From-

Bioorganic & Medicinal Chandstry, Vol. 2, No. 5, pp. 357-370, 1994 Copyright © 1994 Hasvier Sciones Ltd Printed in Great Brizon. All tights reserved 0958-0896/94 \$7.00 + .00

0968-0896(94)E0022-T

7346222928

Rational Design of High Affinity Tachykinin NK1 Receptor ada imograda A

Steven Boyle, Steven Guard, Michael Higginborom, David C. Horwell, William Howson, Alexander T. McKnight, Kevan Martin, Martyn C. Pritchard, John O'Toole, Jenny Raphy, David C. Rees, Edward Roberts, Keith J. Watling, Geoffery N. Woodruff, John Hughes Parke-Davis Neuroscience Research Centre, Addenbrookes Hospital Site, Hills Road, Cambridge CB2 2QB U.K.

Abstract—The rational design of a non-populat tachyltinin NK, receptor camponist. [(2-benzofuran)-CH2CCO]-(R)-c-MeTrp-(S)-NHCH(CH3)Ph (28, PD 154075) is described. Compound 25 has a Ki = 9 and 0.35 nM for the NK1 receptor blading site in guinea-pig corebral corten membranes and human IMO, cells respectively (using [125]] Bolton-Hunter-SP at the radioligand). It is a potent autagonist in vitro where it antagonises the contractions mediated by SFOMe in the guinea-pig ileum (Eg = 0 3 nM). Compound 25 is active in vivo in the guinea-pig plasmo extravasation model, where it is able to block the SPOMo-induced protein plasma extravaration (monitored by Evans Blue) in the bladder with an ID50 of 0.02 mg kg 1 iv.

അന്റെയുന്നിക്കുന്നതി

Substance P (1) is the best known of the mammalian tachylimins and has been shown to display preferential affinity for the NK, rachylvinin receptor. Substance P and the other tachykinins are suggested to play a major role in a variety of biological processes including pain transmission, vasodilation, broncheconstriction, activation of the immune system and neurogenic inflammation 2

A number of high affinity, non-peptide NK1 tachyldnin receptor antagonists have been identified primarily as a result of the acreening of large compound collections using high throughput radioligand binding assays,3 these include the following: the quinuclidine derivative, CP-95345 (2),30 the piperidine derivative, CP-99994, 36 the perhydroisoindolone derivative, RP-67580 (3), 3c the steroid derivative, WIN 51708 (6), 3d the piperidine derivative, SR-140333,3c and a tryptophan derivative.3f

FK888 (5), a di-peptide with high affinity for the NK1 receptor was rationally designed from the octapeptide [D-Pro, 4 D-Trp, 7,9,10 Fac11]SP(4-11).4 Schilling et al. have described a series of piperidines as NK1 receptor antagonists derived from a peptide/template approach.5

Here we describe the rational design of low molecular weight, non-peptide NK1 receptor antagonists. Our approach is similar to that reported by Horwell which led to the first rationally designed non-peptide antagonist at cholecystokinin receptors. This strategy? has been further refined during the course of this work and is outlined in Scheme I.

Scheme L. A stressey for peptoid design.

Chemistry

The structures of the compounds prepared can be found in Tables 1 and 2 together with their binding affinity for the tachykinin NKI receptor (guinea-pig cerebral cortex membranes).

S. BOYLE & al.

Table 1. NK1 tochykimin receptor binding affinities: standards and deletions

From-

Compound No	Structure	NK ₁ receptor binding affinity, K ₁ (nM)
1	Substance P:	0.05 (-0 01, +0 01)
	ArgProLyaProGinGinPhaPhaGiyLauMeaNE	L*
. 2	racemic CP-96345	1.4
3	RP-67580	130 (-15, +17)
4.	WIN 51708	>10,000
5	FK 888	6.4 (-1.5, +1 8)
	46	
6	Z-TrpPheNH,	4200 (-480, +550)
7	CH,OCO-TrpPheNH,	>10,000
8	TrpPheNH ₂	>10,000
9	dosNH ₂ -TrpPheNH ₂	>10,000
10a	Z-TrpNH(CH ₂),Ph	1400 (-460, 690)
10P	Z-Tonhch,Pb	750 (-180, +230)
10e	Z-Tonneh	>10,000

All aminoscids have (5)-stereochemistry unless indicated.

*Ki values are given as geometric means (-, +sem) from at least 3 separate experiments using [125]]-BHSP in the Guinea-pig cerebral cortex assay.

The compounds 1-5 where purchased from commercial sources or prepared as previously reported. The dipeptide 6 was prepared as described by Boyle et al., while the methylurethane analogue 7 was obtained by reacting (S)-tryptophyl-(S)-phenylalaninamide (8)7 with methylchloroformate. The des-amino analogue of 8, compound 9, was synthesized by the condensation of 3indolepropionic acid with (S)-phenylalaninamide. The Cterminal deleted derivatives of 6, compounds 10a-c, were prepared by the reaction of N-(benzyloxycarbonyl)-(U)tryptophan pentafluorophenyl ester (U = S) with the appropriate primary amine, while the enantiomer of 10h, compound 10d, was obtained in a similar manner from (U)-tryptophan (U = R), see Scheme II.

The N-terminal α-methylbenzyl analogues of 10b, compounds 11a-d, were synthesized by the method shown in Scheme III. N-[(9H-Finoren-9-ylmethoxy)carbonyi]-(V)tryptophan pentafluorophenyl ester (V = R or S) were treated with benzylamine to give the amides 12 (V = R or S). Deprotection of the Fmoc group furnished the amines 13 (V = R or S) which were reacted with (W)-1phenethyloxychloroformate (W = R or S) to give the four isomers 11a-d.

The preparation of the (R)-N-Me-Trp derivative 14 was more complex (Scheme IV): (R)-tryptophan methyl ester was treated with 4-tolnenesulphonyl chloride, followed by KOH and MeI to give the N-methylated analogue 15. The acid 15 was subsequently activated as the pentafluorophenyl ester and reacted with benzylamine to give amide 16. The 4-tolnenesniphonyl group of 16 was then removed with sodium naphthalenide to give the secondary amine 17, which was treated with benzylchloroformate resulting in the desired compound 14. The (S)-N-Me-Trp derivative 18 was obtained by reacting the pentafluorophenyl ester of N-methyl-N-(benzyloxycarbonyi)-(S)-tryptophan7 with benzylamine.

The \alpha-Me-Trp derivatives, 19a and b, were obtained by reacting (X)- α -methyl tryptophan methyl ester (X = R or S)9 with benzylchloroformate to give the urethanes 20 (X = R or S). Hydrolysis of the methyl ester followed by activation with DCCI and pentafluorophenol furnished the

Tachykinia NK₁ receptor amagonists

Table 2. NK, tachykinin receptor binding affinities: conformationally restricted analogues

						٤.				
Compound	Site of mathyladem)		Statuschemistry		alstry	NK1 masper
No	R'	R,	K,	R	R ^s		3	3	5	Binding affinity
										K (1)()
106	H	H	н	H	н			5	-	750 (-180, +230)
10d	H	H	н	R	н			R	•	
11=	CH,	н	н	н	н		R	R		1000(-260, +350)
1115	CH		н	н	н		S	R	•	550
110	CH,		н	н	н		_		-	10,000
114	•						R	8	-	E50
14	CH,		н	H	H		S	\$	•	. 1600
	H	CH,		н	H		-	R	•	2300
18	H	CH		H	H		-	3	•	120 (-25, +31)
19a	H	H	CH,	H	H		-	R	-	780
195	Ħ	H	CH,	H	Ħ			s	•	>10,000
22a	H	H	H	CH,	H		•	R		1400
23 b	н	H	H	CH,	H		•	8		170
23a	н	H	H	н	CH,		-	R	R	2500
3 36	н	H	н	н	CH,			5	R	1000
23c	н	H	н	н	CH,		•	R	S	
234	н	н	н	н	CH,				-	58
24a	H	H	CH,		-		-	5	S	240
34b			-	H	CH,		•	R	R	1400
	H	H	CH,	H	CH,		-	5	R	10,000
34c	H	H	CH,		CH,		•	R	\$	35 (-5, +6)
244	Н	H	CН,	H	CH,		•	5	S	530
25			•					-		11
28			-					-		9

bee footnote b, Table 1.

pentafluorophenyl esters 21 (X = R or S). Treatment of 21 (X=R or S) with benzylamine gave the amides 19a and b (see Scheme V).

The N-Me-benzamide analogues, 22a and b, were prepared by reacting N-(benzyloxycarbonyl)-(U)-tryptophan pentafluorophenyl ester (U = R or S) with N-methylbenzylamine (Scheme II).

The C-terminal α -methylbenzyl analogues of 10b, compounds 23a-d, were synthesized by treating the pentafluorophenyl ester of N-(benzyloxycarbonyl)-(U)-tryptophan (U = R or S) with $(Y)-\alpha$ -methyl-benzylamine (Y = R or S) to furnish the four desired stereoisomers (Scheme II).

The dimethylated analogues of 10b, compounds 24a-d, were obtained by treatment of the pentafluorophenyl esters

21(X = R or S) with (Y)- α -methyl-benzylamine (Y = R or S) to give the four desired stereoisomers (Scheme V).

Compound 25, was prepared from 24c by removal of the Z-protecting group to give the amine 26, and subsequent reaction with the appropriate mixed carbonate 27 (Scheme V). Compound 28 was obtained in a similar manner from the mixed carbonate 29.

Results and Discussions

The results of NK₁ receptor binding (guinea-pig cerebral cortex membranes, [¹²⁵I]- Bolton-Hunter-SP) are collated in Tables 1 and 2, together with those obtained for reference compounds 1-5.

S. BOYLE et al.

a: NH₂(CH₂)₂Ph, ErOAc; b: (Y)-NH₂CH(CH₃)Ph, ErOAc; c: NH(CH₃)CH₂Ph, ErOAc

Scheme II. Synthetic scheme for compounds 10m-d; 22a,b; 23a-d.

a: NH₂CH₂Ph, BrOAc; b: piperidine/DMF; e: Ph-(W)-CH(CH₂)OCO₂(4-NO₂-C_cH₂), DMF Scheme III. Symbolic scheme for compounds 11s-d.

Tachykinin NK₁ receptor antagonists

a; i. TsCl, Pyridine, ii. KOH, Mel, MeOH, H2O; b: i. DCCl, PfpOH, BtOAc, ii. NH2CH2Ph; c: Sodinim Naphthalenide, DME; d: PhCH2OCOCl, Ne2CO5, dioxane, H2O

Scheme IV. Synthetic scheme for compound 14.

The protected dipeptide, Z-TrpPheNH₂ (6), has previously been shown to have micromolar affinity for the NK_2 receptor binding sites present in hamster urinary bladder membranes, but no significant affinity for the NK_1 and NK_3 receptor binding sites present in rat cerebral contex membranes. 7 Interestingly compound 6 also has micromolar affinity for the guinea-pig cerebral contex NK_1 receptor $(K_1 = 4200 \text{ nM})$ and was thus selected as a chemical lead for the search for a high affinity NK_1 receptor ligand using the guinea-pig NK, receptor assay.

Explore spatial arrangement of the amino acid side-chains and N- and C-terminus groups

a) Deletions. Having identified the micromolar affinity dipeptide lead 6 the next step in the strategy (Scheme I) is to explore the spatial arrangement of the amino acid sidechains and N- and C-terminus groups; the first part of this step involves a series of deletions. Preparation and evaluation of analogues where the N-terminal moiety or part of it were deleted led to a significant loss of affinity $(K_i > 10,000 \text{ nM})$ in all cases (compounds 7-9). Interestingly, removal of the C-terminal amide to give 10a $(K_i = 1400 \text{ nM})$ led to an improvement in affinity which was optimized in this series (compounds 10a-c) by the deletion of a methylene to give 10b $(K_i = 750 \text{ nM})$.

Compound 10b is a diprotected amino-acid derivative, i.e. a non-peptide and shows no significant affinity (K;> 10,000 nM) for the NK₂ and NK₃ receptors present in hamster urinary bladder and rat cerebral cortex membranes respectively. ¹⁰

b) Conformationally restricted analogues. The second part of this step in our strategy (Scheme I) involved preparing conformationally restrained analogues of the low affinity lead 10b. The rationale for this is that compound 10b has eight bonds which determine its conformation and are expected to be freely rotating under normal blood temperature conditions. The high conformational entropy associated with these degrees of freedom is expected to make a negative contribution to the overall binding affinity of 10b. 11

To introduce conformational restraint into Z-(S)-Trp-NHCH₂Ph (10b) a single methyl group was incorporated at key positions along the 'peptide' backbone. A methyl group was selected for the following reasons. Firstly, it provides a balance between decreasing conformational entropy sufficient to change the receptor binding affinity whilst still allowing sufficient conformational flexibility for the ligand to adopt the conformation(s) required for molecular recognition. Introduction of a single methyl

From-

362

e: PhCH₂OCOC1, The, NBt₃; b: i. LiOH, The, M6OH, H₂O, ii. DCC1, PipOH, BOAc; e: NH₂CH₂Ph, BoAc; d: (Y)-NH₂CH(CH₂)Ph, BiOAc; e: 24c, H₂, Pd(OH)₂, EiOH; f: 27 or 29, DMAP, DMF

Scheme V. Synthetic scheme for compounds 19a,b; 24a-d; 25; 28.

group into the C- α -position of related Trp derivatives has previously been shown to increase their CCK-B receptor binding by 3.5 kcal mol⁻¹ ($\Delta K_i > 100$ -fold). This significant effect of methylation may be ascribed to the reduction in conformational entropy between the Trp and the corresponding α -MeTrp derivative. Secondly, the incorporation of methyl groups into small peptides/protected amino acid derivatives confers resistance to enzymatic hydrolysis. Thirdly, compared to its steric effects, a methyl group in this context has relatively little effect on lipophilicity, molecular mass or electronic properties. Fourthly, even if the methyl group introduces unfavourable steric interactions leading to a decreased binding affinity, then alternative conformational restrictions leading to improved affinity can be rationally designed. 14

The initial synthetic targets were the monomethylated analogues (11z-23d). The NK₁ receptor binding data shown in Table 2 indicates that C-methylation at the N-truinal beneylic (\mathbb{R}^1 , 11z-d) or \mathbb{C} - α (\mathbb{R}^3 , 19a and b) osition has no significant effect or is detrimental.

However, when compared with the non-methylated compound 10b ($K_i = 750$ nM), increases in the binding affinity are observed after N-methylation of the carbonate (18, $K_i = 120$ nM), or amide (22b, $K_i = 170$ nM), or C-methylation of the C-terminal benzylic (R⁵) position (23c, $K_i = 58$ nM) although the Trp-stareochemistry is reversed in this case. Thus, the introduction of a single methyl group increases the NK₁ receptor binding affinity 13-fold compared to the non-methylated derivative 10b.

A second methyl group was then incorporated into the backbone of the molecule. The most active members of the mono-methyl series were selected for evaluation. In only compound 24c ($K_1=35$ nM) was a further enhancement in the affinity achieved. This compound has a methyl group appended and (R)-stereochemistry at the C- α (R^3) position and a second methyl group attached and (S)-stereochemistry at the C-terminus benzylic (R^5) position. The other stereoisomers all possess lower affinity. In particular its enamiomer (24b, $K_1=10,000$ nM) has 300-fold lower affinity for the NK₁ receptor.

N-terminus optimization

The affinity of 24c $(K_i = 35 \text{ nM})$ was improved by replacing the N-terminus phenyl with a 2-naphthalene molety to give compound 25 ($K_i = 11$ nM). Replacement of the 2-naphthalene with the less lipophilic 2-beazufuran moiety to give 28 ($K_i = 9$ nM) led to a further increase in affinity. Compound 28 (PD 154075, Figure 1) contains no peptide amide bonds and is therefore a non-peptide. Compound 28 is selective for the NK1 receptor (NK2 or NK₃, $K_1 > 10,000$ nM, hamster urinary bladder and guineapig cortex binding assays respectively 10), binding to the NK₁ receptor present on human IM9 cells with a $K_1 = 0.35$ nM. Compound 28 is a powerful tachykinin NK₁ receptor antagonist in vitro in the guinea-pig ileum bioassay (KB = 0.3 nM). It is also active in vivo in the guinea-pig plasma extravasation model, 15 where it is able to block the SPOMe-induced protein plasma extravasation in the bladder in a dose dependent manner ($1D_{50} = 0.02 \text{ mg kg}^{-1} \text{ iv}$).

Compound 25

Compound 28

Figure 1. Chemical structure of compounds 25 and 28.

Conclusion

Compound 28 has been identified as a non-peptide, low molecular weight, high affinity, selective NK₁ receptor antagonist. Three key steps in the design strategy which led to this compound are i) the identification of a dipeptide ligand with micromolar affinity; ii) the simplification of the chemical structure of this lead to give a conformationally flexible micromolar affinity ligand, and iii) the incorporation of conformational restraint by appending methyl groups to the peptide 'backbone' to enhance receptor affinity. This ligand based design strategy which has previously led to CCK_A, CCK_B and NK₂ antagonists (see reference 7 for example) and here has been used for the development of NK₁ antagonists, may have general application for the design of small molecule, non-peptide, receptor antagonists.

Experimental Section

Biological assays

(1) NK_1 receptor binding assays. Guinea-pig cerebral cornex membranes. Compounds were tested for affinity at NK_1 tachykinin binding sites by measurement of [125] Bolton-Hunter-SP (0.1 nM) binding to NK_1 sites in guinea-pig cerebral cortex membranes in the presence of 1 μ M senktide (to occlude binding to NK_3 sites). Non-specific binding was defined with 1 μ M [Sar⁹, Met (O₂)¹¹] SP(1-11), see reference 10 for more details.

Human IM9 cells. IM9 cells were grown in RPMI 1640 culture medium supplemented with 10% foetal calf serum and 2 mM gluramine and maintained under an atmosphere of 5 % CO2. Cells were harvested for experiments by centrifugation at 1000 g for 3 min. Pelleted cells were washed once by resuspension into assay buffer (50 mM Tris HCl pH 7.4, 3 mM MnCl₂, 0.02 % BSA, 40 µg mL¹ bacitracin, 2 µg mL¹ chymostatin, 2 µM phosphoramidon, 4 µg mL⁻¹ leupeptin) and repeating the centrifugation step, before resuspending at a concentration of 2.5×10^6 cells mL⁻¹ assay buffer. Cells (200 µL) were incubated with [125] Bolton-Hunter Substance P (0.05-0.1 nM) in the presence and absence of varying concentrations of test compounds for 50 min at 21°C. Non-specific binding (10 % of the total binding observed under these conditions) was defined by 1 μ M [Sar⁹, Met (O₂)¹¹] SP(1-11). Reactions were terminated by rapid filtration under vacuum onto GF\C filters presoaked in 0.2 % PE1 for 1-2 h, using a Brandel cell harvester. Filters were washed with 6 x 1 mL with ice-cold Tris HCI (50 mM, pH 7.4), and radioactivity bound determined using a gamma counter. Results were analysed using computerized curve-fitting procedures in RS1 or Inplot.

- (2) NK_2 and NK_3 receptor binding assays. These were performed as previously described. 10
- (3) Guinea-pig isolated ileum. Tissue preparation. Segments of ileum from 300-400 g male Dunkin-Hartley guinea-pigs were cleared of their contents and mounted on a glass pipette of maximum outer diameter 5 mm. The longitudinal muscle layer of the ileum was carefully stripped off using moist cotton wool and the remainder discarded. Preparations of the longitudinal muscle approximately 25 mm in length, were set up under a resting tension of 1 gf (9.8 mN) for isometric recording of smooth muscle contraction (Grass FT.03C forcedisplacement transducer, Graphtec MKVD Linearcorder) in 3 mL silanized-glass organ baths, containing a modified Krebs-Henseleit solution of the following composition (mM): NaCl, 118; KCl, 5.9; MgSO₄, 1.2; CaCl₂, 2.5; NaH₂PO₄, 1.2; NaHCO₃, 25.5; glucose, 11; indomethacin, 0.005; atropine, 0.01; mepyramine, 0.01; methysergide, 0.01. The solution was maintained at 37 °C and was continuously gassed with a mixture of oxygen/carbon dioxide: 95/5.

S. BOYLE et al.

Experimental procedure. Non-cumulative concentrationresponse curves to the selective NK; agonist [Met-O-Me¹¹]substance P (substance P-methyl ester, SPOMe) were constructed by addition of increasing doses (\$10 \mu L) to the organ bath. To assess the affect of putative antagonists, concentration-response curves to the agonist were obtained in the absence, and then the presence of known concentrations of the presumptive antagonist. Contractile responses to SPOMe were expressed as a percentage of the maximum response for the one preparation, arld concentration-response data fitted by a least-squares iterative method in Implot (Graphpad Software Inc.) to the logistic function $R = 100 x^n/(EC_{50}^n + x^n)$, where R is the response, x is the agonist concentration, EC50 is the 'location parameter' for the curve (approximates to the value for EC50, the concentration of agonist producing 50 % of the maximum response), and n is the 'slope factor' of the curve. The effect of the antagonist was observed as a rightward shift of the log(concentration) - response curve, and generally this was quantified in terms of the 'dose ratio' (DR) between [EC50]A and [EC50]C, these parameters being the measures made in the presence and absence of antagonist, respectively. By repeating estimates for DR using at least three observations at any one concentration of antagonist, and not less than three concentrations of antagonist, the affinity of the antagonist was derived by Schild analysis by plotting log(DR-I) against -log(antagonist]. 16 The plots were analysed by regression analysis, and if the slope of the line of best fit was not significantly different from unity, the intercept on the abscissa from the regression analysis with the slope constrained to unity was taken as the negative logarithm of KB (pKB), the estimate of the antagonist dissociation constant.

(4) Extravasation of plasma protein in the guinea-pig. 15
Preparation. Male Dunkin-Hartley guinea-pigs (250-350
g) were anaethetized with equithesin (35 mL kg⁻¹ ip), and
following tracheostomy were respired artificially with
room air. The left jugular vein was cannulated for drug
administration; body temperature was maintained at 37°C
using a homeothermic blanket.

Experimental procedure. Evans Blue dye (30 mg kg⁻¹ iv) was administered 5 min prior to administration of antagonist or vehicle (DMSO). A further 5 min elapsed before administration of the NK1 agonist SPOMe (or vehicle) at a dose of 3 nmol kg-1 iv, and 5 min later the animal was killed and the urinary bladder, and other tissues were removed. Tissues were roughly chopped and treated for extraction of Evans Blue bound to plasma protein by incubation overnight at 60°C in 4 ml formamide. Extracts were centrifuged at 3000 r.p.m. for 15 min and the concentration of dye in the supernatant quantified by absorption spectrometry at 620 nm, against a standard curve of Evans Blue in the range 0-10 µg mL-1, Animals treated with vehicle alone were used to obtain values for basal levels of extravasation of bound dye (and to account for residual dye in blood vessels in the tissue), and the basal value was subtracted from the response obtained in groups (n≥4) given SPOMe. The activity of the antagonist was quantified in terms of the estimated value for ID50

obtained from the best fit to the dose-response data for block of the SPOMe-evoked extravasation response, using an iterative (least-squares) curve-fitting programme (InPlot) with the logistic function: $R = \text{basal} + (\text{max-basal})/\{1+(x/ID_{50})^n\}$, where max is the effect with SPOMe alone, basal is the response (R) in the vehicle-treated animal, x is the dose of antagonist, and n is the slope factor.

Chemistry

Melting points were determined with a Mettler FP80 or a Reichert Thermovar hotstage apparams. Proton NMR spectra were recorded on a Bruker AM300 spectrometer; chemical shifts were recorded in ppm downfield from tetramethylsilane. IR spectra were recorded with the compound either neat (oils and liquids) or as a Nujol mall on a sodium chloride disc on a Perkin-Elmer 1750 Fourier transform spectrophotometer. Optical rotations were determined with a Perkin-Elmer 241 polarimeter. Mass spectra were recorded with a Finnegan 4500 or VG Analytical ZAB-E. Elemental analyses indicated by the symbols of the elements were within ±0.4 % of theoretical values and were determined by Medac Ltd, Uxbridge, U.K. Normal phase silica gel used for chromatography was Merck No. 9385 (230-400 mesh); reverse-phase silica gel used was Lichroprep RP-18 (230-400 mesh both were supplied by E. Merck, A.G., Darmstadt, Germany). Anhydrous solvents were purchased in septum-capped bottles from Fluka Chemicals Ltd, Glossop, U.K. and dispensed by syringe. All other chemicals were purchased from Aldrich Chemical Co. Ltd, Gillingham, U.K. and were used without further purification, unless stated.

N-(Methoxycarbonyl) - (S) - tryptophyl - (S) - phenylalaninamide (7). Methylchloroformate (0.15 mL, 2 mmol) in dioxane (10 mL) was added to a stirred suspension of (5)tryptophyl-(S)-phenylalaninamide (8,70.7 g. 2 mmol) and 10 % Na₂CO₃ solution (60 mL) and dioxane (15 mL). The mixture was stirred at room temperature for 24 h and the solvent removed in vacuo to give a white solid. This was suspended in H₂O (150 mL) and extracted with CH₂Cl₂. The organic extracts were dried (MgSO4) and the solvent removed in vacuo to give crude product. This was purified by flash chromatography on silica cluting with a mixture of CH₂Cl₂ /MeOH (95:5) to give 7 as a white solid (0.4 g, 49 %) mp 193.1~193.9 °C; ¹H NMR (DMSO-d₆) 8 2.78-3.05 (4 H, m, 2 x β-CH₂), 3.44 (3H, s, CH₃), 4.20 (1H, m, α-H), 4.47 (1H, m, α-H), 6.94-7.95 (14H, m, Ath, CONH2, CONH, OCONH), 10.78 (1H, s, indoleNH); IR 3307, 1661 cm⁻¹; MS m/z (FAB) 409 (M+H), Anal. C22H24N4O4 0.1 H2O (C,H,N)

(S)-N-[2-Amino-2-oxo-1-(phenylmethyl)ethyl]-1H-indole-3-propanamide (9). 1H-Indole-3-propionic acid (368 mg, 2 mmol), ethylchloroformate (0.17 mL, 2 mmol) and triethylamine (0.28 mL, 2 mmol) were stirred in THF (10 mL) at room temperature for 15 min. Then (S)-phenylalaninamide (220 mg, 1.3 mmol) was added and the reaction mixture stirred for 1 h. Water was then added and the precipitate filtered and dried to give 9 as a white solid (500 mg, 75 %), mp 188.5-190.5 °C; ¹H NMR (DMSO-

 d_6) δ 2.42 (2H, dd, 7.0, 8.5 Hz, CH₂CO), 2.72–2.80 (3H, m, CH₂, CH¹HCH₂CO), 2.99 (1H, dd, 13.6, 4.8 Hz, CH¹HCH₂CO), 4.48 (1H, m, α-H), 6.94–7.07 (4H, m, ArH, CONH), 7.16–7.27 (3H, m, ArH), 7.31 (1H), d, 8.1 Hz, ArH), 7.41 (1H, d, 13.7 Hz, ArH), 8.00 (1H, d, 8.6 Hz, ArH), 10.70 (1H, s, indoleNH); IR 1633 cm⁻¹; MS m/z (FAB) 336 (M+H); $(α]_D$ -16.7° (MeOH, 20°C, c = 0.09); Anal. $C_{20}H_{21}N_3O_2$ (C,H,N).

Carbamic acid, [1-(1H-indol-3-ylmethyl)-2-oxo-2-[(2phenylethyl)amino]ethyl]-phenylmethyl ester, (S) 10a. To a stirred solution of N-[(phenylmethoxy)carbonyl]-(S)tryptophan (15 g, 44.3 mmol) and pentafluorophenol (8.97 g, 48.8 mmol) in CH₂Cl₂ (250 mL) was added 1-(3dimethylaminopropyl)-3-ethyl-carbodiimide hydrochloride (9.35 g, 28.8 mmol). The solution was stirred for 15 h at room temperature and the mixture then washed with H₂O, 10 % NaHCO3 solution, dried (MgSO4), filtered and the solvent removed in vacuo. The resulting yellow oil was triturated with pet.-ether (40-60 °C boiling range) to give the crude product as a white solid (21.25 g 42 mmol), which was used without further purification; 1H NMR (CDC1₃) 8 3.38-3.56 (2H, m, β-CH₂), 5.11 (2H, m, CH₂OCO), 5.26 (1H, m, α-H), 7.08-7.39 (10H, m, ArH, OCONH), 7.59 (1H, d, 8 Hz, ArH), 8.10 (1H, 8, indole

Phenylethylamine (24 mg, 0.2 mmol) dissolved in EtOAc (2 mL) was added dropwise to a stirred solution of N. [(phenylmethoxy)carbonyl)-(5)-tryptophyl-pentafluorophenyl ester (103 mg, 0.2 mmol) in EtOAc (5 mL). The reaction mixture was stirred for 18 h at room temperature, the solvent was removed in vacuo and the residue triturated with Et2O to give the product 10m as a white solid (77 mg, 0.17 mmol); mp 149-151 °C; ¹H NMR (CDCl₃) δ 2.44-2.59 (2H, m, CONHCH₂), 3.07-3.14 (1H, m, β-CH₂),3.26-3.49 (3H, m, β-CH₂, CH₂Ar), 4.40 (1H, m, oz-H), 5.09 (2H, s, CH₂OCO), 5.41 (1H, m, OCONH), 5.53 (1H, m, CONH), 6.88-6.92 (4H, m, ArH), 7.12-7.36 (9H, m, ArH), 7.69 (1H, m, ArH), 7.97 (1H, m, indole NH); IR 3305, 1707, 1658 cm-1; MS m/z (FAB) 442 (M+H); $[\alpha]_D$ -5.5 ° (MeOH, 20 °C, c = 0.35); Anal. C₂₇H₂₇N₃O₃ 0.25H₂O (C,H,N).

Carbamic acid, [1-(1H-indol-3-ylmethyl)-2-0x0-2-(phenylamino)ethyl]-, phenylmethyl ester. (S) 10e. Aniline (20 mg, 0.22 mmol) dissolved in EtOAc (2 mL)

was added dropwise to a stirred solution of N-[(phenylmethoxy) carbonyl]-(S)-tryptophyl-pentafluorophenyl ester (103 mg, 0.2 mmol) in EtOAc (5 mL). The reaction mixture was stirred at room temperature for 18 b; the resulting yellow precipitate was then recrystallized from EtOAc to give the product as a white solid (82 mg, 0.16 mmol), mp 157-158 °C; ¹H NMR (DMSO-d₆) δ 2.98-3.05 (1H, m, β -CH₂), 3.13-3.19 (1H, m, β -CH₂), 4.48 (1H, m, α -H), 4.98 (2H, s, CH₂OCO), 6.95-7.33 (12H, m, AtH, OCONH), 7.53-7.69 (4H, m, AtH), 10.10 (1H, s, CONH), 10.80 (1H, s, indole NH); IR 3307, 1670 cm⁻¹; MS m/z (FAB) 414 (M+H), 436 (M+Na); $[\alpha]_b$ +39.2 ° (MeOH, 20 °C, c = 0.24); Anal. $C_{25}H_{23}N_3O_3$ (C,H,N).

Carbanic acid, [1-(1H-indol-3-ylmethyl)-2-oxo-2-[(phenylmethyl)amino]ethyl]-, phenylmethyl ester, (R) 10d. Compound 10d was prepared in a similar manner to 10a utilizing benzylamine instead of phenylethylamine, and N-[phenylmethoxycarbonyl]-(R)-tryptophan. The crude material was recrystallized from BtOAc to yield 10d as a white solid (59 mg, 0.14 mmol), mp 165–167 °C; ¹H NMR (DMSO-d6) 8 2.88-3.20 (2H, m, β -CH₂), 4.24-4.41 (3H, m, α -H, CH₂N), 4.98 (2H, s, CH₂OCO), 6.90-7.48 (15H, m, ArH, OCONH), 7.65 (1H, d, 7.8 Hz, ArH), 8.52 (1H, m, CONH), 10.80 (1H, s, indoleNH); IR 3313, 1703,1656 cm⁻¹; MS m/z (FAB) 428 (M+H); (α)p +1.6° (MeOH, 23 °C, c = 0.2); Anal. C₂6H₂5N₃O₃ (C,H,N).

Carbamic acid, [1-(1H-indol-3-ylmethyl)-2-oxo-2-[(phenylmethyl)amino [ethyl]-, phenylethyl ester, $[R\cdot (R\cdot S\cdot)]$ 11c. To a solution of N-[(9H-fluoren-9-ylmethoxy)carbonyl]-(5)-tryptophan pentafluorophenyl ester (5.0 g. 8.4 mmol) in ErOAc (50 mL) was added benzylamine (1.5 mL,1.5 g, 14mmol) and the mixture stirred for 2 h. The reaction mixture was then washed in 2 M HCl solution, dried (MgSO₄) and concentrated in vacuo to give crude amide 12 (V = S). This was taken up in DMF (50 mL) and treated with piperidine/DMF (50 mL, 20 % solution). After stirring for 20 min the volatiles were removed in vacuo and the residue purified by flash column chromatography on silica eluting with mixtures of CH₂Cl₂:MeOH (100:0-90:10 gradient). This gave 1,9 g (77 %) of crude amine 13 (V = S) as a white solid; IR 3294, 1651 cm⁻¹.

To a stirred solution of (R)-1-phenylethyl alcohol (1.0 mL, 1.0 g, 8.3 mmol) in acetone (10 mL) at 0°C was added 4-nirophenylchloroformate (1.8 g, 9.2 mmol), followed by triethylamine (1.4 mL, 1.0 g, 9.9 mmol) over a 10 min period. The mixture was stirred for 30 min at this temperature and allowed to warm to room temperature. Subsequently, it was triturated with Et_2O and the precipitated triethylamine hydrochloride was filtererd off. The filtrate was concentrated in vacuo (without heating) and the residue purified by flash column chromatography on silica eluting with hexane:ether (90:10) to give crude mixed carbonate (1.94 g, 82 %) as a clear oil; IR 1766 cm⁻¹.

To a solution of the crude amine 13 (V = S) (0.1 g, 0.3 mmol) in DMF (20 mL) was added the mixed carbonate (0.13 g, 0.4 mmol) and the reaction mixture was stirred for

Jun-22-2005 04:35pm

7346222928

19 h. The reaction mixture was then taken up in EtOAc (80 mL), washed with 2 M HCl solution, dried (MgSO4) and the solvent removed in vacuo. The residue was purified by reverse phase chromatography cluting with McOH:H2O (80:20) to give 11c as a white foam (78 mg, 55 %), mp 158–161 °C, ¹H NMR (DMSO-d₆) 8 1.38 (3H, d, 6.6 Hz, CH3), 2.99 (1H, dd, 8.6, 14.5 Hz, β-C1HH), 3.16 (1H, dd, 5.3, 14.6 Hz, β-C¹HH), 4.26 (2H, d, 5.8 Hz, CH₂), 4.36 (1H, m, H), 5.63 (1H, dd, 6.5, 13.0 Hz, CH), 6.96 (1H, t, 7.8 Hz, indole H-5), 7.00-7.36 (14H, m, ArH, NHCO₂), 7.39 (1H, d, 7.8 Hz, indole H-4), 8.16 (1H, br, NHCO), 10.63 (1H, br, indole NH); IR 1705, 1661 cm⁻¹; MS m/z (CI) 442 (M+H); $[\alpha]_D$ +26 ° (MeOH, 20 °C, c = 0.2); Anal C27H27N3O3.0.1H2O (C,H,N)

Carbanic acid. [1-(IH-indol-3-ylmethyl)-2-0x0-2-[(phenylmethyl)amino [ethyl]-, [ethyl]-, [ethyl] [ethyl] [ethyl]Ila. Prepared as described for Ilc, but starting with (R)tryptophan, to yield IIa as a white foam (97 mg, 68 %); mp 149-150 °C; ¹H NMR (DMSO-d₆) 8 1.40 (3H, br. CH₃), 2.98 (1H, dd, 8.5, 14.5 Hz, β-C¹HH), 3.15 (obscured, β-C¹HA), 4.29 (2H, d, 5.6 Hz, CH₂), 4.33 (1H, m, Ha), 5.64 (1H, m, CH), 6.95 (1H, t, 7.7 Hz, iadole H-5), 7.02-7.34 (14H, m, ArH, NHCO₂), 7.57 (1H, d, 7.6 Hz, indole H-4), 8.21 (1H, br, CONH), 10.63 (1H, br, indoleNH); IR 1705, 1660 cm-1; MS m/z (CI) 461 (M); +26 ° (MeOH, 20 °C, c = 0.2); Anal. C27H27N3O3.0.1H2O (C,H,N).

Carbamic acid, [1-(1H-indol-3-ylmethyl)-2-0x0-2-[(phenylmethyl)amino jethyl]-, 1-phenylmethyl ester, [S-(R+,S+)] 11b. Prepared as described for 11c, but starting with (S)-1-phenylethyl alcohol and (R)-tryptophan, to give 11b as a white foam (79 mg, 55 %); chromatography cluent MeOH:H2O (80:20); mp 159-161 °C; 'H NMR (DMSOd₆) δ 1.37 (3H, d, 6.6 Hz, CH₃), 2.96-3.25 (2H, m, β-CH₂), 4.26 (2H, d, 5.7 Hz, CH₂), 4.35 (1H, m, α-H), 5.63 (1H, m, CH), 6.97 (1H, t, 6.9 Hz, indole H-5), 7.00-7.38 (14H, m, ArH, NHCO₂), 7.60 (1H, d, 7.7 Hz, indole H-4), 8.17 (1H, br, CONH), 10.65 (1H, br, indoleNH); IR 1699, 1652 cm⁻¹; MS m/z (CI) 441 (M); [α]_D -28 ° (MeOH, 20 °C, c = 0.25); Anal. $C_{27}H_{27}N_3O_3$ (C,H,N).

Carbanic acid, [1-(1H-indol-3-ylmethyl)-2-oxo-2-((phenylmethyl)amino]ethyl]-, 1-phenylmethyl ester, [S-(Ro,Ro)] 11d. Prepared as described for 11c, but starting with (5)-1-phenylethyl alcohol, to yield 11d as a white foam (106mg, 74 %); chromatography eluent MeOH:H2O (80:20); mp 150-151 °C; 1H NMR (DMSO-d₆) 8 1.41 (3H, br, CH₃), 2.98 (1H, dd, 8.7, 14.6 Hz, β-C¹HH), 3.13 (obscured, β-C¹HH), 4.29 (2H, d, 5.9 Hz, CH₂), 4.31 (1H, m, α-H), 5.63 (1H, m, CH), 6.95 (1H, ε, 7.7 Hz, indole H-5), 7.00-7.34 (14H, m, ArH, NHCO2), 7.57 (1H, d, 7.8 Hz, indole H-4), 8.21 (1H, br, CONH), 10.62 (1H, br, indoleNH); IR 1705, 1660 cm⁻¹; MS m/z (CI) 441 (M); $[\alpha]_D$ -25 ° (MeOH, 20 °C, c = 0.2); Anal C27H27N3O3.0.25H2O (C,H,N).

Carbamic acid, [1-(1H-indol-3-ylmethyl)-2-oxo-2-[(phenylmethyl)amino jethyl methyl-, phenylmethyl ester, (R) 14 and N-Mothyl-N- ((4-mothylphenyl)sulfonyl]-(R)-

tryptophan (15). To a vigorously stirred solution of (R)tryprophan methyl ester, hydrochloride (0.4 g. 1.7 mmol) in pyridine (15 mL) at room temperature was added 4toluenesulfonylchloride (0.4 g. 2.0 mmol) over a 15 min period. After 10 min the reaction mixture was taken up in EtOAc (50 mL), washed with 2 M HCl solution, H2O, I M NaHCO3 solution, dried (MgSO4) and the solvents removed in vacuo. The residue was taken up in MeOH (20 mL) and treated with H_2O (5 mL), KOH (0.5 g, 8.9 mmol) and McI (0.5 ml, 1.1 g, 8.0 mmol). The reaction was stirred at room temperature for 48 h, then was poured into 2 M HCl solution (100 mL) and the product extracted with EtOAc (2 x 100 mL). The combined organic layers were dried (MgSO₄) and evaporated in vacuo. The residue was purified by flash column chromatography on silica eluting with mixtures of CH2Cl2:MeOH (100:0 to 80:20 gradient) to give 15 as a white foam (0.27 g, 44 %); mp 131-135 °C, 1H NMR (DMSO-d₆) 8 2.32 (3H, s, CH₃), 2.82 (3H, s, CH₃N) 2.96 (1H, dd, 9.3, 14.9 Hz, β-C¹HH), 3.26 (1H, ed, 6.2, 14.9 Hz, β-C1HH), 4.77 (1H, ed, 6.3, 9.2 Hz, α-H), 6.96-7.47 (9H, m, ArH), 10.82 (1H, brs, indoleNH), 12.84 (1H, brs, CO₂H); IR 1722, 1324, 1158 cm⁻¹; MS m/z (CI) 373 (M+H); [α]_D +44 ° (MeOH, 20 °C, c = 1.1); Anal. C19H20N2O4S (C,H,N).

IH-Indole-3-propanamide, \archite{a}-[methyl](4-methylphenyl)sulfonyl]amino]-N-(phenylmethyl)-, (R) 16. Compound 15 was taken up in EtOAc (50 mL), weated with DCCI (0.15 g, 0.73 anmol) and pentafluorophenol (0.14 g, 0.76 numol) and stirred at room temperature for 30 min. A white precipieste of dicyclohexylures was removed by filtration. The filtrate was realed with benzylamine (0.1 ml., 0.1 g. 0.9 mmol) and stirred for a further 30 min. The reaction mixture was washed with 2 M HCl solution and H_2O . dried (MgSO4) and the solvent removed in vacuo. The residue was purified by flash column chromatography on silica eluting with hexane: Et2O (90:10), CCl4 was then added and the solvent removed in vacuo to give 16 as a white foam, (230 mg, 66 %); mp 55-58 °C; ¹H NMR (DMSO-d₆) 8 2.34 (3H, s, CH₃), 2.86 (1H, dd, 8.1, 14.5 Hz. β-C¹HH), 2.95 (3H, s, CH₃N), 3.18 (1H, dd, 7.5, 14.9 Hz, β-C¹HH), 4.12 (2H, m, CH₂) 4.77 (1H, m, α-H), 6.95-7.55 (14H, m, ArH), 8.55 (1H, t, 5.8 Hz, CONH), 10.80 (1H, brs. indoleNH); IR 1666, 1338, 1160 cm⁻¹; MS m/z (CI) 462 (M+H); $[\alpha]_D$ +19 ° (MeOH, 20 $^{\circ}$ C, c = 0.5); Anal. C₂₆H₂₇N₃O₃S.0.25CCl₄ (C,H,N).

Carbamic acid, [1-(1H-indol-3-ylmethyl)-2-oxo-2-[(phenylmethyl)amino]ethyl]methyl-, phenylmethyl ester, (R) 14. Compound 16 (122 mg, 0.26 mmol) was dissolved in DME (10 mL) and cooled to -78°C. To this was added a solution of sodium naphthalenide (2 M) in DME, dropwise with stirring, until the green colour was persistent. The reaction was quenched with saturated NaHCO3 solution (1 mL), then dry K_2CO_3 (2 g, 14 mmol) was added and stirring was continued for 3 h. The solid was removed by filtration, washed (Et₂O, 3×20 mL) and discarded. The organics were combined, concentrated in vacuo, and purified by flash column chromatography on silica eluting with mixtures of CH2Cl2:MeOH (100:0 to 80:20 gradient) 17 (61 mg, 75 %).

This was taken up in dioxane (20 mL) containing H_2O (I mL) and Na_2CO_3 (1.0 g, 9.4 mmol), and treated with benzylchloroformate (0.1 ml, 0.1 g, 0.7 mmol) and stirred for 30 min. The reaction mixture was then taken up in EtOAc (100 mL) and washed in 1 M HCl solution, dried (MgSO₄) and evaporated in vacuo. The residue was purified by reverse phase chromatography eluting with MeOH: H_2O (70:30) to give 14 as a white foam (62 mg, 71 %); mp 45-49 °C; ¹H NMR (DMSO-d₆) δ 2.86 (3H, br, CH₃N), 3.07 (1H, br, β -C¹HH), 3.30 (obscured, β -C¹HH), 4.29 (2H, d, 5.9 Hz, CH₂), 4.80-5.10 (3H, br, CO₂CH₂, α -H), 6.90-7.40 (14H, m, ArH), 7.62 (1H, br, indole H-4), 8.57 (1H, br, CONH), 10.80 (1H, br indoleNH); IR 1681, 1660 cm⁻¹; MS m/z (CI) 442 (M+H); [α]_D +54 ° (MeOH, 20 °C, c = 0.5); Anal. $C_{27}H_{27}N_3O_3$.0.33H₂O (C,H,N).

Carbamic acid, [1-(1H-indol-3-ylmethyl)-2-oxo-2-((phenylmethyl)amino]ethyl]methyl-,phenylmethyl ester, (S) 18. N-Methyl-N-[(phenylmethoxy) carbonyl]-(S)-tryptophan7 (0.85 g, 24 mmol), DCCI (0.56 g, 24 mmol) and pentafluorophenol (0.44 g, 27 mmol) were dissolved in EtOAc (20 mL) and the reaction mixture stirred at room temperature for 1 h. The mixture was then filtered to remove dicyclohexylurea. Benylamine (0.3 mL, 26 mmol) was then added to the filtrate and the mixture stirred for 10 h at room temperature. The solvent was then removed in vacuo and the crude product purified by column chromatography on silica cluting with CH2Cl2:MeOH (9:1) to give 18 as a white solid (0.66 g, 63 %); mp 48-54 °C; ¹H NMR (DMSO-d₆) δ 2.88 (3H, hrs, CH₃N), 3.10 (1H, brm, β-C¹HH). 3.33 (1H, m, β-C¹HH), 4.32 (2H, d, 5.9 Hz, CH₂), 4.80-5.20 (3H, br, CO₂CH₂, α-H), 6.80-7.70 (15H, m, ArH, OCONH), 8.65 (1H, brs, CONH), 10.85 (1H, brs, indoleNH); IR 1695, 1662 cm⁻¹; MS m/z (C1) 442 (M+H); [a]D -52 ° (MeOH, 24.5 °C, c= 1); Anal C₂₇H₂₇N₃O₃.0.2H₂O (C,H,N).

Carbanic acid, $[1-(IH-indol-3-ylmethyl)-1-methyl-2-oxo-2-(phenylmethyl)amino]ethyl]-, phenylmethyl ester, (R) 19a. A solution of (R)-a-methylryptophan methyl ester (Y = R; 37.16 g, 160 mmol) in dry THF (800 mL) and triethylamine (19.43 g, 192 mmol) was cooled to 0°C and treated with benzylchloroformate (30.0 g, 176 mmol) in dry THF (200 mL) dropwise. This was allowed to warm to room temperature slowly, then the solvent removed in vacuo, The residue was redissolved in EtOAc (500 mL), washed with <math>H_2O$ (500 mL), 2 N HCI solution (500 mL), saturated NaHCO3 solution (500 mL), then H_2O (500 mL). The organic phase was dried (MgSO4), filtered, and evaporated to dryness in vacuo. The residue was purified by chromatography on silica using $E_{12}O$: n-hexane (3:2) as eluant to give the urethane 20 (X = R).

The crude N-[(phenylmethoxy)carbonyl]- α -methyl-(R)-tryptophan methyl ester (20) (X = R; 69.15 g, 150 mmol) was dissolved in THF (800 mL), cooled to 0 °C, and treated with LiOH (30 g in 250 mL H_2O). MeOH was added (150 mL) and the mixture stirred for 3 h. The solvent was removed in vacuo. The residue was diluted with H_2O (500 mL) and washed with CH_2Cl_2 , (2 x 300 mL). The aqueous phase was additied to pH = 2 using 2 M citric add

solution and extracted with CH2Cl2 (2 x 500 mL). The organic phase was washed with H2O, dried (MgSO4), and filtered and evaporated to dryness to give the crude acid (57.5 g), which was used in the next step. The crude carboxylic acid was redissolved in EtOAc (320 mL) and treated with pentafluorophenol (21 g, 114 mmol), followed by the dropwise addition of a solution of DCCI (23.5 g, 114 mmol) in EtOAc (150 mL). This was stirred for 18 h at room temperature. The reaction mixture was then filtered, and the filtrate evaporated to dryness. The solid residue was redissolved in CH₂Cl₂ (200 mL) and absorbed on to silica, and purified by chromatography eluting with EtOAc: n-hexane (1:1) to give the pentafluorophenyl ester 21 (X = R), 49.77 g (64 %) from α -methyl-(R)-tryptophan methyl ester. ¹H NMR (CDCl₃) δ 1.72 (3H, s, CH₃) 3.44 (1H, d, 14.7 Hz, β-C¹HH), 3.66 (1H, d, 14.7 Hz, β-C¹HH), 5.15 (2H, CH₂), 5.22 (1H, brs), 6.97-8.11 (12H, m, AtH, OCONH, indoleNH); IR 1785, 1709 cm⁻¹. A solution of N-[(phenylmethoxy)carbonyl]- α -methyl-(R)tryptophan pentafinorophenyl ester 21 (X = R; 0.75 g, 1.5 mmol) in EtOAc (50 mL) was treated with benzylamine (0.5 ml, 0.5 g, 4.5 mmol) and stirred at room temperature for 1 h. The reaction mixture was then washed with 1M HCl solution, dried (MgSO₄) and evaporated to dryness in vacuo. The residue was purified by flash column chromatography on silica cluting with bexanc: Et2O (50:50) to give 194 as a white foam. (0.52 g, 76 %); mp 57-60 °C, ¹H NMR (DMSO-d₆) δ 1.36 (3H, s, α -CH₃), 3.23 (1H, d, 14.5 Hz, β-C¹HH), 3.40 (1H, d, 14.7 Hz, β-C¹HH), 4.27 (2H, d, 5.2 Hz, CH₂N), 5.04 (2H, dd, 12.7, 17.6 Hz, CH₂O), 6.92-7.34 (15H, m, ArH, NHCO₂), 7.48 (1H, d. 7.8 Hz, indole H-4), 8.28 (1H, brs, CONH), 10.82 (1H, brs, indole NH); IR 1713, 1657 cm⁻¹; MS m/z (CI) 442 (M+H); $[\alpha]_D$ +35 ° (MeOH, 20 °C, c = 0.5); Anal $C_{27}H_{27}N_3O_3$ (C,H,N).

Carbanic acid, [1-(1H-indol-3-ylmethyl)-1-methyl-2-000-2-[(phenylmethyl)amino]ethyl]-, phenylmethyl ester, (S) 19b. Prepared as described above for 19a but starting from N-[(phenylmethoxy)carbonyl]- α -methyl-(S)-tryptophan to give 19b as a white solid (0.58 g, 85 %); mp 148-149 °C; ¹H NMR (DMSO-d₆) δ 1.36 (3H, 8, α -CH₃), 3.23 (1H, d, 14.5 Hz, β -C¹HH), 3.40 (1H, d, 14.8 Hz, β -C¹HH), 4.27 (2H, d, 5.2 Hz, CH₂N), 5.04 (2H, dd, 12.7, 17.6 Hz, CH₂O), 6.92-7.34 (15H, m, ArH, NHCO₂), 7.18 (1H, d, 7.8 Hz, indole H-4), 8.28 (1H, brs, NHCO), 10.82 (1H, br, indoleNH); IR 1716, 1652 cm⁻¹; MS m/z (C1) 442 (M+H); [α]_D -34 ° (MeOH, 20 °C, c = 0.5); Anal, C₂₇H₂₇N₃O₃ (C,H,N).

Carbamic acid, [1-(1H-indo!-3-ylmethyl)-2-[methyl-phenylmethyl)amino]-2-oxoethyl]-, phenylmethyl ester, (S) 22b. N-[(Phenylmethoxy)carbonyl]-(S)-tryptophylpentafluorophenyl ester (0.50 g, 1 mmol) was prepared in situ (as described for 10 a) and reacted with N-benzylmethylamine (0.13 mL, 1 mmol) in EtOAc (5 mL). The reaction mixture was stirred overnight at room temperature then washed with 2 M HCl solution (1 x 10 mL), H₂O (4 x 10 mL), and dried (MgSO₄). Removal of the solvent in vacuo resulted in a clear oil which was purified by flash chromatography on silica eluting with

S. BOYLE et al.

miximes of Et₂O:hexane (1:4 to 7:3) to give 32b as a white solid (0.175 g, 40 %); mp 48-50 °C; ¹H NMR (DMSO-d₆) δ 2.50 (3H, s, CH₃), 3.01 (1H, dd, 7.3, 13.8 Hz, β -C¹EH), 4.43 (2H, s, NCH₂), 4.72 (1H, m, m-CH), 5.00 (2H, s, OCH₂), 7.02-7.35 (15H, m, ArH), 7.57 (1H, brs, CO₂NH), 10.65 (1H, s, indois NH); IR 1710, 1635, 1530 cm⁻¹; MS m/z (CI) 442 (M); [α]_D +30.4 ° (MeOH, 23 °C, c = 0.25); Anal. C₂7H₂7N₃O₃.0.5H₂O (C,H,N).

Carbamic acid, [1-(1H-indol-3-ylmethyl)-2-(methyl/phenyl-methyl) amino]-2-oxoethyl]-, phenylmethyl ester, (R) 22a. Method as described for 22b, but using N-(obenylmethoxy)carbonyl]-(R)-tryptophan to give \mathbb{Z}_2 as a white solid (0.08 g, 35 %); up 50-53°C; ¹H NMMR (DMSO-d₆) δ 2.75 (3H, s, CH₃), 3.01 (1H, dd, 7.7, 13.9 Hz, β -C¹HH), 4.44 (2H, s, CH₂), 4.54 (1H, m, α -CH), 5.01 (2H, s, CH₂O); 6.97-7.37 (15H, m, ArH), 7.57 (1H, d, 7.7 Hz, CO₂NH), 10.7 (1H, s, indole NH); IR 1712, 1636, 1525 cm⁻¹; MS m/z (CI) 442 (M); [α]_D -27.2° (MeOH, 23°C, c = 0.25); Anal. C₂₇H₂₇N₃O₃.0.25H₂O (C,H,N).

Carbamic acid, [1-(1H-indol-3-ylmzthyl)-2-oxo-2-[(1phenylethyl)amino]ethyl]-, phenylmethyl ester, [R-(Ro,Ro)] 23a. N-[(Phenylmethoxy)carbonyl]-(R)tryptophyl-pentafluorophenyl ester (0.25 g, 0.5 mmol) was prepared in situ (as described for 10a), dissolved in ExOAc (2.5 mL) and (R)-\alpha-methylbenzylamine (0.06 mL, 0.5 mmol) was added. The reaction mixture was stirred at room temperature until no starting material remained. The white precipitate was collected by filtration and recrystallized from EtOAc to give 23a (0.10 g, 44 %); mp 169-170 °C, ¹H NMR (DMSO-d₆) 8 1.35 (3H, d, 6.7 Hz, CH₃CH), 2.87 (1H, dd, 9.2, 14.3 Hz, B-C1HH), 3.06 (1H, dd, 4.8, 14.3 Hz, β-C¹HH), 4.36 (1H, m, CH(CH₃)Ph), 4.90-4.96 (3H, m, CH₂Ph, α-CII), 6.94-7.35 (15H, m, ArH), 7.63 (1H, d, 7.8 Hz, OCONH), 8.41 (1H, d, 7.8 Hz, CONH), 10.80 (1H, s, indoleNH); IR 3305, 1705, 1657, 1531 cm 1; MS m/z (CI) 442 (M); [α]_D +12.8 ° (MeOH, 23 °C, c = 0.5); Anal. C₂₇H₂₇N₃O₃ (C,H,N).

Carbanic acid, $\{I-(IH-indol-3-ylmethyl)-2-oxo-2-\{(I-phenylathyl)amino\}ethyl]$, phenylmethyl aster, $\{S-(R\circ,S\circ)\}$ 335. Method as described for 23 α , but using N-(phenylmethoxy) carbonyl]-(S)-aryptophylpenuallutrophenyl ester to give 23 α as a white solid (0.077 g, 17%); mp 160–163°C; α 14 NMR (DMSO-d₆): α 1.24 (3H, d, 7.0 Hz, CH₃), 2.95 (1H, dd, 9.4, 14.3 Hz, α -C¹HH), 3.08 (1H, dd, 5.4,14.3 Hz, α -C¹HH), 4.32 (1H, m, CH(CH₃)Ph), 4.86–4.94 (3H, m, PhCH₂, α -CH), 6.95–7.34 (15H, m, ArH), 7.63 (1H, d, 7.7 Hz, CCONH), 8.32 (1H, d, 7.8 Hz, CONH), 10.80 (1H, s, indoleNH); IR 3307, 1704, 1657, 1517 cm⁻¹; MS m/z (Cl) 442 (M); α -CH,N).

Carbanic acid, [1-(1H-indol-3-ylmethyl)-2-oxo-2-([1-phenylethyl)amino]ethyl]-, phenylmethyl ester, [S-(R·S·)] 23c. Method as described for 23a, but using (S)-α-methylbenzylamine to give 23c as a white solid (0.09 g, 21 %); up 160-161°C; H NMR (DMSO-d₆): 8 1.23 (3H, d, 6.8 Hz, CH₃), 2.95 (1H, 6d, 9.4, 14.3 Hz, β-C¹HH),

3.08 (1H, dd, 5.4, 14.3 Hz, β -C¹HH), 4.32 (1H, m, CH(CH₃)Ph), 4.86–4.94 (3H, m, PhCH₂, α -CH), 6.95–7.34 (15H, m, ArH), 7.63 (1H, d, 7.7 Hz, OCONH), 8.33 (1H, d, 7.5 Hz, CONH), 10.8 (1H, s, indoleNH); IR 3330, 1709, 1658, 1514 cm⁻¹; MS m/z (CI) 442 (M); [α]_D -26.0 ° (MeOH, 23 °C, c = 0.5); Anal. $C_{27}H_{27}N_{3}O_{3}$ (C,H,N).

Carbanic acid, [1-(1H-indol-3-ylmethyl)-2-0x0-2-[(1-phenylethyl)amino]ethyl]-, phenylmethyl ester. [S-(R \circ ,S \circ)] 23d. Method as described for 23a, but using (S)- α -methylbenzylamine and N-((phenylmethoxy) α -sabonyl]-(S)-tryptophyl-pentafluorophenyl ester. Recrystallization from EtOAc gave 23d as a white solid (0.057 g, 13 %); mp 168-170 °C; ¹H NIMR (DMSO-d₆) δ 1.35 (3H, d, 6.9 Hz, CH₃); 2.86 (1H, d2, 9.2, 14.3 Hz, β -C\(^1\text{HM}\), 3.06 (1H, dd. 48, 14.3 Hz, β -C\(^1\text{HM}\)), 4.36 (1H, m, CH(CH₃)Ph), 4.90-4.96 (3H, m, PhCH₂, α -CH), 6.94-7.35 (15H, m, ArH), 7.63 (1H, d, 7.9 Hz, OCONH), 8.41 (1H, d, 7.7 Hz, CONH), 10.80 (1H, s, indoleNH); IR 3294, 1704, 1656, 1536 cm\(^1\text{:}\) MS m/z (CI) 442 (M); [α]_D -11.6 ° (MeOH, 23 °C, α = 0.5); Anal. C₂₇H₂₇N₃O₃ (C.H,N).

Carbamic acid, [1-(1H-indol-3-ylmahyl)-1-methyl-2-oxo-2-[(1-phenylethyl)amino]ethyl]-, phenylmethyl ester, [S-(R+,S+)] 2de. A solution of N-[(phenylmethoxy)czrbonyl]-a-methyl-(R)-tryptophan pentalluorophenyl ester 21 CK = R, 730 mg, 1.40 mmol) in EtOAc (15 mL) was ereated with (S)- α -methylbenzylamine (940 mg, 7.76 mmol) and left stirring at room temperature for 1 h. The mixture was washed with 2 M HCl (20 mL) then H2O (20 mL). The organic phase was dried (MgSO4), filtered, and evaporated to dryness in vacuo. The residue was then subject to reverse phase chromatography using 80 % MeOH; 20 % H₂O as eluant to give 24c as a white foam (150 mg, 24 %); mp 107-109 °C; 1H NMR (DMSO-de) 8 1.32 (3H, 6, 7 Hz, CH₃CH), 1.38 (3H, s, CH₃), 3.20-3.40 (2H, m, β-CH₂), 4.90 (1H, m, CH), 5.00 (2H, s, CH₂O), 6.80 (1H, s), 6.90 (1H, t, 7 Hz), 7.00 (1H, t, 7 Hz), 7.01-7.40 (12H, m, ArH), 7.50 (1H, d, 8 Hz), 8.00 (1H, d, 8 Hz), 10.80 (1H, s, indoleNH); IR 3460-3400, 1711, 1658 cm-1; MS m/z (CI) 456 (M+H); [a]p +13.0° (MeOH, 20 °C, c = 0.5); Anal. $C_{28}H_{29}N_3O_3 \cdot 0.5H_2O$ (C,H,N).

Carbanic acid, [1-(1H-indol-3-ylmethyl)-1-methyl-2-0x0-2-[(1-phenylethyl)amino]ethyl]-, phenylmethyl ester, [R-(R \circ ,R \circ)] 24 α . Method as for 24 α but using (R)- α -methylbenzylamine to give 24 α as a white solid (150 mg, 24 α); mp 63-68 α C: ¹H NMR (DMSO-d₆) α 1.28 (3H, d, 6.8 Hz, CH₃CH), 1.34 (3H, s, CH₃), 3.16-3.30 (2H, m, β -CH₂), 4.89 (1H, m, CH), 5.04 (2H, s, CH₂O), 6.89 (1H, t, 7.9 Hz), 7.20-7.45 (13H, m, ArH), 7.48 (1H, d, 7.8 Hz), 7.88 (1H, d, 7.5 Hz), 10.80 (1H, s, indoleNH); IR 1719, 1658 cm⁻¹; MS m/z (CI) 456 (M+H): α _D +9.4 α (MeOH, 28 α C, α C); Anal. C₂₈H₂₉N₃O₃ (C,H,N).

Carbanic acid, [1-(1H-indol-3-ylmathyl)-1-methyl-2-oxo-2-[(1-phenylethyl)amino]ethyl]-, phenylmethyl ester, [S-(R o, S o)] 24b. Method as for 24c but using N-([phenylmethoxy)carbonyl-a-methyl-(S)-tryptophan penesharophenyl ester 21 (Y=S) and (R)-a-methylbenzylamine

to give 24b as a white solid (190 mg, 30 %); mp 109–111 °C; 1 H NMR (DMSO-d₆) δ 1.34 (3H, d, 7.9 Hz, CH₃CH), 1.39 (3H, s, CH₃), 3.28–3.36 (2H, m, β -CH₂), 4.92 (1H, m, CH), 5.04 (2H, s, CH₂O), 6.82 (1H, s), 6.87 (1H, br), 6.93 (1H, t, 7.6 Hz), 7.02 (1H, t, 7.0 Hz), 7.22–7.47 (11H, m, ArH), 7.50 (1H, d, 7.8 Hz), 8.02 (1H, d, 8.2 Hz), 10.80 (1H, s, indoleNH); IR 1719, 1654 cm⁻¹; MS m/z (CI) 456 (M+H); [α]_D -13.2 ° (MeOH, 24 °C, c \approx 0.5); Anal, $C_{28}H_{29}N_{3}O_{3}$ -0.25H₂O (C,H,N).

From-

Carbamic acid, [1-(IH-indol-3-ylmethyl)-1-methyl-2-axo-2- $\{(1-phenylethyl)amino]$ ethyl]-, phenylmethyl ester, [S- $\{R^*,S^*\}\}$ 24d. Method as for 24e except using N- $\{(phenylmethoxy)$ carbonyl]-a-methyl- $\{S\}$ -tryptophan pentafluorophenyl ester 21 (Y= $\{S\}\}$) to give 24d as a white solid (142 mg, 23 %); mp 107-110 °C; $\{P\}$ NMR (DMSO-d_c) 8 1.20-1.40 (6H, m, 2 x CH₃), 3.10-3.40 (2H, m, $\{B\}$ -CH₂), 4.90 (1H, m, CH), 5.00 (2H, s, CH₂O), 6.80-7.50 (16H, m, ArH, OCONH), 7.90 (1H, d, 8 Hz, CONH), 10.80 (1H, hrs, indoleNH); IR 3327, 1716, 1653 cm⁻¹; $\{\alpha\}_D$ -9.0 ° (MeOH, 26 °C, c = 0.5) Anal. $\{C_{28}\}_{29}$ N₃O₃-0.25H₂O (C,H,N).

Carbanic acid, [1-(1H-indol-3-ylmethyl)-1-methyl-2-oxo-2-[(1-phenylethyl)amino]ethyl]-, 2-naphthalenylmethyl ester, [R-(R+,S+)] 25. IH-Indole-3-propanamide, α -amino- α -methyl-N-(1-phenylethyl)-, [R-(R+,S+)] 26. A solution of 24c (17 g, 37 mmol) in EtOH (200 mL) was treated with 20 % Pd(OH)2 (1 g, 6 % w/w) and shaken under an atmosphere of hydrogen at 30 °C at a pressure of 45 psi for 3 h. The reaction mixture was then filtered and evaporated to dryness in vacuo, the residue was purified by chromatography OB silica eluting with NH4OH:MeOH:CH2Cl2,(1:10:189) to give 26 as a white solid (8.1 g, 62 %); mp 124.5-125 °C; ¹H NMR (CDCl₃) 8 1.42 (3H, d, 6.9 Hz, CH₃CH), 1.46 (3H, 8, CH₃), 1.53 (2H, brs, NH₂), 2.81 (1H, d, 14.2 Hz, β-C¹HH), 3.46 (1H, d, 14.2 Hz, β-C¹HH), 5.02 (1H, dq, 7 Hz, CH), 6.71 (1H, d, 2.2 Hz), 7.17 (7H, m, AtH), 7.33 (1H, d, 8.0 Hz), 7.59 (1H, d, 7.8 Hz), 7.82 (1H, d, 8 Hz), 8.02 (1H, s); IR 1643, 1512, 1454 cm⁻¹, MS m/z (CI) 322 (M+H); [α]_D +7.0 ° (MeOH, 20 °C, c = 1); Anal C₂₀H₂₃N₃O (C,H,N).

Carbonic acid, 2-naphthalenylmethyl-, 4-nitrophenyl ester (27). To a stirred solution of 2-naphthaleuemethanol (1.58g, 10 mmol) and 4-nitrophenylchloroformate (2.01g, 10 mmol) in CH₂Cl₂ (50 mL) at 0 °C was added dropwise a solution of pyridine (0.79 g, 10 mmol) in CH₂Cl₂ (10 mL). The reaction mixture was allowed to warm to room temperature overnight. The solvent was removed under reduced pressure and the residue taken up between EtOAc (50 mL) and 10 % citric acid solution (50 mL). The product was then filtered off and washed with 10 % citric acid solution followed by H2O until the filtrate was neutral to give pure product 27 (2.37 g, 73 %); mp 150.5-152.5 °C; ¹H NMR (DMSO-d₆) & 5.48 (2H, s, CH₂O), 7.50-7.65 (3H, m, ArH), 7.59 (2H, d, 9.2 Hz, ArHs meta to NO₂), 7.90-8.05 (4H, m, ArH); 8.32 (2H, d, 9.1 Hz, At He ortho to NO2); IR 1752, 1615, 1595 cm-1; MS m/z (CI) 323; Apal C₁₈H₁₃NO₅ (C,H₁N).

Carbamic acid, [1-(1H-indol-3-ylmethyl)-1-methyl-2-oxo-2-[(1-phenylethyl)amino]ethyl]-, 2-naphthalenylmethyl ester, [R-[R*,S*]] 25. To a stirred solution of carbonate 27 (178 mg, 0.55 mmol) and amine 26 (160 mg, 0.5 mmol) in DMF (5 mL) was added 4-dimethylaminopyridine (61 mg, 0.5 mmol) and the reaction mixture left to stir overnight at room temperature. The solvent was removed at 60 °C under reduced pressure, the residue taken up in EtOAc (30 mL) and washed successively with 10 % citric acid solution (2 x 30 mL), H_2O (30 mL), 1 N NaOH (5 x 30 mL), brine (2 \times 50 mL), dried (MgSO₄), filtered, and the solvent removed under reduced pressure. The residue was purified by chromatography on silica eluting with 3 % MeOH in CH2Cl2. Crystallisation from Et2O gave pure 25 (220 mg, 87 %); mp 121-122 °C; ¹Η NMR (CDCl₃) δ 1.28 (3H, d, 6.9 Hz, CHCH₃); 1.63 (3H, s, CCH₃), 3.26 (1H, d, 14.7 Hz, CHH-indole), 3.48 (1H, d, 14.7 Hz, CHH-indole), 4.95-5.05 (1H, m, NHCHCH3), 5.18-5.30 (2H, m, CH₂O), 5.40 (1H, s, OCONH), 6.30-6.40 (1H, brd, CONHCH), 6.74 (1H, s, indole C2H), 7.05-7.30 (7H, m, ArH), 7.31 (1H, d, 8.0 Hz, indole C7-H), 7.40-7.52 (3H, m, ArH), 7.58 (1H, d, 8.4 Hz, indole C4-H), 7.75-7.85 (5H, m, ArH and indole NH); IR 3342, 3052, 2974, 2926, 1717, 1653 cm⁻¹; MS m/z (CI) 506.3 (M++H); $\{\alpha\}_D + 21.2$ ° (MeOH, 20°C, c = 0.5); Anal, $C_{22}H_{91}N_9O_3$ (C,H,N).

Carbamic acid, [1-(1H-indol-3-ybnethyl)-1-methyl-2-oxo-2-[(1-phenylethyl)amino]ethyl]-, 2-benzofuranylmethyl ester, [R-(R+,S+)] 28. Carbonic acid, 2-benzostaranylmethyl, 4nitrophenyl ester (29). To a stirred solution of 2-benzofuranylmethanol 17 (1.48 g. 10 mmol) and 4nitrophenylchioroformate (2.01 g, 10 mmol) in CH2Cl2 (50 mL, a) at 0 °C was added dropwise a solution of pyridine (0.79 g, 10 mmol) in CH₂Cl₂ (10 mL). The reaction mixture was allowed to warm to room temperature overnight. The solvent removed under reduced pressure and the residue taken up between EtOAc (50 mL) and 10 % citric acid solution (50 mL). The organic phase was washed successively with 10 % citric acid solution (2 x 50 mL). H_2O (50 mL), saturated NaHCO₃ solution (5 x 50 mL), brine (50 mL), dried (MgSO₄), filtered, and solvent removed under reduced pressure. The product was then recrystallised from Et2O to give pure 29 (1.80 g, 58 %); mp 90.5-92.5 °C; ¹H NMR (CDCl₃) 8 5.41 (2H, 8, CH₂O), 6.90 (1H, s, benzofuran C3-H), 7.21-7.42 (2H, m, ArH), 7.39 (2H, d, 9.2 Hz, ArHs meta to NO₂), 7.52 (1H, d, 7.8 Hz, ArH), 7.60 (1H, d, 7.1 Hz, ArH), 8.28 (2H, d, 9.2 Hz, ArHs ortho to NO2); IR 3119, 1770, 1617, 1594, 1524 cm⁻¹; MS m/z (CI) 313; Anal. $C_{16}H_{11}NO_6$ (C,H,N).

N-[(2-Benzofuranyi)methoxy]carbonyl] -(R)-\alpha-methyl-tryptophyl-(S)-\alpha-methyl-benzylamide (28). To a stirred solution of carbonate 29 (185 mg, 0.6 mmol) and amine 26 (160 mg, 0.5 mmol) in DMF (5 mL) was added 4-dimethylaminopyridine (61 mg, 0.5 mmol) and the mixture left to stir overnight at room temperature. The solvent was removed at 60 °C under reduced pressure, the residue taken up in EtOAc (100 mL) and washed successively with 10 % citric acid solution (3 x 30 mL).

S. BOYLE et al.

H₂O (30 mL), 1 N NaOH (5 x 30 mL), brine (2 x 50 mL), dried (MgSO₄), filtered, and the solvent removed under reduced pressure. The residue was then purified by chromatography on reverse phase silica etuding with 65 % MeOH in H₂O. Crystallisation from Et₂O gave pure 28 (140 mg, 56 %); mp 103–111 °C; ¹H NMR (CDCl₃) 8 1.31 (3H, d, 6.9 Hz, CHCH₃), 1.63 (3H, s, CCH₃), 3.25 (1H, d, 14.8 Hz, CHH-indole), 3.47 (1H, d, 14.8 Hz, CHH-indole), 4.95–5.05 (1H, m, NHCHCH₃), 5.14 and 5.21 (each 1H, d, 13.2 Hz, CHHO), 5.41 (1H, s, OCONH), 6.30–6.35 (1H, brd, CONHCH), 6.74 (1H, s, benzofuran C3-H), 6.78 (1H, d, 2.3 Hz, indole C2-H), 7.05–7.33 (10H, m, ArH), 7.45 (1H, d, 8.4 Hz); 7.52–7.58 (2H, m, ArH), 7.85 (1H, s, indole NH); IR 3334, 1715, 1651cm⁻¹; MS m/z (FAB) 496.3 (M*+H); [\alpha]_D +17.6 ° (MeOH, 21 °C, c = 0.5); Anal. C₃₀H₂₉N₃O₄ (C.H,N).

Acknowledgements

The authors thank Dr G. Ratcliffe, Mrs L. Terry, Mrs N. Suman-Chauhan and Mrs R. Franks for their technical assistance.

References and Notes

- 1. Guard, S.; Watson, S. P. Neurochem. Int. 1991, 18, 149.
- 2. Maggi, C. A.; Patrechini, R.; Rovero, P.; Giachetti, A. Auton. Pharmacol. 1993, 13, 23.
- 3. a) Snider, R. M.; Constantine, J. W.; Lowe, J. A. III; Longo, K. P.; Lebel, W. S.; Woody, H. A.; Drozda, S. E.; Desai, M. C.; Vinick, F. J.; Spencer, R. W.; Hess, H. J. Science 1991, 251. 435; b) Mclean, S.; Ganong, A.; Seymour, P. A.; Snider, R. M.; Desai, M. C.; Rosen, T.; Bryce, D. K.; Longo, K. P.; Reynolds, L. S.; Robinson, G.; Schmidt, A. W.; Siok, C.; Heym, J. Regul. Pept. 1992, S120; c) Garret, C.; Carruette, A.; Pardin, V.; Moussaoui, S.; Peyrouel, J.-P.; Blanchard, J.-C.; Laduron, P. M. Natl Acad. Sci. U.S.A. 1991, 38, 10208; d) Lawrence, K. B.; Venepalli, B. R.; Appell, K. C.; Goswami, R.; Logan, M. &; Tomezuk, B. E.; Yanni, J. M. J. Med. Chem. 1992, 35, 1273; e) Oury-Dona,

(Received 9 February 1994; accepted 11 April 1994)

- F.; Lefevre, I. A.; Gauthier, T.; Edmond-Alt, X.; Le fur, G.; Soubrie, P. Neuropepiides 1993, 24, 233; f) Macleod, A. M.; Merchant, K. J.; Cascieri, M. A.; Sadowski, S.; Ber, E.; Swain, C. J.; Baker, R. J. Med. Chem. 1993, 36, 2044.
- 4. Fujii, T.; Mural, M.; Morimoto, J.; Hagiwara, D.; Miyake, J.; Matsuo, A. Nettropoptides 1992, 22, 24.
- 5. Schilling, W.; Bittiger, H.; Brugger, P.; Criscione, L.; Hauser, K.; Ofner, S.; Olps, H.-R.; Vassout, A.; Veenstra, S. Xth International Symposium on Medicinal Chemistry, Basel, September 1992, Abstract ML-11.3.
- 6. Horwell, D. C. Topics in Medicinal Chemistry, 4th SCI-RSC Medicinal Chemistry Symposium; Lecning, P. R., Ed.; Royal Society of Chemistry: Lethworth, UK, 1988; pp. 62.
- 7. Boyle, S.; Guard, S., Horwell, D. C.; Howson, W; Hughes, J.; McKnight, A.; Pritchard, M. C.; Walling, K. J.; Woodruff, G. N BioMed. Chem. 1994, 7, 101.
- 8. Compound 1 was obtained from Bachem UK Ltd, Saffron Walden, U.K.; compound 2 was prepared as described by Howson, W. et al. in reference 10; compound 3 was prepared as described by Peyronel. J.-F. et al. BioMed. Chem. Lett. 1992, 2, 37; compound 4 was obtained from RBI, Semat Technical (UK) Ltd, St Albans, U.K.; compound 5 was prepared as described by Massuo, M. et al. WO 9222369, 1992.
- 9. Anatharamaish, G. M; Roeske R. W. Terrahedron Lett. 1982, 23, 3335.
- 10. Howson, W.; Hodgson, J.; Richardson, R. S.; Walton, L.; Guard, S., Watting, K. J. BioMed. Chem. Lett. 1992, 2, 559.
- 11. Andrews, P. R.; Craik, D. J.; Martin, J. L. J. Med. Chem. 1984, 27, 1648.
- 12. Higginbottom, M.; Kneen, C.; Rateliffe, G. R. J. Med. Chem. 1992, 35, 1572.
- 13. Turk, J.; Panse, G. T.; Marshall, F. R. J. Org Chem. 1975, 40, 953.
- 14. For an example where this has been successful see Halfpenny, P. R.; Horwell, D. C.; Hughes, J.; Humblet, C.; Hunter, J. C.; Neuhaus, D. N.; Rees, D. C. J. Med. Chem. 1991, 34, 190.
- Boyle, S. J.; Tang, K.-W.; Woodruff, G. N.; McKnight, A. T. Br. J. Pharmacol, 1993, 111, 47P.
- Arunlakahana, O.; Schild, H. O. Br. J. Pharmacol. 1959.
 48.
- 17. Gaerter, R. J. Am. Chem. Soc. 1951, 73, 4400.