Lecture 35 Heaps

FIT 1008 Introduction to Computer Science

Objectives

- Revise basics of Heaps and Heap-based Priority Queue
- To understand a simple implementation of Heaps
- To be able to reason about the complexity of its operations
- Heap Sort

Heap (Max-Heap)

For **every** node:

- The values of the children are **smaller or equal** to its value.
- All the levels are filled, except possibly the last one, which is filled left to right.

Note: The maximum is always at the root of the tree.

Building a binary heap

Force the tree to be balanced...

add:

- put at the bottom
- while order is broken, rise.

get_max:

- swap root with last item
- remove last item
- while order is broken, sink.

Heap

Lets insert the numbers [5, -7, 10, -3, 13, 20, 25,1] into an empty heap

Lets insert the numbers [5, -7, 10, -3, 13, 20, 25,1] into an Binary Search Tree

Heap vs Binary Search Tree

Very different!

Implementation of Heaps?

Implementation

Alternative 1: Binary tree of linked nodes

- → Downside: complex -- requires extra references to move up the tree (rise a node)
- → Extra memory.

Alternative 2: With an array

- → Possible due to completeness of the binary tree.
- →Advantages: Very compact

Parent Position	Child Left	Child Right
0	1	2
1	3	4
2	5	6
3	7	8
4	9	
k	?	?

1	2	3	4	5	6	7	8	9	10
							7		

shift

Parent Position	Child Right

	1	2	3	4	5	6	7	8	9	10
0	1	2	3	4	5	6	7	8	9	10

Root at position 1

Children of k:

2*k

2*k+1

(if they exist)

Parent of k: position k//2 (except for root)

Parent Position	Child Left	Child Right
1	2	3
2	4	5
3	6	7
4	8	9
5	10	
k	2*k	2*k+1

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10

A concrete implementation

Start with a None so that we have items from position 1 onwards

```
class Heap:

def __init__(self):
    self.count = 0
    self.array = [None]

def __len__(self):
    return self.count
```

Operations

add:

- put at the bottom
- while order is broken, rise.

get_max:

- swap root with last item
- remove last item
- while order is broken, sink.

```
def add(self, item):
    if self.count + 1 < len(self.array):
        self.array[self.count+1] = item
    else:
        self.array.append(item)
    self.count += 1
    self.rise(self.count)</pre>
```

rise the last element - swap with parent while order is broken

```
def swap(self, i, j):
    self.array[i], self.array[j] = self.array[j], self.array[i]
# Rise item at index k to its correct position
# Precondition: 1<= k <= self.count
def rise(self, k):
    while k > 1 and self.array[k] > self.array[k//2]:
        self.swap(k, k//2)
        k //= 2
def add(self, item):
    if self.count + 1 < len(self.array):</pre>
        self.array[self.count+1] = item
    else:
        self.array.append(item)
```

self.count += 1

self_rise(self_count)


```
def rise(self, k):
    while k > 1 and self.array[k] > self.array[k//2]:
        self.swap(k, k//2)
        k //= 2

def add(self, item):
    if self.count + 1 < len(self.array):
        self.array[self.count+1] = item
    else:
        self.array.append(item)
    self.count += 1
    self.rise(self.count)</pre>
```



```
self.swap(k, k//2)
k //= 2

def add(self, item):
    if self.count + 1 < len(self.array):
        self.array[self.count+1] = item
    else:
        self.array.append(item)
    self.count += 1
    self.rise(self.count)</pre>
```

while k > 1 and self.array[k] > self.array[k//2]:

def rise(self, k):

best case: O(1)

worst case: O(log N)

(may need to consider comparison operations)

Complexity of add

- Loop in rise can iterate at most depth times ≈ log(N)
 (after depth iterations, the new item is at the root)
- Best case: O(1)*O(Compare) when the item is smaller or equal than its parent.
- Worst case: O(log N)*O(Compare) when the item rises all the way to the top.

Why log(N)? Heaps are always balanced so there's only one path to explore

Operations

add:

- put at the bottom
- while order is broken, rise.

get_max:

- swap root with last item
- remove last item
- while order is broken, sink.

Summary

- A simple Heap implementation
 - rise
 - sink
 - largest_child
- Heap Sort