Solution sheet 5

Date: November 28. Discussion of solutions: November 30.

Let G be a plane embedded graph. Further assume that G is 3-connected. Then we define the plane dual of G, denoted by G^* , as the graph whose

- \bullet vertices correspond to the faces of G, and
- edges correspond to pairs of faces that share an edge of G.

A plane graph (black) and its plane dual (gray).

Problem 17. 5 points

In a planar triangulation let n_i be the number of vertices of degree i. Prove that

$$\sum_{i \in \mathbb{N}} (6 - i) n_i = 12.$$

Solution.

Let G be a planar triangulation with n vertices. It is known from the lecture that the number m of edges in G is exactly 3n - 6.

Now the problem can be solved using the vertex count $n = \sum_{i \in \mathbb{N}} n_i$, the edge count $2m = \sum_{i \in \mathbb{N}} i \cdot n_i$ and the equation m = 3n - 6 above:

$$\sum_{i \in \mathbb{N}} (6-i)n_i = 6\sum_{i \in \mathbb{N}} n_i - \sum_{i \in \mathbb{N}} i \cdot n_i = 6n - 2m = 6n - 2(3n - 6) = 12.$$

Problem 18. 5 points

Prove or disprove each of the following for every natural number n.

- (a) There exists a connected 4-regular planar graph with at least n vertices.
- (b) There exists a connected 5-regular planar graph with at least n vertices.
- (c) There exists a connected 6-regular planar graph with at least n vertices.

Justify your answers!

Solution.

We shall construct two infinite families of 4-regular planar graphs and one infinite family of 5-regular planar graphs. Since for every natural number n there is only a finite number of graphs with less than n vertices, the existence of these infinite families proves for every

Graph Theory winter term 2013

natural number n the existence of a 4-regular planar graph and a 5-regular planar graph on at least n vertices.

Furthermore, we shall argue that there is no 6-regular planar graph.

(a) First construction.

For every natural number $k \geq 3$ construct the graph $G_k^{(1)}$ as the disjoint union of two cycles (v_0, \ldots, v_{k-1}) and (w_0, \ldots, w_{k-1}) of length k each, and k additional vertices $\{u_0, \ldots, u_{k-1}\}$ with edges between u_i and v_i , w_i , v_{i+1} and w_{i+1} for $i = 0, \ldots, k-1$, where all indices are considered modulo k.

Second construction.

For every natural number $k \geq 1$ construct the graph $G_k^{(2)}$ as the disjoint union of k cycles $\{(a_i, b_i, c_i, d_i)\}_{i=1,\dots,k}$ of length 4 each with edges $a_i a_{i+1}$, $b_i b_{i+1}$, $c_i c_{i+1}$, $d_i d_{i+1}$ for $i = 1, \dots, k-1$, and two vertices x and y with edges xa_1, xb_1, xc_1, xd_1 , and ya_k, yb_k, yc_k, yd_k .

(b) An infinite class of 5-regular planar graphs can be constructed recursively. We start with G_1 being the icosahedron graph I and then define G_k for $k \geq 2$ recursively as follows. Consider the 5-regular planar graph G_{k-1} and the icosahedron graph I, a vertex v in G_{k-1} and a vertex w in I. Let v_1, \ldots, v_5 be the five neighbors of v in G_{k-1} in clockwise order and w_1, \ldots, w_5 be the five neighbors of w in I in clockwise order. Then define G_k to be the disjoint union of $G_{k-1} - v$ and I - w, together with the edges $v_i w_i$ for $i = 1, \ldots, 5$.

The icosahedron graph I

Replacing v by I - w

(c) Since every planar graph G on n vertices has at most 3n-6 edges, the average degree of G is at most $\frac{6(n-12)}{n}$, which is strictly less than 6. Since every 6-regular graph clearly has average degree 6, there is no 6-regular planar graph.

Problem 19. 5 points

Prove that if a plane embedded graph on n vertices has no triangular face, then it has at most 2n-4 edges.

Solution.

Let G = (V, E) be any plane embedded graph with no triangular face. Let F be the set of faces in G and $\deg(f)$ be the degree of a face $f \in F$, i.e., the number of "sides of edges" bounding f. Then, since every edge has two sides and every side bounds exactly one face we have

$$\sum_{f \in F} \deg(f) = 2|E|.$$

On the other hand we have $\deg(f) \geq 4$ for every $f \in F$ by assumption, and |V| - |E| + |F| = 2 by Euler's formula. Putting things together we obtain

$$|E| - (2|V| - 4) = 2|F| - |E| = \frac{4|F|}{2} - |E|$$

$$\leq \frac{\sum_{f \in F} \deg(f)}{2} - |E| = \frac{2|E|}{2} - |E| = 0,$$

and thus $|E| \leq 2|V| - 4$.

Problem 20. 5 points

Let G be a plane embedded graph on n vertices such that $G^* \cong G$. Prove that G has 2(n-1) edges. For all $n \geq 4$ find such a graph.

Solution.

Let G be such a graph. From $G=G^*$ we immediately get that |V(G)|=|F(G)| and hence by Euler's formula

$$|E(G)| = |V(G)| + |F(G)| + 2 = 2|V(G)| + 2.$$

For the second part, let $n \ge 4$. We consider the graph G = (V, E) that is the (n-1)-wheel, i.e.,

- $V = \{v, v_1, \dots, v_{n-1}\}$ and
- $E = \{vv_i \mid i = 1, \dots, n-1\} \cup \{v_i v_{i+1} \mid i = 1, \dots, n-2\} \cup \{v_1 v_{n-1}\}.$

Then G has n-1 triangular faces whose incidences form a (n-1)-cycle, and one face of degree n-1 that is adjacent to all triangular faces. Thus $G^* \cong G$.

The 7-wheel and its plane dual.

Graph Theory	winter term 2013
Remark: In case $n = 4k + 1$ for some natural number $k \ge 1$ $G_k^{(2)} - y$ from the second construction for Problem 18 (a).	,

Open Problem.

Without using the 4-Color-Theorem, prove that every n-vertex planar graph has an independent set of size at least n/4.