Vzorce povolené jako pomůcka k Zp a Zk z KMA/PSA - ak.r.2016/17

DISKRÉTNÍ ROZDĚLENÍ: (P(k)...ppstní fce)

• $X \sim A(p)$ - alternativní, $p \in (0,1)$: P(0) = 1 - p, P(1) = p

• $X \sim Bi(n,p)$ - **binomické** : $P(k) = \binom{n}{k} p^k (1-p)^{n-k}$ pro k = 0, 1, ..., n

• $X \sim HG(N, K, n)$ - hypergeometrické: $P(k) = \frac{\binom{K}{k} \cdot \binom{N-K}{n-k}}{\binom{N}{n}}$

• $X \sim Po(\lambda)$ - **Poissonovo**, $\lambda > 0$: $P(k) = e^{-\lambda} \cdot \frac{\lambda^k}{k!}$ pro $k = 0, 1, 2, \dots$. Pro $n \geq 30$ a $p \leq 0, 1$ je $Bi(n, p) \approx Po(n \cdot p)$.

SPOJITÁ ROZDĚLENÍ: (f(x))...hustota ppsti, F(x)...distribuční fce)

• $X \sim R(a,b)$ - **rovnoměrné**: $f(x) = \frac{1}{b-a}$ pro $x \in (a,b)$, f(x) = 0 jinde.

• $X \sim Exp(\delta)$ - exponenciální, $\delta > 0$: F(x) = 0 pro $x \le 0$, $F(x) = 1 - e^{-\frac{x}{\delta}}$ pro x > 0

• $X \sim N(\mu, \sigma^2)$ - normální, $\mu \in \mathbb{R}$, $\sigma^2 > 0$: $f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$ Je-li $n p (1-p) \ge 9$, pak $Bi(n, p) \approx N(np, np (1-p))$. Je-li $\lambda \ge 9$, pak $Po(\lambda) \approx N(\lambda, \lambda)$.

100 $(1-\alpha)$ %-ní INTERVALY SPOLEHLIVOSTI:

[
$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$
 , $s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2$, $s = \sqrt{s^2}$]

• pro parametr p rozdělení A(p): $\hat{p} \pm u_{1-\frac{\alpha}{2}} \cdot \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$, $kde \ \hat{p} = \bar{x}$, $n\hat{p}(1-\hat{p}) \geq 9$

• pro parametr μ rozdělení $N(\mu, \sigma^2)$: $\bar{x} \pm t_{1-\frac{\alpha}{2}}(\nu) \cdot \frac{s}{\sqrt{n}}$, kde $\nu = n-1$

• pro parametr σ^2 rozdělení $N(\mu, \sigma^2)$: $\left(\frac{(n-1)\,s^2}{\chi_{1-\frac{\alpha}{2}}(\nu)}, \frac{(n-1)\,s^2}{\chi_{\frac{\alpha}{2}}(\nu)}\right)$, kde $\nu = n-1$

TESTOVÁ KRITÉRIA:

• test parametru p rozdělení $A(p): u = \frac{\hat{p}-p}{\sqrt{p(1-p)}} \sqrt{n}$, kde $\hat{p} = \bar{x}$, $n\hat{p}(1-\hat{p}) \ge 9$

• test parametru μ rozdělení $N(\mu, \sigma^2)$: $t = \frac{\bar{x} - \mu}{s} \sqrt{n}$ (resp. $u = \frac{\bar{x} - \mu}{s} \sqrt{n}$, je-li $n \ge 30$)

• Chí-kvadrát test dobré shody: $\chi^2 = \sum_{i=1}^k \frac{\left(n_i - n_i^O\right)^2}{n_i^O}$, kde $n_i^O \ge 5 \ \forall \ i=1,\ldots,k$

• Chí-kvadrát test nezávislosti: $\chi^2 = \sum_{i=1}^r \sum_{j=1}^s \frac{\left(n_{ij} - n_{ij}^O\right)^2}{n_{ij}^O}$, kde $n_{ij}^O > 5 \ \forall \ i = 1, \dots, k$

• test nezávislosti (výběry z $N_2(\vec{\mu}, \Sigma)$): $t = \frac{r}{\sqrt{1-r^2}} \sqrt{n-2}$, kde $r = \frac{\frac{1}{n} \sum x_i y_i - \bar{x} y}{s_x \cdot s_y}$

• t-test shody středních hodnot: $H_0: \mu_1 = \mu_2$

- pro závislé výběry: $t = \frac{\overline{z}}{s_z} \sqrt{n}$, kde $z_i = y_i - x_i$. Platí-li H_0 , je $t \sim t(\nu)$, kde $\nu = n - 1$.

- pro nezávislé výběry: $t = \frac{\bar{x} - \bar{y}}{\sqrt{\frac{1}{n_1} s_1^2 + \frac{1}{n_2} s_2^2}}$. Platí-li H_0 , je $t \sim t(\nu)$, kde $\nu = min(n_1, n_2) - 1$.

• F-test shody rozptylů: $f = \frac{s_1^2}{s_2^2}$. (12.9.2016,Z.K.)