Foundation of Cryptography, Lecture 8 Secure Multiparty Computation Handout Mode

Iftach Haitner, Tel Aviv University

Tel Aviv University.

May 20, 2014

Section 1

The Model

Multiparty Computation

- Multiparty Computation computing a functionality f
- Secure Multiparty Computation: compute f in a "secure manner"
 - Correctness
 - Privacy
 - Independence of inputs
 - Guaranteed output delivery
 - Fairness: corrupted parties should get their output iff the honest parties do
 - and ...
- Examples: coin-tossing, broadcast, electronic voting, electronic auctions
- How should we model it?
- Real Vs. Ideal paradigm

Real Model Execution

For a a pair of algorithms $\overline{A}=(A_1,A_2)$ and inputs $x_c,x_1,x_2\in\{0,1\}^*$, let $\mathsf{REAL}_{\overline{A}}(x_c,x_1,x_2)$ be the joint output of $(A_1(x_c,x_1),A_2(x_c,x_2))$.

Given a two-party protocol π , an algorithm taking the role of one of the parties in π is:

- Malicious acts arbitrarily.
- Honest acts exactly according to π .
- Semi-honest acts according to π , but might output **additional** information.

 $\overline{A} = (A_1, A_2)$ is an admissible with respect to π , if at least one party is honest.

Ideal Model Execution

For a pair of oracle-aided algorithms $\overline{B} = (B_1, B_2)$, inputs $x_c, x_1, x_2 \in \{0, 1\}^*$ and a function $f = (f_1, f_2)$, let $\overline{IDEAL}_{\overline{B}}^f(x_c, x_1, x_2)$ be the joint output of the parties in the end of the following experiment:

- The input of B_i is (x_c, x_i) .
- 2 B_i sends value y_i to the trusted party (possibly \perp)
- **3** Trusted party sends $z_i = f_i(y_0, y_1)$ to B_i (sends \bot , if $\bot \in \{y_0, y_1\}$)
- Each party outputs some value.

An oracle-aided algorithm B taking the role of one of the parties on the above experiment is:

- Malicious acts arbitrarily.
- Honest sends its private input to the trusted party (i.e., sets $y_i = x_i$), and its only output is the value it gets from the trusted party (i.e., z_i).
- Semi-honest, sends its input to the trusted party, outputs z_i plus possibly additional information.

 $\overline{B} = (B_1, B_2)$ is admissible, if at least one party is honest.

Secure computation

Definition 1 (secure computation)

A protocol π securely computes f, if \forall admissible PPT pair $\overline{A} = (A_1, A_2)$ for π , exists admissible oracle-aided PPT pair $\overline{B} = (B_1, B_2)$, s.t.

$$\{\mathsf{REAL}_{\overline{\mathsf{A}}}(1^n, x_1, x_2)\}_{x_c, x_1, x_2 \in \{0, 1\}^*} \approx_c \{\mathsf{IDEAL}_{\overline{\mathsf{B}}}^f(x_1, x_2)\}_{x_c, x_1, x_2 \in \{0, 1\}^*}$$

- Recall that the enumeration index (i.e., x_c, x₁, x₂) is given to the distinguisher.
- π securely computes f implies that π computes f correctly.
- Security parameter
- Auxiliary inputs
- We focus on semi-honest adversaries.

Section 2

Oblivious Transfer

Oblivious transfer

An (one-out-of-two) OT protocol securely computes the functionality $OT = (OT_S, OT_R)$) over $(\{0, 1\}^* \times \{0, 1\}^*) \times \{0, 1\}$, where $OT_S(\cdot) = \bot$ and $OT_R((\sigma_0, \sigma_1), i) = \sigma_i$.

- "Complete" for multiparty computation
- We show how to construct for bit inputs.

Oblivious transfer from trapdoor permutations

Let (G, f, Inv) be a TDP and let b be an hardcore predicate for f.

Protocol 2 ((S,R))

Common input: 1ⁿ

S's input: $\sigma_0, \sigma_1 \in \{0, 1\}$.

R's input: $i \in \{0, 1\}$.

- **1** S chooses $(e, d) \leftarrow G(1^n)$, and sends e to R.
- R chooses $x_0, x_1 \leftarrow \{0, 1\}^n$, sets $y_i = f_e(x_i)$ and $y_{1-i} = x_{1-i}$, and sends y_0, y_1 to S.
- S sets $c_j = b(\operatorname{Inv}_d(y_j)) \oplus \sigma_j$, for $j \in \{0, 1\}$, and sends (c_0, c_1) to R.
- \bigcirc R outputs $c_i \oplus b(x_i)$.

Claim 3

Protocol 2 securely computes OT (in the semi-honest model).

Proving Claim 3

We need to prove that \forall semi-honest admissible PPT pair $\overline{A}=(A_1,A_2)$ for (S,R), exists admissible oracle-aided PPT pair $\overline{B}=(B_1,B_2)~\mathrm{s.t.}$

$$\{\mathsf{REAL}_{\overline{\mathsf{A}}}(1^n,(\sigma_0,\sigma_1),i)\} \approx_c \{\mathsf{IDEAL}_{\overline{\mathsf{B}}}^{\mathsf{OT}}(1^n,(\sigma_0,\sigma_1),i)\},\tag{1}$$

where the enumeration is over $n \in \mathbb{N}$ and $\sigma_0, \sigma_1, i \in \{0, 1\}$.

R's privacy

For a semi-honest implementation S' of S, define the oracle-aided semi-honest strategy $S_{\mathcal{I}}'$ as follows.

Algorithm 4 ($S'_{\mathcal{I}}$)

input: 1^n , σ_0 , σ_1

- **1** Send (σ_0, σ_1) to the trusted party.
- **2** Emulate $(S'(1^n, \sigma_0, \sigma_1), R(1^n, 0))$.
- Output the output that S' does.

Let $\overline{A} = (S', R)$ and $\overline{B} = (S'_{\mathcal{I}}, R_{\mathcal{I}})$, where $R_{\mathcal{I}}$ is honest.

Claim 5

$$\{\mathsf{REAL}_{\overline{\mathsf{A}}}(1^n,(\sigma_0,\sigma_1),i)\} \equiv \{\mathsf{IDEAL}_{\overline{\mathsf{B}}}^{\mathsf{OT}}(1^n,(\sigma_0,\sigma_1),i)\}.$$

Proof?

S's privacy

For a semi-honest implementation R' of R, define the oracle-aided semi-honest strategy $R'_{\mathcal{I}}$ as follows.

Algorithm 6 ($R'_{\mathcal{I}}$)

input: $1^n, i \in \{0, 1\},\$

- **1** Send *i* to the trusted party, and let σ be its answer.
- 2 Emulate (S(1ⁿ, σ_0 , σ_1), R'(1ⁿ, i)), for $\sigma_i = \sigma$ and $\sigma_{1-i} = 0$.
- Output the output that R' does.

Let $\overline{A} = (S, R')$ and $\overline{B} = (S_{\mathcal{I}}, R'_{\mathcal{I}})$, where $S_{\mathcal{I}}$ is honest.

Claim 7

$$\{\mathsf{REAL}_{\overline{\mathsf{A}}}(1^n,(\sigma_0,\sigma_1),i)\} \approx_c \{\mathsf{IDEAL}^{\mathsf{OT}}_{\overline{\mathsf{B}}}(1^n,(\sigma_0,\sigma_1),i)\}.$$

Proof?

Section 3

Yao Garbled Circuit

Before we start

 Fix a (multiple message) semantically-secure private-key encryption scheme (G, E, D) with

- **1** $G(1^n) = U_n$.
- ② For any $m \in \{0,1\}^*$ $\Pr_{d,d' \leftarrow \{0,1\}^n} [D_d(E_{d'}(m)) \neq \bot] = \operatorname{neg}(n).$

Can we construct such a scheme?

• Boolean circuits: gates, wires, inputs, outputs, values, computation

The Garbled Circuit

Fix a Boolean circuit C and $n \in \mathbb{N}$.

- Let \mathcal{W} and \mathcal{G} be the (indices) of **wires** and **gates** of \mathcal{C} , respectively.
- For $w \in \mathcal{W}$, associate a pair of random 'keys" $k_w = (k_w^0, k_w^1) \in (\{0, 1\}^n)^2$.
- For $g \in \mathcal{G}$ with input wires i and j, and output wire h, let T(g) be the following table:

input wire i	input wire j	output wire h	hidden output wire
k_i^0	k_j^0	$k_h^{g(0,0)}$	$E_{k_i^0}(E_{k_i^0}(k_h^{g(0,0)}))$
k_i^0	k_j^1	$k_h^{g(0,1)}$	$E_{k_i^0}(E_{k_i^1}(k_h^{g(0,1)}))$
k_i^1	k_i^0	$k_h^{g(1,0)}$	$E_{k_i^1}(E_{k_i^0}(k_h^{g(1,0)}))$
k_i^1	k_j^1	$k_h^{g(1,1)}$	$E_{k_i^1}(E_{k_i^1}(k_h^{g(1,1)}))$

Figure: Table for gate *g*, with input wires *i* and *j*, and output wire *h*.

The Garbled Circuit, cont.

input wire i	input wire j	output wire h	hidden output wire
k_i^0	k_j^0	$k_h^{g(0,0)}$	$E_{k_i^0}(E_{k_i^0}(k_h^{g(0,0)}))$
k_i^0	k_j^1	$k_h^{g(0,1)}$	$E_{k_i^0}(E_{k_i^1}(k_h^{g(0,1)}))$
k_i^1	k_j^0	$k_h^{g(1,0)}$	$E_{k_i^1}(E_{k_i^0}(k_h^{g(1,0)}))$
k_i^1	k_j^1	$k_h^{g(1,1)}$	$E_{k_i^1}(E_{k_j^1}(k_h^{g(1,1)}))$

Let \mathcal{I} and \mathcal{O} be the input and outputs wires of \mathcal{C} .

- For $g \in \mathcal{G}$, let $\widetilde{T}(g)$ be a random permutation of the fourth column of T(g).
- Let $C(x)_w$ be the **bit-value** the computation of C(x) assigns to w.
- Given
 - $\widetilde{T} = \{(g, \widetilde{T}(g))\}_{g \in \mathcal{G}}.$

One can efficiently compute C(x).

(essentially) No additional information about x leaks.

16/22

The Protocol

- Let $f(x_A, x_B) = (f_A(x_A, x_B), f_B(x_A, x_B))$ be function and let C be a circuit that computes f.
- Let \mathcal{I}_A and \mathcal{I}_B be the input wires corresponds to x_A and x_B respectively in C, and let \mathcal{O}_A and \mathcal{O}_B be the output wires corresponds to f_A and f_B outputs respectively in C.
- Recall that $C(x)_w$ is the bit-value the computation of C(x) assigns to w.
- Let (S, R) be a secure protocol for OT.

Protocol 8 ((A, B))

Common input: 1^n . A/B's input: x_A/x_B

- **1** A samples at random $\{k_w = (k_w^0, k_w^1)\}_{w \in \mathcal{W}}$, and generate \widetilde{T}).
- 2 A sends \widetilde{T} and $\{(w, k_w^{C(x_1, \cdot)_w})\}_{w \in \mathcal{I}_A}$ to B.
- **③** \forall w ∈ \mathcal{I}_B , A and B interact in $(S(k_w), R(C(\cdot, x_2)_w))(1^n)$.
- **3** B computes the (garbled) circuit, and sends $\{(w, k_w^{C(x_1, x_2)_w})\}_{w \in \mathcal{O}_A}$ to A.
- **5** A sends $\{(w, k_w)\}_{w \in \mathcal{O}_B}$ to B.
- **1** The parties compute $f_A(x_1, x_2)$ and $f_B(x_1, x_2)$ respectively.

Claim 9

Protocol 8 securely computes *f* (in the semi-honest model)

Proof: We focus on A's privacy. For a semi-honest B', define

Algorithm 10 ($B'_{\mathcal{I}}$)

input: 1^n and x_B .

- **1** Send x_B to the trusted party, and let o_B be its answer.
- 2 Emulate the first 4 steps of $(A(1^{|x_A|}), B'(x_B)(1^n))$.
- **3** For each $w \in \mathcal{O}_B$: permute the order of the pair k_w according to o_B , and the key of w computed in the emulation.
- Complete the emulation, and output the output that B' does.

Claim: $B'_{\mathcal{T}}$ is a good "simulator" for B'.

Extensions

- Efficiently computable f
 Both parties first compute C_f a circuit that compute f for inputs of the right length
- Hiding C? All but its size

Malicious model

The parties prove that they act "honestly"

- Forces the parties to chose their random coin properly
- Before each step, the parties prove in ZK that they followed the prescribed protocol (with respect to the random-coins chosen above)

More efficient alternatives: "cut and choose"

Course Summary

See diagram

What we did not cover

- "Few" reductions
- Environment security (e.g., UC)
- Information theoretic crypto
- Non-generic constructions : number theory, lattices
- Impossibility results
- "Real life cryptography" (e.g., Random oracle model)
- Security
- Differential Privacy
- and....