CA20M EV 90 -1990 152

LOW FLOW CHARACTERISTICS
IN ONTARIO

MAIN REPORT

OCTOBER 1990

DISCLAIMER

This report was prepared for the Ontario Ministry of the Environment as part of a ministry-funded project. The views and ideas expressed in this report are those of the author and do not necessarily reflect the views and policies of the Ministry of the Environment, nor does mention of trade names or commercial products constitute endorsement or recommendation for use.

LOW FLOW CHARACTERISTICS

IN ONTARIO

MAIN REPORT

Report prepared for:
Water Resources Branch
Environmental Services
Ontario Ministry of the Environment

Report prepared by: Cumming Cockburn Limited 145 Sparks Ave. Willowdale, Ontario M2H 2S5

OCTOBER 1990

Copyright: Queen's Printer for Ontario, 1990
This publication may be reproduced for non-commercial purposes with appropriate attribution

PIBS 971E01 log 88-2309-026

ACKNOWLEDGEMENTS

The information and conclusions presented in this report were derived with assistance from several individuals and organizations.

The following members of the Water Resources Branch and Environment Canada provided significant input and direction throughout the study:

- Dr. L. Logan	River Systems Section, Water Resources Branch,
	Ministry of Environment
- Mr. B. Whitehead	River Systems Section, Water Resources Branch,
	Ministry of Environment
- Mr. P. Pilon	Hydrology Division, Water Resources Branch,
	Inland Waters Directorate
- Mr. D. Anderson	Water Survey of Canada Division, Inland Waters
	Directorate

The background information presented in this report was obtained mainly from the Water Survey of Canada and the Ministry of Environment, Water Resources Branch.

We would also like to express our appreciation for the time and effort of all others who contributed to this project by way of information, discussions and otherwise.

Digitized by the Internet Archive in 2024 with funding from University of Toronto

LOW FLOW CHARACTERISTICS IN ONTARIO

TABLE OF CONTENTS

	Page No.
VOLUME 1:	
LIST OF TABLES	
LIST OF FIGURES	
MAIN REPORT :	
1.0 INTRODUCTION	1-1
1.1 General	1-1
1.2 Study Objectives and Scope	1-2
2.0 METHODOLOGY	2-1
2.1 General	2-1
2.2 Data Base	2-1
2.3 Data Analysis and Screening	2-2
2.4 Extreme Value Analysis	2-3
2.5 Flow Duration Analysis	2-4
2.6 Seasonal Analysis	2-4
2.7 Maps	2-5
3.0 STUDY RESULTS	3-1
3.1 General	3-1
3.2 Data Base Screening	3-1
3.2.1 Data Base	3-1
3.2.2 Screening Results	3-2
3.3 Extreme Value Analysis	3-5
3.3.1 General	3-5
3.3.2 Annual	3-6
3.3.3 Seasonal	3-7
3.4 Flow Duration	3-7
3.4.1 Annual	3–7
3.4.2 Seasonal	3-8
3.5 Maps	3-8
4.0 CONCLUSIONS AND RECOMMENDATIONS	4-1
4.1 Conclusions	4-1
4.2 Recommendations	4-2
5.0 REFERENCES	5-1

TABLE OF CONTENTS (cont'd) APPENDICES

APPENDIX A		ral Appendices
		Extreme Value Analysis
		Flow Duration Analysis
	A.3	Statistical Tests - Independence, Trend,
		Randomness
		A.3.1 Test Description
		A.3.2 Example of Tests
		A.3.3 Graphical Representation
		A.3.4 Summary of Test Results
APPENDIX B	: Cent	ral Region
	B.1	General General
	B.2	Station List and Record Characteristics
	B.2	Data Analysis and Screening
	B.4	Extreme Value Analysis Summaries
		B.4.1 Annual Tables
		B.4.2 Graphs of Extreme Value Analysis
		B.4.3 Summary Table of Minimum Annual and Monthly
		Consecutive 7-Day Low Flows with a 20-Year
		Recurrence Interval
	B.5	Flow Duration Analysis Summaries
		B.5.1 Annual and Monthly Flow Duration Summary Tables
		B.5.2 Annual Flow Duration Graphs
	B.6	Revised Analysis
	B.7	Maps
APPENDIX C	: Sout	heastern Region
	C.1	General General
	C.2	Station List and Record Characteristics
	C.2	Data Analysis and Screening
	C.4	Extreme Value Analysis Summaries
		C.4.1 Annual Tables
		C.4.2 Graphs of Extreme Value Analysis
		D.4.3 Summary Table of Minimum Annual and Monthly
		Consecutive 7-Day Low Flows with a 20-Year
		Recurrence Interval
	C.5	Flow Duration Analysis Summaries
		C.5.1 Annual and Monthly Flow Duration Summary Tables
		C.5.2 Annual Flow Duration Graphs

C.6 Revised Analysis

C.7 Maps

TABLE OF CONTENTS (cont'd) APPENDICES

			APPENUICES
APPENDIX	D		hwestern and West Central Region General
		D.2	Station List and Record Characteristics Data Analysis and Screening
		D.4	Extreme Value Analysis Summaries D.4.1 Annual Tables
			D.4.2 Graphs of Extreme Value Analysis D.4.3 Summary Table of Minimum Annual and Monthly Consecutive 7-Day Low Flows with a 20-Year Recurrence Interval
		D.5	Flow Duration Analysis Summaries D.5.1 Annual and Monthly Flow Duration Summary Tables
			D.5.2 Annual Flow Duration Graphs
			Revised Analysis
ADDENDIV	_		Maps
APPENDIX	E		heastern Region General
			Station List and Record Characteristics
			Data Analysis and Screening
			Extreme Value Analysis Summaries
		L • ~	E.4.1 Annual Tables
			E.4.2 Graphs of Extreme Value Analysis
			E.4.3 Summary Table of Minimum Annual and Monthly
			Consecutive 7-Day Low Flows with a 20-Year
			Recurrence Interval
		F.5	Flow Duration Analysis Summaries
			E.5.1 Annual and Monthly Flow Duration Summary Tables
			E.5.2 Annual Flow Duration Graphs
		E.6	Revised Analysis
		E.7	
APPENDIX	F	: Nort	hwestern Region
		F.1	General
		F.2	Station List and Record Characteristics
		F.2	Data Analysis and Screening
		F.4	Extreme Value Analysis Summaries
			F.4.1 Annual Tables
			F.4.2 Graphs of Extreme Value Analysis
			F.4.3 Summary Table of Minimum Annual and Monthly

Recurrence Interval

Consecutive 7-Day Low Flows with a 20-Year

TABLE OF CONTENTS (cont'd) APPENDICES

- F.5 Flow Duration Analysis Summaries
 F.5.1 Annual and Monthly Flow Duration Summary Tables
 F.5.2 Annual Flow Duration Graphs
- F.6 Revised Analysis
- F.7 Maps

LIST OF TABLES

			After Page
TABLE	1	Stations with Unacceptable Low Flow Data Set	2-2
	2	Summary of Statisics for Data Used in	
		Extreme Value Analysis	3-4
	3	Example of Extreme Value Tabular Format	3-5
	4	Unit Area Average Low Flows	3-6
	5	Example Summary of Flow Duration Analysis	3-7
		LIST OF FIGURES	
FIGURE	1	Example of Low Flow Frequency Curves	3-6
	2	Example of Annual Flow Duration Curve	3-8
	3-5	Example of Seasonal Flow Duration Curves	3-8
	6	Station Information Legend	3-8

1.0 INTRODUCTION

1.1 General

The knowledge of the hydrologic conditions which exist during low flow periods can be of primary importance in undertaking a variety of water resources investigations. When analysing water quality conditions, the low flow characteristics within the watercourse are a major concern to both the user and the Ontario Ministry of the Environment. Some uses of low flow information include the following:

- The analysis of municipal and industrial effluent discharges to streams
- ii) Instream pollutant analyses (point and non-point sources including mixing zones)
- iii) Reservoir design (low flow augmentation)
- iv) Environmental approvals
 - v) Feasibility of small hydro developments
- vi) Water supply and evaluation for water taking permits
- vii) Base flow/groundwater recharge and/or contamination analysis
- viii) Stream fisheries assessments
 - ix) Analyse effects of changes in watershed on low flows (e.g. deforestation, urbanization)
 - x) Agricultural
 - xi) Other

The identification of low flow characteristics within a watercourse is most easily accomplished using continuous hydrometric data recorded for the stream. Available data were previously analysed and published as a series of "Low Flow Characteristics" maps which were published several years ago (more than 10 years in most cases)

by the Ministry of the Environment (Ministry of the Environment, 1973-1978). Additional data (both temporally and spatially) are now available and it was, therefore, considered appropriate to update the available data base describing low flow characteristics across the Province of Ontario.

1.2 Study Objectives and Scope

The overall objective of the proposed investigation was to carry out an analysis describing the low flow characteristics at suitable Water Survey of Canada streamflow locations in Ontario. The following points summarize the scope of the investigations:

- Update statistical low flow analyses for each of the following administrative regions:
 - Central
 - Southeastern
 - Southwestern and West Central
 - Northeastern
 - Northwestern
- Undertake data base screening analyses to identify constraints on the data base
- 3. Produce extreme value analyses for suitable stream gauging locations (1, 3, 7, 15, 30-day durations) with greater than 10 years of data
- 4. Produce annual flow duration analyses, using daily data for suitable stream gauging locations
- 5. Produce monthly low flow analyses

2.0 METHODOLOGY

2.1 General

The available streamflow data base was obtained for all relevant Water Survey of Canada monitoring locations (see discussion in Section 2.2). Data analyses and screening were then undertaken in order to assess the usefulness of the data at each location prior to undertaking statistical analyses (see Section 2.3). Extreme values for selected low flow durations were then calculated for various recurrence intervals for both annual and monthly series using the techniques discussed in Section 2.4. Flow duration analyses were also undertaken utilizing the daily data base on both an annual and a monthly basis (see Sections 2.5 and 2.6). In most cases the extreme value analysis results should be used for low flow characteristic analysis. However, under certain conditions flow duration results of heavily regulated stations may give more conservative results. Computer drawn maps depicting low flow characteristics were then produced in order to summarize selected low flow statistics on a regional basis (see Section 2.7).

2.2 Data Base

The entire Water Survey of Canada daily streamflow data base for the Province of Ontario for the period of record to the end of 1986 was obtained in computer tape format.

Stations with a minimum of ten years of record were considered to have an appropriate record length for the purpose of this investigation. Stations inactive prior to 1981 were not considered in the analysis.

Several data management programs developed by Cumming Cockburn Limited were then used for extraction and analysis of data from the computer archives. First a program was written and executed to check and screen the available data base at each station for missing data. A second program was then run to utilize this analysis to compute running averages for various durations and to pick the corresponding minimum annual low flow.

A third program sorted and analysed the available data to determine low flow values on a monthly basis. Average flows were determined and extracted for the annual consecutive low 1, 3, 7, 15 and 30 day durations and are available as part of the background files. Another program was used to compute flow duration curves as discussed in Section 2.5.

2.3 Data Analysis and Screening

The data were manually screened to remove station records which contained a significant number of zero low flow occurrences for all durations. These stations are listed in Table 1 and the screening results are discussed in Section 3.2.

The initial version of the Low Flow Frequency Analysis program was obtained from Environment Canada for use in the investigation (Pilon and Jackson, 1988). This program contains a set of data analysis and checking modules suitable for data screening and analysis (Pilon et al, 1985). At present there is some question concerning the reliability of the methodology for checking Independence for low flow data series (personal communication, P. Pilon, Water Resources Branch, Environment Canada).

The data screening process was undertaken to test the assumption that the data are reliable measurements and are mutually exclusive and represent independent random events which are free from trend. The non-parametric tests applied include the Spearman Rank Order Correlation Coefficient for Independence; the Spearman Rank Order Correlation Coefficient for Trend; and a general randomness test. The statistical tests were applied at the 1% and 5% levels of significance. (See Appendix A.3 for more details on the statistical tests.)

TABLE 1

Stations with Unacceptable Low Flow Data Set*

Appendix Station F 02AD009 E 02CA001 E 02CC007 E 02CC007 E 02CC007 E 02CD010 E 02D0010 E 02	Station Name Ogoki River Diversion to Lake Nipigon St. Mary's River at Sault Ste. Marie Mississagi River at Rayner Generating Station Mississagi River at Red Rock Falls Serpent River at Cross Lake Temagami River at Cross Lake Dam French River at Choudiere Dam Little French River at Little Chaudiere Dam Muskoka River at Little Falls Little French River at Little Falls Severn River at Washago Severn River at Little Falls Trent Canal Lock 42 near Washago Uxbridge Brook at Uxbridge South Parkhill Creek near Parkhill Niagara River at Queenston Bronte Creek at Progreston Cold Creek near Bolton Black Creek near Bolton West Duffins Creek above Green River	Reason for Removal >30% Number of Occurrence of 0.0 Low Flow Very large flows Aug - 1741 cms >30% Number of Occurrence of 0.0 Low Flow >30% Number of Occurrence of 0.0 Low Flow >30% Number of Occurrence of 0.0 Low Flow Only removed from the seasonal analysis Only removed from the seasonal analysis Only removed from the seasonal analysis Only 2 years of record - deleted Only 2 years of record - deleted Only 2 years of record - deleted Only removed from the seasonal analysis Only removed from the seasonal analysis >30% Number of Occurrence of 0.0 Low Flow Only removed from the seasonal analysis >30% Number of Occurrence of 0.0 Low Flow Only removed from the seasonal analysis >30% Number of Occurrence of 0.0 Low Flow Only I day duration could be extracted Arithmetic overflow Arithmetic overflow Arithmetic overflow Arithmetic overflow
02H5007 02HF004 02JD009 02JD011 02JE012 02JE021	Soper Creek at Bowmanville Bob Creek near Minden Montreal River at Mountain Chutes Montreal River at Lower Notch G.S. Lady Evelyn River at Lady Evelyn Lake Ottawa River at La Cave Rapids Matabitchuan River at Rabbit Lake Dam	Artchmetic overflow 30% Number of Occurrence of 0.0 Low Flow Only removed from the seasonal analysis >30% Number of Occurrence of 0.0 Low Flow

* Program modifications were subsequently made and results are addended in the appropriate Appendices.

Appendix	Station	Station Name	Reason for Removal
ပ	02KA006	Perch Lake Inlet No. 3 near Chalk River	>30% Number of Occurrence of 0.0 Low Flow
ပ	02KA007	Perch Lake Inlet No. 4 near Chalk River	>30% Number of Occurrence of 0.0 Low Flow
ပ	02KA008	Perch Lake Inlet No. 5 near Chalk River	>30% Number of Occurrence of 0.0 Low Flow
ပ	02KD007	3	Only removed from the seasonal analysis
ပ	02KF014	Fall River near Fallbrook	
ပ	02MB005	St. Lawrence River at Iroquois	Very large flows Aug = 5790 cms
ပ	02MC002	St. Lawrence River at Cornwall	
LL.	04CA002	Severn River at Outlet of Muskrat Dam Lake	
L	04CA004	Severn River below Outlet of Deer Lake	>30% Number of Occurrence of 0.0 Low Flow
L	04CD002	Sachigo River below Outlet of Sachigo Lake	Only removed from the seasonal analysis
L	04DC001	Winisk River below Asheweig River Tributary	Arithmetic overflow
L	0400002	Shamattawa River at Outlet of Shamattawa Lake	Only removed from the seasonal analysis
L	04GA001	Lake St. Joseph Outflow to Albany River	>30% Number of Occurrence of 0.0 Low Flow
L	04GA002	Cat River below Wesleyan Lake	Arithmetic overflow
L	04GB004		Arithmetic overflow
ш,	04JD003	Long Lake Diversion to Lake Superior	>30% Number of Occurrence of 0.0 Low Flow
L	04JF001	Little Current River at Percy Lake	Arithmetic overflow
ш	04LA002	Mattagami River near Timmins	Arithmetic overflow
ш	04LG003	Mattagami River at Little Long Rapids	Arithmetic overflow
ш	04MB003	Watabeag River at Watabeag Lake Dam	>30% Number of Occurrence of 0.0 Low Flow
ш	04MC001	Abitibi River at Iroquois Falls	>30% Number of Occurrence of 0.0 Low Flow
ш	04MC002	Abitibi River at Thin Falls	Arithmetic overflow
ш	04ME003	Abitibi River at Onakamana	Arithmetic overflow
L.	05PB009	as.	>30% Number of Occurrence of 0.0 Low Flow
L	05PE006	Lake of the Woods E. Outlet at Kenora P.House	Only removed from the seasonal analysis
LL	05PE010	Winnipeg River at Whitedog Falls P.House	Arithmetic overflow
LL_ 1	0208006	Lake St. Joseph Diversion at Root Portage	>30% Number of Occurrence of 0.0 Low Flow
الكا	050E005	English River at Caribou Falls	Arithmetic overflow
LL.	05QE007	English River at Manitou Falls	>30% Number of Occurrence of 0.0 Low Flow

It must also be expected that a certain number of stations which are tested will randomly "fail" any given statistical test. Therefore, the binomial distribution was used to calculate the number of expected random failures over the entire data base for each region in order to assess the suitability of the low flow data on a regional basis. A tabulation of theoretical and actual "failure" results is summarized and discussed in Appendix A.3.4.

The effect of regulation was examined by further subdivision of the data base according to regulated and non-regulated stations. These results are tabulated in Appendices B to F and discussed in Section 3.2.

2.4 Extreme Value Analysis

An extreme value analysis was undertaken for each of the 1, 3, 7, 15 and 30-day durations for each of the stations.

For example, the minimum annual consecutive 7 day average low flow was determined for each year for the station record being analysed (see Section 2.2). The corresponding set of consecutive 7 day average low flows, therefore, represents an extreme value series to which a theoretical extreme value distribution can be fit for the purpose of determining the low flows corresponding to various recurrence intervals. For example, the 70_{20} low flow is often of interest for water quality investigation (i.e. the consecutive 7 day average low flow with an average recurrence interval of once in 20 years).

Previous investigations have found that the Gumbel III distribution has resulted in the best fit for extreme value analysis of low flows on most Canadian rivers. However, for samples with large negative skewness, the 3-Parameter Log Normal Distribution has proven to give adequate results and was adopted for these stations (Condie, 1983). A technical discussion of the fitting procedure is given in the users manual and briefly in Appendix A.

Parameter estimation for fitting of distributions proceeded in order of maximum likelihood, smallest observed drought and moments. The procedure utilized for analysis of each station record was identified on summary tables together with the results of the analyses (see Section 3.3. and Appendices B-F).

2.5 Flow Duration Analysis

The daily discharge data was extracted for each station and sorted by computer in order to derive empirical flow duration curves. The flow duration curves were summarized both numerically and graphically for each station (See Section 3.4 and Appendices B-F). The tabular summary presents the results of the flow duration computer output at 1% intervals across the flow duration curve.

2.6 <u>Seasonal Analysis</u>

In addition to annual computations referred to above, the flow duration curves and extreme value analyses were undertaken on a monthly basis to provide an information base for seasonal water resources investigations.

In order to reduce the amount of data tabulation, it was decided that only the results of the 70_{20} values would be summarized from the extreme value output. The results from the other 7-day duration recurrence intervals are available as part of the background files.

Flow duration curves were also tabulated on a monthly basis for comparison to the annual curves. A direct comparison with the plotted annual flow duration curve is, therefore, possible by using the numerical tabular summary. Typical results are discussed in Section 3.4.

2.7 Maps

Computer plotting was utilized as a cost-effective way of graphically summarizing selected flow characteristics. Base maps were digitized for each region. Data overlays were then prepared in order to produce two maps for each region, the first map summarizing selected low flow characteristics at each station, and the second map providing a corresponding discharge rate per unit area.

The resulting maps are discussed briefly in Section 3.5 and specific maps for each region accompany Appendices B to F.

3.0 STUDY RESULTS

3.1 General

This section summarizes general study findings and refers to specific results given in separate appendices for each of the five regions. (Appendices B to F).

3.2 Data Base Screening

3.2.1 Data Bases

For all regions, a total of 389 stations were found to have 10 years of record with the station being active within the last 5 years.

Other characteristics of the data base were also tabulated in Section 2 of Appendices B to F including, a brief station description, the period of record at each location, whether stream flows in the watershed are considered to be regulated or natural, and the drainage area of the watershed.

All of this information was extracted from the Water Survey of Canada HYDEX computerized data file maintained by Environment Canada. Statistical analyses were undertaken over the period of available record for both natural and regulated stations. However, subsequent to the data testing and extreme value analyses it was found that eleven data series classed as "regulated" included a portion of natural flow data. These stations were re-analysed with results addended in each Appendix as appropriate. Additional research indicated that three stations not recorded as mixed (natural and regulated flows recorded for the station) in the HYDEX file did consist of mixed periods. An analysis of these stations; O2GB001, Grand River below Brantford, O2GA003 Grand River at Galt, and, O2GA015 Speed River below Guelph, were re-analysed using only the regulated period of data. The period used was from 1945 (the

year after the Shand Dam was built) to the present for the Grand River Stations and 1975 to present for the Speed River data series (subsequent to the Guelph Dam construction). The results for the mixed $7Q_2$, $7Q_{10}$ and $7Q_{20}$ compared to the regulated period only are summarized as follows:

	M	ixed Data	•	Reg	ulated Da	ta
	792	7910	7020 m ³ /s	702	7910	7920
<u>Station</u>	m ³ /s	m³/s	m ³ /s	m ³ /s	m ³ /s	m ³ /s
02GB001	13.308	7.037	5.495	14.980	9.275	7.713
02GA003	5.822	2.176	1.679	9.186	5.120	4.156
02GA015	1.080	0.595	0.488	1.399	0.885	0.775

The results indicate an increase in the low flow values when using the regulated period only, compared to the analysis of the mixed record period. This may indicate low flow augmentation, or trend in the data series.

Users referring to analysis results for other regulated stations should investigate this aspect in more detail and analyses for all regulated stations used with care.

3.2.2 Screening Results

i) Zero Flows

Prior to undertaking the extreme value analyses a total of 23 data sets containing a significant number (*) of zero low flows for all durations were identified and removed from the data base (see Table 1). For example, for those stations where 30% or more of the available extreme flow data set was comprised of zero flow, it was arbitrarily assumed that use of this data base would result in a biased extreme value analysis. In addition, for short data sets (i.e. 10 years), reduction by 3 years results in insufficient data (7 years) with which to accurately fit the extreme value distribution.

A few stations which originally appeared to have 10 years of records were found to have a significant number of missing years in the detailed screening process. Those stations with minimal data were removed from the analysis (refer to Table 1).

ii) Arithmetic Overflow

Initial application of the LFA program encountered an arithmetic overflow for a number of stations, which are identified in Table

1. The program was subsequently modified and the analysis results are included as addendums to Appendices B to F where appropriate.

iii) High Outliers

Initially the analysis of several stations with very large low flows (greater than $1000 \text{ m}^3/\text{s}$) could not be completed. These stations are identified in Table 1. Additional research was undertaken and the LFA program was subsequently modified to permit fitting of the extreme value distribution. These results are addended where appropriate to Appendices B - F (see Table 1).

iv) Statistical Tests

Statistical data analysis tests were undertaken as outlined in Section 2.3 and described in more detail in Appendix A.3. The available test statistics were recently made available as part of the LFA (Pilon, 1988) low flow analysis program. Previous application of these testing procedures to low flow series has been limited to date.

In general, it was found that a significant number of stations failed the non-parametric tests. Therefore, taken over the entire data base, application of these tests has indicated that the available data base of extreme low flows may exhibit some trend with some possibility of non-random characteristics.

The data were further analysed by subdivision of the available data set according to length of record (i.e. \geq 20 years and <20 years)

and according to regulation code. However, it was found that neither the length of record, nor the possible effects of regulation could account for the conclusions of the test results. One explanation could be that the available record lengths are too short to permit reasonable application and interpretation of these non-parametric test results. A stronger possibility is that the available low flow data sets do exhibit trend and non random characteristics, which could possibly be attributed to slow cyclic change in groundwater levels or to climatic trends.

Additional testing was beyond the scope of the current investigations. However, further studies are recommended since these results may call into question the basic assumptions underlying application of the extreme value analysis technique for analysis of low flow characteristics.

v) Data Base

Extreme value analyses were undertaken on an annual basis for 344 stations and on a monthly basis for 330 stations. Further analysis was completed on the remaining stations with the revised program or by manual fitting on the annual data series.

Fourteen stations were assigned to more than one region since they may be representative of either region. The fourteen stations which appear in more than one region are:

Station	Central	South	Southwestern	North	North
I.D.		Eastern	West Central	Eastern	Western
02HB011 02HB012 02HB013 02HB016 02HK002 02HK003 02HK004 02HK005 02HK006 04HA001 04JA002 04JC002 04JC003 04JG001	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	* * * * * * * * * *	* ** ** ** ** ** ** ** ** ** ** ** ** *	√ √ √ √	\

TABLE 2
Summary of Statistics for Data Used in the Extreme Value Analysis

Region	*No. of Stations	Day Dura- tion	Mean m ³ /s	Standard Deviation m ³ /s	Skew	Coefficient of Variation	Minimum Flow m ³ /s	No. of Years
All	344 344 344 344 341	1 3 7 15 30	10.89 12.50 13.80 14.32 N/A	3.97 4.02 4.06 4.01 3.44	.82 .78 .75 .78	.71 .66 .62 .59	4.07 5.78 6.61 7.27 N/A	28 28 28 28 28 28
Northwestern	67 67 67 67 67	1 3 7 15 30	22.05 24.35 26.78 27.97 29.35	9.26 9.46 9.58 9.82 10.05	.78 .72 .67 .65	.76 .72 .68 .65	7.48 8.79 9.47 9.47 11.01	31 31 31 31 31
Northeastern	65 65 65 65	1 3 7 15 30	13.16 16.06 17.95 19.12 20.64	5.60 6.02 5.62 5.67 6.05	.79 .78 .62 .63	.70 .64 .58 .53	3.94 6.25 7.68 8.87 10.49	31 31 31 31 31
Southwestern & West Central	101 101 101 101 101	1 3 7 15 30	1.98 2.27 2.44 2.61 2.80	.49 .44 .44 .49	.77 .74 .77 .85 1.03	.67 .62 .58 .56	1.24 1.58 1.75 1.88 1.97	26 26 26 26 26
Central	76 76 76 76 76	1 3 7 15 30	1.45 1.65 1.89 2.14 2.53	.65 .66 .67 .73	.39 .42 .44 .51	.45 .42 .40 .41	.52 .63 .81 1.01 1.18	24 24 24 24 24 24
Southeastern	49 49 49 49	1 3 7 15 30	27.36 30.86 33.53 33.53 N/A	7.36 6.99 7.69 6.68 1.51	1.62 1.50 1.48 1.45 1.57	1.05 .96 .93 .89	12.22 18.58 20.97 22.51 N/A	28 28 28 28 28 28

SOME STATIONS APPEAR IN MORE THAN ONE REGION.

The SPSS (Statistical Package Social Science, Norusis, 1986) was used to produce general statistics of the data base including the mean, standard deviation and coefficient of skew of the available low flow samples for different durations. These general statistics are summarized in Table 2.

With reference to Table 2, it is evident that the average of the mean low flow increases as the duration of low flow increases. The standard deviation decreases as a percentage of the mean as the duration increases. The mean skewness of the data decreases with the increase in duration.

Flow duration analyses were subsequently undertaken both on an annual and monthly basis. The flow duration results are summarized in Section 3.4, and the results tabulated on a regional basis in Appendices B to F.

3.3 <u>Extreme Value Analysis</u>

3.3.1 General

Tables summarizing the results of the extreme value analysis for each region are given in Appendices B to F for various recurrence intervals for each duration. An example of the presentation format is given as Table 3. The stations are identified by the Water Survey of Canada station number. The fitting method for the extreme value distribution is identified by a 3 letter code, MAX, MOM, SOD, PLN which stand for; method of maximum likelihood, method of moments, method of smallest observed drought, and the three-parameter log normal distribution respectively. (See also Appendix A.1 for additional information on the fitting procedures.)

The next three parameters appearing in the summary table are general statistics of the data sample including the mean n-day duration flow (m^3/s) , Standard deviation, Skew (G), and the coefficient of

EXTREME VALUE LOW FLOW ANALYSIS FOR 7 DAY DURATION VALUES **EXAMPLE OF EXTREME VALUE TABULAR FORMAT** TABLE 3

	200	100 0	66.93	0.622	10.553	0.122	0.011	0.523	0.002	0.05	9.00	0.000	0.033	9.00	9.000	0.033	0.010	37.197	9.00	9.000	9.000	5.916	2.333	0.191
	166	6.863	6.726	6.659	10.735	0.138	9.012	6.529	6.61	0.027	9.69	0.000	0.033	9.004	9000	934	0.131	934	8	9	0.000	6.003	2.427	0.315
	92	0.003	7.532	0.712	11.636	8.165	9.014	9.041	070.0	3	9.666	9.000	0.033	98.0	988	0.035	0.211	263.746	988	0.000				0.484
	20	0.004	8.975	0.823	11.726				9 6		0.607					0.038	0.355	289.624	9.000	9.000				0.808
CONTAI	.0 10	6.864	10.467	0.956	12.672	0.305	0.032	. 60. 0. 60.	9 9	9	6.669		0.038				9.596				9.000	7.119	25.75	1.168
	5.0	9.600	12.490	1.162	14.311	9.436	0.657	9.814	9 6		0.013	0.141	9.82	6.013	9.664	9.856	0.713	350.559	90	9.600	9.666	8.132	3.614	1.687
EXINEME VALUE LOW TEOM MANIFEST ON TOTAL EXPOSITION TOTAL TO	2.0 5.	6	16.780	-	9				6.436 457		0.036	0.322	0.145	0.026	0.025	0.095	1.159	422.320	0.001	9.000	9.666	11.292	4.762	2.886
	1.250	0.017	21.388	2.338	26.131	-	0	2	9.828	Ď		0	0.473	0	0	9.160	1.634	495.910	0.003	900	0.800	16.159	6.151	4.259
	1.111	6	23.700	~	8				1.6/5 ATR 4				0.826			0	1.889	534	6	6		6	6	5.027
	1.010	60	29 241	n	£.				1.764				2.468			•	2.482	621.	0	0		28	æ ·	6.882
ALC LOS	1.665		6.021						948				3.085		_	0	2.620	641	0	6		_	_	7.328
A INCINC	(*/\$*)	6.66	6.666 8.927	9.661	10.628	0.148	0.856	6.53	0.011	70.0	6.667	900.0	0.634	0.00	98.0		0.221				9.00	5.886	2.30	6.089
	(ARS)		0 g						31				2 28				7 13							7 71
	ပ		1.218 A 208						6.687				1.532				0.467				2.87	0.38	9.70	6.487
	ن ج	1.291	1.276	0.522	1.565	0.388	2.879	3.763	0.428	1.43	2.240	1.188	3.044	0.782	1.625	1.123	9.196	0.044	2.441	2.798	2.924	0.863	9.681	9.985
	STANDARD	6	90.00	9	7	0	100	-	6.376	9	8		9.564	0	6			82	0	0	.0	4	- (1.471
			6.083 18.083			6.964			6.538				0.328			0.113	1.183							3.626
	STINF METHOD MEAN	82-E881 MAX	02HE002 500	92HKBB3 MAX	BZHKBB4 MAX	BZHKBB5 MAX	82HK886 SOD	92HL661 SOD	BZHLBB3 MAX	DOTE DO HAX			62HM983 SOD			021-84886 MAX	_		82KA883 SOD			02KB601 MAX		02KC814 SOU

6.346 9.866 2.828 2.616 366.975	4.665 356.488 6.644 6.967 6.166	0.004 0.000 2.304 0.007 0.010	6.000 6.072 6.000
7.635 6.666 2.259 2.645 365.364	4.642 362.534 0.646 0.088	9.806 9.806 2.471 9.807 9.810	6.606 6.675 6.600
7.894 6.696 2.626 2.796 372.633	4.785 371.346 6.849 6.888 6.169	2.696	6.634 6.679 6.666
9.376 9.884 3.486 2.855 387.184	4.863 389.623 0.859 0.010 0.161	9.000 3.118 9.000 9.012	6.089 6.089 6.000
10.857 6.017 4.631 3.103 406.546	5.091 411.562 6.076 6.013 6.196	6.637 3.578 6.010 6.015	6.236 6.162 6.666
12.806 0.066 6.586 3.604 436.725	5.511 445.329 0.115 0.021	6.054 6.018 4.232 6.018 0.026	6.448 6.126 6.662
16.751 0.454 12.269 5.412 527.556	6.843 530.656 0.277 0.659 0.278	6.156 6.169 5.765 6.676 6.086	1.166 0.195 0.016
29.741 1.877 29.224 8.617 649.162	6.936 637.549 6.663 6.142 6.352	6.282 6.373 7.355 6.277 6.254	2.091 0.297 0.075
22.896 3.451 25.324 10.938 724.724	16.335 786.536 6.859 6.211 6.396	6.376 6.628 8.264 6.496	2.746 0.362 0.144
27.463 11.636 39.275 18.138 926.762	14.393 866.659 1.714 8.457 9.518	0.622 1.690 10.435 1.479 1.665	4.664 0.544 0.501
28.527 13.932 42.947 26.269 979.663	15.563 966.643 1.974 0.535	1 0.691 2.062 1 10.953 1 1.848 1 1.290	5.106 0.592 0.644
6.671 6.666 1.983 3.246 363.768	4.611 376.686 6.864 6.811	6.624 6.862 2.381 6.868	6.606 6.674 6.000
24878	8 <u> </u>	38277	30 10 10 10 10 10 10 10 10 10 10 10 10 10
9.265 1.779 9.614 9.535 9.236	9.287 9.923 9.923 1.855	6.757 1.496 6.314 2.1.622 1.332	9.783 9.485 1.950
9.264 1.663 1.440 1.447 0.813	1.252 0.270 1.995 1.179 0.493	0.986 2.409 0.270 2.192 1.673	1.516 0.811 2.994
4.474 2.281 8.588 3.485 126.545	2.113 111.943 0.361 0.686 0.686	6.136 6.353 1.831 6.364 6.226	1.044
16.862 4.474 1.282 2.281 13.848 8.569 6.365 3.465 550.569126.545	7,368 2,113 546,194111,943 6,391 6,361 6,991 6,696 6,289 6,686	6.182 6.237 5.834 6.188 0.165	1.333 0.218 0.053
02/0884 MAX 02/0887 SOD 02/0885 MAX 02/0801 SOD 02/0985 MAX	62G-666 IMAX 62G-669 MAX 62G-616 SOD 62G-611 SOD 62G-612 MAX	82/C-813 SOD 82/C-814 SOD 82/C-884 MAX 82/C-886 SOD 82/C-886 SOD 82/C-8867 SOD	821.8885 MAX 821.8887 SOD
00000	00000	20000	60 60 60

variation of record (C). The next two columns of the tables give the number of years of record available and the minimum observed average low flow for the particular duration for the available data set. Finally, the estimated flow for the various recurrence intervals are listed for each station.

3.3.2 Annual

Extreme value frequency curves were plotted for each location and are available in Appendices B to F. An example graph is given in Figure 1 which summarizes the actual data and the fitted curve for the 1, 3, 7, 15 and 30 day durations for the Trent River at Glen Ross. Water Survey of Canada Station Number 02HK004.

A statistical summary of average unit area low flow characteristics was also undertaken and is summarized in Table 4. Area average low flow rates (litres/second/kilometre²) together with standard deviation for the 5 durations were tabulated for all the regions for the 2 to 50 year recurrence intervals.

It is interesting to note that in most cases, the standard deviations are approximately equal to or greater than the corresponding mean flows. Low flows are consistently higher than the Provincial average in Northwestern, Northeastern and Central Region and consistently lower in the Southwestern and West Central/Southeastern Regions. However, it should be recognized that this finding may be due to the effects of the drainage area. For example, gauged watersheds in Northern Ontario tend to be larger than watersheds in Southern Ontario. Therefore, if the relationship between watershed area and low flow is non-linear the corresponding statistics may be biased.

TABLE 4
Unit Area Average Low Flows

		Recurrence Interval (years) 2 5 10 20 50									
Region	Day	Mean (Std.		Mean (Std.		Mean (Std.		Mean (Std.		Mean (Std.	
	Dura-	Deviation)		Deviation)		Deviation)		Deviation)		Deviation)	
	tion	1/s/km ²		1/s/km ²		1/s/km ²		1/s/km ²		1/s/km ²	
A11	1	1.59	(1.40)	1.10	(1.12)	0.89	(1.00)	0.75	(0.92)	0.62	(0.85)
	3	1.74	(1.54)	1.24	(1.25)	1.02	(1.12)	0.87	(1.02)	0.73	(0.93)
	7	1.91	(1.90)	1.38	(1.39)	1.15	(1.24	0.99	(1.14)	0.84	(1.03)
	15	2.08	(1.79)	1.52	(1.49)	1.29	(1.34)	1.12	(1.24)	0.97	(1.13)
	30	2.31	(1.88)	1.68	(1.57)	1.43	(1.43)	1.25	(1.32)	1.09	(1.22)
Northwestern	1	1.76	(1.17)	1.24	(0.92)	1.02	(0.80)	0.85	(0.73)	0.70	(0.68)
	3	1.86	(1.30)	1.33	(1.01)	1.09	(0.87)	0.92	(0.78	0.77	(0.71)
	7	1.98	(1.53)	1.43	(1.20	1.18	(1.03)	1.00	(0.91)	0.82	(0.79)
	15	2.08	(1.60)	1.50	(1.26)	1.24	(1.08)	1.05	(0.94)	0.87	(0.82)
	30	2.20	(1.56)	1.60	(1.32)	1.33	(1.14)	1.13	(1.00)	0.94	(0.87)
Northeastern	1	1.93	(1.14)	1.24	(0.80)	0.96	(0.68)	0.77	(0.61)	0.60	(0.57)
	3	2.21	(1.37)	1.49	(1.01)	1.19	(0.86)	0.97	(0.76)	0.78	(0.70)
	7	2.48	(1.63)	1.72	(1.24)	1.40	(1.06)	1.16	(0.94)	0.95	(0.83)
	15	2.71	(1.73)	1.92	(1.36)	1.58	(1.19)	1.35	(1.07)	1.14	(0.97)
	30	3.08	(1.79)	2.18	(1.46)	1.81	(1.31)	1.55	(1.20)	1.31	(1.12)
Southwestern & West Central	1 3 7 15 30	1.14 1.24 1.37 1.54 1.81	(1.17) (1.24) (1.34) (1.43) (1.59)	0.76 0.85 0.97 1.11 1.30	(0.96) (1.03) (1.12) (1.22) (1.36)	0.67 0.70 0.81 0.94 1.12	(0.88) (0.95) (1.03) (1.13) (1.26)	0.52 0.61 0.70 0.84 1.00	(0.83) (0.89) (0.96 (1.06) (1.19)	0.44 0.52 0.61 0.74 0.90	(0.78) (0.83) (0.91) (1.01) (1.13)
Central	1	2.18	(1.70)	1.63	(1.44)	1.38	(1.32)	1.19	(1.23)	1.00	(1.14)
	3	2.35	(1.83)	1.80	(1.56)	1.54	(1.42)	1.34	(1.30)	1.14	(1.17)
	7	2.53	(1.92	1.97	(1.67)	1.70	(1.53)	1.50	(1.42)	1.30	(1.29)
	15	2.76	(2.02)	2.16	(1.78)	1.88	(1.65)	1.68	(1.54)	1.48	(1.42)
	30	3.14	(2.17)	2.44	(1.93)	2.13	(1.80)	1.91	(1.70)	1.70	(1.59)
Southeastern	1	0.97	(1.31)	0.64	(1.02)	0.51	(0.89)	0.43	(0.80)	0.37	(0.72)
	3	1.08	(1.49)	0.74	(1.22)	0.62	(1.10)	0.54	(1.02)	0.48	(0.95)
	7	1.21	(1.61)	0.84	(1.33)	0.71	(1.21)	0.63	(1.13)	0.56	(1.06)
	15	1.32	(1.65)	0.92	(1.38)	0.78	(1.27)	0.70	(1.18)	0.63	(1.11)
	30	1.13	(1.05)	0.72	(0.80)	0.59	(0.70)	0.51	(0.64)	0.46	(0.60

3.3.3 Seasonal

The 70_{20} values were also determined for each month. The resulting analyses are summarized in Appendices B-F. It is evident from the summary tables that many of the lowest of the 70_{20} generally take place in the summer months.

3.4 Flow Duration

3.4.1 Annual

Flow duration tables and curves were produced to summarize the percentage of time the flow was greater than or equal to the given value. Flow duration curves for all stations are given in Appendices B to F. An example table is given in Table 5. The first column "Per" refers to the percentage of the period of record that the tabulated flow was equalled or exceeded (all flows are in $\rm m^3/s$). The annual flow duration curve values are listed in column 2 for the percentage summarized in column 1. Therefore, the largest daily flow recorded for this station up to 1986 is 702 $\rm m^3/s$, found in the 1st row at 0 percent. More significantly for this study are the low flows summarized in the later section of the table which have been exceeded 90, 95 and 100 percent of the time for the period of record.

The 50 percent value ($114 \text{ m}^3/\text{s}$) refers to the median daily flow for the period of record of the flow series and can be compared to the mean value $145 \text{ m}^3/\text{s}$ summarized in the last row of the table. The annual flow duration curve is graphically depicted in Figure 2, which corresponds to the numerical values summarized in columns 1 and 2.

TABLE 5
EXAMPLE SUMMARY OF FLOW DURATION ANALYSIS

			DURATION		02HK004	TRENT	RIVER AT	GLEN ROSS					
	S OF RECO		STATION AR										
PER	MELAL	JANUARY	FEBRUARY	MARCH	APRIL	MAY	THE	JLLY.	AUGUST	SEPTEMBER	OCTOBER	NOVEMBER	DECEMBER
0	702.000	425.000	661.000	637,000	702.000	515.000	200 000	201 000	400 000				
1	518.000	393.000	400.000	549.000	654,000	490.000	328.000	391.000	198.000	340.000	385.000	425.000	439.000
2	489.000	385.000	344.000	530.000	618.000		273.000	374.000	183.000	284.000	378.000	413.000	425.000
3	459.000	340.000	337.000	515.000	584.000	473.000	255.000	289.000	128.000	240.000	337.000	399.000	381.000
4	435.000	319.000	323.000	501.000	558.000	464.000	225.000	183.000	110.000	225.000	323.000	351.000	375.000
5	418.000	294.000	270.000	491.000		459.000	220.000	171.000	108.000	198.000	309.000	337.000	364.000
6	398.000	270.000	253.000		550.000	439.000	213.000	164.000	99.100	189.000	272.000	335.000	337.000
7	379.000	298.000	244.000	477.000	534.000	434.000	205.000	161.000	96.300	187.000	213.000	311.000	316.000
8	357.000	259.000		458.000	528.000	431.000	198.000	156.000	·93.400	150.000	203.000	279.000	306.000
9	337.000	253.000	234.000 230.000	442.000 425.000	521.000	427.000	191.000	152.000	90.800	135.000	197.000	261.000	300.000
3	337.000	23.00	230.000	123.000	518.000	418.000	187.000	148.000	87.300	129.000	189.000	252.000	289.000
10	328.000	250.000	229.000	419.000	513.000	400.000	100 000	100.000	44 ***				
11	300.000	248.000	228.000	410.000	510.000	408.000	183.000	138.000	84.800	126.000	181.000	249.000	279.000
12	290.000	243.000	222.000	406.000	504.000	399.000	181.000	127.000	81.300	117.000	175.000	246.000	274.000
13	272.000	240.000	217.000			382.000	179.000	121.000	77.500	105.000	167.000	241.000	272.000
14	263.000	238.000	213.000	397.000 388.000	499.000	378.000	174.000	112.000	74.200	93.400	159.000	238.000	270.000
15	255.000	234.000			496.000	367.000	171.000	108.000	70.700	91.200	154.000	233.000	268.000
			209.000	374.000	496.000	354.000	188,000	103.000	88.500	88.800	148.000	229.000	258.000
16	247.000	233.000	207.000	357.000	490.000	340.000	164.000	99.100	88.000	86.400	148.000	223.000	285.000
17	237.000	232.000	203.000	351.000	487.000	334.000	181.000	96.300	64.000	83.500	140.000	219.000	262.000
18	230.000	228.000	202.000	347.000	481.000	328.000	158.000	92.000	61.800	81.000	135.000	215.000	260.000
19	224.000	227.000	198.000	341.000	475.000	323.000	153.000	87.000	80.900	78.200	133.000	211.000	258.000
20	210,000	204 200	105 000	221 222	/70 coo	~~~	440.000						
20	219.000	224.000	195.000	331.000	470.000	300.000	149.000	81.600	59.700	75.900	130.000	208.000	254.000
21	213.000	222.000	190.000	321.000	467.000	292.000	142.000	78.200	58.000	74.800	127.000	205.000	252.000
22	208.000	221.000	187.000	316.000	467.000	283.000	136.000	75.300	58.900	73.800	124.000	201.000	248.000
23	202.000	218.000	184.000	311.000	464.000	270.000	133.000	73.000	55.400	72.300	121.000	198,000	237.000
24	198.000	216.000	183.000	303.000	480.000	284.000	130.000	70.500	53.800	69.700	119.000	193.000	227.000
25	193.000	211.000	181.000	297.000	458.000	290.000	126.000	69.400	52.800	87.100	115.000	189.000	223.000
28	187.000	208.000	180.000	289.000	458.000	250.000	120.000	65.700	50.700	64.900	113.000	187.000	221.000
27	183.000	204.000	178.000	283.000	453.000	242.000	118.000	61.700	50.000	83.400	111.000	184.000	217.000
28	180.000	201.000	175.000	273.000	450.000	235.000	112.000	59.400	47.800	61.200	109.000	181.000	215.000
29	177.000	198.000	174.000	268.000	447.000	228.000	111.000	58.000	47.000	58.900	108.000	179.000	213.000
20	179 000	100 000	171 000		445 000								
30	173.000	193.000	171.000	265.000	445.000	224.000	109.000	58.900	48.400	58.800	104.000	178.000	212.000
31	189.000	189.000	170.000	262.000	439.000	221.000	108.000	54.900	45.800	57.500	102.000	177.000	206.000
32	185.000	188.000	169.000	258.000	436.000	217.000	104.000	53.800	44.500	58.900	101.000	174.000	204.000
33	162.000	183.000	168.000	247.000	430.000	215.000	102.000	52.400	44.100	58.800	99.800	172.000	202.000
34	159.000	182.000	185.000	237.000	429.000	213.000	99.100	50.700	43.000	55.200	98.500	170.000	200.000
35	155.000	178.000	183.000	230.000	422.000	210.000	95.700	49.900	42.500	54.400	97.400	168.000	199.000
38	152.000	177.000	182.000	227.000	421.000	208.000	91.800	48.100	42.000	54.100	98.300	166.000	194.000
37	149.000	174.000	180.000	225.000	417.000	207.000	90.000	46.400	41.800	53.500	94.000	163.000	192.000
38	148.000	172.000	159.000	219.000	411.000	204.000	88.100	45.400	40.000	53.000	91.200	159.000	190.000
39	143.000	170.000	157.000	212.000	408.000	201.000	87.200	44.500	39.400	51.800	89.200	157.000	189.000
46	100 000	100 000	150 000	000 000	400 000	100							
40	139.000	168.000	158.000	208.000	405.000	197.000	85.000	43.800	38.800	51.500	88.900	154.000	186.000
41	138.000	168.000	153.000	203.000	396.000	195.000	84.000	43.200	38.200	51.000	85.000	152.000	183.000
42	133.000	163.000	150.000	199.000	396.000	193.000	81.800	42.200	37.200	50.100	84.100	150.000	182.000
43	130.000	161.000	148.000	193.000	391.000	189.000	80.500	41.300	36.800	49.800	83.500	147.000	180.000
44	128.000	159.000	147.000	189.000	388.000	184.000	79.400	40.500	36.300	49.200	82.400	146.000	178.000
45	128.000	155.000	144.000	186.000	383.000	181.000	77.600	39.800	35.700	48.700	81.700	143.000	177.000
46	123.000	153.000	144.000	183.000	381.000	178.000	77.300	39.100	35.400	47.700	80.400	142.000	175.000
47	121.000	151.000	142.000	179.000	377.000	173.000	78.200	38.200	34.800	46.400	79.300	137.000	173.000
48	118.000	149.000	140.000	169.000	372.000	171.000	74.300	37.700	34.300	45.700	78.200	132.000	170.000
49	116.000	148.000	139.000	165.000	365.000	170.000	73.100	37.100	33.700	44.300	75.900	127.000	165.000

	S OF RECOR		DURATION A STATION ARE		02HK004 km ²	I HOLINI I	RIVER AT CE	Li noo					
	ANNUAL	JANUARY	FEBRUARY	WARCH	APRIL	MAY	JUNE	JLY	AUGUST	SEPTEMBER	OCTOBER	HOVEMBER	DECEMBER
50	114.000	146.000	138.000	162.000	357.000	187.000	71.300	36.000	33,100	44.100	74.500	126.000	183.000
51	111.000	143,000	135.000	158.000	349.000	184.000	68.800	35.300	32.700	43.300	73.800	123.000	162.000
52	109.000	141.000	134.000	154.000	345.000	182.000	68.000	34.500	32.300	43.000	71.400	121.000	181.000
53	108.000	140.000	133.000	152.000	340.000	180.000	65.700	33.700	32.300	42.500	69.300	118.000	157.000
54	104.000	139.000	132.000	145.000	337.000	158.000	64.000	33.100	31.900	41.900	67.100	118.000	155.000
55	103.000	138,000	131.000	142.000	331.000	158.000	82.300	32.800	31.700	41.300	86.000	115.000	153.000
56	100.000	138,000	130.000	137.000	326,000	154.000	80.900	32.300	31.100	41.100	85.100	114.000	152.000
57	97.700	133,000	129.000	138.000	315.000	151.000	59.700	32.000	· 31,100	40.500	63.100	111.000	151.000 149.000
58	95.700	133.000	128.000	135.000	306.000	149.000	57.200	31.700	30.800	39.900 38.500	81.700 60.300	109.000	147.000
59	93.000	131.000	127.000	132.000	303.000	148.000	55.500	31.100	30.000	36.300	50.500	107.000	147.000
80	90.600	130,000	128.000	131.000	301.000	148.000	54.700	30.900	30.300	37.900	59.500	107.000	145.000
81	87.500	129.000	125.000	130.000	294.000	145.000	53.800	30.300	29.900	37.400	58.700	104.000	144.000
62	85.000	127.000	125.000	128.000	289.000	144.000	53.400	30.000	29.400	38.700	57.800	103.000	142.000
63	82.700	127.000	123.000	128.000	283.000	141.000	51.800	29.500	29.400	38.500	57.200	99.100	139.000
84	80.100	125.000	122.000	127.000	273.000	140.000	51.000	29.000	29.200	38.200	58.000	97.100	136.000
65	77.900	125.000	120.000	128,000	265,000	137.000	50.400	28.900	28.800	35.700	55.500	94.800	135.000
86	75.300	123.000	120.000	125,000	282.000	137.000	49.300	28.500	28.300	35.400	54.800	92.300	133.000
67	72.800	122.000	119.000	123.000	255.000	134.000	47.800	28.100	28.000	35.000	53.500	90.900	131.000
68	89.400	120.000	118.000	121.000	248.000	133.000	47.000	27.800	27.800	34.500	52.700	89.200	129.000
89	65.900	120.000	117.000	120.000	245.000	129.000	46.400	27.000	27.200	34.300	52.100	88.100	128.000
	en enn	119.000	116.000	118.000	238.000	128,000	45.300	26.500	27.000	34.300	51.500	83.800	125.000
70	82.800	119.000	114.000	117.000	233.000	123.000	44.500	26.200	28.700	33.700	50.700	82,100	123.000
71	59.700		113.000	115.000	227.000	121.000	43.200	25.900	28,100	33.400	50.100	79.300	121.000
72	57.500 55.500	118.000	112.000	114.000	223.000	120.000	41.900	25.400	25.700	32.800	49.800	78.200	119.000
73		116.000	110.000	114.000	219.000	115.000	41.100	25.200	25.500		48, 100	73.800	117.000
74 75	53.500 51.700	115.000	108.000	112.000	212.000	111.000	40.200	24.900	25.500		48.900		116.000
78	50,400	114.000	107.000	111.000	204.000	109.000	39.800	24.500	25.100		48.200	69.800	115.000
77	48.400	112.000		108.000	198.000	108.000	38.400	24.000	24.800		45.000	87.100	114.000
78		110.000		108.000	193.000	103.000	37.400	23.400	24.400	31.100	43.600	66.000	112.000
79		108.000		108.000	184.000	102.000	36.600	22.500	24.000	30.900	42.200	82.500	111.000
			101 000	105 000	100 000	98.800	36.000	21.400	24.000	30.800	40.800	59.400	110.000
80		107.000		105.000	182.000	95,100	35.400	21.000	24.000		39.400		
81		108.000		104.000	1 78.000	92.000	34.500	20,100	23.700		37.900		
82		105.000		103.000	168.000	88.200	33.400	19.900	23.400		37.400		
83		104.000		102,000	161.000	88.400	32,300	19.700	23.200		38.500		
84		103.000		97.400	157.000	83.500	31.100	19.500	22.500		33.700		101.000
85 86		102.000 99.100		98.300	155.000	80.100	30.300	19.300	22.400		33.100		
87		97.500		96.300	151.000	78.100	28.600	19.000	22,100	28.200	32.600	45.000	98.300
88				92.900	148.000	75.900	27.900	18.500	21.600	25.700	30.900		96.300
89				89.500	142.000	74.200	26.700	17,800	20.500	25.100	30.300	42.500	94.600
						00.700	26 400	17 500	19.800	24.500	29.700	40.500	93.400
90				88.400	129.000	69.700	25.400	17.500 17.200	19.100				
91				85.100	121.000	68.200	24.500	16.700	18.000				
92				84.100	112.000	64.800	21.400	15.900	16.400		29.200		
93				81,300	108,000	61.400 59.700	19.400	15.700	15.500		28.800		
94				79.300 78.200	103.000 95.400	57.500	18.400	15.200	15.200		28.200		
95					85.200	48.200	17.800	14.800	14.700				
96				69,400	81.000	41.100	18,700	14.400	13.800				
97				54.100 51.000	82.800	32.000	16.000	13.700					
95							14.800	12,300				11.000	33.700
99 100				49.400 28.600			13,100	11.400					31.700
100	10.000	47.00	20.000	25.000					40.00	0 00	05 10	4 141.925	179.096
	AN 145.086	164.59	9 154.392	213.784	339.233	200.326	89.653	59.528	43,800	61.885	95.10	141.32	, 1/3.030

3.4.2 Seasonal

The flow duration values were also determined and tabulated for monthly flows. Appropriate summaries for all stations are given in Appendices B to F. This is also shown in Table 5 in the example for Station 02HK004. Trent River at Glen Ross.

The seasonal duration curves were not graphically produced for each station. However an example plot for Station 02HK004 demonstrates how the tabulated values could be used to plot monthly curves and provide a comparison to the annual curve (see Figures 3, 4 and 5).

3.5 Maps

Selected low flow characteristics were summarized on maps for each region. The stations are located at the point of discharge measurement and the selected data is summarized in an information box, the format of which is depicted in Figure 6.

The stations are identified by the 7 digit Water Survey Station Number and this is followed by a regulation code. A code "R" indicates that data collected at the station is affected by regulation; the code "N" means the station data are natural or non-regulated. The symbols 70_2 , etc. refer to the average minimum consecutive 7-day flow (m³/s) with a recurrence interval of 2, 5, 10 and 20 years, followed by the minimum one day flow and the period of record for the station. The values shown on the right are the flows (m³/s) equalled or exceeded for the available period of record 5, 50, 75, 95, and 99 percent of the time. The symbol AREA refers to the station drainage area in km².

Station names are listed along with the station numbers for identification purposes, on the map for each region.

5%DUR	50%DUR	75%DUR	95%DUR	99%DUR	AREA	N # RC
702	705	7010	7020	MIN DAY	PERIOD	STATION

STATION # 95% DUR MIN DAY PERIOD AREA 7020

7-DAY AVERAGE LOW-FLOW WITH RECURRENCE OF 20 YEARS (m3/s) FLOW EXCEEDED 95% OF RECORD (m3/s) LOWEST I DAY AVERAGE FLOW (m3/s) WSC STATION IDENTIFICATION PERIOD OF RECORD (years) DRAINAGE AREA (km2) REGULATION CODE STATION INFORMATION LEGEND

A second map summarizes the above noted low flow characteristics expressed as 1/s/km². It may be possible to refer to watersheds with similar unit runoff rates as a means of providing preliminary low flow estimates for ungauged watersheds. However, the limitations of area proration should be recognized. For example, a preliminary Low Flow Regionalization Study for Southwestern and West Central Ontario Region (Cumming Cockburn Limited, 1988) has found that other significant watershed parameters enter into the determination of low flows. Additional investigations are required in order to refine estimating techniques for ungauged watersheds.

4.0 CONCLUSIONS AND RECOMMENDATIONS

4.1 Conclusions

- 1. The analysis of non-parametric test results indicate that the available data base of extreme low flows may exhibit some trend and dependence with some possibility of non-random characteristics. Therefore, some degree of caution should be used when applying the results of this study.
- 2. The Gumbel Extreme Value Distribution was found to adequately fit the majority of available low flow series for various low flow durations. However, for a number of samples with large negative skewness, the 3 PLN Distribution was adopted.
- 3. Flow duration analyses were successfully undertaken both on an annual and monthly basis.
- 4. Extreme value analysis were undertaken on an annual basis for 344 stations and on a monthly basis for 330 stations using the LFA program. Graphical analyses were undertaken for the remainder of the stations.
- 5. It was found that area average low flows are consistently higher than the Provincial average in the Northwestern, Northeastern and Central Regions and consistently lower in the Southwestern/West Central and Southeastern Regions.
- 6. A map summarizing the following low flow characteristics was produced for each region:
 - 7 day average extreme values for the 2, 5, 10 and 20 year recurrence intervals
 - flow duration values which were equalled or exceeded over the available period 5, 50, 75, 95 and 99 percent of the time

A second map was also produced for each region which summarized the above low flow characteristics expressed as 1/s/km².

7. Users referring to the analysis results for regulated stations should investigate the effects of regulation on low flows in more detail.

4.2 Recommendations

- Further investigation should be undertaken to confirm the applicability of available non-parametric tests for low flow series.
- The possibility of effects of cyclic changes in groundwater regime or climatic changes on low flows should be examined in future investigations.
- Additional investigations are required in order to refine low flow estimating techniques for ungauged watersheds for each region.
- 4. Maps summarizing monthly 7Q₂₀ low flow characteristics should be produced for each region. This would be useful when undertaking seasonal low flow analyses to facilitate seasonal analyses.
- 5. Discharge data are collected continuously by the Water Survey of Canada at each station. Data analysis and management technique are now available which would allow efficient updating of the present analyses on a frequent basis. In our opinion, the low flow analyses should be updated every three years in order to provide reasonably accurate information for investigations requiring low flow information.

5.0 REFERENCES

- Cumming Cockburn Limited, "Low Flow Regionalization Study for Southwestern and West Central Ontario.", Ministry of the Environment, Willowdale, 1988.
- Condie, R. and L. Cheng, "Low Flow Frequency Analysis Program LOWFLOW", Inland Waters Directorate, Environment Canada, Ottawa, 1983.
- Curbie, B. "Public Works Computer aided Drafting Program", Enghouse Systems Limited, Toronto, 1987.
- Norusis, M. "SPSS/PC and for the IBM PC/XT/AT", SPSS Inc., Chicago, 1987.
- 5. Pilon, P., R. Condie and D. Harvey "Consolidated Frequency Analysis Package CFA", Water Resources Branch, Inland Waters Directorate, Environment Canada, Ottawa, 1985.
- Pilon, P., R. Jackson, "Low Flow Frequency Analysis Package LFA", Water Resources Branch, Inland Waters/Lands, Environment Canada, Ottawa, 1988.
- Press, W. et al "Numerical Recipes The Art of Scientific Computing", Cambridge University Press, Cambridge, 1986.
- 8. Ministry of the Environment, "Low Flow Characteristics of Streamflow in Ontario". Water Resources Report 3003-1, 2, 3, 4, 1973, 1974, 1975, 1978
- McMahon, T.A. and R. G. Mein, "River and Reservoir Yield", Water Resources Publication, Littleton, Colorado, 1986

APPENDIX A

GENERAL APPENDICES

LOW FLOW CHARACTERISTICS IN ONTARIO

Report prepared for: Water Resources Branch

Report prepared by:
CUMMING COCKBURN LIMITED
145 Sparks Avenue
Willowdale, Ontario
M2H 2S5

APRIL 1990

Copyright: Queen's Printer for Ontario, 1990
This publication may be reproduced for non-commercial purposes with appropriate attribution.

APPENDIX A.1
EXTREME VALUE ANALYSIS

APPENDIX A LOW FLOW CHARACTERISTICS IN ONTARIO

TABLE OF CONTENTS

A.1 Extreme Value Analys	513	S
--------------------------	-----	---

- A.2 Flow Duration Analysis
- A.3 Non-parametric Tests for Independence, Trend and Randomness
 - A.3.1 Test Description
 - A.3.1.1 Introduction
 - A.3.1.2 The Spearman Rank Order Serial Correlation
 Coefficient for Independence
 - A.3.1.3 The Spearman Rank Order Correlation
 Coefficient Test for Trend
 - A.3.1.4 Runs Above and Below the Median for General Randomness
 - A.3.2 Example of Tests
 - A.3.3 Graphical Representation
 - A.3.4 Summary of Test Results

APPENDIX A.1 EXTREME VALUE ANALYSIS

Introduction

Statistical distributions allow estimates of probability of exceedance of events to be made by analytical techniques. Various methods are available, and a good discussion is given by McMahon and Mein (ref 9).

At a gauged location, average low flows can be determined for selected durations of time for each year of record. For example, the corresponding minimum average consecutive 15-day low flow can be determined for each annual record. The series of 15-day average annual low flows can then be ranked lowest to highest and an extreme value analysis undertaken using a theoretical distribution.

The Gumbel Extreme Value Distribution is commonly used for fitting low flow frequency curves to the available data.

The Gumbel Type III Distribution

This is a variation of Fisher and Tippett's third asymnptotic distribution of extreme values and is sometimes referred to as the Weibull distribution. In view of his many contributions it is often referred to in hydrology as the Gumbell II. The probability density function is:

$$\phi(x) = \frac{a}{u - e} \left\{ \frac{x - e}{u - e} \right\}^{a - 1} \exp \left[-\left\{ \frac{x - e}{u - e} \right\}^{a} \right]$$
 (1)

where e is the lower bound parameter

u is the characteristic drought

and a is the shape parameter

Various methods are available for determining the distribution parameters for a particular data set. See references 2 and 6 for example.

The Probability Function

The density function is integrable and gives the distribution function

$$F(x) = 1 - \exp \left[-\left\{ \frac{x - e}{u - e} \right\} a \right]$$
 (2)

which gives the probability of non-exceedance of x.

Since it is more common to require x for a given probability of non-exceedance, a simple re-arrangement gives

$$x = e + (u - e) \left\{ - \ln \left[1 - F(x) \right]^{1/a} \right\}$$
 (3)

There are occasions when the sample series of low flows can have a large negative coefficient of skewness, and since the Gumbel Type III distribution cannot have a skewness of less than -1.14, then the distribution cannot be fitted.

There are insuffucient natural samples available with such low skewness to make a firm choice of an alternative treatment, but from the few available, it was found that the negatively skewed three-parameter lognormal distribution provided an acceptable alternative.

If y = 1n (a-x) is normally distributed, then the probability density function of x is given by

$$\phi(x) = \frac{1}{(a-x)\sigma\sqrt{2\pi}} \exp\left\{-\frac{1}{2\sigma^2} \left[\ln(a-x) - m\right]^{-2}\right\}$$
 (4)

where m and σ are respectively the mean and standard deviation of the series 1n (a-x) and a is an lower boundary parameter. This form of the distribution can only have negative skewness. The equation in the form 1n (x-a) is for distributions with positive skewness.

Taking moments, re-arranging and replacing them by their sample estimates gives:

$$k^3 + 3k - g_1 = 0$$
 (36a) (5)

and after solving for k

$$\hat{a} = x - s/k \tag{37a}$$

$$\hat{m} = \ln(-s/k) - 1/2\ln(k^2+1)$$
 (38a) (7)

$$\sigma^2 = \ln(k2+1)$$
 (39a) (8)

Thus, the distribution is completely defined and the T-year low flows can be computed from:

$$Q_{T} = \hat{a} - \exp(\hat{m} \sigma t) \tag{9}$$

Additional details are discussed in the user's manual.

Source: Condie, R., L. C. Cheng
"Low Flow Frequency Analysis - Program LOFLOW",
Water Resources Branch, Inland Waters Directorate
Environment Canada, Ottawa, 1987

APPENDIX A.2
FLOW DURATION ANALYSIS

APPENDIX A.2 FLOW DURATION ANALYSIS

A flow duration curve is a plot of the flow of a stream against the percent of time the indicated flow was equalled or exceeded during the period covered by the available flow data. This curve is extremely useful for hydro power studies and for characterizing the local streamflow regime.

An empirical procedure was used to analyse each sample discharge record. Flow duration curves are derived by rearranging the available daily or monthly flow data in order of magnitude. The total time period represents 100% of the time. Therefore, by definition of the procedure used here, the largest value is exceeded 0 percent of the time and the smallest value is exceeded 100% of the time.

The flow duration curve represents the percent of time that a specific discharge occurs at that location. However, the curve does not indicate the period of time in the year when the flow is less than or equal to the selected value. Therefore, in some instances, it is also useful to develop flow duration curves on a monthly basis, that is, all data for the month of January over the entire period of record is analysed independently to produce a flow duration curve representative of flow conditions in January.

Single station flow duration analyses and corresponding monthly flow duration curves have been determined at all relevant stream and flow locations across the Province.

APPENDIX A.3

NON-PARAMETRIC TESTS FOR

INDEPENDENCE, TREND AND RANDOMNESS

APPENDIX A.3 NONPARAMETRIC TESTS FOR INDEPENDENCE, TREND AND RANDOMNESS

A.3.1 Test Description

This appendix briefly summarizes the functions evaluated in the package and gives the methods used to determine their statistical significance. Statistical tables are provided for ease of reference.

A.3.1.1 Introduction

Any statistical test of significance will generally be made using the following steps:

- a) State the null hyposthesis, H_0 . For instance in split sample tests, the null hypothesis may be that there is no difference between the sample means.
- b) Choose a significance level, a.
- c) Choose an appropriate statistical test. In this program all tests are nonparametric.
- d) Compute the test statistic.
- e) The sampling distribution of the test statistic is known and has been tabulated, and the chosen significance level then defines the region of rejection.
- f) If the computed test statistic lies in the region of rejection, then the null hypothesis is rejected.

Consider now the four tests in this program.

A.3.1.2 The Spearman Rank Order Serial Correlation Coefficient for Independence

If the series $\mathbf{Q}_{\mathbf{i}}$ with i ranging from 1 to N is put in chronological order, two time series are formed and their respective ranks computed:

Q₁, Q₂Q_N-1 by
$$x_i$$
, the rank of Q_i; i=1; N-1 and Q₂, Q₃Q_N by y_i , the rank of Q_i; i=2, N

then Spearman rank order serial correlation coefficient is

$$S_1 = \frac{1}{2} \left(\sum x_1^2 + \sum y_1^2 - \sum d_1^2 \right) \left(\sum x_1^2 \sum y_1^2 \right)^{-\frac{1}{2}}$$

$$\text{where } \sum x_1^2 = (m^3 - m)/12 - \sum Tx$$

$$\sum y_1^2 = (m^3 - m)/12 - \sum Ty$$

$$d_1 \text{ is the difference in rank between } x_1 \text{ and } y_1$$

$$m = N - 1$$

and the summations are over the m pairs of x_i , y_i .

Ignoring for the moment the terms in T and putting them at zero, equation (a) becomes

$$S_1 = 1 - (6\Sigma d_1^2) \text{ (m}^3 - \text{m)}$$
 (2)

the more familiar form of the Spearman rank correlation coefficient.

The terms in T adjust for tied ranks and are computed as follows. If for instance three observations in the x series were tied for ranks 17, 18, and 19 then each observation is given the rank 18; if two were tied for ranks 24 and 25, then each is ranked 24.5.

For each tied set, T is computed from

$$T_x = (J^3 - J)/12$$

where J is the number of observations tied at a give rank. $\Sigma T_X^{}$ and $\Sigma T_y^{}$ are defined by the extension of the foregoing. When N is 10 or greater, then the function

$$t = S_1 \left[(m-2)/(1-S_1^2) \right]^{\frac{\gamma}{2}}$$
 (3)

is distributed like Student's t with m-2 degrees of freedom. A one-tail test must be used.

A.3.1.3 The Spearman Rank Order Correlation Coefficient Test for Trend

If the series $\mathbf{Q}_{\mathbf{i}}$ with i ranging from 1 to N is put in chronological order, ranks assigned and denoting the series

$${\rm Q_1,\ Q_2\Q_N\ by\ y_i},$$
 the rank of ${\rm Q_i}$ and 1, 2,N by ${\rm x_i},$ the sequential order of ${\rm Q_i}$

then the Spearman rank order correlation coefficient r_s is calculated as in equation 1, except that m=N, $T_X=0$, and the summations are taken over the N pairs of x_i , y_i .

For N = 10 or greater, then the function

$$t = r_{s} [(N-2)/(1-r_{s}^{2})]^{\frac{y}{2}}$$
 (4)

is distributed like Student's t with N-2 degrees of freedom. The null hypothesis is that there is no trend, either upward or downward with time, and so a two-tail test is used.

A.3.1.4 Runs Above and Below the Median for General Randomness

This randomness test is based on the order or sequence in which the individual scores or observations were obtained. Actually, the test is based on the number of runs which a sample exhibits.

A run is defined as a succession of identical symbols which are followed and preceded by different symbols or by no symbols at all.

The total number of runs in a sample of any given size gives an indication of whether or not the sample is random. If very few runs occur, a time trend or some bunching due to lack of independence is suggested. If a great many runs occur, systematic short-period cyclical fluctuations seem to be influencing the sample.

For example, once the median of the sample has been determined, each observation can be labelled as being above and equal to or below and equal to the median. If "A" represents above and equal to the median and "B" represents below and equal to the median, then a sample may be ordered as

AABBBABBBBAABA

(A run represents a succession of identical symbols). For our example, each run is underscored and numbered consecutively:

$$\frac{AA}{1}$$
 $\frac{BBB}{2}$
 $\frac{A}{3}$
 $\frac{BBBB}{4}$
 $\frac{AA}{5}$
 $\frac{B}{6}$
 $\frac{A}{7}$

This sample begins with 2 observations above or equal to the median, followed by a run of 3 observations below or equal to the median, etc.

Seven runs are observed in all: that is, the total number of runs above and below the median RUNAB, is 7. If n_1 represents

the number of events of type A, then $n_1 = 6$. If n_2 denotes the number below the median, type B, then $n_2 = 8$. Thus, the number of observations is equal to $(n_1 + n_2)$.

In order to apply this run test, one must determine n_1 , n_2 and RUNAB.

The null hypothesis, ${\rm H_0}$, is that the A's and B's occur in random order. The alternate hypothesis, ${\rm H_i}$, is that the order of the A's and B's deviates from randomness.

When either n_1 or n_2 is greater than 20, the sampling distribution of RUNAB tends to normality with

$$z = \frac{|\text{RUNAB} - [(2n_1n_2)/(n_1+n_2)+1]|}{\{2n_1n_2(2n_1n_2-n_1-n_2)/[(n_1+n_2)^2(n_1+n_2-1)]^{\frac{\gamma}{2}}}$$
(5)

where z is an N(0,1) variate as described in Table A.4. This package uses a region of rejection defined by

z greater than 1.96 for $\alpha = .05$ z greater than 2.575 for $\alpha = .01$

A.3.2 Example of Tests

The non-parametric test referred to in Section 2.3 were performed on all extreme value data sets. The data for the 7-day duration for Station 02BD002 which "failed" the non-parametric tests is tabulated in Table 1 and comparatively the data for Station 02AB009 which passed all the non-parametric tests is given in Table 2. The results of the tests for independence, trend and randomness for both stations are given in Tables 3 and 4 respectively.

Source: Pilon, P.J., R. Condie, K. D. Harvey
"Consolidated Frequency Analysis Program - CFA", July 1985
Water Resources Branch, Inland Waters Directorate,
Environment Canada - Ottawa, 1985

TABLE 1
7 DAY DURATION FLOWS USED FOR EXTREME VALUE ANALYSIS

SHEBANDONAN RIVER AT SUNSHINE

02AB009

7 DAY LOW FLOW MEAN DISCH. IN PERIOD JAN 01 DEC 31

STARTING MONTH	YEAR	7 DAY HEAN FLOW	ASCENDING ORDER	RANK	CUMULAT. PROBABIL.	RETURN PERIOD
8 1 8 10 10 11 8 7 10 1 1 9 8 3 9 1 1 1 1 2 2 1 2 2 1 2 9 6 9 9 2 4 10	1958 1959 1960 1962 1963 1964 1966 1966 1971 1972 1973 1976 1977 1977 1977 1978 1980 1981 1983 1984	C(MS) 5.2310 7.3610 2.37160 7.7990 3.5100 2.2740 4.1800 2.2740 4.6560 2.8640 2.8640 5.3960 5.9610 6.1360 6.1490 6.5970 2.0900 2.6590 7.7360 4.0070 3.3830 3.2360 5.4270 10.88800 6.7060	(CMS) 2.0900 2.0900 2.740 2.5940 2.6590 2.8640 2.8910 3.3830 3.5100 3.6090 3.7160 4.1800 4.6560 5.2310 5.4270 5.4610 5.9570 6.1360 6.1490 6.5970 6.7960 6.7960 7.7360 8.2340	1 2 3 4 5 6 7 8 9 10 11 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 26 26 27 27 27 27 27 27 27 27 27 27 27 27 27	(?) 2. 05 5. 48 8. 90 12. 33 15. 75 19. 18 22. 60 26. 03 29. 45 32. 88 36. 30 37. 43 43. 15 46. 58 50. 00 53. 42 56. 85 60. 27 63. 70 67. 12 70. 55 73. 97 77. 40 80. 82 84. 25 87. 67	(YEARS) 48.67 18.25 11.23 8.11 6.321 4.42 3.84 3.04 2.75 2.32 2.15 2.00 1.87 1.76 1.49 1.19 1.14
12	1985 1986	8. 2340 5. 9570	9.3610 9.7990 10.8860	27 28 29	91.10 94.52 97.95	1.10 1.06 1.02

TABLE 2 7 DAY DURATION FLOWS USED FOR EXTREME VALUE ANALYSIS

MICHIPICOTEN RIVER AT HIGH FALLS

0280002

7 DAY LOW FLOW MEAN DISCH. IN PERIOD JAN 01 DEC 31

SHITRATZ HIMDH	YEAR	7 DAY HEAN FLOW	ASCENDING URDER	RANK	CUMULAT. PROBABIL.	RETURN PERIOD
10 8 3 8 7 2 1 3 10 2 10 1 1 2 9 1 1 0 1 2 9 1 1 0 1 1 2 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1925678345678990112945678990123345678990123345678990129777889012979777889612978834567899771297778896129787878986	(CHS) 17.0000 20.9710 19.0140 25.9710 19.0140 25.3140 27.7000 15.2710 21.3140 25.3140 25.3140 25.3140 27.5570 25.38000 24.2430 24.2430 24.5430 24.5430 24.5430 24.5430 24.5430 24.5430 24.5430 24.5430 24.5430 24.5430 25.3860 24.5430 26.1570 20.08630 31.1710 36.2140 21.2140 32.3700 31.1000 36.2140 21.2140 32.3700 31.3000 31.3710 36.2140 21.2140 32.3700 31.3000 31.3710 36.2140 37.7710 36.2140 37.7710 38.2290 39.3710 31.8000 39.7770 31.8000 39.7770 31.8000 39.7770 31.8000 39.7770 31.8000 39.7770 31.8000 39.7770 31.8000 39.7770 31.8000 39.7770 31.8000 39.7770 31.8000 39.7770	CMS) 5.3860 9.6090 15.2710 15.9710 15.9710 15.9710 17.0140 20.6430 20.7710 21.2140 21.3140 21.3140 22.7710 23.5000 23.5000 23.5000 23.8860 24.5430 25.8430 25.8430 25.8430 25.8430 25.8430 27.77000	1234567890100000000000000000000000000000000000	(2.70) 11.2.73987.465.439.201.20.3987.465.439.201.21.339.87.465.303.334.41.3.39.87.465.303.334.6.338.89.857.8.85.303.334.859.857.8.85.303.89.877.1.3.368.29.37.37.77.77.77.80.41.9.857.85.39.857.85.39.857.85.39.857.85.39.857.85.39.857.85.39.857.85.39.857.85.39.857.85.39.857.85.39.857.85.39.857.85.39.857.85.39.857.85.39.857.85.39.857.85.39.857.85.39.857.857.85.39.857.857.85.39.857.857.857.85.39.857.857.85.39.857.857.857.857.857.857.857.857.857.857	(YEARS) 97.007 10.57

TABLE 3

RESULTS OF STATISTICAL TESTS FOR STATION 02AB009

--- SPEARMAN TEST FOR INDEPENDENCE ---

OZABOO913007 SHEBANDONAN RIVER AT SUNSHINE ANNUAL NINIMUN DAILY FLOW SERIES 58 TO 86 DRAINAGE AREA = 2800.000

SPEARMAN RANK ORDER SERIAL CORRELATION COEFF = 0.068 D.F. = 26 CORRESPONDS TO STUDENTS T = 0.347 CRITICAL T VALUE AT 5% LEVEL = 1.706 NOT SIGNIFICANT - - - 1% - = 2.479 NOT SIGNIFICANT

Interpretation: The null hypothesis is that the serial(lag-one) correlation is zero.

At the 5% level of significance, the correlation is not significantly different from zero. That is, the data do not display significant serial dependence.

--- SPEARHAN TEST FOR TREND ---

02AB00913007 SHEBANDUNAN RIVER AT SUNSHINE ANNUAL MINIMUM DAILY FLOW SERIES 58 TO 86 DRAINAGE AREA = 2800.000

SPEARMAN RANK ORDER CORRELATION COEFF = -0.227 D.F. = 27
CORRESPONDS TO STUDENTS T = -1.209
CRITICAL T VALUE AT 5% LEVEL = -2.052 NOT SIGNIFICANT
- - - 1% - = -2.771 NOT SIGNIFICANT

Interpretation: The null hypothesis is that the serial(lag-one) correlation is zero.

At the 5% level of significance, the correlation is not significantly different from zero. That is, the data do not display significant trend.

--- RUN TEST FOR GENERAL RANDONNESS ---

02AB00913007 SHEBANDONAN RIVER AT SUNSHINE ANNUAL MINIMUM DAILY FLOW SERIES 58 TO 86 DRAINAGE AREA = 2800.000

THE NUMBER OF RUNS ABOVE AND BELOW THE MEDIAN(RUNAB) = 11
THE NUMBER OF OBSERVATIONS ABOVE THE MEDIAN(N1) = 14
THE NUMBER OF OBSERVATIONS BELOW THE MEDIAN(N2) = 14
Range at 5% level of significance: 10. to 20. HOT SIGNIFICANT

Interpretation: The null hypothesis is that the data are random.

At the 52 level of significance, the null hypothesis cannot be rejected. That is, the sample is significantly random.

TABLE 4

RESULTS OF STATISTICAL TESTS FOR STATION 02AB009

--- SPEARMAN TEST FUR INDEPENDENCE ---

02E000213007 HICHIPICOTEN RIVER AT HIGH FALLS ANNUAL MINIMUM DAILY FLOW SERIES 24 TO 86 DRAINAGE AREA = 5130.000

SPEARMAN RANK ORDER SERIAL CORRELATION COEFF = 0.456 D.F. = 56
CORRESPONDS TO STUDENTS T = 3.839
CRITICAL T VALUE AT 5% LEVEL = 1.674 SIGNIFICANT
- - - 1% - = 2.397 SIGNIFICANT

Interpretation: The null hypothesis is that the serial(lag-one) correlation is zero.

At the 1% level of significance, the correlation is significantly different from zero. That is, the data display highly significant serial dependence.

--- SPEARHAN TEST FOR TREND ---

028000213007 HICHIPICOTEN RIVER AT HIGH FALLS ANNUAL MINIMUM DAILY FLOW SERIES 24 TO 86 DRAIMAGE AREA = 5130.000

Interpretation: The null hypothesis is that the serial(lag-one) correlation is zero.

At the 1% level of significance, the correlation is significantly different from zero. That is the data display highly significant trend.

--- RUN TEST FOR GENERAL RANDONNESS ---

028D00213007 HICHIPICOTEN RIVER AT HIGH FALLS ANNUAL MINIMUM DAILY FLOW SERIES 24 TO 86 DRAINAGE AREA = 5130.000

THE NUMBER OF RUNS ABOVE AND BELOW THE MEDIAN(RUNAB) = 11
THE NUMBER OF OBSERVATIONS ABOVE THE MEDIAN(N1) = 29
THE NUMBER OF OBSERVATIONS BELOW THE MEDIAN(N2) = 29

(HOTE: Z IS THE STANDARD HURHAL VARIATE.)

For this test, Z = 5.034

Critical Z value at the 5% level = 1.960 SIGNIFICANT Critical Z value at the 1% level = 2.575 SIGNIFICANT

Interpretation: The mull hypothesis is that the data are random.

At the 12 level of significance, the null hypothesis can be rejected. That is, the sample is not significantly random.

A.3.3 Graphical Representation

Graphical procedures are available within the LFA (Pilon, Jackson, 1987) program which visually depict some of the results of the non-parametric tests as shown in figures 1 to 6.

Figures 1 and 2 show that there is an apparent trend for Station 02BD002 when compared with the rank versus time graph of Figure 2. These results correspond to the statistical test results. The increase in low flows as a function of time is very apparent for the data for Station 02BD002 (see Figure 3) when compared to the data from Station 02AB009 shown in Figure 4. Figures 5 and 6 graphically depict the probability density function by displaying a histogram of the number of occurrences of between ranges of low flows. It can be seen that both stations are positively skewed for the 7-day duration data.

A.3.4 Summary of Tests Results

Test results are summarized by region for significant levels of 1% and 5% in appendices B to F, Section 2.0. It can be seen from the summary tables (Tables 2 to 6) that the data for stations in the Central Region are random at the 1% level (refer to Table 2).

All other test results indicate that a large number of the data sets "fail" the non-parametric test. This could indicate some dependence, trend and non-randomness. Hence, some degree of caution should be used when applying the results of this study.

To examine effects of length of record and regulation, the analysis was completed using criteria of ≥ 20 years of record, <20 years of record and regulated vs. non-regulated station data.

RANK VERSUS TIME 1924 - 1986

Cumming Cockburn Limited Consulting Engineers and Planners

Cumming Cockburn Limited
Consulting Engineers and Planners

DISCHARGE VERSUS TIME 1924 - 1986

3

Cumming Cockburn Limited
Consulting Engineers and Planners

FIGURE 3

DISCHARGE VERSUS TIME 1958 - 1986

FIGURE 4

Summary of Data Screening All Stations

Northeastern Region

Day Duration	Sig.	1% Not	Indep	Sig.	5% Not	Per.	Sig.	1% Not	Per.	rend Sig.	5% Not	Per.	Sig.	1% Not	Rand Per.	mness Sig.	5% Not	Per.
1 3 7 15 30	53 51 50 51 54	7 9 10 9 6	0 0 0 0	47 44 44 46 46	13 13 16 16 16	0 0 0	50 48 50 53 50	10 12 10 7 10	0 0 0 0	43 43 41 42 44	17 17 19 18 16	0 0 0 0	46 47 47 46 49	19 18 18 19 16	0 0 0 0	46 46 48 48	19 19 17 17	0 0 0
TOTAL	259	41		255	75		251	49		213	87		235	90		236	89	

Northwestern Region

Day		1%	Indep	endence	5%			1.4	Т	rend					Rand	omness		
Duration	Sig.	Not	Per.	Sig.	Not	Per.	Sig.	Not	Per.	Sig.	5% Not	Per.	Sig.	Not	Per.	Sig.	5% Not	Per.
1 3 7 15 30	47 48 49 51 50	20 19 18 16 15	0 0 0 0	42 44 45 43 42	25 23 22 24 25	0 0 0 0	59 60 60 62 62	8 7 7 5 5	0 0 0 0	49 53 53 54 50	18 14 14 13 17	0 0 0	31 29 30 31 30	36 38 37 36 37	0 0 0	46 47 50 51 48	21 20 17 16 19	0 0 0 0
*TOTAL	247	88		216	119		303	32		259	76		151	184		242	93	

Southwest and West Central Region

Day		14	Indep	endence	5%			1.00	Т	rend					Rand	omness		
Duration	Sig.	Not	Per.	Sig.	Not	Per.	Sig.	Not	Per.	Sig.	5% Not	Per.	Sig.	1% Not	Per.	Sig.	5% Not	Per.
1 3 7 15 30	72 71 72 74 71	26 27 26 24 27	0 0 0 0	66 68 66 67 65	32 30 32 31 33	0 0 0 0	57 54 58 57 54	40 44 40 41 44	0 0 0 0	44 43 42 44 41	54 55. 56 54 57	0 0 0 0	17 18 19 17 17	84 83 82 84 84	0 0 0	67 68 71 73 70	34 33 30 28 31	0 0 0
* TOTAL	360	130		332	158		280	210		214	276		88	417		349	156	

Central Region

			Indep	endence					T	rend					Rand	omness		
Day Duration	Sig.	1% Not	Per.	Sig.	5% Not	Per.	Sig.	1% Not	Per.	Sig.	5% Not	Per.	Sig.	1% Not	Per.	Sig.	5% Not	Per.
1 3 7 15 30	64 65 64 66 67	11 10 11 9 8	0 0 0	56 56 56 58 56	19 19 19 17 19	0 0 0	53 52 54 49 49	22 23 21 26 26	0 0 0 0	37 41 37 39 38	38 34 38 36 37	0 0 0 0	1 1 1 0	75 75 75 76 76	52 52 52 100 52	62 60 62 60 66	14 16 14 16 10	0 0 0 0
* TOTAL	326	49		282	93		257	118		192	183		4	376		310	70	

Southeastern Region

Day Duration	Sig.	1% Not	Indep	Sig.	5% Not	Per.	Sig.	1% Not	Per.	rend Sig.	5% Not	Per.	Sig.	1% Not	Rand	omness Sig.	5% Not	Per.
1 3 7 15 30	39 39 40 41 43	7 7 6 5 3	0 0 0 0	37 36 39 37 39	9 10 7 9 7	0 0 0 0	41 43 43 43 44	5 3 3 3 2	0 0 0 0	36 38 41 42 39	10 8 5 4 7	0 0 0 0	22 22 23 23 24	27 27 26 26 25	0 0 0 0	36 37 37 40 40	13 12 12 9 9	0 0 0 0 0
* TOTAL	202	28		188	42		214	16		196	34		114	131		190	55	

* Total of the 5 durations for stations in this region

Our : The duration the data set represents is average 30 day low flow
Sig : The number of stations which show significant dependence, trend, non randomness
Not : The number of stations which show independence, free from trend, and randomness
Per : The percent binomial probability that this number of stations would fail the non parametric tests

Tables 3 and 4 show the results of data from \geq 20 years of record with Table 3 showing less non-regulated stations than the regulated stations on Table 4. The regulated stations show a greater percentage of values which can be said to "pass" the non-parametric test compared to those which "failed". Although the Central Region data is showing computed randomness at the 1% level of significance, the binomial probability is still "0" for all other tests.

Tables 5 and 6 summarize the analysis results for stations with less than 20 years of record. The findings suggest that neither the length of record or the effect of regulation can account for the overall conclusion that the statistical tests indicate some degree of dependence, trend and non-randomness of the low flow data sets.

It is possible that application and interpretation of the non-parametric tests at the 10% level of significance could result in fewer statons "failing" the non-parametric tests.

Summary of Data Screening Non Regulated Stations With A Period of Record Greater Or Equal to 20 Years

Northeastern Region

2-			Indep	endence					T	rend					Rand	omness		
Day Duration	Sig.	1% Not	Per.	Sig.	5% Not	Per.	Sig.	1% Not	Per.	Sig.	5% Not	Per.	Sig.	1% Not	Per.	Sig.	5% Not	Per.
1 3 7 15 30	12 12 12 12 12	0 0 0 0	0 0 0	11 10 11 10 10	1 2 1 2 2	0 0 0 0	11 11 12 12 11	1 1 0 0	0 0 0 0	10 10 10 10 10	2 2 2 2 2 2	0 0 0	8 8 8 8	4 4 4 4	0 0 0	11 11 11 11 11	1 1 1 1 1 1	00000
* TOTAL	60	0		52	8		57	3		50	10		40	20		55	5	

Northwestern Region

Day		1%	Indep	endence	5%			1%	Ţ	rend	5%			1%	Rand	omness	5%	
Duration	Sig.	Not	Per.	Sig.	Not	Per.	Sig.	Not	Per.	Sig.	Not	Per.	Sig.	Not	Per.	Sig.	Not	Per.
1 3 7 15 30	10 10 10 12 12	7 7 7 5 5	0 0 0	10 10 10 10 10	7 7 7 7	0 0 0	15 15 15 15 15	2 2 2 2 2 2	0 0 0 0	12 13 13 14 12	5 4 4 3 5	0 0 0 0	11 11 11 11	6 6 6 6	0 0 0	13 14 14 14 14 12	4 3 3 3 5	0 0 0
* TOTAL	54	31		50	35		75	10		64	21		55	30		67	18	

Southwest and West Central Region

			Indep	endence					Tr	end					Rand	omness		
Day Duration	Sig.	1% Not	Per.	Sig.	5% Not	Per.	Sig.	1% Not	Per.	Sig.	5% Not	Per.	Sig.	1% Not	Per.	Sig.	5% Not	Per.
1 3 7 15 30	20 20 20 21 21	6 6 6 5	0 0 0	19 20 19 19	7 6 7 7 9	0 0. 0 0	18 17 18 17 14	8 9 8 9	0 0 0	13 14 15 13	13 · 12 · 11 · 13 · 16	0 0 0	6 7 8 6	20 19 18 20 20	0 0	20 21 23 22 20	6 5 3 4 6	0 0 0 0
* TOTAL	102	28		94	36		. 84	46		65	65		33	97		106	24	

Central Region

			Indep	endence					Tr	end	F#			1.66	Rand	omness	-	
Day Duration	Sig.	1% Not	Per.	Sig.	5% Not	Per.	Sig.	1% Not	Per.	Sig.	5% Not	Per.	Sig.	Not	Per.	Sig.	5% Not	Per.
1 3 7 15 30	21 21 21 21 21 22	3 3 3 2	0 0 0	17 17 18 19 18	7 7 6 5 6	0 0 0 0	15 16 16 14 14	9 8 8 10 10	0 0 0 0 0	11 13 11 10 10	13 11 13 14 14	0 0 0	0 0 0 0	24 24 24 24 24 24	100 100 100 100 100	20 21 19 19 21	4 3 5 5 3	0 0 0 0
* TOTAL	106	14		89	31		75	45		55	65		0	120		100	20	

Southeastern Region

Day Duration	Sig.	1% Not	Indepe	ndence Sig.	5% Not	Per.	Sig.	1% Not	Tre Per.	Sig.	5% Not	Per.	Sig.	1% Not	Rando Per.	Stg.	5% Not	Per.
1 3 7 15 30	6 6 6 7	1 1 1 1 0	0 0 0 0	6 5 5 6	1 2 2 2 1	0 0 0	6 6 6 6	1 1 1 1	0 0 0 0	5 5 6 4	2 2 2 1 3	0 0 0 0	2 2 2 2 2	5 5 5 5 5	0 0 0 0	5 5 5 6 6	2 2 2 1 1	0 0 0
* TOTAL	31	4		27	8		30	5		25	10		10	25		27		

* Total of the 5 durations for stations in this region

Our : The duration the data set represents ie average 30 day low flow
Sig : The number of stations which show significant dependence, trend, non randomness
Not : The number of stations which show independence, free from trend, and randomness
Per : The percent binomial probability that this number of stations would fail the non parametric tests

Summary of Data Screening Regulated Stations With A Period Of Record Greater Or Equal To 20 Years

Northeastern Region

			Indep	endence					Tr	end					Rand	omness		
Day Duration	Sig.	1% Not	Per.	Sig.	5% Not	Per.	Sig.	1% Not	Per.	Sig.	5% Not	Per.	Sig.	1% Not	Per.	Sig.	5% Not	Per.
1 3 7 15 30	21 19 18 19 22	7 9 10 9 6	0 0 0 0	16 14 14 15 16	12 14 14 13 12	0 0 0 0	20 18 19 22 20	8 10 9 6 8	0 0 0	15 15 13 14 15	13 13 15 14 13	0 0 0	21 22 22 21 24	9 8 8 9 6	0 0 0	15 15 18 18 17	15 15 12 12 12	0 0 0
* TOTAL	99	41		75	65		99	41		72	68		110	40		83	67	

Northwestern Region

			Indep	endence					T	rend					Rand	omness		
Day Duration	Sig.	1% Not	Per.	Sig.	5% Not	Per.	Sig.	1% Not	Per.	Sig.	5% Not	Per.	Sig.	1% Not	Per.	Sig.	5% Not	Per.
1 3 7 15 30	12 14 15 14 15	12 10 9 10	0 0 0	9 11 12 11 10	15 13 12 13 14	0 0 0	19 20 20 22 22	5 4 4 2 2	0 0 0	14 16 18 18 16	10 8 6 6 8	0 0 0	10 8 9 10 9	14 16 15 14 15	0 0 0	11 12 14 15	13 12 10 9	0 0 0
* TOTAL	70	50		53	67		103	17		82	38		46	74		67	53	

Southwest and West Central Region

			Indep	endence					Tr	end					Rand	omness		
Day Duration	Sig.	1% Not	Per.	Sig.	5% Not	Per.	Sig.	1% Not	Per.	Sig.	5% Not	Per.	Sig.	1% Not	Per.	Sig.	5% Not	Per.
1 3 7 15 30	30 29 29 29 29 26	18 19 19 19 22	0 0	25 26 24 25 24	23 22 24 23 24	0 0 0	18 16 19 18 18	30 32 29 30 30	0 0	13 12 12 16 12	35 35 36 32 36	0 0 0	5 5 5 5 5	44 44 44 44	0 0 0 0	28 29 28 29 27	21 20 21 20 22	0 0
* TOTAL	143	97		124	116		89	151		65	175		25	220		141	104	

Central Region

	Day		1%		endence	5%			1%		end	5%			1%	Rando	omness	5%	
Du	ration	Sig.	Not	Per.	Sig.	Not	Per.	Sig.	Not	Per.	Sig.	Not	Per.	Sig.	Not	Per.	Sig.	Not	Per.
	1 3 7 15 30	25 26 25 27 28	8 7 8 6 5	0 0 0 0	22 22 22 23 22	11 11 11 10 11	0 0 0 0	21 20 22 19	12 13 11 14 14	0 0 0 0	15 16 15 16 14	18 17 18 17 19	0 0 0	1 1 1 0 1	32 32 32 33 33 32	27 27 27 100 27	25 21 25 23 27	8 12 8 10 6	0 0 0
* T	OTAL	131	34		111	54		101	64		76	89		4	161		121	44	

Southeastern Region

Day		1%	. 1	endence	5%			1%		end	5%			1%	Rand	lomness	5%	1
Duration	Sig.	Not	Per.	Sig.	Not	Per.	Sig.	Not	Per.	Sig.	Not	Per.	Sig.	Not	Per.	Sig.	Not	Per.
1 3 7 15 30	13 13 14 15 16	6 6 5 4 3	0 0 0 0	12 11 14 12 13	7 8 5 7 6	0 0 0	15 17 17 17 17 18	4 2 2 2 1	0 0 0 0	13 15 17 17 16	6 4 2 2 3	0 0 0	5 6 6 7	14 14 13 13 12	0 0 0	12 13 13 15 14	7 6 6 4 5	0 0 0
* TOTAL	71	24		62	33		84	11		78	17		29	66		67	28	

* Total of the 5 durations for stations in this region

Dur : The duration the data set represents ie average 30 day low flow

Sig : The number of stations which show significant dependence, trend, non randomness

Not : The number of stations which show independence, free from trend, and randomness

Per : The percent binomial probability that this number of stations would fail the non parametric tests

Summary of Data Screening Non Regulated Stations With A Period Of Record Less Than 20 Years

Northwestern Region

Day		1	Indep	endence					Tr	end					Rand	omness		
Duration	Sig.	Not	Per.	Sig.	5% Not	Per.	Sig.	Not	Per.	Sig.	5% Not	Per.	Sig.	1% Not	Per.	Sig.	5% Not	Per.
1 3 7 15 30	19 18 18 19	1 2 2 1 1	0 0 0 0	17 17 17 16 16	3 3 4 4 4	0 0 0	19 19 19 19	1 1 1 1 1 1	0 0 0 0 0	17 18 16 16 16	3 2 4 4 4	0 0 0 0	8 8 8 8	12 12 12 12 12	0 0 0	16 15 16 16	4 5 4 4 5	0 0 0
* TOTAL	93	7		83	17		95	5		83	17		40	60		78	22	

Northeastern Region

0			Indep	endence					Tr	end					Rand	omness		
Day Duration	Sig.	1% Not	Per.	Sig.	5% Not	Per.	Sig.	1% Not	Per.	Sig.	5% Not	Per.	Sig.	1% Not	Per.	Sig.	5% Not	Per.
1 3 7 15 30	14 14 14 14 14	0 0 0 0	0 0 0 0 0	14 14 13 13 14	0 0 1 1 0	0 0 0 0	13 13 13 13 13	1 1 1 1 1 1	0 0 0 0 0 0	12 12 12 12 12	2 2 2 2 1	0 0 0 0	11 11 11 11	3 3 3 3	0 0 0 0	14 14 13 13 14	0 0 1 1 0	0 0 0 0 0 0
* TOTAL	70	0		68	2		65	5		61	9		55	15		68	2	

Southwest and West Central Region

			Indep	endence					Tr	end					Rand	omness		
Day Duration	Sig.	Not	Per.	Sig.	5% Not	Per.	Sig.	1% Not	Per.	Sig.	Not	Per.	Sig.	1% Not	Per.	Sig.	5% Not	Per.
1 3 7 15 30	16 16 17 18 18	2 2 1 0	0 0	16 16 17 17 18	2 2 1 1 0	0 0 0	16 16 16 17 17	2 2 2 1 1	0 0 0 0	14 14 12 11 15	4 4 6 7 3	0 0 0 0	4 4 4 4 4	16 16 16 16 16	0 0 0 0 0	13 12 14 16 17	7 8 6 4 3	0 0 0
* TOTAL	85	5		84	6		82	8		66-	24		20	80		72	28	

Central Region

			Indep	endence					T	rend					Rande	omness		
Day Duration	Sig.	Not	Per.	Sig.	5% Not	Per.	Sig.	Not	Per.	Sig.	5% Not	Per.	Sig.	1% Not	Per.	Sig.	5% Not	Per.
1 3 7 15 30	10 10 10 10 10	0 0 0 0	0 0 0 0	9 9 9 9	1 1 1 1 1	0 0 0 0 0	9 9 9 9	1 1 1 1 1 1	0 0 0 0 0	5 5 5 6 7	5 5 5 4 3	0 0 0 0	0 0 0 0 0	10 10 10 10 10	100 100 100 100 100	9 10 10 10	1 0 0 0	0 0 0 0
TOTAL	50	0		45	5		45	5		28	22		0	50		49	1	

Southeastern Region

			Indep	endence					Tr	end					Rande	omness		
Day Duration	Sig.	1% Not	Per.	Sig.	5% Not	Per.	Sig.	1% Not	Per.	Sig.	5% Not	Per.	Sig.	1% Not	Per.	Sig.	5% Not	Per.
1 3 7 15 30	8 8 8 8	0 0 0 0	0 0 0 0	7 8 8 8 8	1 0 0 0	0 0 0 0 0	8 8 8 8	0 0 0 0	0 0 0 0 0	7 7 8 8 8	1 0 0 0 0	0 0 0 0 0	7 7 7 7 7	3 3 3 3	0 0 0 0	7 7 7 7 8	3 3 3 3 2	0 0 0 0
* TOTAL	40	0		39	1		40	0		38	2		35	15		36	14	

* Total of the 5 durations for stations in this region

Dur : The duration the data set represents ie average 30 day low flow
Sig : The number of stations which show significant dependence, trend, non randomness
Not : The number of stations which show independence, free from trend, and randomness
Per : The percent binomial probability that this number of stations would fail the non parametric tests

Summary of Data Screening Regulated Stations With A Period Of Record Less Than 20 Years

Northwestern Region

	1		Indep	endence					Tr	end					Rande	omness		
Day Duration	Sig.	1% Not	Per.	Sig.	5% Not	Per.	Sig.	1% Not	Per.	Sig.	5% Not	Per.	Sig.	1% Not	Per.	Sig.	5% Not	Per.
1 3 7 15 30	6 6 6 6	0 0 0 0	0 0 0 0 0	6 6 6 6	0 0 0	0 0 0 0	6 6 6 6	0 0 0 0	0 0 0 0	6 6 6 6	0 0 0	0 0 0 0	2 2 2 2 2	4 4 4 4 4	0 0 0 0	6 6 6 6	0 0 0	0 0 0 0
* TOTAL	30	0		30	0		30	0		30	0		10	20		30	0	

Northeastern Region

			Indepe	endence					Tr	end					Rande	omness		
Day Duration	Sig.	1% Not	Per.	Sig.	5% Not	Per.	Sig.	1% Not	Per.	Sig.	5% Not	Per.	Sig.	1% Not	Per.	Sig.	5% Not	Per.
1 3 7 15	6 6	0 0 0	0 0 0	6 6 6	0 0 0	0 0 0	6 6 6	0 0 0	0 0 0	6 6 6	0 0 0	0 0 0	6 6 6	3 3 3	0 0 0	6 6 6	3 3 3 3	0 0
30	6	0	0	6	0	0	6	0	0	6	0	0	6	3	0	6	3	0
* TOTAL	30	0		30	0		30	0		30	0		30	15		30	15	

Southwest and West Central Region

			Indep	endence					Tre	end					Rand	omness		
Day Duration	Sig.	1% Not	Per.	Sig.	5% Not	Per.	Stg.	Not	Per.	Sig.	5% Not	Per.	Sig.	1% Not	Per.	Sig.	5% Not	Per.
1 3 7 15 30	6 6 6 6	0 0 0 0	0 0 0	6 6 6 6	0 0 0	0 0 0	5 5 5 5 5	1 1 1 1 1 1	0 0 0 0	3 3 4 4	2 3 3 2 2	0 0 0	2 2 2 2 2 2	4 4 4 4 4	0 0 0 0	6 6 6 6	0 0 0	0 0 0 0
* TOTAL	30	0		30	0		25	-5		18	12		10	20		30	0	

Central Region

			Indep	endence					Tr	end					Rand	omness		
Day Duration	Sig.	1% Not	Per.	Sig.	5% Not	Per.	Sig.	1% Not	Per.	Sig.	5% Not	Per.	Sig.	Not	Per.	Sig.	5% Not	Per.
1 3 7 15 30	8 8 8 8 7	0 0 0 0	0 0 0 0 0	8 8 7 7 7	0 0 1 1	0 0 0 0	8 7 7 7 7	0 1 1 1 1	0 0 0	6 7 6 7	2 1 2 1	0 0 0	0 0 0 0	9 9 9 9	0 0 0	8 8 8 8	1 1 1 1 1	0 0 0 0
*TOTAL	39	1		37	3		36	4		33	7		0	45		40	- 5	

Southeastern Region

	Independence						Trend						Randomness					
Day Duration	Sig.	1% Not	Per.	Sig.	5% Not	Per.	Sig.	Not	Per.	Sig.	5% Not	Per.	Sig.	1% Not	Per.	Sig.	5% Not	Per.
1 3 7 15 30	12 12 12 12 12	0 0 0 0	0 0 0 0	12 12 12 12 12	0 0 0 0	0 0 0 0	12 12 12 12 12	0 0 0 0	0 0 0 0	11 11 11 11	1 1 1 1	0 0 0 0	8 8 8 8	5 5 5 5	0 0 0 0	12 12 12 12 12	1 1 1 1 1 1	0 0 0 0
* TOTAL	60	0		60	0		60	0		55	5		40	25		60	5	

* Total of the 5 durations for stations in this region

Dur : The duration the data set represents ie average 30 day low flow
Sig : The number of stations which show significant dependence, trend, non randomness
Not : The number of stations which show independence, free from trend, and randomness
Per : The percent binomial probability that this number of stations would fail the non parametric tests

