Оценка эффективности пропорциональных камер

Абрамова Татьяна

Установка

- Частицы вдоль оси Z
- Распределение по углу и высоте неизвестно
- Пропорциональные камеры расположены на расстояниях 380мм, 300мм, 300мм друг от друга

Данные

Проблемы:

- 1. Несколько сработавших проволочек рядом
- 2. Смещение камер относительно друг друга
- 3. Выбросы, шумы
- 4. Идентификация треков

Кластеризация

• Усреднить сигналы в близкорасположенных проволочках в один

$$[-20, -19, -18, -10, 4, 5, 80] \longrightarrow [-19, -10, 4.5, 80]$$

• Проблема: какие проволочки считать близкими?Вводить ли вес для усредненных проволочек?

Почему N1=1 и точки без веса? Потому что не хочется случайно учесть шумы, тем более увеличивать из-за них вес точки

```
До: P1 [51.] P2 [52.] P3 [58. 57.] P4 [-27. -28. -29. 59.]
```

После: Р1 [51.0] Р2 [52.0] Р3 [57.5] Р4 [-28.0, 59.0]

Нахождение смещения камер относительно друг друга и

1. Отбор событий: события с единичным сигналом в каждой из 4-х камер и смещением относительно друг друга не больше, чем на N2 мм. N2 = 6

Почему N2 = 6? Потому что это минимальное число, с которого пропадает видимое смещение после корректировки, и при этом до смещения нет треков с шумами.

2. Алгоритм корректировки: посчитать среднее отклонение от фита прямой линией для каждого корректного события. Смещения для проволочек:

-0.7325664503417095 1.7765072396821977 -1.1599640749147873 0.11602328557430912

1. До корректировки

2. После корректировки

Оценка эффективности пропорциональных камер

Эффективность пропорциональной камеры — отношение количества треков, восстановленных по всем четырем камерам количеству треков, восстановленных по трем другим камерам (кроме исследуемой).

Алгоритм исследования N-той камеры:

- 1. Для каждого события восстанавливаем треки по всем камерам, кроме N-той. Получаем массив треков (каждый трек состоит из трех сигналов). Если массив не пустой, прибавляем 1 к количеству треков.
- 2. Для каждого полученного трека пытаемся восстановить точку в N-той камере. Если получается, то прибавляем 1 к количеству восстановленных в N-той камере треков.
- 3. При этом считаем, что в каждом событии есть не более одного корректного трека.

Определение треков в событии

- Восстановление треков происходит полным перебором вершин (не более 24 комбинаций на событие)
- Трек считается восстановленным, если отклонение его точек от фита прямой линией не больше N3 = 2

Почему N3 = 2? Потому что начиная с такого числа примерно в каждом событии восстанавливается трек (по трем камерам).

Результаты (N3 = 2)

Номер файла /	Число событий в файле	P1	P2	P3	P4
1	385,090	0.98991618718 (369,213 из 372,974)	0.99279820721 (369,036 из 371,713)	0.99292974403 (369,070 из 371,698)	0.97444681390 (369,214 из 378,896)
2	521,807	0.98984154873 (500,258 из 505,392)	0.99276475937 (500,002 из 503,646)	0.99309035370 (500,020 из 503,499)	0.97432426642 (500,259 из 513,442)
3	517,989	0.98981927062 (496,527 из 501,634)	0.99290323226 (496,258 из 499,805)	0.99308277657 (496,310 из 499,767)	0.97407698042 (496,526 из 509,740)
4	406,049	0.98973013283 (388,862 из 392,897)	0.99252810896 (388,675 из 391,601)	0.99293144497 (388,685 из 391,452)	0.97360824226 (388,864 из 399,405)
Итого	1,813,935	<mark>0.98982625612</mark> (1,754,860 из 1,772,897)	<mark>0.99275851627</mark> (1,753,971 из 1,766,765)	<mark>0.99301919819</mark> (1,754,085 из 1,766,416)	<mark>0.97413213593</mark> (1,754,863 из 1,801,463)

Результаты (N3 = 1)

Номер файла /	Число событий в файле	P1	P2	P3	P4
1	385,090	0.97602460724 (363,006 из 371,923)	0.97796427791 (362,636 из 370,807)	0.98028387543 (362,657 из 369,951)	0.95995134077 (362,996 из 378,140)
2	521,807	0.98228893987 (491,947 из 500,817)	0.98648285218 (491,521 из 498,256)	0.98727368408 (491,530 из 497,866)	0.98727368408 (491,530 из 497,866)
3	517,989	0.98208899968(488,111 из 497,013)	0.98655742679 (487,680 из 494,325)	0.98691831638 (487,662 из 494,126)	0.96652646753 (488,092 из 504,996)
4	406,049	0.98187258414 (382,297 из 389,355)	0.98625111023 (381,979 из 387,304)	0.98691322681 (381,967 из 387,032)	0.96612910970 (382,277 из 395,679)
Итого	1,813,935	<mark>0.98081584530</mark> (1,725,361 из 1,759,108)	<mark>0.98464835619</mark> (1,723,816 из 1,750,692)	<mark>0.98561500307</mark> (1,723,816 из 1,748,975)	<mark>0.96520420299</mark> (1,725,289 из 1,787,486)