Homework 6

Exercise 3 Show that Theorem 1 does not hold for the intersection of an infinite number of open sets.

Proof. We see that for all $a \in C$ we have $\{a\} = C \setminus (C \setminus a)$ is closed since $\{a\}$ is a finite set and so $C \setminus a$ must be open. Now consider a point $p \in C$ and consider the intersection

$$\bigcap_{a \in C, a \neq p} C \backslash a = \{p\}.$$

Since $C \setminus a$ is infinite, this is an intersection of an infinite number of open sets. But their intersection is $\{p\}$ which is closed.

Exercise 4 Show that Theorem 2 does not hold for the union of an infinite number of closed sets.

Proof. Similarly, we take a point $p \in C$ and then consider all the sets containing a single point other than p. Then we have

$$\bigcup_{a \in C, a \neq p} \{a\} = C \backslash p.$$

Since $\{a\}$ is finite, it is closed for all $a \in C$ and since $C \setminus p$ is open and so we have a union of an infinite number of closed sets equaling an open set.

Corollary 9 For all a < b both a and b are limit points of the region (a; b).

Proof. Suppose that there exist a < b such that a is not a limit point of (a;b). Then there exists a region R = (p;q) such that R contains a but contains no points in (a;b). But then p < a < q and we see that q < b, otherwise p < a < b < q and so $(a;b) \subseteq R$. Since a < q, we see there exists a $c \in C$ such that a < c < q. Thus p < c < q and so $c \in R$, but also a < c < b and so $c \in (a;b)$. This is a contradiction.

Similarly, if b is not a limit point of (a;b) then there exists a region R=(p,q) which contains b, but no points in (a;b). But then p < b < q and we see that a < p otherwise p < a < b < q and so $(a;b) \subseteq R$. So we see there exists a $c \in C$ such that p < c < b. Thus, p < c < q and so $c \in R$, but also a < c < b and so $c \in R$. This is a contradiction.

Corollary 10 Every point of a region is a limit point of that region.

Proof. Let A be a region and let $p \in A$. Then we see that for all regions R such that $p \in R$, we have $R \cap A = (a; b) \neq \emptyset$. We know that $p \in (a; b)$ and so there exists a $c \in (a; b)$ such that a < c < p. But then for all regions R we have $R \cap (A \setminus p) \neq \emptyset$ and so p is a limit point of A.

Corollary 11 Every nonempty region contains infinitely many points

Proof. Suppose to the contrary that a nonempty region contains a finite number of points. Then it has no limit points. But by Corollary 10 we know that every point is a limit point and so this is a contradiction. \Box

Corollary 12 Every point in C is a limit point of C

Proof. Let $p \in C$. Then we see that every region R which contains p contains infinitely many points and so for all regions R which contain p, we have $R \cap (C \setminus p) \neq \emptyset$.