Week 6: Multimodal Foundation Models

Generative Al
Saarland University – Winter Semester 2024/25

Adish Singla

genai-w24-tutors@mpi-sws.org

Outline of the Lecture

- Organizational updates
- Token-based autoregressive generation
- Diffusion-based non-autoregressive generation
- Multimodal joint representation and generation
 - (text, image) joint representation
 - (text, image) → text generation
 - (text, image) → image generation
- Week 6 assignment

Outline of the Lecture

- Organizational updates
- Token-based autoregressive generation
- Diffusion-based non-autoregressive generation
- Multimodal joint representation and generation
 - (text, image) joint representation
 - (text, image) → text generation
 - (text, image) → image generation
- Week 6 assignment

Organizational Updates

- Next 2-3 lectures will take place in these two rooms (E1.5 029 + E1.4 024)
 - [26 Nov] Week 6
 - [03 Dec] Week 7
 - [10 Dec] Week 8?
- Week 6 assignment deadline: 05 Dec 2024 (Thursday) CET

Recap of the Course Timeline

- [15 Oct] Week 1: Introduction
- [22 Oct] Week 2: Background on Language Models and Transformers
- [29 Oct] Week 3: Large Language Models and In-context Learning
- [05 Nov] Week 4: Pre-training and Supervised Fine-tuning
- [12 Nov] Week 5: Preference-based Fine-tuning for Alignment

[26 Nov] Week 6: Multimodal Foundation Models

- [03 Dec] Week 7: Trustworthiness Aspects I
- [10 Dec] Week 8: Trustworthiness Aspects II
- [07 Jan] Week 9: GenAl-powered Programming Education I
- [14 Jan] Week 10: GenAl-powered Programming Education II
- [28 Jan] Week 11: Project Discussion
- [04 Feb] Week 12: Examination Preparation

Outline of the Lecture

- Organizational updates
- Token-based autoregressive generation
- Diffusion-based non-autoregressive generation
- Multimodal joint representation and generation
 - (text, image) joint representation
 - (text, image) → text generation
 - (text, image) → image generation
- Week 6 assignment

[Recap Week 2] Predicting Next Tokens

Probability of a next token

• Probability of t-th token being x_t given history of t-1 tokens

$$P(x_t \mid x_1, x_2, x_3, ..., x_{t-1})$$
 or $P(x_t \mid x_{1:t-1})$

- Models can generate content by predicting the next token over and over again
 - Called as Autoregressive models or token-based autoregressive generation
 - Chapter 10.1 and 10.2 of SLP book at https://web.stanford.edu/~jurafsky/slp3/

Types of Content and Tokens

- Content: Sentence → Tokens: Words
- Content: Code → Tokens: Programming Keywords
- Content: Image → Tokens: Pixel Values?

[Recap Week 3] Transformer-based Language Model

Figure 9.1 The architecture of a (left-to-right) transformer, showing how each input token get encoded, passed through a set of stacked transformer blocks, and then a language model head that predicts the next token.

[Recap Week 3] Transformer-based Language Model

Figure 10.1 Left-to-right (also called autoregressive) text completion with transformer-based large language models. As each token is generated, it gets added onto the context as a prefix for generating the next token.

[Recap Week 3] Transformer-based Language Model

Figure 10.3 Summarization with large language models using the t1; dr token and context-based autoregressive generation.

Transformer-based Image Model: Pixel Values as Tokens

Transformer-based image model

- Introduced in 2018: Image Transformer [Parmar et al., ICML'18]
- Partly same team who introduced Transformer [Vaswani et al., NeurIPS'17]

Key ingredients for image modeling

- Tokens and vocabulary:
 - Next pixel in terms of RGB intensity values
 - 256 vocabulary size when treating intensity values as discrete categories
- Context:
 - Part of the image (e.g., first half of the image)
 - Low resolution version of the image (e.g., 8x8 instead of 32x32)
 - Class of the image (e.g., plane, car)
- Attention: Attend all tokens or attend tokens in local neighborhood
- Positional encoding: 2-dimensional coordinates of a pixel

Transformer-based Image Model: Pixel Values as Tokens

Context Half of the image (16x32 pixels)

Context: 8x8 low-resolution image

Transformer-based Image Model: Latent Visual Tokens

- Pixel values as tokens is <u>not scalable</u> for high-resolution image generation
- Use a latent space of tokens for representing and generating images
- These latent visual tokens take values from a fixed visual codebook
 - Visual codebook is the vocabulary for the latent visual tokens, e.g., patterns
- Visual codebook learnt, e.g., with discrete Variational Autoencoder (dVAE)
- References for additional background
 - Neural Discrete Representation Learning [Oord et al., NeurIPS'17]
 - Generating Diverse High-Fidelity Images with VQ-VAE-2 [Razavi et al., NeurlPS'19]

Transformer-based Image Model: OpenAl's DALL-E 1

DALL-E 1 Model

- Introduced by OpenAI in January 2021: https://openai.com/index/dall-e/
- Week 6 reading: Zero-Shot Text-to-Image Generation [Ramesh et al., ICML'21]
- DALL-E 1 is a transformer model: 12 billion parameter version of GPT-3

Key ideas: Visual codebook

- Learn a fixed visual codebook using dVAE
 - Represent a 256x256 RGB image with 32x32 grid of latent visual tokens
 - Each latent visual token is one of 8,192 possible categories (size of visual codebook)
- dVAE will also be used to encode or decode images

Key ideas: Unified stream of text and visual tokens

- Text tokens with vocabulary size of 16,384
- Visual tokens with vocabulary size of 8,192
- DALL-E 1 is trained with 250 million text-images pairs

Transformer-based Image Model: OpenAl's DALL-E 1

Context: Text

- Input
 - Up to 256 text tokens with vocabulary size of 16,384
- Output
 - Latent output: 32x32 latent visual tokens with vocabulary size of 8,192
 - Final output: 256x256 RGB mage

Text Prompt

a store front that has the word 'openai' written on it. . . .

Al Generated images

Transformer-based Image Model: OpenAl's DALL-E 1

Context: (Text, Image)

- Input
 - Up to 256 text tokens with vocabulary size of 16,384
 - 256x256 RGB image \rightarrow 32x32 latent visual tokens with vocabulary size of 8,192
- Output
 - Latent output: 32x32 latent visual tokens with vocabulary size of 8,192
 - Final output: 256x256 RGB image

Text Prompt the exact same cat on the top as a sketch on the bottom

Al Generated images

Shortcomings of Token-based Autoregressive Generation

Example application scenarios

- Improve the quality of given text
- Repair a given buggy code
- Refine the quality of an image

Potential shortcomings of token-based generation

- Generation process would begin from scratch
 - → Lack an intuitive notion of iterative refinement
- Generation process goes token by token
 - → Output may not satisfy desired structural constraints

Outline of the Lecture

- Organizational updates
- Token-based autoregressive generation
- Diffusion-based non-autoregressive generation
- Multimodal joint representation and generation
 - (text, image) joint representation
 - (text, image) → text generation
 - (text, image) → image generation
- Week 6 assignment

Diffusion Models: Background

- Recently introduced in 2015: Deep Unsupervised Learning using Nonequilibrium Thermodynamics [Sohl-Dickstein et al., ICML'15]
- A diffusion model is characterized by two processes:

Forward process: Data → Noise

 $q\left(\mathbf{x}^{(0\cdots T)}\right)$

Reverse process: Data ← Noise

Diffusion Models: Background

Got popular after a follow-up paper demonstrated high-quality image generation:
 Denoising Diffusion Probabilistic Models [Jo et al., NeurIPS'20]

Figure 6: Unconditional CIFAR10 progressive generation ($\hat{\mathbf{x}}_0$ over time, from left to right). Extended samples and sample quality metrics over time in the appendix (Figs. 10 and 14).

Diffusion Models: Background

Got popular after a follow-up paper demonstrated high-quality image generation:
 Denoising Diffusion Probabilistic Models [Jo et al., NeurIPS'20]

Figure 1: Generated samples on CelebA-HQ 256×256 (left) and unconditional CIFAR10 (right)

Diffusion Models: Forward Process

Based on Denoising Diffusion Probabilistic Models [Jo et al., NeurIPS'20]

Figure 2: The directed graphical model considered in this work.

少·仅添加少量噪声,数据仍然接近原始数据大·添加更多噪声,数据变得更加随机。

- Starting at $\mathbf{x}_0 \sim q(\mathbf{x}_0) \coloneqq \text{data distribution}$
- A Markov chain gradually adds Gaussian noise with fixed parameters β_t

$$q(\mathbf{x}_t | \mathbf{x}_{t-1}) \coloneqq \mathcal{N} \left(\mathbf{x}_t; \sqrt{1 - \beta_t} \, \mathbf{x}_{t-1}, \beta_t \mathbf{I} \right)$$
 均值 协方差矩阵

数据保留部分

噪音部分

Diffusion Models: Reverse Process

Based on Denoising Diffusion Probabilistic Models [Jo et al., NeurIPS'20]

Figure 2: The directed graphical model considered in this work.

- Starting at $\mathbf{x}_T \sim p(\mathbf{x}_T) \coloneqq \mathcal{N}(\mathbf{x}_T; \mathbf{0}, \mathbf{I})$
- ullet A Markov chain having Gaussian transitions with learnable parameters $oldsymbol{ heta}$

$$p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t) \coloneqq \mathcal{N}(\mathbf{x}_{t-1};\boldsymbol{\mu}_{\theta}(\mathbf{x}_t,t),\boldsymbol{\Sigma}_{\theta}(\mathbf{x}_t,t))$$

均值,去噪的方向,朝向真实数据逼近;方差,去噪时添加多少随机性,防止模式崩溃

Diffusion Models: Simpler Parameterization and Objective

- [Jo et al., NeurIPS'20] proposed a simpler model parameterization and objective
- Simplifications with following fixed parameters:
 - Forward process uses fixed parameters for β_t (i.e., hyperparameters, not learnt)
 - Reverse process uses fixed parameters for $\Sigma_{\theta}(\mathbf{x}_t, t) \coloneqq \sigma_t^2 \mathbf{I}$, e.g., $\sigma_t^2 = \beta_t$
- Loss term at step t for sample x_t corresponds to minimizing the KL divergence:
 - $q(\mathbf{x}_{t-1}|\mathbf{x}_t,\mathbf{x}_0)$: \mathbf{x}_{t-1} distribution from forward process posteriors
 - $p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t)$: \mathbf{x}_{t-1} distribution from reverse process modeled by θ
- Consider data point x_0 and step t. We can sample x_t at any step t in closed form:
 - We get $q(\mathbf{x}_t | \mathbf{x}_0) \coloneqq \mathcal{N}(\mathbf{x}_t; \sqrt{\overline{\alpha_t}} \mathbf{x}_0, (1 \overline{\alpha_t}) \mathbf{I})$ where $\alpha_t \coloneqq 1 \beta_t$ and $\overline{\alpha_t} \coloneqq \prod_s^t \alpha_s$
 - For noise $\epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$, we can write $\mathbf{x}_t(\mathbf{x}_0, \epsilon) = \sqrt{\overline{\alpha_t}} \, \mathbf{x}_0 + (1 \overline{\alpha_t}) \epsilon$
- Proposed simpler model parameterization and training objective:
 - $\epsilon_{\theta}(\mathbf{x}_t, t)$ intends to predict noise ϵ from $\mathbf{x}_t(\mathbf{x}_0, \epsilon)$
 - loss for step $t := \| \boldsymbol{\epsilon} \boldsymbol{\epsilon}_{\theta} (\sqrt{\overline{\alpha_t}} \mathbf{x}_0 + \sqrt{1 \overline{\alpha_t}} \boldsymbol{\epsilon}, t) \|$

Diffusion Models: Training and Sampling Procedure

Based on simpler parameterization and objective by [Jo et al., NeurIPS'20]

Algorithm 1 Training 1: repeat 2: $\mathbf{x}_0 \sim q(\mathbf{x}_0)$ 3: $t \sim \text{Uniform}(\{1, \dots, T\})$ 4: $\epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ 5: Take gradient descent step on $\nabla_{\theta} \| \epsilon - \epsilon_{\theta} (\sqrt{\bar{\alpha}_t} \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t} \epsilon, t) \|^2$ 6: until converged Algorithm 2 Sampling 1: $\mathbf{x}_T \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ 2: for $t = T, \dots, 1$ do 3: $\mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ if t > 1, else $\mathbf{z} = \mathbf{0}$ 4: $\mathbf{x}_{t-1} = \frac{1}{\sqrt{\alpha_t}} \left(\mathbf{x}_t - \frac{1 - \alpha_t}{\sqrt{1 - \bar{\alpha}_t}} \epsilon_{\theta}(\mathbf{x}_t, t) \right) + \sigma_t \mathbf{z}$ 5: end for 6: return \mathbf{x}_0

Diffusion-based Image Model: Diffusion in Pixel Space

- [Jo et al., NeurIPS'20] operates directly in the pixel space
 - 32x32 RGB images for CIFAR10 dataset
 - 256x256 RGB images for CelebA-HQ dataset
- $\epsilon_{\theta}(\mathbf{x}_t, t)$ intends to predict noise ϵ from $\mathbf{x}_t(\mathbf{x}_0, \epsilon)$
 - Input: Image of dimensionality d
 - Output: Predicted noise of same dimensionality d
- CNN-based model architecture with parameters shared across steps
 - Step t is encoded via positional embedding

Figure 6: Unconditional CIFAR10 progressive generation ($\hat{\mathbf{x}}_0$ over time, from left to right). Extended samples and sample quality metrics over time in the appendix (Figs. 10 and 14).

Diffusion-based Image Model: Diffusion in Latent Space

- Pixel space is not scalable for high-resolution image generation
- Use a latent space for representation/generation, introduced by High-Resolution Image Synthesis with Latent Diffusion Models [Rombach et al., CVPR'22]
 - E.g., use Variational Autoencoder (VAE) for learning a fixed latent space
- Moreover, reverse process parameters are conditioned on context (e.g., prompt)
- This work forms the basis of Stable Diffusion family of models

Figure 3. We condition LDMs either via concatenation or by a more general cross-attention mechanism. See Sec. 3.3

Diffusion Models: Background and Recent Advances

- Recently introduced in 2015: Deep Unsupervised Learning using Nonequilibrium Thermodynamics [Sohl-Dickstein et al., ICML'15]
- Got popular after a follow-up paper demonstrated high-quality image generation:
 Denoising Diffusion Probabilistic Models [Jo et al., NeurIPS'20]
- Scaling up to high-resolution images with latent space: High-Resolution Image
 Synthesis with Latent Diffusion Models [Rombach et al., CVPR'22]
- State-of-the-art image generation is based on diffusion-based models
 - Stable Diffusion
 - DALL-E 2 / DALL-E 3 (Note: DALL-E 1 was token-based autoregressive model)
- Recent interest in using diffusion-based models for text generation
 - Diffusion-LM Improves Controllable Text Generation [Li et al., NeurIPS'22]
 - Text Generation with Diffusion Language Models: A Pre-training Approach with Continuous Paragraph Denoise [Lin et al., ICML'23]
 - CODEFUSION: A Pre-trained Diffusion Model for Code Gen. [Singh et al., EMNLP'23]

Diffusion-based Language Model: Controllable Generation

Based on Diffusion-LM Improves Controllable Text Generation [Li et al., NeurIPS'22]

Figure 1: Diffusion-LM iteratively denoises a sequence of Gaussian vectors into word vectors, yielding a intermediate latent variables of decreasing noise level $\mathbf{x}_T \cdots \mathbf{x}_0$. For controllable generation, we iteratively perform gradient updates on these continuous latents to optimize for fluency (parametrized by Diffusion-LM) and satisfy control requirements (parametrized by a classifier).

Summary of Token-based and Diffusion-based Generation

- Token-based autoregressive models dominate text generation
- Diffusion-based non-autoregressive models dominate image and video generation
- Emergent multimodal foundation models seek to leverage both architectures

Outline of the Lecture

- Organizational updates
- Token-based autoregressive generation
- Diffusion-based non-autoregressive generation
- Multimodal joint representation and generation
 - (text, image) joint representation
 - (text, image) → text generation
 - (text, image) → image generation
- Week 6 assignment

Multimodal Joint Representation: Background

Multimodal generative models

- Models for text generation
 - Input: (text, image)
 - Output: text
- Models for image generation
 - Input: (text, image)
 - Output: image

Intermediate joint representation for multimodal data

- Input (text, image) → Joint representation → Output
- Recall DALL-E 1: Zero-Shot Text-to-Image Generation [Ramesh et al., ICML'21]
 - Transformer-based model on unified stream of text and visual tokens
 - Implicitly learning a joint representation for (text, image) data
- Can we explicitly learn a joint representation for (text, image) data?

Multimodal Joint Representation: OpenAl's CLIP

- Introduced by OpenAI in January 2021: https://openai.com/index/clip/
- Week 6 reading: Learning Transferable Visual Models From Natural Language Supervision [Radford et al., ICML'21]
- Architecture and training
 - Text encoder: Transformer; Image encoder: Vision Transformer or ResNet
 - Trained over 400 million text-images pairs

训练目标:最大化匹配文本-图的相似度,最小化错误匹配的标度(对比学习)。

Multimodal Joint Representation: OpenAl's CLIP

- CLIP can be readily applied for zero-shot image classification to any domain
 - CLIP's performance matches state-of-the-art models trained for specific domains
- Trained encoders later used for multimodal generative models (e.g., DALL-E 2)

Figure 1. Summary of our approach. While standard image models jointly train an image feature extractor and a linear classifier to predict some label, CLIP jointly trains an image encoder and a text encoder to predict the correct pairings of a batch of (image, text) training examples. At test time the learned text encoder synthesizes a zero-shot linear classifier by embedding the names or descriptions of the target dataset's classes.

Outline of the Lecture

- Organizational updates
- Token-based autoregressive generation
- Diffusion-based non-autoregressive generation
- Multimodal joint representation and generation
 - (text, image) joint representation
 - (text, image) → text generation
 - (text, image) → image generation
- Week 6 assignment

Multimodal Text Generation: LLaVA

- LLaVA, i.e., Large Language and Vision Assistant
 - connects CLIP's image encoder with transformer-based language model
 - trained end-to-end on synthetic data: (text, image) → text
- Week 6 reading: Visual Instruction Tuning [Liu et al., NeurIPS'23]

Do you know who drew this painting?

The painting depicts a dog in a humorous situation, where it appears to be wearing a woman's dress and standing in front of a landscape. Although the artist of the painting is not explicitly identified, it could be a reference to the famous artist Da Vinci, known for his artistic works, including the Mona Lisa. The painting is likely a creative and comical take on the traditional portrait style, replacing a human figure with a dog dressed in a woman's clothing, making it an interesting and amusing visual piece.

Multimodal Text Generation: LLaVA

- LLaVA, i.e., Large Language and Vision Assistant
 - connects CLIP's image encoder with transformer-based language model
 - trained end-to-end on synthetic data: (text, image) → text
- Week 6 reading: Visual Instruction Tuning [Liu et al., NeurIPS'23]

Figure 1: LLaVA network architecture.

Multimodal Text Generation: OpenAl's GPT-1 -> GPT-40

- OpenAl models: https://platform.openai.com/docs/models
- **GPT-1 to GPT-3.5:** Introduced between 2018 and 2022
 - text \rightarrow text
- GPT-4: Introduced in March 2023: https://openai.com/index/gpt-4/
 - (text, image) → text
 - First model in the GPT series with capabilities for image understanding
 - Exact architecture and training details are not available
- GPT-4o: Introduced in May 2024: https://openai.com/index/hello-gpt-4o/
 - (text, image) → text when using OpenAl's API for GPT-4o
 - Improvements focused on multimodal data, including text, image, and speech
 - Exact architecture and training details are not available
 - Week 6 implementation: Experiment with GPT-40 model using OpenAl's API

Outline of the Lecture

- Organizational updates
- Token-based autoregressive generation
- Diffusion-based non-autoregressive generation
- Multimodal joint representation and generation
 - (text, image) joint representation
 - (text, image) → text generation
 - (text, image) → image generation
- Week 6 assignment

Multimodal Image Generation: OpenAl's DALL-E 2

- Introduced by OpenAI in April 2022: https://openai.com/index/dall-e-2/
- Hierarchical Text-Conditional Image Gen. with CLIP Latents [Ramesh et al., '22]

Figure 2: A high-level overview of unCLIP. Above the dotted line, we depict the CLIP training process, through which we learn a joint representation space for text and images. Below the dotted line, we depict our text-to-image generation process: a CLIP text embedding is first fed to an autoregressive or diffusion prior to produce an image embedding, and then this embedding is used to condition a diffusion decoder which produces a final image. Note that the CLIP model is frozen during training of the prior and decoder.

Multimodal Image Generation: OpenAl's DALL-E 1/2/3

- DALL-E 1: Introduced in January 2021: https://openai.com/index/dall-e/
 - Week 6 reading: Zero-Shot Text-to-Image Generation [Ramesh et al., ICML'21]
 - DALL-E 1 is a transformer model (a smaller version of GPT-3)
- DALL-E 2: Introduced in April 2022: https://openai.com/index/dall-e-2/
 - Week 6 optional reading: Hierarchical Text-Conditional Image Generation with CLIP Latents [Ramesh et al., '22]
 - DALL-E 2 uses diffusion model for image generation via CLIP embeddings
- DALL-E 3: Introduced in September 2023: https://openai.com/index/dall-e-3/
 - Week 6 optional reading: Improving Image Generation with Better Captions [Betker et al., '23]
 - DALL-E 3 uses diffusion model and improves on DALL-E 2
 - Exact architecture and training details are not available
 - Week 6 implementation: Experiment with DALL-E 3 model using OpenAI's API

Outline of the Lecture

- Organizational updates
- Token-based autoregressive generation
- Diffusion-based non-autoregressive generation
- Multimodal representation and generation
 - (text, image) joint representation
 - (text, image) → text generation
 - (text, image) → image generation
- Week 6 assignment

Week 6 Assignment

- Week 6 assignment deadline: 05 Dec 2024 (Thursday) CET
- Assignment PDF will be available online by tonight
- You will get to experiment with OpenAI's GPT-40 and DALL-E 3 models using APIs
 - OpenALAPI uses API keys for authentication
 - https://platform.openai.com/docs/api-reference/introduction
- Your API key is available in the folder where you upload content
 - {id}_{name}/organization/{id}_{name}_openai.txt
- Please use the provided API key only for the assignment purposes
 - Expected cost for queries needed for this assignment is under 1 USD
 - Each API key has a hard budget limit beyond which queries will be blocked
- We will cover the expenses associated with your API key for the assignment ©