Combining Labeled and Unlabeled Data with Co-Training

Author: Avrim Blum, Tom Mitchell

Reporter: Weigang Li

Paper's base information

- Proceedings of the 11th Annual Conference on Computational Learning Theory (COLT-98).
- <<Machine Learning>>'s author
- Director, <u>Center for Automated Learning</u> and <u>Discovery School of Computer</u> <u>Science</u> Carnegie Mellon University

- Co-Training motivation
- What's Co-Training?
- Co-Training setting
- Input and output of Co-Training
- General process of Co-Training
- Experiments and discussion
- Conclusion

Co-Training motivation

- Most machine learning techniques rely on labeled data
- But labeled data is expensive
- Unlabeled data is plentiful
- How to boost performance of a learning algorithm when only a small set of labeled data?
- Co-Training is the one of these algorithms

- Co-Training motivation
- What's Co-Training?
- Co-Training setting
- Input and output of Co-Training
- General process of Co-Training
- Experiments and discussion
- Conclusion

What's co-training

 Co-training is a weakly supervised learning paradigm in which the redundancy of the learning task is captured by training two classifiers using separate views of the same data

- Co-Training motivation
- What's Co-Training?
- Co-Training setting
- Input and output of Co-Training
- General process of Co-Training
- Experiments and discussion
- Conclusion

Co-Training setting (Where to use it)

- Dataset has a natural division of its features
- Two assumptions
 - The instances distribution is compatible with the target function
 - two classifiers label one document into same class
 - The features in one set of an instance are conditional independent of the features in the second set
 - As informative as a random document

A formal framework

 If problem setting provides redundantly sufficient features, classifier are conditional independence

```
learn f: X \to Y

where X = X_1 \times X_2

where x drawn from unknown distribution

and \exists f_1, f_2 \ (\forall x) f_1(x_1) = f_2(x_2) = f(x)
```

One practical application

- Web-page classification is an example
- CS faculty member pages or course home pages at University
- An interesting feature:
 - The text appearing on the document itself
 - The anchor text attached to hyperlinks pointing to this page

- Co-Training motivation
- What's Co-Training?
- Co-Training setting
- Input and output of Co-Training
- General process of Co-Training
- Experiments and discussion
- Conclusion

Input and output of co-training

Input:

- labeled data L (a small set of labeled web pages)
- unlabeled data U (large set of unlabeled web pages)

• Output:

Label the unlabeled data (classify the unlabeled documents)

- Co-Training motivation
- What's Co-Training?
- Co-Training setting
- Input and output of Co-Training
- General process of Co-Training
- Experiments and discussion
- Conclusion

Underlying classifier of NBC

- Naïve Bayes Classifier, can attain:
 - The posteriori probabilities

$$P(w_t|c_j) = \frac{1 + \sum_{i=1}^{|\mathcal{D}|} N(w_t, d_i) P(c_j|d_i)}{|V| + \sum_{s=1}^{|V|} \sum_{i=1}^{|\mathcal{D}|} N(w_s, d_i) P(c_j|d_i)},$$
(1)

The prior probabilities

$$P(c_j) = \frac{1 + \sum_{i=1}^{|\mathcal{D}|} P(c_j|d_i)}{|\mathcal{C}| + |\mathcal{D}|}.$$
 (2)

Output:

$$P(c_j|d_i) \propto P(c_j)P(d_i|c_j)$$

$$= P(c_j)\prod_{k=1}^{|d_i|}P(w_{d_{i,k}}|c_j).$$
(3)

Co-Training Algorithm

- Given
 - labeled data L,
 - unlabeled data U
- Create a pool U' of examples at random from U
- Loop for *k* iterations:
 - Train f1 (hyperlink classifier) using L
 - Train f2 (page classifier) using L
 - Allow f1 to label p positive, n negative examples from U'
 - Allow 12 to label p positive, n negative examples from U'
 - Add these self-labeled examples to L
 - Randomly choose 2p+2n examples from U to replenish U'

- Co-Training motivation
- What's Co-Training?
- Co-Training setting
- Input and output of Co-Training
- General process of Co-Training
- Experiments and discussion
- Conclusion

Comparison

- Co-Training
 - Begin with 12 labeled web pages (academic course)
 - P=1, n=3, k=30, u=75
- Supervised Naïve Bayes classifiers
 - Begin with 12 labeled web pages, too
- Three classifiers
 - Hyperlink-based classifier
 - Page-based classifier
 - Combined classifier (multiplying the probabilities)

Co-Training: experiment data

- 1051 web pages from CS at four university
- Hand labeling these pages
- Task:
 - Categories "course home page" as the target function, 22% of the them were course pages
 - 3 positive, 9 negative as L
 - 263 of the 1051 were as a test set
 - Others are unlabeled data

Experimental results

	Page-based classifier	Hyperlink-based classifier	Combined classifier
Supervised training	12.9	12.4	11.1
Co-training	6.2	11.6	5.0

- average error: learning from labeled data 11.1%;
- average error: co-training 5.0%
- Page-based is helpful by Co-Training
- Hyperlink-based classifier is helpless by Co-Training
 - The fact that hyperlinks contain fewer words and less capable of expression

Explanation

- Theoretical proof in the paper
 - PAC-learning (probably approximate correct)
- Intuition explanation
 - One classifier finds an "easily classified" pages which maybe difficult for the another classifier
 - Provide useful information each other

Explanation (cont.)

- Supervised NBC
 - Not using the unlabeled data information
 - Directly using the probabilities
- Co-Training
 - Using split features
 - Ranking the documents by confidence
 - Incrementally using the unlabeled data

Some questions

- The model is an over-simplification of realworld target functions and distributions
- Conditional independence is a somewhat unreasonably strict assumption
- Experiment involves just one data set and one target function

- Co-Training motivation
- What's Co-Training?
- Co-Training setting
- Input and output of Co-Training
- General process of Co-Training
- Experiments and discussion
- Conclusion

Conclusions

- Unlabeled data improves supervised learning when example features are redundantly sufficient
- Some Theoretical results

Other applications

- IE (Riloff and Jones, 1999)
 - A term matching classifier over word tokens
 - A context rule classifier over the neighboring words of the tokens
- WSD (Yarowsky, 1995)
 - A sense classifier using the local context of the word
 - A classifier based on the sense of other occurrences of that word in the same document
- NER (Collins & Singer, 1999)
 - The spelling of the named entity
 - The context in which the entity occurs
- Parsing
 -

Thanks Any questions?