# Printer Ballistics Through Texture Analysis of Characters

Adriano Ruggero, Gabriel Rodrigues, Mário Brito, Maurício Perez

Institute of Computing - Unicamp

November 29, 2013





## **Outline**

Motivation

Introduction

State-of-the-art

Proposed solution

Experiments and discussion

Conclusions and future work

Acknowledgements

References





#### Motivation

- We (still) live in a "paper era"
- Documents forgery has become common
- There is a way to relate a document to a specific printer?



Figure 1: Document forgery<sup>1</sup>

<sup>&</sup>lt;sup>1</sup>The Infothority[1]





### Printer attribution

A way to do this is called "Printer Attribution"





#### Methods

- Geometric distortion
- Texture analysis of characters





#### Geometric distortion



Figure 2: Geometric distortion <sup>2</sup>

<sup>&</sup>lt;sup>2</sup>Geometric Distortion Signatures for Printer Identification[2]





## Texture analysis of characters







#### State-of-the-art

- ▶ Bulan et al<sup>3</sup>: a method for analyzing geometric distortions introduced during the printing process of electrophotographic printers (EP).
- ► Kee and Farid<sup>4</sup>: a method of geometric modeling of degradation caused by the printer.

<sup>&</sup>lt;sup>4</sup>Printer Profiling for Forensics and Ballistics[3]





<sup>&</sup>lt;sup>3</sup>Geometric Distortion Signatures for Printer Identification[2]

## Proposed solution

- Get the image of characters selected from scanned documents (grayscale)
- Create a co-occurrence matrix
- Extract its properties (contrast, correlation, energy and homogeneity)
- Create a feature vector from this properties
- Use machine learning algorithms to classify them





### **Process overview**







## **Printers**

Table 1: Printers used in this work

| Printer           | Documents | Characters "e" | Characters "t" |
|-------------------|-----------|----------------|----------------|
| Brother-HL4070CDW | 28        | 252            | 252            |
| Canon-D1150       | 28        | 252            | 252            |
| Canon-MF3240      | 28        | 252            | 252            |
| Canon-MF4370DN    | 27        | 252            | 252            |
| HP-CLJ-CP2025A    | 28        | 252            | 252            |
| Lexmark-E260D     | 28        | 252            | 252            |





#### Characters

- Characters "e" and "t" (most common in English texts)
- Same size, same font, no texts effects
- Misaligned characters were summarily discarded





## Differences between aligned and misaligned characters

Table 2: Differences between an original character and a rotated character.

| Property    | Original character | Rotated character (-4°) |
|-------------|--------------------|-------------------------|
| Contrast    | 3.2443 - 2.2905    | 5.1617 - 4.6504         |
| Correlation | 0.7869 - 0.8502    | 0.6967 - 0.7264         |
| Energy      | 0.1608 - 0.1744    | 0.1106 - 0.1216         |
| Homogeneity | 0.6946 - 0.7462    | 0.6610 - 0.6995         |





## Something about printers

▶ All documents came from laser printers, so...





## Something about printers

- ▶ All documents came from laser printers, so...
  - we need to understand how they works!





## Default laser printer schema



Figure 3: Default laser printer schema<sup>5</sup>

<sup>&</sup>lt;sup>5</sup>Forensic Document Examination Services[4]





#### Division of document areas

Adolf von Baever - Wikipedia, the free encyclopedia

http://en.wikipedia.org/windex.php?title=Adolf\_von\_Bacyer&printable=yer

#### Adolf von Baeyer From Wikipedia, the free encyclopedia

Johann Friedrich Wilhelm Adolf von Baeyer (German promunciation: ['base]; (October 31, 1835 -August 20, 1917) was a German chemist who synthesized indigo,[1] and was the 1905 recipient of the Nobel Prize in Chemistry.[2] Born in Berlin, he initially studied mathematics and physics at Berlin University before moving to Heidelberg to study chemistry with Robert Bunsen. There he worked primarily in August Kekulé's laboratory, carning his doctorate (from Berlin) in 1858. He followed Kekulé to the University of Ghent, when Kekulé became professor there. He became a lecturer at the Berlin Trade Academy in 1860, and a Professor at the University of Strasbourg in 1871. In 1875 he succeeded Justus von Liebig as Chemistry Professor at the University of Munich.



In IST to discovered the synthesis of prescriptions of construction of public and policies with two equivalents of placed under and conditions there the name. That sums year he was the first to obtain synthetic fluorescein, as the contract of the contract of the contract of the three contracts of the contract of the forescent would not start to be used until IST. In IST the experimental with placed and IST.

formaldehyde, almost preempting Leo Backeland's

1 de 2



Midf Planger

Johann Friedrich Wilhelm Adolf von Bucyer in 1905

sen October 31, 1835

Berlin, Germany

Died August 20, 1917 (aged 81) Stemberg, Germany Nationality Germany Fields Organic chemistry

Organic chemistry University of Berlin Gewerbe-Akademic, Berlin University of Stranbourg University of Musich University of Berlin

Robert Wilhelm Burnen Friedrich August Kekulé Emit Fischer John Ulric Nef Victor Villiger Carl Theodore Liebermann

Carl Grabe

Known for Synthesis of indigo

Notable awards Nobel Price for Chemistry (1905)

21/08/2011 12:56

Alma mater

Dectoral advisor

Doctoral students





## Gray level co-occurrence matrix

The primary use of the co-occurrence matrix is characterized texture in an image from a set of statistics for instances of each gray level in different pixels along different directions<sup>6</sup>.

#### In other words...

- ▶ A matrix of relative frequencies  $P(i, j, d, \theta)$ 
  - p represents the pixel-of-interest
  - i and j represents the properties
  - $\blacktriangleright$   $\theta$  represents the distance

<sup>&</sup>lt;sup>6</sup>Classificação de texturas a partir de vetores de atributos e função de distribuição de probabilidades[5]





#### Character's selection and extraction



Figure 4: An ant's work!<sup>7</sup>

<sup>7</sup>The Wifey Journals[6]





## Neighborhood



Figure 5: Neighborhood A, leftmost, and B, rightmost, used in properties extraction.





## Algorithms versus correct classification

Table 3: Percentage of correct classifications of printers.

|                | Neighborhood A |           | Neighborhood B |           |
|----------------|----------------|-----------|----------------|-----------|
| Method         | Chars e's      | Chars t's | Chars e's      | Chars t's |
| Logistic       | 81             | 81.3      | 85             | 84.6      |
| KStar          | 77.6           | 83        | 72             | 79.6      |
| RotationForest | 83.1           | 85        | 81.7           | 85.7      |
| NNge           | 74.1           | 80.2      | 72.2           | 67.8      |
| LMT            | 83.8           | 84.6      | 82.7           | 85.5      |





#### Printer attribution results

Table 4: Percentage of correct printer attribution.

| Method         | Chars e's     | Chars t's     | Chars e's and t's |  |
|----------------|---------------|---------------|-------------------|--|
| Logistic       | 21/24 = 87.5% | 22/24 = 91.7% | 21/24 = 87.5%     |  |
| RotationForest | 21/24 = 87.5% | 21/24 = 87.5% | 22/24 = 91.7%     |  |
| LMT            | 21/24 = 87.5% | 21/24 = 87.5% | 22/24 = 91.7%     |  |





#### Conclusions

- Is possible assign a document to a printer analyzing the texture of its characters
- Greater feature vectors doesn't mean a better classifier
- Character choice would have probably low impact on the results





#### **Future work**

- Extract more varied or more characters
- Try other texture analyzers, such as HOG (Histograms of Oriented Gradients Extract) or LBP (Local Binary Patterns)
- A (semi) automated method to extract the characters would be of great benefit to researchers in this field





## Acknowledgements

- Professor Anderson Rocha
- ▶ Giuliano Pinheiro





# Bibliography I

The Infothority.
The infothority.

http://theinfothority.com/, last access in November 28, 2013.

Orhan Bulan, Junwen Mao, and Gaurav Sharma. Geometric distortion signatures for printer identification. In Proceedings of the 2009 IEEE International Conference

on Acoustics, Speech and Signal Processing, ICASSP '09, pages 1401–1404, Washington, DC, USA, 2009. IEEE Computer Society.





# Bibliography II



Printer profiling for forensics and ballistics.

In Proceedings of the 10th ACM Workshop on Multimedia and Security, MM&Sec '08, pages 3–10, New York, NY, USA, 2008. ACM.

Forensic Document Examination Services.
Letter frequencies in the english language.

http://www.forensicdocumentexaminer.co.uk/ Document\_Analysis.html, last access in November 17, 2013.

Anderson de Rezende Rocha and Neucimar Jerônimo Leite.

Classificação de texturas a partir de vetores de atributos e função de distribuição de probabilidades.





# Bibliography III



The Wifey Journals.

#### Ants!

http://www.thewifeyjournals.com/2010/09/ants.html, last access in November 28, 2013.





## **Thanks**

#### Thanks!

Adriano R. Ruggero, Gabriel Rodrigues, Mário F. Brito, Maurício L. Perez



