Grieg: A Four-Fold Phase Semantics on an Ontic Logical Manifold

William A. Patterson

September 10, 2025

Abstract

Grieg augments classical truth with an ontic phase over {ALIVE, JAM, MEM, VAC} capturing boundary, transport, and witness on a logical manifold. We give a sequent calculus, prove conservativity over classical propositional logic on phase-free fragments, show an embedding of Belnap–Dunn with a separation (no phase-erasing compositional translation), establish NP/coNP bounds, and present a trace semantics whose invariants (sink on \rightarrow , π rotation on \neg , etc.) are observational and do not alter results.

1 Syntax

Atoms $p \in \mathcal{P}$; connectives $\neg, \land, \lor, \rightarrow$; phase operators $@mem(\cdot)$, $@jam(\cdot)$, @vac(x), $@alive(\cdot)$.

2 Semantics

Truth values $V = \{0, 1, \bot\}$; phases $P = \{\text{ALIVE}, \text{JAM}, \text{MEM}, \text{VAC}\}$. A model $\mathcal{M} = \langle W, \nu, \phi \rangle$ with boolean evaluation $[\![\cdot]\!]_w$: Form $\to V$ (classical on defined points) and phase map ϕ : Form $\times W \to P$ satisfying invariants: negation rotates on the factual sheet, disjunction is centrifugal with boundary short-circuit, implication has a monotone radial sink under modus ponens, @mem transports between sheets, @vac projects to counterfactual where witness is absent.

3 Proof System Gr

Classical propositional rules; admissible phase rules enforcing invariants without changing boolean projection.

Theorem 1 (Conservativity over CPL). For every phase-free formula F, F is valid in Grieg iff F is valid in classical propositional logic.

Sketch. Define projection $\pi:(v,p)\mapsto v$. By structural induction, truth-clauses coincide with CPL and no phase operator is present to produce non-ALIVE on closed formulas; hence $\pi(\llbracket F \rrbracket) = \llbracket F \rrbracket_{\text{CPL}}$.

Theorem 2 (Embedding + Separation vs Belnap–Dunn). There exists a translation $E : \mathsf{FOUR} \to \mathsf{Grieg}$ preserving boolean projection. However, there is no compositional translation T from Grieg to FOUR that preserves satisfaction and context-equivalence while erasing phases.

Idea. Map BD's 'both/neither' strata into JAM/VAC with matching boolean projection. For separation, build contexts C[.] where Grieg distinguishes formulas that differ only by an operational sink (licensed modus ponens) while BD assigns the same four-value because it is extensional and phase-blind. Compositionality of T would force $C[T(F_1)] = C[T(F_2)]$, contradicting Grieg's distinction.

4 Trace Semantics

Define per-step records with (op, pre, post, sink, jam, θ , ρ). Prove observational adequacy (III5) by induction on evaluation.

5 Complexity

SAT(Grieg) is NP-complete and VAL(Grieg) is coNP-complete by reduction from/to CPL and polynomial verification of local phase constraints.

6 Implementation & Tests

Reference Rust engine; property tests for I115; traces are feature-gated and semantics-preserving.