

1. Find the scattering parameter matrix of the following network.

$$S_{11} = \frac{V_1^-}{V_1^+} \Big|_{z=0} \qquad S_{21} = \frac{V_2^-}{V_1^+} \Big|_{z=0}$$

$$S_{12} = \frac{V_1^-}{V_2^+} \Big|_{z=0} \qquad S_{22} = \frac{V_2^-}{V_2^+} \Big|_{z=0}$$

2. Find the scattering parameter matrix of the following network.

$$S_{11} = \frac{V_1^-}{V_1^+} \Big|_{z=0} \qquad S_{21} = \frac{V_2^-}{V_1^+} \Big|_{z=0}$$

$$S_{12} = \frac{V_1^-}{V_2^+} \Big|_{z=0} \qquad S_{22} = \frac{V_2^-}{V_2^+} \Big|_{z=0}$$

3. Find the scattering parameter matrix of the following network.

$$S_{11} = \frac{V_1^-}{V_1^+} \Big|_{z=0} \qquad S_{21} = \frac{V_2^-}{V_1^+} \Big|_{z=0}$$

$$S_{12} = \frac{V_1^-}{V_2^+}\Big|_{z=0}$$
 $S_{22} = \frac{V_2^-}{V_2^+}\Big|_{z=0}$

4. Find the scattering parameter matrix of the following network. Assume $Z_0=50\Omega$, $Z_1=25\Omega$, $Z_2=10\Omega$, $Z_3=40\Omega$

$$S_{11} = \frac{V_1^-}{V_1^+} \Big|_{z=0} \quad S_{21} = \frac{V_2^-}{V_1^+} \Big|_{z=0}$$

$$S_{12} = \frac{V_1^-}{V_2^+} \Big|_{z=0}$$
 $S_{22} = \frac{V_2^-}{V_2^+} \Big|_{z=0}$