

Mechanics of Materials I: Fundamentals of Stress & Strain and Axial Loading

Dr. Wayne Whiteman Senior Academic Professional and Director of the Office of Student Services Woodruff School of Mechanical Engineering

Module 20 Learning Outcome

 Find the Maximum and Minimum In-Plane Principal Stresses

Stresses on Inclined Planes for Plane Stress in general

Angle(s) where the max/min normal stresses,
$$\sigma_n$$
, occur

$$\tan 2\theta_P = \frac{2\tau_{xy}}{\sigma_x - \sigma_y}$$

Where θ_P is the angle(s) to what are defined as the "Principal Planes"

Consider $\frac{\sigma_{\scriptscriptstyle x}-\sigma_{\scriptscriptstyle y}}{2}$ and $\tau_{\scriptscriptstyle xy}$ the same sign

 $an 2 heta_P$ is positive. Therefore $2 heta_P$ is between 0° and 90° and between 180° and 270°

 $2\theta_{P} + 180^{\circ}$

 $2\theta_{P}$

There are 2 values of $\,\, heta_{P}$. One is between 0° and 45° and the other is 90° greater

The rotation is counterclockwise.

Stresses on Inclined Planes for Plane Stress in general

Angle(s) where the maximum normal stresses,
$$\sigma_n$$
, occur

$$\tan 2\theta_P = \frac{2\tau_{xy}}{\sigma_x - \sigma_y}$$

Where θ_P is the angle(s) to what are defined as the "Principal Planes"

Consider
$$\frac{\sigma_{\scriptscriptstyle x}-\sigma_{\scriptscriptstyle y}}{2}$$
 and $\tau_{\scriptscriptstyle xy}$ different signs

 $\tan 2\theta_P$ is negative. Therefore $2\theta_P$ is between 0° and -90° and between -180° and -270°

 $2\theta_{P}$

There are 2 values of $\,\, heta_{P}$. One is between 0° and -45° and the other is 90° less

The rotation is clockwise.

Thus

$$\tan 2\theta_{P} = \pm \frac{2\tau_{xy}}{\sigma_{x} - \sigma_{y}}$$

$$\frac{\left(\frac{\sigma_{x} - \sigma_{y}}{2}\right)^{2} + \tau_{x}^{2}}{2\theta_{P}}$$

$$\frac{\sigma_{x} - \sigma_{y}}{2}$$

$$\cos 2\theta_{P} = \pm \frac{\left(\frac{\sigma_{x} - \sigma_{y}}{2}\right)}{\sqrt{\left(\frac{\sigma_{x} - \sigma_{y}}{2}\right)^{2} + \tau_{xy}^{2}}}$$

$$\sin 2\theta_P = \pm \frac{\tau_{xy}}{\sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2}}$$

Find Maximum and Minimum In-Plane Principal Stresses

$$\sigma_{n} = \frac{\sigma_{x} + \sigma_{y}}{2} + \frac{\sigma_{x} - \sigma_{y}}{2} \cos 2\theta + \tau_{xy} \sin 2\theta$$
Sub

$$\sigma_{n} = \frac{\frac{x}{2} + \frac{y}{2} + \frac{x}{2} \cos 2\theta + \tau_{xy} \sin 2\theta}{2}$$
Sub
$$\sigma_{x} - \sigma_{y}$$

$$\sin 2\theta_{p} = \pm \frac{\tau_{xy}}{2}$$

Sub
$$\frac{\sigma_{x} - \sigma_{y}}{2} \qquad \sin 2\theta_{p} = \pm \frac{\tau_{xy}}{\sqrt{\left(\frac{\sigma_{x} - \sigma_{y}}{2}\right)^{2} + \tau_{xy}^{2}}}$$

$$\int \sigma_x - c$$

$$\sqrt{\left(\frac{\sigma_{x} - \sigma_{y}}{2}\right) + \tau_{xy}^{2}}$$

$$\frac{-\sigma_{y}}{2} \left(\pm \frac{\left(\frac{\sigma_{x} - \sigma_{y}}{2}\right)}{\left(\sigma_{x} - \sigma_{y}\right)^{2} + \sigma^{2}} \right) + \sigma^{2}$$

$$\sigma_{x} = \frac{\sigma_{x} + \sigma_{y}}{2} + \frac{\sigma_{x} - \sigma_{y}}{2} \cos 2\theta + \tau_{xy} \sin 2\theta$$

$$\cos 2\theta_{p} = \pm \frac{\left(\frac{\sigma_{x} - \sigma_{y}}{2}\right)}{\sqrt{\left(\frac{\sigma_{x} - \sigma_{y}}{2}\right)^{2} + \tau_{xy}^{2}}} \sin 2\theta_{p} = \pm \frac{\tau_{xy}}{\sqrt{\left(\frac{\sigma_{x} - \sigma_{y}}{2}\right)^{2} + \tau_{xy}^{2}}}$$

$$\left(\frac{\sigma_{x} - \sigma_{y}}{2}\right) = \frac{\sigma_{x} + \sigma_{y}}{2} + \frac{\sigma_{x} - \sigma_{y}}{2} \cos 2\theta + \tau_{xy} \sin 2\theta$$

$$\sigma_{1,2} = \frac{\sigma_x + \sigma_y}{2} + \frac{\sigma_x - \sigma_y}{2} \left(\pm \frac{\left(\frac{\sigma_x - \sigma_y}{2}\right)}{\sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2}} \right) + \tau_{xy} \left(\pm \frac{\tau_{xy}}{\sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2}} \right)$$

$$\frac{\left(\frac{\sigma_{x} - \sigma_{y}}{2}\right)}{\sqrt{\left(\frac{\sigma_{x} - \sigma_{y}}{2}\right)^{2} + \tau_{xy}^{2}}} \sin 2\theta_{p} = \pm \frac{\tau_{xy}}{\sqrt{\left(\frac{\sigma_{x} - \sigma_{y}}{2}\right)^{2} + \tau_{xy}^{2}}}$$

$$\left(\frac{\sigma_{x} - \sigma_{y}}{2}\right)$$

$$\sigma_{1,2} = \frac{\sigma_x + \sigma_y}{2} + \left[\left(\frac{\sigma_x - \sigma_y}{2} \right)^2 + \tau_{xy}^2 \right] \pm \frac{1}{\sqrt{\left(\frac{\sigma_x - \sigma_y}{2} \right)^2 + \tau_{xy}^2}}$$

$$\sigma_{1,2} = \frac{\sigma_x + \sigma_y}{2} \pm \sqrt{\left(\frac{\sigma_x - \sigma_y}{2} \right)^2 + \tau_{xy}^2}$$

$$\sigma_{1,2} = \frac{\sigma_x + \sigma_y}{2} \pm \sqrt{\left(\frac{\sigma_x - \sigma_y}{2} \right)^2 + \tau_{xy}^2}$$

Maximum and Minimum In-Plane Principal Stresses

Note that in this development we considered the maximum and minimum stresses as algebraic quantities. But the minimum algebraic stress may have a larger magnitude than that maximum stress.

For engineering problems, the term "maximum" will refer to the largest absolute value (largest magnitude)

$$\sigma_1 = +700 \; MPa$$

Maximum

Normal Stress

Maximum and Minimum In-Plane Principal Stresses

Stress Invariant

$$\sigma_1 + \sigma_2 = \sigma_x + \sigma_y$$

The sum of the normal stresses on any two perpendicular (or orthogonal) planes is constant (or invariant).