Introduction to Machine Learning

ML-Basics Optimization

Learning goals

- Understand how the risk function is optimized to learn the optimal parameters of a model
- Understand the idea of gradient descent as a basic risk optimizer

LEARNING AS PARAMETER OPTIMIZATION

- Operationalize search for model f that matches training data best by looking for parametrization $\theta \in \Theta$ with lowest risk $\mathcal{R}_{emp}(\theta)$.
- Traverse error surface downwards; often local search from some start point to minimum (hopefully).

LEARNING AS PARAMETER OPTIMIZATION / 2

ERM optimization problem:

$$\hat{oldsymbol{ heta}} = rg \min_{oldsymbol{ heta} \in \Theta} \mathcal{R}_{\mathsf{emp}}(oldsymbol{ heta})$$

For (global) minimum $\hat{\theta}$:

$$orall oldsymbol{ heta} \in \Theta: \quad \mathcal{R}_{\mathsf{emp}}(oldsymbol{\hat{ heta}}) \leq \mathcal{R}_{\mathsf{emp}}(oldsymbol{ heta})$$

Does not imply that $\hat{\theta}$ is unique.

- Best numerical optimizer depends on problem structure
- Continuous params? Uni-modal $\mathcal{R}_{emp}(\theta)$?
- Numerical optimization not our focus here, now

LOCAL MINIMA

Definition of **local minimum** $\hat{\theta}$:

$$\exists \epsilon > 0 \; orall oldsymbol{ heta} \; ext{ with } \left\| \hat{oldsymbol{ heta}} - oldsymbol{ heta}
ight\| < \epsilon : \quad \mathcal{R}_{ ext{emp}}(\hat{oldsymbol{ heta}}) \leq \mathcal{R}_{ ext{emp}}(oldsymbol{ heta})$$

Clearly every global minimum is also a local minimum. Finding local minimum is easier than global one.

LOCAL MINIMA AND STATIONARY POINTS

If \mathcal{R}_{emp} continuously differentiable, **sufficient condition** for local minimum: $\hat{\theta}$ is **stationary**, so 0 gradient, so no local improvement possible:

$$\frac{d\mathcal{R}_{\mathsf{emp}}}{doldsymbol{ heta}}(oldsymbol{\hat{ heta}}) = 0$$

and Hessian at $\hat{\theta}$ is positive definite.

Neg. gradient points into direction of fastest local decrease; Hessian measures local curvature.

GRADIENT DESCENT

- ullet Iteratively improve current candidate $oldsymbol{ heta}^{[t]}$
- Move in direction of neg. gradient, so direction of steepest descent
- ullet Use step size / learning rate α

$$m{ heta}^{[t+1]} = m{ heta}^{[t]} - lpha rac{d\mathcal{R}_{ ext{emp}}}{dm{ heta}} (m{ heta}^{[t]})$$

Random start $oldsymbol{ heta}^{[0]}$ with $\mathcal{R}_{ ext{emp}}(oldsymbol{ heta}^{[0]}) = 76.25.$

GRADIENT DESCENT - EXAMPLE

Direction of the neg. gradient at $\theta^{[0]}$

Arrive at $heta^{[1]}$ with $\mathcal{R}_{emp}(heta^{[1]}) pprox$ 42.73. We improved: $\mathcal{R}_{emp}(heta^{[1]}) < \mathcal{R}_{emp}(heta^{[0]})$

GRADIENT DESCENT - EXAMPLE

Now iterate, do the same at $heta^{[1]}$

Now $heta^{[2]}$ has risk $\mathcal{R}_{\mathsf{emp}}(heta^{[2]}) pprox 25.08$

GRADIENT DESCENT - EXAMPLE

We iterate this until some form of convergence or termination

We arrive close to a stationary $\hat{\theta}$ which is hopefully at least a local minimum

GRADIENT DESCENT - LEARNING RATE

- Neg. gradient is direction that looks locally promising to reduce \mathcal{R}_{emp} .
- ullet Hence weights components higher in which \mathcal{R}_{emp} decreases more.
- However, the length of $-\frac{d}{d\theta}\mathcal{R}_{\text{emp}}$ measures only the local decrease rate, i.e., there are no guarantees that we will not go "too far".
- We use a learning rate α to scale the step length in each iteration. Too much can lead to overstepping and no convergence, too low leads to slow convergence.
- Usually, a simple constant rate or rate-decrease mechanisms to enforce local convergence are used.

FURTHER TOPICS

- Few models, e.g. linear regression, can be optimized analytically.
- GD is a so-called first-order method. Second-order methods (like Newton-Raphson) use the Hessian to refine the search direction for faster convergence.
- There exist many improvements of GD (momentum, ADAM), e.g., to smartly control the learn rate, to escape saddle points, to mimic second order behavior without computing the Hessian.
- If the gradient is not computed on the complete data, but instead on small, random batches, this is **stochastic gradient descent** (SGD). For large-scale problems, this is usually more efficient.

