Теоремы по матану, семестр 4

15 февраля 2018 г.

Содержание

1	Характеризация измеримых функций с помощью ступенчатых (формулировка). Следствия	2
2	Измеримость монотонной функции	3
3	Теорема Лебега о сходимости почти везде и сходимости по мере	3
4	Теорема Рисса о сходимости по мере и сходимости почти везде	3
5	Простейшие свойства интеграла Лебега 5.1 Для определения (5)	
6	Счетная аддитивность интеграла (по множеству)	4
7	Теорема Леви	4
8	Линейность интеграла Лебега	4

1 Характеризация измеримых функций с помощью ступенчатых (формулировка). Следствия

 (X, \mathbb{A}, μ) — пространство с мерой.

f — измеримая функция на X, $\forall x \ f(x) \ge 0$. Тогда \exists ступенчатые функции f_n , такие что:

- 1. $\forall x \ 0 \le f_n(x) \le f_{n+1}(x) \le f(x)$.
- 2. $f_n(x)$ поточечно сходится к f(x).

Следствие 1:

 $f:X \to \overline{\mathbb{R}}$ измеримая. Тогда \exists ступенчатая $f_n: \forall x: lim f_n(x) = f(x)$ и $|f_n(x)| \leq |f(x)|$.

Доказательство:

- 1. Рассмотрим $f = f^+ f^-.f^+ = max(f,0), f^- = max(-f,0)$. Срезки измеримы: $E(f^+ < a) = E(f < a) \cap E(0 < a)$, при этом f и $g \equiv 0$ измеримы $(f^-$ измерима аналогично).
- 2. Срезки измеримы и неотрицательны, тогда по теореме существуют ступенчатые функции $f_n^+ \to f^+, f_n^- \to f^-$. Тогда и $f_n^+ f_n^-$ это ступенчатая функция, при этом по свойству пределов: $f_n^+ f_n^- \to f^+ f^- = f$

(почему верно с модулем – непонятно, если в лоб, то неверно. Спрошу 19.02)

Следствие 2:

f,g — измеримые функции. Тогда fg — измеримая функция. При этом считаем, что $0\cdot\infty=0$.

Доказательство:

1. Рассмотрим $f_n \to f: |f_n| \le |f|, g_n \to g: |g_n| \le |g|$ из первого следствия. Тогда $f_n g_n \to fg$

(и что с того? У нас же другое определение измеримых функций. Спрошу 19.02)

Следствие 3:

f,g — измеримые функции. Тогда f+g — измеримая функция. При этом считаем, что $\forall x$ не может быть, что $f(x)=\pm\infty, g(x)=\mp\infty$

Доказательство:

Доказывается как следствие 2.

2 Измеримость монотонной функции

Пусть $E \subset R^m$ — измеримое по Лебегу, $E' \subset E$, $\lambda_m(E \setminus E') = 0$, $f: E \to \mathbb{R}$. Пусть сужение $f: E' \to R$ непрерывно. Тогда f измерима на E. Доказательство:

- 1. $E(f < a) = E'(f < a) \cup e(f < a), e := E \setminus E', \lambda_m(e) = 0.$
- 2. E'(f < a) открыто в E', так как f непрерывна. Поэтому $E' = G \cap E' \Rightarrow$, где G открытое в E множество. Значит, E'(f < a) измеримо по Лебегу, так как оно является борелевским.
- 3. Но и e(f < a) измеримо, так $\lambda_m(e) = 0$, следовательно E(f < a) измеримо как объединение измеримых множеств

Следствие:

 $f:< a,b> \to \mathbb{R}$ монотонна. Тогда f измерима.

Доказательство:

Множество разрывов монотонной функции НБЧС множество, поэтому можно воспользоваться доказанной теоремой.

- 3 Теорема Лебега о сходимости почти везде и сходимости по мере
- 4 Теорема Рисса о сходимости по мере и сходимости почти везде
- 5 Простейшие свойства интеграла Лебега
- 5.1 Для определения (5)
 - 1. $\int_{\mathbb{X}} f$ не зависит от представления f как ступенчатой функции, то есть если f реализуется как $f = \sum_{k} (\lambda_k \cdot \chi_{E_k})$ и как $f = \sum_{l} (\alpha_l \cdot \chi_{G_l})$, интегралы по этим функциям равны

Доказательство:

Выпишем общее разбиение для этих двух разбиений

Пусть
$$F_{ij} = E_i \cap G_j$$

Тогда
$$f = \sum_{k} (\lambda_k \cdot \chi_{E_k}) = \sum_{l} (\alpha_l \cdot \chi_{G_l}) = \sum_{i,j} (\lambda_i (= \alpha_j) \cdot \chi_{F_{i,j}})$$

$$\int f = \sum_{i,j} (\lambda_i \cdot \mu F_{i,j}) = \sum_{i} (\lambda_i \cdot \sum_{j} (\mu F_{i,j})) = \sum_{i} (\lambda_i \cdot \mu E_i) = \int f$$
 для первого разбиения

Аналогично для второго разбиения получаем

$$\int f = \sum_{i,j} (\lambda_i \cdot \mu F_{i,j}) = \sum_j (\alpha_i \cdot \sum_i (\mu F_{i,j})) = \sum_j (\lambda_j \cdot \mu G_i) = \int f$$
 для второго разбиения, что и требовалось доказать

2. f,g -измеримые ступенчатые функции, $f\leqslant g$, тогда $\int\limits_{\mathbb{X}}f\leqslant\int\limits_{\mathbb{X}}g$

Доказательство:

Пусть
$$f = \sum_{k} (\lambda_k \cdot \chi_{E_k}), g = \sum_{l} (\alpha_l \cdot \chi_{G_l})$$

Аналогично доказательству предыдущей теоремы, строим общее ступенчатое разбиение

Пусть
$$F_{ij} = E_i \cap G_j$$

Тогда
$$\int f = \sum_{i,j} (\lambda_i \cdot \mu F_{i,j}) \leqslant \sum_j (\alpha_j \cdot \mu F_{i,j}) = \int g$$
, что и требовалось доказать

- 5.2 Для определения (6)
- 6 Счетная аддитивность интеграла (по множеству)

Тут будет вторая теорема

- 7 Теорема Леви
- 8 Линейность интеграла Лебега