CS 143 Intro to Database Management Systems

Why are you here?

Top Programming Languages 2024

10¹² × SQLite

INTUIT

Problem	FAQ formulation	Previous Algo.	Our Algo.
#QCQ	$\sum_{(x_1,\dots,x_f)} \bigoplus_{x_{f+1}}^{(f+1)} \cdots \bigoplus_{x_n}^{(n)} \prod_{S \in \mathcal{E}} \psi_S(\mathbf{x}_S)$	No non-trivial algo	$\tilde{O}(N^{\mathrm{faqw}(\varphi)} + \ \varphi\)$
	where $\bigoplus^{(i)} \in \{\max, \times\}$		
QCQ	$\bigoplus_{x_{f+1}}^{(f+1)} \cdots \bigoplus_{x_n}^{(n)} \prod_{S \in \mathcal{E}} \psi_S(\mathbf{x}_S)$	$\tilde{O}(N^{PW(\mathcal{H})} + \ \varphi\) [25]$	$\tilde{O}(N^{\mathrm{faqw}(\varphi)} + \ \varphi\)$
	where $\bigoplus^{(i)} \in \{\max, \times\}$		
#CQ	$\sum_{(x_1,\dots,x_f)} \max_{x_{f+1}} \cdots \max_{x_n} \prod_{S \in \mathcal{E}} \psi_S(\mathbf{x}_S)$	$\tilde{O}(N^{DM(\mathcal{H})} + \ \varphi\) [35]$	$\tilde{O}(N^{ ext{faqw}(arphi)} + \ arphi\)$
Joins	$\bigcup_{\mathbf{x}} \bigcap_{S \in \mathcal{E}} \psi_S(\mathbf{x}_S)$	$\tilde{O}\left(N^{fhtw(\mathcal{H})} + \ \varphi\ \right)$ [47]	$\tilde{O}\left(N^{\mathrm{fhtw}(\mathcal{H})} + \ arphi\ \right)$
Marginal	$\sum_{(\mathbf{x}_{f+1},\dots,\mathbf{x}_n)} \prod_{S \in \mathcal{E}} \psi_S(\mathbf{x}_S)$	$\tilde{O}(N^{htw(\varphi)} + \ \varphi\)$ [55]	$\tilde{O}(N^{\mathrm{faqw}(arphi)} + \ arphi\)$
MAP	$\max_{(x_{f+1},\ldots,x_n)} \prod_{S\in\mathcal{E}} \psi_S(\mathbf{x}_S)$	$\tilde{O}(N^{htw(\varphi)} + \ \varphi\)$ [55]	$\tilde{O}(N^{ ext{faqw}(arphi)} + \ arphi\)$
МСМ	$\sum_{x_2,,x_n} \prod_{i=1}^n \psi_{i,i+1}(x_i,x_{i+1})$	DP bound [29]	DP bound
DFT	$\sum_{\substack{(y_0, \dots, y_{m-1}) \\ \in \mathbb{Z}_p^m}} b_y \cdot \prod_{0 \le j+k < m} e^{i2\pi} \frac{x_j \cdot y_k}{p^{m-j-k}}$	$O(N\log_p N)$ [28]	$O(N\log_p N)$

Why do we need DBs?

Store

Analyze

Share

What can we use as DBs?

Good properties of a DB?

Scalable

Efficient

Durable

Concurrent

same column length same type of data

same row length

name	breed	age	origin	kind
casa	tabby	8	seatte	cat
kira	tuxedo	6	hawaii	cat
toby	border collie	17	seattle	dog
maya	husky	10	LA	dog

anatomy of a table (a.k.a. relation)

Database: many tables

pets

name	breed	age	origin	kind
casa	tabby	8	seatte	cat
kira	tuxedo	6	hawaii	cat
toby	border collie	17	seattle	dog
maya	husky	10	LA	dog

people

name	pet	addr.	phone	job
remy	casa	LA	###	UCLA

places

name	addr.	type
UCLA	LA	edu.

Database: many tables

pets

name	breed	age	origin	kind
casa •	tabby	8	seatte	cat
kira	tuxedo	6	hawaii	cat
toby	border collie	17	seattle	dog
maya	husky	10	LA	dog

people

name	pet	addr.	phone	job
remy	• casa	LA	###	UCLA

places

name	addr.	type
UCLA	LA	edu.

Database: many tables

pets

name	breed	age	origin	kind
casa •	tabby	8	seatte	cat
kira	tuxedo	6	hawaii	cat
toby	border collie	17	seattle	dog
maya	husky	10	LA	dog

people

name	pet	addr.	phone	job
remy	• casa	LA	###	• UCLA
			•	

places

name	addr.	type			
UCLA •	LA	edu.			

Why this design?

name	breed	age	origin	kind
casa	tabby	8	seatte	cat
kira	tuxedo	6	hawaii	cat
toby	border collie	17	seattle	dog
maya	husky	10	LA	dog

Simple!

Intuitive for humans

Easy for machines

Scalable: distributed storage

Table too large?

Split it over machines!

Scalable: distributed storage

Scalable: distributed compute

	1	
	2	
	3	
	4	
	5	
	6	
	7	
	8	
	9	

Computer too slow?

Add more computers!

Scalable: distributed compute

1	
2	
3	
4	
5	
6	
7	
8	
9	

Σ

 \sum

Computer too slow?

Add more computers!

Concurrent access & update

Avoid conflicting

reads & writes

Concurrent access & update

Durable: use replication

Make copies of

critical regions

Durable: use replication

SQL: the DB language

pets

name	age	bday	kind
casa	8	2017-01-01	cat
kira	6	2019-09-16	cat
toby	17	2008-02-03	dog
maya	10	2015-11-21	dog

```
CREATE TABLE pets (
  name TEXT,
  age INT,
  bday DATE,
  kind TEXT,
);
```

```
INSERT INTO pets values ("casa", 8, 2017-1-1, "cat");
tables
.schema pets
DROP TABLE pets;
mode box
SELECT name FROM pets;
SELECT age FROM pets;
SELECT * FROM pets;
```

SELECT <u>e(columns)</u>
FROM <u>table</u>
WHERE <u>condition</u>;

SELECT age, name FROM pets WHERE 7*age < 70;

```
for p in pets:
   if 7*p.age < 70:
      print(p.age, p.name)</pre>
```

name	age	bday	kind
casa	8	2017-01-01	cat
kira	6	2019-09-16	cat
toby	17	2008-02-03	dog
maya	10	2015-11-21	dog

```
for p in pets:
   if 7*p.age < 70:
      print(p.age, p.name)</pre>
```

SELECT age, name FROM pets WHERE 7*age < 70;

```
(age, name) in output <=>
  exists p in pets :
   p.age=age & p.name=name
& 7*age < 70</pre>
```

name	age	bday	kind
casa	8	2017-01-01	cat
kira	6	2019-09-16	cat
toby	17	2008-02-03	dog
maya	10	2015-11-21	dog

(10, maya) in output <=>
 exists p in pets :
 p.age=10 & p.name=maya
 & 7*10 < 70</pre>

Keep rows: 7*age < 70

name	age	bday	kind
casa	8	2017-01-01	cat
kira	6	2019-09-16	cat
toby	17	2008-02-03	dog
maya	10	2015-11-21	dog

name	age	bday	kind
casa	8	2017-01-01	cat
kira	6	2019-09-16	cat

Keep cols: age, name

SELECT	age,	nan	ie
FROM	pets		
WHERE	7*age	<	70;

name	age
casa	8
kira	6

Keep rows: 7*age < 70

Selection: $\sigma_p(T) = \{t \mid t \in T \land p(t)\}$

Keep cols: age, name

Projection: $\pi_{x,y,z}(T) = \{(t.x, t.y, t.z) \mid t \in T\}$

Ext. proj.: $\pi_{e(x,y,z)}(T) = \{e(t.x,t.y,t.z) \mid t \in T\}$

name	age	bday	kind
casa	8	2017-01-01	cat
kira	6	2019-09-16	cat
toby	17	2008-02-03	dog
maya	10	2015-11-21	dog

SELECT year(bday) + age FROM pets

Ext. proj.: $\pi_{e(x,y,z)}(T) = \{e(t.x,t.y,t.z) \mid t \in T\}$

Selection:
$$\sigma_p(T) = \{t \mid t \in T \land p(t)\}$$

Ext. proj.:
$$\pi_{e(x,y,z)}(T) = \{e(t.x,t.y,t.z) \mid t \in T\}$$

Union:
$$T_1 \cup T_2 = \{t \mid t \in T_1 \lor r \in T_2\}$$

Intersect:
$$T_1 \cap T_2 = \{t \mid t \in T_1 \land r \in T_2\}$$

Aggregate:
$$\gamma_{F(x)}(T) = F(T.x)$$

Bag v.s. Set

name	age	bday	kind
casa	8	2017-01-01	cat
kira	6	2019-09-16	cat
toby	17	2008-02-03	dog
maya	10	2015-11-21	dog

SELECT count(kind) FROM pets;

Logistics