Department of Computer Science and Engineering

(Autonomous Scheme 2019)

REPORT SUBMITTED BY

Shreyash Adhikari(1BM18CS106)
Shreyas M (1BM18CS105)
Shivam Vardhaman(1BM18CS102)

Shreya Ladda (1BM18CS103)
Shubham Kumar(1BM18CS107)

Department of Computer Science and Engineering

Laboratory Certificate

This	is	to	certify	that	Mr.	/	Ms	
	,,	, , , , , , , , , , , , , , , , , , , ,		ha	s satist	facto	rily co	mpleted the course of Experiments in
Practi	cal _					_ pre	escribe	d by the Department during the year
Name	of th	e Car	ndidate:					
USN 1	No.: _				Sei	mest	er:	

Marks						
Max. Marks	Obtained					
10						
Marks in	Words					

Signature of the staff in-charge Date:

Department of Computer Science and Engineering

Laboratory Certificate

This	is	to	certify	that	Mr.	/	Ms							_
				ha	s satis	facto	rily co	mpleted	d the o	course	e of E	xperim	ents ir	ì
Practi	cal _					_ pre	scribe	d by th	e Dep	artm	ent du	ring th	ne year	-
Name	of th	e Car	 ndidate:							_				
USN 1	No.: _				Se	mesto	er:							
	N	Marks	S											

Marks						
Max. Marks	Obtained					
10						
Marks in	Words					

Signature of the staff in-charge Date:

Department of Computer Science and Engineering

Laboratory Certificate

This	is	to	certify	that	Mr.	/	Ms						
				ha	s satist	facto	rily co	mpleted	the c	ourse	of Exp	perime	nts in
Practic	cal _					_ pre	escribe	d by the	e Dep	artme	nt duri	ng the	year
Name	of th	e Car	 ndidate:							-			
USN N	No.: _				Se	mest	er:	······································		_			
	N	Marks	S										

Marks						
Max. Marks	Obtained					
10						
Marks in	Words					

Signature of the staff in-charge Date:

Department of Computer Science and Engineering

Laboratory Certificate

This	is	to	certify	that	Mr.	/	Ms							_
				ha	s satis	facto	rily co	ompleted	d the	course	of Ex	kperim	nents ir	1
Praction	cal _					_ pre	escribe	ed by th	e Dep	oartme	ent du	ring tl	he year	r
Name	of th	e Car	ndidate:							_				
USN 1	No.: _				Se	mest	er:							

Marks					
Max. Marks	Obtained				
10					
Marks in	Words				

Signature of the staff in-charge Date:

Department of Computer Science and Engineering

Laboratory Certificate

This is to certif	that Mr. / Ms
	has satisfactorily completed the course of Experiments in
Practical	prescribed by the Department during the yea
 	
Name of the Candidate	
USN No.:	Semester:

Marks					
Max. Marks	Obtained				
10					
Marks in	Words				

Signature of the staff in-charge Date:

Verilog Program List 19CSPC34

Laboratory Manual

Serial No.	Title
110.	CYCLE I
	Structural Modeling
1.	Write HDL implementation for the following Logic
	a. AND/OR/NOT
	Simulate the same using structural model and depict the timing diagram for valid inputs.
2.	Write HDL implementation for the following Logic
	a. NAND/NOR
	Simulate the same using structural model and depict the timing diagram for valid inputs.
3.	Write HDL implementation for the following Logic
	Simulate the same using structural model and depict the timing diagram for valid inputs.
4.	Write HDL implementation for a 4:1 Multiplexer. Simulate the same using structural model and depict the timing diagram for valid inputs.
5.	Write HDL implementation for a 2-to-4 decoder. Simulate the same using structural model and depict the timing diagram for valid inputs.

6.	Write HDL implementation for a 4-to-2 encoder. Simulate the same using structural model and depict the timing diagram for valid inputs.
	CYCLE II Behavior Modeling
7.	Write HDL implementation for a RS flip-flop using behavioral model. Simulate the same using structural model and depict the timing diagram for valid inputs.
8.	Write HDL implementation for a JK flip-flop using behavioral model. Simulate the same using structural model and depict the timing diagram for valid inputs.
9.	Write HDL implementation for a 4-bit right shift register using behavioral model. Simulate the same using structural model and depict the timing diagram for valid inputs.
10.	Write HDL implementation for a 3-bit up-counter using behavioral model. Simulate the same using structural model and depict the timing diagram for valid inputs.
	CYCLE III
	Dataflow Modeling
11.	Write HDL implementation for AND/OR/NOT gates using data flow model. Simulate the same using structural model and depict the timing diagram for valid inputs.
12.	Write HDL implementation for a 3-bit full adder using data flow model. Simulate the same using structural model and depict the timing diagram for valid inputs.

CLASS: III SEMESTER YEAR: 2019-20

Expt. No.	TITLE	Max. Marks	Marks Obtained	Signature
1.	K-Map and Quine Mcclusky Method	2		
2.	AND/OR/NOT			
3.	NAND/NOR			
4.	Logic diagram			
5.	Multiplexer			
6.	Decoder			
7.	Encoder	3		
8.	RS			
9.	JK			
10.	Shift right			
11.	Counter			
12.	AND/OR/NOT – data flow			
13.	3-bit full adder			
	Test: Viva – 2 Marks + Writeup – 1 Mark +Execution – 2 Marks	5		
	TOTAL MARKS	10		

CLASS: III SEMESTER YEAR: 2019-20

Expt. No.	TITLE	Max. Marks	Marks Obtained	Signature
14.	K-Map and Quine Mcclusky Method	2		
15.	AND/OR/NOT			
16.	NAND/NOR]		
17.	Logic diagram			
18.	Multiplexer			
19.	Decoder			
20.	Encoder	3		
21.	RS			
22.	JK			
23.	Shift right			
24.	Counter			
25.	AND/OR/NOT – data flow			
26.	3-bit full adder			
	Test: Viva – 2 Marks + Writeup – 1 Mark +Execution – 2 Marks	5		
_	TOTAL MARKS	10		

CLASS: III SEMESTER YEAR: 2019-20

Expt. No.	TITLE	Max. Marks	Marks Obtained	Signature
27.	K-Map and Quine Mcclusky Method	2		
28.	AND/OR/NOT			
29.	NAND/NOR			
30.	Logic diagram]		
31.	Multiplexer			
32.	Decoder			
33.	Encoder	3		
34.	RS			
35.	JK			
36.	Shift right			
37.	Counter]		
38.	AND/OR/NOT – data flow]		
39.	3-bit full adder			
	Test: Viva – 2 Marks + Writeup – 1 Mark +Execution – 2 Marks	5		
	TOTAL MARKS	10		
		•		

CLASS: III SEMESTER YEAR: 2019-20

Expt. No.	TITLE	Max. Marks	Marks Obtained	Signature
40.	K-Map and Quine Mcclusky Method	2		
41.	AND/OR/NOT			
42.	NAND/NOR			
43.	Logic diagram			
44.	Multiplexer			
45.	Decoder			
46.	Encoder	3		
47.	RS			
48.	JK			
49.	Shift right			
50.	Counter			
51.	AND/OR/NOT – data flow			
52.	3-bit full adder			
	Test: Viva – 2 Marks + Writeup – 1 Mark +Execution – 2 Marks	5		
	TOTAL MARKS	10		

CLASS: III SEMESTER YEAR: 2019-20

Expt. No.	TITLE	Max. Marks	Marks Obtained	Signature
53.	K-Map and Quine Mcclusky Method	2		
54.	AND/OR/NOT			
55.	NAND/NOR]		
56.	Logic diagram			
57.	Multiplexer			
58.	Decoder			
59.	Encoder	3		
60.	RS			
61.	JK			
62.	Shift right			
63.	Counter			
64.	AND/OR/NOT – data flow			
65.	3-bit full adder			
	Test: Viva – 2 Marks + Writeup – 1 Mark +Execution – 2 Marks	5		
_	TOTAL MARKS	10		
		•		

Verilog Program List-19CSPC34 Rubrics

Sl.No	Criteria	Excellent	Good	Average	Max Score
A	Design & specifications	1	0.5	0.25	1
В	Expected output	2	1	0.5	2
		Record			
С	Simulation/ Conduction of the experiment	3	2	1	3
D	K-Map and Quine Mcclusky Method	2	1	0.5	2
Viva				2	
Total				10	

STRUCTURAL MODELING Experiment 1

- 1. Write HDL implementation for the following Logic
 - a. AND/OR/NOT

Simulate the same using structural model and depict the timing diagram for valid inputs.

MAIN MODULE

```
module gates(input a, b, output [2:0]y); assign y[2]= a & b; // AND gate assign y[1]= a | b; // OR gate assign y[0]= \sima; // NOT gate endmodule
```

TESTBENCH MODULE

```
module gates tb;
wire [2:0]y;
reg a, b;
gates dut(a,b,y);
initial
begin
                      a = 1'b0;
                      b = 1'b0;
                      #50;
                      a = 1'b0;
                      b = 1'b1;
                      #50;
                      a = 1'b1;
                      b = 1'b0;
                      #50;
                      a = 1'b1;
                      b = 1'b1;
                       #50;
```

end

endmodule

Write HDL implementation for the following Logic

a. NAND/NOR

Simulate the same using structural model and depict the timing diagram for valid inputs.

MAIN MODULE

```
module fa(a,b,cin,s,cout);
input a,b,cin;
output s,cout;
assign s =a^b^cin;
assign cout = (a&b) | (b&cin) | (cin&a);
endmodule

TEST MODULE
module fa_test;
reg a,b,cin;
```

```
module fa_test;
reg a,b,cin;
wire s, cout;
fa f1(a,b,cin,s,cout);
initial
begin
a=1; b=1; cin=0;
#5
a=1; b=1; cin=1;
#5
a=0; b=1; cin=0;
#100 $finish;
end
endmodule
```


Write HDL implementation for the following Logic

Simulate the same using structural model and depict the timing diagram for valid inputs.

```
MAIN MODULE
```

```
\label{eq:module} \begin{array}{l} \textbf{module} \ addor(A,B,C,D,Y);\\ \textbf{input} \ A,B,C,D;\\ \textbf{output} \ Y;\\ \textbf{wire} \ and\_opl, and\_op2;\\ \textbf{and} \ gl(and\_opl,A,B);\\ \textbf{and} \ g2(and\_op2,C,D); \textit{// g2 represents lower AND}\\ \textbf{or} \ g3(Y,and\_opl,and\_op2); \textit{// g3 represents the OR gate}\\ \textbf{endmodule} \end{array}
```

TEST MODULE

```
module test_andor;
reg a,b,c,d;
wire y;
addor ao(a,b,c,d,y);
initial
begin
a=0; b=1; c=1; d=1; #10
a=0; b=0; c=1; d=0; #10
$finish;
end
endmodule
```


Write HDL implementation for a 4:1 Multiplexer. Simulate the same using structural model and depict the timing diagram for valid inputs.

MAIN MODULE

```
module Multiplexer4to1(Do, Din, En);
input En;
input [3:0] Din;
output Do;
reg [1:0]Do;
always @ (En or Din)
begin
if (En)
begin
case (Din)
         4'b0001: Do = 2'b00;
         4'b0010: Do = 2'b01;
         4'b0100: Do = 2'b10;
         4'b1000: Do = 2'b11;
default: Do=2'bzz;
endcase
end
end
endmodule
```

TESTBENCH MODULE

```
module multiplexer tb;
reg [3:0] Din;
reg En;
wire Do;
  Multiplexer4to1 mux(
     .Do(Do),
    .Din(Din),
    .En(En)
  );
initial begin
    // Initialize Inputs
    En = 1;
    Din = 4'b0001; #100;
    Din = 4'b0010; #100;
    Din = 4'b0100; #100;
    Din = 4'b1000; #100;
end
endmodule
```


Write HDL implementation for a 2-to-4 decoder. Simulate the same using structural model and depict the timing diagram for valid inputs.

MAIN MODULE

```
module decoder case(Do, Din, En);
input En;
input [1:0] Din;
output [3:0]Do;
reg [3:0]Do;
always @ (En or Din)
begin
if (En)
begin
case (Din)
         2'b00: Do = 4'b0001;
         2'b01: Do = 4'b0010;
         2'b10: Do = 4'b0100;
         2'b11: Do = 4'b1000;
default: Do=4'bzzzz;
endcase
end
end
endmodule
```

TEST BENCH MODULE

```
module decoder tb v;
reg [1:0] Din;
reg En;
wire [3:0] Do;
decoder case uut(
     .Do(Do),
    .Din(Din),
    .En(En)
  );
initial begin
    // Initialize Inputs
    En = 1;
    Din = 2'b00; #100;
    Din = 2'b01; #100;
     Din = 2'b10; #100;
    Din = 2'b11; #100;
end
endmodule
```


Write HDL implementation for a 4-to-2 encoder. Simulate the same using structural model and depict the timing diagram for valid inputs.

MAIN MODULE

```
module Encoder(Do, Din, En);
       input En;
       input [3:0] Din;
       output [1:0]Do;
       reg [1:0]Do;
       always @ (En or Din)
       begin
       if (En)
       begin
       case (Din)
                4'b0001: Do = 2'b00;
                4'b0010: Do = 2'b01;
                4'b0100: Do = 2'b10;
                4'b1000: Do = 2'b11;
       default: Do=2'bzz;
       endcase
       end
       end
       endmodule
TESTBENCH MODULE
       module encoder tb v;
       reg [3:0] Din;
       reg En;
       wire [1:0] Do;
         Encoder uut(
           .Do(Do),
           .Din(Din),
           .En(En)
         );
       initial begin
           // Initialize Inputs
           En = 1:
           Din = 4'b0001; #100;
           Din = 4'b0010; #100;
           Din = 4'b0100; #100;
           Din = 4'b1000; #100;
       end
       endmodule
```


BEHAVIOR MODELING

Experiment 7

Write HDL implementation for a SR flip-flop using behavioral model. Simulate the same using structural model and depict the timing diagram for valid inputs.

A=2'b00; #10 A=2'b01;#10 A=2'b10;#10 A=2'b11;#20 \$finish;

end endmodule

```
MAIN MODULE
module SR FF (sr, clk, q, qb);
input [1:0] sr;
input clk;
output reg q=1'b0;
output reg qb;
always @ (posedge clk)
begin
    case (sr)
              2'b00 : q = q;
                   2'b01: q = 1'b0;
                   2'b10 : q = 1'b1 ;
                   2'b11 : q = 1'bz;
    endcase
              qb = \sim q;
    end
endmodule
TEST MODULE
module testsrflipf;
 reg [1:0] A;
 reg c;
 wire x, xb;
 SR FF srff(A,c,x,xb);
 initial c=1'b0;
 always #5 c = \sim c;
 initial
  begin
```

```
Verilog experiments, Dept. of CSE, B.M.S. College of Engineering. Page 27
```


Write HDL implementation for a JK flip-flop using behavioral model. Simulate the same using structural model and depict the timing diagram for valid inputs.

MAIN MODULE

```
module JK_FF (jk, clk, q, qb);
input [1:0] jk;
input clk;
output reg q=1'b0;
output reg qb;
always @ (posedge clk)
begin
    case (jk)
              2'b00 : q = q;
                   2'b01 : q = 1'b0 ;
                   2'b10 : q = 1'b1 ;
                   2'b11 : q = \sim q;
    endcase
              qb = q;
    end
endmodule
TEST MODULE
module testjkflipf;
 reg [1:0] A;
 reg c;
 wire x, xb;
 JK FF jkff(A,c,x,xb);
 initial c=1'b0;
 always #5 c = \sim c;
 initial
  begin
  A=2'b00; #10
  A=2'b01;#10
  A=2'b10;#10
  A=2'b11;
  #20 $finish;
  end
endmodule
```


Write HDL implementation for a 4-bit right shift register using behavioral model. Simulate the same using structural model and depict the timing diagram for valid inputs.

MAIN MODULE

```
module Rshiftregister( input clk, input clrb, input SDR, output reg [3:0] Q );
//serial in, parallel out
  always @ (posedge(clk), negedge(clrb))
  if (~clrb) Q<=4'b0000;
  else
     Q \le \{SDR, Q[3:1]\};
endmodule
TEST MODULE
module testRshiftregister;
  reg clk,clrb,SDR;
  wire [3:0]Q;
  Rshiftregister RS(clk, clrb, SDR, Q);
  initial
  begin
  clk = 1;
  clrb=0;
  SDR=1;
  #100
  clrb=1;
  SDR=1;
  #150
  SDR=0;
  #200 $finish;
//initial and always run in parallel and starts its execution at 0ns
always #5 clk=~clk;
endmodule
```


Write HDL implementation for a 3-bit up-counter using behavioral model. Simulate the same using structural model and depict the timing diagram for valid inputs.

Main Module

```
module counter behav (count,rst,clk);
input rst, clk;
output reg [2:0] count;
always @(posedge (clk))
if (rst)
count <= 3'b000;
else
count \le count + 1;
endmodule
TEST MODULE
module testmod;
reg r,c;
wire [2:0] ct;
counter behav countbeh (ct,r,c);
initial
begin
  r = 1;
  c=0:
  #100 r=0;
  #200 $finish;
//initial and always run in parallel and starts its execution at 0ns
always #5 c = \sim c;
endmodule
```


DATA FLOW MODELING

Experiment 11

Write HDL implementation for AND/OR/NOT gates using data flow model. Simulate the same using structural model and depict the timing diagram for valid inputs.

MAIN MODULE

```
module gates(input a, b, output [2:0]y); assign y[2]= a & b; // AND gate assign y[1]= a | b; // OR gate assign y[0]= \sima; // NOT gate endmodule
```

TESTBENCH MODULE

```
module gates tb;
wire [2:0]y;
reg a, b;
gates dut(.y(y), .a(a), .b(b));
initial
begin
a = 1'b0;
b = 1'b0;
#50;
a = 1'b0;
b = 1'b1;
#50;
a = 1'b1;
b = 1'b0;
#50;
a = 1'b1;
b = 1'b1;
#50;
end
endmodule
```


Write HDL implementation for a 3-bit full adder using data flow model. Simulate the same using structural model and depict the timing diagram for valid inputs.

MAIN MODULE

```
module fa(a,b,cin,s,cout);
input a,b,cin;
output s,cout;
assign s =a^b^cin;
assign cout = (a&b) | (b&cin) | (cin&a);
endmodule
```

TEST MODULE

```
module fa test;
  reg a,b,cin;
  wire s, cout;
  fa f1(a,b,cin,s,cout);
  initial
    begin
       a=1;
              b=1; cin=0;
       #5
       a=1;
              b=1; cin=1;
       #5
       a=0;
              b=1; cin=0;
       #100 $finish;
    end
endmodule
```


Signature of the staff in-charge