

INTRODUCTION:

"TO ANALYZE PIZZA SALES TRENDS,
IDENTIFY TOP-SELLING ITEMS,
AND RECOMMEND STRATEGIES
FOR BUSINESS GROWTH."

DESCRIPTION:

THIS PRESENTATION FOCUSES ON ANALYZING PIZZA SALES DATA USING SQL TO IDENTIFY PATTERNS, TRENDS, AND INSIGHTS THAT CAN DRIVE BETTER DECISION-MAKING. BY LEVERAGING SQL QUERIES, THE ANALYSIS DELVES INTO KEY PERFORMANCE METRICS SUCH AS TOTAL SALES, POPULAR PIZZA CATEGORIES, PEAK SALES PERIODS, CUSTOMER PREFERENCES, AND GEOGRAPHIC TRENDS. THE GOAL IS TO PROVIDE A DATA-DRIVEN UNDERSTANDING OF BUSINESS PERFORMANCE AND OFFER STRATEGIC RECOMMENDATIONS FOR IMPROVING SALES AND OPERATIONAL EFFICIENCY.

PURPOSE:

TO ANALYZE PIZZA SALES DATA USING SQL TO UNCOVER KEY INSIGHTS INTO SALES TRENDS, CUSTOMER PREFERENCES, AND PERFORMANCE METRICS. THE PRESENTATION AIMS TO PROVIDE ACTIONABLE RECOMMENDATIONS TO OPTIMIZE INVENTORY, IMPROVE MARKETING STRATEGIES, AND ENHANCE OVERALL BUSINESS EFFICIENCY.

DATASET OVERVIEW

COLUMNS: ORDER_ID, ORDER_DATE, ORDER_TIME.
INSIGHTS: HELPS ANALYZE SALES TRENDS OVER TIME
AND TRACK CUSTOMER BEHAVIOR.

ORDER_DETAILS TABLE

COLUMNS: ORDER_DETAIL_ID, ORDER_ID, PIZZA_ID, QUANTITY.

INSIGHTS: LINKS ORDERS TO SPECIFIC PIZZA ITEMS, ENABLING DETAILED SALES ANALYSIS.

PIZZA_TYPES TABLE

COLUMNS: PIZZA_TYPE_ID, NAME, INGREDIENTS, CATEGORY.

INSIGHTS: USEFUL FOR ANALYZING THE POPULARITY OF DIFFERENT PIZZA TYPES AND CATEGORIES.

PIZZAS TABLE

COLUMNS: PIZZA_ID, PIZZA_TYPE_ID, SIZE.

INSIGHTS: HELPS DETERMINE SIZE PREFERENCES AND

VARIANT-LEVEL PERFORMANCE.

1. Retrieve the total number of orders placed.


```
select count(order_id) as Total_Orders from orders;
```


2. Calculate the total revenue generated from pizza sales.

```
SELECT

ROUND(SUM(orders_details.quantity * pizzas.price),

2) AS Total_Revenue

FROM

orders_details

JOIN

pizzas ON pizzas.pizza_id = orders_details.pizza_id;
```


3. Identify the highest-priced pizza.

4. Identify the most common pizza size ordered.

R	esult Gri	d 🔢 🙌 Filter F
	size	Order_Count
Þ	L	18526
	M	15385
	S	14137
	XL	544
	XXL	28

5. List the top 5 most ordered pizza types along with their quantities.

Re	esult Grid		
	name	Quantity	
•	The Classic Deluxe Pizza	2453	
	The Barbecue Chicken Pizza	2432	
	The Hawaiian Pizza	2422	
	The Pepperoni Pizza	2418	
	The Thai Chicken Pizza	2371	
Re	sult 1 ×		

6. Join the necessary tables to find the total quantity of each pizza category ordered.

```
select pizza_types.category,
sum(orders_details.quantity) as quantity
from pizza_types join pizzas
on pizza_types.pizza_type_id = pizzas.pizza_type_id
join orders_details
on orders_details.pizza_id = pizzas.pizza_id
group by pizza_types.category order by quantity desc;
```

Re	esult Grid	Filte
	category	quantity
•	Classic	14888
	Supreme	11987
	Veggie	11649
	Chicken	11050
Re	sult 1 ×	

7. Determine the distribution of orders by hour of the day.

```
SELECT

HOUR(order_time) AS hour, COUNT(order_id) AS order_count

FROM

orders

GROUP BY HOUR(order_time);
```


8. Join relevant tables to find the category-wise distribution of pizzas.

```
category, COUNT(name)

FROM

pizza_types

GROUP BY category;
```

Re	esult Grid	Filter Rows
	category	COUNT(name)
Þ	Chicken	6
	Classic	8
	Supreme	9
	Veggie	9

9. Group the orders by date and calculate the average number of pizzas ordered per day.

10. Determine the top 3 most ordered pizza types based on revenue.

```
select pizza_types.name,
sum(orders_details.quantity * pizzas.price) as revenue
from pizza_types join pizzas
on pizzas.pizza_type_id = pizza_types.pizza_type_id
join orders_details
on orders_details.pizza_id = pizzas.pizza_id
group by pizza_types.name order by revenue desc limit 3;
```

Re	esult Grid	ws:
	name	revenue
)	The Thai Chicken Pizza	43434.25
	The Barbecue Chicken Pizza	42768
	The California Chicken Pizza	41409.5

Conclusion:

- "Sales increased steadily over weekends, with dinner hours being the peak period."
- "Combo meals are the most popular, contributing 45% of total revenue."
- "Pepperoni Pizza is the highest-selling item, accounting for 30% of sales."
- "Vegetarian Pizza has the lowest demand at 5%."
- "Peak sales occur on weekends between 6-9 PM."
- "Slow sales during weekday afternoons."
- "Families order combos more frequently on weekends."

Future Scope:

- "Launch weekend promotions and combo meal discounts."
- "Target weekday afternoon customers with 'Happy Hour' offers."
- "Introduce new vegetarian options to boost underperforming categories."
- "Offer seasonal pizzas based on customer preferences."
- "Hire additional staff during peak weekend hours."
- "Optimize ingredient inventory for highdemand items to reduce wastage."

