Содержание

Обязательн	ые задачи	2
Задача 9А.	Различные подстроки [0.5 sec, 256 mb]	2
Задача 9В.	Дана строка [0.5 sec, 256 mb]	3
Задача 9С.	Основание строки [0.5 sec, 256 mb]	4
Задача 9D.	Циклические суффиксы [0.5 sec, 256 mb]	5
Задача 9Е.	Десятичная дробь [0.5 sec, 256 mb]	6
Задача 9F.	Сравнения подстрок [0.5 sec, 256 mb]	8
Задача 9 G .	Кубики [0.5 sec, 256 mb]	9
Задача 9Н.	Свобода выбора [1 sec, 256 mb]	10
Бонус		11
Задача 91.	Архиватор [1 sec, 256 mb]	11
Задача 9J.	Две строки [0.5 sec, 256 mb]	12
Задача 9К.	Word Cover [0.5 sec, 256 mb]	13
Задача 9L.	Преобразование строковых функций [0.5 sec, 256 mb]	14
Задача 9М.	Обратная задача [0.5 sec, 256 mb]	15
Задача 9N.	Обезьяна за клавиатурой [2 sec, 256 mb]	16
Задача 9О.	Палиндромы и сверхспособности [0.5 sec, 256 mb]	17

В некоторых задачах большой ввод и вывод. Имеет смысл пользоваться супер быстрым вводом-выводом:

http://acm.math.spbu.ru/~sk1/algo/input-output/fread_write.cpp.html

В некоторых задачах нужен STL, который активно использует динамическую память (set-ы, map-ы) переопределение стандартного аллокатора ускорит вашу программу: http://acm.math.spbu.ru/~sk1/algo/memory.cpp.html

Обязательные задачи

Задача 9A. Различные подстроки [0.5 sec, 256 mb]

 $\Pi o d cmpo \kappa o \ddot{u}$ строки $\S = s_1 s_2 \dots s_n$ называется непрерывная подпоследовательность символов этой строки $s_i s_{i+1} s_{i+2} \dots s_{i-1} s_i$.

Дана строка. Сколько различных подстрок, не считая пустой, она содержит?

Формат входных данных

В первой строке входного файла задана строка длины от 1 до 100 символов, включительно. Строка состоит из строчных букв латинского алфавита.

Формат выходных данных

В первой строке выходного файла выведите одно число — количество различных подстрок данной строки, не считая пустой.

unequal.in	unequal.out
aab	5
dabyx	15

Задача 9В. Дана строка [0.5 sec, 256 mb]

Даже больше — дано две строки, α и β . Вам требуется узнать, где в строке α можно найти строку β как подстроку и выписать все такие позиции.

Формат входных данных

В первой строке входного файла содержится строка α , во второй — строка β . Строки состоят только из строчных латинских букв (a-z), их длины не превосходят 100 000.

Формат выходных данных

В первой строке выходного файла выведите одно число — количество вхождений строки β в строку α . Во второй строке для каждого вхождения выведите номер символа в строке α , где начинается очередная строка β . Вхождения нужно выводить в возрастающем порядке.

search.in	search.out
abacaba	2
aba	1 5

Задача 9С. Основание строки [0.5 sec, 256 mb]

Строка S была записана много раз подряд, после чего из получившейся строки взяли подстроку и дали вам. Ваша задача определить минимально возможную длину исходной строки S.

Формат входных данных

В первой и единственной строке входного файла записана строка, которая содержит только латинские буквы, длина строки не превышает 50 000 символов.

Формат выходных данных

В выходной файл выведите ответ на задачу.

basis.in	basis.out
ZZZ	1
bcabcab	3

Задача 9D. Циклические суффиксы [0.5 sec, 256 mb]

Рассмотрим строку $S = s_1 s_2 s_3 \dots s_{n-1} s_n$ над алфавитом Σ . Циклическим расширением порядка m строки S назовем строку $s_1s_2s_3\dots s_{n-1}s_ns_1s_2\dots$ из m символов; это значит, что мы приписываем строку S саму к себе, пока не получим требуемую длину, и берем префикс длины m.

 \underline{H} иклической строкой \tilde{S} назовем бесконечное циклическое расширение строки S.

Рассмотрим суффиксы циклической строки \hat{S} . Очевидно, существует не более |S| различных суффиксов: (n+1)-ый суффикс совпадает с первым, (n+2)-ой совпадает со вторым, и так далее. Более того, различных суффиксов может быть даже меньше. Например, если $S=\mathtt{abab}$, первые четыре суффикса циклической строки $\tilde{S}-\mathtt{это}$:

> \tilde{S}_1 = ababababab... $ilde{S}_2$ = bababababa... \tilde{S}_3 = ababababab... $ilde{S}_4$ = bababababa...

Здесь существует всего два различных суффикса, в то время как |S| = 4.

Отсортируем первые |S| суффиксов \tilde{S} лексикографически. Если два суффикса совпадают, первым поставим суффикс с меньшим индексом. Теперь нас интересует следующий вопрос: на каком месте в этом списке стоит сама строка S?

Например, рассмотрим строку S = cabcab:

- $ilde{S}_2$ = abcabcabca...
- (2) \tilde{S}_5 = abcabcabca...

- $\begin{array}{llll} (5) & & \tilde{S}_1 & = & {\tt cabcabcabc} \ldots \\ (6) & & \tilde{S}_4 & = & {\tt cabcabcabc} \ldots \end{array}$

Здесь циклическая строка $\tilde{S} = \tilde{S}_1$ находится на пятом месте.

Вам дана строка S. Ваша задача — найти позицию циклической строки \tilde{S} в описанном порядке.

Формат входных данных

Во входном файле записана единственная строка S (1 \leq $|S| \leq$ 1 000 000), состоящая из прописных латинских букв.

Формат выходных данных

В выходной файл выведите единственное число — номер строки $ilde{S}$ в описанном порядке среди первых |S| суффиксов.

cyclic.in	cyclic.out
abracadabra	3
cabcab	5

Задача 9E. Десятичная дробь [0.5 sec, 256 mb]

В этой задаче требуется найти оптимальный период для бесконечной десятичной дроби. Рассмотрим бесконечную десятичную дробь $x_0.x_1x_2x_3...$, которая является записью некоторого вещественного числа x от 0 до 1 включительно: $x=x_0+x_1\cdot 10^{-1}+x_2\cdot 10^{-2}+x_3\cdot 10^{-3}+...$ Здесь x_i — это десятичные цифры от 0 до 9. В этой задаче нет никаких ограничений на дробь, кроме приведённых выше. В частности, это означает, что, например, 0.999999... и 1.000000...— корректные бесконечные десятичные дроби, являющиеся записью одного и того же вещественного числа 1.

Периодическая десятичная дробь—это способ записи бесконечной десятичной дроби в виде $y_0.y_1y_2y_3...y_r(y_{r+1}y_{r+2}...y_s)$, где $r\geqslant 0$ и s>r. Эту запись можно pacкрыть в бесконечную десятичную дробь $y_0.y_1y_2y_3...y_ry_{r+1}y_{r+2}...y_sy_{r+1}y_{r+2}...y_sy_{r+1}y_{r+2}...y_s...$, то есть бесконечную дробь, начинающуюся с $y_0.y_1y_2y_3...y_r$ и затем повторяющую последовательность цифр $y_{r+1}y_{r+2}...y_s$ в бесконечном цикле. Будем говорить, что r—это длина npednepuoda, а s-r—это длина nepuoda. Не всякую бесконечную десятичную дробь можно записать как периодическую. На самом деле такое представление существует тогда и только тогда, когда вещественное число x является рациональным.

Нам заданы несколько первых цифр бесконечной десятичной дроби, оставшиеся цифры просто отброшены (никакого округления не происходит). Теперь мы хотим записать какую-нибудь периодическую десятичную дробь, раскрыв которую, мы получим дробь, начинающуюся с заданной конечной части. Среди таких бесконечных десятичных дробей найдите ту, у которой сумма длин предпериода и периода минимально возможная.

Формат входных данных

Первая строка ввода содержит начало бесконечной десятичной дроби в формате $x_0.x_1x_2x_3...x_n$ ($1 \le n \le 1\,000\,000$). Здесь x_i — десятичные цифры от 0 до 9, а вещественное число x, записью которого является дробь, лежит между 0 и 1 включительно.

Формат выходных данных

Выведите одну строку, содержащую периодическую десятичную дробь в формате $y_0.y_1y_2y_3...y_r(y_{r+1}y_{r+2}...y_s)$, где $r\geqslant 0$ и s>r. Здесь y_i — десятичные цифры от 0 до 9. Раскрыв период, мы должны получить бесконечную цепную дробь, начинающуюся с $x_0.x_1x_2x_3...x_n$ (это начало задано во вводе), а сумма длин предпериода и периода должна быть минимально возможной. Если возможных ответов несколько, выведите один любой из них. Гарантируется, что хотя бы один ответ существует.

Примеры

decimal.in	decimal.out
0.999999	0.(9)
0.63573573	0.6(357)
0.123456789	0.12345(6789)

Пояснения к примерам

В первом примере периодическая десятичная дробь 0.(9) раскрывается в бесконечную десятичную дробь 0.999..., которая начинается с 0.9999999. Здесь длина предпериода равна 0, а длина периода равна 1. Другие ответы, например, 0.9(99) или даже 0.9999998(7), также раскрываются в дробь, начинающуюся с 0.9999999, но они не оптимальны. Заметим, что, хотя 0.9999999... = 1 как вещественное число, ответ 1.(0) не является корректным, так как он раскрывается в дробь, которая не начинается на 0.99999999.

Во втором примере ответ 0.6(357) раскрывается в 0.6357357357357... Здесь длина предпериода равна 1, а длина периода равна 3. Первые несколько цифр соответствуют заданному началу.

В третьем примере возможные ответы таковы: $0.(123456789),\ 0.1(23456789),\ \dots,\ 0.12345678(9).$ Помните, что длина предпериода должна быть неотрицательна, а длина периода — положительна.

Задача 9F. Сравнения подстрок [0.5 sec, 256 mb]

Дана строка. Нужно уметь отвечать на запросы вида: равны ли подстроки [а..b] и [с..d].

Формат входных данных

Сперва строка S (не более 10^5 строчных латинских букв). Далее число M — количество запросов.

В следующих M строках запросы a,b,c,d. $0 \leqslant M \leqslant 10^5, 1 \leqslant a \leqslant b \leqslant |S|, 1 \leqslant c \leqslant d \leqslant |S|$

Формат выходных данных

М строк. Выведите Yes, если подстроки совпадают, и No иначе.

substrcmp.in	substrcmp.out
trololo	Yes
3	Yes
1 7 1 7	No
3 5 5 7	
1 1 1 5	

Задача 9G. Кубики [0.5 sec, 256 mb]

Привидение Петя любит играть со своими кубиками. Он любит выкладывать их в ряд и разглядывать свое творение. Однако недавно друзья решили подшутить над Петей и поставили в его игровой комнате зеркало. Ведь всем известно, что привидения не отражаются в зеркале! А кубики отражаются.

Теперь Петя видит перед собой N цветных кубиков, но не знает, какие из этих кубиков нестоящие, а какие — всего лишь отражение в зеркале. Помогите Пете! Выясните, сколько кубиков может быть у Пети. Петя видит отражение всех кубиков в зеркале и часть кубиков, которая находится перед ним. Часть кубиков может быть позади Пети, их он не видит.

Формат входных данных

Первая строка входного файла содержит число N ($1 \le N \le 100\,000$) и количество различных цветов, в которые могут быть раскрашены кубики—M ($1 \le M \le 100\,000$). Следующая строка содержит N целых чисел от 1 до M—цвета кубиков.

Формат выходных данных

Выведите в выходной файл все такие K, что у Пети может быть K кубиков.

Пример

cubes.in	cubes.out
6 2	3 5 6
1 1 2 2 1 1	

В приведенном примере взаимные расположения Пети, кубиков и зеркала приведены на рисунке. Петя смотрит вправо, затененные на рисунке кубики находятся позади Пети и поэтому он их не видит.

Задача 9H. Свобода выбора [1 sec, 256 mb]

Даны две строки, состоящих из заглавных латинских букв. Нужно найти их наибольшую общую подстроку. Полное условие можно посмотреть на тимусе.

Формат входных данных

На первой строке число n ($1 \le n \le 10^5$).

На второй и третьей строках находятся по n заглавных английских букв.

Формат выходных данных

Максимальную по длине общую подстроку. Если оптимальных ответов несколько, выведите любой.

freedom.in	freedom.out
28	THEGREATALBANIA
VOTEFORTHEGREATALBANIAFORYOU	
CHOOSETHEGREATALBANIANFUTURE	

Бонус

Задача 91. Архиватор [1 sec, 256 mb]

Вася решил покорить рынок лучших архиваторов мира. Совсем недавно он придумал очень нетривиальную идею для сжатия текста из маленьких латинских букв. А именно, он решил, что можно хранить текст как последовательность команд. Команды бывают двух типов:

- «с»: дописать к текущей строке символ c.
- «і k»: дописать к текущей строке k символов один за другим. При этом первый дописываемый символ совпадает с символом i текущей строки, второй с символом i+1 и так далее, k-ый добавляемый символ совпадает с символом i+k-1. Гарантируется, что i не превосходит текущей длины строки.

Например последовательность команд «a, b, 1 3» кодирует строку «ababa», а последовательность команд «a, 1 3, b, 3 3» кодирует строку «aaaabaab».

На хранение команды первого типа Васе требуется 1 байт, а второго типа 5 байт. К сожалению, пока Вася умеет только по командам восстановить исходную строку, а наоборот не умеет. Вам предлагается помочь бедному Васе в покорении архиваторного рынка. Найдите последовательность команд, которая архивирует заданную строку указанным способом, при этом потратив как можно меньше байт на ее хранение.

Формат входных данных

Во входном файле вам задана строка s из строчных латинских букв длиной не более 4000 символов.

Формат выходных данных

В первой строке выходного файла вы должны вывести количество байт, которое потребуется для хранения последовательности команд и количество команд в последовательности. На следующих строках выведите саму последовательность, по одной команде на строке. Если команда первого типа, то выведите просто букву, иначе выведите два числа: позиция символа (символы нумеруются начиная с единицы) в строке s, начиная с которого надо начать копирование, и количество символов, которое надо скопировать.

archiver.in	archiver.out
abcdqwertyqwertyu	16 12
	a
	b
	c
	d
	q
	W
	e
	r
	t
	у
	5 6
	u

Задача 9J. Две строки [0.5 sec, 256 mb]

Вам заданы две строки длиной не более 50 000 символов. Назовем строку хорошей, если она удовлетворяет условию, что если дописать ее в конец самой себе достаточно много раз, то в полученной строке будут содержаться в качестве подстрок обе заданные строки.

Например, для строк ababa и bab строка ab является хорошей — действительно, дописав ее в конец себе два раза, мы получим строку ababab, которая содержит обе заданные строки в качестве подстрок.

Для двух заданных строк найдите самую короткую хорошую строку.

Формат входных данных

Входной файл содержит две заданные строки. Строки состоят из символов с ASCII-кодами от 33 до 127. Длина каждой из них не превышает 50 000.

Формат выходных данных

Выведите в выходной файл ответ на задачу. Если существует несколько различных оптимальных хороших строк, то выведите любую.

2strings.in	2strings.out
ababa	ab
bab	

Задача 9K. Word Cover [0.5 sec, 256 mb]

Говорят, что строка α покрывает строку β , если для каждой позиции в строке β существует вхождение α , как подстроки β , содержащее эту позицию. Например, строка "aba" покрывает строку "abaabaababa", но не покрывает строку "baba". Конечно, строка покрывает саму себя. Компактностью строки β назовем длину самой короткой строки, которая покрывает β .

Вам дана строка w. Для каждого префикса w[1..k] строки w найдите его компактность.

Формат входных данных

Непустая строка w, состоящая из строчных букв английского алфавита. Длина w не превосходит 250 000.

Формат выходных данных

Для каждого k от 1 до |w| выведите компактность w[1..k].

cover.in	cover.out
abaabaababa	1 2 3 4 5 3 4 5 3 10 3

Задача 9L. Преобразование строковых функций [0.5 sec, 256 mb]

Для строки S определим Z-функцию следующим образом: Z[i] = lcp(S, S[i..|S|]), где $lcp(S_1, S_2)$ равно длине наибольшего общего префикса строк S_1 и S_2 . Например, для S = abacabaa Z-функция равна [8, 0, 1, 0, 3, 0, 1, 1].

Для строки S определим ее префикс-функцию: $\pi[i] = \max\{k | 0 \le k < i, S[1..k] = S[i-k+1..i]\}$. Например, для S = abacabaa ее префикс-функция имеет вид: [0, 0, 1, 0, 1, 2, 3, 1].

Для некоторой строки S была посчитана ее Z-функция, а строка S была утеряна. Ваша задача получить ее префикс-функцию по заданной Z-функции.

Формат входных данных

В первой строке входного файла содержится натуральное число N ($1 \le N \le 200\,000$), где N — длина S. Во второй строке записана Z-функция строки S.

Формат выходных данных

Выведите N чисел — искомую префикс-функцию.

trans.in	trans.out
8	0 0 1 0 1 2 3 1
8 0 1 0 3 0 1 1	

Задача 9М. Обратная задача [0.5 sec, 256 mb]

Для строки S определим Z-функцию следующим образом: Z[i] = lcp(S, S[i..|S|]), где $lcp(S_1, S_2)$ равно длине наибольшего общего префикса строк S_1 и S_2 . Например, для S = abacabaa Z-функция равна [8, 0, 1, 0, 3, 0, 1, 1].

Для строки S определим ее префикс-функцию: $\pi[i] = \max\{k | 0 \le k < i, S[1..k] = S[i-k+1..i]\}$. Например, для S = abacabaa ее префикс-функция имеет вид: [0, 0, 1, 0, 1, 2, 3, 1].

Для некоторой строки S была посчитана ее префикс-функция, а строка S была утеряна. Ваша задача получить ее Z-функцию по заданной префикс-функции.

Формат входных данных

В первой строке входного файла содержится натуральное число N ($1 \le N \le 200\,000$), где N — длина S. Во второй строке записана префикс-функция строки S.

Формат выходных данных

Выведите N чисел — искомую Z-функцию.

invtrans.in	invtrans.out
8	8 0 1 0 3 0 1 1
0 0 1 0 1 2 3 1	

Задача 9N. Обезьяна за клавиатурой [2 sec, 256 mb]

Ведущие телепередачи «Занимательная математика» решили убедить зрителей в справедливости известного утверждения о том, что обезьяна, посаженная за клавиатуру и случайным образом нажимающая на клавиши, согласно теории вероятности, рано или поздно наберёт нужное слово. Обезьяна, которую для съёмок предоставил городской зоопарк, уже обучена работе за клавиатурой — один раз в секунду она с равной вероятностью набирает одну из N первых букв латинского алфавита. По счастливой случайности, в слове, подготовленном ведущими, тоже используются только эти N букв. Однако перед тем, как заставить обезьяну трудиться, ведущие хотят знать, сколько времени у неё займёт работа. Точнее, через сколько секунд в строке, набранной обезьяной, встретится указанное слово?

Формат входных данных

Первая строка содержит число N — количество символов, которые умеет набирать обезьяна ($1 \le N \le 26$). Во второй строке записано предложенное ведущими слово. Длина слова положительна и не превосходит $30\,000$.

Формат выходных данных

Выведите ожидаемое время, которое обезьяна потратит на работу, округлённое вниз до ближайшего целого числа.

monkey.in	monkey.out
2	6
aa	
2	4
ba	

Задача 9О. Палиндромы и сверхспособности [0.5 sec, 256 mb]

После того как Миша решил на Тимусе семь задач со словом "палиндром" в названии, он приобрёл необыкновенную способность. Теперь, прочитав слово, он может посчитать в уме количество уникальных непустых подстрок этого слова, являющихся палиндромами. Дима хочет проверить, не ошибается ли Миша. Для этого он дописывает к слову по одной букве s_1, \ldots, s_n и после каждой буквы просит Мишу сказать, сколько различных непустых подстрок-палиндромов содержит слово в данный момент. Какие n чисел назовёт Миша, если он действительно никогда не ошибается?

Формат входных данных

На вход подаётся строка $s_1 \dots s_n$ из строчных латинских букв $(1 \leqslant n \leqslant 10^5)$.

Формат выходных данных

Выведите n чисел через пробел. i-е число должно равняться количеству различных подстрок-палиндромов префикса $s_1 \dots s_i$.

superpal.in	superpal.out
aba	1 2 3