Supplementary Homework Exercises for Section 11.5: Comparison Tests

Exercises

Answer each of the following questions.

- S1. Suppose $\sum a_n$ and $\sum b_n$ are series with positive terms such that $\sum b_n$ converges.
 - (a) If $a_n > b_n$ for all n, what can you say about $\sum a_n$? Explain.
 - (b) If $a_n < b_n$ for all n, what can you say about $\sum a_n$? Explain.
- S2. Suppose $\sum a_n$ and $\sum b_n$ are series with positive terms such that $\sum b_n$ diverges.
 - (a) If $a_n > b_n$ for all n, what can you say about $\sum a_n$? Explain.
 - (b) If $a_n < b_n$ for all n, what can you say about $\sum a_n$? Explain.
- S3. Determine whether each of the following series is convergent or divergent. You need to show sufficient justification and you can use any of our current tests for convergence.
 - (a) $\sum_{n=1}^{\infty} \frac{n}{2n^3 + 1}$
 - (b) $\sum_{n=1}^{\infty} \frac{\cos^2 n}{n^2 + 1}$
 - (c) $\sum_{n=2}^{\infty} \frac{\sqrt{n}}{n-1}$
 - (d) $\sum_{n=1}^{\infty} \frac{2 + (-1)^n}{n^{3/2}}$
 - (e) $\sum_{n=1}^{\infty} \frac{e^{1/n}}{n}$
 - (f) $\sum_{n=1}^{\infty} \frac{n!}{n^n}$
 - (g) $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^2 + 1}}$
 - (h) $\sum_{n=1}^{\infty} \frac{1+5^n}{1+4^n}$
 - (i) $\sum_{n=1}^{\infty} \sin\left(\frac{1}{n}\right)$
- S4. Provide an example of a pair of series $\sum a_n$ and $\sum b_n$ where $\lim_{n\to\infty} \frac{a_n}{b_n} = 0$ and $\sum b_n$ diverges, but $\sum a_n$ converges.