

Departamento de Lenguajes y Ciencias de la Computación Universidad de Málaga

Conjuntos y Sistemas Difusos (Lógica Difusa y Aplicaciones)

2. Operaciones con Conjuntos Difusos

E.T.S.I. Informática

J. Galindo Gómez

Operaciones de Conjuntos

- **Operaciones:** A(x), B(x) son conjuntos difusos en el universo X.
 - Unión: $(A \cup B)(x) = A(x) \text{ } \acute{\text{U}} B(x) = \max \{A(x), B(x)\}$
 - Intersección: $(A \cap B)(x) = A(x) \dot{U} B(x) = \min \{A(x), B(x)\}$
 - **Negación** (complemento a uno): $\overline{A}(x) = \neg A(x) = 1 A(x)$
- Propiedades Básicas:
 - Conmutativa: $A \cup B = B \cup A$; $A \cap B = B \cap A$;
 - Asociativa: $A \cup (B \cup C) = (A \cup B) \cup C = A \cup B \cup C$;
 - $A \cap (B \cap C) = (A \cap B) \cap C = A \cap B \cap C;$
 - Idempotencia: $A \cup A = A$; $A \cap A = A$;
 - Distributiva: $A \cup (B \cap C) = (A \cup B) \cap (A \cup C);$ $A \cap (B \cup C) = (A \cap B) \cup (A \cap C);$
 - Condiciones Frontera o Límite: $A \cup E = A$; $A \cup X = X$;
 - $A \cap E = E;$ $A \cap X = A;$
 - **Involución** (doble negación): $\neg(\neg A) = A$;
 - Transitiva: $A \stackrel{?}{I} B y B \stackrel{?}{I} C$, implica $A \stackrel{?}{I} C$;
- **Propiedades Añadidas:** Se deducen de las anteriores.
 - $(A \cap B) \stackrel{\cdot}{\mathbf{1}} A \stackrel{\cdot}{\mathbf{1}} (A \cup B);$
 - Si $A \stackrel{.}{I} B$, entonces $A = A \cap B$ y $B = A \cup B$;
 - $Card(A) + Card(B) = Card(A \cup B) + Card(A \cap B)$;
 - $Card(A) + Card(\neg A) = Card(X)$;

Normas y Conormas Triangulares

- Conceptos derivados de Menger (1942) y Schwizer y Sklar (1983), actualmente están muy desarrollados (Butnario et al., 1993).
- Establecen modelos genéricos para las operaciones de unión y intersección, las cuales deben cumplir ciertas propiedades básicas (conmutativa, asociativa, monotonicidad y condiciones frontera).
- Definiciones:
 - Norma Triangular, t-norma: Operación binaria $t: [0,1]^2 \otimes [0,1]$ que cumple las siguientes propiedades:
 - Conmutativa: x t y = y t x
 - Asociativa: x t (y t z) = (x t y) t z
 - Monotonicidad: Si $x \, f \, y$, y $w \, f \, z$ entonces $x \, f \, w \, f \, y \, f \, z$
 - Condiciones Frontera: x t 0 = 0, x t 1 = x
 - <u>Conorma Triangular</u>, t-conorma o s-norma: Op. bin. s: $[0,1]^2 \otimes [0,1]$ que cumple las siguientes propiedades:
 - Conmutativa: $x \circ y = y \circ x$
 - Asociativa: x s (y s z) = (x s y) s z
 - Monotonicidad: Si $x \, f \, y$, y $w \, f \, z$ entonces $x \, g \, w \, f \, y \, g \, z$
 - Condiciones Frontera: $x \le 0 = x$, $x \le 1 = 1$

3

t-norma/ s-norma del mínimo/ máximo,

- <u>t-norma del mínimo</u>: La función mín (^) es una t-norma, que corresponde a la operación de **intersección** en conjuntos clásicos cuyos grados de pertenencia están en {0,1}. Por eso, esta función es la extensión natural de la intersección en conjuntos difusos.
- <u>t-conorma o s-norma del máximo</u>: La función máx (v) es una s-norma, que corresponde a la operación de **unión** en conjuntos clásicos cuyos grados de pertenencia están en {0,1}. Por eso, esta función es la extensión natural de la unión en conjuntos difusos.

Unión

• <u>Ejemplos</u>: Intersección

Ejemplos de Otras t-normas

- 1. Producto: $x \cdot y$; $[x, \sin y = 1;$
- 2. Producto Drástico: $\{y, \text{ si } x = 1;$ 0, en otro caso;
- 3. <u>Producto Acotado</u>: $máx(0, (1+p)(x+y-1) pxy), p^3-1, (usual. p=0);$
- $\sqrt[p]{\max(0,x^p+y^p-1)}, p>0,$ (usualmente p=1);
- 4. Producto de Hamacher: $\frac{xy}{p+(1-p)(x+y-xy)}$, $p \ge 0$, (usual. p=0);
- 5. Familia Yager: $1 \min(1, \sqrt[p]{(1-x)^p} + (1-y)^p), p > 0$;
- 6. Familia Dubois-Prade: xy / max(x, y, p), $p \hat{I} [0,1]$;
- 7. Familia Frank: $\log_p \left(1 + \frac{(p^x 1)(p^y 1)}{p 1} \right), \quad p > 0, p \neq 1;$

8. Producto de Einstein:
$$\frac{xy}{1+(1-x)+(1-y)}$$
;
9. Otras t-normas: $\frac{1}{1+\sqrt[p]{(1-x)/x})^p+((1-y)/y)^p}$, $p>0$; $\frac{1}{\sqrt[p]{1/x^p+1/y^p-1}}$;

Ejemplos de Otras s-normas

- 1. Suma-Producto: x + y xy;
- 1. Suma-Producto: x + y xy; 2. Suma Drástica: \longrightarrow $\begin{cases} x, & \text{si } y = 0; \\ y, & \text{si } x = 0; \\ 1, & \text{enotro caso}; \end{cases}$ 3. Suma Acotada: $\min(1, x + y + nxy), n \ge 0$: 3. Suma Acotada: min(1, x + y + pxy), p ³ 0;
- **4.** Familia Sugeno: $min(1, x + y + p xy), p^{3} 0;$
- 5. Familia Yager: min $(1,\sqrt[p]{x^p+y^p})$, p>0;
- 6. <u>Familia Dubois-Prade</u>: $1 \frac{(1-x)(1-y)}{\max(1-x.1-v.n)}$, $p \in [0,1]$;
- 7. <u>Familia Frank</u>: $\log_p \left(1 + \frac{(p^{1-x} 1)(p^{1-y} 1)}{p 1} \right), p > 0, p \neq 1;$
- 8. Otras s-normas:

$$\frac{x+y-xy-(1-p)xy}{1-(1-p)xy}, \quad p \ge 0; \qquad 1-\max(0,\sqrt[p]{(1-x)^p+(1-y)^p-1}), \quad p > 0;$$

$$\frac{1}{1-\sqrt[p]{(x/(1-x))^p+(y/(1-y))^p}}, \quad p>0; \qquad 1-\frac{1}{\sqrt[p]{1/(1-x)^p+1/(1-y)^p-1}};$$

5

Características de las t-normas

- Para cada t-norma existe una s-norma dual o conjugada (yviceversa):
 - $x \le y = 1 (1 x) t (1 y)$

(usamos la negación original)

- x t y = 1 (1 x) s (1 y)
- Esas son las Leyes de De Morgan de la teoría de conjuntos difusos, que en conjuntos crisp se aplican a la unión y a la intersección:

 $A \cup B = \overline{\overline{A} \cap \overline{B}}$

 $A \cap B = \overline{\overline{A} \cup \overline{B}}$

- t-normas y s-normas no pueden ordenarse de mayor a menor.
 - Sin embargo, es fácil identificar la mayor y la menor t-norma y s-norma:

• Mayor t-norma : Función mínimo.

• Menor t-norma : Producto drástico.

• Mayor s-norma: Suma drástica.

• Menor s-norma: Función máximo.

- t-norma Arquimediana: Si es continua y x t x < x, " x \hat{I} (0,1).
- s-norma Arquimediana: Si es continua y $x \le x > x$, " $x \hat{I}$ (0,1).

Características de las t-normas

• En general, las <u>t-normas no satisfacen las siguientes leyes</u>, fundamentales en la lógica bivaluada:

• Contradicción : $A \cap \overline{A} \neq \emptyset$

• Exclusión del medio : $A \cup \overline{A} \neq X$

- Estas contradicciones se producen al operar con valores de pertenencia entre 0 y 1: La mayor desviación es para el valor 1/2.
- Excepciones: Operaciones introducidas por J. Lukasiewicz (1920)
 - t-norma **Suma Acotada** con p=0: $(A \cap \overline{A})(x) = \max[0, A(x) + (1-A(x)) 1] = 0$
 - s-norma **Producto Acotado** con $p=0:(A\cup\overline{A})(x)=\min[1,A(x)+(1-A(x))]=1$
- **Propiedad de Idempotencia**: Sólo se cumple para el máximo y el mínimo: x t x = x y x s x = x. Si se repite la t-norma (s-norma) sobre el mismo x los valores decrecen (crecen): $\begin{cases} x \text{ t } x \cdots^{(n-1)} \cdots x \text{ t } x \geq x \text{ t } x \cdots^{(n)} \cdots x \text{ t } x \end{cases}$
- Propiedad Distributiva: $x \circ x \cdots (n-1) \cdots x \circ x \leq x \circ x \cdots (n) \cdots x \circ x$
 - En general, no se cumple, excepto para el máximo y el mínimo.
- La intersección y la unión pueden ser identificadas con los conectivos lógicos AND y OR respectivamente.

7

Operaciones de AGREGACIÓN

- Son operaciones que combinan una colección de conjuntos difusos para producer un único conjunto difuso.
 - Una **Agregación** es una operación *n*-aria A: $[0,1]^n \otimes [0,1]$, que cumple:
 - Condiciones Frontera: A(0,...,0) = 0 y A(1,...,1) = 1
 - Monotonicidad: $A(x_1,...,x_n) \ge A(y_1,...,y_n)$ si $x_i \ge y_i$, $\ne 1,...,n$
 - t-normas / s-normas (∩ / ∪) son operaciones de agregación.
- Operadores Compensatorios (Compensatory Operators):
 - A veces, una t-norma/s-norma no se comporta demasiado bien modelando las operaciones de ∩ / ∪ (conectivos AND / OR).
 - Zimmermann y Zysno (1980) propusieron el siguiente operador compensatorio Θ (*zeta*), donde el factor de compensación $\gamma \in [0,1]$ indica en qué punto está situado el operador entre AND y OR:

$$(AQB)(x) = (A \cap B)(x)^{1-g} (A \cup B)(x)^g$$

- Cuanto mayor es γ más importancia tiene la \bigcup respecto a la \cap .
- Otro operador similar es:

$$(A \otimes B)(x) = (1 - g)(A \cap B)(x) + g(A \cup B)(x)$$

9

Operaciones de AGREGACIÓN

- Sumas Simétricas (Symmetric Sums):
 - Son funciones de n argumentos que además de cumplir la monotonicidad y las condiciones frontera, son continuas, conmutativas y auto-duales: S_sum (x1, ..., xn) = S_sum (1-x1, ..., 1-xn)
 - Dubois y Prade (1980) mostraron que cualquier suma simétrica puede ser representada de la siguiente forma, donde ρ (rho) es cualquier función creciente con $\rho(0, ..., 0)=0$: $S_{-}\operatorname{sum}(x_{1},...,x_{n}) = \left[1 + \frac{r(1-x_{1},...,1-x_{n})}{r(x_{1},...,x_{n})}\right]^{-1};$
- Operadores OWA (Ordered Weighted Averaging): (Yager, 1988)
 - Operadores ponderados con un vector de pesos w_i tal que: $\sum_{i=1}^n w_i = 1$;
 - Ordenamos los valores $\{A(x_i)\}: A(x_1) \le A(x_2) \le ... \le A(x_n)$.
 - Entonces: OWA(A,w) = $\sum_{i=1}^{n} w_i A(x_i)$;
 - OWA(A, (1,0,...,0)) = mín{ $A(x_1)$, $A(x_2)$, ..., $A(x_n)$ }.
 - OWA(A, (0,...,0,1)) = máx{ $A(x_1), A(x_2), ..., A(x_n)$ }.
 - OWA(A, (1/n, ..., 1/n)) = $(1/n)\sum_{i=1}^{n} A(x_i)$
 - Esta es la Media Aritmética: Equivalente $aA\ddot{A}B \cos \gamma = 0.5$.

Operaciones de AGREGACIÓN

- Operación Media (Averaging Operation): Funciones de n argumentos que cumple las propiedades: idempotencia, conmutativa y monotonicidad.
 - media generalizada tiene la forma siguiente (p es el factor de compensación): $A(x_1,...,x_n) = \sqrt[p]{\frac{1}{n} \sum_{i=1}^n (x_i)^p}, \quad p \neq 0;$ Según Dychkhoff y Pedrycz (1984) la

$$A(x_1,...,x_n) = \sqrt[p]{\frac{1}{n} \sum_{i=1}^n (x_i)^p}, \quad p \neq 0;$$

- Media Aritmética, $p = 1: A(x_1,...,x_n) = (1/n) \sum_{i=1}^n x_i;$
- Media Geométrica, $p \to 0$: $A(x_1,...,x_n) = \sqrt[n]{x_1x_2...x_n}$;
- Media Armónica, p=-1: $\longrightarrow A(x_1,...,x_n) = \frac{n}{\sum_{i=1}^n 1/x_i}$; Mínimo, $p \to -\infty$: $A(x_1,...,x_n) = \min(x_1,...,x_n)$;
- Máximo, $p \rightarrow +\infty$: A(x1, ..., xn) = máx(x1, ..., xn);
- Medias Casi-aritméticas (quasi-arithmeticmeans): f es cualquier función estrictamente monótona (creciente o decreciente) y continua (Butnario y Klement, 1993): $A(x_1,...,x_n) = f(\sqrt[p]{[f^{-1}(x_1,...,x_n)]^p});$
- En general, una clase de opdores. **Media** son funciones $Av: [0,1]^2 \rightarrow [0,1]$
 - Cond. Frontera: $min(x,y) \le Av(x,y) \le max(x,y), Av(0,0)=0, Av(1,1)=1$;
 - Idempotencia: Av(x, x) = x;
 - Conmutativa: Av(x, y) = Av(y, x);
 - Creciente y Continua.

11

NEGACI ONES

- **Complemento o Negación** de un conjunto difuso: $N: [0,1] \rightarrow [0,1]$ cumpliendo las siguientes condiciones:
 - Monotonicidad: N es no creciente.
 - Condiciones Frontera: N(0)=1, N(1)=0;
 - Pueden añadirse otras propiedades, si es necesario:
 - Continuidad: N es una función continua.
 - Involución: N(N(x)) = x, para $x \in [0,1]$;
 - Ejemplos:
 - No involutivas: $N(x) = \begin{cases} 1, & \text{si } x < a; \\ 0, & \text{si } x \ge a; \end{cases}$ con $a \in [0,1]$ (Funcion umbral)

$$N(x) = \begin{cases} 1, & \text{si } x = 0; \\ 0, & \text{si } x > 0; \end{cases}$$

- Involutivas: $N(x) = \frac{1-x}{1+1x}$, $1 \in (-1,\infty)$; \longrightarrow $N(x) = \sqrt[w]{1-x^w}, \quad w \in (0,\infty);$
 - Con l = 0 y w = 1, obtenemos la función negación original: N(x) = 1 - x;

NEGACI ONES

- Sistema Formal de Operaciones Lógicas (t, s, N): Sistema formado por una t-norma, una s-norma y una negación N, donde la t-norma y la s-norma son duales respecto N:
 - $x \circ y = N(N(x) \circ N(y));$
- o lo que es equivalente:
- x t y = N(N(x) s N(y));
- Ejemplo 1:
 - $x t y = \min(x, y);$
 - x s y = máx(x, y);
 - N(x) = 1 x;
- Ejemplo 2: $x t y = \max \left(0, \frac{x+y-1+1xy}{1+1}\right);$

(similar al producto acotado)

(similar a la suma acotada)

• $x \circ y = \min(1, x+y-1+1xy);$ • $N(x) = \frac{1-x}{1+1x}, 1 > 1;$

(similar a la negación original)

Otro Ejemplo de Negación: $N(x) = \frac{1}{2} \{1 + \sin((2x+1)p/2)\};$

$$N(0) = \frac{1}{2} \{1 + \underbrace{\sin(p/2)}_{1}\} = 1; \quad N(1) = \frac{1}{2} \{1 + \underbrace{\sin(3p/2)}_{-1}\} = 0;$$

13

COMPARACIÓN de Conj. Difusos

Distancia

- Medidas de Distancia (Distance Measures): Función binaria de distancia entre dos conjs. difusos A y B, con el mismo universo X.
 - Esta función indica o mide la cercanía entre ambos conjuntos difusos.
 - En general, puede usarse la Distancia de Minkowski:

$$d(A,B) = \sqrt[p]{\int_{\mathcal{X}} |A(x) - B(x)|^p dx}, \quad p \ge 1;$$

- En universos de discurso discretos, la integral se sustituye por una sumatoria.
- Casos particulares:
 - Distancia de Hamming (p = 1): $d(A,B) = \int_{x} |A(x) B(x)| dx$;
 - (p = 2): $d(A,B) = \sqrt{\int_{x} |A(x) B(x)|^2 dx}$; Distancia Euclídea
 - Distancia Tchebyschev ($p=\infty$): $d(A,B) = \sup_{x \in X} |A(x) B(x)|$;
- Cuanto mayor es la similitud entre ambos conjuntos difusos, su distancia es menor (expresa distancia, no similitud):
 - A veces se **normaliza** la función distancia en el intervalo [0,1], denotada por $d_n(A,B)$, expresando la **similitud** por: $1 - d_n(A,B)$.

I. Igualdad

COMPARACIÓN de Conj. Difusos

- Índices de Igualdad (Equality Indexes): Se basa en la expresión lógica de la igualdad: Dos conjuntos $A \vee B$ son iguales si $A \mid B \vee B \mid A$.
 - En conjs. Difusos la igualdad puede cumplirse con cierto grado.
 - Definimos: $\frac{\overline{(A \circ B)(x)}}{(A \circ B)(x)} = \frac{[A(x)j \ B(x)] \ \dot{\mathbb{D}} [B(x)j \ A(x)]}{[B(x)j \ A(x)]} + [\overline{A(x)j \ B(x)}] \dot{\mathbb{D}} [B(x)j \ \overline{A(x)}].$
 - La conjunción (∧) se modela por la operación mínimo.
 - La inclusión es el operador j (phi), inducido por una t-norma A(x)j B(x) =continua, definido por: -
- ontinua, definiuo pontinua, def $A(x)j B(x) = \hat{1}_{\hat{1}} B(x) - A(x) + 1$, si A(x) = B(x)
 - Para obtener un único valor $(\forall x \in X)$ hay 3 métodos básicos:
 - Índice de Igualdad **Optimista** : $(A \circ B)_{opt} = \sup_{x \in X} (A \circ B)(x)$;
 - Índice de Igualdad **Pesimista** : $(A \circ B)_{pes} = \inf_{x \in X} (A \circ B)(x);$
 - Índice de Igualdad **Medio** $(A \circ B)_{\text{avg}} = (1/\operatorname{Card}(X)) \hat{\mathbf{0}} (A \circ B)(x) dx;$
 - Se cumple que: $(A \circ B)_{pes} f(A \circ B)_{avg} f(A \circ B)_{opt}$;

15

COMPARACIÓN de Conj. Difusos

Poss/Nec

- Medidas de Posibilidad y Necesidad (Possibility/Necessity):
 - Utiliza los conjuntos difusos como "Distribuciones de Posibilidad":
 - A(x) mide la "posibilidad" de que el dato buscado sea x (Zadeh, 1978).
 - Posibilidad de que el valor A sea igual al valor B:

$$\mathsf{Poss}(A,B) = \sup_{x \in X} \{ \mathsf{min}(A(x),B(x)) \};$$

- Mide en que medida A y B se superponen: Poss(A,B) = Poss(B,A).
- Necesidad de A respecto de B, o bien, Necesidad de que el valor B sea igual al valor A: **Nec(**A,B**)** = inf_{x1, x}{máx(A(x), 1 - B(x))};
 - Mide el grado con el que B está incluido en A: $Nec(A,B) \neq Nec(B,A)$.
- Se cumple que: $Nec(A,B) + Poss(\neg A,B) = 1$.

Poss/Nec

COMPARACIÓN de Conj. Difusos

- Otras equivalencias: $Poss(A \cup B, C) = max\{Poss(A, C), Poss(B, C)\};$ $Nec (A \cap B, C) = min\{Nec(A, C), Nec(B, C)\};$
- La <u>Generalización</u> de las <u>Medidas de Posibilidad y Necesidad</u>, usa normas triangulares en lugar de las funciones mín y máx.
- Posibilidad de un Conjunto Difuso A(x) (o de una distribución de posibilidad) en el universo X: $P(A) = Poss(A,X) = \sup_{x \in X} \{A(x)\}.$
 - P es una función que opera sobre los conjuntos difusos del universo X, F (X), asociándoles un valor del intervalo unidad: P: F (X) \mathbb{R} [0,1];
 - A(x) es un concepto evento difuso en X.
 - P(A) mide el grado con el que A es posible.
 - P(X)=1; P Posibilidad de que ocurra un elemento del universo.
 - P(Æ)=0; P Posibilidad de que NO ocurra un elemento del universo.
 - $P(\bigcup_i A_i) = \sup_i P(A_i)$, i=1, ... n; P Posibilidad de que ocurra al menos un evento de cierta lista de eventos: es la posibilidad del más posible.
 - $P(\bigcap_i A_i)$ **f** $\inf_i P(A_i)$, i=1, ... n; P Posibilidad de que ocurran varios eventos a la vez: es menor que la posib. del menos posible de ellos.
 - $P(A) + P(\neg A) \ge 1;$

17

COMPARACIÓN de Conj. Difusos

Poss/Nec

- Posibilidad de un Conjunto Difuso: P(A) = Poss(A, X).
 - Mide si determinado evento es o no posible.
 - No mide la incertidumbre, ya que si P(A)=1 sabemos que el evento A es totalmente *posible*, pero si:
 - $P(\neg A)=1$, entonces la incertidumbre es indeterminada.
 - $P(\neg A)=0$, entonces la ocurrencia de A es cierta.
- Necesidad de un Conjunto Difuso : N(A) = Nec(A, X)
 - $-N(A) = Nec(A,X) = \inf_{x \in X} \{ max[A(x),0] \} = i \frac{1}{n} \frac{\{A(x)\}}{n}$
 - N es una función que opera sobre los conjuntos difusos del universo X, F (X), asociándoles un valor del intervalo unidad: N: F (X) \otimes [0,1];
 - N(A) mide la certeza del evento A: Necesidad de que A sea cierto.
 - N(X)=1; P Necesidad de que ocurra un elemento del universo.
 - N(E)=0; P Necesidad de que NO ocurra un elemento del universo.
 - $N(\bigcup_i A_i)^3 \sup_i N(A_i)$, i=1, ... n; P Necesidad de que ocurra al menos un evento de cierta lista de eventos: es mayor que la mayor necesidad.
 - $-N(\bigcap_i A_i) = \inf_i N(A_i), i=1, ...n;$ P Necesidad de que ocurran varios eventos a la vez: es la necesidad del menos necesario.
 - $-N(A)+N(\neg A)\leq 1$;

Poss/Nec

COMPARACIÓN de Conj. Difusos

• Equivalencias entre Posibilidad y Necesidad:

$$- N(A) = \inf_{x \hat{1} X} \{A(x)\}$$

$$- P(A) = \sup_{x \hat{1} X} \{A(x)\}$$

$$= 1 - \sup_{x \hat{1} X} \{1 - A(x)\} = 1 - P(\neg A): N(A) = 1 - P(\neg A)$$

$$= 1 - \inf_{x \hat{1} X} \{1 - A(x)\} = 1 - N(\neg A): P(A) = 1 - N(\neg A)$$

- Estas equivalencias explican porqué la Necesidad complementa la información sobre la certeza de un evento A.
 - A mayor N(A), menor posibilidad del evento contrario $(\neg A)$.
 - A mayor P(A), menor necesidad del evento contrario $(\neg A)$.
 - $N(A) = 1 \Leftrightarrow \neg A$ es imposible, forzosamente: $P(\neg A) = 0$.
 - Si un evento es totalmente necesario, entonces el evento contrario es totalmente imposible.
 - P (A) = 1 $\Leftrightarrow \neg A$ no es necesario, en absoluto: $N(\neg A) = 0$.
 - Si un evento es totalmente posible, entonces el evento contrario no puede ser necesario en ninguna medida.
 - N(A) = 1 P P(A) = 1 (a la inversa no se cumple).
 - Un evento totalmente necesario, debe ser totalmente posible.
- $-A \circ B \circ N(A) \circ N(B); \quad y \circ P(A) \circ P(B);$

19

COMPARACIÓN de Conj. Difusos

Compatibilidad

- Medidas de Compatibilidad: Mide en que medida cierto conjunto difuso es compatible con otro (definido en el mismo espacio).
 - El resultado no es un único número, sino un conjunto difuso definido en el intervalo unidad, [0,1] (Conjunto difuso de Compatibilidad).
 - Compatibilidad de B con respecto a A:

Comp(
$$B, A$$
)(u) = sup _{$u=A(x)$} { $B(x)$ }, $u \in [0,1]$

- Puede verse al conjunto B como un "valor difuso" y al conjunto A como un "concepto difuso". Entonces Comp(B, A) mide la Compatibilidad con la que B es A.
 - Ejemplo: B es el valor "aprox. 70 años" y A es el concepto "muy viejo":

21

COMPARACIÓN de Conj. Difusos

• Propiedades de la Medidas de Compatibilidad:

- Mide el grado con el que B puede cumplir el concepto A.
 - Ese grado será mayor cuanto más se aproxime el conjunto difuso Comp(B, A) al valor singleton "1" (compatibilidad máxima).
- Suponiendo que B y A sean conjuntos difusos normalizados:
 - " A, Comp(A, A)(u) = u: Función de pertenencia lineal.
 - Si A no está normalizado, la función será la misma entre 0 y la altura del conjunto A: Si u>Altura(A), Comp(A, A)(u) = indeterminado (0).
 - Si B es un número x (conj. difuso tipo "singleton"), el resultado será también otro "singleton" en el valor A(x): $\mathbf{Comp}(B,A)(u) = \begin{cases} \mathbf{1}, & \text{si } u = A(x) \\ \mathbf{0}, & \text{en otro caso} \end{cases}$
 - Si B no está normalizado, el resultado tampoco lo estará, siendo su altura la misma que la del conjunto B.
 - Soporte(A) \cap Soporte(B) = \emptyset : Comp(B, A)(u) = Comp(A, B)(u) = 1, si u=0 (compatbldad. mínima) 0, en otro caso
 - Si B no está normalizado, el resultado támpoco lo estará, siendo su altura la misma que la del conjunto B, para u=0.

Compatibilidad COMPARACIÓN de Conj. Difusos B2**Ejemplos** Comp(B3, A)**Gráficos:** Comp(B2, A)3 Conjuntos con igual forma Comp(B1, A)situados en distintas posiciones comparados respecto A. Comp(B2, A)Comp(B1, A)B22 Conjuntos con igual altura que A en algún punto, pero que su nucleo está o no incluido en el núcleo de A. Comp(B, A)2Conjuntostriangulares comparados uno Comp(A, B)respecto del otro. Conclusiones: B es más compatible con A cuanto más se acerque Comp(B,A) a 1 y más se aleje del 0 (menos áreatenga). 22

Compatibilidad

COMPARACIÓN de Conj. Difusos

- Más Propiedades de la Compatibilidad:
 - La compatibilidad es <u>asimétrica</u>: Comp(B, A) ¹ Comp(A, B).
 - Si B
 ightharpoonup B', entonces Comp(B, A)(u)
 floorup Comp(B', A)(u) = u.
 - $-B(x) = \{1, "x\hat{1} X\} \triangleright Comp(B, A)(u) = \{1, "u\hat{1} [0,1]\}$
 - $-B(x) = \{0, "x\widehat{1} X\} \triangleright Comp(B, A)(u) = \{0, "u\widehat{1} [0,1]\}$
 - $B \stackrel{?}{I} A$ y están normalizados $\stackrel{?}{P} Comp(B,A)(0) = 0$ y Comp(B,A)(1) = 1
 - Por supuesto, pueden existir más puntos con compatibilidad 0 y 1.
 - $A \stackrel{?}{I} B$ y están normalizados $\stackrel{?}{P} Comp(B,A)(1) = 1$ y $Comp(B,A)(u) = 0 \Leftrightarrow u = 0$
 - Las medidas de <u>Posibilidad</u> y <u>Necesidad</u> entre A y B están incluidas en el soporte de **Comp**(B, A).

- $Poss(B, A) = sup{Soporte(Comp(B, A))}.$
- $Nec(B, A) = \inf \{ Soporte(Comp(B, A)) \}.$

23

Ejemplo: Operaciones de Conjuntos

- Sean los siguientes Conjuntos Difusos en $X = \{1,2,3,4,5,6,7,8\}$:
 - $-A(x) = \{0.1/1, 0.2/2, 0.5/3, 1/4, 0.4/5, 0.2/6\}$
 - $-B(x) = \{0.1/3, 0.2/4, 0.5/5, 1/6, 0.4/7, 0.2/8\}$
- Operaciones de Conjuntos:
 - Intersección $A \cap B$, según distintas t-normas:
 - Mínimo: $(A \cap B)(x) = \{0.1/3, 0.2/4, 0.4/5, 0.2/6\}$
 - Producto: $(A \cap B)(x) = \{0.05/3, 0.2/4, 0.2/5, 0.2/6\}$
 - Producto Drástico y Acotado usual: $(A \cap B)(x) = \{0.2/4, 0.2/6\}$
 - <u>Unión</u> $A \cup B$, según distintas t-conormas o s-normas:
 - Máximo: $(A \cup B)(x) = \{0.1/1, 0.2/2, 0.5/3, 1/4, 0.5/5, 1/6, 0.4/7, 0.2/8\}$
 - Suma-Producto:

$$(A \cup B)(x) = \{0.1/1, 0.2/2, 0.55/3, 1/4, 0.7/5, 1/6, 0.4/7, 0.2/8\}$$

- Suma Drástica: $(A \cup B)(x) = \{0.1/1, 0.2/2, 0.4/7, 0.2/8\}$
- Suma Acotada (p=0):

$$(A \cup B)(x) = \{0.1/1, 0.2/2, 0.6/3, 1/4, 0.9/5, 1/6, 0.4/7, 0.2/8\}$$

- <u>Negaciones</u>:
 - Original: $\neg A(x) = \{0.9/1, 0.8/2, 0.5/3, 0.6/5, 0.8/6, 1/7, 1/8\}$
 - Función umbral con a=0.5: $\neg A(x) = \{1/1, 1/2, 1/5, 1/6, 1/7, 1/8\}$

Ejemplo: Operaciones de Agregación

- Sean los siguientes Conjuntos Difusos en X = {1,2,3,4,5,6,7,8}:
 - $-A(x) = \{0.1/1, 0.2/2, 0.5/3, 1/4, 0.4/5, 0.2/6\}$
 - $-B(x) = \{0.1/3, 0.2/4, 0.5/5, 1/6, 0.4/7, 0.2/8\}$
- Operaciones de Agregación:
 - Operadores Compensatorios (con la ∪ e ∩ del m áximo y m ínimo respectiv.):
 - Con g = **0.5**:
 - Zimmermann y Zysno: $(AQB)(x) = \{0.22/3, 0.45/4, 0.45/5, 0.45/6\}$
 - Otro: $(A\ddot{A}B)(x) = \{0.05/1, 0.1/2, 0.3/3, 0.6/4, 0.45/5, 0.6/6, 0.2/7, 0.1/8\}$
 - Con g = 0.7 (da más valor a la unión que a la intersección):
 - Zimmermann y Zysno: $(AQB)(x) = \{0.31/3, 0.62/4, 0.47/5, 0.62/6\}$
 - $-(A\ddot{A}B)(x) = \{0.07/1,0.14/2, 0.38/3,0.76/4, 0.47/5,0.76/6, 0.28/7,0.14/8\}$
 - Operación Media:
 - Aritmética: {0.05/1, 0.1/2, 0.3/3, 0.6/4, 0.45/5, 0.6/6, 0.2/7, 0.1/8}
 - Es igual $aA\ddot{A}B \cos \gamma = 0.5$, y al operador OWA con pesos (1/2, 1/2).
 - Geométrica: {0.22/3, 0.45/4, 0.45/5, 0.45/6}
 - Es igual a $AQB \cos \gamma = 0.5$.
 - Armónica: {0.17/3, 0.33/4, 0.44/5, 0.33/6}

25

Ejemplo: Comparaciones

- Sean los siguientes Conjuntos Difusos en $X = \{1,2,3,4,5,6,7,8\}$:
 - $-A(x) = \{0.1/1, 0.2/2, 0.5/3, 1/4, 0.4/5, 0.2/6\}$
 - $-B(x) = \{0.1/3, 0.2/4, 0.5/5, 1/6, 0.4/7, 0.2/8\}$
- Comparaciones entre A y B:
 - Medidas de Distancia:
 - **Distancia de Hamming:** En este caso, la mayor distancia de Hamming es 8. Dist. A-B: 0.1+0.2+0.4+0.8+0.1+0.8+0.4+0.2 = **2.5**
 - **Distancia Euclídea:** En este caso, la mayor distancia Euclídea es $8^{0.5}$ =2.83. Dist. A–B: $(0.01+0.04+0.16+0.64+0.01+0.64+0.16+0.04)^{0.5}$ = **1.3**
 - **Distancia Tchebyschev:** La mayor distancia de Tchebyschev es siempre 1. Dist. A-B: **0.8** (diferencia en el punto x = 4 ó x = 6).
 - <u>Medidas de Posibilidad y Necesidad</u>:
 - Poss(A, B) = Poss(B, A) = 0.4 (en el punto x = 5).
 - Nec(A, B) = **0.2** (en el punto x = 6)
 - Nec(B, A) = **0.2** (en los puntos x = 4, x = 6 ó x = 8).
 - $P(A) = P(B) = P(\neg A) = P(\neg B) = 1;$
 - $N(A) = N(B) = N(\neg A) = N(\neg B) = 0$;

Ejemplo: Comparaciones

- Sean los siguientes Conjuntos Difusos en X = {1,2,3,4,5,6,7,8}:
 - $-A(x) = \{0.1/1, 0.2/2, 0.5/3, 1/4, 0.4/5, 0.2/6\}$
 - $-B(x) = \{0.1/3, 0.2/4, 0.5/5, 1/6, 0.4/7, 0.2/8\}$
- Comparaciones entre A y B:
 - <u>Índice de Igualdad</u>: Inducido por la t-norma del Producto Acotado con p = 0: $(A \circ B)(x) = \{0.9/1, 0.8/2, 0.6/3, 0.2/4, 0.9/5, 0.2/6, 0.6/7, 0.8/8\}$
 - $(A \circ B)_{opt} = 0.9$; $(A \circ B)_{pes} = 0.2$; $(A \circ B)_{avg} = 0.625$;
 - Medidas de Compatibilidad: Comp(B,A)(x) y Comp(A,B)(x).
 - Salen resultados algo extraños debido a que el Universo X es discreto.

27

Bibliografía

- D. Butnario, E.P. Klement: "Triangular Norm-Based Measures and Games with fuzzy Coalitions". Dordrecht: Kluwer Academic Publishers, 1993.
- H. Dychkhoff, W. Pedrycz, "Generalized Means as a Model of Compensative Connectives". Fuzzy Sets and Systems 14, pp. 143-154, 1984.
- K. Menger: "Statistical Metric Spaces". Proc. of the National Academy of Sciences 37, pp. 535-537 (USA), 1942.
- B. Schwizer, A. Sklar: "Probabilistic Metric Spaces". Amsterdam: North Holland, 1983.
- R. Yager, "On Ordered Weithted Averaging Aggregation Operations in Multicriteria Decision making". IEEE Transactions on Systems, Man and Cybernetics 18, pp. 183-190, 1988.
- L.A. Zadeh, "The Concept of a Linguistic Variable and its Application to Approximate Reasoning". Information Sciences 8, pp. 199-249 (part I), 8, pp. 301-357 (part II), 9, pp. 43-80 (part III), 1975.
- L.A. Zadeh, "Fuzzy Sets as a Basis for a Theory of Possibility". Fuzzy Sets and Systems, 1, pp. 3-28, 1978.
- H. Zimmermann, P. Zysno, "Latent Connectives in human decision making". Fuzzy Sets and Systems 4, pp. 47-51, 1980.