t)}{l_4}\right).$$

Pour exprimer θ_{21} on réutilise le premier système d'équations : $\begin{cases} -l_4 = l_1 \cos(\theta_{10} + \theta_{21}) + L \cos\theta_{10} \\ h(t) = l_1 \sin(\theta_{10} + \theta_{21}) + L \sin\theta_{10} \end{cases}$

On a alors $l_4^2 + h(t)^2 = L^2 + l_1^2 + 2l_1L(\cos\theta_{10}\cos(\theta_{10} + \theta_{21}) + \sin(\theta_{10} + \theta_{21})\sin\theta_{10})$. En conséquences, $\frac{l_4^2 + h(t)^2 - L^2 + l_1^2}{2l_1L} = \frac{l_4^2 + h(t)^2 - L^2 + l_1^2}{2l_1L}$ $\cos\theta_{10}\cos(\theta_{10}+\theta_{21})+\sin(\theta_{10}+\theta_{21})\sin\theta_{10}=\cos(\theta_{10}+\theta_{21}-\theta_{10}). \text{ D'où } \theta_{21}=\arccos\left(\frac{l_4^2+h(t)^2-L^2-l_1^2}{2l_1l_2}\right).$

Élaboration du modèle cinématique

Objectif En vue de dimensionner le moteur du genou, déterminer la vitesse articulaire en fonction de la vitesse opérationnelle.

Question 3 Déterminer à partir du modèle articulaire inverse la vitesse angulaire θ_{21} en fonction de h(t), $\dot{h}(t)$, l_1 , L_2 $et \sin \theta_{21}$.

Correction On a vu que
$$\cos\theta_{21}=\frac{l_4^2+h(t)^2-L^2-l_1^2}{2l_1L}$$
. En dérivant, on a donc $-\dot{\theta}_{21}\sin\theta_{21}=\frac{2\dot{h}(t)h(t)}{2l_1L}$. Au final, $\dot{\theta}_{21}=-\frac{\dot{h}(t)h(t)}{l_1L\sin\theta_{21}}$.

Question 4 Déterminer la valeur maximale de la vitesse angulaire $\dot{\theta}_{21}$ et rad s^{-1} puis celle de la fréquence de rotation d'un moteur de genou en tr min^{-1} .

Correction On a : $\dot{\theta}_{21} = -\frac{0,422 \times 0,829}{0,431 \times 0,518 \sin(55,9)} \simeq -1.89 \, \text{rad s}^{-1}$. Soit une fréquence de rotation du moteur de $2168 \, tr \, min^{-1}$.