Conteúdos da Matéria Equações Diferencias Ordinárias

Lucas Moschen Fundação Getulio Vargas

9 de Março de 2020

Resumo

Neste documento irei constar os principais temas cobertos pela matéria, que tem foco em um cálculo de edos, sem grandes definições precisas e estudo do comportamento qualitativo. Qualquer correção nesse documento pode ser sugerida pelo leitor através de um *pull request*. Para iniciar, irei listar os temas até agora cobertos e também inserirei um pequeno resumo sobre o determinado tópico.

Conteúdo

1	1 Equações Diferenciais Lineares de Primeira Ordem			
1.1 Equações de Bernoulli				
2	Equações com Variáveis Separáveis			
3	Equações Exatas	3		
	3.1 Fator de Integração	3		
4	Modelos da Dinâmica de uma População			
	4.1 Malthus	3		
	4.2 Logística de Verhuslt	3		
	4.3 Gopertz			
5	Sistema Autônomo	4		

6	\mathbf{Mo}	delos das Ciências Naturais	5
	6.1	Resfriamento de um corpo	5
	6.2	Problemas de Diluição	5

1 Equações Diferenciais Lineares de Primeira Ordem

Formato: $\frac{\mathrm{d}y}{\mathrm{d}x} + p(x)y = q(x)$. Observe a linearidade de y e que a sua derivada de maior ordem é a primeira. Para resolver esse exemplo, usamos oo fator de integração $u(x) = e^{\int p(x)dx}$ e multiplicamos em ambos os lados. Observe que escolhemos ele, porque queremos $(y \cdot u)' = y' \cdot u + y \cdot u' = u \cdot q$ e $u' = u \cdot p$. A partir disso, obstemos que $y(x)u(x) = \int u(x)q(x)dx$.

1.1 Equações de Bernoulli

Formato: $y' + p(x)y = q(x)y^n$. Neste caso temos que o expoente de y é de ordem n. Para resolver esse problema, supomos que $y \neq 0$ e fazemos uma transformação de variável $z(x) = [y(x)]^{1-n}$, $\forall x$. Essa transformação vai noos permitir obter a equação em um formato desejado. Para ver isso, primeiro façamos $\frac{\mathrm{d}z}{\mathrm{d}x} = \frac{\mathrm{d}z}{\mathrm{d}y}\frac{\mathrm{d}y}{\mathrm{d}x} = (1-n)y^{-n}\frac{\mathrm{d}y}{\mathrm{d}x}$, logo, substituindo os valores, teremos que $\frac{1}{1-n}y^nz' + p(x)zy^n = q(x)y^n \implies z' + (1-n)p(x)z = q(x)$ e resolvemos pelo formato anterior.

2 Equações com Variáveis Separáveis

Formato: $\frac{\mathrm{d}y}{\mathrm{d}x} = f(x,y) = \phi(x)\psi(y)$, isto é, a derivada pode ser escrita como um produto de uma função que só depende de x por outra que só depende de y. Nesse caso, usamos a reescrita diferencial para poder escrever isso da seguinte forma: $\int \frac{\mathrm{d}y}{\psi(y)} = \int \phi(x) dx$. Isso pode ser extendido quando a função pode ser escrita como uma divisão de funções desse tipo, bastando vê-la como um produto.

3 Equações Exatas

Formato: Seja $\frac{\mathrm{d}dy}{\mathrm{d}dx} = f(x,y) = -\frac{M(x,y)}{N(x,y)}$ que pode ser reescrita da forma M(x,y)dx + N(x,y)dy = 0. Ela é caracterizada como **exata** se $\exists g(x,y)$, tal que dg = Mdx + Ndy, onde dg é o diferencial de g. Isto é, $\frac{\partial g}{\partial x} = M$ e $\frac{\partial g}{\partial y} = N$. Nesse caso, podemos provar pelo teorema de Clairaut-Schwars que $\frac{\partial M(x,y)}{\partial y} = \frac{\partial N(x,y)}{\partial x}$ (*).

3.1 Fator de Integração

Suponha que a equação M(x,y)dx + N(x,y)dy = 0 seja não exata. Nesse caso, a ideia é encontrar uma função u que ao multiplicar a equação, obtenhase a hipótese do teorema de Clairaut-Schwars, como mencionado acima (*). Nesse caso, se $\frac{M_y - N_x}{N}$ é função apenas de x, o fator de integração será $u(x) = \exp\left\{\int \frac{M_y - N_x}{N} dx\right\}$. Para construir esse resultado, basta pensar, supondo a existência de u(x), temos que $\frac{\partial (u \cdot M)}{\partial y} = u \frac{\partial M}{\partial y} = \frac{\partial (u \cdot N)}{\partial x} = \frac{\mathrm{d}u}{\mathrm{d}x} N + u \frac{\partial N}{\partial x}$. Agora, se $\frac{N_x - M_y}{M}$ é função apenas de y, vale que $u(y) = \exp\left\{\int \frac{N_x - M_y}{M} dy\right\}$.

4 Modelos da Dinâmica de uma População

4.1 Malthus

Também conhecido como modelo exponencial, é baseado na ideia de que o crescimento populacional é proporcional ao tamanho da população, o que faz um certo sentido. O modelo é parte da ideia de que existiria um ponto em que o número de pessoas seria maior do que o suporte para a alimentação que tem crescimento linear. Nesse caso, se p(t) é a população no tempo t, o crescimento é dado por p'(t) = rp(t). Esse coeficiente r vai indicar a taxa de crescimento populacional, e ele é tratado como constante. Essa ideia foi descartada posteriormente, pois o crescimento reduziu suas taxas de crescimento desde os anos de 1800. Nesse caso, $p(t) = p(0)e^{rt}$.

4.2 Logística de Verhuslt

Também conhecido como curva S o função logística. Diferente do primeiro modelo, ele não assume que os recursos são ilimitados. Entretanto, ele as-

sume a existência da capacidade de carga K, que é o tamanho populacional máximo que o meio pode sustentar inndefinidamente. O crescimento nesse caso é proporcional a p(t) e à diferença K-p(t), onde p(t) é o tamanho da população. Logo $p'(t)=sp(t)(K-p(t))=sKp(t)(1-\frac{p(t)}{K})$. Se sK=r, temos o modelo logístico.

4.3 Gopertz

É um modelo descrito por uma função sigmoide (em formato de S) que descreve o crecimento sendo mais lento no início e no final de um período de tempo. O modelo foi inicialmente desenvolvido para detalhar a mortalidade humano da Royal Socienty em 1825 (Wikipedia). A suposição é de que a resistência da pessoa à morte descresce com os tempo. Assune-se que a taxa de crescimentoo de um organismo decaia com o tamanho tal que, se p(t) é a medida, $\frac{\mathrm{d}p}{\mathrm{d}t} = \alpha(\log\left(\frac{K}{p}\right)p)$. Existem várias variações para cada aplicação dessa curva.

5 Sistema Autônomo

E um sistema em EDO que não depende, explicitamente, de variáveis independentes, como o tempo. Ele é da forma, quanto de primeira ordem $\frac{\mathrm{d}x}{\mathrm{d}t} = f(x(t))$ e só depende do tempo através de x(t). Uma propriedade interessante (exercício!) é: Se $x_1(t)$ é solução única do problema de valor inicial para um sistema auntônomo, $\frac{\mathrm{d}x}{\mathrm{d}t} = f(x(t)), x(0) = x_0$, definir $x_2(t) = x_1(t-t_0)$ resolve o problema para para a mesma função mas com condição $x(t_0) = x_0$.

Ponto de Equilíbrio ou Singularidade: Seja y'=f(y). Se $f(\hat{y})=0$, dizemos que \hat{y} é ponto de equilíbrio ou singularidade. Ele será as soluções se aproximam de \hat{y} , ele é dito ponto atrator ou singularidade estável. Caso contrário, é dito repulsor ou singularidade instável. De forma mais precisa, \hat{y} é estável se dado $\epsilon>0$, existe um $\delta>0$ tal que se $|y_0-\hat{y}|<\delta$, onde y_0 é o valor inicil, então, $|y(t)-\hat{y}|<\epsilon$ para todo t. Além do mais, se $\lim_{t\to\infty}y(t)=\hat{y}$, dizemos que ele é assintoticamente estável. Cas são seja estável, ele é instável.

Teorema: Seja y' = f(y) com f(y) diferencialmente contínua e \hat{y} uma singularidade. Se $f'(\hat{y}) < 0$, \hat{y} é uma singularidade estável.

- 6 Modelos das Ciências Naturais
- 6.1 Resfriamento de um corpo
- 6.2 Problemas de Diluição