R

Table of contents

1	流れ	1
1.1	Set up	1
1.2	Install package	2
1.3	Import Data	2
1.4	データの形式	2
1.5	Pipe	2
1.6	PreProcess: dplyr	3
1.7	PreProcess: recipes	3
1.8	LASSO	4
1.9	LASSO: Selected variable	4
1.10	Evaluation	5
1.11	Double Selection	5
1.12	Double Selection: Selected Variable	6

1 流れ

- 1. Set up
- 2. Import Data (arrow)
- 3. PreProcess (recipes)
- 4. LASSO/Double selection (hdm)

1.1 Set up

```
set.seed(111)
library(tidyverse)
```

```
library(arrow)

library(recipes)

library(hdm)
```

- ① parquet 形式 (大規模データに比較優位) によるデータの保存/読み込み
- ② データ整備用の関数を提供

1.2 Install package

- 基本、通常のやり方で OK だが、
 - 現時点では、arrow を Mac にインストール際には以下を実行

```
install.packages("arrow", repos = c("https://apache.r-universe.dev"))
```

1.3 Import Data

• csv 形式の導入

```
Raw = read_csv("Public/Data.csv")
```

• parquet 形式の導入

```
Raw = read_parquet("Public/Data.parquet")
```

1.4 データの形式

- 多くの選択肢が存在 (R for Data Science 20-23 参照)
- 個人的には、parquet 形式が最もバランスが良い印象
 - Size が小さくなる/読み込みが早い/メモリを使わない操作が可能/DataBase よりも初学者にとって簡単?
- csv 形式を parquet 形式に変換して保存

```
open_csv_dataset("Public/Data.csv") |>
write_parquet("Data.parquet")
```

1.5 Pipe

- input を、名前をつけずに、output として利用可能
- 例

```
Raw = read_parquet("Public/Data.parquet")
summary(Raw)
```

• 以下は同じ結果を出す

```
read_parquet("Public/Data.parquet") |>
summry()
```

- Shortcut: command(control) + m
 - Tools -> Global option -> Code -> Use native pipe oeprator をチェック

1.6 PreProcess: dplyr

• 基本は dplyr(tidyverse に含まれる) の使用を推奨 (R for Data Science 4 章参照)

```
Data = Raw |>
filter(District == "文京区")

Y = Data$Price
D = case_when(
Data$TradeYear == 2022 ~ 1,
Data$TradeYear == 2017 ~ 0)
```

1.7 PreProcess: recipes

- 伝統的な方法に比べて、X に対して、より多くの処理が必要
 - recipe を活用すると、コード量を減らし、ミスを減らせる

```
X = recipe(
  ~ Size + Distance + Tenure + Youseki + Reform + TradeQ + Area,
Data
) |> # DataからXを指定
step_interact(
  ~ all_predictors():all_predictors()
) |> # すべてのXについて交差項を作成
step_poly(
Size,
Distance,
Tenure,
Youseki,
```

```
TradeQ,
 degree = 2
) |> # 2乗項まで作成
step_dummy(
all_nominal_predictors()
) |> # 文字/ファクター変数について、ダミーを作成
step_zv(
 all_predictors()
) |> # 全ての変数について、定数であれば排除
step_normalize(
all_predictors()
) |> # 全ての変数について、標準化
prep() |>
bake(
new_data = NULL,
composition = "matrix"
) # matrix、として出力 (default は data.frame)
```

1.8 LASSO

```
Group = sample(
    1:2,
    length(Y),
    replace = TRUE,
    prob = c(0.8,0.2))

Model = rlasso(
    x = X[Group == 1,],
    y = Y[Group == 1])
```

1.9 LASSO: Selected variable

Model\$index

Size_x_Youseki	Size_x_Tenure	Size_x_Distance	Reform
TRUE	FALSE	FALSE	FALSE
Size_x_AreaI	Size_x_AreaH	$Size_x_TradeQ$	Size_x_Reform
FALSE	FALSE	FALSE.	FALSE

Distance_x_Tenure	Distance_x_Youseki	Distance_x_Reform	Distance_x_TradeQ
FALSE	FALSE	FALSE	FALSE
Distance_x_AreaH	Distance_x_AreaI	Tenure_x_Youseki	Tenure_x_Reform
FALSE	FALSE	FALSE	FALSE
Tenure_x_TradeQ	Tenure_x_AreaH	Tenure_x_AreaI	Youseki_x_Reform
FALSE	FALSE	FALSE	FALSE
Youseki_x_TradeQ	Youseki_x_AreaH	Youseki_x_AreaI	${\tt Reform_x_TradeQ}$
FALSE	FALSE	FALSE	FALSE
Reform_x_AreaH	Reform_x_AreaI	$TradeQ_x_AreaH$	$TradeQ_x_AreaI$
FALSE	FALSE	FALSE	FALSE
Size_poly_1	Size_poly_2	Distance_poly_1	Distance_poly_2
TRUE	FALSE	FALSE	FALSE
Tenure_poly_1	Tenure_poly_2	Youseki_poly_1	Youseki_poly_2
TRUE	FALSE	FALSE	FALSE
${\tt TradeQ_poly_1}$	$TradeQ_poly_2$	Area_H	Area_I
FALSE	FALSE	FALSE	FALSE

1.10 Evaluation

```
PredLASSO = Model |>
  predict(
    X,
    post = FALSE)

PredOLS = lm(Y ~ X, subset = Group == 1) |>
  predict(
    X |> as_tibble())

mean((Y - PredLASSO)[Group == 2]^2)/var(Y)
```

[1] 0.1560659

```
mean((Y - PredOLS)[Group == 2]^2)/var(Y)
```

[1] 0.1590627

1.11 Double Selection

• サンプル分割は不要

```
Model = rlassoEffect(
    x = X,
    y = Y,
    d = D)

Model |> summary()
```

[1] "Estimates and significance testing of the effect of target variables" Estimate. Std. Error t value Pr(>|t|) d1 11.812 0.617 19.14 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

1.12 Double Selection: Selected Variable

Model\$selection.index

Reform	Size_x_Distance	Size_x_Tenure	Size_x_Youseki
FALSE	FALSE	TRUE	TRUE
Size_x_Reform	$Size_x_TradeQ$	Size_x_AreaH	Size_x_AreaI
FALSE	FALSE	FALSE	FALSE
Distance_x_Tenure	Distance_x_Youseki	Distance_x_Reform	Distance_x_TradeQ
FALSE	FALSE	FALSE	FALSE
Distance_x_AreaH	Distance_x_AreaI	Tenure_x_Youseki	Tenure_x_Reform
FALSE	FALSE	FALSE	FALSE
Tenure_x_TradeQ	Tenure_x_AreaH	Tenure_x_AreaI	Youseki_x_Reform
FALSE	FALSE	FALSE	FALSE
Youseki_x_TradeQ	Youseki_x_AreaH	Youseki_x_AreaI	${\tt Reform_x_TradeQ}$
FALSE	FALSE	FALSE	FALSE
Reform_x_AreaH	Reform_x_AreaI	$TradeQ_x_AreaH$	$TradeQ_x_AreaI$
FALSE	FALSE	FALSE	FALSE
Size_poly_1	Size_poly_2	Distance_poly_1	Distance_poly_2
TRUE	FALSE	FALSE	FALSE
Tenure_poly_1	Tenure_poly_2	Youseki_poly_1	Youseki_poly_2
TRUE	FALSE	FALSE	FALSE
$TradeQ_poly_1$	${\tt TradeQ_poly_2}$	Area_H	Area_I
FALSE	FALSE	FALSE	FALSE