AMENDMENTS TO THE CLAIMS

This listing of Claims shall replace all prior versions, and listings, of claims in the application:

LISTING OF CLAIMS:

 (Previously Presented) A processor with secure cryptographic capabilities, said processor comprising:

a digital secret comprising a secret key used in a key-based cryptographic process, wherein said digital secret is stored only within said processor, and wherein said digital secret is operable to be used exclusively by said processor for both encryption and decryption:

a cryptography engine for performing said key-based cryptographic process internally within said processor, said cryptography engine operable to access said digital secret; and

internal memory coupled to said cryptography engine for supporting said key-based cryptographic process, wherein said internal memory is further for storing data associated with said key-based cryptographic process, wherein said data is accessible only within said processor.

 (Original) The processor of Claim 1 further comprising an internal bus for facilitating secure communication between said cryptography engine, said digital secret, and said internal memory within said processor.

TRAN-P162 Application No. 10/672,796 Page 2

3. (Original) The processor of Claim 1, wherein said digital secret is securely

confined within said processor.

4. (Previously Presented) The processor of Claim 1, wherein said internal

memory comprises microcode for implementing said key-based cryptographic

process on said data within said processor, and wherein said internal memory is

operable to perform state tracking associated with said key-based cryptographic

process.

5. (Previously Presented) The processor of Claim 1, wherein said data

comprises intermediate data generated by said key-based cryptographic

process.

6. (Original) The processor of Claim 1, further comprising:

a cryptography unit comprising a functional unit within said processor for

securely executing said key-based cryptographic process internally within said

processor, wherein said cryptography unit comprises:

said digital secret;

said cryptography engine; and

said internal memory.

7. (Original) The processor of Claim 1, wherein said key-based

cryptographic process comprises:

a key-based encryption process; and

a key-based decryption process.

(Original) The processor of Claim 1, wherein said processor comprises:
a secure hardware environment providing core processing functionality;

and

a secure software environment coupled to said secure hardware environment, said secure software environment generating executable instructions that are sent to said secure hardware environment for processing, said secure hardware environment in combination with said secure software environment providing processor capability, and wherein said secure hardware environment is accessible only through said secure software environment.

- (Original) The processor of Claim 1, wherein said digital secret is unique to said processor and is permanently and physically manifested within said processor.
- (Previously Presented) A processor with cryptographic capabilities, said processor comprising:

a secure cryptography unit, wherein said cryptography unit internally provides secure cryptographic capabilities as a functional unit within said processor, said cryptography unit comprising:

a cryptography engine for performing a key-based cryptographic process:

TRAN-P162 Application No. 10/672,796 Page 4

a digital secret exclusively accessible to said cryptography engine, wherein said digital secret comprises a secret key used in said key-based cryptographic process, and wherein said secret key is operable to be used

and at about a state of the same of the sa

exclusively by said processor for both encryption and decryption; and

internal memory coupled to said cryptography engine for supporting

said key-based cryptographic process, wherein said internal memory is

further for storing data associated with said key-based cryptographic process, wherein said data is accessible only within said processor.

11. (Original) The processor of Claim 10, wherein said key-based

cryptographic process comprises:

a key-based encryption process; and

a key-based decryption process.

12. (Original) The processor of Claim 10, wherein said processor comprises a

very long instruction word (VLIW) processor.

13. (Original) The processor of Claim 10, wherein said processor comprises:

a secure hardware environment providing core processing functionality;

and

a secure software environment coupled to said secure hardware

environment, said secure software environment generating executable

instructions that are sent to said secure hardware environment for processing,

said secure hardware environment in combination with said secure software

environment providing processor capability, and wherein said secure hardware

environment accessible only through said secure software environment.

14. (Original) The processor of Claim 10, wherein said digital secret is unique

to said processor and is permanently and physically manifested within said

processor.

15. (Original) The processor of Claim 10, wherein said digital secret

comprises:

a plurality of fusible links to manifest said digital secret by permanently

setting a binary state in each of said plurality of fusible links.

16. (Original) The processor of Claim 10, wherein said digital secret

comprises a random number that is generated from an HMAC algorithm

implemented on testing data associated with fabrication of said IC chip.

17. (Original) The processor of Claim 16, wherein said testing data

comprises:

wafer test data; and

die test data

18. (Original) The processor of Claim 10, wherein said secure cryptography

unit comprises a fully integrated circuit within said processor.

- 19. (Previously Presented) The processor Claim 10, wherein said digital secret and said internal memory are fully integrated with said cryptography engine to facilitate communication without use of a bus.
- (Original) The processor of Claim 10, wherein said key-based cryptography process comprises a Triple Data Encryption Algorithm (TDEA or Triple DES) cryptography process.
- (Previously Presented) A processor with secure cryptographic capabilities, said processor comprising:

a secure hardware environment providing core processing functionality, wherein said secure hardware environment comprises:

- a secure cryptography unit for providing secure cryptographic capabilities as a functional unit within said secure hardware environment, wherein said secure cryptography unit is operable to facilitate performance of a key-based cryptographic process performed exclusively by said processor, wherein said key-based cryptographic process comprises encryption using a digital secret and decryption using said digital secret, and wherein said key-based cryptographic process further comprises accessing data, said data accessible only within said processor.
- 22. (Original) The processor of Claim 21, further comprising: a secure software environment for accessing said secure hardware environment, said secure software environment generating executable

instructions that are sent to said secure hardware environment for processing, said secure hardware environment in combination with said secure software

environment providing processor capability.

23. (Previously Presented) The processor of Claim 21, wherein said secure

cryptography unit comprises:

a cryptography engine for performing said key-based cryptographic

process;

said digital secret accessible exclusively to said cryptography engine,

wherein said digital secret comprises a secret key used in said key-based

cryptographic process; and

internal memory coupled to said cryptography engine for supporting said

key-based cryptographic process and for performing state tracking associated

with said key-based cryptographic process.

24. (Previously Presented) The processor of Claim 23, wherein said internal

memory is operable to securely store said data, and wherein said data comprises

intermediate data generated by said key-based cryptographic process.

25. (Original) The processor of Claim 21, wherein said secure cryptography

unit comprises a fully integrated circuit within said processor.

26. (Previously Presented) The processor of Claim 23, wherein said secure

cryptography unit comprises a fully integrated circuit within said processor to

facilitate communication between said cryptography engine, said digital secret and said internal memory without use of a bus.