

Spectral Clustering

谱聚类

构造无向图, 距离远的两点, 权重值低; 降维聚类

生命中最重要的问题, 几乎都是概率问题。

The most important questions of life are indeed, for the most part, really only problems of probability.

—— 皮埃尔-西蒙·拉普拉斯 (Pierre-Simon Laplace) | 法国著名天文学家和数学家 | 1749 ~ 1827

- ◀ sklearn.cluster.SpectralClustering() 谱聚类算法
- ◀ sklearn.datasets.make_circles() 创建环形样本数据
- sklearn.preprocessing.StandardScaler().fit_transform() 标准化数据;通过减去均值然后除以标准差, 处理后数据符合标准正态分布

25.1 谱聚类

谱聚类 (spectral clustering) 是一种基于图论的聚类算法,其特点是能够处理高维数据和非凸数据簇,并且对于数据分布的形态没有特殊要求。优点是可以在任意维度上进行聚类,并且不会受到噪声的影响。缺点是需要进行谱分解计算,计算量较大。

具体来说,谱聚类的思路是将样本数据看做是空间**节点** (node),这些节点之间用**边** (edge) 连构成的 **无向图** (undirected graph),也叫**加权图**。无向图中,距离远的数据点,边的权重值低;距离近的数据点,在无向图中,边的权重值高。《数据有道》专门介绍过有向图、无向图这些概念,请大家回顾。

用无向图聚类的过程很简单,切断无向图中权重值低的边,得到一系列子图。子图内部节点之间边的权重尽可能高,子图之间边权重尽可能低。将节点之间的相似度构成的矩阵称为邻接矩阵,通过对邻接矩阵进行谱分解,得到数据点的特征向量,进而将其映射到低维空间进行聚类。

流程

这个思路虽然简单,但是实际操作需要一系列矩阵运算。

首先,需要计算数据矩阵 X 内点与点的两两距离,并构造成距离矩阵 D。然后,将距离转换成权重值,即相似度 (similarity),构造相似度矩阵 (similarity matrix) S,利用 S 可以绘制无向图。

之后,将相似度矩阵转化成**拉普拉斯矩阵** (Laplacian matrix) L。最后,**特征值分解** (eigen decomposition) L,相当于将 L 投影在一个低维度正交空间。在这个低维度空间中,用简单聚类方法对投影数据进行聚类,并得到原始数据聚类。图 1 所示为谱聚类的算法流程。

下面通过实例,我们一一讨论谱聚类这些步骤所涉及的技术细节。

本 PDF 文件为作者草稿,发布目的为方便大家在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。 版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

25.2 距离矩阵

图 2 给出 12 个样本点在平面上位置。计算数据**两两距离** (pairwise distance), $\mathbf{x}^{(i)}$ 和 $\mathbf{x}^{(i)}$ 两个点之间欧氏 距离 $d_{i,j}$:

$$d_{i,j} = \| \mathbf{x}^{(i)} - \mathbf{x}^{(j)} \| \tag{1}$$

其中,约定 $x^{(i)}$ 和 $x^{(j)}$ 均为列向量。

图 3 所示为热图描绘的 12 个样本点两两欧氏距离构造的对称矩阵 D; 注意, D 的对角线元素均为 0, 这是因为观察点和自身之间距离为 0。色块颜色越浅,说明距离越近;色块颜色越深,说明距离越远。

图4所示为计算成对距离矩阵 D 的原理图。

图 2.12 个样本点平面位置

1	0	0.3845	0.8692	0.7926	0.1449	0.2649	2.891	2.131	2.586	2.74	2.605	3.282	
2	0.3845	0	0.4894	0.7412	0.2494	0.3749	2.629	1.929	2.356	2.448	2.333	2.975	
3	0.8692	0.4894	0	0.851	0.7387	0.8378	2.439	1.865	2.228	2.207	2.134	2.695	
4	0.7926	0.7412	0.851	0	0.7935	0.9998	3.276	2.638	3.039	3.054	2.972	3.546	
5	0.1449	0.2494	0.7387	0.7935	0	0.2063	2.763	2.017	2.466	2.605	2.474	3.144	
6	0.2649	0.3749	0.8378	0.9998	0.2063	0	2.65	1.875	2.335	2.514	2.369	3.063	
7	2.891	2.629	2.439	3.276	2.763	2.65	0	0.867	0.4055	0.3493	0.3054	0.6349	3.5
8	2.131	1.929	1.865	2.638	2.017	1.875	0.867	0	0.4841	0.9092	0.6789	1.443	- 3 - 2.5
9	2.586	2.356	2.228	3.039	2.466	2.335	0.4055	0.4841	0	0.5782	0.354	1.028	- 2
10	2.74	2.448	2.207	3.054	2.605	2.514	0.3493	0.9092	0.5782	0	0.2384	0.5628	- 1.5
11	2.605	2.333	2.134	2.972	2.474	2.369	0.3054	0.6789	0.354	0.2384	0	0.7683	- 1 - 0.5
12	3.282	2.975	2.695	3.546	3.144	3.063	0.6349	1.443	1.028	0.5628	0.7683	0	- 0
	1	2	3	4	5	6	7	8	9	10	11	12	

图 3.12 个样本点两两欧氏距离构造的成对距离矩阵 D

图 4. 计算成对距离矩阵 D

25.3 相似度

然后利用 $d_{i,j}$ 计算 i 和 j 两点的相似度 $s_{i,j}$, "距离 \rightarrow 相似度"的转换采用高斯核函数:

$$s_{i,j} = \exp\left(-\left(\frac{d_{i,j}}{\sigma}\right)^2\right) = \exp\left(-\frac{\left\|\boldsymbol{x}^{(i)} - \boldsymbol{x}^{(j)}\right\|^2}{\sigma^2}\right)$$
(2)

相似度取值区间为 (0, 1]。 $x^{(i)}$ 和 $x^{(i)}$ 两个点距离越近,它们的相似性越高。任意点和自身的距离为 0,因此对应的相似度最大为 1。

 $\sigma = 1$ 时,两两距离 $d_{i,j}$ 和相似度 $s_{i,j}$ 两者关系如图 5 所示。

图 2 中,点 $\mathbf{x}^{(2)}$ 和 $\mathbf{x}^{(10)}$ 之间欧氏距离为 $d_{2,10}=2.448$,点 $\mathbf{x}^{(2)}$ 和 $\mathbf{x}^{(4)}$ 之间欧氏距离为 $d_{2,4}=0.741$ 。利用上式,可以计算得到,点 $\mathbf{x}^{(2)}$ 和 $\mathbf{x}^{(10)}$ 之间相似度 $s_{2,10}=0.0025$,点 $\mathbf{x}^{(2)}$ 和 $\mathbf{x}^{(4)}$ 之间欧氏距离为 $s_{2,4}=0.577$ 。

图 5. 欧氏距离和相似度关系

图 3 所示成对距离矩阵可以转化为图 6 所示相似度矩阵 (similarity matrix) $S \circ S$ 也叫**邻接矩阵** (adjacency matrix)。相似度矩阵 S 的每个元素均大于 0。请大家注意,一些教材将两两距离矩阵 D 叫做相似度矩阵。从图 6 一眼就可以看出数据可以划分为两簇。

图 7 所示为距离矩阵 D 转化成相似度矩阵 S 的原理。

图 6.12 个样本点两两相似度矩阵 S

图 7. 距离矩阵 D 转化成相似度矩阵 S

25.4 无向图

图 8 为相似度矩阵 S 无向图。图中绿色线越粗,表明两点之间的相似度越高,也就是两点距离越近。

切断相似度小于 0.001 两两元素之间的联系得到无向图图 9。

如图 10 所示, 切断相似度小于 0.005 两两元素之间的联系得到无向图。

观察图 11 可以知道,当切断相似度小于 0.031 两两元素之间的联系,可以将原始数据划分为两簇。 这一节用特征值分解方法来完成簇划分。

图 8. 相似度对称矩阵 S 无向图

图 9. 当切断相似度小于 0.001 两两元素之间的联系得到无向图

图 10. 当切断相似度小于 0.005 两两元素之间的联系得到无向图

图 11. 当切断相似度小于 0.02 两两元素之间的联系得到无向图

本 PDF 文件为作者草稿,发布目的为方便大家在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套徽课视频均发布在B站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

25.5 拉普拉斯矩阵

如图 12 所示,**度矩阵** (degree matrix) G 是一个对角阵。G 的对角线元素是对应相似度矩阵 S 对应列元素之和,即:

$$G_{i,i} = \sum_{j=1}^{n} S_{i,j} = \operatorname{diag}(I^{T} S)$$
(3)

图 13 所示为计算度矩阵 G 的原理。

1	4.791	0	0	0	0	0	0	0	0	0	0	0
2	0	5.071	0	0	0	0	0	0	0	0	0	0
3	0	0	3.876	0	0	0	0	0	0	0	0	0
4	0	0	0	3.498	0	0	0	0	0	0	0	0
5	0	0	0	0	5.013	0	0	0	0	0	0	0
6	0	0	0	0	0	4.664	0	0	0	0	0	0
7	0	0	0	0	0	0	4.79	0	0	0	0	0
8	0	0	0	0	0	0	0	3.569	0	0	0	0
9	0	0	0	0	0	0	0	0	4.604	0	0	0
10	0	0	0	0	0	0	0	0	0	4.726	0	0
11	0	0	0	0	0	0	0	0	0	0	4.945	0
12	0	0	0	0	0	0	0	0	0	0	0	3.424
	1	2	3	4	5	6	7	8	9	10	11	12

图 12.12 个样本点两两相似度构造的度矩阵 G

图 13. 计算的度矩阵 G 原理

拉普拉斯矩阵

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

然后构造**拉普拉斯矩阵** (Laplacian matrix) L。有三种方法构造拉普拉斯矩阵。

第一种叫做未归一化拉普拉斯矩阵 (unnormalized Laplacian matrix),具体定义如下:

$$L = G - S \tag{4}$$

第二种叫做**归一化随机漫步拉普拉斯矩阵** (normalized random-walk Laplacian matrix),也叫 Shi-Malik 矩阵,定义如下:

$$L_{rw} = G^{-1}(G - S) \tag{5}$$

第三种叫做**归一化对称拉普拉斯矩阵** (normalized symmetric Laplacian matrix),也叫做 Ng-Jordan-Weiss 矩阵,如下:

$$L_{s} = G^{-1/2} (G - S) G^{-1/2}$$
 (6)

采用第一种方法获得拉普拉斯矩阵 L, 热图如图 14 所示。图 15 所示为用 (4) 计算 L 的原理。

图 14.12 个样本点两两相似度构造未归一化拉普拉斯矩阵 L

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

图 15. 计算未归一化拉普拉斯矩阵 L

请大家注意,拉普拉斯矩阵 *L* 为**半正定矩阵** (positive semi-definite matrix)。证明过程请参考 Ulrike von Luxburg 创作的 *A Tutorial on Spectral Clustering*。

25.6 **特征值分解**

对拉普拉斯矩阵 L 进行特征值分解:

$$\boldsymbol{L} = \boldsymbol{V} \boldsymbol{\Lambda} \boldsymbol{V}^{-1} \tag{7}$$

其中

$$\boldsymbol{\Lambda} = \begin{bmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \lambda_{12} \end{bmatrix}, \quad \boldsymbol{V} = \begin{bmatrix} \boldsymbol{v}_1 & \boldsymbol{v}_2 & \dots & \boldsymbol{v}_1 \end{bmatrix} \tag{8}$$

图 16 所示为拉普拉斯矩阵 L 特征值分解得到的特征值从小到大排序。按从小到大排列 λ 值后,第 2 个特征值 $\lambda_2=0.01285$,对应的特征向量 $\nu_2=[-0.300,-0.295,-0.297,-0.294,-0.275,-0.298,0.283,0.285,0.288,0.278,0.284,0.286]。$

图 16. 拉普拉斯矩阵 L 特征值分解得到的特征值从小到大排序

本 PDF 文件为作者草稿,发布目的为方便大家在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

图 17 和图 18 分别展示前两个特征向量的结果。相当于将拉普拉斯矩阵 \boldsymbol{L} 投影到一个二维空间,具体如图 19 所示。在图 19 所示平面内,可以很容易将数据划分为两簇。

图 17. 特征向量 ν_1 结果

图 19. 矩阵 L 投影到低维度正交空间结果

本 PDF 文件为作者草稿,发布目的为方便大家在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

图 20 所示为采用谱聚类算法对环形样本数据聚类结果。谱聚类的可调节参数包括:相似度矩阵可以使用不同的相似度度量方式。拉普拉斯矩阵可以采用不同类型。特征向量数量可以影响聚类效果。最终的聚类可以选择不同算法。

图 20. 环形样本数据聚类结果

代码 Bk7_Ch25_01.ipynb 可以获得图 20。下面聊聊其中核心语句。

代码 1. 用 sklearn.cluster.SpectralClustering()完成聚类 | Bk7_Ch25_01.ipynb

本 PDF 文件为作者草稿,发布目的为方便大家在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。 代码及 PDF 文件下载: https://github.com/Visualize-ML 本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466 欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

直径之比。在这里,factor=0.5 表示外环直径是内环直径的两倍。noise 为添加到数据集中的高斯 噪声的标准差。

- 🗓 将特征数据和标签数据分离。在聚类问题中,我们仅仅需要特征数据。
- © 用 Scikit-learn 库中的 StandardScaler 来标准化数据集 X。数据处理结果的均值为 0, 标准差为1。
- ●用 sklearn.cluster.SpectralClustering()完成聚类。n_neighbors=20 指定了用于 构建 k 近邻图的邻居数目,即在图中每个数据点连接到其最近的 20 个邻居。

assign_labels='discretize'表示在谱聚类过程中如何分配标签。在这里,它使用的是离散 化的方法,将谱聚类的结果转换为离散的类别。

eigen_solver="arpack"指定了求解特征值问题算法。

affinity="nearest_neighbors"指定了用于计算相似度矩阵的方法。

n_clusters=2 指定了聚类的簇数目,即将数据分为两个簇。

可数据集进行谱聚类、并返回聚类标签。

谱聚类是一种基于图论的聚类算法,其特点是能够处理高维数据和非凸数据簇,并且对于数据分布 的形态没有特殊要求。谱聚类通过将数据点看作图中的节点,将它们之间的相似度构成的矩阵称为邻接 矩阵,通过对邻接矩阵进行谱分解,得到数据点的特征向量,进而将其映射到低维空间进行聚类。优点 是可以在任意维度上进行聚类,并且不会受到噪声的影响。缺点是需要进行谱分解计算,计算量较大。

亲爱的同学们,读到这里,大家已经走完了整套7册的"鸢尾花之旅"。

崭新的知识爆炸出现,尘封的知识被再次挖掘,已有的知识被跨学科应用,错误的理论被推翻、被 修正·····前所未有地,在人工智能的助力下,人类知识边界时刻延展、加速伸延。

鸢尾花书系列没有创造任何新知识;套用牛顿的话,面对知识的海洋,笔者仅仅打捞了几篓贝壳, 将它们擦得闪亮,摆成了自以为漂亮的图案和大家分享。

面对这片浩瀚的充满未知的真理海洋,我们保持谦卑,保持好奇;与此同时,笔者始终坚信,那些 热爱知识、不懈探索的读者朋友们、定能拓荒新领域、扩延人类知识星辰大海的边界。

笔者不敢奢求太多,只希望鸢尾花书能化作大家翅膀上几片羽毛。

起风了。

虽百般不舍, 飞走吧。

大鹏一日同风起, 扶摇直上九万里。

带着乡亲们、鸡兔猪伙伴们的期许和惦念,飞的更高些,飞的更远些!

懂的越多,便越自觉无知。

The more you know, the more you know you don't know.

—— 亚里士多德 (Aristotle) | 古希腊哲学家 | 384 ~ 322 BC