

KATEDRA FYZIKY

LABORATORNÍ CVIČENÍ Z FYZIKY

Jméno Pavel Pernička		Datum měření 3.4.2025			
Semestr Letní 2025	Ročník 1.	Datum odevzdání 17.4.2025			
Stud. skupina 6	Lab. skupina 1031	Klasifikace			
Číslo úlohy	Název úlohy Měření síly půsol	Název úlohy Měření síly působící na proudovodič			

1 Úkol měření

Prozkoumejte závislost mezi proudem protékajícím vodičem v magnetickém poli a silou, jež na vodič působí.

2 Seznam použitých přístrojů

- $\bullet \ 2x$ Ručičkový ampérmetr
 - Třída přesnosti: 1,5
 - Rozsah pro měření I_m : 0 1 A
 - Rozsah pro měření I_L : 0 5 A
- Zdroj
 - DC výstup: 0 18 V, 0 5 A
 - AC výstup: 2-15 V, 5 A max
- Mechanická laboratorní váha
 - Nejmenší dílek stupnice: 0,01 g
- Proudovodičové smyčky
 - -l = 12,5 mm, 1 závit
 - -l=25 mm, 1 závit
 - -l = 50 mm, 1 závit
 - -l = 50 mm, 2 závity (budeme používat označení l = 100 mm)
- Elektromagnet
 - $-I_{max} = 1,3 \text{ A}$
 - $-R=6\Omega$
 - L = 24 mH
 - Podkovovité železné jádro se vzduchovou mezerou $d=10~\mathrm{mm}$
- Usměrňovací můstek
- Závěsné vodiče pro proudovodičové smyčky

3 Měření

3.1 Postup

- 1. Provedeme kontrolu měřicí aparatury a uvedeme ji do výchozího stavu. Ujistíme se, že v tuto chvíli neteče proud obvodem proudové smyčky, ani obvodem elektromagnetu.
- 2. Zvolíme jednu z proudových smyček a zavěsíme ji na rameno váhy. Připojíme kontakty ze zavěšeného vodiče.
- Pomocí posouvání závažíčka a otáčení vyvažovacího kolečka vyrovnáme rameno váhy a poznamenáme si tento stav pro pozdější využití pro přepočet na sílu působící na vodič.
- 4. Spínačem pustíme proud do obou obvodů a pozorujeme vychýlení váhy. Pomocí kolečka uvedeme váhu zpět do rovnovážného stavu a odečteme hodnotu.
- 5. Provedeme body 3 a 4 pro pět různých nastavení proudu, co protéká proudovou smyčkou (I_L) , přičemž při každém nastavení I_L provedeme pět dalších měření s různým nastavením I_m . Proud I_L volíme v rozsahu [1;5] A, proud I_m volíme nepřímo pomocí napěťového konfigurátoru na zdroji, abychom dostali proud v rozsahu [0,2;0,9] A. Volbu proudů I_m pro každou iteraci se zvoleným proudem I_L necháme vždy stejnou.
- 6. Pevně nastavíme I_L spolu s I_m a pomocí stejné metody nepřímo změříme síly při volbě různých proudovodičových přípravků.

3.2 Naměřené hodnoty

Pro různá nastavení proudu jsme naměřili pomocí váhy hmotnosti (Tabulky ??, ??), od kterých nejprve odečteme hmotnost při nulovém protékajícím proudu m_0 , abychom získali váhovou výchylku. Z té následně vypočítáme výslednou sílu pomocí vztahu:

$$F = (m - m_0) \cdot g \ [N], \quad g = 9,81 \ m \cdot s^{-2}, \quad m_{025} = 33,42 \ g, \quad m_{050} = 38,72 \ g$$

Výsledek je znázorněn tabulkami ??, ??. Dále jsme provedli měření při konstantním I_L a I_m s různými proudovými smyčkami. Ta byla zpracována obdobným způsobem a jsou znázorněna tabulkou ??.

$I_{\rm L}$	0,20 A	0,38 A	0,54 A	0,72 A	0,90 A
1 A	$33{,}43~\mathrm{g}$	33,53 g	33,67 g	$33{,}74~\mathrm{g}$	$33,\!84~{\rm g}$
2 A	$33,\!60~{\rm g}$	33,80 g	34,00 g	34,16 g	$34,\!35~{\rm g}$
3 A	33,70 g	34,00 g	34,27 g	$34,\!60~{\rm g}$	$34,\!85~{ m g}$
4 A	33,81 g	34,20 g	34,55 g	34,93 g	$35,\!33~{ m g}$
5 A	33,93 g	34,41 g	34,87 g	35,41 g	$35,\!80~{ m g}$

Tabulka 1: Naměřené hodnoty pro smyčku délky $l=25~\mathrm{mm}$

$I_{\rm L}$	0,20 A	0,38 A	0,54 A	0,72 A	0,90 A
1 A	38,97 g	39,13 g	39,33 g	39,50 g	39,67 g
2 A	39,20 g	39,54 g	39,90 g	40,24 g	40,57 g
3 A	39,40 g	39,92 g	40,47 g	41,00 g	41,42 g
4 A	$39,\!67~{\rm g}$	40,33 g	41,02 g	41,73 g	42,30 g
5 A	39,89 g	40,70 g	41,52 g	42,42 g	43,21 g

Tabulka 2: Naměřené hodnoty pro smyčku délky $l=50~\mathrm{mm}$

$I_{\rm L}$	0,20 A	0,38 A	0,54 A	0,72 A	0,90 A
1 A	0,10 mN	1,08 mN	$2,45~\mathrm{mN}$	$3,14~\mathrm{mN}$	4,12 mN
2 A	1,77 mN	3,73 mN	$5,69~\mathrm{mN}$	$7{,}26~\mathrm{mN}$	9,12 mN
3 A	$2,75~\mathrm{mN}$	5,69 mN	8,34 mN	11,58 mN	14,03 mN
4 A	3,83 mN	7,65 mN	11,09 mN	14,81 mN	18,74 mN
5 A	5,00 mN	9,71 mN	14,22 mN	$19{,}52~\mathrm{mN}$	23,35 mN

Tabulka 3: Spočítané síly pro délku smyčky $l=25~\mathrm{mm}$

$I_{\rm L}$	0,20 A	0,38 A	0,54 A	0,72 A	0,90 A
1 A	$2,45~\mathrm{mN}$	$4{,}02~\mathrm{mN}$	5,98 mN	$7,65~\mathrm{mN}$	$9,32~\mathrm{mN}$
2 A	4,71 mN	8,04 mN	11,58 mN	14,91 mN	18,15 mN
3 A	$6,67~\mathrm{mN}$	$11{,}77~\mathrm{mN}$	17,17 mN	$22,37~\mathrm{mN}$	26,49 mN
4 A	$9,32~\mathrm{mN}$	$15{,}79~\mathrm{mN}$	22,56 mN	29,53 mN	35,12 mN
5 A	11,48 mN	19,42 mN	27,47 mN	$36,30~\mathrm{mN}$	44,05 mN

Tabulka 4: Spočítané síly pro délku smyčky l = 50 mm

Délka $l\ [\mathrm{mm}]$	12,5	25	50	100
Síla F [mN]	8,44	14,81	29,53	54,25

Tabulka 5: Závislost síly na délce smyčky pro $I_m=0.9\,\mathrm{A}$ a $I_l=3\,\mathrm{A}$

4 Výpočty

Abychom potvrdili naše výsledky, srovnáme naměřené síly s teoreticky vypočítanými silami podle vzorce:

$$F = B \cdot I_L \cdot l$$

Srovnání provedeme na datech závislost síly na délce smyčky z tabulky ?? a ukážeme v tabulce ??. Druhé srovnání provedeme na datech závislosti síly na proudu I_m při $I_L = 1$ A a l = 50 mm v prvním řádku tabulky ??.

Vzhledem k tomu, že magnetické pole je kolmé na proud protékaný smyčkou a známe magnetickou indukci $B_0 = 168 \ mT$ při $I_m = 0,87 \ A$, z přímé úměry můžeme vypočítat B při všech měřených proudech I_m . Tento převod je dán tabulkou ??.

Proud I_m [A]	0,2	0,38	0,54	0,72	0,90
Indukce B [mT]	38,62	73,38	104,28	139,03	173,79

 ${\bf Tabulka}$ 6: Vypočtená magnetická indukce pro jednotlivé proudy I_m

Délka $l\ [{ m mm}]$	12,5	25	50	100
Síla F [mN]	6,52	13,03	26,07	52,14

Tabulka 7: Teoretická síla pro jednotlivé délky smyčky za proudů $I_m=0.9\,\mathrm{A}$ (tedy B=) a $I_l=3\,\mathrm{A}$

Proud I_m [A]	0,2	0,38	0,54	0,72	0,90
Indukce B [mT]	38,62	73,38	104,28	139,03	173,79
Síla F [mN]	1,93	3,67	5,21	6,95	8,69

Tabulka 8: Teoretická síla pro smyčku $l=50\ mm$ při proudu $I_L=1\ A$

5 Grafy

Abychom ukázali linearitu závislosti naměřených veličin k sobě navzájem, vykreslili jsme je do grafů – graf ?? ukazuje závislost naměřené síly na proudu I_L , graf ?? závislost síly na magnetizačním proudu I_m . Naměřenými body byla proložena přímka pomocí metody nejmenších čtverců.

Obdobným způsobem je zpracována závislost síly na délce proudovodičové smyčky v grafu \ref{smyz} . Zde je vykreslena i teoretická síla vypočítaná v předchozí sekci v tabulce \ref{smyz} . Stejně jsme srovnali naměřenou sílu při měnící se I_m s teoretickými hodnotami v grafu \ref{smyz} .

U obou grafů s porovnáním můžeme vidět, že směrnice proložené přímky a přímky teoretických sil jsou téměř stejné, tedy datové série se navzájem liší jen o konstantu.

 $\mathbf{Obrázek}$ 1: Závislost síly F na I_L přil=50~mm

 $\mathbf{Obrázek}$ 2: Závislost síly F na I_m přil=50~mm

 $\mathbf{Obrázek}$ 3: Srovnání závislost síly F na $I_m \ (I_L=1\ A,\ l=50\ mm)$ s teoretickými hodnotami

Obrázek 4: Srovnání závislosti síly F na délce l $(I_m=0,90\ A,\ I_L=3\ A)$ s teoretickými hodnotami

6 Nejistoty

Prvotní nejistota, kterou bychom měli zahrnout, je standardní nejistota typu $\mathrm{B}-u_B$, která pochází z nepřesnosti použitých měřicích přístrojů a je dána vztahem:

$$u_B = \frac{2 \cdot R \cdot (TP/100)}{\sqrt{12}}$$

kde R je rozsah přístroje a TP je třída přesnosti přístroje. Pro váhu použijeme jen vztah:

$$u_B = \frac{\Delta}{\sqrt{12}}$$

kde Δ je velikost nejmenšího dílku na stupnici. Pomocí těchto vztahů můžeme postupně vyjádřit u_B pro jednotlivá zařízení: laboratorní váhy a ampérmetry pro měření I_m a I_L :

$$u_B(m) = \frac{0.01}{\sqrt{12}} = 0.0029 \ g$$

$$u_B(I_m) = \frac{2 \cdot (1, 5/100)}{\sqrt{12}} = 0,0086 \ A \quad u_B(I_L) = \frac{10 \cdot (1, 5/100)}{\sqrt{12}} = 0,0433 \ A$$

Dále pak jsme schopni vyjádřit nepřesnost našeho měření pomocí proložení přímky našimi daty. K tomuto účelu využijeme tabulku $\ref{eq:condition}$ a polynom získaný při tvorbě grafu, pomocí něhož vypočítáme střední kvadratickou odchylku námi naměřených od hodnot na proložené přímce. Toto provedeme pro závislost F na I_m a pro F na I_L zvlášť podle vzorce:

$$\delta = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2}$$

kde y_i jsou naměřené hodnoty, \hat{y}_i jsou hodnoty z proložené přímky a n je počet bodů.

Z odchylek pro oboje závislosti dále vypočítáme celkovou odchylku pomocí vztahu (m a n jsou počty měření jednotlivých proudů):

$$\delta_{ALL} = \sqrt{\frac{1}{2} \left(\frac{1}{m} \sum_{i=1}^{m} \delta(I_m)_i^2 + \frac{1}{n} \sum_{j=1}^{n} \delta(I_L)_j^2 \right)}$$

Pomocí výpočetního skriptu v jazyce Python získáváme hodnotu:

$$\delta_{ALL} = 0,252 \ mN$$

7 Závěr

Fyzikální teorie předpokládá, že velikost síly F působící na proudovodič v homogenním magnetickém poli je přímo úměrná délce vodiče l, velikosti magnetické indukce B (resp. magnetizačnímu proudu I_m) a velikosti proudu I_L protékajícího vodičem, tedy že platí vztah:

$$F = B \cdot I_L \cdot l$$

Na základě experimentálních dat lze tuto závislost potvrdit. Závislost síly na všech třech proměnných byla ověřena pomocí několika měření a grafů, které prokázaly téměř lineární průběh. Výsledky měření vzhledem k malé odchylce δ_{ALL} od proložených přímek odpovídají teoretickému předpokladu.

Mezi pravděpodobné zdroje nepřesností patří:

- nepřesný odečet z vah způsobený např. rozkmitem,
- fakt, že magnetické pole není i při malé vzdálenosti zcela homogenní,
- nepřesnosti v konstrukci měřicí aparatury, např. nesymetrické zavěšení smyčky a hmotnost napájecích vodičů k ní),
- nedokonalé vyvážení při kalibraci váhy na začátku měření (lze vidět jako posun přímky o konstantu na porovnání s vypočtenými silami v grafech ?? a ??).

Seznam použité literatury

- [1] Milan Červenka, Karel Malinský. *Měření síly působící na proudovodič*. Laboratorní úloha, 2013. Dostupné online: https://planck.fel.cvut.cz/praktikum/downloads/navody/proudovahy.pdf.
- [2] Milan Červenka. Zpracování fyzikálních měření. Studijní text pro fyzikální praktikum, 2020. Dostupné online: https://planck.fel.cvut.cz/praktikum/downloads/navody/zpracdat.pdf.