The projection π : For each point $\tilde{y} \in X_x$ pick a path $f:[0,1]\to X$ with f(0)=x representing X_{ν} and put connected nbhd *U* of $\pi(X_X) = y$ and if $f: [0,1] \to X$ is a $g: [0,1] \to X$ with g(0) = y and $g([0,1]) \subseteq U$.

• Construction of the universal cover X_x : The points of :

• Proof of the theorem 2.3.5 : For a connected and locally simply connected topological space X and a base point $x \in X$ the functor Fib_X is representable by a cover $\widetilde{X}_X \to X$, i.e. Fib_X(.) \cong Hom(\widetilde{X}_X , .).

• Construction of the universal cover \widetilde{X}_{x} : The points of : Homotopy classes of paths starting from x. The projection π : For each point $\widetilde{y} \in \widetilde{X}_{x}$ pick a path $f:[0,1] \to X$ with f(0) = x representing \widetilde{X}_{y} and put $\pi(\widetilde{X}_{y}) = f(1) = y$. (well-defined?) The topology on \widetilde{X}_{x} : Take the following set \widetilde{U} as a basis of open neighbourhoods of a point \widetilde{y} : start from a simply connected neighbourhoods of a point \widetilde{y} : and if $f:[0,1] \to X$ is a path representing \widetilde{y} , define $\widetilde{U}_{\widetilde{y}}$ to be the set of homotopy

• Proof of the theorem 2.3.5 : For a connected and locally simply connected topological space X and a base point $x \in X$ the functor Fib_X is representable by a cover $\widetilde{X}_X \to X$, i.e. $Fib_X(.) \cong Hom(\widetilde{X}_X, .)$.

 $g: [0,1] \to X$ with g(0) = y and $g([0,1]) \subseteq U$.

• Construction of the universal cover \widetilde{X}_x : The points of : Homotopy classes of paths starting from x.

The projection π : For each point $\widetilde{y} \in X_X$ pick a path $f:[0,1] \to X$ with f(0) = X representing \widetilde{X}_Y and put $\pi(\widetilde{X}_Y) = f(1) = y$. (well-defined?)

The topology on X_x : Take the following set U as a basis of open neighbourhoods of a point \widetilde{y} : start from a simply connected nbhd U of $\pi(\widetilde{X}_x) = y$ and if $f: [0,1] \to X$ is a path representing \widetilde{y} , define $\widetilde{U}_{\widetilde{y}}$ to be the set of homotopy classes of paths obtained by composing the homotopy class of f with the homotopy class of some path $g: [0,1] \to X$ with g(0) = y and $g([0,1]) \subseteq U$.

• Proof of the theorem 2.3.5 : For a connected and locally simply connected topological space X and a base point $x \in X$ the functor Fib_X is representable by a cover $\widetilde{X}_X \to X$, i.e. $\mathrm{Fib}_X(.) \cong \mathrm{Hom}(\widetilde{X}_X, .)$.

- Construction of the universal cover \widetilde{X}_x : The points of : Homotopy classes of paths starting from x. The projection π : For each point $\widetilde{y} \in \widetilde{X}_x$ pick a path $f:[0,1] \to X$ with f(0) = x representing \widetilde{X}_y and put $\pi(\widetilde{X}_y) = f(1) = y$. (well-defined?)
 - The topology on X_x : Take the following set U as a basis of open neighbourhoods of a point \widetilde{y} : start from a simply connected nbhd U of $\pi(\widetilde{X}_x) = y$ and if $f: [0,1] \to X$ is a path representing \widetilde{y} , define $\widetilde{U}_{\widetilde{y}}$ to be the set of homotopy classes of paths obtained by composing the homotopy class of f with the homotopy class of some path $g: [0,1] \to X$ with g(0) = y and $g([0,1]) \subseteq U$.
- Proof of the theorem 2.3.5 : For a connected and locally simply connected topological space X and a base point $x \in X$ the functor Fib_X is representable by a cover $\widetilde{X}_X \to X$, i.e. $\mathrm{Fib}_X(.) \cong \mathrm{Hom}(\widetilde{X}_X, .)$.

- Construction of the universal cover \widetilde{X}_x : The points of : Homotopy classes of paths starting from x. The projection π : For each point $\widetilde{y} \in X_x$ pick a path $f:[0,1]\to X$ with f(0)=x representing X_v and put $\pi(X_v) = f(1) = y$. (well-defined?) The topology on X_x : Take the following set \tilde{U} as a basis of open neighbourhoods of a point \tilde{y} : start from a simply connected nbhd U of $\pi(X_x) = y$ and if $f: [0,1] \to X$ is a path representing \tilde{y} , define $U_{\tilde{y}}$ to be the set of homotopy classes of paths obtained by composing the homotopy class of f with the homotopy class of some path $g: [0,1] \to X$ with g(0) = y and $g([0,1]) \subseteq U$.
- Proof of the theorem 2.3.5 : For a connected and locally simply connected topological space X and a base point $x \in X$ the functor Fib_X is representable by a cover $\widetilde{X}_X \to X$, i.e. $Fib_X(.) \cong Hom(\widetilde{X}_X, .)$.

- Construction of the universal cover \widetilde{X}_x : The points of : Homotopy classes of paths starting from x. The projection π : For each point $\widetilde{y} \in X_x$ pick a path $f:[0,1]\to X$ with f(0)=x representing X_v and put $\pi(X_v) = f(1) = y$. (well-defined?) The topology on X_x : Take the following set \tilde{U} as a basis of open neighbourhoods of a point \tilde{y} : start from a simply connected nbhd U of $\pi(X_x) = y$ and if $f: [0,1] \to X$ is a path representing \tilde{y} , define $U_{\tilde{y}}$ to be the set of homotopy classes of paths obtained by composing the homotopy class of f with the homotopy class of some path $g: [0,1] \to X$ with g(0) = y and $g([0,1]) \subseteq U$.
- Proof of the theorem 2.3.5 : For a connected and locally simply connected topological space X and a base point $x \in X$ the functor Fib_X is representable by a cover $\widetilde{X}_X \to X$, i.e. Fib_X(.) \cong Hom(\widetilde{X}_X , .).

- **Lemma 2.4.2**: The space X_X is connected.
- **Proposition 2.4.3** : The cover $\pi:\widetilde{X}_X\to X$ is Galois. For proof, we need two lemmas :
- Lemma 2.4.4 : A cover of a simply connected and locally path-connected space is trivial.
 Proof :...
- Corollary 2.4.5 : Let X be a locally simply connected space. Given two covers $p: Y \to X$ and $q: Z \to Y$, their composite $q \circ p: Z \to X$ is again a cover of X.
- Proof of Theorem 2.3.4: Let X be connected and locally simply connected top. space and x ∈ X a base point. The functor Fib_x induces an equivalence of the category of covers of X with the category of left π₁(X, x)-sets. Connected covers correspond to π₁(X, x)-sets with transitive action and Gaois covers to coset spaces of normal subgroups.

- Lemma 2.4.2 : The space \widetilde{X}_x is connected.
- **Proposition 2.4.3** : The cover $\pi: X_X \to X$ is Galois. For proof, we need two lemmas :
- Lemma 2.4.4 : A cover of a simply connected and locally path-connected space is trivial.
 Proof :...
- Corollary 2.4.5 : Let X be a locally simply connected space. Given two covers $p: Y \to X$ and $q: Z \to Y$, their composite $q \circ p: Z \to X$ is again a cover of X.
- Proof of Theorem 2.3.4: Let X be connected and locally simply connected top. space and x ∈ X a base point. The functor Fib_x induces an equivalence of the category of covers of X with the category of left π₁(X, x)-sets. Connected covers correspond to π₁(X, x)-sets with transitive action and Gaois covers to coset spaces of normal subgroups.

- Lemma 2.4.2 : The space \widetilde{X}_x is connected.
- **Proposition 2.4.3** : The cover $\pi: X_X \to X$ is Galois. For proof, we need two lemmas :
- Lemma 2.4.4 : A cover of a simply connected and locally path-connected space is trivial.
 Proof :...
- Corollary 2.4.5 : Let X be a locally simply connected space. Given two covers $p: Y \to X$ and $q: Z \to Y$, their composite $q \circ p: Z \to X$ is again a cover of X.
- Proof of Theorem 2.3.4: Let X be connected and locally simply connected top. space and x ∈ X a base point. The functor Fib_x induces an equivalence of the category of covers of X with the category of left π₁(X, x)-sets. Connected covers correspond to π₁(X, x)-sets with transitive action and Gaois covers to coset spaces of normal subgroups.

- Lemma 2.4.2 : The space \widetilde{X}_x is connected.
- **Proposition 2.4.3** : The cover $\pi: X_X \to X$ is Galois. For proof, we need two lemmas :
- Lemma 2.4.4 : A cover of a simply connected and locally path-connected space is trivial.
- Corollary 2.4.5 : Let X be a locally simply connected space. Given two covers $p: Y \to X$ and $q: Z \to Y$, their composite $q \circ p: Z \to X$ is again a cover of X.
- Proof of Theorem 2.3.4: Let X be connected and locally simply connected top. space and x ∈ X a base point. The functor Fib_x induces an equivalence of the category of covers of X with the category of left π₁(X, x)-sets. Connected covers correspond to π₁(X, x)-sets with transitive action and Gaois covers to coset spaces of normal subgroups.

- Lemma 2.4.2 : The space \widetilde{X}_x is connected.
- **Proposition 2.4.3** : The cover $\pi: \widetilde{X}_X \to X$ is Galois. For proof, we need two lemmas :
- Lemma 2.4.4: A cover of a simply connected and locally path-connected space is trivial.
 Proof :...
- Corollary 2.4.5: Let X be a locally simply connected space. Given two covers p: Y → X and q: Z → Y, their composite q ∘ p: Z → X is again a cover of X.
- Proof of Theorem 2.3.4: Let X be connected and locally simply connected top. space and x ∈ X a base point. The functor Fib_X induces an equivalence of the category of covers of X with the category of left π₁(X, x)-sets. Connected covers correspond to π₁(X, x)-sets with transitive action and Gaois covers to coset spaces of normal subgroups.

- Lemma 2.4.2 : The space \widetilde{X}_X is connected.
- **Proposition 2.4.3** : The cover $\pi:\widetilde{X}_X\to X$ is Galois. For proof, we need two lemmas :
- Lemma 2.4.4: A cover of a simply connected and locally path-connected space is trivial.
 Proof :...
- Corollary 2.4.5: Let X be a locally simply connected space. Given two covers p: Y → X and q: Z → Y, their composite q ∘ p: Z → X is again a cover of X.
- Proof of Theorem 2.3.4: Let X be connected and locally simply connected top. space and x ∈ X a base point. The functor Fib_x induces an equivalence of the category of covers of X with the category of left π₁(X, x)-sets. Connected covers correspond to π₁(X, x)-sets with transitive action and Gaois covers to coset spaces of normal subgroups.

- Lemma 2.4.2 : The space \widetilde{X}_x is connected.
- **Proposition 2.4.3** : The cover $\pi: X_X \to X$ is Galois. For proof, we need two lemmas :
- Lemma 2.4.4: A cover of a simply connected and locally path-connected space is trivial.
 Proof :...
- Corollary 2.4.5: Let X be a locally simply connected space. Given two covers p: Y → X and q: Z → Y, their composite q ∘ p: Z → X is again a cover of X.
- Proof of Theorem 2.3.4: Let X be connected and locally simply connected top. space and x ∈ X a base point. The functor Fib_X induces an equivalence of the category of covers of X with the category of left π₁(X, x)-sets. Connected covers correspond to π₁(X, x)-sets with transitive action and Gaois covers to coset spaces of normal subgroups.

- Lemma 2.4.2 : The space \widetilde{X}_x is connected.
- **Proposition 2.4.3** : The cover $\pi: X_X \to X$ is Galois. For proof, we need two lemmas :
- Lemma 2.4.4: A cover of a simply connected and locally path-connected space is trivial.
 Proof :...
- Corollary 2.4.5: Let X be a locally simply connected space. Given two covers p: Y → X and q: Z → Y, their composite q ∘ p: Z → X is again a cover of X.
- Proof of Theorem 2.3.4: Let X be connected and locally simply connected top. space and x ∈ X a base point. The functor Fib_X induces an equivalence of the category of covers of X with the category of left π₁(X, x)-sets. Connected covers correspond to π₁(X, x)-sets with transitive action and Gaois covers to coset spaces of normal subgroups.

- Proof of Proposition 2.4.6 : There is a natural isomorphism $\operatorname{Aut}(\widetilde{X}_X|X)^{op} \cong \pi_1(X,X)$.
- Dependence of the fundamental group on the choice of the base point: Assume X is a path-connected and locally simply connected space. Pick two base points X, y ∈ X.
- **Proposition 2.4.7**: There is a bijection between homotopy classes of path joining x to y and isomorphisms $\widetilde{X}_y \xrightarrow{\sim} \widetilde{X}_x$ in the category of covers of X.
- A cover isomorphism $\lambda: X_y \xrightarrow{\sim} X_x$ induces a group isomorphism $\operatorname{Aut}(\widetilde{X}_y|X) \xrightarrow{\sim} \operatorname{Aut}(\widetilde{X}_x|X)$ by the map $\phi \mapsto \lambda \circ \phi \lambda^{-1}$. Via Prop. 2.4.6, it corresponds to an ismorphism $\lambda^{op}: \pi_1(X,y) \xrightarrow{\sim} \pi_1(X,x)$. Thus we get the dependence of $\pi_1(X,x)$ on the base point. λ^{op} is uniquely determined up to an inner automorphism of $\pi_1(X,x)$.

- *Proof of Proposition 2.4.6 :* There is a natural isomorphism $\operatorname{Aut}(\widetilde{X}_x|X)^{op} \cong \pi_1(X,x)$.
- Dependence of the fundamental group on the choice of the base point: Assume X is a path-connected and locally simply connected space. Pick two base points x, y ∈ X.
- **Proposition 2.4.7**: There is a bijection between homotopy classes of path joining x to y and isomorphisms $\widetilde{X}_y \xrightarrow{\sim} \widetilde{X}_x$ in the category of covers of X.
- A cover isomorphism $\lambda: \widetilde{X}_y \overset{\sim}{\to} \widetilde{X}_x$ induces a group isomorphism $\operatorname{Aut}(\widetilde{X}_y|X) \overset{\sim}{\to} \operatorname{Aut}(\widetilde{X}_x|X)$ by the map $\phi \mapsto \lambda \circ \phi \lambda^{-1}$. Via Prop. 2.4.6, it corresponds to an ismorphism $\lambda^{op}: \pi_1(X,y) \overset{\sim}{\to} \pi_1(X,x)$. Thus we get the dependence of $\pi_1(X,x)$ on the base point. λ^{op} is uniquely determined up to an inner automorphism of $\pi_1(X,x)$.

- Proof of Proposition 2.4.6 : There is a natural isomorphism $\operatorname{Aut}(\widetilde{X}_x|X)^{op} \cong \pi_1(X,x)$.
- Dependence of the fundamental group on the choice of the base point: Assume X is a path-connected and locally simply connected space. Pick two base points x, y ∈ X.
- **Proposition 2.4.7**: There is a bijection between homotopy classes of path joining x to y and isomorphisms $\widetilde{X}_y \xrightarrow{\sim} \widetilde{X}_x$ in the category of covers of X.
- A cover isomorphism $\lambda: \widetilde{X}_y \overset{\sim}{\to} \widetilde{X}_x$ induces a group isomorphism $\operatorname{Aut}(\widetilde{X}_y|X) \overset{\sim}{\to} \operatorname{Aut}(\widetilde{X}_x|X)$ by the map $\phi \mapsto \lambda \circ \phi \lambda^{-1}$. Via Prop. 2.4.6, it corresponds to an ismorphism $\lambda^{op}: \pi_1(X,y) \overset{\sim}{\to} \pi_1(X,x)$. Thus we get the dependence of $\pi_1(X,x)$ on the base point. λ^{op} is uniquely determined up to an inner automorphism of $\pi_1(X,x)$.

- Proof of Proposition 2.4.6 : There is a natural isomorphism $\operatorname{Aut}(\widetilde{X}_x|X)^{op} \cong \pi_1(X,x)$.
- Dependence of the fundamental group on the choice of the base point: Assume X is a path-connected and locally simply connected space. Pick two base points x, y ∈ X.
- **Proposition 2.4.7**: There is a bijection between homotopy classes of path joining x to y and isomorphisms $\widetilde{X}_y \xrightarrow{\sim} \widetilde{X}_x$ in the category of covers of X.
- A cover isomorphism $\lambda: X_y \xrightarrow{\sim} X_x$ induces a group isomorphism $\operatorname{Aut}(\widetilde{X}_y|X) \xrightarrow{\sim} \operatorname{Aut}(\widetilde{X}_x|X)$ by the map $\phi \mapsto \lambda \circ \phi \lambda^{-1}$. Via Prop. 2.4.6, it corresponds to an ismorphism $\lambda^{op}: \pi_1(X,y) \xrightarrow{\sim} \pi_1(X,x)$. Thus we get the dependence of $\pi_1(X,x)$ on the base point. λ^{op} is uniquely determined up to an inner automorphism of $\pi_1(X,x)$.

- Proof of Proposition 2.4.6 : There is a natural isomorphism $\operatorname{Aut}(\widetilde{X}_x|X)^{op} \cong \pi_1(X,x)$.
- Dependence of the fundamental group on the choice of the base point: Assume X is a path-connected and locally simply connected space. Pick two base points X, y ∈ X.
- **Proposition 2.4.7**: There is a bijection between homotopy classes of path joining x to y and isomorphisms $\widetilde{X}_y \xrightarrow{\sim} \widetilde{X}_x$ in the category of covers of X.
- A cover isomorphism $\lambda:\widetilde{X}_y\stackrel{\sim}{\to}\widetilde{X}_x$ induces a group isomorphism $\operatorname{Aut}(\widetilde{X}_y|X)\stackrel{\sim}{\to}\operatorname{Aut}(\widetilde{X}_x|X)$ by the map $\phi\mapsto\lambda\circ\phi\lambda^{-1}$. Via Prop. 2.4.6, it corresponds to an ismorphism $\lambda^{op}:\pi_1(X,y)\stackrel{\sim}{\to}\pi_1(X,x)$. Thus we get the dependence of $\pi_1(X,\cdot)$ on the base point.

 λ^{op} is uniquely determined up to an inner automorphism of $\pi_1(X, x)$.

- Proof of Proposition 2.4.6 : There is a natural isomorphism $\operatorname{Aut}(\widetilde{X}_x|X)^{op} \cong \pi_1(X,x)$.
- Dependence of the fundamental group on the choice of the base point: Assume X is a path-connected and locally simply connected space. Pick two base points x, y ∈ X.
- **Proposition 2.4.7**: There is a bijection between homotopy classes of path joining x to y and isomorphisms $\widetilde{X}_y \xrightarrow{\sim} \widetilde{X}_x$ in the category of covers of X.
- A cover isomorphism $\lambda: \widetilde{X}_y \xrightarrow{\sim} \widetilde{X}_x$ induces a group isomorphism $\operatorname{Aut}(\widetilde{X}_y|X) \xrightarrow{\sim} \operatorname{Aut}(\widetilde{X}_x|X)$ by the map $\phi \mapsto \lambda \circ \phi \lambda^{-1}$. Via Prop. 2.4.6, it corresponds to an ismorphism $\lambda^{op}: \pi_1(X,y) \xrightarrow{\sim} \pi_1(X,x)$. Thus we get the dependence of $\pi_1(X,.)$ on the base point. λ^{op} is uniquely determined up to an inner automorphism of $\pi_1(X,x)$.

- Any cover isomorphic to some $\pi_1(X, x)$ is called a *universal cover* of X.
- **Proposition 2.4.9** Let X be a path-connected and locally simply connected space. A cover $\widetilde{X} \to X$ is universal iff it is simply connected.

- Any cover isomorphic to some $\pi_1(X, x)$ is called a *universal cover* of X.
- **Proposition 2.4.9** Let X be a path-connected and locally simply connected space. A cover $\widetilde{X} \to X$ is universal iff it is simply connected.