GEOM DIFF

David Wiedemann

Table des matières

1	Rap	ppels de geometrie euclidienne	3
	1.1	Proprietes de la norme	3
2	Ison	metries et Similitudes	3
	2.1	Proprietes de base des matrices orthogonales O_n	5
	2.2	Etude de O_2	5
	2.3	Etude de O_3	6
3	Geo	ometrie des courbes	6
	3.1	Exemples de courbes parametrees	7
	3.2	Champs de vecteurs le long d'une courbe	8
	3.3	Reparametrage d'une courbe	9
4	Cot	urbure d'une courbe	11
	1	Definition (Espace Euclidien)	3
	_		
	1	Proposition (Cauchy-Schwartz)	3
	2	Definition	3
	3	Definition (similitude)	3
	3	Theorème	4
	5	Corollaire	4
	4	Definition (Groupe special orthogonal)	5
	5	Definition	5
	8	Proposition	5
	9	Theorème (Theoreme d'Euler)	6
	6	Definition	6
	7	Definition (Courbe parametrique)	6
	8	Definition	7
	9	Definition (Longueur d'une courbe)	7
	10	Proposition	8

10	Definition (Champ vectoriel)	8
11	Definition (Le vecteur tangent)	8
11	Proposition (Regle de Leibniz)	9
12	Corollaire	9
12	Definition (Quantite)	9
13	Definition (Derivation naturelle)	10
14	Definition	10
15	Definition (Abscisse Curviligne)	11
17	Proposition	11
20	Proposition (Formule de l'acceleration)	12
16	Definition	12
17	Definition (Torsion)	12
22	Theorème (Formules de Serret-Frenet)	12

Lecture 1: Intro

Wed 22 Sep

1 Rappels de geometrie euclidienne

Definition 1 (Espace Euclidien)

Un espace vectoriel euclidien est un espace vectoriel \mathbb{E}^n sur \mathbb{R} muni d'un produit scalaire $\langle \cdot \rangle : \mathbb{E}^n \times \mathbb{E}^n \to \mathbb{R}$ symmetrique, defini positif.

Le produit scalaire standard sur \mathbb{R}^n est $\langle x, y \rangle = \sum_i x_i y_i (\langle e_i, e_j \rangle = \delta_{ij})$.

Proposition 1 (Cauchy-Schwartz)

$$\forall x, y \in \mathbb{E}^n, \langle x, y \rangle \le ||x|| \, ||y||.$$

Remarque

La norme determine le produit scalaire via les formules de polarisation

$$\langle x, y \rangle = \frac{1}{4} \left(\|x + y\|^2 - \|x - y\|^2 \right) = \frac{1}{2} \left(\|x + y\|^2 - \|x\|^2 - \|y\|^2 \right)$$

1.1 Proprietes de la norme

- $-- ||x|| \ge 0 \forall x \in \mathbb{E}^n$
- $\|x\| = 0 \iff x = 0$
- $\|\lambda x\| = |\lambda| \|x\|$
- $-- \|x \pm y\| \le \|x\| + \|y\|$

Definition 2

- $Si\ x, y \in \mathbb{E}^n \setminus \{0\}$, on definit l'angle $\theta \in [0, \pi]$ par $\cos \theta = \frac{\langle x, y \rangle}{\|x\| \|y\|} \in [-1, 1]$ (par Cauchy-Schwarz).
- $On \ a \ \langle x, y \rangle = ||x|| \ ||y|| \cos \theta$

La distance entre $x, y \in \mathbb{E}^n$ est $d(x, y) = ||y - x|| (\mathbb{E}^n, d)$ est un espace metrique. Les proprietes suivantes sont equivalentes

- $-x \perp y$
- $-\theta = \frac{\pi}{2}$
- $-- \|x-y\| = \|x+y\|$
- $||x||^2 + ||y||^2 = ||x + y||^2$

2 Isometries et Similitudes

Definition 3 (similitude)

Une application $f: \mathbb{E}^n \to \mathbb{E}^n$ est une similitude de rapport $\lambda > 0$ si f est bijective et

$$d(f(x), f(y)) = \lambda d(x, y)$$

Si $\lambda = 1$, on dit que f est une isometrie.

Theorème 3

Si $f: \mathbb{E}^n \to \mathbb{E}^n$ est une similitude, alors il existe $b \in \mathbb{E}^n$ et $g: \mathbb{E}^n \to \mathbb{E}^n$ lineaire tel que

$$f(x) = g(x) + b$$

Remarque

b = f(0) et f lineaire $\iff f(0) = 0$

Preuve

On utilisera le theoreme fondamental de la geometrie affine :

Soit V un espace vectoriel de dimension finie sur \mathbb{R} et $f: V \to V$ une application bijective.

Alors f est affine si et seulement si f preserve les droites.

On ne donne pas la preuve mais une intuition : on pose g(x) = f(x) - b(b = f(0))

, donc g(0) = 0 et g preserve les droites.

Soit $f: \mathbb{E}^n \to \mathbb{E}^n$ une similitude de \mathbb{E}^n . On affirme que f preserve les droites

$$x, y, z \in \mathbb{E}^n \Rightarrow f(x), f(y), f(z)$$

quitte a renommer les points x, y, z, on a

$$x, y, z \text{ alignes} \iff d(x, z) = d(x, y) + d(y, z) \iff d(f(x), f(z)) = d(f(x), f(y)) + d(f(y), f(z))$$

Donc f affine implique f(x) = g(x) + b (b = f(0), g lineaire).

Il reste a voir que g est une λ -similitude \Rightarrow immediat a verifier.

Corollaire 5

 $f: \mathbb{R}^n \to \mathbb{R}^n$ est une similitude de rapport $\lambda > 0$ si et seulement si il existe $b \in \mathbb{R}^n$ et $A \in M_n(\mathbb{R}), A^T \cdot A = I$ tel que

$$f(x) = \lambda Ax + b$$

Preuve

$$\langle g(e_i), g(e_j) \rangle = \frac{1}{4} \|g(e_i) + g(e_j)\|^2 - \|g(e_i) - g(e_j)\|^2$$
$$= \frac{1}{4} (\|g(e_i + e_j)\|^2 - \|g(e_i - e_j)\|^2)$$
$$= \lambda^2 \langle e_i, e_j \rangle = \lambda^2 \delta_{ij}$$

Soit A la matrice de g, alors g(x) = Ax, on a

$$\lambda^2 \delta_{ij} = \langle Ae_i, Ae_j \rangle$$

$$= \left\langle \sum_{i} a_{ij} e_{i}, \sum_{i} a_{ij} e_{i} \right\rangle$$

$$= \sum_{i} \sum_{j} a_{ir} a_{js} \delta_{rs} = \sum_{r} a_{ir} a_{jr}$$

2.1 Proprietes de base des matrices orthogonales O_n

Pour une matrice $A \in M_n(\mathbb{R})$ les proprietes suivantes sont equivalentes

- $-A \in O_n$
- A inversible avec $A^{-1} = A^T$
- Les collonnes/lignes de A forment une base orthonormee.
- $--\langle Ax, Ay \rangle = \langle x, y \rangle$
- -- ||Ax|| = ||x||
- f(x) = Ax + b est une isometrie pour l'espace euclidien pour tout b

Remarque

$$Si \ A \in O_n \Rightarrow \det A = \pm 1 \ et \ \det : O_n \rightarrow \{\pm 1\}$$

Definition 4 (Groupe special orthogonal)

On definit

$$SO(n) = O_n \cap SL_n(\mathbb{R})$$

Definition 5

Une transformation affine $f:V\to V$, V un $\mathbb R$ -ev est directe (ou qu'elle preserve l'orientation) si son determinant est positif (ou le determinant de la partie lineaire de f.) Une isometrie directe s'appelle un deplacement de $\mathbb E^n$ si $f(x)=Ax+b, A\in SO(n)$

Remarque

$$SE(n) = SO(n) \rtimes \mathbb{R}^n$$

2.2 Etude de O_2

Proposition 8

Une matrice $A \in O_2$ s'ecrit

$$A = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$

 $si \det A = 1, ou$

$$S_{\phi} = \begin{pmatrix} \cos 2\phi & \sin 2\phi \sin 2\phi & -\cos 2\phi \end{pmatrix}$$

Preuve

 $A \in O_2$ si et seulement siles colonnes de A forment une base orthonormee. Donc il existe θ tel que la 1ere colonne est de la forme $\begin{pmatrix} \cos \theta \\ \sin \theta \end{pmatrix}$ et la forme de la 2eme colonne en suit.

2.3 Etude de O_3

Theorème 9 (Theoreme d'Euler)

Tout deplacement (isometrie qui preserve l'orientation) qui fixe un point, fixe un axe et c'est une rotation autour de cet axe.

Preuve

On identifie l'espace euclidien a \mathbb{R}^3 . Soit $f: \mathbb{R}^3 \to \mathbb{R}^3$, qui fixe un point on suppose que f(0) = 0.

On a f(x) = Ax.

On affirme qu'il existe $U \in \mathbb{R}^3, U \neq 0$ tel que Au = u.

En effet 1 est valeur propre de A $car \det(A - Id) = 0$ parce que

$$\det(A - \operatorname{Id}) = \det(A^T) \det(A - \operatorname{Id}) = \det(\operatorname{Id} - A^T) = \det(\operatorname{Id} - A) = (-1)^3 \det(A - \operatorname{Id})$$

Lecture 2: Courbes

Wed 29 Sep

3 Geometrie des courbes

Une courbe peut etre concue comme :

- Le lieu des points geometriques qui satisfont a une certaine contrainte/condition
- La trajectoire d'un point qui se deplace dans le plan ou l'espace.
- Une courbe peut etre engendree par un mechanisme
- Une courbe peut correspondre a un phenome optique.

Le premier point de vue va conduire a une description implicite de la courbe par une equation dans \mathbb{R}^2 ou deux equations dans l'espace.

Definition 6

Une courbe algebrique dans le plan est un ensemble du type Γ : $\{(x,y) \in \mathbb{R}^2 | f(x,y) = 0\}$. La courbe est algebrique si $f \in \mathbb{R}[x,y]$

Definition 7 (Courbe parametrique)

Une courbe parametrique dans \mathbb{R}^n est une application continue :

$$\gamma: I \to \mathbb{R}^n$$

avec $I \subset \mathbb{R}$ est un intervalle, $u \in I$ est le parametre.

L'image de γ est la trace de γ

Definition 8

- La courbe α est de classe $C^k(k \geq 0)$ si $\alpha : I \to \mathbb{R}^n$ est de classe C^k par $\alpha(u) = (\alpha_1(u), \dots, \alpha_n(u))$ et $\alpha_i : I \to \mathbb{R}$ est de classe C^k .
- Si α est C^1 et $u_0 \in I$, le vecteur vitesse est

$$\dot{\alpha}(u_0) = \frac{d\alpha}{du}(u_0)$$

- L'acceleration sera $\ddot{\alpha}(u_0) = \frac{d^2\alpha}{du}$
- La droite tangente a γ en u_0 est la droite par $\alpha(u_0)$ et de direction $\dot{\alpha}(u_0)$

$$T_{\alpha,u_0}: \lambda \mapsto \alpha(u_0) + \lambda \dot{\alpha}(u_0)$$

- La vitesse de α en u_0 est $V_{\alpha}(u_0)$ (en supposant α differentiable en u_0)
- Le point $\alpha(u_0)$ est regulier si $\dot{\alpha}(u_0)$ et singulier si $\dot{\alpha}(u_0)$
- Le point $\alpha(u_2)$ est biregulier si $\alpha \in C^2$ et $\dot{\alpha}(u_0), \ddot{\alpha}(u_0)$ sont lineairement independents.
- Si α est bireguliere en u_0 , le plan par $\alpha(u_0)$ en direction $\dot{\alpha}(u_0), \ddot{\alpha}(u_0)$ est le plan osculateur de α en u_0 .

3.1 Exemples de courbes parametrees

— La cubique

$$\alpha(u) = (au, bu^2, cu^3)$$

 $\beta(u) = (u^2, \dots, u^{n+1})$

— La droite en parametrage affine, par p et q est

$$\gamma(t) = p + t(q - p)$$

— Le cercle C de centre $p \in \mathbb{R}^n$ dans un plan (affine) $\Pi \subset \mathbb{R}^n$ de rayon r se parametrise

$$C(t) = p + r (\cos(\omega t)b_1 + \sin(\omega t)b_2)$$

ou $\{p, b_1, b_2\}$ est une repere affine orthonorme de Π .

— L'helice circulaire droite est

$$\gamma(u) = (a\cos(u), a\sin(u), bu)$$

Definition 9 (Longueur d'une courbe)

La longueur d'une courbe $\gamma:[a,b]\to\mathbb{R}^n$ de classe C^1 est

$$l(\gamma) = \int_{a}^{b} V_{\gamma}(u) du$$

Proposition 10

La longueur verifie les proprietes suivantes :

- Additivite: $Si \gamma: [a,b] \to \mathbb{R}^n$ est une courbe C^1 , alors $l(\gamma|_{[a,c]}l(\gamma|_{[c,b]})l(\gamma|_{[a,b]})$
- La longueur est invariante par isometrie.
- Pour f une similitude de rapport $\lambda > 0$, alors

$$l(f\circ\gamma)=\lambda l(\gamma)$$

 $l(\gamma_{[a,b]}) \ge d(\gamma(a), \gamma(b))$

avec egalite si et seulement si γ est le segment $[\gamma(a), \gamma(b)]$.

Preuve

— Suit de

$$l(\gamma_{[a,b]}) = \int_a^b V_{\gamma}(u)du = \int_a^c V_{\gamma}(u)du + \int_c^b V_{\gamma}(u)du$$

— On sait que $f(x) = \lambda Ax + b$, A orthogonal, donc pour $\tilde{\gamma}(u) = f(\gamma(u))$

$$\tilde{\gamma'} = \lambda A \gamma'(u)$$

$$l(\tilde{\gamma}) = \int_{a}^{b} V_{\tilde{\gamma}}(u) du = \lambda l(\gamma)$$

 $- Soit p = \gamma(a), q = \gamma(b).$

On note $w = \frac{q-p}{\|q-p\|}$ et on definit

$$g:[a,b]\to\mathbb{R}$$
 $g(u)=\langle \gamma(u)-p,w\rangle$

Alors

$$\frac{dg}{du} = \left\langle \dot{\gamma}(u), w \right\rangle \leq \left\| \dot{\gamma}(u) \right\| \left\| w \right\| = V_{\gamma}(u)$$

Ainsi,

$$\int_{a}^{b} \frac{dg}{du} du = g(b) - g(a) = \langle q - p, w \rangle = q - p$$

3.2 Champs de vecteurs le long d'une courbe

Definition 10 (Champ vectoriel)

Un champ de vecteurs le long d'une courbe $\gamma: I \to \mathbb{R}^n$ est la donnee $\forall u \in I$ d'un vecteur $W(u) = \sum_j w_j(u)e_j$.

Ce champ est de classe C^k si $w_j: I \to \mathbb{R}$ est de classe C^k .

Definition 11 (Le vecteur tangent)

 $Si \gamma est reguliere on definit$

$$T_{\gamma}(u) = \frac{\dot{\alpha}(u)}{V_{\gamma}(u)}$$

 $Si \gamma$ est bireguliere, alors le champ normal principal est donne par

$$N_{\gamma}(u) = \frac{\ddot{\alpha}(u) - \langle \ddot{\alpha}(u), t \rangle t}{\|\ddot{\alpha}(u) - \langle \ddot{\alpha}(u), t \rangle t\|}$$

Proposition 11 (Regle de Leibniz)

—

$$\frac{d}{du} \langle Z(u), W(u) \rangle = \left\langle \dot{Z}(u), W(u) \right\rangle + \left\langle Z(u), \dot{W}(u) \right\rangle$$

Corollaire 12

-
$$Si \langle Z(u), W(u) \rangle = c$$
, alors

$$\left\langle \dot{W},Z\right
angle =-\left\langle W,\dot{Z}\right
angle$$

$$- Si \|w\| = c \Rightarrow \langle \dot{w}, w \rangle = 0$$

Lecture 3: Reparametrage

Wed 06 Oct

3.3 Reparametrage d'une courbe

On veut formaliser la notion que deux courbes α, β de \mathbb{R}^n representent la "meme" courbe geometrique.

On veut $\alpha(u) = \beta(t)$ avec u = h(t) (= u(t)).

Plus precisement, si $\alpha: I \to \mathbb{R}^n$ et $\beta: J \to \mathbb{R}^n$ ($u \in I$, $t \in J$), alors α est un reparametrage si il existe un diffeomorphisme $h: J \to I$, $t \mapsto u = u(t) = h(t)$, tel que $\alpha = \beta \circ h$.

Remarque

La condition que deux courbes sont un reparametrage l'une de l'autre est une relation d'equivalence et une classe d'equivalence est une courbe geometrique

Definition 12 (Quantite)

Une quantite ou une propriete d'une courbe est geometrique si elle est invariante par reparametrage.

Sinon la quantite est dite cinematique.

Exemple

1. La trace d'une courbe est une propriete geometrique

- 2. La notion de regularite, biregularite sont geometriques
- 3. Le plan osculateur est une notion geometrique.
- 4. La longueur d'une courbe est geometrique.

Preuve

On suppose $\alpha: I \to \mathbb{R}^n, \beta: J \to \mathbb{R}^n, \ \alpha(u) = \beta(t), t = h(u)$.

On a

$$l_{\alpha} = \int_{I} V_{\alpha}(u) du, l_{\beta} = \int_{J} V_{\beta}(t) dt$$
$$= \left\| \frac{d\beta}{dt} \frac{du}{dt} \right\| = \left| \frac{du}{dt} \right| V_{\alpha}(u).$$

$$\begin{aligned} avec \ V_{\alpha} &= \left\| \frac{d\alpha}{du} \right\|, V_{\beta} &= \left\| \frac{d\beta}{du} \frac{du}{dt} \right\| = \left| \frac{du}{dt} \right| V_{\alpha}(u). \\ Donc \ V_{\beta}(t) dt &= \pm V_{\alpha}(u) du \ et \ donc \ l_{\beta} = l_{\alpha} \ . \end{aligned}$$

En general, si $S_{\beta}(t)$ est une quantite geometrique, alors $\frac{d}{dt}S_{\beta}$ n'est en general pas geometrique, mais $\frac{1}{V_{\beta}(t)}\frac{d}{dt}S_{\beta}$

Preuve

On a
$$S_{\beta}(t) = S_{\alpha}(u)$$
 et $\frac{1}{V_{\beta}(t)} \frac{d}{dt} = \frac{1}{V_{\alpha}(u)} \frac{d}{du}$

Exemple

Le vecteur unitaire tangent $\overrightarrow{T}_{\beta}(t)$ est une quantite geometrique.

Prenve

On
$$a T_{\beta}(t) = \frac{\dot{\beta}(t)}{\|\dot{\beta}(t)\|} = \frac{1}{V_{\beta}(t)} \frac{d\beta}{dt}$$
.
Ainsi, $T_{\alpha}(u) = \frac{1}{V_{\alpha}(u)} \frac{d\alpha}{du}$

Definition 13 (Derivation naturelle)

On definit

$$\frac{1}{V_{\beta}(t)}\frac{d}{dt}$$

comme etant la derivation naturelle le long de la courbe.

Contreexemples

La vitesse, le vecteur vitesse et l'acceleration sont des quantites cinematiques.

Definition 14

On dit que $V_{\alpha}(u)du$ est la differentielle naturelle le long de la courbe

Exemple

- 1. Masse d'un fil metalique inhomogene. La quantite utile est la densite lineaire de masse $\rho: I \to \mathbb{R}_+$. La masse sera alors $M = \int_I \rho(u) V_{\alpha}(u) du$
- 2. Centre de gravite

$$G = \frac{1}{M} \int_{I} \alpha(u) \rho(u) V_{\alpha}(u) du$$

Definition 15 (Abscisse Curviligne)

Soit $\alpha: I \to \mathbb{R}^n$ une courbe reguliere et $u_0 \in I$.

L'abscisse curviligne ou parametre naturel de α par rapport au point initial $\alpha(u_0)$ est la fonction

$$S = S_{\alpha} : I \to \mathbb{R}$$

definie par

$$S = \int_{u_0}^{u} V_{\alpha}(\zeta) d\zeta$$

On dit que α est parametree naturellement si $S_{\alpha}(u)=u\iff V_{\alpha}(u)=1$

Proposition 17

Toute courbe C^1 reguliere peut se reparmetriser natruellement.

Preuve

Soit $\alpha: I \to \mathbb{R}^n$, C^1 reguliere et $u_0 \in I$.

On pose

$$s = s(u) = \int_{u_0}^{u} V_{\alpha}(u) du$$

Alors la fonction s definit un diffeomorphisme

$$s:I \to J$$

4 Courbure d'une courbe

Soit $\gamma:I\to\mathbb{R}^n$ une courbe parametree reguliere de classe $C^2.$ Le vecteur de courbure est le champ le long de γ

$$\overrightarrow{K}_{\gamma}(u) = \frac{1}{V_{\gamma}(u)} \dot{\overrightarrow{T}}_{\gamma}(u)$$

La courbure de γ est alors la fonction

$$k_{\gamma} = \left\| \overrightarrow{K}_{\gamma}(u) \right\|$$

Remarque

 $Si \gamma est parametree naturellement, alors$

$$k_{\gamma}(u) = \left\| \frac{d^2 \gamma}{du^2} \right\|$$

Remarque

Le vecteur de courbure et la courbure sont des quantites geometriques.

Proposition 20 (Formule de l'acceleration)

Soit $\gamma: I \to \mathbb{R}^n$ une courbe de classe C^2 , alors son acceleration est

$$\ddot{\gamma} = \dot{V}_{\gamma}(t) + V_{\gamma}^{2}(t) \overrightarrow{K}_{\gamma}(t)$$

Preuve

On a

$$\dot{\gamma}(t) = V_{\gamma}(t) \overrightarrow{T}_{\gamma}(t)$$

Donc

$$\ddot{\gamma} = \dot{V}_{\gamma}(t)\overrightarrow{T}_{\gamma}(t) + V_{\gamma}(t)\dot{\overrightarrow{T}}(t) = V'K + V^{2}K$$

Remarque

On a toujours $\overrightarrow{k} \perp \overrightarrow{T}$

Definition 16

Soit $\gamma: I \to \mathbb{R}^3$ bireguliere de classe C^3 .

On definit le repere mobile de Frenet de γ est le repere $\{\gamma(t),T,N_{\gamma}(t),B_{\gamma}(t)\}$ ou

$$T_{\gamma}(t) = \frac{\dot{\gamma}}{V_{\gamma}(t)}, \quad N_{\gamma}(t) = \frac{\ddot{\gamma} - \langle \dot{\gamma}, T \rangle T}{\| \ddot{\gamma} - \langle \dot{\gamma}, T \rangle T \|} \quad B = T \times N$$

Definition 17 (Torsion)

La torsion de γ est

$$\tau_{\gamma}(t) = \frac{1}{V_{\gamma}(t)} \left\langle \dot{B}, N \right\rangle$$

Theorème 22 (Formules de Serret-Frenet)

$$\begin{cases} \frac{1}{V_{\gamma}}\dot{T}_{\gamma} = \kappa_{\gamma}N \\ \frac{1}{V_{\gamma}}\dot{N} = -\kappa_{\gamma}T_{\gamma} + \tau_{\gamma}B_{\gamma} \\ \frac{1}{V_{\gamma}}\dot{B} = -\tau_{\gamma}N_{\gamma} \end{cases}$$