# Arsenic report

# Randy L Coryell June 17, 2016

## Contents

| Overview of Analysis                             | 1 |
|--------------------------------------------------|---|
| Read the Data                                    | 1 |
| Analysis                                         | 2 |
| Visual Inspection of the Relationship            | 2 |
| Assumptions                                      | 4 |
| Transformation of the Response                   | 6 |
| Fit of Transformed Response                      | 7 |
| Examination of the Fit with Transformed Response | 9 |

# Overview of Analysis

This report outlines a *regression* analysis of arsenic concentration as a function of well depth. it woll only include some basic assumption checks of normality and equal variance of the error terms.

Note: Arsenic is measured in ppb; well depth is measured in feet.

As we proceed in our analysis we shall endeavor to remember the following:

The most that can be expected from any model is that it can supply a useful approximation to reality: All models are wrong; some models are useful.

 $George\ Box$ 

#### Read the Data

## [1] 200 2

#### head(arsenic.data, 4)

```
## arsenic depth
## 1 1.2 9.82
## 2 2.5 10.20
## 3 3.4 10.47
## 4 4.3 10.97
```

The data has 0 observations with missing values out of a total of 200 observations.

# Analysis

#### Visual Inspection of the Relationship

We wish to examine the data visually.

```
plot(arsenic ~ depth, data=arsenic.data, cex=0.3, pch="+", col="red")
```



```
plot(arsenic ~ depth, data=arsenic.data, cex=.5, pch="o", col="red")
```



Perhaps a cubic relationship would fit the trend as it first curves upwards and then curves downwards. It also appears that the variability increases in the middle.

We will try a regression fit of arsenic using a cubic polynomial in depth. We first create quadratic and cubic depth variables.

```
arsenic.data <- within(arsenic.data, {</pre>
depth2 <- depth^2
depth3 <- depth<sup>3</sup>
})
head(arsenic.data, 3)
    arsenic depth
##
                    depth3
                             depth2
        1.2 9.82 946.9662 96.4324
## 1
## 2
        2.5 10.20 1061.2080 104.0400
        3.4 10.47 1147.7308 109.6209
## 3
reg01 <- lm(arsenic ~ depth + depth2 + depth3,
           data=arsenic.data)
summary(reg01)$coef
                                                    Pr(>|t|)
##
                 Estimate
                            Std. Error
                                         t value
## (Intercept) 24.984740904 28.279682077 0.8834873 3.780554e-01
             -6.216938338 2.931700817 -2.1205910 3.521358e-02
## depth
## depth2
              0.407811186 0.090586884 4.5018789 1.154290e-05
## depth3
```

#### **Table of Regression Coefficients**

| Variable  | Coefficient | Significant |
|-----------|-------------|-------------|
| Intercept | 24.985      | No          |
| Depth     | -6.217      | Yes         |
| Depth2    | 0.408       | Yes         |
| Depth3    | 0.005       | Yes         |

We add the fitted curve to the data plot to see how well it appears to fit.



The fit looks fairly decent.

## Assumptions

We now check assumptions about:

- error variances
  - should be equal
- error distribution
  - should be normal

We will do this with:

- 1. plotting  $e_i$  versus  $\hat{y}_i$
- 2. normal quantile plot

## **Equal Variance of Errors**

We visually investigate the assumption of equal variances.

```
resid <- residuals(reg01)
y.hat <- predict(reg01, arsenic.data)
plot(resid ~ y.hat)
abline(h=0)</pre>
```



plot(resid ~ arsenic.data\$depth)
abline(h=0)



Clearly the assumption of equal variances of the error terms is not met.

## Normality of Errors

We visually investigate the assumption of normality.

qqnorm(resid)
qqline(resid)

# Normal Q-Q Plot



Clearly the normality assumption on the error terms is also not met.

## Transformation of the Response

To address the equal variance and normality of error term assumption violations, we attempt to find a transformation for the response variable using the BoxCox transformation method.

```
library("MASS")
```

## Warning: package 'MASS' was built under R version 3.2.2

boxcox(reg01)



From the plot we see that the BoxCox technique points to a log-transformation (since  $\lambda = 0$ ).

## Fit of Transformed Response

We try fitting the data with the log-transformed response, and then perform assumption checks again.

```
arsenic.data$log.arsenic <- log(arsenic.data$arsenic)
reg02 <- lm(log.arsenic ~ depth + depth2 + depth3, data=arsenic.data)
resid <- residuals(reg02)
y.hat <- predict(reg02, arsenic.data)
plot(resid ~ y.hat)
abline(h=0)</pre>
```



plot(resid ~ arsenic.data\$depth)
abline(h=0)



There does not appear to be any equal variance assumption violation with the log-transformed response.

We examine a plot of the log-transformed response versus depth.





The data appear much more consistent and looks as though a quadratic fit may be adequate.

#### Examination of the Fit with Transformed Response

We examine the regression fit using the transformed response.

#### summary(reg02)

```
##
## Call:
## lm(formula = log.arsenic ~ depth + depth2 + depth3, data = arsenic.data)
##
## Residuals:
##
        Min
                  1Q
                       Median
                                    3Q
                                            Max
  -1.03413 -0.25519 -0.01541
                              0.28952
                                        1.12849
##
##
## Coefficients:
##
                 Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.661e+00 4.052e-01 -4.099 6.07e-05 ***
## depth
                2.834e-01
                           4.201e-02
                                       6.747 1.66e-10 ***
## depth2
               -2.747e-03
                           1.298e-03
                                      -2.116
                                               0.0356 *
               -1.082e-05
                          1.226e-05
                                      -0.882
                                               0.3786
## depth3
##
## Signif. codes:
                  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.4183 on 196 degrees of freedom
## Multiple R-squared: 0.8538, Adjusted R-squared: 0.8516
## F-statistic: 381.7 on 3 and 196 DF, p-value: < 2.2e-16
```

Indeed, the cubic term is not significant, so we refit the model without the cubic term.

```
reg03 <- lm(log.arsenic ~ depth + depth2, data=arsenic.data)
summary(reg03)</pre>
```

```
##
## Call:
## lm(formula = log.arsenic ~ depth + depth2, data = arsenic.data)
## Residuals:
       Min
                 1Q Median
                                  3Q
                                          Max
## -1.07227 -0.25674 -0.00649 0.26950 1.10195
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) -1.982502  0.177325  -11.18  <2e-16 ***
## depth
              0.319152
                         0.011184
                                   28.54
                                           <2e-16 ***
                          0.000157 -24.74 <2e-16 ***
## depth2
              -0.003884
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.4181 on 197 degrees of freedom
## Multiple R-squared: 0.8533, Adjusted R-squared: 0.8518
## F-statistic: 572.7 on 2 and 197 DF, p-value: < 2.2e-16
```

And the quadratic fit has all the terms highly significant (p-value < 0.0001).

We now plot the fit with the data.

