Brandeis

COSI 104a Introduction to machine learning

Chapter 10 – NN

Instructor: Dr. Hongfu Liu

Email: hongfuliu@brandeis.edu

Mathematical Model of a Neuron

$$y = f(\vec{x}) = \phi\left(\sum_{i=1}^{p} w_i x_i + b\right)$$

Mathematical Model of a Neuron

$$y = f(\vec{x}) = \phi(\vec{w}^T \vec{x})$$

$$f(\vec{x}) = \phi(\vec{w}^T \vec{x})$$

Activation Functions

Sigmoid Function

$$\phi(v) = \frac{1}{1 + \exp(-av)} \qquad a > 0, -\infty < v < \infty$$

$$a > 0$$
, $-\infty < v < \infty$

Activation Functions

Hyperbolic Tangent Function

$$\phi(v) = a \tanh(bv) = a \frac{e^{bv} - e^{-bv}}{e^{bv} + e^{-bv}}$$
 $a > 0, b > 0$

Activation Functions

ReLU (rectified linear unit)

$$\phi(x) = x^+ = \max(0, x) = \begin{cases} x & \text{if } x > 0 \\ 0 & \text{otherwise} \end{cases}$$

Error-Correction Learning

If the error function is continuously differentiable, we can use gradient descent

$$\Delta \overrightarrow{w} = \eta \frac{\partial e_{\overrightarrow{w}}(y, \phi(v))}{\partial \overrightarrow{w}}$$

If the activation function ϕ is differentiable, the necessary condition for minimize the error is

$$\frac{\partial e_{\overrightarrow{w}}(y,\phi(v))}{\partial \overrightarrow{w}} = \begin{bmatrix} \frac{\partial e_{\overrightarrow{w}}(y,\phi(v))}{\partial w_0} \\ \frac{\partial e_{\overrightarrow{w}}(y,\phi(v))}{\partial w_1} \\ \vdots \\ \frac{\partial e_{\overrightarrow{w}}(y,\phi(v))}{\partial w_p} \end{bmatrix} = 0$$

Hence, we can use gradient-based search algorithm to train a neuron.

Multilayer Neural Networks

The Back-Propagation Algorithm

Compute error

Sequential vs Batch

- Sequential mode
- Batch mode

$$Err = \frac{1}{2N} \sum_{n \in samples \ j \in output \atop neurons} e_{nj}^{2}$$

$$\Delta w_{ji} = -\eta \frac{\partial Err(t)}{\partial w_{ji}(t)} = \eta \sum_{n} e_{nj} \frac{\partial e_{nj}}{\partial w_{ji}}$$

Online, memory, implementation, stochastic

Discussion

- Number of hidden neurons
- Sequential training mode
- Batch training mode

Convolution (Conv)

Local receptive field

1	1	1	0	0	
0	1	1	1	0	
0	0	1	1	1	
0	0	1	1	0	
0	1	1	0	0	

1	0	1
0	1	0
1	0	1

Spatial invariant

1x1	1x0	1x1	0	0
0x0	1x1	1x0	1	0
0 x 1	0x0	1x1	1	1
0	0	1	1	0
0	1	1	0	0

• Convolution can be efficiently computed

Padding and Stride

Input size is 4×4 , conv filter size is 3×3 , padding = 2 What is the output size?

Conv Layers

A Conv layer contains multiple convolutional neurons (or filters, feature extractors, ...)

The feature maps produced by a convolution layer of 10 neurons

By one of the neurons By another neuron

Pooling Layer

12	20	30	0			
8	12	2	0	2×2 Max-Pool	20	30
34	70	37	4		112	37
112	100	25	12			

A Deep CNN Example

Residual Neural Network (ResNet)

Residual Block

Source: wikipedia

ResNets – Go Deeper

ImageNet top-5 classification error %

Plain

Residual

Densely Connected Convolutional Networks

(DenseNet)

Residual block

Dense block

U-Net (for image segmentation)

Recurrent Neural Networks

Output sequence

Long Short-Term Memory (LSTM) Cell

