(Formerly West Bengal University of Technology) Syllabus for B. Tech in Electrical & Electronics Engineering (EEE)

(Applicable from the academic session 2018-2019)

Semester-VI

Name	Name of the course POWER SYSTEM-I			
Cours	se Code: PC-EEE-601	Semester: 6th		
Durat	tion: 6 months	Maximum Marks: 10	0	
Teach	ing Scheme	Examination Scheme		
Theor	y: 3 hrs/week	Mid Semester Exam: 1	5 Marks	
Tutori	al: 0hr/week	Assignment & Quiz:	10 Marks	
Credit	Credit Points: 3 Attendance:		05 Marks	
		End Semester Exam:	70 Marks	
Objec	etive:			
1.	To understand the method of representation of	f power system compo	nents	
2.	To know about loacation and components of a	a distribution substation.		
3.	To understand different methods of load flow	studies.		
4.	To determine faults in Electrical systems.			
5.	To understand the principle of power system s	stability.		
6.	To understand the principle of relays and met		wer system	
7.	To solve numerical problems on the topics stu	ıdied.		
Pre-R	lequisite			
1.	Electric Circuit Theory (PC-EE-301)			
2.	Electromagnetic field theory (PC-EE-303)			
3.	Power system-I (PC-EE-502)			
Unit	Content		Hrs	Marks
1	Representation of Power system comp	onents: Single-phase		
	representation of balanced three phase n			
	diagram and the impedance or reactance of		02	
	system.			
	Distribution substation: Types of subs	stations. location of		
	substations, substation equipments and		06	
2	(system & equipment), feeder and distribu	_		
	systems.	асото, таатат атта тоор		
	Load flow studies: Network model formulati	ion formation of Yhus		
	load flow problem, Gauss-Siedel meth		06	
	method, Decoupled load flow studies, con	•		
3	methods.	inputison of load now		
	methous.			
	Faults in Electrical systems: Transient on a t	ransmission line, short		
4	circuit of a synchronous machine under no load & loaded condition.			
	Symmetrical component transformation, sequence impedance and			
	sequence network of power system, synchronous machine,			
	transmission lines and transformers. Symmetrical component			
	analysis of unsymmetrical faults, single line-to-	· ·		
	line fault, double line-to- ground fault	6 Stouria lauit, iiiletti-		
	Power system stability: Steady state stabil	lity transient stability		
	equal area criteria, swing equation, multi ma		04	
	equal area criteria, Swing equation, multi ma	crime stability concept	VT	

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical & Electronics Engineering (EEE)

(Applicable from the academic session 2018-2019)

5			
quantitie protectio current), Distant r relays, re and mote Circuit voltage, rating, a breaker,	oreakers, circuit breaking transients, transient recovery current chopping and resistance switching, circuit breaker rc and arc extinction, circuit breaker types, oil circuit vacuum circuit breaker, air blast circuit breaker, SF6 circuit and operating mechanism, advantages and disadvantages	14	

Text book:

- 1. Modern Power System Analysis, D.P. Kothari & I.J. Nagrath, 4th Edition, Tata McGraw Hill.
- 2. Electrical Power Systems, Subir Ray, PHI
- 3. Switchgear protection and power systems, Sunil S Rao, Khanna Publications.
- 4. A text book on Power System Engineering, M.L.Soni, P.V.Gupta, U.S. Bhatnagar & A. Chakrabarti, Dhanpat Rai & CO.

Reference Books:

- 1. Protection & Switchgear, B. Bhalja, R.P. Maheshwari, N.G.Chothani, Oxford.
- 2. Power system protection & switchgear, B.Ram & D.N. Vishwakarma, Tata McGraw Hill.
- 3. Handbook of Electrical Power Distribution, G. Ramamurthy, University Press
- 4. Electric Power Transmission and Distribution, S. Sivanagaraju, S. Satyanarayana, Pearson Education.
- 5. Power Systems Stability, Vol. I,II & II, E.W. Kimbark, Wiley.
- 6. Power Engineering, D.P Kothari & I.J. Nagrath, Tata McGraw Hill.
- 7. Power Systems Analysis, A. R. Bergen & V. Vittal, Pearson Education. 8. Computer Aided Power systems analysis, Dr. G. Kusic, CEC press.

Course Outcome:

After completion of this course, the learners will be able to

- 1. represent power system components in line diagrams.
- 2. determine the location distribution substation.
- 3. determine the performance of power system with the help of load flowy studies.
- 4. analyse faults in Electrical sysyems.
- 5. determine the stabilty of Power system.
- 6. explain principle of operation of different power system protection equipments.
- 7. solve numerical problems related to representation, load flow, faults, stabilty and protection of power system.

Special Remarks (if any)

(Formerly West Bengal University of Technology) Syllabus for B. Tech in Electrical & Electronics Engineering (EEE)

Name of the course MICROPROCESSOR CONTROLLER		R & MICRO		
Cours	se Code: PC-EEE-602	Semester: 6th		
Durat	ion: 6 months	Maximum Marks: 100)	
	Teaching Scheme Examination Scheme			
		Mid Semester Exam: 1		
Tutori		Assignment & Quiz: 1	0 Marks	
Credit)5 Marks	
		End Semester Exam: 7	70 Marks	
Objec				
1.	To understand the Architecture of 8086 microp			
2.	To learn the design aspects of I/O and Memory			
3.	To interface microprocessors with supporting of			
4.	To study the Architecture of 8051 microcontro	ller.		
5.	To design a microcontroller based system			
Pre-R	equisite			
1.	Analog Electronics (PC-EE-302)			
2.	Digital Electronics (PC-EE-402)			
Unit	Content		Hrs	Marks
1	The 8086 Microprocessor: Introduction to 808	86- Microprocessor		
	architecture – Addressing modes – Instruction set and assembler			
	directives - Assembly language progra	mming – Modular	08	
	Programming – Linking and Relocation – St	tacks – Procedures –		
	Macros – Interrupts and interrupt service rout			
	Manipulation.	,		
	8086 System bus structure: 8086 signals – E	Basic configurations –		
	System bus timing –System design using 8086			
2	Introduction to Multiprogramming – Syste		08	
	Multiprocessor configurations – Coprocessor,			
	loosely Coupled configurations – Introdu	, ,		
	processors.	decisii to davaniced		
	I/O INTERFACING: Memory Interfacing and I/O) interfacing — Parallel		
	communication interface – Serial communication	-		
	and A/D Interface – Timer – Keyboard		08	
3	•			
	Interrupt controller –DMA controller –			
	applications Case studies: Traffic Light contr			
	display, Keyboard display interface and Alarm			
	Microcontroller: Architecture of 8051 – Special Function Registers(SFRs) – I/O Pins Ports and Circuits – Instruction set – 08		00	
4			U8	
	Addressing modes – Assembly language programming.			
	Interfacing Microcontroller: Programming 8	3051 Timers – Serial		
	Port Programming – Interrupts Programmin		06	
5		<u> </u>		

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical & Electronics Engineering (EEE)

(Applicable from the academic session 2018-2019)

Interfacing – ADC, DAC & Sensor Interfacing – External Memory	
Interface- Stepper Motor and Waveform generation – Comparison	
of Microprocessor, Microcontroller, PIC and ARM processors	

Text books:

- 1. Advanced Microprocessors and Peripheral, Koshor M Bhurchandi, Ajay Kumar Ray, 3rd Edition, MC Graw hill education.
- 2. Microprocessor & Interfacing, D.V. Hall, Mc Graw Hill.
- 3. The 8051 microcontroller, Ayala, Thomson.

Ref erence books:

- 1. Advanced Microprocessors, Y. Rajasree, New Age international Publishers.
- 2. An introduction to the Intel family of Microprocessors, James L. Antonakos, Pearson Education,
- 3. The 8051 Microcontroller and Embedded systems, Muhammad Ali Mazidi & J. G. Mazidi, Pearson Education.
- 4. The 8086 Microprocessors: Programming & Interfacing the PC, K.J.Ayala, Thomson.
- 5. Microprocessor & Peripherals, S.P. Chowdhury & S. Chowdhury, Scitech.
- 6. Microchip technology data sheet, www.microchip.comerence books

Course Outcome:

After completion of this course, the learners will be able to

- 1. explain the architecture of 8086 and 8051
- 2. do assembly language programming of 8086, 8051
- 3. interface different peripheral with 8086 and 8051
- 4. develop micro processor/ microcontroller based systems
- 5. compare microprocessor, microcontroller, PIC and ARM processors

Special Remarks (if any)

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical & Electronics Engineering (EEE)

(Applicable from the academic session 2018-2019)

Name of the course NANO ELECTRONI			CS	
Cour	se Code: PE-EEE-601A	Semester: 6th		
Dura	tion: 6 months	Maximum Marks: 100	0	
	hing Scheme	Examination Scheme		
Theor	ry: 3 hrs/week	Mid Semester Exam: 1	5 Marks	
Tutor	ial: 0hr/week	Assignment & Quiz:	10 Marks	
Credi	t Points: 3		05 Marks	
		End Semester Exam:	70 Marks	
Objec	ctive:			
1.	To understand various aspects of nano-technol			
2.	To understand processes involved in making r			
3.	To understand the concepts of silicon MOSFET and Quantum Transport Devices.			
4.	To understand the fundamental of the devic	es such as logic device	es, field effect	devices, and
	spintronics.			
	Requisite			
1.	Analog Electronis (PC-EEE302)			
2.	Digital Electronics(PC-EEE402)			
Unit	Content		Hrs	Marks
1	Introduction to nanotechnology, meso s	structures, Basics of		
	Quantum Mechanics: Schrodinger equation	n, Density of States.		
	Particle in a box Concepts, Degeneracy. Ba	and Theory of Solids.	10	
	Kronig-Penny Model. Brillouin Zones.			
	Shrink-down approaches: Introduction,	CMOS Scaling, The		
	nanoscale MOSFET, Finfets, Vertical MOSFE	ETs, limits to scaling,	14	
2	system integration limits (interconnect issues	etc.).		
	Resonant Tunneling Diode, Coulomb dots,	, Quantum blockade,		
	Single electron transistors, Carbon na	notube electronics,	14	
	Bandstructure and transport, devices,	, applications, 2D		
3	semiconductors and electronic devices,	• •		
	simulation	•		

Text book:

- 1. Fundamentals of Nanoelectronics, G.W. Hanson, Pearson, 2009.
- 2. Nanosystems, K.E. Drexler, Wiley, 1992
- 3. Introduction to Nanotechnology, C.P. Poole, F. J. Owens, Wiley, 2003

Reference books

- 1. Nanoelectronics and Information Technology (Advanced Electronic Materialand Novel Devices), W. Ranier, Wiley-VCH, 2003.
- 2. The Physics of Low-Dimensional Semiconductors, J.H. Davies, Cambridge University Press, 1998.

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical & Electronics Engineering (EEE)

(Applicable from the academic session 2018-2019)

Course Outcome:

After completion of this course, the learners will be able to

- 1. explain various aspects of nano-technology and the processes involved in making nano components and material
- 2. apply the nano-materials in solving practical problems
- 3. describe the types, synthesis, interconnects and applications of carbon nano tubes
- 4. describe the concepts of silicon MOSFET and Quantum Transport Devices
- 5. explains the fundamental of the devices such as logic devices, field effect devices, and spintronics

Special Remarks (if any)

(Formerly West Bengal University of Technology) Syllabus for B. Tech in Electrical & Electronics Engineering (EEE)

Name	Name of the course ELECTRICAL MAC			N
Cours	se Code: PE-EEE-601B	Semester: 6th		
Durat	ion: 6 months	Maximum Marks: 10	0	
	ing Scheme	Examination Scheme		
Theor	y: 3 hrs/week	Mid Semester Exam: 1	5 Marks	
Tutori	al: 0 hr/week	Assignment & Quiz:	10 Marks	
Credit	Credit Points: 3 Attendance:		05 Marks	
	End Semester Exam: 7		70 Marks	
Objec				
1.	To understand the baisc principle of design of			
2.	To understand basics of design of Transforme		•	nachines.
3.	To understand different factors that influence			
4.	To undertand the need and use software tools		nachines	
5.	To solve numerical problems on the topics stu	idied		
	equisite			
1.	Electric Machine-I (PC-EE-401)			
2.	Electric Machine-II (PC-EE-501)		TT	N. 1
Unit	Content	siaal Maakisa Daaiss	Hrs	Marks
1	Introduction: Major considerations in Electrical Machine Design -			
	Electrical Engineering Materials – Space fact	•	04	
	Electrical and Magnetic loadings - Thermal		04	
	flow – Temperature rise and Insulating	Materials - Rating of		
	machines – Standard specifications.			
	Transformer: Output Equations – Main Dime	•	10	
	single and three phase transformers – W	•	10	
2	Design of core and winding – Overall dir	· · · · · · · · · · · · · · · · · · ·		
2	characteristics - No load current -	-		
	Transformers – Design of Tank - Met	thods of cooling of		
	Transformers.			
	Induction motors: Output equation of Ind		10	
3	dimensions - Choice of Average flux densit		10	
	Rules for selecting rotor slots of squirrel cage			
	rotor bars & slots – Design of end rings – De			
	Magnetic leakage calculations – Leakage re			
	machines- Magnetizing current - Short circu	it current – Operating		
	characteristics- Losses and Efficiency.			
	Synchronous machines: Output equations –			
	Magnetic Loading – Design of salient pole m		10	
4	ratio – shape of pole face – Armature design – Armatur			
	parameters – Estimation of air gap length – [_		
	of damper winding – Determination of full lo	_		
	of field winding – Design of turbo alternators	– Rotor design.		
	Computer aided Design (CAD): Limitation	ons (assumptions) of		

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical & Electronics Engineering (EEE)

(Applicable from the academic session 2018-2019)

traditional designs, need for CAD analysis, synthesis and hybrid	05	
methods, design optimization methods, variables, constraints and		
objective function, problem formulation.		

Text book:

- 1. A Course in Electrical Machine Design, A.K. Sawhney, Dhanpat rai and sons.
- 2. Electrical machine design, V. rajini, V.S. Nagarajan, Pearson India education services Pvt. Ltd.
- 3. Computer Aided Design of Electrical Machine, K. M. V. Murthy, B.S. Publications.

Reference books

- 1. Design and Testing of Electrical Machines, M.V.Deshpande, PHI
- 2. Principles of Electrical Machine Design, 3rd Edition, S.K. sen, Oxf-Ibh
- 3. Computer Aided Design of Electrical Equipment, M. Ramamoorthy, East-West Press.

Course Outcome:

After completion of this course, the learners will be able to

- 1. specify the rating of electrical machines with standard specifications.
- 2. explain the principles of electrical machine design and carry out a basic design of an ac machine
- 3. determine the various factors which influence the design: electrical, magnetic and thermal loading of electrical machines
- 4. explain the construction and performance characteristics of electrical machines.
- 5. use software tools to do design calculations.

Special Remarks (if any)

Maulana Abul Kalam Azad University of Technology, West Bengal (Formerly West Bengal University of Technology) Syllabus for B. Tech in Electrical & Electronics Engineering (EEE)

Name of the course VLSI AND MICRO E		LECTRONICS	S	
Cour	se Code: PE-EEE601C	Semester: 6th		
Dura	tion: 6 months	Maximum Marks: 10	0	
	ning Scheme	Examination Scheme		
	ry: 3 hrs/week	Mid Semester Exam: 1		
	ial: 0 hr/week		10 Marks	
Credi	t Points: 3		05 Marks	
		End Semester Exam:	/U Marks	
Objec	ofixa.			
1.	To understand the concept of VLSI design			
2.	To understand the concept of VESI design To understand the basics of MOS structure			
3.	To understand the process of VLSI fabricatio	n		
4.	To understand the principle of logic circuit de		cription language	2
	Requisite	osign with haraware desi	onpron ranguage	
1.	Analog Electronics (PC-EE 302)			
2.	Digital Electronics (PC-EE 402)			
Unit	Content		Hrs	Marks
	Introduction to VLSI Design: VLSI Design (Concepts, Moor's Law,		
	Scale of Integration (SSI, MSI, LSI, VLSI, ULSI – basic idea only),			
	Types of VLSI Chips (Analog & Digital VLSI chips, General purpose,		08	
	ASIC, PLA, FPGA), Design principles (Digital	al VLSI – Concept of		
1	Regularity, Granularity etc), Design Domains	(Behavioral, Structural,		
	Physical), Y-Chart, Digital VLSI Design Steps.			
	MOS structure: E-MOS & D-MOS, Charge	inversion in E-MOS,		
	Threshold voltage, Flat band voltage, Poten	ntial balance & Charge		
	balance, Inversion, MOS capacitances.			
2	Three Terminal MOS Structure: Body effect		1.0	
	Four Terminal MOS Transistor: Drain current, I-V characteristics.		12	
	Current-voltage equations (simple derivation)			
		ects, General scaling,		
	Constant Voltage & Field scaling			
	CMOS : CMOS inverter, Simple Combination	al Gates - NAND gate		
	and NOR Gate using CMOS.			
	Micro-electronic Processes for VLSI	Fabrication : Silicon		
	Semiconductor Technology- An Overview	•	10	
2	Oxidation, Epitaxial deposition, Ion-implantat		10	
Cleaning, Etching, Photo-lithography – Positive & Negative		ive & Negative photo-		
	resist.			
	Basic CMOS Technology – (Steps in fabricatin	•		
	CMOS process, p-well CMOS process, Twin tu	ib process, Silicon on		
	insulator			
	Layout Design Rule: Stick diagram with exam	pies, Layout rules.		

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical & Electronics Engineering (EEE)

(Applicable from the academic session 2018-2019)

1			
4	Hardware Description Language – VHDL or Verilog Combinational & Sequential Logic circuit Design.	08	

Text book:

- 1. Digital Integrated Circuit, J.M.Rabaey, Chandrasan, Nicolic, Pearson Education.
- 2. CMOS Digital Integrated Circuit, S.M.Kang & Y.Leblebici, TMH.
- 3. Modern VLSI Design, Wayne Wolf, Pearson Education.
- 4. VHDL, Bhaskar, PHI.
- 5. Advance Digital Design Using Verilog, Michel D. Celliti, PHI

Reference books

- 1. Digital Integrated Circuits, Demassa & Ciccone, John Willey & Sons.
- 2. Modern VLSI Design: system on silicon, Wayne Wolf; Addison Wesley Longman Publisher
- 3. Basic VLSI Design, Douglas A. Pucknell & Kamran Eshranghian, PHI
- 4. CMOS Circuit Design, Layout & Simulation, R.J.Baker, H.W.Lee, D.E. Boyee, PHI

Course Outcome:

After completion of this course, the learners will be able to

- 1. explain the principle of design of VLSI circuits
- 2. explain different MOS structure with characteristics
- 3. apply different processes for VLSI fabrication
- 4. use programming language for the design of logic circuits
- 5. draw the stick diagram and layout for simple MOS circuits

Special Remarks (if any)

Maulana Abul Kalam Azad University of Technology, West Bengal (Formerly West Bengal University of Technology) Syllabus for B. Tech in Electrical & Electronics Engineering (EEE)

Name of the course ELECTRICAL AND		HYBRID VEH	HCLE	
Cour	se Code: PE-EEE-602A	Semester: 6th		
Durat	tion: 6 months	Maximum Marks: 100	0	
	ning Scheme	Examination Scheme		
	y: 3 hrs/week	Mid Semester Exam: 1		
	ial: 0 hr/week	Assignment & Quiz: 1		
Credi	t Points: 3)5 Marks	
		End Semester Exam: '	70 Marks	
Objec				
1.	To understand the basic difference between co		ehicles.	
2.	To understand different configuration and cor			
3.	To understand energy storage system in Hybri			
4.	To understand different energy management s	· ·	eles.	
5.	To solve numerical problems on the topics stu	ıdied		
	Requisite			
1.	Electric Machine-I (PC-EE-401)			
2.	Electric Machine-II (PC-EE-501)			
Unit	Content Introduction: Conventional Vehicles: Basics of		Hrs	Marks
1	vehicle power source characterization, transfirmathematical models to describe vehicle per Introduction to Hybrid Electric Vehicles: I electric vehicles, social and environmental and electric vehicles, impact of modern of supplies. Hybrid Electric Drive-trains: Basic conceptintroduction to various hybrid drive-train to control in hybrid drive-train topologies, fuel experience.	formance. History of hybrid and importance of hybrid drive-trains on energy of of hybrid traction, opologies, power flow	09	
2	Electric Trains: Electric Drive-trains: Basic concept of electric traction, introduction to various electric drivetrain topologies, power flow control in electric drive-train topologies, fuel efficiency analysis. Electric Propulsion unit: Introduction to electric components used in hybrid and electric vehicles, Configuration and control of DC Motor drives, Configuration and control of Induction Motor drives, configuration and control of Permanent Magnet Motor drives, Configuration and control of Switch Reluctance Motor drives, drive system efficiency.		10	
3	Energy Storage: Energy Storage: Introducti Requirements in Hybrid and Electric Vehicles storage and its analysis, Fuel Cell based e analysis, Super Capacitor based energy sto Flywheel based energy storage and its ana	s, Battery based energy energy storage and its brage and its analysis,	08	

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical & Electronics Engineering (EEE)

(Applicable from the academic session 2018-2019)

	different energy storage devices. Sizing the drive system: Matching the electric machine and the internal combustion engine (ICE), Sizing the propulsion motor, sizing the power electronics, selecting the energy storage technology, Communications, supporting subsystems		
4	Energy Management Strategies: Energy Management Strategies: Introduction to energy management strategies used in hybrid and electric vehicles, classification of different energy management strategies, comparison of different energy management strategies, implementation issues of energy management strategies.	06	
5	Case Studies: Design of a Hybrid Electric Vehicle (HEV), Design of a Battery Electric Vehicle (BEV).	05	

Text book:

- 1. Electric and Hybrid Vehicles: Design Fundamentals, Iqbal Hussein, CRC Press.
- 2. Hybrid Electric Vehicles: Principles and Applications with Practical Perspectives, C. Mi, M. A. Masrur and D. W. Gao, John Wiley & Sons,
- 3. Hybrid Electric Vehicles: Energy Management Strategies, Onori Simona, Serrao Lorenzo and Rizzoni Giorgio, Springer.
- 4. Electric and Hybrid Vehicles, T. Denton, Routledge.

Reference books

- 1. Electric Vehicle Technology Explained, James Larminie, John Lowry, Wiley.
- 2. Modern Electric, Hybrid Electric and Fuel Cell Vehicles: Fundamentals, Theory and Design, Mehrdad Ehsani, YimiGao, Sebastian E. Gay, Ali Emadi CRC Press, 2004.

Course Outcome:

After completion of this course, the learners will be able to

- 1. explain the principle of Electric traction
- 2. choose a suitable drive scheme for developing an electric hybrid vehicle depending on resources
- 3. design and develop basic schemes of electric vehicles and hybrid electric vehicles
- 4. choose proper energy storage systems for vehicle applications
- 5. implement different energy management strategies for hybrid vehicle

Special Remarks (if any)

(Formerly West Bengal University of Technology) Syllabus for B. Tech in Electrical & Electronics Engineering (EEE)

Name	Name of the course POWER QUALITY AND FACTS			
		Semester: 6th		
		Maximum Marks: 100		
Teach	eaching Scheme Examination Scheme			
	Theory: 3 hrs/week Mid Semester Exam: 15 Marks			
	Tutorial: 0 hr/week Assignment & Quiz: 10 Marks			
Credit			5 Marks	
	End	d Semester Exam: 7	0 Marks	
Objec	ctive:			
1.	To understand the characteristics of ac transmission	on and the effect of sl	hunt and series r	eactive
	compensation.			
2.	To understand the working principles of FACTS of	devices and their oper	rating characteri	stics.
3.	To understand the basic concepts of power quality	<i>I</i> .		
4.	To understand the working principles of devices to	o improve power qua	lity.	
5.	To solve numerical problems on the topics studied	1		
Pre-R	Requisite			
1.	Power system-I (PC-EE-502)			
2.	Control system (PC-EE-503)			
3.	Power Electronics (PC-EE-504)			
Unit	Content		Hrs	Marks
	Compensation: Basics of AC Transmission	•	04	
	uncompensated AC transmission lines. Passive		04	
1	Compensation. Shunt and series compensation at the mid-point of			
1	an AC line. Comparison of Series and Shunt Comp			
2	Thyristor-based Flexible AC Transmission Controllers (FACTS): Description and Characteristics of Thyristor-based FACTS devices: Static VAR Compensator (SVC), Thyristor Controlled Series Capacitor (TCSC), Thyristor Controlled Braking Resistor and Single Pole Single Throw (SPST) Switch. Configurations/Modes of Operation, Harmonics and control of SVC and TCSC. Fault Current Limiter.		06	
3	Voltage Source Converter based (FACTS) controllers: Voltage Source Converters (VSC): Six Pulse VSC, Multi-pulse and Multi-level Converters, Pulse-Width Modulation for VSCs. Selective Harmonic Elimination, Sinusoidal PWM and Space Vector Modulation. STATCOM: Principle of Operation, Reactive Power Control: Type I and Type II controllers, Static Synchronous Series Compensator (SSSC) and Unified Power Flow Controller (UPFC): Principle of Operation and Control. Working principle of Interphase Power Flow Controller. Other Devices: GTO Controlled Series Compensator. Fault Current Limiter.		08	
4	Application of FACTS : Application of FACTS device control and stability improvement. Simulation swing damping in a single-machine infinite bus sy	example of power	04	

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical & Electronics Engineering (EEE)

(Applicable from the academic session 2018-2019)

,

Text book:

1. FACTS Controllers in Power Transmission and Distribution, N K. R. Padiyar, New Age International (P) Ltd. 2007.

Reference books

- 1. Understanding FACTS: Concepts and Technology of FACTS Systems, N. G. Hingorani and L. Gyugyi Wiley-IEEE Press, 1999.
- 2. Reactive Power Control in Electric Systems, T. J. E. Miller, John Wiley and Sons, New York, 1983.
- 3. Electrical Power Systems Quality", R. C. Dugan, McGraw Hill Education, 2012.
- 4. Electric Power Quality, G. T. Heydt, Stars in a Circle Publications, 1991

Course Outcome:

After completion of this course, the learners will be able to

- 1. analyse uncompensated AC transmission line.
- 2. explain the working principles of FACTS devices and their operating characteristics.
- 3. apply FACTS devices for power flow control and stabilty.
- 4. identify different issues of power quality in distribution system.
- 5. apply different compensation and control techniques for DSTATCOM
- 6. explain working principle of dynamic voltage restorer and UPQC

Special Remarks (if any)

(Formerly West Bengal University of Technology) Syllabus for B. Tech in Electrical & Electronics Engineering (EEE)

Name	of the course	INDUSTRIAL ELEC	TRICAL SYS	ΓEMS
Course Code: PE-EEE-602C		Semester: 6th		
Duration: 6 months		Maximum Marks: 100		
Teach	ning Scheme	Examination Scheme		
Theor	y: 3 hrs/week	Mid Semester Exam: 1	5 Marks	
Tutori	al: 0 hr/week	Assignment & Quiz: 1	10 Marks	
Credit	Points: 3	Attendance: (05 Marks	
		End Semester Exam: '	70 Marks	
Objec	etive:			
1.	To understand the electrical wiring systems for		l and industrial	consumers,
	representing the systems with standard symbol			
2.	To understand various components of industria			
3.	To analyze and selec tthe proper size of variou			
4.	To understand methods of automation of Indu		S	
5.	To solve numerical problems on the topics stud	died		
	equisite			
1.	Power system-I (PC-EE-502)			
2.	Control system (PC-EE-503)			
3.	Power Electronics (PC-EE-504)			
Unit	Content		Hrs	Marks
	Electrical System Components: LT system	- ·		
	selection of cables, wires, switches, distrib			
	system, Tariff structure, protection componer		06	
1	ELCB, inverse current characteristics, symbol			
1	(SLD) of a wiring system, Contactor, Isolator,	Relays, MPCB, Electric		
	shock and Electrical safety practices			
	Residential and Commercial Electrical System	ns :Types of residential		
	and commercial wiring systems, general rul	les and guidelines for		
_	installation, load calculation and sizing of	wire, rating of main		
2	switch, distribution board and protection dev	vices, earthing system	08	
	calculations, requirements of commercial	installation, deciding		
	lighting scheme and number of lamps, ea	rthing of commercial		
	installation, selection and sizing of componen	ts.		
	Illumination Systems: Understanding various	terms regarding light,		
	lumen, intensity, candle power, lamp	efficiency, specific		
	consumption, glare, space to height ratio	, waste light factor,		
3	depreciation factor, various illumination so	_		
	lamps and modern luminaries like CFL, LED	•	06	
	energy saving in illumination systems, design			
	for a residential and commercial premises, flo			
	·	onnection, industrial		
	substation, Transformer selection, Industrial I	· · · · · · · · · · · · · · · · · · ·		
4	of motors, SLD, Cable and Switchgear		06	

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical & Electronics Engineering (EEE)

(Applicable from the academic session 2018-2019)

	Protection, Earthing design, Power factor correction — kVAR calculations, type of compensation, Introduction to PCC, MCC panels. Specifications of LT Breakers, MCB and other LT panel components.		
5	Industrial Electrical Systems II: DG Systems, UPS System, Electrical Systems for the elevators, Battery banks, Sizing the DG, UPS and Battery Banks, Selection of UPS and Battery Banks.	06	
6.	Industrial Electrical System Automation: Study of basic PLC, Role of in automation, advantages of process automation, PLC based control system design, Panel Metering and Introduction to SCADA system for distribution automation.		

Text book:

- 1. Electrical Wiring, Estimating & Costing, S. L. Uppal and G. C. Garg, Khanna publishers, 2008.
- 2. Electrical Design, Estimating & Costing, K. B. Raina, New age International, 2007.

Reference books

- 1. Electrical estimating and costing, S. Singh and R. D. Singh, Dhanpat Rai and Co., 1997.
- 2. Web site for IS Standards.
- 3. Residential Commercial and Industrial Systems, H. Joshi, McGraw Hill Education, 2008.

Course Outcome:

After completion of this course, the learners will be able to

- 1. represent electrical wiring system for residential, commercial and industrial consumers
- 2. determine the rating of components of residential and commercial electrical systems
- 3. design lighting scheme for a residential and commercial premises
- 4. select transformer, switchgear, protection equipments for industrial electrical systems
- 5. explain methods of automation of Industrial Electrical Systems
- 6. solve numerical problems related to earthing system, lighting scheme, power factor correction

Special Remarks (if any)

Maulana Abul Kalam Azad University of Technology, West Bengal (Formerly West Bengal University of Technology) Syllabus for B. Tech in Electrical & Electronics Engineering (EEE)

Name of the course		ARTIFICIAL INTEL	LIGENCE	
Course Code: OE-EEE-601A		Semester: 6th		
Durat	tion: 6 months	Maximum Marks: 100	0	
Teaching Scheme		Examination Scheme		
	y: 3 hrs/week	Mid Semester Exam: 1	5 Marks	
	al: 0hr/week	Assignment & Quiz: 1	10 Marks	
Credit	Points: 3		05 Marks	
		End Semester Exam: '	70 Marks	
Objec				
1.	To understand the basic concepts, theories and		ues of artificial i	ntelligence.
2.	To understand basic concepts and application	· ·		
3.	To learn the application of machine learning	g /A.I algorithms in the	e different fields	s of science,
	medicine, finance etc.			
	equisite			
1.	Programmong for problem solving (ES-CS20	1)		
2.	Mathematics (BS-M301			
3.	Data structure and algorithm(OE-EEE-501A)		· · · · · · · · · · · · · · · · · · ·	26.1
Unit	Content		Hrs	Marks
	Introduction: Overview of Artificial intelligen	nce- Problems of Al, Al		
	technique, Tic - Tac - Toe problem.			
1	Intelligent Agents: Agents & environment, nature of environment,			
1	structure of agents, goal based agents, utility based agents, learning		06	
	agents.		00	
	Problem Solving: Problems, Problem Space & search: Defining the			
	problem as state space search, product			
	characteristics, issues in the design of search			
	Search techniques: Solving problems by Sear			
	agents, searching for solutions; uniform sea	_		
	first search, depth first search, depth limite			
	search, comparing uniform search strategies.			
2	Heuristic search strategies: Greedy best-fi			
2	memory bounded heuristic search: local		12	
	optimization problems: Hill climbing search	n, simulated annealing	12	
	search, local beam search, genetic a	-		
	satisfaction problems, local search for o	constraint satisfaction		
	problems.			
	Adversarial search : Games, optimal dec			
	games, the minimax search procedure,			
	additional refinements, iterative deepening			
	Knowledge & reasoning: Knowledge r	representation issues,		
	representation & mapping, approach	nes to knowledge	05	
3	representation, issues in knowledge represen	itation		

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical & Electronics Engineering (EEE)

(Applicable from the academic session 2018-2019)

4.	Using predicate logic: Representing simple fact in logic, representing instant & ISA relationship, computable functions & predicates, resolution, natural deduction. Probabilistic reasoning [4] Representing knowledge in an uncertain domain, the semantics of Bayesian networks, Dempster-Shafer theory, Fuzzy sets & fuzzy logic	06	
5.	Natural Language processing: Introduction, Syntactic processing, semantic analysis, discourse & pragmatic processing. Learning: Forms of learning, inductive learning, learning decision trees, explanation based learning, learning using relevance information, neural net learning & genetic learning. Expert Systems: Representing and using domain knowledge, expert system shells, knowledge acquisition	08	

Text book:

- 1. Artificial Intelligence, K, Knight, E. Rich, S.B. Nair, 3rd Edition TMH
- 2. A classical approach to Artificial Intelligence, M.C. Trivedi, 2nd Edition, Khanna Publishing House, New Delhi
- 3. Introduction to Artificial Intelligence & Expert Systems, D.W. Patterson, PHI
- 4. Artificial Intelligence A Modern Approach, Stuart Russel, Peter Norvig, Pearson

Reference books

- 1. Computational Intelligence, D. Poole, Alan Mackworth, and Randy Goebe, IOUP
- 2. Logic & Prolog Programming, Saroj Kaushik, New Age International
- 3. Expert Systems principle and programming, J.C. Giarranto, Cengage Learing.

Course Outcome:

After completion of this course, the learners will be able to

- 1. explain the concept of knowledge representation and predicate logic and transform the real life information in different representation
- 2. describe state space and its searching strategies
- 3. demonstrate profeiency in applying scientifc method to models of machine learning
- 4. apply the machine learning concepts in real life problems
- 5. demonstrate an ability to share in discussions of AI, its current scope and limitations, and societal implications

Special Remarks (if any)

(Formerly West Bengal University of Technology) Syllabus for B. Tech in Electrical & Electronics Engineering (EEE)

Name of the course		ATA BASE MANAGEMENT SYSTE	M
Course Code: OE-EEE-601B		Semester: 6th	
Durat	tion: 6 months M	Iaximum Marks: 100	
		xamination Scheme	
	7	1id Semester Exam: 15 Marks	
		ssignment & Quiz: 10 Marks	
Credit		ttendance: 05 Marks	
	E	nd Semester Exam: 70 Marks	
Objec			
1.	To understand the different issues involved in the		e system
2.	To understand the physical and logical database	designs, database modeling, relational,	
	hierarchical, and network models		
3.	To understand data manipulation language to qu		
4.	To understand essential DBMS concepts such as		
	distributed database, and intelligent database, Cli		
5.	To build a simple database system with modeling		
6.	To understand the different issues involved in the	e design and implementation database sys	stem
	Requisite		
1.	Programmong for problem solving (ES-CS201)		
2.	Data structure and algorithm(OE-EEE-501A)	***	3.6.1
Unit	Content		Marks
	•	Abstraction, Data	
	Independence, Data Definition Language (DDL),		
1	Language (DML). Data models: Entity-relations	mp model, network	
1	model, relational and object oriented data	models, integrity	
	constraints, data manipulation operations.		
	Relational query languages: Relational algebra	•	
	relational calculus, SQL3, DDL and DML const		
	and Commercial DBMS - MYSQL, ORACLE	1 10	
	Relational database design: Domain and	data dependency,	
2	Armstrong's axioms, Normal forms, Depend		
	Losslessdesign. Query processing and optimize		
	relational algebra expressions, Query equivaler	nce, Join Strategies,	
3	Query optimization algorithms		
3	Storage strategies: Indices, B-trees, hashing.	05	
	Transaction processing: Concurrency control, A	CID property.	
	Serializability of scheduling, Locking and optimis		
4.	Control schemes, Database recovery.		
	Database Security: Authentication, Authorize	zation and access	
	control, DAC, MAC and RBAC models, Intrus		
5.	injection.	33.00.000	
	Advanced topics: Object oriented and object rel	lational databases.	
	Advanced topics. Object offented and object fer	actional databases,	

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical & Electronics Engineering (EEE)

(Applicable from the academic session 2018-2019)

	\ 11)	
6.	Logical databases, Web databases, Distributed databases, Data	05	
	warehousing and data mining.		

Text book:

- 1. Database Management Systems, R.P. Mahapatra, Govind verma, Khanna Publishing House.
- 2. Database system concepts, Abraham Silberschatz, Henry F. Korth, S. Sudarshan, McGraw-Hill.
- 3. Fundamentals of Database Systems, R. Elmasri and S. B.Navathe, .Pearson Addison wesley

Reference books

- 1. Foundations of Databases, Abiteboul, Richard Hull, Victor Vianu, Addison-Wesley
- 2. Principles of Database and Knowledge Base Systems", Vol 1 , J. D. Ullman, Computer Science Press.

Course Outcome:

After completion of this course, the learners will be able to

- 1. write relational algebra expressions for a query and optimize the developed expressions
- 2. design the databases using E R method and normalization
- 3. construct the SQL queries for Open source and Commercial DBMS -MYSQL, ORACLE and DB2
- 4. optimize the execution using Query optimization algorithm
- 5. determine the transaction atomicity, consistency, isolation, and durability
- 6. implement the isolation property, including locking, time stamping based on currency control and serializability of scheduling

Special Remarks (if any)

(Formerly West Bengal University of Technology) Syllabus for B. Tech in Electrical & Electronics Engineering (EEE)

Name	e of the course	ANALYTICAL INST	RUMENTATI	ON
Course Code: OE-EEE-601C		Semester: 6th		
Durat	tion: 6 months	Maximum Marks: 10	0	
	ning Scheme	Examination Scheme		
	y: 3 hrs/week	Mid Semester Exam: 1	5 Marks	
	ial: 0hr/week	Assignment & Quiz:	10 Marks	
Credit	t Points: 3		05 Marks	
		End Semester Exam: 70 Marks		
Objec				
1.	To understand the usefulness of analytical Ins			
2.	To understand the procedure of determination	n of moisture, viscosi	ty and density v	with different
2	methods of measurement.	1.1 1 .1 1		
3.	To understand analysis of gas and oxygen v			
4.	To understand analysis of liquid to find different	ent properties with vario	us practical exp	eriments.
5.	To understand different Spectroscopic me	thods to determine the	composition,	temperature,
	density, motion etc.			
6.	To understand Chromatography technique for	separation of mixture.		
	Requisite			
1.	Chemistry-I (BS-CH101)	EE402)		
Unit	Electrical and Electronic Measurement (PC-E Content	EE4U3)	Hrs	Marks
Omi	Introduction to Analytical Instrumentation:	Classification types of		IVIAIKS
	Instrumental methods Measurement of H			
	psychrometer, hair hygrometer, electrical	· ·	05	
1	hygrometer, dew point meter.	type, Electrolysis type	03	
1	Hygrometer, dew point meter.			
	Moisture: electrical conductivity type, capa-	citive method type, IR		
	method, microwave method, crystal oscillato			
2	Viscosity: Poiseuilles formula, Saybolt's visco			
	viscometer, friction tube viscometer, Searle's		06	
	Density: pressure head type, buoyancy e	• , , , , , , , , , , , , , , , , , , ,		
	densitometer, radioactive type, photoelectric			
	Gas Analysis: a) Thermal conductivity metho			
1				
	method.			
	method.	rument(Pauling cell) b)	05	
3	method. Oxygen Analysis: a) Magneto Dynamic instr		05	
3	method. Oxygen Analysis: a) Magneto Dynamic instr Thermomagnetic type or Hot wire type in	nstrument. c) Zirconia	05	
3	method. Oxygen Analysis: a) Magneto Dynamic instr Thermomagnetic type or Hot wire type in oxygen analyzer. d) Mackerth type galvanic	nstrument. c) Zirconia	05	
3	method. Oxygen Analysis: a) Magneto Dynamic instr Thermomagnetic type or Hot wire type in oxygen analyzer. d) Mackerth type galvanic oxygen analysis.	nstrument. c) Zirconia analyzer for dissolved	05	
3	method. Oxygen Analysis: a) Magneto Dynamic instr Thermomagnetic type or Hot wire type ir oxygen analyzer. d) Mackerth type galvanic oxygen analysis. Liquid analysis: a) Electrodes-Ion selective	nstrument. c) Zirconia analyzer for dissolved e, Molecular selective	05	
3	method. Oxygen Analysis: a) Magneto Dynamic instr Thermomagnetic type or Hot wire type ir oxygen analyzer. d) Mackerth type galvanic oxygen analysis. Liquid analysis: a) Electrodes-Ion selective types- their variations. b) pH analysis: pH electrodes	nstrument. c) Zirconia analyzer for dissolved e, Molecular selective ectrodes, circuit for pH	05	
	method. Oxygen Analysis: a) Magneto Dynamic instr Thermomagnetic type or Hot wire type ir oxygen analyzer. d) Mackerth type galvanic oxygen analysis. Liquid analysis: a) Electrodes-Ion selective	nstrument. c) Zirconia analyzer for dissolved e, Molecular selective ectrodes, circuit for pH vity cells – standards,		

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical & Electronics Engineering (EEE)

(Applicable from the academic session 2018-2019)

	polarography, applications e) Colorimetry	
5.	Spectroscopic Methods: Introduction, Laws relating to absorption of radiation, Molecular Absorption Spectroscopy in UV & VIS ranges: sources, wavelength selectors, sample container, detectors, Spectrophotometers (Single beam & Dual beam arrangement). Atomic Absorption & Emission spectroscopy: Atomizers, sources, single & dual beam arrangement. Plasma Spectroscopy: Sequential & Simultaneous multichannel Instruments.	10
	Atomic X Ray spectrometry: Absorption & diffraction phenomena, sources, detectors, techniques.	
	IR Spectroscopy: sources, monochromators, detectors. IR Spectrometer, FT-IR spectrometers	
6.	Chromatography: Introduction, basic definitions, some relationships.	06
	Gas Chromatography: basic parts, columns, detectors, techniques.	
	LC: types, HPLC: basic parts, sample injection system, column,	
	detectors, Applications	

Text book:

- 1. Principles of Industrial Instrumentation- D.C. Patranabis, Publisher: Tata McGraw Hill
- 2. Principles of Instrumental Analysis- Skoog, Holler, Nieman, Publisher: Thomson Brooks/Cole
- 3. Introduction to Instrumental Analysis-Robert D. Braun, Publisher: Pharma Book Syndicate
- 4. Handbook of Analytical Instruments- R.S. Khandpur, Publisher: Tata McGraw Hil

Reference books:

- 1. Hand book of Analytical Instruments, K.S. Khandpur, McGraw Hill Education.
- 2. Analytical Instrumentation: A Guide to Laboratory, Portable and Miniaturized Instruments, Gillian McMahon, Wiley.

Course Outcome:

After completion of this course, the learners will be able to

- 1. explain usefulness of analytical Instrumentation for industrial application
- 2. determine moisture, viscosity and density with different method of measurement
- 3. analyse gas and oxygen with various methods
- 4. analyse liquid to find different properties with various practical experiments
- 5. apply different Spectroscopic methods to determine the composition, temperature, density, motion etc
- 6. apply Chromatography for separation of mixture

Special Remarks (if any)

(Formerly West Bengal University of Technology) Syllabus for B. Tech in Electrical & Electronics Engineering (EEE)

Name of the course		ECONOMICS FOR E	ENGINEERS	
Cour	se Code: HM-601	Semester: 6th		
Dura	tion: 6 months	Maximum Marks: 100	0	
Teacl	hing Scheme	Examination Scheme		
Theor	ry: 3 hrs/week	Mid Semester Exam: 1		
	ial: 0 hr/week	Assignment & Quiz: 1		
Credi	t Points: 3)5 Marks	
		End Semester Exam:	70 Marks	
Obje				
1.	To understand the process of economic decision			
2.	To understand th basic financial management	•		
3.	To develop the skills to analyze financial state	ements		
4.	To understand the basic of accounting			
	Requisite			
1.	Basic understanding of Engineering processes			
Unit	Content		Hrs	Marks
1	Economic Decisions Making – Overview, Problems, Role, Decision making process. Engineering Costs & Estimation – Fixed, Variable, Marginal & Average Costs, Sunk Costs, Opportunity Costs, Recurring And Nonrecurring Costs, Incremental Costs, Cash Costs vs Book Costs, Life-Cycle Costs; Types Of Estimate, Estimating Models - PerUnit Model, Segmenting Model, Cost Indexes, Power-Sizing Model		06	
2	Improvement & Learning Curve, Benefits. Cash Flow, Interest and Equivalence: Cash Flow — Diagrams, Categories & Computation, Time Value Of Money, Debt repayment, Nominal & Effective Interest. Present Worth Analysis: End-Of-Year Convention, Viewpoint Of Economic Analysis Studies, Borrowed Money Viewpoint, Effect Of Inflation & Deflation, Taxes, Economic Criteria, Applying Present Worth Techniques, Multiple Alternatives. Cash Flow & Rate Of Return Analysis — Calculations, Treatment of Salvage Value, Annual Cash Flow Analysis, Analysis Periods; Internal Rate Of Return, Calculating Rate Of Return, Incremental Analysis; Best Alternative Choosing An Analysis Method, Future Worth Analysis, Benefit-Cost Ratio Analysis, Sensitivity And Breakeven Analysis. Economic Analysis In The Public Sector - Quantifying And Valuing Benefits & drawbacks.			

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical & Electronics Engineering (EEE)

(Applicable from the academic session 2018-2019)

3	Uncertainty In Future Events - Estimates And Their Use In Economic Analysis, Range Of Estimates, Probability, Joint Probability Distributions, Expected Value, Economic Decision Trees, Risk, Risk vs Return, Simulation, Real Options. Depreciation - Basic Aspects, Deterioration & Obsolescence, Depreciation And Expenses, Types Of Property, Depreciation Calculation Fundamentals, Depreciation And Capital Allowance Methods, Straight-Line Depreciation Declining Balance	10	
	Depreciation, Common Elements Of Tax Regulations For Depreciation And Capital Allowances.		
4	Replacement Analysis - Replacement Analysis Decision Map, Minimum Cost Life Of A New Asset, Marginal Cost, Minimum Cost Life Problems. Inflation And Price Change – Definition, Effects, Causes, Price	08	
	Change With Indexes, Types of Index, Composite vs Commodity Indexes, Use of Price Indexes In Engineering Economic Analysis, Cash Flows that inflate at different Rates.		
5	Accounting – Function, Balance Sheet, Income Statement, Financial Ratios Capital Transactions, Cost Accounting, Direct and Indirect Costs, Indirect Cost Allocation.	06	

Text book:

- 1. Engineering Economics, James L.Riggs, David D. Bedworth, Sabah U. Randhawa 4e , McGraw-Hill Education.
- 2. Engineering Economics Analysis, Donald Newnan, Ted Eschembach, Jerome Lavelle, OUP
- 3. Principle of Engineering Economic Analysis, John A. White, Kenneth E.Case, David B.Pratt, Wiley

Reference books

- 1. Engineering Economy, Sullivan and Wicks, Koelling, Pearson
- 2. Engineering Economics, R.Paneer Seelvan, PHI
- 3. Engineering Economics Analysis, Michael R Lindeburg, ,Professional Pub

Course Outcome:

After completion of this course, the learners will be able to

- 1. evaluate the economic theories, cost concepts and pricing policies
- 2. explain the market structures and integration concepts
- 3. apply the concepts of financial management for project appraisal
- 4. explain accounting systems, the impact of inflation, taxation, depreciation
- 5. analyze financial statements using ratio analysis
- 6. explain financial planning, economic basis for replacement, project scheduling, legal and regulatory issues applied to economic investment and project-management problems

Special Remarks (if any)

(Formerly West Bengal University of Technology) Syllabus for B. Tech in Electrical & Electronics Engineering (EEE)

Name of the course		ELECTRICAL AND ELECTRONICS DESIGN	
		LABORATORY	
Course Code: PC-EEE 681		Semester: 6 th	
Durati	ion: 6 months	Maximum marks:100	
Teach	ing Scheme	Examination scheme:	
		LAdilliation scheme.	
Theor	y: 1hr/week	Continuous Internal Assessment:40	
Tutori	al: 0 hr/week	External Assessment: 60	
Practi	cal: 4 hrs/week		
Credit	Points:3		
	GROUP A		
1.	Designing a heating element with specified wa	attage, voltage and ambient temperature.	
2.	Designing an aircore grounding reactor with	specified operating voltage, nominal current and	
	fault current		
3.	Designing the power distribution system for a	small township	
4.	Designing a double circuit transmission line fo	r a given voltage level and power (MVA) transfer.	
5.	Wiring and installation design of a multist	coried residential building (G+4,not less than 16	
	dwelling flats with a lift and common pump)		
	GROUP B		
6.	Designing an ONAN distribution transformer.		
7.	Designing a three phase squirrel cage induction	on motor.	
8.	Designing a three phase wound rotor induction	n motor.	
9.	Designing a split phase squirrel cage induction motor for a ceiling fan or a domestic pump.		

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical & Electronics Engineering (EEE)

(Applicable from the academic session 2018-2019)

10.	Designing a permanent magnet fractional hp servo motor .
	GROUP C
11.	Design the control circuit of a Lift mechanism
12.	Design a controller for speed control of DC machine.
13.	Design a controller for speed control of AC machine.
14.	Electronic system design employing electronic hardware (Analog, Digital, Mixed signal), microcontrollers, CPLDs, and FPGAs, PCB design and layout leading to implementation of an application

Topics to be covered in the Lecture class:

1.	Basic concepts on measurements; Noise in electronic systems; Sensors and signal conditioning circuits; Introduction to electronic instrumentation and PC based data acquisition; Electronic system design, Analog system design, Interfacing of analog and digital systems, Embedded systems,; System assembly considerations	01

Evaluation Method:

- 1. The students would INDIVIDUALLY design the equipment and systems as per specifications provided by the class teacher following established procedures.
- 2. For each student, one item from each of the three groups would be chosen.
- 3. For unspecified items of specification and or specifications of wires, cables etc., data should be taken by students from handbooks and Indian standard.
- 4. Students should spend the allotted periods for carrying out design computations.
- 5. Their attendance shall be recorded.
- 6. Students should maintain a dedicated bound notebook for recording design activities like calculations, formulae used, sketches, flowcharts etc. The notebook should be regularly submitted to the class teacher for review and signature.
- 7. Evaluation would be based on (i) Class attendance (20%), (ii) Design Note Book (30%) (iii) Design Report (30%) (iv) End of semester viva (20%,)

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical & Electronics Engineering (EEE)

(Applicable from the academic session 2018-2019)

Institute may develop experiments based on the theory taught in addition to experiments mentioned.

Course outcome: After completion of this course, the learners will be able to

- 1. explain basic concept of measurement, noise in electronic system, sensor and signal conditioning circuits.
- 2. implement PC based data acquisition systems.
- 3. construct circuits with appropriate instruments and safety precautions.
- 4. design heating elements, air core grounding reactor, power distribution system for small township, double circuit transmission line and Electric machines.
- 5. do wiring and installation design of a multistoried residential building with lift and pump.
- 6. design electronic hardware for controller of lift, speed of AC/DC motor, and for an application with analog, digital, mixed signal, microcontroller and PCB.

(Formerly West Bengal University of Technology) Syllabus for B. Tech in Electrical & Electronics Engineering (EEE)

Name of the course		POWER SYSTEM-II LABORATORY
Course Code: PC-EEE 691		Semester: 6 th
Durat	ion: 6 months	Maximum marks:100
Teaching Scheme		Examination scheme:
Theory: 0 hr/week		Continuous Internal Assessment:40
Tutor	ial: 0 hr/week	External Assessment: 60
Practi	ical: 2 hrs/week	
Credi	t Points:1	
	Laboratory Experiments:	
1.	Study on the characteristics of on load time delay relay and off load time delay relay.	
2.	Test to find out polarity, ratio and magnetization characteristics of CT and PT.	
3.	Test to find out characteristics of	
	(a) under voltage relay	
	(b) earth fault relay.	
4.	Study on DC load flow	
5.	Study on AC load flow using Gauss-seidel method	
6.	Study on AC load flow using Newton Raphson method.	
7.	Study on Economic load dispatch.	
8.	Study of different transformer protection schemes by simulation	
9.	Study of different generator protection schemes by simulation	
	1	

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical & Electronics Engineering (EEE)

(Applicable from the academic session 2018-2019)

10.	Study of different motor protection schemes by simulation
11.	Study of different characteristics of over current relay.
12.	Study of different protection scheme for feeder.

Institute may develop experiments based on the theory taught in addition to experiments mentioned.

Course outcome: After completion of this course, the learners will be able to

- 1. identify appropriate equipment and instruments for the experiment.
- 2. test the instrument for application to the experiment.
- 3. construct circuits with appropriate instruments and safety precautions.
- 4. validate the characteristics of under voltage relay, over current relay, earth fault relay, on load time delay relay, off load time delay relay, CT and PT.
- 5. validate protection schemes of transformer, generator, motor and feeder.
- 6. apply software tools to find bus voltage, currents and power flows throughout the electrical system.
- 7. work effectively in a team

(Formerly West Bengal University of Technology) Syllabus for B. Tech in Electrical & Electronics Engineering (EEE)

Name of the course		MICRO PROCESSOR AND MICRO CONTROLLER LABORATORY
Course Code: PC-EEE 692		Semester: 6 th
Durat	ion: 6 months	Maximum marks:100
Teaching Scheme		Examination scheme:
Theory: 0 hr/week		Continuous Internal Assessment:40
Tutori	ial: 0 hr/week	External Assessment: 60
Practi	cal: 2 hrs/week	
Credit	t Points:1	
	Laboratory Exp	eriments:
1.	Programs for 16 bit arithmetic operations for 8086 (using various addressing modes)	
2.	Program for sorting an array for 8086	
3.	Program for searching for a number or character in a string for 8086	
4.	Program for String manipulations for 8086	
5.	Program for digital clock design using 8086.	
6.	Interfacing ADC and DAC to 8086.	
7.	Parallel communication between two microprocessors using 8255.	
8.	Serial communication between two microprocessor kits using 8251.	
9.	Interfacing to 8086 and programming to control stepper motor.	
10.	Programming using arithmetic, logical and bit manipulation instructions of 8051	

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical & Electronics Engineering (EEE)

(Applicable from the academic session 2018-2019)

11.	Program and verify Timer/Counter in 8051.
12.	Program and verify interrupt handling in 8051.
13.	UART operation in 8051.
14.	Interfacing LCD to 8051.
15.	Interfacing matrix or keyboard to 8051.
16.	Data transfer from peripheral to memory through DMA controller 8237/8257

Institute may develop experiments based on the theory taught in addition to experiments mentioned.

Course outcome: After completion of this course, the learners will be able to

- 1. identify appropriate equipment and instruments for the experiment.
- 2. test the instrument for application to the experiment.
- 3. construct circuits with appropriate instruments and safety precautions.
- 4. program 8086 for arithmatic operation, sorting of array, searching for a number in a string and string manipulation.
- 5. interface ADC/DAC, 8255, 8251 to 8086 and LCD, keyboard to 8051
- 6. program 8051 using arithmatic, logical and bit manipulation instructions of 8051.
- 7. work effectively in a team