芯动力——硬件加速设计方法

第四章逻辑综合(4)

邸志雄@西南交通大学 zxdi@home.swjtu.edu.cn

ASIC设计流程

有没有遗漏的约束?

供电电压

外界的温度

• 延时会相应的改变, 所以这些方面也是必须考虑到的。

电平转化时间

transition time

• 这些是有输入输出的外围电路的驱动能力和负载大小决定的。

有没有遗漏的约束?

• 电路内部的互连线的延时也没有估计在内。

我们主要讨论怎样给电路施加这些环境属性

Capacitive Load

为了更加准确的估计模块输出的时序

输出延时

输出所接电路的负载情况

如果输出负载过大会加大电路的 transition time, 影响时序特性。

Capacitive Load

• 由于 DC 默认输出负载为 0 即相当于不接负载的情况,这样综合出来的电路时序显然过于乐观,不能反映实际工作情况。

set_load 5 [get_ports OUT1]

 Use set_load load_of lib/cell/pin to place the load of a gate from the technology library on the port:

set_load [load_of my_lib/and2a0/A] [get_ports OUT1]

set_load [expr [load_of my_lib/inv1a0/A] * 3] OUT1

Input Drive Strength

- 为了精确计算输入电路的时序,DC需要知道input port的 transition时间
 - set_driving_cell 允许用户可以自行定一个实际的外部驱动cell:
 - 默认情况下, DC假定外部信号的transition time 为 0
 - 可以让DC能够计算一个实际的(non-zero) transition time

dc_shell-t> set_driving_cell -lib_cell and2a0 \[get_ports IN1]

设置工作条件

• 一旦工作条件发生了改变, 电路的时序特性也必将受到影响

• 单元的延时会随着温度的上升而增加;随着电压的上升而减小;随着工艺尺寸的增大而增大。

设置工作条件

因此它在工艺库中提供了几种工作条件的模型(operating condition model)以供设计者选择。

一般综合只要考虑到两种情况: 最差情况用于作基于建立时间 (setup **的时**序分析, 最好情况用于作基于保持时间(hold time)的时序分析。

Net Delays

- 在 DC 综合的过程中,连线延时是通过设置连线负载模型 (wire load model)确定的。
- 连线负载模型基于连线的扇出,估计它的电阻电容等寄生参数,它是也是由 Foundry 提供的。
- Foundry 根据其他用这个工艺流片的芯片的连线延时进行统计,从而得到这个值。

Example: Wire Load Model: Standard Format

Name : 160KGATES

Location : ssc_core_slow Regrunit length

Resistance : 0.000271

Capacitance : 0.00017 C per unit length

Area : 0

Slope : 50.3104 Extrapolation slope

Fanout Length

1 31.44

2 81.75

3 132.07

4 182.38

5 232.68

Time Unit : 1ns

Capacitive Load Unit : 1.00000pf

Pulling Resistance Unit: 1kilo-ohm

Location : ssc_core_slow er unit length

Resistance : 0.000271

Capacitance : 0.00017 Cpcrunit length

Area : 0

Slope : 50.3104 Extrapolation slope

Fanout Length
-----1 31.44

2 81.75 3 132.07 4 182.38 5 232.68

132.07 182.38 单位长度的电阻以及电容值

计算出它的电阻和 电容的大小

估算连线延时

连线的扇出

根据扇出查表,得出长度

· 若扇出值超出表中的值(假设为 7) , 那么 DC 就要根据扇出和长度的斜率(Slope)推算出此时的连线长度来。

- 在每一种工作条件下都会有很多种负载模型,各种负载模型对应不同大小的模块的连线,如上图的模型近似认为是 160K 门大小的模块适用的。
- 模块越小,它的单位长度的电阻及电容值也越小,负载模型对应的参数也越小。

设置输入驱动是通过 DC 的set_wire_load_model 命令完成的。

Manual model selection:

dc_shell-t> set current_design addtwo

dc_shell-t> set_wire_load_model -name 160KGATES

也可以让 DC 自动根据综合出来的模块的大小选择负载模型,这个选项在默认下是打开的。

Automatic model selection (default is TRUE):

Turn off automatic wire load model selection by dc shell-t> set auto_wire_load_selection false

Wireload Model Mode

连线负载模式

set_wire_load_mode

围绕(enclosed)

顶层(top)

分段 (segmented)

• 如上图所示,一根连线连接了 B2 和 B1 两个模块, 这两个模块都位于 TOP 下的 SUB 这个子模块中。

Wireload Model Mode

围绕(enclosed)

顶层(top)

分段 (segmented)

- 连接 B1 和 B2 的连线的负载模型用围绕它们的模块的负载模型代替,即用 SUB的负载模型代替。即用 SUB的负载模型;
 - 用顶层模块的负载模型代替;
- 分别根据穿过的三段的模型相加得到。

Wireload Model Mode

less pessimistic mode

Example:

dc_shell-t> set_wire_load_mode enclosed

• 在定义完环境属性之后,我们可以使用下面的几个命令检查约束是否施加成功。

check_timing

• 检查设计是否有路径没有加入约束

check_design

• 检查设计中是否有悬空管脚或者输出短接的情况

write_script

• 将施加的约束和属性写出到一个文件中,可以检查这个文件看看是否正确

```
//综合优化,对应图形界面的5
# compile design
compile -map effort medium
//保存文件,对应图形界面的7
###################################
# write *.db and *.v #
###################################
write -f db -hier -output ~/EXAMPLE1.db
write -f verilog -hier -output ~/EXAMPLE1netlist.v
write sdf-version 2.1 ~/EXAMPLE1.sdf //保存反标文件
```

```
//产生报告并保存,对应图形界面的6
                                                 时序电路面积
##################################
# generate reports
                                               组合逻辑电路面积
####################################
report_area > EXAMPLE1.area_rpt //把报告面积的文件保存
                                                    总面积
成EXAMPLE1.area_rpt文件,运行完脚本以后可以查看该文件。
report_constraint -all_violators > EXAMPLE1.constraint rpt
report timing > EXAMPLE1.timing rpt
                                              建立时间
sh date //显示结束时间
                                              保持时间
```

时序报告的主要内容:

- 。表头
- 数据发射路径
- 数据捕获路径
- ◎ 时序结果

Timing Report: Path Information Section

```
Report : timing
       -path full
        -delay max
        -max_paths 1
Design : TT
Version: 2000.05
Date : Tue Aug 29 18:22:38 2000
Operating Conditions: slow_125_1.62 Library: ssc_core_slow
Wire Load Model Mode: enclosed
  Startpoint: data1 (input port clocked by clk)
 Endpoint: u4 (rising edge-triggered flip-flop clocked by clk)
 Path Group clk 关键路径
 Path Type max
 Des/Clust/Port
                    Wire Load Model
                                          Library
                     5KGATES
                                          ssc_core_slow
```

Timing Report: Path Delay Section

Individual Contribution to Path Delay

Running Total of the Path Delay

Point	Incr	Path
clock clk (rise edge)	0.00	0.00
clock network delay (ideal)	0.00	0.00
input external delay	1.00	1.00 f
data1 (in)	0 00	1.00 r
u2/Y (invla1)	0.12	1.12 r
u12/Y (or2a1)	0.26	1.38 r
u23/Y (mx2d2)	0.23	1.61 f
u4/D (fdef1a1)	0.00	1.61 f
data arrival time		1.61

Signal Transition

Total Delay

Timing Report: Path Required Section

Cloe	Point	Incr	Path
	clock clk (rise edge)	5.00	5.00
	clock network delay (ideal)	0.00	5.00
	U4/CLK (fdef1a1)	0.00	5.00
	library setup time	(-0.19)	4.81
10	data required time		4.81

Data must be valid by

this time

Timing Report: Summary Section

Either (MET) or (VIOLATED)

Timing margin (slack): negative indicates constraint violation

