4M x 16bit CMOS Dynamic RAM with Extended Data Out

DESCRIPTION

This is a family of 4,194,304 x 16 bit Extended Data Out Mode CMOS DRAMs. Extended Data Out Mode offers high speed random access of memory cells within the same row. Refresh cycle(4K Ref. or 8K Ref.), access time (-45, -50 or -60), power consumption(Normal or Low power) are optional features of this family. All of this family have $\overline{\text{CAS}}$ -before- $\overline{\text{RAS}}$ refresh, $\overline{\text{RAS}}$ -only refresh and Hidden refresh capabilities. Furthermore, Self-refresh operation is available in L-version. This 4Mx16 EDO Mode DRAM family is fabricated using Samsung's advanced CMOS process to realize high band-width, low power consumption and high reliability.

FEATURES

Part Identification

- K4E661612B-TC/L(3.3V, 8K Ref., TSOP)
- K4E641612B-TC/L(3.3V, 4K Ref., TSOP)

• Active Power Dissipation

Unit : mW

Speed	8K	4K
-45	360	468
-50	324	432
-60	288	396

· Refresh Cycles

Part	Refresh	Refres	sh time	
NO.	cycle	Normal	L-ver	
K4E661612B*	8K	64ms	128ms	
K4E641612B	4K	041115	1201115	

- * Access mode & RAS only refresh mode
 - : 8K cycle/64ms(Normal), 8K cycle/128ms(L-ver.) CAS-before-RAS & Hidden refresh mode
 - : 4K cycle/64ms(Normal), 4K cycle/128ms(L-ver.)

• Performance Range

Speed	trac	tcac	trc	thpc
-45	50ns	12ns	74ns	17ns
-50	50ns	13ns	84ns	20ns
-60	60ns	15ns	104ns	25ns

- Extended Data Out Mode operation
- 2 CAS Byte/Word Read/Write operation
- CAS-before-RAS refresh capability
- RAS-only and Hidden refresh capability
- · Fast parallel test mode capability
- Self-refresh capability (L-ver only)
- LVTTL(3.3V) compatible inputs and outputs
- · Early Write or output enable controlled write
- · JEDEC Standard pinout
- Available in Plastic TSOP(II) packages
- +3.3V±0.3V power supply

FUNCTIONAL BLOCK DIAGRAM

Note) *1 : 4K Refresh

SAMSUNG ELECTRONICS CO., LTD. reserves the right to change products and specifications without notice.

PIN CONFIGURATION (Top Views)

- K4E661612B-T
- K4E641612B-T

(400mil TSOP(II))

*(N.C): N.C for 4K Refresh Product

Pin Name	Pin function
A0 - A12	Address Inputs(8K Product)
A0 - A11	Address Inputs(4K Product)
DQ0 - 15	Data In/Out
Vss	Ground
RAS	Row Address Strobe
UCAS	Upper Column Address Strobe
LCAS	Lower Column Address Strobe
W	Read/Write Input
ŌE	Data Output Enable
Vcc	Power(+3.3V)
N.C	No Connection

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Rating	Units
Voltage on any pin relative to Vss	VIN,VOUT	-0.5 to +6.5	V
Voltage on Vcc supply relative to Vss	Vcc	-0.5 to +4.6	V
Storage Temperature	Tstg	-55 to +150	°C
Power Dissipation	PD	1	W
Short Circuit Output Current	los Address	50	mA

^{*} Permanent device damage may occur if "ABSOLUTE MAXIMUM RATINGS" are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS (Voltage referenced to Vss, TA= 0 to 70°C)

Parameter	Symbol	Min	Тур	Max	Units
Supply Voltage	Vcc	3.0	3.3	3.6	V
Ground	Vss	0	0	0	V
Input High Voltage	VIH	2.0	-	+5.5 ^{*1}	V
Input Low Voltage	VIL	-0.3 ^{*2}	-	0.8	V

^{*1 : 6.5}V at pulse width≤15ns which is measured at Vcc

DC AND OPERATING CHARACTERISTICS (Recommended operating conditions unless otherwise noted.)

Parameter	Symbol	Min	Max	Units
Input Leakage Current (Any input 0≤VIN≤Vcc+0.3V, all other pins not under test=0 Volt)	lı(L)	-5	5	uA
Output Leakage Current (Data out is disabled, 0V≤Vouт≤Vcc)	lO(L)	-5	5	uA
Output High Voltage Level(IOH=-2mA)	Voн	2.4	-	V
Output Low Voltage Level(IOL=2mA)	Vol	-	0.4	V

^{*2 : -1.3} at pulse width≤15ns which is measured at Vss

DC AND OPERATING CHARACTERISTICS (Continued)

Symbol	Power	Speed —	М	Max	
Symbol	Power	Speed	K4E661612B	K4E641612B	Units
		-45	100	130	mA
ICC1	Don't care	-50	90	120	mA
		-60	80	110	mA
loos	Normal	Don't core	2	2	mA
ICC2	L	Don't care	2	2	mA
		-45	100	130	mA
ICC3	Don't care	-50	90	120	mA
		-60	80	110	mA
		-45	110	120	mA
ICC4	Don't care	-50	100	110	mA
		-60	90	100	mA
loos	Normal	Don't core	500	500	uA
ICC5	L	Don't care	300	300	uA
		-45	100	130	mA
ICC6	Don't care	-50	90	120	mA
		-60	80	110	mA
ICC7	L	Don't care	400	400	uA
Iccs	L	Don't care	400	400	uA

ICC1*: Operating Current (RAS and UCAS, LCAS, Address cycling @trc=min.)

ICC2: Standby Current (RAS=UCAS=LCAS=W=VIH)

Icc3*: RAS-only Refresh Current (UCAS=LCAS=VIH, RAS, Address cycling @trc=min.)

ICC4*: Extended Data Out Mode Current (RAS=VIL, UCAS or LCAS, Address cycling @thpc=min.)

ICC5 : Standby Current (RAS=UCAS=LCAS=W=Vcc-0.2V)

ICC6*: CAS-Before-RAS Refresh Current (RAS and UCAS or LCAS cycling @trc=min)

ICC7: Battery back-up current, Average power supply current, Battery back-up mode

Input high voltage(VIH)=Vcc-0.2V, Input low voltage(VIL)=0.2V, UCAS, LCAS=CAS-before-RAS cycling or 0.2V

W, OE=VIH, Address=Don't care, DQ=Open, TRC=31.25us

ICCS: Self Refresh Current

RAS=UCAS=LCAS=0.2V, W=OE=A0 ~ A12(A11)=Vcc-0.2V or 0.2V, DQ0 ~ DQ15=Vcc-0.2V, 0.2V or Open

*Note: Icc1, Icc3, Icc4 and Icc6 are dependent on output loading and cycle rates. Specified values are obtained with the output open.

Icc is specified as an average current. In Icc1, Icc3 and Icc6, address can be changed maximum once while RAS=VIL. In Icc4, address can be changed maximum once within one EDO mode cycle time, thec.

CAPACITANCE (TA=25°C, VCC=3.3V, f=1MHz)

Parameter	Symbol	Min	Max	Units
Input capacitance [A0 ~ A12]	CIN1	-	5	pF
Input capacitance [RAS, UCAS, LCAS, W, OE]	CIN2	-	7	pF
Output capacitance [DQ0 - DQ15]	CDQ	-	7	pF

AC CHARACTERISTICS (0°C≤TA≤70°C, See note 1,2)

Test condition : Vcc=3.3V \pm 0.3V, Vih/Vil=2.2/0.7V, Voh/Vol=2.0/0.8V

Parameter	Cumbal	-4	4 5		50	-6	60	l luito	Note
Parameter	Symbol	Min	Max	Min	Max	Min Max		Units	Note
Random read or write cycle time	trc	74		84		104		ns	
Read-modify-write cycle time	trwc	101		113		138		ns	
Access time from RAS	trac		45		50		60	ns	3,4,10
Access time from CAS	tcac		12		13		15	ns	3,4,5
Access time from column address	taa		23		25		30	ns	3,10
CAS to output in Low-Z	tcLz	3		3		3		ns	3
Output buffer turn-off delay from CAS	tcez	3	13	3	13	3	13	ns	6,21
OE to output in Low-Z	toLZ	3		3		3		ns	3
Transition time (rise and fall)	tτ	1	50	1	50	1	50	ns	2
RAS precharge time	trp	25		30		40		ns	
RAS pulse width	tras	45	10K	50	10K	60	10K	ns	
RAS hold time	trsh	8		8		10		ns	
CAS hold time	tсsн	35		38		40		ns	
CAS pulse width	tcas	7	5K	8	10K	10	10K	ns	
RAS to CAS delay time	trcd	11	33	11	37	14	45	ns	4
RAS to column address delay time	trad	9	22	9	25	12	30	ns	10
CAS to RAS precharge time	tcrp	5		5		5		ns	
Row address set-up time	tasr	0		0		0		ns	
Row address hold time	t RAH	7		7		10		ns	
Column address set-up time	tasc	0		0		0		ns	13
Column address hold time	t CAH	7		7		10		ns	13
Column address to RAS lead time	tral	23		25		30		ns	
Read command set-up time	trcs	0		0		0		ns	
Read command hold time referenced to $\overline{\text{CAS}}$	trch	0		0		0		ns	8
Read command hold time referenced to RAS	trrh	0		0		0		ns	8
Write command hold time	twch	7		7		10		ns	
Write command pulse width	twp	6		7		10		ns	
Write command to RAS lead time	trwL	8		8		10		ns	
Write command to CAS lead time	tcwL	7		7		10		ns	16
Data set-up time	tos	0		0		0		ns	9,19

AC CHARACTERISTICS (Continued)

Parameter	Symbol		45	-50		-60		Units	Note
Farameter	Oymboi	Min	Max	Min	Max	Min	Max	Units	Note
Data hold time	tон	7		7		10		ns	9,19
Refresh period (Normal)	tref		64		64		64	ms	
Refresh period (L-ver)	tref		128		128		128	ms	
Write command set-up time	twcs	0		0		0		ns	7
CAS to W delay time	tcwp	24		27		32		ns	7,15
RAS to W delay time	trwd	57		64		77		ns	7
Column address to $\overline{\mathbb{W}}$ delay time	tawd	35		39		47		ns	7
CAS set-up time (CAS -before-RAS refresh)	tcsr	5		5		5		ns	17
CAS hold time (CAS -before-RAS refresh)	tchr	10		10		10		ns	18
RAS to CAS precharge time	trpc	5		5		5		ns	
Access time from CAS precharge	t CPA		24		28		35	ns	3
Hyper Page cycle time	thpc	17		20		25		ns	20
Hyper Page read-modify-write cycle time	thprwc	47		47		56		ns	20
CAS precharge time (Hyper page cycle)	tcp	6.5		7		10		ns	14
RAS pulse width (Hyper page cycle)	trasp	45	200K	50	200K	60	200K	ns	
RAS hold time from CAS precharge	trhcp	24		30		35		ns	
OE access time	toea		12		13		15	ns	
OE to data delay	toed	8		10		13		ns	
$\overline{\sf CAS}$ precharge to $\overline{\sf W}$ delay time	tcpwd	36		41		52		ns	
Output buffer turn off delay time from $\overline{\text{OE}}$	toez	3	11	3	13	3	13	ns	6
OE command hold time	toeh	5		5		5		ns	
Write command set-up time (Test mode in)	twrs	10		10		10		ns	11
Write command hold time (Test mode in)	twтн	10		10		10		ns	11
\overline{W} to \overline{RAS} precharge time (\overline{C} -B- \overline{R} refresh)	twrp	10		10		10		ns	
\overline{W} to \overline{RAS} hold time (\overline{C} -B- \overline{R} refresh)	twrh	10		10		10		ns	
Output data hold time	tоон	4		5		5		ns	
Output buffer turn off delay from RAS	tREZ	3	13	3	13	3	13	ns	6,21
Output buffer turn off delay from $\overline{\boldsymbol{W}}$	twez	3	13	3	13	3	13	ns	6
W to data delay	twed	8		15		15		ns	
OE to CAS hold time	tосн	5		5		5		ns	
CAS hold time to OE	tсно	5		5		5		ns	
OE precharge time	toep	5		5		5		ns	
W pulse width (Hyper Page Cycle)	twpe	5		5		5		ns	
RAS pulse width (C-B-R self refresh)	trass	100		100		100		us	22,23,24
RAS precharge time (C-B-R self refresh)	trps	74		90		110		ns	22,23,24
CAS hold time (C-B-R self refresh)	tchs	-50		-50		-50		ns	22,23,24

CMOS DRAM

TEST MODE CYCLE (Note 11)

Devementer	Cumbal		45	-50		-6	60	Units	Note
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Units	Note
Random read or write cycle time	trc	79		89		109		ns	
Read-modify-write cycle time	trwc	110		121		145		ns	
Access time from RAS	trac		50		55		65	ns	3,4,10,12
Access time from CAS	tcac		17		18		20	ns	3,4,5,12
Access time from column address	taa		28		30		35	ns	3,10,12
RAS pulse width	tras	50	10K	55	10K	65	10K	ns	
CAS pulse width	tcas	12	10K	13	10K	15	10K	ns	
RAS hold time	trsh	18		18		20		ns	
CAS hold time	tсsн	39		43		50		ns	
Column Address to RAS lead time	tral	28		30		35		ns	
CAS to W delay time	tcwp	29		35		39		ns	7
RAS to W delay time	trwd	62		72		84		ns	7
Column Address to $\overline{\mathbb{W}}$ delay time	tawd	40		47		54		ns	7
Hyper Page cycle time	thpc	22		25		30		ns	20
Hyper Page read-modify-write cycle time	thprwc	52		53		61		ns	20
RAS pulse width (Hyper page cycle)	trasp	50	200K	55	200K	65	200K	ns	
Access time from CAS precharge	tCPA		29		33		40	ns	3
OE access time	toea		17		18		20	ns	
OE to data delay	toed	13		18		20		ns	
OE command hold time	toeh	13		18		20		ns	

NOTES

- 1. An initial pause of 200us is required after power-up followed by any 8 RAS-only refresh or CAS-before-RAS refresh cycles before proper device operation is achieved.
- 2. VIH(min) and VIL(max) are reference levels for measuring timing of input signals. Transition times are measured between VIH(min) and VIL(max) and are assumed to be 2ns for all inputs.
- 3. Measured with a load equivalent to 1 TTL load and 100pF.
- 4. Operation within the tRCD(max) limit insures that tRAC(max) can be met, tRCD(max) is specified as a reference point only.

 If tRCD is greater than the specified tRCD(max) limit, then access time is controlled exclusively by tCAC.
- 5. Assumes that tRCD≥tRCD(max).
- 6. This parameter defines the time at which the output achieves the open circuit condition and is not referenced to Voh or Vol.
- 7. twcs, trwd and tawd are non restrictive operating parameters. They are included in the data sheet as electrical characteristics only. If twcs≥twcs(min), the cycle is an early write cycle and the data output will remain high impedance for the duration of the cycle. If tcwd≥tcwd(min), trwd≥trwd(min) and tawd≥tawd(min), then the cycle is a read-modify-write cycle and the data output will contain the data read from the selected address. If neither of the above conditions is satisfied, the condition of the data out is indeterminate.
- 8. Either tRCH or tRRH must be satisfied for a read cycle.
- 9. These parameters are referenced to $\overline{\sf CAS}$ falling edge in early write cycles and to $\overline{\sf W}$ falling edge in $\overline{\sf OE}$ controlled write cycle and read-modify-write cycles.
- 10. Operation within the tRAD(max) limit insures that tRAC(max) can be met. tRAD(max) is specified as a reference point only.

 If tRAD is greater than the specified tRAD(max) limit, then access time is controlled by tAA.
- 11. These specifications are applied in the test mode.
- 12. In test mode read cycle, the value of trac, taa, tcac is delayed by 2ns to 5ns for the specified values. These parameters should be specified in test mode cycles by adding the above value to the specified value in this data sheet.
- 13. tasc, tcah are referenced to the earlier \overline{CAS} falling edge.
- 14. tcp is specified from the later $\overline{\text{CAS}}$ rising edge in the previous cycle to the earlier $\overline{\text{CAS}}$ falling edge in the next cycle.
- 15. tcwp is referenced to the later \overline{CAS} falling edge at word read-modify-write cycle.

K4E64(6)1612B Truth Table

RAS	LCAS	UCAS	w	OE	DQ0 - DQ7	DQ8-DQ15	STATE
Н	Х	Х	Х	Х	Hi-Z	Hi-Z	Standby
L	Н	Н	Х	Х	Hi-Z	Hi-Z	Refresh
L	L	Н	Н	L	DQ-OUT	Hi-Z	Byte Read
L	Н	L	Н	L	Hi-Z	DQ-OUT	Byte Read
L	L	L	Н	L	DQ-OUT	DQ-OUT	Word Read
L	L	Н	L	Н	DQ-IN	-	Byte Write
L	Н	L	L	Н	-	DQ-IN	Byte Write
L	L	L	L	Н	DQ-IN	DQ-IN	Word Write
L	L	L	Н	Н	Hi-Z	Hi-Z	-

- 16. tcwL is specified from \overline{W} falling edge to the earlier \overline{CAS} rising edge.
- 17. tcsr is referenced to the earlier $\overline{\text{CAS}}$ falling edge before $\overline{\text{RAS}}$ transition low.
- 18. tchr is referenced to the later $\overline{\text{CAS}}$ rising edge after $\overline{\text{RAS}}$ transition low.

19. tos is specified for the earlier CAS falling edge and toh is specified by the later CAS falling edge in early write cycle.

- 20. tasc≥6ns, Assume tT = 2.0ns
- 21. If RAS goes high before CAS high going, the open circuit condition of the output is achieved by CAS high going. If CAS goes high before RAS high going, the open circuit condition of the output is achieved by RAS high going.
- 22. If tRASS≥100us, then RAS precharge time must use tRPs instead of tRP.
- 23. For RAS-only refresh and burst CAS-before-RAS refresh mode, 4096(4K/8K) cycles of burst refresh must be executed within 64ms before and after self refresh, in order to meet refresh specification.
- 24. For distributed CAS-before-RAS with 15.6us interval CAS-before-RAS refresh should be executed with in 15.6us immediately before and after self refresh in order to meet refresh specification.

WORD READ CYCLE

LOWER BYTE READ CYCLE

NOTE : DIN = OPEN

UPPER BYTE READ CYCLE

NOTE : DIN = OPEN

WORD WRITE CYCLE (EARLY WRITE)

LOWER BYTE WRITE CYCLE (EARLY WRITE)

UPPER BYTE WRITE CYCLE (EARLY WRITE)

WORD WRITE CYCLE (OE CONTROLLED WRITE)

LOWER BYTE WRITE CYCLE ($\overline{\text{OE}}$ CONTROLLED WRITE)

UPPER BYTE WRITE CYCLE (OE CONTROLLED WRITE)

WORD READ - MODIFY - WRITE CYCLE

LOWER-BYTE READ - MODIFY - WRITE CYCLE

UPPER-BYTE READ - MODIFY - WRITE CYCLE

HYPER PAGE MODE WORD READ CYCLE

HYPER PAGE MODE LOWER BYTE READ CYCLE

HYPER PAGE MODE UPPER BYTE READ CYCLE

HYPER PAGE MODE WORD WRITE CYCLE (EARLY WRITE)

NOTE: Dout = OPEN

HYPER PAGE MODE LOWER BYTE WRITE CYCLE (EARLY WRITE)

NOTE: Dout = OPEN

HYPER PAGE MODE UPPER BYTE WRITE CYCLE (EARLY WRITE)

NOTE: Dout = OPEN

HYPER PAGE MODE WORD READ - MODIFY - WRITE CYCLE

HYPER PAGE MODE LOWER BYTE READ - MODIFY - WRITE CYCLE

HYPER PAGE MODE UPPER BYTE READ - MODIFY - WRITE CYCLE

HYPER PAGE READ AND WRITE MIXED CYCLE

RAS - ONLY REFRESH CYCLE

NOTE : \overline{W} , \overline{OE} , DIN = Don't care

Dout = OPEN

CAS - BEFORE - RAS REFRESH CYCLE

NOTE : \overline{OE} , A = Don't care

HIDDEN REFRESH CYCLE (READ)

^{*} In Hidden refresh cycle of 64Mb A-die & B-die, when CAS signal transits from Low to High, the valid data may be cut off.

HIDDEN REFRESH CYCLE (WRITE)

CAS - BEFORE - RAS SELF REFRESH CYCLE

NOTE : \overline{OE} , A = Don't care

TEST MODE IN CYCLE

NOTE : \overline{OE} , A = Don't care

PACKAGE DIMENSION

