

Unitat Didàctica 4: Disseny de Bases de Dades Relacionals

Part 3: Disseny lògic

(Doc. UD4.3)

UD 4-3 Disseny lògic

1 Introducció

2 Transformació de les classes

- Classes fortes
- Classes dèbils
- Classes especialitzades

3 Transformació de les associacions

- Binaries
- Reflexives
- Atributs en les associacions (d'enllaç)
- Associacions amb atributs
- Transformació de la associació quan s'associa amb altres classes
- Elecció de les directrius de les claus alienes

4 Exemple

5 Teoria de la Normalització

1 Disseny lògic

1 Disseny lògic

Disseny lògic: transformació de l'esquema conceptual, que està descrit amb un cert model de dades (UML en el nostre cas), en estructures descrites en termes del model de dades en el qual es base el sistema de gestió de bases de dades que s'utilitzarà (model relacional en el nostre cas).

1 Disseny lògic

- Transformacions: es basen en la definició de CP, CAj, VNN, Únic
- Aquelles propietats expressades en el diagrama que no es puguen representar en l'esquema relacional s'hauran d'incloure en una *llista de restriccions* d'integritat que s'hauran de controlar amb <u>restriccions</u> generales (assertions, triggers o programa).
- Quan tinguem més d'un esquema relacionals possible:

"Elegirem l'esquema amb menys restriccions d'integritat afegides. Davant la igualtat de restriccions, elegirem l'esquema amb menys relacions".

2 Transformació de classes (fortes)

 $CP: \{a_0, a_5\}$

 $CAj: \{a_0\} \rightarrow A(a_0)$

```
a<sub>0</sub>: {id}: t_a<sub>0</sub>
                                            a<sub>1</sub>: {único<sub>1</sub>}:{0 ..1}:t_a<sub>1</sub>
                                            a<sub>2</sub>: {1..1}:t_a<sub>2</sub>
                                            a<sub>3</sub>: {0..1}:t_a<sub>3</sub>
                                            a<sub>4</sub>: (1.)*}:t_a<sub>4</sub>
                                            a_5: {0.\*\}:t_a_5
                                            a<sub>6</sub>: {0..1}
                                                a<sub>61</sub>:t_ a<sub>61</sub>
                                                a<sub>62</sub>:t_a<sub>62</sub>
A(a_0:t_a_0,a_1:t_a_1,a_2:t_a_2,a_3:t_a_3, a_{61}:t_a_{61}, a_{62}:t_a_{62})
   CP: {a<sub>0</sub>}
   Único: {a<sub>1</sub>}
   VNN: \{a_2\}
A4(a_0:t_{a_0},a_4:t_{a_4})
                                                                      RI1: Tot valor que aparega en
   CP: \{a_0, a_4\}
                                                                      l'atribut a<sub>0</sub> d'A ha d'aparèixer en
   CAj: \{a_0\} \rightarrow A(a_0)
                                                                      l'atribut a₀ de A4.
A5(a_0:t_a_0,a_5:t_a_5)
```

Persona

```
DNI: {id}: char

NSS: {unico<sub>1</sub>}: {1..1}: char

nombre: {1..1}:

propio:{1..1}: char

apellidos:{1..1}: char

edad: {0..1}: int

teléfonos: {0..*}: char
```

```
Persona (DNI:char, NSS:char, nom_propio:char, apellidos:char, edad:int)
CP:{DNI}
Único:{NSS}
VNN:{NSS,nom_propio,apellidos}

Telefons_Persona (DNI:char, teléfono:char)
CP:{DNI,teléfono}
CAj:{DNI}->Persona(DNI)
```

2 Transformació de classes (dèbils)


```
A(a_0:t_a_0,...)

CP:{a_0}

B(b_0:t_b_0,a_0:t_a_0,...)

CP:{a_0,b_0}

CAj:{a_0}\rightarrowA(a_0)
```

1.1 Transformació de classes (dèbils)


```
A(a<sub>0</sub>:t_a<sub>0</sub>,...)

CP:{a<sub>0</sub>}

B(b<sub>0</sub>:t_b<sub>0</sub>,a<sub>0</sub>:t_a<sub>0</sub>,...)

CP:{a<sub>0</sub>}

CAj:{a<sub>0</sub>}\rightarrowA(a<sub>0</sub>)
```

1.1 Transformació de classes (dèbils)


```
A(a_0:t_a_0,...) \\ CP:\{a_0\}
C(c_0:t_c_0,...) \\ CP:\{c_0\}
B(a_0:t_a_0,c_0:t_c_0,b_0:t_b_0,...) \\ CP:\{a_0,c_0\} \\ CAj:\{a_0\} \rightarrow A(a_0) \\ CAj:\{c_0\} \rightarrow C(c_0)
```

1.1 Transformació de classes (dèbils)


```
A(a_0: t_a_0, ...)

CP: {a_0}

C(c_0: t_c_0, ...)

CP: {c_0}

B(a_0: t_a_0, c_0: t_c_0, b_0: t_b_0, ...)

CP: {a_0, c_0, b_0}

CAj: {a_0} \rightarrow A(a_0)

CAj: {c_0} \rightarrow C(c_0)
```

2 Transformació de classes (dèbils)

2 Transformació de classes (Gen/Esp)

2 Transformació de classes (Gen/Esp)

 RI_{Total} : Tot valor que aparega en l'atribut a_0 de A ha d'aparèixer en l'atribut a_0 de B, de C o de D.

 $RI_{Disjunta}$: No pot haver-hi un mateix valor en l'atribut a_0 de B i en el a_0 de C; ni en el a_0 de B i en el a_0 de D; ni en l'atribut a_0 de C i en el a_0 de D.

A(
$$a_0: t_a_0, ...$$
)

CP: { a_0 }

B($a_0: t_a_0, b_0: t_b_0, ...$)

CP: { a_0 }

CAj: { a_0 } \rightarrow A(a_0)

C(
$$a_0: t_a_0, c_0: t_c_0, ...$$
)

CP: $\{a_0\}$

CAj: $\{a_0\} \rightarrow A(a_0)$

D($a_0: t_a_0, d_0: t_d_0, ...$)

CP: $\{a_0\}$

CAj: $\{a_0\} \rightarrow A(a_0)$


```
A(a_0:t_a_0,a_1:t_a_1,...)
CP:\{a_0\}

B(b_0:t_b_0,b_1:t_b_1,...,a_0:t_a_0)
CP:\{b_0\}
Único:\{a_0\}
CAj:\{a_0\} \rightarrow A(a_0)
```



```
A(a<sub>0</sub>:t_a<sub>0</sub>,a<sub>1</sub>:t_a<sub>1</sub>,...,b<sub>0</sub>:t_b<sub>0</sub>)

CP:{a<sub>0</sub>}

Único:{b<sub>0</sub>}

CAj:{b<sub>0</sub>} \rightarrowB(b<sub>0</sub>)

B(b<sub>0</sub>:t_b<sub>0</sub>,b<sub>1</sub>:t_b<sub>1</sub>,...)

CP:{b<sub>0</sub>}
```



```
A(a_0:t_a_0,a_1:t_a_1,...)
   CP: \{a_0\}
B(b_0:t_b_0,b_1:t_b_1,...)
   CP: \{b_0\}
R(b_0:t_b_0,a_0:t_a_0)
   CP: \{b_0\}
   Único:{a₀}
   VNN: \{a_0\}
   CAj: \{a_0\} \rightarrow A(a_0)
   CAj: \{b_0\} \rightarrow B(b_0)
```



```
A(a_0:t_a_0,a_1:t_a_1,...)
    CP: \{a_0\}
B(b_0:t_b_0,b_1:t_b_1,...)
    CP: \{b_0\}
R(b_0:t_b_0,a_0:t_a_0)
    CP: \{a_0\}

    \text{Unico: } \{b_0\}

    VNN: \{b_0\}
    CAj: \{a_0\} \rightarrow A(a_0)
    CAj: \{b_0\} \rightarrow B(b_0)
```



```
A(a_0:t_a_0,a_1:t_a_1,...)

CP:\{a_0\}

B(b_0:t_b_0,b_1:t_b_1,...,a_0:t_a_0)

CP:\{b_0\}

Único:\{a_0\}

VNN:\{a_0\}

CAj:\{a_0\} \rightarrow A(a_0)
```



```
 \begin{array}{l} A-B\left(a_{0}\colon t\_a_{0}\,,a_{1}\colon t\_a_{1}\,,...\,,b_{0}\colon t\_b_{0}\,,b_{1}\colon t\_b_{1}\,,...\right) \\ & CP\colon \{a_{0}\} \\ & \text{Unico}\colon \{b_{0}\} \\ & VNN\colon \{b_{0}\} \end{array}
```



```
A (a_0: t_a_0, a_1: t_a_1, ..., b_0: t_b_0)

CP: \{a_0\}

Único: \{b_0\}

VNN: \{b_0\}

CAj: \{b_0\} \rightarrow (b_0)

B (b_0: t_b_0, b_1: t_b_1, ...)

CP: \{b_0\}

CAj: \{b_0\} \rightarrow A(b_0)
```



```
A(a_0: t_a_0, a_1: t_a_1,...)

CP: \{a_0\}

B(b_0: t_b_0, b_1: t_b_1,..., a_0: t_a_0)

CP: \{b_0\}

CAj: \{a_0\} \rightarrow A(a_0)
```



```
A (a_0: t_a_0, a_1: t_a_1, ...)

CP: \{a_0\}

B (b_0: t_b_0, b_1: t_b_1, ..., a_0: t_a_0)

CP: \{b_0\}

CAj: \{a_0\} \rightarrow A(a_0)

VNN: \{a_0\}
```



```
A(a_0:t_a_0, a_1:t_a_1,...)

CP:{a_0}

B(b_0:t_b_0,b_1:t_b_1,...,a_0:t_a_0)

CP:{b_0}

CAj:{a_0}\rightarrowA(a_0)

VNN:{a_0}
```

RI1: Tot valor que aparega en l'atribut a_0 de A ha d'aparèixer en l'atribut a_0 de B.


```
A(a_0: t_a_0, a_1: t_a_1,...)

CP: \{a_0\}

B(b_0: t_b_0, b_1: t_b_1,..., a_0: t_a_0)

CP: \{b_0\}

CAj: \{a_0\} \rightarrow A(a_0)
```

RI1: Tot valor que aparega en l'atribut a_0 de A ha d'apareixer en l'atribut a_0 de B.


```
A(a<sub>0</sub>:t_a<sub>0</sub>,a<sub>1</sub>:t_a<sub>1</sub>,...)

CP:{a<sub>0</sub>}

B(b<sub>0</sub>:t_b<sub>0</sub>,b<sub>1</sub>:t_b<sub>1</sub>,...)

CP:{b<sub>0</sub>}

R(a<sub>0</sub>:t_a<sub>0</sub>,b<sub>0</sub>:t_b<sub>0</sub>)

CP:{a<sub>0</sub>,b<sub>0</sub>}

CAj:{a<sub>0</sub>}\rightarrowA(a<sub>0</sub>)

CAj:{b<sub>0</sub>}\rightarrowB(b<sub>0</sub>)
```


A(a₀: t_a₀, a₁: t_a₁,..., a_n: t_a_n)
CP: {a₀}
B(b₀: t_b₀, b₁: t_b₁,..., b_m: t_b_m, a₀: t_a₀, r: t_r)
CP: {b₀}
CAj: {a₀}
$$\rightarrow$$
 A(a₀)

RI1: En toda tupla de B s'ha de complir que si l'atribut a₀ és no nul, l'atribut r també ha de ser no nul, i a més, no pot haver-hi cap tupla de B en la qual a₀ siga nul i r distint de nul.

Solució MILLOR que l'anterior, no inclou RI

A(a₀: t_a₀, a₁: t_a₁,..., a_n: t_a_n)
CP: {a₀}
B(b₀: t_b₀, b₁: t_b₁,..., b_m: t_b_m, a₀: t_a₀, r: t_r)
CP: {b₀}
CAj: {a₀}
$$\rightarrow$$
A(a₀)

RI1: No pot existir una tupla en B que tinga l'atribut a₀ nul i l'atribut r distint de nul

A(a₀: t_a₀, a₁: t_a₁,..., a_n: t_a_n)
CP: {a₀}
B(b₀: t_b₀, b₁: t_b₁,..., b_m: t_b_m)
CP: {b₀}
R(b₀: t_b₀, a₀: t_a₀, r: t_r)
CP: {b₀}
VNN: {a₀}
CAj: {a₀}
$$\rightarrow$$
 A(a₀)
CAj: {b₀} \rightarrow B(b₀)

Solució MILLOR que l'anterior, no inclou RI


```
 \begin{array}{l} A(a_0; t\_a_0, a_1; t\_a_1, ..., a_n; t\_a_n) \\ CP: \{a_0\} \\ B(b_0; t\_b_0, b_1; t\_b_1, ..., b_m; t\_b_m, a_0; t\_a_0, r; t\_r) \\ CP: \{b_0\} \\ VNN: \{a_0\} \\ VNN: \{r\} \\ CAj: \{a_0\} \rightarrow A \end{array}
```

3 Transf. Associació (quan s'associa amb altres classes)

3 Transf. Associació (quan s'associa amb altres classes)

RI1: No pot existir una tupla en C que es relacione amb una tupla de B que no estiga relacionada amb A.

3 Transf. Associació (quan s'associa amb altres classes)

Solució MILLOR que l'anterior, no inclou RI

3 Transf. Associació (quan s'associa amb altress classes)

RI1: No pot existir una tupla en R tal que el valor de (a_0,b_0) , no aparega en els atributs (a_0,b_0) de S.

3 Transf. Associació (quan s'associa amb altress classes)

3 Transf. d'associacions reflexives 0..1:0..1

3 Transf. d'associacions reflexives 0..1:1..1

3 Transf. d'associacions reflexives 0..*:0..1

3 Transf. d'associacions reflexives 0..*:1..1

3 Transf. d'associacions reflexives 0..*:0..*

- La definició d'una clau alinea implica l'especificació de les directrius d'esborrament i d'actualització perquè el SGBD puga, si es vol, restaurar la integritat referencial si aquesta es viola.
- Donat que les claus alienes permeten representar vincles entre els objectes del sistema, aquestes directrius permetran també la representació d'algunes restriccions d'integritat incloses en l'esquema conceptual o fins i tot algunes restriccions detectades en l'etapa d'anàlisi del sistema.
- De vegades hi ha varies opcions raonables.
- En el cas de la directriu de modificació, en general, s'opta per la directriu en cascada per la qual cosa no s'especificarà.

Esquema Conceptual	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			
Esquema Relacional	A(a ₀ : t_a ₀ , a ₁ : t_a ₁ ,) CP: {a ₀ } B(b ₀ : t_b ₀ , b ₁ : t_b ₁ ,, a ₀ : t_a ₀) CP: {b ₀ } CAj: {a ₀ } → A BORRADO {NULOS RESTRICTIVO CASCADA}			
Comentarios	En este caso las tres directrices son aceptables y su elección dependerá del comportamiento que se desee que tenga el sistema ante borrados de tuplas de la relación A.			

Esquema Conceptual	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		
Esquema Relacional	A(a0: t_a0, a1: t_a1,) CP: {a0} B(b0: t_b0, b1: t_b1,) CP: {b0} R(b0: t_b0, a0: t_a0, r: t_r) CP: {bo} VNN: {a0} CAj: {a0} → A BORRADO {RESTRICTIVO CASCADA} CAj: {b0} → B BORRADO {RESTRICTIVO CASCADA}		
Comentarios	En este caso dado que relación R representa una relación entre A y B el borrado a nulos no es posible.		

Esquema Conceptual	A a ₀ :{id}:t_a ₀ a ₁ :{01}:t_a ₁	11 R 0	B b ₀ :{id}:t_b ₀ b ₁ :{01}:t_b ₁
Esquema Relacional	A(a ₀ : t_a ₀ , a ₁ : t_a ₁ ,) CP: {a ₀ } B(b ₀ : t_b ₀ , b ₁ : t_b ₁ ,, a ₀ : t_a ₀) CP: {b ₀ } CAj: {a ₀ }→A BORRADO{RESTRICTIVO CASCADA} VNN: {a ₀ }		
Comentarios	En este caso el borrado a nulos no es posible por la restricción de existencia B en R que a nivel lógico implica que toda tupla de B debe tener un valor no nulo en el atributo a_0 .		

Esquema Conceptual	A a ₀ :{id}:t_a ₀ a ₁ :{01}:t_a ₁	01	R	1*	B b ₀ :{id}:t_b ₀ b ₁ :{01}:t_b ₁
Esquema Relacional	A(a ₀ : t_a ₀ , a ₁ : t_a ₁ ,) CP: {a ₀ } B(b ₀ : t_b ₀ , b ₁ : t_b ₁ ,, a ₀ : t_a ₀) CP: {b ₀ } CAj: {a ₀ }→A BORRADO{NULOS CASCADA}			A ap	valor de a_0 de la relación arece al menos una vez en ributo a_0 de la relación B
Comentarios	En este caso el borrado restrictivo no es posible por la restricción de existencia de la entidad A en R que a nivel lógico implica que toda tupla de A aparece referenciada en B .				

Esquema Conceptual	A a ₀ :{id}:t_a ₀ a ₁ :{01}:t_a ₁	11 R		B {id}:t_b ₀ {01}:t_b ₁
Esquema Relacional	CP: {b ₀ }			r de a_0 de la relación al menos una vez en o a_0 de la relación B .
Comentarios	En este caso el borrado restrictivo no es posible por la restricción de existencia de la entidad A en R que a nivel lógico implica que toda tupla de A debe aparecer referenciada en B . El borrado a nulos tampoco es posible por la restricción de existencia B en R que a nivel lógico implica que toda tupla de B debe tener un valor no nulo en el atributo a_0 .			

Esquema Conceptual	A a ₀ :{id}:t_a ₀ a ₁ :{01}:t_a ₁	B b ₀ :{id}:t_b ₀ b ₁ :{01}:t_b ₁
Esquema Relacional	A(ao: t_ao, a1: t_a1,) CP: {ao} B(bo: t_bo, b1: t_b1,) CP: {bo} R(ao: t_ao, bo: t_bo) CP: {ao,bo} CAj: {ao}→A BORRADO CASCADA CAj: {bo}→B BORRADO {CASCADA RESTRICTIVO}	RI: Todo valor de a_0 de la relación A aparece al menos una vez en el atributo a_0 de la relación R
Comentarios	En este caso el borrado restrictivo de A no e existencia que tiene en R que a nivel lógico impaparecer referenciada en R. El borrado a nulos clave ajena forma parte de la clave primaria de R	plica que toda tupla de A debe tampoco es posible porque la

Esquema Conceptual	A a ₀ : {id}: t_a ₀ a ₁ : {01}:t_a ₁ a ₂ : {0*}: t_a ₂
Esquema Relacional	A(a ₀ : t_a ₁ , a ₁ : t_a ₁) CP: {a ₀ } A2(a ₀ : t_a ₀ , a ₂ : t_a ₂) CP: {a ₀ } CAj: {a ₀ } → A BORRADO CASCADA
Comentarios	En este caso la única directriz razonable es el borrado en cascada ya que las tuplas de A2 almacenan el valor de una propiedad de A y por lo tanto deben desaparecer cuando desaparezca la tupla a la que hacen referencia.

Exemple (diferent al dels apunts)

4 Exemple (diferent al dels apunts)

- Té com a objectiu garantir que les relacions obtingudes a partir del procés de disseny lògic acomplisquen les propietats del model relacional.
- Nosaltres utilitzarem les formes normal com un mecanisme de validació/correcció de la transformació obtinguda en el disseny lògic.

Conceptes Previs:

- Dependència Funcional (completa o no)
- Diagrama de Dependèncias Funcionals
- Clau d'una relació
- Atribut Primer

- Conceptes Previs:
 - Dependencia Funcional
 - A= {A₁, ..., A_n} conjunt d'atributs de l'esquema R

Una <u>dependència funcional</u> entre X i Y (X⊆A, Y ⊆A, X≠Y)

 $X \to Y \Rightarrow$ per a qualsevol parell de tuples possibles de R, t_1 i t_2 , es compleix que si $t_1[X]$ és igual a $t_2[X]$, aleshores $t_1[Y]$ és igual a $t_2[Y]$.

Per a cada valor de X, Y sols pot tindre un valor possible

- Conceptes Previs:
 - Dependència Funcional completa

Una dependència funcional entre dos conjunts d'atributs $X \rightarrow Y$ és completa si l'eliminació de qualsevol atribut A_i de X fa que la dependència deixe d'existir, és a dir, si $\forall A_i / A_i \in X$ s'acompleix que Y no depèn funcionalment de $(X - \{A_i\})$.

- Conceptes Previs:
 - Diagrama de Dependències Funcionals

Representació gràfica de les dependències. Utilitzen caixes per emmarcar els atributs o conjunts d'atributs i fletxes per denotar la dependència funcional. Normalment sols es representen les dependències funcionals completes.

- Conceptes Previs:
 - Clau d'una relació

Siga R un esquema de relació amb el conjunt d'atributs $A = \{A_1, A_2, ..., A_n\}$, i siga C un subconjunt d'atributs d'eixe esquema $(C \subseteq A)$; es diu que C és una clau de R si C és la <u>clau primària de R o be si C</u> té una restricció d'unicitat.

Tots els atributs de la relació que no formen part de la clau depenen funcionalment de cada clau de la relació

- Conceptes Previs:
 - > Atribut Primer

Siga R un esquema de relació amb el conjunt d'atributs $A = \{A_1, A_2, ..., A_n\}$, direm que un atribut A <u>és primer si forma part d'alguna clau</u> <u>de R</u>

- ➤ Una Relació està en 1FN si els seus atributs solament tenen valors atòmics (simples e indivisibles).
 - Problemes quan s'utilitzen relacions que no estan en 1FN: Cal utilitzar operadors associats als tipus de dades complexos (llistes, conjunts, registres,...)

Conjunt Regist	tre
CP: {vcod}	

vcod	nombre	teléfonos	dir
V1	Pepe	(96 3233258, 964 523844, 979 568987, 987 456123)	Paz 7, Valencia
V2	Juan	(96 3852741, 910 147258)	Eolo 3, Castellón
V3	Eva	(987 456 312)	F. Lorca 2, Utiel

- > Pas a 1FN:
 - si R té un atribut que és un conjunt, l'eliminarem de la relació i definirem una nova relació amb eixe atyribut i buscarem la clau primària.

vcod	nombre	teléfonos	dir
V1	Pepe	(96 3233258, 964 523844, 979 568987, 987 456123)	Paz 7, Valencia
V2	Juan	(96 3852741, 910 147258)	Eolo 3, Castellón
V3	Eva	(987 456 312)	F. Lorca 2, Utiel

vcod	nombre	dir
V1	Pepe	Paz 7, Valencia
V2	Juan	Eolo 3, Castellón
V3	Eva	F. Lorca 2, Utiel

vcod	teléfonos
V1	96 3233258
V2	96 3852741
V3	987 456 312
V1	964 523844
V1	979 568987
V1	987 456123
V2	910 147258

```
Proveedor(vcod, nombre, teléfonos, dir)
   CP: {vcod}
       Proveedor(vcod, nombre, dir)
           CP: {vcod}
                                 Listín(vcod,teléfono)
                                 compastirtir
          CP: {teléfono}vcod}
          CAj: {vcod} → Proveedor
           VNN: {vcod}
```

- 1^a Forma Normal
- Paso a 1FN:
 - si R té un artibut que és un registre cal substituir-lo pels camps del registre.

vcod	nombre			dir		
V1	Pepe		Paz 7, Valencia			
V2	Ju	ıan	Е	olo 3, Cas	astellón	
V3	Eva		F	. Lorca 2, l	Utiel	
nomb	re	calle		número	ciud	ad
Pepe		Paz		7	Valencia	
Juan		Eolo		3	Castel	lón
B Eva		F. Lorca	а	2	Utiel	
	V1 V2 V3 nomb Pepe Juan	V1 Pe V2 Ju V3 Ev nombre Pepe Juan	V1 Pepe V2 Juan V3 Eva nombre calle Pepe Paz Juan Eolo	V1 Pepe P V2 Juan E V3 Eva F nombre calle Pepe Paz Juan Eolo	V1PepePaz 7, ValerV2JuanEolo 3, CasV3EvaF. Lorca 2, UnombrecallenúmeroPepePaz7JuanEolo3	V1PepePaz 7, ValenciaV2JuanEolo 3, CastellónV3EvaF. Lorca 2, UtielnombrecallenúmerociudPepePaz7ValenceJuanEolo3Castel

```
Proveedor(vcod, nombre, dir)

CP: {vcod}

Proveedor(vcod, nombre, calle, número, ciudad)

CP: {vcod}
```

- Una Relació està en 2FN si està en 1FN i tot atribut no-primer depèn funcionalment de forma completa de tota clau de R.
- > Problemes quan utilitzem relacions que no estan en 2FN:
 - Existeixen redundàncies, amb la qual cosa es complica la manipulació de la informació.
 - No és fàcil inserir ni esborrar

CP: {dni,cod}

dni	nom_alu	cod	nom_asig	nota
1	Pepe	DBD	Diseño de Bases de Datos	6
1	Pepe	BDA	Bases de Datos	7
2	Juana	DBD	Diseño de Bases de Datos	7
2	Juana	BDA	Bases de Datos	5

- > Pas a 2FN:
 - La clau consta de més d'un atribut i existex algun atribut noprimer que no depèn complement de la clau primària.
 - Cal dividir la relació original en relacions per eliminar eixes dependèncias no completes.

dni	nom_alu	cod	nom_asig	nota
1	Pepe	DBD	Diseño de Bases de Datos	6
1	Pepe	BDA	Bases de Datos	7
2	Juana	DBD	Diseño de Bases de Datos	7
2	Juana	BDA	Bases de Datos	5

dni	nombre	
1	Pepe	
2	Juana	

cod	nombre
DBD	Diseño de Bases de Datos
BDA	Bases de Datos

dni	cod	nota
1	DBD	6
1	BDA	7
2	DBD	7
2	BDA	5

```
Matriculado(dni, cod, nom_alu, nom_asig)
    CP: {dni,cod}
       Alumno(dni, nom alu)
             CP: {dni}
        Asignatura(cod, nom_asig)
              CP: {cod}
         Matriculado(dni, cod)
              CP: {dni,cod}
             CAj: \{dni\} \rightarrow Alumno
              CAj: {cod} → Asignatura
```

3^a Forma Normal

- ➤ Una Relació està en 3FN si està en 2FN i no existeixen dependències funcionals entre atributs no-primers.
- Problemes quan utilitzem relacions que no estan en 3FN
 - Existeixen redundàncies, amb la qual cosa es complica la manipulació de la informació.
 - No és fàcil inserir ni esborrar

3^a Forma Normal

dni	nom_alu	centro	nom_centro	director
1	Olga	EUI	Escuela Universitaria de Informática	Pepe
2	Juana	EUI	Escuela Universitaria de Informática	Pepe
3	Ana	FI	Facultad de Informática	Eva
4	Juan	FI	Facultad de Informática	Eva

CP: {dni}

3^a Forma Normal

- > Pas a 3FN:
 - Existeixen al menys un parell d'atributs no-primers que són dependents.
 - Traure l'atribut de la relació i crear-ne una nova que tinga com a clau primària l'atribut del qual depèn.

• 3ª Forma Normal

dni	nom_alu	centro	nom_centro	director
1	Olga	EUI	Escuela Universitaria de Informática	Pepe
2	Juana	EUI	Escuela Universitaria de Informática	Pepe
3	Ana	FI	Facultad de Informática	Eva
4	Juan	FI	Facultad de Informática	Eva

CP: {dni}

dni	nom_alu	centro
1	Olga	EUI
2	Juana	EUI
3	Ana	FI
4	Juan	FI

centro	nom_centro	director
EUI	Escuela Universitaria de Informática	Pepe
FI	Facultad de Informática	Eva

3^a Forma Normal

```
Alumno(dni, nom_alu, centro, nom_centro, director)
    CP: {dni}
      Alumno(dni, nom_alu, centro)
            CP: {dni}
            CAj: {centro} → Centro_universitario
       Centro_universitario(centro, nom_centro, director)
            CP: {centro}
```


Ex-1:

```
Tarjeta(n°cc: cadena(15),n°tar:cadena(15),tipo_t:cadena(10),comisión:real,capital_límite: real)

CP: {n°tar}

CAj: {n°cc} → Cuenta

VNN: { n°cc, tipo_t, comisión, capital_límite}
```



```
Tarjeta(n°cc: cadena(15), n°tar: cadena(15), tipo_t: cadena(10), capital_límite: real)

CP: {n°tar}

CAj: {n°cc} → Cuenta

VNN: {n°cc, tipo_t, capital_límite} Caj:{tipo_t}->Comisión

Comisión(tipo_t: cadena(10), comisión: real)

CP: {tipo_t}

VNN: {comisión}
```

FORMES NORMALS

- 1FN: si els seus atributs solament tenen valors atòmics (simples i indivisibles).
- 2FN: si està en 1FN i tot atribut no-primer depèn funcionalment de forma completa de tota clau de R.
- **3FN:** si està en 2FN i no existeixen dependències funcionals entre atributs no-primers.

Siga el següent esquema de relació:

R(A: sencer, B: text, C: sencer, D: text, E: text, F: text, G: text)

CP: {**A, B**}

VNN: {C, D, E, F, G}

A partir de les dependències que apareixen a continuació, transformeu la relació a un conjunt de relacions en tercera forma normal.

$$\{G\} \rightarrow \{E\}$$

$$\{G\} \rightarrow \{E\}$$
 $\{G\} \rightarrow \{F\}$

$$\{A\} \rightarrow \{D\}$$
 $\{A\} \rightarrow \{G\}$

$$\{A\} \rightarrow \{G\}$$

2. **(0'5 puntos)** Sea el siguiente esquema de relación:

CP:{F}

VNN:{G}

R (A: char, B: char, C: conjunto de H:int, D: char, E: char, F: char, G: char)

CP: {A, B} VNN: {C, D, E, F, G}

A partir de las dependencias que aparecen a continuación, transforme la relación a un conjunto de relaciones en tercera forma normal.

$$\{H\} \rightarrow \{A, B\}$$

$$\{B\} \rightarrow \{D\}$$

$$\{E\} \rightarrow \{F\}$$

$$\{F\} \rightarrow \{G\}$$

R(A: char, B: char, E: char)	R1 (A: char, B: char, H: int)
CP:{A,B}	CP:{H}
VNN:{E}	CA: $\{A,B\} \rightarrow R$
$CA:\{E\} \rightarrow R2$	VNN:{A,B}
$CA:\{B\} \rightarrow R3$	
Todo valor de (A,B) de R debe existir en R1	
R2(E: char, F:char)	R3(B: char, D:char)
CP:{E}	CP:{B}
$CA:\{F\} \rightarrow R4$	VNN:{D}
VNN:{F}	
R4(F: char, G: char)	
	1