

Brispiel pg-Fon.l. 2x2-4x-10=2	- 2
$\frac{1}{2}x^{2}-4x-12=0$	
$x^{2} - 2x - 6 = 0$ $y = 0$ $y = 0$ $y = 0$	
$Y_{1/\partial} = -\frac{(-2)}{2} + \sqrt{\frac{(-2)}{2}^2}$	- (-6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
= 1 + 17	
$=) \qquad \begin{array}{l} \chi_1 = 1 + \sqrt{2} \\ \chi_2 = 1 - \sqrt{2} \end{array}$	
abc-Formel herleiten: $ax^2 + bx + c = 0$ $1-c$	
$(=) X^{2} + \frac{b}{a} \times = -\frac{c}{a}$ $(=) X^{3} + 2 \cdot \frac{b}{a \cdot a} \cdot X + \left(\frac{b}{aa}\right)^{2} - \left(\frac{b}{aa}\right)^{2} = -\frac{c}{a}$	$\frac{1}{a}$ $\left(\frac{b}{a}\right)^2$
$(b) x^{2} + 2 \cdot x \cdot \frac{b}{2a} + \left(\frac{b}{2a}\right)^{2} = \left(\frac{b}{2a}\right)^{2} - \frac{c}{a}$	
a ² + 2·a b + 6 ²	
/ Falluntersher due D	
$(=) + (x + \frac{b}{aa})^2 - \frac{c}{a}$	
=	
$\frac{1}{2\alpha} + \sqrt{\frac{6^2}{3^3 \cdot a^2} - \frac{4 \cdot \alpha}{4 \cdot \alpha} \cdot \frac{C}{a}}$	
$= \frac{-b}{2a} + \sqrt{\frac{b^2 - 4ac}{2^6 \cdot a^3}}$	
$\frac{-b}{2\alpha} + \frac{1b^2 - 4ac}{\sqrt{z^2} \cdot \sqrt{z^2}}$	-6 ± 1 6 - 4 ac
Bromische Tormelu 7. (a+b) = a + 2ab +b2	
	(-b)) = a + J·a (-b) + (-b)

$$S_{\text{displit}}(x; f_{\alpha}(x)) = x^{2} + 4x - 5 = (x+3)^{2} - 3 = 5 \text{ flowed parts} + 5 = 3 \cdot (x^{2} + 3x - 4x - 4) = 3 \cdot (x^{2} + 3x - 3x + 4x - 2) = 2 \cdot (x+7)^{2} - 6 = 2 \cdot (x+7)^{2} - 1 - 2 = 2 \cdot (x+7)^{2} - 6 = 2 \cdot (x+7)^{2} - 2 \cdot (x+7)^{$$