3

Lemma 3.5. Let $\alpha \in G \cup N$. There exists a unique $\beta_0 > 0$ such that $\rho(\beta_0) = \sigma(\beta_0)$.

Proof. This follows immediately from property (b) of Lemma 3.4 and correspondence (3.34). This unique intersection can also be seen from a sketch of the two graphs.

3.5. More advanced properties of solutions

We fix $\beta = \beta_0$. This fixes at least $\nu = \nu_{\beta_0}$ and $\rho_0 = \rho_{\beta_0}$, which will be used in the following lemma. We will apply the Sturm comparison theorem to equations (3.3) and (2.27) in the following lemma.

Lemma 3.6. For $\alpha \in G \cup N$, $w(r, \alpha)$ has a unique zero $r_0 \in (0, z(\alpha))$. Furthermore, $w(z(\alpha)) < 0$ for $\alpha \in N$ and if $\alpha \in G$, we have

$$\lim_{r\to\infty}w(r)=-\infty.$$

Proof. With the simplifications from before, we have

$$\begin{cases} v'' + \frac{1}{r}v' + \left[pV(r)u(r)^{p-1} - \lambda \right] v < 0 & \text{and } v > 0 & \text{on } (0, \rho_0) & \text{and} \\ v'' + \frac{1}{r}v' + \left[pV(r)u(r)^{p-1} - \lambda \right] v > 0 & \text{and } v < 0 & \text{on } (\rho_0, z(\alpha)). \end{cases}$$
(3.41)

Thus v has a unique zero on $(0, z(\alpha))$. Moreover, $v(0) = \beta_0 \alpha > 0$ and $\lim_{r \to 0} rv'(r) = 0$. Maybe no display to fit on one page. Furthermore, if $\alpha \in N$, then

$$v(z(\alpha)) = z(\alpha)u'(z(\alpha)) < 0$$

by Lemma 3.2 and so ν has a unique zero ρ_0 in $[0, z(\alpha)]$.

Let $\tau \in (0, z(\alpha))$ be the first zero of w, which exists by Lemma 3.3. We remember that w satisfies

$$w'' + \frac{1}{r}w' + \left[pV(r)u^{p-1} - \lambda w\right]w = 0 \quad \text{for } r \in (0, z(\alpha)), \tag{3.42}$$

with initial data w(0) = 1 and $\lim_{r \to 0} r w'(r) = 0$. Because of this, by # sturm, we know that v oscillates faster than w.

Then $\rho_0 \in (0, \tau)$ and thus

$$v'' + \frac{1}{r}v' + \left[pV(r)u(r)^{p-1} - \lambda\right]v < 0 \text{ and } v < 0 \text{ on } (\tau, z(\alpha)).$$
 (3.43)

Since $w(\tau) = 0$ and v has no zero larger than ρ_0 , by Sturm we have that w has no further zero in $(\tau, z(\alpha))$ and we can set $r_0 = \tau$. If $z(\alpha) < \infty$, then w has no zero on $(\tau, z(\alpha)]$ and we have $w(z(\alpha)) < 0$.

However, if $z(\alpha) = \infty$, we can apply Lemma 6 of [3, p. 249]. The disconjugacy interal (d, ∞) is such that

$$d < \rho_0 < r_0$$
.

DONE: The disconjugacy interval of a differential equation is the largest left-neighbourhood (c,b) of the **right most** b on which there exists a solution to the differential equation without zeroes. From Sturmian theory, no non-trivial solution can have more than one zero in (c,b). On the other hand, unless c=a, with a the **left most**, any solution of the differential equation with a zero before c must have another zero in (c,b).

Consider the same setting: equations (3.9) and (3.10) satisfying the comparison condition (3.11). In addition, we assume that $U \neq V$ in *any* neighborhood of b. If there exists a solution V of (3.10) with a largest zero at the point ρ , then the disconjugacy interval of (3.9) is a strict superset of (ρ, b) .

One way to interpret the above is to remember that V oscillates faster than U and note that any solution U with a zero in (ρ, b)

Indeed, if we had $\rho_0 \le d$, we could find a solution \widetilde{w} linearly independent of w such that $\widetilde{w}(\widetilde{r}) = 0$ for some $\widetilde{r} > d \ge \rho_0$. But then $w + \widetilde{w}$ is a solution of # w ivp with two zeroes in (ρ_0, ∞) and thus, v should have another zero in that interval. By this contradiction, we have $w(r_0) = 0$ with $r_0 \in (d, \infty)$ and Lemma 6 of [3, p. 249] implies that

$$\lim_{r\to\infty}w(r)=-\infty.$$

Lemma 3.7. Let $\alpha \in G$. There exists $\epsilon > 0$ such that $(\alpha, \alpha + \epsilon) \subset N$.

Proof. DONE: We remember that w(r) has a unique zero r_0 by Lemma 3.6 and since $\alpha \in G$, we have $w(r) \to -\infty$ as $r \to \infty$. This implies by Lemma 6 of [3, p. 249] that $r_0 \in (d, \infty)$,

_

where (d,∞) is the disconjugacy interval of initial value problem (3.3). We refer to # for the definition of disconjugacy interval. We can choose r_1 and r_2

$$d < r_1 < r_0 < r_2$$

such that by (??), there exists $\epsilon > 0$ such that for all $\widetilde{\alpha} \in (\alpha, \alpha + \epsilon)$, we have

$$\widetilde{u}(r_1) > u(r_1)$$
 and $\widetilde{u}(r_2) < u(r_2)$,

where $\widetilde{u}(r) = u(r, \widetilde{\alpha})$. Hence, the graphs of u and \widetilde{u} intersect in some $r_3 \in (r_1, r_2)$, where r_3 may depend on the choice of $\widetilde{\alpha}$. Next, we will show that there exists $\widetilde{r} \in (r_3, \infty)$ such that $\widetilde{u}(\widetilde{r}) = 0$. Then, we would have $\widetilde{\alpha} \in N$.

Proof step 2. To see that $\widetilde{u}(\widetilde{r}) = 0$ for some $\widetilde{r} \in (r_3, \infty)$, we suppose by contradiction that $\widetilde{u}(r) > 0$ for all $r > r_3$. We will show that $\widetilde{u}(r) < u(r)$ for all $r > r_3$.

Proof step 3. To see that $\widetilde{u}(r) < u(r)$ for $r > r_3$, we suppose by contradiction that $\widetilde{u}(r_4) = u(r_4)$ for some $r_4 > r_3$ and $u - \widetilde{u} > 0$ on (r_3, r_4) .

The function $z := u - \widetilde{u}$ satisfies

$$z'' + \frac{1}{r}z' + \left[V(r)\frac{u^p - \widetilde{u}^p}{u - \widetilde{u}} - \lambda\right]z = 0 \quad \text{on } (r_3, r_4).$$
(3.44)

Since $z(r_3) = z(r_4) = 0$ by assumption and

$$\frac{u^p - \widetilde{u}^p}{u - \widetilde{u}} < pu^{p-1} \tag{3.45}$$

on (r_3, r_4) , we can apply Sturm's theorem # ref. w oscillates faster than z Let y be any solution of w ivp linearly independent of w. ... There is no positive solution of w ivp on (d, ∞) , contradicting ...

Hence z(r) > 0 for all $r > r_3$.

Sturm comparing fractions

Integrating sturm comparands

Hence $z(r) \equiv u(r) - \widetilde{u}(r) \to \infty$ as $r \to \infty$. This is impossible, since $0 < \widetilde{u}(r) < u(r)$ on (r_3, ∞) and $u(r) \to 0$ as $r \to \infty$. Therefore, $\widetilde{u}(r)$ must vanish at some point $\widetilde{r} \in (r_3, \infty)$ and the proof is complete.

Lemma 3.8. Let $\alpha^* \in N$. Then $[\alpha^*, \infty) \subset N$ and $z : [\alpha^*, \infty) \to (0, \infty)$ is monotone decreasing.

Proof. N is open subset of $(0, \infty)$...

z is continuous ...

By Lemma 3.6, we have $w(z(\alpha^*)) < 0$. Then, there exists $\epsilon > 0$ such that

$$(\alpha^*, \alpha^* + \epsilon) \subset N$$
 and $u(z(\alpha^*), \alpha) < 0$ for all $\alpha \in (\alpha^*, \alpha^* + \epsilon)$.

The intermediate value theorem implies existence of an $r \in (0, z(\alpha^*))$ so that $u(r, \alpha) = 0$. We note that

$$z(\alpha) \le r < z(\alpha^*)$$
 for all $\alpha \in (\alpha^*, \alpha^* + \epsilon)$

and z is decreasing, since ...

We define

$$\overline{\alpha} \coloneqq \sup \left\{ \alpha > \alpha^* : \left[\alpha^*, \alpha \right] \subset N \text{ and } z : \left[\alpha^*, \alpha \right] \to (0, \infty) \text{ is decreasing} \right\}.$$

By contradiction, we suppose that $\overline{\alpha} < \infty$. Then there exists ...

3.6. Proof of Main Theorem

Proof of Theorem 3.1. # general proof, referring to lemma's

REFERENCES

- [1] H. BERESTYCKI, P. L. LIONS, and L. A. PELETIER, *An ode approach to the existence of positive solutions for semilinear problems in rn*, Indiana University Mathematics Journal **30**, 141 (1981).
- [2] F. Genoud, A uniqueness result for $\Delta u \lambda u + V(|x|)u^p = 0$ on \mathbb{R}^2 , Adv. Nonlinear Stud. 11, 483 (2011).
- [3] M. K. Kwong, *Uniqueness of positive solutions of* $\Delta u u + u^p = 0$ *in* \mathbb{R}^n , Arch. Rational Mech. Anal. **105**, 243 (1989).
- [4] E. Yanagida, *Uniqueness of positive radial solutions of* $\Delta u + f(u, |x|) = 0$, Nonlinear Anal. 19, 1143 (1992).