1 Results

1.1 Uncertainty Analysis

Figure 1. Probability distribution of quantity of interest q

Figure 2. Comparison of shares of occupation decision over time between scenarios with cone plots

1.2 Experiment Ge and Menendez (2017)

Table 1. EE-based measures by Ge and Menendez (2017) for 100 trajectories

Parameter	$\mu_T^{*,full}$	$\mu_T^{*,ind}$	$\sigma_T^{*,full}$	$\sigma_T^{*,ind}$
General				
δ	53.40	0.00	69.23	0.09
Blue-collar				
eta^b	3.55	0.05	4.38	0.07
eta_e^b	39.84	0.05	49.69	0.07
eta^b_b	77.21	0.05	90.23	0.07
eta^b_{bb}	2616.50	0.05	3357.92	0.06
eta_w^b	94.74	0.05	113.49	0.06
eta^b_{ww}	1136.58	0.03	1405.94	0.04
$White ext{-}collar$				
eta^w	5.07	0.05	6.42	0.06
eta_e^w	90.25	0.07	111.50	0.08
eta_w^w	82.88	0.05	103.66	0.07
eta_{ww}^w	2444.13	0.06	3044.69	0.07
eta^w_b	452.91	0.07	490.31	0.09
eta^w_{bb}	4317.58	0.05	4851.54	0.06
Education				
eta^e	0.00	0.09	0.00	0.10
eta^e_{he}	0.00	0.11	0.00	0.13
eta^e_{re}	0.00	0.04	0.000	0.09
Home				
eta^h	0.00	0.04	0.00	0.05
Lower Triangul	lar Cholesky Mat	rix		
c_1	27.94	0.07	33.72	0.08
c_2	31.89	0.05	38.58	0.06
c_3	0.00	0.06	0.00	0.07
c_4	0.00	0.04	0.00	0.09
$c_{1,2}$	12.41	0.06	14.33	0.08
$c_{1,3}$	0.00	0.09	0.00	0.10
$c_{2,3}$	0.00	0.05	0.00	0.06
$c_{1,4}$	0.00	0.04	0.00	0.05
$c_{2,4}$	0.00	0.03	0.00	0.03
$c_{3,4}$	0.00	0.04	0.00	0.05

1.3 Qualitative Sensitivity Analysis

Table 2. Mean absolute correlated and uncorrelated elementary effects (based on 100 subsamples in trajectory and radial design)

Parameter	$\mu_T^{*,c}$	$\mu_R^{*,c}$	$\mu_T^{*,u}$	$\mu_R^{*,u}$
General				
δ	17	23	476	415
Blue-collar				
eta^b	1	3	43	88
eta_e^b	11	14	406	443
eta^b_b	25	51	688	1169
eta^b_{bb}	871	934	15 540	17860
eta^b_w	29	48	73	143
eta^b_{ww}	389	460	869	1183
White-collar				
eta^w	1	3	50	117
eta_e^w	26	28	943	852
eta_w^w	24	47	718	1521
eta_{ww}^w	933	997	12257	18069
eta^w_b	131	127	309	356
eta^w_{bb}	120	1352	2088	2477
Education				
eta^e	0.0008	0.0002	0.001	0.003
eta^e_{he}	0.0001	0.0002	0.001	0.001
eta^e_{re}	0.0003	0.0002	0.0003	0.0006
Home				
eta^h	0.0003	0.0003	0.00002	0.00002
Lower Triangula	r Cholesky Matr	ix		
c_1	8	16	18	37
c_2	8	11	22	24
c_3	0.0004	0.0004	0.0004	0.0007
c_4	0.0004	0.00008	0.0002	0.0003
$c_{1,2}$	4	4	10	10
$c_{1,3}$	0.0005	0.0006	0.0006	0.0005
$c_{2,3}$	0.0003	0.0005	0.0006	0.001
$c_{1,4}$	0.00004	0.00005	0.0004	0.0005
$c_{2,4}$	0.0001	0.0002	0.0001	0.0002
$c_{3,4}$	0.0001	0.0001	0.00008	0.0001

Figure 3. Sigma-normalized mean absolute Elementary Effects for trajectory design

Figure 4. Sigma-normalized mean absolute Elementary Effects for radial design

References

Ge, Q. and M. Menendez (2017). Extending morris method for qualitative global sensitivity analysis of models with dependent inputs. Reliability Engineering & System Safety 100(162), 28-39.