Estimating the number of subdomains on a given domain

Stanley Cortes de Sousa

August 1, 2020

Let X be the set of all words [a-z](k), where k is the maximum number of characters. Consider Y the subset of X where every Y_i is a valid host http://Y_i.domain

Let W be another subset of X, where $W_i = f(j)$. Let j be a number on base 26 with at most k digits, f(j) maps j to a word from X with at most k characters. Given the table 0=a ... 25=z, each digit of j is mapped by f on a character, hence:

i_{10}	j_{26}	$W_i = f(j)$
0	0	a
11	B	k
52	20	ba
64	2C	bl
178607	A45D	jefm
456975	PPPP	zzzz

Note that the numerical representation of i and j may discard '0's to the left, hence W would have the word 'a' but not sequences with 'a' to the left, therefore:

$$|X| = 26^k$$

 $|W| = 26^k - 26^{k-1} \dots - 26^0$

However, consider n words of X. If n < |W| then we can use n samples of W to represent samples of X since $W \in X$

Finally, let H be the fraction of words in X which are valid subdomains, H is given by:

$$H = \frac{|Y|}{|X|} \text{ (I)}$$

Consider Z a sequence of random variables uniform in [0,1], and let g(z) = i:

$$g(z) = int(max_i * z) + 1$$

$$j = i_{26}$$

$$W_i = f(j)$$

Let $h(W_i)$ be the indicator function which tells us if the word W_i is in Y, that is, $h(W_i)$ checks if http:// W_i .domain is a valid host

From (I) we know that:

$$E[h(X_i)] = \frac{|Y|}{|X|}$$
, assuming that $n < |W| \longmapsto E[h(X_i)] = E[h(W_i)]$

We need to estimate
$$E[h(X_i)]$$
, the law of the large numbers tells us that: $M_n \to E[h(X_i)] = \frac{|Y|}{|X|}$, and by definition $M_n = \frac{1}{n} \sum_{i=1}^n h(X_i)$

Therefore:

$$\frac{|Y|}{|X|} \to \frac{1}{n} \sum_{i=1}^{n} h(X_i)$$

$$|Y| \to \frac{|X|}{n} \sum_{i=1}^{n} h(X_i)$$