新疆大学 2018-2019 学年二学期 课程考试试卷答案(A卷)

课程名称:线性代数 考试时间: 120分钟 年级: xxx 级

			₹ TK: XXX	
题目部分,	(卷面共有 27 题,	100分,	各大题标有题量和总分)	

V.E.V. man				
题目部分,(卷面共有 27 题, 100 分,各大题标有题量和总分)				
一、选择题(5小题,共10分)				
1、已知四阶行列式 D 的第二列元素及其余子式为 $a_{12}=1, a_{22}=3, a_{32}=-2, a_{42}=2$,				
$M_{12} = 3, M_{22} = -2, M_{32} = 1, M_{42} = 1$ D= ()				
A. 5 B3 C. 3 D5 答案: D				
2、已知 A , B , C 均为 n 阶矩阵, E 为单位矩阵,且满足 $ABC=E$,则下列结论必				
然成立的是 (). A. $ACB=E$ B. $BCA=E$ C. $CBA=E$ D. $BAC=E$ 答案: B 3、对方程组 $Ax=b$ 与其导出组 $Ax=0$,下列命题正确的是(). A. $Ax=0$ 有解时, $Ax=b$ 必有解. B. $Ax=0$ 有无穷多解时, $Ax=b$ 有无穷多解. C. $Ax=b$ 无解时, $Ax=0$ 也无解. D. $Ax=b$ 有惟一解时, $Ax=0$ 只有零解. 答案: D 4、设向量 $\alpha=(-1,0,1,2)$, $\beta=(1,0,1,0)$,则 $2\alpha+3\beta=$ (). A. $(1,0,5,4)$ B. $(1,0,-5,4)$ C. $(-1,0,5,4)$ D. $(1,0,5,-6)$ 答案: A				
5、设二次型的标准形为 $f = y_1^2 - y_2^2 - 3y_3^2$,则二次型的正惯性指标为()				
A. 2 B1 C. 1 D. 3				
答案: C				
二、判断 (5 小题, 共 10 分)				
1、一个偶排列的逆序数为 a,那么至少经过 a 次变换成为自然顺序()				
答案: √				

2、 秩(A+B)=秩A, 当且仅当秩B=0。 () 答案: \times

3、基础解系中解向量的个数等于系数矩阵的秩. ()

答案: X

4、若两个向量组等价,则它们含有相同个数的向量.()

答案: ×

5、如果 4 阶方阵 A 与 4E 相似,则 A 的特征值为 1. ()

答案: X

三、填空题(10小题,共20分)

1、行列式
$$\begin{vmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \end{vmatrix} = \underline{\hspace{1cm}}.$$

答案: 0

答案: 24

3、
$$\alpha = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$$
, $\beta = \begin{pmatrix} t \\ 3 \\ 2 \end{pmatrix}$, 且 $\alpha^T \beta = 4$, 则 $t =$ ______。

答案: -4

4、若 4 阶矩阵 A 的行列式 |A| = -5, A^* 是 A 的伴随矩阵,则 $|A^*| = _____$ 。 答案: -125

5、设 η_1 , η_2 , η_s 都是非齐次线性方程组Ax = b的解,若

$$c_1\eta_1+c_2\eta_2+\cdots+c_s\eta_s$$
 也是方程组 $Ax=b$ 的解,则 $c_1+c_2+\cdots+c_s=$ ______.

答案: 1

6、设矩阵
$$A = \begin{bmatrix} 1 & 0 & -1 & -2 \\ 2 & -1 & -2 & 6 \\ 3 & -1 & t & 4 \end{bmatrix}$$
的秩为 2,则 $t =$ _____.

答案: t=-3

7、设
$$\vec{a} = (2,1,4,7)^{\mathrm{T}}$$
,若 $\vec{a} - \vec{b} = 3(\vec{a} + \vec{b})$,则 $\vec{b} =$ ______.

答案:
$$(1,\frac{1}{2},2,\frac{7}{2})^T$$

8 、 已 知 向 量 组
$$\alpha_1$$
 = (3,2,2,1), α_2 = (3,0, t ,0), α_3 = (1,-2,4,-1) 的 秩 为 2 , 则 t = _____。

答案: 9/2

9、
$$x = (1,2a-1,3a)^T$$
, $y = (1,1,a)^T$, 且 x 与 y 正交,则 $a =$ ______

答案:
$$0$$
 或者 $-\frac{2}{3}$

10、设 A 为 3 阶方阵,且有 | A−E | =0, | A−2E | =0, | A−3E | =0. 则 | A^{-1} |= ______

答案: 1/6

四、计算(5小题,共50分)

1、计算 4 阶行列式
$$D = \begin{vmatrix} 2 & 3 & 4 & 5 \\ 3 & 4 & 5 & 6 \\ 4 & 5 & 6 & 7 \\ 5 & 6 & 7 & 8 \end{vmatrix}$$
.

答案: 解:
$$D = \begin{vmatrix} 2 & 3 & 4 & 5 \\ 3 & 4 & 5 & 6 \\ 4 & 5 & 6 & 7 \\ 5 & 6 & 7 & 8 \end{vmatrix} = \begin{vmatrix} 2 & 3 & 4 & 5 \\ 3 & 4 & 5 & 6 \\ 4 & 5 & 6 & 7 \\ 1 & 1 & 1 & 1 \end{vmatrix} = \begin{vmatrix} 2 & 3 & 4 & 5 \\ 3 & 4 & 5 & 6 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{vmatrix} = 0$$

2、设
$$A = \begin{pmatrix} 0 & 3 & 3 \\ 1 & 1 & 0 \\ -1 & 2 & 3 \end{pmatrix}$$
且 $AB = A + 2B$,求 B 。

答案: AB-2B=A → (A-2E)B=A → B=(A-2E)⁻¹ A

(2)
$$A-2E = \begin{pmatrix} -2 & 3 & 3 \\ 1 & -1 & 0 \\ -1 & 2 & 1 \end{pmatrix}, \qquad (A-2E)^{-1} = \frac{1}{2} \begin{pmatrix} -1 & 3 & 3 \\ -1 & 1 & 3 \\ 1 & 1 & -1 \end{pmatrix}$$

(3)
$$B = (A - 2E)^{-1}A = \begin{pmatrix} 0 & 3 & 3 \\ -1 & 2 & 3 \\ 1 & 1 & 0 \end{pmatrix}$$

3、设有线性方程组
$$\begin{cases} x_1 + 3x_2 + x_3 = 6 \\ 3x_1 + 2x_2 + 3x_3 = -3, & 问 a、b 为何值时,方程组①有唯一 \\ -x_1 + 4x_2 + ax_3 = b \end{cases}$$

解?

②无解?③有无穷多解?在有无穷多解时求通解(用基础解系表示)。 答案:对方程组的增广矩阵进行初等行变换,根据方程组的解与系数矩阵的秩 和增广矩阵的秩之间的关系即得

$$(A|b) = \begin{bmatrix} 1 & 3 & 1 & | & 6 \\ 3 & 2 & 3 & | & -3 \\ -1 & 4 & a & | & b \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 3 & 1 & | & 6 \\ 0 & 7 & 0 & | & 21 \\ 0 & 0 & a+1 & | & b-13 \end{bmatrix}$$

当a ≠ -1时,方程组有唯一解(系数行列式非零);

当a=-1且 $b \neq 13$ 时,方程组无解($rank(A) \neq rank(A|b)$);

此时齐线性方程组的基础解系为 $\begin{pmatrix} 1\\0\\-1 \end{pmatrix}$,非齐线性方程组的特解为 $\begin{pmatrix} 0\\3\\-3 \end{pmatrix}$,

通解为
$$\eta = \begin{pmatrix} 0 \\ 3 \\ -3 \end{pmatrix} + \boldsymbol{k}_1 \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$$
。

4、已知向量组
$$\alpha_1 = \begin{pmatrix} a \\ 0 \\ c \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} b \\ c \\ 0 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 0 \\ a \\ b \end{pmatrix}$, 线性无关试确定 a,b,c 满足

什么关系。

答案: 解: 向量组 α_1 , α_2 , α_3 线性无关,则 $\begin{vmatrix} a & b & 0 \\ 0 & c & a \\ c & 0 & b \end{vmatrix} \neq 0$, 所以 $abc \neq 0$ 。

5、已知
$$A = \begin{pmatrix} 2 & -1 & 2 \\ 5 & a & 3 \\ -1 & b & -2 \end{pmatrix}$$
的一个特征向量是 $\zeta = (1, 1, -1)^{\text{T}}$,确定 a, b 以及 ζ 的

特征值。

答案: 解: 设 A 的关于 ζ 的特征值为 λ ,则 $A\zeta = \lambda \zeta$.

$$A\zeta = \begin{pmatrix} 2 & -1 & 2 \\ 5 & a & 3 \\ -1 & b & -2 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix} = \begin{pmatrix} -1 \\ 2+a \\ 1+b \end{pmatrix} = \lambda\zeta = \begin{pmatrix} \lambda \\ \lambda \\ -\lambda \end{pmatrix}$$

解得 $\lambda = -1$, a = -3, b = 0.

五、证明(2小题,共10分)

1、设 α_1 , α_2 α_n 是由n 个向量构成的n 维向量组,证明: n 维单位坐标向量组可由向量组 α_1 , α_2 α_n 线性表示的充要条件是 R(A)=n,其中 $A=\left(\begin{array}{ccccc} \alpha_1, & \alpha_2 & \ldots & \alpha_n \end{array}\right)$ 为 $n\times m$ 矩阵。

试卷答案 第 5 页 (共 6 页)

答案: 证明: 向量组 e_1,e_2,\ldots,e_n 能由向量组 α_1 , α_2 α_n 线性表示的充要条件是 R(A)=R(A,E), 而 $n=R(E)\leq R(A,E)\leq n$ 即 R(A)=n

2、证明如果A为n阶正交阵,则其逆矩阵A⁻¹也是正交阵答案:

证明:因为A是正交阵,故AA^T = E, 从而 $(A^T)^1A^{-1}$ = E,则 $(A^{-1})^TA^{-1}$ = E 所以A⁻¹是正交阵