Revisão e Estequiometria

QUESTÃO 01

Vivemos cercados por inúmeras substâncias que desempenham em nossa vida os mais variados papéis. Todas elas, desde as mais simples, como $O_{2(g)}$ e $N_{2(g)}$, até as mais complexas, como os açúcares, proteínas e plásticos, mantêm suas estruturas químicas através de ligações químicas.

a) Represente as estruturas eletrônicas das substâncias $O_{2(g)}$ e $N_{2(g)}$. Que tipo de ligação química ocorre entre seus átomos? Justifique sua resposta.

b) **Identifique** o tipo de ligação, circulada na figura abaixo, que mantém as bases nitrogenadas ligadas no DNA.

QUESTÃO 02

Os "flashes" fotográficos, usados antes da invenção do "flash" eletrônico, envolviam uma reação química entre magnésio e gás oxigênio com produção de óxido de magnésio e uma intensa luz branca, usada para iluminar a cena fotografada.

a) Escreva a equação química balanceada dessa reação.

b) Das substâncias envolvidas nessa reação, **Qual** não conduz corrente elétrica no estado sólido, mas se torna boa condutora quando fundida? Justifique o fato de a substância ser condutora no estado líquido.

QUESTÃO 03

A figura abaixo representa, em nível microscópico, o arranjo cristalino do gelo. Este arranjo é bastante "aberto", pois as moléculas se acomodam em desenhos hexagonais, no interior dos quais restam grandes espaços vazios.

a) Indique quais ligações são rompidas nos processos I e II, indicados abaixo:

$$H_2O_{(s)} \xrightarrow{I} H_2O_{(l)} \xrightarrow{II} H_{2(g)} + \frac{1}{2} O_{2(g)}$$

b) Explique por que o gelo é menos denso que a água líquida.

QUESTÃO 04

Considere as seguintes substâncias:

I - NaOH II - NaCl III - HCl

 $IV - Ca(OH)_2$ $V - NaHCO_3$ $VI - Na_2O$

a) Escreva os nomes dessas substâncias.

b) A que grupo da química inorgânica (ácido, base, óxido ou sal), cada substância pertence?

c) Represente a reação química balanceada que ocorre ao misturarmos as substâncias III e IV.

QUESTÃO 05

Através da reação de combustão da amônia, podemos obter o óxido nítrico (NO). Essa reação pode ser representada pela seguinte equação química não-balanceada:

$$NH_{3(g)} + O_{2(g)} \rightarrow NO_{(g)} + H_2O_{(g)}$$

- a) Faça o balanceamento dessa equação química.
- b) Calcule a massa de amônia necessária para produzir 45,0 g de óxido nítrico.

QUESTÃO 06

O mercúrio, um metal líquido, é utilizado pelos garimpeiros para extrair ouro. Nesse caso, o mercúrio forma, com o ouro, uma mistura líquida homogênea, que pode ser separada, facilmente, da areia e da água.

- a) Qual é o nome do processo que pode separar os dois metais?
- b) **Determine** o número de átomos que existem em 500,0 g de mercúrio.

QUESTÃO 07

O ácido acetilsalicílico, mais conhecido com o nome de aspirina, é um dos medicamentos mais utilizados em todo o mundo. Sua fórmula molecular é $C_9H_8O_4$.

- a) Qual a porcentagem, em massa, de carbono na aspirina?
- b) Quantas moléculas de aspirina existem em um comprimido com 540 mg desse medicamento?

QUESTÃO 08

Em grandes cidades, devido a impurezas em combustíveis, ocorre a formação de dióxido de enxofre que reage com o oxigênio do ar, formando trióxido de enxofre, que, em contato com a água, é responsável pela formação de chuva ácida. A chuva ácida é capaz de transformar o mármore (carbonato de cálcio) de estátuas em gesso (sulfato de cálcio), danificando-as.

Escreva as equações químicas balanceadas das três reações descritas no texto.

QUESTÃO 09

Nas usinas siderúrgicas, a obtenção de ferro metálico a partir da hematita envolve a seguinte reação:

$$Fe_2O_{3(s)} + 3CO_{(g)} \rightarrow 2Fe_{(s)} + 3CO_{2(g)}$$

Percebe-se dessa reação que o CO₂ é liberado para a atmosfera, podendo ter um impacto ambiental grave relacionado com o efeito estufa.

- a) Qual é esse impacto ambiental?
- b) **Calcule** o volume de gás carbônico liberado na atmosfera durante a produção de 1,12 toneladas de ferro. Considere que, nas condições ambientais, um mol de qualquer gás ocupa 24,5 litros.

QUESTÃO 10

Ainda considerando o processo siderúrgico, **calcule** a massa de hematita, contendo 80% de Fe_2O_3 , necessária para produzir 1,12 toneladas de ferro.

TEXTO REFERENTE ÀS QUESTÕES 11 e 12

É comum os nossos olhos lacrimejarem ao cortamos uma cebola. Isso ocorre devido à evaporação de compostos derivados do enxofre presentes na cebola. Dentre eles, estão os óxidos de enxofre que, em contato com a umidade, dão origem a ácidos.

QUESTÃO 11

Quais são os nomes dos dois principais óxidos de enxofre e suas respectivas fórmulas moleculares?

QUESTÃO 12

Represente e nomeie as geometrias moleculares para os dois principais óxidos de enxofre da questão 11.

TEXTO REFERENTE ÀS QUESTÕES 13 e 14

O Fósforo pode ser produzido industrialmente por meio de um processo eletrotérmico no qual fosfato de cálcio é inicialmente misturado com areia e carvão; em seguida, essa mistura é aquecida em um forno elétrico onde se dá a reação representada a seguir:

$$Ca_3(PO_4)_2 + 3SiO_2 + 5C \rightarrow 3CaSiO_3 + 5CO + P_2$$

QUESTÃO 13

Determine a quantidade máxima, em mols, de fósforo formado quando são colocados para reagir 8 mols de $Ca_3(PO_4)_2$ com 18 mols de SiO_2 e 45 mols de carbono.

QUESTÃO 14

Determine o volume de monóxido de carbono que será obtido nas CNTP quando são colocados para reagir 30mols de carvão com o fosfato de cálcio e a areia (SiO₂).

Dado: O volume molar de um gás nas CNTP é 22,4 L.

TEXTO REFERENTE ÀS QUESTÕES 15 e 16

(UNB-ADAPTADA) Recentemente, a imprensa noticiou que maioria das marcas de sal comercializadas no Brasil contém uma quantidade de iodo aquém daquela recomendada pela legislação, que é de 40mg de iodo por quilograma de sal. Átomos desse elemento químico podem ser fornecidos à dieta alimentar, por exemplo, pela adição de iodato de potássio (KIO₃) ao sal de cozinha.

Um aluno decidiu realizar um projeto de química para sua escola, investigando o teor de iodato de potássio em uma marca de sal. Uma amostra de massa igual a 1,0g do sal de cozinha foi dissolvida em água e o iodo foi precipitado na forma de iodeto de prata (AgI), conforme representado pelas seguintes equações:

$$KIO_3(aq) + 3H_2SO_3(aq) \rightarrow KI(aq) + 3H_2SO_4(aq)$$

$$KI(aq) + AgNO_3(aq) \rightarrow AgI(s) + KNO_3(aq)$$

QUESTÃO 15

Sabendo que a massa de iodeto de prata obtida foi de $4,70 \times 10^{-5}$ g e considerando que $M(KIO_3) = 214g/mol$, M(AgI) = 235g/mol, **calcule**, em gramas, a massa de iodato de potássio presente em uma tonelada $(1 \times 10^6 \text{ g})$ de sal.

QUESTÃO 16

O ácido sulfúrico é um dos produtos da primeira reação descrita no texto.

Represente a fórmula eletrônica (Lewis) para esse ácido.

TEXTO REFERENTE ÀS QUESTÕES 17 e 18

A pirolusita é um minério do qual se obtém o metal manganês (Mn), muito utilizado em diversos tipos de aços resistentes. O principal componente da pirolusita é o dióxido de manganês (MnO₂).

QUESTÃO 17

Para se obter o manganês metálico com elevada pureza, utiliza-se a aluminotermia, processo no qual o óxido reage com o alumínio metálico, segundo a equação (não balanceada):

$$MnO_2(s) + Al(s) \rightarrow Al_2O_3(s) + Mn(s)$$

FAÇA O BALANCEAMENTO da equação utilizando os menores números inteiros.

QUESTÃO 18

Considerando que determinado lote de pirolusita apresenta teor de 80% de dióxido de manganês (MnO₂), **calcule** a massa mínima de pirolusita (em toneladas) necessária para se obter 1,10 t de manganês metálico.

(Deixe seus cálculos registrados, explicitando, assim, seu raciocínio.)

Estudo dos Gases

01 (FEI-SP) Certa massa de um gás perfeito sofre transformação de A para B e de B para C, conforme mostra o diagrama abaixo. Sabendo-se que a transformação de A para B ocorre à temperatura constante, pode-se afirmar que o volume do gás no estado B (VB), em L, e a temperatura no estado C valem, respectivamente:

- a) 6 e 2T/3
- b) 8 e 2T/3
- c) 6 e 3T/2
- d) 8 e 3T/2
- e) 8 e 3T

02 Uma certa massa de gás está à pressão de 1 atm, temperatura de 25°C, ocupando um volume de 1,00 m³. Isotermicamente ocorre uma redução na pressão de 30%. O novo volume que esta mesma massa gasosa ocupará será de aproximadamente:

- a) 700 L
- b) 970 L
- c) 1030 L
- d) 1300 L
- e) 1429 L

03 (Fuvest-SP) Uma certa massa de gás ideal, inicialmente à pressão P0, volume V0 e temperatura T0, é submetida à seguinte sequência de transformações:

- 1. É aquecida à pressão constante até que a temperatura atinja o valor 2 T0.
- 2. É resfriada a volume constante até que a temperatura atinja o valor inicial T0.
- 3. É comprimida à temperatura constante até que atinja a pressão inicial P0.
- a) Calcule os valores da pressão, temperatura e volume final de cada transformação.
- b) Represente as transformações num diagrama pressão x volume.

04 (UFV-MG) Em relação ao estudo dos gases ideais, identifique a representação falsa:

05 (EEM-SP) De um estado inicial de 4 litros, 2 atm e 300 K, um gás perfeito é submetido a uma expansão isobárica até duplicar seu volume. Em seguida, é comprimido isotermicamente até seu volume inicial e, finalmente, a volume constante, é resfriado até sua pressão inicial.

- 1 Represente as transformações num diagrama P em função de V.
- 2 Calcule a temperatura do gás durante a compressão isotérmica e a pressão por ele atingida ao seu final.

06 (UFRN-RN) Reduzindo-se à metade a pressão exercida sobre 150 cm³ de ar, o novo volume, a temperatura constante, será, em cm³:

- a) 75
- b) 150
- c) 300
- d) 750
- e) 1500

07 (UFC-CE) O gráfico abaixo ilustra o comportamento referente à variação da pressão, em função do volume, de um gás à temperatura constante:

Analise o gráfico e assinale a alternativa correta.

- a) Quando o gás é comprimido nestas condições, o produto da pressão pelo volume permanece constante.
- b) Ao comprimir o gás a um volume correspondente à metade do volume inicial, a pressão diminuirá por igual fator.
- c) Ao diminuir a pressão a um valor correspondente a 1/3 da pressão inicial, o volume diminuirá pelo mesmo fator.
- d) O volume da amostra do gás duplicará, quando a pressão final for o dobro da pressão inicial.
- e) Quando a pressão aumenta por um fator correspondente ao triplo da inicial, a razão P/V será sempre igual à temperatura.
- **08 (UNB-DF)** O estudo das propriedades macroscópicas dos gases permitiu o desenvolvimento da teoria cinético-molecular, a qual explica, a nível microscópico, o comportamento dos gases. A respeito dessa teoria, julgue os itens que se seguem.
- (1) O comportamento dos gases está relacionado ao movimento uniforme e ordenado de suas moléculas.
- (2) A temperatura de um gás é uma medida da energia cinética de suas moléculas.
- (3) Os gases ideais não existem, pois são apenas modelos teóricos em que o volume das moléculas e suas interações são considerados desprezíveis.
- (4) A pressão de um gás dentro de um recipiente está associada às colisões das moléculas do gás com as paredes do recipiente.
- 09 (PUC-SP) Uma amostra de gás oxigênio (O₂) a 25°C está em um recipiente fechado com um êmbolo móvel. Indique qual dos esquemas a seguir melhor representa um processo de expansão isotérmica:

- 10 **(FAAP-SP)** Um recipiente, munido de êmbolo móvel, contém 10 L de O₂ à pressão de 1 atm. Mantendo constante a temperatura, por movimentação do êmbolo, pressiona-se o gás até que seu volume seja reduzido para 2 L. Pede-se:
- a) A lei que rege a transformação indicada.
- b) A pressão de O₂ contido no recipiente, ao final.
- 11 (UCSal-BA) Duas amostras de igual massa de um mesmo gás foram submetidas ao seguinte teste, à temperatura constante:

Os dados obtidos para a pressão e volume das amostras comprovam a lei de:

- a) Boyle
- b) Gay-Lussac
- c) Avogadro
- d) Proust
- e) Lavoisier
- 12 Uma certa massa de gás oxigênio (O₂) ocupa um volume de 5 mL a uma pressão de 2 atm. Qual deverá ser o novo volume dessa massa gasosa se ela sofrer uma transformação isotérmica até que a pressão passe a valer 760 mmHg?
- a) 1 mL
- b) 2 mL
- c) 7,5 mL
- d) 10 mL
- e) 50 mL
- 13 (UEL-PR) Para dada amostra de substância gasosa, quando se dobra a pressão, à temperatura constante, o volume se reduz à metade. Essa afirmação explicita o que é conhecido como lei de:
- a) Avogadro.
- b) Dalton.
- c) Gay Lussac.
- d) Boyle.
- e) Lavoisier.

 14 (PUC-RS) De acordo com a Lei de Robert Boyle (1660), para proporcionar um aumento na pressão de uma determinada amostra gasosa numa transformação isotérmica, é necessário: a) aumentar o seu volume. b) diminuir a sua massa. c) aumentar a sua temperatura. d) diminuir o seu volume.
e) aumentar a sua massa.
15 (Ueba-BA) Um balão-propaganda cheio de gás hélio, ao nível do mar, ocupa um volume de 250 L. Seu volume, após lançamento, numa altitude de 3.000 m será (obs.: admitindo-se que a temperatura tenha se mantido constante): a) menor, pois a pressão externa aumenta com a altitude. b) major, pois a pressão externa diminui com a altitude.

- b) maior, pois a pressão externa diminui com a altitude.
- c) permanecerá constante, pois a pressão não varia com a altitude.
- d) permanecerá constante, pois a temperatura se manteve constante.
- e) maior, pois a pressão externa aumenta com a altitude.
- 16 Para que a pressão de uma certa amostra gasosa, mantida a temperatura constante, sofra uma redução de 1/3 o que deve acontecer com o volume?
- 17 Se, numa transformação isotérmica, uma massa tem seu volume aumentado de 2/3 o que acontecerá com a pressão?
- 18 (Fuvest-SP) Se um certo gás, contido em um compartimento e exercendo pressão de 10 cmHg, for comprimido de maneira a ocupar um vigésimo do seu volume inicial, qual será a pressão final? (temperatura constante)
- a) 20 cmHg
- b) 50 cmHg
- c) 100 cmHg
- d) 200 cmHg
- e) 400 cmHg
- 19 (Unirio-RJ) Você brincou de encher, com ar, um balão de gás, na beira da praia, até um volume de 1L e o fechou. Em seguida, subiu uma encosta próxima carregando o balão, até uma altitude de 900 m, onde a pressão atmosférica é 10% menor do que a pressão ao nível do mar.

Considerando que a temperatura na praia e na encosta seja a mesma, o volume de ar no balão, em L, após a subida, será de:

- a) 0,8
- b) 0,9
- c) 1,0
- d) 1.1
- e) 1,2
- 20 (ITA-SP) Um cilindro, provido de um pistão móvel, sem atrito, contém um gás ideal. Qual dos gráficos abaixo representa, qualitativamente, o comportamento incorreto do sistema quando a pressão

(P) e/ou o volume (V) são modificados, sendo mantida constante a temperatura (T)?

