Linear Congruences $ax \equiv b \mod m$

<u>Theorem</u> 1. If (a, m) = 1, then the congruence $ax \equiv b \mod m$ phas exactly one solution modulo m.

Constructive. Solve the linear system

$$sa + tm = 1.$$

Then

$$sba + tbm = b.$$

So

$$sba \equiv b \pmod{m}$$

gives the solution x = sb.

If u_1 and u_2 are solutions, then

$$au_1 \equiv b \pmod{m}$$
 and $au_2 \equiv b \pmod{m}$
 $\implies au_1 \equiv au_2 \pmod{m}$
 $\implies u_1 \equiv u_2 \pmod{m}$ since $(a, m) = 1$.

So there is only one solution.

Example 1. $3x \equiv 50 \pmod{113}$

Note that $ax \equiv b \pmod{m}$ implies ax = b + qm for some integer q. So a common divisor of a, m also divides b.

Example 2. $5x \equiv 1 \pmod{15}$ is not solvable.

Theorem 2. Consider the congruence $ax \equiv b \pmod{m}$.

- 1. The congruence has a solution if and only if $(a, m) \mid b$.
- 2. If u_0 is any particular solution, then a complete set of solutions is:

$$u_0, u_0 + \frac{m}{g}, u_0 + \frac{2m}{g}, \dots, u_0 + \frac{(g-1)m}{g}$$

where g = (a, m). Thus there are g solutions.

3. A particular solution u_0 can be obtained by solving the congruence

$$\frac{a}{g}x \equiv \frac{b}{g} \pmod{\frac{m}{g}}$$

This is possible since $(\frac{a}{g}, \frac{m}{g}) = 1$. (See last theorem.)

Example 3. $42x \equiv 12 \pmod{78}$

Proof.

1. If
$$ax \equiv b \pmod{m}$$
 has a solution and $g = (a, m)$, then clearly $g|b$.

3. Suppose g = (a, m) and g|b.

Then
$$\left(\frac{a}{g}, \frac{m}{g}\right) = 1$$
. So we can find a u_0 such that $\frac{a}{g}u_0 \equiv \frac{b}{g} \pmod{\frac{m}{g}}$
Therefore, $au_0 \equiv b \pmod{m}$.

2. Suppose u_0 is a solution. Then

$$u = u_0 + t \frac{m}{g}$$

$$\implies au = au_0 + at \frac{m}{g}$$

$$\implies au = au_0 + \frac{a}{g}tm$$

$$\implies au = au_0 \pmod{m}$$

$$\implies au = b \pmod{m}.$$

So u is a solution.

Suppose, on the other hand, that u is a solution. Then

$$au \equiv au_0 \equiv b \pmod{m}$$

$$\implies a(u - u_0) \equiv 0 \pmod{m}$$

$$\implies \frac{a}{g}(u - u_0) \equiv 0 \pmod{\frac{m}{g}}$$

$$\implies u - u_0 \equiv 0 \pmod{\frac{m}{g}}$$

$$\implies u - u_0 = t \frac{m}{g}.$$

Let $j \equiv t \pmod{g}$ where $0 \le j \le g - 1$. Then

$$t\frac{m}{g} \equiv j\frac{m}{g} \pmod{m}$$

$$\implies u - u_0 \equiv j\frac{m}{g} \pmod{m}$$

$$\implies u \equiv u_0 + j\frac{m}{g} \pmod{m},$$
where $0 \le j \le g - 1$.

It is easy to check that no two of the numbers $u_0 + j\frac{m}{g}$ $(0 \le j < g)$ are congruent modulo m.