we have done the PCA in several Steps.
we also cleaned up the data and we got to
13 countries and 80 types of Boods, using same
model we used in the class (slides)
M=13 $d=20$
$\chi^2, \dots, \chi^{13} \in \mathbb{R}^{d=20} = \max(in \times G \mathbb{R}^{13 \times 20})$
next step: calculate the mean an covariance of the matrin
of the matrine
Militar
N= I Eni & C= [2(x-1)[x-1)]
$N = \frac{1}{m} \sum_{i=1}^{m} 2^{i} 2^{i} 2^{i} = \frac{1}{m} \sum_{i=1}^{m} (2^{i} - N)(2^{i} - N)^{T}$
nent step & find the eigenvectors W, we.
of the covariance matrix and Pick
the largest eigen value, then the next
one, then the next, Defend on the
elinension we want to reduce to.
next Step: computed the Principle components
(W,T (x1-P)/J)
nent Step: computed the principle components Z: = (N2T (Ni-M)/V/2)