Convexité

Cornou Jean-Louis

28 décembre 2022

RemarqueIllustrations à produire.

1 Parties convexes et barycentres

La notion de barycentre est introduite dans le seul but de caractériser les parties convexes. Aussi ce cours est-il volontairement succinct sur le sujet.

1.1 Barycentres

Dans toute la suite, le symbole E désigne l'espace \mathbb{R}^2 . On y dispose des opérations habituelles comme pour les vecteurs

$$\forall (x_1, y_1) \in \mathbb{R}^2, \forall (x_2, y_2) \in \mathbb{R}^2, (x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2)$$

$$\forall \lambda \in \mathbb{R}, \forall (x_1, y_1) \in \mathbb{R}^2, \lambda(x_1, y_1) = (\lambda x_1, \lambda y_1)$$

On note également $0_{\mathbb{R}^2} = 0_E = (0,0)$.

Définition 1 On appelle système (fini) de points massiques de E toute famille finie $((A_i, \alpha_i))_{i \in I}$ où $A_i \in E$ et $\alpha_i \in K$ pour tout $i \in I$.

Le concept de barycentre cherche à définir la notion de «point d'équilibre », à l'instar d'un fléau de balance de Roberval au bout duquel deux masses seraient disposées.

Notation

Si A, B \in E on notera \overrightarrow{AB} le vecteur B – A. Le lecteur remarquera que $\overrightarrow{AA} = 0_E$ et $\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$ quels que soient A, B, C \in E, ainsi que l'agréable relation A + $\overrightarrow{AB} = B$.

Théorème 1 Soit $((A_i, \alpha_i))_{i \in I}$ un système fini de points massiques d'un \mathbb{K} -espace vectoriel E. Les deux assertions suivantes sont équivalentes.

- 1. Il existe un unique point G de E tel que $\sum_{i \in I} \alpha_i \overrightarrow{A_i G} = 0_E$.
- 2. $\sum_{i \in I} \alpha_i \neq 0$

De plus, quand ces assertions sont vraies, $G = \frac{1}{\sum_{i \in I} \alpha_i} \sum_{i \in I} \alpha_i A_i$. On dit que G est le barycentre du système massique $((A_i, \alpha_i))_{i \in I}$, ou encore ou que c'en est le centre de gravité.

Démonstration. Posons, pour tout point $M \in E$, $\Lambda(M) = \sum_{i \in I} \alpha_i \overrightarrow{A_i M}$ (c'est la fonction vectorielle de Leibniz). Pour tous points M, M' de E,

$$\Lambda(\mathsf{M}) = \sum_{i \in I} \alpha_i \left(\overrightarrow{\mathsf{A}_i \mathsf{M}'} + \overrightarrow{\mathsf{M}' \mathsf{M}} \right) = \Lambda \left(\mathsf{M}' \right) + \left(\sum_{i \in I} \alpha_i \right) \overrightarrow{\mathsf{M}' \mathsf{M}}.$$

Si $\sum_{i\in I} \alpha_i = 0$, la fonction Λ est donc constante : elle s'annule partout ou jamais, mais pas en un unique point. Si $\sum \alpha_i \neq 0$, prenons $M' = A_{i_0}$ avec $i_0 \in I$ quelconque. La relation ci-dessus permet de dire que l'équation $\Lambda(M) = 0_E$ équivaut à $(\sum_{i\in I} \alpha_i) \overrightarrow{A_{i_0}M} = -\Lambda(A_{i_0})$ qui admet l'unique solution

$$\begin{split} \mathsf{M} &= \mathsf{A}_{i_0} - \frac{1}{\sum_{i \in \mathsf{I}} \alpha_i} \wedge \left(\mathsf{A}_{i_0} \right) = \frac{1}{\sum_{i \in \mathsf{I}} \alpha_i} \sum_{i \in \mathsf{I}} \alpha_i \mathsf{A}_{i_0} - \frac{1}{\sum_{i \in \mathsf{I}} \alpha_i} \sum_{i \in \mathsf{I}} \alpha_i \overrightarrow{\mathsf{A}_i \mathsf{A}_{i_0}} \\ &= \frac{1}{\sum_{i \in \mathsf{I}} \alpha_i} \sum_{i \in \mathsf{I}} \alpha_i \left(\mathsf{A}_{i_0} - \overrightarrow{\mathsf{A}_i \mathsf{A}_{i_0}} \right) = \frac{1}{\sum_{i \in \mathsf{I}} \alpha_i} \sum_{i \in \mathsf{I}} \alpha_i \mathsf{A}_i, \end{split}$$

ce qui prouve notre théorème.

Corollaire (coordonnées du barycentre)

On note pour chaque point A_i ses coordonnées $\left(x_1^{(i)}, x_2^{(i)}\right)$. Lorsqu'il est défini, le barycentre G de $((A_i, \alpha_i))_{i \in I}$ a pour coordonnées

$$x_1 = \frac{1}{\sum_{i \in I} \alpha_i} \sum_{i \in I} \alpha_i x_1^{(i)}, x_2 = \frac{1}{\sum_{i \in I} \alpha_i} \sum_{i \in I} \alpha_i x_2^{(i)}.$$

Définition 2 Quand toutes les masses sont identiques, et non nulles, on parle d'isobarycentre. Ainsi, l'isobarycentre des points $A_1, ..., A_n$ est le point G défini par $G = \frac{1}{n} \sum_{i=1}^{n} A_i$

Théorème 2 Soit $((A_i, \alpha_i))_{i \in I}$ un système fini de points massiques admettant un barycentre G. Alors pour tout $k \in \mathbb{R}^*$, $((A_i, k\alpha_i))_{i \in I}$ admet G comme barycentre.

Démonstration. Soit k un réel non nul, alors $\sum_{i \in I} (k\alpha_i) = k \sum_{i \in I} \alpha_i \neq 0$. Le théorème résulte alors de

$$\frac{1}{\sum_{i \in I} k \alpha_i} \sum_{i \in I} k \alpha_i \mathsf{A}_i = \frac{1}{\sum_{i \in I} \alpha_i} \sum_{i \in I} \alpha_i \mathsf{A}_i.$$

1.2 Parties convexes

Définition 3 Soit A, B deux points de E, le segment d'extrémités A et B est l'ensemble

$$\{tA + (1-t)B | t \in [0,1]\}$$

Notation

Ce segment est noté [A,B].

∧ Attention

Cette notation est en conflit avec la notion des intervalles de \mathbb{R} . Dans le cas de \mathbb{R}^2 , [A,B] = [B,A] puisque $[0,1] \to [0,1]$, $t \mapsto (1-t)$ est une bijection. Dans le cas de \mathbb{R} , $[1,0] = \emptyset$ tandis que [0,1] est non vide. Certains auteurs notent dans le cadre réel "[x,y]" = $[\min(x,y),\max(x,y)]$ le segment réel d'extrémités x et y.

Définition 4 Soit C une partie de E. On dit que C est convexe (ou une partie convexe de E) lorsque

$$\forall (A,B) \in C^2, [A,B] \subset C$$

I Remarque

On a vu dans le chapitre sur la topologie de $\mathbb R$ que les seuls convexes de $\mathbb R$ sont les intervalles.

Propriété 1 Une partie C de E est convexe si et seulement si

$$\forall (A, B) \in C^2, \forall t \in [0, 1], (1 - t)A + tB \in C$$

Exemple 1 L'ensemble vide est convexe. Toute droite affine de E est convexe. L'espace E est lui-même convexe. Un cercle de rayon non nul n'est pas convexe. Une boule ouverte (ou fermée) est convexe.

Exercice 1 Montrer qu'une intersection quelconque de parties convexes est convexe. Est-ce le cas pour une union?

Correction 1 Soit $(C_i)_{i\in I}$ une famille de parties convexes. Notons $C = \bigcap_{i\in I} \in C_i$. Soit $(A,B) \in C^2$ et $t \in [0,1]$. Soit $i \in I$. Alors A et B appartiennent à C_i puisqu'ils sont tous deux dans l'intersection des $(C_i)_{i\in I}$. Comme la partie C_i est convexe, (1-t)A+tB appartient à C_i et ce pour tout indice i dans I. Ainsi, (1-t)A+tB appartient à C. Par conséquent, la partie C est convexe.

C'est évidemment faux pour l'union. Soit A et B deux points distincts de E. Alors les singletons $\{A\}$ et $\{B\}$ sont tous deux convexes. Toutefois, leur union n'est pas convexe, puisque $\frac{1}{2}A + \frac{1}{2}B$ est distinct de A et de B, donc n'appartient pas à $\{A, B\}$.

1.3 Caractérisation des parties convexes

Exemple 2 Soit A, B deux points de \mathbb{R}^n . L'ensemble des barycentres que l'on peut faire avec A et B est la droite (AB). En effet, ces barycentres sont de la forme $\frac{1}{a+b}(aA+bB)$ avec $(a,b) \in \mathbb{R}^2$ tel que $a+b \neq 0$. En posant $\lambda = \frac{b}{a+b}$, on obtient l'expression $G_{\lambda} = (1-\lambda)A + \lambda B = A + \lambda \overrightarrow{AB}$. Quand a, b sont quelconques, λ parcourt $\mathbb R$ et $\mathsf G_\lambda$ décrit la droite passant A dirigée par A $\mathsf B$, c'est-à-dire la droite (AB). Si l'on impose à λ de ne parcourir que [0,1], G_{λ} parcourt le segment [AB]. Cette condition est équivalente à dire que a et b sont de même signe (laissé à titre d'exercice).

Exemple 3 Soit trois points A, B, C non alignés dans \mathbb{R}^2 . L'ensemble des barycentres que l'on peut former avec A,B,C est le plan (ABC) = \mathbb{R}^2 . En effet, ceux-ci sont tous de la forme $\frac{1}{a+b+c}$ (aA + bB + cC) avec $(a,b,c) \in \mathbb{R}^3$ tels que $a+b+c \neq 0$. En posant $\lambda = \frac{b}{a+b+c}$ et $\mu = \frac{c}{a+b+c}$, cette expression devient $(1 - \lambda - \mu)A + \lambda B + \mu C$ soit encore $A + \lambda \overrightarrow{AB} + \mu \overrightarrow{AC}$: quand a, b, c décrivent \mathbb{R} , (λ, μ) décrit \mathbb{R}^2 si bien que $A + \lambda \overrightarrow{AB} + \mu \overrightarrow{AC}$ décrit le plan (ABC).

Si l'on veut que les barycentres parcourent l'intérieur du triangle ABC, on doit imposer les conditions $\lambda \geqslant 0, \mu \geqslant 0$ et $\lambda + \mu \leqslant 1$. Cela revient encore à imposer à a, b, c d'être de même signe.

Dans les deux exemples précédents, le barycentre du système massique considéré peut toujours s'écrire $\sum_{i\in I}\lambda_i A_i$ avec $\sum_{i\in I}\lambda_i = 1: \lambda_1 = \frac{a}{a+b}, \lambda_2 = \frac{b}{a+b}$ pour l'exemple $1, \lambda_1 = \frac{a}{a+b+c}, \lambda_2 = \frac{b}{a+b+c}, \lambda_3 = \frac{c}{a+b+c}$ pour l'exemple 2.

Définition 5 Soit $n \in \mathbb{N}^*$ et $A_1, ..., A_n$ des points de $E = \mathbb{R}^2$. On appelle combinaison linéaire convexe (abrégé en CLC) de A_1, \ldots, A_n tout élément de E de la forme $\sum_{i=1}^n \lambda_i A_i$ avec $\lambda_i \in \mathbb{R}_+$ pour tout $i \in [1, n]$ et $\sum_{i=1}^{n} \lambda_i = 1.$

On vient de prouver que l'ensemble des CLC de A et B est le segment [A,B] et que celui de A,B,C est l'intérieur du triangle ABC.

Théorème 3 (caractérisation des convexes par les barycentres) Soit C une partie non vide de E. Les propriétés suivantes sont équivalentes.

- 1. La partie C est convexe.
- 2. La partie C est stable par combinaison linéaire convexe.
- 3. Tout système fini $((A_i, \alpha_i))_{i \in I}$ de points massiques dans C pondérés par des masses positives et non identiquement nulles a un barycentre dans C.

 $D\acute{e}monstration.~1 \Rightarrow 2~Si~C~est~convexe,~alors~toute~CLC~de~deux~points~A_1~et~A_2~est~encore~dans~C,~puis~l'ensemble$ de ces CLC n'est autre que [AB] (cf. exemple ci-dessus). Soit $n \ge 2$. Supposons que toute CLC de n points de C soit encore dans C et considérons $A_1, ..., A_{n+1}$ dans C. Une CLC de ces n+1 points s'écrit $M = \sum_{i=1}^{n+1} \lambda_i A_i$ avec et $\lambda_1, \dots, \lambda_{n+1} \in \mathbb{R}_+$ de somme 1. Les réels λ_i ne pouvant manifestement pas être tous égaux à 1, on dispose d'un entier i_0 tel que $\lambda_{i_0} \neq 1$ si bien que $\sum_{\substack{i=1\\i\neq i_0}}^{n+1} \lambda_i \neq 0$: notons m cette somme non nulle. Alors, m>0 et $M=\sum_{\substack{i=1\\i\neq i_0}}^{n+1} \lambda_i A_i = m\sum_{\substack{i=1\\i\neq i_0}}^{n+1} \frac{\lambda_i}{m} A_i + \lambda_{i_0} A_{i_0} = mB + (1-m)A_{i_0}$, où $B=\sum_{\substack{i=1\\i\neq i_0}}^{n+1} \frac{\lambda_i}{m} A_i \in C$ par HR. Ainsi, M est CLC de M et M est M est M gui sont deux points de M et M est M est

et
$$M = \sum_{i=1}^{n+1} \lambda_i A_i = m \sum_{\substack{i=1 \ i \neq i_0}}^{n+1} \frac{\lambda_i}{m} A_i + \lambda_{i_0} A_{i_0} = m B + (1-m) A_{i_0}$$
, où $B = \sum_{\substack{i=1 \ i \neq i_0}}^{n+1} \frac{\lambda_i}{m} A_i \in C$ par HR. Ainsi, M est CLC de B et A_{i_0} qui sont deux points de C , donc $M \in C$ et la récurrence s'achève.

- $2 \Rightarrow 3$ Tout barycentre à masses positives non identiquement nulles est une CLC par homogénéité
- $3 \Rightarrow 1$ Si A,B \in C tout point de [AB] est un barycentre à coefficients positifs de A et B, c'est donc un donc un point de C.

Fonctions convexes 2

Le programme se limite aux fonctions convexes d'une variable réelle.

2.1 Définition et caractérisations

Définition 6 Soit I un intervalle de longueur non nulle de \mathbb{R} et $f:I \to \mathbb{R}$ une fonction à valeurs réelles. On dit que f est une fonction convexe sur I quand

$$\forall (x,y) \in I^2, \forall \lambda \in [0,1], \quad f((1-\lambda)x + \lambda y) \leq (1-\lambda)f(x) + \lambda f(y).$$

On dit que f est concave sur l quand – f est convexe sur l.

Remarque

Il n'y a pas de notion de partie concave, pourtant rencontrée dans le langage courant.

Définition 7 Si $f: I \to \mathbb{R}$ est une fonction définie sur un intervalle I, on appelle épigraphe de f l'ensemble des couples (x, y) de $I \times \mathbb{R}$ tels que $y \ge f(x)$. On le note Epi(f).

Ainsi, Epi (f) est l'ensemble des points sont au-dessus de la courbe de f.

Théorème 4 La fonction f est convexe sur l si et seulement si son épigraphe est une partie convexe de \mathbb{R}^2 .

Démonstration. Si f est convexe sur I, considérons deux points $A = (x_A, y_A)$ et $B = (x_B, y_B)$ de Epi(f). Un point M quelconque de [AB] s'écrit $(1 - \lambda)A + \lambda B$ avec $\lambda \in [0, 1]$: ses coordonnées sont donc $x_M = (1 - \lambda)x_A + \lambda x_B$ et $y_M = (1 - \lambda)y_A + \lambda y_B$. Comme f est une fonction convexe, $f(x_M) \leq (1 - \lambda)f(x_A) + \lambda f(x_B)$ et comme A et B sont dans Epi(f), $f(x_A) \leq y_A$ et $f(x_B) \leq y_B$ si bien qu'en sommant, $f(x_M) \leq y_M$ ce qui prouve que C est dans Epi(f). Ainsi, l'épigraphe de f contient tous les points de [AB], il est donc convexe.

Réciproquement, si Epi(f) est convexe, considérons $x, y \in I$ et $\lambda \in [0,1]$. Les points A = (x, f(x)) et B = (y, f(y)) étant dans Epi(f), le point $C = (1 - \lambda)A + \lambda B$ l'est aussi : la traduction de cela traduit exactement la convexité de f.

Corollaire (inégalité de Jensen discrète))

La fonction $f: I \to \mathbb{R}$ est convexe sur I si et seulement si pour tout $n \in \mathbb{N}^*$, tout $(x_1, ..., x_n) \in I^n$ et tous réels positifs $\lambda_1, ..., \lambda_n$ tels que $\sum_{i=1}^n \lambda_i = 1$:

$$f\left(\sum_{i=1}^n \lambda_i x_i\right) \leqslant \sum_{i=1}^n \lambda_i f(x_i).$$

Notons que l'étant un intervalle, c'est une partie convexe de \mathbb{R} , donc contient toute CLC d'éléments de l, c'est-à-dire $f(\sum_{i=1}^n \lambda_i x_i)$ a bien un sens.

Démonstration. Si f vérifie l'inégalité de Jensen pour tout $n \in \mathbb{N}^*$, elle la vérifie pour n=2, et ceci n'est autre que la définition d'une fonction convexe. Réciproquement, si f est convexe sur I, son épigraphe est une partie convexe, donc stable par CLC d'après la caractérisation des parties convexes (§ précédent). Or les points $A_i = (x_i, f(x_i))(1 \le i \le n)$ sont dans Epi (f), donc $M = \sum \lambda_i A_i$ aussi. L'abscisse de M étant $\sum \lambda_i x_i$ et son ordonnée étant $\sum \lambda_i f(x_i)$, dire que $M \in \text{Epi}(f)$ c'est exactement annoncer l'inégalité voulue.

On peut aussi choisir de procéder par récurrence. Dans ce cas on reproduit presque à l'identique la démonstration de la caractérisation des parties convexes du paragraphe précédent.

Corollaire (position des cordes)

Soit I un intervalle de longueur non nulle et $f:I\to\mathbb{R}$ une fonction. Alors f est convexe ssi pour tous réels a< b dans I,

$$\forall x \in [a,b], f(x) \leqslant \frac{f(b)-f(a)}{b-a}(x-a)+f(a)$$

autrement dit quand la courbe de f est en dessous de chacune de ses cordes.

On appelle corde (ou sécante dans le programme) de la courbe représentative de f tout segment [AB] où A et B sont des points de cette courbe.

Démonstration. Si f est convexe, les extrémités A et B d'une corde sont dans l'épigraphe de f. Celui-ci étant convexe d'après le théorème précédent, toute la corde [AB] est dans l'épigraphe, ce qui traduit la position relative attendue de \mathscr{C}_f par rapport à la corde [AB].

Inversement, si \mathscr{C}_f est en dessous de chacune de ses cordes, soit a < b dans l. Les points A = (a, f(a)) et B = (b, f(b)) définissent une corde [AB] dont une équation est $y = \frac{f(b) - f(a)}{b - a}(x - a) + f(a)(x \in [a, b])$. Si $\lambda \in [0, 1]$, posons $c = (1 - \lambda)a + \lambda b$. L'hypothèse faite sur f implique que $f(c) \leqslant \frac{f(b) - f(a)}{b - a}(c - a) + f(a)$. Oui mais $c - a = \lambda(b - a)$ donc cette inégalité devient $f(c) \leqslant \lambda(f(b) - f(a)) + f(a)$ soit encore $f(c) \leqslant (1 - \lambda)f(a) + \lambda f(b)$. La fonction f est donc convexe.

Exercice 2 Si $f: I \to \mathbb{R}$ est convexe et admet un minimum local, montrer que ce minimum est global.

Correction 2 Soit a un point de l où f admet un minimum local. Si f(a) n'était pas le minimum global de f sur I, il existerait $b \in I$ (forcément distincts de a) tel que f(b) < f(a). Tout réel strictement compris entre a et b se met sous la forme $(1 - \lambda)a + \lambda b$ avec $\lambda \in]0,1[$. La convexité de f donne $f((1 - \lambda)a + \lambda b) \le$ $(1-\lambda)f(a) + \lambda f(b) < (1-\lambda)f(a) + \lambda f(a) = f(a)$: si λ est quelconque au voisinage de 0, on trouve une contradiction avec le fait que f admet en a un minimum local.

Théorème 5 (croissance des taux d'accroissement) Soit I un intervalle de longueur non nulle et f: $I \to \mathbb{R}$ une fonction réelle définie sur I. La fonction f est convexe sur I si et seulement si pour tout $x_0 \in I$, la fonction

$$\tau_{x_0}: \mathbb{I} \setminus \{x_0\} \longrightarrow \mathbb{R}$$

$$x \longmapsto \frac{f(x) - f(x_0)}{x - x_0}$$

est croissante sur $I \setminus \{x_0\}$

Démonstration. Supposons f convexe sur l et considérons x₀ ∈ l. Faisons une première constatation : si a < b < csont dans I, alors b peut s'écrire $b = (1 - \lambda)a + \lambda c$ avec $\lambda \in]0,1[$ si bien que $b - a = \lambda(c - a)$ et alors

$$\tau_{a}(c) - \tau_{a}(b) = \frac{\lambda[f(c) - f(a)]}{b - a} - \frac{f(b) - f(a)}{b - a} = \frac{(1 - \lambda)f(a) + \lambda f(c) - f(b)}{b - a}.$$

Comme b-a>0 et que $f(b)\leqslant (1-\lambda)f(a)+\lambda f(c)$ (par convexité de f), on en déduit l'inégalité $(*):\tau_a(b)\leqslant \tau_a(c)$. Mais ce n'est pas tout! Puisque la seule chose importante a été que b soit entre a et c, les rôles joués par a et csont symétriques! Le lecteur suspicieux exigera une preuve : en posant $\mu = 1 - \lambda$, on a $b = \mu a + (1 - \mu)c$ si bien que $b-c=\mu(a-c)$ et cette fois,

$$\tau_{c}(a)-\tau_{c}(b)=\frac{\mu[f(a)-f(c)]}{b-c}-\frac{f(b)-f(c)}{b-c}=\frac{(1-\mu)f(c)+\mu f(a)-f(b)}{b-c}.$$
 Comme $b-c<0$ et que $f(b)\leqslant (1-\mu)f(c)+\mu f(a)$ (toujours par convexité de $f!$), on en tire que $(**):\tau_{c}(a)\leqslant\tau_{c}(b)$

comme attendu.

Maintenant, soit x < y dans $I \setminus \{x_0\}$. Distinguons trois cas :

- Si x_0 < x < y, alors (*) donne $\tau_{x_0}(x)$ ≤ $\tau_{x_0}(y)$.
- Si $x < y < x_0$, alors (**) donne $\tau_{x_0}(x) ≤ \tau_{x_0}(y)$.
- $--\text{Si }x < x_0 < y \text{, alors (*) donne } \tau_x(x_0) \leqslant \tau_x(y) \text{ et (**) donne } \tau_y(x) \leqslant \tau_y(x_0). \text{ Seulement voilà, } \tau_x(y) = \tau_y(x) \text{ donce } \tau_y(x) \leqslant \tau_y(x_0). \text{ Seulement voilà, } \tau_x(y) = \tau_y(x) \text{ donce } \tau_y(x) \leqslant \tau_y(x_0). \text{ Seulement voilà, } \tau_x(y) = \tau_y(x) \text{ donce } \tau_y(x) \leqslant \tau_y(x_0). \text{ Seulement voilà, } \tau_x(y) = \tau_y(x) \text{ donce } \tau_y(x) \leqslant \tau_y(x) \text{ donce } \tau_y(x) \text{ donce } \tau_y(x) \leqslant \tau_y(x) \text{ donce } \tau$ par transitivité, $\tau_x(x_0) \leqslant \tau_y(x_0)$ et encore par le truc astucieux $\tau_{\bigstar}(\square) = \tau_{\square}(\bigstar)$, on obtient $\tau_{x_0}(x) \leqslant \tau_{x_0}(y)$.

Dans tous les cas, $\tau_{x_0}(y) - \tau_{x_0}(x) \geqslant 0$ ce qui établit la croissance de τ_{x_0} .

Réciproquement, supposons que τ_{x_0} soit croissante sur $I \setminus \{x_0\}$ quel que soit $x_0 \in I$. Soit alors x < y dans I et $\lambda \in]0,1[$. On pose $x_0 = (1 - \lambda)x + \lambda y$ de sorte que $x < x_0 < y$. La croissance de τ_{x_0} donne $\tau_{x_0}(y) - \tau_{x_0}(x) \geqslant 0$ et le calcul fait au début de cette preuve montre que cela équivaut à $(1-\lambda)f(x) + \lambda f(y) - f(x_0) \geqslant 0$. Comme cela est trivialement vrai pour $\lambda \in \{0,1\}$, f est convexe.

Corollaire

La fonction f est convexe sur l, si et seulement si pour tous réels x, y, z dans l tels que x < y < z on a

$$\frac{f(y) - f(x)}{y - x} \le \frac{f(z) - f(x)}{z - x} \le \frac{f(z) - f(y)}{z - y}$$

Démonstration. Si f est convexe, l'astuce est (encore) de remarquer que $\tau_a(b) = \tau_b(a)$ quels que soient $a \neq b$. Les inégalités demandées sont alors $\tau_X(y) \leqslant \tau_X(z) = \tau_Z(x) \leqslant \tau_Z(y)$, qui sont vraies d'après le théorème précédent. Inversement, si les inégalités des pentes sont toujours vraies, la première d'entre elles traduit la croissance de au_x sur $I\setminus\{x\}$, et ce quel que soit $x\in I$. D'après le théorème précédent, f est convexe sur I.

Exercice 3 Quelles sont les fonctions à la fois convexes et concaves?

Correction 3 Une fonction affine est à la fois convexe et concave puisque sa dérivée seconde est nulle donc à la fois positive et négative. Réciproquement, si f est à la fois convexe et concave, elle n'est a priori pas dérivable donc ce n'est pas aussi facile. Soit I l'intervalle de définition de f, supposé de $longueur non \ nulle, \ et \ soit \ x_0 \in I. \ L'application \ \tau_{x_0} \ est \ croissante \ (car \ f \ est \ convexe), \ mais \ aussi \ décroissante \ (car \ f \ est \ convexe), \ mais \ aussi \ décroissante \ (car \ f \ est \ convexe), \ mais \ aussi \ décroissante \ (car \ f \ est \ convexe), \ mais \ aussi \ décroissante \ (car \ f \ est \ convexe), \ mais \ aussi \ décroissante \ (car \ f \ est \ convexe), \ mais \ aussi \ décroissante \ (car \ f \ est \ convexe), \ mais \ aussi \ décroissante \ (car \ f \ est \ convexe), \ mais \ aussi \ décroissante \ (car \ f \ est \ convexe), \ mais \ aussi \ décroissante \ (car \ f \ est \ convexe), \ mais \ aussi \ décroissante \ (car \ f \ est \ convexe), \ mais \ aussi \ décroissante \ (car \ f \ est \ convexe), \ mais \ aussi \ décroissante \ (car \ f \ est \ convexe), \ mais \ aussi \ décroissante \ (car \ f \ est \ convexe), \ mais \ aussi \ décroissante \ (car \ f \ est \ convexe), \ mais \ aussi \ décroissante \ (car \ f \ est \ convexe), \ mais \ aussi \ decroissante \ (car \ f \ est \ convexe), \ mais \ aussi \ decroissante \ (car \ f \ est \ convexe), \ mais \ aussi \ decroissante \ (car \ f \ est \ convexe), \ mais \ aussi \ decroissante \ (car \ f \ est \ convexe), \ mais \ aussi \ decroissante \ (car \ f \ est \ convexe), \ mais \ aussi \ decroissante \ (car \ f \ est \ convexe), \ mais \ aussi \ decroissante \ (car \ f \ est \ convexe), \ mais \ aussi \ decroissante \ (car \ f \ est \ convexe), \ mais \ aussi \ decroissante \ (car \ f \ est \ convexe), \ mais \ aussi \ decroissante \ (car \ f \ est \ convexe), \ mais \ aussi \ decroissante \ (car \ f \ est \ convexe), \ mais \ aussi \ decroissante \ (car \ f \ est \ convexe), \ mais \ aussi \ decroissante \ (car \ f \ est \ convexe), \ mais \ aussi \ decroissante \ (car \ f \ est \ convexe), \ mais \ aussi \ (car \ f \ est \$ sante (car f est concave), donc constante. Si p désigne cette constante, on a donc $\frac{f(x)-f(x_0)}{x-x_0}=p$ pour tout $x\in I\setminus \{x_0\}$, soit $f(x)=p(x-x_0)+f(x_0)$. Cette égalité est encore vraie pour $x=x_0$, donc f est affine. **Exercice 4** Soit $f : \mathbb{R} \to \mathbb{R}$ une fonction convexe sur \mathbb{R} tout entier. Si f est majorée, montrer que f est constante. Et si f est seulement convexe sur \mathbb{R}_+ ?

Correction 4 $Si\ f\ n'$ était pas constante, il existerait $a < b\ dans\ \mathbb{R}\ tels\ que\ f(a) \neq f(b).$ Traitons le cas où f(a) < f(b). Puisque τ_b est croissante sur $\mathbb{R}\setminus\{b\}$, on aurait, pour tout $x > b, \tau_b(x) \geqslant \tau_b(a)$, soit $f(x) \geqslant f(b) + (x-b)\frac{f(b)-f(a)}{b-a}.$ Puisque f(b)-f(a)>0 et b-a>0, on aurait $\lim_{t\to\infty}f=+\infty$, ce qui contredit le caractère majorée de f. $Si\ f(a)>f(b)$, on obtiendrait la même absurdité avec la croissance de τ_a en regardant ce qui se passe sur $f(a)=\infty$, a f(a)=0 c'est faux sur f(a)=0 est convexe et majorée par f(a)=

2.2 Cas des fonctions dérivables

Théorème 6 (cas 1 fois dérivable) Soit I un intervalle de longueur non nulle et $f: I \to \mathbb{R}$ une fonction dérivable sur I. Les assertions suivantes sont équivalentes.

- (i) La fonction f est convexe sur l.
- (ii) La fonction f' est croissante sur l.

Démonstration. Supposons f convexe. Si x < z sont dans I. Pour tout $y \in]x, z[$, l'inégalité des pentes s'écrit $\frac{f(y)-f(x)}{y-x} \leqslant \frac{f(z)-f(x)}{z-x} \leqslant \frac{f(z)-f(y)}{z-y}$.

- En faisant $y \to x^+$ on obtient $f'_d(x) \leqslant \frac{f(z) f(x)}{z x}$ (dérivée à droite).
- En faisant $y \to z^-$ on obtient $\frac{f(z) f(x)}{z x} \leqslant f_g'(z)$ (dérivée à gauche).

Puisque f est dérivable, $f'_d(x) = f'(x)$ et $f'_g(z) = f'(z)$ si bien que $f'(x) \leqslant f'(z)$ et la croissance de f' est prouvée. Inversement, si f' est croissante, considérons a < b dans I et étudions la fonction D mesurant l'écart entre la corde et la fonction : $D(x) = \frac{f(b)-f(a)}{b-a}(x-a)+f(a)-f(x)$. La fonction D est alors dérivable sur [a,b] et $D'(x) = \frac{f(b)-f(a)}{b-a}-f'(x)$. Le théorème des accroissements finis assure l'existence de $c \in]a,b[$ tel que $\frac{f(b)-f(a)}{b-a}=f'(c)$ si bien que D'(x)=f'(c)-f'(x). Puisque f' est croissante, on en déduit que

- $\forall x \in [a, c], D'(x) \ge 0$, donc D est croissante sur [a, c]
- $\forall x \in [c, b], D'(x) \leq 0$, donc D est décroissante sur [c, b]. Comme enfin D(a) = D(b) = 0, on en tire que D est positive sur [a, b]. Cela traduit le fait que la corde est au-dessus de la courbe de f, c'est-à-dire que f est conveye

Corollaire (position des tangentes)

Soit I un intervalle de longueur non nulle et $f:I\to\mathbb{R}$ une fonction dérivable sur I. Alors f est convexe si et seulement si

$$\forall x \in I$$
, $f(x) \geqslant f'(a) \cdot (x-a) + f(a)$

autrement dit quand la courbe de f est au-dessus de chacune de ses tangentes

Démonstration. Une très mauvaise idée serait de partir de l'inégalité $f(x) \leqslant \frac{f(b)-f(a)}{b-a}(x-a)+f(a)$ et de faire tendre vers b vers a: ce serait oublier que cette inégalité n'est valable que lorsque $x \in [a,b]$: après la limite on n'obtiendrait seulement f(a) = f(a): super!

Restons sérieux : étudions D(x) = f(x) - [f'(a)(x-a) + f(a)] dont la dérivée est donnée par D'(x) = f'(x) - f'(a). Puisque f' est croissante, $D'(x) \geqslant 0$ quand $x \geqslant a$ et $D'(x) \leqslant 0$ quand $x \leqslant a$: les variations de D s'en déduisent et montrent que D admet un minimum global en a. Ajouté au fait que D(a) = 0, nous en déduisons que D est toujours positive sur l.

Corollaire (cas 2 fois dérivable)

Soit I un intervalle de longueur non nulle et $f: I \to \mathbb{R}$ une fonction deux fois dérivable sur I. Les assertions suivantes sont équivalentes.

- (i) La fonction f est convexe sur l.
- (ii) La fonction f'' est positive sur l.

2.3 Exemples de référence

- $\mathbb{R} \to \mathbb{R}, x \mapsto e^x \text{ est convexe} : \forall x \in \mathbb{R}, 1 + x \leqslant e^x$
- Le sinus est concave sur $\left[0, \frac{\pi}{2}\right]$: $\forall x \in \left[0, \frac{\pi}{2}\right], \frac{2}{\pi} \leqslant \sin(x) \leqslant x$
- --] -1, $+\infty$ [$\rightarrow \mathbb{R}$, $x \mapsto \ln(1+x)$ est concave : $\forall x > -1$, $\ln(1+x) \leqslant x$
- $[-1,+\infty[,x\mapsto\sqrt{1+x}\text{ est concave}:\forall x\geqslant-1,\sqrt{1+x}\leqslant1+\frac{1}{2}x$
- Notons aussi que pour tout réel $\mathbb{R}^{+*} \to \mathbb{R}$, α , $x \mapsto x^{\alpha}$ est
 - convexe sur \mathbb{R}_+^* si et seulement si $lpha\geqslant 1$ ou $lpha\leqslant 0$
 - concave sur \mathbb{R}_+^* si et seulement si $\alpha \in [0,1]$.

3 Petit supplément étoilé

Théorème 7 Si I est un intervalle de longueur non nulle et si $f: I \to \mathbb{R}$ est convexe sur I, elle admet en chaque point x_0 de I une dérivée à gauche et à droite et pour tous réels a < b dans I,

$$f'_g(a) \leqslant f'_d(a) \leqslant \frac{f(b) - f(a)}{b - a} \leqslant f'_g(b) \leqslant f'_d(b).$$

En conséquence,

- 1. Les fonctions f'_d et f'_g sont croissantes sur l.
- 2. La fonction f est continue sur l (mais pas forcément sur l).

$$\forall z \in]x_0 - \varepsilon, x_0 + \varepsilon \Big[\setminus \{x_0\}, \quad \tau_{x_0}(x_0 - \varepsilon) \leqslant \tau_{x_0}(z) \leqslant \tau_{x_0}(x_0 + \varepsilon).$$

Puisque τ_{x_0} est croissante et bornée sur $]x_0 - \varepsilon, x_0 + \varepsilon[\setminus \{x_0\}, \text{ le théorème de la limite monotone assure alors l'existence et la finitude des limites à gauche et à droite en <math>x_0$ de τ_{x_0} , celles-ci valant respectivement $\sup_{z \in]x_0 - \varepsilon, x_0[} \tau_{x_0}(z) = f'_g(x_0)$ et $\inf_{z \in]x_0, x_0 + \varepsilon[} \tau_{x_0}(z) = f'_d(x_0)$.

De plus, si $z \in]x_0 - \varepsilon$, $x_0[$ et $z' \in]x_0$, $x_0 + \varepsilon[$, $\tau_{x_0}(z) \leqslant \tau_{x_0}(z')$ par croissance de τ_{x_0} . En faisant $z \to x_0^-$, on obtient $f'_g(x_0) \leqslant \tau_{x_0}(z')$, puis en faisant $z' \to x_0^+$, on trouve finalement $f'_g(x_0) \leqslant f'_d(x_0)$ comme attendu. Si maintenant a < b dans \circ , alors, par définition des bornes inf et sup,

$$\inf_{z>a} \tau_a(z) \leqslant \tau_a(b) = \tau_b(a) \leqslant \sup_{z < b} \tau_b(z)$$

c'est-à-dire $f_d'(a) \leqslant \frac{f(b)-f(a)}{b-a} \leqslant f_g'(b)$. À ce stade la quadruple inégalité annoncée est prouvée.

Le fait que f'_g et f'_d soient croissantes en résulte immédiatement $(f'_d(a) \le f'_d(b))$ et $f'_g(a) \le f'_g(b)$ quels que soient a < b). Enfin, puisque f est dérivable à droite en x_0 , elle est a fortiori continue à droite en x_0 , c'est-à-dire $\lim_{x \to x_0^+} f(x) = f(x_0)$. De même à gauche, si bien que f admet la limite $f(x_0)$ en x_0 (tout court): f est continue en x_0 .

Une fonction convexe peut être non continue au bord de l. Penser par exemple à la fonction constante égale à $0 \, \text{sur} \,]0,1[$ et égale à $1 \, \text{en} \, 0$ et en $1 \, :$ elle est convexe sur [0,1], mais non continue en $0 \, \text{et} \, 1$.

Exercice 5 Soit $f: I \to \mathbb{R}$ une fonction défine sur un intervalle ouvert. Montrer que f est convexe sur I si et seulement si

$$\forall (x,y) \in I^2$$
, $f\left(\frac{1}{2}x + \frac{1}{2}y\right) \leqslant \frac{1}{2}f(x) + \frac{1}{2}f(y)$.

Correction 5 Une implication est évidente. Supposons donc que $f\left(\frac{x+y}{2}\right) \leqslant \frac{f(x)+f(y)}{2}$ pour tous $x,y \in I$. Fixons x et y dans I et posons $m = \frac{x+y}{2}$, qui appartient à I, car I est un intervalle, donc une partie convexe de \mathbb{R} . On peut appliquer l'hypothèse à x et m, ainsi qu'à m et y et écrire

$$--f\left(\frac{x+m}{2}\right)\leqslant \frac{f(x)+f(m)}{2} \text{ c'est-\hat{a}-dire } f\left(\frac{3}{4}x+\frac{1}{4}y\right)\leqslant \frac{3}{4}f(x)+\frac{1}{4}f(y).$$

$$- f\left(\frac{m+y}{2}\right) \leqslant \frac{f(m)+f(y)}{2} \text{ c'est-\hat{a}-dire } f\left(\frac{1}{4}x+\frac{1}{4}y\right) \leqslant \frac{1}{4}f(x)+\frac{3}{4}f(y).$$

On conçoit bien que ce procédé dichotomique peut se reproduire autant de fois que l'on souhaite : on peut montrer par récurrence que pour tout $n \in \mathbb{N}$ et tout $p \in [0,2^n]$, on a $f(\lambda_n x + (1-\lambda_n)y) \leqslant \lambda_n f(x) + (1-\lambda_n)f(y)$, où $\lambda_n = \frac{p}{2^n}$. Faisons-le! Le cas n=0 est trivial car λ_0 ne peut valoir que 0 ou 1. Soit $n \in \mathbb{N}$. Supposons notre hypothèse vraie au rang n. Soit alors $p \in [0,2^{n+1}]$ et $\lambda = \frac{p}{2^{n+1}}$. Distinguons deux cas.

- Si p est pair, alors p = 2k avec k dans $[0, 2^n]$ de sorte que $\lambda = \frac{k}{2^n}$ et l'HR assure que $f(\lambda x + (1 \lambda)y) \le \lambda f(x) + (1 \lambda)f(y)$.
- Si p est impair, alors p = 2k+1 avec $k \in [0, 2^n-1]$. On peut alors écrire, puisque $\lambda = \frac{1}{2} \left(\frac{k}{2^n} + \frac{k+1}{2^n} \right), \lambda x + (1-\lambda)y$ vaut

$$\begin{split} \frac{1}{2} \left[\frac{k}{2^n} x + \frac{k+1}{2^n} x \right] + \frac{1}{2} \left[1 + 1 - \frac{k}{2^n} y - \frac{k+1}{2^n} y \right] \\ &= \frac{1}{2} \left[\frac{k}{2^n} x + \left(1 - \frac{k}{2^n} y \right) \right] \\ &+ \frac{1}{2} \left[\frac{k+1}{2^n} x + \left(1 - \frac{k+1}{2^n} y \right) \right]. \end{split}$$

L'hypothèse faite sur f (qui n'a rien à voir avec l'HR!) implique que $f(\lambda x + (1 - \lambda)y)$ est inférieur à

$$\frac{1}{2}f\left(\frac{k}{2^{n}}x + \left(1 - \frac{k}{2^{n}}\right)y\right) + \frac{1}{2}f\left(\frac{k+1}{2^{n}}x + \left(1 - \frac{k+1}{2^{n}}\right)y\right).$$

Mais comme k et k+1 sont tous deux dans $[0,2^n]$, l'HR s'applique, ce qui nous permet de dire que $f(\lambda x + (1-\lambda)y)$ est inférieur à

$$\frac{1}{2} \left[\frac{k}{2^n} f(x) + \left(1 - \frac{k}{2^n} \right) f(y) \right] \\
+ \frac{1}{2} \left[\frac{k+1}{2^n} f(x) + \left(1 - \frac{k+1}{2^n} \right) f(y) \right]$$

qui n'est autre que $\lambda f(x) + (1 - \lambda)f(y)$.

Concluons : il se trouve que l'ensemble $B = \left\{\frac{p}{2^n} \mid (p,n) \in \mathbb{N}^2, p \leqslant 2^n\right\}$ est dense dans [0,1] : c'est le principe de l'écriture décimale illimitée des réels en base 2. Comme f est continue sur l'intérieur de f qui est ouvert, elle est continue sur f. Ainsi, pour tout f0, f1, f1, f2, f3, f4, f5, f6, f7, f8, f8, f8, f9, f9

Théorème 8 Soit I est un intervalle de longueur non nulle. Si $f:I\to\mathbb{R}$ est convexe sur I, alors f est dérivable sur I sauf peut-être sur une partie finie ou dénombrable.

La notion de partie dénombrable sera abordée dans le chapitre sur le dénombrement. On y établit par exemple que $\mathbb Q$ est dénombrable.

Puisque f admet en chaque point $x \in I$ une dérivée à gauche $f'_g(x)$ et une dérivée à droite $f'_d(x)$ telles que $f'_g(x) \leqslant f'_d(x)$, l'ensemble des points de non dérivabilité de f sur I est $D = \left\{ x \in I \mid f'_g(x) < f'_d(x) \right\}$.

Soit $x \in D$ un tel point. Puisque $\mathbb Q$ est dense dans $\mathbb R$, on peut trouver un rationnel r(x) dans] $f'_g(x)$, $f'_d(x)$ [. Si x < y, le théorème 1 précédent a établi que $f'_d(x) \le f'_g(y)$, si bien que $r(x) < f'_d(x) \le f'_g(y) < r(y)$. L'application $x \mapsto r(x)$ est donc une injection de D dans $\mathbb Q$, ce qui prouve, puisque $\mathbb Q$ est dénombrable, que D est fini ou dénombrable.

4 Exercices

4.1 Énoncés

Exercice 6 Soit a un réel et $f:[a,+\infty[\to\mathbb{R}]$ une fonction convexe.

- 1. Justifier que $\ell = \lim_{x \to +\infty} \frac{f(x)}{x}$ existe dans $\overline{\mathbb{R}}$.
- 2. Si $\ell \in \mathbb{R}$, montrer que $m = \lim_{x \to +\infty} (f(x) \ell x)$ existe dans $\overline{\mathbb{R}}$.
- 3. Donner des exemples où $\ell \notin \mathbb{R}$, où $(\ell \in \mathbb{R} \text{ et } m \notin \mathbb{R})$ et un exemple non affine où $(\ell \in \mathbb{R} \text{ et } m \in \mathbb{R})$.

Exercice 7 Soit a,b des réels positifs tels que a+b=1. Montrer que $\forall x,y \in \mathbb{R}_+, 1+x^ay^b \leqslant (1+x)^a(1+y)^b$.

Exercice 8 (inégalité arithmético-géométrique and Co). Soit $n \in \mathbb{N}^*$ et a_1, \ldots, a_n des réels positifs. On appelle moyenne géométrique a_1, \ldots, a_n les quantités suivantes

$$G = \sqrt[q]{a_1 \times ... \times a_n}, \quad A = \frac{a_1 + ... + a_n}{n}, \quad Q = \sqrt{\frac{a_1^2 + ... + a_n^2}{n}}.$$

De plus, si les $a_1, ..., a_n$ sont tous strictement positifs, on pose

$$H = \frac{n}{\frac{1}{a_1} + \dots + \frac{1}{a_n}}$$

Les quantités H, G, A, Q s'appellent respectivement moyennes harmonique, géométrique, arithmétique et quadratique des réels a_1, \ldots, a_n .

- 1. Montrer que $H \leq G \leq A \leq Q$.
- 2. On souhaite étudier les cas d'égalité. Pour ce faire, on introduit un raffinement de la notion de convexité. Nous dirons qu'une fonction $f:I\to\mathbb{R}$ (avec I un intervalle de longueur non nulle de \mathbb{R}) est strictement convexe sur I quand

$$\forall x, y \in I, \forall \lambda \in]0, 1[, [x \neq y \Longrightarrow f(\lambda x + (1 - \lambda)y) < \lambda f(x) + (1 - \lambda)f(y)$$

c.-à-d. quand, dans la définition d'une fonction convexe, le cas d'égalité se produit uniquement dans les cas triviaux x = y ou $\lambda \in \{0,1\}$. On constate donc qu'une fonction strictement convexe est a fortiori convexe.

(a) (Inégalité de Jensen stricte). Si f est strictement convexe sur I, montrer que pour tout $n \ge 2$, tous $\lambda_1, \ldots, \lambda_n \in]0,1[$ de somme 1 et tous $x_1, \ldots, x_n \in I$, si les x_i ne sont pas tous égaux, alors

$$f\left(\sum_{i=1}^{n} \lambda_i x_i\right) < \sum_{i=1}^{n} \lambda_i f(x_i)$$

- (b) Si f est dérivable, montrer que f est strictement convexe sur l si et seulement si f' est strictement croissante sur l.
- (c) Étudier les cas d'égalité des inégalités vues en 1.

Exercice 9 1. A l'aide de la convexité de l'exponentielle, établir

$$\forall n \in \mathbb{N}^*, \forall (x_1, \dots, x_n) \in \mathbb{R}^n_+, \forall (\alpha_1, \dots, \alpha_n) \in \mathbb{R}^n_{+*}, \sum_{i=1}^n \alpha_i = 1, \prod_{i=1}^n x_i^{\alpha_i} \leq \sum_{i=1}^n \alpha_i x_i$$

2. Comment obtenir un parallélépipède rectangle d'aire minimale à volume donné (emballage le plus économique)?

Exercice 10 (inégalités de Hölder et de Minkowski). Si $p \in]1, +\infty[$, on appelle réel conjugué de p l'unique réel q > 0 à vérifier $\frac{1}{p} + \frac{1}{q} = 1$. Ainsi, le réel 2 est son propre conjugué.

1. Montrer que $\forall (x,y) \in (\mathbb{R}_+)^2$, $xy \leqslant \frac{x^p}{p} + \frac{y^q}{q}$ (inégalité de Young). 2. En déduire l'inégalité de Hölder : pour tout $n \in \mathbb{N}^*$ et tous n-uplets (x_1, \ldots, x_n) et (y_1, \ldots, y_n) de réels,

$$\sum_{k=1}^{n} |x_k y_k| \leqslant \left(\sum_{k=1}^{n} |x_k|^p \right)^{\frac{1}{p}} \left(\sum_{k=1}^{n} |y_k|^q \right)^{\frac{1}{q}}.$$

3. Si $x=(x_1,\ldots,x_n)\in\mathbb{R}^n$, on pose $\|x\|_p=\sqrt[p]{|x_1|^p+\ldots+|x_n|^p}$. Déduire de l'inégalité de Hölder l'inégalité de Minkowski : pour tous $x,y\in\mathbb{R}^n$,

$$||x + y||_p \le ||x||_p + ||y||_p$$

Indication: $|a+b|^p = |a+b| \cdot |a+b|^{p-1}$ et le conjugué de p est $q = \frac{p}{p-1}$.

Exercice 11 On dit qu'une fonction $f: I \to \mathbb{R}$ définie sur un intervalle I est logarithmiquement convexe (ou log-convexe) sur I quand f prend ses valeurs dans \mathbb{R}_+^* et quand $\ln \circ f$ est convexe sur I.

- 1. Montrer que si f est log-convexe sur l, alors elle est convexe sur l.
- 2. Démontrer que f est log-convexe si et seulement pour tout c > 0, la fonction $x \mapsto f(x)c^x$ est convexe.
- 3. En déduire que la somme de deux fonctions log-convexes est log-convexe.

4.2 Corrigés

Correction 6 1. Puisque f est convexe sur $\left[a,+\infty\right[,\tau_a:x\mapsto \frac{f(x)-f(a)}{x-a}$ est croissante sur $\left]a,+\infty\right[$: le théorème de la limite monotone garantit l'existence de sa limite ℓ en $+\infty$. Comme $\tau_a(x) \sim \frac{f(x)-f(a)}{x}$ et que $\lim_{x\to +\infty} \frac{f(a)}{x}=0$, l'existence de $\lim_{x\to +\infty} \frac{f(x)}{x}=0$ est prouvée.

- 2. Posons $g(x) = f(x) \ell x$. Pour tous $x_0 > a$ et $x \neq x_0$, $\frac{g(x) g(x_0)}{x x_0} = \tau_{x_0}(x) \ell$ si bien que $x \mapsto \frac{g(x) g(x_0)}{x x_0}$ est croissante sur $]a, +\infty[\setminus\{x_0\}]$. Or $\frac{g(x) g(x_0)}{x x_0}$ est équivalent, quand $x \to +\infty$, à $\frac{g(x) g(x_0)}{x}$ et $\lim_{x \to +\infty} \frac{g(x) g(x_0)}{x} = \lim_{x \to +\infty} \frac{g(x)}{x} = 0$ par définition de ℓ . Ainsi, $x \mapsto \frac{g(x) g(x_0)}{x x_0} \leqslant 0$ sur $]a, +\infty[$. Évaluée en y_0 avec $y_0 > x_0$, cette inégalité devient $g(y) \leqslant g(x_0)$, si bien que g est décroissante sur $[a, +\infty[$. Le TLM s'applique et garantit l'existence de la limite $g(x) \in g(x_0)$.
- 3. Les fonctions $x \mapsto x^2$, $x \mapsto -\sqrt{x}$ et $x \mapsto \frac{1}{x} + x$ répondent à la question.

Correction 7 C'est un extrait de planche de l'X, qui a souvent dérouté les candidats, car après avoir pensé à prendre le logarithme, il faut encore avoir une petite idée. L'inégalité $1+x^ay^b \leqslant (1+x)^a(1+y)^b$ est équivalente à $\ln\left(1+x^ay^b\right) \leqslant a\ln(1+x)+b\ln(1+y)$, et on est content car le second membre fleure bon la convexité (car $a,b\geqslant 0$ et a+b=1). Pour le premier membre, on pense à écrire $x^ay^b=e^{a\ln(x)}e^{b\ln(y)}=e^{a\ln(x)+b\ln(y)}$ si bien que ce que l'on cherche à montrer, en fait, c'est

$$\ln\left(1 + e^{a\ln(x) + b\ln(y)}\right)$$

$$\leq a\ln(1+x) + b\ln(1+y)$$

$$= a\ln\left(1 + e^{\ln(x)}\right) + b\ln\left(1 + e^{\ln(y)}\right).$$

Maintenant c'est fini : on pense évidemment à introduire $f: x \mapsto \ln(1+e^x)$ qui dérivable sur $\mathbb R$ avec $f'(x) = \frac{e^x}{1+e^x} = \frac{e^x+1-1}{1+e^x} = 1 - \frac{1}{1+e^x}$ ce qui montre que f' est croissante (vous ferez meilleure impression en remarquant que f' est croissante ainsi, sans la dériver). En conclusion f est convexe.

Correction 8 1. Montrons que $G \le A$. Si l'un des réels a_k est nul, c'est évident puisque G = 0. Sinon il sont tous dans \mathbb{R}_+^* et la concavité de ln assure (via l'inégalité de Jensen) que

$$\ln \frac{a_1 + \dots + a_n}{n} \geqslant \frac{\ln(a_1) + \dots + \ln(a_n)}{n}$$
$$= \ln(a_1 \dots a_n)^{\frac{1}{n}}.$$

Puisque exp est croissante, on obtient $A \geqslant G$.

La convexité de $x\mapsto x^2$ donne quant à elle $\left(\frac{1}{n}a_1+\ldots+\frac{1}{n}\right)^2\leqslant \frac{1}{n}a_1^2+\ldots+\frac{1}{n}a_n^2$. La croissance de \sqrt{n} donne alors $A\leqslant Q$.

Enfin, si les a_i sont tous non nuls, $\frac{1}{H}$ est la moyenne arithmétique de $\frac{1}{a_1},\ldots,\frac{1}{a_n}$ On sait depuis peu que $\frac{1}{H}\geqslant G'$ où G' est la moyenne géométrique de ces mêmes réels. Or voilà, $G'=\frac{1}{G}$, donc $H\leqslant G$ par décroissance de $x\mapsto \frac{1}{x}$ sur \mathbb{R}_+^* . Finalement, $H\leqslant G\leqslant A\leqslant Q$ comme annoncé.

2. (a) On procède par récurrence, un peu dans l'idée de la preuve de la caractérisation des parties convexes par les barycentres. Si n = 2, c'est la définition même de la stricte convexité. Soit n ≥ 2. Supposons acquis notre inégalité stricte pour n'importe quels choix de λ_k et de x_k comme dans l'énoncé. Soit maintenant λ₁,..., λ_{n+1} dans]0,1[de somme 1 et x₁,..., x_{n+1} non tous égaux. Pour se ramener à une CLC de n termes, on pense par exemple à décrire la convexité de f par

$$f\left(\sum_{i=1}^{n+1} \lambda_i x_i\right) = f\left((1-\lambda_{n+1})x + \lambda_{n+1}x_{n+1}\right) \leq (1-\lambda_{n+1})f(x) + \lambda_{n+1}f(x_{n+1})$$

où $x=\sum_{i=1}^n\frac{\lambda_i}{1-\lambda_{n+1}}x_i$. Posons donc, pour tout $i\in [\![1,n]\!], \mu_i=\frac{\lambda_i}{1-\lambda_{n+1}}$: nous sommes devant une CLC puisque $\sum_{i=1}^n\mu_i=\frac{1}{1-\lambda_{n+1}}\sum_{i=1}^n\lambda_i=\frac{1-\lambda_{n+1}}{1-\lambda_{n+1}}=1$ et que pour tout $i\in [\![1,n+1]\!], \mu_i>0$. Notons que $\mu_i\neq 1$ car sinon les autres μ_k seraient nuls, ce qui est exclu. Distinguons deux cas.

— Cas 1 : les $x_1,...,x_n$ ne sont pas tous égaux. L'HR nous permet alors de dire que $f(x) < \sum_{i=1}^{n} \mu_i x_i$. On a donc

$$f\left(\sum_{i=1}^{n+1}\lambda_ix_i\right)\leqslant \left(1-\lambda_{n+1}\right)f(x)+\lambda_{n+1}f(x_{n+1})$$

$$<(1-\lambda_{n+1})\sum_{i=1}^{n}\mu_{i}x_{i}+\lambda_{n+1}f(x_{n+1})$$

qui n'est autre que l'inégalité stricte attendue puisque $(1 - \lambda_{n+1}) \sum_{i=1}^{n} \mu_i x_i = \sum_{i=1}^{n} \lambda_i x_i$.

— Cas 2: les x_1, \ldots, x_n sont tous égaux. Cela implique donc, vu ce qu'on a supposé sur x_1, \ldots, x_{n+1} , que $x_1 \neq x_{n+1}$. Cette fois on a $\sum_{i=1}^n \lambda_i x_i = (\sum_{i=1}^n \lambda_i) x_1$ donc $f\left(\sum_{i=1}^{n+1} \lambda_i x_i\right) = f\left((1-\lambda_{n+1})x_1 + \lambda_{n+1}x_{n+1}\right) < (1-\lambda_{n+1})f(x_1) + \lambda_{n+1}f(x_{n+1})$

Puisque $(1 - \lambda_{n+1}) f(x_1) = \sum_{i=1}^{n} \lambda_i f(x_i)$, cette dernière inégalité peut encore s'écrire

$$f\left(\sum_{i=1}^{n+1}\lambda_ix_i\right) < \sum_{i=1}^{n+1}\lambda_if(x_i).$$

Dans tous les cas on a prouvé l'hérédité, ce qui achève la récurrence.

- (b) C'est la même démonstration que dans le cours en remplaçant les ≤ par des < (revenir aux taux d'accroissement, prouver qu'ils sont tous strictement croissants, etc.)
- (c) D'après (b), ln et $x\mapsto x^2$ sont strictement convexes. D'après (a), vu que $\frac{1}{n}\in]0,1[$, les cas d'égalité se produisent si et seulement si $a_1=\ldots=a_n$.

Correction 9 1. Si l'un des réels x_i est nul, alors le produit de gauche est nul et l'inégalité est trivialement vérifiée. On suppose à présent que tous les réels x_i sont strictement positifs. Alors, comme l'exponentielle est convexe, l'inégalité de Jensen discrète appliquée aux réels $(\ln(x_i))_i$ entraîne

$$\exp\left(\sum_{i=1}^{n} \alpha_{i} \ln(x_{i})\right) \leq \sum_{i=1}^{n} \alpha_{i} \exp(\ln(x_{i}))$$

On reconnaît alors

$$\prod_{i=1}^{n} x_i^{\alpha_i} \le \sum_{i=1}^{n} \alpha_i x_i$$

2. Notons x, y, z les dimensions strictement positives d'un parallélipède rectangle. Alors son volume V vaut xyz et sa surface vaut 2(xy+yz+zx). On applique alors l'inégalité précédente aux inverses des dimensions avec $\alpha_1 = \alpha_2 = \alpha_3 = 1/3$, ce qui entraîne

$$\left(\frac{1}{xyz}\right)^{1/3} \le \frac{1}{3}\left(\frac{1}{x} + \frac{1}{y} + \frac{1}{z}\right) = \frac{zy + zx + xy}{3xyz}$$

soit encore

$$V^{-1/3} \le \frac{S}{6V}$$

On en déduit que $S \ge V^{2/3}$. De plus, en utilisant les mêmes notions de convexité stricte que dans l'exercice précédent (l'exponentielle est strictement convexe et le logarithme est injectif), on constate qu'il y a égalité si et seulement si x = y = z. Ainsi, l'emballage le plus économique est cubique.

Correction 10 1. Soit x,y>0 quelconques. Puisque $\frac{x^p}{p}+\frac{y^q}{q}=\frac{1}{p}e^{p\ln(x)}+\frac{1}{q}e^{q\ln(x)}$, que p,q>0 avec $\frac{1}{p}+\frac{1}{q}=1$ et que exp est convexe, on en déduit que $\frac{x^p}{p}+\frac{y^q}{q}\geqslant \exp\left(\frac{p\ln(x)}{p}+\frac{q\ln(y)}{q}\right)=xy$. Si x ou y est nul, l'inégalité reste vraie : elle est donc vraie pour tout $x,y\in\mathbb{R}_+$.

Notons que si p = 2, cette inégalité est célèbre et simple à montrer : elle s'obtient en écrivant $(x-y)^2 \ge 0$ et en développant.

2. Encore une fois, si l'un des réels mis en jeu est nul, l'inégalité est triviale. On suppose donc que tout le monde est dans \mathbb{R}^* . Si $i \in [1, n]$, on applique l'inégalité précédente avec $x = \frac{|x_i|}{(\sum |x_k|^p)^{\frac{1}{p}}}$ et

$$y = \frac{|y_i|}{(\sum |y_k|^q)^{\frac{1}{q}}} \text{ pour obtenir}$$

$$\frac{|x_i y_i|}{(\sum |x_k|^p)^{\frac{1}{p}} (\sum |y_k|^q)^{\frac{1}{q}}} \leqslant \frac{1}{p} \frac{|x_i|^p}{\sum |x_k|^p} + \frac{1}{q} \frac{|y_i|^q}{\sum |y_k|^q}.$$

En sommant sur tous les i, on obtient l'inégalité attendue car $\frac{1}{p} + \frac{1}{q} = 1$. Si p = 2, on retrouve l'inégalité de Cauchy-Schwarz provenant du produit scalaire canonique de \mathbb{R}^n .

3. Notons que l'inégalité demandée reste vraie si p=1, mais pour pouvoir utiliser ce qui précède, nous supposons p>1. Appliquons l'indication donnée :

$$(||x+y||_p)^p = \sum_{k=1}^n |x_k + y_k| \cdot |x_k + y_k|^{p-1}$$

$$\leq \sum_{k=1}^n |x_k| \cdot |x_k + y_k|^{p-1}$$

$$+ \sum_{k=1}^n |y_k| \cdot |x_k + y_k|^{p-1}.$$

L'inégalité de Hölder fraîchement démontrée en question 2 appliquée aux deux dernières sommes ci-dessus montre que $(\|x+y\|_p)^p$ est inférieure à

$$\begin{split} & \left[\sum_{k=1}^{n} |x_k|^p \right]^{\frac{1}{p}} \left[\sum_{k=1}^{n} |x_k + y_k|^{q(p-1)} \right]^{\frac{1}{q}} \\ & + \left[\sum_{k=1}^{n} |y_k|^p \right]^{\frac{1}{p}} \left[\sum_{k=1}^{n} |x_k + y_k|^{q(p-1)} \right]^{\frac{1}{q}}. \end{split}$$

c'est gagné!

Correction 11 1. Supposons f log-convexe. Soit $x, y \in I$ et $t \in [0,1]$. Par hypothèse,

 $\ln f(tx + (1-t)y) \leqslant t \ln f(x) + (1-t) \ln f(y)$

Par concavité de ln et croissance de exp, f est convexe sur l

2. Supposons que f soit log-convexe. Si c > 0, l'application $x \mapsto \ln(f(x)) + x \ln(c)$ est convexe comme somme de deux fonctions convexes (la deuxième est même affine), autrement dit $x \mapsto \ln(f(x)c^x)$ est convexe. D'après $1, x \mapsto f(x)c^x$ est convexe.

Récip., supposons que $x \mapsto f(x)c^x$ soit convexe pour tout c > 0. Si $x \neq y$ dans l et $t \in [0,1]$, alors $f(tx+(1-t)y)c^{tx+(1-t)y} \leqslant tf(x)c^x+(1-t)f(y)c^y$, et ce pour tout c > 0. Après division par $c^{tx+(1-t)y} > 0$:

$$\forall c > 0$$
, $f(tx + (1-t)y) \le tf(x)c^{(1-t)(x-y)} + (1-t)f(y)c^{t(y-x)}$.

L'astuce est ici de choisir « le meilleur c possible \gg : le membre de droite de l'inégalité précédente définit une fonction dérivable ϕ de la variable c avec

$$\varphi'(c) = t(1-t)(x-y)c^{(1-t)(x-y)-1} + (1-t)t(y-x)f(y)c^{t(y-x)-1} = t(1-t)(x-y)c^{(y-x)t-1}[f(x)c^{x-y} - f(y)].$$

Puisque φ est continue et à valeurs dans \mathbb{R}_+ , elle admet un minimum global, et puisque φ' ne s'annule que pour $c_0 = \mathrm{e}^{-\frac{f(y)-f(x)}{y-x}}$ (c'està-dire quand $c_0^{x-y} = \frac{f(y)}{f(x)}$), ce minimum vaut $\varphi(c_0) = f(y)^{1-t}f(x)^t$. On peut ainsi dire que $f(tx+(1-t)y) \leqslant f(y)^{1-t}f(x)^t$ et en composant par ln qui est croissante, on obtient la convexité de ln of.

3. Si f et g sont log-convexes, alors d'après 2) pour tout $c > 0, x \mapsto f(x)c^x$ et $x \mapsto g(x)c^x$ sont convexes, donc leur somme aussi, c'est-à-dire $x \mapsto (f(x)+g(x))c^x$ est convexe, et d'après 2) encore, f+g est logconvexe.