Closest Pair

Piotr Indyk

Closest Pair

- Find a closest pair among p₁...p_n ∈ R^d
- Easy to do in O(dn²) time
 - For all $p_i \neq p_j$, compute $||p_i p_j||$ and choose the minimum
- We will aim for better time, as long as d is "small"
- For now, focus on d=2

Divide and conquer

Divide:

- Compute the median of xcoordinates
- Split the points into P_L and P_R, each of size n/2
- Conquer: compute the closest pairs for P_L and P_R
- Combine the results (the hard part)

Combine

- Let k=min(k₁,k₂)
- Observe:
 - Need to check only pairs which cross the dividing line
 - Only interested in pairs within distance < k
- Suffices to look at points in the 2k-width strip around the median line

Scanning the strip

- Sort all points in the strip by their y-coordinates, forming q₁...q_r, r ≤ n.
- Let y_i be the y-coordinate of q_i
- For i=1 to r
 - j=i-1
 - While $y_i y_i < d$
 - Check the pair q_i,q_i
 - j:=j-1

Analysis

- Correctness: easy
- Running time is more involved
- Can we have many q_i's that are within distance k from q_i?
- No
- Proof by packing argument

Analysis, ctd.

Theorem: there are at most 7 q_i 's such that y_i - $y_i \le k$.

Proof:

- Each such q_i must lie either in the left or in the right k× k square
- Within each square, all points have distance distance ≥ k from others
- We can pack at most 4 such points into one square, so we have 8 points total (incl. q_i)

Packing bound

Proving "4" is not obvious

Will prove "5"

Draw a disk of radius k/2 around each point

Disks are disjoint

- The disk-square intersection has area ≥ π (k/2)²/4 = π /16 k²

The square has area k²

– Can pack at most $16/\pi \approx 5.1$ points

Running time

- Divide: O(n)
- Combine: O(n log n) because we sort by y
- However, we can:
 - Sort all points by y at the beginning
 - Divide preserves the y-order of points
 Then combine takes only O(n)
- We get T(n)=2T(n/2)+O(n), so T(n)=O(n log n)

Higher dimensions

- Divide: split P into P_L and P_R using the hyperplane x=t
- Conquer: as before
- Combine:
 - Need to take care of points with x in [t-k,t+k]
 - This is essentially the same problem, but in d-1 dimensions
 - We get:
 - T(n,d)=2T(n/2)+T(n,d-1)
 - $T(n,1)=O_d(1)$ n
 - Solves to: T(n,d)=n log^{d-1} n

Closest Pair with Help

- Given: P={p₁...p_n} of points from R^d, such that the closest distance is in (t,c t]
- Goal: find the closest pair
- Will give an O((c√d)^d n) time algorithm
- Note: by scaling we can assume t=1

Algorithm

- Impose a cubic grid onto R^d, where each cell is a 1/√d×1/√d cube
- Put each point into a bucket corresponding to the cell it belongs to
- Diameter of each cell is ≤1, so at most one point per cell
- For each p∈P, check all points in cells intersecting a ball B(p,c)
- At most (2√dc)^d such cells

How to find good t?

Repeat:

- Choose a random point p in P
- Let $t=t(p)=D(p,P-\{p\})$
- Impose a grid with side t'< t/(2√d), i.e., such that any pair of adjacent cells has diameter <t
- Put the points into the grid cells
- Remove all points whose all adjacent cells are empty
- Until P is empty

Correctness

- Consider t computed in the last iteration
 - There is a pair of points with distance t
 - There is no pair of points with distance t' or less*
 - We get c=t/t'~ 2√d

*And never was, if the grids are nested

Running time

- Consider t(p₁)...t(p_m)
- An iteration is lucky if t(p_i) ≥ t for at last half of points p_i
- The probability of being lucky is ≥1/2
- Expected #iterations till a lucky one is ≤2
- After we are lucky, the number of points is ≤ m/2
- Total expected time = 3^d times O(n+n/2+n/4+...+1)