Distributed Autonomous Systems M

Dante Piotto

spring semester 2024

Contents

1	Intr	roduction and scenarios	5
	1.1	Distributed Autonomous System	5
	1.2	Scenarios and applications of distributed systems	5
	1.3	Measurement filtering in wireless sensor networks	
	1.4	Parameter Estimation in Wireless Sensor Networks	
		1.4.1 Opinion Dynamics in Social Influence Networks	
	1.5	Main questions in averaging algorithms	
	1.6	Distributed control in cooperative robotics	
		1.6.1 Main questions in cooperative robotics	
		1.6.2 Distributed optimal control	
2	D	eliminaries on Algebraic Graph Theory	9
4	Pre	eninnaries on Algebraic Graph Theory	ອ
			11
3		eraging Systems	11
	Ave	eraging Systems Distributed algorithm	11
	Ave 3.1	eraging Systems Distributed algorithm Discrete-time averaging systems	11 11 11
	Ave 3.1 3.2	eraging Systems Distributed algorithm Discrete-time averaging systems Stochastic matrices	11 11 11 12
	Ave 3.1 3.2 3.3	eraging Systems Distributed algorithm Discrete-time averaging systems	11 11 11 12 12
	Ave 3.1 3.2 3.3 3.4	Peraging Systems Distributed algorithm Discrete-time averaging systems Stochastic matrices Example: Metropolis-Hastings weights Time-varying digraphs	11 11 12 12 13
	Ave 3.1 3.2 3.3 3.4	Praging Systems Distributed algorithm Discrete-time averaging systems Stochastic matrices Example: Metropolis-Hastings weights Time-varying digraphs	11 11 12 12 13 13
	Ave 3.1 3.2 3.3 3.4	Praging Systems Distributed algorithm Discrete-time averaging systems Stochastic matrices Example: Metropolis-Hastings weights Time-varying digraphs 3.5.1 Averaging distributed algorithms over time-varying graphs	11 11 12 12 13 13
	Ave 3.1 3.2 3.3 3.4 3.5	Peraging Systems Distributed algorithm Discrete-time averaging systems Stochastic matrices Example: Metropolis-Hastings weights Time-varying digraphs 3.5.1 Averaging distributed algorithms over time-varying graphs 3.5.2 Discrete-time consensus over time-varying graphs	111 111 122 122 133 133 144

4 CONTENTS

Chapter 1

Introduction and scenarios

1.1 Distributed Autonomous System

Each agent $i \in \{1, ..., N\}$ has

- local physical and/or cyber state x_i
- computational and sensing capabilities
- communication capability: exchange messages with "neighbours"

1.2 Scenarios and applications of distributed systems

- Averaging: distributed estimation, opinion dynamics
- Distributed control in cooperative robotics
- Distributed optimization
 - distributed machine learning
 - distributed decision-making in cooperative robotics
 - distributed optimal control in energy systems and cooperative robotics

1.3 Measurement filtering in wireless sensor networks

Consider a network of N sensors with local sensing, computation and communication. Agent $i, i \in \{1, ..., N\}$, takes a local measurement from the environment (temperature, pressure, etc.). Let $x_{i0} \in \mathbb{R}$ be the scalar local measurement Agents are interested in agreeing on the average of the measurements,

$$x_{\text{avg}} = \frac{1}{N} \sum_{i=1}^{N} x_{i0}$$

to have a better estimate of the environment quantity

Consider the following "distributed algorithm" based on "local" linear averaging, for each $i \in \{1, ..., N\}$

$$x_i^0 = x_{i0}$$

$$x_i^{k+1} = \text{average}(x_i^k, \{x_j^k, j \text{ "neighbour" of } i\}), \qquad k \in \mathbb{N}$$

generalizing coefficients of the update:

$$x_i^0 = x_{i0}$$

$$x_i^{k+1} = \sum_{j=1}^N a_{ij} x_j^k \qquad k \in \mathbb{N}$$

Remark. $a_{ij} \geq 0$ and $\sum_{j=1}^{N} a_{ij} = 1$

Remark. $a_{ij} = 0$, for some $j \in \{1, ..., N\}$, i.e. $a_{ij} = 0$ if i does not have access to the estimate of j

1.4 Parameter Estimation in Wireless Sensor Networks

Consider a network of N sensors with local sensing, computation and communication aiming at estimating a common parameter $\theta^* \in \mathbb{R}$ Each sensor i measures

$$y_i = B_i \theta^* + v_i$$

with $y_i \in \mathbb{R}^{m_1}, B_i$ known matrix and v_i a random measurement noise. Assume v_1, \ldots, v_N independent and Gaussian, with zero mean and covariance $E[v_i v_i^T] = \Sigma_i$. Assume $\sum_{i=1}^N m_i \ge m$ and $\begin{bmatrix} B_1 \\ \vdots \\ B_N \end{bmatrix}$ full rank Compute a least-squares estimate

$$\hat{\theta} = \arg\min_{\theta} \sum_{i=1}^{N} (y_i - B_i \theta)^T \Sigma_i^{-1} (y_i - B_i \theta)$$

The optimal solution is

$$\hat{\theta} = \left(\sum_{i=1}^{N} B_i^T \Sigma_i^{-1} B_i\right)^{-1} \sum_{i=1}^{N} B_i^T \Sigma_i^{-1} y_i$$

$$= \left(\frac{1}{N} \sum_{i=1}^{N} B_i^T \Sigma_i^{-1} B_i\right)^{-1} \frac{1}{N} \sum_{i=1}^{N} B_i^T \Sigma_i^{-1} y_i$$

The optimal solution can be obtained by computing two averages $\frac{1}{N}\sum_{i=1}^{N}\beta_i$ and $\frac{1}{N}\sum_{i=1}^{N}\beta_i$

1.4.1 Opinion Dynamics in Social Influence Networks

Group of N individuals, with x_i^k being the opinion of individual i at time k. Opinions are updated according to

$$x_i^{k+1} = \sum_{j=1}^{N} a_{ij} x_j^k$$

1.5 Main questions in averaging algorithms

- Do node estimates converge? Do they converge to a common value ("reach consensus")?
- Do they reach consensus to the average ("average consensus")?
- How can we model communication in general networks?
- Can we answer the above questions for general networks and communication protocols?
- What assumptions do we need on the communication network?

1.6 Distributed control in cooperative robotics

Team of N (mobile) robots aiming to execute complex tasks

Basic tasks

- rendevous, containment
- formation, flocking
- coverage

Complex tasks

- pickup and delivery
- $\bullet\,$ surveillance and patrolling
- exploration
- satellite constellation

1.6.1 Main questions in cooperative robotics

- Do robot states asymptotically converge?
- Do the asympototic staes satisfy the global, desired task?
- How can we model communication in (general) robotic networks?
- What assumptions do we need on the communication network?
- Can we answer the above questions for general networks and communication protocols?

1.6.2 Distributed optimal control

$$\begin{aligned} \min_{\substack{x_1,\dots,x_N\\u_1,\dots,u_N\\i=1}} \sum_{i=1}^N (\sum_{\tau=0}^{T-1} \ell_i(z_{i,\tau},u_{i,\tau}) + m_i(z_{i,T})) \\ \text{subj to } \sum_{i=1}^N H_i z_{i,\tau} \leq h, & \tau \in [0,T] \\ z_{i,\tau+1} = A_i z_{i,\tau} + B_i u_{i,\tau} & \forall i,\tau \in [0,T] \\ z_{i,\tau} \in Z_i, \quad u_{i,\tau} \in U_i, & \forall i,\tau \in [0,T] \end{aligned}$$

Chapter 2

Preliminaries on Algebraic Graph Theory

Definition 2.0.1 (Digraph). A digraph is a pair G = (I, E) where I = 1, ..., N is a set of elements called nodes and $E \subset I \times I$ is a set of ordered node pairs called edges

Edge: the pair (i, j) denotes an edge from i to jSelf-loop: edge from a node to itself, i.e. (i, i)

boy toop. edge from a float to fiscal, flo. (t, t)

Definition 2.0.2 (Undirected (di)graph). if for any $(i, j) \in E$ then $(j, i) \in E$

Definition 2.0.3 (Subgraph). (I', E') subgraph of (I, E) if $I' \subset I$ and $E' \subset E$. Spanning subgraph if I' = I

Definition 2.0.4 (In-neighbours of i). $j \in I$ is an in-neighbour of $i \in I$ if $(j,i) \in E$

Definition 2.0.5 (Set of in-neighbours of i). $\mathcal{N}_i^{\text{IN}} = \{j \in \{1, \dots, N\} | (j, i) \in E\}$

Definition 2.0.6 (Out-neighbours of i). $j \in I$ is an out-neighbour of $i \in I$ if $(i, j) \in E$

Definition 2.0.7 (Set of out-neighbours of i). $\mathcal{N}_i^{\text{IN}} = \{j \in \{1, \dots, N\} | (i, j) \in E\}$

Definition 2.0.8 (In-degree \deg_i^{IN}). number of in-neighbours, i.e. carinality of $\mathcal{N}_i^{\text{IN}}(\deg_i^{\text{IN}} = |\mathcal{N}_i^{\text{IN}}|)$ Out-degree analogous

Definition 2.0.9 (Balanced digraph). A digraph G is balanced if $\deg_i^{\text{IN}} = \deg_i^{\text{OUT}}$ for all $i \in \{1, \dots, N\}$

Definition 2.0.10 (Complete graph). Unweighted graph such that $\forall i, j \exists (i, j), (j, i) \in E$

Chapter 3

Averaging Systems

3.1 Distributed algorithm

Given a network of N agents communicating according to a fixed digraph G, i.e. each agent i can receive messages only from in-neighbours in the graph, i.e. from $j \in \mathcal{N}_i^{\text{IN}}$. We start by considering a fixed graph, thus, each agent communicates with the same neighbours at each iteration $k \in \mathbb{N}$

$$x_i^{k+1} = \text{stf}_i(x_i^k, \{x_i^k\}_{i \in \mathcal{N}^{\text{IN}}}), \quad i \in \{1, \dots, N\}$$

where stf_i is a function depending only on state x_i and states $x_j, j \in \mathcal{N}_i^{\mathrm{IN}}$.

Alternative version with out-neighbours:

$$x_i^{k+1} = \operatorname{stf}_i(\{x_j\}_{j \in \mathcal{N}_i^{\text{OUT}}})$$

3.2 Discrete-time averaging systems

Let $G^{\text{comm}} = (I, E)$ be a fixed (communication) digraph (self loops included). A linear averaging distributed algorithm can be written as:

$$x_i^{k+1} = \sum_{J \in \mathcal{N}_i^{\text{IN}}} a_{ij} x_j^k \qquad i \in \{1 \dots, N\}$$

where $x_i^k \in \mathbb{R}$ is the state of agent i at k and $a_{ij} > 0$ are positive weights.

Remark. The weights a_{ij} are defined only for $(i,j) \in E$

Wach i uses only the states of neighbours $j \in \mathcal{N}_i^{\text{IN}}$, thus distributed algorithm.

For analysis purposes, let us define weights $a_{ij} = 0$ for $(j,i) \notin E$. Thus we can rewrite the distributed algorithm as

$$x_i^{k+1} = \sum_{i=1}^{N} a_{ij} x_j^k \qquad i \in \{1, \dots, N\}$$

This is a LTI autonomous system

$$\begin{bmatrix} x_1^{k+1} \\ \vdots \\ x_N^{k+1} \end{bmatrix} = \begin{bmatrix} a_{11} & \cdots & a_{1N} \\ \vdots & \ddots & \vdots \\ a_{N1} & \cdots & a_{NN} \end{bmatrix} \begin{bmatrix} x_1^k \\ \vdots \\ x_N^k \end{bmatrix}$$

Which can be compactly written as

$$x^{k+1}0Ax^k$$

Remark. The matrix A can be seen as the weighted adjacency matrix of the reverse digraph $G^{\text{comm,rev}}$ of the digraph G^{comm}

If instead of in-neighbours we use out-neighbours, we call the digraph a sensing digraph G^{sens} . In this case the notation becomes consistent with graph theory, so we get

$$x^{k+1} = Ax^k$$

where A can be seen as the weighted adjacency matrix of the sensing digraph G^{sens}

3.3 Stochastic matrices

The non-negative square matrix $A \in \mathbb{R}^{N \times N}$ is

- row stochastic if $A\mathbf{1} = \mathbf{1}$ (each row sums to 1)
- column stochastic if $A^{\top} \mathbf{1} = \mathbf{1}$ (each column sums to 1)
- doubly stochastic if both row and column stochastic.

Lemma. Let A be a row-stochastic matrix and G the associate digraph. If G is strongly connected and aperiodic, then

- 1. the eigenvalue $\lambda = 1$ is simple;
- 2. all the other eigenvalues μ satisfy $|\mu| < 1$

Remark. The condition "G contains a globally reachable node and the subgraph of globally reachable noes is aperiodic" is necessary and sufficient

Theorem 3.3.1 (Consensus). Consider a (discrete-time) averaging system with associated digraph G and wieghted adjacency matrix A. Assume G is strongly connected and aperiodic, and A is row stochastic. Then

1. there exists a left eigenvector $w \in \mathbb{R}^N$, w > 0 (i.e. with positive components $w_i > 0$ for all i = 1, ..., N) such that

$$\lim_{k \to \infty} x^k = \mathbf{1} \frac{w^\top x^0}{w^\top \mathbf{1}} = \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix} \frac{\sum_{i=1}^N w_i x_i^0}{\sum_{i=1}^N w_i}$$

i.e., consensus is reached to $\frac{\sum_{i=1}^{N}w_{i}x_{i}^{0}}{\sum_{i=1}^{N}w_{i}}$

2. if additionally A is doubly stochastic, then

$$\lim_{k \to \infty} x^k = \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix} \frac{\sum_{i=1}^N x_i^0}{N}$$

i.e., average consensus is reached

3.4 Example: Metropolis-Hastings weights

Given an undirected unweighted graph G with edge set E and degrees d_1, \ldots, d_n

$$a_{ij} = \begin{cases} \frac{1}{1 + \max\{d_i, d_j\}} & \text{if } (i, j) \in E \text{ and } i \neq j \\ 1 - \sum_{h \in \mathcal{N}_i \setminus \{i\}} a_{ih} & \text{if } i = j \\ 0 & \text{otherwise} \end{cases}$$

Result: the matrix A is symmetric and doubly-stochastic.

3.5 Time-varying digraphs

A time-varying digraph is a sequence of digraphs $\{G(k)\}_{k\geq 0}$.

Remark. The main definitions of in/out neighbours, in/out degree, adjacency matrix can be generalized by considering time-varying versions, i.e. $\mathcal{N}_i^{\mathrm{IN}}(k)$, $\mathcal{N}_i^{\mathrm{OUT}}(k)$, $\deg_i^{\mathrm{IN}}(k)$, $\deg_i^{\mathrm{OUT}}(k)$, A(k) associated to each graph G(k). Connectivity requires new definitions as assuming each G(k) to be connected is too conservative.

Definition 3.5.1 (Jointly strongly connected digraph). if $\bigcup_{\tau=k}^{+\infty} G(\tau)$ is strongly connected $\forall k \geq 0$

Definition 3.5.2 (Uniformly jointly strongly connected (or *B*-strongly connected) digraph). if there exists $B \in \mathbb{N}$ such that $\bigcup_{\tau=k}^{k+B} G(\tau)$ is strongly connected $\forall k \geq 0$

Remark. The graph can be disconnected at some time k.

3.5.1 Averaging distributed algorithms over time-varying graphs

Let $\{G(k)\}_{k\geq 0}$ be a time-varying digraph (with self loops for each G(k)). Consider the distributed algorithm

$$x_i^{k+1} = \sum_{j \in \mathcal{N}_i^{\text{IN}}(k)} a_{ij}(k) x_j^k \qquad \forall i \in \{1, \dots, N\}$$

or the out-neighbours version

$$x_i^{k+1} = \sum_{j \in \mathcal{N}_i^{\text{OUT}}(k)} a_{ij}(k) x_j^k \qquad \forall i \in \{1, \dots, N\}$$

where $x_i^k \in \mathbb{R}$ is the state of agent i at k and $a_{ij}(k) > 0$.

For analysis purposes, let us define weights $a_{ij}(k) = 0$ for $(i, j) \notin E(k)$. Thus we can rewrite the distributed algorithm as

$$x_i^{k+1} = \sum_{j=1}^{N} a_{ij}(k) x_j^k \qquad i \in \{1, \dots, N\}$$

This is a Linear Time-Varying system

$$x^{k+1} = A(k)x^k$$

with state $x := [x_1, \dots, x_N]^\top$ and state matrix

$$A(k) := \begin{bmatrix} a_1 1k & \cdots & a_{1N}(k) \\ \vdots & \ddots & \vdots \\ a_N 1k & \cdots & a_{NN}(k) \end{bmatrix}$$

being a weighted adjacency matrix associated to the digraph G(k).

3.5.2 Discrete-time consensus over time-varying graphs

Theorem 3.5.1. Let $\{A(k)\}_{k\geq 0}$ be a sequence of row-stochastic matrices with associated digraphs $\{G(k)\}_{k\geq 0}$. Assume

- 1. each digraph G(k) has a self-loop at each node;
- 2. each non-zero edge weight $a_{ij}(k)$, including the self-loop wights $a_{ii}(k)$, is larger than a constant $\epsilon > 0$;
- 3. there exists $B \in \mathbb{N}$ such that, for all times $k \geq 0$, the union digraph $G(k) \cup \cdots \cup G(k+B)$ is strongly connected.

Then

1. there exists a non-negative vector $w \in \mathbb{R}^N$ such that the solution to $x^{k+1} = A(k)x^k$ converges (exponentially) to $\mathbf{1} \frac{w^\top x^0}{w^\top 1}$, i.e.

$$\lim_{k \to \infty} x^k = \mathbf{1} \left(\frac{w^\top x^0}{w^\top \mathbf{1}} \right)$$

2. if additionally each matrix in the sequence is doubly-stochastic, then

$$\lim_{k \to \infty} x^k = \mathbf{1} \frac{1}{N} \sum_{i=1}^N x_i^0$$

i.e., average consensus is achieved

3.6 Laplacian dynamics

Consider a network of dynamical systems with dynamics

$$\dot{x}(t) = u_i(t) \qquad i \in \{1, \dots, N\}$$

with states $x_i \in \mathbb{R}$ and inputs $u_i \in \mathbb{R}$, communicating (or interacting) according to a digraph $G = (\{1, \dots, N\}, E)$. Consider a (distributed) "proportional" feedback control

$$u_i(t) = -\sum_{j \in \mathcal{N}_i^{\text{IN}}} a_{ij}(x_i(t) - x_j(t))$$

or the out-neighbour version

$$u_i(t) = -\sum_{j \in \mathcal{N}_i^{\text{OUT}}} a_{ij}(x_i(t) - x_j(t))$$

For analysis purposes, let us define weights $a_{ij}(k) = 0$ for $(i,j) \notin E(k)$. Thus we can rewrite the distributed control systems as

$$\dot{x}_i(t) = -\sum_{j=1}^{N} a_{ij}(x_i(t) - x_j(t)) \quad \forall i \in \{1, \dots, N\}$$

Defining $x := [x_1 \cdots x_N]^\top$, it can be shown that it can be rewritten as the following Linear Time Invariant continuous-time system

$$\dot{x}(t) = -Lx(t)$$

where L is the (weighted) Laplacian associated to the digraph G with (weighted) adjacency matrix A Let

$$\dot{x}_i(t) = -\sum_{j=1}^{N} a_{ij}(x_i(t) - x_j(t)) \quad \forall i \in \{1, \dots, N\}$$

rearranging terms

$$\dot{x}_i(t) = -\left(\sum_{j=1}^N a_{ij}\right) x_i(t) + \sum_{j=1}^N a_{ij} x_j(t) = -\deg_i^{\text{OUT}} x_i(t) + (Ax(t))_i$$

where $(Ax(t))_i$ is the i-th element of Ax(t). Writing the previous dynamics in a compact form

$$\dot{x}(t) = -(D^{OUT} - A)x(t)$$

where we recall that D^{OUT} is the (weighted) out-degree matrix. Recalling that $L = D^{\text{OUT}} - A$, it holds that

$$\dot{x}(t) = -Lx(t)$$

Remark. if the in-neighbours version is considered, then $\dot{x}(t) = -L^{\rm IN} x(t)$, where $L^{\rm IN} = D^{\rm IN} - A^T$ is the in-degree Laplacian (i.e. the Laplacian of the reverse graph of G)

3.6.1 Properties of the Laplacian matrix

It can be easily verified that

$$L\mathbf{1} = D^{\text{OUT}}\mathbf{1} - A\mathbf{1} = \begin{bmatrix} \deg_1^{\text{OUT}} \\ \vdots \\ \deg_i^{\text{OUT}} \end{bmatrix} - \begin{bmatrix} \deg_1^{\text{OUT}} \\ \vdots \\ \deg_i^{\text{OUT}} \end{bmatrix} = 0$$

i.e., $\lambda = 0$ is an eigenvalue of L and 1 is an associated eigenvector.

Lemma. Given a weighted digraph with Laplacian L, then all eigenvalues of L different from zero have strictly positive real part

Lemma. Given a weighted digraph with Laplacian L, the following statements are equivalent:

- 1. G is weight-balanced, i.e. $D^{IN} = D^{OUT}$
- 2. 1L = 0

Theorem 3.6.1. A weighted digraph with Laplacian L contains a globally reachable node if and only if $\lambda = 0$ is simple.

Corollary. If a weighted digraph is strongly connected, then $\lambda = 0$ is simple

3.6.2 Consensus for Laplacian dynamics

Theorem 3.6.2. let L be a (weighted) Laplacian matrix with associated strongly connected (weighted) digraph G. Consider the Laplacian dynamics $\dot{x}(t) = -Lx(t), \ t \ge 0$, then

1.

$$\lim_{t \to \infty} x(t) = \mathbf{1} \left(\frac{w^\top x(0)}{w^\top \mathbf{1}} \right)$$

with $w^{\top}L = 0$, i.e. w is a left eigenvector for the eigenvalue $\lambda = 0$;

2. if additionally G is weight-balanced then

$$\lim_{t\to\infty}x(t)=\mathbf{1}\frac{\sum_{i=1}^Nx_i(0)}{N}$$