AN OWNER'S MANUAL FOR SCALING LIMITS OF RANDOM TREES AND GRAPHS

CAELAN ATAMANCHUK

Figure 1: An image of a cool tree stolen from Igor Kortchemski's website (I'm hoping I'll find the time to make my own cool tree pictures soon).

CONTENTS

1	Ran	dom combinatorial trees	3
	1.1	Encoding trees with discrete functions	3
	1.2	Bienaymé trees	7
	1.3	Bienaymé tree conditioned to have a fixed size	9
	D 1	L. L.I. D. CDW	10
2		trees and the Brownian CRT	12
	2.1	The space of rooted real trees	12
	2.2	Encoding real trees with functions	14
3	Scal	ing limits of random walks and Bienaymé trees	20
	3.1	Random functions in $C[0, 1]$ and Donsker's Theorem	20
		3.1.1 Convergence of measures on C[0, 1]	21
		3.1.2 Back to Donsker's Theorem	23
	3.2	Skorokhod space	25
	3.3	Convergence of the height process for Bienaymé forests	26
	3.4	Convergence of the contour process	31
	3.5	Aldous' Theorem	32
4	The	line-breaking construction of the CRT	35
	4.1	The Gromov-Hausdorff-Prokhorov distance	35
	4.2	Growing random trees (the set up)	36
	4.3	Non-homogeneous Poisson processes	37
	4.4	The fractal dimension of the tree $\mathcal T$	37
	4.5	Convergence with respect to the GH topology	38
	4.6	Measuring the tree $\mathcal T$	40
	4.7	Completing Theorem 4.7	40
5	Scal	ing limits of components in critical random graphs	41

1 RANDOM COMBINATORIAL TREES

This section introduces our main object of consideration, which is random trees. We discuss two ways to encode trees with discrete functions and examine the relationships between these encodings. We then turn our attention to random trees, where the specific trees of interest are Bienaymé trees.

1.1 Encoding trees with discrete functions

Most trees we consider in these notes are *plane trees*, which are finite rooted trees with an ordering on each collection of siblings in the tree. We shall identify all plane trees as subsets of the infinite Ulam-Harris tree, which we define now. Let

$$\mathbf{U} = \bigcup_{k=0}^{\infty} \mathbb{N}^k,$$

where we take $\mathbb{N} = \{1, 2, 3, ..., \}$ and $\mathbb{N}^0 = \{\emptyset\}$. We call the elements of **U** the *vertices*. The length of the vector $\mathbf{u} \in \mathbf{U}$, $|\mathbf{u}|$, is called the *generation* of \mathbf{u} . It is also called the *height* of \mathbf{u} . If $\mathbf{u} = (u_1, ..., u_k), \mathbf{v} = (v_1, ..., v_m) \in \mathbf{U}$ we let $\mathbf{u}\mathbf{v} = \mathbf{u} \cdot \mathbf{v}$ denote the concatenation of the two sequences, $(u_1, ..., u_k, v_1, ..., v_m)$. The vertex $\mathbf{p}(\mathbf{v}) = (u_1, ..., u_{k-1})$ is called the *parent* of \mathbf{u} and \mathbf{u} is called the child of $\mathbf{p}(\mathbf{u})$. If $\mathbf{w} = (w_1, ..., w_k) \in \mathbf{U}$ is such that $w_i = u_i$ for all $1 \le i \le k-1$ and $w_k \ne u_k$, then \mathbf{u} and \mathbf{w} are called *siblings*. The set \mathbf{U} is called the *Ulam-Harris tree* (Figure \mathbf{D} highlights the tree structure), and we use it to formally define the notion of a plane tree.

Definition 1.1. *A finite subset* $\mathbf{t} \subseteq \mathbf{U}$ *is called a* plane tree *if*:

- (i) $\emptyset \in \mathbf{t}$.
- (ii) If $u \in t$, then $p(u) \in t$.
- (iii) There is a collection of non-negative integers $(c_t(u) : u \in t)$ such that, for all $j \in \mathbb{N}$ and $u \in t$, $uj \in t$ if and only if $1 \le j \le c_t(u)$.

We interpret $c_t(u)$ as the number of children that u has in t. We also occasionally refer to this as the *out-degree* of u. The set of all plane trees is denoted by \mathcal{R} in what follows. The set of all plane trees t such that |t|=n is denoted by \mathcal{R}_n . The ordering on our plane trees is the natural lexicographical ordering of the Ulam-Harris tree. We shall occasionally need to discuss the genealogical partial ordering of our trees as well, which we shall denote with \leq . We write $u \leq v$ for two vertices $u, v \in t$ if v is a descendent of u, i.e., v = uw for some $w \in U$. The lexicographical ordering of U is denoted with \leq .

Figure 2: A depiction of the set **U** that highlights its tree structure.

The embedding of our plane trees inside the Ulam-Harris tree, and the corresponding ordering, allow for easy exploration of the tree via depth-first exploration. We first define the depth-first queue process, and then note why it is useful for characterizing plane trees.

Definition 1.2. Let $\mathbf{t} \in \mathcal{R}_n$ and let $u_1, ..., u_n$ be the vertices written in lexicographical order. Write $(c_1, ..., c_n) = (c_{\mathbf{t}}(u_1), ..., c_{\mathbf{t}}(u_n))$. The sequence of integers $(q_k)_{k=0}^n$ with

$$q_k = \sum_{i=1}^k (c_i - 1)$$

is called the depth-first queue process of the tree t (DFQ). Any sequence $(x_k)_{k=0}^n$ such that

- (i) $x_0 = 0$, $x_n = -1$,
- (ii) $x_k > 0$ for all 0 < k < n-1
- (iii) $x_k x_{k-1} > -1$ for all 1 < k < n

is called a Łukasiewicz path of length n. We take $\mathcal L$ to denote the collection of all Łukasiewicz paths and $\mathcal L_n$ the paths of length n. In some places, the DFQ process of a tree is called the Łukasiewicz path of the tree.

As the name suggests, there is an interpretation of the DFQ process of a tree $\mathbf{t} \in \mathcal{R}_n$ as the evolving size of a queue while exploring the tree. Begin with a queue $Q_0 = (\emptyset)$. Then, for $0 \le i \le n-1$, suppose that $Q_i = (w_1, ..., w_{q_{i+1}})$ with $q_i = |Q_i|-1$. We pop w_1 from Q_i , query the number of children it has, and then add those children to the front of Q_i in their lexicographical order to form Q_{i+1} . The net change in the size of the queue at each step is exactly c_i-1 , as at each step the vertex being popped is the ith in the ordering of \mathbf{t} . Note that step k of the DFQ process is when we explore the vertex u_k (the kth vertex in the lexicographical order) and its children are not represented in the queue until the next step if it has any. Starting the walk at zero and not one is just a notational choice to make future convergence results a little cleaner. It removes a lot of "+1's'.'

Lemma 1.3. *The mapping* $\varphi : \mathcal{R} \to \mathcal{L}$ *given by*

$$\varphi(\mathbf{t}) = (q_0, ..., q_{|\mathbf{t}|}) \quad \forall \mathbf{t} \in \mathcal{R},$$

where $(q_0, ..., q_{|\mathbf{t}|})$ is the DFQ process for \mathbf{t} , is a bijection.

Proof. First, we verify that ϕ maps into \mathcal{L} , which amounts to showing (i) and (ii) in the definition as the other point is clear. The first point follows from the fact that trees on \mathfrak{n} vertices have $\mathfrak{n}-1$ edges (and hence $\mathfrak{n}-1$ children in the context of plane trees). For the second point, we note that $c_t(\mathfrak{u}_1)+...+c_t(\mathfrak{u}_k)\geq k$ for $1\leq k\leq \mathfrak{n}-1$ because $\mathfrak{u}_1,...,\mathfrak{u}_{k+1}$ are all children of some vertex in $\{\mathfrak{u}_1,...,\mathfrak{u}_k\}$.

Recall that two plane trees \mathbf{t}, \mathbf{s} are equal if and only if they are the same subset of \mathbf{U} . We begin by showing that ϕ is injective. If $|\mathbf{t}| \neq |\mathbf{s}|$, then they do not have the same DFQ process so suppose that $|\mathbf{t}| = |\mathbf{s}| = n$ and $\mathbf{t} \neq \mathbf{s}$. Let $\mathbf{u}^* \in \mathbf{t} \cap \mathbf{s}$ be the first vertex in the ordering that has a child in one tree and not the other. Without loss of generality, we may assume that this child is in \mathbf{t} , so $c_{\mathbf{t}}(\mathbf{u}^*) > c_{\mathbf{s}}(\mathbf{u}^*)$. If $(q_0(\mathbf{t}), ..., q_n(\mathbf{t}))$ and $(q_0(\mathbf{s}), ..., q_n(\mathbf{s}))$ are the DFQ processes of \mathbf{t} and \mathbf{s} respectively, the fact that \mathbf{u}^* was chosen to be minimal implies that $q_k(\mathbf{t}) = q_k(\mathbf{s})$ for all $1 \leq k \leq i^* - 1$, where i^* is the place of \mathbf{u}^* in the ordering. Then,

$$q_{i^*}(\mathbf{t}) = q_{i^*-1}(\mathbf{t}) + c_{\mathbf{t}}(\mathbf{u}^*) > q_{i^*-1}(\mathbf{s}) + c_{\mathbf{s}}(\mathbf{u}^*) = q_{i^*}(\mathbf{s}).$$

Surjectivity follows almost immediately from the fact that $q_k - q_{k-1} = c_{\mathbf{t}}(u_k) - 1$ for all $1 \le k \le n$. Given a Łukasiewicz path $\mathbf{q} = (q_0, ..., q_n)$ we can construct a tree that straightforwardly maps to \mathbf{q} . Begin with $\mathbf{t}_0 = \{\emptyset\}$. Then, inductively define \mathbf{t}_{i+1} for each $0 \le i \le n-1$ by setting $\mathbf{t}_{i+1} = \mathbf{t}_i \cup \{x_i \cdot 1, ..., x_i \cdot (q_{i+1} - q_i + 1)\}$, where x_i is the ith element of \mathbf{t}_i in lexicographical order (note that such an element exists by the assumption $q_k \ge 0$ for $0 \le k \le n-1$). One can check that $\phi(\mathbf{t}_n) = (q_0, ..., q_n)$.

Another discrete function that encodes plane trees is the height function. It can be seen as a walk through the tree in lexicographical order that records the height of the current vertex.

Definition 1.4. Let $\mathbf{t} \in \mathcal{R}_n$ and let $u_0, ... u_{n-1}$ be its vertices written in lexicographical order. The height function of \mathbf{t} , denoted by $(h_{\mathbf{t}}(k)_{k=0}^{n-1}, is given by h_{\mathbf{t}}(k) = |u_{k+1}|.$

Before we get into why the height function acutally matters, let's first introduce a continuous function that is related to the height function and of great importance later on. We call this function the *contour function* of the tree. The formal definition is a little confusing, I recommend looking at the example below to make sense out of it. We informally can see the contour function as arising from a process where we trace out the tree using a pencil that never leaves the paper and draws at a single unit speed.

Definition 1.5. Let $\mathbf{t} \in \mathcal{R}_n$ and let $u_0, ..., u_{n-1}$ be the vertices in lexicographical order. Set $u_n = \emptyset$. Let p_0^i, p_1^i, p_2^i ... be the interior vertices on the unique paths from u_i to u_{i+1} for each $0 \le i \le n-1$ in the order they would be taken if travelling from u_i to u_{i+1} in \mathbf{t} . We define a new sequence of vertices $v_0, ..., v_{2(n-1)}$ by inserting the p^i 's between u_i and u_{i+1} for all $0 \le i \le n-1$ (each vertex $u \in \mathbf{t}$ appears $c_{\mathbf{t}}(u)+1$ times in the new sequence). We define the contour function of \mathbf{t} , $\gamma_{\mathbf{t}}: [0,\infty) \to [0,\infty)$ by

$$\gamma(t) = |\nu_{\lfloor t \rfloor}| + (t - \lfloor t \rfloor)(|\nu_{\lceil t \rceil}| - |\nu_{\lfloor t \rfloor}|)$$

for $0 \le t \le 2(n-1)$, and $\gamma(t) = 0$ for t > 2(n-1).

Figure 3: A tree and its many functional encodings

There is a simple way to convert between the height function and the DFQ process of a tree. This relationship will allow us to describe the height function in terms of sums of i.i.d. random variables when discussing Bienaymé trees later.

Theorem 1.6. Let $\mathbf{t} \in \mathbb{R}_n$ have DFQ process $(q_0, ..., q_n)$. Then, for all $0 \le k \le n-1$,

$$h_{t}(k) = \left| \left\{ 1 \leq j \leq k-1 : q_{j} = \inf_{j \leq m \leq k} q_{m} \right\} \right|.$$

Proof sketch. It is clear that $h_t(k) = |\{0 \le j \le k-1 : u_j \le u_k\}|$, so we only need to show that

$$u_j \leq u_k \iff q_j = \inf_{j \leq m \leq k} q_m.$$

It can be observed immediately from the definition that, if $\mathbf{t}(u_j)$ is the subtree of \mathbf{t} rooted at u_j , then $u_j \leq u_k$ if and only if $u_k \in \mathbf{t}(u_j)$, so we can instead show

$$u_k \in \mathbf{t}(u_j) \iff q_j = \inf_{j \le m \le k} q_m.$$
 (1)

Let $\tau_j = \inf\{m \geq j : q_m < q_j\}$. At step j of the DFQ process we add u_j 's children to the queue and remove u_j . The process only leaves the subtree $\mathbf{t}(u_j)$ all of the children of u_j have been removed (along with any children they have). This is exactly τ_j . In particular, we have that $\mathbf{t}(u_j) = \{u_m : j \leq m \leq \tau_j - 1\}$. (1) follows immediately from this identity.

An immediate corollary of Theorem $\boxed{1.6}$ is that the height function of a tree uniquely determines it. By taking the end point of all length one intervals on which the contour function is increasing, we can recover the height process of a tree. Moreover, from the height function we can recover the tree and from the tree we can get the contour function. Hence, the contour function uniquely determines the tree as well. Of course, one can prove this fact directly via the "pencil and paper" analogy. One can also prove the height function encodes its tree directly by observing that, if one knows the u_k and $h_t(k+1)$, then there is only one possible vertex that could be u_{k+1} (it is a child of the ancestor of u_k that is at height $h_t(k+1)-1$).

1.2 BIENAYMÉ TREES

Definition 1.7. Let μ be a measure on $\mathbb{Z}_{\geq}=\{0,1,2,...\}$ with $\sum_{k=0}^{\infty}k\mu(k)<\infty$ such that $\mu(1)\neq 1$. For all $u\in U$, we associate an independent random variable $\xi_u\stackrel{\mathcal{L}}{=}\mu$. The subset $T=\{u=(u^1,...,u^k)\in U: u^j\leq \xi_{(u^1,...,u^{j-1})}\ \forall\ 1\leq j\leq k\}$ is called a Bienaymé tree with offspring distribution μ . We often write $T\stackrel{\mathcal{L}}{=}$ Bienaymé(μ). Collections of many i.i.d. Bienaymé trees are sometimes called Bienaymé forests. We call a Bienaymé tree critical if $\sum_{k=0}^{\infty}k\mu(k)=1$, subcritical if $\sum_{k=0}^{\infty}k\mu(k)<1$, and supercritical otherwise.

These trees are ubiquitous in probability theory and combinatorics, having been studied as far back as the 1800's. Those familiar with the classic Galton-Watson martingale process may notice that these two structures are essentially the same. It is mostly straightforward to prove from the definition that Bienymé trees are plane trees except for the criteria that T must be finite. This fact is a corollary of a result known by many as the fundamental theorem of Bienaymé trees. See [ANNO4] for a proof.

Theorem 1.8. Let $T \stackrel{\mathcal{L}}{=} Bienaym\acute{e}(\mu)$ for some μ matching the above criteria. If T is sub-critical or critical, then $|T| < \infty$ almost surely. In particular, T is a plane tree. Otherwise, $\mathbf{P}(|T| = \infty) > 0$.

The independence in the variables $(\xi_u:u\in U)$ has some nice consequences concerning the distribution of T over the set \mathcal{R} .

Lemma 1.9. Let $\mathbf{t} \in \mathcal{R}$ and let $T \stackrel{\mathcal{L}}{=} Bienaym\acute{e}(\mu)$. Then,

$$\mathbf{P}(\mathsf{T} = \mathbf{t}) = \prod_{\mathsf{u} \in \mathsf{t}} \mu(c_{\mathsf{t}}(\mathsf{u})).$$

Proof. Since T is a plane tree almost surely, $\{T=t\}=\cap_{u\in t}\{\xi_u=c_t(u)\}$. Using the independence of the ξ 's we get,

$$\mathbf{P}(\mathsf{T} = \mathbf{t}) = \mathbf{P}\left(\bigcap_{\mathsf{u} \in \mathbf{t}} \{\xi_\mathsf{u} = c_\mathsf{t}(\mathsf{u})\}\right) = \prod_{\mathsf{u} \in \mathbf{t}} \mu(c_\mathsf{t}(\mathsf{u})).$$

With the standard pleasantries out of the way, we can turn our attention to the most important property of Bienaymé trees from the perspective of scaling limits. The DFQ process of these trees is distributed like a simple random walk, and their sizes are exactly distributed like the first time that the simple random walk hits -1. At first glance, knowing the definition of the DFQ process, one might think that this statement is trivially true by the definition of Bienaymé trees. However, the presence of the stopping time in the expression below makes the claim not immediate as it could (in theory) disturb the natural independence between the number of children each vertex has.

Theorem 1.10. Let $T \stackrel{\mathcal{L}}{=} Bienaym\acute{e}(\mu)$, and let its DFQ process be denoted by Q. Let $(S_k : k \geq 0)$ be a simple random walk with step sizes distributed like ν , where for all $k \geq -1$, $\nu(k) = \mu(k+1)$. Then,

$$Q \stackrel{\mathcal{L}}{=} (S_0, ..., S_{\tau}),$$

where $\tau = \inf\{n \geq 1 : S_n = -1\}$. In particular $|T| \stackrel{\mathcal{L}}{=} \tau$.

Proof. It suffices to just check that the vector $(c_t(U_0),...,c_t(U_{|T|-1}))$ is distributed like a collection of i.i.d. μ -distributed random variables, where $(U_0,...,U_{|T|-1})$ is the vertices of T written in lexicographical order. To be able to remove the random indexing, we want $\{U_k = u\}$ for $0 \le k \le |T| - 1$ and $u \in \mathcal{U}$ to be measurable with respect to only the vertices below u in the lexicographical order.

First, the set $T \cap \{v \in \mathbf{U} : v \leq u\}$, is measurable with respect to $\sigma(\xi_v : v < u)$. Then, for any $k \geq 0$, the event $\{U_k = u\} \cap \{|T| > k\}$, being completely determined by $T \cap \{v \in \mathbf{U} : v < u\}$, is measurable with respect to $\sigma(\xi_v : v < u)$. The set $\{U_k = u\} \cap \{|T| \leq k\}$ is also measurable with respect to $\sigma(\xi_v : v < u)$ for the same reason. Combining the two facts we get that $\{U_k = u\}$ is measurable with respect to $\sigma(\xi_v : v < u)$.

Now, from here we can proceed via a standard induction. Let $g_0,...,g_k:\mathbb{Z}_\geq\to\mathbb{Z}_\geq$ be a collection of functions for $0\leq k\leq |T|-1$. Then,

$$\textbf{E}\left[g_1(\xi_{U_0})\cdots g_k(\xi_{U_k})\right]$$

$$\begin{split} &= \sum_{u_0 < \ldots < u_k} \mathbf{E} \left[\mathbf{1}_{\{U_0 = u_0, \ldots, U_k = u_k\}} g_1(\xi_{u_1}) \cdots g_k(\xi_{u_k}) \right] \\ &= \sum_{u_0 < \ldots < u_k} \mathbf{E} \left[\mathbf{1}_{\{U_0 = u_0, \ldots, U_k = u_k\}} g_1(\xi_{u_1}) \cdots g_{k-1}(\xi_{u_{k-1}}) \right] \mathbf{E}[g_k(\xi_{u_k})] \\ &= \sum_{u_0 < \ldots < u_{k-1}} \mathbf{E} \left[\mathbf{1}_{\{U_0 = u_0, \ldots, U_{k-1} = u_{k-1}\}} g_1(\xi_{u_1}) \cdots g_{k-1}(\xi_{u_{k-1}}) \right] \mathbf{E}[g_k(\xi_{u_k})] \\ &= \mathbf{E} \left[g_1(\xi_{u_0}) \cdots g_k(\xi_{u_{k-1}}) \right] \mathbf{E}[g_k(\xi_{u_0})], \end{split}$$

where in the first equality we used the measurability we just proved and in the second we use the independence of child distribution for fixed indices. The sum is only over vertices in generation at most k. Applying induction completes the proof of the independence, and as noted at the start completes the proof as a whole.

1.3 Bienaymé tree conditioned to have a fixed size

Bienaymé trees are interesting structures in their standard form. However, their ability to generalize so many canonical random tree models is what has kept them an ongoing topic of discussion for so many years since their origins in the study of family trees. The way we observe this generalizing property is by sampling Bienaymé trees conditioned on their size being some parameter $n \in \mathbb{N}$. We write $T \stackrel{\mathcal{L}}{=} Bienaymé(n, \mu)$ for a random plane tree T if, for all $t \in \mathcal{R}_n$,

$$P(T = t) = P(T' = t | |T'| = n),$$

where $T' \stackrel{\mathcal{L}}{=} Bienaym\acute{e}(\mu)$. For the rest of this subsection, we are going to cover a variety of random tree models, and explain how they fit into the category of conditioned critical Bienaymé trees. First, however, we need to explain why this is something that we should be able to do.

Definition 1.11. Let M be a multiset of plane trees. We define the weight of a tree in $t \in U$, $\Omega(t)$, to be the number of occurrences of t in M. Then, we call

$$z_{n} = \sum_{\mathbf{t} \in M: |\mathbf{t}| = n} \Omega(\mathbf{t})$$

the partition function of M. For each $n \ge 1$, let T_n be a random tree with distribution,

$$\mathbf{P}(\mathsf{T}_{\mathsf{n}}=\mathbf{t})=\frac{\Omega(\mathbf{t})}{z_{\mathsf{n}}}.$$

For each $\mathbf{t} \in \mathcal{U}$, let $(m_k(\mathbf{t}))_{k=0}^{\infty}$ be the number of vertices with k children for $k \geq 0$. If there exists a sequence $(\alpha_k)_{k=1}^{\infty}$ of integers such that

$$\Omega(\mathbf{t}) = \prod_{k=0}^{\infty} \alpha_k^{m_k(\mathbf{t})},$$

then we call the random trees $(T_n)_{n=1}^\infty$ a simply generated family of random trees.

In many cases, simply generated trees can be described as Bienaymé trees conditioned on their size. Let $(T_n)_{n=1}^{\infty}$ be a family of simply generated tree, and let μ^x be a measure defined by $\mu^x(k) = \alpha_k x^k / f(x)$ for all $k \ge 0$ and some x > 0. We define T_n^x for all $n \ge 1$ to be a Bienaymé (n, μ^x) .

Lemma 1.12. Let $f(x) = \sum_{k=0}^{\infty} \alpha_k x^k$ and suppose that there is some $x^* > 0$ such that $1 \le f(x^*) < \infty$. Then, there exists some $\tau > 0$ such that $f(\tau) = \tau f'(\tau)$.

Proof. Let F(t) = tf'(t)/f(t) for all $0 \le t \le x^*$. Then F(0) = 0, and for any $0 \le s < t \le x^*$,

$$\begin{split} \frac{f'(t)t}{f(t)} - \frac{f'(s)s}{f(s)} &= \frac{1}{f(s)f(t)} \left(f(s)f'(t)t - f(t)f'(s)s \right) \\ &= \frac{1}{f(s)f(t)} \left(f(s)(f(t) - a_0) - f(t)(f(s) - a_0) \right) \\ &= \frac{a_0 f(t)}{f(s)f(t)} > 0. \end{split}$$

Theorem 1.13. Let $f(x) = \sum_{k=0}^{\infty} \alpha_k x^k$ and suppose that there is some $x^* > 0$ such that $1 \le f(x^*) < \infty$. Let $\tau > 0$ such that $f(\tau) = \tau f'(\tau)$ (exists from the above lemma). Then, for all $x \in (0,\tau]$, $T_n \stackrel{\mathcal{L}}{=} T_n^x$, where both $(T_n)_{n=1}^{\infty}$ and $(T_n^x)_{n=1}^{\infty}$ are defined above. In particular, there is a critical child distribution μ such that $T_n \stackrel{\mathcal{L}}{=} Bienaym\acute{e}(n,\mu)$.

Proof. Let $T^* \stackrel{\mathcal{L}}{=} Bienaymé(\mu^t)$. By Lemma 1.9,

$$\begin{split} \boldsymbol{P}(\mathsf{T}^* = \boldsymbol{t}) &= \prod_{k=0}^{\infty} (\boldsymbol{\mu}^x(k))^{m_k(\boldsymbol{t})} \\ &= \prod_{k=0}^{\infty} \left(\frac{\alpha_k x^k}{f(x)}\right)^{m_k(\boldsymbol{t})} \\ &= \left(\prod_{k=0}^{\infty} \alpha_k^{m_k(\boldsymbol{t})}\right) (f(x))^{-n} \left(x^{\sum_{k=0}^{\infty} k m_k(\boldsymbol{t})}\right) \\ &= \Omega(\boldsymbol{t}) (f(x))^{-n} \left(x^{\sum_{k=0}^{\infty} k m_k(\boldsymbol{t})}\right). \end{split}$$

Then,

$$\mathbf{P}(|\mathsf{T}^*|=n) = \sum_{\mathbf{t}:|\mathbf{t}|=n} \Omega(\mathbf{t})(\mathsf{f}(\mathsf{x}))^{-n} \left(\mathsf{x}^{\sum_{k=0}^{\infty} \mathsf{km}_k(\mathbf{t})} \right) = z_n(\mathsf{f}(\mathsf{x}))^{-n} \left(\mathsf{x}^{\sum_{k=0}^{\infty} \mathsf{km}_k(\mathbf{t})} \right).$$

Hence,

$$\mathbf{P}(T_n^x = \mathbf{t}) = \frac{\Omega(\mathbf{t})}{z_n}.$$

The second statement follows the above lemma and the fact that the mean of the child distribution μ^x is

$$\sum_{k=0}^{\infty} \frac{k a_k x^k}{f(x)} = \frac{x f'(x)}{f(x)}.$$

What is the takeaway of this theorem? Our claim at the beginning of this section was that we could view many canonical random tree models as Bienaymé trees conditioned on their size. This theorem just asserts that we only need to be able to view them as simply generated trees, which is a much nicer family for this purpose. It is fairly easy to find a weight function that results in the correct distribution for many families of random trees. Let us finish things off by giving some examples. Verifying the claims is not too hard and I don't even know if I'll cover this material, so I'm just going to write the coefficients that give the desired tree for each example.

- (i) If we set $a_0 = 1$, $a_1 = 2$, $a_2 = 1$, then T_n is a uniform rooted binary tree on n vertices.
- (ii) If we set $(a_0 = 1, a_2 = 1)$, then T_n is a uniform full binary tree on n vertices.
- (iii) If we set $(a_0 = 1, a_k = 1)$, then T_n is a uniform rooted k-ary tree on n vertices.
- (iv) If we set $(a_k = 1 \text{ for all } k \ge 0)$, then T_n is a uniform rooted plane tree on n vertices.

There is one last case that needs to be separated out on its own as we can deal directly with the Bieanymé tree instead of the simply generated tree. The tree of interest is the uniform random labelled tree on n vertices. Let $T \stackrel{\mathcal{L}}{=} Bienaymé(Poi(1))$. Erase the planar ordering and root, and then give T a uniformly chosen labelling from $\{1,...,|T|\}$. Then, for a labelled rooted tree t,

$$\mathbf{P}(\mathsf{T} = \mathbf{t}) = \frac{e^{-|\mathbf{t}|}}{|\mathbf{t}|!},$$

implying that $P(T = t \mid |T| = n)$ is a uniform labelled tree on n vertices (the identity is not trivial, but can be verified without too much sweat by permuting vertices with the same degree).

REFERENCES

- [ABBGM17] Louigi Addario-Berry, Nicolas Broutin, Christina Goldschmidt, and Grégory Miermont. The scaling limit of the minimum spanning tree of the complete graph. 2017.
 - [ADH13] Romain Abraham, Jean-François Delmas, and Patrick Hoscheit. A note on the gromov-hausdorff-prokhorov distance between (locally) compact metric measure spaces. 2013.
 - [Ald90] David J Aldous. The random walk construction of uniform spanning trees and uniform labelled trees. *SIAM Journal on Discrete Mathematics*, 3(4):450–465, 1990.
 - [Ald91] David Aldous. The Continuum Random Tree. I. *The Annals of Probability*, 19(1):1-28, 1991.
 - [Ald93] David Aldous. The continuum random tree iii. *The annals of probability*, pages 248–289, 1993.
 - [ANN04] Krishna B Athreya, Peter E Ney, and PE Ney. *Branching processes*. Courier Corporation, 2004.
 - [Bel72] Barry Belkin. An invariance principle for conditioned recurrent random walk attracted to a stable law. *Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete*, 21(1):45–64, 1972.
 - [Bil13] Patrick Billingsley. *Convergence of probability measures*. John Wiley & Sons, 2013.
 - [Jan23] Svante Janson. Real trees, 2023.
 - [Kai75] WD Kaigh. A conditional local limit theorem for recurrent random walk. *The Annals of Probability*, pages 883–888, 1975.
 - [Kai76] William D Kaigh. An invariance principle for random walk conditioned by a late return to zero. *The Annals of Probability*, pages 115–121, 1976.
 - [LG05] Jean-François Le Gall. Random trees and applications. 2005.
 - [Sze06] George Szekeres. Distribution of labelled trees by diameter. In *Combinatorial Mathematics X: Proceedings of the Conference held in Adelaide, Australia, August 23–27, 1982*, pages 392–397. Springer, 2006.
 - [Wan15] Minmin Wang. Height and diameter of brownian tree. 2015.

CAELAN ATAMANCHUK

EMAIL: caelan.atamanchuk@gmail.com

DEPARTMENT OF MATHEMATICS AND STATISTICS

McGill University