

Eexam

Sticker mit SRID hier einkleben

Hinweise zur Personalisierung:

- · Ihre Prüfung wird bei der Anwesenheitskontrolle durch Aufkleben eines Codes personalisiert.
- Dieser enthält lediglich eine fortlaufende Nummer, welche auch auf der Anwesenheitsliste neben dem Unterschriftenfeld vermerkt ist.
- Diese wird als Pseudonym verwendet, um eine eindeutige Zuordnung Ihrer Prüfung zu ermöglichen.

Grundlagen Rechnernetze und Verteilte Systeme

Klausur: IN0010 / Hausaufgabe 5 Datum: Montag, 25. Mai 2020

Prüfer: Prof. Dr.-lng. Georg Carle **Uhrzeit:** 16:00 – 23:59

Bearbeitungshinweise

- Die erreichbare Gesamtpunktzahl betrält 43 Punkte.
- Bitte geben Sie bis spätestens Sonntag, den **31. Mai um 23:59 CEST** über TUMexam ab. Bitte haben Sie Verständnis, wenn das Abgabesystem noch nicht reibungslos funktioniert. Wir arbeiten daran!
- Ihren persönlichen Link zur Abgabe finden Sie auf Moodle. Geben Sie diesen nicht weiter.
- Bitte haben Sie Verständnis, falls die Abgabeseite zeitweilig nicht erreichbar ist.

Bitte nehmen Sie die Hausaufgaben dennoch ernst:

- Neben der Einübung des Vorlesungsstoffs und der Klausurvorbereitung dienen die Hausaufgaben auch dazu, den Ablauf der Midterm zu erproben.
- Finden Sie einen für sich selbst praktikablen und effizienten Weg, die Hausaufgaben zu bearbeiten. Hinweise hierzu haben wir auf https://grnvs.net/homework_submission.pdf für Sie zusammengestellt.

Hörsaal verlassen von	bis	/	Vorzeitige Abgabe um
			9 9

Aufgabe 1 Medienzugriffsverfahren (16 Punkte)

0	a)* Erläutern Sie kurz das Prinzip von <i>ALOHA</i> .						
1 H							
2							
~ Ш							
0	b) Wie werden Kollisionen in ALOHA erkannt?						
₁ H							
0	c) Erläutern Sie kurz das Prinzip von <i>Slotted ALOHA</i> .						
, Ш							
0	d) Worin besteht der Vorteil von Slotted ALOHA gegenüber normalem ALOHA?						
2							
0	e)* Erläutern Sie kurz das Prinzip von <i>CSMA</i> .						
1 📙							
2							
0	f) Erläutern Sie kurz, welche Ergänzungen CSMA/CD gegenüber reinem CSMA hat.						
1 📙							
2							

g) Wie werden erfolgreiche Übertragungen bei <i>CSMA/CD</i> bei Ethernet erkannt?	F
	📙
n) Erläutern Sie kurz, welche Ergänzungen CSMA/CA gegenüber reinem CSMA hat.	
	H
i)* Was versteht man unter <i>Binary Exponential Backoff</i> ?	П
	│
	H

Aufgabe 2 ALOHA und CSMA/CD (16 Punkte)

Gegeben sei ein Netzwerk (s. Abbildung 2.1) bestehend aus drei Computern, welche über ein Hub miteinander verbunden sind. Die Distanzen zwischen den Computern betragen näherungsweise d_{12} = 1 km bzw. d_{23} = 500 m. Etwaige indirekte Kabelführung darf vernachlässigt werden. Die Übertragungsrate betrage r = 100 Mbit/s. Die relative Ausbreitungsgeschwindigkeit betrage wie üblich ν = 2 /3. Die Lichtgeschwindigkeit sei mit c_0 = 3 · 1 08 m/s gegeben.

Zum Zeitpunkt

- $t_0 = 0$ s findet keine Übertragung statt und keiner der Rechner hat Daten zu versenden,
- $t_1 = 5 \,\mu\text{s}$ beginnt PC1,
- $t_2 = 15 \,\mu s$ beginnt PC2 und
- $t_3 = 10 \,\mu s$ beginn PC3

jeweils einen Rahmen der Länge 94 B zu senden.

=	a)* Berechnen Sie die Serialisierungszeit t_s für eine Nachricht.
	b)* Berechnen Sie die Ausbreitungsverzögerungen $t_p(1,2)$ und $t_p(2,3)$ auf den beiden Streckenabschnitten.

c) Zeichnen Sie für ALOHA und 1-persistentes CSMA/CD jeweils ein Weg-Zeit-Diagramm, das den Sendevorgang im Zeitintervall $t\in[t_0,t_0+30~\mu s)$ darstellt. Maßstab: 100 m $\triangleq 5~mm$ bzw. 2,5 $\mu s\triangleq 5~mm$, Slotzeit: $\approx 5~\mu s$

PC1

d) Aus der vorhergehenden Teilaufgabe ist zu erkennen, dass bei beiden Verfahren Kollisionen auftreten. Ir Gegensatz zu ALOHA funktioniert CSMA/CD aber unter den gegebenen Umständen nicht. Warum?
e) Wie lautet für CSMA/CD die Bedingung, dass ein Knoten eine Kollision rechtzeitig erkennen kann?
f) Berechnen Sie für CSMA/CD die maximale Entfernung zweier Rechner innerhalb einer Kollisionsdomäne Abhängigkeit der minimalen Rahmenlänge. Setzen Sie die Werte für FastEthernet ein ($r = 100 \text{Mbit/s}$, $l_{\text{min}} = 64 \text{E}$
g)* Welchen Einfluss haben Hubs, Brücken und Switches auf die Kollisionsdomäne?

Aufgabe 3 Cyclic Redundancy Check (CRC) (11 Punkte)

Die Nachricht 10101100 werde mittels CRC, wie in der Vorlesung eingeführt, gesichert. Als Reduktion $r(x) = x^3 + 1$ gegeben.	spolynom sei
a)* Wie lang ist die Checksumme?	— •
b) Bestimmen Sie die Checksumme für die gegebene Nachricht.	
	2
	3
c)* Geben Sie die übertragene Bitfolge an.	B °
	-
Bei der Übertragung trete nun das Fehlermuster 00100000000 auf. d)* Wie lautet die empfangene Bitfolge?	

e) Zeiger	n Sie, dass der Üb	oertragungsfehler	erkannt wird.		

Zusätzlicher Platz für Lösungen. Markieren Sie deutlich die Zuordnung zur jeweiligen Teilaufgabe. Vergessen Sie nicht, ungültige Lösungen zu streichen.

