

Homework 3: Introduction to 课程 □ Unit 2 Foundation of Inference □ Hypothesis Testing	□ 1. True or False
1. True or False (a)	
1/2 points (graded) Suppose that according to a fixed statistical model, a pair of hypothese each of the following groups of statements, select the one that is neces	· · · · · · · · · · · · · · · · · · ·
Which of the following is necessarily true?	
\circ Any test ψ_lpha that rejects H_0 for this observation will have a Type 1	error of at most 0.01 .
\circ Any test ψ_lpha that rejects H_0 for this observation will have a Type 2 error of at most 0.01 .	
$^{ extstyle }$ Any test ψ_lpha that does not reject H_0 for this observation will have	a Type 1 error of at most 0.01 . \square
\circ Any test ψ_lpha that does not reject H_0 for this observation will have a Type 2 error of at most 0.01 .	
None of the above.	
	There are a lot of tests. A more stringent test would be less sensitive and make you reject less H0.
Which of the following is necessarily true?	A less stringent test would be more sensitive(and more type1 error) and make you reject more H0. If there exist a test, does not reject H0, means this test is more stringent. And the test is less sensitimake less type 1 error.
lacksquare There is exactly a 0.99 chance for the null hypothesis to be true.	If there exist a test, does reject H0, and we don't know if this test is more or less stringent.
lacksquare There is exactly a 0.99 chance for the null hypothesis to be false.	
ullet There is exactly a 0.01 chance for the alternative hypothesis to be true.	
\circ There is exactly a 0.01 chance for the alternative hypothesis to be false.	
$lacktriangle$ None of the above \Box	
Solution:	
Based on the definition of the p -value of a test, $p=0.01$ is equivalent our particular sample. Now, turning to the definition of the level of a te that any test that does not reject the null hypothesis for this particular $\theta\in\Theta_0$, so the Type 1 error (rate) of the test is at most 0.01 .	st, this is equivalent to having less than or equal to 0.01 probability
On the other hand, any tests that reject $oldsymbol{H_0}$ for this sample will have	a type 1 error rate of at least ${f 0.01}$.
This does not provide any claims on the Type 2 error.	
提交 你已经尝试了2次(总共可以尝试2次)	

☐ Answers are displayed within the problem

1/1 point (graded)
Consider a statistical experiment $X_1,\ldots,X_n\stackrel{iid}{\sim}P_{ heta^*}$ with an associated statistical model $(E,\{P_{ heta}\}_{ heta\in\Theta})$. You perform a hypothesis test
on the true parameter $ heta^*$ via a statistical test ψ .
Which of the following is true about the \emph{p} -value associated to this statistical experiment? (Choose all that apply.)
The set of all possible values that the p -value can take varies depending on the distribution P_{θ} . For example, one distribution may have p -values in $(0,\infty)$, while another may be constrained to a discrete set like $\mathbb{Z}_{\geq 0}$.
Regardless of the distribution of X_1,\ldots,X_n , the p -value lies in the interval $[0,1]$. \square
The p -value will vary from one statistical experiment to another (<i>i.e.</i> , it varies depending on the particular sample), but it will always take values between 0 and 1 . \square
Solution:
We first examine the correct responses.
• The second and third choice are correct. Recall that the p -value is the smallest value α such that a test ψ of level α will reject the null hypothesis for the given sample X_1,\ldots,X_n . Recall that the level of a test is some α such that the type 1 error is uniformly bounded:
$lpha_{\psi}\left(heta ight)=P_{ heta}\left(\psi=1 ight)\leqlpha, ext{for all } heta\in\Theta_{0},$
and since it upper bounds a probability, the level $lpha$ is in the interval $(0,1)$. Thus, so is the p -value.
• The first choice is incorrect. The previous bullet explains how p -values are always on the scale $(0,1)$, regardless of the particular distribution P_{θ^*} .
Remark : Part of the usefulness of p -values is that they put all distributions 'on the same scale'. Regardless of whether P_{θ} is Gaussian, Exponential, Poisson, or uniform, the p -value which lives in $(0,1)$, so we just have to look at this number (and not particular properties of the distribution) to assess whether or not H_0 should be rejected.
提交 你已经尝试了1次(总共可以尝试2次)
□ Answers are displayed within the problem
讨论 显示讨论
主题: Unit 2 Foundation of Inference:Homework 3: Introduction to Hypothesis Testing / 1. True or False
—————————————————————————————————————

(b)