Digitaltechnik Wintersemester 2021/2022 2. Vorlesung

Inhalt

- 1. Einleitung
- 2. Darstellung von natürlichen Zahlen
- 3. Umrechnen zwischen Zahlensystemen
- 4. Addition von vorzeichenlosen Binärzahlen
- 5. Vorzeichenbehaftete Binärzahlen
- 6. Logikgatter
- 7. Zusammenfassung und Ausblick

Agenda

- 1. Einleitung
- 2. Darstellung von natürlichen Zahlen
- 3. Umrechnen zwischen Zahlensystemen
- 4. Addition von vorzeichenlosen Binärzahlen
- 5. Vorzeichenbehaftete Binärzahlen
- 6. Logikgatter
- 7. Zusammenfassung und Ausblick

Rückblick auf letzte Vorlesung

- Beherrschen von Komplexität
 - Abstraktion
 - Disziplin
 - Hierarchie
 - Modularität
 - Regularität
- Binärsystem als digitale Disziplin
- Digitaltechnik befasst sich mit Entwurf digitaler Schaltungen
 - Ein/Ausgaben binär

Zweierpotenzen: das Einmaleins der Informatik

00 4	010	1004	12111 / T
$2^0 = 1$	$2^{10} =$	1024	Kibi ($pprox$ Tausend)
$2^1 = 2$	2 ¹¹ =	2048	
$2^2 = 4$	2 ¹² =	4096	
$2^3 = 8$	$2^{13} =$	8192	
2 ⁴ = 16	2 ¹⁴ =	16384	
$2^5 = 32$	2 ¹⁵ =	32768	
$2^6 = 64$	2 ¹⁶ =	65536	
$2^7 = 128$	$2^{20} =$	1048576	Mebi ($pprox$ Million)
$2^8 = 256$	$2^{30} =$	1073741824	Gibi ($pprox$ Milliarde)
$2^9 = 512$	$2^{40} = 10$	99511627776	Tebi ($pprox$ Billion)

Überblick der heutigen Vorlesung

- ► Zahlensysteme: Bitfolgen ↔ (ganze) Zahlen
 - Dezimal-, Binär-, Hexadezimalzahlen
 - Darstellung
 - Umrechnung
 - Addition von Binärzahlen
 - Vorzeichenbehaftete Binärzahlen
- Logikgatter: Einfache Boole'sche Funktionen
 - Wahrheitswertetabellen
 - Symbole und Schreibweisen
 - Anwendung

Harris 2013/2016 Kap. 1.4 - 1.5

Agenda

- 1. Einleitung
- 2. Darstellung von natürlichen Zahlen
- 3. Umrechnen zwischen Zahlensystemen
- 4. Addition von vorzeichenlosen Binärzahlen
- 5. Vorzeichenbehaftete Binärzahlen
- 6. Logikgatter
- 7. Zusammenfassung und Ausblick

Definition von Zahlenmengen

- ▶ natürliche Zahlen $\mathbb{N} = \{0, 1, 2, ...\}$
- ganze Zahlen $\mathbb{Z} = \{..., -2, -1, 0, 1, 2, ...\}$
- rationale Zahlen $\mathbb{Q} = \{ \frac{a}{b} : a \in \mathbb{Z} \land b \in \mathbb{N} \land b \neq 0 \}$
- lacktriangle reele Zahlen ${\mathbb R}$
- komplexe Zahlen, ...

Darstellungen von natürlichen Zahlen — Beispiele

hexadezimal:
$$1F3A_{16} = 10 \cdot 16^0 + 3 \cdot 16^1 + 15 \cdot 16^2 + 1 \cdot 16^3$$

= $10 \cdot 1 + 3 \cdot 16 + 15 \cdot 256 + 1 \cdot 4096$
= 7994_{10}

Darstellungen von natürlichen Zahlen — Verallgemeinerung (Abstraktion)

Definition: vorzeichenloses Stellenwertsystem

Für eine Basis $b \in \mathbb{N} \land b \geq 2$ ist $Z_b := \{0, 1, ..., b-1\}$ die Menge der verfügbaren Ziffern. Die Funktion $u_{b,k}$ bildet eine Ziffernfolge der Breite $k \in \mathbb{N}$ auf eine natürliche Zahl ab:

$$\mathsf{u}_{b,k}:(a_{k-1}\ldots a_1a_0)\in Z_b^k\mapsto \sum_{i=0}^{k-1}a_i\cdot b^i\in\mathbb{N}$$

Trick zur effizienteren Berechnung ohne Exponentiationen b^i : Horner Schema:

$$\sum_{i=0}^{k-1} a_i \cdot b^i = ((\dots((a_{k-1} \cdot b + a_{k-2}) \cdot b + a_{k-3}) \dots) \cdot b + a_1) \cdot b + a_0$$

Vorzeichenloses Stellenwertsystem

- polyadisches Zahlensystem
- ▶ niedrigstwertige Stelle (LSD, least significant digit): a₀
- ▶ höchstwertige Stelle (MSD, most significant digit): a_{k-1}
- kleinste darstellbare Zahl: $\sum_{i=0}^{k-1} 0 \cdot b^i = 0$
- ▶ größte darstellbare Zahl: $\sum_{i=0}^{k-1} (b-1) \cdot b^i = b^k 1$
- Anzahl der darstellbaren Werte: $|Z_b^k| = |Z_b|^k = b^k$
- lacktriangle eineindeutig (bijektiv) abbildbar auf Wertebereich $\{0,\dots,b^k-1\}$ für festes k

Häufig verwendete Basen

	dual/binär	oktal	dezimal	hexadezimal
b	2	8	10	16
Z_b	$\{0,1\}\coloneqq \mathbb{B}$	$\{0,\ldots,7\}$	$\{0,, 9\}$	$\{0, \dots, 9, A, B, C, D, E, F\}$
Literale	1101 00112	323 ₈	211 ₁₀	D3 ₁₆
	0b11010011	00323	0d211	0xD3

weniger gebräuchlich:

- b = 20 wenn man mit Händen *und* Füßen rechnet
- ▶ b = 60 zur Angabe von Zeit bzw. Längen-/Breitengraden
- b = 12 ein "Dutzend"

Agenda

- 1. Einleitung
- 2. Darstellung von natürlichen Zahlen
- 3. Umrechnen zwischen Zahlensystemen
- 4. Addition von vorzeichenlosen Binärzahlen
- 5. Vorzeichenbehaftete Binärzahlen
- 6. Logikgatter
- 7. Zusammenfassung und Ausblick

Zweierpotenzen

Nibble-Werte

00002	=	0 ₁₀	=	016
00012		1 ₁₀		1 ₁₆
00102		2 ₁₀		2 ₁₆
00112		3 ₁₀		3 ₁₆
01002	=	4 ₁₀	=	4 ₁₆
01012	=	5 ₁₀	=	516
01102	=	6 ₁₀	=	616
01112	=	7 ₁₀	=	7 ₁₆
1000 ₂	=	8 ₁₀	=	8 ₁₆
10012	=	9 ₁₀	=	9 ₁₆
1010 ₂	=	10 ₁₀	=	A_{16}
1011 ₂	=	11 ₁₀	=	B_{16}
1100 ₂	=	12 ₁₀	=	C_{16}
11012	=	13 ₁₀	=	D_{16}
1110 ₂	=	14 ₁₀	=	E_{16}
11112	=	15 ₁₀	=	F_{16}

Binär/Hexadezimal \rightarrow Dezimal LQ5-9

polyadische Abbildung anwenden:

$$u_{2,5}(1\ 0011_2) = 2^0 + 2^1 + 2^4 = 19_{10}$$

$$\qquad \qquad u_{16,3}(4AF_{16}) = 15 \cdot 16^0 + 10 \cdot 16^1 + 4 \cdot 16^2 = 1199_{10}$$

Binär ↔ **Hexadezimal**

- Nibble-weise umwandeln
- bei least significant bit beginnen
- führende Nullen weglassen oder ergänzen (je nach geforderter Bitbreite)
- ► 11 1010 0110 1000₂ = 3*A*68₁₆

 $ightharpoonup 7BF_{16} = 111 1011 1111_2$

Dezimal \rightarrow Binär LQ5-1 (Prinzip auch für größere Basen anwendbar)

Methode 1
 (links nach rechts):
 maximale Zweierpotenzen abziehen

$$53_{10}$$

$$= 32 + 21$$

$$= 32 + 16 + 5$$

$$= 32 + 16 + 4 + 1$$

$$= 2^{5} + 2^{4} + 2^{2} + 2^{0}$$

$$= 11 \ 0101_{2}$$

Methode 2 (rechts nach links): Halbieren mit Rest

$$53_{10}$$

$$= 2 \cdot \underline{26} + 1$$

$$= 2 \cdot (2 \cdot \underline{13} + 0) + 1$$

$$= 2 \cdot (2 \cdot (2 \cdot \underline{6} + 1) + 0) + 1$$

$$= 2 \cdot (2 \cdot (2 \cdot (2 \cdot \underline{3} + 0) + 1) + 0) + 1$$

$$= 2 \cdot (2 \cdot (2 \cdot (2 \cdot (2 \cdot \underline{1} + \underline{1}) + \underline{0}) + \underline{1}) + \underline{0}) + \underline{1}$$

$$= 11 \ 0101_{2}$$

Umrechnen zwischen Zahlensystemen

Zweierpotenzen verinnerlichen!

Agenda

- 1. Einleitung
- 2. Darstellung von natürlichen Zahlen
- 3. Umrechnen zwischen Zahlensystemen
- 4. Addition von vorzeichenlosen Binärzahlen
- 5. Vorzeichenbehaftete Binärzahlen
- 6. Logikgatter
- 7. Zusammenfassung und Ausblick

Schriftliche Addition

Dezimal

Binär

	=	1	1	1	0	Summe
	+	0	0	1	1	Summand
		1	0	1	1	Summand
•			1	1		Ubertrag

Addition mit Überlauf LQ5-2 RQ5-2

Binär Übertrag Summand Summand Summe Überlauf

- Digitale Systeme arbeiten i.d.R. mit festen Bitbreiten
 - Langzahlarithmetik nur in Software (Bitbreite nur durch verfügbaren Arbeitsspeicher beschränkt)
 - Overflow-flag zum Signalisieren arithmetischer Ausnahmen in Hardware
- Operation (bspw. Addition) läuft über, wenn Ergebnis nicht mit der verfügbaren Bitbreite dargestellt werden kann
- für 4 bit Addierer gilt: 11 + 6 = 1

Umfrage

Agenda

- 1. Einleitung
- 2. Darstellung von natürlichen Zahlen
- 3. Umrechnen zwischen Zahlensystemen
- 4. Addition von vorzeichenlosen Binärzahlen
- 5. Vorzeichenbehaftete Binärzahlen
- 6. Logikgatter
- 7. Zusammenfassung und Ausblick

Darstellungen von ganzen Zahlen — Dezimal

$$+5347_{10} = (7 \cdot 1 + 4 \cdot 10 + 3 \cdot 100 + 5 \cdot 1000) \cdot 1$$

= $(7 \cdot 10^{0} + 4 \cdot 10^{1} + 3 \cdot 10^{2} + 5 \cdot 10^{3}) \cdot (-1)^{0}$

- Vorzeichen
 - spezielle Ziffer an höchstwertiger Stelle
 - kann auch als 0/1 repräsentiert werden

Darstellung von ganzen Zahlen — Verallgemeinerung (Abstraktion)

Definition: Vorzeichen und Betrag

Für eine Basis $b \in \mathbb{N} \land b \geq 2$ ist $Z_b := \{0, 1, ..., b-1\}$ die Menge der verfügbaren Ziffern. Die Funktion vb_{b,k} bildet eine Ziffernfolge der Breite $k \in \mathbb{N}$ auf eine ganze Zahl ab:

$$\mathsf{vb}_{b,k}: (a_{k-1} \dots a_1 a_0) \in \{0,1\} \times Z_b^{k-1} \mapsto (-1)^{a_{k-1}} \cdot \sum_{i=0}^{k-1} a_i \cdot b^i \in \mathbb{Z}$$

Ganze Zahlen als Vorzeichen und Betrag

- ▶ niedrigstwertige Stelle: a₀
- ▶ höchstwertige Stelle: a_{k-1}
- ▶ kleinste darstellbare Zahl: $(-1)^1 \cdot \sum_{i=0}^{k-2} (b-1) \cdot b^i = -(b^{k-1}-1)$
- ▶ größte darstellbare Zahl: $(-1)^0 \cdot \sum_{i=0}^{k-2} (b-1) \cdot b^i = +(b^{k-1}-1)$
- Anzahl der darstellbaren Werte: $2 \cdot b^{k-1} 1$
- lacktriangle nicht eindeutig (doppelte Darstellung für Null: ± 0)

Binärdarstellung mit Vorzeichen und Betrag

Beispiele

LQ5-5

$$vb_{2,4}(1110_2) = \begin{pmatrix} 0 \cdot 2^0 + 1 \cdot 2^1 + 1 \cdot 2^2 \end{pmatrix} \cdot (-1)^1 = -6_{10}$$

$$vb_{2,4}(0110_2) = \begin{pmatrix} 0 \cdot 2^0 + 1 \cdot 2^1 + 1 \cdot 2^2 \end{pmatrix} \cdot (-1)^0 = +6_{10}$$

inkompatibel mit binärer (unsigned) Addition:

Darstellung von ganzen Zahlen — Digitaler "Goldstandard"

Definition: Zweierkomplement

Die Funktion s_k bildet eine Bitfolge der Breite $k \in \mathbb{N}$ auf eine ganze Zahl ab:

$$s_k: (a_{k-1}...a_1a_0) \in \mathbb{B}^k \mapsto a_{k-1}\cdot (-2^{k-1}) + \sum_{i=0}^{k-2} a_i \cdot 2^i \in \mathbb{Z}$$

- auch für Basen b > 2 verallgemeinerbar: s_{b,k}
 - wird aber heute kaum noch verwendet

Ganze Zahlen als Zweierkomplement

- ▶ niedrigstwertige Stelle: a₀
- ▶ höchstwertige Stelle: a_{k-1}
- kleinste darstellbare Zahl: $1 \cdot (-2^{k-1}) + \sum_{i=0}^{k-2} 0 \cdot 2^i = -2^{k-1}$
- ▶ größte darstellbare Zahl: $0 \cdot (-2^{k-1}) + \sum_{i=0}^{k-2} 1 \cdot 2^i = 2^{k-1} 1$
- Anzahl der darstellbaren Werte: 2^k
- eineindeutig (bijektiv) abbildbar auf Wertebereich $\{-2^{k-1}, \dots, 2^{k-1} 1\}$ für festes k

Beispiele

$$s_4(1010_2) = 0 \cdot 2^0 + 1 \cdot 2^1 + 0 \cdot 2^2 + 1 \cdot (-2^3) = -6_{10}$$

$$s_4(0110_2) = 0 \cdot 2^0 + 1 \cdot 2^1 + 1 \cdot 2^2 + 0 \cdot (-2^3) = +6_{10}$$

kompatibel mit binärer (unsigned) Addition:

kein Überlauf bei Addition positiver und negativer Zahl gleicher Breite

Methode 1 (links nach rechts): größtmögliche Zweierpotenzen abziehen

$$-53_{10} = -64 + \underline{11}$$

$$= -64 + 8 + \underline{3}$$

$$= -64 + 8 + 2 + 1$$

$$= -2^{6} + 2^{3} + 2^{1} + 2^{0}$$

$$= 100 \ 1011_{2}$$

Methode 2 (rechts nach links): Betrag negieren = Komplement (bitweise ā) und Inkrement (+1) (Reihenfolge beachten!)

$$-53_{10} = \overline{53_{10}} + 1$$

$$= \overline{011} \ 0101_2 + 1$$

$$= 100 \ 1010_2 + 1$$

$$= 100 \ 1011_2$$

- in beiden Fällen auf korrekte/geforderte Bitbreite achten
- ▶ ggf. müssen führende Null(en) schon für Betragsdarstellung eingefügt werden

Bitbreitenerweiterung

- notwendig, um unterschiedlich breite Bitfolgen zu addieren
- zero extension:
 - Auffüllen mit führenden Nullen für vorzeichenlose Darstellung

$$u_{2,k+1}(0a_{k-1} \dots a_0) = 0 \cdot 2^k + \sum_{i=0}^{k-1} a_i \cdot 2^i = u_{2,k}(a_{k-1} \dots a_0)$$

- sign extension:
 - Auffüllen mit Wert des Vorzeichen-Bits für Zweierkomplement Darstellung

$$S_{k+1}(a_{k-1}a_{k-1}...a_0) = a_{k-1} \cdot \underbrace{(-2^k)}_{2 \cdot (-2^{k-1})} + a_{k-1} \cdot 2^{k-1} + \sum_{i=0}^{k-2} a_i \cdot 2^i$$

$$= a_{k-1} \cdot \left(-2^{k-1} - 2^{k-1} + 2^{k-1}\right) + \sum_{i=0}^{k-2} a_i \cdot 2^i$$

$$= S_k(a_{k-1}...a_0)$$

Bitbreitenerweiterung — Beispiel

 -5_{10} im Zweierkomplement von 4 auf 8 Bit erweitern:

$$5_{10} = 0101_{2}$$

$$\Rightarrow -5_{10} = \overline{0101_{2}} + 1$$

$$= 1010_{2} + 1$$

$$= 1011_{2}$$

$$= 1111 \ 1011_{2}$$

Probe:
$$-(-5_{10}) = \overline{1111\ 1011_2} + 1 = 0000\ 0100_2 + 1$$

= 0000\ 0101_2
= 5₁₀

Vergleich der binären Zahlendarstellungen für k=4

\mathbb{Z}	Vorzeichenlos: $u_{2,k}$ $\{0, \dots, 2^k - 1\}$	Vorzeichen/Betrag: $vb_{2,k}$ $\{-2^{k-1}+1,\dots,2^{k-1}-1\}$	Zweierkomplement: s_k $\{-2^{k-1}, \dots, 2^{k-1} - 1\}$
15 ———— 14			
13 12	1101 1100		
11	1011		
10 9	1010 1001		
9 8 7	1000 ——————————————————————————————————	0111	0111
6 5	0110 0101	0110 0101	0110 0101
4 3	0100 0011	0100 0011	0100 0011
2	0010 0001	0010 0001	0010 0001
0	0000	0000 1000	0000
-1 -2		1001 1010	1111 1110
−3 −4		1011 1100	1101 1100
6 5 4 3 2 1 0 -1 -2 -3 -4 -5 -6 -7		1101 1110	1011 1010
-7 -8		1111	1001 1000

Agenda

- 1. Einleitung
- 2. Darstellung von natürlichen Zahlen
- 3. Umrechnen zwischen Zahlensystemen
- 4. Addition von vorzeichenlosen Binärzahlen
- 5. Vorzeichenbehaftete Binärzahlen
- 6. Logikgatter
- 7. Zusammenfassung und Ausblick

George Boole, 1815 - 1864

- in einfachen Verhältnissen geboren
- brachte sich selbst Mathematik bei
- Professor am Queen's College in Irland
- ► "An Investigation of the Laws of Thought" (1854)
- ⇒ grundlegende logische Variablen und Operationen

Harris 2013/2016 Kap. 1.5

Logische Operationen

LQ1-1 RQ1-1 LQ1-2 RQ1-2

- verknüpfen binäre Werte: $\mathbb{B}^n \to \mathbb{B}^k$
- zunächst k = 1
- Beispiele für
 - n = 1: NOT
 - n = 2: AND, OR, XOR
 - ► n = 3: MUX
- Charakterisierung durch Wahrheitswertetabellen

 $\text{BUF}:\mathbb{B}\to\mathbb{B}$

alternativ:
$$Y = !A = \sim A = \neg A$$

AND : $\mathbb{B}^2 \to \mathbb{B}$

$$A \rightarrow B \rightarrow Y = A B$$

alternativ: $Y = A \cdot B = A \otimes B = A \wedge B$

 $\text{OR}:\mathbb{B}^2\to\mathbb{B}$

$$A \rightarrow B \rightarrow Y = A + B$$

alternativ: $Y = A|B = A \lor B$

XOR : $\mathbb{B}^2 \to \mathbb{B}$

Α	В	Υ
0	0	0
0	1	1
1	0	1
1	1	0

alternativ: $Y = A^B$

NAND : $\mathbb{B}^2 \to \mathbb{B}$

Α	В	Υ
0	0	1
0	1	1
1	0	1
1	1	0

NOR : $\mathbb{B}^2 \to \mathbb{B}$

Α	В	Υ
0	0	1
0	1	0
1	0	0
1	1	0

XNOR : $\mathbb{B}^2 \to \mathbb{B}$

entspricht Test auf Gleichheit

Agenda

- 1. Einleitung
- 2. Darstellung von natürlichen Zahlen
- 3. Umrechnen zwischen Zahlensystemen
- 4. Addition von vorzeichenlosen Binärzahlen
- 5. Vorzeichenbehaftete Binärzahlen
- 6. Logikgatter
- 7. Zusammenfassung und Ausblick

Zusammenfassung und Ausblick

- ► Zahlensysteme: Bitfolgen ↔ (ganze) Zahlen
 - Dezimal-, Binär-, Hexadezimalzahlen
 - Darstellung
 - Umrechnung
 - Addition von Binärzahlen
 - Vorzeichenbehaftete Binärzahlen
- Logikgatter
 - Darstellung
 - Wahrheitswertetabellen
- nächste Vorlesung behandelt
 - physikalische Realisierung von Logikgattern