Úloha 2: Časované automaty

1. příklad

- Automat \mathcal{A}_1 obsahuje zeno běh. Např. běh $\rho = (A; x = 0, y = 0) \xrightarrow{\mathbf{a}_1} (B; x = 0, y = 0) \xrightarrow{\mathbf{a}_2} (C; x = 0, y = 0) \xrightarrow{\mathbf{a}_4} (A; x = 0, y = 0) \xrightarrow{\mathbf{a}_1} \dots$ je zeno běh, protože je to *časově konvergentní nekonečný běh* ($Exectime(\rho) = 0$), který obsahuje *nekonečné množství diskrétních kroků*. Neplatí zde také podmínka neexistence zeno běhu, protože pro řídící cyklus $A \xrightarrow{g_1, \mathbf{a}_1, R_1} B \xrightarrow{g_2, \mathbf{a}_2, R_2} C \xrightarrow{g_4, \mathbf{a}_4, R_4} A$ neexistují hodiny, pro které by alespoň jeden krok cyklu vyžadoval běh času. Jinými slovy, $\nexists x \in \mathcal{C}: \exists i \in \{1, 2, 4\}: \exists c \in \mathbb{N}^+: \nu(x) < c \Rightarrow \nu(x) \not\models g_i.$
- Automat A_1 obsahuje *timelock*. Běh vedoucí do timelocku je např. následující:

 $(A; x = 0, y = 0) \xrightarrow{10} (A; x = 10, y = 10)$. Konfigurace c = (A; x = 10, y = 10) je timelock, protože $Paths_{div}(c) = \emptyset$. Z této konfigurace už není možné přejít do žádného jiného místa diskrétním krokem, protože přechod do místa B je podmíněn predikátem $x \le 1$ a přechod do místa C je podmíněn predikátem 1 < x < 10. Tyto nejsou splněny, protože x = 10. Je zde pouze možné provádět nekonečné množství časových kroků, které ale vždy konvergují k číslu 15, protože je v místě A $invariant \ y < 15$. Žádný časově divergentní běh tedy z této konfigurace není možné provést.

2. příklad

Dále v tomto příkladu budou uvažovány časované automaty definovány následovně:

 $\mathcal{A} = (Loc, Act, \mathcal{C}, \hookrightarrow, Loc_0, Inv, AP, L, Loc_{acc})$, kde:

- Loc je konečná množina míst,
- Act je konečná množina událostí,
- C je konečná množina hodin,
- $\hookrightarrow \subseteq Loc \times CC(\mathcal{C}) \times Act \times 2^{\mathcal{C}} \times Loc$ je konečná množina přechodů,
 - $CC(\mathcal{C}) = \{ \bigwedge G \mid G \subseteq ACC(\mathcal{C}) \}$ je množina podmínek,
 - $\ ACC(\mathcal{C}) = \{x \bowtie c \mid x \in \mathcal{C} \land c \in \mathbb{N}\} \text{ je množina } \textit{atomických podmínek}, \text{ kde } \bowtie \in \{<, \leq, =, \geq, >\},$
- $Loc_0 \subseteq Loc$ je množina počátečních míst,
- $Inv \subseteq Loc \times CC(\mathcal{C})$ je konečná množina invariantů,
- AP je konečná množina atomických výroků,
- $L \subseteq Loc \times 2^{AP}$ je ohodnocení míst,
- $Loc_{acc} \subseteq Loc$ je množina koncových míst.

Dále jsou také uvažovány jazyky časovaných automatů $\mathcal{L}(\mathcal{A}) = \{w \mid w \text{ je přijato automatem } \mathcal{A}\}$ nad konečnými slovy $w \in (Act \times \mathbb{R}^+)^*$.

Důkaz uzavřenosti časovaných automatů vůči operaci sjednocení:

• Mějme dva jazyky časovaných automatů L_{A_1} a L_{A_2} . Dokažme, že jejich sjednocení $L_{A_1} \cup L_{A_2}$ je opět jazyk časovaných automatů.

- Protože $L_{\mathcal{A}_1}$ a $L_{\mathcal{A}_2}$ jsou jazyky časovaných automatů, tak existují časované automaty \mathcal{A}_1 a \mathcal{A}_2 , které přijímají jazyky $L_{\mathcal{A}_1}$ a $L_{\mathcal{A}_2}$, tj. $L(\mathcal{A}_1) = L_{\mathcal{A}_1}$ a $L(\mathcal{A}_2) = L_{\mathcal{A}_2}$.
- Sestrojením časovaného automatu \mathcal{A}_{\cup} , který bude přijímat jazyk $L_{\mathcal{A}_1} \cup L_{\mathcal{A}_2}$, tj. $L(\mathcal{A}_{\cup}) = L(\mathcal{A}_1) \cup L(\mathcal{A}_2)$, dokážeme, že jazyk $L_{\mathcal{A}_1} \cup L_{\mathcal{A}_2}$ je jazyk časovaných automatů a že operace sjednocení je uzavřena na časovaných automatech.

Algoritmus sestrojení časovaného automatu A_{\cup} :

Vstup: Časovaný automat $\mathcal{A}_1 = (Loc_1, Act_1, \mathcal{C}_1, \hookrightarrow_1, Loc_{0_1}, Inv_1, AP_1, L_1, Loc_{acc_1})$ a časovaný automat $\overline{\mathcal{A}_2} = (Loc_2, Act_2, \mathcal{C}_2, \hookrightarrow_2, Loc_{0_2}, Inv_2, AP_2, L_2, Loc_{acc_2})$, kde bez újmy na obecnosti předpokládáme, že $Loc_1 \cap Loc_2 = \emptyset$.

<u>Výstup:</u> Časovaný automat $\mathcal{A}_{\cup} = (Loc, Act, \mathcal{C}, \hookrightarrow, Loc_0, Inv, AP, L, Loc_{acc})$, kde $L(\mathcal{A}_{\cup}) = L(\mathcal{A}_1) \cup L(\mathcal{A}_2)$.

Metoda:

- 1. $Loc = Loc_1 \cup Loc_2$.
- 2. $Act = Act_1 \cup Act_2$.
- 3. $C = C_1 \cup C_2$.
- 4. $\hookrightarrow = \hookrightarrow_1 \cup \hookrightarrow_2$.
- 5. $Loc_0 = Loc_{0_1} \cup Loc_{0_2}$.
- 6. $Inv = Inv_1 \cup Inv_2$.
- 7. $AP = AP_1 \cup AP_2$.
- 8. $L = L_1 \cup L_2$.
- 9. $Loc_{acc} = Loc_{acc_1} \cup Loc_{acc_2}$.

Důkaz uzavřenosti časovaných automatů vůči operaci konkatenace:

- Mějme dva jazyky časovaných automatů L_{A_1} a L_{A_2} . Dokažme, že jejich konkatenace $L_{A_1}.L_{A_2}$ je opět jazyk časovaných automatů.
- Protože $L_{\mathcal{A}_1}$ a $L_{\mathcal{A}_2}$ jsou jazyky časovaných automatů, tak existují časované automaty \mathcal{A}_1 a \mathcal{A}_2 , které přijímají jazyky $L_{\mathcal{A}_1}$ a $L_{\mathcal{A}_2}$, tj. $L(\mathcal{A}_1) = L_{\mathcal{A}_1}$ a $L(\mathcal{A}_2) = L_{\mathcal{A}_2}$.
- Sestrojením časovaného automatu \mathcal{A}_{\circ} , který bude přijímat jazyk $L_{\mathcal{A}_{1}}.L_{\mathcal{A}_{2}}$, tj. $L(\mathcal{A}_{\circ})=L(\mathcal{A}_{1}).L(\mathcal{A}_{2})$, dokážeme, že jazyk $L_{\mathcal{A}_{1}}.L_{\mathcal{A}_{2}}$ je jazyk časovaných automatů a že operace konkatenace je uzavřena na časovaných automatech.

Algoritmus sestrojení časovaného automatu A_{\circ} :

Vstup: Časovaný automat $\mathcal{A}_1 = (Loc_1, Act_1, \mathcal{C}_1, \hookrightarrow_1, Loc_{0_1}, Inv_1, AP_1, L_1, Loc_{acc_1})$ a časovaný automat $\overline{\mathcal{A}_2} = (Loc_2, Act_2, \mathcal{C}_2, \hookrightarrow_2, Loc_{0_2}, Inv_2, AP_2, L_2, Loc_{acc_2})$, kde bez újmy na obecnosti předpokládáme, že $Loc_1 \cap Loc_2 = \emptyset$.

 $\underline{\text{V\'{y}stup:}}\ \check{\text{C}} \text{asovan\'{y}}\ \text{automat}\ \mathcal{A}_{\circ} = (Loc, Act, \mathcal{C}, \hookrightarrow, Loc_{0}, Inv, AP, L, Loc_{acc}), \text{kde}\ L(\mathcal{A}_{\circ}) = L(\mathcal{A}_{1}).L(\mathcal{A}_{2}).$ Metoda:

- 1. $Loc = Loc_1 \cup Loc_2$.
- 2. $Act = Act_1 \cup Act_2$.

- 3. $C = C_1 \cup C_2$.
- 4. $\hookrightarrow \subseteq Loc \times CC(\mathcal{C}) \times Act \times 2^{\mathcal{C}} \times Loc$ definována tak, že: $\forall l, l' \in Loc : \forall g \in CC(\mathcal{C}) : \forall a \in Act : \forall R \in 2^{\mathcal{C}} : (l, g, a, R, l') \in \hookrightarrow \Leftrightarrow (l, g, a, R, l') \in \hookrightarrow_1 \cup \hookrightarrow_2 \vee (l, g, a, R \cup \mathcal{C}, l') \in \hookrightarrow \Leftrightarrow (\exists l'' \in Loc_{acc_1} : (l, g, a, R, l'') \in \hookrightarrow_1 \wedge \exists l''' \in Loc_2 : \exists g' \in CC(\mathcal{C}) : \exists a' \in Act : \exists R' \in 2^{\mathcal{C}} : (l', g', a', R', l''') \in \hookrightarrow_2 \wedge l' \in Loc_{0_2}).$
- 5. $Loc_0 = Loc_{0_1}$.
- 6. $Inv = Inv_1 \cup Inv_2$.
- 7. $AP = AP_1 \cup AP_2$.
- 8. $L = L_1 \cup L_2$.
- 9. $Loc_{acc} = Loc_{acc}$.

3. příklad

Abstrakce založená na regionech automatu A_2 (bez nedostupných stavů):

- Stav, ve kterém platí predikát error, je dostupný. Existuje běh $(A; x = 0, y = 0) \xrightarrow{\min ce} (B; x = 0, y = 0) \xrightarrow{\text{volba_kava}} (C; x = 0, y = 0) \xrightarrow{1, \text{chyba}} (D; x = 1, y = 1)$, kde $A \in Loc_0 \land error \in L(D)$. Dostupnost tohoto stavu s tímto predikátem je také vidět v regionové abstrakci.
- Tvrzení $\mathcal{A}_2 \models \exists \ (run \ U^{<2} \ error) \ \text{platí}$. Platí, že $Int_{\mathcal{A}_2} \subseteq Sat(\phi)$, kde $\phi \equiv \exists \ (run \ U^{<2} \ error)$, $Int_{\mathcal{A}_2} = \{s = (A; x = 0, y = 0)\}$ a $s \models \phi$, protože existuje cesta $\pi \in Path_{div}(s)$, pro kterou platí $\pi \models run \ U^{<2} \ error$. Cesta π může být např. následující $\pi = (A; x = 0, y = 0) \xrightarrow{\min ce} (B; x = 0, y = 0) \xrightarrow{\psi \text{olba_kava}} (C; x = 0, y = 0) \xrightarrow{1, \text{chyba}} (D; x = 1, y = 1) \xrightarrow{\tau} (D; x = 1 + \tau, y = 1 + \tau) \xrightarrow{\tau} \dots; \pi \models run \ U^{<2} \ error$, protože existuje časový okamžik t = 1 z intervalu [0, 2), ve kterém platí formule error $(error \in L(D))$ a pro libovolný časový okamžik menší než t platí v v v regionové abstrakci.

• Tvrzení $(B; x = 0, y = 0) \models \forall (run \ U^{<2} \ init)$ neplatí. Neplatí totiž, že pro každou cestu $\pi \in Path_{div}(s)$ platí $\pi \models \phi$, kde s = (B; x = 0, y = 0) a $\phi \equiv run \ U^{<2} \ init$. Např. pro cestu $\pi = (B; x = 0, y = 0) \xrightarrow{10} (B; x = 10, y = 10) \xrightarrow{\tau} (B; x = 10 + \tau, y = 10 + \tau) \xrightarrow{\tau} \dots$ neplatí $\pi \models \phi$, protože zde neexistuje takový časový okamžik t z intervalu [0, 2), ve kterém by platila formule init. Toto lze vypozorovat v regionové abstrakci.