DL-Lite Full: a sub-Language of OWL 2 Full for the web-scale Open Data for Powerful Meta-modeling and Query Answering

Zhenzhen Gu^a, Songmao Zhang^b, Cungen Cao^a

^aInstitute of Computing Technology, Chinese Academy of Sciences, Beijing, China ^bAcademy of Mathematics and Systems Sciences, Chinese Academy of Sciences, Beijing, China

Appendix A: Semantic conditions of meta-names w.r.t. a u-model ${\boldsymbol{\mathcal{U}}}$

class A	$A^{\mathcal{U}}$	$C^{\mathcal{U}}(A^{\mathcal{U}})$
Class	$\in \Delta_u^C$	$=\Delta_u^C$
Property	$\in \Delta_u^C$	$=\Delta_u^R$
SymmetricProperty	$\in \Delta_u^C$	$\subseteq \Delta_{\underline{u}}^{\mathcal{R}}$
AsymmetricProperty	$\in \Delta_u^C$	$\subseteq \Delta_u^{\mathcal{R}}$
role P	$P^{\mathcal{U}}$	$\mathcal{R}^{\mathcal{U}}(P^{\mathcal{U}})$
type	$\in \Delta_u^{\mathcal{R}}$	$\subseteq \Delta_u^{\mathcal{U}} \times \Delta_u^{\mathcal{C}}$
subClassOf	$\in \Delta_u^{\mathcal{R}}$	$\subseteq \Delta_u^C \times \Delta_u^C$
equivalentProperty	$\in \Delta^{\mathcal{R}}$	$\subseteq \Delta_u^C \times \Delta_u^C$
disjointWith	$\in \Delta_u^{\mathcal{R}}$	$\subseteq \Delta_u^C \times \Delta_u^C$
domain	$\in \Delta_u^{\mathcal{R}}$	$\subseteq \Delta_u^{\mathcal{R}} \times \Delta_u^{\mathcal{C}}$
range	$\in \Delta_u^{\mathcal{R}}$	$\subseteq \Delta_u^{\mathcal{R}} \times \Delta_u^{\mathcal{C}}$
subPropertyOf	$\in \Delta_u^{\mathcal{R}}$	$\subseteq \Delta_u^{\mathcal{R}} \times \Delta_u^{\mathcal{R}}$
equivalentProperty	$\in \Delta_u^{\mathcal{R}}$	$\subseteq \Delta_u^{\mathcal{R}} \times \Delta_u^{\mathcal{R}}$
inverseOf	$\in \Delta_u^{\mathcal{R}}$	$\subseteq \Delta_u^{\mathcal{R}} \times \Delta_u^{\mathcal{R}}$
propertyDisjointWith	$\in \Delta_{\mu}^{\mathcal{R}}$	$\subseteq \Delta_u^{\mathcal{R}} \times \Delta_u^{\mathcal{R}}$

$(x,y) \in \mathcal{R}^{\mathcal{U}}(subClassOf^{\mathcal{U}})$	iff	$x, y \in \Delta_u^C, C^{\mathcal{U}}(x) \subseteq C^{\mathcal{U}}(y)$
$(x,y) \in \mathcal{R}^{\mathcal{U}}(equivalentProperty^{\mathcal{U}})$	iff	$x, y \in \Delta_u^C, C^{\mathcal{U}}(x) = C^{\mathcal{U}}(y)$
$(x,y) \in \mathcal{R}^{\mathcal{U}}(disjointWith^{\mathcal{U}})$	iff	$x, y \in \Delta_u^C, C^{\mathcal{U}}(x) \cap C^{\mathcal{U}}(y) = \emptyset$
$(x,y) \in \mathcal{R}^{\mathcal{U}}(domain^{\mathcal{U}})$	iff	$x \in \Delta_u^R, y \in \Delta_u^C,$
		$\{o (o,e)\in\mathcal{R}^{\mathcal{U}}(x)\}\subseteq C^{\mathcal{U}}(y)$
$(x,y) \in \mathcal{R}^{\mathcal{U}}(range^{I})$	iff	$x \in \Delta_u^{\mathcal{R}}, y \in \Delta_u^{\mathcal{C}},$
		$\{e (o,e)\in\mathcal{R}^{\mathcal{U}}(x)\}\subseteq C^{\mathcal{U}}(y)$
$(x,y) \in \mathcal{R}^{\mathcal{U}}(subPropertyOf^{\mathcal{U}})$	iff	u
$(x,y) \in \mathcal{R}^{\mathcal{U}}(equivalentProperty^{\mathcal{U}})$	iff	$x, y \in \Delta_u^{\mathcal{R}}, \mathcal{R}^{\mathcal{U}}(x) = \mathcal{R}^{\mathcal{U}}(y)$
$(x,y) \in \mathcal{R}^{\mathcal{U}}(propertyDisjointWith^{\mathcal{U}})$	iff	$x, y \in \Delta_u^{\mathcal{R}}, \mathcal{R}^{\mathcal{U}}(x) \cap \mathcal{R}^{\mathcal{U}}(y) = \emptyset$
$(x,y) \in \mathcal{R}^{\mathcal{U}}(inverseOf^{\mathcal{U}})$	iff	$x, y \in \Delta_u^{\mathcal{R}}, \mathcal{R}^{\mathcal{U}}(x) = \mathcal{R}^{\mathcal{U}}(y)^-$
$s \in C^{\mathcal{U}}(SymmetricProperty^{\mathcal{U}})$	iff	$\mathcal{R}^{\mathcal{U}}(x) = \mathcal{R}^{\mathcal{U}}(x)^{-}$
$x \in C^{\mathcal{U}}(AsymmetricProperty^{\mathcal{U}})$	iff	$\mathcal{R}^{\mathcal{U}}(x) \cap \mathcal{R}^{\mathcal{U}}(x)^{-} = \emptyset$

Appendix B: Proofs of the results in the paper

Proof of Theorem 1.

PROOF. (1. \Rightarrow) If \mathcal{K} is ν -satisfiable then it has a ν -model \mathcal{V} . Next, we show $\tau_{dl}(\mathcal{K})$ is satisfiable. From \mathcal{V} , an interpretation $I = (\Delta^I, \cdot^I)$ for $\tau_{dl}(\mathcal{K})$ can be constructed by setting (a) $\Delta^I = \Delta^\mathcal{V}$; (b) $a^I = a^\mathcal{V}$ for each $a \in \mathbb{N}$; (c) for each $P \in \mathbb{R}$, if $(v_r^-(P))^\mathcal{V} \in \Delta^\mathcal{R}_\nu$ then $P^I = \mathcal{R}^\mathcal{V}((v_r^-(P))^\mathcal{V})$, otherwise $P^I = \emptyset$; and (d) for each

Email addresses: guzhenzhen@ict.ac.cn (Zhenzhen Gu), smzhang@math.ac.cn (Songmao Zhang), cgcao@ict.ac.cn (Cungen Cao) $A \in \mathbb{C}$, if $(v_c^-(A))^{\mathcal{V}} \in \Delta_v^{\mathcal{C}}$ then $A^I = \mathcal{C}^{\mathcal{V}}((v_c^-(A))^{\mathcal{V}})$, otherwise $A^I = \emptyset$. I and \mathcal{V} obey the same principles to interpret class and role constructors. Thus it holds that (\spadesuit) $(\tau_r(R))^I = \mathcal{R}^{\mathcal{V}}(R)$ for each DL-Lite Full role R and $(\tau_c(C))^I = \mathcal{C}^{\mathcal{V}}(C)$ for each DL-Lite Full class C. For each axiom or assertion α in $\tau_{dl}(\mathcal{K})$, if there exists α' in \mathcal{K} such that $\alpha = \tau(\alpha')$ then by (\spadesuit) and $\mathcal{V} \models \alpha'$, $I \models \alpha$ holds. Otherwise, α is an individual assertion A(a) satisfying that there exists gr(P, a, A) in \mathcal{K} such that $P \sqsubseteq_r^* type$ holds. $a^I \in \mathcal{C}^{\mathcal{V}}(A^{\mathcal{V}})$ holds. Then by (\spadesuit) , $a^I \in v_c(A)^I$ holds, i.e., $I \models A(a)$ holds. So I satisfies all the axioms and assertions in $\tau_{dl}(\mathcal{K})$. Thus $\tau_{dl}(\mathcal{K})$ is satisfiable.

 $(1. \Leftarrow)$ If $\tau_{dl}(\mathcal{K})$ is satisfiable. Then it has a canonical model I 1. From I, a v-interpretation $\mathcal{V} = (\Delta^{\mathcal{V}}, \Delta^{\mathcal{R}}_{\nu}, \Delta^{\mathcal{C}}_{\nu}, \cdot^{\mathcal{V}}, C^{\mathcal{V}}, \mathcal{R}^{\mathcal{V}})$ can be constructed by setting (a) $\Delta^{\mathcal{V}} = \Delta^{\mathcal{I}}$; (b) $\Delta^{\mathcal{R}}_{\mathcal{V}}$ consists of type and all the names $o \in \mathbb{N}$ such that $v_r(o)$ occurs in $\tau_{dl}(\mathcal{K})$; (c) Δ_{ν}^{C} consists of all the names $o \in \mathbb{N}$ such that $v_{c}(o)$ occurs in $\tau_{dl}(\mathcal{K})$; (d) $a^{\mathcal{V}} = a$ for each $a \in \mathbb{N}$; (e) $\mathcal{R}^{\mathcal{V}}(o) = v_r(o)^{\mathcal{I}}$ for each $o \in \Delta_v^{\mathcal{R}} - \{type\}$ and $\mathcal{R}^{\mathcal{V}}(type) = \{(o, e) | e \in \Delta^{\mathcal{C}} \land o \in \mathcal{V}_c(e)^J\}$; and (f) $C^{\mathcal{V}}(e) = \{o | (o, e) \in \mathcal{R}^{\mathcal{V}}(type)\}$ for each $o \in \Delta^{\mathcal{C}}_{\mathcal{V}}$. \mathcal{V} and I obey the same principles to interpret class and role constructors. Thus we can get that (\clubsuit) for each DL-Lite Full class C, $C^{\mathcal{V}}(C) = (\tau_c(C))^{\mathcal{I}}$ holds, and for each DL-Lite Full role R, if $R \neq type$ and $R \neq type^-$ then $\mathcal{R}^{\mathcal{V}}(R) = (\tau_r(R))^{\mathcal{I}}$ otherwise $(\tau_r(R))^I \subseteq \mathcal{R}^V(R)$. The meta-role type just occurs in the righthands of role inclusion axioms. Thus for each axiom or individual assertion α in \mathcal{K} , from $I \models \tau(\alpha)$ and (*), $\mathcal{V} \models_{\nu} \alpha$ holds. So V is a ν -model of K. Thus K is ν -satisfiable.

(2) Let \vec{u} be an arbitrary tuple in $\operatorname{answer}_{\nu}(Q,\mathcal{K})$. Next, we show $\vec{u} \in \operatorname{answer}(\tau_{dl}(Q), \tau_{dl}(\mathcal{K}))$. \mathcal{K} is ν -satisfiable. By (1), $\tau_{dl}(\mathcal{K})$ is satisfiable. Let I be a canonical model of $\tau_{dl}(\mathcal{K})$. Then from I, a ν -model \mathcal{V} of \mathcal{K} can be constructed using the way presented in $(1. \Leftarrow)$. So there exists a binding π of $Q(\vec{u})$ over \mathcal{V} such that $\mathcal{V}, \pi \models_{\mathcal{V}} Q(\vec{u})$. From π , a binding π' of $\tau_{dl}(Q(\vec{u}))$ over I can be constructed by setting $\pi'(x) = \pi(x)$ for each variable x in $\tau_{dl}(Q(\vec{u}))$ and $\pi'(a) = a^I$ for each individual a in $\tau_{dl}(Q(\vec{u}))$. Then by (\clubsuit) and the construction of \mathcal{V} , $I, \pi' \models \tau_{dl}(Q(\vec{u}))$ holds. $\tau_{dl}(Q(\vec{u})) = \tau_{dl}(Q)(\operatorname{head}(\tau_{dl}(Q))/\vec{u})$ holds. Thus $\vec{u} \in \operatorname{answer}(\tau_{dl}(Q), \tau_{dl}(\mathcal{K}))$ holds. Hence $\operatorname{answer}_{\mathcal{V}}(Q, \mathcal{K}) \subseteq \operatorname{answer}(\tau_{dl}(Q), \tau_{dl}(\mathcal{K}))$ holds.

Preprint submitted to Elsevier March 15, 2020

¹A DL-Lite_A KB *O* has a canonical interpretation *I* satisfying that (1) $a^I = a$ for each $a \in \mathbb{N}$; (2) *O* is satisfiable iff *I* satisfies *O*; and (3) if *O* is satisfiable then for each conjunctive query q, $\vec{u} \in \operatorname{answer}(q, O)$ iff *I* satisfies $q(\vec{u})$. If *O* is satisfiable then *I* is called a canonical model of *O*.

answer $(\tau_{dl}(Q), \tau_{dl}(K)) \subseteq \operatorname{answer}_{\nu}(Q, K)$ can be proved analogously. Thus $\operatorname{answer}_{\nu}(Q, K) = \operatorname{answer}(\tau(Q), \tau(K))$ holds. \square

Proof of Lemma 1.

PROOF. Let $\mathcal{A}_o = \mathcal{A} \cup \{type(a,A)| gr(P,a,A) \in \mathcal{A} \land P \sqsubseteq_r^* type\}$, i.e., the ABox obtained by materializing the non-standard use of type in the original KB. Then for each conjunctive query Q, answer $_v(Q,(\emptyset,\mathcal{A}_o)) = answer(\tau_{dl}(Q),(\emptyset,\tau_{dl}(\mathcal{A})))$ holds trivially, since:

$$\tau_{dl}(\mathcal{A}) =$$

 $\{v_c(A)(a)|type(a,A)\in\mathcal{A}_o\}\cup\{v_r(P)(a,b)|P(a,b)\in\mathcal{A}_o\land P\neq type\}$

Thus the equation in the lemma can be proved by showing the following equation holds:

 $\bigcup_{Q \in \mathsf{RefType}(Q,\mathcal{T})} \mathsf{answer}_{\nu}(Q,(\emptyset,\mathcal{A})) = \bigcup_{Q \in Q} \mathsf{answer}_{\nu}(Q,(\emptyset,\mathcal{A}_o))$

 (\subseteq) Let $Q \in \mathsf{RefType}(Q, \mathcal{T})$. And let $\vec{u} \in \mathsf{answer}_{\nu}(Q, (\emptyset, \mathcal{A}))$. Next, we show that (\clubsuit) there exists $Q' \in Q$ such that $\vec{u} \in \mathsf{answer}_{\nu}(Q', (\emptyset, \mathcal{A}_o))$. If $Q \in Q$ then (\spadesuit) holds trivially, since $\mathcal{A} \subseteq \mathcal{A}_o$. Otherwise, there exists a query Q':

$$\bigwedge_{l=1}^{n} \alpha_l \wedge \bigwedge_{i=1}^{m} type(x_i, A_i) \rightarrow q(\vec{x})$$

in Q such that $P_k \sqsubseteq_r^* type$ for each $1 \le k \le m$ and Q is the query:

$$\bigwedge_{l=1}^{n} \alpha_l \wedge \bigwedge_{i=1}^{m} P_i(x_i, A_i) \rightarrow q(\vec{x})$$

Next we prove $\vec{u} \in \operatorname{answer}_{\nu}(Q', (\emptyset, \mathcal{A}))$. For \vec{u} , there exists a function f that maps all the variables in $Q(\vec{u})$ to names and all the atoms in $(Q(\vec{u}))f$ occur in \mathcal{A} . For each $P_i(a_i, A_i)$ in $(Q(\vec{u}))f$, $type(a_i, A_i)$ occurs in \mathcal{A}_o . Thus all the atoms in $(Q'(\vec{u}))f$ occur in \mathcal{A}_o . So $\vec{u} \in \operatorname{answer}_{\nu}(Q', (\emptyset, \mathcal{A}_o))$ holds. Hence (\clubsuit) holds. Therefore the (\subseteq) direction holds.

(\supseteq) Let $Q \in Q$. And let $\vec{u} \in \operatorname{answer}_{\nu}(Q, (\emptyset, \mathcal{A}_o))$. Next, we show that (\clubsuit) there exists $Q' \in \operatorname{RefType}(Q, \mathcal{T})$ such that $\vec{u} \in \operatorname{answer}_{\nu}(Q', (\emptyset, \mathcal{A}))$. If $\vec{u} \in \operatorname{answer}_{\nu}(Q, (\emptyset, \mathcal{A}))$, then (\clubsuit) holds trivially, since $\mathcal{A} \subseteq \mathcal{A}_o$ and $Q \in \operatorname{RefType}(Q, \mathcal{T})$. Otherwise, let $S \subseteq \mathcal{A}_o - \mathcal{A}$ such that $\vec{u} \in \operatorname{answer}_{\nu}(Q, (\emptyset, \mathcal{A} \cup S))$ and there does not exist $S' \subseteq S$ satisfying $\vec{u} \in \operatorname{answer}_{\nu}(Q, (\emptyset, \mathcal{A} \cup S'))$. Suppose $S = \bigcup_{i=1}^n \{type(a_i, A_i)\}$. Then for each $1 \le i \le n$, there exists $\operatorname{gr}(P_i, a, A_i) \in \mathcal{A}$ such that $P_i \sqsubseteq_r^* type$. For \vec{u} , there exists a function f that maps all the variables in $Q(\vec{u})$ to names and all the atoms in $Q(\vec{u})$ f occur in $\mathcal{A} \cup S$. Let Q' be the query obtained by replacing the atom $type(x, A_i)$ in Q with $\operatorname{gr}(P_i, x, A_i)$ if $x = a_i$, $f(x) = a_i$, or x occurs in the k-th position of head(Q) and $\vec{u}[k] = a_i$, for $1 \le i \le n$. Then all the atoms in $Q'(\vec{u})$ f occur in \mathcal{A} . So $\vec{u} \in \operatorname{answer}_{\nu}(Q', (\emptyset, \mathcal{A}))$ holds. Thus the (\supseteq) direction holds.

Proof of Theorem 3.

PROOF. (\subseteq) Let $\vec{u} \in \operatorname{answer}_{\nu}(Q, \mathcal{K})$. Next, we show there exists $\theta \in \operatorname{fullBind}(Q, \mathcal{K})$ such that $\vec{u} \in \operatorname{answer}_{\nu}(Q\theta, \mathcal{K})$. Let \mathcal{V} be a ν -model of \mathcal{K} constructed from a canonical model of $\tau_{dl}(\mathcal{K})$ by the approach presented in the $(1. \Leftarrow)$ direction of the proof of Theorem 1. Then we can get that (\clubsuit) $\Delta^{\mathcal{R}}_{\nu} \subseteq \mathbb{N}$ and $\Delta^{\mathcal{C}}_{\nu} \subseteq \mathbb{N}$ hold. For \vec{u} , there exists a binding π of $Q(\vec{u})$ over \mathcal{V} such that $\mathcal{V}, \pi \models_{\mathcal{V}} \mathcal{E}$

 $Q(\vec{u})$. From π and \vec{u} , we can construct a full MV-Binding θ of Q over \mathcal{K} . For each role variable x of Q, if x occurs in the i-th position of head(Q) then set $\theta_r(x) = \vec{u}[i]$, otherwise from (\spadesuit), we know there exists $n \in \mathbb{N}$ such that $\pi(x) = n$, then set $\theta_r(x) = n$. And for each class variable x of $Q\theta_r$, if x occurs in the i-th position of head(Q) then set $\theta_c(x) = \vec{u}[i]$, otherwise by (\spadesuit), we know there exists $n \in \mathbb{N}$ such that $\pi(x) = n$, then set $\theta_c(x) = n$. Next, we prove $\vec{u} \in \operatorname{answer}_v(Q\theta, \mathcal{K})$. Let π' be a binding of $Q\theta(\vec{u})$ over \mathcal{V} such that $\pi'(x) = \pi(x)$ for each variable x in $Q\theta(\vec{u})$ and $\pi'(a) = a$ for each name a in $Q\theta(\vec{u})$. Then $\mathcal{V}, \pi' \models_v Q\theta(\vec{u})$ holds, since $Q\theta(\vec{u})$ holds. Thus $\vec{u} \in \operatorname{answer}_v(Q\theta, \mathcal{K})$ holds. Therefore the relation answer $Q(Q\theta, \mathcal{K})$ holds.

(⊇) Let $\theta \in \text{fullBind}(Q, \mathcal{K})$ and $\vec{u} \in \text{answer}_{\nu}(Q\theta, \mathcal{K})$. Next, we show $\vec{u} \in \text{answer}_{\nu}(Q, \mathcal{K})$. Let \mathcal{V} be an arbitrary ν -model of \mathcal{K} . Then there exists a binding π of $(Q\theta)(\vec{u})$ over \mathcal{V} such that $\mathcal{V}, \pi \models_{\nu} (Q\theta)(\vec{u})$. From π , a binding π' of $Q(\vec{u})$ over \mathcal{K} can be constructed by the settings that (a) for each variable x occurring in $Q(\vec{u})$, if $x \in \text{domain}(\theta_r)$ (resp. $x \in \text{domain}(\theta_c)$) then set $\pi'(x) = (\theta_r(x))^{\mathcal{V}}$ (resp. $\pi'(x) = (\theta_c(x))^{\mathcal{V}}$); and (b) for each name a occurring in $Q(\vec{u})$, set $\pi'(a) = a^{\mathcal{V}}$. Then obviously $\mathcal{V}, \pi' \models_{\nu} Q(\vec{u})$ holds. Thus $\vec{u} \in \text{answer}_{\nu}(Q, \mathcal{K})$ holds. Therefore answer_{ν}(Q, \mathcal{K}) $\supseteq \bigcup_{\theta \in \text{fullBind}(Q,\mathcal{K})}$ answer_{ν}($Q\theta, \mathcal{K}$) holds. \square

Proof of Lemma 3.

PROOF. (1) (\supseteq) By Definition 10, i.e., the definition of extensions of partial MV-Bindings, this direction of the equation in this lemma holds. (\subseteq) Let θ be an arbitrary full MV-Binding of Q over \mathcal{K} . Next, we construct a partial MV-Binding ϑ of Q over \mathcal{T} such that $\theta \in \text{extPBind}(\vartheta, Q, \mathcal{K})$ holds. For each role variable x of Q, set $\vartheta_r(x) = \theta_r(x)$ iff $\theta_r(x) \in \mathbb{N}^{rr}_{\mathcal{T}} \cup \{type\}$. Then $Q\theta_r$ and $Q\vartheta_r$ have the same class variables. For each class variable x of $Q\vartheta_r$, set $\vartheta_c(x) = \theta_c(x)$ iff $\theta_c(x) \in \mathbb{N}^{rc}_{\mathcal{T}}$. Then by Definition $10, \theta \in \text{extPBind}(\vartheta, Q, \mathcal{K})$ holds. Thus the direction (\subseteq) holds.

- (2) According to the algorithm PerfectRef, we can get that (\spadesuit) for a conjunctive query q and atom A(x) (resp. P(x,y)), if A (resp. P) does not occur in the right hands of any inclusion axioms in a DL-Lite $_{\mathcal{H}}$ TBox \mathcal{T} , then this query atom will not be extended by the inclusion axioms in \mathcal{T} to generate new queries, i.e., it will be occur in each query in PerfectRef (q,\mathcal{T}) .
- (\subseteq .1) Let $\theta \in \text{extPBind}(\vartheta, Q, \mathcal{K})$ and $\vec{u} \in \text{answer}_v(Q\theta, \mathcal{K})$. Next, we show there exists $Q' \in \text{PerfectRef}_v^{mq}(Q\vartheta, \mathcal{T})$ such that $\vec{u} \in \text{answer}_v(Q', (\emptyset, \mathcal{A}))$. By Theorem 2, there exists $q \in \text{PerfectRef}_v^{cq}(Q\theta, \mathcal{T})$ such that $\vec{u} \in \text{answer}_v(Q, (\emptyset, \mathcal{A}))$. Let $\theta' = (\theta'_r, \theta'_c)$ be a tuple of functions satisfying that (a) domain(θ'_r) = domain(θ_r) domain(θ_r) and for each $x \in \text{domain}(\theta'_r)$, $\theta'_r(x) = \theta_r(x)$ holds and (b) domain(θ'_c) = domain(θ_c) domain(θ_c) and for each $x \in \text{domain}(\theta'_c)$, $\theta'_c(x) = \theta_c(x)$ holds. Obviously θ' is a full MV-Binding of $Q\vartheta$ over \mathcal{K} that maps the class (resp. role) variables of $Q\vartheta$ to the names not occurring in $N^{rc}_{\mathcal{T}}$ (resp. $N^{rr}_{\mathcal{T}}$). For q, by (\spadesuit) and Definition 6 and 9, i.e., the definition of PerfectRef_v^{cq} and PerfectRef_v^{mq}, we can get that there exists $Q' \in \text{PerfectRef}_v^{mq}(Q\vartheta, \mathcal{T})$ such that $q = Q'\theta'$. Thus $\vec{u} \in \text{answer}_v(Q'\theta', (\emptyset, \mathcal{A}))$. Then by Theorem 3, $\vec{u} \in \text{answer}_v(Q', (\emptyset, \mathcal{A}))$ holds. Thus the first inclusion holds.

 $(\subseteq .2)$ Let $Q' \in \mathsf{PerfectRef}_v^{mq}(Q\vartheta,\mathcal{T})$. And let $\vec{u} \in \mathsf{answer}_v(Q',(\emptyset,\mathcal{A}))$. Next, we show $\vec{u} \in \mathsf{answer}_v(Q,\mathcal{K})$. By Theorem 3, there exists a full MV-Binding θ of Q' over (\emptyset,\mathcal{A}) such that $\vec{u} \in \mathsf{answer}_v(Q'\theta,(\emptyset,\mathcal{A}))$ holds. Let θ' be a full MV-Binding of Q over \mathcal{K} such that (a) domain $(\theta'_r) = \mathsf{domain}(\vartheta_r) \cup \mathsf{domain}(\theta_r)$ and for each $x \in \mathsf{domain}(\theta'_r)$, if $x \in \mathsf{domain}(\vartheta_r)$ then $\theta'_r(x) = \vartheta_r(x)$, otherwise $\theta'_r(x) = \theta_r(x)$; and (2) domain $(\theta'_c) = \mathsf{domain}(\vartheta_c) \cup \mathsf{domain}(\vartheta_c)$ and for each $x \in \mathsf{domain}(\theta'_c)$, if $x \in \mathsf{domain}(\vartheta_c) \cup \mathsf{domain}(\vartheta_c)$ and for each $x \in \mathsf{domain}(\vartheta'_c)$, if $x \in \mathsf{domain}(\vartheta_c)$ then $\theta'_c(x) = \vartheta_c(x)$ otherwise $\theta'_c(x) = \theta_c(x)$. Then by Definition 9, i.e., the definition of PerfectRef^{mq}_v, $Q'\theta \in \mathsf{PerfectRef}_v^{eq}(Q\theta', \mathcal{T})$ holds. Then by Theorem 2 and $\vec{u} \in \mathsf{answer}_v(Q'\theta, (\emptyset, \mathcal{A}))$, $\vec{u} \in \mathsf{answer}_v(Q, \mathcal{K})$ holds. Thus the second inclusion relation holds.

Proof of Lemma 5.

PROOF. (1) \mathcal{K} is u-satisfiable, so it has a u-model $\mathcal{U} = (\Delta^{\mathcal{U}}, \Delta_{u}^{\mathcal{R}}, \Delta_{u}^{\mathcal{U}}, \mathcal{H}, \mathcal{R}^{\mathcal{U}}, \mathcal{C}^{\mathcal{U}})$. From \mathcal{U} , a v-interpretation $\mathcal{V} = (\Delta^{\mathcal{V}}, \Delta_{v}^{\mathcal{R}}, \Delta_{v}^{\mathcal{C}}, \mathcal{H}, \mathcal{R}^{\mathcal{U}}, \mathcal{C}^{\mathcal{U}})$ can be constructed by setting (a) $\Delta^{\mathcal{V}} = \Delta^{\mathcal{U}}$; (b) $\Delta_{v}^{\mathcal{R}} = \Delta_{u}^{\mathcal{R}}$; (c) $\Delta_{v}^{\mathcal{C}} = \Delta_{u}^{\mathcal{C}}$; (d) $a^{\mathcal{V}} = a^{\mathcal{U}}$ for each $a \in \mathbb{N}$; (e) $\mathcal{R}^{\mathcal{V}}(o) = \mathcal{R}^{\mathcal{U}}(o)$ for each $o \in \Delta_{v}^{\mathcal{R}}$; and (f) $C^{\mathcal{V}}(o) = C^{\mathcal{U}}(o)$ for each $o \in \Delta_{v}^{\mathcal{C}}$. \mathcal{U} and \mathcal{V} obey the same principles to interpret class and role constructors. Thus (\clubsuit) $\mathcal{R}^{\mathcal{V}}(R) = \mathcal{R}^{\mathcal{U}}(R)$ holds for each DL-Lite Full role R and $C^{\mathcal{V}}(C) = C^{\mathcal{U}}(C)$ holds for each DL-Lite Full class C. Then we can further obtain that \mathcal{V} satisfies all the axioms and assertions in \mathcal{K} . So \mathcal{V} is a v-model of \mathcal{K} . Thus \mathcal{K} is v-satisfiable.

- (2) If \mathcal{K} is not u-satisfiable then this conclusion holds directly. Suppose \mathcal{K} is u-satisfiable. Let \mathcal{U} be an arbitrary u-models of \mathcal{K} . From \mathcal{U} , a v-model \mathcal{V} of \mathcal{K} can be constructed by the approach presented in (1). Then $\mathcal{V} \models_{v} \alpha$ holds. Then by (\spadesuit) in (1), $\mathcal{U} \models_{u} \alpha$ holds. Based on the arbitrary feature of \mathcal{U} , $\mathcal{K} \models_{u} \alpha$ holds.
- (3) If \mathcal{K} is not u-satisfiable then this conclusion holds trivially. We assume \mathcal{K} is u-satisfiable. Let $\vec{u} \in \mathsf{answer}_v(Q,\mathcal{K})$. And let \mathcal{U} be an arbitrary u-models of \mathcal{K} . Then from \mathcal{U} , a v-model \mathcal{V} of \mathcal{K} can be constructed by the way in (1). Then there exists a binding π of $Q(\vec{u})$ over \mathcal{V} such that $\mathcal{V}, \pi \models_{\mathcal{V}} Q(\vec{u})$ holds. Obviously, π is also a binding of $Q(\vec{u})$ over \mathcal{U} . Then by (\spadesuit) in (1), $\mathcal{U} \models_{\mathcal{U}} Q(\vec{u})$ holds. So $\vec{u} \in \mathsf{answer}_u(Q,\mathcal{K})$ holds. Thus, we can further obtain that $\mathsf{answer}_v(Q,\mathcal{K}) \subseteq \mathsf{answer}_u(Q,\mathcal{K})$.

Proof of Lemma 6.

PROOF. (1) Let $\mathcal{K} = (\mathcal{T}_m \cup \mathcal{T}_o, \mathcal{A}_m \cup \mathcal{A}_o)$ and $\mathcal{K}_{u \to v} = (\mathcal{T}, \mathcal{A})$. If \mathcal{K} is v-satisfiable, the following conclusion holds trivially. For a meta-class C_m , $\mathcal{K} \models_v type(a, C_m)$ iff there exists $gr(P, a, b) \in \mathcal{A}_m$ such that $P \sqsubseteq_r^* type$ and $\mathcal{K} \models_v b \sqsubseteq_c C_m$ or $\mathcal{K} \models_v \exists P \sqsubseteq_c C_m$. And for a meta-role P_m , $\mathcal{K} \models_v P_m(a, b)$ iff there exists $gr(S, a, b) \in \mathcal{A}_m$ such that $\mathcal{K} \models_v S \sqsubseteq_r P_m$. The names in \mathcal{T}_m as well as the names occurring in the axioms Fun(S) do not used as individuals in \mathcal{A}_m . Thus we can get that $\mathcal{T}'_o = \mathcal{T} - \mathcal{T}_m - \mathcal{T}_o$, i.e., the set of axioms added to \mathcal{K} according to the individual assertions of meta-names implied by \mathcal{K} , do not contain the names occurring in \mathcal{T}_m or the axioms Fun(S) in \mathcal{T}_o . Thus $\mathcal{K}_{u \to v}$ is still a DL-Lite Full KB, since its TBox is $\mathcal{T}_m \biguplus (\mathcal{T}_o \cup \mathcal{T}'_o)$ which satisfies the conditions in Definition 2.

(2) This conclusion holds by the following facts. Let \mathcal{K} be a DL-Lite Full KB. (a) For each axiom or assertion α , if $\mathcal{K} \models_{\nu} \alpha$ then $\mathcal{K} \models_{u} \alpha$; (b) For an axiom or assertion α , if $\mathcal{K} \models_{u} \alpha$, then for each axiom or assertion α' , if $\mathcal{K} \cup \{\alpha\} \models_{u} \alpha'$ then $\mathcal{K} \models_{u} \alpha'$; (c) For the axioms (assertions) with the forms in Figure 3 and u-entailed by \mathcal{K} , then the corresponding assertions (axioms) are u-entailed by \mathcal{K} . For example, $\mathcal{K} \models_{u} subClassOf(A, B)$ iff $\mathcal{K} \models_{u} A \sqsubseteq_{c} B$.

Proof of Theorem 6.

PROOF. We first claim that for a ν -satisfiable DL-Lite Full KB \mathcal{K} , let \mathcal{V} be a ν -model of \mathcal{K} constructed from a canonical model of the DL-Lite \mathcal{K} KB $\tau_{dl}(\mathcal{K})$ by the way presented in $(1. \Leftarrow)$ in the Proof of Theorem 1. Then \mathcal{V} satisfies that (a) $a^{\mathcal{V}} = a$ for each $a \in \mathbb{N}$; and (b) by Theorem 1 and 3, it can be easily proved that for each meta-query Q, $\vec{u} \in \operatorname{answer}_{\nu}(Q, \mathcal{K})$ iff $\mathcal{V} \models_{\nu} Q(\vec{u})$. In the following, we call \mathcal{V} a canonical ν -model of \mathcal{K} .

Lemma 6 indicates that \mathcal{K} and $\mathcal{K}_{u\to v}$ are u-semantic equivalent, i.e., they have the same u-models. By Lemma 5, we just need to prove that (1) if $\mathcal{K}_{u\to v}$ is u-satisfiable then $\mathcal{K}_{u\to v}$ is v-satisfiable; and (2) if Q is a query without non-distinguished meta-variables, answer $_v(Q,\mathcal{K}_u)\subseteq answer_u(Q,\mathcal{K}_{u\to v})$ holds.

- (1) $\mathcal{K}_{u \to v}$ is v-satisfiable, thus it has a canonical v-model $\mathcal{V} = (\Delta^{\mathcal{V}}, \Delta_{v}^{\mathcal{R}}, \Delta_{v}^{\mathcal{C}}, {}^{\mathcal{V}}, \mathcal{R}^{\mathcal{V}}, C^{\mathcal{V}})$. From \mathcal{V} , we construct a u-interpretation $\mathcal{U} = (\Delta^{\mathcal{U}}, \Delta_{u}^{\mathcal{R}}, \Delta_{u}^{\mathcal{C}}, {}^{\mathcal{U}}, \mathcal{R}^{\mathcal{U}}, C^{\mathcal{U}})$ by setting (a) $\Delta^{\mathcal{U}} = \Delta^{\mathcal{V}}$; (b) $\Delta_{u}^{\mathcal{R}} = \Delta_{v}^{\mathcal{R}} \cup C^{\mathcal{V}}(Property)$; (c) $\Delta_{u}^{\mathcal{C}} = \Delta_{v}^{\mathcal{C}} \cup C^{\mathcal{V}}(Class)$; (d) $a^{\mathcal{U}} = a^{\mathcal{V}}$ for each $a \in \mathbb{N}$; (e) for each $o \in \Delta_{u}^{\mathcal{R}}$, if $o \in \Delta_{v}^{\mathcal{R}}$ then $\mathcal{R}^{\mathcal{U}}(o) = \mathcal{R}^{\mathcal{V}}(o)$ otherwise $\mathcal{R}^{\mathcal{U}}(o) = \emptyset$; and (f) for each $o \in \Delta_{u}^{\mathcal{C}}$, if $o = Class^{\mathcal{U}}$ then $C^{\mathcal{U}}(o) = \Delta_{u}^{\mathcal{C}}$, else if $o = Property^{\mathcal{U}}$ then $C^{\mathcal{U}}(o) = \Delta_{u}^{\mathcal{R}}$, else if $o \in \Delta_{v}^{\mathcal{C}}$ then $C^{\mathcal{U}}(o) = C^{\mathcal{V}}(o)$ else $C^{\mathcal{U}}(o) = \emptyset$. In order to make \mathcal{U} satisfy the semantic conditions of metanames listed in Appendix A , we need to make the extra setting:
- § For each $(o, e) \in \Delta_u^C \times \Delta_u^C$, if $C^{\mathcal{U}}(o) \subseteq C^{\mathcal{U}}(e)$ and $(o, e) \notin \mathcal{R}^{\mathcal{U}}(\text{subClassOf}^{\mathcal{U}})$ then add (o, e) to $\mathcal{R}^{\mathcal{U}}(\text{subClassOf})$; if $C^{\mathcal{U}}(o) = C^{\mathcal{U}}(e)$ and $(o, e) \notin \mathcal{R}^{\mathcal{U}}(\text{equivalentClass})$ then add (o, e) to $\mathcal{R}^{\mathcal{U}}(\text{equivalentClass})$; and if $C^{\mathcal{U}}(o) \cap C^{\mathcal{U}}(e) = \emptyset$ and $(o, e) \notin \mathcal{R}^{\mathcal{U}}(\text{disjointWith})$ then add (o, e) to $\mathcal{R}^{\mathcal{U}}(\text{disjointWith})$;
- § For each $(o,e) \in \Delta_u^{\mathcal{R}} \times \Delta_u^{\mathcal{R}}$, if $\mathcal{R}^{\mathcal{U}}(o) \subseteq \mathcal{R}^{\mathcal{U}}(e)$ and $(o,e) \notin \mathcal{R}^{\mathcal{U}}(subPropertyOf)$; then add (o,e) to $\mathcal{R}^{\mathcal{U}}(subPropertyOf)$; if $\mathcal{R}^{\mathcal{U}}(o) = \mathcal{R}^{\mathcal{U}}(e)$ and $(o,e) \notin \mathcal{R}^{\mathcal{U}}(e)$ and (o,e) to $\mathcal{R}^{\mathcal{U}}(e)$ and (o,e) to $\mathcal{R}^{\mathcal{U}}(e)$ and (o,e) to $\mathcal{R}^{\mathcal{U}}(e)$ and $(o,e) \notin \mathcal{R}^{\mathcal{U}}(e)$ and $(o,e) \notin \mathcal{R}^{\mathcal{U}}(e)$ and $(o,e) \notin \mathcal{R}^{\mathcal{U}}(e)$ and if $\mathcal{R}^{\mathcal{U}}(o) = \{(y,x)|(x,y) \in \mathcal{R}^{\mathcal{U}}(e)\}$ and $(o,e) \notin \mathcal{R}^{\mathcal{U}}(e)$ inverseOf) then add (o,e) to $\mathcal{R}^{\mathcal{U}}(e)$ inverseOf);
- § For each $(o, e) \in \Delta_u^{\mathcal{R}} \times \Delta_u^{\mathcal{C}}$, if $\{x | (x, y) \in \mathcal{R}^{\mathcal{U}}(o)\} \subseteq C^{\mathcal{U}}(e)$ and $(o, e) \notin \mathcal{R}^{\mathcal{U}}(domain)$ then add (o, e) to $\mathcal{R}^{\mathcal{U}}(domain)$; and if $\{y | (x, y) \in \mathcal{R}^{\mathcal{U}}(o)\} \subseteq C^{\mathcal{U}}(e)$ and $(o, e) \notin \mathcal{R}^{\mathcal{U}}(range)$ then add (o, e) to $\mathcal{R}^{\mathcal{U}}(range)$;
- § For each $o \in \Delta_u^{\mathcal{R}}$, if $\mathcal{R}^V(o) = \{(y,x)|(x,y) \in \mathcal{R}^V(o)\}$ and $o \notin C^{\mathcal{U}}(SymmetricProperty)$, then add o to $C^{\mathcal{U}}(SymmetricProperty)$; and if $\mathcal{R}^V(o) \cap \{(y,x)|(x,y) \in \mathcal{R}^V(o)\} = \emptyset$ and $o \notin C^{\mathcal{U}}(AsymmetricProperty)$, then add o to $C^{\mathcal{U}}(AsymmetricProperty)$.

Then \mathcal{U} satisfies the semantic conditions of meta-names listed in Appendix A. So it is a *u*-interpretation. \mathcal{U} and \mathcal{V} obey the

same rules to interpret the class and role constructors. Thus, we can get that (*) for each DL-Lite Full class C, if C is not a meta-class then $C^{\mathcal{U}}(C) = C^{\mathcal{V}}(C)$ otherwise $C^{\mathcal{V}}(C) \subseteq C^{\mathcal{U}}(C)$, and for each DL-Lite Full Role R, if R is not a meta-role or inverse of a meta-role then $R^{\mathcal{U}}(R) = R^{\mathcal{V}}(R)$ otherwise $R^{\mathcal{V}}(R) \subseteq R^{\mathcal{U}}(R)$. Meta-names do not occur in the left-hands of inclusion axioms or functional role assertions. So for each axiom or individual assertion α , by $\mathcal{V} \models_{\mathcal{V}} \alpha$ and (*), $\mathcal{U} \models_{\mathcal{U}} \alpha$ holds. So \mathcal{U} is a u-model of \mathcal{K} . Thus \mathcal{K} is u-satisfiable.

(2) We first prove that (\spadesuit) for each assertion α with the form $P_m(a,b)$ or $type(a,A_m)$, where P_m is a meta-role except typeand A_m is a meta-class, then if $\mathcal{K}_{u\to\nu} \models_u \alpha$ then $\mathcal{K}_{u\to\nu} \models_{\nu} \alpha$. Assume (A) $\mathcal{K}_{u\to v} \nvDash_v \alpha$. Let \mathcal{V} be a canonical v-model of $\mathcal{K}_{u\to v}$. Suppose α is an assertion subClassOf(A, B). Then $(A, B) \notin \mathcal{R}^{\mathcal{V}}(subClassOf)$. Let \mathcal{T} be the TBox of $\mathcal{K}_{u \to v}$, and let $\mathcal{H}' = \{type(o_A, A)\}\$ where o_A is an ordinary name not occurring in $\mathcal{K}_{u\to\nu}$. Obviously $(\mathcal{T},\mathcal{A}')$ is ν -satisfiable, since $\mathcal{T} \nvDash_{\nu} A \sqsubseteq_{c} B$ implies $\mathcal{T} \nvDash_{\nu} A \sqsubseteq_{c} \neg A$. Let \mathcal{V}' be a canonical ν -model of $(\mathcal{T}, \mathcal{H}')$. We assume $(\Delta^{\mathcal{V}} - \mathsf{N}) \cap (\Delta^{\mathcal{V}'} - \mathsf{N}) = \emptyset$, i.e., \mathcal{V}' and ${\mathcal V}$ do not share any anonymous element. From ${\mathcal V}$ and V', we construct another ν -interpretation V'' by setting (a) $\Delta^{\mathcal{V}''} = \Delta^{\mathcal{V}} \cup \Delta^{\mathcal{V}'}, \ \Delta^{\mathcal{R}''}_{\nu} = \Delta^{\mathcal{R}}_{\nu} \cup \Delta^{\mathcal{R}'}_{\nu} \text{ and } \Delta^{\mathcal{C}''}_{\nu} = \Delta^{\mathcal{C}}_{\nu} \cup \Delta^{\mathcal{C}'}_{\nu}; \text{ (b)}$ $a^{\mathcal{V}''} = a \text{ for each } a \in \mathbb{N}; \text{ and (c) } C^{\mathcal{V}''}(o) = C^{\mathcal{V}}(o) \cup C^{\mathcal{V}''}(o) \text{ for } C^{\mathcal{C}''}(o) = C^{\mathcal{C}''}(o) \cup C^{\mathcal{C}''}(o) C^{\mathcal{C}''}($ each $o \in \Delta_{\nu}^{C''}$ and $\mathcal{R}^{V''}(o) = \mathcal{R}^{V}(o) \cup \mathcal{R}^{V'}(o)$ for each $o \in \Delta_{\nu}^{\mathcal{R}''}$. It can be trivially validate that V'' is a ν -model of K. And $C^{\mathcal{V}''}(A) \nsubseteq C^{\mathcal{V}''}(B)$ holds. From \mathcal{V}'' , a *u*-model \mathcal{U} can be constructed using the way presented in (1). By the settings (§), we can get that $(A, B) \notin \mathcal{R}^{V''}(subClassOf)$. This contradicts with that \mathcal{U} is a *u*-model of $\mathcal{K}_{u\to v}$. So assumption (A) does not hold. Thus $\mathcal{K}_{u\to v} \models_{v} subClassOf(A, B)$ holds. The other forms of α can be proved analogously.

Let $\vec{u} \in \text{answer}_{u}(Q, \mathcal{K}_{u \to v})$. We prove $\vec{u} \in \text{answer}_{v}(Q, \mathcal{K}_{u \to v})$. Let S be the set of all the atoms in $Q(\vec{u})$ with the forms $P_m(a, b)$ or type (a, C_m) , where P_m is a meta-role except type and C_m is a meta-class except Class and Property. Then all the atoms in S do not contain variables and $\mathcal{K}_{u\to v} \models_u \alpha$ holds for each $\alpha \in S$. Thus (\bigstar) $\mathcal{K}_{u\to v} \models_{v} \alpha$ holds for each $\alpha \in \mathcal{S}$. Let Q' be the query $\wedge_{\alpha \in \mathsf{body}(Q(\vec{u}))-S} \to q()$. Then by (\bigstar) , $\vec{u} \in \mathsf{answer}_u(Q, \mathcal{K}_{u \to v})$ can be proved by showing $() \in \mathsf{answer}_{\nu}(Q', \mathcal{K}_{u \to \nu})$, i.e., Q' is true over $\mathcal{K}_{u\to v}$. Let \mathcal{V} be a canonical v-model of $\mathcal{K}_{u\to v}$. Then a umodel \mathcal{U} of $K_{u\to v}$ can be constructed using the way presented in (1). Thus there exists a binding π of Q' over \mathcal{U} such that $\mathcal{U}, \pi \models_{u} Q'$. Q' does not contain atoms with the forms $P_{\mathsf{m}}(a,b)$ or $type(a, C_m)$, where P_m is a meta-role except type and C_m is a meta-class except Class and Property. From the construction of \mathcal{U} , we can get that π is also a binding of Q' over \mathcal{V} . Thus $() \in \mathsf{answer}_{\nu}(Q', \mathcal{K}_{u \to \nu}) \text{ holds. Hence } \vec{u} \in \mathsf{answer}_{\nu}(Q, \mathcal{K}_{u \to \nu}).$ Therefore $\operatorname{answer}_{u}(Q, \mathcal{K}_{u \to v}) \subseteq \operatorname{answer}_{v}(Q, \mathcal{K}_{u \to v})$ holds.

Proof of Theorem 7.

PROOF. \mathcal{K} and $\mathcal{K}_{u\to v}$ are *u*-semantic equivalent. So this theorem can be proved by showing the following equation holds.

$$\mathsf{answer}_u(Q,\mathcal{K}_{u\to v}) = \bigcap_{\sigma \subseteq \mathsf{NA}(\mathcal{K}_{u\to v})} \mathsf{answer}_v(Q,\mathcal{K}_{u\to v})$$

 (\subseteq) Let $\vec{u} \in \mathsf{answer}_u(Q, \mathcal{K}_{u \to v})$. Assume (A1) there exists $\sigma \subseteq$

 $NA(\mathcal{K}_{u\to v})$ such that $\vec{u} \notin answer_v(Q, (\mathcal{K}_{u\to v})^{\sigma})$. Let S to be:

$$\{type(o_A, A) \mid \mathcal{K}_{u \to v} \models_v type(A, Class) \land \mathcal{K}_{u \to v} \nvDash_v A \sqsubseteq_c \neg A\} \cup \{P(o_p^1, o_p^2) \mid \mathcal{K}_{u \to v} \models_v type(P, Property) \land \mathcal{K}_{u \to v} \nvDash_v P \sqsubseteq_r \neg P\}$$

where o_A and o_P^1 as well as o_P^2 are ordinary names not occurring in $\mathcal{K}_{u\to v}$ and uniquely chose for A and P, respectively. Then S is a set to falsify all subset relations that are not implied by $\mathcal{K}_{u\to v}$. By $\vec{u} \notin \mathsf{answer}_v(Q, (\mathcal{K}_{u\to v})^\sigma)$, we know $(\mathcal{K}_{u\to v})^\sigma$ is vsatisfiable. By the construction of S, it can easily validated that $(\mathcal{K}_{u\to v})^{\sigma} \cup \mathcal{S}$ is ν -satisfiable, and for Q, answer_{ν} $(Q, (\mathcal{K}_{u\to v})^{\sigma}) =$ answer_{ν}(Q, $(\mathcal{K}_{u\to\nu})^{\sigma}\cup S$), since Q is not a query with the form $P(x,y) \to q(\vec{x})$ or $type(x,A) \to q(\vec{x})$ where P and A are ordinary names. Let V be a canonical ν -model of $(\mathcal{K}_{u\to\nu})^{\sigma}\cup \mathcal{S}$. Let $\mathcal U$ be a interpretation obtained from $\mathcal V$ by the settings (a)–(f) in the (1. \Leftarrow) direction of the proof of Theorem 6. Then ${\mathcal U}$ satisfies the semantic conditions of meta-names. Thus \mathcal{U} is a *u*-model of $\mathcal{K}_{u\to v}$. And function π is a binding of $Q(\vec{u})$ over \mathcal{V} iff π is a binding of $Q(\vec{u})$ over \mathcal{V} . Then from $\vec{u} \notin \mathsf{answer}_{\nu}(Q, (\mathcal{K}_{u \to \nu})^{\sigma} \cup S), \ \mathcal{V} \nvDash_{\nu} \ Q(\vec{u}) \ \mathsf{holds}. \ \mathsf{Thus} \ \mathcal{U} \nvDash_{u}$ $Q(\vec{u})$ holds. Thus $\vec{u} \notin \mathsf{answer}_u(Q, \mathcal{K})$. This contradicts with $\vec{u} \in answer_u(Q, \mathcal{K}_{u \to v})$. Thus assumption (A1) does not hold. So for each $\sigma \subseteq NA(\mathcal{K}_{u \to v})$, $\vec{u} \in answer_v(Q, (\mathcal{K}_{u \to v})^{\sigma})$ holds. Thus $\text{answer}_{\textit{u}}(\textit{Q}, \textit{K}_{\textit{u} \rightarrow \textit{v}}) \subseteq \bigcap_{\sigma \subseteq \mathsf{NA}(\textit{K}_{\textit{u} \rightarrow \textit{v}})} \mathsf{answer}_{\textit{v}}(\textit{Q}, \textit{K}_{\textit{u} \rightarrow \textit{v}}) \; \mathsf{holds}.$

(2) Let (\spadesuit) $\vec{u} \in \bigcap_{\sigma \subseteq \mathsf{NA}(\mathcal{K}_{u \to v})} \mathsf{answer}_{v}(Q, (\mathcal{K}_{u \to v})^{\sigma})$. Assume (A2) $\vec{u} \notin \mathsf{answer}_{u}(Q, \mathcal{K}_{u \to v})$. Then there exists a u-model \mathcal{U} of $\mathcal{K}_{u\to v}$ so that $\mathcal{U} \nvDash_u Q(\vec{u})$. Let σ be the set consisting of all the axioms α in NA($\mathcal{K}_{u\to v}$) such that $\mathcal{U} \models_u \alpha$. Let \mathcal{V} be a vinterpretation constructed from ${\boldsymbol{\mathcal{U}}}$ by the way presented in the proof of Lemma 5. Then ${\cal V}$ satisfies all the axioms and assertions in $\mathcal{K}_{u\to v}\cup\sigma\cup\sigma'$ and $\mathcal{V}\nvDash_{v}Q(\vec{u})$. Let \mathcal{T} be the TBox of $\mathcal{K}_{u \to v} \cup \sigma \cup \sigma'$. Then $\mathcal{K}' = (\mathcal{T}, \bigcup_{\alpha \in \mathsf{NA}(\mathcal{K}_{u \to v}) - \sigma} \mathsf{VI}(\alpha, \mathcal{K}_{u \to v}))$ is ν -satisfiable, since all the axioms in $NA(\mathcal{K}_{u\to\nu}) - \sigma$ are violated by V. For example, if $A \sqsubseteq_c \neg B \in \mathsf{NA}(\mathcal{K}_{u \to v}) - \sigma$, then $C^{\mathcal{V}}(A^{\mathcal{V}}) \cap C^{\mathcal{V}}(B^{\mathcal{V}}) \neq \emptyset$ which indicates that A and B can share some individuals. Let V' be a canonical model of K'. Then from $\mathcal{V} \nvDash_{\nu} Q(\vec{u})$, we can get that $\mathcal{V}' \nvDash_{\nu} Q(\vec{u})$. We assume that V and V' do not share any anonymous element i.e., $(\Delta^{\mathcal{V}} - \mathsf{N}) \cap (\Delta^{\mathcal{V}} - \mathsf{N}) = \emptyset$. From \mathcal{V} and \mathcal{V}' , a ν -interpretation \mathcal{V}'' can be constructed by the way presented in the $(2. \supseteq)$ direction in the proof of Theorem 6. Then V'' is a v-model of:

$$(\mathcal{K}_{u \to v})^{\sigma} = \mathcal{K}_{u \to v} \cup \sigma \cup \sigma' \cup \bigcup_{\alpha \in \mathsf{NA}(\mathcal{K}_{u \to v}) - \sigma} \mathsf{VI}(\alpha, \mathcal{K}_{u \to v})$$

and $\mathcal{V}'' \nvDash_{\nu} Q(\vec{u})$. So $\vec{u} \notin \operatorname{answer}_{\nu}(Q, (\mathcal{K}_{u \to \nu})^{\sigma})$. This contradicts with (\clubsuit) . So assumption $(\mathcal{A}2)$ does not hold. Thus $\vec{u} \in \operatorname{answer}_{u}(Q, \mathcal{K}_{u \to \nu})$. So $\bigcap_{\sigma \subseteq \operatorname{NA}(\mathcal{K}_{u \to \nu})} \operatorname{answer}_{\nu}(Q, \mathcal{K}_{u \to \nu}) \subseteq \operatorname{answer}_{u}(Q, \mathcal{K}_{u \to \nu})$ holds.

Proof of Lemma 7.

PROOF. This lemma holds according to the following facts. Let $\mathcal{K} = (\mathcal{T}, \mathcal{A}_m \cup \mathcal{A}_o)$ be an asserted DL-Lite Full KB. (a) For a DL-Lite Full axiom α , $\mathcal{K} \models_{\nu} \alpha$ iff $\tau_{dl}(\mathcal{T}) \models \tau(\alpha)$; (b) For an assertion $P_m(a,b)$ such that P_m is a meta-role except type, then $\mathcal{K} \models_{\nu} P_m(a,b)$ iff there exists $gr(P,a,b) \in \mathcal{A}_m$ such that $P \sqsubseteq_r^* P_m$ w.r.t. \mathcal{T} ; (c) For an assertion $type(a,C_m)$ such that C_m is a meta-class except, then $\mathcal{K} \models_{\nu} type(a,C_m)$ iff there exists $gr(P,a,b) \in \mathcal{A}_m$ such that $P \sqsubseteq_r^* type$ and $\mathcal{K} \models_{\nu} b \sqsubseteq_c C_m$, or $\mathcal{K} \models_{\nu} \exists P \sqsubseteq_c C_m$.