JUSUK LEE

Name: JUSUK LEE

Phone: 010-6480-7335 Email: jlee24@snu.ac.kr

EDUCATION

B. S. Mechanical Engineering, Yonsei University (Mar 2017 - Feb 2024) Combined M. S. and Ph.D Mechanical and Aerospace Engineering, Seoul National University (Mar 2024 - present)

RESARCH INTERESTS

Reinforcement Learning, Robotics, Machine Learning

WORK EXPERIENCE

Undergraduate researcher experiences

A. Control-Versatile Design for Intelligence & Precision Lab

Dec 2021 - Feb 2022

- Organize motors in a program through FEMM and MATLAB.
- Design a structure that can reduce torque ripple.

B. Human-Robotics Lab

Jun 2022 - Sep 2022

 Design a structure that can offset the disadvantage of PAM(Pneumatic Artificial Muscles) which used in soft robotics.

Projects

- A. Multi-agent Reinforcement Learning
 - a. Multi-Agent Actor-Critic for Cooperative Environments
 - Implement MADDPG algorithms for making 4 drones cooperate to deliver the box to its destination while keeping it flat.

B. Autonomous Flight of Drone

- a. Local Planner
 - Implement 3DVFH* local planner by referring to PX4-Avoidance and change the code to operate in 'Offboard mode'.
- **b.** Drone navigation using reinforcement learning
 - Using a RL algorithm (DDPG), the drone can navigate successfully from an arbitrary starting position to a goal position in shortest possible way.
- c. Precision Landing
 - Design safe and accurate landing using aruco marker and PID control. Also, use a Kalman filter to reduce sensor noise.
- d. Precision Landing using reinforcement learning
 - Using RL algorithm (SAC), the drone can safely land on the desired location.
- e. Change controller of PX4-Autopilot to custom controller
 - Change the existing drone controller(PID control) to feedback linearization and adaptive sliding mode control.

C. 'Introduction to AI' Subject Project

- a. MNIST Dimension Reduction, Visualization and Classification
 - Conduct dimension reduction through two methods, PCA(Principal Component Analysis) and CNN.
- **b.** Transfer Learning
 - Transfer the knowledge in the ImageNet pretrained ResNet18 to low-resolution face recognition problems.
- c. Object Detector
 - Design a Fully convolutional ResNet18, which can accept arbitrary-size input image and returns a response map that highlights the labeled object of the input image (detected image).

D. Yonsei Rehabilitation Volunteer Project

- a. Wheelchair Rearview Camera and Detection System
 - Design a system using raspberry pi and ultrasonic sensor.
- **b.** Posture Correction System
 - Design a system that detects disabled children's wrong posture using computer vision.

Research Papers

- A. "Collision detection system based on computer vision for Human-Robot Interaction," Fall 2022, Undergraduate Thesis Supervised by Dr. Byeong Kwon Min
 - Propose a system that detects collision between an operator and a robot and returns a signal by using computer vision and a Depth camera that obtains RGB images and depth images.

EXTERNAL ACTIVITIES

School Swimming Club	Mar 2018 – Jan 2019
	Sep 2020 – Dec 2021
 I like swimming and was the club president. 	
School Robot Club 'Roboin'	Mar 2022 - Jan 2023
 Fabricate a 3-axis robotic arm and mimic the pick and place motion 	
Yonsei Rehabilitation volunteer	Jun 2022 – Jan 2023
 Design assistive devices for children with disabilities 	
Artificial Intelligence Club	Sep 2022 – Dec 2022
 Read and Review papers related to computer vision once a week 	
School Club 'Yonsei Drone'	Mar 2023 -
 Won second place in the 21st Korea Robot Aircraft Contest 	

RELATED COURSEWORK

Dynamics	2020 Fall Semester
Understanding and Using Artificial Intelligence	2021 Fall Semester
Mechatronics	2021 Fall Semester
Rand Python	2022 Winter Seasonal Semester
Basic Circuit Theory	2022 Spring Semester
Mechanical Vibration	2022 Spring Semester
Mechanical System Control	2022 Fall Semester
Introduction to AI	2022 Fall Semester
Automatic Control (Audit)	2023 Spring Semester
Neural Network (Audit)	2023 Spring Semester
Nonlinear Control	2023 Fall Semester

SKILLS

CAD: SolidWorks, Creo

Programming Language : Python, ROS, C **Programming :** MATLAB, ANSYS, Unity

SCHOLARSHIPS

Scholarship for academic excellence (2020-2, 2021-2)

Service Scholarship(2020-2)