ME-340 Project

Spring 2025

A turbine drives an electrical generator through a gear pair. The radius ratio of the gears is $\frac{R_4}{R_3}=1.5$. The mass moment of inertia of gear 3 is $J_3=100$ kg-m² and of gear 4 is $J_4=200$ kg-m². The mass moment of inertia of the turbine is $J_1=2000$ kg-m² and for the generator is $J_2=1000$ kg-m². The torsional stiffness of shaft 1 is 3×10^5 N-m/rad and of shaft 2 is 8×10^4 N-m/rad. Assume that dampers are applied to the turbine ($B_1=300$ N-m/rad/s), the generator ($B_2=8\times10^2$ N-m/rad/s), and Gear 3 ($B_3=100$ N-m/rad/s).

- a. Write the equations of motion for the system shown. Equations should be expressed in terms of angular displacements θ_1 , θ_2 , θ_3 . (40 points).
- b. Develop the state-space model for the system. Assume the outputs are the <u>angular</u> <u>velocities</u> of the turbine, generator, and Gear 3 (30 points).
- c. Develop the Simulink model for the system (30 points).
- d. Determine the angular velocity of the turbine and generator using the state-space and Simulink models to a unit step input applied to the turbine $\tau_1(t) = U(t)$. (10 points).
- e. Determine the angular velocity of the turbine and generator using the state-space and Simulink models to a unit step input applied to the generator $\tau_2(t) = U(t)$. (10 points).
- f. Determine the angular velocity response of the generator using the state-space model to a unit impulse applied to the gear $\tau_3(t) = \delta(t)$ (10 points).
- g. Find the frequency response (i.e., Bode plots) between the angular velocity of the generator for a sinusoidal input at Gear 3 using the state-space model. Check your answer

- by finding the steady state response for a sinusoidal input at the first mode using Simulink (10 points).
- h. Reduce the damping constants by a factor of 10. Find the frequency response (i.e., Bode plots) between the angular velocity of the generator and an input at Gear 3 using the state-space model. Determine the steady state response for an input of $\tau_3(t) = \sin(30t)$ (10 points)
- i. Increase the damping constants by a factor of 10. Find the frequency response (i.e., Bode plots) between the angular velocity of the generator and an input at Gear 3 using the state-space model. Determine the steady state response for an input of $\tau_3(t) = \sin(30t)$ (10 points)
- j. Sketch (by hand using PowerPoint) the first two vibratory modes of the system (10 points).
- k. Redesign the system to increase both the first and second resonant frequencies by over 20% (20 points).