6.11 1)
$$f(x) = \frac{1}{4}x^2 + x + 1 = \frac{1}{4}(x^2 + 4x + 4) = \frac{1}{4}(x+2)^2$$

$$f'(x) = \frac{1}{4}(x^2 + 4x + 4)' = \frac{1}{4}(2x + 4) = \frac{1}{2}(x + 2)$$

$$\begin{array}{c|cccc}
 & -2 \\
\hline
 & + & + \\
\hline
 & x+2 & -0 & + \\
\hline
 & f' & -0 & + \\
 & f & \downarrow & \uparrow \\
 & f & \downarrow$$

$$f(-2) = \frac{1}{4} ((-2) + 2)^2 = 0$$

 $f(-2) = \frac{1}{4} \left((-2) + 2 \right)^2 = 0$ Le point (-2;0) est un minimum (absolu).

$$f''(x) = \frac{1}{2}(x+2)' = \frac{1}{2} \cdot 1 = \frac{1}{2}$$

$$\frac{\frac{1}{2} + \frac{1}{2}}{f'' + \frac{1}{2}}$$

2)
$$f(x) = -x^2 + x + 2 = -(x^2 - x - 2) = -(x - 2)(x + 1) = (2 - x)(x + 1)$$

$$f'(x) = -2x + 1$$

$$\begin{array}{c|cccc}
-2x+1 & + & 0 & - \\
f' & + & 0 & - \\
f & & & & \\
\end{array}$$

$$f(\frac{1}{2}) = -(\frac{1}{2})^2 + \frac{1}{2} + 2 = \frac{9}{4}$$

$$\begin{split} f(\frac{1}{2}) &= -(\frac{1}{2})^2 + \frac{1}{2} + 2 = \frac{9}{4} \\ \text{Le point } (\frac{1}{2}\,;\frac{9}{4}) \text{ est un maximum (absolu)}. \end{split}$$

$$f''(x) = -2$$

$$\begin{array}{c|c}
-2 & -\\
f'' & -\\
f & -
\end{array}$$

3)
$$f(x) = x^3 - 3x = x(x^2 - 3) = x(x + \sqrt{3})(x - \sqrt{3})$$

$-\sqrt{3}$ 0 $\sqrt{3}$				
x	_	- () +	+
$x + \sqrt{3}$	- (+	+	+
$x-\sqrt{3}$	I	_	- () +
f	- (+ () — () +

$$f'(x) = 3x^2 - 3 = 3(x^2 - 1) = 3(x + 1)(x - 1)$$

$$f(-1) = (-1)^3 - 3 \cdot (-1) = 2$$

Le point (-1; 2) est un maximum (local).

$$f(1) = 1^3 - 3 \cdot 1 = -2$$

Le point (1; -2) est un minimum (local).

$$f''(x) = 6x$$

$$\begin{array}{c|cccc}
6 x & - 0 & + \\
\hline
f'' & - 0 & + \\
f & & & \\
\end{array}$$

$$f(0) = 0^3 - 3 \cdot 0 = 0$$

Le point (0;0) est un point d'inflexion.

4)
$$f(x) = 3x^4 + 4x^3 = x^3(3x + 4)$$

4)
$$f(x) = 3x^{4} + 4x^{3} = x^{3} (3x + 4)$$

$$\begin{array}{c|cccc}
 & -\frac{4}{3} & 0 \\
\hline
 & x^{3} & - & - & 0 & + \\
\hline
 & 3x + 4 & - & 0 & + & + \\
\hline
 & f & + & 0 & - & 0 & + \\
\end{array}$$

$$f'(x) = 12 x^3 + 12 x^2 = 12 x^2 (x+1)$$

$$f(-1) = 3 \cdot (-1)^4 + 4 \cdot (-1)^3 = -1$$

Le point (-1; -1) est un minimum (absolu).

$$f(0) = 3 \cdot 0^4 + 4 \cdot 0^3 = 0$$

Le point (0;0) est un replat.

$$f''(x) = 36 x^2 + 24 x = 12 x (3 x + 2)$$

$$f(-\frac{2}{3}) = 3 \cdot (-\frac{2}{3})^4 + 4 \cdot (-\frac{2}{3})^3 = \frac{48}{81} - \frac{32}{27} = -\frac{16}{27}$$

Le point $(-\frac{2}{3}; -\frac{16}{27})$ est un point d'inflexion.

$$f(0) = 3 \cdot 0^4 + 4 \cdot 0^3$$

Le point (0;0) est un point d'inflexion.

5)
$$f(x) = -\frac{1}{9} (x^2 - 2x + 1) (2x + 7) = -\frac{1}{9} (x - 1)^2 (2x + 7)$$

$$-\frac{7}{2} \qquad 1$$

$$-\frac{1}{9} \qquad - \qquad - \qquad -$$

$$(x - 1)^2 \qquad + \qquad + \qquad 0 \qquad +$$

$$2x + 7 \qquad - \qquad 0 \qquad + \qquad +$$

$$f \qquad + \qquad 0 \qquad - \qquad 0 \qquad -$$

$$f'(x) = -\frac{1}{9} \left((x-1)^2 (2x+7) \right)'$$

$$= -\frac{1}{9} \left(\left((x-1)^2 \right)' (2x+7) + (x-1)^2 (2x+7)' \right)$$

$$= -\frac{1}{9} \left(2(x-1) \underbrace{(x-1)'}_{1} (2x+7) + (x-1)^2 2 \right)$$

$$= -\frac{1}{9} \cdot 2(x-1) \left((2x+7) + (x-1) \right) = -\frac{2}{9} (x-1) \underbrace{(3x+6)}_{3(x+2)}$$

$$= -\frac{2}{3} (x-1) (x+2)$$

$$f(-2) = -\frac{1}{9} \left((-2)^2 - 2 \cdot (-2) + 1 \right) \left(2 \cdot (-2) + 7 \right) = -3$$

Le point (-2; -3) est un minimum (local).

$$f(1) = -\frac{1}{9}(1^2 - 2 \cdot 1 + 1)(2 \cdot 1 + 7) = 0$$

Le point $(1; 0)$ est un maximum (local).

$$f''(x) = -\frac{2}{3} \left((x-1)(x+2) \right)' = -\frac{2}{3} \left(\underbrace{(x-1)'}_{1} (x+2) + (x-1) \underbrace{(x+2)'}_{1} \right)$$

$$= -\frac{2}{3} \left((x+2) + (x-1) \right) = -\frac{2}{3} (2x+1)$$

$$-\frac{2}{3} - \frac{1}{2}$$

$$-\frac{2}{3} - \frac{1}{2}$$

$$f'' + 0$$

$$\begin{array}{l} f(-\frac{1}{2}) = -\frac{1}{9} \left((-\frac{1}{2})^2 - 2 \cdot (-\frac{1}{2}) + 1 \right) \left(2 \cdot (-\frac{1}{2}) + 7 \right) = -\frac{3}{2} \\ \text{Le point } (-\frac{1}{2}\,; -\frac{3}{2}) \text{ est un point d'inflexion.} \end{array}$$

6)
$$f(x) = \frac{1}{6} (2x^3 - 3x^2 - 12x + 18) = \frac{1}{6} (x^2 (2x - 3) - 6(2x - 3))$$

$$= \frac{1}{6} (2x - 3) (x^2 - 6) = \frac{1}{6} (2x - 3) (x + \sqrt{6}) (x - \sqrt{6})$$

$$-\sqrt{6} \quad \frac{3}{2} \quad \sqrt{6}$$

$$\frac{\frac{1}{6}}{x + \frac{1}{2}} + \frac{1}{x + \sqrt{6}} + \frac{1$$

$$f'(x) = \frac{1}{6} (2x^3 - 3x^2 - 12x + 18)' = \frac{1}{6} (6x^2 - 6x - 12) = x^2 - x - 2$$
$$= (x+1)(x-2)$$

$$\begin{array}{c|ccccc}
 & -1 & 2 \\
x+1 & -0 & + & + \\
\hline
x-2 & - & -0 & + \\
f' & +0 & -0 & + \\
f & \nearrow^{\max} & \searrow^{\min} \nearrow
\end{array}$$

$$f(-1) = \frac{1}{6} \left(2 \cdot (-1)^3 - 3 \cdot (-1)^2 - 12 \cdot (-1) + 18 \right) = \frac{25}{6}$$

Le point $(-1; \frac{25}{6})$ est un maximum (local).

$$f(2) = \frac{1}{6} (2 \cdot 2^3 - 3 \cdot 2^2 - 12 \cdot 2 + 18) = -\frac{1}{3}$$

Le point $(2; -\frac{1}{3})$ est un minimum (local).

$$f''(x) = (x^{2} - x - 2)' = 2x - 1$$

$$\begin{array}{c|c}
\frac{1}{2} \\
2x - 1 & - 0 + \\
f'' & - 0 + \\
f & & & & \\
\end{array}$$

$$\begin{array}{l} f(\frac{1}{2}) = \frac{1}{6} \left(2 \cdot (\frac{1}{2})^3 - 3 \cdot (\frac{1}{2})^2 - 12 \cdot \frac{1}{2} + 18 \right) = \frac{23}{12} \\ \text{Le point } (\frac{1}{2}; \frac{23}{12}) \text{ est un point d'inflexion.} \end{array}$$

7)
$$f(x) = -\frac{1}{4}(x^4 - 6x^2 + 8) = -\frac{1}{4}(x^2 - 4)(x^2 - 2)$$

= $-\frac{1}{4}(x + 2)(x - 2)(x + \sqrt{2})(x - \sqrt{2})$

$-2 -\sqrt{2} \sqrt{2} \qquad 2$					
$-\frac{1}{4}$	-		_	-	_
x+2	- () +	+	+	+
$x + \sqrt{2}$		_ () +	+	+
$x-\sqrt{2}$			- () +	+
x-2			_	- () +
\overline{f}	- () + () — () + () —

$$f'(x) = -\frac{1}{4} (x^4 - 6x^2 + 8)' = -\frac{1}{4} (4x^3 - 12x) = -x (x^2 - 3)$$

$$= -x (x + \sqrt{3}) (x - \sqrt{3})$$

$$-\sqrt{3} \quad 0 \quad \sqrt{3}$$

$$-x \quad + \quad + \quad 0 - \quad -$$

$$x + \sqrt{3} \quad - \quad 0 \quad + \quad + \quad +$$

$$x - \sqrt{3} \quad - \quad - \quad 0 \quad +$$

$$f' \quad + \quad 0 \quad - \quad 0 \quad +$$

$$f' \quad + \quad 0 \quad - \quad 0 \quad +$$

$$f \quad \nearrow^{\max} \quad - \quad \nearrow^{\max} \quad -$$

$$f(-\sqrt{3}) = -\frac{1}{4}((-\sqrt{3})^4 - 6 \cdot (-\sqrt{3})^2 + 8) = \frac{1}{4}$$

Le point $(-\sqrt{3}; \frac{1}{4})$ est un maximum (absolu).

$$f(0) = -\frac{1}{4} \left(0^4 - 6 \cdot 0^2 + 8 \right) = -2$$

Le point (0; -2) est un minimum (local).

$$f(\sqrt{3}) = -\frac{1}{4}((\sqrt{3})^4 - 6 \cdot (\sqrt{3})^2 + 8) = \frac{1}{4}$$

Le point $(\sqrt{3}; \frac{1}{4})$ est un maximum (absolu).

$$f''(x) = (-x^3 + 3x)' = -3x^2 + 3 = 3(1 - x^2) = 3(1 + x)(1 - x)$$

$$f(-1) = -\frac{1}{4} \left((-1)^4 - 6 \cdot (-1)^2 + 8 \right) = -\frac{3}{4}$$

Le point $(-1; -\frac{3}{4})$ est un point d'inflexion.

$$f(1) = -\frac{1}{4} \left(1^4 - 6 \cdot 1^2 + 8 \right) = -\frac{3}{4}$$

Le point $(1; -\frac{3}{4})$ est un point d'inflexion.

8) $f(x) = 4x^3 - 3x + 1 = 0$ admet pour solutions entières possibles les diviseurs de 1, à savoir 1 et -1.

$$f(1) = 4 \cdot 1^3 - 3 \cdot 1 + 1 = 2 \neq 0$$

$$f(-1) = 4 \cdot (-1)^3 - 3 \cdot (-1) + 1 = 0$$

Factorisons $4x^3 - 3x + 1$ à l'aide du schéma de Horner :

Ainsi
$$f(x) = 4x^3 - 3x + 1 = (x+1)(4x^2 - 4x + 1) = (x+1)(2x-1)^2$$

$$f'(x) = (4x^3 - 3x + 1)' = 12x^2 - 3 = 3(4x^2 - 1) = 3(2x + 1)(2x - 1)$$

$$f(-\frac{1}{2}) = 4 \cdot (-\frac{1}{2})^3 - 3 \cdot (-\frac{1}{2}) + 1 = 2$$

Le point $\left(-\frac{1}{2}\right)$ est un maximum (local).

$$f(\frac{1}{2}) = 4 \cdot (\frac{1}{2})^3 - 3 \cdot \frac{1}{2} + 1 = 0$$

Le point $(\frac{1}{2};0)$ est un minimum (local).

$$f''(x) = (12x^2 - 3)' = 24x$$

$$\begin{array}{c|cccc}
24 & x & -0 & + \\
\hline
f'' & -0 & + \\
f & & & \\
\end{array}$$

$$f(0) = 4 \cdot 0^3 - 3 \cdot 0 + 1 = 1$$

Le point (0;1) est un point d'inflexion.

9)
$$f(x) = (x-1)^3 (x+1)$$

$$f'(x) = ((x-1)^3 (x+1))' = ((x-1)^3)' (x+1) + (x-1)^3 (x+1)'$$

$$= 3 (x-1)^2 \underbrace{(x-1)'}_{1} (x+1) + (x-1)^3 \cdot 1 = (x-1)^2 (3 (x+1) + (x-1))$$

$$= (x-1)^2 \cdot (4x+2) = 2 (x-1)^2 (2x+1)$$

$$\begin{array}{c|c}
f' & -0+0+\\
f & \\
\end{array}$$

$$f(-\frac{1}{2}) = (-\frac{1}{2} - 1)^3 (-\frac{1}{2} + 1) = -\frac{27}{16}$$

$$\begin{split} f(-\frac{1}{2}) &= (-\frac{1}{2}-1)^3 \, (-\frac{1}{2}+1) = -\frac{27}{16} \\ \text{Le point } (-\frac{1}{2}\,; -\frac{27}{16}) \text{ est un minimum (absolu)}. \end{split}$$

$$f(1) = (1-1)^3 (1+1) = 0$$

Le point (0;0) est un replat.

$$f''(x) = 2\left((x-1)^2(2x+1)\right)' = 2\left(\left((x-1)^2\right)'(2x+1) + (x-1)^2(2x+1)'\right)$$

$$= 2 \left(2 (x-1) \underbrace{(x-1)'}_{1} (2x+1) + (x-1)^{2} \cdot 2 \right)$$

$$= 4 (x-1) \left((2x+1) + (x-1) \right) = 4 (x-1) (3x) = 12x (x-1)$$

$$12x \begin{vmatrix} 0 & 1 \\ - 0 & + \end{vmatrix} + \begin{vmatrix} x-1 & - & 0 \\ \hline f'' & + & 0 & 0 \\ - & & & 0 \end{vmatrix} + \begin{vmatrix} 0 & 0 & 0 \\ - & & & 0 \\ \hline f'' & & & & 0 \end{vmatrix}$$

$$f(0) = (0-1)^3 (0+1) = -1$$

Le point (0; -1) est un point d'inflexion.

$$f(1) = (1-1)^3 (1+1) = 0$$

Le point (1;0) est un point d'inflexion.

10)
$$f(x) = \frac{1}{8}(x^4 - 6x^3 + 12x^2) = \frac{1}{8}x^2(x^2 - 6x + 12)$$

 $x^2 - 6x + 12$ n'admet aucun zéro, car $\Delta = (-6)^2 - 4 \cdot 1 \cdot 12 = -12 < 0$

$$f'(x) = \frac{1}{8} (x^4 - 6x^3 + 12x^2)' = \frac{1}{8} (4x^3 - 18x^2 + 24x) = \frac{1}{4} x (2x^2 - 9x + 12)$$

$$2x^2 - 9x + 12 \text{ n'admet aucun z\'ero, vu que } \Delta = (-9)^2 - 4 \cdot 2 \cdot 12 = -15 < 0$$

	0		
$\frac{1}{4}$	+	+	
x	- () +	
$2x^2 - 9x + 12$	+	+	
f'	_ () +	
f	\searrow m	in 7	

$$f(0) = \frac{1}{8} \left(0^4 - 6 \cdot 0^3 + 12 \cdot 0^2 \right) = 0$$

Le point (0;0) est un minimum (absolu).

$$f''(x) = \frac{1}{4} (2 x^3 - 9 x^2 + 12 x)' = \frac{1}{4} (6 x^2 - 18 x + 12) = \frac{3}{2} (x^2 - 3 x + 2)$$
$$= \frac{3}{2} (x - 1) (x - 2)$$

	$1 \qquad 2$			
$\frac{3}{2}$	+	+	+	
x-1	- (+	+	
x-2	_	- () +	
f''	+ (j – (+	
f	→ in	ifl ir I	fl 🔾	

$$f(1) = \frac{1}{8} \left(1^4 - 6 \cdot 1^3 + 12 \cdot 1^2 \right) = \frac{7}{8}$$

 $f(1) = \frac{1}{8} (1^4 - 6 \cdot 1^3 + 12 \cdot 1^2) = \frac{7}{8}$ Le point $(1; \frac{7}{8})$ est un point d'inflexion.

$$f(2) = \frac{1}{8} \left(2^4 - 6 \cdot 2^3 + 12 \cdot 2^2 \right) = 2$$

Le point (2;2) est un point d'inflexion.

