

Shane Kaszefski-Yaschuk, Joseph Keenan, Adele Khasanova Maxime Méloux, Mahamadi Nikiema

Presentation

- *Newsjam*: an automatic summarization tool for French COVID-19 news articles
- Articles are fetched, summarized and posted to Twitter
- Two Twitter feeds: Articles about France and global ones

Project Overview

Scraping and Datasets

Two French news sites were selected for scraping and another corpus was used for training and evaluating our models.

- Actu.fr 895 articles scraped, including summaries
- L'est Republicain Approximately 1,300 articles
- MLSUM (MultiLingual SUMmarization) Corpus Over 400,000 articles from Le Monde, with reference summaries, split into training, test, and validation sets

Summarizing

Summarization Methods:

- Latent Semantic Indexing (LSI)
- K-means clustering + FlauBERT embeddings
- K-means clustering + CamemBERT embeddings

Fig. 1: LSI

Fig. 2: K-means clustering

Scores	Sentence s_1	Sentence s_2	Sentence s_3	Sentence s_4	 Sentence s_n
Topic t_1	0.18	-0.54	0.32	0.67	 0.13
Topic t_2	0.87	-0.23	-0.50	0.72	 -0.20
Topic t_3	0.54	0.02	0.09	-0.89	 -0.12
Topic t_n	0.19	0.56	0.34	0.26	 -0.28

Table 1: Sentence selection algorithm

Summary =
$$\{(\underset{s_i \in S}{\operatorname{arg\,max}} Score(s_i, t_j)) \mid t_j \in T\}$$

= $\{s_1, s_2, s_4\}$

Article Classification

To separate articles about France from those about the rest of the world, three classification methods have been compared:

- Multinomial Naive Bayes
- Logistic Regression
- Support Vector Machine

Evaluation

- Summarization Evaluation Metrics:
 - ROUGE-L
 - BERTScore
- Two sets of our data evaluated:
 - Standard summaries are made up of the full-length summaries from our model.
 - Keyword summaries are simplified versions of the standard summaries with stopwords removed and the remaining keywords stemmed.

Results

Method	Accuracy	Precision	Recall	F1
Multinomial Naive Bayes (MNB)	72.1	70.8	97.7	82.1
MNB (resampled)	67.1	88.3	38.6	53.1
MNB (tuned)	83.1	92.2	81.1	86.2
Logistic Regression (LR)	83.8	88	87.3	87.7
LR (tuned)	85.7	88.3	90.5	89.3
Support Vector Machine (SVM)	82.8	83.3	91.3	87.1
SVM (tuned)	85.2	87.5	90.6	89.1

Table 2: Article classification evaluation

Method	ROUGE-L	Keyword ROUGE-L	BERTScore	Exec. time				
MLSUM corpus, testset (15 828 articles)								
LSI	0.1507	0.1147	TBA	TBA				
FlauBERT + k-means	TBA	TBA	TBA	TBA				
CamemBERT + k-means	TBA	TBA	TBA	TBA				
Built corpus $(895 + 1,753 = 2,648 \text{ articles})$								
LSI	0.5391	0.5309	0.5666	TBA				
FlauBERT + k-means	0.2911	0.2862	0.2098	TBA				
CamemBERT + k-means	0.2463	0.2290	0.2941	TBA				

Table 3: Summarization evaluation (only F1-Scores reported)

Future Directions

- Create Twitter bots
- Fully implement pipeline that fetches, classifies, and summarizes articles, then posts them to Twitter

Sources

Horacio Saggion and Thierry Poibeau. 2013. Automatic text summarization: Past, present and future. In *Multi-Source, Multilingual Information Extraction and Summarization*, pages 3–21. Springer, Berlin, Heidelberg.