Unsupervised Clustering of White Wine

Based on Physicochemical Features

Why Group Wine?

Wine quality assessment is critical for consumer satisfaction and economic success

- Traditional sensory analysis is subjective, inconsistent, and costly.
- Data-driven approaches offer potential for objective, early, and cost-effective quality prediction.

Goal: apply **unsupervised learning** to discover natural groupings of white wines based on physicochemical features *without using quality labels*.

Practical Motivation:

- Identify distinct chemical profiles.
- Predict quality trends before sensory evaluation.
- Support producers with agile, data-driven quality control.

Data Overview and Challenges

Dataset

- UCI Wine Quality Dataset
- 4,898 white wine samples
- 11 physicochemical properties (e.g., acidity, sugar, alcohol)
- No missing values

Key Challenges:

- Class Imbalance: Majority of wines clustered around mid-range quality scores (5 and 6).
- Subtle Feature Variation: Physicochemical differences between quality levels are minor and continuous, not sharply distinct.
- Limited Scope: Dataset lacks sensory notes, grape varieties, or vintage year — only chemical measurements available

Exploratory Data Analysis

- 1. Wines with higher quality scores tend to have higher alcohol levels
- 2. Lower volatile acidity is associated with better wines
- 3. **Sulphates** slightly increase with quality
- 4. Lighter, drier wines tend to achieve better quality ratings.
- 5. Higher-quality wines have slightly **higher pH values** (less acidic), although the difference is subtle.
- 6. Chlorides and free sulfur dioxide show little visible separation across qualities

Most chemical attributes, aside from alcohol and volatile acidity, show **substantial overlap between classes**, suggesting **complex and subtle relationships** rather than sharp boundaries.

Machine Learning Models: Approach

Best Model Comparison

Higher silhouette does not always indicate meaningful clustering

Model	Kernel	Gamma	Components	Clusters (k)	Silhouette Score
KMeans (original data)	RBF	0.5	4	5	0.457
KMeans (balanced)	RBF	0.5	4	4	0.559
Agglomerative (original)	Sigmoid	0.05	5	2	0.755
Agglomerative (balanced)	Sigmoid	0.05	5	2	0.767

- •KMeans after SMOTE improved silhouette score (0.559)
- •Agglomerative after SMOTE still failed collapsed into a single cluster again, despite high silhouette (0.767)

Results

KMeans is a better fit for capturing subtle structure in the original data.

Results: After Balancing

KMeans is a better fit for capturing subtle structure in the balanced data.

Wine Quality Explained (or not?)

Perfect separation between quality labels was not achieved:

- Wine quality cannot be fully explained by physicochemical data alone.
- Additional factors (e.g., grape variety, vintage year, fermentation practices) likely influence final quality

Conclusion and Future Work

Physicochemical data alone is not sufficient for fully predicting or explaining wine quality.

Unsupervised learning can partially uncover structure in white wine chemical profiles:

- **SMOTE balancing** improved clustering quality (higher silhouette score and better visual separation).
- KMeans clustering performed better
- Agglomerative clustering consistently collapsed into a single cluster

Future improvements:

- Incorporate grape variety, vintage year, and production methods into feature set.
- Explore **neural network-based clustering** approaches (e.g., deep embedded clustering)

Thank you!

Please reach out with any questions and suggestions:

LinkedIn: https://www.linkedin.com/in/mashalogan/

GitHub: https://github.com/mashuzza

Project files: https://github.com/mashuzza/python-projects/tree/main/unsupervised-learning-wine-quality-classification