Thomas Debris-Alazard, Léo Ducas, Wessel P.J. van Woerden

Lattice Reduction

Introductio

An Invariant: G

LLL Algorithm

Code Reductio

Orthopodality

Babai Algorithm for Codes

LLL Reduction and LLL Algorithm for Binary Code

Griesmer's Bound

An Algorithmic Reduction Theory for Binary Codes: LLL and more

Thomas Debris-Alazard, Léo Ducas, Wessel P.J. van Woerden

Thomas

Debris-Alazard,
Léo Ducas,

Wessel P.J. van

Woerden

Lattice Reduction

ntroductio

An Invariant: G

LLL Algorithm

Code Reducti

Orthopodality

Babai Algorithm for Codes LLL Reduction and

LLL Algorithm for Binary Code

Griesmer's Bound

This work

Analogies (definition, proposition, theorem) from Lattices to Codes via an algorithmic approach (LLL)

We propose a reduction theory for codes (LLL-reduced bases):

- 1. Proof of bound on codes (Griesmer...)
- 2. Use to speed-up cryptanalytic algorithms

An Algorithmic Reduction Theory for Binary Codes:

Thomas

Debris-Alazard,

Léo Ducas,

Wessel P.J. van

Woerden

Lattice Reduction

ntroductio

An Invariant: G

LLL Algorithm

Code Reduction

Orthopodality

Babai Algorithm for Codes

LLL Reduction and LLL Algorithm for Binary Code

Griesmer's Bound

This work

Analogies (definition, proposition, theorem) from Lattices to Codes via an algorithmic approach (LLL)

We propose a reduction theory for codes (LLL-reduced bases):

- 1. Proof of bound on codes (Griesmer...)
- 2. Use to speed-up cryptanalytic algorithms

A very good reference to learn about lattices https:

//homepages.cwi.nl/~dadush/teaching/lattices-2018/

Thomas

Debris-Alazard,

Léo Ducas,

Wessel P.J. van

Woerden

Lattice Reduction

Introduction

An Invariant: GS

Code Reduction

Orthopodality

Babai Algorithm for Codes

LLL Reduction and LLL Algorithm for Binary Code

Griesmer's Bound

1 Lattice Reduction

Introduction

An Invariant: GSO

LLL Algorithm

2 Code Reduction

Orthopodality

Babai Algorithm for Codes

LLL Reduction and LLL Algorithm for Binary Code

Griesmer's Bound versus LLL

Thomas

Debris-Alazard,

Léo Ducas,

Wessel P.J. van

Woerden

Lattice Reduction

Introduction

An Invariant: GS

Code Reductio

Orthopodality

Orthopodality

Babai Algorithm for

Codes

LLL Reduction and

LLL Algorithm for Binary Code

Griesmer's Bound

1 Lattice Reduction

Introduction

An Invariant: GSO

LLL Algorithm

2 Code Reduction

Orthopodality

Babai Algorithm for Codes

LLL Reduction and LLL Algorithm for Binary Code

Griesmer's Bound versus LLL

Thomas Debris-Alazard, Léo Ducas.

Wessel P.J. van Woerden

Lattice Reduction

Introduction

An Invariant: GS

LLL Algorithm

Code Reduction

Orthopodality

Babai Algorithm for

Babai Algorithm fo Codes

LLL Reduction and LLL Algorithm for Binary Code

Griesmer's Bound

Lattices

Lattice: $\mathcal{L} \subset \mathbb{R}^n$ discrete subgroup equipped with Euclidean metric $\|\cdot\|$.

Basis of \mathcal{L} (full-rank lattice): $B \stackrel{\text{def}}{=} (b_1, \dots, b_n)$ such that,

- 1. Linearly independent (over \mathbb{R}),
- **2.** Span \mathcal{L} over \mathbb{Z} ,

$$\mathcal{L} = \mathsf{Span}_{\mathbb{Z}}(\mathsf{B}) \stackrel{\mathsf{def}}{=} \left\{ \sum_{i=1}^{n} \lambda_{i} \mathsf{b}_{i} : \lambda_{i} \in \mathbb{Z} \right\}.$$
$$\lambda_{1}(\mathcal{L}) \stackrel{\mathsf{def}}{=} \min_{\mathsf{X} \in \mathcal{C} \setminus \{0\}} \|\mathsf{x}\|$$

Aim of reduction: find good bases!

Thomas Debris-Alazard, Léo Ducas, Wessel P.J. van Woerden

Lattice Reduction

Introduction

An Invariant: GSO

Code Boduesi

Orthopodality

Babai Algorithm for Codes

LLL Reduction and LLL Algorithm for Binary Code

Griesmer's Bound versus LLL

Good Versus Bad

- 1. Why the basis is good or not?
- 2. How to obtain a good basis?

Thomas Debris-Alazard, Léo Ducas, Wessel P.J. van Woerden

Lattice Reduction

Introduction

An Invariant: G

LLL Algorithm

Code Reduction

Orthopodality

Babai Algorithm for Codes

LLL Reduction and LLL Algorithm for Binary Code

Griesmer's Bound

Good Versus Bad

- 1. Why the basis is good or not?
 - → Invariants of a basis, Babai Algorithm...
- 2. How to get a good basis?
 - → Lagrange reduction, LLL algorithm...

Thomas

Debris-Alazard,

Léo Ducas,

Wessel P.J. van

Woerden

Lattice Reductio

Introduction

An Invariant: GSO

LLL Algorithm

Code Reductio

Orthopodality

Babai Algorithm for Codes

LLL Reduction and LLL Algorithm for Binary Code

Griesmer's Bound

1 Lattice Reduction

Introduction

An Invariant: GSO

LLL Algorithm

2 Code Reduction

Orthopodality

Babai Algorithm for Codes

LLL Reduction and LLL Algorithm for Binary Code

Griesmer's Bound versus LLL

Thomas

Debris-Alazard,

Léo Ducas,

Wessel P.J. van

Woerden

Lattice Reduction

Introduction

An Invariant: GSO

LLL Algorithm

Code Reductio

Orthopodality

Babai Algorithm for Codes

LLL Reduction and LLL Algorithm for

Binary Code Griesmer's Bound

An Invariant

B and B' are bases of the same lattices if and only if,

$$\exists U \in GL_n(\mathbb{Z})$$
 : $B' = UB$.

$$det(\mathcal{L}) \stackrel{\mathsf{def}}{=} |det(\mathsf{BB}^\mathsf{T})|$$
 is an invariant of $\mathcal{L}!$

Thomas
Debris-Alazard,
Léo Ducas,
Wessel P.J. van
Woerden

Lattice Reduction

Introductio

An Invariant: GSO

LLL Algorithm

Code Reductio

Orthopodality

Babai Algorithm for

Codes

LLL Reduction and

LLL Algorithm for Binary Code

Griesmer's Bound

Gram-Schmidt Ortholpo. (GSO)

 b_1, \ldots, b_n basis of \mathcal{L} .

- $b_1^* \stackrel{\text{def}}{=} b_1$
- Projection orthogonal to $Span_{\mathbb{R}}(b_1^*, \ldots, b_{i-1}^*)$,

$$\mathbf{b}_i^* \stackrel{\text{def}}{=} \pi_i(\mathbf{b}_i)$$
 where $\pi_i(\mathbf{b}_i) \stackrel{\text{def}}{=} \mathbf{b}_i - \sum_{i < i} \frac{\langle \mathbf{b}_i, \mathbf{b}_j \rangle}{\|\mathbf{b}_j\|^2} \mathbf{b}_j^*$

$$(b_1^*, \ldots, b_n^*)$$
 is not a basis of \mathcal{L} ... but:

$$\mathsf{det}(\mathcal{L}) = \prod \|\mathsf{b}_i^*\| \quad \mathsf{and} \quad \mathsf{Span}_{\mathbb{R}}(\mathcal{L}) = \mathsf{Span}_{\mathbb{R}}(\mathsf{b}_1^*, \dots, \mathsf{b}_n^*).$$

Thomas Debris-Alazard, Léo Ducas, Wessel P.J. van Woerden

Lattice Reduction

Introductio

An Invariant: GSO

LLL Algorithm

Code Reductio

Orthopodality

Babai Algorithm for

Codes

LLL Reduction and

LLL Algorithm for Binary Code

Griesmer's Bound

Decrease First Length Vector

$$det(\mathcal{L}) = \|b_1\| \times \|b_2^*\| \times \dots \times \|b_n^*\|$$
$$\|b_2^*\| \times \dots \times \|b_n^*\| \nearrow \longrightarrow \|b_1\| \searrow$$

 \rightarrow Increase $\|\mathbf{b}_2^*\|, \dots, \|\mathbf{b}_n^*\|$ to find a short lattice point!

Admittedly, but...

Quality of a basis \iff What can we do algorithmically with it?

Thomas Debris-Alazard,

Léo Ducas, Wessel P.J. van Woerden

Lattice Reduction

Introduction

An Invariant: GSO

LLL Algorithm

Code Reduction

Code Reductio

Orthopodality

Babai Algorithm for

Codes

LLL Algorithm for Binary Code

Griesmer's Bound

Tiling of the Space

$$\mathcal{P}(\mathsf{B}^*) \stackrel{\mathsf{def}}{=} \left\{ \sum_i \lambda_i \mathsf{b}_i^* : \lambda_i \in [0, 1/2) \right\} \quad \text{(Babai's Fundamental Domain)}$$

$\mathcal{P}(\mathsf{B}^*)$ tiles the space according to \mathcal{L}

1. \mathcal{L} -packing,

$$\forall x, y \in \mathcal{L}, \quad (x + \mathcal{P}(B^*)) \cap (y + \mathcal{P}(B^*)) = \emptyset$$

2. L-covering,

$$\mathcal{L} + \mathcal{P}(\mathsf{B}^*) = \mathbb{R}^n$$

And? → Babai Algorithm! An Algorithmic Reduction Theory for Binary Codes:

Thomas

Debris-Alazard,

Léo Ducas,

Wessel P.J. van

Woerden

Lattice Reduction

Introductio

An Invariant: GSO

LLL Algorithm

Code Reduction

Orthopodality

Babai Algorithm for

Codes

LLL Reduction and

LLL Algorithm for Binary Code

Griesmer's Bound

Babai Algorithm

Algorithm 1: Babai Nearest Plan algorithm

Input: B basis of \mathcal{L} and $y \in \mathbb{R}^n$ (word to "decode")

Output: $e \in \mathcal{P}(B^*)$ and $x \in \mathcal{L}$: y = x + e.

e := y

x := 0

for i = n down to 1 do

$$k := \left\lfloor \frac{\langle \mathsf{e}, \mathsf{b}_i^* \rangle}{\|\mathsf{b}_i^*\|} \right
ceil$$

 $e := e - kb_i$

 $x := x + kb_i$

"If i < j then $e \leftarrow e - kb_i$ doesn't modify $\langle e, b_i^* \rangle$ "

An Algorithmic Reduction Theory for Binary Codes:

Thomas

Debris-Alazard,

Léo Ducas,

Wessel P.J. van

Woerden

Lattice Reduction

Introduction

An Invariant: GSO

LLL Algorithm

Code Reductio

Orthopodality

Babai Algorithm for Codes

LLL Reduction and LLL Algorithm for

Binary Code Griesmer's Bound

Balance GSO's lengths

$$\label{eq:parameters} \begin{split} y & \xrightarrow{\mathsf{Babai}(\mathsf{B})} (\mathsf{x},\mathsf{e}) : \mathsf{y} = \mathsf{x} + \mathsf{e}, \, \mathsf{x} \in \mathcal{L} \text{ and } \mathsf{e} \in \mathcal{P}(\mathsf{B}^*) \\ \\ \mathcal{P}(\mathsf{B}^*) &= \left\{ \sum_i \lambda_i \mathsf{b}_i^* \, : \, \lambda_i \in (-1/2,1/2) \right\} \end{split}$$

$$\|\mathbf{e}\|$$
 small: minimize $^1/_4\sum_i\|\mathbf{b}_i^*\|^2$ with constraint $\prod_i\|\mathbf{b}_i^*\|=\det(\mathcal{L})$

$$\rightarrow$$
 Balance the lengths $\|\mathbf{b}_1^*\| \approx \cdots \approx \|\mathbf{b}_n^*\|$

Aim of LLL: Balance the $\|\mathbf{b}_{i}^{*}\|$'s

Thomas

Debris-Alazard,

Léo Ducas,

Wessel P.J. van

Woerden

Lattice Reductio

Introduction

An Invariant: G

LLL Algorithm

Code Reduction

Orthopodality

Babai Algorithm for

Codes

LLL Reduction and LLL Algorithm for Binary Code

Griesmer's Bound

1 Lattice Reduction

Introduction

An Invariant: GSO

LLL Algorithm

2 Code Reduction

Orthopodality

Babai Algorithm for Codes

LLL Reduction and LLL Algorithm for Binary Code

Griesmer's Bound versus LLL

Thomas

Debris-Alazard,

Léo Ducas,

Wessel P.J. van

Woerden

Lattice Reduction

Introduction

An Invariant: GSO

LLL Algorithm

Code Reductio

Orthopodali

Babai Algorithm for Codes

LLL Reduction and LLL Algorithm for Binary Code

Griesmer's Bound versus LLL

Aim of LLL

Balance GSO lengths $\|\mathbf{b}_i^*\|$'s

→ Let us start with lattices of dimension 2

Thomas
Debris-Alazard,
Léo Ducas,
Wessel P.J. van
Woerden

Lattice Reductio

Introduction

An Invariant: GS

LLL Algorithm

Code Reduction

Orthopodality

Babai Algorithm for

Codes

LLL Reduction and
LLL Algorithm for

Binary Code Griesmer's Bound

Wristwatch lemma

Theorem (Wristwatch lemma)

Let \mathcal{L} be a lattice of dimension 2. It exists a basis (b_1, b_2) such that:

- b_1 is a shortest vector of \mathcal{L} ,
- $|\langle b_1, b_2 \rangle| \le 1/2 ||b_1||^2$ (will be useful for Hermite constant).
 - → Proof of this theorem by an algorithm! Lagrange Reduction.

An Algorithmic Reduction Theory for Binary Codes:

Thomas

Debris-Alazard,

Léo Ducas,

Wessel P.J. van

Woerden

Lattice Reduction

Introductio

An Invariant: GSO

LLL Algorithm

Code Reduction

Orthopodality

Babai Algorithm for Codes

LLL Reduction and LLL Algorithm for Binary Code

Griesmer's Bound

Lagrange Reduction

Algorithm 2: Lagrange reduction algorithm

Input: A basis (b₁; b₂) of a lattice

Output: A basis $(b_1; b_2)$ as in the Wristwatch lemma.

repeat

Swap
$$b_1 \leftrightarrow b_2$$

$$k \leftarrow \left\lfloor \frac{\langle b_1, b_2 \rangle}{\|b_1\|^2} \right\rceil$$

$$b_2 \leftarrow b_2 - kb_1$$

until
$$\|b_1\| \leq \|b_2\|$$

Algorithm terminates after $O\left(\log_2 \frac{\|\mathbf{b_1}\|}{\sqrt{\det \mathcal{L}}}\right)$ steps!

Thomas Debris-Alazard, Léo Ducas, Wessel P.J. van Woerden

Lattice Reduction

Introduction

An Invariant: GSO

LLL Algorithm

Code Reductio

Babai Algorithm for Codes

LLL Reduction and LLL Algorithm for Binary Code

Griesmer's Bound versus LLL

Lagrange Reduction

Thomas Debris-Alazard, Léo Ducas, Wessel P.J. van Woerden

Lattice Reduction

Introduction

An Invariant: GSO

LLL Algorithm

Code Reduc

Orthopodality

Babai Algorithm for Codes

LLL Reduction and LLL Algorithm for Binary Code

Griesmer's Bound versus LLL

Lagrange Reduction

Reduction

Thomas Debris-Alazard, Léo Ducas, Wessel P.J. van Woerden

Lattice Reduction

Introduction

An Invariant: GSO

LLL Algorithm

Code Reductio

Orthopodality

Babai Algorithm for Codes

LLL Reduction and LLL Algorithm for Binary Code

Griesmer's Bound versus LLL

Lagrange Reduction

Thomas Debris-Alazard, Léo Ducas, Wessel P.J. van Woerden

Lattice Reduction

Introduction

An Invariant: GSO

LLL Algorithm

Code Reduction

Codes

Babai Algorithm for

LLL Reduction and LLL Algorithm for Binary Code

Griesmer's Bound versus LLL

Lagrange Reduction

Swap

Thomas Debris-Alazard, Léo Ducas, Wessel P.J. van Woerden

Lattice Reduction

Introduction

An Invariant: GSO

LLL Algorithm

Code Reduction

Orthopodality

Babai Algorithm for Codes

LLL Reduction and LLL Algorithm for Binary Code

Griesmer's Bound versus LLL

Lagrange Reduction

Reduction

Thomas Debris-Alazard, Léo Ducas, Wessel P.J. van Woerden

Lattice Reduction

Introduction

An Invariant: GSO

LLL Algorithm

Code Reductio

Orthopodality

Babai Algorithm for Codes

LLL Reduction and LLL Algorithm for Binary Code

Griesmer's Bound versus LLL

Lagrange Reduction

Thomas Debris-Alazard, Léo Ducas, Wessel P.J. van Woerden

Lattice Reduction

Introduction

An Invariant: GSO

LLL Algorithm

Code Reduction

Onthonodolia

Babai Algorithm for Codes

LLL Reduction and LLL Algorithm for Binary Code

Griesmer's Bound versus LLL

Lagrange Reduction

Swap

An Algorithmic Reduction Theory for Binary Codes:

Thomas Debris-Alazard, Léo Ducas, Wessel P.J. van

Woerden

Lattice Reduction

An Invariant: GS

LLL Algorithm

Code Reduction

Orthopodality

Babai Algorithm for Codes

LLL Reduction and LLL Algorithm for Binary Code

Griesmer's Bound

Hermite constant

Definition (Hermite constant)

The Hermite constant γ_n is the supremum of over *n*-dimensional lattices \mathcal{L}_n :

$$\gamma_n \stackrel{\mathsf{def}}{=} \sup_{\mathcal{L}_n} \gamma(\mathcal{L}) \quad \mathsf{where} \quad \gamma(\mathcal{L}) \stackrel{\mathsf{def}}{=} \frac{\lambda_1(\mathcal{L})^2}{\det(\mathcal{L})^{n/2}}.$$

For lattices of dimension 2 the Hermite constant is:

$$\gamma_2 = \sqrt{4/3}$$

→ To obtain this: Lagrange reduction!

(Algorithmic proof of γ_2)

Thomas
Debris-Alazard,
Léo Ducas,
Wessel P.J. van
Woerden

Lattice Reduction

Introductio

An Invariant: GS

LLL Algorithm

Code Reducti

Orthopodality

Babai Algorithm for Codes

LLL Reduction and LLL Algorithm for Binary Code

Griesmer's Bound

Proof of $\gamma_2 = \sqrt{4/3}$

• $\underline{\gamma_2} \leq \sqrt{4/3}$: Let (b_1,b_2) Lagrange reduced:

$$b_1$$
 is a shortest vector of $\mathcal L \quad \text{and} \quad |\langle b_1, b_2 \rangle| \leq 1\!/\!2$

Rotating/scaling: $b_1 = (0,1)$ and $b_2 = (\alpha, \beta)$:

$$\lambda_{\mathbf{1}}(\mathcal{L})\!/\!\!\det\mathcal{L}=1\!/\!|\alpha|$$

But $\alpha^2 \ge 3/4$ and then $\gamma_2^2 \le 4/3$,

$$\begin{array}{l} |\langle b_1, b_2 \rangle| \leq 1/2 \iff |\beta| \leq 1/2 \\ \|b_1\| \leq \|b_2\| \iff 1 \leq \alpha^2 + \beta^2 \end{array} \right\} \Rightarrow 1 \leq \alpha^2 + \beta^2 \leq \alpha^2 + 1/4.$$

• $\gamma_2 \ge \sqrt{4/3}$: Take $b_1 = (0,1)$ and $b_2 = (\sqrt{3/4}, 1/2)$.

Thomas Debris-Alazard,

Léo Ducas, Wessel P.J. van Woerden

Lattice Reduction

ntroduction

An Invariant: GSO

LLL Algorithm

Code Reductio

Orthopodality

Babai Algorithm for

Codes

LLL Reduction and

LLL Algorithm for Binary Code

Griesmer's Bound

LLL Reduced

$$\pi_i = \pi_{(b_1, \dots, b_{i-1})^{\perp}}$$

A basis B is LLL-reduced if $(\pi_i(b_i), \pi_i(b_{i+1}))$ is Lagrange-Reduced for all i < n.

 \rightarrow Enables to balance the profile, i.e: $(\|\mathbf{b}_i^*\|)_i$...

$$\|\mathbf{b}_{i}^{*}\| \leq \gamma_{2} \times \|\mathbf{b}_{i+1}^{*}\| = \sqrt{4/3} \times \|\mathbf{b}_{i+1}^{*}\|$$

Thomas Debris-Alazard,

Léo Ducas, Wessel P.J. van Woerden

Lattice Reduction

Introduction

An Invariant: G

LLL Algorithm

Code Reduction

Orthopodality

Babai Algorithm for Codes

LLL Reduction and LLL Algorithm for

Binary Code Griesmer's Bound

LLL Reduced

$$\pi_i = \pi_{(b_1, \dots, b_{i-1})^{\perp}}$$

A basis B is LLL-reduced if $(\pi_i(b_i), \pi_i(b_{i+1}))$ is Lagrange-Reduced for all i < n.

 \rightarrow Enables to balance the profile, *i.e.* ($\|\mathbf{b}_{i}^{*}\|$)_{i...}

$$\|\mathbf{b}_{i}^{*}\| \leq \gamma_{2} \times \|\mathbf{b}_{i+1}^{*}\| = \sqrt{4/3} \times \|\mathbf{b}_{i+1}^{*}\|$$

Proof.

Let $\mathcal{L}_i \stackrel{\text{def}}{=} \mathsf{Span}_{\mathbb{Z}}(\pi_i(\mathsf{b}_i), \pi_i(\mathsf{b}_{i+1}))$:

$$\frac{\lambda_1(\mathcal{L})^2}{\det(\mathcal{L}_i)} = \frac{\|\pi_i(b_i)\|^2}{\|\pi_i(b_i)\| \times \| \text{ Proj } (\pi_i(b_{i+1}))\|} = \frac{\|\pi_i(b_i)\|}{\|\pi_{i+1}(b_{i+1})\|} \le \sqrt{\frac{4}{3}}.$$

Thomas Debris-Alazard, Léo Ducas, Wessel P.J. van

Woerden

Lattice Reductio

An Invariant: GSO

LLL Algorithm

Code Reduction

Orthopodality

Babai Algorithm for

Codes

LLL Reduction and

LLL Algorithm for Binary Code

Griesmer's Bound

LLL Algorithm

While $\exists i$ s.t $(\pi_{b_i}, \pi_i(b_{i+1}))$ is not Lagrange-reduced, Lagrange reduce it...

- Correctness: by definition,
- Termination in poly-time: no details here, need an arepsilon-relaxation,

Thomas

Debris-Alazard,

Léo Ducas,

Wessel P.J. van

Woerden

Lattice Reductio

Introductio

An Invariant: GSO

LLL Algorithm

Code Reduction

Orthopodality

Babai Algorithm for

Codes

LLL Reduction and

LLL Algorithm for Binary Code

Griesmer's Bound

1 Lattice Reduction

Introduction

An Invariant: GSO

LLL Algorithm

2 Code Reduction

Orthopodality

Babai Algorithm for Codes

LLL Reduction and LLL Algorithm for Binary Code

Griesmer's Bound versus LLL

An Algorithmic Reduction Theory for Binary Codes:

Thomas

Debris-Alazard,

Léo Ducas,

Wessel P.J. van

Woerden

Lattice Reduction

An Invariant: GS

LLL Algorithm

Code Reduction

Orthopodality

Babai Algorithm for

Codes

LLL Reduction and

LLL Algorithm for Binary Code

Griesmer's Bound

Codes

Binary Linear Code: $\mathcal{C} \subset \mathbb{F}_2^n$ subspace equipped with Hamming metric $|\cdot|$.

Basis of C (dimension k code): $B \stackrel{\text{def}}{=} (b_1, \dots, b_k)$ such that,

- 1. Linearly independent,
- **2.** Span \mathcal{C} over \mathbb{F}_2 ,

$$\mathcal{L} = \mathcal{C}(\mathsf{B}) \quad ext{where} \quad \mathcal{C}(\mathsf{B}) \stackrel{\mathsf{def}}{=} \left\{ \sum_{i=1}^n m_i \mathsf{b}_i \ : \ m_i \in \mathbb{F}_2
ight\}.$$

$$d_{\mathsf{min}}(\mathcal{L}) \stackrel{\mathsf{def}}{=} \min_{\mathsf{c} \in \mathcal{C} \setminus \{0\}} |\mathsf{c}|$$

Once again, aim of reduction: find good bases!

Thomas

Debris-Alazard,

Léo Ducas,

Wessel P.J. van

Woerden

Lattice Deducatio

An Invariant: GSO

LLL Algorithm

Code Reduction
Orthopodality

Babai Algorithm for

Codes

LLL Reduction and

LLL Algorithm for Binary Code

Griesmer's Bound

Systematic Form

Basis in systematic form is used for:

- Generic decoding, information set decoding,
- Finding short codewords, $|b_i| \approx \frac{n-k}{2}$ when B random.
 - → Can we find better bases in poly-time? LLL approach?

Thomas Debris-Alazard, Léo Ducas, Wessel P.J. van Woerden

Lattice Reduction

Introductio

An Invariant: GSO

LLL Algorithm

Code Reduction

Orthopodality

Babai Algorithm for Codes

LLL Reduction and LLL Algorithm for Binary Code

Griesmer's Bound

An LLL Approach for Codes

Use the standard inner product over \mathbb{F}_2^n ?

Bad idea...

No information about the weight...

$$\langle x, y \rangle = 0 \Rightarrow |x + y| = |x| + |y|.$$

Invariant associated to it?

Thomas

Debris-Alazard,

Léo Ducas,

Wessel P.J. van

Woerden

Lattice Reductio

Introductio

An Invariant: G

LLL Algorithm

Code Reductio

Orthopodality

Babai Algorithm for Codes

LLL Reduction and LLL Algorithm for Binary Code

Griesmer's Bound

1 Lattice Reduction

Introduction

An Invariant: GSO

LLL Algorithm

2 Code Reduction

Orthopodality

Babai Algorithm for Codes

LLL Reduction and LLL Algorithm for Binary Code

Griesmer's Bound versus LLL

Thomas

Debris-Alazard,

Léo Ducas,

Wessel P.J. van

Woerden

Lattice Reduction

Introductio

An Invariant: GSO

LLL Algorithm

Code Reductio

Orthopodality

Babai Algorithm for

Codes

LLL Reduction and

LLL Algorithm for Binary Code

Griesmer's Bound versus LLL

Notation

Bitstring Notation

Let $x, y \in \mathbb{F}_2^n$,

$$x \wedge y = (x_i \wedge y_i)_i$$
 and $x \vee y = (x_i \vee y_i)$

Example:

Thomas Debris-Alazard, Léo Ducas, Wessel P.J. van

Woerden

Lattice Reductio

An Invarian

LLL Algorithm

Code Reduction

Orthopodality

Babai Algorithm for Codes

LLL Reduction and LLL Algorithm for Binary Code

Griesmer's Bound

Notation

Bitstring Notation

Let $x, y \in \mathbb{F}_2^n$,

$$x \wedge y = (x_i \wedge y_i)_i$$
 and $x \vee y = (x_i \vee y_i)$

Example:

Support

Let $x \in \mathbb{F}_2^n$, its support is defined as:

$$Supp(x) \stackrel{\mathsf{def}}{=} \{i \in [1, n] : x_i \neq 0\}.$$

Thomas Debris-Alazard, Léo Ducas, Wessel P.J. van Woerden

Lattice Reduction

An Invariant: (

LLL Algorithm

Code Reduction

Orthopodality

Babai Algorithm for Codes

LLL Reduction and LLL Algorithm for Binary Code

Griesmer's Bound

Orthopodality

Fundamental Remark:

$$|x + y| = |x| + |y| - 2|x \wedge y|$$
.

Orthopodality

Two vectors $x, y \in \mathbb{F}_2^n$ are said orthopodal:

$$x\perp y \stackrel{def}{\Longleftrightarrow} x \wedge y = 0.$$

$$x \perp y \Rightarrow |x| + |y|$$

Orthopodal Projection

$$\pi_{\mathsf{y}}^{\perp}: \mathsf{x} \mapsto \mathsf{x} \wedge \overline{\mathsf{y}}.$$

$$\pi_y^{\perp}(x)$$
 only keeps coordinates of x in $Sup(x) \setminus Supp(y)$ ($Supp(x) = \{i : x_i \neq 0\}$).

Thomas

Debris-Alazard,
Léo Ducas,

Wessel P.J. van

Woerden

Lattice Red

An Invariant: GSO

LLL Algorithm

Code Reductio

Orthopodality

Babai Algorithm for Codes

LLL Reduction and LLL Algorithm for Binary Code

Griesmer's Bound

$\begin{aligned} & \mathsf{Gram}\text{-}\mathsf{Schmidt} \\ & \mathsf{Orthopodalization}(\mathsf{I}) \end{aligned}$

For lattices:

 π_i^{\perp} orthogonal projection to $(\mathsf{Span}_{\mathbb{R}}(\mathsf{b}_1,\ldots,\mathsf{b}_{i-1}))^{\perp}$

For Codes:

$$\pi_i^{\perp}: \mathsf{x} \longmapsto \mathsf{x} \wedge \overline{\left(\mathsf{b}_1 \vee \cdots \vee \mathsf{b}_{i-1}\right)}$$

Lattice Code $Span_{\mathbb{R}}(\cdot)$ $Supp(\cdot)$

Thomas Debris-Alazard, Léo Ducas, Wessel P.J. van Woerden

Lattice Reduction

Introductio

An Invariant: G

LLL Algorithm

Code Reduct

Orthopodality

Babai Algorithm for Codes

LLL Reduction and LLL Algorithm for

Binary Code Griesmer's Bound

Gram-Schmidt Orthopodalization(II)

- $b_1^+ \stackrel{\text{def}}{=} b_1$
- Projection orthogonal to $Sup(b_1, ..., b_{i-1})$,

$$\mathsf{b}_i^+ \stackrel{\mathsf{def}}{=} \pi_i^\perp(\mathsf{b}_i) \quad \mathsf{where} \quad \pi_i^\perp(\mathsf{b}_i) = \mathsf{b}_i \wedge \overline{(\mathsf{b}_1 \vee \dots \vee \mathsf{b}_{i-1})}$$

An example:

$$\mathsf{b}_1,\mathsf{b}_2,\mathsf{b}_3$$

$$\mathsf{b}_{1}^{+}, \mathsf{b}_{2}^{+}, \mathsf{b}_{3}^{+}$$

$$\pi_i^{\perp}(\mathsf{x}) = \mathsf{x} + \sum_{i < i} \mathsf{x} \wedge \mathsf{b}_j^+$$

Thomas
Debris-Alazard,
Léo Ducas,
Wessel P.J. van
Woerden

Lattice Reduction

Introductio

An Invariant: GSO

LLL Algorithm

Code Reduction

Orthopodality

Babai Algorithm for Codes

LLL Reduction and LLL Algorithm for

Binary Code Griesmer's Bound versus LLL

Epipodal Matrix

Epipodal Matrix

 $B = (b_1, \dots, b_k)$ be a basis. Its epipodal matrix is defined as

$$\mathsf{B}^+ = (\mathsf{b}_1^+, \dots, \mathsf{b}_k^+)$$

 b_{i+1}^+ support increment from $\mathcal{C}(b_1,\dots,b_{i-1})$ to $\mathcal{C}(b_1,\dots,b_i)$

Thomas

Debris-Alazard,

Léo Ducas,

Wessel P.J. van

Woerden

Lattice Reduction

ntroductio

An Invariant: GSO

LLL Algorithm

Code Reduction

Orthopodality

Babai Algorithm for Codes

LLL Reduction and LLL Algorithm for Binary Code

Griesmer's Bound

An Invariant

 (b_1^+, \ldots, b_k^+) is not a basis of C, but...

$$\sum_i |\mathsf{b}_i^+| = \#\mathsf{Supp}(\mathcal{C})$$

where Supp(\mathcal{C}) $\stackrel{\mathsf{def}}{=} \{ i \in [1, n], \exists c \in \mathcal{C}, c_i \neq 0 \}$.

 \rightarrow Increase $|b_2^+|, \ldots, |b_n^+|$ to find a short codeword!

Admittedly, but once again...

Quality of a basis \iff What can we do algorithmically with it?

Thomas Debris-Alazard, Léo Ducas, Wessel P.J. van Woerden

Lattice Reductio

Introductio

An Invariant: GS

Code Reductio

Orthopodality

Babai Algorithm for Codes

LLL Reduction and LLL Algorithm for

Binary Code Griesmer's Bound

1 Lattice Reduction

Introduction

An Invariant: GSO

LLL Algorithm

2 Code Reduction

Orthopodality

Babai Algorithm for Codes

LLL Reduction and LLL Algorithm for Binary Code

Griesmer's Bound versus LLL

Thomas

Debris-Alazard,
Léo Ducas,
Wessel P.J. van
Woerden

Lattice Reduction

Introduction

An Invariant:

LLL Algorithm

Code Reductio

Orthopodality

Babai Algorithm for Codes

LLL Reduction and LLL Algorithm for Binary Code

Griesmer's Bound

Babai Fundamental Domain

For lattices:

$$\mathcal{P}(\mathsf{B}^*) \stackrel{\mathsf{def}}{=} \left\{ \sum_i \lambda_i \mathsf{b}_i^* \, : \, \lambda_i \in [0, \frac{1}{2}) \right\} \quad \text{(tiles the space)}$$

Babai Fundamental Domain for Codes

$$\mathcal{F}(\mathsf{B}^+) \stackrel{\mathsf{def}}{=} \left\{ \mathsf{y} \in \mathbb{F}_2^n \ : \ \forall i \in [\![1,k]\!], \ |\mathsf{y} \wedge \mathsf{b}_i^+| + \mathsf{TB}_{\mathsf{b}_i^+}(\mathsf{y}) \leq \frac{|\mathsf{b}_i^+|}{2} \right\}.$$

where (technical):

$$\mathsf{TB}_{\mathsf{p}}(\mathsf{y}) = \begin{cases} 0 & \text{if } |\mathsf{p}| \text{ is odd,} \\ 0 & \text{if } y_j = 0 \text{ where } j = \mathsf{min}(\mathsf{Supp}(\mathsf{p})), \\ 1/2 & \text{otherwise.} \end{cases}$$

Thomas

Debris-Alazard,
Léo Ducas,

Wessel P.J. van

Woerden

Lattice Reduction

.....

LLL Algorithm

Code Reduction

Orthopodality Babai Algorithm for

LLL Reduction and LLL Algorithm for Binary Code

Codes

Griesmer's Bound

Babai Fundamental Domain

For lattices:

$$\mathcal{P}(\mathsf{B}^*) \stackrel{\mathsf{def}}{=} \left\{ \sum_i \lambda_i \mathsf{b}_i^* : \lambda_i \in [0, \frac{1}{2}) \right\} \quad \text{(tiles the space)}$$

Babai Fundamental Domain for Codes

$$\mathcal{F}(\mathsf{B}^+) \stackrel{\mathsf{def}}{=} \left\{ \mathsf{y} \in \mathbb{F}_2^n \ : \ \forall i \in [\![1,k]\!], \ |\mathsf{y} \wedge \mathsf{b}_i^+| + \mathsf{TB}_{\mathsf{b}_i^+}(\mathsf{y}) \leq \frac{|\mathsf{b}_i^+|}{2} \right\}.$$

where (technical):

$$\mathsf{TB}_{\mathsf{p}}(\mathsf{y}) = \begin{cases} 0 & \text{if } |\mathsf{p}| \text{ is odd,} \\ 0 & \text{if } y_j = 0 \text{ where } j = \mathsf{min}(\mathsf{Supp}(\mathsf{p})), \\ 1/2 & \text{otherwise.} \end{cases}$$

Remark:

If
$$|\mathsf{y} \wedge \mathsf{b}_i^+| \ge \frac{|\mathsf{b}_i^+|}{2}$$
, then $|(\mathsf{y} + \mathsf{b}_i) \wedge \mathsf{b}_i^+| \le \frac{|\mathsf{b}_i^+|}{2}$

Thomas

Debris-Alazard,

Léo Ducas,

Wessel P.J. van

Woerden

Lattice Reductio

Introduction

An Invariant: G

LLL Algorithm

Code Reduc

Orthopodality

Babai Algorithm for

Codes LLL Reduction and

LLL Algorithm for Binary Code

Griesmer's Bound

Babai Fundamental Domain

$\mathcal{F}(\mathsf{B}^+)$ tiles the space

1. $\mathcal{F}(\mathsf{B}^+)$ is \mathcal{C} -packing:

$$\forall c \in \mathcal{C} \backslash \{0\}, \quad (c + \mathcal{F}(\mathsf{B}^+)) \cap \mathcal{F}(\mathsf{B}^+) = \emptyset,$$

2. $\mathcal{F}(\mathsf{B}^+)$ is \mathcal{C} -covering:

$$C + \mathcal{F}(\mathsf{B}^+) = \mathbb{F}_2^n$$
.

Babai Algorithm for Codes:

$$y \overset{\mathsf{Babai}(\mathsf{B})}{\longmapsto} \big(\mathsf{c},\mathsf{e}\big): \, \mathsf{y} = \mathsf{c} + \mathsf{e},\mathsf{c} \in \mathcal{C} \text{ and } \mathsf{e} \in \mathcal{F}\big(\mathsf{B}^+\big)$$

Thomas Debris-Alazard, Léo Ducas, Wessel P.J. van

Woerden

Lattice Reduction

Introductio

An Invarian

LLL Algorithm

_ . _ . .

Code Reductio

Orthopodality Babai Algorithm for

Codes LLL Reduction and

LLL Algorithm for Binary Code

Griesmer's Bound versus LLL

Babai Algorithm

Input: A basis
$$B=(b_1;\ldots;b_k)\in\mathbb{F}_2^{k\times n}$$
 and a target $y\in\mathbb{F}_2^n$
Output: $e\in\mathcal{F}(B^+)$ such that $e+y\in\mathcal{C}(B)$
 $e\leftarrow y$

for
$$i = k$$
 down to 1 do

if
$$|\mathbf{e} \wedge \mathbf{b}_i^+| + \mathsf{TB}_{\mathbf{b}_i^+}(\mathbf{e}) > |\mathbf{b}_i^+|/2|$$
 then $|\mathbf{e} \leftarrow \mathbf{e} + \mathbf{b}_i|$

return e

"If i < j then $e \leftarrow e + b_i$ doesn't modify $e \wedge b_j^+$ "

Thomas Debris-Alazard.

Léo Ducas, Wessel P.J. van Woerden

Lattice Reduction

Introductio

An Invariant: G

LLL Algorithm

Code Reduction

Orthopodality Babai Algorithm for Codes

LLL Reduction and LLL Algorithm for

Binary Code Griesmer's Bound

An Example

$$\mathsf{B} = \left(\begin{smallmatrix} 1-1 \\ * \end{smallmatrix}\right|^1 \searrow_1\right) \, \Big| \; \mathsf{B}^+ = \left(\begin{smallmatrix} 1-1 \\ 0 \end{smallmatrix}\right|^1 \searrow_1\right)$$

$$b_n^+ = (0, \dots, 0, 0, 1)
b_{n-1}^+ = (0, \dots, 0, 1, 0)
\vdots$$

We have.

$$\forall i \in [\![2, k]\!], \quad |\mathbf{b}_i^+| = 1.$$

We add b_i (i > 2) to y if and only if,

$$|\mathbf{y} \wedge \mathbf{b}_i^+| > |\mathbf{b}_i^+|/2 \iff |\mathbf{y} \wedge \mathbf{b}_i^+| > 1/2 \iff y_i = 1.$$

 \rightarrow Prange Algorithm!

Thomas

Debris-Alazard,
Léo Ducas,

Wessel P.J. van

Woerden

Lattice Reduction

ntroductio

An Invariant: GSO

LLL Algorithm

Code Reduction

Orthopodality Babai Algorithm for

Codes

LLL Reduction and

LLL Algorithm for

Binary Code

Griesmer's Bound versus LLL

Consequence

Previous Example:

$$\forall i \in [\![2,k]\!], \ |\mathsf{b}_i^+| = 1 \quad \text{and} \quad |\mathsf{b}_1^+| = n-k+1$$

For Babai to be efficient, we would like:

$$|\mathsf{b}_i^+| > 1$$
 for as most as possible $i \in [\![2,k]\!]$

But the invariant...

$$\sum_{i=1}^k |\mathsf{b}_i^+| = n.$$

LLL Algorithm

Code Reducti

Orthopodality Babai Algorithm for

Codes

LLL Reduction and
LLL Algorithm for

Binary Code Griesmer's Bound

Consequence

Previous Example:

$$\forall i \in [2, k], |b_i^+| = 1 \text{ and } |b_1^+| = n - k + 1$$

For Babai to be efficient, we would like:

$$|\mathsf{b}_i^+| > 1$$
 for as most as possible $i \in [\![2,k]\!]$

But the invariant...

$$\sum_{i=1}^k |\mathsf{b}_i^+| = n.$$

More generally, we can prove that Babai will be the more efficient if:

$$|\mathbf{b}_1^+| \approx \cdots \approx |\mathbf{b}_k^+|$$

→ The aim of LLL (as for Lattices)

Thomas

Debris-Alazard,

Léo Ducas,

Wessel P.J. van

Woerden

Lattice Reductio

Introductio

An Invariant: GSO

Code Reductio

Orthopodality

Babai Algorithm for Codes

LLL Reduction and LLL Algorithm for Binary Code

Griesmer's Bound

1 Lattice Reduction

Introduction

An Invariant: GSO

LLL Algorithm

2 Code Reduction

Orthopodality

Babai Algorithm for Codes

LLL Reduction and LLL Algorithm for Binary Code

Griesmer's Bound versus LLL

Thomas Debris-Alazard, Léo Ducas, Wessel P.J. van Woerden

Lattice Reduction

An Invariant: GS

Code Reduction

Orthopodality

Babai Algorithm for Codes

LLL Reduction and LLL Algorithm for Binary Code

Griesmer's Bound

Codes of Dimension 2

What is the best "balanced" basis for a code of dimension 2?

Lemma (Lagrange Reduced Basis)

For any code $\mathcal C$ of dimension 2, there exists a basis (b_1,b_2) such that:

$$|\mathsf{b}_1| = d_{\mathsf{min}}(\mathcal{C})$$
 and $|\mathsf{b}_1 \wedge \mathsf{b}_2| \leq \frac{1}{2}|\mathsf{b}_1|$

1. We cannot hope better in the worst case

$$C = C((110), (011))$$

2. We have:

$$|b_1| \leq \frac{2}{2} \times |b_2^+|$$

Thomas
Debris-Alazard,
Léo Ducas,
Wessel P.J. van
Woerden

Lattice Reduction

Introductio

An Invariant: G

LLL Algorithm

Code Reduct

Orthopodality

Babai Algorithm for Codes

LLL Reduction and LLL Algorithm for Binary Code

Griesmer's Bound

The Proof

$$b_1 = \boxed{1 \quad \qquad 1 \mid 0 \quad \qquad 0}$$

$$b_2 = \boxed{1 \quad \qquad 1 \mid 0 \quad \qquad 0 \mid 1 \quad \qquad 1}$$

First:

a and
$$b > \frac{1}{2}(a+b)$$
: imposible

therefore,

$$(|b_1 \wedge b_2| = a \quad \text{or} \quad |b_1 \wedge (b_1 + b_2)| = b) \quad \leq \quad \frac{1}{2}(a+b) = \frac{1}{2}|b_1|.$$

Now, $d_{\min}(\mathcal{C}) = a + b \le a + c$ and $\le b + c$. Therefore,

а

$$|b_2^+| = 2c \ge a + b = |b_1|.$$

Thomas

Debris-Alazard,

Léo Ducas,

Wessel P.J. van

Woerden

Lattice Reduction

Introductio

An Invariant: GSO

LLL Algorithm

Code Reduc

Orthopodality

Babai Algorithm for

Codes Codes

LLL Reduction and LLL Algorithm for Binary Code

Griesmer's Bound versus LLL

In the Random Case

For a random code: $a \approx b \approx c$. Therefore,

$$2|b_2^+|\approx |b_1|\,$$

Thomas

Debris-Alazard,
Léo Ducas,

Wessel P.J. van

Woerden

Lattice Reduction

Introduction

An Invariant: G

LLL Algorithm

Code Reduction

Orthopodality

Babai Algorithm for

Codes

LLL Reduction and

LLL Algorithm for Binary Code

Griesmer's Bound

LLL Reduced

B is said LLL-reduced if $(\pi_i(b_i), \pi_i(b_{i+1}))$ is LLL-reduced

Two guarantees:

$$|b_i^+| \leq 2|b_{i+1}^+| \quad \text{and} \quad |b_i^+| \geq 1.$$

Bound on code:

$$n = \sum_{i=1}^{k} |\mathbf{b}_{i}^{+}| \ge \sum_{i} \left\lceil \frac{|\mathbf{b}_{1}|}{2^{i}} \right\rceil$$

Therefore,

$$\longrightarrow |b_1| - \frac{\lceil \log_2(b_1) \rceil}{2} \le \frac{n-k}{2} + 1$$

First vector of LLL-reduced of weight $\approx (n-k)/2$ in the worst case.

Thomas Debris-Alazard, Léo Ducas, Wessel P.J. van Woerden

Lattice Reduction

ntroduction

An invariant:

LLL Algorithm

Code Reduction

Orthopodality

Babai Algorithm for Codes

LLL Reduction and LLL Algorithm for

Binary Code Griesmer's Bound

LLL Algorithm

While $\exists i$ s.t $(\pi_{b_i}, \pi_i(b_{i+1}))$ is not Lagrange-reduced, Lagrange reduce it...

- Correctness: by definition,
- Termination in poly-time: no details here, same argument as the original LLL
 - → It shows the existence of LLL-reduced bases...

Thomas
Debris-Alazard,
Léo Ducas,
Wessel P.J. van
Woerden

.

. . . .

An Invariant: GS

LLL Algorithm

Code Reduction

Orthopodality

Babai Algorithm for Codes

LLL Reduction and LLL Algorithm for

Binary Code Griesmer's Bound

Shape of LLL-reduced Bases

We typically expect $|b_1| = \frac{n-k}{2}$ and $|b_i^+| = \left\lceil \frac{|b_1|}{2^i} \right\rceil$, therefore:

$$|\mathsf{b}_i^+| = \Omega(1)$$
 for $i = O(\log_2(n))$.

A basis of a dimension log(n)-code, we cannot hope typically:

- **1.** to get codewords of weight $\leq (1-\varepsilon)^{\frac{n-k}{2}}$,
- 2. to improve Prange's algorithm by more than a polynomial factor.

Thomas

Debris-Alazard,

Léo Ducas,

Wessel P.J. van

Woerden

Lattice Reduction

Introductio

An Invariant: G

LLL Algorithm

Code Reductio

Orthopodality

Babai Algorithm for Codes

LLL Reduction and LLL Algorithm for Binary Code

Griesmer's Bound

Griesmer's Bound

LLL produces (in poly-time) a basis B of ${\cal C}$ verifying:

$$n \ge \sum_{i=1}^k \left\lceil \frac{|\mathsf{b}_1|}{2^i} \right\rceil$$

But $|b_1| \geq d_{min}(\mathcal{C})...$

$$\rightarrow n \ge \sum_{i} \left\lceil \frac{d_{\min}(\mathcal{C})}{2^{i}} \right\rceil$$
 (Griesmer Bound!)

- LLL \rightarrow algorithmic proof of Griesmer,
- Systematic form \rightarrow proves Singleton ($d \le n k + 1$)

Thomas

Debris-Alazard,

Léo Ducas,

Wessel P.J. van

Woerden

Lattice Reductio

An Invariant: GS0

LLL Algorithm

Code Reductio

Orthopodality

Babai Algorithm for

Codes

LLL Reduction and

LLL Algorithm for Binary Code

Griesmer's Bound

Griesmer Reduced Bases

How works the proof of Griesmer?

→ With existential arguments:

Lemma

Let $\mathcal C$ be an [n,k]-code and $c\in \mathcal C$ with $|c|=d_{min}(\mathcal C)$. Then $\mathcal C'\stackrel{def}{=}\pi_c^\perp(\mathcal C)=\mathcal C\wedge \overline c$ satisfies:

- **1.** $|C'| = n d_{\min}(C)$ and its dimension is k 1,
- 2. $d_{\min}C' \geq \lceil d_{\min}(C)/2 \rceil$.

Proof of 2. as Lagrange-reduced basis!

Thomas

Debris-Alazard,
Léo Ducas,

Wessel P.J. van

Woerden

Lattice Reductio

Introduction

LLL Algorithm

LL Algorithm

Code Reduction

Orthopodality

Babai Algorithm for

Codes

LLL Reduction and LLL Algorithm for Binary Code

Griesmer's Bound

HKZ Bases for Codes

In fact Griesmer proves the existence of bases:

Definition (Griesmer-reduced basis)

A basis B is said Griesmer-reduced if b_i^+ is a shortest non-zero codeword of the projected subcode $\pi_i(\mathcal{C}(b_i; \ldots; b_k))$ for all $i \in [1, k]$.

→ Direct analogue HKZ-bases for lattice bases!

Thomas

Debris-Alazard,
Léo Ducas,

Wessel P.J. van

Woerden

Lattice Reductio

Introduction

An Invariant: GSO

LLL Algorithm

Code Reduction

Orthopodality

Babai Algorithm for

Codes

LLL Reduction and

LLL Algorithm for Binary Code

Griesmer's Bound versus LLL

Conclusion, what Else?

In the paper:

- Study of the Babai's fundamental domain $\mathcal{F}(B)$,
- An hybrid Babai + Lee-Brickell algorithm,
- Implementations and experiments.

Open questions:

- Duality,
- More bounds (generalized Hamming weight...)
- More algorithms (BKZ,...)
- ..

Thomas Debris-Alazard, Léo Ducas, Wessel P.J. van Woerden

Lattice Reduction

Introduction

An Invariant: GSO

LLL Algorithm

Code Reduction

Babai Algorithm for Codes

LLL Reduction and LLL Algorithm for

Binary Code

Griesmer's Bound
versus LLL

Thank You!