Qualifying Exam

D. Zack Garza

Sunday 5th July, 2020

Contents

1	Question 1 (UGA 2016 #5)	1
2	Question 2 (NUS 1970 #5)	1
3	Question 3 (UGA 2019 #2)	2
4	Question 4 (NUS 1970 #3)	2
5	Question 5 (UGA 2015 #4)	2
6	Question 6 (Emory 0 #0)	3
7	Question 7 (UGA 2018 #2)	3
8	Question 8 (UGA 2016 #1)	3
9	Question 9 (UGA 2017 #2)	3
10	Question 10 (UGA 2016 #4)	4

1 Question 1 (UGA 2016 #5)

Let (X, \mathcal{M}, μ) be a measure space. For $f \in L^1(\mu)$ and $\lambda > 0$, define

$$\varphi(\lambda) = \mu(\{x \in X | f(x) > \lambda\})$$
 and $\psi(\lambda) = \mu(\{x \in X | f(x) < -\lambda\})$

Show that φ, ψ are Borel measurable and

$$\int_X |f| \ d\mu = \int_0^\infty [\varphi(\lambda) + \psi(\lambda)] \ d\lambda$$

2 Question 2 (NUS 1970 #5)

(a) Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ be a differentiable function. If f'(-1) < 2 and f'(1) > 2, show that there exists $x_0 \in (i1, 1)$ such that $f'(x_0) = 2$.

Hint: consider the function f(x) - 2x and recall the proof of Rolle's theorem.)

(b) Let $f: (-1,1) \longrightarrow \mathbb{R}$ be a differentiable function on $(-1,0) \bigcup (0,1)$ such that $\lim_{x \longrightarrow 0} f'(x) = L$. If f is continuous on (-1,1), show that f is indeed differentiable at 0 and f'(0) = L.

3 Question 3 (UGA 2019 #2)

Let \mathcal{B} denote the set of all Borel subsets of \mathbb{R} and $\mu: \mathcal{B} \longrightarrow [0, \infty)$ denote a finite Borel measure on \mathbb{R} .

a. Prove that if $\{F_k\}$ is a sequence of Borel sets for which $F_k \supseteq F_{k+1}$ for all k, then

$$\lim_{k \to \infty} \mu(F_k) = \mu\left(\bigcap_{k=1}^{\infty} F_k\right)$$

b. Suppose μ has the property that $\mu(E) = 0$ for every $E \in \mathcal{B}$ with Lebesgue measure m(E) = 0. Prove that for every $\varepsilon > 0$ there exists $\delta > 0$ so that if $E \in \mathcal{B}$ with $m(E) < \delta$, then $\mu(E) < \varepsilon$.

4 Question 4 (NUS 1970 #3)

Let g: $[0,1] \times [0,1] \longrightarrow [0,1]$ be a continuous function and let $\{f_n\}$ be a sequence of functions such that

$$f_n(x) = \begin{cases} 0, 0 \le x \le 1/n, \\ \int_0^{x - \frac{1}{n}} g(t, f_n(t)) dt, 1/n \le x \le 1. \end{cases}$$

With the help of the Arzela-Ascoli theorem or otherwise, show that there exists a continuous function $f:[0,1] \longrightarrow \mathbb{R}$ such that

$$f(x) = \int_0^x g(t, f(t))dt$$

for all $x \in [0, 1]$.

Hint: first show that $|f_n(x_1) - f_n(x_2)| \le |x_1 - x_2|$.

5 Question 5 (UGA 2015 #4)

Define

$$f(x,y) := \begin{cases} \frac{x^{1/3}}{(1+xy)^{3/2}} & \text{if } 0 \le x \le y\\ 0 & \text{otherwise} \end{cases}$$

Carefully show that $f \in L^1(\mathbb{R}^2)$.

6 Question 6 (Emory 0 #0)

Describe the process that extends a measure on an algebra \mathcal{A} of subsets of X, to a complete measure defined on a σ -algebra \mathcal{B} containing \mathcal{A} . State the corresponding definitions and results (without proofs).

7 Question 7 (UGA 2018 #2)

Let

$$f_n(x) := \frac{x}{1 + x^n}, \quad x \ge 0.$$

- a. Show that this sequence converges pointwise and find its limit. Is the convergence uniform on $[0,\infty)$?
- b. Compute

$$\lim_{n\to\infty}\int_0^\infty f_n(x)dx$$

8 Question 8 (UGA 2016 #1)

Define

$$f(x) = \sum_{n=1}^{\infty} \frac{1}{n^x}.$$

Show that f converges to a differentiable function on $(1, \infty)$ and that

$$f'(x) = \sum_{n=1}^{\infty} \left(\frac{1}{n^x}\right)'.$$

Hint:

$$\left(\frac{1}{n^x}\right)' = -\frac{1}{n^x} \ln n$$

9 Question 9 (UGA 2017 #2)

a. Let μ be a measure on a measurable space (X, \mathcal{M}) and f a positive measurable function.

Define a measure λ by

$$\lambda(E) := \int_{E} f \ d\mu, \quad E \in \mathcal{M}$$

Show that for g any positive measurable function,

$$\int_{Y} g \ d\lambda = \int_{Y} fg \ d\mu$$

b. Let $E \subset \mathbb{R}$ be a measurable set such that

$$\int_E x^2 \ dm = 0.$$

Show that m(E) = 0.

10 Question 10 (UGA 2016 #4)

Let (X, \mathcal{M}, μ) be a measure space and suppose $\{E_n\} \subset \mathcal{M}$ satisfies

$$\lim_{n\to\infty}\mu\left(X\backslash E_n\right)=0.$$

Define

$$G\coloneqq \Big\{x\in X\ \Big|\ x\in E_n \text{ for only finitely many } n\Big\}\,.$$

Show that $G \in \mathcal{M}$ and $\mu(G) = 0$.