Stylized facts in DAX and BUX indices

Daniele Melotti

I chose to work with DAX and BUX indices. An advantage of using these two indices is that the data is provided for the same range of time, between 2002-01-02 and 2020-10-09. After uploading the data on OxMetrics, I calculated logarithmic returns for both indices, naming them ret_DAX and ret_BUX respectively.

Starting with ret_DAX, I created an Actual series plot:

Some clusters of volatility are clearly visible: in the years between 2002 and 2004, probably due to the so-called "Early 2000s recessions"; around the year 2009, due to the global financial crisis; a little while before 2012, perhaps due to the European sovereign debt crisis; and at the beginning of 2020, due to the impact of the COVID-19 outbreak.

Then, I plotted an ACF-PACF graph with 200 lags displayed:

Here it possible to notice that in the initial lags there is not a lot of statistically significant autocorrelation. However, starting from the 30th lag, there is significant autocorrelation showing up to the 150th lag. The two most significant lags are the 40th and 76th/77th ones. Finally, I plotted a distribution for ret_DAX:

This distribution is definitely non-normal. There is excess kurtosis and also negative skewness (left side).

Then I switched to Descriptive statistics and prepared Basic stats, Normality test, ARCH test, the two Box-Pierce tests, ADF test, Geweke and Porter-Hudak test, Hurst-Mandelbrot and Lo R/S tests, and Runs test:

```
---- Database information ----
Sample:
          2002-01-02 - 2020-10-09 (4767 observations)
Frequency: 1
Variables: 4
Variable
                      #obs #miss
                                      type
                                                   min
                                                               mean
                                                                                       std.dev
                                                                             max
Date
                       4767
                                0
                                      date
                                                2002-01-02
                                                                       2020-10-09
ret_DAX
                       4766
                                1 double
                                               -0.13055
                                                         0.00019438
                                                                         0.10797
                                                                                      0.014702
Constant
                       4767
                                0 double
                                                     1
                                                                1
                                                                            1
                                                                                            0
                       4767
                                0 double
                                                     1
                                                                            4767
                                                                                       1376.1
Trend
                                                               2384
Series #1/1: ret DAX
Normality Test
                   Statistic
                                  t-Test
                                              P-Value
Skewness
                    -0.14487
                                  4.0842
                                            4.4233e-05
Excess Kurtosis
                     6.4007
                                  90.246
                                              0.00000
Jarque-Bera
                     8152.4
                                     .NaN
                                              0.00000
                               182.64 [0.0000]**
ARCH 1-2 test:
                  F(2,4761) =
ARCH 1-5 test:
                 F(5,4755) =
                               160.62 [0.0000]**
ARCH 1-10 test:
                 F(10,4745)=
                               102.37 [0.0000]**
Box-Pierce Q-Statistics on Raw data
 Q(5) = 10.2912
                    [0.0673932]
 Q(10) = 15.9313
                      [0.1016153]
 Q(20) = 30.6948
                     [0.0593512]
                      [0.0000012]**
 Q(50) = 111.880
H0 : No serial correlation ==> Accept H0 when prob. is High [Q < Chisq(lag)]
Box-Pierce Q-Statistics on Squared data
 Q(5) = 1184.67
                    [0.0000000]**
 Q(10) = 2250.22
                      [0.0000000]**
                      [0.0000000]**
 Q(20) = 3703.89
 Q(50) = 5640.12
                     [0.0000000]**
H0 : No serial correlation ==> Accept H0 when prob. is High [Q < Chisq(lag)]
Hurst-Mandelbrot R/S test statistics: 1.11175
Lo R/S test statistics (q=1): 1.11998
Critical Values
90%: [0.861, 1.747]
95%: [0.809, 1.862]
99%: [0.721, 2.098]
H0: Hurst-Mandelbrot = no autocorrelation and Lo = no long-term dependence
RUNS TEST = 2.36040 [0.0182552]*
ADF Test with 3 lags
No intercept and no time trend
H0: ret DAX is I(1)
ADF Statistics: -34.8293
Asymptotic critical values, Davidson, R. and MacKinnon, J. (1993)
        1%
                  5%
                          10%
```

-2.56572 -1.94093 -1.61663

```
OLS Results
                  Coefficient
                                  t-value
y_1
                    -1.027299
                                  -34.829
                     0.012755
                                  0.50216
                     0.007279
                                 0.35255
                                 -0.50784
                     -0.007360
RSS
                     1.029106
OBS
                  4762.000000
Information Criteria (to be minimized)
               -5.600175 Shibata
                                          -5.600176
Akaike
Schwarz
                -5.594742 Hannan-Quinn
                                            -5.598266
---- Log Periodogram Regression ----
                 -0.000259742 (0.0136717) [0.9848]
d parameter
No of observations: 4766; no of periodogram points: 2382
```

From the **Basic stats**, the Mean is quite close to zero, while Standard deviation is much bigger, indicating that perhaps the Mean is not statistically significantly different from zero.

The **Normality test** confirms that there is negative skewness and excess kurtosis, as both respective p-values are statistically significant. Jarque-Bera statistic is significant as well, hence the returns from DAX don't follow a normal distribution.

Looking at the **ARCH test**, there is a lot of ARCH effect in every lag. Regarding the **Box-Pierce** on standardized residuals, there is autocorrelation only at 50 lags, while for the squared standardized residuals autocorrelation is present massively.

The **Hurst-Mandelbrot** and **Lo** statistics lay in the middle of the confidence intervals, hence they are signifying no autocorrelation and no long-term dependence.

According to the **Runs test** the null hypothesis should be rejected, namely there is some series (patterns) in ret_DAX. The **ADF** statistic is much smaller than any of the critical values (1%, 5% or 10%), therefore, the returns are stationary.

Looking at the d parameter generated by **Geweke and Porter-Hudak** test, it is negative but not statistically significant. So, according to this test, there is no long-term dependence within the series.

Switching to ret_BUX, I created the respective Actual series plot:

Here the volatility seems to be lesser compared to the one seen in ret_DAX. Peaks of volatility are recorded again around the year 2009, due to the global financial crisis; and at the beginning of 2020, due to Coronavirus outbreak.

The ACF-PACF graph:

It is visible that here there is significant autocorrelation in the first lags, especially the 1st, 2nd and 4th ones; later it tends to decrease, and then it re-appears before the 100th lag.

And here is the distribution:

In this case there is excess kurtosis and there seems to be no skewness. This series seems to be non-normally distributed but it will be checked with a Normality test.

Next step concerns the analysis of the Descriptive statistics for ret_BUX. The chosen tests are the same as for ret_DAX:

```
---- Database information ----
```

Sample: 2002-01-02 - 2020-10-09 (4689 observations)

Frequency: 1 Variables: 4

Variable	#obs	#miss	type	min	mean	max	std.dev
Date	4689	0	date	2002-01	-02	2020-10-09	
ret_BUX	4688	1	double	-0.12649	0.00033126	0.13177	0.014825
Constant	4689	0	double	1	1	1	0
Trend	4689	0	double	1	2345	4689	1353.6

Series #1/1: ret_BUX

Normality Test

	Statistic	t-Test	P-Value
Skewness	-0.28172	7.8773	3.3440e-15
Excess Kurtosis	7.6691	107.24	0.00000
Jarque-Bera	11551.	.NaN	0.00000
ARCH 1-2 test:	F(2,4683) =	350.18 [0.	0000]**
ARCH 1-5 test:	F(5,4677) =	167.02 [0.	0000 1**
ARCH 1-10 test:	F(10,4667)=	129.03 0.	0000 1**
	, , ,	-	-
Box-Pierce Q-Stat	istics on Raw	data	
Q(5) = 33.24	13 [0.000003	34]**	
Q(10) = 55.98	52 [0.000000)0]**	
Q(20) = 71.58	45 [0.000000)1]**	
0(50) = 118.3	31 [0.000000	921**	

```
H0 : No serial correlation ==> Accept H0 when prob. is High [Q < Chisq(lag)]
Box-Pierce Q-Statistics on Squared data
 Q( 5) = 1366.29 [0.0000000]**
Q( 10) = 2885.51 [0.0000000]**
                     [0.0000000]**
                     [0.0000000]**
 Q(20) = 4004.87
 Q( 50) = 4826.68 [0.0000000]**
H0 : No serial correlation ==> Accept H0 when prob. is High [Q < Chisq(lag)]
Hurst-Mandelbrot R/S test statistics: 1.27311
Lo R/S test statistics (q=1): 1.24695
Critical Values
90%: [0.861, 1.747]
95%: [0.809, 1.862]
99%: [0.721, 2.098]
H0: Hurst-Mandelbrot = no autocorrelation and Lo = no long-term dependence
RUNS TEST =-0.828551 [0.4073586]
ADF Test with 3 lags
No intercept and no time trend
H0: ret_BUX is I(1)
ADF Statistics: -33.1993
Asymptotic critical values, Davidson, R. and MacKinnon, J. (1993)
                  5%
                           10%
  -2.56572 -1.94093 -1.61663
OLS Results
                 Coefficient
                                t-value
                  -0.961613
                                -33.199
y_1
dy 1
                    0.006377
                                 0.25607
                   -0.035739
                                -1.7703
dy 2
                   -0.051156
                                -3.5051
RSS
                    1.023474
                4684.000000
Information Criteria (to be minimized)
Akaike
         -5.589120 Shibata
                                        -5.589121
Schwarz
              -5.583610 Hannan-Quinn -5.587182
---- Log Periodogram Regression ----
d parameter -0.018561 (0.0137715) [0.1777]
No of observations: 4688; no of periodogram points: 2344
```

Firstly, **Basic stats** show again a very small Mean and bigger Standard deviation, indicating that probably the Mean is not statistically significantly different from zero.

The **Normality test** actually shows that there is statistically significant negative skewness and excess kurtosis. So, there is no normality in this distribution.

In the **ARCH test** a lot of ARCH effect is underlined, while both **Box-Pierce tests** show statistically significant autocorrelation at any considered lag, both in standardized residuals and in squared standardized residuals.

The **Hurst-Mandelbrot** and **Lo** test statistics are higher than those for ret_DAX, however, still included in all 3 confidence intervals, indicating no autocorrelation and no long-term dependence. Looking at the **Runs test** there is no series embedded in these returns in opposition to what was observed in the returns of DAX. Like for ret_DAX, the **ADF** statistic is much smaller than any of the critical values, indicating the stationarity of the returns.

The d parameter from **Geweke and Porter-Hudak** test is negative, but not statistically significant. Hence, there is no long-term dependence within the series.

Here's a table summing up the results for ret_DAX and ret_BUX:

	DAX	BUX	
Basic stats	Very small Mean value and	Very small Mean value and	
	bigger Standard deviation	bigger Standard deviation	
Normality test	Non-normal distribution	Non-normal distribution	
ARCH test	ARCH effect at all considered	ARCH effect at all considered	
	lags	lags	
Box-Pierce on Standardized	Autocorrelation present only at	Autocorrelation present at all	
residuals	the 50 th lag	considered lags	
Box-Pierce on Squared	Autocorrelation present at all	Autocorrelation present at all	
standardized residuals	considered lags	considered lags	
Hurst-Mandelbrot test	Test statistic included within	Test statistic included within	
	all intervals, indicating no	all intervals, indicating no	
	autocorrelation	autocorrelation	
Lo R/S test	Test statistic included within	Test statistic included within	
	all intervals, indicating no	all intervals, indicating no	
	long-term dependence	long-term dependence	
Runs test	Series present within returns	Series not present within	
		returns	
ADF test	Stationary	Stationary	
Geweke and Porter-Hudak	No long memory	No long memory	
test			

The tests for the two series appear to have similar outcomes, apart from small differences in Runs test and Box-Pierce on Standardized residuals. This is an interesting outcome because it shows many similarities between two indices that are actually quite different, especially in terms of development.