California State University Sacramento - Math 101 Quiz #8

Name: _____

- 1) (a) State the Binomial Theorem.
- (b) Prove that $0 = \sum_{k=0}^{n} (-1)^k \binom{n}{k}$ for all integers $n \ge 1$.

$$O = \sum_{k=0}^{\infty} (-1)^k \binom{n}{k}$$

- 2) Let $X = \{1, 2, ..., n\}$, $A = \{A \subseteq X : 1 \notin A\}$ and $B = \{B \subseteq X : 1 \in B\}$.
- (a) In the case that n=3, write down all of the elements of \mathcal{A} , all of the elements of \mathcal{B} , and a bijection f from \mathcal{A} to \mathcal{B} .
- (b) Give a formula for a function $f: \mathcal{A} \to \mathcal{B}$ that defines a bijection from \mathcal{A} to \mathcal{B} and is valid for every n.

3) What is the coefficient of x^3 in $(x+1)^{12}$? Simplify your answer as much as possible.

$$\binom{12}{3} = \frac{12!}{3!9!} = \frac{12 \cdot 11 \cdot 10}{3 \cdot 2} = \frac{12 \cdot 110}{6} = 220$$

4) Prove that $n2^{n-1} = \sum_{r=0}^{n} r \binom{n}{r}$ for all integers $n \ge 1$.

Let
$$y=1$$
 in $(x+y)^n = \sum_{r=0}^{\infty} {n \choose r} x^r y^{n-r}$ to get $(x+i)^n = \sum_{r=0}^{\infty} {n \choose r} x^r$

Differentiale with respect to x to get U(x+1),-1 = 5, (,) LX,-1

$$n 2^{n-1} = \sum_{r=0}^{n} \binom{n}{r} r^{-1}$$

which is equivalent to n2" = Zr(")

5) Simplify $\sum_{r=0}^{n} {n \choose r}$ as much as possible. Your final answer should involve two terms, one of which depends on n.

$$\sum_{r=1}^{n} \binom{n}{r} = \binom{n}{1} + \binom{n}{2} + \ldots + \binom{n}{n} + \binom{n}{0} - \binom{n}{0}$$

$$= 2^{n} - \binom{n}{0}$$

$$= 2^{n} - 1$$