

Relational Interpreters for Search Problems

Petr Lozov, Kate Verbitskaia, Dmitry Boulytchev

JetBrains Research, Programming Languages and Tools Lab Saint Petersburg State University

22.08.2019

Recognition vs. Search

$$X$$
 — alphabet

$$L \subseteq X^*$$

if $\omega \in L$, denote the witness of this fact p_{ω}

Recognition vs. Search

$$X$$
 — alphabet

$$L \subseteq X^*$$

if $\omega \in L$, denote the witness of this fact p_{ω}

Recognition:
$$V(\omega, p_{\omega}) = \begin{cases} 1, & \omega \in L \\ 0, & \omega \notin L \end{cases}$$

Recognition vs. Search

$$X$$
 — alphabet

$$L \subseteq X^*$$

if $\omega \in L$, denote the witness of this fact p_{ω}

Recognition:
$$V(\omega, p_{\omega}) = \begin{cases} 1, & \omega \in L \\ 0, & \omega \notin L \end{cases}$$

Search: $S(\omega) = p_{\omega}$

Propositional Formulas: Recognition

```
let rec eval st = function
  Conj (1, r) \rightarrow eval st 1 && eval st r
  Disj (1, r) \rightarrow \text{eval st } 1 \mid | \text{eval st } r
  Neg e \rightarrow not (eval st e)
  Var \quad x \quad \rightarrow \quad List.assoc \ x \ st
```

Propositional Formulas: Recognition

```
let rec eval st = function
  Conj (1, r) \rightarrow eval st 1 && eval st r
  Disj (1, r) \rightarrow \text{eval st } 1 \mid | \text{eval st } r
  Neg e \rightarrow not (eval st e)
  Var \quad x \quad \rightarrow \ List.assoc \ x \ st
# eval [('x,true);('y,false)] (Conj (Var 'x) (Neg (Var 'y)));;
-: bool = true
```

Propositional Formulas: Search

```
let rec solve env b = function
  Var n \rightarrow (match assoc_opt n env with)
                   None \rightarrow [extend env n b]
                   Some b' when b \Longrightarrow b' \rightarrow [env]
                   \rightarrow [])
  Conj (1, r) when b \rightarrow
     concat @@
     map (\lambda \text{ env } \rightarrow \text{ solve env b r}) @@
     solve env b l
  Conj (1, r) \rightarrow solve env b 1 @ solve env b r
  Neg e \rightarrow solve env (not b) e
  Disj (1, r) \rightarrow \text{solve env b } (\text{Neg } (\text{Conj } (\text{Neg } 1, \text{Neg } r)))
```

Search is Hard¹

Is it possible to generate a search procedure from a recognizer?

¹compared to recognition

Relational Interpreter

$$V^R(\omega,p_\omega,q)$$
 $V^R(\omega,p_\omega,1), \quad ext{if} \ \omega\in L, p_\omega - ext{a} \ ext{witness}$ $V^R(\omega,p_\omega,0), \quad ext{otherwise}$

Relational Interpretation for Recognition and Search

$$V^R(\omega, p_\omega, ?) \rightsquigarrow V(\omega, p_\omega)$$

$$V^R(\omega, ?, 1) \rightsquigarrow S(\omega)$$

Only one program to implement!

Propositional Formulas: Relational Interpreter

```
let rec eval<sup>o</sup> st fm u = ocanren (
fresh x, y, z, v, w in
 fm = conj x y \& eval^o st x v \& eval^o st y w \& and^o v w u |
 fm = disj x y \& eval^o st x v \& eval^o st y w \& or^o v w u
 fm = neg x \& eval^o st x v \& not^o v u
 fm = var z \& assoc^o z st u
```

Relational Programming is Hard²

```
let rec hanoi° a b c moves a' b' c' = ocanren (
moves = [] & a = a' & b = b' & c = c' |
fresh f, t, moves', pin_f, pin_t, pin_f_res, pin_t_res, a'', b'', c'' in
  moves == (f. t) :: moves' &
  (f = A & t = B & pin_f = a & pin_f_res = a'' & pin_t = b & pin_t_res = b'' & c'' = c
   f == A & t == C & pin_f == a & pin_f_res == a'' & pin_t == c & pin_t_res == c'' & b'' == b
   f == B & t == A & pin_f == b & pin_f_res == b'' & pin_t == a & pin_t_res == a'' & c'' == c
   f == B & t == C & pin_f == b & pin_f_res == b'' & pin_t == c & pin_t_res == c'' & a'' == a
   f == C & t == A & pin_f == c & pin_f_res == c'' & pin_t == a & pin_t_res == a'' & b'' == b
   f == C & t == B & pin_f == c & pin_f_res == c'' & pin_t == b & pin_t_res == b'' & a'' == a) &
   fresh top f. rest f in
    pin_f == top_f :: rest_f &
     (pin_t == [] |
      fresh top t. rest t in
        pin_t == top_t :: rest_t & lt o top_f top_t truo
    pin f res == rest f &
    pin_t_res == top_f :: pin_t &
    hanoi<sup>o</sup> a'' b'' c'' moves' a' b' c'
```

It took 3 people 6 hours to implement

²compared to functional programming

Ways to Create Relational Interpreters

- Manual implementation
- Interpretation of functional programs with a relational interpreter
- Relational conversion

Ways to Create Relational Interpreters

- Manual implementation
- Interpretation of functional programs with a relational interpreter
- Relational conversion

Relational Interpretation of Functional Programs

- Implement good relational interpreter of a Turing-complete language
- Implement functional recognizer
- Run functional recognizer with a relational interpreter

Interpretation Overhead

Running relational interpreter comes with a price Are there ways to get rid of it?

Specialization

Interpreter:

eval prog input == output

Specialization

Interpreter:

eval prog input == output

Consider that a part of the input is known: input == (static, dynamic)

Specialization

Interpreter:

eval prog input == output

Consider that a part of the input is known: input == (static, dynamic)

Specializer:

spec prog static \Rightarrow prog_{spec} eval prog (static, dynamic) == eval $prog_{spec}$ dynamic

Jones-Optimality

- Specializers can fail to remove all interpretation overhead
- Jones-optimal specializer: the specialized interpreter is as efficient as the program it was specialized for
- There exists a Jones-optimal specializer for a logical language [Leuschel, 2004]
- Not for miniKanren
- Jones-optimality is hard to achieve

Ways to Create Relational Interpreters

- Manual implementation
- Interpretation of functional programs with a relational interpreter
- Relational conversion

Relational Conversion for Relational Interpreter

- Implement a functional recognizer (verifier): $V(\omega, p_{\omega})$
- Transform it into a relation: $V^R(\omega, p_\omega, q)$
- Specialize
 - Redundancy introduced with the relational conversion
 - Direction (q == 1)
 - Known data (ω)
- The result is a search routine

Relational Conversion (Unnesting) [Byrd 2009]

- Introduce a new variable for each subexpression
- For every n-ary function create an (n+1)-ary relation, where the last argument is unified with the result
- Transform if -expressions and pattern matchings into disjunctions with unifications for patterns
- Introduce into scope free variables (with fresh)
- Pop unifications to the top

Introduce a new variable for each subexpression

```
let rec append a b =
  match a with
  \mid x :: xs \rightarrow
    x :: append xs b
```

```
let rec append a b =
  match a with
  | x :: xs \rightarrow
    let q = append xs b in
    x :: q
```

Introduce a new variable for each subexpression

let rec append a
$$b = \dots$$

let rec append^o a b c = ...

Transform if -expressions and pattern matchings into disjunctions with unifications for patterns

```
let rec append a b =
  match a with
   \mathtt{x} :: \mathtt{xs} 	o
    let q = append xs b in
    x :: q
```

```
let rec append<sup>o</sup> a b c =
ocanren (
  (a = [] \& b = c) |
  ( a = x :: xs \&
     append^{o} xs b q &
     c = x :: q)
```

Introduce free variables into scope (with fresh)

```
let rec append<sup>o</sup> a b c =
ocanren (
  (a = [] \& b = c) |
  ( (a = x :: xs) &
     (append^o xs b q) &
     (c = x :: q))
```

```
let rec append<sup>o</sup> a b c =
ocanren (
  (a = [] \& b = c) |
  (fresh x, xs, q in)
     a == x :: xs &
     append^{o} xs b q &
     c == x :: q)
```

Pop unifications to the top

```
let rec append<sup>o</sup> a b c =
ocanren (
  (a = [] \& b = c) |
  (fresh x, xs, q in
     a == x :: xs \&
     append^{o} xs b q &
     c == x :: q)
```

```
let rec append<sup>o</sup> a b c =
ocanren (
 (a = [] \& b = c) |
 (fresh x, xs, q in
     a == x :: xs &
     c = x :: q \&
     appendo xs b q))
```

Forward Execution is Efficient. Backward Execution is not

Forward execution is efficient, since it mimics the execution of a function

Relational conversion for $f_1 \times_1 \&\& f_2 \times_2$:

```
\lambda res 
ightarrow ocanren (
  fresh p in
      f_1 x_1 p \&
     (p = fals^o \& res = fals^o \mid
      p = tru^o \& f_2 x_2 res)
```

Computes f_2 x_2 res only if f_1 x_1 p fails

It is not the best strategy, if res is known

Relational Conversion Aimed at Backward Execution

This coversion of $f_1 \times_1 \&\& f_2 \times_2$ is better for the backward execution, but not for forward

```
\lambda res 
ightarrow ocanren (
  res = fals^o \& f_1 x_1 fals^o
  f_1 \times_1 tru^o \& f_2 \times_2 res
```

There is no single strategy suitable for all cases

There is no Single Good Strategy

Is there a way to automatically generate relations efficient in the specified directions?

Specialization: Not Only for Direction

When solving a search problem, we know its search space

$$V^R(\omega,?,1) \rightsquigarrow S(\omega)$$

Partial Deduction: Specialization for Logic Language

- Given:
 - Logic program
 - Goal
- Result: specialized program
- How:
 - Construct a partial SLD-tree
 - Generate a program from the tree
- Hopefully, all excessive computations are done statically and do not come to the specialized program

Partial Deduction: Example

```
last([x|xs], r) \leftarrow l(xs, x, r).
1([], x, x).
l([z|zs], x, r) \leftarrow l(zs, z, r).
\leftarrow last([A,B|xs], r).
```

Partial Deduction: Example

$$\begin{aligned} & \text{last}([x|xs], \ r) \leftarrow l(xs, \ x, \ r). \\ & l([], \ x, \ x). \\ & l([z|zs], \ x, \ r) \leftarrow l(zs, \ z, \ r). \\ & \leftarrow & \text{last}([A,B|xs], \ r). \end{aligned}$$

Partial Deduction: Example

$$last([x|xs], r) \leftarrow l(xs, x, r).$$

$$l([], x, x).$$

$$l([z|zs], x, r) \leftarrow l(zs, z, r).$$

$$l(xs, B, r)$$

last([A,B], B).
last([A,B,z'|zs'], r)
$$\leftarrow$$
 l(zs', z', r).
l([], x, x).
l([z|zs], x, r) \leftarrow l(zs, z, r).

Partial Deduction: Conjunctions

Partial Deduction: Conjunctions

$$f(x,y) \lor f(y,z)$$
 $f(x,y) \land f(y,z)$

$$f(x,y) f(y,z)$$

$$f(x,y) f(y,z)$$

Conjunctive Partial Deduction

- Fully automatic program transformation
- For pure logic language
- Features:
 - Specialization
 - Deforestation
 - Tupling

Deforestation

Deforestation — program transformation which eliminates intermediate data structures

```
let double_appendo x y z xyz = ocanren (
  fresh t in
    append° x v t &
                                     let rec double_append° x y z xyz = ocanrer
    append^{\circ} t z xyz)
                                      x = [] \& append^{\circ} y z xyz |
                                       (fresh h, t, t' in
let rec append^{\circ} x y xy = ocanren (
                                          x == h :: t &
  x = [] & xy = y |
                                          xyz = h :: t' &
  fresh h, t, ty in
                                          double_appendo t y z t')
    x == h :: t &
    xy = h :: t' &
    appendo t y t')
```

Tupling

Tupling — program transformation which eliminates multiple traversals of the same data structure

```
let max_length° xs m 1 = max° xs m & length° xs 1
let rec length xs 1 = ocanren (
  xs = [] & 1 = 0 |
  (fresh h, t, m in
    xs = h :: t \& l = succ m \& length^o t m)
let \max^{\circ} xs m = \max_{1}^{\circ} xs 0 m
let rec \max_{1}^{o} xs n m = ocanren (
  xs = [] & m = n |
  (fresh h, t in
    xs == h :: t &
    ( le^{\circ} h n tru^{\circ} \& max_1^{\circ} t n m |
      gt° h n tru° & max<sub>1</sub>° t h m)))
```

Tupling

Tupling — program transformation which eliminates multiple traversals of the same data structure

```
let max_length xs m 1 = max_length xs m 0 1
let rec max_length<sup>o</sup> xs m n l = ocanren (
  xs = [] \& m = n \& 1 = 0 |
  (fresh h, t, l<sub>1</sub> in
     xs == h :: t &
     1 = succ 1_1 \&
     ( le° h n & max_length<sub>1</sub>° t m n l |
        gt° h n & max_length<sup>o</sup> t m h 1)))
```

CPD: Intuition

- Local control: compute a partial SLDNF-tree per a relation of interest
 - Having a conjunction of atoms, which atom should be selected?
 - When to stop building a tree?
- Global control: determine which relations are of interest
 - Do not process the same conjunction twice
 - If a conjunction *embeds* something processed before, *generalize* it
 - How to define embedding?
 - How to generalize?

CPD: Implementation

- Local control
 - Deterministic unfold (only one nondeterministic unfold per tree)
 - Selectable conjunct: leftmost atom which does not have any predecessor embedded into it
 - Variant check
 - Stop when there are no selectable atoms
- Global control
 - Variant check
 - Generalization: split conjunction in maximally connected subconjunctions + most specific generalization
 - Homeomorphic embedding extended for conjunctions
- Residualization
 - A definition per a partial SLDNF-tree
 - Redundant Argument Filtering

Evaluation

Compare

- Unnesting
- Unnesting strategy aimed at backward execution
- Unnesting + CPD
- Interpretation of functional verifier with relational interpreter

Tasks

- Path search
- Search for a unifier of two terms

Path Search

Directed graph is a tuple (*N*, *E*, *start*, *end*), where:

- N set of nodes
- E set of edges
- Functions start, end : $E \rightarrow N$ return a start (end) node of an edge

Path Search

Directed graph is a tuple (N, E, start, end), where:

- N set of nodes
- E set of edges
- Functions start, end : $E \to N$ return a start (end) node of an edge

Path is a sequence $\langle n_0, e_0, n_1, e_1, \dots, n_k, e_k, n_{k+1} \rangle$, such that

$$\forall i \in \{0 \dots k\} : n_i = start(e_i) \text{ and } n_{i+1} = end(e_i)$$

Path Search

Directed graph is a tuple (N, E, start, end), where:

- N set of nodes
- E set of edges
- Functions start, end : $E \to N$ return a start (end) node of an edge

Path is a sequence $\langle n_0, e_0, n_1, e_1, \dots, n_k, e_k, n_{k+1} \rangle$, such that

$$\forall i \in \{0 \dots k\} : n_i = start(e_i) \text{ and } n_{i+1} = end(e_i)$$

Path search problem is to find the set of paths in a given graph

Path Search: Relational Conversion

```
let rec is_path ns g =
 match ns with
```

Path Search: Relational Conversion

```
let rec is_path ns g =
   match ns with
| x_1 :: x_2 :: xs \rightarrow elem(x_1, x_2) g \&\& is_path(x_2 :: xs) g
| [_]
                        \rightarrow true
 let rec is_patho ns g res = ocanren (
   fresh el in (ns = [el] & res = tru^{\circ})
   (fresh x_1, x_2, x_3, res_elem, res_is_path in
     ns = x_1 :: (x_2 :: x_3) \&
     elem<sup>o</sup> (x<sub>1</sub>, x<sub>2</sub>) g res_elem &
     is_path o (x2 :: xs) g res_is_path &
     ( res_elem \Longrightarrow fals ^{\circ} & res \Longrightarrow fals ^{\circ} |
        res_elem = tru^o \& res = res_is_path )))
This relation is inefficient for "is_path" q <graph> true"
```

Path Search: Specialized Relation

```
let rec is_patho ns g res = ocanren (
  fresh el in (ns = [el] \& res = tru^{\circ})
  (fresh x<sub>1</sub>, x<sub>2</sub>, xs, res_elem, res_is_path in
    res elem == tru° &
    res_is_path == tru° &
    ns = x_1 :: (x_2 :: xs) &
    elem<sup>o</sup> (x<sub>1</sub>, x<sub>2</sub>) g res_elem &
    is_path<sup>o</sup> (x<sub>2</sub> :: xs) g res_is_path)))
```

Better performance for "is_path" q <graph> true"

Path Search: Specialized Relation

```
let rec is_patho ns g res = ocanren (
  fresh el in (ns = [el] \& res = tru^{\circ})
  (fresh x<sub>1</sub>, x<sub>2</sub>, xs, res_elem, res_is_path in
    res elem == tru° &
    res_is_path == tru° &
    ns = x_1 :: (x_2 :: xs) &
    elem<sup>o</sup> (x<sub>1</sub>, x<sub>2</sub>) g res_elem &
    is_path<sup>o</sup> (x<sub>2</sub> :: xs) g res_is_path)))
```

Better performance for "is_path" q <graph> true"

This can be achieved automatically with CPD

Evaluation: Path Search

Path length	5	7	9	11	13	15
Only conversion	0.01	1.39	82.13	>300	_	_
Backward oriented conversion	0.01	0.37	2.68	2.91	4.88	10.63
Conversion and CPD	0.01	0.06	0.34	2.66	3.65	6.22
Scheme interpreter	0.80	8.22	88.14	191.44	>300	_

Table: Searching for paths in the graph (seconds)

Term:

- Variable (*X*, *Y*,...)
- Some constructor applied to terms (nil, cons(H, T), ...)

Term:

- Variable (*X*, *Y*,...)
- Some constructor applied to terms (nil, cons(H, T),...)

Substitution maps variables to terms

Substitution can be applied to a term by simultaneously substituting variables for their images

Term:

- Variable (*X*, *Y*,...)
- Some constructor applied to terms (nil, cons(H, T),...)

Substitution maps variables to terms

Substitution can be applied to a term by simultaneously substituting variables for their images

Unifier is a substitution σ which equalizes terms: $t\sigma = s\sigma$

Term:

- Variable (*X*, *Y*,...)
- Some constructor applied to terms (nil, cons(H, T),...)

Substitution maps variables to terms

Substitution can be applied to a term by simultaneously substituting variables for their images

Unifier is a substitution σ which equalizes terms: $t\sigma = s\sigma$

Problem: given two terms with free variables, find their unifier

Unification: Functional Verifier

```
let rec check_uni subst t1 t2 =
 match t1, t2 with
    Constr (n1, a1), Constr (n2, a2) \rightarrow
      eq_nat n1 n2 && forall2 subst a1 a2
    Var_v , Constr(n, a) \rightarrow
    begin match get_term v subst with
      None \rightarrow false
      Some t \rightarrow check uni subst t t2
    end
    Constr (n, a) , Var_ v
    begin match get_term v subst with
      None \rightarrow false
      Some t \rightarrow check uni subst t1 t
    end
    Var_ v1 , Var_ v2
    match get_term v1 subst with
      Some t1' \rightarrow check_uni subst t1' t2
                → match get_term v2 subst with
                   \mid Some \rightarrow false
                    None \rightarrow eq_nat v1 v2
```

Unification: Relational Conversion

Does not fit the slide.

Evaluation: Unification

Terms	f(X, a) f(a, X)	f(a % b % nil, c % d % nil, L) f(X % XS, YS, X % ZS)	$\begin{array}{c c} f(X, X, g(Z, t)) \\ \hline f(g(p, L), Y, Y) \end{array}$
Only conversion	0.01	>300	>300
Backward oriented conversion	0.01	0.11	2.26
Conversion and CPD	0.01	0.07	0.90
Scheme interpreter	0.04	5.15	>300

Table: Searching for a unifier of two terms (seconds)

Conclusion & Future Work

Functional verifier + unnesting + specialization = solver

Future work

- Generate functional program from relational to reduce interpretation overhead
- Some other specialization technique, less ad-hoc than CPD