

Introducción a la Minería de Datos

Verónica Guarín Escudero Escuela de Estadística

Correo: jvguarine@unal.edu.co

Temas

- Introducción
- Estructura de datos FP-Tree
- Paso 1: Construcción del FP-Tree
- Paso 2: Generación de Itemsets Frecuentes
- Discusión

Frequent Pattern Growth (FP-Growth) Algorithm

Introducción

- •Apriori: utiliza un enfoque de generar y probar: genera itemsets candidatos y probar si son frecuentes.
 - La generación de itemsets candidatos es costosa (en espacio y tiempo)
 - El conteo de soporte es costoso
 - ■Comprobación de subconjuntos (computacionalmente costosa)
 - ■Múltiples escaneos de bases de datos (E / S)
- •FP-Growth: permite descubrir itemsets frecuentes sin generación itemsets candidatos. Enfoque de dos pasos:
- Paso 1: crea una estructura de datos compacta llamada: FP-tree
- Construido haciendo 2 pasadas sobre el conjunto de datos.
- •Paso 2: extrae itemsets frecuentes directamente desde el FP-tree
- A través del recorrido por el FP-Tree

Core Data Structure: FP-Tree

Transaction Data Set

TID	Items
1	{a,b}
2	{b,c,d}
3	{a,c,d,e}
4	{a,d,e}
5	{a,b,c}
6	{a,b,c,d}
7	{a}
8	{a,b,c}
9	{a,b,d}
10	{b,c,e}

(i) After reading TID=1 (ii) After reading TID=2

(iii) After reading TID=3

Los nodos corresponden a un ítem y tienen un contador.

- •FP-Growth lee 1 transacción a la vez y la asigna a una ruta.
- •Se usa el orden fijo, por lo que las rutas se pueden superponer cuando las transacciones comparten elementos (cuando tienen el **mismo prefijo**).
- •En este caso, los contadores se incrementan.
- •Los punteros se mantienen entre los nodos que contienen el mismo elemento, creando listas unidas (líneas punteadas).
- ●Cuantas más rutas se solapen, mayor será la compresión. FP-tree puede caber en la memoria.
- •Itemsets frecuentes son extraídos del FP-Tree.

Paso 1: Construcción del FP-Tree (Ejemplo)

Transaction Data Set

TID	Items
1	{a,b}
2	{b,c,d}
3	{a,c,d,e}
4	{a,d,e}
5	{a,b,c}
6	{a,b,c,d}
7	{a}
8	{a,b,c}
9	{a,b,d}
10	{b,c,e}

(iii) After reading TID=3

(iv) After reading TID=10

FP-Tree se construye usando 2 pasadas sobre el conjunto de datos:

Pasada 1:

- Escanear los datos y calcular el soporte para cada ítem.
- Descartar ítems poco frecuentes.
- •Clasificar los ítems frecuentes en orden decreciente en función del soporte.
 - oPara el ejemplo: a, b, c, d, e
 - OUsar este orden cuando construya el **FP-Tree**, para que los prefijos comunes puedan ser compartidos.

Paso 1: Construcción del FP-Tree (Ejemplo)

Transaction Data Set

2010 001	
TID	Items
1	{a,b}
2	{b,c,d}
3	{a,c,d,e}
4	{a,d,e}
5	{a,b,c}
6	{a,b,c,d}
7	{a}
8	{a,b,c}
9	{a,b,d}
10	{b,c,e}

(i) After reading TID=1 (ii) After reading TID=2

(iii) After reading TID=3

Pasada 2: construir el FP-Tree.

- Leer transacción 1: {a, b}
 - oCrea 2 nodos a y b y la ruta null → a → b. Asignar los recuentos de a y b con 1.
- Lea la transacción 2: {b, c, d}
 - \circ Crea 3 nodos para b, c y d y la ruta null \rightarrow b \rightarrow c \rightarrow d. Incrementar los nodos en 1.
 - Tenga en cuenta que aunque las transacciones 1 y 2 comparten b, las rutas son disjuntas ya que no comparten un prefijo común. Agrega el enlace entre las b.
- •Lea la transacción 3: {a, c, d, e}
 - oComparte ítem de prefijo común **a** con la transacción 1, por lo que la ruta de las transacciones 1 y 3 se superpondrán y el recuento de frecuencias del nodo **a** se incrementará en 1. Agregue enlaces entre las **c** y las **d**.
- Continúe hasta que todas las transacciones estén asignadas a una ruta en el FP-Tree.

Tamaño del FP-Tree

El FP-Tree generalmente tiene un tamaño más pequeño que los datos sin comprimir, por lo general, muchas transacciones comparten elementos (y, por lo tanto, prefijos).

- •El mejor de los casos: todas las transacciones contienen el mismo conjunto de ítems.
 - ○1 ruta en el FP-Tree
- •El peor escenario posible: cada transacción tiene un conjunto único de ítems (sin elementos en común)
 - oEl tamaño del FP-Tree es al menos tan grande como los datos originales.
 - ○Los requisitos de RAM para el FP-Tree son más altos. Necesita almacenar los punteros entre los nodos y los contadores.
- El tamaño del FP-Tree depende de cómo se ordenan los ítems
 - ○El orden de disminución de soporte se usa normalmente, pero no siempre lleva al árbol más pequeño (es una heurística).

Paso 2: Generación Itemsets Frecuentes

- •FP-Growth extrae conjuntos de elementos frecuentes del FP-tree.
- Algoritmo Bottom-Up desde las hojas hacia la raíz.
 - o Divide and Conquer: primero busca conjuntos de ítems frecuentes que terminen en e, luego de, etc. . . entonces d, luego cd, etc. .
 - oPrimero, extrae los subárboles de un prefix path que terminan en un ítem o ítemset.

Paso 2: Generación Itemsets Frecuentes

- •Cada subárbol de ruta de prefijo se procesa recursivamente para extraer los conjuntos de elementos frecuentes. Las soluciones se fusionan.
 - oPor ejemplo: El subárbol con la ruta del prefijo para e se usará para extraer conjuntos de elementos frecuentes que terminan en e, luego en de, ce, be y ae, luego en cde, bde, cde, etc.

Prefix path sub-tree ending in e

Condicional FP-Tree

Como {e} es frecuente, el algoritmo debe resolver los subproblemas de encontrar conjuntos de elementos frecuentes que terminan en de, ce, be y ae.

●Es el FP-Tree que se construiría si solo consideramos las transacciones que contienen un itemset particular.

Todos los demás son desestimados.

•FP-Tree condicional de **e**

TID	Items
4	{a,b}
2	{b,c,d}
3	{a,c,d, & }
4	{a,d, ∖ }
4	{a,b,c}
-6	{a,b,c,d}
7	{a}
0	{a,b,c}
9	{a,b,d}
10	{b,c, & }

Bibliografía

□Han, J., Pei, J., & Yin, Y. (2000, May). Mining frequent patterns without candidate generation. In ACM sigmod record (Vol. 29, No. 2, pp. 1-12). ACM. [pdf]
□Tan, P. N. (2006). Introduction to data mining. Pearson Education India. [pdf]

Gracias