Aprendizagem estatística em altas dimensões

Florencia Leonardi

Conteúdo

- * Formulação do problema de aprendizagem estatística, função objetivo, função de custo
- * Diferentes tipos de erro
- * Modelo linear para regressão
- * Estimador de mínimos quadrados
- * Transformação de variáveis

Revisão da aula anterior

$$\mathscr{D} = \{(x_1,y_1),...,(x_n,y_n)\}$$
 Método de aprendizagem
$$\hat{y} = g(x)$$
 Predição
$$\hat{y} \approx y ?$$

O objetivo é escolher g de tal forma que a predição \hat{y} esteja "próxima" de y

Como y e \hat{y} são variáveis aleatórias, buscamos minimizar $\mathbb{E}(L(y,\hat{y}))$ para alguma função de custo L escolhida antes da análise dos dados e de forma adequada para o problema

Métodos de aprendizagem estatística

Aprendizagem estatística

$$\mathcal{D} = \{(x_1, y_1), \dots, (x_n, y_n)\}$$

Predição

$$(x,y) \qquad \hat{y} = g(x)$$

Principais desafios da aprendizagem estatística supervisionada

Dada a função de custo L e a amostra $\mathcal{D} = \{(x_1, y_1), \dots, (x_n, y_n)\}$:

- * Como estimar $\mathbb{E}[L(y, g(x))]$ para uma função $g \in \mathcal{G}$ escolhida com base em \mathcal{D} ?
- * Como escolher g de forma a minimizar $\mathbb{E}[L(y, g(x))]$?

Estes são os principais desafios na aprendizagem estatística supervisionada

Formalização do problema

- st (X,Y) variáveis aleatórias com densidade conjunta p(x,y), com valores em $\mathcal{X} imes \mathcal{Y}$
- * Uma função objetivo $f \colon \mathcal{X} \to \mathcal{Y}$ desconhecida

Assumimos que X e Y estão relacionadas por meio da função objetivo f através da equação

$$Y = f(X) + \epsilon$$

onde ϵ é uma variável aleatória com $\mathbb{E}(\epsilon) = 0$ e $\mathrm{Var}(\epsilon) = \sigma^2$

Formalização do problema

O objetivo da aprendizagem estatística é "aprender" a função objetivo f a partir de um conjunto de dados observado $\mathcal{D} = \{(x_1, y_1), ..., (x_n, y_n)\}$

- * Assume-se que $\mathcal{D} = \{(x_1, y_1), \dots, (x_n, y_n)\}$ tem a mesma distribuição de (X, Y)
- st A busca por uma função que "aproxime" f é feita numa família de funções candidatas ${\mathscr G}$
- * A maioria dos métodos de aprendizagem tentam encontrar a função $g\in \mathcal{G}$ que minimize $\mathbb{E}[L(y,g(x))]$, para uma função de custo $L\colon \mathscr{Y}\times \mathscr{Y}\to \mathbb{R}_{\geq 0}$ previamente definida

Formalização do problema

 $\mathcal{D} = \{(x_1, y_1), \dots, (x_n, y_n)\} \text{ com distribuição } p(x, y)$

Objetivos da aprendizagem estatística supervisionada

Como escolher g?

Objetivo: escolher $g \in \mathcal{G}$ que minimize $\mathbb{E}[L(y, g(x))]$

Lembrando:

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$
 é um estimador de $\mathbb{E}(X)$ se x_1, \dots, x_n é uma amostra da variável X

Ideia: escolher
$$g \in \mathcal{G}$$
 que minimize $\frac{1}{n} \sum_{i=1}^{n} L(y_i, g(x_i))$

Esta ideia funciona bem quando a complexidade da família $\mathcal G$ é a adequada para o problema, mas pode ser ruim em vários outros casos !

Diferentes modelos e métodos especificam uma forma diferente para a escolha da função $g \in \mathcal{G}$ (lembremos que f sempre é desconhecida!)

No modelo de regressão linear, a família ${\mathcal G}$ é uma família de funções lineares:

$$x = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_p \end{pmatrix} \qquad \beta = \begin{pmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_p \end{pmatrix} \qquad \beta_0 \in \mathbb{R}$$

$$\mathcal{G} = \{ g(x) = \beta_0 + x^T \beta, \ \beta_0 \in \mathbb{R}, \beta \in \mathbb{R}^p \}$$

$$x^{T}\beta = (x_{1} x_{2} \dots x_{p}) \begin{pmatrix} \beta_{1} \\ \beta_{2} \\ \vdots \\ \beta_{p} \end{pmatrix} = \sum_{j=1}^{p} x_{j}\beta_{j}$$

$$\mathbb{R}^{1 \times p} \qquad \mathbb{R}^{p \times 1} \qquad \mathbb{R}^{1 \times 1}$$

Por uma questão de simplicidade na notação vamos fazer a identificação $x\mapsto (1,x)$ assim o modelo fica descrito como

$$\mathcal{G} = \{ g(x) = x^T \beta, \ \beta \in \mathbb{R}^{p+1} \}$$

$$x = \begin{pmatrix} 1 \\ x_1 \\ x_2 \\ \vdots \\ x_p \end{pmatrix} \qquad \beta = \begin{pmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \\ \vdots \\ \beta_p \end{pmatrix} \qquad x^T \beta = \beta_0 + \sum_{j=1}^p x_j \beta_j$$

Tipos de erro

$$E_F(g) = \mathbb{E}(L(y, g(x)))$$

Erro esperado "fora da amostra"

$$\widehat{E}_D(g) = \frac{1}{n} \sum_{i=1}^n L(y_i, g(x_i))$$
 Erro estimado "dentro da amostra"

$$E_D(g) = \mathbb{E}\left[\frac{1}{n}\sum_{i=1}^n L(y_i, g(x_i))\right]$$
 Erro

Erro esperado "dentro da amostra"

Para os modelos de regressão em geral usamos a função de custo quadrática $L(y, g(x)) = (y - g(x))^2$

Queremos escolher
$$g \in \mathcal{G}$$
 que minimize $\widehat{E}_D(g) = \frac{1}{n} \sum_{i=1}^n (y_i - g(x_i))^2$

Isto é equivalente a escolher $\beta \in \mathbb{R}^{p+1}$ que minimize $\widehat{E}_D(\beta) = \frac{1}{n} \sum_{i=1}^n (y_i - x_i^T \beta)^2$

O vetor β obtido pela minimização de $\widehat{E}_D(\beta)$, denotado por $\widehat{\beta}$, é conhecido como estimador de mínimos quadrados

$$\mathcal{G} = \{ g(x) = x^T \beta, \ \beta \in \mathbb{R}^2 \}$$

$$\mathcal{G} = \{ g(x) = x^T \beta, \ \beta \in \mathbb{R}^3 \}$$

Escolher $\beta \in \mathbb{R}^{p+1}$ que minimize $\widehat{E}_D(\beta) = \frac{1}{n} \sum_{i=1}^n (y_i - x_i^T \beta)^2$

Observemos que podemos escrever $\widehat{E}_D(\beta)$ como $\frac{1}{n} \|\mathbf{y} - \mathbf{X}\beta\|_2^2$

$$\mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} \qquad \mathbf{X} = \begin{pmatrix} 1 & x_{12} & \dots & x_{1(p+1)} \\ 1 & x_{22} & \dots & x_{2(p+1)} \\ \vdots & & & & \\ 1 & x_{n2} & \dots & x_{n(p+1)} \end{pmatrix} \qquad \beta = \begin{pmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_p \end{pmatrix}$$

$$\widehat{E}_{D}(\beta) = \frac{1}{n} \sum_{i=1}^{n} (y_i - x_i^T \beta)^2 = \|\mathbf{y} - \mathbf{X}\beta\|_2^2 / n$$

$$||(v_1, ..., v_n)||_2^2 = \sum_{i=1}^n v_i^2$$

$$\mathbf{y} - \mathbf{X}\boldsymbol{\beta} \ = \ \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} - \ \begin{pmatrix} 1 & x_{12} & \dots & x_{1(p+1)} \\ 1 & x_{22} & \dots & x_{2(p+1)} \\ \vdots & & & & \\ 1 & x_{n2} & \dots & x_{n(p+1)} \end{pmatrix} \begin{pmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_p \end{pmatrix} = \ \begin{pmatrix} y_1 - x_1^T \boldsymbol{\beta} \\ y_2 - x_2^T \boldsymbol{\beta} \\ \vdots \\ y_n - x_n^T \boldsymbol{\beta} \end{pmatrix} \qquad \|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|_2^2/n \ = \ \frac{1}{n} \sum_{i=1}^n (y_i - x_i^T \boldsymbol{\beta})^2$$

$$\|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|_{2}^{2}/n = \frac{1}{n} \sum_{i=1}^{n} (y_{i} - x_{i}^{T}\boldsymbol{\beta})^{2}$$

Objetivo: escolher $\beta \in \mathbb{R}^{p+1}$ que minimize $\widehat{E}_D(\beta) = \frac{1}{n} \|\mathbf{y} - \mathbf{X}\beta\|_2^2$

 $\widehat{E}_D(\beta)$ é uma função convexa de β

Objetivo: escolher $\beta \in \mathbb{R}^{p+1}$ que minimize $\widehat{E}_D(\beta) = \frac{1}{n} \|\mathbf{y} - \mathbf{X}\beta\|_2^2$

Uma função convexa sempre tem pelo menos um mínimo (o mínimo pode não ser único)

No caso em que
$$\beta \in \mathbb{R}$$
 podemos derivar $\widehat{E}_D(\beta) = \frac{1}{n} \sum_{i=1}^n (y_i - x_i \beta)^2$ e obtemos que

$$\frac{\partial \widehat{E}_D(\beta)}{\partial \beta} = \frac{1}{n} \sum_{i=1}^n 2(y_i - x_i \beta)(-x_i)$$

Fazendo
$$\frac{\partial \widehat{E}_D(\beta)}{\partial \beta} = 0$$
 obtemos que a solução é $\beta = \frac{\sum_{i=1}^n x_i y_i}{\sum_{i=1}^n x_i^2}$

$$\widehat{E}_D(\beta) = \frac{1}{n} \|\mathbf{y} - \mathbf{X}\beta\|_2^2$$

No caso geral $\beta \in \mathbb{R}^{p+1}$, para obter $\hat{\beta}$ devemos calcular $\frac{\partial \widehat{E}_D(\beta)}{\partial \beta_i}$ para todo $i=1,\dots,p+1$ e

encontrar β tal que $\frac{\partial \widehat{E}_D(\beta)}{\partial \beta_i} = 0$ para todo $i=1,\dots,p+1$

Se as colunas de \mathbf{X} são linearmente independentes então há uma única solução e está dada por $\hat{\beta} = (\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{y}$

$$\mathbf{X} = \begin{pmatrix} 1 & x_{12} & \dots & x_{1(p+1)} \\ 1 & x_{22} & \dots & x_{2(p+1)} \\ \vdots & & & & \\ 1 & x_{n2} & \dots & x_{n(p+1)} \end{pmatrix} \qquad \mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}$$

$$\hat{\beta} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

$$\hat{\beta} = \begin{pmatrix} \begin{pmatrix} 1 & 1 & \dots & 1 \\ x_{12} & x_{22} & \dots & x_{n2} \\ \vdots & & & & \\ x_{1(p+1)} & x_{2(p+1)} & \dots & x_{n(p+1)} \end{pmatrix} \begin{pmatrix} 1 & x_{12} & \dots & x_{1(p+1)} \\ 1 & x_{22} & \dots & x_{2(p+1)} \\ \vdots & & & & \\ 1 & x_{n2} & \dots & x_{n(p+1)} \end{pmatrix} \end{pmatrix} \begin{pmatrix} 1 & 1 & \dots & 1 \\ x_{12} & x_{22} & \dots & x_{n2} \\ \vdots & & & & \\ x_{1(p+1)} & x_{2(p+1)} & \dots & x_{n(p+1)} \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} \in \mathbb{R}^{(p+1)\times 1}$$

$$\mathbb{R}^{(p+1)\times n}$$

$$\mathbb{R}^{n \times (p+1)}$$

$$\mathbb{R}^{(p+1)\times n}$$

$$\mathbb{R}^{n \times 1}$$

Em alguns casos o problema de minimizar $\widehat{E}_D(\beta)$ não tem uma solução única

Isso acontece quando as colunas de \mathbf{X} são linearmente dependentes e $\mathbf{X}^T\mathbf{X}$ não é invertível

É o caso de dados em alta dimensão: $p \ge n$

Exemplo com n = 3 e p = 1

Projeção do vetor
$$\mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}$$

no espaço gerado pelas colunas de

$$\mathbf{X} = \begin{pmatrix} 1 & x_{12} & \dots & x_{1(p+1)} \\ 1 & x_{22} & \dots & x_{2(p+1)} \\ \vdots & & & & \\ 1 & x_{n2} & \dots & x_{n(p+1)} \end{pmatrix}$$

dadas por $\mathbf{x}_1, \dots, \mathbf{x}_{p+1}$.

Como as colunas de ${f X}$ são linearmente independentes, o vetor \hat{eta} é único

Exemplo com
$$n = 3$$
 e $p = 2$

Projeção do vetor
$$\mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}$$

no espaço gerado pelas colunas de
$$\mathbf{X}=\begin{pmatrix}1&x_{12}&\dots&x_{1(p+1)}\\1&x_{22}&\dots&x_{2(p+1)}\\\vdots&&&&\\1&x_{n2}&\dots&x_{n(p+1)}\end{pmatrix}$$

dadas por $\mathbf{x}_1, \dots, \mathbf{x}_{p+1}$.

Como as colunas de ${f X}$ não são linearmente independentes, o vetor \hat{eta} não é único

Exemplo com
$$n = 3$$
 e $p = 2$

Projeção do vetor
$$\mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}$$

no espaço gerado pelas colunas de
$$\mathbf{X}=\begin{pmatrix}1&x_{12}&\dots&x_{1(p+1)}\\1&x_{22}&\dots&x_{2(p+1)}\\\vdots&&&&\\1&x_{n2}&\dots&x_{n(p+1)}\end{pmatrix}$$

dadas por $\mathbf{x}_1, \dots, \mathbf{x}_{p+1}$.

Como as colunas de \mathbf{X} geram todo o espaço temos que $\mathbf{y} = \hat{\mathbf{y}} = \mathbf{X}\hat{\beta}$ e $\widehat{E}_D(\hat{\beta}) = 0$

Exemplo

Price	Condo	Size	Negotiation type
930	220	47	rent
1000	148	45	rent
1000	100	48	rent
990000	870	121	sale
410000	630	51	sale
820000	1000	109	sale

$$\begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}$$

$$\begin{pmatrix} x_{12} & \dots & x_{13} \\ x_{22} & \dots & x_{23} \\ \vdots & & & \\ x_{n2} & \dots & x_{n3} \end{pmatrix}$$

$$x_{i3} = \begin{cases} 1 & \text{se Negotiation.Type = "rent"} \\ 0 & \text{se Negotiation.Type = "sale"} \end{cases}$$

Exemplo

```
dados <- read.csv("sao-paulo-properties-april-2019.csv")
modelo <- lm(Price~Condo+Size+Negotiation.Type, dados)</pre>
modelo
Call:
lm(formula = Price \sim Condo + Size + Negotiation.Type, data = dados)
Coefficients:
                                                              Size Negotiation.Typesale
         (Intercept)
                                      Condo
           -387272.2
                                                                                646308.3
                                      -35.6
                                                            4690.4
```

Em muitas aplicações y pode não "depender" linearmente de x

$$x = \begin{pmatrix} 1 \\ x_1 \\ x_2 \\ \vdots \\ x_p \end{pmatrix}$$

$$\phi(x) = \begin{pmatrix} 1 \\ \phi_1(x) \\ \phi_2(x) \\ \vdots \\ \phi_q(x) \end{pmatrix}$$

$$\in \mathbb{R}^{p+1}$$

$$\in \mathbb{R}^{q+1}$$

 $\Phi = \{1, \phi_1, ..., \phi_q\}$ é chamada de "dicionário"

Neste caso, a família de funções ${\mathscr G}$ é

$$\mathcal{G} = \{ g(x) = \phi(x)^T \beta, \ \beta \in \mathbb{R}^{q+1} \}$$

$$\phi(x) = \begin{pmatrix} 1 \\ \phi_1(x) \\ \phi_2(x) \\ \vdots \\ \phi_q(x) \end{pmatrix}$$

O vetor β que minimiza $\widehat{E}_D(\beta)$ pode ser encontrado da mesma forma que no caso anterior, considerando o vetor $\widetilde{x}=\phi(x)$ no lugar de x

$$\hat{\boldsymbol{\beta}} = (\tilde{\mathbf{X}}^T \tilde{\mathbf{X}})^{-1} \tilde{\mathbf{X}}^T \mathbf{y}$$

$$\tilde{\mathbf{X}} = \begin{pmatrix} \phi(x_1)^T \\ \phi(x_2)^T \\ \vdots \\ \phi(x_n)^T \end{pmatrix}$$

$$\phi(x)^T = \begin{pmatrix} 1 & \phi_1(x) & \phi_2(x) & \dots & \phi_q(x) \end{pmatrix}$$

Modelo linear para classificação?

- * Num problema de classificação temos $y\in\mathcal{Y}=\{c_1,\ldots,c_K\}$ então o modelo linear anterior não é adequado para modelar y diretamente
- * Neste caso, podemos modelar como resposta o vetor de probabilidades condicionais $p(y=c_k|x), \quad k=1,...,K$ e depois definir, por exemplo $\hat{y}=\arg\max_{c_k}\hat{p}(c_k|x)$
- * Como as probabilidades pertencem ao intervalo [0,1] precisamos uma função que "mapeie" a predição do modelo linear g(x) com este intervalo
- * Numa próxima aula veremos como fazer isso...