Bellevue College GPA Predictors

March 12, 2012

Diane Brown Linda Heffernan Senghuot Lim Brendan Crosser-McGay

Course: BA 240 Instructor: Dan Yamasaki

Table of Contents

Introduction	3
Data Collection	3
Analysis	4
Dataset Variables	4
Descriptive Analysis of Continuous Variables	4
Correlation Between GPA and Independent Variables	
Scatter Plots Of GPA vs. Independent Variables	
Modeling	
First Model	
Final Model	8
Discussion	9
Formula Derived	
Inflation or Base GPA	10
Testing Formula	
Outliers	
Conclusion	
Appendix	
Dataset Of Bellevue College Students	12
First Model Residuals	15
Final Model Residuals	17

Introduction

The grade point average (GPA) is used in most educational systems to measure the overall performance of a student. Many colleges and universities use prospective students GPA score, in addition to other metrics, such as the SAT and ACT scores, to predict future performance of students. Students who excel in school have more options available to them when choosing a school to attend. Many aspects of a student's life affect their performance in school, also many of these aspects are difficult to quantify.

This study seeks to find a relationship between common characteristics of students and their GPAs. According to the Bellevue College Student Program, students are encouraged to make their school work a high priority, do homework daily, sit close to the front of class and take notes during lectures. In the course of this study, we will attempt to prove the effectiveness of some of these encouraged practices.

Senghuot, who came up with the idea for this study, is also a full-time college student and a tutor. Seeing as this study affects each and every one of us at Bellevue College, we want to see if there are any correlations between a number of aspects of a student's life and their GPA. For this study, we are taking a closer look at our home school of Bellevue College.

Data Collection

The data was collected at Bellevue College during the winter quarter of 2012 by Senghuot and Brendan, at multiple on-campus locations. Locations such as the lunch room, the library and various department buildings were selected randomly. The data was collected typically in the afternoon, from Monday through Friday.

The data was collected by polling, using a standard set of questions for each recipient. Ninety-six students were randomly approached and asked the same questions. We were interested in looking at as many independent variables as we could, and gathering as much data as possible, so as to reduce the impact of having to remove extreme samples from the dataset. Furthermore, to remove bias we excluded polling large groups of students sitting or walking together, and focused mainly on individual students who would agree to talk with us. We only polled students who had already taken a minimum of 45 credits or more already at Bellevue College, which excluded very new students from this study.

Analysis

Dataset Variables

Data Collected From Polling
Sex
Age
Hours Studied For Classes/Week
Credits Taken/Quarter
Row Of Desk In Relation To The Front Of Classroom
Ethnicity; Collected As White, Asian, and Other
Weekly Income
Current GPA

Descriptive Analysis of Continuous Variables

	Age	Hrs study / week / credit	Weekly Income	Overall GPA
Mean	21.23958333	0.68826487	102.9479167	3.4253125
Stand.				
Error	0.572150604	0.069724283	12.82680145	0.041117598
Median	20	0.5	67.5	3.5
Mode	19	0.333333333	0	3.5
Stand.				
Dev.	5.605908146	0.683155662	125.6764744	0.402868538
Sam. Var.	31.42620614	0.466701659	15794.57621	0.162303059
Kurtosis	27.37128579	6.956806852	2.037485041	1.308341182
Skewness	4.65750729	2.385070597	1.359274251	-0.99737964
Range	44	3.928571429	600	2
Minimum	16	0.071428571	0	2
Maximum	60	4	600	4
Sum	2039	66.07342751	9883	328.83
Count	96	96	96	96
Largest(6)	26	2.083333333	300	3.9
Smallest(6)	18	0.125	0	2.9

Correlation Between GPA and Independent Variables.

We were disappointed with the results of the correlation coefficients we calculated for our data set. Most of our variables had low scores, which meant low or no relationship to the overall GPA. Despite the low value, the values still told us what effect each independent variable had on the GPA, however tiny.

Field	Overall GPA
Age	0.034442
Sex	0.009194
White ¹	0.005877
Asian ¹	0.112549
Hours studied/week/credit ²	0.000305
Row	0.035163
Weekly Income	0.015398

Page 5 of 19

 $^{^{1}}$ Since the ethnicities gathered from polling fell into 3 basic groups, they were simplified into White, Asian and Other.

² Hours studied/week/credit is the combination of two independent variables: Hours studied for classes a week divided by the number of credits taken during the current quarter.

Scatter Plots Of GPA vs. Independent Variables

Modeling

We are using multiple regressions to analyze our data. We believe that the overall GPA is influenced by the following variables: age, sex, race, hours-spent-studying weekly-per-credit, row-sat-in, and weekly-income. After running the first analysis, we haven't discovered any extreme values in the data set. However, the P-value of some of the independent variables is very large, which indicates that they are unlikely to tell us anything statistically significant, and will need to be removed when the final model is run.

First Model

Regression Statistics						
Multiple R	0.488909					
R Square	0.239032					
Adjusted R						
Square	0.178501					
Standard Error	0.365146					
Observations	96					

ANOVA

					Significance
	df	SS	MS	F	F
Regression	7	3.685592	0.526513	3.948893	0.000857
Residual	88	11.7332	0.133332		
Total	95	15.41879			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	2.801738	0.192398	14.56222	3.65E-25	2.419388	3.184088	2.419388	3.184088
Age	0.014996	0.007271	2.062496	0.042109	0.000547	0.029446	0.000547	0.029446
Sex	-0.03333	0.08013	-0.41597	0.678447	-0.19257	0.125911	-0.19257	0.125911
White	0.23995	0.109065	2.200075	0.030421	0.023207	0.456693	0.023207	0.456693
Asian	0.449945	0.11016	4.084488	9.71E-05	0.231026	0.668864	0.231026	0.668864
Hrs study / week / credit	0.077386	0.068586	1.128309	0.262256	-0.05891	0.213687	-0.05891	0.213687
Row	0.126867	0.080306	1.579806	0.117739	-0.03272	0.286458	-0.03272	0.286458
Weekly Income	-0.0003	0.000321	-0.93755	0.351041	-0.00094	0.000337	-0.00094	0.000337

In the First Model, the P-value of Sex, Hours Study/Week/Credit, Row, and Weekly Income are too large, and their t-statistics are under the critical value. These two things tell us that these values don't give us enough evidence to support the alternate hypothesis, that they have any statistically significant impact on the overall GPA. We are left with three coefficients, which are based on two properties from our polling (age, and ethnicity), that will help us construct a mathematical model to guess any students overall GPA based on the given factors (age and ethnicity).

Final Model

Regression Statistics						
Multiple R	0.438309					
R Square	0.192115					
Adjusted R						
Square	0.165771					
Standard						
Error	0.367965					
Observations	96					

ANOVA

					Significance
	df	SS	MS	F	F
Regression	3	2.962178	0.987393	7.292521	0.000193
Residual	92	12.45661	0.135398		
Total	95	15.41879			

		Standard				Upper	Lower	Upper
	Coefficients	Error	t Stat	P-value	Lower 95%	95%	95.0%	95.0%
Intercept	2.839513	0.174355	16.28584	7.6E-29	2.49323	3.185796	2.49323	3.185796
Age	0.01689	0.006833	2.471868	0.01528	0.003319	0.030461	0.003319	0.030461
White	0.202701	0.096728	2.095572	0.038867	0.01059	0.394811	0.01059	0.394811
Asian	0.428514	0.102252	4.190773	6.38E-05	0.225433	0.631595	0.225433	0.631595

Discussion

To our surprise in the first model, there aren't any observed values with corresponding standard residuals greater than 3.0 or less than -3.0. In our first model, we removed the independent variables with a p-value greater than five percent. When we reanalyzed the modified data set, three independent variables showed statistically significant p-values: Age, Asian, and White.

Sex, Row, White, and Asian residual plots are not shown as they were binary in nature. For example, in the row column of our data, if a student sits in the first row, they get a 1, if they sat in the 2^{nd} , 3^{rd} , or 4^{th} row, they were given a 0. This was done to smooth the data, as there was not enough raw data for this variable to be useful otherwise.

The age residual graph shows what many already know to be true about Bellevue College, there are a lot of young people in their 20s attending. It also shows a wide variance in the levels of achievement of younger people. The residual graph also shows a handful of outliers that seem to show their age not being a major factor affecting their GPA, as represented by them being very close to the 0 on the y-access.

The coefficient of the row the student sits in the class has a slight positive value, although it is statistically insignificant due to its large P-value. The insignificance of the row might be due to the fact that Bellevue College typically only has a few front row desks. Each classroom typically only consists of a handful of rows; therefore we assume that most students are getting similar attention from the instructor. We postulate that our polling method would have had different results at a large university that has huge lecture classes, with much longer rows, and much deeper sets of rows.

For the ethnicity factor, the coefficient value is split into two separate variables, White and Asian. Both variables are positive, with the Asian coefficient being nearly double in both the first and final models. This seems to suggest that being Asian or White means you have a slight boost to your GPA.

Formula Derived

Based on our study, we have derived the following formula, with which we can, with some loosely based accuracy, predict the GPA of Bellevue College students by only having their age and ethnicity.

$$Y = 2.84 + .017 X_1 + .203 X_2 + .429 X_3$$

- $X_1 = Age$
- X_2 = White (Yes = 1, No = 0)
- $X_3 = Asian (Yes = 1, No = 0)$

The two characteristics, age and ethnicity can be turned into three varibles that when multiplied by the calculated coefficients, will give us a rough prediction on a student's GPA. With the formula, the Y-intercept is at 2.84, which is our practical "base GPA".

Inflation or Base GPA

We aren't sure what to make of the "base GPA" aspect of the formula we have derived from our data analysis. Considering most students will be at least 17 years old when attending Bellevue College, we figure this starts the average student out with a base 3.129 GPA. Not too shabby a GPA for showing up! A couple purely speculative reasons for this are that the grading system is getting too easy, or all the students who select Bellevue College are simply very bright to begin with. We aren't sure how this reflects on Bellevue College as a whole, but being optimists, we would like to believe that Bellevue College simply has a self-selected set of students who are high achievers in academia, and that this study is simply reflecting that.

Testing Formula

As it turns out, the equation does a relatively good job at predicting students GPA based on age and ethnicity. The equation worked fairly well when we tested it on ourselves, and when we tested it against the dataset itself. It could predict close within .01 of the correct GPA when the independent factors are given. We're confident that the equation can give a quick summary of majority of the students' performance in Bellevue College. This formula is to be used for recreational purposes only, not to be used as a substitute for real scores!

	Formula Testing Results								
Age	Asian	White	Actual GPA	Estimate GPA					
24	1	0	3.69	3.68					
22	1	0	3.68	3.64					
17	0	1	3.42	3.32					
19	0	0	3.22	3.16					
18	0	1	3.19	3.48					
21	0	0	3.02	3.19					
25	0	0	3.29	3.27					
26	0	1	3.03	3.48					
25	1	0	3.72	3.69					

Outliers

During our study, we have had a couple outlier data points that when added into our models, made them skew the regression. To remedy this, we have removed few outlier data points from the data set when the final model regression was run.

Conclusion

According to our analysis, we were very surprised that weekly study habits did not seem to have a statistically significant effect on student GPA. The only statistically significant characteristics we found in the end were age and ethnicity. The finding from this study surprised us, as we had a pretty strong idea that sitting closer to the front or studying more would have a positive impact on student GPA. There are many possible explanations why these two obvious scholastic staples did not have strong statistical impact in our study, but most of our thoughts on this would be pure speculation at this point.

Looking back on the initial data gathering, we could have possibly gathered other information that would have helped us narrow down some of our data to remove outliers from our data. Thinking about how we classified our data, it might have been useful if we had tracked what each student had declared as their major; or what area of study they were currently in. This information could have let us boil the study hours down a little more to get into why some people studied a lot for little GPA gain.

What we have gained from this study is the knowledge that there is something to being older and wiser, and that without knowing the deeper cause, genetics can be a boon or a bust to your educational career.

Appendix

Dataset Of Bellevue College Students

Subject ID	Age	Sex	White	Asian	Hrs study / week / credit	Row	Weekly Income	Overall GPA
1	18	0	0	1	0.500	1	100	3.70
2	23	1	1	0	0.625	1	300	3.50
3	19	0	1	0	0.313	1	0	3.50
4	19	1	0	0	0.750	0	130	3.50
5	19	0	1	0	0.500	1	150	3.50
6	19	0	0	0	0.467	1	175	3.70
7	25	0	1	0	2.667	0	375	3.85
8	18	0	1	0	0.400	0	0	2.50
9	22	1	1	0	0.333	0	600	3.00
10	22	1	0	1	1.000	0	0	3.50
11	22	1	0	0	1.000	0	200	3.48
12	22	1	1	0	0.750	0	125	3.70
13	20	1	1	0	0.077	0	150	3.00
14	46	0	1	0	1.250	1	300	3.80
15	20	0	1	0	0.500	0	0	3.40
16	19	1	1	0	0.400	0	140	3.85
17	19	1	0	1	0.300	0	150	3.18
18	21	1	0	0	1.000	0	0	3.10
19	18	1	1	0	0.200	1	0	3.20
20	20	1	0	0	1.267	1	0	3.50
21	19	0	1	0	0.294	0	250	3.30
22	22	0	1	0	0.500	0	300	3.50
23	18	1	1	0	0.333	0	300	2.90
24	18	1	1	0	0.133	0	0	3.70
25	20	1	1	0	0.333	0	100	3.90
26	21	1	0	0	0.333	1	0	3.00
27	19	1	1	0	0.208	0	0	3.50
28	18	0	1	0	0.300	0	240	3.30
29	18	1	0	0	0.533	0	300	3.50
30	18	0	1	0	0.833	0	0	3.80
31	19	1	1	0	0.333	1	0	3.50
32	26	0	0	0	2.667	1	0	3.50

33	19	0	0	1	0.125	0	0	3.70
34	18		0	1	0.123	0	0	3.70
		1						
35	19	0	0	1	0.167	1	0	3.50
36	19	0	1	0	0.133	1	0	3.50
37	20	0	1	0	0.938	1	0	3.70
38	23	0	1	0	0.533	1	0	3.80
39	21	1	1	0	0.400	0	0	3.90
40	20	1	1	0	0.467	0	150	2.50
41	23	1	0	1	0.667	1	250	3.77
42	17	0	1	0	0.833	0	50	3.00
43	20	0	1	0	0.367	1	125	3.10
44	22	0	1	0	0.667	0	250	3.60
45	16	1	0	0	0.125	0	0	3.20
46	26	1	0	1	0.125	0	100	3.96
47	21	1	0	1	0.125	0	100	3.70
48	21	1	0	1	0.156	0	100	3.94
49	19	0	0	1	0.667	1	190	3.68
50	19	1	0	0	0.200	1	0	2.00
51	20	0	0	0	1.700	0	300	3.00
52	18	1	0	1	0.118	0	0	3.30
53	21	1	0	1	0.588	0	0	3.30
54	18	0	0	1	0.200	0	0	3.40
55	19	0	1	0	0.294	1	180	2.90
56	20	1	0	1	0.071	1	200	3.30
57	25	0	0	0	2.000	0	0	2.50
58	21	1	0	0	4.000	0	100	3.80
59	23	1	0	1	1.400	0	100	2.20
60	60	0	0	0	2.083	0	200	3.80
61	21	1	1	0	0.500	0	300	3.00
62	20	0	0	0	0.882	0	0	3.40
63	20	0	0	1	1.176	0	0	3.60
64	23	1	0	1	0.200	1	0	4.00
65	25	1	0	0	0.400	0	20	3.20
66	23	0	0	1	1.412	0	0	3.60
67	21	1	0	1	1.400	0	0	4.00
68	19	1	0	0	0.800	1	0	3.00
69	19	1	0	1	0.267	0	200	3.00
70	21	0	0	0	0.357	0	160	3.20

						_		
71	19	0	1	0	0.133	1	120	3.20
72	19	1	0	0	2.133	0	120	3.03
73	19	0	0	0	0.667	1	85	3.50
74	19	0	0	1	1.000	0	138	3.90
75	28	1	0	1	0.583	0	0	3.90
76	25	0	0	1	1.176	1	0	3.90
77	19	0	0	1	0.333	0	100	3.50
78	35	1	0	0	1.333	0	0	3.30
79	18	1	1	0	0.125	1	345	3.50
80	20	1	0	1	1.000	1	0	3.99
81	24	1	0	1	0.333	1	50	3.90
82	22	1	0	1	0.133	1	0	3.80
83	19	0	1	0	0.533	0	140	3.40
84	30	0	1	0	0.750	1	300	3.80
85	21	1	0	1	0.233	1	0	3.50
86	19	0	1	0	0.800	0	150	3.00
87	21	1	1	0	0.500	0	125	3.15
88	19	1	1	0	0.100	0	0	3.00
89	18	0	1	0	0.533	1	0	3.45
90	18	0	1	0	0.563	1	0	3.50
91	18	0	0	1	0.389	1	0	3.90
92	25	1	1	0	0.250	1	0	3.50
93	25	0	0	0	3.000	0	500	3.00
94	17	1	0	0	0.667	0	200	3.00
95	16	0	1	0	0.667	1	0	3.70
96	19	0	0	1	0.294	1	50	3.90

First Model Residuals

RESIDUAL OUTPUT

	Predicted		Standard
Observation	Overall GPA	Residuals	Residuals
1	3.657078	0.042922	0.122134
2	3.438208	0.061792	0.175828
3	3.477668	0.022332	0.063546
4	3.072247	0.427753	1.217158
5	3.447029	0.052971	0.150727
6	3.196975	0.503025	1.431342
7	3.510087	0.339913	0.96721
8	3.342576	-0.84258	-2.39752
9	3.183476	-0.18348	-0.52208
10	3.625656	-0.12566	-0.35755
11	3.115513	0.364487	1.037136
12	3.358691	0.341309	0.971185
13	3.269086	-0.26909	-0.76568
14	3.86482	-0.06482	-0.18444
15	3.380307	0.019693	0.056036
16	3.282102	0.567898	1.615936
17	3.481348	-0.30135	-0.85748
18	3.160715	-0.06071	-0.17276
19	3.420634	-0.22063	-0.62781
20	3.293222	0.206778	0.588381
21	3.274131	0.025869	0.073611
22	3.320002	0.179998	0.512177
23	3.213788	-0.31379	-0.89287
24	3.288608	0.411392	1.170604
25	3.303978	0.596022	1.69596
26	3.235991	-0.23599	-0.6715
27	3.309408	0.190592	0.542324
28	3.262599	0.037401	0.106422
29	2.989315	0.510685	1.453137
30	3.37611	0.42389	1.206166
31	3.445948	0.054052	0.153802
32	3.524872	-0.02487	-0.07077
33	3.546286	0.153714	0.437389
34	3.503762	0.196238	0.558389
35	3.676377	-0.17638	-0.50188
36	3.463803	0.036197	0.102998
37	3.54103	0.15897	0.452343

38	3.554742	0.245258	0.697873
39	3.354233	0.545767	1.552963
40	3.299247	-0.79925	-2.27423
41	3.666477	0.103523	0.294572
42	3.346064	-0.34606	-0.98471
43	3.459232	-0.35923	-1.02218
44	3.34795	0.25205	0.717201
45	3.01802	0.18198	0.517818
46	3.587829	0.372171	1.059
47	3.512848	0.187152	0.532536
48	3.515266	0.424734	1.208567
49	3.657882	0.022118	0.062935
50	3.19568	-1.19568	-3.40227
51	3.142923	-0.14292	-0.40668
52	3.497389	-0.19739	-0.56166
53	3.578795	-0.27879	-0.7933
54	3.537093	-0.13709	-0.39009
55	3.422067	-0.52207	-1.48552
56	3.590474	-0.29047	-0.82653
57	3.331418	-0.83142	-2.36577
58	3.362775	0.437225	1.24411
59	3.641508	-0.80151	-2.10176
60	3.802538	-0.00254	-0.00722
61	3.271675	-0.27167	-0.77304
62	3.169946	0.230054	0.654612
63	3.642652	-0.04265	-0.12136
64	3.70561	0.29439	0.837676
65	3.168248	0.031752	0.090349
66	3.705849	-0.10585	-0.30119
67	3.641614	0.358386	1.019775
68	3.242112	-0.24211	-0.68892
69	3.463719	-0.46372	-1.3195
70	3.096139	0.103861	0.295532
71	3.427684	-0.22768	-0.64787
72	3.182308	-0.15231	-0.43339
73	3.239541	0.260459	0.741127
74	3.572462	0.327538	0.931998
75	3.683389	0.216611	0.616358
76	3.8445	0.0555	0.157923
77	3.532309	-0.03231	-0.09193
78	3.396458	-0.09646	-0.27447
79	3.310988	0.189012	0.537826
80	3.722531	0.267469	0.761075

81	3.715875	0.184125	0.523921
82	3.685455	0.114545	0.325934
83	3.325751	0.074249	0.211272
84	3.586186	0.213814	0.6084
85	3.678197	-0.1782	-0.50705
86	3.343378	-0.34338	-0.97707
87	3.324348	-0.17435	-0.4961
88	3.301024	-0.30102	-0.85655
89	3.479761	-0.02976	-0.08468
90	3.482018	0.017982	0.051167
91	3.678578	0.221422	0.630049
92	3.529477	-0.02948	-0.08388
93	3.258309	-0.25831	-0.73501
94	3.014736	-0.01474	-0.04193
95	3.460087	0.239913	0.682666
96	3.671191	0.228809	0.651069

Final Model Residuals

RESIDUAL OUTPUT

PROBABILITY OUTPUT

				_		
	Predicted		Standard			Overall
Observation	Overall GPA	Residuals	Residuals	_	Percentile	GPA
1	3.572053	0.127947	0.353339		0.520833	2
2	3.430691	0.069309	0.191404		1.5625	2.2
3	3.36313	0.13687	0.377981		2.604167	2.5
4	3.160429	0.339571	0.937761		3.645833	2.5
5	3.36313	0.13687	0.377981		4.6875	2.5
6	3.160429	0.539571	1.490082		5.729167	2.9
7	3.464472	0.385528	1.064677		6.770833	2.9
8	3.34624	-0.84624	-2.33698		7.8125	3
9	3.413801	-0.4138	-1.14276		8.854167	3
10	3.639615	-0.13961	-0.38556		9.895833	3
11	3.2111	0.2689	0.742596		10.9375	3
12	3.413801	0.286199	0.790369		11.97917	3
13	3.38002	-0.38002	-1.04947		13.02083	3
14	3.819169	-0.01917	-0.05294		14.0625	3
15	3.38002	0.01998	0.055176		15.10417	3
16	3.36313	0.48687	1.344544		16.14583	3
17	3.588944	-0.40894	-1.12934		17.1875	3
18	3.19421	-0.09421	-0.26017		18.22917	3
19	3.34624	-0.14624	-0.40386		19.27083	3

20	3.177319	0.322681	0.891117	20.3125	3.03
21	3.36313	-0.06313	-0.17434	21.35417	3.1
22	3.413801	0.086199	0.238048	22.39583	3.1
23	3.34624	-0.44624	-1.23234	23.4375	3.15
24	3.34624	0.35376	0.976947	24.47917	3.18
25	3.38002	0.51998	1.435979	25.52083	3.2
26	3.19421	-0.19421	-0.53633	26.5625	3.2
27	3.36313	0.13687	0.377981	27.60417	3.2
28	3.34624	-0.04624	-0.1277	28.64583	3.2
29	3.143539	0.356461	0.984405	29.6875	3.2
30	3.34624	0.45376	1.253108	30.72917	3.3
31	3.36313	0.13687	0.377981	31.77083	3.3
32	3.278661	0.221339	0.61125	32.8125	3.3
33	3.588944	0.111056	0.306694	33.85417	3.3
34	3.572053	0.127947	0.353339	34.89583	3.3
35	3.588944	-0.08894	-0.24563	35.9375	3.3
36	3.36313	0.13687	0.377981	36.97917	3.4
37	3.38002	0.31998	0.883658	38.02083	3.4
38	3.430691	0.369309	1.019886	39.0625	3.4
39	3.396911	0.503089	1.389335	40.10417	3.4
40	3.38002	-0.88002	-2.43027	41.14583	3.45
41	3.656505	0.113495	0.313429	42.1875	3.48
42	3.329349	-0.32935	-0.90953	43.22917	3.5
43	3.38002	-0.28002	-0.77331	44.27083	3.5
44	3.413801	0.186199	0.514209	45.3125	3.5
45	3.109758	0.090242	0.249212	46.35417	3.5
46	3.707176	0.252824	0.698201	47.39583	3.5
47	3.622724	0.077276	0.213405	48.4375	3.5
48	3.622724	0.317276	0.876191	49.47917	3.5
49	3.588944	0.091056	0.251462	50.52083	3.5
50	3.160429	-1.16043	-3.20465	51.5625	3.5
51	3.177319	-0.17732	-0.48969	52.60417	3.5
52	3.572053	-0.27205	-0.7513	53.64583	3.5
53	3.622724	-0.32272	-0.89124	54.6875	3.5
54	3.572053	-0.17205	-0.47514	55.72917	3.5
55	3.36313	-0.46313	-1.27898	56.77083	3.5
56	3.605834	-0.30583	-0.84459	57.8125	3.5
57	3.261771	-0.76177	-2.10371	58.85417	3.5
58	3.19421	0.60579	1.672954	59.89583	3.5
59	3.656505	-0.7265	-2.02229	60.9375	3.5
60	3.852932	-0.05293	-0.14618	61.97917	3.5
61	3.396911	-0.39691	-1.09611	63.02083	3.6
62	3.177319	0.222681	0.614956	64.0625	3.6

63	3.605834	-0.00583	-0.01611		65.10417	3.6
64	3.656505	0.343495	0.948598		66.14583	3.68
65	3.261771	-0.06177	-0.17059		67.1875	3.7
66	3.656505	-0.0565	-0.15604		68.22917	3.7
67	3.622724	0.377276	1.041887		69.27083	3.7
68	3.160429	-0.16043	-0.44304		70.3125	3.7
69	3.588944	-0.58894	-1.62643		71.35417	3.7
70	3.19421	0.00579	0.01599		72.39583	3.7
71	3.36313	-0.16313	-0.4505		73.4375	3.7
72	3.160429	-0.13043	-0.36019		74.47917	3.7
73	3.160429	0.339571	0.937761		75.52083	3.7
74	3.588944	0.311056	0.859015		76.5625	3.77
75	3.740957	0.159043	0.439216		77.60417	3.8
76	3.690286	0.209714	0.579149		78.64583	3.8
77	3.588944	-0.08894	-0.24563		79.6875	3.8
78	3.430674	-0.13067	-0.36087		80.72917	3.8
79	3.34624	0.15376	0.424626		81.77083	3.8
80	3.605834	0.384166	1.060916		82.8125	3.8
81	3.673395	0.226605	0.625793		83.85417	3.8
82	3.639615	0.160385	0.442921		84.89583	3.85
83	3.36313	0.03687	0.101821		85.9375	3.85
84	3.548924	0.251076	0.693374		86.97917	3.9
85	3.622724	-0.12272	-0.33892		88.02083	3.9
86	3.36313	-0.36313	-1.00282		89.0625	3.9
87	3.396911	-0.24691	-0.68187		90.10417	3.9
88	3.36313	-0.36313	-1.00282		91.14583	3.9
89	3.34624	0.10376	0.286545		92.1875	3.9
90	3.34624	0.15376	0.424626		93.22917	3.9
91	3.572053	0.327947	0.90566		94.27083	3.9
92	3.464472	0.035528	0.098115		95.3125	3.94
93	3.261771	-0.26177	-0.72291		96.35417	3.96
94	3.126649	-0.12665	-0.34975		97.39583	3.99
95	3.312459	0.387541	1.070236		98.4375	4
96	3.588944	0.311056	0.859015	<u> </u>	99.47917	4