Instrumentación I: Transductores químicos

Juan J. Rojas

Instituto Tecnológico de Costa Rica 28 de octubre de 2025

Unidades químicas

- Mole (mol) = 6 02214e23 moleculas de la sustancia
- Masa molar (g/mol)
- Partes por millón (ppm): 1 mg/kg u otra proporción análoga
- Partes por millón (ppm): 1 µg/kg u otra proporción análoga

Electroquímicos: oxidos metálicos

- A temperaturas elevadas cambian su conductividad en presencia de gases
- Algunos oxidos que pueden usarse son de estaño (SnO₂), zinc (ZnO), hierro (Fe₂O₃) y zirconio (ZrO₂), entre otros
- La reacción con el gas a medir es de reducción
- Al bajar la concentración de gas reductor se reabsorbe oxigeno (oxidación)
- Algunos gases que se pueden medir son alchohol etílico, metano y monoxido de carbono

Electroquímicos: oxidos metálicos

La resistencia (R) del sensor se puede expresar como

$$R = aP^{-\alpha}$$

donde α es una constante definida por el material y la construcción del sensor, P es la concentración del gas (ppm), y α es una constante relacionada al tipo de gas.

Electroquímicos: electrolito solido

- Consiste en una celda galvánica, cuyos electrodos están en contacto con dos ambientes gaseosos a diferentes concentraciones
- El electrolito es un sólido cerámico que permite el paso de iones
- Los electrodos son metalicos, usualmente de platino
- Un ejemplo común es el sensor de oxígeno en gases de escape automotriz

Referencias

[1] N. Ida et al., Sensors, actuators, and their interfaces: a multidisciplinary introduction. SciTech Publishing Inc, 2013.