540

(2) INFORMATION FOR SEQ ID NO: 45: (i) SEQUENCE CHARACTERISTICS: 5 (A) LENGTH: 534 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 10 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 45: GAAGCAGTGT GTATCTATGA TTATATCTCT GTTCATCTAT ATATTTTTGA CATGTAGCAA 60 CACCTCTCCA TCTTATCAAG GAACTCAACT CGGTCTGGGT CTCCCCAGTG CCCAGTGGTG 120 15 GCCTTTGACA GGTAGGAGGA TGCAGTGCTG CAGGCTATTT TGTTTTTTGT TACAAAACTG 180 TCTTTTCCCT TTTCCCCTCC ACCTGATTCA GCATGATCCC TGTGAGCTGG TTCTCACAAT 240 20 CTCCTGGGAC TGGGCTGAGG CAGGGGCTTC GCTCTATTCT CCCTAACCAT ACTGTCTTCC 300 TTTCCCCTTG CCACTTAGCA GTTATCCCCC CAGCTATGCC TTCTCCCTCC CTCCCTTGCC 360 CTGGCATATA TTGTGCCTTA TTTATGCTGC AAATATAACA TTAAACTATC AAGTGAAAAA 420 25 AAAAAAAA AAAACTCCAA GGGGGGCCG GTACCCAATT CCCCCTATAN TGAGTCNTAT 480 TACAATTCAC TOGGCCGTCG TTTTACAACG TCGTGAATGG GAAAACCTGG GCGT 534 30 (2) INFORMATION FOR SEQ ID NO: 46: 35 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1374 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 40 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 46: GGCACGAGTC CGGGATGAGC TCAGCCGCGG CCGACCACTG GGCGTGGTTG CTGGTGCTCA 60 45 GCTTCGTGTT TGGATGCAAT GTTCTTAGGA TCCTCCTCCC GTCCTTCTCA TCCTTCATGT 120 CCAGGGTGCT GCAGAAGGAC GCGGAGCAGG AGTCACAGAT GAGAGCGGAG ATCCAGGACA 180 TGAAGCAGGA GCTCTCCACA GTCAACATGA TGGACGAGTT TGCCAGATAT GCCAGGCTGG 240 50 AAAGAAAGAT CAACAAGATG ACGGATAAGC TCAAAACCCA TGTGAAAGCT CGGACAGCTC 300 AATTAGCCAA GATAAAATGG GTGATAAGTG TCGCTTTCTA CGTATTGCAG GCTGCCCTGA 360 55 TGATCTCACT CATTTGGAAG TATTATTCTG TCCCTGTGGC TGTCGTGCCG AGTAAATGGA 420 TAACCCCTCT AGACCGCCTG GTAGCCTTTC CTACTAGAGT AGCAGGTGGT GTTGGAATTA 480

CCTGTTGGAT TTTAGTCTGT AACAAAGTTG TCGCTATTGT GCTTCATCCG TTCAGCTGAA

	CAGGAGGATG GATACAGCCG CGAGGCTAAA AAACGGATTT CCTCTTCCTA GCTTAAAATC	600
	TGATTTACAC TGTTTTGTTT TTTAAGAAAC AAAAGTGCAT AGTTTAGATT TTTTTTTTTG	660
5	TIGAATATGT TIGTICITGG ACTITATGAG AGAGTCTTAT AAGAATCACG ATTITCTACA	720
	CCTGTCATTG AGCCAAGAAA GTCCAGTTTA TGACACGTAT GTACTAGTGA ACACCGTCCT	780
10	CGATCTGTAC GAAATGTGAA ATGTTTAGGG ACATCTCCAT GCTGTCACTT GTGATTTGCC	840
	CTCTTATGTA TTTTGGTCAT ATTGCCAACT GGAAAGTCAA AATTTTCTAA CAACTTTAAG	900
	TAAGTTCTTT GAAGACTTAG TGCTGTTTTT AATCCAGTTT AGAAAGTAAC TTAATTTTAA	960
15	TACCACTACT AAAAATTCGA AAATTTCTTC TTTAATCACA TTCAATATGG TTAAAAGAAC	1020
	AACACTAATT GACATTGCGT GGGCTTTTTC TCCCTTTGTT TAAAATGTCA TTTGTTGAGC	1080
20	AAGAGTTGTA TAGTATTATC TACTTACTTG AGGCTGTTAA TTTTTCATTA CAGTGTTTTG	1140
20	TAAATGTATC CACGAGACCA TGATGCATTG TTTTGTGCTC AACTTGTGTT TTGTATTTAA	1200
	AGCATTITGA ATGAAGTGTA TITTATAAGC ATTTAATATT TATGCTCTTT AGAATGGAAC	1260
25	ACAGAAAACA AACCITATAA GTCCTGATTA ATCTGAACCA ATAACCTGTG TGGCCTACAA	1320
	AGTATAATTC TATTAAATGT TCCTTAAAAC AAAAAAAAA AAAAAAAAA AAAA	1374
30		
	(2) INFORMATION FOR SEQ ID NO: 47:	
35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 596 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
40	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 47:	
	GAATTCGNCA CGAGATTACT TGGACATGAA AGAACTCAGG TTCAAGTTTA TTCATTTACT	60
45	AAGTTAGTTA AATCATGTGC CTTCCATGAG CCTTCATTTG GTAACTTGGA AAATGGAAAT	120
73	AATAACACTA GTCATATATA TTCTACACTG CTACCATATG GACCAAAGGG ATTATAGATT	180
	ACAATCACCA TCATTCCTGC TGACAGGTAT ATAGAAAACA ATTTCATTGA AGAAAAGTCC	240
50	TTACATTTAT CCTTTTCCTA ATATCTGCAT GGGTAAACTA ATAAATATAG TCATTAGAAA	300
	ACCCTTATTA TTATTATTAG TTCAATGTGA GAACTGCTGC AGAAAAAATA TGCTTTATAA	360
55	TATTTCTTG AATATACATA ATATTCATAA ATTTTCAAAT CATTGAAAAT TACCTTAAAA	420
,,	TTGGAAAAAA TGTGCATTTC TACTCATATA ACAGTATAAA ATTCCTATGT CAATCTCTTT	480
	TTTTTTTTTT TGTTTTGAGT TGGAGTCTCG CTCTGTCGCC CAGGCTGGGC AACAGAGCAG	540
60	GACCCTGTCT TAATTAAAAA AAAAAAAAA AAACTCGAGG GGGGCCCGGT ACCCTA	

5	(2) INFORMATION FOR SEQ ID NO: 48:	
10	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 851 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 48:	
15	CACATGAAGA CACACAGTGG TGAGAAGCCC TTCCGCTGCG CCCGCTGTCC TTATGCCTCT	60
	CCTCATCTGG ATAACCTGAA ACGGCACCAG CGCGTCCATA CAGGAGAGAA GCCCTACAAG	120
20	TGCCCCCTCT GCCCTTATGC CTGTGGCAAT CTGGCCAACC TCAAGCGTCA TGGTCGCATC	180
20	CACTCTGGTG ACAAACCTTT TCGGTGTAGC CTTTGCAACT ACAGCTGCAA CCAGAGCATG	240
	AACCTCAAAC GTCACATGCT GCGGCACACA GGCGAGAAGC CTTCCGCTGT GCCACCTGCG	300
25	CCTATACCAC GGGCCACTGG GACAACTACA AGCGCCACCA GAAGGTGCAT GGCCACGGTG	360
	GGGCAGGAGG GCCTGGTCTC TCTGCCTCTG AGGGCTGGGC CCCACCTCAT AGCCCACCCT	420
30	CTGTTTTGAG CTCTCGGGGC CCACCAGCCC TGGGGACTGC TGGCAGCCGG GCTGTCCACA	480
	CAGACTCATC CTGAACTAGG TCCTTCTTCC CCATGTTTTA TACAGACGGA CCAGAAGCCA	540
	CCTTTTTCTC CCCCGCTGGC CAGGGGCTCC ACACAGACTA ACGTAGGCAC TATAAGGACC	600
35	AGCCCAACCC CATGGGGGG GGGGCCCATA TGGACCAGGG GACCTTGCCT TGACTGAGGC	660
	ACTICACGAG CICAGIGAGA AGGGCCCTGI ATTCACCTCC ACTGCCCCCA GGGGCTGIGG	720
40	ACAAACCGGC TGGGGGACTG CCCAGCCTCC CACCTGTTTA TTTAACTTAT TICAGTGCTT	780
	TATAATAAAG GAAACACTAA CAAAGCCATG TCTATGCTGA ATTGGCAATG GCAGGCAATT	840
	TGGCCTTACC C	851
45		
	(2) INFORMATION FOR SEQ ID NO: 49:	
50	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 2020 base pairs (B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
55	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 49:	
	GTGAAATGAA AACAGTCTTT TTATAGCCTT TAGCTTGTGA GTTTGGAAGT TTGGGGGGTC	60
60	TENTRATUTE TENTRAL CHARTE CHARTENATURE CARGOAGACTURE CARCOCHARTER TURACCHARCAN	120

	ACACAGACCC	AGGIGANCAC	GCIGACIGIG	AMCCIGCCCI	GIAICCGGAG	CIGIGCIGG	180
5	CACTGAGGGG	ATGCAACAAA	ATTAGGAGAG	GWICCTIGCT	CCCAACGTCT	ACTTCTCCTA	240
5	CCTCAACAGG	GGTCCAGGGT	GCAGTGAACT	CAGTTCTTGG	CCCTTGGGTG	AGGAȚTCATG	300
	GATGAATGAA	AGCTAGACCT	GATGGGGAGG	CATTATGACT	AAATAGGCCC	AGCCTCCTTC	360
0	CCTTCCAGCT	CTGTCCTAGG	AGCATAGGCG	GGAAATCTGA	GTAGAGTCTG	ACTGCAGTTT	420
	TTGCTTATGA	TTTGTAAAAG	CCGTCATGGG	GTCAATAAGA	AAATAGGGGT	GATGGAGGG	480
15	GAGAAGCCCA	GGACTGGGAG	AATCGCACGT	GCCCCAGGGG	TTTTCACCAA	GGATTITCAA	540
IJ	GACAAACTGG	AGTAAGAATT	AAAGCCCCAG	AGGATTTAAT	TATCCTGGTT	TGCAAAAGAG	600
	CCTCCCATGC	CAGTACCGCC	CAGCCTTGGA	GGCCGGAATG	CTCATGGCCC	CTGTGGTCTG	660
20	CTTGTCCTTC	AGCCCATGCC	CAGCAGATAC	CTCTCTGACT	GGAGACGGGC	TCAAAGCTGG	720
	ATTAGAAAGG	GGAGMGGCAC	TTGTGACTTT	GTTTGACTCT	GTGACTCACT	TCCTCGCTCA	780
25	CACCTTGTTT	GAACTACTGG	ACTITCAACT	GGCTTTCCTT	AGGTCAGGCA	AGCAGACAGC	840
*	TCCCCACTGA	AGAGGTCTGT	ACAGTGACAA	CCCGGGCCGG	CAGCAAGGAC	ACAGATGCAG	900
	CCACAGTAAG	GCTCCATCAG	GACTGGGTCA	GTGATGGCAA	CAGGATGGCC	AAGGATGGCT	960
30	CTAGAACAYT	CTGTCCATGC	GTCACTCCCC	CCAGTTTTRT	TTTTAGCTTT	GGCTTCAGGG	1020
	AGTGACAGCC	ATCACAAATA	GCCACATTCT	GCTCTACTCT	CCAACATACC	AGATTSTACA	1080
35	CTGTTGTTAT	TTCATGAGAC	GTGAATGTTG	CAGAGAGTGG	GGGGATTCTG	GTTGTTAAGG	1140
	AACTTACACT	GGGGAGCTTT	ACTCTTCCGT	GTCAACAATG	TGACTACATG	TTCTCCAGAT	1200
	TAGCCACACA	TGCAAACATC	AGTGTCCTTC	TAGCTTTANC	CGAGAAAGAA	ACCAGTCCCA	1260
40	GGGAATGAAT	CCTCCTCC	CCACTCCCGG	CAGCACTTTA	GGCAGCCCAT	AAGCTATGCG	1320
	AGAATGTGAA	CGCTCACCTT	GCTCCGTCAC	CCTTCTCACC	TACCACATAA	ACAGGAAGAA	1380
45	GCCAGTGACC	GGAACAGCTC	TAGGAATAAC	AAGTCAGAAT	AGAAGTGTCC	TTTATATTAC	1440
	CAGAAAATAT	GGGCTTGGCC	TAAGTCGCTG	TCTCCTAACC	TGCCGGGGTC	ATTCCCCACC	1500
	AAACACCCCA	TACTAAGGAG	CCATGAGCCA	CCTGGACATT	CACCTTTTCT	TTGACCATCT	1560
50	GGAGTCTGGG	GCAACTTAAG	GAAGGCNCCA	CACAGTGGTG	CAGGCACATT	TCCAAGCGTA	1620
	GGTGTCCCTG	GCTTTTGTGG	CCAAAGCTAG	TGTTATGGTC	AACAACAGGC	CAGGGTCTGT	1680
55	GGGCACTGA	CCTTGAAAGT	GGCAAAATGG	AGGTTTCACA	GGCTGTGCGG	GAGCAGGACG	1740
- -	GCTTGCTTCA	TCTAACAATC	TCAGTTTCCT	TTAAAAAAAG	AAAGAAAGGA	AAAGATTTCA	1800
	TAAGCAGGTG	TCAGTGGACA	GTTTAAGYAC	TTAACCATTT	CICITICITC	TTATGGATGT	1860
6 0	GAACTGTGCT	GTGGATAAAT	CATTTGTATT	TCTTGAATGT	TCTCTATGAC	TAACAGTTAT	1920

	TAAGTCGGTT GTGTATATGT GTAACTAATG TAACTGCCTT TTAAAATTTC ATTACAATAA	1980
5	AAATGACTTT GCTCTGAAMA AAAAAAAAA AAAAACTCGA	2020
10	(2) INFORMATION FOR SEQ ID NO: 50:	
15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2432 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 50:	
••	ATGAAGGGTC GTTGGTGGGA AAGATGGCGG CGACTCTGGG ACCCCTTGGG TCGTGGCAGC	60
20	AGTGGCGGCG ATGTTTGTCG GCTCGGGATG GGTCCAGGAT GTTACTCCTT CTTCTTTTGT	120
	TGGGGTCTGG GCAGGGGCCA CAGCAAGTCG GGGCGGGTCA AACGTTCGAG TACTTGAAAC	180
25	GGGAGCACTC GCTGTCGAAG CCCTACCAGG GTGTGGGCAC AGGCAGTTCC TCACTGTGGA	240
	ATCTGATGGG CAATGCCATG GTGATGACCC AGTATATCCG CCTTACCCCA GATATGCAAA	300
30	GTAAACAGGG TGCCTTGTGG AACCGGGTGC CATGTTTCCT GAGAGACTGG GAGTTGCAGG	360
50	TGCACTTCAA AATCCATGGA CAAGGAAAGA AGAATCTGCA TGGGGATGGC TTGGCAATCT	420
	GGTACACAAG GAATCGGATG CAGCCAGGGC CTGTGTTTGG AAACATGGAC AAATTTGTGG	480
35	GGCTGGGAGT ATTTGTAGAC ACCTACCCCA ATGAGGAGAA GCAGCAAGAG CGGGTATTCC	540
	CCTACATCTC AGCCATGGTG AACAACGGCT CCCTCAGCTA TGATCATGAG CGGGATGGGC	600
40	GGCCTACAGA GCTGGGAGGC TGCACAGCCA TTGTCCGCAA TCTTCATTAC GACACCTTCC	660
••	TGGTGATTCG CTACGTCAAG AGGCATTTGA CGATAATGAT GGATATTGAT GGCAAGCATG	720
	AGTGGAGGGA CTGCATTGAA GTGCCCGGAG TCCGCCTGCC CCGCGGCTAC TACTTCGGCA	780
45	CCTCCTCCAT CACTGGGGAT CTCTCAGATA ATCATGATGT CATTTCCTTG AAGTTGTTTG	840
	AACTGACAGT GGAGAGAACC CCAGAAGAGG AAAAGCTCCA TCGAGATGTG TTCTTGCCCT	900
50	CAGTGGACAA TATGAAGCTG CCTGAGATGA CAGCTCCACT GCCGCCCCTG AGTGGCCTGG	960
	CCCTCTTCCT CATCGTCTTT TTCTCCCTGG TGTTTTCTGT ATTTGCCATA GTCATTGGTA	1020
	TCATACTCTA CAACAAATGG CAGGAACAGA GCCGAAAGCG CTTCTACTGA GCCCTCCTGC	1080
55	TGCCACCACT TTTGTGACTG TCACCCATGA GGTATGGAAG GAGCAGGCAC TGGCCTGAGC	1140
	ATGCAGCCTG GAGAGTGTTC TTGTCTCTAG CAGCTGGTTG GGGACTATAT TCTGTCACTG	1200
	GAGTTTTGAA TGCAGGGACC CCGCATTCCC ATGGTTGTGC ATGGGGACAT CTAACTCTGG	1260

	TCTGGGAAGC CACCCACCCC AGGGCAATGC TGCTGTGATG TGCCTTTCCC TGCAGTCCTT	1320
	CCATGTGGGA GCAGAGGTGT GAAGAGAATT TACGTGGTTG TGATGCCAAA ATCACAGAAC	1380
5	AGAATTTCAT AGCCCAGGCT GCCGTGTTGT TTGACTCAGA AGGCCCTTCT ACTTCAGTTT	1440
	TGAATCCACA AAGAATTAAA AACTGGTAAC ACCACAGGCT TTCTGACCAT CCATTCGTTG	1500
10	GGTTTTGCAT TTGACCCAAC CCTCTGCCTA CCTGAGGAGC TTTCTTTGGA AACCAGGATG	1560
10	GAAACTTCTT CCCTGCCTTA CCTTCCTTTC ACTCCATTCA TTGTCCTCTC TGTGTGCAAC	1620
	CTGAGCTGGG AAAGGCATTT GGATGCCTCT CTGTTGGGGC CTGGGGCTGC AGAACACACC	1680
15	TGCGTTTCAC TGGCCTTCAT TAGGTGGCCC TAGGGAGATG GCTTTCTGCT TTGGATCACT	1740
	GTTCCCTAGC ATGGGTCTTG GGTCTATTGG CATGTCCATG GCCTTCCCAA TCAAGTCTCT	1800
20	TCAGGCCCTC AGTGAAGTTT GGCTAAAGGT TGGTGTAAAA ATCAAGAGAA GCCTGGAAGA	1860
20	CATCATGGAT GCCATGGATT AGCTGTGCAA CTGACCAGCT CCAGGTTTGA TCAAACCAAA	1920
	AGCAACATTT GTCATGTGGT CTGACCATGT GGAGATGTTT CTGGACTTGC TAGAGCCTGC	1980
25	TTAGCTGCAT GTTTTGTAGT TACGATTTTT GGAATCCCAC TTTGAGTGCT GAAAGTGTAA	2040
	GGAAGCTTTC TTCTTACACC TTGGGCTTGG ATATTGCCCA GAGAAGAAAT TTGGCTTTTT	2100
30	TTTTCTTAAT GGACAAGAGA CAGTTGCTGT TCTCATGTTC CAAGTCTGAG AGCAACAGAC	2160
50	CCTCATCATC TGTGCCTGGA AGAGTTCACT GTCATTGAGC AGCACAGCCT GAGTGCTGGC	2220
	CTCTGTCAAC CCTTATTCCA CTGCCTTATT TGACAAGGGG TTACATGCTG CTCACCTTAC	2280
35	TGCCCTGGGA TTAAATCAGT TACAGGCCAG AGTCTCCTTG GAGGGCCTGG AACTCTGAGT	2340
	CCTCCTATGA ACCTCTGTAG CCTAAATGAA ATTCTTAAAA TCACCGATGG AACCAAAAAA	2400
40	AA AAAAAAAA AAAAAAAA AAAAAAAAA	2432
	(2) INFORMATION FOR SEQ ID NO: 51:	
45	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 2340 base pairs (B) TYPE: nucleic acid	
50	(C) STRANDEDNESS: double	
50	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 51:	
55	GACGCTGGGG GCGCGGGGGTA CCGGGCTGGA CGGCCGCCCCCCCCCC	60
	ATTAGTATGC GGACGAAGCG GCGGGCTGCG CGGAGNGACG TCCCCTGCAG CCGCGGACCG	120
	AGGCAGCGGC GGCACCTGCC GGCCGAGCAA TGCCAAGTGA GTACACCTAT GTRAAACTGA	180
60	GAAGTGATTG CTCGAGGCCT TCCCTGCAAT GGTACACCCG AGCTCAAAGC AAGATGAGAA	240

	GGCCCAGCTT	GITATTAAAA	GALAICCICA	AATGTACATT	GCTIGIGTT	GGAGTGTGGA	300
5	TCCTTTATAT	CCTCAAGTTA	AATTATACTA	CTGAAGAATG	TGACATGAAA	AAAATGCATT	360
J	ATGTGGACCC	TGACCATGTA	AAGAGAGCTC	AGAAATATGC	TCAGCAAGTC	TTGCAGAAGG	420
	AATGTCGTCC	CAAGTTTGCC	AAGACATCAA	TGGCGCTGTT	ATTIGAGCAC	AGGTATAGCG	480
10	TGGACTTACT	CCCTTTTGTG	CAGAAGGSCC	CCAAAGACAG	TGAAGCTGAG	TCCAAGTACG	540
	ATCCTCCTTT	TGGGTTCCGG	AAGTTCTCCA	GTAAAGTCCA	GACCCTCTTG	GAACTCTTGC	600
15	CAGAGCACGA	CCTCCCTGAA	CACTTGAAAG	CCAAGACCTG	TCGCCGCTGT	GTGGTTATTG	660
13	GAAGCGGAGG	AATACTGCAC	GGATTAGAAC	TGGGCCACAC	CCTGAACCAG	TTCGATGTTG	720
	TGATAAGGTT	AAACAGTGCA	CCAGTIGAGG	GATATTCAGA	ACATGTTGGA	AATAAAACTA	780
20	CTATAAGGAT	GACTTATCCA	GAGGGCGCAC	CACTGTCTGA	CCTTGAATAT	TATTCCAATG	840
	ACTTATTTGT	TGCTGTTTTA	TTTAAGAGTG	TIGATTICAA	CTGGCTTCAA	GCAATGGTAA	900
25	AAAAGGAAAC	CCTGCCATTC	TGGGTACGAC	TCTTCTTTTG	GAAGCAGGTG	GCAGAAAAA	960
	TCCCACTGCA	GCCAAAACAT	TTCAGGATTT	TGAATCCAGT	TATCATCAAA	GAGACTGCCT	1020
	TTGRACATCC	TTCAGTACTC	AGAGCCTCAG	TCAAGGTTCT	GGGGGCCGAG	ATAAGAACGT	1080
30	CCCCACAATC	GGTGTCATTG	CCGTTGTCTT	AGCCACACAT	CTGTGCGATG	AAGTCAGTTT	1140
	GGCGGGTTTT	GGATATGACC	TCAATCAACC	CAGAACACCT	TTGCACTACT	TCGACAGTCA	1200
35	ATGCATGGCT	GCTATGAACT	TTCAGACCAT	GCATAATGTG	ACAACGGAAA	CCAAGTTCCT	1260
	CTTAAAGCTG	GTCAAAGAGG	GAGTGGTGAA	AGATCTCAGT	GGAGGCATTG	ATCGTGAATT	1320
	TTGAACACAG	AAAACCTCAG	TTGAAAATGC	AACTCTAACT	CTGAGAGCTG	TTTTTGACAG	1380
40	CCTTCTTGAT	GTATTTCTCC	ATCCTGCAGA	TACTTTGAAG	TGCAGCTCAT	GTTTTTAACT	1440
	TTTAATTTAA	AAACACAAAA	AAAATTTTAG	CTCTTCCCAC	TTTTTTTTTC	CTATTTATTT	1500
45	GAGGTCAGTG	TTTGTTTTTG	CACACCATTT	TGTAAATGAA	ACTTAAGAAT	TGAATTGGAA	1560
	AGACTTCTCA	AAGAGAATTG	TATGTAACGA	TGTTGTWTTG	ATTTTTAAGA	AAGTAATTTA	1620
	ATTTCTAAAA	CTTCTGCTCG	TTTACACTGC	ACATTGAATA	CAGGTAACTA	ATTGGAAGGA	1680
50	GAGGGGAGGT	CACTCTTTTG	ATGGTGGCCC	TGAACCTCAT	TCTGGTTCCC	TECTECECTE	1740
	CTTGGTGTGA	CCCACGGAGG	ATCCACTCCC	AGGATGACGT	GCTCCGTAGC	TCTGCTGCTG	1800
55	ATACTGGGTC	TGCGATGCAG	CCCCTCACG	CCTGGGCTGG	TTGGAGAAGG	TCACAACCCT	1860
- -	TCTCTGTTGG	TCTGCCTTCT	GCTGAAAGAC	TCGAGAACCA	ACCAGGGAAG	CTGTCCTGGA	1920
	GGTCCCTGGT	CGGAGAGGGA	CATAGAATCT	GTGACCTCTG	ACAACTGTGA	AGCCACCCTG	1980
60	GGCTACAGAA	ACCACAGTCT	TCCCAGCAAT	TATTACAATT	CTTGAATTCC	TTGGGGATTT	2040

	TTTACTGCCC TTTCAAAGCA CTTAAGTGTT AGATCTAACG TGTTCCAGTG TCTGTCTGAG	2100
5	GTGACTTAAA AAATCAGAAC AAAACTTCTA TTATCCAGAG TCATGGGAGA GTACACCCTT	2160
J	TCCAGGAATA ATGTTTTGGG AAACACTGAA ATGAAATCTT CCCAGTATTA TAAATTGTGT	2220
	ATTIAAAAAA AAGAAACTTT TCTGAATGCC TACTGGCGGT GTATACCAGG CAGTGTGCCA	2280
10	GTTTAAAAAG ATGAAAAAGA ATAAAAACTT TTGAGGAAMA AAAAAAAAAA AAAAACTCGA	2340
15	(2) INFORMATION FOR SEQ ID NO: 52:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 601 base pairs(B) TYPE: nucleic acid	
20	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 52:	
25	AGTAGGGGAG ACTGAGACTG ACCGGTAGCC AGGCAGGCGG ACGACGCACG CCCGGACAGA	60
	CTGAGCAGGC GCCGGAGAAC CACTCACAGG TTCCCCCCGC CTTTCCCTTT GAAANCTAGG	120
	CTTTTGCCTT TCCCGTGGCG CCCGAGAGAG AATGCTGGAC TCTGCCGACT TCAGCGCAAC	180
30	TAANGATITC TCAAGCTAGG GGACAAACGA TCAGCCCAAT CCTGAGAAGG GGGGAACCAA	240
	GCACCCCGTC CCCATCCCCC TCCCCTCCCC CGACTAAACT CGGGCGCCAA ACCCAGCCCT	300
35	TCTCTAACCA CCCTACTTCC TCCTCTCTT TCTAGCATGG TGGCTGTATG GACAGTCTGA	360
	CAGAACAGAG ACTGACATCT CCCAATCTGC CGGCCCCCCA CCTGGAACAC TACAGTGTTC	420
40	TGCATTGCAC CATGACCCTG GATGTGCAAA CTGTAGTCGT TTTTGCCGTG ATTGTAGTCC	480
40	TCCTGCTTGT CAATGTCATA CTCATGTTTT TCCTGGGAAC GCGCTGAATG GAGTCCAGNC	540
	ACCTGAGCTG TCGCGAACTC TCGCTTTGAT TTCATCCCGA GAGCCACCGA GAAGAAAAA	600
45	A	601
50		
50	(2) INFORMATION FOR SEQ ID NO: 53:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 359 base pairs	
55	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 53:	
60	CTCGTGCCGA ATTCGGCACG AGAGATGGTA CTTTTAAGAG GTAATTAGGT TGCTAAGATG	60

	GATTAACATC	TTTCTCTTGA	CACTGAGACT	GGGTTCTCCT	GGGAATGGTT	AGTTCCCAAG	120
5	AGAGTGAGTT	GTTATAAAAC	AATGCTGCCT	CTTCTATTTT	GCGCTTTTTG	TTTGCACAAA	180
, ,	CTCGGTCCCC	TTCTGTTTCT	CTACGATGTT	TTGATGCRGC	ATGAGGCAGT	CATGAGAACC	240
	CACCAGATAC	AGCTGCCTGA	TCCTGAATTT	CCCAGCCAAC	AGAACCAAGT	GCTAAATAAA	300
10	ACTCTTTTTA	ATAAGTTAAA	ааааааааа	АААААААА	AANAAANANA	АААААААА	359

15 (2) INFORMATION FOR SEQ ID NO: 54:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1141 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 54:

	()	, proorder	DESCRIPTION	. SEQ ID NO	. 54.		
25	GGCACGAGCT	GCTGAGGCGT	GAGAATGGCG	TCCCGCGGCC	GGCGTCCGGA	GCATGGCGGA	60
	CCCCCAGAGC	TGTTTTATGA	CGAGACAGAA	GCCCGGAAAT	ACGITCGCAA	CTCACGGATG	120
30	ATTGATATCC	AGACCAGGAT	GGCTGGGCGA	GCATTGGAGC	TTCTTTATCT	GCCAGAGAAT	180
	AAGCCCTGTT	ACCTGCTGGA	TATTGGCTGT	GGCACTGGGC	TGAGTGGAAG	TTATCTGTCA	.240
	GATGAAGGC	ACTATTGGGT	GGGCCTGGAT	ATCAGCCCTG	CCATGCTGGA	TGAGGCTGTG	300
35	GACCGAGAGA	TAGAGGGAGA	CCTGCTGCTG	GGGGATATGG	GCCAGGGCAT	CCCATTCAAG	360
	CCAGGCACAT	TTGATGGTTG	CATCAGCATT	TCTGCTGTGC	AGTGGCTCTG	TAATGCTAAC	420
40	AAGAAGTCTG	AAAACCCTGC	CAAGCGCCTG	TACIGCTTTT	TTGCTTCTCT	TTTTTCTGTT	480
	CTCGTCCGGG	GATCCCGAGC	TGTCCTGCAG	CTGTACCCTG	AGAACTCAGA	GCAGTTGGAG	540
	CTGATCACAA	CCCAGGCCAC	AAAGGCAGGC	TTCTCCGGTG	GCATGGTGGT	AGACTACCCT	600
45	AACAGTGCCA	AAGCAAAGAA	ATTCTACCTC	TGCTTGTTTT	CTGGGCCTTC	GACCTTTATA	660
	CCAGAGGGGC	TGAGTGAAAA	TCAGGATGAA	GTTGAACCCA	GGGAGTCTGT	GTTCACCAAT	720
50	GAGAGGTTCC	CATTAAGGAT	GTCGAGGCGG	GGAATGGTGA	GGAAGAGTCG	GGCATGGGTG	780
50	CTGGAGAAGA	AGGAGCGGCA	CAGGCGCCAG	GGCAGGGAAG	TCAGACCTGA	CACCCAGTAC	840
	ACCGCCCCCA	AGCGCAAGCC	CCGCTTCTAA	GTCACCACGC	GGTTCTGGAA	AGGCACTTGC	900
55	CTCTGCACTT	TTCTATATTG	TTCAGCTGAC	AAAGTAGTAT	TTTAGAAAAG	TTCTAAAGTT	960
	ATAAAAATGT	TTTCTGCAGT	AAAAAAAAG	TTCTCTGGGC	CGGCGTGGT	GGCTCACACC	1020
60	TGTAATCCCA	GCACCTTGGG	AGGCTGAGGT	GGGAGGATCA	TTTGAGGCCA	GGAGTTTGAG	1080

	ACCTGCCTGG GCAACATAAT GAAACTTCCT TTCCAGGGAG AAAAAAAAAA	1140
	A	1141
5		
	(A) TITTOTHER TON TON ON TO 15 SS	
10	(2) INFORMATION FOR SEQ ID NO: 55:	
10	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1560 base pairs	
	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
15	(D) TOPOLOGY: linear	
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 55:	
	TCCTTCTCTG GGGCGGTCGC GTTGGCAGCG GATGCGGGAA GCCGGACTCT GGGCGTCATG	60
20	TACTACAAGT TTAGTGGCTT CACGCAGAAG TTGGCAGGAG CATGGGCTTC GGAGGCCTAT	120
	AGCCCGCAGA TINAAAGCCT GIGGITTCCA CAGAAGCACC ACCTATCATA TITGCCACAC	180
25	CAACTAAACT GACCTCCGAT TCCACAGTGT ATGATTATGC TGGGAAAAAC AAAGTTCCAG	240
23	AGCTACAAAA GITTITCCAG AAAGCTGATG GTGTGCCCGT CTACCTGAAA CGAGGCCTGC	300
	CTGACCAAAT GCTTTACCGG ACCACCATGG CGCTGACTGT GGGAGGGACC ATCTACTGCC	360
30	TGATCGCCCT CTACATGGCT TCGCAGCCCA AAAACAAATG AGTTAGGCTG CAGAGGACTG	420
	GTTTGTTTTT TGGCATAAAC CCTTTGAAGT TCCTTTTTCA TTGTTAAATT AAAATTTTTT	480
35	TITITACTIG GATGGCITAA CATTITIGCA AGAAAAATAG GAAGATATGA AGATGATGIT	540
33	TTGGTTTGTT TATGAAATGC ATATGGCTTG TCAGAGCTCA TTCGACAGTT AAAGCCATTG	600
	TTTAAAGAAA CGGTGCTTTG CTCTGTGTTT GTGCTCCTGA TTTCCCTGGA GGTTCTGGAT	660
40	GAAGGCTGAA CACAGGCTTG TTAATGTCAG TCTGTGCTGA GGACCTCAGG GACTTGAGGT	720
	TGCATTTTG AGCATGGGT GCAGGAGCCT TTCTGGATTT GGATGTGGCT ATGGAAAGAA	780
45	CACAGAAGCC AAGGTCATGT GCATGAAATG AGGAGTTTGA GTTAGTCACC TCGGGGATTT	840
45	TITCCATTIT GCAGTAAAAT GITAAATTAA TGTAGCCIGC CICTATTIGI TGGGCAGGTA	900
	ATTTCAAAGG GTTATTTGCC TCATCTCCTA TCTTTAGTGA AATCTTATGT GTAATTGTGT	960
50	GTATTTATTC CACCGTGGGA ACAGAGAATA CCTGTTTAGT GTTGCACTTT AGACTGGTGT	1020
	CTGTTTTGTT AATGCAGCTG TGCCACAAAT TCTCCTTTAT CTTTTAAAAA TGTTATAGCT	1080
	TTAAATTTTG ATTTATTTTG ACTGTGGAAT AAATACATGA ATGAAAAATT TTAAGTTTGA	1140
55	AGTTCTTTGA ATGACCTTTC AGAGTAATTT CAGAACACCA GCAGCATCTT AAACCTGAGT	120
	CTAATTTCTT TCTTGTTAAT TAGGCACCAG ATAATCTTTA TAAAATGGTC TTAAAAGCTA	126
60	GTAATAGGAG CITAATGGCA ATKGATGATT ACCACAKGGT TITTTATAAA AACCINGCTG	

	CCCCTWAGTG	AAAGGTACCT	GTAACYCACA	GTYCATTTAG	ACACTAATTT	CCTYTGCYGT	1380
5	CATGATTGGK	AGACTTCACT	TACCCTATAT	TAATTTTGAA	AAAAGGTGGA	ATTTTATTAT	1440
5	ATATGAAGGA	ATAGTTTGTA	TCTTACCATA	GCACAGAACA	GTGACCTCTT	GCTCAGGATA	1500
	AGATGTGGTG	ATTTGAAAAT	ACTCATAGTA	GCCTTGCAGT	GATACCTCTC	TCNCTCTCTC	1560
10							
	(2) INFORMA	ATION FOR SI	EQ ID NO: 56	5:			
15		SEQUENCE CI (A) LEN (B) TYP	HARACTERIST GTH: 1507 b E: nucleic	ICS: ase pairs acid			
20			ANDEDNESS: OLOGY: line				
20	(xi)) SEQUENCE 1	DESCRIPTION	: SEQ ID NO	: 56:		
	GGAACGCAGA	GCGGAGCGTG	GAGAGCGGAG	CGAAGCTGGA	TAACAGGGGA	CCGATGATGT	60
25	GGCGACCATC	AGTTCTGCTG	CTTCTGTTGC	TACTGAGGCA	CGGGGCCCAG	GGGAAGCCAT	120
	CCCCAGACGC	AGGCCCTCAT	GGCCAGGGGA	GGGTGCACCA	GCGGCCCCC	CTGAGCGACG	180
30	CTCCCCATGA	TGACGCCCAC	GGGAACTTCC	AGTACGACCA	TGAGGCTTTC	CTGGGACGGG	240
50	AAGTGGCCAA	GGAATTCGAC	CAACTCACCC	CAGAGGAAAG	CCAGGCCCGT	CTGGGGGGGA	300
	TCGTGGACCG	CATGGACCGC	GCGGGGGACG	GCGACGCCTG	GCTCTCGCTG	GCCGAGCTTC	360
35	GCGCGTGGAT	CGCGCACACG	CAGCAGCGGC	ACATACGGGA	CTCGGTGAGC	GCGGCCTGGG	420
	ACACGTACGA	CACGGACCGC	GACGGGCGTG	TGGGTTGGGA	GGAGCTGCGC	AACGCCACCT	480
40	ATGGCCACTA	CGCGCCCGGT	GAAGAATTTC	ATGACGTGGA	GGATGCAGAG	ACCTACAAAA	540
10	AGATGCTGGC	TCGGGACGAG	CGGCGTTTCC	GGCTGGCCGA	CCAGGATGGG	GACTCGATGG	600
	CCACTCGAGA	GGAGCTGACA	GCCTTCCTGC	ACCCCGAGGA	GTTCCCTCAC	ATGCGGGACA	660
45	TCGTGATTGC	TGAAACCCTG	GAGGACCTGG	ACAGAAACAA	AGATGGCTAT	GTCCAGGTGG	720
	AGGAGTACAT	CGCGGATCTG	TACTCAGCCG	AGCCTGGGGA	GGAGGAGCCG	GCGTGGGTGC	780
50	AGACGGAGAG	GCAGCAGTTC	CGGGACTTCC	GGGATCTGAA	CAAGGATGGG	CACCTGGATG	840
50	GGAGTGAGGT	GGGCCACTGG	GTGCTGCCCC	CTGCCCAGGA	CCAGCCCCTG	GTGGAAGCCA	900
	ACCACCTGCT	GCACGARAGC	GACACGGACA	AGGAYGGGCG	GCTGAGCAAA	GCGSAAATCC	960
55	TGGGTAATTG	GAACATGTTT	GTGGGCAGTC	AGGCCACCAA	CTATGGYGAG	GACCTGACCC	1020
	GGCACCACGA	TGAGCTGTGA	GCMCCGNGCA	CCTGCCACAG	CCTCAGAGGC	CCGCACAATG	1080
	ACCGGAGGAG	GGGCCGCTGT	GGTCTGGCCC	CCTCCCTGTC	CAGGCCCCGC	AGGAGGCAGA	1140

	TGCAGTCCCA GGCATCCTCC TKCCCCTGGG CTCTCAGGGA CCCCCTGGGT CGGCTTCTGT	1200
	CCCTGTCACA CCCCCAACCC CAGGGAGGGG CTGTCATAGT CCCAGAGGAT AAGCAATACC	1260
5	TATTTCTGAC TGAGTCTCCC AGCCCAGACC CAGGGACCCT NGGCCCCAAG CTCAGCTCTA	1320
	AGAACCGCCC CAACCCCTCC AGCTCCAAAT CTGAGCCTCC ACCACATAGA CTGAAACTCC	1380
10	CCTGGCCCCA GCCCTCTCCT GCCTGGCCTG GCCTGGGACA CCTCCTCTCT GCCAGGAGGC	1440
10	AATAAAAGCC AGCGCCGGGA AAAAAAAAAA AAAAAAAAA AAAAAAAA	1500
	AAAAAAN	1507
15		
20	(2) INFORMATION FOR SEQ ID NO: 57: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 450 base pairs	
25	(B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 57:	
	GAATTCGGCA CGAGCAGTGT CCAACACTGT AGCTGGTGCC TGCCAGGTTC CCAGTGGCTG	60
30	GGGTCACCAG GTCTGAAGAG AGATGTGCTG GCTGCGGGCA TGGGSCCAGA TCYTCCTGCC	120
	AGPTITCYTC TCCYTCTTTC TCATCCAATT GCTTATCAGC TTCTCAGAGA ATGGTTTTAT	180
	CCACAGCCCC AGGAACAATC AGAAACCAAG AGATGGGAAT RAAGAGGAAT GTGCTGTAAA	240
35	GAAGAGTTGT CAATTGTGCA CAGAAGATAA GAAATATATG ATGAATAGAT AATTGAAAAG	300
	AGATCCTCCA GAAAGAGCAG AAGGAAGTTT CTTCAATGGC TTCCTTCAGG ATTTTAATCA	360
40	TCCTTACAGC CTCTTTGAGA ATGATTGAAC TTCCAAATTC CCTGAAGTTA AAATTTTAAA	420
	TTCTATTAAA CATTTTTTCG AGTAAAAAA	450
4.5		
45		
	(2) INFORMATION FOR SEQ ID NO: 58:	
50	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1147 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
55	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 58:	
	GGCACGAGAC CCATTGAGCA GAAGGAGGCC AGGTGGGAAA GCTCCTGGGA AGAGCAGCCA	60
60	GACTGGACAC TGGGCTGCTT GAGTCCTGAG TCACAATTCA GAATTCCTGG GCTCCCTGGG	120

	TGCATTCTAT	CATTCCAGTT	GAAAGTTTGC	TTCCTTCCAG	TCATGTGGCT	CTTCATTCTA	180
	CTCTCCTTGG	CTCTCATTTC	AGATGCCATG	GTCATGGATG	AAAAGGTCAA	GAGAAGCTTT	240
5	GTGCTGGACA	CGGCTTCTGC	CATCTGCAAC	TACAATGCCC	ACTACAAGAA	TCACCCCAAA	300
	TACTGGTGCC	GAGGCTATTT	CCGTGACTAC	TGCAACATCA	TCGCCTTCTC	CCCTAACAGC	360
0	ACCAATCATG	TGGCCCTGAA	GGACACAGGG	AACCAGCTCA	TIGICACTAT	GTCCTGCCTG	420
·	AACAAAGAAG	ACACGGGCTG	GTACTGGTGT	GGCATCCAGC	GGGACTTTGC	CAGGGATGAC	480
	ATGGATTITA	CAGAGCTGAT	TGTAACTGAC	GACAAAGGAA	CCTGGCCAAT	GACTTTGGTC	540
15	TGGGAAAGAC	TATCAGGCAC	AAAACCAGAA	GCTGCAAGGC	TCCCAAAGTT	GTCCGCAAGG	600
	CTGACCGCTC	CAGGACGTCC	ATTCTCATCA	TTTGCATACT	GATCACGGGT	TTGGGAATCA	660
20	TCTCTGTAAT	CAGTCATTTG	ACCAAAAGGA	GGAGAAGTCA	AAGGAATAGA	AGGGTAGGCA	720
	ACACTTTGAA	GCCCTTCTCG	CGTGTCCTGA	CTCCAAAGGA	AATGGCTCCT	ACTGAACAGA	780
	TGTGACTGAA	GATTTTTTA	ATTTAGTTCA	TAAAGTGATG	CTACAACAGA	ATAATCACCA	840
25	TGACAACTGG	CCCCACACCT	CAGAGACTGA	TTCTGATCTC	CCAGGAATTC	TGAAGGTCCC	900
	TCTATCCTTG	ACAACAATCA	TTTGCAGCCA	GGTAGCAACG	GCAGTAGTCA	GAGGAGCTAT	960
30	GATAGACCAC	ACCCAAGCAA	GGCTGCCCTC	AAATAACATC	TCAAGATCTT	AGTTCTTATG	1020
,	CATTCCATCA	GTCAGAAGTG	AAGAAGAGGT	GGAGAATCTG	GATTGGGGAC	CAGGAAATCA	1080
	CTTGTATTTT	GTTAGCCAAT	AAATTCCTAG	CCAGTGTTGA	ATGAAAAAA	AAAAAAAA	1140
35	AAAAAA						1147

40 (2) INFORMATION FOR SEQ ID NO: 59:

45

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 777 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 59:

50	GGCAGAGGCT	CCTCAGAAGG	GCGTGGGCTC	TCCAGTCTTC	CACAGTCCCC	ACCATGCCCT	60
	GTTGCCTTAC	CGCTGACGTA	GCTCACCCAT	CTTTTACTTG	CCTGGCTAAG	ATGCATGGCA	120
55	TYWCATTICC	TCCTTGTTGC	ACTGCAGTCA	GTCCCTCACT	GCCCCCATCT	CCTGGAAGAG	180
33	GAGCATAAGC	TTTGCAAGGT	CAGCCACTTC	TCTGGGGTCA	CACTAGTTAC	ATCAAGACAG	240
	GACTCCAGCT	CATATGTGCC	AGTGCAGACA	CTCTTCATCC	ACCTGGGGCC	CTGGGCTTGG	300
60	GACCTGGYTC	CTTGCACAGC	AGARGACCCG	GAGGCTGAGA	GGAGCTTGCG	GTTGTGTCAT	360

	AGTCACCTGG	CCAGARGGAA	CGTGAGCCCC	TCCCAAGCTG	CAGARGGARG	GARCARGCGT	420
5	GCTGTCAGC .	ACCGAGGTAG	CAGAGAATTA	ACATTCTTGT	CAGCAGAGAA	TGAAGCAGGA	480
	ATATAATTAA .	AACTTTGCCC	TTGGAATAGC	TGATTCATTT	GAATTTTATT	CCACACGTTT	540
	GAAAGAGGAA	AGAAAATGTG	AAGACTTGCA	GCCTGGTTCT	CGCCTGGCCT	GGGCTGGCCC	600
10	AGCTGTCAGG	CCCGGTTCCT	TTCTGAGCAT	TCAGTCCACT	GATGTTGACT	GAGGGCCAGG	660
	AGAGACCCTC .	AGCAGGGTAT	TACCATATCA	GCCTCCTATC	GCTGCTGGGA	GAAATTACCA	720
15	TGAATTCAGT	GGCTTAAAAC	AACACACGAG	CCTCTCTGAG	CCTACCCTGG	CTCAGGA	777
20	(2) INFORMA		_				
25	- (1)	(B) TYPI (C) STR	FTH: 1191 b E: nucleic a ANDEDNESS: O DLOGY: line	ase pairs acid double			
	(xi)	SEQUENCE I	DESCRIPTION	SEQ ID NO	: 60:		
30	AAGANTGATT	TTCCTTACTC	TCCAAAGCGT	CAGCATTITG	AAGTTTCTTT	TATGAAAGTG	60
	GGGGCAAGAA	TCAGGGTGAA	AATGAGTGTA	AACAAAGCCC	ATCCTGTGGT	CAGCACCCAC	120
	TCGAGGTGGC	CAGCAGAGTG	GCCTCAGATG	TTCCTGCACC	TGGCCCAGGA	GCCCAGGACA	180
35	GAGGTCAAAT	CTAGGCCCCT	TGGTCTGGCT	GGATTCATCA	GGCAAGATTC	GAAAACAAGA	240
	AAACCTCTAG	AACAAGAAAC	AATCATGTCT	GCAGCAGATA	CGGCACTGTG	GCCCTATGGC	300
40	CATGGCAATC	GTGAGCACCA	AGAGAATGAG	TTACAGAAAT	ATCTCCAATA	CAAAGACATG	360
	CATCTCCTGG	ACAGTGGACA	GTCGCTGGGA	CACACACACA	CACTTCAAGG	CTCACACAAC	420
	CTAACAGCCT	TAAATATCTG	AAGAAACAGA	ATCACGACAT	TAAGTCAGCA	GAGGGAGAGG	480
45	TAGGCTGAAG	CAGCAGGAGG	CCAATTTTAT	ATCCCACAGA	AAATTITITT	AATGACTCCC	540
	CAGCAAGGGG	TGGGGAGAAA	GCCACTGATT	TAGGAGAGTT	CTTGGCTCAG	CCAACCACTG	600
50	CGGTTATCTA	CACGTTTTAC	AAAGGCACRG	AAGTAGAGAG	GGGCTGCACT	CACGACCCTC	660
	CCCAGGGCCC	GCACAGCCAG	ACACGGTGGG	TTCTTCCTTT	TTCCCTTCTG	GCCTTGGTGG	720
	AATTCCTACC	ACGGTGGCCT	CTGCCTTTGG	GACAATGCCT	TCATGCTCAT	CCCCGGGTCA	780
55	AGGATGGAGT	CTGTTACCAT	TTTCCAGGGG	AAATTCCAAG	GACCAGCCCC	GCCTCATTAC	840
	GTTCACCCCA	CAGGAAGGTG	ATCTGGAAAG	CCTGTAAACA	CGTACTCTGG	GTGGCTGAGT	900
60	GGTGTCACCA	AGCIGCTTTT	GTGCAGGGCT	GAAGCACAGA	CAAGAGGGCA	GGCAGCTGCC	960

WO 98/42738 PCT/US98/05311

213

GGAGGCCTGA AGTGGGGAGA GATCCCCGCA GGCCTGCAGG AGCCAGGGAG AACCTCCAAC 1020 TGGATCTAAA CTGTGGGACA GCCCAGGGT GCCCCTCTTC ACATGGCTCC CAGGCTCCCT 1080 CAAAGCCCTT CCCAGGCCCT GCAGGAAGAG AGGGAGGGTG AGGAGAGGCA GGGAGGGCAG 5 1140 AGGTCGCCTG AAAGCCTGGG CTCCGAACTC CCTCAGCAGA GCTTTAAAGT G 1191

10

15

(2) INFORMATION FOR SEQ ID NO: 61:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1580 base pairs

(B) TYPE: nucleic acid (C) STRANDEDNESS: double

(D) TOPOLOGY: linear

20 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 61:

CCCCGCCCC CGCCCACGAA GGAAGTGGCT GCTGCTCCGG CGCGGACCCA GAGCCGGTTC 60 GGCGCGTCGA CTGCCCAGAG TCCGCGGCCG GGCGCGGGAG GAGCCAAGCC GCCATGGCCT 120 25 ACCACAGCTT CCTGGTGGAG CCCATCAGCT GCCACGCCTG GAACAAGGAC CGCACCCAGA 180 TIGCCATCIG CCCCAACAAC CATGAGGIGC ATATCIATGA AAAGAGCGGI GCCAAAIGGA 240 30 CCAAGGTGCA CGAGCTCAAG GAGCACAACG GGCAGGTGAC AGGCATCGAC TGGGCCCCCG 300 AGAGTAACCG TATTGTGACC TGCGGCACAG ACCGCAACGC CTACGTGTGG ACGCTGAAGG 360 GCCGCACATG GAAGCCCACG CTGGTCATCC TGCGGATCAA CCGGGCTGCC CGCTGCGTGC 420 35 GCTGGGCCC CAACGAGAAC AAGTTTGCTG TGGGCAGCGG CTCTCGTGTG ATCTCCATCT 480 GTTATTTCGA GCAGGAGAAT GACTGGTGGG TTTGCAAGCA CATCAAGAAG CCCATCCGCT 540 40 CCACCGTCCT CAGCCTGGAC TGGCACCCCA ACAATGTGCT GCTGGCTGCC GGCTCCTGTG 600 ACTICAAGIG ICGGATCITI ICAGCCIACA ICAAGGAGGI GGAGGAACGG CCGGCACCCA 660 CCCCGTGGGG CTCCAAGATG CCCTTTGGGG AACTGATGTT CGAATCCAGC AGTAGCTGCG 720 45 GCTGGGTACA TGGCGTCTGT TTCTCAGCCA GCGGGAGCCG CGTGGCCTGG GTAAGCCACG 780 ACAGCACCGT CTGCCTGGCT GATGCCGACA AGAAGATGGC CGTCGCGACT CTGGCCTCTG 840 50 ANACACTACC ACTGCTGGCG CTGACCTTCA TCACAGACAA CAGCCTGGTG GCAGCGGGCC 900 ACGACTGCTT CCCGGTGCTG TTCACCTATG ACGCCGCCGC GGGGATGCTG AGCTTCGGCG 960 GGCGGCTGGA CGTTCCTAAG CAGAGCTCGC AGCGTGGCTT GACGGCCCGC GAGCGCTTCC 1020 55 AGAACCTGGA CAAGAAGGCG AGCTCCGAGG GTGGCACGGC TGCGGGCGCG GGCCTAGACT 1080 CGCTGCACAA GAACAGCGTC AGCCAGATCT CGGTGCTCAG CGGCGGCAAG GCCAAGTGCT 1140 60 1200 CGCAGTTCTG CACCACTGGC ATGGATGGCG GCATGAGTAT CTGGGATGTG AAGAGCTTGG

	AGTCAGCCTT GAAGGACCTC AAGATCAAAT GACCTGTGAG GAATATGTTG CCTTCATCCT	1260
5	AGCTGCTGGG GAAGCGGGGA GAGGGTCAG GGAGGCTAAT GGTTGCTTTG CTGAATGTTT	1320
•	CTGGGGTACC AATACGAGTT CCCATAGGGG CTGCTCCCTC AAAAAGGGAG GGGACAGATG	1380
	GGGAGCTTTT CTTACCTATT CAAGGAATAC GTGCCTTTTT CTTAAATGCT TTCATTTATT	1440
10	GAAAAAAAA AAAAATGCCC CCAAAGCACT ATGCTGGTCA TGAACTGCTT CAAAATGTGG	1500
	AGGTAATAAA ATGCAACTGT. GTAAAAAAAA AAAAAAAAA AAATGACCCT CGCGATCTAG	1560
15	AACTAGNCGG ACGCNTGGGT	1580
20	(2) INFORMATION FOR SEQ ID NO: 62:	
20	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 1117 base pairs(B) TYPE: nucleic acid	
25	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 62:	
30	GGCACGAGGC GCGATGCAGC ACAGGCTAGA GGCTGCGCAA SGCGGGGGCC CGCCCCTGGG	60
50	ACCCTCCGGG CCGGGCGGTT TGGCCCCTTA GCGCCCGGGC GTCGGGGCGG TAAAAGGCCG	120
	GCAGAAGGGA GGCACTTGAG AAATGTCTTT CCTCCAGGAC CCAAGTTTCT TCACCATGGG	180
35	GATGTGGTCC ATTGGTGCAG GAGCCCTGGG GGCTGCTGCC TTGGCATTGC TGCTTGCCAA	240
	CACAGACGTG TTTCTGTCCA AGCCCCAGAA AGCGGCCCTG GAGTACCTGG AGGATATAGA	300
40	CCTGAAAACA CTGGAGAAGG AACCAAGGAC TTTCAAAGCA AAGGAGCTAT GGGAAAAAA	360
	TEGAGETETE ATTATEGECE TECEGAGECE AGGETETTE CTCTETCGAG AGGAAGETEC	420
	GGATCTGTCC TCCCTGAAAA GCATGTTGGA CCAGCTGGGC GTCCCCCTCT ATGCAGTGGT	480
45	AAAGGAGCAC ATCAGGACTG AAGTGAAGGA TTTCCAGCCT TATTTCAAAG GAGAAATCTT	5 4 0
	CCTGGATGAA AAGAAAAAGT TCTATGGTCC ACAAAGGCGG AAGATGATGT TTATGGGATT	600
50	TATCCGTCTG GGAGTGTGGT ACAACTTCTT CCGAGCCTGG AACGGAGGCT TCTCTGGAAA	660
	CCTGGAAGGA GAAGGCTTCA TCCTTGGGGG AGTTTTCGTG GTGGGATCAG GAAAGCAGGG	720
	CATTCTTCTT GAGCACCGAG AAAAAGAATT TGGAGACAAA GTAAACCTAC TTTCTGTTCT	780
55	GGAAGCTGCT AAGATGATCA AACCACAGAC TTTGGCCTCA GAGAAAAAAT GATTGTGTGA	840
	AACTGCCCAG CTCAGGGATA ACCAGGGACA TTCACCTGTG TTCATGGGAT GTATTGTTTC	900
60	CACTOGTGTC CCTAAGGAGT GAGAAACCCA TTTATACTCT ACTCTCAGTA TGGATTATTA	960

	ATGTATTTTA ATATTCTGTT TAGGCCCACT AAGGCAAAAT AGCCCCAAAA CAAGACTGAC	1020
	AAAAATCTGA AAAACTAATG AGGATTATTA AGCTAAAACC TGGGAAATAG GAGGCTTWAA	1080
5	ATGACTGCCM GCTGGTGCRT GCTCACACTT GGCCCAC	1117
10	(2) INFORMATION FOR SEQ ID NO: 63:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 361 base pairs	
15	(B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 63:	
20	CCCACGCGTG CKGGCGCCTG GCAGCCACCG CCTGGGAGGT TACTGTAAGG CCCGCAGCTC	60
	CCGCCAGCTC CCGCGGACTS CTGCCGCCTC CTTACCATGA AGCCAGTAAG TCGTCGCACG	120
25	CTGGACTGGA TITATTCAGT GTTGCTGCTT GCCATCGTTT TAATCTCCTG GGGCTGCATC	180
	ATCTATGCTT CGATGGTGTC TGCAAGACGA CAGCTAAGGA AGAAATACCC AGACAAAATC	240
	TTTGGGACGA ATGAAAATTT GTAACTCTTC TGGATTTAAT TATCTGAAAA TACAGTTCTT	300
30	TCCCTCATGC TTATGTAGAT ATAAAAATAA AATTCATAAT GCAAAAAAAA AAAAAAAAA	360
	G	361
35		
	(2) INFORMATION FOR SEQ ID NO: 64:	
40	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1668 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
45	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 64:	
	GGCACGAGGT CTGCCAAGCT ATAGACCATG GCTGTGAACA CATTTGTGTG AACAGTGACG	60
50	ACTCATACAC GTGCGAGTGC TTGGAGGGAT TCCGGCTCGC TGAGGATGGG AAACGCTGCC	120
50	GAAGAAGGAT GTCTGCAAAT CAACCCACCA TGGCTGCGAA CACATTTGTG TTAATAATGG	180
	GAATTCCTAC ATCTGCAAAT GCTCAKAGGG ATTTGTTCTA GCTGAGGACG GAAGACGGTG	240
55	CAAGAAATGC ACTGAAGGCC CAATTGACCT GGTCTTTGTG ATCGATGGAT CCAAGAGTCT	300
	TGGAGAAGAG AATTTTGAGG TCGTGAAGCA GTTTGTCACT GGAATTATAG ATTCCTTGAC	360
60	AATTTCCCCC AAAGCCGCTC GAGTGGGGCT GCTCCAGTAT TCCACACAGG TCCACACAGA	420

	GTTCACTCTG AGAAACTTCA ACTCAGCCAA AGACATGAAA AAAGCCGTGG CCCACATGAA	480
	ATACATGGGA AAGGGCTCTA TGACTGGGCT GGCCCTGAAA CACATGTTTG AGAGAAGTTT	540
5	TACCCAAGGA GAAGGGCCCA GGCCCTTTCC ACAAGGGTGC CCAGAGCAGC CATTGTGTTC	600
	ACCGACGGAC GGGCTCAGGA TGACGTCTCC GAGTGGGCCA GTAAAGCCAA GGCCAATGGT	660
10	ATCACTATGT ATGCTGTTGG GGTAGGAAAA GCCATTGAGG AGGAACTACA AGAGATTGCC	720
10	TCTGAGCCCA CAAACAAGCA TCTCTTCTAT GCCGAAGACT TCAGCACAAT GGATGAGATA	780
	AGTGAAAAAC TCAAGAAAGG CATCTGTGAA GCTCTAGAAG ACTCCGATGG AAGACAGGAC	840
15	TCTCCAGCAG GGGAACTGCC AAAAACGGTC CAACAGCCAA CAGTGCAACA CAGATATCTG	900
	TTTGAAGAAG ACAATCTTTT ACGGTCTACA CAAAAGCTTT CCCATTCAAC AAAACCTTCA	960
20	GGAAGCCCTT TGGAAGAAAA ACACGATCAA TGCAAATGTG AAAACCTTAT AATGTTCCAG	1020
20	AACCTTGCAA ACGAAGAAGT AAGAAAATTA ACACAGCGCT TAGAAGAAAT GACACAGAGA	1080
	ATGGAAGCCC TGGAAAATCG CCTGAGATAC AGATGAAGAT TAGAAATCGC GACACATTTG	1140
25	TAGTCATTGT ATCACGGATT ACAATGAACG CAGTGCAGAG CCCCAAAGCT CAGGCTATTG	1200
	TTAAATCAAT AATGITGIGA AGTAAAACAA TCAGTACTGA GAAACCTGGT TTGCCACAGA	1260
30	ACAAAGACAA GAAGTATACA CTAACTTGTA TAAATTTATC TAGGAAAAAA ATCCTTCAGA	1320
50	ATTCTAAGAT GAATTTACCA GGTGAGAATG AATAAGCTAT GCAAGGTATT TTGTAATATA	1380
	CTGTGGACAC AACTTGCTTC TGCCTCATCC TGCCTTAGTG TGCAATCTCA TTTGACTATA	1440
35	CGATAAAGTT TGCACAGTCT TACTTCTGTA GAACACTGGC CATAGGAAAT GCTGTTTTTT	1500
	TGTAYTGGAC TTTACCTTGA TATATGTATA TGGATGTATG CATAAAATCA TAGGACATAT	1560
40	GTACTTGTGG AACAAGTTGG ATTTTTTATA CAATATTAAA ATTCACCACT TCAGAGRAAA	1620
70	AAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAA	1668
45	(2) INFORMATION FOR SEQ ID NO: 65:	
	(i) SEQUENCE CHARACTERISTICS:	
50	(A) LENGTH: 1353 base pairs	
50	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
55	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 65:	
	GGGTCGACCC ACGCGTCCGC CCACGCGTCC GGATGGCTGC GCTGTTGCTG AGACACGTTG	60
	GTCGTCATTG CCTCCGAGCC CACTTTAGCC CTCAGCTCTG TATCAGAAAT GCTGTTCCTT	120
60	THE STATE OF THE PARTY ASSESSMENT OF THE PROPERTY OF THE PARTY OF THE	180

	GICCICIGIC ICCCACATT ACTAICTACA GITGGICTOT TCCCATGGCG ATGICCATCT	240
5	GCCACCGTGG CACTGGTATT GCTTTGAGTG CAGGGGTCTC TCTTTTTGGC ATGTCGGCCC	300
J	TGTTACTCCC TGGGAACTTT GAGTCTTATT TGGAACTTGT GAAGTCCCTG TGTCTGGGGC	360
	CAGCACTGAT CCACACAGCT AAGTTTGCAC TTGTCTTCCC TCTCATGTAT CATACCTGGA	420
10	ATGGGATCCG ACACTTGATG TGGGACCTAG GAAAAGGCCT GAAGATTCCC CAGCTATACC	480
	AGTCTGGAGT GGTTGTCCTG GTTCTTACTG TGTTGTCCTC TATGGGGCTG GCAGCCATGT	540
15	GAAGAAAGGA GGCTCCCAGC ATCATCTTCC TACACATTAT TACATTCACC CATCTTTCTG	600
13	TTTGTCATTC TTATCTCCAG CCTGGGAAAA GTTCTCCTTA TTTGTTTAGA TCCTTTTGTA	660
	TTTTCAGATC TCCTTGGAGC AGTAGAGTAC CTGGTAGACC ATAATAGTGG AAAAGGGTCT	720
20	AGTITICCCC TIGITICTAA AGATGAGGIG GCTGCAAAAA CTCCCCTTIT TIGCCCACAG	780
	CTTGCCTACT CTCGGCCTAG AAGCAGTTAT TCTCTCTCCA TATTGGGCTT TGATTTGTGC	840
25	TGAGGGTCAG CTTTTGGCTC CTTCTTCCTG AGACAGTGGA AACAATGCCA GCTCTGTGGC	900
20	TTCTGCCCTG GGGATGGCCC GGGTTGGGG GTGGGTTGGT GAGGCTTTGG GTGCCACTGC	960
	CTGTGGGTTG CTGGCTTAAA GGACAATTCT CTTCATTGGT GAGAGCCCAG GCCATTAACA	1020
30	CCTACACAGT GTTATTGAAA GAAGAGAGGT GGGGGTGGAG GGGAATTAGT CTGTCCCAGC	1080
	TAGAGGGAGA TAAAGAGGGC TAGTTAGTTC TTGGAGCAGC TGCTTTTGAG GAGAAAATAT	1140
35	ATAGCTTTGG ACACGAGGAA GATCTAGAAA ATTATCATTG AACATATTAA TGGTTATTTC	1200
	TTTTTCTTGG ATTTCCAGAA AAGCCTCTTA ATTTTATGCT TTCTCATCGA AGTAATGTAC	1260
	CCTTTTTTC TGAAACTGAA TTAAATACTC ATTTTATCTT TGAAAAAAAA AAAAAAAACC	1320
40	TNGGGGGGG CCCCGGACCC NAATTGGCCC TAT	1353
45	(2) INFORMATION FOR SEQ ID NO: 66:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1011 base pairs	
50	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
50	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 66:	
55	CGGAAGAAAG CAGCCATCCA GACATTTCAG AACACGTACC AGGTGTTAGC TGTGACCTTC	60
	AATGACACAA GTGATCAGAT TATTTCTGGT GGAATAGACA ATGATATCAA GGTCTGGGAC	120
60	TGCGCCAGAA CAAGCTAACC TACACCATGA GAGGCCATGC AGATTCAGTG ACTGGCCTGA	180
UU		

	GTTTAAGTTC TGAAGGCTCT TATCTTTTGT CCAATGCAAT GGACAATACA GTTCGTGTCT	240
	GGGATGTCCG GCCATTTGCC CCCAAAGAGA GATGTGTAAA GATATTTCAA GGAAATGTGC	300
5	ACAACITIGA AAAGAACCIT CIGAGATGIT CITGGTCACC IGATGGAAGC AAAATAGCAG	360
	CTGGCTCAGC CGACAGGTTT GTTTATGTGT GGGATACCAC AAGCAGGAGA ATATTGTATA	420
10	AGCTGCCCGG CCATGCTGGC TCCATCAATG AAGTGGCTTT CCACCCTGAT GAGCCCATCA	480
10	TTATCTCAGC ATCGAGTGAC AAGAGACTGT ATATGGGAGA GATTCAGTGA AGATATGGAC	540
	TGGAAGACTC CAAGGCCGCT TGTCTTTGAG ACCTCAGACT GCATAAGTGA TGCCAAATGT	600
15	TGGATGTCCA GGYTAGCACC CTCCCTTCAG ATGACCATTG CTAGCAAGAA ACAGGAGGCG	660
	GTGGCCATAT TCCAAAAACC ACTTCTGTCC CATTTCACCA GGATGACTAA GGCAAGCTCC	720
20	CTGTGGCCTC TAAAAACCAC CTGCCAGATT TCAGGGACTG TTTTTTTTT TCTTTTTCTT	780
20	TTTTCCTGTT TTCTAATGCA GGCCCAATGT GACAAATTTG TTGGTTGGGA TTTTTTTTTT	840
	TTTTTGTAAC TGGCTTGTAT GATATTTTCT TTCTGTATTT CTCTATATCA TTTTGTATTA	900
25	AAAGCCAAAT AGATGCCTTT TTACAAGARM AAAAAAAAAA AAAAAAAAA NNAAAAAAA	960
	CTGGGAGGG GGGCCCGGTA CCCAAATCGC CGGATATGAT CGTAAACAAT C	1011
30		
	(2) INFORMATION FOR SEQ ID NO: 67:	
	1–1	
	(i) SEQUENCE CHARACTERISTICS:	
35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1193 base pairs (B) TYPE: nucleic acid	
35	· · · · · · · · · · · · · · · · · · ·	
35 40	(A) LENGTH: 1193 base pairs(B) TYPE: nucleic acid(C) STRANDELNESS: double	
	(A) LENGTH: 1193 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	60
	(A) LENGTH: 1193 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 67:	60 120
	(A) LENGTH: 1193 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 67: GGCCGGGCGG TGCGCACTGC GGGCGCATCC CTGCCCCGGC GCCGTCCGTG CCCGCGGAC	
40	(A) LENGTH: 1193 base pairs (B) TYPE: nucleic acid (C) STRANDELNESS: double (D) TOPOLOGY: linear (Xi) SEQUENCE DESCRIPTION: SEQ ID NO: 67: GGCCGGGCGG TGCGCACTGC GGGCGCATCC CTGCCCCGGC GCCGTCCGTG CCCGCGGAC CTGACAGCCG GGTCAGAGGG CGAACTGTGC TCAGGCCCGG GCTGGACGCA GAGCCAGAGC	120
40	(A) LENGTH: 1193 base pairs (B) TYPE: nucleic acid (C) STRANDEINESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 67: GGCCGGGCGG TGCGCACTGC GGGCGCATCC CTGCCCCGGC GCCGTCCGTG CCCGCGGGAC CTGACAGCCG GGTCAGAGGG CGAACTGTGC TCAGGCCCGG GCTGGACGCA GAGCCAGAGC TGTCCCCAGA GGAGCAGAGG GTCCTGGAAA GGAAGCTGAA AAAGGAACGG AAGAAAGAGG	120 180
40 45	(A) LENGTH: 1193 base pairs (B) TYPE: nucleic acid (C) STRANDELNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 67: GGCCGGGCGG TGCGCACTGC GGGCGCATCC CTGCCCCGGC GCCGTCCGTG CCCGCGGGAC CTGACAGCCG GGTCAGAGGG CGAACTGTGC TCAGGCCCGG GCTGGACGCA GAGCCAGAGC TGTCCCCAGA GGAGCAGAGG GTCCTGGAAA GGAAGCTGAA AAAGGAACGG AAGAAAGAGG AGAGGCAGCG TCTGCGGGAG GCAGGCCTTG TGGCCCAGCA CCCGCCTGCC AGGCGCTCGG	120 180 240
40 45 50	(A) LENGTH: 1193 base pairs (B) TYPE: nucleic acid (C) STRANDELNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 67: GGCCGGGCGG TGCGCACTGC GGGCGCATCC CTGCCCCGGC GCCGTCCGTG CCCGCGGGAC CTGACAGCCG GGTCAGAGGG CGAACTGTGC TCAGGCCCGG GCTGGACGCA GAGCCAGAGC TGTCCCCAGA GGAGCAGAGG GTCCTGGAAA GGAAGCTGAA AAAGGAACGG AAGAAAGAGG AGAGGCAGCG TCTGCGGGAG GCAGGCCTTG TGGCCCAGCA CCCGCCTGCC AGGCGCTCGG GGGCCGAACT GGCCTGGGAC TACCTCTGCA GATGGGCCCA AAAGCACAAG AACTGGAGGT	120 180 240 300
40 45	(A) LENGTH: 1193 base pairs (B) TYPE: nucleic acid (C) STRANDEINESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 67: GGCCGGGCGG TGCGCACTGC GGGCGCATCC CTGCCCCGGC GCCGTCCGTG CCCGCGGGAC CTGACAGCCG GGTCAGAGGG CGAACTGTGC TCAGGCCCGG GCTGGACGCA GAGCCAGAGC TGTCCCCAGA GGAGCAGAGG GTCCTGGAAA GGAAGCTGAA AAAGGAACGG AAGAAAGAGG AGAGGCAGCG TCTGCGGGAG GCAGGCCTTG TGGCCCAGCA CCCGCCTGCC AGGCGCTCGG GGGCCGAACT GGCCTGGGAC TACCTCTGCA GATGGGCCCA AAAGCACAAG AACTGGAGGT TTCAGAAGAC GAGGCAGACG TGGCTCCTGC TGCACATGTA TGACAGTGAC AAGGTTCCCG	120 180 240 300 360

GCGCGGGGG GGGCCGCTGC CCAGTGCAGG GCTGCCTCAG ACCACACAGG GTGCAGCTCC

60

	TCCGGCGGTG	GGGGCCGGGT	TCACCAGCAG	GGCAGCGGCT	GAGCAAGGGC	TTTCAGCTCC	660
5	TCCGGTGGTG	GGGCCGGGA	TCACCAGCAC	CAGAGCCTCG	CAAGGCCCC	TTCCCTCCTC	720
	CAGACCCTCC	TTGGCCGGTG	ACGCTGTGAC	AGTGATGGCA	GGTTCAGTGC	CTTCAGCGCA	780
	GAGCGTGGAT	GCTCTGGAAT	CACCCGGACC	CCTGGCCTTG	GAGGGACCCT	CCAGCCCCAG	840
10	GAATCTGCTT	TGGAGGGAAA	TGTCTATTTT	TCTACCGGGA	ATATTTTAGA	GATTGGGGCA	900
	TECTEGCTCC	TCCCGCCAGC	TGCAAACCTG	CACCTTCCGC	CTGATTCCCG	ATCCCCCTGC	960
15	GTGGGCCGCA	TTCCTGGTCC	CCICCCICCC	TCCATCGAGG	GCCTGCCTG	TGGCCTGTTT	1020
	TCCTTTGACC	CCACACAGCG	TCATTGCGGG	TCATGGGGAG	CCCCTGGTGG	GAGCTTGTGG	1080
	AGTCGGATCA	CGTACCTGTG	CAGAAACCGC	CTCTGTGGCT	GCATTTGAAA	TAAAACCCGA	1140
20	CCCAGCAGCA	АААААААА	AAAAAANCNC	NAGGGGGGC	CCGGNACCCA	ATT	1193

25 (2) INFORMATION FOR SEQ ID NO: 68:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 560 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 68:

35	GAATTCGGCA	CGACTTCCCA	CATGATGCAA	AATGCATTTC	TCAGAGTAGA	TTGCAGTCAA	60
	AAATGTTGGA	AACTACTAAG	CATGTGCARA	TAGCATGCAT	GCTGCTGCTG	ACCTGCCAGA	120
40	TATTTCTCCC	TTCCTCCCTT	TCTCCCTCAT	TTATTCATTC	ATTAACTGAT	TCATTCATCC	180
	CATTAAAAAA	ATTATATGTA	TGTTTTGTGC	AAAGCACCCT	ACTCAAGGCT	GCGGGGTACA	240
	AAAGTATATC	AGAAGCCTTG	GGCTTTGACM	WACTTCTCTG	TAGTAGTGCT	AGATTTGTGT	300
45	GGATCTGCCA	CACTTACTCC	AGGCCTCTTG	TGACCTGTGC	TTTGCATTAA	TCTCTTAGGC	360
	TAAGCCACAT	ACCTTTTCAT	TATACAATCT	TTGCTGATGC	TAAGGACAGA	TTCCAAAGTG	420
50	CCCTCCTTAT	AATTTTTGTA	TTTAATGCAA	AGTGTAATCA	AGAATAGGCC	ATTGTTAGGT	480
50	CAATTGCTTT	TCTGTATTTA	TCTTTTCAAA	СААТАААТАА	TCAGTGGGAT	GAAAAAGGGC	540
	CGGAAAAAA	АААААААА					560

55

30

(2) INFORMATION FOR SEQ ID NO: 69:

60 (i)

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1657 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear

5

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 69:

		_					
	CGGACNGAGC	cecceccee	CACTTCCTGT	GGAGGCCGCA	GCGGGTGCGG	GCGCCGACGG	60
10	GCGAGAGCCA	GCGAGCGAGC	GAGCGAGCCG	AGCCGAGCCT	CCCGCCGTCG	CCATGGGCCA	120
	GAACGACCTG	ATGGGCACGG	CCGAGGACTT	CGCCGACCAG	TTCCTCCGTG	TCACAAAGCA	180
15	GTACCTGCCC	CACGTGGCGC	CCTCTCTCT	GATCAGCACC	TTCCTGGAGG	ACGGCATCCG	240
13	TATGTGGTTC	CAGTGGAGCG	AGCAGCGCGA	CTACATCGAC	ACCACCTGGA	ACTGCGGCTA	300
	CCTGCTGGCC	TCGTCCTTCG	TCTTCCTCAA	CTTGCTGGGA	CANTGACTGG	CTGCGTCCTG	360
20	GTGTTGAGCA	GGAACTTCGT	GCAGTACGCC	TGCTTCGGGC	TCTTTGGAAT	CATAGCTCTG	420
	CAGACGATTG	CCTACAGCAT	TTTATGGGAC	TTGAAGTTTT	TGATGAGGAA	CCTGGCCCTG	480
25	GGAGGAGGCC	TGTTGCTGCT	CCTAGCAGAA	TCCCGTTCTG	AAGGGAAGAG	CATGITTGCG	540
	GGCGTCCCCA	CCATGCGTGA	GAGCTCCCCC	AAACAGTACA	TGCAGCTCGG	AGGCAGGGTC	600
	TTGCTGGTTC	TGATGTTCAT	GACCCTCCTT	CACTTTGACG	CCAGCTTCTT	TTCTATTGTC	660
30	CAGAACATCG	TGGGGCACAG	CTCTGATGAT	TTTAGTGGCC	ATTOGTTTA	AAACCAAGCT	720
	GGCTGCTTIG	ACTCTTGTTG	TGTGGCTCTT	TGCCATCAAC	GTATATTTCA	ACGCCTTCTG	780
35	GACCATTCCA	GTCTACAAGC	CCATGCATGA	CTTCCTGAAA	TACGACTTCT	TCCAGACCAT	840
	GTCGGTGATT	GGGGGCTTGC	TCCTGGTGGT	GCCCTGGGC	CCTGGGGGTG	TCTCCATGGA	900
	TGAGAAGAAG	AAGGAGTGGT	AACAGTCACA	GATCCCTACC	TGCCTGGCTA	AGACCCGTGG	960
40	CCGTCAAGGA	CTGGTTCGGG	GTGGATTCAA	CAAAACTGCC	AGCTTTTATG	TATCCTCTTC	1020
	CCTTCCCCTC	CCTTGGTAAA	GGCACAGATG	TTTTGAGAAC	TTTATTTGCA	GAGACACCTG	1080
45	AGAATCAATG	GCTTCAGGAC	ATGGGTTCTC	TTCTCCTGTG	ATCATTCAAG	TGCTCACTGC	1140
	ATGAAGACTG	GCTTGTCTCA	GTGTTTCAAC	CTCACCAGGG	CIGICICITG	GTCCACACCT	1200
	CGCTCCCTGT	TAGTGCCGTA	TGACAGCCCC	CATCAAATGA	CCTTGGCCAA	GTCACGGTTT	1260
50	CTCTGTGGTC	AAGGTTGGTT	GGCTGATTGG	TGGAAAGTAG	GGTGGACCAA	AGGAGGCCAC	1320
	GTGAGCAGTC	AGCACCAGTT	CTGCACCAGC	AGCGCCTCCG	TCCTAGTGGG	TGTTCCTGTT	1380
55	TCTCCTGGCC	CTGGGTGGGC	TAGGGCCTGA	TTCGGGAAGA	TGCCTTTGCA	GGGAGGGGAG	1440
55	GATAAGTGGG	ATCTACCAAT	TGATTCTGGC	AAAACAATTT	CTAAGATTTT	TITGCTTTAT	1500
	GTGGGAAACA	GATCTAAATC	TCATTTTATG	CTGTATTITA	TATCTTAGTT	GTGTTTGAAA	1560
60	ACGTTTTGAT	TTTTGGAAAC	ACATCAAAAT	AAATAATGGC	GTTTGTTGTA	аааааааа	1620

	AAAAAAACTC GRGGGGGGC CCGGTACCCA AATCGCC	1657
5		
	(2) INFORMATION FOR SEQ ID NO: 70:	
10	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 711 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 70:	
	GGCACGAGCG AAGACCCTGT TCGGACCCTG CCCCGATTCC AGACTCAGGT AGATCGTCGG	60
•	CATACCCTCT ACCGTGGACA CCAGGCAGCC CTGGGGCTGA TGGAGAGAGA TCAGGTATCC	120
20	CCCAGGGAGT AGGGGCTACC TTGAGGGGAT GATAGACCTC CCCCACTCCC AGTGKKACTC	180
	TGGAAATATG AAGGAACTAG GGAGTGGAAG AGATTTCAGA GCTGGGGAGA GGAGTTCCTC	240
25	CCTTCAAAGC CAGCAACTGC CTTTGGGGAA TGTCGGGGGG TCTCTCCTTT CTCCTGCTTG	300
	TITRAGGIGG TACACAGICC CCCCTICAMC TGGSGGGAAG CTGINCCGGA CARACICATC	360
30	TCAGCTTTCC CTTGGGGCAG GATCGGGGGC AGCAGCTCCA GCAGAAACAG CAGGATCTGG	420
3 0	AGCAGGAAGG CCTCGAGGCC ACACAGGGGC TGCTGGCCGG CGAGTGGGCC CCACCCCTCT	480
	GGRAGCTGGG CAGCCTCTTC CAGGCCTTCG TGAAGAGGGA GAGCCAGGCT TATGCGTAAG	540
35	CTTCATAGCT TCTGCTGGCC TGGGGTGGAC CCAGGACCCC TGGGGCCTGG GTGCCCTGAG	600
	TGGTGGTAAA GTGGAGCAAT CCCTTCACGC TCCTTGGCCA TGTTCTGAGC GGCCAGCTTG	660
40	GCCTTTGCCT TAATAAATGT GCTTTATTTT CAAAAAAAAA AAAAAAAAAC T	711
45	(2) INFORMATION FOR SEQ ID NO: 71: (i) SEQUENCE CHARACTERISTICS:	
50	(A) LENGTH: 935 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 71:	
55	GGCACAGGGT GAAAGCCAGC TAAACCCCAA GTGGAGAAGT GAAAGACATG GTTGTTCCCA	60
<i></i>	TAAGTTTATT GCTCACATTA TGAAAGAAGC CATAGTCATG AGTGAACCAC TCCCTAGGTT	120
	GATAAGGAAA CCAACACGGA AGATCTCTTT CTGGAAGAAG CAGCCAGCCT CGTGAAGGAG	180
60	CGGCCCAGCC GCCGGGCCCG AGGGTCGCCT TTTTGTTTCGGA GTGCCCACCAT TCTTCCCTTTCC	240

	CAGACATICT CGCCIGGAGC ACGAAGCCAG TATGITIGCA GACTITATCG TAGTGACAGC	300
5	GACAGTTCAA CGCTGCCCCG GAAGTCCCCC TTTGTCCGAA ATACTTTGGA AAGACGAACC	360
	CTTCGCTATA AGCAGTCATG CAGGTCTTCC CTGGCTGAGC TCATGGCCCG CACCTCCCTG	420
	GACTTGGAGC TGGATCTCCA GGCGTCGAGA ACACGGCAGA GGCAGCTGAA TGAGGAGCTC	480
10	TGCGCCCTCC GTGAGCTGCG GCAGCGGTTN GGAGGACGCC CAGCTCCGTG GCCAGACTGA	540
	CCTCCCACCC TGGGTGCTTC GGGACGAGCG GCTCCGTGGC CTGCTGCGGG AGCCGAGCGG	600
15	CAGACAAGAC AGACCAAACT TGACTACCGT CATGAGCAGG CGGCTGAGAA GATGCTGAAG	660
	AAGGCCTCCA AGGAGATCTA CCAGCTGCGT GGCAGAGCCA CAAAGAGCCC ATCCAAGTGC	720
	AGACCTTTAG GGAGAAGATA GCATTCTTCA CAAGGCCAAG GATCAACATA CCTCCTCTCC	780
20	CAGCCGACGA CGTCTGATGG AGTGCATTGT GCACATGAAG TATTTATCCA CCTGTTTTAT	840
	TITCATGAAG TICTTAGACT AGCTGAATTT GICTITAAAA TATTIGIGCA AAGCTATTAA	900
25	TATACACATT TIGTAAAAAA AAAAAAAAA AAACT	935
	(2) INFORMATION FOR SEQ ID NO: 72:	
30	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 504 base pairs (B) TYPE: nucleic acid	
35	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 72:	
	GCAGGGGCGA GGGGYTGGGG ACCGCGGGGC GGACGGGAGC GAGTATGTCC GCTCTGACTC	60
40	GGCTGGCGTC TTTCGCTCGC GTTGGAGGCC GCCTTTTCAG AAGCGGCTGC GCACGGACTG	120
	CTGGAGATGG TGGAGTCCGT CATGCCGGTG GTGGTGTGCA CATTGAGCCC CGGTATAGAC	180
45	AGTICCCCCA GCTGACCAGA TCCCAGGTGT TCCAGAGCGA GTTCTTCAGC GGACTCATGT	240
	GGTTCTGGAT TCTCTGGCGC TTTTGGCATG ACTCAGAAGA GGTGCTGGGT CACTTTCCGT	300
	ATCCTGATCC TTCCCAGTGG ACAGATGAAG AATTAGGTAT CCCTCCTGAT GATGAAGACT	360
50	GAAGGTGTAG ACTCAGCCTC ACTCTGTACA AGAGCCAGGT GAGAATTTCA AGGATTATCG	420
	ACTICATATI GCACATIAAA GITACAAATI AAAGIGGCII GGICAAGAAI GARAAAAAAA	480
55	AAAAAAATT GGGGGGGC CCCN	504

	(I) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 620 base pairs	
5	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
	(with ground property and	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 73:	
10	GAATTCGGCA CGAGGAGGAG GGGAGGCGGG GTAAGTTTGG TGGGAAACTC TGTAATTTCC	60
	WITTITACIT TCACAGCAAT AGIGCAGAAT CCAGAATGGA TGICCTCTTT GTAGCCATCT	120
15	TTGCTGTGCC ACTTATCCTG GGACAAGAAT ATGAGGATGA AGAAAGACTG GGAGAGGATG	180
	AATATTATCA GGTGGTCTAT TATTATACAG TCACCCCCAG TTATGATGAC TTTAGTGCAG	240
	ATTTCACCAT TGATTACTCC ATATTTGAGT CAGAGGACAG GCTGAACAGG TTGGATAAGG	300
20	ACATAACAGA AGCAATAGAG ACTACCATTA GTCTTGAAAC AGCACGTGCA GACCATCCGA	360
	AGCCTGTAAC TGTGAAACCA GTAACAACGG AACCTCAGAG TCCAGATCTG AACGATGCCG	420
25	TGTCCAGTTT GCGAAGTCCT ATTCCCCTCC TCCTGTCGTG TGCCTTTGTT CAGGTGGGGA	480
	TGTATTTCAT GTAGAAGGTG GAAGAAGGCT GCTATGACTC TTTGGATGGG AGTCTGGCAA	540
	GAGGAAATTG GAAGATAAAA TAAATAATAA GTGAAATAAA AAAAAAAA	600
30	GGGGGGGCCC GGTACCCAAT	620
25		
35	(2) INFORMATION FOR SEQ ID NO: 74:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 581 base pairs	
40	(B) TYPE: nucleic acid	
40	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 74:	
45	ACAAGGTGTG TGTAAAGTTT ATGTTTGTAA ACTGAATTCT ATCTTAAATC CAAAAAGAAC	60
	TCGGGAGIAA TTCATTTTG TAGCATAAAG ATCCCTAAGT TTTATTTTGA AATATCTGAT	120
5 0	TTTTACACGT TAAAAAATAA CAGGGCATCG AGAGGATTCC TAGGTGACAT CCAGACTCCT	180
50	TTAGCTTTGT GTGTGGCA CCGGTTAGTC TGCTTCTCTC TCCTTTCTTG CACTGCTTCA	240
	CACAGCCATG CCCTGCCAGC CCGGGCAGGT GCCTTCCTGT CAATGTACAT TTGGGCTTCT	300
55	GCTCATGCTG CCCTCCCTCC CCTCCCCTGC CTCCCCAACCC CGCCCCTTTT GTTCCTCCAT	360
	GGAGTACTIC CATGGGTGTG CCTCCCCCAG CCAAGCCATA ATAGGTGGTT TCCCCTTCGC	420
60	TICTGTAGCC CTTGCAGACA TCCTCTGTTT ACAGTAGGTG TTGACTTACT TCCCCTCTCC	480

	COGSTAAAGC CATAAACTCC TTAAGGACAG GTAGCATTCT TAGTATCTTC GTTCTTCTCA	540
	ATGACCAGTA GACCATTAAA CATGTAGCAA ACAAATGTGA A	581
5		
	1	
	(2) INFORMATION FOR SEQ ID NO: 75:	
10	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1843 base pairs	
	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
15	(D) TOPOLOGY: linear	
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 75:	
	AAACCCAACN CCCTCCGGTC CCCNAAAGAA AGCCCAGCCC AAATCCCAAG CCGGCAGTGA	60
20	GCCCGCGAAC AAGGCCCTCA AGACGCCCAG NCGAACAAGC AGCCCCCAGG AGGCCCCGCA	120
	AGAGAACTCC CTGCCGGCCC AAGCGGGCAG CTTCTGTGCG GCAGAACTCA GCCACCGAGA	180
25	GCGCAGACAG CATCGAGATT TATGTCCCGG AGNCCCAGAC CAGGCTCTGA GACCATGCAG	240
	GAGGAAAGAA ACGATTTTAA ATCATTAAAA ACACAAAAAC TAAGTGCGAA CGGAACAGAG	300
	TTTTCTCAAC CTTTGCTATG GTTATTCTGT CTAGAGACCC TGAGCCAACT TTCAAATTGA	360
30	CGCATACAAG GGCTCACAAT TIGGCTTTTT TGGGTCCCTC CCAGCTTTAG GTTATGAAGA	420
	TYPTACTCAC AAAAAAAATC AACAAAAATC ACGAAACTAG AAAACTTTTT TTTTCCTCTT	480
35	GCTGGCCGTG GTGGACTAGA TAGATGGACG TCGGCAACTC CCGGCCCAGC CTCCATACTG	540
JJ	CGGTCTTTTT ACTCGTTCTA TCTGATGAGA ACTCACACTA GCTTGTTTAC AAGATGACGA	600
	CAGTCCAAGG GCAGCCTTGG GCACCTGCCA TGTCCCTCCT TTCCCCAGCT ATCCCCGCTC	660
40	TGACCTTGAT TTTCATTCTT ATGTTTTTCT CTTTTCCCTT CAGAGCTCAC ACAGTGGTCA	720
	CCATTGTGGC AAGCGGCTTT CTGGGTCTCA GCCCTCTCTG CGGTTGAGGG CCCAGAGGAC	780
45	AGAGAGATGG ACATGCGTCC CCTCCCTCCC CCCGCCAAGT GCTCACACAC AACCTCACGC	840
73	GCACACACA ACACGCAGAT GGAGGCGCCT CACTGGGAGG TGCCCCGCCA GCCCTGGGCA	900
	GTGTCAGGCA GGACTCACTC ACCGCTGAGC AGATGAGAGA AGTTTTAGTC TTGGCGGGTG	960
50	GAAATGAGAC GAAGCCACAG TTATCACACT CCAGACTCCT GCCCTTTTAT TTTCTCCAGC	1020
	CCCTTCTTCC TTCAGCAAAA TCTAGGACTC CCGAGTGGCT TCCAGGGGGC CGTCAGTCCT	1080
55	CAGCCGCGCC TGTGTCCGGT GCCCGAGGGG CGGGCGGCGG TGTCTGTATG TATGTGTACA	1140
J.J	TATGCACATA GACCTTAGAG TGTATAGTTA ACAAACGCCC ATCTGCTCAC CCATGCCCAC	1200
	CCAGCGCCGC CGCCGCTGGC TCTCGGGGCA CCTGGCAGGA GGCGGGTGTG TGAATAGCAT	1260
60	ATATTTTTAC ATGTACTATA TCTAGGTGTG TGTACAAGTG TGTGTAAAAA TATATACCTT	1320

840

	GTGTGTAAGC AGCCCTTTTT TTT	TTTGGTC TCCACCCCC	TCCCCCCGCC	CCGCACTCCT	1380
5	AAGGCCCAT CTGCCCAGCC TCT	GAGTTTT CTGTTCTATT	TTTTTTTTAA	CCCCAATTAT	1440
	CCTTCTCTCT CTCCTGCCCC CGC	CATCCCAC TCCCAGGGTG	TCACGAGCCC	TGAGCTGCAA	1500
	TGGCCCGGGC CTGCAGGGCG GGC	TAGGGGA GGGCARGGCT	SAGCCCCGAA	GCCAGCTCAG	1560
10	TACCTGAGGG GCTGCTCTAT GCT	GTGTATG CGCCTCTCTG	GCATCCGAGA	CATCCTCTTG	1620
	GTGGCGCTTG CTNGCAGGGG ACC	CCCCCCC CGTCCCCAGG	TGAACCAAGG	CTCTCCTCCG	1680
15	GGGCCCATTT CCAGCTTGGC CGC	CGTCTGT GACCTTGGGC	AAGTCACTTG	ACCTCTGTGT	1740
	GCCTCAACTT CCTCCTCTGT AAA	AACGGGGA CAGTCCCTGC	CCCTCCCTAC	CTCACAGGCA	1800
	TGTTGTGAGA ATAAATGAGG TAA	ACGTGTAA AAAAAAAAA	AAT		1843
20					
	(2) Thromagan pop and I	T NO. 76			
	(2) INFORMATION FOR SEQ I	D NO: 76:			
25	(i) SEQUENCE CHARA				
		: 1441 base pairs			
	• •	EDNESS: double			
20	(D) TOPOLO	GY: linear			
30	(xi) SEQUENCE DESC	CRIPTION: SEQ ID NO	: 76:		
50					
	(xi) SEQUENCE DESC TCGACCCACG CGTCCGGCTC CCC			GTCTGTCCCG	60
35		GAGCCCT GCCAACCATG	GTGAACTTGG		60 120
	TCGACCCACG CGTCCGGCTC CCC	GAGCCCT GCCAACCATG	GIGAACTTGG GAGTATGCCG	CATGCCAGTC	
	TCGACCCACG CGTCCGGCTC CCA	GAGCCCT GCCAACCATG AGCACCC GGGACTCGGG TCACCTT CGTCACAGGC	GTGAACTTGG GAGTATGCCG ACCGGCATGG	CATGCCAGTC	120
35	TCGACCCACG CGTCCGGCTC CCA GGTGGACGAC GCCGTGGCTG CCA ACACGCCTTC ATGAAGGGCG TTT	CAGCCCT GCCAACCATG AGCACCC GGGACTCGGG TCACCTT CGTCACAGGC TTCCATA CCCTTTGCAG	GTGAACTTGG GAGTATGCCG ACCGGCATGG TGGAGCCTCC	CATGCCAGTC CCTTTGGCTT TAGTGGCCGT	120 180
35	TCGACCCACG CGTCCGGCTC CCC GGTGGACGAC GCCGTGGCTG CCA ACACGCCTTC ATGAAGGGCG TTT GCAGATGTTC ATTCAGAGGA AGT	XAGCCCT GCCAACCATG AGCACCC GGGACTCGGG TCACCTT CGTCACAGGC TTCCATA CCCTTTGCAG PACGGGGT GACGAGAGTG	GTGAACTTGG GAGTATGCCG ACCGGCATGG TGGAGCCTCC GAGTCGGAGA	CATGCCAGTC CCTTTGGCTT TAGTGGCCGT AATGCAACAA	120 180 240
35	TCGACCCACG CGTCCGGCTC CCC GGTGGACGAC GCCGTGGCTG CCA ACACGCCTTC ATGAAGGGCG TTT GCAGATGTTC ATTCAGAGGA AGT GGTTGCAGGC TCTGTGGTCA GCT	XAGCCCT GCCAACCATG AGCACCC GGGACTCGGG TCACCTT CGTCACAGGC TTCCATA CCCTTTGCAG ACGGGGT GACGAGAGTG EGGCAGCT CCCCAAAGAC	GTGAACTTGG GAGTATGCCG ACCGGCATGG TGGAGCCTCC GAGTCGGAGA AGGAGCACAG	CATGCCAGTC CCTTTGGCTT TAGTGGCCGT AATGCAACAA ATCAGAGAAG	120 180 240 300
35	TCGACCCACG CGTCCGGCTC CCCCGGGCTG CCACGGGGACGAC GCCGTGGCTG CCACGGGGACGACGACGACGACGACGACGACGACGACGAC	XGAGCCCT GCCAACCATG AGCACCC GGGACTCGGG TCACCTT CGTCACAGGC TTCCATA CCCTTTGCAG PACGGGGT GACGAGAGTG XGGCAGCT CCCCAAAGAC ACAGAGGA TTGGGGGCAG	GTGAACTTGG GAGTATGCCG ACCGGCATGG TGGAGCCTCC GAGTCGGAGA AGGAGCACAG GAGGAGTCTG	CATGCCAGTC CCTTTGGCTT TAGTGGCCGT AATGCAACAA ATCAGAGAAG GAACACAGCC	120 180 240 300 360
35 40 45	TCGACCCACG CGTCCGGCTC CCCCGGTGGACGAC GCCGTGGCTG CCAACACGCCTTC ATGAAGGGCG TTTGGCAGAGACACGCCTCCTCGCAGACACCCCTCTGGCTCA GCTCCTCGGAGACCCCTCTGGCAGACCCCCTCAGGAGACCCCCTCAGGAGACCCCCCCAGAGACCCCCCCC	AGAGCCCT GCCAACCATG AGCACCC GGGACTCGGG TCACCTT CGTCACAGGC TTCCATA CCCTTTGCAG ACGGGGT GACGAGAGTG ACGCAGCT CCCCAAAGAC ACAGAGGA TTGGGGGCAG ACACCCTC CCCACACCCT	GTGAACTTGG GAGTATGCCG ACCGGCATGG TGGAGCCTCC GAGTCGGAGA AGGAGCACAG GAGGAGTCTG AGGGTACCCC	CATGCCAGTC CCTTTGGCTT TAGTGGCCGT AATGCAACAA ATCAGAGAAG GAACACAGCC AGTCGTATCC	120 180 240 300 360 420
35	TCGACCCACG CGTCCGGCTC CCCCGGTGGACGAC GCCGTGGCTG CCAACACGCCTTC ATGAAGGGCG TTTGGGTGAGACCCCAGGAGACCCCAGGGAGACCCCAGGAGACCCCAGGAGACCCCAGGAGACCCCAGGGAGACCCCAGGAGACCCCAGGAGACCCCAGGAGACCCCAGGAGACCCCAGGACCCCAGGACCCCAGGACCCCAGGACCCCAGGACCCCAGGACCCCAGGACCCCAGGACCCCAGGACCCCAGGACCCCAGGACCCCAGGACCCCAGGACCCCAGGACCCCAGGACCCCAGGACCCCAGCACCCCAGGACCCCAGGACCCCAGGACCCCAGGACCCCAGGACCCCAGGACCCCAGGACCCCAGCACCCCAGCACCCCAGCACCCCAGCACCCCAGCACCCCAGCACCCCAGCACCCCAGCACCCAACCCCAACCCCAACCCCAACCCCAACCCCAACCCC	AGAGCCCT GCCAACCATG AGCACCC GGGACTCGGG TCACCTT CGTCACAGGC TTCCATA CCCTTTGCAG ACGGGGT GACGAGAGTG ACGGAGAT ACAGAGGA TTGGGGCCAG ACACCCTC CCCACACCCT CCTGACACA ACACCTGCAG	GTGAACTTGG GAGTATGCCG ACCGGCATGG TGGAGCCTCC GAGTCGGAGA AGGAGCACAG GAGGAGTCTG AGGGTACCCC ATGGCTGCTG	CATECCAGTC CCTTTEGCTT TAGTEGCCGT AATGCAACAA ATCAGAGAAG GAACACAGCC AGTCGTATCC CCCCAACCTG	120 180 240 300 360 420 480
35 40 45	TCGACCCACG CGTCCGGCTC CCCCGGTGGACGAC GCCGTGGCTG CCACACGCCTTC ATGAAGGGCG TTTGGGTGAGACCCCAGGAGACCCCAGGAGACCCCAGGAGACCCCAGGAGACCCCAGGAGACCCCAGGAGACCCCAGGAGACCCCAGGCAGACCCCAGGAGACCCCAGGCAGACCCCAGGAGACCCCAGGAGACCCCAGGACCCCAGGCCCAGCCCAGGCCAGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCAGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCAGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCAGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCAGCCCAGGCCCAGGCCCAGCCCAGGCCCAGCCCAGCCCAGCCCAGCCCAGCCCAGCCCAGCCCAGGCCCAGCCCAGCCCAGCCCAGCCCAGCCCAGCCCAGCCCAGCCCAGCCCAGCCCAGCCCAGCCAGCCCAGCCCAGCCCAGCCCAGCCCAGCCCAGCCCAGCCCAGCCCAGCCCAGCCCAGCCCAGCCAGCCCAGCCCAGCCCAGCCCAGCCCAGCCCAGCCCAGCCCAGCCCAGCCCAGCCCAGCCCAGCCAGCCCAGCCCAGCCCAGCCCAGCCCAGCCCAGCCCAGCCCAGCCCAGCCCAGCCCAGCCCAGCCACACCCCAGCCCAGCCCAGCCCAGCCCAGCCCAGCCCAGCCCAGCCCAGCCCAGCCCACACCCCAGCCCACACCCCACACCCACACACACACACACACACACACAC	AGAGCCCT GCCAACCATG AGCACCC GGGACTCGGG TCACCTT CGTCACAGGC TTCCATA CCCTTTGCAG ACGGGGT GACGAGAGTG ACGGGGACT CCCCAAAGAC ACAGAGGA TTGGGGGCAG AGACCCTC CCCACACCCT CCTGACAA ACACCTGCAG AGAAAGG GCTCTCCCTG	GTGAACTTGG GAGTATGCCG ACCGGCATGG TGGAGCCTCC GAGTCGGAGA AGGAGCACAG GAGGAGTCTG AGGGTACCCC ATGGCTGCTG GGGTGGTGTT	CATECCAGTC CCTTTEGCTT TAGTGGCCGT AATGCAACAA ATCAGAGAAG GAACACAGCC AGTCGTATCC CCCCAACCTG TCTCCTCTAG	120 180 240 300 360 420 480 540
35 40 45	TCGACCCACG CGTCCGGCTC CCCCGGTGGACGAC GCCGTGGCTG CCAACACGCCTTC ATGAAGGGCG TTTGGGTGAGACCTGGGTCA GCTCTGTGGTCA GCTCTGGGAGACCTGCCCCAGGGAGACCTGCCCCAGGGAGACCTGCCCCAGGGAGACCTGCCCCAGGGAGACCTGGCCCAGGAGACCTGCCCCAGGGAGACCTGCCCCAGGGAGACCTGCCCCAGGAGACCTGGACCCCAGGGAGACCTGCCCCAGGAGACCTGGACCCCAGGAGACCTGGCAGACCCCAGGAGACCTGCCCAGGAGAGGTTGGACCCCAGGAGACCTGCCCCAGGACCCCAGGAGACCTGCCCAACACGCTTGACCCCAGGAGAGAGGTTGGAACCCCAGGACCTGCCCAACACACAC	AGAGCCCT GCCAACCATG AGCACCC GGGACTCGGG TCACCTT CGTCACAGGC TTCCATA CCCTTTGCAG TACGGGGT GACGAGAGTG ACAGAGGA TTGGGGGCAG TGACCCTC CCCACACCCT TCTGACAA ACACCTGCAG TAGAAAAGG GCTCTCCCTG TCTGCCAG CAGAGAGGGT	GTGAACTTGG GAGTATGCCG ACCGGCATGG TGGAGCCTCC GAGTCGGAGA AGGAGCACAG GAGGAGTCTG AGGGTACCCC ATGGCTGCTG GGGTGGTGTT GTGTCTGGGG	CATGCCAGTC CCTTTGGCTT TAGTGGCCGT AATGCAACAA ATCAGAGAAG GAACACAGCC AGTCGTATCC CCCCAACCTG TCTCCTCTAG GCCACCACCT	120 180 240 300 360 420 480 540

TTCTCTCCAC CCAAGTTTCC ACCTGACCAG GTGAAAAACA AATCAGAAGG GTAAGATGAT

	GACAGGTCAC ATGAAACCTT TATTACCCTA CAGTTGATAT ATGAGGATCA CATGCAAGTT	900
	ACATACTGAG GATGTACAGG GAAGTTCCCA GCGCTGAACC CCAGAATTAG ACGTTCGCAT	960
5	CAGCCCCGTA GGCCACGTGG ACACCACCAC AGCCTCTCTG TATGGGGGTC TGCCTCTGTA	1020
	GCACTTGGCA TGTAGGGGCA GAGCAAAAGG GGCCANGCTG GCCAGAGCCT GGCTGCTGGG	1080
10	NAGARGAGGG ACTTGTGGGS CACGCCACNT GCCTATCATT CCCCAYTCAT CTATTAGCCA	1140
•	AAGTCACTCC CCAGAGGCAG AGCTAGCCCG TTGTAGCCGT GTCTGTGTGG AGGGAAAGCT	1200
	TCTGAGTGGG CAAGCCTACA CACAGCCCCG AGCCCCAAGA GGAGGAAGAG GTGGAGACCA	1260
15	GACGGAACCT CCACAAGTCC ATCATGGTTA CAGCTGGCTT CCCCGCAGCA CCGAAGACCC	1320
	ACAGCATNOG CCCTGCTGCC CCCGACCCAG CTCAGCTGCC ANGCCTCACC TTGCCAGGAA	1380
20	TTGAAAGAAA GTTATTGAGT ACTAATTGGC CTCAGAGTNA CAGGAAGCTC AAGTTAAAGT	1440
	G -	1441
25	(2) INFORMATION FOR SEQ ID NO: 77:	
	(i) SEQUENCE CHARACTERISTICS:	
30	(A) LENGTH: 910 base pairs (B) TYPE: nucleic acid	
50	(C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
35	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 77:	
	GGCAGAGCTG GCCTTCGACT CGCTATGTCC ACTAACAATA TGTCGGACCC ACGGAGGCCG	60
	AACAAAGTGC TGAGGTGAGG ACCCCAGCGT CGTGGGCACG GGTTCGGGTT GTGGGTGTGG	120
40	ATCGGGGCCC TGGGAAGCGC CTGTCTATCC CGGGGGCAGG ACCTGAGCGC CCCTGACCCT	180
	CGAGCCTGTC GCAGGTACAA GCCCCCGCCG AGCGAATGTA ACCCGGCCTT GGACGACCCG	240
45	ACGCCGGACT ACATGAACCT GCTGGGCATG ATCTTCAGCA TGTGCGGCCT CATGCTTAAG	300
	CTGAAGTGGT GTGCTTGGGT CGCTGTCTAC TGCTCCTTCA TCAGCTTTGC CAACTCTCGG	360
	AGCTCGGAGG ACACGAAGCA AATGATGAGT AGCTTCATGT GAGACTTGCC CTACAGAACA	420
50	AGTGACTCTT GAGTAAGGGG TGGGGGGACC CCAGCCTGGC CATCCTAGAC TGACACCTCT	480
	CTCCTGTCTT CATGCTGTCC ATCTCTGCCG TGGTGATGTC CTATCTGCAG AATCCTCAGC	540
55	CCATGACGCC CCCATGGTGA TACCAGCCTA GAAGGGTCAC ATTITGGACC CTGTCTATCC	600
-	ACTAGGCCTG GGCTTTGGCT GCTAAACCTG CTGCCTTCAG CTGCCATCCT GGACTTCCCT	660
	GAATGAGGCC GTCTCGGTGC CCCCAGCTGG ATAGAGGGAA CCTGGCCCTT TCCTAGGGAA	720
60	CACCORRECC MINACOCOTICS TICSOTTO COCOTICS COCOTICS A AAMOONOM	300

	CATGITICTA GGGGTATICA TITGCTTTCT CGTTGAAACC TGTTGITAAT AAAGTTTTTC	840
5	ACTICTIGAAAA AAAAAAAAAA AAAAAAAAAC TYGRGGGGGG GCCCGGAACC CAATTICSCCG	900
J	GATAGTGAGT	910
10		
	(2) INFORMATION FOR SEQ ID NO: 78:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2776 base pairs	
15	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 78:	
	TCGACCCACG CGTCCGGGCG GGCAGTGATG GCGGCTGGTG ATGGGGACGT GAAGCTAGGC	60
	ACCCTGGGGA GTGGCAGCGA GAGCAGCAAC GACGGCGGCA GCGAGAGTCC AGGCGACGCG	120
25	GGAGCGGCAG CGRAAGGGGG AGGCTGGGCG GCGGCGGCGT TGGCGCTTCT GACGGGGGGC	180
	GGGGAAATGC TGCTGAACGT GGCGCTGGTG GCTCTGGTGC TGCTGGGGGC CTACCGGCTG	240
30	TEGETECECT EGGGGGGCG GGGTCTGGGG GCCGGGGCCG GGGCGGCCGA GGAGAGCCCC	300
50	GCCACCTCTC TGCCTCGCAT GAAGAAGCGG GACTTCAGCT TGGAGCAGCT GCGCCAGTAC	360
	GACGGCTCCC GCAACCCGCG CATCCTGCTC GCGGTCAATG GGAAAGTCTT CGACGTGACC	420
35	AAAGGCAGCA AGTTCTACGG CCCGGCGGT CCATATGGAA TATTTGCTGG TAGGGATGCC	480
	TCCAGAGGAC TGGCCACATT TTGCCTAGAT AAAGATGCAC TTAGAGATGA ATATGATGAT	540
40	CTCTCAGATT TGAATGCAGT ACAAATGGAG AGTGTTCGAG AATGGGAAAT GCAGTTTAAA	600
40	GAAAAATATG ATTATGTAGG CAGACTCCTA AAACCAGGAG AAGAACCATC AGAATATACA	660
	GATGAAGAAG ATACCAAGGA TCACAATAAA CAGGATTGAA CTTTGTAAAC AACCAAAGTC	720
45	AGGGGCCTTC AGAACTGCAA TTCTTACTCC CTTTCACAGA CTGTCCGGAG TCTTTGGGTT	780
	TGATTCACCT GCTGCGAAAA ACATTCAACA AATTGTGTAC AAGATAAATT AATCTCACTA	840
50	TGAAGATTTG AATAACTAGA CATTATTTAT GCTGCCAAAC TCATTTGTTG CAGTTGTTTG	900
50	TAATGTCTAG TGGGGCTTCA TCATCCTGAA AAGAAGGAGA CAGGGATTTT TITAAAGAGC	960
	AAGAAAGTCA CAATATTACT TCTTTCCTTC CTTTTTCCT TCTTTCCTTT CTTCTT	1020
55	TITCTITCTT TITAAAATAT ATIGAAGACA ACCAGATATG TATTTGCTAC TCAAGTGTAC	1080
	AGATCTCCTC AAGAAACATC AAGGGACTCC TGTGTCACAT ACTGTGTTTT TATTTTAACA	1140
	TOGETISACCE ACCORDICATE ATTROCCORDA CONCOCCIDAD ACADEMINADO CA CITADO	1140

	GGCTACTGAA	ACATTAAAAT	GTGAATTCCC	AAACTTTTCT	TTTTGGCTTT	GTCAGGGAAA	1260
	AGAAAAATAT	CTTTATAAAG	AAATCTTTGG	AAATTAGGAG	AAGGAATTTC	AGGTGGGTTT	1320
5	AAGTCAGAGC	TAGTTCCCCA	ACAGAAAGAT	CATTTGAAAC	CAGTITTTAT	CCCTTCTCTT	1380
	TCCTTCCCTT	TCCCTAAATC	AAATCAATAT	TAATTGTGCC	TTATTTCACT	TAACATAGAC	1440
10	TTGAATTATT	TTTAGGGAAA	GCCCCTATAA	TGAATTCAGA	AATCACTACA	AGCAGCATTA	1500
10	AGACTGAAGT	TGGAATATTC	TGTTGACCAT	AAAACCTTGA	TATCATTCTG	TGTATATAGA	1560
	ATGTAAAAGG	AATATTACAG	TGTTAACTGC	CATATATGTA	ATATACACAA	ACTCAATTAG	1620
15	CATTGTAATG	GCCAAATGCA	TTCCCCCATG	CTTTTCTGTT	TTCAAAAAAA	TTGAAAAACA	1680
	AATCAACTCT	TATCCCCAAC	AGCTGCCTAA	TTTTAGGAGT	CTGACCCTCC	ACATCTCACT	1740
20	GCTCTCCCTC	CATGGGGCTG	TGGAGTGGGT	GTCAGTATGG	ATGTGTCTGA	ATGTGTGAGG	1800
	CCTTGGAAGG	GACTCTTTCT	GCAGATACTG	TAAATACAAG	TACCATTTTA	ATAAAGCATG	1860
	TACAATAAAC	CAAAATAAGC	TTGAGTTGGA	CTTTATATAC	AGAACTGTAA	GCCAGTGCAT	1920
25	TATGATACAG	TTGTAAGATT	GTGCATTTGA	TTCAAGATAA	GGAAAAATCT	TGGAAATGAA	1980
	AAGCAGGCAC	KGGTTAACCA	AGTTGTACAC	ATTGTACCAC	ATTCAGCATA	ACTTTAGGAA	2040
30	GAAATTCCAC	TTTGTGAACA	TTCTCCAGAA	ATCCAAGATT	ATTCAGGTAA	GAATTGGTAT	2100
	ATTAAATGTA	CATCTTTTTA	CTTTCTATTT	TGATGCCAAC	TGATTATACT	AGACAATTAG	2160
	CACTCCAGGT	GGTTATTGAA	CACAAAACAG	TAAAAGAATA	TTGCACTGAT	AGATACTAAA	2220
35	TTATTATTTT	ATTAGGTTGA	AAAAGCCCTT	ACTAAAAGCC	CCTCATATAT	CAATTACTTT	2280
	ATTTCATTAT	GACTACTTAG	GTTCCGGGCT	GGGGACAAGT	TCACTTAAAA	AGGCAATGTT	2340
40	ATTTAACAGG	TCACCAGTTA	AGACTTCTGC	TTTGTAGATA	CATGCAGAAG	CCATCAAACA	2400
	AGGGGGRGCT	TITAACTGCA	ACAATAAGCT	AAAGTATGTA	AAATACTACA	TICTATTCAG	2460
	TCTTGGAGTG	TTTTGTAGAA	AGITATCITC	AGCCAAATCT	TTGCTGAAGA	CIGGITGIGG	2520
45	AGIGTTGGTA	AATGCTTTGT	GITTTTATGT	AAAATATTTT	CTAAACAAAA	AATGTTAAAA	2580
	GTACATGTCC	TCTGTAGTAA	ACTGATATCT	ATATATATGA	ATCATTCAAG	CCTAAAGTCT	2640
50	AGTAATAAAC	TGTACTTGTG	AATAGAGAAA	CCCTAAATAT	TCATGCAGWA	AAAATTATGC	2700
	GGTCTGTTAA	GAAAAATGAG	TAATTTGTGT	TTTGGACTTG	AAATAAACAG	TETTCTGTAG	2760
	ATAATTCCTC	AACTTC					2776

60 (i) SEQUENCE CHARACTERISTICS:

⁽²⁾ INFORMATION FOR SEQ ID NO: 79:

(A) LENGTH: 1525 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear

5

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 79:

		_		-			
	CCGCTGCTGA	TAACTATGGC	ATCCCCCGGG	CCTGCAGGAA	TTCGGCACGG	AGCTACGGCG	60
10	CCCCCTCCCT	CCTGCTGNCA	CCTGCAGGCT	CCTCCCCCCT	GGAGCCCACC	CAAGACATCA	120
	GCATCAGCGA	CCAGCTGGGG	GCCCAGGACG	TGCCCGTGTT	CCGGAACCTG	TCCCTGCTGG	180
15	TGGTGGGTGT	CGCCGCCCTG	TTCTCACTGC	TATTCCACCT	GGCACCCGG	GAGAGGCGCC	240
15	GGCCGCATGC	GGASGAGCCA	GGCGAGCACA	CCCCCTGTT	GCCCCTGCC	ACGGCCCAGC	300
	CCCTGCTGCT	CTGGAAGCAC	TGGCTCCGGG	AGCSGGCTTT	CTACCAGGTG	GGCATACTGT	360
20	ACATGACCAC	CAGGCTCATC	GTGAACCTGT	CCCAGACCTA	CATGGCCATG	TACCTCACCT	420
	ACTCGCTCCA	CCTGCCCAAG	AAGTTCATCG	CGACCATTCC	CCTGGTGATG	TACCTCAGCG	480
25	GCTTCTTGTC	CTCCTTCCTC	ATGAAGCCCA	TCAACAAGTG	CATTGGGAGG	AACATGACCT	540
23	ACTICICAGG	CCTCCTGGTG	ATCCTGGCCT	TTGCCGCCTG	GGTGGCGCTG	GCGGAGGGAC	600
	TGGGTGTGGC	CGTGTACGCA	GCGGCTGTGC	TGCTGGGTGC	TGGCTGTGCC	ACCATCCTCG	660
30	TCACCTCGCT	GGCCATGACG	GCCGACCTCA	TCGGTCCCCA	CACGAACAGC	GGACTKTCGT	720
	GTACGGCTCC	ATGAGCTTCT	TGGATAAGGT	GGCCAATGGG	CTGGCAGTCA	TGGCCATCCA	780
35	GAGCCTGCAC	CCTTGCCCCT	CAGAGCTCTG	CTGCAGGGCC	TGCGTGAGCT	TTTACCACTG	840
33	GGCGATGGTG	GCTGTGACGG	GCGGCGTGGG	CGTGGCCGCT	GCCCTGTGTC	TCTGTAGCCT	900
	CCTGCTGTGG	CCGACCCGCC	TGCGACGCTG	GGACCGTGAT	GCCCGGCCCT	GACTCCTGAC	960
40	AGCCTCCTGC	ACCTGTGCAA	GGGAACTGTG	GGGACGCACG	AGGATGCCCC	CCARGGCCTT	1020
	GGGGAAAAGC	CCCCACTGCC	CCTCACTCTT	CTCTGGACCC	CCACCCTCCA	TCCTCACCCA	1080
45	GCTCCCGGG	CTCCCCTCCC	GTGAGGGCAG	CAGGGATGCC	CGCCAGGGAC	TTGCAAGGAC	1140
73	CCCCTGGGTT	TTGAGGGTGT	CCCATTCTCA	ACTCTAATCC	ATCCCAGCCC	TCTGGAGGAT	1200
	TTGGGGTGCC	CCTCTCGGCA	GGGAACAGGA	AGTAGGAATC	CCAGAAGGGT	CTGGGGGAAC	1260
50	CCTAACCCTG	AGCTCAGTCC	AGTTCACCCC	TCACCTCCAG	CCTGGGGGTC	TCCAGACACT	1320
	GCCAGGGCCC	CCTCAGGACG	GCTGGAGCCT	GGAGGAGACA	GCCACGGGT	GCTGGGCTGG	1380
55	GCCTGGACCC	CACCGTGGTG	GGCAGCAGGG	CTGCCCGGCA	GCCTTCCTCG	ACTCTGCTGG	1440
دد	CAGCAAATAA	AGAGATGACG	GCAAAAAAA	ааааааааа	АААААААА	АААААААА	1500
	AAAAAAAA	AAACCCACCG	TCCGC				1 5 25

(2)	INFORMATION	FOR	SEQ	ID	NO:	80:
-----	-------------	-----	-----	----	-----	-----

	(2) INFORMA	VIION FOR SE	Q ID NO: 80):			
5	(i)	(B) TYP (C) STR	HARACTERIST GTH: 1563 b E: nucleic ANDEDNESS: O DLOGY: line	ase pairs acid double			
10	(xi)) SEQUENCE I			: 80:		
	AATTCGGCAC	GAGNCAGAAA	CCTGCGGAAA	ATGGTAGCGA	TGGCGCCTGG	GCCGAGTGGG	60
15		CGCCGTTTGG					
••							120
		CAGAGTTTTC					180
20		CTTGTGATCT					240
	AGAGGATGCT	GTCAGGAGGA	AGCACAATTT	GAAACCAAAA	AGCTGTATGC	AGGAGCTATT	300
	CTTGAAGTTT	GTGGATGAAA	ATTGGGAAGG	TTCCCTCAAG	TCCAAGCTIT	TGTTAGGAGT	360
25	GATAAACCCA	AACTGTTCAG	AGGACTGCAA	ATCAAGTATG	TCCGTGGTTC	AGACCCTGTA	420
	TTAAAGCTTT	TGGACGACAA	TGGGAACATT	GCTGAAGAAC	TGAGCATTCT	CAAATGGAAC	480
30	ACAGACAGTG	TAGAAGAATT	CCTGAGTGAA	AAGTTGGAAC	GCATATAAAT	CTTGCTTAAA	540
50	TTTTGTCCTA	TCCTTTTGTT	ACCTTATCAA	ATGAAATATT	ACAGCACCTA	GAAAATAATT	600
	TAGTTTTGCT	TGCTTCCATT	GATCAGTCTT	TTACTTGAGG	CATTAAATAT	CTAATTAAAT	660
35	CGTGAAATGG	CAGTATAGTC	CATGATATCT	AAGGAGTTGG	CAAGCTTAAC	AAAACCCATT	720
	TTTTATAAAT	GTCCATCCTC	CTGCATTTGT	TGATACCACT	AACAAAATGC	TTTGTAACAG	780
	ACTTGCGGTT	AATTATGCAA	ATGATAGTTT	GTGATAATTG	GTCCAGTTTT	ACGAACAACA	840
40		TTAGAGAGGT					900
15		GAATGACAGC					960
45		TCAGAGTCTC					1020
	GTTATTTATA	GITTACAATG	AATGCACTGC	ATAAAAACTT	TGTAGCTTCA	TTATTGTAAA	1080
50	ACATATTCAA	GATCCTACAG	TAAGAGTGAA	ACATTCACAA	AGATTTGCGT	TAATGAAGAC	1140
	TACACAGAAA	ACCTTTCTAG	GGATTTGTGT	GGATCAGATA	CATACTTGGC	AAATTTTTGA	1200
	GTTTTACATT	CTTACAGAAA	AGTCCATTTA	AAAGTGATCA	TTTGTAAGAC	СААААТАТАА	1260
55	ATAAAAAGTT	TCAAAAATCT	ATCTGAATTT	GGAATTCTTC	TGGTTTGTTC	TTTCATGITT	1320
	AAAAATGATG	TTTTCAATG	CATTTTTTTC	ATGTAAGCCC	TTTTTTTAGC	CAAAATGTAA	1380
	AAATGGCTGT	AATATTTAAA	ACTTATAACA	TCTTATTGTT	GGTAATAGTG	CITTATATTT	1440

	GTCTGATTTT	ATTITICAAA	GTTTTTTCAT	TTATGAACAC	ATTITCATIG	GTATATTATT	1500
	TAAGGAATAT	CTCTTGATAT	AGAATTTTTA	TATTAAAAAT	GATTTTTCTT	TGCTTAAAAA	1560
5	AAA						1563

10 (2) INFORMATION FOR SEQ ID NO: 81:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1020 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 81:

20	TGCACGCTGG	CCATGTGGGN	GTTGGGCCAC	TGCGACCCCC	GGCGCTGCAC	GGGCCGCAAG	60
,	CIGGCCCGCC	TGGGGCTGGT	GCGCTGCCTG	CCCCTCCCC	ACAGATTCGG	CGGTCTGGTG	120
25	CTGAGCCCCG	TGGGCAAGCA	GTACGCGTCC	CCCGCAGACA	GACAGCTGGT	GGCGCAGTCT	180
23	GGGGTCGCCG	TCATCGACTG	CTCCTGGGCC	AGGCTGGACG	AGACACCGTT	TGGGAAGATG	240
	CGAGGGAGCC	ACTTGCGCCT	GTTGCCCTAC	CTGGTGGCCG	CCAACCCCGT	GAACTATGGC	300
30	CGGCCCTACA	GACTTTCCTG	CGTGGAAGCG	TTTGCTGCCA	CCTTCTGCAT	CGTAGGCTTT	360
	CCAGACCTTG	CTGTCATTTT	GCTGCGGAAG	TTTAAATGGG	GCAAGGGCTT	CTTGGACCTG	420
35	AACCGCCAGC	TCCTGGACAA	GTACGCGGCC	TGCGGCAGCC	CGGAGGAGGT	GCTGCAGGCG	480
33	GAGCAGGAGT	TCTTGGCCAA	TGCCAAGGAG	AGCCCCCAGG	AGGAGGAGAT	CGATCCCTTC	540
	GATGTGGATT	CAGGGAGAGA	GTTTGGAAAC	CCCAACAGGC	CTGTGGCCAG	CACCCGGCTG	600
40	CCCTCGGACA	CTGATGACAG	TGATGCGTCT	GAGGACCCAG	GGCCTKGCGC	CGAGCGCGGA	660
	GGAGCCAGCA	GCAGCTGCTG	TGAAGAGGAG	CAGACGCAGG	GACGGGGGC	TGAGGCCAGG	720
45	CCCCCGCTG	AGGTTTGGAA	AGGAATCAAG	AAACGGCAGA	GAGACTGAGG	GTTGCAGACA	780
40	CATATATTT	TGAGGCTGGG	TGACGAGAAA	ATCTAGAGAC	ATGAGGGACA	TAAATGGGCC	840
	TGGCAGCCTC	GCTCTTTGC	GGCTGCTGGC	AGGACTGAGC	TGTCCGGGTT	CTCCCCACAC	900
50	TTCCAGCACA	GCTGTGCTCT	GTGTCCTGCC	TCGGCGCTCT	CGCAAATGAA	GCTGCAGGCC	960
	AAGAAAAAA	ААААААААА	АААААААА	АААААААА	AAAAAAAAAG	GGGGGGGGC	1020

55

(2) INFORMATION FOR SEQ ID NO: 82:

(i) SEQUENCE CHARACTERISTICS:

60 (A) LENGTH: 770 base pairs

420

480

	(B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear								
5	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 82:								
	TCGACCCACG CGTCCGGGCC GCCGTAGCGC GTCTTGGGTC TCCCGGCTGC CGCTGCTGCC	60							
10	GCCGCCGCCT CGGGTCGTGG AGCCAGGAGC GACGTCACCG CCATGGCAGG CATCAAAGCT	120							
	TIGATTAGTT TGTCCTTTGG AGGAGCAATC GGACTGATGT TTTTRATGCT TGGATGTGCC	180							
	CTTCCAATAT ACAACAAATA CTGGCCCCTC TTTGTTCTAT TTTTTTACAT CCTTTCACCT	240							
15	ATTCCATACT GCATAGCAAG AAGATTAGTG GATGATACAG ATGCTATGAG TAACGCTTGT	300							
	AAGGAACTTG CCATCTTTCT TACAACGGGC ATTGTCGTGT CAGCTTTTGG ACTCCCTATT	360							
20	GTATTTGCCA GAGCACATCT GATTGAGTGG GGAGCTTGTG CACTTGTTCT CACAGGAAAC	420							
	ACAGTCATCT TTGCAACTAT ACTAGGCTTT TTCTTGGTCT TTGGAAGCAA TGACGACTTC	480							
	AGCTGGCAGC AGTGGTGAAA AGAAATTACT GAACTATTGT CAAATGGACT TCCTGTCATT	540							
25	TGTTGGCCAT TCACGCACAC AGGAGATGGG GCAGTTAATG CTGAATGGTA TAGCAAGCCT	600							
	CTTGGGGGTA TTTTAGGTGC TCCCTTCTCA CTTTTATTGT AAGCATACTA TTTTCACAGA	660							
30	GACTTGCTGA AGGATTAAAA GGATTTTCTC TTTTGGAAAA AAAAAAAAAA	720							
	GGGGGGCCC GTWCCCATTC SCCCYATATG AATTCCNTTT TTACAATCCC	770							
35	(2) INFORMATION FOR SEQ ID NO: 83:								
40	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 481 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear								
45	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 83:								
15	GAATTCGGCA CGAGCATAGT GTTAACCACT AGAATTCACT GCCCTTCCTA TCCAAAAATG	60							
	ACACTACTGA TCATTTTCT TCCTTTTSCT TTTACAACAT TMACAAATTC AGGTGGCTCT	120							
50	TTCCCAGTAC GGTAGGCTGA TTCGTATGGA TGCACCACGG TTGGTGACTC CCCCCACCCC	180							
	ACAGAGTITC TOGCGTTCAT TCGGTTGAAC CCAAGGCCAG CAAGGGCTGA CTGGGAACAA	240							
55	ACCGAACACT AGGCCGTGAA CCAATCGTCT CTCCGTGCCC GGGAGCGAMC CCGGGGGCCT	300							
	TTCACTCTCC CAAGGACTCC ANGGGGGGC CGGGTACCCA ATTCCGCCCC TATAGTGAAT	360							

CCGTNATTAC AATTCCACNT GGGCCGTCCN TTTTTACAAA CGTTCCGTTG AACTGGGAAA

AACCCCTTGG CGGTTTACCC CAACTTTAAT CCGCCTTTGC AAGCACATCC CCCCCCTTTT

	С	481					
5							
	(2) INFORMATION FOR SEQ ID NO: 84:						
10	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 644 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear						
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 84:						
	GCTGGGATAG AGCATGAAAG GAGAACTGCT CCCTTTTCTG TTTCTCACAG TTTGGTTATG	60					
20	GCTTTATAAA CTTKTATTTG GTGAAAGCCC CAGATACCCA AATGTCATTG GCAAAACTTA	120					
	TTTTTTTTC TGGACAGATC AGATTTCTAG AGAGAGCAGA TTTCTAGAGA GATTAGCATT	180					
	CATAGTAAGT GAAAATTGTC TAATTTTTTT AATCCATGCT ATTACTGGGC AGTAGGTCTA	240					
25	ATTITITIG ACAAAAATA GATCTATITT CCTTATATAT TGATTTAGAA TCTTAAGTTA	300					
	GAATTITATA GAAGAAATGI CIGAGCAGII CIATGIATGG AGGAGCAATI CAGCIITICA	360					
30	GCAGCAACTT TATCTTTTGC CACTAGAGGG AGATCTGTGG TTGCTTTCTC CTTTGGAGAA	420					
	TAGCTGCTTT GCTTTTATTT TTAATTTCTA AGGTTGGAAT AGAACTTATT CTCAAAATTC	480					
	CTTTAGTGTT ATTAAATATT TTCATTTATT AGTCAAAGGT AAGTTAATTA AGCTTGTTTA	540					
35	ATGATGCCAA TCTTATGCTT TTCTGTAATC TTCAATTTTT AATAAATGTG AGTTAGATAC	600					
	таастсаааа алаааааа алаааааа алаа	644					
40							
••	(2) INFORMATION FOR SEQ ID NO: 85:						
45	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1351 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear						
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 85:						
	GGCACGAGTG CGCASGCGTG GGGCTCTCTC CTTGTCAGTC GGCGCCGCGT GCGGGCTGGT	60					
	GGCTCTGTGG CAGCGGCGGC GGCAGGACTC CGGCACTATG AGCGGCTTCA GCACCGAGGA	120					
55	GCGCGCCGCG CCNTTCTCCC TGGAGTACCG AGTCTTCCTC AAAAATGAGA AAGGACAATA	180					
	TATATCTCCA TITCATGATA TICCAATITA TGCAGATAAG GATGTGTTTC ACATGGTAGT	240					
60	TGAAGTACCA CGCTGGTCTA ATGCAAAAAT GGAGATTGCT ACAAAGGACC CTTTAAACCC	300					

	TATTAAACAA	GATGTGAAAA	AAGGAAAACT	TCGCTATGTT	GCGAATTTGT	TCCCGTATAA	360
5	AGGATATATC	TGGAACTATG	GTGCCATCCC	TCAGACTTGG	GAAGACCCAG	GGCACAATGA	420
	TAAACATACT	GGCTGTTGTG	GTGACAATGA	CCCAATTGAT	GTGTGTGAAA	TTGGAAGCAA	480
	GGTATGTGCA	AGAGGTGAAA	TAATTGGCGT	GAAAGTTCTA	GGCATATTGG	CTATGATTGA	540
10	CGAAGGGGAA	ACCGACTGGA	AAGTCATTGC	CATTAATGTG	GATGATCCTG	ATGCAGCCAA	600
	TTATAATGAT	ATCAATGATG	TCAAACGGCT	GAAACCTGGC	TACTTAGAAG	CTACTGTGGA	660
15	CTGGTTTAGA	AGGTATAAGG	TTCCTGATGG	AAAACCAGAA	AATGAGTTTG	CGTTTAATGC	720
13	AGAATTTAAA	GATAAGGACT	TTGCCATTGA	ТАТТАТТААА	AGCACTCATG	ACCATTGGAA	780
	AGCATTAGTG	ACTAAGAAAA	CGAATGGAAA	AGGAATCAGT	TGCATGAATA	CAACTTTGTC	840
20	TGAGAGCCCC	TTCAAGTGTG	ATCCTGATGC	TGCCAGAGCC	ATTGTGGATG	CTTTACCACC	900
	ACCCTGTGAA	TCTGCCTGCA	CAGTACCAAC	AGACGTGGAT	AAGTGGTTCC	ATCACCAGAA	960
25	AAACTAATGA	GATTTCTCTG	GAATACAAGC	TGATATTGCT	ACATCGTGTT	CATCTGGATG	1020
23	TATTAGAAGT	AAAAGTAGTA	GCTTTTCAAA	GCTTTAAATT	TGTAGAACTC	АТСТААСТАА	1080
	AGTAAATTCT	GCTGTGACTA	ATCCAATATA	CTCAGAATGT	TATCCATCTA	AAGCATTTTT	1140
30	CATATCTCAA	CTAAGATAAC	TTTTAGCACA	TGCTTAAATA	TCAAAGCAGT	TGTCATTTGG	1200
	AAGTCACTTG	TGAATAGATG	TGCAAGGGGA	GCACATATTG	GATGTATATG	TTACCATATG	1260
35	TTAGGAAATA	AAATTATTIT	GCTGAAAAAA	ааааааааа	AACCNCGGGG	GGGGCCCCGG	1320
33	TCCCCATTTG	GCCCTTTGGG	GGGNGGTTTT	A			1351
40	(2) TNTCODM	MATON BOD CI	EO ID NO: 8	e .			
			HARACTERIST				
45	(1)	(A) LEN	GTH: 2527 b	ase pairs			
73		(C) STR	E: nucleic ANDEDNESS:	double			
	ا ئىسا		OLOGY: line		0.5		
50				: SEQ ID NO			
				CGGCTGCTCA			60
55				GCTGAGCAAT			120
				CCATCATGTC			180
	GGTGGTGGGG	ACCAGAGGTG	GCTTTCGTGG	TTGCACAGTT	TGGCTAACAG	GCTTGTCTGG	240
60	AGCGGGAAAG	ACTACTGTGA	GCATGGCCTT	GGAGGAGTAC	CTGGTTTGTC	ATGGTATTCC	300

	ATGCTACACT	CTGGATGGTG	ACAATATTCG	TCAAGGTCTC	AATAAAAATC	TTGGCTTTAG	360
	TCCTGAAGAC	AGAGAAGAGA	ATGTTCGACG	CATCGCAGAA	GTTGCTAAAC	TGTTTGCAGA	420
5	TGCTGGCTTA	GTGTGCATCA	CAAGTTTCAT	ATCACCTTAC	ACTCAGGATC	GCAACAATGC	480
	AAGGCAAATT	CATGAAGGTG	CAAGTTTACC	GTTTTTTGAA	GTATTTGTTG	ATGCTCCTCT	540
10	GCATGTTTGT	GAACAGAGGG	ATGTCAAAGG	ACTCTACAAA	AAAGCCCGGG	CAGGAGAAAT	600
10	TAAAGGTTTC	ACTGGGATCG	ATTCTGAATA	TGAAAAGCCA	GAGGCCCCTG	AGTTGGTGCT	660
	GAAAACAGAC	TCCTGTGATG	TAAATGACTG	TGTCCAGCAA	GTTGTGGAAC	TTCTACAGGA	720
15	ACGGGATATT	GTACCTGTGG	ATGCATCTTA	TGAAGTAAAA	GAACTATATG	TGCCAGAAAA	780
	TAAACTTCAT	TTGGCAAAAA	CAGATGCGGA	AACATTACCA	GCACTGAAAA	TTAATAAAGT	840
20	GGATATGCAG	TGGGTGCAGG	TTTTGGCAGA	AGGTTGGGCA	ACCCCATTGA	ATGGCTTTAT	900
20	GAGAGAGAGG	GAGTACTTGC	AGTGCCTTCA	TTTTGATTGT	CTTCTGGATG	GAGGTGTCAT	960
	TAACTTGTCA	GTACCTATAG	TTCTGACTGC	GACTCATGAA	GATAAAGAGA	GGCTGGACGG	1020
25	CTGTACAGCA	TTTGCTCTGA	TGTATGAGGG	CCGCCGTGTG	GCCATTCTTC	GCAATCCAGA	1080
	GTTTTTTGAG	CACAGGAAAG	AGGAGCGCTG	TGCCAGACAG	TGGGGAACGA	CATGCAAGAA	1140
30	CCACCCCTAT	ATTAAGATGG	TGATGGAACA	AGGAGATTGG	CTGATTGGAG	GAGATCTTCA	1200
50	AGTCTTGGAT	CGAGTTTATT	GGAATGATGG	TCTTGATCAG	TATCGTCTTA	CTCCTACTGA	1260
	GCTAAAGCAG	AAATTTAAAG	ATATGAATGC	TGATGCTGTC	TTTGCATTTC	AACTACGCAA	1320
35	CCCAGTGCAC	AATGGACATG	CCCTGTTAAT	GCAGGATACC	CATAAGCAAC	TTCTAGAGAG	1380
	GGGCTACCGG	CGCCCTGTCC	TCCTCCTCCA	CCCTCTGGGT	GGCTGGACAA	AGGATGACGA	1440
40	TGTTCCTTTG	ATGTGGCGTA	TGAAGCAGCA	TGCTGCAGTG	TTCGAGGAAG	GAGTTCTGAA	1500
10	TCCTGAGACG	ACAGTGGTGG	CCATCTTCCC	ATCTCCCATG	ATGTATGCTG	GACCAACTGA	1560
	GGTCCAGTGG	CATTGCAGAG	CACGGATGGT	TGCAGGAGCC	AACTTTTACA	TTGTTGGACG	1620
45	AGACCCTGCT	GGCATGCCTC	ATCCAGAAAC	AGGGAAGGAT	CTTTATGAGC	CAAGTCATGG	1680
	TGCCAAAGTG	CTGACGATGG	CCCCTGGTTT	AATCACTTTG	GAAATAGTTC	CCTTTCGAGT	1740
50	TGCAGCTTAC	AACAAGAAAA	AGAAGCGTAT	GGACTACTAT	GACTCTGAAC	ACCATGAAGA	1800
30	CTTTGAATTT	ATTTCAGGAA	CACGAATGCG	CAAACTTGCT	CGAGAAGGCC	AGAAACCACC	1860
	TGAAGGTTTC	ATGGCTCCCA	AGGCTTGGAC	CGTGCTGACA	GAATACTACA	AATCCTTGGA	1920
55	GAAAGCTTAG	GCTGTTAACC	CAGTCACTCC	ACCTTTGACA	CATTACTAGT	AACAAGAGGG	1980
	GACCACATAG	TCTCTGTTGG	CATTTCTTTG	TGGTGTCTGT	CTGGACATGC	ТТССТААААА	2040
60	CAGACCATTT	TCCTTAACTT	GCATCAGTTT	TGCTCTGCCT	TATGAGTTCT	GTTTTGAACA	2100
UU.							

	AGTGTAACAC ACTGATGGTT TTAATGTATC TTTTCCACTT ATTATAGTTA TATTCCTACA	2160
	ATACAATTTT AAAATTGTCT TTTTATATTA TATTTATGCT TCTGTGTCAT GATTTTTTCA	2220
5	AGCTGTTATA TTAGTTGTAA CCAGTAGTAT TCACATTAAA TCTTGCTTTT TTTCCCCTTA	2280
	AAAAAAGAAA AAAATTACCA AACAATAAAC TTGGCTAGAC CTTGTTTTGA GGATTTTACA	2340
10	AGACCTITGT AGCGATTAGA TTTTTTTCT ACATTGAAAA TAGAAACTGC TTCCTTTCTT	2400
10	CTTTCCAGTC AGCTATTGGT CTTTCCAGCT GTTATAATCT AAAGTATTCT TATGATCTGT	2460
	GTAAGCTCTG AATGAACTTC TTTACTCAAT AAAATTAATT TTTTGGCTTC TTAAAAAAAA	2520
15	AAAAAA	2527
20	(2) INFORMATION FOR SEQ ID NO: 87:	
	- · · · · · · · · · · · · · · · · · · ·	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2566 base pairs	
25	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 87:	
30	CCCAAGAATT CGGCACGAGC GNGGCAWAAK TGGGATTTCT GAAACCTGTA GGCCCCAAGC	60
	CCATCAACTT GCCCAAAGAA GATTCCAAAC CTACATTTCC CTGGCCTSCT GGAAACAAGC	120
35	CATCTCTTCA CAGTGTAAAC CAAGACCATG ACTTAAAGCC ACTAGGCCGA AATCTGGGCC	180
	TACTCCTCCA ACCTCAGAAA ATGAACAGAA GCAAGCKTTT CCCAAATTGA CTGGGGTTAA	240
	AGGGAAATTT ATGTCAGCAT CACAAGATCT TGAACCCAAG CCCCTCTTCC CCAAACCCGC	300
40	CTTTGGCCAG AAGCCGCCCC TAAGTACCGA GAACTCCCAT GAAGACGAAA GCCCCATGAA	360
	GAATGTGTCT TCATCAAAAG GGTCCCCAGC TCCCCTGGGA GTCAGGTCCA AAAGCGGCCC	420
45	TTTAAAACCA GCAAGGGAAG ACTCAGAAAA TAAAGACCAT GCAGGGGAGA TTTCAAGTTT	480
	GCCCTTTCCT GGAGTGGTTT TGAAACCTGC TGCGAGCAGG GGAGGCCCAG GTCTCTCCAA	540
	AAATGGTGAA GAAAAAAAGG AAGATAGGAA GATAGATGCT GCTAAGAACA CCTTCCAGAG	600
50	CAAAATAAAT CAGGAAGAGT TGGCCTCAGG GACTCCTCCT GCCAGGTTCC CTAAGGCCCC	660
	TTCTAAGCTG ACAGTGGGGG GGCCATGGGG CCAAAGTCAG GAAAAGGAAA AGGGAGACAA	720
55	GAATTCAGCC ACCCCGAAAC AGAAGCCATT GCCTCCCTTG TTTACCTTGG GTCCACCTCC	780
	ACCAAAACCC AACAGACCAC CAAATGTTGA CCTGACGAAA TTCCACAAAA CCTCTTCTGG	840
	AAACAGTACT AGCAAAGGCC AGACGTCTTA CTCAACAACT TCCCTGCCAC CACCTCCACC	900
60	ATCCCATCCG GCCAGCCAAC CACCATTGCC AGCATCTCAC CCATCACAAC CACCAGTCCC	960

	AAGCCTACCT	CCCAGAAACA	TTAAACCTCC	GTTTGACCTA	AAAAGCCCTG	TCAATGAAGA	1020
5	CAATCAAGAT	GGTGTCACGC	ACTCTGATGG	TGCTGGAAAT	CTAGATGAGG	AACAAGACAG	1080
	TGAAGGAGAA	ACATATGAAG	ACATAGAAGC	ATCCAAAGAA	AGAGAGAAGA	AAAGGGAAAA	1140
	GGAAGAAAAG	AAGAGGTTAG	AGCTGGAGAA	AAAGGAACAG	AAAGAGAAAG	AAAAGAAAGA	1200
10	ACAAGAAATA	AAGAAGAAAT	TTAAACTAAC	AGGCCCTATT	CAAGTCATCC	ATCTTGCAAA	1260
	AGCTTGTTGT	GATGTCAAAG	GAGGAAAGAA	TGAACTGAGC	TTCAAGCAAG	GAGAGCAAAT	1320
15	TGAAATCATC	CGCATCACAG	ACAACCCAGA	AGGAAAATGG	TTGGGCAGAA	CAGCAAGGGG	1380
	TTCATATGGC	TATATTAAAA	CAACTGCTGT	AGAGATTGAC	TATGATTCTT	TGAAACTGAA	1440
	AAAAGACTCT	CTTGGTGCCC	CTTCAAGACC	TATTGAAGAT	GACCAAGAAG	TATATGATGA	1500
20	TGTTGCAGAG	CAGGATGATA	TTAGCAGCCA	CAGTCAGAGT	GGAAGTGGAG	GGATATTCCC	1560
	TCCACCACCA	GATGATGACA	TTTATGATGG	GATTGAAGAG	GAAGATGCTG	ATGATGGCTC	1620
25	CACACTACAG	GTTCAAGAGA	AGAGTAATAC	GTGGTCCTGG	GGGATTTTGA	AGATGTTAAA	1680
	GGGAAAAGAT	GACAGAAAGA	AAAGTATACG	AGAGAAACCT	AAAGTCTCTG	ACTCAGACAA	1740
	TAATGAAGGT	TCATCTTTCC	CTGCTCCTCC	TAAACAATTG	GACATGGGAG	ATGAAGTTTA	1800
30	CGATGATGTG	GATACCTCTG	ATTTCCCTGT	TTCATCAGCA	GAGATGAGTC	AAGGAACTAA	1860
	TGTTGGAAAA	GCTAAGACAG	AAGAAAAGGA	CCTTAAGAAG	CTAAAAAAGC	AGRAAAAARA	1920
35	ARAAAAAGAC	TICAGGAAAA	AATTTAAATA	TGATGGTGAA	ATTAGAGTCC	TATATTCAAC	1980
	TAAAGTTACA	ACTTCCATAA	CTTCTAAAAA	GTGGGGAACC	AGAGATCTAC	AGGTAAAACC	2040
	TGGTGAATCT	CTAGAAGTTA	TACAAACCAC	AGATGACACA	AAAGTTCTCT	GCAGAAATGA	2100
40	AGAAGGGAAA	TATGGTTATG	TCCTTCGGAG	TTACCTAGCG	GACAATGATG	GAGAGATCTA	2160
	TGATGATATT	GCTGATGGCT	GCATCTATGA	CAATGACTAG	CACTCAACTT	TGGTCATTCT	2220
45	GCTGTGTTCA	TTAGGTGCCA	ATGTGAAGTC	TGGATTTTAA	TTGGCATGTT	ATTGGGTATC	2280
	AAGAAAATTA	ATGCACAAAA	CCACTTATTA	TCATTTGTTA	TGAAATCCCA	ATTATCTTTA	2340
	CAAAGTGTTT	AAAGTTTGAA	CATAGAAAAT	AATCTCTCTG	CTTAATTGTT	ATCTCAGAAG	2400
50	ACTACATTAG	TGAGATGTAA	GAATTATTAA	ATATTCCATT	TCCGCTTTGG	CTACAATTAT	2460
	GAAGAAGTTG	AAGGTACTTC	TTTTAGACCA	CCAGTAAATA	ATCCTCCTTC	AAATAAAAA	2520
55	AAAAAATAA	АААААААА	ACTCGAGGG	GGCCCGGTA	CCCAAT		2566

⁽²⁾ INFORMATION FOR SEQ ID NO: 88:

	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 540 base pairs	
	(B) TYPE: nucleic acid	
5	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
J	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 88:	
	GAATTCGGCA CGAGGCTTTC TGTGTCCTCT GTGGCTGCTT TAGTGTGCCA CCAGGGGCAG	
10	GRATICOGCA CGAGGGCAG	60
	ACTTGGGTGG GTTGCAGCAG AGATGGCATG GCCCTCAAGG TCCAAGATGT TTACTCTCTT	120
	GCCGGTCCTC TGTTATCTCT GGTCTTTGTG GTTGCCACAG TTTTCTTGGA TCCAGGAGTT	180
15	AAAGGCAGTC CTGAGGGATG ATGGCCTCAT CTCCGCAGTT GCYTGGAATG CTGAATTTCA	240
	GACGTGCTAA AGGAGGGTTG CAGACATTGT GTGGWATGCA TTCAGACCCC AGATGTGGGT	300
20	GCAGGAAGGC AGGCATGGCA CAGCCAGGTA GAGACTGGTT TCCAGGCCCA AGCAGCCTTC	360
	AGCAGCTGTG CGCCTTGTTT CTGATGTTGT TTGGGAGTAA GAATAATGTA GACATGGGGG	420
	GTCATGARGC TCAATAAAAA CTTCAAGGAA ACCTCCCATG GCATGGTTGG GCGCAGTGAC	480
25	TCATGCCTGT AACCCCAGCA CTGTGGAATG CCAAGGTGGA AGGATCGCTT GAGGCCAAGA	540
30	(2) INFORMATION FOR SEQ ID NO: 89:	
35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1863 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 89:	
40	TOGACCOACG COTOCGGCGA GATCCOTACO GCAGTAGOOG COTOTGCCGC CGCGGAGOTT	60
	CCCGAACCTC TTCAGCCGCC CGGAGCCGCT CCCGGAGCCC GGCCGTAGAG GCTGCAATCG	120
	CAGCCGGGAG CCCGCAGCCC GCGCCCCGAG CCCGCCGCCG CCCTTCGAGG GCGCCCCAGG	180
45	CCGCGCCATG GTGAAGGTGA CGTTCAACTC CGCTCTGGCC CAGAAGGAGG CCAAGAAGGA	240
	CGAGCCCAAG AGCGGCGAGG AGGCGCTCAT CATCCCCCC GACGCCGTCG CGGTGGACTG	
50	CAAGGACCCA GATGATGTGG TACCAGTTGG CCAAAGAAGA GCCTGGTGTT GGTGCATGTG	300
20	CTTTGGACTA GCATTTATGC TTGCAGGTGT TATTCTAGGA GGAGCATACT TGTACAAATA	360
		420
55	TTTTGCACTT CAACCAGATG ACGTGTACTA CTGTGGAATA AAGTACATCA AAGATGATGT	480
	CATCTTAAAT GAGCCCTCTG CAGATGCCCC AGCTGCTCTC TACCAGACAA TTGAAGAAAA	540
	TATTAAAATC TTTGAAGAAG AAGAAGTTGA ATTTATCAGT GTGCCTGTCC CAGAGTTTGC	600
60	AGATAGUGAT CCTCCCAACA TITCTUCATGA CHITCAG AGACTUCACAC CCTATUTUCACAC	551

720

780

TCTTAACCTG GATAAGTGCT ATGTGATCCC TCTGAACACT TCCATTGTTA TGCCACCCAG

AAACCTACTG GAGTTACTTA TTAACATCAA GGCTGGAACC TATTTGCCTC AGTCCTATCT

	GATTCATGAG CACATGGTTA TTACTGATCG CATTGAAAAC ATTGATCACC TGGGTTTCTT	840
	TATTTATCGA CTGTGTCATG ACAAGGAAAC TTACAAACTG CAACGCAGAG AAACTATTAA	900
10	AGGTATTCAG AAACGTGAAG CCAGCAATTG TTTCGCAATT CGGCATTTTG AAAACAAATT	960
	TGCCGTGGAA ACTITAATTT GTTCTTGAAC AGTCAAGAAA AACATTATTG AGGAAAATTA	1020
15	ATATCACAGC ATAACCCCAC CCTTTACATT TTGTGCAGTG ATTATTTTTT AAAGTCTTCT	1080
	TTCATGTAAG TAGCAAACAG GGCTTTACTA TCTTTTCATC TCATTAATTC AATTAAAACC	1140
	ATTACCTTAA AATTTTTTC TTTCGAAGTG TGGTGTCTTT TATATTTGAA TTAGTAACTG	1200
20	TATGAAGTCA TAGATAATAG TACATGTCAC CTTAGGTAGT AGGAAGAATT ACAATTTCTT	1260
	TAAATCATTT ATCTGGATTT TTATGTTTTA TTAGCATTTT CAAGAAGACG GATTATCTAG	1320
25	AGAATAATCA TATATATGCA TACGTAAAAA TGGACCACAG TGACTTATTT GTAGTTGTTA	1380
	GTTGCCCTGC TACCTAGTTT GTTAGTGCAT TTGAGCACAC ATTTTAATTT TCCTCTAATT	1440
	AAAATGTGCA GTATTTTCAG TGTCAAATAT ATTTAACTAT TTAGAGAATG ATTTCCACCT	1500
30	TTATGTTTTA ATATCCTAGG CATCTGCTGT AATAATATTT TAGAAAATGT TTGGAATTTA	1560
	AGAAATAACT TGTGTTACTA ATTTGTATAA CCCATATCTG TGCAATGGAA TATAAATATC	1620
35	ACAAAGTTGT TTAACTAGAC TGCGTGTTGT TTTTCCCGTA TAATAAAACC AAAGAATAGT	1680
	TTGGTTCTTC AAATCTTAAG AGAATCCACA TAAAAGAAGA AACTATTTTT TAAAAATTCA	1740
	CTTCTATATA TACAATGAGT AAAATCACAG ATTTTTTCTT TAAATAAAA TAAGTCATTT	1800
40	TAATAACTAA ACCAGATTCT TTGTGATACT ATTAANGTAA CATTTAGCCC CAAAAAAAAA	1860
	AAA	1863
1 5		
	(2) INFORMATION FOR SEQ ID NO: 90:	
	(i) SEQUENCE CHARACTERISTICS:	
50	(A) LENGTH: 2478 base pairs	
	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
55	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 90:	
	GGCACAGCGG CACGAGGTGA GCTGAGCCGG TGGGTGAGCG GCGGCCACGG CATCCTGTGC	60
50	TGTGGGGGCT ACGAGGAAAG ATCTAATTAT CATGGACCTG CGACAGTTTC TTATGTGCCT	120

	GTCCCTGTGC	ACAGCCTTTG	CCTTGAGCAA	ACCCACAGAA	AAGAAGGACC	GTGTACATCA	180
	TGAGCCTCAG	CTCAGTGACA	AGGTTCACAA	TGATGCTCAG	AGTITTGATT	ATGACCATGA	240
5	TGCCTTCTTG	GGTGCTGAAG	AAGCAAAGAC	CTTTGATCAG	CTGACACCAG	AAGAGAGCAA	300
	GGAAAGGCTT	GGAAAGATTG	TAAGTAAAAT	AGATGGCGAC	AAGGACGGGT	TTGTCACTGT	360
10	GGATGAGCTC	AAAGACTGGA	TTAAATTTGC	ACAAAAGCGC	TGGATTTACG	AGGATGTAGA	420
10	GCGACAGTGG	AAGGGGCATG	ACCTCAATGA	GGACGGCCTC	GTTTCCTGGG	AGGAGTATAA	480
	AAATGCCACC	TACGGCTACG	TTTTAGATGA	TCCAGATCCT	GATGATGGAT	TTAACTATAA	540
15	ACAGATGATG	GTTAGAGATG	AGCGGAGGTT	TAAAATGGCA	GACAAGGATG	GAGACCTCAT	600
	TGCCACCAAG	GAGGAGTTCA	CAGCTTTCCT	GCACCCTGAG	GAGTATGACT	ACATGAAAGA	660
20	TATAGTAGTA	CAGGAAACAA	TGGAAGATAT	AGATAAGAAT	GCTGATGGTT	TCATTGATCT	720
20	AGAAGAGTAT	ATTGGTGACA	TGTACAGCCA	TGATGGGAAT	ACTGATGAGC	CAGAATGGGT	780
	AAAGACAGAG	CGAGAGCAGT	TTGTTGAGTT	TCGGGATAAG	AACCGTGATG	GGAAGATGGA	840
25	CAAGGAAGAG	ACCAAAGACT	GGATCCTTCC	CTCAGACTAT	GATCATGCAG	AGGCAGAAGC	900
	CAGGCACCTG	GTCTATGAAT	CAGACCAAAA	CAAGGATGGC	AAGCTTACCA	AGGAGGAGAT	960
30	CGTTGACAAG	TATGACTTAT	TTGTTGGCAG	CCAGGCCACA	GATTTTGGGG	AGGCCTTAGT	1020
50	ACGGCATGAT	GAGTTCTGAG	CTRCGGAGGA	ACCCTCATTT	CCTCAAAAGT	AATTTATTTT	1080
	TACAGCTTCT	GGTTTCACAT	GAAATTGTTT	GCGCTACTGA	GACTGTTACT	ACAAACTITT	1140
35	TAAGACATGA	AAAGGCGTAA	TGAAAACCAT	CCCGTCCCCA	TTCCTCCTCC	TCTCTGAGGG	1200
	ACTGGAGGGA	AGCCGTGCTT	CTGAGGAACA	ACTCTAATTA	GTACACTTGT	GTTTGTAGAT	1260
40	TTACACTTTG	TATTATGTAT	TAACATGGCG	TGTTTATTTT	TGTATTTTC	TCTGGTTGGG	1320
	AGTATGATAT	GAAGGATCAA	GATCCTCAAC	TCACACATGT	AGACAAACAT	TAGCTCTTTA	1380
	CTCTTTCTCA	ACCCCTITTA	TGATTTTAAT	AATTCTCACT	TAACTAATTT	TGTAAGCCTG	1440
45	AGATCAATAA	GAAATGTTCA	GGAGAGAGGA	AAGAAAAAA	ATATATGCTC	CACAATTTAT	1500
	ATTTAGAGAG	AGAACACTTA	GICTIGCCIG	TCAAAAAGTC	CAACATTTCA	TAGGTAGTAG	1560
50	GGGCCACATA	TTACATTCAG	TIGCTATAGG	TCCAGCAACT	GAACCIGCCA	TTACCTGGGC	1620
	AAGGAAAGAT	CCCTTTGCTC	TAGGAAAGCT	TGGCCCAAAT	TGATTTTCTT	CTTTTTCCCC	1680
	CTGTAGGACT	GACTGTTGGG	TAATTTGTC	AAGCACAGCT	GTGGTGGGAA	GAGTTAGGGC	1740
55	CAGTGTCTTC	S AAAATCAATC	AAGTAGTGAA	TGTGATCTCT	TTGCAGAGCT	ATAGATAGAA	1800
	ACAGCTGGA	AACTAAAGGA	AAAATACAAG	TGTTTTCGGG	GCATACATTT	TTTTCTGGG	1860
60	TGTGCATCT	TTGAAATGC	CAAGACTTAA	TTATTTGCCT	TTTGAAATCA	CTGTAAATGC	1920
_							

780

840

	CCCCATCCGG TTCCTCTTCT TCCCAGGTGT GCCAAGGAAT TAATCTTGGT TTCACTACAA	1980
	TTAAAATTCA CTCCTTTCCA ATCATGTCAT TGAAAGTGCC TTTAACGAAA GAAATGGTCA	2040
5	CTGAATGGGA ATTCTCTTAA GAAACCCTGA GATTAAAAAA AGACTATTTG GATAACTTAT	2100
	AGGAAAGCCT AGAACCTCCC AGTAGAGTGG GGATTTTTTT CTTCTTCCCT TTCTCTTTTG	2160
10	GACAATAGTT AAATTAGCAG TATTAGTTAT GAGTTTGGTT GCAGTGTTCT TATCTTGTGG	2220
10	GCTGATTTCC AAAAACCACA TGCTGCTGAA TTTACCAGGG ATCCTCATAC CTCACAATGC	2280
	AAACCACTTA CTACCAGGCC TTTTTCTGTG TCCACTGGAG AGCTTGAGCT CACACTCAAA	2340
15	GATCAGAGGA CCTACAGAGA GGGCTCTTTG GTTTGAGGAC CATGGCTTAC CTTTCCTGCC	2400
	TTTGACCCAT CACACCCCAT TTCCTCCTCT TTCCCTCTCC CCGCTGCCAA TTCCTGCAGC	2460
20	CCGGGGGAAC CACTAGTT	2478
20		
	(2) INFORMATION FOR SEO ID NO: 91:	
25	•	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2058 base pairs	
30	(B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
30		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 91:	
35	TOGGCCTTGC TTTTGTGGYC TTCCTCTGTG GCCAGAGCGT TTTCATCACC AAGCCTCCTG	60
	ATGCCAGTING CTTCACCGAT ATGTTCAAGA TACTGACGTA TTCCTGCTGT TCCCAGAAGC	120
	GAAGTGGAGA GCGCCAGAGT AATGGTGAAG GCATTGGAGT NTTTCAGCAA TCTTCTAAAC	180
40	AAAGTCTGTT TGATTCATGT AAGATGTCTC ATGGTGGGCC ATTTACAGAA GAGAAAGTGG	240
	AAGATGTGAA AGCTCTGGTC AAGATTGTCC CTGTTTTCTT GGCTTTGATA CCTTACTGGA	
		300
45	CAGTGTATTT CCAAATGCAG ACAACATATG TTTTACAGAG TCTTCATTTG AGGATTCCAG	300 360
45	CAGTGTATTT CCAAATGCAG ACAACATATG TTTTACAGAG TCTTCATTTG AGGATTCCAG AAATTTCAAA TATTACAACC ACTCCTCACA CGCTCCCTGC AGCCTGGCTG ACCATGTTTG	
45		360
45 50	AAATTTCAAA TATTACAACC ACTCCTCACA CGCTCCCTGC AGCCTGGCTG ACCATGTTTG	360 42 0
	AAATTCAAA TATTACAACC ACTCCTCACA CGCTCCCTGC AGCCTGGCTG ACCATGTTTG ATGCTGTGCT CATCCTCCTG CTCATCCCTC TGAAGGACAA ACTGGTCGAT CCCATTTTGA	360 420 480
	AAATTCAAA TATTACAACC ACTCCTCACA CGCTCCCTGC AGCCTGGCTG ACCATGTTTG ATGCTGTGCT CATCCTCCTG CTCATCCCTC TGAAGGACAA ACTGGTCGAT CCCATTTTGA GAAGACATGG CCTGCTCCCA TCCTCCCTGA AGAGGATCGC CGTGGGCATG TTCTTTGTCA	360 420 480 540

TOGAATTTGC ATACTCAGCT GCCCCCAAGT CCATGCAGAG TGCCATAATG GGCTTGTTCT

TTTTCTTCTC TGGCGTCGGG TCGTTCGTGG GTTCTGGACT GCTGGCACTG GTGTCTATCA

	AAGCCATCGG ATGGATGAGC AGTCACACAG ACTTTGGTAA TATTAACGGC TGCTATTTGA	900
5	ACTATTACTT TITCCTTCTG GCTGCTATTC AAGGAGCTAC CCTCCTGCTT TTCCTCATTA	960
J	TTTCTGTGAA ATATGACCAT CATCGAGACC ATCAGCGATC AAGAGCCAAT GGCGTGCCCA	1020
	CCAGCAGGAG GCCCTGACCT TCCTGAGGCC ATGTGCGGTT TCTGAGGCTG ACATGTCAGT	1080
10	AACTGACTGG GGTGCACTGA GAACAGGCAA GACTTTAAAT TCCCATAAAA TGTCTGACTT	1140
	CACTGAAACT TGCATGTTGC CTGGATTGAT TTCTTCTTTC CCTCTATCCA AAGGAGCTTG	1200
15	GTAAGTGCCT TACTGCAGCG TGTCTCCTGG CACGCTGGGC CCTCCGGGAG GAGAGCTGCA	1260
1.5	GATTICGAGT ATGTCGCTTG TCATTCAAGG TCTCTGTGAA TCCTCTAGCT GGGTTCCCTT	1320
	TTTTACAGAA ACTCACAAAT GGAGATTGCA AAGTCTTGGG GAACTCCACG TGTTAGTTGG	1380
20	CATCCCAGTT TCTTAAACAA ATAGTATCAC CTGCTTCCCA TAGCCATATC TCACTGTAAA	1440
	AAAAAAATT AATAAACTGT TACTTATATT TAAGAAAGTG AGGATTTTTT TTTTTTAAAG	1500
25	ATAAAAGCAT GGTCAGATGC TGCAAGGATT TTACATAAAT GCCATATTTA TGGTTTCCTT	1560
	CCTGAGAACA ATCTTGCTCT TGCCATGTTC TTTGATTTAG GCTGGTAGTA AACACATTTC	1620
	ATCTGCTGCT TCAAAAAGTA CTTACTTTT AAACCATCAA CATTACTTTT CTTTCTTAAG	1680
30	GCAAGGCATG CATAAGAGTC ATTTGAGACC ATGTGTCCCA TCTCAAGCCA CAGAGCAACT	1740
	CACGGGTAC TICACACCIT ACCIAGICAG AGIGCTIATA TATAGCTITA TITIGGTACG	1800
35	ATTGAGACTA AAGACTGATC ATGGTTGTAT GTAAGGAAAA CATTCTTTTG AACAGAAATA	1860
	GTGTAATTAA AAATAATTGA AAGTGTTAAA TGTGAACTTG AGCTGTTTGA CCAGTCACAT	1920
	TTTTGTATTG TTACTGTACG TGTATCTGGG GCTTCTCCGT TTGTTAATAC TTTTTCTGTA	1980
40	TTTGTTGCTG TATTTTTGGC ATAACTTTAT TATAAAAAGC ATCTCAAATG CGAAAWAAAA	2040
	AAAAAAAAA AAAAAAAC	2058
45		
	(2) INFORMATION FOR SEQ ID NO: 92:	
	(i) SEQUENCE CHARACTERISTICS:	
50	(A) LENGTH: 1411 base pairs (B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
55	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 92:	
•	GGCACAGGAG CGACCCGGGA GAAGGAGGGC CAMGAKGCGG AAGCGGAGGA GTCTCCAGGA	60
	GACCCGGGGA CAGCATCGCC CAGGCCCCTG TTTGCAGGCC TTTCAGATAT ATCCATCTCA	120
60		

240

CAAGACATCC CCGTAGAAGG AGAAATCACC ATTCCTATGA GATCTCGCAT CCGGGAGTTT

GACAGCTCCA CATTAAATGA ATCTGTTCGC AATACCATCA TGCGTGATCT AAAAGCTGTT

5 GGGAAAAAAT TCATGCATGT TTTGTACCCA AGGAAAAGTA ATACTCTTTT GAGAGATTGG

	GATTTGTGGG	GCCCTTTGAT	CCTTTGTGTG	ACACTCGCAT	TAATGCTGCA	AAGAGACTCT	360
10	GCAGATAGTG	AAAAAGATGG	AGGCCCCAA	TTTGCAGAGG	TGTTTGTCAT	TGTCTGGTTT	420
10	GGTGCAGTTA	CCATCACCCT	CAACTCAAAA	CTTCTTGGAG	GGAACATATC	TTTTTTTCAG	480
	AGCCTCTGTG	TGCTGGGTTA	CTGTATACTT	CCCTTGACAG	TAGCAATGCT	GATTTGCCGG	540
15	CTGGTACTTT	TGGCTGATCC	AGGACCTGTA	AACTTCATGG	TTCGGCTTTT	TGTGGTGATT	600
	GTGATGTTTG	CCTGGTCTAT	AGTTGCCTCC	ACAGCTTTCC	TTGCTGATAG	CCAGCCTCCA	660
20	AACCGCAGAG	CCCTAGCTGT	TTATCCTGTT	TTCCTGTTTT	ACTTTGTCAT	CAGTTGGATG	720
20	ATTCTCACCT	TTACTCCTCA	GTAAATCAGG	AATGGGAAAT	TAAAAACCAG	TGAATTGAAA	780
	GCACATCTGA	AAGATGCAAT	TCACCATGGA	GCTTTGTCTC	TGGCCCTTAT	TIGICTAATT	840
25	TTGGAGGTAT	TTGATAACTG	AGTAGGTGAG	GAGATTAAAA	GGGAGCCATA	TAGCACTGTC	900
	ACCCCTTATT	TGAGGAACTG	ATGTTTGAAA	GGCTGTTCTT	TICTCTCTTA	ATGTCATTTC	960
30	TTTAAAAATA	CATGTGCATA	CTACACACAG	TATATAATGC	CTCCTTAAGG	CATGATGGAG	1020
30	TCACCGTGGT	CCATTTGGGT	GACAACCAGT	GACTTGGGAA	GCACATAGAT	ACATCTTACA	1080
	AGTTGAATAG	AGTTGATAAC	TATTTTCAGT	TTTGAGAATA	CCAGTTCAGG	TGCAGCTCTT	1140
35	AAACACATTG	CCTTATGACT	ATTAGAATAT	GCCTCTCTTT	ТСАТАААТАА	AAATACATGG	1200
	TCTATATCCA	TTTTCTTTTA	TITCICICIC	TTAAGCTTAA	AAAGGCAATG	AGAGAGGTTA	1260
40	GGAGTGGGTT	CATACACGGA	GAATGAGAAA	ACATGCATTA	ACCAATATTC	AGATTTTGAT	1320
40	CAGGGGAAAT	TCTAYACTTG	TTGCAAAAAA	АААААААА	AAACTCGAGG	GGGCCCGGT	1380
	ACCCAATCGC	NGTATATGAT	CGNAAACAAT	С			1411
45							
	40)			_			
	(2) INFORM	ATION FOR SE	SO ID NO: 93	5:			
50	(i)	SEQUENCE CH	HARACTERIST:	ICS:			
			GTH: 2187 b	•			
			E: nucleic ANDEDNESS:				
			OLOGY: line				
55		(2) 101		_			
	(xi) SEQUENCE I	DESCRIPTION	: SEQ ID NO	: 93:		
	GCTTTGGCTT	TTTTTGGCGG	ACTGGGGCGC	CCTCCGGAAG	CGTTTCCAAC	TTTCCAGAAG	60
60	TTTCTCGGGA	CGGGCAGGAG	GGGGTGGGGA	CTGCCATATA	TAGATYCCCC	CACCACCCA	120
				Livouninin			120

	GCGGGC1AAG	AGTAGAATCG	TGTCGCGCTC	GAGAGCGAGA	GICACGICCC	GGCGCTAGCC	180
5	CAGCCCGACC	CAGGCCCACC	GTGGTGCACG	CAAACCACTT	CCTGGCCATG	CGCTCCCTCC	240
,	TGCTTCTCAG	CGCCTTCTGC	CTCCTGGAGG	CGGCCCTGGC	CGCCGAGGTG	AAGAAACCTG	300
	CAGCCGCAGC	AGCTCCTGGC	ACTGCGGAGA	AGTTGAGCCC	CAAGGCGGCC	ACGCTTGCCG	360
10	AGCGCAGCCG	GCCTGGCCTT	CAGCTTGTAC	CAGGCCATGG	CCAAGGACCA	GGCAGTGGAG	420
	AACATCCTGG	TGTCACCCGT	GCTGGTGGCC	TCGTCGCTGG	GCTCGTGTC	GCTGGGCGGC	480
15	AAGGCGACCA	CGGCGTCGCA	GGCCAAGGCA	GTGCTGAGCG	CCGAGCAGCT	GCGCGACGAG	540
IJ	GAGGTGCACG	CCGGCCTGGG	CGAGCTGCTG	CGCTCACTCA	GCAACTCCAC	GGCGCGCAAC	600
	GTGACCTGGA	AGCTGGGCAG	CCGACTGTAC	GGACCCAGCT	CAGTGAGCTT	CGCTGATGAC	660
20	TTCGTGCGCA	GCAGCAAGCA	GCACTACAAC	TGCGAGCACT	CCAAGATCAA	CTTCCGCGAC	720
	AAGCGCAGCG	CGCTGCAGTC	CATCAACGAG	TGGGCCGCGC	AGACCACCGA	CGGCAAGCTG	780
25	CCCGAGGTCA	CCAAGGACGT	GGAGCGCACG	GACGGCGCCC	TGTTAGTCAA	CGCCATGTTC	840
2.5	TTCAAGCCAC	ACTOGGATGA	GAAATTCCAC	CACAAGATGG	TGGACAACCG	TGGCTTCATG	900
	GTGACTCGGT	CCTATACCGT	GGGTGTCATG	ATGATGCACC	GGACAGGCCT	CTACAACTAC	960
30	TACGACGACG	AGAAGGAAAA	GCTGCAAATC	GTGGAGATGC	CCCTGGCCCA	CAAGCTCTCC	1020
	AGCCTCATCA	TCCTCATGCC	CCATCACGTG	GAGCCTCTCG	AGCGCCTTGA	AAAGCTGCTA	1080
35	ACCAAAGAGC	AGCTGAAGAT	CTGGATGGG	AAGATGCAGA	AGAAGGCTGT	TGCCATCTCC	1140
55	TTGCCCAAGG	GTGTGGTGGA	GGTGACCCAT	GACCTGCAGA	AACACCTGGC	TGGGCTGGGC	1200
	CTGACTGAGG	CCATTGACAA	GAACAAGGCC	GACTTGTCAC	GCATGTCAGG	CAAGAAGGAC	1260
40	CTGTACCTGG	CCAGCGTGTT	CCACGCCACC	GCCTTTGAGT	TGGACACAGA	TGGCAACCCT	1320
	TTGACCAGAA	TTACGGGCGG	AGGAGTGCGC	ACCCAAGTGT	TCTACGCCGA	CCACCCCTTC	1380
45	ATTTCCTAGT	GCGGGACACC	CAAAGCGGTC	CCTGCTATTC	ATTGGGCGCC	TGGTCCGGCC	1440
	TAAGGGTGAC	AAGATGCGAG	ACGAGITATA	GGCCTCAGGG	TGCACACAGG	ATGGCAGGAG	1500
	GCATCCAAAG	GCTCCTGAGA	CACATGGGTG	CTATTGGGGT	TGGGGGGAG	GTGAGGTACC	1560
50	AGCCTTGGAT	' ACTCCATGGG	GTGGGGTGGA	AAAGCAGACC	GGGGTTCCCG	TGTGCCTGAG	1620
	CGGACTTCCC	AGCTAGAATT	CACTCCACTT	GGACATGGGC	CCCAGATACC	ATGATGCTGA	1680
55	GCCCGGAAAC	TCCACATCCT	GTGGGACCTG	GGCCATAGTC	ATTCTGCCTG	CCCTGAAAGT	1740
JJ	CCCAGATCAA	GCCTGCCTCA	ATCAGTATTC	ATATTTATAG	CCAGGTACCT	TCTCACCTGT	1800
	GAGACCAAAT	TGAGCTAGGG	GGGTCAGCCA	GCCCTCTTCT	GACACTAAAA	CACCTCAGCT	1860
60	GCCTCCCCAG	CTCTATCCCA	ACCTCTCCCA	ACTATAAAAC	TAGGTGCTGC	AGCCCCTGGG	1920

	ACCAGGCACC CCCAGAATGA CCTGGCCGCA GTGAGGCGGA TTGAGAAGGA GCTCCCAGGA	1980
5	GGGGCTTCTG GGCAGACTCT GGTCAAGAAG CATCGTGTCT GGCGTTGTGG GGATGAACTT	2040
J	TTTGTTTGT TTCTTCCTTT TTTAGTTCTT CAAAGATAGG GAGCGAAGGG GGAACATGAG	2100
	CCTTTGTTGC TATCAATCCA AGAACTTATT TGTACATTTT TTTTTTCAAT AAAACTTTTC	2160
10	CAATGACAAA AAAAAAAAAA AAAAAAA	2187
1.5		
15	(2) INFORMATION FOR SEQ ID NO: 94:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 757 base pairs	
20	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 94:	
25	GACAGTACGG TCGGATTCCC GGGTCGACCC ACGCGTCCGC GGACGGTGAA GAAGGTGAAG	60
	ATGGCGGTGG CCAGGGCCGG GGTCTTGGGA GTCCAGTGGC TGCAAAGGGC ATCCCGGAAC	120
30	GTGATGCCGC TGGGCGCACG GACAGCCTCC CACATGACCA AGGACATGTT CCCGGGGCCC	180
30	TATCCTAGGA CCCCAGAAGA ACGGGCCGCC GCCGCCAAGA AGTATAATAT GCGTGTGGAA	240
	GACTACGAAC CTTACCCGGA TGATGGCATG GGGTATGGCG ACTACCCGAA GCTCCCTGAC	300
35	CGCTCACAGC ATGAGAGAGA TCCATGGTAT AGCTGGGACC AGCCGGGCCT GAGGTTGAAC	360
	TGGGGTGAAC CGATGCACTG GCACCTAGAC ATGTACAACA GGAACCGTGT GGATACATCC	420
40	CCCACACCTG TTTCTTGGCA TGTCATGTGT ATGCAGCTCT TCGGTTTCCT GGCTTTCATG	480
	ATATTCATGT GCTGGGTGGG GGACGTGTAC CCTGTCTACC AGCCTGTGGG ACCAAAGCAG	540
	TATCCTTACA ATAATCTGTA CCTGGAACGA GGCGGTGATC CCTCCAAAGA ACCAGAGCGG	600
45	GTGGTTCACT ATGAGATCTG AGGAGGCTTC GTGGGCTTTT GGGTCCTCTA ACTAGGACTC	660
	CCTCATTCCT AGAAATITAA CCTTAATGAA ATCCCTAATA AAACTCAGTG CTGTGTTAAA	720
50	AAAAAAAA AAAAAAAA AAAAAGGGGG GCCCCNN	757
	(2) INFORMATION FOR SEO ID NO: 95:	
55		
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2394 base pairs	
	(B) TYPE: nucleic acid	
60	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 95:

5	GGCACGAGCA	CTCCTGCACT	TCCCCACCCC	CACGACCGAA	CCTGGCTTCG	CTAACGCCCT	60
•	CCCAGCTCCC	TCGGGCCTGA	CTTCCGGTTT	CCTCGCGCGT	CCCTGGCGCC	GAGCCGCGGA	120
	CAGCAGCCCC	TTTTCCGGCT	GAGAGCTCAT	CCACACTTCC	AATCACTTTC	CGGAGTGCTT	180
10	CCCCTCCCTC	CGGCCCGTGC	TGGTCCCGAC	GGCGGGCCTG	GGTCTCGCGC	GCGTATTGCT	240
	GGGTAACGGG	CCTTCTCYCG	CGTCGGCCCG	GCCCCTCCTG	CCTCGGCTCG	TCCCTCCTTC	300
15	CAGAACGTCC	CGGGCTCCTG	CCGAGTCAGA	AGAAATGGGA	CTCCCTCCGC	GACGTGCCCG	360
	GAGCAGCTCC	CTTCGCTGTG	GAAGCGGCGG	TGTCTTCGAA	GAAACCGGAA	GCCCGTGGTG	420
	ACCCCTGGCG	ACCCGGTTTG	TTTTCGGTCC	GTTTCCAAAC	ACTAAGGAAT	CGAAACTCGG	480
20	CGGCCTTGGG	GGCGGCCCTA	CGTAGCCTGG	CTTCTGGTTG	TCATGGATGC	ACTGGTAGAA	540
	GATGATATCT	GTATTCTGAA	TCATGAAAAA	GCCCATAAGA	GAGATACAGT	GACTCCAGTT	600
25	TCAATATATT	CAGGAGATGA	ATCTGTTGCT	TCCCATTTTG	CTCTTGTCAC	TGCATATGAA	660
	GACATCAAAA	AACGACTTAA	GGATTCAGAG	AAAGAGAACT	CTTTGTTAAA	GAAGAGAATA	720
	AGATTTTTGG	AAGAAAAGCT	AATAGCTCGA	TTTGAAGAAG	AAACAAGTTC	CGTGGGACGA	780
30	GAACAAGTAA	ATAAGGCCTA	TCATGCATAT	CGAGAGGTTT	GCATTGATAG	AGATAATTTG	840
	AAGAGCAAAC	TGGACAAAAT	GAATAAAGAC	AACTCTGAAT	CTTTGAAAGT	ATTGAATGAG	900
35	CAGCTACAAT	CTAAAGAAGT	AGAACTCCTC	CAGCTGAGGA	CAGAGGTGGA	AACTCAGCAG	960
	GTGATGAGGA	ATTTAAATCC	ACCTTCATCA	AACTGGGAGG	TGGAAAAGTT	GAGCTGTGAC	1020
	CTGAAGATCC	ATGGTTTGGA	ACAAGAGCTG	GAACTGATGA	GGAAAGAATG	TAGCGATCTC	1080
40	AAAATAGAAC	TACAGAAAGC	CAAACAAACG	GATCCATATC	AGGAAGACAA	TCTGAAGAGC	1140
	AGAGATCTCC	AAAAACTAAG	CATTTCAAGT	GATAATATGC	AGCATGCATA	CTGGGAACTG	1200
45	AAGAGAGAAA	TGTCTAATTT	ACATCTGGTG	ACTCAAGTAC	AAGCTGAACT	ACTAAGAAAA	1260
	CTGAAAACCT	CAACTGCAAT	CAAGAAAGCC	TGTGCCCCTG	TAGGATGCAG	TGAAGACCTT	1320
	GGAAGAGACA	GCACAAAACT	GCACTTGATG	AATTTTACTG	CAACATACAC	AAGACATCCC	1380
50	CCTCTCTTAC	CAAATGGCAA	AGCTCTTTGT	CATACCACAT	CTTCCCCTTT	ACCAGGAGAT	1440
	GTAAAGGTTT	TATCAGAGAA	AGCAATCCTC	CAATCATGGA	CAGACAATGA	GAGATCCATT	1500
55	CCTAATGATG	GTACATGCTT	TCAGGAACAC	AGTTCTTATG	GCAGAAATTC	TCTGGAAGAC	1560
	AATTCCTGGG	TATTTCCAAG	TCCTCCTAAA	TCAAGTGAGA	CAGCATTIGG	GGAAACTAAA	1620
	ACTAAAACTT	TGCCTTTACC	CAACCTTCCA	CCACTGCATT	ACTTGGATCA	ACATAATCAG	1680
60	AACTGCCTTT	ATAAGAATTA	ATTIGGAAGA	GATTCACGAT	TTCACCATGA	GGACACTTAT	1740

CGTTAATTAC CC

60

672

	CTCTTTCAGT GGTCCTCCCA AGAAATTATT TAACAAACTG AANGGAGATT TTGATTAAAA	1800
5	TTTTGCAGAG GTCTTCAGTA TCTATATTTG AACACACTGT ACAATAGTAC AAAAACCAAC	1860
J	ATAGITGGIT TICTAGTATG AAAGAGCACC CICTAGCICC ATAITCIAAG AATCIGAAAT	1920
	ATGCTACTAT ACTAATTAAT AAGTAAACTT AAGGTGTTTA AAAAACTCTG CCTTCTATAT	1980
10	TAATTGTAAA ATTTTGCCTC TCAGAAGAAT GGAATTGCAG AFTGTAGACG TGGTTTTACA	2040
	AAATGTGAAA TGTCTAAATA TCTGTTCATA AAAATAAAAG GAAAACATGT TTCTTCAAAT	2100
15	TGCATAATGG AACAAATGGC AATGTGAGTA GGTTACATTT CTGTTGTTAT AATGCGTAAA	2160
13	GATATTGAAA ATATAATGAA ATAAAAGCAT CTTAGGTTAT ACCATCTTTA TATGCTATTG	2220
	CGTTTCAATA TTTAAGATTT AAAGTGATTT TTTGGTCACA GTGTTTGTT GATAAAATTT	2280
20	TTTTAGAATT GAAGTTTGAA TTCTAAGACT TGAAACAACC TGATCACTGA AGCCAACTTT	2340
	GTCCCAGCAC ATTCCTTAAG TCCTAATTGG GGAAAAAAA AAAAAAAAA TCGA	2394
25		
23	40)	
	(2) INFORMATION FOR SEQ ID NO: 96:	
30	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 672 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
35	(xi) SEQUENCE DESCRIPTION: SEQ ID NC: 96:	
•	AGTGCTCTGT TGCCCAGGCT GGAGTGCGTT AGTGTAATGT CAGTCCACTG CAACCTCCAC	60
	CCCCAGGTTC AAGCAATTCT CATGCCTCAG CCTCCCAAGT AGCTGAAATT ACTGGCATGC	120
40	ACCACCACAC CCAGCTGATG TITATTTATT TATTTATATA TITATTTATT TIAGGTGTTT	180
	TITTITTTT TTTTGAGAC GGAGICTIGC TCTGTTGCCC TGGGTGTGGT TACGTGGRAT	240
45	TACCATYCTG GGTGACTCAC TGAAATGTAC TCMCAGTGAG TCATGCCTTC MAATGACATC	300
	TCAAGTTCTG CCTGCTTGGA GATACATCTG GGGATCTTAA GGGGTGAGGG ACTACTCAAC	360
	AAGAAGGAAT TTAGCCTGTC TTTTTAAATA AACGGCATTT CTTTTTCCTA KAAAAATGGG	420
50	AAATTCTTCA ATTCTCTAAT ACAGGGACAC TGAGATAACA AAGAGGAAAG TGTCTGGTTG	480
	GAGGTTGGGA RGCCACCCTG GGGTCTCTCC TACAAAAATG GAAAAGAAAA	540
55	AAATCMAGCA AAGCACAARA AAKTTTCCCT TTGCTAAAAG GGAAAAGATG CCCCMCAATG	600
	CCCATAAACA TGAACTGGGG ATAAGGAGGA RAATGTCTCT YCTTGGCACC CCCAAACAAA	660

(2) INFORMATION FOR SEQ ID NO: 97:

5

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1419 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

10

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 97:

15	TAAGAACAGA	ACAGCAAGTA	TGAACCACAT	GGAACTTAAA	ACATATGGGT	GTGAAGTCCA	60
••	CTTATGTAGA	CAAAACTTAT	AATTTCCAAA	CTGTTGTCTA	GTATACAGTG	ATCAGTTGCT	120
	CTCTGTTCAA	GTCATTCCAC	ACATTTCCCT	ATTTTAGGCT	ATTATAATAT	AGAAAGAAAA	180
20	TGGGAAGCAT	TAGTTGGAGC	TAGAAAATGA	ACTGTATATT	ATTGCTATAT	TTGCTAATAC	240
	CAACTATTTC	AATAAGTGTT	GTACCATATG	TAGCATTAAA	TATAAAATAC	ATAAAAGAAT	300
25	GTACAGAAAA	TAGCTTTTAT	TGAGTAATAT	TACATTTCAT	TTATACTGTA	GCAATATATT	360
,	TGTAGGTATA	CTCTGTAAGG	GCTTTAAATA	AAAGAGGTCC	ATTAATACTT	ССТТАТАААА	420
	ATTCTAGTCT	GTTTCATTAC	TGCCCAGATG	TTTTAGAGAT	AAATATTTAT	GCAGAAGGTA	480
30	TTTTKGAAAG	TCYCCYTTTG	TCTGATAGAG	TTTAACNAGA	TATTTAAATT	TAGTGCYCNA	540
	GAAATCCCAC	AAGTCACGGT	CTAAACACAC	TTAGAATACT	ACAGCATAAA	TCTGTTAGCA	600
35	TTANTTGCCA	AATAAGACAG	TTGGGATCCC	AAACCCCAAG	TCCTTGAGCA	ATGTTTTTCC	660
	TCAAAAAGCT	GCTATNCCAA	TGATATAGGA	AAAWACATTG	TGTTTTCCTA	AACACACTTT	720
	TCTTTTTAAA	TGTGCTTCAT	TGTTTGATTT	GGTCCTGCCT	AAATTTCACA	AGCTAGGCCA	780
40	ATGAAGGCTG	AATCAAAGAC	ATTTCATCCA	CCAATATCAT	GTGTAGATAT	TATGTATAGA	840
	АААТАААТА	AATTATGGCT	CTAACTTCTG	TGTTGCTGTT	TATCTTGTTA	TTTTTCGGCG	900
45	TTATACTAAT	GNGTTTATTG	AGAGCATTIT	ACCTTCCAGA	CTTCTCATGG	CTAACTTTTG	960
	GTCTGWATTT	TGSTCCTTAG	ATGKGAATAT	TTCTTATTAG	TYTGCTYCCT	GCWACGCAAT	1020
	GACTGCATTT	CTATCATTTC	TCAGTTTGTT	AGWATATGTG	GATAGTATTC	TACTGTATAA	1080
50	ATGATTGCAA	AGTTTATCAA	AAACAAATTA	TTATATGTAG	CTTTTCTACA	GIGCITICCI	1140
	AAACCATGTA	GTACTAGTTA	AGTSTTCCTT	GAAAATAAAG	ATACACTCTT	ATAGGGGACA	1200
55	GTTCCTGTTC	ACTCCCAGGA	AACTTTTTTA	AAAGATGACA	CTGAATGTTT	ATTGCACTTT	1260
	AGTGCAGTGA	AGTGGCAATA	AAACCTAACA	TGAATCAAGG	TTGTTTATGG	CAGATGCATG	1320
	TGTTGCTTTA	CAGAGTTTAG	CAAAAGCTCT	TAATTTTATG	TCATACTGTA	TTCTACTGAA	1380
60	TAATAAAGCT	AACATTATTC	ААТААТААА	TGGAAAAAA			1419

WO 98/42738

249

PCT/US98/05311

5	(2)	INFORMATION	FOR	SEO	ID NO:	98:
9	,	THE OLUMNIT TOTA				

10

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1487 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 98:

15 GCGACCGCGC CCCTTTCAGC TAGCTCGCTC GCTCGCTCTG CTTCCCTGCT GCCGGCTGCG 60 CATGGCKWTG GCGTTGGCGG CGCTGGCGGC GGTCGAGCCG GCCTGCGCAG CCGGTACCAG 120 CAGTTGCAGA ATGAAGAAGA GTCTGGAGAA CCTGAACAGG CTGCAGGTGA TGCTCCTCCA 180 20 CCTTACAGCA GCATTTCTGC AGAGAGCGCA GTTTTCCACC TATTTCCCTG GATATTTTGA 240 TGGTCAGTAC TGGCTCTGGT GGGTGTTCCT TGTTTTAGGC TTTCTCCTGT TTCTCAGAGG 300 25 ATTTATCAAT TATGCAAAAG TTCGGAAGAT GCCAGAAACT TTCTCAAATC TCCCCAGGAC 360 CAGAGTICTC TITATTTATT AAAGATGTTT TCTGGCAAAG GCCTTCCTGC ATTTATGAAT 420 TCTCTCTCAA GAAGCAAGAG AACACCTGCA GGAAGTGAAT CAAGATGCAG AACACAGAGG 480 30 AATAATCACC TGCTTTAAAA AAATAAAGTA CIGTTGAAAA GATCATTTCT CTCTATTTGT 540 TCCTAGGTGT AAAATTTTAA TAGTTAATGC AGAATTCTGT AATCATTGAA TCATTAGTGG 600 35 TTAATGTTTG AAAAAGCTCT TGCAATCAAG TCTGTGATGT ATTAATAATG CCTTATATAT 660 TGTTTGTAGT CATTTTAAGT AGCATGAGCC ATGTCCCTGT AGTCGGTAGG GGGCAGTCTT 720 780 GCTTTATTCA TCCTCCATCT CAAAATGAAC TTGGAATTAA ATATTGTAAG ATATGTATAA 40 TGCTGGCCAT TTTAAAGGGG TTTTCTCAAA AGTTAAACTT TTGTTATGAC TGTGTTTTTG 840 CACATAATCC ATATTTGCTG TICAAGTTAA TCTAGAAATT TATTCAATTC TGTATGAACA 900 45 CCTGGAAGCA AAATCATAGT GCAAAAATAC ATTTAAGGTG TGGTCAAAAA TAAGTCTTTA 960 ATTGGTAAAT AATAAGCATT AATTTTTTAT AGCCTGTATT CACAATTCTG CGGTACCTTA 1020 TIGTACCTAA GGGATTCTAA AGGTGTTGTC ACTGTATAAA ACAGAAAGCA CTAGGATACA 1080 50 AATGAAGCTT AATTACTAAA ATGTAATTCT TGACACTCTT TCTATAATTA GCGTTCTTCA 1140 CCCCACCC CACCCCACC CCCTTATT TCCTTTTGTC TCCTGGTGAT TAGGCCAAAG 1200 55 TCTGGGAGTA AGGAGAGGAT TAGGTACTTA GGAGCAAAGA AAGAAGTAGC TTGGAACTTT 1260 TGAGATGATC CCTAACATAC TGTACTACTT GCTTTTACAA TGTGTTAGCA GAAACCAGTG 1320 GGTTATAATG TAGAATGATG TGCTTTCTGC CCAAGTGGTA ATTCATCTTG GTTTGCTATG 1380 60

	TTAAAACTGT	AAATACAACA	GAACATTAAT	AAATATCTCT	TGTGTAGCAC	CTTTAAAAAA	1440
	АААААААА	АААААААА	AAAAAAAA	CCCGGGGGGG	ефсссси		1487
5							
	(2) INFORM	ATION FOR SE	EQ ID NO: 99	9:			
10	(i)	(A) LEN (B) TYP (C) STR	HARACTERIST GTH: 1653 b E: nucleic ANDEDNESS: OLOGY: line	ase pairs acid double			
15	(xi)) SEQUENCE 1	DESCRIPTION	: SEQ ID NO	: 99:		
						CGGCTGCGCA	60
20						GGTACCAGCA	120
			CTGGAGAACC				
						AGTCTGGGTT	180
25							240
						AAGCGGAGAG	300
20						TTGTGGGTCG	360
30			ACCAGCTGAG				420
			TTAACTGGAT				480
35	TTCAGCTGCA	GGAAGGTATG	GGGCCATTTC	AGGATTTGGT	CTCTCTCTAA	TTAAATGGAT	540
	CCTGATTGTC	AGGTTTTCCA	CCTATTTCCC	TGCATTTATG	AATTCTCTCT	CAAGAAGCAA	600
	GAGAACACCT	GCAGGAAGTG	AATCAAGATG	CAGAACACAG	AGGAATAATC	ACCTGCTTTA	660
40	AAAAAATAAA	GTACTGTTGA	AAAGATCATT	TCTCTCTATT	TGTTCCTAGG	TGTAAAATTT	720
	TAATAGTTAA	TGCAGAATTC	TGTAATCATT	GAATCATTAG	TGGTTAATGT	TTGAAAAAGC	780
45	TCTTGCAATC	AAGTCTGTGA	TGTATTAATA	ATGCCTTATA	TATTGTTTGT	AGTCATTTTA	840
73	AGTAGCATGA	GCCATGTCCC	TGTAGTCGGT	AGGGGGCAGT	CTTGCTTTAT	TCATCCTCCA	900
	TCTCAAAATG	AACTTGGAAT	TAAATATTGT	AAGATATGTA	TAATGCTGGC	CATTTTAAAG	960
50	GGGTTTTCTC	AAAAGTTAAA	CTTTTGTTAT	GACTGTGTTT	TTGCACATAA	TCCATATTTG	1020
	CTGTTCAAGT	TAATCTAGAA	ATTTATTCAA	TICTGTATGA	ACACCTGGAA	GCAAAATCAT	1080
	AGTGCAAAAA	TACATTTAAG	GTGTGGTCAA	AAATAAGTCT	TTAATTGGTA	AATAATAAGC	1140
55						TAAGGGATTC	1200
						СТТААТТАСТ	1260
60						CCCCACCCC	
			INIAM	1140001101		CCCACCCC	1320

1020

	ACCCCCTTA TTTTCCTTTT GTCTCCTGGT GATTAGGCCA AAGTCTGGGA GTAAGGAGAG	1380
5	GATTAGGTAC TTAGGAGCAA AGAAAGAAGT AGCTTGGAAC TTTTGAGATG ATCCCTAACA	1440
,	TACTGTACTA CTTGCTTTTA CAATGTGTTA GCAGAAACCA GTGGGTTATA ATGTAGAATG	1500
	ATGTGCTTTC TGCCCAAGTG GTAATTCATC TTGGTTTGCT ATGTTAAAAC TGTAAATACA	1560
10	ACAGAACATT AATAAATATC TCTTGTGTAG CACCTTTTAW AAAAAAAAA AAAAAAAAA	1620
	AAAAAAAAA AAAAANCCCG GGGGGGGCC CCN	1653
15		
	(2) INFORMATION FOR SEQ ID NO: 100:	
20	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1145 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 100:	
	TTTTTTTTT TTTTTTTTT TTGACTGAAC TAAGTGCCTT TTTTATTAGA GAAAGCCAGA	. 60
30	ATTACAAAAG ACTTCCCTTT TCTTGGGGTA TGGCTGTCTC AGCACAATAC TCAACATAAC	120
OU	TGCAGAACTG ATGTGGCTCA GGCACCCTGG TTTTAATTCC TTGAGGATCT GGCAATTGGC	180
	TTACGCAAAA GGTCACCATT TGAGGTCCTG CCTTACTAAT TATGTGCTGC CCAACAACTA	240
35	AATTIGTAAT TIGITITICT CTAGITIGAG CAGGGICIGA ATTITITCAT TIATITCCTT	300
	TITITGCCAGC AGACAGACTT GAGTCTGTAA AGACAAGCAA ATACACTGAC AGAAGTITAC	360
40	CATACTITCT AAAATGTAAA AAAGAAAACC CCCAAAAGAC TCAAGAAAAT TAGACCACAA	420
,,	ATTITICATT GTTCATTGTA GCACTATTGG TAATAAAATA ACAAATGTTT GTGCATTITT	480
	ATGTGAAGAT CCTTCTCGTA TTTCATTTGG AAAGATGAGC AAGAGGTCTG CTTCCTTCAT	540
45	TITACTICCC CTICTGTTTT TGAAAGGCAG TITCGCCAAG CTTAATGCAA GAATATCTGA	600
	CTGTTTAGAA GAAAGATATT GCCACAATCT CTGGATGGTT TTCCAGGGTT GTGTTATTAC	[′] 660
50	TGAGCTTCAT CTTTCCAGAA TGAGCAAAAC ACTGTCCAGT CTTTGTTACG ATTTTGTAAT	720
	AAATGTGTAC ATTTTTTTA AATTTTTGGA CATCACATGA ATAAAGGTAT GTATGTACGA	780
	ATGTGTATAT ATTATATATA TGACATCTAT TTTGGAAAAT GTTTGCCCTG CTGTACCTCA	840
55	TITTTAGGAG GTGTGCATGG ATGCAATATA TGAAAATGGG ACATTCTGGA ACTGCTGGTC	900
	AGGGGACTTT GTCGCCCTGT GCACTAAAAG GGCCAGATTT TCAGCAGCCA AGGACATCCA	960

TACCCAAGTG AATGTGATGG GACTTAAAAG AAGTGAACTG AGACAATTCA CTCTGGCTGT

	TTGAACAGCA GCGTTTCATA GGAAGAGAAA AAAAGATCAA TCTTGTATTT TCTGACCACA	1080
	TAAAGGCTTC TTCTCTTTGT AATAAAGTAG AAAAGCTCTC CTCAAAAAAA AAAAAAAAAA	1140
5	AAAA	1145
10	(2) INFORMATION FOR SEQ ID NO: 101:	
15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 734 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 101:	
20	TACCCGGCGG ATTCCAGGAA GGTAAATTTA GTCCTATAAT TTTCAGCTTA ATTATAAACA	60
	AAGGAACAAA TAAGTGGAAG GGCAGCTATT ACCATTCGCT TAGTCAAAAC ATTCGGTTAC	120
25	TGCCCTTTAA TACACTCCTA TCATCAGCAC TTCCACCATG TATTACAAGT CTTGACCCAT	180
	CCCTGTCGTA ACTCCAGTAA AAGTTACTGT TACTAGAAAA TTTTTATCAA TTAACTGACA	240
	AATAGITICT TITTAAAGTA GITTCTTCCA TCTTTATTCT GACTAGCTTC CAAAATGIGT	300
30	TCCCTTTTTG AATCGAGGTT TTTTTGTTTT GTTTTGTTTT	360
	TGTGCTTCTA TTGCTTTTTT GTGTTTTGTT AAGCATGTCC CTTGGCCCAA ATGGAAGAGG	420
35	AAATGITTAA TTAATGCTTT TTAGITTAAA TAAATTGAAT CATTTATAAT AATCAGTGTT	480
	AACAATTTAG TGACCCTTGG TAGGITAAAG GTTGCATTAT TTATACTTGA GATTTTTTTC	540
	CCCTAACTAT TCTGTTTTTT GTACTTTAAA ACTATGGGGG AAATATCACT GGTCTGTCAA	600
40	GAAACAGCAG TAATTATTAC TGAGTTAAAT TGAAAAGTCC AGTGGACCAG GCATTTCTTA	660
	TATAAATAAA ATTGGTGGTA CTAATGTGAA AAAAAAAAA AAAAAAAACT CGAGGGGGC	720
45	CCGGTACCCT ATTA	734
50	(2) INFORMATION FOR SEQ ID NO: 102:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 713 base pairs	
	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
55	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 102:	
60	CCGCGGGAAC GCTGTCCTGG CTGCCGNCAC CCGAACAGCC TGTCCTGGTG CCCCGGCTCC	60

	CIGCCCCGCG	CCCAGTCATG	ACCCTGCGCC	CCTCACTCCT	CCCGCTCCAT	CTGCTGCTGC	120
	TGCTGCTGCT	CAGTGCGGCG	GTGTGCCGGG	CTGAGGCTGG	GCTCGAAACC	GAAAGTCCCG	180
5	TCCGGACCCT	CCAAGTGGAG	ACCCTGGTGG	AGCCCCCAGA	ACCATGTGCC	GAGCCCGCTG	240
	CTTTTGGAGA	CACGCTTCAC	ATACACTACA	CGGGAAGCTT	GGTAGATGGA	CGTATTATTG	300
10	ACACCTCCCT	GACCAGAGAC	CCICIGGITA	TAGAACTTGG	CCAAAAGCAG	GTGATTCCAG	360
	GTCTGGAGCA	GAGTCTTCTC	GACATGTGTG	TGGGAGAGAA	GCGAAGGGCA	ATCATTCCTT	420
	CTCACTTGGC	CTATGGAAAA	CGGGGATTTC	CACCATCTGT	CCCAGCGGAT	GCAGTGGTGC	480
15	AGTATGACGT	GGAGCTGATT	GCACTAATCC	GAGCCAACTA	CTGGCTAAAG	CTGGTGAAGG	540
	GCATTTTGCC	TCTGGTAGGG	ATGGCCATGG	TGCCACCCTC	CTGGGCCTCA	TTGGGTATCA	600
20	CCTATACAGA	AAGGCCAATA	GACCCAAAGT	CTCCAAAAAG	AAGCTCAAGG	AAGAGAAACG	660
20	AAACAAGAGC	AAAAAGAAAT	TAATAAATAA	AAATTTTAAA	AAACTTAAAA	AAA	713
25	(2) INFORM	ATION FOR SE	O ID NO. 10	na -			
	(2) INFORM	ILLON FOR BI	28 ID 140. II	<i>.</i>			
	(i)	SEQUENCE C	HARACTERIST	ICS:			

35

40

45

50

55

60

(A) LENGTH: 1080 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 103:

CCGATGTGGA CATCATCCTG TCTATCCCCA TGTTCCTGCG CCTGTACCTG ATCGCCCGAG 60 TCATGCTGCT GCACAGAAGC TCTTCACCGA TGCCTCGTCC CGCAGCATCG GGGCCCTCAA 120 CAAGATCAAC TTCAACACCC GCTTTGTCAT GAAGACGCTC ATGACCATCT GCCCTGGCAC 180 TGTGCTGCTC GTGTTCAGCA TCTCTCTGTG GATCATTGCT GCCTGGACCG TCCGTGTCTG 240 TGAAAGTCCT GAATCACCAG CCCAGCCTTC TGGCTCATCA CTTCCTGCTT GGTACCATGA 300 CCAGCAGGAC GTAACTAGTA ACTITCTGGG TGCCATGTGG CTCATCTCCA TCACATTCCT 360 TTCCATTGGT TATGGGGACA TGGTGCCCCA CACATACTGT GGGAAAGGTG TCTGTCTCCT 420 CACTGGCATC ATGGGTGCAG GCTGCACTGC CCTTGTGGTG GCCGTGGTGG CCCGAAAGCT 480 GGAACTCACC AAAGCGGAGA AGCACGTTCA TAANTTCATG ATGGACACTC AGCTCACCAA 540 GCGGATCAAG AATGYTGCAG CCAATGTCCT TSGGGAAACA TGGTTAATCT ATAAACACAC 600 AAAGYTGYTA AAGAAGATTG ACCATGCCAA AGTGAGGAAC ACCAGAGGAA GTTCYTCCAA 660 GTATCCACCA GTTGAGGAGC GTCAAGATGG AACAGAGGAA GCTGAGTGAC CAAGCCAACA 720 NTCTGGTGGA CCTTTCCAAG ATGCAGAATG TCMTGTATGA CTTAATCACA GAACTCAATG 780

	ACCGGAGCGA AGACCTGGAG AAGCAGATTG GCAGCCTGGA GTCGAAGCTG GAGCATCTCA	840
5	CCGCCAGCTT CAACTCCCTG CCGCTGCTCA TCGCCGACAC CCTGCGCCAG CAGCAGCAGC	900
	AGCTCCTGTC TGCCATCATC GAGGCCCGGG GTGTCAGCGT GGCAGTGGGC ACCACCCACA	960
	CCCCAATCTC CGATAGCCCC ATTGGGGTCA GCTCCACCTC CTTCCCGACC CCGTACACAA	1020
10	GTTCAAGCAG TTGCTAAATA AATCTCCCCA CTCCAGAAGC ATTAAAAAAA AAAAAAAAAA	1080
15	(2) INFORMATION FOR SEQ ID NO: 104:	
20	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 489 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 104:	
25	GGCACGAGAG GCTTTGAAGC ATTTTTGTCT GTGCTCCCTG ATCTTCAGGT CACCACCATG	60
	AAGTTCTTAG CAGTCCTGGT ACTCTTGGGA GTTTCCATCT TTCTGGTCTC TGCCCAGAAT	120
30	CCGACAACAG CTGCTCCAGC TGACACGTAT CCAGCTACTG GTCCTGCTGA TGATGAAGCC	180
	CCTGATGCTG AAACCACTGC TGCTGCAACC ACTGCGACCA CTGCTGCTCC TACCACTGCA	240
	ACCACCGCTG CTTCTACCAC TGCTCGTAAA GACATTCCAG TTTTACCCAA ATGGGTTGGG	300
35	GATCTCCCGA ATGGTAGAGT GTGTCCCTGA GATGGAATCA GCTTGAGTCT TCTGCAATTG	360
	GTCACAACTA TTCATGCTTC CTGTGATTTC ATCCAACTAC TTACCTTGCC TACGATATCC	420
40	CCTTTATCTC TAATCAGTTT ATTITCTTTC AAATAAAAA TAACTATGAG CAACAAAAAA	480
	AAAAAAA	489
45	(2) INFORMATION FOR SEQ ID NO: 105:	
50	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 640 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 105:	
55	GCGGTCGCCG CTGTTGTTGT GGTCCCCATG GAGCTGCCGT AGCGGACCCA GCACAGCCAG	60
	GAGCGTCCGG GATGAGCTCA GCCGCGGCCG ACCACTGGGC GTGGTTGCTG GTGCTCAGCT	120
60	TOSTGTTTGG ATGCAATGTT CTTAGGATCC TCCTCCCGTC CTTCTCATCC TTCATGTCCA	180

	GGGTGCTGCA	GAAGGACGCG	GAGCAGGAGT	CACAGATGAG	AGCGGAGATC	CAGGACATGA	240
5	AGCAGGAGCT	CTCCACAGTC	AACATGATGG	ACGAGTTTGC	CAGATATGCC	AGGCTGGAAA	300
	GAAAGATCAA	CAAGATGACG	GATAAGCTCA	AAACCCATGT	GAAAGCTCGG	ACAGCTCAAT	360
	TAGCCAAGAT	AAAATGGGTG	ATAAGTGTCG	CTTTCTACGT	ATTGCAGGCT	GCCCTGATGA	420
10	TCTCACTCAT	TTGGAAGTAT	TATTCTGTCC	CTGTGGCTGT	CGTGCCGAGT	AAATGGATAA	480
	CCCTYTAGAC	CGCCTGGTAG	CCTTTCCYAY	TAGAGTAGCA	GGTGGTGTTG	GAATTACTGT	540
15	TGGATTTART	CTGTACAAAT	TGTCCTATTG	TGCTTCACCG	TYCASTGAAC	AGGAGGTGGT	600
IJ	ACAGCCGGAG	TTAAAAACGG	TTTCCNTTCC	AGTTTAAAAT			640

25

30

(2) INFORMATION FOR SEQ ID NO: 106:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1529 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double -

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 106:

GGGCACNAGA TGGAGCTGCC GTAGCGGACC CAGCACAGCC AGGAGCGTCC GGGATGAGCT 60 CAGCCGCGC CGACCACTGG GCGTGGTTGC TGGTGCTCAG CTTCGTGTTT GGATGCAATG 120 35 TTCTTAGGAT CCTCCCCG TCCTTCTCAT CCTTCATGTC CAGGGTGCTG CAGAAGGACG 180 CGGACAGGAG TCACAGATGA GAGCGGAGAT CCAGGACATG AAGCAGGAGC TCTCCACAGT 240 CAACATGATG GACGAGTTTG CCAGATATGC CAGGCTGGAA AGAAAGATCA ACAAGATGAC 300 40 GGATAAGCTC AAAACCCATG TGAAAGCTCG GACAGCTCAA TTAGCCAAGA TAAAATGGGT 360 GATAAGTGTC GCTTTCTACG TATTGCAGGC TGCCCTGATG ATCTCACTCA TTTGGAAGTA 420 45 TTATTCTGTC CCTGTGGCTG TCGTGCCGAG TAAATGGATA ACCCCTCTAG ACCGCCTGGT 480 AGCCTTTCCT ACTAGAGTAG CAGGTGGTGT TGGAATTACC TGTTGGATTT TAGTCTGTAA 540 CAAAGTTGTC GCTATTGTGC TTCATCCGTT CAGCTGAACA GGAGGATGGA TACAGCCGCG 600 50 AGTAAAAAA CGGATTTCCT CTTCCTAGCT TAAAATCTGA TTTACACTGT TTTGTTTTTT 660 AAGAAACAAA AGTGCATAGT TTAGATTTTT TTTTTGTTGA ATATGTTTGT TCTTGGACTT 720 55 TATGAGATAG TCTTATAAGA ATCACGATTT TCTACACCTG TCATTGAGCC AAGAAAGTCC 780 AGTITATGAC ACGTATGTAC TAGTGAACAC CGTCCTCGAT CTGTACGAAA TGTGAAATGT 840 TTAGGGACAT CTCCATGCTG TCACTTGTGA TTTGCCCTCT TATGTATTTT GGTCATATTG 900 60

780

	CCAACTGGAA AGTCAAAATT TTCTAACAAC TTTAAGTAAG TTCTTTGAAG ACTTAGTGCT	960
	GTTTTTAATC CAGTTTAGAA AGTAACTTAA TTTTAATACC RCTACTAAAA ATTCGAAAAT	1020
5	TTCTTCTTTA ATCACATTCA ATATGGTTAA AAGAACAACA CTAATTGACA TTGCGTGGGC	1080
	TTTTTCTCCC TTTGTTTAAA ATGTCATTTG TTGAGCAAGA GTTGTATAGT ATTATCTACT	1140
10	TACTTGAGGC TGTTAATTTT TCATTACAGT GTTTTGTAAA TGTATCCACG AGACCATGAT	1200
10	GCATTGTTTT GTGCTCAACT TGTGTTTTGT ATTTAAAGCA TTTTGAATGA AGTGTATTTT	1260
	ATAAGCATTT AATATTTATG CTCTTTAGAA TGGAACACAG AAAACAAACC TTATAAGTCC	1320
15	TGATTAATCT GAACCAATAA CCTGTGTGGC CTACAAAGTA TAATTCTATT AAATGTTCCT	1380
	TAAAACACTT TTTTCTAATT AAAATCTTTG CAAATGCTTG TGTAACTTCC TGCCTTACAG	1440
20	CTACTTGTTT GCTGTGAGCC ACCCGCAACT GACAAGTGGC TGTTAACTGA GTCACCATAT	1500
20	CCCAGTAAAG CTGAATTTTC TCACTAAAA	1529
25	(2) INFORMATION FOR SEQ ID NO: 107:	
	(i) SEQUENCE CHARACTERISTICS:	
30	(A) LENGTH: 2435 base pairs (B) TYPE: nucleic acid	
50	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 107:	
35	ATGAAGGGTC GTTGGTGGGA AAGATGGCGG CGACTCTGGG ACCCCTTGGT CGTGGCAGCA	60
	GTGGCGRCGA TGTTTGTCGG CTCGGGATGG GTCCAGGATG TTACTCCTTC TTCTTTTGTT	120
40	GGGGTCTGGG CAGGGGCCAC AGCAAGTCGG GGCGGGTCAA ACGTTCGAGT ACTTGAAACG	180
	GGAGCACTCG CTGTCGAAGC CCTACCAGGG TGTGGGCACA GGCAGTTCCT CACTGTGGAA	240
	TCTGATGGGC AATGCCATGG TGATGACCCA GTATATCCGC CTTACCCCAG ATATGCAAAG	300
45	TAAACAGGGT GCCTTGTGGA ACCGGGTGCC ATGTTTCCTG AGAGACTGGG AGTTGCAGGT	360
	GCACTTCAAA ATCCATGGAC AAGGAAAGAA GAATCTGCAT GGGGATGGCT TGGCAATCTG	420
50	GTACACAAAG GRWTCGGATG CAGCCAGGGC CTGTNITTGG GAAACATGGA CAAATTTGTG	480
	GGGCTGGGAG TATTTGTAGA CACCTACCC AATGAGGAGA AGCAGCAAGA GCGGGTATTC	540
	CCCTRCMTCT CAGCCATGGT GAACAACGGC TCCCTCAGCT ATGATCATGA GCGGGATGGG	600
55	CGGCCTACAG AGCTGGGAGG CTGCASAGCC ATTGTCCGCA ATCTTCATTA CGACACCTTC	660
	CHECKER CONTROL CARROLL CACCULATION ACCUMINATES MOCKET MOCKET MOCKET MOCKET CONTROL MOCKET CONTR	720

GAGTGGAGGG ACTGCATTGA AGTGCCCGGA GTCCGCCTGC CCCGCGGCTA CTACTTCGGC

	ACCICCICCA	TCACTGGGGA	TCTCTCAGAT	AATCATGATG	TCATTTCCTT	GAAGTTGTTT	840
5	GAACTGACAG	TGGAGAGAAC	CCCAGAAGAG	GAAAAGCTCC	ATCGAGATGT	GTTCTTGCCC	900
,	TCAGTGGACA	ATATGAAGCT	GCCTGAGATG	ACAGCTCCAC	TGCCGCCCCT	GACTGCCTG	960
	GCCCTCTTCC	TCATCGTCTT	TTTCTCCCTG	GGTGTTTTCT	GTATTTGCCA	TAGTCATTGG	1020
10	TATCATACTC	TACAACAAAT	GGCAGGAACA	GAGCCGAAAG	CGCTTCTACT	GAGCCCTCCT	1080
	GCTGCCACCA	CTTTTGTGAC	TGTCACCCAT	GAGGTATGGA	AGGAGCAGGC	ACTGGCCTGA	1140
15	GCATGCAGCC	TGGAGAGTGT	TCTTGTCTCT	AGCAGCTGGT	TGGGGACTAT	ATTCTGTCAC	1200
.5	TGGAGTTTTG	AATGCAGGGA	CCCCGCATTC	CCATGGTTGT	GCATGGGGAC	ATCTAACTCT	1260
	GGTCTGGGAA	GCCACCCACC	CCAGGGCAAT	GCTGCTGTGA	TGTGCCTTTC	CCTGCAGTCC	1320
20	TTCCATGTGG	GAGCAGAGGT	GTGAAGAGAA	TTTACGTGGT	TGTGATGCCA	AAATCACAGA	1380
	ACAGAATITC	ATAGCCCAGG	CTGCCGTGTT	GTTTGACTCA	GAAGGCCCTT	CTACTTCAGT	1440
25	TTTGAATCCA	CAAAGAATTA	AAAACTGGTA	ACACCACAGG	CTTTCTGACC	ATCCATTCGT	1500
	TGGGTTTTGC	ATTTGACCCA	ACCCTCTGCC	TACCTGAGGA	GCTTTCTTTG	GAAACCAGGA	1560
	TGGAAACTTC	TTCCCTGCCT	TACCTTCCTT	TCACTCCATT	CATTGTCCTC	TCTGTGTGCA	1620
30	ACCTGAGCTG	GGAAAGGCAT	TIGGATGCCT	CTCTCTTCGG	GCCTGGGGCT	GCAGAACACA	1680
	CCTGCGTTTC	ACTGGCCTTC	ATTAGGTGGC	CCTAGGGAGA	TGGCTTTCTG	CTTTGGATCA	1740
35	CIGTICCCTA	GCATGGGTCT	TGGGTCTATT	GGCATGTCCA	TGGCCTTCCC	AATCAAGTCT	1800
	CTTCAGGCCC	TCAGTGAAGT	TTGGCTAAAG	GTTGGTGTAA	AAATCAAGAG	AAGCCTGGAA	1860
	GACATCATGG	ATGCCATGGA	TTAGCTGTGC	AACTGACCAG	CTCCAGGTTT	GATCAAACCA	1920
1 0	AAAGCAACAT	TTGTCATGTG	GTCTGACCAT	GTGGAGATGT	TTCTGGACTT	GCTAGAGCCT	1980
	GCTTAGCTGC	ATGTTTTGTA	GTTACGATTT	TTGGAATCCC	ACTITGAGTG	CTGAAAGTGT	2040
15	AAGGAAGCTT	TCTTCTTACA	CCTTGGGCTT	GGATATTGCC	CAGAGAAGAA	ATTIGGCTTT	2100
	TTTTTTNCTT	AATGGACAAG	AGACAGTTGC	TGTTCTCATG	TICCAAGICT	GAGAGCAACA	2160
	GACCCTCATC	ATCTGTGCCT	GGAAGAGTTC	ACTGTCATTG	AGCAGCACAG	CCTGAGTGCT	2220
50	GCCTCTGTC	AACCCTTATT	CCACTGCCTT	ATTTGACAAG	GGGTTACATG	CTGCTCACCT	2280
	TACTGCCCTG	GGATTAAATC	AGTTACAGGC	CAGAGTCTCC	TTGGAGGGCC	TGGAACTCTG	2340
55	AGTCCTCCTA	TGAACCTCTG	TAGCCTAAAT	GAAATTCTTA	AAATCACCGA	TGGAACCAAA	2400
	АААААААА	АААААААА	АААААААА	AAAAN			2435

60

120

180

300

240

(2) INFORMATION	FOR	SEQ	ID	NO:	108:
-----------------	-----	-----	----	-----	------

5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 805 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear						
10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 108:						
10	ATGAAACTTA AGAATTGAAT TGGAAAGACT TCTCAAAGAG AATTGTATGT AACGATGTTG	60					
	TATTGATTTT TAAGAAAGTA ATTTAATTTG TAAAACTTCT GCTCGTTTAC ACTGCACATT	120					
15	GAATACAGGT AACTAATTGG AAGGAGAGGG GAGGTCACTC TTTTGATGGT GGCCCTGAAC	180					
	CTCATTCTGG TTCCCTGCTG CGCTGCTTGG TGTGACCCAC GGAGGATCCA CTCCCAGGAT	240					
20	GACGTGCTCC GTAGCTCTGC TGCTGATACT GGGTCTGCGA TGCAGCGGGG TGAGGCCTGG	300					
20	GCTGGTTGGA GAAGGTCACA ACCCTTCTCT GTTGGTCTGC CTTCTGCTGA AAGACTCGAG	360					
	AACCAACCAG GGAAGCTGTC CTGGAGGTCC CTGGTCGGAG AGGGACATAG AATCTGTGAC	420					
25	CTCTGACAAC TGTGAAGCCA CCCTGGGCTA CAGAAACCAC AGTCTTCCCA GCAATTATTA	480					
	CAATTCTTGA ATTCCTTGGG GATTTTTTAC TGCCCTTTCA AAGCACTTAA GTGTTAGATC	540					
30	TAACGTGTTC CAGTGTCTGT CTGAGGTGAC TTAAAAAAATC AGAACAAAAC TTCTATTATC	600					
30	CAGAGTCATG GGAGAGTACA CCCTTTCCAG GAATAATGTT TTGGGAAACA CTGAAATGAA	660					
	ATCTTCCCAG TATTATAAAT TGTGTATTTA AAAAAAAGAA ACTTTTCTGA ATGCCTACTG	720					
35	GCGGTGTATA CCAGGCAGTG TGCCAGTTTA AAAAGATGAA AAAGAATAAA AACTTTTGAG	780					
	GAACAAAAA AAAAAAAAA AAATT	805					
40							
	(2) INFORMATION FOR SEQ ID NO: 109:						
45	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1166 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear						
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 109:						
	GGCACGAGAG GCGCCAGTCG CAGGTGTGCT GCTGAGGCGT GAGAATGGCG TCCCGCGGCC	60					

GGCGTCCGGA GCATGGCGGA CCCCCAGAGC TGTTTTATGA CGAGACAGAA GCCCGGAAAT

ACGTTCGCAA CTCACGGATG ATTGATATCC AGACCAGGAT GGCTGGGCGA GCATTGGAGC

TTCTTTATCT GCCAGAGAAT AAGCCCTGTT ACCTGCTGGA TATTGGCTGT GGCACTGGGC

TGAGTGGAAG TTATCTGTCA GATGAAGGGC ACTATTGGGT GGGCCTGGAT ATCAGCCCTG

420

480

	CCATGCTGGA TGAGGCTGTG GACCGAGAGA TAGAGGGAGA CCTGCTGCTG GGGGATATGG	360
5	GCCAGGGCAT CCCATTCAAG CCAGGCACAT TTGATGGTTG CATCAGCATT TCTGCTGTGC	420
J	AGTGGCTCTG TAATGCTAAC AAGAAGTCTG AAAACCCTGC CAAGCGCCTG TACTGCTTTT	480
	TTGCTTCTCT TTTTTCTGTT CTCGTCCGGG GATCCCGAGC TGTCCTGCAG CTGTACCCTG	540
10	AGAACTCAGA GCAGTTGGAG CTGATCACAA CCCAGGCCAC AAAGGCAGGC TTCTCCGGTG	600
	GCATGGTGGT AGACTACCCT AACAGTGCCA AAGCAAAGAA ATTCTACCTC TGCTTGTTTT	660
15	CTGGGCCTTC GACCTTTATA CCAGAGGGC TGAGTGAAAA TCAGGATGAA GTTGAACCCA	720
	GGGAGTCTGT GTTCACCAAT GAGAGGTTCC CATTAAGGAT GTCGAGGCGG GGAATGGTGA	780
	GGAAGAGTCG GGCATGGGTG CTGGAGAAGA AGGAGCGGCA CAGGCGCCAG GGCAGGGAAG	840
20	TCAGACCTGA CACCCAGTAC ACCGGCCGCA AGCGCAAGCC CCGCTTCTAA GTCACCACGC	900
	GGTTCTGGAA AGGCACTTGC CTCTGCACTT TTCTATATTG TTCAGCTGAC AAAGTAGTAT	960
25	TTTAGAAAAG TTCTAAAGTT ATAAAAATGT TTTCTGCAGT AAAAAAAAAA	1020
	CGGGCGTGGT GCCTCACANC TGTAATCCCA GCACCTTGGG AGGCTGAGGT GGGAGGATCA	1080
	TTTGAGGCCA GGAGTTTGAG ACCTGCCTGG GCAACATAAT GAAACTTCCT TTCCAGGGAG	1140
30	ааалаалаа алаалаала астсса	1166
35	(2) INFORMATION FOR SEQ ID NO: 110:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 586 base pairs (B) TYPE: nucleic acid	
40	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEO ID NO: 110:	
45	AGAGCGGACG AAGCTGGATA ACAGGGGACC GATGATGTGG CGACCATCAG TTCTGCTGCT	60
	TCTGTTGCTA CTGAGGCACG GGGCCCAGGG GAAGCCATCC CCAGACGCAG GCCCTCATGG	
	CCAGGGGAGG GTGCACCAGG CGGCCCCCT GAGCGACGCT CCCCATGATG ACGCCCACGG	
50	GAACTTCCAG TACGACCATG AGGCTTTCCT GGGACGGGAA GTGGCCAAGG AATTCGACCA	
	ACTCACCCCA GAGGAAAGCC AGGCCCGTCT GGGGCGGATC GTGGACCGCA TGGACCGCC	
55	COCCOLOGGE CACCOCTICGE TOTOCCTCCS COLOGITICGE COCCOLOGITICAL COLOGITICAL COLOG	

GCAGCGGCAC ATACGGGACT CGGTGAGCGC GGCCTGGGAC ACGTACGACA CGGACCGCGA

CGGGCGTGTG GGTTGGGAGG AGCTGCGCAA CGYCACCTAT GGCCACTASG SGCCCGKTGA

	AGAATTTCAT GACGTGGAGG ATGCAGAGAC YTACAAAAAG ATGCTGGYTC GGGACGAGCG	540
	GCGTTTCCGG GTGGCCGACC AGGATGGGGA CTCGATGGCC ACTCGA	586
5		
	(2) INFORMATION FOR SEQ ID NO: 111:	
10	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 1134 base pairs (B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 111:	
	ACCCATTGAG CAGAAGGAGG CCAGGTGGGA AAGCTCCTGG GAAGAGCAGC CAGACTGGAC	60
20	ACTIGGGCTGC TTGAGTCCTG AGTCACAATT CAGAATTCCT GGGCTCCCTG GGTGCATTCT	
20		120
	ATCATTCCAG TTGAAAGTTT GCTTCCTTCC AGTCATGTGG CTCTTCATTC TACTCTCCTT	180
25	GGCTCTCATT TCAGATGCCA TGGTCATGGA TGAAAAGGTC AAGAGAAGTT TGTGCTGGAC	240
	ACGCCTTCTG CCATCTGCAA CTACAATGCC CAYTACAAGA ATCACCCCAA ATACTGGTGC	300
	CGAGGYTATT TCCGTGAYTA CTGCAACATC ATCGCCTTCT CCCCTAACAG CACCAATCAT	360
30	GTGGCCCTGA AGGACACAGG GAACCAGCTC ATTGTCACTA TGTCCTGCCT GAACAAANAA	420
	GACACGGGCT GGTACTGGTG TGGCATCCAR CGGGACTTTG CMAGGGATGA CATGGATTTT	480
25	ACAGAGCTGA TTGTAACTGA CGACAAAGGA ACCCTGGCCA ATGACTTTTG GTCTGGGAAA	540
35	GACCTATCAG GCAACAAAAC CAGAAGCTGC AAGGCTCCCA AAGTTGTCCG CAAGCTGACC	600
	GCTCCAGGAC GTCCATTCTC ATCATTTGCA TACTGATCAC GGGTTTGGGA ATCATCTCTG	660
40	TAATCAGTCA TITGACCAAA AGGAGGAGAA GTCAAAGGAA TAGAAGGGTA GGCAACACTT	720
	TGAAGCCCTT CTCGCGTGTC CTGACTCCAA AGGAAATGGC TCCTACTGAA CAGATGTGAC	780
45	TGAAGWITTT TITAATITAG TINCATAAAG TGATGNCTAC AACAGAWTAA TCACCCATGA	840
	CAACTGGCCC CACACCTCAG AGACTGATTC TGATCTCCCA GGAATTCTGA AGGACCCTCT	900
•	ATCCTTGACA ACAATCATTT GCAGCCAGGT AGCAACGGCR GTAGTCAGAG GAGCTATGAT	960
50	AGACCACACC CAAGCAAGGC TGCCCTCAAA TAACATCTCA AGATCTTAGT TCTTATGCAT	1020
	TCCATCAGTC AGAAGTGAAG AAGAGGTGGA GAATCTKGAT TGGGGACCAG GAAATCACTT	1080
<i></i>	GTATTTGTT AGCCAATAAA TTCCTAGCCA GTGTTGAATG AAAAAAAAA AAAA	1134
55		

⁽²⁾ INFORMATION FOR SEQ ID NO: 112:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1333 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 112:

10	CACTTTAAAG	CTCTGCTGAG	GGAGTTCGGA	GCCCAGGCTT	TCAGGCGACC	TCTGCCCTCC	60
10	CTCCCTCTCC	TCACCCTCCC	TCTCTTCCTG	CAGGGCCTGG	GAAGGGCTTT	GAGGGAGCCT	120
	GGGAGCCATG	TGAAGAGGG	CACGCCTGGG	CTGTCCCACA	GITTAGATCC	AGTTGGAGGT	180
15	TCTCCCTGGC	TCCTGCAGGC	CTGCGGGGAT	CTCTCCCCAC	TTCAGGCCTC	CGGCAGCTGC	240
	CTGCCCTCTT	GTCTGTGCTT	CAGCCCTGCA	CAAAAGCAGC	TTGGTGACAC	CACTCAGCCA	300
20	CCCAGAGTAC	GTGTTTACAG	GCTTTCCAGA	TCACCTTCCT	GTGGGGTGAA	CGTAATGAGG	360
20	CGGGGCTGGT	CCTTGGAATT	TCCCCTGGAA	AATGGTAACA	GACTCCATCC	TTGACCCGGG	420
	GATGAGCATG	AAGGCATTGT	CCCAAAGGCA	GAGGCCACCG	TGGTAGGAAT	TCCACCAAGG	480
25	CCAGAAGGGA	AAAAGGAAGA	ACCCACCGTG	TCTGGCTGTG	CGGGCCCTGG	GGAGGGTCGT	540
	GAGTGCAGCC	CCTCTCTACT	TCYGTGCCTT	TGTAAAACGT	GTAGATAACC	GCAGTGGTTG	600
30	GCTGAGCCAA	GAACTCTCCT	AAATCAGTGG	CTTTCTCCCC	ACCCCTTGCT	GGGGAGTCAT	660
	AAAAATTTT	ATCTGTGGGA	TATAAAATTG	GCCTCCTGCT	GCTTCAGCCT	ACCTCTCCCT	720
	CTGCTGACTT	AATGTCGTGA	TTCTGTTTCT	TCAGATATTT	AAGGCTGTTA	GGTTGTGTGA	780
35	GCCTTGAAGT	GIGIGIGIGI	GTCCCAGCGA	CTGTCCACTG	TCCAGGAGAT	GCATGTCTTT	840
	GTATTGGAGA	TATTTCTGTA	ACTCATTCTC	TTGGTGCTCA	CGATTGCCAT	GGCCATAGGG	900
40	CCACAGTGCC	GTATCTGCTG	CAGACATGAT	TGTTTCTTGT	TCTAGAGGTT	TTCTTGTTTT	960
	CGAATCTTGC	CTGATGAATC	CAGCCAGACC	AAGGGGCCTA	GATTTGACCT	CTGTCCTGGG	1020
	CTCCTGGGCC	AGGTGCAGGA	ACATCTGAGG	CCACTCTGCT	GGCCACCTCC	AGTGGGTGCT	1080
45	GACCACAGGA	TGGGCTTTGT	TTACACTCAT	TTTCACCCTG	ATTCTTGCCC	CCACTTICAT	1140
	AAAAGAAACT	TCAAAATGCT	GACGCTTTGG	AGAGTAAGAA	AATCAATCTT	GGCTGGGCAC	1200
50	GGTGGCTCCT	GCCTGTGATC	CTAGCACTTT	GGGAGGCTGA	AGCTGAAGGA	TCACTTGAGC	1260
	TCAGGAGTTG	GAGACCAACC	CTGGCAACAT	AACAAGACCC	TGTCTCTACA	AAAAAAAA	1320
	ААААААААСТ	CGA					1333

55

(2) INFORMATION FOR SEQ ID NO: 113:

60

(i) SEQUENCE CHARACTERISTICS:

	GGCACGAGCG GCACGAGCGG CACGAGGTGA CTTCAAGTGT CGGATCTTTT CAGCCTACAT						
		60					
10	CAAGGAGGTG GAGGAACGGC CGGCACCCAC CCCGTGGGCT CCAAGATGCC CTTTGGGGAA	120					
	CTGATGTTCG AATCCAGCAG TAGCTGCGGC TGGGTACATG GCGTCTGTTT CTCAGCCAGC	180					
15	GGGAGCCGCG TGGCCTGGGT AAGCCACGAC AGCACCGTCT GCCTGGCTGA TGCCGACAAG	240					
	AAGATGGCCG TCGCGACTCT GGCCTCTGAA ACACTACCAC TGCTGGCGCT GACCTTCATC	300					
	ACAGACAACA GCCTGGTGGC AGCGGGCCAC GACTGCTTCC CGGTGCTGTT CACCTATGAC	360					
20	GCCGCCGCG GGATGCTGAG CTTCGGCGG CGGCTGGACG TTCCTAAGCA GAGCTCGCAG	420					
	CGTGGCTTGA CGGCCCGCGA GCGCTTCCAG AACCTGGACA AGAAGGCGAG CTCCGAGGGT	480					
25	GGCACGGCTG CGGGCGCGGG CCTAGACTCG CTGCACAAGA ACAGCGTCAG CCAGATCTCG	540					
	GTGCTCAGCG GCGGCAAGGC CAAGTGCTCG CAGTTCTGCA CCACTGGCAT GGATGGCGGC	600					
	ATGAGTATCT GGGATGTGAA GAGCTTGGAG TCAGCCTTGA AGGACCTCAA GATCAAATGA	660					
30	CCTGTGAGGA ATATGTTGCC TTCATCCTAG CTGCTGGGGA AGCGGGGAGA GGGGTCAGGG	720					
	AGGCTAATGG TTGCTTTGCT GAATGTTTCT GGGGTACCAA TACGAGTTCC CATAGGGGCT	780					
35	GCTCCCTCAA AAAGGGAGGG GACAGATGGG GAGCTTTTCT TACCTATTCA AGGAATACGT	840					
	GCCTTTTTCT TAAATGCTTT CATTTATTGA AAAAAAAAA AAATGCCCCC AAAGCACTAT	900					
	GCTGGTCATG AACTGCTTCA AAATGTGGAG GTAATAAAAT GCAACTGTGT AAAAAAAAA	960					
40	AAAAAAAAA AAAAAAAAA AAAAAAAAA AAAAAAAA	1015					
45	(2) INFORMATION FOR SEQ ID NO: 114:						
50	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1076 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear						
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 114:						
55	GGCACGAGGG GAAAGCCATG CTCCCAGGAC TCCTTCCTTG CAGCCTTAAA TCGGTCTGTA	60					
	CGGAAAATTC CGCGCCTTAG AAACCCACGC TTGGGTGTAA CTTATTATTG TTCTTCCTGA	120					
60	CCTACTTCCT GTTTATCACT TCCGGGTTCA TCATTTTGGC ATTTCGGTGA TCGGGTTGGA	180					

540

	ACTATTGAAG	CCCGCTTTCA	GGTTCTTTTC	CCCATTTTCC	CTTTGAAAGG	AAGACTTCTG	240
	GCTTCTCCTA	AATCTCCGTT	CTCTGGGTAA	GGGGAGTCCA	AGCCTCTGTC	ATGAGGAACG	300
5	GAAATGCGAG	GGCCTCGGGT	GTTACTCTAA	AATCCGCCCT	CAGCTTGCAC	GCCGGAAGCT	360
	GCGATTCCTG	CAGCGGAAGA	GGCGTGATCT	GGCCTTCGAC	TCGCTATGTC	CACTAACAAT	420
10	ATGTCGGACC	CACGGAGGCC	GAACAAAGTG	CTGAGGTACA	AGCCCCCGCC	GAGCGAATGT	480
	AACCCGGCCT	TGGACGACCC	GACGCCGGAC	TACATGAACC	TGCTGGGCAT	GATCTTCAGC	540
	ATGTGCGGCC	TCATGCTTAA	GCTGAAGTGG	TGTGCTTGGG	TCGCTGTCTA	CTGCTCCTTC	600
15	ATCAGCTTTG	CCAACTCTCG	GAGCTCGGAG	GACACGAAGC	AAATGATGAG	TAGCTTCATG	660
	CTGTCCATCT	CTGCCGTGGT	GATGTCCTAT	CTGCAGAATC	CTCAGCCCAT	GACGCCCCCA	720
20	TGGTGATACC	AGCCTAGAAG	GGTCACATTT	TGGACCCTGT	CTATCCACTA	GCCTGGCT	780
	TTGGCTGCTA	AACCTGCTGC	CTTCAGCTGC	CATCCTGGAC	TTCCCTGAAT	GAGGCCGTCT	840
	CGGTGCCCCC	AGCTGGATAG	AGGGAACCTG	GCCCTTTCCT	AGGGAACACC	CTAGGCTTAC	900
25	CCCTCCTGCC	TCCCTTCCCC	TGCCTGCTGC	TGGGGGAGAT	GCTGTCCATG	TTTCTAGGGG	960
	TATTCATTTG	CTTTCTCGTT	GAAACCTGTT	GTTAATAAAG	TTTTTCACTC	TGAAAAAAA	1020
30	AAAAAAANA	RAAAACNCGN	GGGGGGCCC	GGAACCCAAT	TCSCCGGATA	GTGAGT	1076
	(2) INFORM	ATION FOR SE	EO ID NO: 11	L5:			
35		SEQUENCE C	_				
	(2)	(A) LEN	GTH: 1487 b	ase pairs			
40		(C) STR	ANDEDNESS:	double			
40			OLOGY: line				
	(xi) SEQUENCE 1	DESCRIPTION	: SEQ ID NO	: 115:		
45	CCGCTGCTGA	TAACTATGGC	ATCCCCCGGG	CCTGCAGGAA	TTCGGCACGG	AGCTACGGCG	60
	CCGCCTGGCT	CCTGCTGNCA	CCTGCAGGCT	CCTCCCCCCT	GGAGCCCACC	CAAGACATCA	120
	GCATCAGCGA	CCAGCTGGGG	GGCCAGGACG	TGCCCGTGTT	CCGGAACCTG	TCCCTGCTGG	180
50	TGGTGGGTGT	CGGCGCCGTG	TTCTCACTGC	TATTCCACCT	GGGCACCCGG	GAGAGGCGCC	240
	GGCCGCATGC	GGASGAGCCA	GGCGAGCACA	CCCCCCTGTT	GCCCCTGCC	ACGGCCCAGC	300
55	CCCTGCTGCT	CTGGAAGCAC	TGGCTCCGGG	AGCSGGCTTT	CTACCAGGTG	GGCATACTGT	360
. =	ACATGACCAC	CAGGCTCATC	GTGAACCTGT	CCCAGACCTA	CATGGCCATG	TACCTCACCT	420
	ACTCGCTCCA	CCTGCCCAAG	AAGTTCATCG	CGACCATTCC	CCTGGTGATG	TACCTCAGCG	480

GCTTCTTGTC CTCCTTCCTC ATGAAGCCCA TCAACAAGTG CATTGGGAGG AACATGACCT

	ACTICICAGG	CCTCCTGGTG	ATCCTGGCCT	TTGCCGCCTG	GGTGGCGCTG	GCGGAGGGAC	600
5	TGGGTGTGGC	CGTGTACGCA	GCGGCTGTGC	TGCTGGGTGC	TGGCTGTGCC	ACCATCCTCG	660
_	TCACCTCGCT	GCCATGACG	GCCGACCTCA	TCGGTCCCCA	CACGAACAGC	GGAGCKTTCG	720
	TGTACGGCTC	CATGAGCTTC	TTGGATAAGG	TGGCCAATGG	GCTGGCAGTC	ATGGCCATCC	780
10	AGAGCCTGCA	CCCTTGCCCC	TCAGAGCTCT	GCTGCAGGGC	CTGCGTGAGC	TTTTACCACT	840
	GGGCGATGGT	GGCTGTGACG	GCCGCCTGG	GCGTGGCCGC	TGCCCTGTGT	CTCTGTAGCC	900
15	TCCTGCTGTG	GCCGACCCGC	CTGCGACGCT	GATGAGACCT	GCACGCANTG	GCTCACAGCA	960
	GCACGATTTG	TGACAGCCCG	AGGCGGAGAA	CACCGAACAC	CCAGTGAAGG	TGAGGGGATC	1020
	AGCACGGCGC	GGCCACCCAC	GCACCCACGC	GCTGGAATGA	GACTCAGCCA	CAAGGAGGTG	1080
20	CGAAGCTCTG	ACCCAGGCCA	CAGTGCGGAT	GCACCTTGAG	GATGTCACGC	TCAGTGAGAG	1140
	ACACCAGACA	CAGAAGGGTA	CGCTGTGATC	CCACTTCTAT	GAAATGTCCA	GGACAGACCA	1200
25	ATCCACAGAA	TCAGGGAGAG	GATTCGTGGG	TGCCGGGACT	GGGGAGGGG	ACCTGGGGGT	1260
	GACTAGGTGA	CATAATGGGG	ACAGGGCTGC	CTTCTGGGTG	ATGAGAATGT	TCTGGAATCA	1320
	GATGGGATGG	CTGCACGGCG	TGGTGAAGGT	ACTGAACGCC	ACCTCACTGT	AAGACGGTAG	1380
30	ATTTTGTATT	TTACCACAAT	AAACAAAACA	AAACAAAACC	АААААААА	АААААААА	1440
	AAAAAAAGG	AATTCGATAT	CAAGCTTATC	GATACCGTCG	ACCTCGA		1487
35							
	(2) INFORMA	ATION FOR SE	EQ ID NO: 1	16:			
	(i)	SEQUENCE CI	HARACTERIST	ICS:			
40			GTH: 1350 b E: nucleic				
		• •	ANDEDNESS: OLOGY: line				
45	(xi) SEQUENCE I	DESCRIPTION	: SEQ ID NO	: 116:		
	GGCACGAGTG	CGCANGCGTG	GGGCTCTCTC	CTTGTCAGTC	GCCCCCCT	GCGGGCTGGT	60
50	GGCTCTGTGG	CAGCGGCGGC	GGCAGGACTC	CGGCACTATG	AGCGGCTTCA	GCACCGAGGA	120
50	ecececeee	CCTTCTCCCT	GGAGTACCGA	GTCTTCCTCA	AAAATGAGAA	AGGACAATAT	180
	ATATCTCCAT	TTCATGATAT	TCCAATTTAT	GCAGATAAGG	ATGTGTTTCA	CATGGTAGTT	240
55	GAAGTACCAC	GCTGGTCTAA	TGCAAAAATG	GAGATTGCTA	CAAAGGACCC	TTTAAACCCT	300
							250
	ATTAAACAAG	ATGTGAAAAA	AGGAAAACTT	CGCTATGTTG	CGAATTTGTT	CCCGTATAAA	360
60		ATGTGAAAAA GGAACTATGG					420

420

480

	AAACATACTG GCTGTTGTGG TGACAATGAC CCAATTGATG TGTGTGAAAT TGGAAGCAAG	480
	GTATGTGCAA GAGGTGAAAT AATTGGCGTG AAAGTTCTAG GCATATTGGC TATGATTGAC	540
5	GAAGGGGAAA CCGACTGGAA AGTCATTGCC ATTAATGTGG ATGATCCTGA TGCAGCCAAT	600
	TATAATGATA TCAATGATGT CAAACGGCTG AAACCTGGCT ACTTAGAAGC TACTGTGGAC	660
10	TGGTTTAGAA GGTATAAGGT TCCTGATGGA AAACCAGAAA ATGAGTTTGC GTTTAATGCA	720
10	GAATTTAAAG ATAAGGACTT TGCCATTGAT ATTATTAAAA GCACTCATGA CCATTGGAAA	780
	GCATTAGTGA CTAAGAAAAC GAATGGAAAA GGAATCAGTT GCATGAATAC AACTTTGTCT	840
15	GAGAGCCCCT TCAAGTGTGA TCCTGATGCT GCCAGAGCCA TTGTGGATGC TTTACCACCA	900
	CCCTGTGAAT CTGCCTGCAC AGTACCAACA GACGTGGATA AGTGGTTCCA TCACCAGAAA	960
20	AACTAATGAG ATTTCTCTGG AATACAAGCT GATATTGCTA CATCGTGTTC ATCTGGATGT	1020
20	ATTAGAAGTA AAAGTAGTAG CTTTTCAAAG CTTTAAATTT GTAGAACTCA TCTAACTAAA	1080
	GTAAATTCTG CTGTGACTAA TCCAATATAC TCAGAATGTT ATCCATCTAA AGCATTTTTC	1140
25	ATATCTCAAC TAAGATAACT TTTAGCACAT GCTTAAATAT CAAAGCAGTT GTCATTTGGA	1200
	AGTCACTTGT GAATAGATGT GCAAGGGGAG CACATATTGG ATGTATATGT TACCATATGT	1260
30	TAGGAAATAA AATTATTTTG CTGAAAAAAA AAAAAAAAA ACCTSGGGGG GGGSCCCGGT	1320
50	CCCCATTIGG CCCTTTGGGG GGNGGTTTTA	1350
35	(2) INFORMATION FOR SEO ID NO: 117:	
	(i) SEQUENCE CHARACTERISTICS:	
40	(A) LENGTH: 2527 base pairs (B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 117:	
45	CTCTTGCTAC CTTCCCGGCG CAGAGAACCC CGGCTGCTCA GCGCGCTCCG GGGTCATGGA	60
	GATCCCCGGG AGCCTGTGCA AGAAAGTCAA GCTGAGCAAT AACGCGCAGA ACTGGGGAAT	120
50	GCAGAGAGCA ACCAATGTCA CCTACCAAGC CCATCATGTC AGCAGGAACA AGAGAGGTCA	180
50	GETGETGGG ACCAGAGGTG GCTTTCGTGG TTGCACAGTT TGGCTAACAG GCTTGTCTGG	240
	AGCGGGAAAG ACTACTGTGA GCATGGCCTT GGAGGAGTAC CTGGTTTGTC ATGGTATTCC	300
55	ATGCTACACT CTGGATGGTG ACAATATTCG TCAAGGTCTC AATAAAAATC TTGGCTTTAG	360
	MICHIGAN CIOCHOLO MERMITTO TOURGUET UNINUMNIC HOSCILIAG	200

TCCTGAAGAC AGAGAAGAGA ATGTTCGACG CATCGCAGAA GTTGCTAAAC TGTTTGCAGA

TECTEGETTA GTGTGCATCA CAAGTTTCAT ATCACCTTAC ACTCAGGATC GCAACAATGC

	AAGGCAAATT	CATGAAGGTG	CAAGITTACC	GITTITIGAA	GTATTTGTTG	ATGCTCCTCT	540
5	GCATGTTTGT	GAACAGAGGG	ATGTCAAAGG	ACTCTACAAA	AAAGCCCGGG	CAGGAGAAAT	600
	TAAAGGTTTC	ACTGGGATCG	ATTCTGAATA	TGAAAAGCCA	GAGGCCCCTG	ACTTCCTCCT	660
	GAAAACAGAC	TCCTGTGATG	TAAATGACTG	TGTCCAGCAA	GTTGTGGAAC	TTCTACAGGA	720
10	ACGGGATATT	GTACCTGTGG	ATGCATCTTA	TGAAGTAAAA	GAACTATATG	TGCCAGAAAA	780
	TAAACTTCAT	TTGGCAAAAA	CAGATGCGGA	AACATTACCA	GCACTGAAAA	TTAATAAAGT	840
15	GGATATGCAG	TGGGTGCAGG	TTTTGGCAGA	AGGTTGGGCA	ACCCCATTGA	ATGGCTTTAT	900
	GAGAGAGAGG	GAGTACTIGC	AGIGCCTTCA	TTTTGATTGT	CTTCTGGATG	GAGGTGTCAT	960
	TAACTTGTCA	GTACCTATAG	TTCTGACTGC	GACTCATGAA	GATAAAGAGA	GGCTGGACGG	1020
20	CTGTACAGCA	TTTGCTCTGA	TGTATGAGGG	CCGCCGTGTG	GCCATTCTTC	GCAATCCAGA	1080
	GTTTTTTGAG	CACAGGAAAG	AGGAGCGCTG	TGCCAGACAG	TGGGGAACGA	CATGCAAGAA	1140
25	CCACCCCTAT	ATTAAGATGG	TGATGGAACA	AGGAGATTGG	CTGATTGGAG	GAGATCTTCA	1200
	AGTCTTGGAT	CGAGTTTATT	GGAATGATGG	TCTTGATCAG	TATCGTCTTA	CTCCTACTGA	1260
	GCTAAAGCAG	AAATTTAAAG	ATATGAATGC	TGATGCTGTC	TTTGCATTTC	AACTACGCAA	1320
30	CCCAGTGCAC	AATGGACATG	CCCTGTTAAT	GCAGGATACC	CATAAGCAAC	TTCTAGAGAG	1380
	GGGCTACCGG	CGCCCTGTCC	TCCTCCTCCA	CCCTCTGGGT	GGCTGGACAA	AGGATGACGA	1440
35	TGTTCCTTTG	ATGTGGCGTA	TGAAGCAGCA	TGCTGCAGTG	TTGGAGGAAG	GAGTTCTGAA	1500
	TCCTGAGACG	ACAGTGGTGG	CCATCTTCCC	ATCTCCCATG	ATGTATGCTG	GACCAACTGA	1560
	GCTCCAGTGG	CATTGCAGAG	CACGGATGGT	TGCAGGAGCC	AACTTTTACA	TTGTTGGACG	1620
40	AGACCCTGCT	GGCATGCCTC	ATCCAGAAAC	AGGGAAGGAT	CTTTATGAGC	CAAGTCATGG	1680
	TGCCAAAGTG	CTGACGATGG	CCCCTGGTTT	AATCACTTTG	GAAATAGTTC	CCTTTCGAGT	1740
45	TGCAGCTTAC	AACAAGAAAA	AGAAGCGTAT	GGACTACTAT	GACTCTGAAC	ACCATGAAGA	1800
	CTTTGAATTT	ATTTCAGGAA	CACGAATGCG	CAAACTTGCT	CGAGAAGGCC	AGAAACCACC	1860
	TGAAGGTTTC	ATGGCTCCCA	AGGCTTGGAC	CGTGCTGACA	GAATACTACA	AATCCTTGGA	1920
50	GAAAGCTTAG	GCTGTTAACC	CAGTCACTCC	ACCTITGACA	CATTACTAGT	AACAAGAGGG	1980
-	GACCACATAG	TCTCTGTTGG	CATTTCTTTG	TGGTGTCTGT	CTGGACATGC	TICCTAAAAA	2040
55	CAGACCATTT	TCCTTAACTT	GCATCAGTTT	TGGTCTGCCT	TATGAGITCT	GITTTGAACA	2100
	AGTGTAACAC	ACTGATGGTT	TTAATGTATC	TTTTCCACTT	ATTATAGTTA	TATTCCTACA	2160
	ATACAATITT	AAAATTGTCT	TTTTATATTA	TATTTATGCT	TCTGTGTCAT	GATTTTTTCA	2220
60	AGCTGTTATA	TTAGTTGTAA	CCAGTAGTAT	TCACATTAAA	TCTTGCTTTT	TTTCCCCTTA	2280

10	АААААА						2527
	GTAAGCTCTG	AATGAACTTC	TTTACTCAAT	AAAATTAATT	TTTTGGCTTC	TTAAAAAAA	2520
5	CTTTCCAGTC	AGCTATTGGT	CTTTCCAGCT	GTTATAATCT	AAAGTATTCT	TATGATCTGT	2460
	AGACCTTTGT	AGCGATTAGA	TTTTTTTCT	ACATTGAAAA	TAGAAACTGC	TICCITICIT	2400
	AAAAAAGAAA	AAAATTACCA	AACAATAAAC	TTGGCTAGAC	CTTGTTTTGA	GGATTTTACA	2340

15 (2) INFORMATION FOR SEQ ID NO: 118:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1098 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 118:

	(10.00)	, production ,	DESCRITTION	. DDQ ID NO			
25	CGCATCACAG	ACAACCCAGA	AGGAAAATGG	TTGGGCAGAA	CAGCAAGGGG	TTCATATGGC	60
	TATATTAAAA	CAACTGCTGT	AGAGATTNNC	TATGATTCTT	TGAAACTGAA	AAAAGACTCT	120
30	CTTGGTGCCC	CTTCAAGACC	TATTGAAGAT	GACCAAGAAG	TATATGATGA	TGTTGCAGAG	180
50	CAGGATGATA	TTAGCAGCCA	CAGTCAGAGT	GGAACTGGAG	GGATATTCCC	TCCACCACCA	240
	GATGATGACA	TTTATGATGG	GATTGAAGAG	GAAGATGCTG	ATGATGGTTT	CCCTGCTCCT	300
35	CCTAAACAAT	TGGACATGGG	AGATGAAGTT	TACGATGATG	TGGATACCTC	TGATTTCCCT	360
	GTTTCATCAG	CAGAGATGAG	TCAAGGAACT	AATGTTGGAA	AAGCTAAGAC	AGAAGAAAAG	420
40	GACCTTAAGA	AGCTAAAAAA	GCAGRAAAA	GAARAAAAG	ACTTCAGGAA	AAATTTAAA	480
-10	TATGATGGTG	AAATTAGAGT	CCTATATTCA	ACTAAAGTTA	CAACTTCCAT	AACTTCTAAA	540
	AAGTGGGGAA	CCAGAGATCT	ACAGGTAAAA	CCTGGTGAAT	CTCTAGAAGT	TATACAAACC	600
45	ACAGATGACA	CAAAAGTTCT	CTGCAGAAAT	GAAGAAGGGA	AATATGGTTA	TGTCCTTCGG	660
	AGTTACCTAG	CGGACAATGA	TGGAGAGATC	TATGATGATA	TTGCTGATGG	CTGCATCTAT	720
50	GACAATGACT	AGCACTCAAC	TTTGGTCATT	CTGCTGTGTT	CATTAGGTGC	CAATGTGAAG	780
30	TCTGGATTTT	AATTGGCATG	TTATTGGGTA	TCMAGAAAAT	TAATGCACAR	AACCACTTAT	840
	TATCATTTGT	TATGAAATCC	CAATTATCTT	TACAAAGTGT	TTAAAGTTTG	AACATAGAAA	900
55	ATAATCTCTC	TGCTTAATTG	TTATCTCAGA	AGACTACATT	AGTGAGATGT	AAGAATTATT	960
	AAATATTCCA	TTTCCGCTTT	GGCTACAATT	ATGAAGAAGT	TGAAGGTACT	TCTTTTAGAC	1020
60	CACCAGTAAA	TAATCCTCCT	тсаааааата	AAAATAAAA	АААААААА	AAACTCGAGG	1080
OU							

GGGGCCCGG TACCCAAT

1098

5

10

(2) INFORMATION FOR SEQ ID NO: 119:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1679 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

15	(xi) SEQUENCE	DESCRIPTION	: SEQ ID NO	: 119:		
	TCGACCCACG	CCTCCGCGA	GATCCCTACC	GCAGTAGCCG	CCTCTGCCGC	CGCGGAGCTT	60
	CCCGAACCTC	TTCAGCCGCC	CGGAGCCGCT	CCCGGAGCCC	GGCCGTAGAG	GCTGCAATCG	120
20	CAGCCGGGAG	CCCGCAGCCC	GCGCCCCGAG	cccccccc	CCCTTCGAGG	GCGCCCCAGG	180
-	CCGCGCCATG	GTGAAGGTGA	CGTTCAACTC	CGCTCTGGCC	CAGAAGGAGG	CCAAGAAGGA	240
25	CGAGCCCAAG	AGCGGCGAGG	AGGCGCTCAT	CATCCCCCC	GACGCCGTCG	CGGTGGACTG	300
	CAAGGACCCA	GATGATGTGG	TACCAGTTGG	CCAAAGAAGA	CCCTCCTCTT	GGTGCATGTG	360
	CTTTGGACTA	GCATTTATGC	TTGCAGGTGT	TATTCTAGGA	GGAGCATACT	TGTACAAATA	420
30	TTTTGCACTT	CAACCAGATG	ACGTGTACTA	CTGTGGAATA	AAGTACATCA	AAGATGATGT	480
	CATCTTAAAT	GAGCCCTCTG	CAGATGCCCC	AGCTGCTCTC	TACCAGACAA	TTGAAGAAAA	540
35	TATTAAAATC	TTTGAAGAAG	AAGAAGTTGA	ATTTATCAGT	GTGCCTGTCC	CAGAGTTTGC	600
	AGATAGTGAT	CCTGCCAACA	TTGTTCATGA	CTTTAACAAG	AAACTTACAG	CCTATTTAGA	660
	TCTTAACCTG	GATAAGTGCT	ATGTGATCCC	TCTGAACACT	TCCATTGTTA	TGCCACCCAG	7 20
40	AAACCTACTG	GAGTTACTTA	TTAACATCAA	GGCTGGAACC	TATTTGCCTC	AGTCCTATCT	780
	GATTCATGAG	CACATGGTTA	TTACTGATCG	CATTGAAAAC	ATTGATCACC	TGGGTTTCTT	840
45	TATTTATCGA	CTGTGTCATG	ACAAGGAAAC	TTACAAACTG	CAACGCAGAG	AAACTATTAA	900
,,,	AGGTATTCAG	AAACGTGAAG	CCAGCAATTG	TTTCGCAATT	CGGCATTTTG	AAAACAAATT	960
	TGCCGTGGAA	ACTITAATIT	GTTCTTGAAC	AGTCAAGAAA	AACATTATTG	AGGAAAATTA	1020
50	ATATCACAGC	ATAACCCCAC	CCTTTACATT	TTGTGCAGTG	ATTATTTTTT	AAAGTCTTCT	1080
	TTCATGTAAG	TAGCAAACAG	GGCTTTACTA	TCTTTTCATC	TCATTAATTC	AATTAAAACC	1140
55	ATTACCTTAA	AATTTTTTTC	TTTCGAAGTG	TGGTGTCTTT	TATATTTGAA	TTAGTAACTG	1200
3 3	TATGAAGTCA	TAGATAATAG	TACATGTCAC	CTTAGGTAGT	AGGAAGAATT	ACAATTTCTT	1260
	TAAATCATTT	ATCTGGATTT	TTATGTTTTA	TTAGCATTTT	CAAGAAGACG	GATTATCTAG	1320
60	AGAATAATCA	TATATATGCA	TACGTAAAAA	TGGACCACAG	TGACTTATTT	GTAGTTGTTA	1380

WO 98/42738 PCT/US98/05311

269

	GTTGCCCTGC	TACCTAGTTT	GTTAGTGCAT	TTGAGCACAC	ATTTTAATTT	TCCTCTAATT	1440
5	AAAATGTGCA	GTATTTTCAG	TGTCAAATAT	ATTTAACTAT	TTAGAGAATG	ATTTCCACCT	1500
	TTATGTTTTA	ATATCCTAGG	CATCTGCTGT	AATAATATT	TAGAAAATGT	TTGGAATTTA	1560
	AGAAATAACT	TGTGTTACTA	ATTTGTATAA	CCCATATCTG	TGCAATGGAA	TATAAATATC	1620
0	ACAAAGTTGT	TTAAMWAAAA	АААААААА	АААААААА	АААААААА	MAAAAAAA	1679

15 (2) INFORMATION FOR SEQ ID NO: 120:

20

25

30

35

40

45

50

55

60

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1308 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 120:

TTGGCANCNG GGAGAGGGAA AGAGGAGGAA ATGGGGTTTG AGGACCATGG CTTACCTTTC 60 CTGCCTTTGA CCCATCACAC CCCATTTCCT CCTCTTTCCC TCTCCCCGCT GCCAAAAAAA 120 AAAAAAAGG AAACGTTTAT CATGAATCAA CAGGGTTTCA GTCCTTATCA AAGAGAGATG 180 TGGAAAGAGC TAAAGAAACC ACCCTTTGTT CCCAACTCCA CTTTACCCAT ATTTTATGCA 240 ACACAAACAC TGTCCTTTTG GGTCCCTTTC TTACAGATGG ACCTCTTGAG AAGAATTATC 300 GTATTCCACG TTTTTAGCCC TCAGGTTACC AAGATAAATA TATGTATATA TAACCTTTAT 360 TATTGCTATA TCTTTGTGGA TAATACATTC AGGTGGTGCT GGGTGATTTA TTATAATCTG 420 480 AAAAGCCAGG TATAATGTAA CTTCACCCCA GCCTTTGTAC TAAGCTCTTG ATAGTGGATA 540 TACTCTTTTA AGFITAGCCC CAATATAGGG TAATGGAAAT TTCCTGCCCT CTGGGTTCCC 600 CATTITITACT ATTAGAAGA CCAGTGATAA TITAATAATG CCACCAACTC TGGCTTAGTT 660 AAGTGAGAGT GTGAACTGTG TGGCAAGAGA GCCTCACACC TCACTAGGTG CAGAGAGCCC 720 AGGCCTTATG TTAAAATCAT GCACTTGAAA AGCAAACCTT AATCTGCAAA GACAGCAGCA 780 AGCATTATAC GGTCATCTTG AATGATCCCT TTGAAATTTT TTTTTTGTTT GTTTGTTTAA 840 ATCAAGCCTG AGGCTGGTGA ACAGTAGCTA CACACCCATA TTGTGTGTTC TGTGAATGCT 900 AGCTCTCTTG AATTTGGATA TTGGTTATTT TTTATAGAGT GTAAACCAAG TTTTATATTC 960 TGCAATGCGA ACAGGTACCT ATCTGTTTCT AAATAAAACT GTTTACATTC ATTATGGGGT 1020 1080 ATGTATGACC TTCATTTTCC AAGAAATAGA ACTCTAGCTT AGAATTATGG ATGCTCTAAA

	ATGTCAGAAT GGGAACTCTC CTCGAAGTTC TCCCAAACTC AGAGACAGCA CTGCCTTCTC	1140
	CTAAATGATT ATTCTTTTCT CCCTGTTTTC TGGTATTTTC TAGGCATCCT TCTCACCACA	1200
5	GCCATAACCC TTTTTTACTT CCATTAGGCC GTATAACTGG NGGGACNGCT GGTCGGTATA	1260
	TAATACTGGT WCCAACAMAG GGGTTCTGGA TGTACACMAG GTTATCTT	1308
10		
	(2) INFORMATION FOR SEQ ID NO: 121:	
15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1411 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 121:	
	GGCACAGGAG CGACCCGGGA GAAGGAGGGC CAMGAKGCGG AAGCGGAGGA GTCTCCAGGA	60
25	GACCCGGGGA CAGCATCGCC CAGGCCCCTG TTTGCAGGCC TTTCAGATAT ATCCATCTCA	120
	CAAGACATCC CCGTAGAAGG AGAAATCACC ATTCCTATGA GATCTCGCAT CCGGGAGTTT	180
	GACAGCTCCA CATTAAATGA ATCTGTTCGC AATACCATCA TGCGTGATCT AAAAGCTGTT	240
30	GGGAAAAAAT TCATGCATGT TTTGTACCCA AGGAAAAGTA ATACTCTTTT GAGAGATTGG	300
	GATTTGTGGG GCCCTTTGAT CCTTTGTGTG ACACTCGCAT TAATGCTGCA AAGAGACTCT	360
35	GCAGATAGTG AAAAAGATGG AGGGCCCCAA TTTGCAGAGG TGTTTGTCAT TGTCTGGTTT	420
	GGTGCAGTTA CCATCACCCT CAACTCAAAA CTTCTTGGAG GGAACATATC TTTTTTTCAG	480
40	AGCCTCTGTG TGCTGGGTTA CTGTATACTT CCCTTGACAG TAGCAATGCT GATTTGCCGG	540
40	CTGGTACTTT TGGCTGATCC AGGACCTGTA AACTTCATGG TTCGGCTTTT TGTGGTGATT	600
	GTGATGTTTG CCTGGTCTAT AGTTGCCTCC ACAGCTTTCC TTGCTGATAG CCAGCCTCCA	660
4 5	AACCGCAGAG CCCTAGCTGT TTATCCTGTT TTCCTGTTTT ACTTTGTCAT CAGTTGGATG	720
	ATTCTCACCT TTACTCCTCA GTAAATCAGG AATGGGAAAT TAAAAACCAG TGAATTGAAA	780
* 0	GCACATCTGA AAGATGCAAT TCACCATGGA GCTTTGTCTC TGGCCCTTAT TTGTCTAATT	840
50	TTGGAGGTAT TTGATAACTG AGTAGGTGAG GAGATTAAAA GGGAGCCATA TAGCACTGTC	900
	ACCCCTTATT TGAGGAACTG ATGTTTGAAA GGCTGTTCTT TTCTCTCTTA ATGTCATTTC	960
55	TTTAAAAATA CATGTGCATA CTACACACAG TATATAATGC CTCCTTAAGG CATGATGGAG	1020
	TCACCGTGGT CCATTTGGGT GACAACCAGT GACTTGGGAA GCACATAGAT ACATCTTACA	1080
. 0	AGITGAATAG AGITGATAAC TATTITCAGT TTTGAGAATA CCAGITCAGG TGCAGCTCTT	1140
50	AAACACATTG CCTTATGACT ATTAGAATAT GCCTCTCTTT TCATAAATAA AAATACATGG	1200

	TCTATATCCA TITICTTTTA TITCTCTCTC TTAAGCTTAA AAAGGCAATG AGAGAGGTTA	1260
_	GGAGTGGGTT CATACACGGA GAATGAGAAA ACATGCATTA ACCAATATTC AGATTTTGAT	1320
5	CAGGGGAAAT TCTAYACTTG TTGCAAAAAA AAAAAAAAA AAACTCGAGG GGGGCCCGGT	1380
	ACCCAATCGC NGTATATGAT CGNAAACAAT C	1411
10		
	(2) INFORMATION FOR SEQ ID NO: 122:	
15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2256 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 122:	
	GCTTTGGCTT TTTTTGGCGG ACTGGGGCGC CCTCCGGAAG CGTTTCCAAC TTTCCAGAAG	60
25	TTTCTCGGGA CGGGCAGGAG GGGGTGGGGA CTGCCATATA TAGATCCCGG GAGCAGGGGA	120
	GCGGGCTAAG AGTAGAATCG TGTCGCGGCT CGAGAGCGAG AGTCACGTCC CGGCGCTAGC	180
20	CAGCCCGACC CAGGCCCACC GTGGTGCACG CAAACCACTT CCTGGCCATG CGCTCCCTCC	240
30	TGCTTCTCAG CGCCTTCTGC CTCCTGGAGG CGGCCCTGGC CGCCGAGGTG AAGAAACCTG	300
	CAGCCGCAGC AGCTCCTGGC ACTGCGGAGA AGTTGAGCCC CAAGGCGGCC ACGCTTGCCG	360
35	AGCGCANGCC GGCCTGGCCT TCAGCTTGTA CCAGGCCATG GCCAAGGACC AGGCAGTGGA	420
	GAACATCCTG GTGTCACCCG TGGTGGTGGC CTCGTCGCTG GGGCTCGTGT CGCTGGGCGG	480
40	CAAGGCGACC ACGCCGTCGC AGGCCAAGGC AGTGCTGAGC GCCGAGCAGC TGCGCGACGA	540
70	GGAGGTGCAC GCCGGCCTGG GCGAGCTGCT GCGCTCACTC AGCAACTCGA CGGCGCGCAA	600
	CGTGACCTGG AAGCTGGGCA GCCGACTGTA CGGACCCAGC TCAGTGAGCT TCGCTGATGA	660
45	CTTCGTGCGC ACAGCAAGCA GCACTACAAC TGCGAGCACT CCAAGATCAA CTTCCGCGAC	720
	AAGCGCAGNG CGCTGCAGTC CATCAACGAG TGGGCCGCGC AGACCACCGA CGGCAAGCTG	780
50	CCCGAGGTCA CCAAGGACGT GGAGCGCACG GACGGCGCCC TGCTAGTCAA CGCCATGTTC	840
50	TTCAAGCCAC ACTGGGATGA GAAATTCCAC CACAAGATGG TGGACAACCG TGGCTTCATG	900
	GTGACTCGGT CCTATACYGT GGGTGTCATG ATGATGCACC GGACAGGCCT CTACAACTAC	960
55	TACGACGACG AGAAGGAAAA GCTGCAAATC GTGGAGATGC CCCTGGCCCA CAAGCTCTCC	1020
	AGCCTCATCA TCCTCATGCC CCATCACGTG GAGCCTCTCG AGCGCCTTGA AAAGCTGCTA	1080
	ACCAAAGAGC AGCTGAAGAT CTGGATGGGG AAGATGCAGA AGAAGGCTGT TGCCATCTCC	1140

	TTGCCCAAGG GTGTGGTGGA GGTGACCCAT GACCTGCAGA AACACCTGGC TGGGCTGGGC	1200
	CTGACTGAGG CCATTGACAA GAACAAGGCC GACTTRTCAC GCATGTCAGG CAAGAAGGAC	1260
5	CTGTACCTGG CCAGCGTGTT CCACGCCACC GCCTTTGAGT TGGACACAGA TGGCAACCCC	1320
	TTTGACCAGG ACATCTACGG GCGCGAGGAG CTGCGCANCC CAAGCTGTTC TACGCCGACC	1380
10	ACCCCTTCAT CTTCCTAGTG CGGGACACCC AAAGCGGCTC CCTGCTATTC ATTGGGCGCC	1440
10	TGGTCCGGCC TAAGGGTGAC AAGATGCGAG ACGAGTTATA GGGCCTCAGG GTGCACACAG	1500
	GATGGCAGGA GGCATCCAAA GGCTCCTGAG ACACATGGGT GCTATTGGGG TTGGGGGGGGA	1560
15	GGTGAGGTAC CAGCCTTGGA TACTCCATGG GGTGGGGGTG GAAAARCAGA CCGGGGTTCC	1620
	CGTGTGCCTG AGCGGACCTT CCCAGCTAGA ATTCACTCCA CTTGGACATG GGCCCCAGAT	1680
20	ACCATGATGC TGAGCCCGGA AACTCCACAT CCTGTGGGAC CTGGGCCATA GTCATTCTGC	1740
20	CTGCCCTGAA AGTCCCAGAT CAAGCCTGCC TCAATCAGTA TTCATATTTA TAGCCAGGTA	1800
	CCTTCTCACC TGTGAGACCA AATTGAGCTA GGGGGGTCAG CCAGCCCTCT TCTGACACTA	1860
25	AAACACCTCA GCTGCCTCCC CAGCTCTATC CCAACCTCTC CCAACTATAA AACTAGGTGC	1920
	TGCAGCCCCT GGGACCAGGC ACCCCCAGAA TGACCTGGCC GCAGTGAGGC GGATTGAGAA	1980
20	GGAGCTCCCA GGAGGGGCTT CTGGGCAGAC TCTGGTCAAG AAGCATCGTG TCTGGCGTTG	2040
30	TGGGGATGAA CTTTTTGTTT TGTTTCTTCC TTTTTTAGTT CTTCAAAGAT AGGGAGGGAA	2100
	GOGGGAACAT GAGCCTTTGT TGCTATCAAT CCAAGAACTT ATTTGTACAT TTTTTTTTTC	2160
35	AATAAAACTT TTCCAATGAC AAAAAAAAAA AAAAAAAAA AAAAAGGGGS GGGCCGCTCC	2220
	TAGAGGGATC CCTCCGANGG NGCCCAATCG AAAATN	2256
40		
40	(a) Throphometon con con to No. 123.	
	(2) INFORMATION FOR SEQ ID NO: 123:	
45	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 829 base pairs	
	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 123:	
	ATGCGCTCCC TCCTGCTTCT CAGCGCCTTC TGCCTCCTGG AGGCGGCCCT GGCCGCCGAG	60
	GTGAAGAAAC CTGCAGCCGC AGCAGCTCCT GGCACTGCGG AGAAGTTGAG CCCCAAGGCG	120
55	GCCACGCTTG CCGAGCGCAA GCGGCCTGGC CTTCAGCTTG TACCAGGCCA TGGCCAAGGA	180
	CCAGGCAGTG GAGAACATCC TGGTGTCACC CGTGGTGGTG GCCTCGTCGC TGGGGCTCGT	240
60	omegapaga caraxaccax caxcoccana cohoccanac canamagana accocchacan	200

WO 98/42738 PCT/US98/05311

273

	GCTGCGCGAC GAGGAGGTGC ACGCCGGCCT GGGCGAGCTG CTGCGCTCAC TCAGCAACTC	360
5	CACGCCCCC AACGTGACCT GGAAGCTGGG CAGCCGACTG TACGGACCCA GCTCAGTGAG	420
J	CTTCGCTGAT GACTTCGTGC GCAGCAGCAA GCAGCACTAC AACTGCGAGC ACTCCAAGAT	480
	CAACTTCCGC GACAAGCGCA GCGCGCTGCA GTCCATCAAC GAGTGGGCCG CGCAGACCAC	5 4 0
10	CGACGGCAAG CTGCCCGAGG TCACCAAGGA CGTGGAGCGC ACGGACGGCG CCCTGTTAGT	600
	CAACGCCATG TTCTTCAAGC CACACTGGGA TGAGAAATTC CACCACAAGA TGGTGGACAA	660
15	CCGTGGCTTC ATGGTGACTC GGTCCTATAC CGTGGGTGTC ATGATGATGC ACCGGACAGG	720
15	CCTCTACAAC TACTACGACG ACGAGAAGGA AAAGCTGCAA ATCGTGGAGA TGCCCCTGGC	780
	CCACAAGCTC TCCAGCCTCA TCATCCTCAT GCCCCATCAC GTGGAGCCT	829
20		
	-	
	(2) INFORMATION FOR SEQ ID NO: 124:	
25	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 2223 base pairs(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double	
30	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 124:	
	CCTCCGGAAG CGTTTCCAAC TTTCCAGAAG TTTCTCGGGA CGGGCAGGAG GGGGTGGGGA	60
35	CTGCCATATA TAGATCCCGG GAGCAGGGGA GCGGGCTAAG AGTAGAATCG TGTCGCGGCT	120
	CGAGAGCGAG AGTCACGTCC CGGCGCTAGC CAGCCCGACC CAGGCCCACC GTGGTGCACG	180
40	CAAACCACTT CCTGGCCATG CGCTCCCTCC TGCTTCTCAG CGCCTTCTGC CTCCTGGAGG	240
	CGGCCCTGGC CGCCGAGGTG AAGAAACCTG CAGCCGCAGC AGCTCCTGGC ACTGCGGAGA	300
	AGTTGAGCCC CAAGGCGGCC ACGCTTGCCG AGCGCAGNCG GCCTGGCCTT CAGCTTGTAC	360
45	CAGGCCATGG CCAAGGACCA GGCAGTGGAG AACATCCTGG TGTCACCCGT GGTGGTGGCC	420
	TOGTOGCTGG GGCTCGTGTC GCTGGGCGGC AAGGCGACCA CGGCGTCGCA GGCCAAGGCA	480
50	GTGCTGAGCG CCGAGCAGCT GCGCGACGAG GAGGTGCACG CCGGCCTGGG CGAGCTGCTG	540
50	CGCTCACTCA GCAACTCSAC GGCGCGCAAC GTGACCTGGA AGCTGGGCAG CCGACTGTAC	600
	GGACCCAGCT CAGTGAGCTT CGCTGATGAC TTCGTGCGCA CAGCAAGCAG CACTACAACT	660
55	GCGAGCACTC CAAGATCAAC TTCCGCGACA AGCGCACGCG CTGCAGTCCA TCAACGAGTG	720
	GGCCGCGCAG ACCACCGACG GCAAGCTGCC CGAGGTCACC AAGGACGTGG AGCGCACGGA	780

CGGCGCCCTG YTAGTCAACG CCATGTTCTT CAAGCCACAC TGGGATGAGA AATTCCACCA

60

	CAAGATGGTG	GACAACCGTG	GCTTCATGGT	GACTCGGTCC	TATACYGTGG	GTGTCATGAT	900
	GATGCACCGG	ACAGGCCTCT	ACAACTACTA	CGACGACGAG	AAGGAAAAGC	TGCAAATCGT	960
5	GGAGATGCCC	CTGGCCCACA	AGCTCTCCAG	CCTCATCATC	CTCATGCCCC	ATCACGTGGA	1020
	GCCTCTCGAG	CGCCTTGAAA	AGCTGCTAAC	CAAAGAGCAG	CTGAAGATCT	GGATGGGGAA	1080
10	GATGCAGAAG	AAGGCTGTTG	CCATCTCCTT	GCCCAAGGGT	GTGGTGGAGG	TGACCCATGA	1140
	CCTGCAGAAA	CACCTGGCTG	GCTGGCCT	GACTGAGGCC	ATTGACAAGA	ACAAGGCCGA	1200
	CTTRTCACGC	ATGTCAGGCA	AGAAGGACCT	GTACCTGGCC	AGCGTGTTCC	ACGCCACCGC	1260
15	CTTTGAGTTG	GACACAGATG	GCAACCCCTT	TGACCAGGAC	ATCTACGGGC	GCGAGGAGCT	1320
	GCGCASCCCA	AGCTGTTCTA	CGCCGACCAC	CCCTTCATCT	TCCTAGTGCG	GGACACCCAA	1380
20	AGCGGCTCCC	TGCTATTCAT	TGGGCGCCTG	GTCCGGCCTA	AGGGTGACAA	GATGCGAGAC	1440
	GAGTTATAGG	GCCTCAGGGT	GCACACAGGA	TGGCAGGAGG	CATCCAAAGG	CTCCTGAGAC	1500
	ACATGGGTGC	TATTGGGGTT	GGGGGGAGG	TGAGGTACCA	GCCTTGGATA	CTCCATGGGG	1560
25	TGGGGGTGGA	AAARCAGACC	GGGGTTCCCG	TGTGCCTGAG	CGGACCTTCC	CAGCTAGAAT	1620
	TCACTCCACT	TGGACATGGG	CCCCAGATAC	CATGATGCTG	AGCCCGGAAA	CTCCACATCC	1680
30	TGTGGGACCT	GGGCCATAGT	CATTCTGCCT	GCCCTGAAAG	TCCCAGATCA	AGCCTGCCTC	1740
	AATCAGTATT	CATATTTATA	GCCAGGTACC	TTCTCACCTG	TGAGACCAAA	TTGAGCTAGG	1800
	GGGTCAGCC	AGCCCTCTTC	TGACACTAAA	ACACCTCAGC	TGCCTCCCCA	GCTCTATCCC	1860
35	AACCTCTCCC	AACTATAAAA	CTAGGTGCTG	CAGCCCCTGG	GACCAGGCAC	CCCCAGAATG	1920
	ACCTGGCCGC	AGTGAGGCGG	ATTGAGAAGG	AGCTCCCAGG	AGGGGCTTCT	GGGCAGACTC	1980
40	TGGTCAAGAA	GCATCGTGTC	TGGCGTTGTG	GGGATGAACT	TTTTGTTTTG	TTTCTTCCTT	2040
	TTTTAGTTCT	TCAAAGATAG	GGAGGGAAGG	GGGAACATGA	GCCTTTGTTG	CTATCAATCC	2100
	AAGAACTTAT	TIGTACATIT	TTTTTTCAA	TAAAACTTTT	CCAATGACAA	АААААААА	2160
45	ААААААААА	MWMGGGGSGG	GCCGCTCCTA	GAGGGATCCC	TCCGANGGNG	CCCAATCGAA	2220
	AAT						2223

55

(2) INFORMATION FOR SEQ ID NO: 125:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 31 amino acids
- (B) TYPE: amino acid
- (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 125:

60 Met Lys Lys Glm Ser Lys Arg Cys Leu Trp Lys Pro Pro Gly Ser Leu

Arg Arg Leu Trp Trp Met Arg Ala Leu Leu Ile Leu Lys T	yr Ile 30
	30
(2) INFORMATION FOR SEQ ID NO: 126: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 45 amino acids	
(B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 126: Met Lys Lys Ser Leu Glu Asn Leu Asn Arg Leu Gln Val Mo	et Leu Leu
His Leu Thr Ala Ala Phe Leu Gln Arg Ala His Xaa Ile Le 20 25 :	15 eu Thr Thr 30
Arg Met Ser Leu Gly Phe Gln Ser Pro His Leu Thr Met 35 40 45	
(2) INFORMATION FOR SEQ ID NO: 127:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 39 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 127:	
35 Met His Asn Gln Arg Gln Val Phe Leu Phe His Leu Phe Se	er Asn Tyr 15
Leu Leu Ser Ile Asn Ser Val Pro Gly Thr Leu Leu Ala Al 20 25 3 40 Cys Leu Asn Met Thr Tyr Gly	la Thr Tyr 30
35 45	
(2) INFORMATION FOR SEQ ID NO: 128:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 23 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 128:	
Met Arg Lys Lys Phe Leu Leu Ala Gln Val Phe Leu Ser Le 55 1 5 10	eu Ser Val 15
Met Pro Ser Met Pro Val Thr 20	

	(2)	INF	ORMAT	'ION	FOR	SEQ	ID N	Ю: 1	.29:							
5			(i) s	() ()	A) LI B) T D) T	ENGT YPE: OPOL	H: 1: amin OGY:	10 ar no ac line	mino cid ear	acio						
			(xi)	SEQ	JENCI	E DE:	SCRII	PTIO	1: SI	EQ II	ON C	: 129	9:			
10	Met 1	Val	Leu	Leu	Cys 5	Leu	Leu	Leu	Val	Pro 10	Leu	Leu	Leu	Ser	Leu 15	Phe
15	Val	Leu	Gly	Leu 20	Phe	Leu	Trp	Phe	Leu 25	Lys	Arg	Glu	Arg	Gln 30	Glu	Glu
15	Tyr	Ile	Glu 35	Glu	Lys	Lys	Arg	Val 40	Asp	Ile	Cys	Arg	Glu 45	Thr	Pro	Asn
20	Ile	Суs 50	Pro	His	Ser	Gly	Glu 55	Asn	Thr	Glu	Tyr	Asp 60	Thr	Ile	Pro	His
	Thr 65		Arg	Thr	Ile	Leu 70	Lys	Glu	Asp	Pro	Ala 75	Asn	Thr	Val	Tyr	Ser 80
25	Thr	Val	Glu	Ile	Pro 85	Lys	Lys	Met	Glu	Asn 90	Pro	His	Ser	Leu	Leu 95	Thr
30	Met	Pro	Asp	Thr 100	Pro	Arg	Leu	Phe	Ala 105	Tyr	Glu	Asn	Val	Ile 110		
	(2)	INF	ORMA'	TION	FOR	SEQ	ID I	NO: [130:							
35			(i)	(A) L B) T	ENGI YPE :	RACT H: 6 ami .OGY:	3 am	ino cid	: acid	s					
4.0			(xi)	SEQ	UENC	E DE	SCRI	PTIO	N: S	EQ I	D NO	: 13	0 :			
40	Met 1		Leu	Leu	Phe 5	Ile	Tyr	Phe	Tyr	Ser 10	His	Pro	Ala	Pro	Val 15	Pro
45	Ala	Gly	Ala	Thr 20		Lys	Pro	Arg	Туг 25	_	Val	Ile	Thr	Cys 30	-	Pro
	Ala	Ser	7 Val		Ser	Thr	Ser	Phe 40		His	Ser	Pro	Pro 45		Arg	Cys
50	Leu	Gly 50	/ Arg	Leu	Glu	Gln	Met 55		His	Phe	Gly	Leu 60		Ser	Gly	
55	(2)	INF	FORMA	TION	FOR	SEQ	ID	NO:	131:							
			(i)	_	(A) I	LENG	ARACI TH: 3	30 am	nino	s: acid	is	۲.				
60							LOGY									

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 131: Met Pro Phe Pro Ile Ser Ile Leu Gln Leu Cys Leu Gln Ile Ser Asn 5 Leu Ser Phe Cys Leu Gln Lys Ile Tyr Lys Ile Pro Phe Val 25 10 (2) INFORMATION FOR SEQ ID NO: 132: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 53 amino acids 15 (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 132: Met Ala Ala Cys Arg Ser Val Lys Gly Leu Val Ala Val Ile Thr 20 Gly Gly Ala Ser Gly Leu Gly Leu Ala Thr Ala Asp Asp Leu Trp Gly 25 25 Arg Glu Pro Leu Cys Phe Trp Thr Cys Pro Thr Arg Val Gly Arg Pro Lys Pro Arg Ser 50 30 (2) INFORMATION FOR SEQ ID NO: 133: 35 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 57 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 133: 40 Met Leu Leu Val Tyr Asp Leu Tyr Leu Xaa Pro Lys Leu Trp Ala Leu 5 Ala Thr Pro Gln Lys Asn Gly Lys Gly Ala Arg Xaa Gly Asp Gly Thr 45 25 Pro Ala Gln Ala Phe Trp Asp Phe Trp Ser His Leu Ile Ser Ala Asp 35 40 50 Pro Gln Thr Trp Glu Arg Ala Ala Pro 50 55 (2) INFORMATION FOR SEQ ID NO: 134: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 216 amino acids (B) TYPE: amino acid 60

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 134:

Met Arg Leu Ser Ala Leu Leu Ala Leu Ala Ser Lys Val Thr Leu Pro 5 Pro His Tyr Arg Tyr Gly Met Ser Pro Pro Gly Ser Val Ala Asp Lys Arg Lys Asn Pro Pro Trp Ile Arg Arg Pro Val Val Val Glu Pro 10 Ile Ser Asp Glu Asp Trp Tyr Leu Phe Cys Gly Asp Thr Val Glu Ile 15 Leu Glu Gly Lys Asp Ala Gly Lys Gln Gly Lys Val Val Gln Val Ile Arg Gln Arg Asn Trp Val Val Val Gly Gly Leu Asn Thr His Tyr Arg 20 Tyr Ile Gly Lys Thr Met Asp Tyr Arg Gly Thr Met Ile Pro Ser Glu Ala Pro Leu Leu His Arg Gln Val Lys Leu Val Asp Pro Met Asp Arg 25 Lys Pro Thr Glu Ile Glu Trp Arg Phe Thr Glu Ala Gly Glu Arg Val 135 30 Arg Val Ser Thr Arg Ser Gly Arg Ile Ile Pro Lys Pro Glu Phe Pro 150 155 Arg Ala Asp Gly Ile Val Pro Glu Thr Trp Ile Asp Gly Pro Lys Asp 165 170 35 Thr Ser Val Glu Asp Ala Leu Glu Arg Thr Tyr Val Pro Cys Leu Lys 185 Thr Leu Gln Glu Glu Val Met Glu Ala Met Gly Ile Lys Glu Thr Arg 40 195 200 205 Lys Tyr Lys Lys Val Tyr Trp Tyr 210 215 45 (2) INFORMATION FOR SEQ ID NO: 135: (i) SEQUENCE CHARACTERISTICS: 50

(A) LENGTH: 49 amino acids

- (B) TYPE: amino acid
- (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 135:
- 55 Met Ser Leu Arg Gln Lys Ser Ser Phe Arg Leu Met Val Met Ser Leu 5 10

Thr Ile Leu Lys Leu Ser Lys Thr Thr Val Leu Cys Leu Arg Cys Leu 20 25

His Ser Leu Lys Leu Thr Trp Arg Asp Gly Ala Arg Cys Ile Asn Ala 40 Glu 5 (2) INFORMATION FOR SEQ ID NO: 136: 10 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 68 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear 15 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 136: Met Ser Gly Ser Phe Ile Leu Cys Leu Ala Leu Val Thr Arg Trp Ser 1 20 Pro Gln Ala Ser Ser Val Pro Leu Ala Val Tyr Glu Ser Lys Thr Arg 25 Lys Ser Tyr Arg Ser Gln Arg Asp Arg Asp Gly Lys Asp Arg Ser Gln 35 40 25 Gly Met Gly Leu Ser Leu Leu Val Glu Thr Arg Lys Leu Leu Leu Ser 55 Ala Asn Gln Gly 30 65 (2) INFORMATION FOR SEQ ID NO: 137: 35 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 52 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear 40 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 137: Met Cys Phe Arg Phe Phe Leu Phe Cys Ser Arg Ile Leu Leu Lys Leu 45 Phe Phe Leu Leu Phe Pro Ala Ser Ala Phe Pro Leu Ser Thr Arg Ser 20 Ser Leu Ser Val Asn Glu His Val Val Val Ser Pro Arg Ser Thr Val 45 50 Ser Ile Ser Arg 50 55 (2) INFORMATION FOR SEQ ID NO: 138: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 541 amino acids 60 (B) TYPE: amino acid

(D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 138:

5	Met 1	Val	Arg	Thr	Asp 5	Gly	His	Thr	Leu	Ser 10	Glu	Lys	Arg	Asn	Туг 15	Gln
	Val	Thr	Asn	Ser 20	Met	Phe	Gly	Ala	Ser 25	Arg	Lys	Lys	Phe	Val 30	Glu	Gly
10	Val	Asp	Ser 35	Asp	Tyr	His	Asp	Glu 40	Asn	Met	тут	Tyr	Ser 45	Gln	Ser	Ser
15	Met	Phe 50	Pro	His	Arg	Ser	Glu 55	Lys	Asp	Met	Leu	Ala 60	Ser	Pro	Ser	Thr
	Ser 65	Gly	Gln	Leu	Ser	Gln 70	Phe	Gly	Ala	Ser	Leu 75	Tyr	Gly	Gln	Gln	Ser 80
20	Ala	Leu	Gly	Leu	Pro 85	Met	Arg	Gly	Met	Ser 90	Asn	Asn	Thr	Pro	Gln 95	Leu
	Asn	Arg	Ser	Leu 100	Ser	Gln	Gly	Thr	Gln 105	Leu	Pro	Ser	His	Val 110	Thr	Pro
25	Thr	Thr	Gly 115	Val	Pro	Thr	Met	Ser 120	Leu	His	Thr	Pro	Pro 125	Ser	Pro	Ser
30		130					135					140		His		
	145					150					155			Met		160
35					165					170				Ile	175	
40				180					185					Ser 190		
40			195					200					205	Asn		
45		210					215					220		Val		
	225					230					235			Arg		240
50					245					250				Gly	255	
55				260					265					Ser 270		
55			275					280					285	Ser		
6 0	Lys	Asp 290	Pro	Thr	Ser	Ser	Asn 295	Asp	Asp	Ser	Lys	Ser 300	Asn	Leu	Asn	Thr

	Ser 305	Gly	Lys	Thr	Thr	Ser 310	Ser	Thr	Asp	Gly	Pro 315	Lys	Phe	Pro	Gly	Asp 320
5	Lys	Ser	Ser	Thr	Thr 325	Gln	Asn	Asn	Asn	Gln 330	Gln	Lys	Lys	Gly	Ile 335	Gln
	Val	Leu	Pro	Asp 340	Gly	Arg	Val	Thr	Asn 345	Ile	Pro	Gln	Gly	Met 350	Val	Thr
10	Asp	Gln	Phe 355	Gly	Met	Ile	Gly	Leu 360	Leu	Thr	Phe	Ile	Arg 365	Ala	Ala	Glu
15	Thr	Asp 370	Pro	Gly	Met	Val	His 375	Leu	Ala	Leu	Gly	Ser 380	Asp	Leu	Thr	Thr
	Leu 385	Gly	Leu	Asn	Leu	Asn 390	Ser	Pŗo	Glu	Asn	Leu 395	Tyr	Pro	Lys	Phe	Ala 400
20	Ser	Pro	Trp	Ala	Ser 405	Ser	Pro	Cys	Arg	Pro 410	Gln	Asp	Ile	Asp	Phe 415	His
	Val	Pro	Ser	Glu 420	Tyr	Leu	Thr	Asn	11e 425	His	Ile	Arg	Asp	Lys 430	Leu	Ala
25	Ala	Ile	Lys 435	Leu	Gly	Arg	Tyr	Gly 440	Glu	Asp	Leu	Leu	Phe 445	Tyr	Leu	Tyr
30	Tyr	Met 450	Asn	Gly	Gly	Asp	Val 455	Leu	Gln	Leu	Leu	Ala 460	Ala	Val	Glu	Leu
	Phe 465	Asn	Arg	Asp	Trp	Arg 470	Tyr	His	Lys	Glu	Glu 475	Arg	Val	Trp	Ile	Thr 480
35	Arg	Ala	Pro	Gly	Met 485	Glu	Pro	Thr	Met	Lys 490	Thr	Asn	Thr	Tyr	Glu 495	Arg
	Gly	Thr	Tyr	Tyr 500	Phe	Phe	Asp	Cys	Leu 505	Asn	Trp	Arg	Lys	Val 510	Ala	Lys
10	Glu	Phe	His 515	Leu	Glu	Tyr	Asp	Lys 520	Leu	Glu	Glu	Arg	Pro 525	His	Leu	Pro
15	Ser	Thr 530	Phe	Asn	Tyr	Asn	Pro 535	Ala	Gln	Gln	Ala	Phe 540	Xaa			
	(2)	INFO	RMAT	NOI	FOR	SEQ	ID 1	10: 1	.39:							
50			(i) :	()	A) Li B) T	ENGT YPE:	H: 5	ERIST 8 am: no ac line	ino a cid		s					
55			(xi)					PTION		EQ II	ON C	: 139	€:			
	Met 1	Ile	Cys	Pro	Gln 5	Сув	Pro	Leu	Ser	Leu 10	Leu	Cys	Leu	Ile	Ser 15	Ser
60	Leu	Суѕ	Ser	Leu 20	Val	Ile	Gln	Ile	Ser 25		Lys	Thr	Ile	Arg	Asp	Ile

	Thr	Leu	Leu 35	Asn	Met	Val	Gly	Ile 40	Lys	Phe	Ser	Ile	Ser 45	Leu	Ser	Asr
5	Lys	Ile 50	Asn	Ile	Asn	Ser	Arg 55	Thr	Trp	Xaa						
10	(2)	INFO	ORMA!	rion	FOR	SEQ	ID I	1 0: 2	L 4 0:							
			(i)		ENCE A) L						đe					
15			(xi)	(B) T D) T	YPE: OPOL	ami OGY:	no a lin	cid ear			. 14	٥.			
	Met		Leu											ĭ.eu	Len	T.eu
20	1				5					10				200	15	Dec
	_ Leu	Leu	Ser	Ala 20	Ala	Val	Cys	Arg	Ala 25	Glu	Ala	Gly	Leu	Glu 30	Thr	Glu
25	Ser	Pro	Val 35	Arg	Thr	Leu	Gln	Val 40	Glu	Thr	Leu	Val	Glu 45	Pro	Pro	Glu
	Pro	Суs 50	Ala	Glu	Pro	Ala	Ala 55	Phe	Gly	Asp	Thr	Leu 60	His	Ile	His	Тут
30	Thr 65	Gly	Ser	Leu	Val	Asp 70	Gly	Arg	Ile	Ile	Asp 75	Thr	Ser	Leu	Thr	Arg
25	Asp	Pro	Leu	Val	Ile 85	Glu	Leu	Gly	Gln	Lys 90	Gln	Val	Ile	Pro	Gly 95	Leu
35	Glu	Gln	Ser	Leu 100	Leu	Asp	Met	Cys	Val 105	Gly	Glu	Lys	Arg	Arg 110	Ala	Ile
40	Ile	Pro	Ser 115	His	Leu	Ala	Tyr	Gly 120	Lys	Arg	Gly	Phe	Pro 125	Pro	Ser	Val
	Pro	Ala 130	Asp	Ala	Val	Val	Gln 135	Туг	Asp	Val	Glu	Leu 140	Ile	Ala	Leu	Ile
45	A rg 14 5	Ala	Asn	Tyr	Trp	Leu 150	Lys	Leu	Val	Lys	Gly 155	Ile	Leu	Pro	Leu	Val
	Gly	Met	Ala	Met	Val 165	Pro	Ala	Leu	Leu	Gly 170	Leu	Ile	Gly	Tyr	His 175	Leu
50	Tyr	Arg	Lys	Ala 180		Arg	Pro	Lys	Val 185		Lys	Lys	Lys	Leu 190		Glu
	Glu	Lys	Arg		Lys	Ser	Lys	Lys		Xaa						

(2) INFORMATION FOR SEQ ID NO: 141:

	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 217 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 141:															
5			(xi)		-					EQ I	ои с	: 14	1:			
	Met 1	Phe	Leu	Arg	Leu 5	Tyr	Leu	Ile	Ala	Arg 10	Val	Met	Leu	Leu	His 15	Ser
10	Lys	Leu	Phe	Thr 20	Asp	Ala	Ser	Ser	Arg 25	Ser	Ile	Gly	Ala	Leu 30	Asn	Lys
15	Ile	Asn	Phe 35	Asn	Thr	Arg	Phe	Val 40	Met	Lys	Thr	Leu	Met 45	Thr	Ile	Cys
	Pro	Gly 50	Thr	Val	Leu	Leu	Val 55	Phe	Ser	Ile	Ser	Leu 60	Trp	Ile	Ile	Ala
20	Ala 65	Trp	Thr	Val	Arg	Val 70	Cys	Glu	Ser	Pro	Glu 75	Ser	Pro	Ala	Gln	Pro 80
	Ser	Gly	Ser	Ser	Leu 85	Pro	Ala	Trp	Tyr	His 90	Asp	Gln	Gln	Asp	Val 95	Thr
25	Ser	Asn	Phe	Leu 100	Gly	Ala	Met	Trp	Leu 105	Ile	Ser	Ile	Thr	Phe 110	Leu	Ser
30	Ile	Gly	Tyr 115	Gly	Asp	Met	Val	Pro 120	His	Thr	Tyr	Cys	Gly 125	Lys	Gly	Val
	Cys	Leu 130	Leu	Thr	Gly	Ile	Met 135	Gly	Ala	Gly	Суз	Thr 140	Ala	Leu	Val	Val
35	Ala 145	Val	Val	Ala	Arg	Lys 150	Leu	Glu	Leu	Thr	Lys 155	Ala	Glu	Lys	His	Val 160
	His	Asn	Phe	Met	Met 165	Asp	Thr	Gln	Leu	Thr 170	Lys	Arg	Ile	Lys	Asn 175	Ala
40	Ala	Ala	Asn	Val 180	Leu	Arg	Glu	Thr	Trp 185	Leu	Ile	Tyr	Lys	His 190	Thr	Lys
45	Leu	Leu	Lys 195	Lys	Ile	Asp	His	Ala 200	Lys	Val	Arg	Lys	His 205	Gln	Arg	Lys
	Phe	Leu 210	Pro	Ser	Tyr	Pro	Pro 215	Val	Xaa							
50	(2)	INF	ORMA'	rion	FOR	SEQ	ID I	No: 1	L42:							
			(i)		A) L	ENGT	H: 1	02 a	mino		ds					
55			(xi)		D) T	YPE: OPOL E DE	OGY:	lin	ear	EQ I	D NO	: 14	2:			
60	Met 1	Ser	Asn	Thr	Thr 5	Val	Pro	Asn	Ala	Pro 10	Gln	Ala	Asn	Ser	Asp 15	Ser

	Met	Val	Gly	Tyr 20	Val	Leu	Gly	Pro	Phe 25	Phe	Leu	Ile	Thr	Leu 30	Val	Gly
5	Val	Val	Val 35	Ala	Val	Val	Met	Tyr 40	Val	Gln	Lys	Lys	Lys 45	Arg	Val	Asp
10	Arg	Leu 50	Arg	His	His	Leu	Leu 55	Pro	Met	Tyr	Ser	Tyr 60	Asp	Pro	Ala	Glu
	Glu 65	Leu	His	Glu	Ala	Glu 70	Gln	Glu	Leu	Leu	Ser 75	Asp	Met	Gly	Asp	Pro 80
15	Lys	Val	Val	His	Gly 85	Trp	Gln	Ser	Gly	Тут 90	Gln	His	Lýs	Arg	Met 95	Pro
	Leu	Leu	Asp	Val 100	Lys	Thr										
20																
	(2)	INFO	ORMA!	rion	FOR	SEQ	ID I	VO: 1	143:							
25			(i) (xi)	(A) L B) T D) T	ENGT YPE: OPOL	H: 1 ami OGY:	12 a no a lin	mino cid ear	aci		: 14	3:			
30	Met 1	Arg	Glu	Cys	Gln 5	Glu	Glu	Ser	Phe	Trp 10	Lys	Arg	Ala	Leu	Pro 15	Phe
35	Ser	Leu	Val	Ser 20	Met	Leu	Val	Thr	Gln 25	Gly	Leu	Val	Tyr	Gln 30	Gly	Tyr
	Leu	Ala	Ala 35	Asn	Ser	Arg	Phe	Gly 40	Ser	Leu	Pro	Lys	Val 45	Ala	Leu	Ala
40	Gly	Leu 50	Leu	Gly	Phe	Gly	Leu 55	Gly	Lys	Val	Ser	Tyr 60	Ile	Gly	Val	Cys
	Gln 65	Ser	Lys	Phe	His	Phe 70	Phe	Glu	Asp	Gln	Leu 75	Arg	Gly	Ala	Gly	Phe 80
45	Gly	Pro	Gln	His	Asn 85	Arg	His	Cys	Leu	Leu 90	Thr	Cys	Glu	Glu	Cys 95	Lys
50	Ile	Lys	His	Gly 100	Leu	Ser	Glu	Lys	Gly 105	Asp	Ser	Gln	Pro	Ser 110	Ala	Ser
55	(2)	INF	ORMA'	rion	FOR	SEQ	ID 1	NO: :	144:							
			(i)	SEQU (RACT H: 2				ls .					

(B) TYPE: amino acid

```
(D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 144:
      Met Lys Asn Asp Arg Asn Gln Gly Phe Ser Leu Leu Gln Leu Ile Asp
 5
                        5
      Trp Asn Lys Pro
10
      (2) INFORMATION FOR SEQ ID NO: 145:
             (i) SEQUENCE CHARACTERISTICS:
15
                    (A) LENGTH: 30 amino acids
                     (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 145:
20
      Met Gly Thr Gln Pro Pro Val Val Ala Gly Phe Thr Ile Pro Met Leu
      Gly Tyr Thr Val Arg Val Leu Thr Phe His Leu Ser Cys Ser
25
      (2) INFORMATION FOR SEQ ID NO: 146:
30
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 99 amino acids
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 146:
35
      Met Lys Ile Pro Val Leu Pro Ala Val Val Leu Leu Ser Leu Leu Val
                                         10
      Leu His Ser Ala Gln Gly Ala Thr Leu Gly Gly Pro Glu Glu Glu Ser
40
      Thr Ile Glu Asn Tyr Ala Ser Arg Pro Glu Ala Phe Asn Thr Pro Phe
                                  40
45
      Leu Asn Ile Asp Lys Leu Arg Ser Ala Phe Lys Ala Asp Glu Phe Leu
      Asn Trp His Ala Leu Phe Glu Ser Ile Lys Arg Lys Leu Pro Phe Leu
                                              75
50
      Asn Trp Asp Ala Phe Pro Lys Leu Lys Gly Leu Arg Ser Ala Thr Pro
                                         90
      Asp Ala Gln
55
```

(2) INFORMATION FOR SEQ ID NO: 147:

```
(i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 8 amino acids
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
5
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 147:
     Met Val Trp Gly Leu Leu Leu Gly
                       5
10
      (2) INFORMATION FOR SEQ ID NO: 148:
             (i) SEQUENCE CHARACTERISTICS:
15
                    (A) LENGTH: 39 amino acids
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 148:
20
      Met Leu Pro Leu Leu Ser Leu Leu Phe Leu Phe Phe Ser Thr Val Ser
                                           10
      Ser Phe Cys Gly Met Pro Leu Arg Ala His Thr Arg Ala Xaa Ala His
25
      Thr Arg Thr Phe Ala Ser Arg
               35
30
      (2) INFORMATION FOR SEQ ID NO: 149:
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 131 amino acids
35
                    (B) TYPE: amino acid
                   (D) TOPOLOGY: linear
              (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 149:
      Met Ile Cys Glu Thr Lys Ala Arg Lys Ser Ser Gly Gln Pro Gly Arg
40
        1
                        5
                                           10
      Leu Pro Pro Pro Thr Leu Ala Pro Pro Gln Pro Pro Leu Pro Glu Thr
                                       25
45
      Ile Glu Arg Pro Val Gly Thr Gly Ala Met Val Ala Arg Ser Ser Asp
               35
                                   40
                                                       45
      Leu Pro Tyr Leu Ile Val Gly Val Val Leu Gly Ser Ile Val Leu Ile
                               55
50
      Ile Val Thr Phe Ile Pro Phe Cys Leu Trp Arg Ala Trp Ser Lys Gln
                           70
                                               75
      Lys His Thr Thr Asp Leu Gly Phe Pro Arg Ser Ala Leu Pro Pro Ser
55
                       85
                                           90
      Cys Pro Tyr Thr Met Val Pro Leu Gly Gly Leu Pro Gly His Gln Ala
                  100
                                      105
60
      Val Asp Ser Pro Thr Ser Val Ala Ser Val Asp Gly Pro Val Leu Met
```

115 120 125 Gly Ser Thr 130 5 (2) INFORMATION FOR SEQ ID NO: 150: 10 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 32 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 150: 15 Met Gly Ala Pro Ser Leu Thr Met Leu Leu Leu Lys Val Gln Pro 5 Arg Arg Thr Gln Ala Phe Asp Ala His Trp Val Gly Leu Pro Leu Leu 20 20 25 (2) INFORMATION FOR SEQ ID NO: 151: (i) SEQUENCE CHARACTERISTICS: 30 (A) LENGTH: 14 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 151: 35 Met Cys Leu Ile Phe Leu Leu Leu Leu Leu Ser Phe Ser 5 40 (2) INFORMATION FOR SEQ ID NO: 152: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 8 amino acids (B) TYPE: amino acid 45 (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 152: His Pro His Gln Asp Ser Gln Pro 50 (2) INFORMATION FOR SEQ ID NO: 153: 55 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 68 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 153: 60

	Met 1	Asn	Thr	Ser	Tyr 5	Ile	Leu	Arg	Leu	Thr 10	Val	Val	Val	Ser	Val 15	Val
5	Ile	Tyr	Leu	Ala 20	Ile	His	Pro	Leu	Leu 25	Ser	Phe	Ser	Leu	Glu 30	Ser	Pro
	Leu	Leu	Val 35	Pro	Trp	Arg	Asp	Cys 40	Cys	Gln	Asn	Ile	Trp 45	Lys	Ser	Gly
10	Ser	Val 50	Trp	Tyr	Lys	Arg	Trp 55	Thr	Leu	Pro	His	Met 60	Glu	Val	Суз	Cys
15	Gln 65	Asp	Leu	His												
20	(2)	INF		SEQU))		CHAI ENGT YPE:	RACT H: 2 ami	ERIS 6 am no a	rics ino cid		ន					
25	Met 1	Leu		SEQ	UENC	E DE	SCRI	PTIO	N: S					Ile	Leu 15	Thr
30		Ile	Arg	Ile 20		Glu	Arg	Gln	Asn 25						13	
35	(2)	INF		SEQU (ENCE A) L B) T	CHA ENGT YPE:	RACT H: 1	ERIS 95 a no a	TICS mino cid		ds			-		
40			(xi)	SEQ	D) T UENC					EQ I	D NO	: 15	5:			
	Met 1	Asp	Cys	Glu	Val 5		Asn	Gly	Ser			-	_	Glu	_	Ile
45	Thr	Asn	Leu	Leu 20	Val	Phe	Gly	Phe	Leu 25	Gln	Ser	Cys	Ser	Asp 30	Asn	Ser
50	Phe	Arg	Arg 35	Glu	Leu	Asp	Ala	Leu 40	Gly	His	Glu	Leu	Pro 45	Val	Leu	Ala
	Pro	Gln 50		Glu	Gly	Tyr	Asp 55	Glu	Leu	Gln	Thr	Asp 60	Gly	Asn	Arg	Ser
55	Ser 65	His	Ser	Arg	Leu	Gly 70	Arg	Ile	Glu	Ala	Asp 75	Ser	Glu	Ser	Gln	Glu 80
	Asp	Ile	Ile	Arg	Asn 85	Ile	Ala	Arg	His	Leu 90	Ala	Gln	Val	Gly	As p 95	Ser
60	Met	Asp	Arg	Ser	Ile	Pro	Pro	Gly	Leu	Val	Asn	Gly	Leu	Ala	Leu	Gln

				100					105					110		
5	Leu	Arg	Asn 115	Thr	Ser	Arg	Ser	Glu 120	Glu	Asp	Arg	Asn	Arg 125	Asp	Leu	Ala
5	Thr	Ala 130	Leu	Glu	Gln	Leu	Leu 135	Gln	Ala	Tyr	Pro	Arg 140	Asp	Met	Glu	Lys
10	Glu 145	Lys	Thr	Met	Leu	Val 150	Leu	Ala	Leu	Leu	Leu 155	Ala	Lys	Lys	Val	Ala 160
	Ser	His	Thr	Pro	Ser 165	Leu	Leu	Arg	Asp	Val 170	Phe	His	Thr	Thr	Val 175	Asn
15	Phe	Ile	Asn	Gln 180	Asn	Leu	Arg	Thr	Туг 185	Val	Arg	Ser	Leu	Ala 190	Arg	Asn
20	Gly	Met	Asp 195													
25	(2)	INF		TION SEQU		_				:						
				(A) L B) T	ENGT YPE: OPOL	H: 9 ami	1 am no a	ino cid		s					
30	Met	Ser		SEQ						_				Thr	Leu	Ala
	1 Cys	Ser	Phe	Leu	5 Arg	Pro	Lys	Ala	Arg	10 Pro	Ser	Lys	Arg	Ser	15 Pro	Arg
35	Asn	Tyr	Thr	20 Asp	Ser	Thr	Ser	Pro	25 Gly	Gly	Pro	Arg	Ala	30 Pro	Arg	Gly
40	Gly	Ala	35 Trp		Leu	Ser	Ser	40 Gln	Gln	Asn	Ser	Ser	45 Pro	Lys	Gly	Val
	Ala	50 Val	Ala	Lys	Ala	Ser	55 Tyr	Arg	Pro	Val	Leu	60 Cys	Phe	Leu	Pro	Gly
45	65			Ser		70					75	_				80
					85					90						
50	(2)	INF	ORMA	TION	FOR	SEQ	ID :	NO:	157:							
55				((A) I (B) T (D) T	ENGI YPE : YOPOL	H: 3 ami OGY:	l am no a	nino ncid near	ació): 1 5	7:			
60	Met 1	Gly	Thr	Leu	Ser 5		Glu	Cys	Ser	Gly		Ala	Thr	Leu	Gly 15	Leu

Cys Leu Val Val Pro Trp Asn Ser Ser Gly Leu Ser Gln Pro Pro 25 5 (2) INFORMATION FOR SEQ ID NO: 158: (i) SEQUENCE CHARACTERISTICS: 10 (A) LENGTH: 91 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 158: 15 Met Lys Phe Leu Ala Val Leu Val Leu Gly Val Ser Ile Phe Leu 10 Val Ser Ala Gln Asn Pro Thr Thr Ala Ala Pro Ala Asp Thr Tyr Pro 20 Ala Thr Gly Pro Ala Asp Asp Glu Ala Pro Asp Ala Glu Thr Thr Ala 40 Ala Ala Thr Thr Ala Thr Thr Ala Ala Pro Thr Thr Ala Thr Thr Ala 25 Ala Ser Thr Thr Ala Arg Lys Asp Ile Pro Val Leu Pro Lys Trp Val 70 30 Gly Asp Leu Pro Asn Gly Arg Val Cys Pro Xaa 85 35 (2) INFORMATION FOR SEQ ID NO: 159: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 89 amino acids (B) TYPE: amino acid 40 (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 159: Met Ile Ile Ser Leu Phe Ile Tyr Ile Phe Leu Thr Cys Ser Asn Thr 1 5 10 45 Ser Pro Ser Tyr Gln Gly Thr Gln Leu Gly Leu Gly Leu Pro Ser Ala Gln Trp Trp Pro Leu Thr Gly Arg Arg Met Gln Cys Cys Arg Leu Phe 50 35 40 Cys Phe Leu Leu Gln Asn Cys Leu Phe Pro Phe Pro Leu His Leu Ile 55 55 Gln His Asp Pro Cys Glu Leu Val Leu Thr Ile Ser Trp Asp Trp Ala 70 Glu Ala Gly Ala Ser Leu Tyr Ser Pro

	(2)	TIME	ORMA'	LTON	FOR	SEQ	וענ	NO: _	160:							
5			(i)	(A) L B) T	ENGT YPE:	RACT H: 1 ami OGY:	74 a no a	mino cid		ds					
10			(xi)							EQ II	D NO	: 16	0:			
10	Met 1	Ser	Ser	Ala	Ala 5	Ala	Asp	His	Trp	Ala 10	Trp	Leu	Leu	Val	Leu 15	Ser
15	Phe	Val	Phe	Gly 20	Cys	Asn	Val	Leu	Arg 25	Ile	Leu	Leu	Pro	Ser 30	Phe	Ser
	Ser	Phe	Met 35	Ser	Arg	Val	Leu	Gln 40	Lys	Asp	Ala	Glu	Gln 45	Glu	Ser	Gln
20	Met	Arg 50	Ala	Glu	Ile	Gln	Asp 55	Met	Lys	Gln	Glu	Leu 60	Ser	Thr	Val	Asn
25	Met 65	Met	Asp	Glu	Phe	Ala 70	Arg	Tyr	Ala	Arg	Le u 75	Glu	Arg	Lys	Ile	Asn 80
	Lys	Met	Thr	Asp	Lys 85	Leu	Lys	Thr	His	Val 90	Lys	Ala	Arg	Thr	Ala 95	Gln
30	Leu	Ala	Lys	Ile 100	Lys	Trp	Val	Ile	Ser 105	Val	Ala	Phe	Tyr	Val 110	Leu	Gln
	Ala	Ala	Leu 115	Met	Ile	Ser	Leu	Ile 120	Trp	Lys	Tyr	Tyr	Ser 125	Val	Pro	Val
35	Ala	Val 130	Val	Pro	Ser	Lys	Trp 135	Ile	Thr	Pro	Leu	Asp 140	Arg	Leu	Val	Ala
40	Phe 145	Pro	Thr	Arg	Val	Ala 150	Gly	Gly	Val	Gly	Ile 155	Thr	Cys	Trp	Ile	Leu 160
	Val	Cys	Asn	Lys	Val 165	Val	Ala	Ile	Val	Leu 170	His	Pro	Phe	Ser		
45	(2)	INF	orma:	rion	FOR	SEQ	ID 1	NO: I	L61:							
			(i) ;	CECIT	ENICIE	CHAI	חוויים על כו	CDT CT	PTCC							
50				(A) L B) T D) T	ENGT YPE: OPOL	H: 4 ami OGY:	5 am no a lin	ino cid ear	acid						
			(xi)	SEQ	UENC	E DE	SCRI:	PTIO	N: S1	EQ II	ON C	: 16	1:			
55	Met 1	Gly	Lys	Leu	Ile 5	Asn	Ile	Val	Ile	Arg 10	Lys	Pro	Leu	Leu	Leu 15	Leu
	Leu	Val	Gln	Cys 20	Glu	Asn	Cys	Cys	Arg 25	Lys	Asn	Met	Leu	Туг 30	Asn	Ile
60	Phe	Leu	Asn	Ile	His	Asn	Ile	His	Lys	Phe	Ser	Asn	His			

			35					40					45			
5	(2)	INFC	RMAT	rion	FOR	SEQ	ID N	vo; 1	162:							
		•	(i) :		A) L	CHAI ENGTI YPE :	H: 2	am.	ino a		s					
10		•	(xi)	SEQU		OPOLA E DES				EQ II	ON C	: 162	2:			
15	Met 1	Val	Ala	Ser	Thr 5	Leu	Val	Thr	Asn	Leu 10	Phe	Gly	Val	Ala	Phe 15	Ala
	Thr	Thr	Ala	Ala 20	Thr	Arg	Ala									
20	(2)	INFO	ORMAT	rion	FOR	SEQ	ID 1	W:]	L63:							
25				(A) L B) T D) T	ENGT YPE : OPOL	H: 7 ami: OGY:	0 am no a lin	ino a cid ear	acid		: 16	3:			
30	Met 1	Leu	Met	Ala	Pro 5	Val	Val	Cys	Leu	Ser 10	Phe	Ser	Pro	Cys	Pro 15	Ala
	Asp	Thr	Ser	Leu 20	Thr	Gly	qaA	Gly	Leu 25	Lys	Ala	Gly	Leu	Glu 30	Arg	Gly
35	Xaa	Ala	Leu 35	Val	Thr	Leu	Phe	Asp 40	Ser	Val	Thr	His	Phe 45	Leu	Ala	His
40		50		Glu			Asp 55	Phe	Gln	Leu	Ala	Phe 60	Leu	Arg	Ser	Gly
	65	GIN	THE	Ala	PIO	70										
45	(2)	INFO	ORMA'	rion	FOR	SEQ	ID I	NO: :	164:							
50				(A) L B) T D) T	ENGT YPE : OPOL	H: 3 ami OGY:	23 a no a lin	mino .cid .ear	aci		: 16	4:			
55	Met 1	Leu	Leu	Leu	Leu 5	Leu	Leu	Leu	Gly	Ser 10	Gly	Gln	Gly	Pro	Gln 15	Gln
	Val	Gly	Ala	Gly 20	Gln	Thr	Phe	Glu	Тут 25	Leu	Lys	Arg	Glu	His	Ser	Leu

 $60~{\rm Ser}$ Lys Pro Tyr Gln Gly Val Gly Thr Gly Ser Ser Ser Leu Trp Asn

			35					40					45			
5	Leu	Met 50	Gly	Asn	Ala	Met	Val 55	Met	Thr	Gln	Tyr	Ile 60	Arg	Leu	Thr	Pro
J	Asp 65	Met	Gln	Ser	Lys	Gln 70	Gly	Ala	Leu	Trp	Asn 75	Arg	Val	Pro	Cys	Phe 80
10	Leu	Arg	Asp	Trp	Glu 85	Leu	Gln	Val	His	Phe 90	Lys	Ile	His	Gly	Gln 95	Gly
	Lys	Lys	Asn	Leu 100	His	Gly	Asp	Gly	Leu 105	Ala	Ile	Trp	Tyr	Thr 110	Arg	Asr
15	Arg	Met	Gln 115	Pro	Gly	Pro	Val	Phe 120	Gly	Asn	Met	Asp	Lys 125	Phe	Val	Gly
20	Leu	Gly 130	Val	Phe	Val	Asp	Thr 135	Туг	Pro	Asn	Glu	Glu 140	Lys	Gln	Gln	Glu
20	Arg 145	Val	Phe	Pro	Туг	Ile 150	Ser	Ala	Met	Val	Asn 155	Asn	Gly	Ser	Leu	Ser 160
25	Туг	Asp	His	Glu	Arg 165	Asp	Gly	Arg	Pro	Thr 170	Glu	Leu	Gly	Gly	Cys 175	Thr
	Ala	Ile	Val	Arg 180	Asn	Leu	His	Tyr	Asp 185	Thr	Phe	Leu	Val	Ile 190	Arg	Туг
30	Val	Lys	Arg 195	His	Leu	Thr	Ile	Met 200	Met	Asp	Ile	Asp	Gly 205	Lys	His	Glu
35	Trp	Arg 210	Asp	Cys	Ile	Glu	Val 215	Pro	Gly	Val	Arg	Leu 220	Pro	Arg	Gly	Туг
	Tyr 225	Phe	Gly	Thr	Ser	Ser 230	Ile	Thr	Gly	Asp	Leu 235	Ser	Asp	Asn	His	Asp 240
40	Val	Ile	Ser	Leu	Lys 245	Leu	Phe	Glu	Leu	Thr 250	Val	Glu	Arg	Thr	Pro 255	Glu
	Glu	Glu	Lys	Leu 260	His	Arg	Asp	Val	Phe 265	Leu	Pro	Ser	Val	Asp 270	Asn	Met
45	Lys	Leu	Pro 275	Glu	Met	Thr	Ala	Pro 280	Leu	Pro	Pro	Leu	Ser 285	Gly	Leu	Ala
50	Leu	Phe 290	Leu	Ile	Val	Phe	Phe 295	Ser	Leu	Val	Phe	Ser 300	Val	Phe	Ala	Ile
	Val 305	Ile	Gly	Ile	Ile	Leu 310	Tyr	Asn	Lys	Trp	Gln 315	Glu	Gln	Ser	Arg	Lys 320
55	Arg	Phe	Tyr													

			(1)	(A) L	ENGT	H: 3	21 a	mino		ds					
								no a								
5			(xi)					lin PTIO		EQ I	D NO	: 16	5:			
	Met 1	Pro	Ser	Glu	Tyr 5	Thr	Tyr	Val	Lys	Leu 10	Arg	Ser	Asp	Cys	Ser 15	Arç
10	Pro	Ser	Leu	Gln 20	Trp	Tyr	Thr	Arg	Ala 25	Gln	Ser	Lys	Met	Arg 30	Arg	Pro
15	Ser	Leu	Leu 35	Leu	Lys	Asp	Ile	Leu 40	Lys	Cys	Thr	Leu	Leu 45	Val	Phe	Gly
	Val	Trp 50	Ile	Leu	Tyr	Ile	Leu 55	Lys	Leu	Asn	Tyr	Thr 60	Thr	Glu	Glu	Cys
20	Asp 65	Met	Lys	Lys	Met	His 70	Tyr	Val	Asp	Pro	Asp 75	His	Val	Lys	Arg	Ala 80
	Gln	Lys	Tyr	Ala	Gln 85	Gln	Val	Leu	Gln	Lуs 90	Glu	Cys	Arg	Pro	Lys 95	Ph∈
25	Ala	Lys	Thr	Ser 100	Met	Ala	Leu	Leu	Phe 105	Glu	His	Arg	Tyr	Ser 110	Val	Asr
30	Leu	Leu	Pro 115	Phe	Val	Gln	Lys	Хаа 120	Pro	Lys	Asp	Ser	Glu 125	Ala	Glu	Ser
	Lys	Tyr 130	Asp	Pro	Pro	Phe	Gly 135	Phe	Arg	Lys	Phe	Ser 140	Ser	Lys	Val	Glr
35	Thr 145	Leu	Leu	Glu	Leu	Leu 150	Pro	Glu	His	Asp	Leu 155	Pro	Glu	His	Leu	Lys 160
	Ala	Lys	Thr	Cys	Arg 165	Arg	Cys	Val	Val	Ile 170	Gly	Ser	Gly	Gly	Ile 175	Leu
40	His	Gly	Leu	Glu 180	Leu	Gly	His	Thr	Leu 185	Asn	Gln	Phe	Asp	Val 190	Val	Ile
45	Arg	Leu	Asn 195	Ser	Ala	Pro	Val	Glu 200	Gly	Tyr	Ser	Glu	His 205	Val	Gly	Asn
	Lys	Thr 210	Thr	Ile	Arg	Met	Thr 215	Tyr	Pro	Glu	Gly	Ala 220	Pro	Leu	Ser	Asp
50	Leu 225	Glu	Tyr	Tyr	Ser	Asn 230	Asp	Leu	Phe	Val	Ala 235	Val	Leu	Phe	Lys	Ser 240
	Val	Asp	Phe	Asn	Trp 245	Leu	Gln	Ala	Met	Val 250	Lys	Lys	Glu	Thr	Leu 255	Pro
55	Phe	Trp	Val	Arg 260	Leu	Phe	Phe	Trp	Lys 265	Gln	Val	Ala	Glu	Lys 270	Ile	Pro
60	Leu	Gln	Pro 275	Lys	His	Phe	Arg	Ile 280	Leu	Asn	Pro	Val	Ile 285	Ile	Lys	Glu

```
Thr Ala Phe Xaa His Pro Ser Val Leu Arg Ala Ser Val Lys Val Leu
                             295
     Gly Ala Glu Ile Arg Thr Ser Pro Gln Ser Val Ser Leu Pro Leu Ser
                                  315
                         310
     Xaa
10
      (2) INFORMATION FOR SEQ ID NO: 166:
             (i) SEQUENCE CHARACTERISTICS:
15
                    (A) LENGTH: 31 amino acids
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 166:
20
     Met Thr Leu Asp Val Gln Thr Val Val Val Phe Ala Val Ile Val Val
             5
                                         10
     Leu Leu Val Asn Val Ile Leu Met Phe Phe Leu Gly Thr Arg
                                    25
25
      (2) INFORMATION FOR SEQ ID NO: 167:
30
             (i) SEQUENCE CHARACTERISTICS:
                   (A) LENGTH: 72 amino acids
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 167:
35
     Met Leu Pro Leu Leu Phe Cys Ala Phe Cys Leu His Lys Leu Gly Pro
     Leu Leu Phe Leu Tyr Asp Val Leu Met Xaa His Glu Ala Val Met Arg
40
     Thr His Gln Ile Gln Leu Pro Asp Pro Glu Phe Pro Ser Gln Gln Asn
45
     Gln Val Leu Asn Lys Thr Leu Phe Asn Lys Leu Lys Lys Lys Lys
     Lys Lys Lys Xaa Xaa Xaa Lys Lys
                          70
50
      (2) INFORMATION FOR SEQ ID NO: 168:
55
             (i) SEQUENCE CHARACTERISTICS:
                   (A) LENGTH: 282 amino acids
                    (B) TYPE: amino acid
                   (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 168:
60
```

	Met 1	Ala	Ser	Arg	Gly 5	Arg	Arg	Pro	Glu	His 10	Gly	Gly	Pro	Pro	Glu 15	Leu
5	Phe	Туг	Asp	Glu 20	Thr	Glu	Ala	Arg	Lys 25	Tyr	Val	Arg	Asn	Ser 30	Arg	Met
	Ile	Asp	Ile 35	Gln	Thr	Arg	Met	Ala 40	Gly	Arg	Ala	Leu	Glu 45	Leu	Leu	Tyr
10	Leu	Pro 50	Glu	Asn	Lys	Pro	Суs 55	Tyr	Leu	Leu	Asp	Ile 60	Gly	Cys	Gly	Thr
15	Gly 65	Leu	Ser	Gly	Ser	Tyr 70	Leu	Ser	Asp	Glu	Gly 75	His	Tyr	Trp	Val	Gly 80
	Leu	Asp	Ile	Ser	Pro 85		Met	Leu	Asp	Glu 90	Ala	Val	Asp	Arg	Glu 95	Ile
20	Glu	Gly	Asp	Leu 100	Leu	Leu	Gly	Asp	Met 105	Gly	Gln	Gly	Ile	Pro 110	Phe	Lys
	Pro	Gly	Thr 115	Phe	Asp	Gly	Cys	Ile 120	Ser	Ile	Ser	Ala	Val 125	Gln	Trp	Leu
25	Cys	Asn 130	Ala	Asn	Lys	Lys	Ser 135	Glu	Asn	Pro	Ala	Lys 140	Arg	Leu	Tyr	Cys
30	Phe 145	Phe	Ala	Ser	Leu	Phe 150	Ser	Val	Leu	Val	Arg 15 5	Gly	Ser	Arg	Ala	Val 160
	Leu	Gln	Leu	Tyr	Pro 165	Glu	Asn	Ser	Glu	Gln 170	Leu	Glu	Leu	Ile	Thr 175	Thr
35	Gln	Ala	Thr	Lys 180	Ala	Gly	Phe	Ser	Gly 185	Gly	Met	Val	Val	Asp 190	Tyr	Pro
	Asn	Ser	Ala 195	Lys	Ala	Lys	Lys	Phe 200	Tyr	Leu	Cys	Leu	Phe 205	Ser	Gly	Pro
40	Ser	Thr 210	Phe	Ile	Pro	Glu	Gly 215	Leu	Ser	Glu	Asn	Gln 220	Asp	Glu	Val	Glu
45	Pro 225	Arg	Glu	Ser	Val	Phe 230	Thr	Asn	Glu	Arg	Phe 235	Pro	Leu	Arg	Met	Ser 240
	Arg	Arg	Gly	Met	Val 245	Arg	Lys	Ser	Arg	Ala 250		Val	Leu	Glu	Lys 255	Lys
50	Glu	Arg	His	Arg 260	Arg	Gln	Gly	Arg	Glu 265		Arg	Pro	Asp	Thr 270	Gln	Tyr
	Thr	Gly	Arg 275	Lys	Arg	Lys	Pro	Arg 280	Phe	Xaa						
55																

(2) INFORMATION FOR SEQ ID NO: 169:

60

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 23 amino acids

							no ac								
		(xi)	SEQU				line MOITS		Q II	NO:	: 169) :			
5	Met Let	ı Gly	Lys	Thr 5	Lys	Phe	Gln	Ser	Tyr 10	Lys	Ser	Phe	Ser	Arg 15	Lys
10	Leu Met	: Val	Cys 20	Pro	Ser	Thr									
	(2) IN	ORMAT	MOI	FOR	SEQ	ID N	ю: 1	70:							
15		(i) :	(1	A) LI 3) T	ENGT PE:	H: 3: ami	ERIST 28 ar no ac line	mino cid		ds					
20		(xi)	SEQU	JENCE	E DES	SCRII	OITS	I: SI	EQ II	ON C	: 170	0:			
	Met Try	Arg	Pro	Ser 5	Val	Leu	Leu	Leu	Leu 10	Leu	Leu	Leu	Arg	His 15	Gly
25	Ala Gl	n Gly	Lys 20	Pro	Ser	Pro	As p	Ala 25	Gly	Pro	His	Gly	Gln 30	Gly	Arg
	Val Hi	s Gln 35	Ala	Ala	Pro	Leu	Ser 40	Asp	Ala	Pro	His	Asp 45	Asp	Ala	His
30	Gly Ası		Gln	Tyr	Asp	His 55	Glu	Ala	Phe	Leu	Gly 60	Arg	Glu	Val	Ala
35	Lys Gl	u Phe	Asp	Gln	Leu 70	Thr	Pro	Glu	Glu	Ser 75	Gln	Ala	Arg	Leu	Gly 80
	Arg Il	e Val	Asp	Arg 85	Met	Asp	Arg	Ala	Gly 90	Asp	Gly	Asp	Gly	Trp 95	Val
40	Ser Le	u Ala	Glu 100	Leu	Arg	Ala	Trp	Ile 105	Ala	His	Thr	Gln	Gln 110	Arg	His
	Ile Ar	g Asp 115					Ala 120	_	_		_	Asp 125	Thr	Asp	Arg
45	Asp Gl 13		Val	Gly	Trp	Glu 135	Glu	Leu	Arg	Asn	Ala 140	Thr	Tyr	Gly	His
50	Tyr Al 145	a Pro	Gly	Glu	Glu 150	Phe	His	Asp	Val	Glu 155	Asp	Ala	Glu	Thr	Tyr 160
50	Lys Ly	s Met	Leu	Ala 165	Arg	Asp	Glu	Arg	Arg 170	Phe	Arg	Val	Ala	Asp 175	Gln
55	Asp Gl	y Asp	Ser 180	Met	Ala	Thr	Arg	Glu 185	Glu	Leu	Thr	Ala	Phe 190	Leu	His
	Pro Gl	u Glu 195		Pro	His	Met	Arg 200	Asp	Ile	Val	Ile	Ala 205	Glu	Thr	Leu
60	Glu As	p Leu	Asp	Arg	Asn	Lys	Asp	Gly	Tyr	Val	Gln	Val	Glu	Glu	Tyr

		210					215					220				
5	Ile 225	Ala	Asp	Leu	Tyr	Ser 230	Ala	Glu	Pro	Gly	Glu 235	Glu	Glu	Pro	Ala	Trp 240
,	Val	Gln	Thr	Glu	Arg 245	Gln	Gln	Phe	Arg	Asp 250	Phe	Arg	Asp	Leu	Asn 255	Lys
10	Asp	Gly	His	Leu 260	Asp	Gly	Ser	Glu	Val 265	Gly	His	Trp	Val	Leu 270	Pro	Pro
	Ala	Gln	Asp 275	Gln	Pro	Leu	Val	Glu 280	Ala	Asn	His	Leu	Leu 285	His	Glu	Ser
15	Asp	Thr 290	Asp	Lys	Asp	Gly	Arg 295	Leu	Ser	Lys	Ala	Xaa 300	Ile	Leu	Gly	Asn
20	Trp 305	Asn	Met	Phe	Val	Gly 310	Ser	Gln	Ala	Thr	Asn 315	Тут	Gly	Glu	Asp	Leu 320
	Thr	Arg	His	His	Asp 325	Glu	Leu	Xaa								
25	(2)	INFO	ORMA:	rion	FOR	SEQ	ID I	NO: 3	L 7 1:							
30			(i) :	(A) L B) T	ENGT YPE:	H: 6 ami	ERIS 9 am no a lin	ino cid		s	,				
			(xi)							EQ I	D NO	: 17	1:			
35	Met 1	Cys	Trp	Leu	Arg 5	Ala	Trp	Xaa	Gln	Ile 10	Xaa	Leu	Pro	Val	Phe 15	Xaa
	Ser	Хаа	Phe	Leu 20	Ile	Gln	Leu	Leu	Ile 25	Ser	Phe	Ser	Glu	Asn 30	Gly	Phe
40	Ile	His	Ser 35	Pro	Arg	Asn	Asn	Gln 40	Lys	Pro	Arg	Asp	Gly 45	Asn	Xaa	Glu
45	Glu	Cys 50	Ala	Val	Lys	Lys	Ser 55	Cys	Gln	Leu	Cys	Thr 60	Glu	Asp	Lys	Lys
	Tyr 65	Met	Met	Asn	Arg											
50	(2)	INF	ORMA'	rion	FOR	SEQ	ID I	NO: 1	172:							
55				(A) L B) T D) T	ENGT YPE : OPOL	H: 1 ami OGY:	60 a no a lin	mino cid ear	aci		: 17:	2:			
60	Met 1	Trp	Leu	Phe	Ile 5	Leu	Leu	Ser	Leu	Ala 10	Leu	Ile	Ser	Asp	Ala 15	Met

	Val	Met	Asp	Glu 20	Lys	Val	Lys	Arg	Ser 25	Phe	Val	Leu	Asp	Thr 30	Ala	Ser
5	Ala	Ile	Суs 35	Asn	Tyr	Asn	Ala	His 40	Tyr	Lys	Asn	His	Pro 45	Lys	Tyr	Trp
10	Cys	Arg 50	Gly	Tyr	Phe	Arg	Asp 55	Tyr	Суѕ	Asn	Ile	Ile 60	Ala	Phe	Ser	Pro
10	Asn 65	Ser	Thr	Asn	His	Val 70	Ala	Leu	Lys	Asp	Thr 75	Gly	Asn	Gln	Leu	Ile 80
15	Val	Thr	Met	Ser	Суз 85	Leu	Asn	Lys	Glu	Asp 90	Thr	Gly	Trp	Tyr	Trp 95	Cys
	Gly	Ile	Gln	Arg 100	Asp	Phe	Ala	Arg	Asp 105	Asp	Met	Asp	Phe	Thr 110	Glu	Leu
20	Ile	Val	Thr 115	Asp	Asp	Lys	Gly	Thr 120	Trp	Pro	Met	Thr	Leu 125	Val	Trp	Glu
25	Arg	Leu 130	Ser	Gly	Thr	Lys	Pro 135	Glu	Ala	Ala	Arg	Leu 140	Pro	Lys	Leu	Ser
	Ala 145	Arg	Leu	Thr	Ala	Pro 150	Gly	Arg	Pro	Phe	Ser 155	Ser	Phe	Ala	Tyr	Xaa 160
30																
35	(2)	INF	ORMAT	SEQUI (ENCE	CHAI ENGT YPE:	RACT H: 1	ERIS 23 a no a	PICS mino cid		ds					
40			(xi)	SEQ	UENC	E DE	SCRI	PTIO	N: S	EQ I	D NO	: 17	3:			
	Met 1	Ala	Xaa	His	Phe 5	Leu	Leu	Val	Ala	Leu 10	Gln	Ser	Val	Pro	His 15	Cys
45	Pro	His	Leu	Leu 20	Glu	Glu	Glu	His	Lys 25	Leu	Суз	Lys	Val	Ser 30	His	Phe
50	Ser	Gly	Val 35	Thr	Leu	Val	Thr	Ser 40	Arg	Gln	Asp	Ser	Ser 45	Ser	Tyr	Val
	Pro	Val 50	Gln	Thr	Leu	Phe	Ile 55	His	Leu	Gly	Pro	Trp 60	Ala	Trp	Asp	Leu
55	Xaa 65	Pro	Cys	Thr	Ala	Glu 70	Asp	Pro	Glu	Ala	Glu 75	Arg	Ser	Leu	Arg	Leu 80
	Cys	His	Ser	His	Leu 85	Ala	Arg	Xaa	Asn	Val 90	Ser	Pro	Ser	Gln	Ala 95	Ala

				100					105					110		
5	Thr	Phe	Leu 115	Ser	Ala	Glu	Asn	Glu 120	Ala	Gly	Ile					
10	(2)		ORMAI													
				(A) L B) T D) T	ENGT YPE : OPOL	H: 1: amii OGY:	29 an no ao lino	mino cid ear	acio		: 174	1:			
15	Met 1	Lys	Val	Gly	Ala 5	Arg	Ile	Arg	Val	Lys 10	Met	Ser	Val	Asn	Lys 15	Ala
20	His	Pro	Val	Val 20	Ser	Thr	His	Trp	Arg 25	Trp	Pro	Ala	Glu	Trp 30	Pro	Gln
	Met	Phe	Leu 35	His	Leu	Ala	Gln	G1u 40	Pro	Arg	Thr	Glu	Val 45	Lys	Ser	Arg
25	Pro	Leu 50	Gly	Leu	Ala	Gly	Phe 55	Ile	Arg	Gln	Asp	Ser 60	Lys	Thr	Arg	Lys
30	65		Glu			70					75					80
			Gly		85					90					95	
35			Gln	100					105					110		
40		His	Thr 115	His	Thr	Leu	Gln	Gly 120	Ser	His	Asn	Leu	Thr 125	Ala	Leu	Asn
40	Ile															
45	(2)	INF	ORMA			_										
50				(A) I B) T D) T	ENGT YPE: OPOL	H: 3 ami OGY:	72 a no a lin	mino cid ear	aci		: 17	5:			
55	Met 1		Tyr	His	Ser 5		Leu	Val	Glu	Pro 10	Ile	Ser	Cys	His	Ala 15	Trp
- -	Asn	Lys	Asp	Arg 20		Gln	Ile	Ala	Ile 25	Cys	Pro	Asn	Asn	His 30	Glu	Val
60	His	Ile	Tyr 35		Lys	Ser	Gly	Ala 40	Lys	Trp	Thr	Lys	Val 45	His	Glu	Leu

	Lys	Glu 50	His	Asn	Gly	Gln	Val 55	Thr	Gly	Ile	Asp	Trp 60	Ala	Pro	Glu	Ser
5	Asn 65	Arg	Ile	Val	Thr	Cys 70	Gly	Thr	Asp	Arg	Asn 75	Ala	Tyr	Val	Trp	Thr 80
10	Leu	Lys	Gly	Arg	Thr 85	Trp	Lys	Pro	Thr	Leu 90	Val	Ile	Leu	Arg	Ile 95	Asn
10	Arg	Ala	Ala	Arg 100	Cys	Val	Arg	Trp	Ala 105	Pro	Asn	Glu	Asn	Lys 110	Phe	Ala
15	Val	Gly	Ser 115	Gly	Ser	Arg	Val	Ile 120	Ser	Ile	Cys	Tyr	Phe 125	Glu	Gln	Glu
	Asn	As p	-	·Trp	Val	Суѕ	Lys 135	His	Ile	Lys	Lys	Pro 140	Ile	Arg	Ser	Thr
20	Val 145	Leu	Ser	Leu	Asp	Trp 150	His	Pro	Asn	Asn	Val 155	Leu	Leu	Ala	Ala	Gly 160
25	Ser	Cys	Asp	Phe	Lys 165	Cys	Arg	Ile	Phe	Ser 170	Ala	Tyr	Ile	Lys	Glu 175	Val
	Glu	Glu	Arg	Pro 180	Ala	Pro	Thr	Pro	Trp 185	Gly	Ser	Lys	Met	Pro 190	Phe	Gly
30	Glu	Leu	Met 195	Phe	Glu	Ser	Ser	Ser 200	Ser	Cys	Gly	Trp	Val 205	His	Gly	Val
	Cys	Phe 210		Ala	Ser	Gly	Ser 215	Arg	Val	Ala	Trp	Val 220	Ser	His	Asp	Ser
35	Thr 225		Cys	Leu	Ala	Asp 230	Ala	Asp	Lys	Lys	Met 235	Ala	Val	Ala	Thr	Leu 240
40	Ala	Ser	Glu	Thr	Leu 245		Leu	Leu	Ala	Leu 250		Phe	Ile	Thr	Asp 255	Asn
	Ser	Leu	Val	Ala 260		Gly	His	Asp	Cys 265		Pro	Val	Leu	Phe 270	Thr	Tyr
45	Asp	Ala	Ala 275		Gly	Met	Leu	Ser 280		Gly	Gly	Arg	Leu 285		Val	Pro
	Lys	Glr 290		Ser	Gln	Arg	Gly 295	Leu	Thr	Ala	Arg	Glu 300		Phe	Gln	Asn
50	Leu 305	-	Lys	Lys	Ala	Ser 310		Glu	Gly	Gly	Thr 315		Ala	Gly	Ala	Gly 320
55	Let	ı Asp	Ser	Leu	His 325	_	Asn	Ser	· Val	Ser 330		Ile	: Ser	Val	Leu 335	
JJ	Gly	7 Gly	y Lys	340	-	Cys	Ser	Glr	Phe 345	_	Thr	Thr	Gly	Met 350		Gly
60	Gly	/ Met	Ser		e Trp	Asr	Va]	L Lys		Leu	ı Glu	Ser	Ala		Lys	Asp

Leu Lys Ile Lys 370

5

20

- (2) INFORMATION FOR SEQ ID NO: 176:
 - (i) SEQUENCE CHARACTERISTICS:

10 (A) LENGTH: 216 amino acids

- (B) TYPE: amino acid
- (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 176:
- Met Trp Ser Ile Gly Ala Gly Ala Leu Gly Ala Ala Ala Leu Ala Leu 1 5 10 15
 - Leu Leu Ala Asn Thr Asp Val Phe Leu Ser Lys Pro Gln Lys Ala Ala 20 25 30
 - Leu Glu Tyr Leu Glu Asp Ile Asp Leu Lys Thr Leu Glu Lys Glu Pro 35 40 45
- - Met Ala Val Arg Arg Pro Gly Cys Phe Leu Cys Arg Glu Glu Ala Ala 65 70 75 80
- Asp Leu Ser Ser Leu Lys Ser Met Leu Asp Gln Leu Gly Val Pro Leu 85 90 95
- Tyr Ala Val Val Lys Glu His Ile Arg Thr Glu Val Lys Asp Phe Gln
 100 105 110
 - Pro Tyr Phe Lys Gly Glu Ile Phe Leu Asp Glu Lys Lys Phe Tyr 115 120 125
- Gly Pro Gln Arg Arg Lys Met Met Phe Met Gly Phe Ile Arg Leu Gly 40 130 135 140
 - Val Trp Tyr Asn Phe Phe Arg Ala Trp Asn Gly Gly Phe Ser Gly Asn 145 150 155 160
- 45 Leu Glu Gly Glu Gly Phe Ile Leu Gly Gly Val Phe Val Val Gly Ser 165 170 175
- Gly Lys Gln Gly Ile Leu Leu Glu His Arg Glu Lys Glu Phe Gly Asp \$180\$ \$185\$ \$190\$
 - Lys Val Asn Leu Leu Ser Val Leu Glu Ala Ala Lys Met Ile Lys Pro 195 200 205
- Gln Thr Leu Ala Ser Glu Lys Lys 55 210 215
 - (2) INFORMATION FOR SEQ ID NO: 177:

			(i) :	() ()	A) LI B) T	ENGT YPE :	H: 5!	RIST ami	no a		5					
5			(xi)					line TION		II QE	NO:	177	':·			
	Met 1	Lys	Pro	Val	Ser 5	Arg	Arg	Thr	Leu	Asp 10	Trp	Ile	Tyr	Ser	Val 15	Leu
10	Leu	Leu	Ala	Ile 20	Val	Leu	Ile	Ser	Trp 25	Gly	Cys	Ile	Ile	Tyr 30	Ala	Ser
15	Met	Val	Ser 35	Ala	Arg	Arg	Gln	Leu 40	Arg	Lys	Lys	Tyr	Pro 45	Asp	Lys	Ile
-	Phe	Gly 50	Thr	Asn	Glu	Asn	Leu 55									
20	(2)	INF	ORMA'	rion	FOR	SEQ	ID 1	io: 1	78:							
25				~ ((A) L B) T D) T	ENGT YPE: OPOL	H: 2 ami OGY:	ERIST am: no ac line PTION	ino a cid ear	acid		: 178	3:			
30	Met 1		Ala	Asn	Thr 5	Phe	Val	Leu	Ile	Met 10	Gly	Ile	Pro	Thr	Ser 15	Ala
	Asn	Ala	Xaa	Arg 20	Asp	Leu	Phe									
35																
	(2)	INF	ORMA	TION	FOR	SEQ	ID 1	NO: 1	.79:							
40				(A) I B) T D) T	ENGT YPE: YPOL	H: 1 ami OGY:	ERIST 03 au no a lind PTION	mino cid ear	aci		: 17!	9:			
45	Met		lle	Cys	His 5	_	Gly	Thr	Gly	Ile 10	Ala	Leu	Ser	Ala	Gly 15	Val
50	Ser	Leu	. Phe	Gly 20		Ser	Ala	Leu	Leu 25	Leu	Pro	Gly	Asn	Phe 30	Glu	Ser
J U	Тут	Leu	Glu 35		Val	Lys	Ser	Leu 40	Cys	Leu	Gly	Pro	Ala 45	Leu	Ile	His
55	Thr	Ala 50	_	Phe	Ala	Leu	Val 55	Phe	Pro	Leu	Met	Туг 60	His	Thr	Trp	Asn
	Gly 65		e Arg	His	Leu	Met 70		Asp	Leu	Gly	Lys 75	Gly	Leu	Lys	Ile	Pro 80
60	~ 1-			- 01	~		17-1	17-1	17-7	T 011	77.7	T 011	mb~	17-1	Low	802

WO 98/42738 PCT/US98/05311

304

85 90 95 Ser Met Gly Leu Ala Ala Met 5 (2) INFORMATION FOR SEQ ID NO: 180: 10 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 48 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 180: 15 Met Thr Lys Ala Ser Ser Leu Trp Pro Leu Lys Thr Thr Cys Gln Ile Ser Gly Thr Val Phe Phe Phe Leu Phe Leu Phe Ser Cys Phe Leu Met 20 20 25 30 Gln Ala Gln Cys Asp Lys Phe Val Gly Trp Asp Phe Phe Phe Leu 40 25 30 (2) INFORMATION FOR SEQ ID NO: 181: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 96 amino acids (B) TYPE: amino acid 35 (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 181: Met Arg Arg Ala Leu Ile Pro Pro Cys Arg Gly Gly Pro Ser Ala Ser 40 Asp Xaa Cys Cys Ser Cys Ser Pro Ser Gly Phe Ser Ala Gly Arg Gly 20 Arg Cys Pro Val Gln Gly Cys Leu Arg Pro His Arg Val Gln Leu Leu 45 Arg Arg Trp Gly Pro Gly Ser Pro Ala Gly Gln Arg Leu Ser Lys Gly 50 Phe Gln Leu Leu Arg Trp Trp Gly Pro Gly Ser Pro Ala Pro Glu Pro Arg Lys Gly Pro Phe Pro Pro Pro Pro Pro Pro Pro Pro Val Thr Leu 90 55

	(2) 1	LIVE	MAIN.	LLCEV	FOR	SEQ	ו עוב	v O. 1	.02.							
5	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 95 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 182: 															
10	Met I	Leu	Glu	Thr	Thr 5	Lys	His	Val	Gln	Ile 10	Ala	Cys	Met	Leu	Leu 15	Leu
	Thr (: Cys	Gln	Ile 20	Phe	Leu	Pro	Ser	Ser 25	Leu	Ser	Pro	Ser	Phe 30	Ile	His
15	Ser I	Leu	Thr 35	Asp	Ser	Phe	Ile	Pro 40	Leu	Lys	Lys	Leu	Tyr 45	Val	Cys	Phe
20	Val (31n 50	Ser	Thr	Leu	Leu	Lys 55	Ala	Ala	Gly	Tyr	Lys 60	Ser	Ile	Ser	Glu
	Ala I 65	Leu	Gly	Phe	Asp	Хаа 70	Leu	Leu	Суз	Ser	Ser 75	Ala	Arg	Phe	Val	Trp 80
25	Ile (Cys	His	Thr	Tyr 85	Ser	Arg	Pro	Leu	Val 90	Thr	Cys	Ala	Leu	His 95	
30	(2) INFORMATION FOR SEQ ID NO: 183: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 27 amino acids (B) TYPE: amino acid															
35	(D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 183:															
	Met :	Ser	Val	Ile	Gly 5	Gly	Leu	Leu	Leu	Val 10	Val	Ala	Leu	Gly	Pro 15	Gly
40	Gly v	Val	Ser	Met 20	Asp	Glu	Lys	Lys	Lys 25	Glu	Trp					
45	(2)	INF		SEQU	ENCE	SEQ CHA	RACT	ERIS	TICS		la.					
50			(xi)	(B) 1	YPE: OPOL	ami OGY:	no a lin	cid ear): 18	4:			
55	Met :	Ser	Gly	Gly	Leu 5		Phe	Leu	Leu	Leu 10	Val					
	(2)	INF	ORMA	TION	FOR	SEQ	ID :	NO:	185:							
60			(i)	SEQU	ENCE	CHA	RACT	ERIS	TICS	:						

(A) LENGTH: 65 amino acids																
(B) TYPE: amino acid (D) TOPOLOGY: linear																
5			(xi)	SEQ						EQ II	OM C	: 18	5:			
	Met 1	Phe	Ala	Asp	Phe 5	Ile	Val	Val	Thr	Ala 10	Thr	Val	Gln	Arg	Cys 15	Pro
10	Gly	Ser	Pro	Pro 20	Leu	Ser	Glu	Ile	Leu 25	Trp	Lys	Asp	Glu	Pro 30	Phe	Ala
	Ile	Ser	Ser 35	His	Ala	Gly	Leu	Pro 40	Trp	Leu	Ser	Ser	Trp 45	Pro	Ala	Pro
15	Pro	Trp 50	Thr	Trp	Ser	Trp	Ile 55	Ser	Arg	Arg	Arg	Glu 60	His	Gly	Arg	Gly
20	Ser 65															
	(2) INFORMATION FOR SEQ ID NO: 186:															
25			(i)	(A) L B) T	ENGT YPE :	H: 2 ami	ERIS 2 am no a lin	ino cid		s					
30				SEQ												
	Met 1	Val	Glu	Ser	Val 5	Met	Pro	Val	Val	Val 10	Cys	Thr	Leu	Ser	Pro 15	Gly
35	Ile	Asp	Ser	Ser 20	Pro	Ser										
40	(2)	INF		TION SEQU						:						
-	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 132 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear															
45			(xi)	SEQ						EQ I	D N O	: 18	7:			
	Met 1	Asp	Val	Leu	Phe 5	Val	Ala	Ile	Phe	Ala 10	Val	Pro	Leu	Ile	Leu 15	Gly
50	Gln	Glu	Tyr	Glu 20	Asp	Glu	Glu	Arg	Leu 25	Gly	Glu	Asp	Glu	Туг 30	Tyr	Gln
55	Val	Val	Туг 35	Tyr	Tyr	Thr	Val	Thr 40	Pro	Ser	Tyr	Asp	Asp 45	Phe	Ser	Ala
	Asp	Phe 50		Ile	Asp	Tyr	Ser 55	Ile	Phe	Glu	Ser	Glu 60	Asp	Arg	Leu	Asn
60	Arg 65	Leu	Ąsp	Lys	Asp	Ile 70	Thr	Glu	Ala	Ile	Glu 75	Thr	Thr	Ile	Ser	Leu 80

(2) INFORMATION FOR SEQ ID NO: 190:

	Glu	Thr	Ala	Arg	Ala 85	Asp	His	Pro	Lys	Pro 90	Val	Thr	Val	Lys	Pro 95	Val
5	Thr	Thr	Glu	Pro 100	Gln	Ser	Pro	Asp	Leu 105	Asn	Asp	Ala	Val	Ser 110	Ser	Leu
10	Arg	Ser	Pro 115	Ile	Pro	Leu	Leu	Leu 120	Ser	Cys	Ala	Phe	Val 125	Gln	Val	Gly
	Met	Tyr 130	Phe	Met												
15	(2)	INFO	ORMA!	rion	FOR	SEQ	ID 1	NO: 1	L88:							
20			(i)	(A) L B) T	CHA ENGT YPE:	H: 6 ami	9 am no a	ino cid		s					
			(xi)	SEQ	UENC	E DE	SCRI	PTIO	N: S	EQ I	D N O	: 18	8:			
25	Met 1	Pro	Cys	Gln	Pro 5	Gly	Gln	Val	Pro	Ser 10	Cys	Gln	Cys	Thr	Phe 15	Gly
	Leu	Leu	Leu	Met 20	Leu	Pro	Ser	Leu	Pro 25	Ser	Pro	Ala	Ser	Gln 30	Pro	Arg
30	Pro	Phe	Суs 35	Ser	Ser	Met	Glu	Туг 40	Phe	His	Gly	Cys	Ala 45	Ser	Pro	Ser
35	Gln	Ala 50	Ile	Ile	Gly	Gly	Phe 55	Pro	Phe	Ala	Ser	Val 60	Ala	Leu	Ala	Asp
55	Ile 65	Leu	Cys	Leu	Gln											
40	(2)	INF	ORMA'	TION	FOR	SEQ	ID I	NO:	189:							
45			(i)	(A) I B) T	ENGI YPE:	H: 4	5 am	ino cid		ls					
			(xi)	SEQ		OPOL E DE				EQ I	D NO	: 18	9:			
50	Met 1		Leu	Leu	Ser 5		Ala	Ile	Pro	Ala 10	Leu	Thr	Leu	Ile	Phe 15	Ile
	Leu	Met	Phe	Phe 20	Ser	Phe	Pro	Phe	Arg 25	Ala	His	Thr	Val	Val 30	Thr	Ile
55	Val	Ala	Ser 35	Gly	Phe	Leu	Gly	Leu 40		Pro	Leu	Cys	Gly 45			
											,					

```
(i) SEQUENCE CHARACTERISTICS:
                     (A) LENGTH: 65 amino acids
                     (B) TYPE: amino acid
 5
                     (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 190:
      Met Ala Phe Gly Leu Gln Met Phe Ile Gln Arg Lys Phe Pro Tyr Pro
                                           10
10
      Leu Gln Trp Ser Leu Leu Val Ala Val Val Ala Gly Ser Val Val Ser
                                       25
                                                           30
      Tyr Gly Val Thr Arg Val Glu Ser Glu Lys Cys Asn Asn Leu Trp Leu
15
      Phe Leu Glu Thr Gly Gln Leu Pro Lys Asp Arg Ser Thr Asp Gln Arg
20
      Ser
       65
25
      (2) INFORMATION FOR SEQ ID NO: 191:
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 50 amino acids
                     (B) TYPE: amino acid
30
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 191:
      Met Asn Leu Leu Gly Met Ile Phe Ser Met Cys Gly Leu Met Leu Lys
35
      Leu Lys Trp Cys Ala Trp Val Ala Val Tyr Cys Ser Phe Ile Ser Phe
                                       25
      Ala Asn Ser Arg Ser Ser Glu Asp Thr Lys Gln Met Met Ser Ser Phe
40
      Met Xaa
           50
45
      (2) INFORMATION FOR SEQ ID NO: 192:
             (i) SEQUENCE CHARACTERISTICS:
50
                    (A) LENGTH: 170 amino acids
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 192:
55
      Met Leu Leu Asn Val Ala Leu Val Ala Leu Val Leu Leu Gly Ala Tyr
                 5
      Arg Leu Trp Val Arg Trp Gly Arg Arg Gly Leu Gly Ala Gly Ala Gly
                   20
                                       25
60
```

	Ala	Gly	Glu 35	Glu	Ser	Pro	Ala	Thr 40	Ser	Leu	Pro	Arg	Met 45	Lys	Lys	Arg
5	Asp	Phe 50	Ser	Leu	Glu	Gln	Leu 55	Arg	Gln	Tyr	Asp	Gly 60	Ser	Arg	Asn	Pro
	Arg 65	Ile	Leu	Leu	Ala	Val 70	Asn	Gly	Lys	Val	Phe 75	Asp	Val	Thr	Lys	Gly 80
10	Ser	Lys	Phe	Tyr	Gly 85	Pro	Ala	Gly	Pro	Tyr 90	Gly	Ile	Phe	Ala	Gly 95	Arg
15	Asp	Ala	Ser	Arg 100	Gly	Leu	Ala	Thr	Phe 105	Cys	Leu	Asp	Lys	Asp 110	Ala	Leu
	Arg	Asp	Glu 115		Asp	Asp	Leu	Ser 120	Asp	Leu	Asn	Ala	Val 125	Gln	Met	Glu
20	Ser	Val 130	Arg	Glu	Trp	Glu	Met 135	Gln	Phe	Lys	Glu	Lys 140	Tyr	Asp	Tyr	Val
	Gly 145		Leu	Leu	Lys	Pro 150	Gly	Glu	Glu	Pro	Ser 155	Glu	Tyr	Thr	Asp	Glu 160
25	Glu	Asp	Thr	Lys	Asp 165	His	Asn	Lys	Gln	Asp 170						
30	(2)	INF	ORMA'	tion	FOR	SEQ	ID I	NO:	193:							
35				(A) I G (B) I (C)	ENGT YPE : OPOL	H: 6 ami OGY:	6 am no a lin		acid		: 19	3:			
40	Met 1		Tyr	Phe	Ser 5	Gly	Leu	Leu	Val	Ile 10	Leu	Ala	Phe	Ala	Ala 15	Trp
	Val	Ala	Leu	Ala 20		Gly	Leu	Gly	Val 25		Val	Tyr	Ala	Ala 30		Val
45	Leu	Leu	Gly 35		Gly	Cys	Ala	Thr 40		Leu	Val	Thr	Ser 45		Ala	Met
	Thr	Ala 50	Asp	Leu	Ile	Gly	Pro 55		Thr	Asn	Ser	Gly 60		Ser	Cys	Thr
50	Ala 65	Pro	1													
55	(2)	INF	ORMA	TION	FOR	SEQ	ID	NO:	194:							
			(i)	_	(A) I	ENG		92 ar	TICS nino acid		ls					
60							LOGY									

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 194:

5	Met 1	Ala	Ala	Gly	Pro 5	Ser	Gly	Cys	Leu	Val 10	Pro	Ala	Phe	Gly	Leu 15	Arg
3	Leu	Leu	Leu	Ala 20	Thr	Val	Leu	Gln	Ala 25	Val	Ser	Ala	Phe	Gly 30	Ala	Glu
10	Phe	Ser	Ser 35	Glu	Ala	Cys	Arg	Glu 40	Leu	Gly	Phe	Ser	Ser 45	Asn	Leu	Leu
	Cys	Ser 50	Ser	Cys	Asp	Leu	Leu 55	Gly	Gln	Phe	Asn	Leu 60	Leu	Gln	Leu	Asp
15	Pro 65	Asp	Cys	Arg	Gly	Cys 70	Cys	Gln	Glu	Glu	Ala 75	Gln	Phe	Glu	Thr	Lys 80
20	Lys	Leu	Tyr	Ala	Gly 85	Ala	Ile	Leu	Glu	Val 90	Cys	Gly				
25	(2)	INF	(i)	(ENCE A) L B) T D) T	CHA ENGT YPE: OPOL	RACT H: 1 ami OGY:	ERIS 76 a no a lin	TICS mino cid ear	aci		: 19	5:			
30	Met 1	Arg	Gly	Ser	His 5	Leu	Arg	Leu	Leu	Pro 10	Туг	Leu	Val	Ala	Ala 15	Asn
3 5 ,	Pro	Val	Asn	Tyr 20	Gly	Arg	Pro	Tyr	Arg 25		Ser	Cys	Va1	Glu 30	Ala	Phe
	Ala	Ala	Thr 35	Phe	Cys	Ile	Val	Gly 40	Phe	Pro	Asp	Leu	Ala 45	Val	Ile	Leu
40		50		Phe			55					60				
45	65			Lys		70					75					80
				Glu	85					90					95	
50				Pro 100			•		105					110		
<i></i>			115					120					125			
55		130		Glu			135					140				
60	Ser 145		Cys	Cys	Glu	Glu 150		Gln	Thr	Gln	Gly 155	_	Gly	Ala	Glu	Ala 160

Arg Ala Pro Ala Glu Val Trp Lys Gly Ile Lys Lys Arg Gln Arg Asp 170 5 (2) INFORMATION FOR SEQ ID NO: 196: 10 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 70 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear 15 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 196: Met Ser Asn Ala Cys Lys Glu Leu Ala Ile Phe Leu Thr Thr Gly Ile 10 20 Val Val Ser Ala Phe Gly Leu Pro Ile Val Phe Ala Arg Ala His Leu 25 Ile Glu Trp Gly Ala Cys Ala Leu Val Leu Thr Gly Asn Thr Val Ile 25 Phe Ala Thr Ile Leu Gly Phe Phe Leu Val Phe Gly Ser Asn Asp Asp Phe Ser Trp Gln Gln Trp 30 (2) INFORMATION FOR SEQ ID NO: 197: 35 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 25 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear 40 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 197: Met Thr Leu Leu Ile Ile Phe Leu Pro Phe Xaa Phe Thr Thr Xaa Thr 5 10 45 Asn Ser Gly Gly Ser Phe Pro Val Arg 20 50 (2) INFORMATION FOR SEQ ID NO: 198: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 73 amino acids (B) TYPE: amino acid 55 (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 198: Met Lys Gly Glu Leu Leu Pro Phe Leu Phe Leu Thr Val Trp Leu Trp 5 60

	Leu	Tyr	Lys	Leu 20	Xaa	Phe	Gly	Glu	Ser 25	Pro	Arg	Tyr	Pro	Asn 30	Val	Il€
5	Gly	Lys	Thr 35	Tyr	Phe	Phe	Phe	Trp 40	Thr	Asp	Gln	Ile	Ser 45	Arg	Glu	Ser
	Arg	Phe 50	Leu	Glu	Arg	Leu	Ala 55	Phe	Ile	Val	Ser	Glu 60	Asn	Суз	Leu	Ιlε
10	Phe 65	Leu	Ile	His	Ala	Ile 70	Thr	Gly	Gln							
15	(2)				FOR											
20				(ENCE A) L B) T D) T UENC	ENGT YPE : OPOL	H: 2 ami OGY:	89 a no a lin	mino cid ear	aci		: 19	9:			
25	Met 1	Ser	Gly	Phe	Ser 5	Thr	Glu	Glu	Arg	Ala 10	Ala	Pro	Phe	Ser	Leu 15	Glu
	Tyr	Arg	Val	Phe 20	Leu	Lys	Asn	Glu	Lys 25	Gly	Gln	Tyr	Ile	Ser 30	Pro	Ph∈
30	His	Asp	Ile 35	Pro	Ile	Tyr	Ala	Asp 40	Lys	Asp	Val	Phe	His 45	Met	Val	Val
	Glu	Val 50	Pro	Arg	Trp	Ser	Asn 55	Ala	Lys	Met	Glu	Ile 60	Ala	Thr	Lys	Asp
35	Pro 65	Leu	Asn	Pro	Ile	Lys 70	Gln	Asp	Val	Lys	Lys 75	Gly	Lys	Leu	Arg	Тут 80
40	Val	Ala	Asn	Leu	Phe 85	Pro	Тут	Lys	Gly	Тут 90	Ile	Trp	Asn	Туг	Gly 95	Ala
	Ile	Pro	Gln	Thr 100	Trp	Glu	Asp	Pro	Gly 105	His	Asn	Asp	Lys	His 110	Thr	Gly
45	Cys	Cys	Gly 115	Asp	Asn	Asp	Pro	Ile 120	Asp	Val	Cys	Glu	Ile 125	Gly	Ser	Lys
	Val	Cys 130	Ala	Arg	Gly	Glu	Ile 135	Ile	Gly	Val	Lys	Val 140	Leu	Gly	Ile	Leu
50	Ala 145	Met	Ile	Asp	Glu	Gly 150	Glu	Thr	Asp	Trp	Lys 1 55	Val	Ile	Ala	Ile	Asn 160
55	Val	Asp	Asp	Pro	Asp 165	Ala	Ala	Asn	Tyr	Asn 170	Asp	Ile	Asn	Asp	Val 175	Lys
	Arg	Leu	Lys	Pro 180	Gly	Tyr	Leu	Glu	Ala 185	Thr	Val	Asp	Trp	Phe 190	Arg	Arg
60	Tyr	Lys	Val 195	Pro	Asp	Gly	Lys	Pro 200	Glu	Asn	Glu	Phe	Ala 205		Asn	Ala

	Glu	Phe 210	Lys	Asp	Lys	Asp	Phe 215	Ala	Ile	Asp	Ile	11e 220	Lys	Ser	Thr	His
5	Asp 225	His	Trp	Lys	Ala	Leu 230	Val	Thr	Lys	Lys	Thr 235	Asn	Gly	Lys	Gly	Ile 240
10	Ser	Cys	Met	Asn	Thr 245	Thr	Leu	Ser	Glu	Ser 250	Pro	Phe	Lys	Cys	Asp 255	Pro
10	Asp	Ala	Ala	Arg 260	Ala	Ile	Val	Asp	Ala 265	Leu	Pro	Pro	Pro	Cys 270	Glu	Ser
15	Ala	Cys	Thr 275	Val	Pro	Thr	Asp	Val 280	Asp	Lys	Trp	Phe	His 285	His	Gln	Lys
	Asn															
20																
	(2)	INF	ORMA'		FOR ENCE											
25			(1)	(A) L B) T	ENGT YPE:	H: 6 ami	25 a no a	mino cid		ds					
			(xi)		D) T UENC					EQ I	D NO	: 20	0:			
30	Met 1		Ile	Pro	Gly 5	Ser	Leu	Cys	Lys	Lys 10	Val	Lys	Leu	Ser	Asn 15	Asn
35	Ala	Gln	Asn	Trp 20		Met	Gln	Arg	Ala 25	Thr	Asn	Val	Thr	Туr 30	Gln	Ala
33	His	His	Val 35		Arg	Asn	Lys	Arg 40	Gly	Gln	Val	Val	Gly 45	Thr	Arg	Gly
40	Gly	Phe 50	_	Gly	Cys	Thr	Val 55		Leu	Thr	Gly	Leu 60		Gly	Ala	Gly
	Lys 65		Thr	Val	Ser	Met 70		Leu	Glu	Glu	Tyr 75	Leu	Val	Cys	His	Gly 80
45	Ile	Pro	Cys	Туг	Thr 85		Asp	Gly	Asp	Asn 90		Arg	Gln	Gly	Leu 95	Asn
50	Lys	a Asr	ı Leu	Gly 100		Ser	Pro	Glu	Asp 105		Glu	Glu	Asn	Val 110		Arg
30	Ile	e Ala	115		. Ala	Lys	Leu	Phe 120		Asp	Ala	Gly	Leu 125		Cys	Ile
55	Thi	r Sei 130		: Ile	Ser	Pro	Туг 135		Gln	Asp	Arg	Asn 140		Ala	Arg	Gln
	11e		s Glu	Gly	/ Ala	Ser 150		Pro	Phe	Phe	Glu 155		. Phe	Val	. Asp	Ala 160
60	Pro	o Lei	ı His	val	Cys	Glu	Glr	n Arg	Asp	Va1	Lys	Gly	Leu	Туг	Lys	Lys

					103					170					175	
5	Ala	Arg	Ala	Gly 180	Glu	Ile	Lys	Gly	Phe 185	Thr	Gly	Ile	Asp	Ser 190	Glu	Tyr
5	Glu	Lys	Pro 195	Glu	Ala	Pro	Glu	Leu 200	Val	Leu	Lys	Thr	Asp 205	Ser	Cys	Asp
10	Val	Asn 210	Asp	Суз	Val	Gln	Gln 215	Val	Val	Glu	Leu	Leu 220	Gln	Glu	Arg	Asp
	Ile 225	Val	Pro	Val	Ązp	Ala 230	Ser	Tyr	Glu	Val	Lys 235	Glu	Leu	Tyr	Val	Pro 240
15	Glu	Asn	Lys	Leu	His 245	Leu	Ala	Lys	Thr	Asp 250	Ala	Glu	Thr	Leu	Pro 255	Ala
20	Leu	Lys	Ile	Asn 260	Lys	Val	Asp	Met	Gln 265	Trp	Val	Gln	Val	Leu 270	Ala	Glu
	Gly	Trp	Ala 275	Thr	Pro	Leu	Asn	Gly 280	Phe	Met	Arg	Glu	Arg 285	Glu	тут	Leu
25	Gln	Cys 290	Leu	His	Phe	Asp	Cys 295	Leu	Leu	Asp	Gly	Gly 300	Val	Ile	Asn	Leu
	Ser 305	Val	Pro	Ile	Val	Leu 310	Thr	Ala	Thr	His	Glu 315	Asp	Lys	Glu	Arg	Leu 320
30	Asp	Gly	Cys	Thr	Ala 325	Phe	Ala	Leu	Met	Tyr 330	Glu	Gly	Arg	Arg	Val 335	Ala
35	Ile	Leu	Arg	Asn 340	Pro	Glu	Phe	Phe	Glu 345	His	Arg	Lys	Glu	Glu 350	Arg	Cys
	Ala	Arg	Gln 355	Trp	Gly	Thr	Thr	Сув 360	Lys	Asn	His	Pro	Tyr 365	Ile	Lys	Met
40	Val	Met 370	Glu	Gln	Gly	Asp	Trp 375	Leu	Ile	Gly	Gly	Asp 380	Leu	Gln	Val	Leu
	Asp 385	Arg	Val	Tyr	Trp	Asn 390	Asp	Gly	Leu	Asp	Gln 395	Tyr	Arg	Leu	Thr	Pro 400
45	Thr	Glu	Leu	Lys	Gln 405	Lys	Phe	Lys	Asp	Met 410	Asn	Ala	Asp	Ala	Val 415	Phe
50	Ala	Phe	Gln	Leu 420	Arg	Asn	Pro	Val	His 425	Asn	Gly	His	Ala	Leu 430	Leu	Met
	Gln	Asp	Thr 435	His	Lys	Gln	Leu	Leu 440	Glu	Arg	Gly	Tyr	Arg 44 5	Arg	Pro	Val
55	Leu	Leu 450	Leu	His	Pro	Leu	Gly 45 5	Gly	Trp	Thr	Lys	Asp 460	Asp	Asp	Val	Pro
	Leu 465	Met	Trp	Arg	Met	Lys 470	Gln	His	Ala	Ala	Val 475	Leu	Glu	Glu	Gly	Val 480
60	Leu	Asn	Pro	Glu	Thr	Thr	Val	Val	Ala	Ile	Phe	Pro	Ser	Pro	Met	Met

					485					490					49 5	
5	Тут	Ala	Gly	Pro 500	Thr	Glu	Val	Gln	Trp 505	His	Cys	Arg	Ala	Arg 510	Met	Val
,	Ala	Gly	Ala 515	Asn	Phe	Tyr	Ile	Val 520	Gly	Arg	Asp	Pro	Ala 525	Gly	Met	Pro
10	His	Pro 530	Glu	Thr	Gly	Lys	Asp 535	Leu	Tyr	Glu	Pro	Ser 540	His	Gly	Ala	Lys
	Val 545	Leu	Thr	Met	Ala	Pro 550	Gly	Leu	Ile	Thr	Leu 555	Glu	Ile	Val	Pro	Phe 560
15	Arg	Val	Ala	Ala	Туг 565	Asn	Lys	Lys	Lys	Lys 570	Arg	Met	Asp	Tyr	Туг 575	Asp
20	Ser	Glu	His	His 580	Glu	Asp	Phe	Glu	Phe 585	Ile	Ser	Gly	Thr	Arg 590	Met	Arg
20	Lys	Leu	Ala 595	Arg	Glu	Gly	Gln	Lys 600	Pro	Pro	Glu	Gly	Phe 605	Met	Ala	Pro
25	Lys	Ala 610	Trp	Thr	Val	Leu	Thr 615	Glu	Tyr	Tyr	Lys	Ser 620	Leu	Glu	Lys	Ala
	Xaa 625															
30																
	_(2)	INFO	ORMA!	rion	FOR	SEQ	ID I	WO: 2	201:							
35			(i)	(ENCE A) L B) T D) T	ENGT YPE:	H: 6 ami	49 a no a	mino cid		ds					
			(xi)	SEQ	UENC	E DE	SCRI	PTIO	1 : S1	EQ I	D NO	: 20	1:			
40	Met 1	Ser	Ala	Ser	Gln 5	Asp	Leu	Glu	Pro	Lys 10	Pro	Leu	Phe	Pro	Lys 15	Pro
45	Ala	Phe	Gly	Gln 20	Lys	Pro	Pro	Leu	Ser 25	Thr	Glu	Asn	Ser	His 30	Glu	Asp
	Glu	Ser	Pro 35	Met	Lys	Asn	Val	Ser 40	Ser	Ser	Lys	Gly	Ser 45	Pro	Ala	Pro
50	Leu	Gly 50	Val	Arg	Ser	Lys	Ser 55	Gly	Pro	Leu	Lys	Pro 60	Ala	Arg	Glu	Asp
	Ser 65	Glu	Asn	Lys	Asp	His 70	Ala	Gly	Glu	Ile	Ser 75	Ser	Leu	Pro	Phe	Pro 80
55	Gly	Val	Val	Leu	Lys 85	Pro	Ala	Ala	Ser	Arg 90	Gly	Gly	Pro	Gly	Leu 95	Ser
	Lys	Asn	Gly	Glu	Glu	Lvs	Lvs	Glu	3	2~~	Tare	Tla	Aen	בוג	21-	Ivs

	Asn	Thr	Phe 115	Gln	Ser	Lys	Ile	Asn 120	Gln	Glu	Glu	Leu	Ala 125	Ser	G1y	Thr
5	Pro	Pro 130	Ala	Arg	Phe	Pro	Lys 135	Ala	Pro	Ser	Lys	Leu 140	Thr	Val	Gly	Gly
	Pro 145	Trp	Gly	Gln	Ser	Gln 150	Glu	Lys	Glu	Lys	Gly 155	Asp	Lys	Asn	Ser	Ala 160
10	Thr	Pro	Lys	Gln	Lys 165	Pro	Leu	Pro	Pro	Leu 170	Phe	Thr	Leu	Gly	Pro 175	Pro
15	Pro	Pro	Lys	Pro 180	Asn	Arg	Pro	Pro	Asn 185	Val	Asp	Leu	Thr	Lys 190	Phe	His
	Lys	Thr	Ser 195	Ser	Gly	Asn	Ser	Thr 200	Ser	Lys	Gly	Gln	Thr 205	Ser	туг	Ser
20	Thr	Thr 210	Ser	Leu	Pro	Pro	Pro 215	Pro	Pro	Ser	His	Pro 220	Ala	Ser	Gln	Pro
	Pro 225	Leu	Pro	Ala	Ser	His 230	Pro	Ser	Gln	Pro	Pro 235	Val	Pro	Ser	Leu	Pro 240
25					245					250			Pro		255	
30				260					265				Gly	270		
			275					280					Ile 285			
35		290					295					300	Lys			
40	305					310					315		Glu	٠.		320
40					325					330			Ile		335	
45				340					345				Leu	350		
			355					360					Asn 365			
50		370					375					380	Tyr			
	Thr 385	Ala	Val	Glu	Ile	Asp 390	Tyr	Asp	Ser	Leu	Lys 395	Leu	Lys	Lys	Asp	Ser 400
55					405					410			Glu		415	
60	Asp	Val	Ala	Glu 4 20	Gln	Asp	Asp	Ile	Ser 425	Ser	His	Ser	Gln	Ser 430	Gly	Ser

	Gly	Gly	Ile 435	Phe	Pro	Pro	Pro	Pro 440	Asp	Asp	Asp	Ile	Туг 445	Asp	Gly	Ile
5	Glu	Glu 4 50	Glu	Asp	Ala	Asp	Asp 455	Gly	Ser	Thr	Leu	Gln 460	Val	Gln	Glu	Lys
	Ser 465	Asn	Thr	Trp	Ser	Trp 470	Gly	Ile	Leu	Lys	Met 475	Leu	Lys	Gly	Lys	Asp 480
10	Asp	Arg	Lys	Lys	Ser 485	Ile	Arg	Glu	Lys	Pro 490	Lys	Val	Ser	Asp	Ser 495	Asp
15	Asn	Asn	Glu	Gly 500	Ser	Ser	Phe	Pro	Ala 505	Pro	Pro	Lys	Gln	Leu 510	Asp	Met
13	Gly	Asp	Glu 515	Val	Tyr	Asp	Asp	Val 520	Asp	Thr	Ser	Asp	Phe 525	Pro	Val	Ser
20	Ser	Ala 530	Glu	Met	Ser	Gln	Gly 535	Thr	Asn	Val	Gly	Lys 540	Ala	Lys	Thr	Glu
	Glu 545	Lys	Asp	Leu	Lys	Lys 550	Leu	Lys	Lys	Gln	Xaa 555	Lys	Xaa	Xaa	Lys	Asp 560
25	Phe	Arg	Lys	Lys	Phe 565	Lys	Тут	Asp	Gly	Glu 570	Ile	Arg	Val	Leu	Туг 575	Ser
20	Thr	Lys	Val	Thr 580	Thr	Ser	Ile	Thr	Ser 585	Lys	Lys	Trp	Gly	Thr 590	Arg	Asp
30	Leu	Gln	Val 595	Lys	Pro	Gly	Glu	Ser 600	Leu	Glu	Val	Ile	Gln 605	Thr	Thr	Asp
35	Asp	Thr 610	Lys	Val	Leu	Cys	Arg 615	Asn	Glu	Glu	Gly	Lys 620	Tyr	Gly	Tyr	Val
	Leu 625	Arg	Ser	Tyr	Leu	Ala 630	Asp	Asn	Asp	Gly	Glu 635	Ile	Tyr	Asp	Asp	Ile 640
10	Ala	Asp	Gly	Cys	Ile 645	Тут	Asp	Asn	Asp							
15	(2)				707	~~~		•••								
•3	(2)			MOIT		_										
50			(i) :	(1	A) LI B) T	CHAI ENGTI YPE : OPOLA	H: 5	5 am no a	ino a		S					
,0			(xi)	SEQ						EQ II	ON C	: 202	2:			
55	Met 1	Ala	Trp	Pro	Ser 5	Arg	Ser	Lys	Met	Phe 10	Thr	Leu	Leu	Pro	Val 15	Leu
,,,	Cys	Tyr	Leu	Trp 20	Ser	Leu	Trp	Leu	Pro 25	Gln	Phe	Ser	Trp	Ile 30	Gln	Glu
60	Leu	Lys	Ala 35	Val	Leu	Arg	Asp	Asp 40	Gly	Leu	Ile	Ser	Ala 45	Val	Ala	Trp

	Asn	Ala 50	Glu	Phe	Gln	Thr	Cys 55									
5				•												
	(2)	INF	ORMAT	NOI	FOR	SEQ	ID 1	VO: 2	203:							
10				(A) L B) T D) T	ENGT YPE : OPOL	RACTI H: 2 ami: OGY: SCRI	67 a no a lin	mino cid ear	aci		: 20	3:			
15	Met 1	Val	Lys	Val	Thr 5	Phe	Asn	Ser	Ala	Leu 10	Ala	Gln	Lys	Glu	Ala 15	Lys
20	Lys	Asp	Glu	Pro 20	Lys	Ser	Gly	Glu	Glu 25	Ala	Leu	Ile	Ile	Pro 30	Pro	Asp
	Ala	Val	Ala 35	Val	Asp	Cys	Lys	Asp 40	Pro	Asp	Asp	Val	Val 45	Pro	Val	Gly
25	Gln	Arg 50	Arg	Ala	Trp	Cys	Trp 55	Cys	Met	Суз	Phe	Gly 60	Leu	Ala	Phe	Met
	Leu 65	Ala	Gly	Val	Ile	Leu 70	Gly	Gly	Ala	Tyr	Leu 75	Туг	Lys	Tyr	Phe	Ala 80
30	Leu	Gln	Pro	Asp	Asp 85	Val	Tyr	Tyr	Суѕ	90 90	Ile	Lys	Тут	Ile	Lys 95	Asp
35	Asp	Val	Ile	Leu 100	Asn	Glu	Pro	Ser	Ala 105	Asp	Ala	Pro	Ala	Ala 110	Leu	Tyr
	Gln	Thr	Ile 115	Glu	Glu	Asn	Ile	Lys 120	Ile	Phe	Glu	Glu	Glu 125	Glu	Val	Glu
40	Phe	Ile 130	Ser	Val	Pro	Val	Pro 135	Glu	Phe	Ala	Asp	Ser 140	Asp	Pro	Ala	Asn
	Ile 145	Val	His	Asp	Phe	Asn 150	Lys	Lys	Leu	Thr	Ala 155	Tyr	Leu	Asp		Asn 160
45	Leu	Asp	Lys	Cys	Туг 165	Val	Ile	Pro	Leu	Asn 170	Thr	Ser	Ile	Val	Met 175	Pro
50	Pro	Arg	Asn	Leu 180	Leu	Glu	Leu	Leu	Ile 185	Asn	Ile	Lys	Ala	Gly 190	Thr	Tyr
	Leu	Pro	Gln 195	Ser	Tyr	Leu	Ile	His 200	Glu	His	Met	Val	Ile 205	Thr	Asp	Arg
55	Ile	Glu 210	Asn	Ile	Asp	His	Leu 215	Gly	Phe	Phe	Ile	Тут 220	Arg	Leu	Cys	His
	Asp 225	Lys	Glu	Thr	Tyr	Lys 230	Leu	Gln	Arg	Arg	Glu 235	Thr	Ile	Lys	Gly	Ile 240

Gln Lys Arg Glu Ala Ser Asn Cys Phe Ala Ile Arg His Phe Glu Asn

WO 98/42738 PCT/US98/05311

					245					250					255	
5	Lys	Phe	Ala	Val 260	Glu	Thr	Leu	Ile	Cys 265	Ser	Xaa					
10	(2)			SEQUI	ENCE A) Li	SEQ CHAI ENGTI YPE:	RACTI H: 3	ERIST 15 ar	TICS:		ds					
15	Met 1			SEQU	D) TY JENCI	OPOLA E DES	OGY: SCRI	line PTION	ear N: SI					Thr	Ala 15	Phe
20		Leu	Ser	Lys 20		Thr	Glu	Lys	Lys 25		Arg	Val	His	His 30	_	Pro
	Gln	Leu	Ser 35	Asp	Lys	Val	His	Asn 40	Asp	Ala	Gln	Ser	Phe 45	Asp	Tyr	Asp
25	His	Asp 50	Ala	Phe	Leu	Gly	Ala 55	Glu	Glu	Ala	Lys	Thr 60	Phe	Asp	Gln	Leu
30	Thr 65	Pro	Glu	Glu	Ser	Lys 70	Glu	Arg	Leu	Gly	Lys 75	Ile	Val	Ser	Lys	Ile 80
30	Asp	Gly	Asp	Lys	Asp 85	Gly	Phe	Val	Thr	Val 90	Asp	Glu	Leu	Lys	Asp 95	Trp
35	Ile	Lys	Phe	Ala 100	Gln	Lys	Arg	Trp	Ile 105	Tyr	Glu	Asp	Val	Glu 110	Arg	Gln
	Trp	Lys	Gly 115	His	Asp	Leu	Asn	Glu 120	Asp	Gly	Leu	Val	Ser 125	Trp	Glu	Glu
40	Tyr	Lys 130		Ala	Thr	Tyr	Gly 135	Tyr	Val	Leu	Asp	Asp 140	Pro	Asp	Pro	Asp
45	Asp 145	Gly	Phe	Asn	Tyr	Lys 150	Gln	Met	Met	Val	Arg 155	Asp	Glu	Arg	Arg	Phe 160
	Lys	Met	Ala	Asp	Lys 165	Asp	Gly	Asp	Leu	Ile 170	Ala	Thr	Lys	Glu	Glu 175	Phe
50	Thr	Ala	Phe	Leu 180		Pro	Glu	Glu	Tyr 185	qaA	Tyr	Met	Lys	Asp 190	Ile	Val
	Val	Gln	Glu 195		Met	Glu	Asp	Ile 200		Lys	Asn	Ala	Asp 205	Gly	Phe	Ile
55	Asp	Leu 210		Glu	Tyr	Ile	Gly 215		Met	Tyr	Ser	His 220		Gly	Asn	Thr
60	Asp 225		Pro	Glu	Trp	Val 230		Thr	Glu	Arg	Glu 235		Phe	Val	Glu	Phe 240

	Arg	Asp	Lys	Asn	Arg 245	Asp	Gly	Lys	Met	Asp 250	Lys	Glu	Glu	Thr	Lys 255	Asp
5	Trp	Ile	Leu	Pro 260	Ser	Asp	Tyr	Asp	His 265	Ala	Glu	Ala	Glu	Ala 270	Arg	His
	Leu	Va1	Тут 275	Glu	Ser	Asp	Gln	Asn 280	Lys	Asp	Gly	Lys	Leu 285	Thr	Lys	Glu
10	Glu	11e 290	Val	Asp	Lys	Tyr	As p 29 5	Leu	Phe	Val	Gly	Ser 300	Gln	Ala	Thr	Asp
15	Phe 305	Gly	Glu	Ala	Leu	Val 310	Arg	His	Asp	Glu	Phe 315					
20	(2)	INF	ORMA	SEQU (CHA ENGT YPE:	RACT H: 2	ERIS 07 a no a	TICS mino cid		ds					
25	36 -1-	7 1		SEQ	UENC	E DE	SCRI	PTIO	N: S	_				•	•	•
	Met 1		Asp	Ala	Val 5	Leu	lie	Leu	Leu	Leu 10	IIe	Pro	Leu	Lys	Asp 15	Lys
30	Leu	Val	Asp	Pro 20	Ile	Leu	Arg	Arg	His 25	Gly	Leu	Leu	Pro	Ser 30	Ser	Leu
	Lys	Arg	Ile 35		Val	Gly	Met	Phe 40	Phe	Val	Met	Cys	Ser 45	Ala	Phe	Ala
35	Ala	Gly 50		Leu	Glu	Ser	Lys 55		Leu	Asn	Leu	Val 60	_	Glu	Lys	Thr
40	Ile 65		Gln	Thr	Ile	Gly 70		Val	Val	Tyr	His 75	Ala	Ala	Asp	Leu	Ser 80
	Leu	Trp	Trp	Gln	Val 85		Gln	Тут	Leu	Leu 90		Gly	Ile	Ser	Glu 95	Ile
45	Phe	Ala	ser	100		Gly	Leu	Glu	Phe 105		Tyr	Ser	Ala	Ala 110	Pro	Lys
	Ser	Met	Gln 115		Ala	Ile	Met	Gly 120		Phe	Phe	Phe	Phe 125		Gly	Val
50	Gly	7 Ser 130		val	. Gly	Ser	Gly 135		Leu	Ala	Leu	Val 140		Ile	Lys	Ala
55	11e 149		Tr	Met	: Ser	Ser 150		Thr	Asp	Phe	Gly 155		Ile	. Asn	Gly	Cys 160
JJ	Туз	c Lev	ı Asr	ту:	тут 165		Phe	e Leu	ı Lev	170		Ile	Gln	Gly	Ala 175	Thr
60	Let	ı Lei	u Let	ı Phe		ılle	: Ile	e Sei	. Va]	_	Туг	Asp	His	His		Asp

	His	Gln	Arg 195	Ser	Arg	Ala	Asn	Gly 200	Val	Pro	Thr	Ser	Arg 205	Arg	Ala	
5																
	(2)	INF	ORMA!	rion	FOR	SEQ	ID 1	NO: 2	206:							
10				(A) L B) T D) T	ENGT YPE : OPOL	H: 1 ami OGY:	96 a no a lin		aci		: 20	6:			
15	Met 1	Arg	Ser	Arg	Ile 5	Arg	Glu	Phe	Asp	Ser 10	Ser	Thr	Leu	Asn	Glu 15	Ser
20	Val	Arg	Asn	Thr 20	Ile	Met	Arg	Asp	Leu 25	Lys	Ala	Val	Gly	Lys 30	Lys	Phe
	Met	His	Val 35	Leu	Tyr	Pro	Arg	Lys 40	Ser	Asn	Thr	Leu	Leu 45	Arg	Asp	Trp
25	Asp	Leu 50	Trp	Gly	Pro	Leu	Ile 55	Leu	Cys	Val	Thr	L eu 60	Ala	Leu	Met	Leu
	Gln 65	Arg	Asp	Ser	Ala	Asp 70	Ser	Glu	Lys	Asp	Gly 75	Gly	Pro	Gln	Phe	Ala 80
30	Glu	Val	Phe	Val	Ile 85	Val	Trp	Phe	Gly	Ala 90	Val	Thr	Ile	Thr	Leu 95	Asn
35	Ser	Lys	Leu	Leu 100	Gly	Gly	Asn	Ile	Ser 105	Phe	Phe	Gln	Ser	Leu 110	Cys	Val
	Leu	Gly	Туг 115	Cys	Ile	Leu	Pro	Leu 120	Thr	Val	Ala	Met	Leu 125	Ile	Cys	Arg
40	Leu	Val 130	Leu	Leu	Ala	Asp	Pro 135	Gly	Pro	Val	Asn	Phe 140	Met	Val	Arg	Leu
	Phe 145	Val	Val	Ile	Val	Met 150	Phe	Ala	Trp	Ser	Ile 155	Val	Ala	Ser	Thr	Ala 160
45	Phe	Leu	Ala	Asp	Ser 165	Gln	Pro	Pro	Asn	Arg 170	Arg	Ala	Leu	Ala	Val 175	Tyr
50	Pro	Val	Phe	Leu 180	Phe	Tyr	Phe	Val	Ile 185	Ser	Trp	Met	Ile	Leu 190	Thr	Phe
	Thr	Pro	Gln 195	Xaa												
55	(2)	INF	ORMA'	TION	FOR	SEQ	ID 1	NO:	207:							
			(5)	SEOU	שרוני	CHD.	R∆C∙T	ERIC	PTCS							

(A) LENGTH: 331 amino acids

(B) TYPE: amino acid

(D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 207:

5	Met 1	Ala	Lys	Asp	Gln 5	Ala	Val	Glu	Asn	Ile 10	Leu	Val	Ser	Pro	Val 15	Val
	Val	Ala	Ser	Ser 20	Leu	Gly	Leu	Val	Ser 25	Leu	Gly	Gly	Lys	Ala 30	Thr	Thr
10	Ala	Ser	Gln 35	Ala	Lys	Ala	Val	Leu 40	Ser	Ala	Glu	Gln	Leu 45	Arg	Asp	Glu
15	Glu	Val 50	His	Ala	Gly	Leu	Gly 55	Glu	Leu	Leu	Arg	Ser 60	Leu	Ser	Asn	Ser
	Thr 65	Ala	Arg	Asn	Val	Thr 70	Trp	Lys	Leu	Gly	Ser 75	Arg	Leu	Tyr	Gly	Pro 80
20					85					90		Ser			95	
	Tyr	Asn	Cys	Glu 100	His	Ser	Lys	Ile	Asn 105	Phe	Arg	Asp	Lys	Arg 110	Ser	Ala
25			115					120				Thr	125			
30		130					135					Gly 140				
	145					150					155	Lys				160
35					165					170		Ser			175	
40				180					185			Tyr		190		
40			195					200				Ala	205			
45		210					215					Pro 220				
	225					230					235	Trp				240
50					245					250		Gly			255	
55				260					265			Gly		270		
55			275					280				Ser 	285			
6 0	Leu	Tyr 290	Leu	Ala	Ser	Val	Phe 295	His	Ala	Thr	Ala	Phe 300	Glu	Leu	Asp	Thr

	Asp 305	Gly	Asn	Pro	Leu	Thr 310	Arg	Ile	Thr	Gly	Gly 315	Gly	Val	Arg	Thr	Gln 320
5	Val	Phe	Tyr	Ala	Asp 325	His	Pro	Phe	Ile	Ser 330	Xaa					
10	(2)			(ENCE A) L B) T	CHAI ENGT YPE:	RACT H: 5	ERIS 8 am no a	rICS ino cid		s					
15			(xi)	SEQ				lin Prio		EQ I	D NO	: 20	B:			
	Met 1	Cys	Met	Gln	Leu 5	Phe	Gly	Phe	Leu	Ala 10	Phe	Met	Ile	Phe	Met 15	Cys
20	Trp	Val	Gly	Asp 20	Val	Tyr	Pro	Val	Туг 25	Gln	Pro	Val	Gly	Pro 30	Lys	Gln
25	Tyr	Pro	Tyr 35	Asn	Asn	Leu	Tyr	Leu 40	Glu	Arg	Gly	Gly	Asp 45	Pro	Ser	Lys
	Glu	Pro 50	Glu	Arg	Val	Val	His 55	Tyr	Glu	Ile						
30	(2)	INFO	ORMA!	rion	FOR	SEQ	ID I	NO: 2	209:							
35				(A) L B) T D) T	ENGT YPE: OPOL	H: 3 ami OGY:	92 a no a lin	mino cid ear	aci		: 20:	9:			
40	Met 1	Asp	Ala	Leu	Val 5	Glu	Asp	Asp	Ile	Cys 10	Ile	Leu	Asn	His	Glu 15	Lys
	Ala	His	Lys	Arg 20	Asp	Thr	Val	Thr	Pro 25	Val	Ser	Ile	Тут	Ser 30	Gly	Asp
45	Glu	Ser	Val 35	Ala	Ser	His	Phe	Ala 40	Leu	Val	Thr	Ala	Туг 45	Glu	Asp	Ile
50	Lys	Lys 50		Leu	Lys	Asp	Ser 55	Glu	Lys	Glu	Asn	Ser 60	Leu	Leu	Lys	Lys
	Arg 65	Ile	Arg	Phe	Leu	Glu 70	Glu	Lys	Leu	Ile	Ala 75	Arg	Phe	Glu	Glu	Glu 80
55	Thr	Ser	Ser	Val	Gly 85	Arg	Glu	Gln	Val	Asn 90	Lys	Ala	Тут	His	Ala 95	Tyr
	Arg	Glu	Val	Cys 100	Ile	Asp	Arg	Asp	Asn 105	Leu	Lys	Ser	Lys	Leu 110	Asp	Lys
60	Met	Asn	Lys	Asp	Asn	Ser	Glu	Ser	Leu	Lys	Val	Leu	Asn	Glu	Gln	Leu

			115					120					125			
5	Gln	Ser 130	Lys	Glu	Val	Glu	Leu 135	Leu	Gln	Leu	Arg	Thr 140	Glu	Val	Glu	Thr
3	Gln 145	Gln	Val	Met	Arg	Asn 150	Leu	Asn	Pro	Pro	Ser 155	Ser	Asn	Trp	Glu	Val 160
10	Glu	Lys	Leu	Ser	Суs 165	Asp	Leu	Lys	Ile	His 170	Gly	Leu	Glu	Gln	Glu 175	Leu
	Glu	Leu	Met	Arg 180	Lys	Glu	Cys	Ser	Asp 185	Leu	Lys	Ile	Glu	Leu 190	Gln	Lys
15	Ala	Lys	Gln 195	Thr	Asp	Pro	Tyr	Gln 200	Glu	Asp	Asn	Leu	Lys 205	Ser	Arg	Asp
20	Leu	Gln 210	Lys	Leu	Ser	Ile	Ser 215	Ser	Asp	Asn	Met	Gln 220	His	Ala	Тут	Trp
	Glu 225	Leu	Lys	Arg	Glu	Met 230	Ser	Asn	Leu	His	Leu 235	Val	Thr	Gln	Val	G1n 240
25	Ala	Glu	Leu	Leu	Arg 245	Lys	Leu	Lys	Thr	Ser 250	Thr	Ala	Ile	Lys	Lys 255	Ala
	Cys	Ala	Pro	Val 260	Gly	Cys	Ser	Glu	Asp 265	Leu	Gly	Arg	Asp	Ser 270	Thr	Lys
30	Leu	His	Leu 275	Met	Asn	Phe	Thr	Ala 280	Thr	Tyr	Thr	Arg	His 285	Pro	Pro	Leu
35	Leu	Pro 290	Asn	Gly	Lys	Ala	Leu 295	Cys	His	Thr	Thr	Ser 300	Ser	Pro	Leu	Pro
	Gly 305		Val	Lys	Val	Leu 310		Glu	Lys	Ala	Ile 315	Leu	Gln	Ser	Trp	Thr 320
40	Asp	Asn	Glu	Arg	Ser 325	Ile	Pro	Asn	Asp	Gly 330	Thr	Cys	Phe	Gln	Glu 335	His
	Ser	Ser	Туr	Gly 340	Arg	Asn	Ser	Leu	Glu 345	Asp	Asn	Ser	Trp	Val 350	Phe	Pro
45	Ser	Pro	Pro 355		Ser	Ser	Glu	Thr 360		Phe	Gly	Glu	Thr 365	Lys	Thr	Lys
50	Thr	Leu 370	Pro	Leu	Pro	Asn	Leu 375		Pro	Leu	His	Туr 380		Asp	Gln	His
50	Asn 385		Asn	Cys	Leu	Тут 390	_	Asn								
55	(2)	INF	ORMA	TION	FOR	SEQ	ID	NO:	210:							
			(5)	SEO!	IENICE	r Chr	ייסמקו	FDTC	TTCS					,		

(A) LENGTH: 27 amino acids

(B) TYPE: amino acid

325

```
(D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 210:
      Met His His His Thr Gln Leu Met Phe Ile Tyr Leu Phe Ile Tyr Leu
 5
                                         10
      Phe Ile Leu Gly Val Phe Phe Phe Phe Xaa
                   20
10
      (2) INFORMATION FOR SEQ ID NO: 211:
             (i) SEQUENCE CHARACTERISTICS:
15
                    (A) LENGTH: 39 amino acids
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 211:
20
      Met Asn Cys Ile Leu Leu Leu Tyr Leu Leu Ile Pro Thr Ile Ser Ile
                                          10
      Ser Val Val Pro Tyr Val Ala Leu Asn Ile Lys Tyr Ile Lys Glu Cys
                                      25
25
      Thr Glu Asn Ser Phe Tyr Xaa
               35
30
      (2) INFORMATION FOR SEQ ID NO: 212:
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 71 amino acids
35
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 212:
      Met Leu Leu His Leu Thr Ala Ala Phe Leu Gln Arg Ala Gln Phe Ser
40
      Thr Tyr Phe Pro Gly Tyr Phe Asp Gly Gln Tyr Trp Leu Trp Trp Val
45
      Phe Leu Val Leu Gly Phe Leu Leu Phe Leu Arg Gly Phe Ile Asn Tyr
      Ala Lys Val Arg Lys Met Pro Glu Thr Phe Ser Asn Leu Pro Arg Thr
50
      Arg Val Leu Phe Ile Tyr Xaa
55
      (2) INFORMATION FOR SEQ ID NO: 213:
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 83 amino acids
```

(B) TYPE: amino acid

326

			(xi)			OPOL			-	EQ I	D NO	: 21	3:			
5	Met 1	Leu	Thr	Phe	Phe 5	Met	Ala	Phe	Leu	Phe 10	Asn	Trp	Ile	Gly	Phe 15	Phe
	Leu	Ser	Phe	Суs 20	Leu	Thr	Thr	Ser	Ala 25	Ala	Gly	Arg	Tyr	Gly 30	Ala	Ile
10	Ser	Gly	Phe 35	Gly	Leu	Ser	Leu	Ile 40	Lys	Trp	Ile	Leu	Ile 45	Val	Arg	Phe
15	Ser	Thr 50	Tyr	Phe	Pro	Ala	Phe 55	Met	Asn	Ser	Leu	Ser 60	Arg	Ser	Lys	Arg
	Thr 65	Pro	Ala	Gly	Ser	Glu 70	Ser	Arg	Cys	Arg	Thr 75	Gln	Arg	Asn	Asn	His 80
20	Leu	Leu	Xaa													
25	(2)	INF	ORMA!	rion	FOR	SEQ	ID I	1O: 2	214:							
2.5			(i)		A) L		H: 8	1 am	ino	: acid	s					
30			(xi)	(D) T	OPOL	OGY:	lin	ear	ρή TI	n No	. 21	۸.			
	••															
	met 1	Ser	Lys	Arg	Ser 5	Ala	Ser	Phe	He		Leu	Pro	Leu	Leu	Phe 15	Leu
35										10					13	
	Lys	Gly	Ser	Phe 20	Ala	Lys	Leu	Asn	Ala 25		Ile	Ser	Asp	Cys 30		Glu
40			Ser Tyr 35	20					25	Arg				30	Leu	
40	Glu	Arg	Tyr	20 Cys	His	Asn	Leu	Trp 40	25 Met	Arg Val	Phe Thr	Gln	Gly 45	30 Cys	Leu Val	Ile
40 45	Glu Thr	Arg Glu 50 Asp	Tyr 35	20 Cys His	His Leu	Asn Ser	Leu Arg 55	Trp 40 Met	25 Met Ser	Arg Val Lys	Phe Thr	Gln Leu 60	Gly 45 Ser	30 Cys Ser	Leu Val Leu	Ile Cys
	Glu Thr Tyr	Arg Glu 50 Asp	Tyr 35 Leu	20 Cys His	His Leu	Asn Ser Asn	Leu Arg 55	Trp 40 Met	25 Met Ser	Arg Val Lys	Phe Thr	Gln Leu 60	Gly 45 Ser	30 Cys Ser	Leu Val Leu	Ile Cys
	Glu Thr Tyr 65	Arg Glu 50 Asp	Tyr 35 Leu	20 Cys His	His Leu	Asn Ser Asn	Leu Arg 55	Trp 40 Met	25 Met Ser	Arg Val Lys	Phe Thr	Gln Leu 60	Gly 45 Ser	30 Cys Ser	Leu Val Leu	Ile Cys
45	Glu Thr Tyr 65 Thr	Arg Glu 50 Asp	Tyr 35 Leu	20 Cys His Val	His Leu	Asn Ser Asn 70	Leu Arg 55 Val	Trp 40 Met	25 Met Ser Ile	Arg Val Lys	Phe Thr	Gln Leu 60	Gly 45 Ser	30 Cys Ser	Leu Val Leu	Ile Cys
45	Glu Thr Tyr 65 Thr	Arg Glu 50 Asp	Tyr 35 Leu Phe	20 Cys His Val SEQU (((His Leu Ile FOR ENCE ENCE A) L	Asn Ser Asn 70	Leu Arg 55 Val ID! RACT:	Trp 40 Met Tyr VO: 2	25 Met Ser Ile 215:	Arg Val Lys	Phe Thr Phe 75	Gln Leu 60	Gly 45 Ser	30 Cys Ser	Leu Val Leu	Ile Cys

Met Cys Ser Leu Phe Glu Ser Arg Phe Phe Cys Phe Val Leu Phe Ser

	1				5					10					15	
5	Glu	Lys	Ile	Ile 20	Gln	Leu	Cys	Ala	Ser 25	Ile	Ala	Phe	Leu	Cys 30	Phe	Val
3	Lys	His	Val 35	Pro	Trp	Pro	Lys	Trp 40	Lys	Arg	Lys	Cys	Leu 4 5	Ile	Asn	Ala
10	Phe															
15	(2)		ORMAT													
			(i) :	~ (. (:	A) L B) T	ENGT YPE :	H: 2 ami	03 a no a	mino cid		ds					
20			(xi)	-	D) TY UENCI					EQ II	ON C	: 21	6:			
	Met 1	Thr	Leu	Arg	Pro 5	Ser	Leu	Leu	Pro	Leu 10	His	Leu	Leu	Leu	Leu 15	Leu
25	Leu	Leu	Ser	Ala 20	Alâ	Val	Cys	Arg	Ala 25	Glu	Ala	Gly	Leu	Glu 30	Thr	Gl u
30	Ser	Pro	Val 35	Arg	Thr	Leu	Gln	Val 40	Glu	Thr	Leu	Val	Glu 45	Pro	Pro	Gl u
30	Pro	Cys 50	Ala	Glu	Pro	Ala	Ala 55	Phe	Gly	Asp	Thr	Leu 60	His	Ile	His	Tyr
35	Thr 65	Gly	Ser	Leu	Val	Asp 70	Gly	Arg	Ile	Ile	Asp 75	Thr	Ser	Leu	Thr	Arg 80
	Asp	Pro	Leu	Val	Ile 85	Glu	Leu	Gly	Gln	Lys 90	Gln	Val	Ile	Pro	Gly 95	Leu
40	Glu	Gln	Ser	Leu 100	Leu	Asp	Met	Суз	Val 105	Gly	Glu	Lys	Arg	Arg 110	Ala	Ile
45	Ile	Pro	Ser 115	His	Leu	Ala	Tyr	Gly 120	Lys	Arg	Gly	Phe	Pro 125	Pro	Ser	Val
73	Pro	Ala 130	Asp	Ala	Val	Val	Gln 135	Tyr	Asp	Val	Glu	Leu 140	Ile	Ala	Leu	Ile
50	Arg 145		Asn	Tyr	Trp	Leu 150	Lys	Leu	Val	Lys	Gly 155	Ile	Leu	Pro	Leu	Val 160
	Gly	Met	Ala	Met	Val 165	Pro	Pro	Ser	Trp	Ala 170	Ser	Leu	Gly	Ile	Thr 175	Tyr
55	Thr	Glu	Arg	Pro 180	Ile	Asp	Pro	Lys	Ser 185	Pro	Lys	Arg	Ser	Ser 190	Arg	Lys
60	Arg	Asn	Glu 195	Thr	Arg	Ala	Lys	Arg 200	Asn	Asn	Lys					

	(2)	INFO	DRMAT	'TON	FOR	SEQ	ID N	Ю: 2	17:							
5			(i) S	() ()		engti CPE :	i: 19	86 ar	mino cid		is					
10			(xi)		•					Q II	ON C	: 217	7:			
10	Met 1	Lys	Thr	Leu	Met 5	Thr	Ile	Cys	Pro	Gly 10	Thr	Val	Leu	Leu	Val 15	Phe
15	Ser	Ile	Ser	Leu 20	Trp	Ile	Ile	Ala	Ala 25	Ттр	Thr	Val	Arg	Val 30	Cys	Glu
	Ser	Pro	Glu 35	Ser	Pro	Ala	Gln	Pro 40	Ser	Gly	Ser	Ser	Leu 45	Pro	Ala	Trp
20	Tyr	His 50	Asp	Gln	Gln	Asp	Val 55	Thr	Ser	Asn	Phe	Leu 60	Gly	Ala	Met	Trp
25	Leu 65	Ile	Ser	Ile	Thr	Phe 70	Leu	Ser	Ile	Gly	Тут 75	Gly	Asp	Met	Val	Pro 80
	His	Thr	Tyr	Суѕ	Gly 85	Lys	Gly	Val	Cys	Leu 90	Leu	Thr	Gly	Ile	Met 95	Gly
30	Ala	Gly	Cys	Thr 100	Ala	Leu	Val	Val	Ala 105	Val	Val	Ala	Arg	Lys 110	Leu	Glu
	Leu	Thr	Lys 115	Ala	Glu	Lys	His	Val 120	His	Xaa	Phe	Met	Met 125	Asp	Thr	Gln
35	Leu	Thr 130	Lys	Arg	Ile	Lys	A sn 135	Xaa	Ala	Ala	Asn	Val 140	Leu	Xaa	Glu	Thr
40	Trp 145		Ile	Tyr	Lys	His 150	Thr	Lys	Leu	Leu	Lys 155	Lys	Ile	Asp	His	Ala 160
	Lys	Val	Arg	Asn	Thr 165	Arg	Gly	Ser	Ser	Ser 170	-	Tyr	Pro	Pro	Val 175	Glu
45	Glu	Arg	Gln	Asp 180	_	Thr	Glu	Glu	Ala 185	Glu						
50	(2)	INF	ORMA													
			(í)	_		ENG!	TH: 9	90 ar	TICS nino ncid		is					
55			(xi)		(D) 1				near N: S	EQ I	D NO): 21	18:			
		Lys I	s Phe	e Leu	Ala 5		Leu	Val	Leu	Leu 10		Val	. Ser	Ile	Phe 15	
60	Va.	l Sei	r Ala	Glr	ı Asr	Pro	Thr	Thr	Ala	Ala	Pro	Ala	Asp	Thr	Tyr	Pro

				20					25					30		
5	Ala	Thr	Gly 35	Pro	Ala	Asp	Asp	Glu 40	Ala	Pro	Asp	Ala	Glu 45	Thr	Thr	Ala
3	Ala	Ala 50	Thr	Thr	Ala	Thr	Thr 55	Ala	Ala	Pro	Thr	Thr 60	Ala	Thr	Thr	Ala
10	Ala 65		Thr	Thr	Ala	Arg 70	Lys	Asp	Ile	Pro	Val 75	Leu	Pro	Lys	Trp	V al
	Gly	Asp	Leu	Pro	Asn 85	Gly	Arg	Val	Cys	Pro 90						
15																
	(2)	INF	ORMA!	rion	FOR	SEQ	ID 1	VO: :	219:							
20	-	-	(i) : (xi)	(A) L B) T D) T	ENGT YPE : OPOL	H: 1 ami OGY:	39 a no a lin	ear	aci		: 21	9:			
25	Met 1		Ser											Val	Leu 15	Ser
30	Phe	Val	Phe	Gly 20	Cys	Asn	Val	Leu	Arg 25	Ile	Leu	Leu	Pro	Ser 30	Phe	Ser
50	Ser	Phe	Met 35	Ser	Arg	Val	Leu	Gln 40	Lys	Asp	Ala	Glu	Gln 45	Glu	Ser	Gln
35	Met	Arg 50	Ala	Glu	Ile	Gln	Asp 55	Met	Lys	Gln	G1u	Leu 60	Ser	Thr	Val	Asn
	Met 65	Met	Asp	Glu	Phe	Ala 70	Arg	Tyr	Ala	Arg	Leu 75	Glu	Arg	Lys	Ile	Asn 80
40	Lys	Met	Thr	Asp	Lys 85	Leu	Lys	Thr	His	Val 90	Lys	Ala	Arg	Thr	Ala 95	Gln
45			Lys	100					105					110		
	Ala	Ala	Leu 115	Met	Ile	Ser	Leu	Ile 120	Trp	Lys	Tyr	Tyr	Ser 125	Val	Pro	Val
50	Ala	Val 130	Val	Pro	Ser	Lys	Trp 135	Ile	Thr	Leu	Xaa					
55	(2)		ORMAT	SEQUI ()	ENCE A) Li B) T	CHAI ENGT YPE:	RACTI H: 4	ERIS 8 am no a	FICS ino a		s					
60			(xi)		D) TY UENCE					90 II	O NO	: 220):			

	Met 1	Ser	Ser	Ala	AIa 5	Ala	Asp	HIS	Trp	10	Trp	Leu	Leu	Val	Leu 15	Ser
5	Phe	Val	Phe	Gly 20	Cys	Asn	Val	Leu	Arg 25	Ile	Leu	Leu	Pro	Ser 30	Phe	Ser
10	Ser	Phe	Met 35	Ser	Arg	Val	Leu	Gln 40	Lys	Asp	Ala	Asp	Arg 45	Ser	His	Arg
15	(2)	INF	ORMA'	rion	FOR	SEQ	ID 1	NO: 2	221:							
20				(A) L B) T D) T	CHAI ENGT YPE: YOPOL E DE	H: 7 ami OGY:	0 am no a lin	ino cid ear	acid		: 22	1:			
25	Met 1	Thr	Ala	Pro	Leu 5	Pro	Pro	Leu	Ser	Gly 10	Leu	Ala	Leu	Phe	Leu 15	Ile
	Val	Phe	Phe	Ser 20		Gly	Val	Phe	Cys 25	Ile	Cys	His	Ser	His 30	Trp	Tyr
30	His	Thr	Leu 35		Gln	Met	Ala	Gly 40	Thr	Glu	Pro	Lys	Ala 45	Leu	Leu	Leu
35	Ser	Pro 50		Ala	Ala	Thr	Thr 55	Phe	Val	Thr	Val	Thr 60	His	Glu	Val	Trp
	Lys 65		Gln	Ala	Leu	Ala 70										
40	(2)	INF	ORMA	TION	FOR	SEQ	ID	NO:	222:							
45					(A) I (B) 7 (D) 1	E CHA LENGI TYPE: TOPOI CE DE	TH: 8 : ami :OGY:	33 am ino a : lir	nino ncid near	ació): 22	22:			
50	Met		: Cys	Ser	Val		Leu	Leu	Leu	Ile 10		Gly	Leu	Arg	Суs 15	Ser
	Gly	/ Val	l A rg	Pro 20	_	Leu	Val	Gly	Glu 25	_	His	Asn	Pro	Ser 30		Leu
55	Va.	L Cys	E Leu		ı Lev	ı Lys	Asp	Ser 40		Thr	Asn	Gln	Gly 45		Cys	Pro
60	Gly	/ Gly 5(Tr	Ser	Glu	Arg 55		Ile	Glu	Ser	Val		Ser	Asp	Asn

	Cys 65	Glu	Ala	Thr	Leu	Gly 70	Tyr	Arg	Asn	His	Ser 75	Leu	Pro	Ser	Asn	Tyr 80
5	Tyr	Asn	Ser													
10	(2)		ORMAT	SEQUI	ENCE	CHA	RACTI	NO: 2 ERIST 3 am	rics		s					
15			(xi)	(1	D) T	OPOL	OGY:	no a lin PTIO	ear	EQ II	O NO	: 22	3:			
	Met 1	Leu	Thr	Arg	Ser 5	Leu	Lys	Thr	Leu	Pro 10	Ser	Ala	Cys	Thr	Ala 15	Phe
20	Leu	Leu	Leu	Phe 20	Phe	Leu	Phe	Ser	Ser 25	Gly	Asp	Pro	Glu	Leu 30	Ser	Cys
25	Ser	Cys	Thr 35	Leu	Arg	Thr	Gln	Ser 40	Ser	Trp	Ser					
	(2)	INF	ORMA!	rion	FOR	SEQ	ID I	NO: 2	224:							
30			(i)	(A) L B) T	ENGT YPE:	H: 1 ami	ERIS 84 a no a lin	mino cid		ds					
35			(xi)					PTIO		EQ I	D NO	: 22	4 :			
	Met 1	Trp	Arg	Pro	Ser 5	Val	Leu	Leu	Leu	Leu 10	Leu	Leu	Leu	Arg	His 15	Gly
40	Ala	Gln	Gly	Lys 20	Pro	Ser	Pro	Asp	Ala 25	Gly	Pro	His	Gly	Gln 30	Gly	Arg
	Val	His	Gln 35		Ala			Ser 40	_	Ala	Pro	His	Asp 45	Asp	Ala	His
45	Gly	Asn 50	Phe	Gln	Tyr	Asp	His 55	Glu	Ala	Phe	Leu	Gly 60	Arg	Glu	Val	Ala
50	Lys 65	Glu	Phe	Asp	Gln	Leu 70	Thr	Pro	Glu	Glu	Ser 75	Gln	Ala	Arg	Leu	Gly 80
30	Arg	Ile	Val	Asp	Arg 85		Asp	Arg	Ala	Gly 90	Asp	Gly	Asp	Gly	Trp 95	Val
55	Ser	Leu	Ala	Glu 100	Leu	Arg	Ala	Trp	Ile 105	Ala	His	Thr	Gln	Gln 110	Arg	His
	Ile	Arg	Asp 115		Val	Ser	Ala	Ala 120	Trp	Asp	Thr	Tyr	Asp 125	Thr	Asp	Arg
60	Asp	Gly	Arg	Val	Gly	Trp	Glu	Glu	Leu	Arg	Asn	Xaa	Thr	Tyr	Gly	His

	130		135	140	
5	Xaa Xaa Pr	o Xaa Glu Glu 150	Phe His Asp	Val Glu Asp A 155	la Glu Thr Tyr 160
J	Lys Lys Me	t Leu Xaa Arg 165	-	Arg Phe Arg V 170	al Ala Asp Gln 175
10	Asp Gly As	p Ser Met Ala 180	Thr Arg		
15		TATION FOR SEQ			
20		(A) LENGT: (B) TYPE: (D) TOPOL	H: 71 amino a amino acid OGY: linear	acids	
20	(x)	i) sequence de:	SCRIPTION: SE	Q ID NO: 225:	
	Met Trp Le	eu Phe Ile Leu 5	Leu Ser Leu	Ala Leu Ile S 10	Ser Asp Ala Met 15
25	Val Met As	sp Glu Lys Val 20	Lys Arg Ser 25	Leu Cys Trp T	thr Arg Leu Leu 30
30		a Thr Thr Met	Pro Xaa Thr 40	Arg Ile Thr I	Pro Asn Thr Gly 45
30	Ala Glu Xa 50	aa Ile Ser Val	Xaa Thr Ala 55	Thr Ser Ser I	Pro Ser Pro Leu
35	Thr Ala Pr 65	co Ile Met Trp 70	Pro		
40		MATION FOR SEQ			
	_	(A) LENGI	H: 10 amino		
			amino acid OGY: linear		
45	(x.	i) SEQUENCE DE	SCRIPTION: S	EQ ID NO: 226	:
	1	al Phe Val Leu 5	Glu Ile Phe	Leu 10	
50					
	(2) INFOR	MATION FOR SEQ	ID NO: 227:		
55		(B) TYPE: (D) TOPOI	TH: 138 amino : amino acid LOGY: linear	acids	
		:i) SEQUENCE DE			
60	Met Ala V	al Ala Thr Leu	Ala Ser Glu	Thr Leu Pro	Leu Leu Ala Leu

	1				5					10					15	
5	Thr	Phe	Ile	Thr 20	Asp	Asn	Ser	Leu	Val 25	Ala	Ala	Gly	His	Asp 30	Cys	Phe
J	Pro	Val	Leu 35	Phe	Thr	Tyr	Asp	Ala 40	Ala	Ala	Gly	Met	Leu 45	Ser	Phe	Gly
10	Gly	Arg 50	Leu	Asp	Val	Pro	Lys 55	Gln	Ser	Ser	Gln	Arg 60	Gly	Leu	Thr	Ala
	Arg 65	Glu	Arg	Phe	Gln	Asn 70	Leu	Asp	Lys	Lys	Ala 75	Ser	Ser	Glu	Gly	Gly 80
15	Thr	Ala	Ala	Gly	Ala 85	Gly	Leu	Asp	Ser	Leu 90	His	Lys	Asn	Ser	Val 95	Ser
20	Gln	Ile	Ser	Val 100	Leu	Ser	Gly	Gly	Lys 105	Ala	Lys	Cys	Ser	Gln 110	Phe	Cys
	Thr	Thr	Gly 115	Met	Asp	Gly	Gly	Met 120	Ser	Ile	Trp	Asp	Val 125	Lys	Ser	Leu
25	Glu	Ser 130	Ala	Leu	Lys	Asp	Leu 135	Lys	Ile	Lys						
30	(2)	INF	ORMA'	rion	FOR	SEQ	ID I	NO: 2	228:							
			(i)	(A) L B) T	ENGT YPE:	RACT H: 2 ami	3 am no a	ino cid		s					
35			(xi)				OGY: SCRI			EQ I	D NO	: 22	8:			
	Leu 1		Ser	Leu	Ser 5	Thr	Ala	Pro	Ser	Ser 10	Ala	Leu	Pro	Thr	Leu 15	Gly
40	Ala	Arg	Arg	Thr 20	Arg	Ser	Lys			•						
45	(2)	INF	ORMA	TION	FOR	SEO	ID	NO: :	229:							
				SEQU	ENCE	СНА	RACT H: 1	ERIS	TICS		.ds					
50			(xi)	(B) 1	YPE:	ami .OGY : .SCRI	no a lin	cid ear			: 22	9:			
55	Met 1		Tyr	Phe	Ser 5	_	Leu	Leu	Val	Ile 10		Ala	Phe	Ala	Ala 15	Trp
JJ	Val	Ala	Leu	Ala 20		Gly	Leu	Gly	Val 25	Ala	Val	Tyr	Ala	Ala 30	Ala	Val
60	Leu	Leu	Gly 35		Gly	Cys	Ala	Thr		Leu	Val	Thr	Ser 45	Leu	Ala	Met

(2) INFORMATION FOR SEQ ID NO: 232:

	Thr	Ala 50	Asp	Leu	Ile	Gly	Pro 55	His	Thr	Asn	Ser	Gly 60	Ala	Phe	Val	Tyr
5	Gly 65	Ser	Met	Ser	Phe	Leu 70	Asp	Lys	Val	Ala	Asn 75	Gly	Leu	Ala	Val	Met 80
10	Ala	Ile	Gln	Ser	Leu 85	His	Pro	Суѕ	Pro	Ser 90	Glu	Leu	Cys	Суѕ	Arg 95	Ala
	Cys	Val	Ser	Phe 100	Tyr	His	Trp	Ala	Met 105	Val	Ala	Val	Thr	Gly 110	Gly	Val
15	Gly	Val	Ala 115	Ala	Ala	Leu	Cys	Le u 120	Cys	Ser	Leu	Leu	Leu 125	Trp	Pro	Thr
	Arg	Leu 130	Arg	Arg	Xaa											
20																
	(2)	INFO	ORMA	rion	FOR	SEQ	ID 1	vo: 2	230:							
25			(i) : (xi)	(; (;	A) L B) T D) T	ENGT YPE : OPOL	H: 2 ami OGY:	8 am no a lin	ino cid ear	acid		: 23	0:			
										_						
3(1)	C1	Y	Descri	mb	G1	*	o	T	B	-					_	
30	1		Pro		5					10			Met	Ile	Leu 15	Met
35	1		Pro		5					10			Met	Ile		Met
	1 Gln	Pro		Ile 20	5 Met	Ile	Ser	Met	Met 25	10			Met	Ile		Met
	1 Gln	Pro	Ile ORMAT	Ile 20 FION SEQUI	5 Met FOR ENCE	Ile SEQ CHAI ENGT	Ser ID 1 RACTHER 6 ami	Met NO: 2 ERIS 1 am no a	Met 25 231: TICS ino cid	10 Ser	As n		Met	Ile		Met
35 40	1 Gln	Pro	Ile ORMAT	Ile 20 FION SEQUI (FOR ENCE A) L B) T D) T	Ile SEQ CHAI	ID I RACTH H: 6 ami OGY:	Met NO: 2 ERIS 1 am no a lin	Met 25 231: TICS ino cid ear	10 Ser : acid	As n	Gly		Ile		Met
35	1 Gln (2)	Pro	Ile ORMAT	Ile 20 FION SEQUI ((SEQUI	FOR ENCE A) L B) T UENCE	SEQ CHAI ENGT YPE: OPOL E DE:	ID 1 RACTH: 6 ami OGY: SCRI	Met VO: 2 ERIST 1 am no a lin PTIO	Met 25 231: FICS ino cid ear N: S:	10 Ser : acid	Asn s	Gly: 23	1:		15	
35 40	1 Gln (2)	Pro	Ile ORMAT	Ile 20 Prion SEQUI	5 Met FOR ENCE ENCE B) T D) T UENCE Phe 5	Ile SEQ CHAI ENGT YPE: OPOL	ID 1 RACTH: 6 ami OGY: SCRI	Met WO: 2 ERIST 1 am no a lin PTIO	Met 25 231: TICS ino cid ear N: S:	10 Ser : acid	Asn S S Tyr	Gly : 23	1: Phe	Leu	15 Lys 15	Tyr
35 40 45	1 Gln (2) Met 1 Leu	Pro INFO	Ile DRMAT (i) : (xi) Gly	Ile 20 FION SEQUI (. () SEQUI Lys Leu 20	5 Met FOR ENCE ENCE ENC ENC ENC ENC ENC ENC ENC E	Ile SEQ CHAN YPE: OPOL E DE Met	ID 1 RACTH: 66 ami OGY: SCRI Lys Met	Met NO: 3 ERIST 1 am no a lin PTIOI Val	Met 25 231: TICS ino cid ear N: S: Gln Val 25	10 Ser : acid. Val 10 Asn	Asn Tyr Arg	Gly : 23 Arg	1: Phe Met	Leu Ser 30	Lys 15 Lys	Tyr

5	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 29 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 232:
10	Met Met Glu Arg Ser Met Met Ile Leu Leu Met Ala Ala Ser Met Thr 1 5 10 15 Met Thr Ser Thr Gln Leu Trp Ser Phe Cys Cys Val His 20 25
15	(2) INFORMATION FOR SEQ ID NO: 233:
20	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 18 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 233:
25	Met Trp Tyr Gln Leu Ala Lys Glu Glu Pro Gly Val Gly Ala Cys Ala 1 5 10 15
	Leu Asp
30	
	(2) INFORMATION FOR SEQ ID NO: 234:
35	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 234:
40	Leu Xaa 1
45	(2) INFORMATION FOR SEQ ID NO: 235:
50	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 72 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 235:
	Met Leu Ile Cys Arg Leu Val Leu Leu Ala Asp Pro Gly Pro Val Asn 1 5 10 15
55	Phe Met Val Arg Leu Phe Val Val Ile Val Met Phe Ala Trp Ser Ile 20 25 30
60	Val Ala Ser Thr Ala Phe Leu Ala Asp Ser Gln Pro Pro Asn Arg Arg 35 40 45

	Ala	Leu 50	Ala	Val	Tyr	Pro	Va1 55	Phe	Leu	Phe	Tyr	Phe 60	Val	Ile	Ser	Trp
5	Met 65	Ile	Leu	Thr	Phe	Thr 70	Pro	Gln				٠				
10	(2)	INFO	ORMA!	rion	FOR	SEQ	ID 1	NO: 2	36:							
15				(A) L B) T D) T	ENGT YPE : OPOL	H: 9 ami OGY:	6 am no a lin	ino a cid ear	acid		: 23	5:		÷	-
20	Met 1	Arg	Ser	Leu	Leu 5	Leu	Leu	Ser	Ala	Phe 10	Cys	Leu	Leu	Glu	Ala 15	Ala
20	Leu	Ala	Ala	Glu 20	Val	Lys	Lys	Pro	Ala 25	Ala	Ala	Ala	Ala	Pro 30	Gly	Thr
25	Ala	Glu	Lys 35	Leu	Ser	Pro	Lys	Ala 40	Ala	Thr	Leu	Ala	Glu 45	Arg	Xaa	Pro
	Ala	Trp 50	Pro	Ser	Ala	Cys	Thr 55	Arg	Pro	Trp	Pro	Arg 60	Thr	Arg	Gln	Trp
30	Arg 65		Ser	Trp	Суѕ	His 70	Pro	Trp	Trp	Trp	Pro 75	Arg	Arg	Trp	Gly	Ser 80
35	Cys	Arg	Trp	Ala	Ala 85	Arg	Arg	Pro	Arg	Arg 90	Arg	Arg	Pro	Arg	Gln 95	Cys
40	(2)	INF	orma	TION	FOR	SEQ	ID 1	NO: 2	237 :							
45				(A) L B) T D) T	ENGI YPE : OPOL	H: 1 ami OGY:	.43 a no a lin	mino cid ear	aci		: 23	7:			
50	Met 1		Ser	Leu	Leu 5	Leu	Leu	Ser	Ala	Phe 10		Leu	Leu	Glu	Ala 15	Ala
	Leu	Ala	Ala	Glu 20	Val	Lys	Lys	Pro	Ala 25	Ala	Ala	Ala	Ala	Pro 30	Gly	Thr
55	Ala	Glu	Lys 35	Leu	Ser	Pro	Lys	Ala 40	Ala	Thr	Leu	Ala	Glu 4 5	Arg	Lys	Arg
60	Pro	Gly 50		Gln	Leu	Val	Pro 55		His	G1y	Gln	Gly 60		Gly	Ser	Gly

	Glu 65	His	Pro	Gly	Val	Thr 70	Arg	Gly	Gly	Gly	Leu 75	Val	Ala	Gly	Ala	Arg 80
5	Val	Ala	Gly	Arg	Gln 85	Gly	Asp	His	Gly	V al 90	Ala	Gly	Gln	Gly	Ser 95	Ala
	Glu	Arg	Arg	Ala 100	Ala	Ala	Arg	Arg	Gly 105	Gly	Ala	Arg	Arg	Pro 110	Gly	Arg
10	Ala	Ala	Ala 115	Leu	Thr	Gln	Gln	Leu 120	His	Gly	Ala	Gln	Arg 125	Asp	Leu	Glu
15	Ala	Gly 130	Gln	Pro	Thr	Val	Arg 135	Thr	Gln	Leu	Ser	Glu 140	Leu	Arg	Xaa	
20	(2)	INF		•	ENCE A) L	CHA ENGT	RACT H: 1		TICS		ds					
25			(xi)	SEQ	D) T UENC	OPOL	OGY: SCRI	lin PTIO	ear N: S							
	Met 1	Arg	Ser	Leu	Leu 5	Leu	Leu	Ser	Ala	Phe 10	Cys	Leu	Leu	Glu	Ala 15	Ala
30	Leu	Ala	Ala	Glu 20		Lys	Lys	Pro	Ala 25		Ala	Ala	Ala	Pro 30	Gly	Thr
	Ala	Glu	Lys 35	Leu	Ser	Pro	Lys	Ala 40	Ala	Thr	Leu	Ala	Glu 45	Arg	Xaa	Arg
35	Pro	Gly 50		Gln	Leu	Val	Pro 55		His	Gly	Gln	Gly 60		Gly	Ser	Gly
40	Glu 65		Pro	Gly	Val	Thr 70		Gly	Gly	Gly	Leu 75		Ala	Gly	Ala	Arg 80
70	Val	Ala	Gly	Arg	Gln 85		Asp	His	Gly	Val 90		Gly	Gln	Gly	Ser 95	
45	Glu	Arg	Arg	Ala 100		Ala	Arg	Arg	Gly 105		Ala	Arg	Arg	Pro 110		Arg
	Ala	Ala	115	ı Lev	Thr	Gln	Glr	120		Gly	Ala	Gln	125		Leu	Glu
50	Ala	130	•	n Pro	Thr	· Val	135		Glr	Leu	ser	: Glu 140		Arg		
55	(2)	IN		MOITA												
			(i)	SEQ				TERI: 54 a			ds					

(B) TYPE: amino acid

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 239:

5	Asp 1	Pro	Glu	Ala	Ala 5	Asp	Ser	Gly	Glu	Pro 10	Gln	Asn	Lys	Arg	Thr 15	Pro
3	Asp	Leu	Pro	Glu 20	Glu	Glu	Tyr	Val	Lys 25	Glu	Glu	Ile	Gln	Glu 30	Asn	Glu
10	Glu	Ala	Val 35	Lys	Lys	Met	Leu	Val 40	Glu	Ala	Thr	Arg	Glu 45	Phe	Glu	Glu
	Val	Val 50	Val	Asp	Glu	Ser										
15																
	(2)	INF	ORMA'	TION	FOR	SEQ	ID I	NO: 2	240:							
20		-		· ((A) I (B) I (D) I	CHA ENGT YPE: OPOL	H: 6 ami OGY:	3 am no a lin	ino cid ear	acid		: 24	0: .			
25	Gln 1		Leu	Lys	Arg 5		Ala	Glu	Glu	Asp 10		Glu	Ala	Ala	Asp 15	Ser
20	Gly	Glu	Pro	Gln 20		Lys	Arg	Thr	Pro 25	Asp	Leu	Pro	Glu	Glu 30	Glu	Tyr
30	Val	Lys	35		ıle	Gln	Glu	Asn 40		Glu	Ala	Val	Lys 45		Met	Leu
35	Val	. Glu 50		Thr	Arg	, Glu	Phe 55		Glu	Val	Val	Val 60		Glu	Ser	
40	(2)	IN				R SEC										
					(A) (B) (D)	E CHA LENG TYPE TOPO:	TH: : am LOGY	113 a ino a : li	amino acid near	ac						
45						CE DI										
		s Ala	a Met	t Gli		s Sei 5	Sei	r Lei	ı Thr	Gli 10		s Sei	Tr	o Glr	ı Ser 15	Leu 5
50	Lys	s As	p Ar	g Ty: 2		u Lys	Hi:	s Le	1 Arg 25		y Gli	a Gli	ı His	s Lys 30		c Leu
55	Le	u Gl	y Asy 3	_	a Pr	o Vai	l Se:	r Pro	_	s Se	r Gl	n Ly:	s Leo 4	_	s Arg	J Lys
	Ala		u Gl [.] 0	u As	p Pr	o Gli	a Al 5	_	a Ası	Se	r Gl	y Gl		o Gli	n Ası	n Lys
60	Ar 6		r Pr	o As	p Le	u Pr		u Gl	u Gl	а Ту	r Va 7		s Gl	u Gl	u Ile	e Gln 80

	Glu Asn Glu Glu Ala Val Lys Lys Met Leu Val Glu Ala Thr Arg Glu 85 90 95
5	Phe Glu Glu Val Val Val Asp Glu Ser Pro Pro Asp Phe Glu Ile His 100 105 110
	Ile
10	
	(2) INFORMATION FOR SEQ ID NO: 242:
15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 148 amino acids (B) TYPE: amino acid
	(D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 242:
20	Leu Pro Ser Tyr Asp Glu Ala Glu Arg Thr Lys Ala Glu Ala Thr Ile 1 5 10 15
25	Pro Leu Val Pro Gly Arg Asp Glu Asp Phe Val Gly Arg Asp Phe 20 25 30
	Asp Asp Ala Asp Gln Leu Arg Ile Gly Asn Asp Gly Ile Phe Met Leu 35 40 45
30	Thr Phe Phe Met Ala Phe Leu Phe Asn Trp Ile Gly Phe Phe Leu Ser 50 55 60
25	Phe Cys Leu Thr Thr Ser Ala Ala Gly Arg Tyr Gly Ala Ile Ser Gly 65 70 75 80
35	Phe Gly Leu Ser Leu Ile Lys Trp Ile Leu Ile Val Arg Phe Ser Thr 85 90 95
40	Tyr Phe Pro Gly Tyr Phe Asp Gly Gln Tyr Trp Leu Trp Trp Val Phe 100 105 110
	Leu Val Leu Gly Phe Leu Leu Phe Leu Arg Gly Phe Ile Asn Tyr Ala 115 120 125
45	Lys Val Arg Lys Met Pro Glu Thr Phe Ser Asn Leu Pro Arg Thr Arg 130 135 140
50	Val Leu Phe Ile 145
	(2) INFORMATION FOR SEQ ID NO: 243:
55	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 24 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear
60	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 243:

	A1a (5					10					15	
5	Trp :	Ile :	Leu	Ile ' 20	Val .	Arg	Phe	Ser								
10	(2)			EQUE	NCE	CHAF	ACTE	RIST ami	ICS:	acids	3					
15		((xi)	SEQU			XGY: XCRIF			Ω II	NO:	244	l:			
	Met 1	Lys	His	Leu	Ser 5	Ala	Trp	Asn	Phe	Thr 10	Lys	Leu	Thr	Phe	Leu 15	Gln
20	Leu	Trp	Glu	Ile 20	Phe	Glu	Gly	Ser	Val 25	Glu	Asn	Cys	Gln	Thr 30	Leu	Thr
25	Ser	Tyr	Ser 35	Lys	Leu	Gln	Ile	Lys 40	Tyr	Thr	Phe	Ser	Arg 45	Gly	Ser	Thr
23	Phe	Тут 50	Ile													
30	(2)	INFO	RMAT	rion	FOR	SEQ	ID N	ю: 2	45:							
35			(i) :	(1	A) L: B) T D) T	ENGT: YPE: OPOL	H: 2	13 au no ao	mino	aci	ds					
			(xi)	SEQ	JENCI	E DE				EQ I	D NO	: 24	5:			
40	Phe 1			SEQ(SCRI	PTIO	1: S					Arg	Val 15	Glu
40	1	Ser	Ser	Asp	Phe 5	Arg	SCRII Thr	PTION Ser	N: Si Pro	Trp 10	Glu	Ser	Arg		15	Glu Arg
40 45	1 Ser	Ser Lys	Ser Ala	Asp Thr 20	Phe 5 Ser	Arg Ala	SCRII Thr Arg	PTION Ser Cys	Pro Gly 25	Trp 10 Leu	Glu Trp	Ser Gly	Ar g Ser	Gly 30	15 Pro	
45	Ser Arg	Ser Lys Arg	Ser Ala Pro 35	Asp Thr 20	Phe 5 Ser	Arg Ala Gly	Thr Arg Met	Ser Cys Phe	Pro Gly 25 Arg	Trp 10 Leu Gly	Glu Trp Leu	Ser Gly Ser	Arg Ser Ser 45	Gly 30 Trp	15 Pro Leu	Arg Gly
	Ser Arg Leu	Lys Arg Gln 50	Ser Ala Pro 35 Gln	Asp Thr 20 Ala	Phe 5 Ser Ser	Arg Ala Gly Ala	Thr Arg Met Gly 55	Ser Cys Phe 40	Pro Gly 25 Arg	Trp 10 Leu Gly	Glu Trp Leu Pro	Ser Gly Ser Asn 60	Arg Ser Ser 45 Gly	Gly 30 Trp	15 Pro Leu Ala	Arg Gly Pro
45	Ser Arg Leu Pro 65	Ser Lys Arg Gln 50	Ser Ala Pro 35 Gln Gln	Thr 20 Ala Pro	Phe 5 Ser Ser Val	Arg Ala Gly Ala Glu 70	Thr Arg Met Gly 55	Ser Cys Phe 40 Gly Val	Pro Gly 25 Arg Gly	Trp 10 Leu Gly Gln Glu	Glu Trp Leu Pro Ser 75	Ser Gly Ser Asn 60	Arg Ser Ser 45 Gly	Gly 30 Trp Asp	Pro Leu Ala Glu	Arg Gly Pro
45 50	Ser Arg Leu Pro 65	Lys Arg Gln 50 Glu	Ser Ala Pro 35 Gln Gln Ala	Asp Thr 20 Ala Pro Gly	Phe 5 Ser Ser Val Ser Asp 85	Arg Ala Gly Ala Glu 70	Thr Arg Met Gly 55 Thr	PTIOI Ser Cys Phe 40 Gly Val	N: SI Pro Gly 25 Arg Gly Ala	Trp 10 Leu Gly Gln His 90	Glu Trp Leu Pro Ser 75	Ser Gly Ser Asn 60 Ala	Arg Ser 45 Gly Glu Lys	Gly 30 Trp Asp Glu	Phe 95	Arg Gly Pro Leu 80

	115	1	120	125
5	Lys Ile Asp Gly 130	Ile Ile Asp I 135	Lys Thr Ile Ile Gly 140	Asp Phe Gln Lys
5	Glu Gln Lys Lys 145	Phe Val Glu (Glu Gln His Thr Lys 155	Lys Ser Glu Ala 160
10	Ala Val Pro Pro	Trp Val Asp 1	Thr Asn Asp Glu Glu 170	Thr Ile Gln Gln 175
	Gln Ile Leu Ala 180	Leu Ser Ala	Asp Lys Arg Asn Phe 185	Leu Arg Asp Pro 190
15	Pro Ala Gly Val 195		Phe Asp Phe Asp Gln 200	Met Tyr Pro Val 205
20	Ala Leu Val Met 210	Leu		
	(2) INFORMATION	FOR SEQ ID N	o: 246:	
25		ENCE CHARACTE (A) LENGTH: 49 (B) TYPE: amin (D) TOPOLOGY:	9 amino acids no acid	
30	(xi) SE(UENCE DESCRI	PTION: SEQ ID NO: 24 Lys Leu Val Lys Glv	
	1	5	10	15
35	Arg Asn Tyr Phe		Ser Leu Ile Lys Gli 25	n Ser Ala Gln Leu 30
	Thr Ala Leu Ala 35	Ala Gln Gln	Gln Ala Ala Gly Ly: 40	s Gly Gly Glu Glu 45
40	Gln			
45	(2) INFORMATIO	N FOR SEQ ID 1	NO: 247:	
	(i) SEQ		76 amino acids	
50	(xi) SE	(B) TYPE: ami (D) TOPOLOGY: QUENCE DESCRI		47:
55	1	5	Glu Phe Val Ser As	15
	-	n Gln Glu Asp 0	Leu Arg Lys Glu Me 25	t Glu Gln Leu Val 30
60	Leu Asp Lys Ly 35	s Gln Glu Glu	Thr Ala Val Leu Gl	u Glu Asp Ser Ala 45

	Asp	Trp 50	Glu	Lys	Glu	Leu	Gln 55	Gln	Glu	Leu	Gln	Glu 60	Tyr	Glu	Val	Val
5	Thr 65	Glu	Ser	Glu	Lys	Arg 70	Asp	Glu	Asn	Trp	Asp 75	Lys				
10	(2)	INFO	ORMA'	rion	FOR	SEQ	ID 1	VO: 2	248:							
			(i)		ENCE A) L						s					
15			(xi)	(B) T D) T UENC	OPOL	OGY:	lin	ear	EQ II	ON O	: 24	B:			
20	Ser 1	Pro	Trp	Glu	Ser 5	Arg	Arg	Val	Glu	Ser 10	Lys	Ala	Thr	Ser	Ala 15	Arg
	Cys	Gly	Leu	T rp 20	Gly	Ser	Gly	Pro	Arg 25	Arg	Arg	Pro	Ala	Ser 30	Gly	Met
25	Phe	Arg	Gly 35	Leu	Ser	Ser	Trp	Leu 40	Gly	Leu	Gln	Gln	Pro 45	Val	Ala	Gly
	Gly	Gly 50	Gln	Pro	Asn	Gly	Asp 55	Ala	Pro	Pro	Glu	Gln 60	Pro	Ser		
30																
	(2)	INF	ORMA!	rion	FOR	SEQ	ID I	NO: 2	249:							
35			(i)	(ENCE A) L B) T D) T	ENGT YPE:	H: 6 ami	5 am no a	ino cid		s					
			(xi)	SEQ	UENC	E DE	SCRI	PTIO	N: S	EQ I	D NO	: 24	9:			
40	Pro 1		Ala	Gly	Gly 5	Gly	Gln	Pro	Asn	Gly 10	Asp	Ala	Pro	Pro	Glu 15	Gln
45	Pro	Ser	Glu	Thr 20		Ala			Ala 25		Glu	Glu	Leu	Gln 30	Gln	Ala
	Gly	Asp	Gln 35	Glu	Leu	Leu	His	Gln 40	Ala	Lys	Asp	Phe	Gly 45	Asn	Tyr	Leu
50	Phe	Asn 50		Ala	Ser	Ala	Ala 55	Thr	Lys	Lys	Ile	Thr 60	Glu	Ser	Val	Ala
	Glu 65															
55																
	(2)	INF	ORMA	TION	FOR	SEQ	ID !	NO:	250:							
60			(i)	_	ENCE						s					

	(B) TYPE: amino acid
	(D) TOPOLOGY: linear
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 250:
5	Phe Gln Lys Glu Gln Lys Lys Phe Val Glu Glu Gln His Thr Lys Lys 1 5 10 15
10	Ser Glu Ala Ala Val Pro Pro Trp Val Asp Thr Asn Asp Glu Glu Thr 20 25 30
10 .	Ile Gln Gln Gln Leu Ala Leu Ser Ala Asp Lys Arg Asn Phe Leu 35 40 45
15	Arg Asp Pro Pro Ala Gly Val Gln Phe Asn Phe Asp Phe Asp Gln Met 50 55 60
	Tyr Pro Val Ala Leu Val Met Leu 65 70
20	-
	(2) INFORMATION FOR SEQ ID NO: 251:
25	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 28 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 251:
30	Pro Phe Ile Cys Val Ala Arg Asn Pro Val Ser Arg Asn Phe Ser Ser 1 5 10 15
35	Pro Ile Leu Ala Arg Lys Leu Cys Glu Gly Ala Ala 20 25
••	(2) INFORMATION FOR SEQ ID NO: 252:
40	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 33 amino acids(B) TYPE: amino acid(D) TOPOLOGY: linear
45	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 252:
	Lys Glu Asp Pro Ala Asn Thr Val Tyr Ser Thr Val Glu Ile Pro Lys 1 5 10 15
50	Lys Met Glu Asn Pro His Ser Leu Leu Thr Met Pro Asp Thr Pro Arg 20 25 30
	Leu
55	
	(2) INFORMATION FOR SEQ ID NO: 253:
	(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 227 amino acids

(B)	TYPE: amin	no	acid
(D)	TOPOLOGY:	li	near

(xi) SEQUENCE DESCRIPTION: SEO ID NO: 253

			(xi)	SEQ	UENC	E DE	SCRI	PTIO	N: S	EQ I	D NO	: 25	3:			
5	Ala 1	Ser	Ala	Val	Leu 5	Leu	Asp	Leu	Pro	Asn 10	Ser	Gly	Gly	Glu	Ala 15	Gln
10	Ala	Lys	Lys	Leu 20	Gly	Asn	Asn	Cys	Val 25	Phe	Ala	Pro	Ala	Asp 30	Val	Thr
	Ser	Glu	Lys 35	Asp	Val	Gln	Thr	Ala 40	Leu	Ala	Leu	Ala	Lys 45	Gly	Lys	Phe
15	Gly	Arg 50	Val	Asp	Val	Ala	Val 55	Asn	Cys	Ala	Gly	Ile 60	Ala	Val	Ala	Ser
	Lys 65	Thr	Tyr	Asn	Leu	L ys 70	Lys	Gly	Gln	Thr	His 75	Thr	Leu	Glu	qaA	Phe 80
20		Arg			85					90					95	
25		Val		100					105					110		
		Gly	115					120					125			
30		Gly 130					135					140				
35	145	Leu				150					155					160
טט		Ile			165					170					175	
40		Lys		180					185					190		
		Gly Pro	195					200					205			
45		210 Gln		Deu	naii	GIY	215	vai	116	Arg	Leu	220	GIY	Ala	11e	Arg
50	225		-10					·								
	(2)	INFO	ORMAT	TION	FOR	SEQ	ID N	¥O: 2	254 :							

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 29 amino acids
- (B) TYPE: amino acid
- (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 254:
- 60~ Ser Val Ala Ala Phe Glu Gly Gln Val Gly Gln Ala Ala Tyr Ser Ala

WO 98/42738 PCT/US98/05311

	1				5					10					15	
5	Ser	Lys	Gly	Gly 20	Ile	Val	Gly	Met	Thr 25	Leu	Pro	Ile	Ala			
	(2)	INFO	ORMAT	rion	FOR	SEQ	ID 1	VO: 2	255:							
10			(i) :	(A) L B) T	ENGT YPE :	RACTI H: 6 ami OGY:	1 am no a	ino cid		s ·					
15			(xi)	SEQ	UENC	E DE	SCRI	PTIO	N: S	EQ I	D NO	: 25	5:			
	Ala 1	Arg	Arg	Ser	Gly 5	Ala	Glu	Leu	Ala	Trp 10	Asp	Tyr	Leu	Cys	Arg 15	Trp
20	Ala	Gln	Lys	His 20	Lys	Asn	Trp	Arg	Phe 25	Gln	Lys	Thr	Arg	Gln 30	Thr	Trp
	Leu	Leu	Leu 35	His	Met	Tyr	Asp	Ser 40	Asp	Lys	Val	Pro	Asp 45	Glu	His	Phe
25	Ser	Thr 50	Leu	Leu	Ala	Tyr	Leu 55	Glu	Gly	Leu	Gln	Gly 60	Arg			
30	(2)	INF			ENCE	CHA ENGI	RACT	ERIS	TICS ino		ls					
35			(xi)		(D) 1	OPOI	: ami .OGY : :SCRI	lin	ear	EQ I	D NC	: 25	6:			
	His 1		Ile	Glu	Trp		Ile	Asn	Ala	Ala 10		Leu	Ser	Gln	Phe 15	Tyr
40	Ile	Asn	Lys	Leu 20	Cys	Phe	:									
45	(2)	INF	ORMA	TION	FOR	SEQ) ID	NO:	257:							
50					(A) I (B) ! (D) !	LENG LYPE LOPO	TH: 2 : ami LOGY:	22 am ino a : lir	nino acid near	acio		o: 2 5	57 :			
55	1	•		Lys Asn	5	•		Thr	Leu	Met 10		Asn	Ala	. Gln	Leu 15	
				20)											

```
(2) INFORMATION FOR SEQ ID NO: 258:
              (i) SEQUENCE CHARACTERISTICS:
                     (A) LENGTH: 25 amino acids
 5
                     (B) TYPE: amino acid
                     (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 258:
      Lys Val Ser Tyr Leu Arg Pro Leu Asp Phe Glu Glu Ala Arg Glu Leu
10
                                           10
      Phe Leu Leu Gly Gln His Tyr Val Phe
                   20
15
      (2) INFORMATION FOR SEQ ID NO: 259:
             (i) SEQUENCE CHARACTERISTICS:
20
                     (A) LENGTH: 25 amino acids
                     (B) TYPE: amino acid
                     (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 259:
25
      Met Glu Arg Arg Cys Lys Met His Lys Arg Xaa Ile Ala Met Leu Glu
      Pro Leu Thr Val Asp Leu Asn Pro Gln
                   20
30
      (2) INFORMATION FOR SEQ ID NO: 260:
35
             (i) SEQUENCE CHARACTERISTICS:
                     (A) LENGTH: 23 amino acids
                     (B) TYPE: amino acid
                     (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 260:
40
      Ser His Ile Val Lys Lys Ile Asn Asn Leu Asn Lys Ser Ala Leu Lys
                                           10
      Tyr Tyr Gln Leu Phe Leu Asp
45
                   20
      (2) INFORMATION FOR SEQ ID NO: 261:
50
             (i) SEQUENCE CHARACTERISTICS:
                     (A) LENGTH: 64 amino acids
                     (B) TYPE: amino acid`
                     (D) TOPOLOGY: linear
55
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 261:
      Phe Thr His Leu Ser Thr Cys Leu Leu Ser Leu Leu Leu Val Arg Met
        1
                        5
                                                                15
60
      Ser Gly Phe Leu Leu Leu Ala Arg Ala Ser Pro Ser Ile Cys Ala Leu
```

WO 98/42738

		20	25	30
5	-	er Cys Phe Val	Gln Glu Tyr Cys Ser 40	Ser Tyr Ser Ser Ser 45
J	Cys Phe Le	eu His Gln His	Phe Pro Ser Leu Leu 55	Asp His Leu Cys Gln 60
10				
15		ATION FOR SEQ SEQUENCE CHAR		
20		(B) TYPE: (D) TOPOLO	H: 23 amino acids amino acid XGY: linear	2.000
20	(X)	I) SEQUENCE DES	SCRIPTION: SEQ ID NO	J: 262:
	Phe Leu Le	eu Leu Ala Arg 5	Ala Ser Pro Ser Ile 10	Cys Ala Leu Asp Ser 15
25	Ser Cys Ph	ne Val Gln Glu 20	Tyr	
30	(2) INFORM	MATION FOR SEQ	ID NO: 263:	
	(i)) SEQUENCE CHAP		
		• •	H: 53 amino acids amino acid	
35	(20)		OGY: linear	n. 263.
			SCRIPTION: SEQ ID NO	
	Pro Asp G	ly Arg Val Thr 5	Asn Ile Pro Gln Gly	Met Val Thr Asp Gln 15
40			I are Mbw Dho Tlo Awa	w Ala Ala Clu Maw Aga
	Phe Gly Me	20 red	25	g Ala Ala Glu Thr Asp 30
	Pro Gly Me	et Val His Leu	Ala Leu Gly Ser Asp	Leu Thr Thr Leu Gly
45	Í	35	40	45
	Leu Asn Le 50	eu Asn Ser		
50			a •	
	(2) INFOR	MATION FOR SEQ	ID NO: 264:	•
	- (i) SEQUENCE CHAI	RACTERISTICS:	
55	•	(A) LENGT	H: 41 amino acids	
			amino acid OGY: linear	
	(x	i) SEQUENCE DE	SCRIPTION: SEQ ID N	0: 264:
60	Glu Asp L	eu Leu Phe Tyr	Leu Tyr Tyr Met Ası	n Gly Gly Asp Val Leu

	1	5	10	15
_	Gln Leu	Leu Ala Ala Val Glu 20	Leu Phe Asn Arg A 25	sp Trp Arg Tyr His 30
5	Lys Glu	Glu Arg Val Trp Ile 35	Thr Arg	
10	(2) INF	ORMATION FOR SEQ ID	NO: 265:	
15		(i) SEQUENCE CHARACT (A) LENGTH: : (B) TYPE: am (D) TOPOLOGY (xi) SEQUENCE DESCRI	24 amino acids ino acid : linear	265:
20	Val His 1	Leu Ala Leu Gly Sex 5	Asp Leu Thr Thr L	eu Gly Leu Asn Leu 15
	Asn Ser	Pro Glu Asn Leu Tyr 20	Pro	
25				
	(2) INF	ORMATION FOR SEQ ID		
30		(i) SEQUENCE CHARACT (A) LENGTH: (B) TYPE: am (D) TOPOLOGY (xi) SEQUENCE DESCRI	41 amino acids ino acid : linear	266:
35	His Asn 1	Glu Asp Phe Pro Ala 5	a Leu Pro Gly Ser 10	
40	(2) INF	ORMATION FOR SEQ ID	NO: 267:	
45		(i) SEQUENCE CHARACT (A) LENGTH: (B) TYPE: am (D) TOPOLOGY	75 amino acids ino acid	
	-1	(xi) SEQUENCE DESCR		
50	Gly Arg	g Ile Ile Asp Thr Ser 5	t Leu Thr Arg Asp P 10	Pro Leu Val Ile Glu 15
	Leu Gly	Gln Lys Gln Val Ile 20	e Pro Gly Leu Glu G 25	In Ser Leu Leu Asp 30
55	Met Cys	S Val Gly Glu Lys Arg 35	g Arg Ala Ile Ile F 40	Pro Ser His Leu Ala 45
	Tyr Gly 50	Lys Arg Gly Phe Pro		ala Asp Ala Val Val 60
60	Gln Tvr	Asp Val Glu Leu Ile	e Ala Leu Ile Ara	

60

349

65 70 75 5 (2) INFORMATION FOR SEQ ID NO: 268: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 16 amino acids (B) TYPE: amino acid 10 (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 268: Ile His Tyr Thr Gly Ser Leu Val Asp Gly Arg Ile Ile Asp Thr Ser 10 15 20 (2) INFORMATION FOR SEO ID NO: 269: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 amino acids 25 (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 269: Cys Glu Ser Pro Glu Ser Pro Ala Gln Pro Ser Gly Ser Ser Leu Pro 30 5 Ala Trp Tyr His 35 (2) INFORMATION FOR SEQ ID NO: 270: (i) SEQUENCE CHARACTERISTICS: 40 (A) LENGTH: 95 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 270: 45 Glu Glu Ala Gly Ala Gly Arg Arg Cys Ser His Gly Gly Ala Arg Pro 10 Ala Gly Leu Gly Asn Glu Gly Leu Gly Leu Gly Gly Asp Pro Asp His 20 25 50 Thr Asp Thr Gly Ser Arg Ser Lys Gln Arg Ile Asn Asn Trp Lys Glu 40 Ser Lys His Lys Val Ile Met Ala Ser Ala Ser Ala Arg Gly Asn Gln 55 Asp Lys Asp Ala His Phe Pro Pro Pro Ser Lys Gln Ser Leu Leu Phe

70

Cys Pro Lys Ser Lys Leu His Ile His Arg Ala Glu Ile Ser Lys

350

				85					90					95	
5	(2) IN	FORM	ATION	FOR	SEQ	ID N	D: 2	71:							
10			(A) LI B) TY D) TY	ENGTH (PE: OPOLO	H: 23 amin XGY:	ami o ac line	no a id ar			271	.:			
15	Ser Ly 1 Met Al			5			Trp	Lys	Glu 10	Ser	Lys	His	Lys	Val 15	Ile
20	(2) IN	IFORM	ation	FOR	SEQ	ID N	o: 2	72:							
25				(A) Li (B) T (D) T	ENGTI YPE : OPOLO	H: 32 amir OGY:	2 ami no ac line	ino a cid ear	acid		: 272	?:			
30	Leu Ph	ne Hi	s Trp	Ala 5	Cys	Leu	Asn	Glu	Arg 10	Ala	Ala	Gln	Leu	Pro 15	Arg
35	Asn Th	nr Al	.a Xaa 20		Gly	Tyr	G 1 n	Cys 25	Pro	Ser	Cys	Asn	Gly 30	Pro	Ser
40	(2) 11	NFORM	(OITAL	I FOR	SEQ	ID N	10: 2	273:							
45) SEQI	(A) L (B) T (D) T	ENGT YPE : 'OPOL	H: 1 ami: OGY:	85 a no a lin	mino cid ear	aci		: 27	3:			
50	Phe T	yr I	le Tyn	туr 5		Pro	Thr	Asp	Ser 10	Asp	Asn	Asp	Ser	Asp 15	Tyr
50	Lys L	ys A	sp Mei		Glu	Gly	Asp	Lys 25	Tyr	Trp	His	Ser	Ile 30	Ser	His
55	Leu G		ro Gla	ı Thr	Ser	Tyr	Asp 40	Ile	Lys	Met	Gln	Cys 45	Phe	Asn	Glu
	Gly G	ly G 50	lu Se	r Glu	Phe	Ser 55	Asn	Val	Met	Ile	Cys 60	Glu	Thr	Lys	Ala

Arg Lys Ser Ser Gly Gln Pro Gly Arg Leu Pro Pro Pro Thr Leu Ala

	65					70					75					80
		Desc	C1n	Pro	Dro	Len	Pro	Glu	ጥ ከጉ	Tle	Glu	Ara	Pro	Va1	G1v	Thr
_	Pro	PIO	GIII	PIO	85	Deu	-10	GIU	****	90	01 0	ang.			95	
5	Gly	Ala	Met	Val 100	Ala	Arg	Ser	Ser	Asp 105	Leu	Pro	Tyr	Leu	Ile 110	Val	Gly
10	Val	Val	Leu 115	Gly	Ser	Ile	Val	Leu 120	Ile	Ile	Val	Thr	Phe 125	Ile	Pro	Phe
	Cys	Leu 130	Trp	Arg	Ala	Trp	Ser 135	Lys	Gln	Lys	His	Thr 140	Thr	Asp	Leu	Gly
15	Phe 145		Arg	Ser	Ala	Leu 150	Pro	Pro	Ser	Cys	Pro 155	Tyr	Thr	Met	Val	Pro 160
20	Leu	Gly	Gly	Leu	Pro 165	Gly	His	Gln	Ala	Val 170	Asp	Ser	Pro	Thr	Ser 175	Val
20	Ala	Ser	Val	Asp 180	Gly	Pro	Val	Leu	Met 185	-						
25	(2)	INF	ORMA	TION	FOR	SEQ	ID	NO:	274:							
			(i)	SEQU		CHA					ls					
30																
30								no a								
30			(xi)		(D) 1	OPOI	LOGY:	lir	near	EQ 1	D NC): 27	4:			
35	Tyr 1			SEÇ	(D) 1 OUENC	OPOI E DE	OGY:	lir PTIC	near N: S		Asn			Asp	Туг 15	Lys
	1	•	туг	SEÇ Tyr	(D) 1 OUENC Arg 5	OPOI E DE	OGY: SCRI	lir PTIC Asp	near N: S	Asp 10 Trp	Asn	Asp	Ser		15 His	
	Lys	Asp	Yyr Met	SEC Tyr Val 20	(D) 1 OUENC Arg 5	OPOI E DE Pro	OGY: SCRI Thr Asp	: lir :PTIC : Asp	near ON: S Ser Tyr 25	Asp 10	Asn His	Asp Ser	Ser	Ser 30	15 His	
35 40	lys Glr	Asp	Met Glu Ser	SEQ Tyr Val 20	D) Tourner Arg	COPOI E DE Pro Gly	OGY: SCRI Thr Asp	Lys O Ile	near ON: S O Ser O Tyr O 25 O Lys	Asp 10 Trp	Asn His	Asp Ser	Ser Ile Phe 45	Ser 30 Asr	15 His	Leu
35	Lys Glr	Asp Pro Glu 50	Met Glu 35	SEQ Tyr Val 20	D) Tourner Arg	COPOI E DE Pro Gly	OGY: SCRI Thr Asp Asp	Lys O Ile	near ON: S O Ser O Tyr O 25 O Lys	Asp 10 Trp	Asn His	Asp Ser Cys	Ser Ile Phe 45	Ser 30 Asr	15 His	Leu Gly
35 40	Lys Glr Gly Lys	. Asp Pro Glu 50 Sec	Property of the state of the st	SECONTY VALUE OF THE CONTY OF T	(D) 1 DUENC Arg 5 Glu Ser	Pro Gly	OGY: SCRI Thr Asp Asp	: lir PTIC Asp Lys 114 40	near ON: Ser Ser 25 Lys	Asp 10	Asn His	Asp Ser Cys	Ser Ile Phe 45	Ser 30 Asr	15 His	Leu Gly
35 40 45	Lys Glr Gly Lys	. Asp Pro Glu 50 Sec	PORMA	SECONTY VALUE OF THE CONTY OF T	(D) 1 DUENC Arg 5 Glu Ser	COPOI	OGY: SCRI Thr Asp Asp SSRI SI ASP	: lir EPTIC Asp Lys 40 1 Val	near N: Ser Ser Tyr 25 Lys Met	Asp 10	Asn His	Asp Ser Cys	Ser Ile Phe 45	Ser 30 Asr	15 His	Leu Gly
35 40 45 50	Lys Glr Gly Lys	. Asp Pro Glu 50 Sec	PORMA	SECONTY VALUE OF THE CONTY OF T	(D) 1 Arg 5 Glu Ser 1 Phe	COPOID FE DE Pro Gly Tyr Ser C SEC	OGY: SCRI Thr Asp Asp SSRI Asp SSRI Asp Asp SSRI Asp SSRI Asp	: lir PTIC Asp Lys O Lys 40 Val	near N: Ser Ser Tyr 25 Lys L Met	Asp 10 Trr	Asn His	Asp Ser Cys	Ser Ile Phe 45	Ser 30 Asr	15 His	Leu Gly
35 40 45	Lys Glr Gly Lys	. Asp Pro Glu 50 Sec	PORMAL TYPE	SECONTY VALUE OF THE CONTY OF T	(D) 1 Arg 5 Glu Ser 1 Phe (A) (B) (D)	COPOID FE DE Pro Gly Tyr Ser CLENG TYPE TOPO	OGY: SCRI Thr Asp Asp SSRI Asp	: lir PTIC Asp Lys O Lys 40 Val NO: TERI 30 a ino	near N: S Ser Tyr 25 Lys Met 275: STIC	Asp 10	Asn His Glr Cys	Asp Ser Cys Glu	Ser Ile	Ser 30 Asr	15 His	Leu Gly

	Thr	Ala	Lys	Phe 20	Asn	Asn	Asn	Lys	Arg 25	Lys	Asn	Leu	Ser	Leu 30		
5																
	(2)	INF	ORMA	PION	FOR	SEQ	ID I	NO: 3	276:							
10				(ENCE A) L B) T D) T UENC	ENGT YPE: OPOL	H: 1 ami OGY:	85 a no a lin	mino cid ear	aci		: 27	6:			
15	Asn 1	Thr	Asn	Gln	Arg 5	Glu	Ala	Leu	Gln	Tyr 10	Ala	Lys	Asn	Phe	Gln 15	Pro
20	Phe	Ala	Leu	Asn 20	His	Gln	Lys	Asp	Ile 25	Gln	Val	Leu	Met	Gly 30	Ser	Leu
20	Val	Tyr	Leu 35	Ar g	Gln	Gly	Ile	Glu 40	Asn	Ser	Pro	Tyr	Val 45	His	Leu	Leu
25	Asp	Ala 50	Asn	Gln	Trp	Ala	Asp 55	Ile	Cys	Asp	Ile	Phe 60	Thr	Arg	Asp	Ala
	Cys 65	Ala	Leu	Leu	Gly	Leu 70	Ser	Val	Glu	Ser	Pro 75	Leu	Ser	Val	Ser	Phe 80
30	Ser	Ala	Gly	Суз	Val 85	Ala	Leu	Pro	Ala	Leu 90	Ile	Asn	Ile	Lys	Ala 95	Val
35	Ile	Glu	Gln	Arg 100	Gln	Cys	Thr	Gly	Val 105	Trp	Asn	Gln	Lys	Asp 110	Glu	Leu
	Pro	Ile	Glu 115	Val	Asp	Leu	Gly	Lys 120	Lys	Cys	Trp	тух	His 125	Ser	Ile	Phe
40	Ala	Суs 130	Pro	Ile	Leu	Arg	Gln 135	Gln	Thr	Thr	Asp	Asn 140	Asn	Pro	Pro	Met
	Lys 145	Leu	Val	Cys	Gly	His 150	Ile	Ile	Ser	Arg	Asp 155	Ala	Leu	Asn	Lys	Met 160
45	Phe	Asn	Gly	Ser	Lys 165	Leu	Lys	Cys	Pro	Туг 170	Суз	Pro	Met	Glu	Gln 175	Ser
50	Pro	Gly	Asp	Ala 180	Lys	Gln	Ile	Phe	Phe 185		*					
	(2)	INF	ORMA!	NOI	FOR	SEQ	ID i	10: 2	277:							
55			(i)	(A) L B) T	ENGT YPE:	H: 6	5 am no a	ino : cid		s					
60			(xi)		D) T					EQ II	ON C	: 27	7:			

	Ser Tyr Leu Ser Ala Cys Phe Ala Gly Cys Asn Ser Thr Asn Leu Thr 1 5 10 15
5	Gly Cys Ala Cys Leu Thr Thr Val Pro Ala Glu Asn Ala Thr Val Val 20 25 30
	Pro Gly Lys Cys Pro Ser Pro Gly Cys Gln Glu Ala Phe Leu Thr Phe 35 40 45
10	Leu Cys Val Met Cys Ile Cys Ser Leu Ile Gly Ala Met Ala Arg His 50 55 60
15	Pro 65
	(2) INFORMATION FOR SEQ ID NO: 278:
20	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 84 amino acids
	(B) TYPE: amino acid (D) TOPOLOGY: linear
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 278:
	Pro Ser Val Ile Ile Leu Ile Arg Thr Val Ser Pro Glu Leu Lys Ser 1 5 10 15
30	Tyr Ala Leu Gly Val Leu Phe Leu Leu Arg Leu Leu Gly Phe Ile 20 25 30
	Pro Pro Pro Leu Ile Phe Gly Ala Gly Ile Asp Ser Thr Cys Leu Phe 35 40 45
35	Trp Ser Thr Phe Cys Gly Glu Gln Gly Ala Cys Val Leu Tyr Asp Asn 50 55 60
40	Val Val Tyr Arg Tyr Leu Tyr Val Ser Ile Ala Ile Ala Leu Lys Ser 65 70 75 80
10	Phe Ala Phe Ile
45	(2) INFORMATION FOR SEQ ID NO: 279:
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 182 amino acids
50	(B) TYPE: amino acid (D) TOPOLOGY: linear
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 279:
55	Gln Ser Leu Phe Thr Arg Phe Val Arg Val Gly Val Pro Thr Val Asp 1 5 10 15
	Leu Asp Ala Gln Gly Arg Ala Arg Ala Ser Leu Cys Xaa Xaa Tyr Asn 20 25 30
60	Trp Arg Tyr Lys Asn Leu Gly Asn Leu Pro His Val Gln Leu Leu Pro

			35					40					45			
5	Glu	Phe 50	Ser	Thr	Ala	Asn	Ala 55	Gly	Leu	Leu	Tyr	Asp 60	Phe	Gln	Leu	Ile
3	Asn 65	Val	Glu	Asp	Phe	Gln 70	Gly	Val	Gly	G1u	Ser 75	Glu	Pro	Asn	Pro	Tyr 80
10	Phe	Tyr	Gln	Asn	Leu 85	Gly	Glu	Ala	Glu	Туг 90	Val	Val	Ala	Leu	Phe 95	Met
	Tyr	Met	Cys	Leu 100	Leu	Gly	Tyr	Pro	Ala 105	Asp	Lys	Ile	Ser	Ile 110	Leu	Thr
15	Thr	Tyr	Asn 115	Gly	Gln	Lys	His	Leu 120	Ile	Arg	Asp	Ile	Ile 125	Asn	Arg	Ar g
20	Cys	Gly 130	Asn	Asn	Pro	Leu	Ile 135	Gly	Arg	Pro	Asn	Lys 140	Val	Thr	Thr	Val
20	Asp 145	_	Phe	Gln	Gly	Gln 150		Asn	Asp	Tyr	Ile 155	Leu	Leu	Ser	Leu	Val 160
25	Arg	Thr	Arg	Ala	Val 165	Gly	His	Leu	Arg	Asp 170	Val	Arg	Arg	Leu	Val 175	Val
	Ala	Met	Ser	Arg 180	Ala	Arg										
30																
	(2)	INF	ORMA	TION	FOR	SEQ	ID	NO:	280:							
35					(A) I (B) I (D) I	ENG TYPE TOPO	RACT TH: T : am: LOGY: ESCRI	77 ar ino a : lir	mino acid near	acio): 28	i0:			
40	Leu 1		l Lys	Glu	Ala		: Ile	∶Il∈	Ala	Met		Cys	Thr	His	Ala 15	
45	Leu	ı Lys	arg	His		Leu	ı Val	Lys	Leu 25		Phe	. Lys	Туг	Asp 30		Ile
45	Lev	ı Met	t Glu 35		ı Ala	Ala	a Glr	11e		Glu	ı Ile	e Glu	Thr 45		lle	Pro
50	Let	ı Leı 50	ı Let 0	ı Glr	n Asr	n Pro	Glr 55		o Gly	r Phe	e Sei	Arg		Lys	Arg	Trţ
	11e		t Ile	e Gly	/ Asy	His 70		Glr	ı Leı	ı Pro	75		Ile	•		
55																
	(2) IN	FORM													
60			(i)	SEQ	UENC: (A)	E CH	ARAC TH:	TERI 125	STIC: amin	S: o ac	ids					

(B)	TYPE:	amino	acid

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 281:

Asp Thr Tyr Pro Asn Glu Glu Lys Gln Glu Glu Arg Val Phe Pro Xaa

Xaa Ser Ala Met Val Asn Asn Gly Ser Leu Ser Tyr Asp His Glu Arg 25 20

10 Asp Gly Arg Pro Thr Glu Leu Gly Gly Cys Xaa Ala Ile Val Arg Asn 40

Leu His Tyr Asp Thr Phe Leu Val Ile Arg Tyr Val Lys Arg His Leu 15 55

Thr Ile Met Met Asp Ile Asp Gly Lys His Glu Trp Arg Asp Cys Ile 70

Glu Val Pro Gly Val Arg Leu Pro Arg Gly Tyr Tyr Phe Gly Thr Ser 20 85

Ser Ile Thr Gly Asp Leu Ser Asp Asn His Asp Val Ile Ser Leu Lys 105

Leu Phe Glu Leu Thr Val Glu Arg Thr Pro Glu Glu Glu 115

30 (2) INFORMATION FOR SEQ ID NO: 282:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 85 amino acids
- (B) TYPE: amino acid
- 35 (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 282:

Leu Lys Arg Glu His Ser Leu Ser Lys Pro Tyr Gln Gly Val Gly Thr 40

Gly Ser Ser Ser Leu Trp Asn Leu Met Gly Asn Ala Met Val Met Thr

Gln Tyr Ile Arg Leu Thr Pro Asp Met Gln Ser Lys Gln Gly Ala Leu 45 40

Trp Asn Arg Val Pro Cys Phe Leu Arg Asp Trp Glu Leu Gln Val His 55

Phe Lys Ile His Gly Gln Gly Lys Lys Asn Leu His Gly Asp Gly Leu 75

Ala Ile Trp Tyr Thr 55

(2) INFORMATION FOR SEQ ID NO: 283:

60

50

```
(i) SEQUENCE CHARACTERISTICS:
                     (A) LENGTH: 32 amino acids
                     (B) TYPE: amino acid
                     (D) TOPOLOGY: linear
 5
              (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 283:
      Pro Gly Thr Leu Gln Cys Ser Ala Leu His His Asp Pro Gly Cys Ala
10
      Asn Cys Ser Arg Phe Cys Arg Asp Cys Ser Pro Pro Ala Cys Gln Cys
                                        25
15
      (2) INFORMATION FOR SEQ ID NO: 284:
20
              (i) SEQUENCE CHARACTERISTICS:
                     (A) LENGTH: 27 amino acids
                     (B) TYPE: amino acid
                     (D) TOPOLOGY: linear
              (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 284:
25
      Phe Leu Tyr Asp Val Leu Met Xaa His Glu Ala Val Met Arg Thr His
      Gln Ile Gln Leu Pro Asp Pro Glu Phe Pro Ser
30
                    20
       (2) INFORMATION FOR SEQ ID NO: 285:
35
              (i) SEQUENCE CHARACTERISTICS:
                     (A) LENGTH: 6 amino acids
                     (B) TYPE: amino acid
                     (D) TOPOLOGY: linear
40
              (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 285:
       Gly Trp Tyr Trp Cys Gly
         1
 45
       (2) INFORMATION FOR SEQ ID NO: 286:
              (i) SEQUENCE CHARACTERISTICS:
 50
                      (A) LENGTH: 129 amino acids
                      (B) TYPE: amino acid
                      (D) TOPOLOGY: linear
              (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 286:
 55
       Met Lys Val Gly Ala Arg Ile Arg Val Lys Met Ser Val Asn Lys Ala
       His Pro Val Val Ser Thr His Trp Arg Trp Pro Ala Glu Trp Pro Gln
                                        25
 60
```

	Met	Phe	Leu - 35	His	Leu	Ala	Gln	Glu 40	Pro	Arg	Thr	Glu	Val 45	Lys	Ser	Arg
5	Pro	Leu 50	Gly	Leu	Ala	Gly	Phe 55	Ile	Arg	Gln	Asp	Ser 60	Lys	Thr	Arg	Lys
	Pro 65	Leu	Glu	Gln	Glu	Thr 70	Ile	Met	Ser	Ala	Ala 75	Asp	Thr	Ala	Leu	Trp 80
10	Pro	Tyr	Gly	His	Gly 85	Asn	Arg	Glu	His	Gln 90	Glu	Asn	Glu	Leu	Gln 95	Lys
15	Tyr	Leu	Gln	Tyr 100	Lys	Asp	Met	His	Leu 105	Leu	Asp	Ser	Gly	Gln 110	Ser	Leu
13	Gly	His	Thr 115	His	Thr	Leu	Gln	Gly 120		His	Asn	Leu	Thr 125	Ala	Leu	Asn
20	Ile															
	40.			mroll	. FOD	C EO	TD	NO.	207.	•						
25	(2)	INF		TION SEQU	ENCE		RACT	ERIS	TICS	S:	ł.c					
20					(B) ?	TYPE:	. am:	ino a : lir	acid near			v. 20				
30			(xi)	SEC	OUENC	Œ DI	ESCR.	[PTIC	N: S	SEQ .	LD NC): 28	5/:			
	Ser 1		His	: Lys	: Asr		· Val	Ser	: Glr	11e		Val	. Leu	Ser	Gly 15	Gly
35	Lys	Ala	Lys	20 20		Glr	n Phe	e Cys	Thr 25		Gly	Met	. Asp	Gly 30		Met
40	Sei	r Ile	e Trp 3!		Val	LLys	s Sei	Le u 40		ı Sei	c Ala	a Lev	1 Lys 45		Leu	Lys
40	Ile	9														
45					. 70		. TD	NO.	200							
	(2) IN	FORM	OITA	N FO	K SE(עג ג	NO:	200	•						
			(i)	SEQ	UENC	E CH LENG	ARAC	TERI 21 a	STIC	S: . aci	ds					
50			(xi	.) SE	(B) (D)	TYPE TOPC	: am	nino : li	acid near	l :		O: 2	88:		-	
55	Gl	u Al 1	a Se	r Ly		r Se 5	r Hi	s Al	a Gl		u As O	p Le	u Ph	e Sei	r Vai	l Ala 5
	Al	a Cy	s Hi	s Ar 2		e										

```
(2) INFORMATION FOR SEQ ID NO: 289:
             (i) SEQUENCE CHARACTERISTICS:
5
                    (A) LENGTH: 21 amino acids
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 289:
      Tyr Met Gly Lys Gly Ser Met Thr Gly Leu Ala Leu Lys His Met Phe
10
                       5
                                           10
      Glu Arg Ser Phe Thr
                   20
15
      (2) INFORMATION FOR SEQ ID NO: 290:
20
             (i) SEQUENCE CHARACTERISTICS:
                     (A) LENGTH: 27 amino acids
                     (B) TYPE: amino acid
                     (D) TOPOLOGY: linear
              (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 290:
25
      Val Thr Gly Ile Ile Asp Ser Leu Thr Ile Ser Pro Lys Ala Ala Arg
      Val Gly Leu Leu Gln Tyr Ser Thr Gln Val His
30
                   20
      (2) INFORMATION FOR SEQ ID NO: 291:
35
              (i) SEQUENCE CHARACTERISTICS:
                     (A) LENGTH: 24 amino acids
                     (B) TYPE: amino acid
                     (D) TOPOLOGY: linear
40
              (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 291:
      Thr Glu Phe Thr Leu Arg Asn Phe Asn Ser Ala Lys Asp Met Lys Lys
                                            10
45
      Ala Val Ala His Met Lys Tyr Met
                   20
50
       (2) INFORMATION FOR SEQ ID NO: 292:
              (i) SEQUENCE CHARACTERISTICS:
                     (A) LENGTH: 27 amino acids
                     (B) TYPE: amino acid
55
                     (D) TOPOLOGY: linear
              (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 292:
      Gly Lys Gly Ser Met Thr Gly Leu Ala Leu Lys His Met Phe Glu Arg
                                            10
60
```

	Ser Phe Thr Gln Gly Glu Gly Ala Arg Pro Phe 20 25
5	(2) INFORMATION FOR SEQ ID NO: 293:
10	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 44 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 293:
15	Ser Thr Arg Val Pro Arg Ala Ala Ile Val Phe Thr Asp Gly Arg Ala 1 5 10 15
	Gln Asp Asp Val Ser Glu Trp Ala Ser Lys Ala Lys Ala Asn Gly Ile 20 25 30
20	Thr Met Tyr Ala Val Gly Val Gly Lys Ala Ile Glu 35 40
25	(2) INFORMATION FOR SEQ ID NO: 294:
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 42 amino acids
30	(B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 294:
35	Glu Glu Leu Gln Glu Ile Ala Ser Glu Pro Thr Asn Lys His Leu Ph 1 5 10 15
55	Tyr Ala Glu Asp Phe Ser Thr Met Asp Glu Ile Ser Glu Lys Leu Ly 20 25 30
40	Lys Gly Ile Cys Glu Ala Leu Glu Asp Ser 35 40
45	(2) INFORMATION FOR SEQ ID NO: 295:
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 11 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 295:
	Thr Gln Arg Leu Glu Glu Met Thr Gln Arg Met 1 5 10
55	
	(2) INFORMATION FOR SEQ ID NO: 296:

(i) SEQUENCE CHARACTERISTICS:

60

(A) LENGTH: 10 amino acids

```
(B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 296:
5
      Pro Gln Gly Cys Pro Glu Gln Pro Leu His
                       5
10
      (2) INFORMATION FOR SEQ ID NO: 297:
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 33 amino acids
                    (B) TYPE: amino acid
15
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 297:
     Arg Cys Lys Lys Cys Thr Glu Gly Pro Ile Asp Leu Val Phe Val Ile
                                      10
20
     Asp Gly Ser Lys Ser Leu Gly Glu Glu Asn Phe Glu Val Val Lys Gln
                  20
                                   25
     Phe
25
      (2) INFORMATION FOR SEQ ID NO: 298:
30
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 60 amino acids
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
35
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 298:
     Met Ala Ala Leu Leu Arg His Val Gly Arg His Cys Leu Arg Ala
40
     His Phe Ser Pro Gln Leu Cys Ile Arg Asn Ala Val Pro Leu Gly Thr
      Thr Ala Lys Glu Glu Met Glu Arg Phe Trp Asn Lys Asn Ile Gly Ser
45
      Asn Arg Pro Leu Ser Pro His Ile Thr Ile Tyr Ser
          50
                              55
50
      (2) INFORMATION FOR SEQ ID NO: 299:
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 32 amino acids
55
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 299:
      Val Phe Pro Leu Met Tyr His Thr Trp Asn Gly Ile Arg His Leu Met
60.
                                          10
```

Trp Asp Leu Gly Lys Gly Leu Lys Ile Pro Gln Leu Tyr Gln Ser Gly 25 5 10 (2) INFORMATION FOR SEQ ID NO: 300: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 17 amino acids (B) TYPE: amino acid 15 (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 300: Met Ala Ala Leu Leu Leu Arg His Val Gly Arg His Cys Leu Arg Ala 10 1 20 His 25 (2) INFORMATION FOR SEQ ID NO: 301: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 18 amino acids 30 (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 301: Val Lys Ser Leu Cys Leu Gly Pro Ala Leu Ile His Thr Ala Lys Phe 35 5 Ala Leu 40 (2) INFORMATION FOR SEQ ID NO: 302: (i) SEQUENCE CHARACTERISTICS: 45 (A) LENGTH: 23 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 302: 50 Val Phe Pro Leu Met Tyr His Thr Trp Asn Gly Ile Arg His Leu Met 10 5 Trp Asp Leu Gly Lys Gly Leu 20 55 (2) INFORMATION FOR SEQ ID NO: 303: 60 (i) SEQUENCE CHARACTERISTICS:

```
(A) LENGTH: 22 amino acids
                     (B) TYPE: amino acid
                     (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 303:
 5
     Arg Val Trp Asp Val Arg Pro Phe Ala Pro Lys Glu Arg Cys Val Lys
      Ile Phe Gln Gly Asn Val
10
      (2) INFORMATION FOR SEQ ID NO: 304:
15
             (i) SEQUENCE CHARACTERISTICS:
                     (A) LENGTH: 30 amino acids
                     (B) TYPE: amino acid
                     (D) TOPOLOGY: linear
20
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 304:
      His Asn Phe Glu Lys Asn Leu Leu Arg Cys Ser Trp Ser Pro Asp Gly
25
      Ser Lys Ile Ala Ala Gly Ser Ala Asp Arg Phe Val Tyr Val
30
      (2) INFORMATION FOR SEQ ID NO: 305:
             (i) SEQUENCE CHARACTERISTICS:
                     (A) LENGTH: 30 amino acids
                     (B) TYPE: amino acid
35
                     (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 305:
      Trp Asp Thr Thr Ser Arg Arg Ile Leu Tyr Lys Leu Pro Gly His Ala
                                           10
40
      Gly Ser Ile Asn Glu Val Ala Phe His Pro Asp Glu Pro Ile
                   20
                                       25
45
      (2) INFORMATION FOR SEQ ID NO: 306:
              (i) SEQUENCE CHARACTERISTICS:
                     (A) LENGTH: 20 amino acids
50
                     (B) TYPE: amino acid
                     (D) TOPOLOGY: linear
              (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 306:
      Val Arg Gly Arg Thr Val Leu Arg Pro Gly Leu Asp Ala Glu Pro Glu
55
                                           10
      Leu Ser Pro Glu
```

(2) INFORMATION FOR SEQ ID NO: 307:

```
(i) SEQUENCE CHARACTERISTICS:
                   (A) LENGTH: 19 amino acids
5
                   (B) TYPE: amino acid
                   (D) TOPOLOGY: linear
            (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 307:
     Glu Gln Arg Val Leu Glu Arg Lys Leu Lys Lys Glu Arg Lys Lys Glu
10
                                        10
     Glu Arg Gln
15
      (2) INFORMATION FOR SEQ ID NO: 308:
             (i) SEQUENCE CHARACTERISTICS:
20
                    (A) LENGTH: 13 amino acids
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 308:
25
      Arg Leu Arg Glu Ala Gly Leu Val Ala Gln His Pro Pro
30
      (2) INFORMATION FOR SEQ ID NO: 309:
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 17 amino acids
                    (B) TYPE: amino acid
35
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 309:
      Gly Arg Ile Pro Ala Pro Ala Pro Ser Val Pro Ala Gly Pro Asp Ser
                5 10
40
     Arg
45
       (2) INFORMATION FOR SEQ ID NO: 310:
              (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 42 amino acids
 50
                     (B) TYPE: amino acid
                     (D) TOPOLOGY: linear
              (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 310:
       Thr Gly Cys Val Leu Val Leu Ser Arg Asn Phe Val Gln Tyr Ala Cys
 55
                                         10
       Phe Gly Leu Phe Gly Ile Ile Ala Leu Gln Thr Ile Ala Tyr Ser Ile
                            25
                   20
 60
```

```
Leu Trp Asp Leu Lys Phe Leu Met Arg Asn
5
      (2) INFORMATION FOR SEQ ID NO: 311:
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 55 amino acids
10
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 311:
      Ser Arg Ser Glu Gly Lys Ser Met Phe Ala Gly Val Pro Thr Met Arg
15
                        5
      Glu Ser Ser Pro Lys Gln Tyr Met Gln Leu Gly Gly Arg Val Leu Leu
20
      Val Leu Met Phe Met Thr Leu Leu His Phe Asp Ala Ser Phe Phe Ser
      Ile Val Gln Asn Ile Val Gly
25
      (2) INFORMATION FOR SEQ ID NO: 312:
30
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 60 amino acids
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 312:
35
      Gly Thr Ala Glu Asp Phe Ala Asp Gln Phe Leu Arg Val Thr Lys Gln
                        5
                                           10
      Tyr Leu Pro His Val Ala Arg Leu Cys Leu Ile Ser Thr Phe Leu Glu
40
                                       25
      Asp Gly Ile Arg Met Trp Phe Gln Trp Ser Glu Gln Arg Asp Tyr Ile
                                  40
45
      Asp Thr Trp Asn Cys Gly Tyr Leu Leu Ala Ser
                               55
           50
50
      (2) INFORMATION FOR SEQ ID NO: 313:
              (i) SEQUENCE CHARACTERISTICS:
                     (A) LENGTH: 17 amino acids
                     (B) TYPE: amino acid
55
                     (D) TOPOLOGY: linear
              (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 313:
      Ala Ser Phe Leu Leu Ser Arg Thr Ser Trp Gly Thr Ala Leu Met Ile
                        5
                                           10
60
```

Leu

```
5
     (2) INFORMATION FOR SEQ ID NO: 314:
            (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 8 amino acids
10
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 314:
     Leu Met Arg Asn Glu Ser Arg Ser
15
                     5
       1
      (2) INFORMATION FOR SEQ ID NO: 315:
20
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 13 amino acids
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
25
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 315:
      Ala Ser Phe Leu Leu Ser Arg Thr Ser Trp Gly Thr Ala
                       5
        1
30
      (2) INFORMATION FOR SEQ ID NO: 316:
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 20 amino acids
35
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 316:
      Phe Ile Ser Phe Ala Asn Ser Arg Ser Ser Glu Asp Thr Lys Gln Met
40
                                         10
             5
        1
      Met Ser Ser Phe
45
      (2) INFORMATION FOR SEQ ID NO: 317:
              (i) SEQUENCE CHARACTERISTICS:
50
                     (A) LENGTH: 27 amino acids
                     (B) TYPE: amino acid
                     (D) TOPOLOGY: linear
              (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 317:
55
      Asp Pro Arg Arg Pro Asn Lys Val Leu Arg Tyr Lys Pro Pro Pro Ser
                              10
                        5
        1
      Glu Cys Asn Pro Ala Leu Asp Asp Pro Thr Pro
 60
```

25

5	(2) INFORMATION FOR SEQ ID NO: 318:
J	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 amino acids (B) TYPE: amino acid
10	(D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 318:
	Asp Tyr Met Asn Leu Leu Gly Met Ile Phe Ser Met Cys Gly Leu Met 1 5 10 15
15	Leu Lys Leu Lys Trp Cys Ala Trp Val Ala Val Tyr Cys Ser 20 25 30
20	(2)-INFORMATION FOR SEQ ID NO: 319:
25	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 22 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 319:
30	Met Leu Ser Ile Ser Ala Val Val Met Ser Tyr Leu Gln Asn Pro Gln 1 5 10 15
30	Pro Met Thr Pro Pro Trp 20
35	(2) INFORMATION FOR SEQ ID NO: 320:
40	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 52 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 320:
45	Ala Ala Gly Asp Gly Asp Val Lys Leu Gly Thr Leu Gly Ser Gly Ser 1 5 10 15
	Glu Ser Ser Asn Asp Gly Gly Ser Glu Ser Pro Gly Asp Ala Gly Ala 20 25 30
50	Ala Ala Xaa Gly Gly Gly Trp Ala Ala Ala Ala Leu Ala Leu Leu Thr 35 40 45
55	Gly Gly Glu 50
	(2) INFORMATION FOR SEQ ID NO: 321:
60	(i) SEQUENCE CHARACTERISTICS:

				,	A	ייניייניי	J. 1'	77 ar	nino	acid	de.					
			(xi)	(1	B) T	YPE: OPOL	amiı DGY:	no ao line	cid ear			: 321	. :			
5	Ala 1	Ala	Asp	Asn	Tyr 5	Gly	Ile	Pro	Arg	Ala 10	Cys	Arg	Asn	Ser	Ala 15	Arg
10	Ser	Tyr	Gly	Ala 20	Ala	Trp	Leu	Leu	Leu 25	Xaa	Pro	Ala	Gly	Ser 30	Ser	Arg
	Val	Glu	Pro 35	Thr	Gln	Asp	Ile	Ser 40	Ile	Ser	Asp	Gln	Leu 45	Gly	Gly	Gln
15	Asp	Val 50	Pro	Val	Phe	Arg	Asn 55	Leu	Ser	Leu	Leu	Val 60	Val	Gly	Val	Gly
20	Ala 65	Val	Phe	Ser	Leu	Leu 70	Phe	His	Leu	Gly	Thr 75	Arg	Glu	Arg	Arg	Arg 80
20	Pro	His	Ala	Хаа	Glu 85	Pro	Gly	Glu	His	Thr 90	Pro	Leu	Leu	Ala	Pro 95	Ala
25	Thr	Ala	Gln	Pro 100	Leu	Leu	Leu	Trp	Lys 105	His	Trp	Leu	Arg	Glu 110	Xaa	Ala
	Phe	Tyr	Gln 115	Val	Gly	Ile	Leu	Туг 120	Met	Thr	Thr	Arg	Leu 125	Ile	Val	Asn
30	Leu	Ser 130		Thr	Tyr	Met	Ala 135	Met	Tyr	Leu	Thr	Tyr 140	Ser	Leu	His	Leu
35	Pro 145	_	Lys	Phe	Ile	Ala 150		Ile	Pro	Leu	Val 155	Met	Туг	Leu	Ser	Gly 160
,,,	Phe	Leu	Ser	Ser	Phe 165		Met	Lys	Pro	Ile 170		Lys	Cys	Ile	Gly 175	Arg
40	Asn															
	(2)	INF	ORMA	MOIT.	FOR	SEQ	ID	NO:	322:							
45			(i)		(A) I (B) I	LENG:	TH: 2	ERIS 243 a ino a : lir	amino acid		ids	-				
50			(xi)					PTIC		EQ I	ED NO): 32	2:			
50	Arg		e Thr	: Ası	Asr		Glu	Gly	' Lys	Trp		Gly	Arg	Thr	Ala 15	Arg
55	Gly	y Sei	г Туз	Gly 20		: Ile	e Lys	Thr	Thr 25		a Val	. Glu	Ile	: Хаа 30		Asp
	Sei	Le	u Lys 35		ı Lys	s Lys	a Asp	Ser 40		r Gly	/ Ala	Pro	Ser 45		Pro	Ile
60	Glı	ı Ası	p Ası	, Glı	ı Glu	ı Val	L Tyr	Asp	Asp	Va.	l Ala	a Glu	Glr	ı Asp	Ası	Ile

		50					55					60			,	
5	Ser 65	Ser	His	Ser	Gln	Ser 70	Gly	Ser	Gly	Gly	Ile 75	Phe	Pro	Pro	Pro	Pro 80
	Asp	Asp	Asp	Ile	Tyr 85	Asp	Gly	Ile	Glu	Glu 90	Glu	qaA	Ala	Asp	Asp 95	Gly
10	Phe	Pro	Ala	Pro 100	Pro	Lys	Gln	Leu	Asp 105	Met	Gly	Asp	Glu	Val 110	туг	Asp
	Asp	Val	Asp 115	Thr	Ser	Asp	Phe	Pro 120	Val	Ser	Ser	Ala	Glu 125	Met	Ser	Gln
15	Gly	Thr 130	Asn	Val	Gly	Lys	Ala 135	Lys	Thr	Glu	Glu	Lys 140	Asp	Leu	Lys	Lys
20	Leu 145	Lys	Lys	Gln	Xaa	Lys 150	Glu	Xaa	Lys	Asp	Phe 155	Arg	Lys	Lys	Phe	Lys 160
	Tyr	Asp	Gly	Glu	11e 165	Arg	Val	Leu	Tyr	Ser 170	Thr	Lys	Val	Thr	Thr 175	Ser
25	Ile	Thr	Ser	Lys 180	Lys	Trp	Gly	Thr	Arg 185	Asp	Leu	Gln	Val	Lys 190	Pro	Gly
	Glu	Ser	Leu 195	Glu	Val	Ile	Gln	Thr 200	Thr	Asp	Asp	Thr	Lys 205	Val	Leu	Cys
30	Arg	Asn 210	Glu	Glu	Gly 	Lys	Туг 215	Gly	Tyr	Val	Leu	Ar g 220	Ser	Tyr	Leu	Ala
35	Asp 225	Asn	Asp	Gly	Glu	Ile 230	Tyr	Asp	Asp	Ile	Ala 235	Asp	Gly	Суз	Ile	Tyr 240
	Asp	Asn	Asp													
40	(2)	INF	ORMA:			_			323: TICS	:						
				(A) L B) T	ENGT YPE:		06 a no a	mino cid		ds					
45			(xi)						N: S	EQ I	D NO	: 32	3:			
50	Ser 1	Met	Ser	Ala	Leu 5	Thr	Arg	Leu	Ala	Ser 10	Phe	Ala	Arg	Val	Gly 15	Gly
	Arg	Leu	Phe	Arg 20	Ser	Gly	Cys	Ala	Arg 25	Thr	Ala	Gly	Asp	Gly -30	Gly	Val
55	Arg	His	Ala 35	Gly	Gly	Gly	Val	His 40	Ile	Glu	Pro	Arg	Туг 45	Arg	Gln	Phe
	Pro	Gln 50	Leu	Thr	Arg	Ser	Gln 55	Val	Phe	Gln	Ser	Glu 60	Phe	Phe	Ser	Gly
60	Leu	Met	Trp	Phe	Trp	Ile	Leu	Trp	Arg	Phe	Trp	His	Asp	Ser	Glu	Glu

369

65 70 75 80

Glu Leu Gly Ile Pro Pro Asp Asp Glu Asp 100 105

Applicant's or agent's file 2004PCT International application Unassigned		, -
reterence number	reference number	

INDICATIONS RELATING TO A DEPOSITED MICROORGANISM

A. The indications made below relate to the microorganism referred on page 73 . line N/A	d to in the description
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet
Name of depositary institution American Type Culture College	ection
Address of depositary institution (including postal code and country 10801 University Boulevard Manassas, Virginia 20110-2209	ν)
United States of America	
Date of deposit March 7, 1997	Accession Number 97923
C. ADDITIONAL INDICATIONS (leave blank if not applicable	(e) This information is continued on an additional sheet
D. DESIGNATED STATES FOR WHICH INDICATION	NS ARE MADE (if the indications are not for all designated States)
E. SEPARATE FURNISHING OF INDICATIONS (leave	blank if not applicable)
	Bureau later (specify the general nature of the indications, e.g., "Accession
For receiving Office use only	For International Bureau use only
This sheet was received with the international application	This sheet was received by the International Bureau on:
Authorized officer	Authorized officer
Juania I lilia	

Applicant's or agent's file reference number	Z004PCT	4-7 1 7	Unassigned

INDICATIONS RELATING TO A DEPOSITED MICROORGANISM

A. The indications on page 73	made below relate to the microorganism	
. IDENTIFICA	FION OF DEPOSIT	Further deposits are identified on an additional sheet
Name of depositary	institution American Type Cultu	re Collection
Address of depositar 0801 University Manassas, Virgini United States of A	a 20110-2209	(country)
Date of deposit ?	May 22, 1997	Accession Number 209071
	L INDICATIONS (leave blank if not a	ATIONS ARE MADE (if the indications are not for all designated States)
	FURNISHING OF INDICATIONS and below will be submitted to the latern	
The indications issue	e below will be submitted to the Interna	ational Bureau later (specify the general nature of the indications, e.g., "Accession
Authorized officer	or receiving Office use only is received with the international application Luly Luly	For International Bureau use only This sheet was received by the International Bureau on: Authorized officer

Applicant's or agent's file reference number

Z004PCT

International application Unassigned

INDICATIONS RELATING TO A DEPOSITED MICROORGANISM

A. The indications made below relate to the microorganism referred on page $\frac{73}{}$. line $\frac{N/A}{}$	to in the description
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet
Name of depositary institution American Type Culture Colle	ection
Address of depositary institution (including postal code and country) 10801 University Boulevard Manassas. Virginia 20110-2209 United States of America	
Date of deposit February 25, 1998	Accession Number 209641
C. ADDITIONAL INDICATIONS (leave blank if not applicable	e) This information is continued on an additional sheet
D. DESIGNATED STATES FOR WHICH INDICATION	IS ARE MADE (if the indications are not for all designated States)
E. SEPARATE FURNISHING OF INDICATIONS (leave	blank if not applicable)
The indications listed below will be submitted to the International E Number of Deposit")	Bureau later (specify the general nature of the indications, e.g., "Accession
For receiving Office use only	For International Bureau use only
Authorized officer Luguman Lulu	This sheet was received by the International Bureau on: Authorized officer .

	37		
Applicant's or agent's tile reference number	Z004PCT	International application Unassigned	

INDICATIONS RELATING TO A DEPOSITED MICROORGANISM

A. The indications made below relate to the microorganism referre on page 75 . line N/A	d to in the description
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet
Name of depositary institution American Type Culture Coll	ection
Address of depositary institution (including postal code and countred 10801 University Boulevard Manassas, Virginia 20110-2209 United States of America	(v;
Date of deposit July 24, 1997	Accession Number 209179
C. ADDITIONAL INDICATIONS (leave blank if not applicab	le) This information is continued on an additional sheet
	•
D. DESIGNATED STATES FOR WHICH INDICATION	NS ARE MADE (if the indications are not for all designated States)
E. SEPARATE FURNISHING OF INDICATIONS (leave	blank if not applicable)
The indications listed below will be submitted to the International Number of Deposit")	Bureau later (specify the general nature of the indications, e.g., "Accession
For receiving Office use only	For International Bureau use only
This sheet was received with the international application	This sheet was received by the International Bureau on:
Authorized officer	Authorized officer
1) + 1.0.	

Applicant's or agent's file reference number

Z004PCT

International application

Unassigned

INDICATIONS RELATING TO A DEPOSITED MICROORGANISM

	ns made below relate to the micr	oorganism referred to i	to in the description
on page 7	7	. line N/A	
B. IDENTIFIC	ATION OF DEPOSIT		Further deposits are identified on an additional sheet
Name of deposita		pe Culture Collection	tion
10801 Universi	inia 20110-2209	l code and country)	
Date of deposit	March 7, 1997	Acc	eccession Number 97924
C. ADDITION	IAL INDICATIONS (leave bl	ank if not applicable)	This information is continued on an additional sheet
D. DESIGNAT	ED STATES FOR WHICH	I INDICATIONS A	ARE MADE (if the indications are not for all designated States)
E. SEPARATI	FURNISHING OF INDIC	ATIONS (leave blank	ink if not applicable)
	sted below will be submitted to		reau later (specify the general nature of the indications, e.g., "Accessio
Authorized officer	For receiving Office use only was received with the international a	pplication	This sheet was received by the International Bureau on: Authorized officer

Applicant's or agent's file	Z004PCT	International application Unassigned
reference number		

INDICATIONS RELATING TO A DEPOSITED MICROORGANISM

A. The indications made below relate to the micron page 80	roorganism referred to in the description line N/A
. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet
lame of depositary institution American T	ype Culture Collection
Address of depositary institution (including post 10801 University Boulevard Manassas, Virginia 20110-2209 United States of America	al code and country)
Date of deposit March 13, 1997	Accession Number 97958
C. ADDITIONAL INDICATIONS (leave	blank if not applicable) This information is continued on an additional sheet
, DESIGNATED STATES FOR WHICE	H INDICATIONS ARE MADE (if the Indications are not for all designated States)
E. SEPARATE FURNISHING OF INDI	CATIONS (leave blank if not applicable)
The indications listed below will be submitted to Number of Deposit")	o the International Bureau later (specify the general nature of the indications. e.g., "Accessi
For receiving Office use of this sheet was received with the international Authorized officer	

Applicant's or agent's file Z004PCT reference number	International application Unassigned

INDICATIONS RELATING TO A DEPOSITED MICROORGANISM

A. The indications made below relate to the microorganism referred to in the description on page 80 . line N/A .				
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet			
Name of depositary institution American Type Culture Colle	ection			
Address of depositary institution (including postal code and country)			
10801 University Boulevard Manassas. Virginia 20110-2209 United States of America				
Date of deposit May 22, 1997	Accession Number 209072			
C. ADDITIONAL INDICATIONS (leave blank if not applicable	e) This information is continued on an additional sheet			
D. DESIGNATED STATES FOR WHICH INDICATION	IS ARE MADE (if the indications are not for all designated States)			
E. SEPARATE FURNISHING OF INDICATIONS (leave to the indications listed below will be submitted to the International B Number of Deposit")				
For receiving Office use only	For International Bureau use only			
This sheet was received with the international application	This sheet was received by the International Bureau on:			
Authorized officer () Laure as L lelus	Authorized officer			

Applicant's or agent's file	Z004PCT	International application Unassigned
reference number		betwee Pall

INDICATIONS RELATING TO A DEPOSITED MICROORGANISM

B. IDENTIFIC	CATION OF DEPOSIT	Further deposits are identified on an additional sheet
Name of deposita	ry institution American Type Cu	ulture Collection
10801 Univers	ginia 20110-2209	and country)
Date of deposit	September 4, 1997	Accession Number 209235
C. ADDITIO	NAL INDICATIONS (leave blank if t	not applicable) This information is continued on an additional sheet
D. DESIGNA	TED STATES FOR WHICH IND	DICATIONS ARE MADE (if the indications are not for all designated States)
E. SEPARAT	TE FURNISHING OF INDICATION	ONS (leave blank if not applicable)
The indications Number of Depos		nternational Bureau later (specify the general nature of the indications. e.g "Accessiv
	For receiving Office use only	For International Bureau use only
This shee	et was received with the international applica	This sheet was received by the International Bureau on:
Authorized offic	er	Authorized officer

8		

Applicant's or agent's file reference number

Z004PCT International application

pplication Unassigned

INDICATIONS RELATING TO A DEPOSITED MICROORGANISM

A. The indications made below relate to the microorganism referred to in the description on page 84 . line N/A .				
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet			
Name of depositary institution American Type Culture Co	ollection			
Address of depositary institution (including postal code and count 10801 University Boulevard Manassas, Virginia 20110-2209 United States of America	ntry)			
Date of deposit August 28, 1997	Accession Number 209226			
C. ADDITIONAL INDICATIONS (leave blank if not applic	cable) This information is continued on an additional sheet			
D. DESIGNATED STATES FOR WHICH INDICATE	IONS ARE MADE (if the indications are not for all designated States)			
E. SEPARATE FURNISHING OF INDICATIONS (te.	rave blank if not applicable)			
	nal Bureau later (specify the general nature of the indications, e.g., "Accession			
For receiving Office use only	For International Bureau use only			
This sheet was received with the international application	This sheet was received by the International Bureau on:			
Authorized officer Vuginia Lleling	Authorized officer			

	200120		
Applicant's or agent's file	Z004PCT	International application Unassigned	
reference number			
		There is a few and the few and	

INDICATIONS RELATING TO A DEPOSITED MICROORGANISM

A. The indications made below relate to the microorganism referred to in the description on page 84 , line N/A			
. IDENTIFIC	ATION OF DEPOSIT	Further deposits are identified on an additional sheet	
Name of deposita	ry institution American Type Culture	Collection	
10801 Universi	inia 20110-2209	ountry)	
Date of deposit	March 13, 1997	Accession Number 97957	
C. ADDITIO	NAL INDICATIONS (leave blank if not app	dicable) This information is continued on an additional sheet	
E CEDADAT	E FUDNISHING OF INDICATIONS		
	E FURNISHING OF INDICATIONS (isted below will be submitted to the Internation)	leave blank if not applicable) Onal Bureau later (specify the general nature of the indications, e.g., "Accessive and the indications of the indication of the indications of the indication of the indi	
	For receiving Office use only	For International Bureau use only	
This sheet	was received with the international application	This sheet was received by the International Bureau on:	
Authorized officer	nia L blu	Authorized officer	

Applicant's or agent's file reference number	Z004PCT	International application	Unassigned		

INDICATIONS RELATING TO A DEPOSITED MICROORGANISM

A. The indications made below relate to the microorganism referred to in the description on page 84 , line N/A	
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet
Name of depositary institution American Type Culture Collection	
Address of depositary institution (including postal code and considerable 10801 University Boulevard Manassas, Virginia 20110-2209 United States of America	ountry)
Date of deposit May 22, 1997	Accession Number 209073
C. ADDITIONAL INDICATIONS (leave blank if not applicable) This information is continued on an additional sheet	
D. DESIGNATED STATES FOR WHICH INDICATE	TIONS ARE MADE (If the indications are not for all designated States)
E. SEPARATE FURNISHING OF INDICATIONS (leave blank if not applicable) The indications listed below will be submitted to the International Bureau later (specify the general nature of the indications, e.g., "Accession	
Number of Deposit")	onal Durcau later (specify the general nature of the indications, e.g., "Accession
For receiving Office use only	For International Bureau use only
This sheet was received with the international application Authorized officer	This sheet was received by the International Bureau on: Authorized officer
Vuginia Llily	11

10

15

20

25

What Is Claimed Is:

- 1. An isolated nucleic acid molecule comprising a polynucleotide having a nucleotide sequence at least 95% identical to a sequence selected from the group consisting of:
- (a) a polynucleotide fragment of SEQ ID NO:X or a polynucleotide fragment of the cDNA sequence included in ATCC Deposit No:Z, which is hybridizable to SEQ ID NO:X;
- (b) a polynucleotide encoding a polypeptide fragment of SEQ ID NO:Y or a polypeptide fragment encoded by the cDNA sequence included in ATCC Deposit No:Z, which is hybridizable to SEQ ID NO:X;
- (c) a polynucleotide encoding a polypeptide domain of SEQ ID NO:Y or a polypeptide domain encoded by the cDNA sequence included in ATCC Deposit No:Z, which is hybridizable to SEQ ID NO:X;
- (d) a polynucleotide encoding a polypeptide epitope of SEQ ID NO:Y or a polypeptide epitope encoded by the cDNA sequence included in ATCC Deposit No:Z, which is hybridizable to SEQ ID NO:X;
- (e) a polynucleotide encoding a polypeptide of SEQ ID NO:Y or the cDNA sequence included in ATCC Deposit No:Z, which is hybridizable to SEQ ID NO:X, having biological activity;
 - (f) a polynucleotide which is a variant of SEQ ID NO:X;
 - (g) a polynucleotide which is an allelic variant of SEQ ID NO:X;
 - (h) a polynucleotide which encodes a species homologue of the SEQ ID NO:Y;
- (i) a polynucleotide capable of hybridizing under stringent conditions to any one of the polynucleotides specified in (a)-(h), wherein said polynucleotide does not hybridize under stringent conditions to a nucleic acid molecule having a nucleotide sequence of only A residues or of only T residues.
- 2. The isolated nucleic acid molecule of claim 1, wherein the polynucleotide fragment comprises a nucleotide sequence encoding a secreted protein.
- 3. The isolated nucleic acid molecule of claim 1, wherein the polynucleotide fragment comprises a nucleotide sequence encoding the sequence identified as SEQ ID NO:Y or the polypeptide encoded by the cDNA sequence included in ATCC Deposit No:Z, which is hybridizable to SEQ ID NO:X.

4. The isolated nucleic acid molecule of claim 1, wherein the polynucleotide fragment comprises the entire nucleotide sequence of SEQ ID NO:X or the cDNA sequence included in ATCC Deposit No:Z, which is hybridizable to SEQ ID NO:X.

5

- 5. The isolated nucleic acid molecule of claim 2, wherein the nucleotide sequence comprises sequential nucleotide deletions from either the C-terminus or the N-terminus.
- 10 6. The isolated nucleic acid molecule of claim 3, wherein the nucleotide sequence comprises sequential nucleotide deletions from either the C-terminus or the N-terminus.
- 7. A recombinant vector comprising the isolated nucleic acid molecule of claim 1.
 - 8. A method of making a recombinant host cell comprising the isolated nucleic acid molecule of claim 1.
- 20 9. A recombinant host cell produced by the method of claim 8.
 - 10. The recombinant host cell of claim 9 comprising vector sequences.
- 11. An isolated polypeptide comprising an amino acid sequence at least 95% identical to a sequence selected from the group consisting of:
 - (a) a polypeptide fragment of SEQ ID NO:Y or the encoded sequence included in ATCC Deposit No:Z;
 - (b) a polypeptide fragment of SEQ ID NO:Y or the encoded sequence included in ATCC Deposit No:Z, having biological activity;
 - (c) a polypeptide domain of SEQ ID NO:Y or the encoded sequence included in ATCC Deposit No:Z;
 - (d) a polypeptide epitope of SEQ ID NO:Y or the encoded sequence included in ATCC Deposit No:Z;
- (e) a secreted form of SEQ ID NO:Y or the encoded sequence included inATCC Deposit No:Z;
 - (f) a full length protein of SEQ ID NO:Y or the encoded sequence included in ATCC Deposit No:Z;

20

- (g) a variant of SEQ ID NO:Y;
- (h) an allelic variant of SEQ ID NO:Y; or
- (i) a species homologue of the SEQ ID NO:Y.
- The isolated polypeptide of claim 11, wherein the secreted form or the
 full length protein comprises sequential amino acid deletions from either the C-terminus or the N-terminus.
 - 13. An isolated antibody that binds specifically to the isolated polypeptide of claim 11.
 - 14. A recombinant host cell that expresses the isolated polypeptide of claim 11.
 - 15. A method of making an isolated polypeptide comprising:
- 15 (a) culturing the recombinant host cell of claim 14 under conditions such that said polypeptide is expressed; and
 - (b) recovering said polypeptide.
 - 16. The polypeptide produced by claim 15.
 - 17. A method for preventing, treating, or ameliorating a medical condition, comprising administering to a mammalian subject a therapeutically effective amount of the polypeptide of claim 11 or the polynucleotide of claim 1.
- 25 18. A method of diagnosing a pathological condition or a susceptibility to a pathological condition in a subject comprising:
 - (a) determining the presence or absence of a mutation in the polynucleotide of claim 1; and
- (b) diagnosing a pathological condition or a susceptibility to a pathologicalcondition based on the presence or absence of said mutation.
 - 19. A method of diagnosing a pathological condition or a susceptibility to a pathological condition in a subject comprising:
 - (a) determining the presence or amount of expression of the polypeptide of claim 11 in a biological sample; and
 - (b) diagnosing a pathological condition or a susceptibility to a pathological condition based on the presence or amount of expression of the polypeptide.

1)

- 20. A method for identifying a binding partner to the polypeptide of claim 11 comprising:
 - (a) contacting the polypeptide of claim 11 with a binding partner; and
- 5 (b) determining whether the binding partner effects an activity of the polypeptide.
 - 21. The gene corresponding to the cDNA sequence of SEQ ID NO:Y.
- 10 22. A method of identifying an activity in a biological assay, wherein the method comprises:
 - (a) expressing SEQ ID NO:X in a cell;
 - (b) isolating the supernatant;
 - (c) detecting an activity in a biological assay; and
- 15 (d) identifying the protein in the supernatant having the activity.
 - 23. The product produced by the method of claim 22.