208

$$y = 4\lambda^2 y$$

o $\lambda=\pm 1/2$ e $y=\pm x$, lo que significa que $x^2+x^2=2x^2=1$ o $x=\pm 1/\sqrt{2}, y=\pm 1/\sqrt{2}$. Hemos calculado que, en C, existen cuatro candidatos para los puntos de máximo y de mínimo, concretamente,

$$\left(-\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}\right), \qquad \left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right), \qquad \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right), \qquad \left(\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}\right).$$

El valor de f tanto en $(-1/\sqrt{2}, -1/\sqrt{2})$ como en $(1/\sqrt{2}, 1/\sqrt{2})$ es 1/2. El valor de f en $(-1/\sqrt{2}, 1/\sqrt{2})$ y $(1/\sqrt{2}, -1/\sqrt{2})$ es -1/2, y el valor de f en (0, 0) es 0. Por tanto, el máximo absoluto de f es 1/2 y el mínimo absoluto es -1/2, y ambos se alcanzan en C. En (0, 0), $\partial^2 f/\partial x^2 = 0$, $\partial^2 f/\partial y^2 = 0$ y $\partial^2 f/\partial x \partial y = 1$, por lo que el discriminante es -1 y por tanto (0, 0) es un punto de silla.

Ejemplo 7

Hallar el máximo y el mínimo absolutos de $f(x,y)=\frac{1}{2}x^2+\frac{1}{2}y^2$ en la región elíptica D definida por $\frac{1}{2}x^2+y^2\leq 1$.

Solución

De nuevo, por el Teorema 7 de la Sección 3.3, el máximo absoluto existe. En primer lugar, localizamos los puntos críticos de f en U, el conjunto de puntos (x,y) con $\frac{1}{2}x^2 + y^2 < 1$. Como

$$\frac{\partial f}{\partial x} = x, \qquad \frac{\partial f}{\partial y} = y,$$

el único punto crítico es el origen (0, 0).

Ahora determinamos el máximo y el mínimo de f en C, la frontera de U, que es la curva de nivel g(x,y)=1, donde $g(x,y)=\frac{1}{2}x^2+y^2$. Las ecuaciones de los multiplicadores de Lagrange son

$$\nabla f(x,y) = (x,y) = \lambda \nabla g(x,y) = \lambda(x,2y)$$

y $(x^2/2) + y^2 = 1$. En otras palabras,

$$x = \lambda x$$
$$y = 2\lambda y$$
$$\frac{x^2}{2} + y^2 = 1.$$

Si x=0, entonces $y=\pm 1$ y $\lambda=\frac{1}{2}$. Si y=0, entonces $x=\pm\sqrt{2}$ y $\lambda=1$. Si $x\neq 0$ e $y\neq 0$, tenemos que $\lambda=1$ y 1/2, lo que es imposible. Por tanto, los candidatos a puntos de máximo y de mínimo de f en C son $(0,\pm 1), (\pm\sqrt{2},0)$ y para f dentro de D, el candidato es (0,0). El valor de f en $(0,\pm 1)$ es 1/2, en $(\pm\sqrt{2},0)$ es 1 y en (0,0) es 0. Luego el mínimo absoluto de f se alcanza en (0,0) y es 0. El máximo absoluto de f en D es por tanto 1 y se alcanza en los puntos $(\pm\sqrt{2},0)$.