The Boustrophedon* Conjecture

An approach to the Graph Complement Conjecture

H. Tracy Hall

Hall Labs, LLC

7 January 2021

Haystacks MRC Special Session, JMM Virtual

*boustrophedon (from Greek "ox-turning-wise", as in ploughing): text in which alternating lines are read in opposite directions.

Graph parameters from matrix nullity

Graph $G \longleftrightarrow$ real symmetric matrix A:

$$ij$$
 is an edge $\longleftrightarrow a_{ij} \neq 0$ (off-diagonal)

(requires vertex ordering—usually ignored)

Graph parameters: $x(G) \in \mathbb{N}$

M(G): maximum nullity

 $M_+(G)$: also positive semidefinite

 $\nu(G)$: also SAP

More requirements \Rightarrow smaller maximum nullity

$$\nu(G) \le M_+(G) \le M(G)$$

The graph parameter zoo

The Strong Arnold Property (SAP)

Real symmetric A has $Strong\ Arnold\ Property\ (SAP)$ when only X=0 satisfies:

- X real symmetric.
- $X \circ I = 0$.
- $\bullet \ X \circ A = 0.$
- XA = 0.

A kind of "generic". Can make nullity minor-monotone.

Given A, easy to check. (\cap spaces trivial?)

Not easy: Does *A* exist?

Upper-zero generic

Easier: Are certain row sets of *A* independent?

Real symmetric *A* is *upper-zero generic* ("upzegen") if:

- No zeros on diagonal.
- In each column, zeros above diagonal select independent rows.

$$\begin{bmatrix} 2 & 1 & 0 & 0 \\ 1 & 2 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix} \qquad \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 1 & 2 \end{bmatrix}$$

$$YES \qquad \qquad NO$$

Proposition: Upper-zero generic ⇒ Strong Arnold Property.

$upzegen \Rightarrow SAP$

Proof of Proposition. By contraposition. (Goal: not SAP \Rightarrow not upzegen)

Suppose A not SAP, so nonzero X exists.

Let \mathbf{r} be the last nonzero row of X.

- ullet By X symmetry, ${f r}$ zero past diagonal.
- By $X \circ I = 0$, **r** zero on diagonal.
- By $X \circ A = 0$, $\mathbf{r} \& \mathbf{r}^T$ zero wherever A nonzero. $\Rightarrow \mathbf{r}^T$ nonzeros \subseteq an upper-zero set of A.
- By XA = 0, **r** gives dependency on upper-zero set of rows. $\Rightarrow A$ is not upper-zero generic. \square

Bonus claim: If *A* upzegen of target rank exists, easy to find.

$M_s(G, \sigma)$ (sequential maximum nullity)

Upper-zero generic A depends on vertex ordering σ for G.

Sequential maximum nullity $M_s(G, \sigma)$:

Maximum nullity of A such that

- *A* is real symmetric PSD,
- A has pattern G, ordered by σ , and
- *A* is upper-zero generic.

(Bonus claim says: Fix G and σ , then $M_s(G, \sigma)$ easy.)

Max over all σ : $M_s(G)$

Upzegen more restrictive than SAP, so

$$M_s(G, \sigma) \le M_s(G) \le \nu(G).$$

Graph Complement Conjecture(s), GCC_x

Nordhaus-Gaddum type problems: combine x(G) and $x(\overline{G})$. (additive or multiplicative)

Graph Complement Conjecture: For all simple G on n vertices,

$$M(G) + M(\overline{G}) \ge n - 2.$$

Apply to any graph parameter x(G).

 GCC_x : For all simple G on n vertices,

$$x(G) + x(\overline{G}) \ge n - 2.$$

What is known about GCC_x ?

Computer verification of GCC_{M_s} for low n

 $\mathrm{GCC}_{\mathrm{M}_{\mathrm{s}}}$ implies GCC_x for many other nullity parameters \dots

... and it's not hard to check.

(Not quite combinatorial, but randomized process usually succeeds.)

Results so far:

True for all G: $n \le 10$.

True for $G = \overline{G}$: $n \le 17$.

The Boustrophedon Conjecture

Which σ for $M_s(G)$ vs. for $M_s(\overline{G})$?

 $\mathrm{GCC}_{\mathrm{M}_{\mathrm{s}}}$ doesn't know. Stronger conjecture:

Boustrophedon Conjecture. *Let* G *be a graph with* |V(G)| = n. *Then there exists an ordering* σ *of* V(G) *such that*

$$M_s(G, \sigma) + M_s(\overline{G}, \overleftarrow{\sigma}) \ge n - 2,$$

where \overline{G} denotes the complement of G and $\overset{\leftarrow}{\sigma}$ denotes the reversal of σ .

(Same order σ fails for n = 8.)

Results so far: Also true for all G, n = 10.

Bonus: proof idea for bonus claim

Geometric perspective:

A is PSD, rank $\leq d$ \iff A is Gram matrix, vectors in \mathbb{R}^d .

Lovàsz, Saks, and Schrijver (LSS) process:

- choose vectors at random,
- in order σ ,
- with orthogonality constraints from upper zeros.

Upzegen LSS:

- and require independent constraints.
- ⇒ polynomials instead of random
- \implies succeeds never or with probability 1 (easy to tell).