

발표자 : 김수영

02

EDA & 전처리

03

머신러닝 모델 학습 및 평가

04

모델 해석

05

결론 및 인사이트 도출

O H

문제 정의

프로젝트 목표:

승객 만족도를 예측하는 분류 모델을 설계하고 모델해석을 통해 항공사의 고객 만족도 개선을 위한 인사이트 도출

데이터 분석 및 머신러닝 모델해석을 통해 다음과 같은 문제들을 해결하고자 합니다.

- 1. 승객 만족도 개선에 가장 중요한 특성은 무엇인가요?
- 2. 비행 지연은 승객의 만족도에 어떤 영향을 주나요? 비행지연이 발생한 경우에는 어떻게 대처해야 할까요?
- 3. 나이, 비행 목적, 좌석 등급 등 승객의 조건에 따라 비행 만족도에 영향을 주는 특성들이 어떻게 달라질까요?

ABOUT DATA SET

미국의 한 항공사에서 실시한 설문조사 자료

10만 개 이상의 학습 데이터 2만 개 이상의 평가 데이터

주요 Column

(총 24개 Column)

Type of Travel: 승객의 여행 목적 (개인 여행/비즈니스 목적)

Class: 비행기 좌석 등급

Flight distance: 비행 거리(miles)

Inflight wifi service: 기내 와이파이 서비스 만족도

Seat comfort: 시트의 착석감

Baggage handling: 수하물 관리 만족도

Check-in service: 탑승수속 만족도

Departure Delay in Minutes: 출발 지연 시간(분) Arrival Delay in Minutes: 도착 지연 시간(분)

Satisfaction(target): 비행 만족도 [만족/ 불만족]

가설 설정

- 1. 좌석 클래스가 높을수록 만족도가 높을것이다.
- 2. 좌석의 편안함이 만족도에 가장 많은 영향을 줄 것이다.
- 3. 지연시간이 30분 이내라면 고객의 만족도에 큰 영향이 없을 것이다.
- 4. 비즈니스 목적의 승객이, 지연시간에 더 민감하게 반응할 것이다.
- 5. 연령별로 만족도에 영향을 주는 요인들이 다를것이다.

DATA PREPROCESSING

FEATURE ENGINEERING

'ID' 컬럼 삭제

'Overall_Rating' 특성 추가

0 또는 1~5의 값을 가지는 설문조사 특성들의 평균값

'Average_delay' 특성 추가

지연시간 컬럼 두개의 평균을 값으로 가지는 평균지연시간 특성을 추가 'Departure_Delay_in_Minutes',
'Arrival_Delay_in_Minutes' 삭제

높은 상관관계를 가지는 특성을 삭제하여 모델의 일반화 성능 향상, 모델 해석의 정확도 상승

타겟 분포 확인

비교적 균형적인 타겟 분포를 보임

가설1 좌석 클래스가 높을수록 만족도가 높을것이다.

가설 확인 높은 클래스의 좌석일 수록 승객 만족도가 높은것을 확인 할 수 있다.

머신러닝 모델

최소한의 성능을 나타내는 기준이 되는 모델. 타겟의 최빈클래스(0)를 기준모델로 선정했다.

LightGBM

Gradient Boosting 기법의 Tree 기반 학습 알고리즘 빠르다

Logistic Regression

선형회귀에 sigmoid함수를 씌워서 분류 문제에 사용

RandomForest

배깅(bagging) 방식 앙상블 트리기반 알고리즘

XGBoost

Extreme Gradient Boosting Tree 기반 학습 알고리즘

모델 성능 비교

	Base	Logistic	Randomforest	LGBM	XGBoost
accuracy	0.567	0.873	0.954	0.965	0.965
precision	0.000	0.873	0.960	0.976	0.976
recall	0.000	0.829	0.932	0.941	0.942
f1	0.000	0.850	0.946	0.958	0.959
auc	0.500	0.926	0.992	0.996	0.996

주요 평가지표로 f1 사용

성능은 XGB와 거의 비슷하지만 속도면에서 뛰어난 모습을 보이는 LGBMClassifier를 최종모델로 선정

모델 튜닝 및 최종 성능

bols = 0.97 subsample = 0.82 learning_rate = 0.08, max_depth = 12, min_child_weight = 4, n_estimators=350,

최종 모델의 교차 검증(cross validation) f1 -score는 0.96

Test set에 대한 평가지표를 확인하여 일반화 성능을 검증하자.

Evaluation Metrics of Test set

accuracy: 0.965 precision: 0.974 recall: 0.945

f1: 0.96

auc score: 0.995

보지 않은 데이터인 Test set에 대해서도 높은 평가지표를 나타내므로 일반화 성능이 높은 모델이라고 할수 있음

05

Weight Feature 0.1839 ± 0.0054 Type of Travel 0.1650 ± 0.0036 Inflight wifi service Customer_Type 0.0884 ± 0.0015 Online boarding 0.0315 ± 0.0020 0.0306 ± 0.0012 Baggage_handling 0.0261 ± 0.0017 Inflight_service 0.0238 ± 0.0019 Checkin service 0.0235 ± 0.0016 Seat comfort 0.0180 ± 0.0012 Cleanliness 0.0094 ± 0.0009 Class 0.0064 ± 0.0011 Gate location 0.0061 ± 0.0012 Age 0.0048 ± 0.0007 On-board service Inflight entertainment 0.0034 ± 0.0013 0.0026 ± 0.0011 Ease of Online booking 0.0022 ± 0.0009 Flight_Distance 0.0009 ± 0.0007 Average delay 0.0007 ± 0.0007 Overall Rating 0.0006 ± 0.0004 Leg_room_service 0.0005 ± 0.0005 Departure/Arrival time convenient 0.0001 ± 0.0004 Food and drink -0.0000 ± 0.0002 Gender

Permutation Importance

순열 중요도를 확인한 결과
Type_of_Travel
Inflight_wifi_service
Customer_Type, Online_boarding
Baggage_handling
소으로 중요도가 높은 것을 확인했다.

가설2 데이터 특성 중 Seat comfort가 만족도에 가장 많은 영향을 줄 것이다?

순열중요도를 통해 확인한 결과, 비행 만족도에 가장 많은 영향을 주는 요인은 Seat comfort가 아닌 Type_of_Travel임을 알 수 있었다.

가설 기각

Type_of_Travel 특성의 PDP 확인

PDP for feature "Type_of_Travel"

Number of unique grid points: 2

비즈니스 목적인 경우에 개인 여행 목적의 승객보다 만족도가 높은 경향을 보입니다.

순열중요도 높은 PDP 확인

PDP for feature "Inflight_wifi_service"

Number of unique grid points: 7

PDP for feature "Online_boarding"

Number of unique grid points: 6

PDP for feature "Customer_Type"

Number of unique grid points: 2

PDP for feature "Baggage_handling"

Number of unique grid points: 5

PDP interact for "Type of Travel" and "Average delay"

Number of unique grid points: (Type of Travel: 2, Average delay: 8)

가설4 비즈니스 목적의 승객의 경우, 지연시간에 더 민감하게 반응할 것이다.

눈에 띄는 큰 차이는 보이지 않음

지연시간이 발생하면 만족도가 떨어지는 것은 확실하다

하지만 고객의 여행 목적에 따라 그 정도가 크게 다르지 않았다.

가설 기각

PDP interact for "Age" and "Seat_comfort"

Number of unique grid points: (Age: 8, Seat_comfort: 5)

40대~60대의 경우 좌석의 편안함이 만족도에 영향을 주는 정도가 다른 연령대 보다 높게 나타났습니다.

가설5. 연령별로 만족도에 영향을 주는 요인들이 다를것이다.

가설과 동일하게 연령별로 비행 만족도에 영향을 주는 요인들이 다른것을 확인 할 수 있었습니다.

PDP interact for "Age" and "Average_delay"

Number of unique grid points: (Age: 8, Average_delay: 9)

70대이상의 고령층에게는 평균 지연시간이 10분 이상 생겼을 때, 만족도에 주는 부정적 영향이 다른 연령대보다 더 크게 나타나는것을 확인할 수 있습니다.

결론 및 인사이트 도출

서비스 개선

서비스 개선의 관점에서 기내 와이파이 환경과 온라인 탑승수속 서비스 수하물 관리 시스템을 중점으로 고객 서비스를 개선

비행 지연이 발생한다면?

70세 이상의 고령층에 집중해서 컴플레인 핸들링 1시간 이내의 항공기 지연에도 적당한 보상을 드리는 것이 장기적인 고객 만족도 관리에 도움

좌석 업그레이드

높은 클래스의 좌석일수록 비행 만족도가 높은 경향 보임 출항 전 고급석이 비어있다면 좌석 업그레이드를 제공하는 것이 좋다

시트 개량

중장년층 고객에게 좌석의 착석감에 대한 피드백을 주기적으로 받아서 항공기 시트의 편안함을 개량

