

FCC SAR Test Report

APPLICANT : CT Asia

EQUIPMENT: mobile phone

BRAND NAME : BLU

MODEL NAME : Click lite

FCC ID : YHLBLUCLICKLITE

STANDARD : FCC 47 CFR Part 2 (2.1093)

IEEE C95.1-1991 IEEE 1528-2003

FCC OET Bulletin 65 Supplement C (Edition 01-01)

The product was received on Feb. 22, 2012 and completely tested on Feb. 25, 2012. We, SPORTON INTERNATIONAL (KUNSHAN) INC., would like to declare that the tested sample has been evaluated in accordance with the procedures and shown the compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL (KUNSHAN) INC., the test report shall not be reproduced except in full.

Reviewed by:

lac MRA

Jones Tsai / Manager

SPORTON INTERNATIONAL (KUNSHAN) INC. No. 3-2, PingXiang Road, Kunshan, Jiangsu Province, P.R.C.

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: YHLBLUCLICKLITE Page Number : 1 of 30 Report Issued Date : Mar. 05, 2012

Table of Contents

1. Statement of Compliance	4
2. Administration Data	5
2.1 Testing Laboratory	5
2.2 Applicant	
2.3 Manufacturer	5
2.4 Application Details	5
3. General Information	
3.1 Description of Device Under Test (DUT)	6
3.2 Product Photos	6
3.3 Applied Standards	6
3.4 Device Category and SAR Limits	7
3.5 Test Conditions	
4. Specific Absorption Rate (SAR)	7
4.1 Introduction	
4.2 SAR Definition	
5. SAR Measurement System	9
5.1 E-Field Probe	
5.2 Data Acquisition Electronics (DAE)	
5.3 Robot	
5.4 Measurement Server	
5.5 Phantom	
5.6 Device Holder	
5.7 Data Storage and Evaluation	
5.8 Test Equipment List	
6. Tissue Simulating Liquids	
7. Uncertainty Assessment	
8. SAR Measurement Evaluation	
8.1 Purpose of System Performance check	
8.2 System Setup	
8.3 Validation Results	
9. DUT Testing Position	
10. Measurement Procedures	
10.1 Spatial Peak SAR Evaluation	
10.2 Area & Zoom Scan Procedures	
10.3 Volume Scan Procedures	
10.4 SAR Averaged Methods	
10.5 Power Drift Monitoring	
11. SAR Test Results	
11.1 Conducted Power (Unit: dBm)	
11.2 Test Records for Head SAR Test	
11.3 Test Records for Body-worn SAR Test	
12 References	30

Appendix A. Plots of System Performance Check

Appendix B. Plots of SAR Measurement

Appendix C. DASY Calibration Certificate

Appendix D. Product Photos

Appendix E. Test Setup Photos

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: YHLBLUCLICKLITE Page Number : 2 of 30 Report Issued Date : Mar. 05, 2012

Revision History

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FA222201	Rev. 01	Initial issue of report	Mar. 05, 2012

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: YHLBLUCLICKLITE Page Number : 3 of 30
Report Issued Date : Mar. 05, 2012
Report Version : Rev. 01

1. Statement of Compliance

The maximum results of Specific Absorption Rate (SAR) found during testing for **CT Asia mobile phone BLU Click lite** are as follows.

<Standalone SAR>

Band	Position	SAR _{1g} (W/kg)
GSM850	Head	0.869
	Body-worn (1.5 cm Gap)	0.332
CSM4000	Head	0.831
GSM1900	Body-worn (1.5 cm Gap)	0.213

This device is in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6 W/kg) specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-1991, and had been tested in accordance with the measurement methods and procedures specified in IEEE 1528-2003 and FCC OET Bulletin 65 Supplement C (Edition 01-01).

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: YHLBLUCLICKLITE Page Number : 4 of 30 Report Issued Date : Mar. 05, 2012

FCC SAR Test Report

2. Administration Data

2.1 Testing Laboratory

Test Site	SPORTON INTERNATIONAL (KUNSHAN) INC.		
Test Site Location	No. 3-2, PingXiang Road, Kunshan, Jiangsu Province, P.R.C. TEL: +86-0512-5790-0158 FAX: +86-0512-5790-0958		

2.2 Applicant

Company Name	CT Asia
Address	RMA2011, 20/F, GOLDEN CENTRAL TOWER, NO.3037# JINTIAN ROAD, FUTIAN DISTRICT

2.3 Manufacturer

Company Name	WATER WORLD TECHNOLOGY CO., LTD	
IAddress	6 Floor. Block B Digital Building Garden City No 1079 Nanhai Road. Nanshan District Shenzhen. Guangdong	

2.4 Application Details

Date of Receipt of Application	Feb. 22, 2012
Date of Start during the Test	Feb. 24, 2012
Date of End during the Test	Feb. 25, 2012

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: YHLBLUCLICKLITE Page Number : 5 of 30
Report Issued Date : Mar. 05, 2012
Report Version : Rev. 01

3. General Information

3.1 Description of Device Under Test (DUT)

Product Feature & Specification		
DUT Type	mobile phone	
Brand Name	BLU	
Model Name	Click lite	
FCC ID	YHLBLUCLICKLITE	
T., C.,	GSM850: 824 MHz ~ 849 MHz	
Tx Frequency	GSM1900: 1850 MHz ~ 1910 MHz	
Dy Fraguency	GSM850: 869 MHz ~ 894 MHz	
Rx Frequency	GSM1900: 1930 MHz ~ 1990 MHz	
Maximum Output	GSM850 : 32.32 dBm	
Power to Antenna	GSM1900 : 29.19 dBm	
Antenna Type	Fixed Internal Antenna	
HW Version	A107-MB-V0.2	
SW Version	A107_CFZZ_BLU_V01	
Type of Modulation	GMSK	
DUT Stage	Production Unit	

Remark:

- The above DUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.
- 2. There are two different types of EUT. They are single SIM card mobile and dual SIM card mobile. The others are the same including circuit design, PCB board, structure and all components. It is special to declare. After pre-scan two types of EUT, we found test result of the sample that dual SIM was the worst, so we choose dual SIM card mobile to perform all test. For the dual SIM card mobile, after pre-scan two SIM cards, we found test result with SIM1 card was the worst, so we choose SIM1 card to perform all test.

3.2 Product Photos

Please refer to Appendix D.

3.3 Applied Standards

The Specific Absorption Rate (SAR) testing specification, method and procedure for this device is in accordance with the following standards:

- FCC 47 CFR Part 2 (2.1093)
- IEEE C95.1-1991
- IEEE 1528-2003
- FCC OET Bulletin 65 Supplement C (Edition 01-01)
- FCC KDB 447498 D01 v04

SPORTON INTERNATIONAL (KUNSHAN) INC.

FAX: 86-0512-5790-0958 FCC ID: YHLBLUCLICKLITE

TEL: 86-0512-5790-0158

Page Number : 6 of 30

Report Issued Date : Mar. 05, 2012

Report No. : FA222201

3.4 Device Category and SAR Limits

This device belongs to portable device category because its radiating structure is allowed to be used within 20 centimeters of the body of the user. Limit for General Population/Uncontrolled exposure should be applied for this device, it is 1.6 W/kg as averaged over any 1 gram of tissue.

3.5 Test Conditions

3.5.1 Ambient Condition

Ambient Temperature	20 to 24 ℃
Humidity	< 60 %

3.5.2 Test Configuration

The device was controlled by using a base station emulator. Communication between the device and the emulator was established by air link. The distance between the DUT and the antenna of the emulator is larger than 50 cm and the output power radiated from the emulator antenna is at least 30 dB smaller than the output power of DUT. The DUT was set from the emulator to radiate maximum output power during all tests.

4. Specific Absorption Rate (SAR)

4.1 Introduction

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: YHLBLUCLICKLITE Page Number : 7 of 30
Report Issued Date : Mar. 05, 2012

Report No.: FA222201

4.2 SAR Definition

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ). The equation description is as below:

Report No. : FA222201

: 8 of 30

: Rev. 01

Report Issued Date: Mar. 05, 2012

Page Number

Report Version

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$

SAR is expressed in units of Watts per kilogram (W/kg)

SAR measurement can be either related to the temperature elevation in tissue by

$$SAR = C\left(\frac{\delta T}{\delta t}\right)$$

Where: C is the specific heat capacity, δT is the temperature rise and δt is the exposure duration, or related to the electrical field in the tissue by

$$SAR = \frac{\sigma |E|^2}{\rho}$$

Where: σ is the conductivity of the tissue, ρ is the mass density of the tissue and E is the RMS electrical field strength.

However for evaluating SAR of low power transmitter, electrical field measurement is typically applied.

5. SAR Measurement System

Fig 5.1 SPEAG DASY4 or DASY5 System Configurations

The DASY4 or DASY5 system for performance compliance tests is illustrated above graphically. This system consists of the following items:

- A standard high precision 6-axis robot with controller, a teach pendant and software
- A data acquisition electronic (DAE) attached to the robot arm extension
- A dosimetric probe equipped with an optical surface detector system
- > The electro-optical converter (ECO) performs the conversion between optical and electrical signals
- A measurement server performs the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- A probe alignment unit which improves the accuracy of the probe positioning
- > A computer operating Windows XP
- DASY4 or DASY5 software
- > Remove control with teach pendant and additional circuitry for robot safety such as warming lamps, etc.
- The SAM twin phantom
- A device holder
- > Tissue simulating liquid
- Dipole for evaluating the proper functioning of the system

Some of the components are described in details in the following sub-sections.

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: YHLBLUCLICKLITE Page Number : 9 of 30 Report Issued Date : Mar. 05, 2012

5.1 E-Field Probe

The SAR measurement is conducted with the dosimetric probe (manufactured by SPEAG). The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency. This probe has a built in optical surface detection system to prevent from collision with phantom.

5.1.1 E-Field Probe Specification

<EX3DV4 Probe>

~EX3DV4 PIODE>			_
Construction	Symmetrical design with triangular core		
	Built-in shielding against static charges		
	PEEK enclosure material (resistant to		
	organic solvents, e.g., DGBE)		The second secon
Frequency	10 MHz to 6 GHz; Linearity: ± 0.2 dB		
Directivity	± 0.3 dB in HSL (rotation around probe		
	axis)		
	± 0.5 dB in tissue material (rotation		30
	normal to probe axis)		
Dynamic Range	10 μW/g to 100 mW/g; Linearity: ± 0.2 dB		
	(noise: typically < 1 μW/g)		
Dimensions	Overall length: 330 mm (Tip: 20 mm)		
	Tip diameter: 2.5 mm (Body: 12 mm)		
	Typical distance from probe tip to dipole		
	centers: 1 mm		
			T
			* -
		Fig 5.2	Photo of EX3DV4
		1 19 3.2	I HOLO OI EXODYT

5.1.2 E-Field Probe Calibration

Each probe needs to be calibrated according to a dosimetric assessment procedure with accuracy better than \pm 10%. The spherical isotropy shall be evaluated and within \pm 0.25 dB. The sensitivity parameters (NormX, NormY, and NormZ), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe are tested. The calibration data can be referred to appendix C of this report.

5.2 Data Acquisition Electronics (DAE)

The data acquisition electronics (DAE) consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock.

The input impedance of the DAE is 200 MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80 dB.

Report No.: FA222201

Fig 5.3 Photo of DAE

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: YHLBLUCLICKLITE Page Number : 10 of 30
Report Issued Date : Mar. 05, 2012
Report Version : Rev. 01

5.3 <u>Robot</u>

The SPEAG DASY system uses the high precision robots (DASY5: TX90XL) type from Stäubli SA (France). For the 6-axis controller system, the robot controller version (DASY5: CS8c) from Stäubli is used. The Stäubli robot series have many features that are important for our application:

- ➤ High precision (repeatability ±0.035 mm)
- High reliability (industrial design)
- > Jerk-free straight movements
- > Low ELF interference (the closed metallic construction shields against motor control fields)

Fig 5.4 Photo of DASY5

5.4 Measurement Server

The measurement server is based on a PC/104 CPU board with CPU (DASY5: 400 MHz, Intel Celeron), chipdisk (DASY5: 128 MB), RAM (DASY5: 128 MB). The necessary circuits for communication with the DAE electronic box, as well as the 16 bit AD converter system for optical detection and digital I/O interface are contained on the DASY I/O board, which is directly connected to the PC/104 bus of the CPU board.

The measurement server performs all the real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operations.

Fig 5.5 Photo of Server for DASY5

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: YHLBLUCLICKLITE Page Number : 11 of 30
Report Issued Date : Mar. 05, 2012

FCC SAR Test Report

5.5 Phantom

<SAM Twin Phantom>

TOAM TWITT Halltoille		
Shell Thickness	2 ± 0.2 mm;	
	Center ear point: 6 ± 0.2 mm	
Filling Volume	Approx. 25 liters	The state of the s
Dimensions	Length: 1000 mm; Width: 500 mm;	
	Height: adjustable feet	<u> </u>
Measurement Areas	Left Hand, Right Hand, Flat Phantom	
		4
		Fig 5.6 Photo of SAM Phantom

Report No. : FA222201

: 12 of 30

: Rev. 01

Report Issued Date: Mar. 05, 2012

Page Number

Report Version

The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. A white cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot.

<ELI4 Phantom>

Shell Thickness	2 ± 0.2 mm (sagging: <1%)	The state of the s
Filling Volume	Approx. 30 liters	
Dimensions	Major ellipse axis: 600 mm Minor axis: 400 mm	Fig 5.7 Photo of ELI4 Phantom

The ELI4 phantom is intended for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30 MHz to 6 GHz. ELI4 is fully compatible with standard and all known tissue simulating liquids.

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: YHLBLUCLICKLITE

5.6 Device Holder

<Device Holder for SAM Twin Phantom>

The SAR in the phantom is approximately inversely proportional to the square of the distance between the source and the liquid surface. For a source at 5 mm distance, a positioning uncertainty of \pm 0.5 mm would produce a SAR uncertainty of \pm 20 %. Accurate device positioning is therefore crucial for accurate and repeatable measurements. The positions in which the devices must be measured are defined by the standards.

The DASY device holder is designed to cope with different positions given in the standard. It has two scales for the device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear reference points). The rotation center for both scales is the ear reference point (EPR). Thus the device needs no repositioning when changing the angles.

The DASY device holder is constructed of low-loss POM material having the following dielectric parameters: relative permittivity ε = 3 and loss tangent δ = 0.02. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

Fig 5.8 Device Holder

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: YHLBLUCLICKLITE Page Number : 13 of 30
Report Issued Date : Mar. 05, 2012

5.7 Data Storage and Evaluation

5.7.1 Data Storage

The DASY software stores the assessed data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all the necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files. The post-processing software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of erroneous parameter settings. For example, if a measurement has been performed with an incorrect crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be reevaluated.

Report No.: FA222201

The measured data can be visualized or exported in different units or formats, depending on the selected probe type (e.g., [V/m], [A/m], [mW/g]). Some of these units are not available in certain situations or give meaningless results, e.g., a SAR-output in a non-lose media, will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

5.7.2 Data Evaluation

The DASY post-processing software (SEMCAD) automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters :	- Sensitivity	Norm _i , a _{i0} , a _{i1} , a _{i2}
--------------------	---------------	---

Conversion factor ConvF_i
 Diode compression point dcp_i

Device parameters: - Frequency f

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY components. In the direct measuring mode of the multi-meter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power.

Page Number

Report Version

: 14 of 30

: Rev. 01

Report Issued Date: Mar. 05, 2012

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: YHLBLUCLICKLITE The formula for each channel can be given as :

$$V_i = U_i + U_i^2 \cdot \frac{cf}{dcp_i}$$

Report No.: FA222201

with V_i = compensated signal of channel i, (i = x, y, z)

 U_i = input signal of channel i, (i = x, y, z)

cf = crest factor of exciting field (DASY parameter)

dcp_i = diode compression point (DASY parameter)

From the compensated input signals, the primary field data for each channel can be evaluated:

E-field Probes :
$$\mathbf{E_i} = \sqrt{\frac{\mathbf{v_i}}{\mathbf{Norm_i \cdot ConvF}}}$$

H-field Probes :
$$H_i = \sqrt{V_i} \cdot \frac{a_{i0} + a_{i1}f + a_{i2}f^2}{f}$$

with V_i = compensated signal of channel i, (i = x, y, z)

Norm_i = sensor sensitivity of channel i, (i = x, y, z), $\mu V/(V/m)^2$ for E-field Probes

ConvF = sensitivity enhancement in solution

 a_{ij} = sensor sensitivity factors for H-field probes

f = carrier frequency [GHz]

E_i = electric field strength of channel i in V/m

H_i = magnetic field strength of channel i in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$

The primary field data are used to calculate the derived field units.

$$SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1000}$$

with SAR = local specific absorption rate in mW/g

E_{tot} = total field strength in V/m

 σ = conductivity in [mho/m] or [Siemens/m]

 ρ = equivalent tissue density in g/cm³

Note that the density is set to 1, to account for actual head tissue density rather than the density of the tissue simulating liquid.

Page Number

Report Version

: 15 of 30

: Rev. 01

Report Issued Date: Mar. 05, 2012

5.8 Test Equipment List

Manufacturer	Name of Faviliances	Taura (Billia da I	Carial Number	Calib	ration
Manufacturer	Name of Equipment	Type/Model	Serial Number	Last Cal.	Due Date
SPEAG	Dosimetric E-Field Probe	EX3DV4	3819	Nov. 16, 2011	Nov. 15, 2012
SPEAG	Data Acquisition Electronics	DAE4	1303	Nov. 10, 2011	Nov. 09, 2012
SPEAG	835MHz System Validation Kit	D835V2	4d091	Nov. 18, 2011	Nov. 17, 2012
SPEAG	1900MHz System Validation Kit	D1900V2	5d118	Nov. 21, 2011	Nov. 20, 2012
Agilent	ENA Series Network Analyzer	E5071C	MY46111157	Apr. 07, 2011	Apr. 06, 2012
Agilent	Wireless Communication Test Set	E5515C	MY50264165	Mar. 30, 2011	Mar. 29, 2012
Agilent	Dielectric Probe Kit	85070E	MY44300475	NCR	NCR
Agilent	Base Station	E5515C	GB47050646	Aug. 18, 2011	Aug. 17, 2012
SPEAG	SAM Twin Phantom	QD 000 P40 CD	TP-1670	NCR	NCR
SPEAG	SAM Twin Phantom	QD 000 P40 CD	TP-1671	NCR	NCR
SPEAG	ELI5 Phantom	QD OVA 002 AA	TP-1149	NCR	NCR
AR	Amplifier	551G4	333096	NCR	NCR
R&S	Spectrum Analyzer	FSP30	101400	Jun. 02, 2011	Jun. 01, 2012
R&S	Signal Generator	SMR40	100455	Dec. 29, 2011	Dec. 28, 2012

Table 5.1 Test Equipment List

Note:

- 1. The calibration certificate of DASY can be referred to appendix C of this report.
- 2. Referring to KDB450824 D02, the dipole calibration interval can be extended to 3 years with justification. The dipoles are also not physically damaged, or repaired during the interval.

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: YHLBLUCLICKLITE Page Number : 16 of 30
Report Issued Date : Mar. 05, 2012

Report No.: FA222201

6. Tissue Simulating Liquids

For the measurement of the field distribution inside the SAM phantom with DASY, the phantom must be filled with around 25 liters of homogeneous body tissue simulating liquid. For head SAR testing, the liquid height from the ear reference point (ERP) of the phantom to the liquid top surface is larger than 15 cm, which is shown in Fig. 6.1. For body SAR testing, the liquid height from the center of the flat phantom to the liquid top surface is larger than 15 cm, which is shown in Fig. 6.2.

Fig 6.1 Photo of Liquid Height for Head SAR

Fig 6.2 Photo of Liquid Height for Body SAR

The following table gives the recipes for tissue simulating liquid.

Frequency	Water	Sugar	Cellulose	Salt	Preventol	DGBE	Conductivity	Permittivity
(MHz)	(%)	(%)	(%)	(%)	(%)	(%)	(σ)	(ε _r)
	For Head							
835	40.3	57.9	0.2	1.4	0.2	0	0.90	41.5
1800, 1900, 2000	55.2	0	0	0.3	0	44.5	1.40	40.0
				For Body				
835	50.8	48.2	0	0.9	0.1	0	0.97	55.2
1800, 1900, 2000	70.2	0	0	0.4	0	29.4	1.52	53.3

Table 6.1 Recipes of Tissue Simulating Liquid

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: YHLBLUCLICKLITE Page Number : 17 of 30
Report Issued Date : Mar. 05, 2012
Report Version : Rev. 01

FCC SAR Test Report

The dielectric parameters of the liquids were verified prior to the SAR evaluation using an Agilent 85070D Dielectric Probe Kit and an Agilent Network Analyzer.

The following table shows the measuring results for simulating liquid.

Freq.	Liquid Type	Temp. (°C)	Conductivity (σ)	Permittivity (ε _r)	Conductivity Target (σ)	Permittivity Target (ε _r)	Delta (σ) (%)	Delta (ε _r) (%)	Limit (%)	Date
835	Head	21.5	0.912	42.045	0.90	41.5	1.33	1.31	±5	Feb. 24, 2012
835	Body	21.7	0.975	54.285	0.97	55.2	0.52	-1.66	±5	Feb. 24, 2012
1900	Head	21.7	1.448	39.15	1.40	40.0	3.43	-2.13	±5	Feb. 25, 2012
1900	Body	21.4	1.528	54.867	1.52	53.3	0.53	2.94	±5	Feb. 24, 2012

Table 6.2 Measuring Results for Simulating Liquid

СН	Frequency (MHz)	Liquid Type	Conductivity (σ)	Permittivity (ϵ_r)	Conductivity Target (σ)	Permittivity Target (ε _r)	Conductivity delta (%) (σ)	Permittivity delta (%) (ε _r)	Measurement Date
128	824.2	Head	0.901	42.168	0.90	41.6	0.11	1.37	Feb. 24, 2012
189	836.4	Head	0.914	42.034	0.90	41.5	1.56	1.29	Feb. 24, 2012
251	848.8	Head	0.926	41.889	0.91	41.5	1.76	0.94	Feb. 24, 2012
189	836.4	Body	0.976	54.275	0.97	55.2	0.62	-1.68	Feb. 24, 2012
512	1850.2	Head	1.398	39.327	1.38	40.1	1.30	-1.93	Feb. 25, 2012
661	1880	Head	1.428	39.222	1.39	40.0	2.73	-1.95	Feb. 25, 2012
810	1909.8	Head	1.459	39.115	1.39	40.0	4.96	-2.21	Feb. 25, 2012
810	1909.8	Body	1.536	54.849	1.51	53.3	1.72	2.91	Feb. 24, 2012

Table 6.3 Low/mid/High channel for liquid validation

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: YHLBLUCLICKLITE Page Number : 18 of 30
Report Issued Date : Mar. 05, 2012
Report Version : Rev. 01

7. Uncertainty Assessment

The component of uncertainly may generally be categorized according to the methods used to evaluate them. The evaluation of uncertainly by the statistical analysis of a series of observations is termed a Type An evaluation of uncertainty. The evaluation of uncertainty by means other than the statistical analysis of a series of observation is termed a Type B evaluation of uncertainty. Each component of uncertainty, however evaluated, is represented by an estimated standard deviation, termed standard uncertainty, which is determined by the positive square root of the estimated variance.

A Type A evaluation of standard uncertainty may be based on any valid statistical method for treating data. This includes calculating the standard deviation of the mean of a series of independent observations; using the method of least squares to fit a curve to the data in order to estimate the parameter of the curve and their standard deviations; or carrying out an analysis of variance in order to identify and quantify random effects in certain kinds of measurement.

A type B evaluation of standard uncertainty is typically based on scientific judgment using all of the relevant information available. These may include previous measurement data, experience and knowledge of the behavior and properties of relevant materials and instruments, manufacture's specification, data provided in calibration reports and uncertainties assigned to reference data taken from handbooks. Broadly speaking, the uncertainty is either obtained from an outdoor source or obtained from an assumed distribution, such as the normal distribution, rectangular or triangular distributions indicated in Table 7.1

Uncertainty Distributions	Normal	Rectangular	Triangular	U-Shape
Multi-plying Factor ^(a)	1/k ^(b)	1/√3	1/√6	1/√2

⁽a) standard uncertainty is determined as the product of the multiplying factor and the estimated range of variations in the measured quantity

Table 7.1 Standard Uncertainty for Assumed Distribution

The combined standard uncertainty of the measurement result represents the estimated standard deviation of the result. It is obtained by combining the individual standard uncertainties of both Type A and Type B evaluation using the usual "root-sum-squares" (RSS) methods of combining standard deviations by taking the positive square root of the estimated variances.

Expanded uncertainty is a measure of uncertainty that defines an interval about the measurement result within which the measured value is confidently believed to lie. It is obtained by multiplying the combined standard uncertainty by a coverage factor. Typically, the coverage factor ranges from 2 to 3. Using a coverage factor allows the true value of a measured quantity to be specified with a defined probability within the specified uncertainty range. For purpose of this document, a coverage factor two is used, which corresponds to confidence interval of about 95 %. The DASY uncertainty Budget is showed in Table 7.2.

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: YHLBLUCLICKLITE Page Number : 19 of 30
Report Issued Date : Mar. 05, 2012
Report Version : Rev. 01

⁽b) κ is the coverage factor

Error Description	Uncertainty Value (±%)	Probability Distribution	Divisor	Ci (1g)	Standard Uncertainty (1g)
Measurement System					
Probe Calibration	6.0	Normal	1	1	± 6.0 %
Axial Isotropy	4.7	Rectangular	√3	0.7	± 1.9 %
Hemispherical Isotropy	9.6	Rectangular	√3	0.7	± 3.9 %
Boundary Effects	1.0	Rectangular	√3	1	± 0.6 %
Linearity	4.7	Rectangular	√3	1	± 2.7 %
System Detection Limits	1.0	Rectangular	√3	1	± 0.6 %
Readout Electronics	0.3	Normal	1	1	± 0.3 %
Response Time	0.8	Rectangular	√3	1	± 0.5 %
Integration Time	2.6	Rectangular	√3	1	± 1.5 %
RF Ambient Noise	3.0	Rectangular	√3	1	± 1.7 %
RF Ambient Reflections	3.0	Rectangular	√3	1	± 1.7 %
Probe Positioner	0.4	Rectangular	√3	1	± 0.2 %
Probe Positioning	2.9	Rectangular	√3	1	± 1.7 %
Max. SAR Eval.	1.0	Rectangular	√3	1	± 0.6 %
Test Sample Related					
Device Positioning	2.9	Normal	1	1	± 2.9 %
Device Holder	3.6	Normal	1	1	± 3.6 %
Power Drift	5.0	Rectangular	√3	1	± 2.9 %
Phantom and Setup					
Phantom Uncertainty	4.0	Rectangular	√3	1	± 2.3 %
Liquid Conductivity (Target)	5.0	Rectangular	√3	0.64	± 1.8 %
Liquid Conductivity (Meas.)	2.5	Normal	1	0.64	± 1.6 %
Liquid Permittivity (Target)	5.0	Rectangular	√3	0.6	± 1.7 %
Liquid Permittivity (Meas.)	2.5	Normal	1	0.6	± 1.5 %
Combined Standard Uncerta	inty				± 10.99 %
Coverage Factor for 95 %					K = 2

Table 7.2 Uncertainty Budget of DASY for frequency range 300 MHz to 3 GHz

Expanded Uncertainty

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: YHLBLUCLICKLITE Page Number : 20 of 30
Report Issued Date : Mar. 05, 2012
Report Version : Rev. 01

± 21.97 %

8. SAR Measurement Evaluation

Each DASY system is equipped with one or more system validation kits. These units, together with the predefined measurement procedures within the DASY software, enable the user to conduct the system performance check and system validation. System validation kit includes a dipole, tripod holder to fix it underneath the flat phantom and a corresponding distance holder.

8.1 Purpose of System Performance check

The system performance check verifies that the system operates within its specifications. System and operator errors can be detected and corrected. It is recommended that the system performance check be performed prior to any usage of the system in order to guarantee reproducible results. The system performance check uses normal SAR measurements in a simplified setup with a well characterized source. This setup was selected to give a high sensitivity to all parameters that might fail or vary over time. The system check does not intend to replace the calibration of the components, but indicates situations where the system uncertainty is exceeded due to drift or failure.

8.2 System Setup

In the simplified setup for system evaluation, the DUT is replaced by a calibrated dipole and the power source is replaced by a continuous wave that comes from a signal generator. The calibrated dipole must be placed beneath the flat phantom section of the SAM twin phantom with the correct distance holder. The distance holder should touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The equipment setup is shown below:

Fig 8.1 System Setup for System Evaluation

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: YHLBLUCLICKLITE Page Number : 21 of 30
Report Issued Date : Mar. 05, 2012

- 1. Signal Generator
- 2. Amplifier
- 3. Directional Coupler
- 4. Power Meter
- 5. Calibrated Dipole

The output power on dipole port must be calibrated to 24 dBm (250 mW) before dipole is connected.

Fig 8.2 Photo of Dipole Setup

8.3 Validation Results

Comparing to the original SAR value provided by SPEAG, the validation data should be within its specification of 10 %. Table 8.1 shows the target SAR and measured SAR after normalized to 1W input power. The table below indicates the system performance check can meet the variation criterion and the plots can be referred to Appendix A of this report.

Measurement Date	Frequency (MHz)	Liquid Type	Targeted SAR _{1g} (W/kg)	Measured SAR _{1g} (W/kg)	Normalized SAR _{1g} (W/kg)	Deviation (%)
Feb. 24, 2012	835	Head	9.4	2.5	10.00	6.38
Feb. 24, 2012	835	Body	9.42	2.45	9.80	4.03
Feb. 25, 2012	1900	Head	40.3	10.3	41.20	2.23
Feb. 24, 2012	1900	Body	41.8	10.9	43.60	4.31

Table 8.1 Target and Measurement SAR after Normalized

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: YHLBLUCLICKLITE Page Number : 22 of 30
Report Issued Date : Mar. 05, 2012
Report Version : Rev. 01

9. <u>DUT Testing Position</u>

This DUT was tested in six different positions. They are right cheek, right tilted, and left cheek, left tilted, Face of the DUT with phantom 1.5 cm gap, Bottom of the DUT with phantom 1.5 cm gap, as illustrated below:

1. Define two imaginary lines on the handset

- (a) The vertical centerline passes through two points on the front side of the handset the midpoint of the width w_t of the handset at the level of the acoustic output, and the midpoint of the width w_b of the bottom of the handset.
- (b) The horizontal line is perpendicular to the vertical centerline and passes through the center of the acoustic output. The horizontal line is also tangential to the face of the handset at point A.
- (c) The two lines intersect at point A. Note that for many handsets, point A coincides with the center of the acoustic output; however, the acoustic output may be located elsewhere on the horizontal line. Also note that the vertical centerline is not necessarily parallel to the front face of the handset, especially for clamshell handsets, handsets with flip covers, and other irregularly shaped handsets.

Fig 9.1 Illustration for Handset Vertical and Horizontal Reference Lines

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: YHLBLUCLICKLITE Page Number : 23 of 30
Report Issued Date : Mar. 05, 2012

2. Cheek Position

- (a) To position the device with the vertical center line of the body of the device and the horizontal line crossing the center piece in a plane parallel to the sagittal plane of the phantom. While maintaining the device in this plane, align the vertical center line with the reference plane containing the three ear and mouth reference point (M: Mouth, RE: Right Ear, and LE: Left Ear) and align the center of the ear piece with the line RE-LE.
- (b) To move the device towards the phantom with the ear piece aligned with the line LE-RE until the phone touched the ear. While maintaining the device in the reference plane and maintaining the phone contact with the ear, move the bottom of the phone until any point on the front side is in contact with the cheek of the phantom or until contact with the ear is lost (see Fig. 9.2).

Fig 9.2 Illustration for Cheek Position

3. Tilted Position

- (a) To position the device in the "cheek" position described above.
- (b) While maintaining the device the reference plane described above and pivoting against the ear, moves it outward away from the mouth by an angle of 15 degrees or until contact with the ear is lost (see Fig. 9.3).

Fig 9.3 Illustration for Tilted Position

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: YHLBLUCLICKLITE Page Number : 24 of 30 Report Issued Date : Mar. 05, 2012

4. Body Worn Position

- (a) To position the device parallel to the phantom surface with either keypad up or down.
- (b) To adjust the device parallel to the flat phantom.
- (c) To adjust the distance between the device surface and the flat phantom to 1.5 cm.

Fig 9.4 Illustration for Body Worn Position

<DUT Setup Photos>

Please refer to Appendix E for the test setup photos.

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: YHLBLUCLICKLITE Page Number : 25 of 30
Report Issued Date : Mar. 05, 2012
Report Version : Rev. 01

10. Measurement Procedures

The measurement procedures are as follows:

- (a) Use base station or engineering software (if applicable) to transmit RF power continuously (continuous Tx) in the highest power channel Set base station emulator to allow DUT to radiate maximum output power.
- (b) Measure output power through RF cable and power meter.
- (c) Place the DUT in the positions as Appendix E demonstrates.
- (d) Set scan area, grid size and other setting on the DASY software.
- (e) Measure SAR results for the highest power channel on each testing position.
- (f) Find out the largest SAR result on these testing positions of each band
- (g) Measure SAR results for other channels in worst SAR testing position if the SAR of highest power channel is larger than 0.8 W/kg

According to the test standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps:

- (a) Power reference measurement
- (b) Area scan
- (c) Zoom scan
- (d) Power drift measurement

10.1 Spatial Peak SAR Evaluation

The procedure for spatial peak SAR evaluation has been implemented according to the test standard. It can be conducted for 1g and 10g, as well as for user-specific masses. The DASY software includes all numerical procedures necessary to evaluate the spatial peak SAR value.

The base for the evaluation is a "cube" measurement. The measured volume must include the 1g and 10g cubes with the highest averaged SAR values. For that purpose, the center of the measured volume is aligned to the interpolated peak SAR value of a previously performed area scan.

The entire evaluation of the spatial peak values is performed within the post-processing engine (SEMCAD). The system always gives the maximum values for the 1g and 10g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages:

- (a) Extraction of the measured data (grid and values) from the Zoom Scan
- (b) Calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters)
- (c) Generation of a high-resolution mesh within the measured volume
- (d) Interpolation of all measured values form the measurement grid to the high-resolution grid
- (e) Extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface
- (f) Calculation of the averaged SAR within masses of 1g and 10g

SPORTON INTERNATIONAL (KUNSHAN) INC.

FAX: 86-0512-5790-0958 FCC ID: YHLBLUCLICKLITE

TEL: 86-0512-5790-0158

Page Number : 26 of 30

Report Issued Date : Mar. 05, 2012

Report No.: FA222201

FCC SAR Test Report

10.2 Area & Zoom Scan Procedures

First Area Scan is used to locate the approximate location(s) of the local peak SAR value(s). The measurement grid within an Area Scan is defined by the grid extent, grid step size and grid offset. Next, in order to determine the EM field distribution in a three-dimensional spatial extension, Zoom Scan is required. The Zoom Scan measures 5x5x7 points with step size 8, 8 and 5 mm for 300 MHz to 3 GHz, and 8x8x8 points with step size 4, 4 and 2.5 mm for 3 GHz to 6 GHz. The Zoom Scan is performed around the highest E-field value to determine the averaged SAR-distribution over 10 g.

10.3 Volume Scan Procedures

The volume scan is used for assess overlapping SAR distributions for antennas transmitting in different frequency bands. It is equivalent to an oversized zoom scan used in standalone measurements. The measurement volume will be used to enclose all the simultaneous transmitting antennas. For antennas transmitting simultaneously in different frequency bands, the volume scan is measured separately in each frequency band. In order to sum correctly to compute the 1g aggregate SAR, the DUT remain in the same test position for all measurements and all volume scan use the same spatial resolution and grid spacing (step-size is 4, 4 and 2.5 mm). When all volume scan were completed, the software, SEMCAD postprocessor can combine and subsequently superpose these measurement data to calculating the multiband SAR.

10.4 SAR Averaged Methods

In DASY, the interpolation and extrapolation are both based on the modified Quadratic Shepard's method. The interpolation scheme combines a least-square fitted function method and a weighted average method which are the two basic types of computational interpolation and approximation.

Extrapolation routines are used to obtain SAR values between the lowest measurement points and the inner phantom surface. The extrapolation distance is determined by the surface detection distance and the probe sensor offset. The uncertainty increases with the extrapolation distance. To keep the uncertainty within 1% for the 1 g and 10 g cubes, the extrapolation distance should not be larger than 5 mm.

10.5 Power Drift Monitoring

All SAR testing is under the DUT install full charged battery and transmit maximum output power. In DASY measurement software, the power reference measurement and power drift measurement procedures are used for monitoring the power drift of DUT during SAR test. Both these procedures measure the field at a specified reference position before and after the SAR testing. The software will calculate the field difference in dB. If the power drift more than 5%, the SAR will be retested.

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: YHLBLUCLICKLITE Page Number : 27 of 30 Report Issued Date: Mar. 05, 2012

Report No.: FA222201

11. SAR Test Results

11.1 Conducted Power (Unit: dBm)

<GSM>

Burst Average Power								
Band GSM850 GSM1900								
Channel 128 189 251 512 661 8						810		
Frequency (MHz)	824.2	836.4	848.8	1850.2	1880.0	1909.8		
GSM (1 Uplink) 32.31 <mark>32.32</mark> 32.28 28.79 28.91 29.1 5								

Note:

- 1. For Head and Body-worn SAR testing, GSM should be evaluated, therefore the DUT was set in GSM for GSM850 and set in GSM for GSM1900 due to its highest source-based time-average power.
- 2. Per 2010/10 workshop, the maximum output power channel is used for SAR testing and for further SAR test reduction.
- 3. The DUT is support GSM only without GPRS function.

SPORTON INTERNATIONAL (KUNSHAN) INC.

FAX: 86-0512-5790-0958 FCC ID: YHLBLUCLICKLITE

TEL: 86-0512-5790-0158

Page Number : 28 of 30
Report Issued Date : Mar. 05, 2012

Report No.: FA222201

11.2 Test Records for Head SAR Test

<GSM>

Plot No.	Band	Mode	Test Position	Ch.	SAR _{1g} (W/kg)
1	GSM850	GSM	Right Cheek	189	<mark>0.869</mark>
2	GSM850	GSM	Right Tilted	189	0.472
3	GSM850	GSM	Left Cheek	189	0.783
4	GSM850	GSM	Left Tilted	189	0.443
5	GSM850	GSM	Right Cheek	128	0.846
6	GSM850	GSM	Right Cheek	251	0.798
11	GSM1900	GSM	Right Cheek	810	0.645
12	GSM1900	GSM	Right Tilted	810	0.495
13	GSM1900	GSM	Left Cheek	810	<mark>0.831</mark>
14	GSM1900	GSM	Left Tilted	810	0.626
15	GSM1900	GSM	Left Cheek	512	0.716
16	GSM1900	GSM	Left Cheek	661	0.774

Note: Per KDB 447498, if the highest output channel SAR for each exposure position ≤ 0.8 W/kg other channels SAR tests are not necessary.

11.3 Test Records for Body-worn SAR Test

<GSM>

Plot No.	Band	Mode	Test Position	Gap (cm)	Ch.	Earphone	SAR _{1g} (W/kg)
9	GSM850	GSM	Face	1.5	189	V	0.208
10	GSM850	GSM	Bottom	1.5	189	V	<mark>0.332</mark>
7	GSM1900	GSM	Face	1.5	810	V	0.119
8	GSM1900	GSM	Bottom	1.5	810	V	<mark>0.213</mark>

Note:

1. Per KDB 447498, if the highest output channel SAR for each exposure position ≤ 0.8 W/kg other channels SAR tests are not necessary.

Test Engineer: Jeme Li

SPORTON INTERNATIONAL (KUNSHAN) INC.

FAX: 86-0512-5790-0958 FCC ID: YHLBLUCLICKLITE

TEL: 86-0512-5790-0158

Page Number : 29 of 30 Report Issued Date : Mar. 05, 2012

Report No.: FA222201

FCC SAR Test Report

12. References

- [1] FCC 47 CFR Part 2 "Frequency Allocations and Radio Treaty Matters; General Rules and Regulations"
- [2] IEEE Std. C95.1-1991, "IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz", 1991
- [3] IEEE Std. 1528-2003, "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- [4] FCC OET Bulletin 65 (Edition 97-01) Supplement C (Edition 01-01), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields", June 2001
- [5] SPEAG DASY System Handbook
- [6] FCC KDB 447498 D01 v04, "Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies", November 2009
- [7] FCC KDB 447498 D02 v02, "SAR Measurement Procedures for USB Dongle Transmitters", November 2009

SPORTON INTERNATIONAL (KUNSHAN) INC.

FAX: 86-0512-5790-0958 FCC ID: YHLBLUCLICKLITE

TEL: 86-0512-5790-0158

Page Number : 30 of 30 Report Issued Date : Mar. 05, 2012

Report No. : FA222201

FCC SAR Test Report

Appendix A. Plots of System Performance Check

The plots are shown as follows.

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: YHLBLUCLICKLITE

: A1 of A1 Page Number Report Issued Date: Mar. 05, 2012

Report No.: FA222201

System Check_Head_835MHz_120224

DUT: Dipole 835 MHz

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: HSL_835_120224 Medium parameters used: f = 835 MHz; σ = 0.912 mho/m; ϵ_r = 42.045; ρ

Date: 24.02.2012

 $= 1000 \text{ kg/m}^3$

Ambient Temperature : 23.6 °C; Liquid Temperature : 21.5 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3819; ConvF(9.4, 9.4, 9.4); Calibrated: 16.11.2011
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1303; Calibrated: 10.11.2011
- Phantom: SAM2; Type: QD000P40CD; Serial: TP:1671
- Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989)

Pin=250mW/Area Scan (61x61x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 2.681 mW/g

Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 52.861 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 3.8220

SAR(1 g) = 2.5 mW/g; SAR(10 g) = 1.62 mW/g

Maximum value of SAR (measured) = 2.703 mW/g

System Check_Body_835MHz_120224

DUT: Dipole 835 MHz

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: MSL_835_120224 Medium parameters used: f = 835 MHz; $\sigma = 0.975$ mho/m; $\varepsilon_r = 54.285$;

Date: 24.02.2012

 $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature : 23.2 °C; Liquid Temperature : 21.7 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3819; ConvF(9.72, 9.72, 9.72); Calibrated: 16.11.2011
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1303; Calibrated: 10.11.2011
- Phantom: SAM1; Type: QD000P40CD; Serial: TP:1670
- Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989)

Pin=250mW/Area Scan (61x61x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 2.641 mW/g

Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 51.634 V/m; Power Drift = 0.00026 dB

Peak SAR (extrapolated) = 3.7070

SAR(1 g) = 2.45 mW/g; SAR(10 g) = 1.59 mW/gMaximum value of SAR (measured) = 2.635 mW/g

0 dB = 2.630 mW/g = 8.40 dB mW/g

-2.10 -4.19 -6.29 -8.38 -10.48

System Check_Head_1900MHz_120225

DUT: Dipole 1900 MHz

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: HSL_1900_120225 Medium parameters used: f = 1900 MHz; $\sigma = 1.448$ mho/m; $\varepsilon_r = 39.15$;

Date: 25.02.2012

 $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature : 23.6 °C; Liquid Temperature : 21.7 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3819; ConvF(8.36, 8.36, 8.36); Calibrated: 16.11.2011
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1303; Calibrated: 10.11.2011
- Phantom: SAM1; Type: QD000P40CD; Serial: TP:1670
- Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989)

Pin=250mW/Area Scan (61x61x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 12.067 mW/g

Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 82.918 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 19.3330

SAR(1 g) = 10.3 mW/g; SAR(10 g) = 5.34 mW/g

Maximum value of SAR (measured) = 11.560 mW/g

0 dB = 11.560 mW/g = 21.26 dB mW/g

System Check_Body_1900MHz_120224

DUT: Dipole 1900 MHz

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: MSL_1900_120224 Medium parameters used: f = 1900 MHz; $\sigma = 1.528$ mho/m; $\epsilon_{r} =$

Date: 24.02.2012

54.867; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.4°C; Liquid Temperature: 21.4°C

DASY5 Configuration:

- Probe: EX3DV4 SN3819; ConvF(7.71, 7.71, 7.71); Calibrated: 16.11.2011
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1303; Calibrated: 10.11.2011
- Phantom: SAM3; Type: QDOVA002AA; Serial: TP:1149
- Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989)

Pin=250mW/Area Scan (61x61x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 12.554 mW/g

Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 86.630 V/m; Power Drift = 0.10 dB

Peak SAR (extrapolated) = 20.0290

SAR(1 g) = 10.9 mW/g; SAR(10 g) = 5.72 mW/g

Maximum value of SAR (measured) = 12.204 mW/g

Appendix B. Plots of SAR Measurement

The plots are shown as follows.

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: YHLBLUCLICKLITE

: B1 of B1 Page Number Report Issued Date: Mar. 05, 2012

Report No.: FA222201

01 GSM850_Right Cheek_Ch189

DUT: 222201

Communication System: Generic GSM; Frequency: 836.4 MHz; Duty Cycle: 1:8.3

Medium: HSL_835_120224 Medium parameters used: f = 836.4 MHz; $\sigma = 0.914$ mho/m; $\epsilon_r = 42.034$;

Date: 24.02.2012

 $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature : 23.6 °C; Liquid Temperature : 21.5 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3819; ConvF(9.4, 9.4, 9.4); Calibrated: 16.11.2011
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1303; Calibrated: 10.11.2011
- Phantom: SAM2; Type: QD000P40CD; Serial: TP:1671
- Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989)

Ch189/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.934 mW/g

Ch189/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 24.138 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 1.2200

SAR(1 g) = 0.869 mW/g; SAR(10 g) = 0.606 mW/g

Maximum value of SAR (measured) = 0.924 mW/g

01 GSM850_Right Cheek_Ch189_2D

DUT: 222201

Communication System: Generic GSM; Frequency: 836.4 MHz; Duty Cycle: 1:8.3

Medium: HSL_835_120224 Medium parameters used: f = 836.4 MHz; $\sigma = 0.914$ mho/m; $\epsilon_{r} =$

42.034; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature : 23.6 °C; Liquid Temperature : 21.5 °C

DASY5 Configuration:

- Probe: EX3DV4 - SN3819; ConvF(9.4, 9.4, 9.4); Calibrated: 16.11.2011

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1303; Calibrated: 10.11.2011
- Phantom: SAM2; Type: QD000P40CD; Serial: TP:1671
- Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989)

Ch189/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.934 mW/g

Ch189/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 24.138 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 1.2200

SAR(1 g) = 0.869 mW/g; SAR(10 g) = 0.606 mW/g

Maximum value of SAR (measured) = 0.924 mW/g

02 GSM850_Right Tilted_Ch189

DUT: 222201

Communication System: Generic GSM; Frequency: 836.4 MHz; Duty Cycle: 1:8.3

Medium: HSL_835_120224 Medium parameters used: f = 836.4 MHz; $\sigma = 0.914$ mho/m; $\epsilon_r = 42.034$;

Date: 24.02.2012

 $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.6°C; Liquid Temperature: 21.5°C

DASY5 Configuration:

- Probe: EX3DV4 SN3819; ConvF(9.4, 9.4, 9.4); Calibrated: 16.11.2011
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1303; Calibrated: 10.11.2011
- Phantom: SAM2; Type: QD000P40CD; Serial: TP:1671
- Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989)

Ch189/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.515 mW/g

Ch189/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 20.513 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 0.6520

SAR(1 g) = 0.472 mW/g; SAR(10 g) = 0.329 mW/g

Maximum value of SAR (measured) = 0.500 mW/g

03 GSM850_Left Cheek_Ch189

DUT: 222201

Communication System: Generic GSM; Frequency: 836.4 MHz; Duty Cycle: 1:8.3

Medium: HSL_835_120224 Medium parameters used: f = 836.4 MHz; $\sigma = 0.914$ mho/m; $\epsilon_r = 42.034$;

Date: 24.02.2012

 $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.6°C; Liquid Temperature: 21.5°C

DASY5 Configuration:

- Probe: EX3DV4 SN3819; ConvF(9.4, 9.4, 9.4); Calibrated: 16.11.2011
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1303; Calibrated: 10.11.2011
- Phantom: SAM2; Type: QD000P40CD; Serial: TP:1671
- Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989)

Ch189/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.840 mW/g

Ch189/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 21.601 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 1.0090

SAR(1 g) = 0.783 mW/g; SAR(10 g) = 0.559 mW/g

Maximum value of SAR (measured) = 0.829 mW/g

04 GSM850_Left Tilted_Ch189

DUT: 222201

Communication System: Generic GSM; Frequency: 836.4 MHz; Duty Cycle: 1:8.3

Medium: HSL_835_120224 Medium parameters used: f = 836.4 MHz; $\sigma = 0.914$ mho/m; $\epsilon_r = 42.034$;

Date: 24.02.2012

 $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature : 23.6 °C; Liquid Temperature : 21.5 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3819; ConvF(9.4, 9.4, 9.4); Calibrated: 16.11.2011
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1303; Calibrated: 10.11.2011
- Phantom: SAM2; Type: QD000P40CD; Serial: TP:1671
- Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989)

Ch189/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.494 mW/g

Ch189/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 19.607 V/m; Power Drift = -0.0098 dB

Peak SAR (extrapolated) = 0.5790

SAR(1 g) = 0.443 mW/g; SAR(10 g) = 0.317 mW/g

Maximum value of SAR (measured) = 0.462 mW/g

05 GSM850_Right Cheek_Ch128

DUT: 222201

Communication System: Generic GSM; Frequency: 824.2 MHz; Duty Cycle: 1:8.3

Medium: HSL_835_120224 Medium parameters used: f = 824.2 MHz; $\sigma = 0.901$ mho/m; $\epsilon_r = 42.168$;

Date: 24.02.2012

 $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature : 23.6 °C; Liquid Temperature : 21.5 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3819; ConvF(9.4, 9.4, 9.4); Calibrated: 16.11.2011
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1303; Calibrated: 10.11.2011
- Phantom: SAM2; Type: QD000P40CD; Serial: TP:1671
- Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989)

Ch128/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.908 mW/g

Ch128/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 24.005 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 1.1990

SAR(1 g) = 0.846 mW/g; SAR(10 g) = 0.588 mW/g

Maximum value of SAR (measured) = 0.899 mW/g

06 GSM850_Right Cheek_Ch251

DUT: 222201

Communication System: Generic GSM; Frequency: 848.8 MHz; Duty Cycle: 1:8.3

Medium: HSL_835_120224 Medium parameters used: f = 849 MHz; $\sigma = 0.926$ mho/m; $\varepsilon_r = 41.889$; ρ

Date: 24.02.2012

 $= 1000 \text{ kg/m}^3$

Ambient Temperature : 23.6 °C; Liquid Temperature : 21.5 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3819; ConvF(9.4, 9.4, 9.4); Calibrated: 16.11.2011
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1303; Calibrated: 10.11.2011
- Phantom: SAM2; Type: QD000P40CD; Serial: TP:1671
- Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989)

Ch251/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.860 mW/g

Ch251/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 22.371 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 1.1250

SAR(1 g) = 0.798 mW/g; SAR(10 g) = 0.555 mW/g

Maximum value of SAR (measured) = 0.845 mW/g

11 GSM1900_Right Cheek_Ch810

DUT: 222201

Communication System: Generic GSM; Frequency: 1909.8 MHz; Duty Cycle: 1:8.3

Medium: HSL_1900_120225 Medium parameters used: f = 1910 MHz; $\sigma = 1.459$ mho/m; $\epsilon_r =$

Date: 25.02.2012

39.115; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.6°C; Liquid Temperature: 21.7°C

DASY5 Configuration:

- Probe: EX3DV4 SN3819; ConvF(8.36, 8.36, 8.36); Calibrated: 16.11.2011
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1303; Calibrated: 10.11.2011
- Phantom: SAM1; Type: QD000P40CD; Serial: TP:1670
- Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989)

Ch810/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.604 mW/g

Ch810/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 9.230 V/m; Power Drift = 0.09 dB

Peak SAR (extrapolated) = 1.1860

 $SAR(1 g) = 0.64\overline{5} \text{ mW/g}; SAR(10 g) = 0.323 \text{ mW/g}$

Maximum value of SAR (measured) = 0.682 mW/g

Ch810/Zoom Scan (5x5x7)/Cube 1: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 9.230 V/m; Power Drift = 0.09 dB

Peak SAR (extrapolated) = 1.2660

SAR(1 g) = 0.621 mW/g; SAR(10 g) = 0.295 mW/g

Maximum value of SAR (measured) = 0.654 mW/g

12 GSM1900_Right Tilted_Ch810

DUT: 222201

Communication System: Generic GSM; Frequency: 1909.8 MHz; Duty Cycle: 1:8.3

Medium: HSL_1900_120225 Medium parameters used: f = 1910 MHz; $\sigma = 1.459$ mho/m; $\epsilon_{r} =$

Date: 25.02.2012

39.115; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.6°C; Liquid Temperature: 21.7°C

DASY5 Configuration:

- Probe: EX3DV4 SN3819; ConvF(8.36, 8.36, 8.36); Calibrated: 16.11.2011
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1303; Calibrated: 10.11.2011
- Phantom: SAM1; Type: QD000P40CD; Serial: TP:1670
- Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989)

Ch810/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.526 mW/g

Ch810/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 10.517 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 0.9530

 $CAD(1 - 1) = 0.405 \dots MU - CAD(10 - 1) = 0.2$

SAR(1 g) = 0.495 mW/g; SAR(10 g) = 0.239 mW/gMaximum value of SAR (measured) = 0.556 mW/g

13 GSM1900_Left Cheek_Ch810

DUT: 222201

Communication System: Generic GSM; Frequency: 1909.8 MHz; Duty Cycle: 1:8.3

Medium: HSL_1900_120225 Medium parameters used: f = 1910 MHz; $\sigma = 1.459$ mho/m; $\epsilon_{r} =$

Date: 25.02.2012

39.115; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.6 °C; Liquid Temperature: 21.7 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3819; ConvF(8.36, 8.36, 8.36); Calibrated: 16.11.2011
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1303; Calibrated: 10.11.2011
- Phantom: SAM1; Type: QD000P40CD; Serial: TP:1670
- Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989)

Ch810/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.916 mW/g

Ch810/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 16.456 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 1.7710

 $SAR(1 g) = 0.83\overline{1} \text{ mW/g}; SAR(10 g) = 0.366 \text{ mW/g}$

Maximum value of SAR (measured) = 0.819 mW/g

13 GSM1900_Left Cheek_Ch810_2D

DUT: 222201

Communication System: Generic GSM; Frequency: 1909.8 MHz; Duty Cycle: 1:8.3

Medium: HSL_1900_120225 Medium parameters used: f = 1910 MHz; $\sigma = 1.459$ mho/m; $\epsilon_r =$

Date: 25.02.2012

39.115; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature : 23.6 °C; Liquid Temperature : 21.7 °C

DASY5 Configuration:

- Probe: EX3DV4 - SN3819; ConvF(8.36, 8.36, 8.36); Calibrated: 16.11.2011

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1303; Calibrated: 10.11.2011
- Phantom: SAM1; Type: QD000P40CD; Serial: TP:1670
- Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989)

Ch810/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.916 mW/g

Ch810/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 16.456 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 1.7710

SAR(1 g) = 0.831 mW/g; SAR(10 g) = 0.366 mW/g

Maximum value of SAR (measured) = 0.819 mW/g

14 GSM1900_Left Tilted_Ch810

DUT: 222201

Communication System: Generic GSM; Frequency: 1909.8 MHz; Duty Cycle: 1:8.3

Medium: HSL_1900_120225 Medium parameters used: f = 1910 MHz; $\sigma = 1.459$ mho/m; $\epsilon_{r} =$

Date: 25.02.2012

39.115; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.6 °C; Liquid Temperature: 21.7 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3819; ConvF(8.36, 8.36, 8.36); Calibrated: 16.11.2011
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1303; Calibrated: 10.11.2011
- Phantom: SAM1; Type: QD000P40CD; Serial: TP:1670
- Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989)

Ch810/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.682 mW/g

Ch810/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 14.280 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 1.2960

SAR(1 g) = 0.626 mW/g; SAR(10 g) = 0.280 mW/g

Maximum value of SAR (measured) = 0.624 mW/g

15 GSM1900_Left Cheek_Ch512

DUT: 222201

Communication System: Generic GSM; Frequency: 1850.2 MHz; Duty Cycle: 1:8.3

Medium: HSL_1900_120225 Medium parameters used: f = 1850.2 MHz; $\sigma = 1.398$ mho/m; $\epsilon_{r} =$

Date: 25.02.2012

39.327; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.6°C; Liquid Temperature: 21.7°C

DASY5 Configuration:

- Probe: EX3DV4 SN3819; ConvF(8.36, 8.36, 8.36); Calibrated: 16.11.2011
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1303; Calibrated: 10.11.2011
- Phantom: SAM1; Type: QD000P40CD; Serial: TP:1670
- Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989)

Ch512/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.826 mW/g

Ch512/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 17.117 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 1.4730

 $SAR(1 g) = 0.71\overline{6} \text{ mW/g}; SAR(10 g) = 0.328 \text{ mW/g}$

Maximum value of SAR (measured) = 0.717 mW/g

Ch512/Zoom Scan (5x5x7)/Cube 1: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 17.117 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 1.0830

SAR(1 g) = 0.595 mW/g; SAR(10 g) = 0.313 mW/g

Maximum value of SAR (measured) = 0.602 mW/g

16 GSM1900_Left Cheek_Ch661

DUT: 222201

Communication System: Generic GSM; Frequency: 1880 MHz; Duty Cycle: 1:8.3

Medium: HSL_1900_120225 Medium parameters used: f = 1880 MHz; $\sigma = 1.428$ mho/m; $\epsilon_{r} =$

Date: 25.02.2012

39.222; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.6°C; Liquid Temperature: 21.7°C

DASY5 Configuration:

- Probe: EX3DV4 SN3819; ConvF(8.36, 8.36, 8.36); Calibrated: 16.11.2011
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1303; Calibrated: 10.11.2011
- Phantom: SAM1; Type: QD000P40CD; Serial: TP:1670
- Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989)

Ch661/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.877 mW/g

Ch661/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 17.570 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 1.6100 SAR(1 g) = 0.774 mW/g; SAR(10 g) = 0.348 mW/g Maximum value of SAR (measured) = 0.760 mW/g

09 GSM850_GSM_Face_1.5cm_Ch189

DUT: 222201

Communication System: Generic GSM; Frequency: 836.4 MHz; Duty Cycle: 1:8.3

Medium: MSL_835_120224 Medium parameters used: f = 836.4 MHz; $\sigma = 0.976$ mho/m; $\epsilon_{r} =$

Date: 24.02.2012

54.275; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.2 °C; Liquid Temperature: 21.7 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3819; ConvF(9.72, 9.72, 9.72); Calibrated: 16.11.2011
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1303; Calibrated: 10.11.2011
- Phantom: SAM1; Type: QD000P40CD; Serial: TP:1670
- Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989)

Ch189/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.222 mW/g

Ch189/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 13.843 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 0.2760

SAR(1 g) = 0.208 mW/g; SAR(10 g) = 0.150 mW/g

Maximum value of SAR (measured) = 0.220 mW/g

10 GSM850_GSM_Bottom_1.5cm_Ch189

DUT: 222201

Communication System: Generic GSM; Frequency: 836.4 MHz; Duty Cycle: 1:8.3

Medium: MSL_835_120224 Medium parameters used: f = 836.4 MHz; $\sigma = 0.976$ mho/m; $\epsilon_{r} =$

Date: 24.02.2012

54.275; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.2 °C; Liquid Temperature: 21.7 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3819; ConvF(9.72, 9.72, 9.72); Calibrated: 16.11.2011
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1303; Calibrated: 10.11.2011
- Phantom: SAM1; Type: QD000P40CD; Serial: TP:1670
- Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989)

Ch189/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.355 mW/g

Ch189/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 17.301 V/m; Power Drift = -0.0051 dB

Peak SAR (extrapolated) = 0.4630

 $SAR(1 g) = 0.33\overline{2} \text{ mW/g}; SAR(10 g) = 0.231 \text{ mW/g}$

Maximum value of SAR (measured) = 0.354 mW/g

10 GSM850_GSM_Bottom_1.5cm_Ch189_2D

DUT: 222201

Communication System: Generic GSM; Frequency: 836.4 MHz; Duty Cycle: 1:8.3

Medium: MSL_835_120224 Medium parameters used: f = 836.4 MHz; $\sigma = 0.976$ mho/m; $\epsilon_{r} =$

54.275; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature : 23.2 °C; Liquid Temperature : 21.7 °C

DASY5 Configuration:

- Probe: EX3DV4 - SN3819; ConvF(9.72, 9.72, 9.72); Calibrated: 16.11.2011

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1303; Calibrated: 10.11.2011
- Phantom: SAM1; Type: QD000P40CD; Serial: TP:1670
- Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989)

Ch189/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.355 mW/g

Ch189/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 17.301 V/m; Power Drift = -0.0051 dB

Peak SAR (extrapolated) = 0.4630

SAR(1 g) = 0.332 mW/g; SAR(10 g) = 0.231 mW/g

Maximum value of SAR (measured) = 0.354 mW/g

07 GSM1900_GSM_Face_1.5cm_Ch810

DUT: 222201

Communication System: Generic GSM; Frequency: 1909.8 MHz; Duty Cycle: 1:8.3

Medium: MSL_1900_120224 Medium parameters used: f = 1910 MHz; $\sigma = 1.536$ mho/m; $\epsilon_r =$

Date: 24.02.2012

54.849; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.4°C; Liquid Temperature: 21.4°C

DASY5 Configuration:

- Probe: EX3DV4 SN3819; ConvF(7.71, 7.71, 7.71); Calibrated: 16.11.2011
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1303; Calibrated: 10.11.2011
- Phantom: SAM3; Type: QDOVA002AA; Serial: TP:1149
- Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989)

Ch810/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.128 mW/g

Ch810/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 6.245 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 0.1920

SAR(1 g) = 0.119 mW/g; SAR(10 g) = 0.069 mW/g

Maximum value of SAR (measured) = 0.130 mW/g

08 GSM1900_GSM_Bottom_1.5cm_Ch810

DUT: 222201

Communication System: Generic GSM; Frequency: 1909.8 MHz; Duty Cycle: 1:8.3

Medium: MSL_1900_120224 Medium parameters used: f = 1910 MHz; $\sigma = 1.536$ mho/m; $\epsilon_r =$

Date: 24.02.2012

54.849; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.4 °C; Liquid Temperature: 21.4 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3819; ConvF(7.71, 7.71, 7.71); Calibrated: 16.11.2011
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1303; Calibrated: 10.11.2011
- Phantom: SAM3; Type: QDOVA002AA; Serial: TP:1149
- Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989)

Ch810/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.239 mW/g

Ch810/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 11.374 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 0.3470

SAR(1 g) = 0.213 mW/g; SAR(10 g) = 0.118 mW/g

Maximum value of SAR (measured) = 0.232 mW/g

08 GSM1900_GSM_Bottom_1.5cm_Ch810_2D

DUT: 222201

Communication System: Generic GSM; Frequency: 1909.8 MHz; Duty Cycle: 1:8.3

Medium: MSL_1900_120224 Medium parameters used: f = 1910 MHz; $\sigma = 1.536$ mho/m; $\epsilon_r =$

54.849; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.4 °C; Liquid Temperature: 21.4 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3819; ConvF(7.71, 7.71, 7.71); Calibrated: 16.11.2011
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1303; Calibrated: 10.11.2011
- Phantom: SAM3; Type: QDOVA002AA; Serial: TP:1149
- Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989)

Ch810/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.239 mW/g

Ch810/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 11.374 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 0.3470

SAR(1 g) = 0.213 mW/g; SAR(10 g) = 0.118 mW/g

Maximum value of SAR (measured) = 0.232 mW/g

