R codes Chapter -11 Remedial measures in R

When the fitted regression model is not appropriate or one or several cases are very influential, remedial measures may be used to fix the model.

Weighted Least Square Method

E.x. Machine Speed example (7:11): Y-Productivity, X-Machine speed setting

To read data:

- > data=read.table("R:\\Teaching\\2016\\MA 542\\Class preperation\\Ex.11.7.csv
 ",header = FALSE)
 > X=data[,2]
 > Y=data[,1]
- To fit a linear regression model and extract residuals:
- > linfit=lm(Y~X)
 res=residuals(linfit)

The following are the plot of residuals vs X and squared residuals vs X

- > plot(X, res)
- > plot(X, res^2)

To estimate the variance function regress squared residuals on X.

```
> varf=lm(res^2~X)
```

So estimated weights are given by

> wi=1/fitted.values(varf)

```
To fit the weighted least square regression model use "lm" with weights as follows
> newdata=data.frame(Y,X,wi)
> wlsq=lm(Y~X,weights=wi)
Summary of the Least Square fit:
> summary(linfit)
call:
lm(formula = Y \sim X)
Residuals:
             1Q Median
    Min
                            3Q
                                    Max
-17.250 -11.250 -2.750
                          9.188 26.750
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) -5.75000
                       16.73052 -0.344 0.73820
             0.18750
                        0.05381
                                  3.484 0.00588 **
Χ
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
Residual standard error: 15.22 on 10 degrees of freedom
Multiple R-squared: 0.5484, Adjusted R-squared: 0.5032
F-statistic: 12.14 on 1 and 10 DF, p-value: 0.005878
Summary of the Weighted Least Square fit:
> summary(wlsq)
call:
lm(formula = Y \sim X, weights = wi)
Weighted Residuals:
    Min 1Q Median
                             3Q
                                    Max
-1.1572 -0.9338 -0.3124 0.7377 1.7391
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) -6.23322
                       13.16843 -0.473 0.64613
             0.18911
                        0.05056
                                  3.740 0.00385 **
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1.109 on 10 degrees of freedom
Multiple R-squared: 0.5831, Adjusted R-squared: 0.5414
F-statistic: 13.99 on 1 and 10 DF, p-value: 0.003846
Ridge Regression:
E.x. Patient Satisfaction Example (11.22 or 6.15): Y- Patient Satisfaction, X1-age, X2-severity
of illness, X3-anxiety level.
To read data:
> data=read.table("R:\\Teaching\\2016\\MA 542\\Class preperation\\Ex.6.15.csv
",header = FALSE)
> X1=data[,2]
> X2=data[,3]
> X3=data[,4]
```

> Y=data[,1]

To fit ridge regression model follow the steps:

The following packages need to be installed and uploaded.

- > library(MASS)
- > library(genridge)

To fit OLS model:

> lmod=lm(Y~X1+X2+X3,data=data2)

Define a new data frame.

> X=data.matrix(data2[,c(2:4,1)])

Define a sequence for values of c.

> cvals = seq(0,500,by = 5)

To fit ridge regression model:

> lridge <- ridge(y, X, lambda=cvals)</pre>

> coef(1ridge)

```
X1 X2 X3 Y

0 0.000000000 4.857226e-17 -4.163336e-17 0.14744196

5 -0.017848516 -4.719311e-03 -7.907858e-03 0.11315705

10 -0.024654181 -7.954232e-03 -1.187392e-02 0.09495335

15 -0.027616232 -1.017464e-02 -1.417804e-02 0.08328336

20 -0.028899576 -1.171889e-02 -1.560244e-02 0.07498143

25 -0.029349592 -1.280162e-02 -1.650169e-02 0.06867316
```

This is only a part of the output.

To calculate VIF for each model:

- > vridge <- vif(lridge)</pre>
- > vridge

```
X1 X2 X3 Y
0 2.730096 2.041736 2.181254 3.146577
5 1.717338 1.559815 1.608050 1.845630
10 1.354710 1.323612 1.342121 1.397854
15 1.188397 1.192571 1.199135 1.198456
20 1.103891 1.114835 1.116295 1.099567
25 1.060202 1.067265 1.066735 1.049739
```

This is only a part of the output.

To draw the trace plot:

```
> plot(range(cvals), range(lridge$coef),type="n")
> for(i in 1:ncol(lridge$coef)){ lines(cvals,lridge$coef[,i])}
```


Nonparametric Regression

Lowess Method:

E.x. Cars example: (this is in build in R), Y-speed, X-distance.

- > data(cars) # this is in build in R, Y-speed, X-distance.
- > Speed=cars\$speed
- > Distance=cars\$dist
- > plot(Distance, Speed)

Fitting the lowess curve:

```
> lowess(Speed~Distance)
```

```
$x
                                  17
                                      18
                                           20
                                               20
                                                    22
                                                         24
                                                             26
                                                                  26
                                                                      26
                                                                           26
                                                                                28
                                                                                    28
 [1]
               10
                    10
                         14
                             16
       2
32 32
        32
             34
                                  42
[23]
      34 34 36
                    36
                         40
                             40
                                      46
                                           46
                                               48
                                                    50
                                                         52
                                                             54
                                                                  54
                                                                      56
                                                                           56
                                                                                    64
        70
            76
66 68
[45]
      80 84 85
                    92
                         93 120
```

```
$y
[1] 5.419833 6.034063 7.861475 7.861475 9.069588 9.673301 9.975386 10
.277712 10.883150
[10] 10.883150 11.488354 12.085713 12.660596 12.660596 12.660596 12.660596 13
.201558 13.201558
[19] 14.237556 14.237556 14.237556 14.737713 14.737713 14.737713 15.251018 15
.251018 16.103033
[28] 16.103033 16.481524 17.210519 17.210519 17.508543 17.853728 18.173957 18
.483517 18.483517
[37] 18.704807 18.704807 19.028842 19.416744 19.664883 19.923202 20.182120 20
.935868 21.346516
[46] 21.696448 21.781930 22.396404 22.487343 25.050362
```

Here ys are the fitted value for each value of X. This is the optimal fit

We also can change the value of q (here it is f in R). To see the effect of "f" value and identify the optimal value, we can draw several plots as follows.

```
> plot(Distance, Speed)
> lines(lowess(Speed~Distance, f=2/3), col="red")
> lines(lowess(Speed~Distance, f=.9), col="green")
> lines(lowess(Speed~Distance, f=1/3), col="orange")
> lines(lowess(Speed~Distance, f=0.1), col="black")
```


Here note that the model is over fit for small c-values and model is under fit for large c-values.

Regression Trees

E.x. Patient Satisfaction Example (11.22 or 6.15):

The following packages need to be installed and uploaded.

```
> library(rpart)
```

> library(MASS)

To divide data into sub regions (grow tree)

```
> fit <- rpart(Y~X1+X2+X3, method="anova", data=data2)</pre>
```

To display the results > print(fit)

```
n= 46
node), split, n, deviance, yval
   * denotes terminal node

1) root 46 13369.300 61.56522
   2) x1>=36.5 24 3513.833 50.08333
   4) x1>=46 10 713.600 40.80000 *
   5) x1< 46 14 1322.857 56.71429 *
3) x1< 36.5 22 3239.818 74.09091
   6) x1>=29.5 12 1254.000 67.00000 *
   7) x1< 29.5 10 658.400 82.60000 *</pre>
```

Summary:

> summary(fit)

Bootstrapping

E.x. Cars example.

The following package need to be installed and uploaded.

```
> library(boot)
```

```
> speed=data.frame(Y,X)
```

Here suppose we want to estimate the precision of **b1** when **weighted lease square model is fit.** To calculate and return value of **b1**, a function like the following need to be written.

```
> b1=function(data,indices){
                                                 b1=function(data,indices){
    d = data[indices, ]
    lfit=lm(Y\sim X, data=d)
                                                  d = data[indices,]
    res=residuals(lfit)
                                                  Ifit=Im(Y~X,data=d)
    sdf=lm(abs(res)~X)
                                                  res=residuals(lfit)
    wi=1/fitted.values(sdf)
                                                  sdf=lm(abs(res)~X)
    wls=lm(Y~X,weights=wi)
                                                  wi=1/fitted.values(sdf)
    b_1=coef(wls)[2]
+ return(b_1)
                                                  wls=lm(Y~X,weights=wi)
+ }
                                                  b 1=coef(wls)[2]
                                                 return(b_1)
                                                 }
To get the bootstrap estimates
> results = boot(data =speed, statistic = b1, R=800)
> print(results)
ORDINARY NONPARAMETRIC BOOTSTRAP
```

std. error

We can see the distribution of the b1* drawing following plots.

boot(data = speed, statistic = b1, R = 800)

bias

t1* 0.1884407 -0.0009261067 0.0006441258

> plot(results)

Bootstrap Statistics : original b

call:

Bootstrap confidence intervals

```
boot.ci(results,conf=0.95, type="all")
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 800 bootstrap replicates
CALL:
boot.ci(boot.out = results, conf = 0.95, type = "all")
Intervals :
          Normal
Level
                              Basic
95%
     ( 0.1881,  0.1906 )
                           (0.1881, 0.1908)
         Percentile
Level
                               вса
     ( 0.1861,  0.1888 )
                           (0.1882, 0.1896)
95%
```

Here output shows confidence intervals based on several criteria. The one for percentile is the one we learnt in the class.

```
We also can use:
```

```
> boot.ci(results,conf=0.95,type="perc")
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 800 bootstrap replicates

CALL:
boot.ci(boot.out = results, conf = 0.95, type = "perc")

Intervals:
Level Percentile
95% ( 0.1861,  0.1888 )
```

Compare with the confidence interval for the Least Square Fit and the WLS fit.