CLAIMS

What is claimed is:

5

1. An isolated nucleic acid comprising a nucleotide sequence encoding a polypeptide comprising an LRRCT domain consisting of the amino acid sequence:

$$N \; X_1 \; W \; X_2 \; C \; X_3 \; C \; R \; A \; R \; X_4 \; L \; W \; X_5 \; W \; X_6 \; X_7 \; X_8 \; X_9 \; R \; X_{10} \; S \; S \; S \; X_{11} \; V$$

10

$$X_{12} C X_{13} X_{14} P X_{15} X_{16} X_{17} X_{18} X_{19} X_{20} D L X_{21} X_{22} L X_{23} X_{24} X_{25} D \\$$

15

25

wherein X is any amino acid or a gap and the polypeptide does not comprise the amino acid sequence from residue 260 to 309 of SEQ ID NO: 5 (human NgR1) or SEQ ID NO: 17 (mouse NgR1).

- 2. The isolated nucleic acid according to claim 1, wherein X₁₇ and X₂₃

 are independently selected from the group consisting of: arginine and lysine.
 - 3. The isolated nucleic acid according to claim 2, wherein the amino acid sequence of the LRRCT domain is selected from the group consisting of: residues #261-310 of SEQ ID NO:2 and residues 261-310 of SEQ ID NO: 2 with up to 10 conservative amino acid substitutions.
 - 4. An isolated nucleic acid encoding the polypeptide of SEQ ID NO: 2.
- 5. An isolated nucleic acid encoding the polypeptide of SEQ ID NO: 4
 30 (mouse NgR3) or SEQ ID NO: 14 (human NgR3).
 - 6. The isolated nucleic acid according to claim 1, wherein the

polypeptide comprises: (a) a NTLRRCT domain, and (b) less than a complete CTS domain, provided that a partial CTS domain, if present, consists of no more than the first 39 amino acids of the CTS domain.

- 7. The isolated nucleic acid to claim 1, wherein the polypeptide does not comprise an intact GPI domain.
- 8. An isolated nucleic acid consisting essentially of a nucleotide sequence complementary to a nucleotide sequence encoding a polypeptide selected from the group consisting of: a polypeptide consisting of residues 311-395 of SEQ ID NO: 2, a polypeptide consisting of residues 256-396 of SEQ ID NO:14 and a polypeptide consisting of residues 321-438 of SEQ ID NO: 4, wherein the nucleic acid is from 8 to 100 nucleotides in length.
 - 9. A vector comprising the nucleic acid of any one of claims 1, 4 or 5.
 - 10. A host cell comprising a vector according to claim 9.
 - 11. A polypeptide comprising a LRRCT amino acid sequence:

 $N\; X_1\; W\; X_2\; C\; X_3\; C\; R\; A\; R\; X_4\; L\; W\; X_5\; W\; X_6\; X_7\; X_8\; X_9\; R\; X_{10}\; S\; S\; S\; X_{11}\; V$

 $X_{12} C X_{13} X_{14} P X_{15} X_{16} X_{17} X_{18} X_{19} X_{20} D L X_{21} X_{22} L X_{23} X_{24} X_{25} D \\$

 $X_{26} X_{27} X_{28} C [SEQ ID NO: 19]$

wherein X is any amino acid residue or a gap and the polypeptide does not comprise the amino acid sequence from residue 260 to 309 of SEQ ID NO: 5 (human NgR1) or SEQ ID NO: 17 (mouse NgR1).

12. The polypeptide according to claim 11, wherein X_{17} and X_{23} is selected from the group consisting of arginine and lysine.

30

5

10

15

20

10

13. The polypeptide according to claim 11, wherein X₁₉ is glycine.

[SEQ ID NO:11]

- sequence is selected from the group consisting of residues 261-310 of SEQ ID NO:2, residues 206-255 of SEQ ID NO: 14, residues 271-320 of SEQ ID NO:4 and amino acid sequences thereof comprising a conservative substitution.
 - 15. A polypeptide comprising a NTLRRCT amino acid sequence:

C P X₁ X₂ C X₃ C Y X₄ X₅ P X₆ X₇ T X₈ S C X₉ X₁₀ X₁₁ X₁₂ X₁₃ X₁₄ X₁₅ X₁₆ P

X₁₇ X₁₈ X₁₉ P X₂₀ X₂₁ X₂₂ X₂₃ R X₂₄ F L X₂₅ X₂₆ N X₂₇ I X₂₈ X₂₉ X₃₀ X₃₁ X₃₂ X₃₃

X₃₄ F X₃₅ X₃₆ X₃₇ X₃₈ X₃₉ X₄₀ X₄₁ X₄₂ L W X₄₃ X₄₄ S N X₄₅ X₄₆ X₄₇ X₄₈ I X₄₉

X₅₀ X₅₁ X₅₂ F X₅₃ X₅₄ X₅₅ X₅₆ X₅₇ L E X₅₈ L D L X₅₉ D N X₆₀ X₆₁ L X₆₂ X₆₃ X₆₄

X₆₅ P X₆₆ T F X₆₇ G L X₆₈ X₆₉ L X₇₀ X₇₁ L X₇₂ L X₇₃ X₇₄ C X₇₅ L X₇₆ X₇₇ L X₇₈

X₇₉ X₈₀ X₈₁ F X₈₂ G L X₈₃ X₈₄ L Q Y L Y L Q X₈₅ N X₈₆ X₈₇ X₈₈ X₈₉ L X₉₀ D

X₉₁ X₉₂ F X₉₃ D L X₉₄ N L X₉₅ H L F L H G N X₉₆ X₉₇ X₉₈ X₉₉ X₁₀₀ X₁₀₁ X₁₀₂

X₁₀₃ X₁₀₄ F R G L X₁₀₅ X₁₀₆ L D R L L L H X₁₀₇ N X₁₀₈ X₁₀₉ X₁₁₀ X₁₁₁ V H X₁₁₂

X₁₁₃ A F X₁₁₄ X₁₁₅ L X₁₁₆ R L X₁₁₇ X₁₁₈ L X₁₁₉ L F X₁₂₀ N X₁₂₁ L X₁₂₂ X₁₂₃ L

20 X₁₂₄ X₁₂₅ X₁₂₆ X₁₂₇ L X₁₂₈ X₁₂₉ L X₁₃₀ X₁₃₁ L X₁₃₂ X₁₃₃ L R L N X₁₃₄ N X₁₃₅ W

X₁₃₆ C X₁₃₇ C R X₁₃₈ R X₁₃₉ L W X₁₄₀ W X₁₄₁ X₁₄₂ X₁₄₃ X₁₄₄ R X₁₄₅ S S S X₁₄₆

V X₁₄₇ C X₁₄₈ X₁₄₉ P X₁₅₀ X₁₅₁ X₁₅₂ X₁₅₃ X₁₅₄ X₁₅₅ D L X₁₅₆ X₁₅₇ L X₁₅₈ X₁₅₉ X₁₆₀

D X₁₆₁ X₁₆₂ X₁₆₃ C [SEQ ID NO:18]

- wherein X is any amino acid residue or a gap and wherein the polypeptide is not the polypeptide of SEQ ID NO: 5 (human NgR1) or SEQ ID NO: 17 (mouse NgR1).
- 16. The polypeptide according to claim 15, wherein X_6 , X_{37} and X_{38} 30 represents a gap.
 - 14. A polypeptide comprising an amino sequence selected from the

5

10

15

20

- 18. The polypeptide according any one of claims 11, 15 or 17, wherein the polypeptide comprises: (a) an NTLRRCT domain, and (b) less than a complete CTS domain, provided that a partial CTS domain, if present, consists of no more than the first 39 amino acids of the CTS domain.
- 19. The polypeptide according to any one of claims 11, 15 or 17, wherein the polypeptide does not comprise an intact GPI domain.
- 20. The polypeptide according to any one of claims 11, 15 or 17, wherein the amino acid sequence of the polypeptide further comprises an amino acid sequence of a heterologous polypeptide.
- 21. The polypeptide according to claim 20, wherein the heterologous polypeptide is an Fc portion of an antibody.
 - 22. A method of producing a polypeptide according to any one of claims 11, 15 or 17, comprising the steps of introducing an isolated nucleic acid according to any one of claims 1, 4, 5 or 8 or a vector according to claim 9 into a host cell, culturing said host cell under conditions suitable for expression of said polypeptide, and recovering said polypeptide.
- 23. An antibody that binds to a polypeptide of any one of claims 11, 15 25 or 17.
 - 24. A composition comprising the polypeptide of claim 11, 15 or 17 and a pharmaceutically acceptable carrier.
- 25. A composition comprising the antibody of claim 23 and a pharmaceutically acceptable carrier.

- 26. A method of decreasing inhibition of axonal growth of a CNS neuron, comprising the step of contacting the neuron with an effective amount of the polypeptide of claim 11, 15 or 17.
- 27. A method of treating a central nervous system disease, disorder or injury, comprising administering to a mammal an effective amount of the polypeptide of claim 11, 15 or 17.
- 28. A method of decreasing inhibition of axonal growth of a CNS neuron comprising the step of contacting the neuron with an effective amount of the antibody according to claim 23.
 - 29. A method of treating a central nervous system disease, disorder or injury, comprising administering to a mammal an effective amount of the antibody according to claim 23.
 - 30. A method for identifying a molecule that binds a polypeptide of claim 11, 15 or 17 comprising the steps of:
 - (a) providing a polypeptide of claim 11, 15 or 17;
 - (b) contacting the polypeptide with the candidate molecule;
 - (c) detecting binding of the candidate molecule to the polypeptide.

25

5

15

20

and