

Projektabschlussbericht

Entwicklung und Implementierung der Regelungsund Steuerungsstrategien

30.03.2021

Teammitglieder:
Muhammad Maaz Majid
Sascha Halbgewachs
Christoph In der Au

Lukas Neumeister Martin Kirchner Chen Zhang

Inhalt

- 1. Einleitung
- 2. Hardware und Buskommunikation
- 3. Regelungsstrategie
- 4. Ergebnisse und Validierung
- 5. Zusammenfassung und Ausblick

30.03.2021 Chen Zhang 2

1

Einleitung

30.03.2021 Chen Zhang 3

Aufteilung in Team

2

Hardware und Buskommunikation

Überblick

USV - Katamaran [1]

- 1 Slave
- (2) User-Unit
- (3) Gehäuse

Hardware

Platinenlayout

Entwicklungsboard

Weitere Bauteile

Würth Electronic [4]

Platinenlayout

Board-Layout

Schaltplan

Board-Layout

- 2-Layer-Platine
 - Verwendung von VIAs
- Maße: 70,8 x 50,1 x 15 mm
 - Platinenstärke: max. 1,6 mm
- Design-Rules:
 - EAGLE-Vorlage
 - SMD 0805
 - Leitungsstärken 0,5 1 mm
 - Lochraster (2,54 mm)
- Keep-Out-Areas
 - Befestigung der Platine im Gehäuse

Schaltplan

Entwicklungsboard

Hersteller: STM

Typ: NUCLEO G431KB

- Software STM32CubeIDE 1.5.0
 - Konfiguration der Pins
- Anforderungen:
 - Maße
 - Versorgungsspannung
 - RS232-Busspannung
 - Anwendung / Support
 - Preis/Leistung

STM NUCLEO[3]

Entwicklungsboard

- Modifizierung Layout
 - Entfernung Lötbrücke SB5
 - Entfernung Lötbrücke SB15
- Nur noch Betrieb mit 3,3 V möglich

Weitere Bauteile

- Anforderungen
 - SMD-Bauteile (Kondensatoren, Widerstände)
 - Anschlussleisten für Flachbandkabel (feste Verbindung mit Slave)
 - Headerleisten (Debugging)
 - THT-LEDs (Debugging)

Finales Platinenlayout

- 1 4-polig Flachbandkabel
- 2 12-polig Flachbandkabel
- (3) 4-polig Headerleiste
- 4 12-polig Headerleiste
- (5) LEDs
- 6 Entwicklungsboard

Buskommunikation

Kommunikation User-Unit USV-Slave:

Bussystem: RS232-Bus

Datenschnittstelle: UART-Schnittstelle

Datenübertragung:

- RS232-Übertragungsprotokoll definiert Datenablauf und Frameaufbau für das Schreiben und Lesen
- Blockweises Schreiben und Lesen von Daten

Entwicklungsumgebung:

Board: NUCLEO-G431KB → IDE: STM32CubeIDE 1.5.0

UARTs und ihre Aufgaben

<u>UART2</u>

- USB-Connector
- Kommunikation mit dem PC-Terminal
- Flashen und Debugging

UART1

- Pin-Header
- Buskommunikation mit dem USV-Slave

Daten schreiben

Daten lesen

Aktuelle Softwareprobleme

- Nach einer gewissen Zeitspanne hängt sich die Kommunikation auf
 →Behebung des Problems geplant: 06.04.2021
- Slave-ID ergänzen

3

Regelungsstrategie

Regelungsstrategie

4

Ergebnisse und Validierung

Ergebnisse

- PID-Regelalgorithmus umgesetzt
- Regelstrategie entwickelt und über interne Tests validiert
- Berechnung der Entfernung und Peilung implementiert und intern validiert
- Kommunikation über UART und benötigte Konvertierung umgesetzt

Ergebnisse der Berechnungen

Berechnung der Entfernung					
Startpunkt	Ziel	Soll [km]	lst [km]	Fehler [km]	Relativer Fehler
EAH_H3	Brandenburger-Tor	217,07	217,25	0,18	0,0008%
EAH_H3	Paradiesbahnhof	1,23	1,226	-0,004	-0,003%
Berechnung der Peilung (Bearing)				0.004	0.0160/
Richtung	soll [°]	ist [°]	Fehler	-0,004	-0,016%
NordOst	34,34	34,338	-0,002		
NordWest	341,52	341,517	-0,003		
SüdWest	235,94	235,935	-0,005		
SüdOst	154,25	154,249	-0,001		
Süd	180	180	0		
Nord	0	0	0		

https://www.luftlinie.org/50.918408,11.568755/50.920582720940374,11.569400323764057

https://www.delius-klasing.de/media/pdf/0e/3b/d3/978-3-88412-494-9-nautische-formelsammlung-navigation-stand-12-2016.pdf

Berechnung Targetpoint

5

Zusammenfassung und Ausblick

Ausblick

- Noch offen:
 - Ermittlung exakter Reglerparameter am realen Bootmodell
- Unter Bearbeitung & wird nachgereicht:
 - Implementierung Watchdog
 - Detektion Brownout (Reset)
 - Bugfix für Nichtwiederaufnahme der Kommunikation nach fehlerhafter Übertragung

Ausblick

- Folgende Erweiterungen sind denkbar:
 - Fehlerbehandlungen
 - Auslösen von Fehlermeldungen (z.B. Plausibilitätsprüfung Ergebnisse)
 - Berechnung Targetpoints in Abhängigkeit der Geschwindigkeit
 - Spannungsüberwachung (falls sinnvoll, Hardware schon vorhanden)

Zusammenfassung

- Zusammenfassung
 - Hardware entwickelt und in Betrieb genommen
 - Regelstrategie entwickelt und in C umgesetzt
 - Buskommunikation über UART umgesetzt
 - Konvertierung der Daten für Buskommunikation und Berechnung der Entfernung und Peilung umgesetzt
 - PID-Regler implementiert
 - Implementierte Programme intern validiert und zum Teil im Labor getestet
 - Trotz schwieriger Umstände wegen Online-Semester haben wir die meisten Aufgaben rechtzeitig erledigt aufgrund guter Teamarbeit und guter Zusammenarbeit mit Prof. Grabow / Herr Franke / Team 1

Vielen Dank für Ihre Aufmerksamkeit!

Quellen

- [1] S. F. Jörg Grabow, "Anwenderschnittstelle USV-Slave," Jena, 2021.
- [2] J. Grabow, "Projektbeschreibung/Themenstellung," 04 11 2020. [Online]. Available: https://moodle.stud.eahjena.de/pluginfile.php/133459/mod_resource/content/3/USV.pdf.
- [3] STMicroelectronics, "STMicroelectronics," 01 2021. [Online]. Available: https://www.st.com/resource/en/user_manual/dm00493601-stm32g4-nucleo32board-mb1430-stmicroelectronics.pdf. [Zugriff am 20 03 2021].
- [4] W. Electronic, "Würth Electronic," 01 2021. [Online]. Available: https://www.we-online.de/katalog/datasheet/151034BS03000.pdf. [Zugriff am 20 03 2021].

30.03.2021