Machine Learning 2019 Spring - HW3 Report

學號: B06902029 系級: 資工二 姓名: 裴梧鈞

- 1. (2%) 請說明你實作的 CNN model,其模型架構、訓練參數和準確率為何?並請用與上述 CNN 接近的參數量,實做簡單的 DNN model,同時也說明其模型架構、訓練參數和準確率為何?並說明你觀察到了什麼?
 - CNN Model 架構

```
Input(48 * 48),
Conv2D(128, (5, 5)), Conv2D(128, (5, 5)), BatchNormalization,
MaxPooling(pool_size = (2, 2)), LeakyReLU(0.3), Dropout(0.1),
Conv2D(256, (5, 5)), Conv2D(256, (5, 5)), BatchNormalization,
MaxPooling(pool_size = (2, 2)), LeakyReLU(0.3), Dropout(0.2),
Conv2D(512, (3, 3)), Conv2D(512, (3, 3)), BatchNormalization,
MaxPooling(pool_size = (2, 2)), LeakyReLU(0.3), Dropout(0.3),
Conv2D(768, (3, 3)), Conv2D(768, (3, 3)), BatchNormalization,
MaxPooling(pool_size = (2, 2)), LeakyReLU(0.3), Dropout(0.4),
Flatten(),
Dense(1024), BatchNormalization, ReLU, Dropout(0.5),
Dense(512), BatchNormalization, ReLU, Dropout(0.5),
Dense(512), BatchNormalization, ReLU, Dropout(0.5),
Dense(7, activation = 'softmax')
```

此外,我也有使用 ImageDataGenerator,包含旋轉 20 度、上下左右平移 0.05 倍邊長以及水平翻轉。Optimizer 方面我使用的是 Adam,epochs 數則是 500。

■ DNN Model 架構

```
Input(48 * 48), Flatten(),
Dense(4096), BatchNormalization, ReLU, Dropout(0.5),
Dense(2048), BatchNormalization, ReLU, Dropout(0.5),
Dense(2048), BatchNormalization, ReLU, Dropout(0.5),
Dense(1024), BatchNormalization, ReLU, Dropout(0.5),
Dense(7, activation = 'softmax')
```

Optimizer 方面我使用的也是 Adam, epochs 數則是 400。

比較

Model	Total Params	Trainable Params	Public Score	Private Score
CNN	24,198,535	24,189,063	0.69044	0.67456
DNN	24,170,503	24,152,071	0.37726	0.38060

- 大約相同的參數量,CNN 以及 DNN 就有相當大的差距,這跟上課提到的一樣,並不超出我們的 想像。
- 2. (1%) 承上題,請分別畫出這兩個model的訓練過程 (i.e., loss/accuracy v.s. epoch)

3. (1%) 請嘗試 data normalization, data augmentation,說明實作方法並且說明實行前後對準確率有什麼樣的影響?

在這題中,我使用的 model 架構就是第一題的架構;只差在有沒有 Normalization 或者 Data Augmentation。為了方便比較,以下三種 model 我都只 train 125 epochs。

Model	Validation Accuracy	Public Score	Private Score
Raw Data	0.24800	0.25020	0.24407
With Data Normalization	0.63355	0.63388	0.63360
With Data Normalization and Data Augmentation	0.85029	0.67846	0.66703

和當初預期的一樣,完全沒有 Data Normalization 的 model 是完全 train 不起來的,而有 Data Normalization 後的 model 便可以輕鬆突破 Simple Baseline;在加了 Data Augmentation 之後 雖然 還沒有衝過 Strong Baseline,但我想是因為 model 還沒收斂,或許 train 個 200 個 epoch 就可以突破了。

4. (1%) 觀察答錯的圖片中,哪些 class 彼此間容易用混? [繪出 confusion matrix 分析]

由這張圖可以看出 Angry、Disgust、Fear、Sad 這四類情緒蠻接近的 class 的準確率是比較低的,在 model 的分類都會互相影響一點點;Neutral 也是影響分類的一個 class,或許我的 model 不知道要判斷成什麼就會判給 Neutral。