

第一章 搜索问题

- ◆什么是搜索问题?
- ♦从自动导航说起

搜索问题

- ◆内容:
 - 。状态空间的搜索问题
- ◆搜索方式:
 - □盲目搜索
 - □启发式搜索
- ◆关键问题:

如何利用知识,尽可能有效地找到问题的解(最佳解)。

搜索问题(续2)

- ◈问题举例:
 - □地图路径
 - □传教士和野人问题
 - □华容道问题
 - □八皇后问题

搜索问题 (续3)

搜索问题(续4)

◈讨论的问题:

- □有哪些常用的搜索算法。
- □问题有解时能否找到解。
- 。找到的解是最佳的吗?
- □什么情况下可以找到最佳解?
- □求解的效率如何。

盲目搜索与启发式搜索

- ◆盲目搜索:
 - 。深度优先搜索
 - □宽度优先搜索
- ◆启发式搜索
 - □A算法
 - □ **A***算法

搜索

◆如何选择一个节点扩展?

1.1 深度优先搜索

- ◆优先扩展深度深的节点
- ◈例: 皇后问题

	Q		
			Q
Q			
		Q	

Q		
		Q

Q		
		Q
	Q	

Q	

深度优先搜索的性质

- ◆一般不能保证找到最优解
- ◆当深度限制不合理时,可能找不到解,可以将算法改为可变深度限制
- ◆最坏情况时,搜索空间等同于穷举
- ◆是一个通用的与问题无关的方法
- ◆节省内存,只存储从初始节点到当前节 点的路径

练习题

设有三个没有刻度的杯子,分别可以装8两、 8两和3两水。两个8两的杯子装满了水,请 问如何在不借助于其他器具的情况下,让4 个人每人喝到4两水。

请编程实现。

1.2 宽度优先搜索

◆优先扩展深度浅的节点

宽度优先搜索的性质

- ◆当问题有解时,一定能找到解
- ◆当问题为单位耗散值,且问题有解时, 一定能找到最优解
- ◆方法与问题无关,具有通用性
- ◆效率较低
- ◆存储量比较大

1.3 迪杰斯特拉 (Dijkstra) 算法

◆ 宽度优先算法的不足

◆宽度优先的不足

◆ 宽度优先没有考虑两个节点间的距离

迪杰斯特拉 (Dijkstra) 算法

◆ 优先扩展距离起点最近的节点,直到终点距离最短

迪杰斯特拉 (Dijkstra) 算法

◈ 优点:

□ 当问题有解时,可以找到最佳解。

◈不足:

只考虑了节点距离起点的距离,没有考虑节点到终点的距离

1.4 启发式图搜索

◆引入启发知识,在保证找到最佳解的情况下,尽可能减少搜索范围,提高搜索效率。

1.4 启发式图搜索

- ◆启发知识:
 - □评估节点到达目标的距离

1.4.1 启发式搜索算法A(A算法)

◈评价函数的格式:

$$f(n) = g(n) + h(n)$$

f(n): 评价函数

h(n): 启发函数

符号的意义

- ◆g*(n): 从s到n的最短路径的耗散值
- ◆h*(n): 从n到g的最短路径的耗散值
- ◆f*(n)=g*(n)+h*(n): 从s经过n到g的最短路 径的耗散值
- ◆g(n)、h(n)、f(n)分别是g*(n)、h*(n)、f*(n)的估计值
- ◆用f(n)对待扩展节点进行评价

举例

◆ 优先扩展f(n)值最小的节点,直到f(终点)最小。

$$h(A)=3$$
 $h(E)=4$

$$h(B)=1$$
 $h(F)=7$

$$h(C)=8$$
 $h(G)=12$

$$h(D)=13$$
 $h(T)=0$

● Closed表

○ Open表

A算法


```
A-algorithm (s) //s为初始节点
OPEN=(s), CLOSED=(), f(s)=g(s)+h(s);
while OPEN不空 do:
  begin
     n=FIRST(OPEN);
     if GOAL(n) THEN return n;
     REMOVE(n, OPEN), ADD(n, CLOSED);
     EXPAND(n) \rightarrow \{m_i\},
    计算f(n, m<sub>i</sub>)=g(n, m<sub>i</sub>)+h(m<sub>i</sub>);
```


ADD(m_i, OPEN), 标记m_i到n的指针; if $f(n, m_k) < f(m_k)$ then $f(m_k)=f(n,m_k)$,标记 m_k 到n的指针; if $f(n, m_1) < f(m_1)$, then $f(m_l)=f(n,m_l)$,标记 m_l 到n的指针, $ADD(m_1, OPEN);$ OPEN中的节点按f值从小到大排序: end while return FAIL;

如何得到解路径?

◆从目标开始,顺序访问父节点,直到初

始节点。

一个A算法的例子: 八数码问题

定义评价函数:

$$f(n) = g(n) + h(n)$$

 $g(n)$ 为从初始节点到当前节点的耗散值
 $h(n)$ 为当前节点"不在位"的将牌数

h计算举例

$$h(n) = 4$$

1.4.2 最佳图搜索算法A* (A*算法)

◆在A算法中,如果满足条件: h(n)≤h*(n)

则A算法称为A*算法。

A*条件举例

- ◆8数码问题
 - □ h₁(n) = "不在位"的将牌数
 - □h₂(n) = 将牌"不在位"的距离和

```
      1
      2
      3

      2
      8
      3

      1
      6
      4

      7
      5
      5
```

将牌1: 1 将牌2: 1 将牌6: 1 将牌8: 2

定义h函数的一般原则

◆放宽限制条件,在宽条件下,给出估计函数。

例:传教士与野人问题

- ◆思路: 放宽约束条件,在宽约束条件下 得到一个估计值。
- ◆假设只有乘船人数的约束没有其他约束
- ◈从左岸到右岸至少需要的摆渡次数:

$$\left\lceil \frac{M+C-3}{2} \right\rceil \times 2 + 1 \ge M + C - 2$$

- ◆从右岸到左岸至少需要的摆渡次数:
- \diamond M+C

- ◆综合在一起,所需的最少摆渡次数:
- \bullet M+C-2b
- ◆ 以该最小摆渡次数作为启发函数h,从推导可知,该h满足A*条件

A*算法的两个主要结论

定理(可采纳性定理):

若存在从初始节点s到目标节点t有路径,则A*必能找到最佳解结束。

定理:设对同一个问题定义了两个A*算法 A_1 和 A_2 ,若 A_2 比 A_1 有较多的启发信息,即对所有非目标节点有 h_2 (n) > h_1 (n),则在具有一条从s到t的路径的隐含图上,搜索结束时,由 A_2 所扩展的每一个节点,也必定由 A_1 所扩展,即 A_1 扩展的节点数至少和 A_2 一样多。

简写:如果 $h_2(n) > h_1(n)$ (目标节点除外),则 A_1 扩展的节点数 $\geq A_2$ 扩展的节点数

◈注意:

上述定理,评价指标是"扩展的节点数", 也就是说,同一个节点无论被扩展多少 次,都只计算一次。

思考题

定理(简写): 如果 $h_2(n) > h_1(n)$ (目标节点除外),则 A_1 扩展的节点数 $\geq A_2$ 扩展的节点数

- □为什么条件不能是 $h_2(n) \ge h_1(n)$? 什么情况下会出现问题? 能否给定理再增加条件,使得定理在 $h_2(n) \ge h_1(n)$ 条件下也成立?
- 。提示:考虑那些f(n)=f*(t)的节点,t为目标节点。如果不考虑这样的节点,等号可以加上。

对h的评价方法

◆平均分叉数 设共扩展了d层节点,共搜索了N个节点, 则: $N = (1-b^{*(d+1)})/(1-b^*)$

其中,b*称为平均分叉数。

- ◆b*越小,说明h效果越好。
- ◆实验表明, b*是一个比较稳定的常数, 同一问题基本不随问题规模变化。

对h的评价举例

例:8数码问题,随机产生若干初始状态。

◆使用h₁:

$$d=14$$
, N=539, $b*=1.44$;

$$d=20$$
, $N=7276$, $b*=1.47$;

◆使用h₂:

$$d=14$$
, $N=113$, $b*=1.23$;

$$d=20$$
, $N=676$, $b*=1.27$

练习题

对于8数码问题,假设移动一个将牌的耗散值为将牌号码,请使用A*算法求解该问题。 (手工演算、编程实现)

1.4.3 A*算法的改进

◈问题的提出:

因A算法对m_l类节点可能要重新放回到 OPEN表中,因此可能会导致多次重复扩展同一个节点,导致搜索效率下降。

一个例子:

OPEN表	CLOSED表
s(10) A(7) B(8) C(9) B(8) C(9) G(14) A(5) C(9) G(14) C(9) G(12) B(7) G(12) D(14) A(4) G(12) D(14)	s(10) A(7) s(10) B(8) s(10) A(5) B(8) s(10) C(9) A(5) s(10) B(7) C(9) s(10) A(4) B(7) C(9) s(10)
G(11) D(14)	

出现多次扩展节点的原因

◆在前面的扩展中,并 没有找到从初始节点 到当前节点的最短路 径,如节点A。

◆问题的突破口?

解决的途径

- ◆对h加以限制
 - 。能否对h增加适当的限制,使得第一次扩展一个节点时,就找到了从s到该节点的最短路径。
- ◆对算法加以改进
 - 能否对算法加以改进,避免或减少节点的多次扩展。

改进的条件

- ◆可采纳性不变
- ◆不多扩展节点
- ◆不增加算法的复杂性

道 Tsinghua University

对h加以限制

◆定义:一个启发函数h,如果对所有节点 n_i和n_j,其中n_j是n_i的子节点,满足

$$\begin{cases} h(n_i) - h(n_j) \le c(n_i, n_j) \\ h(t) = 0 \end{cases}$$

或

$$\begin{cases} h(n_i) \le c(n_i, n_j) + h(n_j) \\ h(t) = 0 \end{cases}$$

则称h是单调的。

h单调的性质

◆定理:

若h(n)是单调的,则A*扩展了节点n之

后,就已经找到了到达节点n的最佳路径。

即: 当A*选n扩展时,有g(n)=g*(n)。

◆思考题:

h(n)单调与A*条件的关系,即当h(n)满足单调条件时,是否一定满足A*条件。

◈提示:

- □ 利用单调条件,从目标及目标的父节点向上归纳
- □结论是满足单调的h一定满足A*条件。

h单调的例子

◆8数码问题:

h为"不在位"的将牌数

$$\mathbf{h(n_i) - h(n_j)} = \begin{cases} 1 \\ 0 \\ -1 \end{cases}$$
 (n_j为n_i的后继节点)

$$h(t) = 0$$

$$c(n_i, n_j) = 1$$

满足单调的条件。

对算法加以改进

◆一些结论:

- □ OPEN表上任以具有f(n) < f*(s)的节点定会被 A*扩展。
- □A*选作扩展的任一节点, 定有f(n)≤f*(s)。
- □当h(n)恒等于0时,h为单调的。

改进的出发点

 f_m : 到目前为止已扩展节点的最大f值,用 f_m 代替f*(s)

修正的A算法


```
Modified-A-algorithm (s) s为初始节点
OPEN=(s), CLOSED=(), f(s)=g(s)+h(s), f_{m}=0;
while OPEN不空 do:
  begin
    NEST = \{n_i \mid f(n_i) < f_m, n_i \in OPEN\}
    if NEST≠() then n=NEST中g最小的节点
               else n=FIRST(OPEN), f_m = f(n);
    if GOAL(n) THEN return n;
    REMOVE(n, OPEN), ADD(n, CLOSED);
    EXPAND(n) \rightarrow \{m_i\},
    计算f(n, m_i)=g(n, m_i)+h(m_i);
```


ADD(m_i, OPEN), 标记m_i到n的指针; if $f(n, m_k) < f(m_k)$ then $f(m_k)=f(n,m_k)$,标记 m_k 到n的指针; if $f(n, m_1) < f(m_1)$, then $f(m_l)=f(n,m_l)$,标记 m_l 到n的指针, $ADD(m_1, OPEN);$ OPEN中的节点按f值从小到大排序: end while return FAIL;

前面的例子:

说明: 蓝颜色表示在nest中的节点

前面的例子中,h(S)修改为9:

OPEN表	CLOSED表	$\int \mathbf{f_m}$
s(0+9)	s(0+9)	9
A(6+1) B(3+5) C(1+8)	s(0+10) B(3+5)	9
A(4+1) C(1+8)	s(0+10) B(3+5) A(4+1)	9
C(1+8) G(12+0)	s(0+10) A(4+1) C(1+8)	9
B(2+5) G(12+0) D(2+12)	s(0+10)C(1+8)B(2+5)	9
A(3+1)G(12+0) D(2+12)	s(0+10)C(1+8)B(2+5) A(3+1)	9
G(11+0) D(2+12)		

说明: 蓝颜色表示在nest中的节点

思考题

- ◆宽度优先算法与A*算法是什么关系?
 - □提示:单位耗散时h=0,A*退化为宽度优先
- ◆如何修改A*算法,当问题存在多于n个解时,算法可以求解前n个最好的解。
 - 。提示:对于每个节点,当存在多于n条路径时,都要保留前n条最短距离的路径。

1.5 其他的搜索算法

◆爬山法(局部搜索算法)

其他的搜索算法(续1)

- ◆随机搜索算法
- ◆动态规划算法 如果对于任何n, 当h(n)=0时, A*算法就 成为了动态规划算法。

动态规划: viterbi算法

$$Q(W_{i,j}) = \begin{cases} \min(Q(W_{i-1,k}) + D(W_{i-1,k}, W_{i,j})) & i \neq 0 \\ 0 & i = 0 \end{cases}$$

其中: $Q(W_{ij})$ 表示起点到点 W_{ij} 的最佳路径值 $D(W_{i-1,j},W_{i,k})$ 表示 $W_{i-1,j}$ 到 $W_{i,k}$ 的距离

1.6 搜索算法实用举例

◆汉字识别后处理

汉字识别后处理

◆一个例子 我钱钱载哦栽哉裁劣绥 优仍们仿伦奶砧犯扔妨 要耍密穷安壁驻努窑垂 扳报叔嵌奴振技寂叙蔽 奋夯杏蚕香脊秀吞吝番 精猜指活括治捐活冶桔 种神衬祥科钟拌样拎补

汉字识别后处理

$$P(S \mid O) = P(S)P(O \mid S)/P(O)$$

$$P(S) = \prod_{i=1}^{n} P(w_i \mid w_1...w_{i-1})$$

二元语法时:
$$P(S) = \prod_{i=1}^{n} P(w_i \mid w_{i-1})$$

P(O) 为常量

P(O | S) 用识别信度代替

问题变为求 $\prod_{i=1}^{n} P(w_i \mid w_{i-1}) CF(w_i)$ 最大

◆概率的计算(语言模型)

$$P(w_i | w_{i-1}) = \frac{w_i w_{i-1}}{w_{i-1}}$$
 問现的次数

◆平滑

解决 $P(w_i|w_{i-1})$ 可能为0的问题,有很多种方法,其中一种简单的方法:

$$\lambda P(w_i \mid w_{i-1}) + (1 - \lambda) P(w_i) => P(w_i \mid w_{i-1})$$

$$P(S \mid O) = P(S)P(O \mid S)/P(O)$$

$$P(O)$$
 为常量

$$P(O|S) \approx 1$$

$$P(S) = \prod_{i=1}^{n} P(w_i \mid w_1...w_{i-1})$$

求
$$P(S) = \prod_{i=1}^{n} P(w_i \mid w_1...w_{i-1})$$
 最大

$$P(S) = \prod_{i=1}^{n} P(w_i \mid w_1...w_{i-1})$$

二元语法时:
$$P(S) = \prod_{i=1}^{n} P(w_i \mid w_{i-1})$$

求
$$\max \left(\prod_{i=1}^{n} P(w_i \mid w_{i-1}) \right)$$
 所对应的句子

等价于:

求
$$\min\left(-\sum_{i=1}^{n}\log(P(w_i\mid w_{i-1}))\right)$$
 所对应的句子

求
$$-\sum_{i=1}^{n} \log(P(w_i \mid w_{i-1}))$$
最小

编程作业1

◆编程实现拼音输入法,具体见网络学堂。

小结

- ◆盲目搜索
 - 。深度优先
 - □宽度优先
- ◆启发式搜索
 - A算法
 - □ A*算法
 - □改进的A*算法
- ◆动态规划
 - □ viterbi算法