souji ノート

souji

souji $\mathcal{I} - \mathcal{F}$

ii

aaaaaaaaa

目 次

第Ⅰ部	不完全性定理勉強会ノート	1
第0章	集合についての予備知識	5
第1章		19
1.0	形式言語についての, 非形式的な注意	19
1.1	文論理の言語	
	1.1.1 演習問題	28
1.2	真理値割り当て	32
第 II 音	B 情報一覧	37
第2章	このノートの定義・定理一覧	41
2.1	0 部 不完全性定理勉強会ノート	41
第3章	このノートの記号一覧	63
3.1	0 部 不完全性定理勉強会ノート	63
第 III	部 その他	65
第0章	このノートの Tips	69
0.1	自作マクロ・環境紹介	69
	0.1.1 自作マクロ	69
	0.1.2 自作環境	71
0.2	お助け自作ツール紹介	71

第I部 不完全性定理勉強会ノート

souji ノート

このノートは@souji04261 が作った、学問の啓蒙について考える団体『裏難波大學』の「不完全性定理勉強会」という勉強会にて使用したものです。 勉強会の活動記録は Google スプレッドシートで管理していて、ここから見ることができます。

勉強会は数学科のゼミ形式で行い、発表は基本的には souji が担当しました.

この勉強会の目標は不完全性定理の証明(の理解)であり、テキストは数理論理学の入門書である[3]、またはその和訳である[4]をベースにしています。ただ時折他のテキストを参考にしたりしてます。

ノートの見方としては、基本的には課題図書に沿って進めていますが、節をスキップしたり、また行間を埋めたり、数理論理学を学んだ立場から補足を入れたりしています。またそれに伴って、テキストにない定義や定理・補題、記法の導入をしています。それらにも採番しているので、テキストにある定理の番号とはズレていることがあります。ただそれだとテキストと一緒に勉強するのは大変だと思い、テキストにも載っている定義・定理などは、テキストのどの定義・定理に対応してるか、そして原著(E)・和訳(K)のどのページに載っているか記載しています。このノートを参考にする方は、是非テキストを購入して見比べてもらえればと思います。

また基礎的な数学知識の補足は、自分用の基礎知識学習まとめノートの第??部(??ページ)から引用しています.

第0章 集合についての予備知識

Notation 0.0.1 (ジャーゴン (E:p1 2, K:p1 2)) .

数学用語になかで、このノートを通じて用いるものを4つ挙げる.

- 1. 定義や定理の主張の終わりを表す記号として を, 証明の終わりを表す記号として □ を用いる. 1
- 2. 「 \bigcirc ならば \times xである」という含意を表す文章を「 \bigcirc \bigcirc \Rightarrow x \times 」と略記する . 2 逆向きの含意を表すのに \Leftarrow を使うこともあります.
 - 「 \bigcirc ○であるのは、 $\times \times$ であるとき、かつそのときに限る」を「 \bigcirc ○○は $\times \times$ と同値である」と述べたり、記号 \leftrightarrow を、「 \bigcirc $\leftrightarrow \times \times$ 」のように使ったりする .
- 3. 「したがって」という言葉の代わりに省略記号 :: を: を: を: を: ではなら」という言葉の代わりに省略記号 : を用いる。とくに証明中に : を用いる場合はぶら下げを使って、その理由部分を書く。: 3
- 4. 関係を表す記号に斜線を重ねることでその関係の否定を表すことがある。例えば「x=y」の否定として「 $x \neq y$ 」や「 $x \in y$ 」の否定として「 $x \notin y$ 」と書く。このテキストで新たに導入する記号,例えば \models に対しても同様に $\not\models$ のようにして、このルールを適用する。

Definition 0.0.2 (集合 (E:p1 2, K:p2)).

ものの集まりのことを set (集合) という.

ここでいう「もの」のことを member(要素)または element(元)と呼ぶ. この「もの」のことをオブジェクトとも呼んだりする. 4 オブジェクト x,y が同一のものであるとき, x=y と表す.

ものtが集合Aの要素であることを $t \in A$ で表す.

集合 A, B に対して

どのオブジェクト t についても, $t \in A$ であれば $t \in B$ であり, かつ $t \in B$ であれば $t \in A$ である

(論理式で書けばたとえば $\forall t (t \in A \rightarrow t \in B \land t \in B \rightarrow t \in A)$ や、 $\forall t (t \in A \Leftrightarrow t \in B)$ となる) をみたすとき、集合 A, B は等しいと言い、A = B で表す.

<u>Definition</u> 0.0.3 (E:p2, K:p2).

オブジェクト t と集合 A に対して、その要素が t か A に属する要素のみであるような集合を A;t で表す.

のちに定義する和集合記号 \cup を用いて定義しなおせば, $A;t\stackrel{\mathrm{def}}{=}A\cup\{t\}$ となる. 「 $\stackrel{\mathrm{def}}{=}$ 」という表記に関してはすぐ下の Notation を参照のこと. 5

Notation 0.0.4 (定義するための記号).

もの(数学的対象)を定義するさいに「 $\stackrel{\text{def}}{=}$ 」、 $\stackrel{6}{=}$ (数学的な)述語を定義するさいに「 $\stackrel{\text{def}}{\Longleftrightarrow}$ 」を用いる. 使い方としてはこれら

- 1 原書でも和訳でも ⊣となっていますが、私が普段使わないので □ にさせてもらうことにしました.
- 2 「 $\bigcirc\bigcirc$ \Rightarrow ××」のような形の命題があったとき , $\bigcirc\bigcirc$ の部分をこの命題の前件, ××の部分をこの命題の後件と読んだりします . 原著でも和訳でも「… ならば… である」と前件も貢献も「…」で表現されていますが, 細かいことをいうと, これだと前件も後件も同じ主張が入るのかなと誘導しそうだと思い, 自分では $\bigcirc\bigcirc$ と××を使ってみました .
- 3 ∴ は普段から使わないのでこのノートでも使わないと思います。それとは別に ∵ は普段から積極的に使っているので、ここに載せました。また ∵ を使ったときにどこからどこまでがその理由であるか、理由が長ければ長いほど分かりにくくなるので、ぶら下げを使うことにしています。これの利点は証明を読む場合にその理由を読む必要がなければ、ぶら下げ部分全体を目で飛ばしてしまえばいいからです。これと同じで証明中の場合分けや、同値証明を含意方向別に見やすくするため、つまり必要条件確認と十分条件確認を分けて見やすくするために、その各部分にぶら下げを使ったりしています。
 - 4個人的には「元」というと、その集合に演算が入っているようなイメージがあるので、単なる集合の属するものに対しては「要素」を使っていきます.
 - 5 この A;t という記法はここで初めて見た. どこまでメジャーなんだろうか.
- 6 この記号はテキストでは導入されていないが、ほかの数学書でもよく使うし表現を簡略化するためにも積極的に使っていく。また「 $\stackrel{\mathrm{def}}{=}$ 」の代わりに「:=」はよく使われている印象がある。ただこれは証明内での一時的な定義にも使用している人もいるような気がする。

souji ノート

に記号の左側に変数などを利用した新たなものや述語を記述し、右側に日常言語で書かれたそれらの定義を書く. ここまでの定義を使用例を出すと

- A; $t \stackrel{\text{def}}{=}$ その要素が t か A に属する要素のみであるような集合(Definition 0.0.3)

Proposition 0.0.5.

オブジェクト t と集合 A に対して, $t \in A \Leftrightarrow A; t = A$.

 $t \in A \Rightarrow A; t = A$ の証明

 $t \in A$ とすると, t はすでに A の要素であるため, A; t のどの要素も A の要素であり t も含めてそれ以外の要素が含まれることがない. つまり A; t = A.

 $A; t = A \Rightarrow t \in A$ の証明

A; t = A とすると、集合 A; t のどの要素も A の要素であるから、A; t に属する t もまた A の要素でなくてはならない. つまり $t \in A$.

Definition 0.0.6 (空集合 (E:p2, K:p2 3)).

要素を全く持たない集合を **empty set**(**空集合**)といい, \emptyset で表す. 集合 A が空であることは $A = \emptyset$ で表せ, (論理式で書けば 例えば $\forall x (x \notin A)$ となる) 空集合でない集合を **non empty** な(空でない)集合と呼ぶ.

Definition 0.0.7 (外延的記法 (E:p2, K:p3)).

オブジェクト x, x_1, \ldots, x_n に対して,

- 1. x のみを要素にもつ集合を $\{x\}$ で表す.
- 2. $x_1, ..., x_n$ のみを要素にもつ集合を $\{x_1, ..., x_n\}$ で表す.
- $3.~\{0,1,2,\ldots\}$ は自然数全体の集合 $\mathbb N$ を表し, $\{\ldots,-2,-1,0,1,2,\ldots\}$ は整数全体の集合 $\mathbb Z$ を表す.

集合は要素の表現の順番を変えても同じ集合である.

Proposition 0.0.8 (E:p2, K:p3).

オブジェクト x, y に対して, $\{x, y\} = \{y, x\}$ である.

Proof 証明略.

Definition 0.0.9 (内包的記法 (E:p2, K:p3)).

 $\{x \mid x_{-}\}$ と書いて x_{-} をみたす全てのオブジェクトの集合を表す. ⁷⁸

Definition 0.0.10 (部分集合 (E:p2, K:p3)).

集合 A,B に対して集合 A の要素がすべて B の要素でもあるとき, A は B の \mathbf{subset} (部分集合) であるといい, $A \subseteq B$ で表す. (論理式で書けば $\forall x(x \in A \to x \in B)$ となる)

 $^{^7}$ ここはテキストにならったのだけど, _x_ はかなり曖昧だと思いました. x に関する命題とか文と言ってしまえば, これから命題や文という単語を対象につけることがあるような当分野においては避けたい表現ではある(そして表現という単語も今後登場する………). _x_ の代わりに P(x) や $\varphi(x)$ などを使って, x を変数とする命題かのように表現することもありますが, それもこの場合は意図的に避けたのだろうと思います. 避けた理由としては, 今度は主張における変数とは何かを説明しなくてはならないからでしょうか.

 $^{^8}$ テキストでは「この書き方はめいっぱい柔軟に用いることにする」とあり、その使用例として $\{\langle m,n\rangle\mid m,n$ は $\mathbb N$ の要素で $m< n\}$ が挙げられています。論理記号を使って書けば $\{\langle m,n\rangle\mid m,n\in\mathbb N\land m< n\}$ となります。ここにおいて「柔軟」という言い方も曖昧だと思います。定義にある書き方になぞるならこの集合は $\{x\mid\exists m,n\in\mathbb N(\ x=\langle m,n\rangle\land m< n\}$ と書くべきでしょうか。ちなみに [5] では内包的記法における | の左に変数一文字ではなく、いくつかの変数を用いた表現が使われている記法を、内包的記法と区別して置換型記法と呼んでいたりします。たしかにこの 2 つの記法は同じではないので、区別する必要があると思われます(普通の数学書でそう区別はしないことは多いと思うが)。なのでここの柔軟さはかなり曖昧に思えました。

souji ノート

Proposition 0.0.11 ((E:p2, K:p3)).

∅はどんな集合に対しても部分集合となる.

Proof 証明略.

Definition 0.0.12 (べき集合 (E:p2, K:p3)).

集合 A に対して A のすべての部分集合からなる集合を A の power set (べき集合) とよぶ, $\mathcal{P}(A)$ で表す. より正確には $\mathcal{P}(A) \stackrel{\text{def}}{=} \{ X \mid X \subseteq A \}.$

Example 0.0.13 (E:p3, K:p4).

 $\mathcal{P}(\emptyset) = \{\emptyset\}$

 $\mathcal{P}(\{\emptyset\}) = \{\emptyset, \{\emptyset\}\}$

Definition 0.0.14 (和集合と共通部分 (E:p3, K:p4 5)).

A,B を集合, A を全ての要素が集合であるような集合とする. 10 11 さらに各自然数 n に対して集合 A_n が定まっているとする.

- 1. $A \cup B \stackrel{\text{def}}{=} \{x \mid x \in A \text{ または } x \in B\} \ (= \{x \mid x \in A \lor x \in B\}) \text{ とし, これを } A \land B \text{ O union } ($ 和集合) という.
- 2. $A \cap B \stackrel{\text{def}}{=} \{x \mid x \in A \text{ かつ } x \in B\} \ (= \{x \mid x \in A \land x \in B\}) \ \text{とし, これを } A \land B \text{ o intersection} \ (共通部分) \ \text{という.}$
- 3. $A \cap B = \emptyset$ であるとき, $A \subset B$ は disjoint (交わらない) という. A のどの 2 個の要素も交わらないとき, A は pairwise disjoint (互いに交わらない)という.
- 4. $\bigcup A \stackrel{\text{def}}{=} \{x \mid x \text{ it } A \text{ on } \text{virth} \text{no } \text{ops} \text{ seconds} \}$ (= $\{x \mid \exists A (x \in A \land A \in A)\}$) とし、これを A on union (和集合) と いう.
- 5. $\bigcap A \stackrel{\text{def}}{=} \{x \mid x \text{ it } A \text{ opt (Top gas (A missing)}\} (= \{x \mid \forall A(x \in A \land A \in A)\}) \text{ bl., Che } A \text{ of intersection} (共通$ 部分)という.
- 6. $\bigcup_{n\in\mathbb{N}}A_n\stackrel{\text{def}}{=}\bigcup\{A_n\mid n\in\mathbb{N}\}$ とする. これを単に \bigcup_nA_n と表すこともある. 12

Example 0.0.15 (E:p3, K:p4 5).

t をオブジェクト, A, B を集合, $A = \{\{0, 1, 5\}, \{1, 6\}, \{1, 5\}\}\}$ という集合族とする.

- 1. $A; t = A \cup \{t\}.$
- 2. $\bigcup A = \{0, 1, 5, 6\}.$ $\bigcap \mathcal{A} = \{1\}.$
- 3. $A \cup B = \bigcup \{A, B\}.$
- 4. ||P(A)| = A.

Definition 0.0.16 (順序対 (E:p3 4, K:p5)).

オブジェクト $x, y, z, x_1, \ldots, x_n, x_{n+1}$ に対して

1. $\langle x,y \rangle \stackrel{\text{def}}{=} \{\{x\},\{x,y\}\}\$ とし、これを x と y の ordered pair (順序対) という. 13 順序対 $\langle x,y \rangle$ における x,y をこの順序 対の成分といい、とくにxを第一成分、yを第二成分と呼んだりする。 14

 $^{^{9}}$ テキストでは $\mathcal{P}A$ だが個人的には $\mathcal{P}(A)$ が好きなのでこちらを使っていくことにしました.

 $^{^{10}}$ テキストではいきなりこんな集合が登場したけど,なんで「集合族」のような語を用意しなかったのだろうか.

¹¹ テキストでは集合でも集合族でも単なる A で表現していた. 個人的には集合族には記号の衝突が起こらない(つまり理論を展開するさいに必須な記号と 被らない) かぎり, 集合族には筆記体 (カリグラフィーとどう違うのか分からないけれども………) を使うのが好み.

 $^{^{12}}$ これは添え字付き集合族の和集合ともいえるものだけど、なぜ添え字付き集合族の共通部分は定義しなかったのだろう(単に今後使わないだけ?). 13 これは順序対の Kuratowski 流の定義と言われています.他の流儀などは Wikipedia『順序対』[1] も参考に.

¹⁴ 定義されていなかった言葉遣いだったのでなんとなく定義しておいた.

- $2. \langle x, y, z \rangle \stackrel{\text{def}}{=} \langle \langle x, y \rangle, z \rangle$ とし、より一般的に n > 1 に対して $\langle x_1, \dots, x_{n+1} \rangle \stackrel{\text{def}}{=} \langle \langle x_1, \dots, x_n \rangle, x_{n+1} \rangle$ と帰納的に定義する.
- 3. とくに $\langle x \rangle = x$ と定義する. ¹⁵

<u>Definition</u> 0.0.17 (有限列 (E:p4, K:p5)).

集合 A に対して

1. S が A の要素からなる finite sequence(有限列)(あるいは string(列))であるとは、ある正の整数 n について $S=\langle x_1,\ldots,x_n\rangle$ で各 x_i が A の要素であるときとする.(論理式で書くと $\exists n\in\mathbb{Z}(\ n>0\ \land\ x_1,\ldots,x_n\in A\ \land\ S=\langle x_1,\ldots,x_n\rangle$))

またこのときのnを有限列Aの長さとよぶ. 16

2. A の要素からなる有限列 $S = \langle x_1, \ldots, x_n \rangle$ に対し、 $1 \le k \le m \le n$ な k, m でもって $\langle x_k, x_{k+1}, \ldots, x_{m-1}, x_m \rangle$ な形の有限 列を S の segment(区間)という。とくに k = 1 な区間を S の initial segment(始切片)といい、 $m \ne n$ な始切片を S の proper initial segment(真の始切片)という。

Proposition 0.0.18 (E:p4, K:p6).

オブジェクト
$$x_1, \ldots, x_n, y_1, \ldots, y_n$$
 に対して $\langle x_1, \ldots, x_n \rangle = \langle y_1, \ldots, y_n \rangle$ ならば, $1 \le i \le n$ な各 i について $x_i = y_i$.

Proof 示すべきことを論理式で書くと

$$\forall n \in \mathbb{N} (\forall x_1, \dots, x_n, y_1, \dots, y_n (\langle x_1, \dots, x_n \rangle = \langle y_1, \dots, y_n \rangle \rightarrow \forall i (1 \le i \le n \to x_i = y_i)))$$

よって $n \in \mathbb{N}$ について数学的帰納法を用いて証明する.

(Basis)

その定義より $\langle x \rangle = x$ だから, $\langle x_1 \rangle = \langle y_1 \rangle$ ならば $x_1 = y_1$ である.

(Induction step)

n のときに成立しているとする. 任意に取った $x_1,\ldots,x_n,x_{n+1},y_1,\ldots,y_n,y_{n+1}$ に対して, $\langle x_1,\ldots,x_n,x_{n+1}\rangle=\langle y_1,\ldots,y_n,y_{n+1}\rangle$ だったとする. 一般的な順序 n 個組の定義から

$$\langle x_1, \dots, x_n, x_{n+1} \rangle = \langle \langle x_1, \dots, x_n \rangle, x_{n+1} \rangle$$

 $\langle y_1, \dots, y_n, y_{n+1} \rangle = \langle \langle y_1, \dots, y_n \rangle, y_{n+1} \rangle$

であり, 今順序対の定義から第一成分・第二成分同士が等しいので,

$$\langle x_1, \dots, x_n \rangle = \langle y_1, \dots, y_n \rangle$$

 $x_{n+1} = y_{n+1}$

今に任意に取られた n 個の要素たちについては

$$\langle x_1, \dots, x_n \rangle = \langle y_1, \dots, y_n \rangle \rightarrow \forall i (1 \le i \le n \rightarrow x_i = y_i)$$

が成立しているので, $x_{n+1}=y_{n+1}$ とまとめると, $\forall i (1 \leq i \leq n+1 \rightarrow x_i=y_i)$ となるので, n+1 の場合も OK.

Lemma 0.0.19 (E:p4 LEMMA 0A, K:p6 補題 0A).

$$\langle x_1,\ldots,x_m\rangle=\langle y_1,\ldots,y_m,\ldots,y_{m+k}\rangle$$
 is bif $x_1=\langle y_1,\ldots,y_{k+1}\rangle$.

 $^{1^{5}}$ これの妥当性として,すぐ後ろで $\langle x,y \rangle$ とは x,y とオブジェクトが並んだ列と見なすので, $\langle x \rangle$ とは x^{1} つが並んでいる初項のみの列と思えば $\langle x \rangle = x$ であるほうが自然に見える.また Kuratowski 流の定義によれば $\langle x,x \rangle = \{\{x\}\}$ となりこれと単なる x とを区別しやすくなる. 1^{6} テキストにおいて写像における有限列の定義について言及しているが,これは例えば長さ n の A の有限列 S は $\{1,\ldots,n\}$ から A への写像として定義できる.

Proof 示すべきことを論理式で書けば

 $\forall k \in \mathbb{N} \left(\forall m \in \mathbb{N} \forall x_1, \dots, x_m, y_1, \dots, y_{m+k} \left(\langle x_1, \dots, x_m \rangle = \langle y_1, \dots, y_m, \dots, y_{m+k} \rangle \right. \rightarrow x_1 = \langle y_1, \dots, y_{k+1} \rangle \right) \right)$

となる. 任意に $k \in \mathbb{N}$ をとる. このあとの主張に対して $m \in \mathbb{N}$ についての数学的帰納法を用いる.

(Basis)

m=1 を仮定に代入すると $\langle x_1 \rangle = \langle y_1, y_2, \dots, y_{1+k} \rangle$ となり、定義より $\langle x_1 \rangle = x_1$ から成立.

(Induction step)

m のときに成立しているとする. $\langle x_1,\ldots,x_{m+1}\rangle=\langle y_1,\ldots,y_m,\ldots,y_{m+1+k}\rangle$ を仮定する. 一般順序組の定義から

$$\langle x_1, \dots, x_{m+1} \rangle = \langle \langle x_1, \dots, x_m \rangle, x_{m+1} \rangle$$
$$\langle y_1, \dots, y_m, \dots, y_{m+1+k} \rangle = \langle \langle y_1, \dots, y_{m+k} \rangle, x_{m+k+1} \rangle$$

つまり各第一成分が等しいということなので

$$\langle x_1, \dots, x_m \rangle = \langle y_1, \dots, y_{m+k} \rangle$$

が分かり, m のときに成立していたことから $x_1 = \langle y_1, \dots, y_{k+1} \rangle$ であることが分かる.

テキストでは例えとして「たとえば、A は集合で、A のどの要素も他の要素からなる有限列とは一致しないと仮定します。そのとき、 $\langle x_1,\ldots,x_m\rangle=\langle y_1,\ldots,y_n\rangle$ であって、 x_i や y_i それぞれが A に属する場合、上の補題によって m=n です。さらに、結果的に、それぞれの i について $x_i=y_i$ となります。」とありますが個人的に分かりづらかったので具体例を挙げる.

Example 0.0.20.

集合 A を $A = \{0,1,\langle 2,3\rangle\}$ とすると、この A の要素で(集合として)等しくなるようなどんな 2 つの n 個組を作っても、それが等しい限りはその長さも構成成分の順番も等しくなる.

逆に $A = \{0, 1, \langle 0, 1 \rangle, \langle 0, 1, 0 \rangle\}$ として, A の有限列 S_1, S_2 を

$$S_1 = \langle \langle 0, 1, 0 \rangle, 1 \rangle$$

$$S_2 = \langle \langle 0, 1 \rangle, 0, 1 \rangle$$

とすると, この 2 つは(集合として) $S_1=S_2$ ではあるが, S_1 の長さは 2 で S_2 の長さは 3, よって長さは一致せず, ゆえに構成成分も一致しない.

ここで有限列の長さの定義の曖昧さが少し影響がでてくる。たとえば Example 0.0.20 の S_1 は $\langle\langle 0,1,0\rangle,1\rangle=\langle\langle 0,1\rangle,0,1\rangle$ でもあるから,これの長さとして 2 か 3 のどちらを採用すればよいか混乱する。テキストに書いてある注意事項のように,写像で定義すれば問題は解決できる。 関数の定義の先取りにはなってしまうが,たとえば S_1 を S_1 : $\{1,2\}\to A$ として, $S_1(1)=\langle 0,1,0\rangle$, $S_1(2)=1$ とすればよい.すると S_1 と S_2 はそもそも定義域が違う別の関数となるので混乱がなくなる.しかしながら 1 章以降は $\{0,1,\langle 0,1\rangle,\langle 0,1,0\rangle\}$ のような集合から有限列を構成したりはしない.つまり $\{0,1,\langle 2,3\rangle\}$ のような「どの要素も他の要素からなる有限列とは一致しない」集合を扱うときには,長さの定義に曖昧さがでることはないので,特に長さの定義を意識する必要はないということである.最初にこれの注意に該当することは Theorem 0.0.35 (13 ページ)や,Definition ??(??ページ)下の注意事項 7 があてはまる.

<u>Definition</u> 0.0.21 (直積集合 (E:p4, K:p6)).

集合 A, B と n > 1 な $n \in \mathbb{N}$ に対し

- 1. $A \times B \stackrel{\text{def}}{=} \{ \langle a, b \rangle \mid a \in A \text{ かつ } b \in B \} \text{ とし, これを } A \text{ と } B \text{ O Cartesian product (直積集合) という.}$
- 2. $A^n \stackrel{\text{def}}{=} A^{n-1} \times A$ と帰納的に定義する. たとえば $A^3 = (A \times A) \times A$ である.

Definition 0.0.22 (関係 (E:p4 5, K:p6 7)).

集合 A, B, R と n > 0 な $n \in \mathbb{N}$ に対し

- 1. Rのすべての要素が順序対であるとき, R を relation (関係) という.
- 2. 関係 R に対して $\mathrm{dom}(R) \stackrel{\mathrm{def}}{=} \{x \mid \mathsf{bso}\ y$ について $\langle x,y \rangle \in R\}$ とし、これを関係 R の domain (定義域) という. さらに $\mathrm{ran}(R) \stackrel{\mathrm{def}}{=} \{y \mid \mathsf{bso}\ x$ について $\langle x,y \rangle \in R\}$ とし、これを関係 R の range (値域) という. さらに $\mathrm{fld}(R) \stackrel{\mathrm{def}}{=} \mathrm{dom}(R) \cup \mathrm{ran}(R)$ とし、これを関係 R の field (領域) という. $^{17\ 18}$
- 3. $R \subset A^n$ であるとき、そんな R を A 上の n 項関係という.
- $A. B \subseteq A$ かつ R が A 上の n 項関係であるとき, $R \cap B^n$ を R の B への restriction (制限) という.

Example 0.0.23 (E:p4 5, K:p6 7).

集合 $R_1, R_2 \subseteq \mathbb{N}^2$ に対し

- 1. $R_1 = \{\langle 0,1 \rangle, \langle 0,2 \rangle, \langle 0,3 \rangle, \langle 1,2 \rangle, \langle 1,3 \rangle, \langle 2,3 \rangle\}$ とおくと、 R_1 は 0 から 3 までの数の間の大小関係となる. さらに $dom(R) = \{0,1,2\}$, $ran(R) = \{1,2,3\}$, $fld(R) = \{0,1,2,3\}$ となる.
- 2. $R_2 = \{ \langle m, n \rangle \mid m < n \}$ とおくと、 R_2 は \mathbb{N} 上の大小関係となり、 $B = \{0, 1, 2, 3\}$ とすれば $R_1 = R_2 \cap B^2$ となるから R_1 は R_2 の B への制限である.

Definition 0.0.24 (写像 (E:p5, K:p7 8)).

集合 A, B と関係 F に対して

- 1. F が $\lceil \text{dom}(F)$ のそれぞれの要素 x について、 $\langle x,y \rangle \in F$ なる y がただひとつ存在する」(論理式で書くと $\forall x \in \text{dom}(F)$ ∃! $y(\langle x,y \rangle \in F)$)をみたすとき、F は function(写像)であるという。 19 このとき $x \in \text{dom}(F)$ に対して一意的に存在している y のことを F(x) で表し、F の x における value(値)という.
- 2. 写像 F が dom(F) = A かつ $ran(F) \subseteq B$ をみたすとき, F は A を B に写すといい, $F: A \to B$ で表す. 20
- 3. $F: A \to B$ であるとき, $\operatorname{ran}(F) = B$ をみたすとき, F は A から B への surjection (全射)²¹ であるといい, $F: A \xrightarrow{\operatorname{onto}} B$ で表す. ²²

「 $\operatorname{ran}(F)$ のそれぞれの要素 y について, $\langle x,y \rangle \in F$ をみたす x がただひとつ存在する」(論旨式で書くと $\forall y \in \operatorname{ran}(F)$ ∃! $x(\langle x,y \rangle \in F)$) 23 をみたすとき, F は A から B への injection(単射) 24 であるといい, F: $A \xrightarrow{1-1} B$ で表す. 25 全射かつ単射な写像を bijection(全単射)といい, 26 F: $A \xrightarrow{\text{onto}} B$ で表す. 27

- 4. オブジェクト x,y とその順序対 $\langle x,y \rangle$ と写像 F に対して, $\langle x,y \rangle \in \text{dom}(F)$ であるとき $F(\langle x,y \rangle)$ を単に F(x,y) で表す. より一般的に $F(\langle x_1,\ldots,x_n \rangle)$ を $F(x_1,\ldots,x_n)$ で表す. ²⁸
- 5. $F = \{\langle x, x \rangle \mid x \in A\}$ であるとき, $F \in A$ 上の identity function(恒等写像)といい, この $F \in \mathrm{id}_A$ で表す. 29

¹⁷ テキストでは dom(R), ran(R), fld(R) ではなく dom(R), fld(R) ではなく fld(R) ではない fld(R) では

 $^{^{18}}$ fld(R) というものはここで初めて見た.

¹⁹ 個人的には map は写像, function は関数と訳すのが好みですが, ここはテキストとその和訳に合わせて function を写像と訳すことにします.

 $^{^{20}}$ これを見たときもしかしたら $\operatorname{ran}(R)$ の部分集合関係に合わせて $\operatorname{dom}(F) \subseteq A$ としなくてはいいのかと、疑問に思う人もいるかもしれません。もしそうすると定義域に対応要素のない要素が存在することを許してしまいます。それを許したうえで $\operatorname{dom}(F) = A$ なる写像に全域写像と名付ける流儀もあります。たとえば [5] では $\operatorname{dom}(F) \subseteq A$ かつ $\operatorname{ran}(F) \subseteq B$ なるものを [A から B への部分写像」、F による x の値が存在しないとき [F(x)] は未定義」といい、部分写像が $\operatorname{dom}(F) = A$ を満たした場合にそれを全域写像もしくは単に写像と呼んでいます。

 $^{^{21}}$ このテキストでは「B 全体へ写す」と表現しています.それならまだしも「上への写像」という言い方もありますが,これは何が「上」なのか個人的にイメージしづらく使わないようにしています.

²² これはテキストでは導入されていなかったけれど、あると便利なので導入しました.

 $^{2^3}$ ここでの単射の定義は初見では違和感がありました。なぜなら普段私は $F\subseteq A\times B$ かつ $\forall a\in A\exists!b\in B(\langle a,b\rangle\in F)$ をみたすものを、A から B への写像とよび $F\colon A\to B$ と表し、 $\mathrm{ran}(F)=B$ としていたためです。ここでの定義ならこれでよいと思われるが、個人的にはやはり「 $\forall x_1,x_2,y(\ \langle x_1,y\rangle\in F\land \langle x_2,y\rangle\in F\to x_1=x_2$)」もっと分かりやすくして「 $\forall x_1,x_2(\ F(x_1)=F(x_2)\to x_1=x_2$)」か、「 \to 」部分で対偶をとった「 $\forall x_1,x_2(\ x_1\neq x_2\to F(x_1)\neq F(x_2)$)」の方が好みです。

 $^{^{24}}$ このテキストでは「F が 1 対 1 である」と表現している. しかし全単射に対してこの言い方を使うテキストもあるし, 個人的には全単射の方が 1 対 1 なるイメージを持っているためここでは「単射」を使うことにしました.

²⁵ これも上に同様.

²⁶ テキストでは定義されていなかったので用意しておいた.

²⁷ 同上.

²⁸ つまり普段 2 変数関数で使う記法を導入したことになるのだろう.

 $^{^{29}}$ テキストでは Id と書いているが「A 上の」というからにはせめて Id_A と書く方が好き.そして Id より id が好きなのでこのように定義しました.

Definition 0.0.25 (演算 (E:p5, K:p8)).

集合 A, B と関係 f, g に対して

- 1. $f: A^n \to A$ であるとき f を $A \perp O$ n-ary operation (n 項演算) であるという.
- 2. A 上の n 項演算 f と $B \subseteq A$ な集合 B に対して, $g = f \cap (B^n \times A)$ をみたす g を f の B への restriction(制限)という. 30
- 3. A 上の n 項演算 f に対して、集合 $B \subseteq A$ が f について閉じているとは、どの $b_1, \ldots, b_n \in B$ についても $f(b_1, \ldots, b_n) \in B$ をみたす(論理式で書くと $\forall b_1, \ldots, b_n \in B$ $(f(b_1, \ldots, b_n) \in B)$)ときをいう.

Example 0.0.26 (E:p5, K:p8).

- 1. S_1 が任意の $m, n \in \mathbb{N}$ に対し $S_1(m, n) = m + n$ をみたすとすると, S_1 は \mathbb{N} 上の加法という \mathbb{N} 上の 2 項演算となる.
- 2. S_2 が任意の $n \in \mathbb{N}$ に対し $S_2(n) = n+1$ をみたすとすると, S_2 は \mathbb{N} 上の直後の自然数を与えるという \mathbb{N} 上の 1 項(単項) 演算となる. 31
- 3. $P: \mathbb{R}^2 \to \mathbb{R}$ が任意の $r_1, r_2 \in \mathbb{R}$ に対し $p(r_1 + r_2) = r_1 + r_2$ をみたすとすると, P は \mathbb{R} 上の加法という \mathbb{R} 上の 2 項演算となり, 1. の S_1 は P の \mathbb{N} への制限, つまり $S_1 = P \cap \mathbb{N}^3$ となっている.

Example 0.0.27 (E:p5, K:p8).

集合 A, B に対して

- 1. f を A 上の n 項演算, $B \subseteq A$ とし, g を f の B への制限とする. g が B 上の n 項演算となることと, B が f について閉じていることは同値である.
- 2. A 上の恒等写像 id_A は(何もしない・作用しないという) A 上の単項演算である.

Proof 1. のみ示す. 主張「g が B 上の n 項演算となること」を (1), 「B が f について閉じている」を (2) とおいて, (1) ⇒ (2) と (2) ⇒ (1) の 2 つを示す.

 $(1) \Rightarrow (2)$

f の B への制限 g が今 B 上の n 項演算であることから, $\mathrm{dom}(g) = B^n$ かつ $\mathrm{ran}(g) \subseteq B$ をみたしている, もっというと $g = f \cap B^{n+1} = f \cap (B^n \times B)$ をみたしている, これはつまり (2) をみたしていることになる.

 $(2) \Rightarrow (1)$

B が f について閉じている、つまり $g=f\cap B^{n+1}=f\cap (B^n\times B)$ となっているので、 $\mathrm{dom}(g)=B^n$ かつ $\mathrm{ran}(g)\subseteq B$ を みたしている、これはつまり (1) をみたしていることになる.

普段閉じている演算ばかりを見ているので、逆に閉じてない演算とはどんな例があるかという議論があったのでここにまとめる. \mathbb{R} 上の 2 項演算 +, -, \times にて \mathbb{R} は閉じている. 有理数全体の集合を \mathbb{Q} とすると、 \mathbb{Q} 上のこれらの演算は \mathbb{R} の演算の \mathbb{Q} への制限となる. そして \mathbb{Q} についても、そして \mathbb{Z} についても閉じている. しかし演算 - は \mathbb{N} については閉じていない.

÷についてはそもそもどう定義するか(0で割ることをどう避けるか)によって議論が変わりそうであるが、どのように定義したとしても \mathbb{R} と \mathbb{Q} については閉じているが、 \mathbb{N} や \mathbb{Z} については閉じていないであろう.

Definition 0.0.28 (同値関係と順序関係 (E:p5 6, K:p8 9)).

集合 A と関係 R に対して

- 1. R が A 上で **reflexive**(反射的)とは、任意の $x \in A$ について $\langle x, x \rangle \in R$ であるこという.
- 2. R が **symmetric** (対称的) とは, 任意の x,y に対して $\langle x,y \rangle \in R$ ならば $\langle y,x \rangle \in R$ であるこという.
- $\overline{}^{30}$ この g のことを $f \mid B$ や $f \mid_B$ で表すことがあります.個人的には $f \mid B$ が好き(初めて見た記法がこれだったからという理由で).

³¹ これはよく後者関数と呼ばれています.

- 3. R が transitive (推移的) とは, 任意の x, y, z に対して $\langle x, y \rangle \in R$ かつ $\langle y, z \rangle \in R$ ならば $\langle x, z \rangle \in R$ であるこという.
- 4. R が A 上で **trichotomy**(三分律)をみたすとは、任意の x,y に対して $\langle x,y \rangle \in R$, x=y, $\langle y,x \rangle \in R$ のいずれか 1 つを みたすこという.
- 5. R が A 上の equivalence relation(同値関係)であるとは, R が A 上の 2 項演算でかつ A 上で反射的・対称的・推移的であるときをいう.
- 6. R が A 上の ordering relation (順序関係) であるとは, R が A 上の 2 項演算でかつ推移的であり A 上で三分律をみた すときをいう.

Definition 0.0.29 (同値類 (E:p6, K:p9)).

集合 A 上の同値関係 R と $x \in A$ に対して $[x] \stackrel{\text{def}}{=} \{y \mid \langle x,y \rangle \in R\}$ とし、これを x の equivalence class(同値類)という. さらに集合 $\{[x] \mid x \in A\}$ を $A \setminus R$ で表し、集合 A の同値関係 R による quotient set(商集合)という. $\frac{32}{4}$

Proposition 0.0.30 (E:p6, K:p9).

集合 A 上の同値関係 R に対して, A の各要素の同値類全体は A の分割となる.

Proof $A \subseteq \mathcal{P}(A)$ が A の分割であるとは, A が互いに素でかつ $\bigcup A = A$ をみたすこととし, これを $\{[x] \mid x \in A\} \subseteq \mathcal{P}(A)$, つまり先に定義した $A \setminus R$ に対してこれを示す.

A が互いに素であること

任意に $X \neq Y$ な $X,Y \in A \setminus R$ をとると、それぞれに対し $x,y \in A$ が存在して X = [x], Y = [y] となっている.

 $[x]\cap [y]=\emptyset$ であることを示すため, $z\in [x]\cap [y]$ なる z が存在したとする. $z\in [x]$ より $\langle x,z\rangle\in R$, 同様に $\langle y,z\rangle\in R$. $\langle y,z\rangle\in R$ と R が A 上の同値関係より対称的であることから $\langle z,y\rangle\in R$. さらに $\langle x,z\rangle\in R$ と R が推移的であることから $\langle x,y\rangle\in R$.

ここで $\forall a,b \in A(\ \langle a,b \rangle \in R \ \rightarrow \ [a] = [b] \)$ である. (この証明には必要ないが $\forall a,b \in A(\ [a] = [b] \ \rightarrow \ \langle a,b \rangle \in R \)$,つまり $\forall a,b \in A(\ \langle a,b \rangle \in R \ \Leftrightarrow \ [a] = [b] \)$ も示せる)

: 任意に $a,b \in A$ をとり $\langle a,b \rangle \in$ とする. $[a] \subseteq [b]$ を示すためさらに任意に $c \in [a]$ をとる. $\langle a,b \rangle \in R$, $\langle a,c \rangle \in R$ より R が対称的かつ推移的なので $\langle b,c \rangle \in R$, つまり $c \in [b]$. 同様にして $[b] \subseteq [a]$ であることもわかる. つまり [a] = [b].

よって $\langle x,y \rangle \in R$ から [x] = [y] であるが、これは仮定の $[x] \neq [y]$ に矛盾.

$\bigcup A \backslash R = A \ \mathcal{C}$ あること

 $\bigcup A \backslash R \subseteq A$ であることは明らか. $A \subseteq \bigcup A \backslash R$ を示すため任意に $x \in A$ をとる. R が A 上反射的であることから $x \in [x]$, つまり $[x] \neq \emptyset$ で、そして $[x] \subseteq A \backslash R$ より $x \in \bigcup A \backslash R$.

ここからはテキスト通り、集合の濃度の話に移る(可算までしかでてこないが).

Notation 0.0.31 (E:p6, K:p9) .

自然数全体の集合 {0,1,2,...} を N で表す.

ここに「個々の自然数そのものを集合を使って定義する方法もあります」とあって、テキストにある通り、それに触れている○ ○節を見ると、*ZF* 公理系からの数学展開でよくやる Neumann 流の順序数の定義の仕方を使うものだった.

Definition 0.0.32 (E:p6, K:p9).

集合 *A* に対して

³² テキストでは定義してなかったですが、すぐ下の補題を示すときに記法として欲しかったので定義しておきました.

- 1. 集合 A が finite(有限)であるとは、ある自然数 $n \in \mathbb{N}$ と A から $\{0,1,\dots,n-1\}$ 写像 f があって、f が全単射になって いることをいう(論理式で書くと $\exists n \in \mathbb{N} \exists f(\ f \colon A \xrightarrow[]{1-1}{\text{outo}} \{0,1,\dots,n-1\}\))$.
- 2. 集合 A が infinite(無限)であるとは、有限でないときをいう。 つまり任意の $n \in \mathbb{N}$ に対して A から $\{0,1,\ldots,n-1\}$ への全単射写像が存在しないことをいう。 言い換えればどんな A から $\{0,1,\ldots,n-1\}$ の写像も全単射にならないともいえる。 33
- 3. 集合 A が at most countable (高々可算) であるとは、A から \mathbb{N} への単射写像が存在するこという.
- 4. 集合 A が countable (可算) であるとは, A から \mathbb{N} への全単射写像が存在するこという. ³⁴

Proposition 0.0.33 (E:p6, K:p9).

有限集合は高々可算.

Proof A を有限集合とすると、その定義より A に対し存在する $n \in \mathbb{N}$ と $f: A \to \{0, 1, \dots, n-1\}$ をそれぞれ固定します. $f_{\mathbb{N}}: A \to \mathbb{N}$ を $f_{\mathbb{N}}(a) = f(a)$ で定義すれば、 $f_{\mathbb{N}}$ は確かに A から \mathbb{N} への写像であり、f が単射であることから $f_{\mathbb{N}}$ が単射であることも明らかである.

Proposition 0.0.34 (E:p6, K:p9).

高々可算な無限集合 A に対して A から \mathbb{N} への全単射写像が存在する.

Proof 高々可算な無限集合 A に対して、その定義から存在する単射写像 $f: A \to \mathbb{N}$ を 1 つ固定する. f は全射でない、つまり $\operatorname{ran}(f) \neq \mathbb{N}$ とする. $n_i \in \mathbb{N}$ を $\operatorname{ran}(f)$ の中での i 番目に小さい数、つまり $n_0 = \min \operatorname{ran}(f)$ 、 $n_{i+1} = \min (\operatorname{ran}(f) \setminus \{n_0, \ldots, n_i\})$ と帰納的に定義する. ここで A が無限であることと f が単射であることから、 $\operatorname{ran}(f)$ は無限集合なので、 n_i をとる操作が有限 で止まったりはしないことに注意.

そして $\operatorname{ran}(f) = \{n_i \mid i \in \mathbb{N}\}$ である. $g: \mathbb{N} \to A$ を $g(i) = f^{-1}(n_i)$ で定めると, g はその作り方から全単射であり, $f': A \to \mathbb{N}$ を $f'(a) = g^{-1}(a)$ で定めると, これもその作り方から A から \mathbb{N} への全単射である. $g: \mathbb{N} \to A$ を $g(i) = f^{-1}(n_i)$ で定めると, g はその作り方から g への全単射である. $g: \mathbb{N} \to A$ を $g(i) = f^{-1}(n_i)$ で定めると, g はその作り方から g から g なん

Theorem 0.0.35 (E:p6 THEOREM 0B, K:p10 定理 0B).

Aを高々可算集合とするとき、Aの要素からなる有限列全体の集合も高々可算.

Proof S を A の要素からなる有限列全体の集合とすると、有限列の定義 Definition 0.0.17 (8 ページ) から $S = \bigcup_{n \in \mathbb{N}} A^{n+1}$ となる。A が高々可算集合であるから、A から \mathbb{N} への単射 f を 1 つ固定する。S から \mathbb{N} への写像 g を、 $s = \langle a_0, \ldots, a_m \rangle \in S$ に対して

$$g(s) = \min \{ 2^{f(b_0)+1} \cdot 3^{f(b_1)+1} \dots p_n^{f(b_n)+1} \mid s = \langle b_0, \dots, b_n \rangle \land \langle b_0, \dots, b_n \rangle \in \mathcal{S} \}$$

で定める. ここで p_i は i 番目の素数を表しているとする.

ここで $g' \colon \mathcal{S} \to \mathbb{N}$ を, $g'(\langle a_0, \dots, a_m \rangle) = 2^{f(a_0)+1} \cdot 3^{f(a_1)+1} \dots p_m^{f(a_m)+1}$ と定めると, g はこの g' を用いて, $g(s) = \min\{g'(s') \mid s' \wedge s' = s\}$ や, $g(s) = \min g'[\{s' \mid s' \wedge s' = s\}]$ と書くことができる.

そして g は well-defined である(これについてのさらなる議論は証明後に).

³³ よくよく見てみれば「無限」であるということはキチンと定義されていなかったので追加しました. 一般的には無限とは有限でないという定義なので(それゆえに説明する必要がなかったのかも), ここでいう有限の定義の否定をその定義とすることにしました.

 $^{3^4}$ テキストではここでいう「高々可算」を「可算」と呼んでいます。つまり「高々可算」と「可算」を区別してません。個人的には高々可算は便利な言葉だと思っているのと,他のノートとの整合性をとるためにも高々可算と可算は区別しておこうと思います。ちなみに高々可算の「高々」は数学特有の言葉として説明しているものもあります。もし「高々有限」をこれと同じように定義すると, $\exists n \in \mathbb{N} \exists f (f:A \xrightarrow{1-1} \{0,1,\ldots,n-1\})$ となるでしょう。なので個別に「高々○○」を定義することも可能でしょうし,「高々」は特有の言葉遣いとして説明する方法もありそうです。「高々」を説明しているものとしては,例えば [2] や [6] の 37 ページなどです。

³⁵ テキストの口語的な説明の方が分かりやすいとは思ったけれど, あえて厳密に書くとこんな感じなのかなと.

: S のような集合は、Example 0.0.20(9 ページ)の 2 つ目の A のように $s_1 = \langle a_0, \ldots, a_m \rangle, s_2 = \langle b_0, \ldots, b_n \rangle \in S$ で、その長さが異なる、つまり $m \neq m$ であるにも関わらず、(集合として) $s_1 = s_2$ となる場合がある。そのような場合でも $g(s_1) = g(s_2)$ となることを確かめればよい。そしてそんな s_1, s_2 に対しても

$$g(s_1) = \min\{g'(s) \mid s \in \mathcal{S} \land s = s_1\}$$
$$= \min\{g'(s) \mid s \in \mathcal{S} \land s = s_2\}$$
$$= g(s_2)$$

となって, $g(s_1) = g(s_2)$ である.

写像 g は単射である.

: 任意に $s_1 \neq s_2$ なる $s_1, s_2 \in S$ をとり, $g(s_1) = g(s_2)$ だったとする. $g(s_1) = g(s_2)$ より $\min g'[\{s \in S \mid s = s_1\}] = \min g'[\{s \in S \mid s = s_2\}]$ だから, $n \in g'[\{s \in S \mid s = s_1\}] \cap g'[\{s \in S \mid s = s_2\}]$ なる $n \in \mathbb{N}$ が存在することになる. そんな n に対して g(s) = n かつ $s = s_1$ かつ $s = s_2$ なる $s \in S$ が存在することになる. するとこの s を介して $s_1 = s_2$ となるが、これは矛盾.

よってそんな単射写像 g の存在から S は高々可算である.

証明に関するさらなる議論として、テキストでは $g(s)=g(\langle a_0,\dots,a_m\rangle)=2^{f(a_0)+1}\cdot 3^{f(a_1)+1}\dots p_m^{f(a_m)+1}$ と定義してしまうと、つまり g' を g の定義としておくと、(こちらの方が各有限列を 1 つの自然数に対応させようと、素数を使ってコーディングしようとしている意図が伝わって分かりやすいものの)、g は well-defined にならないことが書いてある.どのような場合に well-defined にならないか具体的な例を挙げてみると、well-defined 性を確かめている部分にも書いてある通り、 $A=\{0,1,\langle 0,1\rangle,\langle 0,1,0\rangle\}$ とし、その要素からなる以下のような 2 つの有限列 s_1,s_2 を、

$$s_1 = \langle \langle 0, 1, 0 \rangle, 1 \rangle$$

 $s_2 = \langle \langle 0, 1 \rangle, 0, 1 \rangle$

としてみる. すると 2 つの列は見かけ(の長さ)は違うものの、 $Example\ 0.0.20$ (9 ページ)で説明した通り、集合としては同じものである。そして $\mathbb N$ への単射を

$$f(0) = 0, \ f(1) = 1, \ f(\langle 0, 1 \rangle) = 2, \ f(\langle 0, 1, 0 \rangle) = 3$$

のように定めてみれば,

$$g(s_1) = 2^{f(\langle 0,1,0\rangle)+1}3^{f(1)+1} = 2^43^2$$

$$g(s_2) = 2^{f(\langle 0,1\rangle)+1}3^{f(0)+1}5^{f(1)+1} = 2^33^15^2$$

となり $g(s_1) \neq g(s_2)$ となるが、集合としては $s_1 = s_2$ であるため、 $g(s_1) = g(s_2)$ とならなくてはならず、口語的には写る先が 1 つに定まらないとも言えて、これでは g が写像としては矛盾している.

Example 0.0.20 (9 ページ) のすぐ下でも書いたが、有限列は写像でもって定義することもできる. 例えば上の例にだした s_1, s_2 も、 s_1 : $\{0,1\} \to A, s_2$: $\{0,1,2\} \to A$ で、

$$s_1(0) = \langle 0, 1, 0 \rangle, \ s_1(1) = 1$$

 $s_2(0) = \langle 0, 1 \rangle, \ s_2(1) = 0, \ s_2(2) = 1$

と定めれば、(写像として) $s_1 \neq s_2$ である. すると写像 g を、s: $\{0,\ldots,m\} \to A$ に対し s(i)=a なる $a \in A$ を a_i と表すことにすれば、

$$g(s) = 2^{s^{-1}(a_0)+1} \cdot 3^{s^{-1}(a_1)+1} \dots p_m^{s^{-1}(a_m)+1}$$

と定めれば、 36 $g(s_1) \neq g(s_2)$ となって写像としても well-defined となり、上のように min を使う必要もなくなる. つまり写像で定義すれば順序対の入れ子構造で定義したときのように、長さが違うがモノとして異なるような例は、A がどんな集合でも生まれることはない. なぜなら写像で定義した場合の「列の長さ」とは定義域の要素の数のことであり、つまり長さが違えば、それはつまり写像として定義域が異なることになって、その対応規則がどうあれ一致することはないからである.

- 今後の課題 -

ただ本当にそうなのか疑問に思ってしまった. なぜなら写像も順序対の集合であり, そうなると集合だけを用いて書き直すことができる(順序対よりもかなり構造が複雑にはなっていると思うが). そうなると順序対の時のように, 定義域が異なる (つまり含まれる順序対の数が一致しない) が, 集合としては一致することはないのだろうか?

ここから tree(木)についての話題が始まるが, 今後どれほど大事なのか分からないので, 一旦飛ばすことにする.

続いて選択公理の話題が入る. テキストでは「問題となる定理を可算な言語の場合に制限することで, 選択公理の使用はたいてい回避できます」とある.

<u>Definition</u> 0.0.36 (E:p7, K:p12).

集合族 \mathcal{C} が **chain**(鎖)であるとは, 任意の $X,Y \in \mathcal{C}$ に対して $X \subseteq Y$ か $Y \subseteq X$ のいずれかが成立することをいう.

Lemma 0.0.37 (E:p7 ZORN'S LEMMA, K:p12 ツォルンの補題).

集合族 A が

任意の
$$C \subseteq A$$
 が鎖ならば $\bigcup C \in A$

を満たすとき, A には超集合関係にて極大な要素 A が存在する, つまり A はどの $X \in A$ に対しても $A \subsetneq X$ となることはない.

基数

Definition 0.0.38 (E:p8, K:p12).

集合 A,B に対して A から B への全単射写像が存在するとき, A と B は equinumerous(対等)であるといい, $A \sim B$ で表す.

Proposition 0.0.39 (E:p8, K:p12).

№ と整数全体の集合 ℤ は対等である.

Proposition 0.0.40 (E:p8, K:p12).

任意の集合 A, B, C に対して以下の 3 つが成立する.

- 1. $A \sim A$.
- 2. $A \sim B$ $\Leftrightarrow B \sim A$.
- 3. $A \sim B$ かつ $B \sim C$ ならば $A \sim C$.

テキストでは単純に「対等である関係が反射的、対称的かつ推移的であることは容易に確かめられる」と書いてある。この記述は少し雑である。前の定義を見ると「関係〇〇が反射的」であるというのは本来ある集合 A を用いて「関係〇〇が集合 A 上で反射的」という風に、何の集合上でかと一緒に語られるべき述語である。対称的と推移的は「どの集合上かは」記述する必要はない。もちろん何を証明すればよいかが伝わるかどうかで見えれば、伝わるとは思う。なので雑というのは、この「反射的」という言葉遣いに対しての感想であるが、なぜ何故書かなかったかも推測することはできる。かなり細かいことをいえば、オブジェクトな「関係」とメタな「関係」が公理的集合論には存在する。実際に存在を保証されている集合 A を用いて $R \subseteq A^2$ となっているような R は、集合でもあるからオブジェクトな「関係」である。一方この対応関係~というのは、同値関係と同じような

 $^{^{36}}$ テキストでは導入されていないけれど, s^{-1} は s の逆写像を表しています.

論理式を満たしはするものの、上の R における集合 A に相当するものが存在しない。なぜなら対等関係とはある意味「全ての集合の集合」上の同値関係であるが、公理的集合論において「全ての集合の集合」とは集合にはならない(こういうのは真のクラスと呼んだりする)。なので

Definition 0.0.41 (E:p8, K:p13).

集合 A に対して card A を、任意の集合 B に対して

 $\operatorname{card} A = \operatorname{card} B \leftrightarrow A \sim B$

を満たすものとし、これを Aの cardninal numger (基数) または cardinality (濃度) という.

Definition 0.0.42 (E:p8, K:p13).

集合 A, B に対して、ある $B' \subseteq B$ があって $A \sim B'$ であるとき、A dominated by B (A は B でおさえられている) といい、 $A \preceq B$ で表す.

Proposition 0.0.43 (E:p8, K:p13).

 $A \leq B$ であるとき, A から B への単射写像が存在する.

Definition 0.0.44 (E:p8, K:p14).

集合 A, B に対して $A \leq B$ であるとき, card $A \leq \operatorname{card} B$ であるとする.

アメリカでは \leq でも \leq でもなく \leq を使う, 少なくとも \leq のように二重線になっているものは使わない, みたいなことを聞いた記憶がある.

それはさておき, テキストでは上記の定義は「card $A \le \operatorname{card} B$ 」ではなく「 $A \le B$ 」になっている. 基数は私たちのよく知る数に対応するものでもあるので, よほど(無限)基数に着目した話をしない限りは, 今後このノートにて \le と \le は使い分けず, \le で統一することにする.

Proposition 0.0.45 (E:p9, K:p14).

任意の集合 A, B, C に対して以下の 2 つが成立する.

- 1. $A \leq A$.
- 2. $A \leq B$ かつ $B \leq C$ ならば $A \leq C$.

Proposition 0.0.46 (E:p9, K:p14).

 $A \leq \mathbb{N}$ であることと, A が高々可算であることは同値.

Theorem 0.0.47 (E:p9 SCHÖDER-BERNSTEIN THEOREM,

K:p14 シュレーダー・ベルンシュタイン (Schröder-Bernstein) の定理).

集合 A, B と, 基数 κ, λ に対して,

- (a) $A \leq B$ かつ $B \leq A$ ならば $A \sim B$.
- (b) $\kappa \leq \lambda$ かつ $\lambda \leq \kappa$ ならば $\kappa = \lambda$.

Theorem 0.0.48 (E:p9 THEOREM 0C, K:p14 定理 0C).

集合 A, B と, 基数 κ, λ に対して,

- (a) $A \leq B$ または $B \leq A$ の少なくとも一方が成り立つ.
- (b) $\kappa < \lambda$ または $\lambda < \kappa$ の少なくとも一方が成り立つ.

この定理は比較可能定理とも呼ばれる.

Notation	0 0 40	/T3 0	TZ 14)	
notation	0.0.49	(E:D9.	K:D14)	

 $\operatorname{card} \mathbb{N} \in \aleph_0$ で, $\operatorname{card} \mathbb{R} \in 2^{\aleph_0}$ で表す.

Definition 0.0.50 (E:p9, K:p15).

集合 A, B とその基数 $\operatorname{card} A = \kappa, \operatorname{card} B = \lambda$ に対して、その演算 $+, \cdot$ を以下のように定める.

- 1. $A \cap B = \emptyset$ のとき, $\kappa + \lambda = \operatorname{card}(A \cup B)$.
- 2. $\kappa \cdot \lambda = \operatorname{card}(A \times B)$.

Theorem 0.0.51 (E:p9 CARDINAL ARITHMETIC THEOREM, K:p15 基数算術の定理) . $\kappa \le \lambda$ かつ λ が無限な基数 κ, λ に対して,

- 1. $\kappa + \lambda = \lambda$.
- 2. $\kappa \neq 0$ $\alpha \in \alpha$ $\alpha \in \alpha$ $\alpha \in \alpha$
- $3. \kappa$ が無限ならば $\aleph_0 \cdot \kappa = \kappa$.

Theorem 0.0.52 (E:p10 THEOREM 0D, K:p15 定理 0D).

無限集合 A に対して, A の要素からなる有限列全体の集合 $\bigcup_{n\in\mathbb{N}}A^{n+1}$ の濃度は card A と同じ.

Example 0.0.53 (E:p10, K:p16).

実数における代数数的数全体の集合の濃度は № である.

第1章 文論理

1.0 形式言語についての、非形式的な注意

1.1 文論理の言語

この章は文論理が対象である。ではそもそも sentential logic(文論理)とはなにものだろうか? さらに何を学べば文論理を学んだことになるのか?またこれ以降に登場する一階述語論理(もっといえば他の論理と)とは何が違うのか・何が共通しているのか?そもそも論理を対象にした学問は何をやるべきなのだろうか?これには私はまだ自分の言葉で答えることはできない。よって私が好きな本である [?] から引用する。論理学がどのような学問なのかという問いにはこの本の 1 章にて多くの言葉を用いて答えている。続く 2 章にて 1 章で説明したような学問である(現代)論理学がなぜ人工言語を用いるのかが最初から書いてある。全てを引用すると長くなるので大事な部分だけ 17 ページから引用するならば(句読点はこちらに合わせたが,強調は引用元まま)

「自然言語では命題の論理形式が文法形式におおい隠されてしまうことがある. したがって, 自然言語をそのまま使って論理学を展開することは得策ではない. これに対し, 記号論言語は, 命題内容に気を取られずにその形式を浮かび上がらせるのに好都合だ. なぜなら, 記号言語はこれから作るのだから, 我々の目的に応じて好きにつくってよいからだ. 自然言語を使って我々はいろいろなことをやっている. その様々な用途のうち, 「論証の妥当性とは何かを明確にする」という目的だけに役立るように思い切って単純化した言語をつくってしまえばいいわけだ.

さらにこの本によれば「現代論理学とは記号論理学ともよばれるくらいにやたらと記号を使う」とある。すなわち「○○論理」という対象があったとき、それが記号論理学の対象ならば、上記にあるようにその論理を検証するのに最適な人工言語を用意するところから始まる。また二つの全く別な論理という対象があったとき、この論理たちの最大の違いはその言語にある(と思われる)。だからこそ上記の本でも「命題論理(このテキストでいう文論理のこと)」という言葉が初めて導入されるのは、一階述語論理という二つ目の人工言語が登場し、それとの違いを比較できるようになってからだ。

改めて先の問いに答えると「そもそも文論理とはなにものだろうか?」には他の論理と比較することで初めて答えれるようになると思われる。もちろんこの時点で上記の本を参考にして「単純命題の内部構造は問わない論理」と(単純命題とは何かを説明したうえで)答えることもできるが、これはやはりそうでない論理と比較して初めてより分かりやすい答えに近づくと思われる。続いて「何を学べば文論理を学んだことになるのか?」に答えると、まずは文論理に適した言語を定め、さらにその言語について構文論・意味論を定める。記号論理学もしくは数理論理学ならばそこからさらに演繹体系を定める。そして構文論・意味論・演繹体系それぞれに関する数学的な定理や、それらを横断するような(たとえば完全性定理など)数学的な定理を証明していくことになる。このステップを踏めば文論理について学んだことになると思われる。そして最後の問い「これ以降に登場する一階述語論理(もっといえば他の論理と)とは何が違うのか・何が共通しているのか?」に答えるならば、まず共通しているのは1つ上の問いの答えにあるステップの踏み方であると思われる。もちろん言語によって出てくる定理の数や内容は異なるであろうが、テキストの進め方は順番を除いて共通している(と個人的経験から推測する)。そして異なる点は先にも述べた通り、議論の最初に用意する人工言語になると思われる。

学ぶ動機などについてもう一度再確認した理由は、例えばこのテキストでは文論理から一階述語論理へと進むが、その際に用意する言語には共通の名前(たとえば整式など)を用いることがある。つまり整式といったときどの論理の(ないし言語の)整式なのか意識する必要があると思われた。そして例えば「これは文論理の整式だ」と書くときに、「ではその文論理とは?」と聞かれたときに答える用意も必要に思われた。もちろん自分できちんと答えたわけでもないし、明確に答えたわけでもないが、勉強会の参加者へ道しるべは示せたと思う。数理論理学の数学的な分析・議論が目的の1つである当勉強会においていささか寄り道に思われる話題ではあったものの、(数学的な議論ではないにしろ)参加者へ向けて答える必要があったのでここに書いてお

いた.

ではここから定義する言語についての定義や定理にはすべて「文論理の」という言葉がつくことを注意しておく.

まずはこれから使う記号という単語を定義する.

<u>Definition</u> 1.1.1 (記号 (E:p13 14, K:p20)).

互いに区別できる無限個のオブジェクトの列を用意し固定する.その列の成分となっているオブジェクトをそれぞれ symbol (記号) とよぶ.

これらの記号のどれもが他の記号の有限な長さの列とは一致しないと仮定したうえで,列の第一成分から以下の表の通りに記号に名前をつける.

記号	名称	注意
(left parenthesis(左括弧)	区切り記号
)	right parenthesis(右括弧)	区切り記号
\neg	negation symbol(否定記号)	日本語でいう「~でない」
\wedge	conjunction symbol(連言記号)	日本語でいう「かつ」
\vee	disjunction symbol (選言記号)	日本語でいう「(包含的な) または」
\rightarrow	conditional symbol(条件記号)	日本語でいう「○○ならば××」
\leftrightarrow	biconditional symbol(双条件記号)	日本でいう「○○のとき, かつ, そのときに限り××
A_1	1個目の sentence symbol(文記号)	
A_2	2個目の sentence symbol(文記号)	
A_n	n 個目の sentence symbol(文記号)	
• • • •		

Table 1.1: (E:p14 TABLE II, K:p21 表 II)

ここでテキストにあるものも含めていくつか注意を述べる. 順番や内容はテキストとは異なっている.

1. Table 1.2 の「(」や「)」における注意事項「区切り文字」について これはこの記号を区切り文字として使うということである。区切り文字とは日常言語における「,」や「、」のことで, 文 の読みやすさや文意が伝わりやすくするために用いる文字のことである。すなわちこの文論理の言語においては読みやす くするために「(」や「)」を使うということである。

また一階述語述語論理における区切り文字については後で忘れないように書くこと

2. Table 1.2 の「∨」の注意事項における「包含的な」について

これは日本語における「または」にも排他的なものと包含的なものと二種類あり、この場合の「または」はそのうちの包含的なものの方であるという意味である。排他的な「または」とは、つなげられた 2 つの主張が同時に満たされることのない「または」の用法である。たとえば「このランチにはコーヒーまたは紅茶がつきます」といったときの「または」を聞いてコーヒーと紅茶両方を注文する人はいない。つまり注文者はこの「または」を聞いてどちらか 1 つだけしかもらえないことを理解しているのである。一方銀行 ATM での通帳とカードのどちらでもできる操作(たとえば入金とか)において「通帳またはカードを入れてください」といわれたとき、片方だけでも両方入れても同じように動作する(もちろん記帳するかどうかの結果は違いはあるかもしれないけれど)。よってこのときの「または」は包含的な方の「または」である。1

 $^{^1}$ とはいえ昔とある銀行 ATM に同じように案内されて通帳とカード両方を入れてみたら「最初からやりなおしてください」と言われたことがある. つまりこの機械はおそらくいまでは珍しい?排他的な ATM だった.

3. いくつかの記号の総称について

Table 1.2 の中の 5 つの記号 \neg , \lor , \land , \rightarrow , \leftrightarrow ε sentential connective symbol (文結合記号) とよぶ.

とくに $\lor, \land, \rightarrow, \leftrightarrow$ たちを 2 項結合記号とよぶ. ²

さらに括弧記号2つを総称して単に括弧記号とよぶ.3

括弧記号と文結合記号をあわせて sentential connective symbol (論理記号) とよぶ.

文記号は parameter (パラメータ) (または nonlogivcal symbol (非論理記号)) ともよぶ.

また文記号 A_n を n 番目の命題記号とよぶこともある。個人的にはこのテキストのように文論理ではなく命題論理の方がよくみてきたものではあるが、このテキストに従い命題記号という単語は使わず文記号とよぶことにする。 4

4. 「互いに区別できる」部分について

ここでの「互いに区別できる」とは数学用語ではなく日常言語的な意味であろう。ではどのような意味で用いられているかと考えると、「それらの記号の運用者によって区別ができる」と意味であると思われる。この運用者とは今まさに紙とペンを持って記号を書きながら勉強している私たちのことかもしれないし、文論理の言語をプログラミング言語のように実装されたマシン(とそれを処理するアプリケーション)のことを指している。5

5. オブジェクトについて

このオブジェクトとはテキストにある通りなんでもよく文論理の展開には無限個あるならばなんでもよいと思われる. 6 文論理の展開とは今テキストでやっていることを「実装する」ということを意味している. 実装するとはすなわちこの文論理の記号たちとそれの使い方などを、プログラミング言語を用いて別のプログラミング言語を作るように実装するといったことを意味する. べつにプログラミング言語同士の話だけでなく例えば「ZFC から自然数論を展開可能」ということを簡単に証明するときに、集合(のように人間にとって思われる)という ZFC におけるオブジェクトを使ってペアノの公理を満たす集合たちとその上の演算や述語を作って自然数(と人間にとって思われている)を構成する作業も、その作業が似ていることから「ZFC における自然数論の実装」ともよべるだろう.

自然数を使った文論理の簡単な(雑な)実装方法を挙げると、自然数列 $0,1,2,3,\ldots$ を用意して、0,1 に括弧記号、2 から 6 に論理記号、7 以降にパラメータを割り振る。 7 すると記号列 $\langle \neg,A_2 \rangle$ は対応した自然数が並んだ $\langle 2,9 \rangle$ となる。つまり人にとっては単なる数字の羅列ではあるが、その解釈は私たちにとって目的としている文論理の記号列と思うわけである。こういうことは世の中にありふれたことだと思われる。現代のコンピュータは 0,1 のバイナリ情報しかやりとりできない(と思うことができる)わけで、8 画像ファイルも音楽ファイルも 0,1 が大量に書き込まれたテキストファイルでしかなく、どのアプリで開くかによって出力が変わってくる(だからこそどのアプリで開くべきかを教えてくれる拡張子に存在意義がある)。

そうなると (2,9) と (29) は人間にとってはかなり見分けがつきにくいが、機械にとってそもそも列の成分数も違うことか

 $^{^2}$ テキストでは定義していない言葉ではあるけれど、なんとなく意味はわかるし不要かとも思ったけどもあえて定義しておいた.また \neg は結合記号とよぶべきでしょうが、そんな記号は 1 つしかないため総称は必要ないと判断しました.

³ これも 2 項結合記号同様テキストでは定義していない言葉ではあるけれど、なんとなく意味はわかるし不要かとも思ったけどもあえて定義しておいた.

 $^{^4}$ テキストに書いてある命題記号の方の呼び名を使いたい理由はさておき,個人的にはこのノートには導入の注意事項にも書いた通り,新たに自分で証明した内容については proposition(命題)や corollary(系)など名前と番号を付けていくことになっています.とくに proposition は訳すと「命題」なため「命題」を対象の名前につける数理論理学とは相性が悪いのかもしれません.ただここでの proposition は証明すべき主張にしか使わず,ゆえにノートでは他の定義や定理たちと同じように下線を引いていたり太字になっていたりするので紛らわしさはないので,併用しても問題はないのですが,脚注部分のような理由で「命題記号」という言葉は使わないようにしておきます.

 $^{^5}$ とは書いてみたもののあまり自信がない。なぜなら人によって区別できない記号って「字が汚い」場合以外どんなことがあるのだろうか。でも外国人からすると日本語の漢字の似たものの区別はつきにくいとも聞くし,そんな場合を指しているのかもしれない。よくよく考えると数学の手書きの議論において小文字と大文字の c は同時に使うことを避けるか,どちらかにアレンジを加えると思われるので,こういうときに区別がつきにくい記号の用意の仕方といえるのかも。でもマシンによって区別がつきにくい記号とはいったいなんなのだろうか。画像認識しながら数学をやっている機械ならまだしも,それだって画像の解像度や画像処理アプリの性能の問題だろうし。

 $^{^6}$ そういう意味ではテキストに書いてある通りおはじきは、現実のものに限れば無限個用意できないため不適ではなかろうか、仮に無限個用意できても別の注意にある「互いに区別できる」部分が人にとっては難しそうだ。まず人間が見分けできる色が高々有限色しかないだろうし。そう判断したのは日本語での色の名前が有限しかないことから(https://ja.wikipedia.org/wiki/%E6%97%A5%E6%9C%AC%E3%81%AE%E8%89%B2%E3%81%AE%E4%B8%80%E8%A6%A7)。名前のない色は RGB 値で表現できるのかもしれないけれどそれでもたかだけ有限でしょう?(256^3 くらい?)また色以外で違いをつけようにも大きさや形にも限度はあろうし。まぁ野暮なツッコミかもしれません。

そんなことをする人がいたらかなり変人だと思うが、 文論理の言語にある記号をオブジェクトとして使ってもいいと思う. そのままの対応では当たり前すぎるので例えば記号「(」に「 A_1 」を割り当てるといったように. これもやってもよいとはいってもやる人はまずいないと思うかなりおまのじゃくな例え話.

⁷ 運用者が人間の場合は、その自然数をその記号だと「思い込む」「頭の中では数を記号に変換する」といった方がいいだろうか、マシンだとその対応でもって変換してくれるアプリケーションを用意するといった感じだろうか。

 $^{^8}$ もちろん 3 進法コンピュータとかもあるんだろうけどあんまり聞かないし…だからここらへんの例え話もコンピュータに関する教養が足りず少し自信がない.

ら簡単に見分けがつき、そしてその記号の解釈も別のものになる(この実装方法で行くと $\langle 29 \rangle$ は 22 番目の文記号 A_{22} となるから).

集合による実装は、まず集合論内の議論によって自然数を構築する。よく知られた方法としては順序数理論を展開し順序数の中でも特別なものを自然数とする方法である。9 すると集合としての自然数を得ることができたので、それを使って(雑なものでよければ)さきの自然数を使ったものと同様にすればよい。

大事なことはこのテキストでは、定義にある条件をみたしていればどのようなオブジェクトが使われているか、もしくはどのようなオブジェクトで実装されているかは意識しないし、またそれに依存しない理論の話が続いていく.

ではなぜするかどうかも分からない「実装する上での注意」なんて著者は併記したのだろうか?それはつまり実際に自然数論や集合論を使って文論理の理論を展開することがあるからである.これについてはあとで書く

また今後記号が割り振られたオブジェクトとその記号をとくに区別せず割り振られた方の記号を使って使っていく. つまり仮に自然数を使って上記のように実装したとしていても、オブジェクトとしての0は使わず、それに割り振られた記号「(」を議論のさいには使っていくということである.

6. 「無限個のオブジェクトの列」部分と「列の第一成分から」部分について

単に「無限個のオブジェクト」でも問題なさそうに見えるが、なぜ「無限個のオブジェクトの列」としたのだろうか。これも注意事項 5 と同じように実装上の注意事項だろうと思われる。列にすると並んだ記号たちに 0 から自然数を全て使って番号が付属していると思える。それこそ数学における数列やプログラミングにおけるハッシュ関数の返り値のように。10 もし使いたい記号(というかその概念や名称)が有限個しかない言語ならば、無限個のオブジェクトも要らず、また列でないなくともよいのかもしれない。しかし今から私たちが用意したい記号は無限個の文記号を含むため、オブジェクトも無限個必要である。よってそんな文記号用に無限の空きが必要なので、さきに有限個で済む文記号以外をオブジェクトの番号の小さいものから割り当てていき、残った無限個のオブジェクトにその番号が小さいものから文記号についている番号の小さいもの順に割り当てていく。そうすれば一番分かりやすいと思われるため、だからこそ Definition 1.1.1 においても「列の第一成分から」とテキストにはないものを追加した。1 つ上の注意に書いた通り実装方法にはこだわらないのだから別にこの注意は不要でもあるのだが、この時点で勉強会で話した「お気持ち」を伝えるためにも付記しておいた。

また別の実装方法もいくつも存在することを注意しておく. 自然数を用いた実装方法として $0,1,2,3,\ldots$ を使って、それぞれに $(A_1,A_2,A_3,A_4,A_4,A_5,A_6,A_7,A_8,\ldots$ と実装してもよい. だがこれよりは最初の例の方が分かりやすいし実装しやすいとも思われる.

7. 「これらの記号のどれもが他の記号の有限な長さの列とは一致しない」部分について

この条件も注意事項 5 と同じように実装上の注意事項だろうと思われる。例えば Example 0.0.20 に出したものを使って、こちらで用意したオブジェクトの列を(有限ではあるがいまは気にしない) $\langle 0,1,\langle 0,1\rangle,\langle 0,1,0\rangle\rangle$ として、これに \neg,\to,A_1,A_2 を割り当ててたとすると、 $A_1=\langle 0,1\rangle=\langle \neg,\to\rangle$ 、 $A_2=\langle 0,1,0\rangle=\langle \neg,\to,\neg\rangle$ となってしまい、 $S_1=\langle (0,1,0\rangle,1\rangle=\langle A_2,\to\rangle$ \rangle 、 $S_2=\langle (0,1\rangle,0,1\rangle=\langle A_1,\neg,\to\rangle$ となる。つまり意図としては列 S_1,S_2 は異なる列であってほしいが、この列を集合として扱う運用者からすれば、この 2 つの列は集合として一致しているので同じものとして扱わなくてはいけない。よってこのようなことが起こらないためにはこの条件は必要である。この条件と Lemma 0.0.19 (8 ページ)や Example 0.0.20 (9 ページ)の議論もあわせて、もし 2 つの記号の列が $\langle a_1,\ldots,a_m\rangle=\langle b_1,\ldots,b_n\rangle$ で Definition 1.1.1 の条件をみたす記号ならば、m=n かつ $a_i=b_i$ となる。

8. 無限の文記号を用意しない方法

今後議論するときに「任意の文記号をとる」ということをするが、そのさいにその任意に取った文記号を表すための記号

⁹ 勉強会では公理的集合論の復習にてそれを扱った. 導入の注意事項を参考に.

 $^{^{10}}$ プログラミングを知っている人に向けて用意した例え話なのだけれど、もしかしたらハッシュを使えないプログラミング言語ってあったりするのかな、かりに基本文法になかったとしてもライブラリや自作関数などで対応できそうだけれども、ちなみにハッシュ関数という言葉は Wikipedia(https://ja.wikipedia.org/wiki/%E3%83%85%E3%83%85%E3%83%85%E3%83%A5%E9%96%A2%E6%95%B0#%E8%AA%9E%E6%BA%90)より拝借した(自分は普段は単にハッシュと呼んでるけれども).

として A_1,A_2,\ldots などは使えないので, A や A_n または A' などを使うことにする. ちなみに A_n は定義を書くためのメタ 的な表現であって実際に n という文字を使った A_n のような記号は文論理の記号ではない.

9. オブジェクトの数について

この定義によると文記号として用意すべきは可算無限個のオブジェクトが必要である。そして文記号以外の記号(つまり論理記号)の数は有限なので全ての記号を定めるのに必要な個数は結局可算無限個で十分である。しかし可算無限個でなくてはいけないというわけではない。例えば文記号全てを濃度が可算より大きい集合 ℝを使って定めてもよい。つまり各実数を文記号だと扱うわけである。しかしこれによる弊害もあるようだ。これについてはあとで書く。

つぎに「表現」という言葉を定義するため、以降日常言語としての表現は使わないよう気をつける.

<u>Definition</u> 1.1.2 (表現 (E:p15, K:p23)).

Definition ?? (??ページ) の用語を用いる.

- 1. 文論理の記号の集合を以降 S で表すことにする.
- 2. A の要素からなる有限列を expression (表現) とよぶ.

またすべての表現の集合を \mathcal{E} で表すことにする.

また表現 $\langle s_1,\ldots,s_n\rangle$ をその成分を順番に並べて $s_1s_2\ldots s_{n-1}s_n$ と書くこともある. 以降どちらの使い方も柔軟に使って いくことにする.

3. $\alpha, \beta \in \mathcal{E}$ に対してそれぞれ $\alpha = \langle a_1, \dots, a_m \rangle$, $\beta = \langle b_1, \dots, b_n \rangle$ とするとき, $\alpha\beta \stackrel{\text{def}}{=} \langle a_1, \dots, a_m, b_1, \dots, b_n \rangle$ として, これを α と β の string concatenation(文字列連結)とよぶ. 11

表現の 2 通りの表し方についてだが当然私たちにとって分かりやすいのは $s_1s_2\dots s_{n-1}s_n$ の方である. だからその定義に踏み込んで議論する必要がないときには $s_1s_2\dots s_{n-1}s_n$ の方を優先的に使っていく.

この文字列結合は $\mathcal E$ の 2 項演算, つまり演算結果 $\alpha\beta$ も表現である. またその意味もその名前のごとく α の列の後ろに β の列をそのまま並べたものになっている.

Example 1.1.3 (E:p15, K:p23) .

表現 α, β に対して

- 1. $(\neg A_1)$ という(私たちにとって見やすい表し方をした)表現は厳密には有限列 $\langle (,\neg,A_1,) \rangle$ のことである.
- 2. $\alpha = (\neg A_1), \beta = A_2$ とおくとその文字列結合 $\alpha\beta$ は $(\neg A_1)A_2$ に, $(\alpha \rightarrow \beta)$ は $((\neg A_1) \rightarrow A_2)$ となる.

例の 2 つ目における $((\neg A_1) \to A_2)$ とは, $(\alpha \to \beta)$ の α, β 部分にその表現を代入したものである. Definition 1.1.2 でも使ったが改めて注意すると, α, β は文論理の記号ではなく, 文論理について議論している表現を変数のように使いたいための私たちの記号である. プログラミングでいうところのマクロのようなものともいえる.

Definition 1.1.4 (式構成操作 (E:p17, K:p25)).

 $\alpha, \beta \in \mathcal{E}$ と論理記号に対して

- $\mathcal{E}_{\neg}(\alpha) = (\neg \alpha)$ と定める. より厳密には $\mathcal{E}_{\neg}(\alpha) \stackrel{\text{def}}{=} \langle (, \neg \rangle \alpha \langle) \rangle$ であり, これは Definition 1.1.2 で定義した表現の文字列連結 である. つまり \mathcal{E}_{\neg} は \mathcal{E} 上の 1 変数関数である.
- $\mathcal{E}_{\wedge}(\alpha,\beta) = (\alpha \wedge \beta)$ と定める. より厳密には $\mathcal{E}_{\wedge}(\alpha,\beta) \stackrel{\text{def}}{=} \langle (\langle \alpha \langle \wedge \rangle \beta \langle \rangle) \rangle$ であり, \mathcal{E}_{\wedge} は \mathcal{E} 上の 2 変数関数である. 同様にして \mathcal{E} 上の 2 変数関数として $\mathcal{E}_{\vee}, \mathcal{E}_{\rightarrow}, \mathcal{E}_{\leftrightarrow}$ を定義する.

¹¹ これはテキストでは定義されていない言葉ではあるが、定義しておくと便利かと思ったのでプログラミングにおける文字列結合演算を参考に定義した (https://ja.wikipedia.org/wiki/%E6%96%87%E5%AD%97%E5%88%97%E7%B5%90%E5%90%88).

これらの5つの演算をあわせて formula-building operation(式構成操作)とよぶ.

Definition 1.1.5 ((素朴な) 整式の定義 (E:p16 17, K:p25)).

well-formed formula (整式) とは以下のように帰納的に定義される. 12

- (a) 個々の文記号は整式である.
- (b) α, β が整式ならば, $(\neg \alpha), (\alpha \land \beta), (\alpha \lor \beta), (\alpha \to \beta), (\alpha \leftrightarrow \beta)$ は整式である.
- (c) (a)(b) にあてはまるものだけが整式である.
- (b) はつまりすでに整式があったとき、それらの式構成操作の結果もまた整式であると主張している.

この定義は別に数学的に間違っているわけではない. しかしより厳密に定義することもできる. そうしたとき式構成操作を \mathcal{E} 上の関数として捉えることにも意味がでてくる.

簡単にいうと整式とは文記号から始めて式構成操作を有限回適用して構成できる表現のことと言えるが, この「有限回適用して」の部分を構成列というものを使って厳密に定義できる.

1.4 節ではこれについてもう一度触れることがあるようなのであとで書くことにする.

Definition 1.1.6 (構成列と整式 (E:p17 18, K:p26 27)).

表現の集合 \mathcal{E} の有限列 $\langle \varepsilon_1, \dots, \varepsilon_n \rangle$ が construction sequence (構成列) であるとは, 各 $i \leq n$ に対して (1) から (3) のいずれ かをみたすときをいう.

- (1) ε_i は文記号.
- (2) $\delta \delta j < i \delta \delta \delta$ $\delta c \in \mathcal{E}_{\neg}(\varepsilon_i)$.
- (3) ある j, k < i があって $\varepsilon_i = \mathcal{E}_{\square}(\varepsilon_j, \varepsilon_k)$. ここで \square は 2 項結合記号のいずれかを表す.

ある表現 α で終わる(つまり末項が α である)ような構成列が存在するとき、そんな表現を well-formed formula(整式)とよぶ。

すべての整式の集合は今後Fで表すことにする. 13

いまだけの記法として $\mathcal P$ を文記号の集合, $\mathcal E_2$ を 2 項結合記号の集合とするとき, 有限列 $\langle \varepsilon_1,\dots,\varepsilon_n \rangle$ が構成列であることは論理式で

$$\forall i < n \big(\varepsilon_i \in \mathcal{P} \ \lor \ \exists j < i (\varepsilon_i = \mathcal{E}_{\neg}(\varepsilon_j)) \ \lor \ \exists j, k < i \exists \square \in \mathcal{E}_2(\varepsilon_i = \mathcal{E}_{\square}(\varepsilon_j, \varepsilon_k) \ \big)$$

と書ける. ここで \mathcal{E}_{\square} という書き方は直感的にはわかりやすいが, まるで \mathcal{E}_{\square} という \square を変数とした関数のようにも見えてしまうので, $\exists j,k < i \exists \square \in \mathcal{E}_{2}(\varepsilon_{i} = \mathcal{E}_{\square}(\varepsilon_{j},\varepsilon_{k})$ の部分は本当は

$$\exists j, k < i (\varepsilon_i = \mathcal{E}_{\wedge}(\varepsilon_j, \varepsilon_k) \lor \varepsilon_i = \mathcal{E}_{\vee}(\varepsilon_j, \varepsilon_k) \lor \varepsilon_i = \mathcal{E}_{\rightarrow}(\varepsilon_j, \varepsilon_k) \lor \varepsilon_i = \mathcal{E}_{\leftrightarrow}(\varepsilon_j, \varepsilon_k))$$

と書くべきだろうが、ここで初めて \mathcal{E}_{\lor} に含まれている \lor と、各論理式をつないでいる \lor とで記号の衝突が起きている。これが頭の中で完全に区別できている人たちの中で議論のさいにこう書くなら問題はないが(それでも多分良い顔はしないと思うけれど)、初学者には余計な誤解やそれによる遠回りを与える可能性がある。ゆえにテキストでは(おそらく意図的に)一貫して(第??章(??ページ)のような別に論理学に直接関係する概念でなくても)何かを定義するさいには、日常言語で述べることにしたのであろう。

¹² テキストでは単に「式 (formula)」とか原著だと「wff」などの呼び方も提示されているが、個人的な理由で整式のみで統一する。

 $^{^{13}}$ これもテキストではこの記号を与えたりはしていないが、もしかしたら便利なこともあるかもしれないので定めておいた。本来のテキストにある記号と衝突しないかぎりは今後も使っていく。

souji / − ト 25

Example 1.1.7.

整式 α を $((A_1 \land A_{10}) \rightarrow ((\neg A_3) \lor (A_8 \leftrightarrow A_3)))$ とすると、以下の有限列は

$$\langle A_1, A_3, A_8, A_{10}, (A_1 \wedge A_{10}), (\neg A_3), (A_8 \leftrightarrow A_3), ((\neg A_3) \vee (A_8 \leftrightarrow A_3)), \alpha \rangle$$

その構成列の一例である.

ここでテキストでは系統樹による説明がある(これより前から何度か登場しているけれど).第??章(??ページ)によると木概念は非形式的な議論にしか使わないと書いてある.つまり系統樹を使って説明されている事柄はすべて定義に戻ればより厳密な数学的議論をすることができるということなので、このノートでは系統樹を使った説明はしない.14

Example 1.1.7 で私が書いた構成列には「先に使う文記号は列先頭からすべて書いておく」という個人的な好みが現れている. だがある整式に対する構成列は1つではない. 例えば(私の好みに反する)以下のような(必要になったときに文記号を挿入するような)整式の有限列も

$$\langle A_1, A_{10}, (A_1 \wedge A_{10}), A_3, (\neg A_3), A_8, (A_8 \leftrightarrow A_3), ((\neg A_3) \vee (A_8 \leftrightarrow A_3)), \alpha \rangle$$

整式 α の構成列である.

ここからさらにテキストに(この時点で)ない注意を例え話を入れながら追加する.

- 2. ある構成列の始切片もまた構成列で、ゆえになんらかの整式に対応した構成列となる。例えば $S_1' = \langle A_1 \rangle$ 、 $S_2' = \langle A_1, A_2 \rangle$ 、 $S_3' = \langle A_1, A_2, A_3 \rangle$, $S_4' = \langle A_1, A_2, A_3, (\neg A_3) \rangle$ は、それぞれ S_2 の始切片で、 S_1' は A_1 の、 S_2' は A_2 の、 S_3' は A_3 の、 S_4' は $(\neg A_3)$ の構成列である。これは単なる観察ではなく、つまりこの整式だけにあてはまる現象ではなくすべての整式に対して成立する。これは Proposition 1.1.8(26 ページ)で示した。
- 3. また例えば $\langle A_1 \rangle$ は A_1 という整式の構成列であるが, 1 つ組の定義から $\langle A_1 \rangle = A_1$ でもあるから, A_1 そのものは整式でもあり, かつ自分自身の構成列でもある. 当然これは他の文記号に関しても同様である.
- 4. A_3 , $(\neg A_3)$ という $(A_1 \land A_2)$ に含まれていない文記号からなる整式を S_2 から取り除いても, つまり構成列 $\langle A_2, A_1, (A_1 \land A_2) \rangle$ は依然として $(A_1 \land A_2)$ の構成列のままである. これはもっと一般的に示せる.
- 5. またこの注意たちの前に整式に対応する構成列は 1 つではないと述べたが、もっといえば無数にある。例えば単に A_1 という整式の構成列でも長さが 2 のものに限っても、 $\langle A_1, A_1 \rangle$ 、 $\langle A_2, A_1 \rangle$ 、 $\langle A_3, A_1 \rangle$ 、... など無限にある。つまりある整式に対しての構成列は無限に存在するが、ある構成列はそれぞれ 1 つの整式に対応している。これを使えば「任意の整式に対して」という形の主張の証明に役立てることができる。どういうことかというと「任意の整式に対して $\bigcirc\bigcirc$ 」ということを示す代わりに、「任意の構成列に対して $\bigcirc\bigcirc\bigcirc$ 」を示してもよいということである。 15 もちろん最初の $\bigcirc\bigcirc$ 部分が整式のみしか扱えないならば、それを構成列に関するものへ変更する必要はある。

そして構成列は有限列ゆえにすべての構成列にはその「長さ」という情報が備わっている。これを利用して「任意の構成列に対して〇〇」を示す代わりに、「任意の長さの構成列に対して〇〇」を証明してもよい。こういう風に証明内容を変更する最大のメリットは長さという 0 より大きい自然数に対しての主張に変わったことにより、種々の自然数に関する帰納法を用いられるようになったことである。もっと具体的にどのように示すかというと「任意の $n \in \mathbb{N}$ と構成列に対して、その構成列の長さが n ならば〇〇」を示す形になる。つまり証明の最初は任意に長さ n の構成列をとるところからはじまる。

 $^{^{-14}}$ 決して系統樹を $\mathrm{IMT_{EX}}$ で書くのがめんどくさいとかそういうことではない……もちろん視覚的には系統樹の方が分かりやすいのは知っているのだけれど. 15 これまでの観察により構成列の個数は整式の個数よりもはるかに多いため,この証明は整式に対して証明するものと加えるとかなり無駄が多いように思ってしまう.でも証明のやりやすさが上がることもあるし,まぁダブっていても足りなくなっていないのならばそれで OK なのだ.

でも「任意の構成列に対して○○」という形の主張を示すときに、「任意の整式に対して○○」という主張を証明してはいけない. これは明らかに構成列をすべて取りつくしていないから、ということになる.

このほかにも表現や整式の単なる長さや整式に含まれる文記号の個数など,表現・整式に備わる様々な「数」を使って証明していくことになる.

6. Definition 1.1.5(24 ページ)にある定義を採用するテキストも多い. これのメリットとしては「任意の整式に対して○○」という主張に対して構成に関する帰納法を使うことができることである. 構成に関する帰納法は structural induction (構造的帰納法)と呼ばれることもある. なので以降は(カッコいい方の)構造的帰納法という呼び名を使っていく. ¹⁶ これは次の 2 つのことを示るやり方である.

(Basis) すべての文記号が○○をみたすことを示す.

(Induction step) 整式 α, β が○○をみたしているとして, $(\neg \alpha)$, $(\alpha \land \beta)$, $(\alpha \lor \beta)$, $(\alpha \to \beta)$, $(\alpha \leftrightarrow \beta)$ が○○をみたして いることを示す.

証明すべきことの名前(Basis とかのこと)は [?] から拝借した. もちろん [?] では整式の定義は Definition 1.1.5(24 ページ)と同じようになされている.

ときどき余裕があればこちらのやり方でも証明してみることにする。もしかしたら主張によってはこちらの方が証明がやりやすくなることもあるかもしれない。

では練習がてら色々と自分で簡単な主張を用意して証明してみる.

Proposition 1.1.8.

構成列のどのその真の始切片もまた構成列である.

Proof 証明すべきことは「任意にとった構成列に対して、さらに任意にその構成列の始切片をとると構成列になっている」である。任意に構成列をとるかわりに任意の長さの構成列をとることにすると証明目的は「任意にとった $n \in \mathbb{N}$ と構成列に対して、その構成列の長さがn ならば、さらに任意にその構成列の始切片をとると構成列になっている」となる。この任意にとるn に対して、つまり構成列の長さに関して累積帰納法を使って示す。任意に $n \in \mathbb{N}$ をとる。この帰納法の仮定は「長さがn 未満であるような全ての構成列が、そのどの始切片も構成列になっている」である。いま任意に長さn の構成列 $\langle \varepsilon_1, \ldots, \varepsilon_n \rangle$ をとり、さらにその真の始切片として $\langle \varepsilon_1, \ldots, \varepsilon_m \rangle$ をとる。つまり m < n である。ここで ε_m は構成列 $\langle \varepsilon_1, \ldots, \varepsilon_n \rangle$ の成分の 1 つなので、

- (1') $\varepsilon_m \in \mathcal{P}$.
- (2') $\exists j < m (\varepsilon_m = \mathcal{E}_{\neg}(\varepsilon_i)).$
- (3') $\exists j,k < m(\varepsilon_m = \mathcal{E}_{\square}(\varepsilon_j,\varepsilon_k))$. ここで \square は 2 項結合記号のいずれかを表す.

を満たしている. つまり 「 ε_m は (1') または (2') または (3') をみたす」となっている. いま有限列 $\langle \varepsilon_1, \ldots, \varepsilon_{m-1} \rangle$ は $\langle \varepsilon_1, \ldots, \varepsilon_m \rangle$ の真の始切片でかつ帰納法の仮定から構成列なので, 任意の $i \leq m-1$ に対して

- (1'') $\varepsilon_i \in \mathcal{P}$.
- $(2'') \exists j < i (\varepsilon_m = \mathcal{E}_{\neg}(\varepsilon_j)).$
- (3'') $\exists j,k < i (\varepsilon_m = \mathcal{E}_{\square}(\varepsilon_j,\varepsilon_k))$. ここで \square は 2 項結合記号のいずれかを表す.

を満たしている. つまり「任意の $i \le m-1$ に対して (1'') または (2'') または (3'') をみたす」となっている. ここまでの議論をまとめて「」で囲った 2 つの主張を合わせると, 任意の $i \le m$ に対して

- (1) $\varepsilon_m \in \mathcal{P}$.
- (2) $\exists j < m (\varepsilon_m = \mathcal{E}_{\neg}(\varepsilon_i)).$
- (3) $\exists j,k < m(\varepsilon_m = \mathcal{E}_{\square}(\varepsilon_j,\varepsilon_k))$. ここで \square は 2 項結合記号のいずれかを表す.

を満たしていることになり, これは $\langle arepsilon_1, \ldots, arepsilon_m
angle$ が構成列になっていることを表している.

¹⁶ この呼び方は https://ja.wikipedia.org/wiki/%E6%A7%8B%E9%80%A0%E7%9A%84%E5%B8%B0%E7%B4%8D%E6%B3%95 より知った.

Theorem 1.1.9.

帰納法の原理 (E:p18 INDUCTION PRINCIPLE, K:p27 帰納法の原理) すべての文記号が属し, かつすべての式構成操作について閉じている整式の集合は, すべての整式からなる集合である. ■

証明の前にいくつか注意事項を書いておく

- 1. 定理の主張の条件をみたしている整式の集合を A で表すことにすると, 集合として A = F を示すことが証明の目的となる. $A \subseteq F$ であることは明らかなので $F \subseteq A$ を示すだけでよい. 部分集合の定義に戻ると, これは「任意の整式 α に対して $\alpha \in A$ 」を示すことになったため, Example 1.1.7 下の注意事項 5 にある通り, 構成列の長さに関する帰納法, とくにこの場合は累積帰納法を用いて証明する.
- 2. A がすべての文記号が属するとは、論理式で書けば $A \in \mathcal{P}(A \in \mathcal{A})$ となる. また全ての式構成操作について閉じるということをもう少し厳密に見ると、 \mathcal{E}_{\neg} は \mathcal{E} 上の 1 項演算、それ以外の式構成操作 は \mathcal{E} 上の 2 項演算であり、 $A \subseteq \mathcal{E}$ である. たとえば \mathcal{E}_{\neg} : $\mathcal{E} \to \mathcal{E}$ について、この演算の A への制限と考えることもできる. さらにこの A は \mathcal{E}_{\neg} について閉じている、つまり $\forall \alpha \in A(\mathcal{E}_{\neg}(\alpha) \in A)$ と表すことができる. 2 項演算である \mathcal{E}_{\wedge} についても A が \mathcal{E}_{\wedge} について閉じているとは、 $\forall \alpha, \beta \in A(\mathcal{E}_{\wedge}(\alpha, \beta) \in A)$ と表すことができる. 他の 2 項演算についても同様である.

Proof 証明すべきことは「任意にとった $n \in \mathbb{N}$ と任意にとった構成列に対して、その構成列の長さが n ならば、その構成列に対する整式(構成列の末項)は A に属する」である。任意にとる n に対して累積帰納法を用いて示す。

任意に $n\in\mathbb{N}$ をとる. 帰納法の仮定は「長さが n 未満であるような全ての構成列に対して、それに対応する整式が A に属する」となる. いま長さ n な任意の構成列 $\langle \varepsilon_1,\dots,\varepsilon_n\rangle$ をとる. この ε_n が A に属することを示すことが目的である. 構成列の定義から ε_n は以下のいずれかをみたす.

- (1) $\varepsilon_n \in \mathcal{P}$.
- (2) $\exists j < n (\varepsilon_n = \mathcal{E}_{\neg}(\varepsilon_i)).$
- (3) $\exists j, k < n(\varepsilon_n = \mathcal{E}_{\square}(\varepsilon_j, \varepsilon_k))$. ここで \square は 2 項結合記号のいずれかを表す.

それぞれの場合について $\varepsilon_n \in A$ であることを示す.

(1) $\varepsilon_n \in \mathcal{P}$ のとき.

整式 ε_n は文記号一文字の整式であり, 仮定より $\mathcal{P} \subseteq \mathcal{A}$ だから $\varepsilon_n \in \mathcal{A}$ である.

(2) $\exists j < n (\varepsilon_n = \mathcal{E}_{\neg}(\varepsilon_i)) \cap \mathcal{E}$.

そのような ε_j を固定する. $\langle \varepsilon_1, \dots, \varepsilon_j \rangle$ は、構成列 $\langle \varepsilon_1, \dots, \varepsilon_n \rangle$ の真の始切片であり、Proposition 1.1.8(26 ページ)より構成列である. この構成列は ε_j に対応する構成列でその長さは n 未満なので、帰納法の仮定より $\varepsilon_j \in A$ である. そして仮定より ε_n が A 上閉じていることから \mathcal{E}_n (ε_j) $\in A$ である. つまりこれは $\varepsilon_n \in A$ を表す.

(3) $\exists j,k < n \big(\varepsilon_n = \mathcal{E}_{\square}(\varepsilon_j,\varepsilon_k) \big)$ (\square は 2 項結合記号のいずれか) のとき. たとえば \square を \land として、そんな $\varepsilon_j,\varepsilon_k$ を固定する. $\langle \varepsilon_1,\dots,\varepsilon_j \rangle, \langle \varepsilon_1,\dots,\varepsilon_k \rangle$ は、構成列 $\langle \varepsilon_1,\dots,\varepsilon_n \rangle$ の真の始切片であり、 Proposition 1.1.8(26 ページ)より構成列である.この 2 つの構成列はどちらも長さが n 未満なので、帰納法の仮定より $\varepsilon_j,\varepsilon_k \in \mathcal{A}$ である.そして仮定より \mathcal{E}_{\land} が \mathcal{A} 上閉じていることから $\mathcal{E}_{\land}(\varepsilon_j,\varepsilon_k) \in \mathcal{A}$ である.つまりこれは $\varepsilon_n \in \mathcal{A}$ を表す. ほかの 2 項結合記号について同様である.

この証明を構造的帰納法にて証明することも可能であるので確かめてみる.

Theorem 1.1.9 の構造的帰納法による証明 Theorem 1.1.9 の下に書いた注意事項を参考にして, $F \subseteq A$, つまり任意に取った整式が A に属することを示す. これについて構造的帰納法を用いる.

(Basis)

任意に文記号 A をとる. 仮定より $A \in \mathcal{A}$.

(Induction step)

任意に整式 α, β をとり, $\alpha, \beta \in A$ とする. 仮定よりすべての式構成操作について A が閉じているので $(\neg \alpha), (\alpha \land \beta), (\alpha \lor \beta), (\alpha \to \beta), (\alpha \leftrightarrow \beta)$ はすべて A に属する.

整式全体に関する定理の証明に対して帰納法の原理を使うことができる.

Example 1.1.10 (E:p18 EXAMPLE, K:p28 例).

どの整式もそれに含まれる右括弧・左括弧の個数は同じである. 17

Proof A を含まれる両括弧記号の数が同じな整式の集合とする. A が全ての整式の集合であることを示せばよい. 以下の 2 点を示せば

- 1. Aには全ての文記号(1つのみの整式)を含むこと
- 2. Aは全ての式構成操作について閉じていること

Theorem 1.1.9 $(27 \, \text{\reflow}-\text{\reflow})$ より $\mathcal{A} = \mathcal{F}$ であることがわかる.

- 1. (Aには全ての文記号(1 つのみの整式)を含むこと) 任意に $A \in \mathcal{P}$ をとる. A はそれぞれの括弧記号の数は 0 個、つまり両括弧記号の数は同じなので $A \in A$ である.
- 2. (*A* は全ての式構成操作について閉じていること)

任意に $\alpha, \beta \in A$ をとり、それぞれの左括弧記号の個数を k_{α}, k_{β} とおくと、 $\alpha, \beta \in A$ より右括弧記号の個数も k_{α}, k_{β} 個である.

 $\mathcal{E}_{\neg}(\alpha) = (\neg \alpha)$ より整式 $\mathcal{E}_{\neg}(\alpha)$ の左右の括弧の数はどちらも $k_{\alpha} + 1$ となって, つまり両括弧記号の数は同じであるので, $\mathcal{E}_{\neg}(\alpha) \in A$ である. つまり演算 \mathcal{E}_{\neg} について A は閉じている.

次に $\mathcal{E}_{\wedge}(\alpha,\beta) = (\alpha \wedge \beta)$ より整式 $\mathcal{E}_{\wedge}(\alpha,\beta)$ の左右の括弧の数はどちらも $k_{\alpha} + k_{\beta} + 1$ となって, つまり両括弧記号の数は同じであるので, $\mathcal{E}_{\wedge}(\alpha,\beta) \in \mathcal{A}$ である. つまり演算 \mathcal{E}_{\wedge} について \mathcal{A} は閉じている. 他の 2 項結合記号に関しても同様に証明できる.

1.1.1 演習問題

Exercise 1.1.11 (E:p19 1., K:p29 1.) .

日本語の文をみっつ挙げ、それらの文を私たちの形式言語に翻訳しなさい. 文は、なんらかの意味のある構造を持つように、また、翻訳が 15 個以上の記号からなる列になるように選びなさい. ■

Answer 5つの文記号とその日本語での意味を以下のように定める.

 $P_1: \bigcirc \bigcirc$ 月××日の $\triangle \triangle$ 小学校周辺の天気は晴れ

 $P_2: \bigcirc \bigcirc$ 月××日に $\triangle \triangle$ 小学校には運動場がある

 $P_3: \bigcirc \bigcirc$ 月××日に△△小学校には生徒が 1人以上いる

 $P_4: \bigcirc \bigcirc$ 月××日に $\triangle \triangle \land$ 学校には教師が 1人以上いる

 $Q: \bigcirc \bigcirc$ 月××日に $\triangle \triangle$ 小学校にて運動会が開催されている

これらを使って以下のように3つの整式を作る

 $\varphi_{1} = ((((P_{1} \land P_{2}) \land P_{3}) \land P_{4}) \rightarrow Q)$ $\varphi_{2} = ((\neg Q) \rightarrow ((((\neg P_{1}) \lor (\neg P_{2})) \lor (\neg P_{3})) \lor (\neg P_{4})))$ $\varphi_{1} = ((((P_{1} \land P_{2}) \land P_{3}) \land P_{4}) \land (\neg Q))$

 $^{^{17}}$ テキストでは「左括弧の数が右括弧の数より多い表現は整式ではない」だが、実際に証明している、テキストにて証明末尾に書いてある主張は、同じ意味ではあるが、ここに書いたものになっていたので、こちらに合わせた。この例は後で Lemma \ref{Lemma} ($\ref{Compact}$) にて再度登場するけれど、そのときの主張の書き方はこちらの書き方に変わっているので、この書き方でも問題ないと思う。

すると φ_1 は「〇〇月××日に△△小学校周辺の天気は晴れで ,△△小学校に運動場があり,△△小学校に生徒も教員も 1 人以上いれば,運動会が開催されている」となり, φ_2 は「〇〇月××日に△△小学校にて運動会が開催されていないならば ,同日に△△小学校周辺の天気が晴れでないか,△△小学校に運動場・生徒・教員のいずれかが存在しない」となり, φ_3 は「〇〇月××日に△△小学校周辺の天気は晴れで,△△小学校に運動場・生徒・教員も存在するが,運動会は開催されていない」となる. 18 □

次の Exercise を証明するために 2 つの Proposition を証明しておく.

Proposition 1.1.12.

いずれかの式構成操作の結果となっている整式は長さが4以上である. つまり文記号1文字という表現でない整式は, その長さは4以上となる. ■

Proof α は文記号 1 文字という表現でないとする. ある表現 β_1,β_2 があって, $\alpha = \mathcal{E}_{\neg}(\beta_1)$ となっていたとすると, β_1 の長さは 1 以上であるから, α の長さは (,), \neg の 3 つ分長さが増えて 4 以上となる.

 $\alpha = \mathcal{E}_{\wedge}(\beta_1 m \beta_2)$ となっていたとすると, β_1, β_2 のいずれの長さも 1 以上であるから, α の長さは $(,), \neg$ の 3 つ分と β_1, β_2 を合わせて 5 以上となる. つまりこの場合でも長さは 4 以上となり, 他の 2 項結合記号による式構成操作でも同様である.

Proposition 1.1.13.

整式でない表現に式構成操作を行っても整式にはならない.

もっというと α を整式でない表現とすると $\mathcal{E}_{\neg}(\alpha)$ は整式でない.

2 つの表現 lpha,eta のどちらか 1 つは整式でないとすると, $\mathcal{E}_\square(lpha,eta)$ (\square は 2 項結合記号のどれか)のいずれも整式でない.

Proof α を整式でない表現とする. すると整式でないということは α を末項とするようないかなる表現の有限列も構成列とはならない.

 $\mathcal{E}_{\neg}(\alpha)$ が整式となるとすると、構成列 $\langle \varepsilon_1, \dots, \varepsilon_n \rangle$ が存在して $\varepsilon_n = \mathcal{E}_{\neg}(\alpha)$ となっている。構成列の定義 Definition 1.1.6(24 ページ)から $\exists j < n \big(\varepsilon_n = \mathcal{E}_{\neg}(\varepsilon_j) \big)$ となっているから、そのような j を固定すると、 $\varepsilon_j = \alpha$ である。すると $\langle \varepsilon_1, \dots, \varepsilon_j \rangle$ は $\langle \varepsilon_1, \dots, \varepsilon_n \rangle$ の真の始切片であり、Proposition 1.1.8(26 ページ)から $\langle \varepsilon_1, \dots, \varepsilon_j \rangle$ も構成列である。 $\langle \varepsilon_1, \dots, \varepsilon_j \rangle$ という構成列の存在から α が整式となるが、これは矛盾。

2つの表現 α, β のどちらか 1 つは整式でないとする. $\mathcal{E}_{\wedge}(\alpha, \beta)$ が整式となるとすると, 同様に構成列の定義から $\exists j, k < n (\varepsilon_n = \mathcal{E}_{\wedge}(\varepsilon_j, \varepsilon_k))$ となっているから, そのような j, k を固定すると, $\varepsilon_j = \alpha$, $\varepsilon_k = \beta$ である. もし α が整式でないとすると, $\langle \varepsilon_1, \ldots, \varepsilon_j \rangle$ は $\langle \varepsilon_1, \ldots, \varepsilon_n \rangle$ の真の始切片であり, 先ほどと同様の理由で矛盾する. β が整式でなかった場合も同様に, またそれ以外の 2 項結合記号に関する式構成操作に関しても同様に示せるので省略する.

Exercise 1.1.14 (E:p19 2., K:p29 2.) .

長さが 2,3,6 の整式は存在しないこと、そして、それら以外のすべての正整数の長さをもつ整式は存在することを示しなさい. ■

Proof 以下のように細かく分けて証明する.

- 長さが2または3のどんな表現も整式でないこと
 - α を長さが 2 である表現とする. α はその長さから文記号 1 文字だけの表現ではないため, 何らかの式構成操作の結果であるが, Proposition 1.1.12(29 ページ)よりいずれの式構成操作の結果も長さが 4 以上になり, 長さが 2 である α は整式ではない.
 - α の長さが3である場合も同様なので省略する.
- どんな長さが6の表現も整式でないこと
 - α を長さが 6 である表現とする. α はその長さから文記号 1 文字だけの表現ではないため, 何らかの式構成操作の結果である.

なんらかの表現 β があって $\alpha=\mathcal{E}_{\neg}(\beta)$ となっていたとする. すると α は $(\neg\beta)$ という形の表現であり, β の長さは 3 である. しかし長さが 3 の整式は存在しないため, β も整式でない. そして Proposition 1.1.13(29 ページ)より α も整式とならない.

 $^{^{18}}$ 問題文によれば、何も同じ記号で $_3$ つの文章を作れとはなっていないが、めんどくさかったので……また意味のある文章を作るためにもすでに作った $_{\varphi_1}$ の、 $_{\varphi_2}$ はその対偶に、 $_{\varphi_3}$ はその否定とすることで楽をさせてもらった.こういうのはそれこそ教養があると面白い回答を出せるのだろう.

続いてなんらかの表現 β_1,β_2 があって, $\alpha=\mathcal{E}_{\wedge}(\beta_1,\beta_2)$ となっていたとする. すると α は $(\beta_1\wedge\beta_2)$ という形の表現であり, β_1,β_2 の長さはどちらかは 1, どちらかは 2 という配分になっている. かりに β_1 の長さを 2 とすると, 長さが 2 の整式は存在しないため β_1 は整式でない. そして Proposition 1.1.13(29 ページ)より α も整式とならない. 他の 2 項結合記号に関しても同様なので省略する.

長さが1,4,5の整式が存在すること

A, A' を文記号のいずれかとする. 表現 $\alpha_1, \alpha_4, \alpha_5$ を, $\alpha_1 = A, \alpha_4 = (\neg A), \alpha_5 = (A \land A')$ とおくと, それぞれ長さが 1, 4, 5 で, いずれも構成列を構築できることから整式である.

長さが7,8,9の整式が存在すること

1つ上で示したことより長さが 1,4,5 の整式が存在するので, それらの中から 1 つとり $\alpha_1,\alpha_4,\alpha_5$ とおく(添え字はその長さを表している). 表現 $\alpha_7,\alpha_8,\alpha_9$ を, $\alpha_7=(\neg\alpha_4),\ \alpha_8=(\neg\alpha_5),\ \alpha_9=(\alpha_1\wedge\alpha_5)$ とおくと, それぞれ長さが 7,8,9 で, いずれも構成列を構築できることから整式である.

• 10 以上の任意の長さの整式が存在すること

任意に 10 以上の自然数 n をとる. n に対してある自然数 m があって, n=7+3m また n=8+3m または n=9+3m の いずれかである. n=7+3m な n に対しては,表現 α を $\alpha=\mathcal{E}_{\neg}^{m}(\alpha_{7})$ とおく.ここで α_{7} は 1 つ上で示したことにより存在する長さが 7 の何らかの整式で, $\mathcal{E}_{\neg}^{m}(\alpha_{7})$ は α_{7} に \mathcal{E}_{\neg} 演算を m 回施したものとする.すると表現 α は長さが n であり,構成列を構築できることから整式である.

n=8+3m または n=9+3m であっても長さが 8,9 の整式を用いることで同様に示せるので省略する.

Exercise 1.1.15 (E:p19 3., K:p29 3.) .

 α を整式として, α の中で 2 項結合記号が出現する箇所の数を c で, α の中で文記号が出現する箇所の数を s で表します. (たとえば, α が $(A \to (\neg A))$ の場合は, c = 1, s = 2 です.)帰納法の原理を使って, s = c + 1 であることを示しなさい.

Proof 整式の集合 A を $A = \{\alpha | s_\alpha = c_\alpha + 1\}$ とする.ここで s_α は α の中で文記号が出現する箇所の数, c_α は α の中で 2 項 結合記号が出現する箇所の数とする.以下の 2 つのことを示せば帰納法の原理である Theorem 1.1.9(27 ページ)より証明完了となる.

Aにはすべての文記号が属すること

任意に文記号をとり A とおく. A1 文字だけという表現は整式でもある. A という整式の 2 項結合記号の数は 0, 文記号の数は 1 より A に属する条件をみたす.

• A がすべての式構成操作について閉じていること

任意に $\alpha, \beta \in \mathcal{A}$ をとる. それぞれの整式に対する \mathcal{A} の条件にある数を $c_{\alpha}, s_{\alpha}, c_{\beta}, s_{\beta}$ とおくと, $s_{\alpha} = c_{\alpha} + 1, s_{\beta} = c_{\beta} + 1$ をみたしている. 整式 γ に対して同様に c_{γ}, s_{γ} を定めておく.

 $\gamma = \mathcal{E}_{\neg}(\alpha)$ とすると, γ は α から 2 項結合記号も文記号も増えていない, つまり $c_{\gamma} = c_{\alpha}$, $s_{\gamma} = s_{\alpha}$ であり, 仮定より $s_{\gamma} = c_{\gamma} + 1$ をみたし $\gamma \in \mathcal{A}$, つまり \mathcal{A} は式構成操作 \mathcal{E}_{\neg} について閉じている.

続けて $\gamma=\mathcal{E}_{\wedge}(\alpha,\beta)$ とすると, γ はその作り方から 2 項結合記号の出現する箇所の個数は α,β の 2 つのものに加えて $\wedge 1$ つが増えているので, $c_{\gamma}=c_{\alpha}+c_{\beta}+1$ である. γ は α,β の 2 つに含まれるもの以外には文記号が増えていないので, $s_{\gamma}=s_{\alpha}+s_{\beta}$ である. すると

$$s_{\gamma} = s_{\alpha} + s_{\beta}$$

= $(c_{\alpha} + 1) + (c_{\beta} + 1)$
= $(c_{\alpha} + c_{\beta} + 1) + 1 = c_{\gamma} + 1$

より $\gamma \in A$, つまり A は式構成操作 \mathcal{E}_{Λ} について閉じている.

他の2項結合記号に関する式構成操作について同様なので省略する.

Exercise 1.1.16 (E:p19 4., K:p29 4.) .

 φ で終わる構成列があって, φ は記号 A_4 を含んでいないとします. この構成列から A_4 を含む表現をすべて取り去ったとしても, その結果はやはり正しい構成列になっていることを示しなさい.

Proof $\langle \varepsilon_1, \dots, \varepsilon_n \rangle$ を $\varepsilon_n = \varphi$ な構成列とし、 φ は記号 A_4 を含んでいないとする. $\langle \varepsilon_1', \dots, \varepsilon_m' \rangle$ を $\langle \varepsilon_1, \dots, \varepsilon_n \rangle$ から A_4 を含む表現をすべて取り去った表現の有限列とする. 仮定より $\varepsilon_m' = \varphi$ である. ここで m = n ならば「 $\forall i (\varepsilon_i = \varepsilon_i')$ 」となって、もともと $\langle \varepsilon_1, \dots, \varepsilon_n \rangle$ のどの表現にも A_4 が含まれていなかったことになり、証明することがなくなってしまうので、m < n としておく. Definition 1.1.6(24 ページ)より $\langle \varepsilon_1, \dots, \varepsilon_n \rangle$ は「 $\forall i \leq n (\ (1) \lor (2) \lor (3)\)$ 」をみたしている. いま、 $\langle \varepsilon_1', \dots, \varepsilon_m' \rangle$ が構成列でなかったとする. つまり「 $\exists i' \leq m (\ \neg (1') \land \neg (2') \land \neg (3')\)$ 」として、そんな i' を 1 つ固定する. ここで

- $\neg (1') \ \varepsilon'_{i'} \notin \mathcal{P}.$
- $\neg (2') \ \forall j < i' (\varepsilon'_{i'} \neq \mathcal{E}_{\neg}(\varepsilon'_{i})).$
- $\neg(3') \ \forall j, k < i' \left(\varepsilon'_{i'} \neq \mathcal{E}_{\square}(\varepsilon'_{j}, \varepsilon'_{k}) \right).$ ここで \square は 2 項結合記号のいずれかを表す.

である. $\varepsilon'_{i'} = \varepsilon_i$ なる $\langle \varepsilon_1, \dots, \varepsilon_n \rangle$ に含まれる表現が存在するので、それも固定する.

 ε_i が (1) をみたす、つまり文記号だったとすると、 $\langle \varepsilon_1', \dots, \varepsilon_m' \rangle$ の作り方から文記号だったものがそうでない表現に変わることはないので、 ε_n' も文記号となるが、これは ε_n' が $\neg (1')$ をみたすことに反する.

つぎに ε_i が (2) をみたす、つまり $\exists j < i \left(\varepsilon_i = \mathcal{E}_{\neg}(\varepsilon_j) \right)$ だったすると、 $\varepsilon'_{i'}$ が $\neg (2')$ をみたすことから、 $\langle \varepsilon_1, \ldots, \varepsilon_n \rangle$ のときに存在していた ε_j が $\langle \varepsilon'_1, \ldots, \varepsilon'_m \rangle$ を作ったさいに取り去られた、つまりそのような ε_j は A_4 を含んでいたことになる.すると $\varepsilon_i = \mathcal{E}_{\neg}(\varepsilon_j)$ より ε_i も,そして $\varepsilon'_{i'}$ も A_4 記号を含んでいることになるが、これは $\langle \varepsilon'_1, \ldots, \varepsilon'_m \rangle$ の作り方に矛盾.

 ε_i が (3) をみたすときも同様に示せるので省略.

Exercise 1.1.17 (E:p19 5., K:p29 5.)

- α は否定記号 ¬ を含まない整式とします.
 - (a) α の長さ(記号列を構成する記号の個数) は奇数であることを示しなさい.
 - (b) α を構成する記号のうち、文記号が占める割合が 1/4 を超えることを示しなさい.

 $\underline{\mathbf{Proof}}$ (a)(b) に関してテキストのヒントを使って同時に示す.

 $A\subseteq F$ を否定記号 ¬ を含まない整式の集合とする. 整式に含まれる左括弧記号の個数 19 に関する累積帰納法を用いる. 任意に $n\in\mathbb{N}$ をとる. 帰納法の仮定は 「n 個未満の左括弧記号を含む任意のの整式に対して, ある $k\in\mathbb{N}$ があって, その長さは 4k+1 で, 文記号の数は k+1 になっている」とする.

任意に左括弧記号の個数が n 個な整式 $\varphi \in A$ をとる. いま n=0, つまり φ が文記号 1 文字という形の整式ならば明らか. よって n>0 とすると, φ は否定記号以外の記号による式構成操作によって出来上がったものであるため, ある $\alpha,\beta \in A$ があって $\varphi = \mathcal{E}_{\wedge}(\alpha,\beta)$ となっていたとすると, φ は $(\alpha \wedge \beta)$ という形になっている. φ の左括弧記号の個数が n 個であることから, α,β はそれぞれそれ未満, つまり n 個未満であるため, 帰納法の仮定からそれぞれに対してある $k_{\alpha},k_{\beta} \in \mathbb{N}$ があって, α,β のそれぞれの長さは $4k_{\alpha}+1,4k_{\beta}+1$ となっていて, それぞれに含まれる文記号の個数は $k_{\alpha}+1,k_{\beta}+1$ 個である. すると φ の長さは, その形から α と β の長さに加えて, $(.\neg,)$ の 3 つの記号があることから, $k \in \mathbb{N}$ を $k=k_{\alpha}+k_{\beta}+1$ とおけば,

$$(4k_{\alpha} + 1) + (4k_{\beta} + 1) + 3 = 4(k_{\alpha} + k_{\beta} + 1) + 1$$

= $4k + 1$

である.

 φ に含まれる文記号の個数は α,β に含まれるものから増えていないので, $(k_{\alpha}+1)+(k_{\beta}+1)=(k_{\alpha}+k_{\beta}+1)+1=k+1$ である. よってそんな k の存在から左括弧記号が n 個のときも成立. そして φ が他の式構成操作によって出来上がったものであっても同様に示せるので省略する.

これまでに示したことにより、Aに属する任意の整式 φ の長さは何らかの自然数 k をもって 4k+1 となっているので、その長

¹⁹ 別の言い方をすれば、その整式に対して施された否定記号以外の式構成操作の回数ともいえる. また Example 1.1.10 (28 ページ) にある通り、どんな整式に含まれる左括弧と右括弧記号の数は同じということを知っていれば、別に右括弧記号の個数でも一緒である. また個人的にはもう少し証明に有利になるような帰納法の回し方はないものかとも思っている.

souji ノート

さは奇数, つまり (a) は成立する.

そして φ を構成する記号の個数とはその長さと同じだから 4k+1 個, そして文記号の個数は k+1 であるから, 文記号の占める割合とは

 $(\varphi$ に含まれる文記号の個数)/ $(\varphi$ を構成する記号の個数) = (k+1)/(4k+1) > 1/4

となって 1/4 を超えているため (b) も成立している.

1.2 真理値割り当て

Definition 1.2.1(真理値割り当て (E:p20 21, K:p30 32)). $\mathcal{A} \subseteq \mathcal{P}$ とする.

- 1. Definition 1.1.1(20 ページ)とは別に新たに 2 つの記号を用意する. それらを F(これを falsity(偽)とよぶ), T(これを truth(真)とよぶ)とする.
- 2. $v: A \to \{F, T\}$ なる v を文記号の集合 A に対する truth assignment (真理値割り当て) という.
- $3. \ \bar{A}$ を A から始めて 5 種類の式構成操作を使って構成できる整式全体の集合とする.
- 4. 真理値割り当て $v: A \to \{F,T\}$ に対して, $\bar{v}: \bar{A} \to \{F,T\}$ を各 $A \in A$ と $\alpha, \beta \in \bar{A}$ について以下の 6 条件をみたすものとする.

$$4\text{-}0.\ ar{v}(A) = v(A)$$

$$4\text{-}1.\ ar{v}((\neg lpha)) = \begin{cases} T & ar{v}(lpha) = F \text{ のとき} \\ F & \text{それ以外のとき} \end{cases}$$

$$4\text{-}2.\ ar{v}((lpha \wedge eta)) = \begin{cases} T & ar{v}(lpha) = T \text{ かつ} ar{v}(eta) = T \text{ のとき} \\ F & \text{それ以外のとき} \end{cases}$$

$$4\text{-}3.\ ar{v}((lpha \vee eta)) = \begin{cases} T & ar{v}(lpha) = T \text{ または} ar{v}(eta) = T \text{ (もしくはその両方) のとき} \\ F & \text{それ以外のとき} \end{cases}$$

$$4\text{-}4.\ ar{v}((lpha \to eta)) = \begin{cases} F & ar{v}(lpha) = T \text{ かつ} ar{v}(eta) = F \text{ のとき} \\ T & \text{それ以外のとき} \end{cases}$$

$$4\text{-}5.\ ar{v}((lpha \leftrightarrow eta)) = \begin{cases} T & ar{v}(lpha) = ar{v}(eta) \text{ のとき} \\ F & \text{それ以外のとき} \end{cases}$$

テキストにあるなし関わらず気になったことを注意しておくと,

1. 上記定義 1. では新たな記号が定義されたが、Definition 1.1.1(20 ページ)では記号を割り当てるもの(それを今後記号と同一視して使っていくもの)として、オブジェクトの列を使用したが、ここでは列であるようなことは書かれていない。 それは Definition 1.1.1(20 ページ)の注意事項 6 でも書いたように、今から無限個の記号を用意するわけでもないので、列でもなくともよいということなのかもしれない.

もっというともし議論の進め方次第では先にすべての使う記号を定義しておく流儀もありえて、そのような場合には表 1.2 の括弧記号の前にこの T, F を追加してやればよい。ただその場合、記号の有限列であるという表現の定義にて「真理値を表す記号は除く」と付け加えなくてはいけないだろう。これ以外にも定義や議論の中で煩わしい問題が増えるのかもしれない。ならばこのタイミングで新たな記号として用意するのが妥当なのかもしれない。

2. 真理値は記号なのか?

このテキストでは文記号の表現を構成するモノも、真理値として使用するモノもどちらも初めに用意された「記号」という同じ種類のものである。他のテキストだと真理値とは何と定めているかを、勉強会運営時点で所持していたロジックの入門書などをまとめて眺めてみた結果をこれから記す。文論理の記号としては真理値を定めていないもの、つまり文記号や論理記号と真理値を同じ種類のものである(このテキストのようにどちらも記号であるなどと言い切っている)としていないものとして、[?], [?]

「文記号や論理記号と真理値を同じ種類のものであるとしていない」という共通点はあれど、それ以外の定義の仕方も様々なことが分かる。これはいま気になっていることがそこまで大きな問題でないことを表しているし、そのときの議論の進めやすさや、その人それぞれのキャラクター・教育的配慮の表れに過ぎないのかもしれない。

ちなみに私がこの時点で所持していた本の中で明確に「文記号や論理記号と真理値を同じ種類のものである」という議論 の進め方をしているものはなかった.²⁰

3. 真理値が 2 値でない論理

テキストでは「このテキストでは 2 値論理だけを考える」としているが、別の、つまりもっと真理値が多い論理についても言及されている。例えば 3 値論理、真理値が \aleph_0 個の論理、さらには真理値の集合を単位区間 [0,1] や適当な空間とするものなどがある。

- 4. 3. ではテキストの書き方に合わせたが、「式構成操作を有限回施した整式全体」などと言ってもよいと思われる。そうすると 0 回の操作をした(なにもしていない)、つまり文記号 1 文字だけの整式も \bar{A} に属することが明瞭になる。そうすると $A\subseteq \bar{A}$ であり、 $A=\mathrm{dom}\,v\subseteq\mathrm{dom}(\bar{v})=\bar{A}$ となって、 $v=\bar{v}\upharpoonright A$ と分かるから、v は \bar{v} の A への制限であるし、 \bar{v} は v の 拡大である。 21
- 5. テキストにあるとおり、条件41.から45.までは以下のような表で表すこともできる.

α	β	$(\neg \alpha)$	$(\alpha \wedge \beta)$	$(\alpha \vee \beta)$	$(\alpha \to \beta)$	$(\alpha \leftrightarrow \beta)$
\overline{T}	T	F	T	T	T	T
T	F	F	F	T	F	F
F	T	T	F	T	T	F
F	F	T	F	F	T	T

Table 1.2: (E:p21 TABLE III, K:p32 表 III)

²⁰ 私は初めてこの本を読んだとき, 真理値を文論理の記号として扱うことに驚いた. それは単にそのような流儀を初めて見たからである. 使い方として真理値以外の記号は文論理の表現を構成するためのもので, 真理値はそれらを充足関係などで評価するためのものという印象があった. しかしこれまで何度か意識してきた通り, これから何らかの公理系の上にこれから文論理を実装していこうしているならば, 例えば集合論の公理系から文論理の議論を展開しようとしているのならば, 文論理の定義を記述するためのモノも全て同じ集合になる(集合論の公理系で扱えるものは集合だけなのだから)から, もともとから特に身分差を付け辛いという点では, 真理値も同じ記号(の仲間)としてしまう方が分かりやすいのかもしれない. そうなると 1 つ上の注意事項後半の事柄を意識する必要がある.

 $^{^{21}}$ テキストでは拡張と書いてあるが、写像の拡張概念は定義されているわけではない。もちろん単なる日常会話として十分に理解はできるのだけれど、私が拡大とよぶ概念を拡張とよぶ流儀もあるので、言葉として使うならば定義しておくべきだと思われた。かなり揚げ足ぎみなツッコミではあるが、そのセットとして語られそうな制限概念については定義していたので、なおさら書いた次第です。

Example 1.2.2 (E:p21 23, K:p32 34) .

整式αを

$$((A \rightarrow (A_1 \rightarrow A_6)) \leftrightarrow ((A_2 \land A_1) \rightarrow A_6))$$

とし、 $\operatorname{dom}(v) = \{A_1, A_2, A_6\}$ な真理値割り当て v を、 $v(A_1) = T$ 、 $v(A_2) = T$ 、 $v(A_6) = F$ で定めると、 $\bar{v}(\alpha) = T$ である.

この例はテキストにて木を用いて解説されているし、とくに付け加えることもないので次の話題に移る.

次の定理はテキストの流れ通りここでは示さず○○にて示す.

Theorem 1.2.3 (E:p23 THEOREM 12A, K:p34 定理 12A).

集合 $A \subseteq \mathcal{P}$ へのどんな真理値割り当て v についても、Definition 1.2.1(32 ページ)の条件 4-0. から 4-5. までに合致する写像 $\bar{v}: \bar{A} \to \{T, F\}$ がただひとつ存在する.

Definition 1.2.4 (充足関係 (E:p23 24, K:p34 36)).

整式の集合 Σ と整式 τ , σ , そして A_{τ} , $A_{\Sigma,\tau}$ をそれぞれ τ , Σ , τ に含まれるすべての文記号の集合とする.

- 1. $A_{\tau} \subseteq \text{dom}(v)$ な真理値割り当て v に対して $\bar{v}(\tau) = T$ であるとき, v satisfies τ (v は τ を充足する) という.
- 2. $A_{\Sigma,\tau}$ を定義域として含むすべての真理値割り当てに対して、それが Σ のすべての要素を充足するならば τ をも充足する とき、 Σ tautologically implies τ (Σ は τ をトートロジー的に含意する) といい、 $\Sigma \models \tau$ で表す.
- 3. $\emptyset \models \tau$ であるとき, つまり A_{τ} を定義域として含むどんな真理値割り当ても τ を充足するとき, τ は tautology (トートロジー) であるといい, 単に $\models \tau$ で表す.
- 4. Σ が一元集合であるとき、つまり $\{\sigma\} \models \tau$ であるとき単に $\sigma \models \tau$ と表すことにする。 $\sigma \models \tau$ かつ $\tau \models \sigma$ であるとき、 σ と τ は tautologically equivalent(トートロジー的に同値)であるといい、 $\sigma \models \dashv \tau$ で表す.

Example 1.2.5 (E:p23, K:p35 36).

 $A, B \in \mathcal{P} \$ とする.

- 1, Example 1.2.2(33 ページ)で挙げた整式 α と真理値割り当て v について, v は α を充足すると述べたが, それ以外のどの真理値割り当ても α を従属する. つまり α はトートロジーである.
- 2. $\{A, (\neg A)\} \models B$ である.
- 3. $\{A, (A \rightarrow B)\} \models B$ である.

Proof テキストより少し詳しく解説・証明する.

1. 改めて、整式 α は

$$((A \rightarrow (A_1 \rightarrow A_6)) \leftrightarrow ((A_2 \land A_1) \rightarrow A_6))$$

となっていた. $\{A_1,A_2,A_6\}\subseteq \mathrm{dom}(v)$ な真理値割り当て v は, $v \mid \{A_1,A_2,A_6\}$ を考えると, 以下の v_1 から v_8 のいずれかになるので.

	A_1	A_2	A_6
v_1	T	T	T
v_2	T	T	F
v_3	T	F	T
v_4	T	F	F
v_5	F	T	T
v_6	F	T	F
v_7	F	F	T
v_8	F	F	F

 α がトートロジーであることを示すには v_1 から v_8 のいずれも α を充足することを確かめればよい. ??節(??ページ)を参考にして真理値表を書いて作業的に確かめることもできるが、ここではあえて真理値表を使わずに確かめてみる.

 α_1 を $(A \to (A_1 \to A_6))$ と, α_2 を $((A_2 \land A_1) \to A_6)$ とおくと, α は $(\alpha_1 \leftrightarrow \alpha_2)$ で表せる. もし真理値割り当て v が $\bar{v}(\alpha) = T$ ならば $\bar{v}(\alpha_1) = \bar{v}(\alpha_2)$ でなくてはならない.

いまある真理値割り当て v が $v(A_2)=F$ ならば A_1,A_6 の値に関わらず $\bar{v}(\alpha_1)=T=\bar{v}(\alpha_2)$ となることが分かるので、 v_3,v_4,v_7,v_8 は OK.

つぎに $v(A_2)=T$ とすると, $\bar{v}(\alpha_1)=T$ とするには $v(A_1)=F$ か, $v(A_1)=T$ かつ $v(A_6)=T$ とすればよい. $v(A_1)=F$ な v は $\bar{v}(\alpha_2)=T$ であるし, $v(A_1)=T$ かつ $v(A_6)=T$ な v も $\bar{v}(\alpha_2)=T$ である。よって $v(A_1)=F$ な v_5,v_6 も, $v(A_1)=T$ かつ $v(A_6)=T$ な v_1 も OK.

残るは v_2 だが、これは Example 1.2.2 (33 ページ) で確かめているので OK.

2. 示すべき $\{A, (\neg A)\} \models B$ を定義に戻って論理式も使って書くと, $\{A, B\} \subseteq \operatorname{dom}(v)$ な任意の真理値割り当て v に対して

$$\forall \varphi \in \{A, (\neg A)\} (\ \bar{v}(\varphi) = T \ \to \ \bar{v}(B) = T \) \tag{\dagger}$$

となる. そして $\{A,B\}$ に対するどのような真理値割り当ても, $\{A,(\neg A)\}$ の全ての要素を同時に充足することはない, つまり式 (\dagger) の前件は常に成立しないので, v が B を充足するかどうかに関係なく, $\{A,(\neg A)\} \models B$ である.

- 3. $A, (A \rightarrow B)$ のどちらも充足する真理値割り当て v は, v(A) = v(B) = T となるものだけである.
 - :: \models の左右に現れる整式に含まれる文記号は A,B だけなので、A,B に関する割り当てだけ、つまり 4 種類だけに注目すればよい.そのすべてについて真理値表などで確かめてもよいが、議論だけで確かめると、まず \models の左の集合に A という整式があるので、探すべき割り当て v は v(A) = T でなくてはならない.そして v(A) = T かつ $\bar{v}((A \to B)) = T$ とするには v(B) = T でなくてはならない.そして他の値の組み合わせはどれも $A, (A \to B)$ を同時に充足することはない.

そしてそんな v はすでに v(B) = T であるから, $\{A, (A \rightarrow B)\} \models B$ である.

ここで以下の定理が紹介されていますが、テキストにある通りこの定理の証明は??節(??ページ)にて出てきます.

Theorem 1.2.6 (コンパクト性定理 (E:p24 COMPACTNESS THEOREM, K:p36 コンパクト性定理)).

 Σ は無限個の整式からなる集合で、いかなる Σ の有限な部分集合 Σ_0 についても、 Σ_0 のすべての要素を同時に充足する真理値割り当てが存在するとする.このとき、 Σ のすべての要素を同時に充足する真理値割り当てが存在する.

第II部

情報一覧

このパートは、このノートの色んな情報をまとめています.

第2章 このノートの定義・定理一覧

2.1 0部 不完全性定理勉強会ノート

- Notation 0.0.1 ジャーゴン (E:p1 2, K:p1 2) 5ページ —

数学用語になかで、このノートを通じて用いるものを 4 つ挙げる.

- 1. 定義や定理の主張の終わりを表す記号として を, 証明の終わりを表す記号として □ を用いる.
- 2. 「 \bigcirc ならば \times *である」という含意を表す文章を「 \bigcirc \bigcirc \Rightarrow \times *」と略記する . 逆向きの含意を表すのに \Leftarrow を使うこともあります.

「 $\bigcirc\bigcirc$ であるのは、 $\times\times$ であるとき 、かつそのときに限る」を「 $\bigcirc\bigcirc$ は $\times\times$ と同値である」と述べたり 、記号 \leftrightarrow を、「 $\bigcirc\bigcirc$ \leftrightarrow $\times\times$ 」のように使ったりする .

- 3. 「したがって」という言葉の代わりに省略記号 :: を: を: を: を: に証明中に :: を用いる場合はぶら下げを使って、: その理由部分を書く.
- 4. 関係を表す記号に斜線を重ねることでその関係の否定を表すことがある。例えば「x=y」の否定として「 $x \neq y$ 」や「 $x \in y$ 」の否定として「 $x \notin y$ 」と書く。このテキストで新たに導入する記号,例えば \models に対しても同様に $\not\models$ のようにして,このルールを適用する.

(ファイルパス) C:/souji/all-note/part/part_不完全性定理勉強会ノート/chapter_集合についての予備知識.tex

(行数)5 (ラベル)notation:ジャーゴン

- Definition 0.0.2 集合 (E:p1 2, K:p2) 5ページー

ものの集まりのことを set (集合) という.

ここでいう「もの」のことを member(要素)または element(元)と呼ぶ. この「もの」のことをオブジェクトとも呼んだりする. オブジェクト x,y が同一のものであるとき, x=y と表す.

ものtが集合Aの要素であることを $t \in A$ で表す.

集合 A, B に対して

 $\forall D$ $\forall D$

(論理式で書けばたとえば $\forall t (t \in A \rightarrow t \in B \land t \in B \rightarrow t \in A)$ や、 $\forall t (t \in A \Leftrightarrow t \in B)$ となる) をみたすとき、集合 A, B は等しいと言い、A = B で表す.

(ファイルパス) C:/souji/all-note/part/part_不完全性定理勉強会ノート/chapter_集合についての予備知識.tex

(行数)62 (ラベル)definition:集合

- Definition 0.0.3 E:p2, K:p2 5ページ —

オブジェクト t と集合 A に対して,その要素が t か A に属する要素のみであるような集合を A;t で表す. のちに定義する和集合記号 \cup を用いて定義しなおせば, $A;t \stackrel{\mathrm{def}}{=} A \cup \{t\}$ となる. 「 $\stackrel{\mathrm{def}}{=}$ 」という表記に関してはすぐ下の Notation を参照のこと.

(ファイルパス) C:/souji/all-note/part/part_不完全性定理勉強会ノート/chapter_集合についての予備知識.tex (行数) 88 (ラベル) definition:セミコロン演算

- Notation 0.0.4 定義するための記号 5ページ ——

もの(数学的対象)を定義するさいに「 ^{def}」, (数学的な) 述語を定義するさいに「 ^{def} 」を用いる. 使い方としてはこれらに記号の左側に変数などを利用した新たなものや述語を記述し, 右側に日常言語で書かれたそれらの定義を書く. ここまでの定義を使用例を出すと

- $A;t \stackrel{\text{def}}{=}$ その要素が t か A に属する要素のみであるような集合(Definition 0.0.3)
- $A=B \iff$ どのオブジェクト t についても, $t\in A$ であれば $t\in B$ であり, かつ $t\in B$ であれば $t\in A$ である (Definition 0.0.2)

(ファイルパス) C:/souji/all-note/part/part_不完全性定理勉強会ノート/chapter_集合についての予備知識.tex (行数) 102 (ラベル) notetion:定義するための記号

Definition 0.0.6 空集合 (E:p2, K:p2 3) 6ページ —

要素を全く持たない集合を **empty** set(空集合)といい, \emptyset で表す. 集合 A が空であることは $A=\emptyset$ で表せ, (論理式で書けば例えば $\forall x (x \notin A)$ となる) 空集合でない集合を **non empty** な(空でない)集合と呼ぶ.

(ファイルパス) C:/souji/all-note/part/part_不完全性定理勉強会ノート/chapter_集合についての予備知識.tex (行数) 148 (ラベル) definition:空集合

- Definition 外延的記法 (E:p2, K:p3) —

オブジェクト x, x_1, \ldots, x_n に対して,

- 1. x のみを要素にもつ集合を $\{x\}$ で表す.
- 2. $x_1, ..., x_n$ のみを要素にもつ集合を $\{x_1, ..., x_n\}$ で表す.
- 3. {0,1,2,...} は自然数全体の集合 № を表し, {..., -2, -1,0,1,2,...} は整数全体の集合 ℤ を表す.

(ファイルパス) C:/souji/all-note/part/part_不完全性定理勉強会ノート/chapter_集合についての予備知識.tex (行数) 159 (ラベル)

- Proposition E:p2, K:p3 ——

オブジェクト x, y に対して, $\{x, y\} = \{y, x\}$ である.

(ファイルパス) C:/souji/all-note/part/part_不完全性定理勉強会ノート/chapter_集合についての予備知識.tex (行数) 172 (ラベル)

Definition 内包的記法 (E:p2, K:p3) —

 $\{x \mid _x_-\}$ と書いて $_x_-$ をみたす全てのオブジェクトの集合を表す.

(ファイルパス) C:/souji/all-note/part/part_不完全性定理勉強会ノート/chapter_集合についての予備知識.tex (行数) 186 (ラベル)

- Definition 0.0.10 部分集合 (E:p2, K:p3) 6ページ —

集合 A,B に対して集合 A の要素がすべて B の要素でもあるとき, A は B の \mathbf{subset} (部分集合) であるといい, $A \subseteq B$ で表す. (論理式で書けば $\forall x (x \in A \to x \in B)$ となる)

(ファイルパス) C:/souji/all-note/part/part_不完全性定理勉強会ノート/chapter_集合についての予備知識.tex (行数) 219 (ラベル) definition:部分集合関係

- Proposition (E:p2, K:p3) —

∅はどんな集合に対しても部分集合となる.

(ファイルパス) C:/souji/all-note/part/part_不完全性定理勉強会ノート/chapter_集合についての予備知識.tex (行数) 229 (ラベル)

- Definition 0.0.12 べき集合 (E:p2, K:p3) 7ページ ——

集合 A に対して A のすべての部分集合からなる集合を A の power set(べき集合)とよぶ, $\mathcal{P}(A)$ で表す. より正確には $\mathcal{P}(A)\stackrel{\mathrm{def}}{=}\{X\mid X\subseteq A\}.$

(ファイルパス) C:/souji/all-note/part/part_不完全性定理勉強会ノート/chapter_集合についての予備知識.tex (行数) 242 (ラベル) definition:べき集合

- Example E:p3, K:p4 -

$$\mathcal{P}(\emptyset) = \{\emptyset\}$$

 $\mathcal{P}(\{\emptyset\}) = \{\emptyset, \{\emptyset\}\}$

(ファイルパス) C:/souji/all-note/part/part_不完全性定理勉強会ノート/chapter_集合についての予備知識.tex (行数) 254 (ラベル)

- Definition ?? 和集合と共通部分 (E:p3, K:p4 5) ??ページ ——

A, B を集合, A を全ての要素が集合であるような集合とする. さらに各自然数 n に対して集合 A_n が定まっているとする.

- 1. $A \cup B \stackrel{\text{def}}{=} \{x \mid x \in A \text{ または } x \in B\} \ (= \{x \mid x \in A \lor x \in B\}) \text{ とし, これを } A \land B \text{ o union} \ (和集合) \text{ という.}$
- 3. $A \cap B = \emptyset$ であるとき, $A \land B$ は disjoint(交わらない)という. A のどの 2 個の要素も交わらないとき, A は pairwise disjoint(互いに交わらない)という.
- 4. $\bigcup A \stackrel{\text{def}}{=} \{x \mid x \text{ は } A \text{ のいずれかの要素に属する} \} (= \{x \mid \exists A(x \in A \land A \in A)\}) \text{ とし, これを } A \text{ o union} (和集合) という.$
- 5. $\bigcap A \stackrel{\text{def}}{=} \{x \mid x \text{ は } A \text{ のすべての要素に属する}\} (= \{x \mid \forall A(x \in A \land A \in A)\}) \text{ とし, これを } A \text{ of intersection}$ (共通部分) という.
- 6. $\bigcup_{n\in\mathbb{N}}A_n\stackrel{\mathrm{def}}{=}\bigcup\{A_n\mid n\in\mathbb{N}\}$ とする. これを単に \bigcup_nA_n と表すこともある.

(ファイルパス) C:/souji/all-note/part/part_不完全性定理勉強会ノート/chapter_集合についての予備知識.tex

(行数) 259 (ラベル) definition:和集合, definition:共通部分, definition:2 つの集合が交わらない, definition:集合族の和集合, definition:集合族の共通部分

Example E:p3, K:p4 5 —

tをオブジェクト, A, B を集合, $A = \{\{0,1,5\},\{1,6\},\{1,5\}\}$ という集合族とする.

- 1. $A; t = A \cup \{t\}.$
- 2. $\bigcup A = \{0, 1, 5, 6\}.$ $\bigcap A = \{1\}.$
- 3. $A \cup B = \bigcup \{A, B\}.$
- 4. $\bigcup \mathcal{P}(A) = A$.

(ファイルパス) C:/souji/all-note/part/part_不完全性定理勉強会ノート/chapter_集合についての予備知識.tex (行数) 318 (ラベル)

- Definition 0.0.16 順序対 (E:p3 4, K:p5) 7ページ —

オブジェクト $x, y, z, x_1, \ldots, x_n, x_{n+1}$ に対して

- 1. $\langle x,y \rangle \stackrel{\text{def}}{=} \{\{x\},\{x,y\}\}$ とし、これを x と y の **ordered pair** (順序対)という。順序対 $\langle x,y \rangle$ における x,y をこの順序対の成分といい、とくに x を第一成分、y を第二成分と呼んだりする。
- 2. $\langle x,y,z\rangle \stackrel{\text{def}}{=} \langle \langle x,y \rangle,z \rangle$ とし、より一般的に n>1 に対して $\langle x_1,\ldots,x_{n+1} \rangle \stackrel{\text{def}}{=} \langle \langle x_1,\ldots,x_n \rangle,x_{n+1} \rangle$ と帰納的に定義する.
- 3. とくに $\langle x \rangle = x$ と定義する.

(ファイルパス) C:/souji/all-note/part/part_不完全性定理勉強会ノート/chapter_集合についての予備知識.tex (行数) 332 (ラベル) definition:順序対

Definition 0.0.17 有限列 (E:p4, K:p5) 8ページ —

集合 A に対して

- 1. S が A の要素からなる finite sequence(有限列)(あるいは string(列))であるとは、ある正の整数 n について $S = \langle x_1, \ldots, x_n \rangle$ で各 x_i が A の要素であるときとする.(論理式で書くと $\exists n \in \mathbb{Z} (n > 0 \land x_1, \ldots, x_n \in A \land S = \langle x_1, \ldots, x_n \rangle$)) またこのときの n を有限列 A の長さとよぶ.
- 2. A の要素からなる有限列 $S = \langle x_1, \ldots, x_n \rangle$ に対し、 $1 \le k \le m \le n$ な k, m でもって $\langle x_k, x_{k+1}, \ldots, x_{m-1}, x_m \rangle$ な形の有限列を S の segment(区間)という.とくに k = 1 な区間を S の initial segment(始切片)といい, $m \ne n$ な始切片を S の proper initial segment(真の始切片)という.

(ファイルパス) C:/souji/all-note/part/part_不完全性定理勉強会ノート/chapter_集合についての予備知識.tex (行数) 366 (ラベル) definition:有限列

Proposition E:p4, K:p6 —

オブジェクト $x_1, \ldots, x_n, y_1, \ldots, y_n$ に対して $\langle x_1, \ldots, x_n \rangle = \langle y_1, \ldots, y_n \rangle$ ならば, $1 \le i \le n$ な各 i について $x_i = y_i$.

(ファイルパス) C:/souji/all-note/part/part_不完全性定理勉強会ノート/chapter_集合についての予備知識.tex (行数) 392 (ラベル)

- Lemma 0.0.19 E:p4 LEMMA 0A, K:p6 補題 0A 8ページ —

 $\langle x_1, \dots, x_m \rangle = \langle y_1, \dots, y_m, \dots, y_{m+k} \rangle$ ならば $x_1 = \langle y_1, \dots, y_{k+1} \rangle$.

(ファイルパス) C:/souji/all-note/part/part_不完全性定理勉強会ノート/chapter_集合についての予備知識.tex

(行数) 433 (ラベル) lemma:長さの違う有限列が一致するとき始切片で帳尻が合う

- Definition 0.0.21 直積集合 (E:p4, K:p6) 9ページ —

集合 A, B と n > 1 な $n \in \mathbb{N}$ に対し

- 1. $A \times B \stackrel{\text{def}}{=} \{ \langle a, b \rangle \mid a \in A \text{ かつ } b \in B \} \text{ とし, これを } A \text{ と } B \text{ O Cartesian product (直積集合) という.}$
- 2. $A^n \stackrel{\text{def}}{=} A^{n-1} \times A$ と帰納的に定義する. たとえば $A^3 = (A \times A) \times A$ である.

(ファイルパス) C:/souji/all-note/part/part_不完全性定理勉強会ノート/chapter_集合についての予備知識.tex

(行数)514 (ラベル)definition:直積集合

Definition 0.0.22 関係 (E:p4 5, K:p6 7) 9ページ —

集合 A, B, R と n > 0 な $n \in \mathbb{N}$ に対し

- 1. R のすべての要素が順序対であるとき, R を relation (関係) という.
- 2. 関係 R に対して $\mathrm{dom}(R) \stackrel{\mathrm{def}}{=} \{x \mid \mathsf{bso}\ y$ について $\langle x,y \rangle \in R \}$ とし、これを関係 R の domain (定義域) という. さらに $\mathrm{ran}(R) \stackrel{\mathrm{def}}{=} \{y \mid \mathsf{bso}\ x$ について $\langle x,y \rangle \in R \}$ とし、これを関係 R の range (値域) という. さらに $\mathrm{fld}(R) \stackrel{\mathrm{def}}{=} \mathrm{dom}(R) \cup \mathrm{ran}(R)$ とし、これを関係 R の field (領域) という.
- 3. $R \subset A^n$ であるとき、そんな R を A 上の n 項関係という.
- 4. $B \subseteq A$ かつ R が A 上の n 項関係であるとき, $R \cap B^n$ を R の B への restriction (制限) という.

(ファイルパス) C:/souji/all-note/part/part_不完全性定理勉強会ノート/chapter_集合についての予備知識.tex (行数) 529 (ラベル) definition:関係

Example E:p4 5, K:p6 7 —

集合 $R_1, R_2 \subseteq \mathbb{N}^2$ に対し

- 1. $R_1 = \{\langle 0,1 \rangle, \langle 0,2 \rangle, \langle 0,3 \rangle, \langle 1,2 \rangle, \langle 1,3 \rangle, \langle 2,3 \rangle\}$ とおくと、 R_1 は 0 から 3 までの数の間の大小関係となる. さらに $\operatorname{dom}(R) = \{0,1,2\}, \operatorname{ran}(R) = \{1,2,3\}, \operatorname{fld}(R) = \{0,1,2,3\}$ となる.
- 2. $R_2 = \{ \langle m, n \rangle \mid m < n \}$ とおくと、 R_2 は \mathbb{N} 上の大小関係となり、 $B = \{0, 1, 2, 3\}$ とすれば $R_1 = R_2 \cap B^2$ となるから R_1 は R_2 の B への制限である.

(ファイルパス) C:/souji/all-note/part/part_不完全性定理勉強会ノート/chapter_集合についての予備知識.tex (行数) 568 (ラベル)

- Definition ?? 写像 (E:p5, K:p7 8) ??ページ —

集合 A, B と関係 F に対して

- 1. F が「dom(F) のそれぞれの要素 x について、 $\langle x,y \rangle \in F$ なる y がただひとつ存在する」(論理式で書くと $\forall x \in dom(F)$ ∃! $y(\langle x,y \rangle \in F)$)をみたすとき、F は function(写像)であるという.このとき $x \in dom(F)$ に対して一意的に存在している y のことを F(x) で表し、F の x における value(値)という.
- 2. 写像 F が dom(F) = A かつ $ran(F) \subseteq B$ をみたすとき, F は A を B に写すといい, $F: A \to B$ で表す.
- 3. $F: A \to B$ であるとき, $\operatorname{ran}(F) = B$ をみたすとき, F は A から B への $\operatorname{surjection}$ (全射) であるといい, $F: A \xrightarrow{\operatorname{onto}} B$ で表す.

「 $\operatorname{ran}(F)$ のそれぞれの要素 y について、 $\langle x,y \rangle \in F$ をみたす x がただひとつ存在する」(論旨式で書くと $\forall y \in \operatorname{ran}(F) \exists ! x (\langle x,y \rangle \in F)$)をみたすとき, F は A から B への **injection**(単射)であるといい, $F \colon A \xrightarrow{1-1} B$ で表す. 全射かつ単射な写像を **bijection**(全単射)といい, $F \colon A \xrightarrow[\text{onto}]{1-1} B$ で表す.

- 4. オブジェクト x,y とその順序対 $\langle x,y \rangle$ と写像 F に対して, $\langle x,y \rangle \in \text{dom}(F)$ であるとき $F(\langle x,y \rangle)$ を単に F(x,y) で表す. より一般的に $F(\langle x_1,\dots,x_n \rangle)$ を $F(x_1,\dots,x_n)$ で表す.
- 5. $F = \{\langle x, x \rangle \mid x \in A\}$ であるとき, F を A 上の identity function(恒等写像)といい, この F を id_A で表す.

(ファイルパス) C:/souji/all-note/part/part_不完全性定理勉強会ノート/chapter_集合についての予備知識.tex

(行数) 582 (ラベル) definition:写像, definition:単射, definition:全射, definition:全単射, definition:恒等写像

Definition 0.0.25 演算 (E:p5, K:p8) 11 ページ —

集合 A, B と関係 f, g に対して

- 1. $f: A^n \to A$ であるとき f を $A \perp O$ n-ary operation (n 項演算) であるという.
- 2. A 上の n 項演算 f と $B \subseteq A$ な集合 B に対して, $g = f \cap (B^n \times A)$ をみたす g を f の B への restriction (制限) という.
- 3. A上のn項演算fに対して、集合 $B \subseteq A$ がfについて閉じているとは、どの $b_1, \ldots, b_n \in B$ についても $f(b_1, \ldots, b_n) \in B$ をみたす(論理式で書くと $\forall b_1, \ldots, b_n \in B$ ($f(b_1, \ldots, b_n) \in B$))ときをいう.

(ファイルパス) C:/souji/all-note/part/part_不完全性定理勉強会ノート/chapter_集合についての予備知識.tex (行数) 693 (ラベル) definition:演算

- Example E:p5, K:p8 —

- 1. S_1 が任意の $m,n \in \mathbb{N}$ に対し $S_1(m,n) = m+n$ をみたすとすると, S_1 は \mathbb{N} 上の加法という \mathbb{N} 上の 2 項演算となる.
- 2. S_2 が任意の $n \in \mathbb{N}$ に対し $S_2(n) = n+1$ をみたすとすると、 S_2 は \mathbb{N} 上の直後の自然数を与えるという \mathbb{N} 上の 1 項 (単項) 演算となる.
- 3. $P: \mathbb{R}^2 \to \mathbb{R}$ が任意の $r_1, r_2 \in \mathbb{R}$ に対し $p(r_1 + r_2) = r_1 + r_2$ をみたすとすると, P は \mathbb{R} 上の加法という \mathbb{R} 上の 2 項演算となり, 1. の S_1 は P の \mathbb{N} への制限, つまり $S_1 = P \cap \mathbb{N}^3$ となっている.

(ファイルパス) C:/souji/all-note/part/part_不完全性定理勉強会ノート/chapter_集合についての予備知識.tex (行数) 714 (ラベル)

Example E:p5, K:p8 —

集合 A, B に対して

- 1. f を A 上の n 項演算, $B \subseteq A$ とし, g を f の B への制限とする. g が B 上の n 項演算となることと, B が f について 閉じていることは同値である.
- 2. A 上の恒等写像 id_A は(何もしない・作用しないという) A 上の単項演算である.

(ファイルパス) C:/souji/all-note/part/part_不完全性定理勉強会ノート/chapter_集合についての予備知識.tex (行数) 734 (ラベル)

- Definition ?? 同値関係と順序関係 (E:p5 6, K:p8 9) ??ページ —

集合 A と関係 R に対して

- 1. R が A 上で **reflexive**(反射的)とは、任意の $x \in A$ について $\langle x, x \rangle \in R$ であるこという.
- 2. R が **symmetric** (対称的) とは, 任意の x,y に対して $\langle x,y \rangle \in R$ ならば $\langle y,x \rangle \in R$ であるこという.
- 3. R が transitive (推移的) とは、任意の x, y, z に対して $\langle x, y \rangle \in R$ かつ $\langle y, z \rangle \in R$ ならば $\langle x, z \rangle \in R$ であるこという.
- 4. R が A 上で **trichotomy**(三分律)をみたすとは、任意の x,y に対して $\langle x,y \rangle \in R$, x=y, $\langle y,x \rangle \in R$ のいずれか 1 つをみたすこという.
- 5. R が A 上の equivalence relation(同値関係)であるとは, R が A 上の 2 項演算でかつ A 上で反射的・対称的・推移的であるときをいう.
- 6. R が A 上の ordering relation (順序関係) であるとは, R が A 上の 2 項演算でかつ推移的であり A 上で三分律を みたすときをいう.

(ファイルパス) C:/souji/all-note/part/part_不完全性定理勉強会ノート/chapter_集合についての予備知識.tex (行数) 779 (ラベル) definition:同値関係, definition:順序関係

- Definition ?? 同値類 (E:p6, K:p9) ??ページ —

集合 A 上の同値関係 R と $x \in A$ に対して $[x] \stackrel{\text{def}}{=} \{y \mid \langle x,y \rangle \in R\}$ とし、これを x の equivalence class(同値類)という. さらに集合 $\{[x] \mid x \in A\}$ を $A \setminus R$ で表し、集合 A の同値関係 R による quotient set(商集合)という.

(ファイルパス) C:/souji/all-note/part/part_不完全性定理勉強会ノート/chapter_集合についての予備知識.tex

(行数) 811 (ラベル) definition:同値類, definition:商集合

Proposition E:p6, K:p9 —

集合 A 上の同値関係 R に対して、A の各要素の同値類全体は A の分割となる.

(ファイルパス) C:/souji/all-note/part/part_不完全性定理勉強会ノート/chapter_集合についての予備知識.tex (行数) 827 (ラベル)

Notation 0.0.31 E:p6, K:p9 12ページ ——

自然数全体の集合 {0,1,2,...} を N で表す.

(ファイルパス) C:/souji/all-note/part/part_不完全性定理勉強会ノート/chapter_集合についての予備知識.tex (行数) 875 (ラベル) notation:自然数全体の集合

- Definition ?? E:p6, K:p9 ??ページ —

集合Aに対して

- 1. 集合 A が finite(有限)であるとは、ある自然数 $n\in\mathbb{N}$ と A から $\{0,1,\ldots,n-1\}$ 写像 f があって、f が全単射になっていることをいう(論理式で書くと $\exists n\in\mathbb{N} \exists f(\ f\colon A\xrightarrow[\text{onto}]{1-1}]{\{0,1,\ldots,n-1\}}$)).
- 2. 集合 A が infinite (無限) であるとは、有限でないときをいう。 つまり任意の $n \in \mathbb{N}$ に対して A から $\{0,1,\ldots,n-1\}$ への全単射写像が存在しないことをいう。 言い換えればどんな A から $\{0,1,\ldots,n-1\}$ の写像も全単射にならないともいえる.
- 3. 集合 A が at most countable (高々可算) であるとは, A から \mathbb{N} への単射写像が存在するこという.
- 4. 集合 A が countable (可算) であるとは, A から \mathbb{N} への全単射写像が存在するこという.

(ファイルパス) C:/souji/all-note/part/part_不完全性定理勉強会ノート/chapter_集合についての予備知識.tex (行数) 893 (ラベル) definition:有限集合, definition:無限集合, definition:高々可算集合, definition:可算集合

souji ノート

- Proposition E:p6, K:p9 —

有限集合は高々可算.

(ファイルパス) C:/souji/all-note/part/part_不完全性定理勉強会ノート/chapter_集合についての予備知識.tex (行数) 938 (ラベル)

Proposition 0.0.34 E:p6, K:p9 13ページー

高々可算な無限集合 A に対して A から \mathbb{N} への全単射写像が存在する.

(ファイルパス) C:/souji/all-note/part/part_不完全性定理勉強会ノート/chapter_集合についての予備知識.tex (行数) 950 (ラベル) proposition:高々可算な無限集合は N への全単射が存在する

Theorem 0.0.35 E:p6 THEOREM 0B, K:p10 定理 0B 13 ページ —

Aを高々可算集合とするとき, Aの要素からなる有限列全体の集合も高々可算.

(ファイルパス) C:/souji/all-note/part/part_不完全性定理勉強会ノート/chapter_集合についての予備知識.tex (行数) 977 (ラベル) theorem:可算集合の要素の有限列全体も可算

Definition E:p7, K:p12 —

集合族 $\mathcal C$ が **chain** (鎖) であるとは、任意の $X,Y\in\mathcal C$ に対して $X\subseteq Y$ か $Y\subseteq X$ のいずれかが成立することをいう.

(ファイルパス) C:/souji/all-note/part/part_不完全性定理勉強会ノート/chapter_集合についての予備知識.tex (行数) 1121 (ラベル)

- Lemma 0.0.37 E:p7 ZORN'S LEMMA, K:p12 ツォルンの補題 15 ページ ——

集合族 A が

任意の $C \subseteq A$ が鎖ならば $\bigcup C \in A$

を満たすとき, A には超集合関係にて極大な要素 A が存在する, つまり A はどの $X \in A$ に対しても $A \subsetneq X$ となることはない.

(ファイルパス) C:/souji/all-note/part/part_不完全性定理勉強会ノート/chapter_集合についての予備知識.tex

(行数) 1130 (ラベル) lemma:ツォルンの補題

- Definition 0.0.38 E:p8 , K:p12 15ページ ----

集合 A,B に対して A から B への全単射写像が存在するとき, A と B は equinumerous(対等)であるといい, $A \sim B$ で表す.

(ファイルパス)C:/souji/all-note/part/part_不完全性定理勉強会ノート/chapter_集合についての予備知識/subsection_基数.tex

(行数) 5 (ラベル) definition:集合の対等関係

Proposition E:p8 , K:p12 ———

№ と整数全体の集合 ℤ は対等である.

(ファイルパス)C:/souji/all-note/part/part_不完全性定理勉強会ノート/chapter_集合についての予備知識/subsection_基数.tex

(行数) 13 (ラベル)

- Proposition E:p8 , K:p12 ———

任意の集合 A, B, C に対して以下の 3 つが成立する.

- 1. $A \sim A$.
- 2. $A \sim B$ $\Leftrightarrow B \sim A$.
- 3. $A \sim B$ かつ $B \sim C$ ならば $A \sim C$.

(ファイルパス)C:/souji/all-note/part/part_不完全性定理勉強会ノート/chapter_集合についての予備知識/subsection_基数.tex

(行数) 22 (ラベル)

- Definition E:p8 , K:p13 —

集合 A に対して card A を, 任意の集合 B に対して

 $\operatorname{card} A = \operatorname{card} B \leftrightarrow A \sim B$

を満たすものとし、これを A の cardninal numger (基数) または cardinality (濃度) という.

(ファイルパス)C:/souji/all-note/part/part_不完全性定理勉強会ノート/chapter_集合についての予備知識/subsection_基数.tex

(行数) 56 (ラベル)

- Definition E:p8 , K:p13 ----

集合 A,B に対して, ある $B' \subseteq B$ があって $A \sim B'$ であるとき, A dominated by B (A は B でおさえられている) といい, $A \preceq B$ で表す.

(ファイルパス) C:/souji/all-note/part/part_不完全性定理勉強会ノート/chapter_集合についての予備知識/subsection_基数.tex

(行数) 66 (ラベル)

Proposition E:p8, K:p13

 $A \leq B$ であるとき, A から B への単射写像が存在する.

(ファイルパス)C:/souji/all-note/part/part_不完全性定理勉強会ノート/chapter_集合についての予備知識/subsection_基数.tex

(行数) 73 (ラベル)

- Definition E:p8 , K:p14 ——

集合 A, B に対して $A \leq B$ であるとき, $\operatorname{card} A \leq \operatorname{card} B$ であるとする.

(ファイルパス)C:/souji/all-note/part/part_不完全性定理勉強会ノート/chapter_集合についての予備知識/subsection_基数.tex

(行数) 82 (ラベル)

- Proposition E:p9 , K:p14 ———

任意の集合 A, B, C に対して以下の 2 つが成立する.

- 1. $A \leq A$.

(ファイルパス)C:/souji/all-note/part/part_不完全性定理勉強会ノート/chapter_集合についての予備知識/subsection_基数.tex

(行数) 102 (ラベル)

- Proposition E:p9 , K:p14 —

 $A \leq \mathbb{N}$ であることと, A が高々可算であることは同値.

(ファイルパス)C:/souji/all-note/part/part_不完全性定理勉強会ノート/chapter_集合についての予備知識/subsection_基数.tex

(行数) 114 (ラベル)

Theorem 0.0.47 E:p9 SCHÖDER-BERNSTEIN THEOREM,

K:p14 シュレーダー・ベルンシュタイン(

集合 A, B と, 基数 κ, λ に対して,

- (a) $A \leq B$ かつ $B \leq A$ ならば $A \sim B$.
- (b) $\kappa \leq \lambda$ かつ $\lambda \leq \kappa$ ならば $\kappa = \lambda$.

(ファイルパス)C:/souji/all-note/part/part_不完全性定理勉強会ノート/chapter_集合についての予備知識/subsection_基数.tex

(行数)123 (ラベル)theorem:シュレーダー・ベルンシュタインの定理

Theorem 0.0.48 E:p9 THEOREM 0C, K:p14 定理 0C 16 ページ ———

集合 A, B と, 基数 κ, λ に対して,

- (a) $A \leq B$ または $B \leq A$ の少なくとも一方が成り立つ.
- (b) $\kappa \leq \lambda$ または $\lambda \leq \kappa$ の少なくとも一方が成り立つ.

(ファイルパス)C:/souji/all-note/part/part_不完全性定理勉強会ノート/chapter_集合についての予備知識/subsection_基数.tex

(行数)137 (ラベル)theorem:比較可能定理

- Notation E:p9, K:p14 —

 $\operatorname{card} \mathbb{N} \in \aleph_0$ で, $\operatorname{card} \mathbb{R} \in 2^{\aleph_0}$ で表す.

(ファイルパス)C:/souji/all-note/part/part_不完全性定理勉強会ノート/chapter_集合についての予備知識/subsection_基数.tex

(行数) 157 (ラベル)

- Definition E:p9, K:p15 ——

集合 A, B とその基数 $\operatorname{card} A = \kappa, \operatorname{card} B = \lambda$ に対して、その演算 $+, \cdot$ を以下のように定める.

- 1. $A \cap B = \emptyset$ のとき, $\kappa + \lambda = \operatorname{card}(A \cup B)$.
- 2. $\kappa \cdot \lambda = \operatorname{card}(A \times B)$.

(ファイルパス)C:/souji/all-note/part/part_不完全性定理勉強会ノート/chapter_集合についての予備知識/subsection_基数.tex

(行数) 162 (ラベル)

souji / - ト

- Theorem 0.0.51 E:p9 CARDINAL ARITHMETIC THEOREM, K:p15 基数算術の定理 17 ページ – $\kappa \leq \lambda$ かつ λ が無限な基数 κ,λ に対して,

- 1. $\kappa + \lambda = \lambda$.
- 2. $\kappa \neq 0$ $\kappa \cdot \lambda = \lambda$.
- $3. \kappa$ が無限ならば $\aleph_0 \cdot \kappa = \kappa$.

(ファイルパス)C:/souji/all-note/part/part_不完全性定理勉強会ノート/chapter_集合についての予備知識/subsection_基数.tex

(行数) 173 (ラベル) theorem:基数算術の定理

· Theorem 0.0.52 E:p10 THEOREM 0D, K:p15 定理 0D 17ページー

無限集合 A に対して, A の要素からなる有限列全体の集合 $\bigcup_{n\in\mathbb{N}}A^{n+1}$ の濃度は card A と同じ.

(ファイルパス)C:/souji/all-note/part/part_不完全性定理勉強会ノート/chapter_集合についての予備知識/subsection_基数.tex

(行数) 183 (ラベル) theorem:無限集合の要素の有限列全体はその集合の濃度に一致

- Example E:p10, K:p16 -

実数における代数数的数全体の集合の濃度は № である.

(ファイルパス)C:/souji/all-note/part/part_不完全性定理勉強会ノート/chapter_集合についての予備知識/subsection_基数.tex

(行数) 189 (ラベル)

- Definition 1.2 記号 (E:p13 14, K:p20) 33 ページ —

互いに区別できる無限個のオブジェクトの列を用意し固定する. その列の成分となっているオブジェクトをそれぞれ symbol (記号) とよぶ.

これらの記号のどれもが他の記号の有限な長さの列とは一致しないと仮定したうえで,列の第一成分から以下の表の通りに記号に名前をつける.

記号	名称	注意
(left parenthesis(左括弧)	区切り記号
)	right parenthesis(右括弧)	区切り記号
\neg	negation symbol(否定記号)	日本語でいう「~でない」
\wedge	conjunction symbol(連言記号)	日本語でいう「かつ」
\vee	disjunction symbol(選言記号)	日本語でいう「(包含的な) または」
\rightarrow	conditional symbol(条件記号)	日本語でいう「○○ならば××」
\leftrightarrow	biconditional symbol(双条件記号)	日本でいう「○○のとき, かつ, そのときに限り××
A_1	1個目の sentence symbol(文記号)	
A_2	2個目の sentence symbol(文記号)	
A_n	n 個目の sentence symbol(文記号)	

Table 2.1: (E:p14 TABLE II, K:p21 表 II)

(ファイルパス) C:/souji/all-note/part/part_不完全性定理勉強会ノート/chapter_文論理/section_文論理の言語.tex

(行数) 75 (ラベル) table:文論理の記号

- Definition 表現 (E:p15, K:p23) —

Definition ?? (??ページ) の用語を用いる.

- 1. 文論理の記号の集合を以降 S で表すことにする.
- 2. Aの要素からなる有限列を expression (表現) とよぶ.

またすべての表現の集合を ε で表すことにする.

また表現 $\langle s_1,\ldots,s_n\rangle$ をその成分を順番に並べて $s_1s_2\ldots s_{n-1}s_n$ と書くこともある. 以降どちらの使い方も柔軟に使っていくことにする.

3. $\alpha, \beta \in \mathcal{E}$ に対してそれぞれ $\alpha = \langle a_1, \dots, a_m \rangle$, $\beta = \langle b_1, \dots, b_n \rangle$ とするとき, $\alpha \beta \stackrel{\text{def}}{=} \langle a_1, \dots, a_m, b_1, \dots, b_n \rangle$ として, これを α と β の string concatenation(文字列連結)とよぶ.

(ファイルパス) C:/souji/all-note/part/part_不完全性定理勉強会ノート/chapter_文論理/section_文論理の言語.tex

(行数) 347 (ラベル)

- Example E:p15, K:p23 —

表現 α , β に対して

- 1. $(\neg A_1)$ という(私たちにとって見やすい表し方をした)表現は厳密には有限列 $\langle (,\neg,A_1,) \rangle$ のことである.
- 2. $\alpha = (\neg A_1)$, $\beta = A_2$ とおくとその文字列結合 $\alpha\beta$ は $(\neg A_1)A_2$ に, $(\alpha \to \beta)$ は $((\neg A_1) \to A_2)$ となる.

(ファイルパス) C:/souji/all-note/part/part_不完全性定理勉強会ノート/chapter_文論理/section_文論理の言語.tex

(行数) 380 (ラベル)

- Definition 式構成操作 (E:p17, K:p25) —

 $\alpha, \beta \in \mathcal{E}$ と論理記号に対して

- $\mathcal{E}_{\neg}(\alpha) = (\neg \alpha)$ と定める. より厳密には $\mathcal{E}_{\neg}(\alpha) \stackrel{\text{def}}{=} \langle (, \neg \rangle \alpha \langle) \rangle$ であり, これは Definition 1.1.2 で定義した表現の文字列 連結である. つまり \mathcal{E}_{\neg} は \mathcal{E} 上の 1 変数関数である.
- $\mathcal{E}_{\wedge}(\alpha,\beta) = (\alpha \wedge \beta)$ と定める. より厳密には $\mathcal{E}_{\wedge}(\alpha,\beta) \stackrel{\mathrm{def}}{=} \langle (\langle \alpha \langle \wedge \rangle \beta \langle \rangle) \rangle$ であり, \mathcal{E}_{\wedge} は \mathcal{E} 上の 2 変数関数である. 同様にして \mathcal{E} 上の 2 変数関数として $\mathcal{E}_{\vee}, \mathcal{E}_{\rightarrow}, \mathcal{E}_{\leftrightarrow}$ を定義する.

これらの5つの演算をあわせて formula-building operation (式構成操作)とよぶ.

(ファイルパス)C:/souji/all-note/part/part_不完全性定理勉強会ノート/chapter_文論理/section_文論理の言語.tex

(行数) 400 (ラベル)

- Definition (素朴な)整式の定義 (E:p16 17, K:p25) ————

well-formed formula (整式) とは以下のように帰納的に定義される.

- (a) 個々の文記号は整式である.
- (b) α, β が整式ならば, $(\neg \alpha), (\alpha \land \beta), (\alpha \lor \beta), (\alpha \to \beta), (\alpha \leftrightarrow \beta)$ は整式である.
- (c) (a)(b) にあてはまるものだけが整式である.

(ファイルパス)C:/souji/all-note/part/part_不完全性定理勉強会ノート/chapter_文論理/section_文論理の言語.tex

(行数) 419 (ラベル)

- Definition 構成列と整式 (E:p17 18, K:p26 27) —

表現の集合 \mathcal{E} の有限列 $\langle \varepsilon_1, \ldots, \varepsilon_n \rangle$ が construction sequence (構成列) であるとは, 各 $i \leq n$ に対して (1) から (3) のいずれかをみたすときをいう.

- (1) ε_i は文記号.
- (2) $\delta \delta j < i \delta \delta \delta \tau < \varepsilon_i = \mathcal{E}_{\neg}(\varepsilon_i)$.
- (3) ある j,k < i があって $\varepsilon_i = \mathcal{E}_{\square}(\varepsilon_j, \varepsilon_k)$. ここで \square は 2 項結合記号のいずれかを表す.

ある表現 α で終わる(つまり末項が α である)ような構成列が存在するとき、そんな表現を well-formed formula(整式)とよぶ.

すべての整式の集合は今後 F で表すことにする.

(ファイルパス) C:/souji/all-note/part/part_不完全性定理勉強会ノート/chapter_文論理/section_文論理の言語.tex

(行数) 445 (ラベル)

- Example E:p18 EXAMPLE, K:p28 例 -

どの整式もそれに含まれる右括弧・左括弧の個数は同じである.

(ファイルパス) C:/souji/all-note/part/part_不完全性定理勉強会ノート/chapter_文論理/section_文論理の言語.tex

(行数) 757 (ラベル)

- Exercise E:p19 1., K:p29 1. ——

日本語の文をみっつ挙げ、それらの文を私たちの形式言語に翻訳しなさい. 文は、なんらかの意味のある構造を持つように、 また、翻訳が 15 個以上の記号からなる列になるように選びなさい.

(ファイルパス) C:/souji/all-note/part/part_不完全性定理勉強会ノート/chapter_文論理/section_文論理の言語/subsection_「section: 文論理の言語」演習問題.tex

(行数)5 (ラベル)

- Exercise E:p19 2., K:p29 2. ——

長さが 2,3,6 の整式は存在しないこと, そして, それら以外のすべての正整数の長さをもつ整式は存在することを示しなさい.

(ファイルパス) C:/souji/all-note/part/part_不完全性定理勉強会ノート/chapter_文論理/section_文論理の言語/subsection_「section: 文論理の言語」演習問題.tex

(行数) 134 (ラベル)

- Exercise E:p19 3., K:p29 3. ——

 α を整式として, α の中で 2 項結合記号が出現する箇所の数を c で, α の中で文記号が出現する箇所の数を s で表します. (たとえば, α が $(A \to (\neg A))$ の場合は, c=1, s=2 です.) 帰納法の原理を使って, s=c+1 であることを示しなさい.

(ファイルパス) C:/souji/all-note/part/part_不完全性定理勉強会ノート/chapter_文論理/section_文論理の言語/subsection_「section: 文論理の言語」演習問題.tex

(行数) 196 (ラベル)

Exercise E:p19 4., K:p29 4.

 φ で終わる構成列があって, φ は記号 A_4 を含んでいないとします. この構成列から A_4 を含む表現をすべて取り去ったとしても, その結果はやはり正しい構成列になっていることを示しなさい.

(ファイルパス) C:/souji/all-note/part/part_不完全性定理勉強会ノート/chapter_文論理/section_文論理の言語/subsection_「section: 文論理の言語」演習問題.tex

(行数) 245 (ラベル)

Exercise E:p19 5., K:p29 5. —

 α は否定記号 ¬ を含まない整式とします.

- (a) α の長さ(記号列を構成する記号の個数)は奇数であることを示しなさい.
- (b) α を構成する記号のうち、文記号が占める割合が 1/4 を超えることを示しなさい.

(ファイルパス) C:/souji/all-note/part/part_不完全性定理勉強会ノート/chapter_文論理/section_文論理の言語/subsection_「section: 文論理の言語」演習問題.tex

(行数) 292 (ラベル)

- Definition 真理値割り当て (E:p20 21, K:p30 32) —

 $A \subset \mathcal{P}$ とする.

- 1. Definition 1.1.1 (20 ページ) とは別に新たに 2 つの記号を用意する. それらを F (これを falsity (偽) とよぶ), T(これを truth (真) とよぶ) とする.
- 2. $v: A \to \{F, T\}$ なる v を文記号の集合 A に対する truth assignment (真理値割り当て) という.
- $3. \bar{A}$ を A から始めて 5 種類の式構成操作を使って構成できる整式全体の集合とする.
- 4. 真理値割り当て $v: A \to \{F, T\}$ に対して, $\bar{v}: \bar{A} \to \{F, T\}$ を各 $A \in A$ と $\alpha, \beta \in \bar{A}$ について以下の 6 条件をみたすも のとする.

4-0.
$$\bar{v}(A) = v(A)$$

4-1.
$$\bar{v}((\neg \alpha)) = \begin{cases} T & \bar{v}(\alpha) = F \text{ のとき} \\ F & それ以外のとき \end{cases}$$

4-2.
$$\bar{v}((\alpha \land \beta)) = \begin{cases} T & \bar{v}(\alpha) = T \text{ かつ} \bar{v}(\beta) = T \text{ のとき} \\ F & それ以外のとき \end{cases}$$

4-4.
$$\bar{v}((\alpha \to \beta)) = \begin{cases} F & \bar{v}(\alpha) = T \text{ かつ} \bar{v}(\beta) = F \text{ のとき} \\ T & それ以外のとき \end{cases}$$

4-5.
$$\bar{v}((\alpha \leftrightarrow \beta)) = \begin{cases} T & \bar{v}(\alpha) = \bar{v}(\beta) \text{ のとき} \\ F & \text{それ以外のとき} \end{cases}$$

(ファイルパス) C:/souji/all-note/part/part_不完全性定理勉強会ノート/chapter_文論理/section_真理値割 り当て.tex

(行数)5 (ラベル)

- Example 1.2.2 E:p21 23, K:p32 34 33 ページー

整式 α を

$$((A \rightarrow (A_1 \rightarrow A_6)) \leftrightarrow ((A_2 \land A_1) \rightarrow A_6))$$

とし、 $dom(v) = \{A_1, A_2, A_6\}$ な真理値割り当て v を、 $v(A_1) = T$ 、 $v(A_2) = T$ 、 $v(A_6) = F$ で定めると、 $\bar{v}(\alpha) = T$ である.

(ファイルパス) C:/souji/all-note/part/part_不完全性定理勉強会ノート/chapter_文論理/section_真理値割 り当て.tex

(行数) 176 (ラベル) example: 真理値割り当て

souji / - \

- Theorem E:p23 THEOREM 12A, K:p34 定理 12A —

集合 $A \subseteq \mathcal{P}$ へのどんな真理値割り当て v についても、Definition 1.2.1(32 ページ)の条件 4-0. から 4-5. までに合致する 写像 \bar{v} : $\bar{A} \to \{T, F\}$ がただひとつ存在する.

(ファイルパス) C:/souji/all-note/part/part_不完全性定理勉強会ノート/chapter_文論理/section_真理値割り当て.tex

(行数) 194 (ラベル)

- Definition ?? 充足関係 (E:p23 24, K:p34 36) ??ページ ———

整式の集合 Σ と整式 τ , σ , そして A_{τ} , $A_{\Sigma,\tau}$ をそれぞれ τ , Σ , τ に含まれるすべての文記号の集合とする.

- 1. $A_{\tau} \subseteq \text{dom}(v)$ な真理値割り当て v に対して $\bar{v}(\tau) = T$ であるとき, v satisfies τ (v は τ を充足する) という.
- 2. $A_{\Sigma,\tau}$ を定義域として含むすべての真理値割り当てに対して、それが Σ のすべての要素を充足するならば τ をも充足するとき、 Σ tautologically implies τ (Σ は τ をトートロジー的に含意する) といい、 $\Sigma \models \tau$ で表す.
- 3. $\emptyset \models \tau$ であるとき, つまり A_{τ} を定義域として含むどんな真理値割り当ても τ を充足するとき, τ は tautology (トートロジー) であるといい, 単に $\models \tau$ で表す.
- 4. Σ が一元集合であるとき、つまり $\{\sigma\} \models \tau$ であるとき単に $\sigma \models \tau$ と表すことにする. $\sigma \models \tau$ かつ $\tau \models \sigma$ であるとき、 σ と τ は tautologically equivalent(トートロジー的に同値)であるといい, $\sigma \models \exists \tau$ で表す.

(ファイルパス) C:/souji/all-note/part/part_不完全性定理勉強会ノート/chapter_文論理/section_真理値割り当て.tex

(行数) 199 (ラベル) definition:論理式の充足関係, definition:トートロジー的に含意する, definition:トートロジー, definition:トートロジー的に同値

Example 1.2.5 E:p23, K:p35 36 34ページ ———

 $A, B \in \mathcal{P} \$ とする.

- 1, Example 1.2.2(33 ページ)で挙げた整式 α と真理値割り当て v について, v は α を充足すると述べたが, それ以外のどの真理値割り当ても α を従属する. つまり α はトートロジーである.
- 2. $\{A, (\neg A)\} \models B \text{ cos } \delta$.
- 3. $\{A, (A \to B)\} \models B \text{ cbs}$.

(ファイルパス) C:/souji/all-note/part/part_不完全性定理勉強会ノート/chapter_文論理/section_真理値割 り当て.tex

(行数) 240 (ラベル) example:トートロジー

- Theorem コンパクト性定理 (E:p24 COMPACTNESS THEOREM, K:p36 コンパクト性定理) —

 Σ は無限個の整式からなる集合で、いかなる Σ の有限な部分集合 Σ_0 についても、 Σ_0 のすべての要素を同時に充足する真理値割り当てが存在するとする。このとき、 Σ のすべての要素を同時に充足する真理値割り当てが存在する.

(ファイルパス) C:/souji/all-note/part/part_不完全性定理勉強会ノート/chapter_文論理/section_真理値割り当て.tex

(行数) 333 (ラベル)

第3章 このノートの記号一覧

3.1 0部 不完全性定理勉強会ノート

記号	説明	頁数	記号	説明	頁数
A;t	集合 A の要素に t を加える演算	5	def =	オブジェクトを定義するための記号	5
$\stackrel{\mathrm{def}}{\Longleftrightarrow}$	述語を定義するための記号	5	Ø	空集合	6
$A \subseteq B$	集合 A は B の部分集合である	6	$\mathcal{P}(X)$	(集合 X の)べき集合	7
$A \cup B$	集合AとBの和集合	7	$A \cap B$	集合AとBの共通部分	7
$\bigcup \mathcal{A}$	(集合族 Aの)和集合	7	$\bigcap \mathcal{A}$	(集合族 A の) 共通部分	7
$\langle x, y \rangle$	(xとyの) 順序対	7	$X \times Y$	(集合 X と Y の)直積集合	9
dom(R)	(関係 R の)定義域	9	$\operatorname{ran}(R)$	(関係 R の)値域	9
$\operatorname{fld}(R)$	(関係 R の)領域	9	$f\colon X\to Y$	(集合 X から Y への)写像・関数 f	10
$f \colon X \xrightarrow{1-1} Y$	(集合 X から Y への) 単射写像 f	10	$f \colon X \xrightarrow{\text{onto}} Y$	(集合 X から Y への) 全射写像 f	10
$f \colon X \xrightarrow[\text{onto}]{1-1} Y$	(集合 X から Y への)全単射写像 f	10	id_X	(集合 X 上の)恒等写像	10
[x]	(xの) 同値類	12	$A \backslash R$	(集合 A の関係 R による) 商集合	12
N	自然数全体の集合	12	~	集合の対等関係	15
$\Sigma \models \tau$	Σ は $ au$ をトートロジー的に含意する	34	$\models \tau$	Σ は τ はトートロジーである	34

第III部

その他

このパートは、数学の研究や学習に直接は関係しないものの、学問全般に関係あったり、傲慢ながら他人に共有する価値のあると思われるものについてまとめていく、雑多なパートになっています.

第0章(69ページ)では、このノートを作成するにあたって使用した小技や工夫などをまとめています.

第0章 このノートのTips

0.1 自作マクロ・環境紹介

この節ではこのノートで使用していた,自前で定義した TeX のマクロや環境について紹介しています. コンパイルされて PDF になると見えない部分なので,それなりに価値はあると思います. 大抵あれこれ色んなインターネットのサイトを見ながら作っているので,どこを参考にしたか分からないものをあるかもです. なるべく参考になったサイトなどは参考文献にも載せておこうかと思っています.

0.1.1 自作マクロ

使用分野別にまとめておきます.

1. 共通

(a) 太字命令の簡略化

基礎的な用語は基本的にその英語と日本語を併記しているので、その太字命令が並んでいるのが煩わしいという理由で導入してみたもの.

```
\newcommand{\textgtbf}[2]{\textgt{#1} (\textbf{#2}) }
\newcommand{\textbfgt}[2]{\textbf{#1} (\textgt{#2}) }
```

例えば\textgtbf{集合}{set}で「集合 (set)」、\textbfgt{set}{集合}で「set (集合)」となる.

(b) 各種参照系

ノートの一部分を参照した場合は、そのページ数も併記した方が親切かと考えて、このように参照先の記入は一回で済むようなマクロたちを作ってみた.

```
\newcommand{\PartRef}[1]{第\ref{#1}部 (\pageref{#1}ページ) } \newcommand{\ChapRef}[1]{第\ref{#1}章 (\pageref{#1}ページ) } \newcommand{\SecRef}[1]{\ref{#1}節 (\pageref{#1}ページ) } \newcommand{\DefRef}[1]{\Definition_\\ref{#1} (\pageref{#1}ページ) } \newcommand{\ExRef}[1]{\Example_\\ref{#1} (\pageref{#1}ページ) } \newcommand{\LemRef}[1]{\Lemma_\\ref{#1} (\pageref{#1}ページ) } \newcommand{\ThRef}[1]{\Theorem_\\ref{#1} (\pageref{#1}ページ) } \newcommand{\FactRef}[1]{\Fact_\\ref{#1} (\pageref{#1}ページ) } \newcommand{\PropRef}[1]{\Proposition_\\ref{#1} (\pageref{#1}ページ) } \newcommand{\PropRef}[1]{\Proposition_\\ref{#1} (\pageref{#1}ページ) }
```

(c) 定義するための記号

こういうのこそマクロにすべきだよねって.

```
\label{textdef} $$\operatorname{defarr}_{\u\mbox{$\star el{\text{def}}}_{\newcommand{\defeq}_{\u\mbox{$\star ext{def}}}_{=}$}} $$
```

2. 基礎数学系

(a) 集合の外延的記法に関するもの

見栄えを整えることが多く見辛くなりやすいのでマクロにしてみた(流石にやり過ぎな気がしなくもない). 2 種類の外延的記法にあわせて 2 つ用意している.

(b) 順序対や有限列に関するもの

「langle」や「rangle」がたくさんあると見辛くなるので.

```
\label{langle} $$\operatorname{\triple}[3]_{\triple}^{1,\#2_{\eta}^2,\#3_{\eta}^2} \end{\triple}[2]_{\triple}^{1,\#2,\#3_{\eta}^2} \end{\triple}[2]_{\triple}^{1,\#2,\#3_{\eta}^2} \end{\triple}[2]_{\triple}^{1,\#2,\#3_{\eta}^2} \end{\triple}[2]_{\triple}^{1,\#2,\#3_{\eta}^2}^{1,\#3_{\eta}^2} \end{\triple}^{1,\#3_{\eta}^2}^{1,\#3_{\eta}^2}^{1,\#3_{\eta}^2}^{1,\#3_{\eta}^2}^{1,\#3_{\eta}^2}^{1,\#3_{\eta}^2}^{1,\#3_{\eta}^2}^{1,\#3_{\eta}^2}^{1,\#3_{\eta}^2}^{1,\#3_{\eta}^2}^{1,\#3_{\eta}^2}^{1,\#3_{\eta}^2}^{1,\#3_{\eta}^2}^{1,\#3_{\eta}^2}^{1,\#3_{\eta}^2}^{1,\#3_{\eta}^2}^{1,\#3_{\eta}^2}^{1,\#3_{\eta}^2}^{1,\#3_{\eta}^2}^{1,\#3_{\eta}^2}^{1,\#3_{\eta}^2}^{1,\#3_{\eta}^2}^{1,\#3_{\eta}^2}^{1,\#3_{\eta}^2}^{1,\#3_{\eta}^2}^{1,\#3_{\eta}^2}^{1,\#3_{\eta}^2}^{1,\#3_{\eta}^2}^{1,\#3_{\eta}^2}^{1,\#3_{\eta}^2}^{1,\#3_{\eta}^2}^{1,\#3_{\eta}^2}^{1,\#3_{\eta}^2}^{1,\#3_{\eta}^2}^{1,\#3_{\eta}^2}^{1,\#3_{\eta}^2}^{1,\#3_{\eta}^2}^{1,\#3_{\eta}^2}^{1,\#3_{\eta}^2}^{1,\#3_{\eta}^2}^{1,\#3_{\eta}^2}^{1,\#3_{\eta}^2}^{1,\#3_{\eta}^2}^{1,\#3_{\eta}^2}^{1,\#3_{\eta}^2}^{1,\#3_{\eta}^2}^{1,\#3_{\eta}^2}^{1,\#3_{\eta}^2}^{1,\#3_{\eta}^2}^{1,\#3_{\eta}^2}^{1,\#3_{\eta}^2}^{1,\#3_{\eta}^2}^{1,\#3_{\eta}^2}^{1,\#3_{\eta}^2}^{1,\#3_{\eta}^2}^{1,\#3_{\eta}^2}^{1,\#3_{\eta}^2}^{1,\#3_{\eta}^2}^{1,\#3_{\eta}^2}^{1,\#3_{\eta}^2}^{1,\#3_{\eta}^2}^{1,\#3_{\eta}^2}^{1,\#3_{\eta}^2}^{1,\#3_{\eta}^2}^{1,\#3_{\eta}^2}^{1,\#3_{\eta}^2}^{1,\#3_{\eta}^2}^{1,\#3_{\eta}^2}^{1,\#3_{\eta}^2}^{1,\#3_{\eta}^2}^{1,\#3_{\eta}^2}^{1,\#3_{\eta}^2}^{1,\#3_{\eta}^2}^{1,\#3_{\eta}^2}^{1,\#3_{\eta}^2}^{1,\#3_{\eta}^2}^{1,\#3_{\eta}^2}^{1,\#3_{\eta}^2}^{1,\#3_{\eta}^2}^{1,\#3_{\eta}^2}^{1,\#3_{\eta}^2}^{1,\#3_{\eta}^2}^{1,\#3_{\eta}^2}^{1,\#3_{\eta}^2}^{1,\#3_{\eta}^2}^{1,\#3_{\eta}^2}^{1,\#3_{\eta}^2}^{1,\#3_{\eta}^2}^{1,\#3_{\eta}^2}^{1,\#3_{\eta}^2}^{1,\#3_{\eta}^2}^{1,\#3_{\eta}^2}^{1,\#3_{\eta}^2}^{1,\#3_{\eta}^2}^{1,\#3_{\eta}^2}^{1,\#3_{\eta}^2}^{1,\#3_{\eta}^2}^{1,\#3_{\eta}^2}^{1,\#3_{\eta}^2}^{1,\#3_{\eta}^2}^{1,\#3_{\eta}^2}^{1,\#3_{\eta}^2}^{1,\#3_{\eta}^2}^{1,\#3_{\eta}^2}^{1,\#3_{\eta}^2}^{1,\#3_{\eta}^2}^{1,\#3_{\eta}^2}^{1,\#3_{\eta}^2}^{1,\#3_{\eta}^2}^{1,\#3_{\eta}^2}^{1,\#3_{\eta}^2}^{1,\#3_{\eta}^2}^{1,\#3_{\eta}^2}^{1,\#3_{\eta}^2}^{1,\#3_{\eta}^2}^{1,\#3_{\eta}^2}^{1,\#3_{\eta}^2}^{1,\#3_{\eta}^2}^{1,\#3_{\eta}^2}^{1,\#3_{\eta}^2}^{1,\#3_{\eta}^2}^{1,\#3_{\eta}^2}^{1,\#3_{\eta}^2}^{1,\#3_{\eta}^2}^{1,\#3_{\eta}^2}^{1,\#3_{\eta}^2}^{1,\#3_{\eta}^2}^{1,\#3_{\eta}^2}^{1,\#3_{\eta}^2}^{1,\#3_{\eta}^2}^{1,\#3_{\eta}^2}^{1,\#3_{\eta}^2}^{1,\#3_{\eta}^2}^{1,\#3_{\eta}^2}^{1,\#3_{\eta}^2}^{1,\#3_{\eta}^2}^{1,\#3_{\eta}^2}^{
```

(c) 関数に関するもの

まずは「f は A から B への(単射・全射・全単射)写像である」という述語の略記をマクロにする。人によっては \colon ではなく:を使う人もいるので、それぞれの状況にあわせてマクロで一括変換出来る方がいいかもと思った(そんなときがあるのか分からんけど)。

```
\newcommand{\map}[3]{
\upunu=\pinonu\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\pinou\
```

そして写像・関数に関係する定義のためのコマンド一覧。写像の定義域の制限の記号は単なる \parallel を使う人もいるけれど、私はこれが好き。そして\upharpoonright が人によっては何を指しているのか分かりづらいし、連発するとかなり 1 行が長くなってしまうので、省略したい意図もある。

```
\newcommand{\restric}{\mbox{$\upharpoonright$}}
\DeclareMathOperator{\\dom}{\dom}
\DeclareMathOperator{\\ran}{\ran}
\DeclareMathOperator{\\fld}{\fld}
\DeclareMathOperator{\\id}{\id}
```

0.1.2 自作環境

1. ぶら下げと背景変更

証明中の不要ならば読み飛ばしてほしい部分やテキストでは行間に相当する部分などを, ここに記述して分かりやすくするためのもの.

```
\definecolor{BIP-back}{gray}{0.9}
\newenvironment{sub-block}[1]
⊔⊔{
□□□□\begin{tcolorbox}[
⊔⊔⊔⊔colback⊔=⊔BIP-back,
\sqcup \sqcup \sqcup \sqcup \sqcup \mathsf{colframe} \sqcup = \sqcup \mathsf{white},
\sqcup \sqcup \sqcup \sqcup boxrule \sqcup = \sqcup 10pt,
⊔⊔⊔⊔fonttitle⊔=⊔\bfseries,
⊔⊔⊔⊔breakable⊔=⊔true]
___}
⊔⊔{
\square\square\square\square\end{itemize}
⊔⊔⊔⊔\end{tcolorbox}
⊔⊔⊔⊔\vspace{-5pt}
___}
以下のように変数に何も入れないと
\begin{sub-block}{}
__こんな感じ_\\
」」になって,
\end{sub-block}
```

こんな 感じになって,

例えば変数に{\boldmath_\$\because\$}\, とか入れてみると,

: こんな感じになる.

0.2 お助け自作ツール紹介

このノートを作成するにあたり、自分の作業を効率化するため、作ってみたツールたち.また効率化だけでなく、ノートの内容をよりよくするためのものも作れたらなと思っています。簡単なファイル処理などは書き慣れている言語 Perl で書いています。文献管理は別のフォルダでやっていて、それをサポートするためのツールの開発もやってます。そちらは別のリポジトリになっています。詳しくはこちらから

● 全角「、|「。| 変換ツール

ツールのコードはこちらから.このノートでは「、」「。」は使わず、「,」「.」で統一しています.しかし日本語を打っている際についつい「、」「。」を打ってしまってそのままということもあります. note tex から再帰的に subfile で呼びだしている tex ファイルを探し出し,その全てのファイルの中にある「、(改行)」「。(改行)」を「,(改行)」「.(改行)」に置換します. また置換前のファイルは同じ場所にバックアップをとります. もともと「、(改行)」「。(改行)」が含まれていなかったファイルはバックアップはとりません.

しかしこれだと「、」「。」が行の途中に含まれている場合は検知できません. ただこの場合は, このツールの説明文や意図的に書いたものや, 私が改行を忘れている場合があります. なのでそれらを検知した場合は, そのファイル名と行番号・その行の内容をコンソールに表示するようにしてあり, それで自分がわざと書いたのか, 改行忘れかを判断する材料にするようにしています.

「あとで書く」メモのリスト化ツール

ツールのコードはこちらから、勉強していると「ここはあとで示しておこう」とか、「この○○については後のページで説明すると書いてあるからメモしておこう」という部分は多々ある。これらを現実のノートにメモっておいてもよいけど、何かにまとめておいておかないと忘れてしまう。なのでその箇所の勉強ノート TeX ファイルにメモっておき、いつでもそのメモのリストが見れるようにしておきたい、そんな思いを叶えるためのツールです。例えば「C:/souji/all-note/part/part_不完全性定理勉強会ノート/chapter_導入.tex」の 782 行目から、以下のように何かあればメモったとします。

%あとで書く

\begin{comment}

」」この補題に関してはあとで示しておく.

\end{comment}

これなら出力には影響しません. そしてこのツールを実行すると, ノート用フォルダに「あとで書くリスト.txt」が作成され, ファイルを開くと以下のように書かれています.

C:/souji/all-note/part/part_不完全性定理勉強会ノート/chapter_導入.tex で見つけたメモ------

782 行で発見。 ↓ その内容

」」この補題に関してはあとで示しておく.

他のファイルにもメモっていれば、もっと内容は増えます。ツールではコメントアウトした「あとで書く」、そしてその後にあるコメントアウト環境に囲まれた部分を読み込みます。なので「あとで書く」メモはこの記法を守っていくことにします。

参考文献

- [1] Wikipedia 『順序対』, 5 2019. https://ja.wikipedia.org/wiki/%E9%A0%86%E5%BA%8F%E5%AF%BE.
- [2] Wikipedia 『高々 (数学)』, 4 2020. https://ja.wikipedia.org/wiki/%E9%AB%98%E3%80%85_(%E6%95%B0%E5%AD%A6).
- [3] Herbert Enderton. A Mathematical Introduction to Logic, Second Edition. Academic Press, 12 2000. https://www.elsevier.com/books/a-mathematical-introduction-to-logic/enderton/978-0-08-049646-7
 Amazon O URL.
- [4] Herbert Enderton. 論理学への数学的手引き. 1月と7月, 11 2020. [3] の和訳 Amazon の URL.
- [5] 嘉田勝. 論理と集合から始める数学の基礎. 日本評論社, 12 2008. https://www.nippyo.co.jp/shop/book/4116.html Amazon の URL.
- [6] 佐藤文広. 数学ビギナーズマニュアル 第 2 版. 日本評論社, 2 2014. https://www.nippyo.co.jp/shop/book/6447.html Amazon の URL.

索引

at most countable, 13	power set, 7
bicarditional gymbal 20 EE	proper segment of finite sequence, 8
biconditional symbol, 20, 55 bijection, 11	range, 10
bijection, 11	reflexive, 12
Cartesian product, 9	relation, 10
conditional symbol, 20, 55	restriction, 10
conjunction symbol, 20, 55	right parenthesis, 20, 55
construction sequence, 24, 57	right parcheticsis, 20, 55
countable, 13	satisfy, 34, 60
	segment of finite sequence, 8
disjoint, 7	sentence symbol, 20, 55
disjunction symbol, 20, 55	sentential connective symbol, 21
domain, 10	sentential logic, 19
empty set, 6	biconditional symbol, $20, 55$
equivalence class, 12	conditional symbol, 20, 55
equivalence relation, 12	conjunction symbol, 20, 55
expression, 23, 55	construction sequence, 24, 57
expression, 20, 00	disjunction symbol, 20, 55
falsity, 32, 59	expression, 23, 55
field, 10	falsity, 32, 59
finite, 13	formula-building operation, 24, 56
finite sequence, 8	left parenthesis, 20, 55
formula-building operation, 24, 56	negation symbol, 20, 55
function, 11	nonlogivcal symbol, 21
	parameter, 21
identity map, 11	right parenthesis, 20, 55
infinite, 13	satisfy, 34, 60
initial segment of finite sequence, 8	sentence symbol, 20, 55
injection, 11	sentential connective symbol, 21
intersection, 7	string concatenation, 23, 55
left parenthesis, 20, 55	symbol, 20, 55
ren parenenesis, 20, 90	tautologically equivalent, 34, 60
map, 11	tautologically imply, 34, 60
	tautology, 34, 60
negation symbol, 20, 55	$\mathrm{truth},32,59$
nonlogivcal symbol, 21	truth assignment, 32, 59
operation, 11	well-formed formula, $24, 56, 57$
ordered pair, 8	set , 5
ordering relation, 12	string, 8
5-35-116 FORWIGH, 12	string concatenation, 23, 55
parameter, 21	subset, 7

souji ノート 75

surjection, 11	(関係の)制限, 10
symbol, 20, 55	選言記号, 20, 55
symmetric, 12	全射(写像), 11
	全単射(写像), 11
tautologically equivalent, 34, 60	
tautologically imply, 34, 60	双条件記号, 20, 55
tautology, 34, 60	(二項関係が)対症的, 12
transitive, 12	高々可算(集合), 13
trichotomy, 12	単射(写像), 11
truth, 32, 59	+31 (J M) , II
truth assignment, 32, 59	(関係の)値域, 10
union, 7	直積集合,9
well-formed formula, 24, 56, 57	(関係の)定義域, 10
後で書く, 20-25, 28, 34	同值関係, 12
, , ,	同值類, 12
演算, 11	トートロジー, 34, 60
可燃(集入) 10	トートロジー的に含意する, 34, 60
可算(集合), 13	トートロジー的に同値, 34, 60
関係, 10	パラメータ, 21
関数, 11	(二項関係が) 反射的, 12
偽, 32, 59	(一項因标》,)及初期,12
記号, 20, 55	左括弧, 20, 55
(集合族の) 共通部分, 7	否定記号, 20, 55
共通部分,7	表現, 23, 55
	非論理記号, 21
空集合, 6	
(有限列の)区間, 8	部分集合,7
構成列, 24, 57	文記号, 20, 55
恒等写像, 11	文結合記号, 21
□ 寸→冰 , 11	文論理, 19
(二項関係の)三分律, 12	括弧記号, 21
	偽, 32, 59
式構成操作, 24, 56	記号, 20, 55
整式, 24, 56, 57	構成列, 24, 57
(有限列の)始切片, 8	式構成操作, 24, 56
しゃぞう, 11	整式, 24, 56, 57
集合, 5	充足する, 34, 60
充足する, 34, 60	条件記号, 20, 55
順序関係, 12	真, 32, 59
順序対,8	真理値割り当て, 32, 59
条件記号, 20, 55	選言記号, 20, 55
真, 32, 59	双条件記号, 20, 55
(有限列の) 真の始切片, 8	トートロジー, 34, 60
真理値割り当て, 32, 59	トートロジー的に含意する, 34, 60
(二項関係が)推移的, 12	トートロジー的に同値, 34, 60
	2 項結合記号, 21

souji ノート 76

```
パラメータ,21
   左括弧, 20, 55
   否定記号, 20, 55
   表現, 23, 55
   非論理記号,21
   文記号, 20, 55
   文結合記号, 21
   右括弧, 20, 55
   文字列結合, 23, 55
   連言記号, 20, 55
   論理記号, 21
べき集合, 7
(2つの集合が) 交わらない, 7
右括弧, 20, 55
無限(集合),13
文字列結合, 23, 55
有限(集合),13
有限列,8
(関係の)領域,10
列, 8
連言記号, 20, 55
論理記号, 21
(集合族の) 和集合,7
```

和集合,7