Présentation CSI Étude de Vlasov-Poisson 1Dx-1Dv Optimisation de WENO pour Vlasov-Poisson

Josselin Massot Encadré par : Anaïs Crestetto et Nicolas Crouseilles

Table des matières

1 Introduction - Vlasov-Poisson et WENO

2 Automatisation de calcul de CFL

3 Mise en application dans l'équation de Vlasov

Table des matières

1 Introduction - Vlasov-Poisson et WENO

2 Automatisation de calcul de CFL

3 Mise en application dans l'équation de Vlasov

Vlasov-Poisson

$$\begin{cases} \partial_t f + v \partial_x f + E \partial_v f = 0 \\ \partial_x E = \int_{\mathbb{R}} f \, \mathrm{d} v - 1 \end{cases}$$

- Filamentation dans la solution
 - Ordre élevé dans l'espace des phases (x, v)
- Approche classique : méthode de splitting de Strang
 - Problèmes: ordre élevé en temps, passage à Vlasov-Maxwell (splitting du champ magnétique B)

Résumé du stage

WENO c'est bien! ✓

MAIS: instable avec méthode d'Euler explicite en temps (toy model pour démonstration, ou simulation test)

- [R. Wang & R. J. Spiteri (2007)] besoin d'au moins "RK3" (démonstration faite avec $WENO^{\ell}$)
- [M. Motamed & C. B. Macdonald & S. J. Ruuth (2010)] estimation d'une CFL de $RK(3,3)-WENO^{\ell}$

WENO

Weighted Essentially Non-Oscillatory : schéma *DF* non linéaire 3 estimations sur 3 *stencils* différents, pondérées (poids non linéaires)

3 étapes de calcul:

- Indicateurs de continuité
- Poids
- Flux

WENO (les indicateurs de continuité)

Résolution de :

$$\partial_t u + \partial_x f(u) = 0$$

$$f(u) = f^{+}(u) + f^{-}(u)$$
 , $\frac{df^{+}}{du} \ge 0$ et $\frac{df^{-}}{du} \le 0$

Indicateurs de continuité Indicator of smoothness :

$$\beta_i^{\pm} \leftarrow (f_{[j-2,j+3]}^{\pm}) \ , \ i = 0, 1, 2$$

Approximations de dérivées premières et secondes sur les 3 stencils.

$$\beta_{0}^{+} = \frac{13}{12} \left(f_{j-2}^{+} - 2f_{j-1}^{+} + f_{j}^{+} \right)^{2} + \frac{1}{4} \left(f_{j-2}^{+} - 4f_{j-1}^{+} + 3f_{j}^{+} \right)^{2}$$

$$\beta_{1}^{+} = \frac{13}{12} \left(f_{j-1}^{+} - 2f_{j}^{+} + f_{j+1}^{+} \right)^{2} + \frac{1}{4} \left(f_{j-1}^{+} - f_{j+1}^{+} \right)^{2}$$

$$\beta_{2}^{+} = \frac{13}{12} \left(f_{j}^{+} - 2f_{j+1}^{+} + f_{j+2}^{+} \right)^{2} + \frac{1}{4} \left(3f_{j}^{+} - 4f_{j+1}^{+} + f_{j+2}^{+} \right)^{2}$$

$$\beta_{0}^{-} = \frac{13}{12} \left(f_{j+1}^{-} - 2f_{j+2}^{-} + f_{j+3}^{-} \right)^{2} + \frac{1}{4} \left(3f_{j+1}^{-} - 4f_{j+2}^{-} + f_{j+3}^{-} \right)^{2}$$

$$\beta_{1}^{-} = \frac{13}{12} \left(f_{j}^{-} - 2f_{j+1}^{-} + f_{j+2}^{-} \right)^{2} + \frac{1}{4} \left(f_{j}^{-} - f_{j+2}^{-} \right)^{2}$$

$$\beta_{2}^{-} = \frac{13}{12} \left(f_{j-1}^{-} - 2f_{j}^{-} + f_{j+1}^{-} \right)^{2} + \frac{1}{4} \left(f_{j-1}^{-} - 4f_{j}^{-} + 3f_{j+1}^{-} \right)^{2}$$

WENO (les poids)

Poids non normalisés :

$$\alpha_i^{\pm} \leftarrow \frac{\gamma_i}{(\epsilon + \beta_i^{\pm})^2} , \ \gamma_i \in \mathbb{R}_+^* : \sum_k \gamma_k = 1$$

On prend : $\gamma_0=\frac{1}{10}, \gamma_1=\frac{6}{10}, \gamma_2=\frac{3}{10}.$ Paramètre $\epsilon=10^{-6}$

Linéarisation (DL) : $\alpha_i^{\pm} = \gamma_i + \mathcal{O}(\Delta x^2)$

Les poids normalisés :

$$w_i^{\pm} \leftarrow \frac{\alpha_i^{\pm}}{\sum_k \alpha_k^{\pm}}$$

WENO (les flux)

$$\begin{split} f^+_{j+\frac{1}{2}} \leftarrow w^+_0 \left(\frac{2}{6} f^+_{j-2} - \frac{7}{6} f^+_{j-1} + \frac{11}{6} f^+_{j}\right) + w^+_1 \left(-\frac{1}{6} f^+_{j-1} + \frac{5}{6} f^+_{j} + \frac{2}{6} f^+_{j+1}\right) \\ + w^+_2 \left(\frac{2}{6} f^+_{j} + \frac{5}{6} f^+_{j+1} - \frac{1}{6} f^+_{j+2}\right) \end{split}$$

$$f_{j+\frac{1}{2}}^{-} \leftarrow w_{2}^{-} \left(-\frac{1}{6} f_{j-1}^{-} + \frac{5}{6} f_{j}^{-} + \frac{2}{6} f_{j+1}^{-} \right) + w_{1}^{-} \left(\frac{2}{6} f_{j}^{-} + \frac{5}{6} f_{j+1}^{-} - \frac{1}{6} f_{j+2}^{-} \right) + w_{0}^{-} \left(\frac{11}{6} f_{j+1}^{-} - \frac{7}{6} f_{j+2}^{-} + \frac{2}{6} f_{j+3}^{-} \right)$$

$$(\partial_{\mathsf{X}} f(u))_{j} pprox rac{1}{\Delta \mathsf{X}} \left[(f_{j+rac{1}{2}}^{+} - f_{j-rac{1}{2}}^{+}) + (f_{j+rac{1}{2}}^{-} - f_{j-rac{1}{2}}^{-}) \right]$$

Table des matières

1 Introduction - Vlasov-Poisson et WENO

2 Automatisation de calcul de CFL

3 Mise en application dans l'équation de Vlasov

Outils pour l'estimation de CFL

Analyse de von Neumann : permet l'analyse de schémas linéaires

$$u_{j+k}\mapsto e^{ik\phi}$$

fonction de ϕ : coefficient d'amplification du schéma

- Analyse de schémas non-linéaires possible mais pas systématique
- Écriture du schéma sous la forme : $(\partial_{\times} u^n) \approx W(\phi) u^n$

Polynôme caractéristique p: permet d'obtenir le <u>domaine de stabilité</u> d'une méthode type Runge-Kutta

$$\{z\in\mathbb{C}/|p(z)|\leq 1\}$$

CFL σ : rapport d'homothétie maximal faisant entièrement rentrer le coefficient d'amplification dans un domaine de stabilité

$$\Delta t \le \sigma \Delta x$$

Estimation de CFL

toy model

$$\begin{cases} u_t + u_x = 0 \\ u(t = 0, x) = u^0(x) = \cos(2\pi\kappa x) \\ x \in [0, 1] \end{cases}$$

- Discrétisation WENO en espace x
- Discrétisation RK(s,n) en temps t

But : calculer la CFL du couple RK(s,n) – WENO5 (automatiquement)

Coefficient d'amplification de WENO^ℓ

Linéarisation de WENO $^{\ell}$: $\alpha_i = \gamma_i + \text{analyse}$ de von Neumann

Coefficient d'amplification de WENO

Calculs assistés par ordinateur avec SymPy: analyse de von Neumann sur WENO en espérant que ça marche

Polynôme caractéristique

Pour des méthodes type Runge-Kutta explicites :

• Pour une méthode RK(n,n): troncature du développement de Taylor de l'exponentiel:

$$p^{(n,n)}(z) = \sum_{k=0}^{n} \frac{z^k}{k!}$$

• Pour une méthode RK(s,n), s > n:

$$p^{(s,n)}(z) = \sum_{k=0}^{n} \frac{z^k}{k!} + \sum_{k=n+1}^{s} \alpha_k z^k$$

avec $\alpha_{n+1} \neq \frac{1}{(n+1)!}$

Obtention du polynôme caractéristique

Résolution de :

$$\dot{u} = L(u)$$

- Écriture du schéma de la méthode RK à étudier
- 2 $L(u) \mapsto \lambda u$
- $\delta \lambda \Delta t \mapsto z$

Exemple RK(3,3) Shu-Osher:

$$u^{(1)} = u^{n} + \Delta t L(u^{n}) \qquad \mapsto u^{(1)} = u^{n} + \Delta t \lambda u^{n}$$

$$u^{(2)} = \frac{3}{4} u^{n} + \frac{1}{4} u^{(1)} + \frac{1}{4} \Delta t L(u^{(1)}) \qquad \mapsto u^{(2)} = \frac{3}{4} u^{n} + \frac{1}{4} u^{(1)} + \frac{1}{4} \Delta t \lambda u^{(1)}$$

$$u^{n+1} = \frac{1}{3} u^{n} + \frac{2}{3} u^{(2)} + \frac{2}{3} \Delta t L(u^{(2)}) \qquad \mapsto u^{n+1} = \frac{1}{3} u^{n} + \frac{2}{3} u^{(2)} + \frac{2}{3} \Delta t \lambda u^{(2)}$$

$$u^{n+1} = \underbrace{\left(1 + z + \frac{z^{2}}{2} + \frac{z^{3}}{6}\right)}_{\rho^{(3,3)}(z)} u^{n}$$

Exemples de domaines de stabilité

Estimation automatique de CFL

- **①** Discrétiser $\phi \in [0, 2\pi] \equiv [-\pi, \pi]$
- ② Évaluer le coefficient d'amplification sur ces points : $w(\phi)$
- **3** Évaluer la frontière du domaine de stabilité $r(\theta)$

- $\bullet \quad \mathsf{CFL} \ \sigma = \mathsf{min}_{\phi} \ \sigma(\phi)$

Quelques CFL

Méthode RK	étages <i>s</i>	σ	Coût par unité de temps $\propto rac{s}{\sigma}$
WENO $^{\ell}$ -RK(3,3)	3	1.433	-
RK SSP(3,3)	3	1.606	1.86
RK SSP(4,3)	4	1.923	2.08
RK SSP(4,4)	4	1.680	2.38
RK (5,3)	5	2.538	1.97
RK (7,6)	7	1.756	3.99
RK (8,6)	8	2.564	3.12

Quelques CFL

Quelques CFL

Validation de CFL

Table des matières

1 Introduction - Vlasov-Poisson et WENO

2 Automatisation de calcul de CFL

3 Mise en application dans l'équation de Vlasov

Mise en situation dans l'équation de Vlasov

Problème : condition CFL dominée par la vitesse

$$\Delta t \leq \sigma \frac{\Delta x}{v_{\mathsf{max}}}$$
, avec $[-v_{\mathsf{max}}, v_{\mathsf{max}}] \equiv \mathbb{R}$

• FFT en x de Vlasov-Poisson :

$$\begin{cases} \partial_t \hat{f} + i\kappa v \hat{f} + \widehat{E} \partial_v \hat{f} = 0 \\ i\kappa \hat{E} = \widehat{\rho - 1} \end{cases}$$

• Utilisation de schéma de Lawson (IFRK), écriture exponentielle :

$$\begin{cases} \partial_t (e^{i\kappa vt} \hat{f}) + e^{i\kappa vt} \widehat{E} \widehat{\partial_v f} = 0 \\ \hat{E} = -\frac{i}{\kappa} \widehat{\rho - 1} \end{cases}$$

• WENO uniquement pour approximer $E\partial_{\nu}f$, donc CFL :

$$\Delta t \leq \sigma \frac{\Delta v}{E_{\mathsf{max}}}$$

avec $E_{\rm max} \lesssim 0.6$

Schéma de Lawson

Résolution de

$$\partial_t u + Lu + N(u) = 0$$

• Écriture exponentielle :

$$\partial_t(e^{Lt}u) + e^{Lt}N(u) = 0$$

• Écriture d'une méthode RK(s,n) sur

$$\partial_t v + \tilde{N}(v,t) = 0$$

avec
$$v = e^{Lt}u$$
, $\tilde{N}(v,t) = e^{Lt}N(e^{-Lt}v)$

Réécriture en fonction de u, L et N

Polynôme caractéristique :

$$u^{n+1} = \left(p^{(s,n)}(z)\right) e^{L\Delta t} u^n$$

Si $L \in i\mathbb{R} \Rightarrow$ même stabilité que RK(s,n)

Recherche du meilleur schéma en temps

Le modèle de Vlasov-Poisson préserve l'énergie

$$H(t) = \int_{\Omega} \int_{\mathbb{R}} v^2 f \, dv \, dx + \int_{\Omega} E^2 \, dx$$

Mesure de l'erreur $\left\|\frac{H(t)-H(0)}{H(0)}\right\|_{\infty}$ en fonction du coût numérique $\frac{\Delta t}{s}$ pour chaque méthode RK(s,n) étudiée.

Sélection du meilleur schéma en temps

Conclusion

- Meilleure estimation du coefficient d'amplification de WENO, en étudiant WENO non linéarisé
- Méthode automatique pour évaluer la CFL d'un couple RK(s,n)-WENO5
- Schéma spectral en x, WENO en v, associé au schéma IFRK optimal, avec maximisation de la CFL, validé

Perspectives

Maintenant que le code de simulation est validé, on peut tester différentes modélisations

- Implémenter la résolution d'Euler avec un schéma d'ordre élevé
- Valider une modélisation hybride fluide-cinétique sur différents profils en vitesse $(\delta_0(v) + \mathcal{M}_{\rho_h, u_h, T_h})$ (en lien avec IPP Garching)
- Passer à 1Dx-2Dv (Vlasov-Maxwell)
- Comprendre un peu mieux pourquoi l'analyse de von Neumann fonctionne sur WENO-JS et pas WENO-M ou WENO-Z

Références

Isherwood, L., Grant, Z. J., and Gottlieb, S. (2018).

Strong stability preserving integrating factor runge-kutta methods.

Ketcheson, D. (2015).

Nodepy (numerical odes in python) softwate version 0.6.

Motamed, M., Macdonald, C. B., and Ruuth, S. J. (2010).

On the linear stability of the fifth-order weno discretization.

Journal of Scientific Computing, 47:127–149.

Wang, R. and Spiteri, R. J. (2007).

Linear instability of the fifth-order weno method.

Journal on Numerical Analysis, 45(5):1871-1901.

Merci de votre attention

Modifications de WENO: WENO-M & WENO-Z

WENO-JS: [G.-S. Jiang & C.-W. Shu (1996)]

$$\alpha_i \leftarrow \frac{\gamma_i}{(\epsilon + \beta_i)^2}$$
$$w_i \leftarrow \frac{\alpha_i}{\sum \alpha_k}$$

Paramètre : $\epsilon = 10^{-6}$

WENO-M: [A. K. Henrick, T. D. Aslam & J. M. Powers (2005)]

$$\alpha_{i} \leftarrow \frac{\gamma_{i}}{(\epsilon + \beta_{i})^{2}}$$

$$w_{i} \leftarrow \frac{\alpha_{i}}{\sum \alpha_{k}}$$

$$g_{i} \leftarrow w_{i} \left(\frac{\gamma_{i} + \gamma_{i}^{2} - 3w_{i}\gamma_{i} + w_{i}^{2}}{\gamma_{i}^{2} + w_{i}(1 - 2\gamma_{i})} \right)$$

$$w_{i} \leftarrow \frac{g_{i}}{\sum g_{k}}$$

Paramètre : $\epsilon = 10^{-6}$

Josselin Massot (IRMAR)

Modifications de WENO: WENO-M & WENO-Z

WENO-Z: [R. Borges, M. Carmona, B. Costa & W. S. Don (2008)]

$$\alpha_i \leftarrow \gamma_i \left(1 + \frac{\tau_5}{\epsilon + \beta_i} \right)$$

$$w_i \leftarrow \frac{\alpha_i}{\sum \alpha_k}$$

Paramètres : $\epsilon=10^{-40}$, $au_5=|eta_0-eta_2|$

Modifications de WENO: WENO-M & WENO-Z

WENO^ℓ

Mesure de l'ordre

WENO^ℓ

Réaction à une discontinuité

WENO^ℓ

Test sur une fonction chapeau

