# Mergesort COMS10018 - Algorithms

Dr Christian Konrad

#### **Sorting Problem**

• **Input:** An array A of n numbers

• **Output:** A reordering of A s.t.  $A[0] \leq A[1] \leq \cdots \leq A[n-1]$ 

#### **Sorting Problem**

- **Input:** An array A of n numbers
- **Output:** A reordering of A s.t.  $A[0] \leq A[1] \leq \cdots \leq A[n-1]$

Why is it important?

#### **Sorting Problem**

- **Input:** An array A of n numbers
- **Output:** A reordering of A s.t.  $A[0] \leq A[1] \leq \cdots \leq A[n-1]$

#### Why is it important?

Practical relevance: Appears almost everywhere

#### **Sorting Problem**

- **Input:** An array A of n numbers
- **Output:** A reordering of A s.t.  $A[0] \leq A[1] \leq \cdots \leq A[n-1]$

#### Why is it important?

- Practical relevance: Appears almost everywhere
- Fundamental algorithmic problem, rich set of techniques

#### **Sorting Problem**

- **Input:** An array A of n numbers
- **Output:** A reordering of A s.t.  $A[0] \leq A[1] \leq \cdots \leq A[n-1]$

#### Why is it important?

- Practical relevance: Appears almost everywhere
- Fundamental algorithmic problem, rich set of techniques
- There is a non-trivial lower bound for sorting (rare!)

#### **Sorting Problem**

- **Input:** An array A of n numbers
- **Output:** A reordering of A s.t.  $A[0] \leq A[1] \leq \cdots \leq A[n-1]$

#### Why is it important?

- Practical relevance: Appears almost everywhere
- Fundamental algorithmic problem, rich set of techniques
- There is a non-trivial lower bound for sorting (rare!)

#### Insertion Sort

#### **Sorting Problem**

- **Input:** An array A of n numbers
- **Output:** A reordering of A s.t.  $A[0] \leq A[1] \leq \cdots \leq A[n-1]$

#### Why is it important?

- Practical relevance: Appears almost everywhere
- Fundamental algorithmic problem, rich set of techniques
- There is a non-trivial lower bound for sorting (rare!)

#### Insertion Sort

• Worst-case runtime  $O(n^2)$ 

#### **Sorting Problem**

- **Input:** An array A of n numbers
- **Output:** A reordering of A s.t.  $A[0] \leq A[1] \leq \cdots \leq A[n-1]$

#### Why is it important?

- Practical relevance: Appears almost everywhere
- Fundamental algorithmic problem, rich set of techniques
- There is a non-trivial lower bound for sorting (rare!)

#### Insertion Sort

- Worst-case runtime  $O(n^2)$
- Surely we can do better?!

### Insertion sort in Practice on Worst-case Instances



**Definition** (in place)

**Definition** (in place)

A sorting algorithm is in place if at any moment at most O(1) array elements are stored outside the array



### **Definition** (in place)

A sorting algorithm is in place if at any moment at most O(1) array elements are stored outside the array



**Example:** Insertion-sort is in place

**Definition** (in place)

A sorting algorithm is in place if at any moment at most O(1) array elements are stored outside the array



**Example:** Insertion-sort is in place

**Definition** (stability)

#### **Definition** (in place)

A sorting algorithm is in place if at any moment at most O(1) array elements are stored outside the array



**Example:** Insertion-sort is in place

#### **Definition** (stability)

A sorting algorithm is *stable* if any pair of equal numbers in the input array appear in the same order in the sorted array

#### **Definition** (in place)

A sorting algorithm is in place if at any moment at most O(1) array elements are stored outside the array



**Example:** Insertion-sort is in place

### **Definition** (stability)

A sorting algorithm is *stable* if any pair of equal numbers in the input array appear in the same order in the sorted array

**Example:** Insertion-sort is stable

#### **Sorting Complex Data**

 In reality, data that is to be sorted is rarely entirely numerical (e.g. sort people in a database according to their last name)

- In reality, data that is to be sorted is rarely entirely numerical (e.g. sort people in a database according to their last name)
- A data item is often also called a record

- In reality, data that is to be sorted is rarely entirely numerical (e.g. sort people in a database according to their last name)
- A data item is often also called a record
- The key is the part of the record according to which the data is to be sorted

- In reality, data that is to be sorted is rarely entirely numerical (e.g. sort people in a database according to their last name)
- A data item is often also called a record
- The key is the part of the record according to which the data is to be sorted
- Data different to the key is also referred to as satellite data

- In reality, data that is to be sorted is rarely entirely numerical (e.g. sort people in a database according to their last name)
- A data item is often also called a record
- The key is the part of the record according to which the data is to be sorted
- Data different to the key is also referred to as satellite data

| family name | first name | data of birth | role            |
|-------------|------------|---------------|-----------------|
| Smith       | Peter      | 02.10.1982    | lecturer        |
| Hills       | Emma       | 05.05.1975    | reader          |
| Jones       | Tom        | 03.02.1977    | senior lecturer |
|             |            |               |                 |

#### **Sorting Complex Data**

- In reality, data that is to be sorted is rarely entirely numerical (e.g. sort people in a database according to their last name)
- A data item is often also called a record
- The key is the part of the record according to which the data is to be sorted
- Data different to the key is also referred to as satellite data

| family name | first name | data of birth | role            |
|-------------|------------|---------------|-----------------|
| Smith       | Peter      | 02.10.1982    | lecturer        |
| Hills       | Emma       | 05.05.1975    | reader          |
| Jones       | Tom        | 03.02.1977    | senior lecturer |
|             |            |               |                 |

**Observe:** Stability makes more sense when sorting complex data as opposed to numbers

Key Idea:

### Key Idea:

• Suppose that left half and right half of array is sorted

#### Key Idea:

- Suppose that left half and right half of array is sorted
- Then we can merge the two sorted halves to a sorted array in O(n) time:

### Merge Operation

#### Key Idea:

- Suppose that left half and right half of array is sorted
- Then we can merge the two sorted halves to a sorted array in O(n) time:

#### Merge Operation

Copy left half of A to new array B

#### Key Idea:

- Suppose that left half and right half of array is sorted
- Then we can merge the two sorted halves to a sorted array in O(n) time:

#### Merge Operation

- Copy left half of A to new array B
- Copy right half of A to new array C

#### Key Idea:

- Suppose that left half and right half of array is sorted
- Then we can merge the two sorted halves to a sorted array in O(n) time:

#### Merge Operation

- Copy left half of A to new array B
- Copy right half of A to new array C
- Traverse B and C simultaneously from left to right and write the smallest element at the current positions to A

A 1 4 9 10 3 5 7 11



















Merge Operation

### Merge Operation

- Input: An array A of integers of length n (n even) such that  $A[0,\frac{n}{2}-1]$  and  $A[\frac{n}{2},n-1]$  are sorted
- Output: Sorted array A

### Merge Operation

• **Input:** An array A of integers of length n (n even) such that  $A[0,\frac{n}{2}-1]$  and  $A[\frac{n}{2},n-1]$  are sorted

• Output: Sorted array A

### **Runtime Analysis:**

### Merge Operation

- **Input:** An array A of integers of length n (n even) such that  $A[0, \frac{n}{2} 1]$  and  $A[\frac{n}{2}, n 1]$  are sorted
- Output: Sorted array A

### **Runtime Analysis:**

**1** Copy left half of A to B: O(n) operations

### Merge Operation

- **Input:** An array A of integers of length n (n even) such that  $A[0,\frac{n}{2}-1]$  and  $A[\frac{n}{2},n-1]$  are sorted
- Output: Sorted array A

#### **Runtime Analysis:**

- **1** Copy left half of A to B: O(n) operations
- ② Copy right half of A to C: O(n) operations

### Merge Operation

- Input: An array A of integers of length n (n even) such that  $A[0,\frac{n}{2}-1]$  and  $A[\frac{n}{2},n-1]$  are sorted
- Output: Sorted array A

### **Runtime Analysis:**

- **1** Copy left half of A to B: O(n) operations
- ② Copy right half of A to C: O(n) operations
- **1** Merge B and C and store in A: O(n) operations

### Merge Operation

- **Input:** An array A of integers of length n (n even) such that  $A[0,\frac{n}{2}-1]$  and  $A[\frac{n}{2},n-1]$  are sorted
- Output: Sorted array A

### **Runtime Analysis:**

- **1** Copy left half of A to B: O(n) operations
- **2** Copy right half of A to C: O(n) operations
- **1** Merge B and C and store in A: O(n) operations

**Overall:** O(n) time in worst case

### Merge Operation

- **Input:** An array A of integers of length n (n even) such that  $A[0,\frac{n}{2}-1]$  and  $A[\frac{n}{2},n-1]$  are sorted
- Output: Sorted array A

### **Runtime Analysis:**

- **1** Copy left half of A to B: O(n) operations
- ② Copy right half of A to C: O(n) operations
- **1** Merge B and C and store in A: O(n) operations

**Overall:** O(n) time in worst case

How can we establish that left and right halves are sorted?

### Merge Operation

- **Input:** An array A of integers of length n (n even) such that  $A[0,\frac{n}{2}-1]$  and  $A[\frac{n}{2},n-1]$  are sorted
- Output: Sorted array A

### **Runtime Analysis:**

- **1** Copy left half of A to B: O(n) operations
- **2** Copy right half of A to C: O(n) operations
- **1** Merge B and C and store in A: O(n) operations

**Overall:** O(n) time in worst case

How can we establish that left and right halves are sorted?

Divide and Conquer!

```
Require: Array A of n numbers if n = 1 then return A
A[0, \lfloor \frac{n}{2} \rfloor] \leftarrow \text{MERGESORT}(A[0, \lfloor \frac{n}{2} \rfloor])
A[\lfloor \frac{n}{2} \rfloor + 1, n - 1] \leftarrow \text{MERGESORT}(A[\lfloor \frac{n}{2} \rfloor + 1, n - 1])
A \leftarrow \text{MERGE}(A)
return A
MERGESORT
```

```
Require: Array A of n numbers if n = 1 then return A
A[0, \lfloor \frac{n}{2} \rfloor] \leftarrow \text{MERGESORT}(A[0, \lfloor \frac{n}{2} \rfloor])
A[\lfloor \frac{n}{2} \rfloor + 1, n - 1] \leftarrow \text{MERGESORT}(A[\lfloor \frac{n}{2} \rfloor + 1, n - 1])
A \leftarrow \text{MERGE}(A)
return A
```

MERGESORT

### Structure of a Divide and Conquer Algorithm

```
Require: Array A of n numbers if n = 1 then return A
A[0, \lfloor \frac{n}{2} \rfloor] \leftarrow \text{MERGESORT}(A[0, \lfloor \frac{n}{2} \rfloor])
A[\lfloor \frac{n}{2} \rfloor + 1, n - 1] \leftarrow \text{MERGESORT}(A[\lfloor \frac{n}{2} \rfloor + 1, n - 1])
A \leftarrow \text{MERGE}(A)
return A
```

MERGESORT

#### Structure of a Divide and Conquer Algorithm

 Divide the problem into a number of subproblems that are smaller instances of the same problem.

```
Require: Array A of n numbers if n = 1 then return A
A[0, \lfloor \frac{n}{2} \rfloor] \leftarrow \text{MERGESORT}(A[0, \lfloor \frac{n}{2} \rfloor])
A[\lfloor \frac{n}{2} \rfloor + 1, n - 1] \leftarrow \text{MERGESORT}(A[\lfloor \frac{n}{2} \rfloor + 1, n - 1])
A \leftarrow \text{MERGE}(A)
return A
```

MERGESORT

#### Structure of a Divide and Conquer Algorithm

- Divide the problem into a number of subproblems that are smaller instances of the same problem.
- Conquer the subproblems by solving them recursively. If the subproblems are small enough, just solve them in a straightforward manner.

```
Require: Array A of n numbers if n=1 then return A
A[0, \lfloor \frac{n}{2} \rfloor] \leftarrow \text{MERGESORT}(A[0, \lfloor \frac{n}{2} \rfloor])
A[\lfloor \frac{n}{2} \rfloor + 1, n-1] \leftarrow \text{MERGESORT}(A[\lfloor \frac{n}{2} \rfloor + 1, n-1])
A \leftarrow \text{MERGE}(A)
return A
```

MERGESORT

#### Structure of a Divide and Conquer Algorithm

- Divide the problem into a number of subproblems that are smaller instances of the same problem.
- Conquer the subproblems by solving them recursively. If the subproblems are small enough, just solve them in a straightforward manner.
- **Combine** the solutions to the subproblems into the solution for the original problem.

# Analyzing MergeSort: An Example



# Analyzing MergeSort: An Example



Analysis Idea:

### Analysis Idea:

 We need to sum up the work spent in each node of the recursion tree

### Analysis Idea:

- We need to sum up the work spent in each node of the recursion tree
- The recursion tree in the example is a complete binary tree

### Analysis Idea:

- We need to sum up the work spent in each node of the recursion tree
- The recursion tree in the example is a complete binary tree

**Definition:** A tree is a *complete binary tree* if every node has either 2 or 0 children.

### Analysis Idea:

- We need to sum up the work spent in each node of the recursion tree
- The recursion tree in the example is a complete binary tree

**Definition:** A tree is a *complete binary tree* if every node has either 2 or 0 children.

**Definition:** A tree is a *binary tree* if every node has at most 2 children.

### Analysis Idea:

- We need to sum up the work spent in each node of the recursion tree
- The recursion tree in the example is a complete binary tree

**Definition:** A tree is a *complete binary tree* if every node has either 2 or 0 children.

**Definition:** A tree is a *binary tree* if every node has at most 2 children.

(we will talk about trees in much more detail later in this unit)

### **Analysis Idea:**

- We need to sum up the work spent in each node of the recursion tree
- The recursion tree in the example is a complete binary tree

**Definition:** A tree is a *complete binary tree* if every node has either 2 or 0 children.

**Definition:** A tree is a *binary tree* if every node has at most 2 children.

(we will talk about trees in much more detail later in this unit)

#### Questions:

### **Analysis Idea:**

- We need to sum up the work spent in each node of the recursion tree
- The recursion tree in the example is a complete binary tree

**Definition:** A tree is a *complete binary tree* if every node has either 2 or 0 children.

**Definition:** A tree is a *binary tree* if every node has at most 2 children.

(we will talk about trees in much more detail later in this unit)

#### Questions:

• How many levels?

### **Analysis Idea:**

- We need to sum up the work spent in each node of the recursion tree
- The recursion tree in the example is a complete binary tree

**Definition:** A tree is a *complete binary tree* if every node has either 2 or 0 children.

**Definition:** A tree is a *binary tree* if every node has at most 2 children.

(we will talk about trees in much more detail later in this unit)

### Questions:

- How many levels?
- How many nodes per level?

### **Analysis Idea:**

- We need to sum up the work spent in each node of the recursion tree
- The recursion tree in the example is a complete binary tree

**Definition:** A tree is a *complete binary tree* if every node has either 2 or 0 children.

**Definition:** A tree is a *binary tree* if every node has at most 2 children.

(we will talk about trees in much more detail later in this unit)

#### **Questions:**

- How many levels?
- How many nodes per level?
- Time spent per node?

### Number of Levels



# Number of Levels (2)

Level i:

# Number of Levels (2)

### Level i:

•  $2^{i-1}$  nodes (at most)

# Number of Levels (2)

#### Level i:

- $2^{i-1}$  nodes (at most)
- Array length in level i is  $\lceil \frac{n}{2^{i-1}} \rceil$  (at most)

#### Level i:

- $2^{i-1}$  nodes (at most)
- Array length in level i is  $\lceil \frac{n}{2^{i-1}} \rceil$  (at most)
- Runtime of merge operation for each node in level i:  $O(\frac{n}{2^{i-1}})$

#### Level i:

- $2^{i-1}$  nodes (at most)
- Array length in level i is  $\lceil \frac{n}{2^{i-1}} \rceil$  (at most)
- Runtime of merge operation for each node in level i:  $O(\frac{n}{2^{i-1}})$

#### **Number of Levels:**

#### Level i:

- $2^{i-1}$  nodes (at most)
- Array length in level i is  $\lceil \frac{n}{2^{i-1}} \rceil$  (at most)
- Runtime of merge operation for each node in level i:  $O(\frac{n}{2^{i-1}})$

#### **Number of Levels:**

Array length in last level / is 1:

#### Level i:

- $2^{i-1}$  nodes (at most)
- Array length in level i is  $\lceil \frac{n}{2^{i-1}} \rceil$  (at most)
- Runtime of merge operation for each node in level i:  $O(\frac{n}{2^{i-1}})$

#### **Number of Levels:**

• Array length in last level / is 1:  $\lceil \frac{n}{2^{l-1}} \rceil = 1$ 

$$\frac{n}{2^{l-1}} \le 1$$

#### Level i:

- $2^{i-1}$  nodes (at most)
- Array length in level i is  $\lceil \frac{n}{2^{i-1}} \rceil$  (at most)
- Runtime of merge operation for each node in level i:  $O(\frac{n}{2^{i-1}})$

#### **Number of Levels:**

• Array length in last level / is 1:  $\lceil \frac{n}{2^{l-1}} \rceil = 1$ 

$$\frac{n}{2^{l-1}} \le 1 \Rightarrow n \le 2^{l-1}$$

#### Level i:

- $2^{i-1}$  nodes (at most)
- Array length in level i is  $\lceil \frac{n}{2^{i-1}} \rceil$  (at most)
- Runtime of merge operation for each node in level i:  $O(\frac{n}{2^{i-1}})$

#### **Number of Levels:**

• Array length in last level / is 1:  $\lceil \frac{n}{2^{l-1}} \rceil = 1$ 

$$\frac{n}{2^{l-1}} \le 1 \Rightarrow n \le 2^{l-1} \Rightarrow \log(n) + 1 \le l$$

#### Level i:

- $2^{i-1}$  nodes (at most)
- Array length in level i is  $\lceil \frac{n}{2^{i-1}} \rceil$  (at most)
- Runtime of merge operation for each node in level i:  $O(\frac{n}{2^{i-1}})$

#### **Number of Levels:**

• Array length in last level / is 1:  $\lceil \frac{n}{2^{l-1}} \rceil = 1$ 

$$\frac{n}{2^{l-1}} \le 1 \Rightarrow n \le 2^{l-1} \Rightarrow \log(n) + 1 \le l$$

• Array length in last but one level l-1 is 2:

#### Level i:

- $2^{i-1}$  nodes (at most)
- Array length in level i is  $\lceil \frac{n}{2^{i-1}} \rceil$  (at most)
- Runtime of merge operation for each node in level i:  $O(\frac{n}{2^{i-1}})$

#### **Number of Levels:**

• Array length in last level / is 1:  $\lceil \frac{n}{2^{l-1}} \rceil = 1$ 

$$\frac{n}{2^{l-1}} \le 1 \Rightarrow n \le 2^{l-1} \Rightarrow \log(n) + 1 \le l$$

$$\frac{n}{2^{l-2}} > 1$$

### Level i:

- $2^{i-1}$  nodes (at most)
- Array length in level i is  $\lceil \frac{n}{2^{i-1}} \rceil$  (at most)
- Runtime of merge operation for each node in level i:  $O(\frac{n}{2^{i-1}})$

#### **Number of Levels:**

• Array length in last level / is 1:  $\lceil \frac{n}{2^{l-1}} \rceil = 1$ 

$$\frac{n}{2^{l-1}} \le 1 \Rightarrow n \le 2^{l-1} \Rightarrow \log(n) + 1 \le l$$

$$\frac{n}{2^{l-2}} > 1 \Rightarrow n > 2^{l-2}$$

#### Level i:

- $2^{i-1}$  nodes (at most)
- Array length in level i is  $\lceil \frac{n}{2^{i-1}} \rceil$  (at most)
- Runtime of merge operation for each node in level i:  $O(\frac{n}{2^{i-1}})$

#### **Number of Levels:**

• Array length in last level / is 1:  $\lceil \frac{n}{2^{l-1}} \rceil = 1$ 

$$\frac{n}{2^{l-1}} \le 1 \Rightarrow n \le 2^{l-1} \Rightarrow \log(n) + 1 \le l$$

$$\frac{n}{2^{l-2}} > 1 \Rightarrow n > 2^{l-2} \Rightarrow \log(n) + 2 > l$$

#### Level i:

- $2^{i-1}$  nodes (at most)
- Array length in level i is  $\lceil \frac{n}{2^{i-1}} \rceil$  (at most)
- Runtime of merge operation for each node in level i:  $O(\frac{n}{2^{i-1}})$

#### **Number of Levels:**

• Array length in last level / is 1:  $\lceil \frac{n}{2^{l-1}} \rceil = 1$ 

$$\frac{n}{2^{l-1}} \le 1 \Rightarrow n \le 2^{l-1} \Rightarrow \log(n) + 1 \le l$$

$$\frac{n}{2^{l-2}} > 1 \Rightarrow n > 2^{l-2} \Rightarrow \log(n) + 2 > l$$
$$\log(n) + 1 < l < \log(n) + 2$$

#### Level i:

- $2^{i-1}$  nodes (at most)
- Array length in level i is  $\lceil \frac{n}{2^{i-1}} \rceil$  (at most)
- Runtime of merge operation for each node in level i:  $O(\frac{n}{2^{i-1}})$

#### **Number of Levels:**

• Array length in last level / is 1:  $\lceil \frac{n}{2^{l-1}} \rceil = 1$ 

$$\frac{n}{2^{l-1}} \le 1 \Rightarrow n \le 2^{l-1} \Rightarrow \log(n) + 1 \le l$$

• Array length in last but one level l-1 is 2:  $\lceil \frac{n}{2^{l-2}} \rceil = 2$ 

$$\frac{n}{2^{l-2}} > 1 \Rightarrow n > 2^{l-2} \Rightarrow \log(n) + 2 > l$$

$$\log(n) + 1 \le l < \log(n) + 2$$

Hence,  $I = \lceil \log n \rceil + 1$ .

## Sum up Work:

- Levels:
  - $I = \lceil \log n \rceil + 1$
- Nodes on level i: at most 2<sup>i-1</sup>
- Array length in level *i*: at most  $\lceil \frac{n}{2^{i-1}} \rceil$



## Sum up Work:

- Levels:  $I = \lceil \log n \rceil + 1$
- Nodes on level i: at most  $2^{i-1}$
- Array length in level *i*: at most  $\lceil \frac{n}{2^{i-1}} \rceil$

# 12 9 7 2 3 8 15 7 12 9 7 2 3 8 15 7 12 9 7 2 3 8 15 7

## Sum up Work:

• Levels:

$$I = \lceil \log n \rceil + 1$$

- Nodes on level i: at most  $2^{i-1}$
- Array length in level *i*: at most  $\lceil \frac{n}{2^{i-1}} \rceil$



$$\sum_{i=1}^{\lceil \log n \rceil + 1} 2^{i-1} O\left( \lceil \frac{n}{2^{i-1}} \rceil \right)$$

## Sum up Work:

• Levels:  $I = \lceil \log n \rceil + 1$ 

• Nodes on level 
$$i$$
:  
at most  $2^{i-1}$ 

• Array length in level *i*: at most  $\lceil \frac{n}{2^{i-1}} \rceil$ 



$$\sum_{i=1}^{\lceil \log n \rceil + 1} 2^{i-1} O\left( \lceil \frac{n}{2^{i-1}} \rceil \right) = \sum_{i=1}^{\lceil \log n \rceil + 1} 2^{i-1} O\left( \frac{n}{2^{i-1}} \right)$$

## Sum up Work:

• Levels:  $I = \lceil \log n \rceil + 1$ 

$$I = |\log n| + 1$$
• Nodes on level  $i$ :

- at most  $2^{i-1}$  Array length in level i:
- Array length in level i at most  $\lceil \frac{n}{2^{i-1}} \rceil$



$$\sum_{i=1}^{\lceil \log n \rceil + 1} 2^{i-1} O\left(\lceil \frac{n}{2^{i-1}} \rceil\right) = \sum_{i=1}^{\lceil \log n \rceil + 1} 2^{i-1} O\left(\frac{n}{2^{i-1}}\right)$$
$$= \sum_{i=1}^{\lceil \log n \rceil + 1} O(n)$$

## Sum up Work:

• Levels:  $I = \lceil \log n \rceil + 1$ 

• Array length in level *i*: at most  $\lceil \frac{n}{2^{i-1}} \rceil$ 



$$\sum_{i=1}^{\lceil \log n \rceil + 1} 2^{i-1} O\left(\lceil \frac{n}{2^{i-1}} \rceil\right) = \sum_{i=1}^{\lceil \log n \rceil + 1} 2^{i-1} O\left(\frac{n}{2^{i-1}}\right)$$
$$= \sum_{i=1}^{\lceil \log n \rceil + 1} O(n) = (\lceil \log n \rceil + 1) O(n)$$

## Sum up Work:

• Levels:  $I = \lceil \log n \rceil + 1$ 

- Nodes on level i: at most 2<sup>i-1</sup>
- Array length in level i: at most  $\lceil \frac{n}{2^{i-1}} \rceil$



$$\sum_{i=1}^{\lceil \log n \rceil + 1} 2^{i-1} O\left(\lceil \frac{n}{2^{i-1}} \rceil\right) = \sum_{i=1}^{\lceil \log n \rceil + 1} 2^{i-1} O\left(\frac{n}{2^{i-1}}\right)$$

$$= \sum_{i=1}^{\lceil \log n \rceil + 1} O(n) = (\lceil \log n \rceil + 1) O(n) = O(n \log n).$$

## Merge sort in Practice on Worst-case Instances



|     | n    | 46929    | 102428   | 364178    | 1014570                  |
|-----|------|----------|----------|-----------|--------------------------|
| - 5 | secs | 1.03084  | 4.81622  | 61.2737   | 497.879 (Insertion-sort) |
| 9   | secs | 0.007157 | 0.015802 | 0.0645791 | 0.169165 (Merge-sort)    |

## Stability and In Place Property?

Stability and In Place Property?

# Stability and In Place Property?

## Stability and In Place Property?

• Merge sort is stable

# Stability and In Place Property?

## Stability and In Place Property?

- Merge sort is stable
- Merge sort does not sort in place

**Divide and Conquer Algorithm:** 

## **Divide and Conquer Algorithm:**

Let **A** be a divide and conquer algorithm with the following properties:

## **Divide and Conquer Algorithm:**

Let **A** be a divide and conquer algorithm with the following properties:

**1** A performs two recursive calls on input sizes at most n/2

## **Divide and Conquer Algorithm:**

Let **A** be a divide and conquer algorithm with the following properties:

- **1** A performs two recursive calls on input sizes at most n/2
- ② The conquer operation in **A** takes O(n) time

## **Divide and Conquer Algorithm:**

Let **A** be a divide and conquer algorithm with the following properties:

- **1** A performs two recursive calls on input sizes at most n/2
- ② The conquer operation in **A** takes O(n) time

Then:

## **Divide and Conquer Algorithm:**

Let **A** be a divide and conquer algorithm with the following properties:

- **1** A performs two recursive calls on input sizes at most n/2
- ② The conquer operation in **A** takes O(n) time

Then:

**A** has a runtime of  $O(n \log n)$ .