

AZ494A/C

General Description

The AZ494A/C is a voltage mode pulse width modulation switching regulator control circuit designed primarily for power supply control.

The AZ494A/C consists of a reference voltage circuit, two error amplifiers, an on-chip adjustable oscillator, a dead-time control (DTC) comparator, a pulse-steering control flip-flop, and an output control circuit. The precision of voltage reference (V_{REF}) is improved up to \pm 1% through trimming and this provides a better output voltage regulation. The AZ494A/C provides for pushpull or single-ended output operation, which can be selected through the output control.

The difference between AZ494A and AZ494C is that they have 4.95V and 5V reference voltage respectively.

The AZ494A/C is available in standard packages of DIP-16 and SOIC-16.

Features

- Stable 4.95V/5V Reference Voltage Trimmed to ±1.0% Accuracy
- Uncommitted Output TR for 200mA Sink or Source Current
- Single-End or Push-Pull Operation Selected by Output Control
- Internal Circuitry Prohibits Double Pulse at Either Output
- Complete PWM Control Circuit with Variable Duty Cycle
- On-Chip Oscillator With Master or Slave Operation

Applications

- SMPS
- · Back Light Inverter
- Charger

Figure 1. Package Types of AZ494A/C

AZ494A/C

Pin Configuration

Figure 2. Pin Configuration of AZ494A/C (Top View)

Output Function Control Table

Signal for Output Control	Output Function			
$V_{I} = GND$	Single-ended or parallel output			
$V_{I} = V_{REF}$	Normal push-pull operation			

Functional Block Diagram

Figure 3. Functional Block Diagram of AZ494A/C

Apr. 2006 Rev. 1. 2

BCD Semiconductor Manufacturing Limited

AZ494A/C

Ordering Information

Package Temperature Range	Part N	lumber	Mark	Packing Type		
	Tin Lead	Lead Free	Tin Lead	Lead Free	1 acking Type	
		AZ494AM	AZ494AM-E1	AZ494AM	AZ494AM-E1	Tube
SOIC-16 -40 to 85°C DIP-16	AZ494AMTR	AZ494AMTR-E1	AZ494AM	AZ494AM-E1	Tape & Reel	
	AZ494CM	AZ494CM-E1	AZ494CM	AZ494CM-E1	Tube	
	AZ494CMTR	AZ494CMTR-E1	AZ494CM	AZ494CM-E1	Tape & Reel	
		AZ494AP	AZ494AP-E1	AZ494AP	AZ494AP-E1	Tube
		AZ494CP	AZ494CP-E1	AZ494CP	AZ494CP-E1	Tube

BCD Semiconductor's Pb-free products, as designated with "E1" suffix in the part number, are RoHS compliant.

Advanced Analog Circuits Data Sheet

PULSE-WIDTH-MODULATION CONTROL CIRCUITS

AZ494A/C

Absolute Maximum Ratings (Note 1)

Parameter	Symbol	Value		Unit
Supply Voltage (Note 2)	V _{CC}	40		V
Amplifier Input Voltage	V_{I}	-0.3 to V _{CC} + 0.3		V
Collector Output Voltage	V_{O}	40		V
Collector Output Current	I_{O}	250		mA
Package Thermal Impedance	$R\theta_{JA}$	M Package	73	°C/W
(Note 3)		P Package	67	
Lead Temperature 1.6mm from case for 10 seconds		260		°C
Storage Temperature Range	T_{STG}	-65 to 150		°C
ESD rating (Machine Model)		200		V

Note 1: Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "Recommended Operating Conditions" is not implied. Exposure to "Absolute Maximum Ratings" for extended periods may affect device reliability.

Note 2: All voltage values are with respect to the network ground terminal.

Note 3: Maximum power dissipation is a function of $T_J(max)$, $R\theta_{JA}$ and T_A . The maximum allowable power dissipation at any allowable ambient temperature is $P_D = (T_J(max) - T_A)/R\theta_{JA}$. Operating at the absolute maximum T_J of 150°C can affect reliability.

Recommended Operating Conditions

Parameter	Symbol	Min	Тур	Max	Unit
Supply Voltage	V _{CC}	7	15	36	V
Collector Output Voltage	V_{C1}, V_{C2}		30	36	V
Collector Output Current (Each Transistor)	I_{C1}, I_{C2}			200	mA
Amplifier Input Voltage	V _I	0.3		V _{CC} - 2	V
Current Into Feedback Terminal	I_{FB}			0.3	mA
Reference Output Current	I _{REF}			10	mA
Timing Capacitor	C_{T}	0.00047	0.001	10	μF
Timing Resistor	R_{T}	1.8	30	500	ΚΩ
Oscillator Frequency	f _{osc}	1.0	40	200	KHz
PWM Input Voltage (Pin 3, 4, 14)		0.3		5.3	V
Operating Free-Air Temperature	T_{A}	-40		85	°C

BCD Semiconductor Manufacturing Limited

AZ494A/C

Electrical Characteristics

 $T_A = 25^{\circ}\text{C}$, $V_{CC}=20\text{V}$, f=10KHz unless otherwise noted.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit		
Reference Section	•		•		•			
Output Reference Voltage	V _{REF}	I _{REF} =1mA	4.90	4.95	5.0	V		
for AZ494A		$I_{REF}=1 \text{ mA}, T_A=-40 \text{ to } 85^{\circ}\text{C}$	4.85	4.95	5.05	V		
Output Reference Voltage	V _{REF}	I _{REF} =1mA	4.95	5.0	5.05	V		
for AZ494C		$I_{REF}=1 \text{ mA}, T_{A}=-40 \text{ to } 85^{\circ}\text{C}$	4.9	5.0	5.1	V		
Line Regulation	R _{LINE}	$V_{CC} = 7V$ to $36V$		2	25	mV		
Load Regulation	R _{LOAD}	I _{REF} =1mA to 10mA		1	15	mV		
Short-Circuit Output Current	I _{SC}	$V_{REF} = 0V$	10	35	50	mA		
Oscillator Section	-1	•		1				
		C_T =0.001 μ F, R_T =30 $K\Omega$,		40		KHz		
Oscillator Frequency	f_{OSC}	C_T =0.01 μ F, R_T =12 $K\Omega$	9.2	10	10.8			
Osemuloi i requency	TOSC	C_T =0.01 μ F, R_T =12 $K\Omega$, T_A = -40	9.0		12	KIIZ		
		to 85°C				İ		
Frequency Change with Temperature	$\Delta f/\Delta T$	$C_T=0.01\mu F, R_T=12K\Omega, T_A=-40$			1	%		
		to 85°C						
Dead-Time Control Section	•	_	•	•	•			
Input Bias Current	I _{BIAS}	V _{CC} =15V, V4= 0 to 5.25V		-2	-10	μΑ		
Maximum Duty Cycle,	D(MAX)	V _{CC} =15V, V4= 0V,	45			%		
		Pin 13= V _{REF}						
Input Threshold Voltage	V _{ITH}	Zero Duty Cycle		3	3.3	V		
		Maximum Duty Cycle	0					
Error-Amplifier Section	_	1	•					
Input Offset Voltage	V_{IO}	V3 = 2.5V		2	10	mV		
Input Offset Current	I_{IO}	V3 = 2.5V		25	250	nA		
Input Bias Current	I _{BIAS}	V3 = 2.5V		0.2	1	μΑ		
Common-Mode Input Voltage Range	V_{CM}	V _{CC} =7V to 36V	-0.3		V _{CC} -2	V		
Open-Loop Voltage Gain	G _{VO}	$V_{O} = 0.5 V$ to 3.5 V	70	95		dB		
Unity-Gain Bandwidth	BW			650		KHz		
Common-Mode Rejection Ratio	CMRR		65	80		dB		
Output Sink Current (Feedback)	I _{SINK}	$V_{ID} = -15 \text{mV} \text{ to } -5 \text{V},$ $V3 = 0.7 \text{V}$	-0.3	-0.7		mA		
Output Source Current (Feedback)	I _{SOURCE}	V _{ID} =15mV to 5V V3 = 3.5V	2			mA		

AZ494A/C

Electrical Characteristics (Continued)

Parameter		Symbol	Conditions	Min	Тур	Max	Unit
PWM Comparator Section	n	•		1			
Input Threshold Voltage		V _{ITH}	Zero duty cycle		4	4.5	V
Input Sink Current		I _{SINK}	V3 = 0.7V -0.3		-0.7		mA
Output Section		•	1	1			
Output Saturation Voltage	Common Emitter	V _{CE} (SAT)	$V_E = 0V, I_C = 200mA$		1.1	1.3	
	Emitter Follower	V _{CC} (SAT)	$V_{CC} = 15V,$ $I_E = -200 \text{mA}$		1.5	2.5	V
Collector Off-State Current		I _C (OFF)	V _{CE} = 36V, V _{CC} =36V		2	100	μΑ
Emitter Off-State Current		I _E (OFF)	$V_{CC} = V_C = 36V, V_E = 0$			-100	μА
Total Device		•		1			
Supply Current		I _{CC}	$Pin 6 = V_{REF}, V_{CC} = 15V$		6	10	mA
Output Switching Charac	teristics						
Rise Time		t _R	Common Emitter Common Collector		100	200	ns
Fall Time		t _F	Common Emitter Common Collector		25	100	ns

AZ494A/C

Parametr Measurement information

Figure 4. Operational Test Circuit and Waveforms

AZ494A/C

Parametr Measurement information (Continued)

Figure 5. Error Amplifier Characteristics

Note A: C_L includes probe and jig capacitance.

Figure 6. Common-Emitter Configuration

Note A: C_L includes probe and jig capacitance.

Figure 7. Emitter-Follower Configuration

AZ494A/C

Typical Performance Characteristics

Figure 8. Oscillator Frequency vs. RT and CT

Figure 9. Error Amplifier Small-Signal Voltage Gain vs. Frequency

AZ494A/C

Typical Applications

Figure 10. Pulse Width Modulated Step-Down Converter

AZ494A/C

Mechanical Dimensions

SOIC-16 Unit: mm(inch)

AZ494A/C

Mechanical Dimensions (Continued)

DIP-16 Unit: mm(inch)

http://www.bcdsemi.com

IMPORTANT NOTICE

BCD Semiconductor Manufacturing Limited reserves the right to make changes without further notice to any products or specifications herein. BCD Semiconductor Manufacturing Limited does not assume any responsibility for use of any its products for any particular purpose, nor does BCD Semiconductor Manufacturing Limited assume any liability arising out of the application or use of any its products or circuits. BCD Semiconductor Manufacturing Limited does not convey any license under its patent rights or other rights nor the rights of others.

MAIN SITE

BCD Semiconductor Manufacturing Limited
- Wafer Fab
Shanghai SIM-BCD Semiconductor Manufacturing Limited

Shanghai SIM-BCD Semiconductor Manufacturing Limited 800, Yi Shan Road, Shanghai 200233, China Tel: +86-21-6485 1491, Fax: +86-21-5450 0008

REGIONAL SALES OFFICE

Shenzhen Office

Shanghai SIM-BCD Semiconductor Manufacturing Co., Ltd. Shenzhen Office Advanced Analog Circuits (Shanghai) Corporation Shenzhen Office 27B, Tower C, 2070, Middle Shen Nan Road, Shenzhen 518031, China Tel: +86-755-8368 3987, Fax: +86-755-8368 3166 BCD Semiconductor Manufacturing Limited

- IC Design Group Advanced Analog Circuits (Shanghai) Corporation 8F, Zone B, 900, Yi Shan Road, Shanghai 200233, China Tel: +86-21-6495 9539, Fax: +86-21-6485 9673

Taiwan Office

BCD Semiconductor (Taiwan) Company Limited 4F, 298-1, Rui Guang Road, Nei-Hu District, Taipei, Taiwan

Tel: +886-2-2656 2808, Fax: +886-2-2656 2806

USA Office BCD Semiconductor Corporation 3170 De La Cruz Blvd., Suite 105, Santa Clara, CA 95054-2411, U.S.A Tel: +1-408-988 6388, Fax: +1-408-988 6386