

Lecture 9 overview

 Fourier Transformations
 Regular Fourier Transform
 Fourier Transform as a matrix
 Quantum Fourier Transform (QFT)
 QUI examples
 Inverse QFT

Reiffel, Chapter 8
 Kaye, Chapter 7
 Nielsen and Chuang, Chapter 5

PHYC90045 Introduction to Quantum Computing Example: Periodic function					
For any other value of k, $y_k = \frac{1}{\sqrt{N}} \sum_{j=0}^{N-1} \exp\left(-2\pi i \frac{j(k-u)}{N}\right)$					
Recall, for a geometric series, $1+r+r^2+r^{N-1}=\frac{1-r^N}{1-r}$					
Where for us, $r = \exp\left(-2\pi i \frac{k-u}{N}\right)$					
And therefore since k + u (but difference is an integer): $r^N=1$					
Except for k=u, $y_k = 0 \qquad \qquad \text{i.e. just one non-zero} \\ \text{amplitude } y_u <>> \text{frequency, } u$					

We define the Fourier transformation matrix as follows:

$$y_k = \frac{1}{\sqrt{N}} \sum_{j=0}^{N-1} x_j e^{2\pi i j k/N}$$

Fourier Transform as a Matrix

$$y_k = \sum_j F_{kj} x_j$$
 where $F_{kj} = \frac{1}{\sqrt{N}} e^{2\pi i j k/N}$

For example:

$$y_k = \sum_j F_{kj} x_j \quad \text{ where } \quad F_{kj} = \frac{1}{\sqrt{N}} e^{2\pi i j k/N}$$
 For example:
$$\mathsf{N=2:} \ F = \frac{1}{\sqrt{2}} \left[\begin{array}{ccc} 1 & 1 & 1 & 1 \\ 1 & -1 & 1 & -i \\ 1 & -i & -1 & i \end{array} \right]$$

We will see that the quantum Fourier transform for one qubit is a Hadamard gate!

Quantum Fourier Transform (QFT)

The Fourier transform, written in this matrix form is unitary. It can make a valid

quantum operation:
$$|\psi\rangle = \sum_{j=0}^{N-1} x_j \, |j\rangle \stackrel{\text{QFT}}{\to} |\psi'\rangle = \sum_{j=0}^{N-1} y_j \, |j\rangle \qquad \text{with} \qquad \qquad F_{kj} = \frac{1}{\sqrt{N}} e^{2\pi i j k/N}$$

On an individual basis state $\,|a\rangle\,\,$ (i.e. j = a only non-zero ${\bf x_j}$) we have:

$$|a\rangle \to \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} y_k \, |k\rangle \, , \ y_k = \sum_{j=0}^{N-1} F_{kj} x_j = F_{ka} = \frac{1}{\sqrt{N}} e^{2\pi i ka/N}$$

i.e.
$$\operatorname{QFT}|a\rangle = \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} e^{\frac{2\pi i}{N}ka} |k\rangle \quad \text{(more familiar form relating variables a and k by Fourier transform -> puts a into the phase)}$$

Question: How can we systematically make this operation using quantum gates?

Product Form of QFT

The Fourier transform can be expressed in a product notation:

$$|j_1,\ldots,j_n\rangle \rightarrow \frac{|0\rangle + e^{2\pi i \ 0.j_n} |1\rangle}{\sqrt{2}} \otimes \frac{|0\rangle + e^{2\pi i \ 0.j_{n-1}j_n} |1\rangle}{\sqrt{2}} \otimes \ldots \otimes \frac{|0\rangle + e^{2\pi i \ 0.j_1j_2\ldots j_{n-1}j_n} |1\rangle}{\sqrt{2}}$$

Where the notation $0.j_1j_2...j_n = \frac{j_1}{2} + \frac{j_2}{2^2} + ... + \frac{j_{n-1}}{2^{n-1}} + \frac{j_n}{2^n}$

is shorthand for writing a fraction in binary notation. That is,

$$0.1 = \frac{1}{2}$$

$$0.11 = \frac{1}{2} + \frac{1}{2^2} = \frac{3}{4}$$

$$0.101 = \frac{1}{2} + \frac{1}{23} = \frac{5}{2}$$
 etc

PHYC90045 Introduction to Quantum Computing Product Form: Two Qubits
$ j_1,\ldots,j_n\rangle \rightarrow \frac{ 0\rangle + e^{2\pi i\ 0.j_n}\ 1\rangle}{\sqrt{2}} \otimes \frac{ 0\rangle + e^{2\pi i\ 0.j_{n-1}j_n}\ 1\rangle}{\sqrt{2}} \otimes \ldots \otimes \frac{ 0\rangle + e^{2\pi i\ 0.j_{1}j_{2}\ldots j_{n-1}j_n}\ 1\rangle}{\sqrt{2}}$
$ j_1j_2\rangle \rightarrow \frac{ 0\rangle + e^{2\pi i0.j_2} 1\rangle}{\sqrt{2}} \otimes \frac{ 0\rangle + e^{2\pi i0.j_1j_2} 1\rangle}{\sqrt{2}}$
$ 00\rangle \rightarrow \frac{ 0\rangle + 1\rangle}{\sqrt{2}} \otimes \frac{ 0\rangle + 1\rangle}{\sqrt{2}} = \frac{ 00\rangle + 01\rangle + 10\rangle + 11\rangle}{2}$
$ 01\rangle \rightarrow \frac{ 0\rangle + e^{i2\pi\ 0.1}\ 1\rangle}{\sqrt{2}} \otimes \frac{ 0\rangle + e^{i2\pi\ 0.01}\ 1\rangle}{\sqrt{2}} = \frac{ 00\rangle + i\ 01\rangle - 10\rangle - i\ 11\rangle}{2}$
$ 10\rangle \rightarrow \frac{ 0\rangle + 1\rangle}{\sqrt{2}} \otimes \frac{ 0\rangle + e^{i2\pi~0.1} 1\rangle}{\sqrt{2}} = \frac{ 00\rangle - 01\rangle + 10\rangle - 11\rangle}{2}$
$ 11\rangle \rightarrow \frac{ 0\rangle + e^{i2\pi \cdot 0.1} 1\rangle}{\sqrt{2}} \otimes \frac{ 0\rangle + e^{i2\pi \cdot 0.11} 1\rangle}{\sqrt{2}} = \frac{ 00\rangle - i 01\rangle - 10\rangle + i 11\rangle}{2}$

PHYC90045 Introduction to Quantum Computing Product Notation: Two Qubits
$ j_1, \dots, j_n\rangle \rightarrow \frac{ 0\rangle + e^{2\pi i \ 0.j_n} \ 1\rangle}{\sqrt{2}} \otimes \frac{ 0\rangle + e^{2\pi i \ 0.j_{n-1}j_n} \ 1\rangle}{\sqrt{2}} \otimes \dots \otimes \frac{ 0\rangle + e^{2\pi i \ 0.j_{1}j_{2}\dots j_{n-1}j_n} \ 1\rangle}{\sqrt{2}}$
$ 00\rangle \rightarrow \frac{ 0\rangle + 1\rangle}{\sqrt{2}} \otimes \frac{ 0\rangle + 1\rangle}{\sqrt{2}} = \frac{ 00\rangle + 01\rangle + 10\rangle + 11\rangle}{2}$
$ 01\rangle \rightarrow \frac{ 0\rangle + e^{i2\pi} 01\rangle 1\rangle}{\sqrt{2}} \otimes \frac{ 0\rangle + e^{i2\pi} 0.01\rangle 1\rangle}{\sqrt{2}} = \frac{ 00\rangle + i 01\rangle - 10\rangle - i 11\rangle}{2}$
$ 10\rangle \rightarrow \frac{ 0\rangle + 1\rangle}{\sqrt{2}} \otimes \frac{ 0\rangle + e^{i2\pi} 0.1 }{\sqrt{2}} = \frac{ 00\rangle - 01\rangle + 10\rangle - 11\rangle}{2}$
$ 11\rangle \rightarrow \frac{ 0\rangle + e^{i2\pi\ 0.1} 1\rangle}{\sqrt{2}} \otimes \frac{ 0\rangle + e^{i2\pi\ 0.11} 1\rangle}{\sqrt{2}} = \frac{ 00\rangle - i 01\rangle - 10\rangle + i 11\rangle}{2}$
As before: $F = \frac{1}{2} \left[egin{array}{cccc} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 $

PHYC90045 Introduction to Quantum Computing Step back for a moment	MILECULAR				
After all that, let's check on what we were trying to achieve:					
On a single basis state ${\rm QFT} a\rangle=\frac{1}{\sqrt{N}}\sum_{k=0}^{N-1}e^{\frac{2\pi i}{N}ka} k\rangle$					
e.g. $ 011\rangle \rightarrow \left(\frac{1}{\sqrt{2}}\right)^3 \left(000\rangle + e^{3\pi i/4} 001\rangle + e^{3\pi i/2} 010\rangle + e^{9\pi i/4} 011\rangle$					
$+e^{i\pi} 100\rangle + e^{7\pi i/4} 101\rangle + e^{5\pi i/2} 110\rangle + e^{13\pi i/4} 111\rangle$					
i.e. 3=011 $ 3\rangle \rightarrow \left(\frac{1}{\sqrt{2}}\right)^3 \left(0\rangle + e^{3\pi i/4} 1\rangle + e^{3\pi i/2} 2\rangle + e^{9\pi i/4} 3\rangle + e^{i\pi} 4\rangle + e^{7\pi i/4} 5\rangle + e^{5\pi i/2} 6\rangle + e^{13\pi i/4} 7\rangle$					
It obeys: ${\rm QFT} 3\rangle = \frac{1}{\sqrt{8}}\sum_{k=0}^{N-1}e^{\frac{2\pi i}{8}\cdot 3k} k\rangle \qquad \text{(check it!)}$					

C90045 Introduction to Quantum Comput	This Week	MELBOUR
Lecture 9		
Fourier Transformation	s, Regular Fourier Transform, Fourier Quantum Fourier Transform, QUI	
Lecture 10		
Shor's Quantum Factor factoring and discrete le	ing algorithm, Shor's algorithm for ogarithm, HSP Problem	
Lab 5		
	m	

PHYC30045 Introduction to Quantum Computing Appendix: proof of the product form	MELICURAL
In case you want to go through it at your leisure	
$ j\rangle \rightarrow \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} e^{2\pi i jk/N} k\rangle$	
$= \frac{1}{\sqrt{N}} \sum_{k_1=0}^{1} \dots \sum_{k_n=0}^{1} e^{2\pi i j \sum_{l} k_l 2^{-l}} k_1 \dots k_n\rangle$	
$= \frac{1}{\sqrt{N}} \sum_{k_1=0}^{1} \dots \sum_{k_n=0}^{1} \otimes_l e^{2\pi i j k_l 2^{-l}} k_l\rangle$	
$= \frac{1}{\sqrt{N}} \otimes_l \left[0\rangle + e^{2\pi i j 2^{-l}} 1\rangle \right]$	
$= \frac{ 0\rangle + e^{2\pi i 0.j_n} 1\rangle}{\sqrt{2}} \otimes \ldots \otimes \frac{ 0\rangle + e^{2\pi i 0.j_1 j_2 \ldots j_n} 1\rangle}{\sqrt{2}}$	

(ര	I H	allan	herg.	\mathbf{c}	Hill	201	a
١	\mathbf{c}		,,,,,	DEID.	١		/ ()	- 7