DATABASE MANAGEMENT SYSTEM PROJECT

HOSPITAL DATABASE DESIGN

TEAM MATES:

D.DEEPAK NATH REDDY-21CEB0A20

G.V.SAI VINEEL REDDY-21CHB0B16

K.SRISHANTH REDDY-21CHB0B37

PROBLEM STATEMENT'For this project, our objective is to design a database system for a hospital. The hospital wants to store the information of patients, doctors and the transaction made by patient and the availability of rooms and beds. The hospital has various branches so they need to store the information of each individual hospital.

CONTENTS:

- 1.ER-Diagram
- 2.Relational schema
- 3. Relationship with cardinality
- 4.Entities
- 5.creation and insertion of tables
- 6. Functional Dependency and Normalisation
- 7.Queries

ER-DIAGRAM:

RELATION MODEL:

ENTITIES:

Patient: This entity holds the information of the patient. The patient_id is the primary key used to identify the unique patients. The other attributes are used to store the patients useful information.

Doctor: This entity stores the information of a doctor working at hospital. The doctor_id is unique and it is used to identify the doctor.

Transaction: This entity stores the information of payment done by a patient. The transaction_id refers to the particular transaction. It is unique. The amount attribute defines the amount that has been paid.

HospitalBranch: This entity stores the information of a particular hospital branch details as they have many branches, each hospital_id uniquely identifies the branch.

Room:This entity stores the information of a particular room and the number of beds it contain. Each room is uniquely identified by room_id.

Bed:This entity stores the information of the bed whether the bed is available is or not. Each bed has a unique id to refer to it.

RELATIONSHIP WITH CARDINALITY:

Patient and Doctor:patient and doctor had a relation i.e doctor treated patient. The cardinality of the relation is M:N because patient may be treated by different doctors at different times because patient can have multiple disease or he/she visited hospital for more than once. so this relation treated has date of treatment and disease patient treated for.

Patient and Transaction: These two entities have a relation i.e patient made transaction. Every patient need to make the transaction for the bill amount. The cardinality of the relation is 1:N. That a patient can make multiple transaction as he/she visited hospital multiple times. But a transaction a can be made by single patient.

Transaction and bed:These two entities have a relation i.e transaction gives bed.The cardinality of the relation is M:N because the with a single transaction we can take many beds same way a single bed can have multiple transaction but not at same time so that the relation has beginning date and end date.

Doctor and Hospital_branch:These two entities have relation i.e doctor works for hospital_branch.The cardinality of the relation is N:1.The doctor only works for single branch.He/She can't work in multiple branches at same time.

Transaction and Hospital_branch:These two entities have relation i.e transaction received by hospital_branch.The cardinality of the relation is N:1.Every transaction is to be received by a single hospital_branch but the hospital_branch can receive multiple transactions.

Hospital_branch and Room:These two entities have relation i.e hospital_branch contains room.The cardinality of the relation is 1:N.Every hospital_branch contains many rooms but a room present in single hospital_branch.the room identified by room_id.

Room and Bed:These two entities have relation i.e room provide bed.The cardinality of the relation is 1:N because every room can have many beds but each bed is present in a single room.

CREATION OF TABLES:

1.Patient:

2.doctor:

create table doctor(doctor_id int not null unique,email_id varchar(30),name varchar(50), age int,city varchar(40),street varchar(40),start timing time, primary key(doctor_id),foreign key(hospital_id) references hospital branch(hospital id),end time time,hospital id int);

3.hospital_branch:

create table hospital branch(hospital id int not null unique,room count int, Location varchar(90),primary key(hospital_id));

4.transaction:

5.room:

create table room(room id int not null unique,bed count int,primary key(room id), hospital id int, foreign key(hospital id) references hospital_branch(hospital_id));

6.bed:

create table bed(bed id int not null unique, status varchar(10), room id int, foreign key(room_id) references room(room_id), primary key(bed_id));

7.give:

create table give(begining date date,end date date,transaction id int,bed id int,
foreign key(transaction id) references transaction(transaction_id),
foreign key(bed_id) references bed(bed_id),primary
key(transaction id,bed id,end date));

8.treated:

create table treated(treated date date, disease varchar(90), patient_id int, foreign key(patient id) references patient(patient id), doctor id int, foreign key(doctor_id) references doctor(doctor_id), primary key(patient id, doctor id, treated date));

INSERTION OF VALUES AND CREATION OF TRIGGERS AND PROCEDURES:

1.patient:

Insert into patient values(1,"<a href="mailto:raghav@gmail.com",25,"Raghav Rathod","Hyderabad", "Miyapur",9876543210,null);

Insert into patient values(2,"ram@gamil.com",34,"Ram Mohan","Warangal", "Hanumakonda Main Road",9123456789,null);

Insert into patient values(3,"praksah@gamil.com",40,"Prakash Raj","Hyderabad", "Miyapur",8765432109,null);

Insert into patient values(4,"ajay@gmail.com",37,"Ajay Singh","Hyderabad", "Miyapur",7890123456,null);

Insert into patient values(5,"abisheik@gmail.com",29,"abisheik Agarwal","Warangal", "Hanumakonda Main Road",8901234567,null);

patient_id	email_id	age	name	city	street	phone_no	medical_record
1	raghav@gmail.com	25	Raghav Rathod	Hyderabad	Miyapur	9876543210	HULL
2	ram@gamil.com	34	Ram Mohan	Warangal	Hanumakonda Main Road	9123456789	MULL
3	praksah@gamil.com	40	Prakash Raj	Hyderabad	Miyapur	8765432109	MULL
4	ajay@gmail.com	37	Ajay Singh	Hyderabad	Miyapur	7890123456	HULL
5	abisheik@gmail.com	29	abisheik Agarwal	Warangal	Hanumakonda Main Road	8901234567	HULL

2.doctor:

Insert into doctor values(101, 'arjun@gmail.com', 'Arjun prasad', 36, 'Hyderabad', 'Miyapur', '08:00::00', 200, '20:00:00');

Insert into doctor values(102,'Rohit@gamil.com','Rohit',42,'Hyderabad','Miyapur', '08:00:00',200,'20:00:00');

Insert into doctor values(103,'rahul@gamil.com','Rahul',29,'Warangal','stationroad', '08:00:00',201,'20:00:00');

Insert into doctor values(104,'vikraml@gamil.com','Vikram',25,'Warangal','stationroad', '08:00:00',201,'20:00:00');

Insert into doctor values(105,'<u>rajesh@gamil.com'</u>,'Rajesh',39,'Warangal','stationroad', '08:00:00',201,'20:00:00');

Insert into doctor values(106,'aryan@gamil.com','Aryan',38,'Warangal','stationroad', '20:00:00',201,'08:00:00');

Insert into doctor values(107,'ravi@gamil.com','Ravi',26,'Warangal','stationroad', '20:00:00',201,'08:00:00');

Insert into doctor values(108,'mohan@gamil.com','Mohan',29,'Hyderabad','Miyapur', '20:00:00',200,'08:00:00');

Insert into doctor values(109, 'sanjay@gamil.com', 'sanjay', 39, 'Hyderabad', 'Miyapur', '20:00:00', 200, '08:00:00');

Insert into doctor values(110,'siddharth@gamil.com','Siddharth',27,'Hyderabad','Miyapur', '08:00:00',200,'20:00:00');

doctor_id	email_id	name	age	city	street	start_timing	hospital_id	end_time
101	arjun@gmail.com	Arjun prasad	36	Hyderabad	Miyapur	08:00:00	200	20:00:00
102	Rohit@gamil.com	Rohit	42	Hyderabad	Miyapur	08:00:00	200	20:00:00
103	rahul@gamil.com	Rahul	29	Warangal	stationroad	08:00:00	201	20:00:00
104	vikraml@gamil.com	Vikram	25	Warangal	stationroad	08:00:00	201	20:00:00
105	rajesh@gamil.com	Rajesh	39	Warangal	stationroad	08:00:00	201	20:00:00
106	aryan@gamil.com	Aryan	38	Warangal	stationroad	20:00:00	201	08:00:00
107	ravi@gamil.com	Ravi	26	Warangal	stationroad	20:00:00	201	08:00:00
108	mohan@gamil.com	Mohan	29	Hyderabad	Miyapur	20:00:00	200	08:00:00
109	sanjay@gamil.com	sanjay	39	Hyderabad	Miyapur	20:00:00	200	08:00:00
110	siddharth@gamil.com	Siddharth	27	Hyderabad	Miyapur	08:00:00	200	20:00:00
NULL.	NULL	NULL	NULL	NUTT	NULL	HULL	NULL	MULU

3.hospital branch:

Insert into hospital_branch values(200,20,"Hyderabad,Miypaur"); Insert into hospital_branch values(201,15,"Warangal,Hanamkonda Mainroad");

4.transaction:

insert into transaction values(301,300,1,200); insert into transaction values(302,1000,4,200); insert into transaction values(303,500,2,201); insert into transaction values(304,850,5,201); insert into transaction values(305,850,3,200); insert into transaction values(306,600,4,200); insert into transaction values(307,5000,3,200); insert into transaction values(308,650,2,201);

insert into transaction values(309,2500,1,200); insert into transaction values(310,500,5,201);

transaction_id	amount	patient_id	hospital_id	
301	300.00000	1	200	
302	1000.00000	4	200	
303	500.00000	2	201	
304	850.00000	5	201	
305	850.00000	3	200	
306	600.00000	4	200	
307	5000.00000	3	200	
308	650.00000	2	201	
309	2500.00000	1	200	
310	500.00000	5	201 NOLL	

5.room:

insert into room values(401,5,200); insert into room values(402,5,200); insert into room values(403,5,200); insert into room values(404,5,200); insert into room values(405,5,200); insert into room values(406,5,201); insert into room values(407,5,201); insert into room values(408,5,201); insert into room values(409,5,201); insert into room values(410,5,201); insert into room values(410,5,201);

room_id	bed_count	hospital_id
401	5	200
402	5	200
403	5	200
404	5	200
405	5	200
406	5	201
407	5	201
408	5	201
409	5	201
410	5	201
NULL	NULL	MULL

6.bed:

insert into bed values(1,'filled',401); insert into bed values(2,'filled',401); insert into bed values(3,'available',401); insert into bed values(4,'available',401); insert into bed values(5,'available',401); insert into bed values(6,'filled',402); insert into bed values(7,'available',402); insert into bed values(8,'filled',402); insert into bed values(9,'available',402); insert into bed values(10,'filled',406); insert into bed values(11,'available',406); insert into bed values(12,'available',407); insert into bed values(13,'available',407); insert into bed values(14,'available',407);

bed_id	status	room_id
1	filled	401
2	filled	401
3	available	401
4	available	401
5	available	401
6	filled	402
7	available	402
8	filled	402
9	available	402
10	filled	406
11	available	406
12	available	407
13	available	407
14	available	407
NULL	NULL	NULL

7.give:

insert into give values('2023-06-06','2023-06-11',307,1); insert into give values('2023-08-15','2023-08-21',309,2); insert into give values('2023-09-07','2023-09-10',302,6); insert into give values('2023-05-05','2023-05-07',304,10); insert into give values('2023-10-20','2023-10-23',306,8);

begining_date	end_date	transaction_id	bed_id
2023-09-07	2023-09-10	302	6
2023-05-05	2023-05-07	304	10
2023-10-20	2023-10-23	306	8
2023-06-06	2023-06-11	307	1
2023-08-15 NULL	2023-08-21	309	2

8.treated:

```
insert into treated values('2023-08-15','appendix',1,101); insert into treated values('2023-09-15','fever',1,108); insert into treated values('2023-09-07','foodpoison',4,109); insert into treated values('2023-04-07','cold',2,103); insert into treated values('2023-05-05','head injury',5,104); insert into treated values('2023-06-05','typhoid',3,110); insert into treated values('2023-10-20','malaria',4,102); insert into treated values('2023-06-06','dengue',3,102); insert into treated values('2023-03-18','headache',2,105); insert into treated values('2023-02-06','rashes',5,107);
```

treated_date	disease	patient_id	doctor_id
2023-08-15	appendix	1	101
2023-09-15	fever	1	108
2023-04-07	cold	2	103
2023-03-18	headache	2	105
2023-06-06	dengue	3	102
2023-06-05	typhoid	3	110
2023-10-20	malaria	4	102
2023-09-07	foodpoison	4	109
2023-05-05	head injury	5	104
2023-02-06	rashes	5	107
HULL	NULL	HULL	MULL

TRIGGERS:

Create tiggers bed status After insert on give

For each row

Begin

Update bed

Set status="filled"

Where new.bed id=bed id;

end;

This trigger helps when a transaction is made for bed it automatically updates the status of bed to filled.

Create tigger update_record

After insert on treated

For each row

Begin

Update patient

Set medical record=concat(medical record,new.disease)

Where new.patient_id=patinet_id

End;

This trigger helps to write the medical_record of the patient.it needs to updated when the patient gets treated for the disease.

PROCEDURES:

Create procedure update_status(IN id int,IN end_date date)

Begin

Update bed

Set status="available"

Where datediff(today(),end_date)>=1 and bed_id=id;

End:

These procedure helps to update the bed status when the end_date of transaction is completed.we need to call these procedure.

FUNCTIONAL DEPENDENCY AND NORMALIZATION:

The normalization has taken into from the beginning of ER-diagram creation and Relational schema design.

1.patient:

pateint_id \(\) (name,age,email_id,city,street,medical_record,phone_no)

This is the functional dependency as the patient_id is the candidate key so there is no partial dependency and there is no transitive dependency. The table is in BCNF.

2.doctor:

doctor_id→(name,age,email_id,city,street,start_time,end_time,hospital_id)

This is the only functional dependency present in these table. The doctor_id is the candidate key as the closure of the doctor_id gives all the attributes. The table contains no partial dependency of the candidate key and there is no transitive dependency present in the table. The table is in BCNF.

3.hospiatl_branch:

hospial id→(room count,location)

This is the functional dependency present in these table. The hospital_id is the candidate key and all the attributes are fully dependent on the candidate key and there is no transitive dependency. The table is in BCNF.

4.transaction:

transaction id→(amount,patient id,hospital id)

This is the functional dependency present in these table. The transaction_id is the candidate key and there is no functional dependency between patient_id and hospital_id. There is no partial dependency and there is no transitive dependency. The table is in BCNF. 5.room:

```
room id→(bed count,hospital id)
```

This is the functional dependency present in these table. The room_id is the candidate key for this table. There is no partial dependency and transitive dependency. The table is in BCNF. 6. bed:

```
bed id→(status,room id)
```

This is the functional dependency present in these table. The bed_id is the candidate key and there is no partial and transitive dependency. The table is in BCNF.

7. give:

transaction_id,bed_id,end_datew(bed_id,transaction_id,begining_date,end_date)

This is the functional dependency present in these table. The candidate key is transaction id, bed id, end date. The prime attributes are transaction id, bed id, end date. There is no partial dependency or there is no dependency on this prime attributes. There is no transitive dependency. The table is in BCNF.

8.treated: patient_id,doctor_id,treated_date—
(patient_id,doctor_id,treated_date,disease)

This is the functional dependency present in these table. The prime attributes are patient id, doctor id, treated date. There is no functional dependency alone on the prime attributes. like with patient id we can't find the doctor id treated because the patient may be treated by same doctor on two different dates. The table is in BCNF.

QUERIES:

1. Find the number of patients each doctor has treated.

select distinct d.doctor_id,d.name,count(distinct I.patient_id) from doctor d left join treated I on d.doctor_id=t.doctor_id group by 1

doctor_id	name	count(distinct t.patient_id)
101	Arjun prasad	1
102	Rohit	2
103	Rahul	1
104	Vikram	1
105	Rajesh	1
106	Aryan	0
107	Ravi	1
108	Mohan	1
109	sanjay	1
110	Siddharth	1

2. Find the number of doctors who have treated the patient.

select distinct p.patient id,p.name,p.city,count(distinct t.doctor id) as "count of doctors treated them"

from patient p left join treated t on p.patient id=t.patient id group by 1;

patient_id	name	city	count of doctors treated them
1	Raghav Rathod	Hyderabad	2
2	Ram Mohan	Warangal	2
3	Prakash Raj	Hyderabad	2
4	Ajay Singh	Hyderabad	2
5	abisheik Agarwal	Warangal	2

3. Find the number of patients who made transaction for bed.

select p.patient_id,p.name,t.transaction_id,t.amount,g.bed_id from patient p join transaction t on p.patient id=t.patient id join give g on t.transaction_id=g.transaction_id order by 1;

4. Find the number of doctors each hospital_branch contains.

select h.hospital_id,h.location,count(distinct d.doctor_id) as "numbers of doctors woking in thatr branch"

from hospital branch h join doctor d on h.hospital id=d.hospital id group by 1;

5. Find the bills made by each patient.

select p.name,p.city,sum(I.amount) as "total bill made" from patient p join transaction t on p.patient_id=t.patient_id group by p.patient id;

