Homework 1

Jugal Marfatia

Macroeconomics-1

August 30, 2017

Problem 1. .

(a) $U'(c_t) = \frac{1}{c_t^{\sigma}} > 0 \implies$ strictly increasing. (Since $\sigma > 0$)

Next, $U''(c_t) = -\sigma \frac{1}{c_t^{\sigma-1}} < 0 \implies$ strictly concave. (Since $\sigma > 0$)

And finally $\lim_{c_t \to 0} \frac{1}{c_t^\sigma} = +\infty$

(b) If $\sigma \leq 0 \implies \sigma \frac{1}{c_{\bullet}^{\sigma-1}} \geq 0 \implies$ not strictly concave.

Also if $\sigma \leq 0 \implies \lim_{c_t \to 0} \frac{1}{c_t^{\sigma}} \neq +\infty$

(c)
$$\lim_{\sigma \to 1} \frac{c_t^{1-\sigma} - 1}{\sigma - 1} = \lim_{\sigma \to 1} \frac{e^{\ln(c_t)(1-\sigma)} - 1}{\sigma - 1} = \lim_{\sigma \to 1} \frac{-e^{\ln(c_t)(1-\sigma)} \ln(c_t)}{-1} = \frac{-\ln(c_t)}{-1} = \ln(c_t)$$

(d) $U'(c_t) = \frac{1}{c_t^{\sigma}}$ and $U''(c_t) = -\sigma \frac{1}{c_t^{\sigma-1}}$

Therefore, $-\frac{cU''(c_t)}{U'(c_t)} = \frac{cc^{\sigma}\sigma}{c^{\sigma+1}} = \sigma$ (a constant).

(e)
$$U(c_0, c_1, ..., c_T) = \sum_{t=0}^{T} \beta^t \frac{c_t^{1-\sigma} - 1}{1-\sigma} = \sum_{t=0}^{T} \beta^t \frac{c_t^{1-\sigma}}{1-\sigma} - \sum_{t=0}^{T} \frac{\beta^t}{1-\sigma}$$

Let $g(x) = \left[x + \sum_{t=0}^{T} \frac{\beta^t}{1-\sigma}\right]^{\frac{1}{1-\sigma}}$ and $g'(x) = \frac{1}{1-\sigma}\left[x + \sum_{t=0}^{T} \frac{\beta^t}{1-\sigma}\right]^{\frac{1}{1-\sigma}-1} > 0$. \Longrightarrow Strictly increasing.

Therefore,
$$g(U(c_0, c_1, ..., c_T)) = \left[\sum_{t=0}^T \beta^t \frac{c_t^{1-\sigma}}{1-\sigma} - \sum_{t=0}^T \frac{\beta^t}{1-\sigma} + \sum_{t=0}^T \frac{\beta^t}{1-\sigma}\right]^{\frac{1}{1-\sigma}} = \left[\sum_{t=0}^T \beta^t \frac{c_t^{1-\sigma}}{1-\sigma}\right]^{\frac{1}{1-\sigma}}$$

And if we set $\alpha^t = \frac{\beta^t}{1-\sigma}$

we get
$$g(U(c_0, c_1, ..., c_T)) = \left[\sum_{t=0}^T \alpha^t c_t^{1-\sigma}\right]^{\frac{1}{1-\sigma}} = \left[\alpha^0 c_0^{1-\sigma} + \alpha^1 c_1^{1-\sigma} + ... + \alpha^T c_T^{1-\sigma}\right]^{\frac{1}{1-\sigma}}$$

Therefore the utility function is a CES function.

(f) Since
$$\lim_{\sigma \to 1} \frac{c_t^{1-\sigma} - 1}{\sigma - 1} = \ln(c_t)$$

$$\implies \text{ when } \sigma = 1, \\ U(c_0, c_1, ..., c_T) = \sum_{t=0}^T \beta^t \frac{c_t^{1-\sigma} - 1}{1-\sigma} = \sum_{t=0}^T \beta^t \ln(c_t) = \sum_{t=0}^T \ln(c_t^{\beta^t}) = \left[\ln(c_0^{\beta^0}) + \ln(c_1^{\beta^1}) + + \ln(c_T^{\beta^T})\right]$$

Next let $g(x) = e^x$ and $g'(x) = e^x > 0 \implies$ (Strictly increasing)

Therefore,
$$g(U(c_0, c_1, ..., c_T)) = e^{\left[\ln(c_0^{\beta^0}) + \ln(c_1^{\beta^1}) + ... + \ln(c_T^{\beta^T})\right]} = e^{\left[\ln(c_0^{\beta^0} c_1^{\beta^1} ... c_T^{\beta^T})\right]} = c_0^{\beta^0} c_1^{\beta^1} ... c_T^{\beta^T}$$

Thus the utility function is a Cobb Douglas function when $\sigma = 1$.

(g) We will use the result from e. i.e. $g(U(c_0, c_1, ..., c_t)) = \left[\alpha^0 c_0^{1-\sigma} + \alpha^1 c_1^{1-\sigma} + ... + \alpha^T c_T^{1-\sigma}\right]^{\frac{1}{1-\sigma}}$ Therefore,

$$g(U(\beta c_0, \beta c_1, ..., \beta c_T)) = \left[\alpha^0 (\beta c_0)^{1-\sigma} + \alpha^1 (\beta c_1)^{1-\sigma} + ... + \alpha^T (\beta c_T)^{1-\sigma}\right]^{\frac{1}{1-\sigma}}$$

$$= \left[\alpha^0 \beta^{1-\sigma} c_0^{1-\sigma} + \alpha^1 \beta^{1-\sigma} c_1^{1-\sigma} + ... + \alpha^T \beta^{1-\sigma} c_T^{1-\sigma}\right]^{\frac{1}{1-\sigma}}$$

$$= \beta^{\frac{1-\sigma}{1-\sigma}} \left[\alpha^0 c_0^{1-\sigma} + \alpha^1 c_1^{1-\sigma} + ... + \alpha^T c_T^{1-\sigma}\right]^{\frac{1}{1-\sigma}}$$

$$= \beta \left[\alpha^0 c_0^{1-\sigma} + \alpha^1 c_1^{1-\sigma} + ... + \alpha^T c_T^{1-\sigma}\right]^{\frac{1}{1-\sigma}}$$

$$= \beta g(U(c_0, c_1, ..., c_t))$$

Thus $g(U(\beta c_0, \beta c_1, ..., \beta c_T)) = \beta g(U(c_0, c_1, ..., c_t)) \implies U(c_0, c_1, ..., c_T)$ is homothetic.

Problem 2. .

(a)

$$F(tk,tn) = A \left[\alpha(tk)^{1-\sigma} + (1-\alpha)(tn)^{1-\sigma} \right]^{\frac{1}{1-\sigma}}$$

$$= A \left[(t^{1-\sigma})(\alpha k^{1-\sigma} + (1-\alpha)n^{1-\sigma}) \right]^{\frac{1}{1-\sigma}}$$

$$= t^{\frac{1-\sigma}{1-\sigma}} A \left[(\alpha k^{1-\sigma} + (1-\alpha)n^{1-\sigma})^{\frac{1}{1-\sigma}} \right]$$

$$= tA \left[(\alpha k^{1-\sigma} + (1-\alpha)n^{1-\sigma})^{\frac{1}{1-\sigma}} \right]$$

$$= tF(k,n)$$

Therefore, F(tk, tn) = tF(k, n)

(b) As hinted in the question we will first take the log of the equation in order to find the limit.

$$\log(F(k,n)) = \log(A) + \frac{1}{1-\sigma} \log\left[\alpha(k)^{1-\sigma} + (1-\alpha)(n)^{1-\sigma}\right]$$

$$\therefore \lim_{\sigma \to 1} \log(F(k, n)) = \log(A) + \lim_{\sigma \to 1} \frac{\log \left[\alpha(k)^{1-\sigma} + (1-\alpha)(n)^{1-\sigma}\right]}{1-\sigma}$$

$$= \log(A) + \lim_{\sigma \to 1} \frac{-\left[\alpha \log(k)e^{\log(k)(1-\sigma)} + (1-\alpha)\log(n)e^{\log(n)(1-\sigma)}\right]}{-\left[\alpha(k)^{1-\sigma} + (1-\alpha)(n)^{1-\sigma}\right]} \quad \text{(L'Hopitals rule)}$$

$$= \log(A) + \left[\alpha \log(k) + (1-\alpha)\log(n)\right]$$

$$\implies \lim_{\sigma \to 1} \log(F(k,n)) = \log(Ak^{\alpha}n^{1-\alpha})$$

Therefore, $\lim_{\sigma \to 1} e^{\log(F(k,n))} = e^{\log(Ak^{\alpha}n^{1-\alpha})} \iff \lim_{\sigma \to 1} F(k,n) = Ak^{\alpha}n^{1-\alpha}$

(c).

$$F_k(k,n)=An^{1-\alpha}\alpha k^{\alpha-1}=\frac{An^{1-\alpha}\alpha}{k^{1-\alpha}}>0$$
 (Since all terms are >0)

$$F_n(k,n) = \frac{A(1-\alpha)k^\alpha}{n^\alpha} > 0$$
 (Since all terms are >0)

$$\lim_{k\to 0} \frac{An^{1-\alpha}\alpha}{k^{1-\alpha}} = \frac{An^{1-\alpha}\alpha}{\lim_{k\to 0} k^{1-\alpha}} = \infty$$

$$\lim_{k \to \infty} \frac{An^{1-\alpha}\alpha}{k^{1-\alpha}} = \frac{An^{1-\alpha}\alpha}{\lim_{k \to \infty} k^{1-\alpha}} = 0$$

(d).

$$\frac{F_k(k,n)k}{F(k,n)} = \frac{An^{1-\alpha}\alpha(k^{\alpha-1})k}{An^{1-\alpha}(k^{\alpha})} = \alpha$$

$$\frac{F_n(k,n)n}{F(k,n)} = \frac{A(1-\alpha)k^{\alpha}n^{1-\alpha}}{An^{1-\alpha}(k^{\alpha})} = (1-\alpha)$$

Problem 3. .

(a). We have
$$k_{t+1} = s(k_t)F(k_t, 1) + (1 - \delta)k_t$$

Further since $s(k_t) = \bar{s}, F(k_t, 1) = k_t^{\alpha}$

$$k_{t+1} = \bar{s}k_t^{\alpha} + (1 - \delta)k_t$$

$$\frac{dk_{t+1}}{dk_t} = \alpha \bar{s} k_t^{\alpha-1} + (1-\delta) > 0 \implies \text{strictly increasing (Since all terms are} > 0 \text{ and given } \alpha \in (0,1).)$$

$$\frac{d^2k_{t+1}}{dk_t^2} = \alpha(\alpha-1)\ \bar{s}\ k_t^{\alpha-2} < 0 \implies$$
 strictly concave (Given $\alpha \in (0,1).)$

Further when $k_t = 0 \implies k_{t+1} = 0$

There there $\exists !k^* > 0$ and below is the graphical representation.

(b) Since
$$s(k_t) = \beta k_t^{1-2\alpha}$$
 and $F(k_t, 1) = k_t^{\alpha}$

$$k_{t+1} = \beta k_t^{1-2\alpha} k_t^{\alpha} + (1-\delta)k_t = \beta k_t^{1-\alpha} + (1-\delta)k_t$$

 $\frac{dk_{t+1}}{dk_t} = (1-\alpha) \ \beta \ k_t^{-\alpha} + (1-\delta) > 0 \implies \text{strictly increasing (Since all terms are} > 0 \text{ and given } \alpha \in (0,1).)$

$$\frac{d^2k_{t+1}}{dk_t^2} = -\alpha(1-\alpha)\ k_t^{-\alpha-1} < 0 \implies \text{strictly concave (Given } \alpha \in (0,1).)$$

Further when $k_t = 0 \implies k_{t+1} = 0$

There there $\exists !k^* > 0$ and below is the graphical representation.

(c) . Since
$$s(k_t) = \beta k_t^{1-\alpha}$$
 and $F(k_t, 1) = k_t^{\alpha}$

$$k_{t+1} = \beta k_t^{1-\alpha} k_t^{\alpha} + (1-\delta)k_t = \beta k_t^{+} (1-\delta)k_t$$

$$\frac{dk_{t+1}}{dk_t} = \beta + 1 - \delta > 0 \implies \text{Strictly increasing}.$$

 $\frac{d^2k_{t+1}}{dk_t^2}=0 \implies$ linear and below is the graphical representation.

(d) Since
$$s(k_t) = \beta k_t^{1-\alpha/2}$$
 and $F(k_t, 1) = k^{\alpha}$

$$k_{t+1} = \beta k_t^{1-\alpha/2} k_t^{\alpha} + (1-\delta)k_t = \beta k_t^{1+\alpha/2} + (1-\delta)k_t$$

$$\frac{dk_{t+1}}{dk_t} = (1 - \alpha/2)\beta \ k_t^{\alpha/2} + (1 - \delta) > 0 \implies \text{strictly increasing (Since all terms are} > 0 \text{ and given } \alpha \in (0, 1).)$$

$$\frac{d^2k_{t+1}}{dk_t^2} = (1-\alpha/2)(\alpha/2) \ k_t^{\alpha/2-1} > 0 \implies \text{strictly convex (Given } \alpha \in (0,1).)$$

Further when $k_t = 0 \implies k_{t+1} = 0$

There there $\exists !k^* > 0$ and below is the graphical representation.

Below is the graphical representation.

(e) In order to have a unique $k^* > 0$ we need $g(k_t)$ strictly concave or strictly convex and g(0) = 0.

Further the saving function $s(k_t) > 0$ and $s'(k_t) \ge 0$

Problem 4. .

(a) From the question we have $(1+g)k_{t+1} = k_t - \delta k_t + i_t$ and since $i_t - \delta k_t = s_\alpha y_t \implies (1+g)k_{t+1} = k_t + s_\alpha y_t$

We get
$$(1+g)k^* = k^* + s_{\alpha}y_t \iff gk^* = s_{\alpha}y_t \iff k^* = \frac{s_{\alpha}y_t}{g}$$

Therefore, $\frac{k^*}{y^*} = \frac{s_{\alpha}}{g} \implies$ if growth rate (g) decreases to 0 $\frac{k^*}{y^*}$ will approach infinity given $s_{\alpha} > 0$. The economic intuition is that if the economy stops growing wages stay constant and the value of the existing capital rises.

(b) $\frac{r^*k^*}{y^*} = \frac{rs_{\alpha}}{g}$ \Longrightarrow if growth rate (g) decreases to 0 the capital income share $\frac{r^*k^*}{y^*}$ will approach infinity. The economic intuition follows the one in part a and since capital is more valuable it will yield a much higher return compared to wages.

(c) We have $(1+g)k_{t+1} = (1-\delta)k_t + i_t$ and since $i_t = s_b y_t \implies (1+g)k_{t+1} = (1-\delta)k_t + s_b y_t$.

$$\therefore (1+g)k^* = (1-\delta)k^* + s_b y_t \iff (g+\delta)k^* = s_b y_t \iff k^* = \frac{s_\alpha y_t}{(g+\delta)}$$

Therefore, $\frac{k^*}{y^*} = \frac{s_b}{(g+\delta)} \implies$ if growth rate (g) decreases to $0 \frac{k^*}{y^*}$, unlike the case in part a, will not approach infinity given $\delta \neq 0$. Furthermore, the capital income share $\frac{r^*k^*}{y^*}$ will not approach infinity.