

UFPR - Universidade Federal do Paraná Departamento de Matemática CM304 Complementos de Matemática - 2024/1

Lista de Funções

- 1. Sejam $A = \{1, 2, 3, 4, 5\}$ e $B = \{a, b, c, d\}$. Determine se cada uma das relações abaixo é uma função com domínio em A e contradomínio B. Se esse for o caso, determine o conjunto imagem da função. Além disso, é uma função injetora? É sobrejetora? Justifique as suas respostas.
 - (a) $f = \{(2, a), (5, c), (1, d), (0, a), (4, b), (3, c)\}$
 - (b) $f = \{(1, c), (3, d), (2, c), (4, b), (5, a)\}$
 - (c) $f = \{(3, d), (5, a), (4, c), (1, d), (2, a)\}$
 - (d) $f = \{(1, b), (3, d), (2, a), (4, c), (5, e)\}$
- 2. Sejam $C = \{1, 2, 3, 4\}$ e $D = \{a, b, c, d, e\}$. Determine se cada uma das relações abaixo é uma função com domínio em C e contradomínio D. Se esse for o caso, determine o conjunto imagem da função. Além disso, é uma função injetora? É sobrejetora? Justifique as suas respostas.
 - (a) $f = \{(1, d), (2, c), (4, e)\}$
 - (b) $f = \{(4, a), (3, d), (2, e), (1, a)\}$
 - (c) $f = \{(2, c), (1, e), (3, a), (2, d), (4, b)\}$
 - (d) $f = \{(3, e), (2, a), (4, c), (1, b)\}$
- 3. Verifique se cada afirmação abaixo é Verdadeira ou Falsa, justificando sua resposta.
 - (a) Uma função ser injetora significa que todo elemento no contradomínio tem que ter uma única imagem inversa.
 - (b) Uma função ser sobrejetora significa que todo elemento no contradomínio tem que ter uma única imagem inversa.
 - (c) Uma função ser injetora significa que dois elementos diferentes em seu domínio nunca podem ir no mesmo elemento no contradomínio.
 - (d) Se todo elemento no domínio tiver uma imagem, a função terá que ser sobrejetora.
 - (e) Se todo elemento no contradomínio tiver uma imagem, a função terá que ser sobrejetora.
 - (f) Se o domínio for maior que o contradomínio, a função não poderá ser injetora.
 - (g) Se todo elemento no contradomínio tiver uma imagem inversa, a função terá que ser sobrejetora.
 - (h) Que uma função seja sobrejetora significa que Imagem \cap Contradominio $= \emptyset$.
 - (i) Que uma função seja injetora significa que todo elemento no contradomínio tem que ter no máximo uma imagem inversa.
 - (j) Que uma função seja sobrejetora significa que Imagem ∩ Contradominio = Contradominio.
- 4. Seja $f: \mathbb{R} \to \mathbb{R}$ a função dada por f(x) = 3x + 2. Verifique que essa função é bijetora e determine sua função inversa.
- 5. Seja \mathbb{R}^* o conjunto dos números reais excluindo o zero, isto é $\mathbb{R}^* = \mathbb{R} \{0\}$. Mostre que a função $f: \mathbb{R}^* \to \mathbb{R}^*$ dada por $f(x) = \frac{1}{x}$ é bijetora e determine sua função inversa.

Para os Exercícios 6 à 10, considere $A = \{0,1\}$ e B o conjunto de todas as cadeias finitas formadas com digitos em A. Por exemplo, $010110 \in B$, $0110101011 \in B$, etc.

- 6. Defina $f: B \to \mathbb{Z}$ da seguinte maneira: para $c \in B$, f(c) =número de caracteres de c. A função f é injetora? A função f é sobrejetora?
- 7. Defina $g: B \to \mathbb{Z}$ da seguinte maneira: para $c \in B$, g(c) = número de caracteres iguais a 0 em c menos o número de caracteres 1 em c. A função g é injetora? A função g é sobrejetora?

- 8. Defina $h: B \to B$ da seguinte maneira: para $c \in B$, h(c) = cadeia obtida escrevendo c na ordem inversa. A função h é injetora? A função h é sobrejetora?
- 9. Defina $w: B \to B$ da seguinte maneira: para $c \in B$, w(c) =cadeia obtida ao trocar os dígitos de cde 0 para 1 e de 1 para 0. A função w é injetora? A função w é sobrejetora?
- 10. Defina $u: B \to B$ da seguinte maneira: para $c \in B$, u(c) = 0c, ou seja, a cadeia obtida ao colocar 0 antes de c. A função u é injetora? A função u é sobrejetora?
- 11. Sejam $A = \{1, 2, 3, 4\}, B = \{a, b, c, d\}$ e $C = \{6, 7, 8, 9\}$. Determine a função composta $g \circ f$ em cada caso. Além disso, a função $g \circ f$ é uma função injetora? É sobrejetora? Justifique as suas respostas.
 - (a) $f = \{(2, a), (3, b), (1, d), (4, b)\}\ e \ g = \{(a, 7), (b, 8), (c, 9), (d, 6)\}.$
 - (b) $f = \{(1, c), (3, d), (2, b), (4, a)\}\ e\ g = \{(d, 9), (c, 9), (b, 6), (a, 9)\}.$
 - (c) $f = \{(3, d), (1, a), (4, c), (2, a)\}\ e\ g = \{(c, 7), (a, 6), (d, 9), (b, 8)\}.$
 - (d) $f = \{(4, b), (3, d), (2, a), (1, c)\}\ e\ g = \{(b, 9), (d, 8), (a, 6), (c, 7)\}.$
- 12. Defina $f: \mathbb{N} \to \mathbb{N}$ por f(x) = x + 1 e $g: \mathbb{N} \to \mathbb{N}$ por g(x) = 3x. Calcule o valor das seguintes expressões:
 - (a) $(g \circ f)(5)$
- (e) $(f \circ f)(x)$

- (b) $(f \circ g)(5)$
- (c) $(g \circ f)(x)$ (d) $(f \circ g)(x)$
- (f) $(g \circ g)(x)$
- 13. Sejam $f:A\to B$ e $g:B\to C$ funções injetoras. Mostre que a função composta $g\circ f:A\to C$ é uma função injetora.
- 14. Sejam $f:A\to B$ e $g:B\to C$ funções sobrejetoras. Mostre que a função composta $g\circ f:A\to C$ é uma função sobrejetora.
- 15. Sejam $f:A\to B$ e $g:B\to C$ funções bijetoras. Mostre que a inversa da função composta $g \circ f : A \to C$ é a função $(g \circ f)^{-1} : C \to A$ dada por $(g \circ f)^{-1}(x) = f^{-1} \circ g^{-1}(x)$
- 16. Sejam $f: A \to B$ e $g: B \to C$ funções. Prove que se $g \circ f$ é injetora, então f é uma função injetora. Além disso, exiba um exemplo em que $g \circ f$ é injetora, mas g não é injetora.
- 17. Sejam $f:A\to B$ e $g:B\to C$ funções. Prove que se $g\circ f$ é sobrejetora, então g é uma função sobrejetora. Além disso, exiba um exemplo em que $g \circ f$ é sobrejetora, mas f não é sobrejetora.
- 18. Seja $f: A \to B$ uma função. Determine a seguinte relação em A:

$$xRy \leftrightarrow f(x) = f(y).$$

- (a) Mostre que essa é uma relação de equivalência.
- (b) Se f é uma função injetora, o que podemos dizer sobre as classes de equivalência desta relação?
- (c) Mostre que $g: A/R \to B$ dada por g([x]) = f(x) define uma função que é injetora.