PROJECT REPORT

A NOVEL METHOD FOR HANDWRITTEN DIGIT RECOGNITION

submitted by

PNT2022TMID11565

Team Head:

Athisankaran B

Team Member:

- 1. Anandan N.P
- 2. Chitharanjan C.K
- 3. Darshan A.S
- 4. Jaya karthikeiyan C

TABLE OF CONTENTS

1 INTRODUCTION	1
1.1 PROJECT OVERVIEW	1
1.2 PURPOSE	1
2 LITERATURE SURVEY	2
2.1 EXISTING PROBLEM	2
2.2 REFERENCES	2
2.3 PROBLEM STATEMENT DEFINITION	4
3 IDEATION AND PROPOSED SOLUTION	6
3.1 EMPATHY MAP CANVAS	5
3.2 IDEATION & BRAINSTORMING	6
3.3 PROPOSED SOLUTION	7
3.4 PROBLEM SOLUTION FIT	8
4 REQUIREMENT ANALYSIS	9
4.1 FUNCTIONAL REQUIREMENTS	9
4.2 NON-FUNCTIONAL REQUIREMENTS	10
5 PROJECT DESIGN	11
5.1 DATA FLOW DIAGRAM	11
5.2 SOLUTION & TECHNICAL ARCHITECTURE	13
5.3 COMPOMENTS AND TECHNOLOGIES	14
5.4 USER STORIES	15
6 PROJECT PLANNING AND SCHEDULING	16

6.1 SPRINT PLANNING AND ESTIMATION	16
6.2 SPRINT DELIVERY SCHEDULE	18
6.3 REPORT FROM JIRA	18
5 CODING & SOLUTIONING	19
7.1 FEATURE 1	19
7.2 FEATURE 2 7.3 FEATURE 3	20 20
6 TESTING	21
8.1 TEST CASES	21
8.2 USER ACCEPTANCE TESTING	23
7 RESULTS	24
9.1 PERFORMANCE METRICS	24
8 ADVANTAGES & DISADVANTAGES	26
ADVANTAGES	26
DISADVANTAGES	26
9 CONCLUSION	27
10 FUTURE SCOPE	28
APPENDIX	29
SOURCE CODE	29
SCREENSHOTS	39
GITHUB	40

CHAPTER 1 INTRODUCTION

1.1 PROJECT OVERVIEW

Handwritten Digit Recognition is the capacity of a computer to interpret the manually written digits from various sources like messages, bank cheques, papers, pictures, and so forth and in various situations for web-based handwriting recognition on PC tablets, identifying number plates of vehicles, handling bank cheques, digits entered in any forms etc. Machine Learning provides various methods through which human efforts can be reduced in recognizing the manually written digits.

Deep Learning is a machine learning method that trains computers to do what easily falls into place for people: learning through examples. With the utilization of deep learning methods, human attempts can be diminished in perceiving, learning, recognizing and in a lot more regions. Using deep learning, the computer learns to carry out classification works from pictures or contents from any document. Deep Learning models can accomplish state-of-art accuracy, beyond the human level performance. The digit recognition model uses large datasets in order to recognize digits from distinctive sources.

1.2 PURPOSE

The main objective was to actualize a pattern characterization method to perceive the handwritten digits provided in the MINIST data set of images of handwritten digits (0-9). The goal of our work is to create a model that will be able to recognize and classify the handwritten digits from images by using concepts of Convolution Neural Network. Though the goal of our research is to create a model for digit recognition and classification, it can also be extended to letters and an individual's handwriting. With high accuracy rates, the model can solve a lot of real life problems.

The main applications are vehicle license-plate recognition, postal letter-sorting services, Cheque truncation system (CTS) scanning and historical document preservation in archaeology departments, old documents automation in libraries and banks, etc. All these areas deal with large databases and hence demand high recognition accuracy, lesser computational complexity and consistent performance of the recognition system.

CHAPTER 2 LITERATURE SURVEY

2.1 EXISTING PROBLEM

The fundamental problem with handwritten digit recognition is that handwritten digits do not always have the same size, width, orientation, and margins since they vary from person to person. People can struggle to read others' handwriting. The handwritten digits are not always of the same size, width, orientation as they differ from writing of person to person, so the general problem would be while classifying the digits.

Additionally, there would be issues with identifying the numbers because of similarities between numerals like 1 and 7, 5 and 6, 3 and 8, 2 and 5, 2 and 7, etc. Finally, the individuality and variation of each individual's handwriting influence the structure and appearance of the digits.

2.2 REFERENCES

1.)"HANDWRITTEN DIGITS RECOGNITION WITH DECISION TREE CLASSIFICATION"-Tsehay Admassu Assegie -2019

Handwritten digits recognition is an area of machine learning, in which a machine is trained to identify handwritten digits. One method of achieving this is with decision tree classification model. A decision tree classification is a machine learning approach that uses the predefined labels from the past known sets to determine or predict the classes of the future data sets where the class labels are unknown. In this paper we have used the standard kaggle digits dataset for recognition of handwritten digits using a decision tree classification approach. And we have evaluated the accuracy of the model against each digit from 0 to 9

2.)"HANDWRITTEN DIGIT RECOGNITION USING VARIOUS MACHINE LEARNING ALGORITHMS AND MODELS "- Pranit s.patil ,Bhupinder kaur -2020

Handwritten digit recognition is a technique or technology for automatically recognizing and detecting handwritten digital data through different Machine Learning models. In this

paper we use various Machine Learning algorithms to enhance the productiveness of technique and reduce the complexity using various models. Machine Learning is an application of Artificial Intelligence that learns from previous experience and improves automatically through experience. We illustrate various Machine learning algorithms such as Support Vector Machine, Convolutional Neural Network, Quantum Computing, K-Nearest Neighbor Algorithm, Deep Learning used in Recognition technique. KEYWORDSConvolutional Neural Network, Support Vector Machine, HandWritten Digit Recognition, Artificial Intelligence, Deep Learning.

3.) A Recognition System for Handwritten Digits Using CNN -Siddiga, chakrapani -2021

This paper presents a model of integrating the synergy of two superior classifiers: Convolutional Neural Network (CNN) and Random Forest Classifier (RFC), which have proven results in recognizing different types of patterns. Handwritten digit recognition is one of the practically important issues in pattern recognition applications. The applications of digit recognition include in postal mail sorting, bank check processing, form data entry, etc. The heart of the problem lies within the ability to develop an efficient algorithm that can recognize hand written digits and which is submitted by users by the way of a scanner, tablet, and other digital devices. The problem of handwritten digit recognition has long been an open problem in the field of pattern classification. Several studies have shown that Neural Network has a great performance in data classification. Ability for accurate digit recognizer modelling and prediction is critical for pattern recognition and security. A variety of classification machine learning algorithms are known to be effective for digit recognition

4.)"Handwritten Digit String Recognition using Convolutional Neural Network"-honhjianzhan -2019

String recognition is one of the most important tasks in computer vision applications. Recently the combinations of convolutional neural network (CNN) and recurrent neural network (RNN) have been widely applied to deal with the issue of string recognition. However RNNs are not only hard to train but also time-consuming. In this paper, we propose a new architecture which is based on CNN only, and apply it to handwritten digit string recognition (HDSR). This network is composed of three parts from bottom to top: feature extraction layers, feature dimension transposition layers and an output layer. Motivated by its super performance of DenseNet, we utilize dense blocks to conduct feature extraction. At the top of the network, a CTC (connectionist temporal classification) output

layer is used to calculate the loss and decode the feature sequence, while some feature dimension transposition layers are applied to connect feature extraction and output layer.

5.)"Multi-Digit Handwritten Sindhi Numerals Recognition using SOM Neural Network"-A.chandio ,H.jalbani-2019

Handwritten digits recognition is one of the challenging tasks and a lot of research is being carried out since many years. A remarkable work has been done for recognition of isolated handwritten characters as well as digits in many languages like English, Arabic, Devanagari, Chinese, Urdu and Pashto. However, the literature reviewed does not show any remarkable work done for Sindhi numerals recognition. The recognition of Sindhi digits is a difficult task due to the various writing styles and different font sizes. Therefore, SOM (Self-Organizing Map), a NN (Neural Network) method is used which can recognize digits with various writing styles and different font sizes. Only one sample is required to train the network for each pair of multi-digit numeral

2.3 PROBLEM STATEMENT DEFINITION

The problem statement is to classify handwritten digits. The goal is to take an image of a handwritten digit and determine what that digit and character is. It is easy for the human to perform a task accurately by practicing it repeatedly and memorizing it for the next time. Human brain can process and analyze images easily. Also, recognize the different elements present in the images.

The handwritten digit recognition is the capability of computer applications to recognize the human handwritten digits. It is a hard task for the machine because handwritten digits are not perfect and can be made with many different shapes and sizes. The handwritten digit recognition system is a way to tackle this problem which uses the image of a digit and recognizes the digit present in the image. Convolutional Neural Network model created using Python library over the MNIST dataset to recognize handwritten digits. Handwriting number recognition is a challenging problem researchers had been research into this area for so long especially in the recent years.

CHAPTER 3

IDEATION AND PROPOSED SOLUTION

3.1 EMPATHY MAP CANVAS

3.2 IDEATION & BRAINSTORMING

3.3 PROPOSED SOLUTION:

S.No.	Parameter	Description
1.	Problem Statement (Problem to be solved)	Handwriting recognition is one of the compelling research works going on because every individual in this world has their own style of writing .it is the capability of the computer to identify and understand handwritten digits or characters automatically
2.	Idea / Solution description	MNIST dats set is widely used for this recognition process and it has 70000 handwritten digits.we use Artificial neural networks to train these image sand build a deep learning model.web application is created where the user can upload an image of a handwritten digit.this image is analyzed by the mod
3.	Novelty / Uniqueness	we can also check the accuracy of the processed data.
4.	Social Impact / Customer Satisfaction	Handwriting recognition has a variety of applications as electronic form filling, signature verification, automated music symbol notation reader, handwritten ancient document reading, write and send SMS in mother tongue and alternative to realistic keyboards
5.	Business Model (Revenue Model)	we already have many existing keyboard app Adding new feature like gesture so that it can be identified by handwritten recognition. this could increase revenue of the developers company.
6.	Scalability of the Solution	we can also create an extension for handwritten recognition that would be helpful for the user

3.4 PROBLEM SOLUTION FIT:

- The handwritten are not always of the same size ,width ,orientation and justified to margins as they differ from writing of person to person
- 2.) The similarity between digits such as 1 and 7,5 and 6,3 and 8,2 and 7 etc so, classifying between these numbers is also a major problem for computers
- The uniqueness and variety in the handwriting of different individuals also influence the formation and appearance of the digits
- 4.) A new people doesn't know language how to communicate?
- 5.) It using a encryption method strategy that accuracy also some problem made?
- Also the underlying problems of not having the same size ,width, orientation, and margin always has been taken care of with the help of computer vision's opency library's functionalities.
- The problem of difficulty in distinguishing the difference between digits such as 1 and 7, 5 and 6, 3 and 8 etc has been resolved to a great extent with the opency's edge detection and contour features
- Also problems of dim lighting and blurry or unclear edges in images are corrected with the help of Gaussian blur technique. Now users can find their handwritten digits in one go without much complications
- Using this technology easily identified what word be found out new people or another country man also easily using this technology identified what they phrase identified
- Using this handwritten technology most of website using captcha technology so we hardly know some word so high so using method for encryption strategy

CHAPTER 4 REQUIREMENT ANALYSIS

4.1 FUNCTIONAL REQUIREMENTS

FR No.	Functional Requirement (Epic)	Sub Requirement (Story / Sub-Task)
FR-1	Uploading images	Can able to input the handwritten images into the
		application
FR-2	Recognising digits	Display the recognized digits from the input images to
		the user

4.2 NON-FUNCTIONAL REQUIREMENTS

FR No.	Non-Functional Requirement	Description
NFR-1	Usability	The application needs to respond smoothly so that the user can use the application effectively and need to be an user friendly application.
NFR-2	Security	Ensure the security by authenticating the users using their username and password.
NFR-3	Reliability	The application does not show any error during the recognition of the digits from the uploaded images.
NFR-4	Performance	Needs to respond fast and provide the output even for the complex handwritings.
NFR-5	Availability	Need to available for all users at any time and can able to input the handwritten images to the application easily.
NFR-6	Scalability	It can able to handle N numbers of users at the same time with faster response and recognize the digits effectively.

CHAPTER 5 PROJECT DESIGN

5.1 DATA FLOW DIAGRAM

Data Flow Diagrams:

A Data Flow Diagram (DFD) is a traditional visual representation of the information flows within a system. A neat and clear DFD can depict the right amount of the system requirement graphically. It shows how data enters and leaves the system, what changes the information, and where data is stored.

Example: (Simplified) FLOW

Example: DFD Level 0 (Industry Standard)

User Stories

Use the below template to list all the user stories for the product.

User Type	Functional Requirement (Epic)	User Story Number	User Story / Task	Acceptance criteria	Priority	Release
Customer (Mobile user)		USN-1	As a user, I can view the guide and awareness to use this application.	I can view the awareness to use this application and its limitations.	Low	Sprint-1
		USN-2	As a user, I'm allowed to view the guided video to use the interface of this application.	I can gain knowledge to use this application by a practical method.	Low	Sprint-1
		USN-3	As a user, I can read the instructions to use this application.	I can read instructions also to use it in a user-friendly method.	Low	Sprint-2
Recognize		USN-4	As a user, in this prediction page I get to choose the image.	I can choose the Image from our local system and predict the output.	High	Sprint-2
	Predict USN-6 As a user, I'm Allowed to upload and choose the image to be uploaded I can upload and choose the image from the system storage and also in any virtual storage.		the image from the system storage and also	Medium	Sprint-3	
		USN-7	As a user, I will train and test the input to get the maximum accuracy of output.	I can able to train and test the application until it gets maximum accuracy of the result.	High	Sprint-4
		USN-8	As a user, I can access the MNIST data set	I can access the MNIST data set to produce the accurate result.	Medium	Sprint-3
Customer (Web user)	Home	USN-9	As a user, I can view the guide to use the web app.	I can view the awareness of this application and its limitations.	Low	Sprint-1

5.2 SOLUTION & TECHNICAL ARCHITECTURE

MNIST DATASET PROCESSING WITH PYTHON

5.3 COMPONENTS & TECHNOLOGIES:

Table-1: Components & Technologies:

S.No	Component	Description	Technology
1.	User Interface	How user interacts with application e.g., MobileApplication	HTML, CSS, JavaScript / Angular JS / Node Red.
2.	Application Logic-1	Logic for a process in the application	Java / Python
3.	Application Logic-2	Logic for a process in the application	IBM Watson STT service
5.	Database	Data Type, Configurations etc.	MySQL, NoSQL, etc.
6.	Cloud Database	Database Service on Al	IBM DB2.
7.	File Storage	File storage requirements	IBM Block Storage or Other Storage Service or Local Filesystem
8.	External API-1	Purpose of External API used in the application	IBM Weather API, etc.
9.	IoT Model	Purpose of Al Model is for integrating the sensorswith a user interface.	IBM AI Platform
10.	Infrastructure (Server / AI)	Application Deployment on Local System / Al LocalServer Configuration Al Server Configuration	Local, Kubernetes, etc.

5.4 USER STORIES

User Type	Functional Requirement	User Story Number	User Story / Task	Acceptance Criteria	Priority	Release
Building the application		USN-1	As a user, I should be able to access the application from anywhere and use on any devices	User can access the application using the browser on any device	High	Sprint-4
Customer	Uploading Image	USN-2	As a user, I should be able to upload images to predict the digits	User can upload images	low	Sprint-2
	Viewing the Results	USN-3	As a user, I should be able to view the results	The result of the prediction is displayed	High	Sprint-3
	Viewing Other Prediction	USN-4	As a user, I should be able to see other close predictions	The accuracy of other values must be displayed	low	Sprint-1
	Usage Instruction	USN-5	As a user, I should have a usage instruction to know how to use the application	The usage instruction is displayed on the home page	high	Sprint-3

CHAPTER 6 PROJECT PLANNING AND SCHEDULING

6.1 SPRINT PLANNING AND ESTIMATION

Product Backlog, Sprint Schedule, and Estimation (4 Marks)

Use the below template to create product backlog and sprint schedule

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Points	Priority
Sprint-1	Data Collection & pre processing	USN-1	As a user, I can upload any kind of image with the pre-processing step is involved in it.	8	medium
Sprint-1		USN-2	As a user, I can upload the image in any resolution.	7	High

Sprint-2	Building the Machine learning model	USN-3	As a user, I will get a application with ML model which provides high accuracy of recognized handwritten digit	4	Medium
Sprint-2		USN-4	As a user, I can pass the handwritten digit image for recognizing the digit.	1	high

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Points	Priority
Sprint-2		USN-5	As a user, I can get the most suitable recognized digit.	4	medium
Sprint-3	Building User Interface Application	USN-6	As a user, I will upload the handwritten digit image to the application by clicking a upload button.	6	high
Sprint-3		USN-7	As a user, I can know the details of the fundamental usage of the application.	2	High
Sprint-3		USN-8	As a user, I can see the predicted / recognized digits in the application	8	high
Sprint-4	Train and deployment of model in IBM Cloud	USN-9	As a user, I can access the web application and make the use of the product from anywhere	20	High

6.2 SPRINT DELIVERY SCHEDULE

Sprint	Total Story Points	Duration	Sprint Start Date	Sprint End Date (Planned)	Story Points Completed (as on Planned End Date)	Sprint Release Date (Actual)
Sprint-1	20	6 Days	24 Oct 2022	29 Oct 2022	20	29 Oct 2022
Sprint-2	20	6 Days	31 Oct 2022	05 Nov 2022	20	05 Nov 2022
Sprint-3	20	6 Days	07 Nov 2022	12 Nov 2022	20	12 Nov 2022
Sprint-4	20	6 Days	14 Nov 2022	19 Nov 2022	20	19 Nov 2022

6.3 REPORT FROM JIRA

Velocity:

Imagine we have a 10-day sprint duration, and the velocity of the team is 20 (points per sprint). Let's calculate the team's average velocity (AV) per iteration unit (story points per day)

Average Velocity = 20 / 6 = 3.33

Burndown Chart:

A burn down chart is a graphical representation of work left to do versus time. It is often used in agile <u>software development</u> methodologies such as <u>Scrum</u>. However, burn down charts can be applied to any project containing measurable progress over time.

CHAPTER 7

CODING & SOLUTION

7.1 FEATURE 1 – FLASK FILE UPLOADING

Handling file upload in Flask is very easy. It needs an HTML form with its enctype attribute set to 'multipart/form-data', posting the file to a URL. The URL handler fetches file from request.files[] object and saves it to the upload folder.

```
▼ Index.py > ...

      import numpy as np
      import os
      from PIL import Image
      from flask import Flask, request, render_template, url_for
      from werkzeug.utils import secure filename, redirect
 5
      from gevent.pywsgi import WSGIServer
 6
 7
      from keras.models import load model
      from keras.preprocessing import image
      from flask import send from directory
 9
      UPLOAD FOLDER = 'C:\\Users\\chithu\\Desktop\\project in ibm\\upload'
10
      app = Flask( name )
11
      app.config['UPLOAD FOLDER'] = UPLOAD FOLDER
12
      model = load model("mnistCNN.h5")
13
14
      @app.route('/')
      def index():
15
          return render template('index.html')
16
      @app.route('/predict', methods=['GET', 'POST'])
17
18
      def upload():
          if request.method == "POST":
19
              f = request.files["image"]
20
              filepath = secure filename(f.filename)
21
              f.save(os.path.join(app.config['UPLOAD FOLDER'], filepath))
22
              upload img = os.path.join(UPLOAD FOLDER, filepath)
 23
              img = Image.open(upload_img).convert("L") # convert image to monochrome
 24
              img = img.resize((28, 28)) # resizing of input image
25
26
              im2arr = np.array(img) # converting to image
              im2arr = im2arr.reshape(1, 28, 28, 1) # reshaping according to our requirement
27
 28
              pred = model.predict(im2arr)
              num = np.argmax(pred, axis=1) # printing our Labels
 29
              return render template('/predict.html', num=str(num[0]))
 30
      if name == ' main ':
 31
          app.run(debug=True, threaded=False)
 32
```

7.2 FEATURE 2 – UPLOAD IMAGE WITH PREVIEW

A preview refers to a feature that lets you glimpse or view something in part or whole without it being opened. A picture preview would show a small version of the picture and give you a good idea what each picture is without opening each picture it is a useful feature created using JavaScript.

7.3 FEATURE 3 – CLEAR IMAGE

<script>

</script>

This feature can be used to clear the image if we uploaded a wrong image or if we need to change the image. The clear button clears both the image value and the preview of the image in script tag.

```
function preview() {
    frame.src=URL.createObjectURL(event.target.files[0]);
}

$(document).ready(function() {
    $('#clear_button').on('click', function() {
        $('#image').val('');
        $('#frame').attr('src',"");
    });
```

CHAPTER 8

TESTING

8.1 TEST CASES

Test case ID	Feature Type	Component	Test Scenario	Expected Result	Actual Result	Status
HP_TC_001	UI	Home Page	Verify UI elements in the Home Page	The Home page must be displayed properly	Working as expected	FAIL
HP_TC_002	UI	Home Page	Check if the UI elements are displayed properly in different screen sizes	The Home page must be displayed properly in all sizes	The UI is not displayed properly in screen size 2560 x 1801 and 768 x 630	FAIL
HP_TC_003	Functional	Home Page	Check if user can upload their file	The input image should be uploaded to the application successfully	Working as expected	PASS
HP_TC_004	Functional	Home Page	Check if user cannot upload unsupported files	The application should not allow user to select a non image file	User is able to upload any file	FAIL
HP_TC_005	Functional	Home Page	Check if the page redirects to the result page once the input is given	The page should redirect to the results page	Working as expected	PASS

BE_TC_001	Functional	Backend	Check if all the routes are working properly	All the routes should properly work	Working as expected	PASS
M_TC_001	Functional	Model	Check if the model can handle various image sizes	The model should rescale the image and predict the results	Working as expected	PASS
M_TC_002	Functional	Model	Check if the model predicts the digit	The model should predict the number	Working as expected	PASS
M_TC_003	Functional	Model	Check if the model can handle complex input image	The model should predict the number in the complex image	The model fails to identify the digit since the model is not built to handle such data	FAIL
RP_TC_001	UI	Result Page	Verify UI elements in the Result Page	The Result page must be displayed properly	Working as expected	PASS
RP_TC_002	UI	Result Page	Check if the input image is displayed properly	The input image should be displayed properly	The size of the input image exceeds the display container	FAIL
RP_TC_003	UI	Result Page	Check if the result is displayed properly	The result should be displayed properly	Working as expected	PASS
RP_TC_004	UI	Result Page	Check if the other predictions are displayed properly	The other predictions should be displayed properly	Working as expected	PASS

8.2 USER ACCEPTANCE TESTING

8.2.1 DEFECT ANALYSIS

Resolution	Severity 1	Severity 2	Severity 3	Severity 4	Total
By Design	1	0	1	0	2
Duplicate	0	0	0	0	0
External	0	0	2	0	2
Fixed	4	1	0	1	6
Not Reproduced	0	0	0	1	1
Skipped	0	0	0	1	1
Won't Fix	1	0	1	0	2
Total	6	1	4	3	14

8.2.2 TEST CASE ANALYSIS

Section	Total Cases	Not Tested	Fail	Pass
Client Application	10	0	3	7
Security	2	0	1	1
Performance	3	0	1	2
Exception Reporting	2	0	0	2

CHAPTER 9 RESULTS

9.1 PERFORMANCE METRICS

CHAPTER 10

ADVANTAGES & DISADVANTAGES

ADVANTAGES

- Reduces manual work
- More accurate than average human
- Capable of handling a lot of data
- Can be used anywhere from any device
- Neural Network is used to train and identify written digits for greater efficiency.
- The accuracy rate is very high.
- Speed of data entry
- It is much easier to dictate the machine than to write
- Easier data retrieval

DISADVANTAGES

- Cannot handle complex data
- All the data must be in digital format
- Requires a high performance server for faster predictions
- Prone to occasional errors
- There is a wide range of handwriting good and bad.
- It is tricky for programmers to provide enough examples of how every character might look.
- Customers must try with clear image and neat handwriting to get accuracy in digits.
- Unclear image will not give accurate results.

CHAPTER 11 CONCLUSION

Convolutional Neural Network (CNN) adds its significant improvement to the Manuscript Document Recognition System. This paper tells us the effectiveness of CNN-based classification of data and pre-processing methods. Our model clearly sees handwriting and achieves outgoing predictions of up to 82.16% and accurate predictions of up to 69.16%. However the model can be continuously developed using multiple training samples. This will help the model to learn as well as the generalize better. There are many images in the training set that are completely invisible to the human eye.

This project demonstrated a web application that uses machine learning to recognize handwritten numbers. Flask, HTML, CSS, JavaScript, and a few other technologies were used to create this project. The model predicts the handwritten digit using a CNN network. During testing, the model achieved a 99.61% recognition rate. The proposed project is scalable and can easily handle a huge number of users. Since it is a web application, it is compatible with any device that can run a browser. This project is extremely useful in real-world scenarios such as recognizing number plates of vehicles, processing bank cheque amounts, numeric entries in forms filled up by hand (tax forms) and so on.

Through extensive evaluation using a MNIST dataset, the present work suggests the role of various hyper-parameters. Fine tuning of hyper-parameters is essential in improving the performance of CNN architecture. We achieved a recognition rate of 99.89% with the Adam optimizer for the MNIST database, which is better than all previously reported results. The effect of increasing the number of convolutional layers in CNN architecture on the performance of handwritten digit recognition is clearly presented through the experiments.

CHAPTER 12 FUTURE SCOPE

This project can be enhanced with a great field of machine learning and artificial intelligence. The world can think of a software which can recognize the text from a picture and can show it to the others, for example a shop name detector. Or this project can be extended to a greater concept of all the character sets in the world. This project has not gone for the total English alphabet because there will be more and many more training sets and testing values that the neural network model will not be enough to detect. Think of a AI modeled car sensor going with a direction modeling in the roadside, user shall give only the destination.

All of these enhancement is an application of the texture analysis where advanced image processing, Neural network model for training and advanced AI concepts will come. These applications can be modeled further .As this project is fully done by free and available resources and packages this can be also a limitation of the project. The fund is very important because all machine learning libraries and advanced packages are not available for free. Unless of those the most of the visualizing platforms like on which developers are doing some works like Watson Studio or Aws. These all are mainly paid platforms where a lot of ML projects are going on.

This project is far from complete and there is a lot of room for improvement.

Some of the improvements that can be made to this project are as follows:

- Add support to detect from digits multiple images and save the results
- Add support to detect multiple digits
- Improve model to detect digits from complex images
- Add support to different languages to help users from all over the world

This project has endless potential and can always be enhanced to become better. Implementing this concept in the real world will benefit several industries and reduce the workload on many workers, enhancing overall work efficiency.

APPENDIX

SOURCE CODE

```
!pip install tensorflow --upgrade
Requirement already satisfied: tensorflow in /ont/conda/envs/Python-3.9/lib/python3.9/site-packages (2.7.2)
Collecting tensorflow
 Downloading tensorflow-2.10.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (578.1 MB)
     | 578.1 MB 53 kB/s s eta 0:00:012��
                                                                                           492.2 MB 30.9 MB/s eta 0:00:03��
      | 508.8 MB 30.9 MB/s eta 0:00:03ta 0:00:02
Requirement already satisfied: astunparse>=1.6.0 in /opt/conda/envs/Python-3.9/lib/python3.9/site-packages (from tensorflow) (1.6.3)
Requirement already satisfied: setuptools in /opt/conda/envs/Python-3.9/lib/python3.9/site-packages (from tensorflow) (58.0.4)
Collecting libclang>=13.0.0
 Downloading libclang-14.0.6-py2.py3-none-manylinux2010 x86 64.whl (14.1 MB)
     | 14.1 MB 79.3 MB/s eta 0:00:01
Requirement already satisfied: wrapt>=1.11.0 in /opt/conda/envs/Python-3.9/lib/python3.9/site-packages (from tensorflow) (1.12.1)
Requirement already satisfied: keras-preprocessing>=1.1.1 in /opt/conda/envs/Python-3.9/lib/python3.9/site-packages (from tensorflow) (1.1.2)
Requirement already satisfied: six>=1.12.0 in /opt/conda/envs/Python-3.9/lib/python3.9/site-packages (from tensorflow) (1.15.0)
Requirement already satisfied: numpy>=1.20 in /opt/conda/envs/Python-3.9/lib/python3.9/site-packages (from tensorflow) (1.20.3)
Collecting keras<2.11.>=2.10.0
  Downloading keras-2.10.0-py2.py3-none-any.whl (1.7 MB)
     | 1.7 MB 77.3 MB/s eta 0:00:01
Collecting tensorflow-estimator<2.11,>=2.10.0
 Downloading tensorflow_estimator-2.10.0-py2.py3-none-any.whl (438 kB)
Requirement already satisfied: termcolor>=1.1.0 in /opt/conda/envs/Python-3.9/lib/python3.9/site-packages (from tensorflow) (1.1.0)
Collecting absl-py>=1.0.0
  Downloading absl_py-1.3.0-py3-none-any.whl (124 kB)
     | 124 kB 73.3 MB/s eta 0:00:01
Requirement already satisfied: packaging in /opt/conda/envs/Python-3.9/lib/python3.9/site-packages (from tensorflow) (21.3)
Requirement already satisfied: grpcio<2.0,>=1.24.3 in /opt/conda/envs/Python-3.9/lib/python3.9/site-packages (from tensorflow) (1.42.0)
Requirement already satisfied: google-pasta)=0.1.1 in /opt/conda/envs/python-3.9/lib/python3.9/site-packages (from tensorflow) (0.2.0)

Requirement already satisfied: glogle-pasta)=0.1.1 in /opt/conda/envs/python-3.9/lib/python3.9/site-packages (from tensorflow) (0.2.0)
Requirement already satisfied: opt-einsum>=2.3.2 in /opt/conda/envs/Python-3.9/lib/python3.9/site-packages (from tensorflow) (3.3.0)
Requirement already satisfied: protobuf<3.20,>=3.9.2 in /opt/conda/envs/Python-3.9/lib/python3.9/site-packages (from tensorflow) (3.19.1)
Requirement already satisfied: gast<=0.4.0,>=0.2.1 in /opt/conda/envs/Python-3.9/lib/python3.9/site-packages (from tensorflow) (0.4.0)
Requirement already satisfied: typing-extensions>=3.6.6 in /opt/conda/envs/Python-3.9/lib/python3.9/site-packages (from tensorflow) (4.1.1)
Requirement already satisfied: h5py>=2.9.0 in /opt/conda/envs/Python-3.9/lib/python3.9/site-packages (from tensorflow) (3.2.1)
Collecting tensorboard<2.11.>=2.10
 Downloading tensorboard-2.10.1-py3-none-any.whl (5.9 MB)
     | 5.9 MB 83.6 MB/s eta 0:00:01
Requirement already satisfied: tensorflow-io-gcs-filesystem>=0.23.1 in /opt/conda/envs/Python-3.9/lib/python3.9/site-packages (from tensorflow) (0.23.
Requirement already satisfied: wheel<1.0,>=0.23.0 in /opt/conda/envs/Python-3.9/lib/python3.9/site-packages (from astunparse>=1.6.0->tensorflow) (0.37.
```

```
Requirement already satistied: wheel<1.0,>=0.23.0 in /opt/conda/envs/Python-3.9/lib/python3.9/site-packages (trom astunparse>=1.6.0->tensortlow)
        0)
        Requirement already satisfied: google-auth-oauthlib<0.5,>=0.4.1 in /opt/conda/envs/Python-3.9/lib/python3.9/site-packages (from tensorboard<2.11,>=2.10
         ->tensorflow) (0.4.4)
        Requirement already satisfied: requests<3,>=2.21.0 in /opt/conda/envs/Python-3.9/lib/python3.9/site-packages (from tensorboard<2.11,>=2.10->tensorflow)
        Requirement already satisfied: google-auth<3,>=1.6.3 in /opt/conda/envs/Python-3.9/lib/python3.9/site-packages (from tensorboard<2.11,>=2.10->tensorflo
         w) (1.23.0)
        Requirement already satisfied: tensorboard-plugin-wit>=1.6.0 in /opt/conda/envs/Python-3.9/lib/python3.9/site-packages (from tensorboard<2.11,>=2.10->t
         ensorflow) (1.6.0)
         Requirement already satisfied: markdown>=2.6.8 in /opt/conda/envs/Python-3.9/lib/python3.9/site-packages (from tensorboard<2.11,>=2.10->tensorflow) (3.
        3.3)
        Requirement already satisfied: werkzeug>=1.0.1 in /opt/conda/envs/Python-3.9/lib/python3.9/site-packages (from tensorboard<2.11,>=2.10->tensorflow) (2.
        0.2)
        Requirement already satisfied: tensorboard-data-server<0.7.0,>=0.6.0 in /opt/conda/envs/Python-3.9/lib/python3.9/site-packages (from tensorboard<2.11,>
         =2.10->tensorflow) (0.6.1)
         Requirement already satisfied: cachetools<5.0,>=2.0.0 in /opt/conda/envs/Python-3.9/lib/python3.9/site-packages (from google-auth<3,>=1.6.3->tensorboar
        d<2.11,>=2.10->tensorflow) (4.2.2)
        Requirement already satisfied: pyasn1-modules>=0.2.1 in /opt/conda/envs/Python-3.9/lib/python3.9/site-packages (from google-auth<3.>=1.6.3->tensorboard
         <2.11,>=2.10->tensorflow) (0.2.8)
         Requirement already satisfied: rsa<5,>=3.1.4 in /opt/conda/envs/Python-3.9/lib/python3.9/site-packages (from google-auth<3,>=1.6.3->tensorboard<2.11,>=
        2.10->tensorflow) (4.7.2)
        Requirement already satisfied: requests-oauthlib >= 0.7.0 in /opt/conda/envs/Python-3.9/lib/python3.9/site-packages (from google-auth-oauthlib <= 0.5.) == 0.4.
        1->tensorboard<2.11.>=2.10->tensorflow) (1.3.0)
        Requirement already satisfied: pyasn1<0.5.0,>=0.4.6 in /opt/conda/envs/Python-3.9/lib/python3.9/site-packages (from pyasn1-modules>=0.2.1->google-auth<
         3,>=1.6.3->tensorboard<2.11,>=2.10->tensorflow) (0.4.8)
        Requirement already satisfied: charset-normalizer~=2.0.0 in /opt/conda/envs/Python-3.9/lib/python3.9/site-packages (from requests<3,>=2.21.0->tensorboa
         rd<2.11,>=2.10->tensorflow) (2.0.4)
         Requirement already satisfied: urllib3<1.27,>=1.21.1 in /opt/conda/envs/Python-3.9/lib/python3.9/site-packages (from requests<3,>=2.21.0->tensorboard<
         2.11,>=2.10->tensorflow) (1.26.7)
         Requirement already satisfied: idna<4,>=2.5 in /opt/conda/envs/Python-3.9/lib/python3.9/site-packages (from requests<3,>=2.21.0->tensorboard<2.11,>=2.1
        0->tensorflow) (3.3)
        Requirement already satisfied: certifi>=2017.4.17 in /opt/conda/envs/Python-3.9/lib/python3.9/site-packages (from requests<3,>=2.21.0->tensorboard<2.1
        1.>=2.10->tensorflow) (2022.9.24)
         Requirement already satisfied: oauthlib>=3.0.0 in /opt/conda/envs/Python-3.9/lib/python3.9/site-packages (from requests-oauthlib>=0.7.0->google-auth-oa
         uthlib<0.5,>=0.4.1->tensorboard<2.11,>=2.10->tensorflow) (3.2.1)
         Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in /opt/conda/envs/Python-3.9/lib/python3.9/site-packages (from packaging->tensorflow) (3.0.4)
        Installing collected packages: absl-py, tensorflow-estimator, tensorboard, libclang, keras, tensorflow
          Attempting uninstall: absl-pv
             Found existing installation: absl-py 0.12.0
            Uninstalling absl-py-0.12.0:
              Successfully uninstalled absl-py-0.12.0
          Attempting uninstall: tensorflow-estimator
            Found existing installation: tensorflow-estimator 2.7.0
            Uninstalling tensorflow-estimator-2.7.0:
               Successfully uninstalled tensorflow-estimator-2.7.0
            Uninstalling tensorboard-2.7.0:
              Successfully uninstalled tensorboard-2.7.0
          Attempting uninstall: keras
            Found existing installation: keras 2.7.0
            Uninstalling keras-2.7.0:
              Successfully uninstalled keras-2.7.0
          Attempting uninstall: tensorflow
            Found existing installation: tensorflow 2.7.2
            Uninstalling tensorflow-2.7.2:
              Successfully uninstalled tensorflow-2.7.2
        ERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the followin
        g dependency conflicts.
        tensorflow-text 2.7.3 requires tensorflow<2.8,>=2.7.0, but you have tensorflow 2.10.1 which is incompatible.
        tensorflow-metadata~1.5.0~requires~absl-py<0.13,>=0.9,~but~you~have~absl-py~1.3.0~which~is~incompatible.
        autoai-ts-libs 1.1.9 requires tensorflow<2.8,>=2.7.0; python_version >= "3.9", but you have tensorflow 2.10.1 which is incompatible.
        Successfully installed absl-py-1.3.0 keras-2.10.0 libclang-14.0.6 tensorboard-2.10.1 tensorflow-2.10.1 tensorflow-estimator-2.10.0
In [3]: import numpy as np
         import tensorflow
         from tensorflow.keras.datasets import mnist
         from tensorflow.keras.models import Sequential
         from tensorflow.keras import layers
         from tensorflow.keras.lavers import Dense, Flatten
         from tensorflow.keras.layers import Conv2D
         from keras.utils import np_utils
         import matplotlib.pyplot as plt
In [4]: (x_train, y_train), (x_test, y_test)=mnist.load_data ()
        Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/mnist.npz
        11490434/11490434 [============] - Os Ous/step
        print (x train.shape)
         print (x_test.shape)
        (60000, 28, 28)
        (10000, 28, 28)
In [6]: x_train[0]
```

```
In [6]: x_train[0]
                  0, 0, 0, 0,
                                      0,
Out[6]: array([[ 0,
                                  0,
                                          0,
                                              0,
                                                  0,
                                                      0,
                      0,
                          0,
                              0,
                                      0,
                                                  0,
                                                      0,
                                                              0,
                  0],
                  0,
                      0,
                          0,
                              0,
                                  0,
                                      0,
                                          0,
                                              0,
                                                  0,
                                                      0,
                                                          0,
                                                              0,
              0.
                  0.
                      0,
                          0,
                              0,
                                  0,
                                      0,
                                          0,
                                              0,
                                                  0,
                                                      0,
                                                          0,
                                                              0,
                  0],
                          0,
              0,
                  0,
                      0, 0, 0,
                                  0,
                                      0,
                                          0,
                                              0,
                                                  0,
                                                      0,
                                                          0,
                  0],
              0,
                  0,
                      0, 0, 0,
                                  0,
                                      0,
                                          0,
                                              0,
                                                  0,
                                                          0,
                  0.
                      0, 0, 0,
                                  0,
                                      0,
                                          0,
                                              0,
                                                  0,
                                                      0.
                                                          0,
                                                              0.
                  0],
            [
                          0,
                                  0,
                                      0,
                                                  0,
                                              0,
                                                  0,
                      0, 0, 0,
                                  0,
                                      0,
                                          0,
              0,
                  0],
                  0,
              0,
                      0,
                          0,
                             0,
                                 0,
                                     0,
                                          0,
                                              0,
                                                  0,
                                                      0,
                                                          0,
                                                              3,
             18, 18, 18, 126, 136, 175, 26, 166, 255, 247, 127,
                  0],
                 0,
            [ 0,
                     0,
                         0, 0, 0, 0, 0, 30, 36, 94, 154, 170,
             253, 253, 253, 253, 253, 225, 172, 253, 242, 195, 64, 0, 0,
                0],
              0.
             0, 0],
                     0, 0, 0, 0, 18, 219, 253, 253, 253, 253,
              0.
                  0,
             253, 198, 182, 247, 241, 0,
                                      0,
                                          0, 0, 0, 0, 0, 0,
              0,
                 0],
                  0,
                      0, 0, 0, 0,
                                      0,
                                          0, 80, 156, 107, 253, 253,
             205,
                      0, 43, 154,
                                  0,
                                      0,
                                          0, 0, 0, 0, 0, 0,
              0,
                  0],
                  0,
            [ 0,
                      0, 0, 0,
                                  0.
                                      0.
                                          0.
                                             0, 14, 1, 154, 253,
             90,
                                              0, 0,
                  0,
                      0, 0, 0,
                                  0,
                                      0,
                                          0,
                                                      0, 0, 0,
                  0],
              0,
                     0, 0, 0, 0,
0, 0, 0, 0,
                                              0,
                                      0,
                                          0,
                                                 0, 0, 139, 253,
                  0,
             190.
                                  0,
                                      0,
                                          0,
                                              0,
                                                  0, 0, 0, 0,
              0,
                  0],
                  0, 0, 0, 0,
                                  0.
                                      0.
                                          0.
                                              0.
                                                      0, 11, 190,
              0.
                                                  0.
             253,
                 70, 0, 0, 0, 0,
                                      0,
                                          0,
                                                      0, 0,
                                              0,
                                                  0,
                                                              0,
                 0],
              0,
                  0,
                      0,
                         0,
                              0,
                                  0,
                                      0,
                                          0,
                                              0,
                                                  0,
                                                          0, 35,
             241, 225, 160, 108, 1, 0, 0,
                                          0,
                                             0,
                                                  0,
                                                      0,
                                                          0,
                                                              0,
                  01
                         0, 0, 0,
              0,
                  0,
                                                  0,
                                                      0,
                                                          0,
              ø,
                45, 186, 253, 253, 150, 27,
              0,
                  0],
              0,
                  0,
                     0,
                         0,
                              0,
                                  0,
                                      0,
                                              0,
                                                  0,
                                                      0,
                                                          0,
                  0, 16, 93, 252, 253, 187,
              0.
                                          0,
                                              0,
                                                  0,
                                                      0,
                                                         0,
                                                              0,
              0,
                  0],
                  0, 0, 0, 0, 0,
                                     0,
                                          0,
                      0, 0, 249, 253, 249,
              0,
                  0],
              0.
                  0,
                      0, 0, 0,
                                 0.
                                     0.
                                          0.
                                              0.
                                                  0.
                                                      0.
                                                          0.
                                                              0.
              0, 46, 130, 183, 253, 253, 207,
                                          2,
                                              0,
                                                  0,
                                                      0,
                                                          0,
                                                              0.
                  0],
              0,
              0,
                  0,
                      0,
                         0, 0,
             148, 229, 253, 253, 253, 250, 182,
                                          0,
                                              0,
                                                  0,
                                                      0,
                                                          0,
                                                              0,
                 0],
              0,
                      0,
                                                  0, 24, 114, 221,
              0.
                  0,
                          0,
                              0,
                                  0.
                                      0.
                                          0,
                                              0.
             253, 253, 253, 253, 201, 78, 0, 0, 0,
                                                  0, 0, 0, 0,
              0, 0],
              0,
                  0,
                      0,
                          0,
                              0,
                                  0,
                                      0,
                                          0, 23, 66, 213, 253, 253,
             253, 253, 198, 81, 2, 0,
                                      0,
                                          0,
                                              0,
                                                  0, 0, 0, 0,
              0,
                 0],
            Γ 0.
                      0.
                         0, 0, 0, 18, 171, 219, 253, 253, 253, 253,
                  0.
             195,
                 80,
                      9, 0, 0, 0,
                                     0, 0, 0, 0, 0, 0, 0,
                  0],
            [ 0,
                      0, 0, 55, 172, 226, 253, 253, 253, 253, 244, 133,
             11,
                      0, 0,
                              0, 0, 0, 0, 0, 0, 0,
                                                              0,
              0.
                  0],
                  0, 0, 0, 136, 253, 253, 253, 212, 135, 132, 16,
              0.
              0,
                      0, 0, 0, 0, 0,
                                          0, 0, 0, 0, 0,
                                                              0,
                      0,
                          0,
                              0,
                                  0,
                                      0,
                                          0,
                                              0,
                                                  0,
                                                      0,
                      0,
                          0,
                              0,
                                  0,
                                      0,
                                          0,
                                              0,
                                                  0,
                                                      0,
                                                          0,
                                                              0,
              0.
                  0],
                      0,
                          0,
                              0,
                                  0,
                                      0,
                                          0,
                                              0,
                                                  0,
                                                      0,
                                                          0,
                                                              0,
              0,
                  0,
                          0,
                              0,
                                  0,
                                      0,
                      0,
                                          0,
                                              0,
                                                  0,
                                                      0,
                                                          0,
                                                              0,
                  0],
                      0,
                          0,
                              0,
                                  0,
                                      0,
                                          0,
                                              0,
                                                  0,
                                                      0,
                                                          0,
                      0, 0, 0,
              0,
                  0.
                                  0,
                                      0,
                                         0,
                                              0,
                                                  0,
                                                      0,
                                                          0,
              0,
                  0]], dtype=uint8)
```

plt.imshow(x_train[6000])

```
0
       10
       15
       20
       25
In [8]: np.argmax(y_train[6000])
Out[8]: 0
       number_of_classes = 10
In [10]:
       y_train = np_utils.to_categorical (y_train, number_of_classes)
       y_test = np_utils.to_categorical (y_test, number_of_classes)
       model=Sequential()
       \label{eq:model.add} $$ \bmod (Conv2D(64, (3, 3), input\_shape=(28, 28, 1), activation='relu')) $$ \bmod (Conv2D(32, (3, 3), activation='relu'))$$
In [14]:
       model.add(Flatten())
       model.add(Dense(number_of_classes,activation = 'softmax'))
In [16]: model.compile(loss= 'categorical_crossentropy', optimizer="Adam", metrics=['accuracy'])
In [17]: x_train = np.asarray(x_train)
       y_train = np.asarray(y_train)
In [19]: model.fit(x_train, y_train, validation_data=(x_test, y_test), epochs=5, batch_size=32)
      Fnoch 1/5
      Epoch 2/5
       Epoch 3/5
                   1875/1875 [=
      Epoch 4/5
      1875/1875 [
                    Epoch 5/5
      1875/1875 [===========] - 106s 57ms/step - loss: 0.0144 - accuracy: 0.9959 - val_loss: 0.2097 - val_accuracy: 0.9754
Out[19]:
In [20]:
       metrics = model.evaluate(x_test, y_test, verbose=0)
       print("Metrics (Test loss &Test Accuracy) : ")
       print(metrics)
      Metrics (Test loss &Test Accuracy) :
      [0.20970351994037628, 0.9753999710083008]
In [21]: prediction=model.predict(x_test[6000:6001])
       print(prediction)
      3.4631572e-21 3.4006425e-38 2.6362448e-17 3.2771523e-20 1.0000000e+00]]
In [22]: plt.imshow(x_test[6000])
```

```
Out[22]:
          10 -
          15 -
          20
          25
                        10
In [23]: import numpy as np
  print(np.argmax(prediction, axis=1))
          [9]
In [24]:
           np.argmax(y_test[6000:6001])
Out[24]: 9
In [25]: model.save('models/mnistCNN.h5')
In [26]: cd models
          /home/wsuser/work/models
In [27]: !tar -zcvf handwritten-digit-recognition-model_new.tgz mnistCNN.h5
          mnistCNN.h5
In [28]: !pip install watson-machine-learning-client --upgrade
```

```
Downloading watson machine learning client-1.0.391-py3-none-any.whl (538 kB)
              | 538 kB 20.0 MB/s eta 0:00:01
         Requirement already satisfied: urllib3 in /opt/conda/envs/Python-3.9/lib/python3.9/site-packages (from watson-machine-learning-client) (1.26.7)
         Requirement already satisfied: tabulate in /opt/conda/envs/Python-3.9/lib/python3.9/site-packages (from watson-machine-learning-client) (0.8.9)
         Requirement already satisfied: boto3 in /opt/conda/envs/Python-3.9/lib/python3.9/site-packages (from watson-machine-learning-client) (1.18.21)
         Requirement already satisfied: certifi in /opt/conda/envs/Python-3.9/lib/python3.9/site-packages (from watson-machine-learning-client) (2022.9.24)
         Requirement already satisfied: pandas in /opt/conda/envs/Python-3.9/lib/python3.9/site-packages (from watson-machine-learning-client) (1.3.4)
         Requirement already satisfied: lomond in /opt/conda/envs/Python-3.9/lib/python3.9/site-packages (from watson-machine-learning-client) (0.3.3)
         Requirement already satisfied: tqdm in /opt/conda/envs/Python-3.9/lib/python3.9/site-packages (from watson-machine-learning-client) (4.62.3)
         Requirement already satisfied: ibm-cos-sdk in /opt/conda/envs/Python-3.9/lib/python3.9/site-packages (from watson-machine-learning-client) (2.11.0)
         Requirement already satisfied: requests in /opt/conda/envs/Python-3.9/lib/python3.9/site-packages (from watson-machine-learning-client) (2.26.0)
         Requirement already satisfied: botocore<1.22.0,>=1.21.21 in /opt/conda/envs/Python-3.9/lib/python3.9/site-packages (from boto3->watson-machine-learning
         -client) (1.21.41)
         Requirement already satisfied: s3transfer<0.6.0,>=0.5.0 in /opt/conda/envs/Python-3.9/lib/python3.9/site-packages (from boto3->watson-machine-learning-
         client) (0.5.0)
         Requirement already satisfied: jmespath<1.0.0,>=0.7.1 in /opt/conda/envs/Python-3.9/lib/python3.9/site-packages (from boto3->watson-machine-learning-cl
         ient) (0.10.0)
         Requirement already satisfied: python-dateutil<3.0.0,>=2.1 in /opt/conda/envs/Python-3.9/lib/python3.9/site-packages (from botocore<1.22.0,>=1.21.21->b
         oto3->watson-machine-learning-client) (2.8.2)
         Requirement already satisfied: six>=1.5 in /opt/conda/envs/Python-3.9/lib/python3.9/site-packages (from python-dateutil<3.0.0,>=2.1->botocore<1.22.0,>=
         1.21.21->boto3->watson-machine-learning-client) (1.15.0)
         Requirement already satisfied: ibm-cos-sdk-core==2.11.0 in /opt/conda/envs/Python-3.9/lib/python3.9/site-packages (from ibm-cos-sdk->watson-machine-lea
         rning-client) (2.11.0)
         Requirement already satisfied: ibm-cos-sdk-s3transfer==2.11.0 in /opt/conda/envs/Python-3.9/lib/python3.9/site-packages (from ibm-cos-sdk->watson-machi
         ne-learning-client) (2.11.0)
         Requirement already satisfied: charset-normalizer~=2.0.0 in /opt/conda/envs/Python-3.9/lib/python3.9/site-packages (from requests->watson-machine-learn
         ing-client) (2.0.4)
         Requirement already satisfied: idna<4.>=2.5 in /opt/conda/envs/Python-3.9/lib/python3.9/site-packages (from requests->watson-machine-learning-client)
         (3.3)
         Requirement already satisfied: pytz>=2017.3 in /opt/conda/envs/Python-3.9/lib/python3.9/site-packages (from pandas->watson-machine-learning-client) (20
         Requirement already satisfied: numpy>=1.17.3 in /opt/conda/envs/Python-3.9/lib/python3.9/site-packages (from pandas->watson-machine-learning-client)
         (1.20.3)
         Installing collected packages: watson-machine-learning-client
         Successfully installed watson-machine-learning-client-1.0.391
In [30]:
          from ibm watson machine learning import APIClient
          credentials ={
              "url": "https://us-south.ml.cloud.ibm.com"
              "apikey":"44PHkAQmzFH1bEZ1iJSXkKIFsURfFkHl0SiKJso3yc2w"
          client = APIClient(credentials)
          client
```

Collecting watson-machine-learning-client

```
In [31]: client.spaces.get_details()
Out[31]: {'resources': [{'entity': {'description': '',
               'name': 'digitclasssification',
               'scope': {'bss_account_id': 'eb25e160e3a44ea19dcb6550dbb30fed'},
               'stage': {'production': False},
                'status': {'state': 'active'},
                'storage': {'properties': {'bucket_name': '7f0ddbd1-c980-4a2d-a36d-f5ca427d3516',
                  'bucket_region': 'us-south', 'credentials': {'admin': {'access_key_id': '5a87d8278316431b8ba1dec115e5459d',
                    'api_key': 'k4YGBSUaYVBbKY5-Mq6AEO1MmelUdtMb0sAJbaKjd90V'
                    'secret_access_key': '02d56f22174b6f8e3b2d81df2f6637786ee79249caaa30cf', 'service_id': 'ServiceId-7ffd7456-73c3-4706-9af9-f37c5c03a9ca'},
                   'editor': {'access_key_id': 'ac09d4d47b3d44218c789dd676fe6e62',
                    'api_key': 'YnkTWn1Tw8AqgcSFiMEsVTeRytXDjQ0e70E6TZwoEHAG',
                    'resource_key_crn': 'crn:v1:bluemix:public:cloud-object-storage:global:a/eb25e160e3a44ea19dcb6550dbb30fed:953ecb71-6915-4c60-a924-9202c7c875d
          f::',
                   'secret_access_key': '1b1342075ee7e42e3ea054f460cf423b75603e4d36f70342', 'service_id': 'ServiceId-d98d6495-1f43-43b1-aad0-5264c80b45d7'},
                   'viewer': {'access_key_id': 'dc676ef8f48c45e3b09807204da48bcf',
                    'api_key': 'bxFpQPjFX9D7gT7T2X7m1GH8Ir3moXeUh1X6wg5q2er3'
                    'resource_key_crn': 'crn:v1:bluemix:public:cloud-object-storage:global:a/eb25e160e3a44ea19dcb6550dbb30fed:953ecb71-6915-4c60-a924-9202c7c875d
                    'secret_access_key': 'cd6597636648076d40d8691d06524bafaf83d08e4dd508e2',
                  'service_id': 'ServiceId-efe1354c-ble9-48e2-a5a5-2e877c544551'}},
'endpoint_url': 'https://s3.us-south.cloud-object-storage.appdomain.cloud',
                  'guid': '953ecb71-6915-4c60-a924-9202c7c875df'
                  resource_crn': 'crn:v1:bluemix:public:cloud-object-storage:global:a/eb25e160e3a44ea19dcb6550dbb30fed:953ecb71-6915-4c60-a924-9202c7c875df::'},
              'type': 'bmcos_object_storage'}},
'metadata': {'created_at': '2022-11-16T16:14:50.135Z',
                creator_id': 'IBMid-6640043HNJ',
               'id': '8d67ca93-b475-44af-9f77-0d636fa5ffe7',
               'updated_at': '2022-11-16T16:15:06.534Z'
               'url': '/v2/spaces/8d67ca93-b475-44af-9f77-0d636fa5ffe7'}}]}
In [32]: def guid_from_space_name(client,deploy):
              space = client.spaces.get_details()
              return (next(item for item in space['resources'] if item['entity']['name']==deploy)['metadata']['id'])
           space_uid = guid_from_space_name(client, 'digitclasssification')
           print("Space UID = " + space_uid)
```

```
Space UID = 8d67ca93-b475-44af-9f77-0d636fa5ffe7
```

Tn [35]:

client.set.default_space(space_uid)

Out[35]: 'SUCCESS'

In [36]

client.software_specifications.list(limit=100)

NAME ASSET_ID TYPE default_py3.6 0062b8c9-8b7d-44a0-a9b9-46c416adcbd9 base 020d69ce-7ac1-5e68-ac1a-31189867356a kernel-spark3.2-scala2.12 base pytorch-onnx_1.3-py3.7-edt 069ea134-3346-5748-b513-49120e15d288 base scikit-learn_0.20-py3.6 09c5a1d0-9c1e-4473-a344-eb7b665ff687 spark-mllib_3.0-scala_2.12 09f4cff0-90a7-5899-b9ed-1ef348aebdee pytorch-onnx_rt22.1-py3.9 0b848dd4-e681-5599-be41-b5f6fccc6471 ai-function_0.1-py3.6 0cdb0f1e-5376-4f4d-92dd-da3b69aa9bda base 0e6e79df-875e-4f24-8ae9-62dcc2148306 shiny-r3.6 base tensorflow_2.4-py3.7-horovod 1092590a-307d-563d-9b62-4eb7d64b3f22 base 10ac12d6-6b30-4ccd-8392-3e922c096a92 pytorch_1.1-py3.6 tensorflow_1.15-py3.6-ddl 111e41b3-de2d-5422-a4d6-bf776828c4b7 autoai-kb_rt22.2-py3.10 125b6d9a-5b1f-5e8d-972a-b251688ccf40 base runtime-22.1-pv3.9 12b83a17-24d8-5082-900f-0ab31fbfd3cb hase 154010fa-5b3b-4ac1-82af-4d5ee5abbc85 scikit-learn_0.22-py3.6 base 1b70aec3-ab34-4b87-8aa0-a4a3c8296a36 default_r3.6 base pytorch-onnx_1.3-py3.6 1bc6029a-cc97-56da-b8e0-39c3880dbbe7 kernel-spark3.3-r3.6 1c9e5454-f216-59dd-a20e-474a5cdf5988 pytorch-onnx_rt22.1-py3.9-edt 1d362186-7ad5-5b59-8b6c-9d0880bde37f base tensorflow_2.1-py3.6 1eb25b84-d6ed-5dde-b6a5-3fbdf1665666 base 20047f72-0a98-58c7-9ff5-a77b012eb8f5 spark-mllib 3.2 base tensorflow_2.4-py3.8-horovod 217c16f6-178f-56bf-824a-b19f20564c49 runtime-22.1-py3.9-cuda 26215f05-08c3-5a41-a1b0-da66306ce658 do_py3.8 295addb5-9ef9-547e-9bf4-92ae3563e720 2aa0c932-798f-5ae9-abd6-15e0c2402fb5 autoai-ts 3.8-pv3.8 hase 2b73a275-7cbf-420b-a912-eae7f436e0bc tensorflow 1.15-pv3.6 base kernel-spark3.3-py3.9 2b7961e2-e3b1-5a8c-a491-482c8368839a base pytorch_1.2-py3.6 2c8ef57d-2687-4b7d-acce-01f94976dac1 spark-mllib_2.3 2e51f700-bca0-4b0d-88dc-5c6791338875 pytorch-onnx_1.1-py3.6-edt 32983cea-3f32-4400-8965-dde874a8d67e base 36507ebe-8770-55ba-ab2a-eafe787600e9 base spark-mllib_3.0-py37 390d21f8-e58b-4fac-9c55-d7ceda621326 base spark-mllib 2.4 396b2e83-0953-5b86-9a55-7ce1628a406f autoai-ts_rt22.2-py3.10 base xgboost 0.82-pv3.6 39e31acd-5f30-41dc-ae44-60233c80306e base

pytorch-onnx_1.1-py3.6	50f95b2a-bc16-43bb-bc94-b0bed208c60b	base
autoai-ts_3.9-py3.8	52c57136-80fa-572e-8728-a5e7cbb42cde	base
spark-mllib_2.4-scala_2.11	55a70f99-7320-4be5-9fb9-9edb5a443af5	base
spark-mllib_3.0	5c1b0ca2-4977-5c2e-9439-ffd44ea8ffe9	base
autoai-obm_2.0	5c2e37fa-80b8-5e77-840f-d912469614ee	base
spss-modeler_18.1	5c3cad7e-507f-4b2a-a9a3-ab53a21dee8b	base
cuda-py3.8	5d3232bf-c86b-5df4-a2cd-7bb870a1cd4e	base
autoai-kb_3.1-py3.7	632d4b22-10aa-5180-88f0-f52dfb6444d7	base
pytorch-onnx_1.7-py3.8	634d3cdc-b562-5bf9-a2d4-ea90a478456b	base
spark-mllib_2.3-r_3.6	6586b9e3-ccd6-4f92-900f-0f8cb2bd6f0c	base
tensorflow_2.4-py3.7	65e171d7-72d1-55d9-8ebb-f813d620c9bb	base
spss-modeler_18.2	687eddc9-028a-4117-b9dd-e57b36f1efa5	base
pytorch-onnx_1.2-py3.6	692a6a4d-2c4d-45ff-a1ed-b167ee55469a	base
spark-mllib_2.3-scala_2.11	7963efe5-bbec-417e-92cf-0574e21b4e8d	base
spark-mllib_2.4-py37	7abc992b-b685-532b-a122-a396a3cdbaab	base
caffe_1.0-py3.6	7bb3dbe2-da6e-4145-918d-b6d84aa93b6b	base
pytorch-onnx_1.7-py3.7	812c6631-42b7-5613-982b-02098e6c909c	base
cuda-py3.6	82c79ece-4d12-40e6-8787-a7b9e0f62770	base
tensorflow_1.15-py3.6-horovod	8964680e-d5e4-5bb8-919b-8342c6c0dfd8	base
hybrid_0.1	8c1a58c6-62b5-4dc4-987a-df751c2756b6	base
pytorch-onnx_1.3-py3.7	8d5d8a87-a912-54cf-81ec-3914adaa988d	base
caffe-ibm_1.0-py3.6	8d863266-7927-4d1e-97d7-56a7f4c0a19b	base
spss-modeler_17.1	902d0051-84bd-4af6-ab6b-8f6aa6fdeabb	base
do_12.10	9100fd72-8159-4eb9-8a0b-a87e12eefa36	base
do_py3.7	9447fa8b-2051-4d24-9eef-5acb0e3c59f8	base
spark-mllib_3.0-r_3.6	94bb6052-c837-589d-83f1-f4142f219e32	base
cuda-py3.7-opence	94e9652b-7f2d-59d5-ba5a-23a414ea488f	base
nlp-py3.8	96e60351-99d4-5a1c-9cc0-473ac1b5a864	base
cuda-py3.7	9a44990c-1aa1-4c7d-baf8-c4099011741c	base
hybrid_0.2	9b3f9040-9cee-4ead-8d7a-780600f542f7	base
spark-mllib_3.0-py38	9f7a8fc1-4d3c-5e65-ab90-41fa8de2d418	base
autoai-kb_3.3-py3.7	a545cca3-02df-5c61-9e88-998b09dc79af	base
spark-mllib_3.0-py39	a6082a27-5acc-5163-b02c-6b96916eb5e0	base
runtime-22.1-py3.9-do	a7e7dbf1-1d03-5544-994d-e5ec845ce99a	base
default_py3.8	ab9e1b80-f2ce-592c-a7d2-4f2344f77194	base
tensorflow_rt22.1-py3.9	acd9c798-6974-5d2f-a657-ce06e986df4d	base
kernel-spark3.2-py3.9	ad7033ee-794e-58cf-812e-a95f4b64b207	base
autoai-obm_2.0 with Spark 3.0	af10f35f-69fa-5d66-9bf5-acb58434263a	base
default_py3.7_opence	c2057dd4-f42c-5f77-a02f-72bdbd3282c9	base
tensorflow_2.1-py3.7	c4032338-2a40-500a-beef-b01ab2667e27	base
do_py3.7_opence	cc8f8976-b74a-551a-bb66-6377f8d865b4	base
spark-mllib_3.3	d11f2434-4fc7-58b7-8a62-755da64fdaf8	base
autoai-kb_3.0-py3.6	d139f196-e04b-5d8b-9140-9a10ca1fa91a	base
spark-mllib_3.0-py36	d82546d5-dd78-5fbb-9131-2ec309bc56ed	base
autoai-kb_3.4-py3.8	da9b39c3-758c-5a4f-9cfd-457dd4d8c395	base
•		

```
tensorflow_2.1-py3.7-horovod
                                            e384fce5-fdd1-53f8-bc71-11326c9c635f base
          default_py3.7
                                             e4429883-c883-42b6-87a8-f419d64088cd
          do_22.1
                                             e51999ba-6452-5f1f-8287-17228b88b652
          autoai-obm_3.2
                                             eae86aab-da30-5229-a6a6-1d0d4e368983 base
                                             f65bd165-f057-55de-b5cb-f97cf2c0f393 base
          tensorflow_rt22.2-py3.10
                                             f686cdd9-7904-5f9d-a732-01b0d6b10dc5 base
          do 20.1
          pytorch-onnx_rt22.2-py3.10-edt f8a05d07-e7cd-57bb-a10b-23f1d4b837ac base
          scikit-learn_0.19-py3.6
                                             f963fa9d-4bb7-5652-9c5d-8d9289ef6ad9 base
          tensorflow_2.4-py3.8
                                             fe185c44-9a99-5425-986b-59bd1d2eda46 base
In [38]: software_space_uid = client.software_specifications.get_uid_by_name('tensorflow_rt22.1-py3.9')
           software_space_uid
Out[38]: 'acd9c798-6974-5d2f-a657-ce06e986df4d'
           model_details = client.repository.store_model(model='handwritten-digit-recognition-model_new.tgz',meta_props={
               client.repository.ModelMetaNames.NAME:"CNN Digit recognition model",
client.repository.ModelMetaNames.TYPE:"tensorflow_2.7",
               {\tt client.repository.ModelMetaNames.SOFTWARE\_SPEC\_UID:software\_space\_uid}
           })
In [40]: model_details
Out[40]: {'entity': {'hybrid_pipeline_software_specs': [],
            'software_spec': {'id': 'acd9c798-6974-5d2f-a657-ce06e986df4d', 
'name': 'tensorflow_rt22.1-py3.9'}, 
'type': 'tensorflow_2.7'},
           'metadata': {'created_at': '2022-11-17T09:30:09.906Z',
            'id': '27a4d1d3-c733-4917-8fa8-6873fea963af',
             'modified_at': '2022-11-17T09:30:12.712Z',
            'name': 'CNN Digit recognition model',
            'owner': 'IBMid-6640043HNJ',
            'resource_key': '4a2dec75-86c5-4b2a-bb87-1a421b4ac3e5',
            'space_id': '8d67ca93-b475-44af-9f77-0d636fa5ffe7'},
           'system': {'warnings': []}}
In [41]:
           model_id = client.repository.get_model_id(model_details)
           model id
Out[41]: '27a4d1d3-c733-4917-8fa8-6873fea963af'
           client.repository.download(model_id, 'DigitRecog_IBM_model.tar.gz')
          Successfully saved model content to file: 'DigitRecog IBM model.tar.gz'
Out[42]: '/home/wsuser/work/models/DigitRecog_IBM_model.tar.gz'
In [43]: ls
          DigitRecog IBM model.tar.gz
                                                          mnistCNN.h5
          handwritten-digit-recognition-model_new.tgz
In [54]:
           from tensorflow.keras.models import load model
           from keras.preprocessing import image
           from PIL import Image
           import numpy as np
In [55]:
           model = load_model("mnistCNN.h5")
In [70]:
           import os, types
           import pandas as pd
           from botocore.client import Config
           import ibm_boto3
           def __iter__(self): return 0
           # @hidden cell
           # The following code accesses a file in your IBM Cloud Object Storage. It includes your credentials.
           # You might want to remove those credentials before you share the notebook.
           cos_client = ibm_boto3.client(service_name='s3
               ibm_api_key_id='0RQZsjyJL-OgB_JxaoYAECf5_gIBTNrc7xqb7RR37fL',
ibm_auth_endpoint="https://iam.cloud.ibm.com/oidc/token",
               config=Config(signature version='oauth'),
               endpoint_url='https://s3.private.us.cloud-object-storage.appdomain.cloud')
           bucket = 'digitrecognition-donotdelete-pr-2k6azacjnc2rlg'
           object_key = '1.png
           streaming body 2 = cos client.get object(Bucket=bucket, Key=object key)['Body']
```

```
# Your data file was Loaded into a botocore.response.StreamingBody object.
# Please read the documentation of time_boto3 and pandas to Learn more about the possibilities to Load the data.
# time_boto3 documentation: https://bm.ada.pydata.org/

In [72]: img = Image.open(streaming_body_2).convert("L")

In [73]: img

Out[73]: 1

In [74]: im2arr = np.array(img)
im2arr = im2arr.reshape(1, 28, 28, 1)

In [75]: pred = model.predict(im2arr)
print(pred)

[72]: [1314039e-21 2.6224549e-03 6.3633642e-08 4.8273892e-09 3.3701071e-12
6.5930143e-13 1.0623747e-19 2.3061200e-04 2.0724081e-13 9.9714690e-01]

In [76]: print(np.argmax(pred, axis=1))
[9]

In []:
```

HOME PAGE(HTML) – index.html

```
templates > ♥ Index.html > ♥ html > ♥ head > ♥ script
  1
       <html>
       <head>
  2
         <title>Digit Recognition WebApp</title>
  3
         <meta name="viewport" content="width=device-width">
  4
       <script>
  5
  6
           function preview() {
             frame.src=URL.createObjectURL(event.target.files[0]);
  7
  8
             $(document).ready(function() {
  9
                   $('#clear button').on('click', function() {
 10
                        $('#image').val('');
 11
                        $('#frame').attr('src',"");
 12
 13
                      });
                 });
 14
         </script>
 15
         <style>
 16
           *{
 17
           margin:0;
 18
           padding: 0;
 19
           font-family: sans-serif;
 20
 21
 22
       .banner{
 23
           width: 100%;
 24
           height: 100vh;
 25
           background-color: DEB887;
 26
           background-size:cover;
 27
 28
 29
       .navbar{
 30
           width: 85%;
 31
           margin: auto;
 32
           padding: 35px 0;
 33
           display: flex;
 34
           align-items: center;
 35
           justify-content: space-between;
 36
 37
```

```
section div button{
71
          background-color: ■gray;
72
73
          width:100px;
74
          margin-top: 20px;
75
          margin-left: 15px;
76
          height: 20px;
77
78
      section p{
          text-align: center;
79
          font-size: 20px;
80
          font-weight: 400;
81
82
      section form img{
83
          border: 1px solid ■black;
84
85
          background-color: □white;
86
87
      section {
          margin-top: 30px;
88
89
90
      section label{
          margin-left:70px;
91
92
          margin-top: 30px;
93
94
        </style>
      </head>
95
      <body>
        <div class="banner">
97
98
        <div class="navbar">
99
        <h1 class="welcome">IBM PROJECT</h1>
        <div id="team_id">TEAM ID : PNT2022TMID11565</div>
100
101
          <a href="index.html">Home</a>
102
          <a href="C:\Users\Anand\Desktop\project in ibm\templates\about.html">about</a>
103
104
        105
        </div>
106
        <section id="title">
          <h4 class="heading">A Novel Method For Handwritten Digit Recognition system
107
```

```
<a href="C:\Users\Anand\Desktop\project in ibm\templates\about.html">about</a>
        104
        </div>
105
        <section id="title">
106 ∨
107
          <h4 class="heading">A Novel Method For Handwritten Digit Recognition system</h4>
108
109
          <br><br><br>>
110 ∨
          >
          MAIN PROJECT
111
112
          113
          <br>
        </section>
114
115 ∨
       <section id="content">
              <div >
116 ∨
117 ∨
              <form action="/predict" method="POST" enctype="multipart/form-data">
118
              <label>Select a image:</label>
              <input id="image" type="file" name="image" accept="image/png, image/jpeg" onchange="preview()"><br><ing id="frame" src="" width="100px" height="100px"/>
119
120
121 ∨
               <div class="buttons div">
122
                  <button type="submit" id="predict button">Predict</button>
                  <button type="button" id="clear_button">&nbsp Clear &nbsp</button>
123
                </div>
124
125
              </form>
126
              </div>
127
        </section>
128
       </div>
     </body>
129
130 </html>
```

PREDICT PAGE (HTML) - predict.html

```
k!DOCTYPE html>
 1
 2
     <html lang="en">
     <head>
 3
          <meta charset="UTF-8">
 4
          <title>Prediction</title>
 5
     </head>
 6
 7
     <style>
 8
         body{
 9
          background-color: ■ Tomato;
10
          background-repeat: no-repeat;
11
          background-size: cover;
12
13
14
          #rectangle{
          width:400px;
15
          height:150px;
16
          background-color: ■#5796a5;
17
          border-radius: 25px;
18
          position:absolute;
19
          margin-top: 200px;
20
          top:25%;
21
          left:50%;
22
          transform:translate(-50%,-50%);
23
24
25
          #ans{
           text-align: center;
26
           font-size: 40px;
27
           margin: 0 auto;
28
           padding: 3% 5%;
29
           margin-top: 20px;
30
           color: □white;
31
32
33
     .navbar{
34
         width: 85%;
35
         margin: auto;
36
          padding: 35px 0;
37
```

```
padding: 35px 0;
37
          display: flex;
38
          align-items: center;
39
         justify-content: space-between;
40
41
     .welcome{
42
          cursor: pointer;
43
44
     .navbar ul li{
45
         list-style: none;
46
         display: inline-block;
47
         margin: 0 20px;
48
         position: relative;
49
50
     .navbar ul li a{
51
         text-decoration: none;
52
         text-transform: uppercase;
53
54
     .navbar ul li::after{
55
          content: '';
56
         height: 3px;
57
         width: 0;
58
         background: #009688;
59
          position: absolute;
60
         left: 0;
61
62
         bottom: -10px;
63
     .navbar ul li:hover::after{
64
         width: 100%;
65
66
     .heading{
67
         text-align: center;
68
         text-transform: uppercase;
69
70
71
     </style>
72
     <body>
73
```

```
</style>
<body>
   <div class="banner">
       <div class="navbar">
       <h1 class="welcome">IBM PROJECT</h1>
       <div id="team_id">TEAM ID : PNT2022TMID11565</div>
       <l
        <a href="index.html">Home</a>
        <a href="C:\Users\Anand\Desktop\project in ibm\templates\about.html">about</a>
       </div>
   <div id="rectangle">
       <h1 id="ans">Predicted Number : {{num}}</h1>
   </div>
</body>
</html>
```

FLASK APP - app.py

```
    abb.bh > ...

      import numpy as np
 1
 2
      import os
     from PIL import Image
 3
      from flask import Flask, request, render template, url for
 4
      from werkzeug.utils import secure filename, redirect
      from gevent.pywsgi import WSGIServer
 6
      from keras.models import load model
 7
 8
      from keras.preprocessing import image
      from flask import send from directory
 9
     UPLOAD FOLDER = 'upload'
10
      app = Flask( name )
11
      app.config['UPLOAD FOLDER'] = UPLOAD FOLDER
12
      model = load model('mnistCNN.h5')
13
14
     @app.route('/')
      def index():
15
          return render template('index.html')
16
      @app.route('/predict', methods=['GET', 'POST'])
17
      def upload():
18
          if request.method == "POST":
19
              f = request.files["image"]
20
              filepath = secure filename(f.filename)
21
              f.save(os.path.join(app.config['UPLOAD FOLDER'], filepath))
22
              upload img = os.path.join(UPLOAD FOLDER, filepath)
23
              img = Image.open(upload img).convert("L")
24
25
              img = img.resize((28, 28))
              im2arr = np.array(img)
26
              im2arr = im2arr.reshape(1, 28, 28, 1)
27
              pred = model.predict(im2arr)
28
29
              num = np.argmax(pred, axis=1)
              return render template('/predict.html', num=str(num[0]))
30
      if name == ' main ':
31
          app.run(debug=True, threaded=False)
32
```

SCREENSHOTS:

IBM PROJECT TEAM ID : PNT2022TMID11565 HOME ABOUT

A NOVEL METHOD FOR HANDWRITTEN DIGIT RECOGNITION SYSTEM

MAIN PROJECT

Select a image: Choose File 4.png

Predict Clear

GITHUB LINK:

https://github.com/IBM-EPBL/IBM-Project-34909-1660279371