Lezione 14 – riducibilità polinomiale

Lezione del 23/04/2024

Relazioni interessanti, ma...

- La maggior parte delle relazioni fra classi complessità che abbiamo visto, fino ad ora, sono inclusioni improprie
- A parte P ⊂ EXPTIME e PSPACE = NPSPACE
- Ossia, a parte queste due ultime relazioni, per ciascuna delle rimanenti relazioni non siamo in grado di dimostrare né l'inclusione propria né la coincidenza delle due classi che la costituiscono.
- Ad esempio, sappiamo che
 - tutti i linguaggi che sono in PSPACE sono anche in EXPTIME (PSPACE ⊆ EXPTIME)
 - tutti i linguaggi che sono in P sono anche in NP (P⊆NP)
- Ma non sappiamo rispondere alle seguenti domande
 - non sarà forse che tutti i linguaggi in EXPTIME sono anche in PSPACE? Ossia, che PSPACE = EXPTIME?
 - Oppure, esiste almeno un linguaggio in NP che non può essere deciso in tempo deterministico polinomiale? Ossia: è P ⊂ NP oppure P = NP ????
- Le relazioni che conosciamo sono, in massima parte, relazioni deboli

Relazioni interessanti, ma...

- La maggior parte delle relazioni fra classi complessità che abbiamo visto, fino ad ora, sono inclusioni improprie
- A parte P ⊂ EXPTIME e PSPACE = NPSPACE
- Jé relazioni che conosciamo sono, in massima parte, relazioni deboli
- E, inoltre, pur riuscendo a dimostrare che una certa classe di complessità \mathcal{C}_1 è contenuta propriamente in un'altra classe di complessità \mathcal{C}_2 (ossia, $\mathcal{C}_1 \subset \mathcal{C}_2$)
- anche in questo caso, seppure dimostriamo che un certo linguaggio L appartiene a \mathcal{C}_2
- come facciamo a sapere se quel linguaggio è anche in C_1 oppure se, invece, è un linguaggio separatore fra C_1 e C_2 , ossia è contenuto in C_2 C_1 ?
- Certo sarebbe utile se disponessimo di uno strumento che permettesse di individuare i *linguaggi separatori* fra due classi di complessità \mathcal{C}_1 e \mathcal{C}_2 ...
 - ossia i linguaggi che, nell'ipotesi $\mathcal{C}_1 \subset \mathcal{C}_2$, appartengono a \mathcal{C}_2 ma non a \mathcal{C}_1

Una vecchia conoscenza...

- Ve le ricordate le care, vecchie, riduzioni? (paragrafo 5.5)
- Dati due linguaggi, $L_1 \subseteq \Sigma_1^*$ e $L_2 \subseteq \Sigma_2^*$, diciamo che L_1 è riducibile a L_2 e scriviamo $L_1 \le L_2$ se
- Esiste una funzione f: $\Sigma_1^* \to \Sigma_2^*$ tale che
- 1) f è totale e calcolabile ossia,
 - ▶ è definita per ogni parola $x \in \Sigma_1^*$ e, inoltre,
 - esiste una macchina di Turing di tipo trasduttore T_f tale che, per ogni parola $x \in \Sigma_1^*$, la computazione $T_f(x)$ termina con la parola $f(x) \in \Sigma_2^*$ scritta sul nastro di output
- **2)** per ogni $x \in \Sigma_1^*$ vale che: $x \in L_1$ se e solo se $f(x) \in L_2$
- Ora, aggiungiamo una piccola richiesta alla funzione di riduzione f

... rivisitata

- Sia π un predicato definito sull'insieme delle funzioni totali e calcolabili ossia, una proprietà, che deve essere posseduta da una funzione ad esempio:
 - \rightarrow per ogni $x \in \Sigma_1^*$, |f(x)| = |x|
 - per ogni $x \in \Sigma_1^*$, fè calcolabile in tempo polinomiale in |x|
- Dati due linguaggi, $L_1 \subseteq \Sigma_1^*$ e $L_2 \subseteq \Sigma_2^*$, diciamo che L_1 è π -riducibile a L_2 e scriviamo $L_1 \leqslant_{\pi} L_2$ se esiste una funzione $f: \Sigma_1^* \to \Sigma_2^*$ tale che
 - 1) f è totale e calcolabile, ossia
 - \blacksquare è definita per ogni parola $x \in \Sigma_1^*$ e, inoltre,
 - esiste una macchina di Turing di tipo trasduttore T_f tale che, per ogni parola $x \in \Sigma_1^*$, la computazione $T_f(x)$ termina con la parola $f(x) \in \Sigma_2^*$ scritta sul nastro di output
 - ▶ 2) per ogni $x \in \Sigma_1^*$ vale che: $x \in L_1$ se e solo se $f(x) \in L_2$
 - \blacksquare 3) f soddisfa π

Chiusura di una classe rispetto a $\leq \pi$

- Lo strumento che potrebbe permettere di individuare i linguaggi separatori fra due classi di complessità è basato sui seguenti due concetti che si riferiscono alle π -riduzioni
 - **chiusura** di una classe rispetto a una π -riduzione
 - **completezza** di un linguaggio per una classe rispetto a una π -riduzione
- **Definizione 6.4**: Una classe di complessità C è **chiusa** rispetto ad una generica π -riduzione se, per ogni coppia di linguaggi L_1 ed L_2 tali che $L_1 \leq \pi L_2$ e $L_2 \in C$, si ha che $L_1 \in C$.
- La chiusura di una classe C rispetto ad una π -riduzione può essere utilizzata per dimostrare l'appartenenza di un linguaggio L a C:
 - segue direttamente dalla definizione che, se sappiamo che una classe di complessità C è chiusa rispetto ad una π -riduzione e che un certo linguaggio L_0 appartiene a C, allora, se dimostriamo che $L \leq_{\pi} L_0$, possiamo dedurre che anche L appartiene a C.

Completezza di un linguaggio per una classe rispetto a $\leq \pi$

Definizione 6.3: Sia C una classe di complessità di linguaggi e sia $\leq \pi$ una generica π -riduzione.

Ún linguaggio L $\subseteq \Sigma^*$ e` C-completo rispetto alla π -riducibilità se:

a) L ∈ C

е

b) per ogni altro $L_0 \in C$, vale che $L_0 \leq \pi L$.

- Le nozioni di
 - $lue{}$ completezza di un linguaggio per una classe rispetto ad una π -riduzione
 - ightharpoonup chiusura di una classe rispetto alla π -riduzione
- sono gli strumenti che ci permettono di arrivare al concetto di linguaggio ''più difficile'' in una classe

Il linguaggio ''più difficile'' di una classe

- Abbiamo due classi di complessità C_1 e C_2 tali che $C_1 \subseteq C_2$,
- \blacksquare e sappiamo che C_1 è chiusa rispetto ad una qualche π -riduzione:
 - ightharpoonup allora, per ogni coppia di linguaggi L_1 ed L_2 tali che $L_1 \leqslant_{\pi} L_2$ e $L_2 \in C_1$, si ha che $L_1 \in C_1$.
- ightharpoonup Se per caso troviamo un linguaggio L C₂-completo rispetto a $\leq \pi$
 - ▶ ossia, $L \in C_2$ e per ogni altro $L_0 \in C_2$, vale che $L_0 \leq \pi L$
- ightharpoonup e se dimostriamo che L \in C₁
- abbiamo che: per ogni altro $L_0 \in C_2$, vale che $L_0 \le \pi$ L e inoltre $L \in C_1$
- **allora**, in virtù della chiusura di C_1 rispetto alla π -riduzione,

per ogni altro $L_0 \in C_2$, vale che $L_0 \in C_1$

 \blacksquare e, dunque, $C_1 = C_2$

Il linguaggio ''più difficile'' di una classe

- Riassumendo: abbiamo due classi di complessità C_1 e C_2 tali che $C_1 \subseteq C_2$,
- ightharpoonup e sappiamo che C_1 è chiusa rispetto ad una qualche π -riduzione
- Se per caso trovassimo un linguaggio L C_2 -completo rispetto a $\leq \pi$ allora
 - da un ipotetico algoritmo che decide L utilizzando una quantità di risorse pari a quella che definisce la classe C₁ – cioè, se dimostrassimo che L ∈ C₁
 - ightharpoonup potremmo dedurre un algoritmo che decide qualunque problema in C_2 utilizzando una quantità di risorse pari a quella che definisce la classe C_1
- Allora, se riuscissimo a dimostrare che $L \in C_1$ sapremmo automaticamente che tutti i linguaggi in C_2 sono anche in C_1 ossia sapremmo che C_1 = C_2
- Ma possiamo vederla anche in un altro modo: se C₁ ⊆ C₂ e L è C₂-completo e se qualcuno riuscisse a dimostrare che C₁ ≠ C₂ allora sapremmo automaticamente che L ∉ C₁
- L sarebbe un linguaggio ''più difficile'' fra tutti i linguaggi che stanno in C2

Il linguaggio ''più difficile'' di una classe

- Abbiamo due classi di complessità C_1 e C_2 tali che $C_1 \subseteq C_2$, e sappiamo che C_1 è chiusa rispetto ad una qualche π -riduzione
- Se per caso trovassimo un linguaggio L C_2 -completo rispetto a $\leq \pi$ e
- **se qualcuno riuscisse a dimostrare che C_1 \neq C_2 allora sapremmo automaticamente** che L $\notin C_2$
- Infatti:
- Teorema 6.20: Siano C e C₀ due classi di complessità tali che C₀ ⊆ C. Se C₀ è chiusa rispetto ad una π -riduzione allora, per ogni linguaggio L che sia C-completo rispetto a $\leq \pi$, L ∈ C₀ se e solo se C = C₀.
 - ▶ Se C = C_0 , poiché L è C-completo e, dunque L ∈ C, allora L ∈ C_0 .
 - Viceversa, supponiamo che L ∈ C₀. Poiché L è C completo rispetto a ≤ π , allora, per ogni L' ∈ C, L' ≤ π L.
 Poiché C à chiusa rispetto a ∠ ... allora, per ogni L' ∈ C . L' ∈ C : quindi C = C

Poiché C_0 è chiusa rispetto a $\leq \pi$, allora, per ogni L' \in C, L' \in C $_0$: quindi, C = C_0 .

Una particolare π -riduzione

- Dati due linguaggi, $L_1 \subseteq \Sigma_1^*$ e $L_2 \subseteq \Sigma_2^*$, diciamo che L_1 è polinomialmente riducibile a L_2 e scriviamo $L_1 \leq_p L_2$ se
- **Esiste una funzione** $f: \Sigma_1^* \to \Sigma_2^*$ tale che
- 1) f è totale e calcolabile in tempo polinomiale (in breve, f ∈ FP) ossia,
 - ightharpoonup è definita per ogni parola $x \in \Sigma_1^*$ e, inoltre,
 - esiste una macchina di Turing di tipo trasduttore T_f tale che, per ogni parola $x \in \Sigma_1^*$, la computazione $T_f(x)$ termina con la parola $f(x) \in \Sigma_2^*$ scritta sul nastro di output
 - esiste una costante c tale che: per ogni $x \in \Sigma_1^*$, dtime(T_f, x) $\in O(|x|^c)$
- 2) per ogni $x \in \Sigma_1^*$ vale che: $x \in L_1$ se e solo se $f(x) \in L_2$
- E siamo al paragrafo 6.8:
 - come sulla dispensa, d'ora in poi scriveremo sempre

 invece di

 invece d

Il nuovo strumento*

- ▶ Abbiamo due linguaggi, $L_1 \subseteq \Sigma_1^*$ e $L_2 \subseteq \Sigma_2^*$,
- \blacksquare e riusciamo a dimostrare che $L_1 \leq_p L_2$ (anzi, come abbiamo detto, leviamo la p: $L_1 \leq L_2$)
 - cioè, dimostriamo che esistono un trasduttore T_r e una costante c tali che, per ogni $x \in \Sigma_1^*$, e, inoltre, per ogni $x \in \Sigma_1^*$, dtime $(T_r, x) \in O(|x|^C)$
- Supponiamo di sapere che $L_2 \in DTIME[f(n)]$
 - cioè, esiste un riconoscitore T_2 tale che, per ogni $y \in \Sigma_2^*$, $T_2(y)$ accetta se e soltanto se $y \in L_2$ e, inoltre, per ogni $y \in \Sigma_2^*$, dtime $(T_2, y) \in O(f(|y|))$
- Allora, possiamo costruire la seguente macchina T_1 : con input $x \in \Sigma_1^*$, T_1 opera in due fasi (ed utilizza due nastri)
 - \blacksquare FASE 1: T_1 simula $T_r(x)$ scrivendo l'output y sul secondo nastro
 - FASE 2: T_1 simula $T_2(y)$ sul secondo nastro: se $T_2(y)$ accetta allora anche T_1 accetta, se $T_2(y)$ rigetta allora anche T_1 rigetta.
- T₁ decide L₁:
 - ▶ perché $T_2(y)$ accetta se e solo se $y \in L_2$, e $y \in L_2$ se e solo se $x \in L_1$
- Ma quanto impiega T₁ a decidere L₁?

Un nuovo strumento

- Abbiamo due linguaggi, $L_1 \subseteq \Sigma_1^*$ e $L_1 \subseteq \Sigma_2^*$, e riusciamo a dimostrare che $L_1 \le L_2$, e sappiamo che $L_2 \in DTIME[f(n)]$
- Allora, abbiamo costruito una macchina T₁ che decide L₁: ma quanto impiega T₁ a decidere L₁?
 - Con input x:
 - La FASE 1 termina in O(|x|^C) passi
 - la FASE 2 termina in O(f(|y|)) passi
- Ma quanto è grande |y| in funzione di |x|?
 - beh, poiché T_r(x) impiega O(|x|^c) passi per calcolare y
 - e in questo numero di passi sono conteggiati anche i passi che occorrono a scrivere y sul nastro di output
 - allora, $|y| \in O(|x|^c)$
- E, quindi, per ogni $x \in \Sigma_1^*$, $T_1(x)$ termina in $O(|x|^c + f(|x|^c))$ passi
- Ossia, $L_1 \in DTIME[n^c + f(n^c)]$

Il nuovo strumento: se DTIME[f(n)] $\subseteq P$

- In particolare: abbiamo due linguaggi, $L_1\subseteq \Sigma_1^*$ e $L_2\subseteq \Sigma_2^*$, e sappiamo che $L_1\leqslant L_2$,
- **abbiamo** appena dimostrato che se se $L_2 \in P$ allora $L_1 \in P$
 - infatti, in questo caso, esiste una costante k tale che $L_2 \in DTIME[n^k]$
 - allora, da quanto visto alla pagina precedente, $L_1 \in DTIME[n^c + (n^c)^k] \subseteq P$
- II **Teorema 6.21** della dispensa 6 dimostra il solo caso "Se $L_1 \leq L_2 \in L_2 \in P$ allora $L_1 \in P$ "
 - che è quel che abbiamo appena dimostrato (qui e nella pagina precedente)!
- Ossia, il **Teorema 6.21** della dispensa 6 dimostra che

La classe P è chiusa rispetto alla riducibilità polinomiale

Il nuovo strumento: se DTIME[f(n)] $\subseteq P$

Teorema 6.21 della dispensa 6 dimostra che

La classe P è chiusa rispetto alla riducibilità polinomiale

- Allo stesso modo si dimostra che, quando $L_1 \leq L_2$, se $L_2 \in EXPTIME$ allora $L_1 \in EXPTIME$
 - ossia, la classe EXPTIME è chiusa rispetto alla riducibilità polinomiale
- Ma si può dimostrare la stessa cosa con le classi non deterministiche:
 - ightharpoonup Se L₂ \in NP allora L₁ \in NP,
 - Se $L_2 \in NEXPTIME$ allora $L_1 \in NEXPTIME$,
 - Se avete voglia, provate a dimostrarlo per esercizio
- E anche per le classi spaziali
 - Se $L_2 \in PSPACE$ allora $L_1 \in PSPACE$,
 - Se avete voglia, provate a dimostrarlo per esercizio

I linguaggi NP-completi

- A questo punto, abbandoniamo le generiche π -riduzioni e torniamo definitivamente alle nostre riduzioni polinomiali
 - da questo momento in poi, quando parleremo di riduzioni ci riferiremo sempre alle riduzioni polinomiali e utilizzeremo il simbolo per riferirci ad esse ≤
- Un linguaggio L ⊆ Σ* è NP-completo (rispetto alla riducibilità polinomiale) se
 a) L ∈ NP
 b) per ogni altro L₀ ∈ NP, vale che L₀ ≤ L.
- I linguaggi NP-completi sono particolarmente importanti per il loro ruolo di possibili linguaggi separatori fra le classi P e NP:
- **■** Corollario 6.4: Se P \neq NP allora, per ogni linguaggio NP-completo L, L \notin P.
 - Supponiamo che L sia un linguaggio NP-completo e che L \in P.
 - Poiché L è NP-completo allora, per ogni linguaggio $L_0 \in NP$, $L_0 \leq L$;
 - ma, se L ∈ P, poiché P è chiusa rispetto a \leq , questo implica che, per ogni L₀ ∈ NP, L₀ ∈ P.
 - Ossia, P = NP, contraddicendo l'ipotesi.

I problemi NP-completi

- Ma quale è il senso del Corollario 6.4?
- Intanto che è molto improbabile che un linguaggio NP-completo appartenga a P
 - Perché ci interessa, dite? Ah, già, voi ancora non sapete nulla della congettura...
 - Ebbene, si sospetta che sia P ≠ NP ma nessuno è mai riuscito a dimostrarlo, per questo è una congettura. la congettura fondamentale della complessità computazionale
 - e siccome è una questione importante, sulla dimostrazione della congettura (o della sua negazione) hanno messo una taglia da 1000000 di dollari!
 - Ma, dell'importanza della congettura, parleremo in seguito...
- Quindi: se vogliamo dimostrare che, probabilmente, non esiste un algoritmo deterministico che decide in tempo polinomiale un linguaggio che è in NP quel che dobbiamo fare è dimostrare che quel linguaggio è NP-completo
- E se, invece, abbiamo un linguaggio NP-completo e progettiamo un algoritmo deterministico che decide quel linguaggio in tempo polinomiale?
 - In tal caso, abbiamo vinto un milione di dollari
 - oppure, ehm, argh, abbiamo sbagliato qualcosa...

Uso delle riduzioni

- Ricordiamo che le riduzioni nel campo della calcolabilità si rivelano utili tanto per dimostrare che un linguaggio è decidibile/accettabile quanto per dimostrare che un linguaggio non è decidibile/accettabile: dato un linguaggio L₁
 - se dimostro che $L_1 \leqslant L_2$, per un qualche altro linguaggio L_2 decidibile, allora, posso concludere che anche L_1 è decidibile
 - ightharpoonup se dimostro che $L_0 \leqslant L_1$, per un qualche altro linguaggio L_0 non decidibile, allora, posso concludere che anche L_1 è non decidibile
- Allo stesso modo, le riduzioni polinomiali sono uno strumento utile tanto per dimostrare che un linguaggio è in P quanto per dimostrare che un linguaggio <u>probabilmente</u> non è in P
- dato un linguaggio L₁
 - se dimostro che $L_1 \leq L_2$, per un qualche altro linguaggio $L_2 \in P$, allora, posso concludere che anche $L_1 \in P$
 - se dimostro che $L_0 \le L_1$, per un qualche altro linguaggio L_0 , allora, posso concludere che... L_1 non può essere "più facile" di L_0 , ossia se L_0 probabilmente non appartiene a P allora anche L_1 probabilmente non appartiene a P
 - ma di questo parleremo (e abbondantemente!) nella dispensa 9