CLASSE : 4eme inf	SERIE EN MATHEMATIQUE	PROF : h-jamel

EXERCICEN°1: répondre par vrai ou faux

- 1) Si $\lim_{+\infty} f(x) = 2$ alors la droite d : y=2 est une asymptote à Cf.
- 2) Une primitive de f(x) = cos(2x) est sin(2x)
- 3) Soit $f(x) = \frac{x^2 + 1}{x 1}$ alors le point I (1,2) est un centre de symétrie à Cf.
- 4) Si a divise bc alors a divise b ou c
- 5) La fonction g(x) = $\sqrt{x^2 + 2x + 5}$ admet un axe de symétrie d équation : x = -1
- 6) La primitive de h(x) = $\frac{x}{(x-3)^4}$ sur]3, + ∞ [qui s annule en 4 est H(x) = $\frac{-1}{2(x-3)^2} + \frac{-1}{(x-3)^3} + \frac{3}{2}$
- 7) Sachant que $2^{340} \equiv 1 \, [11]$ et $2^{340} \equiv 1 \, [31]$ alors 341 divise $2^{340} 1$

EXERCICEN°2:

- 1) Déterminer le reste modulo 7 de 19⁵² + 23⁴¹
- 2) a) Déterminer le reste modulo 13 de 5⁴
 - b) en déduire les restes modulo 13 de 5^{4k} ; 5^{4k+1} ; 5^{4k+2} et 5^{4k+3} ($k \in IN$)
 - c) déterminer le reste modulo 13 des entiers 5²⁰²⁰²⁰²⁰²⁰⁴¹ et 5⁵⁵⁵⁵⁵⁵⁵⁵⁵⁵⁵⁵
 - d) déterminer l'ensemble des entiers n tel que : $5^{2n} + 5^n \equiv 0$ [13]

EXERCICEN°3: soit $f(x) = x + \sqrt{x^2 + 1}$

- 1) déterminera Df.
- 2) a) calculer $\lim_{+\infty} f(x)$
 - b) montrer que la droite D : y = 2x est asymptote a Cf au V ($+\infty$)
 - c) calculer $\lim_{\infty} f(x)$ puis interpréter résultat graphiquement
- 3) a) calculer f'(x) pour tout réel x
 - b) dresser le tableau de variation de f
- 4) a) construire Cf dans un repère
 - b) montrer que f réalise une bijection et construire Cf⁻¹ dans le même repère

BON TRAVAIL