

AMENDMENTS TO THE CLAIMS

What is claimed is:

	l	1. (Original) A cellular data packet, comprising:
	2	a preamble for collision determination and synchronization;
	3	a start-of-frame delimiter (SFD);
	4	a destination address (DA);
	5	a source address (SA);
	6	a routing information block (RIB); and
	7	an informational field.
	1	2. (Original) The cellular data packet of claim 1, wherein said informational field
	2	comprises:
، ا	3	a type field for indicating whether said packet is a control packet or a service
\setminus	4	packet;
	5	a status field;
•	6	a data field; and
	7	a cyclic redundancy check (CRC) field, including error detection and
	8	correction information.
	1	3. (Original) The cellular data packet of claim 2, wherein said type field comprises:
	2	a two-byte protocol identifier;
	3	a two-byte sub-protocol identifier; and
	4	a two-byte service identifier.
	1	4. (Original) The cellular data packet of claim 2, wherein said status field is
	2	configured to indicate whether said packet is an ACK or a NACK packet, the number of data
	3	packets pending, spread spectrum synchronization information, or whether said packet is
	4	native or routed.

1	5. (Original) The cellular data packet of claim 1, wherein said destination address
2	comprises:
3	a region indicator for indicating a region location of a recipient user station;
4	a cell identifier for indicating a cell within said region; and
5	a cellular IP address of said recipient user station within said cell.
1	6. (Original) The cellular data packet of claim 1, wherein said source address
2	comprises:
3	a region indicator for indicating a region location of a transmitting user
4	station;
5	a cell identifier for indicating a cell within said region; and
6	a cellular IP address of said transmitting user station within said cell.
1	7. (Original) The cellular data packet of claim 1, wherein said routing information
2	block indicates a routing path of said packet from said transmitting/receiving user station to
3	said base station.
1	8. (Original) The cellular data packet of claim 7, wherein said routing information
2	block is configured to indicate up to ten routing links between said transmitting station and
3	said base station.
1	9. (Original) The cellular data packet of claim 1, wherein said packet is a variable-
2	length data packet.
1	10. (Original) The cellular data packet of claim 9, wherein said packet has a
2	maximum byte-length of 512 bytes.

1	11. (Original) A method for routing a data packet within an intelligent cellular IP
2	network, wherein a transmitting/receiving station is outside of an originating transmitting or
3	destination receiving cell or blocked from said originating transmitting or destination
4	receiving cell, comprising the steps of:
5	transmitting a data packet, including routing information indicating at least
6	one intermediate recipient other than a base station;
7	receiving of said packet by said at least one intermediate recipient; and
8	transmitting said packet in accordance with said routing information from
9	said at least one intermediate recipient to said receiving base station;
10	wherein said at least one intermediate recipient is a different
11	transmitting/receiving station within said cell.
1	12. (Original) The method of claim 11, wherein said routing information is
2	determined from a routing table specific to each of said transmitting/receiving stations.
1	13. (Original) The method of claim 12, wherein said routing table can be static or
2	dynamic.
1	14-15. (withdrawn)
1	16. (Original) An cellular modem, comprising:
2	a radio frequency unit for transmitting/receiving data packets; and
3	a baseband-to-intermediate frequency conversion unit, having a cellular
4	network routing engine based on cellular IP, configured to covert the baseband information
5	from a computer into intermediate frequency information for processing by said radio
6	frequency unit; wherein said modem is configured to serve as a router within said cellular
7	network.
1	17. (Original) The cellular modem of claim 16, wherein said radio frequency unit is
2	configured to operate in the MMDS, LMDS, [ISM, ITFS] and MDS spectrums.