

An exploration into user-defined keyword sampling from Twitter during disasters

Kenneth Joseph | Kathleen M. Carley

kjoseph | kathleen.carley @cs.cmu.edu

The "search" problem

- Less than .5% of Tweets sampled in a recent paper were found to be "actionable" during a disaster
 - A needle in a haystack (Munro, 2011)
- To make matters worse:
 - You don't get all the Tweets you're interested in
 - The needle is in the haystack, but you only get to search through a few bales
 - What you're interested in is constantly changing
 - The needle has legs
- Human volunteers really shouldn't be spending their time combing through Twitter
- If you're a computer, you have to be smart about how you search

. January 2014 Change-Name

The "post-search" problem

- Many have taken the approach of pulling tweets with heavily-used search terms (e.g. Haiti) and then analyzing these as a representative sample to study the uses of Twitter during a disaster
 - E.g. Oh et al, 2010; Hughes and Palen, 2009; Medoza et al, 2010; Starbird and Palen, 2011; Munro, 2010
- A question which has not been asked is, is this an appropriate sampling methodology?
- Just because there is a lot of data, does that mean we can sample, more or less, any way we want?

1 January 2014

The research questions

- RQ1: can we find Tweets that are "useful" for crisis workers in "real-time"?
- RQ2: how different are the tweets we find from those containing characteristic search terms

The data

- Gardenhose (about 15% of all Tweets at the time) from the time of through three weeks after the Haitian earthquake of 2010 100M tweets
- We simulate real-time by only allowing ourselves to look at data from previous time periods

L January 2014 Change-Name

Experiment

1 January 2014 Change-Name

The Algorithm – General Idea

- Develop a method which looks for Tweets that might be "useful" to crisis workers without any work on their part
- How? Find search terms that are relevant and recent using other, more reliable data
 - Recent: our method uses reports from Ushahidi workers to create a dynamic set of search terms to account for concept drift and the differing stages of disasters
 - Relevant: It uses simple unsupervised (boosting) techniques to determine search terms which return relevant results

L January 2014 Change-Name

Ushahidi

- Ushahidi a crowdsourced platform for mapping situational awareness during a disaster
- Ushahidi got the data from:
 - Mission 4636
 - Mainstream media outlets
 - Twitter
- What did Ushahidi do?
 - Get coordinates, plot incidents on map, and at some points, communicate with Coast Guard

What can we use?

- Categories
 - Ushahidi-volunteers set them, based on a general set of categories for disasters from Red Cross
- Location Data e.g. "Port-au-Prince"
- The full text description
- The title
 - A more refined version of the text

January 2014 **Change-Name**

Algorithm Updating Search Terms

Language Model Title	Search Term Set, t=0	New Incoming Ushahidi Report "Need Water"	Search Term Set, t=1 {need, water}
Category	{}	"Water shortage"	{water, shortage}
Location	{}	"PaP"	{PaP}
Content	{}	"we are in need of water, please help"	{need, water, help}

1 January 2014 Change-Name

The Algorithm Search Term contextualization

1 January 2014 Change-Name

The Algorithm Tweet Score

TO TET THE ONLY CONTROL TO THE POST OF THE

{water, shortage}

$$p(q_i|t) = \frac{n(q_i,t)}{|t|}(1-\gamma) + \gamma \frac{n(q_i,T)}{|T|} \qquad p(q_i|t) = \frac{n(q_i,t)}{|t|}(1-\gamma) + \gamma \frac{n(q_i,T)}{|T|}$$

$$score(t) = \prod_{q_i \in (Q \in t)} \sqrt{contextualization(q_i) * p(t|q_i)}$$

1 January 2014 Change-Name

Algorithm Combining Models

Oh boy, will there ever be a water shortage in my tomato garden this

1 January 2014 Change-Name

Sampling Algorithm - Random

- Randomly sample ~same amount of tweets
- .0013% of entire stream
- Allows us to see what our model might be doing well on just because even the dumbest possible model does well on it (it happened...)

CASOS TARREST

. January 2014 Change-Name

Sampling Algorithm Characteristic Search Terms

Work	Search Terms	Sample Size		
Munro (2011);	#haiti	40,000		
Munro and Manning (2012)				
Oh et al. (2010)	#haitiearthquake	962		
Verma et al. (2011); Vieweg (2012)	haiti, earthquake, quake, shaking, tsunami, ouest, Port-au-Prince, trem- blement, tremblement de terre (but had to contain "haiti")	Proj. EPIC Keyword set		
Sarcevic et al. (2012)	earthquake, Port-au-Prince, Ouest, tsunami, haiti, and tremblement	3.28M		

1 January 2014 Change-Name

Results Percent of all Tweets selected

1 January 2014 Change-Name

Results Percent of Our Model's Tweets Captured

1 January 2014 Change-Name

Results Matching to Proj. EPIC

Words	Field	Relevant	Not Relevant	% Reports	Cont.
haiti	Location	152275	302068	0.22	1
haiti	Title	152207	300428	0.02	0.98
haiti	Content	152207	300428	0.08	0.95
earthquake	Content	1318	62151	0.03	0.88
quake	Content	756	18934	0.01	0.85
port-au-prince	Location	165	5293	0.19	0.84
port-au-prince	Content	165	5293	0.07	0.83
port-au-prince	Title	165	5293	0.02	0.81
earthquake	Title	1318	62151	<3	0.80
tremblement	Content	13	225	<3	0.68
ouest	Location	0	104	<3	0.46
ouest	Title	0	5	<3	0.46
quake	Title	0	16553	<3	0.45
ouest	Content	0	69	<3	0.35
earthquake	Category	0	19816	<3	0.28
shaking	Content	5	5617	<3	0.04

1 January 2014 Change-Name

Results The good, the ???, and the ugly

1 January 2014 Change-Name

Conclusion

- Much still to be done
- Solid evidence that the model is performing well, however
- Allows Twitter to be searched in real-time, which no direct human interaction
- Validates previous work

L January 2014 Change-Name

Thanks!

• Questions?

1 January 2014 Change-Name 20

Future Work

1 January 2014 Change-Name

Results Hashtag Comparison

1 January 2014 Change-Name