

Instituto Politécnico Nacional Escuela Superior de Cómputo

Fundamentos de Diseño Digital

Práctica no. 2: Minimización Algebraica

Profesor: Fernando Aguilar Sánchez

Alumno: Calva Hernández José Manuel

Grupo: 2CM2

Desarrollo

1. Diseñe un comparador de magnitud de dos bits. Observe la tabla funcional y recuerde que tiene dos entradas y tres salidas. Arme su circuito resultante y verifique sus resultados.

#	Α	В	F1	F2	F3
			A <b< th=""><th>A=B</th><th>A>B</th></b<>	A=B	A>B
0	0	0	0	1	0
1	0	1	1	0	0
2	1	0	0	0	1
3	1	1	0	1	0

a. Coloque la solución del problema y dibuje su circuito lógico.

2. Diseñe un generador de Código Gray de 4 bits, y arme su circuito para verificar su funcionamiento.

Código Gray								
#	Α	В	С	D	F1	F2	F3	F4
0	0	0	0	0	0	0	0	0
1	0	0	0	1	0	0	0	1
2	0	0	1	0	0	0	1	1
3	0	0	1	1	0	0	1	0
4	0	1	0	0	0	1	1	0
5	0	1	0	1	0	1	1	1
6	0	1	1	0	0	1	0	1
7	0	1	1	1	0	1	0	0
8	1	0	0	0	1	1	1	0
9	1	0	0	1	1	1	1	1
10	1	0	1	0	1	1	1	1
11	1	0	1	1	1	1	1	0
12	1	1	0	0	1	0	1	0
13	1	1	0	1	1	0	1	1
14	1	1	1	0	1	0	0	1
15	1	1	1	1	1	0	0	0

a. Coloque la solución de su problema y dibuje su circuito lógico obtenido.

Para

F1(A,B,C,D) = ABEB, ABED+ ABED+ ABED+ ABED+ ABED+ ABED

= A(BED+BED+BED+BED+BED+BED+BED+BED)

= A[BEC(B+D)+BC(B+D)+BE(B+D)+BC(B+D)]

= A[BE(B+D)+BC(B+D)+BE(B+D)+BC(B+D)]

= A[BE(B+D)+BC(B+D)+BC(B+D)+BC(B+D)]

F3(A,B,C,D)= ABCD+ ABCD+

3. Código BCD a 7 segmentos

#	Α	В	С	D	а	b	С	d	е	f	g
0	0	0	0	0	1	1	1	1	1	1	0
1	0	0	0	1	0	1	1	0	0	0	0
2	0	0	1	0	1	1	0	1	1	0	1
3	0	0	1	1	1	1	1	1	0	0	1
4	0	1	0	0	0	1	1	0	0	1	1
5	0	1	0	1	1	0	1	1	0	1	1
6	0	1	1	0	1	0	1	1	1	1	1
7	0	1	1	1	1	1	1	0	0	0	1
8	1	0	0	0	1	1	1	1	1	1	1
9	1	0	0	1	1	1	1	1	0	1	1
10	1	0	1	0	Х	Χ	Χ	Χ	Χ	Χ	Χ
11	1	0	1	1	Х	Χ	Χ	Χ	Χ	Χ	Χ
12	1	1	0	0	Х	Χ	Χ	Χ	Χ	Χ	Χ
13	1	1	0	1	Х	Χ	Χ	Χ	Χ	Χ	Χ
14	1	1	1	0	Х	Χ	Χ	Χ	Χ	Χ	Χ
15	1	1	1	1	Х	Χ	Χ	Χ	Χ	Χ	Χ

Circuito Armado

