# Implementation of Algorithms for Right-Sizing Data Centers

Author: Jonas Hübotter

Supervisor: Prof. Dr. Susanne Albers

Advisor: Jens Quedenfeld

Department of Informatics Technical University of Munich

August 13, 2021

#### Outline

Motivation

**Problem** 

Model

Algorithms

Results

Future work

 data centers use between 1% and 3% of global energy<sup>1</sup>, which is estimated to increase<sup>2</sup>

<sup>&</sup>lt;sup>1</sup>Arman Shehabi et al. *United States Data Center Energy Usage Report*. Tech. rep. Lawrence Berkeley National Laboratory, June 2016.

 $<sup>^2</sup>$ Nicola Jones. "How to stop data centres from gobbling up the world's electricity". In: *Nature* 561.7722 (2018), pp. 163–167.

 $<sup>^3</sup>$ Josh Whitney and Pierre Delforge. Data Center Efficiency Assessment. Natural Resources Defense Council, Aug. 2014.

<sup>&</sup>lt;sup>4</sup>Luiz André Barroso and Urs Hölzle. "The case for energy-proportional computing". In: *Computer* 40.12 (2007), pp. 33–37.

- data centers use between 1% and 3% of global energy<sup>1</sup>, which is estimated to increase<sup>2</sup>
- most data centers are statically provisioned, leading to average utilization levels between 12% and 18%<sup>3</sup>

<sup>&</sup>lt;sup>1</sup>Arman Shehabi et al. *United States Data Center Energy Usage Report*. Tech. rep. Lawrence Berkeley National Laboratory, June 2016.

 $<sup>^2</sup>$ Nicola Jones. "How to stop data centres from gobbling up the world's electricity". In: *Nature* 561.7722 (2018), pp. 163–167.

<sup>&</sup>lt;sup>3</sup>Josh Whitney and Pierre Delforge. *Data Center Efficiency Assessment*. Natural Resources Defense Council, Aug. 2014.

<sup>&</sup>lt;sup>4</sup>Luiz André Barroso and Urs Hölzle. "The case for energy-proportional computing". In: *Computer* 40.12 (2007), pp. 33-37.

- data centers use between 1% and 3% of global energy<sup>1</sup>, which is estimated to increase<sup>2</sup>
- most data centers are statically provisioned, leading to average utilization levels between 12% and 18%<sup>3</sup>
- typically servers operate at energy efficiency levels between 20% and 30%<sup>4</sup>

<sup>&</sup>lt;sup>1</sup>Arman Shehabi et al. *United States Data Center Energy Usage Report*. Tech. rep. Lawrence Berkeley National Laboratory, June 2016.

 $<sup>^2</sup>$ Nicola Jones. "How to stop data centres from gobbling up the world's electricity". In: *Nature* 561.7722 (2018), pp. 163–167.

<sup>&</sup>lt;sup>3</sup>Josh Whitney and Pierre Delforge. *Data Center Efficiency Assessment*. Natural Resources Defense Council, Aug. 2014.

<sup>&</sup>lt;sup>4</sup>Luiz André Barroso and Urs Hölzle. "The case for energy-proportional computing". In: *Computer* 40.12 (2007), pp. 33-37.

- data centers use between 1% and 3% of global energy<sup>1</sup>, which is estimated to increase<sup>2</sup>
- most data centers are statically provisioned, leading to average utilization levels between 12% and 18%<sup>3</sup>
- typically servers operate at energy efficiency levels between 20% and 30%<sup>4</sup>
- when idling, servers consume half of their peak power<sup>4</sup>

<sup>&</sup>lt;sup>1</sup>Arman Shehabi et al. *United States Data Center Energy Usage Report*. Tech. rep. Lawrence Berkeley National Laboratory, June 2016.

<sup>&</sup>lt;sup>2</sup>Nicola Jones. "How to stop data centres from gobbling up the world's electricity". In: *Nature* 561.7722 (2018), pp. 163–167.

<sup>&</sup>lt;sup>3</sup>Josh Whitney and Pierre Delforge. *Data Center Efficiency Assessment*. Natural Resources Defense Council, Aug. 2014.

<sup>&</sup>lt;sup>4</sup>Luiz André Barroso and Urs Hölzle. "The case for energy-proportional computing". In: *Computer* 40.12 (2007), pp. 33-37.











<sup>&</sup>lt;sup>5</sup>Susanne Albers and Jens Quedenfeld. "Algorithms for Right-Sizing Heterogeneous Data Centers". In: *Proceedings of the 33rd ACM Symposium on Parallelism in Algorithms and Architectures.* 2021, pp. 48–58.

<sup>&</sup>lt;sup>6</sup>Minghong Lin et al. "Dynamic right-sizing for power-proportional data centers". In: *IEEE/ACM Transactions on Networking* 21.5 (2012), pp. 1378–1391.

What is the cost of operating a data center with  $x_t \in \mathbb{N}_0$  active servers and under load  $\lambda_t \in \mathbb{N}_0$ ?

• How to distribute jobs across the active servers?

<sup>&</sup>lt;sup>5</sup>Susanne Albers and Jens Quedenfeld. "Algorithms for Right-Sizing Heterogeneous Data Centers". In: *Proceedings of the 33rd ACM Symposium on Parallelism in Algorithms and Architectures.* 2021, pp. 48–58.

<sup>&</sup>lt;sup>6</sup>Minghong Lin et al. "Dynamic right-sizing for power-proportional data centers". In: *IEEE/ACM Transactions on Networking* 21.5 (2012), pp. 1378–1391.

What is the cost of operating a data center with  $x_t \in \mathbb{N}_0$  active servers and under load  $\lambda_t \in \mathbb{N}_0$ ?

How to distribute jobs across the active servers?
 Distribute evenly across all servers of the same type<sup>5</sup>.

<sup>&</sup>lt;sup>5</sup>Susanne Albers and Jens Quedenfeld. "Algorithms for Right-Sizing Heterogeneous Data Centers". In: *Proceedings of the 33rd ACM Symposium on Parallelism in Algorithms and Architectures.* 2021, pp. 48–58.

<sup>&</sup>lt;sup>6</sup>Minghong Lin et al. "Dynamic right-sizing for power-proportional data centers". In: *IEEE/ACM Transactions on Networking* 21.5 (2012), pp. 1378–1391.

- How to distribute jobs across the active servers?
   Distribute evenly across all servers of the same type<sup>5</sup>.
- What is the cost associated with such an assignment?

<sup>&</sup>lt;sup>5</sup>Susanne Albers and Jens Quedenfeld. "Algorithms for Right-Sizing Heterogeneous Data Centers". In: *Proceedings of the 33rd ACM Symposium on Parallelism in Algorithms and Architectures.* 2021, pp. 48–58.

<sup>&</sup>lt;sup>6</sup>Minghong Lin et al. "Dynamic right-sizing for power-proportional data centers". In: *IEEE/ACM Transactions on Networking* 21.5 (2012), pp. 1378–1391.

- How to distribute jobs across the active servers?
   Distribute evenly across all servers of the same type<sup>5</sup>.
- What is the cost associated with such an assignment?
   Consisting of energy costs and the revenue loss incurred by a delayed processing of jobs.

<sup>&</sup>lt;sup>5</sup>Susanne Albers and Jens Quedenfeld. "Algorithms for Right-Sizing Heterogeneous Data Centers". In: *Proceedings of the 33rd ACM Symposium on Parallelism in Algorithms and Architectures.* 2021, pp. 48–58.

<sup>&</sup>lt;sup>6</sup>Minghong Lin et al. "Dynamic right-sizing for power-proportional data centers". In: *IEEE/ACM Transactions on Networking* 21.5 (2012), pp. 1378–1391.

- How to distribute jobs across the active servers?
   Distribute evenly across all servers of the same type<sup>5</sup>.
- What is the cost associated with such an assignment?
   Consisting of energy costs and the revenue loss incurred by a delayed processing of jobs.
  - Algorithms need to balance energy costs and revenue loss.

<sup>&</sup>lt;sup>5</sup>Susanne Albers and Jens Quedenfeld. "Algorithms for Right-Sizing Heterogeneous Data Centers". In: Proceedings of the 33rd ACM Symposium on Parallelism in Algorithms and Architectures. 2021, pp. 48–58.

<sup>&</sup>lt;sup>6</sup>Minghong Lin et al. "Dynamic right-sizing for power-proportional data centers". In: *IEEE/ACM Transactions on Networking* 21.5 (2012), pp. 1378–1391.

What is the cost of operating a data center with  $x_t \in \mathbb{N}_0$  active servers and under load  $\lambda_t \in \mathbb{N}_0$ ?

- How to distribute jobs across the active servers?
   Distribute evenly across all servers of the same type<sup>5</sup>.
- What is the cost associated with such an assignment?
   Consisting of energy costs and the revenue loss incurred by a delayed processing of jobs.

Algorithms need to balance energy costs and revenue loss.

Movement costs are on the order of operating an idling server for 1-4 hours<sup>6</sup>.

<sup>&</sup>lt;sup>5</sup>Susanne Albers and Jens Quedenfeld. "Algorithms for Right-Sizing Heterogeneous Data Centers". In: *Proceedings of the 33rd ACM Symposium on Parallelism in Algorithms and Architectures.* 2021, pp. 48–58.

<sup>&</sup>lt;sup>6</sup>Minghong Lin et al. "Dynamic right-sizing for power-proportional data centers". In: *IEEE/ACM Transactions on Networking* 21.5 (2012), pp. 1378–1391.

| problem    | algorithm | results |
|------------|-----------|---------|
| fractional |           |         |
| integral   |           |         |

<sup>&</sup>lt;sup>7</sup>Minghong Lin et al. "Dynamic right-sizing for power-proportional data centers". In: *IEEE/ACM Transactions on Networking* 21.5 (2012), pp. 1378–1391.

<sup>&</sup>lt;sup>8</sup>Nikhil Bansal et al. "A 2-competitive algorithm for online convex optimization with switching costs". In: Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2015). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik. 2015.

<sup>&</sup>lt;sup>9</sup>Lachlan Andrew et al. "A tale of two metrics: Simultaneous bounds on competitiveness and regret". In: *Conference on Learning Theory.* PMLR. 2013, pp. 741–763.

<sup>&</sup>lt;sup>10</sup>Susanne Albers and Jens Quedenfeld. "Optimal algorithms for right-sizing data centers". In: Proceedings of the 30th on Symposium on Parallelism in Algorithms and Architectures. 2018, pp. 363–372.

| problem    | algorithm                               | results       |
|------------|-----------------------------------------|---------------|
|            | Lazy Capacity Provisioning <sup>7</sup> | 3-competitive |
| fractional |                                         |               |
|            |                                         |               |
|            |                                         |               |
| integral   |                                         |               |

<sup>&</sup>lt;sup>7</sup>Minghong Lin et al. "Dynamic right-sizing for power-proportional data centers". In: *IEEE/ACM Transactions on Networking* 21.5 (2012), pp. 1378–1391.

<sup>&</sup>lt;sup>8</sup>Nikhil Bansal et al. "A 2-competitive algorithm for online convex optimization with switching costs". In: *Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2015)*. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik. 2015.

<sup>&</sup>lt;sup>9</sup>Lachlan Andrew et al. "A tale of two metrics: Simultaneous bounds on competitiveness and regret". In: *Conference on Learning Theory.* PMLR. 2013, pp. 741–763.

<sup>&</sup>lt;sup>10</sup>Susanne Albers and Jens Quedenfeld. "Optimal algorithms for right-sizing data centers". In: Proceedings of the 30th on Symposium on Parallelism in Algorithms and Architectures. 2018, pp. 363–372.

| problem    | algorithm                                                          | results                        |
|------------|--------------------------------------------------------------------|--------------------------------|
| fractional | Lazy Capacity Provisioning <sup>7</sup><br>Memoryless <sup>8</sup> | 3-competitive<br>3-competitive |
| integral   |                                                                    |                                |

<sup>&</sup>lt;sup>7</sup>Minghong Lin et al. "Dynamic right-sizing for power-proportional data centers". In: *IEEE/ACM Transactions on Networking* 21.5 (2012), pp. 1378–1391.

<sup>&</sup>lt;sup>8</sup>Nikhil Bansal et al. "A 2-competitive algorithm for online convex optimization with switching costs". In: Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2015). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik. 2015.

<sup>&</sup>lt;sup>9</sup>Lachlan Andrew et al. "A tale of two metrics: Simultaneous bounds on competitiveness and regret". In: *Conference on Learning Theory.* PMLR. 2013, pp. 741–763.

<sup>&</sup>lt;sup>10</sup>Susanne Albers and Jens Quedenfeld. "Optimal algorithms for right-sizing data centers". In: Proceedings of the 30th on Symposium on Parallelism in Algorithms and Architectures. 2018, pp. 363–372.

| problem    | algorithm                                                                                        | results                                         |
|------------|--------------------------------------------------------------------------------------------------|-------------------------------------------------|
| fractional | Lazy Capacity Provisioning <sup>7</sup><br>Memoryless <sup>8</sup><br>Probabilistic <sup>8</sup> | 3-competitive<br>3-competitive<br>2-competitive |
| integral   |                                                                                                  |                                                 |

<sup>&</sup>lt;sup>7</sup>Minghong Lin et al. "Dynamic right-sizing for power-proportional data centers". In: *IEEE/ACM Transactions on Networking* 21.5 (2012), pp. 1378–1391.

<sup>&</sup>lt;sup>8</sup>Nikhil Bansal et al. "A 2-competitive algorithm for online convex optimization with switching costs". In: Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2015). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik. 2015.

<sup>&</sup>lt;sup>9</sup>Lachlan Andrew et al. "A tale of two metrics: Simultaneous bounds on competitiveness and regret". In: *Conference on Learning Theory.* PMLR. 2013, pp. 741–763.

<sup>&</sup>lt;sup>10</sup>Susanne Albers and Jens Quedenfeld. "Optimal algorithms for right-sizing data centers". In: Proceedings of the 30th on Symposium on Parallelism in Algorithms and Architectures. 2018, pp. 363–372.

| problem    | algorithm                                                                                  | results                                                               |
|------------|--------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|
| fractional | Lazy Capacity Provisioning <sup>7</sup> Memoryless <sup>8</sup> Probabilistic <sup>8</sup> | 3-competitive<br>3-competitive<br>2-competitive                       |
|            | Randomly Biased Greedy <sup>9</sup> , $\theta \geq 1$                                      | (1+	heta)-competitive,<br>$\mathcal{O}(max\{T/	heta,	heta\})$ -regret |
| integral   |                                                                                            |                                                                       |

<sup>&</sup>lt;sup>7</sup>Minghong Lin et al. "Dynamic right-sizing for power-proportional data centers". In: *IEEE/ACM Transactions on Networking* 21.5 (2012), pp. 1378–1391.

<sup>&</sup>lt;sup>8</sup>Nikhil Bansal et al. "A 2-competitive algorithm for online convex optimization with switching costs". In: Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2015). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik. 2015.

<sup>&</sup>lt;sup>9</sup>Lachlan Andrew et al. "A tale of two metrics: Simultaneous bounds on competitiveness and regret". In: *Conference on Learning Theory.* PMLR. 2013, pp. 741–763.

<sup>&</sup>lt;sup>10</sup>Susanne Albers and Jens Quedenfeld. "Optimal algorithms for right-sizing data centers". In: Proceedings of the 30th on Symposium on Parallelism in Algorithms and Architectures. 2018, pp. 363–372.

| problem    | algorithm                                | results                                       |
|------------|------------------------------------------|-----------------------------------------------|
|            | Lazy Capacity Provisioning <sup>7</sup>  | 3-competitive                                 |
| f+! l      | Memoryless <sup>8</sup>                  | 3-competitive                                 |
| fractional | Probabilistic <sup>8</sup>               | 2-competitive                                 |
|            | Randomly Biased Greedy <sup>9</sup> ,    | (1+	heta)-competitive,                        |
|            | $	heta \geq 1$                           | $\mathcal{O}(max\{T/\theta,\theta\})$ -regret |
| integral   | Lazy Capacity Provisioning <sup>10</sup> | 3-competitive                                 |

<sup>&</sup>lt;sup>7</sup>Minghong Lin et al. "Dynamic right-sizing for power-proportional data centers". In: *IEEE/ACM Transactions on Networking* 21.5 (2012), pp. 1378–1391.

<sup>&</sup>lt;sup>8</sup>Nikhil Bansal et al. "A 2-competitive algorithm for online convex optimization with switching costs". In: Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2015). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik. 2015.

<sup>&</sup>lt;sup>9</sup>Lachlan Andrew et al. "A tale of two metrics: Simultaneous bounds on competitiveness and regret". In: *Conference on Learning Theory.* PMLR. 2013, pp. 741–763.

<sup>&</sup>lt;sup>10</sup>Susanne Albers and Jens Quedenfeld. "Optimal algorithms for right-sizing data centers". In: Proceedings of the 30th on Symposium on Parallelism in Algorithms and Architectures. 2018, pp. 363–372.

| problem    | algorithm                                | results                                     |
|------------|------------------------------------------|---------------------------------------------|
|            | Lazy Capacity Provisioning <sup>7</sup>  | 3-competitive                               |
| £          | Memoryless <sup>8</sup>                  | 3-competitive                               |
| fractional | Probabilistic <sup>8</sup>               | 2-competitive                               |
|            | Randomly Biased Greedy <sup>9</sup> ,    | (1+	heta)-competitive,                      |
|            | $	heta \geq 1$                           | $\mathcal{O}(max\{T/	heta,	heta\})$ -regret |
| integral   | Lazy Capacity Provisioning <sup>10</sup> | 3-competitive                               |
|            | Randomized <sup>10</sup>                 | 2-competitive                               |

<sup>&</sup>lt;sup>7</sup>Minghong Lin et al. "Dynamic right-sizing for power-proportional data centers". In: *IEEE/ACM Transactions on Networking* 21.5 (2012), pp. 1378–1391.

<sup>&</sup>lt;sup>8</sup>Nikhil Bansal et al. "A 2-competitive algorithm for online convex optimization with switching costs". In: Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2015). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik. 2015.

<sup>&</sup>lt;sup>9</sup>Lachlan Andrew et al. "A tale of two metrics: Simultaneous bounds on competitiveness and regret". In: *Conference on Learning Theory.* PMLR. 2013, pp. 741–763.

<sup>&</sup>lt;sup>10</sup>Susanne Albers and Jens Quedenfeld. "Optimal algorithms for right-sizing data centers". In: Proceedings of the 30th on Symposium on Parallelism in Algorithms and Architectures. 2018, pp. 363–372.

| problem                    | algorithm | results |
|----------------------------|-----------|---------|
| integral; linear,          |           |         |
| time-indep. cost           |           |         |
|                            |           |         |
|                            |           |         |
| integral; hom. load        |           |         |
| fractional; $\alpha$ -loc. |           |         |
| polyhedral costs;          |           |         |
| $\ell_2$ movement          |           |         |
| fractional;                |           |         |
| prediction window          |           |         |
|                            |           |         |

<sup>&</sup>lt;sup>11</sup>Susanne Albers and Jens Quedenfeld. "Algorithms for Energy Conservation in Heterogeneous Data Centers.". In: CIAC. 2021, pp. 75–89.

<sup>&</sup>lt;sup>12</sup> Susanne Albers and Jens Quedenfeld. "Algorithms for Right-Sizing Heterogeneous Data Centers". In: Proceedings of the 33rd ACM Symposium on Parallelism in Algorithms and Architectures. 2021, pp. 48–58.

<sup>&</sup>lt;sup>13</sup>Niangjun Chen, Gautam Goel, and Adam Wierman. "Smoothed online convex optimization in high dimensions via online balanced descent". In: *Conference On Learning Theory*. PMLR. 2018, pp. 1574–1594.

<sup>&</sup>lt;sup>14</sup>Minghong Lin et al. "Online algorithms for geographical load balancing". In: 2012 international green computing conference (IGCC), IEEE, 2012, pp. 1–10.

| problem                    | algorithm                    | results                 |
|----------------------------|------------------------------|-------------------------|
| integral; linear,          | Lazy Budgeting <sup>11</sup> | 2 <i>d</i> -competitive |
| time-indep. cost           | (deterministic)              |                         |
|                            |                              |                         |
|                            |                              |                         |
| integral; hom. load        |                              |                         |
| fractional; $\alpha$ -loc. |                              |                         |
| polyhedral costs;          |                              |                         |
| $\ell_2$ movement          |                              |                         |
| fractional;                |                              |                         |
| prediction window          |                              |                         |
|                            |                              |                         |

<sup>&</sup>lt;sup>11</sup>Susanne Albers and Jens Quedenfeld. "Algorithms for Energy Conservation in Heterogeneous Data Centers.". In: CIAC. 2021, pp. 75–89.

<sup>&</sup>lt;sup>12</sup>Susanne Albers and Jens Quedenfeld. "Algorithms for Right-Sizing Heterogeneous Data Centers". In: Proceedings of the 33rd ACM Symposium on Parallelism in Algorithms and Architectures. 2021, pp. 48–58.

<sup>&</sup>lt;sup>13</sup>Niangjun Chen, Gautam Goel, and Adam Wierman. "Smoothed online convex optimization in high dimensions via online balanced descent". In: *Conference On Learning Theory*. PMLR. 2018, pp. 1574–1594.

<sup>&</sup>lt;sup>14</sup>Minghong Lin et al. "Online algorithms for geographical load balancing". In: 2012 international green computing conference (IGCC), IEEE, 2012, pp. 1–10.

| problem                    | algorithm                    | results                   |
|----------------------------|------------------------------|---------------------------|
| integral; linear,          | Lazy Budgeting <sup>11</sup> | 2 <i>d</i> -competitive   |
| time-indep. cost           | (deterministic)              |                           |
|                            | Lazy Budgeting <sup>11</sup> | pprox 1.582 d-competitive |
|                            | (randomized)                 |                           |
| integral; hom. load        |                              |                           |
| fractional; $\alpha$ -loc. |                              |                           |
| polyhedral costs;          |                              |                           |
| $\ell_2$ movement          |                              |                           |
| fractional;                |                              |                           |
| prediction window          |                              |                           |
|                            |                              |                           |

<sup>&</sup>lt;sup>11</sup>Susanne Albers and Jens Quedenfeld. "Algorithms for Energy Conservation in Heterogeneous Data Centers.". In: CIAC. 2021, pp. 75–89.

<sup>&</sup>lt;sup>12</sup>Susanne Albers and Jens Quedenfeld. "Algorithms for Right-Sizing Heterogeneous Data Centers". In: Proceedings of the 33rd ACM Symposium on Parallelism in Algorithms and Architectures. 2021, pp. 48–58.

<sup>&</sup>lt;sup>13</sup>Niangjun Chen, Gautam Goel, and Adam Wierman. "Smoothed online convex optimization in high dimensions via online balanced descent". In: *Conference On Learning Theory*. PMLR. 2018, pp. 1574–1594.

<sup>&</sup>lt;sup>14</sup>Minghong Lin et al. "Online algorithms for geographical load balancing". In: 2012 international green computing conference (IGCC), IEEE, 2012, pp. 1–10.

| problem                    | algorithm                    | results                        |
|----------------------------|------------------------------|--------------------------------|
| integral; linear,          | Lazy Budgeting <sup>11</sup> | 2 <i>d</i> -competitive        |
| time-indep. cost           | (deterministic)              |                                |
|                            | Lazy Budgeting <sup>11</sup> | pprox 1.582 d-competitive      |
|                            | (randomized)                 |                                |
| integral; hom. load        | Lazy Budgeting <sup>12</sup> | $(2d+1+\epsilon)$ -competitive |
| fractional; $\alpha$ -loc. |                              |                                |
| polyhedral costs;          |                              |                                |
| $\ell_2$ movement          |                              |                                |
| fractional;                |                              |                                |
| prediction window          |                              |                                |
|                            |                              |                                |

<sup>&</sup>lt;sup>11</sup>Susanne Albers and Jens Quedenfeld. "Algorithms for Energy Conservation in Heterogeneous Data Centers.", In: *CIAC*, 2021, pp. 75–89.

<sup>&</sup>lt;sup>12</sup>Susanne Albers and Jens Quedenfeld. "Algorithms for Right-Sizing Heterogeneous Data Centers". In: Proceedings of the 33rd ACM Symposium on Parallelism in Algorithms and Architectures. 2021, pp. 48–58.

<sup>&</sup>lt;sup>13</sup>Niangjun Chen, Gautam Goel, and Adam Wierman. "Smoothed online convex optimization in high dimensions via online balanced descent". In: *Conference On Learning Theory*. PMLR. 2018, pp. 1574–1594.

<sup>&</sup>lt;sup>14</sup>Minghong Lin et al. "Online algorithms for geographical load balancing". In: 2012 international green computing conference (IGCC), IEEE, 2012, pp. 1–10.

| problem                    | algorithm                                                 | results                                  |
|----------------------------|-----------------------------------------------------------|------------------------------------------|
| integral; linear,          | Lazy Budgeting <sup>11</sup>                              | 2 <i>d</i> -competitive                  |
| time-indep. cost           | (deterministic) Lazy Budgeting <sup>11</sup> (randomized) | pprox 1.582 d-competitive                |
| integral; hom. load        | Lazy Budgeting <sup>12</sup>                              | $(2d+1+\epsilon)$ -competitive           |
| fractional; $\alpha$ -loc. | Primal OBD <sup>13</sup>                                  | $3 + \mathcal{O}(1/\alpha)$ -competitive |
| polyhedral costs;          |                                                           |                                          |
| $\ell_2$ movement          |                                                           |                                          |
| fractional;                |                                                           |                                          |
| prediction window          |                                                           |                                          |
|                            |                                                           |                                          |

<sup>&</sup>lt;sup>11</sup>Susanne Albers and Jens Quedenfeld. "Algorithms for Energy Conservation in Heterogeneous Data Centers.". In: CIAC. 2021, pp. 75–89.

<sup>&</sup>lt;sup>12</sup>Susanne Albers and Jens Quedenfeld. "Algorithms for Right-Sizing Heterogeneous Data Centers". In: Proceedings of the 33rd ACM Symposium on Parallelism in Algorithms and Architectures. 2021, pp. 48–58.

<sup>&</sup>lt;sup>13</sup>Niangjun Chen, Gautam Goel, and Adam Wierman. "Smoothed online convex optimization in high dimensions via online balanced descent". In: *Conference On Learning Theory*. PMLR. 2018, pp. 1574–1594.

<sup>&</sup>lt;sup>14</sup>Minghong Lin et al. "Online algorithms for geographical load balancing". In: 2012 international green computing conference (IGCC), IEEE, 2012, pp. 1–10.

| problem                    | algorithm                                                 | results                                  |
|----------------------------|-----------------------------------------------------------|------------------------------------------|
| integral; linear,          | Lazy Budgeting <sup>11</sup>                              | 2 <i>d</i> -competitive                  |
| time-indep. cost           | (deterministic) Lazy Budgeting <sup>11</sup> (randomized) | pprox 1.582 d-competitive                |
| integral; hom. load        | Lazy Budgeting <sup>12</sup>                              | $(2d+1+\epsilon)$ -competitive           |
| fractional; $\alpha$ -loc. | Primal OBD <sup>13</sup>                                  | $3 + \mathcal{O}(1/\alpha)$ -competitive |
| polyhedral costs;          | Dual OBD <sup>13</sup>                                    | $\mathcal{O}(\sqrt{T})$ -regret          |
| $\ell_2$ movement          |                                                           |                                          |
| fractional;                |                                                           |                                          |
| prediction window          |                                                           |                                          |
|                            |                                                           |                                          |

<sup>&</sup>lt;sup>11</sup>Susanne Albers and Jens Quedenfeld. "Algorithms for Energy Conservation in Heterogeneous Data Centers.". In: *CIAC*. 2021, pp. 75–89.

<sup>&</sup>lt;sup>12</sup>Susanne Albers and Jens Quedenfeld. "Algorithms for Right-Sizing Heterogeneous Data Centers". In: Proceedings of the 33rd ACM Symposium on Parallelism in Algorithms and Architectures. 2021, pp. 48–58.

<sup>&</sup>lt;sup>13</sup>Niangjun Chen, Gautam Goel, and Adam Wierman. "Smoothed online convex optimization in high dimensions via online balanced descent". In: *Conference On Learning Theory*. PMLR. 2018, pp. 1574–1594.

<sup>&</sup>lt;sup>14</sup>Minghong Lin et al. "Online algorithms for geographical load balancing". In: 2012 international green computing conference (IGCC), IEEE, 2012, pp. 1–10.

| problem                    | algorithm                                                 | results                                  |
|----------------------------|-----------------------------------------------------------|------------------------------------------|
| integral; linear,          | Lazy Budgeting <sup>11</sup>                              | 2 <i>d</i> -competitive                  |
| time-indep. cost           | (deterministic) Lazy Budgeting <sup>11</sup> (randomized) | pprox 1.582 d-competitive                |
| integral; hom. load        | Lazy Budgeting <sup>12</sup>                              | $(2d+1+\epsilon)$ -competitive           |
| fractional; $\alpha$ -loc. | Primal OBD <sup>13</sup>                                  | $3 + \mathcal{O}(1/\alpha)$ -competitive |
| polyhedral costs;          | Dual OBD <sup>13</sup>                                    | $\mathcal{O}(\sqrt{T})$ -regret          |
| $\ell_2$ movement          |                                                           | , , -                                    |
| fractional;                | RHC <sup>14</sup>                                         | $(1+\mathcal{O}(1/w))$                   |
| prediction window          |                                                           | -competitive in 1d                       |
|                            |                                                           |                                          |

<sup>&</sup>lt;sup>11</sup>Susanne Albers and Jens Quedenfeld. "Algorithms for Energy Conservation in Heterogeneous Data Centers.", In: *CIAC*, 2021, pp. 75–89.

<sup>&</sup>lt;sup>12</sup>Susanne Albers and Jens Quedenfeld. "Algorithms for Right-Sizing Heterogeneous Data Centers". In: Proceedings of the 33rd ACM Symposium on Parallelism in Algorithms and Architectures. 2021, pp. 48–58.

<sup>&</sup>lt;sup>13</sup>Niangjun Chen, Gautam Goel, and Adam Wierman. "Smoothed online convex optimization in high dimensions via online balanced descent". In: *Conference On Learning Theory*. PMLR. 2018, pp. 1574–1594.

<sup>&</sup>lt;sup>14</sup>Minghong Lin et al. "Online algorithms for geographical load balancing". In: 2012 international green computing conference (IGCC), IEEE, 2012, pp. 1–10.

| problem                    | algorithm                                                 | results                                  |
|----------------------------|-----------------------------------------------------------|------------------------------------------|
| integral; linear,          | Lazy Budgeting <sup>11</sup>                              | 2 <i>d</i> -competitive                  |
| time-indep. cost           | (deterministic) Lazy Budgeting <sup>11</sup> (randomized) | pprox 1.582 d-competitive                |
| integral; hom. load        | Lazy Budgeting <sup>12</sup>                              | $(2d+1+\epsilon)$ -competitive           |
| fractional; $\alpha$ -loc. | Primal OBD <sup>13</sup>                                  | $3 + \mathcal{O}(1/\alpha)$ -competitive |
| polyhedral costs;          | Dual OBD <sup>13</sup>                                    | $\mathcal{O}(\sqrt{T})$ -regret          |
| $\ell_2$ movement          |                                                           | , , -                                    |
| fractional;                | RHC <sup>14</sup>                                         | $(1+\mathcal{O}(1/w))$                   |
| prediction window          |                                                           | -competitive in 1d                       |
|                            | AFHC <sup>14</sup>                                        | $(1+\mathcal{O}(1/w))$ -competitive      |

<sup>&</sup>lt;sup>11</sup>Susanne Albers and Jens Quedenfeld. "Algorithms for Energy Conservation in Heterogeneous Data Centers.". In: CIAC. 2021, pp. 75–89.

<sup>&</sup>lt;sup>12</sup>Susanne Albers and Jens Quedenfeld. "Algorithms for Right-Sizing Heterogeneous Data Centers". In: Proceedings of the 33rd ACM Symposium on Parallelism in Algorithms and Architectures. 2021, pp. 48–58.

<sup>&</sup>lt;sup>13</sup>Niangjun Chen, Gautam Goel, and Adam Wierman. "Smoothed online convex optimization in high dimensions via online balanced descent". In: *Conference On Learning Theory*. PMLR. 2018, pp. 1574–1594.

<sup>&</sup>lt;sup>14</sup>Minghong Lin et al. "Online algorithms for geographical load balancing". In: 2012 international green computing conference (IGCC), IEEE, 2012, pp. 1–10.

#### Traces



#### Performance metrics

• normalized cost: c(ALG)/c(OPT)

#### Performance metrics

- normalized cost: c(ALG)/c(OPT)
- cost reduction:

$$\frac{c(\mathit{OPT}_s) - c(\mathit{ALG})}{c(\mathit{OPT}_s)}$$

## Performance metrics

- normalized cost: c(ALG)/c(OPT)
- cost reduction:

$$\frac{c(OPT_s) - c(ALG)}{c(OPT_s)}$$

• static/dynamic ratio:  $c(OPT_s)/c(OPT)$ 









#### Multiple dimensions

• lazy budgeting algorithms perform nearly optimally (normalized cost  $\in$  [1.05, 1.25]), without consideration of revenue loss

#### Multiple dimensions

- lazy budgeting algorithms perform nearly optimally (normalized cost  $\in$  [1.05, 1.25]), without consideration of revenue loss
- descent methods achieve normalized costs of  $\approx 2.5$

## Multiple dimensions

- lazy budgeting algorithms perform nearly optimally (normalized cost  $\in$  [1.05, 1.25]), without consideration of revenue loss
- descent methods achieve normalized costs of  $\approx 2.5$

#### With predictions

• even a short prediction window of several hours can significantly improve the results (by  $\approx 5\%)$ 

#### Multiple dimensions

- lazy budgeting algorithms perform nearly optimally (normalized cost  $\in$  [1.05, 1.25]), without consideration of revenue loss
- descent methods achieve normalized costs of  $\approx 2.5$

## With predictions

- even a short prediction window of several hours can significantly improve the results (by  $\approx 5\%$ )
- robust to imperfect (realistic) predictions

## Future work

• compare performance to algorithms for convex body chasing

#### Future work

- compare performance to algorithms for convex body chasing
- performance of algorithms in other applications

#### Future work

- compare performance to algorithms for convex body chasing
- performance of algorithms in other applications
- better algorithms to make use of predictions

Thanks for your attention! Questions?

Smoothed online convex optimization (or convex function chasing)<sup>15</sup>:

<sup>&</sup>lt;sup>15</sup>Minghong Lin et al. "Dynamic right-sizing for power-proportional data centers". In: *IEEE/ACM Transactions on Networking* 21.5 (2012), pp. 1378–1391.

Smoothed online convex optimization (or convex function chasing)<sup>15</sup>: Given a convex decision space  $\mathcal{X} \subset \mathbb{R}^d$ , a norm  $\|\cdot\|$  on  $\mathbb{R}^d$ , and a sequence F of non-negative convex functions  $f_t : \mathcal{X} \to \mathbb{R}_{>0}$ 

<sup>&</sup>lt;sup>15</sup>Minghong Lin et al. "Dynamic right-sizing for power-proportional data centers". In: *IEEE/ACM Transactions on Networking* 21.5 (2012), pp. 1378–1391.

Smoothed online convex optimization (or convex function chasing)<sup>15</sup>: Given a convex decision space  $\mathcal{X} \subset \mathbb{R}^d$ , a norm  $\|\cdot\|$  on  $\mathbb{R}^d$ , and a sequence F of non-negative convex functions  $f_t: \mathcal{X} \to \mathbb{R}_{\geq 0}$ , find  $x \in \mathcal{X}^T$  such that

$$\sum_{t=1}^{T} f_t(x_t) + ||x_t - x_{t-1}||$$

is minimized where T is the time horizon and  $x_0 = 0$ .

<sup>&</sup>lt;sup>15</sup>Minghong Lin et al. "Dynamic right-sizing for power-proportional data centers". In: *IEEE/ACM Transactions on Networking* 21.5 (2012), pp. 1378–1391.

• similar to *online convex optimization* with movement costs and lookahead 1

- similar to *online convex optimization* with movement costs and lookahead 1
- equivalent to convex body chasing in d+1

- similar to online convex optimization with movement costs and lookahead 1
- equivalent to convex body chasing in d+1
- fundamental incompatibility between competitive ratio and regret even for linear hitting costs in one dimension