Gestión de Energía en Circuitos Integrados FIUBA 1er Cuatrimestre 2025 TP#2

1. Se debe utilizar una batería de 1.5 V para alimentar una carga de 5 V y 1 A. Para lograrlo se implementa un conversor buck-boost con un transistor con R_{on} = 35 m Ω y un diodo con V_D = 0.5 V (puede despreciarse R_D). Se pide:

- a. Obtener un circuito equivalente que modele las propiedades de este conversor incluyendo no-idealidades de transistor, inductor y diodo.
- b. Se desea que el conversor opere con una eficiencia no menor al 70% bajo las condiciones normales (5 V 1 A). ¿Cuál es el máximo valor de RL tolerable?
- c. Para el conversor hallado en el punto b, calcular los valores de pérdidas en cada dispositivo.
- d. Graficar la tensión de salida para $0 \le D \le 1$ con el valor de R_L hallado en b.
- e. ¿Qué puede decir sobre el punto d? ¿Se comporta como esperaba?