CONTENTS

Special Issue: Advances in Humic Substances Research. A Collection of Papers from the Fifth International Meeting of the International Humic Substances Society, Nagoya, Japan, 6-10 August 1990

Preface	xi
Chemical, isotopic, spectroscopic and geochemical aspects of natural and	
synthetic humic substances	
R. Ikan, P. Ioselis, Y. Rubinsztain, Z. Aizenshtat, I. Miloslavsky, S. Yariv,	
R. Pugmire, L.L. Anderson, W.R. Woolfenden, I.R. Kaplan, T. Dorsey,	
K.E. Peters, J.J. Boon, J.W. de Leeuw, R. Ishiwatari, S. Morinaga,	
S. Yamamoto, T. Macihara, M. Muller-Vonmoos and A. Rub (Jerusalem,	
Israel; Salt Lake City, UT; Los Angeles and La Habra, CA; Delft,	
Netherlands; Tokyo, Japan; Zurich, Switzerland)	1
Applications of pyrolysis-gas chromatography/mass spectrometry to the study	
of humic substances: evidence of aliphatic biopolymers in sedimentary and	
terrestrial humic acids	
C. Saiz-Jimenez (Seville, Spain)	13
A contribution to solving the puzzle of the chemical structure of humic	
substances: pyrolysis-soft ionization mass spectrometry	
HR. Schulten and M. Schnitzer (Wiesbaden, Germany; Ottawa, Canada)	27
Synchronous excitation fluorescence spectroscopy applied to soil humic	
substances chemistry	
T.M. Miano and N. Senesi (Potenza and Bari, Italy)	41
Changes in humic acid composition with molecular weight as detected by ¹³ C-	
nuclear magnetic resonance spectroscopy	
R.S. Swift, R.L. Leonard, R.H. Newman and B.K.G. Theng (Canterbury	52
and Lower Hutt, New Zealand)	53
Solid state NMR studies of fire-induced changes in the structure of humic substances	
G. Almendros, F.J. González-Vila, F. Martín, R. Fründ and HD. Lüdemann	
(Madrid and Seville, Spain; Regensburg, Germany)	63
Cupric oxide oxidation of peat and coal humic acids	03
K. Hänninen (Joensuu, Finland)	75
Disaggregation and characterization of humin	, ,
J.A. Rice and P. MacCarthy (Golden, CO)	83
Size and shape of humic acid macromolecules by surface pressure-area isotherms	
at the air-water interface	
K. Hayase (Hiroshima, Japan)	89
Catalytic effect of volcanic ash on the formation of humic polymers in ando soils	
H. Shindo (Yamaguchi, Japan)	93
Comparison of the influence of Mn(IV) oxide and tyrosinase on the formation	
of humic substances in the environment	
H. Shindo and P.M. Huang (Saskatoon, Canada)	103

Spectroscopic characterization of metal-humic acid-like complexes of	
earthworm-composted organic wastes N. Senesi, C. Saiz-Jimenez and T.M. Miano (Bari and Potenza, Italy; Seville,	
Spain)	111
Significant differences in metal-organic complexes derived from birch and aspen	111
forest soils in interior Alaska	
R. Candler (Palmer, AK)	121
A Donnan model for the analysis of metal complexation of weak-acidic polyelec-	
trolytes — an approach to the quantitative analytical treatment of the metal	
complexation equilibria of humic substances	
T. Miyajima, Y. Kanegae, K. Yoshida, M. Katsuki and Y. Naitoh (Fukuoka,	
Japan)	129
A fixed-k model for metal-humate binding	
S. Tao (Beijing, China)	139
Acid hydrolysis kinetics of soil carbohydrates	
H. Tanaka, M. Homma, Ki. Sakagami and R. Hamada (Tokyo, Japan)	145
Humic substances distribution and transformation in forest soils	
W. Zech, F. Ziegler, I. Kögel-Knabner and L. Haumaier (Bayreuth,	
Germany)	155
Nature and distribution of alkyl carbon in forest soil profiles: implications for	
the origin and humification of aliphatic biomacromolecules	
I. Kögel-Knabner, J.W. de Leeuw and P.G. Hatcher (Bayreuth, Germany;	
Delft, Netherlands; University Park, PA)	175
Bound phenolic acids in terrestrial humic acids	
L.E. Lowe (Vancouver, Canada)	187
Liquid chromatographic characterization of refractory organic acids	
F.H. Frimmel, T. Gremm and S. Huber (Karlsruhe, Germany)	197
The binding of atrazine and its dealkylated derivatives to humic-like polymers	
derived from catechol	
F.G. Andreux, J.M. Portal, M. Schiavon and G. Bertin (Vandoeuvre, France)	207
Chrysotalunin, a most prominent soil anthraquinone pigment in Japanese soils	
N. Fujitake, J. Azuma, T. Hamasaki, H. Nakajima and K. Saiki (Kobe and	
Tottori, Japan)	219
Humic substances and some microbial analogs from two thermal sites in Iceland	
Z. Filip and J.J. Alberts (Langen, Germany; Sapelo Island, GA)	227
Biodegradability of dissolved organic carbon in groundwater from an uncon-	
fined aquifer	
C. Grøn, J. Tørsløv, HJ.Albrechtsen and H. Møller Jensen (Lyngby and	
Horsholm, Denmark)	241
Effect of sorghum residues on wheat productivity in semi-arid Argentina. I.	
Stover decomposition and N distribution in the crop	
R.A. Rosell, J.A. Galantini, J.O. Iglesias and R. Miranda (Bahia Blanca,	
Argentina)	253
Humification and nitrogen mineralization of crop residues in semi-arid Argentina	
J.A. Galantini, R.A. Rosell, A. Andriulo, A. Miglierina and J. Iglesias (Bahia	
Blanca, Argentina)	263

Immobilization and mineralization kinetics of a nitrogen fertilizer in calcareous	
clayey soil (rendzina)	
F. Jacquin, H. Cheloufi and P.C. Vong (Vandoeuvre, France)	271
A study of the formation mechanism of sedimentary humic substances. III.	
Evidence for the protein-based melanoidin model	
S. Yamamoto and R. Ishiwatari (Tokyo, Japan)	279
Environmental changes clarified by humus properties of volcanic ash soils and	
their shift of zonal distribution	
M. Watanabe (Chiba, Japan)	293
Studies of soil organic matter dynamics using natural carbon isotopes	
P. Becker-Heidmann and HW. Scharpenseel (Hamburg, Germany)	305
Does fossil plant material release humic substances into groundwater?	
Z. Filip and R. Smed-Hildmann (Langen, Germany)	313
Trace metals in humic substances of coastal sediments of the Seto Inland Sea,	313
Japan	
S. Hirata (Hiroshima, Japan)	325
Structural characteristics and geochemical significance of humic acids isolated	323
from three Spanish lignite deposits	
F.J. Gonzalez-Vila, F. Martin, J.C. Del Rio and R. Fründ (Seville, Spain;	225
Regensburg, Germany)	335
Preparation and characterization of smectite-model humic acid complexes	245
F.G. Andreux and G. Stotzky (Vandoeuvre, France; New York, NY)	345
Detoxification of aquatic and terrestrial sites through binding of pollutants to	
humic substances	2.55
JM. Bollag and C. Myers (University Park, PA)	357
Acute toxicity of chemicals to Daphnia magna in humic waters	
A. Oikari, J. Kukkonen and V. Virtanen (Joensuu, Finland)	367
Some aspects of chemical topology from the evaluation of properties of humic	
substances	
L. Hargitai (Budapest, Hungary)	379
Binding of a herbicide to water-soluble soil humic substances	
H. Deschauer and I. Kögel-Knabner (Bayreuth, Germany)	393
Interactions of atrazine with humic substances of different origins and their	
hydrolysed products	
A. Piccolo, G. Celano and C. De Simone (Florence, Italy)	403
The sorption of humic acids to mineral surfaces and their role in contaminant	
binding	
E.M. Murphy, J.M. Zachara, S.C. Smith and J.L. Phillips (Richland, WA)	413
Complexation and reduction of uranium by lignite	
S. Nakashima (Orléans, France)	425
Possible complexation of uranium with dissolved humic substances in pore water	
of marine sediments	
S. Nagao and S. Nakashima (Hakodate and Ibaraki, Japan)	439
Relationship between total dissolved organic carbon and SO_4^{-2} in soil and	
waters	
G.R. Gobran and S. Clegg (Uppsala, Sweden)	449

Behaviour of trace cadmium in boom clay reducing sediment I. Complexation	
with in situ dissolved humic acids	
A. Maes, E. van Herreweghen, F. Van Elewijck and A. Cremers (Leuven,	
Belgium)	463
Repeated adsorption of phenolic acids on clays	
Y. Okamura (Owariasahi, Japan)	475
Humic substances and trace metals associated with Fe and Al oxides deposited	
in an acidic mountain stream	
D.M. McKnight, R.L. Wershaw, K.E. Bencala, G.W. Zellweger and	
G.L. Feder (Denver, CO; Menlo Park, CA and Reston, VA)	485
Interaction between dissolved organic matter in seawater and copper	
T. Midorikawa, E. Tanoue and Y. Sugimura (Ibaraki, Japan)	499
Novel chlorination by-products of aquatic humic substances	
G. Becher, N.M. Ovrum and R.F. Christman (Oslo, Norway; Chapel Hill,	
NC)	509
Mutagenicity from ozonation of humic substances	
H. Matsuda, Y. Ose, T. Sato, H. Nagase, H. Kito and K. Sumida (Tsu City	
and Gifu City, Japan)	521
Biodegradation of aquatic organic matter with reference to drinking water	
treatment	
P.M. Huck, P.M. Fedorak and W.B. Anderson (Edmonton, Canada)	531
Removal of dissolved humic substances from water with a reverse osmosis	
membrane	
W. Agui, S. Tamura, M. Abe and K. Ogino (Tokyo and Chiba-Ken, Japan)	543
Removal of humic substances dissolved in water with carbonaceous adsorbents	
M. Abe, Y. Kaneko, W. Agui and K. Ogino (Chiba and Tokyo, Japan)	551
Humic substances and associated small molecules from peats in balneology	
W. Flaig (Gerbrunn, Germany)	561
Application of Fe and Zn to lime-rich soils in the form of formulated coal	
products	
R.O. Barnard, H.v.H. van der Watt, J. Dekker, I. Cronje, W.H. Mentz,	
G.E.B. Cillie and M.C. Laker (Pretoria, South Africa)	569
Effect of humic acids on the growth, yield and nutrient content of sugarcane	
R. Govindasmy and S. Chandrasekaran (Annamalai Nagar, India)	575
Author Index	583
Subject Index	585
J	200

