

# ENEL 674 Industrial and Commercial Power Systems

Group 7

Name: Manan Bharatbhai Patel (UCID: 30126849)

Name: Karnav Darshanbhai Joshi (UCID: 30126641)

Name: Prakash Himmatbhai Soliya (UCID: 30176193)

### **Project Milestone 1**

#### Contents

| 1. | Distribution Board – 1P Incomer 3 $\phi$ , 4W, 125A breaker size calculation            | 3  |
|----|-----------------------------------------------------------------------------------------|----|
|    | 1.1 Conductor Sizing                                                                    | 4  |
| 2. | Distribution Board – 2P Incomer 3 $\phi$ , 4W, 20A breaker size calculation             | 5  |
|    | 2.1 Conductor Sizing                                                                    | 6  |
| 3. | Distribution Board – 3P Incomer $3\varphi,\ 4W,150A$ breaker size calculation           | 7  |
|    | 3.1 Conductor Sizing                                                                    | 8  |
| 4. | Distribution Board – UPS Incomer $3\varphi,\ 4W,70A$ breaker size calculation           | 9  |
|    | 4.1 Conductor Sizing                                                                    | 10 |
| 5. | TR outgoing L.T. bkr to BUS-BAR Chamber $3\varphi,\ 4W,300\ A$ breaker size calculation | 11 |
| Cc | onductor Sizing                                                                         | 11 |
| 6. | 24.9kV/208V (delta/star) transformer sizing for given building                          | 12 |

### 1. Distribution Board – 1P Incomer 3 $\phi$ , 4W, 125A breaker size calculation

As per our calculation mentioned in excel sheet named "Panel Board 1" (Milestone 1/Panel Schedule(s)/Panel Schedule.xlsx). The same calculation is as follows,

|         | Connected Load |            |
|---------|----------------|------------|
|         | (VA)           | Spare (VA) |
| Phase R | 14218.7        | 1920       |
| Phase Y | 13303          | 1440       |
| Phase B | 12080.3        | 2400       |

Table 1

|            |          |                                 | Demand   |
|------------|----------|---------------------------------|----------|
| Load Summa | ary (VA) | Diversity                       | Load     |
| Receptacle | 17100    | As per CEC for first            |          |
|            |          | 10KVA Diversity Factor is 1.0 & | 14784.55 |
| Lighting   | 2469.1   | for rest 0.5                    |          |
| Other      | 20032.9  | 0.5                             | 10016.45 |
| Spare      | 5760     | 0.5                             | 2880     |

Table 2

Considering demand factor and total load, maximum current requirements at distribution board 1P breaker I/C is 76.837 Amps.

| Total Demand (kVA)            | 27.681    |
|-------------------------------|-----------|
| Total Demand (Amps)           | 76.837027 |
| Spare Load (Included in Total |           |
| Demand)                       | 15%       |

Table 3

As per CEC, breaker size should be considered 125% of continuous load current.

The minimum breaker requirement = 1.25 \* 76.837027 = 96.03 A

As per CEC, we decided to go with available breaker size of 125 A.

#### 1.1 Conductor Sizing

We need  $3\phi$ , 4W, 125A bus bar at Distribution board with  $3\phi$ , 4W I/C cable that can handle 125A line current. According to CEC standard, we did the following calculations.

| Number of | Ampacity correction |
|-----------|---------------------|
| Conductor | factor              |
| 4 - 6     | 0.8                 |

| Size of      | Allowable ampere  |
|--------------|-------------------|
| conductor    | at temperature    |
| AWG or kcmil | 60 degree Celsius |
| 3/0          | 165               |

Table 4

We are considering  $3\phi$ , 4W cable that needs ampacity correction factor of 0.8 as per above table.

As per standards, we are going with 3/0 conductor size that can carry 165 A (which is greater than 125/0.8 = 156.25 A) at 60 degree Celsius.

For 3/0 conductor with jacket, conduit size will be 63mm. In addition to that minimum radius to center of conduit is 267mm. Final design for distribution board – 1P incomer cable is as follows,

| Maximum allowable | Cable | Conduit | Conduit |
|-------------------|-------|---------|---------|
| ampacity          | size  | size    | bends   |
| 165 A             | 3/0   | 63 mm   | 267 mm  |

Table 5

### 2. Distribution Board – 2P Incomer 3 $\phi$ , 4W, 20A breaker size calculation

As per our calculation mentioned in excel sheet named "Panel Board 2" (Milestone 1/Panel Schedule(s)/Panel Schedule.xlsx). The same calculation is as follows,

| Connected Load |       |            |
|----------------|-------|------------|
|                | (VA)  | Spare (VA) |
| Phase R-Y-B    | 10520 | 960        |

Table 6

|                  |          |                                 | Demand |
|------------------|----------|---------------------------------|--------|
| Load Summa       | ıry (VA) | Diversity                       | Load   |
| Receptacle       | 0        | As per CEC for first            |        |
|                  |          | 10KVA Diversity Factor is 1.0 & | 0      |
| Lighting         | 0        | for rest 0.5                    |        |
| Baseboard Heater | 10520    | 0.5                             | 5260   |
| Spare            | 960      | 0.5                             | 480    |

Table 7

Considering demand factor and total load, maximum current requirements at distribution board 2P breaker I/C is  $13.79 \ Amps$ .

| Total Demand (kVA)            | 5.74  |
|-------------------------------|-------|
| Total Demand (Amps)           | 13.79 |
| Spare Load (Included in Total |       |
| Demand)                       | 9%    |

Table 8

As per CEC, breaker size should be considered 125% of continuous load current.

The minimum breaker requirement = 1.25 \* 13.79 = 17.24 A

As per CEC, we decided to go with available breaker size of 20 A.

#### 2.1 Conductor Sizing

We need  $3\phi$ , 4W, 20A bus bar at Distribution board with  $3\phi$ , 4W I/C cable that can handle 20A line current. According to CEC standard, we did the following calculations.

| Number of | Ampacity correction |
|-----------|---------------------|
| Conductor | factor              |
| 4 – 6     | 0.8                 |

| Size of      | Allowable ampere  |
|--------------|-------------------|
| conductor    | at temperature    |
| AWG or kcmil | 60 degree Celsius |
| AWG#10       | 30                |

Table 9

We are considering  $3\phi$ , 4W cable that needs ampacity correction factor of 0.8 as per above table.

As per standards, we are going with AWG#10 conductor size that can carry  $30\,A$  at 60 degree Celsius.

For AWG#10 conductor with jacket, conduit size will be 21mm. In addition to that minimum radius to center of conduit is 114mm. Final design for distribution board – 2P incomer cable is as follows,

| Maximum allowable | Cable  | Conduit | Conduit |
|-------------------|--------|---------|---------|
| ampacity          | size   | size    | bends   |
| 30 A              | AWG#10 | 21 mm   | 114 mm  |

Table 10

### 3. Distribution Board – 3P Incomer $3\phi$ , 4W, 150A breaker size calculation

As per our calculation mentioned in excel sheet named "Panel Board 3" (Milestone 1/Panel Schedule(s)/Panel Schedule.xlsx). The same calculation is as follows,

|           | Connected Load |            |
|-----------|----------------|------------|
|           | (VA)           | Spare (VA) |
| Phase R-Y | 54430          | 5760       |

Table 11

|                 |          |                                 | Demand  |
|-----------------|----------|---------------------------------|---------|
| Load Summa      | ary (VA) | Diversity                       | Load    |
| Receptacle      | 0        | As per CEC for first            |         |
|                 |          | 10KVA Diversity Factor is 1.0 & | 0       |
| Lighting        | 0        | for rest 0.5                    |         |
| Condensing Unit | 38861    | 0.6                             | 23316.6 |
| Exhaust Fan     | 3328     | 1                               | 1177    |
| Furnace         | 14392    | 0.6                             | 8635.2  |
| Spare           | 5760     | 0.5                             | 2880    |

Table 12

Considering demand factor and total load, maximum current requirements at distribution board 3P breaker I/C is  $86.56 \ Amps$ .

| Total Demand (kVA)            | 36.01 |
|-------------------------------|-------|
| Total Demand (Amps)           | 86.56 |
| Spare Load (Included in Total |       |
| Demand)                       | 11%   |

Table 13

As per CEC, breaker size should be considered 125% of continuous load current.

The minimum breaker requirement = 1.25 \* 86.56 = 108.2 A

As per CEC, we decided to go with available breaker size of  $110 \, A$ .

#### 3.1 Conductor Sizing

We need  $3\phi$ , 4W, 110A bus bar at Distribution board with  $3\phi$ , 4W I/C cable that can handle 110A line current. According to CEC standard, we did the following calculations.

| Number of | Ampacity correction |
|-----------|---------------------|
| Conductor | factor              |
| 4 – 6     | 0.8                 |

| Size of      | Allowable ampere  |
|--------------|-------------------|
| conductor    | at temperature    |
| AWG or kcmil | 60 degree Celsius |
| 2/0          | 145               |

Table 14

We are considering  $3\phi$ , 4W cable that needs ampacity correction factor of 0.8 as per above table.

As per standards, we are going with 2/0 conductor size that can carry  $145\,A$  (which is greater than  $110/0.8\,=\,137.5\,A$ ) at 60 degree Celsius.

For 2/0 conductor with jacket, conduit size will be 53mm. In addition to that minimum radius to center of conduit is 241mm. Final design for distribution board – 3P incomer cable is as follows,

| Maximum allowable | Cable | Conduit | Conduit |
|-------------------|-------|---------|---------|
| ampacity          | size  | size    | bends   |
| 145 A             | 2/0   | 53 mm   | 241 mm  |

Table 15

### 4. Distribution Board – UPS Incomer $3\varphi$ , 4W, 70A breaker size calculation

As per our calculation mentioned in excel sheet named "Panel Board 4" (Milestone 1/Panel Schedule(s)/Panel Schedule.xlsx). The same calculation is as follows,

|             | Connected Load |            |
|-------------|----------------|------------|
|             | (VA)           | Spare (VA) |
| Phase R-Y-B | 16801          | 4320       |

Table 16

| Load Summary (VA) |       | Diversity                                                                                                                                                                         | Demand<br>Load |
|-------------------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| Receptacle        | 0     | As per CEC for first                                                                                                                                                              |                |
| Lighting          | 849.2 | 10KVA Diversity Factor is 1.0 & for rest 0.5 (As this is emergency panel, it might required to turn on simultaneously in case of emergency. Thus demand factor is considered 1.0) | 849.2          |
| Fire Pump         | 15705 | In case of emergency, it must be turn on regardless of other loading on the panel. Thus, diversity factor is considered 1.0                                                       | 15705          |
| Others            | 246.5 | 1                                                                                                                                                                                 | 246.5          |
| Spare             | 5760  | Future load that will connect to emergency bus must remain turn on during the emergency. Thus, demand factor considered on higher side compared to other.  (0.75)                 | 2880           |

Table 17

Considering demand factor and total load, maximum current requirements at distribution board 3P breaker I/C is  $55.63 \ Amps$ .

| Total Demand (kVA)            | 20.04 |
|-------------------------------|-------|
| Total Demand (Amps)           | 55.63 |
| Spare Load (Included in Total |       |
| Demand)                       | 26%   |

Table 18

As per CEC, breaker size should be considered 125% of continuous load current.

The minimum breaker requirement = 1.25 \* 55.63 = 69.54 A

As per CEC, we decided to go with available breaker size of 70 A.

#### 4.1 Conductor Sizing

We need  $3\phi$ , 4W, 70A bus bar at Distribution board with  $3\phi$ , 4W I/C cable that can handle 70A line current. According to CEC standard, we did the following calculations.

| Number of | Ampacity correction |
|-----------|---------------------|
| Conductor | factor              |
| 4 – 6     | 0.8                 |

| Size of      | Allowable ampere  |
|--------------|-------------------|
| conductor    | at temperature    |
| AWG or kcmil | 60 degree Celsius |
| AWG#2        | 95                |

Table 19

We are considering  $3\phi$ , 4W cable that needs ampacity correction factor of 0.8 as per above table.

As per standards, we are going with AWG#2 conductor size that can carry 95 A (which is greater than 70/0.8 = 87.5 A) at 60 degree Celsius.

For AWG#2 conductor with jacket, conduit size will be 41mm. In addition to that minimum radius to center of conduit is 210mm. Final design for distribution board – UPS incomer cable is as follows,

| Maximum allowable | Cable | Conduit | Conduit |
|-------------------|-------|---------|---------|
| ampacity          | size  | size    | bends   |
| 95 <i>A</i>       | AWG#2 | 41 mm   | 210 mm  |

Table 20

### 5. TR outgoing L.T. bkr to BUS-BAR Chamber 3φ, 4W, 300 A breaker size calculation

As per our calculation mentioned above in section 1. To 4. The total demand in Amps is as follows,

| Distribution board - 1P load demand | Distribution board - 2P load demand | Distribution board - 3P load demand | Distribution board<br>- UPS load | Total load     |
|-------------------------------------|-------------------------------------|-------------------------------------|----------------------------------|----------------|
| in Amps                             | in Amps                             | in Amps                             | demand in Amps                   | demand in Amps |
| 76.83                               | 13.8                                | 86.56                               | 55.63                            | 232.82         |

Table 21

As per CEC, breaker size should be considered 125% of continuous load current.

The minimum breaker requirement = 1.25 \* 232.82 = 291.025 A

As per CEC, we decided to go with available breaker size of 300 A.

#### **Conductor Sizing**

We need  $3\phi$ , 4W, 300A bus bar at BUS-BAR Chamber with  $3\phi$ , 4W I/C cable that can handle 300A line current. According to CEC standard, we did the following calculations.

| Number of | Ampacity correction |
|-----------|---------------------|
| Conductor | factor              |
| 4 – 6     | 0.8                 |

| Size of      | Allowable ampere  |  |
|--------------|-------------------|--|
| conductor    | at temperature    |  |
| AWG or kcmil | 60 degree Celsius |  |
| 700 kcmil    | 385               |  |

Table 22

We are considering  $3\phi$ , 4W cable that needs ampacity correction factor of 0.8 as per above table.

As per standards, we are going with 700 kcmil conductor size that can carry 385 A (which is greater than 300/0.8 = 375 A) at 60 degree Celsius.

For 700 kcmil conductor with jacket, conduit size will be 116mm. Final design for distribution board – UPS incomer cable is as follows,

| Maximum allowable ampacity | Cable size | Conduit<br>size |
|----------------------------|------------|-----------------|
| 385 <i>A</i>               | 700 kcmil  | 116 mm          |

Table 23

## 6. 24.9kV/208V (delta/star) transformer sizing for given building

As per our calculations in section 5., we have considered transformer outgoing L.T. breaker size 300A, 208V.

For above mentioned load requirement, transformer loading can be calculated as follows,

Tranformer rating = 
$$\sqrt{3} * line \ voltage * line \ current$$
  
=  $\sqrt{3} * 208 * 300$   
=  $107.952 \ kVA$ 

Considering the nearby value, given transformer by utility having 112.5 kVA rating is ideal.