Cent In the show to mus = (1) I Math 03.160 Discrete Structures Last update: 11-2-2020 $= \cap (\{ + \} \})$ PROBLEM OF THE DAY 11 Chapter 4: Recursion Trees

Of Phils to Wilk IN P **EXERCISES**: 1. Complete the recursion tree table for the following recurrence and use it to determine an $T(n) = \begin{cases} 4T(n/2) + n & \text{if } n > 1 \\ T(1) = 1 & \text{if } n = 1 \end{cases}$ explicit formula for T(n): thhus to Work per Level Number of Problem Tree Diagram Work per **Problems** Size Problem Level 0 4(1/2) 1 2 64 6025 (Assume 7 \ (pww/s 2. Complete the recursion tree table for the following recurrence and use it to determine an = (2!) $T(n) = \begin{cases} 4T(n/3) + n & \text{if } n > 1 \\ T(1) = 1 & \text{if } n = 1 \end{cases}$ = 202-0(2)

			(
Level	Number of	Problem	Tree Diagram	Work per	Work per
	Problems	Size		Problem	Level
0)		N	V
1	4,	7		7(3	40/3
2	بر 4	4/32		N Sm	MVVM
3	4-3	r \ 70		4/33	CAN 50
•••					
k (Assume	yu	1,2/4	h	(
$n = 3^k$	\	_		١	

n = 34 7 3 3