Данные задачи (тест с константой):

```
u = 2.5

f = 5

\gamma = 2, \beta = 1

\lambda(u') = u' + 4

Кол. K \ni : 5

Сетка: [0;1]

Коеф. k = 1

Краевые условия: [1,1]
```

Метод простой итерации:

U	U`	U`- U
2,500000E+000	2,500000E+000	0,000000E+000
2,500000E+000	2,500000E+000	8,881784E-016
2,500000E+000	2,500000E+000	8,881784E-016
2,500000E+000	2,500000E+000	8,881784E-016
2,500000E+000	2,500000E+000	4,440892E-016
2,500000E+000	2,500000E+000	0,000000E+000

Количество итераций: 1

Данные задачи (Полином первой степени):

```
\begin{bmatrix} u = x \\ f = 2x \\ \gamma = 2, \ \beta = 1 \\ \lambda(u') = u' + 4 \\ \textit{Кол. КЭ: 5} \\ \textit{Сетка}: [0;1] \\ \textit{Коеф.} \quad k = 1 \\ \textit{Краевые условия}: [1,1] \end{bmatrix}
```

Метод простой итерации:

U	U`	U`- U
0,000000E+000	0,000000E+000	0,000000E+000
2,000000E-001	2,000000E-001	5,551115E-017
4,000000E-001	4,000000E-001	1,110223E-016
6,000000E-001	6,000000E-001	0,000000E+000
8,000000E-001	8,000000E-001	0,000000E+000
1,000000E+000	1,000000E+000	0,000000E+000

Количество итераций: 1

Метод Ньютона:

Lu.			lus od	 I
U 	ں ا ا	, 	U`- U	- -
2,50	0000E+000	2,500000E+000	0,000000E+000)
2,50	0000E+000	2,500000E+000	8,881784E-016	5
2,50	0000E+000	2,500000E+000	8,881784E-016	5
2,50	0000E+000	2,500000E+000	8,881784E-016	5
2,50	0000E+000	2,500000E+000	4,440892E-016	5
2,50	0000E+000	2,500000E+000	0,000000E+000)

Количество итераций: 1

Метод Ньютона:

U	U`	U`- U
0,000000E+000	0,000000E+000	0,000000E+000
2,000000E-001	2,000000E-001	5,551115E-017
4,000000E-001	4,000000E-001	1,110223E-016
6,000000E-001	6,000000E-001	0,000000E+000
8,000000E-001	8,000000E-001	0,000000E+000
1,000000E+000	1,000000E+000	0,000000E+000

Количество итераций: 1

Данные задачи (Полином второй степени):

$$u = x^2$$
 $f = 2x^2 - 8x - 8$
 $\gamma = 2, \beta = 1$
 $\lambda(u') = u' + 4$
 K ол. K Э: 5
 C ет κ a: $[0;1]$
 K ое ϕ . $k = 1$
 K раевые условия: $[1,1]$

Метод простой итерации:

U	U`	U^ - U
0,000000E+000	0,000000E+000	0,000000E+000
4,000000E-002	4,000000E-002	3,030076E-013
1,600000E-001	1,600000E-001	7,352452E-013
3,600000E-001	3,600000E-001	1,496525E-012
6,400000E-001	6,400000E-001	3,664513E-012
1,000000E+000	1,000000E+000	0,000000E+000

Количество итераций: 20

Данные задачи (Полином третьей степени):

```
f = -34x^3 - 24x
\gamma = 2, \ \beta = 1
\lambda(u') = u' + 4
Kon. \ K\Theta: 5
Cem\kappa a: [0;1]
Koe\phi. \ k = 1
Kpaeвыe условия: [1,1]
```

 $u = x^{3}$

Метод простой итерации:

U	U`	U`- U		
0,000000E+000	0,000000E+000	0,000000E+000		
2,454818E-003	8,000000E-003			
5,510813E-002	6,400000E-002	8,891870E-003		
2,070152E-001	2,160000E-001	8,984788E-003		
5,061477E-001	5,120000E-001	5,852274E-003		
1,000000E+000	1,000000E+000	0,000000E+000		

Количество итераций: 23

Метод Ньютона:

U	U`	U`- U
0,000000E+000	0,000000E+000	0,000000E+000
4,000000E-002	4,000000E-002	1,517494E-012
1,600000E-001	1,600000E-001	1,706774E-012
3,600000E-001	3,600000E-001	6,171286E-012
6,400000E-001	6,400000E-001	1,045175E-011
1,000000E+000	1,000000E+000	0,000000E+000

Количество итераций: 4

Метод Ньютона:

U	U`	U`- U
0,000000E+000	0,000000E+000	0,000000E+000
2,454818E-003	8,000000E-003	5,545182E-003
5,510813E-002	6,400000E-002	8,891870E-003
2,070152E-001	2,160000E-001	8,984788E-003
5,061477E-001	5,120000E-001	5,852274E-003
1,000000E+000	1,000000E+000	0,000000E+000

Количество итераций: 5

Данные задачи (Не полиноминальная функция):

$\int u = \sin(2x)$	$\int u = \sin(2x)$	$\int u = \sin(2x)$
$\int f = 16\sin(2x)\cos(2x)$	$f = 16\sin(2x)\cos(2x)$	$f = 16\sin(2x)\cos(2x)$
$\gamma = -16, \beta = 1$	$\gamma = -16, \beta = 1$	$\gamma = -16, \ \beta = 1$
$\lambda(u') = u' + 4$	$\lambda(u') = u' + 4$	$\lambda\left(u'\right) = u' + 4$
Кол. КЭ: 5	Кол. КЭ: <mark>10</mark>	Кол. КЭ : <mark>20</mark>
Сетка: [0;1]	Сетка: [0;1]	Сетка: [0;1]
$Koe\phi$. $k=1$	$Koe\phi$. $k=1$	$Koe\phi$. $k=1$
[1,1] Краевые условия:	[1,1] Краевые условия:	[1,1] Краевые условия:

Метод простой итерации:

(Количество КЭ -> Количество итераций)

5 -> 24; 10 -> 25; 20 -> 25

Метод Ньютона:

(Количество КЭ -> Количество итераций)

5 -> 5; 10 -> 5; 20 -> 5

Прогоним некоторые тесты на неравномерной сетке

Тест с полиномом первой степени

Сетка (k=1.4):

x1	x2	h
0	0,0913609121473469	0,0913609121473469
0,0913609121473469	0,21926618915363255	0,12790527700628565
0,21926618915363255	0,39833357696243243	0,1790673878087999
0,39833357696243243	0,6490279198947523	0,25069434293231985
0,6490279198947523	1	0,3509720801052478

Метод простой итерации:

U	U`	U`- U
0,000000E+000	0,000000E+000	0,000000E+000
9,136091E-002	9,136091E-002	2,775558E-017
2,192662E-001	2,192662E-001	2,775558E-017
3,983336E-001	3,983336E-001	0,000000E+000
6,490279E-001	6,490279E-001	0,000000E+000
1,000000E+000	1,000000E+000	0,000000E+000

Количество итераций: 1

Тест с полиномом второй степени

Сетка такая же

Метод простой итерации:

U	U`	U`- U	
0,000000E+000	0,000000E+000	0,000000E+000	
7,989164E-003	8,346816E-003	3,576523E-004	
4,733860E-002	4,807766E-002	7,390652E-004	
1,576307E-001	1,586696E-001	1,038965E-003	
4,202423E-001	4,212372E-001	9,949189E-004	
1,000000E+000	1,000000E+000	0,000000E+000	

Количество итераций: 18

Метод Ньютона:

U	U`	U`- U
0,000000E+000	0,000000E+000	0,000000E+000
9,136091E-002	9,136091E-002	2,775558E-017
2,192662E-001	2,192662E-001	2,775558E-017
3,983336E-001	3,983336E-001	0,000000E+000
6,490279E-001	6,490279E-001	0,000000E+000
1,000000E+000	1,000000E+000	0,000000E+000

Количество итераций: 1

Метод Ньютона:

U		U`	U`- U
	0,000000E+000	0,000000E+000	0,000000E+000
	7,989164E-003	8,346816E-003	3,576523E-004
	4,733860E-002	4,807766E-002	7,390652E-004
	1,576307E-001	1,586696E-001	1,038965E-003
	4,202423E-001	4,212372E-001	9,949189E-004
	1,000000E+000	1,000000E+000	0,000000E+000

Количество итераций: 4

Проведем сходимость от параметра релаксации

На тесте с полиномом второй степени, на равномерной сетке:

	Количество итераций	
ω	Метод простой итерации	Метод Ньютона
0.1	222	216
0.2	105	102
0.3	66	64
0.4	46	44
0.5	34	33
0.6	26	25
0.7	20	19
0.8	15	15
0.9	14	11
1	20	4

График

Вывод

Метод Ньютона решает быстрее нелинейную систему по количеству итераций чем метод простой итерации. Но построение матрицы и получение формул у метода Ньютона значительно сложнее.