PeerLoanKart is an NBFC (Non-banking Financial Company) that facilitates peer- to-peer loan. It connects people who need money (borrowers) with people who have money (investors). As an investor, you would want to invest in people who have a high probability of paying you back. You as an ML expert create a model that will help predict whether a borrower will pay the loan or not.

Objective: Increase profits up to 20% as NPA will be reduced due to loan disbursal for only creditworthy borrowers.

```
In [1]: import pandas as pd
        import numpy as np
        import matplotlib.pyplot as plt
        import seaborn as sns
        %matplotlib inline
        from sklearn.model_selection import train_test_split
In [2]: loans = pd.read csv('loan borowwer data.csv')
        loans.describe()
In [3]:
```

Out[3]:

	credit.policy	int.rate	installment	log.annual.inc	dti	fico	days.with.cr.line	revol.bal	revol.util	ir
count	9578.000000	9578.000000	9578.000000	9578.000000	9578.000000	9578.000000	9578.000000	9.578000e+03	9578.000000	
mean	0.804970	0.122640	319.089413	10.932117	12.606679	710.846314	4560.767197	1.691396e+04	46.799236	
std	0.396245	0.026847	207.071301	0.614813	6.883970	37.970537	2496.930377	3.375619e+04	29.014417	
min	0.000000	0.060000	15.670000	7.547502	0.000000	612.000000	178.958333	0.000000e+00	0.000000	
25%	1.000000	0.103900	163.770000	10.558414	7.212500	682.000000	2820.000000	3.187000e+03	22.600000	
50%	1.000000	0.122100	268.950000	10.928884	12.665000	707.000000	4139.958333	8.596000e+03	46.300000	
75%	1.000000	0.140700	432.762500	11.291293	17.950000	737.000000	5730.000000	1.824950e+04	70.900000	
max	1.000000	0.216400	940.140000	14.528354	29.960000	827.000000	17639.958330	1.207359e+06	119.000000	
4										

In [7]: #Create histogram of two FICO distribuitions on top of each other, one for each credit.policy outcome plt.figure(figsize=(10,6)) loans[loans['credit.policy']==1]['fico'].hist(alpha=0.5,color='blue',bins=30,label='Credit.policy=1') loans[loans['credit.policy']==0]['fico'].hist(alpha=0.5,color='red',bins=30,label='Credit.policy=0') plt.legend() plt.xlabel('FICO')

Out[7]: Text(0.5, 0, 'FICO')


```
In [9]: #Histogram for the not.fully.paid column
        plt.figure(figsize=(10,6))
        loans[loans['not.fully.paid']==1]['fico'].hist(alpha=0.5,color='blue',bins=30,label='not.fully.paid=1')
        loans[loans['not.fully.paid']==0]['fico'].hist(alpha=0.5,color='red',bins=30,label='not.fully.paid=0')
        plt.legend()
        plt.xlabel('FICO')
```

Out[9]: Text(0.5, 0, 'FICO')

In [11]: #create countplot in seaborn showing counts of loans by purpose, with hue defined by not.fully.paid sns.countplot(x='purpose',hue='not.fully.paid',data=loans,palette='Set1')

Out[11]: <matplotlib.axes._subplots.AxesSubplot at 0x28976ed0670>

In [12]: #Create a list of elements, containing the string "purpose". Call this list cat_feats cat_feats =['purpose']

```
#Now use pd.get dummies(loans,columns=cat feats,drop first=True) to create a fixed larger data
In [13]:
         #frame that has new feature columns with dummy variables. Set this data frame as final data
         final_data = pd.get_dummies(loans,columns=cat feats,drop first=True)
         final data.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 9578 entries, 0 to 9577
         Data columns (total 19 columns):
              Column
                                          Non-Null Count Dtype
          0
              credit.policy
                                           9578 non-null
                                                           int64
          1
              int.rate
                                          9578 non-null
                                                          float64
          2
              installment
                                          9578 non-null
                                                           float64
          3
              log.annual.inc
                                          9578 non-null
                                                          float64
          4
                                          9578 non-null
              dti
                                                          float64
          5
              fico
                                          9578 non-null
                                                           int64
              days.with.cr.line
                                          9578 non-null
                                                           float64
          7
              revol.bal
                                          9578 non-null
                                                           int64
          8
              revol.util
                                          9578 non-null
                                                           float64
              inq.last.6mths
                                          9578 non-null
                                                           int64
          10 deling.2yrs
                                          9578 non-null
                                                           int64
          11 pub.rec
                                          9578 non-null
                                                           int64
          12 not.fully.paid
                                          9578 non-null
                                                           int64
          13 purpose credit card
                                          9578 non-null
                                                           uint8
          14 purpose debt consolidation 9578 non-null
                                                           uint8
                                          9578 non-null
          15 purpose educational
                                                           uint8
          16 purpose home improvement
                                          9578 non-null
                                                           uint8
                                          9578 non-null
          17 purpose major purchase
                                                           uint8
          18 purpose small business
                                          9578 non-null
                                                           uint8
         dtypes: float64(6), int64(7), uint8(6)
         memory usage: 1.0 MB
In [19]:
         #train-test split
         x = final data.drop('not.fully.paid',axis=1)
         y= final data['not.fully.paid']
         x_train, x_test,y_train,y_test = train_test_split(x,y,test_size=0.30,random_state=101)
```

```
In [20]: from sklearn.tree import DecisionTreeClassifier
         dtree = DecisionTreeClassifier()
         dtree.fit(x train,y train)
Out[20]: DecisionTreeClassifier()
In [23]: #Create predictions from the test set, and create a classification report and a confusion matrix
         predictions = dtree.predict(x test)
         from sklearn.metrics import classification report,confusion matrix
         print(classification report(y test, predictions))
                       precision
                                     recall f1-score
                                                        support
                    0
                                       0.82
                                                 0.84
                                                           2431
                             0.85
                     1
                             0.19
                                       0.23
                                                 0.20
                                                            443
             accuracy
                                                 0.73
                                                           2874
                                                 0.52
            macro avg
                             0.52
                                       0.52
                                                           2874
         weighted avg
                             0.75
                                       0.73
                                                 0.74
                                                           2874
In [24]: print(confusion matrix(y test,predictions))
         [[1992 439]
          [ 343 100]]
         #Random Forest
In [26]:
         from sklearn.ensemble import RandomForestClassifier
         rfc = RandomForestClassifier(n_estimators=600)
         rfc.fit(x train,y train)
Out[26]: RandomForestClassifier(n_estimators=600)
```

```
In [29]: # Evaluating Random forest
         from sklearn.metrics import classification_report, confusion_matrix
         print(classification_report(y_test,predictions))
                       precision
                                    recall f1-score
                                                        support
                    0
                             0.85
                                                 0.84
                                                           2431
                                       0.82
                                       0.23
                    1
                            0.19
                                                 0.20
                                                            443
                                                 0.73
                                                           2874
             accuracy
                                                 0.52
                                                           2874
                                       0.52
            macro avg
                            0.52
                                                 0.74
                                                           2874
         weighted avg
                            0.75
                                       0.73
In [30]: # Printing confussion Matrix
         print(confusion_matrix(y_test,predictions))
         [[1992 439]
          [ 343 100]]
In [ ]:
```