Trig Final (SLTN v638)

- You can use a calculator (like Desmos)
- You should have a unit-circle with special angles and coordinates marked.

Question 1

In the figure below, we see a circle and a central angle that subtends an arc. The radius is 44 meters. The arc length is 41 meters. What is the angle measure in radians?

$$\theta = \frac{L}{r} \qquad r = \frac{L}{\theta} \qquad L = r\theta$$

 $\theta = 0.9318$ radians.

Question 2

Consider angles $\frac{13\pi}{4}$ and $\frac{-11\pi}{3}$. For each angle, use a spiral with an arrow head to **mark** the angle on a circle below in standard position. Then, find **exact** expressions for $\sin\left(\frac{13\pi}{4}\right)$ and $\cos\left(\frac{-11\pi}{3}\right)$ by using a unit circle (provided separately).

Find $sin(13\pi/4)$

$$\sin(13\pi/4) = \frac{-\sqrt{2}}{2}$$

Find $cos(-11\pi/3)$

$$\cos(-11\pi/3) = \frac{1}{2}$$

Question 3

If $\cos(\theta) = \frac{16}{65}$, and θ is in quadrant IV, determine an exact value for $\tan(\theta)$.

Ignore any negatives and the quadrant, and draw a right triangle (based on SOHCAHTOA) in standard (quadrant I) orientation.

Solve the Pythagorean Equation

$$16^{2} + B^{2} = 65^{2}$$

$$B = \sqrt{65^{2} - 16^{2}}$$

$$B = 63$$

Rescale the triangle so the hypotenuse is 1. Reflect the triangle into Quadrant IV in a unit circle.

$$\tan(\theta) = \frac{\frac{-63}{65}}{\frac{16}{65}} = \frac{-63}{16}$$

Question 4

or

A mass-spring system oscillates vertically with a midline at y = 8.3 meters, a frequency of 3.02 Hz, and an amplitude of 6.52 meters. At t = 0, the mass is at the minimum height. Write an equation to model the height (y in meters) as a function of time (t in seconds).

Any of these equations would get full credit.

$$y = -6.52\cos(2\pi 3.02t) + 8.3$$
$$y = -6.52\cos(6.04\pi t) + 8.3$$

or
$$y = -6.52\cos(18.98t) + 8.3$$