Logic for Computer Science Homework # 6 due Friday December 9th

Name: Mohammed Sultan

9.2 Determine all possible truth value using **Lukasiewicz**

a) $p \vee \bar{p}$

p	$ar{p}$	$p \lor \bar{p}$
0	1	1
1/2	1/2	1/2
1	0	1

b) $p \wedge \bar{p}$

p	$ar{p}$	$p \wedge \bar{p}$
0	1	0
1/2	1/2	1/2
1	0	0

d) $p \lor (p \land q)$

p	q	$p \wedge q$	$p \lor (p \land q)$
0	0	0	0
0	1/2	0	0
0	1	0	0
1/2	0	0	1/2
1/2	1/2	1/2	1/2
1/2	1	1/2	1
1	0	0	1
1	1/2	1/2	1
1	1	1	1

9.5 – suppose we have a fuzzy proposition

Today's humidity is high

Using the fuzzy set defined in Fig 9.1a determine the truth value of the proposition for today's humidity 50, 60, 70, 80, 90, and 100 respectively

$$T(p_{50}) = H(50) = 0$$

$$T(p_{60}) = H(60) = 0$$

$$T(p_{70}) = H(70) = 0.3$$

$$T(p_{80}) = H(80) = 1$$

$$T(p_{90}) = H(90) = 1$$

$$T(p_{100}) = H(100) = 1$$

- **9.6** suppose a 500-page book costs \$60. Using the fuzzy sets in Fig 9.3, calculate the truth value of the propositions
- a) "if the textbook is large, then it is expensive" (is true)

-
$$L(500) = 1$$
, $E(60) = 1$
 $T(p_{x, y}) = \min(1, 1 - L(x) + E(y))$
 $T(p_{500, 60}) = \min(1, 1 - 1 + 1) = 1$
 $\therefore T(p_{500, 60}) = 1$

b) "if textbox is not large, then it is not expensive" (is true)

$$L(500)_{large} = 1$$
, $E(60)_{expensive} = 1$

$$L(500)_{not\ large}=1-L(500)_{large}$$

$$E(60)_{not\ expensive} = 1 - E(60)_{expensive}$$

$$L(500)_{not \ large} = 1 - 1 = 0$$

$$E(60)_{not \ expensive} = 1 - 1 = 0$$

$$T(p_{x, y}) = \min(1, 1 - L(x) + E(y))$$

$$T(p_{500, 60}) = \min(1, 1 - 0 + 0) = 1$$

- c) The propositions (a) and (b) with qualifier very true, where $very(a) = a^2$ for any $a \in [0,1]$
 - a) "if the textbook is large, then it is expensive" (is very true)

$$L(500)_{true} = 1$$
, $E(60)_{true} = 1$

$$L(500)_{very\ true} = 1^2 = 1$$

$$E(60)_{verv\ true} = 1^2 = 1$$

$$T(p_{x,y}) = \min(1, 1 - L(x) + E(y))$$

$$T(p_{500, 60}) = \min(1, 1 - 1 + 1) = 1$$

- b) "if textbox is not large, then it is not expensive" (is very true)

$$L(500)_{true} = 0$$

$$E(60)_{true} = 0$$

$$L(500)_{very\ true} = 0^2 = 0$$

$$E(60)_{very\ true} = 0^2 = 0$$

$$T(p_{x,y}) = \min(1, 1 - L(x) + E(y))$$

$$T(p_{500, 60}) = \min(1, 1 - 0 + 0) = 1$$