

35532 管體耦合器

F16 I

一、申請案號數：六九二六二〇六號
(由六九一一四二六號改請)

二、創作之名稱：管體耦合器

三、創作人姓名：傑佛雷羅勃特費爾尼

申請人姓名：詹姆士尼爾霍丁有限公司

住址：英國

代理人：陳世雄律師

四、申請之日期：六十九年五月廿二日

五、請求專利部份：

1.一種管體耦合器包含一軀體構件，該軀體構件俱有一外部螺紋與一軸間佈列而朝一孔隙收斂之內壁以將欲被緊緊之管體之末端容納於耦合器之中，一螺母構件以裝置於該管體之上，該螺母構件且俱有螺紋以適合軀體構件之螺紋，該耦合器另分別包含可變形之前套圈與後套圈，這些套圈係裝置於軀體構件與螺母構件之間之管體之上，該前套圈俱有一外部逐漸變細之前導末端以與軀體構件之收斂壁接觸，該前套圈另於施曳末端俱有一向內逐漸變尖之開口 6，該後套圈則俱有一外部逐漸變細之前導端以與前套圈之變尖開口接觸，該後套圈另俱有一外部逐漸變細之施曳末端，螺母構件於螺紋內部末端處俱有一環形斜面以與後套圈之施曳末端接觸，該軀體構件之收斂內壁，該前套圈之逐漸變細之開口與該螺母構件之環形斜面均俱有直線之縱側面，而該前套圈之前導端，該後套圈之前導端與該後套圈之施曳端均俱有凸出之縱側面，因此每一凸出而逐漸變細之表面適合於其個別之直線而逐漸變細之表面而形成直線之接觸。

2.一種管體耦合器如請求專利部份第 1 項所述，其中該軀體構件之收斂內壁對軸之角度為 12 度與 20 度之間。

3.一種管體耦合器如請求專利部份第 2 項所述，其中該軀體構件之收斂內壁對軸之角度為 15 度。

4.一種管體耦合器如請求專利部份第 1 至第 3 項

之中任何一項所述，其中該前套圈之逐漸尖之開口對軸之角度為 45 度。

- 5.一種管體耦合器如請求專利部份第 1 至第 4 項之中任何一項所述，其中該螺母構件之斜面對軸之角度為 75 度至 80 度之間。
- 6.一種管體耦合器如請求專利部份第 5 項所述，其中該螺母構件之斜面對軸之角度為 77 度。
- 7.一種管體耦合器如請求專利部份第 1 至第 6 項之中任何一項所述，其中該前套圈於其施曳末端俱有一較厚之部位圍繞於逐漸變尖之開口。
- 8.一種管體耦合器如請求專利部份第 7 項所述，其中該較厚部位係自凸出而逐漸變細之前導端之較粗末端開始增加厚度，因此該較厚部位俱有一種圓柱形之外表面。
- 9.一種管體耦合器如請求專利部份第 1 至第 8 項之中任何一項所述，其中該前套圈之前導端俱有一扁平環形末端面，而該末端面之內緣則適合卡緊於管體之內。
- 10.一種管體耦合器如請求專利部份第 1 至第 9 項之中任何一項所述，其中該後套圈於前導端之較粗末端與施曳端之較粗末端之間俱有一階梯 (Step up)。
- 11.一種管體耦合器如請求專利部份第 10 項所述，其中該後套圈之前導端係自該階梯以曲線方式延挿於一邊緣，而該邊緣適合卡緊於管體之內。
- 12.一種管體耦合器如請求專利部份第 1 至第 11 項之中任何一項所述，其中該軀體構件之孔隙係由一環形突肩以一較小之孔隙連接之。
- 13.一種管體耦合器實質如此處依據所附圖件所說明者。

APCC 69-6206

677777

APPLICANTS:

JAMES NEILL HOLDINGS LIMITED,

A British Company

Napier Street,
Sheffield
S11 8HB,
England

TITLE:

PIPE COUPLINGS

TRUE AND FIRST INVENTOR: GEOFFREY ROBERT FAIRNIE

Corresponding to British Patent Application 7917943
filed 23rd May 1979.

This invention relates to pipe couplings of the type comprising a body member having an external screw-thread and an axially-disposed internal wall converging towards a bore for receiving an end of a pipe to be secured in the coupling, a nut member for mounting on a pipe and having a screw-thread fitting the screw-thread on the body member, and front and rear deformable ferrules for mounting on a pipe between the body and nut members, the front ferrule having an externally tapered leading end for contacting the converging wall in the body member and an inwardly tapering mouth at the trailing end, the rear ferrule having an externally tapered leading end for contacting the tapering mouth of the front ferrule and an externally tapered trailing end, and the nut member having an annular bevel at the inner end of the screw-thread for contacting the trailing end of the rear ferrule, whereby, when the body and nut members are in position around a pipe with the ferrules therebetween, screwing of the nut and body members together forces the leading end of the front ferrule into the convergent space between

the converging wall in the body member and
the outer surface of the pipe, and thereby
compresses radially the leading end of the
front ferrule so that it grips the pipe, and
the leading end of the rear ferrule is forced
5 into the tapering mouth in the trailing end
of the front ferrule, and thereby compresses
radially the leading end of the rear ferrule
so that it too grips the pipe. The angle of
10 the tapering mouth of the front ferrule is
appreciably greater than the angle of the
converging internal wall of the body member,
so that the leading end of the front ferrule
grips the pipe before the leading end of the
15 rear ferrule, the rise in the effort required
to tighten the nut and body members when the
leading end of the rear ferrule grips the pipe
being an indication that the leading end of
the front ferrule is gripping the pipe suff-
20 ciently to provide a satisfactory seal of the
coupling with the pipe, as well as holding the
pipe against pulling out of the coupling. Such
a coupling will be called hereinafter "a
coupling of the type referred to".

25 As the leading end of the front ferrule

begins to grip the pipe, friction between
the front ferrule and the body member, also
between the rear ferrule and the front ferrule,
and between the nut member and the rear
ferrule increases and continues to increase
as the grip increases, and may become so
appreciable by the stage at which the leading
end of the rear ferrule begins to grip the
pipe that the rise in the effort required to
tighten the nut and body members is not sub-
stantial enough to serve as an indication
that the leading end of the rear ferrule is
beginning to grip the pipe.

The object of the present invention,
therefore, is to reduce friction in a coupling
of the type referred to.

According to the present invention, in
a coupling of the type referred to the con-
verging internal wall of the body member, the
tapering mouth in the front ferrule, and the
annular bevel in the nut member all have straight
longitudinal profiles, while the leading end
of the front ferrule, the leading end of the
rear ferrule, and the trailing end of the
25 rear ferrule all have convex longitudinal
profiles such that each convexly tapering

surface initially fits into its respective straight tapering surface to make line contact therewith intermediate of its ends.

Thus, there is not anywhere, between
5 the body member and the front ferrule, between
the front ferrule and the rear ferrule, or
between the rear ferrule and the nut member,
at any time while the nut and body members
are being tightened together, any appreciable
10 surface contact to create high friction or
increase friction, nor any possibility of a
circumferential edge being brought into contact
with a surface. Therefore, the rise in effort
required to tighten the nut and body members
when the leading end of the rear ferrule grips
15 the pipe will be significant and will, accord-
ingly, afford a very clear indication that
the leading end of the front ferrule is gripping
the pipe sufficiently to provide a satisfactory
seal of the coupling with the pipe, as well
20 as holding the pipe against pulling out of
the coupling.

The convexly tapering surfaces can be
regarded as executing rolling sliding movement
25 with respect to the respective straight tapering

surfaces as the nut and body members are tightened. Alternatively, the longitudinal sections of the ferrules can be regarded as rocking inwardly with respect to the axis from their trailing ends to their leading ends.

5

The angle of the converging internal wall of the body member is preferably between 12° and 20° to the axis, more particularly 15° , the angle of the tapering mouth in the front ferrule is preferably 45° to the axis, and the angle of the bevel in the nut member is preferably between 75° to 80° to the axis, more particularly 77° .

10

The front ferrule preferably has a thicker portion around the tapering mouth in its trailing end, to afford increased resistance to stretching when the leading end of the rear ferrule is pushed into the tapering mouth in the front ferrule, the thicker portion preferably being stepped up from the larger end of the convexly tapering leading end, and the thicker portion preferably has a cylindrical outer surface. The leading end of the front ferrule preferably has a flat annular end face the inner edge of which is adapted to

15

20

25

bite into the pipe. The rear ferrule preferably has a step up between the larger end of the leading end and the larger end of the trailing end, and the leading end of the rear ferrule preferably curves from the step to an edge which is adapted to bite into the pipe. The trailing end of the rear ferrule also preferably curves from the step to an edge, but this rear edge does not bite into the pipe.

10

The bore in the body member is preferably connected by an annular shoulder with a smaller bore, the annular shoulder serving as a stop for an inserted pipe.

15

A preferred embodiment of the invention will now be described, by way of example only, with reference to the accompanying drawings, in which

20

Figures 1 to 4 are all half-sectional side elevations of respectively a body member, a front ferrule, a rear ferrule, and a nut member that together form a pipe coupling in accordance with the invention;

25

Figure 5 is a longitudinal section to a larger scale of one half of the coupling as

initially assembled and with a pipe inserted;
and

5 Figure 6 corresponds to Figure 5 but
shows the coupling when the nut and body
members have been screwed together until both
ferrules grip the pipe.

10 The pipe coupling shown in the drawings
comprises a body member A, having an external
screw-thread 1 and an axially disposed internal
wall 2 converging towards a bore 3 for receiving
an end of a pipe to be secured in the coupling,
a nut member B for mounting on a pipe and
having a screw-thread 4 fitting the screw-thread
1 on the body member A, and front and rear
15 deformable ferrules C, D, respectively, for
mounting on a pipe between the body and nut
members, the front ferrule C having an externally
tapered leading end 5 for contacting the con-
verging wall 2 in the body member A and an
inwardly tapering mouth 6 at the trailing end,
20 the rear ferrule D having an externally tapered
leading end 7 for contacting the tapering mouth
of the front ferrule and an externally tapered
trailing end 8, and the nut member B having
25 an annular bevel 9 at the inner end of the

screw-thread 4 for contacting the trailing end
of the rear ferrule, whereby, when the
body and nut members A, B are in position
around a pipe 10 (Figure 5) with the ferrules
5 C, D, therebetween, screwing of the nut and
body members together (Figure 6) forces the
leading end 5 of the front ferrule C into the
convergent space between the converging wall
2 in the body member A and the outer surface
10 11 of the pipe, and thereby compresses radially
the leading end of the front ferrule so that
it grips the pipe, and the leading end 7 of
the rear ferrule D is forced into the tapering
mouth 6 in the trailing end of the front ferrule
15 C, and thereby compresses radially the leading
end 7 of the rear ferrule so that it too
grips the pipe. The angle of the tapering
mouth 6 of the front ferrule C is appreciably
greater than the angle of the converging
internal wall 2 of the body member A, so that
the leading end 5 of the front ferrule grips
the pipe 10 before the leading end 7 of the
rear ferrule, the rise in the effort required
20 to tighten the nut and body members when the
leading end 7 of the rear ferrule grips the
25

5 pipe being an indication that the leading end
5 of the front ferrule is gripping the pipe
sufficiently to provide a satisfactory seal
of the coupling with the pipe, as well as
holding the pipe against pulling out of the
coupling.

) In accordance with the invention, the
converging internal wall 2 of the body member
A, the tapering mouth 6 in the front ferrule
C, and the annular bevel 9 in the nut member
B all have straight longitudinal profiles,
while the leading end 5 of the front ferrule
C, the leading end 7 of the rear ferrule D,
and the trailing end 8 of the rear ferrule
15 all have convex longitudinal profiles such
that each convexly tapering surface initially
fits into its respective straight tapering
surface to make line contact therewith inter-
mediate its ends. Thus, there is not anywhere,
between the body member A and the front ferrule
20 C, between the front ferrule and the rear ferrule
D, or between the rear ferrule and the nut
member B, at any time while the nut and body
members are being tightened together, any
25 appreciable surface contact to create high

friction or increase friction, nor any
possibility of a circumferential edge being
brought into contact with a surface. Therefore,
the rise in effort required to tighten
5 the nut and body members A, B when the leading
end 7 of the rear ferrule D grips the pipe
will be significant and will, accordingly,
afford a very clear indication that the leading
end 5 of the front ferrule C is gripping the
10 pipe 10 sufficiently to provide a satisfactory
seal of the coupling with the pipe, as well
as holding the pipe against pulling out of
the coupling.

The convexly tapering surfaces 5, 7 and
15 8 can be regarded as executing rolling sliding
movement with respect to the respective straight
tapering surfaces 2, 6 and 9 as the nut and
body members A, B are tightened. Alternatively,
the longitudinal sections of the ferrules C, D
20 can be regarded as rocking inwardly with
respect to the axis from their trailing ends
to their leading ends.

The angle of the converging internal
wall 2 of the body member A is 15° to the
25 axis, the angle of the tapering mouth 6 in

the front ferrule C is 45° to the axis, and the angle of the bevel 9 in the nut member B is 77° to the axis.

The front ferrule C has a thicker portion 12 around the tapering mouth 6 in its trailing end, to afford increased resistance to stretching when the leading end 7 of the rear ferrule D is pushed into the tapering mouth, the thicker portion being stepped up from the larger end of the convexly tapering leading end 5, and the thicker portion having a cylindrical outer surface. The leading end 5 of the front ferrule C has a flat annular end face 13 the inner edge 14 of which is adapted to bite into the pipe 10. The rear ferrule D has a step up 15 between the larger end of the leading end 7 and the larger end of the trailing end 8, and the leading end 7 curves from the step 15 to an edge 16 which is adapted to bite into the pipe 10. The trailing end 8 of the rear ferrule D also curves from the step 15 to an edge 17, but this rear edge does not bite into the pipe.

The bore 3 in the body member A is connected by an annular shoulder 18 with a

smaller bore 19 (which preferably has, as shown, the same diameter as the bore of the pipe 10), the annular shoulder serving as a stop for the inserted pipe.

CLAIMS

1. A pipe coupling comprising a body member having an external screw-thread and an axially-disposed internal wall converging towards a bore for receiving an end of a pipe to be secured in the coupling, a nut member for mounting on a pipe and having a screw-thread fitting the screw-thread on the body member, and front and rear deformable ferrules for mounting on a pipe between the body and nut members, the front ferrule having an externally tapered leading end for contacting the converging wall in the body member and an inwardly tapering mouth at the trailing end, the rear ferrule having an externally tapered leading end for contacting the tapering mouth of the front ferrule and an externally tapered trailing end, and the nut member having an annular bevel at the inner end of the screw-thread for contacting the trailing end of the rear ferrule, the converging internal wall of the body member, the tapering mouth in the front ferrule, and the annular bevel in the nut member all having straight longitudinal profiles, while the leading end of the front ferrule, the leading end of the rear ferrule, and the trailing end

5
10
15
20
25

5

of the rear ferrule, all have convex longitudinal profiles such that each convexly tapering surface initially fits into its respective straight tapering surface to make line contact therewith intermediate of its ends.

2. A pipe coupling as in Claim 1, wherein the angle of the converging internal wall of the body member is between 12° and 20° to the axis.

3. A pipe coupling as in Claim 2, wherein the angle of the converging internal wall of the body member is 15° to the axis.

4. A pipe coupling as in any one of Claims 1 to 3, wherein the angle of the tapering mouth in the front ferrule is 45° to the axis.

5. A pipe coupling as in any one of Claims 1 to 4, wherein the angle of the bevel in the nut member is between 75° to 80° to the axis.

6. A pipe coupling as in Claim 5, wherein the angle of the bevel in the nut member is 77° to the axis.

7. A pipe coupling as in any one of Claims 1 to 6, wherein the front ferrule has

a thicker portion around the tapering mouth
in its trailing end.

8. A pipe coupling as in Claim 7,
wherein the thicker portion is stepped up
from the larger end of the convexly tapering
leading end, and the thicker portion has a
cylindrical outer surface.

5

9. A pipe coupling as in any one of
Claims 1 to 8, wherein the leading end of
the front ferrule has a flat annular end
face the inner edge of which is adapted to
bite into the pipe.

5

10. A pipe coupling as in any one of
Claims 1 to 9, wherein the rear ferrule has a
step up between the larger end of the leading
end and larger end of the trailing end.

11. A pipe coupling as in Claim 10,
wherein the leading end of the rear ferrule
curves from the step to an edge which is adapted
to bite into the pipe.

12. A pipe coupling as in any one of
Claims 1 to 11, wherein the bore in the body
member is connected by an annular shoulder
with a smaller bore.

13. A pipe coupling substantially as
hereinbefore described with reference to the
accompanying drawings.

6911426

FIG. 1

FIG. 2

FIG. 3

FIG. 4

FIG. 5

FIG. 6

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.