INT102 Assignment 2 Submission

Guanyuming He ID: 2035573

 $\mathrm{May}\ 9,\ 2022$

1 Question 1

1.1 1)

A	G	С	Т
1	2	5	3

1.2 2)

The process is shown below:

The total number of comparisons is 3 (C \neq G) + 1 (T \neq A) + 5 (match found) = 9.

2 Question 2

2.1 1)

The process is shown below, assuming that each iteration goes through the edges in the order from e_1 to e_6 .

iteration	a	b	с	d	е
before	(a, 0)	$(-, \infty)$	$(-, \infty)$	$(-, \infty)$	$(-, \infty)$
1 finish	(a, 0)	(a, 4)	(a, 5)	$(-, \infty)$	$(-, \infty)$
2 until e_3	(a, 0)	(a, 4)	(a, 5)	(b, 14)	$(-, \infty)$
2 until e_4	(a, 0)	(a, 4)	(a, 5)	(b, 14)	(c, -2)
2 finish	(a, 0)	(e, -5)	(a, 5)	(b, 14)	(c, -2)
3 until e_3	(a, 0)	(e, -5)	(a, 5)	(b, 5)	(c, -2)
3 finish	(a, 0)	(e, -5)	(a, 5)	(b, 5)	(c, -2)
4 finish	(a, 0)	(e, -5)	(a, 5)	(b, 5)	(c, -2)
5 finish	(a, 0)	(e, -5)	(a, 5)	(b, 5)	(c, -2)

The shortest path from a to a is $\{(a,a)\}$. From a to b is $\{(a,c), (c,e), (e,b)\}$. From a to c is $\{(a,c)\}$. From a to d is $\{(a,c), (c,e), (e,b), (b,d)\}$. From a to e is $\{(a,c), (c,e)\}$.

3 Question 3

3.1 1)

The table is shown below:

	-	A	\mathbf{G}	\mathbf{C}	\mathbf{C}	\mathbf{C}	${ m T}$
-	0	0	0	0	0	0	0
G	0	0↑	1	1←	1←	1←	1←
A	0	1	1↑	1↑	1↑	1↑	1↑
\mathbf{G}	0	1↑	2	$2\leftarrow$	$2\leftarrow$		$2\leftarrow$
T	0	1↑	2↑	2↑	2↑	2↑	3

3.2 2)

According to the table, the longest subsequence is AGT.

4 Question 4

4.1 1)

4.1.1 a)

The table is shown below:

	-	A	G	A	\mathbf{C}	\mathbf{C}	${ m T}$
		-1					
G	-1	-2←△↑	0×	-1←	-2←	-3←	-4←
A	-2	0~	-1←↑	1	0←	-1←	-2←
G	-3	-1↑	1	0←↑	-1←↑	-2←↑	-3←↑
		-2↑					

4.1.2 b)

According to the table, an optimal global alignments is:

4.2 2)

4.2.1 a)

The table is shown below:

	-	A	G	A	\mathbf{C}	\mathbf{C}	${\rm T}$
-	0	0	0	0	0	0	0
G	0	0	1	0←	0	0	0
A	0	1	0←	2 [^]	$1\leftarrow$	$0 \leftarrow$	0
G	0	0↑	2	1← 0←↑	0←↑	0	0
Τ	0	0	1	0←↑	0	0	1

4.2.2 b)

According to the table, an optimal local alignment is:

 $\begin{array}{cc} G & A \\ G & A \end{array}$