Санкт-Петербургский Политехнический Университет Петра Великого Институт компьютерных наук и технологий Кафедра компьютерных систем и программных технологий

Телекоммуникационные технологии

Отчет по лабораторной работе №5 Частотная и фазовая модуляция

> Работу выполнил:

Соболь В.О.

Группа: 33501/4 Преподаватель:

Богач Н.В.

Содержание

1.	Цель работы	2
2.	Постановка задачи	2
3.	Теоретическая информация	2
	3.1. Модуляция	2
	3.2. Однотональный сигнал	2
	3.3. Угловая модуляция	2
	3.3.1. Фазовая модуляция	
	3.3.2. Частотная модуляция	3
4.	Ход работы	3
	4.1. Генерация однотонального сигнала	4
	4.2. Фазовая модуляция	4
	4.3. Демодуляция фазовой модуляции	5
	4.4. Частотная модуляция	6
	4.5. Демодуляция частотной модуляции	7
5.	Выводы	8
6	Листинг	c

1. Цель работы

Изучение частотной и фазовой модуляции и демодуляции сигналов.

2. Постановка задачи

- 1. сгенерировать однотональный сигнал низкой частоты
- 2. выполнить фазовую модуляцию и демодуляцию
- 3. выполнить частотную модуляцию и демодуляцию
- 4. получить спектр модулированного сигнала

3. Теоретическая информация

3.1. Модуляция

Модуляция — это перенос спектра сигналов из низкочастотной области на заданную частоту. Это применяется для передачи сигнала в заданном частотном диапазоне. Для модулирующего (исходного) сигнала S(t) в канале связи для передачи формируется вспомогательный периодический высокочастотный сигнал $u(t) = f(t, [a_1, a_2, ... a_m])$. Параметры a_i определяют форму сигнала. При модуляции исходный сигнал S(t) переносят на один из параметров a_i , форма сигнала u(t) (несущей) изменяется и служит для переноса информации, содержащейся в сигнале S(t). Обратная операция выделения сигнала S(t) из модулированного сигнала u(t) называется демодуляция.

3.2. Однотональный сигнал

Для генерации гармонического сигнала можно воспользоваться формулой $signal = A*cos(2*\pi*f*t+\varphi),$ где A — амплитуда сигнала, f — частота, t — вектор отсчетов времени, φ — смещение по фазе.

3.3. Угловая модуляция

При угловой модуляции в несущем гармоническом колебании $u(t) = U_m cos(\omega t + \varphi)$ значение амплитуды колебаний U_m остается постоянным, а информация s(t) переносится либо на частоту ω , либо на фазовый угол φ . В обоих случаях текущее значение фазового угла гармонического колебания u(t) определяет аргумент $\psi(t) = \omega t + \varphi$, который называется полной фазой колебания.

3.3.1. Фазовая модуляция

При фазовой модуляции модулирующий сигнал определяет фазу несущего колебания $\phi(t)=ks(t)$. Сигнал с фазовой модуляцией имеет вид

$$u(t) = U_m \cos(\omega_0 t + ks(t)) \tag{1}$$

Изображение сигнала после фазовой модуляции приведено ниже на рис. 3.3.1:

Рис. 3.3.1. Фазовая модуляция сигнала

3.3.2. Частотная модуляция

При частотной модуляции модулирующий сигнал определяет частоту несущего колебания. Сигнал с частотной модуляцией имеет вид

$$u(t) = U_m cos(\omega_0 t + k \int_0^t s(t)dt)$$
(2)

Изображение сигнала после частотной модуляции приведено на рис. 3.3.2 :

Рис. 3.3.2. Частотная модуляция сигнала

4. Ход работы

Код, написанный во время работы приведён в листинге 1.

4.1. Генерация однотонального сигнала

Получим обычный гармонический сигнал $s(t) = A*cos(2*\pi*f*t+\varphi)$ (рис. 4.1.1) и его спектр (рис. 4.1.2).

Рис. 4.1.1. Однотональный сигнал

Рис. 4.1.2. Спектр однотонального сигнала

4.2. Фазовая модуляция

Сигнал после фазовой модуляции приведён на рис. 4.2.1. Его спектр показан на рис. 4.2.2.

Рис. 4.2.1. Фазово-модулированный сигнал

Рис. 4.2.2. Спектр фазово-модулированного сигнала

4.3. Демодуляция фазовой модуляции

Демодуляция фазовой модуляции представлена на рис. 4.3.1, а спектр демодулированного сигнала на рис. 4.3.2.

Рис. 4.3.1. Фазово-демодулированный сигнал

Рис. 4.3.2. Спектр фазово-демодулированного сигнала

Как видно по графикам сигнал после демодуляции совпадает с модулируемым исходным сигналом.

4.4. Частотная модуляция

Сигнал после частотной модуляции приведён на рис. 4.4.1. Его спектр показан на рис. 4.4.2.

Рис. 4.4.1. Частотно-модулированный сигнал

Рис. 4.4.2. Спектр частотно-модулированного сигнала

4.5. Демодуляция частотной модуляции

Демодуляция частотной модуляции представлена на рис. 4.5.1, а спектр демодулированного сигнала на рис. 4.5.2.

Рис. 4.5.1. Частотно-демодулированный сигнал

Рис. 4.5.2. Спектр частотно-демодулированного сигнала

Как видно по графикам в сигнале после демодуляции присутствуют незначительные отличия от исходного сигнала.

5. Выводы

В данной работе нами были исследованы типы аналоговой модуляции и демодуляции, а именно - фазовая и частотная модуляции и демодуляции. Также были построены спектры этих сигналов. И в случае с фазовой модуляцией и в случае с частотной модуляцией, сигналы были демодулированы с хорошей точностью, что говорит об эффективности использования таких методов модуляции и демодуляции. Такие способы модуляции можно применять для высококачественной передачи.

6. Листинг

Листинг 1: Код использованный при работе

```
close all
 2
   clc
 3
 4|A|M = 1;
 5 \mid OMEGA = 4;
 6 omega 0 = 10;
 7 | \text{Fd} = 500;
 8 | t = 0:1/Fd:1;
 9 | s M = A M*cos(OMEGA*2*pi*t);
10
11 \mid sig_f = figure();
12 | plot (t, s_M);
13 | ylim([-1 \ 1]);
14
15 \mid \text{sig s f} = \text{figure}();
16 specplot (s M, Fd);
17
   xlim ([0 100])
18
19|s| AM = pmmod(s M, omega 0, Fd, 1.0);
20
21 \mid \text{mod\_p\_f} = \text{figure}();
22 plot (t, s_AM, t, s_M, '---r');
23
24 \mod_p s_f = figure();
25
   specplot (s AM, Fd);
26 xlim ([0 150]);
27
28 \mid \text{sdemod} = \text{pmdemod}(\text{s AM}, \text{omega } 0, \text{Fd}, 1.0);
29
30 | \operatorname{demod}_{p_f} = \mathbf{figure}();
31 plot (t, sdemod);
32 | y \lim ([-1 \ 1]);
33
34 | demod_p_s_f = figure();
35 specplot (sdemod, Fd);
36 xlim ([0 100])
37
38 \mid s \mid AM = fmmod(s \mid M, omega \mid 0, Fd, 6.0);
39
40 \mod f = figure();
41 plot (t, s_AM, t, s_M, '---r');
42
43 \mod f \text{ s } f = \mathbf{figure}();
44 specplot (s AM, Fd);
45 \mid x \lim ([0 \ 150]);
46
   sdemod = fmdemod(s AM, omega 0, Fd, 6.0);
47
48
49 | demod_f_f = figure();
50 plot (t, sdemod);
51 \mid \text{ylim} ([-1.5 \ 1.5]);
53 | demod_f_s_f = figure();
54 specplot (sdemod, Fd);
55 xlim ([0 100])
56
```

```
57 | 58 | saveas(sig_f,'../fig/signal','png'); | 59 | saveas(sig_s_f,'../fig/signal_spec','png'); | 60 | saveas(mod_p_f,'../fig/mod_sig_p','png'); | 61 | saveas(mod_p_s_f,'../fig/mod_sig_p_spec','png'); | 62 | saveas(demod_p_f,'../fig/demod_sig_p','png'); | 63 | saveas(demod_p_s_f,'../fig/demod_sig_p_spec','png'); | 64 | saveas(mod_f_f,'../fig/mod_sig_f','png'); | 65 | saveas(mod_f_s_f,'../fig/mod_sig_f_spec','png'); | 66 | saveas(demod_f_s_f,'../fig/demod_sig_f','png'); | 57 | saveas(demod_f_s_f,'../fig/demod_sig_f_spec','png'); | 58 | saveas(demod_f_s_f,'../fig/demod_sig_f_spec','png'); | 59 | saveas(demod_f_s_f,'../fig/demod_sig_f_spec','png'); | 69 | saveas(demod_f_s_f,'../fig/demod_sig_f_spec','png'); | 60 | saveas(demod_f_s_f,'../fig/demod_sig_f_spec','png'); | 60 | saveas(demod_f_s_f,'../fig/demod_sig_f_spec','png'); | 60 | saveas(demod_f_s_f,'../fig/demod_sig_f,'png'); | 60 | saveas(demod_f_s_f,'../fig/demod_sig_f,'png')
```