Power Estimation using PTPX:

1. Run post-synthesis simulation and generate the .vcd files from your testbench.

To dump the .vcd file, I used the below dumpvars & dumpfile commands after initial begin statement in the testbench: (Replace with your design and instance names)

```
initial begin
```

```
$dumpfile("syscluster_inv_tb.vcd");
$dumpvars(0, testbench.sys0);
```

Post-syn simulation can be run by adding a rule 'dve_syn' to the Makefile used for simulation:

```
dve_syn: $(HEADERS) $(SYNFILES) $(TESTBENCH)
$(VCS) $(HEADERS) $(TESTBENCH) $(SYNFILES) $(LIB) +define+SYNTH TEST -o syn simv -R -gui
```

To annote the delays, sdf annotation can be used.

- 2. Create a directory for eg. power/ and copy envset.tcl, pp.tcl and the Makefile in this directory.
- 3. Add the libraries and change the pointers of your files in the envset.tcl
- 4. Add the START_TIME and END_TIME in the envset.tcl for the power simulation based on your testbench (where you want to measure power).
- 5. Run 'make pp' to invoke pt shell and run PTPX.
- 6. In the primetime log file, check the annotation report from report_switching_activity. Ideally, you should see good switching acitivity % and there shouldn't be 'not annotated' nets.

Switching Activity Overview Statistics for "mul_arr"											
Object Type	From Activity File (%)	From SSA (%)	From SSA Force (% Annotated	From) SSA Force (%) Implied	From SCA (%)	From Clock (%)	Default (%)	Propagated(%)	Implied(%)	Not Annotated(%)	Total
Nets	10420(100.00%)	0(0.00%)	0(0.00%)	0(0.00%)	0(0.00%)	0(0.00%)	0(0.00%)	0(0.00%)	0(0.00%)	0(0.00%)	10420

7. Check the report dumped for the power metrics:

Hierarchy	Int Power	Switch Power	Leak Power	Peak Power	Peak Time	Glitch Power	X-tran Power	Total Power	%	_
mul_arr genblk2[0].genblk1[0].proc_elem0	(mul_pe) 5.	30e-03 1.		88e-08		36.001	0.000	0.000 7.	100.0 19e-03	
add_28 (mul_pe_DW01_add_0) r60 (mul_pe_DW02_mult_0) genblk2[0].genblk1[2].proc_elem0	3.69e-04 2.58e-03 (mul pe) 5.	1.36e-03	9.91e-09	5.533	1466.000-1466.0 436.000-436.001 7.413 1536.000-	0.000		3.95e-03		
add_28 (mul_pe_DW01_add_0) r60 (mul_pe_DW02_mult_0)	3.73e-04	7.03e-05	1.20e-09 9.91e-09	0.665	956.000-956.001 1096.000-1096.0	0.000	0.000	4.43e-04 00 3.90e-	0.3	