

ROBUST TEXT CLASSIFICATION IN THE PRESENCE OF CONFOUNDING BIAS

Virgile Landeiro & Aron Culotta Illinois Institute of Technology Chicago

INTRODUCTION

- Development of text classification over more than 50 years;
- Mostly centered around categorization of documents into topics;
- New areas of research:
 - Public health surveillance;
 - Political science;
 - Marketing;
 - ...
- But algorithms stay the same: standard supervised classification algorithms.
- To ensure validity of study → need classifiers robust to confounding variables.

nyc	angeles	ny	york	california
los	la	brooklyn	snow	disneyland
jersey	city	san	ca	hollywood
monica	santa	nj	manhattan	losangeles
earthquake	team	dodgers	hills	cute
heart	vegas	chill	state	happiness
makeup	pacific	cali	father	brother
also	guess	socal	field	job
cant	venice	tacos	boo	wonderful

50 TOP FEATURES FOR LOGISTIC REGRESSION

single

train

laugh

Male (resp. Female) and New York (resp. Los Angeles) are highly correlated.

brothers

wanna

WHAT IS A CONFOUNDING VARIABLE?

- Prediction vs. causal inference.
- Small training datasets;

 Assume same impact in training and testing sets. Confounder shifts over time.

RELATED WORK

- Matching
- Stratification
- Features removal
- J. Pearl developed the back-door adjustment

- $P_{train}(X) \neq P_{test}(X)$
- $P_{train}(Y) \neq P_{test}(Y)$

We focus on:

$$P_{train}(Y|Z) \neq P_{test}(Y|Z)$$

BACK-DOOR ADJUSTMENT FOR TEXT CLASSIFICATION

$$D = \{(x_i, y_i, z_i)\}_{i=1}^n$$

- The back-door criterion requires that:
 - No node in Z is a descendant of X;
 - Z blocks every path between X and Y that contains an arrow pointing to X.
- The back-door criterion is met:

confounder

term vector class label

$$p(y|do(x)) = \sum_{z \in Z} p(y|x,z) \times p(z)$$

BACK-DOOR ADJUSTMENT FOR TEXT CLASSIFICATION

$$p(y|do(x)) = \sum_{z \in Z} p(y|x,z) \times p(z)$$

- Restrict to binary variables.
- Fit a logistic regression model on p(y|x,z) at training time by appending two features $c_{i,0}$ and $c_{i,1}$ to every x_i .
- Z is not observed at testing time.

x_0	x_1	c_0	c_1	Z
0	0	0	1	1
0	1	0	1	1
1	0	1	0	0
1	1	0	1	1

	,		
IMDb	Sentiment of the review: Positive or Negative	Genre of the film: Horror or Other	
Canadian Parliament	Political affiliation: Liberal or Conservative	Political position: Government or Opposition	
	DATASETS	3 differents datasets to experiment with	

Target variable

City or Los Angeles

Location of a user: New York

Dataset

Twitter

Confounder

Gender of the user:

Male or Female

back-door adjustment.

INJECTING CONFOUNDING BIAS

- Introduce confounding bias according to the following constraints:
 - $P_{train}(y = 1|z = 1) = b_{train} \qquad P_{train}(Y) = P_{test}(Y)$
- - $P_{test}(y = 1 | z = 1) = b_{test}$ $P_{train}(Z) = P_{test}(Z)$

BASELINES

- Logistic Regression (LR)
- Back-door Adjustment (BA and BAZ10)
- Subsampling (S)
- Matching (M)
- Sum Out (S)

RESULTS FOR THE TWITTER DATASET

RESULTS FOR THE TWITTER DATASET

EFFECTS OF BACK-DOOR ADJUSTMENT

Simpson's Paradox

EFFECTS OF BACK-DOOR ADJUSTMENT

 Coefficients of features predictive of the label (left) and the confounding variable (right):

CONCLUSION / FUTURE WORK

- Efficient and effective method to use back-door adjustment in text classification.
- Use back-door adjustment with a vector of confounders.
- Use back-door adjustment with a noisy measurement of the confounder.