Lecture 05 Projectors and QR Factorization

Songting Luo

Department of Mathematics lowa State University

MATH 562 Numerical Analysis II

Outline

Projectors

QR Factorization

Outline

Projectors

QR Factorization

Projectors

- A projector satisfies $\mathbf{P}^2 = \mathbf{P}$. They are also said to be idempotent.
 - Orthogonal projector. (Projects onto S_1 along S_2 where S_2 is orthogonal to S_1).
 - Oblique projector. (non-orthogonal)
- Example: $\begin{bmatrix} 0 & 0 \\ \alpha & 1 \end{bmatrix}$
 - is an oblique projector if $\alpha \neq 0$
 - is orthogonal projector if $\alpha = 0$.

Complementary Projectors

- Complementary projector to P: I P.
- What space does I P project?
 - What is the range? What is the null space?

Complementary Projectors

- Complementary projector to P: I P.
- What space does I − P project?
 - What is the range? What is the null space?
 - Answer: $null(\mathbf{P}) = range(\mathbf{I} \mathbf{P})$
 - Also, By $\mathbf{P} = \mathbf{I} (\mathbf{I} \mathbf{P})$, $null(\mathbf{I} \mathbf{P}) = range(\mathbf{P})$.

Complementary Projectors \mathbf{P} vs. $\mathbf{I} - \mathbf{P}$

- A projector separates \mathbb{C}^m into two complementary subspaces: range space and null space. For projector $\mathbf{P} \in \mathbb{C}^{m \times m}$,
 - $range(\mathbf{P}) + null(\mathbf{P}) = \mathbb{C}^m$
 - $range(\mathbf{P}) \cap null(\mathbf{P}) = \{\mathbf{0}\}\$
 - It projects onto range space along null space. In other words,

$$\mathbf{x} = \mathbf{P}\mathbf{x} + \mathbf{r}$$
, where $\mathbf{r} \in null(\mathbf{P})$

Complementary Projectors P vs. I - P

- A projector separates \mathbb{C}^m into two complementary subspaces: range space and null space. For projector $\mathbf{P} \in \mathbb{C}^{m \times m}$,
 - $range(\mathbf{P}) + null(\mathbf{P}) = \mathbb{C}^m$
 - $range(\mathbf{P}) \cap null(\mathbf{P}) = \{\mathbf{0}\}\$
 - It projects onto range space along null space. In other words,

$$\mathbf{x} = \mathbf{P}\mathbf{x} + \mathbf{r}$$
, where $\mathbf{r} \in null(\mathbf{P})$

- Conversely, given two complementary subspaces S_1 and S_2 , there is a projector ${\bf P}$ such that $rang({\bf P})=S_1$, and $null({\bf P})=S_2$. (Say ${\bf P}$ is the projector onto S_1 along S_2 .)
- Question: Are range space and null space of projector orthogonal to each other?

Orthogonal Projector

• An orthogonal projector is one that projects onto a subspace S_1 along a space S_2 , where S_1 and S_2 are orthogonal.

Theorem (Existence)

A projector P is orthogonal if and only if $P = P^*$

Orthogonal Projector

• An orthogonal projector is one that projects onto a subspace S_1 along a space S_2 , where S_1 and S_2 are orthogonal.

Theorem (Existence)

A projector **P** is orthogonal if and only if $P = P^*$

Proof

"If" direction: if
$$\mathbf{P} = \mathbf{P}^*$$
, then $(\mathbf{P}\mathbf{x})^*(\mathbf{I} - \mathbf{P})\mathbf{y} = \mathbf{x}^*(\mathbf{P} - \mathbf{P}^2)\mathbf{y} = 0$

"Only if" direction: use SVD, Suppose ${\bf P}$ projects onto S_1 along S_2 where $S_1 \perp S_2$, and S_1 has dimension n. Let $\{{\bf q}_1,\ldots,{\bf q}_n\}$ be orthonormal basis of S_1 and $\{{\bf q}_{n+1},\ldots,{\bf q}_m\}$ be a basis for S_2 . Let ${\bf Q}$ be unitary matrix whose jth column is ${\bf q}_j$, and we have ${\bf P}{\bf Q}=[{\bf q}_1,\ldots,{\bf q}_n,{\bf 0},\ldots,{\bf 0}],$ so ${\bf Q}^*{\bf P}{\bf A}=diag(1,1,\cdots,0,\cdots)={\bf \Sigma},$ and ${\bf P}={\bf Q}{\bf \Sigma}{\bf Q}^*.$

Orthogonal Projector

• An orthogonal projector is one that projects onto a subspace S_1 along a space S_2 , where S_1 and S_2 are orthogonal.

Theorem (Existence)

A projector P is orthogonal if and only if $P = P^*$

Proof

"If" direction: if
$$\mathbf{P} = \mathbf{P}^*$$
, then $(\mathbf{P}\mathbf{x})^*(\mathbf{I} - \mathbf{P})\mathbf{y} = \mathbf{x}^*(\mathbf{P} - \mathbf{P}^2)\mathbf{y} = 0$

"Only if" direction: use SVD, Suppose ${\bf P}$ projects onto S_1 along S_2 where $S_1 \perp S_2$, and S_1 has dimension n. Let $\{{\bf q}_1,\ldots,{\bf q}_n\}$ be orthonormal basis of S_1 and $\{{\bf q}_{n+1},\ldots,{\bf q}_m\}$ be a basis for S_2 . Let ${\bf Q}$ be unitary matrix whose jth column is ${\bf q}_j$, and we have ${\bf P}{\bf Q}=[{\bf q}_1,\ldots,{\bf q}_n,{\bf 0},\ldots,{\bf 0}],$ so ${\bf Q}^*{\bf P}{\bf A}=diag(1,1,\cdots,0,\cdots)={\bf \Sigma}$, and ${\bf P}={\bf Q}{\bf \Sigma}{\bf Q}^*$.

Question: Are orthogonal projectors orthogonal matrices?

- Projection with orthonormal basis
 - Given any matrix $\hat{\mathbf{Q}} \in \mathbb{C}^{m \times n}$ whose columns are orthonormal, then $\mathbf{P} = \hat{\mathbf{Q}}\hat{\mathbf{Q}}^*$ is orthogonal projector, so is $\mathbf{I} \mathbf{P}$.
 - We write $\mathbf{I} \mathbf{P}$ as \mathbf{P}_{\perp}
 - In particular, if $\hat{\mathbf{Q}} = \mathbf{q}$, we write $\mathbf{P_q} = \mathbf{q}\mathbf{q}^*$ and $\mathbf{P_{\perp q}} = \mathbf{I} \mathbf{P_q}$.
 - For arbitrary vector a, we write $P_a=\frac{aa^*}{a^*a}$ and $P_{\perp a}=I-P_a.$

- Projection with orthonormal basis
 - Given any matrix $\hat{\mathbf{Q}} \in \mathbb{C}^{m \times n}$ whose columns are orthonormal, then $\mathbf{P} = \hat{\mathbf{Q}}\hat{\mathbf{Q}}^*$ is orthogonal projector, so is $\mathbf{I} \mathbf{P}$.
 - We write $\mathbf{I} \mathbf{P}$ as \mathbf{P}_{\perp}
 - In particular, if $\hat{\mathbf{Q}}=\mathbf{q}$, we write $\mathbf{P_q}=\mathbf{q}\mathbf{q}^*$ and $\mathbf{P_{\perp q}}=\mathbf{I}-\mathbf{P_q}$.
 - For arbitrary vector **a**, we write $P_a = \frac{aa^*}{a^*a}$ and $P_{\perp a} = I P_a$.
- Projection with arbitrary basis
 - Given any matrix $\mathbf{A} \in \mathbb{C}^{m \times n}$ that has full rank and $m \geqslant n$, then

$$\mathbf{P} = \mathbf{A}(\mathbf{A}^*\mathbf{A})^{-1}\mathbf{A}^*$$

is orthogonal projection

What does P project onto?

- Projection with orthonormal basis
 - Given any matrix $\hat{\mathbf{Q}} \in \mathbb{C}^{m \times n}$ whose columns are orthonormal, then $\mathbf{P} = \hat{\mathbf{Q}}\hat{\mathbf{Q}}^*$ is orthogonal projector, so is $\mathbf{I} \mathbf{P}$.
 - We write $\mathbf{I} \mathbf{P}$ as \mathbf{P}_{\perp}
 - In particular, if $\hat{\mathbf{Q}}=\mathbf{q}$, we write $\mathbf{P_q}=\mathbf{q}\mathbf{q}^*$ and $\mathbf{P_{\perp q}}=\mathbf{I}-\mathbf{P_q}$.
 - For arbitrary vector **a**, we write $P_a = \frac{aa^*}{a^*a}$ and $P_{\perp a} = I P_a$.
- Projection with arbitrary basis
 - Given any matrix $\mathbf{A} \in \mathbb{C}^{m \times n}$ that has full rank and $m \geqslant n$, then

$$\mathbf{P} = \mathbf{A}(\mathbf{A}^*\mathbf{A})^{-1}\mathbf{A}^*$$

is orthogonal projection

- What does **P** project onto? Answer: $range(\mathbf{A})$.
- $(\mathbf{A}^*\mathbf{A})^{-1}\mathbf{A}^*$ is called the pseudo-inverse of \mathbf{A} , denoted as \mathbf{A}^+ .

- Projection with orthonormal basis
 - Given any matrix $\hat{\mathbf{Q}} \in \mathbb{C}^{m \times n}$ whose columns are orthonormal, then $\mathbf{P} = \hat{\mathbf{Q}}\hat{\mathbf{Q}}^*$ is orthogonal projector, so is $\mathbf{I} \mathbf{P}$.
 - We write $\mathbf{I} \mathbf{P}$ as \mathbf{P}_{\perp}
 - In particular, if $\hat{\mathbf{Q}}=\mathbf{q}$, we write $\mathbf{P_q}=\mathbf{q}\mathbf{q}^*$ and $\mathbf{P_{\perp q}}=\mathbf{I}-\mathbf{P_q}$.
 - For arbitrary vector **a**, we write $P_a = \frac{aa^*}{a^*a}$ and $P_{\perp a} = I P_a$.
- Projection with arbitrary basis
 - Given any matrix $\mathbf{A} \in \mathbb{C}^{m \times n}$ that has full rank and $m \geqslant n$, then

$$\mathbf{P} = \mathbf{A}(\mathbf{A}^*\mathbf{A})^{-1}\mathbf{A}^*$$

is orthogonal projection

- What does **P** project onto? Answer: $range(\mathbf{A})$.
- $(\mathbf{A}^*\mathbf{A})^{-1}\mathbf{A}^*$ is called the pseudo-inverse of \mathbf{A} , denoted as \mathbf{A}^+ .

Outline

Projectors

QR Factorization

Motivation

Question: Given a linear system $\mathbf{A}\mathbf{x}\approx\mathbf{b}$ where $\mathbf{A}\in\mathbb{C}^{m\times n}$ $(m\geqslant n)$ has

full rank, how to solve the linear system?

Answer: One possible solution is to use SVD. How?

Motivation

Question: Given a linear system $\mathbf{A}\mathbf{x} \approx \mathbf{b}$ where $\mathbf{A} \in \mathbb{C}^{m \times n}$ $(m \ge n)$ has

full rank, how to solve the linear system?

Answer: One possible solution is to use SVD. How?

$$\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^*, \text{ so } \mathbf{x} = \mathbf{V} \Sigma^{-1} \mathbf{U}^* \mathbf{b}.$$

Motivation

Question: Given a linear system $\mathbf{A}\mathbf{x} \approx \mathbf{b}$ where $\mathbf{A} \in \mathbb{C}^{m \times n}$ $(m \ge n)$ has full rank, how to solve the linear system?

Answer: One possible solution is to use SVD. How?

$$\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^*, \text{ so } \mathbf{x} = \mathbf{V} \Sigma^{-1} \mathbf{U}^* \mathbf{b}.$$

Another solution is to use QR factorization, which decompose $\bf A$ into product of two simple matrices $\bf Q$ and $\bf R$ where columns of $\bf Q$ are orthonormal and $\bf R$ is upper triangular.

Two Different Versions of QR

Analogous to SVD, there are two versions of QR

• Full QR factorization: $\mathbf{A} \in \mathbb{C}^{m \times n} (m \geqslant n)$

$$\mathbf{A} = \mathbf{Q}\mathbf{R}$$

where $\mathbf{Q} \in \mathbb{C}^{m \times m}$ contains orthonormal vectors and $\mathbf{R} \in \mathbb{C}^{m \times n}$ is upper triangular.

• Reduced QR factorization: $\mathbf{A} \in \mathbb{C}^{m \times n} (m \geqslant n)$

$$\mathbf{A} = \hat{\mathbf{Q}}\hat{\mathbf{R}}$$

where $\mathbf{Q} \in \mathbb{C}^{m \times n}$ contains orthonormal vectors and $\mathbf{R} \in \mathbb{C}^{n \times n}$ is upper triangular.

• What space do $\{\mathbf q_1, \mathbf q_2, \dots, \mathbf q_j\}, \ j\leqslant n$ span?

Two Different Versions of QR

Analogous to SVD, there are two versions of QR

• Full QR factorization: $\mathbf{A} \in \mathbb{C}^{m \times n} (m \geqslant n)$

$$\mathbf{A} = \mathbf{Q}\mathbf{R}$$

where $\mathbf{Q} \in \mathbb{C}^{m \times m}$ contains orthonormal vectors and $\mathbf{R} \in \mathbb{C}^{m \times n}$ is upper triangular.

• Reduced QR factorization: $\mathbf{A} \in \mathbb{C}^{m \times n} (m \geqslant n)$

$$\mathbf{A} = \hat{\mathbf{Q}}\hat{\mathbf{R}}$$

where $\mathbf{Q} \in \mathbb{C}^{m \times n}$ contains orthonormal vectors and $\mathbf{R} \in \mathbb{C}^{n \times n}$ is upper triangular.

- What space do $\{\mathbf q_1, \mathbf q_2, \dots, \mathbf q_j\}, \ j\leqslant n$ span?
 - Answer: for full rank A, first j columns of A, i.e.,

$$\langle \mathbf{q}_1, \mathbf{q}_2, \dots, \mathbf{q}_j \rangle = \langle \mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_j \rangle$$

Gram-Schmidt Orthogonalization

- A method to construct QR factorization is to orthogonalize the column vectors of A:
- Basic ideas:
 - Take first column \mathbf{a}_1 and normalize it to obtain vector \mathbf{q}_1
 - Take second column a₂, subtract its orthogonal projection to q₁, and normalize to obtain q₂
 -
 - Take jth column of \mathbf{a}_j , subtract its orthogonal projection to $\langle \mathbf{q}_1, \dots, \mathbf{q}_{j-1} \rangle$, and normalize to obtain \mathbf{q}_j :

$$\mathbf{v}_j = \mathbf{a}_j - \sum_{i=1}^{j-1} \mathbf{q}_i^* \mathbf{a}_i \mathbf{q}_i, \ \ \mathbf{q}_j = \mathbf{v}_j / \|\mathbf{v}_j\|_2.$$

• This idea is called Gram-Schmidt orthogonalization.

Gram-Schmidt Projections

 Orthogonal vectors produced by Gram-Schmidt can be written in terms of projectors

$$\mathbf{q}_j = \frac{\mathbf{P}_j \mathbf{a}_j}{\|\mathbf{P}_j \mathbf{a}_j\|_2}$$

where

$$\mathbf{P}_j = \mathbf{I} - \hat{\mathbf{Q}}_{j-1} \hat{\mathbf{Q}}_{j-1}^*, \text{ with } \hat{\mathbf{Q}}_{j-1} = \begin{bmatrix} \mathbf{q}_1 \ \mathbf{q}_2 \ \cdots \ \mathbf{q}_{j-1} \end{bmatrix}$$

• \mathbf{P}_j projects orthogonally onto space orthogonal to $\langle \mathbf{q}_1, \dots, \mathbf{q}_{j-1} \rangle$ and rank of \mathbf{P}_j is m-(j-1).

Algorithm of Gram-Schmidt Orthogonalization

Classical Gram-Schmidt method

$$\begin{aligned} &\text{for } j=1 \text{ to } n \\ &\mathbf{v}_j = \mathbf{a}_j \\ &\text{for } i=1 \text{ to } j-1 \\ &r_{ij} = \mathbf{q}_i^* \mathbf{a}_j \\ &\mathbf{v}_j = \mathbf{v}_j - r_{ij} \mathbf{q}_i \\ &r_{ij} = \|\mathbf{v}_j\|_2 \\ &\mathbf{q}_j = \mathbf{v}_j / r_{ij} \end{aligned}$$

Algorithm of Gram-Schmidt Orthogonalization

Classical Gram-Schmidt method

$$\begin{aligned} &\text{for } j=1 \text{ to } n \\ &\mathbf{v}_j = \mathbf{a}_j \\ &\text{for } i=1 \text{ to } j-1 \\ &r_{ij} = \mathbf{q}_i^* \mathbf{a}_j \\ &\mathbf{v}_j = \mathbf{v}_j - r_{ij} \mathbf{q}_i \\ &r_{ij} = \|\mathbf{v}_j\|_2 \\ &\mathbf{q}_j = \mathbf{v}_j / r_{ij} \end{aligned}$$

• Classical Gram-Schmidt (CGS) is unstable, which means that its solution is sensitive to perturbation

Existence of QR

Theorem

Every $\mathbf{A} \in \mathbb{C}^{m \times n}(m \geqslant n)$ has full QR factorization, hence also a reduced QR factorization.

Existence of QR

Theorem

Every $\mathbf{A} \in \mathbb{C}^{m \times n}(m \geqslant n)$ has full QR factorization, hence also a reduced QR factorization.

Key idea of proof

If **A** has full rank, Gram-Schmidt algorithm provides a proof itself for having reduced QR.

If **A** does not have full rank, at some step $\mathbf{v}_j = \mathbf{0}$. We can set \mathbf{q}_j to be a vector orthogonal to $\mathbf{q}_i, \ i < j$.

To construct full QR from reduced QR, just continue Gram-Schmidt algorithm additional m-n steps.

Uniqueness of QR

Theorem

Every $\mathbf{A} \in \mathbb{C}^{m \times n} (m \geqslant n)$ of full rank has a unique reduced QR factorization $\mathbf{A} = \hat{\mathbf{Q}}\hat{\mathbf{R}}$ with $r_{ij} > 0$.

Key idea of proof

Proof is provided by Gram-Schmidt iteration itself. If the signs of r_{jj} are determined, then r_{ij} and ${\bf q}_j$ are determined.