GLOBAL

Seq_2

	gap	A	т	т	т	С	С
gap	0 ←	- -3 ←	- -6 ★	- -9 ←	12 👍	15 👍	18
т	-3	-1	-1 +	- -4 ←	- -7 →	_ -10 ←	— -13
Α	-6 •	-1 † x	-2	-2	- -5 ←	<u> </u>	- -11
т	-9 ↑	-4 † ×	1	0	0 🛧	_ -3 ↓	_ -6
т	-12 •	-7 ↑	-2 ↑	3	2 🛧	- -1 ◆	- -4
С	-15 ↑	-10 •	-5 ↑	0	2	4 ←	- 1
G	-18	-13	-8	-3	-1	1	3

Seq_1 ATTTCC

Seq_2 TATTCG

no multiple alignments

LOCAL

Seq_2

0	_	~	-
. `	\leftarrow	(1	- 1

	gap	A	т	т	т	С	С
gap	0	0	0	0	0	0	0
т	0	0	2	2	2	0	0
Α	0	2	0	1	1	1	0
т	0	0	4	2	3	0	0
т	0	0	2	6	4	2	0
С	0	0	0	3	5	6	4
G	0	0	0	0	2	4	5

Seq_1 TATTCG TATTCG

Seq_2 ATTTCC ATTTCC

two multiple alignments

```
from sequence_alignments import (
    create_submat,
    needleman_wunsch,
    smith_waterman,
    recover_align_local,
SEQ_1 = 'TATTCG'
SEQ_2 = 'ATTTCC'
MATCH = 2
MISMATCH = -1
GAP = -3
def get_alignments(
     seq_1: str = SEQ_1,
    seq_2: str = SEQ_2,
    match: int = MATCH,
    mismatch: int = MISMATCH,
    gap: int = GAP,
    Given two sequences and the match, mismatch, and gap scores,
    print all the relevant information about the global and local alignments.
     - seq_1 (str): the first sequence to be aligned
    - seq_2 (str): the second sequence to be aligned
    - gap (int): the score for a gap
    alphabet = set(seq_1 + seq_2)
    # Determine the score and traceback matrix.
    gsm, gtm = needleman_wunsch(seq_1, seq_2, sm, gap)
print('Global score matrix:', gsm)
    print('Global traceback matrix:', gtm)
    gbs = gsm[-1][-1]
print('Global alignment score:', gbs)
    oga = recover_align(gtm, seq_1, seq_2)
print('Optimal global alignment:', oga)
    # Explain if there are multiple best alignments. print('Multiple best global alignments:', 'Yes' if len(oga) > 1 else 'No')
    print()
    lsm, ltm, lbs = smith_waterman(seq_1, seq_2, sm, gap)
    print('Local score matrix:', lsm)
print('Local traceback matrix:', ltm)
    print('Local alignment score:', lbs)
    ola = recover_align_local(lsm, ltm, seq_1, seq_2)
    print('Optimal local alignment:', ola)
    # Explain if there are multiple best alignments.
print('Multiple best local alignments:', 'Yes' if len(ola) > 1 else 'No')
if __name__ == '__main__':
    get_alignments()
```