МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №5

по дисциплине «Качество и метрология программного обеспечения» Тема: «Оценка параметров надежности программ по временным моделям обнаружения ошибок»

Студент гр. 8304	Бутко А. М.
Преподаватель	Кирьянчиков В. А

Цель работы.

Выполнить исследование показателей надежности программ, характеризуемых моделью обнаружения ошибок Джелинского-Моранды, для различных законов распределения времен обнаружения отказов и различного числа используемых для анализа данных.

Ход работы.

Равномерный закон распределения.

Был сгенерирован массив из 30-ти элементов, равномерно распределенных в интервале [0,20]. Массив был упорядочен по возрастанию. Результаты представлены в таблице 1.

Таблица 1 – Равномерное распределение, n = 30 (100%).

i	1	2	3	4	5	6	7	8	9	10
X_i	0.759	1.322	2.225	2.767	4.068	4.430	4.453	5.224	5.249	5.461
i	11	12	13	14	15	16	17	18	19	20
X_i	8.921	8.931	9.168	9.433	9.823	10.464	11.834	11.953	12.922	13.089
i	21	22	23	24	25	26	27	28	29	30
X_i	13.69	14.09	15.405	16.276	17.469	18.903	19.019	19.167	19.383	19.921

Формула коэффициента: $A=\frac{\sum_{i=1}^n iX_i}{\sum_{i=1}^n X_i}=20.32$. Условие сходимости $A>\frac{n+1}{2}$ выполнено: 20.32>15.5.

Были вычислены значения функций $f_n(m) = \sum_{i=1}^n \frac{1}{m-i}$ и $g(m,A) = \frac{n}{m-A}$. Результаты расчета приведены в таблице 2.

Таблица 2 – Расчёт значений функций для равномерного распределения (100%).

m	31	32	33	34	35	36
$f_n(m)$	3.99499	3.02725	2.5585	2.25546	2.03488	1.86345
g(m,A)	2.80977	2.56915	2.36649	2.19346	2.04401	1.91363
$ f_n(m)-g(m,A) $	1.18521	0.458096	0.192008	0.0620044	0.0091352	0.050181

Минимум разности достигается при m=35. Первоначальное количество ошибок B=m-1=34. Коэффициент $K=\frac{n}{(B+1)\sum_{i=1}^n X_i-\sum_{i=1}^n iX_i}=0.0064719405$.

Было рассчитано среднее время обнаружения следующих ошибок $X_j = \frac{1}{K(B-j+1)}, \text{ где } j = n+1, n+2 \dots, n+k. \text{ Результат представлен в таблице 3}.$

Таблица 3 — Расчет времени обнаружения следующих ошибок для равномерного распределения (100%).

j	31	32	33	34
X_j (дней)	38.6283	51.5044	77.2566	154.513

Было рассчитано время до завершения тестирования $t_k=321.902$ дней. Было рассчитано общее время тестирования $t_{\rm общ}=637.729$ дней.

Был сгенерирован массив из 24-ти элементов, равномерно распределенных в интервале [0,20]. Массив был упорядочен по возрастанию. Результаты представлены в таблице 4.

	Таблица 4 – Равноме	рное распределе	ение, $n = 24$ (80	%).
--	---------------------	-----------------	--------------------	-------------

i	1	2	3	4	5	6	7	8
X_i	0.262	0.933	1.629	3.009	4.506	5.042	5.231	6.131
i	9	10	11	12	13	14	15	16
X_i	6.342	6.564	8.053	9.3933	11.0004	14.9811	15.258	16.1871
i	17	18	19	20	21	22	23	24
X_i	17.4129	17.496	18.1876	18.3816	18.499	18.6764	19.439	19.7701

Формула коэффициента: $A = \frac{\sum_{i=1}^n i X_i}{\sum_{i=1}^n X_i} = 16.6$. Условие сходимости $A > \frac{n+1}{2}$ выполнено: 16.6 > 12.5.

Были вычислены значения функций $f_n(m) = \sum_{i=1}^n \frac{1}{m-1}$ и $g(m,A) = \frac{n}{m-A}$. Результаты расчета приведены в таблице 5.

Таблица 5 — Расчёт значений функций для равномерного распределения (80%).

m	25	26	27	28
$f_n(m)$	3.77596	2.81596	2.35442	2.05812
g(m,A)	2.8723	2.56529	2.31757	2.11348
$ f_n(m)-g(m,A) $	0.903658	0.25067	0.0368493	0.0553578

Минимум разности достигается при m=27. Первоначальное количество ошибок B=m-1=26. Коэффициент $K=\frac{n}{(B+1)\sum_{i=1}^n X_i-\sum_{i=1}^n iX_i}=0.00883275$

Было рассчитано среднее время обнаружения следующих ошибок $X_j = \frac{1}{K(B-j+1)}, \ \text{где } j=n+1, n+2\dots, n+k. \ \text{Результат представлен в таблице 6}.$

Таблица 6 — Расчет времени обнаружения следующих ошибок для равномерного распределения (80%).

j	25	26
X_j (дней)	56.6075	113.215

Было рассчитано время до завершения тестирования $t_k=169.823$ дней. Было рассчитано общее время тестирования $t_{
m oбщ}=432.206$ дней.

Был сгенерирован массив из 18-ти элементов, равномерно распределенных в интервале [0,20]. Массив был упорядочен по возрастанию. Результаты представлены в таблице 7.

Таблица 7 — Равномерное распределение, n = 18 (60%).

i	1	2	3	4	5	6	7	8	9
X_i	1.31749	3.53964	4.6963	6.629	7.002	9.217	10.470	12.814	12.814
i	10	11	12	13	14	15	16	17	18
X_i	13.1064	13.1199	13.6251	14.5197	15.5893	16.138	16.405	18.433	19.326

Формула коэффициента: $A=\frac{\sum_{i=1}^n iX_i}{\sum_{i=1}^n X_i}=11.70.$ Условие сходимости $A>\frac{n+1}{2}$ выполнено: 11.70>9.5.

Были вычислены значения функций $f_n(m) = \sum_{i=1}^n \frac{1}{m-1}$ и $g(m,A) = \frac{n}{m-A}$. Результаты расчета приведены в таблице 8.

Таблица 8 – Расчёт значений функций для равномерного распределения (60%).

m	19	20	21	22	23	24	25
$f_n(m)$	3.4951	2.5477	2.0977	1.8120	1.6075	1.4510	1.3260
g(m,A)	2.46511	2.16818	1.93509	1.74725	1.59265	1.46319	1.35319
$ f_n(m) $	1.03	0.379564	0.162653	0.064777	0.014829	0.012229	0.02723
-g(m,A)							

Минимум разности достигается при m=24. Первоначальное количество ошибок B=m-1=23. Коэффициент $K=\frac{n}{(B+1)\sum_{i=1}^n X_i-\sum_{i=1}^n iX_i}=0.007008913$.

Было рассчитано среднее время обнаружения следующих ошибок $X_j = \frac{1}{K(B-j+1)}, \text{ где } j = n+1, n+2 \dots, n+k. \text{ Результат представлен в таблице 9}.$

Таблица 9 — Расчет времени обнаружения следующих ошибок для равномерного распределения (60%).

j	19	20	21	22	23
X_j (дней)	28.5351	35.6689	47.5585	71.3377	142.675

Было рассчитано время до завершения тестирования $t_k = 325.78$ дней.

Было рассчитано общее время тестирования $t_{\text{общ}} = 534.537$ дней.

Экспоненциальный закон распределения.

Был сгенерирован массив из 30-ти элементов, распределенных по экспоненциальному закону с параметром b=0.1. Значения случайной величины Y с экспоненциальным законом распределения с параметром «b» были получены по значениям случайной величины t, равномерно распределенной в интервале [0,1], по формуле: Y=-ln(t)/b. Массив был упорядочен по возрастанию. Результаты представлены в таблице 10.

Таблица 10 – Экспоненциальное распределение, n = 30 (100%).

i	1	2	3	4	5	6	7	8	9	10
X_i	0.01	0.53	0.71	0.72	1.20	1.26	1.84	2.28	2.68	2.76
i	11	12	13	14	15	16	17	18	19	20
X_i	3.37	3.91	4.57	5.42	5.66	6.41	7.96	9.24	9.90	9.97
i	21	22	23	24	25	26	27	28	29	30
X_i	10.25	10.49	11.07	11.78	11.784	12.69	18.33	22.87	24.43	25.33

Формула коэффициента: $A=\frac{\sum_{i=1}^n iX_i}{\sum_{i=1}^n X_i}=22.59$. Условие сходимости $A>\frac{n+1}{2}$ выполнено: 22.59>15.5.

Были вычислены значения функций $f_n(m) = \sum_{i=1}^n \frac{1}{m-1}$ и $g(m,A) = \frac{n}{m-A}$. Результаты расчета приведены в таблице 11.

Таблица 11 — Расчёт значений функций для экспоненциального распределения (100%).

m	31	32	33
$f_n(m)$	3.995	3.027	2.5585
g(m,A)	3.5693	3.18979	2.88323
$ f_n(m)-g(m,A) $	0.42569	0.162546	0.324733

Минимум разности достигается при m=32. Первоначальное количество ошибок B=m-1=31. Коэффициент $K=\frac{n}{(B+1)\sum_{i=1}^n X_i-\sum_{i=1}^n iX_i}=0.0133216622$.

Было рассчитано среднее время обнаружения следующих ошибок $X_j = \frac{1}{K(B-j+1)}$, где $j=n+1,n+2\dots,n+k$. Результат представлен в таблице 12. (В таблице представлен не все X_j , так как по условию нужно указать 5 первых)

Таблица 12 — Расчет времени обнаружения следующих ошибок для экспоненциального распределения (100%).

j	31
X_j (дней)	75.0657

Время было рассчитано на основе всех X_j , а не только первых 5.

Было рассчитано время до завершения тестирования $t_k=75.0657$ дней. Было рассчитано общее время тестирования $t_{
m oбщ}=314.5096$ дней.

17

8.664

i

 X_i

18

9.347

Был сгенерирован массив из 24-ти элементов, распределенных по экспоненциальному закону с параметром b=0.1. Массив был упорядочен по возрастанию. Результаты представлены в таблице 13.

i	1	2	3	4	5	6	7	8
X_i	0.079	0.187	0.339	1.590	2.050	2.819	3.088	3.377
i	9	10	11	12	13	14	15	16
X_i	3.484	3.819	3.845	4.019	4.534	4.838	5.093	6.491

20

10.506

21

18.122

22

39.549

23

45.009

24

56.788

Таблица 13 – Экспоненциальное распределение, n=24 (80%).

19

9.742

Формула коэффициента: $A = \frac{\sum_{i=1}^n iX_i}{\sum_{i=1}^n X_i} = 19.85$. Условие сходимости $A > \frac{n+1}{2}$ выполнено: 19.85 > 12.5.

Были вычислены значения функций $f_n(m) = \sum_{i=1}^n \frac{1}{m-1}$ и $g(m,A) = \frac{n}{m-A}$. Результаты расчета приведены в таблице 14.

Таблица 14 — Расчёт значений функций для экспоненциального распределения (80%).

m	25	26
$f_n(m)$	3.776	2.816
g(m,A)	4.65895	3.90157
$ f_n(m)-g(m,A) $	0.882995	1.08561

Минимум разности достигается при m=25. Первоначальное количество ошибок B=m-1=24. Коэффициент $K=\frac{n}{(B+1)\sum_{i=1}^n X_i-\sum_{i=1}^n iX_i}=0.01883339$.

Было рассчитано общее время тестирования $t_{\text{общ}} = 247.377$ дней.

Условие B > n не выполняется.

Был сгенерирован массив из 18-ти элементов, распределенных по экспоненциальному закону с параметром b=0.1. Массив был упорядочен по возрастанию. Результаты представлены в таблице 15.

Таблица 15 - Экспоненциальное распределение, <math>n = 18 (60%).

i	1	2	3	4	5	6	7	8	9
X_i	0.575	1.259	2.085	2.271	2.603	3.609	5.450	5.901	6.279
i	10	11	12	13	14	15	16	17	18
X_i	8.160	9.351	12.473	16.862	17.839	21.145	28.099	29.212	59.509

Формула коэффициента: $A=\frac{\sum_{i=1}^n iX_i}{\sum_{i=1}^n X_i}=14.32$. Условие сходимости $A>\frac{n+1}{2}$ выполнено: 14.32>9.5.

Были вычислены значения функций $f_n(m) = \sum_{i=1}^n \frac{1}{m-1}$ и $g(m,A) = \frac{n}{m-A}$. Результаты расчета приведены в таблице 16.

Таблица 16 – Расчёт значений функций для экспоненциального распределения (60%).

m	19	20
$f_n(m)$	3.495	2.547
g(m,A)	3.84821	3.17041
$ f_n(m)-g(m,A) $	0.353098	0.622668

Минимум разности достигается при m=19. Первоначальное количество ошибок B=m-1=18. Коэффициент $K=\frac{n}{(B+1)\sum_{i=1}^n X_i-\sum_{i=1}^n iX_i}=0.016538$.

Условие B > n не выполняется.

Было рассчитано общее время тестирования $t_{\text{общ}} = 232.682$ дней.

Релеевский закон распределения.

100% входных данных.

Был сгенерирован массив из 30-ти элементов, распределенных по релеевскому закону с параметром c = 8.0. Значения случайной величины Y с релеевским законом распределения с параметром «с» были получены по значениям случайной величины t, равномерно распределенной в интервале [0,1], по формуле: Y = c * sqrt(-2*ln(t)). Массив был упорядочен по возрастанию. Результаты представлены в таблице 17.

Таблица 17 – Релеевское распределение, n = 30 (100%).

i	1	2	3	4	5	6	7	8	9	10
X_i	0.956	1.625	2.201	2.394	2.690	2.917	3.697	3.846	4.444	4.669
i	11	12	13	14	15	16	17	18	19	20
X_i	4.818	5.448	6.366	6.512	6.713	7.115	7.440	7.539	8.193	8.445
i	21	22	23	24	25	26	27	28	29	30
X_i	9.318	9.770	9.983	10.086	10.932	11.331	13.388	17.191	18.016	18.504

Формула коэффициента: $A = \frac{\sum_{i=1}^n i X_i}{\sum_{i=1}^n X_i} = 20.56$. Условие сходимости $A > \frac{n+1}{2}$ выполнено: 20.56 > 15.5.

Были вычислены значения функций $f_n(m) = \sum_{i=1}^n \frac{1}{m-1}$ и $g(m,A) = \frac{n}{m-A}$. Результаты расчета приведены в таблице 18.

Таблица 18 – Расчёт значений функций для релеевского распределения (100%).

m	31	32	33	34	35
$f_n(m)$	3.99	3.02	2.55	2.25	2.035
g(m,A)	2.87484	2.62344	2.41248	2.23292	2.07823
$ f_n(m) - g(m,A) $	1.12014	0.403801	0.146018	0.0225497	0.0433547

Минимум разности достигается при m=34. Первоначальное количество ошибок B=m-1=33. Коэффициент $K=\frac{n}{(B+1)\sum_{i=1}^n X_i-\sum_{i=1}^n iX_i}=0.009856$.

Было рассчитано среднее время обнаружения следующих ошибок $X_j = \frac{1}{K(B-j+1)}, \text{ где } j = n+1, n+2 \dots, n+k. \text{ Результат представлен в таблице 19}.$

Таблица 19 – Расчет времени обнаружения следующих ошибок для релеевского распределения (100%).

j	31	32	33
<i>X_j</i> (дней)	33.8189	50.7283	101.457

Было рассчитано время до завершения тестирования $t_k=186.004$ дней. Было рассчитано общее время тестирования $t_{
m oбщ}=412.548$ дней.

Был сгенерирован массив из 24-ти элементов, распределенных по релеевскому закону с параметром c=8.0. Массив был упорядочен по возрастанию. Результаты представлены в таблице 20.

i	1	2	3	4	5	6	7	8
X_i	0.540	3.619	4.793	5.507	5.791	5.896	6.043	6.454
i	9	10	11	12	13	14	15	16
X_i	6.564	7.393	7.756	9.309	10.167	10.277	10.641	11.154
i	17	18	19	20	21	22	23	24
Υ.	12 344	12 752	14 085	14 476	16 521	16 602	17 535	19.408

Таблица 20 – Релеевское распределение, n = 24 (80%).

Формула коэффициента: $A = \frac{\sum_{i=1}^n i X_i}{\sum_{i=1}^n X_i} = 15.80$. Условие сходимости $A > \frac{n+1}{2}$ выполнено: 15.80 > 12.5.

Были вычислены значения функций $f_n(m) = \sum_{i=1}^n \frac{1}{m-1}$ и $g(m,A) = \frac{n}{m-A}$. Результаты расчета приведены в таблице 21.

Таблица 21 – Расчёт значений функций для релеевского распределения (80%).

m	25	26	27	28	29	30	31
$f_n(m)$	3.776	2.816	2.354	2.058	1.844	1.678	1.545
g(m,A)	2.6105	2.354	2.144	1.968	1.819	1.691	1.580
$ f_n(m)-g(m,A) $	1.1655	0.462	0.210	0.090	0.024	0.013	0.035

Минимум разности достигается при m=30. Первоначальное количество ошибок B=m-1=29. Коэффициент $K=\frac{n}{(B+1)\sum_{i=1}^n X_i-\sum_{i=1}^n iX_i}=0.00717615147$.

Было рассчитано среднее время обнаружения следующих ошибок $X_j = \frac{1}{K(B-j+1)},$ где j=n+1,n+2...,n+k. Результат представлен в таблице 22.

Таблица 22 – Расчет времени обнаружения следующих ошибок для релеевского распределения (80%).

j	25	26	27	28	29
X_j (дней)	27.8701	34.8376	46.4502	69.6752	139.35

Было рассчитано время до завершения тестирования $t_k=318.184$ дней. Было рассчитано общее время тестирования $t_{\rm oбщ}=553.8107$ дней.

Был сгенерирован массив из 18-ти элементов, распределенных по релеевскому закону с параметром c=8.0. Массив был упорядочен по возрастанию. Результаты представлены в таблице 23.

Таблица 23 – Релеевское распределение, n = 18 (60%).

i	1	2	3	4	5	6	7	8	9
X_i	2.392	3.469	4.471	4.969	5.692	6.207	6.235	6.251	6.258
i	10	11	12	13	14	15	16	17	18
X_i	6.753	8.269	8.478	8.687	8.841	10.618	11.635	16.640	16.938

Формула коэффициента: $A=\frac{\sum_{i=1}^n iX_i}{\sum_{i=1}^n X_i}=11.82$. Условие сходимости $A>\frac{n+1}{2}$ выполнено: 11.82>9.5.

Были вычислены значения функций $f_n(m) = \sum_{i=1}^n \frac{1}{m-1}$ и $g(m,A) = \frac{n}{m-A}$. Результаты расчета приведены в таблице 24.

Таблица 24 – Расчёт значений функций для релеевского распределения (60%).

m	19	20	21	22	23	24
$f_n(m)$	3.495	2.548	2.098	1.812	1.607	1.451
g(m,A)	2.508	2.201	1.962	1.769	1.611	1.478
$ f_n(m)-g(m,A) $	0.987	0.346	0.136	0.043	0.003	0.0272

Минимум разности достигается при m=23. Первоначальное количество ошибок B=m-1=22. Коэффициент $K=\frac{n}{(B+1)\sum_{i=1}^n X_i-\sum_{i=1}^n iX_i}=0.01127794$.

Было рассчитано среднее время обнаружения следующих ошибок $X_j = \frac{1}{K(B-j+1)}, \ \text{где } j=n+1, n+2\dots, n+k. \ \text{Результат представлен в таблице 25}.$

Таблица 25 – Расчет времени обнаружения следующих ошибок для релеевского распределения (60%).

m	19	20	21	22
<i>X_j</i> (дней)	22.1672	29.5562	44.3343	88.6686

Было рассчитано время до завершения тестирования $t_k=184.726$ дней. Было рассчитано общее время тестирования $t_{
m oбщ}=327.5279$ дней.

Результаты расчетов.

В таблицах 26 и 27 представлены сводные результаты оценки первоначального числа ошибок и полного времени проведения тестирования соответственно.

Таблица 26 – Оценка первоначального числа ошибок.

n	Входные	Распределение				
	данные, %	Равномерное	Экспоненциальное	Релеевское		
30	100	33	31	33		
24	80	26	24	29		
18	60	23	18	22		

Таблица 27 – Оценка полного времени проведения тестирования.

n	Входные	Распределение				
	данные, %	Равномерное	Экспоненциальное	Релеевское		
30	100	637.7	314.5	412.5		
24	80	432.2	247.4	553.8		
18	60	534.5	232.7	327.5		

Результаты при экспоненциальном распределении лучше, чем при равномерном или релеевском. Это связано с тем, что модель Джелинского-Моранды основана на предположении о том, что время до следующего отказа программы распределено экспоненциально. Относительно равномерного распределения, релеевское показывает лучшие результаты.

Выводы.

В ходе выполнения данной работы было выполнено исследование показателей надежности программ, характеризуемых моделью обнаружения ошибок Джелински-Морданы, для различных законов распределения времен обнаружения отказов и различного числа используемых для анализа данных.

Как можно отметить, исходя из результатов исследования, лучшие результаты показал экспоненциальный закон распределения, что подтверждает предположению

модели Джелински-Морданы о том, что время до следующего отказа программы распределено экспоненциально.