Contents

1	7.1		1
	1.1	8	1
	1.2	Birthday Problem	1
2	7.2		1
	2.1	Random Variable	2
	22	Conditional Probability	2

1 7.1

1.1 8

What is the probability that a five-card poker hand contains the ace of hearts?

$$\mathbb{P}(A \heartsuit) = \frac{|E|}{|S|}$$

$$= \frac{C(51, 4)}{C(52, 5)}$$

$$= \frac{51 \cdot 50 \cdot 49 \cdot 48}{1 \cdot 2 \cdot 3 \cdot 4} \cdot \frac{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5}{52 \cdot 51 \cdot 50 \cdot 49 \cdot 48}$$

$$= \frac{5}{52}$$

1.2 Birthday Problem

Given a group of n people, what is the probability of at least two people having the same birthday?

2 7.2

 $\mathbb{P} \colon S \to [0,1]$ is called probability if

- 1. $\forall s \in S, 0 \leq \mathbb{P}(S) \leq 1$
- $2. \sum_{s \in S} \mathbb{P}(s) = 1$

Disjoint (mutually exclusive)

$$\mathbb{P}(E \cup F) = \mathbb{P}(E) + \mathbb{P}(F)$$

$$\begin{split} \mathbb{P}(E \cup F) &= \mathbb{P}(E) + \mathbb{P}(F) - \mathbb{P}(E \cap F) \\ \mathbb{P}(E \cap F) &= 0 \end{split}$$

Independent

$$\mathbb{P}(E \cap F) = \mathbb{P}(E) \cdot \mathbb{P}(F)$$

2.1 Random Variable

$$\begin{split} X \colon S &\to \mathbb{R} \\ \mathbb{P}(X) &\to [0,1] \\ S &\to \mathbb{R} \to [0,1] \end{split}$$

2.2 Conditional Probability

$$\mathbb{P}(E \mid F) = \frac{\mathbb{P}(E \cap F)}{\mathbb{P}(F)}$$

Probably of E if F happened. (after F happened)