目 录

目录 …		1
第一章	Neutron Star(LGS) · · · · · · · · · · · · · · · · · · ·	3
1.1	SLOWLY ROTATING RELATIVISTIC STARS. III. STATIC CRI-	
	TERION FOR STABILITY	4
1.2	NEUTRON STAR MATTER	5
1.3	NEUTRON STAR ACCRETION IN A STELLAR WIND MODEL	
	FOR A PULSED X-RAY SOURCE······	6
1.4	NEUTRON STAR MATTER AT SUB-NUCLEAR DENSITIES \cdots	7
1.5	BLACK-HOLE NEUTRON-STAR COLLISIONS	8
1.6	ACCRETION BY ROTATING MAGNETIC NEUTRON STARS.	
	II. RADIAL AND VERTICAL STRUCTURE OF THE TRANSI-	
	TION ZONE IN DISK ACCRETION · · · · · · · · · · · · · · · · · · ·	9
1.7	ACCRETION BY ROTATING MAGNETIC NEUTRON STARS.	
	III. ACCRETION TORQUES AND PERIOD CHANGES IN PUL-	
	SATING X-RAY SOURCES······	10
1.8	NEUTRON STARS ARE GIANT HYPERNUCLEI · · · · · · · · · · · · · · · · · · ·	11
1.9	THE BIRTH OF NEUTRON STARS · · · · · · · · · · · · · · · · · · ·	12
1.10	EQUATION OF STATE AND THE MAXIMUM MASS OF NEU-	
	TRON STARS · · · · · · · · · · · · · · · · · · ·	13
1.11	${\tt NUCLEOSYNTHESIS}, {\tt NEUTRINO~BURSTS~AND~GAMMA-RAYS}$	
	FROM COALESCING NEUTRON STARS · · · · · · · · · · · · · · · · · · ·	14
1.12	SUPERNOVA MECHANISMS · · · · · · · · · · · · · · · · · ·	15
1.13	FORMATION AND EVOLUTION OF BINARY AND MILLISEC-	
	OND RADIO PULSARS · · · · · · · · · · · · · · · · · · ·	16
1.14	RECONCILIATION OF NEUTRON-STAR MASSES AND BIND-	
	ING OF THE LAMBDA IN HYPERNUCLEI	18
1.15	DIRECT URCA PROCESS IN NEUTRON-STARS	19
1.16	A GENERALIZED EQUATION OF STATE FOR HOT, DENSE	
	MATTER · · · · · · · · · · · · · · · · · · ·	20
1.17	NEUTRON-STAR AND BLACK-HOLE BINARIES IN THE GALAX	Y 21

第一章 Neutron Star(LGS)

1.1 SLOWLY ROTATING RELATIVISTIC STARS. III. STATIC CRITERION FOR STABILITY¹

1.1.1 Abstract

本论文提出了一种分析一个慢速的刚性转动的相对论性的恒星模型的径向脉动的稳定性的影响的方法。这个方法只能用于一参数的状态方程 $p=\epsilon(p)$ 的恒星模型,这个模型的绝热指数为 $\Gamma=(\epsilon+p)^{p-1}(\mathrm{d}p/\mathrm{d}\epsilon)$,例如白矮星、中子星. 这个方法也能用于一个热的、等熵的(isentropic)恒星模型。这个方法并不涉及求解转动恒星的脉动的全部(full)的动力学方程;而只是对某个特别的非刚性的转动,构建一系列平衡参数(equilibrium configuration),然后再将这些参数对应的质量或结合能与均匀转动的模型的质量或结合能进行比较。因此,这个方法是对慢速转动的恒星"静态稳定性分析"的一个推广,这种分析被广泛用于非转动的恒星。

1.1.2 Knowledge

在研究一个相对论性的恒星模型(超新星,中子星,致密白矮星)时,只计算 平衡参数是不够的,还必须要研究在这些参数下的稳定性,来决定什么样的恒星能在自然条件下存在。(表明存在两个大的方向: equilibrium configuration 以及稳定性(stability))

1.1.3 Questions

Address: Laboratory for Nuclear Science and Department of Physics, Massachusetts Institute of Technology, and Department of Physics, University of California, Santa Barbara.

DOI:10.1086/149707

Journal: Astrophysical Journal(1968).

^{1.} Author: Hartle, J. B. Thorne, K. S.

1.2 NEUTRON STAR MATTER¹

1.2.1 Abstract

中子星中的物质基本都是处于基态的,并且其密度可以达到甚至超过3×10¹⁴g/cm³。这里,我们确定了物质密度从4.3×10¹¹g/cm³(此时自由的中子开始从原子核中"滴出")到5×10¹⁴g/cm³(此时标准的核物质理论仍然是可靠的)的范围内物质的基态构成及其状态方程。我们通过一个可压缩的液滴模型来描述自由中子区域的原子核的能量,这个模型考虑了3个重要的特性:(i)随着密度的增加,核内的核物质基团与核外的的纯中子气体变得越来越相似;(ii)中子气体的存在降低了核的表面能;(iii)当原子核间的间距变得与原子核的半径相当时,将原子核维持在晶格上的原子核间的库伦相互作用会变得比较显著。我们发现在物质密度达到2.4×10¹⁴g/cm³时,原子核仍然存在;在这个密度以下,我们发现质子没有脱离原子核的趋势。在更高的密度区域内出现的核相与液相之间的相变过程如下所示。(随着密度的增加)原子核的尺寸增大,直到原子核相互接触;剩余密度(the remaining density)的不均匀性随着密度的增加而逐渐减小,直到其达到密度为3×10¹⁴g/cm³的一阶相变点时消失。这表明,均匀液相在密度为3×10¹⁴g/cm³以下时,随着密度的波动是不稳定的;最不稳定的密度波动的波长接近于核相(nuclear phase)的极限晶格常数。

1.2.2 Knowledge

1.2.3 Questions

1. Author: Baym, G. Bethe, H. A. Pethick, C. J.

Address: Nordita(北欧理论原子物理研究院), Copenhagen, Denmark.

DOI:10.1016/0375-9474(71)90281-8 Journal: Nuclear Physics A(1971).

1.3 NEUTRON STAR ACCRETION IN A STELLAR WIND MODEL FOR A PULSED X-RAY SOURCE¹

1.3.1 Abstract

X射线脉冲源Cen X-3 和Her X-1 的许多特征都可以用一个简单的模型来解释。一个旋转的磁化中子星绕着一个质量稍大的恒星转动,并且从这个恒星发出的恒星风中吸积质量。通过潮汐瓦解问题的分析表明,X射线源的周期、速度振幅、掩蚀的持续时间允许中子星的质量达到 $1M_{\odot}$,轨道的倾角为 70° — 90° ,并且要求X射线脉冲源Cen X-3 和Her X-1 的伴星的距离(separations)、质量、半径以及光谱型分别接近于 $(18R_{\odot},8R_{\odot})$ 、 $(20M_{\odot},2M_{\odot})$ 、 $(12R_{\odot},4R_{\odot})$ 以及(B2III,F5III)。

在任何事例(any case)中,吸积率都被限制小于 $10^{-7.4}M_{\odot}$ 每年。通过爱丁顿极限(Eddington limit),计算可以得到吸积率为 $10^{-9}M_{\odot}$ 每年,比要求的中等质量恒星的恒星风小3个数量级。

下落气体与中子星磁层(magnetosphere)的相互作用导致其自传周期接近于一个平衡值,当表面磁场强度为10¹²gauss时,这个值在秒的数量级上。来自于每个磁极附近确定区域内的X射线光谱也由系统参数确定。应用于Cen X-1的理论(计算结果)也与10¹²gauss的表面磁场强度以及10^{36.5}ergs/s的X射线光度一致。

1.3.2 Knowledge

1.3.3 Questions

1. Author: Davidson K. Ostriker J. P.

Address: Princeton University Observatory.

DOI:10.1086/151897

Journal: Astrophysical Journal(1973).

1.4 NEUTRON STAR MATTER AT SUB-NUCLEAR DENSITIES¹

1.4.1 Abstract

从核子-核子的两体相互作用过程中推导出了核多体系统的能量密度的一个极简形式,这个形式被用来确定处于亚核密度区域范围内的物质的基态参数。随着重子密度的增加,原子核逐渐变得越来越丰中子,直到中子最终逸出,产生一个由束缚中子和质子团簇组成的由被稀释的中子气体包裹的库伦晶格(Coulomb lattice)。随着密度的增加,团簇会变大,晶格常数会减小,在核物质密度附近会接近形成一个完全均匀的状态。

1.4.2 Knowledge

1.4.3 Questions

Address: Laboratory for Nuclear Science and Department of Physics, Massachusetts Institute of

Technology, Cambridge, Massachusetts. DOI: 10.1016/0375-9474(73)90349-7 Journal: Nuclear Physics A(1973).

^{1.} Author: Negele, J. W. Vautherin, D.

1.5 BLACK-HOLE NEUTRON-STAR COLLISIONS¹

1.5.1 Abstract

研究了黑洞附近中子星的潮汐破裂。计算了一个简单的相互作用模型,结果表明中子星物质射入星际介质的量可能很大。利用合理的恒星统计,推测的喷射物质量与r过程物质的丰度大致相当。

1.5.2 Knowledge

1.5.3 Questions

Address: Departments of Astronomy and Physics, The University of Texas at Austin

DOI:10.1086/181612

Journal: Astrophysical Journal(1974).

^{1.} Author:Lattimer, J. M. Schramm, D. N.

1.6 ACCRETION BY ROTATING MAGNETIC NEUTRON STARS. II. RADIAL AND VERTICAL STRUCTURE OF THE TRANSITION ZONE IN DISK ACCRETION¹

1.6.1 Abstract

我们研究了恒星磁场与中子星从吸积盘中吸积物质时的磁层边界处的吸积等离子体之间的相互作用。恒星磁场穿过吸积盘的内部,通过开尔文-亥姆霍兹不稳定性、湍流扩散以及重组(reconnection),形成一个宽的过渡区域,将远离中子星的未受中子星扰动的盘状流与接近中子星的磁层流连接起来。利用两维的磁流体动力学方程,我们计算了这个区域中内径以及外径的径向和垂直方向的结构。过渡区域由两个明显不同的区域组成,一个宽的角速度满足开普勒定律的外层区域,和一个窄的角速度明显偏离开普勒定律的内层区域或者叫边界层。中子星的磁场在边界层仅稍微变形,但是在更大的半径处变形会增加。

我们讨论在这里发现的吸积X射线源的中子星模型的流动解(flow solutions)的含义,依次考虑物质从吸积盘内边缘到恒星表面的流动、产生的吸积扭矩,以及恒星表面等离子体下降的模式。因为有20%的中子星磁通量穿过边界层以外的吸积盘,所以受磁场场引导的等离子体落入一个在磁极处的圆环中。

- 1.6.2 Knowledge
- 1.6.3 Questions

Address: Department of Physics, University of Illinois at Urbana-Champaign

DOI:10.1086/157285

Journal: Astrophysical Journal(1979).

^{1.} Author:Ghosh, P. Lamb, F. K.

1.7 ACCRETION BY ROTATING MAGNETIC NEUTRON STARS. III. ACCRETION TORQUES AND PERIOD CHANGES IN PULSATING X-RAY SOURCES¹

1.7.1 Abstract

我们利用之前得到的二维磁流体动力学方程的解来计算磁化中子星从开普勒吸积盘中吸积物质时的转矩。我们发现中子星与吸积盘边界层外存在明显的磁耦合。由于这种耦合,在(吸积盘)快速旋转的部分的扭矩要远小于慢速旋转部分的自旋扭矩。对于足够高的恒星自传角速度或足够低的吸积率,这种耦合导致在吸积盘内边缘处的等离子体以及磁场阻尼(breaking)中子星的转动,所以即使在吸积时,也能够继续产生X射线发射。

我们将这些结果应用于脉冲X射线源,发现所有已经测量过的脉冲X射线源的长期自旋上升率(secular spin-up rates)都能够得到定量的解释,如果假定这些脉冲X射线源都正在从开普勒吸积盘中吸积物质并且它们的磁矩都是10²⁹⁻³¹gauss/cm³。这个在高自旋部分的自旋上升率的减小,很自然的解释了Her X-1的自旋上升率比期望的低自旋部分的自旋上升率小得多。我们还发现,长期自旋上升速率—户与量PL³/7之间的简单关系充分地代表了几乎所有的观测数据,P和L分别是脉冲周期和光源的亮度。这种"通用"关系使得我们可以估计给定源的参数P、户和L中的任意一个,如果另外两个是已知的。我们发现,由于传质速率(mass transfer rate)波动引起的扭矩变化,在Her X-l、Cen X-3、Vela X-l和X Per中观察到的短期周期波动可以相当自然地解释。我们还发现了在低亮度下自旋下降扭矩是如何解释大量具有短自旋上升时间尺度的长周期源的悖论的存在的。最后,我们强调需要对每个源同时进行周期和光度测量。这些测量将直接检验我们的理论,以及关于脉冲源的自旋演化和X射线双星吸积过程中传质过程的时间变化的有价值的信息。

1.7.2 Knowledge

1.7.3 Questions

Address: Department of Physics, University of Illinois at Urbana-Champaign; and Astrophysics Branch, Space Science Laboratory, NASA Marshall Space Flight Center. Department of Physics, University of Illinois at Urbana-Champaign; and California Institute of Technology.

 $\mathrm{DOI:} 10.1086/157498$

Journal: Astrophysical Journal(1979).

^{1.} Author:Ghosh, P. Lamb, F. K.

1.8 NEUTRON STARS ARE GIANT HYPERNUCLEI¹

1.8.1 Abstract

在平均场近似下,利用核子、超子以及介子相互作用的拉格朗日场理论框架来研究中子星。这个理论仅限于考虑核物质的4个关键性质;饱和密度、饱和结合能(saturation binding)、可压缩性和电荷对称能。发现较重的中子星的核心主要由超子组成,这类星的超子总数占15%-20%,这取决于 π 介子是否凝聚。产生同位旋对称能的 ρ 介子对重子的数量有重要影响。轻子的数量被强烈抑制,强子间实现了电荷中性。文中还提到了脉冲星磁场的衰减时间及其有效寿命的可能结果。

1.8.2 Knowledge

1.8.3 Questions

Address: Department of Physics, University of Illinois at Urbana-Champaign; and Astrophysics Branch, Space Science Laboratory, NASA Marshall Space Flight Center. Department of Physics, University of Illinois at Urbana-Champaign; and California Institute of Technology.

 $\mathrm{DOI:} 10.1086/163253$

Journal: Astrophysical Journal(1985).

^{1.} Author:Glendenning, N. K.

1.9 THE BIRTH OF NEUTRON-STARS¹

1.9.1 Abstract

我们给出了中子星诞生的开尔文-亥姆霍兹相的第一个详细的数值模拟结果。研究了从一个热的、膨胀的、丰电子的残骸到一个冷的、致密的中子化的物体的转化过程。我们研究了这个过程的开始的20s的行为。讨论了与该问题相关的物理及其探索,导出了许多有用的公式。重点介绍了一个 $1.4M_{\odot}$ 的恒星坍缩残骸的演化的基线计算(baseline calculation)。结果通过一系列图表和图形来表达,这些图表和图形描述了核心经历的热、结构和组成变化。

1.9.2 Knowledge

1.9.3 Questions

Address: Department of Physics, State University of New York at Stony Brook; Department of Earth and Space Sciences, State University of New York at Stony Brook.

DOI:10.1086/164405

Journal: Astrophysical Journal(1986).

^{1.} Author:Burrows, A. Lattimer, J. M.

1.10 EQUATION OF STATE AND THE MAXIMUM MASS OF NEUTRON STARS¹

1.10.1 Abstract

我们探究了中子星的最大质量与状态方程的可观测参量之间的关系。特别的,我们考虑了核的不可压缩性以及对称能。我们得到了对于现实的对称能量和压缩模量本身不能被观测到的中子星质量严格限制的结论。我们建议了几个可以进一步研究的方向。

1.10.2 Knowledge

1.10.3 Questions

^{1.} Author: Prakash, M. Ainsworth, T. L. Lattimer, J. M.

Address: Physics Department, State University of New York at Stony Brook, Stony Brook, New York 11794; Physics Department University of Illinois at Urbana Champaign, Urbana, Illinois 61801; Earth and Space Sciences Department, State University of New York at Stony Brook, Stony Brook, New York 11794.

1.11 NUCLEOSYNTHESIS, NEUTRINO BURSTS AND GAMMA-RAYS FROM COALESCING NEUTRON STARS 1

1.11.1 Abstract

当两个中子星相互做螺旋形的运动是,由于引力波辐射的阻尼,它们的碰撞是不可避免的。这种碰撞会产生一种特征的引力波辐射暴,这可能是最有希望的能够被已经提出的探测器观测到的可观测源。这种信号足够独特和强大,足以作为一种确定哈勃常数的手段被提出来。然而这种中子星碰撞的比率非常的不确定。这里我们注意到,把这考虑为一个快中子俘获的过程(r过程),这样的事件也应该合成丰中子的重元素。此外,这些碰撞也应该产生中微子暴以及由此而来的γ射线暴。后者应该包括在可观测γ射线暴的一个子类中。我们认为观测到的r过程的丰度以及γ射线暴的(发生)率预示了这些碰撞的(发生)率,这两者(的结果)都是显著的并且与其他的评估是一致的。

1.11.2 Knowledge

1.11.3 Questions

1. Author: Eichler, D. Livio, M. Piran, T. Schramm, D. N.

Address: (Too Long)See Details In The Paper.

DOI:10.1038/340126a0 Journal: Nature(1989).

1.12 SUPERNOVA MECHANISMS¹

1.12.1 Abstract

II型超新星爆发出现在大质量恒星演化的最后阶段。当恒星的铁核心的质量超过钱德拉塞卡极限质量时这种现象开始发生。这个在引力作用下核心的塌缩已经被很好的研究过了,并且(这个过程)只花了几分之一秒。为了理解这个现象,我们需要知道在相关的密度及温度下详细的状态方程。在塌缩过后,冲击波向外传播,但是可能并不能导致恒星质量的减小。能做到这一点的最有可能的机制是来自于核心的中微子被中等距离处的材料吸收。讨论了与SN 1987A 相关的观测和理论,以及在塌缩前的环境和来自于核心塌缩的中微子发射。

1.12.2 Knowledge

1.12.3 Questions

Address: Newman Laboratory of Nuclear Studies, Cornell University, Ithaca, New York 1485.

DOI:10.1103/RevModPhys.62.801

Journal: Reviews of Modern Physics(1990).

^{1.} Author: Bethe, H. A.

1.13 FORMATION AND EVOLUTION OF BINARY AND MILLISECOND RADIO PULSARS¹

1.13.1 Abstract

我们回顾了形成双脉冲星、毫秒脉冲星以及在球状星团中的脉冲星的各种方式。为此讨论了在相互作用的双星系统中中子星的形成过程,以及这类系统的后续演化。

第2节简要介绍了单星以及双星射电脉冲星系统的观测性质。双星和毫秒脉冲星的高速自旋与相对较弱的磁场的独特组合以及在毫秒脉冲星中双星系统高的发生率强烈表明,它们当中许多(或许不是全部)都是在发生质量转移的双星系统中通过吸积质量和角动量被再次激活(recycled)的古老的中子星。再激活的脉冲星被认为是观测到的各种类型的双星X射线源的后期演化阶段。

第3节总结了各种类型的双星X射线源的观测性质,并综述了近的双星系统形成X射线双星的演化过程。鉴于与X射线双星后期演化为毫秒双脉冲星相关,在这一节我们还讨论了各种吸积类型(恒星风吸积和Roche-lobe 溢流)对吸积磁化中子星的自旋演化的影响。接着讨论了X射线双星的后期演化和最终的演化产物。大质量X射线双星系统最终可能留下: (i)具有椭圆轨道的、由两个中子星组成的非常接近的双脉冲星系统或者是具有圆轨道的一个中子星和一个大质量白矮星; (ii)两颗相互远离的脉冲星,一颗是新形成的、一颗是古老的"再激活"的; (iii)单个的"再激活"的低速脉冲星。第质量的X射线双星可能留下相对较远的具有圆形轨道的、由一个低质量的白矮星(0.2 – 0.4 M_{\odot})和一个"再激活"的中子星组成的双星系统,或者是一个将其伴星蒸发或并合了的"再激活"中子星。在这一节中我们还讨论了观测到的单射电脉冲星的速度与磁场相关性的可能的起源。这个相关性可以通过结合近双星系统的演化和超新星爆发中质量喷射的不对称性来得到,或也可以选择通过结合近双星系统的演化和年轻脉冲星对低质量伴星的蒸发来得到。

第4节主要讨论了在球状星系团中发生的中子星近双星系统的形成和演化过程。讨论了在球状星系团中脉冲星(主要是双星系统和毫秒脉冲星)高的出现率以及在它们之中单脉冲星所占相对较大的比例(ge50%)。从第4节和第5节的讨论我们得出结论:到目前为止没有明确的证据表明——也不需要——在球状星系团中的中子星(毫秒脉冲星)是通过吸积诱导的白矮星塌缩形成的,尽管我们不能

Address: Astronomical Institute 'Anton Pannekoek', Kruislaan 403, 1098 SJ Amsterdam, The Netherlands, Centre for High Energy Astrophysics, NIKHEF-H, Kruislaan 409, 1098 SJ Amsterdam, The Netherlands, and Institute for Theoretical Physics, University of California at Santa Barbara, Santa Barbara, CA 93106, USA.

DOI: 10.1016/0370-1573(91)90064-s

Journal: Physics Reports-Review Section of Physics Letters (1991).

^{1.} Author: Bhattacharya, D. Vandenheuvel, E. P. J.

排除这种形成机制。然而这种机制可能对在星系盘中的低质量X射线源的形成有重要的贡献。

第5节讨论了在球状星系团和在一般的星系中的双星系统和毫秒脉冲星与中子星磁场演化相关的统计学性质。其结论如下:

- (i)没有明确的证据表明孤立中子星(射电脉冲星)的磁场确实衰变了。
- (ii)近双星系统中通过"再激活"的中子星有明确的证据表明其磁场存在衰变。这个场的衰变可能是由于(a)由于吸积过程自身所导致的;(b)双星系统的中子星的自旋演化影响到了中子星内部液相物质所携带的磁场。
- (iii)所有观测到双星系统中(大部分是大质量的)的单射电脉冲星中的很大一部分(百分之几十的量级)可能被"再激活"。在一般的脉冲星中存在的这一类脉冲星可能导致了单中子星的磁场确实会衰变的假象。

第6节对前面的章节进行了总结并列出了一些开放性的问题。

1.13.2 Knowledge

1.13.3 Questions

1.14 RECONCILIATION OF NEUTRON-STAR MASSES AND BINDING OF THE LAMBDA IN HYPERNUCLEI¹

1.14.1 Abstract

通过将超子的标量耦合和矢量耦合与推测的饱和核物质中 Λ 超子的经验结合能联系起来,我们得到了该结合能与中子星质量的相容性。使用观测上的对中子星最大质量下边界的限制和与超核能级兼容的耦合的上界,对由超子产生的中子星质量的减少进行了限制。对于最近的对核物质性质最好的估计,由于核子转化为超子引起的质量减少约为 $(0.75\pm0.15)M_{\odot}$ 。中子在质量为 $1.5M_{\odot}$ 的中子星中占少数。

1.14.2 Knowledge

1.14.3 Questions

Address: Nuclear Science Division, Lawrence Berkeley Laboratory, University of California, One Cyclotron Road, Berkeley, California 94720. University of California at Los Angeles, Los Angeles, California 90024.

DOI: 10.1103/PhysRevLett.67.2414 Journal: Physical Review Letters(1991).

^{1.} Author: Glendenning, N. K. Moszkowski, S. A.

1.15 DIRECT URCA PROCESS IN NEUTRON-STARS¹

1.15.1 Abstract

当质子浓度在(11-15)%范围内超过某个临界值时,中子星可发生直接URCA过程。质子浓度是由我们还知之甚少的在核密度之上的物质的对称能决定的,在许多当前的计算中它超过了临界值。如果它发生了,那么与先前考虑的任何过程相比,直接URCA过程可以大大提高中微子发射和中子星冷却速率。

1.15.2 Knowledge

1.15.3 Questions

1. Author: Lattimer, J. M. Pethick, C. J. Prakash, M. Haensel, P.

Address: NaN.

 $\begin{aligned} & \text{DOI: } 10.1103/\text{PhysRevLett.} 66.2701 \\ & \text{Journal: Physical Review Letters} (1991). \end{aligned}$

1.16 A GENERALIZED EQUATION OF STATE FOR HOT, DENSE MATTER 1

1.16.1 Abstract

给出了一个描述热的、致密的物质的状态方程,其可以方便的直接用于类似于恒星塌缩过程的流体动力学的模拟计算。它包含一个可调的核力,这个核力可以精确的拟合了势场与平均场的相互作用,并且还允许输入各种还没有实验确定的核参数。包括体积不可压缩性参数、体积和表面对称能、对称物质表面张力和核子有效质量。这可以允许我们参数化的研究在天体物理情况下的状态方程。状态方程是根据Lattimer, Lamb, Pethick和Ravenhall的LLPR可压缩液滴模型建立的,并考虑了核外核子相互作用和简并的影响。还考虑了亚核密度下的核变形和从核到均匀核物质的相变。与LLPR模型和Cooperstein-Baron状态方程的计算结果进行了比较。还研究了改变体不可压缩性的影响。

1.16.2 Knowledge

1.16.3 Questions

Address: Department of Earth and Space Sciences, State University of New York at Stony Brook, Department of Physics, State University of New York at Stony B Sony Brook, NY 11794, USA

DOI: 10.1016/0375-9474(91)90452-c Journal: Nuclear Physics A(1991).

^{1.} Author: Lattimer, J. M. Swesty, F. D.

1.17 NEUTRON-STAR AND BLACK-HOLE BINARIES IN THE GALAXY¹

1.17.1 Abstract

我们对双中子星的数量和诞生率进行了统计分析。我们估计在银河系中大约有 $10^{4.5}z_0$ 个这样的系统,其诞生率约为 $10^{-5}z_0$ yr^{-1} ,其中 z_0 (kpc)是高度标度,其期望值为几kpc。

1.17.2 Knowledge

1.17.3 Questions

Address: Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138, Department of

Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel

DOI: 10.1086/186143

Journal: Astrophysical Journal(1991).

^{1.} Author: Narayan, R. Piran, T. Shemi, A.