Prática V - Parte I

LAOC II

Fevereiro, 2022

Autores:

Alex Meireles Santos Almeida Vitor Theodoro Rocha Domingues

Centro Federal de Educação Tecnológica de Minas Gerais

Objetivo

Esta prática tem a finalidade de exercitar os conceitos relacionados às máquinas de estados do protocolo Diretório.

Introdução

A parte I da prática 4 consiste na implementação das máquinas de estado do protocolo Diretório, com o intuito de simular todas as transições das máquinas de estado e emitir com todas as suas mensagens e ações. A realização dos testes foram baseadas, em teoria, que a cache e a lista teriam o mesmo endereço.

Desenvolvimento

Para a implementação das máquinas de estados do protocolo Diretório, foi utilizado o diagrama abaixo como base:

O código consiste em três módulos: o TestBench, o Diretório e as máquinas de estado. Para cada módulo será mostrado abaixo as suas funcionalidades. Sendo assim:

• Diretório - Diretorio:

O módulo Diretorio, tem como objetivo chamar os TestBench e as máquinas de estado e é módulo principal para a realização da simulação a partir do Clock que é passado como entrada.

• Máquinas de estados - maquinaDeEstado:

Para a realização das transações, foi utilizado as seguintes variáveis:

ESTADOS				
INVALID	3'b001			
SHARED	3'b010			
MODIFIED	3'b011			

SIGNAL				
empty	3'b000			
ReadMiss	3'b001			
ReadHit	3'b010			
WriteMiss	3'b011			
WriteHit	3'b100			
Invalidate	3'b101			

WRITEBACK			
Miss	2'b00		
Hit	2'b01		

Segue abaixo, dois exemplos de transições da máquina 1 e da máquina 2:

Esse caso acontece quando o testbench emite um sinal de Read miss e quando o estado da cache é inválida. Se entrar na condição, acontecerá uma transição do estado inválido para shared e emitirá um sinal de Read miss para a segunda máquina de estado que realizará a transição da lista(diretório).

Com o sinal emitido na primeira máquina vai ter uma verificação se o estado que está na lista é inválido e se o sinal recebido é realmente Read Miss. Se entrar na condição, o estado será mudado para Shared.

```
if(stateDiretorio == 3'b001 && signal == 3'b001) //INVALID - ReadMiss
  begin
  newStateDiretorio = 3'b010; // SHARED
end
```

• Testbench - testbench:

O módulo do testbench, tem como objetivo receber o código teste e passar esse código para a máquina de estado para verificação das transições. É passado para máquina, o estado da cache, o estado do diretório, se é read ou write e se deu hit ou miss.

O teste realizado é baseado apenas na máquina de estado, logo, quando é passado o estado da cache e do diretório é considerado que ambos os estados tenham o mesmo endereço. Isso foi estabelecido pois, para a transição ocorrer, primeiramente deve ser verificado se existe o mesmo endereço na cache e no diretório, para depois acontecer a transição na máquina de estado. Dessa forma, a verificação não é feita pela máquina de estado, por isso foi considerada em teoria que a cache e o diretório tenham o mesmo endereço para realização dos testes.

O código abaixo é um exemplo de como é feito o testbench.

• Simulação:

1. Invalid -> Read Miss

Estado da cache: Invalid Estado do diretório: Invalid

Sinal: Read Miss

Novo estado da cache: Shared Novo estado do diretório: Shared

WriteBack: Miss

2. Invalid -> Write Miss

Estado da cache: Invalid Estado do diretório: Invalild

Sinal: Write Miss

Novo estado da cache: Modified Novo estado do diretório: Modified

3. Shared -> Write Hit

Estado da cache: Shared Estado do diretório: Shared

Sinal: Write Hit

Novo estado da cache: Modified Novo estado do diretório: Modified

WriteBack: Miss

4. Shared -> Write Miss

Estado da cache: Shared Estado do diretório: Shared

Sinal: Write Miss

Novo estado da cache: Modified
Novo estado do diretório: Modified

5. Shared -> Read Miss

Estado da cache: Shared Estado do diretório: Shared

Sinal: Read Miss

Novo estado da cache: Shared Novo estado do diretório: Shared

WriteBack: Miss

```
// SHARED READ Miss
                                           // Miss
regHitMiss[0] = 2'b00;
regWriteRead[] = 2'b00;
                                           // Read
                                           // S
regStateCache[0] = 3'b010;
regStateDiretorio[0] = 3'b010;
                                           // S
         Edit:Clock
       sim:stateCache
                                    010
    🛨🔷 sim:stateDiretorio
                                    010
    +-→ sim:WriteRead
+-→ sim:invalidate
+-→ sim:signal
                                    00
                                    00
                                    000
                                         001
    --→ sim:newStateCache
                                    000
                                         010
       sim:newStateDiretorio
sim:WriteBack
                            010
                                         010
                                    000
                                    00
                                    00

→ sim:HitMiss
```

6. Shared -> Read Hit

Estado da cache: Shared Estado do diretório: Shared

Sinal: Read Hit

Novo estado da cache: Shared Novo estado do diretório: Shared

7. Modified -> Read Miss

Estado da cache: Modified Estado do diretório: Modified

Sinal: Read Miss

Novo estado da cache: Shared Novo estado do diretório: Shared

WriteBack: Hit

```
// MODIFIED READ Miss
regHitMiss[0] = 2'b00;
                                              // Miss
                                              // Read
regWriteRead[0] = 2'b00;
regStateCache[0] = 3'b011;
                                              // M
regStateDiretorio[0] = 3'b011;
                                              // M
        a Edit:Clock

→ sim:stateCache

→ sim:stateDiretorio

→ sim:WriteRead

→ sim:invalidate
                                      011
                                      011
                                       00
                                      00
     ∓–∜ sim:signal
∓–∜ sim:newStateCache
                                      000
                                            001
                                       000
                                            010
        sim:newStateDiretorio
                                      000
                                            010
     --→ sim:WriteBack
                                            01
```

8. Modified -> Write Miss

→ sim:HitMiss

Estado da cache: Modified Estado do diretório: Modified

Sinal: Write Miss

Novo estado da cache: Modified Novo estado do diretório: Modified

WriteBack: Hit

00

```
// MODIFIED WRITE Miss
                               // Miss
regHitMiss[0] = 2'b00;
regWriteRead[0] = 2'b01;
                              // Write
regStateCache[0] = 3'b011;
                              // M
regStateDiretorio[0] = 3'b011; // M
```


9. Modified -> Write Hit

Estado da cache: Modified
Estado do diretório: Modified

Sinal: Write Hit

Novo estado da cache: Modified Novo estado do diretório: Modified

WriteBack: Miss

```
// MODIFIED WRITE Hit
                                          // Hit
regHitMiss[0] = 2'b01;
regWriteRead[0] = 2'b01;
                                         // Write
regStateCache[0] = 3'b011;
                                         // M
regStateDiretorio[0] = 3'b011;
                                          // M
         Edit:Clock
     ±−♦ sim:stateCache
                                    011
     --→ sim:stateDiretorio
                                   011
     sim:WriteRead
sim:invalidate
sim:signal
                                    01
                                    00
                             000
                                         100
                                    000
     sim:newStateCachesim:newStateDiretorio
                             011
                                    000
                                         011
                             011
                                    000
                                        011
     ∓-∜ sim:WriteBack
                                    00

→ sim:HitMiss
```

10. Modified -> Read Hit

Estado da cache: Modified Estado do diretório: Modified

Sinal: Read Hit

Novo estado da cache: Modified Novo estado do diretório: Modified

← Edit:Clock	St0	
+	XXX	011
🛨 🔷 sim:stateDiretorio	XXX	011
🛨 👉 sim:WriteRead	xx	00
🛨 👉 sim:invalidate	00	00
+> sim:signal	000	000 010
+	011	000 011
+	011	000 011
+	00	00
→ sim:HitMiss	xx	01

. Casos Especiais:

Para mostrar as transições desses casos foi necessário a criação de uma variável cache2. Essa variável é apenas um símbolo para o funcionamento desses casos, não foi criado nenhuma cache que está relacionada ao protocolo, apenas uma variável para ajudar a mostrar essa transição.

1. INVALID -> Read Miss

Estado da cache: Invalid Estado da cache2: Modified Estado do diretório: Invalid

Sinal: Read Miss

Novo estado da cache: Shared Novo estado da cache2: Shared Novo estado do diretório: Shared

🛖 Edit:Clock	St0	
⊥ - ∜ sim:stateCache	xxx	001
🛨 🔷 sim:stateCache2	XXX	011
🛨 🔷 sim:stateDiretorio	XXX	001
≖ –∜ sim:WriteRead	xx	00
🛨 🔷 sim:invalidate	00	00
🛨 🔷 sim:signal	000	000 001
🛨 👉 sim:newStateCache	010	000 (010
± - ∜ sim:newStateCache2	010	000 (010
⊥ - ∜ sim:newStateDiretorio	010	000 (010
- → sim:WriteBack	00	00
+	xx	00

2. INVALID -> Write miss

Estado da cache: Invalid Estado da cache2: Modified Estado do diretório: Invalid

Sinal: Write Miss

Novo estado da cache: Modified Novo estado da cache2: Invalid Novo estado do diretório: Modified

3. Modified -> Read Hit

Estado da cache: Shared Estado da cache2: Shared Estado do diretório: Shared

Sinal: Read Hit

Novo estado da cache: Modified Novo estado da cache2: Invalid Novo estado do diretório: Modified

```
SHARED WRITE HIT - CACHE2 = SHARED

regHitMiss[0] = 2'b00;  // Miss

regWriteRead[0] = 2'b00;  // Read

regStateCache[0] = 3'b010;  // S

regStateDiretorio[0] = 3'b010;  // S

regStateCache2[0] = 3'b010;  // S
```


• Dificuldades:

A criação apenas da máquina de estado sem utilização de uma cache e o endereço do bloco foi uma grande dificuldade por conta de casos específicos que necessitavam de estados de outras cache para realizar a transição. E a falta de um caso teste, fez que não tivesse um direcionamento certo na hora de criar o código.

Sugestões:

Disponibilizar o código teste ajudaria bastante para o direcionamento na criação do código.