

What is the Philosophy of Lean?

Georgia Tech

3

Success Story

	1991 (old way)	1995 (LEAN)
Development Time	3-4 years	1 year
Employee Hours per machine	160	80
Manufacturing space per machine	100 sq ft	55 sq ft
Defects per machine	8	.8
\$\$ of WIP and FG	\$2.6 Million	\$1.9 Million
Throughput time	16 weeks	14 hours – 5 days
Lead Time	4-20 weeks	1-4 weeks

Where did Toyota get the idea for Kanban?

Georgia Tech

Push System

- Every worker maximizes own output, making as many products as possible
- Pros and cons:
 - Focuses on keeping individual operators and workstations busy rather than effective use of materials.
 - Volumes of defective work may be produced
 - Throughput time will increase as work-in-process increases
 - · Line bottlenecks and inventories of unfinished products will occur
 - Hard to respond to special orders and order changes due to long throughput time

Pull System

- Production line is controlled by the last operation, Kanban cards control WIP
- Pros and cons
 - Controls maximum WIP and eliminates WIP accumulating at bottlenecks
 - Keeps materials busy, not operators. Operators work only when there
 is a signal to produce.
 - If a problem arises, there is no slack in the system
 - Throughput time and WIP are decreased, faster reaction to defects and less opportunity to create defects

13

Main Idea

- Translate business plans into rough labor schedules and production plans
- How do we match up demand (from Sales group) with supply (from Supply Chain group)?
- Given an aggregated demand forecast, how an we minimize the total costs over the planning horizon thru Production, Inventory and Workforce levels?

Common Internal Strategies (Supply Chain)

- Hire and fire
- Temporary workers
- Overtime/reduced hours
- Subcontracting
- Excess Inventory
- Large Backlogs
- Change production rates

What is Inventory?

Inventory is the raw material, component parts, work is process, or finished goods that are held at a location in the supply chain.

25

HOW MUCH Should We Order?

- Demand is known and constant: D units/yr
- We have a known ordering cost, **S**, and immediate replenishment
- Annual holding cost of average inventory is **H** per unit
- · Assume Ordering and Inventory costs only relevant costs

33

How Much Should We Order?

Total Cost = Ordering Cost + Inventory Cost

- Ordering Cost = (number of orders per year) X (cost per order)
- Inventory Cost = (average inventory) X (holding cost per year)

Cost Elements

Ordering Cost = (number of orders per year) X (cost per order)

Ordering cost =
$$\frac{D}{Q} \times S$$

Inventory Cost = (average inventory) X (holding cost per year)

Inventory cost =
$$\frac{Q}{2} \times H$$

Economic Order Quantity = HOW MUCH

• Set Ordering costs equal to Holding cost

$$\frac{D}{Q} \times S = \frac{Q}{2} \times H$$

 And solve for Q. We will call this Q* (because it is the Q where Ordering cost equals holding cost)

$$Q^* = \sqrt{\frac{2SD}{H}}$$

Georgia Tech

Putting Together as an Inventory Policy

- Monitor inventory level.
- When the inventory level drops to ROP, place an order for Q* more.

 $ROP = \overline{d} \times L$

Georgia Tech

41

Did you know Buzz owns a used car lot called Buzzlot?

Georgia Tech

45

Some Info About Buzzlot

- Buzzlot sold 5,000 cars last year
- When going to Auto Auctions, it takes 10 days to get new cars from the auction to his used car lot.
- It costs \$15,000 per shipment to deliver a batch of cars to his lot from the auction site.
- It costs Buzz \$500 per car per year on his lot.

What is a recommended Inventory Management Policy for Buzzlot?

When to go to auction and buy more cars = _____

How many used cars to buy when going to the auction =

***assume 365 days per year

47

Determine ROP

$$ROP = \overline{d} \times L$$

D = 5,000

L = 10 days

d = D/#days per year = 5,000/365= 13.69 → 14 cars/day

ROP = \overline{d} x L = 14 cars/day x 10 days = 140 cars

Determine Q*

S = \$15,000 per shipment

D = 5,000 cars per year

H = \$500 per car per year

$$Q^* = \sqrt{\frac{2SD}{H}}$$

$$Q^* = \sqrt{\frac{2^*(15,000)^*(5,000)}{500}} = 547.72 \rightarrow 548$$

Georgia Tech

49

What is a Recommended Inventory Management Policy for Buzzlot?

When to go to auction and buy more cars = **When we have 140 left on the lot.**

How many used cars to buy when going to the auction = **Buy 548 more cars** when going to the auction.

***This balances the cost of ordering more cars with the cost of holding them to give the lowest total cost solution.

