Mixed Review Exercises, Page 440

1. 52 2. 146 3. 135 4. 18 5. $10\sqrt{2}$ cm 6. 15 cm, $15\sqrt{3}$ cm 7. 10 m 8. $\frac{15}{17}$

Written Exercises, Pages 443-444

1. 8; 256 3. $\frac{7\sqrt{2}}{2}$; $\frac{7}{2}$ 5. 3; $18\sqrt{3}$; $27\sqrt{3}$ 7. $\frac{4\sqrt{3}}{3}$; $\frac{2\sqrt{3}}{3}$; $4\sqrt{3}$ 9. $2\sqrt{3}$; 24; $24\sqrt{3}$ 11. $4\sqrt{3}$; $24\sqrt{3}$;

72 $\sqrt{3}$ 13. 36 $\sqrt{3}$ 15. 216 $\sqrt{3}$ 17. a. $m \angle AOX = \frac{1}{2}m \angle AOB = \frac{1}{2}(\frac{360}{10}) = \frac{1}{2}(36) = 18$ b. 0.3090;

 $\frac{OX}{1}$, 0.9511 c. 6.18 d. 0.2939 e. 2.939 19. $a \approx 0.707$; $p \approx 5.656$; A = 2 21. $p \approx 6.2112$; $A \approx 3$

Self-Test 1, Page 444

1. 81 2. 60 3. $40\sqrt{3}$ 4. $4\sqrt{3}$ cm² 5. $6\sqrt{13}$ cm² 6. 40 7. 39 8. $150\sqrt{3}$ 9. 5xy 10. 49

Written Exercises, Pages 448-450

1. 14π ; 49π **3.** 5π ; $\frac{25}{4}\pi$ **5.** 10; 100π **7.** 5; 10π **9. a.** 132; 1386 **b.** 44k; $154k^2$

11. $\approx 57 \text{ in.}$; $\approx 254 \text{ in.}^2$ 13. 24 oz 15. 984 ft² 17. 15-in. pizza 19. Area $1 = \frac{a^2 \pi}{8}$,

Area II = $\frac{b^2\pi}{8}$, Area III = $\frac{c^2\pi}{8}$. Since $a^2 + b^2 = c^2$, Area I + Area II = Area III. 21. a. 198,000 cm (or

1.98 km) **b.** 10,000 **23. a.** π ; 3π ; 5π ; 7π **b.** $(2n + 1)\pi$ **25.** 3π ; 3π ; 3π **27.** 32π **29.** 1:2 **31.** $0.14r^2$ **33. a.** r **b.** $A = \pi r^2$ **35.** Radius is hypot. of rt. \triangle in which radii of $\bigcirc O$ and $\bigcirc P$ are legs.

Algebra Review, Page 451

1. $\frac{4}{3}\pi$ 3. 32π 5. $5\pi\sqrt{2}$ 7. 12π

Written Exercises, Pages 453-455

1. 2π ; 12π 3. 2π ; 3π 5. $\frac{3}{2}\pi$; $\frac{9}{8}\pi$ 7. π ; $\frac{9}{4}\pi$ 9. $3\pi\sqrt{2}$; 15π 11. 6 13. $4\pi - 8$

15. $12\pi + 8$ 17. $\frac{4\pi + 6\sqrt{3}}{3}$ 19. $(100\pi - 192)$ cm² 21. a. 49; 98 b. 52 cm² 23. 1343 m²

25. $(24\pi - 18\sqrt{3}) \text{ cm}^2$ **27. b.** $72\pi - 108\sqrt{3}$ **29.** $\frac{48\sqrt{3} - 22\pi}{3}$; trapezoid; 60

Written Exercises, Pages 458-460

1. 1:4; 1:16 **3.** r:2s; $r^2:4s^2$ **5.** 3:13; 9:169 **7.** 3:8; 3:8 **9.** 1:25,000,000,000,000

11. 1:2; 1:4 13. $\triangle ABE \sim \triangle DCE$; 36:25; $6\frac{2}{3}$ 15. 125 cm² 17. a. 9:7 b. 5:4

19. a. 3:4 **b.** 3:7 **21.** Answers may vary. $\triangle ABC \sim \triangle CDA$. 1:1: $\triangle ABG \sim \triangle CEG$, 9:25; $\triangle ABF \sim \triangle DEF$, 9:4; $\triangle AGF \sim \triangle CGB$, 9:25; $\triangle EFD \sim \triangle EBC$, 4:25, $\triangle ABF \sim \triangle CEB$, 9:25 **23. a.** 1:9 **b.** 1:4 **c.** 1:8 **25. a.** 16:81 **b.** 4:9 **c.** 4:9 **d.** 1:1 **e.** 16:169 **27.** 9:40 **29.** 4:5

31. Each of the small $\triangle s$ has area = $\frac{1}{6}$ area of the orig. \triangle .

Written Exercises, Pages 463-464

1. $\frac{1}{4}$ 3. $\frac{1}{4}$ 5. a. $\frac{1}{25}$ b. 3 7. $\frac{\pi}{200} \approx 0.016$ 9. 0.04 11. $\frac{2}{3}$ 13. 0.125 m² 15. b. 7.5 mm

17. a. $\frac{13}{50}$ b. $\frac{1}{10}$