Cantor-Bernstein implies LEM

Holo

Thursday 2nd March, 2023

Definition 0.1. O is called Binary-Sequentially-Constructive(BSC) if:

$$\forall p \in 2^O (\exists x \in O \ p(x) = 0) \lor p \equiv 1$$

(This is my own naming, I don't know how those sets are usually called)

Lemma 0.2. If O is BSC and there exists surjective function $F: O \to A + B$ then A is empty or inhabited

Proof. Define $f \in 2^O$

$$f(x) = \begin{cases} 0, & \exists a \in A \ F(x) = \mathsf{inl}(\mathsf{a}) \\ 2, & \exists b \in B \ F(x) = \mathsf{inr}(\mathsf{b}) \end{cases}$$

Because O is BSC then either $\exists x \ f(x) = 0 \implies \exists a \in A \text{ or } \forall x \ f(x) = 1 \implies A = \emptyset$, the last implication is by the fact that F is surjective.

Definition 0.3.

$$\mathbb{N}_{\infty} = \left\{ p \in 2^{\mathbb{N}} \mid \forall n \in \mathbb{N} \left(p(n) = 1 \implies \forall m < n(p(m) = 1) \right) \right\}.$$

for $n \in \mathbb{N}$

$$fn \in \mathbb{N}_{\infty}$$

$$fn(m) = \begin{cases} 1 & m < n \\ 0 & \text{Otherwise} \end{cases}$$

 $f\omega \in \mathbb{N}_{\infty}$

$$f\omega \equiv 1$$

 $fS \in \mathbb{N}_{\infty}^{\mathbb{N}_{\infty}}$

$$fS(p)(k) = \begin{cases} 1 & k = 0\\ p(n) & k = n+1 \end{cases}$$

Lemma 0.4. fS is injective, and $\forall p \in \mathbb{N}_{\infty} fS(p) \not\equiv f0$

Proof.

If
$$p \in \mathbb{N}_{\infty}$$
 then $fS(p)(0) = 1 \neq 0 = f0(0)$.

If
$$fS(p) = fS(q)$$
 then $\forall m \ p(m) = fS(p)(m+1) = fS(q)(m+1) = q(m)$

Lemma 0.5. If $P \in 2^{\mathbb{N}_{\infty}}$ and $P(f\omega) = 1$, and $\forall n \in \mathbb{N} (P(fn) = 1)$ then $P \equiv 1$

Proof.

Let P be such function, and let $p \in \mathbb{N}_{\infty}$, it is enough to prove that $P(p) \neq 0$. Assume that P(p) = 0, // Also assume $\forall k \, (k < n \implies p(k) = 0) \land p(n) = 0$, then p = fn (not sure how to prove this), but 0 = P(p) = P(fn) = 1, so $p = f\omega$, but $0 = P(p) = P(f\omega) = 1$, contradiction.

Lemma 0.6. There exists a function $e \in \mathbb{N}_{\infty}^{(2^{\mathbb{N}_{\infty}})}$ such that $P(e(P)) = 1 \implies P \equiv 1$

Proof.

Define for $Q \in 2^{\mathbb{N}_{\infty}}$

$$e(Q)(n) = \begin{cases} 1 & \forall k \le n \ Q(fk) = 1 \\ 0 & \text{Otherwise} \end{cases}$$

By induction one can prove that Q(fk) = 1 for all $k \in \mathbb{N}$, and it is obvious that $Q(f\omega) = 1$, thus by lemma 0.3 $Q \equiv 1$.

Noticing that if $Q \in 2^{\mathbb{N}_{\infty}}$ then either Q(e(Q)) = 0, in which case $\exists p \in \mathbb{N}_{\infty} \ Q(p) = 0$, or Q(e(Q)) = 1, then by Lemma 0.4 $Q \equiv 1$, so \mathbb{N}_{∞} is BSC.

Theorem 0.7. CB \Longrightarrow LEM

Proof. Let pr be some proposition, and $A = \{0 \mid pr\} \subseteq 1$ and define: $f: \mathbb{N}_{\infty} \to A + \mathbb{N}_{\infty}$ with $f(p) = \mathsf{inr}(p)$ $g: A + \mathbb{N}_{\infty} \to \mathbb{N}_{\infty}$ with $g(\mathsf{inl}(0)) = \mathsf{f0}$ and $g(\mathsf{inr}(p)) = \mathsf{fS}(p)$.

Both are injective, so by CB there exists bijection $h: \mathbb{N}_{\infty} \to A + \mathbb{N}_{\infty}$, in particular, h is surjective, so by Lemma 0.1, either $A = \emptyset$, which implies $\neg pr$, or A is inhabited, which implies pr.