# Randomness

### Pseudorandomness







### Review

#### Problem:

Integrity of message from Alice to Bob over an untrusted channel

Alice must append bits to message that only Alice (or Bob) can make

### Theoretical solution:

Random function

#### **Practical solution:**



Pseudorandom function (PRF)

 $f_{\mathbf{k}}$  is indistinguishable in practice from a random  $\mathbf{f}$ , unless you know  $\mathbf{k}$ 

Embodied by functions like HMAC-SHA256

Where do these random keys k come from ...?

Careful: We're often sloppy about what is "random"

### **Review**

### Problem:

Integrity of message from Alice to Bob over untrusted channel

Alice must append bits to message that only Alice (and Bob) can make

### Solution:

Random function

### **Practical solution:**

Pseudorandom function  $-f_k$  is indistinguishable in practice from a random function, unless you know a key k

Embodied by functions like **HMAC-SHA256** 

Where do these random keys **k** come from ... ? *Careful:* We're often sloppy about what is "random"

### **True Randomness**

Output of a physical process that is inherently random

Scarce and hard to get

### Pseudorandom generator (PRG)

Takes small seed that is really random

Generates long sequence of numbers that are "as good as random"

# Definition: **PRG** is secure if it's indistinguishable from random

### Similar game to PRF definition:

- 1. We flip a coin secretly to get a bit **b**
- 2. If  $\mathbf{b}=0$ , let  $\mathbf{s}$  be a truly random stream If  $\mathbf{b}=1$ , let  $\mathbf{s}$  be  $\mathbf{g}_{\mathbf{k}}$  for random secret  $\mathbf{k}$
- 3. Mallory can see as much of the output of *s* as they want
- 4. Mallory guesses **b**, wins if guesses correctly

Say **g** is a secure PRG if there is no winning strategy for Mallory\*

### Here's a simple PRG that works:

```
For some random \mathbf{k} and PRF \mathbf{f}, output: \mathbf{f}_{\mathbf{k}}(0) || \mathbf{f}_{\mathbf{k}}(1) || \mathbf{f}_{\mathbf{k}}(2) || ...
```

**Theorem:** If **f** is a secure PRF, and **G** is built from **f** by this construction, then **G** is a secure PRG.

**Proof:** Assume **f** is a secure PRF, we need to show that **G** is a secure PRG.

### Proof by contradiction:

- 1. Assume **G** is *not* secure; therefore Mallory can eventually win the PRG game
- 2. This gives Mallory a winning strategy for the PRF game:
  - a. query the PRF with inputs 0, 1, 2, ...
  - b. apply the PRG-distinguishing algorithm
- 3. Therefore, Mallory can win the PRF game, which is a contradiction
- 4. Therefore, g is secure

### Where do we get true randomness?

Want "indistinguishable from random" which means: adversary can't guess it

Gather lots of details about the computer that the adversary will have trouble guessing [Examples?]

Problem: Adversary can predict some of this

Problem: How do you know when you have enough randomness?

Modern OSes typically collect randomness, provide API to get it e.g., Linux:

/dev/random is a device that gives random bits, blocks until available

/dev/urandom gives output of a PRG, nonblocking, seeded from
/dev/random eventually. (Initially may not be sufficiently random.)

### Confidentiality

### **Confidentiality**

Goal: Keep contents of message **p** secret from an eavesdropper



### Nomenclature

- p plaintext
- **c** ciphertext
- **k** secret key
- **E** encryption function
- D decryption function

Digression: Classical Cryptography

### **Caesar Cipher**

First recorded use: Julius Caesar (100-44 BC)

Replaces each plaintext letter with the letter a fixed number of places down the alphabet

Encryption:  $\mathbf{c_i} := (\mathbf{p_i} + \mathbf{k}) \mod 26$ 

Decryption:  $\mathbf{p_i} := (\mathbf{c_i} - \mathbf{k}) \mod 26$ 

e.g. (**k**=3):

[Break the Caesar cipher?]

### **Cryptanalysis** of the Caesar Cipher

Only 26 possible keys:

Try every possible **k** by "brute force"

Can a computer recognize the right one?

Use *frequency analysis*: English text has distinctive letter frequency distribution



Recognize with e.g.  $X^2$ -square test

### Later advance: Vigènere Cipher

First described by Bellaso in 1553, later misattributed to Vigenère

Called *le chiffre indéchiffrable* 

Encrypts successive letters using a sequence of Caesar ciphers determined by the letters of a keyword

For an **n**-letter keyword **k**,

Encryption:  $\mathbf{c_i} := (\mathbf{p_i} + \mathbf{k_{i \text{ mod } n}}) \mod 26$ 

Decryption:  $\mathbf{p_i} := (\mathbf{c_i} - \mathbf{k_i}_{mod n}) \mod 26$ 

Example: k=ABC (i.e.  $k_0=0$ ,  $k_1=1$ ,  $k_2=2$ )

Plain: bbbbbb amazon

+Key: 012012 012012

=Cipher: bcdbcd anczpp

[Break le chiffre indéchiffrable?]

### **Cryptanalysis of the Vigènere Cipher**

Easy, if we know the keyword length, n:

- 1. Break ciphertext into **n** slices
- 2. Solve each slice as a Caesar cipher

How to find n? One way: Kasiski method

Published 1863 by Kasiski (earlier known to Babbage?)

Repeated strings in long plaintext will sometimes, by coincidence, be encrypted with same key letters

Plain: CRYPTOISSHORTFORCRYPTOGRAPHY

+Key: ABCDABCDABCDABCDABCDABCD

=Cipher: CSASTPKVSIQUTGQUCSASTPIUAQJB

Distance: 16

Distance between repeated strings in the ciphertext is (likely) a multiple of key length

e.g., distance 16 implies **n** is 16, 8, 4, 2, or 1 Find multiple repeats to narrow down

[What if key is as long as the plaintext?]

### Back to the present:

### One-time Pad (OTP)

```
Alice and Bob jointly generate a secret, very long, string of <u>random</u> bits (the one-time pad, k)

To encrypt: c<sub>i</sub> = p<sub>i</sub> xor k<sub>i</sub>
```

To decrypt:  $\mathbf{c}_i = \mathbf{p}_i \times \mathbf{c}_i \times \mathbf{k}_i$ 

"one-time" means you should never reuse any part of the pad. If you do:

Let  $\mathbf{k_i}$  be pad bit Adversary learns ( $\mathbf{a}$  xor  $\mathbf{k_i}$ ) and ( $\mathbf{b}$  xor  $\mathbf{k_i}$ ) Adversary xors those to get ( $\mathbf{a}$  xor  $\mathbf{b}$ ), which is useful to him [How?] a b a xor b
0 0 0
0 1 1
1 0 1
1 1 0
a xor b xor b = a
a xor b xor a = b

Provably secure [Why?]  $\forall p$ ,  $\exists k$  s.t.  $C = p \times k$  Usually impractical [Why? Exceptions?]

If we can send a key (one the), why not just sent the message

## One-time pad reuse example (from stackexchange)



### Obvious idea: Use a **pseudorandom generator** instead of a truly random pad

(Recall: Secure **PRG** inputs a seed  $\mathbf{k}$ , outputs a stream that is indistinguishable in practice from true randomness unless you know  $\mathbf{k}$ )

### Called a stream cipher:

- 1. Start with shared secret key **k**
- 2. Alice & Bob each use k to seed the PRG
- 3. To encrypt, Alice XORs next bit of her generator's output with next bit of plaintext
- 4. To decrypt, Bob XORs next bit of his generator's output with next bit of ciphertext

### Works nicely, but:

don't *ever* reuse the key, or the generator output bits

### So Far

The Security Mindset

Message Integrity

Randomness / Pseudorandomness

Confidentiality: Stream Ciphers

### **Next Wednesday...**

**Block Ciphers and Cipher Modes**