ECT_HW8 2019

第一大題

- 利用 Weka 對 DeerHunter.arff 進行前處理,依序完成以下步驟 及問題:
 - Replace Missing Value,需列出補上的值為何 (10%)
 - Outlier Detection& Remove (10%)
 - Attribute Selection, 請篩選出適合的屬性 (10%)

Replace Missing Value

4.0	40.0			
Name: age Missing: 5 (0%)		Distinct: 68		Type: Numeric Unique: 3 (0%)
Statistic			Value	
Minimum			18	
Maximum			90	
Mean			38.316	
StdDev			12.875	

lected attribute		
Name: income		Type: Numeric
Missing: 5 (0%)	Distinct: 7	Unique: 0 (0%)
Statistic		Value
Minimum		5000
Maximum		85000
Mean		37678.394
StdDev		20096.855

以平均值代替

Outlier Detection& Remove

Attribute Selection

Attributes: 21 Sum of weights: 203 Attributes: 15 Sum of weights: 203

第二大題

- 請用weka對BreastCancer.csv對目標diagnosis進行Ensemble learning並與未使用的結果進行比較(請列出重要過程及適當說明):
 - 以10 Folds cross-validation進行J48分類(5%)
 - 以10 Folds cross-validation進行Bagging分類並選擇J48 classifier進行分類(10%)
 - 以10 Folds cross-validation進行Bagging分類並選擇Randomforest進行分類(10%)
 - 以10 Folds cross-validation進行AdaBoost分類並選擇DecisionStump 進行分類(10%)

J48分類

Bagging J48

Bagging Randomforest

AdaBoost DecisionStump

第三大題

- 請用python對BreastCancer.csv對目標diagnosis進行Ensemble learning並與未使用的結果進行比較(請列出重要過程及適當說明):
 - •以10 Folds cross-validation進行DecisionTreeClassifier分類(5%)
 - •以10 Folds cross-validation進行Bagging, n_estimators=10分類(10%)
 - 以10 Folds cross-validation進行RandomForest分類(10%)
 - •以10 Folds cross-validation進行AdaBoost, n_estimators=10分類(10%)

Import/data processing

```
In [1]: import pandas as pd
        from sklearn import preprocessing
        from sklearn.model selection import cross val score
        from sklearn.model selection import train test split
        from sklearn.ensemble import BaggingClassifier
        from sklearn.ensemble import AdaBoostClassifier
        from sklearn import metrics
        from sklearn import tree
        from sklearn.ensemble import RandomForestClassifier
In [2]: data = pd.read csv('BreastCancer.csv')
In [3]: data.dropna()
        label=data.iloc[:,1]
In [4]: data = data.drop('diagnosis',axis=1)
In [5]: le = preprocessing.LabelEncoder()
        encodedlabel = le.fit transform(label)
In [6]: train X, test X, train y, test y = train test split(data, encodedlabel, test size = 0.3)
```

DecisionTree

```
clf = tree.DecisionTreeClassifier(criterion = 'entropy',max_depth=3,max_leaf_nodes = 4)
scores = cross_val_score(clf, data, encodedlabel, cv=10)
scores.mean()
```

Bagging

```
bagging = BaggingClassifier(n_estimators = 10)
scores = cross_val_score(bagging, data, encodedlabel, cv=10)
scores.mean()
```

RandomForest

```
Rndclf = RandomForestClassifier(n_estimators=10)
scores = cross_val_score(Rndclf, data, encodedlabel, cv=10)
scores.mean()
```

AdaBoost

```
adaBoost = AdaBoostClassifier(n_estimators = 100)
scores = cross_val_score(adaBoost, data, encodedlabel, cv=10)
scores.mean()
```

python cross-validation

• sklearn.model_selection. cross_val_score scores = cross_val_score(分類方法, 屬性, 目標, fold量) scores.mean()

- sklearn.ensemble(base_estimator(default=decision tree))
 - BaggingClassifier (n_estimators)
 - AdaBoostClassifier(n_estimators)