TUGAS MATEMATKA DISKRIT

26 Oktober - 1 November 2020

C. Kuntoro Adi SJ

Pengantar:

- 1. Pelajari catatan awal di Bagian 1 (halaman 1-4)
- 2. Kerjakan 3 soal yang ada di Bagian 2 (halaman 4)
- 3. Jawaban soal dikumpulkan melalui LMS pada tanggal 1 November 2020

BAGIAN 1: CATATAN AWAL

- 1. Fungsi injektif-surjektif-bijektif
 - a. Injektif $f:X \rightarrow Y$
 - Setiap anggota Y (co-domain) paling banyak memiliki <u>satu kawan</u> di X (domain)
 - y∈Y boleh tidak memiliki kawan di X
 - b. Surjektif $f:X \rightarrow Y$
 - Setiap anggota Y (co-domain) memiliki kawan di X (domain)
 - y∈Y boleh memiliki kawan lebih dari satu di X
 - c. Beberapa contoh
 - 1. $f:Z\rightarrow Z$; Z bilangan bulat

Injektif:
$$\forall (n_1, n_2 \in Z) \ f(n_1) = f(n_2) \Rightarrow n_1 = n_2$$

 $f(n_1) = f(n_2)$
 $2n_1 + 1 = 2n_2 + 1$
 $2n_1 = 2n_2$
Maka $n_1 = n_2$
Maka f injektif

Surjektif: $(\forall y \in Z)(\exists n \in Z) f(n)=y$

Ambil sebarang bilangan bulat y, teliti apakah ada bilangan bulat n yang dikawankan dengan y (f(n)=y). jika n ada untuk sebarang y, maka f surjektif.

Tidak setiap bilangan bulat di kodomain Y memiliki kawan di domain X. So: tidak surjektif

2. Contoh 2

 $f:R\rightarrow R$; R bilangan riil

f(x) = 2x+1 injektif, surjektif?

Yes!

So bisa dilihat dari contoh a dan b, sifat injektif/surjektif tidak hanya ditentukan oleh cara perkawanan fungsi, tetapi juga ditentukan oleh karakter domain/kodomainnya.

- 3. Suatu fungsi didefinisikan pada himpunan bilangan bulat Z dengan rumus $g:Z\to Z$; $g(n)=n^2$ untuk $\forall n\in Z$. Pertanyaan: apakah fungsi tersebut injektif, surjektif?
- 4. Apakah fungsi g juga injektif atau surjektif jika g didefinisikan pada bilangan riil R?

2. Invers Fungsi

Misalkan f: $X \rightarrow Y$ adalah suatu fungsi. Jika fungsi tersebut bijektif (injektif dan surjektif) maka:

- o setiap elemen y∈Y memiliki tepat satu kawan di X
- o berarti bahwa relasi Y ke X merupakan fungsi juga
- o fungsi Y ke X disebut invers fungsi f (simbol f⁻¹)

Inverse fungsi f didefinisikan sebagai berikut:

$$f^{-1}(y)$$
=elemen $x \in X$ sedemikian sehingga $f(x)$ =y

maka
$$f^{-1}(y) = x \Leftrightarrow f(x) = y$$

Contoh: carilah invers fungsi f yang didefinisikan f: $Z \rightarrow Z$ dengan f(n)=n+2; $\forall n \in Z$

- a. Perlu dibuktikan dahulu f(n)=n+2 adalah bijektif
- b. Penghitungan invers:

Ambil sembarang $x \in Z$ dengan f(x)=yInvers fungsi f adalah f^{-1} dengan $f^{-1}(y)=x$

$$y = f(x) = x+2$$
$$x = y-2$$

maka
$$f^{-1}(y) = x = y-2$$

Jadi invers fungsi f adalah f⁻¹ dengan f⁻¹(n)= n-2

c. Komposisi Fungsi

Jika ada beberapa fungsi, fungsi-fungsi tersebut bisa dikomposisikan untuk menghasilkan fungsi baru. Misalkan f: $X \rightarrow Y$ dan g: $Y' \rightarrow Z$ adalah fungsi-fungsi dengan sifat kodomain $f(=Y) \subseteq \text{domain } g(=Y')$.

Didefinisikan komposisi fungsi g dan f (simbol gof) sebagai berikut:

$$(\forall x \in X)(gof)(X) = g(f(x))$$

Contoh 1

Misalkan f dan g adalah fungsi-fungsi pada himpunan bilangan bulat Z yang didefinisikan dengan rumus f(n)=n+1 dan $g(n)=n^2$; $\forall n \in \mathbb{Z}$. Hitunglah:

- a. (gof)(n)
- b. f(f(n))
- c. Apakah (gof) = (fog)?

Penyelesaian:

- a. f(n)=n+1 dan $g(n)=n^2$ $(gof)(n) = g(f(n))=g(n+1) = (n+1)^2$
- b. f(f(n)=f(n+1)=(n+1)+1=n+2
- c. $(f \circ g)(n) = f(g(n)) = f(n^2) = n^2 + 1$ Terlihat bahwa $(g \circ f)(n) \neq (f \circ g)(n)$ sehingga $(g \circ f) \neq (f \circ g)$

Contoh 2

Misalkan X={a, b, c, d, e}; Y={w, x, y, z} dan Z = {1, 2, 3}. Didefinisikan fungsi $f:X\rightarrow Y$ dan $g:Y\rightarrow Z$ dengan diagram seperti pada gambar di bawah. Buatkan diagram panah fungsi gof.

Gambar 1 Fungsi f dan g

Penyelesaian:

$$(gof)(a) = g(f(a)) = g(x) = 1$$

 $(gof)(b) = g(f(b)) = g(y) = 3$
 $(gof)(c) = g(f(c)) = g(w) = 2$
 $(gof)(d) = g(f(d)) = g(z) = 2$
 $(gof)(e) = g(f(e)) = g(y) = 3$

Oleh karena itu diagram panah fungsi gof terihat sebagaimana pada gambar 2 di bawah ini:

Gambar 2 gof

BAGIAN 2: TUGAS (Dikumpulkan 1 November 2020)

(Soal diambil dari salah satu soal kompetisi Bebras SMA):
 Binatang berang-berang (beaver) mengembangkan sebuah bahasa untuk melipat kertas: lipat. Ukuran kertas bisa dilihat di gambar di bawah ini. Panjang sisi b = 2 kali panjang sisi a. Contoh pelipatan bisa dilihat dari perintah berikut:
 e=lipat(a,b) artinya sisi a dilipat menempel sisi b.

Pertanyaan: bagaimana bentuk kertas (a,b,c,d) setelah mengalami proses pelipatan dengan perintah berurutan berikut:

Hasil akhir akan berupa lipatan A, B, C atau D?

2. Misalkan $X = \{1, 2, 3\}, Y = \{1, 2, 3, 4\}, dan Z = \{1,2\}.$

- a. Buatkan fungsi f:X→Y yang injektif tetapi tidak surjektif
- b. Buatkan fungsi $g:X\rightarrow Z$ yang surjektif tetapi tidak injektif
- c. Buatkan fungsi h:X→X yang tidak injektif dan tidak surjektif
- 3. Misalkan X ={a, b, c}, Y={x, y, z}, Z={u, v, w}. Didefinisikan $f:X \rightarrow Y$ dan $g:Y \rightarrow Z$ dengan diagram panah sebagai berikut:

- a. Carilah (gof)
- b. (gof)-1
- c. g⁻¹ dan f⁻¹
- d. $(f^{-1}og^{-1})$