Notation and Vocabulary

- 1. **supremum:** $s = \sup A$ = "least upper bound" all values that come after s will be greater than or equal to s
- 2. **infimum:** $i = \inf A = \text{"greatest lower bound"}$ all values that come before i will be less than or equal to i
- 3. union: $A \cup B$, intersection: $A \cap B$
- 4. Intersection of n sets: $\bigcap_{n=1}^{\infty} A_n$. Union of n sets: $\bigcup_{n=1}^{\infty} A_n$
- 5. **empty set:** \emptyset , "The set is empty"= \emptyset , "The set is nonempty" $\neq \emptyset$
- 6. complement of A: $A^c = \{x \in \mathbb{R} \mid x \notin A\}$
- 7. **subset:** $A \subseteq B$
- 8. "A less B": $A \setminus B = A \cap B^c$
- 9. **DeMorgan's Laws:** $(A \cap B)^c = A^c \cup B^c$ and likewise $(A \cup B)^c = A^c \cap B^c$
- 10. **Equality:** two real numbers $a,b \in \mathbb{R}$ are **equal** iff $\forall \epsilon > 0, |a-b| < \epsilon$
- 11. **Bounded:** a set $A \subseteq \mathbb{R}$ is bounded:
- 12. above if $\exists b \in \mathbb{R} \text{ s.t. } \forall a \in A, \ b \geq a$.
- 13. *below* for some $l \leq a, \ \forall a \in A$

Sets: $\exists M > 0 \text{ s.t. } |a| \leq M, \ \forall a \in A$

Sequential: $\exists M > 0 \text{ s.t. } |x_n| \leq M, \ \forall n \in \mathbb{N}$

- 14. **Axiom of Completeness:** If $A \neq \emptyset$, and is bounded above, then $\exists s = \sup A, \text{ s.t. } s \geq a, \ \forall a \in A$
- 15. **Lemma to AOC:** decides what is NOT an upper bound of A. $s = \sup A$ is the supremum of A iff $\forall \epsilon > 0$, $\exists a \in A \text{ s.t. } s \epsilon < a$
- 16. **Triangle Inequality:** $|a+b| \leq |a| + |b|, \Rightarrow |a-b| \leq |a-c| + |c-b|$
- 17. **Maximum:** Some $M \in A$, s.t. $M \ge a, \forall a \in A$, **Minimum:** Some $m \in A$ s.t. $m \le a, \forall a \in A$
- 18. **Nested Intervals:** given a closed interval $I_n = [a_n, b_n] = \{x \in \mathbb{R} | a_n \le x \le b_n\}$, assuming $I_n \supseteq I_{n+1}$, a nested sequence of intervals $I_1 \supseteq I_2 \supseteq I_3 \ldots \ne \emptyset$
- 19. **function:** $f: A \rightarrow B$
- 20. **One-to-One:** if $a_1 \neq a_2$ in $A \Rightarrow f(a_1) \neq f(a_2)$ in B. **Onto:** given any $b \in B, \ \exists a \in A \text{ s.t.}$ f(a) = b
- 21. Cardinality: $A \sim B$, $|\mathbb{N}|$
- 22. Countable indicators:
 - 1. If $A \subseteq B$ and B is countable, then A is countable or finite.
 - 2. $|\mathbb{Q}|$ is countable, $|\mathbb{R}|$ is uncountable

- 23. ϵ -neighborhood: $V_{\epsilon}(a) = \{x \in \mathbb{R} \mid |x a| < \epsilon\}$
 - = an interval centered at a, with radius ϵ : $(a \epsilon, a + \epsilon)$
- 24. **convergence:** $(a_n) \to a \text{ if } \forall \epsilon > 0 \exists N \in \mathbb{N} \text{ s.t. whenever } n \geq N \Rightarrow |a_n a| < \epsilon$
 - 1. Functional Version: $\lim_{n\to\infty}a_n=a$
 - 2. Sequential Version: $\exists a_N$ in the sequence (a_n) after which all terms of the sequence land $(a_n) \in V_{\epsilon}(a)$
- 25. Sequence: (x_n) , Subsequence: (x_{n_k})
- 26. Increasing Sequence: $a_n \leq a_{n+1}, \ \, \forall n \in \mathbb{N}.$ Decreasing Sequence: $a_n \geq a_{n+1}, \ \, \forall n \in \mathbb{N}$
- 27. **Cauchy sequence,** $(\mathbf{a_n})$: $\forall \epsilon > 0, \exists N \in \mathbb{N} \text{ s.t. whenever } m, n \geq N \Rightarrow |a_n a_m| < \epsilon$
- 28. Convergence indicators:
 - 1. Monotone and bounded \Rightarrow convergence.
 - 2. BWT every bounded sequence contains a convergent subsequence.
 - 3. If a sequence converges, its subsequences converge to the same limit.
 - 4. Cauchy sequence \Leftrightarrow sequence convergence, $(a_n) \to a$.
- 29. **Limit point iff:** $\exists a_n \in A \text{ s.t. } x = \lim a_n, a_n \neq x, \forall n \in \mathbb{N}...*$ **isolated point** if not a limit point, for some* $a \in A$
- 30. Set of all limit points: A'
- 31. Closure of a set: $\overline{A} = A \cup A'$
- 32. **Open set, O:** $\forall a \in O, \exists V_{\epsilon}(a) \subseteq O \text{ a set whose supremum is not contained within the set.}$
- 33. Closed set, F, iff: contains all limit points $\overline{F} = F \cup F'$ every Cauchy sequence, (a_n) s.t. $|a_n a_m| < \epsilon$ contained in F has $\lim(a_n) \in F$
- 34. Open/Closed indicators:
 - 1. A set A is **open** if A^c is **closed**, likewise a set B is **closed** if B^c is **open**.
 - 2. If *F* is a finite collection of closed sets, then $\bigcup_{n=1}^{k} F_n$ is closed
 - 3. IVT
- 35. **Compact, K:** $\forall (k_n) \in K, \exists (k_{n_k}) \to k \in K \text{ all sequences in } K \text{ will have a subsequence,} k_{n_k}$, that converges to an element of K
- 36. Compact indicators:
 - 1. K is compact if closed (contains all limit points) and bounded
 - 2. Let $f:A\to\mathbb{R}$ be *continuous* on A. If $K\subseteq A$ is compact, then f(K) is compact as well.
- 37. **Nested Sets:** assuming $K_n \supseteq K_{n+1}$, a nested sequence of intervals $K_1 \supseteq K_2 \supseteq K_3 \ldots \neq \emptyset$
- 38. **Cantor Set:** $C = \bigcap_{n=0}^{\infty} C_n$ where C_n is a set of 2^n closed intervals with length $\frac{1}{3^n}$.

- 39. **Limit of a function:** $\lim_{x\to c} f(x) = L$ provided that $\forall \epsilon > 0, \ \exists \delta > 0$ s.t. whenever $0 < |x-c| < \delta$ and $x \in A \Rightarrow |f(x)-L| < \epsilon$
 - 1. Topological Version: Let c be a limit point of the domain $f:A\to\mathbb{R}$. We say $\lim_{x\to c}f(x)=L$ provided that every ϵ -neighborhood around $L,V_{\epsilon}(L),\exists$ a δ -neighborhood around $c,V_{\delta}(c)$, with the property that $\forall x\in V_{\delta}(c)$ where $x\neq c,x\in A$, it follows that $f(x)\in V_{\epsilon}(L)$
 - 2. Sequential Criterion: Given a function $f: A \to \mathbb{R}$ and a limit point c of A, the following two statements are equivalent:

$$\lim_{x o c}f(x)=L\equiv igg(orall (x_n)\subseteq A ext{ s.t. }x_n
eq c ext{ and }x_n o c\Rightarrow f(x_n) o Ligg)$$

40. Algebraic Limit Theorem:

- 1. Function version: Let f and g be functions defined on domain $A\subseteq\mathbb{R}$ and assume $\lim_{x\to c}f(x)=L,\ \lim_{x\to c}g(x)=M$ for some limit point c of A.
 - 1. $\lim kf(x)=kL,\ orall k\in\mathbb{R}$
 - 2. $\lim [f(x) + g(x)] = L + M$
 - 3. $\lim[f(x)g(x)] = LM$

4.
$$\lim \frac{f(x)}{g(x)} = \frac{L}{M}, \quad M \neq 0$$

- 2. Sequential version: Let $\lim a_n = a$ and $\lim b_n = b$.
 - 1. If $a_n > 0$, $\forall n \in \mathbb{N}$, then $a \geq 0$.
 - 2. If $a_n \leq b_n, \ \forall n \in \mathbb{N}$ then $a \leq b$.
 - 3. If $\exists c \in \mathbb{R}$ s.t. $c \leq b_n$, $\forall n \in \mathbb{N}$, then $c \leq b$. Similarly if $a_n \leq c$, $\forall n \in \mathbb{N}$, then $a \leq c$.
- 3. Continuity version: Assume $f:A \to \mathbb{R}$ and $g:A \to \mathbb{R}$ are continuous at some $c \in A$ then,
 - 1. kf(x) is continuous @ $\operatorname{c} \, \forall k \in \mathbb{R}$
 - 2. f(x) + g(x) is continuous @ c
 - 3. f(x)g(x) is continuous @ c
 - 4. $\frac{f(x)}{g(x)}$ is continuous @ c, $g(x) \neq 0$
- 41. **Divergence:** Let $f: A \to \mathbb{R}$, and $c \in A'$. $\exists (x_n), (y_n) \in A$ with $x_n \neq c$ and $y_n \neq c$. If $\lim x_n = \lim y_n = c$ but $\lim f(x_n) \neq \lim f(y_n) \Rightarrow \lim f(x) = \text{DNE}$.
- 42. **Continuity:** A function is **continuous** if $\forall \epsilon > 0, \ \exists \delta > 0$ s.t whenever $|x c| < \delta$, and $x \in A, \Rightarrow |f(x) f(y)| < \epsilon$. Point c must be in the domain of f and f(c) = L or $\lim_{x \to c} f(x) = f(c)$
- 43. **Continuity indicators:** Continuous iff -

1.
$$\forall \epsilon > 0, \; \exists \delta > 0 \; \mathrm{s.t.} \; |x-c| < \delta \; (\mathrm{and} \; x \in A) \Rightarrow |f(x) - f(c)| < \epsilon$$

- 2. $\forall V_{\epsilon}(f(c)), \ \exists V_{\delta}(c)$ with the property that $x \in V_{\delta}(c) \Rightarrow f(x) \in V_{\epsilon}(f(c))$
- 3. $\forall (x_n) \rightarrow c \ (\mathsf{w}/\ x_n \in A), \Rightarrow f(x_n) \rightarrow f(c)$
- 4. $\lim_{x \to c} f(x) = f(c)$
- 44. **Discontinuity Indicator:** $f: A \to \mathbb{R}$ and $c \in A$, and $c \in A'$. If $\exists (x_n) \subseteq A$ where $(x_n) \to c$ but $f(x_n) \nrightarrow f(c)$. f is not continuous at x = c.
- 45. **Extreme Value Theorem:** $f: K \to \mathbb{R}$ is continuous on a compact set, $\exists x_o, x_1 \in K$ s.t. $f(x_o) \leq f(x) \leq f(x_1)$
- 46. Uniform Continuity: $f: A \to \mathbb{R}$ is uniformly continuous on **A** if $\forall \epsilon > 0, \exists \delta > 0$ s.t. $\forall x, y \in A, |x y| < \delta \Rightarrow |f(x) f(y)| < \epsilon$
- **47. Uniform Continuity Indicators:**
 - 1. Given some $\epsilon > 0$ and $c \in A$ we can find a $\delta > 0$ s.t. if $|x c| < \delta, |f(x) f(c)| < \epsilon$
 - 2. $\forall \epsilon > 0$, the same $\delta > 0$ can be used for all points $c \in A$
 - 3. *Compact Sets:* A function that is continuous on a compact set K is uniformly continuous on K.
- 48. **Absence of Uniform Continuity:** fails uniform continuity iff \exists a specific $\epsilon_o > 0$ and two sequences $(x_n), (y_n) \in A$ satisfying $|x_n y_n| \to 0$ but $|f(x_n) f(y_n)| \ge \epsilon_o$
- 49. **Intermediate Value Theorem:** $f:[a,b] \to \mathbb{R}$ be continuous. Let $L \in \mathbb{R}$ satisfying f(a) < L < f(b) or f(a) > L > f(b) then $\exists c \in (a,b)$ where f(c) = L
- 50. **IVT Indicator:** if $x < y \in [a, b]$ and $\forall L$ between f(x) and f(y) it is always possible to find a point $c \in (x, y)$ where f(c) = L
- 51. **Connected Sets:** A set that is not disconnected is called a **connected** set
 - 1. $A, B \subseteq R$ are **separated** if $A \cap B, A \cap B = \emptyset$.
 - 2. A set $E \subseteq R$ is **disconnected** if it can be written as $E = A \cup B$, where A and B are nonempty separated sets.
- 52. **Preservation of Connected Sets:** A continuous function $f: G \to \mathbb{R}$, if $E \subseteq G$ is connected, f(E) is connected as well.

Problems

- 1. Does $\lim_{x\to 1} \frac{|x-1|}{x-1}$
 - 1. 4.2.5 Use Definition 4.2.1 to supply a proper proof for the following limit statements.
 - 1. (a) $\lim_{x \to 2} (3x + 4) = 10$
 - 2. (b) $\lim_{x\to 0} x^3 = 0$.
 - 3. (c) $\lim_{x\to 2} (x^2 + x 1) = 5$.
 - 4. (d) $\lim_{x\to 3} 1/x = 1/3$

- 2. Let $h : \mathbb{R} \to \mathbb{R}$ be a continuous function. We define the set $Z = \{x \in \mathbb{R} \mid h(x) > 0\}$. Is Z closed?
- 3. Recall that if two sets A, B are separated, it means that neither contains a limit point of the other $\Rightarrow A \cap \overline{B} = \emptyset$ and $\overline{A} \cap B = \emptyset$. If $A \cap B = \emptyset$ and $A, B \neq \emptyset$, let U and V be open sets s.t. $U \cap V = \emptyset$ and $A \subseteq U$ and $B \subseteq V$. Under these conditions, are A and B separated?
- 4. Given 2 sets A, B let us define distance between them as $d(A,B)=\inf\{|x-y|:x\in A,\ y\in B\}$. If A=(0,1) and B=(1,2). Given that $A\cap B=\emptyset$, and A and B are compact is d(A,B)>0?
- 5. Let $A \subseteq \mathbb{R}$ show that A' is always closed.
- 6. 2.5.2 Decide whether the following propositions are true or false, providing a short justification for each conclusion.
 - 1. (a) If every proper subsequence of (x_n) converges, then (x_n) converges as well.
 - 2. (b) If (x_n) contains a divergent subsequence, then (x_n) diverges.
 - 3. (c) If (x_n) is bounded and diverges, then there exist two subsequences of (x_n) that converge to different limits.
 - 4. (d) If (x_n) is monotone and contains a convergent subsequence, then (x_n) converges
- 7. Give an example of 2 sets A, B where $A \cap B = \emptyset$, $\sup A = \sup B$ and $\sup A \notin A$, $\sup B \notin B$
- 8. If $A_1 \cup A_2 \cup A_3 \dots \cup A_n$ is countable is $\bigcup_{n=1}^{\infty} A_n$ countable? If $A_1 \times A_2 \times A_3 \dots \times A_n$ is countable is $\prod_{n=1}^{\infty} A_n$ countable?

HMWK 10

4.4.3

Show that $f(x) = \frac{1}{x^2}$ is uniformly continuous on the set $[1, \infty)$ but not on the set (0, 1].

4.4.5

Assume that g is defined on an open interval (a, c) and it is known to be uniformly continuous on (a, b] and [b, c), where a < b < c. Prove that g is uniformly continuous on (a, c).

4.4.9

(Lipschitz Functions). A function $f: A \to R$ is called Lipschitz if there exists a bound M > 0 such that $\left| \frac{f(x) - f(y)}{x - y} \right| \le M$ for all $x \ne y \in A$. Geometrically speaking, a function f is

Lipschitz if there is a uniform bound on the magnitude of the slopes of lines drawn through any two points on the graph of f.

(a) Show that if $f:A\to R$ is Lipschitz, then it is uniformly continuous on A.

(b) Is the converse statement true? Are all uniformly continuous functions necessarily Lipschitz?

4.5.1

Show how the Intermediate Value Theorem follows as a corollary to Theorem 4.5.2.

HMWK 9

4.2.6

Decide if the following claims are true or false, and give short justifications for each conclusion.

- (a) If a particular δ has been constructed as a suitable response to a particular ϵ challenge, then any smaller positive δ will also suffice.
- (b) If $\lim_{x\to a} f(x) = L$ and a happens to be in the domain of f, then L = f(a).
- (c) If $\lim_{x \to a} f(x) = L$, then $\lim_{x \to a} 3[f(x) 2]^2 = 3(L 2)^2$.
- (d) If $\lim_{x\to a} f(x) = 0$, then $\lim_{x\to a} f(x)g(x) = 0$ for any function g (with domain equal to the domain of f.

4.3.5

Show using Definition 4.3.1 that if c is an isolated point of $A \subseteq \mathbb{R}$, then $f : A \to \mathbb{R}$ is continuous at c.

4.3.9

Assume $h : \mathbb{R} \to \mathbb{R}$ is continuous on \mathbb{R} and let $K = \{x : h(x) = 0\}$. Show that K is a closed set.

HMWK8

3.3.4

Assume K is compact and F is closed. Decide if the following sets are definitely compact, definitely closed, both, or neither.

- (a) $K \cap F$
- (b) $\overline{F^c \cup K^c}$
- (c) $K \setminus F = \{x \in K : x \notin F\}$
- (d) $\overline{K \cap F^c}$

HMWK 7

3.2.1

(a) Where in the proof of Theorem 3.2.3 part (ii) does the assumption that the collection of open sets be finite get used?

(b) Give an example of a countable collection of open sets $\{O_1, O_2, O_3, \dots\}$ whose intersection $\bigcap_{n=1}^{\infty} O_n$ is closed, not empty and not all of \mathbb{R} .

3.2.3

Decide whether the following sets are open, closed, or neither.

If a set is not open, find a point in the set for which there is no ϵ -neighborhood contained in the set. If a set is not closed, find a limit point that is not contained in the set.

- (a) Q.
- (b) N.
- (c) $\{x \in \mathbb{R} : x \neq 0\}$.
- (d) $\{1+1/4+1/9+\cdots+1/n^2:n\in\mathbb{N}\}.$
- (e) $\{1+1/2+1/3+\cdots+1/n: n \in \mathbb{N}\}$.

3.2.13

Prove that the only sets that are both open and closed are \mathbb{R} and the empty set \emptyset .

HMWK 6

2.6.5

Consider the following (invented) definition: A sequence (s_n) is pseudo-Cauchy if, for all $\epsilon > 0$, there exists an \mathbb{N} such that if $n \geq \mathbb{N}$, then $|s_{n+1} - s_n| < \epsilon$.

Decide which one of the following two propositions is actually true. Supply a proof for the valid statement and a counterexample for the other.

- (i) Pseudo-Cauchy sequences are bounded.
- (ii) If (x_n) and (y_n) are pseudo-Cauchy, then $(x_n + y_n)$ is pseudo-Cauchy as well.

HMWK 5

2.2.2

Verify, using the definition of convergence of a sequence, that the following sequences converge to the proposed limit.

(a)
$$\lim \frac{2n+1}{5n+4} = \frac{2}{5}$$
.

(b)
$$\lim \frac{2n^2}{n^3+3} = 0$$
.

(c)
$$\lim \frac{\sin(n^2)}{\sqrt[3]{n}} = 0.$$

2.3.1

Let $x_n \geq 0 \ \forall n \in \mathbb{N}$.

- (a) If $(x_n) \to 0$, show that $(\sqrt{x_n}) \to 0$.
- (b) If $(x_n) \to x$, show that $(\sqrt{x_n}) \to \sqrt{x}$.

2.3.2 b

Using only Definition 2.2.3, prove that if $(x_n) \to 2$, then

(a)
$$\left(\frac{2x_n-1}{3}\right) \to 1$$

(b)
$$\left(\frac{1}{x_n}\right) \to \frac{1}{2}$$
.

2.3.8 b

Let $(x_n) \to x$ and let p(x) be a polynomial.

- (a) Show $p(x_n) \to p(x)$.
- (b) Find an example of a function f(x) and a convergent sequence $(x_n) \to x$ where the sequence $f(x_n)$ converges, but not to f(x).

2.4.1

- (a) Prove that the sequence defined by $x_1=3$ and $x_{n+1}=\frac{1}{4-x_n}$ converges.
- (b) Now that we know $\lim x_n$ exists, explain why $\lim x_{n+1}$ must also exist and equal the same value.
- (c) Take the limit of each side of the recursive equation in part (a) to explicitly compute $\lim x_n$.

HMWK 4

$$|P(\mathbb{N})|=|\mathbb{R}|$$

HMWK 3

1.4.3

Prove that $\bigcap_{n=1}^{\infty}(0,\frac{1}{n})=\emptyset$. Notice that this demonstrates that the intervals in the Nested Interval Property must be closed for the conclusion of the theorem to hold.

1.4.4

Let a < b be real numbers and consider the set $T = \mathbb{Q} \cap [a, b]$. Show sup T = b.

1.5.4

- (a) Show $(a, b) \sim \mathbb{R}$ for any interval (a, b).
- (b) Show that an unbounded interval like $(a, \infty) = \{x : x > a\}$ has the same cardinality as \mathbb{R} as well.
- (c) Using open intervals makes it more convenient to produce the required 1–1, onto functions, but it is not really necessary. Show that $[0,1) \sim (0,1)$ by exhibiting a 1–1 onto function between the two sets.

1.5.6

(a) Give an example of a countable collection of disjoint open intervals.

(b) Give an example of an uncountable collection of disjoint open intervals, or argue that no such collection exists.

HMWK 2

1.3.1 a

- (a) Write a formal definition in the style of Definition 1.3.2 for the infimum or greatest lower bound of a set.
- (b) Now, state and prove a version of Lemma 1.3.8 for greatest lower bounds

1.3.2

Give an example of each of the following, or state that the request is impossible.

- (a) A set B with $\inf B \ge \sup B$.
- (b) A finite set that contains its infimum but not its supremum.
- (c) A bounded subset of $\mathbb Q$ that contains its supremum but not its infimum.

1.3.5

As in Example 1.3.7, let $A \subseteq R$ be nonempty and bounded above, and let $c \in \mathbb{R}$. This time define the set $cA = \{ca : a \in A\}$.

- (a) If $c \ge 0$, show that $\sup(cA) = c \sup A$.
- (b) Postulate a similar type of statement for $\sup(cA)$ for the case c < 0.

$$\sup(c+A) = c + \sup A$$

Let $A\subseteq\mathbb{R}$ be nonempty and bounded above, and let $c\in\mathbb{R}.$

Define the set c + A by

$$c+A=\{c+a:a\in A\}$$

then $\sup(c+A)=c+\sup A$.

If A is a set that is nonempty and bounded above is added to some number c, the supremum of that set generated by $\{c+A\}$ is the same as **the sum of the supremum** of A and c.

#proof

Let $s=\sup A$, we see that $a\leq s$ for all $a\in A$, which implies $c+a\leq c+s$ for all $a\in A$. Thus c+s is an upper bound for c+A and part 1 is verified for c to be a least upper bound of A. For part 2 of the definition, let b be an arbitrary upper bound for c+A, i.e. $c+a\leq b, \forall a\in A$. This is equivalent to $a\leq b-c, \forall a\in A$, from which we conclude that b-c is an upper bound for A. Because s is the least upper bound of A, we can say

 $s \leq b-c$, which can be rewritten as $c+s \leq b$. This verifies part 2 of the definition and we can conclude $\sup(c+A)=c+\sup A$

1.3.8 Compute, without proofs, the suprema and infima (if they exist) of the following sets:

(a)
$$\{\frac{m}{n}: m, n \in \mathbb{N} \text{ with } m < n\}.$$

(b)
$$\{(-1)^{\frac{m}{n}}: m, n \in \mathbb{N}\}.$$

(c)
$$\{\frac{n}{(3n+1)}:n\in\mathbb{N}\}$$
.

(d)
$$\{\frac{m}{(m+n)}: m, n \in \mathbb{N}\}$$
.

1.3.9

- (a) If $\sup A < \sup B$, show that there exists an element $b \in B$ that is an upper bound for A.
- (b) Give an example to show that this is not always the case if we only assume $\sup A \leq \sup B$.

Sets and functions

$$f(x) = \sin(\frac{1}{x})$$

$$f(x) = \frac{1}{x}$$

$$f(x) = x$$

$$f(x) = \sqrt{x}$$

$$f(x) = |x|$$

$$(x_n)=rac{1}{n}$$

$$(x_n) = (-1)^n$$

$$(x_n)=2^n$$

$$(\frac{-1}{n},\frac{1}{\pi n})$$

Techniques