Car Price Prediction using ANN

Importing Libraries

```
import pandas as pd
In [1]:
        import numpy as np
        import matplotlib.pylab as plt
        import seaborn as sns
        import warnings as w
        import plotly.express as px
        import plotly.graph_objects as go
        w.filterwarnings("ignore")
        plt.style.use('ggplot')
        import warnings
        warnings.filterwarnings("ignore")
        # import tensorflow as tf
        # print(tf.__version__)
        # from tensorflow.keras.datasets import CarPricesData.csv
        # from tensorflow.keras.models import Sequential
        # from tensorflow.keras.layers import Dense, Dropout
        # from sklearn.model_selection import train_test_split,GridSearchCV
        # from sklearn.preprocessing import StandardScaler
        # from sklearn.metrics import mean_squared_error
```

Loading Data

```
In [2]: df = pd.read_csv(r'C:\Users\SachinR\Downloads\PersonalPy\Sia\DL\CarPricesData.csv')
```

Checking the number of rows & columns present in dataframe

```
In [3]: df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1436 entries, 0 to 1435
Data columns (total 10 columns):
# Column Non-Null Count Dtype
--- -----
0 Price 1436 non-null int64
   Age 1434 non-null int64

KM 1436 non-null int64
              1434 non-null float64
1
 2
 3 FuelType 1432 non-null object
          1436 non-null int64
 5 MetColor 1436 non-null int64
6 Automatic 1436 non-null int64
7
              1434 non-null float64
    Doors
              1436 non-null int64
    Doors 1436 non-null Weight 1434 non-null
                             float64
dtypes: float64(3), int64(6), object(1)
memory usage: 112.3+ KB
```

Our dataset mostly consists of numerical columns.

Checking for missing values

```
In [4]: df.isnull().sum()
        Price
Out[4]:
         Age
                      2
         ΚM
                      0
         FuelType
                      4
        HP
                      a
        MetColor
                      0
        Automatic
                      0
         CC
                      2
         Doors
                      0
        Weight
         dtype: int64
         Null Values present in Age, FuelType, CC, and Weight
         Checking the number of rows & columns present in dataframe
         df.shape
In [5]:
         (1436, 10)
Out[5]:
         Our dataframe has 1436 rows with 10 attributes.
         Check the duplicate rows
         df[df.duplicated()].shape[0]
In [6]:
Out[6]:
         Only one duplicate row in Dataframe
         Drop Duplicates and Reset Index
In [7]:
         df.drop_duplicates(keep='first', inplace=True)
         df.reset_index(drop=True, inplace=True)
         df.shape
        (1435, 10)
Out[7]:
         After droping 1 duplicate row, got shape of 1435 rows and 10 columns in our Dataframe.
         See top 5 rows
In [8]:
         df.head()
Out[8]:
                         KM
                             FuelType
                                      HP
                                          MetColor Automatic
                                                                 CC Doors Weight
            Price Age
                                      90
                                                 1
                                                           0 2000.0
                                                                            1165.0
         0 13500 23.0 46986
                                Diesel
         1 13750 23.0 72937
                                Diesel
                                       90
                                                 1
                                                           0 2000.0
                                                                            1165.0
         2 13950 24.0 41711
                                       90
                                                 1
                                                           0 2000.0
                                                                         3
                                                                            1165.0
                                Diesel
         3 14950 26.0 48000
                                Diesel
                                       90
                                                 0
                                                           0 2000.0
                                                                            1165.0
```

90

Diesel

4 13750 30.0 38500

0

0 2000.0

1170.0

Basic Statistics of Numerical Columns

In [9]: df.describe()

max 32500.000000

Out[9]:

	Price	Age	KM	НР	MetColor	Automatic	СС
coun	t 1435.000000	1433.000000	1435.000000	1435.000000	1435.000000	1435.000000	1433.000000
mea	n 10720.915679	56.020237	68571.782578	101.491986	0.674564	0.055749	1566.688765
st	d 3608.732978	18.544948	37491.094553	14.981408	0.468701	0.229517	186.893360
mi	n 4350.000000	1.000000	1.000000	69.000000	0.000000	0.000000	1300.000000
259	6 8450.000000	44.000000	43000.000000	90.000000	0.000000	0.000000	1400.000000
509	6 9900.000000	61.000000	63451.000000	110.000000	1.000000	0.000000	1600.000000
759	6 11950.000000	70.000000	87041.500000	110.000000	1.000000	0.000000	1600.000000

1.000000

1.000000 2000.000000

80.000000 243000.000000 192.000000

Visualizing distribution of all the Categorical Predictor variables in the data using bar plots

Distribution of FuelType

We only have FuelType column of category type. It has 3 unique values - CNG, Diesel and Petrol

Visualize distribution of all the Continuous Predictor variables in the data using histograms

```
In [12]:
         continuous columns = df.select dtypes(include='number').columns
         continuous_columns
         Index(['Price', 'Age', 'KM', 'HP', 'MetColor', 'Automatic', 'CC', 'Doors',
Out[12]:
                 'Weight'],
               dtype='object')
         plt.figure(figsize=(17, 12))
In [13]:
         # Iterate through each continuous column and create a histogram
         for i, col in enumerate(continuous_columns, 1):
             plt.subplot(3, 3, i)
             plt.hist(df[col], bins=30, color='teal', alpha=0.7, edgecolor='black')
             plt.xlabel(col)
         # Adjust Layout
         plt.tight_layout()
         # Show the plot
         plt.show()
```


We see the distribution of numerical features in our dataframe

Find out the missing values

```
df.isnull().sum()
In [14]:
          Price
                        0
Out[14]:
                        2
          Age
          ΚM
                        0
          FuelType
          MetColor
                        0
          Automatic
                        0
          CC
                        2
          Doors
                        0
          Weight
                        2
          dtype: int64
```

A few features have missing values. We will handle them in the following cells

Total Missing Values

```
In [15]: df.isnull().sum().sum()
Out[15]:
```

Impute missing values with Median for Continuous values

```
In [16]: null_continuous_cols = ['Age','CC','Weight']
for i in null_continuous_cols:
    df[i] = df[i].fillna(df[i].median())
print(df.isnull().sum())
```

```
Price
            0
Age
KM
            0
FuelType
           4
MetColor
            0
Automatic 0
CC
Doors
            0
Weight
            0
dtype: int64
```

Impute missing values with Mode for Category values

```
null_category_cols = ['FuelType']
In [17]:
         for i in null_category_cols:
             df[i] = df[i].fillna(df[i].mode()[0])
         print(df.isnull().sum())
         Price
                     0
         Age
                     0
                     0
         ΚM
         FuelType
                     0
         HP
                     0
         MetColor
         Automatic 0
         CC
                     0
         Doors
                    0
         Weight
         dtype: int64
         We have eliminated all null values from our dataset
In [18]: # Set up subplots
         fig, axes = plt.subplots(3, 3, figsize=(12, 14))
         # Create boxplots for each numerical column
         for ax, col in zip(axes.flatten(),continuous_columns):
             df.boxplot(column=col, ax=ax)
         plt.tight_layout()
         plt.show()
```


We notice that most of the numerical features have outliers

```
In [19]: # Specify the IQR factor (you can adjust this based on your requirements)
iqr_factor = 1.5
outlier_columns = ['Age', 'KM', 'Weight', 'HP', 'CC']

# Remove outliers based on IQR directly
for col in outlier_columns:
    Q1 = df[col].quantile(0.25)
    Q3 = df[col].quantile(0.75)
    IQR = Q3 - Q1
    lower_bound = Q1 - iqr_factor * IQR
    upper_bound = Q3 + iqr_factor * IQR
    df = df[(df[col] >= lower_bound) & (df[col] <= upper_bound)]</pre>
```

```
In [20]: plt.figure(figsize=(7,6))
  plt.title('Correlation Heatmap')
  sns.heatmap(df[continuous_columns].corr(), annot=True,fmt = ".2f",cmap='Blues')
  plt.show()
```


Correlation between all the numerical features in our dataset.

Splitting data into features(x) and target(y)

array(['Petrol', 'CNG'], dtype=object)

Out[23]:

```
x = df.iloc[:,1:]
In [21]:
          y = df['Price']
In [22]:
          x.head(2)
                     KM FuelType
Out[22]:
              Age
                                    HP
                                        MetColor Automatic
                                                                CC Doors
                                                                          Weight
          17 24.0 21716
                             Petrol 110
                                               1
                                                            1600.0
                                                                        3
                                                                            1105.0
                                               0
          18 24.0 25563
                             Petrol 110
                                                            1600.0
                                                                        3
                                                                           1065.0
          df['FuelType'].unique()
In [23]:
```

```
In [24]: # One-Hot encoding
         x = pd.get dummies(x, columns=['FuelType'], prefix='FuelType', drop first=True)
In [25]: from sklearn.preprocessing import StandardScaler
         sc=StandardScaler()
         x = sc.fit_transform(x)
         from sklearn.model_selection import train_test_split
In [26]:
         xtrain,xtest,ytrain,ytest = train_test_split(x,y,test_size=0.20,random_state=1)
         xtrain.shape
In [27]:
         (992, 9)
Out[27]:
         ytrain.shape
In [28]:
         (992,)
Out[28]:
         import tensorflow as tf
In [29]:
         from tensorflow.keras.models import Sequential
         from tensorflow.keras.layers import Dense, Dropout
         from sklearn.model_selection import train_test_split,GridSearchCV
         from sklearn.metrics import mean_squared_error
         from tensorflow.keras.optimizers import Adam
         from sklearn.metrics import mean absolute error
         from sklearn.model_selection import ParameterGrid
         from tensorflow.keras.callbacks import EarlyStopping
         WARNING:tensorflow:From C:\Users\SachinR\anaconda3\Lib\site-packages\keras\src\losses.
         py:2976: The name tf.losses.sparse_softmax_cross_entropy is deprecated. Please use tf.
```

compat.v1.losses.sparse_softmax_cross_entropy instead.

Creating our ANN

```
model = Sequential([
In [30]:
             Dense(256, activation='relu', input_shape=(xtrain.shape[1],)),
             Dropout(0.3),
             Dense(128, activation='relu'), Dropout(0.3),
             Dense(64, activation = 'relu'), Dropout(0.3),
             Dense(32, activation ='relu'), Dropout(0.3),
             Dense(1)]) #Output layer for regression, no activation function
```

WARNING:tensorflow:From C:\Users\SachinR\anaconda3\Lib\site-packages\keras\src\backen d.py:873: The name tf.get_default_graph is deprecated. Please use tf.compat.v1.get_def ault_graph instead.

```
#Compile the model
In [31]:
         model.compile(optimizer='adam', loss='mean_absolute_error',metrics=['mae'])
         #train the model
         model.fit(xtrain, ytrain, epochs=100, batch size=32, validation split=0.2)
         #Evalute the model
         loss, mae = model.evaluate(xtest, ytest)
         print(f"Mean Absolute Error on Test Date: {mae}")
```

WARNING:tensorflow:From C:\Users\SachinR\anaconda3\Lib\site-packages\keras\src\optimiz ers__init__.py:309: The name tf.train.Optimizer is deprecated. Please use tf.compat.v 1.train.Optimizer instead.

Epoch 1/100

WARNING:tensorflow:From C:\Users\SachinR\anaconda3\Lib\site-packages\keras\src\utils\t f_utils.py:492: The name tf.ragged.RaggedTensorValue is deprecated. Please use tf.comp at.v1.ragged.RaggedTensorValue instead.

WARNING:tensorflow:From C:\Users\SachinR\anaconda3\Lib\site-packages\keras\src\engine \base_layer_utils.py:384: The name tf.executing_eagerly_outside_functions is deprecate d. Please use tf.compat.v1.executing_eagerly_outside_functions instead.

```
25/25 [============= ] - 2s 15ms/step - loss: 10499.1377 - mae: 10499.
1377 - val_loss: 10270.2266 - val_mae: 10270.2266
Epoch 2/100
232 - val_loss: 10164.1602 - val_mae: 10164.1602
Epoch 3/100
25/25 [============] - 0s 5ms/step - loss: 10086.1074 - mae: 10086.1
074 - val_loss: 9307.8584 - val_mae: 9307.8584
Epoch 4/100
8 - val_loss: 5284.6353 - val_mae: 5284.6353
Epoch 5/100
5 - val_loss: 1842.1233 - val_mae: 1842.1233
Epoch 6/100
0 - val_loss: 1343.3903 - val_mae: 1343.3903
7 - val_loss: 1173.7191 - val_mae: 1173.7191
Epoch 8/100
2 - val_loss: 1149.8958 - val_mae: 1149.8958
3 - val_loss: 1052.9977 - val_mae: 1052.9977
Epoch 10/100
7 - val_loss: 1033.3560 - val_mae: 1033.3560
Epoch 11/100
3 - val loss: 999.7230 - val mae: 999.7230
Epoch 12/100
3 - val_loss: 1012.6705 - val_mae: 1012.6705
Epoch 13/100
9 - val_loss: 948.7883 - val_mae: 948.7883
Epoch 14/100
4 - val loss: 996.5630 - val mae: 996.5630
2 - val_loss: 1154.3284 - val_mae: 1154.3284
Epoch 16/100
1 - val_loss: 972.8232 - val_mae: 972.8232
Epoch 17/100
9 - val_loss: 943.3498 - val_mae: 943.3498
Epoch 18/100
```

```
9 - val loss: 1092.8922 - val mae: 1092.8922
Epoch 19/100
9 - val_loss: 895.6135 - val_mae: 895.6135
Epoch 20/100
5 - val_loss: 904.8314 - val_mae: 904.8314
Epoch 21/100
5 - val_loss: 1029.1185 - val_mae: 1029.1185
Epoch 22/100
4 - val_loss: 966.0200 - val_mae: 966.0200
Epoch 23/100
6 - val_loss: 834.5682 - val_mae: 834.5682
Epoch 24/100
8 - val_loss: 993.1628 - val_mae: 993.1628
Epoch 25/100
7 - val_loss: 827.0905 - val_mae: 827.0905
Epoch 26/100
1 - val_loss: 846.4419 - val_mae: 846.4419
Epoch 27/100
8 - val_loss: 906.1006 - val_mae: 906.1006
Epoch 28/100
2 - val_loss: 908.9328 - val_mae: 908.9328
Epoch 29/100
5 - val_loss: 822.9360 - val_mae: 822.9360
Epoch 30/100
8 - val_loss: 798.5382 - val_mae: 798.5382
Epoch 31/100
4 - val_loss: 940.5406 - val_mae: 940.5406
Epoch 32/100
25/25 [============] - 0s 6ms/step - loss: 1822.4095 - mae: 1822.409
5 - val loss: 839.9306 - val mae: 839.9306
Epoch 33/100
4 - val_loss: 864.4077 - val_mae: 864.4077
Epoch 34/100
3 - val_loss: 798.6097 - val_mae: 798.6097
Epoch 35/100
7 - val loss: 950.2793 - val mae: 950.2793
Epoch 36/100
4 - val_loss: 882.8777 - val_mae: 882.8777
25/25 [===========] - 0s 5ms/step - loss: 1949.1818 - mae: 1949.181
8 - val_loss: 812.7892 - val_mae: 812.7892
Epoch 38/100
0 - val loss: 868.9547 - val mae: 868.9547
Epoch 39/100
```

```
2 - val_loss: 827.8629 - val_mae: 827.8629
Epoch 40/100
6 - val_loss: 883.9951 - val_mae: 883.9951
Epoch 41/100
9 - val_loss: 794.2782 - val_mae: 794.2782
Epoch 42/100
9 - val_loss: 855.1415 - val_mae: 855.1415
Epoch 43/100
2 - val_loss: 805.9748 - val_mae: 805.9748
Epoch 44/100
6 - val_loss: 899.0693 - val_mae: 899.0693
Epoch 45/100
6 - val loss: 795.3776 - val mae: 795.3776
Epoch 46/100
2 - val_loss: 811.5806 - val_mae: 811.5806
Epoch 47/100
3 - val_loss: 878.4367 - val_mae: 878.4367
Epoch 48/100
7 - val_loss: 872.4690 - val_mae: 872.4690
Epoch 49/100
6 - val_loss: 803.4408 - val_mae: 803.4408
Epoch 50/100
4 - val_loss: 927.1110 - val_mae: 927.1110
Epoch 51/100
1 - val_loss: 790.5375 - val_mae: 790.5375
Epoch 52/100
1 - val_loss: 772.9534 - val_mae: 772.9534
Epoch 53/100
4 - val loss: 845.9689 - val mae: 845.9689
Epoch 54/100
8 - val_loss: 805.7373 - val_mae: 805.7373
Epoch 55/100
7 - val_loss: 787.8149 - val_mae: 787.8149
Epoch 56/100
6 - val_loss: 803.2231 - val_mae: 803.2231
Epoch 57/100
6 - val_loss: 827.5637 - val_mae: 827.5637
Epoch 58/100
2 - val_loss: 951.9610 - val_mae: 951.9610
Epoch 59/100
0 - val_loss: 790.4266 - val_mae: 790.4266
Epoch 60/100
7 - val_loss: 789.2697 - val_mae: 789.2697
```

```
Epoch 61/100
9 - val_loss: 783.6924 - val_mae: 783.6924
Epoch 62/100
4 - val_loss: 772.5217 - val_mae: 772.5217
Epoch 63/100
4 - val loss: 847.9369 - val mae: 847.9369
Epoch 64/100
2 - val_loss: 820.5981 - val_mae: 820.5981
Epoch 65/100
3 - val_loss: 786.4380 - val_mae: 786.4380
Epoch 66/100
6 - val_loss: 803.4361 - val_mae: 803.4361
Epoch 67/100
3 - val_loss: 794.8010 - val_mae: 794.8010
Epoch 68/100
1 - val_loss: 860.7296 - val_mae: 860.7296
Epoch 69/100
9 - val_loss: 816.3962 - val_mae: 816.3962
Epoch 70/100
2 - val_loss: 769.8920 - val_mae: 769.8920
0 - val_loss: 840.2377 - val_mae: 840.2377
Epoch 72/100
5 - val loss: 790.3979 - val mae: 790.3979
Epoch 73/100
7 - val_loss: 785.9270 - val_mae: 785.9270
Epoch 74/100
7 - val_loss: 772.3713 - val_mae: 772.3713
Epoch 75/100
7 - val loss: 873.5983 - val mae: 873.5983
Epoch 76/100
25/25 [===========] - 0s 5ms/step - loss: 1914.4065 - mae: 1914.406
5 - val loss: 813.0200 - val mae: 813.0200
Epoch 77/100
8 - val_loss: 825.4290 - val_mae: 825.4290
Epoch 78/100
0 - val loss: 773.0616 - val mae: 773.0616
25/25 [===========] - 0s 4ms/step - loss: 1934.2328 - mae: 1934.232
8 - val_loss: 793.0047 - val_mae: 793.0047
Epoch 80/100
7 - val_loss: 820.3763 - val_mae: 820.3763
Epoch 81/100
3 - val_loss: 777.1232 - val_mae: 777.1232
Epoch 82/100
```

```
0 - val loss: 784.5480 - val mae: 784.5480
Epoch 83/100
9 - val_loss: 935.5740 - val_mae: 935.5740
Epoch 84/100
3 - val_loss: 805.9562 - val_mae: 805.9562
Epoch 85/100
4 - val_loss: 773.5948 - val_mae: 773.5948
Epoch 86/100
8 - val_loss: 782.7757 - val_mae: 782.7757
Epoch 87/100
4 - val_loss: 825.6231 - val_mae: 825.6231
Epoch 88/100
3 - val_loss: 817.9901 - val_mae: 817.9901
Epoch 89/100
1 - val_loss: 824.6096 - val_mae: 824.6096
Epoch 90/100
6 - val_loss: 793.1751 - val_mae: 793.1751
Epoch 91/100
1 - val_loss: 831.2734 - val_mae: 831.2734
Epoch 92/100
4 - val_loss: 789.8121 - val_mae: 789.8121
Epoch 93/100
5 - val_loss: 809.5690 - val_mae: 809.5690
Epoch 94/100
2 - val_loss: 784.2018 - val_mae: 784.2018
Epoch 95/100
3 - val_loss: 808.0723 - val_mae: 808.0723
Epoch 96/100
4 - val loss: 790.4147 - val mae: 790.4147
Epoch 97/100
0 - val_loss: 776.8183 - val_mae: 776.8183
8 - val_loss: 818.0709 - val_mae: 818.0709
Epoch 99/100
2 - val loss: 806.0855 - val mae: 806.0855
Epoch 100/100
9 - val loss: 763.9405 - val mae: 763.9405
Mean Absolute Error on Test Date: 812.9024658203125
```

Implementing Early Stopping

```
Dense(128, activation='relu'),
                Dropout(0.3),
                Dense(64, activation='relu'),
                Dropout(0.3),
                Dense(32, activation='relu'),
                Dropout(0.3),
                Dense(1)
])
# Compile the model
model.compile(optimizer='adam', loss='mean_squared_error', metrics=['mae'])
# Define early stopping callback
early_stopping = EarlyStopping(monitor='val_loss', patience=10, restore_best_weights=Ti
# Train the model with early stopping
history = model.fit(xtrain, ytrain, epochs=100, batch_size=32, validation_split=0.2, calling the state of the
# Evaluate the model
loss, mae = model.evaluate(xtest, ytest, verbose=0)
print(f"Mean Absolute Error on Test Data: {mae}")
```

```
Epoch 1/100
497.6074 - val_loss: 112621328.0000 - val_mae: 10265.6475
Epoch 2/100
40.8604 - val_loss: 109409304.0000 - val_mae: 10112.7393
Epoch 3/100
0.5820 - val loss: 86712496.0000 - val mae: 8966.1484
Epoch 4/100
25/25 [============= ] - 0s 5ms/step - loss: 59412600.0000 - mae: 713
7.0254 - val_loss: 19159158.0000 - val_mae: 3950.4231
Epoch 5/100
7.0608 - val_loss: 2965037.2500 - val_mae: 1347.1959
Epoch 6/100
25/25 [============] - 0s 5ms/step - loss: 9240034.0000 - mae: 2382.
0676 - val_loss: 2797272.5000 - val_mae: 1310.4062
Epoch 7/100
25/25 [============] - 0s 5ms/step - loss: 7977256.5000 - mae: 2204.
1145 - val_loss: 2473574.7500 - val_mae: 1225.9386
Epoch 8/100
25/25 [============= ] - 0s 5ms/step - loss: 7413624.5000 - mae: 2120.
2783 - val_loss: 1836608.5000 - val_mae: 1034.8699
Epoch 9/100
25/25 [============] - 0s 5ms/step - loss: 7141352.0000 - mae: 2074.
6592 - val_loss: 1864341.3750 - val_mae: 1042.1313
Epoch 10/100
25/25 [========================] - 0s 6ms/step - loss: 7330045.0000 - mae: 2079.
2246 - val_loss: 1926362.3750 - val_mae: 1055.9165
Epoch 11/100
25/25 [============= ] - 0s 5ms/step - loss: 6773057.5000 - mae: 2042.
1957 - val_loss: 1615634.3750 - val_mae: 955.8372
Epoch 12/100
25/25 [============] - 0s 5ms/step - loss: 6673770.0000 - mae: 2001.
5968 - val loss: 1748735.0000 - val mae: 996.9880
Epoch 13/100
25/25 [============ ] - 0s 5ms/step - loss: 6294934.0000 - mae: 1982.
6910 - val_loss: 1881274.3750 - val_mae: 1040.7844
Epoch 14/100
25/25 [=============] - 0s 5ms/step - loss: 7247609.0000 - mae: 2104.
0312 - val_loss: 1497985.5000 - val_mae: 910.5665
Epoch 15/100
25/25 [============ ] - 0s 5ms/step - loss: 6759858.0000 - mae: 2021.
7109 - val loss: 1461332.1250 - val mae: 897.9520
Epoch 16/100
25/25 [============= ] - 0s 5ms/step - loss: 6405313.0000 - mae: 1946.
2003 - val loss: 1395299.7500 - val mae: 874.5497
Epoch 17/100
25/25 [==============] - 0s 5ms/step - loss: 6537626.5000 - mae: 1955.
8792 - val_loss: 1489656.5000 - val_mae: 906.5704
Epoch 18/100
25/25 [============ ] - 0s 5ms/step - loss: 6241896.5000 - mae: 1965.
3885 - val loss: 1378909.2500 - val mae: 868.6577
Epoch 19/100
25/25 [============ ] - 0s 5ms/step - loss: 6688046.0000 - mae: 2016.
7412 - val_loss: 1466893.3750 - val_mae: 895.2790
Epoch 20/100
25/25 [==============] - 0s 5ms/step - loss: 5944205.0000 - mae: 1891.
0287 - val_loss: 1463588.6250 - val_mae: 903.2840
Epoch 21/100
25/25 [============ ] - 0s 5ms/step - loss: 5644897.5000 - mae: 1859.
7085 - val loss: 1433671.1250 - val mae: 890.8448
Epoch 22/100
```

```
25/25 [============= ] - 0s 5ms/step - loss: 6051181.0000 - mae: 1900.
2448 - val loss: 1610065.2500 - val mae: 960.3814
Epoch 23/100
25/25 [=======================] - 0s 5ms/step - loss: 7197784.0000 - mae: 2068.
7173 - val_loss: 1380524.3750 - val_mae: 858.2697
Epoch 24/100
25/25 [============== ] - 0s 5ms/step - loss: 5594739.5000 - mae: 1875.
8280 - val_loss: 1353516.3750 - val_mae: 851.9299
Epoch 25/100
25/25 [============ ] - 0s 5ms/step - loss: 6293851.5000 - mae: 1962.
8917 - val_loss: 1513692.2500 - val_mae: 921.6259
Epoch 26/100
25/25 [============= ] - 0s 5ms/step - loss: 6120734.0000 - mae: 1893.
3400 - val_loss: 1310522.5000 - val_mae: 820.0967
Epoch 27/100
25/25 [=================] - 0s 5ms/step - loss: 5665933.0000 - mae: 1877.
7430 - val_loss: 1249532.5000 - val_mae: 800.9068
Epoch 28/100
25/25 [============= ] - 0s 5ms/step - loss: 6196869.5000 - mae: 1913.
6704 - val loss: 1344695.2500 - val mae: 846.8625
Epoch 29/100
9355 - val_loss: 1418655.6250 - val_mae: 870.4410
Epoch 30/100
25/25 [============= ] - 0s 5ms/step - loss: 5993377.0000 - mae: 1906.
0834 - val_loss: 1603192.2500 - val_mae: 932.5195
Epoch 31/100
25/25 [============= ] - 0s 4ms/step - loss: 5973854.5000 - mae: 1868.
3126 - val_loss: 1280355.2500 - val_mae: 816.7831
Epoch 32/100
25/25 [============= ] - 0s 5ms/step - loss: 5865700.5000 - mae: 1914.
9628 - val_loss: 1252248.8750 - val_mae: 815.9484
Epoch 33/100
25/25 [============== ] - 0s 5ms/step - loss: 5971939.5000 - mae: 1900.
5759 - val_loss: 1273958.3750 - val_mae: 823.6008
Epoch 34/100
25/25 [============= ] - 0s 5ms/step - loss: 5647044.5000 - mae: 1835.
9297 - val_loss: 1345138.5000 - val_mae: 851.7051
Epoch 35/100
5797 - val_loss: 1529106.1250 - val_mae: 917.8580
Epoch 36/100
25/25 [============ ] - 0s 5ms/step - loss: 6347353.0000 - mae: 1928.
9335 - val loss: 1450463.0000 - val mae: 876.1678
Epoch 37/100
25/25 [============== ] - 0s 5ms/step - loss: 5709740.5000 - mae: 1903.
0568 - val loss: 1265928.5000 - val mae: 823.2996
Mean Absolute Error on Test Data: 862.5036010742188
```

Hyperparameter Tuning our ANN

```
model.compile(optimizer=Adam(learning rate=learning rate), loss='mean absolute error
    return model
# Define the parameter grid
param_grid = {
    'num_layers': [1, 2, 3],
    'neurons_first_layer': [64, 128],
    'activation': ['relu'],
    'output_activation': ['linear'],
    'dropout_rate': [0.3],
    'learning_rate': [0.1],
}
# Additional parameters for training
batch_size = 128
epochs = [50, 100]
# Initialize best hyperparameters and MAE
best_hyperparameters = None
best_mae = np.inf
# Iterate over the parameter grid using ParameterGrid
for params in ParameterGrid(param_grid):
   for num_epochs in epochs:
       # Create the model with current hyperparameters
       model = create_model(**params)
       # Train the model
       model.fit(xtrain, ytrain, epochs=num_epochs, batch_size=batch_size, verbose=0)
       # Evaluate the model on the validation set
       y_pred = model.predict(xtest)
       current_mae = mean_absolute_error(ytest, y_pred)
       # Print the result for the current hyperparameters
       print(f"Hyperparameters: {params}, Epochs: {num_epochs}, Test MAE: {current_mae
       # Update best hyperparameters if the current result is better
       if current_mae < best_mae:</pre>
            best_mae = current_mae
            best_hyperparameters = {**params, 'epochs': num_epochs}
# Print the best hyperparameters and corresponding MAE
print("\n\nBest Hyperparameters:", best_hyperparameters)
print("\n\nBest Mean Absolute Error:", best_mae)
```

```
8/8 [======= ] - 0s 2ms/step
Hyperparameters: {'activation': 'relu', 'dropout rate': 0.3, 'learning rate': 0.1, 'ne
urons_first_layer': 64, 'num_layers': 1, 'output_activation': 'linear'}, Epochs: 50, T
est MAE: 847.5874358146422
8/8 [======== ] - 0s 2ms/step
Hyperparameters: {'activation': 'relu', 'dropout_rate': 0.3, 'learning_rate': 0.1, 'ne
urons_first_layer': 64, 'num_layers': 1, 'output_activation': 'linear'}, Epochs: 100,
Test MAE: 795.3880654611895
8/8 [=======] - 0s 2ms/step
Hyperparameters: {'activation': 'relu', 'dropout_rate': 0.3, 'learning_rate': 0.1, 'ne
urons_first_layer': 64, 'num_layers': 2, 'output_activation': 'linear'}, Epochs: 50, T
est MAE: 949.1640093403478
8/8 [=======] - Os 2ms/step
Hyperparameters: {'activation': 'relu', 'dropout_rate': 0.3, 'learning_rate': 0.1, 'ne
urons_first_layer': 64, 'num_layers': 2, 'output_activation': 'linear'}, Epochs: 100,
Test MAE: 936.2749495967741
8/8 [======== ] - 0s 2ms/step
Hyperparameters: {'activation': 'relu', 'dropout_rate': 0.3, 'learning_rate': 0.1, 'ne
urons_first_layer': 64, 'num_layers': 3, 'output_activation': 'linear'}, Epochs: 50, T
est MAE: 1367.978539251512
8/8 [=======] - Os 2ms/step
Hyperparameters: {'activation': 'relu', 'dropout_rate': 0.3, 'learning_rate': 0.1, 'ne
urons_first_layer': 64, 'num_layers': 3, 'output_activation': 'linear'}, Epochs: 100,
Test MAE: 976.9464741368448
8/8 [=======] - 0s 2ms/step
Hyperparameters: {'activation': 'relu', 'dropout_rate': 0.3, 'learning_rate': 0.1, 'ne
urons_first_layer': 128, 'num_layers': 1, 'output_activation': 'linear'}, Epochs: 50,
Test MAE: 822.9492207188761
8/8 [======= ] - 0s 2ms/step
Hyperparameters: {'activation': 'relu', 'dropout_rate': 0.3, 'learning_rate': 0.1, 'ne
urons_first_layer': 128, 'num_layers': 1, 'output_activation': 'linear'}, Epochs: 100,
Test MAE: 794.3550040952621
8/8 [=======] - 0s 2ms/step
Hyperparameters: {'activation': 'relu', 'dropout_rate': 0.3, 'learning_rate': 0.1, 'ne
urons_first_layer': 128, 'num_layers': 2, 'output_activation': 'linear'}, Epochs: 50,
Test MAE: 860.0949943296371
8/8 [======= ] - 0s 2ms/step
Hyperparameters: {'activation': 'relu', 'dropout_rate': 0.3, 'learning_rate': 0.1, 'ne
urons_first_layer': 128, 'num_layers': 2, 'output_activation': 'linear'}, Epochs: 100,
Test MAE: 842.9556294102823
8/8 [=======] - 0s 2ms/step
Hyperparameters: {'activation': 'relu', 'dropout_rate': 0.3, 'learning_rate': 0.1, 'ne
urons_first_layer': 128, 'num_layers': 3, 'output_activation': 'linear'}, Epochs: 50,
Test MAE: 922.3889632686491
8/8 [======= ] - 0s 2ms/step
Hyperparameters: {'activation': 'relu', 'dropout_rate': 0.3, 'learning_rate': 0.1, 'ne
urons_first_layer': 128, 'num_layers': 3, 'output_activation': 'linear'}, Epochs: 100,
Test MAE: 1001.4088154454386
```

Best Hyperparameters: {'activation': 'relu', 'dropout_rate': 0.3, 'learning_rate': 0.1, 'neurons_first_layer': 128, 'num_layers': 1, 'output_activation': 'linear', 'epoch

Best Mean Absolute Error: 794.3550040952621

MAE of ML Models

Checking the MAE using ML models

```
In [34]: from sklearn.metrics import mean_absolute_error
         from sklearn.ensemble import RandomForestRegressor
         from xgboost import XGBRegressor
         from sklearn.svm import SVR
         from sklearn.neighbors import KNeighborsRegressor
         from sklearn.linear_model import LinearRegression
         # 1. Random Forest
         rf_model = RandomForestRegressor()
         rf_model.fit(xtrain, ytrain)
         y_pred_rf = rf_model.predict(xtest)
         mae_rf = mean_absolute_error(ytest, y_pred_rf)
         print("MAE (Random Forest):", mae_rf)
         # 2. XGBoost
         xgboost model = XGBRegressor()
         xgboost_model.fit(xtrain, ytrain)
         y_pred_xgboost = xgboost_model.predict(xtest)
         mae_xgboost = mean_absolute_error(ytest, y_pred_xgboost)
         print("MAE (XGBoost):", mae_xgboost)
         # 3. Support Vector Machines (SVM)
         svm_model = SVR()
         svm_model.fit(xtrain, ytrain)
         y_pred_svm = svm_model.predict(xtest)
         mae_svm = mean_absolute_error(ytest, y_pred_svm)
         print("MAE (SVM):", mae_svm)
         # 4. K-Nearest Neighbors (KNN)
         knn model = KNeighborsRegressor()
         knn_model.fit(xtrain, ytrain)
         y pred knn = knn model.predict(xtest)
         mae_knn = mean_absolute_error(ytest, y_pred_knn)
         print("MAE (KNN):", mae_knn)
         # 5. Linear Regression
         linear_model = LinearRegression()
         linear_model.fit(xtrain, ytrain)
         y_pred_linear = linear_model.predict(xtest)
         mae_linear = mean_absolute_error(ytest, y_pred_linear)
         print("MAE (Linear Regression):", mae_linear)
         MAE (Random Forest): 753.4154685099847
         MAE (XGBoost): 823.7350522933468
         MAE (SVM): 2242.976096560223
         MAE (KNN): 874.4185483870967
         MAE (Linear Regression): 864.9629800464968
          ML Models outperform ANN because our dataset is small and ML models favour less
         complex datasets.
```