Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования «Севастопольский государственный университет»

МЕТОД МОНТЕ-КАРЛО

Методические указания

к выполнению лабораторной работы №5 по дисциплине «Методы системного анализа и проектирования информационных систем» Для студентов, обучающихся по направлению

09.03.02 «Информационные системы и технологии» и по дисциплине «Системный анализ и проектирование информационных систем»

Для студентов, обучающихся по направлению 09.03.03 «Прикладная информатика» по учебному плану подготовки бакалавров очной и заочной форм обучения

Севастополь 2023

1 ЦЕЛЬ РАБОТЫ

Углубление теоретических знаний в области системного анализа, ознакомление с методом Монте-Карло.

2 КРАТКИЕ ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ

2.1 Метод Монте-Карло

Для моделирования различных физических, экономических и других процессов широко используется метод Монте-Карло. В его основе лежит метод статистических испытаний. Суть его состоит в том, что результат испытания ставиться в зависимость от значения некоторой случайной величины, распределенной по заданному закону, чаще всего это гауссово распределение. В итоге результат каждого отдельного испытания не зависит от предыдущего и носит случайный характер. Точность метода напрямую зависит от числа результатов, чем их больше, чем точнее результат.

Важнейший прием построения метода - сведение задачи к расчету математических ожиданий [1]. Пусть требуется найти значение m некоторой изучаемой величины. С этой целью выбирают такую случайную величину X, математическое ожидание которой равно: M[X] = m. Практически же поступают так: вычисляют (разыгрывают) N возможных значений x_i случайной величины X, находят их среднее арифметическое:

$$x = \frac{1}{N} \sum_{i=1}^{N} x_i$$

Так как последовательность одинаково распределённых случайных величин, у которых существуют математическое ожидания, подчиняется закону больших числе, то при $N \to \infty$ среднее арифметическое этих величин сходятся по вероятности к математическому ожидания. Таким образом, при больших N величина $x \approx m$.

2.2 Метод Монте-Карло пример

Рассмотрим применение метода для вычисления площади под кривой. Данная задача хорошо иллюстрирует возможности метода. Пусть круг имеет радиус R=1. Уравнение соответствующей окружности имеет вид:

$$(x-1) + (y-1) = 1$$

Для решения задачи методом Монте-Крало впишем круг в квадрат (рисунок 1). Вершины квадрата будут иметь координаты (0, 0), (2, 0), (0, 2), (2, 2).

Рисунок 1 - К определению площади круга методом Монте-Карло

Любая точка внутри квадрата или на его границе должна удовлетворять неравенствам 0 < x < 2 и 0 < y < 2. При случайном заполнении квадрата точками, координаты которых распределены равномерно в этих интервалах, часть точек будет попадать внутрь круга. Если выборка состоит из n наблюдений и m точек попали внутрь круга или на окружность, то оценку площади круга S можно получить из соотношения:

$$S = S_{\text{квадрата}} \frac{m}{n}$$

где $S_{\text{квадрата}}$ — площадь квадрата, в который вписан круг.

3 ПОРЯДОК ВЫПОЛНЕНИЯ ЛАБОРАТОРНОЙ РАБОТЫ

- 1. Получить вариант задания остаток от деления двух последних чисел зачетной книжки на общее количество вариантов задания.
- 2. Написать программу на языке программирования python для вычисления площади под кривой методом Монте-Карло.
- 3. Построить график зависимости точности результата от числа испытаний.
- 4. Дополнительное задание: написать программу на языке программирования python для визуального отображения результатов решения (см. рисунок 1).

4 ВАРИАНТЫ ЗАДАНИЙ

Найти приближенное значение интеграла заданной функции f(x) на отрезке [a, b] по формулам Монте-Карло, произвести оценку погрешности.

T-6	1	Варианты	
таолина	ı —	Капианты	зяпянии
таолина	1	Dannanibi	эадании

таолица т Барианты задании				
Вариант	[a, b]	f(x)		
1	0, 1	sin(x)		
2	0, 1	cos(x)		
3	0, 2	x^{-1}		
4	0, 2	$x^{1/2}$		
5	0, 2	e ^x		
6	0, 1	$\sin(2x^2+1)$		
7	2, 3	$\frac{1}{x}\ln(x+2)$		
8	0, 1	$1 - t^2$		
9	0, 3	$\sqrt{1+\cos^2(x)}$		
10	2, 3	$x^2\cos(\frac{x}{4})$		

5 КОНТРОЛЬНЫЕ ВОПРОСЫ

- 1. В чем заключается суть метода Монте-Карло?
- 2. Графическая интерпретация метода Монте-Карло.
- 3. Как оценить погрешность метода Монте-Карло.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Брусленко М.П., Шрейдер Ю.А. Метод статистических испытаний (Монте-Карло) и его реализация на цифровых вычислительных машинах. М.: ФИЗМАТГИЗ, 1961г.
- 2. Волкова В.Н., Теория систем и системный анализ. 2014. 616 с.
- 3. Плас Дж. Вандер, Python для сложных зада: наука о данных и машинное обучение. 2018. 576c.