Solution of Algebraic and Transcendental Equations Lab Manual 01

Prepared By:

Md. Azmain Yakin Srizon
Assistant Professor
Department of Computer Sciecne & Engineering
Rajshahi University of Engineering & Technology

Reference Book:

Introductory Methods of Numerical Analysis by S. S. Sastry (5th Edition) Last Updated: September 9, 2024

1 Bisection Method

1.1 Procedure for Bisection Method

1. Initial Setup:

- Choose two initial guesses, a and b, such that $f(a) \times f(b) < 0$, meaning the function f(x) changes signs between a and b. This ensures that there is at least one root of f(x) = 0 in the interval [a, b].
- ullet Set the desired tolerance level ϵ , which defines how accurate the root approximation should be

2. Iteration Process:

• Compute the midpoint of the interval:

$$m = \frac{a+b}{2}$$

- Evaluate the function at the midpoint f(m).
- Check for Root:
 - If f(m) = 0, then m is the exact root, and the procedure can terminate.
 - Otherwise, determine which subinterval contains the root:
 - * If $f(a) \times f(m) < 0$, then the root lies in the interval [a, m]. Set b = m.
 - * If $f(m) \times f(b) < 0$, then the root lies in the interval [m, b]. Set a = m.

3. Convergence Criteria:

- Check if the width of the interval |b-a| is less than the tolerance ϵ . If so, stop the iteration and accept m as the approximate root.
- If not, repeat the iteration process with the updated interval.

4. Repeat

• Continue this process until the desired accuracy is achieved or the maximum number of iterations is reached.

1.2 Pseudo Code for Bisection Method (Example 2.1)

1. Define Function:

$$f(x) = x^3 - x - 1$$

2. Input:

- Interval endpoints a = 1, b = 2
- Tolerance $\epsilon = 0.0001$
- Maximum iterations (optional)

3. Check Validity:

• If $f(a) \times f(b) \ge 0$, then output "Invalid initial guesses" and stop.

4. Iteration:

- Set iteration = 0
- While $\frac{(b-a)}{2} > \epsilon$, do:
 - (a) Increment iteration count.
 - (b) Compute midpoint $m = \frac{a+b}{2}$.
 - (c) Print the current iteration, a, b, m, and f(m).
 - (d) If f(m) = 0, then:
 - Output "Exact root found at m" and stop.
 - (e) If $f(a) \times f(m) < 0$, then:
 - Set b = m (root lies in [a, m]).
 - (f) Else:
 - Set a = m (root lies in [m, b]).

5. Output:

- After loop ends, compute final midpoint $m = \frac{a+b}{2}$.
- \bullet Output "The approximate root is m".

1.2.1 Sample Input and Output

Sample Output:

Iteration	a	Ъ	m	f(m)
1	1.000000	2.000000	1.500000	0.875000
2	1.000000	1.500000	1.250000	-0.296875
3	1.250000	1.500000	1.375000	0.224609
4	1.250000	1.375000	1.312500	-0.051514
5	1.312500	1.375000	1.343750	0.082611
6	1.312500	1.343750	1.328125	0.014576
7	1.312500	1.328125	1.320313	-0.018711
8	1.320313	1.328125	1.324219	-0.002128
9	1.324219	1.328125	1.326172	0.006209
10	1.324219	1.326172	1.325195	0.002037
11	1.324219	1.325195	1.324707	-0.000047
12	1.324707	1.325195	1.324951	0.000995
13	1.324707	1.324951	1.324829	0.000474

The approximate root is: 1.324768

1.3 Pseudo Code for Bisection Method (Example 2.2)

1. Define Function:

$$f(x) = x^3 - 2x - 5$$

2. Input:

- Interval endpoints a = 2, b = 3
- Tolerance $\epsilon = 0.0001$
- Maximum iterations (optional)

3. Check Validity:

• If $f(a) \times f(b) \ge 0$, then output "Invalid initial guesses" and stop.

4. Iteration:

- Set iteration = 0
- While $\frac{(b-a)}{2} > \epsilon$, do:
 - (a) Increment iteration count.
 - (b) Compute midpoint $m = \frac{a+b}{2}$.
 - (c) Print the current iteration, a, b, m, and f(m).
 - (d) If f(m) = 0, then:
 - Output "Exact root found at m" and stop.
 - (e) If $f(a) \times f(m) < 0$, then:
 - Set b = m (root lies in [a, m]).
 - (f) Else:
 - Set a = m (root lies in [m, b]).

5. Output:

- After loop ends, compute final midpoint $m = \frac{a+b}{2}$.
- \bullet Output "The approximate root is m".

1.3.1 Sample Input and Output

Sample Output:

a	b	m	f(m)
1.000000	2.000000	1.500000	0.875000
1.000000	1.500000	1.250000	-0.296875
1.250000	1.500000	1.375000	0.224609
1.250000	1.375000	1.312500	-0.051514
1.312500	1.375000	1.343750	0.082611
1.312500	1.343750	1.328125	0.014576
1.312500	1.328125	1.320313	-0.018711
1.320313	1.328125	1.324219	-0.002128
1.324219	1.328125	1.326172	0.006209
1.324219	1.326172	1.325195	0.002037
1.324219	1.325195	1.324707	-0.000047
1.324707	1.325195	1.324951	0.000995
1.324707	1.324951	1.324829	0.000474
	1.000000 1.000000 1.250000 1.250000 1.312500 1.312500 1.312500 1.320313 1.324219 1.324219 1.324219 1.324219	1.000000 2.000000 1.000000 1.500000 1.250000 1.500000 1.250000 1.375000 1.312500 1.375000 1.312500 1.343750 1.312500 1.328125 1.320313 1.328125 1.324219 1.328125 1.324219 1.326172 1.324219 1.325195 1.324707 1.325195	1.000000 2.000000 1.500000 1.000000 1.500000 1.250000 1.250000 1.500000 1.375000 1.250000 1.375000 1.312500 1.312500 1.343750 1.328125 1.312500 1.328125 1.320313 1.320313 1.328125 1.324219 1.324219 1.328125 1.326172 1.324219 1.325195 1.324707 1.324707 1.325195 1.324951

The approximate root is: 1.324768

1.4 Pseudo Code for Bisection Method (Example 2.3)

1. Define Function:

$$f(x) = x \cdot e^x - 1$$

2. Input:

- Interval endpoints a = 0, b = 1
- Tolerance $\epsilon = 0.0001$
- Maximum iterations (optional)

3. Check Validity:

• If $f(a) \times f(b) \ge 0$, then output "Invalid initial guesses" and stop.

4. Iteration:

- Set iteration = 0
- While $\frac{(b-a)}{2} > \epsilon$, do:
 - (a) Increment iteration count.
 - (b) Compute midpoint $m = \frac{a+b}{2}$.
 - (c) Print the current iteration, a, b, m, and f(m).
 - (d) If f(m) = 0, then:
 - Output "Exact root found at m" and stop.
 - (e) If $f(a) \times f(m) < 0$, then:
 - Set b = m (root lies in [a, m]).
 - (f) Else:
 - Set a = m (root lies in [m, b]).

5. Output:

- After loop ends, compute final midpoint $m = \frac{a+b}{2}$.
- \bullet Output "The approximate root is m".

1.4.1 Sample Input and Output

Sample Output:

Iteration	a	b	m	f(m)
1	0.000000	1.000000	0.500000	-0.175639
2	0.500000	1.000000	0.750000	0.587750
3	0.500000	0.750000	0.625000	0.167654
4	0.500000	0.625000	0.562500	-0.012782
5	0.562500	0.625000	0.593750	0.075142
6	0.562500	0.593750	0.578125	0.030619
7	0.562500	0.578125	0.570313	0.008780
8	0.562500	0.570313	0.566406	-0.002035
9	0.566406	0.570313	0.568359	0.003364
10	0.566406	0.568359	0.567383	0.000662
11	0.566406	0.567383	0.566895	-0.000687
12	0.566895	0.567383	0.567139	-0.000013
13	0.567139	0.567383 	0.567261	0.000325

The approximate root is: 0.567200

2 The Method of False Position

2.1 Procedure for Method of False Position

1. Initial Setup:

- Choose two initial guesses a and b such that $f(a) \times f(b) < 0$, meaning the function f(x) changes signs between a and b.
- \bullet Set the desired tolerance level ϵ , which defines how accurate the root approximation should be.

2. Iteration Process:

• Compute the point c where the straight line joining (a, f(a)) and (b, f(b)) crosses the x-axis. The formula for c is:

$$c = \frac{af(b) - bf(a)}{f(b) - f(a)}$$

- Evaluate f(c).
- Check for Root:
 - If f(c) = 0, then c is the exact root, and the procedure can terminate.
 - Otherwise, update the interval:
 - * If $f(a) \times f(c) < 0$, set b = c (root lies in [a, c]).
 - * If $f(b) \times f(c) < 0$, set a = c (root lies in [c, b]).

3. Convergence Criteria:

• Check if the absolute difference |b-a| or |f(c)| is less than the tolerance ϵ . If so, stop the iteration and accept c as the approximate root.

4. Repeat:

• Repeat the process until the desired accuracy is achieved or the maximum number of iterations is reached.

2.2 Pseudo Code for Method of False Position (Example 2.4)

1. Define Function:

$$f(x) = x^3 - 2x - 5$$

2. Input:

- Interval endpoints a = 2, b = 3
- Tolerance $\epsilon = 0.0001$
- Maximum number of iterations (optional)

3. Check Validity:

• If $f(a) \times f(b) \ge 0$, output "Invalid initial guesses" and stop.

4. Iteration:

- While $|b-a| \ge \epsilon$, do:
 - (a) Compute the point c using the False Position formula:

$$c = \frac{a \cdot f(b) - b \cdot f(a)}{f(b) - f(a)}$$

- (b) Print the current values of a, b, c, and f(c).
- (c) If $|f(c)| < \epsilon$, output "Root found at c" and stop.
- (d) If $f(a) \times f(c) < 0$, set b = c (root is in [a, c]).
- (e) Else, set a = c (root is in [c, b]).

5. Output:

• Output the approximate root c after the loop ends.

2.2.1 Sample Input and Output

Sample Output:

Iteration	a	b	С	f(c)
1	2.000000	3.000000	2.058824	-0.390800
2	2.058824	3.000000	2.081264	-0.147204
3	2.081264	3.000000	2.089639	-0.054677
4	2.089639	3.000000	2.092740	-0.020203
5	2.092740	3.000000	2.093884	-0.007451
6	2.093884	3.000000	2.094305	-0.002746
7	2.094305	3.000000	2.094461	-0.001012
8	2.094461	3.000000	2.094518	-0.000373
9	2.094518	3.000000	2.094539	-0.000137
10	2.094539	3.000000	2.094547	-0.000051

The approximate root is: 2.094547

2.3 Pseudo Code for Method of False Position (Example 2.5)

1. Define Function:

$$f(x) = x^{2.2} - 69$$

2. **Input:**

- Interval endpoints a = 5, b = 8
- Tolerance $\epsilon = 0.0001$
- Maximum number of iterations (optional)

3. Check Validity:

• If $f(a) \times f(b) \ge 0$, output "Invalid initial guesses" and stop.

4. Iteration:

- While $|b-a| \ge \epsilon$, do:
 - (a) Compute the point c using the False Position formula:

$$c = \frac{a \cdot f(b) - b \cdot f(a)}{f(b) - f(a)}$$

- (b) Print the current values of a, b, c, and f(c).
- (c) If $|f(c)| < \epsilon$, output "Root found at c" and stop.
- (d) If $f(a) \times f(c) < 0$, set b = c (root is in [a, c]).
- (e) Else, set a = c (root is in [c, b]).

5. Output:

ullet Output the approximate root c after the loop ends.

2.3.1 Sample Input and Output

Sample Output:

Iteration	a	Ъ	С	f(c)
1	5.000000	8.000000	6.655990	-4.275625
2	6.655990	8.000000	6.834002	-0.406148
3	6.834002	8.000000	6.850670	-0.037554
4	6.850670	8.000000	6.852209	-0.003464
5	6.852209	8.000000	6.852351	-0.000319
6	6.852351	8.000000	6.852364	-0.000029

The approximate root is: 6.852364

3 The Iteration Method

3.1 Procedure for Iteration Method (Fixed-Point Iteration)

1. Initial Setup:

- Rewrite the equation f(x) = 0 in the form x = g(x), where g(x) is a continuous function.
- Choose an initial guess x_0 for the solution.
- \bullet Set the desired tolerance level ϵ , which defines how accurate the root approximation should be.

2. Iteration Process:

- Compute the next approximation $x_{n+1} = g(x_n)$.
- Check the difference between successive approximations $|x_{n+1} x_n|$.

3. Convergence Criteria:

• If $|x_{n+1} - x_n| < \epsilon$, then stop the iteration and accept x_{n+1} as the approximate root.

4. Repeat:

• Continue the iteration process until the convergence criteria are met, or the maximum number of iterations is reached.

5. Output:

• Output the approximate root x_{n+1} as the solution of the equation f(x) = 0.

3.2 Pseudo Code for Iterative Method (Example 2.6)

1. Define Function:

$$g(x) = \frac{1}{\sqrt{x+1}}$$

2. Input:

- Initial guess x_0
- Tolerance $\epsilon = 10^{-4}$
- Maximum number of iterations (optional)

3. Iteration:

- Set n = 0 (initial iteration)
- While $|x_{n+1} x_n| \ge \epsilon$, do:
 - (a) Compute the next approximation:

$$x_{n+1} = g(x_n) = \frac{1}{\sqrt{x_n + 1}}$$

- (b) Print the current values of x_n , x_{n+1} , and $|x_{n+1} x_n|$.
- (c) If $|x_{n+1} x_n| < \epsilon$, stop the iteration and accept x_{n+1} as the root.
- (d) Update $x_n = x_{n+1}$ and increment n.

4. Output:

• Output the approximate root x_{n+1} after convergence.

3.2.1 Sample Input and Output

Sample Output:

Iteration	x_n	g(x_n)	$ x_{n+1} - x_n $
1	0.500000	0.816497	0.316497
2	0.816497	0.741964	0.074533
3	0.741964	0.757671	0.015707
4	0.757671	0.754278	0.003393
5	0.754278	0.755007	0.000729
6	0.755007	0.754850	0.000157
7	0.754850	0.754884	0.000034

The approximate root is: 0.754884

3.3 Pseudo Code for Iteration Method (Example 2.7)

1. Define the iterative function:

$$g(x) = \frac{\cos(x) + 3}{2}$$

2. Input:

- Initial guess x_0
- Tolerance $\epsilon = 0.001$ (correct to 3 decimal places)
- Maximum number of iterations (optional, for example, 100)

3. Iteration:

- Set n = 0 (initial iteration)
- While $|x_{n+1} x_n| \ge \epsilon$, do:
 - (a) Compute the next approximation:

$$x_{n+1} = g(x_n) = \frac{\cos(x_n) + 3}{2}$$

- (b) Print the current values of x_n , x_{n+1} , and $|x_{n+1} x_n|$.
- (c) If $|x_{n+1} x_n| < \epsilon$, stop the iteration and accept x_{n+1} as the root.
- (d) Update $x_n = x_{n+1}$ and increment n.

4. Output:

• Output the approximate root x_{n+1} after convergence.

3.3.1 Sample Input and Output

Sample Output:

Iteration	x_n	g(x_n)	x_{n+1} - x_n
1	1.000000	1.770151	0.770151
2	1.770151	1.400982	0.369170
3	1.400982	1.584500	0.183518
4	1.584500	1.493148	0.091351
5	1.493148	1.538785	0.045637
6	1.538785	1.516003	0.022782
7	1.516003	1.527383	0.011380
8	1.527383	1.521700	0.005683
9	1.521700	1.524538	0.002839
10	1.524538	1.523121	0.001418
11	1.523121	1.523829	0.000708

The approximate root is: 1.524

3.4 Pseudo Code for Iteration Method (Example 2.8)

1. Define the iterative function:

$$g(x) = \frac{1}{e^x}$$

2. Input:

- Initial guess x_0
- Tolerance $\epsilon = 0.0001$ (correct to 4 decimal places)
- Maximum number of iterations (optional, for example, 100)

3. Iteration:

- Set n = 0 (initial iteration)
- While $|x_{n+1} x_n| \ge \epsilon$, do:
 - (a) Compute the next approximation:

$$x_{n+1} = g(x_n) = \frac{1}{e^{x_n}}$$

- (b) Print the current values of x_n , x_{n+1} , and $|x_{n+1} x_n|$.
- (c) If $|x_{n+1} x_n| < \epsilon$, stop the iteration and accept x_{n+1} as the root.
- (d) Update $x_n = x_{n+1}$ and increment n.

4. Output:

• Output the approximate root x_{n+1} after convergence.

3.4.1 Sample Input and Output

Sample Output:

Iteration	x_n	g(x_n)	$ x_{n+1} - x_n $
1	0.500000	0.606531	0.106531
2	0.606531	0.545239	0.061291
3	0.545239	0.579703	0.034464
4	0.579703	0.560065	0.019638
5	0.560065	0.571172	0.011108
6	0.571172	0.564863	0.006309
7	0.564863	0.568438	0.003575
8	0.568438	0.566409	0.002029
9	0.566409	0.567560	0.001150
10	0.567560	0.566907	0.000652
11	0.566907	0.567277	0.000370
12	0.567277	0.567067	0.000210
13	0.567067	0.567186	0.000119
14	0.567186	0.567119	0.000067

The approximate root is: 0.5671

4 Newton-Raphson Method

4.1 Procedure for Newton-Raphson Method

1. Initial Setup:

- Given the equation f(x) = 0, choose an initial guess x_0 close to the expected root.
- Define the derivative of the function f'(x), which is required for the Newton-Raphson iteration.
- Set the desired tolerance ϵ , which defines how accurate the root approximation should be.

2. Iteration Process:

• Compute the next approximation using the Newton-Raphson formula:

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

• Check the difference between successive approximations $|x_{n+1} - x_n|$.

3. Convergence Criteria:

• If $|x_{n+1} - x_n| < \epsilon$, stop the iteration and accept x_{n+1} as the approximate root.

4. Repeat:

 Repeat the iteration process until the convergence criteria are met or the maximum number of iterations is reached.

5. Output:

• Output the approximate root x_{n+1} as the solution to the equation f(x) = 0.

4.2 Pseudo Code for Newton-Raphson Method (Example 2.10)

1. Define the functions:

$$f(x) = x^3 - 2x - 5$$
$$f'(x) = 3x^2 - 2$$

2. Input:

- Initial guess x_0
- Tolerance $\epsilon = 0.0001$ (correct to 4 decimal places)
- Maximum number of iterations (optional, e.g., 100)

3. Iteration:

- Set n = 0 (initial iteration)
- While $|x_{n+1} x_n| \ge \epsilon$, do:
 - (a) Compute the next approximation using the Newton-Raphson formula:

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

- (b) Print the current values of x_n , $f(x_n)$, and $|x_{n+1} x_n|$.
- (c) If $|x_{n+1} x_n| < \epsilon$, stop the iteration and accept x_{n+1} as the root.
- (d) Update $x_n = x_{n+1}$ and increment n.

4. Output:

• Output the approximate root x_{n+1} after convergence.

4.2.1 Sample Input and Output

Sample Output:

Iteration	x_n	f(x_n)	x_{n+1} - x_n
1 2 3	2.000000 2.100000 2.094568	-1.000000 0.061000 0.000186	0.100000 0.005432 0.000017

The approximate root is: 2.0946

4.3 Pseudo Code for Newton-Raphson Method (Example 2.11)

1. Define the functions:

$$f(x) = x\sin(x) + \cos(x)$$

$$f'(x) = x\cos(x) - \sin(x)$$

2. Input:

- Initial guess $x_0 = 3.1416$ (starting point close to π)
- Tolerance $\epsilon = 0.0001$ (correct to 4 decimal places)
- Maximum number of iterations (optional, e.g., 100)

3. Iteration:

- Set n = 0 (initial iteration)
- While $|x_{n+1} x_n| \ge \epsilon$, do:
 - (a) Compute the next approximation using the Newton-Raphson formula:

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

- (b) Print the current values of x_n , $f(x_n)$, and $|x_{n+1} x_n|$.
- (c) If $|x_{n+1} x_n| < \epsilon$, stop the iteration and accept x_{n+1} as the root.
- (d) Update $x_n = x_{n+1}$ and increment n.

4. Output:

• Output the approximate root x_{n+1} after convergence.

4.3.1 Sample Input and Output

Sample Output:

Iteration	x_n	f(x_n)	x_{n+1} - x_n
1	3.141600	-1.000023	0.318317
2	2.823283	-0.066186	0.022103
3	2.801180	-0.007369	0.002478
4	2.798702	-0.000833	0.000280
5	2.798422	-0.000094	0.000032

The approximate root is: 2.7984

4.4 Pseudo Code for Newton-Raphson Method (Example 2.12)

1. Define the functions:

$$f(x) = x - e^{-x}$$
$$f'(x) = 1 + e^{-x}$$

2. Input:

- Initial guess $x_0 = 1$
- Tolerance $\epsilon = 0.0001$ (correct to 4 decimal places)
- Maximum number of iterations (optional, e.g., 100)

3. Iteration:

- Set n = 0 (initial iteration)
- While $|x_{n+1} x_n| \ge \epsilon$, do:
 - (a) Compute the next approximation using the Newton-Raphson formula:

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

- (b) Print the current values of x_n , $f(x_n)$, and $|x_{n+1} x_n|$.
- (c) If $|x_{n+1} x_n| < \epsilon$, stop the iteration and accept x_{n+1} as the root.
- (d) Update $x_n = x_{n+1}$ and increment n.

4. Output:

• Output the approximate root x_{n+1} after convergence.

4.4.1 Sample Input and Output

Sample Output:

Iteration	x_n	f(x_n)	x_{n+1} - x_n
1 2 3 4	1.000000 0.537883 0.566987 0.567143	0.632121 -0.046100 -0.000245 -0.000000	0.462117 0.029104 0.000156 0.000000

The approximate root is: 0.5671

5 Ramanujan's Method

5.1 Ramanujan's Method

Srinivasa Ramanujan (1887–1920) described an iterative method which can be used to determine the smallest root of the equation:

$$f(x) = 0$$

where f(x) is of the form:

$$f(x) = 1 - (a_1x + a_2x^2 + a_3x^3 + a_4x^4 + \dots)$$

For smaller values of x, we can write:

$$[1 - (a_1x + a_2x^2 + a_3x^3 + a_4x^4 + \dots)]^{-1} = b_1 + b_2x + b_3x^2 + \dots$$

Expanding the left-hand side by the binomial theorem, we obtain:

$$1 + (a_1x + a_2x^2 + a_3x^3 + \dots) + (a_1x + a_2x^2 + a_3x^3 + \dots)^2 + \dots = b_1 + b_2x + b_3x^2 + \dots$$

Comparing the coefficients of like powers of x on both sides of this equation, we get:

$$b_1 = 1$$
, $b_2 = a_1$, $b_3 = a_1^2 + a_2 = a_1b_2 + a_2b_1$

and for general n:

$$b_n = a_1 b_{n-1} + a_2 b_{n-2} + \dots + a_{n-1} b_1$$
 for $n = 2, 3, \dots$

Without any proof, Ramanujan states that the successive convergents $\frac{b_n}{b_{n+1}}$ approach a root of the equation f(x) = 0, where f(x) is given by the series expansion above.

5.2 Pseudo Code for Modified Ramanujan's Method (Example 2.14)

1. Initialize Coefficients:

• Set the coefficients based on the given equation:

$$a_1 = \frac{11}{6}, \quad a_2 = -1, \quad a_3 = \frac{1}{6}$$

- Set higher order coefficients $a_4 = a_5 = a_6 = \cdots = 0$.
- 2. Initialize b_n Terms:
 - Set $b_1 = 1$.
- 3. Set Convergence Criteria:
 - Set the desired tolerance $\epsilon = 0.001$.

4. Iterative Calculation of b_n Terms:

- For n=2 to the desired number of terms, perform the following steps:
 - (a) If n = 2:
 - Compute b_2 :

$$b_2 = a_1$$

(b) If n = 3:

- Compute b_3 :

$$b_3 = a_1b_2 + a_2b_1$$

(c) If $n \geq 4$:

– Compute b_n using the recursive formula:

$$b_n = a_1 b_{n-1} + a_2 b_{n-2} + a_3 b_{n-3}$$

5. Calculate Successive Ratios of b_n Terms:

- For each $n \geq 2$:
 - (a) Compute the ratio:

$$R_n = \frac{b_{n-1}}{b_n}$$

6. Check for Convergence:

- For each $n \ge 4$:
 - (a) Compute the difference between successive ratios:

$$\Delta R = |R_n - R_{n-1}|$$

- (b) If $\Delta R < \epsilon$, stop the iteration.
- (c) Accept R_n as the approximate smallest root.

7. Output:

• Output the approximate smallest root:

$$x \approx R_n$$

5.2.1 Sample Input and Output

Sample Output:

 $b_3 = 2.361111$

 $b_2 / b_3 = 0.776471$

 $b_4 = 2.662037$

 $b_3 / b_4 = 0.886957$

 $b_5 = 2.824846$

 $b_4 / b_5 = 0.942365$

 $b_6 = 2.910365$

 $b_5 / b_6 = 0.970616$

 $b_7 = 2.954497$

 $b_6 / b_7 = 0.985063$

 $b_8 = 2.977020$

 $b_7 / b_8 = 0.992434$

 $b_9 = 2.988434$

 $b_8 / b_9 = 0.996181$

 $b_10 = 2.994191$

 $b_9 / b_{10} = 0.998077$

 $b_11 = 2.997087$

 $b_10 / b_11 = 0.999034$

 $b_{12} = 2.998541$

 $b_11 / b_12 = 0.999515$

 $b_13 = 2.999269$

 $b_12 / b_13 = 0.999757$

 $b_14 = 2.999634$

 $b_13 / b_14 = 0.999878$

5.3 Pseudo Code for Ramanujan's Method (Example 2.15)

1. Initialize Coefficients:

• Set the coefficients based on the given equation:

$$a_1 = 1$$
, $a_2 = 1$, $a_3 = \frac{1}{2}$, $a_4 = \frac{1}{6}$, $a_5 = \frac{1}{24}$

2. Initialize b_n Terms:

• Set $b_1 = 1$.

3. Compute b_n Terms:

• For n=2 to n=6, compute b_n as follows:

$$\begin{aligned} &-b_2=a_1\\ &-b_3=a_1b_2+a_2b_1\\ &-b_4=a_1b_3+a_2b_2+a_3b_1\\ &-b_5=a_1b_4+a_2b_3+a_3b_2+a_4b_1\\ &-b_6=a_1b_5+a_2b_4+a_3b_3+a_4b_2+a_5b_1 \end{aligned}$$

4. Calculate Successive Ratios:

• For each $n \geq 2$, compute the ratio:

$$R_n = \frac{b_{n-1}}{b_n}$$

5. Check for Convergence:

- If $|R_n R_{n-1}| < \epsilon$ (where $\epsilon = 0.0001$), stop the iteration.
- Accept R_n as the approximate root.

6. Output:

• Output the approximate root R_n .

5.3.1 Sample Input and Output

Sample Output:

 $b_1 = 1.000000$

 $b_2 = 1.000000$

 $b_3 = 2.000000$

 $b_4 = 3.500000$

 $b_5 = 6.166667$

 $b_6 = 10.875000$

Ratios of consecutive b_n terms:

 $b_1 / b_2 = 1.000000$

 $b_2 / b_3 = 0.500000$

 $b_3 / b_4 = 0.571429$

 $b_4 / b_5 = 0.567568$

 $b_5 / b_6 = 0.567050$

5.4 Pseudo Code for Ramanujan's Method (Example 2.16)

1. Initialize Coefficients:

 \bullet Set the coefficients based on the given equation:

$$a_1=2, \quad a_2=0, \quad a_3=-\frac{1}{6}, \quad a_4=0, \quad a_5=\frac{1}{120}, \quad a_6=0, \quad a_7=-\frac{1}{5040}$$

2. Initialize b_n Terms:

• Set $b_1 = 1$.

3. Set Tolerance:

• Set the tolerance level for convergence: $\epsilon = 0.0001$.

4. Compute b_n Terms:

• For n = 2 to n = 8, compute b_n using the recursive formula:

$$-b_2 = a_1$$

$$\begin{array}{l} -\ b_3 = a_1b_2 + a_2b_1 \\ -\ b_4 = a_1b_3 + a_2b_2 + a_3b_1 \\ -\ b_5 = a_1b_4 + a_2b_3 + a_3b_2 + a_4b_1 \\ -\ b_6 = a_1b_5 + a_2b_4 + a_3b_3 + a_4b_2 + a_5b_1 \\ -\ b_7 = a_1b_6 + a_2b_5 + a_3b_4 + a_4b_3 + a_5b_2 + a_6b_1 \\ -\ b_8 = a_1b_7 + a_2b_6 + a_3b_5 + a_4b_4 + a_5b_3 + a_6b_2 + a_7b_1 \end{array}$$

5. Calculate Successive Ratios:

• For each $n \geq 2$, compute the ratio:

$$R_n = \frac{b_{n-1}}{b_n}$$

• Compute the ratios:

$$R_2 = \frac{b_1}{b_2}, \quad R_3 = \frac{b_2}{b_3}, \quad \dots, \quad R_8 = \frac{b_7}{b_8}$$

6. Check for Convergence:

• If $|R_8 - R_7| < \epsilon$, stop the iteration and accept R_8 as the approximate root.

7. Output:

• Output the approximate root R_8 .

5.4.1 Sample Input and Output

Sample Output:

 $b_1 = 1.000000$

 $b_2 = 2.000000$

 $b_3 = 4.000000$

 $b_4 = 7.833333$

 $b_5 = 15.333333$

 $b_6 = 30.008333$

 $b_7 = 58.727778$

 $b_8 = 114.933135$

Ratios of consecutive b_n terms:

 $b_1 / b_2 = 0.500000$

 $b_2 / b_3 = 0.500000$

 $b_3 / b_4 = 0.510638$

 $b_4 / b_5 = 0.510870$

 $b_5 / b_6 = 0.510969$

 $b_6 / b_7 = 0.510973$

 $b_7 / b_8 = 0.510973$

Convergence reached. Approximate root = 0.510973

5.5 Pseudo Code for Ramanujan's Method

1. Initialize Coefficients:

 \bullet Set the coefficients based on the given equation:

$$a_1 = 1$$
, $a_2 = -\frac{1}{4}$, $a_3 = \frac{1}{36}$, $a_4 = -\frac{1}{576}$, $a_5 = \frac{1}{14400}$, $a_6 = -\frac{1}{518400}$, $a_7 = \frac{1}{25401600}$

2. Initialize b_n Terms:

• Set $b_1 = 1$.

3. Set Tolerance:

• Set the tolerance level for convergence: $\epsilon = 0.001$.

4. Compute b_n Terms:

• For n=2 to n=8, compute b_n using the recursive formula:

$$-b_2 = a_1$$

$$-b_3 = a_1b_2 + a_2b_1$$

$$-b_4 = a_1b_3 + a_2b_2 + a_3b_1$$

$$-b_5 = a_1b_4 + a_2b_3 + a_3b_2 + a_4b_1$$

$$-b_6 = a_1b_5 + a_2b_4 + a_3b_3 + a_4b_2 + a_5b_1$$

$$-b_7 = a_1b_6 + a_2b_5 + a_3b_4 + a_4b_3 + a_5b_2 + a_6b_1$$

$$-b_8 = a_1b_7 + a_2b_6 + a_3b_5 + a_4b_4 + a_5b_3 + a_6b_2 + a_7b_1$$

5. Calculate Successive Ratios:

• For each $n \geq 2$, compute the ratio:

$$R_n = \frac{b_{n-1}}{b_n}$$

• Compute the ratios:

$$R_2 = \frac{b_1}{b_2}, \quad R_3 = \frac{b_2}{b_3}, \quad \dots, \quad R_8 = \frac{b_7}{b_8}$$

6. Check for Convergence:

• If $|R_8 - R_7| < \epsilon$, stop the iteration and accept R_8 as the approximate root.

7. Output:

• Output the approximate root R_8 .

5.5.1 Sample Input and Output

Sample Output:

b_1 = 1.000000 b_2 = 1.000000 b_3 = 0.750000 b_4 = 0.527778 b_5 = 0.366319 b_6 = 0.253542 b_7 = 0.175388

 $b_8 = 0.121312$

Ratios of consecutive b_n terms:

b_1 / b_2 = 1.000000 b_2 / b_3 = 1.333333 b_3 / b_4 = 1.421053 b_4 / b_5 = 1.440758 b_5 / b_6 = 1.444810 b_6 / b_7 = 1.445607 b_7 / b_8 = 1.445760

Convergence reached. Approximate root = 1.445760

6 The Secant Method

6.1 Procedure for the Secant Method

1. Given Equation:

• Consider a nonlinear equation of the form f(x) = 0.

2. Initial Guess:

• Choose two initial approximations x_0 and x_1 such that $f(x_0)$ and $f(x_1)$ are close to zero.

3. Iterative Formula:

• Use the following secant method formula to find the next approximation x_{n+1} :

$$x_{n+1} = x_n - \frac{f(x_n)(x_n - x_{n-1})}{f(x_n) - f(x_{n-1})}$$

• This formula is derived from the secant line passing through the points $(x_n, f(x_n))$ and $(x_{n-1}, f(x_{n-1}))$, which approximates the root of f(x).

4. Convergence Criteria:

• Check if the absolute difference $|x_{n+1}-x_n|$ is less than a predefined tolerance ϵ . If:

$$|x_{n+1} - x_n| < \epsilon$$

then accept x_{n+1} as the approximate root and stop the iteration.

5. Repeat:

• If the convergence criterion is not met, set $x_{n-1} = x_n$ and $x_n = x_{n+1}$ and repeat the process until convergence.

6. Output:

• Output the approximate root x_{n+1} once the convergence criterion is satisfied.

6.2 Pseudo Code for Secant Method

1. Input:

- The function $f(x) = x^3 2x 5$.
- Initial guesses x_0 and x_1 .
- Tolerance ϵ for convergence.
- Maximum number of iterations.

2. Initialize:

• Set n = 0 (iteration counter).

3. Iterative Process:

- Repeat until the maximum number of iterations is reached or convergence is achieved:
 - (a) Compute $f(x_0)$ and $f(x_1)$.
 - (b) Check if $|f(x_1) f(x_0)|$ is too small. If so, stop the iteration and print an error message to avoid division by zero.
 - (c) Use the Secant Method formula to calculate the next approximation x_2 :

$$x_2 = x_1 - \frac{f(x_1)(x_1 - x_0)}{f(x_1) - f(x_0)}$$

(d) Calculate the absolute difference $|x_2 - x_1|$.

- (e) If $|x_2 x_1| < \epsilon$, then stop the iteration and accept x_2 as the root.
- (f) Update the values:

$$x_0 = x_1, \quad x_1 = x_2$$

(g) Increment the iteration counter n.

4. Check for Maximum Iterations:

• If the maximum number of iterations is reached without convergence, print the last approximation x_2 as the final result.

5. Output:

• Output the root x_2 once the convergence criteria $|x_2 - x_1| < \epsilon$ is satisfied.

6.2.1 Sample Input and Output

Sample Output:

Iteration	x_n	f(x_n)	x_{n+1} - x_n
1	3.000000	16.000000	0.941176
2	2.058824	-0.390800	0.022440
3	2.081264	-0.147204	0.013560
4	2.094824	0.003044	0.000275
5	2.094549	-0.000023	0.000002

Convergence reached. Root = 2.094551

THE END