Lycée Buffon DS 1
MPSI Année 2020-2021

Devoir du 19/09/2020

Exercice 1:

1. Soit u la suite définie par $u_0 = 1$ et $\forall n \in \mathbb{N}, u_{n+1} = \frac{u_n}{\sqrt{u_n^2 + 1}}$.

Conjecturer l'expression de u_n en fonction de n puis prouver votre conjecture.

- 2. Soit v la suite définie par $v_0 = v_1 = 1$ et $\forall n \in \mathbb{N}, v_{n+2} = (n+1)(v_n + v_{n+1})$. Conjecturer l'expression de u_n en fonction de n puis prouver votre conjecture.
- 3. Soit w la suite définie par $w_0 = 1$ et $\forall n \in \mathbb{N}, w_{n+1} = \sum_{k=0}^{n} w_k w_{n-k}$.

Prouver que $\forall n \in \mathbb{N}, w_n \geq 2^{n-1}$.

Exercice 2 : Parmi les assertions suivantes, déterminer lesquelles impliquent que P_n est vraie pour tout naturel n. La réponse sera justifiée.

- 1. $P_0 \wedge (\forall n \in \mathbb{N}, P_n \Rightarrow (P_{2n} \wedge P_{2n+1}))$.
- 2. $P_0 \wedge P_1 \wedge (\forall n \in \mathbb{N}^* P_n \Rightarrow (P_{2n} \wedge P_{2n+1}))$
- 3. $P_0 \wedge P_1 \wedge P_2 \wedge (\forall n \geq 2, P_n \Rightarrow (P_{2n} \wedge P_{2n+1}))$
- 4. $P_1 \wedge (\forall n \in \mathbb{N}^*, P_n \Rightarrow P_{n-1}) \wedge (\forall n \in \mathbb{N}, P_n \Rightarrow P_{2n})$

Exercice 3 : Dire si les assertions suivantes sont vraies ou fausses (la réponse sera justifiée) et écrire leurs négations.

- 1. $\forall x \in]0, 1], \exists y \in]0, 1] : y < x.$
- 2. $\forall x \in]0,1], \exists y \in]0,1] : y > x.$
- 3. $\forall (p,q) \in \mathbb{N}^2, \ p < q \Rightarrow \exists r \in \mathbb{N} : p < r < q$.
- 4. $\forall (x,y) \in \mathbb{R}^2, x < y \Rightarrow \exists z \in \mathbb{R} : x < z < y$.

Exercice 4: Soit $n \in \mathbb{N}$. Calculez

$$S_1 = \sum_{1 \le i, j \le n} \max(i, j), S_2 = \sum_{1 \le i \le j \le n} \frac{i^2}{j}, S_3 = \sum_{0 \le j \le i \le n} \binom{n}{i} \binom{i}{j},$$

$$S_4 = \sum_{0 \le k \le j \le i \le n} \binom{n}{i} \binom{i}{j} \binom{j}{k} \text{ et } P = \prod_{i=0}^n \sum_{j=0}^i 2^{i!j}.$$

Exercice 5: Soit $n \in \mathbb{N}^*$.

- 1. Montrer que : $\left(1 + \frac{1}{n}\right)^n \geqslant 2$.
- 2. Soit k un entier, $0 \le k \le n$. Montrer que : $\frac{1}{n^k} \binom{n}{k} \le \frac{1}{k!}$.
- 3. En déduire que, pour tout entier k tel que $2 \leqslant k \leqslant n$, on a $\frac{1}{n^k} \binom{n}{k} \leqslant \frac{1}{2^{k-1}}$.
- 4. Montrer que : $\left(1 + \frac{1}{n}\right)^n < 3$.

Exercice 6:

- 1. On souhaite prouver l'égalité suivante : $\forall n \in \mathbb{N}^*, \sum_{k=1}^n \binom{n}{k} \frac{(-1)^{k-1}}{k} = \sum_{k=1}^n \frac{1}{k}$
 - (a) Soit $n \in \mathbb{N}$. Rappeler, en le justifiant, la valeur de $\sum_{k=0}^{n+1} (-1)^k \binom{n+1}{k}$.
 - (b) Montrer que : $\forall n \in \mathbb{N}^*, \ \forall k \in \mathbb{N}^*, \quad \binom{n}{k-1} \frac{(-1)^{k-1}}{k} = \binom{n+1}{k} \frac{(-1)^{k-1}}{n+1}.$
 - (c) En déduire le résultat souhaité par récurrence.
- 2. Prouver par récurrence que $\forall n \in \mathbb{N}^*$, $\sum_{k=0}^{2n-1} \frac{(-1)^k}{k+1} = \sum_{k=n+1}^{2n} \frac{1}{k}$.
- 3. On note, pour tout $k \in \mathbb{N}^*$, $H_k = \sum_{p=1}^k \frac{1}{p}$.
 - (a) Soit $n \in \mathbb{N}^*$, exprimer $\sum_{k=1}^n H_k$ en fonction de n et H_n .
 - (b) Soit $n \in \mathbb{N}^*$, exprimer $\sum_{k=1}^n kH_k$ en fonction de n et H_n .

Exercice 7:

Soit f une fonction continue de [0,1] dans $\mathbb R$ (de sorte que l'on puisse considérer le réel $\int_0^1 f(x) \, \mathrm{d} x$.) On note L l'ensemble des fonctions de [0,1] dans $\mathbb R$ de la forme $x \mapsto ax$ avec $a \in \mathbb R$, et N l'ensemble des fonctions g de [0,1] dans $\mathbb R$ telles que $\int_0^1 g(x) \, \mathrm{d} x = 0$. Montrer que : $\exists ! (h,g) \in L \times N$, f = h + g.