Brute Force Algorithms

CS3230: Design and Analysis of Algorithms

Roger Zimmermann

National University of Singapore Spring 2017

Chapter 3: Brute Force

Topics: What we will cover today.

- Introduction
- Selection sort and bubble sort
- Sequential search and brute-force string matching
- Closest-pair and convex-hull problems by brute force
- Exhaustive search

The Brute Force Design Strategy

- The strategy of brute force is straightforward, or even naive, approach to solving a problem – just do it! It is usually a direct translation of the problem statement and definitions of the concepts involved.
- The advantages are:
 - Generality works well for some problems, and if an algorithm is needed quickly.
 - Usually efficient enough for small input sizes.
 - An important theoretical and educational tool.

Brute Force: Example

- In cryptanalysis, a brute force attack is a method of defeating a cryptographic scheme by systematically trying a large number (i.e., exhaustive number) of possibilities.
- The design goal, on the other hand, of a cryptographic system is that it can only be defeated by brute force attack.
 Furthermore, the design should be such that a brute force search is computationally infeasible to carry out.
- Example: For symmetric-key ciphers, a brute force attack usually means an exhaustive search of the key space.
 - Let's say the key size is 64 bits. Then there are 2^{64} possible keys. Q: How many keys need to be tried on average to find the right key?

Selection Sort: The Idea

- Given a sequence of n keys, partition the sequence into a prefix of p keys and a suffix of s keys, p + s = n.
- The keys in the prefix are already in their rightful positions.
- Find the smallest key K in the suffix. Remove K from the suffix and append it to the prefix.
- Initially, p = 0 and s = n. Finally, p = n and s = 0.

Selection Sort: An Algorithm

```
SELECTIONSORT // Input: array A[0..n-1] for i\leftarrow 0 to n-2 do \min \leftarrow i for j\leftarrow i+1 to n-1 do \text{if }A[j] < A[\min] \text{ then } \min \leftarrow j \text{ fi od swap }A[i] \text{ and }A[\min] od
```

// suffix A[i..n-1]

Selection Sort: An Example

89	45	68	90	29	34	17
17	45	68	90	29	34	89
17	29	68	90	45	34	89
17	29	34	90	45	68	89
17	29	34	45	90	68	89
17	29	34	45	68	90	89
17	29	34	45	68	89	90

Selection Sort: An Analysis

- Let C(n) be the number of key comparisons.
- Note that C(n) depends only on n so there is no need to distinguish among the three cases: worst, average, best.

$$C(n) = \sum_{i=0}^{n-2} \sum_{j=i+1}^{n-1} 1 = \sum_{i=0}^{n-2} [(n-1) - (i+1) + 1]$$

$$C(n) = \sum_{i=0}^{n-2} (n-1-i) = \frac{(n-1)n}{2} \in \Theta(n^2)$$

Selection Sort: Properties

- Runtime, average case: $O(n^2)$
- Runtime, worst case: $O(n^2)$
- Space efficiency: in-place, O(1)
- Stability: no (example: consider $[2_a, 2_b, 1]$)

Sorting Stability

- Stable sorting algorithms maintain the relative order of records with equal keys.
- A sorting algorithm is stable if whenever there are two records R and S with the same key, and R appears before S in the original list, then R will always appear before S in the sorted list.
- Note: When equal elements are indistinguishable, such as with integers, or more generally, any data where the entire element is the key, stability is not an issue.
- Note: Unstable sorting algorithms can usually be specially implemented to be stable.

Bubble Sort: The Idea

- Given a sequence of n keys, partition the sequence into a prefix of p keys and a suffix of s keys, p + s = n.
- The keys in the suffix are already in their rightful positions.
- Compare every two adjacent keys in the prefix and exchange them if they are out of order.
- In each iteration the prefix is reduced by one key and the suffix is expanded by one key at its beginning.
- Initially, p = n and s = 0. Finally, p = 0 and s = n.

Bubble Sort: An Algorithm

```
BubbleSort // Input: array A[0..n-1] for i\leftarrow 0 to n-2 do for j\leftarrow 0 to n-2-i do if A[j+1]< A[j] then swap A[j] and A[j+1] fi od od
```

Bubble Sort: An Example

89	$\overset{?}{\leftrightarrow}$	45		68		90		29		34		17
45		89	$\overset{?}{\longleftrightarrow}$	68		90		29		34		17
45		68		89	$\stackrel{?}{\longleftrightarrow}$	90	$\stackrel{?}{\longleftrightarrow}$	29		34		17
45		68		89		29		90	$\overset{?}{\longleftrightarrow}$	34		17
45		68		89		29		34		90	$\stackrel{?}{\longleftrightarrow}$	17
45		68		89		29		34		17		90
45	$\stackrel{?}{\leftrightarrow}$	68	$\overset{?}{\leftrightarrow}$	89	$\overset{?}{\leftrightarrow}$	29		34		17		90
45		68		29		89	$\overset{?}{\leftrightarrow}$	34		17		90
45		68		29		34		89	$\stackrel{?}{\longleftrightarrow}$	17		90
45		68		29		34		17		89		90

Bubble Sort: An Analysis

- Let C(n) be the number of key comparisons.
- Note that C(n) depends only on n so there is no need to distinguish among the three cases: worst, average, best. (Key swaps depend on input.)

$$C(n) = \sum_{i=0}^{n-2} \sum_{j=0}^{n-2-i} 1 = \sum_{i=0}^{n-2} [(n-2-i) - 0 + 1]$$

$$C(n) = \sum_{i=0}^{n-2} (n-1-i) = \frac{(n-1)n}{2} \in \Theta(n^2).$$

Bubble Sort: Summary

- Runtime, average case: $O(n^2)$
- Runtime, worst case: $O(n^2)$
- Space efficiency: in-place, O(1)
- Stability: yes

Sequential Search with A Sentinel: The Idea

- A brute force sequential search looks for a key among a sequence of keys one after another.
- The search stops when a match is found or the search goes beyond the sequence.
- Going beyond the sequence is prevented by appending the search key to the end of the sequence.

Sequential Search with A Sentinel: An Algorithm

• The algorithm:

```
SEQUENTIALSEARCH // Input: array A[0..n]; A[n] is the sentinel // The target key is K A[n] \leftarrow K i \leftarrow 0 while A[i] \neq K do i \leftarrow i+1 od if i < n return i else return -1 fi
```

• Clearly, the number of comparisons C(n) = n + 1 in the worst case.

Brute Force String Matching: The Idea

- The problem of string matching is about finding a length m substring (the pattern) among a length n string (the text).
- This can be done by checking the n-m+1 substrings starting at the text positions $0, 1, \dots, n-m$.

Brute Force String Matching: An Algorithm

Step 1: Align pattern at the beginning of text.

Step 2: Moving from left to right, compare each character of pattern to the corresponding character in text until

- all characters are found to match (successful search); or
- a mismatch is detected.

Step 3: While pattern is not found and the text is not yet exhausted, realign pattern one position to the right and repeat Step 2.

Brute Force String Matching: An Algorithm

```
STRING MATCHING
// Input text: T[0..n-1]
// Input pattern: P[0..m-1]
for i \leftarrow 0 to n - m do
   j \leftarrow 0
   while j < m and P[j] = T[j+i] do
      j \leftarrow j + 1
   od
   if j = m then return i fi
od
return -1
```

Brute Force String Matching: Examples

1. Pattern: 001011

Text: 100101011010011001011111010

2. Pattern: *happy*

Text: It is never too late to have a happy childhood.

Brute Force String Matching: An Analysis

- Let C(n) be the number of comparisons P[j] = T[j+i].
- For the worst case,

$$C(n) \le (n - m + 1)m \in O(nm).$$

- It can be shown that the worst case $C(n) \in \Theta(nm)$.
- It has been shown that for random text the average-case efficiency is linear: $C(n) \in \Theta(n+m) = \Theta(n)$.

Closest Pair Problem: The Idea

- The closest pair problem seeks a pair of points which are closest among a set of n points (in m-dimensions).
- This is a fundamental problem in many applications as well as a key step in many algorithms.
- Example (2D):

Closest Pair Problem: 2D Space

- The closest pair problem can be formulated in 1-, 2- and m-dimensional space. Here we consider the 2D problem.
- Points are specified by their (x, y) Cartesian coordinates.
- The distance between two points P_1 and P_2 is the standard Euclidean distance:

$$d(P_i, P_j) = \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2}.$$

- Consider only i < j. (Q: Why?)
- A brute force algorithm simply checks all the $\binom{n}{2}$ pairs of points.
- We will find a better divide-and-conquer algorithm later.

Closest Pair Problem: An Algorithm

```
CLOSESTPAIR
// Input x[1..n], y[1..n], P[i] = \langle x[i], y[i] \rangle
d_{min} \leftarrow \infty
for i \leftarrow 1 to n-1 do
    for j \leftarrow i + 1 to n do
        d \leftarrow (x[i] - x[j])^2 + (y[i] - y[j])^2
        if d < d_{min} then
             d_{min} \leftarrow d; i_1 \leftarrow i; i_2 \leftarrow j
    od
od
return i_1, i_2
```

Closest Pair Problem: An Analysis

- Q: Why is there no square-root function in the algorithm?
- Q: Can we also remove the $(...)^2$ squaring operations? For example, by using the absolute |...| values?

Closest Pair Problem: An Analysis (2)

- Let C(n) be the number of times a number is squared: $(...)^2$.
- Clearly C(n) depends on n only:

$$C(n) = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} 2 = 2 \sum_{i=1}^{n-1} (n-i)$$

$$C(n) = 2[(n-1) + (n-2) + \dots + 1] = (n-1)n \in \Theta(n^2).$$

- A brute force algorithm for m-dimensions takes $O(mn^2)$.
- We will later find an $O(n \log n)$ algorithm (2D).

Convex Hull

• A shape S is convex if for any points $P,Q \in S$, the line segment PQ is contained in S:

$$PQ = \{x | x = (1 - \lambda)P + \lambda Q, 0 \le \lambda \le 1\} \subseteq S.$$

- Given an arbitrary shape S, the convex hull conv(S) of S is the smallest convex shape that contains S.
- That is,
 - 1. conv(S) is convex; and
 - 2. for any convex $S' \supseteq S$, conv $(S) \subseteq S'$.

Convex Set Examples

A Theorem on Convex Hulls

- THEOREM The convex hull of a finite set S of points is a convex polygon whose vertices are points of the given set S.
- To find a convex hull of a set of points we need to find extreme points of the set.

A Theorem on Convex Hulls: Example

 Intuitive picture: a convex hull may be visualized by imagining an elastic band stretched open to encompass all the given points. (For planar objects.)

Convex Hull Applications

• Examples: GIS (Geographical Information Systems), visual communications, visibility determination.

A Theorem from Analytic Geometry

• THEOREM The line ax + by + c = 0 partitions the plane (x, y) into three parts:

$$ax + by + c < 0$$
, $ax + by + c = 0$, $ax + by + c > 0$.

• Tip: A line segment connecting two points P_i and P_j of a set of n points is a part of its convex hull's boundary if and only if all the other points of the set lie on the same side of the straight line through these two points.

A Brute Force Convex Hull Algorithm

```
ConvexHull // Input: n points P[0..n-1] // V[0..n-1] is an auxiliary array initialized to 0 for i\leftarrow 0 to n-2 do for j\leftarrow i+1 to n-1 do find the line equ. f(x,y)=0 passing thru P[i],P[j] find the sign of f(P[k]),k=0,...,n-1;k\neq i,j if all signs are the same then set V[i],V[j] to 1 od od
```

• Output: The convex hull is the polygon whose vertices are P[i] with V[i] = 1.

A Brute Force Convex Hull Algorithm: Analysis

- Let C(n) be the number of times a line equation f(x,y) is evaluated.
- Clearly C(n) depends only on n.
- We have

$$C(n) \le \sum_{i=0}^{n-2} \sum_{j=i+1}^{n-1} (n-2) = \frac{n(n-1)(n-2)}{2} \in \Theta(n^3).$$

• Note: For each of the n(n-1)/2 pairs of distinct points we may need to find the sign of ax + by + c for each of the other n-2 points.

Convex Hull: 3D Example

Convex hull of 50 randomly generated points and one highlighted bounded Voronoi region.

Exhaustive Search

- Exhaustive search is a brute force approach to combinatorial problems.
- Given a problem, an exhaustive search algorithm generates all possible candidates for the problem.
- Among the possible candidates the algorithm selects those that satisfy some objects.
- For example, with small input sizes, exhaustive search solves the traveling salesman problem, the knapsack problem, and the assignment problem easily.

The Traveling Salesman Problem

• The problem:

Given a set of cities connected by roads, find a simple cycle that includes all the cities with the shortest total distance.

- An exhaustive algorithm:
 - 1. Label the n cities from 0 to n-1.
 - 2. Generate the (n-1)! permutations P of the integers from 1 to n-1. (Q: Why start from 1?)
 - 3. For each $p \in P$, check that p is a path and compute the weight w(p).
 - 4. Report $q \in P$ that has the smallest weight w(q).

The Traveling Salesman Problem: Example

Consider the weighted graph:

	a	b	c	d
\overline{a}		2	5	7
b	2		8	3
$c \ d$	$\begin{bmatrix} 2 \\ 5 \\ 7 \end{bmatrix}$	8		1
d	7	3	1	

• $\exists 6 = 3!$ cycles starting at a:

$$abcda$$
 $2+8+1+7=18$
 $abdca$ $2+3+1+5=11*$
 $acbda$ $5+8+3+7=23$
 $acdba$ $5+1+3+2=11*$
 $adbca$ $7+3+8+5=23$
 $adcba$ $7+1+8+2=18$

The Knapsack Problem

• The problem:

There are n items, each has a value and a weight. There is a knapsack with capacity W. Fill the knapsack with items such that the capacity is not exceeded and the total value is largest.

- An exhaustive search solution:
 - 1. Generate all the $2^n 1$ non-empty subsets of the given set of n items.
 - 2. For each subset, compute the total weight and total value.
 - 3. Find the largest total value among those subsets whose total weight does not exceed W and report it.

The Knapsack Problem: Example

 A knapsack has capacity 10. There are 4 items with attribute (weight, value) given as

$$A_1 = (7,42), A_2 = (3,12), A_3 = (4,40), A_4 = (5,25).$$

The Knapsack Problem

Subset	Total weight	Total value
Ø	0	\$0
{1}	7	\$42
{2}	3	\$12
{3}	4	\$40
$\{4\}$	5	\$25
$\{1,2\}$	10	\$36
$\{1,3\}$	11	not feasible
$\{1,4\}$	12	not feasible
$\{2, 3\}$	7	\$52
$\{2, 4\}$	8	\$37
$\{3, 4\}$	9	\$65
$\{1, 2, 3\}$	14	not feasible
$\{1,2,4\}$	15	not feasible
$\{1, 3, 4\}$	16	not feasible
$\{2, 3, 4\}$	12	not feasible
$\{1, 2, 3, 4\}$	19	not feasible

The Knapsack Problem: Example

 A knapsack has capacity 10. There are 4 items with attribute (weight, value) given as

$$A_1 = (7,42), A_2 = (3,12), A_3 = (4,40), A_4 = (5,25).$$

- Among the 15 non-empty subsets of the set $\{1,2,3,4\}$, the 7 subsets $\{1,3\},\{1,4\},\{1,2,3\},\{1,2,4\},\{1,3,4\},$ $\{2,3,4\},\{1,2,3,4\}$ exceed the knapsack capacity.
- The 8 possible candidates are {1}, {2}, {3}, {4}, {1,2}, {2,3}, {2,4}, {3,4}.
- The candidate $\{3,4\}$ gives the largest value of 65.

The Assignment Problem

• The problem:

There are n jobs to be assigned to n persons. The cost of person i doing job j is C[i,j]. Find an assignment that has the lowest cost.

- An exhaustive search solution:
 - 1. Generate n! permutations of the integers $1, \dots, n$.
 - 2. For the permutation i_1, \dots, i_n , compute the assignment cost $\sum_{i=1}^n C[i,j]$.
 - 4. Report an assignment with the smallest total cost.

The Assignment Problem: Example

Let the cost matrix be

	J1	J2	J3	J4
P1	9	2	7	8
P2	6	4	3	7
P3	5	8	1	8
P4	7	6	9	4

- There are 4! = 24 possible assignments.
- As an example, for the assignment 1432, the assignment cost is C[1,1] + C[2,4] + C[3,3] + C[4,2] = 9 + 7 + 1 + 6 = 23.
- It can be checked that the permutation 2134 gives the smallest assignment cost 2+6+1+4=13.

Brute Force Search: Example

- In cryptanalysis, a brute force attack is a method of defeating a cryptographic scheme by systematically trying a large number (i.e., exhaustive number) of possibilities.
- The design goal, on the other hand, of a cryptographic system is that it can only be defeated by brute force attack.
 Furthermore, the design should be such that a brute force search is computationally infeasible to carry out.
- Example: For symmetric-key ciphers, a brute force attack usually means an exhaustive search of the key space.
 - Let's say the key size is 64 bits. Then there are 2^{64} possible keys. How many keys need to be tried on average to find the right key?

Brute Force Special Hardware

- One way to speed up a brute force search is to parallelize the search operations through the search space.
- Examples:
 - The Electronic Frontier Foundation (EFF) DES cracker is a machine built in 1998 to perform a brute force search of DES cipher's key space. It cost US\$250,000 to build and contained 1,856 custom chips. It could crack a DES key in a matter of days.

Brute Force Special Hardware (2)

 DES: Data Encryption Standard (designed by IBM). A block cipher, selected in 1976 by US NIST. It uses a symmetric key of length 56 bits.

Examples:

 The COPACABANA machine is a reprogrammable hardware based on FPGAs. It was built for US\$10,000 in 2006 and it

contained 120 chips.

Brute Force Special Hardware (3)

- Q: Can a cipher with a key length 128 bits (or 256 bits) be realistically searched brute force?
- Q: One assumption for cryptograpy is that a key is generated truly randomly. What happens if that is not the case?

Take Away Message on Exhaustive Search

- Exhaustive-search algorithms run in a realistic amount of time only on very small instances.
- In some cases, there are much better alternatives!
 - Euler circuits
 - shortest paths
 - minimum spanning tree
 - assignment problem
- In many cases, exhaustive search or its variations are the only known way to get exact solutions.