ST5215 Advanced Statistical Theory, Lecture 12

HUANG Dongming

National University of Singapore

17 Sep 2020

Overview

Last time

- Minimax rules and Bayes rules
- UMVUE

Today

• Methods of finding the UMVUE

Recap: Minimax rules and Bayes rules

- To find a good decision rule, we can consider some characteristic R_T of $R_T(P)$ for a given decision rule T, and then minimize R_T over $T \in \mathfrak{J}$.
- T_* is minimax: if $\sup_{P \in \mathcal{P}} R_{T_*}(P) \leq \sup_{P \in \mathcal{P}} R_T(P)$ for any rule T
- T_* is a Bayes rule w.r.t. Π : if $r_{T_*}(\Pi) \leq r_T(\Pi)$ for any rule T
 - ► The Bayes risk w.r.t. Π is defined by $r_T(\Pi) = \int_{\mathcal{P}} R_T(P) d\Pi(P)$, where Π is a known probability measure on $(\mathcal{P}, \mathcal{F}_{\mathcal{P}})$ with an appropriate σ -field $\mathcal{F}_{\mathcal{P}}$

Recap: Unbiased Estimators

- For squared error loss, the risk of an unbiased estimator is equal to its variance
- An unbiased estimator T(X) of θ is called the uniformly minimum variance unbiased estimator (UMVUE) if and only if $\operatorname{Var}(T(X)) \leq \operatorname{Var}(U(X))$ for any $P \in \mathcal{P}$ and any other unbiased estimator U(X) of θ
- Lehmann-Scheffé Theorem: if there is a sufficient and complete statistic T(X) and θ is estimable, then the UMVUE of θ is equivalent to the conditional expectation given T(X) of an unbiased estimator

Symmetric Unbiased Estimator and Order Statistics

Let $X_1,...,X_n$ be i.i.d. from an unknown population P in a nonparametric family \mathcal{P} . Consider the vector of order statistics $\mathcal{T}=(X_{(1)},...,X_{(n)})$

- In many cases, T is sufficient and complete for $P \in \mathcal{P}$. (For example, \mathcal{P} is the collection of all Lebesgue p.d.f.'s.)
- Property: An estimator $\varphi(X_1,...,X_n)$ is a function of T iff the function φ is symmetric in its n arguments.
- If T is sufficient and complete for $\mathcal P$ and θ is an estimable parameter, then a symmetric unbiased estimator $\varphi(X)$ of θ is the UMVUE

Examples: (assuming T is sufficient and complete)

- \bar{X} is the UMVUE of $\theta = EX_1$;
- S^2 is the UMVUE of $Var(X_1)$;
- $n^{-1} \sum_{i=1}^{n} X_i^2 S^2$ is the UMVUE of $(EX_1)^2$;
- $F_n(t) := \frac{1}{n} \sum_{i=1}^n I_{X_i \le t}$ is the UMVUE of $P(X_1 \le t)$ for any fixed t.

A Counterexample

- The previous conclusions are not true if the vector of order statistics T is **NOT** sufficient and complete for $P \in \mathcal{P}$.
- For example, if n>2 and $\mathcal P$ contains all symmetric distributions having Lebesgue p.d.f.'s and finite means, then there is no UMVUE of $\mu=EX_1$
- Here we assume X_i 's are i.i.d. from P, which has Lebesgue p.d.f. f such that $f(\mu + x) = f(\mu x)$ for all $x \in \mathcal{R}$ and $\int |x| f(x) \, \mathrm{d} m < \infty$

High-level idea of proof:

- ullet Construct two subfamilies \mathcal{P}_1 and \mathcal{P}_2
- ullet Find the unique UMVUE T_j under \mathcal{P}_j respectively
- If T is the UMVUE under \mathcal{P} , it follows from the definition that $R_T(P) = R_{T_j}(P)$ for any $P \in \mathcal{P}_j$. Then using the uniqueness of T_j , we have $T = T_j$, \mathcal{P}_j -a.s.
- If each p.d.f. in \mathcal{P}_1 is positive, we have \mathcal{P}_1 -a.s. $\Leftrightarrow \mathcal{P}$ -a.s., and thus, $T = T_1$, \mathcal{P} -a.s.
- If " $T_1 = T_2$, \mathcal{P}_2 -a.s." is false, then we arrive at a contradiction

A Counterexample (Cont.)

Suppose n>2 and X_i 's are i.i.d. from $P\in\mathcal{P}$, which has Lebesgue p.d.f. f such that $f(\mu+x)=f(\mu-x)$ for all $x\in\mathcal{R}$ and $\int |x|f(x)\;\mathrm{d} m<\infty$. Then there is no UMVUE of $\mu=EX_1$.

Proof.

- \bullet Suppose that ${\cal T}$ is a UMVUE of μ
- Let $\mathcal{P}_1 = \{N(\mu,1) : \mu \in \mathcal{R}\}$. The sample mean \bar{X} is UMVUE when \mathcal{P}_1 is considered. The Lebesgue measure is dominated by any $P \in \mathcal{P}_1$. We conclude that $T = \bar{X}$ a.e.
- Let \mathcal{P}_2 be the family of uniform distributions on $(\mu \delta, \mu + \delta)$, $\mu \in \mathcal{R}, \ \delta > 0$. $(X_{(1)} + X_{(n)})/2$ is the UMVUE when \mathcal{P}_2 is considered.
- Then $(X_{(1)} + X_{(n)})/2 = T = \bar{X}$, \mathcal{P}_2 -a.s.
- This is impossible since n > 2. Hence, there is no UMVUE of μ .

How to Find UMVUE? (1)

First method: solving equations for h(T)

- ullet Find a sufficient and complete statistic ${\mathcal T}$ and its distribution
- Try some function h to see if Eh(T) is related to θ
- Solve for h such that $Eh(T) = \theta$ for all P

Example Revisited: Uniform distributions

Let $X_1,...,X_n$ be i.i.d. from the uniform distribution on $(0,\theta)$, $\theta > 0$.

- The order statistic $X_{(n)}$ is sufficient and complete with Lebesgue p.d.f. $n\theta^{-n}x^{n-1}I_{(0,\theta)}(x)$
- Since

$$E_{\theta}X_{(n)} = n\theta^{-n} \int_0^{\theta} x^n dx = \frac{n}{n+1}\theta, \tag{1}$$

we have $E_{\theta}\{(n+1)X_{(n)}/n\}=\theta$, for all $\theta>0$

• By Lehmann-Scheffé Theorem, $\hat{\theta}=(n+1)X_{(n)}/n$ is the unique UMVUE of θ

Let $X_1, ..., X_n$ be i.i.d. from the uniform distribution on $(0, \theta), \theta > 0$. Consider $\eta = g(\theta)$, where g is a differentiable function on $(0, \infty)$.

- The order statistic $X_{(n)}$ is sufficient and complete with Lebesgue p.d.f. $n\theta^{-n}x^{n-1}I_{(0,\theta)}(x)$
- An unbiased estimator $h(X_{(n)})$ of η must satisfy

$$\theta^n g(\theta) = n \int_0^\theta h(x) x^{n-1} dx$$
 for all $\theta > 0$. (2)

Differentiating both sides of the previous equation

$$n\theta^{n-1}g(\theta) + \theta^n g'(\theta) = nh(\theta)\theta^{n-1}$$
, a.e. (3)

- Solving h(t), we have $h(t) = g(t) + n^{-1}tg'(t)$, a.e.
- Hence, the UMVUE of η is given by

$$h(X_{(n)}) = g(X_{(n)}) + n^{-1}X_{(n)}g'(X_{(n)})$$
(4)

Example: Poisson Distributions

Let $X_1,...,X_n$ be i.i.d. from the Poisson distribution $P(\theta)$ with an unknown $\theta>0$. Suppose that $\eta=g(\theta)$, where g is a smooth function such that $g(x)=\sum_{j=0}^{\infty}a_jx^j$, x>0

- $T(X) = \sum_{i=1}^{n} X_i$ is sufficient and complete for $\theta > 0$
- Using properties of the m.g.f., we can show that T follows Poisson($n\theta$)
- An unbiased estimator h(T) of η must satisfy (for any $\theta > 0$):

$$\sum_{t=0}^{\infty} \frac{h(t)n^t}{t!} \theta^t = e^{n\theta} g(\theta)$$

$$=\sum_{k=0}^{\infty}\frac{n^k}{k!}\theta^k\sum_{j=0}^{\infty}a_j\theta^j =\sum_{t=0}^{\infty}\left(\sum_{j,k:j+k=t}\frac{n^ka_j}{k!}\right)\theta^t.$$

ullet A comparison of coefficients in front of θ^t leads to

$$h(t) = \frac{t!}{n^t} \sum_{\substack{k:i+k=t \\ k!}} \frac{n^k a_j}{k!}.$$
 (5)

How to Find UMVUE? (2)

Second method: Rao-Blackwellization

- Find an unbiased estimator of θ , say U(X)
- 2 Find a sufficient and complete statistic T(X)
- **3** $E(U \mid T)$ is the UMVUE of θ by Lehmann-Scheffé Theorem

Remark.

- The distribution of T is not needed. We only need to work out the conditional expectation $E(U \mid T)$
- From the uniqueness of the UMVUE, it does not matter which U(X)to use
- U(X) should be chosen so as to make the calculation of $E(U \mid T)$ as easy as possible

Example: Exponential Distributions

Let $X_1, ..., X_n$ be i.i.d. sample from $\text{Exp}(\theta)$. Let F_{θ} be the c.d.f. and t > 0. Find an UMVUE for the tail probability $p = 1 - F_{\theta}(t)$.

- $\overline{X} = n^{-1} \sum_{i=1}^{n} X_i$ is sufficient and complete, since $\text{Exp}(\theta)$ is an exponential family of full rank
- $I_{(t,\infty)}(X_1)$ is unbiased: $EI_{(t,\infty)}(X_1)=P_{ heta}(X_1>t)=1-F_{ heta}(t)$
- $E(I_{(t,\infty)}(X_1) \mid \overline{X})$ is a UMVUE
- Note that the distribution of X_1/\overline{X} does not depend on θ ancillary for θ
- By Basu's theorem, X_1/\overline{X} and \overline{X} are independent

$$P_{\theta}(X_1 > t \mid \overline{X} = \overline{x}) = P_{\theta}(X_1/\overline{X} > t/\overline{X} \mid \overline{X} = \overline{x})$$

= $P(X_1/\overline{X} > t/\overline{x}).$

• The UMVUE is $h(\bar{X})$, where $h(x) = P(X_1/\overline{X} > t/x)$

Example (Cont.)

• We need the unconditional distribution of X_1/\overline{X} :

$$P(X_1/\overline{X} > t/\overline{x}) = P\left(\frac{X_1}{\sum_{i=1}^n X_i} > \frac{t}{n\overline{x}}\right)$$

- $X_1 \sim \operatorname{gamma}(k = 1, \theta)$
- $\sum_{i=2}^{n} X_i \sim \text{gamma}(k = n 1, \theta)$
- $\frac{X_1}{X_1 + \sum_{i=2}^n X_i} \sim \text{beta}(1, n-1)$, the p.d.f. is $(n-1)(1-x)^{n-2}I_{(0,1)}(x)$ • See the supplementary reading material.
- Thus

$$P\left\{\frac{X_1}{\sum_{i=1}^n X_i} > \frac{t}{n\bar{x}}\right\} = (n-1) \int_{t/(n\bar{x})}^1 (1-x)^{n-2} dx = \left(1 - \frac{t}{n\bar{x}}\right)^{n-1}$$

So the UMVUE is

$$T(X) = \left(1 - \frac{t}{n\overline{X}}\right)^{n-1}$$

A Necessary and Sufficient Condition for UMVUE

Theorem (D)

Let U be the set of all unbiased estimators of 0 with finite variances and T be an unbiased estimator of η with $E(T^2) < \infty$.

- (i) A necessary and sufficient condition for T(X) to be a UMVUE of η is that E[T(X)U(X)] = 0 for any $U \in \mathcal{U}$ and any $P \in \mathcal{P}$.
- (ii) Suppose that $T = h(\tilde{T})$, where \tilde{T} is a sufficient statistic for $P \in \mathcal{P}$ and h is a Borel function. Let $\mathcal{U}_{\tilde{\tau}}$ be the subset of \mathcal{U} consisting of Borel functions of \tilde{T} . Then a necessary and sufficient condition for Tto be a UMVUE of η is that E[T(X)U(X)] = 0 for any $U \in \mathcal{U}_{\tilde{\tau}}$ and any $P \in \mathcal{P}$.
 - Use of this theorem:
 - find a UMVUE
 - check whether a particular estimator is a UMVUE
 - show the nonexistence of any UMVUE

Proof of (i)

- \Rightarrow :
 - Suppose that T is a UMVUE of η and $U \in \mathcal{U}$
 - For any constant c, define $T_c = T + cU$, which is also unbiased for η
 - Since T is a UMVUE, $Var(T_c) \ge Var(T)$, $\forall P \in \mathcal{P}$
 - It reduced to

$$c^2 \text{Var}(U) + 2c \text{Cov}(T, U) \ge 0, \quad \forall P \in \mathcal{P}$$
 (6)

• This holds for all $c \in \mathcal{R}$, so 0 = Cov(T, U) = E(TU), $\forall P \in \mathcal{P}$

⇐:

- Suppose E(TU) = 0 for any $U \in \mathcal{U}$ and $P \in \mathcal{P}$
- Let T_0 be another unbiased estimator of η with $\mathrm{Var}(T_0) < \infty$
- Note that $T T_0 \in \mathcal{U}$. So $E[T(T T_0)] = 0$, $P \in \mathcal{P}$
- Adding and subtracting $(ET)^2$, we have $\operatorname{Var}(T) = \operatorname{Cov}(T, T_0) \leq \sqrt{\operatorname{Var}(T)\operatorname{Var}(T_0)}$, by Cauchy-Schwartz inequality
- Hence $Var(T) \leq Var(T_0)$ for any $P \in \mathcal{P}$.

Proof of (ii)

- "⇒" is directly from Part (i). We only need to show "←"
- It suffices to show: E(TU) = 0 for any $U \in \mathcal{U}_{\widetilde{T}}$ and $P \in \mathcal{P}$ implies that E(TU) = 0 for any $U \in \mathcal{U}$ and $P \in \mathcal{P}$
- Let $U \in \mathcal{U}$. Then $E(U|\tilde{T}) \in \mathcal{U}_{\tilde{T}}$
- Note that $T = h(\tilde{T})$. By tower property,

$$E(TU) = E[E(TU|\tilde{T})]$$

$$= E[E(h(\tilde{T})U|\tilde{T})]$$

$$= E[h(\tilde{T})E(U|\tilde{T})]$$

$$= E[TE(U|\tilde{T})] = 0$$

Corollary

- (i) Let T_j be a UMVUE of η_j , j=1,...,k, where k is a fixed positive integer. Then $T=\sum_{j=1}^k c_j T_j$ is a UMVUE of $\eta=\sum_{j=1}^k c_j \eta_j$ for any constants $c_1,...,c_k$.
- (ii) Let T_1 and T_2 be two UMVUE's of η with finite variances. Then $T_1 = T_2$ a.s. P for any $P \in \mathcal{P}$.

Proof:

- For (i). Note that T is an unbiased estimator of η with finite variance. Then for any $U \in \mathcal{U}$ and any $P \in \mathcal{P}$, $E[TU] = \sum_j c_j E[T_j U] = 0$
- For (ii). Note that $T_1 T_2 \in \mathcal{U}$. Thus, for any $P \in \mathcal{P}$, $E[T_1(T_1 - T_2)] = E[T_2(T_1 - T_2)] = 0$. This implies $E[(T_1 - T_2)(T_1 - T_2)] = 0$. So $T_1 - T_2 = 0$, a.s.

Example: Uniform Distributions

Let $X_1,...,X_n$ be i.i.d. from the uniform distribution on the interval $(0,\theta)$.

• In previous lecture, we have shown that $(1 + n^{-1})X_{(n)}$ is the UMVUE for θ when the parameter space is $\Theta_0 = (0, \infty)$.

Suppose now that $\Theta = [1, \infty)$.

- ullet $X_{(n)}$ is not complete, although it is still sufficient for heta
- Lehmann-Scheffé Theorem does not apply to $X_{(n)}$
- ullet $(1+n^{-1})X_{(n)}$ does not make use of the information about $heta \geq 1$

We now use Theorem D (ii) to find a UMVUE of $\theta \in \Theta$.

Consider $T = h(X_{(n)})$ such that E(TU) = 0 for $U \in \mathcal{U}_{X_{(n)}}$.

- Let $U(X_{(n)})$ be an unbiased estimator of 0.
- Since $X_{(n)}$ has the Lebesgue p.d.f. $n\theta^{-n}x^{n-1}I_{(0,\theta)}(x)$,

$$0 = \int_0^1 U(x)x^{n-1}dx + \int_1^{\theta} U(x)x^{n-1}dx \quad \text{for all } \theta \ge 1.$$
 (7)

ullet This implies that U(x)=0 a.e. Lebesgue measure on $[1,\infty)$ and

$$\int_0^1 U(x)x^{n-1}dx = 0. (8)$$

For T to be the UMVUE, we must have

$$\int_0^1 h(x)U(x)x^{n-1}dx = 0. (9)$$

Consider the following function, where c and b are some constants

$$h(x) = \begin{cases} c & 0 \le x \le 1\\ bx & x > 1, \end{cases}$$
 (10)

H.D. (NUS)

From the previous discussion, the following holds

$$E[h(X_{(n)})U(X_{(n)})] = 0, \qquad \theta \ge 1.$$
 (11)

For $h(X_{(n)})$ to be unbiased, we need

$$\theta = E[h(X_{(n)})]$$

$$= cP(X_{(n)} \le 1) + bE[X_{(n)}I_{(1,\infty)}(X_{(n)})]$$

$$= c\theta^{-n} + [bn/(n+1)](\theta - \theta^{-n}), \quad \forall \theta \ge 1.$$

Thus, we only need to choose c=1 and b=(n+1)/n. The UMVUE of θ is then

$$h(X_{(n)}) = \begin{cases} 1 & 0 \le X_{(n)} \le 1\\ (1+n^{-1})X_{(n)} & X_{(n)} > 1. \end{cases}$$
 (12)

21/25

This estimator is better than $(1+n^{-1})X_{(n)}$, which is the UMVUE when the parameter space is $\Theta_1=(0,\infty)$. In fact, $h(X_{(n)})$ is complete and sufficient for $\theta\in[1,\infty)$.

Tutorial

- Let X_1,\ldots,X_n be i.i.d. random variables having the exponential distribution $E(0,\theta),\theta\in(0,\infty)$. Consider estimating θ under the squared error loss. Calculate the risks of the sample mean \bar{X} and $cX_{(1)}$, where c is a positive constant. Is \bar{X} better than $cX_{(1)}$ for some c?
- ② Consider the estimation of an unknown parameter $\theta \geq 0$ under the squared error loss. Show that if T and U are two estimators such that $T \leq U$ and $R_T(P) < R_U(P)$, then $R_{T_+}(P) < R_{U_+}(P)$, where f_+ denotes the positive part of f.
- ② Let X be a random variable having the binomial distribution Bi(p, n) with an unknown $p \in (0, 1)$ and a known n. Consider the problem of estimating $\theta = p^{-1}$. Show that there is no unbiased estimator of θ .

Let X_1,\ldots,X_n be i.i.d. random variables having the exponential distribution $E(0,\theta),\theta\in(0,\infty)$. Consider estimating θ under the squared error loss. Calculate the risks of the sample mean \bar{X} and $cX_{(1)}$, where c is a positive constant. Is \bar{X} better than $cX_{(1)}$ for some c?

Solution:

- The c.d.f. of $X_{(1)}$ is $1 P(X_{(1)} \ge t) = 1 \prod_i P(X_i \ge t) = 1 \exp(-nt/\theta), \forall t > 0$
- So $X_{(1)} \sim E(0, \theta/n)$
- Using the decomposition of MSE=bias²+Variance, we have

$$R_{\bar{X}}(\theta) = \theta^2/n,$$

$$R_{cX_{(1)}}(\theta) = (\theta - c\theta/n)^2 + c^2\theta^2/n^2 = (1 - 2c/n + 2c^2/n^2)\theta^2$$

- $R_{\bar{X}}(\theta) < R_{cX_{(1)}}(\theta) \Leftrightarrow \theta^2/n < (1 2c/n + 2c^2/n^2)\theta^2$ $\Leftrightarrow 0 < 2c^2 - 2cn + n^2 - n.$
- If n > 2, this always holds. If n = 2, this holds if $c \ne 1$. If n = 1, this holds iff c > 1.

23 / 25

Consider the estimation of an unknown parameter $\theta > 0$ under the squared error loss. Show that if T and U are two estimators such that $T \leq U$ and $R_T(P) < R_U(P)$, then $R_{T_+}(P) < R_{U_+}(P)$, where f_+ denotes the positive part of f.

Proof:

• Note that $T = T_+ - T_-$, we have

$$R_{T}(P) = E(T - \theta)^{2}$$

$$= E(T_{+} - T_{-} - \theta)^{2}$$

$$= E(T_{+} - \theta)^{2} + E(T_{-}^{2}) + 2\theta E(T_{-}) - 2E(T_{+}T_{-})$$

$$= R_{T_{+}}(P) + E(T_{-}^{2}) + 2\theta E(T_{-})$$

- Similarly, $R_{U}(P) = R_{U_{-}}(P) + E(U_{-}^{2}) + 2\theta E(U_{-})$
- $T < U \Rightarrow T_- > U_-$. Also note that $\theta \ge 0$. Hence,

$$E\left(T_{-}^{2}\right)+2\theta E\left(T_{-}\right)\geq E\left(U_{-}^{2}\right)+2\theta E\left(U_{-}\right)$$

• Since $R_T(P) < R_U(P)$, we have $R_{T+}(P) < R_{U+}(P)$

24 / 25

Let X be a random variable having the binomial distribution Bi(p,n) with an unknown $p \in (0,1)$ and a known n. Consider the problem of estimating $\theta = p^{-1}$. Show that there is no unbiased estimator of θ .

Proof:

• Suppose that T(X) is an unbiased estimator of p^{-1} , i.e.,

$$\frac{1}{p} = E[T(X)] = \sum_{k=0}^{n} \binom{n}{k} T(k) p^{k} (1-p)^{n-k}, \quad \forall p \in (0,1) \quad (13)$$

• Note that for all p, we have an upper-bound on the RHS of Eq (13).

$$\sum_{k=0}^{n} \binom{n}{k} T(k) p^{k} (1-p)^{n-k} \leq \sum_{k=0}^{n} \binom{n}{k} T(k) < \infty$$

• But letting $p \to 0$, the LHS of Eq (13) diverges to ∞ . So Eq (13) is impossible and there is no unbiased estimator of p^{-1}