PROVING THE VALUE THEOREMS §3.4

INTERMEDIATE VALUE THEOREM: Suppose f is a function, that a < b are real numbers, and that f is continuous on the closed interval [a, b]. If y is any number between f(a) and f(b) (i.e., f(a) < y < 0f(b) or $f(a) \ge y \ge f(b)$, then there is a $c \in [a, b]$ such that f(c) = y

BOUNDEDNESS THEOREM: Suppose f is continuous on the closed interval [a, b] for some real numbers a, b with a < b. Then f is bounded on [a, b] — that is, there are real numbers m and M so that m < f(x) < M for all $x \in [a, b]$.

EXTREME VALUE THEOREM: Assume f is continuous on the closed interval [a, b] for some real numbers a and b with a < b. Then f attains a minimum value and a maximum value on [a, b] — that is, there exists a number $r \in [a, b]$ such that $f(x) \leq f(r)$ for all $x \in [a, b]$ and there exists a number $s \in [a, b]$ such that $f(x) \ge f(s)$ for all $x \in [a, b]$.

LEMMA 33.1: Assume f is continuous on [a,b] and that $\{x_n\}_{n=1}^{\infty}$ is any sequence such that $a \le x_n \le b$ for all n. If $\{x_n\}_{n=1}^{\infty}$ converges to some number r, then

- (1) $r \in [a, b]$ and
- (2) The sequence $\{f(x_n)\}_{n=1}^{\infty}$ converges to f(r).

(1) PROOF OF BOUNDEDNESS THEOREM:

We will argue that f is bounded above on [a, b]: i.e., there exists an M such that $f(x) \leq M$ for all $x \in [a, b]$; showing that f is bounded below is similar (or follows from this part applied to -f).

- (a) We argue by contradiction. What does it mean to suppose that the theorem is false? Assume it.
- (b) Explain why there must be a sequence $\{x_n\}_{n=1}^{\infty}$ with $x_n \in [a,b]$ and $f(x_n) > n$ for all $n \in \mathbb{N}$. (c) Apply Bolzano-Weierstrass to the sequence $\{x_n\}_{n=1}^{\infty}$. What do you get?
- (d) Now apply the Lemma. What do you get?

(2) PROOF OF EXTREME VALUE THEOREM:

We will find a maximum value; finding a minimum value is similar (or follows from this part

- (a) Let $R = \{f(x) \mid x \in [a, b]\}$. Explain why R has a supremum; call it ℓ .
- (b) Explain why there must be a sequence $\{x_n\}_{n=1}^{\infty}$ with $x_n \in [a,b]$ and $\ell \frac{1}{n} < f(x_n) \le \ell$ for
- (c) Apply Bolzano-Weierstrass to the sequence $\{x_n\}_{n=1}^{\infty}$. What do you get?
- (d) Now apply the Lemma from the homework. What do you get?
- (3) Prove Lemma 33.1.

(4) PROOF OF THE INTERMEDIATE VALUE THEOREM:

- (a) Let's assume that $f(a) \le f(b)$ to get started. Explain why the cases y = f(a) and y = f(b) are easy. Hence, we assume that f(a) < y < f(b).
- (b) Let $S = \{x \in [a, b] \mid f(r) < y \text{ for all } a \le r \le x\}$. In short, S is the set of x-values in the interval where the graph of f hasn't crossed g yet. Explain why S has a supremum, and let $c = \sup(S)$.
- (c) Show that c > a. [Hint: Apply part (2) of definition of continuous on [a,b] with $\varepsilon = y f(a)$, and show that a is not an upper bound for S.]
- (d) The argument that c < b is similar (so come back to it later if you want). Thus, $c \in (a, b)$, so we know that f is continuous at c.
- (e) Suppose that f(c) < y, and obtain a contradiction. [Hint: Apply continuous at c with $\varepsilon = y f(c)$, and show that c is not an upper bound for S.]
- (f) Suppose that f(c) > y, and obtain a contradiction. [Hint: Apply continuous at c with $\varepsilon = f(c) y$, and find a smaller upper bound for S.]
- (g) This concludes the case when $f(a) \le f(b)$. If $f(a) \ge f(b)$, what can you say about g(x) = -f(x)? Can we apply the case we just did?