Lecture 07

Assumptions:

(C.6)
$$u_t \perp u_s$$
, $\forall t \neq s$
(C.7) $u_t \perp x_t$, $\forall t \in \{1, 2, \dots, T\}$

Considering (C.7):

- Given the model $y_t=eta_1+eta_2x_{2,t}+u_t$, then $\hat{eta}_2^{OLS}=rac{\sum(x_t-ar{x})(y_t-ar{y})}{\sum(x_t-ar{x})^2}$.
- Use that $(y_t-\bar y)=eta_2(x_t-\bar x)+(u_t-\bar u)$ with $\bar u=0$ -, since $\hat eta_1=\bar y-\hat eta_2 \bar x$ (more here).
- $\bullet \ \ \text{We have } \hat{\beta}_2^{OLS} = \beta_2 \frac{\sum (x_t \bar{x})^2}{\sum (x_t \bar{x})^2} + \frac{\sum (x_t \bar{x})u_t}{\sum (x_t \bar{x})^2} = \beta_2 + \frac{\sum (x_t \bar{x})u_t}{\sum (x_t \bar{x})^2}$
 - \circ Let $a_t:=rac{x_t-ar{x}}{\sum (x_t-ar{x})^2}$, then $\hat{eta}_2=eta_2+\sum a_t u_t$.
- To show it is unbiased, we take the expected value: $\mathrm{E}(\hat{eta}_2) = eta_2 + \mathrm{E}\big[\sum (a_t u_t)\big]$.
 - If a_t and u_t are uncorrelated, then $\mathrm{E}(\hat{\beta}_2) = \beta_2 + \sum \left[\mathrm{E}(a_t)\mathrm{E}(u_t)\right]$.
 - Since $\mathrm{E}(u_t)=0$, then $\mathrm{E}(\hat{\beta}_2)=\beta_2$, provided that a_t and u_t are uncorrelated.
 - $\circ \ \ a_t$ depends upon **all** $x_t, \quad t=1,2,\ldots,T$.
- 1. If x_t (current) and u_t are correlated, then $\hat{\beta}_2$ is <u>biased</u> ($\mathrm{E}(\hat{\beta}_2) \neq \beta_2$) and <u>inconsistent</u> $\min_{N \to \infty} \hat{\beta}_2 \neq \beta_2$.
 - More on the bias and consistency of an estimator <u>here</u> and <u>here</u>, respectively.
- 2. If x_t and u_t are uncorrelated, but x_t and u_s are correlated, for $t \neq s$, then $\hat{\beta}_2$ is <u>biased</u> but <u>consistent</u>.

Basic models

(1)
$$y_t = \beta_1 + \beta_2 x_{2t} + u_t$$
, $u_t = \rho u_{t-1} + e_t$

- In this case, $\hat{\beta}_2$ is unbiased and consistent, but inefficient, because u_t and u_{t-1} are correlated.
 - \circ (C.6) might be an example.
 - More on the efficiency of an estimator here.

(2)
$$y_t = \beta_1 + \beta_2 x_{2t} + \beta_3 y_{t-1} + u_t$$

- y_{t-1} is a function of u_{t-1} .
 - y_{t-1} is correlated to u_{t-1} .
 - In other words, the error is correlated with a variable that is not its contemporaneous.
- In this case, $\hat{\beta}_2$ is biased and inefficient but consistent.

(3)
$$y_t = \beta_1 + \beta_2 x_{2t} + \beta_3 y_{t-1} + u_t$$
, $u_t = \rho u_{t-1} + e_t$

- The model can be rewritten as: $y_t = \beta_1 + \beta_2 x_{2t} + \beta_3 y_{t-1} + \rho u_{t-1} + e_t$.
- Since u_{t-1} is inside y_{t-1} , then u_{t-1} and y_{t-1} are correlated.
 - Now, the errors are dependent upon its contemporaneous *and* other variables.

• Then, $\hat{\beta}_2$ is biased, inefficient and inconsistent.

For the model:

(1)
$$y_t = \beta_1 + \beta_2 x_{2t} + u_t$$
, $u_t = \rho u_{t-1} + e_t$

- It violates the assumption (C.6), because the errors are correlated.
- $\hat{\beta}$ is thus unbiased, inconsistent and <u>inefficient</u>.
 - \circ When positive serial correlation exists (*i. e.*, $\rho > 0$), the standard errors are too small.
 - \circ The t statistic $t=rac{\hat{eta}-eta^{H_0}}{\sigma_{\hat{eta}}}$ then blows up.
 - \circ F statistics will get too big, as well.
- Misspecification can also give rise to serial correlation:
 - \circ Suppose a serially correlated variable x_3 (say, GDP) is left out of the model.
 - The effect of that variable would be added to the errors, making them serially correlated, as well.
 - Trying to fit a non-linear relation (say, quadratic) through linear regression may give the impression of serial correlation.
 - If the line is secant to the curve, for instance, the errors would be positive-negative-positive (or negative-positive-negative) and would *seem* serially correlated.

Durbin-Watson test for autocorrelation

This is a test for first order serial correlation **only**.

- For instance, a model $y_t=\beta_1+\beta_2x_{2t}+u_t,\quad u_t=\rho u_{t-1}+e_t$ with $|\rho|<1.$
- This is called a first-order autoregressive process (or AR(1)), because it has one lag.
 - Analogously, if the errors were defined as $u_t = \rho_1 u_{t-1} + \rho_2 u_{t-2} + \rho_3 u_{t-3} + e_t$, it would be an AR(3).
 - Since there is no lag on the term e_t , this a 0^{th} order moving average process (MA(0)).
 - An error defined as, say, $u_t = \rho_1 u_{t-1} + \rho_2 u_{t-2} + \rho_3 u_{t-3} + \delta_1 e_{t-1} + \delta_2 e_{t-2}$ would be classified as an autoregressive moving average model ARMA(3, 2).
 - lacksquare More generally, an $\operatorname{ARMA}(p,q)$ is given by $u_t = \sum_{i=1}^p
 ho_i u_{t-i} + \sum_{j=1}^q \delta_j e_{t-j}$, for
 - For more on autoregressive models, see this link.

Hypotheses:

$$H_0: \rho = 0$$

 $H_1: \rho \neq 0$

Steps:

1. Estimate $y_t = \beta_1 + \beta_2 x_{2t} + \ldots + \beta_k x_{kt} + u_t$ by OLS, save \hat{u}_t .

2. Compute the test statistic
$$d = rac{\displaystyle\sum_{t=2}^T (\hat{u}_t - \hat{u}_{t-1})^2}{\displaystyle\sum_{t=1}^T \hat{u}_t^2}$$
 , so that $0 < d < 4$.

- $\circ 0 < d < 2$ would suggest a positive serial correlation one-tailed test, while 2 < d < 4, a negative serial correlation one-tailed test.
- 3. (a) For the one-tailed test version of the test $H_1: \rho>0$ (testing for positive serial correlation), obtain from the <u>table</u> (external link <u>here</u>) the critical lower and upper values $d_{\rm L}$ and $d_{\rm U}$ for the N observations, k variables and significance α .
 - \circ For the positive test, the area of interest will be the interval [0,2], so that $d_{\rm L},d_{\rm U}\in[0,2]$ with $d_{\rm L}< d_{\rm U}$.
 - $\circ~$ If the test statistic $d_{
 m U} < d_{
 m test} < 2$, we fail to reject the null hypothesis.
 - \circ If $0 < d_{
 m test} < d_{
 m L}$, we reject the null hypothesis.
 - \circ Otherwise, if $d_{
 m L} < d_{
 m test} < d_{
 m U}$, the (positive serial correlation) test is inconclusive.
 - Usually, another test is performed (namely, the LM test).
- 3. (b) For the other one-tailed version of the test $H_1: \rho < 0$ (testing for negative serial correlation), obtain $d_{\rm L}$ and $d_{\rm U}$ for the given N, k and α .
 - \circ For the negative test, the area of interest will be the interval [2,4] so that $(4-d_{\rm U}), (4-d_{\rm L}) \in [2,4]$ with $(4-d_{\rm U}) < (4-d_{\rm L})$.
 - \circ If $2 < d_{
 m test} < (4-d_{
 m U})$ id est, $(4-d) > d_{
 m U}$ -, we fail to reject the null hypothesis.
 - $\circ~$ If $(4-d_{
 m L}) < d_{
 m test} < 4$ $\it id$ est, $(4-d) < d_{
 m L}$ -, we reject the null hypothesis.
 - \circ Otherwise, if $(4-d_{
 m U}) < d_{
 m test} < (4-d_{
 m L})$ *id est,* $d_{
 m L} < (4-d) < d_{
 m U}$ -, the (negative serial correlation) test is inconclusive.

For more on the Durbin-Watson test, see this link.

Why is d between 0 and 4?

• The correlation can be estimated by
$$\hat{
ho} = rac{\displaystyle\sum_{t=2}^T \hat{u}_t \hat{u}_{t-1}}{\displaystyle\sum_{t=1}^T \hat{u}_t^2}.$$

$$\quad \text{ Then, } \hat{\rho} = \frac{\frac{1}{(N-k)} \sum_{t=2}^T \hat{u}_t \hat{u}_{t-1}}{\frac{1}{(N-k)} \sum_{t=1}^T \hat{u}_t^2} \approx \frac{\widehat{\mathrm{Cov}}(\hat{u}_t, \hat{u}_{t-1})}{\widehat{\mathrm{Var}}(\hat{u}_t)} \text{: note that the sum in the numerator is }$$

missing one term.

$$\bullet \ \ \text{The test statistic is given by } d = \frac{\displaystyle\sum_{t=2}^T (\hat{u}_t - \hat{u}_{t-1})^2}{\displaystyle\sum_{t=1}^T \hat{u}_t^2}.$$

$$\circ \ \ \text{Expanding the numerator } d = \frac{\displaystyle\sum_{t=2}^T (\hat{u}_t^2 - 2\hat{u}_t\hat{u}_{t-1} + \hat{u}_{t-1}^2)}{\displaystyle\sum_{t=2}^T \hat{u}_t^2}.$$

$$\text{o Rewriting it: } d = \frac{(N-k-1)\sum_{t=2}^{T}\frac{1}{(N-k-1)}(\hat{u}_{t}^{2}-2\hat{u}_{t}\hat{u}_{t-1}+\hat{u}_{t-1}^{2})}{(N-k)\sum_{t=1}^{T}\frac{1}{(N-k)}\hat{u}_{t}^{2}}.$$

$$lacksquare \sum_{t=1}^T rac{1}{(N-k)} \hat{u}_t^2$$
 is an estimate of the variance.

$$lacksquare \sum_{t=2}^T rac{1}{(N-k-1)} \hat{u}_t^2$$
 is an estimate of the variance (with one less observation: \hat{u}_1).

$$\sum_{t=2}^T \frac{1}{(N-k-1)} \hat{u}_{t-1}^2$$
 is also an estimate of the variance (short of one observation: \hat{u}_t).

$$lacksquare \sum_{t=2}^T rac{1}{(N-k-1)} \hat{u}_t \hat{u}_{t-1}$$
 is an estimate of the covariance of \hat{u}_t and \hat{u}_{t-1} .

• The test statistic may be thus estimated

$$d = \frac{N-k-1}{N-k} \bigg(\frac{\widehat{\operatorname{Var}}(\hat{u}_t) - 2\widehat{\operatorname{Cov}}(\hat{u}_t, \hat{u}_{t-1}) + \widehat{\operatorname{Var}}(\hat{u}_t)}{\widehat{\operatorname{Var}}(\hat{u}_t)} \bigg).$$

■ The larger the number of observations, the closer $\frac{N-k-1}{N-k}$ is to 1.

$$\frac{\widehat{\operatorname{Var}}(\hat{u}_t) - 2\widehat{\operatorname{Cov}}(\hat{u}_t, \hat{u}_{t-1}) + \widehat{\operatorname{Var}}(\hat{u}_t)}{\widehat{\operatorname{Var}}(\hat{u}_t)} = 2\left(1 - \frac{\widehat{\operatorname{Cov}}(\hat{u}_t, \hat{u}_{t-1})}{\widehat{\operatorname{Var}}(\hat{u}_t)}\right).$$

- \circ Thus, $d \approx 2(1-\hat{
 ho})$.
 - Asymptotically, as $t \to \infty$, $d = 2(1 \rho)$.
 - If there is perfect positive correlation ($\rho = 1$), then d = 0.
 - If there is no correlation ($\rho = 0$), then d = 2.
 - If there is perfect negative correlation ($\rho = -1$), then d = 4.

Observation:

$$\hat{eta}_2^{ ext{OLS}} = rac{\sum (X_i - ar{X})(Y_i - ar{Y})}{\sum (X_i - ar{X})^2}$$

If we multiply both the numerator and denominator by $\frac{1}{N-k}$:

$$\hat{eta}_{2}^{ ext{OLS}} = rac{rac{1}{N-k} \sum (X_{i} - ar{X})(Y_{i} - ar{Y})}{rac{1}{N-k} \sum (X_{i} - ar{X})^{2}}$$

then the numerator becomes an estimate of the covariance of X and Y, whereas the denominator turns into an estimate of the variance of X:

$$\hat{eta}_2^{ ext{OLS}} = rac{\widehat{ ext{Cov}}(X,Y)}{\widehat{ ext{Var}}(X)}.$$