Zusammenfassung: Aussagenlogik

Zahlmengen

<u>natürliche Zahlen</u> $\mathbb{N} = \{0; 1; 2; ...\}$ oder $\mathbb{N} = \{1; 2; ...\}$

Es ist meistens egal, ob die Null zu den natürlichen Zahlen gerechnet wird oder nicht. Wenn es einmal wesentlich ist, schreibt man

$$\mathbb{N}_0 = \{0; 1; 2; ...\}$$
 bzw. $\mathbb{N}^* = \{1; 2; ...\}$.

Summen und Produkte natürlicher Zahlen sind natürliche Zahlen.

ganze Zahlen
$$\mathbb{Z} = \{...; -2; -1; 0; 1; 2; ...\} = \{0; \pm 1; \pm 2; ...\}$$

Summen, Produkte und Differenzen ganzer Zahlen sind ganze Zahlen.

$$\underline{\text{rationale Zahlen}} \ \mathbb{Q} = \left\{ \frac{p}{q} \,\middle|\, p \in \mathbb{Z}, \, q \in \mathbb{Z}, \, q \neq 0 \right\}$$

Summen, Produkte, Differenzen und Quotienten (außer Division durch 0) rationaler Zahlen sind rationale Zahlen.

reelle Zahlen R

Die reellen Zahlen, die keine rationalen Zahlen sind, heißen irrationale Zahlen.

Summen, Produkte, Differenzen und Quotienten (außer Division durch 0) reeller Zahlen sind reelle Zahlen.

Aussagen

Eine <u>Aussage</u> ist ein feststellender Satz, dem eindeutig einer der beiden <u>Wahrheitswerte</u> wahr oder falsch zugeordnet werden kann.

Merke: Eine Aussage ist entweder wahr oder falsch.

Verknüpfung von Aussagen

Negation (Verneinung) einer Aussage A:	\boldsymbol{A}	$\neg A$	
$\neg A$.	W	f	•
Lies: "nicht A"	f	W	
Washington (Had Washingtons) and Assess Assess Assess	4	م ا	l , 5
Konjunktion (Und-Verknüpfung) zweier Aussagen A und B:	<u>A</u>	В	$A \wedge B$
$A \wedge B$.	W	W	W
Lies: "A und B"	W	f	f f f
	f	W	f
	f	f	f
		ı	ı
<u>Disjunktion</u> (Oder-Verknüpfung) zweier Aussagen A und B:	\boldsymbol{A}	B	$A \vee B$
$A \vee B$.	W	W	W
Lies: "A oder B"	W	f	W
Das Zeichen "v" kommt vom lateinischen Wort vel.			W
Achtung: Gemeint ist das "einschließende Oder", d. h. die Aussagen			f
können auch beide wahr sein.			

<u>Implikation</u> (Wenn-Dann-Verknüpfung) zweier Aussagen A und B:

$$A \Rightarrow B$$
.

Lies: "A impliziert B" oder "aus A folgt B"

<u>Achtung:</u> Wenn *A* falsch ist, dann ist $A \Rightarrow B$ wahr, unabhängig vom Wahrheitswert von *B*.

Merke: $A \Rightarrow B$ ist immer wahr, außer wenn A wahr und B falsch ist.

\boldsymbol{A}	В	$A \Rightarrow B$
W	W	W
W	f	f
f	W	W
f	f	W

Äquivalenz zweier Aussagen A und B:

$$A \Leftrightarrow B$$
.

Lies: "A ist äquivalent zu B"

\boldsymbol{A}	B	$A \Leftrightarrow B$
W	W	W
W	f	f
f	W	f
f	f	W

Für Experten: Weitere Verknüpfungen sind

XOR (Entweder-Oder-Verknüpfung; ausschließende Oder-Verknüpfung)

NOR (Nicht-Oder-Verknüpfung)

NAND (Nicht-Und-Verknüpfung)

Für die Reihenfolge bei Verknüpfungen von Aussagen gilt:

- 0. Klammern
- 1. ¬
- 2. \wedge und \vee
- 3. \Rightarrow und \Leftrightarrow

Die folgenden <u>logische Äquivalenzen</u> kann man sich anschaulich überlegen oder mithilfe einer Wahrheitstabelle nachweisen:

$$(A \Leftrightarrow B) \Leftrightarrow (A \Rightarrow B) \land (B \Rightarrow A)$$

$$(A \Rightarrow B) \Leftrightarrow (\neg B \Rightarrow \neg A)$$

$$\neg (A \land B) \Leftrightarrow \neg A \lor \neg B$$

$$\neg (A \lor B) \Leftrightarrow \neg A \land \neg B$$

Die beiden letzten Äquivalenzen nennt man die De-Morgan-Regeln.

Quantoren

Existenzquantor ∃: ,,es gibt ein/e/n"

Achtung: Gemeint ist: "es gibt mindestens ein/e/n"

Das Zeichen "∃" soll an ein umgedrehtes "E" erinnern.

Die Verneinung von "Es gibt … mit □" ist "Für alle … gilt die Verneinung von □".

Allquantor ∀: "für alle"

Das Zeichen "∀" soll an ein umgedrehtes "A" erinnern.

Die Verneinung von "Für alle … gilt \square " ist "Es gibt ein/e/n …, für den/die/das die Verneinung von \square gilt".