Funkcijski grafi

Urh Primožič

3. julij 2021

Povzetek

V tem dokumentu so opisani zanimivi izsledki poletnih raziskovanj.

1 Uvod

TODO motivacija

2 Definicije

Definicija 1 Naj bo $f: X \to X$ poljubna funkcija. Definiramo usmerjen graf $\mathcal{G}_f = (X, E), u \to v, \ \check{c}e \ v = f(u)$. Rečemo, da je \mathcal{G}_f funkcijski graf funkcije f.

Definicija 2 Množica funkcijskih grafov nad X je $\mathcal{G} = \{\mathcal{G}_f \mid f \in X^X\}.$

Definicija 3 Grafa G = (V, E) in G' = (V', E') sta si izomorfna, če obstaja bijekcija $\varphi \colon V \to V'$, da za vsaka $v, w \in V$ velja $v \to w \iff \varphi(v) \to \varphi(w)$. Pišemo $G \approx G'$.

Izomorfizem je očitno ekvivalenčna relacija. Zato lahko definiramo množico ekvivalenčnih razredov $\mathcal{G}/_{\approx}$.

Definicija 4 Definiramo G nad X kot kvocientno množico $\mathcal{G}/_{\approx}$, kjer \approx predstavlja izomorfnost grafov.

Zanima me, če ima G nad lepimi množicami lepe lastnosti.

3 Funkcijski grafi nad $\mathbb N$

V tem razdelku študiram grafe, porojene s funkcijami nad podmnožicami naravnih števil.

4 Vprašanja

TODO opisan

4.1 Ali je vsak funkcijski graf ravninski

Glejmo Grafe nad \mathbb{N} . Ali so ravninski? Ali obstaja lepa karakterizacija za ravninske funkcijske grafe?

4.2 Ali se na G prenesejo algebraične lastnosti

Vem že, da na G nad $\mathbb N$ lahko štejemo (TODO). Kaj več?