ČESKÁ A SLOVENSKÁ FEDERATIVNI REPUBLIKA (19)

PATENTOVÝ SPIS 275 396

(21) Číslo přihlášky: 8341-87.X

(22) Přihlášeno: 19 11 87

(30) Prioritní data :

(13) Druh dokumentu : B 6

(51) Int. Cl. 5: A 61 K 37/22

FEDERÁLNÍ ÚŘAD PRO VYNÁLEZY

(40) Zveřejněno: 11 04 91

(47) Uděleno: 25 10 91

(24) Oznámeno udělení ve Věstníku : 19 02 92

(73) Majitel patentu:

KÁRA JINDŘÍCH RNDr. DrSc., LIEBL VLASTIMIL RNDr. CSc.,

DEDKOVÁ VĚRA,

BEJŠOVCOVÁ LUDMILA RNDr. PhMr., PRAHA

(72) Původce vynálezu :

KÁRA JINDŘICH RNDr. DrSc., LIEBL VLASTIMIL RNDr. CSc.,

DĚDKOVÁ VĚRA,

BEJŠOVCOVÁ LUDMILA RNDr. PhMr., PRAHA

(54) Název vynálezu :

Způsob semisyntetické přípravy alkyl-

-fosfolipidu se selektivním protinádorovým

účinkem

(57) Anotace:

Vynález se týká přípravy semisyntetického alkyl-fosfolipidu PNAE(s) (plasmanyl-(N--acyl)-ethanolaminu) se selektivním proti-nádorovým účinkem z 1-0-alkyl-2-acyl-fosfatidyl-ethanolaminu isolovaného mírnou alkalickou methanolysou z vaječných fosfolipidů extrahovaných z normálních vaječných žlout-ků slepičích vajec. Řešení se týká také využití PNAE(s) v protinádorové therapii. Uvedenou technologii přípravy PNAE(s) je možno použít v průmyslovém měřítku a také k synthese preparátů PNAE(s) značených [140]-mastnými kyselinami v N-acylové skupině.

•

Vynález se týká způsobu semisyntetické přípravy alkyl-fosfolipidu se selektivním protinádorovým účinkem, 1-0-alkyl-2-acyl-sn-glycero-3-fosfo-(N-acyl)-ethanolaminu, tj. plasma-nyl-(N-acyl)-ethanolaminu (PNAE(s)). Způsob přípravy PNAE tj. alkyl-fosfolipidu z oploze-ných slepičích vajec a slepičích embyrií, jeho chemickou strukturu a protinádorové účinky jsou popsány v čs. autorském osvědčení č. 252177.

Na rozdíl od biopreparátu PNAE isolovaného z oplodněných slepičích vajec respektive slepičích embryí zpracovaných podle čs. autorského osvědčení č. 252177 je předmětem tohoto vynálezu nový způsob semisyntetické přípravy PNAE(s), vycházející z normálních žloutků (NŽ) neoplodněných slepičích vajec. Je známa a byla popsána isolace celkových lipidů z vaječných žloutků, dělení fosfolipidů a neutrálních lipidů srážením fosfolipidů acetonem při 4 °C a isolace fosfatidyl-ethanolaminových fosfolipidů (PE) (tj. směsi l-0-alykl-2-acyl-sn--glycero-3-fosfo-ethanolaminû (alkyl-acyl-PE) a 1,2-diacyl-PE) preparativní chromatografií na koloně silikagelu (Kieselgel 60, MERCK, nebo SILPEARL, UV 254, Sklárny Kvalier, Votice) v systému rozpouštědel chloroform a methanol. Alkyl-acyl-PE, který tvoří asi 3 % fosfatidyl-ethanolaminových fosfolipidů ve vaječném žloutku, je eluován z kolony společně s 1,2--diacyl-PE (asi 97 % PE) při koncentraci 20 % až 30 % methanolu v chloroformu. Podle vynálezu se alkyl-acyl-PE oddělí do 1,2-diacyl-PE mírnou alkalickou hydrolysou uvedených fosfolipidů v bezvodém methanolu, obsahujícím 0,5M NaOH při teplotě 4 ^OC po dobu 20 minut. Za těchto podmínek je hydrolysován pouze 1,2-diacyl-PE, zatímco alkyl-acyl-PE zůstává nehydrolysován v methanolickém roztoku. Po neutralisaci hydroxydu sodného (0,5M NaOH) 6M kyselinou chlorovodíkovou při 4 ^oC (chlazeno ledem) na pH 7,0 se přidá k neutrálnímu roztoku stejný objem destilované vody a dva objemy chloroformu (p.a.) a třepáním se extrahuje alkyl--acyl-PE do chloroformové fáze. Chloroformový roztok se oddělí (buď se oddělí spodní chloroformová fáze v dělící nálevce, nebo odstředěním ve velkých skleněných kyvetách 15 min. při 2 000 obr./min.), přefiltruje se přes 2 vrstvy filtračního papíru a chloroform se odpaří ve vakuu při 37 ^OC na rotační vakuové odparce. Alkyl-acyl-PE zbývající v odparku se přečistí buď preparativní chromatografií v tenké vrstvě silikagelu (desky MERCK, Kieselgel-60, 20 x 20 cm, síla vrstvy 0,25 mm), nebo chromatografií na sloupci silikagelu (MERCK, Kieselgel-60, 230-400 mesh) 2 x 15 cm v soustavě chloroform – methanol ve stoupajícím gradientu methanolu od 0 až 30 % methanolu v chloroformu.

Chromatograficky čistý alkyl-acyl-PE je dále použit jako prekursor pro chemickou N--acylaci kyselinou palmitovou (nebo jinými vyššími matnými kyselinami) na N-acyl derivát, tj. semisyntetický preparát plasmanyl-(N-acyl)-ethanolaminu, PNAE(s). Jednostuňová N-acylace 1-0-alkyl-2-acyl-sn-glycero-3-fosfo-ethanolaminu kyselinou palmitovou (modifikace metody popsané pro synthesu 1,2-diacyl-sn-glycero-3-fosfo-(N- $\left[1'-^{14}C\right]$ palmitoyl)ethanolaminu autory P. C. Schmid, P. V. Reddy, V. Natarajan a H. H. O. Schmid: J. Biol. Chem., 258, 9302, 1983) se provádí preinkubací kyseliny palmitové s ekvimolárním množství carbonyldiimidazolu v bezvodém benzenu (p.a.) při 40 ^oC po dobu 4 hodin. K tomuto roztoku se přidá roztok alkyl-acyl-PE (ekvimolární vzhledem ke kys. palmitové) ve směsi bezvodého pyřidinu (p.a.) a benzenu (v poměru 1 : 5 v/v) obsahující N,N-dimethyl-4-aminopyridin (katalysátor N-acylace) v množství 2 mol-ekvivalenty vzhledem ke kyselině palmitové v inkubované směsi. N-Acylace alkyl-acyl-PE probíhá při 40 °C v benzenu a pyridinu (10 : 1, v/v) po dobu 20 · hodin. Po odpaření benzenu a pyridinu ve vakuu (rotační vakuová odparka) se vyčistí semisyntetický preparát PNAE(s) rozpuštěný v chloroformu chromatografií na koloně silikagelu (MERCK, Kieselgel-60) nebo preparativní chromatografií v tenké vrstvě silikagelu (desky MERCK, 20 x 20 cm, síla vrstvy 2 mm, Kieselgel-60, F254) v soustavě chloroform/methanol/ konc.NH_aOH/voda (65 : 25 : 4 : 2, v/v). PNAE(s) migruje v této soustavě s hodnotu R_f = = 0,81.

Označení PNAE(s) se uvádí pro preparát PNAE připravený z alkyl-acyl-PE touto semisynthetickou metodou. Preparát PNAE(s) má protinádorový, selektivně cytolytický účinek na lidské nádorové buňky v tkáňové kultuře. Částečná synthesa PNAE(s), fyzikální charakteristiky a biologická aktivita tohoto semisynthetického preparátu potvrzují správnost chemické struktury, která byla s analysami biopreparátu PNAE isolována z kuřecích embryií a z preparátu

caCPL vypracována a publikována dříve J. Kára a spol., NEOPLASMA, 33, 187 - 205 (1986). Preparát PNAE(s) není toxický in vivo při 10 x opakované s.c. injekci myším C5781 v dávce 200 mg/l kg živé váhy. Preparát PNAE(s) se vyznačuje také vyšším stupněm chemické čistoty ve srovnání s biopreparátem PNAE isolovaným z kuřecích embryií, protože neobsahuje 1,2-diacyl-PE a odpovídá chemickým charakteristikám 1-0-alkyl-2-acyl-sn-glycero-3-fosfo-(N-acyl)-ethanolaminu.

N-Acylace alkyl-acyl-PE, který byl isolován podle vynálezu z biologického materiálu (vaječných žloutků) a má proto normální strukturu přírodního fosfolipidu, probíhá s velmi dobrým výtěžkem PNAE(s) (85 % až 95 % teorie). Z uvedených důvodů semisyntetický preparát PNAE(s) není toxický in vivo a má stejnou biologickou (protinádorovou) účinnost jako biopreparát PNAE isolovaný z kuřecích embryí (J. Kára a spol., NEOPLASMA, 33, 187-205, 1986).

Výhodou semisynthetické metody přípravy PNAE(s) podle vynálezu je možnost získání tohoto chemicky čistého alkyl-fosfolipidu ve větším výtěžku, s menšími výrobními náklady a rychleji, nežli u způsobu isolace PNAE ze slepičích embryí. Ekonomické výhody tohoto nového způsobu semisynthetické přípravy PNAE(s) podle vynálezu, pro průmyslovou výrobu tohoto protinádorového preparátu, jsou tedy zřejmé.

Přítomnost alkyl-lyso-glycerofosfo-ethanolaminu ve fosfolipidech isolovaných ze žlout-ků slepičích vajec popsali poprvé Carter a spolupracovníci již v roce 1958 (Carter H. E., Smith D. B., Jones D. N., J. Biol. Chem., 232, 681, 1958). Un-Hoi-Do a S. Ramachandran (J. Lipid Res. 21, 888 - 894 (1980)) charakterisovali fosfolipidy z vaječných žloutků relativně stabilní při mírné alkalické hydrolyse (O, 6N-NaOH v methanolu, hydrolysa fosfolipidů při 20 ° až 25 °C l hodinu) jako 1-0-alkenyl a 1-0-alkyl-sn-glycero-3-fosfo-ethanolamin (alkyl-lyso-PE), které tvoří asi 1 % z celkových fosfolipidů obsažených ve vaječném žloutku. Tito autoři však neuvádějí isolaci alkyl-acyl-PE z vaječných fosfolipidů, protože jimi použité metody alkalické hydrolysy fosfolipidů isolovaných z vaječných žloutků vedou k degradaci alkyl-acyl-PE na alkyl-lyso-PE. Metoda podle vynálezu umožnuje isolaci alkyl-acyl-PE, přírodního alkyl-fosfolipidů jako prekursoru pro synthesu PNAE(s).

Příklad

- 1) Příprava PNAE(s) podle vynálezu
- a) Isolace celkových lipidů a fosfolipidů z normálních vajčených žloutků.

Ze šedesáti normálních, neoplodněných slepičích vajec byly isolovány žloutky (NŽ) (celková váha NŽ = 1 160 g). Celkové lipidy byly extrahovány ze žloutků objemem 1,5 litru směsi chloroform a methanol (2 : 1, v/v). Směs byla třepána ve 3-litrové lahvi se zábrusem l hodinu a ponechána v lednici přes noc. Po protřepání byla směs odstředěna ve velkých skleněných kyvetách (15 min. při 2 000 obr.(min.). Spodní chloroformová fáze z kyvety byla přenesena pipetou do čisté lahve se zabroušenou zátkou, přefiltrována přes dvě vrstvy filtračního papíru a filtrát odpařen v rotační vakuové odparce. Váha odparku (tj. výtěžek celkových lipidů) = 225 g (tj. přibližně 20 % váhy vajčených žloutků).

b) Dělení fosfolipidů od neutrálních lipidů z NŽ (srážení fosfolipidů acetonem).

120 g celkových lipidů z NŽ (olejovitá kapalina) bylo po částech nalito do 400 ml acetonu (p.a.) a ponecháno při 4 ^OC v ledníci přes noc. Aceton obsahující neutrální lipidy byl dekantován a sediment fosfolipidů (nerozpustných v acetonu při 4 ^OC) byl rozpuštěn v chloroformu a po odpaření rozpouštědla ve vakuu v rotační vakuové odparce byl odparek fosfolipidů zvážen. Získáno 30 g fosfolipidů ze 120 g celkových lipidů, tj. fosfolipidy tvoří 25 % celkových lipidů z vaječných žloutků.

c) Preparativní chromatografie fosfolipidů z NŽ na koloně silikagelu.

Na kolonu silikagelu (Kieselgel-60, MERCK, 0,04 až 0,063 mm, 230 až 400 mesh) připravenou postupným smícháním 100 g práškového silikagelu se 200 ml chloroformu (p.a.) (rozměr silikagelového sloupce : Ø 4 cm x 20 cm) byl nanesen roztok 30 g fosfolipidů NŽ ve 100 ml

chloroformu. Po vsáknutí roztoku fosfolipidů do sloupce silikagelu byla kolona promývána těmito rozpouštědly:

Frakce 1. - 300 ml chloroformu

- 2. 100 ml 10% methanolu v chloroformu
- " 3. 100 ml 20% " "
- " 4. 100 ml 33% " '
- " 5. 100 ml 66% "
- " 6. 100 ml 100% methanol
- " 7. 100 ml 100% methanol

Alikvoty (á 50 _/ul) z frakcí 1. až 7. eluovaných z kolony byly analysovány chromatografií v tenké vrstvě silikagelu (desky MERCK, Kieselgel 60 F254, 20 x 20 cm, tlouštka vrstvy silikagelu 0,25 mm) v soustavě chloroform/methanol/konc.NH₄0H/voda v poměru 65 : 25 : 4 : 1, v/v). Detekce fosfatidylethanolaminových fosfolipidů (PE) na chromatogramu byla provedena ninhydrinem (nastříkání chromatogramu 0,4% roztokem ninhydrinu v acetonu z rozprašovače a zahřátím chromatogramu pod infralampou se objevují červenofialové skvrny PE. Ostatní fosfolipidy byly detegovány na chromatogramu molybdenovým reagens (1,3% roztok kysličníku molybdenového ve 4.2M kyselině sírové); po nastříkání chromatogramu molybdenovým reagens se objeví modré skvrny fosfolipidů za 10 min. při normální teplotě místnosti. Pro detekci fosfatidylethanolaminových fosfolipidů na chromatogramu byl také použit standard PE (SIGMA).

Frakce č. 3 eluovaná z kolony roztokem 20 % methanolu v chloroformu obsahuje téměř čisté fosfatidylethanolaminové fosfolipidy (celkem 6 g fosfolipidů po odpaření rozpouštědel ve vakuu). Tento odparek obsahuje směs 1,2-diacyl-sn-glycero-3-fosfoethanolaminu (97 %) a 1-0-alkyl-2-acyl-sn-glycero-3-fosfo-ethanolaminu (alkyl-acyl-PE), (2,6 % až 3 %). Poměr těchto molekulárních species PE obsažených ve vaječných fosfolipidech byl zjištěn analysou množství alkyl-acyl-PE isolovaného po mírné alkalické hydrolyse směsi uvedených PE fosfolipidů, jak je dále uvedeno. Viz poznámka pod čarou dole.

d) Mírná alkalická hydrolysa (methanolysa) směsi 1,2-diacyl PE a 1-0-alkyl-2-acyl-PE a isolace 1-0-alkyl-2-acyl-PE.

Za níže uvedených podmínek mírné alkalické methanolysy fosfolipidů, hydrolysuje se pouze 1,2-diacyl-PE na mastné kyseliny a zbytek glycero-3-fosfoethanolaminu, kdežto 1-0--alkyl-2-acyl-PE zůstává v roztoku nehydrolysován a je isolován po neutralisaci směsi kyselinou chlorovodíkovou vytřepáním do chloroformu: 5,5 g směsi fosfolipidů alkyl-acyl-PE a 1,2-diacyl-PE (fosfolipidy ve frakci č. 3 z kolony), bylo rozpuštěno v 10 ml chloroformu a přidáno 50 ml bezvodého methanolu (p.a.). K tomuto roztoku bylo při teplotě 4 ^OC (baňka chlazena ledem) přidáno 50 ml ln-NaOH v absolutním methanolu (konečná koncentrace NaOH ve směsi je 0,5N NaOH). Hydrolysa 1,2-diacyl-PE probíhala při 4 ^OC (baňka chlazena v lázni voda + led) po dobu 20 minut. Po této době byla při teplotě 4 ⁰C přidána po částech (á 1 ml) 6N HCl (kys. chlorovodíková) až do neutrální reakce methanolového roztoku (pH = 7,00 podle universál. indikátoru pH). K neutralisovanému roztoku přidáno 50 ml destilované vody a 200 ml chloroformu (p.a.) a po protřepání oddělena chloroformová fáze v dělící nálevce a vodní fáze znovu extrahována 50 ml chloroformu. Spojený chloroformový roztok byl přefiltrován přes dvojitou vrstvu filtračního papíru do kulaté zábrusové baňky (250 ml) a odpařen ve vakuu na rotační vakuové odparce. Odparek obsahující 1-0-alkyl-2--acyl-PE byl rozpuštěn v l ml směsi chloroform a methanol (2 : 1) a fosfolipid byl purifikován preparativní chromatografií na tenké vrstvě silikagelu (dvě desky MERCK, Kieselgel--60, 20 x 20 cm, síla vrstvy silikagelu 2 mm). Preparativní chromatografie fosfolipidu 1-0-alkyl-2-acyl-PE v tentké vrstvě silikagelu na uvedených deskách probíhala v soustavě chloroform/methanol/konc. amoniak/voda (65 : 25 : 4 : 1, v/v) (viz NATARAJAN V. a sp., Biochim. Biophys. Acta <u>712</u>, 342 - 355, 1982).

pozn. Bod c) je možno vypustit a 30 g fosfolipidů podrobit methanolyse podle bodu d).

Zona obsahující 1-0-alkyl-2-acyl-PE byla detegována polohou standardu PE na chromatogramu a barevnou reakcí PE s ninhydrinem. Zony silikagelu obsahující alkyl-acyl-PE byly vyškrabány z desek, silikagel s adsorbovaným fosfolipidem alkyl-acyl-PE byl přenesen do skleněné kolonky (1 x 20 cm) a eluován směsí chloroformu a methanolu (2 : 1, v/v). Eluát (6 ml) byl zachycen do zvážené skleněné zkumavky se zábrusovou zátkou a organická rozpouštědla odpařena v proudu dusíku (na vodní lázni 40 °C). Odparek, 145,5 mg 1-0-alkyl-2-acyl-PE (tj. 2,6 % z 5,5 g směsi fosfolipidů 1,2-diacyl-PE a alkyl-acyl-PE) byl dále použit k synthese preparátu PNAE(s). K čištění preparátu alkyl-acyl-PE po uvedené alkalické hydrolyse je možno použít také chromatografii na koloně silikagelu (MERCK, Kieselgel-60, 1 x 20 cm) v systému 20 % až 30 % methanolu v chloroformu.

e) N-Acylace 1-0-alkyl-2-acyl-PE kyselinou palmitovou (synthesa PNAE(s)).

56 mg palmitové kyseliny (0,22 mmol) bylo rozpuštěno ve 30 ml bezvodého benzenu (p.a.) a přidáno 34 mg carbonyldiimidazolu (0,22 mmolu). Roztok byl inkubován ve vodní lázni při 40 °C po dobu 4 hodin. Potom byl přidán roztok 145,5 mg (0,19 mmol) chromatograficky čistého fosfolipidu 1-0-alkyl-2-acyl-PE ve 3 ml bezvodého pyridinu a 52 mg N,N-dimetyl-4-aminopyridinu (0,4 mmol) v 1 ml bezvodého pyridinu a 10 ml benzenu (p.a.). Po promíchání všech složek směsi ve 100 ml kulaté bance se zábrusem uzavřené zábrusovou skleněnou zátkou, byla směs inkubována ve vodním thermostatu při 40 ^OC přes noc (20 hodin). Po této době synthesy byla organická rozpouštědla odpařena ve vakuu na rotační vakuové odparce při 40 ^oC (vodní vývěva). Odparek byl dosušen v proudu dusíku, rozpuštěn v 1 ml směsi chloroformu a methanolu (2 : 1, v/v) a nanesen mikropipetou na linku 16 cm na tenké vrstvě silikagelu (deska MERCK, Kieselgel 60, 20 x 20 cm, síla vrstvy 2 mm). Preparativní chromatografie na tenké vrstvě byla provedena v systému rozpouštědel: chloroform/methanol/konc. NH_AOH/voda (65 : 25 : 4 : 1, v/v). Standard PNAE byl současně s preparátem PNAE(s) nanesen na start na okraji desky. Po zkončené chromatografii (čelo rozpouštědel asi l cm od horního okraje desky) byl chromatogram vysušen při normální teplotě na vzduchu a standard PNAE byl detegován molybdenovým reagens. Podle polohy standardu PNAE na chromatogramu byla vymezena poloha pásu silikagelu obsahujícího PNAE(s). V uvedeném systému migruje PNAE(s) s hodnotou $R_{\rm F} = 0.81.$

Zona silikagelu obsahující PNAE(s) byla vyškrabána z chromatogramu, silikagel homogenisován ve skleněné třence, nasypán do skleněné mikrokolonky (1 x 15 cm) a preparát PNAE(s) byl eluován ze silikagelu směsí chloroform a methanol (2 : 1). Eluát (asi 8 ml) byl zachycen do zvážené, sterilní skleněné zkumavky se zábrusovou zátkou a rozpouštědla odpařena v proudu dusíku (dusík prochází sterilním vatovým filtrem).

Váha odparku tj. výtěžek chromatograficky čistého preparátu PNAE(s) je 163 mg (= 83 % teorie).

2. Infračervené spektrum a chromatografická charakteristika preparátu PNAE(s).

Infračervené spektrum preparátu PNAE(s) je prakticky totožné s I.Č. spektrem publikovaným v případě biopreparátu PNAE (J. Kára a spol., NEOPLASMA $\underline{33}$, 187 - 205, 1986). Přítomnost amidové skupiny v molekule PNAE(s) je charakterisována absorpčními pásy při vlnových délkách 1 650 cm $^{-1}$ a 1 540 cm $^{-1}$, přítomnost acylesterové vazby kyseliny olejové v poloze 2 na glycerolu se projevuje silným absopčím pásem při 1 720 cm $^{-1}$.

Infračevená spektra PNAE(s) a biopreparátu PNAE isolovaného z kuřecích embryí potvrzují stejnou chemickou strukturu semisynthetického preparátu PNAE(s) a biopreparátu PNAE.

V souhlase s tímto závěrem jsou také stejné hodnoty R_f obou preparátů, biopreparátu PNAE obsaženého v extraktu fosfolipidů z preparátu caCPL (viz NEOPLASMA <u>33</u>, 187 - 205, 1986) a také v extraktu fosfolipidů z preparátu Cancerolyt (Borovička a spol., čs. patent č. 145770, Praha, 15. 10. 1972) a semisynthetického preparátu PNAE(s). 3. Cytotoxický účinek preparátu PNAE(s) na lidské nádorové buňky v tkáňových kulturách

Protinádorová aktivita semisynthetického preparátu PNAE(s) byla testována v tkáňových kulturách lidských nádorových buněk T24 metodou popsanou v popise vynálezu k čs. autorské-mu osvědčení č. 252177.

Jak je patrné z grafu, inhibuje preparát PNAE(s) proliferaci lidských nádorových buněk T24 (inkorporaci thymidinu-6-³H do buněčné DNA) v závislosti na koncentraci PNAE(s) v médiu kultur (62 /ug/ml až 500 /ug/ml). Při vyšších koncentracích PNAE(s) v médiu kultur T24 je patrná pod inversním mikroskopem destrukce nádorových buněk při koncentracích 125 /ug/ml až 500 /ug/ml již za 24 h inkubace buněk T24 s alkyl-fosfolipidem PNAE(s).

Protinádorová účinnost semisynthetického preparátu PNAE(s) v kulturách lidských nádorových buněk T24 je tedy stejná jako selektivní protinádorový účinek biopreparátu PNAE isolovaného z kuřecích embryí (viz publikaci J. Kára a spol.: NEOPLASMA 33, 187 - 205, 1986).

Preparát PNAE(s) není také toxický in vivo, podle předběžných zkoušek toxicity na myších C5781 (při 10x opakovaných injekcích PNAE(s) (s.c.) v dávce 200 mg na 1 kg váhy).

Výsledky dosažené na studovaných modelech naznačují, že semisynthetický preparát PNAE(s) jeví významnou protinádorovou aktivitu, není toxický in vivo a po provedení dalších zkoušek na experimentálních nádorech in vivo pravděpodobně splní podmínky pro možnost klinického využití v injekční lékové formě při therapii lidských nádorů.

Výroba semisynthetického preparátu PNAE(s) dle vynálezu je ve srovnání s dřívější přípravou biopreparátu PNAE ekonomicky výhodnější, umožňuje vyšší výtěžky preparátu PNAE(s), standardnější chemickou čistotu preparátu a jeho biologickou, protinádorovou účinnost.

Preparát se může vyrábět z tuzemské suroviny, která je k disposici ve velkém množství (normální, neoplozená slepičí vejce) a použití chemické N-acylace isolovaného alkyl-acyl-PE kyselinou palmitovou je relativně jednoduchá, jednostupňová synthesa s velmi dobrým výtěžkem produktu PNAE(s), (83 % až 90 % theorie). Výroba tohoto netoxického a účinného protinádorového preparátu je proto relativně levná a ekonomicky velmi výhodná.

Metoda chemické N-acylace prekursoru alkyl-acyl-PE podle vynálezu umožňuje s použitím 14 C-značených mastných kyselin (s počtem uhlíků C12 až C24) přípravu $[^{14}$ C]-derivátů PNAE(s). S použitím $[^{14}$ C]-U-palmitové kyseliny (ÚVVR) je možno připravit například plasmanyl-(N-- $[^{14}$ C]-palmitoyl)-ethanolamin o vysoké specif. radioaktivitě (100 až 700 mCi/mmol). Preparát $[^{14}$ C]-PANE(s) může být vyráběn v ČSSR pro výzkumné účely. Tyto radioisotopem $[^{14}$ C]-značené preparáty PNAE(s) s vysokou specifickou radioaktivitou mohou také zvýšit exportní možnosti našeho průmyslu.

PATENTOVÉ NÁROKY

Způsob semisyntetické přípravy alkyl-fosfolipidu s protinádorovým účinkem, 1-0-alkyl-2-acyl-sn-glycero-3-fosfo-(N-acyl)-ethanolamin, tj. plasmanyl-(N-acyl)-ethanolaminu PNAE(s), obecného vzorce (I)

kde R $_1$ je alifatický řetězec s počtem uhlíků C $_{16}$ a C $_{18}$, R $_2$ -CO je zbytek nenasycené mastné kyseliny s počtem uhlíků C $_{18}$ (olejová kyselina, 18 : 1). R $_3$ -CO je zbytek nasycených mastných kyselin s počtem uhlíků C $_{12}$ až C $_{24}$, zvláště však kyseliny palmitové (C $_{14}$),

vyznačující se tím, že se z normálních neoplozených slepičích vajec extrahují směsí chloroformu a methylalkoholu neutrální lipidy a fosfolipidy, popřípadě se sušené vaječné žloutky extrahují lipidickými rozpouštědly a po jejich odpaření ve vakuu při 40 °C se odparek fosfolipidů a neutrálních lipidů frakcionuje acetonem při 4°C, isolované, v acetonu nerozpustné fosfolipidy se hydrolisují methanolysou, například 0,5N NaOH v bezvodém methylalkoholu při 4°C po dobu 20 minut, nebo se nejdříve dělí preparativní chromatografií na koloně silikagelu a frakce obsahující ethanolaminové fosfolipidy se hydrolysuje methanolysou, kdy 1-0-alkyl-2-acyl-fosfatidylethanolamin zůstává nehydrolysován a po neutralizaci hydroxydu sodného kyselinou chlorovodíkovou na pH 7,00 se vyextrahuje chloroformem, chloroformový extrakt se ve vakuu při 40°C odpaří a 1-0-alkyl-2-acyl-fosfatidylethanolamin se vysráží přebytkem acetonu při 4°C a dále se N-acyluje kyselinou palmitovou v benzenovém roztoku v přítomnosti bezvodého pyridinu a katalyzátorů karbonyldimidazolu a N,N-dimethyl-4-aminopyridinu při 40°C po dobu 20 hodin; po synthese se odpaří rozpouštědla ve vakuu při 40°C a semisynthetický preparát PNAE(s) se srazí přebytkem acetonu při 4°C a čistí se preparativní chromatografií.

3 výkresy

CS 275 396 B6

VLNOVÉ ČÍSLO, cm-1

2200

2600

3000

Obr. 1.

Obr. 2

Chromatografie fosfolipidů v tenké vrstvě silikagelu (deska Merak, Kiesselgel 60, F254, 20 x 20 cm)

- l- Semisynthetický ether-fosfolipid PNAE(s)
- 2- Fosfolipidy extrahované z biopreparátu cACPL
- 3- Fosfolipidy z normálního vaječného žloutku
- 4- Semisynthetický ether-fosfolipid, lyso PNAE(s)

Chromatogram byl vyvíjen v soustavě: Chloroform/ methanol/ konc.amcniak (80 : 20 : 2, v/v). Detekce fosfolipidů byla provedena molybdenovým reagens (1,3% MoO_3 v 4,2M H_2SO_4).

Obr. 3.

CS 275396B6

Batch: N91058

Date: 12/12/2005

Number of pages: 10

Previous document : CS 275395B6

Next document : CS 275397B6