DESIGN AND ANANYSIS ALGORITHMS

LECTURE 1

Algorithm Fundamentals

Reference links:

Prof. Xukai Zou, Computer Science Dept., Indiana University Purdue University Indianapolis http://cs.iupui.edu/~xzou/

Prof. Pasi Fränti, School of Computing, University of Eastern Finland

http://cs.uef.fi/pages/franti/asa/

Open Classroom from Stanford Univ.

http://openclassroom.stanford.edu/MainFolder/CoursePage.php?course=IntroToAlgorithms

Lecture outline

- Some key concepts
 - Problem
 - Algorithm + Data Structure ⇒ Program
- Brief about the Complexity and Analysis of Algorithm
- Turing Machine
- Primitive Recursive Function
- Exercises

Some key concepts

- ✓ Problem
- ✓ Algorithm
- ✓ Data Structure
- ✓ Program

Problem

- Problem in informatics/computer science
 - A class of problems with the same specification.
 - Example:
 - Solving: $ax^2 + bx + c = 0$ not $2x^2 + 5x + 3 = 0$.
 - Find path from city A to city B on a map.
 - A problem = <Inputs, Outputs>
- Can the problem be solve?
- How difficult is the problem?
- How to model real-life problems to algorithmic problems?

Algorithm:

Is a finite sequence of instructions (well-defined, computer-implementable) for solving a probblem.

- Features of algorithms
 - Generality: must apply to a set of defined inputs;
 - Finiteness: must stop after certain instructions;
 - Definiteness: must give a unique result of the problem;
 - Effectiveness: should use suitable time and resource.

- Expressing algorithms
 - Human language;
 - Flowcharts;
 - Pseudo-code.

- Expressing algorithms
 - Human language;
 - Flowcharts;
 - Pseudo-code.
 - Example:

Euclid's algorithm

- **Step 1** If n = 0, return the value of m as the answer and stop; otherwise, proceed to Step 2.
- **Step 2** Divide m by n and assign the value of the remainder to r
- **Step 3** Assign the value of n to m and the value of r to n. Go to Step 1.

[Anany's book P32]

```
ALGORITHM Euclid(m, n)

//Computes gcd(m, n) by Euclid's algorithm

//Input: Two nonnegative, not-both-zero integers m and n

//Output: Greatest common divisor of m and n

while n \neq 0 do

r \leftarrow m \mod n

m \leftarrow n

n \leftarrow r

return m
```

- Research on algorithms
 - Solving problem by algorithmic: which problem can be solved by the algorithm, which cannot.
 - Algorithm Optimization: Find better algorithms.
 - Algorithm Implementation: Implement algorithms on computers.

Data Structure

- Algorithms operate on data (input, output, temporary).
 - ⇒ The ways of organizing data play a critical role in the design and analysis of algorithms.
- Data structure is a particular way of storing and organizing data in a computer so that it can be used efficiently.
- General abstract data types (ADT): arrays, files, lists, stacks, queues, trees, graphs,...
 - Specification
 - Implementation ⇔ Algorithm
 - Application

Program

A computer program is a collection of instructions (written by a programmer) in a programming language to perform specific tasks for solving problem.

Programs = Algorithms + Data Structures

(Niklaus Wirth)

https://en.wikipedia.org/wiki/Niklaus_Wirth

Solving problem on Computer

Complexity and Analysis of Algorithm

- Design Algorithms
- ✓ Analyze Algorithms

Design Algorithms

- Design Algorithm How to find suitable algorithm?
 - Algorithms for specific problem.
 - Algorithm design techniques (Stratergy/Paradigm/Method)
- Some basic algorithm design techniques:
 - Divide-and-Conquer Chia để trị
 - Back-Tracking Quay lui
 - Branch-and-Bound Nhánh cận
 - Greedy Tham lam
 - Dynamic Programming Quy hoạch động
 - Approximation Xấp xỉ
 - Heuristics

- How to belive the algorithm?
 - Proving the Correctness Chứng minh tính đúng.
- How to compare the algorithms?
 - Assessing the Effectiveness Đánh giá tính hiệu quả.
 - Effectiveness: Two kinds of algorithm efficiency
 - Time efficiency how fast the algorithm runs?
 - ⇒ Time complexity Độ phức tạp thời gian.
 - Space efficiency how much extra memory it uses?
 - ⇒ Space complexity Độ phức tạp không gian.

- Example: Compare two sorting algorithms with $n=10^6$ items.
 - Insertion sort has the time complexity $c_1 n^2$.
 - *Merge sort* has the time complexity $c_2 n \log n$.

A little injustice:

Insertion sort with c₁=2, and speed 10⁹ flops

$$T_{lns} = 2 \cdot (10^6)^2 flop / 10^9 flops = 2000 (s)$$

Merge sort with c₂=50, and speed 10⁷ flops

$$T_{Mer} = 50 \cdot (10^6 \log 10^6) flop/10^7 flops \approx 100 (s)$$

Merge faster than Insertion 20 times If n increase to 10^7 items the results is 2.3 days vs 13 minutes (!)

The complexity of some sorting algorithms

Algorithm	Worst Case	Best Case	In-place	Stable
Selection Sort	$O(n^2)$	$O(n^2)$	Yes	No
Insertion Sort	$O(n^2)$	O(n)	Yes	Yes
Bubble Sort	$O(n^2)$	$O(n^2)$	Yes	Yes
Bubble Sort 2	$O(n^2)$	O(<i>n</i>)	Yes	Yes
Quick Sort	$O(n^2)$	O(nlogn)	Yes	No
Merge Sort	O(nlogn)	$O(n\log n)$	No	Yes
Shuffle Sort (Trộn ngẫu nhiên)	?	?		

- Two ways for analyzing the algorithm
 - By Experimental

Code – Run – Capture the complexity indicators.

Pros: Can analyze all programable algorithm.

Cons: Depend on platform (hardware & software).

By Theoretical

Use mathematic tool to express the complexity as functions of input data size.

Pros: Not depend on platform; can do with large input data size.

Cons: Complicates.

Turing Machine

- ✓ Turing Machine Description
- ✓ Turing Machine Structure
- ✓ Turing Machine Example
- ✓ Church-Turing thesis

Turing Machine Description

A Turing machine is designed as the simplest computing machine, but capable of simulating any algorithm. It is a mathematical concept invented by Alan Turing in 1936.

https://en.wikipedia.org/wiki/Turing_machine

Alan Mathison Turing (1912–1954) was an English logician, mathematician, cryptanalyst. He is considered to be the father of computer science and artificial intelligence.

https://en.wikipedia.org/wiki/Alan_Turing

Turing Machine Structure

- Physical description: Turing machine consisted of
 - An infinite long tape, on which symbols could be printed.
 - A read/write head that can read and write symbols on the tape and move the tape left and right one cell at a time.
 - A set of state that stores the states and a finite table of instruction control the head machine.

Turing Machine Structure

- Turing machine operation:
 - Set input on the tape.
 - The read/write head moves along the tape in steps by instructions until stop or halt state reached.
 - The output given by symbols on the tape.

Demonstration of <u>Turing Machine operation</u>

(file .flv, open with VLC media player)

Turing Machine Structure

Formal definition:

Turing machine can be formally defined as a 4-tuple:

$$M = (K, \sum, \delta, s)$$

Where:

K - set of states of M. s, $h \in K$ are predefined states (start, halt).

 \sum - set of symbols/characters of M.

$$K \cap \Sigma = \emptyset$$
 and \blacktriangleright , $\blacksquare \in \Sigma$ are predefined symbols (begin, end)

 δ is transition function formed as partial function:

$$\delta: K \times \Sigma \to \Sigma \times K \times \{\to, \leftarrow, -\}.$$

$$\delta(t,k) = (k_1, t_1, \{\to/\leftarrow/-\})$$

- Replace symbol $k \rightarrow k_1$, change state $t \rightarrow t_1$;
- Move read/write head by direction $\{\rightarrow/\leftarrow/-\}$

Turing Machine Example

□ Turing Machine example: $M_1 = (K, \Sigma, \delta, s)$

Where:

$$K = \{s,q,h\}$$
 $s - start, h - halt.$
 $\sum = \{0, 1, \blacktriangleright, \blacksquare\}$ \blacktriangleright - begin, \blacksquare - end

Table of transition functions δ :

STT	t	k	$\delta(t,k) = (k_1,t_1,\{\to/\leftarrow/-\})$
1	S	0	$(0,s,\rightarrow)$
2	S	1	$(1,s,\rightarrow)$
3	S	•	(▶ , s, →)
4	S		(■,q,←)
5	q	0	(1 , h, —)
6	q	1	(0 , q, ←)
7	q	•	(▶ , h, —)

Turing Machine Example

Operation of M₁

Demo

Step	Func
1	3
2	3 2
3	①
4	2
5	4
6	246
7	<u>(5)</u>
8	-

Turing Machine Example

 \square Operation of M_1 :

Operate with other inputs:

• n = 1001 Result: ouput value, number of steps?

• n = 1011 Result: output value, number of steps?

Unexpected instance of M_1 and solution: M_1 with input:

• n = 11 Result: ouput value, number of steps?

What trouble?

Improve M_1 ?

Chusch -Turing thesis

- The Turing machine as a computational model
 - Turing machines can be used to simulate any algorithm that can be performed with a computer.
 - Turing machine is an efficient model for describing the functionality of computer processors.

"Turing Machine

■ Algorithm"

- Church-Turing thesis and the variations:
 - "A function on the natural numbers can be calculated by an effective method if and only if it is computable by a Turing machine".
 - A variation of the thesis: If a problem can be solved by a finite and definite instructions, then it can be solved with a computer program.

https://en.wikipedia.org/wiki/Church%E2%80%93Turing_thesis

Turing Machine and Algorithm

Turing Machine and Conway's Game of Life

P. Rendell, *Turing Machine Universality of the Game of Life*, Complexity and Computation 18, Springer 2016, DOI 10.1007/978-3-319-19842-2_2

Play Game of life online: https://playgameoflife.com/

- ✓ Introduction PRF
- ✓ PRF definitions
- ✓ Prove a function is PRF

- Definition: Primitive Recursive Function (PRF) are among the number-theoretic functions. These functions take *n* arguments (*n*-ary), which are the natural numbers (nonnegative integers) {0, 1, 2, ...} to the natural numbers.
- Primitive recursive function is computable. Mean exist a Turing machine M to compute the value of function f if f is a PRF.

Reference link:

https://en.wikipedia.org/wiki/Primitive recursive function

- The basic primitive recursive functions are given:
 - Constant function: The 0-ary constant function 0 is PRF.
 - Successor function: The 1-ary successor function S, which returns the successor of its argument is PRF. S(x) = x + 1.
 - Projection function: For every n≥1 and each i with 1≤i≤n, the n-ary projection function P_iⁿ, which returns its i-th argument, is PRF.

$$(P_i^n(x_1,...,x_i,...x_n)=x_i)$$

- More complex PRF obtained by applying the operations:
 - Composition: Given f is a k-ary PRF, and $g_1, ..., g_k$ are k m-ary PRF, the composition of f with $g_1, ..., g_k$, i.e. the m-ary $h(x_1, ..., x_m) = f(g_1(x_1, ..., x_m), ..., g_k(x_1, ..., x_m))$ is PRF.
 - Primitive recursion: Given f, a k-ary PRF, and g, a (k+2)-ary PRF, the (k+1)-ary function h is defined as the primitive recursion of f and g:

$$h(0,x_1,...,x_k) = f(x_1,...,x_k)$$
 and
 $h(S(n),x_1,...,x_k) = g(h(n,x_1,...,x_k),n,x_1,...,x_k)$ is PRF

Identifications:

- PRFs are computable, mean exist a Turing machine or algorithm to compute the value of the function.
- But set of PRF are not all the computable fuctions

- Some provable PRFs:
 - Addition: add(a,b)= a+b
 - Multiplication: mul(a,b)= axb
 - Exponentiation: $exp(a,b) = a^b$,
 - Factorial: fac(a) = a!
 - Predecessor: pred(a) = (a>0 ? a-1 : 0)
 - Proper subtraction: proper_sub(a,b) = ($a \ge b$? a-b: 0)
 - Minimum: minimum($a_1, \dots a_n$)
 - Maximum: maximum $(a_1, \dots a_n)$

- Rewrite defined definitions about PRF:
 - (1) Constant function: C=const
 - (2) Successor function: S(x) = x+1
 - (3) Projection function: $P_i^n(x_1,...,x_i,...x_n)=x_i$
 - **(4) Composition:** If $g_1,...,g_k$ are m-ary PRF and f is k-ary PRF then: $h(x_1,...,x_m) = f(g_1(x_1,...,x_m),...,g_k(x_1,...,x_m))$ is PRF.
 - (5) Primitive recursion: If f,g are k-ary and k+2-ary, and h is k+1-ary function such:

$$h(0,x_1,...,x_k) = f(x_1,...,x_k),$$

 $h(S(n),x_1,...,x_k) = g(h(n,x_1,...,x_k),n,x_1,...,x_k),$ is a PRF.

Example of proving a function is PRF:

```
Addition: add(a,b)=a+b
```

Prove add function is a PRF?

- $add(0,b) = 0 + b = b = P_1^1(b)$ is PRF since P is PRF (1)
- add(a+1,b) = a+1+b = a+b+1 = add(a,b)+1= $S(add(a,b)) = S(P_1^3(add(a,b),a,b))$ is PRF since S, P are PRFs and Composition (2)
- From (1) and (2) get add is PRF by Primitive recursion.

Exercises

- Build Turing Machine
- Prove Primitive Recursive Function
- Problem specification, design algorithm and program.
- More detail in Hw1_AlgorithmFundamental.doc