Master's theorem:

- 1. To find time complexity of the Recursive algorithms.
- 2. Divide and conquer algorithms.

$$aT(n/b) + f(n)$$

n -> size

a -> No.of subproblems

n/b -> size of each subproblem

f(n) -> timecomplexity of the non-recusive algorithm.

Recursive equation should be in form below

$$T(n) = aT(n/b) + \Theta(n^k \log^p n)$$

Where $a\ge 1$, b>1, $k\ge 0$ and p is a real no.

- 1) If $a > b^k$, then $T(n) = \theta(n\log_b a)$
- 2) If $a = b^k$ then

a. If
$$p > -1$$
, then $T(n) = \Theta(n\log_b a \log^{p+1} n)$

- b. If p = -1, then $T(n) = \Theta(n\log_b a \log \log n)$
- c. If p < -1, then $T(n) = \Theta(n^{\log_b a})$
- 3) If $a < b^k$ then

a. If
$$p \ge 0$$
, then $T(n) = \Theta(n^k log^p n)$

b. If p < 0, then $T(n) = O(n^k)$

Case 1:
$$a > b^{k}$$
 (or) $\log_{a} > k$

1. $T(n) = 2T(n/2) + 1$

$$\begin{array}{cccc}
a &= 2 & \log_{2} 2 & > 0 \\
b &= 2 & 2 & > 0 \\
p &= 0 & & & & \\
T(n) &= O(n^{\log_{2} a}) & & & \\
&= O(n^{\log_{2} a}) & & & \\
&= O(n^{1}) & & & \\
T(n) &= O(n)
\end{array}$$

$$T(n) = aT(n/b) + \theta(n^k \log^p n)$$

- 1) If $a > b^k$, then $T(n) = \Theta(n\log_b a)$
- 2) If $a = b^k$ then
 - a. If p > -1, then $T(n) = \Theta(n\log_b a \log^{p+1} n)$ b. If p = -1, then $T(n) = \Theta(n\log_b a \log\log n)$
 - c. If p < -1, then $T(n) = \Theta(n^{\log_b a})$
- 3) If $a < b^k$ then
 a. If $p \ge 0$, then $T(n) = \Theta(n^k log^p n)$ b. If p < 0, then $T(n) = O(n^k)$

Case 1:
$$a > b^{k}$$
 (or) $\log a > k$
2. $T(n) = 4T(n/2) + n$

$$\log 4$$

$$a = 4$$

$$b = 2$$

$$k = 1$$

$$p = 0$$

$$2 > 0$$

$$p = 0$$

$$T(n) = O(n^{\log a})$$

$$b$$

$$= O(n^{\log 4})$$

$$2$$

$$= O(n^{2})$$

 $T(n) = O(n^2)$

Recursive equation should be in form below

$$T(n) = aT(n/b) + \theta(n^k \log^p n)$$

- 1) If $a > b^k$, then $T(n) = \Theta(n\log_b a)$
- 2) If $a = b^k$ then
 - a. If p > -1, then $T(n) = \Theta(n\log_b a \log^{p+1} n)$ b. If p = -1, then $T(n) = \Theta(n\log_b a \log\log n)$
 - c. If p < -1, then $T(n) = \Theta(n^{\log_b a})$
- 3) If $a < b^k$ then
 a. If $p \ge 0$, then $T(n) = \Theta(n^k log^p n)$ b. If p < 0, then $T(n) = O(n^k)$

Case 1:
$$a > b^k$$
 (or) $\log a > k$

3.
$$T(n) = 8T(n/2) + n$$

$$a = 8$$
 $b = 2$ $b = 1$ $a = 8$ $a =$

$$T(n) = O(n^{\log a})$$

p = 0

$$T(n) = O(n^3)$$

Recursive equation should be in form below

$$T(n) = aT(n/b) + \theta(n^k \log^p n)$$

- 1) If $a > b^k$, then $T(n) = \Theta(n\log_b a)$
- 2) If $a = b^k$ then
 - a. If p > -1, then $T(n) = \Theta(n\log_b a \log^{p+1} n)$ b. If p = -1, then $T(n) = \Theta(n\log_b a \log\log n)$
 - c. If p < -1, then $T(n) = \Theta(n^{\log_b a})$
- 3) If $a < b^k$ then
 a. If $p \ge 0$, then $T(n) = \Theta(n^k log^p n)$
 - b. If p < 0, then $T(n) = O(n^k)$

Log
$$8 \Rightarrow \log 2^3 \Rightarrow 3 \log 2 \Rightarrow 3 (1) = 3$$

Case 1:
$$a > b^{k}$$
 (or) $\log_{1} a > k$
4. $T(n) = 9T(n/3) + n$

$$\log_{1} 9 \\ a = 9 \\ b = 3 \\ k = 1 \\ 2 > 0$$

$$p = 0$$

$$T(n) = O(n^{\log_{1} a})$$

$$b$$

$$= O(n^{\log_{1} a})$$

$$= O(n^{\log_{1} a})$$

$$= O(n^{\log_{1} a})$$

 $T(n) = O(n^2)$

Recursive equation should be in form below $T(n) = aT(n/b) + \theta(n^k \log^p n)$ Where $a \ge 1$, b > 1, $k \ge 0$ and p is a real no. 1) If $a > b^k$, then $T(n) = \theta(n\log_b a)$ 2) If $a = b^k$ then a. If p > -1, then $T(n) = \theta(n\log_h a \log^{p+1} n)$ b. If p = -1, then $T(n) = \Theta(n \log_b a \log \log n)$ c. If p < -1, then $T(n) = \Theta(n^{\log_b a})$ 3) If $a < b^k$ then a. If $p \ge 0$, then $T(n) = \Theta(n^k \log^p n)$ b. If p < 0, then $T(n) = O(n^k)$

Log 8 =>
$$\log_2 2^3 => 3 \log_2 2 => 3 (1) = 3$$

Case 1:
$$a > b^k$$
 (or) $\log a > k$

4.
$$T(n) = 7T(n/3) + n$$

$$T(n) = O(n^{\log a})$$

p = 0

Recursive equation should be in form below

$$T(n) = aT(n/b) + \theta(n^k \log^p n)$$

- 1) If $a > b^k$, then $T(n) = \Theta(n\log_b a)$
- 2) If $a = b^k$ then
 - a. If p > -1, then $T(n) = \Theta(n\log_b a \log^{p+1} n)$ b. If p = -1, then $T(n) = \Theta(n\log_b a \log\log n)$
 - c. If p < -1, then $T(n) = \Theta(n^{\log_b a})$
- 3) If $a < b^k$ then a. If $p \ge 0$, then $T(n) = \Theta(n^k log^p n)$ b. If p < 0, then $T(n) = O(n^k)$

Case 3:
$$a < b^k$$
 (or) $log a < k$

1.
$$T(n) = 2T(n/2) + n^2$$

$$T(n) = aT(n/b) + \theta(n^k \log^p n)$$

- 1) If $a > b^k$, then $T(n) = \Theta(n\log_b a)$
- 2) If $a = b^k$ then
 - a. If p > -1, then $T(n) = \Theta(n\log_b a \log^{p+1} n)$ b. If p = -1, then $T(n) = \Theta(n\log_b a \log\log n)$
 - c. If p < -1, then $T(n) = \Theta(n^{\log_b a})$
- 3) If $a < b^k$ then
 a. If $p \ge 0$, then $T(n) = \Theta(n^k log^p n)$ b. If p < 0, then $T(n) = O(n^k)$

Case 3:
$$a < b^k$$
 (or) $log a < k$

2.
$$T(n) = 2T(n/2) + n^2 / log^2 n$$

$$a = 2$$

 $b = 2$
 $k = 2$
 $p = -2$
 $2 < 2 ^ 2$
 $2 < 4$

$$T(n) = aT(n/b) + \theta(n^k \log^p n)$$

- 1) If $a > b^k$, then $T(n) = \Theta(n\log_b a)$
- 2) If $a = b^k$ then
 - a. If p > -1, then $T(n) = \Theta(n\log_b a \log^{p+1} n)$ b. If p = -1, then $T(n) = \Theta(n\log_b a \log\log n)$
 - c. If p < -1, then $T(n) = \Theta(n^{\log_b a})$
- 3) If $a < b^k$ then

 a. If $p \ge 0$, then $T(n) = \Theta(n^k log^p n)$ b. If p < 0, then $T(n) = O(n^k)$

Case 3:
$$a < b^k$$
 (or) $log a < k$

3.
$$T(n) = 2T(n/2) + n^2 \log n$$

$$a = 2$$

 $b = 2$
 $k = 2$
 $p = 1$
 $2 < 2 ^ 2$

$$T(n) = aT(n/b) + \theta(n^k \log^p n)$$

- 1) If $a > b^k$, then $T(n) = \Theta(n\log_b a)$
- 2) If $a = b^k$ then
 - a. If p > -1, then $T(n) = \Theta(n\log_b a \log^{p+1} n)$ b. If p = -1, then $T(n) = \Theta(n\log_b a \log\log n)$
 - c. If p < -1, then $T(n) = \Theta(n^{\log_b a})$
- 3) If $a < b^k$ then

 a. If $p \ge 0$, then $T(n) = \Theta(n^k log^p n)$ b. If p < 0, then $T(n) = O(n^k)$

Case 2:
$$a = b^k$$
 (or) $log a = k$

1.
$$T(n) = 2T(n/2) + n$$

$$a = 2$$

 $b = 2$
 $k = 1$
 $p = 0$
 $2 = 2^1$

$$T(n) = aT(n/b) + \theta(n^k \log^p n)$$

- 1) If $a > b^k$, then $T(n) = \Theta(n\log_b a)$
- 2) If $a = b^k$ then
 - a. If p > -1, then $T(n) = \Theta(n\log_b a \log^{p+1} n)$ b. If p = -1, then $T(n) = \Theta(n\log_b a \log\log n)$
 - c. If p < -1, then $T(n) = \Theta(n^{\log_b a})$
- 3) If $a < b^k$ then

 a. If $p \ge 0$, then $T(n) = \Theta(n^k log^p n)$ b. If p < 0, then $T(n) = O(n^k)$

Case 2:
$$a = b^k$$
 (or) $\log a = k$

2.
$$T(n) = 2T(n/2) + n \log n$$

$$a = 2$$

 $b = 2$
 $k = 1$
 $p = 1$
 $2 = 2^1$

$$T(n) = aT(n/b) + \theta(n^k \log^p n)$$

- 1) If $a > b^k$, then $T(n) = \Theta(n\log_b a)$
- 2) If $a = b^k$ then
 - a. If p > -1, then $T(n) = \Theta(n\log_b a \log^{p+1} n)$ b. If p = -1, then $T(n) = \Theta(n\log_b a \log\log n)$
 - c. If p < -1, then $T(n) = \Theta(n^{\log_b a})$
- 3) If $a < b^k$ then
 a. If $p \ge 0$, then $T(n) = \Theta(n^k log^p n)$ b. If p < 0, then $T(n) = O(n^k)$

Case 2:
$$a = b^k$$
 (or) $\log a = k$

3.
$$T(n) = 2T(n/2) + n / log n$$

$$a = 2$$

 $b = 2$
 $k = 1$
 $p = -1$
 $2 = 2^1$

$$T(n) = O(n^{\log a} \log \log n)$$

$$b$$

$$= O(n^{\log 2} \log \log n)$$

$$2$$

$$= O(n^{1} \log \log n)$$

$$T(n) = O(n \log \log n)$$

$$T(n) = aT(n/b) + \theta(n^k \log^p n)$$

- 1) If $a > b^k$, then $T(n) = \Theta(n\log_b a)$
- 2) If $a = b^k$ then
 - a. If p > -1, then $T(n) = \Theta(n\log_b a \log^{p+1} n)$ b. If p = -1, then $T(n) = \Theta(n\log_b a \log\log n)$
 - c. If p < -1, then $T(n) = \Theta(n^{\log_b a})$
- 3) If $a < b^k$ then

 a. If $p \ge 0$, then $T(n) = \Theta(n^k log^p n)$ b. If p < 0, then $T(n) = O(n^k)$

Case 2:
$$a = b^k$$
 (or) $\log a = k$

3.
$$T(n) = 4T(n/2) + n^2 / \log n$$

$$a = 2$$

 $b = 2$
 $k = 1$
 $p = -1$
 $4 = 2^2$
 $4 = 4$

$$T(n) = O(n^{\log a} \log \log n)$$

$$b$$

$$= O(n^{\log 4} \log \log n)$$

$$2$$

$$= O(n^{2} \log \log n)$$

$$T(n) = O(n^{2} \log \log n)$$

$$T(n) = aT(n/b) + \theta(n^k \log^p n)$$

- 1) If $a > b^k$, then $T(n) = \Theta(n\log_b a)$
- 2) If $a = b^k$ then
 - a. If p > -1, then $T(n) = \Theta(n\log_b a \log^{p+1} n)$ b. If p = -1, then $T(n) = \Theta(n\log_b a \log\log n)$
 - c. If p < -1, then $T(n) = \Theta(n^{\log_b a})$
- 3) If $a < b^k$ then

 a. If $p \ge 0$, then $T(n) = \Theta(n^k log^p n)$ b. If p < 0, then $T(n) = O(n^k)$

Case 2:
$$a = b^k$$
 (or) $log a = k$

3.
$$T(n) = 4T(n/2) + n^2 / \log^2 n$$

$$a = 4$$

 $b = 2$
 $k = 2$
 $p = -2$
 $4 = 2^2$
 $4 = 4$

$$T(n) = O(n^{\log a}) \text{ (or) } O(n^k)$$

b
= $O(n^{\log 4})$
2

$$T(n) = aT(n/b) + \theta(n^k \log^p n)$$

- 1) If $a > b^k$, then $T(n) = \Theta(n\log_b a)$
- 2) If $a = b^k$ then
 - a. If p > -1, then $T(n) = \Theta(n\log_b a \log^{p+1} n)$ b. If p = -1, then $T(n) = \Theta(n\log_b a \log\log n)$
 - c. If p < -1, then $T(n) = \Theta(n^{\log_b a})$
- 3) If $a < b^k$ then

 a. If $p \ge 0$, then $T(n) = \Theta(n^k log^p n)$ b. If p < 0, then $T(n) = O(n^k)$

$$T(n) = aT(n/b) + \Theta(n^k \log^p n)$$

Where $a \ge 1$, b > 1, $k \ge 0$ and p is a real no.

1) If
$$a > b^k$$
, then $T(n) = \theta(n\log_b a)$

2) If $a = b^k$ then

a. If
$$p > -1$$
, then $T(n) = \Theta(n\log_b a \log^{p+1} n)$
b. If $p = -1$, then $T(n) = \Theta(n\log_b a \log\log n)$

c. If p < -1, then
$$T(n) = \Theta(n^{\log_b a})$$

3) If
$$a < b^k$$
 then
a. If $p \ge 0$, then $T(n) = \Theta(n^k log^p n)$
b. If $p < 0$, then $T(n) = O(n^k)$

1.
$$T(n) = 2T(n/2) + n \log^2 n$$

2. $T(n) = 8T(n/2) + n^2$
3. $T(n) = 4T(n/2) + n^2 / \log^2 n$
4. $T(n) = 16T(n/2) + n^2$

7. T(n) = 0.5T(n/2) + 1 -> cannot apply

5. T(n) = T(n/2) + n

6. T(n) = T(n/2) + 1

8. T(n) = T(n) + 1 ->

$$P > -1$$
 T(n) = O(n^log a log ^p + 1 n)
T(n) = 2T(n/2) + n

$$A = 2$$
 = O(n^1 log ^1 n)
 $B = 2$ a = b^k
 $X = 1$ = O(n log n)

$$K = 1$$
 $2 = 2^1$ $T(n) = O(n \log n)$ $P = 0$