

1500 series CS & IT ENGINEERING

Discrete Mathematics

By- Satish Yadav Sir

Recap of Previous Lecture

Topic

Recurrence Relation

Topics to be Covered

Topic

Group Theory

s1. {10n | n∈ Z} under addition

s2.
$$\{a/2^n. | a, n \in \mathbb{Z}, n \ge 0\}$$
 under addition

- (a) only S1 is Group
- (b) only S2 is Group
- (c) Both S1 and S2 are Group
- (d) Both S1 and S2 are not Group

```
Group:

closed.

Associative

identity.

Inverse.

commutative.

(N. Abel)

(1802-1829)
```

$$\frac{a}{2^n}$$
 $(a, n \in 2)$

$$\frac{a}{2^{x}} \in G \quad \frac{b}{2^{y}} \in G.$$

$$\frac{a}{2^{2}} + \frac{b}{2^{2}} \in G$$

$$a, x \in z$$
 b. $y \in z$.

2)
$$\frac{a}{2^{x}} + (\frac{b}{2^{y}} + \frac{c}{2^{2}}) = (\frac{a}{2^{x}} + \frac{b}{2^{y}}) + \frac{c}{2^{2}}$$

 $(\frac{3}{2^{2}} + \frac{4}{2^{3}}) + \frac{5}{2^{4}} = \frac{3}{2^{2}} + (\frac{4}{2^{3}}) + \frac{5}{2^{4}}$
 $\frac{3}{2^{4}} + \frac{4}{2^{3}} + \frac{5}{2^{4}} = \frac{3}{2^{2}} + (\frac{4}{2^{3}}) + \frac{5}{2^{4}}$

3)
$$\frac{\alpha}{2n} + 0 = \frac{\alpha}{2n}$$
 (0 is identity)

4)
$$\frac{\alpha}{2^n} + \left(\frac{-\alpha}{2^n}\right) = 0$$

$$\frac{\alpha}{2^b} + \frac{c}{2^d} = \frac{c}{2^d} + \frac{\alpha}{2^b}$$

$$\frac{3}{2^{2}} + \frac{4}{2^{3}} = \frac{4}{2^{3}} + \frac{3}{2^{2}}$$

$$\frac{10}{2^3} = \frac{10}{2^3}$$

SI. (2 n E z), X abelian Group? aez. 29 6 6 S_2 . (P(A), \triangle) Symmetric diff (\triangle/\oplus)

A={a,b,c} * abelian Group? OtbEZ.

(set, operation)

(P(A), A)

$$B \triangle A = A \triangle B = (A \cup B) - (A \cap B)$$

$$= (A - B) \cup (B - A)$$

1) closed:

A E P(A) B E P(B)

2) A (B (C) = (A (B) (B) C.

A A B E P(A)

3) A D = A

4) A DA = 9

- 1) (losed a EG, b EG axb EG.
- 2) Associative

 a*(b*c) = (a*b) * c.
- 3) Identity: axe = a = exa.
- 4) Inverse. a * a = e = a * + a.

4)
$$10(a) + 10(-a) = 0$$

 $a \in \mathbb{Z}$, $-a \in \mathbb{Z}$.

3)
$$10(a) + 0 = 10(a)$$

 $10(a) + 10(0) = 10(0)$

S1:the binary operation on Z by x o y = x + y + 1. that (Z, o) is an abelian group.

S2: Let $G = \{q \in Q \mid q \neq -1\}$. Define the binary operation o on G by x o y = x + y + xy. (G, o) is an abelian group.

- (a) only S1 is valid
- (b) only S2 is valid
- (e) Both S1 and S2 are valid
- (d) Both S1 and S2 are invalid

- 1) Closed.
- 2) Asso

3) identity.

$$a \neq e = 0$$
 $a + e + 1 = a$
 $e = -1$

4) Inverse.

$$a * a! = e$$
 $a + a! + 1 = -1$
 $a! = -2 - a$

DC
2) A
3) Identity

$$a \neq e = a$$

 $d + e + ae = a$
 $e = a$
 $e = a$

H) Inverse.

$$a + a = 0$$

 $a + a = 0$
 $a = 0$

 $a \times e = a$ $a \times \bar{a}! = e$

S1: G is abelian if and only if $(ab)^2 = a^2b^2$ for all a, b \in

S2: If G is a group, for all a, b € G,

(a)
$$(a^{-1})^{-1} = a (True)$$

b)
$$(ab)^{-1} = b^{-1} a^{-1} (\top)$$

(ab)2

ba = ab.

S3:group G is abelian if and only if for all a, b & G,

$$(ab)^{-1} = a^{-1}b^{-1}$$

$$(ab)^{-1} = \frac{b[1,a]}{y}$$

$$(ab) \cdot (9) = e$$
.
 $(ab) \cdot (51.51) = e$.

(G. 0) Group. Where.

noaoy = boaoc -> noy = boc Check (G,o) is abelian Group.

S1:If H, K are subgroups of a group G, that H∩ K is also a subgroup of G.

S2:If H, K are subgroups of a group G, that H UK is also a subgroup of G.

- (a) only S1 is valid <
- (b) only S2 is valid
- (c) Both S1 and S2 are valid
- (d) Both S1 and S2 are invalid

5
$$H = \{0,3\}$$
 $K = \{0,2,4\}$
 $HUK = \{0,2,3,4\}$
which is not closed
not a Group
not a subgroup.
 $HNK = \{0\}$

S1: If G is a finite group and a \in G, then O(a) divides [G].

S2:Every group of prime order is cyclic..

- (a) only S1 is valid
- (b) only S2 is valid
- (c) Both S1 and S2 are valid
- (d) Both S1 and S2 are invalid

$$2^{1}=2$$
 $2^{2}=4$
 $2^{3}=0$
 $(2)=3$
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (5)
 (4)
 (4)
 (4)
 (4)
 (5)
 (4)
 (4)
 (5)
 (6)
 (7)
 (8)
 (8)
 (9)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)
 (10)

$$3^{1}=3$$
 (3)={0.3}
 $3^{2}=0$

S1: Let p be a prime. If G has order 2p, then every proper subgroup of G is cyclic

S2:Let H and K be subgroups of a group G, where e is the identity of G. if |H| = 10 and |K| = 21, then $H \cap K = \{e\}$.

- (a) only S1 is valid
- (b) only S2 is valid
- (c) Both S1 and S2 are valid
- (d) Both S1 and S2 are invalid

practice:

(180°)

Question > /

ald concept (Revision)

patience.

- a) $\{-1, 1\}$ under multiplication
- b) $\{-1, 1\}$ under addition
- e) $\{-1, 0, 1\}$ under addition
- d) $\{10n | n \in \mathbb{Z}\}$ under addition
- e) The set of all one-to-one functions $g: A \rightarrow A$, where $A = \{1, 2, 3, 4\}$, under function composition
- f) $\{a/2^n | a, n \in \mathbb{Z}, n \ge 0\}$ under addition
- (a) Yes. The identity is 1 and each element is its own inverse.
- (b) No. The set is not closed under addition and there is no identity.
- (c) No. The set is not closed under addition.
- (d) Yes. The identity is 0; the inverse of 10n is 10(-n) or -10n.
- (e) Yes. The identity is 1_A and the inverse of $g: A \to A$ is $g^{-1}: A \to A$.
- (f) Yes. The identity is 0; the inverse of $a/(2^n)$ is $(-a)/(2^n)$.
- **4.** Let $G = \{q \in \mathbb{Q} | q \neq -1\}$. Define the binary operation \circ on G by $x \circ y = x + y + xy$. Prove that (G, \circ) is an abelian group.
- **5.** Define the binary operation \circ on **Z** by $x \circ y = x + y + 1$. Verify that (**Z**, \circ) is an abelian group.
- (i) For all $a,b,c \in G$, $(a \circ b) \circ c = (a+b+ab) \circ c = a+b+ab+c+(a+b+ab)c = a+b+ab+c+ac+bc+abc$ $a \circ (b \circ c) = a \circ (b+c+bc) = a+b+c+bc+a(b+c+bc) = a+b+c+bc+ab+ac+abc$. Since $(a \circ b) \circ c = a \circ (b \circ c)$ for all $a,b,c \in G$ it follows that the (closed) binary operation is associative.
- (ii) If $x, y \in G$, then $x \circ y = x + y + xy = y + x + yx = y \circ x$, so the (closed) binary operation is also commutative.
- (iii) Can we find $a \in G$ so that $x = x \circ a$ for all $x \in G$? $x = x \circ a \implies x = x + a + xa \implies 0 = a(1+x) \implies a = 0$, because x is arbitrary, so 0 is the identity for this (closed) binary operation.
- (iv) For $x \in G$, can we find $y \in G$ with $x \circ y = 0$? Here $0 = x \circ y = x + y + xy \Longrightarrow -x = y(1+x) \Longrightarrow y = -x(1+x)^{-1}$, so the inverse of x is $-x(1+x)^{-1}$. It follows from (i) (iv) that (G, \circ) is an abelian group.

Since $x, y \in \mathbb{Z} \Longrightarrow x + y + 1 \in \mathbb{Z}$, the operation is a (closed) binary operation (or \mathbb{Z} is closed under o). For all $w, x, y \in \mathbb{Z}$, $w \circ (x \circ y) = w \circ (x + y + 1) = w + (x + y + 1) + 1 = (w + x + 1) + y + 1 = (w \circ x) \circ y$, so the (closed) binary operation is associative. Furthermore, $x \circ y = x + y + 1 = y + x + 1 = y \circ x$, for all $x, y \in \mathbb{Z}$, so o is also commutative. If $x \in \mathbb{Z}$ then $x \circ (-1) = x + (-1) + 1 = x = (-1) \circ x$, so -1 is the identity element for o. And finally, for

each $x \in \mathbb{Z}$, we have $-x-2 \in \mathbb{Z}$ and $x \circ (-x-2) = x + (-x-2) + 1 = -1[= (-x-2) + x]$, so -x-2 is the inverse for x under x. Consequently, (\mathbb{Z}, x) is an abelian group.

- **8.** For any group G prove that G is abelian if and only if $(ab)^2 = a^2b^2$ for all $a, b \in G$.
- 9. If G is a group, prove that for all $a, b \in G$,

a)
$$(a^{-1})^{-1} = a$$

b)
$$(ab)^{-1} = b^{-1}a^{-1}$$

- 10. Prove that a group G is abelian if and only if for all $a, b \in G$, $(ab)^{-1} = a^{-1}b^{-1}$.
- 8. Proof: Suppose that G is abelian and that a, b ∈ G. Then (ab)² = (ab)(ab) = a(ba)b = a(ab)b = (aa)(bb) = a²b², by using the associative property for a group and the fact that this group is abelian.
 Conversely, suppose that G is a group where (ab)² = a²b² for all a, b ∈ G. If x, y ∈ G, then (xy)² = x²y² ⇒ (xy)(xy) = x²y² ⇒ x(yx)y = x(xy²) ⇒ (yx)y = xy² (by Theorem 16.1 (c)) ⇒ (yx)y = (xy)y ⇒ yx = xy (by Theorem 16.1 (d)). Therefore, the group G is abelian.
- (a) The result follows from Theorem 16.1(b) since both (a⁻¹)⁻¹ and a are inverses of a⁻¹.
 (b) (b⁻¹a⁻¹)(ab) = b⁻¹(a⁻¹a)b = b⁻¹(e)b = b⁻¹b = e and (ab)(b⁻¹a⁻¹) = a(bb⁻¹)a⁻¹ = a(e)a⁻¹ = aa⁻¹ = e. So b⁻¹a⁻¹ is an inverse of ab, and by Theorem 16.1(b), (ab)⁻¹ = b⁻¹a⁻¹.
- 10. G abelian $\implies a^{-1}b^{-1} = b^{-1}a^{-1}$. By Exercise 9(b), $b^{-1}a^{-1} = (ab)^{-1}$, so G abelian $\implies a^{-1}b^{-1} = (ab)^{-1}$. Conversely, if $a, b \in G$, then $a^{-1}b^{-1} = (ab)^{-1} \implies a^{-1}b^{-1} = b^{-1}a^{-1} \implies ba^{-1}b^{-1} = a^{-1} \implies ba^{-1} = a^{-1} \implies a^{-1}b \implies$
- 5. Let G be a group with subgroups H and K. If |G| = 660, |K| = 66, and $K \subset H \subset G$, what are the possible values for |H|?

From Lagrange's Theorem we know that $|K| = 66 (= 2 \cdot 3 \cdot 11)$ divides |H| and that |H| divides $|G| = 660 (= 2^2 \cdot 3 \cdot 5 \cdot 11)$. Consequently, since $K \neq H$ and $H \neq G$, it follows that |H| is $2(2 \cdot 3 \cdot 11) = 132$ or $5(2 \cdot 3 \cdot 11) = 330$.

- 11. Let H and K be subgroups of a group G, where e is the identity of G.
 - a) Prove that if |H| = 10 and |K| = 21, then $H \cap K = \{e\}$.
- (a) Let $x \in H \cap K$. $x \in H \Longrightarrow o(x)|10 \Longrightarrow o(x) = 1, 2, 5$, or 10. $x \in K \Longrightarrow o(x)|21 \Longrightarrow o(x) = 1, 3, 7$, or 21. Hence o(x) = 1 and x = e.

