Relations & Functions - 2

Aviral Janveja

In this chapter, we will study different types of relations and functions, composition of functions, invertible functions and binary operations.

1 Types of Relations

We know that a relation in a set A is a subset of $A \times A$. It could be \emptyset or $A \times A$ or some subset in between. This leads us to the following definitions :

1.1 Empty Relation

A relation R in a set A is called an empty relation, if no element of A is related to any element of A. That is $R = \emptyset$.

1.2 Universal Relation

A relation R in a set A is called universal relation, if each element of A is related to every element of A. That is $R = A \times A$.

Both the empty relation and the universal relation are sometimes called **trivial relations**.

1.3 Reflexive Relation

A relation R in a set A is called reflexive if $(a, a) \in R$ for every $a \in A$.

1.4 Symmetric Relation

A relation R in a set A is called symmetric if $(a, b) \in R$ implies that $(b, a) \in R$ for all $a, b \in A$.

1.5 Transitive Relation

A relation R in a set A is called transitive if $(a, b) \in R$ and $(b, c) \in R$ implies that $(a, c) \in R$ for all $a, b, c \in A$.

1.6 Equivalence Relation

A relation R in a set A is said to be an equivalence relation if R is reflexive, symmetric and transitive.

1.7 Example

Let R be the relation defined in the set $A = \{1,2,3,4,5,6,7\}$ by $R = \{(a,b) : both a and b are either odd or even \}$. Show that R is an equivalence relation.

Solution:

- \Rightarrow Given any element a in A, it will either be odd or even. So $(a,a) \in R$ for all $a \in A$. Thus R is reflexive.
- \Rightarrow Further, $(a,b) \in R$ implies both a and b must be either odd or even, thus $(b,a) \in R$ as well for any $a,b \in A$. Thus R is symmetric.
- \Rightarrow Finally, $(a,b) \in R$ and $(b,c) \in R$ implies all elements a,b,c must be either even or odd simultaneously, hence implying that $(a,c) \in R$ for any $a,b,c \in A$. Thus R is transitive.

Hence, we have shown that R is an equivalence relation.

2 Types of Functions

2.1 One-One

A function $f: X \to Y$ is said to be one-one (or **injective**) if distinct elements of X under f have distinct images in Y. That is, for every $x_1, x_2 \in X$, $f(x_1) = f(x_2)$ implies $x_1 = x_2$.

Otherwise, if multiple elements in X have the same image in Y, then f is called **many-one**.

2.2 Onto

A function $f: X \to Y$ is said to be onto (or **surjective**) if every element of Y is the image of some element of X under f. That is, for every $y \in Y$, there exists an element x in X such that f(x) = y.

This implies that $f: X \to Y$ is onto if and only if range of f = Y, which is the codomain.

2.3 One-One & Onto

A function $f: X \to Y$ is said to be **bijective** if it is both one-one and onto.

2.4 Example

Show that the function $f: \mathbb{N} \to \mathbb{N}$, given by f(x) = 2x is one-one but not onto.

Solution: The function is one-one as all distinct natural numbers x under f will have a distinct image y = f(x) = 2x. Further, $f(x_1) = f(x_2)$ implies $2x_1 = 2x_2$, implying $x_1 = x_2$.

The function is not onto as y = 1 is not an image of any element x in N under f. Meaning, for y = 1, there does not exist any natural number x, satisfying y = f(x) = 2x = 1.

2.5 Example

Prove that the function $f: \mathbb{R} \to \mathbb{R}$ given by f(x) = 2x is one-one and onto.

Solution: The function is one-one as all distinct real numbers x under f will have a distinct image y = f(x) = 2x. Further, $f(x_1) = f(x_2)$ implies $2x_1 = 2x_2$, implying $x_1 = x_2$.

The function is onto as for any real number y, there exists x in R under f satisfying y = f(x) = 2x.

2.6 Example

Show that an onto function $f: \{1, 2, 3\} \rightarrow \{1, 2, 3\}$ is always one-one.

Solution: If f is not one-one, there exists two elements, say 1 and 2 in the domain whose image in the co-domain is same.

Now, the image of 3 under f can be only one element. Therefore the range set can have at most two elements of the co-domain, showing that f is not onto, a contradiction. Hence f has to be one-one.

2.7 Example

Show that a one-one function $f : \{1, 2, 3\} \rightarrow \{1, 2, 3\}$ must be onto.

Solution: Since f is one-one, the three elements of the domain must have three distinct images in the co-domain under f. And since the co-domain has only three elements which are all covered, hence f has to be onto.

Remark: The results shown in the above two examples 2.6 and 2.7 are also true for an arbitrary finite set X. That is, a one-one function $f: X \to X$ is necessarily onto and an onto function $f: X \to X$ is necessarily one-one, for every finite set X.

In contrast to this example 2.4 shows that for an infinite set, this may not be true. In fact, this is a characteristic difference between a finite and an infinite set.

3 Composition of Functions

4 Invertible Function