Dependent Variable: WAGE Method: Least Squares Date: 12/16/20 Time: 12:56

Sample: 1 523

Included observations: 523

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C EXPER	8.640575 0.026271	0.402965 0.018383	21.44250 1.429061	0.0000 0.1536
R-squared Adjusted R-squared F-statistic Prob(F-statistic)	0.003904 0.001993 2.042215 0.153586			

 $Wage_i = 8.6406 + 0.02627 \times eperience_i$

从回归结果中可以看出, experience 的系数为 0.02627, P 值大于 0.05, 说明在 95%的置信水平下,该系数不显著,且回归方程的 R²为 0.003904,模型的解释力很差。模型的 P 值大于 0.05,说明在 95%的置信水平下没有通过显著性检验,模型整体不显著。

Dependent Variable: LOG(WAGE)

Method: Least Squares

Date: 12/16/20 Time: 13:01

Sample: 1 523

Included observations: 523

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C LOG(EXPER)	1.824390 0.095079	0.071643 0.026076	25.46514 3.646311	0.0000 0.0003
R-squared Adjusted R-squared F-statistic Prob(F-statistic)	0.024884 0.023013 13.29559 0.000293			

 $lnWage_i = 1.8244 + 0.09508 \times ln \ experience_i$

从回归结果中可以看出, experience 的系数为 0.09508, P 值小于 0.05, 说明在 95%的置信水平下,该系数显著,在其他条件不变的情况下, experience 每提高一个百分点, Wage 平均提高 0.095079 个百分点.回归方程的 R²为 0.024884,模型的解释力很差。模型的 P 值小于 0.05,说明在 95%的置信水平下模型通过显著性检验,模型整体统计显著。

b.

对回归方程 $Wage_i = 8.6406 + 0.02627 \times eperience_i$ 做残差对解释变量的残差图,可以看出有异常值,即认为该方程可能有异方差.

对回归方程 $Wage_i = 8.6406 + 0.02627 \times eperience_i$ 做残差平方对解释变量的残差图,可以看出有异常值,即认为该方程可能有异方差.

对回归方程 $lnWage_i = 1.8244 + 0.09508 \times ln\ experience_i$ 做残差对解释变量的残差图,可以看出有异常值,即认为该方程可能有异方差.

对回归方程 $lnWage_i = 1.8244 + 0.09508 \times ln\ experience_i$ 做残差平方对解释变量的残差图,可以看出有异常值,即认为该方程有异方差.

1.对回归方程 $Wage_i = 8.6406 + 0.02627 \times eperience_i$ 异方差进行检验

(1) 格莱泽检验

Dependent Variable: ABSE Method: Least Squares Date: 12/16/20 Time: 14:19

Sample: 1 523

Included observations: 523

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C EXPER	3.723030 0.005925	0.267835 0.012219	13.90044 0.484933	0.0000 0.6279
R-squared Adjusted R-squared F-statistic Prob(F-statistic)	0.000451 -0.001467 0.235160 0.627927			

 $|e_i| = 3.7230 + 0.005925 \times Experience_i$

从回归结果中可以看出, experience 的系数的 P 值大于 0.05, 说明在 95%的置信水平下, 该系数不显著, 不能拒绝原假设, 即无异方差性

Dependent Variable: ABSE Method: Least Squares Date: 12/16/20 Time: 14:28

Sample: 1 523

Included observations: 523

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C @SQRT(EXPER)	3.757879 0.018243	0.429897 0.100778	8.741340 0.181020	0.0000 0.8564
R-squared Adjusted R-squared F-statistic Prob(F-statistic)	0.000063 -0.001856 0.032768 0.856422			

$$|e_i| = 3.757879 + 0.018243 \times \sqrt{Experience_i}$$

从回归结果中可以看出, $\sqrt{Experience_i}$ 的系数的 P 值大于 0.05,说明在 95%的 置信水平下,该系数不显著,不能拒绝原假设,即无异方差性。

Dependent Variable: ABSE Method: Least Squares Date: 12/16/20 Time: 14:30

Sample: 1 523

Included observations: 523

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C 1/EXPER	3.678617 1.286013	0.182700 0.892329	20.13477 1.441187	0.0000 0.1501
R-squared Adjusted R-squared F-statistic Prob(F-statistic)	0.003971 0.002059 2.077021 0.150132			

$$|e_i| = 3.678617 + 1.286013 \times \frac{1}{Experience_i}$$

回归结果中可以看出, $\frac{1}{Experience_i}$ 的系数的 P 值大于 0.05,说明在 95%的置信水平下,该系数不显著,不能拒绝原假设,即无异方差性。

各种形式的格莱泽检验表明,回归模型 $Wage_i = 8.6406 + 0.02627 \times eperience_i$ 不存在异方差。

(2) 帕克检验

Dependent Variable: LOG(RESID_SQUARE)

Method: Least Squares Date: 12/16/20 Time: 14:54

Sample: 1 523

Included observations: 523

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C LOG(EXPER)	2.120841 -0.106399	0.304051 0.110664	6.975285 -0.961460	0.0000 0.3368
R-squared Adjusted R-squared F-statistic Prob(F-statistic)	0.001771 -0.000145 0.924405 0.336767			

回归结果中可以看出,In(Experience)的系数的 P 值大于 0.05,说明在 95%的 置信水平下,该系数不显著,且回归方程的 R^2 为 0.001771,模型的解释力很差。模型的 P 值大于 0.05,说明在 95%的置信水平下没有通过显著性检验,模型整体不显著。不能拒绝原假设,即认为模型 $Wage_i = 8.6406 + 0.02627 \times Experience_i$ 不存在 异方差.

2.对回归方程 $lnWage_i = 1.8244 + 0.09508 \times ln Experience_i$ 异方差进行检验

(1) 格莱泽检验

Dependent Variable: ABSE_2 Method: Least Squares Date: 12/16/20 Time: 15:32

Sample: 1 523

Included observations: 523

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C LOG(EXPER)	0.365985 0.019129	0.042275 0.015387	8.657172 1.243195	0.0000 0.2144
R-squared Adjusted R-squared F-statistic Prob(F-statistic)	0.002958 0.001044 1.545534 0.214355			

 $|e_i| = 0.365985 + 0.019129 \times lnExperience_i$

从回归结果中可以看出, experience 的系数的 P 值大于 0.05, 说明在 95%的 置信水平下, 该系数不显著, 不能拒绝原假设, 即无异方差性。

Dependent Variable: ABSE_2 Method: Least Squares Date: 12/16/20 Time: 15:37

Sample: 1 523

Included observations: 523

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C @SQRT(EXPER)	0.366706 0.012289	0.038347 0.008989	9.562900 1.367016	0.0000 0.1722
R-squared Adjusted R-squared F-statistic Prob(F-statistic)	0.003574 0.001661 1.868731 0.172210			

 $|e_i| = 0.366706 + 0.012289 \times \sqrt{Experience_i}$

从回归结果中可以看出, $\sqrt{\text{experience}}$ 的系数的 P 值大于 0.05,说明在 95%的置信水平下,该系数不显著,不能拒绝原假设,即无异方差性。

Dependent Variable: ABSE_2 Method: Least Squares Date: 12/16/20 Time: 15:40

Sample: 1 523

Included observations: 523

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C 1/EXPER	0.423915 -0.068034	0.016347 0.079839	25.93293 -0.852136	0.0000 0.3945
R-squared Adjusted R-squared F-statistic Prob(F-statistic)	0.001392 -0.000525 0.726136 0.394530			

$$|e_i| = 0.423915 - 0.068034 \times \frac{1}{Experience_i}$$

从回归结果中可以看出, $\frac{1}{Experience_i}$ 的系数的 P 值大于 0.05,说明在 95%的置信水平下,该系数不显著,不能拒绝原假设,即无异方差性。

各种形式的格莱泽检验表明,回归模型 $lnWage_i = 1.8244 + 0.09508 \times ln\ Experience_i$ 不存在异方差。

(2) 帕克检验

Dependent Variable: LOG(RESID_SQUARE_2)

Method: Least Squares

Date: 12/16/20 Time: 15:48

Sample: 1 523

Included observations: 523

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C LOG(EXPER)	-2.711178 0.065446	0.306963 0.111724	-8.832264 0.585786	0.0000 0.5583
R-squared Adjusted R-squared F-statistic Prob(F-statistic)	0.000658 -0.001260 0.343145 0.558273			

回归结果中可以看出,ln(Experience)的系数的 P 值大于 0.05,说明在 95%的 置信水平下,该系数不显著,且回归方程的 R^2 为 0.000658,模型的解释力很差。模型的 P 值大于 0.05,说明在 95%的置信水平下没有通过显著性检验,模型整体不显著。不能拒绝原假设,即认为模型 $lnWage_i = 1.8244 + 0.09508 \times ln~Experience_i$ 不存在异方差。

d.

回归模型 $Wage_i = 8.6406 + 0.02627 \times eperience_i$ 和 $lnWage_i = 1.8244 + 0.09508 \times ln Experience_i$ 经过格莱泽检验和帕克检验显示均不存在异方差性