# 5.451 F2005 Saccharide Biosynthesis Deoxy sugar biosynthesis review

# 5.451 F2005 Saccharide Biosynthesis Deoxy sugar biosynthesis review

# Amination requires the presence of a keto group; otherwise timing not specified

$$SAM = \int_{B}^{CH_3} = electrophilic$$

5.451 F2005 Saccharide Biosynthesis Deoxy sugar biosynthesis review

#### Attachement of carbon

1. If a single methyl group is attached, SAM is cofactor, and a nucleophilic site on the sugar is required enzyme will help generate enolate

#### Attachement of carbon

2. If a 2-carbon group is attached, pyruvate is the source. Pruvate acts as a nucleophile (with the help of TPP cofactor) and an electrophilic site on the sugar - i.e. a carbonyl carbon- is required

$$\begin{array}{c} O \\ O \\ CO_2 \end{array} + TPP \\ \begin{array}{c} O \\ N^+ \\ S \\ OH \\ \end{array} \\ \begin{array}{c} O \\ HO \\ ONDP \\ \end{array} \\ \begin{array}{c} O \\ Me \\ O \\ ONDP \\ \end{array}$$



Normally usd in synthesis of aromatic amino acid

Branch points from a primary metabolic pathway to make a variety of natural products

- 1. phenyl-glycine amino acids --> vancomycin --> comparison (incorporated peptide products)
  PKS
- 2. amino shikimate --> rifamycin --> PK product
- 3. cyclohexyl CoA --> avermectins --> incorporated into a PK product
- 4. coumaryl CoA derivatives for flavonoid biosynthesis starting materials

transfer plant genes to e. coli + express S.A. in e.coli

28g/L

14% yield based glucose starting material

another technique

culture presence of a solid ion exchange resin

Figure removed due to copyright reasons.

Please see Scheme 1a in *JACS* 123 (2001): 10173-10172.

Figure removed due to copyright reasons.

Please see: Hubbard, Brian K., and Christopher T. Walsh.

Scheme 2 in "Vancomycin Assembly: Nature's Way." Angew Chem Intl Ed 42 (2004): 730-765.

Figure removed due to copyright reasons.

Please see: Hubbard, Brian K., and Christopher T. Walsh.

Figure 6 in "Vancomycin Assembly: Nature's Way." Angew Chem Intl Ed 42 (2004): 730-765.

Angew Chem Intl Ed 42 (2003): 730-765.

#### 5.451 F2005

#### **Shikimate Pathway**

# Ansa macrolides: incorporation of amino shikimate

Napthomycin

### Geldanamycin

### 5.451 F2005 Shikimate Pathway *Amino Derivatives*

enzymes of amino shik. require amine moiety for recognition

Fig. 2. Proposed pathway for AHBA biosynthesis. AminoDHS, 5-amino analog of 3-dehydroshikimic acid; aminoDAHP, 3,4-dideoxy-4-amino-parabino-heptulosonic acid 7-phosphate; PEP, phosphoenolpyruvic acid; aminoDHQ, 5-deoxy-5-amino-3-dehydroquinic acid.

Copyright 2003 National Academy of Sciences, U.S.A.

Copyright 2003 National Academy of Sciences, U.S.A.

5.451 F2005 Shikimate Pathway *Cyclohexyl-CoA* 

Rapamycin (Ascomycin, FK506)

5.451 F2005 Shikimate Pathway *Cyclohexyl-CoA* 

Figure removed due to copyright reasons.

Please see Figure 2 in *J Indus Microbiol Biotech* 20 (1998): 299-303.

# 5.451 F2005 Shikimate Pathway Adding on a cyclohexyl starter unit

#### antiparasitic agents



Figures removed due to copyright reasons.

Please see Figure 3 in *Nature Biotech* 18 (2000): 980-983.

5.451 F2005 Shikimate Pathway Coumarin

Figure removed due to copyright reasons.

Please see Figure 1 in *J Indus Microbiol Biotech* 30 (2003): 456-461.

# 5.451 F2005 Shikimate Pathway Coumarin

coumarin --> PKS | shik.

# 5.451 F2005 <sub>HO<sub>2</sub>C</sub> Shikimate Pathway

#### Deoxy sugarabiosynthesis ÇO<sub>2</sub>H ÇO<sub>2</sub>H $CO_2^-$ ÇO<sub>2</sub>H HO, CO<sub>2</sub>H O<sub>3</sub>PO. O<sub>3</sub>PO<sub>O</sub> HO, O<sub>3</sub>PO' OH HO, HO, ĎН ŌΗ ėН ŌΗ ŌН ŌΗ ĊO<sub>2</sub>H $CO_2^-$ CoA-S\_\_O O<sub>3</sub>PO -0<sub>3</sub>PO ŌН polyketide starter units HO, NH<sub>2</sub> ŌН ÇO<sub>2</sub>H ŌН CO<sub>2</sub>H ОН HO NH<sub>2</sub> $CO_2$ non-ribosomal peptide biosynthesis $^{-}O_{2}C_{2}$ H<sub>2</sub>N <sup>✓</sup> COOH polyketide starter units ŌΗ flavonoids

-CO<sub>2</sub>H

Tyr, Phe