Задача 3-1

Игорь Максимов

8 декабря 2019 г.

1 Решение

В силу унимодальности функции расстояния от отрезка до точки, найдем минимум функции с помощью тернарного поиска до заданной точности

2 Унимодальность ρ от отрезка до точки

Проведем касательную окружность (сферу) из точки x_0 к отрезку. Тогда для любой другой точки на отрезке функция будет убывать, по направлению к точке касания, или, наоборот, возрастать, если двигать x в противоположном направлении (можно построить окружность радиуса $||x-x_0||$. Тогда двигаясь в одну сторону мы попадаем внутрь оркужности, а в противоположную — во вне. Тогда в этой точке функция будет либо возрастать, либо убывать).

3 Унимодальность ρ от отрезка до отрезка

Случай 1: Отрезки коллинеарны, ρ — постоянная Случай 2: Отрезки неколлинеарны. Зафиксируем отрезок $[\vec{a}, \vec{b}]$. Пусть x_1, x_2, \ldots, x_n — точки минимума ρ . Обозначим $\rho([\vec{a}, \vec{b}], x_i)$ за r_i и $MinkowskySum(U_{r_i}(0), [\vec{a}, \vec{b}])$ за S_i — множество точек, удаленных от отрезка на r_i .

Проведем все S_i . Пусть z_i — точка пересечения S_i и второго отрезка. Без ограничений общности $S_1 \subset S_2 \subset \ldots \subset S_n$. $S_1 \cap [\vec{c}, \vec{d}] = \{z_1\}$ — касаются, т.к. иначе можно найти такую точку x' что расстояние от нее меньше чем r_1 .

Рассмотрим теперь S_i для $i=2,\dots,n$. т.к. $r_i>r_1$ то часть отрезка лежит в S_i , рассмотрим точки из пересечения границы S_i с отрезком $[\vec{c},\vec{d}]$. Тогда можно найти достаточно близкую точку $x'\in [\vec{c},\vec{d}]$ к x_i , такую что расстояние от нее до отрезка $[\vec{a},\vec{b}]$ меньше, чем r_i . Тогда x_i — не точка минимума ρ .