Package 'predfinitepop'

March 31, 2014

Type Package

Title Predictive Inference on Totals and Averages of Finite Populations Segmented in Planned and U planned Domains.	Jn-
Version 1.0	
Date 2014-03-31	
Copyright Banco de Mexico	
Author Juan Carlos Martinez-Ovando, Sergio I. Olivares-Guzman, Adriana Roldan-Rodriguez.	
Maintainer Juan Carlos Martinez-Ovando <juan.martinez@banxico.org.mx></juan.martinez@banxico.org.mx>	
Description This package computes Bayesian predictive inference on totals and averages of finite pollulations segmented in planned and unplanned domains. Inference is based on Bayesian nonparametric methods using species-sampling models (specifically the Dirichlet process).	
Acknowledgement The authors appreciate advice from Pedro Gonzalez-Alegria and Claudia Velazquez-Villegas of Banco de Mexico.	
Needs Compilation No	
License GPL-3	
R topics documented:	
conteo	2
dataref	3
datasample	4
dginvgauss	5
dinygauss	6
domnoplan	6
domnoplan_composicion	9
<u> </u>	11
	14
	15
*	18
1 =	21
g0_licitacion	
	23

2 conteo

Index	34
	unicstar
	rinvgauss
	rginvgauss
	randDirichlet
	predfinitepop
	poptot
	popcomp
	pinvgauss
	oginvgauss
	pesosDP
	gstar_simulacion

conteo

Counts the number of individuals in S_j and \widetilde{S}_j .

Description

This function counts the number of individuals in S_j and \widetilde{S}_j , with respect to the total number of individuals in a given planned domain P_j .

Usage

```
conteo(datos_j, N_j)
```

Arguments

datos_j	Data matrix with individual measurements for S_j
N_j	Number of individuals in \mathcal{P}_j (the jth planned domain) (N_j is assumed known)

Details

"datos_j" - This object should contain two columns labeled " n_i " and "domplan".

"domplan" - Column vector with categories for the planned domains.

"n_i"- Number of individuals in the ith group of individuals, and

" N_j " - This object should include two colums labeled " N_j " and "domplan".

"domplan" - Column vector with categories for the planned domains.

" N_j " - Number of individuals in the jth planned domain, and

Value

The function 'conteo' produces an output list with three elements:

М	Number of groups in " S_j "
CardS	Number of individuals in " \mathcal{S}_j " (if " n_i "= 1, for any " j ", then $Cards=M=nrow(datos_j)$)
CardNoS	Number of individuals out of sample

dataref 3

Author(s)

Sergio I. Olivares-Guzman, Adriana Roldan-Rodriguez, Juan Carlos Martinez-Ovando

References

- "A Bayesian nonparametric framework to inference on totals of finite populations," Martinez-Ovando, J. C., Olivares-Guzman, S. I., Roldan-Rodriguez, A., 2013. Contributions of Young Researchers to Bayesian Statistics (eds. E. Lazarone & F. Ieva), Chapter 15 Springer.

dataref

Reference data set of a simulated population segemented in planned and unplanned domains.

Description

This data set corresponds to a simulated population of 500 individuals grouped in two planned domains. Each planned domain of the population has been segmented, as well, into the three unplanned domains. Within the planned domain A, the segmentation is given as domain I (200), domain II (400) and domain III (200), whereas within planned domain B, the segmentation is given as domain I (780), domain II (400) and domain III (20). Individual measurements were simulated from log-normal and Weibull distributions with different parameterizations for each combination of planned and unplanned domains. See Martinez-Ovando et al. (2014) for further explanations.

Usage

data(dataref)

Format

A data frame with 500 observations on the following 3 variables.

id Identification code for simulated data.

y_i Simulated individual ourcomes.

domplan Identification for planned domains (domain A and B).

Source

Simulated data. See Martinez-Ovando et al. (2014) for further details.

References

- "Predictive inference on finite populations segmented in planned and unplanned domains," Martinez-Ovando, J. C., Olivares-Guzman, S. I., Roldan-Rodriguez, A., 2014. Submitted. Also available as Banco de Mexico Working Paper 2014-04.

Examples

data(dataref)

4 datasample

datasample	Data set of a simulated population segemented in planned and unplanned domains.

Description

This is an object list with 20 simulated samples from the simulated population of 2,000 individuals grouped in two planned domains. Planned domain A is formed of 800 individuals, and domain B is composed of 1.2 thousand individuals. Each planned domain of the population has been segmented, as well, into the three unplanned domains.

Usage

data(datasample)

Format

List of lenght 20, with entries:

11. 'data.frame': 100 obs. of 8 variables with a sample of size 5 percent

12. 'data.frame': 200 obs. of 8 variables with a sample of size 10 percent

13. 'data.frame': 300 obs. of 8 variables with a sample of size 15 percent

14. 'data.frame': 400 obs. of 8 variables with a sample of size 20 percent

15. 'data.frame': 500 obs. of 8 variables with a sample of size 25 percent

16. 'data.frame': 600 obs. of 8 variables with a sample of size 30 percent

17. 'data.frame': 700 obs. of 8 variables with a sample of size 35 percent

18. 'data.frame': 800 obs. of 8 variables with a sample of size 40 percent

19. 'data.frame': 900 obs. of 8 variables with a sample of size 45 percent

110. 'data.frame': 1000 obs. of 8 variables with a sample of size 50 percent

111. 'data.frame': 1100 obs. of 8 variables with a sample of size 55 percent

112. 'data.frame': 1200 obs. of 8 variables with a sample of size 60 percent

113. 'data.frame': 1300 obs. of 8 variables with a sample of size 65 percent

114. 'data.frame': 1400 obs. of 8 variables with a sample of size 70 percent

115. 'data.frame': 1500 obs. of 8 variables with a sample of size 75 percent

116. 'data.frame': 1600 obs. of 8 variables with a sample of size 80 percent

117. 'data.frame': 1700 obs. of 8 variables with a sample of size 85 percent

118. 'data.frame': 1800 obs. of 8 variables with a sample of size 90 percent

119. 'data.frame': 1900 obs. of 8 variables with a sample of size 95 percent

120. 'data.frame': 2000 obs. of 8 variables with a sample of size 100 percent

List of variables:

id Individual identification code

y_i Group measurenment

dginvgauss 5

domnoplan Identification code for unplanned domains

n_i Group size

domplan Identification code for planned domains

- 1 Indicator variable for unplanned domain I
- 2 Indicator variable for unplanned domain II
- 3 Indicator variable for unplanned domain III

Details

Within the planned domain A, the segmentation is given as domain I (200), domain II (400) and domain III (200), whereas within planned domain B, the segmentation is given as domain I (780), domain II (400) and domain III (20). Individual measurements were simulated from log-normal and Weibull distributions with different parameterizations for each combination of planned and unplanned domains. The original sample is of size 5 percent. The upcoming samples were extrated increasing the sample size in 5 percent at a time. See Martinez-Ovando et al. (2014) for further explanations.

Source

Simulated data. See Martinez-Ovando et al. (2014) for further details.

References

- "Predictive inference on finite populations segmented in planned and unplanned domains," Martinez-Ovando, J. C., Olivares-Guzman, S. I., Roldan-Rodriguez, A., 2014. Submitted. Also available as Banco de Mexico Working Paper 2014-04.

Examples

```
data(datasample)
```

dginvgauss

Density of the generalized inverse Gaussian distribution

Description

Evaluates de density of the generalized inverse Gaussian distribution

Usage

```
dginvgauss(y, m, s, f, log = FALSE)
```

Arguments

У	Vector of responses.
m	Vector of means.
S	Vector of dispersion parameters.
f	Vector of family parameters.
log	If TRUE, log probabilities are supplied.

6 domnoplan

Author(s)

Jim Lindsey <jlindsey@luc.ac.be>

References

Extracted from package "rmutil" Version 1.0 "Utilities for Nonlinear Regression and Repeated Measurements Models"

dinvgauss

Inverse Gaussian distribution

Description

Density of the inverse Gaussian distribution

Usage

```
dinvgauss(y, m, s, log = FALSE)
```

Arguments

y Vector of responses.

m Vector of means.

s Vector of dispersion parameters.

log If TRUE, log probabilities are supplied.

Author(s)

Jim Lindsey <jlindsey@luc.ac.be>

References

Extracted from package "rmutil" Version 1.0 "Utilities for Nonlinear Regression and Repeated Measurements Models"

domnoplan

Finite population inference on unplanned domains using reference data.

Description

Generates Monte Carlo samples from the predictive distribution of totals of a finite population segmented in planned and unplanned domains, along with simulations of the predictive distribution for the composition of the population between the unplanned domains.

Usage

domnoplan(datos,datos_ant,domplan_N,alphaDP,colid_D,alpha_D,inter,part,nSim)

domnoplan 7

Arguments

datos	$(M \times p)$ -dimensional array with positive entries for S_j
datos_ant	$(M \ { m X} \ p)$ -dimensional reference array for calibration of G_0
domplan_N	Matrix array with counts of individuals in each planned domain
alphaDP	J -dimensional array with positive entries for the parameters of the Dirichlet process for F_j (with J being the number of planned domains)
colid_D	D-dimensional matrix array with the columns in datos that correspond to the indicator variables of the planned domains (those indicator variables represent a partion of "datos")
alpha_D	$(J X D)$ -dimensional array with positive entires for the parameters of the multinomial-Dirichlet component for the composition across unplanned domains. Note: Each one of the J rows is a vector of composition for \mathcal{P}_j divided across the D unplanned domains
inter	Tuning parameter for model comparison and selection (related to calibration of \mathcal{G}_0)
part	Number of partitions for predictive cross-validation (related to calibration of G_0)
nSim	Number of Monte Carlo simulated replicates of the predictive distribution

Details

- datos: Represent the data sample of the target population, unplanned domains labeled.

It should contain the following columns:

"domplan" - Categories for planned domains.

 $"y_i"$ - Actual individual measurements (for the moment, they must be positive and continuous) for the group of observation.

" n_i " - Number of individuals in the group (if the unit of observation in the sample are individuals, then " n_i " must be equal to 1)

- datos_ant : Represents the data reference used to calibrate G_{i0}

The data must be labeled by planned domains. It should contain the following columns:

"domplan" - Categories of planned domains

"y_i" - Positive real and individual measurements of each group in the sample (when the units of observation are the groups, " y_i " should be per capita measurement)

- domplan_N : Represents counts (or reference population) of the target population, divided by the planned domains.

Tagged data must be labeled by domains planned. It should contain the following columns:

"domplan" - Categories fot planned domains.

"N_j" - Number of individuals in each planned domain.

Value

The function 'domnoplan' produces:

total_domnoplan_sim

Matrix array of dimension "J * (3 + 2 D)* nSim" with predictions for the planned domains.

8 domnoplan

```
Column 1 - Indicator of the planned domains  \begin{array}{l} \text{Column 2 - } T_j \text{ (totals of the planned domains)} \\ \text{Column 3 - } N_j \text{ (composition of the planned domains)} \\ \text{Column 4 - } (4+D-1) - T_{d_j} \text{ (totals of unplanned domains, such that } T_j = \\ \sum_{j=1}^J T_{d_j} (\text{across d})) \\ \text{Column 5 - } (4+D) \text{ to } (3+2*D) - N_{d_j} \text{ (composition of unplanned domains, such that } N_j = \sum_{j=1}^J N_{d_j} \text{ (across } d)) \\ \text{such that } N_j = \sum_{j=1}^J N_{d_j} \text{ (across } d)) \\ \end{array}
```

Author(s)

Setgio I. Olivares-Guzman, Adriana Roldan-Rodriguez, Juan Carlos Martinez-Ovando

References

- "A Bayesian nonparametric framework to inference on totals of finite populations," Martinez-Ovando, J. C., Olivares-Guzman, S. I., Roldan-Rodriguez, A., 2013. Contributions of Young Researchers to Bayesian Statistics (eds. E. Lazarone & F. Ieva), Chapter 15 Springer.
- "Predictive inference on finite populations segmented in planned and unplanned domains," Martinez-Ovando, J. C., Olivares-Guzman, S. I., Roldan-Rodriguez, A., 2014. Submitted. Also available as Banco de Mexico Working Paper 2014-04.

See Also

domnoplan_composicion, domnoplan_totalcomp.

Examples

```
# Uses of library: "predfinitepop"
#-----
         Read files with functions in R
rm(list=ls())
library("predfinitepop")
set.seed(12345)
#-----
# DATA
#-----
data(dataref)
data(datasample)
data(popcomp)
# Sample (with 10% of the population)
datos <- datasample[[1]]</pre>
datos_ant <- dataref</pre>
domplan_N <- popcomp[[1]]</pre>
```

```
#-----
# MODEL PARAMETERS
#-----
# a. Parameter "alpha" of the Dirichlet process
# (this is for J02 planned domains)
alphaDP <- matrix(0.03,2,1)
# b. vector with indicator variables for unplanned domains
colid_D <- t(as.matrix(c(6:8)))</pre>
# c. Matrix with parameters for unplanned domains
# (this is for J=2 planned domains)
alpha_D <- matrix(0.3,2,length(colid_D))</pre>
# CODE PARAMETERS
#-----
# A. Interval for calibration of G_0
inter <- 3
# B. Number of groups for predictive validation and model comparison
part <- 20
# C. Number of Monte Carlo replicates of the predictive distributions
nSim <- 10
# TESTING "domnoplan.R"
#-----
date.ini <- date()</pre>
domnoplan_sim <- domnoplan(datos,datos_ant,domplan_N,alphaDP,colid_D,alpha_D,inter,part,nSim)</pre>
date.fin <- date()</pre>
# --END --
```

domnoplan_composicion Generates Monte Carlo samples from the predictive distribution for the vector N_j across the D unplanned domains within a given planned domain.

Description

This function simulates Monte Carlo samples from the predictive distribution of the vector N_j across the D unplanned domains within a given planned domain j.

Usage

```
domnoplan\_composicion(datos\_j, N\_j, N\_S\_j, N\_Stil\_j, colid\_D, alpha\_D, nSim)
```

Arguments

datos_j	Data matrix with features and number of individuals in the sample \mathcal{S}_j
N_j	Number of individuals in \mathcal{P}_j (jth planned domain)
N_S_j	Number of individuals in the sample \mathcal{S}_j
N_Stil_j	Number of individuals out the sample \mathcal{S}_j
colid_D	D-dimensional matrix array with the columns in 'datos' that correspond to the indicator variables of the planned domains (those indicator variables represent a partion of 'datos')
alpha_D	D-dimensional array with positive entires for the parameters of the multinomial-Dirichlet component for the composition across unplanned domains (NOTE: this one makes reference to a single planned domain)
nSim	Number of Monte Carlo simulated replicates of the predictive distribution

Value

This function 'domnoplan_composicion' produces:

Author(s)

Juan Carlos Martinez-Ovando

References

- "A Bayesian nonparametric framework to inference on totals of finite populations," Martinez-Ovando, J. C., Olivares-Guzman, S. I., Roldan-Rodriguez, A., 2013. Contributions of Young Researchers to Bayesian Statistics (eds. E. Lazarone & F. Ieva), Chapter 15 Springer.
- "Predictive inference on finite populations segmented in planned and unplanned domains," Martinez-Ovando, J. C., Olivares-Guzman, S. I., Roldan-Rodriguez, A., 2014. Submitted. Also available as Banco de Mexico Working Paper 2014-04.

See Also

domnoplan

 $domnoplan_g0$ 11

domnoplan_g0	Finite population inference on unplanned domains using subjective $G_{_}j0$.

Description

Generates Monte Carlo samples of the predictive distribution of total baseline distributions of a finite population segmented in planned and unplanned domains, using a predefined set of $(G_{j0})_{j=1}^{J}$, along with simulations of the predictive distribution for the composition of the population between the unplanned domains.

Usage

domnoplan_g0(datos,domplan_N,alphaDP,colid_D,alpha_D,nSim,g0_licitacion_sal)

Arguments

datos	$(M \times p)$ -dimensional array with positive entries for S_j
domplan_N	Matrix array with counts of individuals in each planned domain
alphaDP	J -dimensional array with positive entries for the parameters of the Dirichlet process for F_j (with J being the number of planned domains)
colid_D	D-dimensional matrix array with the columns in datos that correspond to the indicator variables of the planned domains (those indicator variables represent a partion of datos)
alpha_D	$(J \times D)$ -dimensional array with positive entires for the parameters of the multinomial-Dirichlet component for the composition across unplanned domains. Note: Each one of the J rows is a vector of composition for \mathcal{P}_j segmented across D unplanned domains
nSim	Number of Monte Carlo simulated replicates of the predictive distribution
g0_licitacion_s	sal
	$(J \times 1)$ object list, each entry is and the object list itself associated with each G_{j0} for the J planned domains. The first element for arch G_{j0} should be the name of the chosen distribution (see details below for alternatives), the second element should be a vector object with the parameters associated with distribution, and

Details

- datos: Represent the data sample of the target population, unplanned domains labeled.

the third element should be its associated expectation

It should contain the following columns:

"domplan" - Categories fot planned domains.

"y_i" - Actual individual measurements/putcomes (for the moment, they must be positive) for the group of observation.

" n_i " - Number of individuals in the group (if the unit of observation in the sample are individuals, then " n_i " must be equal to 1)

- domplan_N : Represents counts (or reference population) of the target population, divided by the planned domains.

12 domnoplan_g0

Tagged data must be labeled by domains planned. It should contain the following columns:

"domplan" - Categories fot planned domains.

"N_j" - Number of individuals in each planned domain.

- g0_licitacion_sal: Chose one and only one of the distribution,
- i) Gamma
- ii) Weibull
- iii) Lognormal
- iv) Inverse-Gaussian

Parameterizations for distribution:

i) Gamma distribution, with parametetrs $\theta = c(\alpha > 0, \beta > 0)$ and density function

$$f(x) \propto x^{\alpha - 1} \exp\{-x/\beta\},$$

where α is the shape parameter, and β is the scale parameter.

ii) Weibull distribution, with parametetrs $\theta = c(\alpha > 0, \beta > 0)$ and density function

$$f(x) \propto (x/\beta)^{\alpha-1} \exp\{-(x/\beta)^{\alpha}\},$$

where α is the shape parameter, and β is the scale parameter.

iii) Lognormal distribution, with parametetrs $\theta = c(\alpha > 0, \beta > 0)$ and density function

$$f(x) \propto \exp\{-(\log x - \alpha)^2/2\beta^2\},$$

where α is the mean, and β is the standard deviation of the logarithm.

iv) Inverse — Gaussian distribution, with parameters $\theta = c(\alpha > 0, \beta > 0)$ and density function

$$f(x) \propto x^{-3/2} \exp\{-\alpha (x-\beta)^2/2x\beta^2\},$$

where α is the shape parameter, and β is the mean parameter.

Value

The function 'domnoplan' produces:

total_domnoplan_sim

Matrix array of dimension "J * (3 + 2 D)* nSim" with predictions for the planned domains.

Column 1 - Indicator of the planned domains

Column 2 - T_i (totals of the planned domains)

Column 3 - N_j (composition of the planned domains)

Column 4 - $(4+D-1)-T_{d_j}$ (totals of unplanned domains, such that $T_j=$

$$\sum_{j=1}^{J} T_{d_j}(\text{across d}))$$

Column 5 - (4+D) to $(3+2*D)-N_{d_j}$ (composition of unplanned domains,

such that
$$N_j = \sum_{j=1}^{J} N_{d_j}$$
 (across d))

Author(s)

Sergio I. Olivares-Guzman, Adriana Roldan-Rodriguez, Juan Carlos Martinez-Ovando

 $domnoplan_g0$ 13

References

- "A Bayesian nonparametric framework to inference on totals of finite populations," Martinez-Ovando, J. C., Olivares-Guzman, S. I., Roldan-Rodriguez, A., 2013. Contributions of Young Researchers to Bayesian Statistics (eds. E. Lazarone & F. Ieva), Chapter 15 Springer.

- "Predictive inference on finite populations segmented in planned and unplanned domains," Martinez-Ovando, J. C., Olivares-Guzman, S. I., Roldan-Rodriguez, A., 2014. Submitted. Also available as Banco de Mexico Working Paper 2014-04.

See Also

```
domnoplan_composicion, domnoplan_totalcomp.
```

Examples

```
#-----
# Uses of library: "predfinitepop"
#-----
         Read files with functions in R
rm(list=ls())
library("predfinitepop")
set.seed(12345)
#-----
# DATA
#-----
data(datasample)
data(popcomp)
# Sample (with 10% of the population)
datos <- datasample[[1]]</pre>
domplan_N <- popcomp[[1]]</pre>
#-----
# MODEL PARAMETERS
#-----
# a. Parameter "alpha" of the Dirichlet process
# (this is for J02 planned domains)
alphaDP \leftarrow matrix(0.03,2,1)
# b. vector with indicator variables for unplanned domains
colid_D \leftarrow t(as.matrix(c(6:8)))
# c. Matrix with parameters for unplanned domains
# (this is for J=2 planned domains)
alpha_D <- matrix(0.3,2,length(colid_D))</pre>
# CODE PARAMETERS AND INCORPORATION OF THE DISTRIBUTION
#-----
# Incorporate each element ("g0_licitacion_in_J") according to the number of domains planned
   g0_licitacion_in_1 <- list("distribution",teta1,esp(teta1))</pre>
```

domnoplan_totalcomp

Simulates Monte Carlo samples from the predictive distribution of the vector T_j across the D unplanned domains within a given planned domain.

Description

This function simulates Monte Carlo samples from the predictive distribution of the vector T_j across the D unplanned domains in a given planned domain j.

Usage

domnoplan_totalcomp(datos_j,rho,ystar,phi,g0_licitacion_sal,N_Stil_domnoplan_j_sim,
nSim,colid_D)

Arguments

datos_j	Data matrix with features and number of individuals in the sample \mathcal{S}_j
rho	$(U \ \mathrm{X} \ 2)$ -dimensional vector with weights associated with the sample ties 'ystar'
ystar	Sample ties y_i^* in the sample \mathcal{S}_j
phi	Probability weight associated with G_{j0} (the continuos part of \hat{G}_{j})
g0_licitacion_	sal
	Object list with the continuous component in \hat{G}_j
N_Stil_domnopl	an_j_sim
	(1 X D X nSim) matrix with Monte Carlo samples of the predictive distribution of the composition of $\tilde{\mathcal{S}}_j$
nSim	Number of Monte Carlo simulated replicates of the predictive distribution
colid_D	<i>D</i> -dimensional matrix array with the columns in 'datos' that correspond to the indicator variables of the planned domains (those indicator variables represent a partion of 'datos')

domplan 15

Value

The function 'domnoplan_totalcomp' produces an object list with three entries:

```
T_S_domnoplan Composition of T_j for the planned domain j in sample \mathcal{S}_j T_Stil_domnoplan_j
```

(1 X D X nSim)-dimensional array with simulated samples of the convolution for $T^{\tilde{S}_j}$

domnoplan_totalcomp_sim

(1 X D X nSim)-dimensional array with samples from the predictive distribution of the composition of \tilde{S}_i

Author(s)

Sergio I. Olivares-Guzman, Adriana Roldan-Rodriguez, Juan Carlos Martinez-Ovando

References

- "A Bayesian nonparametric framework to inference on totals of finite populations," Martinez-Ovando, J. C., Olivares-Guzman, S. I., Roldan-Rodriguez, A., 2013. Contributions of Young Researchers to Bayesian Statistics (eds. E. Lazarone & F. Ieva), Chapter 15 Springer.
- "Predictive inference on finite populations segmented in planned and unplanned domains," Martinez-Ovando, J. C., Olivares-Guzman, S. I., Roldan-Rodriguez, A., 2014. Submitted. Also available as Banco de Mexico Working Paper 2014-04.

See Also

domnoplan.

ana.	domplan	Finite population inference on unplanned domains using reference data.
------	---------	--

Description

Generates Monte Carlo samples of the predictive distribution of totals of a finite population segmented in planned domains.

Usage

```
domplan(datos,datos_ant,domplan_N,alphaDP,inter,part,nSim)
```

Arguments

datos	$(M \times p)$ -dimensional array with positive entries for S_j
datos_ant	$(M \times p)$ -dimensional reference array for calibration of G_0
domplan_N	Matrix array with counts of individuals in each planned domain
alphaDP	J -dimensional array with positive entries for the parameters of the Dirichlet process for F_j (with J being the number of planned domains)

16 domplan

inter	Tunning parameter for model comparison and selection (related to calibration of G_0)
part	Number of partitions for predictive cross-validation (related to calibration of G_0)
nSim	Number of Monte Carlo simulated replicates of the predictive distribution

Details

- datos: Represents the data sample of the target population, unplanned domains labeled.

It should contain the following columns:

"domplan" - Categories fot planned domains.

"y_i" - Actual individual measurements(for the moment, they must be positive) for the group of observation.

" n_i " - Number of individuals in the group (if the unit of observation in the sample are individuals, then " n_i " must be equal to 1)

- datos_ant : Represents the data of reference used to calibrate G_0 .

The data must be labeled by domains planned. It should contain the following columns:

"domplan" - Planned categories of domains

"y_i" - Positive real and individual measurements of each group in the sample (when the units of observation are groups, " y_i " should be a per capita measurement)

- domplan_N : Represents counts (or reference population) of the target population, divided by the planned domains.

Tagged data must be labeled by domains planned. It should contain the following columns:

"domplan" - Categories fot planned domains.

"N_j" - Number of individuals in each planned domain.

Value

The function 'domplan' produces:

total_domnoplan_sim

Matrix array of dimension "J * (3 + 2 D)* nSim" with predictions for the planned domains.

Column 1 - Indicator of the planned domains

Column 2 - T_j (totals of the planned domains)

Column 3 - N_j (composition of the planned domains)

Author(s)

Sergio I. Olivares-Guzman, Adriana Roldan-Rodriguez, Juan Carlos Martinez-Ovando

References

- "A Bayesian nonparametric framework to inference on totals of finite populations," Martinez-Ovando, J. C., Olivares-Guzman, S. I., Roldan-Rodriguez, A., 2013. Contributions of Young Researchers to Bayesian Statistics (eds. E. Lazarone & F. Ieva), Chapter 15 Springer.
- "Predictive inference on finite populations segmented in planned and unplanned domains," Martinez-Ovando, J. C., Olivares-Guzman, S. I., Roldan-Rodriguez, A., 2014. Submitted. Also available as Banco de Mexico Working Paper 2014-04.

domplan 17

See Also

```
domplan_total
```

Examples

```
# Uses of library: "predfinitepop"
#-----
           Read files with functions in R
rm(list=ls())
library("predfinitepop")
set.seed(12345)
#-----
# DATA
data(dataref)
data(datasample)
data(popcomp)
# Sample (with 10% of the population)
datos <- datasample[[1]]</pre>
datos_ant <- dataref</pre>
domplan_N \leftarrow popcomp[[1]]
#-----
# MODEL PARAMETERS
#-----
# a. Parameter "alpha" of the Dirichlet process
# (this is for J02 planned domains)
alphaDP <- matrix(0.03,2,1)
# b. vector with indicator variables for unplanned domains
colid_D \leftarrow t(as.matrix(c(6:8)))
# c. Matrix with parameters for unplanned domains
# (this is for J=2 planned domains)
alpha_D <- matrix(0.3,2,length(colid_D))</pre>
# CODE PARAMETERS
#-----
\# A. Interval for calibration of G_0
inter <- 3
# B. Number of groups for predictive validation and model comparison
part <- 20
# C. Number of Monte Carlo replicates of the predictive distributions
nSim <- 10
```

18 domplan_g0

```
#-----
# TESTING "domplan.R"
#------
date.ini <- date()
domplan_sim <- domplan(datos,datos_ant,domplan_N,alphaDP,inter,part,nSim)
date.fin <- date()
# --END --</pre>
```

domplan_g0

Finite population inference on unplanned domains using subjective $G_{\underline{j}}0$.

Description

Generates Monte Carlo samples of the predictive distribution of totals of a finite population segmented in planned domains, using a predefined set of baseline distributions $(G_{j0})_{i=1}^{J}$.

Usage

```
domplan_g0(datos,domplan_N,alphaDP,nSim,g0_licitacion_sal)
```

Arguments

datos $(M \times p)$ -dimensional array with positive entries for \mathcal{S}_j domplan_N Matrix array with counts of individuals in each planned domain alphaDP J-dimensional array with positive entries for the parameters of the Dirichlet process for F_j (with J being the number of planned domains) Number of Monte Carlo simulated replicates of the predictive distribution

g0_licitacion_sal

 $(J \ X \ 1)$ object list, each entry is itself an object list associated with each G_{j0} for the J planned domains. The first element for arch G_{j0} should be the name of the chosen distribution (see details below for the admissible alternatives), the second element should be a vector object with the parameters associated with "distribution", and the third element should be its associated expectation

Details

- datos : Represents the data sample of the target population, unplanned domains labeled.

It should contain the following columns:

"domplan" - Categories fot planned domains.

"y_i" - Actual individual measurements/putcomes (for the moment, they must be positive) for the group of observation.

"n_i" - Number of individuals in the group (if the unit of observation in the sample are individuals, then " n_i " must be equal to 1)

- domplan_N : Represents the counts (or number of individuals) in the target population, segmented in the planned domains.

 $domplan_{\underline{g}0}$

Data must be labeled by the planned domain. It should contain the following columns:

"domplan" - Categories fot planned domains.

"N_j" - Number of individuals in each planned domain.

- g0_licitacion_sal: Chose one and only one of the distribution,
- i) Gamma
- ii) Weibull
- iii) Lognormal
- iv) Inverse-Gaussian

Parameterizations for distribution:

i) Gamma distribution, with parametetrs $\theta = c(\alpha > 0, \beta > 0)$ and density function

$$f(x) \propto x^{\alpha - 1} \exp\{-x/\beta\},$$

where α is the shape parameter, and β is the scale parameter.

ii) Weibull distribution, with parametetrs $\pmb{\theta} = c(\alpha>0, \beta>0)$ and density function

$$f(x) \propto (x/\beta)^{\alpha-1} \exp\{-(x/\beta)^{\alpha}\},$$

where α is the shape parameter, and β is the scale parameter.

iii) Lognormal distribution, with parameters $\theta = c(\alpha > 0, \beta > 0)$ and density function

$$f(x) \propto \exp\{-(\log x - \alpha)^2/2\beta^2\},$$

where α is the mean, and β is the standard deviation of the logarithm.

iv) Inverse — Gaussian distribution, with parameterrs $\pmb{\theta} = c(\alpha>0, \beta>0)$ and density function

$$f(x) \propto x^{-3/2} \exp\{-\alpha(x-\beta)^2/2x\beta^2\},$$

where α is the shape parameter, and β is the mean parameter.

Value

The function 'domplan' produces:

total_domnoplan_sim

Matrix array of dimension "J * (3 + 2 D)" nSim" with predictions for the planned domains.

Column 1 - Indicator of the planned domains

Column 2 - T_i (totals of the planned domains)

Column 3 - N_j (composition of the planned domains)

Author(s)

Sergio I. Olivares-Guzman, Adriana Roldan-Rodriguez, Juan Carlos Martinez-Ovando

References

- "A Bayesian nonparametric framework to inference on totals of finite populations," Martinez-Ovando, J. C., Olivares-Guzman, S. I., Roldan-Rodriguez, A., 2013. Contributions of Young Researchers to Bayesian Statistics (eds. E. Lazarone & F. Ieva), Chapter 15 Springer.
- "Predictive inference on finite populations segmented in planned and unplanned domains," Martinez-Ovando, J. C., Olivares-Guzman, S. I., Roldan-Rodriguez, A., 2014. Submitted. Also available as Banco de Mexico Working Paper 2014-04.

20 domplan_g0

See Also

```
domplan_total
```

Examples

```
# Uses of library: "predfinitepop"
#-----
           Read files with functions in R
rm(list=ls())
#library("predfinitepop")
set.seed(12345)
#-----
data(datasample)
data(popcomp)
# Sample (with 10% of the population)
datos <- datasample[[1]]</pre>
domplan_N <- popcomp[[1]]</pre>
#-----
# MODEL PARAMETERS
#-----
# a. Parameter "alpha" of the Dirichlet process
# (this is for J02 planned domains)
alphaDP \leftarrow matrix(0.03,2,1)
# b. vector with indicator variables for unplanned domains
colid_D \leftarrow t(as.matrix(c(6:8)))
# c. Matrix with parameters for unplanned domains
# (this is for J=2 planned domains)
alpha_D <- matrix(0.3,2,length(colid_D))</pre>
# CODE PARAMETERS AND INCORPORATION OF THE DISTRIBUTION
#-----
# Incorporate each element ("g0_licitacion_in_J") according to the number of domains planned
    g0_licitacion_in_1 <- list("distribution",teta1,esp(teta1))</pre>
# In this case we have two domains planned
g0\_licitacion\_in\_1 \leftarrow list("Lognormal", c(6.198, 0.840), .5)
g0_licitacion_in_2 \leftarrow list("Gamma", c(6.198, 0.840), .5)
g0_licitacion_sal <- list(g0_licitacion_in_1,g0_licitacion_in_2)</pre>
# B. Number of Monte Carlo replicates of the predictive distributions
nSim <- 10
```

domplan_total 21

```
#------
# TESTING "domplan.R"
#------
date.ini <- date()
domplan_sim <- domplan_g0(datos,domplan_N,alphaDP,nSim,g0_licitacion_sal)
date.fin <- date()
#
# --END --
```

domplan_total

Monte Carlo simulation of total for a given planned domain.

Description

Simulates Monte Carlo samples of size 'nSim' of the final distribution for the total for the given planned domain \mathcal{P}_j .

Usage

```
domplan_total(datos_j,rho,ystar,phi,g0_licitacion_sal,N_Stil_j,nSim)
```

Arguments

datos_j	Data matrix with features and number of individuals in the sample S_j	
rho	$(U\mathrm{X}2)$ -dimensional vector with weights associated with the sample ties ' $ystar$ '	
ystar	Sample ties y_i^* , in the sample \mathcal{S}_j	
phi	Probability weight associated with ' G_{j0} ' (the continuos part of ' \hat{G}_{j} ')	
gO_licitacion_sal		
	Object list with the continuous component in \hat{G}_j	
N_Stil_j	Composition of individuals out of \mathcal{S}_j	
nSim	Number of Monte carlosimulated replicates of the predictive distribution	

Value

The function 'domplan_total' produces and object list with two entries:

Author(s)

Juan Carlos Martinez-Ovando

22 g0_licitacion

References

- "A Bayesian nonparametric framework to inference on totals of finite populations," Martinez-Ovando, J. C., Olivares-Guzman, S. I., Roldan-Rodriguez, A., 2013. Contributions of Young Researchers to Bayesian Statistics (eds. E. Lazarone & F. Ieva), Chapter 15 Springer.

- "Predictive inference on finite populations segmented in planned and unplanned domains," Martinez-Ovando, J. C., Olivares-Guzman, S. I., Roldan-Rodriguez, A., 2014. Submitted. Also available as Banco de Mexico Working Paper 2014-04.

See Also

domnoplan

g0_licitacion

Prior elicitation of G_{j0} using reference data.

Description

This function computes the prior elicitation of G_{j0} using reference data for the planned domain j. G_{j0} is used by the SSM as the baseline function. The distribution is elicited using a predictive cross-validation procedure for model comparison and selection among the following alternatives: Gamma, Weibull, Lognormal and Inverse-Gaussian. The function also computes the expectation of the chose distribution.

Usage

```
g0_licitacion(datos_ant,inter,part)
```

Arguments

datos_ant Reference data for calibration of G_{i0}

inter Tunning parameter for model comparison and selection

part Number of groups for predictive validation. The larger the number of groups the

fewer observations are to be removed for calibration

Details

datos_ant: Data collected in a previous time or from another source for each planned domain. It must contain two columns, labeled by 'domplan' and 'y_i' 'domplan' - Labels of planned domains 'y_i' - individual outcome (for the sake of implementation, this must be positive)

Value

The function 'g0_licitacion' produces an object list with three elements:

distribution List arrangement: String object for 'distribution' i) Gamma ii) Weibull iii) Log-

normal iv) Inverse Gaussian

theta Vector of parameters associated with 'distribution'

mu Expected value of 'distribution'

g0_simulacion 23

Author(s)

Adriana Roldan-Rodriguez

References

- "A Bayesian nonparametric framework to inference on totals of finite populations," Martinez-Ovando, J. C., Olivares-Guzman, S. I., Roldan-Rodriguez, A., 2013. Contributions of Young Researchers to Bayesian Statistics (eds. E. Lazarone & F. Ieva), Chapter 15 Springer.

- "Predictive inference on finite populations segmented in planned and unplanned domains," Martinez-Ovando, J. C., Olivares-Guzman, S. I., Roldan-Rodriguez, A., 2014. Submitted. Also available as Banco de Mexico Working Paper 2014-04.

g0_simulacion

Computes Monte Carlo samples from a given G_{ij} 0.

Description

This function computes Monte Carlo samples from a given continuous G_{j0} .

Usage

```
g0_simulacion(g0_licitacion_sal,nSim)
```

Arguments

g0_licitacion_sal

Object list with three elements (produced with 'g0_licitacion'):

- a) String object for 'distribution'
- i) Gamma
- ii) Weibull
- iii) Log-normal
- iv) Inverse-Gaussian
- b) theta Vector of parameters associated with 'distribution'
- c) mu Expected value of 'distribution'

nSim

Number of Monte Carlo simulations

Value

```
This function 'g0_simulacion' produces:
```

```
g0_simulacion_sal
```

(nSim X 1) dimensional array with simulated data

Author(s)

Adriana Roldan-Rodriguez, Juan Carlos Martinez-Ovando

24 ghat_simulacion

References

- "A Bayesian nonparametric framework to inference on totals of finite populations," Martinez-Ovando, J. C., Olivares-Guzman, S. I., Roldan-Rodriguez, A., 2013. Contributions of Young Researchers to Bayesian Statistics (eds. E. Lazarone & F. Ieva), Chapter 15 Springer.
- "Predictive inference on finite populations segmented in planned and unplanned domains," Martinez-Ovando, J. C., Olivares-Guzman, S. I., Roldan-Rodriguez, A., 2014. Submitted. Also available as Banco de Mexico Working Paper 2014-04.

See Also

```
ghat_simulacion
```

ghat_simulacion

Simulates Monte Carlo samples from \hat{G}_{-j} .

Description

This function simulates Monte Carlo samples from \hat{G}_j .

Usage

```
ghat_simulacion(rho,ystar,phi,g0_licitacion_sal,N_Stil_j)
```

Arguments

rho (U X 2)-dimensional vector with weights associated with 'ystar'

ystar Sample ties y_i^* in S_j

Probability weight associated with G_{j0} (the continuos part of \hat{G}_{j})

g0_licitacion_sal

Object list with three elements (produced with 'g0_licitacion'):

- a)String object for 'distribution'
- i) Gamma
- ii) Weibull
- iii) Log-normal
- iv) Inverse-Gaussian
- b) theta Parameters associated with 'distribution'
- c) mu Expected value of 'distribution'

N_Stil_j Number of samples to simulate (number of individuals in \tilde{S}_i) out of the sample

Value

gstar_simulacion 25

Author(s)

Juan Carlos Martinez-Ovando

References

- "A Bayesian nonparametric framework to inference on totals of finite populations," Martinez-Ovando, J. C., Olivares-Guzman, S. I., Roldan-Rodriguez, A., 2013. Contributions of Young Researchers to Bayesian Statistics (eds. E. Lazarone & F. Ieva), Chapter 15 Springer.

- "Predictive inference on finite populations segmented in planned and unplanned domains," Martinez-Ovando, J. C., Olivares-Guzman, S. I., Roldan-Rodriguez, A., 2014. Submitted. Also available as Banco de Mexico Working Paper 2014-04.

See Also

```
g0_simulacion, gstar_simulacion.
```

gstar_simulacion

Generates Monte Carlo samples from the discrete component of $\hat{G}_{_j}$

Description

This function generates Monte Carlo samples from the discrete component of \hat{G}_j for the Dirichlet process prior in the planned domain j.

Usage

```
gstar_simulacion(rho,ystar,nSim)
```

Arguments

rho (U X 2)-dimensional vector with weights associated with 'ystar'

ystar Sample ties y_i^* in S_j

nSim Number of Monte Carlo simulations

Value

The function 'gstar_simulacion' produces:

```
gstar_simulacion_sal
```

(nSim X 1) dimensional vector with simulated data

Author(s)

Juan Carlos Martinez-Ovando

26 pesosDP

References

- "A Bayesian nonparametric framework to inference on totals of finite populations," Martinez-Ovando, J. C., Olivares-Guzman, S. I., Roldan-Rodriguez, A., 2013. Contributions of Young Researchers to Bayesian Statistics (eds. E. Lazarone & F. Ieva), Chapter 15 Springer.

- "Predictive inference on finite populations segmented in planned and unplanned domains," Martinez-Ovando, J. C., Olivares-Guzman, S. I., Roldan-Rodriguez, A., 2014. Submitted. Also available as Banco de Mexico Working Paper 2014-04.

See Also

ghat_simulacion

pesosDP	Computes the weights associated with the predictive distribution \hat{G}_{-j}
	for a given planned domain j under the Dircihlet processes prior.

Description

This function computes the weights associated with the predictive distribution \hat{G}_j for a given planned domain j, using the sample ties (y_i^*) , under the Dirichlet processes prior.

Usage

```
pesosDP(unicos_sal,alphaDP)
```

Arguments

unicos_sal $(U \times 2)$ matrix with sample ties and associated frequencies (produced with 'uni-

cos')

alphaDP Scale parameter of the Dirichlet process

Details

The matrix with sample ties 'unicos_sal' must include a column named 'm_k' for the frequencies of the sample ties.

Value

The function 'pesosDP' produces an object list with two elements:

rho $(U \times 2)$ dimensional vector with weights associated with 'ystar' (the sample ties)

phi Probability weight associated with G_{j0} (the continuos part of \hat{G}_{j})

Author(s)

Sergio I. Olivares-Guzman, Juan Carlos Martinez-Ovando

pginvgauss 27

References

- "A Bayesian nonparametric framework to inference on totals of finite populations," Martinez-Ovando, J. C., Olivares-Guzman, S. I., Roldan-Rodriguez, A., 2013. Contributions of Young Researchers to Bayesian Statistics (eds. E. Lazarone & F. Ieva), Chapter 15 Springer.

- "Predictive inference on finite populations segmented in planned and unplanned domains," Martinez-Ovando, J. C., Olivares-Guzman, S. I., Roldan-Rodriguez, A., 2014. Submitted. Also available as Banco de Mexico Working Paper 2014-04.

pginvgauss

Generalized inverse Gaussian distribution

Description

Probability of the generalized inverse Gaussian distribution.

Usage

```
pginvgauss(q, m, s, f)
```

Arguments

- q Vector of quantiles.
- m Vector of means.
- s Vector of dispersion parameters.
- f Vector of family parameters.

Author(s)

Jim Lindsey <jlindsey@luc.ac.be>

References

Extracted from package "rmutil" Version 1.0 "Utilities for Nonlinear Regression and Repeated Measurements Models"

pinvgauss

Inverse Gaussian distribution

Description

Probabity of the inverse Gaussian distribution.

Usage

```
pinvgauss(q, m, s)
```

28 popcomp

Arguments

q Vector of quantiles.

m Vector of means.

s Vector of dispersion parameters.

Author(s)

Jim Lindsey <jlindsey@luc.ac.be>

References

Extracted from package "rmutil" Version 1.0 "Utilities for Nonlinear Regression and Repeated Measurements Models"

popcomp	Composition of the simulated population segemented in planned and
	unplanned domains.

Description

This object corresponds to a list with the composition of the simulated population across planned and unplanned domains. See Martinez-Ovando et al. (2014) for further details.

Usage

```
data(popcomp)
```

Format

The format is: List of 3 \$: num [1:2] 800 1200 \$: num [1:3] 980 800 220

Source

Simulated data. See Martinez-Ovando et al. (2014) for further details.

References

- "Predictive inference on finite populations segmented in planned and unplanned domains," Martinez-Ovando, J. C., Olivares-Guzman, S. I., Roldan-Rodriguez, A., 2014. Submitted. Also available as Banco de Mexico Working Paper 2014-04.

Examples

```
data(popcomp)
```

poptot 29

planned domains.

Description

This object corresponds to a list with the totals of the simulated population across planned and unplanned domains. See Martinez-Ovando et al. (2014) for further details.

Usage

data(poptot)

Format

The format is:

- [[1]] Composition of the population across planned domains (working format).
- [[2]] Composition of the population across planned domains.
- [[3]] Composition of the population across unplanned domains.

Source

Simulated data. See Martinez-Ovando et al. (2014) for further details.

References

- "Predictive inference on finite populations segmented in planned and unplanned domains," Martinez-Ovando, J. C., Olivares-Guzman, S. I., Roldan-Rodriguez, A., 2014. Submitted. Also available as Banco de Mexico Working Paper 2014-04.

Examples

data(poptot)

predfinitepop	Predictive Inference on Totals and Averages of Finite Populations Segmented in Planned and Unplanned Domains.

Description

This package computes Bayesian predictive inference on totals and averages of finite populations segmented in planned and unplanned domains. Inference is based on Bayesian nonparametric methods using species-sampling models (specifically the Dirichlet process).

30 randDirichlet

Details

Package: predfinitepop Type: Statistical Version: v-1

Date: 2014-03-31

Author(s)

Juan Carlos Martinez-Ovando, Banco de Mexico, <juan.martinez@banxico.org.mx> Sergio I. Olivares-Guzman, Banco de Mexico, <solivares@banxico.org.mx> Aadriana Roldan-Rodriguez, Banco de Mexico, <aroldan@banxico.org.mx>

References

- "A Bayesian nonparametric framework to inference on totals of finite populations," Martinez-Ovando, J. C., Olivares-Guzman, S. I., Roldan-Rodriguez, A., 2013. Contributions of Young Researchers to Bayesian Statistics (eds. E. Lazarone & F. Ieva), Chapter 15 Springer.
- "Predictive inference on finite populations segmented in planned and unplanned domains," Martinez-Ovando, J. C., Olivares-Guzman, S. I., Roldan-Rodriguez, A., 2014. Submitted. Also available as Banco de Mexico Working Paper 2014-04.

randDirichlet

Simulates samples from the Dirichlet distribution with (px1) vector parameter α .

Description

This function simulates samples from the Dirichlet distribution with (px1) vector parameter α .

Usage

```
randDirichlet(alpha,n)
```

Arguments

alpha p-dimensional vector with positive entries

n Number of simulated replicates

Value

This function produces:

randDir $(n \times p)$ matrix with 'n' simulated replicates

rginvgauss 31

Author(s)

Juan Carlos Martinez-Ovando

References

- "Non-Uniform Random Variate Generation", Luc Devroy (1986), Berlin: Springer-Verlag.

rginvgauss

Generalized inverse Gaussian distribution

Description

Simulation from the generalized inverse Gaussian distribution.

Usage

```
rginvgauss(n = 1, m, s, f)
```

Arguments

- n Number of values to generate.
- m Vector of means.
- s Vector of dispersion parameters.
- f Vector of family parameters.

Author(s)

Jim Lindsey <jlindsey@luc.ac.be>

References

Extracted from package "rmutil" Version 1.0 "Utilities for Nonlinear Regression and Repeated Measurements Models"

rinvgauss

Inverse Gaussian distribution

Description

Simulation from the inverse Gaussian distribution.

Usage

```
rinvgauss(n = 1, m, s)
```

32 unicstar

Arguments

n Number of values to generate.

m Vector of means.

s Vector of dispersion parameters.

Author(s)

Jim Lindsey <jlindsey@luc.ac.be>

References

Extracted from package "rmutil" Version 1.0 "Utilities for Nonlinear Regression and Repeated Measurements Models"

unicstar

Identifies the sample ties in S_j and computes their associated sample frequencies.

Description

This function identifies the sample ties (y_k^*) in S_j and computes their associated sample frequencies.

Usage

```
unicstar(datos_j)
```

Arguments

datos_j

Data matrix with individual measurements in " S_j "

Details

The column with individual measurements in "datos_j" should be named "y_i"

Value

The function 'unicstar' produces an object list with two elements:

U Number of sample ties in " S_j "

unicstar Data matrix with sample ties y_i and associated frequencies

Author(s)

Sergio I. Olivares-Guzman, Adriana Roldan-Rodriguez, Juan Carlos Martinez-Ovando

unicstar 33

References

- "A Bayesian nonparametric framework to inference on totals of finite populations," Martinez-Ovando, J. C., Olivares-Guzman, S. I., Roldan-Rodriguez, A., 2013. Contributions of Young Researchers to Bayesian Statistics (eds. E. Lazarone & F. Ieva), Chapter 15 Springer.

- "Predictive inference on finite populations segmented in planned and unplanned domains," Martinez-Ovando, J. C., Olivares-Guzman, S. I., Roldan-Rodriguez, A., 2014. Submitted. Also available as Banco de Mexico Working Paper 2014-04.

Index

*Topic Calibration	poptot, 29
gO_licitacion,22	
*Topic Compositional analysis	conteo, 2
domnoplan, 6	datamak 2
domnoplan_g0, 11	datacemple 4
*Topic Convolutions	datasample, 4
domnoplan, 6	dginvgauss, 5 dinvgauss, 6
domplan, 15	_
domplan_g0, 18	domnoplan, $6, 10, 22$ domnoplan., 15
*Topic Domains planned	domnoplan_composicion, 9
domnoplan, 6	domnoplan_g0, 11
domnoplan_g0, 11	domnoplan_totalcomp, 14
domplan, 15	domnoplan_totalcomp., 8, 13
*Topic Domains unplanned	domplan, 15
domnoplan, 6	domplan_g0, 18
domnoplan_g0, 11	domplan_total, <i>17</i> , <i>20</i> , 21
*Topic Model comparison and	
selection	g0_licitacion, 22
gO_licitacion,22	g0_simulacion, 23
*Topic Monte Carlo simulation	ghat_simulacion, 24, 24, 26
g0_simulacion,23	gstar_simulacion, 25
<pre>ghat_simulacion, 24</pre>	gstar_simulacion., 25
gstar_simulacion,25	
*Topic Planned domains	pesosDP, 26
domplan_g0, 18	pginvgauss, 27
*Topic Population Total	pinvgauss, 27
domplan_g0, 18	popcomp, 28
*Topic Prediction	poptot, 29
g0_simulacion, 23	predfinitepop, 29
<pre>ghat_simulacion, 24</pre>	
gstar_simulacion, 25	randDirichlet, 30
*Topic Prior elicitation	rginvgauss, 31
gO_licitacion, 22	rinvgauss, 31
*Topic Total Population	unicstar, 32
domnoplan, $\overline{6}$	unicocui, 52
domnoplan_g0, 11	
domplan, 15	
*Topic convolutions	
domnoplan_g0, 11	
*Topic datasets	
dataref, 3	
datasample,4	
popcomp, 28	