Einführung in die Biostatistik mit R

Ambrus Kaposi

Institut für Entwicklung und Weiterbildung auf dem Gebiet der Medizinishen Informatik, Semmelweis Universität, Budapest, Ungarn

2011.03.29

Allgemeine Informationen

Grundgedanke der Biostatistik

Klinische Studien

Planung

Durchführung

Auswertung

Phasen einer Arzneimittelstudie

Allgemeine Informationen

Grundgedanke der Biostatistik

Klinische Studien

Planung

Durchführung

Auswertung

Phasen einer Arzneimittelstudie

Kontakt

- Ambrus Kaposi MD
- http://akaposi.web.elte.hu
- kaposi.ambrus@gmail.com

Noten

- ▶ letzte Vorlesung:
 - multiple-choice test
 - jede Vorlesung im ganzen Semester mit gleichem Gewicht
- zusätzliche Punkte von Aufgaben
 - an Ende meiner Vorlesungen
 - Eingabe durch Email
 - können Note verbessern

Allgemeine Informationer

Grundgedanke der Biostatistik

Klinische Studien

Planung

Durchführung

Auswertung

Phasen einer Arzneimittelstudie

Was ist Statistik?

- "Es gibt drei Arten von Lügen: Lügen, große Lügen und Statistiken."
 (Mark Twain)
- "Ich traue keiner Statistik, die ich nicht selbst gefälscht habe." (Fälschlich Winston Churchill zugeschrieben. Aller Wahrscheinlichkeit nach eine Erfindung von Joseph Goebbels oder aus seinem Propagandaministerium im Zusammenhang mit der Weisung an die deutsche Presse, Churchill als Lügner hinzustellen.)

(Source des Bildes: http://complex.elte.hu/elemistatisztika)

7 / 34

Was ist Statistik?

- nicht Mathematik
- sondern Sammlung von Methoden mit Konditionen, wenn man eine Methode benutzen darf
- wir werden über solche Methoden und Konditionen lernen

Wozu braucht ein Arzt Statistik?

- zum Verstehen der medizinischen Fachliteratur ("How to Read a Paper") insbesondere von Originalarbeiten in Fachzeitschriften über
 - experimentelle
 - klinische
 - epidemiologische
 - sonstige (z. B. gesundheitsökonomische) Studien
- "Evidence-based Medicine"
 Bewertung und Kommunikation von Chancen und Risiken
- bei eigenen Untersuchungen
 - Doktorarbeit
 - Industrie
 - Gesundheitsbehörden

(Source: http://imsieweb.uni-koeln.de/lehre/epidemiologie)

Grundgedanke

- Frage: ist die Medizin wirksam?
- def. Wahrscheinlichkeit informell: günstige Fälle / alle Fälle
- Frage: was ist die Wahrscheinlichkeit, dass die Medizin wirkt?

		geheilt	krank geblieben
Antwort: Stichprobe	ohne Medizin	3	7
	mit Medizin	5	5

- Neue Frage:
 - 1. Nehmen wir an die Medizin ist nicht wirksam. (Nullhypothese)
 - Was ist die Wahrscheinlichkeit, dass von der Stichprobe wir eine solche oder mehr extreme Ergebnis bekommen? (p-Wert, Signifikanzwert, p-value)
- ► Wenn der p-Wert gering ist, die Nullhypothese ist wahrscheinlich falsch ⇒ der Gegensatz ist richtig (*Alternativhypothese*)
- Beispiele: später

Allgemeine Informationer

Grundgedanke der Biostatistik

Klinische Studien

Planung

Durchführung

Auswertung

Phasen einer Arzneimittelstudie

Klinische Studien

- experimentelle Projekte
- prospektiv geplant und durchgeführt
- ▶ Ziel: Bestimmung optimaler Behandlungen für zukünftige Patienten
- Behandlungs-, Kontrollgruppe

	geheilt	krank geblieben
ohne Medizin	3	7
mit Medizin	5	5

- ► Randomisierung
- Verblindung

Klinische Studien

Planung

Formalisierung der Fragen

- ▶ Wir beobachten ein bestimmtes Ergebnis (z. B. Response-rate). Was ist die Präzision? (Konfidenzintervall)
- ▶ Ist die Medizin wirksam? Mit welcher Wahrscheinlichkeit? (p-Wert)
- ▶ Prädiktion: Prognose für zukünftige Patienten? (Konfidenzintervall)

Irrtum

	Fehler in	Realität		
Hypothesentests		Hyp. richtig	Hyp. falsch	
Ablehno Ablehn	Hypothese ablehnen	Fehler 1. A rt α	✓	
	Hypothese annehmen	✓	Fehler 2. Art β	

(Source des Bildes: http://www.campegym.de/pmwiki/pmwiki.php?n=Ma.HypoTest)

- ► Fehler 1. Art: wenn die in Wirklichkeit richtige Nullhypothese fälschlicherweise abgelehnt wird (siehe auch p-Wert)
- ► Fehler 2. Art: wenn die in Wirklichkeit falsche Nullhypothese irrtümlich akzeptiert wird

Fallzahlplanung

- ▶ Eine Pharmafirma hat ein neues Medikament entwickelt, von dem vermutet wird, dass es die Heilungschance bei einer bestimmten Krankheit von 20% (Erfolgschance bei Standardmedikation) auf 30% erhöht.
- Man plant eine Studie mit n Patienten.
- Wie groß ist die Chance, den vermuteten Effekt (10%) nachzuweisen?
- def. Power: Was ist die Wahrscheinlichkeit, dass bei Gültigkeit einer bestimmten Alternativhypothese, diese mit dem Test auch tatsächlich erkannt wird?
- ▶ Bei n=30 Patienten: Power=40%
- ▶ Bei n=100 Patienten: Power=77%

95% Konfidenzinterval für Ansprechrate von 20%

P20 ALPHA-.05

Probenahme

gemütlich

systematisch

- geschichtet (Stratifikation)
- randomisiert (kann einfach "gemütlich" bekommen)

(Source der Bilder: http://complex.elte.hu/elemistatisztika)

Verblindung

- Verblindung des Patienten (einfach blind)
- Verblindung des Patienten und des Arztes (doppelblind)
- Verblindung spielt bei Zwischenauswertungen:
 - Independent (Data) Review Board
 - ► Studienbiometrie wertet verblindet aus oder gibt die Auswertung an unabhängige Dritte ab

(Source: Jörg Rüdiger Siewert: Praxis Der Viszeralchirurgie: Onkologische Chirurgie, 2. Band, Springer 2006)

Allgemeine Informationer

Grundgedanke der Biostatistik

Klinische Studien

Planung

Durchführung

Auswertung

Phasen einer Arzneimittelstudie

Datenerhebung, Dokumentation

- das Studienziel bestimmt die Dokumentation und nicht umgekehrt
- einzigartige Identifizierung für jeden Patient
- häufige Verwechslungen von Datumsangaben:
 - Was beduetet 03.04.10?
 - Aufnahme in die Studie, Randomisation, Untersuchung vor Behandlungsbeginn, erstes Labor nach Behandlungsbeginn
 - Abschluss der Therapie und Abschluss der Studie
 - Ausfülldatum des Arztes und letztem Follow-up Datum des Patienten

Klinische Studien

Auswertung

Auswertung

- "automatisch" nach der Planung
- verblindet
- Multiplizität: wendet man Test auf dem Signifikanzniveau 5% zweimal, so ist die Chance von falsch positivem Ergebnis größer, als 5%
 - mehrfache Endpunkte, Frage
 - mefrfache Behandlungen
 - Zwischenauswertungen
 - Untergruppen
 - usw.

(Alphafehler-Kumulierung, Lösung: z. B. Bonferroni-Korrektur)

später: statistische Methoden

Alphafehler-Kumulierung

(Source des Bildes: http://xkcd.com)

WE FOUND NO

LINK BETWEEN

MAUNE JELLY

(P>0.05)

WE FOUND NO

LINK RETUFFN

ORANGE JELLY

(P>0.05)

BEANS AND ACNE

BEANS AND ACNE

Allgemeine Informationer

Grundgedanke der Biostatistik

Klinische Studien

Planung

Durchführung

Auswertung

Phasen einer Arzneimittelstudie

Phase Personen Dauer Hauptziel 0 ca. 10 -Wochen Pharmakokinetik, Pharmakodynamik, Tests mit sub-15 therapeutischen Dosen, z. B. Microdosing ca. 20 -Wochen Pharmakodynamik, Pharmakokinetik, Ver-80 bis träglichkeit und Sicherheit des Medikaments Monate П ca. 50 -Monate Überprüfung des Therapiekonzepts (Proof of Con-200 cept, Phase IIa), Findung der geeigneten Therapiedosis (Dose Finding, Phase IIb), positive Effekte der Therapie sollten zu beobachten sein Ш ca. 200 -Monate Signifikanter Wirkungsnachweis (Pivotal Study) und 10.000 bis Jahre Marktzulassung der Therapie; nach Marktzulassung werden laufende Studien dann zu IIIb-Studien IV Jahre ab Erfolgen mit bereits zugelassenen Medikamenten ca. 1000 bis in der zugelassenen Indikation. Zulassungsbehörden Millioverlangen oftmals derartige Studien, z. B. zur Feststellung sehr seltener Nebenwirkungen, die erst in nen großen Patientenkollektiven erkennbar sind. Häufig werden Phase IV Studien aber auch zu Marketingzwecken verwendet

Allgemeine Informationer

Grundgedanke der Biostatistik

Klinische Studien

Planung

Durchführung

Auswertung

Phasen einer Arzneimittelstudie

▶ R ist eine freie Programmiersprache für statistisches Rechnen und statistische Grafiken

- ► R ist auch eine interaktive Entwicklungsumgebung
- ▶ R ist Teil des GNU-Projekts und auf vielen Plattformen verfügbar. Vor allem im akademischen Bereich gilt sie heute als statistische Standardsoftware.
- open source (Quelltext)

Grundkenntnisse von Programmierung in R

- a) Kommandozeile, Befehlen, Ergebnis
- b) Mathematische Operators: +, -, *, /, ^
- c) Funktionen: sqrt(), abs(), sin(), log10(), log(), exp()
- d) oben Knopf
- e) Bezeichners: pi, eigene Bezeichners, <- (Zuweisung)
- f) Datentypen: class(), "numeric", "logical", TRUE, FALSE, "character", Fehlers
- g) Vektor: c(), v[i], length(), sum(), v[c(i, j, k)]
- h) Deskriptiv-statistische Funktionen: mean(), sd(), var(), range(),
 min(), max(), median(), quantile()
- i) ?, Funktionen mit mehrere Parameters, summary(), fivenum()
- j) Abbildungen: hist(), plot(), Vektoren von Folgen: 1:10

Methoden für Datenpresentation in R 1/2

- a) Matrix Datentyp: matrix(), 2D-Indexierung: m[i,j], m[i,], m[j,]
- b) graphische Darstellung kategorische Daten: barplot(, legend.text=TRUE, beside=TRUE), mosaicplot()
- c) Statistische Teste für die folgende Typ: abhängige Variable: kategorisch, unabhängige variable: kategorisch: Fisher-test (fisher.test()), Khiquadrat-test (chisq.test())
- d) Tabelle machen von kategorische Daten: table()
- e) speichern als CSV in Excel, read.csv2(), head()
- f) fehlende/spezielle Daten: NA, NaN, Inf
- g) Entscheiden ob eine Variable Normalverteilung hat: hist() (sollte symmetrisch sein), qqnorm(), shapiro.test()
- h) graphische Darstellung numerische Daten: hist(), boxplot(), plot(density()), lines(density()), Filtrierung der Daten: which(), mehrere Abbildungen auf eine Abbildung: par(mfrow=...)

2011.03.29

Methoden für Datenpresentation in R 2/2

- i) Statistische Teste für die folgende Typ: abhängige Variable: numerisch, Normalverteilung, unabhängige variable: kategorisch, zwei Kategorien: t-test (t.test())
- j) Statistische Teste für die folgende Typ: abhängige Variable: numerisch, nicht-Normalverteilung, unabhängige variable: kategorisch, zwei Kategorien: Wilcoxon-test (wilcox.test())
- k) Statistische Teste für die folgende Typ: abhängige Variable: numerisch, Normalverteilung, unabhängige variable: kategorisch, mehr als zwei Kategorien: ANOVA (aov(), TukeyHSD())
- Statistische Teste für die folgende Typ: abhängige Variable: numerisch, nicht-Normalverteilung, unabhängige variable: kategorisch, mehr als zwei Kategorien: Kruskal-Wallis-test (kruskal.test())
- m) Statistische Teste für die folgende Typ: abhängige Variable: numerisch, unabhängige variable: numerisch: Korrelation (cor.test()), Regression

Hypothesenprüfungen für unterschiedliche Datentypen

			Abhängige Variable				
			Numer Kategorisch		Numerisch	erisch	
			Kategorisch	Normalverteilt	Nicht- normalverteilt	Ereigniszeit- data	
Unabhängi- ge Variable	Kategorisch	2 Katego- rien	Khiquadrat- test chisq.test(),	t-test t.test()	Wilcoxon-test wilcox.test()	Kaplan- Meier survdiff()	
Variable		mehr als 2 Kategori- en	Fisher-test fisher.test()	ANOVA aov()	Kruskal-Wallis-test kruskal.test()		
	nume	gression relationstest cor.test(,		relationstest	Robust Regression, Korrelationstest cor.test(, method="spearman")		

Graphische Presentation für unterschiedliche Datentypen in

		Abhängige Variable		
		Numerisch Kategorisch		erisch
		Rategorisch	Nicht- Ereigniszeit	Ereigniszeitdata
Unabhängige Variable	Kategorisch	barplot(), mosaicplot	boxplot, hist(), plot(density())	plot(survfit())
	Numerisch	plot()	plot()	