Алгебры

Харитонцев-Беглов Сергей

29 ноября 2021 г.

Содержание

1.	Teo	рия чисел	1
	1.1	НОД, делимость, линейные диофантовы уравнения	1
2 .	Про	одолжение теории чисел	4
	2.1	Пара комментариев про предыдущую лекцию	4
	2.2	Основная теорема арифметики	4
3.	Кол	выца вычетов и их друзья	7
	3.1	Группы	7
	3.2	Кольца	8
	3.3	Построение кольца вычетов	8
	3.4	Квадратное уравнение	10
	3.5	Китайская теорема об остатках	10
	3.6	Группы вычетов и криптографические протоколы	15
	3.7	Алгоритм RSA	16
	3.8	Генерация простых, тесты на простоту	16
4.	Мно	огочлены	18
	4.1	Интерполяция	21
	4.2	Закрываем долг	21
5.	Евк	лидовы кольца	23
6.	Про	ризводная	26
	6.1	Характеристика поля	27
	6.2	Формула Тейлора	27
7.	Kon	иплексные числа	29

Алгебры Теория чисел

1. Теория чисел

1.1. НОД, делимость, линейные диофантовы уравнения

Определение 1.1. Диофантовым уравнение называется уравнение, которое можно решить в \mathbb{Z} .

Рассмотрим линейное диофантово уравнене

$$ax + by = c$$

Если бы мы были в \mathbb{R} , то решение быстро бы нашлось: $y = \frac{c-ax}{b}$. Но в целых штуках такая штука не всегда будет решением, т.к. b не всегда делит c-ax.

Определение 1.2. a делится на b (a : b, b|a), если $\exists c \in \mathbb{Z} : a = bc$.

Простые свойства:

- 1. $\forall a : a : 1$.
- $2. \forall a: 0: a.$
- 3. $\forall a, b, c, k, l \in \mathbb{Z} : a : c \wedge b : c \Rightarrow (ka + lb) : c$.

Доказательство. $a,b:c\Rightarrow \exists d,e: \left\{ \begin{array}{l} a=c\cdot d\\ b=c\cdot e \end{array} \right.$. Тогда $ka+lb=k\cdot cd+l\cdot ce=c\cdot (kd+le)\Rightarrow (ka+lb):c$

- 4. $\forall k \neq 0, k \in \mathbb{Z} : a : b \iff ak : bk$.
- 5. $a : b \iff a^2 : b^2$.
- 6. $a : b \Rightarrow \begin{bmatrix} |a| \geqslant |b| \\ a = 0 \end{bmatrix}$.
- 7. $a : b, b : c \Rightarrow a : c$.
- 8. a : a.
- 9. $a : b, b : a \Rightarrow a = \pm b$.

Теорема 1.1 (О делении с остатком). $a,b \in \mathbb{Z}, \exists ! (q,r) \colon \left\{ \begin{array}{l} q,r \in \mathbb{Z} \\ a = b \cdot q + r \\ 0 \leqslant r < |b| \end{array} \right.$

Доказательство.

- Единственность. Пусть есть два результата: $a = b \cdot q_1 + r_1$ и $a = b \cdot q_2 + r_2$. Тогда приравняем: $b \cdot q_1 + r_1 = b \cdot q_2 + r_2 \iff b(q_1 q_2) = r_2 r_1 \xrightarrow{r_1, r_2 \in [0; |b| 1]} r_2 r_1 \vdots b \xrightarrow{\text{Свойство 6}} r_2 r_1 = 0 \iff r_1 = r_2 \Rightarrow b(q_1 q_2) = 0 \iff q_1 = q_2$
- \bullet Существование. Здесь мы для конкретного b проверяем, что все a подходят.

I.
$$a \ge 0, b \ge 0$$
.

- База: a = 0. $0 = b \cdot 0 + 0$. (0,0) подходит.
- Переход: $a \to a+1$.

$$a = b \cdot q + r$$
, где $0 \leqslant r < b$.

$$a + 1 = b \cdot q + (r + 1).$$

- * r < b 1. Тогда $r + 1 < b \Rightarrow (q, r + 1)$ подходит.
- * r = b 1. Тогда $a + 1 = b \cdot q + b = b \cdot (q + 1) \Rightarrow (q + 1, 0)$ подходит.
- II. a < 0, b > 0. $a < 0 \Rightarrow -a > 0$.

Из I: $\exists (q,r): -a = b \cdot q + r$, где $0 \leqslant r < b$. Соответственно a = -bq - r.

- -r = 0. $a = b \cdot q + 0 \Rightarrow (-q, 0)$ подходит.
- $-r > 0 \Rightarrow r \in [1; b-1]$. $a = -bq b + b r = b \cdot (-q-1) + b r \Rightarrow (-q-1, b-r)$ подходит
- III. $b<0\iff -b>0$. $\exists q,r:a=(-b)\cdot q+r$, где $0\leqslant r<|b|$, тогда $a=b(-q)+r\Rightarrow (-q,r)$ подходит

Вернемся к диофантову уравнению ax + by = c, где a, b, c фиксированы, а x, y — переменные. Пусть только a, b — фиксированы. Тогда подумаем, когда же ax + by = c имеет решения. Тогда решим задачу: описать $\{ax + by \mid x, y \in \mathbb{Z}\} =: \langle a, b \rangle$

Пример. $\langle 1, b \rangle = \mathbb{Z}$

Пример. $\langle 4,6 \rangle =$ четные числа

Заметим:

- 1. $\forall m, n \in \langle a, b \rangle : m + n \in \langle a, b \rangle$
- 2. $m \in \langle a, b \rangle \Rightarrow km \in \langle a, b \rangle \forall k$

Определение 1.3. Пусть $I \subset \mathbb{Z}$. I называется идеалом, если

$$\left\{ \begin{array}{l} m,n\in I\Rightarrow m+n\in I \ (\text{замкнутость по сложению}) \\ m\in I\Rightarrow \forall k\in\mathbb{Z}\colon k\cdot m\in I \ (\text{замкнутость по домножению}) \\ I\neq\varnothing \end{array} \right.$$

Пример. $\{0\}$ — идеал.

Пример. \mathbb{Z} — идеал (собственный).

Пример. $\langle a,b \rangle$ — идеал, порожденный a и b.

 $\forall a \in \mathbb{Z} \langle a \rangle = \{ax \mid x \in \mathbb{Z}\}$ — главный идеал (порожденный a).

Пример. $\{0\} = \langle 0 \rangle$, $\mathbb{Z} = \langle 1 \rangle$, $\langle 4, 6 \rangle = \langle 2 \rangle$

Теорема 1.2. В \mathbb{Z} любой идеал главный.

Доказательство. $I=\{0\}$ — ок. Тогда пусть $I\neq\{0\}$. Пусть $a\in I \land a<0 \Rightarrow -a=(-1)a\in I \land -a\in \mathbb{N}$. То есть $I\cap \mathbb{N}\neq\varnothing$. Найдем наименьшее $r\in I\cap \mathbb{N}$. Проверим, что $I=\langle r\rangle$ (тогда I-главный). Надо проверить $\langle r\rangle\subset I \land I\subset \langle r\rangle$.

Глава #1 2 из 29 Aвтор: XБ

- $x \in \langle r \rangle$. То есть $x = r \cdot z$. Т.к. $r \in I$, то $r \cdot z \in I$ (по определению идеала), т.е. $\langle r \rangle \subset I$.
- Пусть $a \in I$. Поделим с остатком: $a = r \cdot q + r_1$, $0 \le r_1 < r$, то есть $r_1 = a r \cdot q = a + (-q) \cdot r$. Т.к. $r \in I \Rightarrow (-q) \cdot r \in I \land a \in I \Rightarrow a + (-q) \cdot r \in I$, т.е. $r_1 \in I$. Ho! $0 \le r_1 < r$, а r m минимальное натуральное из I. Тогда $r_1 = 0 \Rightarrow a = r \cdot q$, т.е. $a \in \langle r \rangle$, а значит $I \subset \langle r \rangle$.

Определение 1.4. Пусть $a, b \in \mathbb{Z}$. Тогда $d - \text{HOД}(a, b) = \gcd(a, b) = (a, b)$

Докажем единственность. $\begin{cases} a \vdots d, b \vdots d \\ a \vdots d_1, b \vdots d_1 \end{cases} \iff d \vdots d_1. \text{ Тогда } d \vdots d_1 \wedge d_1 \vdots d, \text{ а значит } d = \pm d_1.$

Теорема 1.3. 1. $\forall a, b \; \exists d = (a, b)$

- $2. \ \exists x, y \in \mathbb{Z}: \ d = ax + by$
- 3. ax + by = c имеет решение $\iff c : d$.

Доказательство. Докажем каждый пункт отдельно:

- Рассмотрим $\langle a, b \rangle$ идеал. Он главный по предыдущей теореме: $\exists d \, \langle a, b \rangle = \langle d \rangle$.
- $d \in \langle d \rangle = \langle a, b \rangle$. А значит $\exists x, y : d = ax + by$. $a = a \cdot 1 + b \cdot 0 \in \langle a, b \rangle = \langle d \rangle$, значит a : d. Аналогично b : d. С другой стороны пусть a : d, b : d, тогда $d = \underbrace{ax}_{:d} + \underbrace{by}_{:d} : d$.

Пусть $\exists d_1 \colon a \colon d_1 \wedge a \colon d_1 \Rightarrow d = ax + by \colon d_1 \Rightarrow d$ — максимальный общий делитель.

• ax + by = c имеет решение $\iff c \in \langle a, b \rangle = \langle d \rangle$. А $c \in \langle d \rangle \iff c : d$.

Определение 1.5. a,b — взаимно просты, если (a,b)=1, то есть $\langle a,b\rangle=\mathbb{Z}$

Лемма. $\begin{cases} ab : c \\ (a,c) = 1 \end{cases} \Rightarrow b : c.$

Доказательство. По условию ab : c, значит $\exists x \in \mathbb{Z} : ab = c \cdot x$.

Так как (a,c)=1, то $\exists y,z\in\mathbb{Z}: ay+cz=1$. Тогда домножим все на b и получим aby+czb=b.

А значит
$$\begin{cases} aby \vdots c \\ czb \vdots c \end{cases} \Rightarrow b \vdots c$$

Глава #1 3 из 29 Aвтор: XБ

2. Продолжение теории чисел

2.1. Пара комментариев про предыдущую лекцию

- 1. Для любого набора $a_1, \ldots, a_n \in \mathbb{Z} \ \exists \gcd(a_1, \ldots, a_n)$ и $\exists x_1, \ldots, x_n : \ HOД = x_1a_1 + \ldots + x_na_n$. HOД такое d, что $\langle a_1, \ldots, a_n \rangle = \langle d \rangle$.
- 2. Алгоритм Евклида.
 - (a,b) = (a,b-a), но и $b = a \cdot q + r$, тогда (a,b) = (a,r).
 - Пусть $r = b \mod a$, $x_1, x_2 \in \mathbb{N}$. Сделаем последовательность $x_{n+1} = x_{n-1} \mod x_n$. Тогда $(x_1, x_2) = (x_3, x_4) = \dots$ Заметим, что x_n убывает.
 - Тогда существует такое x_n , что $(x_1, x_2) = (x_n, 0) = x_n$.

2.2. Основная теорема арифметики

Определение 2.1. $x \in \mathbb{Z}, x \neq \pm 1$, тогда x — простое число, если $x = x_1 x_2 \iff \begin{bmatrix} x_1 = \pm 1 \\ x_2 = \pm 1 \end{bmatrix} \ \forall x_1, x_2$

Свойство *. x — обладает свойством *, $\iff x \neq \pm 1 \land ab : x \Rightarrow \begin{bmatrix} a : x \\ b : x \end{bmatrix}$

Утверждение 2.1. p — простое $\iff p$ — обладает свойством *.

Доказательство.

- \Leftarrow Пусть $p=x_1x_2$. Тогда $x_1x_2 \vdots p$ по *: $\begin{bmatrix} x_1 \vdots p \\ x_2 \vdots p \end{bmatrix}$. Пусть $x_1=py$. $p=x_1x_2=pyx_2$. $1=yx_2\Rightarrow x_2=\pm 1$. Получили определение простого числа.
- \Rightarrow . Пусть p простое и ab \vdots p. d=(a,p), p простое $\Rightarrow d=p \lor d=1$. $d=p\Rightarrow a$ \vdots p. $d=1 \land (a,p)=1,$ по лемме ab \vdots $p \land (a,p)=1 \Rightarrow b$ \vdots p.

Теорема 2.2 (Основная теорема арифметики). Пусть $n \in \mathbb{Z}, n \neq 0$. Тогда n единственным образом с точностью до перестановки сомножителей, представимо в виде $(p_i - \text{простые}, p_i > 0)$

$$n = \varepsilon p_1 p_2 \dots p_k, \varepsilon = \pm 1 = \operatorname{sign}(n).$$

Или, иными словами, существует единственное каноническое разложение:

$$n = \varepsilon p_1^{a_1} p_2^{a_2} \dots p_k^{a_k}, \varepsilon = \pm 1 = \text{sign}(n), a_i > 0, p_1 < p_2 < \dots < p_k.$$

Доказательство.

- 1. Существование. От противного. Пусть ∃ нераскладываемое число. Рассмотрим минимальное такое число.
 - x = 1 пустое произведение. Противоречие.

- \bullet x = p произведение из 1 члена. Противоречие.
- $x = x_1x_2$. $x_1, x_2 \neq \pm 1 \Rightarrow x_1, x_2 < x \Rightarrow x_1, x_2$ раскладываемые. Или $x_1 = p_1p_2 \dots p_n, x_2 = q_1q_2 \dots q_m \Rightarrow x = p_1p_2 \dots p_nq_1q_2 \dots q_m$.
- 2. Единственность. Пусть есть плохие числа. X минимальное из них. $q_1q_2\dots q_n=X=p_1p_2\dots p_m$. Значит $p_1p_2\dots p_m$ і $q_1\Rightarrow p_1$ і $q_1\vee p_2\dots p_m$ і q_1 . Тогда $\exists p_i$ і q_1 . Тогда можно поделить на q_1 , но p_i простое, тогда $p_i=q_1$. Рассмотрим $X'=\frac{X}{q_1}$. $q_2q_3\dots q_n=X'=p_1p_2\dots p_{i-1}p_{i+1}\dots p_k$. X'< X, значит разложения X' равны, а значит, т.к. $p_i=q_1$, то равны и исходные разложения. Получили противоречие.

Контр-примеры для О. Т. А:

- 1. Рассмотрим $2\mathbb{Z}$ множество четных чисел. Теперь 6 простое, как и все (4k+2). Теперь как разложить на простые 60? $60 = 2 \cdot 30$, а также $60 = 6 \cdot 10$.
- 2. $\mathbb{Z} \cup \{\sqrt{5}\} = \{a + b\sqrt{5} \mid a, b \in \mathbb{Z}\}$. Заметим, что $\mathbb{Z} \subset \mathbb{Z}\{\sqrt{5}\}$ $4 = 2 \cdot 2 = (\sqrt{5} 1)(\sqrt{5} + 1)$

Определение 2.2. $n \in \mathbb{Z}, n \neq 0, p$ — простое, тогда степень вхождения $(V_p(n) = k)$ p в n — $\max\{k \mid n : p^k\}$

В терминах разложения: $n=p_1^{a_1}p_2^{a_2}\dots p_k^{a_k}$. $V_p(n)=a_i$, а если p нет в разложении, то $V_p(n)=0$.

Свойства: $V_p(n)$

- 1. $V_p(xy) = V_p(x) + V_p(y)$
- 2. $V_p(x+y)\geqslant \min(V_p(x),V_p(y)),$ а если $V_p(x)\neq V_p(y),$ то строгое равенство

Доказательство. $V_p(x) = a, V_p(y) = b$ и $x = p^a \cdot \widetilde{x}, y = p^b \cdot \widetilde{y}$.

Не умаляя общности: $a \geqslant b$. Тогда $x+y=p^a\widetilde{x}+p^b\widetilde{y}=p^b(p^{a-b}\widetilde{x}+\widetilde{y})$. Если a>b, то $\underbrace{p^{a-b}\widetilde{x}}+\widetilde{y}$

не делится на p. А значит $V_p(x+y) = \min(V_p(x), V_p(y))$. В случае же равенства, получаем $p^b \cdot (\widetilde{x} + \widetilde{y})$, для которого уже $V_p(x+y) \geqslant \min(V_p(x), V_p(y))$

Еще следствия из О. Т. А.

- 1. $x : y \Rightarrow V_p(x) \geqslant V_p(y) \forall$ простого p
- 2. $x = p_1^{a_1} \dots p_n^{a_n}, y = p_1^{b_1} \dots p_n^{b_n} \Rightarrow (x, y) = p_1^{\min(a_1, b_1)} \dots p_n^{\min(a_n, b_n)}$
- 3. $x=z^k\iff \forall$ простого $p\ V_p(x)$ і k
- 4. Количество натуральных делителей $x = \prod x_i^{a_i}$ равно $\tau(x) = \prod (a_i + 1)$

Доказательство. Делители X однозначно соотносятся с $\{(b_1, b_2, \dots, b_n) \mid 0 \leqslant b_i \leqslant a_i\}$

5. $\sigma(x)$ — сумма натуральных делителей x. Тогда $\sigma(x) = \frac{\prod (p_i^{a_i+1}-1)}{\prod (p_i-1)}$.

Доказательство. $\frac{\prod(p_i^{a_i+1}-1)}{\prod(p_i-1)}=\prod\frac{p_i^{a_i+1}-1}{p_i-1}=\prod(1+p_i+\ldots+p_i^{a_i})=$ раскроем скобки. = сумма делителей.

6.

 $m{Onpedeлeнue~2.3.}~m-{
m HOK~(LCM,~}[a,b]),$ если $m\mathrel{\dot{:}} a,m\mathrel{\dot{:}} b$ и $\forall n~n\mathrel{\dot{:}} a\wedge n\mathrel{\dot{:}} b\Rightarrow n\mathrel{\dot{:}} m$ $[a,b]=\prod p_i^{\max(a_i,b_i)}$

7.
$$a, b \in \mathbb{Z}$$
 $(a, b) = 1$ $ab = c^k \Rightarrow \exists c_1, c_2 \ a = c_1^k, b = c_2^k$

3. Кольца вычетов и их друзья

Рассмотрим
$$a^2 - b^2 = 15^{2021} \iff (a - b)(a + b) = 3^{2021} \cdot 5^{2021} \Rightarrow \begin{cases} a + b = 3^k \cdot 5^l \\ a - b = 3^{2021 - k} \cdot 5^{2021 - l} \end{cases} \Rightarrow a = \frac{3^k \cdot 5^l + 3^{2021 - k} \cdot 5^{2021 - l}}{2}.$$

Уравнение $81a^2-169b^2=15^{2021}$ — тоже решается. А вот $a^2-2b^2=15^{2021}\iff (a-\sqrt{2}b)(a+\sqrt{2}b)=3^{2021}5^{2021}$ уже не решается в целых числах. Если вылезать, то надо расписывать разложение $a+\sqrt{2}b$, "3", "5" и единственность разложения на множители.

Еще один пример: $a^2+b^2=15^{2021}$. Посмотрим на остатки от деления на 4: $a^2,b^2 \mod 4 \in \{0,1\},15^{2021} \mod 4=3$. Но для этого нам нужно понимать что-то про кольцо вычетов по модулю.

3.1. Группы

Определение 3.1. Группой называется пара (G,*), где G — множество, а $*: G \times G \to G$ — бинарная операция, так что выполнены свойства:

- 1. $\forall a, b, c \in G : (a * b) * c = a * (b * c)$. Ассоциативность.
- 2. $\exists e \in G : \forall a \in G \ a * e = e * a = a$. Существование нейтрального элемента.
- 3. $\forall a \in G \exists a^{-1} : a * a^{-1} = a^{-1} * a = e$. Существование обратного элемента.

Несколько примеров:

- 1. $(\mathbb{Z}, +), e = 0, a^{-1} = -a.$
- 2. $(\mathbb{Q} \setminus 0, \cdot), e = 1, a^{-1} = \frac{1}{a}$.
- 3. $(2^M, \triangle), e = \emptyset, A^{-1} = A.$

Определение 3.2. Группа G называется абелевой, если $\forall x, y \in G : x * y = y * x$.

Пример Главный пример группы. Пусть $G = S(M) = \{f : M \to M \mid f -$ биекция $\}$, операция — композиция функций

- Ассоциативность упражнение.
- Нейтральный элемент f(x) = x, тождественное отображение.
- $f^{-1} =$ обратная функция. Она существует, так как f биекция.

Получили группы по композиции.

Пример. $M = \{1, 2, 3\}$. $f_1, f_2 : M \to M$ — биекция. f_1 — меняет местами 1 и 2: $1 \to 2, 2 \to 1, 3 \to 3$, f_2 переставляет по циклу: $1 \to 2, 2 \to 3, 3 \to 1$. $f_2 \circ f_1 : 1 \to 3, 2 \to 2, 3 \to 1$. $f_1 \circ f_2 : 1 \to 1, 2 \to 3, 3 \to 2$. Ну значит группа не абелева.

Докажем простейшие свойства групп:

1. ∃! нейтральный элемент.

Доказательство: заметим, что $e_1 = e_1 * e_2 = e_2$

2. ∃! обратный элемент.

Доказательство: пусть b, c — обратные к a. Тогда (b*a)*c = e*c = c, но при этом b*(a*c) = b*e = b. Значит b = c.

3. $a * b = a * c \iff b = c$

Доказательство: $a*b=a*c \iff (a^{-1}*a)*b=(a^{-1}*a)*c \iff e*b=e*c \iff b=c$

3.2. Кольца

Определение 3.3. Кольцо — тройка $(R, +, \cdot)$ (R — множество, $+, \cdot : R \times R \to R)$, такая что:

1–4. (R, +) — абелева группа. Нейтральный элемент обозначается 0, обратный к a - -a.

5.
$$a \cdot (b+c) = a \cdot b + a \cdot c$$
 и $(b+c) \cdot a = b \cdot a + b \cdot c$. Дистрибутивность.

Onpedenetue 3.4. Кольцо R называется ассоциативным, если выполнено

6.
$$a \cdot (b \cdot c) = (a \cdot b) \cdot c$$
.

Onpedenetue 3.5. Кольцо R называется коммутативным, если

7.
$$a \cdot b = b \cdot a$$

Определение 3.6. Кольцо R называется кольцом с 1, если

8.
$$\exists 1 \in R : 1 \cdot a = a \cdot 1 = a$$

Пример. $(\mathbb{Z}, +, \cdot)$ — коммутативное ассоциативное кольцо с 1.

Определение 3.7. Коммутативное ассоциативное кольцо с 1 называется полем, если выполнена

9.
$$\forall a \in R \setminus \{0\} \ \exists b \in R \ ab = 1 \land 1 \neq 0$$

Пример. $(\mathbb{Q}, +, \cdot)$ — поле, а вот $(\mathbb{Z}, +, \cdot)$ — не поле.

3.3. Построение кольца вычетов

Определение 3.8. Пусть $a, b \in \mathbb{Z}$, говорят, что a сравнимо с b по модулю n ($a \equiv b \pmod{n}$), если $(a - b) \in n$. Эквивалентное определение: a и b имеют одинаковые остатки по модулю n.

Докажем, что сравнимость по модулю — отношение эквивалентности.

- $a \equiv a \pmod{n} \iff 0 \vdots n$
- (a-b): $n \iff (b-a)$: $n \Rightarrow a \equiv b \pmod{n} \iff b \equiv a \pmod{n}$.
- (a-b) : $n \wedge (b-c)$: $n \Rightarrow (a-b+b-c)$: $n \iff (a-c)$: n

Наблюдение. $a \in \mathbb{Z} \Rightarrow \overline{a} = \{b \mid a \equiv b\} = \{a + kn \mid k \in \mathbb{Z}\}. \mathbb{Z} = \overline{0} \cup \overline{1}...$

Определение 3.9. Фактор множества по отношению \equiv обозначается $\mathbb{Z}/n\mathbb{Z}$.

 $\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$.Элементы $\mathbb{Z}/n\mathbb{Z}$ называются классами вычетами по модулю.

1. $a \equiv b \pmod{n} \land c \equiv d \pmod{n} \iff a + c \equiv b + d \pmod{n} \land ac \equiv bd \pmod{n}$.

Доказательство
$$(a+c)-(b+d)=\underbrace{(a-b)}_{:n}-\underbrace{(d-c)}_{:n}$$
 : n .

Доказательство $ac - bd = ac - bc + bc - bd = c(a - b) + b(c - d) \vdots n$.

Значит класс суммы и произведения зависит только от классов множителей и слагаемых.

Теорема 3.1. Пусть $n \in \mathbb{N}$. Тогда класс $(\mathbb{Z}/n\mathbb{Z}, +, \cdot)$, где $\overline{a} + \overline{b} = \overline{a + b} \wedge \overline{a} \cdot \overline{b} = \overline{a \cdot b}$ — ассоциативное коммутативное кольцо с единицей.

Доказательство. Все аксиомы — следствия из
$$\mathbb{Z}$$
. Докажем для примера $(\overline{a}+\overline{b})+\overline{c}$: $(\overline{a}+\overline{b})+\overline{c}=\overline{a+b+c}=\overline{a+b+c}=\overline{a}+\overline{b+c}=\overline{a}+(\overline{b}+\overline{c})$.

Закон сокращения не очень работает в кольце вычетов по модулю: $2 \cdot 1 = 2 \cdot 4 \pmod 6$, но $1 \neq 4 \pmod 6$.

Определение 3.10. Пусть R — коммутативное ассоциативное кольцо с единицей. Тогда $\forall a \in R: a$ — делитель нуля $\Rightarrow \exists b \neq 0: ab = 0$.

Пример. n- составное: $n=p_1p_2,\,n$ в $\mathbb{Z}/n\mathbb{Z}\overline{p_1p_2}=\overline{n}=0.$ Значит p_1,p_2- делители нуля.

Лемма. $\forall a, b, c \in R : ab = ac \land a$ — не делитель нуля $\Rightarrow b = c$.

Доказательство.
$$ab=ac$$
: $ab-ac=0 \iff a(b-c)=0$. a — не делитель нуля $\Rightarrow b-c=0 \iff b=c$.

Лемма. $a \in R$: a — обратим $\Rightarrow a$ — не делитель нуля.

Доказательство. Пусть
$$ab = 0 \Rightarrow a^{-1}(ab) = a^{-1} \cdot 0; (a^{-1}a)b = 0 \Rightarrow b = 0.$$

Замечание. Обратное неверно: в \mathbb{Z} 2 – не делитель нуля, но $\frac{1}{2} \notin \mathbb{Z}$.

Теорема 3.2. $\forall a \in Z : \overline{a} \in \mathbb{Z}/n\mathbb{Z}$. Тогда:

- 1. \overline{a} обратим \iff (a,n)=1
- 2. \overline{a} делитель нуля \iff $(a, n) \neq 1$.

Доказательство. \overline{a} — обратим $\iff \exists \overline{b} : \overline{a}\overline{b} = \overline{1} \iff \exists b : ab = 1 \pmod{n} \iff \exists b : ab - 1 : n \iff \exists b, k : ab - 1 = nk \iff \exists b, k : ab - nk = 1 \iff (a, n) = 1.$

$$(a,n)=1\Rightarrow \overline{a}$$
 — обратим \Rightarrow не делитель нуля.

$$(a,n)=d>1, a=dx.$$
 Тогда $\overline{a}\cdot rac{\overline{n}}{\overline{d}}=\overline{d}xrac{\overline{n}}{\overline{d}}=\overline{nx}=0$ и $rac{\overline{n}}{\overline{d}}
eq 0.$ Значит $0<|rac{n}{d}|< n.$

Cnedcmeue. n — простое $\Rightarrow \mathbb{Z}/n\mathbb{Z}$ — поле.

Доказательство. Достаточно проверить существование обратного. $\overline{a} \neq \overline{0} \iff a \not\mid n \iff (a,n)=1 \iff a$ — обратим.

Определение 3.11. \forall ассоциативного кольца с 1 R: R — называется кольцом без делителей нуля (область целостности), если делитель нуля только 0. $ab = 0 \iff a = 0 \lor b = 0$.

Замечание. R — область $\Rightarrow ax_1 = ax_2 \Rightarrow x_1 = x_2 \ (a \neq 0)$.

Вернемся к диофантову уравнению ax + by = c, (a, b) = 1. Тогда $ax = c \pmod b$ и $by = c \pmod a$. Тогда $\overline{ax} = \overline{c}$ в $\mathbb{Z}/b\mathbb{Z} \xrightarrow{(a,b)=1} \overline{x} = \overline{a}^{-1}\overline{c} \pmod b$. Тогда $x = x_0 + kb$.

3.4. Квадратное уравнение

Посмотрим на $x^2 + px + q = 0$ в $\mathbb{Z}/n\mathbb{Z}$. Работает ли $x_{1,2} = \frac{-p \pm \sqrt{p^2 - 4q}}{2}$. Есть проблемки:

- 1. $p^2 4q$ не квадрат в $\mathbb{Z}/n\mathbb{Z}$ (нет решений).
- 2. 2 = 0. Или 2^{-1} (нельзя поделить на два).
- 3. n не простое. Тогда из $(x-x_1)(x-x_2)=0$ не следует, что $x=x_1\vee x=x_2$. Пример: $x^2-1=0\pmod 8$

3.5. Китайская теорема об остатках

Чтобы решать такие уравнения можно свести к простым модулям при помощи китайской теоремы об остатках.

Вопрос такой: как связаны $\mathbb{Z}/n\mathbb{Z}$, $\mathbb{Z}/m\mathbb{Z}$, $\mathbb{Z}/mn\mathbb{Z}$. Пусть $P_m: \mathbb{Z} \mapsto \mathbb{Z}/m\mathbb{Z}$, а $P_{mn}: \mathbb{Z} \mapsto \mathbb{Z}/mn\mathbb{Z}$, P_m, P_{mn} — гомоморфизмы соответствующих колец.

Определение 3.12. Гомоморфизмом колец $f: R_1 \mapsto R_2$ называется такое отображение, что $\forall r_1, r_2 \in R_1: f(r_1 + r_2) = f(r_1) + f(r_2), f(r_1 r_2) = f(r_1) \cdot f(r_2), f(1) = 1.$

Определение 3.13. Гомоморфизмом группы $f: G_1 \mapsto G_2$ называется такое отображение, что $\forall g_1, g_2 \in G_1: f(g_1g_2) = f(g_1) \cdot f(g_2)$.

Замечание. f — гомоморфизм групп $G_1, G_2 \Rightarrow f(e_{G_1}) = e_{G_2}$. В частности f — гомоморфизм колец $R_1, R_2 \Rightarrow f(0_{R_1}) = 0_{R_2}$.

Доказательство.
$$f(e_{G_1}) = f(e_{G_1} \cdot e_{G_1}) = f(e_{G_1}) \cdot f(e_{G_1}); \ e_{G_2} \cdot f(e_{G_1}) = f(e_{G_1}) \cdot f(e_{G_1}); \ e_{G_2} = f(e_{G_1})$$

Существует такой гомоморфизм колец $P_{mn,m}$, что $P_{mn,m} \cdot P_{mn} = P_m$ (тут подразумевается композиция гомоморфизмов)

Доказательство. Предъявим такой гомоморфизм: $P_{mn,m}(\overline{a_{mn}}) = \overline{a_m}$.

 $Koppeкmнocmь. \ \overline{a_{mn}} = \overline{b_{mn}} \iff a \equiv b \pmod{mn} \iff a - b : mn \Rightarrow a - b : m \Rightarrow \overline{a_m} = \overline{b_m}$

Аналогично существует гомоморфизм $P_{mn,n}$. То есть $\overline{a_{mn}} \to (\overline{a_m}, \overline{a_n})$ — отображение. То есть $\mathbb{Z}/mn\mathbb{Z} \mapsto \mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$. Отступление.

Определение 3.14. R_1, R_2 — кольца. Рассмотрим $(R_1 \times R_2, +, \cdot) : (r_1, r_2) +_{R_1 \times R_2} (r_1' r_2') \coloneqq (r_1 +_{R_1} r_2, r_2 +_{R_2} r_2')$, где $+_{R_1 \times R_2}, +_{R_1}, +_{R_2}$ — операции сложения для соответствующих множеств. Тоже самое для умножения. Тогда $R_1 \times R_2$ — тоже кольцо, т.к. соответствующие свойства операций унаследуются, что можно проверить самостоятельно. Но заметка: если R_1 и R_2 были областями целостности, то их произведение областью целостности почти никогда не будет.

Итак мы построили гомоморфизм $\mathbb{Z}/mn\mathbb{Z} \mapsto \mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$, назовём его $i_{m,n}$. Подумаем про его свойства. Во-первых заметим, что слева mn элементов, но и справа mn элементов!

Определение 3.15. Биективный гомоморфизм (групп, колец, ...) (называется изоморфизмом, \cong) если каждым a_i задано ровно одно b_j и наоборот.

Теорема 3.3 (Китайская теорема об остатках). Пусть (m,n)=1, тогда $\mathbb{Z}/mn\mathbb{Z}\cong\mathbb{Z}/m\mathbb{Z}\times\mathbb{Z}/n\mathbb{Z}$.

Доказательство.

- 1. $i_{m,n}$ инъективно. Пусть $i_{m,n}(\overline{a_{m,n}})=(\overline{a_m},\overline{a_n}),\ i_{m,n}(\overline{b_{n,m}})=(\overline{b_m},\overline{b_n}) \Rightarrow a-b \ \vdots \ m \wedge a-b \ \vdots$ $n \xrightarrow{(n,m)=1} a - b : mn.$
- 2. Раз $i_{m,n}: \mathbb{Z}/nm\mathbb{Z} \mapsto \mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/m\mathbb{Z}$ инъективно и $|\mathbb{Z}/nm\mathbb{Z}| = |\mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/m\mathbb{Z}|$, то $i_{m,n}$ сюръективно, а значит и биективно.

Теорема 3.4 (КТО 2). $m_1, m_2, m_3, \ldots, m_n \in \mathbb{Z} \wedge (m_i, m_j) = 1 \Rightarrow \mathbb{Z}/m_1, m_2, \ldots, m_n \mathbb{Z} \mapsto \mathbb{Z}/m_1 \mathbb{Z} \times \mathbb{Z}$ $\mathbb{Z}/m_2\mathbb{Z}\dots$ - изоморфизм колец.

Теорема 3.5 (КТО без колец). $\forall m_1, \dots, m_n \in \mathbb{Z} : \forall i, j(m_i, m_j) = 1, \forall a_1, \dots, a_n \Rightarrow \exists x_0 \in Z : x \equiv a_1$ $\pmod{m_1} \land \ldots \land x \equiv a_n \pmod{m_n} \iff x \equiv x_0 \pmod{\prod_i m_i}$

To есть по факту мы хотим получить обратную функцию к $f_{m_1,m_2,\dots}:\overline{a_{m_1m_2m_3}}\mapsto (\overline{a_{m_1}},\overline{a_{m_2}},\overline{a_{m_3}}).$ Пусть тогда $g = f^{-1}$. Заметим, что g — гомоморфизм колец. Раз g сохраняет операции, то $g(\overline{x}, \overline{y}, \overline{z}) = g(\overline{x}, 0, 0) + g(0, \overline{y}, 0) + g(0, 0, \overline{z}) = \overline{x}g(1, 0, 0) + \overline{y}g(0, 1, 0) + \overline{z}g(0, 0, 1).$

Пусть
$$x = g(1, 0, 0) \iff \begin{cases} x \equiv 1 \pmod{m_1} \\ x \equiv 0 \pmod{m_2} \\ x \equiv 0 \pmod{m_3} \end{cases} \iff \begin{cases} x \equiv 1 \pmod{m_1} \\ x \equiv 0 \pmod{m_2} \end{cases}.$$

В группе $\forall a \neq e \ \forall x : ax \neq x$. Тогда посмотрим группу $(\mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}) \supset \{(a,0) \mid a \in \mathbb{Z}/m\mathbb{Z}\} \cong$ $\mathbb{Z}/m\mathbb{Z}$.

Тогда для любого $n \in \mathbb{N} : n = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_n^{\alpha_3} \mathbb{Z}/n\mathbb{Z} \cong \mathbb{Z}/p_1^{\alpha_1}\mathbb{Z} \times \dots \times \mathbb{Z}/p_n^{\alpha_n}$.

Пример. Для того, чтобы решить $b^2 = a$ надо решить $b_i^2 = a$ для все составляющих.

Определение 3.16. Пусть C — группа $(a \in C)$, тогда порядок элемента a: ord $(a) = \{\min k \in C\}$ $\mathbb{N} \mid a^k = 1$ А если такого k нет, то $\operatorname{ord}(a) = \infty$

Лемма. Пусть G — группа $(a \in G)$. $\langle a \rangle = \{a, a^2, \dots; a^{-1}, (a^{-1})^2, \dots, e\} = \{a^k \mid k \in \mathbb{Z}\}$. Тогда $(\langle a \rangle, *)$ — группа.

Доказательство. Проверим замкнутость относительно операций: 0-рной $(\{\dot{\}} \rightarrow e)$, унарной $a \to a^{-1}$, бинарной $(a, b) \to a * b$.

- $e = a^0 \in \langle a \rangle$
- $b \in \langle a \rangle . b = a^k \Rightarrow b^{-1} = a^{-k} \in \langle a \rangle .$
- $b, c \in \langle a \rangle$. $b = a^k, c = a^l \Rightarrow bc = a^{k+l} \in \langle a \rangle$.

Определение 3.17. $\langle a \rangle$ называется циклической группой, порожденной a.~G- циклическая группа $\iff \exists a \in G : G \cong \langle a \rangle$

Теорема 3.6 (О классификации циклических групп). ord $a = \infty \Rightarrow \langle a \rangle \cong (\mathbb{Z}, +)$. ord $a = k \in$ $\mathbb{N} \Rightarrow \langle a \rangle \cong (\mathbb{Z}/k\mathbb{Z}, +)$

Доказательство. $f:(\mathbb{Z},+)\to\langle a\rangle$. То есть $k\mapsto a^k$. $f(k+l)=a^{k+l}=a^k\cdot a^l=f(k)+f(l)$, т.е. f— гомоморфизм. А ещё f — сюръекция по определению циклической группы.

Докажем инъективность. Пусть $a^k=a^l\iff a^{k-l}\cdot a^l=ea^l\iff a^{k-l}=e.$ Но ord $a=\infty!$ Значит k-l=0.

Теперь ord $a \neq \infty$. Тогда построим $f: \mathbb{Z}/k\mathbb{Z} \to \langle a \rangle$, то есть $\overline{m_k} \mapsto a^m$.

Корректность: $\overline{m_k} = \overline{n_k} \Rightarrow (m-n)$: k. То есть $m = n + k \cdot l$. Значит $a^m = a^{n+k \cdot l} \iff a^m = a^n \cdot a^{kl} = a^n$.

Аналогично первому случаю доказывается, что f — гомоморфизм и сюръекция.

Инъективность: $f(\overline{m}) = f(\overline{n}) \iff a^m = a^n \iff a^{m-n} = e, \ m-n = qk+r, 0 \leqslant r < k;$ $a^{qk+r} = e \iff (a^k)^q \cdot a^r = e \iff a^r = e, \ \text{но} \ r < k, \ \text{а} \ k$ — наименьшая натуральная степень обращения элемента в единицу, а значит r = 0, т.е. $f(\overline{n}) = f(\overline{m}) \iff (m-n) \vdots k$, т.е. мы имеем дело с одним классом эквивалентности.

Простыми словами, если ord $a=\infty \Rightarrow$ в последовательности $\{a^i\}$ - элементы не повторяются. А если ord $a\neq \infty$, то элементы повторяются с периодом k, а внутри периода элементы не повторяются.

Теорема 3.7 (Теорема Лангранжа). Пусть G — группа. $\forall G$ — n-элементная группа, тогда $\forall a \in G : n \ : \ \text{ord} \ a$

Доказательство. Пусть ord a = k. Рассмотрим отображение $m_a(x) = ax$. $m_a G \to G$. Нарисуем граф отображений (вершины — элементы G, ребра (стрелки) — $x \to ax$). $x \to ax \to a^2x \to a^3x \to \dots \to a^{k-1}x \to a^kx = x$, так как для $\forall i, j < k : a^ix = a^jx \Rightarrow i = j$.

Значит все элементы G разбиваются на циклы длины k. Следовательно n : k.

 ${\it C}$ ле ${\it d}$ c ${\it meue}$. G — конечная группа $(a \in G) \Rightarrow a^{|G|} = e$

Доказательство. ord a=k. $n=k\cdot l$ по теореме Лагранжа. Тогда $a^n=a^{k\cdot l}=\left(a^k\right)^l=e^l=e$

Пример. $(\mathbb{Z}/p\mathbb{Z},+)$. $\overline{a}^x = \underbrace{\overline{a} + \overline{a} + \overline{a} + \overline{a}}_{x \text{ pas}} = \overline{x}\overline{a}$.

Пример. p — простое.

 $G := (\mathbb{Z}/p\mathbb{Z} \setminus \{0\}, \cdot)$. |G| = p - 1. Тогда $a^{p-1} = 1$. Малая теорема Ферма.

На языке сравнений: $a \in \mathbb{Z}, a : p \Rightarrow a^{p-1} - 1 : p \iff a^{p-1} \equiv 1 \pmod{p}$.

Пример. $(\mathbb{Z}/p\mathbb{Z},+)$ — циклическая группа. А вот с G из предыдущего пункта — тоже, если p — простое. Но не очев.

Утверждение 3.8. G — группа (|G|=n). G — циклическая $\iff \exists a \in G : \text{ord } a=n$. МТФ: $\overline{a}, \overline{a}^2, \ldots$ — периодична с периодом p-1. Утверждение: $\exists \overline{a} : p-1$ — наименьший период этой последовательности.

Замечание. Пусть G — группа, |G|=p — простое. Тогда $G\cong (\mathbb{Z}/p\mathbb{Z},+)$. G — циклическая.

Доказательство. Возьмем $a \neq e$. Тогда $p : \operatorname{ord}(a) \Rightarrow \operatorname{ord}(a) = 1 \vee \operatorname{ord}(a) = p \Rightarrow a = e \vee \langle a \rangle = G \Rightarrow G$ — циклическая $\Rightarrow G \cong (\mathbb{Z}/p\mathbb{Z}, +)$.

Определение 3.18. R — ассоциативное кольцо, тогда $R^* = \{a \in R | \exists a^{-1}\}$ — группа обратимых элементов.

Проверим, что R^* — группа.

• Проверим замкнутость. $a, b \in R^* \Rightarrow \exists a^{-1} \exists b^{-1} : (ab)^{-1} = b^{-1}a^{-1}$.

- $1 \in R^*$.
- $a \in R^* : \exists a^{-1} \Rightarrow \exists (a^{-1})^{-1} = a$, значит $a^{-1} \in R^*$.

Замечание. $a^n = 1 \Rightarrow a \in R^*$. Т.к. тут записано, что $a \cdot a^{n-1} = 1$ — то есть он обратим.

Определение 3.19. Рассмотрим $R = \mathbb{Z}/n\mathbb{Z}$. Тогда $R^* = \{\overline{a} \in \mathbb{Z}/n\mathbb{Z} \mid \exists \overline{b} : \overline{a}\overline{b} = 1\} = \{\overline{a} \in \mathbb{Z}/n\mathbb{Z} \mid (a,n)=1\}$. Тогда $|R^*| = \varphi(n)$ — функция Эйлера.

Теорема 3.9 (Теорема Эйлера). $\forall b \in (\mathbb{Z}/n\mathbb{Z})^* = b^{\varphi(n)} = 1$

Теорема 3.10 (Теорема Эйлера). $\forall a \in \mathbb{Z} : (a,n) = 1 \Rightarrow a^{\varphi(n)} \equiv 1 \pmod{n}$

Эффективно вычислим $\varphi(n)$:

1. $n=p^k, p$ — простое. $\varphi(n) = \{x \in \{1,\dots,p^k\} \mid (x,p^k)=1\} = \{x \in \{1,\dots,p^k\} \mid x \not | p\} = p^k - |\{p,2p,..,p^k\}| = p^k - p^{k-1}.$

2. n — составное. $n = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_k^{\alpha_k}$

По КТО:

$$\mathbb{Z}/n\mathbb{Z} \cong (\mathbb{Z}/p_1^{\alpha_1}\mathbb{Z}) \times \ldots \times (\mathbb{Z}/p_k^{\alpha_k}\mathbb{Z}).$$

. Тогда заметим, что

$$(\mathbb{Z}/p_1^{\alpha_1}\mathbb{Z}\times\ldots\times\mathbb{Z}/p_k^{\alpha_k}\mathbb{Z})^*=(\mathbb{Z}/p_1\mathbb{Z})^*\times\ldots\times(\mathbb{Z}/p_k^{\alpha_k}\mathbb{Z})^*.$$

Так как если (x_1, \ldots, x_k) — обратим, то x_i — обратимы.

Из этого получаем, что

$$\varphi(n) = |(\mathbb{Z}/n\mathbb{Z})^*| = |(\mathbb{Z}/p_1^{\alpha_1}\mathbb{Z} \times \ldots \times \mathbb{Z}/p_k^{\alpha_k}\mathbb{Z})^*| = \prod_{i=1}^k |(\mathbb{Z}/p_i^{\alpha_i}\mathbb{Z})^*|.$$

Получили формулу из а). Применим её:

$$\varphi(n) = (p_1^{\alpha_1} - p_1^{\alpha_1 - 1}) \dots (p_k^{\alpha_k} - p_k^{\alpha_k - 1}) = n \cdot (1 - \frac{1}{p_1}) \cdot \dots \cdot (1 - \frac{1}{p_k}).$$

Теорема 3.11 (Теорема о первообразном корне). $p \in \mathbb{Z}$ — простое $\Rightarrow (\mathbb{Z}/p\mathbb{Z})^*$ — циклическая.

Доказательство. В ноябре.

Посмотрим на устройство $\mathbb{Z}/p\mathbb{Z}$. $\exists a \in Z : \{\overline{a}, \overline{a^2}, \dots, \overline{a^{p-1}}\} = \{\overline{1}, \dots, \overline{p-1}\}.$

Тогда как устроены $(\mathbb{Z}/n\mathbb{Z})^*$ в общем случае?

Отступление: группа, порожденная множеством.

Определение 3.20. Подгруппа группы G — пара (H,*), где $H \subset G, *$ — замкнуто относительно H. Обозначается \leqslant .

Определение 3.21. Подгруппа группы G порожденная множеством S ($S \subset G$) — наименьшая по включению подгруппа G, содержащая все элементы S.

$$\langle S \rangle = \bigcap_{H < G} H$$

Замечание. $\forall I \forall H_{lpha}, \ldots, H_{\omega}, \ lpha, \ldots, \omega \in I \colon H_{i} \leqslant G \Rightarrow \bigcap_{i \in I} H_{i} \leqslant G$

Доказательство. Рассмотрим $e \ (\forall i \in I \ H_i - \text{группа} \Rightarrow e \in H_i) \Rightarrow e \in \bigcap_{i \in I} H_i$.

 $\forall x \in \bigcap_{i \in I} (\forall i \in Ix^{-1} \in H_i) \Rightarrow x^{-1} \in \bigcap_{i \in I} H_i \Rightarrow \bigcap_{i \in I} H_i$ — группа (ассоциативность гарантируется определением подгруппы).

Теорема 3.12. $\forall S \subset G : \langle S \rangle = \{a_1^{\varepsilon_1} \dots a_k^{\varepsilon_k} \mid \forall i \in I a_i \in S \land \varepsilon_i = \pm 1\}$, т.е. все возможные произведения элементов из S и обратных к ним (элементы в произведении могут повторяться, k произвольное, не фиксировано)

Доказательство.

- 1. Пусть $a_1, a_2, \ldots, a_k \in S$. Тогда для любой $H \leqslant G$ $H \supseteq S$ верно:
 - (a) $a_i \in H$.
 - (b) $a_i^{\varepsilon_i} \in H$, так как H замкнута относительно $^{-1}$
 - (c) $a_1^{\varepsilon_1}a_2^{\varepsilon_2}\dots a_k^{\varepsilon_k}\in H$, так как H замкнуто относительно \cdot .

Значит $H \supset \langle S \rangle \Rightarrow \langle S \rangle \subseteq H$.

С другой стороны, сама группа $\langle S \rangle$, которую мы описали в предыдущей теореме, является корректной подгруппой G, т.е. $H = \langle S \rangle \Rightarrow H \supset S \land H \leqslant G$. Следовательно:

$$\bigcap_{H \leqslant G, S \subset H} H = \langle S \rangle.$$

Теорема 3.13. $(\mathbb{Z}/n\mathbb{Z})^*$ — циклическая $\iff \begin{cases} n=p^k & p>2$ — простое $n=2p^k & \text{см. выше} \\ n=2 \lor n=4 \end{cases}$

$$n=p_1^{\alpha_1}\dots p_k^{\alpha_k}$$
. Тогда $(\mathbb{Z}/n\mathbb{Z})^*=(\mathbb{Z}/p_1^{\alpha_1}\mathbb{Z})^*\times\dots\times(\mathbb{Z}/p_k^{\alpha_k})^*$.

Утверждение 3.14. G_1, G_2, G — группы (конечные).

- 1. $G \cong G_1 \times G_2$. $(|G_1|, |G_2|) \neq 1 \Rightarrow G$ не циклическая.
- 2. $(|G_1|, |G_2|) = 1$ и G_1, G_2 циклическая $\Rightarrow G_1 \times G_2$ циклическая. (KTO).

Доказательство. Пусть $(|G_1|, |G_2|) > 1$. Тогда $\forall a \in G_1, b \in G_2$ $a^{|G_1|} = e_{G_1} \wedge b^{|G_2|} = e_{G_2} \Rightarrow (a,b)^{\operatorname{lcm}(|G_1|,|G_2|)} = (e,e) \Rightarrow \forall x \in G_1 \times G_2 : \operatorname{ord}(x) \leqslant \operatorname{lcm}(|G_1|,|G_2|) < |G_1| \cdot |G_2| = |G_1 \times G_2| \Rightarrow G_1 \times G_2$ — не циклическая.

Замечание. $a^{\varphi(n)}=1$. Точна ли оценка $\varphi(n)$? Если $(\mathbb{Z}/n\mathbb{Z})^*$ — циклическая (например, n — простое). Тогда да. Иначе пусть $n=pq,\ p,q$ — простые. Тогда по Эйлеру $a^{(q-1)(p-1)}=1$, а на самом деле $a^{\frac{(q-1)(p-1)}{2}}=1$.

Теперь докажем теорему о том, в каких случаях мультипликатиная группа вычетов циклическая.

Доказательство. $n = p_1^{\alpha_1} \dots p_k^{\alpha_k}$. Тогда $|(\mathbb{Z}/p_i^{\alpha_i}\mathbb{Z})^*| = p_i^{\alpha_i} - p_i^{\alpha_i-1} \vdots 2$, кроме случая $p_i = 2$, $\alpha_i = 1$.

Поэтому, если k>2 или k=2 $p_1^{\alpha_1}, p_2^{\alpha_2} \neq 2^1 \Rightarrow \gcd$ у размеров групп не взаимно просты $\Rightarrow (\mathbb{Z}/n\mathbb{Z})^*$ — не циклическая.

Остались случаи $k = 1, n = p^a$ и $k = 2, n = 2 \cdot p^a$.

Случай $n = 2p^a, p \neq 2$. $(\mathbb{Z}/2\mathbb{Z})^* \times (\mathbb{Z}/p^a\mathbb{Z})^* = (\mathbb{Z}/p^a\mathbb{Z})^* -$ свели к случаю 1.

Пусть $n=p^a$. p=2, a=1,2 — очев. $a>2\Rightarrow (\mathbb{Z}/2^a\mathbb{Z})^*$ — не циклическая. Пусть циклическая, тогда $(\mathbb{Z}/2^a\mathbb{Z})^*=\langle x\rangle$, ord $x=2^{a-1}$. Тогда в $(\mathbb{Z}/2^a\mathbb{Z})^*$: $y^2=1\iff\exists k(x^k)^2=1\iff x^{2k}=1$. 2k : $2^{a-1}\wedge k$: $2^{a-2}\xrightarrow{x\in(0;2^{a-1})}k=0\lor k=2^{a-2}$. y^2 — имеет два решения. Ho! $1^2=(-1)^2=(2^{a-1}\pm 1)^2=1$. 4 решения. Противоречие.

Теперь, если $p \neq 2$, то группа будет циклической. А дальше на лекции произошёл кек следующего вида: доказать для случая $n = p^1$ довольно тяжело, будет потом или вообще не будет, в общем хз, а доказательство для случая $n = p^a$ выводится «позже..., это довольно элементарная выкладка..., выводится уже какими-то совсем такими ручными манипуляциями» из случая n = p, но как конкретно — сказано не было, какая досада.

Теорема 3.15. $a \in (\mathbb{Z}/p\mathbb{Z})^*$. Тогда $x^2 = a$ имеет решение $\iff a^{\frac{p-1}{2}} = 1$

Доказательство.

- \Rightarrow . $a = x^2 \Rightarrow a^{\frac{p-1}{2}} = (x^2)^{\frac{p-1}{2}} = x^{p-1} = 1 \text{ (MT}\Phi).$
- \Leftarrow . $a^{\frac{p-1}{2}}=1$. $\exists c: (\mathbb{Z}/p\mathbb{Z})^*=\langle c \rangle$. $\exists k: a=c^k$. Тогда $a^{\frac{p-1}{2}}=(c^k)^{\frac{p-1}{2}}\iff c^{\frac{k(p-1)}{2}}=1$ Та как ord $\frac{k(p-1)}{2}$ \vdots p-1. Тогда $\frac{k}{2}\in\mathbb{Z}$, то есть k=2l. $a=c^{2l}=(c^l)^2$.

3.6. Группы вычетов и криптографические протоколы

Главное отображение, которое нас интересует — $p_k: (\mathbb{Z}/p\mathbb{Z})^* \to (\mathbb{Z}/p\mathbb{Z})^*: p_k(x) = x^k$.

Заметим, что если $(p-1,k)=1\Rightarrow p_k$ — биекция: $p_k^{-1}(x)=x^l$, где $l:kl=1\pmod{p-1}$. $x\to x^k\to (x^k)^l=x^{kl}=x^1=1.$ $x\to (x^l)\to (x^l)^k=x.$

А если $(p-1,k) \neq 1$, то p_k — не биекция. Если $p-1=k\cdot s$ и g — первообразный корень, то ord g=p-1 и $(g^s)^k=1$. Тогда $1^k=1$ — не инъекция, т.к. несколько элементов перешли в единицу.

Классический протокол шифровки: протокол с закрытым ключом (ключ — способ шифровки / дешифровки).

Пусть Алиса(А) и Боб(В) хотят обмениваться информацией. Хотят придумать закрытый ключ путем пересылки сообщений.

Протокол Диффи-Хеллмана: А и В хотят сгенерировать закрытый ключ $m \in \mathbb{N}$.

- 1. Придумывают большое число p, объявляется всем
- 2. Придумывают a первообразный корень по модулю p: $\mathrm{ord}_p(\overline{a}) = p-1$, тоже объявляется всем
- 3. А: берет $x \in \mathbb{Z}$ (лучше (x, p-1) = 1) и посылает $a^x \pmod{p}$, x остаётся в тайне
- 4. В: берет $y \in \mathbb{Z}$, $a^y \mod p$, a^y отправляет, y остаётся в тайне
- 5. А вычисляет $(a^x)^y = a^{yx} \mod p$.
- 6. В: вычисляет $(a^y)^x = a^{xy} \mod p$.

Получили ключ a^{xy} .

Чтобы взломать надо найти x, y. Если есть x, то посчитать a^x просто, а вот наоборот — сложно, т.е. троллинг заключается в трудности вычисления дискретного логарифма (общая концепция — односторонние функции).

3.7. Алгоритм RSA

RSA — Rivest, Shamir, Adleman.

RSA — шифрование с открытым ключом:

- 1. А: придумывает p,q большие простые. Вычисляет $\varphi(pq)=(p-1)(q-1).$ p,q,(p-1)(q-1) закрытая часть ключа.
- 2. Выбирает $d:\in \mathbb{Z}$ (d, p-1)=(d, q-1)=1. p, q, d— закрытая часть.
- 3. Открытый ключ n = pq и $e \in \mathbb{Z} : de \equiv 1 \pmod{(p-1)(q-1)}$. Решение Л.Д.У.
- 4. В: хочет послать сообщение $(x \in \mathbb{Z}, (x, n) = 1)$ А: он посылает $x^e \pmod{n}$.
- 5. А: получает $y = x^e$ и вычисляет $y^d = (x^e)^d = x^{ed} = x^{k \cdot \varphi(n) + 1} = x \pmod{n}$.

Устойчивость: чтобы взломать, надо знать (p-1)(q-1), то нам надо просто знать p,q. Но мы не умеем делать это быстро.

3.8. Генерация простых, тесты на простоту

Теорема 3.16. $\pi(n)$ — количество простых на [1,n]. Тогда $\lim_{n\to+\infty}=\frac{\pi(n)}{\frac{n}{\ln n}}=1$.

 \pmb{C} ледствие. Случайное число на 1, n — простое с вероятностью $\frac{1}{\ln n}$

Способ генерации: возьмем p_1, p_2, \ldots, p_k — простые (небольшие). Попробуем $n = p_1^{a_1} p_2^{a_2} \ldots p_l^{a_k} + 1$, где a_i — произвольные степени. Получили число Люка.

Теорема 3.17 (Тест Люка). Пусть $b \in \mathbb{Z}$, такое что $b^{n-1} = 1 \pmod n$ и $b^{\frac{n-1}{p_i}} \neq 1 \pmod n$. Тогда n- простое.

Доказательство. $b^{n-1}=1\Rightarrow \operatorname{ord}_n(\overline{b_n})$ – делитель n-1.

 $b^{\frac{n-1}{p_i}} \neq 1 \Rightarrow \operatorname{ord}_n(\overline{b_n})$ — не делитель $\frac{n-1}{p_i}$ для любого $p_i \Rightarrow \operatorname{ord}(\overline{b_n}) = n-1 \Rightarrow |(\mathbb{Z}/n\mathbb{Z})^*| \geqslant n-1 \Rightarrow n$ — простое.

Замечание. n — простое, b — подходит $\iff b$ — первообразные корень. Их $\varphi(n-1)$. Пусть $\varphi(n-1) > \frac{n-1}{10}$, значит через к тестов будет вероятность проиграть $\left(\frac{9}{10}\right)^k$, что мало.

Замечание. Числа Люка — неоч для RSA: n=pq, p, q — числа Люка. Такие числа с большой вероятностью факторизуются: Выбираем $a \in \mathbb{Z}$, дальше $a \to a^2 \to (a^2)^3 \to \dots$, то есть вычисляем $a^{k!} \pmod{n}$. Помним, что $p-1 = \prod p_i^{a_i}, q-1 = \prod p_i^{b_i}$.

Рассмотрим $K_p = \min\{a^{k!} \equiv 1 \pmod{p} \mid k \in \mathbb{N}\}.$

 k_p, k_q - не велики. Действительно: $k_p : p-1 = \prod p_i^{a_i},$ а p_i — довольно маленькие.

Скорее всего $k_p \neq k_q$. Не умаляя общности считаем $k_p < k_q$, тогда $(a^{k_p!}, n) = p$.

Тест Ферма: $n \in \mathbb{N}, a \in [1, ..., n-1]$. Если $a^{n-1} \not\equiv 1 \pmod n$, значит n— составное.

Определение 3.22. Если n- составное, но $a^{n-1} \equiv 1 \pmod n$, то a- свидетель простоты.

Если n — составное, то или свидетелей $\leqslant \frac{\varphi(n)}{2} \leqslant \frac{n-1}{2}$, или любое взаимно простое с a является свидетелем простоты. Свидетели образуют подгруппу, а значит либо это вся группа,либо там $\leqslant \frac{\varphi(n)}{2}$ элементов.

Пусть там меньше половины, тогда после k итераций вероятность проиграть $\frac{1}{2^k}$, что довольно хорошо.

Тест Рабина-Миллера. Пусть $n-1=2^s\cdot m$. Тогда, если n- простое, то $x^2\equiv 1\pmod n$ $\Rightarrow x=\pm 1\pmod n$. Тогда берем $a\in (\mathbb{Z}/n\mathbb{Z})^*$. Считает $a^m,(a^m)^2,\ldots,(a^m)^{2^s}$. Так как n- простое \Rightarrow или $a^m=1$, или есть -1, а потом 1.

Условие Миллера-Рабина работает для $\forall a \in [1..\sqrt[7]{n}]$ или $\in [1..\log^2 n]$, если верим в гипотезу Римана.

Но Рабин заметил, что вероятность ошибиться для составного $\frac{\varphi(n)}{4}$

Алгебры Многочлены

4. Многочлены

Теперь мы многочлены будем рассматривать как самостоятельные элементы, а не как функции, ведь сами многочлены можно складывать и умножать! Причем свойства умножения и сложения удовлетворяет требованием кольца! Получили **Кольцо многочленов над кольцом** \mathbb{R} .

Но сначала рассмотрим немного другую штуку: **кольцо формальных степенных рядов** (отличие будет позже).

Определение 4.1. Пусть R — ассоциативное коммутативное кольцо. Тогда кольцо формальных степенных рядов R[[x]] — тройка $(R^{\mathbb{Z}_{\geqslant 0}}, +, \cdot)$.

$$+: (a_0, a_1, a_2, \ldots) + (b_0, b_1, b_2, \ldots) := (a_0 + b_0, a_1 + b_1, \ldots)$$

· (Правило свертки): $(a_0, a_1, a_2, \ldots) \cdot (b_0, b_1, b_2, \ldots) = (a_0b_0, a_0b_1 + b_1b_0, \ldots)$, по факту: $(a_i) \cdot (b_i) = (c_i), c_n := \sum_{i=0}^n a_k b_{n-k}$

Так же можно представлять $(a_0, a_1, a_2, \ldots) \iff a_0 + a_1 x + a_2 x^2 + \ldots$ То есть, если неформально, то правило свертки — обычное раскрытие скобок.

Определение 4.2. $R^{\mathbb{Z}_{\geqslant 0}} = \{f : \mathbb{Z}_{\geqslant 0} \to R\} = \{(a_0, a_1, \ldots) | a_i \in R\}$

Теорема 4.1. R[[x]] — ассоциативное, коммутативное кольцо. Причем, если R с единицей, то R[[x]] — кольцо с единицей.

Доказательство. Заметим, что все аксиомы доказываются супер просто, ведь сложение у нас просто по координатам. Тогда получили очевидность коммутативности и ассоциативности + (следует из коммутативности и ассоциативности R). В качестве нуля берется $0 = (0, 0, 0, 0, \ldots)$. Обратный элемент $-(a_0, a_1, a_2, \ldots) = (-a_0, -a_1, -a_2 \ldots)$

Дистрибутивность — упражнение (из дистрибутивности R).

Коммутативность произведения: $c_n = \sum_{l=0}^n a_k b_{n-k} = \sum_{l=0}^n a_k b_l$, где $k, l \geqslant 0 \land k+l = n$. Тогда $c_n = \sum_{l=0}^n a_{n-l} b_l = \sum_{l=0}^m b_l a_{n-l}$ — формула свертки для $b \cdot a$.

Если $\exists 1_R$, то $(1_R, 0_R, 0_R, \dots)$ — нейтральный относительно · в R[[x]] (упражнение).

Ассоциативность (упражнение на смирение духа): $\forall f, g, h \in R[[x]](f \cdot g) \cdot h = f \cdot (g \cdot h)$. Введем много обозначений: $f = (a_n), g = (b_n), h = (c_n), f \cdot g = (d_n), g \cdot h = (e_n), (f \cdot g) \cdot h = k_n, f \cdot (g \cdot h) = (l_n)$

Хотим доказать, что $k_n = l_n \ \forall n \in \mathbb{Z}_{\geqslant 0}$. Тогда

$$k_n = \sum_{i=0}^n d_i c_{n-i} = \sum_{i=0}^n (\sum_{j=0}^i a_j b_{i-j}) c_{n-i}.$$

Воспользуемся дистрибутивностью:

$$k_n = \dots = \sum_{\substack{0 \le i \le n \\ 0 \le j \le i}} a_j b_{i-j} c_{n-i}.$$

Определим $s \coloneqq i - j, t \coloneqq n - i$, тогда

$$k_n = \dots = \sum_{\substack{j,s,t \geqslant 0\\j+s+t=n}} a_j b_s c_t \dots$$

Аналогично для l_n :

$$l_n = \dots = \sum_{\substack{j,s,t \geqslant 0\\j+s+t=n}} a_j b_s c_k \dots$$

Замечание. Если R — не коммутативное кольцо, то стоит различать ax^2, x^2a, xax .

Замечание. Существует инъективный гомоморфизм колец $i: R \to R[[x]]: a \to (a,0,0,0,\ldots)$. Это можно проверить.

Тогда не умаляя общности считаем, что R содержится в R[[x]] (в качестве подкольца).

Замечание. Положим по определению x := (0, 1, 0, 0, 0, ...).

Тогда (упражнение на индукцию) $x^n \coloneqq (0,0,\ldots,\overbrace{1}^n,0,0,\ldots)$ (1 стоит на n-ой позиции в **нумерации с нуля**)

Тогда, если $f = (a_0, a_1, a_2, \dots, a_n, 0, 0, 0)$ $(a_i \text{ при } i > n \text{ равно } 0).$

Тогда $f = a_0 + a_1 \cdot x + a_2 \cdot x^2 + \ldots + a_n \cdot x^n$.

Замечание. $(a_0,a_1,a_2,\ldots)\cdot\underbrace{(0,1,0,\ldots)}_{x}=(0,a_0,a_1,\ldots)$

Следствие. $f : x. f = (a_i) \land a_0 = 0 \Rightarrow 1 \not f.$

Теорема 4.2. $f = (a_i)$. $f \in R[[x]] \iff a_0 \in R^*$. В частности: $R - \text{поле} \Rightarrow f - \text{обратим} \iff f \not \mid x$.

Доказательство.

- \Rightarrow . $(a_0, a_1, \dots) \cdot (b_0, b_1, \dots) = (1, 0, 0, \dots).$ $1 = a_0 b_0 \Rightarrow a_0 \in R^*.$
- \Leftarrow : будем вычислять последовательность (b_0, b_1, \ldots) . $a_0 \in R^*$, тогда: $a = a_0 b_0 \Rightarrow b_0 = a_0^{-1} = \frac{1}{a_0}$. $0 = a_0 b_1 + a_1 b_0 \Rightarrow \frac{-a_1 b_0}{a_0}$. И так далее. $0 = \sum_{i=0}^n a_i b_{n-i}$. $b_n = (-\sum_{i=1}^n a_i b_{n-i}) a_0^{-1}$.

Построили метод построения b, причем все хорошо!

Пример. $f = (1, 1, 1, 1, \ldots) = 1 + x + x^2 + x^3 + \ldots$ Тогда $\frac{1}{1+x+x^2+\ldots} = 1-x$. Тогда $1+x+x^2+x^3+\ldots = \frac{1}{1-x}$.

Теорема 4.3. Подмножество в R[[x]] $R[x] = \{(a_0, a_1, \dots \mid \exists N \forall n > N : a_n = 0\}$ — финитные последовательности, образуют подкольцо с единицей, называемое **кольцом многочленов** (вот и то самое отличие от формальных степенных рядов)).

Доказательство. Замкнутость по +: $a_n = 0$ при $n > N_1$ и $b_n = 0$ при $n > N_2$. Тогда при $n > \max(N_1, N_2)a_n + b_n = 0$.

Замкнутость по $: a_n = 0, n > N_1$ и $b_n = 0, n > N_2$. Тогда при $n > N_1 + N_2 : c_n = \sum_{i+j=n} a_i b_j = 0$. Так как при $i+j=N>N_1+N_2 \Rightarrow i>N_1 \vee j>N_2$.

$$1 \in k[x]!!!$$

Определение 4.3. $f \in k[x]$ степенью f называется $\deg f = \{\max k : a_k \neq 0\}$. Причем $\deg 0 = -\infty$

Свойства.

1. $\deg(f+g) \leqslant \max(\deg f, \deg g)$. Причем $\deg f \neq \deg g \to \deg(f+g) = \max(\deg f, \deg g)$.

Глава #4

19 из 29 Автор: Харитонцев-Беглов Сергей

2. $\deg(f \cdot g) \leq \deg f + \deg g$, а если R — область целостности, то $\deg(fg) = \deg f + \deg g$.

Cnedcmeue. R — область целостности $\Rightarrow R[x]$ — область целостности.

Теперь у нас K — поле.

Теорема 4.4 (О делении с остатком). $f, g \in K[x]$ $g \neq 0$. Тогда $\exists ! q, r \in K[x] : f = g \cdot q + r, \deg r < \deg g$.

Доказательство. Формальное доказательство будет в конспекте, который должен скинуть Антипов. Здесь только кукареки.

Идея: в целых числах операция деления: вычитание, пока это возможно.

Многочлены: $f = ax^m + \dots, g = bx^l, m \geqslant l.$ $f \leadsto f - \frac{a}{b}x^{m-l} \cdot g = ax^m f + \dots$ Получили сумму чего-то кратного g + какой-то остаток.

Следствие. R — коммутативное, ассоциативное кольцо $a \in R$. Тогда \exists гомоморфизм колец $R[x] \to R : a_0 + a_1x + \ldots + a_nx^n \mapsto a_0 + a_1 \cdot a + \ldots + a_na^n$ — гомоморфизм эвалюации.

С другой стороны $f \in R[x]$ — полиномиальная функция. $F_f: R \to R \ a \mapsto \operatorname{ev}_a(f)$.

Следствие. $f, g \xrightarrow{\text{Алгоритм}} h = (f, g) \ h = u_1 f + u_2 g$. А значит, у gcd корнями будут общие корни f и g.

Определение 4.4. $f \in R[x]$. $a \in R$ — корень f, если $F_f(a) = 0$.

Теорема 4.5 (Безу). K — поле. $f \in K[x]$. $a \in K$. f = (x - a)g + r — деление с остатком.

- 1. r = f(a).
- 2. $r=0 \iff f : (x-a)$ (тут r можно заменить на f(a), сути не меняет)

Доказательство. $f = (x-a) \cdot g + r$, $\deg r < \deg(x-a) = 1 \Rightarrow \deg r = 0 \lor \deg r = -\infty \iff r = c \in K$.

$$F_f(a) = F_{x-a}(a)F_g(a) + F_r(a)$$
. $f(a) = (a-a)g(a) + r \iff r = f(a)$.

Следствие. deg $f = n, f \in K[x], f \neq 0 \Rightarrow$ существует не более n корней f в K.

Доказательство. По индукции по n.

- База n = 0 $f = r \neq 0 0$ корней.
- Переход $n \to n+1$:

 $\deg f = n + 1$. Нет корней $\Rightarrow 0 \leqslant n + 1$.

Существует a — корень. $f=(x-a)\widetilde{f}, \deg \widetilde{f}=n.$ У \widetilde{f} не более n корней \Rightarrow у f не более n+1 корня.

С другой стороны b — корень $f\Rightarrow f(b)=0.$ $(b-a)\widetilde{f}(b)=0 \xrightarrow{k-\text{ о. п.}} b-a=0 \lor \widetilde{f}=0 \iff b=a\lor b$ — корень \widetilde{f} . Таких не более n, а значит у f не более n+1 корня.

 $f \in K[x]. \ f \leadsto F_f \colon K \to K$ — полиномиальная функция. Верно ли $F_f = F_g \Rightarrow f = g$?

Теорема 4.6 (Теорема о формальном и функциональном равенстве). Пусть K — поле, $f, g \in K[x], |K| > \max(\deg f, \deg g)$, например, K — бесконечно. Тогда $F_f = F_g \Rightarrow f = g$.

Доказательство. $F_f = F_g \Rightarrow f(k) = g(k) \ \forall k \in K \Rightarrow (f-g)(k) = 0 \ \forall k \in K$. По свойствам степени знаем, что $\deg(f-g) \leqslant \max(\deg f, \deg g) < |K|$, а значит (f-g), многочлен степени меньше |K| имеет |K| корней, т.е. количество корней больше степени многочлена, а значит (f-g) — константный ноль, т.е. f=g

Замечание. Для $K=\mathbb{Q},\mathbb{R}$ из функционального равенства следует равенство формы (f=g)

Замечание. $K = \mathbb{Z}/8\mathbb{Z}$. Тогда у $x^2 - 1 = 0$ есть 4 корня: $\overline{1}, \overline{3}, \overline{5}, \overline{7}$. И у $x^2 - 2x = 0$ 4 корня: $\overline{0}, \overline{2}, \overline{4}, \overline{6}$. Тогда, т.к. при всех $x \in K$, то $(x^2 - 1)(x^2 - 2x) = 0$; $x^4 + 2x = 2x^3 + x^2$ как функции. При этом $\max(\deg) = 4 < 8$, и как многочлены они не равны!

Замечание. $(\mathbb{Z}/p\mathbb{Z})^*$: $x^p = x$, т.е. $x^{p-1} = 1$. Всё нормально, т.к. у нас многочлен степени не меньше, чем мощность множества: $p-1 \not< |(\mathbb{Z}/p\mathbb{Z})^*| = p-1$. (На самом деле написанное — один из вариантов интерпретации исходного текста, который не сохранился. Если у вас есть какая-либо другая информация по данному пункту — сообщите кому-нибудь из нас)

Замечание. Рассмотрим $\mathbb{Z}/p\mathbb{Z}[x]$ — бесконечное кольцо. $f \rightsquigarrow F_f : \mathbb{Z}/p\mathbb{Z} \to \mathbb{Z}/p\mathbb{Z}$ — не более p^p отображений. Докажем: $\mathbb{Z}/p\mathbb{Z}[x]_{p-1} = \{f \mid \deg f \leqslant p-1\}$, а таких — p^p

 $\mathbb{Z}/p\mathbb{Z}[x]_{p-1} \leftrightarrow \{$ отображения $\mathbb{Z}/p\mathbb{Z} \to \mathbb{Z}/p\mathbb{Z}\}$, а значит и таких отображений тоже не более чем p^p .

4.1. Интерполяция

Определение 4.5. Интерполяционная задача в поле K — набор данных $x_1, x_2, \ldots, x_n \in K$ ($x_i \neq x_j$), $y_1, y_2, \ldots, y_n \in K$.

Задача заключается в поиске $f \in K[x]$: $f(x_i) = y_i \ \forall i \in 1..n$.

 x_i — узлы интерполяции.

Теорема 4.7. В поле любая интерполяционная задача с n узлами имеет единственное решение f_0 среди многочленов степени < n.

Доказательство.

- Единственность. Пусть f_0, f_1 два решения. $\deg(f_i) < n$. $f_0(x_c) = y_c = f_1(x_c)$. Тогда возьмем $g \coloneqq f_0 f_1$. Заметим, что у него n корней, но $\deg g < n$. Значит $f_0 = f_1$
- Существование: рассмотрим задачу $\chi_i: \chi_i(x_i) = 1, \chi_i(x_j) = 0$, если $i \neq j$. Её решение: $L_i = \frac{(x-x_1)(x-x_2)...(x-x_{i-1})(x-x_{i+1})...(x-x_n)}{(x_i-x_1)(x_i-x_2)...(x_i-x_{i-1})(x_i-x_{i+1})...(x_i-x_n)}$ в числителе условие на 0, в знаменателе на 1. Тогда $f_0 \coloneqq y_1 L_1 + y_2 L_2 + \ldots + y_n L_n$. Тогда для $\forall i \colon f_0(x_i) = y_1 L_1(x_i) + \ldots$ во всех слагаемых, кроме $y_i \cdot L_i(x_i)$ равно 0, а данное слагаемое равно y_i . deg $f_0 \leqslant \max(\deg(L_i)) = n 1 < n$

Определение 4.6. Интерполяционный полином Лагранжа: $f_0 = \sum_i \frac{y_i \prod_{j \neq i} (x - x_j)}{\prod_{j \neq i} (x_i - x_j)}, \deg f_0 < \max(\deg L_i) = n - 1$

4.2. Закрываем долг

Теорема 4.8. $(\mathbb{Z}/p\mathbb{Z})*$ — циклическая группа, то есть $\exists a \in \mathbb{Z}/p\mathbb{Z} \colon \{a, a^2, \dots, a^{p-1}\} = \{\overline{1}, \overline{2}, \dots, \overline{p-1}\}$, то есть ord a = p-1, a — первообразный корень.

Автор: Харитонцев-Беглов Сергей

Лемма. Пусть $a \in G$ — группа, ord a = d. Тогда $\operatorname{ord}(a^k) = \frac{d}{(d,k)}$

Доказательство. $(a^k)^l = e \iff a^{kl} = e \iff kl : \operatorname{ord}(a) = d$. Тогда, если $k = (d,k) \cdot k'$ и d = (d,k)d', то $(d,k) \cdot k' \cdot l : (d,k) \cdot d' \iff k' \cdot l : d' \iff l : d' = \frac{d}{(d,k)}, \min l = \frac{d}{(d,k)}$

Лемма. $\forall n \in \mathbb{N} \ \sum_{d|n} \varphi(d) = n$

Доказательство. Пусть d_1, d_2, \dots, d_k — все натуральные делители n. $n = |\{1, 2, \dots, n\}| =: |A|$.

Хотим разбить множество $A=A_1\cup A_2\cup\ldots\cup A_k$, причем $A_i\cap A_j=\varnothing$ и $|A_i|=\varphi(d_i)$, этим мы докажем лемму.

 $A_i = \{a \in A \mid (a,n) = \frac{n}{d_i}\}$. Заметим, $d_1, \dots d_k$ — все делители $n \Rightarrow \frac{n}{d_1}, \dots \frac{n}{d_k}$ — все делители n. И понятно, что $\forall a \ (a,n)$ — какой-то делитель n.

Поэтому $A = A_1 \cup A_2 \cup \ldots \cup A_k A_i \cap A_i = \emptyset$.

$$a\in A_i\iff (a,n)=rac{n}{d_i}.$$
 Значит $a=rac{n}{d_i}k,$ $(rac{n}{d_i}k,n)=rac{n}{d_i}\iff (rac{n}{d_i}k,rac{n}{d_i}d_i)=rac{n}{d_i}\iff (k,d_i)=1.$ Тогда $|A_i|=|\{k\mid k\leqslant d_i\wedge (k,d_i)=1\}|=arphi(d_i).$

Лемма. Количество элементов порядка d в $(\mathbb{Z}/p\mathbb{Z})*$ равно либо 0, либо $\varphi(d)$.

Доказательство. Например, $p-1 \not/ d \Rightarrow$ кол-во равно 0.

Пусть $\exists a : \text{ ord } a = d \ a^d = 1, \ a, a^2, \dots, a^d = 1$ — различные элементы. Тогда $\forall k = 1..d \ (a^k)^d = (a^d)^k = 1$, то есть это d решений $x^d = 1$. Других решений нет, так как $x^d - 1$ имеет $\leqslant d$ корней.

Пусть ord $b=d\Rightarrow b^d=1\Rightarrow b=a^k,\ k=1..d.$ Тогда по предыдущей лемме ord $a^k=\frac{d}{(d,k)}\Rightarrow (d,k)=1.$

Тогда $(k,d)=1\Rightarrow {\rm ord}(a^k)=d.$ То есть все элементы порядка d это $\{a^k\mid 1\leqslant k\leqslant d\land (k,d)=1\}.$

Доказательство теоремы. $B_d \subset (\mathbb{Z}/p\mathbb{Z})*$, такие что $B_d = \{x \in (\mathbb{Z}/p\mathbb{Z})* \mid \text{ord } x = d\}$.

Тогда получится, что $(\mathbb{Z}/p\mathbb{Z})^=B_{d_1}\cup\ldots\cup B_{d_k},\ d_i$ — делители p-1.

 $p-1=|(\mathbb{Z}/p\mathbb{Z})^*|=\sum |B_{d_i}|$ по лемме 3 каждое слагаемое 0 или $\varphi(d_i)$, а по лемме 2 $p-1=\sum_{i=1}^k \varphi(d_i)$. А значит в первой сумме каждое слагаемое $\varphi(d_i)$.

В том числе $|B_{p-1}|=\varphi(p-1)\neq 0$, то есть \exists элементы порядка p-1.

Замечание. K — не область целостности \Rightarrow не выполняется ОТА для многочленов.

$$\mathbb{Z}/8\mathbb{Z}$$
: $x^2 - 1 = (x - 1)(x + 1) = (x - 3)(x + 3)$

5. Евклидовы кольца

Определение 5.1. A — область целостности, тогда A называется евклидовым, если $\exists \varphi : A \setminus \{0\} \to \mathbb{Z}_{\geqslant 0}$, такой что $\forall a, b \in A, b \neq 0 \ \exists q, r \colon a = bq + r$, причем $\varphi(r) < \varphi(b) \lor r = 0$

Пример. \mathbb{Z} — евклидово. $\varphi(x) = |x|$.

Пример. K — поле. $K[x] - \varphi(f) = \deg f$

Пример. $\mathbb{Z}[\sqrt{2}]$ — евклидово. $\mathbb{Z}[\sqrt{5}]$ — неевклидово.

Onpedenehue 5.2. A — область главных идеалов, если A — кольцо без делителей нуля, в котором все идеалы главные.

Теорема 5.1. Любое евклидово кольцо — область главных идеалов.

Доказательство. Пусть I — идеал в A, A — евклидово. Рассмотрим $\varphi(I) = \{\varphi(x) \mid x \in I\} \subset \mathbb{Z}_{\geqslant 0}$. Значит в $\varphi(I)$ \exists минимальный элемент m в $\varphi(I)$.

Найдем $a \in I$, такое, что $\varphi(a) = m$.

Заметим, что $\langle a \rangle \subset I$ — очевидно (любой идеал порожденный элементов идеала в нем лежит).

 $I\subset \langle a \rangle$: пусть $b\in I, b=a\cdot q+r, \varphi(r)<\varphi(a)$. При этом $\varphi(a)$ — минимальный, значит r=0, значит $r=b-a\cdot q\iff \cdot q=b\Rightarrow b\in I.$

Евклидово \Rightarrow ОГИ \Rightarrow ОТА.

Замечание. Пример не кольца главных идеалов. $\mathbb{Z}[x] = A$ — не область главных идеалов. Рассмотрим $I = \{f \mid f(0) : 2\}$ — не главный. $I = \langle 2, x \rangle$.

Определение 5.3. R — кольцо, $a, b \in R$, a — ассоциирован с b ($a \sim b$), если a : b : b : a.

Замечание. Ассоциированость — оношение эквивалентности.

Пример. $R = \mathbb{Z}$, тогда $a \sim b \iff a = \pm b$.

Лемма. $a \sim b \iff a = b \cdot \varepsilon$, где $\varepsilon \in A^*$.

Доказательство.

- \Rightarrow . $a \sim b \Rightarrow a : b \wedge b : a \Rightarrow a = b\varepsilon \wedge b : b\varepsilon$. Тогда $b = (b\varepsilon) \cdot \varepsilon_1 = b(\varepsilon \cdot \varepsilon_1)$
- \Leftarrow . $a = b\varepsilon$. То есть $\exists \varepsilon_1 : \varepsilon \varepsilon_1 = 1 \Rightarrow a\varepsilon_1 = b\varepsilon \varepsilon_1 = b$. А значит следует делимость.

 ${\it Onpedenehue}$ 5.4. A — область. $p \in A, p$ — неприводимый, если

1. $p \notin A^*$.

2.
$$p = p_1 \cdot p_2 \Rightarrow p_i \in A^* \wedge p_{3-i} \sim p$$

Теорема 5.2 (О. Т. А для произв. областей целостности). A — область целостности. Любой $a \in A, a \neq 0$ раскладывается в произведение неприводимых множителей единственным образом, с точностью до перестановки множителей и ассоциативности:

$$p_1p_2\dots p_n=q_1\dots q_m,\ p_i,q_i$$
 — неприводимые.

Следует, что $n = m \; \exists \;$ перестановка $i_1, i_2, \ldots, i_n \colon p_k \sim q_{i_k}$.

Определение 5.5. Кольца, для которых выполнена О.Т.А называется факториальными.

Теорема 5.3. Любая область главных идеалов — факториальна, в том числе любое евклидово кольцо факториально. А вот в обратную сторону не всегда верно.

Доказательство. Антипов так сказал!

K — поле.K[x] — евклидово (знаем) \Rightarrow ОГИ \Rightarrow факториально. Что значит $f \sim g$ в K[x]? $f \sim g \Rightarrow f = g \varepsilon \ \varepsilon \ (K[x])^*$

Лемма. $(K[x])^* = K^* = K \{0\}$

Доказательство. $a \in K^* \exists a^{-1} \in K^*$. $aa^{-1} = 1$ в K[x]. $a \in K[x]^*$ $f \in K[x]^* \Rightarrow f\widetilde{f} = 1$. $\deg(f\widetilde{f}) = \deg(f) = 0$. При этом $\deg(f) + \deg(\widetilde{f}) \Rightarrow \deg(f) = 0$, $f \in K^*$.

Значит
$$f\widetilde{g}\iff f=kg,k\in K^*$$
.

Итого: любой $f \in K[x]$ раскладывается на неприводимые множители однозначно с точностью до перестановки множителей и вынесения констант.

Следствие. $f,g \in K[x]$ f и g имеют общие корни $\Rightarrow (f,g) \neq 1$. Все общие корни f и g делители (f,g)

Определение 5.6. $a, b \in A$ — область целостности. d — НОД (a, b) если

- 1. a : d
- $2. b \vdots d$
- 3. $a : d_1, b : d_1 \Rightarrow d : d_1$.

Утверждение 5.4. Если НОД существует, то он единственный с точностью до ассоциированности.

Доказательство. $d \sim d_1, d - \text{HOД}(a, b). \ a \vdots d, b \vdots d \Rightarrow a \vdots d_1, b \vdots d_1, d \vdots d_1. \ a \vdots d_2, b \vdots d_2 \Rightarrow d \vdots d_2, d_1 \vdots d \Rightarrow d_1 \vdots d_2.$

A значит $d_1 - \text{HOД}(a, b)$.

Обратно: d и d_1 НОДЫ $\Rightarrow a:d,b:d\Rightarrow d_1:d$, так как d_1 — НОД. Тоже самое для d, получаем, что $d\sim d_1$.

А сейчас начинается кусок с лекции 29 ноября.

Утверждение 5.5. $R - O\Gamma M$. $\forall a, b \in R \ \exists d = (a, b) \ \text{и} \ \exists \, x, y \in R : d = ax + by$.

Доказательство. Доказывается по аналогии с доказательством для целых чисел с самой первой лекции.

Утверждение 5.6. $ab : c \ (a, c) = 1 \Rightarrow b : c.$

Доказательство. Смотри первую лекцию.

Определение 5.7. $p \in R$ — простой элемент (R — область целостности), если $\forall a, b \in R$ $ab : p \Rightarrow a : p \lor b : p$.

Определение 5.8. $p \in R$ неприводимый, если $p = p_1 p_2 \Rightarrow p \sim p_1 \lor p \sim p_2$.

Утверждение 5.7. R — Область целостности, a — простой $\Rightarrow a$ — неприводимый.

Доказательство. Пусть a — простой. $a = p_1 p_2$. Тогда $p_1 p_2 \, \vdots \, a \Rightarrow p_1 \, \vdots \, a \lor p_2 \, \vdots \, a$. Не умаляя общности $p_1 \, \vdots \, a \land a \, \vdots \, p_1 \Rightarrow a \sim p_1$.

Утверждение 5.8. R — Область Главных Идеалов a — неприводим $\Rightarrow a$ — простое.

Доказательство. Пусть $R - \mathrm{O}\Gamma\mathrm{U}$, $a - \mathrm{неприводим}$. Пусть $b \cdot c : a$, рассмотрим d = (a, b). $a - \mathrm{неприводим}$, $a : d \Rightarrow d \sim a \lor d \sim 1 (d \in R^*)$. Если $d \sim 1$, то $(a, b) = 1 \land bc : a \Rightarrow c : a$. А если $d \sim a$, то $b : d \to b : a$

Доказательство. Основной Теоремы Арифметики для Областей Главных Идеалов Единственность: пусть $p_1p_2\dots p_k=q_1\dots q_l$, где p_i — неприводимое, q_i — неприводимое.

Будем доказывать как в целых числах: $p_1(p_2 \dots p_k) : q_1 \Rightarrow p_1 : q_1 \lor p_2 \dots p_k : q_1 \Rightarrow p_1 : q_1 \lor p_2 : q_2 \dots$

 $\exists i \colon p_i \colon q_1. \ p_i$ — неприводимое $\Rightarrow q_1 \sim 1 \lor q_1 \sim p_1. \ q_1$ — необратимое, а значит первый вариант невозможен.

 $q_1=p_iarepsilon,arepsilon\in R^*.\ p_1p_2\dots p_i\dots p_k=arepsilon q_2\dots q_l,\ R$ — область целостности.

 $p_1p_2\dots p_{i-1}p_{i+1}\dots = (\varepsilon q_2)\dots q_k$. Аналогично $\exists j\neq i\colon p_i\sim \varepsilon q_2\sim q_2$

 $p_i \varepsilon_2 q_2$ сократим. Получили однозначное соответствие.

Существование!

Лемма. $R - O\Gamma M, x_1, x_2, \dots x_i \in R. \ \forall i \ x_i \ \vdots \ x_{i+1}.$ Тогда существует $N : \forall i > n \ x_i \sim x_{i+1},$ то есть $x_{i+1} = x_i \varepsilon_i, \varepsilon_i \in R^*.$

Доказательство. $a : b \iff \langle a \rangle \subset \langle b \rangle$. Тогда $\langle x_1 \rangle \subseteq \langle x_2 \rangle \subseteq \dots$

Рассмотрим $I = \bigcup \langle x_i \rangle$.

I — идеал. Проверим сумму (домножение аналогично), $a,b \in I \Rightarrow \exists m \colon a \in \langle x_m \rangle, n \colon b \in \langle x_n \rangle \Rightarrow a,b \ in\langle x_{\max(n,m)} \rangle \Rightarrow a+b \in \langle x_{\max(n,m)} \rangle \Rightarrow a+b \in I$.

I — идеал R — ОГИ. $\exists x \colon I = \langle x \rangle$. При этом $x \in \langle x_m \rangle$ для $m > m_0$.

 $\forall m>m_0:x\ \vdots\ x_m\land x_m\ \vdots\ x,$ так как $x_m\in I,$ а $\langle x\rangle=I.$ Тогда $x_m\sim x\sim x_n\ \forall m,n>m_0:x_m\sim x_n$

Следствие. $\forall x \in R, x \notin R^*, \exists p$ — неприводимый: $x \ni p$.

Доказательство. Пусть не так:

- 1. x не приводимый $\Rightarrow x = x_1 x_2, x_i \notin R^*$.
- 2. $x_2 = x_3 \cdot x_4, \ x_3, x_4 \notin R^*$. Тогда получается $x \in x_2 \in x_3 \in \dots$ никакие два элемента не ассоциированы. Этого не может быть по лемме.

Окончание доказательства: $x \in R$ $x \neq 0$. $x = p_1 x_1$, p_1 неприводимо, $x_1 = p_2 x_2$... $x : x_1 : x_2 : \dots$ — получили цепочку. По доказанной лемме данная цепочка бесконечной быть не может, а значит $\exists i : x_i \in R^* \Rightarrow x = p_1 p_2 \cdots p_k \cdot \varepsilon$, ура, разложили.

6. Производная

Определение 6.1. Определение в кавычках. $f \in K[x], K$ — кольцо. $f'(x) - \frac{f(x) - f(y)}{x - y}$ в точке y = x.

Пример.
$$f = x^n (x^n)' = \frac{x^n - y^n}{x - y} = \frac{(x - y)(x^{n-1} + x^{n-2}y + \dots + y^{n-1})}{x - y} = x^{n-1} + x^{n-2}y + \dots + y^{n-1} = x^{n-1} + x^{n-1} + \dots = nx^{n-1}$$

Определение 6.2. $f = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0.$

Доказательство. По определению получаем $f' = na_n x^{n-1} + (n-1)a_{n-1} x^{n-2} + \ldots + a_1$.

Coo*i*cmea. 1. (f+g)' = f' + g'

2.
$$(kf)' = kf', k \in K$$

3.
$$(fq)' = f'q + fq'$$

Замечание. $D:K[x]\to K[x],D(f)=f'$

Любой $D:A\to A$ удовлетворяющий свойствам 1-3 называется оператором дифференцирования.

В случае K[x] = A "обычное" дифференцирование — единственное.

Проверка свойств.

- 1. по вычислительным определениям упражнение.
- 2. по определению 1.
- 3. Kak b matahe $(fg)'(x) = \frac{(fg)(x) (fg)(y)}{x y} = \frac{f(x)g(x) f(x)g(y) + f(x)g(y) f(y)g(y)}{x y} = f(x)\frac{g(x) g(y)}{x y} + g(y)\frac{f(x) f(y)}{x y} = f(x)g'(x) + g(x)f'(x)$

Теорема 6.1. Пусть $f : (x-a)^k \wedge f \not (x-a)^{k+1}$ и $k \neq 0$ в K ($f \in K[x], K$ — поле). Тогда $f' : (x-a)^{k-1}$, $f' \not (x-a)^k$.

Определение 6.3. Такое k называется кратностью корня a в f.

Тогда $k \neq 0$: кратность уменьшается на 1 при дифференцировании. k = 0, кратность уменьшается не более, чем на 1.

Пример. $K = \mathbb{Z}/p\mathbb{Z}, \ f = x^p, \ 0$ — корень кратности $p.\ f' = px^{p-1} = 0, \ 0$ — корень бесконечной кратности.

Доказательство. $f = (x-a)^k \cdot g \ g \not : (x-1) \Rightarrow f' = ((x-a)^k g)' = ((x-a)^k)' \cdot g + (x-a)^k g' = k(x-a)^{k-1} \cdot g + (x-a)^k \cdot g' = (x-a)^{k-1} (kg + (x-a)g') \vdots (x-a)^{k-1}.$

Если $k \neq 0 \Rightarrow (x-a)g'$: x-a. $g \not \mid x-a \Rightarrow k \cdot g \not \mid x-a \Rightarrow kg + (x-a)g' \not \mid x-a \Rightarrow f' \not \mid (x-a)^k$. \square

Алгебры Производная

Лемма.

$$((x-a)^k)' = k(x-a)^{k-1}$$

$$(x-a)^k = \sum_{i=0}^k \binom{k}{i} x^i (-a)^{k-i}$$

$$k(x-a)^{k-1} = \sum_{i=0}^{k-1} \binom{k-1}{i} k x^i (-a)^{k-1-i}$$

$$(\binom{k}{i} x^i (-a)^{k-i})' = i x^{i-1} \binom{k}{i} (-a)^{k-i} =$$

$$= i x^{i-1} \binom{k}{i} (-a)^{k-1-i+1} = \binom{k-1}{i-1} k x^{i-1} (-1)^{(k-1)-(i01)}$$

Получили, что i-ое слагаемое в первой сумме — i-ое слагаемое во 2-ой сумме.

Утверждение 6.2. $f \in K[x], \deg f = n, a \in K$. Тогда $\exists c_0, c_1, c_2, \dots c_n$, такой что $f = c_0 + c_1(x - a) + c_2(x - a)^2 + \dots + c_n(x - a)^n$.

Доказательство. x - a = t, x = t + a. Дальше раскрыть скобки ...Хотя хуй знает я банан) \Box

6.1. Характеристика поля

K — поле, $1 \in K$

Рассмотрим последовательность 1, 1 + 1, 1 + 1 + 1, ...

Определение 6.4. Есть два варианта: все элементы последовательности попарно различны или последовательность периодична с периодом C, где $C = \operatorname{ord}(1)$ относительно +. Тогда C - характеристика поля. ($C = \operatorname{char} K$)

Если ord
$$1=\infty$$
, char $K=0$. Тогда $\underbrace{1+1+\cdots+1}_n=0$ в $K\iff n$: char K .

Лемма. char K — ноль или простое число.

Доказательство. Пусть char
$$K=m\cdot n, m,n>1$$
. $\underbrace{1+\ldots+1}_{mn}=0=\underbrace{(1+\ldots+1)}_{m}+\ldots+\underbrace{(1+\ldots+1)}_{m}.$

Получили (1+1+1+1+1)(1+1+1+1+1)=0, где в одной скобке m единиц, а в другой — n. Тогда, поскольку в поле нет делителей нуля, $m=0 \lor n=0$. Противоречие с минимальностью. \square

Cледствие. char $K = 0 \Rightarrow K$ содержит копию \mathbb{Q} .

 $\operatorname{char} K = p \Rightarrow K$ содержит копию $\mathbb{Z}/p\mathbb{Z}$.

6.2. Формула Тейлора

 $D((x-a)^k)=k(x-a)^{k-1},$ тогда определим $D^2(f)=D(D(f)),$ $D^{(l)}(f)=D(D^{(l-1)}(f))$

Известно, что $D(kf)=kD(f), k\in K$. Тогда $D^{(2)}((x-a)^k)=D(k(x-a)^{k-1})=k(k-1)(x-a)^{k-2}$. Тогда в l-ой производной: $k(k-1)(k-2)\dots(k-l+1)(x-a)^{k-l}$, если $l\leqslant k$. При l>k получаем 0.

Вычислим значение l-ой производной в точке $a-D^{(l)}f(a)=D^{(l)}\left(\sum a_k(x-a)^k\right)(a)=\sum a_kD^{(l)}((x-a)^k)(a)=a_lD^l((x-a)^l)(a)=a_l\cdot l!$ Объяснение последнего перехода: все члены $a_i,i< l$ отпали,

Алгебры Производная

поскольку для них l-ая производная есть константный ноль. Все члены $a_i, i > l$ отпали, поскольку в них осталась скобка (x - a), которая в точке x = a обращается в ноль. А значит осталось только слагаемое при $a_i, i = l$, для которого мы умеем считать l-ую производную.

Предполагая, что char $K=0 \vee {\rm char}\, K>\deg f$, знаем, что $1!,2!,3!,\dots(\deg f)!\neq 0$ в K. Тогда имеем $a_l=\frac{D^l(f)(a)}{l!}$. А ещё есть следующее обозначение: $D^{(l)}(f)=f^{(l)}$.

Теорема 6.3 (Формула Тейлора).

$$f = \sum_{l=0}^{\deg f} \frac{f^{(l)}(a)}{l!} (x-a)^l.$$

Алгебры Комплексные числа

7. Комплексные числа

K — поле, K[x] — евклидово кольцо. Тогда $f,g\in K[x],h\in K[x].$ $f\equiv g\pmod h$, если f-g \vdots h.

Утверждение 7.1. Это отношение эквивалентности. $f_1 \equiv g_1, f_2 \equiv g_2 \pmod{h}$, тогда $f_1 + f_2 \equiv g_1 + g_2, f_1 f_2 \equiv g_1 g_2 \pmod{h}$.

Доказательство. Как в целых.

Из этого следует, что \exists фактормножество $K[x]/\equiv_h$ и на это множество переносятся + и \cdot : получаем ассоциативное коммутативное кольцо с 1. K[x]/(h) — кольцо вычетов по модулю h. Заметим, что $\forall f \in K[x] \; \exists ! \; r \in K[x] : f \equiv r \pmod h$ и $\deg r < \deg h$ по теореме о делении с остатком. Причем $\deg r < \deg h$.

Пример. h = x - a. $\forall f : \overline{f} = \overline{c}$, $c = \text{const. } K[x]/(x - a) \cong K$.

Пример. $h = x^2 - 1, \forall f : \overline{f} = \overline{ax + b}$

$$K[x]/(x^2-1) \cong K[x]/(x-1) \times K[x]/(x+1)$$

Итоги (на самом деле не итоги, т.к. мы это докажем шагом позже, но хз): 1: \mathbb{C} — поле, 2: $\{\overline{a}|a\in\mathbb{R}\}$ — подполе, изоморфное \mathbb{R}

Kek: $\overline{a+bx} \cdot \overline{a-bx} = \overline{a^2 - b^2(-1)} = \overline{a^2 + b^2}$

Другой кек (пруф): $\overline{a+bx} \neq \overline{0} \to \overline{a+bx} \cdot \frac{1}{\frac{a}{a^2+b^2} - \frac{b}{a^2+b^2}x} = 1$, т.е. $\overline{a+bx}$ — обратим.

Определение 7.1. $z = a + bi \in \mathbb{C}$. Число a - bi называется сопряженным к z и обозначается \overline{z} .

Определение 7.2. a = Re(z), b = Im(z), Re — вещественная часть, Im — мнимая.

Явные формулы для сложения: (a + bi) + (c + di) = (a + c) + (b + d)i, для умножения: (a + bi)(c + di) = (ac - bd) + (ad + bc)i.

Модуль комплексного числа определим как $|z| = \sqrt{a^2 + b^2}$. Тогда

$$z + \overline{z} = 2\operatorname{Re}(z), \ z - \overline{z} = 2\operatorname{Im}(z) \cdot i. \ z \cdot \overline{z} = a^2 + b^2 = |z|^2.$$

Вроде всё, мб что пропустил