RÉSEAUX EUCLIDIENS EN CRYPTOGRAPHIE $ext{TD } 1-2023$

ALEXANDRE WALLET, QUYEN NGUYEN

Exercice 1. Soit $\mathcal{L}_1, \mathcal{L}_2$ deux réseaux de \mathbb{R}^m . Montrer que :

- si $\mathcal{L}_1 + \mathcal{L}_2$ est un réseau, alors $\operatorname{rk}(\mathcal{L}_1 + \mathcal{L}_2) \ge \max(\operatorname{rk} \mathcal{L}_1, \operatorname{rk} \mathcal{L}_2)$;
- $-\mathcal{L}_1 \cap \mathcal{L}_2$ est un réseau et $\operatorname{rk}(\mathcal{L}_1 \cap \mathcal{L}_2) \leq \min(\operatorname{rk} \mathcal{L}_1, \operatorname{rk} \mathcal{L}_2)$.

Donner des exemples où les inégalités sont atteintes, et non atteintes.

Exercice 2. (Réseaux et non-réseaux)

- (1) L'ensemble $\mathbb{Z} + \sqrt{2}\mathbb{Z}$ est-il un réseau de \mathbb{R} ?
- (2) Soit V la droite de \mathbb{R}^2 engendrée par $(1, \sqrt{2})$. Quel est le rang de $\mathbb{Z}^2 \cap V$? Si π désigne la projection orthogonale sur V, l'ensemble $\pi(\mathbb{Z}^2)$ est-il un réseau de \mathbb{R}^2 ?
- (3) Montrer que les sous-groupes de \mathbb{R} sont soit denses, soit de la forme $\alpha \mathbb{Z}$ pour $\alpha \in \mathbb{R}$.

Exercice 3 (Problèmes algorithmiques, partie 1). Le but est de donner des algorithmes pour résoudre chacun des problèmes ci-dessous. On donnera la complexité en nombre d'opérations. Dans toutes les questions, on pourra toujours supposer que les réseaux sont décrits par un système générateur.

- (1) (Base) Soit g_1, \ldots, g_n une famille génératrice d'un réseau $\mathcal{L} \subset \mathbb{R}^m$. Calculer une base de \mathcal{L} .
- (2) (Appartenance) Soit $v \in \mathbb{R}^m$ et \mathcal{L} un réseau de \mathbb{R}^m . Déterminer si $v \in \mathcal{L}$ ou non.
- (3) (Sous-réseau, égalité) Soit $\mathcal{L}, \mathcal{L}'$ deux sous-réseaux de \mathbb{R}^m . Déterminer si $\mathcal{L} \subset \mathcal{L}'$, $\mathcal{L}' \subset \mathcal{L}$ ou $\mathcal{L} = \mathcal{L}'$.
- (4) (Somme de réseaux) Donner un algorithme pour calculer une base de $\mathcal{L} + \mathcal{L}'$.

Exercice 4 (Dualité, problèmes algorithmiques, partie 2). Soit $\mathcal{L} \subset \mathbb{R}^m$ un réseau et V l'espace vectoriel qu'il engendre. Le dual de \mathcal{L} est l'ensemble

$$\mathcal{L}^{\vee} = \{ u \in V : \forall v \in \mathcal{L}, \langle u, v \rangle \in \mathbb{Z} \}.$$

- (1) Montrer que \mathcal{L}^{\vee} est un réseau de même rang que \mathcal{L} . Si \mathbf{B} est une base de \mathcal{L} , donner une base de \mathcal{L}^{\vee} .
- (2) Soit $\mathcal{L}_1, \mathcal{L}_2$ deux réseaux de \mathbb{R}^m . Montrer que $\mathcal{L}_1^{\vee\vee} = \mathcal{L}_1, (\mathcal{L}_1 + \mathcal{L}_2)^{\vee} = \mathcal{L}_1^{\vee} \cap \mathcal{L}_2^{\vee}$ et $(\mathcal{L}_1 \cap \mathcal{L}_2)^{\vee} = \mathcal{L}_1^{\vee} + \mathcal{L}_2^{\vee}$.
- (3) Donner un algorithme pour calculer une base de $\mathcal{L}_1 \cap \mathcal{L}_2$.

Exercice 5 (Plus difficile, faire des dessins). Soit $\mathcal{L}, \mathcal{L}'$ deux réseaux de même rang.

- (1) Montrer que si $\mathcal{L}' \subsetneq \mathcal{L}$, alors $\det \mathcal{L}' > \det \mathcal{L}$.
- (2) Plus généralement, on veut montrer que $[\mathcal{L}:\mathcal{L}'] = \frac{\det \mathcal{L}'}{\det \mathcal{L}}$.
 - (a) On appelle $domaine\ fondamental$ d'une base ${\bf B}$ de \mathbb{R}^n l'ensemble

$$\mathcal{D}_{\mathbf{B}} = \left\{ \sum_{i \le n} x_i \mathbf{b}_i : x_i \in [0, 1) \right\}.$$

Montrer que $\mathbb{R}^n = \bigcup_{\mathbf{u} \in \mathcal{L}} (\mathbf{u} + \mathcal{D}_{\mathbf{B}})$, où l'union est disjointe.

- (b) Soit $\mathcal{D}_{\mathbf{B}}$ et $\mathcal{D}_{\mathbf{B}'}$ des domaines fondamentaux pour \mathcal{L} et \mathcal{L}' . Montrer que pour tout $\mathbf{u} \in \mathcal{L}$, on a $\sum_{\mathbf{x} \in \mathbf{u} + \mathcal{L}'} \operatorname{Vol}(\mathcal{D}_{\mathbf{B}'} \cap (\mathbf{x} + \mathcal{D}_{\mathbf{B}})) = \operatorname{Vol}(\mathcal{D}_{\mathbf{B}})$. (c) En déduire que \mathcal{L}/\mathcal{L}' est fini, puis le résultat annoncé.

À noter : il existe une autre preuve, plus algorithmique mais moins visuelle, reposant sur le théorème de classification des groupes abéliens.