Assignment Pandas Please use this dataset.

https://www.kaggle.com/datasets/nadeemajeedch/fitness-tracker-dataset

login with your Kaggle account. And click the new Notebook.

Fitness Tracker Dataset

Insights into Exercise Habit, Health Metric, and Fitness Level Across Individual

Data Card Code (0) Discussion (0) Suggestions (0) Settings

Pending Actions

USABILITY SCORE: 6.47

Add file information

Help others navigate your dataset with a description of each file

Include column descriptors

Empowers others to understand your data by describing its features

Specify provenance

Let others know how the data was collected and organized in the metadata tab

Specify update frequency

Let other users know if the dataset will be regularly updated in the metadata tab

>

You will get the following Notebook page.

On execution of the cell, you will get the path of the file. Use this path to load the data file.

df= pd.read_csv("/kaggle/input/fitness-tracker-dataset/gym_members_exercise_tracking_synthetic_data.csv")

Click here and change the file name.

Don't forget to vote for the dataset. ©

Fitness Tracker Dataset

Insights into Exercise Habit, Health Metric, and Fitness Level Across Individual

Data Card Code (0) Discussion (0) Suggestions (0) Settings

Tasks: Preprocessing and EDA Steps

Step 1: Load the Data

- Import the necessary libraries (pandas, numpy, matplotlib, seaborn).
- Load the dataset into a pandas DataFrame using pd. read csv() or from the provided file.
- Display the first few rows using .head() to understand the structure.

Step 2: Inspect the Data

- 1. **Shape**: Use .shape to check the number of rows and columns.
- 2. Columns: Use .columns to list column names.
- 3. Info: Use .info() to examine data types and non-null counts for each column.
- 4. **Description**: Use .describe() to summarize numeric columns (mean, min, max, etc.).

Step 3: Identify and Handle Missing Values

- 1. Use .isnull().sum() to check the number of missing values per column.
- 2. Visualize missing data using a heatmap (sns.heatmap) to identify patterns.
- 3. Handle missing values:
 - o Age, Weight (kg), Height (m), and Numeric Columns:
 - Impute missing values using the mean or median.
 - Gender and Workout Type:
 - Impute missing values using the mode (most frequent value).
 - Document and justify your imputation strategy.

Step 4: Check for Duplicates

- 1. Use .duplicated().sum() to check for duplicate rows.
- 2. Remove duplicates, if any, using .drop duplicates().

Step 5: Validate Data

1. Numeric Columns:

- o Check for invalid entries (e.g., special characters like? in Max BPM).
- o Convert columns like Max BPM to numeric using pd.to numeric() with errors='coerce'.
- o Replace invalid values with NaN and impute as needed.

2. Categorical Columns:

- o Use .unique() to check for inconsistencies in Gender, Workout Type, etc.
- o Standardize inconsistent values (e.g., Male, $M \rightarrow Male$).

Step 6: Create New Features

1. BMI Validation:

- Verify if the BMI column is consistent with the formula: BMI=Weight (kg)Height (m)2\text{BMI} = \frac{\text{Weight (kg)}} {\text{Height (m)}^2}BMI=Height (m)2Weight (kg)
- o Recalculate BMI where inconsistencies are found.

2. Workout Intensity:

o Create a new column: Workout_Intensity = Avg_BPM / Max_BPM.

Step 7: Explore Data Distributions

- 1. Plot histograms for numeric columns (Age, Calories Burned, etc.) to understand their distributions.
- 2. Use box plots to check for outliers in columns like Age, BMI, and Calories Burned.
- 3. Examine the distribution of categorical columns (Gender, Workout Type) using bar plots.

Step 8: Handle Outliers

- 1. Use the IQR method to detect outliers in numeric columns.
- 2. Decide whether to:
 - o Remove outliers.
 - o Transform them (e.g., log transformation).
 - o Cap them (e.g., set to a specific threshold).

Step 9: Analyze Relationships

- 1. Correlation:
 - O Use .corr() and visualize with a heatmap to find relationships between numeric columns (e.g., Calories Burned, Session Duration).
- 2. Categorical vs. Numeric:
 - o Compare Calories Burned and Workout Type using a bar plot.
 - o Analyze differences in BMI across Gender using a box plot.
- 3. Multi-Variable:
 - O Use pair plots (sns.pairplot) to analyze relationships between key metrics (e.g., BMI, Calories_Burned, Workout_Frequency).

Step 10: Encode Categorical Variables

- 1. Convert Gender and Workout Type to numeric formats:
 - o Use one-hot encoding (pd.get_dummies()) or label encoding.

Step 11: Normalize Numeric Columns

1. Normalize or standardize columns with large ranges (Calories_Burned, Session_Duration, etc.) if needed for further analysis or machine learning.

Step 12: Summarize Findings

- 1. Highlight key insights from the data:
 - o Trends in Calories Burned based on Workout Type and Gender.
 - o Correlation between Session Duration and Calories Burned.
 - o Any notable differences in BMI across Workout Frequency.

If you think any other related task, you can add in notebook.

Happy Learning 😊