Unit 2: Fundamentals of material balances on non-reactive processes

Reminders

Homework 1 is due on September 6 via Canvas

Announcements

Office Hours:

Posted here and on the Canvas homepage.

Day	Time	Location	Personnel
Monday	4 – 5PM	AW Smith 147	Duval
Tuesday	1 -2 PM	AW Smith, 152	TA
Wednesday	3:30 – 4:30 PM	AW Smith, 147	Duval
Thursday	2:30 - 3:30 PM	AW Smith 152	TA

Learning Objectives

- After this week, students should be able to:
 - Name and describe three types of reactors
 - Distinguish between transient and steady state
 - Write the general rule for conservation of mass
 - Outline the general procedure for solving material balances
 - Apply the general procedure for material balances on single-unit processes to solve for:
 - Unknown mass fraction or mole fraction
 - Unknown mass flowrate or molar flowrate

Types of reactors

- Batch reactors
 - Reactants are fed to reactor at the beginning of the process. Products are removed later. No mass crosses system boundary.
- Continuous reactors
 - Reactants and products continuously flow in/out of the reactor
- Semi-batch reactors
 - Partly batch or partly continuous

Batch reactors

- Beverage fermentation
 - Beer
 - Wine
 - Soy sauce
 - Vinegar
- Pharmaceuticals
 - Vaccines
 - Protein-based therapies
 - Medicine
- Food production

Batch reactors in action

Batch reactors in action Processing Perfection.

Continuous reactors

- Large scale-food production
 - Blending processes (ketchup, dog kibble)
 - Polymer extruders
- Commodity chemical production
 - Distillation columns
 - Packed-bed reactors
 - Scrubbers
 - Chromatography
 - Membrane separations

Semi-batch reactors

- Polymerization reactions
- Exothermic reactions
 - Diluting acids

Steady-state vs. transient processes

Remember our process variables:

 If they DO NOT change with time for a given continuous process, it is said to be at steady state

 If they DO change with time for a given continuous process, it is said to be transient

In-class examples

- 1. Diluting HCl
- 2. Continuously distilling ethanol
- 3. Making strawberry jam

Extra information if you still need help with...

Batch vs. Semi-batch vs. Continuous

Batch vs. Semi-batch vs. Continuous

Batch vs. Semi-batch vs. Continuous

Criteria

- Reactants and products are continuously flowing in and out of the system while the process is happening
- Mass is accumulated within the reactor or depleted from the reactor such that the process CANNOT run indefinitely without adjusting a feed or product stream flowrate

Criteria

- Reactants and products are continuously flowing in and out of the system while the process is happening
- Mass can reside within the reactor (residence time), BUT there is no accumulation of mass and therefore the process CAN run indefinitely

Unit 2: Fundamentals of material balances on non-reactive processes

Reminders

Homework 1 is due on Friday, September 6

Announcements

Homework 2A will be assigned on Friday, September 6

Office Hours:

Posted here and on the Canvas homepage.

Day	Time	Location	Personnel
Monday	4 – 5PM	AW Smith 147	Duval
Tuesday	1 -2 PM	AW Smith, 152	TA
Wednesday	3:30 – 4:30 PM	AW Smith, 147	Duval
Thursday	2:30 - 3:30 PM	AW Smith 152	TA

Learning Objectives

- After this week students should be able to:
 - Name and describe three types of reactors
 - Distinguish between transient and steady state
 - Write the general rule for conservation of mass
 - Outline the general procedure for material balances
 - Apply the general procedure for material balances on single-unit processes to solve for an unknown mass fraction, mole fraction, molar flow rate or mass flow rate

Example 1: Diluting acid

 Companies often purchase concentrated acid then dilute it on site. Why?

Example 2: Continuously distilling ethanol

This Photo by Unknown Author is licensed under CC BY-SA

- Distillation columns use heat to separate mixtures of liquids with different boiling points
- Commonly used to increase alcohol content in fermented liquors
 - Boiling point of EtOH: 78 °C
 - Boiling point of water: 100 °C

Unit 2: Fundamentals of material balances on non-reactive processes

Reminders

Homework 2A is due on September 13

Announcements

- Homework 1 grades & solutions are posted in the Unit 1 Module
- □ Regrade requests are now open see syllabus for details

Office Hours:

Posted here and on the Canvas homepage.

Day	Time	Location	Personnel
Monday	4 – 5PM	AW Smith 147	Duval
Tuesday	1 -2 PM	AW Smith, 152	TA
Wednesday	3:30 – 4:30 PM	AW Smith, 147	Duval
Thursday	2:30 – 3:30 PM	AW Smith 152	TA

Finish the strawberry jam example from last class

Learning Objectives

After this next week students should be able to:

 Apply the general procedure for material balances on <u>multi-unit</u> processes with <u>recycle and bypass streams</u>

New terminology

Splitting point: where 1 stream becomes 2 streams

Mixing point: where 2 or more streams become 1 stream

New terminology

Splitting point: where 1 stream becomes 2 streams

Purge: when a a portion of the recycle stream is split and leaves the system

Recycle vs. Bypass

- Recycle
 - Dilute a stream
 - Circulate a working fluid
 - Recover a catalyst
 - Reuse unreacted components
- Bypass
 - Circumvent a unit operation
 - Overflow condition for safety

Recycle vs. Bypass

In-class examples

- Air conditioning
- Combined sewer overflow

Example 4: Air conditioning

Unit 2: Fundamentals of material balances on non-reactive processes

Reminders

- Homework 2A is due on September 13
- Homework 1 regrade requests are open on Canvas

Announcements

AIChE Panel in class on Friday, September 20

Office Hours:

Posted here and on the Canvas homepage.

Day	Time	Location	Personnel
Monday	4 – 5PM	AW Smith 147	Duval
Tuesday	1 -2 PM	AW Smith, 152	TA
Wednesday	3:30 – 4:30 PM	AW Smith, 147	Duval
Thursday	2:30 - 3:30 PM	AW Smith 152	TA

Learning Objectives

After this week students should be able to:

 Apply the general procedure for material balances on <u>multi-unit</u> processes with <u>recycle and bypass streams</u>

In-class examples

- Air conditioning (finish this one first)
- Combined sewer overflow

What do these have in common?

What do these have in common?

Combined sewer systems

Monday, September 7, 2020

- The third wettest day on record in Cleveland history.
- Flash floods across the city.
- Video of Edgewater beach