PHP a MySQL

DB - Úvod

Projekt DUM CZ.1.07/1.5.00/34.1009 VY 32 INOVACE 291

Ing. Karel Johanovský

Střední průmyslová škola Jihlava

2013

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

ldentifikační údaje

Projekt	Inovace výuky prostřednictvím ICT
Číslo projektu	CZ.1.07/1.5.00/34.1009
Číslo DUM	VY_32_INOVACE_291
Autor	Ing. Karel Johanovský
Datum vytvoření	22. dubna 2014
Tematický celek	Programování a vývoj aplikací - PHP a MySQL
Téma	DB - Úvod
Anotace	Podpora výuky programování dynamických webů
Metodický pokyn	Prezentace s výkladem, časová náročnost 20 minut
Inovace	Podpora vjemu informací u žáka ve fázi expozice .
	a zejména ve fázi fixace získaných poznatků
	(dostupný materiál – možnost libovolného počtu opakování)

Obsah

- Úvod
 - Úvod
- Pojmy
 - Základní pojmy
- 3 ERA Diagram
- Integritní omezení
 - Integritní omezení pro atributy
 - Datové typy v MySQL
 - Integritní omezení pro vztahy

• Dynamické webové aplikace velmi často pracují s nějakou DB.

- Dynamické webové aplikace velmi často pracují s nějakou DB.
- My se v našem předmětu budeme učit práci s MySQL.

- Dynamické webové aplikace velmi často pracují s nějakou DB.
- My se v našem předmětu budeme učit práci s MySQL.
- MySQL je jeden z mnoha dialektů jazyky SQL.

- Dynamické webové aplikace velmi často pracují s nějakou DB.
- My se v našem předmětu budeme učit práci s MySQL.
- MySQL je jeden z mnoha dialektů jazyky SQL.
- Tato prezentace se bude zabývat obecnou teorií DB a vysvětlením některých pojmů.

Databáze

- Databáze
 - Kolekce tabulek.

- Databáze
 - Kolekce tabulek.
- Tabulka

- Databáze
 - Kolekce tabulek.
- Tabulka
 - Základní organizační jednotky DB. Shromažďuje podobné objekty.

- Databáze
 - Kolekce tabulek
- Tabulka
 - Základní organizační jednotky DB. Shromažďuje podobné objekty.
- Sloupec

- Databáze
 - Kolekce tabulek.
- Tabulka
 - Základní organizační jednotky DB. Shromažďuje podobné objekty.
- Sloupec
 - Množina atributů se stejnými vlastnostmi. (např. barva)

- Databáze
 - Kolekce tabulek.
- Tabulka
 - Základní organizační jednotky DB. Shromažďuje podobné objekty.
- Sloupec
 - Množina atributů se stejnými vlastnostmi. (např. barva)
- Záznam

- Databáze
 - Kolekce tabulek
- Tabulka
 - Základní organizační jednotky DB. Shromažďuje podobné objekty.
- Sloupec
 - Množina atributů se stejnými vlastnostmi. (např. barva)
- Záznam
 - Jedna konkrétní instance ukládaného objektu.

 Entita - Reprezentuje určitý objekt reálného světa, který je schopen nezávislé existence a je jednozančně identifikovatelný. Např.: auto, nebo osoba.

- Entita Reprezentuje určitý objekt reálného světa, který je schopen nezávislé existence a je jednozančně identifikovatelný. Např.: auto, nebo osoba.
- Relace Vyjadřuje nějakou vazbu, souvislost mezi entitami. Samo o sobě (bez souvisejících entit) nemá smysl. Např.: vlastnit.

- Entita Reprezentuje určitý objekt reálného světa, který je schopen nezávislé existence a je jednozančně identifikovatelný. Např.: auto, nebo osoba.
- Relace Vyjadřuje nějakou vazbu, souvislost mezi entitami. Samo o sobě (bez souvisejících entit) nemá smysl. Např.: vlastnit.
- Atribut Popisuje vlastnosti entity, nebo vztahu. Např.: jméno, značka, apod...

• Podmínky, které musí data splňovat, aby byla v souladu s realitou.

- Podmínky, které musí data splňovat, aby byla v souladu s realitou.
- Některá lze znázornit v ERA modelu, některé musíme vyjádřit slovně.

- Podmínky, které musí data splňovat, aby byla v souladu s realitou.
- Některá lze znázornit v ERA modelu, některé musíme vyjádřit slovně.
- Dělíme je na:

- Podmínky, které musí data splňovat, aby byla v souladu s realitou.
- Některá lze znázornit v ERA modelu, některé musíme vyjádřit slovně.
- Dělíme je na:
 - Integritní omezení pro atributy

- Podmínky, které musí data splňovat, aby byla v souladu s realitou.
- Některá lze znázornit v ERA modelu, některé musíme vyjádřit slovně.
- Dělíme je na:
 - Integritní omezení pro atributy
 - Integritní omezení pro vztahy

Primární klíč

- Primární klíč
 - Atribut (nebo jejich množina), která jednoznačně identifikuje entitu.
 - V ERA diagramu bývá zvykem ho podtrhnout.

- Primární klíč
 - Atribut (nebo jejich množina), která jednoznačně identifikuje entitu.
 - V ERA diagramu bývá zvykem ho podtrhnout.
- Unikátní klíč

- Primární klíč
 - Atribut (nebo jejich množina), která jednoznačně identifikuje entitu.
 - V ERA diagramu bývá zvykem ho podtrhnout.
- Unikátní klíč
 - Hodnoty tohoto atributu se nesmí v tabulce opakovat.

- Primární klíč
 - Atribut (nebo jejich množina), která jednoznačně identifikuje entitu.
 - V ERA diagramu bývá zvykem ho podtrhnout.
- Unikátní klíč
 - Hodnoty tohoto atributu se nesmí v tabulce opakovat.
- Cizí klíč

- Primární klíč
 - Atribut (nebo jejich množina), která jednoznačně identifikuje entitu.
 - V ERA diagramu bývá zvykem ho podtrhnout.
- Unikátní klíč
 - Hodnoty tohoto atributu se nesmí v tabulce opakovat.
- Cizí klíč
 - Hodnoty tohoto atributu jsou podmnožinou hodnot jiného sloupce.

- Primární klíč
 - Atribut (nebo jejich množina), která jednoznačně identifikuje entitu.
 - V ERA diagramu bývá zvykem ho podtrhnout.
- Unikátní klíč
 - Hodnoty tohoto atributu se nesmí v tabulce opakovat.
- Cizí klíč
 - Hodnoty tohoto atributu jsou podmnožinou hodnot jiného sloupce.
- Null / not null

- Primární klíč
 - Atribut (nebo jejich množina), která jednoznačně identifikuje entitu.
 - V ERA diagramu bývá zvykem ho podtrhnout.
- Unikátní klíč
 - Hodnoty tohoto atributu se nesmí v tabulce opakovat.
- Cizí klíč
 - Hodnoty tohoto atributu jsou podmnožinou hodnot jiného sloupce.
- Null / not null
 - Zda musí být hodnota tohoto atributu zadána, nebo může zůstat nevyplněna (NULL)

Datové typy v MySQL I

Celočíselné datové typy				
TINYINT	1 B	256		
SMALLINT	2 B	65536		
MEDIUMINT	3 B	16777216		
INT	4 B	4294967296		
BIGINT	8 B	18446744073709551616		

Desetinné datové typy			
DECIMAL	?	Přesné desetinné číslo, definujeme počet ukládaných číslic a počet číslic za des. čárkou	
FLOAT	4 B	Jednoduchá přesnost	
DOUBLE	8 B	Dvojitá přesnost	

Datové typy v MySQL II

Datové typy pro datum a čas		
DATE	3 B	2014-04-19
TIME	3 B	12:11:09
DATETIME	8 B	2014-04-19 12:11:09
YEAR (2)	1 B	1970 - 2069
YEAR (4)	1 B	1901 - 2155
TIMESTAMP	4 B	počet vteřin od 1970-01-01 00:00:00

Datové typy pro text		
CHAR(x)	Pevná délka řetězce	
VARCHAR(x)	Proměnná délka řetězce	

Datové typy v MySQL III

Ostatní datové typy		
ENUM	výčet (1 z N)	
SET	množina (M z N)	
BLOB	Binary Large Object	
NULL	Nedefinovaná hodnota	

Kardinalita vztahu (násobnost)

- Kardinalita vztahu (násobnost)
 - **1** : 1

- Kardinalita vztahu (násobnost)
 - 1 : 1
 - 1 : N

- Kardinalita vztahu (násobnost)
 - 1 : 1
 - 1 : N
 - M : N

- Kardinalita vztahu (násobnost)
 - 1:11:N
 - M : N
- Parcialita vztahu (povinnost)

- Kardinalita vztahu (násobnost)
 - 1:11:N
 - 1 . IV
 - M : N
- Parcialita vztahu (povinnost)
 - Povinná účast

- Kardinalita vztahu (násobnost)
 - 1 : 1 • 1 : N
 - M : N
- Parcialita vztahu (povinnost)
 - Povinná účast
 - Nepovinná účast

2013

Vysvětlili jsme si základní pojmy v DB.

- Vysvětlili jsme si základní pojmy v DB.
- Ukázali jsme si ERA Diagramy.

- Vysvětlili jsme si základní pojmy v DB.
- Ukázali jsme si ERA Diagramy.
- Vysvětlili jsme si co jsou to integritní omezení.

Reference

T. Converse, J. Park, C. Morgan. PHP5 and MySQL Bible Wiley Publishing, Inc., 2004. ISBN 0-7645-5746-7

- Tento materiál je určen pro bezplatné používání pro potřeby výuky a vzdělávání na všech typech škol a školských zařízení. Jakékoliv další využití podléhá autorskému zákonu.
- Všechna neocitovaná autorská díla jsou dílem autora.