DIALOG(R) File 345: Inpadoc/Fam. & Legal Stat

(c) 2004 EPO. All rts. reserv.

12332874

Basic Patent (No, Kind, Date): EP 568355 A2 19931103 (No. of Patents: 053)

A LIQUID CRYSTAL DISPLAY DEVICE AND A METHOD FOR MANUFACTURING THE SAME (English; French; German)

Patent Assignee: SHARP KK (JP)

Author (Inventor): YAMADA NOBUAKI (JP); KURATATE TOMOAKI (JP); SHINOMIYA

TOKIHIKO (JP); HIRAI TOSHIYUKI (JP); FUJIMORI KOHICH! (JP); KONDO

MASAHIKO (JP); ONISHI NORIAKI (JP); KOHZAKI SHUICHI (JP); MAJIMA KENJI

(JP); AWANE KATUNOBU (JP)

Designated States: (National) DE; FR; GB; NL

IPC: #G02F-001/1339; G02F-001/1333; G02F-001/1337; C09K-019/38

Derwent WPI Acc No: C 93-346724 Language of Document: English

Patent Family:

Pa	tent No	Kind	Date	Applic	No ł	(ind D	ate		
CN	1106929	Α	19950816	CN S	9411598	38	A	19940715	
CN	1106930	A	19950816	CN S	9410759	91	A	19940517	
CN	1112685	A	19951129	CN 9	9411933	30	A	19941019	
CN	1064456	В	20010411	CN 9	9411933	80	Α	19941019	
CN	1065342	В	20010502	CN 9	410759	01	A	19940517	
CN	1085344	В	20020522	CN 9	411598	8	A	19940715	
DE	69328887	CO	20000727	DE 6	932888	37	A	19930428	
DE	69427671	CO	20010816	DE 6	942767	1	A	19941018	
DE	69328887	T2	20001109	DE 6	932888	7	A	19930428	
DE	69427671	T2	20020508	DE 6	942767	1	A	19941018	
EP	568355	A2	19931103	EP 9	330333	7	A	19930428	(BASIC)
EP	634685	A2	19950118	EP 9	430514	9	A	19940714	
EP	649046	A2	19950419	EP 9	430762	9	A	19941018	
ΕP	568355	A3	19940608	EP 9	330333	7	A	19930428	
EP	634685	A3	19950927	EP 9	430514	9	A	19940714	
EP	649046	A3	19951025	EP 9	430762	9	A	19941018	
ΕP	568355	B1	20000621	EP 9	330333	7	A	19930428	
EP	649046	B1	20010711	EP 9	430762	9 ,	A	19941018	
JP	6160815	A2	19940607	JP 9	230908	2 /	A	19921118	
JP	6160817	A2	19940607	JP 9:	231541	9 /	Ą	19921125	
JP	6160824	A2	19940607	JP 9	9231244	14	Α	19921120	
JP	6175109	A2	19940624	JP 9	232703	7 /	4	19921207	

JP	6186542	A2	19940708	JP	92337651	A	19921217
JP	6214218	A2	19940805	JP	9377253	A	19930402
JP	6301015	A2	19941028	JP	9378378	A	19930405
JP	7114031	A2	19950502	JP	93261356	A	19931019
JP	7120728	A2	19950512	JP	93338706	Α	19931228
JP	7120730	A2	19950512	JP	93268612	A	19931027
JP	7152024	A2	19950616	JP	93349924	A	19931228
JP	8036164	A2	19960206	JP	94172740	A	19940725
JP	2812843	B2	19981022	JP	92309082	A	19921118
JP	2880361	B2	19990405	JP	92337651	A	19921217
JP	2930496	B2	19990803	JP	9378378	A	19930405
JP	2933816	B2	19990816	JP	93338706	A	19931228
JP	2937684	B2	19990823	JP	9377253	A	19930402
JP	3056644	B2	20000626	JP	94172740	A	19940725
JP	3108571	B2	20001113	JP	93268612	A	19931027
JP	3118351	B2	20001218	JP	93261356	A	19931019
KR	149470	B1	19981015	KR	9410839	A	19940517
KR	153035	B 1	19981116	KR	9417391	A	19940715
KR	189279	B1	19990601	KR	9427212	A	19941019
NL	9400794	A	19941216	NL	94794	A	19940516
NL	194626	В	20020501	NL	94794	A	19940516
NL	194626	C	20020903	NL	94794	A	19940516
US	5473450	A	19951205	US	54454	A	19930427
US	5583675	A	19961210	US	243266	A	19940516
US	5612803	A	19970318	US	450377	A	19950525
US	5627665	A	19970506	US	452529	A	19950530
US	5706109	A	19980106	US	274438	A	19940713
US	5729318	A	19980317	US	450978	A	19950525
US	5739889	A	19980414	US	324976	A	19941018
US	5751382	A	19980512	US	450185	A	19950525
US	38288	E1	20031028	US	478010	A	20000105

Priority Data (No, Kind, Date):

JP 93199285 A 19930715

JP 93338706 A 19931228

JP 93216700 A 19930831

JP 93115064 A 19930517

JP 93253452 A 19931008

JP 93349924 A 19931228

JP 93261356 A 19931019

- JP 93268612 A 19931027
- JP 94172740 A 19940725
- JP 92110223 A 19920428
- JP 92211846 A 19920807
- JP 92286487 A 19921023
- JP 92312444 A 19921120
- JP 92315419 A 19921125
- JP 92309082 A 19921118
- JP 92321024 A 19921130
- JP 92327037 A 19921207
- JP 92337651 A 19921217
- JP 9330996 A 19930219
- JP 9377253 A 19930402
- JP 9378378 A 19930405
- US 54454 A 19930427
- US 243266 A 19940516
- US 54454 A2 19930427
- US 450377 A 19950525
- US 324976 A3 19941018
- US 452529 A 19950530
- US 274438 B3 19940713
- US 274438 A 19940713
- US 450978 A 19950525
- US 324976 A 19941018
- US 450185 A 19950525
- US 478010 A 20000105
- US 274438 A5 19940713

DIALOG(R) File 347: JAPIO

(c) 2004 JPO & JAPIO. All rts. reserv.

HIGH POLYMER DISPERSION TYPE LIQUID CRYSTAL DISPLAY ELEMENT AND ITS PRODUCTION

PUB. NO.: 06-160824 [JP 6160824 A]

PUBLISHED: June 07, 1994 (19940607)

INVENTOR(s): YAMADA NOBUAKI

KURATATE TOMOAKI

KANZAKI SHUICHI

APPLICANT(s): SHARP CORP [000504] (A Japanese Company or Corporation), JP

(Japan)

APPL. NO.: 04-312444 [JP 92312444]

FILED: November 20, 1992 (19921120)

INTL CLASS: [5] G02F-001/1333; G02F-001/1337

JAPIO CLASS: 29.2 (PRECISION INSTRUMENTS -- Optical Equipment); 14.2

(ORGANIC CHEMISTRY -- High Polymer Molecular Compounds)

JAPIO KEYWORD: ROO5 (PIEZOELECTRIC FERROELECTRIC SUBSTANCES); RO11 (LIQUID

CRYSTALS); R119 (CHEMISTRY -- Heat Resistant Resins); R125

(CHEMISTRY -- Polycarbonate Resins)

JOURNAL: Section: P, Section No. 1797, Vol. 18, No. 481, Pg. 37,

September 07, 1994 (19940907)

ABSTRACT

PURPOSE: To provide the high polymer dispersion type liquid crystal display element which makes the orientation treatment of the liquid crystal possible in a high polymer and can suppress the scatting intensity between the liquid crystal and the high polymer and the process for production of such display element.

CONSTITUTION: This high polymer dispersion type liquid crystal display element is constituted by disposing a pair of substrate 1 and 2 opposite to each other, forming liquid crystal drops 8 enclosed by high polymer walls 7 between these two substrates 1 and 2, forming oriented films 5, 6 incorporating with the photo-polymerization initiator on the liquid crystal drop 8 side of he substrates 1, 2 and providing the respective liquid crystal drops 8 for the respective picture elements so as to come into contact with these oriented films 5, 6.

(19)日本国特許庁 (JP) (12) 公開特許公额 (A)

FΙ

(11)特許出願公開番号

特開平6-160824

(43)公開日 平成6年(1994)6月7日

(51)Int.Cl.⁵

識別記号

庁内整理番号

技術表示箇所

G 0 2 F 1/1333

9225-2K

1/1337

9225-2K

審査請求 未請求 請求項の数4(全 8 頁)

(21)出願番号	特顯平4-312444	(71)出願人	000005049			
			シャープ株式会社			
(22)出願日	平成 4 年(1992)11月20日		大阪府大阪市阿倍野区長池町22番22号			
		(72)発明者	山田 信明			
			大阪府大阪市阿倍野区長池町22番22号	シ		
			ャープ株式会社内			
		(72)発明者	倉立 知明			
			大阪府大阪市阿倍野区長池町22番22号	シ		
			ャープ株式会社内			
		(72)発明者	神崎修一			
			大阪府大阪市阿倍野区長池町22番22号	シ		
			ャープ株式会社内			
		(74)代理人	弁理士 山本 秀策			

(54) 【発明の名称】 高分子分散型液晶表示素子およびその製造方法

(57)【要約】

子分散型液晶表示素子およびその製造方法を提供する。 【構成】 一対の基板1、2が対向配設されると共に、 両基板1、2間に髙分子壁7で包囲された液晶滴8を有 し、基板1、2の液晶滴側には光重合開始剤を含有する 配向膜5、6が形成され、配向膜5、6に接するように 各絵素に対し各々の液晶滴8が設けられた高分子分散型 液晶表示素子。

【目的】 高分子中における液晶の配向処理が可能で、 しかも液晶と高分子との間の散乱強度を抑制し得る高分

要する。

【特許請求の範囲】

【請求項1】 一対の基板が対向配設されると共に、両 基板間に高分子壁で包囲された液晶滴を有する高分子分

散型液晶表示素子において、

少なくとも一方の基板の液晶滴側には光重合開始剤を含 有する配向膜が形成され、絵素の1または複数に対し、 かつ該配向膜に接して、各々の液晶滴が設けられた高分 子分散型液晶表示素子。

【請求項2】 前記絵素の70%以上が、絵素の面積の 30%以上の大きさの液晶滴を1絵素内に少なくとも1 つ保有する状態で形成された請求項1に記載の高分子分 散型液晶表示素子。

【請求項3】 前記液晶滴を挟んで対向する2つの基板 の該液晶滴側とは反対側に偏光板が設けられた請求項1 に記載の高分子分散型液晶表示素子。

【請求項4】 一対の基板が対向配設されると共に、両 基板間に高分子壁で包囲された複数の液晶滴を有する高 分子分散型液晶表示素子の製造方法において、

少なくとも一方の基板に対し、光重合開始剤を含む配向 膜を形成する工程と、

配向膜が形成された基板に一方向にラビング処理を行う 工程と、

2つの基板を、該配向膜形成面を内側に配し、かつ間隙 を設けて対向させる工程と、

該間隙に液晶と光重合性化合物とからなる混合材料を注 入する工程と、

該混合材料に、絵素に対応する部分を覆うように設けら れたフォトマスクを介し、該フォトマスクで覆われた部 分が照射される紫外線強度の80%以下となるよう紫外 製造方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、高分子分散型液晶表示 素子およびその製造方法に関する。さらに詳しくは、高 分子で仕切られた液晶滴を有するツイスティッドネマテ ィック (TN)、ECB (Electrically Controlled Bi refringence) および強誘電性液晶表示モード、高分子 との屈折率の差を外部電圧により変化させ、液晶滴と高 分子との界面で起こる光の散乱を制御する表示モードを 40 利用した液晶表示素子に関する

[0002]

【従来の技術】液晶表示素子としては、多くの表示モー ドを利用したものが存在する。例えば、電気光学効果を 適用した液晶表示素子では、ネマティック液晶を用いた ツイステッドネマティック (TN) 型液晶表示素子やス ーパーツイステッドネマティック (STN)型液晶表示 素子が実用化されており、また強誘電性液晶(FLC) を用いた液晶表示素子も提案されている。これらの液晶

【0003】一方、偏光板を必要としない液晶表示素子 としては、動的散乱 (DS) 効果や相転移 (PC) 効果 を適用した液晶表示素子がある。さらに最近では、偏光 板を必要とせず、しかも液晶の配向処理が不要な液晶表 示素子も実現されている。これは、対向する2つの基板 の間に高分子中に分散された液晶を有する高分子分散型 液晶表示素子であり、液晶の複屈折性を利用して表示を 行うものである。基本的には、電圧が印加されると液晶 10 分子の配向が一様となるので、液晶材料の常光屈折率と 高分子の屈折率とが一致した透明状態を得、電圧が印加 されない時には液晶分子の配向が乱れた光散乱状態を作 り出して不透明状態を得ることにより表示を行ってい

2

【0004】ところで、上述した高分子分散型液晶表示 素子の製造方法としては従来では、例えば以下に示す方 法が提案されているが、それにはいくつかの問題点があ った。

【0005】まず、特開昭58-501631号公報には対向基 20 板の間隙にポリマーカプセルに包含された液晶滴を形成 する方法が開示されている。しかし、この液晶滴は独立 泡であるために、得られる液晶表示素子は液晶配向に変 化が生じる駆動電圧が高く、利用範囲が狭い。

【0006】特開昭61-502128号公報等には、液晶と光 硬化性樹脂または熱硬化性樹脂とを混合し、この樹脂を 硬化させることにより液晶を析出させて樹脂中に液晶滴 を形成する方法が開示されており、また特開平3-72317 号公報にはこのような液晶滴の径を制御する方法が開示 されている。しかし、これらの方法は液晶滴を形成する 線を照射する工程とを含む髙分子分散型液晶表示素子の 30 際に液晶と樹脂との相分離を利用しているために、液晶 滴の径を精密に制御したり、液晶滴の平面的な配置を精 密に行うことが困難であった。

> 【0007】特開平3-59515号公報等には、髙分子多孔 膜に液晶を含浸させる方法が開示されている。この方法 は液晶滴を形成する際に相分離を利用しないため、高分 子および液晶の選択の幅が広く、また高分子多孔膜が充 分に精製できるという利点を有するが、現状では液晶滴 の径を充分に制御し、かつ液晶滴の平面的な配置を精密 に行うことはできていない。

> 【0008】特開平3-46621号公報には、電極を有する 2枚の透明基板の間隙に光の散乱源となるポリマービー ズを液晶中に浮遊させた混合物を形成する方法が開示さ れている。この方法によると混合物における光の散乱強 度は大きくなるが、液晶中にビーズを均一に分散させる ことが難しく、表示むらが発生し易い。

【0009】このように従来の方法では、液晶滴の形状 を均一にすることや液晶の平面的な配置を制御すること が難しいという問題があった。従って、得られる表示モ ードを利用した液晶表示素子は電気光学特性の急峻性が 表示素子は偏光板を必要とし、そして液晶に配向処理を 50 欠如しており、デューティ駆動におけるデューティ比を

大きくすることができず、髙精細化および大画面化を行 い得なかった。

【0010】上記問題を解決するために、かかる高分子 分散型液晶表示素子の製造に際して高分子中に液晶を分 散させると同時に液晶の配向処理を行うことが試みられ ている。例えば特開平3-52843号公報、リキッドクリス タル Vol. 5. No. 5. pp1477-1989. (1989)には、液晶セ ルを形成する際、髙分子の重合を行うと同時に磁場、電 場を印加することにより液晶の配向処理を行う方法が開 示されており、また第17回液晶討論会 講演予稿集32 10 0頁には、配向処理を行った基板を用い、高分子壁を通 して間接的に液晶の配向処理を行う方法が開示されてい る。しかし、これらの方法は一方向だけに液晶分子を配 向させる方法であり、液晶セル両面で異なる方向に配向 させることが必要な表示モードであるTNモードおよび STNモードには応用できない。

【0011】一方、FLCを用いた表示素子において は、自発分極を発現し得るスメクティックC相(SmC 相)が利用されるが、液晶分子の規則性がネマティック 相よりも結晶に近いので衝撃に弱いことが問題となって 20 いる。この問題を解決するため、FLCを高分子中に分 散させ、かつ液晶の配向処理を行うことが提案されてい るが、現状では高分子中で液晶の配向処理を行うことは 難しく、実用化には至っていない。例えば、特開昭63-264721号公報および63-264722号公報には、FLCを高 分子中に分散させてフィルム状に加工してから一方向に 延伸処理を行うことにより液晶を配向させる方法が開示 されている。しかし、この方法では液晶と高分子との界 面が絵素内に数多く存在し、入射する直線偏光を散乱さ せ一部の光を脱偏光させるため、液晶セルの黒レベルが 30 板が設けられている。 低下し、従ってコントラストも低下するという問題があ る。この問題はFLCを用いた表示素子だけでなく、偏 光板を用いた他の液晶表示素子においても同様に起こ る。また、特開昭61-205920号公報、特開昭59-201021 号公報および特開平3-192334号公報には、FLCの耐 衝撃性を付与する目的で、配向処理した基板材料にフォ トリソグラフィーを用いて高分子壁を作製することによ り液晶セルを形成してから液晶を注入する方法が開示さ れている。しかし、この方法では独立した液晶エリアを 形成することができず、またセル厚を厳密に維持するこ 40 とが困難であった。

[0012]

【発明が解決しようとする課題】このように、高分子中 に液晶材料を分散させると同時に液晶の配向処理を行う ことは難しく、また配向処理ができたとしても、液晶と 高分子との界面で起こる散乱による脱偏光のためにコン トラストが著しく低下するという問題があった。まず、 配向処理が難しいという問題については、高分子中に液 晶を分散させる際に基板と液晶との間に高分子が入り込

った。また、液晶と高分子との界面で起こる散乱の問題 については、絵案内における液晶と高分子との界面をで きるだけ少なくし、かつ1絵素に少なくとも1つの液晶 滴が存在すること、すなわち液晶滴の配置および大きさ の制御を可能にすることで解決できる。しかし、現状で は成行きで液晶滴を形成しているので液晶滴の配置およ び大きさを制御するまでには至っていない。さらに、こ れらの問題に加えてFLCを用いた表示素子において は、上述したように耐衝撃性が弱いという問題がある。 【0013】本発明は、上記課題を解決するためになさ れたものであり、高分子中における液晶の配向処理が可 能で、しかも液晶と高分子との間の散乱を抑制し得る高 分子分散型液晶表示素子およびその製造方法を提供する

[0014]

ことを目的とする。

【課題を解決するための手段】本発明の高分子分散型液 晶表示素子は、一対の基板が対向配設されると共に、両 基板間に高分子壁で包囲された液晶滴を有する高分子分 散型液晶表示素子において、少なくとも一方の基板の液 晶滴側には光重合開始剤を含有する配向膜が形成され、 絵素の1または複数に対し、かつ該配向膜に接して、各 々の液晶滴が設けられており、そのことにより上記目的 が達成される。

【0015】好適な実施態様としては、上記絵素の70 %以上が絵素の面積の30%以上の大きさの液晶滴を1 絵素内に少なくとも1つ保有する状態で形成されてい

【0016】好適な実施態様としては、上記液晶滴を挟 んで対向する2つの基板の該液晶滴側とは反対側に偏光

【0017】本発明の高分子分散型液晶表示素子の製造 方法は、一対の基板が対向配設されると共に、両基板間 に高分子壁で包囲された複数の液晶滴を有する高分子分 散型液晶表示素子の製造方法において、少なくとも一方 の基板に対し、光重合開始剤を含む配向膜を形成する工 程と、配向膜が形成された基板に一方向にラビング処理 を行う工程と、2つの基板を、該配向膜形成面を内側に 配し、かつ間隙を設けて対向させる工程と、該間隙に液 晶と光重合性化合物とからなる混合材料を注入する工程 と、該混合材料に、絵素に対応する部分を覆うように設 けられたフォトマスクを介し、該フォトマスクで覆われ た部分が照射される紫外線強度の80%以下となるよう 紫外線を照射する工程とを含み、そのことにより上記目 的が達成される。

[0018]

【作用】本発明の高分子分散型液晶表示素子の製造方法 においては、規則的パターンを有するフォトマスクを用 いて紫外線を照射することにより、光の照射強度に規則 的な強弱を持たせて光重合性化合物の硬化反応を行って むために、基板での配向処理ができないという難点があ 50 いる。2つの基板の少なくとも一方にはあらかじめ光重 10

合開始剤を含む配向膜を形成し、さらに2つの基板には ラビング処理を行う。フォトマスクを用いて光照射を行 うと、配向膜に含まれる光重合開始剤により光重合性化 合物の硬化反応が開始する。この場合、照射強度が強い 部分では、照射強度が弱い部分に比べて硬化速度がより 速く、液晶と硬化した髙分子との相分離速度もより速い ので、高分子がより速く析出して液晶を照射強度の弱い 部分へと押出す。従って、照射強度の強い部分には高分 子壁が形成され、照射強度の弱い部分には配向膜に接し て同時に配向処理された液晶滴が形成されることにな り、液晶滴は規則性を有して平面的に配置するようにな る。

[0019]

【実施例】次に、本発明を実施例に基づいて説明する。 【0020】図1は、本実施例で得られる高分子分散型 液晶表示素子の概略断面図であり、図2は本実施例の髙 分子分散型液晶表示素子の製造方法における一工程を示 す断面図である。この液晶表示素子は図1に示すよう に、一対の基板1、2が間に高分子壁7に支持された液 晶滴8を有して対向している。基板1の内側には電極線 20 3が設けられ、電極線3を覆うように配向膜5が形成さ れている。基板2の内側には電極線4が設けられ、電極 線4を覆うように配向膜6が形成されている。

【0021】このような構造を有する液晶表示素子は以 下のように製造される。

【0022】図2に示すように、まず、基板1、2上に ITO(酸化インジウムおよび酸化スズの混合物)から なる電極線3、4を形成する。本実施例においては、基 板1、2としてフリントガラス(日本板ガラス製)を用 TO付きガラス(日本板ガラス製、ITO-500オン グストローム付きフリントガラス) とすることもでき る。また電極線3、4は厚さ500オングストローム、 幅200μmとし、50μmの間隔をおいて20本形成 した。次いで、電極線3、4を覆うように、配向膜5、 6をスピンコートで塗布し、一方向にナイロン布を用い てラビング処理を行う。配向膜5、6は薄膜材料として ポリイミド (SE150、日産化学製) に光重合開始剤 としてIrugacure184を5重量%の割合で添加した。この ような基板1、2を電極線3、4が互いに向い合いかつ 40 交差するように対向させ、6μmのスペーサーを用いて 液晶セルを形成する。

【0023】次に、基板2の外側に絵素部分が遮光され るようにフォトマスク9を配置し、さらに液晶セル中に 光重合性化合物と液晶とを均一に混合した混合材料10 を注入し、その後平行光線が得られる高圧水銀ランプに よって紫外線を10mW/cm²、10分間照射して光 重合性化合物を硬化した。本実施例においては、上記光 重合性化合物として、トリメチロールプロパントリメタ クリレート0.1gと2-エチルヘキシルアクリレート

0.4gとイソボルニルアクリレート0.5gとの混合 物を使用した。また、液晶としてはZLI-3700-000 (メル ク社製) にCN (コレステリックノナネート) を0.3 %添加した混合物4gを使用した。なお、本発明ではフ オトマスクの他にマイクロレンズおよび干渉板等も使用 することができる。

【0024】得られた液晶パネルを液体窒素中で剥離 し、液晶をアセトンで洗い流した後、形成された高分子 壁の水平断面をSEM(走査型電子顕微鏡)で観察した ところ、フォトマスク9のパターン(絵素の分布に同 じ) と同じ規則性を有し、かつ大きさが均一に揃った液 晶滴が形成されていることが確認された。

【0025】上記液晶パネルはその後、配向方向に沿っ た方向に偏光方向を合わせて2枚の偏光板で挟むことに より本実施例の液晶表示素子を得る。

[0026]

【表1】

比较例1 比较例2 実施例 コットラスト 3 9 4 1

【0027】上記表1は、本実施例の液晶表示素子およ びこれと比較するために製造した液晶表示素子(比較例 1および比較例2)について、コントラストを測定した 結果を示したものである。比較例1は本実施例の基板 1、2をITO付きガラス(日本板ガラス製、ITO-500オングストローム付きフリントガラス)とし、液 晶としてZL1-3700-000のみを使用したものであり、比較 い、厚さ1.1mmとしたが、その他に基板1、2を1 30 例2は本実施例においてフォトマスクを用いずに製造し たものである。コントラストはPhotal LC 500システム を使用し、電圧を印加しない場合の光線透過率To/T satと飽和電圧を印加した場合の光線透過率をTsatとの 比Toで定義される。それによると、フォトマスクを用 いて製造した液晶表示素子は高いコントラストを有して いることがわかる。フォトマスクを用いることにより絵 素に対して規則性を有する髙分子壁を形成することがで き、高分子と液晶との界面が大幅に減少するために高分 子と液晶との間の散乱が充分に低減されていることがわ

> 【0028】なお、本実施例においては紫外線照射を行 う際にフォトマスクを用いたが、フォトマスクは基板の 内側および外側のいずれを覆ってもよく、紫外線の照射 強度に規則的な強弱が存在すればよい。しかし、基板か らフォトマスクを離すとフォトマスクによる像がぼける ので、基板の間隙に注入された混合材料にできるだけ近 い位置にあるのがよい。また、紫外線は平行光線である ことが好ましい。ただし、液晶としてFLCを用いる場 合には、耐衝撃性を向上させるために絵素とほぼ同じ大 50 きさの液晶滴の周囲に緩衝体として小さな液晶滴を配置

することが効果的であるので、故意にフォトマスクによ る遮光部分をぼかしたり、フォトマスクを基板から離し たり、平行度の少し悪い紫外光線を使用してもよい。

【0029】使用するフォトマスクの大きさは、絵素の 大きさの30%以上となるようにするのが好ましく、さ らに好ましくは、絵素内における液晶と高分子との界面 が極端に少なくなるような大きさであるのが好ましい。 フォトマスクにより遮光される紫外線の弱照射領域が絵 素の大きさの30%以下の大きさである場合には、得ら れる液晶滴も絵素の大きさの30%以下の大きさとな り、絵案内に液晶と高分子との界面が多くなるので、液 晶と高分子との散乱による液晶表示素子のコントラスト の低下の度合が大きく、好ましくない。

【0030】フォトマスクの形状は、絵素の30%以上 を覆い、紫外線照射強度を局部的に低下させるものであ れば特に限定されない。好ましい形状としては、円形、 方形、台形、長方形、ひし形、文字形、曲線および直線 によって区切られた図形、これら図形の一部をカットし た図形、これら図形を組み合わせた図形およびこれら小 上を選択して使用すればよいが、液晶滴の均一性を向上 させるためにはできるだけフォトマスクの形状を1種に 揃えるのが好ましい。また、本実施例のように絵素部分 のみを覆うフォトマスクが、絵案内での散乱強度が低下 して液晶表示素子のコントラストが向上するので特に好 ましい。

【0031】フォトマスクの配置は、液晶滴を水平方向 に規則的に配列させるために重要である。フォトマスク の配置は本実施例のように絵素の分布に合わせるのが好 ましく、また1絵素内に1箇所フォトマスクを形成する のが好ましい。フォトマスクは数絵素にわたって配置し てもよく、例えば同じ列の数絵素ごとに配置したり、数 絵素を組み合わせたブロックごとに配置してもよい。ま た、フォトマスクは各々が独立した領域である必要はな く、末端部等でつながっていても差し支えない。最も効 果的に紫外線を遮光する領域が上述した形状および配置 を有していればよい。

【0032】また、本実施例においては2つの基板各々 の内側に薄膜材料と光重合開始剤を含む配向膜を形成し たが、本発明においては少なくとも一方の基板の内側に この配向膜を形成する。これは光重合性化合物を硬化し て高分子と液晶とを明確に相分離するためである。この ような配向膜が形成された基板の間隙に液晶と光重合性 化合物とからなる混合材料を注入し、光照射すると配向 膜に含有される光重合開始剤によって重合反応が開始 し、所望の位置に高分子壁を限定的に形成することがで

【0033】薄膜材料としては、一般に高分子材料、無 機材料等が使用できるが、ポリイミド、熱可塑性樹脂、 縮合型ポリマー等の有機材料が好ましい。ポリイミドと 50 メタクリレート、2,2,3,3-テトラクロロプロリルメタク

しては、実施例1で使用したSE150 (日産化学製) の他に例えば JALS-203 および JALS-204 (日本合成ゴム製) 等を挙げることができ、熱可塑性樹 脂としては、例えばポリスチレン、PMMA、PPO (ポリフェニレンオキサイド)、ポリカーボネイト等を 挙げることができ、縮合型ポリマーとしては、例えばポ リイミド、ノボラック樹脂を挙げることができる。

【0034】光重合開始剤としては一般に使用されてい る光重合開始剤を用いればよいが、例えば本実施例で用 10 いたIrugacure 184の他に、Irugacure 651および907、D arocure 1173、1116および2959等を挙げることができ る。また、上記光重合開始剤の添加割合は、上記薄膜材 料に対し、1~50重量%の割合で添加すればよい。こ れら薄膜材料および光重合開始剤は可溶な溶剤に溶解し て希薄溶液とし、これをスピンコート法、印刷法等によ り基板上に塗布して配向膜を形成する。

【0035】混合材料に含まれる光重合性化合物として 本実施例においてはトリメチロールプロパントリメタク リレートと2-エチルヘキシルアクリレートとイソボルニ 形図形の集合体等であり、これらの図形の中から1種以 20 ルアクリレートとの混合物を使用したが、本発明で使用 する光重合性化合物は最終的に液晶滴を支持するポリマ ーマトリックスを形成する物質であり、その選択は重要 である。特に、TFT駆動を行う場合、液晶および高分 子の電気絶縁性が要求され、未硬化状態でも光重合性化 合物の比抵抗が1×10¹²オーム・cm以上必要であ る。使用される光重合性化合物としては、光硬化性のモ ノマー、オリゴマーまたはポリマーである。モノマーと しては、炭素原子数が3以上の長鎖アルキル基またはベ ンゼン環を有する、アクリル酸およびアクリル酸エステ 30 ルであり、例えばアクリル酸イソブチル、アクリル酸ス テアリル、アクリル酸ラウリル、アクリル酸イソアミ ル、nーブチルメタクリレート、nーラウリルメタクリ レート、トリデシルメタクリレート、2-エチルヘキシ ルアクリレート、n-ステアリルメタクリレート、シク ロヘキシルメタクリレート、ベンジルメタクリレート、 2-フェノキシエチルメタクリレート、イソボルニルア クリレート、イソボルニルメタクリレート等を挙げるこ とができる。さらに、形成される高分子壁の物理的強度 を高めるために2以上の官能基を有する多官能性化合 物、例えばビスフェノールAジメタクリレート、ビスフ ェノールAジアクリレート、1,4-プタンジオールジメタ クリレート、1,6~ヘキサンジオールジメタクリレート、 トリメチロールプロパントリメタクリレート、トリメチ ロールプロパントリアクリレート、テトラメチロールメ タンテトラアクリレートを挙げることができ、より好ま しくはこれらのモノマーをハロゲン化特に塩素化および フッ素化した化合物、例えば2, 2, 3, 4, 4, 4-ヘキサフルオ ロブチルメタクリレート、2,2,3,4,4,4-ヘキサクロロブ チルメタクリレート、2,2,3,3-テトラフルオロプロリル

9

リレート、パーフルオロオクチルエチルメタクリレート、パークロロオクチルエチルメタクリレート、パーフルオロオクチルエチルアクリレート、パークロロオクチルエチルアクリレートである。これらモノマーは、単独で使用してもよく、また2種以上混合して使用してもよい。また、オリゴマーおよびポリマーとしては、例えばポリウレタンアクリレート、ポリオキシエチレンアクリレートを挙げることができる。またこれらモノマー、オリゴマーおよびポリマーは混合して使用してもよい。

【0036】液晶として、本実施例においてはZLI-3700 10-000(メルク社製)にCN(コレステリックノナネート)を0.3%添加した混合物を使用したが、本発明に使用し得る液晶は常温付近で液晶状態を示す有機物混合体である。このような液晶としてはネマチック液晶(2周波駆動用液晶、 $\Delta \epsilon < 0$ の液晶を含む)、コレステリック液晶(特に、可視光に選択反射特性を有する液晶)、スメクチック液晶、強誘電性液晶、デスコチック液晶等が含まれる。これらの液晶は混合して用いてもよい。特に、ネマチック液晶、もしくはコレステリック液晶の添加されたネマチック液晶がその特性上好ましい。 さらに、上記混合材料は加工時に光重合性化合物の光重合反応を伴うため、耐化学反応性に優れた液晶が好ましい。具体的な液晶の例としては、ZLI-4801-000、ZLI-4801-001、ZLI-4792(メルク社製)等である。

【0037】上述した光重合性化合物と液晶とは、形成される液晶滴の径がフォトマスクのドット径よりも大きくなるような組合せで選択することが好ましい。しかし、液晶滴の径がフォトマスクのドット径よりも小さくなるような組合せでも、UV強度を弱めたり、光重合開始剤の添加量を抑えたりすることで使用することができる。

【0038】液晶滴の形状を測定するには、本実施例で 説明したように、液晶セルを2枚に剥し、液晶を溶剤で 除去して残った高分子壁をSEM(走査電子顕微鏡)で 観察することにより行う。高分子壁は、サンプル作製時 に構造が破壊される部分があるので、サンプル内で最も 規則性の優れている20個の高分子壁を選んで観察す る。

10

【0039】本発明の液晶表示素子は2枚の偏光板で挟むことによって、ハイコントラストで駆動電圧の急峻な液晶表示素子に応用することができる。また、本発明の液晶表示素子は、単純マトリクス駆動、TFT、MIM等のアクティブ駆動等の駆動法で駆動できるが特に限定されない。

[0040]

【発明の効果】以上の説明から明らかなように本発明によれば、高分子と液晶との散乱強度の大幅な抑制と高分子中での液晶の配向処理とが可能となり、高いコントラストを有する高分子分散型液晶表示素子が得られる。本発明で得られる液晶表示素子の応用範囲はきわめて広く、例えばプロジェクションテレビ、パソコン等の平面ディスプレイ装置、シャッター効果を利用した表示板、窓、扉、壁等に利用することができ、特に薄型基板、フィルム基板を利用したセルに適用できる。

【図面の簡単な説明】

【図1】本発明の実施例に係る高分子分散型液晶表示素 子の断面図である。

【図2】本発明の実施例に係る高分子分散型液晶表示素 子の製造方法における一工程を示す断面図である。

【符号の説明】

- 1、2 基板
- 3、4 電極線
- 5、6 配向膜
- 7 高分子壁
 - 8 液晶滴
 - 9 フォトマスク
- 10 混合材料

【手続補正書】

【提出日】平成5年7月8日

【手続補正1】

【補正対象書類名】明細書

【補正対象項目名】0011

【補正方法】変更

【補正内容】

【0011】一方、FLCを用いた表示素子において は、自発分極を発現し得るスメクティックC*相(Sm C*相)が利用されるが、液晶分子の規則性がネマティ ック相よりも結晶に近いので衝撃に弱いことが問題とな っている。この問題を解決するため、FLCを高分子中 に分散させ、かつ液晶の配向処理を行うことが提案され ているが、現状では高分子中で液晶の配向処理を行うこ とは難しく、実用化には至っていない。例えば、特開昭 63-264721号公報および63-264722号公報には、FLC を高分子中に分散させてフィルム状に加工してから一方 向に延伸処理を行うことにより液晶を配向させる方法が 開示されている。しかし、この方法では液晶と高分子と の界面が絵素内に数多く存在し、入射する直線偏光を散 乱させ一部の光を脱偏光させるため、液晶セルの黒レベ ルが低下し、従ってコントラストも低下するという問題 がある。この問題はFLCを用いた表示素子だけでな く、偏光板を用いた他の液晶表示素子においても同様に 起こる。また、特開昭61-205920号公報、特開昭59-20 1021号公報および特開平3-192334号公報には、FLC の耐衝撃性を付与する目的で、配向処理した基板材料に フォトリソグラフィーを用いて高分子壁を作製すること により液晶セルを形成してから液晶を注入する方法が開 示されている。しかし、この方法では独立した液晶エリ アを形成することができず、またセル厚を厳密に維持す ることが困難であった。

【手続補正2】

【補正対象書類名】明細書

【補正対象項目名】0022

【補正方法】変更

【補正内容】

【0022】図2に示すように、まず、基板1、2上に ITO (酸化インジウムおよび酸化スズの混合物)からなる電極線3、4を形成する。本実施例においては、基板1、2としてフリントガラス (日本板ガラス製)を用い、厚さ1、1 mmとしたが、その他に基板1、2をITO付きガラス (日本板ガラス製、ITO-500オングストローム付きフリントガラス)とすることもできる。また電極線3、4は厚さ500オングストローム、幅200 μ mとし、50 μ mの間隔をおいて20本形成した。次いで、電極線3、4を覆うように、配向膜5、6をスピンコートで塗布し、一方向にナイロン布を用いてラビング処理を行う。配向膜5、6は薄膜材料としてポリイミド (SE150、日産化学製)に光重合開始剤

としてIrgacure184を5重量%の割合で添加した。このような基板1、2を電極線3、4が互いに向い合いかつ交差するように対向させ、 $6 \mu m$ のスペーサーを用いて液晶セルを形成する。

【手続補正3】

【補正対象書類名】明細書

【補正対象項目名】0027

【補正方法】変更

【補正内容】

【0027】上記表1は、本実施例の液晶表示素子およ びこれと比較するために製造した液晶表示素子(比較例 1および比較例2)について、コントラストを測定した 結果を示したものである。比較例1は本実施例の基板 1、2をITO付きガラス(日本板ガラス製、ITO-500オングストローム付きフリントガラス)とし、液 晶としてZLI-3700-000のみを使用したものであり、比較 例2は本実施例においてフォトマスクを用いずに製造し たものである。コントラストはPhotal LC 5000システム を使用し、電圧を印加しない場合の光線透過率Toと飽 和電圧を印加した場合の光線透過率をTsatとの比To/ Tsatで定義される。それによると、フォトマスクを用 いて製造した液晶表示素子は高いコントラストを有して いることがわかる。フォトマスクを用いることにより絵 素に対して規則性を有する高分子壁を形成することがで き、高分子と液晶との界面が大幅に減少するために高分 子と液晶との間の散乱が充分に低減されていることがわ かる。

【手続補正4】

【補正対象書類名】明細書

【補正対象項目名】0030

【補正方法】変更

【補正内容】

【0030】フォトマスクの形状は、絵素の30%以上を覆い、紫外線照射強度を局部的に低下させるものであれば特に限定されない。好ましい形状としては、円形、方形、台形、長方形、ひし形、文字形、<u>六角形</u>曲線および直線によって区切られた図形、これら図形の一部をカットした図形、これら図形を組み合わせた図形およびこれら小形図形の集合体等であり、これらの図形の中から1種以上を選択して使用すればよいが、液晶滴の均一性を向上させるためにはできるだけフォトマスクの形状を1種に揃えるのが好ましい。また、本実施例のように絵素部分のみを覆うフォトマスクが、絵案内での散乱強度が低下して液晶表示素子のコントラストが向上するので特に好ましい。

【手続補正5】

【補正対象書類名】明細書

【補正対象項目名】0034

【補正方法】変更

【補正内容】

【0034】光重合開始剤としては一般に使用されている光重合開始剤を用いればよいが、例えば本実施例で用いたIrgacure 184の他に、Irgacure 651および907、Darocure 1173、1116および2959等を挙げることができる。また、上記光重合開始剤の添加割合は、上記薄膜材料に対し、1~50重量%の割合で添加すればよい。これら薄膜材料および光重合開始剤は可溶な溶剤に溶解して希薄溶液とし、これをスピンコート法、印刷法等により基板上に塗布して配向膜を形成する。

【手続補正6】

【補正対象書類名】明細書

【補正対象項目名】0036

【補正方法】変更

【補正内容】

【0036】液晶として、本実施例においてはZLI-3700

-000(メルク社製)にCN(コレステリックノナネート)を0.3%添加した混合物を使用したが、本発明に使用し得る液晶は常温付近で液晶状態を示す有機物混合体である。このような液晶としてはネマチック液晶(2周波駆動用液晶、 $\Delta \epsilon < 0$ の液晶を含む)、コレステリック液晶(特に、可視光に選択反射特性を有する液晶)、スメクチック液晶、強誘電性液晶、デスコチック液晶等が含まれる。これらの液晶は混合して用いてもよい。特に、ネマチック液晶、もしくはコレステリック 水晶 又はカイラル剤の添加されたネマチック液晶がその特性上好ましい。さらに、上記混合材料は加工時に光重合性化合物の光重合反応を伴うため、耐化学反応性に優れた液晶が好ましい。具体的な液晶の例としては、ZLI-4801-000、ZLI-4801-001、ZLI-4792(メルク社製)等である。