- 499 -

phase chromatography (water/acetonitrile) to result in a white solid (0.8 g). MS and H-NMR were consist nt with the proposed structure.

5 Step D

10

15

;

DL ethyl-3-amino-3-(3,5-diisopropyloxyphenyl) propionate adduct produced in Step C (500mg) was dissolved in water/acetonitrile (1:1), followed by the addition of lithium hydroxide (100 mg). The reaction was allowed to stir at 25°C, and monitored by HPLC. After complete hydrolysis (1-2 hours) trifluoroacetic acid was added until pH = 2. The product was purified by reverse phase chromatography (water/acetonitrile) to result in 625 mg of the title compound as a white solid. MS and H-NMR were consistent with the proposed structure.

÷

Example 276

Preparati n f β -[[2-[[[3-[(aminoiminomethyl)amin]-phenyl]carbonyl]amino]acetyl]amino]-3,5-dibromo-4-hydroxybenzenepropanoic acid, trifluoroacetate salt

Step A

15

10

5

20

25

30

To 4-hydroxy-3,5-dibromobenzaldehyde (Aldrich) (10 g) in ethanol (70 mL) was added ammonium acetate (2.5 equivalents) followed by addition of ethyl hydrogen malonate (1.1 equivalents). The reaction mixture was stirred at reflux for 5 hours. The mixture was cooled, and ethanol removed under reduced pressure. Aqueous HCl (100 mL) was added and the mixture partitioned with ethyl acetate. The organic layer was discarded and the acid layer made basic with solid K₂CO₃. The resulting mixture was partitioned between methylene chloride (150 mL), separated and dried over Na₂SO₄. The solvent was evaporated to give DL ethyl-3-amino-3-(4-hydroxy-3,5-dibromophenyl) propionate as a solid and was collected by

- 501 -

filtration (1.3 g). MS and H-NMR wer consist nt with th proposed structure.

Step B

5

÷

10

15

20

N,N'-disuccinimidyl carbonate (DSC) (1.0 g, 0.4 mmol) was added to the compound of Example M (1.0 g, 0.4 mmol) in dry dimethylformamide (6 mL) followed by addition of dimethylaminopyridine (100 mg). After a period of 20 minutes DL ethyl-3-amino-3-(4-hydroxy-3,5-dibromophenyl) propionate hydrochloride (1.1 g, 0.5 mmol) was added followed by addition of NMM (2.0 mL). After complete reaction (1-16 hours) the product was purified by reverse phase chromatography (water/acetonitrile) to result in a white solid (.89 g). MS and H-NMR were consistent with the proposed structure.

25

30

Step C

DL ethyl-3-amino-3-(4-hydroxy-3,5-dibromophenyl) propionate adduct produced in Step B (500 mg) was dissolved in water/acetonitrile (1:1), followed by the addition of lithium hydroxide (100 mg). The reaction was allowed to stir at 25°C, and monitored by HPLC. After complete hydrolysis (1-2 hours) trifluoroacetic acid was added until pH = 2. The product was purified by reverse phase chromatography (water/ac tonitrile) to result in 425

mg of the title compound as a white solid. MS and H-NMR were consistent with the pr posed structure.

- 503 -

Example 277

Preparation of β -[[2-[[[3-[(aminoiminomethyl)amino]-phenyl]carbonyl]amino]acetyl]amino]-3,5-dichloro-4-hydroxybenzenepropanoic acid, trifluoroacetate salt

15 Step A

20

25

30

•

5

To 4-hydroxy-3,5-dichlorobenzaldehyde (Aldrich) (10 g) in ethanol (70 mL) was added ammonium acetate (2.5 equivalents) followed by addition of ethyl hydrogen malonate (1.1 equivalents). The reaction mixture was stirred at reflux for 5 hours. The mixture was cooled, and ethanol removed under reduced pressure. Aqueous HCl (100 mL) was added and the mixture partitioned with ethyl acetate. The organic layer was discarded and the acid layer made basic with solid K_2CO_3 . The resulting mixture was partitioned between methylene chloride (150 mL), separated and dried over Na_2SO_4 . The solvent was evaporated to give DL ethyl-3-amino-3-(4-hydroxy-3,5-

dichloroph nyl) propionat as solid (2.5 g). MS and H-NMR were consistent with the proposed structure.

Step B

5

10

N,N'-disuccinimidyl carbonate (DSC) (1.0 g, 0.4 mmol)

was added to the compound of Example M (1.0 g, 0.4 mmol)

in dry dimethylformamide (6 mL) followed by addition of

dimethylaminopyridine (100 mg). After a period of 20

minutes DL ethyl-amino-3-(4-hydroxy-3,5-dichlorophenyl)

propionate hydrochloride (1.1 g, 0.5 mmol) was added

followed by addition of NMM (2.0 mL). After complete

reaction (1-16 hours) the product was purified by reverse

phase chromatography (water/acetonitrile) to result in a

white solid (0.9 g). MS and H-NMR were consistent with

the proposed structure.

25

30

Step C

DL-ethyl-amino-3-(4-hydroxy-3,5-dichlorophenyl) propionate adduct prepared in Step B (500 mg) was dissolved in water/acetonitrile (1:1), followed by the addition of lithium hydroxide (100 mg). The reaction was allowed to stir at 25°C, and monitored by HPLC. After complete hydrolysis (1-2 hours) trifluoroacetic acid was added until pH = 2. The product was purified by reverse phase chromatography (water/acetonitrile) to result in 325

•

- 505 -

mg of the title compound as a white solid. MS and H-NMR were consistent with the proposed structure.

10

15

20

25

30

Example 278

Preparation of β -[[2-[[[3-[(5,6-dihydro-4H-thiazin-2-yl) amino]phenyl]carbonyl]amino]acetyl]amino]pyridine-3-propanoic acid, bis(trifluoroacetate) salt

Step A

The compound prepared in Example 104 (2.0 g) was added to absolute ethanol (60 mL) in a Parr jar. Palladium on carbon 5% (500 mg) was added and the mixture was hydrogenolyzed under 50 psi in a Parr apparatus for a period of 2.5 hours. After complete reaction the palladium catalyst was removed by filtration through a plug of celite. The solvent was removed under reduced pressure and the sample dried in vacuo.

- 507 -

Step B

10

15

5

ŧ.

The compound prepared in Step A was added to acetonitrile (20 mL) followed by addition of 2-methyl thiodihydro-1,3-thiazine (2.0 g) [prepared according to J. Chem. Soc. Perkin Transaction, 1943, p.243-245] and heated for 4 hours. After complete reaction water was added and the product was purified by reverse phase chromatography (water/acetonitrile) to result in a white solid (1.3 g). MS and H-NMR were consistent with the proposed structure.

20

25

30

Step C

DL-ethyl 3-amino-3(pyridyl) propionate thiazine adduct prepared in Step B (700 mg) was dissolved in water/acetonitrile (1:1), followed by the addition of lithium hydroxide (100 mg). The reaction was allowed to stir at 25°C, and monitored by HPLC. After complete hydrolysis (1-2 hours) trifluoroacetic acid was added until pH = 2. The product was purified by reverse phase chromatography (water/acetonitrile) to result in 520 mg of the title compound as a white solid. MS and H-NMR were consistent with the proposed structure.

10

20

25

Example 279

Preparation of β -[[2-[[[5-[(aminoiminomethyl)amino]-2-hydroxyphenyl]carbonyl]amino]acetyl]amino]-3,5-dichlorobenzenepropanoic acid, trifluoroacetate salt

Step A

Amino salicylic acid (10 g), K_2CO_3 (10 g), and di-tert-butoxycarbonate (12 g) were placed in a flask containing water/acetonitrile (100 mL, (1:1)). The course of the reaction was monitored by RPHPLC. After complete reaction dilute aqueous HCl was added (pH = 4), the product was separated from mixture, and filtered resulting in a tan-red solid (15 g). The compound was dried in an oven at 70°C for 16 hours. MS and H-NMR were consistent with the proposed structure.

Step B

30

35

- 509 -

N,N'-disuccinimidyl carbonate (DSC) (2.0 g, 0.8 mmol) was added to th N-Boc compound produc d in Step A (2.0 g, 0.4 mmol) in dry dimethylformamide (4 mL) followed by addition of dimethylaminopyridine (100 mg). After a period of 20 minutes, ethyl glycinate hydrochloride (2.1 g, 0.9 mmol) was added followed by addition of DIEA (2.0 mL). After complete reaction (2 hours) the product was extracted with ethyl acetate (100 mL) washed with aqueous HCl, brine and dried over Na₂SO₄ to give a dark oil (2.5 g). MS and H-NMR were consistent with the proposed structure.

Step C

15

30

10

5

*

Ethyl glycinate N-Boc benzamide adduct produced in

Step B (2 9) was dissolved in water/acetonitrile (1:1),
followed by the addition of lithium hydroxide (200 mg).

The reaction was allowed to stir at 25°C, and monitored by
HPLC. After complete hydrolysis (1-2 hours) hydrochloric
acid was added until pH = 4. The product was extracted

with ethyl acetate (100 mL) washed with aqueous HCl, brine
and dried over Na₂SO₄ to give a dark oil. The oil was
vigorously stirred with ether to result in a solid (1.9 g)
after filtration and dried in a vacum oven for 16 hours.

MS and H-NMR were consistent with the proposed structure.

Step D

5

N,N'-disuccinimidyl carbonate (DSC) (1.0 g, 0.4 mmol) was added to the glycine compound produced in Step C (1.0 g, 0.4 mmol) in dry dimethylformamide (6 mL) followed by addition of dimethylaminopyridine (100 mg). After a period of 20 minutes DL ethyl-3-amino-3-(3,5-dichlorophenyl) propionate hydrochloride (1.1 g, 0.5 mmol)

dichlorophenyl) propionate hydrochloride (1.1 g, 0.5 mmol) was added followed by addition of NMM (2.0 mL). After complete reaction (1-16 hours) the product was purified by reverse phase chromatography (water/acetonitrile) to result in a white solid (0.9 g). MS and H-NMR were consistent with the proposed structure.

Step E

20

25

The compound produced in Step D (6 g) was dissolved in methylene chloride (50 mL). To this mixture HCl/dioxane (20 mL, 4N) was added. The mixture was stirred for 1-2 hours. The solvent was removed under reduced pressure followed by addition of ether. The

- 511 -

solvent was removed again under r duced pressure. The solid was purified by reverse phase chromatography (water/acetonitrile) to result in a white solid (0.8 g). MS and H-NMR were consistent with the proposed structure.

5

*

Step F

10

15

20

The aniline from step E was dissolved into acetonitrile (20 mL). To this mixture pyrazole carboxamidine hydrochloride (2 g) was added followed by addition of DIEA. The mixture was heated at reflux for 4 hours. After complete reaction (1-16 hours) the product was purified by reverse phase chromatography (water/acetonitrile) to result in a white solid (0.9 g). MS and H-NMR were consistent with the proposed structure.

Step G

25

30

DL-ethyl 3-amino-3-(3,5-dichlorophenyl) propionate adduct produced in Step F (500 mg) was dissolved in water/acetonitrile (1:1), followed by the addition of lithium hydroxide (100 mg). The reaction was allowed to stir at 25°C, and monitored by HPLC. After complete hydrolysis (1-2 hours) trifluoroacetic acid was added until pH = 2. The product was purified by reverse phase chromatography (water/acetonitrile) to result in 125 mg of the title compound as a white solid. MS and H-NMR were consistent with the proposed structure.

.

Example 280

Preparation of β -[[2-[[[3-[[(phenoxyamino)-carbonyl]amino]phenyl]carbonyl]amino]acetyl]amino]-pyridine-3-propanoic acid, trifluoroacetate salt

Step A

15

20

25

5

10

To O-phenyl hydroxyl amine hydrochloride (Fluka) (4 g) in acetonitrile was added 3-ethoxycarbonyl phenylisocyanate (Lancaster) (5 g) and NMM (1 equivalent). The reaction was stirred for 1 hour at 70°C. After complete reaction the solvent was removed under reduced pressure to give a solid mass. Water was added and a tan solid filtered (7.5 g). MS and H-NMR were consistent with the proposed structure.

10

15

30

Step B

The compound produced in Step A (7 g) was dissolved in water/acetonitrile (1:1), followed by the addition of lithium hydroxide (4g). The reaction was allowed to stir at 25°C, and monitored by HPLC. After complete hydrolysis (4-6 hours) 10% aqueous HCl was added until pH = 2. The product was filtered to give a white solid (7 g) which was dried in a vacuum oven at 70° C for 16 hours. MS and H-NMR were consistent with the proposed structure.

Step C

N,N'-disuccinimidyl carbonate (DSC) (1.4 g, 0.5 mmol) was added to the carboxylic acid-urea of 0-phenyl hydroxyl amine produced in Step B and 3-ethoxycarbonyl phenylisocyanate [(A13)in Scheme V] (1.0 g, 0.5 mmol) in dry dimethylformamide (20 mL) followed by addition of dimethylaminopyridine (100 mg). After a period of 1 hour gly-DL-ethyl 3-amino-3-(pyridyl) propionate hydrochloride (2.2 g, 0.7 mmol) in DMF/NMM (1:1) (5.0 mL) was added in

on portion. After complete reaction the product was purified by reverse phase chromatography (water/acetonitrile) to result in a white solid (0.8 g). MS and H-NMR were consistent with the proposed structure.

5

10

15

Step D

The compound produced in Step C (300 mg) was dissolved in water/acetonitrile (1:1), followed by the addition of lithium hydroxide (100 mg). The reaction was allowed to stir at 25°C, and monitored by HPLC. After complete hydrolysis (1-2 hours) trifluoroacetic acid was added until pH = 2. The product was purified by reverse phase chromatography (water/acetonitrile) to result in 500 mg of the title compound as a white solid. MS and H-NMR were consistent with the proposed structure.

- 515 -

Example 281

Preparation of β -[[2-[[[3-[[[(ph nylamino)amino]-carbonyl]amino]phenyl]carbonyl]amino]acetyl]amino]-pyridine-3-propanoic acid, trifluoroacetate salt

15 Step A

5

10

20

25

30

To phenyl hydrazine hydrochloride (Aldrich) (3.5 g) in acetonitrile was added 3-ethoxycarbonyl phenylisocyante (Lancaster) (5 g) and NMM (1 equivalents). The reaction was stirred for 1 hour at 70°C. After complete reaction the solvent was removed under reduced pressure to give a solid mass. Water was added and the tan solid filtered (8.7 g). MS and H-NMR were consistent with the proposed structure.

Step B

The compound produced in Step A (5 9) was dissolved
in water/acetonitrile (1:1), followed by the addition of
sodium hydroxide (3 g). The reaction was
allowed to stir at 25°C, and monitored by HPLC. After
complete hydrolysis (4-6 hours) 10% aqueous HCl was added
until pH = 4. The product was filtered to give a yellow
solid (3.2 g) and dried in a vacuum oven at 70°C for 16
hours. MS and H-NMR were consistent with the proposed
structure.

Step C

20

25

5

N,N'-disuccinimidyl carbonate (DSC) (500 mg, 0.5 mmol) was added to the compound produced in Step B and 3-ethoxycarbonyl phenylisocyanate (1.0 g, 0.5 mmol) in dry dimethylformamide (20 mL) followed by addition of dimethylaminopyridine (100 mg). After a period of 1 hour glycine-DL-ethyl 3-amino-3-(pyridyl) propionate

- 517 -

hydrochloride (1.0 g, 0.7 mmol) in DMF/NMM (1:1) (5.0 mL) was added in one portion. After c mplet reaction the product was purified by reverse phase chromatography (water/acetonitrile) to result in a white solid (0.8g). MS and H-NMR were consistent with the proposed structure.

Step D

5

10

15

The compound produced in Step C (300 mg) was dissolved in water/acetonitrile (1:1), followed by the addition of lithium hydroxide (100 mg). The reaction was allowed to stir at 25°C, and monitored by HPLC. After complete hydrolysis (1-2 hours) trifluoroacetic acid was added until pH = 2. The product was purified by reverse phase chromatography (water/acetonitrile) to result in 500 mg of the title compound as a white solid. MS and H-NMR were consistent with the proposed structure.

Example 282

Preparation $f \beta$ -[[2-[[[3-[(5-amino-1,2,4-triazol-3-yl)-amino]phenyl]carbonyl]amino]acetyl]amino]-3,5-dichlorobenzenepropanoic acid, trifluoroacetate salt

Step A

15 '

30

10

5

Glycine (20 g, 266 mmol) was added to water (200 mL), followed by addition of potassium hydroxide (20 g, 357 mmol) and the mixture cooled to 0°C in an ice bath. To this mixture 3-nitrobenzoyl chloride (Aldrich) (20 g,108 mmol) was added in acetonitrile (20 mL) drop-wise over a 10 minute period. After complete reaction (3-4 hours) concentrated hydrochloric acid was added until pH=1 followed by addition of saturated aqueous NaCl (75 mL). The product was filtered, washed with water and air dried (22 g, 90% yield).

Step B

N,N'-disuccinimidyl carbonate (DSC) (1.5 g, 0.7 mmol)

was added to the compound produced in Step A (1.0 g, 0.4 mmol) in dry dimethylformamide (6 mL) followed by addition of dimethylaminopyridine (100 mg). After a period of 20 minutes DL ethyl-3-amino-3-(3,5-dichloroophenyl) propionate hydrochloride (1.1 g, 0.5 mmol) was added followed by addition of NMM (2.0 mL). After complete reaction (1-16 hours) the product was isolated by adding water/aqueous HCl (5 ml) and filtering product to result in a white solid (0.9 g). MS and H-NMR were consistent with the proposed structure.

20

5

Step C

25

The compound produced in Step B was subjected to the conditions described in Tetrahedron Letters, Vol. 25 1984, 839-842 for the reduction of the nitro group. The reduction was preformed on 2 g of nitro compound.

Step D

To the compound produced in Step C (2 g) isopropanol (20 mL) was added followed by addition of diphenoxycyanamine (1 g) (Aldrich). The reaction was stirred for 1 hour at 70°C. After complete reaction the solvent was removed under reduced pressure to give a solid mass. Ether was added and the tan solid filtered (3.2 g). MS and H-NMR were consistent with the proposed structure.

Step E

25

30

To the compound produced in Step D (1 g) ethanol (10 mL) was added followed by addition of hydrazine (1.5 mL) (Aldrich). The reaction was stirred for 1 hour at 25°C. After complete reaction the solvent was removed under reduced pressure to give a solid mass. After complete reaction (1 hour) the product was purified by reverse phase chromatography (water/acetonitrile) to result in a white solid (0.7 g). MS and H-NMR were consistent with the proposed structure.

Step F

5

10

The compound produced in Step E (300 mg) was dissolved in water/acetonitrile (1:1), followed by the addition of lithium hydroxide (100 mg). The reaction was allowed to stir at 25°C, and monitored by HPLC. After complete hydrolysis (1-2 hours) trifluoroacetic acid was added until pH = 2. The product was purified by reverse phase chromatography (water/acetonitrile) to result in 430 mg of the title compound as a white solid. MS and H-NMR were consistent with the proposed structure.

10

20

25

Example 283

Preparation of β -[[2-[[[3-[(1,2,3,4-tetrahydro-2,4-dioxopyrimidin-6-yl)amino]phenyl]carbonyl]amino]-acetyl]amino]pyridine-3-propanoic acid, trifluoroacetate salt

15 Step A

3-Aminobenzoic acid (4 g) was added to ethoxyethanol (4 mL), followed by 6-chloro uracil (4 g), and heated to 125°C for 3-4 hours. The product was filtered, washed with ether and air dried (4.5 g) to give a tan solid. MS and H-NMR were consistent with the proposed structure.

Step B

30

N,N'-disuccinimidyl carbonate (DSC) (2 g, 0.7 mmol) was added to the compound produced in Step A (2.0 g, 0.4 mmol) in dry dimethylformamide (6 mL) f llowed by addition of dimethylaminopyridine (100 mg). After a period of 20 minutes tert-butyl glycine hydrochloride (1.1 g, 0.5 mmol) was added followed by addition of DIEA (2.0 mL). After complete reaction (2-3 hours) the product was isolated by extraction in ethyl acetate, washed with aqueous HCl, saturated K_2CO_3 , brine and dried over Na_2SO_4 to result in a yellow oil (3 g). MS and H-NMR were consistent with the proposed structure.

Step C

15

10

5

The compound produced in Step B (2 g) was dissolved in methylene chloride (50 mL). To this mixture TFA (20 mL) was added. The mixture was stirred for 12 hours. The solvent was removed under reduced pressure followed by addition of ether. The solid (1.8 g) was filtered and dried in a vacuum for 1-2 hours. MS and H-NMR were consistent with the proposed structure.

Step D

N,N'-disuccinimidyl carbonate (DSC) (1.5 g, 0.7 mmol) was added to the compound produced in Step C of Example 283 (1.0 g, 0.4 mmol) in dry dimethylformamide (6 mL) followed by addition of dimethylaminopyridine (100 mg). After a period of 20 minutes, DL ethyl-3-amino-3-(3-pyridyl) propionate hydrochloride (1.1 g, 0.5 mmol) was added followed by addition of NMM (2.0 mL). After complete reaction (1-16 hours) the product was purified by reverse phase chromatography (water/acetonitrile) to result in a white solid (0.9 g). MS and H-NMR were consistent with the proposed structure.

20

25

30

5

10

15

Step E

The compound produced in Step D (300 mg) was dissolved in water/acetonitrile (1:1), followed by the addition of lithium hydroxide (100 mg). The reaction was allowed to stir at 25°C, and monitored by HPLC. After complete hydrolysis (1-2 hours) trifluoroacetic acid was added until pH = 2. The product was purified by reverse phase chromatography (water/acetonitrile) to result in 430 mg of the title compound as a white solid. MS and H-NMR were consistent with the proposed structure.

10

15

- 525 -

Example 284

Preparation f 3,5-dichl ro- β -[[2-[[[3-[[1,2,3,4-tetrahydro-2,4-dioxopyrimidin-6-yl)amino]phenyl]-carbonyl]amino]acetyl]amino]benzenepropanoic acid

Step A

N,N'-disuccinimidyl carbonate (DSC) (0.6 g) was added to the compound from Step C of Example 283 (0.6 9,) in dry dimethylformamide (6 mL) followed by addition of dimethylaminopyridine (100 mg). After a period of 20 minutes DL ethyl-3-amino-3-(3,5-dichlorophenyl) propionate hydrochloride (1.1 9, 0.5 mmol) was added followed by addition of NMM (2.0 mL). After complete reaction (1-16 hours) the product was purified by reverse phase chromatography (water/acetonitrile) to result in a white solid (0.9 g). MS and H-NMR were consistent with the proposed structure.

Step B

5

10

The compound produced in Step A (200 mg) was dissolved in water/acetonitrile (1:1), followed by addition of lithium hydroxide (100 mg). The reaction was allowed to stir at 25°C, and monitored by HPLC. After complete hydrolysis (1-2 hours) trifluoroacetic acid was added until pH = 2. The product was purified by reverse phase chromatography (water/acetonitrile) to result in 105 mg of the title compound as a white solid. MS and H-NMR were consistent with the proposed structure.

WO 97/08145

5

10

25

30

- 527 -

Example 285

Preparation of 3,5-dichloro-β-[[2-[[[3-[[imino(1-piperidinyl)methyl]amino]phenyl]carbonyl]amino]acetyl]amino]benzenepropanoic acid,
trifluoroacetate salt

Step A

20 CL CI CI CI ONH NH CO₂E

The above compound was prepared according to methodology of Example 24, substituting one equivalent of piperidine for benzylamine in Example 23, Step B, and an equivalent amount of DL ethyl-3-amino-3-(3,5-dichlorophenyl) propionate hydrochloride for DL ethyl-3-amino-3-(3-pyridyl) propionate dihydrochloride in Example 1, Step C and further used in Example 1, Step D as described in Example 23, Step C. MS and H-NMR were consistent with the proposed structure.

Step B

5

10

The compound prepared in Step A (200 mg) was dissolved in water/acetonitrile (1:1), followed by the addition of lithium hydroxide (100 mg). The reaction was allowed to stir at 25°C, and monitored by HPLC. After complete hydrolysis (1-2 hours) trifluoroacetic acid was added until pH = 2. The product was purified by reverse phase chromatography (water/acetonitrile) to result in 105 mg of the title compound as a white solid. MS and H-NMR were consistent with the proposed structure.

10

Example 286

Preparation of β -[[2-[[[3-[[benzoxazol-2-yl)amino]-phenyl]carbonyl]amino]acetyl]amino]pyridine-3-propanoic acid, trifluoroacetate salt

NH CO₂H

Step A

The compound prepared in Example 104 (2.0 g) was added to absolute ethanol (60 mL) in a Parr jar.

Palladium on carbon 5% (500 mg) was added and the mixture was hydrogenolyzed under 50 psi in a Parr apparatus for a period of 2.5 hours. After complete reaction the palladium catalyst was removed by filtration through a plug of celite. The solvent was removed under reduced pressure and the sample dried in vacuo.

Step B

The compound prepared in Step A was dissolved in DMF (20 mL). To this mixture 2-chlorobenzoxazole (Aldrich) (2 g) and K_2CO_3 (4 g) was added. The mixture was heated to 70°C until the aniline was consumed. After complete reaction, the product was purified by reverse phase

chromatography (water/acetonitrile) to result in 215 mg of the title compound as a white solid. MS and H-NMR were consistent with the propos d structure.

5 Step C

The compound prepared in Step B (200 mg) was dissolved in water/acetonitrile (1:1), followed by the addition of lithium hydroxide (100 mg). The reaction was allowed to stir at 25°C, and monitored by HPLC. After complete hydrolysis (1-2 hours) trifluoroacetic acid was added until pH = 2. The product was purified by reverse phase chromatography (water/acetonitrile) to result in 185 mg of the title compound as a white solid. MS and H-NMR were consistent with the proposed structure.

10

10

15

Example 287

Preparation of β -[[2-[[[3-[[5-phenyl-1H-imidazol-2-yl)-amino]phenyl]carbonyl]amino]acetyl]amino]pyridine-3-propanoic acid, trifluoroacetate salt

Step A

The compound prepared in Example M, Step B (5 g) was added to ethanol (100 mL) followed by dry HCl in dioxane

(10 mL). The mixture was heated to reflux for 2 hours.

The solvent was removed under reduced pressure to give the ethyl ester (5.6 g). MS and H-NMR were consistent with the proposed structure.

25 Step B

30

To the product of Step A (3 g) acetonitrile (50 mL) was added followed by addition of bromoacetophenone (2.7 g) and DIEA (2 mL). The mixture was heated for 2 hours and the solvent removed under reduced pressure. The

product was is lated by extracti n into ethyl acetat and dried over Na_2SO_4 to giv a dark red solid (5 g). MS and H-NMR were consistent with the proposed structur .

5 Step C

10

15

The compound produced in Step B (2 g) was dissolved in water/acetonitrile (1:1), followed by the addition of lithium hydroxide (100 mg). The reaction was allowed to stir at 25°C, and monitored by HPLC. After complete hydrolysis (1-2 hours) aqueous HCl was added until pH = 7. The product was filtered and dried in an oven to result in 2.6 g of a tan solid. MS and H-NMR were consistent with the proposed structure.

20 Step D

25

30

N,N'-disuccinimidyl carbonate (DSC) (0.3 g, 0.7 mmol) was added to the compound produced in Step C (0.5 g, 0.4 mmol) in dry dimethylformamide (5 mL) followed by addition of dimethylaminopyridine (100 mg). After a period of 20 minutes, DL ethyl-3-amino-3-(3-pyridyl) propionate hydrochloride (1.1 g, 0.5 mmol) was added followed by addition of NMM (2.0 mL). After complete reaction (1-16 hours) the product was purified by reverse phase chromatography (water/acetonitrile) to result in a white

- 533 -

solid (0.9 g). MS and H-NMR were consistent with the proposed structure.

Step E

5

10

The compound produced in Step D (250 mg) was dissolved in water/acetonitrile (1:1), followed by the addition of lithium hydroxide (100 mg). The reaction was allowed to stir at 25°C, and monitored by HPLC. After complete hydrolysis (1-2 hours) trifluoroacetic acid was added until pH = 2. The product was purified by reverse phase chromatography (water/acetonitrile) to result in 110 mg of the title compound as a white solid. MS and H-NMR were consistent with the proposed structure.

Example 288

Preparation of 3-[[2-[[[3-[(aminoiminomethyl)amino]-phenyl]carbonyl]amino]acetyl]amino]-5-[(3,5-dichlorophenyl)amino]-5-oxopentanoic acid, trifluoroacetate salt

15 Step A

5

10

20

A mixture of β-amino glutaric acid (Sigma) (5 9) and trifluroacetic anhydride (Sigma) (20 mL) was stirred for 1-2 hours at 25°C. The solvent was removed under reduced pressure to leave an oil. To the oil was added ether (50 mL) and the product filtered (5 g). MS and H-NMR were consistent with the proposed structure.

Step B

A DMF (20 mL) mixture of the product from Step A and 3,5 dichloroaniline (6 g) was stirred for 16 hours. After complete reaction aqueous HCl (100 mL) and ethyl acetate (100 mL) were added and the mixture, shaken and separated. The organic layer was washed with brine and dried over Na_2SO_4 to give the acid amide (4 g). MS and H-NMR were consistent with proposed structure.

15

10

5

Step C

20

25

The trifluoroacetate group of the product of Step B was removed by heating the compound produced in Step B with dilute ammonium hydroxide (10 mL in 50 mL water).

After complete reaction the mixture was acidified with 10% HCl and the product (2.5 g) was filtered. MS and H-NMR were consistent with the proposed structure.

10

20

25

30

Step D

The compound produced in Step C (2 g) was added to ethanol (100 mL) followed by dry HCl in dioxane (10 mL). The mixture was heated to reflux for 2 hours. The solvent was removed under reduced pressure to give the ethyl ester (1.9 g). MS and H-NMR were consistent with the proposed structure.

15 Step E

N,N-disuccinimidyl carbonate (DSC) (0.6 g, 0.7 mmol) was added to the compound produced in Example M, Step A (0.6 g, 0.4 mmol) in dry dimethylformamide (5 mL) followed by addition of dimethylaminopyridine (100 mg). After a period of 20 minutes the compound produced in Step D of Example 288 (0.7 g, 0.5 mmol) was added followed by addition of NMM (2.0 mL). After complete reaction (1-16 hours) the product was purified by reverse phase chromatography (water/acetonitrile) to result in a white solid (0.51 g). MS and H-NMR were consistent with the proposed structure.

WO 97/08145 PCT/US96/13500

- 537 -

Step F

5

10

The c mpound produc d in Step E (250 mg) was dissolved in water/acetonitrile (1:1), followed by the addition of lithium hydroxide (100 mg). The reaction was allowed to stir at 25°C, and monitored by HPLC. After complete hydrolysis (1-2 hours) trifluoroacetic acid was added until pH = 2. The product was purified by reverse phase chromatography (water/acetonitrile) to result in 110 mg of the title compound as a white solid. MS and H-NMR were consistent with the proposed structure.

10

15

30

Example 289

Preparation of β -[[2-[[[3-[(aminoimin methyl)amino]-5-carboxyphenyl]carbonyl]amino]acetyl]amino]pyridine-3-propanoic acid, bis(trifluoroacetate) salt

Step A

N,N'-disuccinimidyl carbonate (DSC) (6.5 g) was added to methyl hydrogen 5-nitroisophthalate (5 g) in dry dimethylformamide (10 mL) followed by addition of dimethylaminopyridine (200 mg). After a period of 20 minutes tert-butyl β-glycine (2.6 g) was added followed by addition of NMM (2.0 mL). After complete reaction (4 hours) the product was isolated by extraction into ethyl acetate and dried over Na₂SO₄ to result in a white solid (5.1 g). MS and H-NMR were consistent with the proposed structure.

- 539 -

Step B

5

10

15

20

The compound produced in Step A (5 g) was dissolved in dioxane (50 mL). To this mixture dry HCl (20 mL, 4N) was added. The mixture was stirred for 1-2 hours. The solvent was removed under reduced pressure followed by addition of ether and removal of the solvent under reduced pressure. The solid was filtered to result in a white solid (4 g) and dried in a vacuum oven. MS and H-NMR were consistent with the proposed structure.

Step C

N,N-disuccinimidyl carbonate (DSC) (2 g) was added to the compound produced in Step B (2 g) in dry dimethylformamide (10 mL) followed by addition of dimethylaminopyridine (200 mg). After a period of 20 minutes, DL ethyl-3-amino-3-(3-pyridyl) propionate hydrochloride (1.6 g) was added followed by addition of NMM (2.0 mL). After complete reaction (4 hours) the product was isolated by extraction into ethyl acetate and dried over Na₂SO₄ to result in an oil (3 g). MS and H-NMR were consistent with the proposed structure.

Step D

5

The compound produced in Step C was subjected to the conditions discribed in Tetrahedron Letters, Vol. 25, 1984, 839-842 to reduce the nitro group. The reduction was performed on 2 g of nitro compound to give 1 g of product. MS and H-NMR were consistent with the proposed structure.

15 Step E

20

25

.TFA

The compound produced in Step D was guanidated according to the method in Example M on a 1 g scale and purified by reverse phase chromatography (water/acetonitrile) to result in 110 mg of the title compound as a white solid. MS and H-NMR were consistent with the proposed structure.

30 Step F

The compound produced in Step E (100 mg) was dissolved in water/acetonitrile (1:1), followed by the addition of lithium hydroxide (100 mg). The reaction was allowed to stir at 25°C, and monitored by HPLC. After

WO 97/08145 PCT/US96/13500

- 541 -

compl te hydrolysis (1-2 hours) trifluoroacetic acid was added until pH = 2. Th product was purified by reverse phas chromatography (water/acetonitril) to result in 110 mg of the title compound as a white solid. MS and H-NMR were consistent with the proposed structure.

5

Example 290

Preparation of β -[[2-[[[3-[(amin iminomethyl)amino]-5-carboxyphenyl]carbonyl]amino]acetyl]amino]-3,5-dichlorobenzenepropanoic acid, trifluoroacetate salt

Step A

15

10

5

20

25

30

N,N-disuccinimidyl carbonate (DSC) (65 g) was added to methyl hydrogen 5-nitroisophthalate (5 g) in dry dimethylformamide (10 mL) followed by addition of dimethylaminopyridine (200 mg). After a period of 20 minutes tert-butyl β -glycine (2.6 g) was added followed by addition of NMM (2.0 mL). After complete reaction (4 hours) the product was isolated by extraction into ethyl acetate and dried over Na₂SO₄ to result in a white solid (5.1 g). MS and H-NMR were consistent with the proposed structure.

10

15

20

Step B

The compound produced in Step A (5 g) was dissolved in dioxane (50 mL). To this mixture dry HCl (20 mL, 4N) was added. The mixture was stirred for 12 hours. The solvent was removed under reduced pressure followed by addition of ether and removal of the solvent under reduced pressure. The solid was filtered to result in a white solid (4 g) and dried in a vacuum oven. MS and H-NMR were consistent with the proposed structure.

Step C

N,N'-disuccinimidyl carbonate (DSC) (2 g) was added to the compound produced in Step B (2 g) in dry dimethylformamide (10 mL) followed by addition of dimethylaminopyridine (200 mg). After a period of 20 minutes DL-ethyl 3-amino-3-(3,5-dichlorophenyl)propionate hydrochloride (1.6 g) was added followed by addition of NMM (2.0 mL). After complete reaction (4 hours) the product was isolated by extraction into ethyl acetate and dried over Na₂SO₄ to result in an oil (3 g). MS and H-NMR were consistent with the proposed structure.

Step D

The compound produced in Step C was subjected to the conditions discribed in Tetrahedron Letters, Vol. 25, 1984, 839-842 to reduce the nitro group. The reduction was performed on 2g of nitro compound to give 1 g of product.

Step E

15

20

25

10

5

The compound produced in Step D was guanidated according to the method in Example M on a 1 g scale and purified by reverse phase chromatography (water/acetonitrile) to result in 110 mg of the title compound as a white solid. MS and H-NMR were consistent with the proposed structure.

Step F

10 The compound produced in Step E (100 mg) was dissolved in water/acetonitrile (1:1), followed by the addition of lithium hydroxide (100 mg). The reaction was allowed to stir at 25°C, and monitored by HPLC. After complete hydrolysis (1-2 hours) trifluoroacetic acid was added until pH = 2. The product was purified by reverse phase chromatography (water/acetonitrile) to result in 25 mg of the title compound as a white solid. MS and H-NMR were consistent with the proposed structure.

20

- 546 -

Example 291

Preparation of β -[[2-[[[3,5-bis[(aminoiminomethyl)amin]-phenyl]carbonyl]amino]acetyl]amino]-3,5-dichlorobenzene-propanoic acid, bis(trifluoroacetate) salt

Step A

15

10

5

20

25

30

Glycine (20 g, 266 mmol) was added to water (200 mL), followed by addition of potassium hydroxide (20 g, 357 mmol) and cooled to 0°C in an ice bath. To this mixture 3,5-dinitrobenzoyl chloride (20 g, 108 mmol) was added in acetonitrile (20 mL) drop-wise over a 10 minute period. After complete reaction (3-4 hours) concentrated hydrochloric acid was added until pH=1. The product was filtered, washed with water and air dried (20 g). MS and H-NMR were consistent with the proposed structure.

WO 97/08145 PCT/US96/13500

- 547 -

Step B

5

N,N'-disuccinimidyl carbonate (DSC) (1.2 g) was added to the compound produced in Step A (2 g) in dry

dimethylformamide (10 mL) followed by addition of dimethylaminopyridine (200 mg). After a period of 20 minutes, DL ethyl 3-amino-3-(3,5 dichlorophenyl) propionate hydrochloride (1.2 g) was added followed by addition of NMM (2.0 mL). After complete reaction

(4 hours) the product was isolated by extraction into ethyl acetate and dried over Na₂SO₄ to result in an yellow oil (2.1 g). MS and H-NMR were consistent with the proposed structure.

20 Step C

25

30

The compound produced in Step B was subjected to the conditions discribed in Tetrahedron Letters, Vol. 25, 1984, 839-842 to reduce of the nitro group. The reduction was performed on 2.5 g of nitro compound to give 2.1 g of the 3,5-dianilino derivative. MS and H-NMR were consistent with the proposed structure.

Step D

5

20

25

The compound produced in Step C was guanidated according to the method in Example M on a 2 g scale (using 4 g of the guanidating agent) and purified by reverse phase chromatography (water/acetonitrile) to result in 800 mg of a white solid. MS and H-NMR were consistent with the proposed structure.

Step E

The compound produced in Step D (500 mg) was dissolved in water/acetonitrile (1:1), followed by addition of lithium hydroxide (100 mg). The reaction was allowed to stir at 25°C, and monitored by HPLC. After complete hydrolysis (1-2 hours) trifluoroacetic acid was added until pH = 2. The product was purified by reverse phase chromatography (water/acetonitrile) to result in 450 mg of the title compound as a white solid. MS and H-NMR were consistent with the proposed structure.

- 549 -

Example 292

Preparation of β -[[2-[[[3-[(amin iminomethyl)amino]-5-(trifluoroacetyl)amino]phenyl]carbonyl]amino]acetyl]-amino]-3,5-dichlorobenzenepropanoic acid,

trifluoroacetate salt

Step A

5

10

30

O₂N CO₂F

A mixture of 5-amino-3-nitro benzoic acid (Lancaster)
(3 g) and trifluroacetic anhydride (Sigma) (20 mL) in
methylene chloride was stirred for 2 days at 25°C. The
25 solvent was removed under reduced pressure to leave an
oil. To the oil was added water (50 mL) and the product
filtered (4.5 g). The product was dried in an oven at
70°C for 16 hours. MS and H-NMR were consistent with the
proposed structure.

Step B

5

10 N,N'-disuccinimidyl carbonate (DSC) (3 g) was added to the compound produced in Step A (2.7 g) in dry dimethylformamide (4 mL) followed by addition of dimethylaminopyridine (200 mg). After a period of 20 minutes, tert-butyl glycine hydrochloride (2.7 g) was added followed by addition of NMM (2.0 mL). After complete reaction (4 hours) the product was isolated by extraction into ethyl acetate and dried over Na₂SO₄ to result in an yellow oil (3.3 g). MS and H-NMR were consistent with the proposed structure.

Step C

20

25

The compound produced in Step B (3 g) was dissolved in methylene chloride (50 mL). To this mixture TFA (20 mL) was added. The mixture was stirred for 12 hours. The solvent was removed under reduced pressure followed by addition of ether. The solid (2.7 g) was filtered and

WO 97/08145

dried in a vacuum oven for 1-2 hours. MS and H-NMR were consistent with the proposed structure.

Step D

5

10

15

20

N,N'-disuccinimidyl carbonate (DSC) (1.5 g) was added to the product of Step C (1.2 g) in dry dimethylformamide (10 mL) followed by addition of dimethylaminopyridine (200 mg). After a period of 20 minutes DL ethyl 3-amino-3-(3,5 dichlorophenyl) propionate hydrochloride (1.7 g) was added followed by addition of NMM (2.0 mL). After complete reaction (4 hours) the product was isolated by extraction into ethyl acetate and dried over Na₂SO₄ to result in an yellow oil (2.1 g). MS and H-NMR were consistent with the proposed structure.

Step E

25

30

The compound produced in Step D was subjected to the conditions discribed in Tetrahedron Letters, Vol. 25, 1984, 839-842 to reduce the nitro group. The reduction was performed on 1.8 g of nitro compound to give 1.8 g of

the 3-anilino derivative. MS and H-NMR were consistent with the proposed structure.

Step F

5

10

15

20

25

30

The compound produced in Step E was guanidated according to the method in Example M on a 1.5 g scale (using 3 g of the guanidating agent) and purified by reverse phase chromatography (water/acetonitrile) to result in 750 mg of the above compound as a white solid. MS and H-NMR were consistent with the proposed structure.

Step G

The compound produced in Step F (500 mg) was dissolved in water/acetonitrile (1:1), followed by the addition of lithium hydroxide (100 mg). The reaction was allowed to stir at 25°C, and monitored by HPLC. After complete hydrolysis (1-2 hours) trifluoroacetic acid was added until pH = 2. The product was purified by reverse phase chromatography (water/acetonitrile) to result in 300 mg of the title compound as a white solid. MS and H-NMR were consistent with the proposed structure.

10

15

2.0

- 553 -

Example 293

Preparati n of β -[[2-[[[3-(acetylamino)-5-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]-acetyl]amino]-3,5-dichlorobenzenepropanoic acid, trifluoroacetate salt

Step A

A mixture of 5-amino-3-nitro benzoic acid (Lancaster)

(5 g) and acetic anhydride (Sigma) (10 mL) in methylene chloride was stirred for 2 days at 25°C. The solvent was removed under reduced pressure to leave an oil. To the oil was added water (50 mL) and the product filtered (4.5 g). The product was dried in an oven at 70°C for 16 hours. MS and H-NMR were consistent with the proposed structure.

Step B

5

N,N'-disuccinimidyl carbonate (DSC) (3 g) was added to the compound produced in Step A (3 g) in dry dimethylformamide (6 mL) followed by addition of dimethylaminopyridine (200 mg). After a period of 20 minutes tert-butyl glycine hydrochloride (2.1 g) was added followed by addition of NMM (2.0 mL). After complete reaction (4 hours) the product was isolated by extraction into ethyl acetate and dried over Na₂SO₄ to result in an yellow oil (3.3 g). MS and H-NMR were consistent with the proposed structure.

20 Step C

25

30

The compound produced in Step B (3 g) was dissolved in methylene chloride (10 mL). To this mixture TFA (10 mL) was added. The mixture was stirred for 12 hours. The solvent was removed under reduced pressure followed by addition of addition of ether. The solid (3 g) was filtered and dried in a vacuum oven for 1-2 hours. MS and H-NMR were consistent with the proposed structure.

Step D

N,N'-disuccinimidyl carbonate (DSC) (1.5 g) was added to the product from Step C (1.2 g) in dry

dimethylformamide (10 mL) followed by addition of dimethylaminopyridine (200 mg). After a period of 20 minutes DL ethyl 3-amino-3-(3,5 dichlorophenyl) propionate hydrochloride (1.7 g) was added followed by addition of NMM (2.0 mL). After complete reaction (4 hours) the product was isolated by extraction into ethyl acetate and dried over Na₂SO₄ to result in a tan solid (2 g). MS and H-NMR were consistent with the proposed structure.

Step E

20

5

25

30

The compound produced in Step D was subjected to the conditions described in Tetrahedron Letters, Vol. 25, 1984, 839-842 to reduce the nitro group. The reduction was performed on 1.5 g of nitro compound to give 1.5 g of the 3-anilino derivative. MS and H-NMR were consistent with the proposed structure.

Step F

10

15

5

The compound produced in Step E was guanidated according to the method in Example M on a 1.4 g scale (using 2 g of the guanidating agent) and purified by reverse phase chromatography (water/acetonitrile) to result in 750 mg of the above compound as a white solid. MS and H-NMR were consistent with the proposed structure.

Step G

The compound produced in Step F (300 mg) was

dissolved in water/acetonitrile (1:1), followed by the
addition of lithium hydroxide (100 mg). The reaction was
allowed to stir at 25°C, and monitored by HPLC. After
complete hydrolysis (1-2 hours) trifluoroacetic acid was
added until pH = 2. The product was purified by reverse

phase chromatography (water/acetonitrile) to result in 200
mg of the title compound as a white solid. MS and H-NMR
were consistent with the proposed structure.

WO 97/08145 PCT/US96/13500

- 557 -

Examples 294-296

Step A

5

To a 2L-3-neck round bottom flask equipped with 10 mechanical stirrer was added β -amino-3,5-dichlorobenzenepropanoic acid (52.78 g, 0.2255 mol). The β -amino-3,5-dichlorobenzenepropanoic acid was dissolved in 900 mL of acetone and 300 mL of water and sodium carbonate was added (3.0 eq., 71.70 g, 0.6765 mol). The pH = 10. 15 FMOC succinimidyl carbonate (Sigma Chemical Co., 1.0 eq., 76.06 g, 0.2255 mol) was dissolved in 600 mL of acetone and added slowly to the basic aqueous solution via addition funnel over 45 minutes. The reaction was stirred for 16 hours at room temperature. HPLC analysis (Waters, C18, reverse phase, 25 cm column, 50-90% acetonitrile in 20 water over 30 minutes) indicated that the β -amino-3,5dichlorobenzenepropanoic acid was consumed. The acetone was removed from the reaction mixture in vacuo. The basic aqueous phase was acidified to pH = 3 using 3.0 N 25 hydrochloric acid. In a 2L separatory funnel the acid layer was washed with 1L of ethyl acetate, the water layer was removed and the organic layer was washed (2 x 250 mL water, 2 x 250 mL saturated sodium chloride). The organic layer was dried (magnesium sulfate), filtered and concentrated in vacuo to 300 mL. Petroleum ether was 30 added (300 mL) and a white flocculent solid precipitated. After 24 hours of air drying, isolated 38.49 g as a first crop (38% yield). The mother liquor was saved for future NMR (DMSO): 2.62-2.72 (m, 2H), 4.15-4.32 (m, 1H), 7.21-7.40 (m, 5H), 7.45 (s, 1H), 7.60-7.70 (m, 2H), 7.85 35

(d, j=7 Hz, 2H), 7.99 (d, j=7 Hz, 1H). MS (FAB) m/e (relative intensity): 456.2 (20), 179 (100).

Step B

5

10

Wang resin (25.0 g, 28.0 mmol) was placed in a 1L 3neck round bottom flask fitted with an overhead stirrer and nitrogen inlet. The resin was swelled with 250 mL of methylene chloride for 15 minutes then drained. protected amino acid produced in Step A (25.66 g, 56.0 15 mmol) was activated in a separate 500 mL round bottom flask by dissolving in methylene chloride/dimethylformamide (4:1, 125 mL) and adding diisopropylcarbodiimide (DIC, 8.77 mL, 56.0 mmol) via syringe, followed by addition of dimethylaminopyridine 20 (DMAP, 0.342 g, 2.8 mmol). The solution was stirred at 25°C for 15 minutes, then added to the preswelled Wang resin. The slurry was stirred for 2 hours at 25°C. reaction was drained and washed with methanol (3 x 250 mL), methylene chloride (3 x 250 mL) and diethyl ether (3 25 x 250 mL). The resin was then swelled in 250 mL of methylene chloride and drained. The activated product of Step A (12.83 g, 28.0 mmol, DIC, 4.36 mL, 28.0 mmol, DMAP, 0.170 g, 1.4 mmol in 100 mL methylene 30 chloride/dimethylformamide 4:1) was added to the swelled resin. The slurry was stirred at 25°C for 1 hour. resin was drained and washed as before. Elemental analysis calculated for resin bound material:

Calculated: C, 81.31; H, 6.30; N, 1.05; Cl, 5.33.

35 Found: C, 79.03; H, 6.37; N, 1.16; Cl, 5.74.

Step C

5

The product of Step B (28.0 mmol) was preswelled in a 1L 3-neck round bottom flask equipped with overhead 10 stirrer and nitrogen inlet using 250 mL of methylene chloride for 15 minutes. The solvent was drained and a 20% piperidine/dimethylformamide solution (125 mL) was added and the slurry was stirred at 25°C for 2 hours. resin was drained and washed with dimethylformamide (3 x 15 100 mL), methanol (3 x 100 mL) methylene chloride (3 x 100 mL) and diethyl ether (3 x 100 mL). The resin was dried using house vacuum for 1 hour. An activated solution of FMOC-Glycine (20.81 g, 70.0 mmol, DIC, 10.95 mL, 70.0 20 mmol, DMAP, 0.85 g, 7.0 mmol. In 150 mL methylene chloride/dimethylformamide, 4:1) was added to the preswelled resin via syringe and stirred at 25°C for 2 hours. The resin was drained and washed (methylene chloride, methanol and diethyl ether, each 3 x 100 mL). 25 The resin was preswelled with 250 mL of methylene chloride for 15 minutes, drained and a solution of activated FMOC-Glycine (10.45 g, 35.0 mmol, DIC, 5.42 mL, 35.0 mmol, DMAP, 0.42 g, 3.5 mmol in 100 mL methylene chloride/dimethyl formamide 4:1) was added to the swelled 30 resin via syringe. The slurry was stirred at 25°C for 1 hour. The resin was drained and washed (methylene chloride, methanol, diethyl ether, 3 x 100 mL each). resin was vacuum dried for 1 hour. The Kaiser test (Kaiser, E., Color Test for D tection of Free Terminal

Amino Groups in the Solid-Phase Synthesis of Peptides. Anal. Biochem. 1970, 34, 595-598) indicated coupling was c mplete.

5 Step D

In a 500 mL bottom flask equipped with magnetic stirrer, 3-amino-benzoic acid (Aldrich, 10.0 g, 50.8 mmol) was dissolved in 50 mL of dioxane and 133 mL of 10% sodium carbonate. The stirred solution was cooled to 0°C 10 (ice/water) and a solution of fluorenylmethyl chloroformate (13.78 g, 53.3 mmol, in 50 mL dioxane) was added dropwise over 15 minutes. The reaction was warmed to 25°C overnight. HPLC analysis (as described earlier) indicated that the starting material was consumed. of water was added to the reaction mixture and a white 15 precipitate formed immediately. The solid was collected, washed with 10% citric acid and dried under vacuum. Isolated 15.23 g, (83.4% yield) of a white flocculent solid. NMR (DMSO): 4.18-4.25 (m, 3H), 7.25-7.41 (m, 6H), 7.62-7.72 (m, 3H), 7.89-7.90 (m, 3H). MS(FAB): product 20 ion M+H observed at m/z 360.

Step E

10 20.0 g of the product of Step C (22.4 mmol) was preswelled in 500 mL of methylene chloride for 30 minutes. The solvent was drained and 250 mL of 20% piperidine/dimethyl formamide was added and allowed to stir at 25°C for 40 minutes. The resin was drained and 15 washed with dimethyl formamide, methanol, methylene chloride, and diethyl ether (each solvent, 3 x 150 mL). The Kaiser test indicated the deprotection was complete. The resin was dried using house vacuum for 45 minutes. The resin was then preswelled using 250 mL of methylene 20 chloride, drained and the activated product of Step D (13.54 g, 35.5 mmol, DIC, 5.55 mL, 35.5 mmol, DMAP, 0.88 g, 7.2 mmol, in 100 mL methylene chloride/dimethyl formamide 4:1) was added to the preswelled resin. reaction was stirred for 16 hours at 25°C. The resin was 25 drained and washed as previously described. The Kaiser test indicated that the reaction was not complete. coupling reaction was repeated, the resin was drained and washed. A repeat Kaiser test indicated that the coupling reaction was complete. A small portion of the resin was 30 FMOC deprotected (30 minutes with 20% piperidine/dimethyl formamide) then cleaved off resin (1 hour with 95% trifluoroacetic acid/water) for NMR analysis. NMR (DMSO): 2.68-2.78 (m, 2H), 3.88 (d, j=7 Hz, 2H), 5.06-5.20(m, 1H), 7.32-7.69 (m, 4H), 7.54 (t, j=8 Hz, 1H), 7.76

(s, 1H), 7.83 (d, j=8 Hz, 1H), 8.57 (d, j=9 Hz, 1H), 8.87 (t, j=9 Hz, 1H).

Step F

5

10

15

20

25

The resin of Step E (2.0 g, 2.0 mmol) in a 100 mL round bottom flask, was preswelled with 20 mL of dimethyl formamide, drained, then treated with 20 mL of 20% piperidine/dimethyl formamide for 40 minutes at 25°C. resin was filtered and washed with dimethyl formamide, methanol, methylene chloride and diethyl ether (3 x 10 mL, The Kaiser test was inconclusive, and the deprotection step and washings were repeated. Kaiser test was still inconclusive, and the material used The 2.0 g of resin was split into two 1.0 g portions and placed into 2 dram glass vials. Dimethyl formamide (4.0 mL/vial) was added, followed by methyl isothiocyanate (1.4622 g, 20 mmol). The vials were tightly capped and heated to 80°C for 4 hours. The resin was filtered and washed with dimethyl formamide, methanol, methylene chloride, and diethyl ether (3 x 10 mL, each). The resin was dried in vacuo.

30

WO 97/08145 PCT/US96/13500

- 563 -

Step G

The resin product from Step F was transferred to a

fritted, 100 mL reaction vessel. The resin was swelled
with methylene chloride (3 x 10 mL) and drained. In a
separate vial 2-chloro-1-methylpyridiniumiodide (Aldrich,
0.405 g, 1.58 mmol) was dissolved in 5 mL of
dimethylformamide/methylene chloride 4:1 and added to the

preswelled resin, followed by triethylamine (0.441 mL,
3.17 mmol). The reaction slurry was stirred for 8 hours
at 25°C. The resin was drained, and washed with
dimethylformamide and methylene chloride (3 x 10 mL
each). The resin was dried in vacuo.

20

5

Step H

25

The resin product from Step G (0.666 g, 0.7 mmol) was transferred to a 15 mL fritted vessel and suspended in 3.5 mL of dimethylformamide/methylene chloride (1:1).

Methylamine (2.0 M in tetrahydrofuran, 4.4 mL, 8.8 mmol) was added to the resin slurry and allowed to stir at 25°C for 16 hours. The resin was drained, and washed with

dimethylformamide, methanol, methylene chloride and diethyl ether (3 \times 10 mL each). The resin was dried in vacuo for 1 hour.

5 Step I

10

The resin product from Step G (0.666 g, 0.7 mmol) was transferred to a 15 mL fritted vessel and suspended in 3.5 mL dimethylformamide/methylene chloride (1:1). Ethylamine (2.0 M in tetrahydrofuran, 4.4 mL, 8.8 mmol) was added to the resin slurry and allowed to stir at 25°C for 16 hours. The resin was drained, and washed with dimethylformamide, methanol, methylene chloride and diethyl ether (3 x 10 mL each). The resin was dried in vacuo for 1 hour.

Step J

30

WO 97/08145 PCT/US96/13500

- 565 -

The resin product from Step G (0.666 g, 0.7 mmol) was transferred to a 15 mL fritted vessel and suspended in 3.5 mL dimethylformamid /methylene chloride (1:1).

Isopropylamine (0.749 mL, 8.8 mmol) was added to the resin slurry and allowed to stir at 25°C for 16 hours. The resin was drained, and washed with dimethylformamide, methanol, methylene chloride and diethyl ether (3 x 10 mL each). The resin was dried in vacuo for 1 hour.

10

15

20

25

30

Example 294

Preparation f (±) 3,5-dichloro-β-[[2-[[[3-[[(methylamino)(methylimino)methyl]amino]phenyl]carbonyl]amino]acetyl]amino]benzenepropanoic acid, trifluoroacetate salt

The resin product from Step H was treated with 2.5 mL of 95% trifluoroacetic acid/water for 1 hour at 25°C. The filtrate was collected. The resin was washed with 2 x 1 mL of 50% trifluoroacetic acid/methylene chloride and the filtrate collected. The resin was washed once more with 1 mL of methylene chloride. All filtrates were combined into a tared 2 dram vial and concentrated under nitrogen Toluene (1 mL) was added to aid in removing excess trifluoroacetic acid, and the sample was concentrated again under nitrogen. Lastly methylene chloride (1 mL) was added and the sample was reconcentrated to give 198.3 mg of a golden oil. HPLC (as described earlier, 220 nM) shows a 91% pure major peak. NMR (DMSO): 2.72 (d, j=7Hz, 2H), 2.79 (s, 6H), 3.87 (d, j=7 Hz, 2H), 5.11-5.20 (m, 1H), 7.30-7.58 (m, 5H), 7.70-7.80 (m, 4H), 8.55 (d, j=8 Hz, 1H), 8.76 (t, j=3Hz, 1H), 9.39 (s, 1H). MS(ES): product ion observed at m/z 480.

20

25

- 567 -

Example 295

Preparation of (±) 3,5-dichloro- β -[[2-[[[3-[[(ethylamino)(methylimino)methyl]amino]phenyl]carbonyl]amino]acetyl]amino]benzenepropanoic acid, trifluoroacetate salt

The resin product from Step I was treated with 2.5 mL of 95% trifluoroacetic acid/water for 1 hour at 25°C. filtrate was collected. The resin was washed with 2 x 1 mL of 50% trifluoroacetic acid/methylene chloride and the The resin was washed once more with 1 filtrate collected. mL of methylene chloride. All filtrates were combined into a tared 2 dram vial and concentrated under nitrogen flow. Toluene (1 mL) was added to aid in removing excess trifluoroacetic acid, and the sample was concentrated again under nitrogen. Lastly methylene chloride (1 mL) was added and the sample was reconcentrated to give 261.2 mg of a golden oil. HPLC (as described earlier, 220 nM) shows a 94% pure major peak. NMR (DMSO): 1.11 (t, j=7Hz, 3H), 2.72 (d, J=7 hZ, 2H), 2.79 (s, 3H), 3.25-30 3.60 (m, 2H), 3.87 (d, j=7 Hz, 2H), 5.02-5.20 (m, 1H), 7.30-7.58 (m, 5H), 7.70-7.85 (m, 4H), 8.55 (d, j=8 Hz, 1H), 8.76 (t, j=3Hz, 1H), 9.40 (s, 1H). MS(ES): product ion observed at m/z 494.

10

15

20

25

30

Example 296

Preparation of (±) 3,5-dichloro-β-[[2-[[[3-[[[(1-methylethyl)amino](methylimino)methyl]amino]phenyl]carbonyl]amino]acetyl]amino]benzenepropanoic acid,
trifluoroacetate salt

The resin product from Step J was treated with 2.5 mL of 95% trifluoroacetic acid/water for 1 hour at 25°C. filtrate was collected. The resin was washed with 2 x 1 mL of 50% trifluoroacetic acid/methylene chloride and the filtrate collected. The resin was washed once more with 1 mL of methylene chloride. All filtrates were combined into a tared 2 dram vial and concentrated under nitrogen flow. Toluene (1 mL) was added to aid in removing excess trifluoroacetic acid, and the sample was concentrated again under nitrogen. Lastly methylene chloride (1 mL) was added and the sample was reconcentrated to give 330.3 mg of a golden oil. HPLC (as described earlier, 220 nM) shows an 89% pure major peak. NMR (DMSO): 1.15 (d, j=7Hz, 6H), 2.72 (d, j=7Hz, 2H), 2.79 (d, j=7 Hz, 3H), 3.79-3.92 (m, 3H), 5.05-5.20 (m, 1H),7.30-7.50 (m, 5H), 7.60-7.78 (m, 4H), 8.55 (d, j=8 Hz, 1H), 8.76 (t, j=3Hz, 1H), 9.40 (s, 1H). MS(ES): product ion observed at m/z 508.

WO 97/08145 PCT/US96/13500

- 569 -

Examples 297-299

Step A

10

To a 50 mL round bottom flask equipped with magnetic stirrer was added 3-amino-3-(4-fluoro-phenyl)-propionic acid, (0.300 g, 1.64 mmol). The propionic acid was dissolved in 1 mL of acetone and 6 mL of water and sodium carbonate was added (0.53 g, 4.92 mmol). The pH=10. FMOC succinimidyl carbonate (Sigma Chemical Co., 0.553 g, 15 1.64 mmol) was dissolved in 6 mL of acetone and added slowly to the basic aqueous solution via addition funnel over 20 minutes. The reaction was stirred for 16 hours at room temperature. HPLC analysis (Waters, C18, reverse 20 phase, 25 cm column, 50-90% acetonitrile in water over 30 minutes) indicated that the starting material was consumed. The acetone was removed from the reaction mixture in vacuo. The basic aqueous phase was acidified to pH=3 using 3.0 N hydrochloric acid. In a 50 mL separatory funnel the acid layer was washed with 15 mL of 25 ethyl acetate, the water layer was removed and the organic layer was washed (2 x 30 mL water, 2 x 30 mL saturated sodium chloride). The organic layer was dried (magnesium sulfate), filtered and concentrated in vacuo. Petroleum ether was added (10 mL) and a white flocculent solid 30 precipitated. After 24 hours of air drying, isolated 0.582 g as a first crop (87.5% yield). The mother liquor was saved for future use. NMR (DMSO): 2.55-2.75 (m, 2H), 4.10-4.30 (m, 3H), 4.85-4.95 (m, 1H), 7.12 (t, j=8 Hz,

2H), 7.24-7.42 (m, 5H), 7.64 (d, j=8 Hz, 2H), 7.82-7.94 (m, 3H). MS (FAB): product ion M+Li observed at m/z 412.

Step B

5

10

15

2.0

25

30

Wang resin (0.60 g, 0.36 mmol) was placed in a 100 mL round bottom flask. The resin was swelled with 8 mL of methylene chloride for 15 minutes then drained. protected amino acid of Step A (0.365 g, 0.9 mmol) was activated in a separate 25 mL round bottom flask by dissolving in methylene chloride/dimethylformamide (4:1, 19 mL) and adding diisopropylcarbodiimide (DIC, 0.141 mL, 0.90 mmol) via syringe, followed by the addition of dimethylaminopyridine (DMAP, 22 mg, 0.18 mmol). solution was stirred at 25°C for 15 minutes, then added to the preswelled Wang resin. The slurry was stirred for 2 hours at 25°C. The reaction was drained and washed with methanol (3 \times 10 mL), methylene chloride (3 \times 10 mL) and diethyl ether (3 x 10 mL). To ensure complete reaction, the coupling sequence was repeated. After drying in vacuo the resin was swelled with 8 mL of methylene chloride, drained and 8 mL of 20% piperidine/dimethylformamide was added and the slurry was stirred for 30 minutes. The resin was drained and washed as described previously. resin was dried in vacuo for 1 hour. Elemental analysis calculated for resin bound material:

Calculated: C, 88.23; H, 7.36; N, 0.76; F, 1.03. Found: C, 87.13; H, 7.31; N, 0.79; F, 1.06.

WO 97/08145 PCT/US96/13500

- 571 -

Step C

P-OC NHC NH₂

10

15

20

25

5

The resin product from Step B was swelled with 8 mL of methylene chloride, then drained. An activated solution of FMOC-Glycine (0.267 g, 0.90 mmol, DIC, 0.140 mL, 0.90 mmol, DMAP, 22 mg, 0.18 mmol. In 10 mL methylene chloride/dimethylformamide, 4:1) was added to the preswelled resin via syringe and stirred at 25°C for 2 hours. The resin was drained and washed (methylene chloride, methanol and diethyl ether, each 3 x 10 mL). The resin was preswelled with 20 mL of methylene chloride for 15 minutes, drained and the coupling reaction was repeated to ensure complete reaction. The Kaiser test (Kaiser, E., Color Test for Detection of Free Terminal Amino Groupos in the Solid-Phase Synthesis of Peptides. Anal. Biochem. 1970, 34, 595-598) indicated the coupling was complete. The resin was then suspended in 8 mL of 20% piperidine/dimethylformamide for 30 minutes, drained and washed with dimethylformamide, methanol, methylene chloride, and diethyl ether (3 x 10 ml, each). The resin was dried in vacuo for 1 hour.

30

Step D

5

10

15

20

In a 500 mL round bottom flask equipped with magnetic stirrer, 3-amino-benzoic acid (Aldrich, 10.0 g, 50.8 mmol) was dissolved in 50 mL of dioxane and 133 mL of 10% sodium carbonate. The stirred solution was cooled to 0°C (ice/water) and a solution of fluorenylmethyl chloroformate (13.78 g, 53.3 mmol, in 50 mL dioxane) was added dropwise over 15 minutes. The reaction warmed to 25°C overnight. HPLC analysis (as described earlier) indicated that the starting material was consumed. 500 mL of water was added to the reaction mixture and a white precipitate formed immediately. The solid was collected, washed with 10% citric acid and dried under vacuum. Isolated 15.23 g, (83.4% yield) of a white flocculent solid. NMR (DMSO): 4.18-4.25 (m, 3H), 7.25-7.41 (m, 6H), 7.62-7.72 (m, 3H), 7.80-7.90 (m, 3H). MS (FAB): product ion M+H observed at m/z 360.

Step E

25

30

The resin product from Step C was then preswelled using 10 mL of methylene chloride, drained and the activated product of Step D (0.343 g, 0.90 mmol, DIC,

WO 97/08145 PCT/US96/13500

- 573 -

0.141 mL, 0.90 mmol, DMAP, 22 mg, 0.18 mmol, in 5 mL methylene chloride/dimethylformamid 4:1) was added to the preswelled resin. The reaction was stirred for 16 hours at 25°C. The resin was drained and washed as previously described. The Kaiser test indicated that the reaction was not complete. The coupling reaction was repeated, the resin was drained and washed. A repeat Kaiser test indicated that the coupling reaction was complete. The resin was dried in vacuo for 1 hour.

10

Step F

20

25

30

15

The resin product from Step E was placed in a 100 mL round bottom flask, was preswelled with 10 mL of dimethylformamide, drained, then treated with 20 mL of 20% piperidine/dimethylformamide for 10 minutes at 25°C. The resin was drained and the procedure was repeated. The resin was filtered and washed with dimethylformamide, methanol, methylene chloride and diethyl ether (3 x 10 mL, each). The Kaiser test indicated that the deprotection step was complete. The resin was placed into a glass 2 dram vial with dimethylformamide (8.0 mL), followed by methyl isothiocyanate (0.526 g, 7.2 mmol). The vial was tightly capped and heated to 80°C for 4 hours. The resin was filtered and washed with dimethylformamide, methanol, methylene chloride, and diethyl ether (3 x 10 mL, each).

Th resin was dried in vacuo. Elemental analysis calculat d for resin bound material:

Calc'd: C, 83.56; H, 6.46; N, 2.19; F, 1.03; S, 1.35.

Found: C, 82.32; H, 6.67; N, 2.53; F, 1.02; S, 1.44.

5

Step G

The resin product from Step F (100 mg, 0.06 mmol) was transferred to a 2 dram glass vial. The resin was swelled with methylene chloride (3 x 1 mL) and drained. In a separate vial 2-chloro-1-methylpyridiniumiodide (Aldrich, 10 18.4 mg, 0.072 mmol) was dissolved in 3 mL of dimethylformamide/methylene chloride 4:1 and added to the preswelled resin, followed by triethylamine (20.1 uL, The reaction slurry was stirred for 16 hours 0.144 mmol). at 25°C. The resin was drained, and washed with 15 dimethylformamide, methanol, methylene chloride, and diethyl ether (3 x 4 mL, each). The resin was dried in vacuo for 3 hours. The resin was treated with 95% trifluoroacetic acid (1.5 mL) for 1 hour. The resin was filtered and washed with 50% trifluoroacetic 20 acid/methylene chloride (2 x 1.0 ml) followed by methylene chloride (1 x 1.0 mL). The filtrates were combined and dried in vacuo in tared 2 dram glass vials.

10

15

- 575 -

Example 297

Preparation of (±) β -[[2-[[[3-[[(ethylamino)-(methylimino)methyl]amino]phenyl]carbonyl]amino]acetyl]amino]-4-fluorobenzenepropanoic acid, trifluoroacetate salt

Isolated 28.1 mg of a golden oil. NMR (DMSO): 1.13 (t, j=7 Hz, 3H), 2.65-2.75 (m, 2H), 2.76-2.85 (m, 3H), 3.25 (t, j=3Hz, 2H), 3.80-3.95 (m, 2H), 5.10-5.21 (m, 1H), 7.13 (t, j=8 Hz, 2H), 7.30-7.40 (m, 3H), 7.52 (t, j=8 Hz, 1H), 7.65-7.85 (m, 3H), 8.49 (d, j=8 Hz, 1H), 8.71 (t, j=8 Hz, 1H) 9.40 (s, 1H). HPLC (as described earlier, 220 nM) 90.15% pure. MS (ES): product ion observed at m/z 444.

10

15

25

- 576 -

Example 298

Preparation of (±) 4-fluoro-β-[[2-[[[3-[[[(1-methylethyl)amino](methylimino)methyl]amino]phenyl]carbonyl]amino]acetyl]amino]benzenepropanoic acid,
trifluoroacetate salt

Isolated 44.9 mg of a golden oil. NMR (DMSO): 1.16 (d, j=7 Hz, 6H), 2.61-2.70 (m, 2H), 2.73-2.80 (m, 3H), 3.75-3.90 (m, 3H), 5.10-5.21 (m, 1H), 7.11 (t, j=8 Hz, 2H), 7.25-7.37 (m, 3H), 7.49 (t, j=8 Hz, 1H), 7.59-7.82 (m, 3H), 8.49 (d, j=8 Hz, 1H), 8.70 (t, j=3 Hz, 1H) 9.40 (s, 1H). HPLC (as described earlier, 220 nM) 98% pure. MS (ES): product ion observed at m/z 458.

WO 97/08145 PCT/US96/13500

- 577 -

Example 299

Preparation of (\pm) 4-fluoro- β -[[2-[[[3-[[[(4pyridinylmethyl)amino](methylimino)methyl]amino]phenyl]carbonyl]amino]acetyl]amino]benzenepropanoic acid, trifluoroacetate salt

5

10

Isolated 31.6 mg of a golden oil. NMR (DMSO): 2.60-2.72 (m, 2H), 2.81-2.89 (d, j=7 Hz, 3H), 3.80-3.95 (m, 2.81-2.89)2H), 4.61-4.80 (bs, 2H), 5.10-5.21 (m, 1H), 7.01-7.22 (m, 4H), 7.29-7.44 (m, 3H), 7.50 (t, j=8 Hz, 1H), 7.65-7.85 20 (m, 3H), 8.40-8.50 (d, j=8 Hz, 1H), 8.70-8.85 (m, 3H), 9.73 (s, 1H). HPLC (as described earlier, 220 nM) 98% pure. MS(ES): product ion observed at m/z 507.

The following compounds are prepared according to analogous solid-phase synthetic methods described in Examples 294-299.

Example	R ₁	R ₂	R ₃	R ₄	R ₅
300	Cl	Н	Cl	-н	
301	Cl	Н	Cl	-н	CF ₃
302	Cl	н	Cl	- H	, TFA
303	Cl	Н	C1	-н	.TFA

Example	R ₁	R ₂	R ₃	R ₄	R ₅
304	Cl	Н	Cl	-н	.TFA
305	C1	н	Cl	-н	TFA
306	Cl	Н	Cl	-н	-CH ₂ CH ₃
307	Cl	Н	Cl	-H	-CH ₂ CH ₂ CH ₃
308	C1	Н	Cl	-н	CF ³
309	Cl	Н	Cl	-н	TFA
310	Cl	H	cl	-H	
311	cl	н	Cl	-н	
312	cl	Н	Cl	-н	\

Example	R ₁	R ₂	R ₃	R ₄	R ₅
313	Cl	Н	Cl	-н	
314	Cl	Н	Cl	-н	
315	Cl	H	C1	- H	CH ₃
316	Cl	Н	Cl	-н	C
317	Cl	Н	Cl	-н	CI F
318	C1	Н	C1	-H	OMe
319	cı	H	Cl	-н	OMe

		i			
Example	R ₁	R ₂	R ₃	R ₄	R ₅
320	Cl	Н	Cl	-CH ₃	
321	Cl	Ħ	Cl	−CH ₃	.TFA
322	Cl	H	Cl	-CH₃	N .TFA
323	Cl	Н	Cl	-CH ₃	N .TFA
324	Cl	Н	Cl	-СН3	NH NH
325	Cl	Н	Cl	-CH ₃	N TFA
326	Cl	н	Cl	-CH ₃	-CH ₂ (CF ₂) ₂ CF ₃
327	C1	Н	Cl	-СН ₃	CF ₃

Example	R _i	R ₂	R ₃	R ₄	R,
328	C1	H	Cl	-СН ₃	
329	Cl	Н	Cl	-CH ₃	
330	cl	H	Cl	-CH ₃	ОН
331	Cl	н	Cl	−CH ₃	
332	Cl	Н	Cl	-CH ₃	, } —C≡N
333	Cl	Н	cl	-СН3	NH ₂
334	Cl	Н	Cl	-CH ₃	NH ₂ .TFA
335	Cl	Н	Cl	−CH ₃	ОН
336	Cl	Н	Cl	-CH ₃	
337	Cl	Н	Cl	−СН ₃	F

WO 97/08145

- 583 -

Example	R ₁	R ₂	R ₃	R ₄	R ₅
338	Cl	H	Cl	-CH ₃	— ОН
339	Cl	Н	Cl	-CH ₃	CH ₃

Example 361

Preparation of (±) ethyl 3,5-dichloro-β-[[2-[[[3-[(1,4,5,6-tetrahydro-5,5-dimethylpyrimidin-2-yl)-amino]phenyl]carbonyl]amino]acetyl]amino]-benzenepropanoate, trifluoroacetate salt

Step A

10

15

20

25

30

5

To a suspension of the 1-(3-carboxyphenyl)-2-thiourea (produced in Example 236, Step A) (10.00 g, 0.051 mol) in ethanol (100 mL) was added iodomethane (3.5 mL) and heated at 70°C under nitrogen atmosphere for 2.5 hours. reaction mixture was concentrated under reduced pressure, the residue was triturated with ether containing 10% EtOAc (2 x 100 mL) and the supernatent decanted. The resulting solid was dried in vacuo for 2 hours, dissolved in DMF (75 mL) and added dropwise to a solution of 2,2 dimethyl-1,3 propanediamine (42 g, 0.41 mol) in DMF (20 mL) over a period of 1 hour. The resulting mixture was heated at 80°C under nitrogen atmosphere for 16 hours with simultaneous trapping of the methylmercaptan in 5% sodium hypochlorite solution. DMF was distilled in vacuo, the residue was dissolved in water (50 mL) and washed with diethyl ether (3 \times 25 mL). The aqueous phase was acidified with 2N HCl to pH 4.0 when a white precipitate was obtained. It was filtered, washed with water and ether and dried to give the desired product 8.0 g (63%) as a white powder. H-NMR and MS were consistent with the structure.

Step B

5

To a suspension of the HCl salt of Step A (1.0 g, 0.0035 mol) in DMF (15 ml), was added N-methylmorpholine 10 (0.46 mL) and cooled to -10°C in an ice-salt bath. reaction mixture was then treated with isobutyl chloroformate (0.45 mL), stirred at -10°C for 30 minutes, and a solution of the amine generated by the addition of N-methylmorpholine (0.46 mL) to a solution of t-15 butylglycinate hydrochloride (0.6 g) in DMF (5 mL) at 0°C. The resulting reaction mixture was stirred at -10°C for 1 hour and at room temperature for 16 hours under argon atmosphere. DMF was distilled in vacuo, the residue was treated with 5% sodium bicarbonate (25 mL) and EtOAc (25 20 mL) and stirred at room temperature for 30 minutes. A white precipitate was obtained. The precipitate was filtered, washed with water (2 x 20 mL), and EtOAc (2 x 20 mL), and dried to give the desired compound, 0.58 g (46%). ¹H-NMR and MS were consistent with the structure.

Step C

25

30

20

25

30

The product of Step B (0.6 g, 0.0017 mol) was suspended in dioxane (2.0 mL) and treated with 4N HCl in dioxane (0.9 mL) and stirred overnight at room temperature. The reaction mixture was diluted with diethyl ether, filtered, and the residue washed with diethyl ether (3 x 20 mL). The resulting pale yellow solid was dried in a desiccator over NaOH pallets and used as such in the following step, without purification.

To a suspension of HCl salt as prepared in Step C in DMF (10 mL), was added N-methylmorpholine (0.21 mL) and cooled to -10°C in an ice-salt bath. This reaction mixture was then treated with isobutylchloroformate (0.24 mL), stirred at -10°C for 30 minutes, and a solution of the amine generated by the addition of N-methylmorpholine (0.46 mL) to a solution of ethyl DL-3-amino-3-(3,5-dichlorophenyl)propionate (produced as in Example 1, Steps A and B substituting 3,5-dichlorobenzaldehyde for 3-pyridine carboxaldehyde) (0.6 g, 0.002 mol) in DMF (5 mL) at 0°C. The resulting reaction mixture was stirred at -10°C for 1 hour and at room temperature for 16 hours under argon atmosphere. DMF was distilled in vacuo, the residue was triturated with ether (2 x 25 mL) and the supernatent decanted. The insoluble residue was purified by reverse phase HPLC using a 30 minute gradient of 5-70% CH₁CN in water at a flow rate of 70 mL/minute. The appropriate

fractions w re combined and freeze dried to afford the desired TFA salt, as a pale yellow powd r. $^1\text{H-NMR}$ and MS w re consistent with th structur .

20

Example 362

Preparation of (±) 3,5-dichl ro-2-hydroxy-β-{[2-[[[3-[(1,4,5,6-tetrahydro-5,5-dimethylpyrimidin-2-yl)-amino]phenyl]carbonyl]amino]acetyl]amino]-benzenepropanoic acid, trifluoroacetate salt

The above compound was prepared by coupling the product of Step C in Example 361 with the product of Example 440, Step A, as described in Example 361. The desired product was isolated by reverse-phase HPLC using a 30 minute gradient of 5-70% CH₃CN in water at a flow rate of 70 mL/minute. The appropriate fractions were combined and freeze dried to afford the desired TFA salt. ¹H-NMR and MS were consistent with the structure.

10

15

20

25

- 589 -

Example 363

Preparation of β -[[2-[[[3-[(aminoiminomethyl)amino]-phenyl]carbonyl]amino]acetyl]amino]-4fluorobenzenepropanoic acid,
trifluoroacetate salt

Step A

A mixture of 4-fluorophenyl bromide (10.0 g, 0.057 mol), tert-butylacrylate (9.52 g, 0.074 mol), palladium acetate (0.13 g, 0.00057 mol), tri-para-tolyphosphine (0.87 g, 0.0029 mol) and triethylamine (5.78 g, 0.057 mol) in 30 mL of DMF was heated at 120°C for 16 hours. The mixture was cooled and treated with 500 mL of water. The aqueous phase was extracted with ethyl acetate (3 x 200 mL) and the organic layer was washed with brine, dried over magnesium sulfate and filtered. The filtrate was concentrated and the residue was purified by chromatography on silica gel (ethyl acetate/hexane, 1:9) to give 10.13 g of product as a yellow oil (80%). The NMR was consistent with the proposed structure.

Analysis Calc'd. for $C_{13}H_{15}FO_2$: C, 70.25; H, 6.80. Found: C, 69.77; H, 7.08.

30

10

20

25

Step B

The product from Step A (8.7 g, 0.039 m 1) was treated with tert-butanol saturated with amm nia and 3 mL of acetic acid at 110°C and 900 psi in a Parr shaker for 48 hours. The mixture was filtered and concentrated. The residue was dissolved with 200 mL of cold 1N HCl and extracted with ethyl acetate. The aqueous phase was then basified with potassium carbonate and extracted with methylene chloride (2 x 200 mL). The combined extracts were washed with brine, dried over magnesium sulfate and filtered. The filtrate was concentrated to give 4.23 g of a yellow oil (41%). The structural assignment was supported by the NMR spectrum.

15 Step C

To a solution of the compound of Example M (1.0 g, 0.0037 mol) in 10 mL of DMF was added N-methylpiperidine (0.42 g, 0.0037 mol) rapidly. The mixture was stirred at room temperature for 20 minutes, then treated with isobutyl chloroformate at 0°C. After 15 minutes, a solution of the product from Step B in 3 mL of DMF was added. The reaction mixture was allowed to warm to room temperature and stirred overnight. Dimethylformamide was removed in vacuo and the residue was purified by reverse phase HPLC [acetonitrile/water (containing 0.5% of TFA)] to give 0.97 g of a pale yellow solid (44%):
Analysis Calc'd. for C₂₃H₂₇N₅O₄F·1.0 H₂O·1.0 TFA:

C, 50.93; H, 5.30; N, 11.88.

Found: C, 50.61; H, 4.92; N, 11.74.

30

Step D

To a suspension of the product from Step C in 10 mL of methylene chloride at 0°C was added 6 mL of TFA. The mixture was stirred at room temperature for 4 hours.

- 591 -

Solvent was removed and the r sidue was purified by reverse phase HPLC [acetonitrile/water (containing 0.5% of TFA)] to give 0.75 g of the title compound as a white solid (75%):

5 Analysis Calc'd. for C₁₉H₂₀N₅O₄F·1.5 TFA:

C, 46.16; H, 3.79; N, 12.23.

Found: C, 45.86; H, 3.68; N, 12.23.

10

15

20

30

Example 364

Preparation of (±) β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]
1H-imidazole-2-propanoic acid,
tris(trifluoroacetate) salt

Step A

A solution of 2-imidazolecarboxaldehyde (6.0 g, 0.063 mol) and (tert-butylcarbonylmethylene)triphenylphosphorane (29.4 g, 0.078 mol) in 150 mL of tetrahydrofuran was heated at 55°C overnight. The clear solution was cooled and concentrated in vacuo. The residue was purified by chromatography on silica gel (ethyl acetate/hexane, 8:2) to give 9.7 g of product (1:1 E/Z mixture) as a white solid (79%): Analysis Calc'd. for C₁₀H₁₄N₂O₂:

C, 61.84; H, 7.27; N, 14.42.

Found: C, 61.52; H, 7.39; N, 14.21.

25 Step B

To a suspension of prewashed sodium hydride (0.62 g, 0.026 mol) in 40 mL of dry dimethylformamide was added the product from Step A slowly. After 30 minutes, 2- (trimethylsilyl)ethoxymethyl chloride was added and the reaction mixture was stirred at room temperature for 2 hours. Water was added and the aqueous phase was extracted with ethyl acetate. The organic layer was washed with brine, dried over magnesium sulfate and filtered. The filtrate was concentrated and the residue

WO 97/08145 PCT/US96/13500

- 593 -

purified by chromatography on silica gel (ethyl acetate/hexane, 1:1) to giv 3.54 g of E isomer as a colorless oil and 2.66 g of Z isomer as a white solid (73%). Analysis Calc'd. for C₁₆H₂₈N₂O₃Si:

C, 59.22; H, 8.70; N, 8.63.

Found: C, 58.94; H, 9.12; N, 8.53.

Step C

5

To a solution of N-benzyl(trimethylsilyl)amine (2.16 g, 0.012 mol) in 30 mL of dry tetrahydrofuran at 10 -78°C was added n-butyllithium (0.012 mol) slowly. After 30 minutes, a solution of the product of Step B (2.6 g, 0.008 mol) in 15 mL of tetrahydrofuran was added and the reaction mixture was stirred at this temperature for 2.5 The reaction was then quenched with a solution of 15 acetic acid in tetrahydrofuran, followed by addition of saturated sodium bicarbonate to pH 9. The aqueous phase was extracted with ethyl acetate and the organic layer was washed with brine, dried over magnesium sulfate and 20 filtered. The filtrate was concentrated and purified by chromatography on silica gel (ethyl acetate/hexane, 6:4) to give 1.96 g of product as a clear oil (60%). Analysis Calc'd. for C23H37N3O3Si:

C, 64.00; H, 8.64; N, 9.73.

Found: C, 63.72; H, 8.85; N, 9.73.

Step D

25

30

To a solution of the product from Step C (5.4 g, 0.0125 mol) and ammonium formamide (7.89 g, 0.125 mol) in 150 mL of methanol was added Pd/C (170 mg). The mixture was stirred at reflux for 3 hours. The catalyst was filtered through celite and the filtrate was concentrated. The residue was dissolved in 400 mL of water, saturated with potassium carbonate, extracted with ethyl acetate.

The organic layer was washed with brine, dried over magnesium sulfat and filtered. The filtrat was concentrated to give 3.9 g of product as a colorl ss oil (91%). The NMR spectrum indicated that the compound was of sufficient purity for the next step.

Step E

5

The above compound was synthesized under the same conditions as described in Step C of Example 363. The crude product was purified by reverse phase HPLC [acetonitrile/water (containing 0.5% of TFA)] to give 1.5 g of product as a yellow solid (60%):

20 Analysis Calc'd. for $C_{26}H_{41}N_7O_5Si \cdot 2.5$ TFA:

C, 44.07; H, 5.19; N, 11.61.

Found: C, 44.24; H, 5.14; N, 11.91.

Step F

25 The title compound was obtained from the product of Step E following the procedure described in Step D of Example 363. The crude product was purified by reverse phase HPLC [acetonitrile/water (containing 0.5% of TFA)] to give 0.35 g of the title compound as a yellow solid 30 (24%):

Analysis Calc'd. for $C_{16}H_{19}N_7O_4 \cdot 3.0$ TFA:

C, 36.93; H, 3.10; N, 13.70.

Found: C, 37.76; H, 2.95; N, 14.22.

- 595 -

Example 365

Preparation of (\pm) β -[[2-[[[3-[(aminoiminomethyl)-amino]phenyl]carbonyl]amino]acetyl]amino]2,3,5,6-tetrafluorobenzenepropanoic acid,
trifluoroacetate salt

The above compound was made by following the reaction sequence described in Example 364 Step A and Step C to Step F. The structure was confirmed by the NMR spectrum. Analysis Calc'd. for C₁₉H₁₇N₅O₄F₄·1.5 TFA:

C, 42.18; H, 2.98; N, 11.18.

Found: C, 42.24; H, 3.07; N, 11.12.

20

5

10

Example 366

Preparation of β -[[2-[[[3-[(aminoiminomethyl)-amino]phenyl]carbonyl]amino]acetyl]amino]-5-bromothiophene-2-propanoic acid,
trifluoroacetate salt, monohydrate

15

20

25

30

10

5

A solution of the product of t-butyl ester of the above compound (prepared according to analoguous methodology as described herein) (1.0 g, 1.91 mmol) and trifluoroacetic acid (14.8 g, 10.0 ml, 13.0 mmol) in dichloromethane (25 ml) was stirred at 0°C for 30 minutes. The reaction mixture was allowed to warm to room temperature and stirred for 6 hours. The solvent was removed under reduced pressure. The crude product was purified by HPLC (acetonitrile, water, trifluoroacetic acid) to give pure title compound (0.43 g, 38%) as a white solid.

Analysis Calc'd. for C₁₇H₁₈N₅O₄SBr·CF₃COOH·H₂O:

C, 38.01; H, 3.53; N, 11.67; S, 5.34

Found: C, 38.07; H, 3.23; N, 11.48; S, 4.99

20

- 597 -

Example 367

Preparation of (±) 3,5-dichloro-β-[[2-[[[3-[(1,4,5,6-tetrahydro-5,5-dimethylpyrimidin-2-yl)amino]phenyl]carbonyl]amino]acetyl]amino]benzenepropanoic acid,
trifluoroacetate salt

The ethyl ester prepared in Example 361, Step D (0.22 g) was hydrolyzed to the acid using 1M LiOH, (1.8 mL) in acetonitrile (0.2 mL), followed by acidification and purification by reverse-phase HPLC to give 0.18 g of the acid as pale yellow powder. ¹H NMR and MS were consistent with the structure.

- 598 -

Example 368

Preparation of (±) 3-bromo-5-dichloro-2-hydroxyβ-[[2-[[[3-[(1,4,5,6-tetrahydro-5,5dimethylpyrimidin-2-yl)amino]phenyl]carbonyl]amino]acetyl]amino]benzenepropanoic acid, trifluoroacetate salt

The above compound was prepared by coupling the acid prepared in Example 361, Step C, (0.6 g) with the product of Example 233, Step B (0.5 g) according to the procedure described in Example 361. The desired product was isolated by reverse-phase HPLC to give 0.38 g of the above compound as a pale yellow powder. H NMR and MS were consistent with the structure.

20

WO 97/08145

- 599 -

Example 370

Synthesis of β -[[2-[[[3-[(aminoimin methyl)-amino]phenyl]carbonyl]amino]acetyl]amino]-2-mercaptobenzenepropanoic acid, lithium salt

Step A

5

10

Synthesis of S-Phenyl Thiocinnamate: A solution of cinnamoyl chloride (14.6 g, 87.68 mmol) in dichloromethane (100 mL) was added to a solution of thiophenol (9.55 g, 86.68 mmol) and pyridine (7 mL) in dichloromethane (150 mL) in an ice-water bath. After 18 hours at room temperature, the reaction mixture was washed with dilute hydrochloric acid (100 mL, 1N), brine (100 mL), dried (MgSO₄) and was concentrated to afford 19.0 g (91%) of the desired thioester as a crystalline solid.

25 Step B

30

Synthesis of Thiocoumarin: A mixture of S-phenyl thiocinnamate (14.0 g, 58.25 mmol) and aluminum chloride (39 g) was stirred and heated at 85°C for 3 hours. The hot reaction mixture was poured carefully over ice, then was extracted with ethyl acetate (3 x 300 mL), washed with brine (200 mL), dried (MgSO₄) and was concentrated. The residue was recrystallized from hexane-ethyl acetate to afford 5.2 g (52%) of the desired product as pale yellow crystals.

10

- 15

20

25

30

Step C

Synthesis of 4-Amino-3,4-Dihydr thiocoumarin
Hydrochloride Salt: Lithium h xamethyldisilazane (10.22 mL, 1N, 10.22 mmol) was added slowly to a solution of thiocoumarin (1.41 g, 8.52 mmol) in tetrahydrofuran (20 mL) at -78°C. After 45 minutes, the reaction mixture was warmed up to 0°C, then was quenched with glacial acetic acid (0.511 g). After 10 minutes, the reaction mixture was partitioned between ethyl acetate (100 mL) and sodium bicarbonate (100 mL). The organic layer was dried (MgSO₄) and was concentrated. The residue obtained was dissolved in ether (100 mL) and dioxane/HCl (20 mL, 4N) was added. The precipitate formed was filtered and the solid was dried in vacuo to afford (0.50 g, 27%) of the desired product as a yellow powder.

Step D

A solution of m-guanidinohippuric acid (0.506 g, 1.855 mmol) in dimethylformamide (5 mL) and N-methylmorpholine (0.187 g, 1.855 mmol) was cooled to 0°C and was stirred for 15 minutes. Isobutylchloroformate (0.253 g, 1.855 mmol) was added in three portions. After 10 minutes, 4-amino-3,4-dihydrothiocoumarin hydrochloride (0.404 g, 1.855 mmol) was added in one portion followed by N-methylmorpholine (0.187 g, 1.855 mmol). The reaction mixture was stirred for 18 hours at room temperature. The reaction mixture was concentrated and the residue was dissolved in tetrahydrofuran/water (1:1, 5 mL) and was chromatographed (reverse phase, 95:5 water: acetonitrile over 60 minutes to 30:70 water: acetonitrile containing 0.1% TFA). The eluents were lyophilized to afford 0.300 g of the title compound as a pale yellow powder.

Proton NMR and MS were consistent with the desired product.

10

20

25

30

Example 371

Preparation of (±) β-[2-[[[3-[(aminoiminomethyl)-amino]phenyl]carbonyl]amino]acetyl]amino]-5-chloro-2-mercaptobenzenepropanoic acid, dilithium salt

H NH₂ H SH OH

15 <u>Step A</u>

Synthesis of S-(4-Chlorophenyl) Thiocinnamate: A solution of cinnamoyl chloride (26.0 g, 156.3 mmol) in dichloromethane (100 mL) was added to a solution of thiophenol (22.6 g, 156.3 mmol) and pyridine (12.6 mL) in dichloromethane (200 mL) in an ice-water bath. After 18 hours at room temperature, the reaction mixture was washed with dilute hydrochloric acid (100 mL, 1N), brine (100 mL), dried (MgSO₄) and was concentrated to afford 41.0 g (96%) of the desired thioester as a crystalline solid.

Step B

Synthesis of 6-Chlorothiocoumarin: A powdered mixture of S-(4-chlorophenyl) thiocinnamate (19.4 g) and aluminum chloride (52 g) was stirred and heated at 125°C for 3 hours. The hot reaction mixture was poured carefully over ice/water, then was extracted with ethyl acetate (3x300 mL), washed with brine (200 mL), dried (MgSO₄) and was concentrated. The residue was triturated

with hexane/ethyl acetate to afford 2.0 g (14%) f the desired product as pale yellow crystals.

Step C

5 Synthesis of 4-amino-6-chloro-3,4-dihydrothiocoumarin hydrochloride salt: Lithium hexamethyldisilazane (6.4 mL, 1N, 6.4 mmol) was added slowly to a solution of 6-chlorothiocoumarin (1.05 g, 5.345 mmol) in tetrahydrofuran (20 mL) at -78°C. After 45 minutes, the reaction mixture was warmed up to 0°C, then was quenched 10 with glacial acetic acid (0.321 g). After 10 minutes, the reaction mixture was partitioned between ethyl acetate (100 mL) and sodium bicarbonate (100 mL). The organic layer was dried (MgSO4) and was concentrated. The residue 15 obtained was dissolved in ether (100 mL) and dioxane/HCl (20 mL, 4N) was added. The precipitate formed was filtered and the solid was dried in vacuo to afford (0.80 g, 60%) of the desired product as a yellow powder.

20 Step D

25

30

A solution of m-guanidinohippuric acid (0.548 g, 2.0 mmol) in dimethylformamide (5 mL) and N-methylmorpholine (0.220 mL, 2.0 mmol) was cooled to 0°C and was stirred for 15 min. Isobutylchloroformate (0.260 mL, 2.0 mmol) was added in three portions. After 10 minutes, 4-amino-6-chloro-3,4-dihydrothiocoumarin hydrochloride (0.50 g, 2.0 mmol) was added in one portion followed by N-methylmorpholine (0.220 mL, 2.0 mmol). The reaction mixture was stirred for 18 hours at room temperature. The reaction mixture was concentrated and the residue was dissolved in tetrahydrofuran/water (1:1, 5 mL) and was chromatographed (reverse phase, 95:5 water: acetonitrile over 60 minutes to 30:70 water: acetonitrile containing 0.1% TFA). The eluents were basified with an aqueous

WO 97/08145 PCT/US96/13500

- 603 -

solution f lithium hydroxide and then was lyophilized to afford 0.300 g of th title compound as a pal yellow powder.

MS and NMR were consistent with the proposed structure.

Example 372

The following c mpounds are prepared according to the methodology described in Examples 370-371.

5

15

20

10

$$X=SH; R_1, R_2=C1; R_3, R_4=H$$

$$X=SH; R_1, R_2=F; R_3, R_4=H$$

$$X=SH$$
; R_1 , $R_2=Me$; R_3 , $R_4=H$

$$X=SH; R_1, R_2=CF_3; R_3, R_4=H$$

$$X=SH; R_1, R_2=Br; R_3, R_4=H$$

$$X=SH; R_1=H, R_2=F; R_3, R_4=H$$

$$X=SH$$
; $R_1=H$, $R_2=Br$; R_3 , $R_4=H$

$$X=SH; R_1=H, R_2=CF_3; R_3, R_4=H$$

$$X=SH; R_1=H, R_2=CH_3; R_3, R_4=H$$

and the above compounds wherein R_3 and R_4 together are $(CH_2)_3$ or $(CH_2)_2$.

WO 97/08145 PCT/US96/13500

- 605 -

EXAMPLE 374

The above compound is prepared by reacting the compound prepared in Example 233, Step B with 3-guanidino-5-trifluoromethylhippuric acid (prepared according to the procedure of Example 38) using substantially the proportions and procedure of Example N, Step 3 and substituting 3-guanidino-5-trifluoromethylhippuric acid hydrochloride for GIHA HCl. The desired product is isolated by C-18 RPHPLC.

EXAMPLE 375

20

25

5

The above compound is prepared using the procedure of

Example 374 and substituting (RS)-4-amino-6,8-dichlorohydrocoumarin hydrochloride prepared in Example 237 for
the compound of Example 233, Step B. The desired product
is isolated by C-18 RPHPLC.

EXAMPLE 376

The above compound is prepared using the procedure of
Example 374 and substituting (RS)-4-amino-6-chlorohydrocoumarin hydrochloride prepared in Example 231 for
the compound of Example 233, Step B. The desired product
is isolated by C-18 RPHPLC.

15

20

5

EXAMPLE 377

25 Fvan

The above compound is prepared using the procedure of Example 374 and substituting the compound prepared in Example 227 for the compound of Example 233, Step B. The desired product is isolated by C-18 RPHPLC.

EXAMPLE 378

The above compound is prepared using the procedure of

Example 374 and substituting (RS)-4-amino-6-nitrohydrocoumarin hydrochloride prepared in Example 226 for
the compound prepared in Example 233, Step B. The desired
product is isolated by C-18 RPHPLC.

15

5

EXAMPLE 379

The above compound is prepared from the product of Example 378 using the conditions of Example 234. The desired product is isolated by C-18 RPHPLC.

EXAMPLE 380

The above compound is prepared using the procedure of
Example 374 and substituting the compound prepared in
Example 235, Steps A-C and two equivalents of NMM in the
coupling step for the compound prepared in Example 233,
Step B and one equivalent of NMM. The desired product is
isolated by C-18 RPHPLC.

15

20

5

EXAMPLE 381

25

The above compound is prepared using the procedure of Example 374 and substituting (RS)-4-amino-6-methyl-hydrocoumarin hydrochloride (prepared in Example 88) for the compound prepared in Example 233, Step B. The desired product is isolated by C-18 RPHPLC.

WO 97/08145 PCT/US96/13500

- 609 -

EXAMPLE 382

The above compound is prepared using the procedure of

Example 374 and substituting (RS)-4-amino-hydrocoumarin
hydrochloride (prepared in Example 87) for the compound
prepared in Example 233, Step B. The desired product is
isolated by C-18 RPHPLC.

15 EXAMPLE 383

The above compound is prepared using the procedure of
Example 374 and substituting (RS)-4-amino-7-methoxyhydrocoumarin hydrochloride (prepared in Example 222) for
the compound prepared in Example 233, Step B. The desired
product is isolated by C-18 RPHPLC.

20

- 610 -

EXAMPLE 384

10

15

5

The above compound is prepared using the procedure of Example 374 and substituting (RS)-4-amino-8-methoxy-hydropsoralen hydrochloride (prepared in Example 223) for the compound prepared in Example 233, Step B. The desired product is isolated by C-18 RPHPLC.

WO 97/08145 PCT/US96/13500

- 611 -

EXAMPLE 385

Step A

5

15

20

30

10 Preparation of

The above compound is prepared from 7,8-methylenedioxy-coumarin (which may be prepared from 7,8-dihydroxy-chromen-2-one according to P. Castillo, J.C. Rodriguez-Ubis, and F. Rodriguez, Synthesis, 10, 839-840 (1986)) using the procedure of Example 233, Steps A and B.

Step B

The above Example compound is prepared using the procedure of Example 374, substituting the hydrochloride salt of the product of Step A for the compound prepared in Example 233, Step B. The desired product is isolated by C-18 RPHPLC.

EXAMPLE 386

HN H₂N HO OH

Step A

5

15

10 Preparation of

The above compound is prepared from 6,7
methylenedioxy-coumarin [which may be prepared from 6,7dihydroxy-chromen-2-one according to Spaeth, et al., Chem.

Ber., 70, 702 (1937)] using the procedure of Example 233,
Steps A and B.

25 <u>Step B</u>

30

The above Example compound is prepared using the procedure of Example 374 and substituting the hydrochloride salt of the product of Step A for the compound prepared in Example 233, Step B. The desired product is isolated by C-18 RPHPLC.

WO 97/08145 PCT/US96/13500

- 613 -

EXAMPLE 387

Step A

5

15

10 Preparation of

The above compound is prepared from 5,6
20 methylenedioxy-coumarin [prepared from 5,6-dihydroxychromen-2-one according to P. Castillo, J.C. RodriguezUbis, and F. Rodriguez, Synthesis 10, 839-840 (1986)]

using the procedure of Example 233, Steps A and B.

25 <u>Step B</u>

30

The above Example coumpound is prepared using the procedure of Example 374, substituting the hydrochloride salt of the hydrochloride salt of the product of Step A for the compound prepared in Example 233, Step B. The desired product is isolated by C-18 RPHPLC.

EXAMPLE 388

The above compound may be prepared by reacting
esculin (Aldrich, rendered substantially free from water
of hydration by storage of P₂O₅ in a vacuum dessicator)
according substantially to the procedure of S. Kato, et
al., Bull. Chem. Soc. Jap., 54, 6, 1981, 1895-1896, for
the conversion of phenyl-α-D-glucoparanoside to phenyl
2,3,4,6-tetra-O-benzyl-α-D-glucoparanoside and
substituting the appropriate molar quantities of reagents
to effect complete conversion of esculin to the above
compound. The desired product may be isolated by standard
silica gel chromatography or by preparative C-18 RPHPLC.

WO 97/08145 PCT/US96/13500

- 615 -

Step B

5

10

The above compound is prepared using the procedure of Example 233, Step B and substituting the product of Step A for the product of Example 233, Step A.

Step C

The above compound is prepared using the procedure of

Example 374, substituting the hydrochloride salt of the
product of Step B for the compound prepared in Example

233, Step B. The desired product is isolated by C-18
RPHPLC.

Step D

5

10

15

20

The above compound is prepared by taking the product of Step C, dissolving in a suitable solvent (e.g. aqueous ethanol), transferring to a Fischer-Porter pressure bottle equipped with an inlet and outlet valve, pressure gauge and pressure relief valve and removing the benzyl groups by standard catalytic hydrogenolysis procedure: 5% Pd on carbon catalyst and hydrogen atmosphere until the debenzylation reaction is substantially complete. The desired product is isolated by C-18 RPHPLC.

- 617 -

EXAMPLE 389

HN H₂N H OH CI

Step A

5

15

20

25

10 Preparation of

The above compound is prepared using substantially the procedure of Example 235, Steps A-C.

Step B

The above Example compound is prepared using substantially the procedure of Example 235, Steps D and E and is isolated using preparative C-18 RPHPLC.

- 618 -

EXAMPLE 390

Step A

10 Preparation of 4-chloro-2-iodophenol

15

20

5

The above compound is prepared according to the procedure of K.J. Edgar and S.N. Falling, J. Org. Chem., 55, 16, 1990, 5287-5291.

Step B

Preparation of 5-chloro-3-iodosalicylaldehyde

25

30

4-chloro-2-iodophenol prepared in Step A is converted to the salicylaldehyde using the procedure of G. Casiraghi, et al., J.C.S. Perkin I, 1978, 318-321.

Step C

Preparation of 6-chloro-8-iodocoumarin

10

15

5

5-chloro-3-iodosalicylaldehyde is converted into the corresponding coumarin, 6-chloro-8-iodocoumarin, using substantially the procedure of Example 233, Step A and substituting 5-chloro-3-iodo-salicylaldehyde for 3-bromo-5-chlorosalicylaldehyde. The desired product may be isolated by standard silica gel chromatography or distillation.

Step D

20 Preparation of (R,S)-4-amino-6-chloro-8-iodo-hydrocoumarin

25

The above compound is prepared using substantially
the procedure of Example 233, Step B and substituting the
product of Step C for 3-bromo-5-chlorosalicylaldehyde to
give the product as substantially pure hydrochloride salt.

Step E

The abov Example compound is prepared using the procedure of Example 274 and substituting the product of Step D for the compound prepared in Example 233, Step B. The desired product is isolated by C-18 RPHPLC.

- 621 -

EXAMPLE 391

The above compound is prepared using substantially
the procedure of Example 86, Step D, substituting 3guanidino-5-trifluoromethylhippuric acid hydrochloride for
GIHA HCl. The desired product is isolated by C-18 RPHPLC.

EXAMPLE 392

$$H_2N$$
 H OH CF_2CF_3

Step A

Preparation of

10

5

15

20

The above compound is prepared using substantially the procedure of Example 235, Step A, substituting BOC-L-aspartic acid-4-tert-butyl ester (Fluka) for 5-bromonicotinic acid.

Step B

Preparation of

25

30

The above compound is prepared according to substantially the procedure of M.R. Angelastro, et al., J. Med. Chem., 1994, 37, 4538-4554, substituting the product of Step A for Reference compound $2 \{(S)-[1-$

[methoxymethylamino)carbonyl]-2-methylpropy]carbamic acid, 1,1-dimethyl thyl est r} and deprotecting according to substantially the procedure employed for obtaining reference compound 3 to obtain the above compound as the HCl salt.

Step C

The above Example compound is prepared using substantially the procedure of Example 85, Step A, substituting the product of Step B for glycine t-butyl ester and substituting 3-guanidino-5-trifluoromethylhippuric acid hydrochloride for GIHA HCl. The desired product may be obtained by C-18 RPHPLC.

15

10

15

20

25

30

EXAMPLE 393

Step A

Preparation of 3-N-t-Boc-amino-4-hydroxy-(3S)-butyric acid benzyl ester

N-t-Boc-L-aspartic acid, β -benzyl ester (10.0 mmole) was dissolved in 10 mL of THF and added dropwise over a period of 30 minutes to a 0°C solution of BH₃-THF (20 mL, 20.0 mmole), under argon. After the mixture was stirred for an additional 1-2 hours at 0°C, the reaction was quenched by dropwise addition of 10% acetic acid in methanol and the solvent evaporated. The oil residue was dissolved in ethyl acetate and extracted with 1N HCl, water, and 1M NH₄HCO₃. The ethyl acetate layer was dried (Na₂SO₄) and volatiles evaporated to give an oil was crystallized from isopropanol/hexane (mp 56-57°C): ¹H NMR, CDCl₃, δ , 1.45 (s, 9H), 2.65 (d, 2H), 3.68 (d, 2H), 5.12 (s, 2H), 5.25 (m, 1H), 7.35 (m, 5H).

Step B

Preparation of

The 3-N-t-Boc-amino-4-hydroxy-butyric acid benzyl ester prepared in Step A was oxidized to the corresponding aldehyde using the following Swern oxidation conditions: oxalyl chloride (6.40 g, 20.72 mmole) was dissolved in dry CH₂Cl₂ (25 mL) under argon and cooled to -63°C using a dry 5 ice/chloroform bath. Dry DMSO (g, 41.4 mmole) dissolved in CH₂Cl₂ (12 mL) was added in a dropwise fashion over 15 minutes. The alcohol (6.40 g, 20.7 mmole), dissolved in methylene chloride (50 mL) was then added over 10 minutes. After stirring the reaction mixture for an additional 10 10 minutes, Et₃N (11.6 mL, 82.9 mmole, 4.0 equivalents) in CH₂Cl₂ (25 mL) was added over 15 minutes. The resulting mixture was stirred for 15 minutes and quenched by addition of water (31 mL). The resulting slurry was poured onto hexanes (250 mL) and the organic layer washed 15 with aqueous KHSO4. The aqueous layer was extracted with diethyl ether and the combined organic extracts were washed with saturated NaHCO3, dried (Na2SO4) and evaporated to give 5.8 g of a light yellow oil which was substantially the desired aldehyde. A small portion was 20 purified by flash chromatography (hexane: ethyl acetate, Merck 60 silica gel): 1 H NMR (300 MHz), CDCl₃, δ , 1.46 (s, 9H), 2.95 (m, 2H), 4.37 (m, 1H), 5.13 (s, 2H), 5.62 (m, 1H), 7.38 (m, 5H), 9.65 (s, 1H), MS(FAB+) 314.3 (M+Li). 25

Step C

Preparation of 3-N-t-Boc-amino-4-hydroxy-4-phenyl-(3S)-butyric acid benzyl ester

To a diethyl ether (150 mL) solution of aldehyde

30 (5.0 g, 15 mmole) prepared in Step B at -40°C
(acetonitrile/dry ice bath) was added in a dropwise
fashion a 3.0 M solution of phenyl magnesium bromide in
diethyl ether (10.8 mL, 32.6 mmole, 2 equivalents). The
resulting mixture was stirred for 15 minutes and warmed to

room temperature. After sev ral minutes the mixture was poured into 1 M K_2HPO_4 . The aque us layer was extracted again with eth r, the combined ether layers washed with aqueous NaHCO₃, dried (Na₂SO₄) and evaporated to give an oil (5.66 g) that was used in the next step without further purification: ¹H NMR (300 MHz), CDCl₃, δ , 1.4 (multiple singlets, 9H), 2.65 (m, 2H), 4.18 (m, 1H), 5.15 (m, 2H), 7.4 (m, 10H); MS(FAB+) 392.4 (M+Li+).

10 <u>Step D</u>

· 5

Preparation of 2-phenyl-3-N-t-Boc-amino-5-oxo-3S-furan The hydroxy-ester product of Step C (5.31 g, 13.8 mmole) was taken up in benzene (100 mL) a catalytic amount of camphor sulfonic acid was added and the solution refluxed (Dean-Stark) for five hours and the solvent 15 Conversion to lactone was 50% so the reaction removed. was reconstituted and refluxed for a further 6 hours. Solvent was removed and the resulting oil taken up in ethyl acetate. The organic layer was washed with aqueous 20 saturated NaHCO₃, dried (Na₂SO₄) and evaporated to give a mixture of the desired diastereomeric lactones as a viscous oil in a 2:1 ratio and benzyl alcohol: 1H NMR (300 MHz), CDCl₃, δ , 1.35, 1.45 (s, 2:1, 9H), 2.75 (m, 2H), 4.5, 4.75 (m, 2:1, 1H), 4.7 (s, 2H), 5.1 (m, 1H), 5.7 (d, 1H), 7.35 (m, 10H); MS(FAB+) 284.6 (M+Li+). 25

Step E

Preparation of 2-phenyl-3-amino-5-oxo-3S-furane, hydrochloride

5

10

15

The lactone (0.94 g, 3.4 mmole) prepared in Step D was treated with 4 N HCl in dioxane (20 mL) at room temperature until gas evolution ceased. Excess HCl was removed by evaporation and the desired amino lactone isolated as a white crystalline solid that was dessicated (0.48 g, 66%): ¹H NMR (300 MHz), d₆ DMSO, δ , 3.05 (m, 2H), 4.4 (m, 1H), 5.85 (d, 1H), 7.4 (s, 5H), 8.2 (bs, 3H); MS(FAB+) 178 (M+H+).

Step F

Preparation of

10

5

The above compound is prepared using substantially the procedure of Example 374, substituting the product of Step E for the compound prepared in Example 233, Step B. The desired product is isolated by C-18 RPHPLC.

10

15

20

25

30

EXAMPLE 394

HN H₂N H OH

The above compound is prepared following substantially the procedure of Example 393, substituting 4-fluorophenyl magensium bromide for phenyl magnesium bromide in Step C.

EXAMPLE 395

The above compound is prepared following substantially the procedure of Example 393, substituting 4-chlorophenyl magensium bromide for phenyl magnesium bromide in Step C.

10

15

20

30

EXAMPLE 396

The above compound is prepared following substantially the procedure of Example 393, substituting 4-bromophenyl magnesium bromide for phenyl magnesium bromide in Step C.

EXAMPLE 397

The above compound is prepared following substantially the procedure of Example 393, substituting vinyl magnesium bromide for phenyl magnesium bromide in Step C.

EXAMPLE 398

The above compound is prepared following

substantially the procedure of Example 393, substituting ethynylmagnesium bromide for phenyl magnesium bromide in Step C.

EXAMPLE 399

15 HN H OH OH CH2

The above compound is prepared following

substantially the procedure of Example 393, substituting allylmagnesium bromide for phenyl magnesium bromide in Step C.

Ĺ

EXAMPLE 400

The above compound is prepared following substantially the procedure of Example 393, substituting cyclopentylmagnesium bromide for phenyl magnesium bromide in Step C.

15

20

5

EXAMPLE 401

HN H₂N H OH

The above compound is prepared following substantially the procedure of Example 393, substituting phenylethynylmagnesium bromide for phenyl magnesium bromide in Step C.

EXAMPLE 402

The above compound is prepared following substantially the procedure of Example 393, substituting methylmagnesium bromide for phenyl magnesium bromide in Step C.

15 EXAMPLE 403

The above compound is prepared following substantially the procedure of Example 393, substituting isopropylmagnesium bromide for phenyl magnesium bromide in Step C.

EXAMPLE 404

Step A

Preparation of 4-bromomagnesium-1,2-(methylenedioxy)benzene

15

10

5

20

25

To 1.74 gm (0.072 mole) freshly-ground magnesium in 100 mL dry THF in a 250 mL round bottom flask was added in a dropwise fashion 13.1 gm (0.062 mole) 4-bromo-1,2- (methylenedioxy)benzene in 50 mL dry THF. The reaction mixture was sonicated during the addition and the reaction temperature maintained below 50°C by use of a water bath. Upon completion of reaction the mixture was filtered and used in the next step.

Step B

Preparation of

5

10

15

The above compound is prepared following substantially the procedure of Example 393, substituting the grignard of Step A for phenyl magnesium bromide in Example 393, Step C.

EXAMPLE 405

Step A

Preparation of

10

5

15

The above compound is prepared according to the procedure of Example 55, Step A, substituting methyl-2-formylbenzoate for 2-furancarboxaldehyde.

20

Step B

Preparation of

25

30

The above compound is prepared according to the procedure of Example 55, Steps B and C, substituting the product of Step A for the product of Example 55, Step A.

- 637 -

EXAMPLE 406

HN N H

Step A

5

10 Preparation of

Ph

The product of Example 393, Step C is oxidized to the above ketone using the procedure of Example 393, Step B.

Step B

Preparation of

25

30

15

H₂N Ph

The above product is prepared using the procedure of Example 393, Step E using the product of Step A above.

- 638 -

Step C

Preparation of

10

15

5

The Example compound is prepared using substantially the procedure of Example 374, substituting the product of Step B for the compound prepared in Example 233, Step B. The desired product is obtained by converting the benzyl ester to the corresponding carboxylic acid by hydrolysis using substantially the procedure of Example 4 and isolating the desired product by C-18 RPHPLC.

Example 407-414

Using the procedure of Example 406, substituting the appropriate protected aspartyl alcohols prepared in Examples 394-403 for the aspartyl alcohol of Example 406, Step A, the following representative compounds are prepared:

Ex. 408

Ex. 409

Ex. 410

1.

Ex. 412

Ex. 413

Ex. 414

Example 415

Preparation of

10

20

25

5

15 <u>Step A</u>

To the product of Example 23, Step A in DMF is added excess 1,3-diamino-2-hydroxypropane and catalytic DMAP and the solution heated until substantially complete conversion of the starting S-methylisothiouronium salt is achieved. The desired product may be isolated by precipitation of the zwitterion or by preparative C-18 RPHPLC (for a related procedure see U.S. Patent 2,899,426). After drying to remove water, the hydrochloride salt is formed by stirring the zwitterion in excess 4N HCl in dioxane (Aldrich) and isolating the HCl salt by filtration.

Step B

5

Br
The above compound is prepared using substantially
the procedure of Example 233, substituting the product of
Step A for GHIA hydrochloride in Example 233, Step C.

Example 416-439

Using substantially th procedure of Example 415, substituting the appropriate amine for (RS)-4-amino-6-chloro-8-bromo-hydrocoumarin hydrochloride the following representative compounds may be prepared:

- 650 -

Example 440

Step A

10

5

15

20

The above compound was prepared using the procedure of Example 233, Steps A and B, substituting 3,5-dichlorosalicylaldehyde for 3-bromo-5-chlorosalicylaldehyde in Step A. NMR and MS were consistent with the proposed structure (HCl salt).

Step B

25

30

The above compound is prepared by treating the product of Step A with dry HCl gas in methanol in a

suitable reactor while maintaining vigorous stirring.
Upon compl tion f reaction excess HCl is removed under vacuum and the solution concentrated to dryness. The crude product is used in the next step. Alternatively, the product may be isolated by C-18 RPHPLC and lyophilized to obtain substantially pure material.

Step C

10

5

15

20

25

The above compound is prepared by taking the product of Step B and dissolving in DMF. To the stirred solution is added an equimolar amount of both di-tert butyl dicarbonate and triethylamine with a catalytic amount of DMAP. Upon completion of the reaction volatiles are removed under vacuum and the product partitioned between dilute aqueous hydrochloric acid and ethyl acetate. The organic layer is washed with water, dried (Na₂SO₄) and concentrated to provide substantially the above compound that may be employed in the next step without further purification. Alternatively, the product may be isolated by C-18 RPHPLC and lyophilized to obtain substantially pure material.

30

Step D

10

15

20

5

The above compound is prepared by adding under an inert atmosphere an equivalent of acetic anhydride or acetyl chloride and an equivalent of triethylamine to a stirred solution of the product from Step C in DMF. Upon completion of reaction volatiles are removed under vacuum and the reaction residue partitioned betwen dilute aqueous hydrochloric acid and ethyl acetate. The organic layer is washed with aqueous sodium bicarbonate, dried (Na₂SO₄) and concentrated to provide substantially the above compound that may be employed in the next step without further purification. Alternatively, the product may be isolated by C-18 RPHPLC and lyophilized to obtain substantially pure material.

25 <u>Step E</u>

30

The above compound is prepared by treating the product of Step D with 4 N HCl in dioxane with vigorous stirring. Shortly after cessation of gas evolution excess HCl gas is removed in vacuo and the reaction mixture concentrated at less than about 40°C. The product is triturated with diethyl ether to obtain substantially the desired product. Alternatively, the product may be isolated by C-18 RPHPLC and lyophilized to obtain substantially pure mater.

10

5

Step F

15

20

The above compound is prepared according to the procedure of Example 230, Step B, substituting the product of Step E for the product of Example 230, Step A.

25

- 654 -

Example 441

10

15

5

The above compound is prepared by treating a DMF mixture of the compound of Example 225 with two equivalents of N-methylmorpholine and one equivalent of acetic anhydride or acetyl chloride. Upon completion of the reacation the desired product may be isolated by C-18 RPHPLC and lyophilization.

Example 442

20

25

30

The above compound is prepared by treating a DMF mixture of the compound of Example 225 with two equivalents of N-methylmorpholine and one equivalent of benzoic anhydride or benzoyl chloride. Upon completion of the reaction the desired product may be isolated by C-18 RPHPLC and lyophilization.

5

Example 443-452

Using substantially the procedure of Example 230, Step B and substituting the appropriate amine for the product of Example 230, Step A, the following representative compounds may be prepared:

Ł

Ex. 451

Example 453-460

Using the procedur of Example 393, substituting the appropriate amine hydrochloride for the product of Step E in Step F and substituting GIHA HCl for 3-guanidino-5-trifluoromethylhippuric acid in Step F the following representative compounds may be prepared:

Ex. 456

Ex. 459

Example 461

Using the procedure of Example 406, substituting the appropriate protected aspartyl alcohol prepared in Examples 394-403 for the aspartyl alcohol of Example 406, Step A, and substituting GIHA HCl for 3-guanidino-5-trifluoromethylhippuric acid in Example 393, Step F the following representative compounds may be prepared:

Ex. 465

Ex. 467

Ex. 468

Example 470

Preparation of

5

10

15

20

Step A

To 3,4,5,6-tetrahydro-2-pyrimidinethiol (Aldrich) (5.0 g, 0.043 mole) and triethylamine (8.7 g, 0.086 mole) in CH₂Cl₂ (50 mL) was added dropwise and at ice bath temperature, phenylchloroformate [(Aldrich) 13.5 g, 0.086 mole)]. The reaction was then stirred overnight at room temperature. The precipitate was filtered and washed with CH₂Cl₂. The CH₂Cl₂ filtrate was washed with H₂O (3X), dried over MgSO₄ and removed under vacuum. The residue was recrystallized from 50% EtOAc/Hexane to yield 9.03 g of 3,4,5,6-tetrahydro-2-pyrimidinethione-N,N'-diphenylcarbamate as a yellow solid.

MS and NMR are consistent with the desired structure.

Step B

To the product from Example 282, Step C (200 mg, 0.00042 mole), the product from Step A above (150 mg, 0.00042 mole) and triethylamine (142 mg, 0.0014 mole) in 3 mL DMF was added 250 mg (0.00046 mole) HgCl₂ at ice bath temperature. The reaction was stirred at ice bath temperature for ½ hour and at room temperature for 2 hours. 100 mg additional HgCl₂ was added and the reaction was stirred overnight at 60°C. Excess ethyl acetate was added and the slurry was filtered through

celite. The filtrate was wash d with H_2O (3X), passed through a pad of silica gel and th product isolated by silica gel chromatography to yield the above compound (110 mg) as a white solid.

Example 471

Preparation of

5

10

Step A

To 3,4,5,6-tetrahydro-2-pyrimidinethiol (Aldrich)
(10 g, 0.086 mole) in absolute ethanol (75 mL) is added
methyl iodide (12.2 g, 0.086 mole). The reaction was
stirred at reflux for 2.5 hours. The solvent was
removed under vacuum and the residue dried to yield
3,4,5,6-tetrahydro-2-methylthiopyrimidine·HI (22 g) as
a white solid.

MS and NMR were consistent with the desired structure.

25 Step B

30

35

To the product from Step A above (5.16 g, 0.02 mole) and triethylamine (4.1 g, 0.04 mole) in $\mathrm{CH_2Cl_2}$ (25 mL) was added phenylchloroformate (Aldrich) (3.13 g, 0.02 mole) dropwise at ice bath temperature. The reaction was then stirred overnight at room temperature. The precipitate was filtered and washed with $\mathrm{CH_2Cl_2}$. The $\mathrm{CH_2Cl_2}$ from the filtrate was washed with $\mathrm{H_2O}$ (3X), dried over $\mathrm{MgSO_4}$ and removed under vacuum to yield 3,4,5,6-tetrahydro-2-methylthiopyrimidine-N-phenylcarbamate (4.8 g) as a white solid.

Step C

To the pr duct from Step B above (2 g, 0.008 mol) in CH₂CN (12 mL) was added the product of Example M, Step B (1.84 g, 0.008 mole). The reaction was stirred at reflux overnight and the product isolated by RPHPLC to yield 3,4,5,6-tetrahydro-N-phenylcarbamyl-2-pyrimidine-m-aminohippuric acid·TFA (1 g) as a white solid.

10 Step D

5

15

The above compound was prepared according to the methodology of Example 174, substituting an equivalent amount of 3,5-dichlorobenzaldehyde for 3,4-dichlorobenzaldehyde in Example 174, Step A and substituting an equivalent amount of the product from Step C above for m-guanidinohippuric acid·HCl in Example 174, Step B.

- 668 -

Example 472

Preparation of

5

10

15

20

30

35

Step A

To 2-methylthio-2-imidazoline·HI (Aldrich) (10 g, 0.041 mole) and triethylamine (4.14 g, 0.041 mole) in CH_2Cl_2 (50 mL) was added BOC anhydride (Aldrich) (8.94 g, 0.041 mole) at ice bath temperature. The reaction was stirred overnight at room temperature. The CH_2Cl_2 was washed with H_2O (3 X), dried over $MgSO_4$, washed with H_2O (3 X), dried over $MgSO_4$ and removed under vacuum to yield N-BOC-2-methylthio-2-imidazoline (8.1 g) as a clear liquid which turned to a white solid upon standing.

MS and NMR were consistent with the desired structure.

25 Step B

To the product of Step A above (2.7 g, 0.0124 mole) in CH₃CN (6 mL) was added 3-amino-5-trifluoromethylbenzoic acid (synthesized by catalytic hydrogenation (Pd/C) of 3-nitro-5-trifluorobenzoic acid (Lancaster) followed by treatment with HCl) (3 g, 0.0124 mole). The reaction was stirred at 35-40°C for 10 days. After cooling to room temperature, the precipitate was filtered, washed with CH₃CN and dried to yield 3-(N-BOC-4,5-dihydroimidazol-2-yl)amino-5-trifluoromethylbenzoic acid HCl (3.2 g) as a white s lid.

MS and NMR were consistent with the desired structure.

Step C

The above compound was prepared according to the methodology of Example 200, substituting an equivalent amount of the product from Step B above for the product from Step A in Example 199, Step B and by additionally treating the intermediate ethyl ester, N-BOC derivative with TFA for 1 hour to remove the BOC protecting group.

- 670 -

Example 473

Preparation of

5

10

Step A

To 3-amino-5-trifluoromethylhippuric acid hydrochloride [prepared according to Example M, Steps A and B substituting 3-nitro-5-trifluoromethylbenzoyl 15 chloride (prepared from 3-nitro-5trifluoromethylbenzoic acid (Lancaster) and thionyl chloride for M-nitrobenzoyl chloride in Example M, Step A] (3 g, 0.01 mole) in CH₃CN (5 mL) was added the product from Example 472, Step A (2.2 g, 0.01 mole). 20 The reaction was stirred at 35°C for 3 days then at reflux for 4 hours. After cooling, the CH3CN was decanted off, the residue slurried several times in ether (ether decanted off) and then dried to yield 3-(4,5-dihydro-1H-imidazol-2-yl)amino-5-25 trifluoromethylhippuric acid·HCl (2.5 g) as a white solid.

MS and NMR were consistent with the desired structure.

30

35

Step B

The above compound was prepared according to the methodology of Example 210, substituting an equivalent amount of the product from Step A above for m-guanidinohippuric acid·HCl in Example 174, Step B.

WO 97/08145 PCT/US96/13500

- 671 -

Example 474

Preparation of

EtOOC TFA

. 10

15

20

30

35

5

Step A

To 2-methylthio-2-imidazoline·HI (Aldrich) (10 g, 0.041 mole) and triethylamine (8.3 g, 0.0082 mole) in CH_2Cl_2 (50 mL) was added ethylchloroformate (Aldrich) (4.5 g, 0.041 mole) dropwise at ice bath temperature. The reaction was stirred overnight at room temperature. The precipitate was filtered and washed with CH_2Cl_2 . The CH_2Cl_2 from the filtrate was washed with H_2O (3X), dried over MgSO₄ and removed under vacuum to yield 2-methylthio-2-imidazoline-N-ethylcarbamate (7.1 g) as a clear yellow oil.

MS and NMR were consistent with the desired structure.

25 <u>Step B</u>

To the product from Step A above (5.73 g, 0.0305 mole) in CH₃CN (12 mL) was added m-aminohippuric acid·HCl (Example M, Step B) (7.02 g, 0.0305 mole). The reaction was stirred overnight at room temperature then at 50°C for 6 hours and at 80°C for 2 hours. After cooling to room temperature and stirring at room temperature overnight, the precipitate was filtered, washed with CH₃CN and dried to yield 3-(4,5-dihydro-N-ethylcarbamate-imidazol-2-yl)aminohippuric acid·HCl (9.6 g) as a whit solid.

Step C

5

The ab ve c mpound was prepar d according to the method logy of Exampl 174, substituting an equivalent amount of the product from Step B above for m-aminohippuric acid in Example 174, Step B and an equivalent amount of the product from Example 230, Step A for the product from Example 174, Step A in Example 174, Step B.

WO 97/08145

- 673 -

Example 475

Preparation of

5

10

15

The above compound was prepared according to the methodology of Example 474, substituting an equivalent amount of phenylchloroformate (Aldrich) for ethylchloroformate in Example 474, Step A and by heating the reaction mixture at 70°C for 8 hours then room temperature for 2 days in Example 474, Step B.

5

Using the methodologies, reagents and conditions exemplified in the schemes and exampl s of this disclosure (or the synthesis of reagents from readily available starting materials via methodologies known to those skilled in the art), the following compounds of the present invention are synthesized:

Examples 476-517

	Example #	<u> </u>	B	C	Ð	E	<u> F</u>
10	518	ОН	Cl	Cl	Br	Н	H
	519	ОН	cl	Cl	ОН	Н	H
	520	ОН	Cl	Cl	NO ₂	Н	н
	521	ОН	Cl	Cl	I	H	н
	522	ОН	Cl	Cl	Cl	H	н
15	523	ОН	Cl	Cl	Cl	н	Cl
•	524	ОН	Cl	cı	OMe	Н	н
	525	ОН	Cl	Cl	Н	CF ₃	н
	526	ОН	Cl	Cl	Н	ОН	н
	527	ОН	Cl	Cl	H	OMe	H
20	528	ОН	Cl	Cl	H	Cl	Н
	529	ОН	Cl	Cl	H	Cl	Cl
	530	ОН	Cl	Cl .	H	Br	Н
	531	ОН	Cl	Cl	Cl	ОН	H
	532	ОН	Cl	Cl	Br	ОН	Н
25	533	ОН	Cl	Cl	I	ОН	H

	Example #	A	<u>B</u>	Ç	D	E	<u> P</u>
10	534	OH	Br	Cl	Br	H	н
	535	ОН	Br	Cl	ОН	Н	Н
	536	ОН	Br	Cl	NO ₂	н	Н
	537	ОН	Br	Cl	I	н	н
	538	ОН	Br	Cl	cl	н	H
15	539	ОН	Br	Cl	Cl	н	Cl
	540	ОН	Br	cl	OMe	н	Н
	541	ОН	Br	Cl	. H	CF ₃	Н
	542	ОН	Br	cl	Н	ОН	Н
	543	ОН	Br	cl	н	OMe	Н
20	544	ОН	Br	cl	Н	Cl	Н
	545	ОН	Br	Cl	H	Cl	Cl
	546	ОН	Br	Cl	н	Br	H
	547	ОН	Br	Cl	Cl	ОН	Н
	548	ОН	Br	Cl	Br	ОН	н
25	549	ОН	Br	Cl	ı .	ОН	н

	Example #	Δ	B	<u>c</u>	<u>D</u>	<u>E</u>	Ľ
10	550	ОН	I	Cl .	Br	н	н
	551	ОН	I	Cl	ОН	H	н
	552	ОН	I	Cl	NO ₂	н	н
	553	ОН	I	Cl	I	н	н
	554	ОН	I ·	Cl	Cl	Н	Н
15	555	OH	I	Cl	Cl	Н	Cl
f	556	ОН	I	Cl	OMe	Н	H
	557	ОН	I	Cl	н	CF ₃	H
	558	ОН	I	Cl	н	ОН	н
	559	OH	I	Cl	Н	OMe	H
20	560	OH	I	Cl	Н	Cl	H
	561	ОН	I	C1	Н	Cl	Cl
	562	ОН	I	Cl	H	Br	н
	563	ОН	I	cl	CF ₃	H	н
	564	ОН	I	Cl	Cl	ОН	н
25	565	ОН	I	Cl	Br	ОН	н
	566	ОН	I	Cl	I	ОН	Н

	Example #	<u> </u>	<u>B</u>	<u>c</u>	₽	E	ľ
10	567	H	Br	Cl	Br	H	H
	568	H	Br	Cl	ОН	H	Н
	569	. н	Br	Cl	NO ₂	н	Н
	570	Н	Br	Cl	I	н	Н
	571	H	Br	Cl	Cl	H	Н
15	572	H	Br	Cl	Cl	н	Cl
	573	H	Br	Cl	OMe	н	н
	574	н	Br	Cl	Н	CF ₃	н
	575	H,	Br ·	Cl	н	OH	Н
	576	H	Br	Cl	н	OMe	Н
20	577	H	Br	Cl	Н	Cl	н
	578	н	Br	ci	Н	Cl	Cl
	579	H	Br	Cl	Н	Br	Н
	580	H	Br	Cl	cl	ОН	н
	581	H	Br	Cl	Br	ОН	н
25	582	H	Br	Cl	I	ОН	Н

	Example #	<u> </u>	B	<u>C</u>	<u>D</u>	<u>e</u>	E
10	583	H	Br	Br	Br	Н	Н
	584	Н	Br	Br	ОН	H	н
	585	н	Br	Br	NO ₂	н	H
	586	Н	Br	Br	I	н	H
	587	Н	Br	Br	Cl	H	Н
15	588	н	Br	Br	Cl	H	Cl
	589	H	Br	Br	OMe	н	н
	59 0	H	Br	Br	Н	CF ₃	Н
	591	H	Br	Br	н	ОН	H
	592	H	Br	Br	н	OMe	·H
20	593	H	Br	Br	Н	Cl	н
	594	H	Br	Br	н	Cl	Cl
	595	H	Br	Br	Н	Br	Н
	596	H	Br	Br	CI	ОН	H
	597	Н	Br	Br	Br	ОН	н
25	598	Н	Br	Br	I	ОН	Н

	Example #	À	<u>B</u>	<u>c</u>	D	E	E
10	599	H	Br	I	Br	н	Н
	600	Н	Br	I	ОН	Н	Н
	601	. H	Br	I	NO ₂	H	Н
	602	Н	Br	I	I	H	н
	603	Н	Br	I	. cl	н	Н
15	604	н	Br	I	cl	н	Cl
	605	Н	Br	I	OMe	н	H
•	606	H	Br	I	н	CF ₃	н
	607	H	Br	I	н	ОН	н
	608	H	Br	I	н	OMe	н
20	609	н	Br	I	H	Cl	Н
•	610	Н	Br	I	н	Cl	Cl
	611	H	Br	I	H	Br	н
	612	H	Br	I	Cl	ОН	H
	613	H	Br	I	Br	ОН	н
25	614	Н	Br	I	I	ОН	Н

,

	Example #	<u> </u>	<u>B</u>	<u>c</u>	D	<u> </u>	E
10	615	H	I	I	Br	н	Н
•	616	H	I	I	ОН	н	Н
	617	H	I	I	NO ₂	н	Н
	618	H	I	I	I	н	н
	619	H	I	I	Cl	Н	H
15	620	H	I	I	Cl	н	Cl
-	621	H	I	. I	OMe	н	H
	622	H	I	I	H	CF ₃	н
	623	H	I	I	н	ОН	Н
	624	H	ı	I	н	OMe	Н
20	625	H	I	I	н	Cl	Н
	626	H	· I	I	Н	Cl	Cl
	627	H	I	I	Н	Br	н
	628	Н	I	I	Cl	ОН	н
	629	н	I	I	Br	ОН	н
25	630	Н	I	I	I	ОН	н

	Example #	<u> </u>	<u>B</u>	<u>c</u>	D	E	F
10	631	H	cl	Cl	Br	н	H
	632	Н	Cl	Cl	ОН	н	Н
	633	H	Cl	Cl	NO ₂	н	H
	634	Н	Cl	Cl	I	н	Н
	635	н	Cl	Cl	Cl	н	H
15	636	Н	Cl	Cl	Cl	н	cl
	637	H	Cl	Cl	OMe	н	Н
	638	Н	cl	Cl	H	CF ₃	Н
	639	H	Cl	Cl	н	ОН	Н
	640	н	Cl	Cl	Н	OMe	н
20	641	H	Cl	Cl	H	Cl	Н
	642	Н	Cl	Cl	н	Cl	cl
	643	H	Cl	Cl	н	Br	н
	644	H	Cl	Cl	cl	ОН	н
	645	Н	Cl	Cl	Br	ОН	н
25	646	Н	Cl	Cl	I	ОН	н

	Example #	Ā	B	<u>C</u>	<u>D</u>	E	<u>F</u>
10	647	ОН	Cl	Cl	Br	H	н
	648	ОН	Cl	Cl	ОН	H	н
	649	ОН	Cl	Cl	NO ₂	н	н
	650	ОН	cl	Cl	I	н	н
	651	ОН	cl	Cl	Cl	н	Н
15	652	ОН	Cl	Cl	Cl	н	Cl
	653	ОН	Cl	Cl	OMe	Н	H
	654	ОН	Cl	Cl	Н	CF ₃	н
	655	ОН	Cl	Cl	н	ОН	H
	656	ОН	Cl	Cl	Н	OMe	Н
20	657	OH .	Cl	Cl	Н	Cl	н
	658	ОН	Cl	Cl	Н	Cl	Cl
	659	OH	Cl	Cl	н	Br	Н
	660	ОН	Cl	Cl	Cl	ОН	Н
	661	ОН	Cl	Cl	Br	ОН	Н
25 ·	662	ОН	Cl	Cl	ı	ОН	Н

`

	Example #	A ·	B	C	<u>D</u>	E	£
10	663	OH	Br-	Cl	Br	H	H
	664	ОН	Br	Cl	ОН	H ·	H
	665	ОН	Br	Cl	NO ₂	н	H
	666	ОН	Br	Cl	I	н	н
	667	ОН	Br	cl	Cl	н	H
15	668	ОН	Br	Cl	Cl	н	Cl
	669	ОН	Br	Cl	OMe	н	H
	670	OH	Br	Cl	н	CF ₃	H
	671	ОН	Br	Cl	н	ОН	Н
	672	ОН	Br	Cl	н	OMe	H
20	673	ОН	Br	Cl	н	cl	Н
	674	ОН	Br	Cl	Н	Cl	Cl
	675	ОН	Br	Cl	H	Br	H
	676	ОН	Br	Cl	cl	ОН	н
	677	ОН	Br	Cl	Br	ОН	H
25	678	ОН	Br	Cl	I,	ОН	H

	Example #	<u> </u>	B	<u>C</u>	₽	<u> </u>	£
10	679	ОН	I	Cl	Br	Н	Н
	680	ОН	I	Cl	ОН	H	н
	681	ОН	I	Cl	NO ₂	H	н
	682	ОН	I	Cl	I	H	Н
	683	OH	I	Cl	Cl	H	H
. 15	684	OH	I	Cl	Cl	H	Cl
	685	ОН	I .	Cl	OMe	H	H
	686	ОН	I	Cl	H	CF ₃	н
	687	OH	Ī	Cl	н	ОН	H
	688	ОН	ī	Cl	Н	OMe	н
20	689	OH	·I	Cl	н	Cl	Н
	690	ОН	I	Cl	H	Cl	Cl
	691	ОН	I	Cl	Н	Br	Н
	692	ОН	I	Cl	Cl	ОН	H
	693	ОН	I	Cl	Br	ОН	н
25	694	OH	I.	Cl	I	ОН	н

WO 97/08145

5

	Example #	<u> </u>	<u>B</u>	<u>c</u>	<u>D</u>	E	<u>F</u>
10	695	H	Cl	Cl	Br	H	H
	696	H	Cl	Cl	ОН	н	H
	697	н	Cl	Cl	NO ₂	н	H
	698	H	Cl	Cl	ī	H .	H
	699	Н	Cl	Cl	cl	H .	H
15	700	H	Cl	Cl	cl	н	Cl
	701	H	Cl	Cl	OMe	н	н
	702	н	Cl	Cl	н	CF ₃	H
	703	н	Cl	Cl	н	ОН	H
	704	Н	Cl	Cl	H	OMe	H
20	705	н	Cl	Cl	Н	Cl	н
	706	н	Cl	Cl	н	Cl	Cl
	707	н	Cl	Cl	н	Br	н
	708	н	Cl	Cl	Cl	ОН	H
	709	н	Cl	Cl	Br	ОН	H
25	710	Н	Cl	Cl	I	ОН	н

5	, N	NH F) NH	NH 0	CO ₂ l	Н Л	
	Example #	A	B	<u>c</u>	₽	E	<u> </u>
	711	H	Br	Cl	Br	H	H
10	712	H	Br	Cl	ОН	н	Н
	713	н	Br	Cl	NO ₂	Н	Н
	714	Н	Br	Cl	I	н	Н
	715	н	Br	Cl	Cl	н	н
	716	H	Br	Cl	Cl	н	Cl
15	717	H	Br	Cl	OMe	н	H
	718	H	Br	Cl	н	CF ₃	H
	719	H	Br	Cl	н	ОН	н
	720	H	Br	Cl	н	OMe	Н
	721	Н	Br	Cl	H	Cl	н
20	722	Н	Br	Cl	н	Cl	Ċl
	723	Н.	Br	Cl	н	Br	Н
	724	Н	Br	Cl	Cl	ОН	н
	725	Н	Br	Cl	Br	ОН	н
25	726	H	Br	Cl	I	ОН	H

	Example #	<u> </u>	<u>B</u>	<u>c</u>	<u>D</u>	<u>E</u>	<u>F</u>
10	727	H	Br	Br	Br	Н	н
	728	H	Br	Br	ОН	H	H
	729	H	Br	Br	NO ₂	H	Н
	730	Н	Br	Br	I	н	Н
	731	H	Br	Br	Cl	H	Н
15	732	H	Br	Br	cl	H	Cl
*	733	H	Br	Br	OMe	Н	H
	734	H	Br	Br	н	CF ₃	н
	735	H	Br	Br	н	ОН	H
	736	H	Br	Br	н	OMe	H
20	737	H	Br	Br	Н	Cl	H
	738	H	Br	Br	н	Cl	Cl
	739	H	Br	Br	Н	Br	H
	740	H	Br	Br	Cl	ОН	H
	741	H	Br	Bŗ	Br	ОН	H
25	742	Н	Br	Br	I	ОН	·H

	Example #	A	<u>B</u>	<u>c</u>	<u>D</u>	E	£
10	743	H _,	Br	I	Br	Н	Н
	744	H	Br	I	ОН	н	н
	745	H	Br	I	NO_2	Н	н
	746	H	Br	I	I	Н	н
	747	H	Br	I	cı	H	Н
15	748	H	Br	I	cı	H	Cl
	749	H .	Br	I	OMe	н	Н
	750	Н	Br	I	H	CF ₃	н
	751	H	Br	I	H	ОН	Н
	752	H	Br	I	H	OMe	H
20	753	H	Br	I	н	Cl	Н
	754	H	Br	I	H	Cl	Cl
	755	H	Br	ï	H	Br	Н
	756	H	Br	· I	Cl	ОН	н
	757	H	Br	I	Br	ОН	• н
25	758	. H	Br	I	I	ОН	Н

	Example #	A	<u>B</u>	Ç	D	E	Ľ
10	759	H	I	I	Br	н	H
	760	H	I	I	ОН	Н	н
	761	H	I	I	NO ₂	Н	Н
	762	H	I	I	· I	н	н
	763	H	I	I	Cl	н	Н
15	764	H	I	· I	Cl	Н	cı
	765	H	I	I	OMe	H	H
	766	H	I	I	Н	CF ₃	н
	767	H	I	I	H	ОН	Н
	768	H	I	I	H	OMe	Н
20	769	H	I	I	Н	Cl	н
	770	, H	I	I	H	Cl	Cl
	771	H	I	I	H	Br	Н
	772	Н	I	I	Cl	ОН	Н
	773	H	I	I	Br	ОН	н
25	774	Н	I	I	I	ОН	Н

_

	Example #	<u> </u>	B	C	Ð	E	ľ
10	775	ОН	Cl	Cl .	Br	н	н
•	776	ОН	Cl	Cl	ОН	н	н
	777	ОН	Cl	Cl	NO ₂	н	н
	778	ОН	Cl	Cl	I	н	Н
	779	ОН	Cl	Cl	C1	н	н
15	780	ОН	Cl	Cl	cı	н	Cl
	781	ОН	Cl	Cl	OMe	H	Н
	782	ОН	Cl	Cl	н	CF ₃	н
	783	ОН	Cl	Cl	н	ОН	н
	784	ОН	Cl	Cl	Н	OMe	н
20	785	ОН	Cl	Cl	· H	Cl	н
	786	ОН	Cl	Cl	н	Cl	Cl
	787	ОН	Cl	Cl	Н	Br	Н
	788	ОН	Cl	Cl	cl	ОН	н
	789	ОН	Cl	Cl	Br	ОН	н
25	790	ОН	c1	Cl	I	ОН	Н

	Example #	¥	<u>B</u>	Ç	<u>D</u>	E	<u> P</u>
	791	ОН	Br	Cl	Br	н	н
10	792 ⁻	ОН	Br	Cl	ОН	н	Н
	793	ОН	Br	Cl	NO ₂	H	Н
	794	ОН	Br	Cl	ı	н	Н
	. 795	ОН	Br	Cl	Cl	н	н
	796	ОН	Br	Cl	Cl	н	Cl
15	797	OH	Br	Cl	OMe	н	н
	798	ОН	Br	Cl	н	CF_3	Н
	799	OH	Br	Cl	н	OH	н
	800	ОН	Br	Cl	н	OMe	н
	801	ОН	Br	Cl	н	Cl	Н
20	802	ОН	Br	Cl	н	Cl	cl
	803	ОН	Br	Cl	н	Br	Н
	804	ОН	Br	Cl	Cl	ОН	Н
	805	ОН	Br	Cl	Br	ОН	Н
	806	ОН	Br	Cl	I	ОН	н
2 5							

	Example #	<u>A</u>	B	<u>C</u>	<u>D</u>	<u> </u>	E
	807	ОН	I	Cl	Br	Н	н
10	808	OH	I	Cl	ОН	н	н
	809	OH	I	Cl	NO ₂	H	н
	810	OH	I	Cl	I	Н	н
	811	ОН	I	Cl	Cl	н	н
	812	ОН	I	Cl	Cl	H	Cl
15	813	ОН	I	Cl	OMe	H	н
	814	ОН	I	Cl	н	CF ₃	H
	815	ОН	1 .	Cl	н	ОН	H
	816	OH	I.	Cl	H	OMe	Н
	817	ОН	I	Cl	H	Cl	Н
20	818	ОН	I	Cl	н	Cl	Cl
	819	ОН	I	Cl	Н	Br	H
	820	ОН	I	cl	Cl	OH	H
	821	ОН	I	Cl	Br	ОН	H
	822	OH	I	Cl	ı	ОН	н
2 -					and the second s		

- 703 -

	Example #	<u> </u>	B	<u>c</u>	D	E	£
	823	Н	Cl	Cl	Br	.	Н
10	824	H.	Cl	Cl	Н	H	H
	825	Н	Cl	cl	NO ₂	H	H
	826	Н	Cl	Cl	I	H	H
	827	Н	Cl	C1	Cl	н	н
	828	Н	Cl	Cl	Cl	н	Cl
15	829	H	Cl	Cl	OMe	н	Н
	830	Н	Cl	Cl	н	CF ₃	H
	831	Н	Cl	Cl	н	ОН	Н
	832	H	Cl	cl	Н	OMe	Н
	833	Н	Cl	Cl	H	Cl	H
20	834	Н	Cl	Cl	H	Cl	Cl
	835	Н	Cl	Cl	Н	Br	Н
	836	Н	Cl	Cl	Cl	ОН	Н
	837	H	cl	Cl	Br	ОН	н
	838	H	Cl	cl	I,	ОН	Н

	Example #	<u> </u>	<u>B</u>	<u>c</u>	<u>D</u>	E	£
	839	н	Br	Cl	Br	Н	H
10	840	H .	Br	Cl ·	ОН	н	Н
	841	Н	Br	Cl	NO ₂	н	н
	842	н	Br	Cl	I	н	н
	843	Н	Br	Cl	cı	н	н
	845	Н	Br	Cl	Cl	н	Cl
15	846	н	Br	Cl	OMe	н	н
	847	H	Br	Cl	Н	CF ₃	н
•	848	H	Br	Cl	Н	ОН	Н
•	849	Н	Br	Cl	H	OMe	Н
	850	H	Br	Cl	Н	Cl	Н
20	851	H	Br	Cl	н	Cl	Cl
	852	H	Br	Cl	н	Br	н
	853	H	Br	Cl	Cl	ОН	H
	854	H	Br	Cl	Br	ОН	H
	855	H	Br	Cl	I	OH	H

WO 97/08145 PCT/US96/13500

- 705 **-**

	Example #	<u> </u>	<u>B</u>	<u>c</u>	<u>D</u>	E	<u> </u>
	856	H	Br	Br	Br	н	H
10	857	H .	Br	Br	ОН	н	Н
	858	Н	Br	Br	NO ₂	H	Н
	859	Н	Br	Br	I	н	H
	860	Н	Br	Br	Cl	н	Н
	861	H	Br	Br	cl	н	Cl
15	862	Н	Br	Br	OMe	H	н
	863	H	Br	Br	Н	CF ₃	H
	864	Н	Br	Br	н	ОН	н
÷	865	H	Br	Br	н	OMe	Н
	866	H	Br	Br	н	Cl	H
20	867	н	Br	Br	H	Cl	Cl
	868	H	Br	Br	H	Br	Н
	869	н	Br	Br	Cl	ОН	Н
	870	Н	Br	Br	Br	OH	H
	871	Н	Br	Br	I .	ОН	Н

	Example #	A	. <u>B</u>	<u>c</u>	<u>D</u>	E	<u>F</u>
	872	H	Br	I	Br	н	Н
10	873	H .	Br	I	ОН	Н	Н
	874	Н	Br	I	NO ₂	Н	H
	875	H	Br	I	I	Н	H
	876	Н	Br	I	Cl	H	H
	877	H	Br	I	Cl	н	cl
15	878	н	Br	I	OMe	н	Н
	879	H	Br	I	. H	CF ₃	н
	880	H	Br	I	н	ОН	Н
	881	Н	Br	I.	н	OMe	Н
	882	H	Br	I	н	Cl	Н
20	883	H	Br	I,	н	Cl	Cl
	884	H	Br	I	Н	Br	н
	885	H	Br	I .	Cl	ОН	н
	886	H	Br	I .	Br	ОН	н
	887	H	Br	I	I	OH	н
25							

	Example #	<u> </u>	<u>B</u>	<u>c</u>	<u>D</u>	<u>E</u>	<u> </u>
	888	Н	I	I	Br	H	Н
10	889	Н.	I	I	ОН	н	Н
	890	H	I	I	NO_2	н	Н
	891	Н	I	I	I	н	Н
	892	Н	ı	I	Cl	H	Н
	893	Н	ī	I	Cl	н	Cl
15	894	Н	I	I	OMe	н	Н
	895	Н	I	I	н	CF ₃	Н
	896	H	I	I	Н	ОН	Н
	897	H	I	I	Н	OMe	Н
	898	H	I	I	Н	Cl	Н
20	899	H	I	I	H	cl	Cl
	900	Н	I	I	H	Br	Н
	901	Н	I	I	Cl	ОН	н
	902	н	I	I	Br	ОН	н
	903	Н	I	I	I	ОН	н
26							

		NH					
5		T F	0	- N# I	CO ₂ l	₹	
5		H))\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			4	
	·	E		Ö		~B	
		р			c	Ь	
	Example #	A	B	<u>C</u>	D	E	£
10	922	H	CF ₃	Br	Br	Н	Н
	923	H	CF ₃	Br ,	ОН	Н	Н
	924	Н	CF ₃	Br	NO ₂	H	н
	925	Н	CF ₃	Br	ı	н	н
	926	н	CF ₃	Br	Cl	H	н
15	927	Н	CF ₃	Br	Cl	н	Cl
	928	H	CF ₃	Br	OMe	H	H
	929	Н	CF ₃	Br	н	CF ₃	н
	930	н	CF ₃	Br	н н	ОН	н
	931	Н	CF ₃	Br	\mathbf{H}_{\cdot}	OMe	H
20	932	H	CF ₃	Br	H	Cl	H
	933	H	CF ₃	Br	H	Cl	Cl
	934	H	CF ₃	Br	Н	Br	Н
	935	H	CF_3	Br	CF ₃	н	н
	936	H	CF,	Br	н	Н	H
25	937	Н	CF ₃	Br	Cl	OR	H
	938	н	CF ₃	Br	Br	ОН	Н
	939	н	CF ₃	Br	I	ОН	н

	Example #	<u>A</u>	B	<u>c</u>	<u>D</u>	<u>B</u>	<u>F</u>
10	940	Н	CF ₃	Br	Br	н	H
	941	Н	CF ₃	Br	ОН	н	н
	942	H	CF ₃	Br	NO ₂	н	Н
	943	H	CF ₃	Br	ī	н	H
	944	Н	CF ₃	Br	Cl	Н	Н
15	945	Н	CF ₃	Br	Cl	H	Cl
	946	Н	CF ₃	Br	OMe	н	н
	947	Н	CF ₃	Br	н	CF ₃	н
	948	H	CF ₃	Br	н	ОН	н
	949	H	CF3	Br	н	OMe	H
20	950	H	CF ₃	Br	н	Cl	Н
	951	H	CF ₃	Br	Н	Cl	Cl
	952	H	CF ₃	Br	н	Br	Н
	953	н	CF ₃	Br	CF ₃	Н	н
	954	Н	CF ₃	Br	н	Н	н
25	955	H	CF ₃	Br	Cl	ОН	н
	956	н	CF ₃	Br	Br	ОН	н
	957	H	CF ₃	Br	I	ОН	Н

5	H₂N′	H H H	F N	H 0		D₂H A B	
	Example #	A	<u>B</u>	<u>c</u>	<u>D</u>	E	<u> </u>
10	958	H	CF ₃	I	Br	H	Н
	959	Н	CF ₃	I	ОН	Н	H
	960	Н	CF ₃	I	NO ₂	Н	H
	961	Н	CF ₃	I	I	H	H
	962	Н	CF ₃	I	Cl	H	H
15	963	Н	CF ₃	Ī	Cl	H	Cl
	964	H	CF ₃	I	OMe	H	H
	965	H	CF ₃	I	Н	CF ₃	H
	966	H	CF ₃	I	Н	ОН	H
	967	Н	CF ₃	I	Н	OMe	H
20	968	H	CF ₃	I	H	Cl	H
	969	H	CF ₃	I	Н	Cl	Cl
	970	Н	CF ₃	I	н	Br	H
	971	Н	CF ₃	I	CF ₃	H	H
	972	Н	CF ₃	Ţ	н	H	H
25	973	H	CF ₃	I	Cl	ОН	H
	974	Н	CF ₃	I	Br	ОН	H
	975	H	CF ₃	I	I	ОН	Н

5	, n	NH F	NH	→ NH	CO ₂ l	-B	
	Example #	<u>A</u>	B	<u>c</u>	D	E	<u>F</u>
10	976	H	CF_3	I	Br	H	Н
	977	H	CF ₃	I	ОН	. H	н
	978	H	CF ₃	I	NO ₂	H	H
	979	H	CF ₃	I	I	Н	H
	980	H	CF ₃	I	Cl	Н	H
15	981	H	CF ₃	I	Cl	Н	Cl
	982	H	CF ₃	I	OMe	H	н
	983	H	CF ₃	I	H	CF ₃	H
	984	H	CF ₃	I	Ĥ	ОН	H
	985	Н	CF ₃	I	H	OMe	Н
20	986	H ·	CF ₃	I	Н	Cl	Н
	987	H	CF ₃	I	H	Cl	Cl
	988	Н	CF ₃	I	H	Br	H
	989	Н	CF ₃	I	CF ₃	H	H.
	990	H	CF ₃	I	Н	H	H
25	991	H	CF ₃	I	Cl	ОН	Н
	992	H	CF ₃	I	Br	OH ·	Н
	993	H	CF ₃	I	I	ОН	н

	Example #	<u> </u>	<u>B</u>	Ç	<u>D</u>	<u>E</u>	<u>F</u>
10	994	H	CF ₃	I	Br	Н	н
	995	Н	CF_3	ı	ОН	Н	Н
	996	н	CF ₃	I	NO ₂	Н	Н
	997	Н	CF ₃	I	I	Н	H .
	998	Н	CF ₃	· I	Cl	Н	Н
15	999	Н	CF ₃	I	Cl	Н	Cl
	1000	H	CF ₃	I	OMe	Н	н
	1001	Н	CF ₃	ı	н	CF ₃	н
	1002	Н	CF ₃	I	н	ОН	н
	1003	Н	CF ₃	I	\mathbf{H}_{\perp}	OMe	H
20	1004	H	CF ₃	I	н	Cl	Н
	1005	Н	CF ₃	I	н	Cl	Cl
	1006	Ħ	CF ₃	I	Н	Br	Н
	1007	Н	CF ₃	I	CF ₃	Н	н
	1008	Н	CF ₃	I	н	н	H
25	1009	Н	CF ₃	I	Cl	ОН	н
	1010	H ·	CF ₃	I	Br	ОН	н
	1011	H	CF ₃	I	I	ОН	Н

K

The activity of the compounds of the present invention was tested in the foll wing assays. The results of testing in the assays are tabulated in Table 1.

5

10

15

20

30

35

VITRONECTIN ADHESION ASSAY

MATERIALS

Human vitronectin receptor $(\alpha_{\nu}\beta_{3})$ was purified from human placenta as previously described [Pytela et al., Methods in Enzymology, 144:475-489 (1987)]. Human vitronectin was purified from fresh frozen plasma as previously described [Yatohgo et al., Cell Structure and Function, 13:281-292 (1988)]. Biotinylated human vitronectin was prepared by coupling NHS-biotin from Pierce Chemical Company (Rockford, IL) to purified vitronectin as previously described [Charo et al., <u>J. Biol. Chem.</u>, 266(3):1415-1421 (1991)]. Assay buffer, OPD substrate tablets, and RIA grade BSA were obtained from Sigma (St. Louis, MO). Anti-biotin antibody was obtained from Calbiochem (La Jolla, CA). Linbro microtiter plates were obtained from Flow Labs (McLean, VA). ADP reagent was obtained from Sigma (St. Louis, MO).

25 <u>METHODS</u>

Solid Phase Receptor Assays

This assay was essentially the same as previously reported [Niiya et al., Blood, 70:475-483 (1987)]. The purified human vitronectin receptor $(\alpha_{\nu}\beta_{3})$ was diluted from stock solutions to 1.0 μ g/mL in Tris-buffered saline containing 1.0 mM Ca⁺⁺, Mg⁺⁺, and Mn⁺⁺, pH 7.4 (TBS⁺⁺⁺). The diluted receptor was immediately transferred to Linbro microtiter plates at 100 μ L/well (100 ng receptor/well). The plates were sealed and incubated overnight at 4°C to allow the receptor t bind to the wells. All remaining st ps were at room

temperatur . The assay plat s were mptied and 200 μL of 1% RIA grade BSA in TBS+++ (TBS+++/BSA) were added to block exposed plastic surfaces. Following a 2 hour incubation, the assay plates were washed with TBS+++ using a 96 well plate washer. Logarithmic serial 5 dilution of the test compound and controls were made starting at a stock concentration of 2 mM and using 2 nM biotinylated vitronectin in TBS+++/BSA as the This premixing of labeled ligand with test 10 (or control) ligand, and subsequent transfer of 50 μL aliquots to the assay plate was carried out with a CETUS Propette robot; the final concentration of the labeled ligand was 1 nM and the highest concentration of test compound was 1.0 x 104 M. The competition 15 occurred for two hours after which all wells were washed with a plate washer as before. Affinity purified horseradish peroxidase labeled goat antibiotin antibody was diluted 1:3000 in TBS+++/BSA and 125 μ L were added to each well. After 30 minutes, the plates were washed and incubated with OPD/H2O2 substrate 20 in 100 mM/L Citrate buffer, pH 5.0. The plate was read with a microtiter plate reader at a wavelength of 450 nm and when the maximum-binding control wells reached an absorbance of about 1.0, the final A_{450} were recorded 25 for analysis. The data were analyzed using a macro written for use with the EXCEL™ spreadsheet program. The mean, standard deviation, and %CV were determined for duplicate concentrations. The mean A_{450} values were normalized to the mean of four maximum-binding controls (no competitor added) (B-MAX). The normalized values 30 were subjected to a four parameter curve fit algorithm [Rodbard et al., Int. Atomic Energy Agency, Vienna, pp 469 (1977)], plotted on a semi-log scale, and the comput d concentration corresponding to inhibition of 35 50% of the maximum binding of biotinylated vitronectin (IC_{so}) and corr sponding R² was reported for those comp unds exhibiting greater than 50% inhibition at the

5

10

highest concentration tested; otherwise the IC_{50} is reported as being greater than the highest concentration tested. β -[[2-[[5-[(aminoiminomethyl)amino]-1-oxopentyl]amino]-1-oxopentyl]amino]-1-oxopentyl]amino]-3-pyridinepropanoic acid [USSN 08/375,338, Example 1] which is a potent $\alpha_v\beta_3$ antagonist (IC₅₀ in the range 3-10 nM) was included on each plate as a positive control.

PURIFIED IIb/IIIa RECEPTOR ASSAY

MATERIALS

Human fibrinogen receptor $(\alpha_{\rm ID}\beta_3)$ was purified from outdated platelets. (Pytela, R., Pierschbacher, M.D., Argraves, S., Suzuki, S., and Rouslahti, E. 15 Glycine-Aspartic acid adhesion receptors", Methods in Enzymology 144(1987):475-489.) Human vitronectin was purified from fresh frozen plasma as described in Yatohgo, T., Izumi, M., Kashiwagi, H., and Hayashi, M., "Novel purification of vitronectin from human plasma by 20 heparin affinity chromatography," Cell Structure and Function 13(1988):281-292. Biotinylated human vitronectin was prepared by coupling NHS-biotin from Pierce Chemical Company (Rockford, IL) to purified 25 vitronectin as previously described. (Charo, I.F., Nannizzi, L., Phillips, D.R., Hsu, M.A., Scarborough, R.M., "Inhibition of fibrinogen binding to GP IIb/IIIa by a GP IIIa peptide", <u>J. Biol. Chem.</u> 266(3)(1991): 1415-1421.) Assay buffer, OPD substrate tablets, and RIA grade BSA were obtained from Sigma (St. Louis, MO). 30 Anti-biotin antibody was obtained from Calbiochem (La Jolla, CA). Linbro microtiter plates were obtained from Flow Labs (McLean, VA). ADP reagent was obtained from Sigma (St. Louis, MO).

METHODS

Solid Phase Receptor Assays

This assay is essentially the same reported in Niiya, K., Hodson, E., Bader, R., Byers-Ward, V. Koziol, J.A., Plow, E.F. and Ruggeri, Z.M., "Increased surface expression of the membrane glycoprotein IIb/IIIa complex induced by platelet activation: Relationships to the binding of fibrinogen and platelet aggregation", <u>Blood</u> 70(1987):475-483. The purified 10 human fibrinogen receptor $(\alpha_{\rm IIB}\beta_3)$ was diluted from stock solutions to 1.0 μ g/mL in Tris-buffered saline containing 1.0 mM Ca⁺⁺, Mg⁺⁺, and Mn⁺⁺, pH 7.4 (TBS⁺⁺⁺). The diluted receptor was immediately transferred to Linbro microtiter plates at 100 μ L/well (100 ng 15 receptor/well). The plates were sealed and incubated overnight at 4°C to allow the receptor to bind to the wells. All remaining steps were at room temperature. The assay plates were emptied and 200 μL of 1% RIA grade BSA in TBS+++ (TBS+++/BSA) were added to block 20 exposed plastic surfaces. Following a 2 hour incubation, the assay plates were washed with TBS+++ using a 96 well plate washer. Logarithmic serial dilution of the test compound and controls were made starting at a stock concentration of 2 mM and using 2 25 nM biotinylated vitronectin in TBS+++/BSA as the This premixing of labeled ligand with test (or control) ligand, and subsequent transfer of 50 μ L aliquots to the assay plate was carried out with a 30 CETUS Propette robot; the final concentration of the labeled ligand was 1 nM and the highest concentration of test compound was 1.0 x 104 M. The competition occurred for two hours after which all wells were washed with a plate washer as before. Affinity purified hors radish peroxidase labeled goat anti-35 bi tin antibody was diluted 1:3000 in TBS+++/BSA and 125 μL were added to each well. After 30 minutes, the

plates were washed and incubated with ODD/H2O2 substrate in 100 mM/L citrate buffer, pH 5.0. The plate was read with a microtiter plate reader at a wavelength of 450 nm and when the maximum-binding control wells reached an absorbance of about 1.0, the final Asso were recorded for analysis. The data were analyzed using a macro written for use with the EXCEL™ spreadsheet program. The mean, standard deviation, and %CV were determined for duplicate concentrations. The mean A_{450} values were normalized to the mean of four maximum-binding controls 10 (no competitor added) (B-MAX). The normalized values were subjected to a four parameter curve fit algorithm, [Robard et al., Int. Atomic Energy Agency, Vienna, pp 469 (1977)], plotted on a semi-log scale, and the computed concentration corresponding to inhibition of 15 50% of the maximum binding of biotinylated vitronectin (IC₅₀) and corresponding R^2 was reported for those compounds exhibiting greater than 50% inhibition at the highest concentration tested; otherwise the IC50 is 20 reported as being greater than the highest concentration tested. β -[[2-[[5-[(aminoiminomethyl)amino]-1-oxopentyl]amino]-1oxoethyl]amino]-3-pyridinepropanoic acid [USSN 08/375,338, Example 1] which is a potent $\alpha_{\nu}\beta_{3}$ antagonist (IC₅₀ in the range 3-10 nM) was included on each plate 25 as a positive control.

Human Platelet Rich Plasma Assays

Healthy aspirin free donors were selected from a

pool of volunteers. The harvesting of platelet rich
plasma and subsequent ADP induced platelet aggregation
assays were performed as described in Zucker, M.B.,
"Platelet Aggregation Measured by the Photometric
Method", Methods in Enzymology 169(1989):117-133.

Standard venipuncture techniques using a butterfly
allowed the withdrawal of 45 mL of whole blood into a
60 mL syringe containing 5 mL f 3.8% trisodium

WO 97/08145 PCT/US96/13500

citrate. F llowing thorough mixing in th syringe, the anti-coagulated whol blood was transferred to a 50 mL conical polyethylen tube. The blood was centrifuged at room temperature for 12 minutes at 200 xg to sediment non-platelet cells. Platelet rich plasma was removed to a polyethylene tube and stored at room temperature until used. Platelet poor plasma was obtained from a second centrifugation of the remaining blood at 2000 xg for 15 minutes. Platelet counts are typically 300,000 to 500,000 per microliter. Platelet rich plasma (0.45 mL) was aliquoted into siliconized cuvettes and stirred (1100 rpm) at 37°C for 1 minute prior to adding 50 uL of pre-diluted test compound. After 1 minute of mixing, aggregation was initiated by the addition of 50 uL of 200 uM ADP. Aggregation was recorded for 3 minutes in a Payton dual channel aggregometer (Payton Scientific, Buffalo, NY). percent inhibition of maximal response (saline control) for a series of test compound dilutions was used to determine a dose response curve. All compounds were tested in duplicate and the concentration of halfmaximal inhibition (IC₅₀) was calculated graphically from the dose response curve for those compounds which exhibited 50% or greater inhibition at the highest concentration tested; otherwise, the IC₅₀ is reported as being greater than the highest concentration tested.

10

15

20

25

30

35

M21 MELANOMA CELL ADHESION ASSASY

This assay involves an $\alpha_*\beta_3$ -dependent adhesion of M21 human melanoma cells to human fibrinogen-coated plastic tissue culture dishes.

Fibrinogen was purified from human plasma. Fibronectin and plasminogen were eliminated from the preparation by passing the sample over gelatin-sepharose 4B and lysine-sepharose 4B resins,

5

25

30

respectively. The fibrinogen is diluted to 10 μ g/mL in coating buffer (20 mM Tris-HCl, 150 mM NaCl, pH 7.4). 100 μ L of diluted fibrinogen is added to each well of a 96-well Immulon 2 microtiter plate (Dynatech; Chantilly, Va) and allowed to coat overnight at 4°C. Plates are blocked with 1% BSA (Miles/Pentex; Kankakee, IL) in adhesion buffer (Hank's balanced salt solution without Ca⁺⁺ or Mg⁺⁺ [HBSS--], 50 mM Hepes, 1 mg/mL BSA, pH 7.4) for 1 hour at 37°C.

M21 human melanoma cells were provided by Dr. J. Smith, La Jolla Cancer Research Institute. M21 cells are harvested from tissue culture flasks by washing with HBSS-- and adding cell dissociation solution (Sigma) and incubating for 5 minutes at 37°C.

Harvested cells are washed 3 times with adhesion assay buffer containing 200 μ M Mn⁺⁺. Cells are counted and suspended to a density of $2\times10^6/\text{mL}$ in adhesion assay buffer containing 200 μ M Mn⁺⁺. M21 cells are preincubated with antagonists of $\alpha_{\nu}\beta_{3}$ for 30 minutes at room temperature. Following the pre-incubation, the solutions containing a mixture of cells and antagonists are added to each well of the microtiter plate and allowed to bind for 30 minutes at 37°C.

Following adhesion, plates are gently washed 3 times with 200 μ L of wash buffer (50 mM Tris-HCl, 150 mM NaCl, pH 7.4) using large bore pipet tips. Plates are briefly blotted dry and 100 μ L of cell lysis buffer (50 mM sodium acetate, pH 5.0, 0.5% Triton X-100, 0.3 mg/mL p-nitrophenyl phosphate [Sigma] is added to each well. Plates are incubated for 60 minutes at 37°C and 50 μ L of 1N NaOH is added to stop the reaction. The absorbance of the wells at 412 nM is read using an automatic plate reader.

WO 97/08145 PCT/US96/13500

- 721 -

TABLE I

Example	AvB3 IC50 (nM)	IIb/IIIa IC50 (nM)	M21 Melanoma Cells IC 50 (nM)	Human PRP
1	76.9	8350		> 200
2	0.54	51.2	0.25	200
3	498	72900	3050	:
4	3.17	473	3.3	> 200
5	227	3150		
6	1.04	15.9		80
8	0.69	9.83	0.28	73.3
10	0.92	54.4	1.82	> 200
12	1.1	595	9.32	> 200
14	1.62	139	5.42	> 200
15	10.2	3830	202	> 200
17	2.66	137	3.64	> 200
19	303	72000		·
21	2.44	1910		> 200
22	1.37	280		> 200
24	0.91	58.6	12.7	> 200
26	14.2	809		> 200
27	1.53	178		> 200
30	1.75	424	320	> 200
34	94.3	269	·	> 200
35	57.1	6.21		69.5
36 Step B	14.6	1580	143	> 200
37	0.88	13.9		> 20.0
39	12.2	1540		> 20.0
40	10.3	834		> 200
41	12.1	830		> 200
42	124	9800		
43	28.3	1640	188	> 200
44	0.33	998		> 20.0
45	0.69	39.5	2.54	167

	AvB3 IC50	IIb/IIIa IC50	M21 Melanoma Cells IC 50	Human PRP
Example	•	(nM)	(nM)	(μM)
46	5.34	1680	147	> 200
47	0.86	4270	1.18	> 200
51	9730	>100000		
52	3.62	139	11.7	> 200
53	54.6	930		> 200
54	10.7	175		> 200
55	4.77	117		> 200
56	3.12	65.3	6.87	> 200
57	1340	15300		
58	162	5740		
59	2.35	172	24.3	> 200
60(B)	1.21	72.7		> 200
60(C)	0.73	16.4	0.74	> 200
61	1.76	192	228	> 200
62	1.42	28.4	·	> 200
65	9.7	170	13.8	> 200
66	1.44	73.7	2.51	> 100
67	2.05	92.3	4.08	> 200
68	5.48	125		> 200
69	0.92	33.6	0.95	> 200
70	63	3240	924	> 200
71	20.4	202	1040	> 200
72	1.21	152		> 200
80	9.49	4.35		30
82	334	353		·
83	3.39	97.7	11	> 200
84	2800	246		
85	6.65	8.07		
86	8.79	246		> 200
87	6.35	732		> 200
88	8.44	945	52.3	> 200

- 723 -

Exampl	AVB3 IC50 (nM)	IIb/IIIa IC50 (nM)	M21 Melanoma Cells IC 50 (nM)	Human PRP (μM)
89	1240	9830		·
94	1.16	101	1	> 200
95	1.43	25.4		> 200
96	1810	5400		
97	26.9	1170	163	
98	146	500		
99	0.38	1.89	0.49	57.5
100	8560	>100000	·	
101	1680	65700		
103	16.6	19100		> 20.0
106	0.79	3140	0.81	> 200
107	6400	18700		
108	25.2	4870		> 200
109	575	>100000		
110	4.5	1860	177	> 200
112	284	6340		
113	276	100000		·
114	3.26	2940	200	> 200
116	15500	>100000		
117	60.1	20100		> 200
119	3.61	11100	90.4	> 20.0
121	2840	>100000		
122	0.79	420		> 20.0
123	11800	85500		
124	22	317		> 20.0
126	2.48	2010		> 200
127	0.51	461		> 200
129	68.9	9460		> 200
130	47	2690		> 200
131	3.82	1760		> 20.0
135	50700	>100000	·	

	AvB3 IC50	IIb/IIIa IC50	M21 Melanoma Cells IC 50	Human PRP
Example	(nM)	(nM)	(nM)	(μM)
136	54.4	14200		> 20.0
137	16.2	6500		> 200
138	36.9	5820		> 200
139	23.8	16100		> 200
140	4590	>100000		·
141	3.09	125		> 200
143	6700	>100000		
144	55.3	5830		> 200
145	2720	>100000		
146	14.3	879		> 200
150	5.74	631		> 200
155	5.05	81.1		> 200
158	10.1	547	-	
160	25.6	10400		
162	4.62	1340		>200
166	13000	45900		
168	2.29	269		
171	0.35	83.2		
173	0.5	17.4		
175	2.12	205		
177	0.58	137		>20.0
179	2.72	927		
181	132	22800		
183	1.58	258		
185	1.47	166		
187	1.31	264		
189	4.03	1980		
191	0.49	70.3	****	>20.0
193	2.56	209		>20.0
195	1.09	98		
198	114	37800		
200	0.48	1100		>200

Example	AVB3 IC50 (nM)	IIb/IIIa IC50 (nM)	M21 Melanoma Cells IC 50 (nM)	Human PRP (μM)
201	58.1	10800		
203	3.56	650		
205	1.68	1240		9
206	78.5	22000		
207	0.9	148		·
208	1.15	277		
209	0.83	140		
210	2.62	343		
211	0.47	607		
212	1.93	306		
213	2.93	334		
214	2.35	454		
215	0.41	656		
216	1	326		
217	74.8	78900		
219	2.29	253		
221	70.5	23.7		>200
222	2.02	112		>200
223	4.36	293		>200
224	0.71	25.9		
225	2.76	471		>20.0
226	7.07	2910		>200
227	14.1	2640		>200
228	3.36	583		>200
229	39.1	10600		
231	2.99	424		
232	19.1	12100		>200
233	3.31	647		>200
234	89.3	830	·	
235	0.54	29.9		
236	0.53	1250		
237	0.57	1950		
238	0.92	646		

Example	AvB3 IC50 (nM)	IIb/IIIa IC50 (nM)	M21 Melanoma Cells IC 50 (nM)	Human PRP (μM)
239	0.83	673		·
240	49400	76400		
241	557	17200		·
242	2.28	533		
243	0.35	23.6		
244	17.6	4560		
245	0.96	134		
246	7.24	802		
247	1.24	417		
248	12300	21000		
249	5.31	244		
251(B)	3.49	280		·
251(C)	0.76	124		
252	1.52	213		
253	0.84	109	·	
254	16.5	6910		
255	28.4	6050		,
256	0.58	22	·	
257	49.2	4660		
259	0.81	86.7		
260	0.74	65.3		
261	6.47	4710		·
262	1.24	172		
263	4.19	2760		
264	2.18	574		
265	6.19	706		
266	0.77	1810		
267	131	43900		
268	0.67	7430		
269	209	25400		
270	5.51	9160		
271	29.9	4610		
272	893	8210		

	AvB3 IC50	IIb/IIIa IC50	M21 Melanoma Cells IC 50	Human PRP
Example	(nM)	(nM)	(nM)	(μM)
273	12.9	4160		
274	31.1	21200		
275	6.98	1200		
276	1.25	111		
277	1.41	198		
278	0.45	150		
279	7.12	637		
281	4.16	11500		
282	864	9770		
284	195	18400		
285	229	3170		
286	413	8090		
287	49.7	41.1		
288	8.62	1060		
289	0.9	621		
290 ·	1.62	1020		
291	1.24	37.4		
292	3.55	337		
294	173	1990		
295	144	4560		
296	404	9450		
297	89.8	3920		
298	252	5560		
299	109	927		·
362	0.84	7260		
363	2.12	509		
364	3.58	223		
365	16.9	8470	÷	
366	0.44	91.3		
367	0.35	1540		

What is claimed is:

1. A compound of th formula

or a pharmaceutically acceptable salt thereof, wherein

A is

wherein Y^1 is selected from the group consisting of N-R², O, and S;

R² is selected from the group consisting of H; alkyl; aryl; hydroxy; alkoxy; cyano; nitro; amino; alkenyl; alkynyl; amido; alkylcarbonyl; aryloxycarbonyl; aryloxycarbonyl; haloalkoxycarbonyl; haloalkylcarbonyl; haloalkoxycarbonyl; alkylthiocarbonyl; arylthiocarbonyl; acyloxymethoxycarbonyl; alkyl optionally substituted with one or more substituent selected from lower alkyl, halogen, hydroxyl, haloalkyl, cyano, nitro, carboxyl, amino, alkoxy, aryl or aryl optionally substituted with one or more halogen, haloalkyl, lower alkyl, alkoxy, cyano, alkylsulfonyl, alkylthio, nitro, carboxyl, amino, hydroxyl, sulfonic acid, sulfonamide, aryl, fused aryl, monocyclic heterocycles, or fused mon cyclic

heterocycles; aryl optionally substituted with one or more substituent selected from halogen, haloalkyl, hydr xy, lower alkyl, alkoxy, methylenedioxy, ethylenedioxy, cyano, nitro, alkylthio, alkylsulfonyl, sulfonic acid, sulfonamide, carboxyl derivatives, amino, aryl, fused aryl, monocyclic heterocycles and fused monocyclic heterocycle; monocyclic heterocycles; and monocyclic heterocycles optionally substituted with one or more substituent selected from halogen, haloalkyl, lower alkyl, alkoxy, amino, nitro, hydroxy, carboxyl derivatives, cyano, alkylthio, alkylsulfonyl, sulfonic acid, sulfonamide, aryl or fused aryl; or

R² taken together with R⁷ forms a 4-12 membered dinitrogen containing heterocycle optionally substituted with one or more substituent selected from the group consisting of lower alkyl, hydroxy, keto, alkoxy, halo, phenyl, amino, carboxyl or carboxyl ester, and fused phenyl;

- or R² taken together with R⁷ forms a 5 membered heteroaromatic ring optionally substituted with one or more substituent selected from lower alkyl, phenyl and hydroxy;
- or R² taken together with R⁷ forms a 5 membered heteroaromatic ring fused with a phenyl group;

R⁷ (when not taken together with R²) and R⁸ are independently selected from the group consisting of H; alkyl; alkenyl; alkynyl; aralkyl; amino; alkylamino; hydroxy; alkoxy; arylamino; amido, alkylcarbonyl, arylcarbonyl; alkoxycarbonyl; aryloxycarbonyl; haloalkylcarbonyl; aryloxy; haloalkoxycarbonyl; alkylthiocarbonyl;

arylthiocarbonyl; acyloxymethoxycarbonyl; cycloalkyl; bicycloalkyl; aryl; acyl; benzoyl; alkyl optionally substituted with one or m re substituent selected from lower alkyl, halogen, hydroxy, haloalkyl, cyano, nitro, carboxyl derivatives, amino, alkoxy, thio, alkylthio, sulfonyl, aryl, aralkyl, aryl optionally substituted with one or more substituent selected from halogen, haloalkyl, lower alkyl, alkoxy, methylenedioxy, ethylenedioxy, alkylthio, haloalkylthio, thio, hydroxy, cyano, nitro, carboxyl derivatives, aryloxy, amido, acylamino, amino, alkylamino, dialkylamino, trifluoroalkoxy, trifluoromethyl, sulfonyl, alkylsulfonyl, haloalkylsulfonyl, sulfonic acid, sulfonamide, aryl, fused aryl, monocyclic heterocycles, fused monocyclic heterocycles; aryl optionally substituted with one or more substituent selected from halogen, haloalkyl, lower alkyl, alkoxy, methylenedioxy, ethylenedioxy, alkylthio, haloalkylthio, thio, hydroxy, cyano, nitro, carboxyl derivatives, aryloxy, amido, acylamino, amino, alkylamino, dialkylamino, trifluoroalkoxy, trifluoromethylsulfonyl, alkylsulfonyl, sulfonic acid, sulfonamide, aryl, fused aryl, monocyclic heterocycles, or fused monocyclic heterocycles; monocyclic heterocycles; monocyclic heterocycles optionally substituted with one or more substituent selected from halogen, haloalkyl, lower alkyl, alkoxy, aryloxy, amino, nitro, hydroxy, carboxyl derivatives, cyano, alkylthio, alkylsulfonyl, aryl, fused aryl; monocyclic and bicyclic heterocyclicalkyls; -SO₂R¹⁰ wherein R¹⁰ is selected from the group consisting of alkyl, aryl and m nocyclic het rocycles, all optionally substituted with one or more substituent selected from the group consisting of halogen, haloalkyl,

alkyl, alkoxy, cyano, nitro, amino, acylamino, trifluoroalkyl, amido, alkylaminosulfonyl, alkylsulfonylamino, alkylamino, dialkylamino, trifluoromethylthio, trifluoroalkoxy, trifluoromethylsulfonyl, aryl, aryloxy, thio, alkylthio, and monocyclic heterocycles; and

or NR⁷ and R⁸ taken together form a 4-12 membered mononitrogen containing monocyclic or bicyclic ring optionally substituted with one or more substituent selected from lower alkyl, carboxyl derivatives, aryl or hydroxy and wherein said ring optionally contains a heteroatom selected from the group consisting of O, N and S;

R⁵ is selected from the group consisting of H, alkyl, alkenyl, alkynyl, benzyl, and phenethyl;

or

wherein Y² is selected from the group consisting of alkyl; cycloalkyl; bicycloalkyl; aryl; monocyclic heterocycles; alkyl optionally substituted with aryl which can also be optionally substituted with one or more substituent selected from halo, haloalkyl, alkyl, nitro, hydroxy, alkoxy, aryloxy, aryl, or fused aryl; aryl optionally substituted

with one or more substituent sel cted from halo, haloalkyl, hydroxy, alkoxy, aryloxy, aryl, fused aryl, nitro, methylenedioxy, ethylenedioxy, or alkyl; alkynyl; alkenyl; -S-R⁹ and -O-R⁹ wherein R⁹ is selected from the group consisting of H; alkyl; aralkyl; aryl; alkenyl; and alkynyl; or R⁹ taken together with R⁷ forms a 4-12 membered mononitrogen and monosulfur or monooxygen containing heterocyclic ring optionally substituted with lower alkyl, hydroxy, keto, phenyl, carboxyl or carboxyl ester, and fused phenyl; or R⁹ taken together with R⁷ is thiazole; oxazole; benzoxazole; or benzothiazole; and

R⁵ and R⁷ are as defined above;

or Y² (when Y² is carbon) taken together with R⁷ forms a 4-12 membered mononitrogen containing ring optionally substituted with alkyl, aryl or hydroxy;

or A is

where R² and R⁷ taken together form a 5-8 membered dinitrogen containing heterocycle optionally substituted with one or more substituent selected from the group consisting of lower alkyl, hydroxy, keto, phenyl, or carboxyl derivatives; and R⁸ is selected from the group consisting of alkylcarbonyl, arylcarbonyl, alkoxycarbonyl, aryloxycarbonyl, haloalkylcarbonyl, haloalkylcarbonyl, haloalkoxycarbonyl, alkylthiocarbonyl, arylthiocarbonyl, or acyloxymethoxycarbonyl; and

R⁵ is defined as above

or A is

where R² and R⁷ taken together form a 5-8 membered dinitrogen containing heterocycle optionally substituted with hydroxy, keto, phenyl, or alkyl; and

R⁸ are both selected from the group consisting of alkylcarbonyl, arylcarbonyl, alkoxycarbonyl, aryloxycarbonyl, haloalkylcarbonyl, haloalkoxycarbonyl, alkylthiocarbonyl, arylthiocarbonyl and acyloxymethoxycarbonyl;

Z¹ is one or more substituent selected from the group consisting of H; alkyl; hydroxy; alkoxy; aryloxy; halogen; haloalkyl; haloalkoxy; nitro; amino; alkylamino; acylamino; dialkylamino; cyano; alkylthio; alkylsulfonyl; carboxyl derivatives; trihaloacetamide; acetamide; aryl; fused aryl; cycloalkyl; thio; monocyclic heterocycles; fused monocyclic heterocycles; and A, wherein A is defined above;

V is selected from the group consisting of $-N-(R^6)$ -wherein R^6 is selected from the group consisting of H; lower alkyl; cycloalkyl; aralkyl; aryl; and monocyclic heterocycles; or R^6 taken together with Y, forms a 4-12 membered mononitrogen containing ring;

Y, Y³, Z and Z³ are independently selected from the group c nsisting of hydrogen; alkyl; aryl; and cycloalkyl; or Y and Z taken together form a cycloalkyl; or Y³ and Z³ taken together form a cycloalkyl;

n is an integer 1, 2, or 3;

t is an integer 0, 1, or 2;

p is an integer 0, 1, 2, or 3;

R is X-R³ wherein X is selected from the group consisting of O, S and NR⁴, wherein R³ and R⁴ are independently selected from the group consisting of hydrogen; alkyl; alkenyl; alkynyl; haloalkyl; aryl; arylalkyl; sugars; steroids; polyalkylethers; alkylamido; alkyl N,N-dialkylamido; pivaloyloxymethyl; and in the case of the free acid, all pharmaceutically acceptable salts thereof;

R¹ is selected from the group consisting of hydrogen; alkyl; alkenyl; alkynyl; aryl; carboxyl derivatives; haloalkyl; monocyclic heterocycles; monocyclic heterocycles optionally substituted with alkyl, halogen, haloalkyl, cyano, hydroxy, aryl, fused aryl, nitro, alkoxy, aryloxy, alkylsulfonyl, arylsulfonyl, sulfonamide, thio, alkylthio, carboxyl derivatives, amino, amido;

alkyl optionally substituted with one or more of halo, haloalkyl, hydroxy, alkoxy, aryloxy, thio, alkylthio, alkynyl, alkenyl, alkyl, arylthio, alkylsulfoxide, alkylsulfonyl, arylsulfoxide, arylsulfonyl, cyano, nitro, amino, alkylamino, dialkylamino, alkylsulfonamide, arylsulfonamide,

acylamide, carboxyl derivatives, sulfonamide, sulfonic acid, phosphonic acid d rivatives, phosphinic acid derivatives, aryl, arylthio, arylsulfoxide, or arylsulfone all optionally substituted on the aryl ring with halo, alkyl, haloalkyl, cyano, nitro, hydroxy, carboxyl derivatives, alkoxy, aryloxy, amino, alkylamino, dialkylamino, amido, aryl, fused aryl, monocyclic heterocycles; and fused monocyclic heterocycles, monocyclic heterocyclicthio, monocyclic heterocyclicsulfoxide, and monocyclic heterocyclic sulfone, which can be optionally substituted with halo, haloalkyl, nitro, hydroxy, alkoxy, fused aryl, or alkyl;

alkylcarbonyl, haloalkylcarbonyl, and arylcarbonyl;

aryl optionally substituted in one or more positions with halo, haloalkyl, alkyl, alkoxy, aryloxy, methylenedioxy, ethylenedioxy, alkylthio, haloalkylthio, thio, hydroxy, cyano, nitro, acyloxy, carboxyl derivatives, carboxyalkoxy, amido, acylamino, amino, alkylamino, dialkylamino, trifluoroalkoxy, trifluoromethylsulfonyl, alkylsulfonyl, sulfonic acid, sulfonamide, aryl, fused aryl, monocyclic heterocycles and fused monocyclic heterocycles; and

$$\begin{array}{c}
O \\
| | \\
C - N
\end{array}$$
wherein \mathbb{R}^7 and \mathbb{R}^8 are as defined above

and provided that taken together with the nitrog n, R^7 and R^8 comprise an amino acid;

and

R¹¹ is selected from the group consisting f H, alkyl, aralkyl, alkenyl, alkynyl, haloalkyl or haloalkynyl or R¹¹ taken together with Y forms a 4-12 membered mononitrogen containing ring.

 A compound according to the formula of Claim 1 wherein

A is

wherein Y^1 is selected from the group consisting of N-R², O, and S;

R² is selected from the group consisting of H, cyano, alkyl, aryl, substituted alkyl, hydroxy, alkoxy, alkylcarbonyl, amido, nitro, amino and monocyclic heterocycles, arylcarbonyl, alkoxycarbonyl, aryloxycarbonyl, haloalkoxycarbonyl, alkylthiocarbonyl, arylthiocarbonyl, acyloxymethoxycarbonyl; or R² taken together with R⁷ forms a 4-12 membered ring;

R⁵, R⁷, R⁸ are independently selected from the group consisting of H, alkyl, alkenyl, alkynyl, cycloalkyl, bicycloalkyl substituted alkyl, arylalkyl, aryloxy, hydroxy, alkoxy, amino, alkylamino, arylamino, amido, alkylcarbonyl, arylcarbonyl, alkoxycarbonyl, aryloxycarbonyl, haloalkylcarbonyl, haloalkoxycarbonyl, alkylthiocarbonyl, arylthiocarbonyl, acyloxymethoxycarbonyl, substituted phenyl,

arylacyl, monocyclic and bicyclic heterocycles, monocyclic and bicyclic heterocyclicalkyl and -SO,R10 wherein R10 is selected from the group consisting of alkyl, amino and aryl which are all optionally substituted with one or more substituent selected from the group consisting of acylamino, amino, carbonyl, cyano, nitro, alkoxy, halo, alkyl, trifluoroalkyl, amido, alkylaminosulfonyl, alkylsulfonyl, alkylsulfonylamino, alkylamino, dialkylamino, aryloxy, thio, trifluoromethylthio, trifluoroalkoxy, and trifluoromethylsulfonyl or -NR7 and R8 taken together form a 4-12 membered ring wherein said ring optionally contains a heteroatom selected from the group consisting of O, N, and S wherein said ring is optionally substituted;

3. A compound according to Claim 2 wherein

V is $-N(R^6)$ - wherein R^6 is selected from the group consisting of H and lower alkyl;

n is 1;

t is 0 or 1;

p is 0, 1 or 2; and

R is $O-R^3$.

- 4. A compound according to Claim 3 selected from the group consisting of
 - (±) ethyl β -[[2-[[[3-[(aminoiminomethyl)amino]phenyl]-carbonyl]amino]acetyl]amino]pyridine-3-propanoate;

- (±)β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]pyridine-3propanoic acid;
- (±) ethyl β -[[2-[[[3-[(aminoiminomethyl)amino]phenyl]-carbonyl]amino]acetyl]amino]benzenepropanoate;

$(\pm)\beta - [[2-[[3-$

[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]benzenepropanoic acid;

- (±)ethyl β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]-1,3benzodioxole-5-propanoate;
- (±)β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]-1,3benzodioxole-5-propanoic acid;
- (±)ethyl β-[[2-[[[3-[(aminoiminomethyl)amino] naphthalen-1-yl]carbonyl]amino]acetyl] amino]pyridine-3-propanoate;
 - (±)β-[[2-[[[3-[(aminoiminomethyl)-amino]naphthalen-1-yl]carbonyl]amino]acetyl]amino]pyridine-3-propanoic acid;
- (±) ethyl β-[[1-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]-1-cyclopropyl]carbonyl]amino]pyridine-3-propanoate;
- (±) β-[[1-[[[3[(aminoiminomethyl)amino]phenyl]carbonyl]amino]cycloprop-1-yl]carbonyl]amino]pyridine-3-propanoic acid;

- (±) thyl β-[[2-[[[3-[[imino[(phenylmethyl)amino]methyl]amino]phenyl]carbonyl]amino]acetyl]amino]pyridine-3-propanoate;
- - β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]-3,5dichlorobenzenepropanoic acid;
 - 3S-[[2-[[[3-(aminocarbonylamino)phenyl]-carbonyl]amino]acetyl]amino]-4-pentynoic acid;
 - ethyl 3S-[[2-[[[3-(aminocarbonylamino)phenyl]carbonyl]amino]acetyl]amino]-4-pentynoate;
 - βS-[[2-[[[3-[(aminoiminomethyl)amino]-2,5,6trifluorophenyl]carbonyl]amino]acetyl]amino]-4-pentynoic acid;
 - (±) β -[[2-[[[3-[(aminoiminomethyl)amino]-phenyl]carbonyl]amino]acetyl]amino]-3,5-bis(trifluoromethyl)benzenepropanoic acid;
 - (±) β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]-3,5bis(trifluoromethyl)benzenepropanoic acid;
 - ethyl (±) β-[[2-[[[3-[(aminoiminomethyl)amino] phenyl]carbonyl]amino]acetyl]amino]-3,5 bis(trifluoromethyl)benzenepropanoate;
 - (±) β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino][1,1'-biphenyl]-4-propanoic acid;

- ethyl (±) β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino][1,1'-biphenyl]-4-propanoate;
- (±) ethyl β -[[2-[[[3-[(aminoiminomethyl)amino]-5-(trifluoromethyl)-phenyl]carbonyl]amino]acetyl]amino]-3,5-bis(trifluoromethyl)benzenepropanoate;
- (±) β-[[2-[[[3-[(aminoiminomethyl)amino]-5(trifluoromethyl)phenyl]carbonyl]amino]acetyl]amino]3,5-bis(trifluoromethyl)benzenepropanoic acid;
 - (±) β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]naphthalene-1-carboxylic acid;
 - methyl (±) β -[[2-[[[3-[(aminoiminomethyl)-amino]phenyl]carbonyl]amino]acetyl]amino]naphthalene-1-carboxylate;
 - (±) 3-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]-2-oxopyrrolidine-1propanoic acid;
 - 3R-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]-carbonyl]amino]acetyl]amino]-4-pentynoic acid;

3S-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]-carbonyl]amino]acetyl]amino]-4-pentynoic acid;

β-[[2-[[[3-(aminocarbonylamino)phenyl]-carbonyl]amino]acetyl]amino]pyridine-3-propanoic acid;

ethyl β -[[2-[[[3-(aminocarbonylamino)phenyl]-carbonyl]amino]acetyl]amino]pyridine-3-propanoate;

- - (±)ethyl β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]furan-2-propanoate;
 - (±) β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]furan-3-propanoic acid;
- bismethyl ester 3-[[2-[[[3-[(aminoiminomethyl)amino]-phenyl]carbonyl]-amino]acetyl]amino]pentanedioate;

- (±) β-[[2-[[[3-[(aminoiminomethy1)amino]phenyl]carbonyl]amino]acetyl]amino]furan-2-propanoic acid;
- ethyl (±) β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]-carbonyl]amino]acetyl]amino]furan-2-propanoate;
 - (±) β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]naphthalene-2-propanoic acid;
 - - - (±) β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]thiophene-3-propanoic acid;
 - (±) 2-[3-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]-4carboxybutyl]thio]benzoic acid;
 - (±) 2-[3-[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]-4carboxybutyl]sulfonyl]benzoic acid;
 - (±) β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]thiophene-2-propanoic acid;

- - (±) methyl 3-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]5-[(4-methylphenyl)thio]pentanoate;
 - (±) methyl 3-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]4-[[(4-methylphenyl)sulfonyl]amino]butanoate;
 - 3-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]-4-[[(4methylphenyl)sulfonyl]amino]butanoic acid;
 - (±) 3-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]-5-[(4methylphenyl)thio]pentanoic acid;
 - (±) 3-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]-5-[(4methylphenyl)sulfonyl]pentanoic acid;

2-[[2S-[[2-[[[3-[(aminoiminom thyl)amino]phenyl]carbonyl]amino]acetyl]amino]-2(carboxym thyl)ethyl]sulfonyl]benzoic acid;

2-[[25-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]-2(carboxymethyl)ethyl]thio]benzoic acid;

(±)ethyl β -[[2-[[[3-[(aminoiminomethyl)-amino]phenyl]carbonyl]methylamino]acetyl]-amino]-pyridine-3-propanoate;

- (±)β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]methylamino]acetyl]amino]pyridine3-propanoic acid;
 - (±)ethyl β -[[2-[[[3-[(aminoiminomethyl)-amino]phenyl]carbonyl]amino]-1-oxopropyl]-amino]pyridine-3-propanoate;
 - (±)β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]-1-oxopropyl]amino]pyridine-3-propanoic acid;
 - (±) β-[[2-[[[3-[(aminoiminomethyl)amino]-4methylphenyl]carbonyl]amino]acetyl]amino]pyridine-3-propanoic acid;

- (±) β-[[2-[[[3-[[(aminoiminomethyl)amino]methyl]phenyl]carbonyl]amino]acetyl]amino]pyridine-3-propanoic acid;

 - (±) β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]-2-hydroxybenzenepropanoic acid;
- (±) β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]-2hydroxy-5-methylbenzenepropanoic acid;
- (±) 3-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]-4-[(2hydroxyethyl)amino]-4-oxobutanoic acid;
- - N-[2-[[[3-[(aminoiminomethyl)amino]phenyl]-carbonyl]amino]acetyl]- β -alanine, ethyl ester;
 - N-[2-[[[3-[(aminoiminomethy1)amino]-phenyl]carbonyl]amino]acetyl]- β -alanine;

- - β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]quinoline-3-propanoic acid;

- - ethyl β -[[2-[[[3-[[(phenylamino)carbonyl]-amino]phenyl]carbonyl]amino]acetyl]amino]-pyridine-3-propanoate;

β-[[2-[[[3-[[(phenylamino)carbonyl]amino]phenyl]carbonyl]amino]acetyl]amino]pyridine-3-propanoic acid;

ethyl β -[[2-[[[3-(aminocarbonylamino)-phenyl]carbonyl]amino]acetyl]amino]-pyridine-3-propanoate;

β-[[2-[[[3-(aminocarbonylamino)phenyl]-carbonyl]amino]acetyl]amino]pyridine-3-propanoic acid;

ethyl β -[[2-[[[3-[[[(4-methylphenyl)sulfonyl]-amino]carbonyl]amino]phenyl]carbonyl]amino]-acetyl]amino]pyridine-3-propanoate;

β-[[2-[[[3-[[[((4-methylphenyl)sulfonyl]amino]-carbonyl]amino]phenyl]carbonyl]amino]acetyl]-amino]pyridine-3-propanoic acid;

ethyl β -[[2-[[[3-[(aminothioxomethyl)-amino]phenyl]carbonyl]amino]acetyl]-amino]pyridine-3-propanoate;

β-[[2-[[[3-[(aminothioxomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]pyridine3-propanoic acid;

β-[[2-[[[3-[(aminothioxomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]benzenepropanoic acid;

ethyl β -[[2-[[[3-[[[(phenylmethyl)amino]-carbonyl]amino]phenyl]carbonyl]amino]ac tyl]-amino]benzenepropanoate;

β-[[2-[[[3-[[[(phenylmethyl)amino]carbonyl]amino]phenyl]carbonyl]amino]acetyl]amino]benzenepropanoic acid;

ethyl \(\beta^-\)[[2-[[[3-[[[(phenylmethyl)amino]-carbonyl]amino]phenyl]carbonyl]amino]acetyl]-amino]-1,3-benzodioxole-5-propanoate;

β-[[2-[[[3-[[[(phenylmethyl)amino]carbonyl]amino]phenyl]carbonyl]amino]acetyl]amino]1,3-benzodioxole-5-propanoic acid;

ethyl β -[[2-[[[3-3-[[(phenylamino)carbonyl]-amino]phenyl]carbonyl]amino]acetyl]amino]
1,3-benzodioxole-5-propanoate;

β-[[2-[[[3-3-[[(phenylamino)carbonyl]amino]phenyl]carbonyl]amino]acetyl]amino]-1,3benzodioxole-5-propanoic acid;

β-[[2-[[[3-[[[(4-(aminosulfonyl)phenylmethyl]amino]carbonyl]amino]phenyl]carbonyl]amino]acetyl]amino]pyridine3-propanoic acid;

β-[[2-[[[3-[[[(3-pyridinylmethyl)amino]carbonyl]amino]phenyl]carbonyl]amino]acetyl]amino]pyridine-3-propanoic acid;

β-[[2-[[[3-[[[(2-carboxyethyl)amino]carbonyl]amino]phenyl]carbonyl]amino]acetyl]amino]pyridine-3-propanoic acid;

```
β-[[2-[[[3-[[(2-phenylethyl)amino]carbonyl]-
amino]ph nyl]carbonyl]amino]acetyl]amino]-
pyridine-3-propanoic acid;
```

β-[[2-[[[3-[[[(1-naphthalenylmethyl)amino]carbonyl]amino]phenyl]carbonyl]amino]acetyl]amino]pyridine-3-propanoic acid;

ethyl β -[[2-[[[3-[(aminoiminomethyl)amino]-4-chlorophenyl)carbonyl]amino]acetyl]amino]-benzenepropanoate;

β-[[2-[[[3-[(aminoiminomethyl)amino]-4-chlorophenyl)carbonyl]amino]acetyl]-amino]benzenepropanoic acid;

 β -[[2-[[[5-[(aminoiminomethyl)amino]-2-chlorophenyl]-carbonyl]amino]acetyl]amino]benzenepropanoic acid;

ethyl β-[2-[[[3-[[amino(aminocarbonyl) imino]methyl]amino]phenyl]carbonyl] amino]acetyl]amino]-3,5 dichlorobenzenepropanoate;

β-[[2-[[[3-[[amino(aminocarbonyl)imino]-methyl]amino]phenyl]carbonyl]amino]-acetyl]amino]-3,5-dichlorobenzene-propanoic acid;

[(dimethylamino)carbonyl]methyl β[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]-3,5dichlorobenzenepropanoate;

1,1-dimethylethyl 3,5-dichloro-β-[[2-[[[3[[(ethoxy-carb nyl)amino](ethoxycarbonyl)imino]methyl]amino]-phenyl]carbonyl]amino]acetyl]amino]benzenepropanoate;

- 3,5-dichloro-β-[[2-[[[3-[[[(ethoxycarbonyl) amino][(thoxycarbonyl)imino]methyl] amin]-phenyl]carbonyl]amino]acetyl] amino]benzenepropanoic acid;
- ethyl β -[[2-[[[3-[(aminoiminomethyl)amino]-4-chlorophenyl]carbonyl]amino]acetyl]amino-3,5-dichlorobenzenepropanoate;
 - β-[[2-[[[3-[(aminoiminomethyl)amino]-4-chlorophenyl]carbonyl]amino]acetyl]amino]-3,5-dichlorobenzenepropanoic acid;
- ethyl 3S-[[2-[[[3-[[amino[(aminocarbonyl)imino] methyl]amino]phenyl]carbonyl]amino]acetyl] amino]-4-pentynoate;
 - 3S-[[2-[[[3-[[amino[(aminocarbonyl)imino] methyl]amino]phenyl]carbonyl]amino] acetyl]amino]-4-pentynoic acid;
 - ethyl 3S-[[2-[[[3-[(aminoiminomethyl)amino]-4-chlorophenyl]carbonyl]amino]acetyl]amino]-4-pentynoate;
- (±) ethyl β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]-3,4dichlorobenzenepropanoate;

- 751 -

- (±) ethyl β -[[2-[[[3-[(aminoiminomethyl)amino]-5-(trifluoromethyl)carbonyl]amino]ac tyl]amino]3,4-dichlorobenzenepropanoate;
 - (±) β-[[2-[[[3-[(aminoiminomethyl)amino]-5(trifluoromethyl)phenyl]carbonyl]amino]acetyl]amino]-3,5-dichlorobenzenepropanoic acid;
 - (±) ethyl β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]-2,5dimethylbenzenepropanoate;
- (±) ethyl β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]-3chlorobenzenepropanoate;
- (±) ethyl β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]-3bromobenzenepropanoate;
 - (±) β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]-3bromobenzenepropanoic acid;
- (±) ethyl β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]-4bromobenzenepropanoate;

- (±) β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]-4bromobenzenepropanoic acid;
- (±) ethyl β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]-3,5dimethylbenzenepropanoate;
 - (±) β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]-3,5dimethylbenzenepropanoic acid;
- (±) ethyl β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]-3,5dimethoxybenzenepropanoate;
 - (±) β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]-3,5dimethoxybenzenepropanoic acid;
- (±) (2,2-dimethyl-1-oxopropoxy) methyl $\beta-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]-acetyl]amino]-3,5-dichlorobenzenepropanoate;$
 - (±) β-[[2-[[[3-[[[(aminocarbonyl)imino) methylamino)methyl]amino]phenyl] carbonyl]amino]acetyl]amino]-3,5 dichlorobenzenepropanoic acid;
 - (±) β-[[2-[[[3-[(aminothioxomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]-3,5dichlorobenzenepropanoic acid;
 - (±) β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]-3,4dibromobenzenepropanoic acid;

- (±) β-[[2-[[[3-[(aminoiminomethyl)amino]ph nyl]carbonyl]amino]acetyl]amino]-3-fluoro-5(trifluoromethyl)benzenepropanoic acid;
 - (±) β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]-3bromo-5-fluorobenzenepropanoic acid;
 - (±) β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]-3,5dibromobenzenepropanoic acid;
- (±) β-[[2-[[[3-[(aminoiminomethyl)amino]-5-(trifluoromethyl)phenyl]carbonyl]amino]acetyl]amino]-3,5-dibromobenzenepropanoic acid;
- (±) β-[[2-[[[3-[(aminoiminomethyl)amino]-5-(trifluoromethyl)phenyl]carbonyl]amino]acetyl]amino]-3-bromo-5-chlorobenzenepropanoic acid;
 - (±) [2-[2-[2-(2-hydroxyethoxy)ethoxy]ethyl] β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]-3,5dichlorobenzenepropanoate;
 - (±) β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]-3bromo-5-iodobenzenepropanoic acid;

- (±) β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]-2-hydroxy-4methoxybenzen propanoic acid;
- (±) β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]-5-hydroxy-4methoxybenzofuran-6-propanoic acid;
- (±) β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]-9H-fluorene2-propanoic acid;
- ethyl(\pm) β -[[2-[[[3-[(aminoiminomethyl)amino]-phenyl]carbonyl]amino]acetyl]amino]-9H-fluorene-2-propanoate;
- (±) β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]-3,5-dichloro2-hydroxybenzenepropanoic acid;
- (±) β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]-2-hydroxy-5nitrobenzenepropanoic acid;
 - (±) β -[[2-[[[3-[(aminoiminomethyl)amino]-phenyl]carbonyl]amino]acetyl]amino]-3,5-dibromo-2-hydroxybenzenepropanoic acid;
- ethyl(±) β-[[2-[[[3-[(aminoiminomethyl)amino] phenyl]carbonyl]amino]acetyl]amino]-3,5 dibromo-2-hydroxybenzenepropanoate;
 - (±) β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]-5bromo-2-hydroxybenzenepropanoic acid;

- - (±) β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]cyclohexanepropanoic acid;
- - ethyl(±) β -[[2-[[[3-[(aminoiminomethyl)-amino]phenyl]carbonyl]amino]acetyl]amino]-3,5-dichloro-2-hydroxybenzenepropanoate;
 - (±) β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]-5chloro-2-hydroxybenzenepropanoic acid;
- - (±) 5-amino-β-[[2-[[[3-[(aminoiminomethy1)amino]phenyl]carbonyl]amino]acetyl]amino]2-hydroxybenzenepropanoic acid;
 - (±) β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]5-bromopyridine-3-propanoic acid;
 - ethyl(±) β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]5-bromopyridine-3-propanoate;

- 3,5-dichloro-β-[[2-[[[3-[[[(ethoxycarbonyl)amino]iminomethyl]amino]phenyl]carbonyl]amino]acetyl]amino]benzenepropanoic acid;
 - β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino][1,1'biphenyl]-3-propanoic acid;
- 1,1-dimethylethyl β -[[2-[[[3-[(aminoiminomethyl)-amino]phenyl]carbonyl]amino]acetyl]amino][1,1'-biphenyl]-3-propanoate;
- β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino][pyrimidine-5-propanoic acid;
 - 1,1-dimethylethyl β -[[2-[[[3-[(aminoiminomethyl)-amino]phenyl]carbonyl]amino]acetyl]amino][pyrimidine-5-propanoate;
- β -[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]-amino]acetyl]amino]-3-methylthiophene-2-propanoic acid;
 - 1,1-dimethylethyl β -[[2-[[[3-[(aminoiminomethyl)-amino]phenyl]carbonyl]amino]acetyl]amino]-3-methylthiophene-2-propanoate;
 - (±) β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]-3-(methylthio)benzenepropanoic acid;

- 1,1-dimethylethyl (\pm) β -[[2-[[[3-[(aminoiminomethyl)-amino]phenyl]carbonyl]amino]acetyl]amino]3-(methylthio)benzenepropanoate;
 - (±) β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]-6methylpyridine-2-propanoic acid;
 - β -[[2-[[[3-[(aminoiminomethyl)amino]phenyl]-carbonyl]amino]acetyl]amino]-3-(methylsulfonyl)-benzenepropanoic acid;
 - β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]-3,5diethoxybenzenepropanoic acid;
 - ethyl β -[[2-[[[3-[(aminoiminomethyl)amino]-phenyl]-carbonyl]amino]acetyl]amino]-3,5-diethoxybenzenepropanoate;
 - β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]-4bromothiophene-2-propanoic acid;
 - ethyl \(\beta \text{[[3-[(aminoiminomethyl)amino]phenyl]} \text{carbonyl]amino]acetyl]amino]-4-\text{bromothiophene-2-propanoate;}
 - β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl-carbonyl]amino]acetyl]amino]-5-chlorothiophene-2-propanoic acid;
 - ethyl β -[[2-[[[3-[(aminoiminomethyl)amino]phenyl-carbonyl]amino]acetyl]amino]-5-chlorothiophene-2-propanoate;

- β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]-carbonyl]amino]acetyl]amino]-1H-pyrazole-3-propanoic acid;
- ethyl β -[[2-[[[3-[(aminoiminomethyl)amino]phenyl]-carbonyl]amino]acetyl]amino]-1H-pyrazole-3-propanoate;
 - β -[[2-[[[3-[(aminoiminomethyl)amino]phenyl]-carbonyl]amino]acetyl]amino]-5-methylthiophene-2-propanoic acid;
- ethyl β -[[2-[[[3-[(aminoiminomethyl)amino]phenyl]-carbonyl]amino]acetyl]amino]-5-methylthiophene-2-propanoate;
 - β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]-carbonyl]amino]acetyl]amino]-2,3,5-trichloro-benzenepropanoic acid;
- - β -[[2-[[[3-[(aminoiminomethyl)amino]phenyl]-carbonyl]amino]acetyl]amino]-2(carboxymethoxy)-benzenepropanoic acid;
- ethyl β -[[2-[[[3-[(aminoiminomethyl)amino]phenyl]-carbonyl]amino]acetyl]amino]-2(carboxymethoxy)-benzenepropanoate;
- β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]-4-methoxy-1,3benzodioxole-6-propanoic acid;

- ethyl β -[[2-[[[3-[(aminoiminomethyl)amino]phenyl]-carbonyl]amino]acetyl]amino]-4-methoxy-1,3-benzodioxole-6-propanoate;
 - β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]-5-bromo2-methoxybenzenepropanoic acid;
- ethyl β -[[2-[[[3-[(aminoiminomethyl)amino]phenyl]-carbonyl]amino]acetyl]amino]-5-bromo-2-methoxybenzenepropanoate;
 - β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]-6-chloro1,3-benzodioxole-5-propanoic acid;
 - ethyl β -[[2-[[[3-[(aminoiminomethyl)amino]-phenyl]carbonyl]amino]acetyl]amino]-6-chloro-1,3-benzodioxole-5-propanoate;
 - β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]benzofuran-2-propanoic acid;
 - - β-[[2-[[[3-[(aminoiminomethy1)amino]-phenyl]carbonyl]amino]acetyl]amino]-3-(carboxymethoxy)benzenepropanoic acid;
 - ethyl β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]-3 (carboxymethoxy)benzenepropanoate;

- 3-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]-4,4,4trifluorobutanoic acid;
- ethyl 3-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]-4,4,4trifluorobutanoate;
 - (±) β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]-3-bromo-4,5dimethoxybenzenepropanoic acid;
- ethyl(\pm) β -[[2-[[[3-[(aminoiminomethyl)amino]phenyl]-carbonyl]amino]acetyl]amino]-3-bromo-4,5-dimethoxybenzenepropanoate;

 - - β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]5-bromo-3-chloro-2-hydroxybenzenepropanoic acid;

- β-[[2-[[[3-[[[(4-pyridinylmethyl)amino]-carbonyl]amino]phenyl]carbonyl]amino]-acetyl]amino]pyridine-3-propanoic acid;
- 3,5-dichloro-β-[[2-[[[3-[[[(4-pyridinylmethyl)amino]carbonyl]amino]phenyl]carbonyl]amino]acetyl]amino]benzenepropanoic acid;
- - β-[[2-[[[3-[[[(2-pyridinylmethyl)amino]carbonyl]amino]phenyl]carbonyl]amino]acetyl]amino]pyridine-3-propanoic acid;
- - 3,5-dichloro-β-[[2-[[[3-[[[(phenylmethyl)amino]carbonyl]amino]phenyl]carbonyl]amino]acetyl]amino]benzenepropanoic acid;
- ethyl 3,5-dichloro-β-[[2-[[[3-[[(phenylmethyl)amino]carbonyl]amino]phenyl]carbonyl]amino]acetyl]amino]benzenepropanoate;

- β-[[2-[[[3-[[[(1-phenylethyl)amino]carbonyl]amino]phenyl]carbonyl]amino]acetyl]amino]pyridine-3-propanoic acid;
- β-[[2-[[[3-[[[(1H-benzimidazol-2-yl)-methyl)amino]-carbonyl]amino]phenyl]carbonyl]amino]acetyl]amino]-3,5-dichlorobenzenepropanoic acid;
- - β-[[2-[[[3-[[[(3,5-dichlorophenyl)methyl]amino]carbonyl]amino]phenyl]carbonyl]amino]acetyl]amino]pyridine-3propanoic acid;
 - ethyl β-[[2-[[[3-[[[(3,5-dichlorophenyl)methyl] amino]carbonyl]amino]phenyl]carbonyl]amino] acetyl]amino]pyridine-3-propanoate;
 - 3-[[2-[[[3-[[[(3,5-dichlorophenyl)methyl] amino]carbonyl]amino]phenyl]carbonyl] amino]acetyl]amino]butanoic acid;

- 763 -

β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]-carbonyl]amino]ac tyl]amino]-3,5-bis(1-methyl-ethoxy)benzenepropanoic acid;

ethyl β -[[2-[[[3-[(aminoiminomethyl)amino]phenyl]-carbonyl]amino]acetyl]amino]-3,5-bis(1-methyl-ethoxy)benzenepropanoate;

β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]-carbonyl]amino]acetyl]amino]-3,5-dibromo-4-hydroxybenzenepropanoic acid;

ethyl β -[[2-[[[3-[(aminoiminomethyl)amino]phenyl]-carbonyl]amino]acetyl]amino]-3,5-dibromo-4-hydroxybenzenepropanoate;

β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]-carbonyl]amino]acetyl]amino]-3,5-dichloro-4-hydroxybenzenepropanoic acid;

β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]-3,5-dichloro-4hydroxybenzenepropanoate;

β-[[2-[[[5-[(aminoiminomethyl)amino]-2hydroxyphenyl]carbonyl]amino]acetyl]amino]-3,5-dichlorobenzenepropanoic acid;

ethyl β -[[2-[[[5-[(aminoiminomethyl)amino]-2-hydroxyphenyl]carbonyl]amino]acetyl]amino]3,5-dichlorobenzenepropanoate;

β-[[2-[[[3-[[(phenoxyamino)carbonyl]amino]phenyl]carbonyl]amino]acetyl]amino]pyridine-3-propanoic acid;

- - β-[[2-[[[3-[[[(phenylamino)amino]carbonyl]amino]phenyl]carbonyl]amino]acetyl]amino]pyridine-3-propanoic acid;
- - 3-[[2-[[[3-[(aminoiminomethyl)amino]phenyl] carbonyl]amino]acetyl]amino]-5-[(3,5dichlorophenyl)amino]-5-oxopentanoic acid;
- - β-[[2-[[[3-[(aminoiminomethyl)amino]-5-carboxy-phenyl]carbonyl]amino]acetyl]amino]pyridine3-propanoic acid;
- - β-[[2-[[[3-[(aminoiminomethyl)amino]-5-carboxyphenyl]carbonyl]amino]acetyl]amino]-3,5dichlorobenzenepropanoic acid;
- ethyl β -[[2-[[[3-[(aminoiminomethyl)amino]-5-carboxy-phenyl]carbonyl]amino]acetyl]amino]-3,5-dichlorobenzenepropanoate;

- β-[[2-[[[3,5-bis[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]-3,5-dichlorobenzenepropanoic acid;
- ethyl β -[[2-[[[3,5-bis[(aminoiminomethyl)amino]-phenyl]carbonyl]amino]acetyl]amino]-3,5-dichloro-benzenepropanoate;
- β-[[2-[[[3-[(aminoiminomethyl)amino]-5-(trifluoroacetyl)amino]phenyl]carbonyl]amino]acetyl]amino]-3,5-dichlorobenzenepropanoic acid;
- ethyl β -[[2-[[[3-[(aminoiminomethyl)amino]-5-(trifluoroacetyl)amino]phenyl]carbonyl]amino]acetyl]amino]-3,5-dichlorobenzenepropanoate;
 - β-[[2-[[[3-(acetylamino)-5-[(aminoiminomethyl)-amino]phenyl]carbonyl]amino]acetyl]amino]3,5-dichlorobenzenepropanoic acid;
- ethyl β -[[2-[[[3-(acetylamino)-5-[(aminoiminomethyl)-amino]phenyl]carbonyl]amino]acetyl]amino]
 3,5-dichlorobenzenepropanoate;
 - (±) 3,5-dichloro-β-[[2-[[[3[[(methylamino)(methylimino)methyl]amino]phenyl]carbonyl]amino]acetyl]amino]benzenepropanoic acid;
 - (±) 3,5-dichloro-β-[[2-[[[3[[(ethylamino) (methylimino) methyl]amino]phenyl]carbonyl]amino]acetyl]amino]benzenepropanoic acid;

- (±) 3,5-dichloro-β-[[2-[[[3-[[[(1methylethyl)amino](methylimino)methyl]amino]phenyl]carbonyl]amino]acetyl]amino]benzenepropanoic acid;
 - (±) β-[[2-[[[3-[[(ethylamino)(methylimino)methyl]amino]phenyl]carbonyl]amino]acetyl]amino]-4-fluorobenzenepropanoic acid;
 - (±) 4-fluoro-β-[[2-[[[3-[[(4pyridinylmethyl)amino](methylimino)methyl]amino]phenyl]carbonyl]amino]acetyl]amino]benzenepropanoic acid;
- β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]-4fluorobenzenepropanoic acid;
 - (±) β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]1H-imidazole-2-propanoic acid;
- - β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]-5-bromothiophene-2-propanoic acid;
 - β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]-2mercaptobenzenepropanoic acid;

- (±) β -[2-[[[3-[(aminoiminomethyl)-amino]phenyl]carbonyl]amino]acetyl]amino]-5-chloro-2-mercaptobenzenepropanoic acid.
- 5. A compound according to Claim 3 wherein Y^1 is $N-R^2$ and R^2 is cyano.
- 6. A compound according to Claim 5 wherein the compound is selected from the group consisting of

phenylmethyl β -[[2-[[[3-[[(cyanoimino)-phenylmethylamino)methyl]amino]phenyl]carbonyl]amino]-acetyl]amino]benzenepropanoate;

phenylmethyl β -[[2-[[[3-[[(cyanoimino)-methylamino)methyl]amino]phenyl]carbonyl]amino]-acetyl]amino]benzenepropanoate;

phenylmethyl β -[[2-[[[3-[[(cyanoimino)-(amino)methyl]amino]phenyl]carbonyl]amino]acetyl]amino]benzenepropanoate;

β-[[2-[[[3-[[(cyanoimino)(ethylamino)methyl]amino]phenyl]carbonyl]amino]acetyl]amino]benzenepropanoate;

β-[[2-[[[3-[[(cyanoimino)[(phenylmethyl)amino]methyl]amino]phenyl]carbonyl]amino]acetyl]amino]benzenepropanoic acid;

β-[[2-[[[3-[[(cyanoimino) (methylamino) methyl]amino]phenyl]carbonyl]amino]acetyl]amino]benzenepropanoic acid;

β-[[2-[[[3-[[amino(cyanoimino)methyl]amino]phenyl]carbonyl]amino]acetyl]amino]benzen propanoic acid;

β-[[2-[[[3-[[(cyanoimino) (ethylamino) methyl]amino]phenyl]carbonyl]amino]acetyl]amino]benzen propanoic acid;

ethyl 3S-[[2-[[[3-[[(cyanoimino)(methylamino)methyl]amino]phenyl]carbonyl]amino]acetyl]amino]-4-pentynoate;

3S-[[2-[[[3-[[(cyanoimino) (methylamino) methyl]amino]phenyl]carbonyl]amino]acetyl]amino]-4-pentynoic acid;

β-[[2-[[[3-[[(cyanoimino)[2-pyridinylmethyl)-amino]methyl]amino]phenyl]carbonyl]amino]-acetyl]amino]benzenepropanoic acid;

ethyl β-[[2-[[[3-[[(cyanoimino)[3pyridinylmethyl)amino]methyl]amino]phenyl]carbonyl]amino]acetyl]amino]benzenepropanoate;

β-[[2-[[[3-[[(cyanoimino)[3-pyridinylmethyl)-amino]methyl]amino]phenyl]carbonyl]amino]-acetyl]amino]benzenepropanoic acid;

ethyl 3S-[[2-[[[3-[[[(4-(aminosulfonyl) phenylmethyl]amino](cyanoimino)methyl] amino]phenyl]carbonyl]amino]acetyl] amino]-4-pentynoate;

3S-[[2-[[[3-[[[(4-(aminosulfonyl)phenylmethyl]amino](cyanoimino)methyl]amino]phenyl]carbonyl]amino]acetyl]amino]-4-pentynoic acid;

ethyl β -[[2-[[[3-[[amino(cyanoimino)methyl]amino]-phenyl]carbonyl]amino]acetyl]amino]-3,5-dichlorobenzenepropanoate;

- β-[[2-[[[3-[[amino(cyanoimino)methyl]amino]phenyl]carbonyl]amino]acetyl]amino]-3,5dichlorobenzenepropanoic acid;

and

ethyl 3-[[2-[[[3-[[amino(cyanoimino)methyl]amino]-phenyl]carbonyl]amino]acetyl]amino]-4-pentynoate.

7. A compound according to Claim 2 wherein

A is

wherein Y¹ is N-R²; R² taken together with R² forms a 4-12 membered ring; and R⁵ and R⁵ are independently selected from the group consisting of H, alkyl, alkenyl, alkynyl, cycloalkyl, bicycloalkyl substituted alkyl, arylalkyl, aryloxy, hydroxy, alkoxy, amino, alkylamino, arylamino, amido, alkylcarbonyl, arylcarbonyl, alkoxycarbonyl, aryloxycarbonyl, haloalkylcarbonyl, haloalkoxycarbonyl,

alkylthiocarbonyl, arylthiocarbonyl, acyloxymethoxycarbonyl, substitut d phenyl, arylacyl, monocyclic and bicyclic heter cycles, monocyclic and bicyclic heterocyclicalkyl and -SO2R10 wherein R10 is selected from the group consisting of alkyl, amino and aryl which are all optionally substituted with one or more substituent selected from the group consisting of acylamino, amino, carbonyl cyano, nitro, alkoxy, halo, alkyl, trifluoroalkyl, amido, alkylaminosulfonyl, alkylsulfonyl, alkylsulfonylamino, alkylamino, dialkylamino, aryloxy, thio, trifluoromethylthio, trifluoroalkoxy, and trifluoromethylsulfonyl or -NR⁷ and R⁸ taken together form a 4-12 membered ring wherein said ring optionally contains a heteroatom selected from the group consisting of O, N, and S wherein said ring is optionally substituted.

8. A compound according to Claim 7 wherein

V is $-N(R^6)$ - wherein R^6 is selected from the group consisting of H and lower alkyl;

n is 1;

t is 0; and

p is 1.

- 9. A compound according to Claim 8 selected from the group consisting of
 - (±)ethyl β-[[2-[[[3-[(4,5-dihydro-1H-imidazol-2-yl)amino]phenyl]carbonyl]amino]acetyl]amino]pyridine-3-propanoate;
 - (±)β-[[2-[[[3-[(4,5-dihydro-1H-imidazol-2-yl)amino]phenyl]carbonyl]amino]acetyl]amino]pyridine-3-propanoic acid;
 - (±) ethyl β -[[2-[[[3-[(4,5-dihydro-1H-imidazol-2-yl)amino]phenyl]carbonyl]amino]acetyl]amino]--3,5-bis(trifluoromethyl)benzenepropanoate;
 - (±) β -[[2-[[[3-[(4,5-dihydro-1H-imidazol-2-yl)-amino]phenyl]carbonyl]amino]acetyl]amino]-3,5-bis(trifluoromethyl)benzenepropanoic acid;
 - (±) ethyl β-[[2-[[[3-[(4,5-dihydro-1H-imidazol-2-yl)amino]phenyl]carbonyl]amino]acetyl]amino]-3,5-dichlorobenzenepropanoate;
 - (±) β-[[2-[[[3-[(4,5-dihydro-1H-imidazol-2-yl)amino]phenyl]carbonyl]amino]acetyl]amino]3,5-dichlorobenzenepropanoic acid;
 - (±) ethyl 3,5-dichloro-β-[[2-[[[3-[(1,4,5,6tetrahydropyrimidin-2-yl)amino]phenyl]carbonyl] amino]acetyl]amino]benzenepropanoate;
 - (±) 3,5-dichloro-β-[[2-[[[3-[(1,4,5,6tetrahydropyrimidin-2-yl)amino]phenyl]carbonyl]amino]acetyl]amino]benzenepropanoic acid;

- (±) 3,5-dibromo-β-[[2-[[[3-[(1,4,5,6tetrahydropyrimidin-2-yl)amino]phenyl]carbonyl]amino]acetyl]amino]benzenepropanoic acid;
- (±) [2-[2-[2-(2-hydroxyethoxy)ethoxy]ethoxy]ethyl] 3,5-dichloro-β-[[2-[[[3[(1,4,5,6-tetrahydropyrimidin-2-yl)amino]phenyl]carbonyl]amino]acetyl]amino]benzenepropanoate;

 - (±) 3-bromo-5-chloro-2-hydroxy-β[[2-[[[3-[(1,4,5,6-tetrahydropyrimidin-2-yl)amino]phenyl]carbonyl]amino]acetyl]amino]benzenepropanoic acid;
 - ethyl (±) 3-bromo-5-chloro-2-hydroxy-β[[2-[[[3-[(1,4,5,6-tetrahydropyrimidin-2-yl)amino]phenyl]carbonyl]amino]acetyl]amino]benzenepropanoate;
 - (±) 3,5-dichloro-2-hydroxy-β-[[2[[[3-[(1,4,5,6-tetrahydropyrimidin-2-yl)amino]phenyl]carbonyl]amino]acetyl]amino]benzenepropanoic acid;

- (±) 3,5-dichloro-β-[[2-[[[3-[(4,5-dihydro-1H-pyrrolidin-2-yl)amino]phenyl]carbonyl]amino]amino]acetyl]amino]-2-hydroxybenzenepropanoic acid;
 - (±) 3-bromo-5-chloro-β-[[2-[[[3-[(4,5-dihydro-1H-pyrrolidin-2-yl)amino]phenyl]carbonyl]amino]acetyl]amino]-2-hydroxybenzenepropanoic acid;
 - β-[[2-[[[3-[[5-phenyl-1H-imidazol-2-yl)-amino]phenyl]carbonyl]amino]acetyl]amino]pyridine-3-propanoic acid;
 - ethyl β -[[2-[[[3-[[5-phenyl-1H-imidazol-2-yl)-amino]phenyl]carbonyl]amino]acetyl]amino]-pyridine-3-propanoate;
 - (±) ethyl 3,5-dichloro-β-[[2-[[[3[(1,4,5,6-tetrahydro-5,5-dimethylpyrimidin-2-yl)amino]phenyl]carbonyl]amino]acetyl]amino]benzenepropanoate;
- (±) 3,5-dichloro-β-[[2-[[[3-[(1,4,5,6-tetrahydro-5,5-dimethylpyrimidin-2-yl)amino]phenyl]carbonyl] amino]acetyl]amino]benzenepropanoic acid;

(±) 3-bromo-5-dichloro-2-hydroxyβ-[[2-[[[3-[(1,4,5,6-tetrahydro-5,5-dimethylpyrimidin-2-yl)amino]phenyl]carbonyl]amino]acetyl]amino]benzenepropanoic acid;

and

ethyl(±) 3-bromo-5-dichloro-2-hydroxy-β-[[2-[[[3[(1,4,5,6-tetrahydro-5,5-dimethylpyrimidin-2yl)amino]phenyl]carbonyl]amino]acetyl]amino]benzenepropanoate.

10. A compound according to the formula of Claim 1 wherein

wherein Y² is selected from the group consisting of lower alkyl, substituted alkyl, phenyl, substituted phenyl, cycloalkyl, monocyclic heterocycles, -S-R⁹ and -O-R⁹ wherein R⁹ is selected from the group consisting of H, alkyl, substituted alkyl, phenyl, substituted phenyl and monocyclic heterocycles or R⁹ taken together with R⁷ forms a 4-12 membered ring; or

 Y^2 taken together with R^7 forms a 4-12 membered ring which is optionally substituted.

- 775 -

11. A compound according to Claim 10 wherein

 Y^2 taken together with R^7 forms a 4-12 membered ring which is optionally substituted.

12. A compound according to Claim 11 wherein

V is $-N(R^6)$ - wherein R^6 is selected from the group consisting of H and lower alkyl;

n is 1;

t is 0 or 1; and

p is 1.

- 13. A compound according to Claim 12 wherein the compound is selected from the group consisting of
 - (±) ethyl β-[[2-[[[3-[(3,4,5,6-tetrahydro-2H-azepin-7-yl)amino]phenyl]carbonyl]amino]acetyl]amino]pyridine-3-propanoate;
 - (±) β-[[2-[[[3-[(3,4,5,6-tetrahydro-2H-azepin-7-yl)amino]phenyl]carbonyl]amino]acetyl]amino]pyridine-3-propanoic acid;
 - - (±) β -[[2-[[[3-[(3,4,5,6-tetrahydro-2H-azepin-7-yl)amino]phenyl]carbonyl]amino]acetyl]amino]1,3-benzodioxole-5-propanoic acid;

- (±) β -[[2-[[[3-[(3,4,5,6-tetrahydro-2H-azepin-7-yl)amino]phenyl]carbonyl]amino]acetyl]amino]-benzenepropanoic acid;
- β-[[2-[[[3-[(3,4-dihydro-2H-pyrrol-5-yl)amino]-phenyl]carbonyl]amino]acetyl]amino]-pyridine-3-propanoic acid;
- (±)ethyl β-[[2-[[[4-chloro-3-[(3,4,5,6-tetrahydro-2H-azepin-7-yl)amino]phenyl]carbonyl]amino]acetyl]amino]pyridine-3-propanoate;
 - (±) β-[[2-[[[4-chloro-3-[(3,4,5,6-tetrahydro-2Hazepin-7-yl)amino]phenyl]carbonyl]amino]acetyl]amino]pyridine-3-propanoic acid;
- (±) β-[[2-[[[3,5-bis[(3,4,5,6-tetrahydro-2H-azepin-7-yl)amino]phenyl]carbonyl]amino]acetyl]amino]pyridine-3-propanoic acid;
 - βS-[[2-[[[3-[(3,4,5,6-tetrahydro-2H-azepin-7-yl)amino]phenyl]carbonyl]amino]acetyl]amino]-4-pentynoic acid;
- (±) ethyl β-[[2-[[[3-[(3,4,5,6-tetrahydro-2H-azepin-7-yl)amino]phenyl]carbonyl]amino]acetyl]amino]-3,5-dichlorobenzenepropanoate;
 - (±) β-[[2-[[[3-[(3,4,5,6-tetrahydro-2H-azepin--7-yl)amino]phenyl]carbonyl]amino]acetyl]amino]-3,5-dichlorobenzenepropanoic acid;

- 777 -

- (±) ethyl β-[[2-[[[3-[(3,4-dihydro-2H-pyrrol-5-yl)amino]phenyl]carbonyl]amino]acetyl]amino]-3,5-dichlorobenzenepropanoate;
- (±) β-[[2-[[[3-[(3,4-dihydro-2H-pyrrol-5-yl)amino]phenyl]carbonyl]amino]acetyl]amino]3,5-dichlorobenzenepropanoic acid;
- (±) ethyl 3,5-dichloro-β-[[2-[[[3[(2,3,4,5-tetrahydropyridin-6-yl)amino]phenyl]carbonyl]amino]acetyl]amino]benzenepropanoate;
- (±) 3,5-dichloro-β-[[2-[[[3-[(2,3,4,5tetrahydropyridin-6-yl)amino]phenyl]carbonyl]amino]acetyl]amino]benzenepropanoic acid;
 - (±) 3,5-dichloro-2-hydroxy-β-[[2[[[3-[(3,4,5,6-tetrahydro-2H-azepin-7-yl)amino]phenyl]carbonyl]amino]acetyl]amino]benzenepropanoic acid;

and

ethyl(±) 3,5-dichloro-2-hydroxy-\beta-[[2-[[[3-[(3,4,5,6-tetrahydro-2H-azepin-7-yl)-amino]phenyl]carbonyl]amino]acetyl]amino]benzenepropanoate.

14. A compound according to Claim 10 wherein

Y² is selected from the group consisting of lower alkyl, substituted alkyl, phenyl, substituted phenyl, cycloalkyl and monocyclic heterocycles.

15. A compound according to Claim 14 wherein

V is $-N(R^6)$ - wherein R^6 is selected from the group consisting of H and lower alkyl;

n is 1;

t is 0; and

p is 1.

- 16. A compound according to Claim 15 wherein the compound is selected from the group consisting of
 - (±) ethyl β-[[2-[[[3-[(iminophenylmethyl)amino]phenyl]carbonyl]amino]acetyl]amino]pyridine-3-propanoate;
 - βS-[[2-[[[3-[[imino(1-pyrrolidinyl)methyl]amino]phenyl]carbonyl]amino]acetyl]amino]-4-pentynoic acid;
 - (±) β-[[2-[[[3-[(iminophenylmethyl]amino]phenyl]carbonyl]amino]acetyl]amino]pyridine-3-propanoic acid;
 - 3,5-dichloro-β-[[2-[[[3-[[imino(1-piperidinyl)methyl]amino]phenyl]carbonyl]-amino]acetyl]amino]benzenepropanoic acid;

and

ethyl 3,5-dichloro- β -[[2-[[[3-[[imino(1-piperidinyl)methyl]amino]phenyl]carbonyl]-amino]acetyl]amino]benzenepropanoate.

- 779 -

- 17. A compound according to Claim 10 wherein Y² is
 -S-R⁹ or -O-R⁹ wherein R⁹ is sel ct d from the group
 consisting of H, alkyl, substituted alkyl, phenyl,
 substituted phenyl and monocyclic hereocycles or R⁹
 taken together with R⁷ forms a 4-12 membered ring.
- 18. A compound according to Claim 17 wherein

V is -N(R⁶) - wherein R⁶ is selected from the group consisting of H, lower alkyl, substituted alkyl, cycloalkyl, aryl, substituted aryl, monocyclic heterocycles and benzyl;

n is 0;

t is 0; and

p is 1 or 2.

19. A compound according to Claim 18 wherein the compound is selected from the group consisting of

ethyl β-[[2-[[[3-[(4,5-dihydrothiazol-2yl)amino]phenyl]carbonyl]amino]acetyl] amino]pyridine-3-propanoate;

β-[[2-[[[3-[(4,5-dihydrothiazol-2-yl)amino]phenyl]carbonyl]amino]acetyl]amino]pyridine-3-propanoic acid;

β-[[2-[[[3-[[benzoxazol-2-yl)amino]phenyl]carbonyl]amino]acetyl]amino]pyridine-3-propanoic acid;

thyl β -[[2-[[[3-[[benzoxazol-2-yl)amino]-phenyl]carbonyl]amino]acetyl]amino]-pyridine-3-propanoate.

β-[[2-[[[3-[(5,6-dihydro-4H-thiazin-2-yl)-amino]phenyl]carbonyl]amino]acetyl]amin]pyridine-3-propanoic acid;

and

ethyl β -[[2-[[[3-[(5,6-dihydro-4H-thiazin-2-yl)-amino]phenyl]carbonyl]amino]acetyl]amino]-pyridine-3-propanoate.

20. A compound according to Claim 1 of the formula

,

$$\begin{array}{c|c} CF_3 & O \\ HN & N \\ H_2N & H \end{array}$$

$$\begin{array}{c|c} & & & & \\ & & & \\ H_2N & H & \\ & & & \\ \end{array}$$

21. A pharmaceutical composition comprising a therapeutically effective amount of a compound of the formula

$$A = \begin{pmatrix} Y_3 \\ C \\ Z_3 \end{pmatrix}_{t} \xrightarrow{Z_1} \begin{pmatrix} Y \\ Y \\ Z \end{pmatrix}_{n} \begin{pmatrix} CH_2)_{\overline{p}} & C-R \\ R_{11} & R_1 \end{pmatrix}$$

or a pharmaceutically acceptable salt thereof, wherein

A is

wherein Y^1 is selected from th group consisting of N-R², O, and S;

 R^2 is selected from the group consisting of H; alkyl; aryl; hydroxy; alkoxy; cyano; nitro; amino; alkenyl; alkynyl; amido; alkylcarbonyl; arylcarbonyl; alkoxycarbonyl; aryloxycarbonyl; haloalkylcarbonyl; haloalkoxycarbonyl; alkylthiocarbonyl; arylthiocarbonyl; acyloxymethoxycarbonyl; alkyl optionally substituted with one or more substituent selected from lower alkyl, halogen, hydroxyl, haloalkyl, cyano, nitro, carboxyl, amino, alkoxy, aryl or aryl optionally substituted with one or more halogen, haloalkyl, lower alkyl, alkoxy, cyano, alkylsulfonyl, alkylthio, nitro, carboxyl, amino, hydroxyl, sulfonic acid, sulfonamide, aryl, fused aryl, monocyclic heterocycles, or fused monocyclic heterocycles; aryl optionally substituted with one or more substituent selected from halogen, haloalkyl, hydroxy, lower alkyl, alkoxy, methylenedioxy, ethylenedioxy, cyano, nitro, alkylthio, alkylsulfonyl, sulfonic acid, sulfonamide, carboxyl derivatives, amino, aryl, fused aryl, monocyclic heterocycles and fused monocyclic heterocycle; monocyclic heterocycles; and monocyclic heterocycles optionally substituted with one or more substituent selected from halogen, haloalkyl, lower alkyl, alkoxy, amino, nitro, hydroxy, carboxyl derivatives, cyano, alkylthio, alkylsulfonyl, sulfonic acid, sulfonamide, aryl or fused aryl; or

R² taken together with R⁷ forms a 4-12 membered dinitrogen containing heterocycle optionally substituted with one or more substituent selected from the group consisting of lower alkyl, hydroxy, keto, alkoxy, halo, phenyl, amino, carboxyl or carboxyl est r, and fused phenyl;

or R² taken together with R⁷ forms a 5 membered heteroaromatic ring optionally substituted with one or m re substituent selected from lower alkyl, phenyl and hydroxy;

or R² taken together with R⁷ forms a 5 membered heteroaromatic ring fused with a phenyl group;

 R^7 (when not taken together with R^2) and R^8 are independently selected from the group consisting of H; alkyl; alkenyl; alkynyl; aralkyl; amino; alkylamino; hydroxy; alkoxy; arylamino; amido, alkylcarbonyl, arylcarbonyl; alkoxycarbonyl; aryloxycarbonyl; haloalkylcarbonyl; aryloxy; haloalkoxycarbonyl; alkylthiocarbonyl; arylthiocarbonyl; acyloxymethoxycarbonyl; cycloalkyl; bicycloalkyl; aryl; acyl; benzoyl; alkyl optionally substituted with one or more substituent selected from lower alkyl, halogen, hydroxy, haloalkyl, cyano, nitro, carboxyl derivatives, amino, alkoxy, thio, alkylthio, sulfonyl, aryl, aralkyl, aryl optionally substituted with one or more substituent selected from halogen, haloalkyl, lower alkyl, alkoxy, methylenedioxy, ethylenedioxy, alkylthio, haloalkylthio, thio, hydroxy, cyano, nitro, carboxyl derivatives, aryloxy, amido, acylamino, amino, alkylamino, dialkylamino, trifluoroalkoxy, trifluoromethyl, sulfonyl, alkylsulfonyl, haloalkylsulfonyl, sulfonic acid, sulfonamide, aryl, fused aryl, monocyclic heterocycles, fused monocyclic heterocycles; aryl optionally substituted with one or more substituent selected from halogen, haloalkyl, lower alkyl, alkoxy, methyl nedioxy, ethylenedioxy, alkylthio, haloalkylthio, thio, hydroxy, cyano, nitro, carboxyl derivatives, aryloxy, amido, acylamino,

amino, alkylamino, dialkylamino, trifluoroalkoxy, trifluorom thylsulfonyl, alkylsulfonyl, sulfonic acid, sulfonamide, aryl, fused aryl, monocyclic heterocycles, or fused monocyclic heterocycles; monocyclic heterocycles; monocyclic heterocycles optionally substituted with one or more substituent selected from halogen, haloalkyl, lower alkyl, alkoxy, aryloxy, amino, nitro, hydroxy, carboxyl derivatives, cyano, alkylthio, alkylsulfonyl, aryl, fused aryl; monocyclic and bicyclic heterocyclicalkyls; -SO2R10 wherein R10 is selected from the group consisting of alkyl, aryl and monocyclic heterocycles, all optionally substituted with one or more substituent selected from the group consisting of halogen, haloalkyl, alkyl, alkoxy, cyano, nitro, amino, acylamino, trifluoroalkyl, amido, alkylaminosulfonyl, alkylsulfonyl, alkylsulfonylamino, alkylamino, dialkylamino, trifluoromethylthio, trifluoroalkoxy, trifluoromethylsulfonyl, aryl, aryloxy, thio, alkylthio, and monocyclic heterocycles; and

O || wherein R^{10} is defined above; $-C-R^{10}$

NR⁷ and R⁸ taken together form a 4-12 membered mononitrogen containing monocyclic or bicyclic ring optionally substituted with one or more substituent selected from lower alkyl, carboxyl derivatives, aryl or hydroxy and wherein said ring optionally contains a heteroatom selected from the group consisting of O, N and S;

R⁵ is selected from th group consisting of H, alkyl, alkenyl, alkynyl, benzyl, and phenethyl;

or

wherein Y^2 is selected from the group consisting of alkyl; cycloalkyl; bicycloalkyl; aryl; monocyclic heterocycles; alkyl optionally substituted with aryl which can also be optionally substituted with one or more substituent selected from halo, haloalkyl, alkyl, nitro, hydroxy, alkoxy, aryloxy, aryl, or fused aryl; aryl optionally substituted with one or more substituent selected from halo, haloalkyl, hydroxy, alkoxy, aryloxy, aryl, fused aryl, nitro, methylenedioxy, ethylenedioxy, or alkyl; alkynyl; alkenyl; -S-R9 and -O-R9 wherein R9 is selected from the group consisting of H; alkyl; aralkyl; aryl; alkenyl; and alkynyl; or R9 taken together with R7 forms a 4-12 membered mononitrogen and monosulfur or monooxygen containing heterocyclic ring optionally substituted with lower alkyl, hydroxy, keto, phenyl, carboxyl or carboxyl ester, and fused phenyl; or R9 taken together with R7 is thiazole; oxazole; benzoxazole; or benzothiazole; and

 R^5 and R^7 are as defined above;

or Y² (when Y² is carbon) taken together with R⁷ forms a 4-12 membered mononitrogen containing ring optionally substituted with alkyl, aryl or hydroxy;

or A is

where R² and R⁷ taken together form a 5-8 membered dinitrogen containing heterocycle optionally substituted with one or more substituent selected from the group consisting of lower alkyl, hydroxy, keto, phenyl, or carboxyl derivatives; and R⁸ is selected from the group consisting of alkylcarbonyl, arylcarbonyl, alkoxycarbonyl, aryloxycarbonyl, haloalkylcarbonyl, haloalkylcarbonyl, haloalkoxycarbonyl, alkylthiocarbonyl, arylthiocarbonyl, or acyloxymethoxycarbonyl; and

R⁵ is defined as above

or A is

:

where R^2 and R^7 taken together form a 5-8 membered dinitrogen containing heterocycle optionally substituted with hydroxy, keto, phenyl, or alkyl; and

R⁸ are both selected from the group consisting of alkylcarbonyl, arylcarbonyl, alkoxycarbonyl, aryloxycarbonyl, haloalkylcarbonyl, haloalkoxycarbonyl, alkylthiocarbonyl, arylthiocarbonyl and acyloxymethoxycarbonyl;

Z¹ is one or more substituent s lected from th group consisting of H; alkyl; hydroxy; alkoxy; aryloxy; halogen; haloalkyl; haloalkoxy; nitro; amino; alkylamino; acylamino; dialkylamino; cyano; alkylthio; alkylsulfonyl; carboxyl derivatives; trihaloacetamide; acetamide; aryl; fused aryl; cycloalkyl; thio; monocyclic heterocycles; fused monocyclic heterocycles; and A, wherein A is defined above;

V is selected from the group consisting of $-N-(R^6)-$ wherein R^6 is selected from the group consisting of H; lower alkyl; cycloalkyl; aralkyl; aryl; and monocyclic heterocycles; or R^6 taken together with Y, forms a 4-12 membered mononitrogen containing ring;

Y, Y³, Z and Z³ are independently selected from the group consisting of hydrogen; alkyl; aryl; and cycloalkyl; or Y and Z taken together form a cycloalkyl; or Y³ and Z³ taken together form a cycloalkyl;

n is an integer 1, 2, or 3;

t is an integer 0, 1, or 2;

p is an integer 0, 1, 2, or 3;

R is X-R³ wherein X is selected from the group consisting of O, S and NR⁴, wherein R³ and R⁴ are independently selected from the group consisting of hydrogen; alkyl; alkenyl; alkynyl; haloalkyl; aryl; arylalkyl; sugars; steroids; polyalkyl thers; alkylamido; alkyl N,N-dialkylamido; pivaloyloxymethyl; and in the case

of the fre acid, all pharmaceutically acceptable salts thereof;

R¹ is selected from the group consisting of hydrogen; alkyl; alkenyl; alkynyl; aryl; carboxyl derivatives; haloalkyl; monocyclic heterocycles; monocyclic heterocycles optionally substituted with alkyl, halogen, haloalkyl, cyano, hydroxy, aryl, fused aryl, nitro, alkoxy, aryloxy, alkylsulfonyl, arylsulfonyl, sulfonamide, thio, alkylthio, carboxyl derivatives, amino, amido;

alkyl optionally substituted with one or more of halo, haloalkyl, hydroxy, alkoxy, aryloxy, thio, alkylthio, alkynyl, alkenyl, alkyl, arylthio, alkylsulfoxide, alkylsulfonyl, arylsulfoxide, arylsulfonyl, cyano, nitro, amino, alkylamino, dialkylamino, alkylsulfonamide, arylsulfonamide, acylamide, carboxyl derivatives, sulfonamide, sulfonic acid, phosphonic acid derivatives, phosphinic acid derivatives, aryl, arylthio, arylsulfoxide, or arylsulfone all optionally substituted on the aryl ring with halo, alkyl, haloalkyl, cyano, nitro, hydroxy, carboxyl derivatives, alkoxy, aryloxy, amino, alkylamino, dialkylamino, amido, aryl, fused aryl, monocyclic heterocycles; and fused monocyclic heterocycles, monocyclic heterocyclicthio, monocyclic heterocyclicsulfoxide, and monocyclic heterocyclic sulfone, which can be optionally substituted with halo, haloalkyl, nitro, hydroxy, alkoxy, fused aryl, or alkyl;

alkylcarbonyl, haloalkylcarbonyl, and arylcarbonyl;

aryl optionally substituted in one or more positions with halo, haloalkyl, alkyl, alkoxy, aryl xy, methylenedioxy, ethylenedioxy, alkylthio, haloalkylthio, thio, hydroxy, cyano, nitro, acyloxy, carboxyl derivatives, carboxyalkoxy, amido, acylamino, amino, alkylamino, dialkylamino, trifluoroalkoxy, trifluoromethylsulfonyl, alkylsulfonyl, sulfonic acid, sulfonamide, aryl, fused aryl, monocyclic heterocycles and fused monocyclic heterocycles; and

$$\begin{array}{c}
O \\
| | \\
C - N
\end{array}$$
wherein R^7 and R^8 are as defined above R^8

and provided that taken together with the nitrogen, R⁷ and R⁸ comprise an amino acid;

and

R¹¹ is selected from the group consisting of H, alkyl, aralkyl, alkenyl, alkynyl, haloalkyl or haloalkynyl or R¹¹ taken together with Y forms a 4-12 membered mononitrogen containing ring; and

- a pharmaceutically acceptable carrier.
- 22. A pharmaceutical composition according to Claim 21 wherein

wherein Y^1 is select d from the group consisting of $N-R^2$, O, and S;

;

R² is selected from the group consisting of H, alkyl, aryl, substituted alkyl, hydroxy, alkoxy, alkylcarbonyl, cyano, nitro, amino and monocyclic heterocycles, arylcarbonyl, alkoxycarbonyl, aryloxycarbonyl, haloalkoxycarbonyl, arylthiocarbonyl, alkylthiocarbonyl, arylthiocarbonyl, acyloxymethoxycarbonyl; or R² taken together with R⁷ forms a 4-12 membered ring;

R5, R7, R8 are independently selected from the group consisting of H, alkyl, alkenyl, alkynyl, cycloalkyl, bicycloalkyl substituted alkyl, arylalkyl, aryloxy, hydroxy, alkoxy, amino, alkylamino, arylamino, amido, alkylcarbonyl, arylcarbonyl, alkoxycarbonyl, aryloxycarbonyl, haloalkylcarbonyl, haloalkoxycarbonyl, alkylthiocarbonyl, arylthiocarbonyl, acyloxymethoxycarbonyl, substituted phenyl, arylacyl, monocyclic and bicyclic heterocycles, monocyclic and bicyclic heterocyclicalkyl and -SO₂R¹⁰ wherein R¹⁰ is selected from the group consisting of alkyl, amino and aryl which are all optionally substituted with one or more substituent selected from the group consisting of acylamino, amino, carbonyl, cyano, nitro, alkoxy, halo, alkyl, trifluoroalkyl, amido, alkylaminosulfonyl, alkylsulfonyl, alkylsulfonylamino, alkylamino, dialkylamino, aryloxy, thio, trifluoromethylthio, trifluoroalkoxy, and trifluoromethylsulfonyl or -NR7 and R8 taken together form a 4-12 membered ring wherein said ring optionally contains a heteroatom selected from the group consisting of O, N, and S wherein said ring is optionally substituted.

23. A pharmaceutical composition according to Claim 22 wh rein

V is $-N(R^6)$ - wherein R^6 is selected from the group consisting of H and lower alkyl;

n is 1;

t is 0 or 1; and

p is 0, 1 or 2.

- 24. A pharmaceutical composition according to Claim 23 wherein the compound is selected from the group consisting of
 - (±) ethyl β -[[2-[[[3-[(aminoiminomethyl)amino]phenyl]-carbonyl]amino]acetyl]amino]pyridine-3-propanoate;
 - (±)β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]pyridine-3propanoic acid;
- (±)ethyl β -[[2-[[[3-[(aminoiminomethyl)amino]phenyl]-carbonyl]amino]acetyl]amino]benzenepropanoate;

$$(\pm)\beta - [[2-[[[3-$$

[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]benzenepropanoic acid;

(±)ethyl β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]-1,3benzodioxole-5-propanoate;

- (±)ethyl β-[[2-[[[3-[(aminoiminomethyl)amino] naphthalen-1-yl]carbonyl]amino]acetyl] amino]pyridine-3-propanoate;
 - (±)β-[[2-[[[3-[(aminoiminomethyl)-amino]naphthalen-1-yl]carbonyl]amino]acetyl]amino]pyridine-3-propanoic acid;
- (±) ethyl β-[[1-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]-1-cyclopropyl]carbonyl]amino]pyridine-3-propanoate;
- (±) β-[[1-[[[3[(aminoiminomethyl)amino]phenyl]carbonyl]amino]cycloprop-1-yl]carbonyl]amino]pyridine-3-propanoic acid;
- (±) ethyl β-[[2-[[[3-[[imino[(phenylmethyl)amino]methyl]amino]phenyl]carbonyl]amino]acetyl]amino]pyridine-3-propanoate;
- (±) β-[[2-[[[3-[[imino[(phenylmethyl)amino]methyl]amino]phenyl]carbonyl]amino]acetyl]amino]pyridine-3-propanoic acid;
 - β -[[2-[[[3-[(aminoiminomethyl)amino]-phenyl]carbonyl]amino]acetyl]amino]-3,5-dichlorobenzenepropanoic acid;
 - 3S-[[2-[[[3-(aminocarbonylamino)phenyl]-carbonyl]amino]acetyl]amino]-4-pentynoic acid;
 - ethyl 3S-[[2-[[[3-(aminocarbonylamino)phenyl] carbonyl]amino]acetyl]amino]-4-pentynoate;

- βS-[[2-[[[3-[(aminoiminomethyl)amino]-2,5,6trifluorophenyl]carbonyl]amino]acetyl]amino]-4-pentynoic acid;
 - (±) β -[[2-[[[3-[(aminoiminomethyl)amino]-phenyl]carbonyl]amino]acetyl]amino]-3,5-bis(trifluoromethyl)benzenepropanoic acid;
- (±) β -[[2-[[[3-[(aminoiminomethyl)amino]-phenyl]carbonyl]amino]acetyl]amino]-3,5-bis(trifluoromethyl)benzenepropanoic acid;
- ethyl (±) β-[[2-[[[3-[(aminoiminomethyl)amino] phenyl]carbonyl]amino]acetyl]amino]-3,5 bis(trifluoromethyl)benzenepropanoate;
 - (±) β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino][1,1'-biphenyl]-4-propanoic acid;
 - ethyl (±) β -[[2-[[[3-[(aminoiminomethyl)-amino]phenyl]carbonyl]amino]acetyl]amino][1,1'-biphenyl]-4-propanoate;
- (±) ethyl β-[[2-[[[3-[(aminoiminomethyl)amino]-5-(trifluoromethyl)-phenyl]carbonyl]amino]acetyl]amino]-3,5-bis(trifluoromethyl)benzenepropanoate;
- (±) β-[[2-[[[3-[(aminoiminomethyl)amino]-5(trifluoromethyl)phenyl]carbonyl]amino]acetyl]amino]3,5-bis(trifluoromethyl)benzenepropanoic acid;
 - (±) β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]naphthalene-1-carboxylic acid;

- methyl (±) β -[[2-[[[3-[(aminoiminomethyl)-amino]phenyl]carbonyl]amino]ac tyl]amino]-naphthalene-1-carboxylate;
- (±) 3-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]-2-oxopyrrolidine-1propanoic acid;
- 3R-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]-4-pentynoic acid;
- ethyl 3R-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]-carbonyl]amino]acetyl]amino]-4-pentynoate;

 - 3S-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]-carbonyl]amino]acetyl]amino]-4-pentynoic acid;
 - β-[[2-[[[3-(aminocarbonylamino)phenyl]-carbonyl]amino]acetyl]amino]pyridine-3-propanoic acid;
- ethyl β -[[2-[[[3-(aminocarbonylamino)phenyl]-carbonyl]amino]acetyl]amino]pyridine-3-propanoate;

- - (±)ethyl β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]furan-2-propanoate;
 - (±) β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]furan-3-propanoic acid;
- bismethyl ester 3-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]-amino]acetyl]amino]pentanedioate;
 - - (±) β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]furan-2-propanoic acid;
- ethyl (±) β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]-carbonyl]amino]acetyl]amino]furan-2-propanoate;
 - (±) β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]naphthalene-2-propanoic acid;

- - (±) β-[[2-[[[3-[(aminoiminomethy1)amino]phenyl]carbonyl]amino]acetyl]amino]thiophene-3-propanoic acid;
- (±) 2-[3-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]-4carboxybutyl]thio]benzoic acid;
- (±) 2-[3-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]-4carboxybutyl]sulfonyl]benzoic acid;
 - (±) β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]thiophene-2-propanoic acid;
- - (±) methyl 3-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]5-[(4-methylphenyl)thio]pentanoate;
 - (±) methyl 3-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]4-[[(4-methylphenyl)sulfonyl]amino]butanoate;
 - 3-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]-4-[[(4methylphenyl)sulfonyl]amino]butanoic acid;

- (±) 3-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]ac tyl]amino]-5-[(4methylphenyl)thi]pentanoic acid;
- (±) 3-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]-5-[(4methylphenyl)sulfonyl]pentanoic acid;
- 3S-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]-4(phenylthio)butanoic acid;
 - 3R-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]4-pentynoic acid;
- 2-[[2S-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]-2(carboxymethyl)ethyl]sulfonyl]benzoic acid;
- - 2-[[2S-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]-2(carboxymethyl)ethyl]thio]benzoic acid;

- (±) thyl β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]methylamino]acetyl]amino]-pyridine-3-propanoate;
- (±)β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]methylamino]acetyl]amino]pyridine3-propanoic acid;
 - (±)ethyl β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]-1-oxopropyl]amino]pyridine-3-propanoate;
 - (±)β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]-1-oxopropyl]amino]pyridine-3-propanoic acid;
 - (±) β-[[2-[[[3-[(aminoiminomethyl)amino]-4methylphenyl]carbonyl]amino]acetyl]amino]pyridine-3-propanoic acid;
 - (±) β-[[2-[[[3-[[(aminoiminomethyl)amino]methyl]phenyl]carbonyl]amino]acetyl]amino]pyridine-3-propanoic acid;
 - 3S-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]4-hydroxybutanoic acid;
 - (±) β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]-2-hydroxybenzenepropanoic acid;
 - (±) β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]-2hydroxy-5-methylbenzenepropanoic acid;

- (±) 3-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]-4-[(2hydroxyethyl)amino]-4-ox butanoic acid;

- N-[2-[[[3-[(aminoiminomethyl)amino]phenyl]-carbonyl]amino]acetyl]- β -alanine, ethyl ester;
 - N-[2-[[[3-[(aminoiminomethyl)amino]-phenyl]carbonyl]amino]acetyl]- β -alanine;
- - β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]quinoline-3-propanoic acid;

- - ethyl β -[[2-[[[3-[[(phenylamino)carbonyl]-amino]phenyl]carbonyl]amino]acetyl]amino]-pyridine-3-propanoate;
 - β-[[2-[[[3-[[(phenylamino)carbonyl]amino]phenyl]carbonyl]amino]acetyl]amino]pyridine-3-propanoic acid;
 - ethyl β -[[2-[[[3-(aminocarbonylamino)-phenyl]carbonyl]amino]acetyl]amino]-pyridine-3-propanoate;
 - β-[[2-[[[3-(aminocarbonylamino)phenyl]-carbonyl]amino]acetyl]amino]pyridine-3-propanoic acid;
- ethyl β -[[2-[[[3-[[[(4-methylphenyl)sulfonyl]-amino]carbonyl]amino]phenyl]carbonyl]amino]-acetyl]amino]pyridine-3-propanoate;
- β-[[2-[[[3-[[[(4-methylphenyl)sulfonyl]amino]-carbonyl]amino]phenyl]carbonyl]amino]acetyl]-amino]pyridine-3-propanoic acid;
 - ethyl β -[[2-[[[3-[(aminothioxomethyl)-amino]phenyl]carbonyl]amino]acetyl]-amino]pyridine-3-propanoate;
- β-[[2-[[[3-[(aminothioxomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]pyridine3-propanoic acid;

β-[[2-[[[3-[(aminothioxomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]benzenepropanoic acid;

β-[[2-[[[3-[[[(phenylmethyl)amino]carbonyl]amino]phenyl]carbonyl]amino]acetyl]amino]benzenepropanoic acid;

ethyl β-[[2-[[[3-[[[(phenylmethyl)amino]carbonyl]amino]phenyl]carbonyl]amino]acetyl]amino]-1,3-benzodioxole-5-propanoate;

β-[[2-[[[3-[[[(phenylmethyl)amino]carbonyl]amino]phenyl]carbonyl]amino]acetyl]amino]1,3-benzodioxole-5-propanoic acid;

ethyl β -[[2-[[[3-3-[[(phenylamino)carbonyl]-amino]phenyl]carbonyl]amino]acetyl]amino]
1,3-benzodioxole-5-propanoate;

β-[[2-[[[3-3-[[(phenylamino)carbonyl]amino]phenyl]carbonyl]amino]acetyl]amino]-1,3benzodioxole-5-propanoic acid;

β-[[2-[[[3-[[[(4-(aminosulfonyl)phenylmethyl]amino]carbonyl]amino]phenyl]carbonyl]amino]acetyl]amino]pyridine3-propanoic acid;

```
β-[[2-[[[3-[[[(3-pyridinylmethyl)amino]carbonyl]-
amino]phenyl]carbonyl]amino]ac tyl]-
amino]pyridine-3-propanoic acid;
```

β-[[2-[[[3-[[(2-carboxyethyl)amino]carbonyl]amino]phenyl]carbonyl]amino]acetyl]amino]pyridine-3-propanoic acid;

β-[[2-[[[3-[[[(2-phenylethyl)amino]carbonyl]amino]phenyl]carbonyl]amino]acetyl]amino]pyridine-3-propanoic acid;

β-[[2-[[[3-[[(1-naphthalenylmethyl)amino]carbonyl]amino]phenyl]carbonyl]amino]acetyl]amino]pyridine-3-propanoic acid;

ethyl β -[[2-[[[3-[(aminoiminomethyl)amino]-4-chlorophenyl)carbonyl]amino]acetyl]amino]-benzenepropanoate;

β-[[2-[[[3-[(aminoiminomethyl)amino]-4-chlorophenyl)carbonyl]amino]acetyl]-amino]benzenepropanoic acid;

 β -[[2-[[[5-[(aminoiminomethyl)amino]-2-chlorophenyl]-carbonyl]amino]acetyl]amino]benzenepropanoic acid;

ethyl β-[2-[[[3-[[amino(aminocarbonyl) imino]methyl]amino]phenyl]carbonyl] amino]acetyl]amino]-3,5 dichlorobenzenepropanoate;

β-[[2-[[[3-[[amino(aminocarbonyl)imino]-methyl]amino]phenyl]carbonyl]amino]-acetyl]amino]-3,5-dichlorobenzene-propanoic acid;

1,1-dimethylethyl 3,5-dichloro-β-[[2-[[[3[[[(ethoxy-carbonyl)amino]((ethoxycarbonyl)imino]methyl]amino]-phenyl]carbonyl]amino]acetyl]amino]benzenepropanoate;

ethyl β -[[2-[[[3-[(aminoiminomethyl)amino]-4-chlorophenyl]carbonyl]amino]acetyl]amino-3,5-dichlorobenzenepropanoate;

 β -[[2-[[[3-[(aminoiminomethyl)amino]-4-chlorophenyl]carbonyl]amino]acetyl]amino]-3,5-dichlorobenzenepropanoic acid;

ethyl 3S-[[2-[[[3-[[amino[(aminocarbonyl)imino] methyl]amino]phenyl]carbonyl]amino]acetyl] amino]-4-pentynoate;

3S-[[2-[[[3-[[amino[(aminocarbonyl)imino] methyl]amino]phenyl]carbonyl]amino] acetyl]amino]-4-pentynoic acid;

ethyl 3S-[[2-[[[3-[(aminoiminomethyl)amino]-4-chlorophenyl]carbonyl]amino]acetyl]amino]-4-pentynoate;

PCT/US96/13500

- (±) ethyl β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]-3,4dichlorobenzenepropanoate;
- (±) ethyl β-[[2-[[[3-[(aminoiminomethyl)amino]-5-(trifluoromethyl)carbonyl]amino]acetyl]amino]-3,4-dichlorobenzenepropanoate;
 - (±) β -[[2-[[[3-[(aminoiminomethyl)amino]-5-(trifluoromethyl)phenyl]carbonyl]amino]acetyl]-amino]-3,5-dichlorobenzenepropanoic acid;
 - (±) ethyl β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]-2,5dimethylbenzenepropanoate;

- (±) ethyl β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]-3bromob nzenepropanoate;
 - (±) β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]-3bromobenzenepropanoic acid;
- (±) ethyl β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]-4bromobenzenepropanoate;
 - (±) β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]-4bromobenzenepropanoic acid;
- (±) ethyl β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]-3,5dimethylbenzenepropanoate;
 - (±) β -[[2-[[[3-[(aminoiminomethyl)amino]-phenyl]carbonyl]amino]acetyl]amino]-3,5-dimethylbenzenepropanoic acid;
- (±) ethyl β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]-3,5dimethoxybenzenepropanoate;
 - (±) β -[[2-[[[3-[(aminoiminomethyl)amino]-phenyl]carbonyl]amino]acetyl]amino]-3,5-dimethoxybenzenepropanoic acid;
- (±) (2,2-dimethyl-1-oxopropoxy) methyl $\beta-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]-acetyl]amino]-3,5-dichlorobenz nepropanoate;$

- (±) β-[[2-[[[3-[[[(aminocarbonyl)imino) methylamino)methyl]amino]phenyl] carbonyl]amino]acetyl]amino]-3,5 dichlorobenzenepropanoic acid;
- (±) β-[[2-[[[3-[(aminothioxomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]-3,5dichlorobenzenepropanoic acid;
- (±) β -[[2-[[[3-[(aminoiminomethyl)amino]-phenyl]carbonyl]amino]acetyl]amino]-3,4-dibromobenzenepropanoic acid;
- (±) β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]-3-fluoro-5(trifluoromethyl)benzenepropanoic acid;
 - (±) β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]-3bromo-5-fluorobenzenepropanoic acid;
 - (±) β -[[2-[[[3-[(aminoiminomethyl)amino]-phenyl]carbonyl]amino]acetyl]amino]-3,5-dibromobenzenepropanoic acid;
- (±) β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]-3-bromo5-methylbenzenepropanoic acid;
- (±) β-[[2-[[[3-[(aminoiminomethyl)amino]-5(trifluoromethyl)phenyl]carbonyl]amino]acetyl]amino]-3,5-dibromobenzenepropanoic acid;
- (±) β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]-3-bromo-5chlorobenzenepropanoic acid;

- (±) β-[[2-[[[3-[(aminoiminomethyl)amino]-5-(trifluoromethyl)phenyl]carbonyl]amino]acetyl]amino]-3-bromo-5-chlorobenzenepropanoic acid;
 - (±) [2-[2-[2-(2-hydroxyethoxy)ethoxy]ethyl] β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]-3,5dichlorobenzenepropanoate;
 - (±) β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]-3bromo-5-iodobenzenepropanoic acid;
- (±) β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]-2-hydroxy-4methoxybenzenepropanoic acid;
- (±) β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]-5-hydroxy-4methoxybenzofuran-6-propanoic acid;
- (±) β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]-9H-fluorene2-propanoic acid;
- ethyl(\pm) β -[[2-[[[3-[(aminoiminomethyl)amino]-phenyl]carbonyl]amino]acetyl]amino]-9H-fluorene-2-propanoate;
- (±) β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]-3,5-dichloro2-hydroxybenzenepropanoic acid;
- (±) β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]-2-hydroxy-5nitrobenzenepropanoic acid;

- (±) β -[[2-[[[3-[(aminoiminomethyl)amino]-phenyl]carbonyl]amino]acetyl]amino]-3,5-dibromo-2-hydroxybenzenepropanoic acid;
- ethyl(±) β-[[2-[[[3-[(aminoiminomethyl)amino] phenyl]carbonyl]amino]acetyl]amino]-3,5 dibromo-2-hydroxybenzenepropanoate;
 - (±) β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]-5bromo-2-hydroxybenzenepropanoic acid;
- - (±) β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]cyclohexanepropanoic acid;
- - ethyl(\pm) β -[[2-[[[3-[(aminoiminomethyl)-amino]phenyl]carbonyl]amino]acetyl]amino]-3,5-dichloro-2-hydroxybenzenepropanoate;
 - (±) β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]-5chloro-2-hydroxybenzenepropanoic acid;
- (±) β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]-3-bromo-5chloro-2-hydroxybenzenepropanoic acid;

- (±) 5-amino-β-[[2-[[[3-[(aminoiminom thyl)amino]phenyl]carbonyl]amino]acetyl]amino]2-hydroxybenzen propanoic acid;
- (±) β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]5-bromopyridine-3-propanoic acid;
- ethyl(±) \(\beta^-\)[[2-[[[3-[(aminoiminomethyl)-amino]phenyl]carbonyl]amino]acetyl]amino]-5-bromopyridine-3-propanoate;
- 3,5-dichloro-β-[[2-[[[3-[[[(ethoxycarbonyl)amino]-thioxomethyl]amino]phenyl]carbonyl]amino]-acetyl]amino]benzenepropanoic acid;
- 3,5-dichloro-β-[[2-[[[3-[[[(ethoxycarbonyl)amino]-iminomethyl]amino]phenyl]carbonyl]amino]-acetyl]amino]benzenepropanoic acid;
 - β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino][1,1'biphenyl]-3-propanoic acid;
- 1,1-dimethylethyl β -[[2-[[[3-[(aminoiminomethyl)-amino]phenyl]carbonyl]amino]acetyl]amino][1,1'-biphenyl]-3-propanoate;
- β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino][pyrimidine-5-propanoic acid;
 - 1,1-dimethylethyl β -[[2-[[[3-[(aminoiminomethyl)-amino]phenyl]carbonyl]amino]acetyl]amino][pyrimidine-5-propanoate;
- β -[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]-amino]acetyl]amino]-3-methylthiophene-2-propanoic acid;

- 1,1-dim thylethyl β -[[2-[[[3-[(aminoiminomethyl)-amino]phenyl]carbonyl]amino]acetyl]amino]-3-methylthiophene-2-propanoate;
- (±) β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]-3-(methylthio)benzenepropanoic acid;
- 1,1-dimethylethyl (±) β -[[2-[[[3-[(aminoiminomethyl)-amino]phenyl]carbonyl]amino]acetyl]amino]
 3-(methylthio)benzenepropanoate;
 - (±) β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]-6methylpyridine-2-propanoic acid;
 - β -[[2-[[[3-[(aminoiminomethyl)amino]phenyl]-carbonyl]amino]acetyl]amino]-3-(methylsulfonyl)-benzenepropanoic acid;
 - β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]-3,5diethoxybenzenepropanoic acid;
 - ethyl β -[[2-[[[3-[(aminoiminomethyl)amino]-phenyl]-carbonyl]amino]acetyl]amino]-3,5-diethoxybenzenepropanoate;
 - β-[[2-[[[3-[(aminoiminomethy1)amino]pheny1]carbony1]amino]acety1]amino]-4bromothiophene-2-propanoic acid;
 - ethyl β -[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]-4bromothiophene-2-propanoate;

β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl-carbonyl]amino]acetyl]amino]-5-chlorothiophene-2-propanoic acid;

ethyl β -[[2-[[[3-[(aminoiminomethyl)amino]phenyl-carbonyl]amino]acetyl]amino]-5-chlorothiophene-2-propanoate;

β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]-carbonyl]amino]acetyl]amino]-1H-pyrazole-3-propanoic acid;

ethyl β -[[2-[[[3-[(aminoiminomethyl)amino]phenyl]-carbonyl]amino]acetyl]amino]-1H-pyrazole-3-propanoate;

 β -[[2-[[[3-[(aminoiminomethyl)amino]phenyl]-carbonyl]amino]acetyl]amino]-5-methylthiophene-2-propanoic acid;

ethyl β -[[2-[[[3-[(aminoiminomethyl)amino]phenyl]-carbonyl]amino]acetyl]amino]-5-methylthiophene-2-propanoate;

β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]-carbonyl]amino]acetyl]amino]-2,3,5-trichloro-benzenepropanoic acid;

ethyl β -[[2-[[[3-[(aminoiminomethyl)amino]phenyl]-carbonyl]amino]acetyl]amino]-2,3,5-trichloro-benzenepropanoate;

 β -[[2-[[[3-[(aminoiminomethyl)amino]phenyl]-carbonyl]amino]acetyl]amino]-2(carboxymethoxy)-benzenepropanoic acid;

ethyl β -[[2-[[[3-[(aminoiminomethyl)amino]phenyl]-carbonyl]amino]acetyl]amino]-2(carboxymethoxy)-benzenepropanoate;

 β -[[2-[[[3-[(aminoiminomethyl)amino]-phenyl]carbonyl]amino]acetyl]amino]-4-methoxy-1,3-benzodioxole-6-propanoic acid;

ethyl β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]-4-methoxy-1,3benzodioxole-6-propanoate;

β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]-5-bromo2-methoxybenzenepropanoic acid;

ethyl β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]-5-bromo2-methoxybenzenepropanoate;

β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]-6-chloro1,3-benzodioxole-5-propanoic acid;

ethyl β -[[2-[[[3-[(aminoiminomethyl)amino]-phenyl]carbonyl]amino]acetyl]amino]-6-chloro-1,3-benzodioxole-5-propanoate;

β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]benzofuran-2-propanoic acid;

ethyl β-[[2-[[[3-[(aminoiminomethyl)amino] phenyl]carbonyl]amino]acetyl]amino] benzofuran-2-propanoate;

- β -[[2-[[[3-[(aminoiminomethyl)amino]-phenyl]carbonyl]amino]acetyl]amino]-3-(carboxymethoxy)benzenepropanoic acid;
- ethyl β -[[2-[[[3-[(aminoiminomethyl)amino]-phenyl]carbonyl]amino]acetyl]amino]-3-(carboxymethoxy)benzenepropanoate;
- 3-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]-carbonyl]amino]acetyl]amino]-4,4,4-trifluorobutanoic acid;
- ethyl 3-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]-carbonyl]amino]acetyl]amino]-4,4,4-trifluorobutanoate;
 - (±) β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]-3-bromo-4,5dimethoxybenzenepropanoic acid;
- - - 3-[[2-[[[3-[(aminoiminomethyl)amino]phenyl] phenyl]carbonyl]amino]acetyl]amino] pentanoic acid;

β-[[2-[[[3-[(aminoiminomethyl)amino]-phenyl]carbonyl]amino]acetyl]amino]5-bromo-3-chloro-2-hydroxybenzenepropanoic acid;

β-[[2-[[[3-[[[(4-pyridinylmethyl)amino]-carbonyl]amino]phenyl]carbonyl]amino]-acetyl]amino]pyridine-3-propanoic acid;

3,5-dichloro-β-[[2-[[[3-[[[(4-pyridinylmethyl)-amino]carbonyl]amino]phenyl]carbonyl]amino]-acetyl]amino]benzenepropanoic acid;

β-[[2-[[[3-[[[(2-pyridinylmethyl)amino]carbonyl]amino]phenyl]carbonyl]amino]acetyl]amino]pyridine-3-propanoic acid;

ethyl β -[[2-[[[3-[[[(2-pyridinylmethyl)amino]carbonyl]-amino]phenyl]carbonyl]amino]acetyl]amino]-pyridine-3-propanoate;

- - β-[[2-[[[3-[[[(1-phenylethyl)amino]carbonyl]amino]phenyl]carbonyl]amino]acetyl]amino]pyridine-3-propanoic acid;
- β-[[2-[[[3-[[[(1H-benzimidazol-2-yl)-methyl)amino]-carbonyl]amino]phenyl]carbonyl]amino]acetyl]amino]-3,5-dichlorobenzenepropanoic acid;
- ethyl β -[[2-[[[3-[[[(1H-benzimidazol-2-yl)-methyl)-amino]carbonyl]amino]phenyl]carbonyl]amino]-acetyl]amino]-3,5-dichlorobenzenepropanoate;
 - β-[[2-[[[3-[[[(3,5-dichlorophenyl)methyl]amino]carbonyl]amino]phenyl]carbonyl]amino]acetyl]amino]pyridine-3propanoic acid;
 - ethyl β -[[2-[[[3-[[[(3,5-dichlorophenyl)methyl]-amino]carbonyl]amino]phenyl]carbonyl]amino]-acetyl]amino]pyridine-3-propanoate;

3-[[2-[[[3-[[[(3,5-dichlorophenyl)methyl] amino]carbonyl]amino]phenyl]carbonyl] amino]acetyl]amino]butanoic acid;

 β -[[2-[[[3-[(aminoiminomethyl)amino]phenyl]-carbonyl]amino]acetyl]amino]-3,5-bis(1-methyl-ethoxy)benzenepropanoic acid;

ethyl β -[[2-[[[3-[(aminoiminomethyl)amino]phenyl]-carbonyl]amino]acetyl]amino]-3,5-bis(1-methyl-ethoxy)benzenepropanoate;

β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]-carbonyl]amino]acetyl]amino]-3,5-dibromo-4-hydroxybenzenepropanoic acid;

β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]-carbonyl]amino]acetyl]amino]-3,5-dichloro-4-hydroxybenzenepropanoic acid;

β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]-carbonyl]amino]acetyl]amino]-3,5-dichloro-4-hydroxybenzenepropanoate;

β-[[2-[[[5-[(aminoiminomethyl)amino]-2hydroxyphenyl]carbonyl]amino]acetyl]amino]-3,5-dichlorobenzenepropanoic acid;

- ethyl β -[[2-[[[5-[(aminoiminomethyl)amino]-2-hydroxyphenyl]carbonyl]amino]ac tyl]amino]3,5-dichlorobenzen pr panoate;
 - β-[[2-[[[3-[[(phenoxyamino)carbonyl]amino]phenyl]carbonyl]amino]acetyl]amino]pyridine-3-propanoic acid;
- - β-[[2-[[[3-[[[(phenylamino)amino]carbonyl]amino]phenyl]carbonyl]amino]acetyl]amino]pyridine-3-propanoic acid;
- ethyl β -[[2-[[[3-[[[(phenylamino)amino]carbonyl]-amino]phenyl]carbonyl]amino]acetyl]amino]-pyridine-3-propanoate;
- - β-[[2-[[[3-[(aminoiminomethyl)amino]-5-carboxy-phenyl]carbonyl]amino]acetyl]amino]pyridine3-propanoic acid;

- β-[[2-[[[3-[(aminoiminomethyl)amino]-5-carboxy-phenyl]carbonyl]amino]acetyl]amino]-3,5-dichlorobenzenepropanoic acid;
- ethyl β -[[2-[[[3-[(aminoiminomethyl)amino]-5-carboxy-phenyl]carbonyl]amino]acetyl]amino]-3,5-dichlorobenzenepropanoate;
 - β-[[2-[[[3,5-bis[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]-3,5-dichlorobenzenepropanoic acid;
 - ethyl β -[[2-[[[3,5-bis[(aminoiminomethyl)amino]-phenyl]carbonyl]amino]acetyl]amino]-3,5-dichloro-benzenepropanoate;
- β -[[2-[[[3-[(aminoiminomethyl)amino]-5-(trifluoroacetyl)amino]phenyl]carbonyl]amino]acetyl]-amino]-3,5-dichlorobenzenepropanoic acid;
- ethyl β -[[2-[[[3-[(aminoiminomethyl)amino]-5-(trifluoroacetyl)amino]phenyl]carbonyl]amino]acetyl]amino]-3,5-dichlorobenzenepropanoate;
 - β-[[2-[[[3-(acetylamino)-5-[(aminoiminomethyl)-amino]phenyl]carbonyl]amino]acetyl]amino]3,5-dichlorobenzenepropanoic acid;
- - (±) 3,5-dichloro-β-[[2-[[[3[[(methylamino) (methylimino) methyl]amino]phenyl]carbonyl]amino]ac tyl]amino]benzenepropanoic acid;

- (±) 3,5-dichloro-β-[[2-[[[3[[(thylamino) (methylimino) methyl]amino]phenyl]carbonyl]amino]acetyl]amino]benzenepropanoic acid;
- (±) 3,5-dichloro-β-[[2-[[[3-[[[(1methylethyl)amino](methylimino)methyl]amino]phenyl]carbonyl]amino]acetyl]amino]benzenepropanoic acid;
 - (±) β-[[2-[[[3-[[(ethylamino)(methylimino)methyl]amino]phenyl]carbonyl]amino]acetyl]amino]-4-fluorobenzenepropanoic acid;
- (±) 4-fluoro-β-[[2-[[[3-[[[(4pyridinylmethyl)amino](methylimino)methyl]amino]phenyl]carbonyl]amino]acetyl]amino]benzenepropanoic acid;
- β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]-4fluorobenzenepropanoic acid;
 - (±) β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]1H-imidazole-2-propanoic acid;
- (±) β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]-2,3,4,6tetrafluorobenzenepropanoic acid;
 - β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]-5-bromothiophene-2-propanoic acid;

β-[[2-[[[3-[(aminoiminomethy1)amino]phenyl]carbonyl]amino]acetyl]amino]-2mercaptobenzenepropanoic acid;

and

- (±) β-[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]-5chloro-2-mercaptobenzenepropanoic acid.
- 25. A pharmaceutical composition according to Claim 23 wherein Y^1 is $N-R^2$ and R^2 is cyano.
- 26. A pharmaceutical composition according to Claim 25 wherein the compound is selected from the group consisting of
 - phenylmethyl β -[[2-[[[3-[[(cyanoimino)phenylmethyl-amino)methyl]amino]phenyl]carbonyl]amino]-acetyl]amino]benzenepropanoate;
 - phenylmethyl β -[[2-[[[3-[[(cyanoimino)-methylamino)methyl]amino]phenyl]carbonyl]amino]-acetyl]amino]benzenepropanoate;
 - phenylmethyl β -[[2-[[[3-[[(cyanoimino)-(amino)methyl]amino]phenyl]carbonyl]amino]acetyl]amino]benzenepropanoate;
 - β-[[2-[[[3-[[(cyanoimino)(ethylamino)methyl]amino]phenyl]carbonyl]amino]acetyl]amino]benzenepropanoate;
 - β-[[2-[[[3-[[(cyanoimino)[(phenylmethyl)amino]methyl]amino]phenyl]carbonyl]amino]acetyl]amino]benzenepropanoic acid;

- β-[[2-[[[3-[[(cyanoimino) (methylamino) methyl]amino]phenyl]carbonyl]amino]acetyl]amino]benzenepr panoic acid;
- β-[[2-[[[3-[[amino(cyanoimino)methyl]amino]phenyl]carbonyl]amino]acetyl]amino]benzenepropanoic acid;
- β-[[2-[[[3-[[(cyanoimino) (ethylamino) methyl]amino]phenyl]carbonyl]amino]acetyl]amino]benzenepropanoic acid;
- ethyl 3S-[[2-[[[3-[[(cyanoimino)(methylamino)methyl]amino]phenyl]carbonyl]amino]acetyl]amino]-4-pentynoate;
- 3S-[[2-[[[3-[[(cyanoimino) (methylamino)methyl]amino]phenyl]carbonyl]amino]acetyl]amino]-4-pentynoic acid;
- ethyl β -[[2-[[[3-[[(cyanoimino)[2-pyridinylmethyl)-amino]methyl]amino]phenyl]carbonyl]amino]-acetyl]amino]benzenepropanoate;
 - β-[[2-[[[3-[[(cyanoimino)[2-pyridinylmethyl)-amino]methyl]amino]phenyl]carbonyl]amino]-acetyl]amino]benzenepropanoic acid;
 - ethyl β-[[2-[[[3-[[(cyanoimino)[3pyridinylmethyl)amino]methyl]amino]phenyl]carbonyl]amino]acetyl]amino]benzenepropanoate;
 - β-[[2-[[[3-[[(cyanoimino)[3-pyridinylmethyl)amino]methyl]amino]phenyl]carbonyl]amino]acetyl]amino]benzenepropanoic acid;

ethyl 3S-[[2-[[[3-[[[(4-(aminosulfonyl)phenylmethyl]amino](cyanoimino)methyl]amino]phenyl]carbonyl]amino]acetyl]amino]-4-pentynoate;

3S-[[2-[[[3-[[[(4-(aminosulfonyl)phenylmethyl]amino](cyanoimino)methyl]amino]phenyl]carbonyl]amino]acetyl]amino]-4-pentynoic acid;

ethyl β -[[2-[[[3-[[amino(cyanoimino)methyl]amino]-phenyl]carbonyl]amino]acetyl]amino]-3,5-dichlorobenzenepropanoate;

β-[[2-[[[3-[[amino(cyanoimino)methyl]amino]phenyl]carbonyl]amino]acetyl]amino]-3,5dichlorobenzenepropanoic acid;

and

ethyl 3-[[2-[[[3-[[amino(cyanoimino)methyl]amino]-phenyl]carbonyl]amino]acetyl]amino]-4-pentynoate.

27. A pharmaceutical composition according to Claim 21 wher in

A is

wherein Y^1 is N-R²; R² taken together with R⁷ forms a 4-12 membered ring; and R8 is selected from the group consisting of H, alkyl, alkenyl, alkynyl, cycloalkyl, bicycloalkyl substituted alkyl, arylalkyl, aryloxy, hydroxy, alkoxy, amino, alkylamino, arylamino, amido, alkylcarbonyl, arylcarbonyl, alkoxycarbonyl, aryloxycarbonyl, haloalkylcarbonyl, haloalkoxycarbonyl, alkylthiocarbonyl, arylthiocarbonyl, acyloxymethoxycarbonyl, substituted phenyl, arylacyl, monocyclic and bicyclic heterocycles, monocyclic and bicyclic heterocyclicalkyl and - SO_2R^{10} wherein R^{10} is selected from the group consisting of alkyl, amino and aryl which are all optionally substituted with one or more substituent selected from the group consisting of acylamino, amino, carbonyl cyano, nitro, alkoxy, halo, alkyl, trifluoroalkyl, amido, alkylaminosulfonyl, alkylsulfonyl, alkylsulfonylamino, alkylamino, dialkylamino, aryloxy, thio, trifluoromethylthio, trifluoroalkoxy, and trifluoromethylsulfonyl or -NR⁷ and R⁸ taken together form a 4-12 membered ring wherein said ring optionally contains a heteroatom selected from the group consisting of O, N, and S wherein said ring is optionally substituted.

- 28. A pharmaceutical composition according to Claim 27 wherein
 - V is $-N(R^6)$ wherein R^6 is selected from the group consisting of H and lower alkyl;
 - n is 1;
 - t is 0; and
 - p is 1.
- 29. A pharmaceutical composition according to Claim 28 wherein the compound is selected from the group consisting of
 - (±)ethyl β-[[2-[[[3-[(4,5-dihydro-1H-imidazol-2-yl)amino]phenyl]carbonyl]amino]acetyl]amino]pyridine-3-propanoate;
 - (±)β-[[2-[[[3-[(4,5-dihydro-1H-imidazol-2-yl)amino]phenyl]carbonyl]amino]acetyl]amino]pyridine-3-propanoic acid;
 - (±) ethyl β-[[2-[[[3-[(4,5-dihydro-1H-imidazol-2-yl)amino]phenyl]carbonyl]amino]acetyl]amino]--3,5-bis(trifluoromethyl)benzenepropanoate;
 - (±) β -[[2-[[[3-[(4,5-dihydro-1H-imidazol-2-yl)-amino]phenyl]carbonyl]amino]acetyl]amino]-3,5-bis(trifluoromethyl)benzenepropanoic acid;
 - (±) ethyl β-[[2-[[[3-[(4,5-dihydro-1H-imidazol-2-yl)amino]phenyl]carbonyl]amino]acetyl]amino]-3,5-dichlorobenzenepropanoate;

- (±) β-[[2-[[[3-[(4,5-dihydro-1H-imidazol-2-yl)amino]phenyl]carbonyl]amino]acetyl]amino]3,5-dichlorobenzenepropanoic acid;
- (±) ethyl 3,5-dichloro-β-[[2-[[[3-[(1,4,5,6tetrahydropyrimidin-2-yl)amino]phenyl]carbonyl] amino]acetyl]amino]benzenepropanoate;
 (±) 3,5-dichloro-β-[[2-[[[3-[(1,4,5,6tetrahydropyrimidin-2-yl)amino]phenyl] carbonyl]amino]acetyl]amino] benzenepropanoic acid;
- (±) 3,5-dibromo-β-[[2-[[[3-[(1,4,5,6tetrahydropyrimidin-2-yl)amino]phenyl]carbonyl]amino]acetyl]amino]benzenepropanoic acid;
- (±) [2-[2-[2-(2-hydroxyethoxy)ethoxy]ethoxy]ethyl] 3,5-dichloro-β-[[2-[[[3[(1,4,5,6-tetrahydropyrimidin-2-yl)amino]phenyl]carbonyl]amino]acetyl]amino]benzenepropanoate;

 - (±) 3-bromo-5-chloro-2-hydroxy-β[[2-[[[3-[(1,4,5,6-tetrahydropyrimidin-2-yl)amino]phenyl]carbonyl]amino]acetyl]amino]benzenepropanoic acid;

- ethyl (±) 3-bromo-5-chloro-2-hydroxy-β[[2-[[[3-[(1,4,5,6-tetrahydropyrimidin-2-yl)amino]phenyl]carbonyl]amino]acetyl]amino]benzenepropanoate;
 - (±) 3,5-dichloro-2-hydroxy-β-[[2[[[3-[(1,4,5,6-tetrahydropyrimidin-2-yl)amino]phenyl]carbonyl]amino]acetyl]amino]benzenepropanoic acid;
- (±) 3,5-dichloro-β-[[2-[[[3-[(4,5-dihydro-1H-pyrrolidin-2-yl)amino]phenyl]carbonyl]amino]amino]acetyl]amino]-2-hydroxybenzenepropanoic acid;
 - (±) 3-bromo-5-chloro-β-[[2-[[[3-[(4,5-dihydro-1H-pyrrolidin-2-yl)amino]phenyl]carbonyl]amino]acetyl]amino]-2-hydroxybenzenepropanoic acid;
 - β-[[2-[[[3-[[5-phenyl-1H-imidazol-2-yl)-amino]phenyl]carbonyl]amino]acetyl]amino]pyridine-3-propanoic acid;
 - ethyl β -[[2-[[[3-[[5-phenyl-1H-imidazol-2-yl)-amino]phenyl]carbonyl]amino]acetyl]amino]-pyridine-3-propanoate;
 - (±) ethyl 3,5-dichloro-β-[[2-[[[3[(1,4,5,6-tetrahydro-5,5-dimethylpyrimidin-2-yl)amino]phenyl]carbonyl]amino]acetyl]amino]benzenepropanoate;
- (±) 3,5-dichloro-β-[[2-[[[3-[(1,4,5,6-tetrahydro-5,5-dimethylpyrimidin-2-yl)amino]phenyl]carbonyl]amino]acetyl]amino]benzenepropanoic acid;

> (±) 3-bromo-5-dichloro-2-hydroxyβ-[[2-[[[3-[(1,4,5,6-tetrahydro-5,5-dimethylpyrimidin-2-yl)amino]phenyl]carbonyl]amino]acetyl]amino]benzenepropanoic acid;

and

30. A pharmaceutical composition according to Claim 21 wherein

wherein Y² is selected from the group consisting of lower alkyl, substituted alkyl, phenyl, substituted phenyl, cycloalkyl, monocyclic heterocycles, -S-R⁹ and -O-R⁹ wherein R⁹ is selected from the group consisting of H, alkyl, substituted alkyl, phenyl, substituted phenyl and monocyclic heterocycles or R⁹ taken together with R⁷ forms a 4-12 membered ring; or

 Y^2 taken together with R^7 forms a 4-12 membered ring which is ptionally substituted.

31. A pharmaceutical composition according to Claim 30 wherein

 Y^2 taken together with R^7 forms a 4-12 membered ring which is optionally substituted.

32. A pharmaceutical composition according to Claim 31 wherein

V is $-N(R^6)$ - wherein R^6 is selected from the group consisting of H and lower alkyl;

n is 1;

t is 0 or 1; and

p is 1.

- 33. A pharmaceutical composition according to Claim 32 wherein the compound is selected from the group consisting of
 - (±) ethyl β-[[2-[[[3-[(3,4,5,6-tetrahydro-2H-azepin-7-yl)amino]phenyl]carbonyl]amino]acetyl]amino]pyridine-3-propanoate;
 - (±) β-[[2-[[[3-[(3,4,5,6-tetrahydro-2H-azepin-7-yl)amino]phenyl]carbonyl]amino]acetyl]amino]pyridine-3-propanoic acid;
 - (±)ethyl β-[[2-[[[3-[(3,4,5,6-tetrahydro-2H-azepin-7-yl)amino]phenyl]carbonyl]amino]acetyl]amino]1,3-benzodioxole-5-propanoate;

- (±) β -[[2-[[[3-[(3,4,5,6-tetrahydro-2H-azepin-7-yl)amino]phenyl]carbonyl]amino]acetyl]amino]1,3-benzodioxole-5-propanoic acid;
- (±) β -[[2-[[[3-[(3,4,5,6-tetrahydro-2H-azepin-7-yl)amino]phenyl]carbonyl]amino]acetyl]amino]-benzenepropanoic acid;
- β-[[2-[[[3-[(3,4-dihydro-2H-pyrrol-5-yl)amino]-phenyl]carbonyl]amino]acetyl]amino]-pyridine-3-propanoic acid;
- (±)ethyl β-[[2-[[[4-chloro-3-[(3,4,5,6-tetrahydro-2H-azepin-7-yl)amino]phenyl]carbonyl]amino]acetyl]amino]pyridine-3-propanoate;
 - (±) β-[[2-[[[4-chloro-3-[(3,4,5,6-tetrahydro-2Hazepin-7-yl)amino]phenyl]carbonyl]amino]acetyl]amino]pyridine-3-propanoic acid;
- (±) β-[[2-[[[3,5-bis[(3,4,5,6-tetrahydro-2H-azepin-7-yl)amino]phenyl]carbonyl]amino]acetyl]amino]pyridine-3-propanoic acid;
 - βS-[[2-[[[3-[(3,4,5,6-tetrahydro-2H-azepin-7-yl)amino]phenyl]carbonyl]amino]acetyl]amino]-4-pentynoic acid;
- (±) ethyl β-[[2-[[[3-[(3,4,5,6-tetrahydro-2H-azepin-7-yl)amino]phenyl]carbonyl]amino]acetyl]amino]-3,5-dichlorobenzenepropanoate;

- (±) β-[[2-[[[3-[(3,4,5,6-tetrahydro-2H-azepin--7-yl)amino]phenyl]carbonyl]amino]acetyl]amino]-3,5-dichlorobenzenepropanoic acid;
- (±) ethyl β-[[2-[[[3-[(3,4-dihydro-2H-pyrrol-5-yl)amino]phenyl]carbonyl]amino]acetyl]amino]-3,5-dichlorobenzenepropanoate;
- (±) β-[[2-[[[3-[(3,4-dihydro-2H-pyrrol-5-yl)amino]phenyl]carbonyl]amino]acetyl]amino]3,5-dichlorobenzenepropanoic acid;
- (±) ethyl 3,5-dichloro-β-[[2-[[[3[(2,3,4,5-tetrahydropyridin-6-yl)amino]phenyl]carbonyl]amino]acetyl]amino]benzenepropanoate;
- (±) 3,5-dichloro-β-[[2-[[[3-[(2,3,4,5tetrahydropyridin-6-yl)amino]phenyl]carbonyl]amino]acetyl]amino]benzenepropanoic acid;
 - (±) 3,5-dichloro-2-hydroxy-β-[[2[[[3-[(3,4,5,6-tetrahydro-2H-azepin-7-yl)amino]phenyl]carbonyl]amino]acetyl]amino]benzenepropanoic acid;

and

ethyl(±) 3,5-dichloro-2-hydroxy-\$\beta-[[2-[[[3-[(3,4,5,6-tetrahydro-2H-azepin-7-yl)amino]phenyl]carbonyl]amino]acetyl]amino]benzenepropanoate. 34. A pharmaceutical composition according to Claim 30 wherein

Y² is selected from the group consisting of lower alkyl, substituted alkyl, phenyl, substituted phenyl, cycloalkyl and monocyclic heterocycles.

35. A pharmaceutical composition according to Claim 34 wherein

V is $-N(R^6)$ - wherein R^6 is selected from the group consisting of H and lower alkyl;

- n is 1;
- t is 0; and
- p is 1.
- 36. A pharmaceutical composition according to Claim 35 wherein the compound is selected from the group consisting of
 - (±) ethyl β-[[2-[[[3-[(iminophenylmethyl)amino]phenyl]carbonyl]amino]acetyl]amino]pyridine-3-propanoate;

 - (±) β-[[2-[[[3-[(iminophenylmethyl]amino]phenyl]carbonyl]amino]acetyl]amino]pyridine-3-propanoic acid;

3,5-dichloro-β-[[2-[[[3-[[imino(1piperidinyl)methyl]amino]phenyl]carbonyl]amino]ac tyl]amino]benzenepropanoic acid;

and

ethyl 3,5-dichloro- β -[[2-[[[3-[[imino(1-piperidinyl)methyl]amino]phenyl]carbonyl]-amino]acetyl]amino]benzenepropanoate.

- 37. A pharmaceutical composition according to Claim 30 wherein Y² is -S-R⁹ or -O-R⁹ wherein R⁹ is selected from the group consisting of H, alkyl, substituted alkyl, phenyl, substituted phenyl and monocyclic hereocycles or R⁹ taken together with R⁷ forms a 4-12 membered ring.
- 38. A pharmaceutical composition according to Claim 37 wherein

V is -N(R⁶) - wherein R⁶ is selected from the group consisting of H, lower alkyl, substituted alkyl, cycloalkyl, aryl, substituted aryl, monocyclic heterocycles and benzyl;

n is 0;

t is 0; and

p is 1 or 2.

39. A pharmaceutical composition according to Claim 38 wherein the compound is selected from the group consisting of

β-[[2-[[[3-[(4,5-dihydrothiazol-2-y1)amino]phenyl]carbonyl]amino]acetyl]amino]pyridine-3-propanoic acid;

β-[[2-[[[3-[[benzoxazol-2-yl)amino]phenyl]carbonyl]amino]acetyl]amino]pyridine-3-propanoic acid;

ethyl β -[[2-[[[3-[[benzoxazol-2-yl)amino]-phenyl]carbonyl]amino]acetyl]amino]-pyridine-3-propanoate.

β-[[2-[[[3-[(5,6-dihydro-4H-thiazin-2-y1)amino]phenyl]carbonyl]amino]acetyl]amino]pyridine-3-propanoic acid;

and

ethyl β -[[2-[[[3-[(5,6-dihydro-4H-thiazin-2-y1)-amino]phenyl]carbonyl]amino]acetyl]amino]
pyridine-3-propanoate.

40. A pharmaceutical composition according to Claim 21 wherein the compound is selected from the group consisting of

•

$$\begin{array}{c|c} HN & H & O & O \\ H_2N & H & O & CI \\ \hline \\ CH_3 & CI \\ \hline \end{array}$$

$$H_2N$$
 H O OH CF_2CF_3

$$H_2N$$
 H O OH OH H_3C CH_3

41. A method for treating conditions mediated by the $\alpha_{\rm v}\beta_3$ integrin in a mammal in need of such treatment comprising administering an effective $\alpha_{\rm v}\beta_3$ inhibiting amount of a compound of the formula

$$A = \begin{pmatrix} Y_3 \\ C \\ Z_3 \end{pmatrix}_{t} \begin{pmatrix} Y \\ Z_1 \end{pmatrix} \begin{pmatrix} Y \\ C \\ Z \end{pmatrix}_{n} \begin{pmatrix} CH_2 \\ R^{11} \\ R^{1} \end{pmatrix} \begin{pmatrix} CH_2 \\ R^{11} \\ R^{1} \end{pmatrix}$$

or a pharmaceutically acceptable salt thereof, wherein

A is

wherein Y^1 is s lected from th group consisting of $N-R^2$, O, and S;

R² is selected from the group consisting of H; alkyl; aryl; hydroxy; alkoxy; cyano; nitro; amino; alkenyl; alkynyl; amido; alkylcarbonyl; arylcarbonyl; alkoxycarbonyl; aryloxycarbonyl; haloalkylcarbonyl; haloalkoxycarbonyl; alkylthiocarbonyl; arylthiocarbonyl; acyloxymethoxycarbonyl; alkyl optionally substituted with one or more substituent selected from lower alkyl, halogen, hydroxyl, haloalkyl, cyano, nitro, carboxyl, amino, alkoxy, aryl or aryl optionally substituted with one or more halogen, haloalkyl, lower alkyl, alkoxy, cyano, alkylsulfonyl, alkylthio, nitro, carboxyl, amino, hydroxyl, sulfonic acid, sulfonamide, aryl, fused aryl, monocyclic heterocycles, or fused monocyclic heterocycles; aryl optionally substituted with one or more substituent selected from halogen, haloalkyl, hydroxy, lower alkyl, alkoxy, methylenedioxy, ethylenedioxy, cyano, nitro, alkylthio, alkylsulfonyl, sulfonic acid, sulfonamide, carboxyl derivatives, amino, aryl, fused aryl, monocyclic heterocycles and fused monocyclic heterocycle; monocyclic heterocycles; and monocyclic heterocycles optionally substituted with one or more substituent selected from halogen, haloalkyl, lower alkyl, alkoxy, amino, nitro, hydroxy, carboxyl derivatives, cyano, alkylthio, alkylsulfonyl, sulfonic acid, sulfonamide, aryl or fused aryl; or

 R^2 taken together with R^7 forms a 4-12 membered dinitrogen containing h terocycle optionally substituted with one or more substituent s l cted from the group c nsisting of lower alkyl, hydroxy,

WO 97/08145 PCT/US96/13500

k to, alkoxy, halo, phenyl, amino, carboxyl or carboxyl ester, and fused ph nyl;

or R² taken together with R⁷ forms a 5 membered heteroaromatic ring optionally substituted with one or more substituent selected from lower alkyl, phenyl and hydroxy;

or R² taken together with R⁷ forms a 5 membered heteroaromatic ring fused with a phenyl group;

 R^7 (when not taken together with R^2) and R^8 are independently selected from the group consisting of H; alkyl; alkenyl; alkynyl; aralkyl; amino; alkylamino; hydroxy; alkoxy; arylamino; amido, alkylcarbonyl, arylcarbonyl; alkoxycarbonyl; aryloxycarbonyl; haloalkylcarbonyl; aryloxy; haloalkoxycarbonyl; alkylthiocarbonyl; arylthiocarbonyl; acyloxymethoxycarbonyl; cycloalkyl; bicycloalkyl; aryl; acyl; benzoyl; alkyl optionally substituted with one or more substituent selected from lower alkyl, halogen, hydroxy, haloalkyl, cyano, nitro, carboxyl derivatives, amino, alkoxy, thio, alkylthio, sulfonyl, aryl, aralkyl, aryl optionally substituted with one or more substituent selected from halogen, haloalkyl, lower alkyl, alkoxy, methylenedioxy, ethylenedioxy, alkylthio, haloalkylthio, thio, hydroxy, cyano, nitro, carboxyl derivatives, aryloxy, amido, acylamino, amino, alkylamino, dialkylamino, trifluoroalkoxy, trifluoromethyl, sulfonyl, alkylsulfonyl, haloalkylsulfonyl, sulfonic acid, sulfonamide, aryl, fused aryl, monocyclic heterocycles, fused monocyclic heterocycles; aryl optionally substituted with one or more substituent selected from halogen, haloalkyl, low r alkyl, alkoxy,

methylenedioxy, ethylenedioxy, alkylthio, haloalkylthio, thio, hydroxy, cyano, nitro, carboxyl derivatives, aryloxy, amido, acylamino, amino, alkylamino, dialkylamino, trifluoroalkoxy, trifluoromethylsulfonyl, alkylsulfonyl, sulfonic acid, sulfonamide, aryl, fused aryl, monocyclic heterocycles, or fused monocyclic heterocycles; monocyclic heterocycles; monocyclic heterocycles optionally substituted with one or more substituent selected from halogen, haloalkyl, lower alkyl, alkoxy, aryloxy, amino, nitro, hydroxy, carboxyl derivatives, cyano, alkylthio, alkylsulfonyl, aryl, fused aryl; monocyclic and bicyclic heterocyclicalkyls; $-SO_2R^{10}$ wherein R^{10} is selected from the group consisting of alkyl, aryl and monocyclic heterocycles, all optionally substituted with one or more substituent selected from the group consisting of halogen, haloalkyl, alkyl, alkoxy, cyano, nitro, amino, acylamino, trifluoroalkyl, amido, alkylaminosulfonyl, alkylsulfonyl, alkylsulfonylamino, alkylamino, dialkylamino, trifluoromethylthio, trifluoroalkoxy, trifluoromethylsulfonyl, aryl, aryloxy, thio, alkylthio, and monocyclic heterocycles; and

O || wherein R¹⁰ is defined above; —C-R¹⁰

or NR⁷ and R⁸ taken together form a 4-12 membered mononitrogen containing monocyclic or bicyclic ring optionally substituted with one or more substituent selected from lower alkyl, carboxyl derivatives, aryl or hydroxy and wherein said ring optionally contains a heteroatom sel cted from the gr up consisting of O, N and S;

WO 97/08145 PCT/US96/13500

- 885 -

R⁵ is selected from the group consisting of H, alkyl, alkenyl, alkynyl, benzyl, and phenethyl;

or

wherein Y^2 is selected from the group consisting of alkyl; cycloalkyl; bicycloalkyl; aryl; monocyclic heterocycles; alkyl optionally substituted with aryl which can also be optionally substituted with one or more substituent selected from halo, haloalkyl, alkyl, nitro, hydroxy, alkoxy, aryloxy, aryl, or fused aryl; aryl optionally substituted with one or more substituent selected from halo, haloalkyl, hydroxy, alkoxy, aryloxy, aryl, fused aryl, nitro, methylenedioxy, ethylenedioxy, or alkyl; alkynyl; alkenyl; -S-R9 and -O-R9 wherein R9 is selected from the group consisting of H; alkyl; aralkyl; aryl; alkenyl; and alkynyl; or R9 taken together with R7 forms a 4-12 membered mononitrogen and monosulfur or monooxygen containing heterocyclic ring optionally substituted with lower alkyl, hydroxy, keto, phenyl, carboxyl or carboxyl ester, and fused phenyl; or R9 taken together with R⁷ is thiazole; oxazole; benzoxazole; or benzothiazole; and

 R^5 and R^7 are as defined above;

or Y² (wh n Y² is carbon) taken together with R⁷ forms a 4-12 membered mononitrogen containing ring optionally substituted with alkyl, aryl or hydroxy;

or A is

where R² and R⁷ taken together form a 5-8 membered dinitrogen containing heterocycle optionally substituted with one or more substituent selected from the group consisting of lower alkyl, hydroxy, keto, phenyl, or carboxyl derivatives; and R⁸ is selected from the group consisting of alkylcarbonyl, arylcarbonyl, alkoxycarbonyl, aryloxycarbonyl, haloalkylcarbonyl, haloalkylcarbonyl, haloalkoxycarbonyl, alkylthiocarbonyl, arylthiocarbonyl, or acyloxymethoxycarbonyl; and

R⁵ is defined as above

or A is

where R² and R⁷ taken together form a 5-8 membered dinitrogen containing heterocycle optionally substituted with hydroxy, keto, phenyl, or alkyl; and

R⁸ are both selected from the group consisting of alkylcarbonyl, arylcarbonyl, alkoxycarbonyl, aryloxycarbonyl, haloalkylcarbonyl, haloalkoxycarb nyl, alkylthiocarbonyl, arylthiocarbonyl and acyloxym thoxycarbonyl;

Z¹ is one or mor substituent sel cted from the group consisting of H; alkyl; hydroxy; alkoxy; aryloxy; halogen; haloalkyl; haloalkoxy; nitro; amino; alkylamino; acylamino; dialkylamino; cyano; alkylthio; alkylsulfonyl; carboxyl derivatives; trihaloacetamide; acetamide; aryl; fused aryl; cycloalkyl; thio; monocyclic heterocycles; fused monocyclic heterocycles; and A, wherein A is defined above;

V is selected from the group consisting of -N-(R⁶)-wherein R⁶ is selected from the group consisting of H; lower alkyl; cycloalkyl; aralkyl; aryl; and monocyclic heterocycles; or R⁶ taken together with Y, forms a 4-12 membered mononitrogen containing ring;

Y, Y³, Z and Z³ are independently selected from the group consisting of hydrogen; alkyl; aryl; and cycloalkyl; or Y and Z taken together form a cycloalkyl; or Y³ and Z³ taken together form a cycloalkyl;

n is an integer 1, 2, or 3;

t is an integer 0, 1, or 2;

p is an integer 0, 1, 2, or 3;

R is X-R³ wherein X is selected from the group consisting of O, S and NR⁴, wherein R³ and R⁴ are independently selected from the group consisting of hydrogen; alkyl; alkenyl; alkynyl; haloalkyl; aryl; arylalkyl; sugars; steroids; polyalkylethers; alkylamido; alkyl N,N-dialkylamido; pivaloyloxymethyl; and in the case

of the free acid, all pharmaceutically acceptabl salts thereof;

R¹ is selected from the group consisting of hydrogen; alkyl; alkenyl; alkynyl; aryl; carboxyl derivatives; haloalkyl; monocyclic heterocycles; monocyclic heterocycles optionally substituted with alkyl, halogen, haloalkyl, cyano, hydroxy, aryl, fused aryl, nitro, alkoxy, aryloxy, alkylsulfonyl, arylsulfonyl, sulfonamide, thio, alkylthio, carboxyl derivatives, amino, amido;

alkyl optionally substituted with one or more of halo, haloalkyl, hydroxy, alkoxy, aryloxy, thio, alkylthio, alkynyl, alkenyl, alkyl, arylthio, alkylsulfoxide, alkylsulfonyl, arylsulfoxide, arylsulfonyl, cyano, nitro, amino, alkylamino, dialkylamino, alkylsulfonamide, arylsulfonamide, acylamide, carboxyl derivatives, sulfonamide, sulfonic acid, phosphonic acid derivatives, phosphinic acid derivatives, aryl, arylthio, arylsulfoxide, or arylsulfone all optionally substituted on the aryl ring with halo, alkyl, haloalkyl, cyano, nitro, hydroxy, carboxyl derivatives, alkoxy, aryloxy, amino, alkylamino, dialkylamino, amido, aryl, fused aryl, monocyclic heterocycles; and fused monocyclic heterocycles, monocyclic heterocyclicthio, monocyclic heterocyclicsulfoxide, and monocyclic heterocyclic sulfone, which can be optionally substituted with halo, haloalkyl, nitro, hydroxy, alkoxy, fused aryl, or alkyl;

alkylcarbonyl, haloalkylcarbonyl, and arylcarbonyl;

aryl optionally substituted in one or more positi ns with halo, haloalkyl, alkyl, alkoxy, aryloxy, methylenedioxy, ethylenedioxy, alkylthio, haloalkylthio, thio, hydroxy, cyano, nitro, acyloxy, carboxyl derivatives, carboxyalkoxy, amido, acylamino, amino, alkylamino, dialkylamino, trifluoroalkoxy, trifluoromethylsulfonyl, alkylsulfonyl, sulfonic acid, sulfonamide, aryl, fused aryl, monocyclic heterocycles and fused monocyclic heterocycles; and

$$C_{\rm R}^{\rm O}$$
 wherein R^7 and R^8 are as defined above

and provided that taken together with the nitrogen, R⁷ and R⁸ comprise an amino acid;

and

R¹¹ is selected from the group consisting of H, alkyl, aralkyl, alkenyl, alkynyl, haloalkyl or haloalkynyl or R¹¹ taken together with Y forms a 4-12 membered mononitrogen containing ring.

- 42. A method according to claim 41 wherein the compound is selected from
 - (±)ethyl β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]pyridine-3-propanoate;
 - (±)β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]pyridine-3propanoic acid;
 - (±)ethyl β -[[2-[[[3-[(aminoiminomethyl)amino]phenyl]-carbonyl]amino]acetyl]amino]benzenepropanoate;

$(\pm)\beta - [[2-[[[3-$

- [(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]benzenepropanoic acid;
- (±)ethyl β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]-1,3benzodioxole-5-propanoate;
- (±)β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]-1,3benzodioxole-5-propanoic acid;
- (±)ethyl β-[[2-[[[3-[(aminoiminomethyl)amino]naphthalen-1-yl]carbonyl]amino]acetyl]amino]pyridine-3-propanoate;
 - (±)β-[[2-[[[3-[(aminoiminomethyl)-amino]naphthalen-1-yl]carbonyl]amino]acetyl]amino]pyridine-3-propanoic acid;
- (±) ethyl β-[[1-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]-1-cyclopropyl]carbonyl]amino]pyridine-3-propanoate;
- (±) β-[[1-[[[3[(aminoiminomethyl)amino]phenyl]carbonyl]amino]cycloprop-1-yl]carbonyl]amino]pyridine-3-propanoic acid;
- (±) ethyl β-[[2-[[[3-[[imino[(phenylmethyl)amino]methyl]amino]phenyl]carbonyl]amino]acetyl]amino]pyridine-3-propanoate;

WO 97/08145

- - β-[[2-[[[3-[(aminoiminomethyl)amino]-phenyl]carbonyl]amino]acetyl]amino]-3,5-dichlorobenzenepropanoic acid;
 - 3S-[[2-[[[3-(aminocarbonylamino)phenyl]-carbonyl]amino]acetyl]amino]-4-pentynoic acid;
 - ethyl 3S-[[2-[[[3-(aminocarbonylamino)phenyl] carbonyl]amino]acetyl]amino]-4-pentynoate;
 - βS-[[2-[[[3-[(aminoiminomethyl)amino]-2,5,6trifluorophenyl]carbonyl]amino]acetyl]amino]-4-pentynoic acid;
 - (±) β -[[2-[[[3-[(aminoiminomethyl)amino]-phenyl]carbonyl]amino]acetyl]amino]-3,5-bis(trifluoromethyl)benzenepropanoic acid;
 - (±) β -[[2-[[[3-[(aminoiminomethyl)amino]-phenyl]carbonyl]amino]acetyl]amino]-3,5-bis(trifluoromethyl)benzenepropanoic acid;
 - ethyl (±) β-[[2-[[[3-[(aminoiminomethyl)amino] phenyl]carbonyl]amino]acetyl]amino]-3,5 bis(trifluoromethyl)benzenepropanoate;
 - (±) β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino][1,1'-biphenyl]-4-propanoic acid;
 - thyl (±) β -[[2-[[[3-[(aminoiminomethyl)-amino]phenyl]carbonyl]amino]acetyl]amino][1,1'-biphenyl]-4-propanoate;

- (±) ethyl β-[[2-[[[3-[(aminoiminomethyl)amino]-5-(trifluoromethyl)-phenyl]carbonyl]amino]acetyl]amino]-3,5-bis(trifluorom thyl)benzenepr panoat;
- (±) β-[[2-[[[3-[(aminoiminomethyl)amino]-5(trifluoromethyl)phenyl]carbonyl]amino]acetyl]amino]3,5-bis(trifluoromethyl)benzenepropanoic acid;
 - (±) β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]naphthalene-1-carboxylic acid;
 - methyl (±) β -[[2-[[[3-[(aminoiminomethyl)-amino]phenyl]carbonyl]amino]acetyl]amino]-naphthalene-1-carboxylate;
 - (±) 3-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]-2-oxopyrrolidine-1propanoic acid;
 - 3R-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]-carbonyl]amino]acetyl]amino]-4-pentynoic acid;
- ethyl 3R-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]-carbonyl]amino]acetyl]amino]-4-pentynoate;
 - 3S-[[2-[[[3-[[[(phenylmethyl)amino]carbonyl]amino]phenyl]carbonyl]amino]acetyl]amino]-4-pentynoic acid;

 - 3S-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]-carbonyl]amino]acetyl]amino]-4-pentynoic acid;

WO 97/08145 PCT/US96/13500

- 893 -

β-[[2-[[[3-(aminocarbonylamino)ph nyl]-carb nyl]amino]acetyl]amino]pyridine-3-propanoic acid;

ethyl β -[[2-[[[3-(aminocarbonylamino)phenyl]-carbonyl]amino]acetyl]amino]pyridine-3-propanoate;

- - (±) ethyl β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]furan-2-propanoate;
 - (±) β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]furan-3-propanoic acid;
- bismethyl ester 3-[[2-[[[3-[(aminoiminomethyl)amino]-phenyl]carbonyl]-amino]acetyl]amino]pentanedioate;
 - - (±) β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]furan-2-propanoic acid;

- ethyl (±) β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]-carbonyl]amino]acetyl]amino]furan-2-propanoate;
 - (±) β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]naphthalene-2-propanoic acid;
 - - - (±) β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]thiophene-3-propanoic acid;
 - (±) 2-[3-[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]-4carboxybutyl]thio]benzoic acid;
 - (±) 2-[3-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]-4carboxybutyl]sulfonyl]benzoic acid;
 - (±) β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]thiophene-2-propanoic acid;
 - (±) methyl 2-[[3-[(3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]-4carboxybutyl]thio]benzoate;

- 895 -

- (±) methyl 3-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]ac tyl]amino]5-[(4-methylphenyl)thio]pentanoate;
- (±) methyl 3-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]4-[[(4-methylphenyl)sulfonyl]amino]butanoate;
 - 3-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]-4-[[(4methylphenyl)sulfonyl]amino]butanoic acid;
 - (±) 3-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]-5-[(4methylphenyl)thio]pentanoic acid;
 - (±) 3-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]-5-[(4methylphenyl)sulfonyl]pentanoic acid;
- 3S-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]-4(phenylthio)butanoic acid;
 - 3R-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]4-pentynoic acid;
- 2-[[2S-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carb nyl]amino]acetyl]amino]-2(carboxymethyl)ethyl]sulfonyl]benzoic acid;

٠....

- - 2-[[2S-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]-2(carboxymethyl)ethyl]thio]benzoic acid;
- (±) ethyl β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]methylamino]acetyl]amino]-pyridine-3-propanoate;
- (±)β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]methylamino]acetyl]amino]pyridine3-propanoic acid;
 - (±)ethyl β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]-1-oxopropyl]amino]pyridine-3-propanoate;
 - (±)β-[[2-[[[3-[(aminoiminomethy1)amino]phenyl]carbonyl]amino]-1-oxopropyl]amino]pyridine-3-propanoic acid;
 - (±) β-[[2-[[[3-[(aminoiminomethyl)amino]-4methylphenyl]carbonyl]amino]acetyl]amino]pyridine-3-propanoic acid;
 - (±) β-[[2-[[[3-[[(aminoiminomethyl)amino]methyl]phenyl]carbonyl]amino]acetyl]amino]pyridine-3-propanoic acid;

- 3S-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]4-hydroxybutanoic acid;
- (±) β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]-2-hydroxybenzenepropanoic acid;
- (±) β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]-2hydroxy-5-methylbenzenepropanoic acid;
- (±) 3-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]-4-[(2hydroxyethyl)amino]-4-oxobutanoic acid;

- N-[2-[[[3-[(aminoiminomethyl)amino]phenyl]-carbonyl]amino]acetyl]- β -alanine, ethyl ester;
 - $N-[2-[[[3-[(aminoiminomethyl)amino]-phenyl]carbonyl]amino]acetyl]-<math>\beta$ -alanine;
- - β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]quinoline-3-propanoic acid;

- (±)ethyl β-[[2-[[[3-[[(phenylmethyl)amino]carbonyl]amino]phenyl]carbonyl]amino]
 acetyl]amino]pyridine-3-propanoate;
- - ethyl β -[[2-[[[3-[[(phenylamino)carbonyl]-amino]phenyl]carbonyl]amino]acetyl]amino]
 pyridine-3-propanoate;
 - β-[[2-[[[3-[[(phenylamino)carbonyl]amino]phenyl]carbonyl]amino]acetyl]amino]pyridine-3-propanoic acid;
 - ethyl β -[[2-[[[3-(aminocarbonylamino)-phenyl]carbonyl]amino]acetyl]amino]-pyridine-3-propanoate;
 - β-[[2-[[[3-(aminocarbonylamino)phenyl]-carbonyl]amino]acetyl]amino]pyridine-3-propanoic acid;
- ethyl β -[[2-[[[3-[[[(4-methylphenyl)sulfonyl]-amino]carbonyl]amino]phenyl]carbonyl]amino]-ac tyl]amino]pyridine-3-propanoate;

β-[[2-[[[3-[[[(4-methylphenyl)sulfonyl]amino]-carbonyl]amino]phenyl]carbonyl]amino]acetyl]-amino]pyridine-3-propanoic acid;

ethyl β -[[2-[[[3-[(aminothioxomethyl)-amino]phenyl]carbonyl]amino]acetyl]-amino]pyridine-3-propanoate;

β-[[2-[[[3-[(aminothioxomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]pyridine3-propanoic acid;

β-[[2-[[[3-[(aminothioxomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]benzenepropanoic acid;

ethyl β -[[2-[[[3-[[[(phenylmethyl)amino]-carbonyl]amino]phenyl]carbonyl]amino]acetyl]-amino]benzenepropanoate;

β-[[2-[[[3-[[(phenylmethyl)amino]carbonyl]amino]phenyl]carbonyl]amino]acetyl]amino]benzenepropanoic acid;

ethyl β -[[2-[[[3-[[[(phenylmethyl)amino]-carbonyl]amino]phenyl]carbonyl]amino]acetyl]-amino]-1,3-benzodioxole-5-propanoate;

β-[[2-[[[3-[[[(phenylmethyl)amino]carbonyl]amino]phenyl]carbonyl]amino]acetyl]amino]-1,3-benzodioxole-5-propanoic acid;

- ethyl β -[[2-[[[3-3-[[(phenylamino)carbonyl]-amino]phenyl]carbonyl]amino]acetyl]amino]
 1,3-benzodioxole-5-propanoate;
- β-[[2-[[[3-3-[[(phenylamino)carbonyl]amino]phenyl]carbonyl]amino]acetyl]amino]-1,3benzodioxole-5-propanoic acid;
- - β-[[2-[[[3-[[[(2-carboxyethyl)amino]carbonyl]amino]phenyl]carbonyl]amino]acetyl]amino]pyridine-3-propanoic acid;
 - β-[[2-[[[3-[[[(2-phenylethyl)amino]carbonyl]amino]phenyl]carbonyl]amino]acetyl]amino]pyridine-3-propanoic acid;
- β-[[2-[[[3-[[[(1-naphthalenylmethyl)amino]carbonyl]amino]phenyl]carbonyl]amino]acetyl]amino]pyridine-3-propanoic acid;
 - ethyl β -[[2-[[[3-[(aminoiminomethyl)amino]-4-chlorophenyl)carbonyl]amino]acetyl]amino]-benzenepropanoate;

```
β-[[2-[[[3-[(aminoiminomethyl)amino]-4-chlorophenyl)carbonyl]amino]acetyl]-amino]benzenepropanoic acid;
```

 β -[[2-[[[5-[(aminoiminomethyl)amino]-2-chlorophenyl]-carbonyl]amino]acetyl]amino]benzenepropanoic acid;

ethyl β-[2-[[[3-[[amino(aminocarbonyl) imino]methyl]amino]phenyl]carbonyl] amino]acetyl]amino]-3,5 dichlorobenzenepropanoate;

β-[[2-[[[3-[[amino(aminocarbonyl)imino]-methyl]amino]phenyl]carbonyl]amino]-acetyl]amino]-3,5-dichlorobenzene-propanoic acid;

1,1-dimethylethyl 3,5-dichloro-β-[[2-[[[3[[[(ethoxy-carbonyl)amino][(ethoxycarbonyl)imino]methyl]amino]-phenyl]carbonyl]amino]acetyl]amino]benzenepropanoate;

ethyl β -[[2-[[[3-[(aminoiminomethyl)amino]-4-chlorophenyl]carbonyl]amino]acetyl]amino-3,5-dichlorobenzenepropanoat;

β-[[2-[[[3-[(aminoiminomethyl)amino]-4-chlorophenyl]carbonyl]amino]ac tyl]amino]3,5-dichlorobenzenepropanoic acid;

ethyl 3S-[[2-[[[3-[[amino[(aminocarbonyl)imino] methyl]amino]phenyl]carbonyl]amino]acetyl] amino]-4-pentynoate;

3S-[[2-[[[3-[[amino((aminocarbonyl)imino]methyl]amino]phenyl]carbonyl]amino]acetyl]amino]-4-pentynoic acid;

ethyl 3S-[[2-[[[3-[(aminoiminomethyl)amino]-4-chlorophenyl]carbonyl]amino]acetyl]amino]-4-pentynoate;

- (±) ethyl β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]-3,4dichlorobenzenepropanoate;
- (±) ethyl β -[[2-[[[3-[(aminoiminomethyl)amino]-5-(trifluoromethyl)carbonyl]amino]acetyl]amino]3,4-dichlorobenzenepropanoate;
 - (±) β-[[2-[[[3-[(aminoiminomethyl)amino]-5-(trifluoromethyl)phenyl]carbonyl]amino]acetyl]amino]-3,5-dichlorobenzenepropanoic acid;

- (±) ethyl β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]-2,5dimethylbenzenepropanoate;

- - (±) β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]-3bromobenzenepropanoic acid;
- - (±) β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]-4bromobenzenepropanoic acid;
- (±) ethyl β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]-3,5dim thylbenzenepropanoate;

- (±) β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]-3,5dimethylbenzenepropanoic acid;
- (±) ethyl β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]-3,5dimethoxybenzenepropanoate;
 - (±) β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]-3,5dimethoxybenzenepropanoic acid;
- (±) (2,2-dimethyl-1-oxopropoxy)methyl β-[[2-[[[3[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]-3,5-dichlorobenzenepropanoate;
 - (±) β-[[2-[[[3-[[(aminocarbonyl)imino) methylamino)methyl]amino]phenyl] carbonyl]amino]acetyl]amino]-3,5 dichlorobenzenepropanoic acid;
 - (±) β-[[2-[[[3-[(aminothioxomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]-3,5dichlorobenzenepropanoic acid;
 - (±) β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]-3,4dibromobenzenepropanoic acid;
- (±) β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]-3-fluoro-5(trifluoromethyl)benzenepropanoic acid;
 - (±) β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]-3br mo-5-flu robenzenepropanoic acid;

- (±) β -[[2-[[[3-[(aminoiminomethyl)amino]-phenyl]carbonyl]amino]acetyl]amino]-3,5-dibr mobenz nepropanoic acid;
- (±) β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]-3-bromo5-methylbenzenepropanoic acid;
- (±) β-[[2-[[[3-[(aminoiminomethyl)amino]-5(trifluoromethyl)phenyl]carbonyl]amino]acetyl]amino]-3,5-dibromobenzenepropanoic acid;
- (±) β-[[2-[[[3-[(aminoiminomethyl)amino]-5(trifluoromethyl)phenyl]carbonyl]amino]acetyl]amino]-3-bromo-5-chlorobenzenepropanoic acid;
 - (±) [2-[2-[2-(2-hydroxyethoxy)ethoxy]ethyl] β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]-3,5dichlorobenzenepropanoate;
 - (±) β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]-3bromo-5-iodobenzenepropanoic acid;
- (±) β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]-2-hydroxy-4methoxybenzenepropanoic acid;
- (±) β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]-5-hydroxy-4methoxybenzofuran-6-propanoic acid;

- (±) β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]-9H-fluorene2-propanoic acid;
- ethyl(\pm) β -[[2-[[[3-[(aminoiminomethyl)amino]-phenyl]carbonyl]amino]acetyl]amino]-9H-fluorene-2-propanoate;
- (±) β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]-3,5-dichloro2-hydroxybenzenepropanoic acid;
- (±) β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]-2-hydroxy-5nitrobenzenepropanoic acid;
 - (±) β -[[2-[[[3-[(aminoiminomethyl)amino]-phenyl]carbonyl]amino]acetyl]amino]-3,5-dibromo-2-hydroxybenzenepropanoic acid;
- ethyl(±) β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]-3,5dibromo-2-hydroxybenzenepropanoate;
 - (±) β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]-5bromo-2-hydroxybenzenepropanoic acid;
- ethyl(±) β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]-5bromo-2-hydroxybenzenepropanoate;
 - (±) β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]cyclohexanepropanoic acid;

- 907 -

- - ethyl(\pm) β -[[2-[[[3-[(aminoiminomethyl)-amino]phenyl]carbonyl]amino]acetyl]amino]-3,5-dichloro-2-hydroxybenzenepropanoate;
 - (±) β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]-5chloro-2-hydroxybenzenepropanoic acid;
- - (±) 5-amino-β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]2-hydroxybenzenepropanoic acid;
 - (±) β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]5-bromopyridine-3-propanoic acid;
 - ethyl(\pm) β -[[2-[[[3-[(aminoiminomethyl)-amino]phenyl]carbonyl]amino]acetyl]amino]-5-bromopyridine-3-propanoate;
- 3,5-dichloro-β-[[2-[[[3-[[[(ethoxycarbonyl)amino]thioxomethyl]amino]phenyl]carbonyl]amino]acetyl]amino]benzenepropanoic acid;
- 3,5-dichloro-β-[[2-[[[3-[[(ethoxycarbonyl)amino]iminomethyl]amino]phenyl]carbonyl]amino]acetyl]amino]benzenepropanoic acid;

- β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino][1,1'biphenyl]-3-propanoic acid;
- 1,1-dimethylethyl β -[[2-[[[3-[(aminoiminomethyl)-amino]phenyl]carbonyl]amino]acetyl]amino][1,1'-biphenyl]-3-propanoate;
- β -[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]-amino]acetyl]amino][pyrimidine-5-propanoic acid;
 - 1,1-dimethylethyl β -[[2-[[[3-[(aminoiminomethyl)-amino]phenyl]carbonyl]amino]acetyl]amino][pyrimidine-5-propanoate;
- β -[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]-amino]acetyl]amino]-3-methylthiophene-2-propanoic acid;
 - 1,1-dimethylethyl β -[[2-[[[3-[(aminoiminomethyl)-amino]phenyl]carbonyl]amino]acetyl]amino]-3-methylthiophene-2-propanoate;
 - (±) β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]-3-(methylthio)benzenepropanoic acid;
 - 1,1-dimethylethyl (±) β -[[2-[[[3-[(aminoiminomethyl)-amino]phenyl]carbonyl]amino]acetyl]amino]3-(methylthio)benzenepropanoate;
 - (±) β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]-6methylpyridine-2-propanoic acid;
 - β -[[2-[[[3-[(aminoiminomethyl)amino]phenyl]-carbonyl]amino]acetyl]amino]-3-(methylsulfonyl)-benzenepropanoic acid;

- 909 -

β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]ac tyl]amino]-3,5diethoxybenzenepropan ic acid;

ethyl β -[[2-[[[3-[(aminoiminomethyl)amino]-phenyl]-carbonyl]amino]acetyl]amino]-3,5-diethoxybenzenepropanoate;

β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]-4bromothiophene-2-propanoic acid;

ethyl β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]-4bromothiophene-2-propanoate;

 β -[[2-[[[3-[(aminoiminomethyl)amino]phenyl-carbonyl]amino]acetyl]amino]-5-chlorothiophene-2-propanoic acid;

ethyl β -[[2-[[[3-[(aminoiminomethyl)amino]phenyl-carbonyl]amino]acetyl]amino]-5-chlorothiophene-2-propanoate;

β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]-carbonyl]amino]acetyl]amino]-1H-pyrazole-3-propanoic acid;

ethyl β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]-1H-pyrazole3-propanoate;

β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]-carbonyl]amino]acetyl]amino]-5-methylthiophene2-propanoic acid;

- ethyl β -[[2-[[[3-[(aminoiminom thyl)amino]phenyl]-carb nyl]amino]acetyl]amino]-5-methylthiophen -2-propanoate;
 - β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]-carbonyl]amino]acetyl]amino]-2,3,5-trichloro-benzenepropanoic acid;
- ethyl β -[[2-[[[3-[(aminoiminomethyl)amino]phenyl]-carbonyl]amino]acetyl]amino]-2,3,5-trichlorobenzenepropanoate;
 - β -[[2-[[[3-[(aminoiminomethyl)amino]phenyl]-carbonyl]amino]acetyl]amino]-2(carboxymethoxy)-benzenepropanoic acid;
- ethyl β -[[2-[[[3-[(aminoiminomethyl)amino]phenyl]-carbonyl]amino]acetyl]amino]-2(carboxymethoxy)-benzenepropanoate;
- β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]-4-methoxy-1,3benzodioxole-6-propanoic acid;
- - β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]-5-bromo2-methoxybenzenepropanoic acid;

- 911 -

β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]-6-chl ro1,3-benzodioxole-5-propanoic acid;

ethyl β -[[2-[[[3-[(aminoiminomethyl)amino]-phenyl]carbonyl]amino]acetyl]amino]-6-chloro-1,3-benzodioxole-5-propanoate;

β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]benzofuran-2-propanoic acid;

ethyl β -[[2-[[[3-[(aminoiminomethyl)amino]-phenyl]carbonyl]amino]acetyl]amino]-benzofuran-2-propanoate;

β-[[2-[[[3-[(aminoiminomethyl)amino]-phenyl]carbonyl]amino]acetyl]amino]-3-(carboxymethoxy)benzenepropanoic acid;

- ethyl β -[[2-[[[3-[(aminoiminomethyl)amino]-phenyl]carbonyl]amino]acetyl]amino]-3-(carboxymethoxy)benzenepropanoate;
- ethyl 3-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]-4,4,4trifluorobutanoate;
 - (±) β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]-3-bromo-4,5dimethoxybenzenepropanoic acid;

- - β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]5-bromo-3-chloro-2-hydroxybenzenepropanoic acid;
 - β-[[2-[[[3-[[[(4-pyridinylmethyl)amino]-carbonyl]amino]phenyl]carbonyl]amino]-acetyl]amino]pyridine-3-propanoic acid;

 - 3,5-dichloro-β-[[2-[[[3-[[[(4-pyridinylmethyl)-amino]carbonyl]amino]phenyl]carbonyl]amino]-acetyl]amino]benzenepropanoic acid;

- 913 -

- β-[[2-[[[3-[[[(2-pyridinylmethyl)amino]carbonyl]amino]phenyl]carbonyl]amino]acetyl]amino]pyridine-3-propanoic acid;
- ethyl 3,5-dichloro-β-[[2-[[[3-[[[(phenylmethyl)amino]-carbonyl]amino]phenyl]carbonyl]amino]-acetyl]amino]benzenepropanoate;

 - β-[[2-[[[3-[[(1-phenylethyl)amino]carbonyl]amino]phenyl]carbonyl]amino]acetyl]amino]pyridine-3-propanoic acid;

- β-[[2-[[[3-[[[(1H-b nzimidazol-2-yl)-methyl)amino]carbonyl]amino]phenyl]carbonyl]amino]acetyl]amino]-3,5-dichlorobenzenepropanoic acid;
- ethyl β -[[2-[[[3-[[[(1H-benzimidazol-2-yl)-methyl)-amino]carbonyl]amino]phenyl]carbonyl]amino]-acetyl]amino]-3,5-dichlorobenzenepropanoate;
 - β-[[2-[[[3-[[[(3,5-dichlorophenyl)methyl]amino]carbonyl]amino]phenyl]carbonyl]amino]acetyl]amino]pyridine-3propanoic acid;
 - ethyl β-[[2-[[[3-[[[(3,5-dichlorophenyl)methyl] amino]carbonyl]amino]phenyl]carbonyl]amino] acetyl]amino]pyridine-3-propanoate;
 - 3-[[2-[[[3-[[[(3,5-dichlorophenyl)methyl] amino]carbonyl]amino]phenyl]carbonyl] amino]acetyl]amino]butanoic acid;
 - - β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]-carbonyl]amino]acetyl]amino]-3,5-bis(1-methyl-ethoxy)benzenepropanoic acid;
 - ethyl β -[[2-[[[3-[(aminoiminomethyl)amino]phenyl]-carbonyl]amino]acetyl]amino]-3,5-bis(1-methyl-ethoxy)benzenepropanoate;
 - β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]-carbonyl]amino]acetyl]amino]-3,5-dibromo-4-hydroxybenzenepropanoic acid;

- ethyl β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]-3,5-dibromo-4hydroxybenzenepropanoate;
 - β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]-carbonyl]amino]acetyl]amino]-3,5-dichloro-4-hydroxybenzenepropanoic acid;
 - β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]-carbonyl]amino]acetyl]amino]-3,5-dichloro-4-hydroxybenzenepropanoate;
 - β-[[2-[[[5-[(aminoiminomethyl)amino]-2-hydroxyphenyl]carbonyl]amino]acetyl]amino]-3,5-dichlorobenzenepropanoic acid;
 - ethyl β -[[2-[[[5-[(aminoiminomethyl)amino]-2-hydroxyphenyl]carbonyl]amino]acetyl]amino]-3,5-dichlorobenzenepropanoate;
 - β-[[2-[[[3-[[(phenoxyamino)carbonyl]amino]phenyl]carbonyl]amino]acetyl]amino]pyridine-3-propanoic acid;
- - β-[[2-[[[3-[[[(phenylamino)amino]carbonyl]amino]phenyl]carbonyl]amino]acetyl]amino]pyridine-3-propanoic acid;

- 3-[[2-[[[3-[(aminoiminomethyl)amino]phenyl] carb nyl]amino]acetyl]amino]-5-[(3,5dichlorophenyl)amino]-5-oxopentanoic acid;
- - β-[[2-[[[3-[(aminoiminomethyl)amino]-5-carboxy-phenyl]carbonyl]amino]acetyl]amino]pyridine-3-propanoic acid;
- ethyl β -[[2-[[[3-[(aminoiminomethyl)amino]-5-carboxy-phenyl]carbonyl]amino]acetyl]amino]
 pyridine-3-propanoate;
 - β-[[2-[[[3-[(aminoiminomethyl)amino]-5-carboxy-phenyl]carbonyl]amino]acetyl]amino]-3,5-dichlorobenzenepropanoic acid;
- ethyl β -[[2-[[[3-[(aminoiminomethyl)amino]-5-carboxy-phenyl]carbonyl]amino]acetyl]amino]-3,5-dichlorobenzenepropanoate;
 - β-[[2-[[[3,5-bis[(aminoiminomethyl)amino]phenyl]-carbonyl]amino]acetyl]amino]-3,5-dichloro-benzenepropanoic acid;
 - ethyl β -[[2-[[[3,5-bis[(aminoiminomethyl)amino]-phenyl]carbonyl]amino]acetyl]amino]-3,5-dichloro-benzenepropanoate;
- β-[[2-[[[3-[(aminoiminomethyl)amino]-5-(trifluoroacetyl)amino]phenyl]carbonyl]amino]acetyl]amino]-3,5-dichlorobenzenepropanoic acid;

- 917 -

- β-[[2-[[[3-(acetylamino)-5-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]3,5-dichlorobenzenepropanoic acid;
- ethyl β -[[2-[[[3-(acetylamino)-5-[(aminoiminomethyl)-amino]phenyl]carbonyl]amino]acetyl]amino]
 3,5-dichlorobenzenepropanoate;
 - (±) 3,5-dichloro-β-[[2-[[[3[[(methylamino) (methylimino) methyl]amino]phenyl]carbonyl]amino]acetyl]amino]benzenepropanoic acid;
 - (±) 3,5-dichloro-β-[[2-[[[3[[(ethylamino)(methylimino)methyl]amino]phenyl]carbonyl]amino]acetyl]amino]benzenepropanoic acid;
 - (±) 3,5-dichloro-β-[[2-[[[3-[[[(1methylethyl)amino](methylimino)methyl]amino]phenyl]carbonyl]amino]acetyl]amino]benzenepropanoic acid;
 - (±) β-[[2-[[[3-[[(ethylamino)(methylimino)methyl]amino]phenyl]carbonyl]amino]acetyl]amino]-4-fluorobenzenepropanoic acid;
 - (±) 4-fluoro-β-[[2-[[[3-[[[(4pyridinylmethyl)amino](methylimino)m thyl]amino]phenyl]carbonyl]amino]acetyl]amino]benzenepropanoic acid;

- β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]ac tyl]amino]-4fluorobenzenepropan ic acid;
 - (±) β-[[2-[[[3-[(aminoiminomethyl)amino]phenyl]carbonyl]amino]acetyl]amino]1H-imidazole-2-propanoic acid;
- - β-[[2-[[[3-[(aminoiminomethy1)amino]phenyl]carbonyl]amino]acetyl]amino]-5-bromothiophene-2-propanoic acid;
 - β-[[2-[[[3-[(aminoiminomethy1)amino]phenyl]carbonyl]amino]acetyl]amino]-2mercaptobenzenepropanoic acid;
 - (±) β-[2-[[[3-[(aminoiminomethy1)amino]phenyl]carbonyl]amino]acetyl]amino]-5chloro-2-mercaptobenzenepropanoic acid;
- phenylmethyl β -[[2-[[[3-[[(cyanoimino)phenylmethyl-amino)methyl]amino]phenyl]carbonyl]amino]-acetyl]amino]benzenepropanoate;
 - phenylmethyl β -[[2-[[[3-[[(cyanoimino)-methylamino)methyl]amino]phenyl]carbonyl]amino]-acetyl]amino]benzenepropanoate;
- phenylmethyl β -[[2-[[[3-[[(cyanoimino)-(amino)methyl]amino]phenyl]carbonyl]amino]acetyl]amino]benzenepropanoate;

- β-[[2-[[[3-[[(cyanoimino)(ethylamino)methyl]amino]phenyl]carbonyl]amino]acetyl]amino]benzenepropanoate;
 - β-[[2-[[[3-[[(cyanoimino)[(phenylmethyl)amino]methyl]amino]phenyl]carbonyl]amino]acetyl]amino]benzenepropanoic acid;
 - β-[[2-[[[3-[[(cyanoimino) (methylamino) methyl]amino]phenyl]carbonyl]amino]acetyl]amino]benzenepropanoic acid;
- β-[[2-[[[3-[[amino(cyanoimino)methyl]amino]phenyl]carbonyl]amino]acetyl]amino]benzenepropanoic acid;
- β-[[2-[[[3-[[(cyanoimino)(ethylamino)methyl]amino]phenyl]carbonyl]amino]acetyl]amino]benzenepropanoic acid;
- ethyl 3S-[[2-[[[3-[[(cyanoimino)(methylamino)methyl]amino]phenyl]carbonyl]amino]acetyl]amino]-4-pentynoate;
- 3S-[[2-[[[3-[[(cyanoimino) (methylamino)methyl]amino]phenyl]carbonyl]amino]acetyl]amino]-4-pentynoic acid;
- - β-[[2-[[[3-[[(cyanoimino)[2-pyridinylmethyl)amino]methyl]amino]phenyl]carbonyl]amino]acetyl]amino]benzenepropanoic acid;

- ethyl β -[[2-[[[3-[[(cyanoimino)[3-pyridinylmethyl)amino]methyl]amino]phenyl]-carbonyl]amino]acetyl]amino]b nzenepropanoate;
- β-[[2-[[[3-[[(cyanoimino)[3-pyridinylmethyl)amino]methyl]amino]phenyl]carbonyl]amino]acetyl]amino]benzenepropanoic acid;
 - ethyl 3S-[[2-[[[3-[[[(4-(aminosulfonyl) phenylmethyl]amino](cyanoimino)methyl] amino]phenyl]carbonyl]amino]acetyl] amino]-4-pentynoate;
- 3S-[[2-[[[3-[[[(4-(aminosulfonyl)phenylmethyl]amino](cyanoimino)methyl]amino]phenyl]carbonyl]amino]acetyl]amino]-4-pentynoic acid;
- ethyl β -[[2-[[[3-[[amino(cyanoimino)methyl]amino]-phenyl]carbonyl]amino]acetyl]amino]-3,5-dichlorobenzenepropanoate;
- β-[[2-[[[3-[[amino(cyanoimino)methyl]amino]phenyl]carbonyl]amino]acetyl]amino]-3,5dichlorobenzenepropanoic acid;
- - ethyl 3-[[2-[[[3-[[amino(cyanoimino)methyl]amino]-phenyl]carbonyl]amino]acetyl]amino]-4-pentynoate;

- 921 -

- (±)ethyl β-[[2-[[[3-[(4,5-dihydro-1H-imidazol-2-yl)amino]phenyl]carbonyl]amino]acetyl]amino]pyridine-3-propanoate;
- (±)β-[[2-[[[3-[(4,5-dihydro-1H-imidazol-2-yl)amino]phenyl]carbonyl]amino]acetyl]amino]pyridine-3-propanoic acid;
- (±) ethyl β-[[2-[[[3-[(4,5-dihydro-1H-imidazol-2-yl)amino]phenyl]carbonyl]amino]acetyl]amino]--3,5-bis(trifluoromethyl)benzenepropanoate;
- (±) β -[[2-[[[3-[(4,5-dihydro-1H-imidazol-2-yl)-amino]phenyl]carbonyl]amino]acetyl]amino]-3,5-bis(trifluoromethyl)benzenepropanoic acid;
- (±) ethyl β-[[2-[[[3-[(4,5-dihydro-1H-imidazol-2-yl)amino]phenyl]carbonyl]amino]acetyl]amino]-3,5-dichlorobenzenepropanoate;
- (±) β -[[2-[[[3-[(4,5-dihydro-1H-imidazol-2-yl)-amino]phenyl]carbonyl]amino]acetyl]amino]3,5-dichlorobenzenepropanoic acid;
- (±) 3,5-dibromo-β-[[2-[[[3-[(1,4,5,6t trahydropyrimidin-2-yl)amino]phenyl]carbonyl]amino]acetyl]amino]benzenepropanoic acid;

- (±) [2-[2-(2-hydroxyethoxy) ethoxy]ethoxy]ethyl] 3,5-dichloro-β-[[2-[[[3[(1,4,5,6-tetrahydropyrimidin-2-yl)amino]phenyl]carbonyl]amino]acetyl]amino]benzenepropanoate;

 - (±) 3-bromo-5-chloro-2-hydroxy-β[[2-[[[3-[(1,4,5,6-tetrahydropyrimidin-2-yl)amino]phenyl]carbonyl]amino]acetyl]amino]benzenepropanoic acid;
 - ethyl (±) 3-bromo-5-chloro-2-hydroxy-β[[2-[[[3-[(1,4,5,6-tetrahydropyrimidin-2-yl)amino]phenyl]carbonyl]amino]acetyl]amino]benzenepropanoate;
 - (±) 3,5-dichloro-2-hydroxy-β-[[2[[[3-[(1,4,5,6-tetrahydropyrimidin-2-yl)amino]phenyl]carbonyl]amino]acetyl]amino]benzenepropanoic acid;
- (±) 3,5-dichloro-β-[[2-[[[3-[(4,5-dihydro-1H-pyrrolidin-2-yl)amino]phenyl]carbonyl]amino]amino]acetyl]amino]-2-hydroxybenzenepropanoic acid;

PCT/US96/13500

WO 97/08145

- (±) 3-bromo-5-chloro-β-[[2-[[[3-[(4,5-dihydro-1H-pyrrolidin-2-yl)amino]phenyl]carbonyl]amino]acetyl]amino]-2-hydroxybenzenepropanoic acid;
 - β-[[2-[[[3-[[5-phenyl-1H-imidazol-2-yl)-amino]phenyl]carbonyl]amino]acetyl]amino]pyridine-3-propanoic acid;
 - ethyl β -[[2-[[[3-[[5-phenyl-1H-imidazol-2-yl)-amino]phenyl]carbonyl]amino]acetyl]amino]-pyridine-3-propanoate;
- (±) ethyl 3,5-dichloro-β-[[2-[[[3[(1,4,5,6-tetrahydro-5,5-dimethylpyrimidin-2-yl)amino]phenyl]carbonyl]amino]acetyl]amino]benzenepropanoate;
- (±) 3,5-dichloro-β-[[2-[[[3-[(1,4,5,6-tetrahydro-5,5-dimethylpyrimidin-2-yl)amino]phenyl]carbonyl]amino]acetyl]amino]benzenepropanoic acid;
- - (±) 3-bromo-5-dichloro-2-hydroxyβ-[[2-[[[3-[(1,4,5,6-tetrahydro-5,5-dimethylpyrimidin-2-yl)amino]phenyl]carbonyl]amino]acetyl]amino]benzenepropanoic acid;

- (±) ethyl β-[[2-[[[3-[(3,4,5,6-tetrahydro-2H-azepin-7-yl)amino]phenyl]carbonyl]amino]acetyl]amino]pyridine-3-propanoate;
 - (±) β-[[2-[[[3-[(3,4,5,6-tetrahydro-2H-azepin-7-yl)amino]phenyl]carbonyl]amino]acetyl]amino]pyridine-3-propanoic acid;
- - (±) β -[[2-[[[3-[(3,4,5,6-tetrahydro-2H-azepin-7-yl)amino]phenyl]carbonyl]amino]acetyl]amino]
 1,3-benzodioxole-5-propanoic acid;
 - (±) β -[[2-[[[3-[(3,4,5,6-tetrahydro-2H-azepin-7-yl)amino]phenyl]carbonyl]amino]acetyl]amino]benzenepropanoic acid;

 - β-[[2-[[[3-[(3,4-dihydro-2H-pyrrol-5-yl)amino]-phenyl]carbonyl]amino]acetyl]amino]-pyridine-3-propanoic acid;
 - (±)ethyl β-[[2-[[[4-chloro-3-[(3,4,5,6-tetrahydro-2H-azepin-7-yl)amino]phenyl]carbonyl]amino]acetyl]amino]pyridine-3-propanoate;
 - (±) β-[[2-[[[4-chloro-3-[(3,4,5,6-tetrahydro-2Hazepin-7-yl)amino]phenyl]carbonyl]amino]acetyl]amino]pyridine-3-propanoic acid;

- (±) β-[[2-[[[3,5-bis[(3,4,5,6-tetrahydro-2H-azepin-7-yl)amino]ph nyl]carbonyl]amino]acetyl]amino]pyridine-3-propanoic acid;
 - βS-[[2-[[[3-[(3,4,5,6-tetrahydro-2H-azepin-7-yl)amino]phenyl]carbonyl]amino]acetyl]amino]-4-pentynoic acid;
- (±) ethyl β -[[2-[[[3-[(3,4,5,6-tetrahydro-2H-azepin-7-yl)amino]phenyl]carbonyl]amino]acetyl]amino]-3,5-dichlorobenzenepropanoate;
 - (±) β-[[2-[[[3-[(3,4,5,6-tetrahydro-2H-azepin--7-yl)amino]phenyl]carbonyl]amino]acetyl]amino]-3,5-dichlorobenzenepropanoic acid;
 - (±) ethyl β-[[2-[[[3-[(3,4-dihydro-2H-pyrrol-5-yl)amino]phenyl]carbonyl]amino]acetyl]amino]-3,5-dichlorobenzenepropanoate;
 - (±) β-[[2-[[[3-[(3,4-dihydro-2H-pyrrol-5-yl)amino]phenyl]carbonyl]amino]acetyl]amino]3,5-dichlorobenzenepropanoic acid;
 - (±) ethyl 3,5-dichloro-β-[[2-[[[3[(2,3,4,5-tetrahydropyridin-6-yl)amino]phenyl]carbonyl]amino]acetyl]amino]benzenepropanoate;
 - (±) 3,5-dichloro-β-[[2-[[[3-[(2,3,4,5tetrahydropyridin-6-yl)amino]phenyl]carbonyl]amino]acetyl]amino]benzenepropanoic acid;
 - (±) 3,5-dichloro-2-hydroxy-β-[[2[[[3-[(3,4,5,6-tetrahydro-2H-azepin-7-yl)amino]phenyl]carbonyl]amino]acetyl]amino]benzenepropanoic acid;

- ethyl(±) 3,5-dichloro-2-hydroxy-β-[[2-[[[3-[(3,4,5,6-t trahydro-2H-azepin-7-yl)amino]phenyl]carbonyl]amino]acetyl]amino]benzenepropanoate;
- (±) ethyl β-[[2-[[[3-[(iminophenylmethyl)amino]phenyl]carbonyl]amino]acetyl]amino]pyridine-3-propanoate;
- βS-[[2-[[[3-[[imino(1-pyrrolidinyl)methyl]amino]phenyl]carbonyl]amino]acetyl]amino]-4-pentynoic acid;
- (±) β-[[2-[[[3-[(iminophenylmethyl]amino]phenyl]carbonyl]amino]acetyl]amino]pyridine-3-propanoic acid;
- 3,5-dichloro-β-[[2-[[[3-[[imino(1-piperidinyl)methyl]amino]phenyl]carbonyl]-amino]acetyl]amino]benzenepropanoic acid;
- ethyl 3,5-dichloro-β-[[2-[[[3-[[imino(1piperidinyl)methyl]amino]phenyl]carbonyl]amino]acetyl]amino]benzenepropanoate;
 - ethyl β-[[2-[[[3-[(4,5-dihydrothiazol-2yl)amino]phenyl]carbonyl]amino]acetyl]amino]pyridine-3-propanoate;
- β-[[2-[[[3-[(4,5-dihydrothiazol-2-yl)amino]phenyl]carbonyl]amino]acetyl]amino]pyridine-3-propanoic acid;
 - β-[[2-[[[3-[[benzoxazol-2-yl)amino]-phenyl]carbonyl]amino]acetyl]amino]pyridine-3-propanoic acid;

ethyl β -[[2-[[[3-[[benzoxazol-2-yl)amino]-phenyl]carbonyl]amino]acetyl]amino]-pyridine-3-propanoate.

β-[[2-[[[3-[(5,6-dihydro-4H-thiazin-2-y1)-amino]phenyl]carbonyl]amino]acetyl]amino]pyridine-3-propanoic acid;

and

ethyl β -[[2-[[[3-[(5,6-dihydro-4H-thiazin-2-yl)-amino]phenyl]carbonyl]amino]acetyl]amino]
pyridine-3-propanoate.

- 43. A method according to Claim 41 wherein the condition treated is tumor metastasis.
- 44. A method according to Claim 42 wherein the condition treated is tumor metastasis.
- 45. A method according to Claim 41 wherein the condition treated is solid tumor growth.
- 46. A method according to Claim 42 wherein the condition treated is solid tumor growth.
- 47. A method according to Claim 41 wherein the condition treated is angiogenesis.
- 48. A method according to Claim 42 wherein the condition treated is angiogenesis.
- 49. A method according to Claim 41 wherein the condition treated is osteoporosis.
- 50. A method according to Claim 42 wherein the condition treated is osteoporosis.

- 51. A method according to Claim 41 wherein the condition tr ated is humoral hypercalcemia f malignancy.
- 52. A method according to Claim 42 wherein the condition treated is humoral hypercalcemia of malignancy.
- 53. A method according to Claim 41 wherein the condition treated is smooth muscle cell migration.
- 54. A method according to Claim 42 wherein the condition treated is smooth muscle cell migration.
- 55. A method according to Claim 53 wherein restenosis is inhibited.
- 56. A method according to Claim 54 wherein restenosis is inhibited.
- 57. A method according to Claim 41 wherein the condition treated is reumatoid arthritis.
- 58. A method according to Claim 42 wherein the condition treated is rheumatoid arthritis.

INTERNATIONAL SEARCH REPORT

International Application No
PCT/US 96/13500

		. !	PCT/US 96/	13500 -
IPC 6	FICATION OF SUBJECT MATTER C07D213/55	12 C07D401/ 10 C07D317/	14 CO7D2	1/36 07/16
	SEARCHED			
Minimum do IPC 6	ocumentation searched (classification system followed by classificate CO7D A61K CO7C	ion symbols)		
Documentati	ion searched other than minimum documentation to the extent that	such documents are includ	led in the fields sea	urched
Electronic da	ata base consulted during the international search (name of data bas	e and, where practical, se	arch terms used)	
	ENTS CONSIDERED TO BE RELEVANT			
Category *	Citation of document, with indication, where appropriate, of the relevant passages			Relevant to claim No.
X	EP 0 445 796 A (F.HOFFMANN-LA ROCHE) 11 September 1991 see page 7, line 37 - line 40; claim 1			1-58
E	WO 96 26190 A (SMITHKLINE BEECHAM) 29 August 1996 see claim 1			1-58
P,A	WO 96 00574 A (SMITHKLINE BEECHAM) 11 January 1996 see claim 1			1-58
Α .	EP 0 643 072 A (TAKEDA) 15 March 1995 see claim 1			1-58
A	WO 94 18981 A (MERCK & CO.) 1 September 1994			1-58
	see page 28, line 22; claim 1			
Furt	ther documents are listed in the continuation of box C.	X Patent family m	embers are listed i	n annex.
'A' docum	ntegories of cited documents: nent defining the general state of the art which is not dered to be of particular relevance	"T" later document publi or priority date and cited to understand invention	not in conflict wit	h the application but
"E" earlier document but published on or after the international filing date "L" document which may throw doubts on priority claim(s) or		"X" document of particu cannot be considere involve an inventive	X' document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone Y' document of particular relevance; the claimed invention	
O' docum other	on or other special reason (as specified) ment referring to an oral disclosure, use, exhibition or means ment published prior to the international filing date but	cannot be considered document is combinents, such combinents in the art.	ed to involve an in ned with one or m nation being obvior	ventive step when the ore other such docu- us to a person skilled
later t	than the priority date claimed	& document member		
	e actual completion of the international search		1.1997	m un arguer
Name and	mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2	Authorized officer	***	
European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+ 31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+ 31-70) 340-3016		Gettins, M		

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No PCT/US 96/13500

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
EP-A-445796	11-09-91	CA-A- 2037153 IL-A- 97401 JP-B- 2501252	10-09-91 15-03-95 29-05-96
		JP-A- 4217652 US-A- 5430024	07-08-92 04-07-95
		US-A- 5273982 HR-A- 930353	28-12-93 30-06-96
WO-A-9626190	29-08-96	NONE	
WO-A-9600574	11-01-96	AU-A- 3001095 WO-A- 9600730	25-01-96 11-01-96
EP-A-643072	15-03-95	AU-A- 6477194 CA-A- 2126026 CN-A- 1098409 FI-A- 942881	22-12-94 18-12-94 08-02-95 18-12-94
		HU-A- 70045 JP-A- 7157472 NO-A- 942274	28-09-95 20-06-95 19-12-94 27-08-96
WO-A-9418981	01-09-94	AU-A- 6246594 BG-A- 99863	14-09-94 29-02-96
		CA-A- 2155123 CN-A- 1118139 CZ-A- 9502108 EP-A- 0684823	01-09-94 06-03-96 14-02-96 06-12-95
		FI-A- 953916 HU-A- 71796 JP-T- 8507072 NO-A- 953270	21-08-95 28-02-96 30-07-96 19-10-95