

Vergleich von Straßennetzen hinsichtlich der Theorie komplexer Netze

Präsentation zum Masterseminar 01962 "Komplexe Netze" im Wintersemester 2023/24

Von Theodor Diesner-Mayer und Heinrich Böllmann

Fragestellung

Auswertung der Straßennetz-Repräsentationen...

- Small-World-Eigenschaften
- Skalenfreiheit
- Zentralitätsmaße
- Robustheit

Wie unterscheiden sich die Ergebnisse verschiedener Städte?

Graphenrepräsentation: Primal

Knoten:

Kreuzung / Straßenende (Sackgasse)

Kante:

Straßenabschnitt

Kantengewichte, z.B.:

- Ohne
- geografische Länge
- Reisezeit

Bezug zur echten Welt

Graphenrepräsentation: Dual

Knoten:

ganze Straße (nicht nur Abschnitt)

Kante:

Verbindung zu anderer Straße

Methoden zur Erstellung u.a.:

- nach Straßennamen
- nach Kreuzungswinkel*

*ICN: Porta et al (2006) / HICN: Masucci et al (2014)

Graphenrepräsentation: Dual

Datengrundlage

- Daten- & Kartenbasis: OpenStreetMap
- Straßennetze von 10.283
 Städten und Gemeinden

Einschränkungen:

- nur öffentliches Straßennetz (keine Fuß-, Rad-, Forstwege, etc.)
- ungerichteter Graph (betrifft Einbahnstraßen, Autobahnen)

Gemeindegrenzen aus dem GV-ISys

Tools und Technologien

- Python-Skript zur Auswertung
 - OSMnx für die Aufbereitung der OSM-Daten
 - NetworkX zur Graphenanalyse
 - StreetContinuity für Winkelberechnung
 - graph tool für effiziente Graphenanalyse
 - Pyintergraph für Konvertierung der Graphen

Webtool für die Datenexploration

- Webanwendung zur Analyse und zum Debugging
- https://github.com/theodm/ seminar_komplexe_netze_ street_network

Mittlere Pfadlänge

↑ Primal:Pfadlänge steigt mit Knotenzahl

Primal mit Reisezeit:
 Pfadlänge steigt mit Knotenzahl

ी Dual: Pfadlänge bleibt relativ konstant

Globaler Clusterkoeffizient

↑ Primal:Relativ geringer Clusterkoeffizient folgt aus Rasterstruktur

û Dual:Werte rund 4-mal so hoch

Small-World-Eigenschaften

Small-World-Eigenschaften:

- Kleine mittlere Pfadlänge
- Hoher Clusterkoeffizient
- Primal-Graph: nicht erfüllt X
- Dualer Graph: erfüllt √

Entspricht der Literatur

=> Porta et al (2006), The network analysis of urban streets: A dual approach

Skalenfreiheit

Knotengrade folgen Potenzverteilung (power law)?

Primal-Graph X

Dualer Graph ✓

Straßennetz Berlin

Dual-Graph

- Anbindung > Lage
- Verkehrsadern treten hervor
- Weniger Grenzeffekt

(Hohe closeness centrality = kurze Pfadlänge zu allen anderen Knoten => "Netzmittelpunkt")

Betweeness-Zentralität

Primal-Graph

- WenigerKreuzungen = besser
- Hauptverkehrsachsen maßgeblich
- Grenzeffekt

(Hohe betweenness centrality = liegt auf vielen kürzesten Pfaden)

Straßennetz Berlin

Dual-Graph

- Deutlich anderes Straßenbild
- kürzester Pfad entspricht nicht kürzestem/schnellstem Reiseweg
- Grenzeffekt

(Hohe betweenness centrality = liegt auf vielen kürzesten Pfaden)

Straßennetz Berlin

Robustheit: Methodik

98 größte Städte (ohne Berlin und Hamburg, zu rechenintensiv)

- Schrittweises Entfernen von (0,6 % aller) Kanten
 - Zufällig
 - Strategisch, basierend auf der Betweenness-Zentralität

Überlegungen zur Realitätsnähe

- Untersuchung am Primal Graph
- Entfernen von Kanten (statt Knoten)

Robustheit: Ergebnisse

Auswertung

- Mittlere Pfadlänge des Gesamtnetzes (ggf. Gewichtung nach Reisezeit)
- Schritte bis zum Zerfall in Komponenten

Ergebnisse

- Zufallsstrategie
 - Erhöht die Pfadlänge kaum
 - Keine signifikante Netzteilung, nur einzelne Knoten "abgekoppelt"
- Betweenness-Strategie
 - Sofort messbarer Anstieg der Weglängen
 - Sehr effizent, um einen Netzzerfall herbeizuführen

Anzahl Knoten

Fazit

- OpenStreetMap:
 - Fantastische Datenquelle, kann wie vorgestellt ausgewertet werden
- Duale Repräsentation
 - Erweiterte Analyse von Straßennetzen, Hierarchien treten hervor
 - Small-World-Eigenschaften + Skalenfreiheit nachweisbar
- Zentralitätsmetriken hilfreich bei der Analyse von Stadtstrukturen
- Robustheitsauswertung zeigt kritische Stellen im Netz auf

Innovation:

- Web-Tool
- Reisezeit mit einbezogen
- Robustheit-Ansatz (Kanten, Strategien)

Danke für die Aufmerksamkeit! Fragen, bitte?

