Problem Solving Paradigms: Causal Reasoning

6.871 – Lecture 14

Outline

- Problem Solving Paradigms
 - What are they and what are they good for
- Causal reasoning as a PSP
 - ABEL
- Causal reasoning + rules + debugging
 - GORDIUS

A Recipe

- Study how experts characterize problems and solution methods, especially their technical vocabulary
- Mimic their representation, capture the abstractions
- Mimic their problem solving mechanism

This Works Because

- There are generic task types that span many domains
- There are a modest number of problem solving paradigms and their knowledge representations
- Each generic task has a variety of appropriate problem solving paradigms
- Representations indicate how to look at the world: capture the important abstractions of the problem domain.
- Problem solving paradigms organize representational, inferential and computational processes; indicate when and how to draw conclusions.

Caveats

- A problem solving paradigm suggests control structures and inference mechanisms
 - but is not synonymous with them.
- A knowledge representation suggests certain datastructures and control structures
 - but it is not synonymous with them.
- Problem solving paradigms and knowledge representations are knowledge level constructs, not mechanisms or data structures.

What's In A PSP?

- A representation for factual knowledge.
- Inferential methods
- A control structure dictating when to employ the inferential methods and with what purpose.

Why Concentrate on Paradigms?

- Special purpose programming languages for the paradigm can be created and reused.
- Knowledge acquisition tools specific to the paradigm can be designed and reused.
- Maintainability is improved.
- Need for "programming hacks" reduced.
- Emphasizes the search for the right level of abstraction.

A Basic Paradigm: Means Ends Analysis

Diagnosis: A Classic Generic Task

PSPs

- Bayesian statistics
 - Naïve Bayes' rule
 - Sequential Bayesian diagnosis
- Frequency and invoking strength: Internist
- Empirical associations: Mycin
- Causal: ABEL

The Intuition

- A flooded basement
- An auto accident

ABEL

• Domain?

Representation?

ABEL Representations

	Lower GI Fluid	Plasma Fluid
Na	100-110	138-148
K	30-40	4-5
Cl	60-90	100-110
HCO ₃	30-60	24-28

Compared to plasma:

Lower GI Fluid is rich in HCO₃ and K; low in NA and CI

Loss of GI Fluid results in

reduced fluid in (hypovolemia)
reduced K (hypokalemia)
reduced HCO₃ (hypobicarbonatemia)
increased CI (hyperchloremia)
increased Na (hypernatremia)

6.871 - Lecture 14

ABEL

- Causal knowledge represented at multiple levels of description
- Each causal relation characterized by constraints among severity, duration, etc. between cause and effect
- Each causal relation described at next more detailed level
- Each disease node described using network of nodes and causal links at next more detailed level
- Goal: assemble a causal explanation of all findings using a network of causal relations at many levels of detail.
- Models interactions between the hypothesized diseases

Multiple Levels

ABEL: Multiple Levels

Accounting For Multiple Causes

ABEL: Modeling Feedback

ABEL Operations

- Elaboration: Makes connections across levels of detail by filling in the structure below
- Aggregation: Makes connections across levels of detail by filling in the structure above
- Component Decomposition: Relates disorders at the same level of detail by breaking up a node into component parts
- Component Summation: Relates disorders at the same level of detail by summing (arithmetically) contributions of components parts.
- Projection: Forges causal links at the same level of detail in the search for etiologic explanation

Combining Paradigms

- Gordius:
 - Generate test debug
 - Rules + Causal Models
- What's generate and test as a PSP?
 - Dendral as an example
 - What did Dendral's tester tell you?

GORDIUS

Domain/task?

Processes

- Deposition
- Intrusion
- Fault
- Uplift/subsidence
- Tilt

Rules Model Interactions

Pattern constraints R1 IGN R2 Igneous(IGN)
Same-type(R' Same-type(R1, R2) Parallel(e1,e2)

> **Events:** create rock1 intrude IGN through rock1

Local Matching

Debugging

- Dependency maintenance
 - height affected by:
 - shale is produced underwater
 - shale deposit depth
 - height is unchanged since deposition
 - sea level unchanged since deposition
- Repair strategies
 - "unchanged" assumption
 - parameter value assumption
 - time ordering assumption

Summary

- Problem Solving Paradigms
 - What are they and what are they good for
- Causal reasoning as a PSP
 - ABEL
- Causal reasoning + rules + debugging
 - GORDIUS