CS578 – INTERACTIVE AND TRANSPARENT MACHINE LEARNING

TOPIC: ML

http://www.cs.iit.edu/~mbilgic

https://twitter.com/bilgicm

MACHINE LEARNING

- "Programs that improve performance by experience at a given task"
 - Tom Mitchell, Machine Learning
- Performance: a metric of success, an objective function
 - E.g., accuracy, precision, recall, ...
- Experience: data
- Task: classification, regression, clustering, reinforcement learning
- Example applications
 - Face detection, speech recognition, hand-written/optical character recognition, medical diagnosis, credit scoring, product recommendations, document classification, ...

ML Subcategories

- 1. Supervised learning
- 2. Unsupervised learning
- 3. Reinforcement learning

SUPERVISED LEARNING

- o Data: <X, Y> pairs
 - X: input variable, a.k.a., features, objects, instances, ...
 - Y: a target variable, a.k.a., class, label, response, ...
- \circ Objective: learn a function $f(X) \rightarrow Y$
 - Y: discrete -> classification
 - Y: real-valued -> regression
- Examples
 - Prediction
 - Recognition
 - Detection

4

Unsupervised Learning

- o Data: <X>
 - X: input variable, a.k.a., features, objects, instances,
 - No target variable
- Objective: cluster the data, find groupings in the data
- Examples:
 - Topic detection
 - Clustering (e.g., k-means)

REINFORCEMENT LEARNING

- Input: Sequences of actions and rewards
- Objective: find out a sequence of actions that maximizes expected reward
- Examples
 - Game playing
 - Robotics

CLASSIFICATION/REGRESSION

- Decision Trees
- Naïve Bayes
- Logistic Regression
- Support Vector Machines
- Neural networks / deep learning
- Linear Regression
- Lasso
- Ridge

0 ...

EXAMPLES OF SUPERVISED LEARNING APPROACHES

DECISION TREES

Credit: Ethem Alpaydin. Introduction to Machine Learning. 3rd Edition. http://www.cmpe.boun.edu.tr/~ethem/i2ml3e

LOGISTIC REGRESSION

• Assumes $P(Y|\vec{X})$ follows the logistic function

$$P(Y = false \mid X_1, X_2, \dots, X_n) = \frac{1}{1 + e^{w_0 + \sum_{i=1}^n w_i X_i}}$$

$$P(Y = true \mid X_1, X_2, \dots, X_n) = \frac{e^{w_0 + \sum_{i=1}^n w_i X_i}}{1 + e^{w_0 + \sum_{i=1}^n w_i X_i}}$$

• Learning: estimate the weights $w_0, w_1, ..., w_n$

SUPPORT VECTOR MACHINES

Credit: Ethem Alpaydin. Introduction to Machine Learning. 3rd Edition. http://www.cmpe.boun.edu.tr/~ethem/i2ml3e

NEURAL NETWORKS

Credit: Ethem Alpaydin. Introduction to Machine Learning. 3rd Edition. $http://www.cmpe.boun.edu.tr/\sim ethem/i2ml3e$

CS578 vs CS584

- o In CS584, you'll learn
 - The foundation of the algorithms
- o In CS578, you'll learn
 - The foundation
 - The transparency
 - The interaction

LET'S SEE AN EXAMPLE

Logistic regression

- Foundation: gradient optimization to estimate the weights
- Transparency
 - Model: what did the model learn? What do the values of the weights tell us about features and their importance?
 - Prediction: when an object is classified by this model, which feature values contributed to each class and how much?
- Interaction
 - If we want to label more objects, which one should we label next?
 - Can we provide any rationales into the learning process?

WHY TRANSPARENCY?

- At least three audiences
 - Development
 - Middle users
 - End users
- Think about medical diagnosis
 - Development: you, the ML expert
 - Middle user: the doctor
 - End user: the patient
 - Why is transparency important for these audiences?

REST OF THE SEMESTER

• I'll cover

- The foundations
 - I'll use OneNote for this part
- Transparency of the model and its predictions
- Interaction with the model
 - I'll use Jupyter Notebooks for these two parts

You'll have

- Assignments
 - Get practical experience
- Quizzes and final exam
 - Test your course knowledge
- Project
 - Write (proposal, code, and reports) and present