LICENCIATURA EM CIÊNCIAS DA COMPUTAÇÃO

COMPUTABILIDADE E COMPLEXIDADE

2. Problemas de decisão

José Carlos Costa

Dep. Matemática Universidade do Minho Braga, Portugal

 1° semestre 2023/2024

Um *problema de decisão* é uma coleção de questões, cada uma das quais admite como resposta sim ou não.

EXEMPLO

Seja, para cada $n \in \mathbb{N}$, P(n) a questão "n é um quadrado perfeito?".

O problema P consiste portanto das perguntas:

P(1): 1 é um quadrado perfeito?

P(2): 2 é um quadrado perfeito?

P(3): 3 é um quadrado perfeito?

:

Este problema pode ser visto como um *predicado* P(n), que envolve um único *parâmetro* (ou *variável*) n e cujo domínio é \mathbb{N} . Cada P(n) diz-se uma *instância* do problema.

Problemas decidíveis

DEFINIÇÃO

- Uma *solução* para um problema de decisão *P* é um algoritmo que fornece a resposta para cada instância do problema.
- Um problema que admite uma solução diz-se solúvel ou decidível.
 Caso contrário diz-se insolúvel ou indecidível.

Outros exemplos de problemas de decisão:

- Dado um número inteiro n, n é um número primo?
- ② Dados um autómato finito determinista $\mathscr A$ e uma palavra w, tem-se $w \in L(\mathscr A)$?
- **1** Dadas uma máquina de Turing \mathcal{T} e uma palavra w, tem-se $w \in L(\mathcal{T})$?
- **①** Dadas uma linguagem regular L e uma palavra w, tem-se $w \in L$?
- **5** Seja L uma linguagem recursiva. Dada uma palavra w, tem-se $w \in L$?
- **o** Dada uma palavra $w \in \{x, y\}^*$, tem-se $w \in AutoAceite$?
- **1** Dada uma máquina de Turing \mathcal{T} , será que \mathcal{T} aceita o seu código $c(\mathcal{T})$?
- **Solution** Problema da paragem: Dadas uma máquina de Turing \mathcal{T} e uma palavra w, será que \mathcal{T} pára com w?
- **Problema da aceitação:** Dadas uma máquina de Turing \mathcal{T} e uma palavra w, será que \mathcal{T} aceita w?

- Dos problemas anteriores, são decidíveis o 1, o 2, o 4 e o 5.
- Note-se que o problema 6 é indecidível devido à linguagem
 AutoAceite ser não recursiva. Não existe um algoritmo que decida
 AutoAceite. No entanto esta linguagem é recursivamente enumerável.

Diz-se então que o problema 6 é semi-decidível (isto significa que existe uma máquina de Turing que permite responder nos casos afirmativos, ou seja, nos casos em que *w* é uma palavra de *AutoAceite*).

Codificação de Problemas

Definição

Seja P um predicado de domínio D, um conjunto enumerável. Para cada $d \in D$, P(d) é uma afirmação verdadeira ou falsa. Suponhamos que existe uma aplicação injetiva $\mathscr{E}: D \longrightarrow A^*$, onde A é um alfabeto. Seja

$$L_P = \{e(d) \in A^* : P(d) \text{ \'e verdadeira}\}.$$

A linguagem L_P é dita a codificação do problema P.

Diz-se que P é um problema:

- decidível se LP é uma linguagem recursiva.
- indecidível se não é decidível.
- semi-decidível se LP é uma linguagem recursivamente enumerável.

EXEMPLO

Seja $A = \{a, b\}$ e seja P(w) a afirmação

"o número de ocorrências da letra a em w é ímpar"

- a respeito de uma palavra $w \in A^*$.
 - O problema P é decidível.

De facto, dado que w é já uma sequência (sobre o alfabeto A), pode-se considerar que w é o código de si própria, donde P pode ser codificado pela linguagem

$$L_P = \{ w \in A^* : |w|_a \text{ \'e impar} \}.$$

Ora, L_P é uma linguagem recursiva, pois é decidida pela máquina de Turing apresentada na página 42 dos slides do capítulo 1. Logo, dada uma palavra $w \in A^*$, a propriedade P(w) é decidível, ou seja, é possível determinar se w tem (ou não) um número ímpar de ocorrências da letra a.

ROBLEMA DA ACEITAÇÃO

DADOS: uma máquina de Turing \mathcal{T} e uma palavra w.

AFIRMAÇÃO: \mathcal{T} aceita w.

Teorema

O problema da aceitação é indecidível mas semi-decidível.

Demonstração: O problema da aceitação pode ser codificado pela linguagem

$$L_A = \{c(\mathcal{T})c(w) \in \{x,y\}^* : \mathcal{T} \text{ aceita } w\}.$$

Portanto, o problema da aceitação é indecidível se L_A não é recursiva.

Suponhamos, por contradição, que L_A é recursiva e mostremos que, então, a linguagem AA é recursiva.

Seja \mathscr{T}_A uma máquina de Turing que decide $oldsymbol{L_A}$ e seja

$$\mathcal{T}_{AA} = \mathcal{T}_1 \mathcal{T}_A$$

onde \mathcal{T}_1 é uma máquina de Turing, de alfabeto de entrada $\{x,y\}$, que transforma a fita da forma $\underline{\Delta}w$ em $\underline{\Delta}wc(w)$.

Verifiquemos que \mathcal{T}_{AA} decide AA:

- Por um lado, se $w \in AA$, então $w = c(\mathcal{T})$ para alguma máquina de Turing \mathcal{T} que aceita w. Logo, \mathcal{T}_{AA} aceita w dando como resultado $\underline{\Delta}1$ pois $wc(w) = c(\mathcal{T})c(w) \in \underline{L}_A$ e \mathcal{T}_A decide \underline{L}_A .
- Por outro lado, se \$\mathcal{T}_{AA}\$ dá como resultado \$\Delta\$1 para a entrada \$w\$, então \$wc(w) \in \mathbb{L}_{A}\$. Isto significa que \$wc(w) = c(\mathcal{T}')c(w')\$ para alguma máquina de Turing \$\mathcal{T}'\$ e alguma palavra \$w'\$ tais que \$\mathcal{T}'\$ aceita \$w'\$. Da definição da função de codificação resulta que \$c(w) = c(w')\$ e portanto que \$w = w' = c(\mathcal{T}')\$ o que mostra que \$w \in \mathcal{A}\$.

Conclui-se assim que \mathcal{T}_{AA} decide AA, o que é uma contradição pois já sabemos que AA não é recursiva. Portanto L_A não é recursiva e o problema da aceitação é indecidível.

Para mostrar que o problema da aceitação é semi-decidível basta notar que L_A é reconhecida pelas máquinas de Turing universais:

ullet De facto, se \mathcal{T}_U é uma máquina de Turing universal, tem-se que

$${\mathscr T}$$
 aceita w se e só se ${\mathscr T}_U$ aceita $c({\mathscr T})c(w)$.

Ou seja, $c(\mathcal{T})c(w) \in L_A$ se e só se \mathcal{T}_U aceita $c(\mathcal{T})c(w)$. Portanto, \mathcal{T}_U aceita L_A .

Isto mostra que L_A é uma linguagem recursivamente enumerável e que o problema da aceitação é semi-decidível.

DEFINIÇÃO

Sejam P e P' dois problemas de decisão, de domínios D e D' respetivamente.

Diz-se que P é redutível a P' (ou que P se reduz a P'), e escreve-se $P \leq P'$, se existe uma máquina de Turing \mathcal{R} que

• transforma cada instância P(d) do problema P numa instância P'(d') do problema P'

de tal forma que

• P(d) é verdadeira se e só se P'(d') é verdadeira.

Observações

- Note-se que a máquina de Turing \mathcal{R} da definição anterior aplica cada elemento $d \in D$ num elemento $d' \in D'$. Podemos portanto dizer que $P \leq P'$ se existe uma função computável $r : D \longrightarrow D'$ tal que P(d) é válida se e só se P'(r(d)) é válida.
- Uma formulação alternativa da definição anterior é a seguinte.
 - Sejam P e P' dois problemas de decisão e sejam $L_P \subseteq A^*$ e $L_{P'} \subseteq B^*$ codificações de P e P', respetivamente.
 - Então $P \leq P'$ se existe uma função computável $r: A^* \longrightarrow B^*$ tal que $w \in L_P$ se e só se $r(w) \in L_{P'}$.

Proposição

Sejam P e P' dois problemas de decisão tais que $P \leq P'$.

- \bullet Se P' é decidível, então P é decidível.
- \bigcirc Se P é indecidível, então P' é indecidível.
- \bigcirc Se P' é semi-decidível, então P é semi-decidível.
 - O caso da alínea a) pode ser esquematizado da seguinte forma

- Como consequência da alínea b) e do facto de já sabermos que o problema da aceitação é indecidível, pode-se provar que o problema da paragem é também indecidível (ver o Exercício 2.4).
- Podemos agora apresentar mais alguns exemplos de problemas indecidíveis.

TEOREMA

Os seguintes problemas são indecidíveis.

- **1** Aceita $_{\epsilon}(\mathcal{T})$: " \mathcal{T} aceita ϵ ".
- 2 Pára $_{\epsilon}(\mathcal{T})$: " \mathcal{T} pára com ϵ ".
- **3** AceitaNada(\mathcal{T}): " $L(\mathcal{T}) = \emptyset$ ".
- **1** AceitaTudo(\mathcal{T}): " $L(\mathcal{T}) = A^*$, onde A é o alfabeto de \mathcal{T} ".

Demonstração:

- Para mostrar que Aceita_ε é indecidível basta provar que o problema da aceitação se reduz a Aceita_ε. Dadas uma máquina de Turing 𝒯 e uma palavra w, seja
 𝒯 Escreve
 𝒯
 - $\mathcal{T}_{w} = \mathsf{Escreve}_{\mathsf{w}} \, \mathcal{T}$
 - onde Escreve_w é a MT que, começando com a palavra vazia termina com Δw . Então

 \mathcal{T} aceita $\mathbf{w} \Leftrightarrow \mathcal{T}_{\mathbf{w}}$ aceita ϵ .

Como a função $(\mathcal{F}, w) \mapsto \mathcal{T}_w$ é computável, deduz-se que Aceitação \leq Aceita $_{\epsilon}$ e conclui-se que Aceita $_{\epsilon}$ é indecidível.

Dado que já sabemos que o problema da paragem é indecidível, basta provar que esse problema se reduz a Pára_{ϵ}. Ora, dadas uma MT \mathcal{F} e uma palavra w, tem-se que

 \mathcal{F} pára com $\mathbf{w} \Leftrightarrow \mathcal{T}_{\mathbf{w}}$ pára com ϵ .

Logo Paragem < Pára_e, donde se conclui que Pára_e é indecidível.

Mostremos que Aceita $_{\epsilon}$ se reduz a \neg AceitaNada. Dada uma MT \mathcal{T} , seja

$$\mathcal{T}_{\emptyset} = \mathsf{ApagaFita} \; \mathcal{T}$$

onde ApagaFita é a MT que transforma Δx em Δ . Então

 \mathcal{T} aceita $\epsilon \Leftrightarrow \mathcal{T}_{M}$ aceita alguma palavra.

Como a função $\mathcal{T} \mapsto \mathcal{T}_{M}$ é computável, deduz-se que $Aceita_{\epsilon} \leq \neg Aceita Nada$. Como $Aceita_{\epsilon}$ é indecidível, $\neg Aceita Nada$ também o é. Logo AceitaNada também é indecidível.

Note-se que

 \mathcal{T} aceita $\epsilon \Leftrightarrow \mathcal{T}_{\emptyset}$ aceita A^* .

Logo Aceita \in AceitaTudo, donde AceitaTudo é indecidível.

COROLÁRIO

Os problemas

- \neg AceitaNada(\mathscr{T}): " $L(\mathscr{T}) \neq \emptyset$ ";
- ② ¬AceitaTudo(\mathcal{T}): " $L(\mathcal{T}) \neq A^*$, onde A é o alfabeto de \mathcal{T} ";

são indecidíveis.

DEFINIÇÃO

Um problema P, de domínio D, diz-se *trivial* se:

• P(d) é uma afirmação verdadeira para todo o $d \in D$,

ou

• P(d) é uma afirmação falsa para todo o $d \in D$.

Em particular, se P é um problema sobre linguagens recursivamente enumeráveis, ou seja, se

 $D = \{L : L \text{ \'e uma linguagem recursivamente enumer\'avel}\},$

então P é *trivial* se todas as linguagens de D satisfazem P ou nenhuma o satisfaz.

TEOREMA [RICE, 1953]

Se P é uma propriedade não trivial sobre linguagens recursivamente enumeráveis, então P é indecidível.

EXEMPLOS

Os problemas seguintes, sobre uma linguagem recursivamente enumerável $L \subset A^*$, são indecidíveis.

- $\bullet \in L$.
- $2 L = \emptyset.$
- **3** $L = A^*$.

Note-se que o Teorema de Rice estabelece que qualquer problema envolvendo a linguagem aceite por uma máquina de Turing, ou é trivial, ou é indecidível.

No entanto, nem todos os problemas sobre máquinas de Turing são indecidíveis, como o mostra o próximo resultado.

TEOREMA

O seguinte problema é decidível.

Escreve Não Branco: Dada uma máquina de Turing \mathcal{T} , será que \mathcal{T} escreve algum símbolo não branco quando é iniciada com a fita vazia?

Demonstração: Suponhamos que \mathcal{T} tem n estados.

Em n passos, ou \mathcal{F} atinge uma configuração de paragem ou \mathcal{F} passa duas vezes no mesmo estado q. Se até essa altura nenhum símbolo branco foi escrito, então nunca o será.

- Isto é evidente no 1° caso, ou seja, no caso de \mathcal{T} parar em menos de n passos.
- No 2° caso, \mathcal{T} repete sempre os mesmos passos entre duas passagens por q entrando em ciclo (a não ser que na segunda passagem por q o cursor esteja situado à esquerda da posição que ocupava na primeira passagem, caso em que \mathcal{T} irá atingir uma configuração de paragem).

Portanto, um algoritmo de decisão para este problema é executar $\mathcal T$ durante npassos, se não parar antes: \mathcal{F} escreve um símbolo não branco se e só se o faz durante esse período.