Reward signal for ABM

Previous work

Reward Signal

TODO:

Code in this reward signal for each agent in

agent_step!()

• If r > 0: agent stays

• If $r \le 0$: agent leaves

Weights:

- $w_1 = 0.1$
- $w_2 = 0.05$
- $w_3 = 1.0$

Place Reward

 $PR = w_1$ Reward for place attachment

Neighbor Reward

r = PR + NR + ER

$$NR = w_2 \cdot \left(1 - \frac{n_t}{n_0}\right)$$

Reward for neighborhood; e.g., don't want to live in abandoned neighborhood

 n_t : Number of neighbors at time t n_0 : Number of neighbors at start of simulation

Exposure Reward

(or penalty)

 $\mathbf{E}R = -w_3 \cdot p_e$ Negative reward for exposure

Notes:

- n_t is accessible through agent. state
- ullet n_0 is accessible through agent.neighborhood_original
- ullet p_e is the percent of year exposed that you used before

Utility theory

Agents make decisions based on "utility"

Example from Wikipedia (https://en.wikipedia.org/wiki/Utility)

- Agent has utility function $U = \sqrt{xy}$ where x is number of apples and y is number of chocolates.
- Agent is given two options:
 - A: 9 apples and 16 chocolates
 - B: 13 apples and 13 chocolates
- $U_A = \sqrt{xy} = \sqrt{9 \cdot 16} = 12$
- $U_B = \sqrt{xy} = \sqrt{13 \cdot 13} = 13$
- Agent decides option B, 13 apples and 13 chocolates

Want to do the same for migration ABM For example, each Agent has two options

- A: do nothing (e.g., stay)
- B: leave

Cobb-Douglas Utility Function - General

$$U_a = \prod_{i=1}^n P_i^{\alpha_i} = (P_1^{\alpha_1}) \cdot (P_2^{\alpha_2}) \cdots P_n^{\alpha_n}$$

 U_a Utility if taking action a

 P_i Some feature/variable, e.g., percent of year exposed

 α_i Weights the importance of the above feature to the agent; between 0 (less important) and 1(more important)

Cobb-Douglas Utility Function - Applied to Galveston

$$U_{stay} = P_{place}^{\alpha_1} \cdot P_{neighbor}^{\alpha_2}$$

$$U_{leave} = P_{exposure}^{\alpha_3}$$

Features/variables to consider

$P_{place} = 100$	Set this to 100, the weighting of this will be done through $lpha_1$
$P_{neighbor} = \frac{N_t}{N_0} \cdot 100$	Same ratio as before (number of agents at time t to number of neighbors at time t); multiply by 100
$P_{exposure} = p_e \cdot 100$	Same percent of year exposed as before, but $ imes 100$

Cobb-Douglas Utility Function - Applied to Galveston

$$U_{stay} = P_{place}^{\alpha_1} \cdot P_{neighbor}^{\alpha_2}$$

$$U_{leave} = P_{exposure}^{\alpha_3}$$

Dylan Added alpha_calc() function to misc_funcs.jl Use this to determine alpha values for each agent

Nat: Next Steps

Update the Residential Agent struct to carry α values Add α values to all agents in function add_agents!()

• Each agent should have different α values

In agent_step!()

- Compute U_{stay} and U_{leave}
- If $U_{stay} > U_{leave}$ then agent stays
- If $U_{leave} > U_{stay}$ then agent leaves

Extra:

- In input.csv, there is a variable called n_iterations; change this to 100 to run the model 100 times
 - This is called Monte-Carlo simulation (https://en.wikipedia.org/wiki/Monte_Carlo_method)
 - It's used to understand uncertainty

I won't be available for meetings June 21-25; however, you can text me. I'll respond when I can.