

UNIVERSIDAD DE SEVILLA Dpto. de Ingeniería Electrónica AREA DE TECNOLOGIA ELECTRONICA

PROYECTO DE LA ASIGNATURA

Estimador de Canal y Ecualizador para DVB-T

Vicente Baena Lecuyer v_baena@us.es

Realizar en Matlab y VHDL un estimador de canal + ecualizador para DVB-T

Matlab

- Realizar un Transmisor/receptor OFDM simplificado
- Implementar un canal AWGN + Canal P1 definido en la norma de DVB-T
- Verificar el comportamiento del estimador y ecualizador

VHDL

- Implementar el estimador de canal y ecualizador en VHDL
- Comprobar el buen funcionamiento del mismo comparando la salida del bloque VHDL con el modelo Matlab

Objetivo extra (no obligatorio)

 Determinar los coeficientes del filtro interpolador del estimador que minimiza el error cuadrático medio.

U.S.

Estimación y ecualización de canal

- Sea S(f) la señal transmitida en frecuencia
- Sea H(f) la respuesta del canal
- La señal recibida será:
 - $S_{rx}(f) = S(f) \cdot H(f) + n(f)$, siendo n(f) ruido
 - En el dominio discreto (tras la IFFT) las portadoras recibidas son:
- Para demodular la señal, debemos recuperar S(k)
- Para ello estimaremos H(k):
 - Sea H' (k) la estimación de H(k)
 - La estimación de S(k) se realiza ecualizando:
 - \circ S'(k) = S_{rx}(k)/H'(k) = S(k)·H(k)/H'(k) + n(k)/H'(k)

Estimación y ecualización de canal

- ¿Como se estima el canal?
 - Utilizando los pilotos dispersos insertados en las portadoras del símbolo OFDM:

- Si k es una portadora piloto, conocemos el valor de S(k)
- Por lo tanto podemos estimar la respuesta del canal en esas posiciones: $H'(k) = S_{rx}(k)/S(k)$

- Posiciones con H(k) estimado
- ☐ Posiciones con H(k) desconocido

- El resto se estima interpolando en dos fases:
 - Estimación en la dirección temporal
 - Estimación en la dirección frecuencial
- Para la estimación en la dirección temporal, se fija una portadora k, y mediante un filtro interpolador se calculan las posiciones desconocidas:

- El resto se estima interpolando en dos fases:
 - Estimación en la dirección temporal
 - Estimación en la dirección frecuencial
- Para la estimación en la dirección temporal, se fija una portadora k, y mediante un filtro interpolador se calculan las posiciones desconocidas:

- El resto se estima interpolando en dos fases:
 - Estimación en la dirección temporal
 - Estimación en la dirección frecuencial
- Para la estimación en la dirección temporal, se fija una portadora k, y mediante un filtro interpolador se calculan las posiciones desconocidas:

- El resto se estima interpolando en dos fases:
 - Estimación en la dirección temporal
 - Estimación en la dirección frecuencial
- Para la estimación en la dirección temporal, se fija una portadora k, y mediante un filtro interpolador se calculan las posiciones desconocidas:

- Tras la interpolación temporal, se realiza la interpolación frecuencial:
 - Se selecciona un símbolo, y se interpolan las posiciones desconocidas

- Tras la interpolación temporal, se realiza la interpolación frecuencial:
 - Se selecciona un símbolo, y se interpolan las posiciones desconocidas

- Tras la interpolación temporal, se realiza la interpolación frecuencial:
 - Se selecciona un símbolo, y se interpolan las posiciones desconocidas

Estimación de canal

- Los filtros interpoladores se diseñan teniendo en cuenta las características del canal radio
 - se puede suponer un canal WSS-US (estacionario en sentido amplio y dispersión no correlada)
- Como la señal que se recibe viene inmersa en ruido, se suelen usar filtros de Wiener que minimizan el error cuadrático medio

Simplificaciones

- Señal en modo 2K
- Constelación QPSK
- Prefijo cíclico 1/32
- Estimador de canal en frecuencia (no en el tiempo)
- Filtro interpolador lineal: y=ax+b
- Patrón de pilotos scattered fijo independiente del tiempo.
 - Posiciones: 1:12:1705
- Para VHDL: salida de la FFT 10bits (I) + 10 bits (Q)

