Scalable Kernel Density Classification via Threshold-Based Pruning

Edward Gan & Peter Bailis

MacroBase: Analytics on Fast Streams

- Increasing Streaming Data
 - Manufacturing, Sensors, Mobile
 - Multi-dimensional + Latent anomalies

- Running in production
 - see CIDR17, SIGMOD17
- End-to-end operator cascades for:
 - Feature Transformation
 - Statistical Classification
 - Data Summarization

Example: Space Shuttle Sensors

[UCI Repository]

8 Sensors Total

"Fuel Flow"

"Flight Speed"

Speed	Flow	Status
28	27	Fpv Close
34	43	High
52	30	Rad Flow
28	40	Rad Flow
•••		

End-Goal: Explain anomalous speed / flow measurements.

Problem: Model distribution of speed / flow measurements.

Difficulties in Data Modelling

Difficulties in Data Modelling

Kernel Density Estimation (KDE)

Much better fit

KDE: Statistical Gold Standard

- Guaranteed to converge to the underlying distribution
- Provides normalized, true probability densities
- Few assumptions about shape of distribution: inferred from data

KDE Usage

Galaxy Mass Distribution [Sloan Digital Sky Survey]

Distribution of Bowhead Whales

[L.T. Quackenbush et al, Arctic 2010]

KDE Definition

Each point in dataset contributes a *kernel*

Kernel: localized Gaussian "bump"

Kernels summed up to form estimate

Mixture of N Gaussians: N is the dataset size

$$f(x) = \frac{1}{n} \sum_{x_i \in \text{Data}} K(x - x_i)$$

Problem: KDE does not scale

$$f(x) = \frac{1}{n} \sum_{x_i \in \text{Data}} K(x - x_i)$$
 $O(n)$ to compute single density $f(x)$

 $O(n^2)$ to compute all densities in data

2 hours to compute on 1M points on 2.9Ghz Core i5

How can we speed this up?

Strawman Optimization: Histograms

Benefit: Runtime depends on grid size rather than N

Problem: Bin explosion in high dimensions

Stepping Back: What users need

Anomaly Explanation

SELECT flight_mode FROM shuttle_sensors
WHERE kde(flow,speed) < threshold</pre>

Hypothesis Testing

SELECT color FROM galaxies
WHERE kde(x,y,z) < threshold</pre>

From Estimation to Classification

SELECT flight_mode FROM shuttle_sensors
WHERE kde(flow,speed) < Threshold</pre>

End to End Query

End to End Query

Recap

- KDE can model complex distributions
- Problem: KDE scales quadratically with dataset size
- Real Usage: KDE + Predicates = Kernel Density Classification
- Idea: Apply Predicate Pushdown to KDE

tkdc Algorithm Overview

1. Pick a threshold

- 2. Repeat: Calculate bounds on point density
- 3. Stop when we can make a classification

Classifying the density based on bounds

Iterative Refinement

k-d tree Spatial Indices

Nodes for each Region
Track # of points + bounding box

Bounding the densities

Given from k-d tree: Bounding Box, # Points Contained

Total contribution from a region can be bounded

Iterative Refinement

Priority Queue: Split nodes with largest uncertainty first

tkdc Algorithm Overview

- 1. Pick a threshold
 - User-Specified
 - Automatically Inferred
- 2. Calculate bounds on a density
 - k-d tree bounding boxes
- 3. Refine the bounds until we can classify
 - Priority-queue guided region splitting

Automatic Threshold Selection

- Probability Densities hard to work with:
 - Unpredictable
 - Huge range of magnitudes
- Good Default: capture a set % of the data

SELECT Quantile(kde(A,B), 1%) from shuttle_sensors

Bootstrapping

- Classification for computing thresholds
 - See paper for details

tkdc Complete Algorithm

- Pick a threshold
 - Inferred given desired % level
- Calculate bounds on a density
 - k-d tree bounding boxes
- Refine the bounds until we can make classification
 - Priority-queue guided region splitting

Theorem: Expected Runtime

n number of training points

d dimensionality of data

Runtime =
$$O\left(n^{\frac{d-1}{d}}\right)$$

Naive = $O\left(n\right)$

100 million data points, 2-dimensions
$$\frac{100M}{(100M)^{\frac{1}{2}}} \approx 10,000x$$

100 million data points, 8-dimensions
$$\frac{100M}{(100M)^{\frac{7}{8}}} \approx 10x$$

Runtime in practice: Experimental Setup

Single Threaded, In-memory

Total Time = Training Time + Threshold Estimation + Classify All

Threshold = 1% classification rate

Baselines:

simple: naïve for loop over all points

kdtree: k-d tree approximate density estimation, no threshold

radial: iterates through points, pruning > certain radius

KDE Performance Improvement

Threshold Pruning Contribution

tkdc scales well with dataset size

Conclusion

KDE:

Powerful & Expensive

Real Queries: MacroBase

Systems Techniques:

SELECT flight_mode FROM shuttle_sensors
WHERE kde(flow, speed) < Threshold</pre>

Predicate Pushdown, k-d tree indices:

https://github.com/stanford-futuredata/tKDC

1000x, Asymptotic Speedups