DISCRETE LOGARITHM

the existence of such m is always true, and the set M is non empty for $\phi(n) \in M$, and we say that m is the legth of the period generated by a, and if $m = \phi(n)$ for an a we say that a is primitive root of n.

Property:

any integer z can be represented as $z = q + k\phi(n)$ with $0 \le q < \phi(n)$

Proof:

we devid z by $\phi(n)$ in the euclidian sence we get the desired result.

Property:

if a is primitive root for n, then $a^p = a^q \mod n$ *if and only if* $p \equiv q \mod \phi(n)$.

Proof:

for a is primitive root for n we take $p = q + k\phi(n)$ we notice that if $p \equiv q \mod \phi(n)$, $a^p \equiv a^q \times a^{k\phi(n)} \equiv a^q \mod n$, if $a^p = a^q \mod n$, then $a^{p-q} = 1 \mod n$, meaning that $p - q = k\phi(n)$, hence $p \equiv q \mod \phi(n)$.

we introduce the discret logarithm as $dlog_{n,a}(b) = i$ with a is a primitive root of n, that verify the equation $b \equiv a^i \mod n$, if $x \equiv a^{dlog_{n,a}(x)} \mod n$, $y \equiv a^{dlog_{n,a}(y)} \mod n$ and $xy \equiv a^{dlog_{n,a}(xy)} \mod n$ then $xy \equiv (x \mod n \times y \mod n) \mod n$, hence $a^{dlog_{n,a}(xy)} \equiv a^{dlog_{n,a}(x) + dlog_{n,a}(y)} \mod n$, and by the previous property $dlog_{n,a}(xy) \equiv (dlog_{n,a}(x) + dlog_{n,a}(y)) \mod \phi(n)$ we can generaliz this to $dlog_{n,a}(x^y) \equiv y \times dlog_{n,a}(x) \mod \phi(n)$
