LECTURE!

EIGHT

Set

- ♣ set is an unordered collection of items. items where all elements are unique (no duplicated elements) and must be immutable (cannot be changed).
- ♣ A set is created by placing all the items (elements) inside **curly** braces {}, separated by comma.
- ♣ It can have any number of items and they may be of immutable different types Any (integer, float, tuple, string etc.)
- ♣ We cannot access or change an element of a set using indexing or slicing.
- ♣ Unlike with lists, we cannot insert an element at a given index, since sets are unordered containers, meaning elements have not a particular position inside a set.

```
Example: Create Set, Iterate over the elements of Set
```

```
m = {} # Create empty Set

s = {1, 2, 3, 4, 3, 2} # Create the Set

cities = {'Madrid', 'Valencia', 'Munich'}

print(s) # Print the Set

for i in s: # Iterate over the elements of Set

print(i, end=' ')
```


Operations and Functions on Set

Set have their own set of permissible operations:

Operation	Mathematical	Python	Result	Meaning
	Notation	Syntax	Type	
Union	$A \cup B$	A B	set	Elements in A or B or both
Intersection	$A \cap B$	A & B	set	Elements common to both A and B
Set Difference	A - B	A - B	set	Elements in A but not in B
Symmetric Difference	$A \oplus B$	A ^ B	set	Elements in A or B, but not both

Set Operation	Venn Diagram	Interpretation
Union	A B	$A \cup B$, is the set of all values that are a member of A , or B , or both.
Intersection	A B	$A \cap B$, is the set of all values that are members of both A and B .
Difference	A B	A\B, is the set of all values of A that are not members of B
Symmetric Difference	A B	$A \triangle B$, is the set of all values which are in one of the sets, but not both.

python len function: it returns the number of items (length) in an object. use the len() to get the length of the given set.

Example: Operations and Functions on Set

Output

{1, 2, 3, 4, 5, 6, 7, 8}

 ${4, 5}$

 $\{1, 2, 3\}$

 $\{1, 2, 3, 6, 7, 8\}$

5

Common Python Set Methods

There are numerous methods available with the set object, some of the commonly used methods are:

Method	Description
add()	Adds an element to the set(If the element is already present, it doesn't add any element.)
discard()	Removes an element from the set if it is a member. (Do nothing if the element is not in set)
A.issubset(B)	returns True if all elements of set A are contained in set B.

Example: Common Python Set Methods

m = {9, 2,4, 3, 4, 5} m.add(6) print(m) m.discard(4) print(m) k={3,2} print(k. issubset(m))

Output

{2, 3, 4, 5, 6, 9} {2, 3, 5, 6, 9} True

