МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ

В.В. Ефимов

КОНСТРУКЦИЯ И ПРОЧНОСТЬ САМОЛЕТА

ПОСОБИЕ по выполнению курсового проекта

Часть III

для студентов IV курса направлений 162300, 25.03.01 всех форм обучения

Москва-2014

ББК 053-021 Е91

Рецензент д-р техн. наук, проф. В.Г. Ципенко

Ефимов В.В.

Е91 Конструкция и прочность самолета. Ч. III. Справочные материалы к курсовому проекту: пособие по выполнению курсового проекта. - М.: МГТУ ГА, 2014. - 36 с.

Данное пособие издается в соответствии с рабочей программой учебной дисциплины «Конструкция и прочность самолета» по Учебному плану для студентов IV курса направлений 162300, 25.03.01 всех форм обучения.

Рассмотрены и одобрены на заседаниях кафедры 22.04.14 г. и методического совета 22.04.14 г.

Подписано в печать 20.06.2014 г. Печать офсетная Формат 60х84/16 1,9 уч.-изд. л. 2,16 усл. печ. л. Заказ № 1854/ Тираж 200 экз.

Московский государственный технический университет ГА 125993 Москва, Кронштадтский бульвар, д. 20 Редакционно-издательский отдел 125493 Москва, ул. Пулковская, д. 6а

СОДЕРЖАНИЕ

ВВЕДЕНИЕ	4
1. ХАРАКТЕРИСТИКИ АЭРОДРОМОВ И САМОЛЕТОВ	5
2. ХАРАКТЕРИСТИКИ РЕАКТИВНЫХ ДВИГАТЕЛЕЙ	11
3. АЭРОДИНАМИЧЕСКИЕ ХАРАКТЕРИСТИКИ САМОЛЕТОВ	17
4. КАТАЛОГ АВИАЦИОННЫХ КОЛЕС	23
5. СПРАВОЧНЫЕ МАТЕРИАЛЫ ПО КОМПОНОВКЕ САМОЛЕТА	27
6. МЕЖДУНАРОДНАЯ СТАНДАРТНАЯ АТМОСФЕРА	34
СПИСОК ИСТОЧНИКОВ	36

ВВЕДЕНИЕ

Целью данной части пособия по выполнению курсового проекта по дисциплине «Конструкция и прочность самолета» (КПС) является обеспечение студентов справочными материалами, необходимыми для работы над курсовым проектом.

Справочные материалы составлены на основе нормативных документов, рекомендаций учебно-методической литературы, каталогов авиационной техники отечественного и иностранного производства. Следует учитывать, что некоторые требования нормативных документов могут с течением времени изменяться, поэтому при выполнении курсового проекта желательно отслеживать эти изменения.

Данная часть пособия по выполнению курсового проекта содержит классификацию самолетов и аэродромов, технические характеристики самолетов и двигателей, статистические данные по относительным массам основных частей самолета, аэродинамические характеристики некоторых наиболее распространенных схем самолетов, каталог авиаколес, справочные материалы по компоновке фюзеляжа, таблицу Международной стандартной атмосферы (МСА).

Необходимо особо отметить, что все представленные в данной части пособия технические характеристики могут быть использованы только в учебных целях.

1. ХАРАКТЕРИСТИКИ АЭРОДРОМОВ И САМОЛЕТОВ

Таблица 1.1 **Классификация самолетов по максимальной взлетной массе**

Класс	Максимальная взлетная масса m_0 , т
самолета	
1	$m_0 \ge 75$
2	$30 \le m_0 < 75$
3	$10 \le m_0 < 30$
4	$m_0 < 10$

Таблица 1.2 **Классификация самолетов по дальности полета**

№ п/п	Класс самолета	Дальность полета с
		максимальной ком-
		мерческой нагрузкой
		L, km
1	Самолеты местных воздушных линий (МВЛ)	L < 1000
2	Ближние магистральные самолеты (БМС)	$1000 \le L < 2500$
3	Средние магистральные самолеты (СМС)	$2500 \le L < 6000$
4	Дальние магистральные самолеты (ДМС)	<i>L</i> ≥ 6000

Таблица 1.3 **Классификация аэродромов**

Класс аэродрома	A	Б	В	Γ	Д	Е
Длина взлетно-посадочной полосы (ВПП), м	3200	2600	1800	1300	1000	500
Длина концевой полосы безопасности (КПБ), м	400	400	200	200	100	100
Ширина ВПП, м	60	45	42	35	28	21
Ширина рулежных дорожек (РД), м	22,5	21	21	16	14	10
Величина нормативной нагрузки на основную (условную) опору, тс	70	55	40	30	8	5
Внутреннее давление воздуха в шинах колес, кгс/см ²	10	10	10	10	6	4

Таблица 1.4 **Характеристики силовых установок и крейсерские характеристики самолетов**

№	Тип	Марка	Количест-	Дальность	Крейсер-	Макси-
п/п	самолета	двигателя	во двига-	полета с	ская ско-	мальная
			телей ×	макси-	рость по-	крейсер-
			стартовая	мальной	лета,	ская высо-
			тяга одно-	коммерче-	км/ч	та полета,
			го двига-	ской на-		M
			теля,	грузкой,		
			кгс	KM		
1	2	3	4	5	6	7
1	Як-40	АИ-25	3×1470	820	510	6000
2	Як-42Д	Д-36	3×6280	1960	750	9600
3	Ил-62М	Д-30КУ	4×10790	8850	840	11000
4	Ил-76ТД	Д-30КП	4×11760	3700	780	12000
5	Ил-86	НК-86	4×12750	3800	900	12000
6	Ил-96-300	ПС-90А	4×16140	11500	870	12000
7	Ту-134Б	Д-30	2×6600	2020	880	10100
8	Ty-154M	Д-30КУ	3×10790	3500	850	10900
9	Ty-204-100	ПС-90А	2×16140	4300	850	12600
10	Ан-74ТК-200	Д-36	2×6280	950	580	10100
11	Ан-124-100	Д-18Т	4×23430	4800	800	12000
12	Ан-148-100В	Д436-148	2×7500	1070	800	12200
13	Ан-225	Д-18Т	6×23430	4000	750	11600
14	SSJ 100-75B	SaM146	2×7945	2900	840	12500
15	A300B2	CF6-50C	2×23150	3700	880	10670
16	A310-300	CF6-80C2	2×25420	7410	895	11300
17	A320	CFM56-5	2×11320	3890	900	11275
18	A330-200	CF6-80E1	2×32660	11900	925	11890
19	A340-300	CFM56- 5C4	4×15422	10190	937	11800

Продолжение таблицы 1.4

1	2	3	4	5	6	7
20	A380-800	Trent 900	4×31700	15200	900	13115
21	B-707-320B	JT3D-7	4×8600	9260	975	12000
22	B-727-200	JTD8D-11	3×6800	2780	965	10000
23	B-737-200	JT8D-7	2×6580	2780	980	10670
24	B-747-200B	JT9D	4×24635	10670	895	13720
25	B-757-200	PW2040	2×18930	5220	935	12800
26	B-767-400ER	CF6-80C2	2×25420	10400	854	12800
27	B-777-200	PW4084	2×33600	9695	905	13100
28	L1011-200	RB211- 524B	3×21770	7600	982	12800
29	DC-10-40	JT9D-59A	3×21430	7450	920	10700
30	VC-10	Conway RCo.43	4×10204	7600	935	13106

 Таблица 1.5

 Взлетно-посадочные и весовые характеристики самолетов

№ п/п	Тип самолета	Скорость отрыва, км/ч	Поса- дочная ско- рость, км/ч	Сбалан- сиро- ванная длина ВПП, м	Макси- мальная взлетная масса, кг	Макси- мальная масса топлива, кг	Макси- мальная масса коммер- ческой нагруз- ки, кг
1	2	3	4	5	6	7	8
1	Як-40	175	160	1400	16100	3000	2720
2	Як-42Д	215	205	2200	57500	18500	13500
3	Ил-62М	310	270	3250	167000	83000	23000
4	Ил-76ТД	265	210	2500	190000	86000	50000
5	Ил-86	нд	240	2700	206000	88400	42000

Продолжение таблицы 1.5

1	2	3	4	5	6	7	8
6	Ил-96-300	нд	нд	2700	250000	120000	40000
7	Ту-134Б	275	250	2850	47600	13200	9000
8	Ty-154M	270	230	2500	104000	39750	18000
9	Ty-204-100	нд	нд	2250	103000	32800	21000
10	Ан-74ТК-200	нд	нд	2050	36500	13210	10000
11	Ан-124-100	нд	260	3000	402000	214000	150000
12	Ан-148-100В	нд	нд	1800	37780	12100	9000
13	Ан-225	нд	260	3500	640000	300000	250000
14	SSJ 100-75B	нд	нд	1515	38820	нд	9130
15	A300B2	276	250	2750	142000	43935	39700
16	A310-300	267	250	2290	164100	75470	32100
17	A320	нд	нд	2000	73500	18610	19200
18	A330-200	нд	нд	2350	230000	108500	44700
19	A340-300	нд	нд	2790	275000	109700	48700
20	A380-800	нд	268	3350	560000	241800	90800
21	B-707-320B	312	252	2960	151500	70500	21000
22	B-727-200	307	254	2595	78000	22700	17400
23	B-737-200	283	244	2165	49400	10790	12200
24	B-747-200B	329	261	3190	332050	143000	67950
25	B-757-200	272	249	2240	115660	34000	26700
26	B-767-400ER	нд	нд	2920	204120	71300	47000
27	B-777-200	нд	нд	2470	242630	94240	55670
28	L1011-200	306	267	2350	211370	77870	34000
29	DC-10-40	330	269	3130	251744	107260	44300
30	VC-10	307	256	1945	151956	56520	26369

<u>Примечание</u>: нд – нет данных.

Таблица 1.6 **Геометрические характеристики крыльев и фюзеляжей самолетов**

№ п/п	Тип самолета	Размах крыла, м	Стрело- видность крыла, град	Площадь крыла, м ²	Длина фюзеляжа / Длина са- молета, м	Макси- мальный эквива- лентный диаметр фюзеля- жа, м
1	2	3	4	5	6	7
1	Як-40	25,00	0	70,00	18,20/20,36	2,40
2	Як-42Д	34,88	23,0	150,00	нд /36,38	3,80
3	Ил-62М	42,50	35,0	279,55	40,00/53,12	3,75
4	Ил-76ТД	50,50	25,0	300,00	43,25/46,59	4,80
5	Ил-86	48,06	35,0	361,00	56,1/59,40	6,08
6	Ил-96-300	60,10	30,0	350,00	50,6/55,30	6,08
7	Ту-134Б	29,00	35,0	127,30	30,6/38,45	2,90
8	Ty-154M	37,50	35,0	202,00	нд /47,90	3,80
9	Ty-204-100	42,00	28,0	184,20	45,22/46,13	3,95
10	Ан-74ТК-200	31,89	17,0	98,62	нд /28,07	3,10
11	Ан-124-100	73,30	28,0	628,50	нд /69,1	нд
12	Ан-148-100В	28,91	нд	87,32	26,11/29,13	3,4
13	Ан-225	88,40	28,0	905,00	нд /84,00	нд
14	SSJ 100-75B	27,80	нд	нд	нд /26,44	нд
15	A300B2	44,84	28,0	260,00	52,03/53,62	5,64
16	A310-300	43,90	28,0	219,00	нд /46,66	5,64
17	A320	34,09	25,0	122,60	нд /37,57	3,95
18	A330-200	60,30	30,0	361,60	нд /58,80	5,64
19	A340-300	60,30	30,0	361,60	нд /63,65	5,64
20	A380-800	79,80	33,5	845,00	нд /73,00	7,14

Продолжение таблицы 1.6

1	2	3	4	5	6	7
21	B-707-320B	44,42	35,0	268,70	44,35/46,61	3,76
22	B-727-200	32,92	32,0	153,30	35,42/40,60	4,02
23	B-737-200	28,30	25,0	91,00	29,54/30,50	3,88
24	B-747-200B	59,60	37,5	510,90	68,60/70,70	6,50
25	B-757-200	38,00	25,0	185,20	47,30/47,30	3,76
26	B-767-400ER	51,90	31,5	306,30	60,08/61,37	5,03
27	B-777-200	60,93	31,1	427,80	62,94/62,94	6,20
28	L1011-200	47,34	35,0	321,0	нд /54,17	5,97
29	DC-10-40	50,39	35,0	329,8	51,97/55,54	6,02
30	VC-10	44,55	32,5	272,40	44,84/52,32	4,02

Примечание: нд – нет данных.

В таблице 1.7 представлены статистические данные по относительным массам основных частей самолетов и относительным массам топлива в зависимости от класса самолета в соответствии с классификацией самолетов по максимальной взлетной массе (таблица 1.1).

Таблица 1.7 Относительные массы частей самолета и топлива

Класс	Относитель-	Относитель-	Относитель-	Относитель-
самолета	ная масса	ная масса си-	ная масса	ная масса то-
	конструкции	ловой уста-	оборудования	плива
	самолета	новки	и системы	$\overline{m}_{_{\mathrm{T}}}$
	\overline{m}_{κ}	$\overline{m}_{\mathrm{CY}}$	управления	
			$\overline{m}_{ ext{of.ynp}}$	
1	0,250,27	0,080,10	0,090,11	0,350,40
2	0,280,30	0,100,12	0,100,12	0,260,30
3	0,300,32	0,120,14	0,120,14	0,180,22
4	0,290,31	0,140,16	0,120,14	0,120,18

На рис. 1.1 показана статистическая зависимость относительной массы служебной нагрузки и снаряжения $\overline{m}_{\rm en}$ от взлетной массы самолета m_0 .

Рис. 1.1. Зависимость относительной массы служебной нагрузки и снаряжения от взлетной массы самолета

2. ХАРАКТЕРИСТИКИ РЕАКТИВНЫХ ДВИГАТЕЛЕЙ

В данном разделе приведены характеристики некоторых турбореактивных двигателей (ТРД), которые могут быть использованы при курсовом проектировании.

Таблица 2.1 Параметры рабочего процесса реактивных двигателей

№ п/п	Марка двигателя	Степень двухконтурно- сти <i>т</i>	Степень повышения давления в компрессоре π_{κ}^*	Температура газов перед турбиной T_3^* , К
1	2	3	4	5
1	АИ-25	2,20	8,00	1145
2	Д-36	5,60	19,60	1460
3	Д-30КУ(II)	2,33	18,00	1336
4	Д-30КП	2,33	19,50	1160
5	НК-86	1,86	13,40	1164
6	НК-86А	1,86	12,93	1200
7	ПС-90А	4,50	38,00	1640

Продолжение таблицы 2.1

1	2	3	4	5
8	Д-30	1,05	18,40	1200
9	Д436-148	5,90	21,00	1550
10	Д-18Т	5,60	23,90	1710
11	CF6-50C	4,50	29,40	1600
12	CF6-80C2	5,20	30,40	1528
13	CFM56-5	6,00	31,20	1560
14	CF6-80E1	5,20	30,40	1528
15	CF56-5C4	6,60	37,40	1600
16	JT8D-8	1,68	18,10	1293
17	JT9D4	4,90	20,40	1640
18	PW2040	4,89	29,50	1526
19	RB211-524B	4,30	33,00	1550

Таблица 2.2 **Характеристики реактивных двигателей**

№ п/п	Марка двигателя	Стартовая тяга P_0 , кгс	Удельный часовой расход топлива на взлетном режиме $C_{\text{уд.0}}$, $\kappa\Gamma/(\kappa\Gamma\text{c.ч})$	Сухая масса $m_{\rm дв}$, кг	Макси- мальный диаметр $d_{\text{дв}}$, м	Длина
1	2	3	4	5	6	7
1	АИ-25	1470	0,600	354	896	1993
2	Д-36	6280	0,376	1099	1712	3470
3	Д-30КУ(II)	10790	0,498	2675	1455	5698
4	Д-30КП	11760	0,499	2650	1560	5448
5	НК-86	12750	0,535	2450	1600	6238

Продолжение таблицы 2.2

1	2	3	4	5	6	7
6	НК-86А	13300	0,74	3400	1455	5278
7	ПС-90А	16140	0,390	2950	1900	4964
8	Д-30	6600	0,630	1765	1050	4734
9	Д436-148	7500	0,37	1450	1949	3829
10	Д-18Т	23430	0,34	4100	1560	5698
11	CF6-50C	23150	0,402	3770	2184	4750
12	CF6-80C2	25420	0,330	4070	2827	4036
13	CFM56-5	11320	0,367	2010	1815	2280
14	CF6-80E1	32660	0,340	4100	2800	4000
15	CF56-5C4	12720	0,326	2295	1820	2440
16	JT8D-8	8230	0,510	2002	1432	3282
17	JT9D4	23540	0,380	4123	2489	3358
18	PW2040	18930	0,330	4220	2440	3870
19	RB211-524B	21770	0,32	4480	2192	3106

Ниже на рис. 2.1...2.6 приведены высотно-скоростные характеристики ТРД в виде зависимостей относительных тяг \overline{P}_{MH} и относительных удельных часовых расходов топлива $\overline{c}_{yд.MH}$ от числа M и высоты полета H. Данные зависимости не являются характеристиками каких-либо конкретных двигателей, но с достаточной для курсового проектирования степенью точности отражают влияние высоты и скорости полета на тягу и удельный расход топлива современных ТРД.

Напомним, что под относительной тягой для данного числа M и высоты полета H понимается:

$$\overline{P}_{MH} = \frac{P_{MH}}{P_0}, \qquad (2.1)$$

где P_{MH} — максимальная тяга двигателя при данных M и H полета; $P_0 = P_0 \big(M = 0, H = 0 \big)$ — стартовая тяга двигателя.

Для определения величины тяги, например, на крейсерском режиме полета нужно, зная величины $M_{\text{крейс}}$ и $H_{\text{крейс}}$, снять с графика для данного двигателя значение относительной тяги $\overline{P}_{MH} \big(M_{\text{крейс}}, H_{\text{крейс}} \big)$, а затем, зная стартовую тягу двигателя, найти:

$$P_{MH}\left(M_{\text{крейс}}, H_{\text{крейс}}\right) = \overline{P}_{MH}\left(M_{\text{крейс}}, H_{\text{крейс}}\right) P_{0}. \tag{2.2}$$

Напомним также, что под относительным удельным часовым расходом топлива понимается:

$$\overline{c}_{\text{уд.}MH} = \frac{c_{\text{уд.}MH}}{c_{\text{уд.}0}},\tag{2.3}$$

где $c_{\text{уд}MH}$ – удельный часовой расход топлива при данных M и H полета;

 $c_{{
m yg},0}=c_{{
m yg},0}ig(M=0,H=0ig)$ – удельный часовой расход топлива на взлетном режиме работы двигателя.

Абсолютная величина удельного часового расхода топлива на крейсерском режиме полета определяется по тому же принципу, что и тяга.

Для двигателей со степенью двухконтурности m < 0.5 и 1.5 < m < 4 нужно сначала получить значения \overline{P}_{MH} и $\overline{c}_{\text{уд},MH}$ для H = 0 с помощью графиков на рис. 2.3 и 2.4 соответственно, затем скорректировать графики на рис. 2.1 и 2.2. Только после этого можно будет определить необходимые значения относительной тяги \overline{P}_{MH} и относительного удельного часового расхода топлива $\overline{c}_{\text{уд},MH}$ на заданной высоте H и при заданном числе M.

Рис. 2.1. Зависимость относительной тяги (для ТРД со степенью двухконтурности m=0,5...1,5) от числа M и высоты полета H

Рис. 2.2. Зависимость относительного удельного часового расхода топлива (для $\mathrm{TP} \square$ со степенью двухконтурности m=0,5...1,5) от числа M и высоты полета H

Рис. 2.3. Зависимость относительной тяги (для ТРД со степенью двухконтурности m < 0,5 и 1,5 < m < 4) от числа M и степени двухконтурности m на высоте H = 0

Рис. 2.4. Зависимость относительного удельного расхода топлива (для ТРД со степенью двухконтурности m < 0,5 и 1,5 < m < 4) от числа M и степени двухконтурности m на высоте H = 0

Рис. 2.5. Зависимость относительной тяги (для ТРД со степенью двухконтурности m=4...6) от числа M и высоты полета H

Рис. 2.6. Зависимость относительного удельного часового расхода топлива (для ТРД со степенью двухконтурности m=4...6) от числа M и высоты полета H

3. АЭРОДИНАМИЧЕСКИЕ ХАРАКТЕРИСТИКИ САМОЛЕТОВ

В данном разделе представлены зависимости $c_{ya} = f(\alpha)$ и поляры самолетов наиболее распространенных схем в соответствии с классификацией, представленной в таблице 1.1. Они могут быть использованы при курсовом проектировании для оценки аэродинамических характеристик проектируемого самолета.

При корректировке зависимостей $c_{ya} = f(\alpha)$ для взлетной и посадочной конфигураций самолета следует иметь в виду, что приращение коэффициента подъемной силы при выпуске механизации зависит от большого числа факторов (тип и размах механизации, угол отклонения закрылков, стреловидность крыла χ , сужение крыла η , удлинение крыла λ , относительная толщина профиля \overline{c} и др.). Однако при курсовом проектировании можно руководствоваться следующими количественными рекомендациями.

Приращение максимального коэффициента подъемной силы для прямого крыла при выпуске механизации на взлете и посадке в зависимости от типа закрылка можно принять:

- для простого поворотного щелевого закрылка $\Delta c_{ya.\text{Mex}} = 0,8...1,0;$
- для выдвижного однощелевого закрылка $\Delta c_{ya.\mathrm{Mex}} = 1,4...1,5;$

— для выдвижных многощелевых закрылков $\Delta c_{va.\text{Mex}} = 1,6...1,8$.

Если крыло стреловидное, то максимальный коэффициент подъемной силы крыла с выпущенной механизацией необходимо скорректировать в соответствии с рис. 3.1.

Приращение коэффициента силы лобового сопротивления из-за выпуска шасси может быть принято $\Delta c_{xa.\text{шасси}} = 0,012...0,015$. Влиянием выпуска шасси на коэффициент подъемной силы можно пренебречь.

На рис. 3.2...3.9 приведены зависимости $c_{ya} = f(\alpha)$ и поляры самолетов для различных полетных конфигураций. Цифрами на данных рисунках отмечены кривые для следующих конфигураций:

- 1 крейсерская (механизация убрана, шасси убрано);
- 2 взлетная (механизация выпущена во взлетное положение, шасси выпущено);
- 3 посадочная (механизация выпущена в посадочное положение, шасси выпущено).

Рис. 3.1. Влияние угла стреловидности крыла на относительную величину коэффициента подъемной силы:

1 – простой закрылок; 2 – выдвижной закрылок

Рис. 3.2. Зависимости коэффициента подъемной силы от угла атаки для самолета 1-го класса с четырьмя ТРД и следующими геометрическими характеристиками:

$$\lambda = 7.5$$
; $\chi = 30^{\circ}$; $\overline{c} = 0.10...0.14$

Рис. 3.3. Поляры самолета 1-го класса с четырьмя ТРД и геометрическими характеристиками, приведенными в подписи к рис. 3.2

Рис. 3.4. Зависимости коэффициента подъемной силы от угла атаки для самолета 2-го класса с двумя ТРД и следующими геометрическими характеристиками:

$$\lambda = 8; \ \chi = 25^{\circ}; \ \overline{c} = 0,10...0,14$$

Рис. 3.5 Поляры самолета 2-го класса с двумя ТРД и геометрическими характеристиками, приведенными в подписи к рис. 3.4

Рис. 3.6. Зависимости коэффициента подъемной силы от угла атаки для самолета 3-го класса с двумя ТРД и следующими геометрическими характеристиками: $\lambda=9;~\chi=20^\circ;~\overline{c}=0,\!10...0,\!14$

Рис. 3.7. Поляры самолета 3-го класса с двумя ТРД и геометрическими характеристиками, приведенными в подписи к рис. 3.6

Рис. 3.8. Зависимости коэффициента подъемной силы от угла атаки для самолета 4-го класса с двумя ТРД и следующими геометрическими характеристиками: $\lambda=9;\ \chi=0;\ \overline{c}=0,12...0,17$

Рис. 3.9. Поляры самолета 4-го класса с двумя ТРД и геометрическими характеристиками, приведенными в подписи к рис. 3.8

4. КАТАЛОГ АВИАЦИОННЫХ КОЛЕС

Каталог авиационных колес содержит основные характеристики нетормозных и тормозных колес с пневматиками (шинами) низкого давления (баллонными, полубаллонными) и пневматиками высокого давления. Колеса с пневматиками низкого давления применяются на самолетах, эксплуатирующихся с грунтовых ВПП. Колеса с пневматиками высокого давления применяются на самолетах, эксплуатирующихся с бетонных ВПП.

Таблица 4.1 **Характеристики авиационных колес с баллонными** (арочными) пневматиками

Размеры колеса (диаметр× ширина), мм	Максимальная стояночная нагрузка $P_{\rm cr.max},$ кгс	Давление в пневматике, кгс/см ²	Максимально допустимая посадочная скорость $V_{\text{пос}}$, $\kappa \text{м/ч}$	Максимально допустимая скорость отрыва $V_{\rm orp}$, км/ч
1	2	3	4	5
	Не	тормозные коле	eca	
250×110A	277	3,0	200	260
310×135A	500	3,0	180	200
370×160A	660	3,5	200	260
420×185A	1050	3,0	180	200
480×200A	1300	4,0	180	200
530×230A	1800	4,0	200	200
580×240A	2150	4,5	180	200
660×285A	2850	4,5	160	200
720×310A	3750	4,5	200	200
	Т	ормозные колес	ca	
500×180A	1000	4,0	200	200
500×180A	1500	6,0	210	200
600×200A	1480	4,0	200	300
650×225A	1850	4,0	200	200
650×225A	2700	6,0	210	220

Продолжение таблицы 4.1

1	2	3	4	5
700×250A	2350	4,0	200	300
750×260A	2650	4,5	200	200
840×300A	3600	4,5	200	300
865×280A	4180	6,0	200	225
950×350A	4600	5,0	200	200
1000×380A	5400	4,5	200	260
1000×380A	7200	6,0	200	260
1100×395A	5900	4,5	200	200
1100×395A	6350	5,0	200	200
1170×435A	7850	5,0	220	230
1325×480A	9650	5,0	200	260
1450×520A	12700	5,0	200	220
1520×540A	15700	6,0	200	260
1600×560A	18300	6,0	200	280

Таблица 4.2 **Характеристики авиационных колес с полубаллонными пневматиками**

Размеры колеса (диаметр× ширина), мм	Максимальная стояночная нагрузка $P_{\text{ст.max}}$, кгс	Давление в пневматике, кгс/см ²	Максимально допустимая посадочная скорость $V_{\text{пос}}$, км/ч	Максимально допустимая скорость отрыва $V_{\text{отр}}$, км/ч			
1	2	3	4	5			
	Нетормозные колеса						
200×80	165	3,5	90	160			
300×125	370	3,5	150	200			
400×150	925	4,0	205	205			
470×210	1150	3,5	160	160			
600×250	1300	2,5	110	125			
700×300	2150	3,0	200	230			

Продолжение таблицы 4.2

1	2	3	4	5			
Тормозные колеса							
500×150	800	4,3	90	160			
560×170	835	4,0	90	120			
595×185	880	3,5	85	110			
650×200	1450	4,2	150	160			
700×220	2000	4,5	160	170			
750×250	2600	4,5	150	160			
800×260	2800	4,5	150	160			
880×285	3500	4,0	160	170			
900×300	3830	4,7	180	200			
950×320	4300	4,5	170	190			
1000×350	5180	4,7	160	180			
1050×380	5250	4,0	160	180			
1100×425	5400	3,7	160	170			
1150×435	5550	4,0	170	180			
1180×440	5800	4,0	170	180			
1200×450	6000	3,8	140	160			
1250×510	7000	4,0	150	170			

 Характеристики авиационных колес с пневматиками высокого давления

Размеры	Максимальная	Давление в	Максимально	Максимально			
колеса	стояночная	пневматике,	допустимая	допустимая			
(диаметр×	нагрузка	$\kappa \Gamma c/cm^2$	посадочная	скорость от-			
ширина),	$P_{\rm cr.max}$,		скорость $V_{\text{пос}}$,	рыва $V_{\rm orp}$,			
MM	кгс		км/ч	км/ч			
1	2	3	4	5			
	Нетормозные колеса						
520×125B	1330	7,5	220	290			
570×140B	2100	7,0	210	210			

Продолжение таблицы 4.3

1	2	3	4	5
600×155B	2400	7,5	240	280
660×220B	2700	7,0	235	280
800×200B	3000	7,5	240	300
880×230B	3400	7,0	270	360
950×250B	3600	7,0	230	260
1000×280B	4600	7,0	250	300
	Т	ормозные колес	ca	
520×125B	1770	10,0	240	310
570×140B	3000	10,0	220	260
600×155B	3260	10,5	230	280
600×200B	4040	10,5	250	315
800×200B	4700	10,0	260	320
800×225B	5100	10,0	320	350
880×230B	4850	10,0	290	390
930×305B	8800	10,0	225	245
950×250B	5350	10,5	250	340
1000×280B	6600	10,0	240	330
1050×300B	9600	10,0	230	260
1100×330B	11000	10,0	260	330
1140×350B	13000	10,0	230	260
1150×355B	14500	10,0	240	280
1260×390B	18000	10,5	250	300
1350×450B	22300	10,0	230	270
1500×500B	24000	10,0	260	320
1700×550B	25000	10,0	250	325
1700×550B	26300	10,5	260	290

5. СПРАВОЧНЫЕ МАТЕРИАЛЫ ПО КОМПОНОВКЕ САМОЛЕТА

В настоящее время в практике авиационных пассажирских перевозок используется три класса пассажирских кабин (салонов): первый (или бизнескласс), туристский и экономический. Эти классы различаются комфортом в части размещения пассажиров и условиями их обслуживания. Соответственно в первом классе ширина пассажирских кресел и шаг рядов кресел (расстояние между рядами) больше, чем в двух других классах, пассажиры чаще получают питание и т.п.

Основные размеры кресел в зависимости от класса салона должны быть не менее, чем показанные на рис. 5.1 и в таблице 5.1.

Дополнительно следует иметь в виду, что в салонах первого класса устанавливают только блоки из двух кресел, в салонах туристского и экономического классов устанавливают блоки из двух или из трех кресел.

Расстояние между рядами кресел (шаг кресел) выбирается в зависимости от класса салона:

- первый 980…1080 мм;
- туристский 840...870 мм;
- экономический 780...810 мм.

Компоновка пассажирской кабины должна удовлетворять требованию обеспечения величины удельного объема кабины, приходящегося на одного пассажира γ_{φ} , который должен иметь значения, не менее указанных в таблице 5.2.

Рис. 5.1. Основные размеры пассажирских кресел

Таблица 5.1 **Основные характеристики кресе**л

Наименование и обозначение	Класс пассажирского салона				
характеристики	Первый	Туристский	Экономи- ческий		
Ширина кресла (расстояние между подлокотниками) b_{κ} , мм	550	500	460		
Ширина подлокотника $b_{\scriptscriptstyle \Pi}$, мм	80	60	50		
Длина подушки сидения $L_{\rm c}$, мм	500	470	470		
Высота сидения над полом h , мм	445	445	445		
Высота кресла Н, мм	1140	1120	1120		
Угол отклонения спинки β, град	45	36	25		
Масса одного кресла, кг	1012	810	68		
Масса блока из двух кресел, кг	1822	1418	1215		
Масса блока из трех кресел, кг		2025	1820		

Таблица 5.2 Минимальные значения удельного объема пассажирской кабины, $m^3/\text{чел}$

Диаметр фюзеляжа	Продолжительность полета, ч						
диаметр фюзелика	до 1	12	24	46	68	8 и более	
до 4 м	0,84	0,85	0,92	0,98	1,2	1,2	
4 м и более	0,96	0,98	1,06	1,13	1,27	1,36	

На компоновку пассажирской кабины большое влияние оказывает размещение аварийно-спасательных средств, которые в первую очередь должны обеспечить своевременную аварийную эвакуацию пассажиров. Выполнение этого требования главным образом зависит от соответствующего количества аварийных выходов, их параметров и обеспечения проходов к ним.

В Авиационных правилах (Часть 25. Нормы летной годности самолетов транспортной категории) имеются соответствующие требования, касающиеся устройства аварийных выходов. Наиболее важные из них с точки зрения компоновки пассажирской кабины и самолета в целом приведены ниже.

На самолетах применяются следующие типы аварийных выходов:

- 1) **Тип I.** Выход этого типа является выходом, расположенным на уровне пола, с прямоугольным проемом шириной не менее 610 мм и высотой не менее 1220 мм с радиусами закругления углов не более 1/3 ширины проема;
- 2) **Тип II.** Выход этого типа имеет прямоугольный проем шириной не менее 510 мм и высотой не менее 1120 мм с радиусами закругления углов не более 1/3 ширины проема. Выходы типа II должны располагаться на уровне пола, если только они не находятся над крылом. В последнем случае они могут иметь порог внутри самолета высотой не более 250 мм, а снаружи самолета не более 430 мм;
- 3) **Тип III.** Выход этого типа имеет прямоугольный проем шириной не менее 510 мм и высотой не менее 915 мм с радиусами закругления углов не более 1/3 ширины проема и высотой порога внутри самолета не более 510 мм. Если выход находится над крылом, высота порога снаружи самолета не должна превышать 685 мм.
- 4) **Тип IV.** Выход этого типа имеет прямоугольный проем шириной не менее 485 мм и высотой не менее 660 мм с радиусами закругления углов не более 1/3 ширины выхода. Выход типа IV должен располагаться над крылом и иметь высоту порога внутри самолета не более 735 мм и снаружи самолета не более 915 мм;
- 5) Подфюзеляжный выход. Выход этого типа является выходом из пассажирской кабины через герметичную перегородку и обшивку нижней части фюзеляжа. Размеры и физическая конфигурация выхода этого типа должны обеспечивать, как минимум, такую же скорость покидания, как и выход типа I (при нахождении самолета на земле в нормальном положении с выпущенным шасси);
- 6) Выход в хвостовой части фюзеляжа. Выход этого типа является задним выходом из пассажирской кабины через герметичную перегородку и открываемый конус фюзеляжа за герметичной перегородкой. Средства открытия хвостового конуса должны быть простыми и очевидными для использования и должны требовать одного действия;
- 7) **Тип А.** Выход этого типа является выходом на уровне пола с прямоугольным проемом шириной не менее 1070 мм и высотой не менее 1830 мм с радиусами закругления углов не более 1/6 ширины выхода.

Минимальное количество и типы аварийных выходов при количестве пассажирских мест от 1 до 179 определяются в соответствии с таблицей 5.3. При количестве пассажирских мест более 179 требуются дополнительные аварийные выходы в соответствии с таблицей 5.4.

Таблица 5.3 Минимальное количество и типы аварийных выходов при количестве пассажирских мест от 1 до 179

Количество пассажирских мест	Количество аварийных выходов на каждом борту фюзеляжа				
MCC1	Тип I	Тип II	Тип III	Тип IV	
19				1	
1019			1		
2039		1	1		
4079	1		1		
80109	1		2		
110139	2		1		
140179	2		2		

Таблица 5.4 Дополнительные аварийные выходы при количестве пассажирских мест более 179

Дополнительные аварийные выходы (на каждом борту фюзеляжа)	Допустимое увеличение количества пассажирских мест		
Тип А	110		
Тип І	45		
Тип II	40		
Тип III	35		

При количестве пассажирских мест более 299 каждый аварийный выход на борту фюзеляжа должен быть выходом типа А или І. На каждую пару выходов типа А разрешается иметь 110 пассажирских мест, а на каждую пару выходов типа І — 45 мест.

Должны быть предусмотрены аварийные выходы при аварийном приводнении в соответствии со следующими требованиями:

- 1) на самолетах с количеством пассажирских мест 9 или менее один выход на каждом борту самолета выше ватерлинии, соответствующий по размерам, как минимум, выходу типа IV;
- 2) на самолетах с количеством пассажирских мест 10 или более один выход на каждом борту самолета выше ватерлинии, соответствующий по раз-

мерам, как минимум, выходу типа III, на каждый блок (или часть блока) из 35 пассажирских мест — не менее двух таких выходов в пассажирской кабине (по одному на каждом борту самолета).

Если нецелесообразно располагать бортовые выходы выше ватерлинии, то они должны быть заменены равным количеством легкодоступных верхних люков размерами не менее размеров выхода типа III, кроме самолетов с количеством пассажирских мест 35 или менее, на которых два требуемых бортовых выхода типа III могут быть заменены одним верхним люком.

На самолетах, на которых расположение аварийных выходов для пассажиров относительно зоны размещения летного экипажа не обеспечивает удобные и легкодоступные средства для эвакуации экипажа, и на всех самолетах с количеством пассажирских мест более 20 аварийные выходы для летного экипажа должны быть расположены в зоне размещения летного экипажа. Такие выходы должны быть достаточных размеров и располагаться так, чтобы обеспечивалась быстрая эвакуация экипажа. На каждом борту самолета должно быть предусмотрено по одному выходу или должен быть предусмотрен верхний люк. Каждый выход должен представлять собой беспрепятственный прямоугольный проем размерами не менее 485 × 510 мм.

Каждый аварийный выход должен быть доступен для пассажиров и расположен там, где он будет служить эффективным средством эвакуации. Распределение аварийных выходов должно быть по возможности равномерным, учитывая размещение пассажиров, однако не требуется, чтобы размеры и расположение выходов на обоих бортах кабины были симметричными.

Если требуется только один выход на уровне пола на каждом борту фюзеляжа и самолет не имеет аварийного выхода в хвостовой части фюзеляжа или подфюзеляжного аварийного выхода, то выход на уровне пола должен быть в задней части пассажирской кабины, если только другое расположение не послужит более эффективным средством эвакуации пассажиров.

Если на каждом борту требуется более одного выхода на уровне пола, то около каждого конца кабины должно быть расположено, по крайней мере, по одному выходу на уровне пола с каждого борта фюзеляжа.

Если не предусмотрено два или более основных продольных проходов, то каждый аварийный выход должен быть расположен так, чтобы пассажиры перемещались к этому выходу как спереди, так и сзади. Если предусмотрено два или более основных продольных проходов, то должны быть беспрепятственные поперечные проходы шириной не менее 510 мм между основными продольными проходами.

Если для подхода к любому аварийному выходу с любого кресла в пассажирской кабине необходимо пройти через проход между пассажирскими салонами, то этот проход должен быть беспрепятственным. Однако могут быть использованы шторы, если они допускают свободное движение по проходу.

В любых перегородках между пассажирскими салонами не может быть установлена дверь.

Если для подхода к любому требуемому аварийному выходу с любого пассажирского кресла необходимо пройти через дверь, отделяющую пассажирскую кабину от других зон, то дверь должна иметь средства для ее фиксации в открытом положении.

Ширина продольного прохода в любом его месте должна быть не менее указанной в таблице 5.5.

Таблица 5.5 **Ширина продольного прохода**

Количество пассажирских	Минимальная ширина прохода для пассажиров, мм			
мест	на высоте от пола менее 635 мм	на высоте от пола 635 мм и более		
10 или менее	305	380		
1119	305	508		
20 или более	380	508		

На самолетах, имеющих только один продольный проход в пассажирской кабине, следует размещать не более трех кресел с каждой стороны прохода.

Для размещения багажа пассажиров и груза на самолете должны быть предусмотрены багажно-грузовые помещения. Перевозка багажа и грузов может осуществляться с использование контейнеров. Типоразмеры контейнеров представлены на рис. 5.2, 5.3 и в таблице 5.6.

Рис. 5.2. Контейнер типа АБК-1,5

Рис. 5.3. Контейнеры типа АБК-0,725 и АБК-0,3

Таблица 5.6 **Типоразмеры багажных контейнеров**

Тип контейнера	Macca	Размеры, мм					Внутрен-
	брутто, т	L	l	В	Н	h	ний объ- ем, м ³
АБК-1,5	1,500	2007	1562	1534	1625	492	4,4
АБК-0,725	0,725	2347	1156	1102	1097	450	2,2
АБК-0,3	0,300	1300	920	1190	732	75	1,0

Для обеспечения питанием пассажиров в полете предусматриваются обычно одна или две кухни. Одна кухня делается в самолете в том случае, если пассажирская кабина не делится на салоны и число пассажиров не превышает 100 человек. Если в пассажирской кабине имеются салоны, то независимо от числа пассажиров в самолете должны быть две кухни, общий объем которых $W_{\text{кух}} \approx (0,12...0,14) n_{\text{пас}}$, [м³], где $n_{\text{пас}}$ – число пассажирских мест. Суммарная площадь пола кухонь $S_{\text{кух}} \approx (0,05...0,1) n_{\text{пас}}$, где коэффициент 0,05 относится к туристскому и экономическому салонам, а 0,1 – к салону первого класса.

Число туалетов на самолете зависит от продолжительности полета и числа пассажирских мест (таблица 5.7).

Площадь пола туалетного помещения должна быть не менее $1,5...1,6~\text{м}^2$ при ширине не менее 1~м.

Таблица 5.7 Данные для определения числа туалетных помещений

Продолжитель-	менее 2	24	24	более 4	более 4	более 4
ность полета, ч						
Число пасса- жирских мест		менее 120	более 120	менее 120	120200	более 200
Расчетное чис- ло пассажиров на один туалет	50	40	4550	30	40	4550

6. МЕЖДУНАРОДНАЯ СТАНДАРТНАЯ АТМОСФЕРА

В таблице 6.1 представлены параметры атмосферы (тропосферы) Земли в зависимости от высоты над уровнем моря. Для расчета промежуточных значений допускается использовать линейную интерполяцию.

Таблица 6.1 **Международная стандартная атмосфера**

Высота <i>H</i> , м	Температура T , К	Давление $p \times 10^4$, Па	Плотность р, кг/м ³	Скорость звука <i>a</i> , м/с
1	2	3	4	5
0	288,0	10,10	1,225	341,1
500	284,7	9,52	1,167	339,2
1000	281,5	8,96	1,112	337,2
1500	278,2	8,43	1,058	335,3
2000	275,0	7,92	1,006	333,3
2500	271,7	7,44	0,957	331,4
3000	268,5	6,99	0,909	329,4
3500	265,2	6,55	0,863	327,4
4000	262,0	6,14	0,819	325,3
4500	258,7	5,75	0,777	323,3
5000	255,5	5,38	0,736	321,3

Продолжение таблицы 6.1

1	2	3	4	5
5500	252,2	5,03	0,697	319,2
6000	249,0	4,70	0,659	317,2
6500	245,7	4,39	0,624	315,1
7000	242,5	4,09	0,589	313,0
7500	239,2	3,81	0,556	310,9
8000	236,0	3,55	0,525	308,8
8500	232,7	3,30	0,495	306,6
9000	229,5	3,06	0,466	304,5
9500	226,2	2,84	0,439	302,3
10000	223,0	2,63	0,412	300,2
10500	219,7	2,44	0,387	298,0
11000	216,5	2,25	0,364	295,8

СПИСОК ИСТОЧНИКОВ

- 1. Житомирский Г.И. Конструкция самолетов: Учебник для студентов авиационных специальностей вузов. М.: Машиностроение, 2005. 416 с.: ил.
- 2. Проектирование самолетов: Учебник для вузов / С.М. Егер, В.Ф. Мишин, Н.К. Лисейцев и др. Под ред. С.М. Егера. 3-е изд., перераб. и доп. М.: Машиностроение, 1983. 616 с.
- 3. Арепьев А.Н. Концептуальное проектирование магистральных пассажирских самолетов. Компоновка и летные характеристики. Учебное пособие. М., 1999. 88 с.: ил.
- 4. Арепьев А.Н. Проектирование легких пассажирских самолетов. М.: Издательство МАИ, 2006.-640 с.: ил.
- 5. Конструкция и прочность летательных аппаратов гражданской авиации: Учебник для вузов гражданской авиации / М.С. Воскобойник, П.Ф. Максютинский, К.Д. Миртов и др.; Под общ. ред. К.Д. Миртова, Ж..С. Черненко. М.: Машиностроение, 1991. 448 с.: ил.
- 6. Авиационные правила. Часть 25. Нормы летной годности самолетов транспортной категории, 1994. 322 с.
 - 7. http://www.yak.ru
 - 8. http://www.ilyushin.org
 - 9. http://www.tupolev.ru
 - 10. http://www.sukhoi.org
 - 11. http://www.antonov.com
 - 12. http://www.airbus.com
 - 13. http://www.boeing.ru
 - 14. http://www.airwar.ru
 - 15. http://www.aviapages.ru
 - 16. http://www.mstuca.aero
 - 17. http://akpla.ucoz.com