

Electrostática e Campo eléctrico

- · Noção de fluxo
- Fluxo do campo eléctrico.
- · Lei de Gauss.
- Aplicações da lei de Gauss.

Cacilda Moura-DFUM Capítulo 1(3_4)

fluxo de um vector

Vamos imaginar uma janela e uma corrente de ar; Vamos admitir que a velocidade do ar é $\ \vec{v} \$.

sim! mas depende também da......

 \ldots orientação da velocidade do ar em relação à orientação da janela

Cacilda Moura-DFUM Capítulo 1(3_4)

a velocidade do ar pode não ser perpendicular à janela...

é para quantificar o "efeito" de correntes através de superfícies que se define o "fluxo" - neste caso o "fluxo do <u>vector velocidade</u> através da <u>área da janela"</u>.

Cacilda Moura-DFUM Capítulo 1(3_4)

 \vec{A} \vec{V} O fluxo de

Primeiro, é necessário definir a orientação da corrente de ar em relação à janela. Para isso usa-se o ângulo entre dois vectores:

- ullet o vector velocidade do ar \vec{v}
- o vector perpendicular à superfície da janela \vec{A} (com módulo igual à área da janela)

O **fluxo** da velocidade do ar através da janela depende:

do vector \vec{v} e do vector \vec{A}

$$\Phi = \vec{v} \cdot \vec{A}$$

$$\Phi = vA\cos\theta$$

 $\Phi = vA\cos\theta$

se

$$\theta = 90^{\circ} \Rightarrow \cos \theta = 0 \Rightarrow \Phi \text{ \'e nulo}$$

se

$$\theta = 0^{\circ} \Rightarrow \cos \theta = 1 \Rightarrow \Phi \text{ \'e m\'aximo}$$

Cacilda Moura-DFUM Capítulo 1(3_4)

e se o vector não for a velocidade do ar,

mas sim o campo eléctrico?

O fluxo do campo eléctrico através de uma superfície, pode ser determinado se conhecermos a densidade de linhas de campo que atravessam essa superfície.

 $\Phi_E = \vec{E} \cdot \vec{A}$ (vector com módulo igual à área da superfície) $\vec{A} = A \hat{n}$

Fluxo do campo eléctrico

$$\Phi_{E} = \vec{E} \cdot A\hat{n}$$

(unidade SI: N.m²/C)

Cacilda Moura-DFUM Capítulo 1(3_4)

mas nem sempre é assim tão fácil....

Qual a melhor forma de calcular o fluxo?

 $\Delta \Phi = \vec{\mathsf{E}}_{i} \cdot \Delta \vec{\mathsf{A}}_{i}$

Elemento 1

$$\Delta\Phi_1 = \vec{E} \cdot \Delta \vec{A}_1 \qquad 0^{\circ} < \theta < 90^{\circ}$$

$$\Delta\Phi_1 > 0$$

Elemento 2

$$\Delta\Phi_2 = \vec{\mathsf{E}} \cdot \Delta \vec{\mathsf{A}}_2 \quad \theta = 90^{\circ}$$
$$\Delta\Phi_2 = 0$$

Elemento 3

$$\Delta \Phi_3 = \vec{E} \cdot \Delta \vec{A}_3 \qquad 180 > \theta > 90^{\circ}$$

$$\Delta \Phi_3 < 0$$

Cacilda Moura-DFUM Capítulo 1(3_4)

Resumindo....

Considera-se uma a superfície e assumimos que na região o campo eléctrico , $\vec{\mathsf{E}}$, é conhecido.

Se o campo (módulo ou direcção) não são uniformes ao longo de toda a superfície considerada, divide-se a superfície em pequenas áreas e faz-se o cálculo do fluxo através de cada das áreas, separadamente

O fluxo do campo eléctrico através da superfície obtém-se somando os fluxos parciais.

$$\Phi = \sum \vec{\mathsf{E}} \! \cdot \! \Delta \vec{\mathsf{A}}$$

- 1. Dividir a superfície em pequenas áreas
- 2. Calcular o fluxo do campo eléctrico através de cada uma das pequenas áreas :

$$\Delta\Phi_{i} = \vec{E}_{i} \cdot \Delta \vec{A}_{i}$$

3. Calcula-se a soma dos fluxos calculados para cada umas das áreas:

$$\Phi = \sum \vec{\mathsf{E}} \! \cdot \! \Delta \vec{A}$$

4. Fazendo com que cada área seja tão pequena quanto possível ($\Delta A \rightarrow 0$), o fluxo vem:

$$\Phi = \oint \vec{E} \cdot d\vec{A}$$

Componente do campo eléctrico na direcção normal à superfície

Cacilda Moura-DFUM Capítulo 1(3_4)

Exemplo 1

Considere um campo eléctrico uniforme, orientado segundo a direcção positiva do eixo dos x. Calcular o fluxo resultante através das faces do cubo de lado ℓ

Cacilda Moura-DFUM Capítulo 1(3_4)

$$\Phi_3 = \Phi_4 = \Phi_5 = \Phi_6 = \mathbf{0}$$

$$\Phi_{total} = \int_{1} \vec{E} \cdot d\vec{A} + \int_{2} \vec{E} \cdot d\vec{A}$$

$$\int_{1} \vec{E} \cdot d\vec{A} = \int_{1} E(\cos 180^{\circ}) dA = -E \int_{1} dA = -E\ell^{2}$$

$$\int_{2} \vec{E} \cdot d\vec{A} = \int_{2} E(\cos 0^{\circ}) dA = +E \int_{2} dA = E\ell^{2}$$

$$\Phi_{\text{total}} = -E\ell + E\ell = 0$$

Cacilda Moura-DFUM Capítulo 1(3_4)

Exemplo 2

Considere um cilindro de raio R, imerso num campo eléctrico. Qual o fluxo do campo eléctrico através da superfície cilíndrica?

Cacilda Moura-DFUM Capítulo 1(3_4)

Qual a relação entre o fluxo do campo e a carga eléctrica geradora desse campo?

A densidade de linhas de campo (nº de linhas por unidade de superfície perpendicular às linhas de campo) em qualquer ponto é proporcional à intensidade do campo eléctrico nesse ponto.

O fluxo do campo eléctrico através de uma superfície é proporcional ao balanço entre o número de linhas de campo que saem de uma superfície, comparado com o nº de linhas de campo que entram.

O fluxo do campo eléctrico que atravessam uma superfície fechada é proporcional à carga contida na região limitada pela superfície.

Cacilda Moura-DFUM Capítulo 1(3_4)

Qual a relação entre o fluxo do campo e a carga eléctrica geradora desse campo?

Imaginemos uma carga pontual q.

O campo eléctrico criado por uma carga pontual é radial e aponta para fora.

Podemos imaginar uma superfície esférica, de raio *R*, centrada na carga.

Consideramos uma pequena área $d\vec{A}$, na superfície e o campo $d\vec{E}$ criado pela carga q

Calculamos o fluxo do campo através da superfície esférica.

$$\Phi = \oint \vec{E} \cdot d\vec{A}$$

Cacilda Moura-DFUM Capítulo 1(3_4)

dĒ S

O campo eléctrico em qualquer ponto da superfície esférica é:

 $E = k \frac{q}{R^2}$

Então o fluxo é:

$$\Phi = \oint k \frac{q}{R^2} (\cos 0^\circ) dA$$

$$\Phi = k \frac{q}{R^2} \oint dA \xrightarrow{\qquad \text{Area da esfera}} 4\pi R^2$$

Cacilda Moura-DFUM Capítulo 1(3_4)

1

lei de Gauss

Karl Friedrich Gauss matemático e astrónomo alemão (1777 – 1855)

Quando uma superfície fechada (superfície gaussiana) envolve certa carga eléctrica, o número líquido de linhas que atravessam a superfície é proporcional à carga líquida no interior da superfície

O número de linhas contado é independente da forma da superfície que envolve a carga

O fluxo do campo eléctrico através de qualquer superfície fechada, é proporcional à carga total no interior da superfície.

$$\Phi_{E} = \oint \vec{E} \cdot d\vec{A} = \frac{q_{in}}{\epsilon_{o}}$$

Cacilda Moura-DFUM Capítulo 1(3_4)

Qual o fluxo através da superfície S₁, S₂, S₃?

- O fluxo não depende da forma da superfície.
- O fluxo não depende da distância a q

Qual o fluxo através da superfície S?

O fluxo líquido através duma superfície Gaussiana e proporcional à carga, q, no interior da superfície.

$$\Phi = \frac{q_{in}}{\epsilon_o}$$

a Moura-DFUM Capítulo 1(3_4)

1

Qual o fluxo através da superfície S_1 , S_2 , S_3 , S_4 ,?

$$S_1: \Phi > 0$$

$$S_2$$
: $\Phi < 0$

$$S_3$$
: $\Phi = 0$

$$S_4: \Phi = 0$$

<u>Na prática</u>, a Lei de Gauss só é útil num limitado número de situações, nas quais existe um elevado grau de simetria (distribuições de cargas que têm simetria esférica, cilíndrica ou plana).

A superfície Gaussiana é uma superfície matemática - não tem "existência física".

Se a superfície Gaussiana for cuidadosamente escolhida \Rightarrow o integral do fluxo será fácil de calcular.

Cacilda Moura-DFUM Capítulo 1(3_4)

$$\Phi_{E} = \oint \vec{E} \cdot d\vec{A} = \oint E \cos\theta \, dA = \frac{q_{in}}{\varepsilon_{o}}$$

A escolha da **"Superfície Gaussiana"** deve ser feita de forma inteligente:

Primeiro desenha-se o condutor (carga pontual, filamento, plano...) e o ponto onde se quer conhecer o campo.

Traçam-se, esquematicamente, as linhas de campo.

Escolhe-se uma superfície, de forma a ser fácil calcular o fluxo através da superfície. É importante ter em atenção o ângulo entre a direcção da superfície e a direcção do campo eléctrico e o valor do campo. O ideal é que o campo seja constante ao longo da superfície e o ângulo também.

Cacilda Moura-DFUM Capítulo 1(3_4)

1º Exemplo: Cálculo do campo eléctrico na vizinhança de uma <u>carga pontual positiva</u>.

Calcular o campo eléctrico a uma distância r de uma carga eléctrica q, usando a Lei de Gauss

$$\Phi_{\scriptscriptstyle E} = \oint \vec{E} \cdot d\vec{A} = \frac{q_{\scriptscriptstyle in}}{\epsilon_{\scriptscriptstyle o}}$$

$$E = \frac{1}{4\pi\epsilon_o} \frac{q}{r^2}$$

Resultado idêntico ao seria obtido usando a Lei de Coulomb

Cacilda Moura-DFUM Capítulo 1(3_4)

2º Exemplo: Cálculo do campo eléctrico na vizinhança de uma <u>esfera</u> isoladora com densidade volúmica de carga p, uniformemente distribuída.

1 - Calcular o campo eléctrico a uma distância r > a, usando a Lei de Gauss. A carga total da esfera é +Q

$$\Phi_{E} = \oint \vec{E} \cdot d\vec{A} = \frac{q_{in}}{\epsilon_{o}}$$

$$E = \frac{1}{4\pi\epsilon_o} \frac{Q}{r^2}$$

Resultado idêntico ao que foi obtido para uma carga pontual ⇒ equivalente!!!

2 - Calcular o campo eléctrico para uma distância r < a, usando a Lei de Gauss. A carga total da esfera é +Q

$$\Phi_{\scriptscriptstyle E} = \oint \vec{E} \cdot d\vec{A} = \frac{q_{\scriptscriptstyle in}}{\epsilon_{\scriptscriptstyle o}}$$

$$E = \frac{Q}{4\pi\varepsilon_0} \frac{r}{a^3} \iff E = k \frac{Q}{a^3} r$$

$$r \rightarrow 0 \Rightarrow E \rightarrow 0$$

Cacilda Moura-DFUM Capítulo 1(3_4)

Campo eléctrico de uma esfera isoladora carregada

Cacilda Moura-DFUM Capítulo 1(3_4)

3º Exemplo: Cálculo do campo eléctrico na vizinhança de uma <u>casca</u> <u>isoladora com carga +Q</u> uniformemente distribuída.

para uma distância r > a

$$E = \frac{1}{4\pi\epsilon_o} \frac{Q}{r^2}$$

para uma distância r < a

$$E = 0$$

Cacilda Moura-DFUM Capítulo 1(3_4)

4º Exemplo: Cálculo do campo eléctrico na vizinhança de uma <u>linha</u> carregada, com carga uniformemente distribuída, λ .

- 1. Desenhar a linha e o campo eléctrico
- 2. Desenhar o ponto P
- 3. Escolher a superfície gaussiana, que passe no ponto P

$$E = \frac{\lambda}{2\pi\epsilon_o r} = 2k\frac{\lambda}{r}$$

5º Exemplo: Cálculo do campo eléctrico na vizinhança de uma placa isoladora carregada, com densidade superficial de carga uniformemente distribuída, σ

- Desenhar a linha e o campo eléctrico
- Escolher a superfície gaussiana, que passe no ponto P

$$\Phi_{\rm E} = 2EA = \frac{q_{\rm in}}{\epsilon_{\rm o}}$$

$$E = \frac{q_{\rm in}}{2A\epsilon_{\rm o}}$$

$$E = \frac{\sigma}{2\epsilon_{\rm o}}$$

Campo eléctrico é uniforme

Capítulo 1(3_4) Cacilda Moura-DFUM

TABLE 24.1 Typical Electric Field Calculations Using Gauss's Law

Charge Distribution	Electric Field	Location
Insulating sphere of radius R , uniform charge density, and total charge Q	$\begin{cases} k_e \frac{Q}{r^2} \\ k_e \frac{Q}{R^3} r \end{cases}$	r > R
	$\left(k_e \frac{Q}{R^3} r\right)$	r < R
Thin spherical shell of radius R and total charge Q	$\begin{cases} k_e \frac{Q}{r^2} \\ 0 \end{cases}$	r > R
	[0	r < R
Line charge of infinite length and charge per unit length λ	$2k_e \frac{\lambda}{r}$	Outside the line
Nonconducting, infinite charged plane having surface charge density σ	$\frac{\sigma}{2\epsilon_0}$	Everywhere outside the plane

Capítulo 1(3_4) Cacilda Moura-DFUM

Quando uma superfície fechada (superfície gaussiana) envolve certa carga eléctrica, o número líquido de linhas que atravessam a superfície é proporcional à carga líquida no interior da superfície

O número de linhas contado é independente da forma da superfície que envolve a carga

O fluxo do campo eléctrico através de qualquer superfície fechada, é proporcional à carga total no interior da superfície.

$$\Phi_{E} = \oint \vec{E} \cdot d\vec{A} = \oint E \cos\theta \, dA = \frac{q_{in}}{\epsilon_{o}}$$