Index No	
----------	--

UNIVERSITY OF MORATUWA Faculty of Engineering

BSc Engineering Level 2, 2003/2004 Semester 1 Examination (Held in January 2004)

CS222 Algorithms

AI	iswer Ali Questions		Time: 2 Hours
No	ote: Answers must be given in the space provi	ded. Write your Index No.	top of this page.
1.	Let A be a sorted array of $n=10$ elements. We Assume that k is in the array. Also assume the whether k is equal to, less than or greater that comparisons required if k can be in any arbitrarray, then only one comparison is required.	hat only one comparison in $A[i]$. What is the average trary location? (Hint: If k)	s required to determine ge number of
2.	Consider the following recursive algorithm,	COMP, where n is a non-	negative integer.
	else return $(2*n + COMP(n-1))$		
	$\mathbf{1etuin} \ (2 \ n + \mathbf{COMI} \ (n-1))$		
	What value will be returned if we invoke thi		[5 marks]

	Give the order of nodes corresponding to <i>postorder</i> traversal of the binary tree in the fig shown. [5 marks]
	A
	B
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	H J
	For the following running times for algorithms, show the correct relationship among the using the "<" (less than) relation: $O(n)$, $O(\lg n)$, $O(n \lg n)$, $O(2^n)$, $O(n^2)$. [5 marks]
5.	
	Suppose you have been given the following algorithm which accepts an array $A[1n]$ of integers as input.
	integers as input. for $i \leftarrow n$ downto 2 $large \leftarrow A[1]$
	integers as input. for $i \leftarrow n$ downto 2 $large \leftarrow A[1]$ $index \leftarrow 1$ $for j \leftarrow 2 to i$
	integers as input. for $i \leftarrow n$ downto 2 $large \leftarrow A[1]$ $index \leftarrow 1$ $for j \leftarrow 2 to i if A[j] > large$
	integers as input. for $i \leftarrow n$ downto 2 $large \leftarrow A[1]$ $index \leftarrow 1$ $for j \leftarrow 2 to i if A[j] > large large \leftarrow A[j] index \leftarrow j$
	integers as input. for $i \leftarrow n$ downto 2 $large \leftarrow A[1]$ $index \leftarrow 1$ $for j \leftarrow 2 to i if A[j] > large large \leftarrow A[j]$
	integers as input. for $i \leftarrow n$ downto 2 $large \leftarrow A[1]$ $index \leftarrow 1$ $for j \leftarrow 2 to i if A[j] > large large \leftarrow A[j] index \leftarrow j A[index] \leftarrow A[i] A[i] \leftarrow large Compute the running time of this algorithm and express it in "big oh" notation.$
	integers as input. for $i \leftarrow n$ downto 2 $large \leftarrow A[1]$ $index \leftarrow 1$ $for j \leftarrow 2 to i if A[j] > large large \leftarrow A[j] index \leftarrow j A[index] \leftarrow A[i] A[i] \leftarrow large$
	integers as input. for $i \leftarrow n$ downto 2 $large \leftarrow A[1]$ $index \leftarrow 1$ $for j \leftarrow 2 to i if A[j] > large large \leftarrow A[j] index \leftarrow j A[index] \leftarrow A[i] A[i] \leftarrow large Compute the running time of this algorithm and express it in "big oh" notation.$
	integers as input. $ \begin{aligned} & \textbf{for } i \leftarrow n \ \textbf{downto} \ 2 \\ & large \leftarrow A[1] \\ & index \leftarrow 1 \\ & \textbf{for } j \leftarrow 2 \ \textbf{to} \ i \\ & \textbf{if } A[j] > large \\ & large \leftarrow A[j] \\ & index \leftarrow j \\ & A[index] \leftarrow A[i] \\ & A[i] \leftarrow large \end{aligned} $ Compute the running time of this algorithm and express it in "big oh" notation. [6 marks]

6.	What is the purpose of the algorithm given in question 5? (i.e., what is it doing?) [4 marks]				
7.	Consider the following <i>fractional-knapsack problem</i> . Suppose you are given 5 objects with the following weights: (6, 10, 9, 5, 12)				
	Suppose the following profits are associated with the objects (in the same order): (8, 5, 10, 15, 7) The knapsack has a weight capacity of 30. The objective is to fill the knapsack while maximizing the total profit. Note that a fraction of an object can be chosen if desired but you				
	may do it only once for one object. Compute the maximum profit possible. [10 marks]				
8.	Give the asymptotic growth in "big oh" notation for the following functions of $n > 0$. [4 marks] $8n^9 + n^{2n} + 5n^3 + 3n + 9$				
	$5\log n + 4^n + 2n + 18$				
	15 5 (2 5)6				
	$15n^{\circ} + (3n + 7)^{\circ}$ $9999n + 0.003 n^{2} + 0.9^{n}$				

length *n*. $max \leftarrow A[1]$ **for** $i \leftarrow 2$ to n// missing part return max Give the missing part of this algorithm. [4 marks] **10.** Give a recursive algorithm corresponding to the following expression to compute Ack(m, n)for any two given integers m, $n \ge 0$. [6 marks] if m = 0 $Ack(m,n) = \begin{cases} Ack(m-1,1) \end{cases}$ if $m \neq 0, n = 0$ Ack(m-1, Ack(m, n-1)) otherwise 11. Show the order of vertices visited in the following graph if the graph is traversed a) depth-first b) breadth-first starting at vertex S. [6 marks] a) R b)

9. The following algorithm is to find the maximum value in a given integer array, A[1..n], of

12. Kruksal's algorithm for computing the minimum-cost-spanning tree (MCST), T, for a graph, G=(V,E), is given below.

```
MCST-Kruksal(G, W)  // G=(V, E), W is the array of weights T \leftarrow \emptyset for each vertex v \in V  // make separate sets for vertices Sort the edges by increasing weight for each edge (u,v) \in E, in sorted order if Find-Set(u) \neq Find-Set(v)  // if no cycles are formed  // add edge to tree  Union(u,v)  // combine sets return T
```

Using this (or other) algorithm, find the MCST for the following graph. [10 marks]

13. Suppose you have a 100,000-character data file that you wish to store compactly using a variable-length code. There are 6 different characters that occur. Their frequencies of occurrences are as follows.

Character	K	m	n	p	q	S
Frequency (%)	44	13	11	17	9	6

a)	algorithm (e.g., Huffman's algorithm).	ppropriate [8 marks]
b)	What is total number of bits needed to represent the original data file using	this code? [2 marks]
14 Su	ppose S is a stack data structure with the contents $\{10, 4, 5, 7, 2\}$ where the	ton element i
	Then suppose the following code segment is executed on it.	top element i
	$x \leftarrow \text{POP}(S)$	
	print x	
	$x \leftarrow POP(S)$	
	print <i>x</i> PUSH (<i>S</i> , 3)	
	PUSH (S, 6)	
	$x \leftarrow POP(S)$	
	print x	
	$x \leftarrow POP(S)$	
	print x	
Af	ter executing the code segment, show	
	the printed result, and	[5 marks]
b)	the contents of the stack.	[5 marks]
a).		
•••		
•••		
•••		

	b)				
15.	A student, that order. (i) (ii) (iii) (iii) (iv)	X, tries to prove that a problem Y is NP -complete using the X shows that Y is in NP X selects a known NP -complete problem Z X shows how Y can be polynomially reducible to Z X therefore concludes Y is NP -complete	ne following steps, in		
	Is this app	roach correct or incorrect? Explain your answer.	[5 marks]		