Tutorial 2. Beam Bending Analysis

Consider the beam bending problem:

Assume that the beam is made of steel (E=30x10⁶ psi, G=11.5x10⁶ psi) and has a 2" deep x 5" high rectangular cross section (I_z =(2)(5³)/12=20.83 in⁴, I_y =(5)(2³)/12=3.333 in⁴). Determine the maximum deflection and stress in the bar and the using 8 beam elements. Compare the solution to the beam theory solution.

Beam theory solution

Beam theory gives the following displacement solution:

$$v(x) = \frac{Pbx}{6EIL} \left(x^2 + b^2 - L^2 \right) + \frac{wx}{24EI} \left(2Lx^2 - x^3 - L^3 \right), \quad 0 \le x \le a$$

$$v(x) = \frac{Pa(L-x)}{6EIL} \left(x^2 + a^2 - 2Lx \right) + \frac{wx}{24EI} \left(2Lx^2 - x^3 - L^3 \right), \quad a \le x \le L$$

where v(x) is the displacement, P is the concentrated force (-5000 lb), x is the distance from the left end of the beam, EI is the flexural stiffness of the beam, w_0 is the uniform distributed load (-50 lb/ft = -4.167 lb/in), a=15 ft and b=5 ft. The displacement field and bending stress distribution predicted by beam theory are shown below. Note that the maximum deflection, approximately -1.89 in, occurs between x=11 ft and x=12 ft and the maximum bending stress is approximately 29,700 psi at x=15 ft.

Finite Element solution

Start => All Programs => Dassault Systems SIMULIA Abaqus => Abaqus CAE => Create Model Database With Standard/Explicit Model

File => Set Working Directory => Browse to find desired directory => OK

File => Save As => save beam_tutorial.cae file in Work Directory

Module: Sketch

Sketch => Create => continue

Add => Line => Connected Line => enter coordinates (0,0), (180,0), (240,0), right click => Cancel Procedure => Done

Module: Part

Part => Create => select 2D Planar, Deformable, Wire, Approx size 200 => Continue Add => Sketch => select 'Sketch-1' => Done => Done

Module: Property

Material => Create => Name: Material-1, Mechanical, Elasticity, Elastic => set Young's modulus = 30e6, Poisson's ratio = 0.3 => OK

Profile => Create => Generalized => A=10, $I_1 = 20.83$, $I_{12}=0$, $I_2=3.333$, J=0 => OK

Section => Create => Name: Section-1, Beam, Beam => Continue => Section Integration –
Before Analysis => Profile Name: Profile-1 => Linear Properties => E=30e6, $G=11.54e6 => Output Points => enter (x_1, x_2) = (0,-2.5) and (x_1, x_2) = (0,2.5) => OK$

Assign Section => select all elements by dragging mouse => Done => Section-1 => Done => OK

Assign Beam Section Orientation => select full model => Done => n_1 direction = 0.0,0.0,-1.0 => OK =>Done

Module: Assembly

Instance => Create => Create instances from: Parts => Part-1 => Dependent (mesh on part) => OK

Module: Step

Step => Create => Name: Step-1, Initial, Static, General => Continue => accept default settings => OK

Module: Load

- Load => Create => Name: Load-1, Step: Step 1, Mechanical, Line Load => Continue => select full model => Done => set Component 1 =0, Component 2 = -4.167 => OK
- Load => Create => Name: Step-1, Step: Step 1, Mechanical, Concentrated Force => Continue => select point at (180,0) => Done => set CF2=-5000 => OK
- BC => Create => Name: BC-1, Step: Step-1, Mechanical, Displacement/Rotation => Continue => select point at (0,0) => Done => U2=0 => OK
- BC => Create => Name: BC-1, Step: Step-1, Mechanical, Displacement/Rotation => Continue => select point at (240,0) => Done => U1=U2=0 => OK

Module: Mesh

Set Model: Model-1, Object => Part: Part-1

Seed => Edges => select entire beam by dragging mouse => Done => Method: By size, Bias: None, Sizing Controls, Element Size=30 => OK => Done

Mesh => Element Type => select entire truss by dragging mouse => Done => Element Library: Standard, Geometric Order: Linear: Family: Beam, Cubic interpolation (B23)=> OK => Done

Mesh => Part => OK to mesh the part Instance: Yes

Module: Job

Job => Create => Name: Job-1, Model: Model-1 => Continue => Job Type: Full analysis, Run Mode: Background, Submit Time: Immediately => OK

Job => Manager => Submit => Job-1

Job => Manager => Results (transfers to Visualization Module)

Module: Visualization

Viewport => Viewport Annotation Options => Legend => Text => Set Font => Size=14, Apply to: Legend, Title Block and State Block => OK => OK

View => Graphics Options => Viewport Background = Solid=> Color => White (click on black tile to change background color)

Options => Common => Labels => select 'Show element labels: Black' and 'Show node labels: Red' => OK

Plot => Deformed Shape

Ctrl-C to copy viewport to clipboard => Open MS Word Document => Ctrl-V to paste image

Result => Field Output => select S, Component: S11 => Section Points => Top and Bottom => OK

Plot=> Contours => On Deformed Shape

Report => Field Output => Variable => Position: Unique Nodal => select Spatial displacement: U2: Spatial Displacements, Rotational displacement: UR3 => OK

Report => Field Output => Variable => Position: Unique Nodal => select Stress components: S11, Section points - All => OK

Cut and paste tabulated results from 'Abaqus.rpt' file to MS Word document.

Results:

Deformed Mesh

Bending Stress Contours

Tabulated Output:

Node	S.S11	Node	U.U2	
Label	@Loc 1	Label	@Loc 1	
1	37.5090	1	-1.68753E-33	
2	29.7425E+03	2	-1.50146	
3	37.5085	3	-4.18754E-33	
4	6.11361E+03	4	-642.937E-03	
5	11.7396E+03	5	-1.21341	
6	16.9155E+03	6	-1.64391	
7	21.6413E+03	7	-1.87232	
8	25.9169E+03	8	-1.84194	
9	15.1150E+03	9	-840.968E-03	
Minimum At Node	37.5085	Minimum At Node	-1.87232 7	
Maximum	29.7425E+03	Maximum	-1.68753E-33	
At Node	2	At Node	1	
Total	127.259E+03	Total	-9.55695	
Node	S.S11	Node	UR3	
Label	@Loc 2	Label	@Loc 1	
1	-37.5090	1	-21.8438E-03	
2	-29.7425E+03	2	17.0429E-03	
3	-37.5085	3	29.0450E-03	
4	-6.11361E+03	4	-20.6136E-03	
5	-11.7396E+03	5	-17.0429E-03	
6	-16.9155E+03	6	-11.3119E-03	
7	-21.6413E+03	7	-3.60058E-03	
8	-25.9169E+03	8	5.91106E-03	
9	-15.1150E+03	9	26.0144E-03	
Minimum	-29.7425E+03	Minimum	-21.8438E-03	
At Node	2	At Node	1	
Maximum	-37.5085	Maximum	29.0450E-03	
At Node	3	At Node	3	
Total	-127.259E+03	Total	3.60058E-03	