PLSR-DA with unbalanced data

Illustration of the problems and two simple solutions

matthieu.lesnoff@cirad.fr Cirad, UMR Selmet

https://github.com/mlesnoff/Jchemo.jl

PLSDA many methods

• PLSR-DA = PLS-MLR-DA = "usual" PLSDA

- Probabilistic ⇒ PLS-L/Q/KDE-DA
- Etc.

This presentation

⇒ only on this

method

PLSR-DA

$\widehat{Y}_{\text{dummy}}$

В C Α 0.468518 0.316516 0.214966 0.420873 0.277312 0.301815 0.285408 0.429812 0.28478 0.378064 0.405632 0.216304 0.301464 0.337026 0.361509 0.322369 0.381457 0.296174 0.443234 0.266208 0.290558 0.413478 0.245917 0.340604 0.343138 0.317523 0.339339 0.316082 0.348387 0.335531 0.29393 0.348038 0.358033 0.345968 0.386519 0.267513 0.294213 0.290373 0.415413

Membership probability estimates

not bounded in [0, 1]

Case of unbalanced data

Iris data

X = 4 quantitative variables
 sepal length/width, petal length/width

• y = categorical variable with 3 classes setosa, versicolor, virginica

$N_{\text{tot}} = 150$ observations

Balanced

Training

```
"setosa" => 30
"versicolor" => 30
"virginica" => 30
```

Unbalanced

```
"setosa" => 30
"versicolor" => 30
"virginica" => 4
```

Test

```
"setosa" => 20
"versicolor" => 20
"virginica" => 20
```

Class more difficult to predict

Two problems in PLSR-DA

(1) PLS2 $\{X, Y_{dummy}\}$

⇒ Masking effects

(2) MLR regression

⇒ Small class
Almost never
chosen as
prediction

PLSR-DA

Unbalanced training $(N_i = 30, 30, 4)$

Results on Test

y Chaine		pred_versicolor	The state of the s
String	Int64	Int64	Int64
setosa	20	0	0
versicolor	0	20	0
virginica	0	20	0

But solutions exists!

ex: WPLS

0 -	00	-0-
24	00	32
con l		
In a	10 111	23
Vie	had	CC
	be	

y String	pred_setosa Int64	pred_versicolor Int64	pred_virginica Int64
setosa	20	0	0
versicolor	0	16	4
virginica	0	3	17

Two simple alternatives for correction

1. Sub-sampling the training within the large classes

$$-N_A \sim N_B \longrightarrow N_C \Rightarrow n_A \sim n_B \sim N_C$$

2. Weighting the classes in the PLS2-R \Rightarrow WPLSR

$$- W_A = W_B = W_C = 1/3$$

Illustration

Congress Chimiometrie 2024, Nantes - Challenge data

• X = VIS-NIR spectra

Soils (Belgium) FOSS 428-2498 nm (step 2 nm)

• y = categorical variable with 2 classes

mineral >> organic

• N = 19,036 observations

SavGol deriv2 + SNV

Data for this illustration (sub-sampling in N)

Training

```
"mineral" => 17000
"organic" => 1000
```

Test

```
"mineral" => 200
"organic" => 200
```

Naïve PCA

Naïve PLS

Prediction of Test $N_{\text{test}} = 400$

• PLSR-DA 20 LVs

Results on Test

Naïve approach

Nb. Row %s Too optimistic pred_mineral pred_organic pred_mineral pred_organic levels String Int64 Int64 String Float64 Float64 mineral 200 mineral 0.0 100.0 organic organic 89 111 44.5 55.5 Bad ERR = .22 prediction Too optimistic Mean ERR = .22

Alternative 1 Subsampling within mineral

 \Rightarrow New Training $n_{\text{mineral}} = N_{\text{organic}} = 1000$

Nb. Row %s

y	pred_mineral	pred_organic
String	Int64	Int64
mineral	184	16
organic	12	188

	pred_mineral Float64	pred_organic Float64
mineral	92.0	8.0
organic	6.0	94.0

Alternative 2 WPLSR-DA

Nb.

y	pred_mineral	pred_organic
String	Int64	Int64
mineral	185	15
organic	14	186

Row %s

levels	pred_mineral	pred_organic
String	Float64	Float64
mineral	92.5	7.5
organic	7.0	93.0

ERR = .075 Mean ERR = .075

More extreme case

Training	"mineral"	=> :	17000	
ag	"organic"	=>		
Test	"mineral"	=>	200	
1651	"organic"	=>	200	

Error rates by class

	Naive	1) Subsampling	2) WPLSR-DA
mineral	.00	.09	.07
organic	.98	.08	.07

Jchemo.jl

https://github.com/mlesnoff/Jchemo.jl

Chemometrics and machine learning on high-dimensional data with Julia


```
model = plsrda(nlv = 20)  # WPLSRDA (default: prior = :unif)

# Naive model
# plsrda(nlv = 20, prior = :prop)

fit!(model, Xtrain, ytrain)
pred = predict(model, Xtest).pred

errp(pred, ytest)  # global ERRP
merrp(pred, ytest)  # mean ERRP
conf(pred, ytest)  # confusion
```