# Responsible investing: The ESG-efficient frontier

Pedersen, Lasse Heje, Shaun Fitzgibbons and Lukasz Pomorski. *Journal of Financial Economics*, 2020.11

解读者: 屠雪永

2021.10.10

# **Outline**

- Introduction
- Portfolio choice with ESG: the ESG-efficient frontier
- Equilibrium asset pricing with ESG
- Empirical results
- Conclusion

## 1. Introduction-- Motivation

- Investors have little guidance in how to incorporate ESG in portfolio choice
- Opinions differ dramatically about whether ESG will help or hurt their performance.
- To reconcile these opposing views, we develop a theory that illuminates both the potential costs and benefits of ESG-based investing.

# 1. Introduction-- Contribution

- We contribute to the literature on ESG both theoretically and empirically.
- Theoretically, We explicitly model many assets characterized by ESG scores in addition to the standard risk-return characteristics.
- Empirically, our research bridges the gap between papers arguing that ESG hurts performance and those arriving at the opposite conclusion.

# 1. Introduction-- Content

Panel B: Mean-variance frontiers for all assets and portfolios with certain ESG score

Panel A: ESG-efficient frontier





- n risky assets and a risk-free security.
- The risk free return is  $r^f$
- The risky assets have excess returns collected in the vector of random variables denoted by  $r = (r^1, \dots r^n)'$ .
- The assets have an ESG scores given by  $s = (s^1, ... s^n)'$ .
- Type-U investors:  $\mu = E(r)$ ,  $\Sigma = var(r)$ .
- Type-A investors:  $\mu = E(r|s)$ ,  $\Sigma = var(r|s)$ .
- Type-M investors:  $\mu = E(r|s)$ ,  $\Sigma = var(r|s)$  and also have **preferences** for high ESG scores

Investor M starts with a wealth W and a portfolio of risky assets

$$x = (x^{1}, ..., x^{n})'$$

$$\widehat{W} = W\left(1 + r^{f} + x'r\right).$$

$$U = E\left(\widehat{W}|s\right) - \frac{\bar{\gamma}}{2}Var\left(\widehat{W}|s\right) + Wf\left(\bar{s}\right). \qquad \bar{s} = \frac{x's}{x'1}$$

$$U = W\left(1 + r^{f} + x'\mu\right) - \frac{\bar{\gamma}}{2}W^{2}x'\Sigma x + Wf\left(\frac{x's}{x'1}\right)$$

$$= W\left(1 + r^{f} + x'\mu - \frac{\gamma}{2}x'\Sigma x + f\left(\frac{x's}{x'1}\right)\right), \qquad \gamma = \bar{\gamma}W$$

$$\max_{x \in X} \left(x'\mu - \frac{\gamma}{2}x'\Sigma x + f\left(\frac{x's}{x'1}\right)\right), \qquad X = \{x \in \mathbb{R}^{n} | x'1 > 0\},$$

#### Solution: ESG-SR frontier

$$SR(\bar{s}) = \max_{\substack{\chi \in X \\ \text{s.t. } \bar{s} = \frac{\chi's}{\chi'1}}} \left(\frac{\chi'\mu}{\sqrt{\chi'\Sigma\chi}}\right) = \max_{\substack{\chi \\ \text{s.t. } \chi'1 = 1 \\ \text{and } \chi's = \bar{s}}} \left(\frac{\chi'\mu}{\sqrt{\chi'\Sigma\chi}}\right)$$

$$\max_{\bar{s}} \left[ \max_{\sigma} \left\{ \max_{\substack{x \in X \\ \text{s.t. } \bar{s} = \frac{x's}{x'1} \\ \sigma^2 = x' \sum x}} \left( x' \mu - \frac{\gamma}{2} \sigma^2 + f(\bar{s}) \right) \right\} \right]. \quad (6)$$

$$\max_{\bar{s}} \left[ \max_{\sigma} \left\{ SR(\bar{s})\sigma - \frac{\gamma}{2} \ \sigma^2 + f(\bar{s}) \right\} \right]. \tag{7}$$

对公式(7)求一阶导数  $\sigma = SR(s)/\gamma$ 

> Solution: ESG-SR frontier

**Proposition 1 (ESG-SR trade-off).** The investor should choose her average ESG score  $\bar{s}$  to maximize the following function of the squared Sharpe ratio and the ESG preference function f

$$\max_{\bar{s}} \left[ (SR(\bar{s}))^2 + 2\gamma f(\bar{s}) \right]. \tag{8}$$

**Proposition 2 (ESG-SR frontier).** The maximum Sharpe ratio,  $SR(\bar{s})$ , that can be achieved with an ESG score of  $\bar{s}$  is

$$SR(\bar{s}) = \sqrt{c_{\mu\mu} - \frac{\left(c_{s\mu} - \bar{s}c_{1\mu}\right)^2}{c_{ss} - 2\bar{s}c_{1s} + \bar{s}^2c_{11}}}.$$
 (9)

$$SR(s^*) = \sqrt{c_{\mu\mu}}, \qquad s^* = c_{s\mu}/c_{1\mu}. \qquad c_{ab} = a' \Sigma^{-1} b$$

2021/10/10

#### > Solution: ESG-SR frontier

**Proposition 3 (four-fund separation).** Given an average ESG score  $\bar{s}$ , the optimal portfolio is

$$x = \frac{1}{\gamma} \Sigma^{-1} (\mu + \pi (s - 1\bar{s}))$$
 (10)

The optimal portfolio is therefore a combination of the risk-free asset, the tangency portfolio,  $\Sigma^{-1}\mu$ , the minimum-variance portfolio,  $\Sigma^{-1}1$ , and the ESG-tangency portfolio,  $\Sigma^{-1}s$ .

## Example: how investors choose portfolios using the ESG-SR frontier

Panel A: Indifference curves for an ESG-motivated investor (type-M) Panel B: Indifference curves for an ESG-aware investor (type-A)





## Generalized ESG preferences

**Proposition 4 (ESG-SR frontier with screens**). The conclusion of Proposition 1 continues to hold for any cone-shaped X.

$$X = \{ x \in \mathbb{R}^n | x'1 > 0, \forall i \ x^i = 0 \text{ if } s^i < s^* \}$$
$$X = \{ x \in \mathbb{R}^n_+ | \forall i \ x^i = 0 \text{ if } s^i < s^* \}$$

**Proposition 5 (generalized ESG-SR frontier).** If the investor has generalized ESG preferences e(x,s), then the investor's problem is

$$\max_{\bar{e}} \left[ \frac{(SR(\bar{e}))^2}{2\gamma} + \bar{e} \right], \tag{12}$$

Example: ESG scores: (0.1, 0.8, 0.9) VS (0.6, 0.6, 0.6)

$$e(x,s) = e_1 \frac{x's}{x'1} - e_2 \frac{x'\operatorname{diag}(\frac{1}{s_1}, \dots, \frac{1}{s_n})x}{(x'1)^2}$$

# 3. Equilibrium asset pricing with ESG

## > ESG-adjusted CAPM

Proposition 6. If all investors are ESG-unaware, i.e., of type-U

 $(W_A = W_M = 0)$ , then any security i has steady-state equilibrium price

$$p^{i} = \frac{\hat{\mu}^{i} - \frac{\gamma}{W} \operatorname{cov}(v^{i}, v^{m})}{r^{f}}.$$

Unconditional expected excess return obeys the standard unconditional CAPM:

$$E(r_t^i) = \beta^i E(r_t^m),$$

But conditional expected returns are given by

$$E(r_t^i|s) = \beta^i E(r_t^m) + \lambda \frac{s^i - s^m}{p^i}.$$

# 3. Equilibrium asset pricing with ESG

ESG-adjusted CAPM

$$p^i = rac{\hat{\mu}^i - rac{\gamma}{W} \, \operatorname{cov}ig(v^i, v^mig)}{r^f}.$$

**Proposition 7 (ESG-CAPM).** If all investors are ESG-motivated of type-M  $(W_U = W_A = 0)$ , then any security i has equilibrium price

$$p^{i} = \frac{\hat{\mu}^{i} + \lambda \left(s^{i} - s^{m}\right) - \frac{\gamma}{W} \operatorname{cov}(v^{i}, v^{m}|s)}{r^{f} - \pi \left(s^{i} - s^{m}\right)},$$
(20)

The equilibrium conditional expected excess return is given by

$$E(r_t^i|s) = \bar{\beta}^i E(r_t^m|s) - \pi \left(s^i - s^m\right). \tag{21}$$

If all investors are ESG-aware of type-A ( $W_U = W_M = 0$ ), the same conclusions hold with  $\pi = 0$ .



Fig. 2. Environmental, social, and governance-adjusted capital asset pricing model (ESG-CAPM).

#### > Data

- Stocks in the Standard & Poor's (S&P) 500 index
- E: low carbon intensity, 2009.01~ 2019.03
   (Busch et al., 2018)
- S: non-sin stock indicator. zero for sin stocks and the value of one otherwise, 1963.01~2019.03 (Hong and Kacperczyk, 2009)
- **G**: low accruals. 1963.01~2019.03 (Sloan,1996))
- overall **ESG**: MSCI ESG scores(0~10), 2007.01~ 2019.03
- XpressFeed database : stock returns and market values
- Compustat database : firm fundamentals,

## Empirical ESG-SR frontier

To compute the annualized expected return of any stock i in any month t,
 U investors use

$$E_t^{\mathsf{U}}(r_{i,t+1}) = \overline{MKT}_t + bm_{i,t} \ \overline{BM}_t, \tag{23}$$

A and M investors

$$E_t^{A}(r_{i,t+1}) = \overline{MKT}_t + bm_{i,t} \ \overline{BM}_t + s_{i,t} \ \overline{ESG}_t, \tag{24}$$

- $\overline{ESG_t}$  is the return premium of the ESG factor, the ESG score  $s_{i,t}$  is computed as the cross-sectional z-score of the raw ESG metric.
- To compute risk, Barra's US Equity risk model (Barra USE3L model)

## Empirical ESG-SR frontier



• The environmental proxy we use here is **not very helpful** in explaining average returns.

## Empirical ESG-SR frontier



- Empirical ESG–efficient frontier using accruals as a proxy for G.
- The benefit of using G information is 11% higher than the realized SR of the ESG-unaware investor

Impact of restrictions: screening out the worst ESG stocks



- Empirical ESG–efficient frontier using accruals as a proxy for G.
- Constraints reduce a portfolio's expected performance.

- RNOA: return on net operating assets
- Gross profit over assets

## Does ESG predict future fundamentals?

| Panel A: Predicting RNOA                 |                       |                       |                       |                                               |                       |                       |                       |                      |
|------------------------------------------|-----------------------|-----------------------|-----------------------|-----------------------------------------------|-----------------------|-----------------------|-----------------------|----------------------|
| Dependent variable                       | $RNOA\ (t+12)$        |                       |                       |                                               |                       |                       |                       |                      |
|                                          | (1)                   | (2)                   | (3)                   | (4)                                           | (5)                   | (6)                   | (7)                   | (8)                  |
| E (low CO2)                              | 0.006***<br>(4.91)    | 0.006***<br>(7.34)    |                       |                                               |                       |                       |                       |                      |
| S (non-sin)                              | (33.2)                | (100.07)              | -0.008*<br>(-1.94)    | -0.006***<br>(-2.88)                          |                       |                       |                       |                      |
| G (low accruals)                         |                       |                       |                       | <u>, , , , , , , , , , , , , , , , , , , </u> | 0.208***<br>(23.26)   | 0.193***<br>(28.64)   |                       |                      |
| ESG (MSCI)                               |                       |                       |                       |                                               |                       |                       | 0.0001<br>(0.15)      | 0.0001<br>(0.24)     |
| Beta                                     | -0.068***<br>(-17.90) | -0.068***<br>(-10.24) | -0.064***<br>(-33.77) | -0.067***<br>(-20.69)                         | -0.060***<br>(-31.79) | -0.062***<br>(-19.43) | -0.052***<br>(-11.62) | -0.040***<br>(-4.40) |
| Ln market cap                            | 0.011***<br>(12.45)   | 0.011*** (23.91)      | 0.015***              | 0.015*** (26.55)                              | 0.014*** (30.14)      | 0.014*** (26.85)      | 0.008***              | 0.006*** (4.89)      |
| Ln(P/B)                                  | 0.014*** (6.72)       | 0.015***<br>(6.98)    | 0.027*** (22.59)      | 0.028*** (22.01)                              | 0.028*** (23.73)      | 0.028*** (22.11)      | 0.026*** (9.27)       | 0.038*** (11.94)     |
| RNOA(t)                                  | 0.763***<br>(88.59)   | 0.765***<br>(97.48)   | 0.710***<br>(167.53)  | 0.707***<br>(118.95)                          | 0.725***<br>(169.65)  | 0.720***<br>(128.80)  | 0.756***<br>(63.53)   | 0.734*** (61.25)     |
| Constant                                 | 0.020*** (2.78)       | 0.021**<br>(2.32)     | -0.005<br>(-0.95)     | 0.003<br>(0.47)                               | -0.019***<br>(-6.59)  | -0.009<br>(-1.56)     | 0.002<br>(0.19)       | 0.001 (0.06)         |
| Number of observations <i>R</i> -squared | 239,440<br>0.708      | 239,440<br>0.712      | 1374,620<br>0.631     | 1374,620<br>0.631                             | 1354,499<br>0.636     | 1354,499<br>0.635     | 116,130<br>0.723      | 116,130<br>0.727     |
| Estimation method                        | Pooled                | FM                    | Pooled                | FM                                            | Pooled                | FM                    | Pooled                | FM                   |

There is strong evidence that accruals correlate with future profitability

- institutional ownership,
- trading activity: logarithm of the number of trades
- signed order flow :dollar buy volume over total dollar volume

### Does ESG predict investor demand?

| Panel A: Predicting institutional ownership |                                  |            |            |            |           |           |           |           |
|---------------------------------------------|----------------------------------|------------|------------|------------|-----------|-----------|-----------|-----------|
| Dependent variable                          | Institutional holdings $(t + 3)$ |            |            |            |           |           |           |           |
|                                             | (1)                              | (2)        | (3)        | (4)        | (5)       | (6)       | (7)       | (8)       |
| E (low CO2)                                 | 2.206***                         | 2.284***   |            |            |           |           |           |           |
|                                             | (3.37)                           | (14.65)    |            |            |           |           |           |           |
| S (non-sin)                                 |                                  |            | 6.128**    | 7.037***   |           |           |           |           |
|                                             |                                  |            | (2.43)     | (11.50)    |           |           |           |           |
| G (low accruals)                            |                                  |            |            |            | 1.060     | 3.208***  |           |           |
|                                             |                                  |            |            |            | (0.74)    | (2.98)    |           |           |
| ESG (MSCI)                                  |                                  |            |            |            |           |           | 0.343**   | 0.420***  |
|                                             |                                  |            |            |            |           |           | (2.55)    | (6.98)    |
| Beta                                        | 5.774***                         | 5.912***   | 5.698***   | 6.905***   | 1.610***  | 3.038***  | 6.371***  | 5.512***  |
|                                             | (8.50)                           | (21.96)    | (14.13)    | (20.76)    | (3.37)    | (11.91)   | (7.05)    | (11.27)   |
| Ln market cap                               | 10.079***                        | 10.057***  | 9.662***   | 9.691***   | 9.599***  | 9.650***  | 0.846***  | -1.265**  |
|                                             | (50.48)                          | (108.99)   | (62.30)    | (64.95)    | (53.67)   | (85.18)   | (3.32)    | (-2.67)   |
| Ln(P/B)                                     | -0.321                           | -0.354***  | -1.759***  | -1.264***  | -2.282*** | -1.931*** | 1.136***  | 1.642***  |
|                                             | (-1.20)                          | (-5.08)    | (-11.05)   | (-8.39)    | (-13.90)  | (-13.83)  | (3.86)    | (9.22)    |
| Constant                                    | -10.649***                       | -10.400*** | -17.176*** | -19.342*** | -3.402*** | -5.076*** | 62.372*** | 82.049*** |
|                                             | (-6.77)                          | (-17.28)   | (-6.40)    | (-18.11)   | (-3.00)   | (-9.55)   | (24.56)   | (18.45)   |
| Number of observations                      | 378,623                          | 378,623    | 962,867    | 962,867    | 737,865   | 737,865   | 180,326   | 180,326   |
| R-squared                                   | 0.454                            | 0.450      | 0.470      | 0.424      | 0.475     | 0.422     | 0.033     | 0.083     |
| Estimation method                           | Pooled                           | FM         | Pooled     | FM         | Pooled    | FM        | Pooled    | FM        |

 The results are perhaps most intuitive for accruals, where both the number of trades and the fraction of buys increase when this ESG proxy improves

• Firm's valuation ratio: the logarithm of price-to-book

## Does ESG predict valuation and future returns?

| Dependent variable                                       | Ln(P/B)                    |                             |                             |                            |  |  |  |
|----------------------------------------------------------|----------------------------|-----------------------------|-----------------------------|----------------------------|--|--|--|
|                                                          | (1)                        | (2)                         | (3)                         | (4)                        |  |  |  |
| E (low CO2)                                              | 0.086***<br>(7.25)         |                             |                             |                            |  |  |  |
| S (non-sin)                                              |                            | 0.020<br>(0.30)             |                             |                            |  |  |  |
| G (low accruals)                                         |                            |                             | -0.470***<br>(-11.59)       |                            |  |  |  |
| ESG (MSCI)                                               |                            |                             |                             | 0.058*** (8.25)            |  |  |  |
| Beta                                                     | -0.449***<br>(-16.39)      | 0.402***<br>(28.48)         | 0.338*** (21.13)            | -0.348***<br>(-8.56)       |  |  |  |
| Constant                                                 | 1.391***<br>(38.32)        | 0.366*** (5.48)             | 0.514***<br>(27.37)         | 1.245***<br>(21.81)        |  |  |  |
| Number of observations<br>R-squared<br>Estimation method | 427,857<br>0.050<br>Pooled | 2120,679<br>0.073<br>Pooled | 1708,222<br>0.077<br>Pooled | 203,502<br>0.046<br>Pooled |  |  |  |

 Shows how the ESG proxies correlate with the logarithm of the price-tobook ratio.

## Does ESG predict valuation and future returns?

|                                 | Е                      | S         | G              | ESG    |
|---------------------------------|------------------------|-----------|----------------|--------|
|                                 | (low CO <sub>2</sub> ) | (non-sin) | (low accruals) | (MSCI) |
| Panel A: Equal-weighted returns |                        |           |                |        |
| Average excess return           | 5.15%                  | 0.50%     | 7.84%***       | 0.38%  |
|                                 | (1.59)                 | (0.35)    | (4.41)         | (0.28) |
| CAPM alpha                      | 7.02%**                | -0.42%    | 7.87%***       | 1.29%  |
|                                 | (2.09)                 | (-0.30)   | (4.39)         | (1.00) |
| Three-factor (FF) alpha         | 5.03%                  | 0.06%     | 7.30%***       | 0.74%  |
|                                 | (1.63)                 | (0.05)    | (4.03)         | (0.60) |
| Five-factor (FF) alpha          | 5.98%*                 | 1.28%     | 8.85%***       | 0.28%  |
|                                 | (1.92)                 | (0.94)    | (4.91)         | (0.22) |
| Six-factor (FF + Mom) alpha     | 5.12%*                 | 1.03%     | 8.71%***       | 0.27%  |
|                                 | (1.73)                 | (0.74)    | (4.76)         | (0.22) |

The portfolio based on G has highly significant returns.

## 6. Conclusion

- We show that an investor optimally chooses a portfolio on the ESG efficient frontier both theoretically and empirically.
- We test the theory's equilibrium predictions using four ESG proxies, providing a rationale for why certain ESG measures predict returns differently.

# Reflection

The model can be used to invest in assets with specific themes,
 such as scientific and technological innovation capability.