NAME: Niklas Kampe

ISMT S-136 Time Series Analysis with Python

Part I of Midterm

Suppose x_t is a stationary process with mean μ_x and autocovariance function $\gamma_x(h)$, $h = 0, \pm 1, \pm 2, \dots$

Let s_t be a seasonal (deterministic) component with period 12, that is, $s_{t+12} = s_t$ for all t. Assume s_t is not a constant, i.e. s_1, s_2, \ldots, s_{12} are not all equal.

- (a) Let $y_t = s_t + x_t$ for all t. Determine whether y_t is stationary. If y_t is stationary, express its mean μ_y and autocovariance function $\gamma_y(h)$ in terms of μ_x , $\gamma_x(h)$, and S_t .
- (b) Let now $z_t = (1 B^{12})y_t$ for all t, where B is the backshift operator. Determine whether z_t is stationary. If z_t is stationary, express its mean μ_z and autocovariance function $\gamma_z(h)$ in terms of μ_x , $\gamma_x(h)$, and s_t .

SOLUTION:

$$Z_{t} = (\Lambda - B^{12}) \gamma_{t} = (\Lambda - B^{12}) (S_{t} + x_{t}) = (\Lambda - B) (S_{t+n} + x_{t})$$

$$\Rightarrow as \quad \gamma_{t} \quad \text{is} \quad stationary : differenced } \gamma_{t} (= Z_{t}) \quad \text{also} \quad \underline{stationary}$$

$$M_{z} = E[(\Lambda - B^{n_{z}})(S_{t} + x_{t})] = (\Lambda - B^{n_{z}}) \cdot E[S_{t} + x_{t}] = (\Lambda - B^{n_{z}}) \cdot \mu_{y}$$

$$= (\Lambda - B^{n_{z}})(S_{t} + \mu_{x})$$

$$\chi_{2}(h) = (OV((1-B^{n2})(s_{t+n2}+x_{t}), (1-G^{n2})(s_{t+n2}-h+x_{t}-h))$$
= $(1-B^{n2})^{2}$ (ov $(s_{t+n2}+x_{t}, s_{t+n2}-h+x_{t}-h)$

forom

before

= $(1-B^{n2})^{2} \cdot \chi_{x}(h)$