UMA PÁGINA SOBRE O LEMA DE ZORN ⊕⊕⊕ 2005–2012 Vinicius Cifú Lopes

Esta cartilha expõe brevemente o Lema de Zorn para uso cotidiano. É um resultado muito útil, pois substitui cálculos técnicos envolvendo indução transfinita.

Definições e enunciado. Seja X um conjunto não-vazio. Uma relação binária \leq em X é uma relação de ordem (parcial) em X e diz-se que X é um conjunto (parcialmente) ordenado (por \leq) se, para quaisquer $x,y,z\in X$, valem estas propriedades: $x\leq x$; se $x\leq y$ e $y\leq x$ então x=y; se $x\leq y$ e $y\leq z$ então $x\leq z$. O exemplo mais comum de ordem parcial é a de inclusão \subseteq em uma família qualquer de conjuntos.

Um elemento $x \in X$ é um limitante superior, cota superior ou majorante de um subconjunto $S \subseteq X$ se, para todo $s \in S$, vale $s \leq x$.

Um subconjunto $C \subseteq X$ é uma cadeia ou está linearmente ordenado ou totalmente ordenado por \leq se, para todos $a, b \in C$, verifica-se que $a \leq b$ ou $b \leq a$.

Um elemento $x \in X$ é um elemento maximal de X se não existe $y \in X$ distinto de x tal que $x \leqslant y$. O Lema de Zorn enuncia-se: "Se toda cadeia de X tem um limitante superior (diz-se que X é indutivo ou indutivamente ordenado), então X tem um elemento maximal."

O exemplo clássico. Apliquemos o Lema de Zorn para mostrar que todo espaço vetorial tem uma base, isto é, um subconjunto linearmente independente de vetores que o gera.

Seja V um espaço vetorial sobre um corpo K. Lembramos que um conjunto P de vetores gera~V se, para todo $v \in V$, existem $n \in \mathbb{N}^{\neq 0}, v_1, \ldots, v_n \in P$ e $a_1, \ldots, a_n \in K$ tais que $v = a_1v_1 + \ldots + a_nv_n$. Um conjunto qualquer Q de vetores é linearmente~independente se todo subconjunto finito de Q o for, ou seja, se, para todos $n \in \mathbb{N}^{\neq 0}, v_1, \ldots, v_n \in Q$ distintos e $a_1, \ldots, a_n \in K$ tais que $a_1v_1 + \ldots + a_nv_n = 0$, tem-se de fato que $a_1 = \ldots = a_n = 0$.

Seja X a família de todos os conjuntos linearmente independentes de V. Verifica-se que $\emptyset \in X$, de modo que $X \neq \emptyset$. Vemos que X é ordenado pela relação de inclusão \subseteq .

Suponha que C é uma cadeia em X. Então podemos considerar o conjunto de vetores $P = \bigcup C = \{v \in V \mid \text{existe } P_0 \in C \text{ com } v \in P_0\}$. Mostremos que $P \in X$. Suponha $v_1, \ldots, v_n \in P$ distintos e $a_1, \ldots, a_n \in K$ tais que $a_1v_1 + \ldots + a_nv_n = 0$. Então existem $P_1, \ldots, P_n \in C$ tais que $v_1 \in P_1, \ldots, v_n \in P_n$. Como C é uma cadeia, existe $1 \leq i \leq n$ tal que $v_1, \ldots, v_n \in P_i$. Como $P_i \in X$, conclui-se que $a_1 = \ldots = a_n = 0$. Assim, P é um conjunto linearmente independente. É claro que, se $P_0 \in C$, então $P_0 \subseteq P$, de modo que P é um limitante superior da cadeia C.

Pelo Lema de Zorn, X tem um elemento maximal B. Como $B \in X$, sabe-se que B é linearmente independente. Mostremos que B gera V. Suponha que $v \in V$ não pode ser escrito como combinação linear (finita) de elementos de B; em particular, $v \notin B$. Então $B \cup \{v\}$ é linearmente independente. De fato, suponha $v_1, \ldots, v_n \in B$ distintos e $a_1, \ldots, a_n, a \in K$ tais que $a_1v_1 + \ldots + a_nv_n + av = 0$. Se a = 0, então $a_1v_1 + \ldots + a_nv_n = 0$, donde $a = a_1 = \ldots = a_n = 0$. Se $a \neq 0$, então $v = -\frac{a_1}{a}v_1 - \ldots - \frac{a_n}{a}v_n$, contradizendo nossa hipótese sobre v. Assim, $B \cup \{v\} \in X$, mas $B \subseteq B \cup \{v\}$; como a inclusão é própria, B não pode ser maximal, contradição.

Demonstração do Lema. Esta demonstração, infelizmente, é técnica.

Suponha que X não tenha um elemento maximal. Assim, dado $x \in X$, existe $y \in X$ distinto de x e satisfazendo $x \leq y$. Escreveremos simplesmente x < y. Fixe $x_0 \in X$ e, por indução, construa uma seqüência $x_0 < x_1 < x_2 < \ldots$ Note que a cadeia $\{x_n \mid n \in \mathbb{N}\}$ tem, por hipótese, um limitante superior x_ω . Como os elementos x_n são todos distintos, vemos que $x_0 < x_1 < x_2 < \ldots < x_\omega$. Se X é finito, já obtivemos uma contradição.

Prosseguindo por indução transfinita, com o Axioma da Escolha e o Teorema da Recursão obtemos uma cadeia de elementos distintos $x_{\delta} \in X$ para $\delta < \alpha$ ordinal arbitrário. Se α é um cardinal maior que o de X, novamente caímos em contradição.

Sugestões são bem-vindas. Mande-as para vinicius @ufabc.edu.br. Queremos manter essa cartilha o mais simples possível.