Al-based Audio Analysis of Music and Soundscapes

Introduction

Dr.-Ing. Jakob Abeßer Fraunhofer IDMT

jakob.abesser@idmt.fraunhofer.de

Prof. Dr. Martin Pfleiderer HfM Weimar

martin.pfleiderer@hfm-weimar.de

Seminar Structure

Programming

Python

Foundations

Audio Processing

Machine Learning & Deep Learning

Research Project

Research Question

Computational Modeling

Analysis

Seminar Structure

- Seminar 1
 - Introduction
 - Python Programming Basics
- Seminar 2 & 3
 - Audio Processing
 - Research Project Introduction & Topics

Seminar Structure

- Seminar 4
 - Machine Learning & Deep Learning
- Seminar 5 & 6 & 7
 - Project Work
- Seminar 8
 - Project Presentation

Machine Listening

Combine **signal processing** and

machine learning to extract

information from and to make

sense of audio signals

Course Website

https://machinelistening.github.io/

Further Resources: Books

Fig. 3

Virtanen, T., Plumbley, Mark D., and Ellis, Dan: Computational Analysis of Sound Scenes and Events, Springer, 2018.

Fig. 2

- Müller, M.: Fundamentals of Music Processing Using Python and Jupyter Notebooks, Springer, 2021.
- Goodfellow, I., Bengio, Y., and Courvill, A.: Deep Learning, The MIT Press, 2016.

Further Resources: Webpages

- Machine Learning
 - <u>https://scikit-learn.org/</u> (tutorials)
- Deep Learning
 - https://www.deeplearningbook.org
 - http://www.coursera.org (online courses)
 - <u>http://www.udemy.com</u> (online courses)
 - https://machinelearningmastery.com/deep-learning-books/

Further Resources: Webpages

- Music Information Retrieval
 - https://www.audiolabs-erlangen.de/FMP (iPython notebooks)
 - <u>https://musicinformationretrieval.com</u> (iPython notebooks)
 - <u>https://audiolabs-erlangen.de/PCP</u> (Preparation Course Python Notebooks)
 - <u>https://github.com/meinardmueller/libfmp</u> (Python package for music processing)

Further Resources: Webpages

- Environmental / Everyday Sound Analysis
 - http://dcase.community/ (DCASE challenges & workshop)

Further Resources: Programming Libraries

- General
 - numpy, scipy, scikit-learn, matplotlib, pandas
- Machine Learning / Deep Learning
 - scikit-learn, tensorflow, keras, (pytorch)
- Audio & Music Processing (Python)
 - pysox, soundfile (audio I/O & manipulation)
 - librosa, madmon, libfmp, synctoolbox, libtsm (audio & music processing
 - Music21, MeloSpyLib (symbolic music processing)
 - (MIR Toolbox Matlab)

Acknowledgements

- Meinard Müller (International Audio Laboratories)
- Sebastian Stober (Otto-von-Guericke-University Magdeburg)

Images

- Fig. 1: https://media.springernature.com/w306/springer-static/cover-hires/book/978-3-319-63450-0
- Fig. 2: https://media.springernature.com/w306/springer-static/cover-hires/book/978-3-030-69808-9
- Fig. 3: https://mitpress.mit.edu/books/deep-learning