Machine Learning - HW #2

1) Decision regions induced by the following instances using Euclidean distance:

Let
$$A = (414) - pos$$

 $B = (416) - pos$
 $C = (612) - neg$

Euclidean distance AB (4,4) (416) = $\sqrt{(4-4)^2+(4-6)^2} = \sqrt{0+4} = 2$

$$\Rightarrow \sqrt{(x_1-4)^2+(x_2-4)^2} \leq \sqrt{(x_1-4)^2+(x_2-6)^2}$$

$$\Rightarrow 4\chi_2 - 20 \le 0 \Rightarrow \boxed{\chi_2 - 5 \le 0} \Rightarrow \boxed{}$$

Enclidean dustance BC (416) $(6,2) = \sqrt{(6-4)^2 + (2-6)^2} = \sqrt{4+16} = 2\sqrt{5}$ $d(B(4,6)) \leq d(C(6,2))$

$$- > -8x_1 - 12x_2 + 52 \leq -12x_1 - 4x_2 + 40$$

$$\rightarrow 4\chi_1 - 8\chi_2 + 12 \leq 0 \Rightarrow \chi_1 - 2\chi_2 + 3 \leq 0 \Rightarrow 0$$

Euclidean distance CA (6,2) (4,4) = $\sqrt{(6+4)^2+(2+4)^2} = \sqrt{4+4} = 2\sqrt{2}$ $d(c(6,2)) \leq d(A(4,4))$

OPERATION	DISTANCE	BEST DISTANCE	BEST NODE	PRIORITY & UEUE
,		&		2 6,03
Pop f	5/2	5√2	A.	(hio) (cil)
Pop h	5/2	5 /2	f	(1,0) (C) (915)
Pop i	. 3	3	ů L	(C(1) (j,3) (g,5)
Pop c	2	2	C	(b,0) (e,0)(j,3) (g,5)
Pop b	25	2	C	(e,0) (j,3) (a,4) (9,5)
Pop e	V61	2	×C	(d,0)(j,3)(a,4)(g,5)
lop d	529	2	V.	(j,3) (a/4) (g/5)
Popj				
Roturn C				

.'. Bust Node = c Best dustance = 2 Neural network for logical function $y = (\pi_1 \Lambda \pi_2) V (\pi_3 \Lambda \pi_4)$ By trial and error,

$$W_{tc} = 2$$

$$O_{C} = \frac{1}{1+e^{-(-1)}} = \frac{1}{1+e} = 0.2689$$

Net
$$IIp to D = (1xi) + (0x-0.5) + (1x-i) = 0$$

$$0p = \frac{1}{1+l^0} = 0.5$$

$$O_D = \frac{1}{1+e^0} = 0.5$$
Net $I_P to E = (1x0) + (0.2689 \times -2) + (0.5 \times 1) = -0.5379 + 0.5 = -0.0379$

$$D_E = \frac{1}{1+e^{0.0379}} = 0.4905$$

$$O_E = \frac{1}{1+e^{0.0379}} = 0.4100$$

$$I+e^{0.0379} = 0.4100$$
Net I/p to $F = (1x-0.5) + (0.5x-2) + (0.2689x-2) = -0.5 + (-1) + (-0.5379)$

$$= -2.0378$$

$$O_F = \frac{1}{1+e^{2.0378}} = 0.11529 = 0.1153$$

Extra in Outtut Units:
$$S_j = O_j(1-O_j)Cy_j - O_j'$$

For in Auptrit and
$$(1-0.4905) \times (1-0.4905) = 0.1273$$

 $\mathcal{E} = 0.4905 \times (1-0.4905) \times (1-0.4905) = -0.176$

$$\delta_E = 0.4905 \times (1-0.4153) \times (0-0.1153) = -0176$$

 $\delta_F = 0.1153 \times (1-0.1153) \times (0-0.1153) = -0176$

Weight updation for erroneous of punits: swyi = 1 8j 0i · & WED = 78 = 0 = 01x -0.1176x 0.5 = -0.000588 :. New Weight WFD = old WFD + SWFD = -2 + (-0.000588)1:WFD = -2.000588

Weight updation for hidden layers: Dwji=48j0i Error in Hidden units $8j = 0j(1-0j) \leq 8kwkj$ 8 D = ODX (1-00) [SE XWED + 8 FX WED]

= 0.5 x (1-0.5) x [(0.1273x1) + (-0.01176 x-2)]

 $= 0.5 \times 0.5 \times (0.1273 + 0.02352) = 0.37705$

-: DWDA = 980 DA = 0.1x 0.37705 x 0 =0

-: New weight 'WDA = old WDA + SWDA

: WDA = -0,5