Devoir maison n°10: Droites Tropicales

Jules Charlier, Thomas Diot, Pierre Gallois, Jim Garnier 1E1

Partie A - Les droites tropicales

- (\mathcal{A}') « Par deux points du plan passe une droite tropicale. »
- (\mathcal{B}') « Par deux points quelconques indépendants du plan passe une et une seule droite tropicale. »
- (\mathcal{C}') « Deux droites tropicales dont les points centraux sont indépendants se coupent toujours en un unique point. »

1) a)

b) On cherche à prouver (A'). Soient A et B deux points quelconques du plan. Par une translation B on se ramène au cas où :

$$\mathcal{A}(0,0)$$
 et $\mathcal{B}(x,y)$ avec $x\in\mathbb{R}$ et $y\in\mathbb{R}$

Etudions d'abord des cas particuliers :

Si x = 0 et y = 0 alors A = B, la droite tropicale de centre A convient.

Si y = 0 alors la droite tropicale de centre $\mathcal{C}(\max(0, x), 0)$ convient.

Si x = 0 alors la droite tropicale de centre $\mathcal{C}(0, \max(0, y))$ convient.

Si x = y alors la droite tropicale de centre $\mathcal{C}(\min(0, x), \min(0, y))$ convient.

Attaquons nous désormais aux cas généraux :

Si x < 0 **et** y > 0

Il existe $\mathcal{C}(0,y)$. Soient les demi-droites :

 $\mathcal{H}: [\mathcal{C}, \mathcal{B})$ par construction, \mathcal{H} est parallèle à l'axe des abscisses.

 $\mathcal{V}: [\mathcal{C}, \mathcal{A})$ par construction, \mathcal{V} est parallèle à l'axe des ordonnées.

Comme x < 0, \mathcal{H} est de direction $-\vec{i}$ et comme y > 0, \mathcal{V} est de direction $-\vec{j}$. Donc \mathcal{A} et \mathcal{B} appartiennent à la droite tropicale de centre \mathcal{C} .

En inversant les rôles de \mathcal{A} et \mathcal{B} , on obtient la deuxième partie rayée.

Si x > 0 et y > 0 et y > x

Soit \mathcal{D}' la droite parallèle à y=x et passant par \mathcal{B} . On nomme \mathcal{C} l'intersection entre \mathcal{D}' et l'axe des ordonnées. Comme $y>x,y_{\mathcal{C}}>0$. Soient les demi-droites :

 $\mathcal{D}: [\mathcal{C}, \mathcal{B})$ par construction, \mathcal{D} est de direction $\vec{i} + \vec{j}$

 $\mathcal{V}: [\mathcal{C}, \mathcal{A})$ par construction, \mathcal{V} est de direction — \vec{j}

Donc $\mathcal A$ et $\mathcal B$ appartiennent à la droite tropicale de centre $\mathcal C.$

En inversant les rôles de \mathcal{A} et \mathcal{B} , on obtient que pour 0 > x et 0 > y et x > y, \mathcal{A} et \mathcal{B} appartiennent à la droite tropicale de centre \mathcal{C} , soit la deuxième zone rayée.

Si x > 0 et y > 0 et y < x

Doit \mathcal{D}' la droite parallèle à y=x et passant par \mathcal{B} . On nomme \mathcal{C} l'intersection entre \mathcal{D}' et l'axe des abscisses. Comme $y< x, x_{\mathcal{C}}>0$. Soient les demi-droites :

 $\mathcal{D}: [\mathcal{C}, \mathcal{B})$ par construction, \mathcal{D} est de direction $\vec{i} + \vec{j}$

 $\mathcal{H}: [\mathcal{C}, \mathcal{A})$ par construction, \mathcal{H} est de direction $-\vec{i}$

Donc \mathcal{A} et \mathcal{B} appartiennent à la droite tropicale de centre \mathcal{C} .

En inversant les rôles de \mathcal{A} et \mathcal{B} , on obtient que pour 0 > x et 0 > y et x < y, \mathcal{A} et \mathcal{B} appartiennent à la droite tropicale de centre \mathcal{C} , soit la deuxième zone rayée.

Conclusion

En combinant les différentes disjonctions de cas démontrées plus haut on obtient :

Le cas des lignes noires est couvert par les cas particuliers. Nous avons donc prouvé que pour tout point quelconque \mathcal{B} , il existe une droite tropicale passant par \mathcal{B} et par l'origine \mathcal{A} . Nous pouvons revenir au cas général avec deux points quelconques par la translation inverse de T.

Nous avons donc démontré (A'): par deux points du plan passe une droite tropicale.

2) a) La propriété (\mathcal{B}) n'est pas vraie pour les droites tropicales dans le cas de deux points dépendants.

Contre-exemple : Prenons les points $\mathcal{A}(0,0)$ et $\mathcal{B}(1,0)$, qui sont dépendants. La droite tropicale de point central $\mathcal{C}_1(2,0)$ passe par \mathcal{A} et par \mathcal{B} , mais celle de point central $\mathcal{C}_2(3,0)$ aussi. Il y a même une infinité de droites tropicales passant par ces deux points : toutes celles dont le point central est d'ordonnée nulle et d'abscisse supérieure à 1.

b) On chercher à prouver (\mathcal{B}') : « Par deux points quelconques indépendants du plan passe une et une seule droite tropicale. »

Soient \mathcal{A} et \mathcal{B} deux points indépendants du plan. Par une translation T on fait en sorte que $\mathcal{A}(0,0)$ -et- $\mathcal{B}(x,y)$ -avec $x\in\mathbb{R}$ -et $y\in\mathbb{R}$. Comme \mathcal{A} -et \mathcal{B} -sont indépendants, $x\neq 0$, $y\neq 0$ -et $x\neq y$.

D'après (\mathcal{A}') , il existe une droite tropicale de centre $\mathcal{C}(\alpha,\beta)$ -avec $\alpha \in \mathbb{R}$ -et $\beta \in \mathbb{R}$ -passant par \mathcal{A} -et \mathcal{B} . On nomme respectivement \mathcal{H} , \mathcal{V} -et \mathcal{D} -les demi-droites de direction $-\vec{i}$, $-\vec{j}$ -et \vec{i} + \vec{j} -formant cette droite tropicale.

On considère toutes les combinaisons de demi-droites auxquelles pourraient appartenir $\mathcal A$ et $\mathcal B$ -afin de déterminer $\mathcal C(\alpha,\beta)$.

Cas impossibles:

Si \mathcal{A} et \mathcal{B} appartiennent à la même demi-droite, alors ils sont dépendants ce qui n'est pas possible donc on peut éliminer les cas- $(\mathcal{A} \in \mathcal{H} \text{ et } \mathcal{B} \in \mathcal{H})$,- $(\mathcal{A} \in \mathcal{V} \text{ et } \mathcal{B} \in \mathcal{V})$ -et- $(\mathcal{A} \in \mathcal{D} \text{ et } \mathcal{B} \in \mathcal{D})$.

Cas génériques:

- $\mathbf{Si} \cdot \mathcal{A} \in \mathcal{C} \text{ et } \mathcal{B} \in \mathcal{H} \text{ alors les contraintes sur-} \mathcal{C} \text{-sont-} \mathcal{A} \in \mathcal{D} \Rightarrow \alpha = \beta \text{-et-} \mathcal{B} \in \mathcal{H} \Rightarrow \beta = y.$ Cela donne $\mathcal{C}(y,y)$.
- Si $\mathcal{A} \in \mathcal{C}$ et $\mathcal{B} \in \mathcal{V}$ alors les contraintes sur \mathcal{C} -sont $\mathcal{A} \in \mathcal{D} \Rightarrow \alpha = \beta$ -et $\mathcal{B} \in \mathcal{V} \Rightarrow \alpha = x$. Cela donne $\mathcal{C}(x,x)$:

En inversant les roles de \mathcal{A} et \mathcal{B} on obtient également les contraintes suivantes : TODO

On remarque qu'à moins que x = 0, y = 0 ou x = y ce qui n'est pas possible puisque \mathcal{A} et B-sont indépendants, il n'est pas possible que plusieurs droites donne le même centre.

(ce qui n'est pas ce que l'on cherche à démontrer)

Partie B - Addition et Multiplication tropicales

On définit sur \mathbb{R} l'addition tropicale et la multiplication tropicale tel que pour tous $a, b \in \mathbb{R}$,

$$a \oplus b = \max(a, b)$$
 et $a \otimes b = a + b$

- **1)** On a donc :

- $3 \oplus 7 = 7$ $-5 \oplus 2 = 2$ $3 \otimes 7 = 10$ $-5 \otimes 2 = -3$
- 2) \oplus est associatif et commutatif car max est associatif et commutatif.

Soient $a, b, c \in \mathbb{R}$. Supposons sans perte de généralité que $b \leq c$ car \oplus est commutatif.

On a $a \otimes (b \oplus c) = a \otimes c = a \otimes b \oplus a \otimes c$ puisque $a \otimes b \leq a \otimes c$.

3)

Voici à quoi ressemble une fonction tropicale¹ de degré $1: a \otimes x \oplus b \otimes y \oplus c$:

$$1\otimes x\oplus 1\otimes y\oplus 1$$

¹Pour des raisons esthétiques, nous utilisons dans les graphiques l'opposé des valeurs de x et y.

On remarque que modifier les valeurs a,b et c « décale » l'un des « bords ».

4) Voici à quoi ressemble la fonction tropicale du second degré 2 :

$$1 \oplus (-1) \otimes x \oplus 0 \otimes y \oplus (-5) \otimes x^2$$

D'un côté : De l'autre en prenant l'opposé pour l'axe x :

 $^{^{\}scriptscriptstyle 2}$ On prend l'opposé pour l'axe y