Physics 247 HW 12

Name: Hleb Zhynko

Due: December 1, 2022

Problem 1

Let $E_{initial}$ be the initial energy of the π^0 , and E_p - the final energy of each of the photons. Since the π^0 has no momentum in its rest frame, its total energy will be equal to its rest energy, that is, $E_{initial}=134.9766\,MeV$. After the decay, the total energy will be conserved. Therefore, the final energy of the photons will be:

$$E_{initial} = 2E_p;$$

$$E_p = 0.5 \times E_{initial} = 67.4883\,MeV.$$

In the lab frame, the momentum of the π^0 will be conserved after the decay, so each of the photons will have $p_x=0.5\times 60\,\frac{GeV}{c}=30,000\,\frac{MeV}{c}$. Since photons have no mass, $p_y=\frac{E_p}{c}=67.4883\,\frac{MeV}{c}$. Therefore, the angle θ between the two photons will be:

$$\theta = 2 \arctan \frac{p_y}{p_x} = 2 \arctan \frac{67.4883}{30,000} = 2 \times 0.1288929^{\circ} = 0.2577859^{\circ}.$$

Answering the final question, since the detector can detect photons $>= 0.1^{\circ}$ apart, it should be able to detect the two photons.