CÁLCULO NUMÉRICO

ANO LECTIVO 2008/2009 (2º Semestre)

Modelo aproximado para o crescimento de uma célula

Pretende-se estabelecer um modelo aproximado para o crescimento (aumento de volume) de uma célula, nos primeiros estádios de desenvolvimento, baseado nos seguintes princípios:

- Supõe-se que a célula mantém sempre a forma cúbica.
- Partindo de determinado volume v_0 no instante t = 0, a célula absorve continuamente nutrientes através da membrana exterior, o que determina o aumento de volume, que passará a ser v(t), em cada instante t ($t \ge 0$).
- Uma vez que a capacidade de absorção de nutrientes pela célula depende fundamentalmente da área da membrana exterior, supõe-se que o aumento de volume por unidade de tempo é proporcional a essa área (ou seja, a área total das seis faces do cubo). Designamos por α (> 0) a constante de proporcionalidade.
 - (a) Começando por exprimir a área total da superfície de um cubo em função do volume, escreva uma equação diferencial para a função v(t) que traduza as hipóteses acima estabelecidas.

Solução: $v'(t) = 6\alpha v^{\frac{2}{3}}$

(b) Dado o volume inicial v_0 determine a solução exacta v(t) para cada t > 0.

Solução: $v(t) = \left(2\alpha t + v_0^{\frac{1}{3}}\right)^3$

(c) Sabendo que o volume inicial é de $1\mu^3$ ("um *mícron* cúbico") e que ao fim de 1 segundo a célula tem um volume de $27\mu^3$, ou seja $v(1) = 27\mu^3$, determine o volume ao fim de 2 segundos.

1

[Solução: $125\mu^3$]

 ${\bf (d)}\,$ Resolva numericamente a equação utilizando um método estudado.