1. Metodo di Gauss

Risolvere il sistema seguente con il metodo della riduzione di Gauss.

E1:
$$x_1 - x_2 + 2x_3 - x_4 = -8$$

E2:
$$2x_1 - 2x_2 + 3x_3 - 3x_4 = -20$$

E3:
$$x_1 + x_2 + x_3 = -2$$

E4:
$$x_1 - x_2 + 4x_3 + 3x_4 = 4$$

2. Metodo di Gauss - Strategie di pivoting

$$x_1 - 5 x_2 + x_3 = 7$$
 Sistema:
$$10 x_1 + 20 x_3 = 6$$

$$5 x_1 - x_3 = 4$$

- a) Risolvere con il metodo di Gauss (senza pivoting);
- b) Lavorando con approssimazione fino a 4 cifre significative, risolvere con il metodo di Gauss senza pivoting, con pivoting parziale e con pivoting parziale riscalato. Confrontare le diverse soluzioni con quella del punto precedente, e quantificare in ogni caso l'errore relativo (per ciascuna delle incognite separatamente). Commentare.

3. Istruzioni MATLAB per operazioni di matrici

Definizione di una matrice con assegnazione dei valori:

Operazioni di sostituzione righe (metodo di Gauss):

es.
$$(E2 - 10 * E1) \rightarrow (E2)$$
: >> AM(2,:) = AM(2,:) - 10*AM(1,:) risponde con: AM = 1 -5 1 7 0 50 10 -64 5 0 -1 4

NB: Ad <u>ogni passo</u>, il sistema corrente è un sistema equivalente. (Utile per controllare la soluzione finale ottenuta ed individuare eventuali errori.)

4. Esercizio

risolvere il sistema con il metodo di Gauss senza pivoting, con pivoting parziale e con pivoting parziale riscalato lavorando con approssimazione fino a 3 cifre significative. Confrontare le diverse soluzioni con quella esatta, quantificando per ognuna delle incognite l'errore relativo.

5. Fattorizzazione LU della matrice

Risolvere il sistema seguente con il metodo della fattorizzazione LU generica della matrice.

$$x_1 + x_2 + 3x_4 = 8$$

 $2x_1 + x_2 - x_3 + x_4 = 7$
 $3x_1 - x_2 - x_3 + 2x_4 = 14$
 $-x_1 + 2x_2 + 3x_3 - x_4 = 7$

6. Fattorizzazione della matrice - LU - Esercizio

I due sistemi differiscono solo per il vettore dei termini noti. Risolvere entrambi attraverso la fattorizzazione in forma LU della matrice dei coefficienti.

7. Fattorizzazione della matrice - Tecniche per matrici Definite Positive

La matrice
$$A = \begin{bmatrix} 4 & -1 & 1 \\ -1 & 4.25 & 2.75 \\ 1 & 2.75 & 3.5 \end{bmatrix}$$
 è definita positiva e simmetrica.

Determinare una fattorizzazione in forma LDL^t e in forma LL^t (Cholesky). Utilizzare questo risultato per

8. Fattorizzazione della matrice - Matrici Tridiagonali - Algoritmo di Crout

$$3 x_1 + x_2 = -1$$
 Risolvere il sistema
$$2 x_1 + 4 x_2 + x_3 = 7$$

$$2 x_2 + 5 x_3 = 9$$

utilizzando l'algoritmo di Crout per la fattorizzazione LU di matrici tridiagonali.

NBB Per tutti questi esercizi è fortemente consigliato, una volta determinata la soluzione (vettore \mathbf{x}), di sostituire i singoli \mathbf{x}_i nelle equazioni del sistema originario per verificarne la correttezza.