Load Libraries

```
In [58]: import numpy as np
         import pandas as pd
         import matplotlib.pyplot as plt
         import seaborn as sns
         import Preprocessing
         from sklearn.preprocessing import LabelEncoder, OneHotEncoder, StandardScaler
         from sklearn.model_selection import train_test_split, cross_val_score
         from sklearn.linear_model import LinearRegression
         from sklearn.ensemble import RandomForestRegressor
         from sklearn.metrics import r2_score
         import tensorflow as tf
         from tensorflow.keras.models import Sequential
         from tensorflow.keras.layers import Dense
         %matplotlib inline
         sns.set()
In [79]: df = pd.read_csv( 'car_price_prediction.csv')
```

Out[79]:

		ID	Price	Levy	Manufacturer	Model	Prod. year	Category	Leather interior	Fu tyr
	0	45654403	13328	1399	LEXUS	RX 450	2010	Jeep	Yes	Hybr
	1	44731507	16621	1018	CHEVROLET	Equinox	2011	Jeep	No	Petr
	2	45774419	8467	-	HONDA	FIT	2006	Hatchback	No	Petr
	3	45769185	3607	862	FORD	Escape	2011	Jeep	Yes	Hybr
	4	45809263	11726	446	HONDA	FIT	2014	Hatchback	Yes	Petr
	•••									
1	9232	45798355	8467	-	MERCEDES- BENZ	CLK 200	1999	Coupe	Yes	CN
1	9233	45778856	15681	831	HYUNDAI	Sonata	2011	Sedan	Yes	Petr
1	9234	45804997	26108	836	HYUNDAI	Tucson	2010	Jeep	Yes	Dies
1	9235	45793526	5331	1288	CHEVROLET	Captiva	2007	Jeep	Yes	Dies
1	9236	45813273	470	753	HYUNDAI	Sonata	2012	Sedan	Yes	Hybr
19	237 rd	ows × 18 cc	lumns							

In [80]: df.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 19237 entries, 0 to 19236
Data columns (total 18 columns):
# Column
               Non-Null Count Dtype
--- ----
                     _____
                     19237 non-null int64
    ID
0
1 Price
                    19237 non-null int64
2 Levy
                     19237 non-null object
3 Manufacturer 19237 non-null object
4 Model
                     19237 non-null object
5 Prod. year
                     19237 non-null int64
6 Category
                     19237 non-null object
7 Leather interior 19237 non-null object
8 Fuel type 19237 non-null object
9 Engine volume 19237 non-null object
10 Mileage 19237 non-null object
11 Cylinders 19237 non-null float64
12 Gear box type 19237 non-null object
13 Drive wheels 19237 non-null object
14 Deans 19237 non-null object
14 Doors
                     19237 non-null object
15 Wheel
                   19237 non-null object
16 Color
                     19237 non-null object
17 Airbags
                     19237 non-null int64
dtypes: float64(1), int64(4), object(13)
memory usage: 2.6+ MB
```

Clean Dataset

```
0.00
In [81]:
         Preprocessing:
         Drop Duplicates - Replacing categorical values - Clean Outliers - Add a new Feat
         df = Preprocessing.preprocessing_pipeline(df)
        Preprocessing started...
        Initial shape: (19237, 18)
        After dropping duplicates: (18924, 18)
        Replacing categorical values...
        After cleaning outliers: (16035, 18)
        Feature engineering...
        Dropping columns...
        Final shape: (16035, 16)
In [82]: # Handling the Object columns and Transform to numerical value
         df['Levy']= df['Levy'].replace('-','0')
         df['Levy']= pd.to numeric(df['Levy'])
         df['Engine volume']= df['Engine volume'].replace('Turbo','')
         df['Engine volume']= pd.to_numeric(df['Engine volume'])
         df['Mileage km']= df['Mileage'].replace('km','',)
         df['Mileage km']= pd.to_numeric(df['Mileage km'])
         df.drop(columns='Mileage',inplace=True)
In [ ]:
```

EDA:

```
In [6]: df.info()
       <class 'pandas.core.frame.DataFrame'>
       Index: 16035 entries, 0 to 18921
       Data columns (total 16 columns):
                              Non-Null Count Dtype
           Column
           -----
                               -----
           Price
                              16035 non-null int64
        a
                             16035 non-null int64
          Levy
                           16035 non-null object
        2 Manufacturer
           Model
                             16035 non-null object
        4 Category
                             16035 non-null object
        5 Leather interior 16035 non-null object
        6 Fuel type 16035 non-null object
7 Engine volume 16035 non-null float64
        8 Cylinders
                             16035 non-null float64
        9 Gear box type 16035 non-null object
10 Drive wheels 16035 non-null object
11 Wheel 16035 non-null object
        12 Color
                             16035 non-null object
        13 Airbags
                            16035 non-null int64
        14 Age
                              16035 non-null int64
                              16035 non-null int64
        15 Mileage km
       dtypes: float64(2), int64(5), object(9)
       memory usage: 2.1+ MB
In [7]: df.isna().sum()
Out[7]: Price
                             0
                             0
         Levy
         Manufacturer
         Model
                             0
         Category
                             0
         Leather interior
                             0
         Fuel type
         Engine volume
                             0
         Cylinders
                             0
         Gear box type
         Drive wheels
         Wheel
                             0
         Color
                             0
         Airbags
                             0
                             0
         Age
         Mileage km
                             0
         dtype: int64
In [8]: df.describe().round(2).T
```

Out[8]:		count	mean	std	min	25%	50%	75%	max
	Price	16035.0	14294.82	11287.26	1.0	5217.0	12544.0	20385.0	47120.0
	Levy	16035.0	575.38	457.74	0.0	0.0	640.0	862.0	2209.0
	Engine volume	16035.0	2.13	0.60	0.8	1.6	2.0	2.5	3.5
	Cylinders	16035.0	4.37	0.88	1.0	4.0	4.0	4.0	16.0
	Airbags	16035.0	6.57	4.25	0.0	4.0	6.0	12.0	16.0
	Age	16035.0	14.22	5.52	5.0	11.0	13.0	16.0	86.0
	Mileage km	16035.0	130490.58	80334.73	0.0	70994.0	124892.0	180000.0	363661.0

In [9]: df.select_dtypes(include='object').describe()

Out[9]:		Manufacturer	Model	Category	Leather interior	Fuel type	Gear box type	Drive wheels	Wheel	C
	count	16035	16035	16035	16035	16035	16035	16035	16035	16
	unique	59	1318	11	2	7	4	3	2	
	top	TOYOTA	Prius	Sedan	Yes	Petrol	Automatic	Front	Left wheel	В
	freq	3232	989	7514	11174	8162	11208	11525	14668	3

In [10]: # Most frequently used manufacturer
df['Manufacturer'].value_counts().head(10)

Out[10]: Manufacturer TOYOTA 3232 HYUNDAI 3146 MERCEDES-BENZ 1603 CHEVROLET 977 **FORD** 954 **HONDA** 885 BMW803 NISSAN 604 VOLKSWAGEN 545 **LEXUS** 460

Name: count, dtype: int64

```
In [11]: # Top 10 most frequently used manufacturers
top_manufacturers = df['Manufacturer'].value_counts().head(10)

plt.figure(figsize=(10,6))
sns.barplot(x= top_manufacturers.index, y=top_manufacturers.values,hue=top_manuf
plt.title('Distribution of Most Frequently Used Manufacturers')
plt.xticks(rotation=45)
plt.xlabel('Manufacturers')
plt.ylabel('Count')
plt.show()
```


In [12]: #Relationship between the columns
 sns.pairplot(df)
 plt.show()


```
In [13]: # most frequently fuel type
fuel_type = df.groupby('Fuel type')['Price'].mean().round(1).sort_values(ascendifuel_type
```

```
Out[13]:
          Fuel type
          Plug-in Hybrid
                             22445.0
          Hydrogen
                             20385.0
                             20245.0
          Diesel
          Petrol
                             13580.9
          LPG
                             13547.9
          Hybrid
                             10463.2
          CNG
                              7539.1
          Name: Price, dtype: float64
```

```
In [14]: plt.figure(figsize=(10,4))
    sns.barplot(x= fuel_type.index, y=fuel_type.values)
    plt.title('Distribution of Most Frequently Fuel Type')
    plt.xticks(rotation=45)
    plt.xlabel('Fuel Type')
    plt.ylabel('Count')
    plt.show()
```


In [15]: #Relationship between numerical columns
 numeric_column = df.select_dtypes('number')
 numeric_column.corr().round(2)

Out[15]:		Price	Levy	Engine volume	Cylinders	Airbags	Age	Mileage km
	Price	1.00	0.02	0.00	-0.05	-0.07	-0.30	-0.17
	Levy	0.02	1.00	0.31	0.11	0.21	-0.46	-0.04
	Engine volume	0.00	0.31	1.00	0.65	0.31	0.02	0.19
	Cylinders	-0.05	0.11	0.65	1.00	0.22	0.12	0.15
	Airbags	-0.07	0.21	0.31	0.22	1.00	-0.27	-0.01
	Age	-0.30	-0.46	0.02	0.12	-0.27	1.00	0.23

```
In [16]: #Columns that affect Price
    price_corr = numeric_column.corr()['Price'].sort_values(ascending=False)
    price_corr
```

0.19

0.15

-0.01

0.23

```
Out[16]: Price 1.000000

Levy 0.019057

Engine volume 0.003895

Cylinders -0.052854

Airbags -0.068340

Mileage km -0.171228

Age -0.296334

Name: Price, dtype: float64
```

Mileage km -0.17 -0.04

```
In [17]: plt.figure(figsize=(10,6))
    sns.heatmap(numeric_column.corr().round(2), annot=True, cmap= 'rainbow')
    plt.title('The Relationship Between The Numerical Columns')
    plt.show()
```

1.00

In [18]: #Count of cars that have genunie Leather interior and thet have artificial leath
 leather_interior = df.groupby('Leather interior')['Price'].count()
 leather_interior

Out[18]: Leather interior No 4861 Yes 11174

Name: Price, dtype: int64

In [19]: plt.figure(figsize=(5,3))
 sns.countplot(df, x='Leather interior', hue='Leather interior', palette= 'coolwa
 plt.title('Count of Cars that have Leather interior or No')
 plt.show()


```
In [20]: #Most used gearbox
gear_box= df.groupby('Gear box type')['Price'].count()
gear_box
```

```
Out[20]: Gear box type
Automatic 11208
Manual 1668
Tiptronic 2451
Variator 708
Name: Price, dtype: int64
```

In [21]: sns.countplot(df,x='Gear box type',hue='Gear box type', palette= 'rainbow')
 plt.title('The Most Commonly Used Type of Gearbox')
 plt.show()

Machine Learning:

In [30]:	df	head()											
Out[30]:		Price	Levy	Manufacturer	Model	Category	Fuel type	Engine volume	Cylinders	Color	Airba		
	0	13328	1399	28	1035	4	2	3.5	6.0	12			
	1	16621	1018	6	563	4	5	3.0	6.0	1			
	2	8467	0	18	585	3	5	1.3	4.0	1			
	3	3607	862	13	565	4	2	2.5	4.0	14			
	4	11726	446	18	585	3	5	1.3	4.0	12			
	5 rows × 23 columns												
In [83]:	<pre># Define the columns to be one-hot encoded one_hot_columns = ['Leather interior', 'Gear box type', 'Drive wheels', 'Wheel']</pre>												
	<pre># Create a OneHotEncoder object with the desired settings oh_encoder = OneHotEncoder(sparse_output=False, handle_unknown='ignore')</pre>												
	<pre># Fit the encoder and transform the training data oh_encoder_train = oh_encoder.fit_transform(df[one_hot_columns])</pre>												
	# (Get the	new c	olumn names a	fter one	e-hot enco	ding						

```
oh_encoded_columns = oh_encoder.get_feature_names_out(one_hot_columns)
         # Create a new DataFrame for the one-hot encoded columns
         oh_encoded_train_df = pd.DataFrame(oh_encoder_train, columns=oh_encoded_columns,
         # Concatenate the original DataFrame with the one-hot encoded DataFrame
         df = pd.concat([df, oh_encoded_train_df], axis=1)
         # Drop the original columns that were one-hot encoded
         df.drop(columns=one_hot_columns, inplace=True)
In [84]: # Define the columns to be label encoded
         label_encode_columns = ['Manufacturer', 'Model', 'Category', 'Fuel type', 'Color
         # Create a dictionary to store the label encoders for each column
         label_encoders = {}
         # Iterate over each column to apply label encoding
         for column in label_encode_columns:
             # Create a LabelEncoder object
             label_encoder = LabelEncoder()
             # Fit the encoder and transform the column in the DataFrame
             df[column] = label_encoder.fit_transform(df[column])
```

In []:

1- Linear Regression

```
In [85]: lr = LinearRegression()
    scores_linear_regression = cross_val_score(lr, X, y, cv=5, scoring='r2')
    print(f'R2 Score with Linear Regression = {scores_linear_regression.mean().round
    R2 Score with Linear Regression = 0.24
```

Store the fitted label encoder in the dictionary

label_encoders[column] = label_encoder

2- Random Forest Regressor

```
In [86]: rf = RandomForestRegressor()
    scores_random_forest = cross_val_score(rf, X, y, cv=5, scoring='r2')
    print(f'R2 Score with Random Forest Regressor = {scores_random_forest.mean().rou
```

```
C:\Users\student7\anaconda3\Lib\site-packages\sklearn\base.py:1473: DataConversio
nWarning: A column-vector y was passed when a 1d array was expected. Please chang
e the shape of y to (n_samples,), for example using ravel().
 return fit_method(estimator, *args, **kwargs)
C:\Users\student7\anaconda3\Lib\site-packages\sklearn\base.py:1473: DataConversio
nWarning: A column-vector y was passed when a 1d array was expected. Please chang
e the shape of y to (n_samples,), for example using ravel().
 return fit_method(estimator, *args, **kwargs)
C:\Users\student7\anaconda3\Lib\site-packages\sklearn\base.py:1473: DataConversio
nWarning: A column-vector y was passed when a 1d array was expected. Please chang
e the shape of y to (n_samples,), for example using ravel().
  return fit_method(estimator, *args, **kwargs)
C:\Users\student7\anaconda3\Lib\site-packages\sklearn\base.py:1473: DataConversio
nWarning: A column-vector y was passed when a 1d array was expected. Please chang
e the shape of y to (n_samples,), for example using ravel().
 return fit_method(estimator, *args, **kwargs)
C:\Users\student7\anaconda3\Lib\site-packages\sklearn\base.py:1473: DataConversio
nWarning: A column-vector y was passed when a 1d array was expected. Please chang
e the shape of y to (n_samples,), for example using ravel().
 return fit_method(estimator, *args, **kwargs)
R2 Score with Random Forest Regressor = 0.77
```

In []:

Deep Learning:

```
In [87]: X = StandardScaler().fit_transform(X)
In [88]: ann = Sequential()
         ann.add(Dense(25, input_dim= 22, activation='relu')) #input
         ann.add(Dense(625, activation='relu')) #hidden
         ann.add(Dense(1,activation='linear')) #output
        C:\Users\student7\anaconda3\Lib\site-packages\keras\src\layers\core\dense.py:87:
        UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer. When u
        sing Sequential models, prefer using an `Input(shape)` object as the first layer
        in the model instead.
          super(). init (activity regularizer=activity regularizer, **kwargs)
```

In [89]: ann.summary()

Model: "sequential 3"

Layer (type)	Output Shape
dense_9 (Dense)	(None, 25)
dense_10 (Dense)	(None, 625)
dense_11 (Dense)	(None, 1)

Total params: 17,451 (68.17 KB) **Trainable params:** 17,451 (68.17 KB)

Non-trainable params: 0 (0.00 B)

```
In [90]: ann.compile(optimizer='adam', loss='mean_squared_error')
In [91]: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_extrain_statest_split(X, y, test_siz
```

Frank 1/100					
Epoch 1/100 514/514	1.	2mc/ston		1000	201765501 0000
Epoch 2/100	13	ziiis/step	-	1055.	304703304.0000
514/514	1 c	2ms/sten	_	1055.	99093088 0000
Epoch 3/100	13	21113/ 3 сср		1033.	33033000.0000
514/514 ————	1 s	2ms/sten	_	loss:	86885568.0000
Epoch 4/100		0, 0 00p			
514/514	1 s	1ms/step	_	loss:	84314024.0000
Epoch 5/100					
514/514	1 s	1ms/step	-	loss:	84023512.0000
Epoch 6/100					
514/514	1 s	2ms/step	-	loss:	80020856.0000
Epoch 7/100					
514/514	1 s	2ms/step	-	loss:	78018256.0000
Epoch 8/100				-	3000010101000
514/514 ————————————————————————————————————	15	2ms/step	-	loss:	/9333424.0000
Epoch 9/100 514/514 —————	1.0	2mc/ston		1000.	79017776 0000
Epoch 10/100	12	ziiis/step	-	1055.	76017730.0000
514/514	1ς	2ms/sten	_	loss	75039536 0000
Epoch 11/100		23, эсер		1055.	73033330.0000
514/514	1 s	2ms/step	-	loss:	75010448.0000
Epoch 12/100					
514/514	1 s	2ms/step	-	loss:	75903280.0000
Epoch 13/100					
514/514	1 s	2ms/step	-	loss:	72387528.0000
Epoch 14/100 514/514 ————————————————————————————————————	1.	2		1	72255040 0000
Epoch 15/100	12	zms/step	-	1022:	72255848.0000
514/514	1 s	2ms/sten	_	loss:	73274344.0000
Epoch 16/100		о, о сор			
514/514	1 s	2ms/step	-	loss:	70961760.0000
Epoch 17/100					
514/514	1 s	2ms/step	-	loss:	69953408.0000
Epoch 18/100				-	
514/514 ————————————————————————————————————	15	2ms/step	-	loss:	6/956/84.0000
Epoch 19/100 514/514 ————————————————————————————————————	1 c	2mc/stan	_	1000	68356096.0000
Epoch 20/100	13	21113/3 ССР		1033.	00330030.0000
514/514 ————	1 s	2ms/step	_	loss:	66821184.0000
Epoch 21/100					
514/514	1 s	2ms/step	-	loss:	65494604.0000
Epoch 22/100					
514/514	1 s	2ms/step	-	loss:	63735976.0000
Epoch 23/100	4.	2 / 1			62724204 0000
514/514 ————————————————————————————————————	15	2ms/step	-	TOSS:	62/34204.0000
514/514 ————————————————————————————————————	1 c	2ms/sten	_	1055.	61502452 0000
Epoch 25/100		23, эсер		1033.	01302432.0000
514/514	1 s	2ms/step	-	loss:	61591064.0000
Epoch 26/100					
514/514	1 s	2ms/step	-	loss:	59354372.0000
Epoch 27/100	_				
	1 s	2ms/step	-	loss:	57166568.0000
Epoch 28/100 514/514 ————————————————————————————————————	1.	2mc/c+00		locci	5/785160 0000
Epoch 29/100	Τ2	ziiis/step	-	TO22;	אטשט, שסדנס / +יכ
514/514	1 s	2ms/sten	_	loss:	54924224.0000
Epoch 30/100		э, эсср			
514/514	1 s	2ms/step	-	loss:	54371556.0000

Frach 31/100					
Epoch 31/100 514/514	1 c	2mc/stan	_	1000	50525308.0000
Epoch 32/100	13	21113/3CEP	_	1033.	30323308.0000
•	1 s	2ms/step	_	loss:	50854356.0000
Epoch 33/100		, ,			
514/514	1 s	2ms/step	-	loss:	50095600.0000
Epoch 34/100					
514/514	1 s	2ms/step	-	loss:	49564228.0000
Epoch 35/100				,	47624500 0000
514/514 ————————————————————————————————————	15	2ms/step	-	loss:	4/634500.0000
Epoch 36/100 514/514 ————————————————————————————————————	1¢	2ms/sten	_	1000	48587860.0000
Epoch 37/100		23, эсер		1033.	4030700010000
	1 s	2ms/step	_	loss:	46469396.0000
Epoch 38/100					
	1 s	2ms/step	-	loss:	48332208.0000
Epoch 39/100					
	15	2ms/step	-	loss:	48324068.0000
Epoch 40/100 514/514	1 c	2ms/stan	_	1000	47665772.0000
Epoch 41/100	13	21113/3 ССР		1033.	47003772.0000
514/514 —————	1 s	2ms/step	_	loss:	46887376.0000
Epoch 42/100					
514/514	1 s	2ms/step	-	loss:	46719536.0000
Epoch 43/100	1.	2		1	46522112 0000
514/514 ————————————————————————————————————	12	ziiis/scep	-	1055:	46522112.0000
•	1 s	2ms/step	_	loss:	44215292.0000
Epoch 45/100					
514/514	1 s	2ms/step	-	loss:	45187036.0000
Epoch 46/100					
514/514 ————————————————————————————————————	15	2ms/step	-	loss:	45744004.0000
-	15	2ms/sten	_	loss:	43647804.0000
Epoch 48/100		·			
514/514	1 s	2ms/step	-	loss:	45254292.0000
Epoch 49/100					
514/514 ————————————————————————————————————	1s	1ms/step	-	loss:	46476420.0000
Epoch 50/100 514/514 ————————————————————————————————————	1¢	2ms/sten	_	1055.	45242312 0000
Epoch 51/100		23, 3 сер		1055.	132 12322 10000
514/514	1 s	2ms/step	-	loss:	45000052.0000
Epoch 52/100					
514/514 ————————————————————————————————————	1 s	2ms/step	-	loss:	43651512.0000
Epoch 53/100 514/514 ————————————————————————————————————	1 c	2ms/stan	_	1000	15011601 0000
Epoch 54/100	13	211137 3 сер		1033.	+50+100+.0000
514/514	1 s	2ms/step	-	loss:	45271284.0000
Epoch 55/100					
514/514	1 s	2ms/step	-	loss:	44024032.0000
Epoch 56/100 514/514 ————————————————————————————————————	1.0	2mc/c+on		1000	45567520 0000
Epoch 57/100	12	ziiis/step	-	1055.	45567520.0000
514/514	1s	2ms/step	_	loss:	45127076.0000
Epoch 58/100					
514/514	1 s	2ms/step	-	loss:	44853144.0000
Epoch 59/100	_	2		1.	44072246 2225
514/514 ————————————————————————————————————	15	∠ms/step	-	TOSS:	449/2316.0000
514/514 —————————	15	2ms/sten	_	loss:	44729316.0000
·, ·		, эсер			

5 L 44 (400					
Epoch 61/100 514/514	1.	2mc/ston		10001	42000000
Epoch 62/100	15	zms/step	-	1088:	43066952.0000
514/514	1ς	2ms/sten	_	1055.	43586984 0000
Epoch 63/100		23, эсер		1033.	43300304.0000
514/514 —————	1 s	2ms/step	_	loss:	45392864.0000
Epoch 64/100					
514/514	1 s	2ms/step	-	loss:	45365012.0000
Epoch 65/100					
514/514	1 s	2ms/step	-	loss:	43374176.0000
Epoch 66/100				-	4222422
514/514 ————————————————————————————————————	15	2ms/step	-	loss:	43206288.0000
Epoch 67/100 514/514 ————————————————————————————————————	1¢	2ms/sten	_	1000	45235908 0000
Epoch 68/100	13	21113/ 3 сср		1033.	43233300:0000
514/514 —————	1 s	2ms/step	_	loss:	43240308.0000
Epoch 69/100		·			
514/514	1 s	2ms/step	-	loss:	43073660.0000
Epoch 70/100					
514/514	1 s	2ms/step	-	loss:	43547672.0000
Epoch 71/100 514/514	1.	2mc/ston		10001	42044920 0000
Epoch 72/100	12	ziiis/step	_	1055.	45944620.0000
514/514	1s	2ms/step	_	loss:	42863504.0000
Epoch 73/100		, ,			
514/514	1 s	2ms/step	-	loss:	43050120.0000
Epoch 74/100					
514/514	1 s	2ms/step	-	loss:	44079348.0000
Epoch 75/100 514/514 ————————————————————————————————————	1.	2mc/ston		1000	11965711 0000
Epoch 76/100	13	21113/3 CEP	_	1033.	41803744.0000
514/514 —————	1 s	2ms/step	_	loss:	44269896.0000
Epoch 77/100					
514/514	1 s	2ms/step	-	loss:	42601840.0000
Epoch 78/100		0 / 1		,	40006070 0000
514/514 — Epoch 79/100	15	2ms/step	-	loss:	42896972.0000
	15	2ms/sten	_	loss:	42076788.0000
Epoch 80/100		5, 5 ccp			0,0,00,000
514/514	1 s	2ms/step	-	loss:	42522552.0000
Epoch 81/100					
514/514	1 s	2ms/step	-	loss:	43827352.0000
Epoch 82/100	4.	2 / - +		1	42642722 0000
514/514 ————————————————————————————————————	15	2ms/step	-	1055:	42613/32.0000
514/514	1s	2ms/step	_	loss:	44798056.0000
Epoch 84/100		,			
514/514	1 s	2ms/step	-	loss:	42482340.0000
Epoch 85/100					
514/514	1 s	2ms/step	-	loss:	44200848.0000
Epoch 86/100	4.	2		1	42270464 0000
514/514 ————————————————————————————————————	15	2ms/step	-	1055:	422/8164.0000
-	15	2ms/sten	_	loss:	42647160.0000
Epoch 88/100		э, эсер			
514/514	1 s	2ms/step	-	loss:	41852220.0000
Epoch 89/100					
514/514	1 s	2ms/step	-	loss:	43746044.0000
Epoch 90/100 514/514 ————————————————————————————————————	. 1 -	2mc/c+==		1000	42720016 0000
J14/ J14	12	ziiis/step	-	1022;	42/20310.0000

```
Epoch 91/100
        514/514 -
                                     - 1s 2ms/step - loss: 44095084.0000
        Epoch 92/100
        514/514 -
                                     - 1s 2ms/step - loss: 42318800.0000
        Epoch 93/100
        514/514 -
                                     - 1s 2ms/step - loss: 41620384.0000
        Epoch 94/100
        514/514 -
                                     - 1s 2ms/step - loss: 44715224.0000
        Epoch 95/100
        514/514 -
                                     - 1s 2ms/step - loss: 42595912.0000
        Epoch 96/100
                                    - 1s 2ms/step - loss: 43198044.0000
        514/514 -
        Epoch 97/100
        514/514 -
                                     - 1s 2ms/step - loss: 41303592.0000
        Epoch 98/100
        514/514 -
                                     - 1s 2ms/step - loss: 43372816.0000
        Epoch 99/100
        514/514 -
                                     - 1s 2ms/step - loss: 43033144.0000
        Epoch 100/100
        514/514
                                      1s 2ms/step - loss: 43761436.0000
In [93]: hist.history.keys()
Out[93]: dict_keys(['loss'])
In [94]: y_pred= ann.predict(X_test)
         score_ann = r2_score(y_test,y_pred)
         print(f'R2 Score with ANN = {score_ann:.2f}')
                                    - 0s 1ms/step
        101/101 -
        R2 Score with ANN = 0.64
```

R2 score Comparison:

```
In [101... plt.figure(figsize=(8,4))
    models = ['Linear Regression', 'Random Forest', 'ANN']
    scores = [0.24, 0.77, 0.66]
    plt.bar(models,scores, color='skyblue')
    plt.title('R2 Score Comparison')
    plt.ylabel('R2 Score')
    plt.show()
```


Summary

- Random Forest performed best with R2 = 0.77
- The performance of the ANN was okay, and could be improved
- Linear Regression underperformed, likely due to data complexity
- Futuer imporovement: hyperparameter tuning, deep model enhancements

Thank You