

Exercise 14A

Q4

Answer:

From the given figure:

$$\angle 1 = \angle 3 = 50^\circ$$
 (corresponding angles)
and $\angle 1 + x^\circ = 180^\circ$ (linear pair)
or $x^\circ = 180^\circ - 50^\circ = 130^\circ$
or $x = 130$
 $\angle 2 = \angle 4 = 65^\circ$ (corresponding angles)
and $\angle 2 + y^\circ = 180^\circ$ (linear pair)
or $y^\circ = 180^\circ - 65^\circ = 115^\circ$
or $y = 115$

Q5

Answer:

Given:

$$\angle B = 65^{\circ}$$

$$\angle C = 45^{\circ}$$

DAE | BC

The given lines are parallel.

 \therefore $x^\circ=\angle B=65^\circ$ (alternate angles when AB is taken as the transversal) $y^\circ=\angle C=45^\circ$ (alternate angles when AC is taken as the transversal) \therefore x=65 y =45

Q6

Answer:

Given: CE | BA

$$\angle BAC = 80^{\circ}, \angle ECD = 35^{\circ}$$

```
(i) \angle BAC = \angle ACE = 80^{\circ} (alternate angles with AC as a transversal)
```

(ii)
$$\angle ACB + \angle ACD = 180^{\circ}$$
 (linear pair)

or
$$\angle$$
ACB + \angle ACE + \angle ECD = 180° or \angle ACB + 80° + 35° = 180°

or
$$\angle ACB + 80^{\circ} + 35^{\circ} =$$

or $\angle ACB = 65^{\circ}$

(iii) In \triangle ABC:

$$80^{\circ} + 65^{\circ} + \angle ABC = 180^{\circ}$$

$$\angle ABC = 35^{\circ}$$

Q7

Answer:

$$\angle AOB = 50$$
"

$$\angle AOD = \angle CDB = 50^{\circ}$$
 (when AO \parallel CD and OB is the transversal) $\angle ECD + \angle CDB = 180^{\circ}$ (consecutive interior angles are supplementary, DB

******* END *******