GESIS Leibniz Institute for the Social Sciences

Harmonizing survey data across different survey modes

Dr. Ranjit K. Singh (ranjit.singh@gesis.org)

ESS & NatCen Survey Methodology Seminar 2022-10-19

Total Survey Error: The smaller, the better!

Survey Error(s): The more similar, the better!

Comparable Measurement

The Respondents with the same true score should give the same response (on average), regardless of the survey mode.

The **same response score** in our data should allow the same inferences about the respondent, regardless of the survey mode.

Components of Comparability

Comparable Concepts

The first and most fundamental issue in comparability:

Do we measure the same concept?

- Between different survey modes, **substantive differences in question understanding** are unlikely.
- However, survey modes may contaminate measurement with mode specific systematic errors

Examples:

- More socially desirable responding when an Interviewer is present?
- Greater **respondent burden** in one mode may intefere with memory retrieval

Comparable reliabilities

- Random error is non-systematic error variance Reliability is the other side of the same coin
- Attenuation The **less reliable** our measurement, the **lower are correlations** in our analyses
- If survey modes lead to different reliabilities, substantive correlations are spuriously lower in one mode than the other

Example:

A survey switches its mode. The new mode leads to higher random error and thus lower reliability. Now we find that political interest suddenly predicts political participation less after the mode switch. A methodological artifact due to attenuation!

Comparable Measurement Units

 Many survey questions capture a continuous concept in an ordinal (or pseudo-metric) measurement scheme

Comparable Measurement Units

- Many survey questions capture a continuous concept in an ordinal (or pseudo-metric) measurement scheme
- This mapping may change between different survey modes

Four Ideas to assess (and mitigate) mode comparability issues

Formal Measurement Invariance

MGCFA

Concepts and Reliability

R-Alerting and comparative attenuation

Aligning measurement units

OSE-RG

Generalizable Mode Effects

MTMM Meta-Analysis with SQP

Formal Measurement Invariance

MGCFA

Concepts and Reliability

R-Alerting and comparative attenuation

Aligning measurement units

OSE-RG

Generalizable Mode Effects

MTMM Meta-Analysis with SQP

gesis Leibniz Institute for the Social Sciences MGCFA to assess Measurement Invariance (MI)

- CFAs assess construct structure, reliability, and measurement units
- MGCFAs then do the same for modes A and B, and then compare if the measurement instrument behaves differently

gesis Leibniz Institute For the Social Sciences MGCFA to assess Measurement Invariance (MI)

- ✓ MGCFAs are a formal and powerful framework for comparability
- ✓ With one approach, we can cover several comparability components at once

- Only applicable to psychometric Multi-Item Instruments
- × Interpreting (MG-)CFA results can be complex
- × They are **not a panacea**. E.g., MGCFAs can be blind to some errors that affect all items equally.

gesis teibniz Institute for the Social Sciences MGCFA to assess Measurement Invariance (MI)

Examples:

Davidov, E., Depner, F. Testing for measurement equivalence of human values across online and paper-and-pencil surveys. *Qual Quant* **45**, 375–390 (2011). https://doi.org/10.1007/s11135-009-9297-9

Roberts, C., Sarrasin, O., & Ernst Stähli, M. (2020). Investigating the Relative Impact of Different Sources of Measurement Non-Equivalence in Comparative Surveys. *Survey Research Methods*, 14(4), 399-415. https://doi.org/10.18148/srm/2020.v14i4.7416

Formal Measurement Invariance

MGCFA

Concepts and Reliability

R-Alerting and comparative attenuation

Aligning measurement units

OSE-RG

Generalizable Mode Effects

MTMM Meta-Analysis with SQP

Construct / Criterion Validation

- Measurement instruments are usually validated by correlating them to related (or intentionally unrelated) concepts
- Here, we do the same for two modes
 (Ideally in a random mode experiment)

Construct Validity		Criterion Validity	
Convergent	Divergent	Concurrent (& Predictive)	
High correlations with related concepts	Low correlations with unrelated concepts	High correlations with relevant outcomes	

Example: Interest in Politics

	A	B
Political Interest correlated with:	$r_{\rm A}$	$oldsymbol{r}_{\mathrm{B}}$
Interest in TV news	.37	.38
Interest in political TV shows	.61	.58
Understanding of the important political issues facing Germany	.54	.57
How often do you discuss politics?	.56	.59

If modes A and B work similarly, we would expect similar correlations in both modes (row-wise)

Summarising Validity Correlations

Correlation of Correlations

 $r_{Alerting-CV} = .96$

e.g., "Interest in TV news"

Westen, D., & Rosenthal, R. (2003).

Quantifying construct validity: Two simple measures. Journal of Personality and Social Psychology, 84(3), 608–618.

https://doi.org/10.1037/0022-3514.84.3.608

Summarising Validity Correlations

The resulting scatterplot has two defining features:

- The spread around the trendline (quantified by r-Alerting)
- The slope of the trendline

Comparative Attenuation

Correlation of correlations

Low r-Alerting Wide spread Slope ≈ 1

High r-Alerting Good linear fit Slope ≈ 1

High r-Alerting (~good linear fit) implies good conceptual comparability However, the slope should also be close to 1!

Slopes

High r-Alerting Good linear fit Slope < 1

High r-Alerting Good linear fit Slope > 1

However, **good linear fit but a slope** ≠ 1 might imply a **global difference in random errors** between the modes!

Formal Measurement Invariance

MGCFA

Concepts and Reliability

R-Alerting and comparative attenuation

Aligning measurement units

OSE-RG

Generalizable Mode Effects

MTMM Meta-Analysis with SQP GESIS Leibniz Institute for the Social Sciences

Random Groups Design (= random experiment for Equating)

Equally good Random samplesin modes **A** and **B**

Latent distributions in both samples

Distribution Differences

Measurement Unit Differences

GESIS Leibniz Institute for the Social Sciences

OSE-RG: Observed-Score Equating in a Random Groups Design

Response distributions

for A and B

in a random groups design

Differences in distribution shape are measurement differences, not true differences

Response distributions for A and B in a random groups design

simplified to two parameters

Mean and SD

Linear transformation to recode scores of A towards the measurement scale of B...

1. Aligning the **means**

Linear transformation to recode scores of A towards the measurement scale of B...

- 1. Aligning the **means**
- 2. and the standard deviations

OSE-RG with a reference survey program

(with probabilistic samples of the same population)

- Two surveys randomly sampling the same country in the same year are also a random groups design!
- Equating can be **chained**: $A \rightarrow R \rightarrow B$

OSE-RG with a reference survey program

(with probabilistic samples of the same population)

$$A \rightarrow R \rightarrow B$$

OSE-RG with a reference survey program

(with probabilistic samples of the same population)

$$A \rightarrow R \rightarrow B$$

GESIS Leibniz Institute for the Social Sciences

Observed-Score Equating in a Random Groups Design

Points to consider:

- OSE-RG only aligns Measurement Units
- Systematic and random measurement errors are preserved
- Mode dependent errors of representation can bias the Equating Result!

Mitigating differences in representation:

- Adjustment weights
- **NEC Equating** (Non-equivalent groups with covariates design)

Formal Measurement Invariance

MGCFA

Concepts and Reliability

R-Alerting and comparative attenuation

Aligning measurement units

OSE-RG

Generalizable Mode Effects

MTMM Meta-Analysis with SQP

Survey Primer on the SU 3.0 Quality Predictor

MTMM Experiments

evaluating the measurement quality of >6000 instruments in 33 countries

Coding

a set of formal design characteristics

Meta-Analysis

predicting measurement quality via these characteristics

SQP for users

Coding

the formal characteristics of a question to be evaluated

SQP

determines the likely quality based on the meta-analysis

Quality estimates

are given as point estimates with ranges

SQP in survey mode harmonization

SQP has several **characteristics** of interest for **survey mode** harmonization!

- Showcards or other **visual aid** used?
 - Horizontal or vertical scale?
 - •
- Computer assisted answer registration?
- Interviewer or self-completion?
- Visual or oral presentation?

SQP in survey mode harmonization

Quality Estimates

Predicting the quality of indivisual questions in both modes

Generalizable Effects?

Querying the metaanalysis for general effects of mode relevant charateristics

Meta-Analytical Framework

Adding new MTMM-Mode Experiments to the SQP Pool

Generalizability across...?

Modes may have very different effects on different instruments

Modes may have different effects in different countries / cultures / languages

Specific respondents or specific suppopulations may react differently to different modes

However, searching for generalizable methodological differences between modes is still important!

Healthy Pragmatism

- Modes can matter, but they do not have to matter
- **Comparability** brings methodological issues into **sharp contrast**. However, we should not be stricter in comparability than we are in single-mode data
- Quantifying issues is often all it takes to mitigate issues

Ressources

GESIS Blog Series on (Instrument) Harmonization https://blog.gesis.org/adventures-in-ex-post-harmonization-frankensteins-creature/

SQP 3.0

https://sqp.gesis.org/

GESIS consultation on harmonization

https://www.gesis.org/en/services/crm/request-form-for-consultations-and-scientific-services

Singh, R. K. (in print). Harmonizing single-question instruments for latent constructs with equating using political interest as an example. *Survey Research Methods*

Thank you for your attention!

