Genetic Algorithm

Aminul Huq

Introduction

- Provides effective and efficient solution to Machine Learning and Optimization problems
- Follows a biological approach that is why it is named as such.
- Widely used in Business, Scientific and Engineering field.

Terminology

- Chromosome/Gene
- Population
- Fitness Function
- Crossover
- Mutate
- Offspring

Flowchart

Main Tasks

Parents Selection

Choose best parents based on fitness function

Crossover

Mutate

11100111 — 11100101

Q1. Find the maximum value for the given function $f(x) = x^2$. The domain of x is [0,31]

Ans:

Step 1: Generate initial population.

01101(13), 11000(24), 01000(8), 10011(19)

Step 2: Calculate the fitness score

13 -> 169, 24 -> 576, 8 -> 64, 19 -> 361

Step 3: Select Parents

$$p_{i} = f_{i} / \sum_{i} f_{i}$$
 for i = 1,2,...n

String No	Chromosome	X value	Fitness Score (f _i)	p _i
1	01101	13	169	0.14
2	11000	24	576	0.49
3	01000	8	64	0.06
4	10011	19	361	0.31
SUM			1170	1

Step 4: Crossover

String No	Mating Pool	Crossover point	Offspring	X value	Fitness Score (f _i)
1	0110 <mark> </mark> 1	3	01100	12	144
2	1100 <mark> </mark> 0	3	1100 <mark>1</mark>	25	625
2	11 000	1	11011	27	729
4	10 <mark> </mark> 011	1	10000	16	256
SUM					1754

Step 5: Mutate

String No	Offspring	Mutation Point	Offspring (After mutation)	X value	Fitness Score (f _i)
1	01100	0	<mark>1</mark> 1100	26	676
2	11001	N/A	11001	25	625
2	11011	N/A	11011	27	729
4	10000	2	10100	18	324
SUM					2354

Q2. Based on the information below try to maximize the value of the 0/1 knapsack problem when the size of your knapsack is 12Kg.

Item	Weight	Value
А	5 Kg	\$12
В	3 Kg	\$5
С	7 Kg	\$10
D	2 Kg	\$7

Step 1: Generate Population.

Assume each position of a 4 bit string as an item. 0 Presents not selecting an item while 1 presents selecting an item.

Step 2: Calculate the fitness score

Step 3: Select Parents

$$p_{i} = f_{i} / \sum_{i} f_{i}$$
 for i = 1,2,...n

String No	Chromosome	Weight	Fitness Score (f _i)	p _i
1	0110	10	15	0.38
2	1000	2	7	0.18
3	1111	17	34	N/A
4	0011	9	17	0.44
SUM			39	1

Step 4: Crossover

String No	Mating Pool	Crossover point	Offspring	Weights	Fitness Score (f _i)
1	0 110	0	0110	10	15
4	0 011	0	0011	9	17
2	100 0	2	1001	5	12
4	001 1	2	0010	7	10
SUM					54

Step 5: Mutate

String No	Offspring	Mutation Point	Offspring (After mutation)	Weights	Fitness Score (f _i)
1	0110	0	1 110	15	27
4	0011	3	0010	7	10
2	1001	1	1 <mark>1</mark> 01	10	24
4	0010	0	1 010	12	22
SUM					56

Homework

Q1. You are to produce the following string "I_LOVE_AI" using the following characters "ABC...Z_" (27 in total). Use GA to produce this string. Each chromosome is to be of 9 characters. Fitness function can be the distance between each character.