Online graph exploration on trees

Md.Mahedi Hasan Rigan(1705031) Asif Mustafa Hassan(1705041)

Department of Computer Science and Engineering Bangladesh University of Engineering and Technology Dhaka-1205, Bangladesh

July 7, 2021

Figure: Online exploratoin example

Figure: Online exploratoin example

• A technique to explore all vertices of a graph and return to the start

- A technique to explore all vertices of a graph and return to the start
- Initially all the vertices are unknown

- A technique to explore all vertices of a graph and return to the start
- Initially all the vertices are unknown
- While arriving at a vertex for the first time, the searcher will get the weights of all edges incident to the vertex.

- A technique to explore all vertices of a graph and return to the start
- Initially all the vertices are unknown
- While arriving at a vertex for the first time, the searcher will get the weights of all edges incident to the vertex.
- Must visit every vertex before returning to the start node.

How could we measure the performance of an online algorithm?

Using Competitive analysis

- Using Competitive analysis
- Competitive ratio: A infimum ratio of an online problem solution to its solution of the corresponding offline problem

- Using Competitive analysis
- Competitive ratio: A infimum ratio of an online problem solution to its solution of the corresponding offline problem
- If an online tour is no longer than c times the optimal tour on offline graph, then it's called *c-competitive* algorithm.

Nearest Neighbor Algorithm

The algorithm is follows a **greedy** approach. At each vertex, follows the best choice without consideration of future

- Select a starting point
- Move to the nearest unvisited smallest vertex using the edge
- Repeat until all the vertices are visited

Problem

- The best known algorithms on general graphs are:
 - Nearest Neighbour Approach (NN)
 - Hierarchical DFS
- Between NN and Hierarchical DFS NN has tighter worst case ratio (better)
- Competitive ratio of NN: $\Theta(\log_2 n)$
- But no constant competitive ratio on general graphs

Problem

- No constant competitive ratio on general graphs
- What do we do?
- We define bounds on competitive ratio:
 - Lower bound
 - Upper bound
- As there is no certain Competitive Ratio for a particular algorithm we work with the bounds
- Lower difference between the bounds defines better algorithms.

Improvement of Algorithms

- Work with the bounds of competitive ratio
- Try to improve the bounds
- Define a family of graph class
- Try to improve bounds of general class for the particular family

Our Goal

- We work on NN approach beacuse of its tighter bounds.
- Our goal is:
 - Construct a tree
 - Show that the tighter bounds of NN also holds on particular family of graph trees

Figure: Graph for construction Hurkens and Woeginger

- Consider the graph by Hurkens and Woeginger
- We will modify this structure according to our interest
- We will:
 - ullet Define a graph class G_k for $k\geq 1$
 - Calculate parameters of the graph

- Define three vertices on tree
 - I_k : Left most node of tree G_k
 - r_k : Right most node of tree G_k
 - m_k : Node connected to the right recursive portion's I_k of G_k

- Define three vertices on tree
 - I_k : Left most node of tree G_k
 - r_k : Right most node of tree G_k
 - m_k : Node connected to the right recursive portion's I_k of G_k
- This will be a recursive graph
- Build graph for G₁
 - Connect l_1 to r_1 with unit length edge
 - Connect m_1 to r_1 with unit length edge

- Define three vertices on tree
 - I_k : Left most node of tree G_k
 - r_k : Right most node of tree G_k
 - m_k : Node connected to the right recursive portion's I_k of G_k
- This will be a recursive graph
- Build graph for G₁
 - Connect 1 to r1 with unit length edge
 - Connect m_1 to r_1 with unit length edge
- This will be a recursive graph
- Build graph for G_k
- Connect G_{k-1} to G'_{k-1}
 - Connect r_{k-1} to l'_{k-1} with edge of length k
 - Connect m_k to r'_{k-1} with unit length edge

Construction of the graph is done!!

Figure: Graph for G_1

We define number of vertices as n_k

• For
$$k = 1, n_k = 3$$

Figure: Graph for G_3

We define number of vertices as n_k

- For $k = 1, n_k = 3$
- For $k \ge 1$, $n_k = 2 * n_{k-1} + 1$

It can be proved by induction that:

$$n_k = 2^{k+1} - 1$$

Figure: Graph for G_1

We define length from l_k to r_k as p_k

• For
$$k = 1, p_k = 1$$

Figure: Graph for G₃

We define length from l_k to r_k as p_k

- For $k = 1, p_k = 1$
- For k > 1, $p_k = 2 * p_{k-1} + k$

It can be proved by induction that:

$$p_k = 2^{k+1} - k - 2$$

Figure: Graph for G_1

We define sum of weights of all edges from l_k to r_k as w_k

• For
$$k = 1, \frac{w_k}{} = 2$$

Figure: Graph for G_3

We define sum of weights of all edges from l_k to r_k as w_k

- For $k = 1, w_k = 2$
- For k > 1, $w_k = 2 * w_{k-1} + k + 1$

It can be proved by induction that:

$$\mathbf{w}_k = 3 * 2^k - k - 3$$

Figure: Graph for G_3

We define "optimal path weight for the graph to start at l_k and after visiting all the nodes, return to l_k " as $OPT(G_k)$

$$OPT(G_k) = 2 * w_k$$

= $2 * (3 * 2^k - k - 3)$
= $6 * 2^k - 2 * k - 6$

Figure: Graph for G_3

Number of vertices:
$$n_k = 2^{k+1} - 1$$

Length from l_k to r_k : $p_k = 2^{k+1} - k - 2$
Sum of weights of all edges from l_k to r_k : $w_k = 3 * 2^k - k - 3$

Optimal path weight for the graph to start at I_k and after visiting all the nodes, return to I_k :

$$OPT(G_k) = 6 * 2^k - 2 * k - 6$$

Lemma 1

Lemma: For $k \ge 1$, consider a graph G that contains G_k as a subgraph. Furthermore, assume that edges between G_k and $G - G_k$ are either incident to I_k and have a length of at least 1 or are incident to r_k and have a length of at least k+1.

Then there exists a partial NN tour exploring all of G_k that starts in I_k , finishes in m_k and has a length of

$$(k+1)*2^k-2$$

• edges between G_k and $G - G_k$ are either incident to I_k and have a length of at least 1 or are incident to r_k and have a length of at least k+1

Figure: Graph for Lemma 1

Figure: Condition for Lemma 1

We prove this lemma by induction.

- Let us consider graph G₁
- l_1 to m_1 path has length 3
- Satisfies the equation $(k+1) * 2^k 2$ where k = 1

In G_k , path starts at I_k , finishes at m_k and has a length of $(k+1)*2^k-2$

Figure: Graph for G₃

- G_k consists of two subgraph G_{k-1} and G'_{k-1}
- As this is proof by induction, we assume the conditions are met for the two subgraph G_{k-1} and G_{k-1}'

In G_k , path starts at I_k , finishes at m_k and has a length of $(k+1)*2^k-2$

Figure: Traversal in G_{k-1}

- We start at l_{k-1} in G_{k-1} which is also l_k for G_k
- We reach m_{k-1} from l_{k-1}
- path length: $k * 2^{k-1} 2$ as G_{k-1} satisfies the the lemma for k-1
- G_{k-1} graph traverse is done

In G_k , path starts at I_k , finishes at m_k and has a length of $(k+1)*2^k-2$ We are at m_{k-1} , we need to traverse subgraph G'_{k-1} and then reach m_k

Figure: m_{k-1} to l'_{k-1}

- We can go outside of G_{k-1} and then traverse G'_{k-1} independently
 - Through l_{k-1} , length at least $1 + k + p_{k-2}$
 - Through r_{k-1} , length at least $1 + p_{k-2} + k$
- We can go straight to l'_{k-1} , length: $1 + p_{k-2} + k$

We choose going to l'_{k-1}

In G_k , path starts at I_k , finishes at m_k and has a length of $(k+1)*2^k-2$

Figure: Caption

- We are at I'_{k-1} in G'_{k-1}
- We reach m'_{k-1} from l'_{k-1}
- path length: $k * 2^{k-1} 2$ as G'_{k-1} satisfies the the lemma for k-1
- G'_{k-1} graph traverse is done

In G_k , path starts at I_k , finishes at m_k and has a length of $(k+1)*2^k-2$

Figure: m'_{k-1} to m_k

Now, only m_k vertex traversal is left, we are at m'_{k-1}

- We can go outside of G_k and then reach m_k independently
 - Through l_{k-1} , length at least $1+3*k+3*p_{k-2}$
 - Through r'_{k-1} , length at least $2 + p_{k-2} + k$
- We can go straight to m_k through l'_{k-1} , length: $1+k+p_{k-2}$

Obviously, we choose to reach straight to m_{ν} 16 / 18

In G_k , path starts at I_k , finishes at m_k and has a length of $(k+1)*2^k-2$

Figure: Graph for G_k

We have completed our traversal from l_k to m_k . Total length of the path:

- I_k to m_{k-1} in subgraph G_{k-1} : $k * 2^{k-1} 2$
- m_{k-1} to l'_{k-1} : $1+k+p_{k-2}$
- l'_{k-1} to m'_{k-1} in subgraph G'_{k-1} : $k * 2^{k-1} 2$
- m'_{k-1} to m_k : $1 + k + p_{k-2}$

Total length of whole traversal:

$$L_{k} = 2 * (1 + k + p_{k-2}) + 2 * (k * 2^{k-1} - 2)$$

$$= 2 + 2k + 2p_{k-2} + 2k * 2^{k-1} - 4$$

$$= 2k - 2 + 2k * 2^{k-1} + 2p_{k-2}$$

$$= 2k - 2 + 2k * 2^{k-1} + 2(2^{k-1} - (k-2) - 2)$$

$$= 2k - 2 + k * 2^{k} + 2^{k} - 2k + 4 - 4$$

$$= 2^{k}(k+1) - 2 \quad \Box$$

Our goal was to show that the "tighter bounds of competitive ratio of NN" also holds on the family of the tree.

- The upper bound follows directly from the general case.
- We show that: The lower bound on trees remains same if we follow NN approach.

Calculating the Competitive Ratio lower bound:

- Traversing graph G_k when G_k is a part of larger graph G with some conditions, the shortest path length from I_k to m_k is $(k+1)*2^k-2$. [Lemma 1]
- We can use Lemma 1 for only G_k as we did not need to go outside G_k in Lemma 1.
- Finally complete exploration by returning to l_k from m_k .

Calculating the Competitive Ratio lower bound:

Figure: m_k to l_k

- l_k to m_k needs length: $(k+1)*2^k-2$
- m_k to l_k needs length:

$$Ret(G_k) = 1 + k + p_{k-1}$$

$$= 1 + k + (2^k - (k-1) - 2)$$

$$= 1 + k + 2^k - k + 1 - 2 = 2^k$$

Calculating the Competitive Ratio lower bound:

• Total length for complete exploration on Online Tree G_k :

$$NN(G_k) = Ret(G_k) + (k+1) * 2^k - 2$$
$$= 2^k + (k+1) * 2^k - 2$$
$$= (k+2) * 2^k - 2$$

Calculating the Competitive Ratio lower bound:

The NN approach on particular Online Tree family has length:

$$(k+2)*2^k-2$$

The optimal solution on this offline Tree family should have length:

$$OPT(G_k) = 2 * w_k$$

= $6 * 2^k - 2k - 6$

• G_k has vertices:

$$n_k = 2^{k+1} - 1$$

$$2^{k+1} = n_k + 1$$

$$log_2 2^{k+1} = log_2(n_k + 1)$$

$$k + 1 = log_2(n_k + 1)$$

$$k = log_2(n_k + 1) - 1$$

Calculating the Competitive Ratio lower bound:

Lower bound:

$$c = \frac{NN(G_k)}{OPT(G_k)}$$

$$= \frac{(k+2) * 2^k - 2}{6 * 2^k - 2k - 6}$$

$$\ge \frac{k+2}{6}$$

$$= \frac{\log_2(n+1) + 1}{6}$$

Thank You!