- 1. (15%) Determine which relationship, ⊆, =, or ⊇, is true for the pair of sets.(每小題僅需圈 選一個最適合答案即可;
 - (a) $[\subseteq = \supseteq]$ A (B C) A U B, A U (B A).
 - $(A \cup B) \cap C$.
 - (a) [= -1] $(b) [\subseteq = \supseteq] A \cup (B \cap C), \qquad (A \cup B) \cap C$ $(c) [\subseteq = \supseteq] (A B) \cup (A C), \qquad A (B \cap C).$ $(\Delta B) \cap (A \cap C)$
 - $(d)[\subseteq = \supseteq] A (B \cap C),$ (A − B) ∩ (A − C) A − B.
 - (e) $[\subseteq = \supseteq]$ (A C) (B C),
- 2. (12%) Find

(a)
$$\bigcup_{i=1}^{+\infty} \left[-\frac{1}{i}, \frac{1}{i} \right]$$

(b)
$$\bigcap_{i=1}^{n} (1 - \frac{1}{i}, 1)$$

(c)
$$\bigcap_{\substack{i=1\\+\infty}}^{+\infty} [1 - \frac{1}{i}, 1]$$

- (d) \cap (i, ∞)
- 3. (18%) Suppose A = $\{x, y\}$ and B = $\{x, \{x\}\}$. Mark each of the following statements TRUE or FALSE. (每小題僅需填O或X即可)
 - (a) [T F] x ⊆ B.
 - $\emptyset \in P(B)$. (b) [T F]
 - $\{x\} \subseteq A B$.
 - $\begin{array}{ll} \text{(c) [T F]} & \text{\{x\}} \subseteq A \\ \text{(d) [T F]} & |P(A)| = 4. \end{array}$
 - $\{\{x\}\}\subseteq P(B).$ (e) [T F]
 - $\{(\{x\},\{x\})\}\subseteq A\times A.$ (f) [T F]
- 4. (8%)Suppose A = $\begin{bmatrix} 3 & 5 \\ 2 & 4 \end{bmatrix}$ and C = $\begin{bmatrix} 2 & 1 \\ 0 & 6 \end{bmatrix}$. Find a matrix B such that AB = C^t or prove that no such matrix exists.
- 5. (10%)Suppose f: R \rightarrow R and g: R \rightarrow R where g(x) = 2x + 1 and g \circ f(x) = 2x + 11.
 - (a) Find f.
 - (b) Find g^{-1} .
- 6. (16%) Find the solution to each of these recurrence relations and initial conditions.

離散數學	给一辛 ,	\ -\
新	宏一早/	17

姓名:	學號:
X+ 17.	字分元 .

(a)
$$a_n = a_{n-1} + 2$$
, $a_0 = 3$

(b)
$$a_n = 3a_{n-1} + 1$$
, $a_0 = 1$

7. (24%) (The Cantor-Bernstein-Schröeder Theorem)

If $|A| \le |B|$ and $|B| \le |A|$, then |A| = |B|. In other words, if there are injections $f : A \to B$ and $g : B \to A$, then there is a bijection $h : A \to B$.

- (a) Show that (0, 1) has the same cardinality(基數) as (2, 5).
- (b) show that (0,1) has the same cardinality as [0, 1).
- (c) show that (0,1) has the same cardinality as $(0, \infty)$.
- 8. (16%)
 - (a) Show that the set of finite strings S over a finite alphabet(有限字元集) Σ is countably infinite.
 - (b) Show that the set of all Java programs J is countable.

- 1. (15%) Determine which relationship, ⊆, =, or ⊇, is true for the pair of sets.(每小題僅需圈 選一個最適合答案即可;
 - (a) $[\subseteq = \supseteq] A (B C) A \cup B$, $A \cup (B A)$.
 - $(b) [\subseteq = \supseteq] A \cup (B \cap C), \qquad (A \cup B) \cap C$ $(c) [\subseteq = \supseteq] (A B) \cup (A C), \qquad A (B \cap C).$ $(A B) \cap (A C)$ $(A \cup B) \cap C$.

 - $(d) [\subseteq = \supseteq] A (B \cap C),$ $(A - B) \cap (A - C)$
 - A B. (e) $[\subseteq = \supseteq]$ (A - C) - (B - C),

ans:= ⊇. =. ⊇. ⊆.

- 2. (12%) Find
 - (a) $\cup [-\frac{1}{i}, \frac{1}{i}]$
 - (b) $\cap (1 \frac{1}{i}, 1)$ $+\infty$
 - (c) $\cap [1 \frac{1}{i}, 1]$
 - (d) \bigcap (i, ∞)

ans: (a)[-1,1](b) $\Phi(C)$ {1}(d) Φ

- 3. (18%) Suppose A = $\{x, y\}$ and B = $\{x, \{x\}\}$. Mark each of the following statements TRUE or FALSE. (每小題僅需填O或X即可)
 - (a) [T F] $x \subseteq B$.
 - $\emptyset \in P(B)$. (b) [T F]
 - $\{x\} \subseteq A B$.
 - (c) [T F] $\{x\} \subseteq A (d) [T F]$ |P(A)| = 4.
 - $\{\{x\}\}\subseteq P(B).$ (e) [T F]
 - $\{(\{x\},\{x\})\}\subseteq A\times A.$ (f) [T F]

Ans: FTFTTF

4. (8%)Suppose A = $\begin{bmatrix} 3 & 5 \\ 2 & 4 \end{bmatrix}$ and C = $\begin{bmatrix} 2 & 1 \\ 0 & 6 \end{bmatrix}$. Find a matrix B such that AB = C^t or prove that no such matrix exists.

Ans:

3/2 -15 -1/2 9

- 5. (10%)Suppose f: R \rightarrow R and g: R \rightarrow R where g(x) = 2x + 1 and g \circ f(x) = 2x + 11.
 - (a) Find f.
 - (b) Find g^{-1} .

Ans: (a) f(x)=x+5 (b) $g^{-1}(x)=(x-1)/2$

6. (16%) Find the solution to each of these recurrence relations and initial conditions.

- (a) $a_n = a_{n-1} + 2$, $a_0 = 3$
- (b) $a_n = 3a_{n-1} + 1$, $a_0 = 1$

Ans:(a) $a_n=2n+3$ (b) $a_n=(3^{n+1}-1)/2$

- 7. (24%) (The Cantor-Bernstein-Schröeder Theorem)
 - If $|A| \le |B|$ and $|B| \le |A|$, then |A| = |B|. In other words, if there are injections $f : A \to B$ and $g : B \to A$, then there is a bijection $h : A \to B$.
 - (a) Show that (0, 1) has the same cardinality(基數) as (2, 5).
 - (b) show that (0,1) has the same cardinality as [0, 1).
 - (c) show that (0,1) has the same cardinality as $(0, \infty)$.

ans;

- (a) The function f: $(0,1)\rightarrow(2,5)$, f(x) = 3x+2 is one-to-one and onto.
- (b) f: $(0,1) \rightarrow [0,1)$, f(x) = x is one-to-one; g: $[0,1) \rightarrow (0,1)$, g(x) = 1/4 + x/2 is one-to-one
- (c) f: $(0,1) \rightarrow (0,\infty)$, f(x) = x is one-to-one; g: $(0,\infty) \rightarrow (0,1)$, g(x) = x/(x+1) is one-to-one 另解: f: $(0,\infty) \rightarrow (0,1)$, f(x) = x/(x+1) is one-to-one and onto
- 8. (16%)
 - (a) Show that the set of finite strings S over a finite alphabet(有限字元集) Σ is countably infinite.
 - (b) Show that the set of all Java programs J is countable.

ans:

(a)

- S 中的字串可依下列順序列出:
- 1.λ (空字串;長度為0)
- 2.依字母順序列出長度為1的字串.
- 3.依lexicographic (as in a dictionary)順序列出長度為 2的字串
- 4.依lexicographic (as in a dictionary)順序列出長度為 3的字串
- 5.依此類推....

This implies a bijection from **N** to S and hence it is a countably infinite set.

(b) 承(a)令 Σ 的元素為所有可出現在Java程式中的符號,則 $J \subseteq S$, 又S 可數,故J可數 (J中的程式可依下列順序列出:

的將S中的字串依(a)的順序逐一取出並檢視是否為正確的Java程式, 若不是則將其剃除)