самоорганизующиеся карты Кохонена

Евгений Борисов

модель МакКаллока-Питтса (1943)

$$a(x,w) = \sigma \left(\sum_{i=1}^n x_i \cdot w_i - w_0\right) = \sigma(\langle x,w \rangle)$$
 $\mathbf{x_i}$ - вес связи $\mathbf{\sigma}$ - функция а

X_i - ВХОД

σ - функция активации

состояние нейрона

$$s(x, w) = \sum_{i=1}^{n} x_i \cdot w_i - w_0$$

Нейрон в модели SOM

$$a(x, w) = \rho(x, w)$$

Топология двумерная решетка для выходного слоя SOM

 $argmin_k(\rho(x, w_k))$

Топология выходного слоя SOM - двумерная решетка

(накрываем данные сеткой)

Различные топологии выходного слоя **SOM**

Обучение модели и функция окрестности

competitive hebbian learning

изменение весов

$$\Delta w = \eta \cdot \theta(k) \cdot (x - w)$$

 $\eta \in (0,1)$ - шаг обучения

k - номер нейрона-победителя

 $\theta(k)_j \in [0,1]$ - значение ф-ции окрестности нейрона-победителя k для нейрона j;

SOM: литература

git clone https://github.com/mechanoid5/ml_lectorium.git

Борисов E.C. Кластеризатор на основе нейронной сети Кохонена. http://mechanoid.su/neural-net-kohonen-clusterization.html

Kohonen, T. Learning Vector Quantization, Neural Networks, 1988, 1 (suppl 1), 303.