Гомотетия

Определение 1 Пусть заданы точка O и ненулевое число k. Тогда гомотетия с центром O и коэффициентом k — это преобразование плоскости, переводящее каждую точку плоскости A в A' так, что $OA' = k \cdot OA$ и O, A, A' лежат на одной прямой. Гомотетию с такими параметрами обозначают H_O^k .

Основные свойства гомотетии:

- \bullet каждая фигура переходит в фигуру, подобную изначальной, и коэффициент подобия равен |k|;
- прямая переходит в прямую, параллельную исходной прямой;
- \bullet окружность переходит в окружность, и радиус увеличивается в |k| раз.
- П Две окружности радиусов 14 и 35 касаются внутренним образом в точке A. Через точку A проведена прямая, пересекающая меньшую окружность в точке B, а большую в точке C. Найдите длину отрезка BC, если AB=12.
- [2] Между двумя параллельными прямыми расположили окружность радиуса 12, касающуюся обеих прямых, и равнобедренный треугольник, основание которого лежит на одной прямой, а вершина на другой. Известно, что треугольник и окружность имеют ровно одну общую точку, и что эта точка лежит на вписанной окружности треугольника. Найдите радиус вписанной окружности треугольника.
- $\boxed{3}$ Внутри угла расположены три окружности S_1, S_2, S_3 , каждая из которых касается двух сторон угла, причем окружность S_2 касается внешним образом окружностей S_1 и S_3 . Известно, что радиус окружности S_1 равен 1, а радиус окружности S_3 равен 9. Чему равен радиус окружности S_2 ?
- 4 Внутри квадрата ABCD взята точка M. Докажите, что точки пересечения медиан треугольников ABM, BCM, CDM и DAM образуют квадрат.
- 5 Докажите, что точки, симметричные произвольной точке относительно середин сторон квадрата, являются вершинами некоторого квадрата.
- [6] Докажите лемму Apxимедa Лемма Apxимедa: Пусть в окружности ω проведена хорда AB, и ещё одна окружность касается ω в точке C и отрезка AB в точке D. Тогда прямая CD проходит через середину дуги AB, не содержащей точки C.
- $\boxed{7}$ На каждом из оснований AD и BC трапеции ABCD построены вне трапеции равносторонние треугольники. Докажите, что отрезок, соединяющий третьи вершины этих треугольников, проходит через точку пересечения диагоналей трапеции.

- 8 Две окружности касаются внутренним образом в точке А. Секущая пересекает окружности в точках M, N, P и Q (точки расположены на секущей в указанном порядке). Докажите, что $\angle MAP = \angle NAQ$.
- [9] На плоскости проведены параллельные прямые l_1 и l_2 . Окружности ω_1 и ω_2 лежат между этими прямыми. Окружность ω_1 касается l_1 в точке A, окружность ω_2 касается l_2 в точке B, окружности ω_1 и ω_2 касаются друг друга в точке C. Докажите, что точки A, B, C лежат на одной прямой.
- 10 В окружности ω проведена хорда AB. Найдите геометрической место точек пересечения медиан треугольников ABC, где $C \in \omega$.
- 11 Внутри треугольника ABC выбрана точка X. Докажите, что прямые, проходящие через середины сторон AB, AC, BC параллельно прямым CX, BX, AX соответственно, пересекаются в одной точке.
- 12 Пусть M и P точки касания вписанной и вневписанной окружностей треугольника ABC со стороной BC, MN диаметр вписанной окружности. Докажите, что точки A, N и P лежат на одной прямой.
- 13 На сторонах AB и AC треугольника ABC нашлись точки M и N такие, что MC = AC и NB = AB. Точка P симметрична точке A относительно прямой BC. Докажите, что PA биссектриса угла MPN.
- 14 Дана трапеция $ABCD(BC \parallel AD \text{ и } AD > BC)$, в которой на основаниях выбраны точки K и L так, что прямые AB,CD и KL пересекаются в одной точке. На отрезке KL выбраны такие точки P и Q, что $\angle AQD = \angle ABC$ и $\angle BPC = \angle BAD$. Докажите, что четырёхугольник ABPQ вписанный.
- Вписанная окружность треугольника ABC касается сторон AB, AC, BC в точках C_1, B_1, A_1 соответственно. Точки A_2, B_2, C_2 середины дуг BC, AC, AB описанной окружности треугольника ABC. Докажите, что прямые A_1A_2, B_1B_2, C_1C_2 пересекаются в одной точке.
- [16] Середины сторон выпуклого шестиугольника образуют шестиугольник, противоположные стороны которого параллельны. Докажите, что большие диагонали исходного шестиугольника пересекаются в одной точке.
- Высоты остроугольного треугольника ABC пересекаются в точке H. На отрезках BH и CH отмечены точки B_1 и C_1 соответственно, так что $BC \parallel B_1C_1$. Оказалось, что центр окружности ω , описанной около треугольника B_1HC_1 лежит на прямой BC. Докажите, что окружность Γ , описанная около треугольника ABC, касается ω .