الجمهورية الجزائرية الديمقراطية الشعبية

الديوان الوطني للامتحانات والمسابقات

دورة: 2017

(S)

 $x \downarrow$

الشكل- 1

المدة: 04 سا و 30 د

وزارة التربية الوطنية

امتحان بكالوريا التعليم الثانوي

الشعبة: رياضيات، تقني رياضي

اختبار في مادة: العلوم الفيزيائية

على المترشح أن يختار أحد الموضوعين الآتيين:

الموضوع الأوّل

يحتوي الموضوع الأول على 05 صفحات (من الصفحة 1 من 10 إلى الصفحة 5 من 10)

الجزء الأول: (14 نقطة)

التمرين الأول: (04 نقاط)

نهمل تأثير الهواء في كامل التمرين ، و: تسارع الجاذبية الأرضية

نابض مرن مهمل الكتلة، حلقاته غير متلاصقة، ثابت مرونته k. يثبت من إحدى نهايتيه في نقطة ثابتة A ويعلق في نهايته الحرة جسما صلبا (S) نعتبره نقطيا، كتلته m=100 (الشكل-1).

القوى المؤثرة على الجسم (S) في حالة التوازن. -1

أ) بتطبيق القانون الثاني لنيوتن أوجد المعادلة التفاضلية التي تحققها فاصلة المتحرك (
$$X\left(t
ight)$$

ب) تحقق أن
$$x(t) = X_{\mathrm{m}} \cdot \cos\left(\sqrt{\frac{k}{m}} \cdot t + \varphi\right)$$
 حلا للمعادلة التفاضلية السابقة.

سمحت دراسة تغيرات الطاقة الحركية E_c للجسم (S) بدلالة فاصلته χ أثناء الاهتزاز (S)

.2–بالحصول على البيان $E_c=f\left(x
ight)$ الموضح في الشكل

 $E_{C\,\mathrm{max}}$ أ) جد عبارة الطاقة الحركية العظمى

$$m$$
 بدلالة: ω_0 ، X_m بدلالة ω_0 ، ω_0 جيث ω_0

ب) اعتمادا على البيان جد:

 X_m (الفاصلة الأعظمية) – السعة

. $E_{C \max}$ الطاقة الحركية العظمى –

- T_0 نبض الحركة θ_0 ودورها الذاتى
 - ابت المرونة k للنابض.
- x = f(t) اكتب المعادلة الزمنية للحركة (4

التمرين الثاني: (04 نقاط)

التجهيز المستخدم:

مولد توتر ثابت قوته المحركة الكهربائية E=5V، جهاز راسم L الاهتزاز ذو ذاكرة، مكثفة فارغة سعتها $C=1\mu F$ ، وشيعة ذاتيتها مقاومتها مهملة، ناقل أومي مقاومته R، مقاومة متغيرة R، بادلة K، أسلاك التوصيل.

لدراسة تأثير المقاومة على نمط الاهتزازات الكهربائية تم تحقيق التركيب التجريبي (الشكل-3).

• التجربة الأولى:

قام فوج من التلاميذ بشحن المكثفة C بوضع البادلة K في الوضع (1) وضبط الحساسية الشاقولية لراسم الاهتزاز على 1V/div والمسح الأفقى على على على 10ms/div فظهر على شاشته المنحنيين (a) و (b) و (b)

1) بيّن على الشكل-3 كيف تم ربط جهاز راسم

 $u_{R}\left(t\right)$ الاهتزاز لمتابعة تطور التوترين الكهربائيين

و $u_{c}(t)$ بين طرفي كل من الناقل الأومى والمكثفة.

(b) و (a) انسب مع التعليل كل من المنحنيين (a)لتطور التوتر الكهربائي الموافق.

باستعمال المعادلة الزمنية للتوتر ($u_{C}(t)$ حدّد (tعبارتي اللحظتين t_1 و t_2 الموافقتين لشحن المكثفة بنسبة 40% و 90% على الترتيب بدلالة ثابت الزمن للدارة 7.

ب) تأكد من أن $\Delta t = t_2 - t_1 \approx 1,79\tau$ ثم حدّد بيانيا قيمة كل من t_1 و وباستغلال العلاقة السابقة R احسب قيمة T واستنتج قيمة

الشكل-3

• التجرية الثانية:

K بعد شحن المكثفة تماماً وفي لحظة نعتبرها كمبدأ لقياس الأزمنة t=0 قام فوج آخر من التلاميذ بنقل البادلة إلى الوضع (2) وتسجيل في كل مرة تغيرات التوتر الكهربائي $u_{C}(t)$ بين طرفي المكثفة من أجل عدة قيم للمقاومة R' معطاة في الجدول التالي:

 $R'(\Omega)$ 100 5000

فتحصل الفوج على المنحنيات الموضحة في الشكل-5.

- 1) ما هو نمط الاهتزازات في كل حالة؟ علّل.
 - 2) انسب كل بيان للمقاومة المناسبة.
 - R' = 0 من أجل (3
- أ) أوجد المعادلة التفاضلية لتطور التوتر الكهربائي
 - بين طرفي المكثفة بدلالة الزمن. $u_{C}\left(t
 ight)$
 - ب) حل المعادلة التفاضلية السابقة هو $u_C(t) = A \cdot \cos Bt$

عبر عن الثابتين A و B بدلالة مميزات الدارة.

ج) استنتج قيمة الدور الذاتي T_0 للاهتزازات واحسب قيمة الذاتية L للوشيعة.

التمرين الثالث: (06 نقاط)

المُسمَّى –I لمنافسة النظام الأمريكي في التموقع الدقيق GPS والتحرر منه، وضع الاتحاد الأوروبي نظامه الخاص المُسمَّى GPS المتكون من 30 قمرا اصطناعيا يرسم كل واحد منها مسارا يُمكن اعتباره دائريا حول الأرض على ارتفاع h=23616km من سطحها.

نتم دراسة حركة أحد هذه الأقمار الاصطناعية (S) في المرجع المركزي الأرضي (الجيو مركزي) والذي يمكن اعتباره غاليليا (الشكل-6).

الكتب العبارة الشعاعية لقوة الجذب $\vec{F}_{T/S}$ التي تؤثر بها الأرض (T) على القمر الأصطناعي (S) بدلالة ثابت التجاذب الكوني (S) كتلة الأرض (S) كتلة القمر الاصطناعي (S) نصف قطر الأرض (S) والارتفاع (S) ومثّلها

على الشكل-6.

- (S) بتطبيق القانون الثاني لنيوتن في المرجع المحدد، أوجد العبارة الحرفية للسرعة المدارية V للقمر V للقمر الثاني الثاني الثاني الثاني المرجع المحدد، أوجد العبارة المرابية V المدارية V المدارية
- ب) اكتب العبارة الحرفية للدور T لحركة القمر الاصطناعي (S) بدلالة R_T ، h ، V ثم احسب قيمته.
 - ج) هل يمكن اعتبار هذا القمر جيومستقرًا؟ برّر إجابتك.

$$.G = 6,67 \times 10^{-11} SI$$
 ، $R_T = 6371 km$ ، $M_T = 5,972 \times 10^{24} kg$ يعظى:

- المعدّات الأخرى على بطاريات نووية تولد طاقة متحررة من جراء المعدّات الأخرى على بطاريات نووية تولد طاقة متحررة من جراء انبعاث جسيمات α من أنوية البلوتونيوم المشّع α ثابت التفكك له α .
 - 1) اكتب معادلة التحول النووي المنمذجة لتفكك

$$\cdot_{z}^{A}U$$
 نواة البلوتونيوم 238 للحصول على نواة اليورانيوم

بيّن أن المعادلة التفاضلية التي تخضع لها عدد الأنوية (2 المتفككة
$$N_d$$
 للبلوتونيوم 238 هي من الشكل:

حیث
$$N_0$$
 هو عدد أنویة $\frac{dN_d}{dt} + \lambda \cdot N_d = \lambda \cdot N_0$

البلوتونيوم الابتدائية في العيّنة المشّعة.

$$N_d(t) = A \cdot e^{-\alpha \cdot t} + B$$
 الشكل:

أوجد عبارة الثوابت:
$$lpha$$
 ، $lpha$ و eta ، ما المدلول الفيزيائي

 $^{\circ}B$ و $^{\circ}B$

. (7– الشكل البيان (الشكل
$$\frac{dN_d}{dt}$$
 = $f(N_d)$ نمثل (4

 N_0 أ- باستغلال البيان استنتج قيمتي الثابتين λ و

.ب-عرّف زمن نصف العمر $t_{1/2}$ للعينة المشّعة واحسب قيمته.

 $^{238}_{94}Pu$ من m=1,2kg من من الأقمار الاصطناعية على كتلة من من m=1,2kg

r=60% بمردود $P_e=888\,W$ بمردود كهربائية متوسطة مقدارها عند مدة اشتغالها استطاعة كهربائية متوسطة مقدارها

- . m الطاقة الكلية الناتجة عن التفكك الكلي للكتلة
 - ب) استنتج مدة اشتغال البطارية.

$$m(_2^4He) = 4,00150\,u$$
 ، $m(_Z^4U) = 234,04095\,u$ ، $m(_{92}^{238}Pu) = 238,04768\,u$. $1MeV = 1,6 \times 10^{-13}J$ ، $N_A = 6,02 \times 10^{23} mo\ell^{-1}$ ، $1u = 931,5 MeV/c^2$

الجزء الثانى: (06 نقاط)

التمرين التجريبي: (06 نقاط)

من حمض الايثانويك M=0,60 بإذابة كتلة m=0,60 من حمض الايثانويك -I النقى في حجم V=1,0 من الماء المقطر .

 $\sigma=1,64\times10^{-2}~S\cdot m^{-1}$ في درجة الحرارة $\sigma=1,64\times10^{-2}~S\cdot m^{-1}$ فنجدها كنوعية المحلول ($\sigma=1,64\times10^{-2}~S\cdot m^{-1}$

- -1 اكتب معادلة التفاعل المنمذج للتحول الكيميائي الحادث بين حمض الايثانويك النقي والماء.
- ب) هل التفاعل السابق تمّ بين: حمض وأساسه المرافق أو حمض اثنائية وأساس لثنائية أخرى؟

- (S) احسب التركيز المولى (S) المحلول
- (S) قدّم جدولاً لتقدم التفاعل الحادث في المحلول (S).
- ب جِدْ عبارة التركيز المولي لشوارد الهيدرونيوم $\begin{bmatrix} H_3O^+ \end{bmatrix}_f$ في المحلول σ والناقليتين الموليتين الموليتين $\lambda_{H_{2O^+}}$ و $\lambda_{CH_{2COO}^-}$
 - ج) استنتج قيمة الH للمحلول الحمضي (S).
 - : الشكل عبارة كسر التفاعل النهائي $Q_{r,f}$ للتفاعل الحادث في المحلول (S) وبيّن أنها تكتب على الشكل (J-3

- $Q_{r,f} = \frac{10^{-2pH}}{c 10^{-pH}}$
- \mathbf{r} احسب ثابت التوازن K للتفاعل السابق. ماذا تستنتج
- من $n_0(mo\ell)$ نحقق مزیجا متساوی المولات یتکون من $n_0(mo\ell)$ من حمض الایثانویك النقی CH_3-COOH من کحول صیغته الجزیئیة المجملة C_3H_7OH .
 - 1) سمّ التفاعل الحادث في المزيج وأذكر خصائصه.
 - 2) اكتب معادلة التفاعل الكيميائي الحادث.
 - 3) يمثل البيان (الشكل-8) تغيرات الكتلة m للحمض المتبقى أثناء التفاعل بدلالة الزمن t.
 - أ) حدّد التركيب المولي للمزيج عند التوازن الكيميائي.
 - ب) احسب مردود التفاعل وحدد من بين الصيغتين التاليتين:

. سيغة الكحول المستخدم، مع التعليل $CH_3-CHOH-CH_3$ ؛ $CH_3-CH_2-CH_2-OH$

- ج) اكتب الصيغة نصف المنشورة للمركب العضوي الناتج واذكر اسمه.
- الماء إلى من الماء الم
 - ب) حدّد التركيب المولي للمزيج عند التوازن الكيميائي الجديد.

$$\lambda_{H_3O^+} = 35,0 \ mS \cdot m^2 \cdot mo\ell^{-1}$$
 , $\lambda_{CH_3COO^-} = 4,1 \ mS \cdot m^2 \cdot mo\ell^{-1}$: المعطیات : $M(H) = 1g \cdot mo\ell^{-1}$, $M(O) = 16 \ g \cdot mo\ell^{-1}$, $M(C) = 12 \ g \cdot mo\ell^{-1}$

انتهى الموضوع الأول

الموضوع الثانى

يحتوي الموضوع الثاني على 05 صفحات (من الصفحة 6 من 10 إلى الصفحة 10 من 10)

الجزء الأول: (14 نقطة)

التمرين الأول: (04 نقاط)

لتقدير عمر بعض الصخور، يلجأ العلماء إلى طرائق وتقنيات مختلفة تعتمد أساسا على قانون التناقص الاشعاعي من بين هذه التقنيات تقنية التأريخ بواسطة اليورانيوم.

تتفكك أنوية اليورانيوم المشع U^{238}_{92} تلقائيا وفق سلسلة من التفككات lpha و التي تُنمذج بالمعادلة التالية:

$$^{238}_{92}U \rightarrow x\alpha + y\beta^{-} + ^{206}_{82}Pb$$

 eta^- ها المقصود بlpha و أ-1

- (y) بتطبيق قانوني الانحفاظ، أوجد قيمتيّ العددين (y)
- ي بفرض أن عينة صخرية تحتوي على اليورانيوم U^{238}_{92} فقط لحظة تشكلها (t=0) التي نعتبرها لحظة بداية التأريخ وأن الرصاص V^{206}_{82} الموجود في العينة ناتج عن تفكك اليورانيوم V^{238}_{92} فقط.

 $^{238}_{92}U$ عند لحظة القياس $^{m}_{m}$ تكون النسبة المئوية الكتلية للرصاص 206 تساوي 31 من الكتلة الابتدائية لليورانيوم

t عند لحظة عند التناقص الاشعاعي، أثبت أن كتلة الرصاص في العينة عند لحظة t

 $m_{Pb}(g)$

تعطى بالعلاقة:

$$m_{Pb}(t) = 0.866 \cdot m_U(0)(1 - e^{-\lambda t})$$

حيث ٦ ثابت التفكك لليورانيوم 238

3) يُمثل البيان الموضح في الشكل-1

تغيرات كتلة الرصاص المتشكل بدلالة

$$.m_{Pb}=f\left(t
ight)$$
 الزمن

اعتمادا على البيان جد:

- أ) عدد أنوية اليورانيوم 238 الابتدائية
 - في العينة المدروسة $N_{U}\left(0
 ight)$
- $t_{1/2}$ نصف العمر اليورانيوم 238.
- ج) عين بيانيا عمر العينة، ثم تحقق حسابيا من النتيجة.
- 4) فسر تواجد اليورانيوم $\frac{238}{92}U$ في القشرة الأرضية إلى يومنا هذا.

$$N_A = 6.02 \times 10^{23} \, mol^{-1}$$
يعطى: عمر الأرض $t = 4.5 \times 10^9 \, ans$ عدد أفوڤادرو

التمرين الثاني: (04 نقاط)

نحقق التركيب التجريبي الموضح في الشكل-2 والمتكون من:

- . E مولد مثالي للتوتر الكهربائي، قوته المحركة الكهربائية
 - مكثفة فارغة سعتها -
 - ناقل أومي مقاومته R متغيرة.
 - وشيعة ذاتيتها L ، مقاومتها مهملة ·
 - . *k* بادلة -
 - t=0 هي الوضع (1) وي اللحظة k نضع البادلة (1) وي اللحظة
 - أ) ماهي الظاهرة التي تحدث في الدارة؟
- u_R ، u_c التوترين المار في الدارة واتجاه الاصطلاحي للتيار الكهربائي المار في الدارة واتجاه التوترين u_R
- $u_{c}\left(t
 ight)$ بتطبيق قانون جمع التوترات، اكتب المعادلة التفاضلية التي يحققها التوتر الكهربائي بين طرفي المكثفة (أ-2
 - $u_{C}(t) = A + Be^{-\alpha t}$: نقبل المعادلة التفاضلية السابقة حلا من الشكل $u_{C}(t)$

حيث: $A:(B \neq 0)$ مقادير ثابتة يطلب تحديد عباراتها بدلالة المقادير المميزة للدارة.

ج) باستعمال التحليل البعدي، أوجد وحدة قياس المقدار lpha في جملة الوحدات الدولية.

مكنت برمجية خاصة من رسم بيانيّ العلاقتين: $E_{c}=g\left(t
ight)$ و $u_{R}=f\left(\dfrac{du_{c}}{dt}
ight)$: الممثلين على الترتيب في المكثفة عند اللحظة $E_{c}=g\left(t
ight)$ الشكلين $E_{c}=g\left(t
ight)$ تمثل الطاقة المخزنة في المكثفة عند اللحظة $E_{c}=g\left(t
ight)$

 $E_c(10^{-3} J)$ 0,5 t(s) t(s)

الشكل-2

باستغلال البيانين أوجد:

- أ) ثابت الزمن للدارة au .
- . E القوة المحركة الكهريائية للمولد

ج) سعة المكثفة · C

- د) مقاومة الناقل الأومى R.
- 4) بعد إتمام شحن المكثفة، نجعل مقاومة الناقل الأومي (R=0) ونضع البادلة في الوضع (2) عند اللحظة t=0.
 - أ) اكتب المعادلة التفاضلية التي يحققها التوتر الكهربائي $u_{c}\left(t
 ight)$ بين طرفي المكثفة.

بيّن أن:
$$u_{C}(t) = A\cos(\frac{1}{\sqrt{LC}}t)$$
 حلا للمعادلة (ب

التفاضلية السابقة ثم حدد عبارة كل من الدور الذاتي للاهتزازات (T_0) والعدد A بدلالة المقادير المميزة للدارة ج) يمثل البيان الموضح في الشكل-5 تغيرات الطاقة

المخزنة في المكثفة $E_c(t)$ بدلالة الزمن.

باستعمال البيان استنتج قيمة:

- الدور الذاتي (T_0) للاهتزازات.
 - ذاتية الوشيعة (L).

التمرين الثالث: (06 نقاط)

اليوريا أو البولة $CO(NH_2)_2$ هي من الملوثات، تتواجد في فضلات الكائنات الحية وتتفكك ذاتيا وفق تفاعل بطيء وتام ينتج عنه شوارد الأمونيوم NH_4^+ وشوارد السيانات CNO^- وفق معادلة التفاعل التالية:

$$CO(NH_2)_2(aq) = NH_4^+(aq) + CNO^-(aq)$$

- $c=2,0.10^{-2}\,mol.L^{-1}$ من محلول اليوريا تركيزه V=100mL من محلول اليوريا تركيزه V=100mL نخصًر حجما V=100mL من مختلفة (نهمل تأثير ونضعه في حمام مائي درجة حرارته V=100mL ثم نقيس الناقلية النوعية للمحلول عند أزمنة مختلفة (نهمل تأثير الشوارد V=100mL في ناقلية المحلول).
 - لتفاعل χ_{max} التقدم الأعظمي χ_{max} للتفاعل.
 - كا اكتب عبارة تركيز شوارد الأمونيوم $^{+}_{4}$ بدلالة الناقلية النوعية σ للمحلول والناقليات المولية الشاردية.
 - .V اكتب العلاقة بين تركيز شوارد ${N\!H_4}^+$ في المحلول وتقدم التفاعل X وحجم المحلول X
 - x استنتج العلاقة بين الناقلية النوعية σ وتقدم التفاعل . واحسب قيمة الناقلية العظمى $\sigma_{\rm max}$ عند نهاية التفاعل
 - أثبت أنّ تقدم التفاعل في اللحظة t يعطى بالعلاقة:

$$x(t) = x_{\text{max}} \frac{\sigma(t)}{\sigma_{\text{max}}}$$

- (6) يمثل الشكل-6 منحنى تطور تقدم التفاعل بدلالة الزمن.
 - أ) اكتب عبارة السرعة الحجمية للتفاعل ثم

بيّن اعتمادا على المنحنى كيفية تطورها مع الزمن.

- ب) عرف زمن نصف التفاعل $t_{1/2}$ ، ثم حدد قيمته بيانيا.
- 7) احسب تركيز شوارد $^{+}_{4}$ NH_{4}^{+} المتشكلة عند نهاية التفاعل.
- المتشكلة عند NH_4^+ المتشكلة عند NH_4^+ المتشكلة عند نهايـة التفاعـل السـابق، نعـاير حجمـا V=10mL مـن المحلـول السـابق بواسـطة محلـول هيدروكسـيد الصـوديوم تركيـزه المـولي $C_b=1.10^{-2}mol.L^{-1}$ فيحـدث التكـافؤ عند إضافة حجم قدره $V_{bE}=20mL$

- 1) أذكر البرتوكول التجريبي المناسب لهذا التفاعل مدعما إجابتك برسم تخطيطي.
 - 2) اكتب معادلة تفاعل المنمذجة لتحول المعايرة.
 - 3) احسب تركيز شوارد الامونيوم في المحلول.
 - 4) قارن قيمتها مع المحسوبة سابقا في السؤال (T-I).

 $\lambda_{CNO^{-}}=9,69\,mS.m^{2}.mol^{-1}$ و $\lambda_{NH_{A}^{+}}=11,01mS.m^{2}.mol^{-1}$: $50^{0}\,C$ يعظى: عند الدرجة

الجزء الثاني (06 نقاط):

التمرين التجريبي (06 نقاط):

نهمل في كامل التمرين تأثير الهواء

 $g = 9.81 m / s^2$ ونأخذ

قصد دراسة تأثیر قوة الاحتکاك علی طبیعة حرکة جسم صلب (S) کتلته m ، نترکه من نقطة A أعلی مستوي مائل، زاویة میله α وطوله AB=1m دون سرعة ابتدائیة لیتحرك وفق خط المیل الأعظم باتجاه

(7- النقطة B. (الشكل

I. الدراسة التجريبية:

نغير في كل مرة من شدة قوة الاحتكاك \overrightarrow{f} بتغيير الورق الكاشط الذي ينزلق عليه الجسم، فتحصلنا على النتائج التالية:

f(N)	0,5	1,0	1,5	2,0
$a(m/s^2)$	3,9	2,9	1,9	0,9

- .(S) بتطبيق القانون الثاني لنيوتن، أوجد عبارة a تسارع مركز عطالة الجسم (1).
- . \overrightarrow{f} نارسم البيان الممثل لتغيرات a تسارع مركز عطالة الجسم (S) بدلالة شدة قوة الاحتكاك (a) أرسم البيان الممثل لتغيرات a تسارع مركز عطالة الجسم (a) بدلالة شدة قوة الاحتكاك (a) أرسم البيان الممثل لتغيرات a باختيار السلم (a) بدلالة شدة قوة الاحتكاك (a)
 - m وكتلة الجسم α وكتلة الجسم (3
 - . B مثل الحصيلة الطاقوية للجملة (جسم (S)) بين الموضعين Aو
 - ((S) بتطبيق مبدأ انحفاظ الطاقة على الجملة (جسم (5)):
 - $v_{B}=2,19m/s$ أوجد عبارة شدة قوة الاحتكاك \overrightarrow{f} وأحسب قيمتها من أجل أ
 - ب) تأكد بيانيا من قيمة \overrightarrow{f} السابقة.
 - يغادر الجسم (S) النقطة B ليسقط على الأرض عند .II

-7النقطة D، أنظر الشكل

 v_y يمثل الشكل-8 بيانيّ تغيرات مركبتيّ شعاع السرعة v_x و v_y و من الشكل \rightarrow \rightarrow في المعلم v_x بدلالة الزمن.

اعتمادا على البيانين:

- $\overrightarrow{ox}, \overrightarrow{oy}$ مدّد طبيعة حركة الجسم (S) في المعلم حركة (1
 - x_D أوجد قيمة كل من الارتفاع h والمدى (2
 - . D أوجد قيمة سرعة الجسم (S) عند النقطة

الشكل-8

انتهى الموضوع الثاني

العا	/ 1 \$11 - 1 10 T 1 A11 11-
مجزأة	عناصر الإجابة (الموضوع الأول)
	الجزء الأول(13 نقطة)
	التمرين الأول: (04 نقاط)
0,25	x' ا – تمثیل القوی:
	ب عبارة ١٤٠٥
	ℓ والقوى المطبقة هي: الجسم (S) والقوى المطبقة هي
0,25	$ec{T}_0$ قوة ثقل الجسم $ec{P}$ ، قوة توتر النابض $ec{T}_0$.
	(S) $\sum \vec{F}_{ext} = \vec{0} \Leftrightarrow \vec{P} + \vec{T}_0 = \vec{0}$
0,25	$P - T_0 = 0 \rightarrow mg - kx_0 = 0 \rightarrow x_0 = \frac{m \cdot g}{k}$
·	$x \lor k$
	2) أ- المعادلة التفاضلية: بتطبيق القانون الثاني لنيوتن على الجملة جسم (S) في المرجع السطحي
	الأرضى المعتبر غاليليا
	$\Sigma \vec{F} = m \cdot \vec{a}$
	$\vec{P} + \vec{T} = m \cdot \vec{a} \Rightarrow p - T = m \cdot a$
0,25	$mg - k(x + x_0) = m \cdot a \Rightarrow mg - x_0 - kx = m \cdot a$
0,25	$mg - x_0 = 0 \rightarrow -k \cdot x = m \cdot a \Rightarrow \frac{d^2x}{dt^2} + \frac{k}{m}x = 0$
0.07	$\frac{d^2x}{dt^2} + \frac{k}{m} \cdot x = 0 \cdot \dots \cdot (1)$
0,25	
	$x(t) = X_m \cos\left(\sqrt{\frac{k}{m}} \cdot t + \varphi\right)$ ب- إثبات أن العبارة $x(t) = X_m \cos\left(\sqrt{\frac{k}{m}} \cdot t + \varphi\right)$ هي حل للمعادلة التفاضلية:
	$a = \ddot{x} = \frac{dv}{dt} = \frac{d^2x}{dt^2} = -x_m \left(\sqrt{\frac{k}{m}}\right)^2 \cos\left(\sqrt{\frac{k}{m}}t + \varphi\right) \dots (4)$
0,25	()
0.25	وبالتعويض في عبارة المعادلة التفاضلية(1) نجد:
0,25	$-X_{m} \cdot \left(\sqrt{\frac{k}{m}}\right)^{2} \cos\left(\sqrt{\frac{k}{m}} \cdot t + \varphi\right) + \frac{k}{m} \cdot X_{m} \cos\left(\sqrt{\frac{k}{m}} \cdot t + \varphi\right) = 0$
	مجزأة 0,25 0,25 0,25 0,25

اِمـة	العلا	/ 1 St 10 T 1 Att 1:-
مجموع	مجزأة	عناصر الإجابة (الموضوع الأول)
		3) أ- برهنة عبارة الطاقة الحركية الأعظمية:
		$E_c = \frac{1}{2}m \cdot v^2, \qquad v = -X_m \cdot \omega_0 \cdot \sin(\omega_0 t + \varphi)$
	0,25	$v_m = \pm X_m \cdot \omega_0 \Longrightarrow (E_c)_{\text{max}} = \frac{1}{2} m \cdot \omega_0^2 \cdot X_m^2$
		ب- تحديد قيم الثوابت:
1 7	0,25	من البيان نجد: $X_m = 4cm$ المطال الأعظمي:
1,5	0,25	$\left(E_{c} ight)_{ m max}=0,008J$: الطاقة الحركية العظمى $-$
	0,25	$\left(E_{c}\right)_{\max} = 0,008J \Rightarrow \omega_{0} = \sqrt{\frac{2\times\left(E_{c}\right)_{\max}}{m\cdot X_{m}^{2}}} = \sqrt{\frac{8\times10^{-3}\times2}{0,1\times16\times10^{-4}}} = 10rd/s: \omega_{0}$ نبض الحركة - ω_{0}
	0,25	$T_{0}=rac{2\pi}{\omega_{0}}=rac{2\pi}{10}=0,628s$: T_{0} قيمة الدور الذاتي $-$
	0,25	$\omega_0 = \sqrt{\frac{k}{m}} \rightarrow k = m \cdot \omega_0^2 = 0.1 \times 100 = 10 N/m$ قيمة ثابت المرونة k من العبارة –
		4) المعادلة الزمنية للحركة:
0,5	0.25	$X_m = 4cm$ ، $\omega_0 = 10rd/s$: الدينا
0,0	0,25	$x\left(t\right)=0.04\cos\left(10t\right)$ ومنه: $t=0,x=X_{m}\Rightarrow\cosarphi=1\Rightarrowarphi=0$ الشروط الابتدائية $t=0,x=X_{m}\Rightarrow\cosarphi=1$
	· · · · · · · · · · · · · · · · · · ·	(1-12: 04) · 31th ·
		Y_1 u_R M $(L, r \approx 0)$ R $(L, r \approx 0)$ $(R, r \approx 0)$ $(R, r \approx 0)$ $(R, r \approx 0)$ $(R, r \approx 0)$
		ربط جهاز راسم الاهتزاز: لاحظ الشكل +
0,25	0,25	$C = u_C$ ملاحظة: تقلب إشارة المدخل Y_2 ملاحظة.
		$u_{\scriptscriptstyle C}(t)$ المنحنى $u_{\scriptscriptstyle C}(a)$ يوافق تطور التوتر (2)
	0,25	$u_{_R}(0)\!=\!E$ محيث $t=0$ التعليل: في اللحظة المحلة والمحالة التعليل: التعليل المحلة المحل
0,50	0,23	$u_{C}\left(0 ight)=0$ یکون: $E=u_{R}+u_{C}$ یکون
	0.25	المنحنى (b) يوافق تطور التوتر $u_R(t)$ المنحنى التوتر التوتر (۵) التوتر (
	0,25	$u_R(0) = (u_R)_{\max} = E$ فإن $u_R(t) = R \cdot i(t)$ و حسب العلاقة $i(0) = I_0 : t = 0$ فإن $u_R(0) = u_R(0) = u_R$
		(تقبل كل الإجابات الصحيحة الأخرى).

امة	العلا	() \$ 1
مجموع	مجزأة	عناصر الإجابة (الموضوع الأول)
		t_2 و t_1 : (3)
		$u_{C}\left(t ight)=E\cdot\left(1-e^{-rac{t}{ au}} ight)$: (a) من معادلة البيان
		$t_1 = -\tau \cdot \ln 0, 6$. و منه $t_1 \longrightarrow u_C(t_1) = E \cdot (1 - e^{-\frac{t_1}{\tau}}) = 0,40E$
	0,25	$t_2 = -\tau \cdot \ln 0.1$. و منه $t_2 \longrightarrow u_C(t_1) = E \cdot (1 - e^{-\frac{t_2}{\tau}}) = 0.90E$
1	0.25	R التحقق من أن $\Delta t = t_2 - t_1 pprox 1,79 $ وحساب قيمة $ au$ واستنتاج قيمة $ au$
	0,25	$\Delta t = au(\ln 0,6 - \ln 0,1) = 1,79 au$ من عبارتي t_1 و t_2 السابقتين نجد
		$t_{2}=23ms$ من البيان $t_{1}=5ms$ و $t_{1}=5ms$
	0,25	و منه: $ au=10ms$ (تقبل الإجابة بتوظيف العبارة Δt فقط).
	0,25	$R=10{ imes}10^3\Omega=10k\Omega$ و منه: $R=rac{ au}{C}$ و منه: $R=10{ imes}10^3\Omega=10k\Omega$
	,	
		التجربة الثانية:
	0,25	1) نمط الاهتزازات في كل حالة:
		$*$ المنحنى (α) : اهتزازات حرة غير متخامدة (نظام دوري).
0,75	0,25	التعليل: سعة الاهتزاز ثابتة (لا يوجد ضياع في طاقة الجملة).
	0,25	$*$ المنحنى (β) : اهتزازات حرة متخامدة (نظام شبه دوري).
	0,23	التعليل: سعة الاهتزاز تتناقص خلال الزمن (يوجد ضياع في طاقة الجملة في مقاومة الدارة بمفعول جول).
		* المنحنى (1): نظام لا دوري حرج. التعليل: لا توجد اهتزازات . (2) البيان الموافق لكل مقاومة: اعتمادا على ما سبق يوافق:
		ر المنحنى $(lpha)$: المقاومة $R'=0$. المنحنى $(lpha)$: المقاومة $R'=0$
0,25	0,25	R'=100المقاومة $R'=100$ المقاومة $R'=100$
		R'=5000 المقاومة: $R'=5000$
		: $R'=0$ من أجل $u_{\scriptscriptstyle C}(t)$ من التوتر $u_{\scriptscriptstyle C}(t)$ من أجل (3
		$u_{_C}(t) + u_{_L}(t) = 0 \ : (LC)$ بتطبيق قانون تجميع التوترات في الدارة المهتزة
		$u_L(t) = L \cdot \frac{di(t)}{dt} = L \cdot \frac{d^2q(t)}{dt^2} = LC \cdot \frac{d^2u_C(t)}{dt^2}$ الكن:
		$\frac{d^2 u_C(t)}{dt^2} + \frac{1}{LC} \cdot u_C(t) = 0$ و منه: $u_C(t) + LC \cdot \frac{d^2 u_C(t)}{dt^2} = 0$
01,25	0,25	$\frac{-dt^2}{dt^2} + \frac{u_C(t) - 0}{LC} \frac{g_1 u_C(t) + LC}{dt^2} = 0$

إمة	العلا	(1 Št. c. in att) ži da St. v. atia
مجموع	مجزأة	عناصر الإجابة (الموضوع الأول)
		ب- عبارتي الثابتين A و B بدلالة مميزات الدارة (LC) :
		$rac{d^2u_C(t)}{dt^2}$ = $-A\cdot B^2\cdot \cos Bt$ ، و منه $u_C(t)=A\cdot \cos Bt$ على م. ت. السابقة
		$A \cdot \left(rac{1}{LC} - B^2 ight) \cos Bt = 0$ بالتعویض نجد:
	0,25	$B=rac{1}{\sqrt{LC}}$ و منه: $rac{1}{LC}-B^2=0$ و منه:
	0,25	و منه: $u_{C}(0)=A\cdot\cos(B imes0)=E$ في اللحظة $t=0$ و منه: $t=0$
		ج- قيمتي الدور الذاتي T_0 للاهتزازات و الذاتية L للوشيعة:
	0,25	$T_0 = 1,25 \times 10^{-3} s$ و منه: $2T_0 = 2,5ms$ نقرأ: α
	0.25	بالتعريف: $T_0 = 2\pi \cdot \sqrt{LC}$ و منه:
	0,25	$L = \frac{T_0^2}{4\pi^2 \cdot C} = 0,04H = 40mH$
	0,25	التمرين الثالث: (06 نقاط)
0,5	0,25	$\overrightarrow{F}_{T/S} = G \cdot \frac{m_S \cdot M_T}{(R_T + h)^2} \cdot \overrightarrow{n}$ العبارة الشعاعية لقوة الجذب: (3)
		$F_{T/S} = G \cdot \frac{1}{(R_T + h)^2} \cdot n$ العبارة الشعاعية لعوة الجلب: $R_T + h$: (S)
		2) أ- العبارة الحرفية للسرعة المدارية:
		بتطبيق القانون الثاني لنيوتن على الجملة (قمر اصطناعي) في المرجع المختار:
		$\sum \vec{F}_{ext} = m \cdot \vec{a}_n = \vec{F}_{T/S}$
	0,25	$a_n = \frac{G \cdot M_T}{(R_T + h)^2}$ وبالإسقاط على المحور الموجه نجد: (1) وبالإسقاط على المحور $m_S \cdot \vec{a}_n = G \cdot \frac{m_S \cdot M_T}{(R_T + h)^2} \cdot \vec{n}$
		$r=R_T+h$ من جهة أخرى نعلم أن $a_n=rac{v^2}{r}$ (2) من جهة أخرى نعلم
1,5	0,25	$v_S = \sqrt{\frac{G \cdot M_T}{(R_T + h)}}$ عن (1) و (2) نجد: $v_S^2 = \frac{G \cdot M_T}{(R_T + h)}$
	0,25	$v_S = \sqrt{\frac{6,67 \times 10^{-11} \times 5,972 \times 10^{24}}{(23616 + 6371) \times 10^3}} = 3644,65 m/s$: Equation $v_S = \sqrt{\frac{6,67 \times 10^{-11} \times 5,972 \times 10^{24}}{(23616 + 6371) \times 10^3}} = 3644,65 m/s$
	0,25	$T = rac{2\pi \cdot (R_T + h)}{v}$: عبارة الدور T و حساب قيمته
	0,25	$T = \frac{2\pi \times 29987000}{3644,65} \approx 51670s \approx 14,35h$:
	0,25	$T=14,35h \neq 24h$ ج- $T=14,35h \neq 24h$ القمر الاصطناعي المستعمل في التموقع ليس جيومستقرًا.
0,25	0,25	$^{238}_{94}Pu \longrightarrow ^{234}_{92}U + ^{4}_{2}He$ المعادلة المنمذجة لتحول البلوتونيوم: $(1-II)$

امة	العلا	/ + £ + +
مجموع	مجزأة	عناصر الإجابة (الموضوع الأول)
		N_d المعادلة التفاضلية بعدد الأنوية المتفككة N_d :
0,5	0,25	$N\left(t ight)=N_{0}-N_{d}\left(t ight)$ من قانون التناقص: $A\left(t ight)=-rac{dN\left(t ight)}{dt}=-\lambda\cdot N\left(t ight)$ من قانون التناقص
0,5		وبالتعويض في العبارة السابقة نجد:
	0,25	$\frac{d\left(N_{0}-N_{d}(t)\right)}{dt}+\lambda\cdot\left(N_{0}-N_{d}(t)\right)=0\rightarrow\frac{dN_{d}\left(t\right)}{dt}+\lambda\cdot N_{d}\left(t\right)=\lambda\cdot N_{0}$
		B ایجاد عبارة الثوابت α ، α و A :
0,75	0,25 0,25	وبالتعويض في المعادلة التفاضلية نجد: $rac{dN_d(t)}{dt} = -lpha\cdot A\cdot e^{-lpha t}$ و $N_d(t) = A\cdot e^{-lpha t} + B$
	0,25	$-\alpha \cdot A \cdot e^{-\alpha t} + \lambda \left(A \cdot e^{-\alpha t} + B \right) = \lambda \cdot N_0 \implies A \cdot e^{-\alpha t} \left(\lambda - \alpha \right) + \lambda \left(B - N_0 \right) = 0$
	,	ومنه: $lpha=\lambda$ (ثابت النشاط الإشعاعي) ؛ $B=-A=N_0$ (عدد الأنوية الابتدائية)
	0,25	$\frac{dN_d(t)}{dt} = a \cdot N_d + b \cdot \cdots \cdot \cdot \cdot \cdot (1)$ أ- المعادلة البيانية: (4
	0,25	$\frac{dN_d\left(t\right)}{dt} = -\lambda \cdot N_d + \lambda N_0 \cdot \cdot$
	0,25	$a = -\lambda = \tan \alpha = \frac{-6 \times 10^{10}}{2.4 \times 10^{20}} = -2.5 \times 10^{-10} \text{s}^{-1} \longrightarrow \lambda = 2.5 \times 10^{-10} \text{s}^{-1}$
1,5	0,25	$\langle b = \lambda \cdot N_0 = 6 \times 10^{10} \Rightarrow N_0 = \frac{b}{\lambda} = \frac{6 \times 10^{10}}{2.5 \times 10^{-10}} = 2.4 \times 10^{20} $ noyaux \rangle نجد:
		$:t_{1/2}$ ب– زمن نصف العمر $:t_{1/2}$
	0,25	التعريف: المدة الزمنية اللازمة لتفكك نصف عدد الأنوية الابتدائية المشعة.
	0,25	$t_{\frac{1}{2}} = \frac{Ln2}{\lambda} = \frac{0.69}{2,5 \times 10^{-10}} = 2,76 \times 10^{9} s = 87,52 ans : t_{\frac{1}{2}}$
		m أ- حساب الطاقة الكلية الناتجة عن التفكك الكلي للكتلة m :
		$E_0 = (m(Pu) - m(U) - m(He))C^2$ الطاقة المحررة من تفكك نواة واحدة:
	0,25	$E_0 = 4.87 MeV = 7.8 \times 10^{-13} J$
	0,25	$E_T = N_0 \cdot E_0 = \frac{m \cdot N_A}{M} \cdot E_0 = \frac{1,2 \times 10^3 \times 6,023 \times 10^{23}}{238} \times 7,8 \times 10^{-13} = 2,37 \times 10^{12} J$ الدينا:
01		ب- تحديد مدة اشتغال البطارية:
	0,25	$r=rac{P_e}{P_T}=0.6$ من عبارة الاستطاعة $P_T=rac{P_e}{r}=rac{888}{0.6}=1480$
		$egin{align} P_T = rac{E_T}{\Delta t} \Rightarrow \Delta t = rac{E_T}{P_T} \ \Delta t = rac{2,37 imes10^{12}}{1480} = 1,6 imes10^9 \ s = 50,7 \ ans \ \end{pmatrix}$ من عبارة المردود
	0,25	$\Delta t = \frac{2,37 \times 10}{1480} = 1,6 \times 10^9 s = 50,7 ans$

العلامة		/ 1 Ev			
مجموع	مجزأة	عناصر الإجابة (الموضوع الأول)			
	0.25	التمرين التجريبي: (06 نقاط)			
	0,25	$CH_3CO_2H(\ell) + H_2O(\ell) = CH_3CO_2^-(aq) + H_3O^+(aq)$: أ- معادلة التفاعل (1 (I			
0,75	0,25	ب التفاعل السابق تم بين: حمض ثنائية وأساس ثنائية أخرى.			
	0,25	c التركيز المولي c للمحلول (c):			
	0,23	$c = \frac{n_0}{V} = \frac{m}{M \cdot V} = 10^{-2} mo \ell \cdot L^{-1}$ بالتعریف:			
		2) أ- جدول تقدم التفاعل:			
		م. التفاعل $CH_3CO_2H(aq) + H_2O(\ell) = CH_3CO_2^-(aq) + H_3O^+(aq)$			
		كميات المادة $n(mo\ell)$ التقدم المادة			
	0,25	n_0 الابتدائية n_0 الابتدائية n_0 الابتدائية n_0			
		بوفرة x n_0-x x x الانتقالية n_0-x n_0-x النهائية n_0-x n_0-x			
		x_f النهائية x_f x_f x_f النهائية ا $\lambda_{cH_3CO_2^-}$ و $\lambda_{H_3O^+}$ و $\lambda_{cH_3CO_2^-}$ النهائية σ و $\lambda_{H_3O^+}$ و $\lambda_{cH_3CO_3^-}$			
1,25	0,25	$\sigma = \sum \lambda_{X_i} \cdot ig[X_i ig] = \lambda_{H_3O^+} \cdot ig[H_3O^+ ig]_f + \lambda_{CH_3CO_2^-} \cdot ig[CH_3CO_2^- ig]_f$ بالتعریف:			
	0,25	$\left[H_{3}O^{+}\right]_{f}=rac{\sigma}{\lambda_{H_{3}O^{+}}+\lambda_{CH_{3}CO_{2}^{-}}}$ و منه: $rac{x_{f}}{V}=\left[H_{3}O^{+}\right]_{f}=\left[CH_{3}CO_{2}^{-}\right]_{f}$ و منه: V			
	0,25	(S) للمحلول الحمضي (PH) :			
		$pH=-Log\left[H_3O^+ ight]=-Log\left(rac{\sigma}{\lambda_{H_3O^+}+\lambda_{CH_3CO_2^-}} ight)$: بالتعریف:			
	0,25	$pH = -Log\left(\frac{1,64 \times 10^{-2}}{(35,0+4,1) \times 10^{-3} \times 10^{3}}\right) = 3,4 \text{ a.s.}$			
		(S) أ- عبارة كسر التفاعل النهائي $Q_{r,f}$ للتفاعل الحادث في المحلول (S) :			
	0,25	$Q_{rf} = rac{\left[H_3O^+ ight]_f \cdot \left[CH_3CO_2^- ight]_f}{\left[CH_3CO_2H ight]_f}$:بالتعریف:			
		$Q_{r,f} = \frac{10^{-2pH}}{C - 10^{-pH}}$: إثبات أن:			
1,25	0,25	$C_{r,f} = C_{r,f} - C_{r,f}$ $C_{r,f} = C_{$			
	0,25	$Q_{r,f} = rac{\left \lfloor H_3 O^+ ight floor_f}{C - \left \lceil H_3 O^+ ight ceil_f} = rac{10^{-2pH}}{C - 10^{-pH}}$ و منه:			
	0,25	$K=Q_{r,f}=rac{10^{-2pH}}{C-10^{-pH}}$:ب- ثابت التوازن K للتفاعل: بالتعريف			
	0,25	. $(K < 10^4)$ و منه: $K = \frac{10^{-2 \times 3,4}}{10^{-2} - 10^{-3,4}} = 1,65 \times 10^{-5}$ و منه: $K = \frac{10^{-2 \times 3,4}}{10^{-2} - 10^{-3,4}} = 1,65 \times 10^{-5}$			

العلا	/ + 5		.		
مجزأة	عناصر الإجابة (الموضوع الاول)				
0,25					(II)
0,25				- "	
		ي ، بطيء.	كوس) ، لا حراري	: غير تام (محدود أو ع	خصائصه
0.25				•	2) معادلة التف
0,23	$CH_3CO_2H(\ell)+C_3I$				
		i			
0.25	= -				
- , -	$n(mo\ell)$ (ح. التوازن) ممية المادة	·	·		
0,25		$r = \frac{r}{r}$	$n_f (CH_3CO_2C)$	$(\frac{1}{3}H_7) \times 100 = 60\%$	ب- المردود:
0.25					
-					
,	إيكانواك 1 مينين الإينين.	CO ₂ CII (CII ₃	\int_2^{∞}	صف المساورة للمرجب ال	ج الصيعة ته
				لور الجملة:	4) أ- جهة تد
	$C = \begin{bmatrix} CH_3CO_2 \end{bmatrix}$	$_{2}CH\left(CH_{3}\right) _{2}$	$[H_2O]_i$	1.11 · . 0.1ma	ا د اد افتار
0,25	$\mathcal{Q}_{r,i} - \frac{1}{[CH_3CO_2]}$	H _i $\cdot [(CH_3)_2]$	$CHOH \Big]_i$	0,1m0 من الماء يصبح	بغد أصور ١٠٠٠
,		7,0		$Q_{\perp} = \frac{0,12 \times 0,2}{0}$	$\frac{2}{2} = 4.125$
				0,001.0,0	O .
0,25	و منه: حالة الجملة تتطور باتجاه التفاعل غير المباشر. $Q_{r,i} > K$				
		0.10	`		<i>'</i>
0,25	$K = 2,25 = \frac{0}{2}$	$\frac{0.12 - x_f) \times (0.08 + x_f)}{(0.08 + x_f)}$	$\frac{(0,22-x_f)}{(0,2)^2}$:2	المولي عند التوازن الجديا	ب- التركيب ا
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,	, of	,	
					إذن:
	النوع الكيميائي	CH ₃ CO ₂ H	C_3H_7OH	$CH_3CO_2C_3H_7$	H_2O
0,25			0,097	0,103	0,203
					<u></u>
	مجزاة 0,25 0,25 0,25 0,25 0,25 0,25 0,25	0,25 $0,25$	ابية (الموضوع الأول) 0,25 0,25 0,25 $CH_{3}CO_{2}H(\ell) + C_{3}H_{7}OH(\ell) = C$ 0,25 $CH_{3}CO_{2}H(\ell) + C_{3}H_{7}OH(\ell) = C$ 2, النوع الكيميائي	ر باتجاه التفاعل غير المياشر $(V_{2}, V_{1}, V_{2}, V_{2})$ (الموضوع الأولى) مجزأة (الموضوع الأولى) 0,25 (استرة $(V_{3}, V_{2}, V_{1}, V_{2})$ (النوع الكيميائي $(V_{3}, V_{2}, V_{1}, V_{2})$ (النوع الكيميائي $(V_{3}, V_{2}, V_{2}, V_{2}, V_{2})$ (النوع الكيميائي $(V_{3}, V_{2}, V_{2}, V_{2}, V_{2}, V_{2}, V_{2})$ (1,25 V_{1} (1,20 V_{2} (1,25 V_{1} (1,20 V_{2} (1,25 V_{1} (1,20 V_{2} (1,25 V_{1} (1,20 V_{2} (1,25 V_{2	(الموضوع الأول) المرتبع: تحول أسترة. (الموضوع الأول) (الموضوع الأول) ميلة أيت المرتبع: تحول أسترة. (الموضوع الأول) مع المرتبع: تحول أسترة. (المولى المرتبع: تحول أسترة. (المولى المنتبع المنتبع المنتبع المنتبع المنتبع المرتبع أي حالة التوازن الكيميائي (المولى المرتبع أي حالة التوازن الكيميائي (المولى المرتبع أي حالة التوازن الكيميائي (المرتبع أي حالة (المرت

اِمـة	العلا	/ *15t1 ~ * * *1\ ** 1 bb1
مجموع	مجزأة	عناصر الإجابة (الموضوع الثاني)
		الجزء الأول (14 نقطة):
	0.25	التمرين الأول (04 نقاط):
0,75	0,25	1-أ- α :نواة الهيليوم و -β: الكترون. ب- ايجاد العددين a و d :
	0,25	
	0,25	$\left\{egin{align*} \sum A_i &= \sum A_f \ \sum Z_i &= \sum Z_f \end{array} ight. \Rightarrow \left\{egin{align*} 238 &= 4a + 206 \ 92 &= 2a - b + 82 \end{array} ight. ight. \Rightarrow \left\{egin{align*} a &= 8 \ b &= 6 \end{array} ight.$ حسب قانوني صودي:
		2- أثبات العلاقة :.
	0,25	$N_{Pb}(t) = N_U'(t) = N_U(0) - N_U(0) \cdot e^{-\lambda t} = N_U(0)(1 - e^{-\lambda t})$
0,75	0,25	$\frac{m_{Pb}\left(t\right)\cdot N_{A}}{M_{Pb}} = \frac{m_{U}\left(0\right)\cdot N_{A}}{M_{U}}\left(1 - e^{-\lambda t}\right)$
0,73		
	0,25	$m_{Pb}(t) = \frac{M_{Pb}}{M_U} m_U(0) (1 - e^{-\lambda t}) = 0.866 \cdot m_U(0) (1 - e^{-\lambda t})$
		$m_f(Pb) = 9.7g$ في العينة : من البيان نجد $N_U(0) = 0.7g$
	0,25	$N_0(U) = N_f(Pb) = \frac{m_f(Pb) \cdot N_A}{M_{Pb}} = \frac{9.7 \times 6.02 \times 10^{23}}{206} = 2.83 \times 10^{22} Noy$ ومنه
	0,25	الم العمر: لدينا بينا بينا بينا بينا بينا بينا بينا ب
	0,25	$N_{U}\left(t_{\frac{1}{2}}\right) = \frac{N_{U}\left(0\right)}{2} \Rightarrow N_{Pb}\left(t_{\frac{1}{2}}\right) = \frac{N_{f}\left(Pb\right)}{2} \Rightarrow m_{Pb}\left(t_{\frac{1}{2}}\right) = \frac{m_{f}\left(Pb\right)}{2} = 4,85g$
	0,20	
	0,25	$t_{\frac{1}{2}}(U) = 4,5 \times 10^9 ans$: بالاسقاط نجد
2,25	0,23	ج- عمر العينة الصخرية : مدر العينة الصخرية :
	0,25	$m_{Pb}(t) = 0.103 m_U(0) = 0.103 \frac{N_U(0) \cdot M_U}{N_A} = \frac{0.31 \times 2.83 \times 10^{22} \times 238}{6.02 \times 10^{23}} = 3.5g$
	0,25 0,25	$t = 3 \times 10^9 ans$: بالاسقاط نجد
		$m_{p_b}(t)=m_f\left(_{p_b} ight) \left(1-e^{-\lambda t} ight) \Rightarrow t=rac{-t_{1/2}}{Ln2}\cdot Ln \left(1-rac{m_{p_b}(t)}{m_f\left(_{p_b} ight)} ight)$: تحقق حسابیا من النتیجة
	0,25	$m_{p_b}(t) - m_f(p_b)(1-e^{-t}) \rightarrow t - \frac{1}{Ln2} Ln\left(1 - \frac{1}{m_f(p_b)}\right)$
	0,25	$\Rightarrow t = \frac{-4.5 \times 10^9}{Ln^2} \cdot Ln \left(1 - \frac{3.5}{9.7} \right) = 3 \times 10^9 ans$
		$Ln2 \qquad (9,1)$
		4- تفسير تواجد اليورانيوم U^{238}_{92} في القشرة الأرضية الى يومنا هدا:
	0,25	وبالتالي انوية اليورانيوم 238 لم تتفكك كليا بعد $rac{t}{t_{_{1/2}}} = rac{3 imes 10^9}{4.5 imes 10^9} = 0,66 \Rightarrow t = 0,66 \cdot t_{_{1/2}} < 7,2t_{_{1/2}}$
0,25	0,23	$t_{1/2} = 4.5 imes 10^\circ$
		الهود د يران موجود في المسرد الدرسيد .

اِمـة	العلا	
مجموع	مجزأة	عناصر الإجابة (الموضوع الثاني)
0,5	0,25	التمرين الثاني (04 نقاط): u_c التمرين الثاني تحدث في المكثفة هي ظاهرة الشحن . u_c اتجاه التيار المار في الدارة ، واتجاه التوترين u_C و u_R المرا المار في الدارة ، واتجاه التوترين u_R المرا المار في المار في المرا المار في الدارة ، واتجاه التوترين والمرا المار في المرا المار في الدارة ، واتجاه التوترين والمرا المرا المرا المرا المار في الدارة ، واتجاه التوترين والمرا المرا الم
	0,25	$u_{C}\left(t ight)$ يجاد المعادلة التفاضلية التي يحققها $u_{C}\left(t ight)$ يجاد المعادلة التفاضلية التي يحققها $u_{C}+u_{R}=E$ $u_{C}+RC\frac{du_{C}}{dt}=E$ $u_{C}+RC\frac{du_{C}}{dt}=E$ $\frac{du_{C}}{dt}+\frac{1}{RC}u_{C}=\frac{E}{RC}$ \vdots ي بدلالة المقادير المميزة للدارة $u_{C}\left(t\right)=A+Be^{-\alphat}\Rightarrow \frac{du_{C}}{dt}=-B\alpha e^{-\alphat}$ $-B\alpha e^{-\alphat}+\frac{1}{RC}\left(A+Be^{-\alphat}\right)=\frac{E}{RC}$ \vdots بالتعويض في المعادلة التفاضلية نجد $\frac{du_{C}}{dt}=-\frac{E}{RC}$
1,25	0,25 0,25 0,25	$Be^{-\alpha t}\left(-\alpha + \frac{1}{RC}\right) + \left(\frac{A}{RC} - \frac{E}{RC}\right) = 0$ $\begin{cases} \left(-\alpha + \frac{1}{RC}\right) = 0 \Rightarrow \alpha = \frac{1}{RC} \\ \frac{A}{RC} - \frac{E}{RC} = 0 \Rightarrow A = E \end{cases}$ $u_{C}\left(0\right) = 0$ يكون $t = 0$ يكون $t = 0$ يكون $u_{C}\left(0\right) = A + B = 0$
2	0,25	$u_{C}\left(t\right)=E\left(1-e^{-\frac{1}{RC}t}\right) \qquad : عنو منه $: عنو منه α المقدار α في جود د α المقدار α في جود د $\alpha=\frac{1}{RC}$: لدينا $\alpha=\frac{1}{RC}=\frac{1}$

العلامة		عناصر الإجابة (الموضوع الثاني)		
مجموع	مجزأة	\ .		
	0,25	: $ au$ ایجاد ثابت الزمن $ au$: $ au$ الزمن $ au$: $ au$ $ au$ $=$ $ au$		
1.25	0,25	ن البيان (4) نجد: $ au=0.5s$ ب- إيجاد القوة المحركة الكهر بائية للمولد:		
1.23	0,25	$u_R(0) = u_{R \max} = E = 9V$ هند اللحظة $t=0$ يكون $t=0$		
	0,25	$E_{C ext{max}}=rac{1}{2}CE^2\Rightarrow C=rac{2E_{C ext{max}}}{E^2}=49,4\mu F$: إيجاد سعة المكثفة $=-1$	ج	
	0,25	$R=rac{ au}{C}=rac{0.5}{49.4 imes 10^{-6}}=10.1 imes 10^{3} \Omega$: R ايجاد مقاومة الناقل الأومي	7	
		$u_{_C}(t)$ المعادلة التفاضلية لتطور التوتر $u_{_C}(t)$	4	
		$u_{\scriptscriptstyle C}(t)$ طبيق قانون تجميع التوترات في الدارة المهتزة $u_{\scriptscriptstyle C}(t): 0: (LC)$		
		$u_L(t) = L \cdot \frac{di(t)}{dt} = L \cdot \frac{d^2q(t)}{dt^2} = LC \cdot \frac{d^2u_C(t)}{dt^2}$:		
	0,25	$\frac{d^2 u_C(t)}{dt^2} + \frac{1}{LC} \cdot u_C(t) = 0$ أو $u_C(t) + LC \cdot \frac{d^2 u_C(t)}{dt^2} = 0$	و	
) تبيان حل المعادلة التفاضلية: 	ب	
01		$rac{d^2 u_C(t)}{dt^2} = -A \cdot (rac{1}{\sqrt{LC}})^2 \cdot \cos rac{1}{\sqrt{LC}} t$. و منه: $u_C(t) = A \cdot \cos rac{1}{\sqrt{LC}} t$		
	0,25	منه نجد: $u_C(t) = -\frac{d^2u_C(t)}{dt^2} = -\frac{1}{LC} \cdot u_C(t)$ وهو المطلوب.	ود	
		$T_0=2\pi\sqrt{LC}$ ومنه $m_0^2=rac{1}{LC}$ حيث $T_0=rac{2\pi}{\omega_0}$ ومنه		
	0,25	$u_{C}(0)=A=E$ $t=0$ S بيارة $A=E$ عند $A=0$ S بيارة $A=0$		
		$T_0 = 4 imes 0.5 = 2s$ عيمة الدور الذاتي: $T_0^2 = 4 imes 0.5 = 2s$ عيمة الدور الذاتي: $T_0^2 = 4 imes 0.5 = 2s$ عيمة الدور الذاتي: $T_0^2 = 4 imes 0.5 = 2s$		
	0,25	$L = \frac{T_0^2}{4\pi^2 C} = \frac{(2\times 10^{-3})^2}{4\times \pi^2 \times 50\times 10^{-6}} = 2\times 10^{-3} H = 2mH$ بمة ذاتية الوشيعة: $\frac{1}{4\pi^2 C} = \frac{(2\times 10^{-3})^2}{4\times \pi^2 \times 50\times 10^{-6}} = 2\times 10^{-3} H = 2mH$		
		<u>تمرین الثالث(06 نقاط):</u> I - 1 جدول تقدم التفاعل :	7)	
		$CO(NH_2)_2(aq) = NH_4^+(aq) + CNO^-(aq)$		
0.75	0,5	كميات المادة (mol) التقدم		
0,75		0 $n_0 = CV$ 0 0		
		x $n_0 - x$ x x		
	0,25	x_{max}		
	0,23	$x_{max}=n_0=CV=2 imes 10^{-3}\ mol\ /\ L$ تحديد التقدم الأعظمي: x_{max} الدينا		

العلامة		مناه من الأحادية (المحددة الثانية)
مجموع	مجزأة	عناصر الإجابة (الموضوع الثاني)
		: σ عبارة تركيز $^+$ NH4 بدلاله -2
0,5	0,25	$\sigma = \lambda_{NH_4^+} \cdot \left[NH_4^+ \right] + \lambda_{CNO^-} \cdot \left[CNO^- \right] = \left[NH_4^+ \right] \left(\lambda_{NH_4^+} + \lambda_{CNO^-} \right)$
0,3	0,25	$\Rightarrow \left[NH_4^+\right] = \frac{\sigma}{\lambda_{NH_4^+} + \lambda_{CNO^-}}$
0,25	0,25	$\left[NH_4^+\right] = \frac{x}{V}$ العلاقة بين $\left[NH_4^+\right]$ و x و V: لدينا -3
	0,25	$\sigma = \left[NH_4^+\right] \left(\lambda_{NH_4^+} + \lambda_{CNO^-}\right) \Rightarrow \sigma = \frac{x}{V} \left(\lambda_{NH_4^+} + \lambda_{CNO^-}\right) : \mathbf{X}$ العلاقة σ و
0,75	0,25 0,25	$\sigma_{max} = \frac{x_{max}}{V} \left(\lambda_{NH_4^+} + \lambda_{CNO^-} \right) = \frac{2 \times 10^{-3} \times \left(9,69 + 11,02 \right) \times 10^{-3}}{0.1 \times 10^{-3}} = 0,41 S.m^{-1}$: σ_{max} قيمة عيمة $\sigma_{max} = \frac{x_{max}}{V} \left(\lambda_{NH_4^+} + \lambda_{CNO^-} \right) = \frac{2 \times 10^{-3} \times \left(9,69 + 11,02 \right) \times 10^{-3}}{0.1 \times 10^{-3}} = 0,41 S.m^{-1}$:
		5- إثبات العلاقة:
0,5	0,25	$\begin{cases} \sigma(t) = \frac{x(t)}{V} \left(\lambda_{NH_4^+} + \lambda_{CNO^-} \right) \Rightarrow \frac{\sigma(t)}{\sigma_{max}} = \frac{x(t)}{x_{max}} \Rightarrow x(t) = x_{max} \frac{\sigma(t)}{\sigma_{max}} \\ \sigma_{max} = \frac{x_{max}}{V} \left(\lambda_{NH_4^+} + \lambda_{CNO^-} \right) \Rightarrow \frac{\sigma(t)}{\sigma_{max}} = \frac{x(t)}{x_{max}} \Rightarrow x(t) = x_{max} \frac{\sigma(t)}{\sigma_{max}} \end{cases}$
	0,25	$\sigma_{max} = \frac{x_{max}}{V} \left(\lambda_{NH_4^+} + \lambda_{CNO^-} \right) \qquad \sigma_{max} \qquad x_{max} \qquad \sigma_{max}$
	0,25	6-أ- تعريف السرعة الحجمية للتفاعل: هي مشتق تقدم التفاعل في وحدة الحجوم.
		$V_{\text{vol}}(t) = \frac{1}{V} \cdot \frac{dx}{dt}$: أو
1,25	0,25	السرعة تتناقص مع مرور الزمن لان ميل المماس للمنحنى يتناقص مع مرور الزمن .
	0,25	ب-تعريف $t_{1/2}$: هو الزمن اللازم لبلوغ التفاعل نصف تقدمه الاعظمي.
	0,25 0,25	$x(t_{\frac{1}{2}}) = \frac{x_{max}}{2} = 10^{-3} \ mol \Rightarrow t_{\frac{1}{2}} = 70 \ min$ تحدیده بیانیا:
0,25	0,25	$\left[NH_4^+\right]_f = \frac{x_{max}}{V} = 2 \times 10^{-2} \ mol \ / \ L : \left[NH_4^+\right]_f$ حساب -7
		اا- 1-البرتوكول التجريبي:
		ا المزيج بواسطة ماصة عيارية حجما $V=10m$. الصودا $V=10m$
	0,75	- نضيف للبيشر قطرات من كاشف ملون مناسب.
0,75		 نقوم بإضافة الصودا من السحاحة الى غاية تغير اللون.
		- نسجل حجم التكافؤ.
		الرسم:
L	L	·

العلامة		(a) ± b) b)
مجموع	مجزأة	عناصر الإجابة (الموضوع الثاني)
0,25	0,25	$NH_4^+(aq) + OH^-(aq) = NH_3(aq) + H_2O(l)$: معادلة التفاعل
0,5	0,25 0,25	: عند التكافؤ يكون $C' = \left[NH_4^+\right]$ عند التكافؤ يكون $\left[NH_4^+\right] = -3$ حساب $C'V = C_bV_{be} \Rightarrow C' = \frac{C_bV_{be}}{V} = \frac{20 \times 10^{-2}}{10} = 2 \times 10^{-2} mol.L^{-1}$
0,25	0,25	4- المقارنة: القيمة نفسها.
1,25	0,25	x' <u>الجزء الثاني (06 نقاط):</u> <u>التمرين التجريبي (06 نقاط):</u> I \vec{P} \vec{R}
	0,5 0,5	$\sum \overrightarrow{F}_{ext} = m.\overrightarrow{a} \Rightarrow \overrightarrow{P} + \overrightarrow{R} + \overrightarrow{f} = m.\overrightarrow{a}$ $= -\frac{f}{m} + g \sin \alpha \dots (1)$ بالإسقاط على محور الحركة:
0,5	0,5	$a(m/s^2)$ $f(N)$
01	0,25 0,25 0,25 0,25	: $m g \alpha$ تحديد α و m : $m g \alpha$ البيان عبارة عن خط مستقيم مائل m لايمر من المبدأ معادلته من الشكل : $a = k.f + b(2)$ بمطابقة (1) و(2) نجد : $a = -2 \Rightarrow m = 0.5 Kg$: $a = -2 \Rightarrow m = 0.5 Kg$ بمطابقة $a = -2 \Rightarrow m = 0.5 Kg$: $a = -2 \Rightarrow m = 0.5 Kg$ بمطابقة $a = -2 \Rightarrow m = 0.5 Kg$: $a = -2 \Rightarrow m = 0.5 Kg$ بمطابقة $a = -2 \Rightarrow m = 0.5 Kg$: $a = -2 \Rightarrow m = 0.5 Kg$ بمطابقة $a = -2 \Rightarrow m = 0.5 Kg$: $a = -2 \Rightarrow m = 0.5 Kg$
0,5	0,5	$\underbrace{\frac{\overrightarrow{E}_{cB}}{W(P)}}_{W(F)}$: $\underbrace{\frac{\overrightarrow{E}_{cB}}{W(f)}}_{W(f)}$

العلامة		/ ***** - * *** T
مجموع	مجزأة	عناصر الإجابة (الموضوع الثاني)
		5- تطبيق مبدأ انحفاظ الطاقة على الجملة (جسم (s)) أ أ- عبارة قوة الاحتكاك:
1,25	0,25 0,25 0,25	$E_{CA} + w(\overrightarrow{P}) - \left W(\overrightarrow{f}) \right = E_{CB} \Rightarrow m.g.AB.\sin \alpha - f.AB = \frac{1}{2}mv_B^2$ $f = m(g\sin \alpha - \frac{v_B^2}{2AB}) = 1,25N$
	0,25 0,25	$v_B^2 - v_A^2 = 2aAB \Rightarrow a = \frac{v_B^2}{2.AB} = 2.4m/s^2$ الدينا $f = 1,25N$ بيان وبالإسفاط نجد :
0,5	0,25 0,25	الداعتمادا على البيانين: $v_x(t)$ البيانين: $v_x(t)$ عبارة عن خط مستقيم أفقي، الحركة مستقيمة منتظمة على المحور $v_y(t)$: البيان $v_y(t)$ عبارة عن خط مستقيم مائل لا يمر من المبدأ ، الحركة مستقيمة على المحور $v_y(t)$: البيان $v_y(t)$ عبارة عن خط مستقيم مائل الا يمر من المبدأ ، الحركة مستقيمة متغيرة بانتظام .
0,5	0,25 0,25	x_D والمدى h والمدى : $h = \frac{1}{2}.(1,1+6).0,5 = 1,78m: -2-1,9.0,5 = 0,95m: -3-1,9.0,5 = 0,95m: $
0,5	0,25 0,25	$v_D = \sqrt{v_{Dx}^2 + v_{Dy}^2} = \sqrt{1.9^2 + 6^2} = 6.29 m/s$: v_D