ALGEBRA 1, Lista 3

Konwersatorium 20.10.2021, Ćwiczenia 26.10.2021.

- 0S. Materiał teoretyczny: rząd elementu grupy, podgrupa generowana przez podzbiór lub element grupy. Grupa cykliczna: definicja i klasyfikacja z dokładnością do izomorfizmu. Mnożenie permutacji w postaci dwuwierszowej i w postaci iloczynu cykli. Permutacja odwrotna. Rozkład permutacji na cykle rozłączne. Inwersja w permutacji i transpozycja. Permutacje parzyste i nieparzyste. Znak permutacji.
- 1S. Dana jest grupa G.
 - (a) Załóżmy, że $a \in G$ i aa = a. Udowodnić, że a = e.
 - (b) Załóżmy, że $a, b \in G$ i ab = e. Dowieść, że wtedy ba = e (więc $b = a^{-1}$).
- 2S. Niech $k \in \mathbb{N}_{>0}$ i $k\mathbb{Z} = \{kn : n \in \mathbb{Z}\}$. Udowodnić, że:
 - (a) zbiór $k\mathbb{Z}$ jest podgrupą grupy $(\mathbb{Z}, +)$;
 - (b) $(k\mathbb{Z}, +) \cong (\mathbb{Z}, +)$.
- 3S. Rozłożyć permutację $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 5 & 4 & 6 & 7 & 1 & 3 & 2 \end{pmatrix}$ na iloczyn cykli rozłącznych. Jaki jest znak tej permutacji? Zapisać permutację σ^{-1} w postaci tabularycznej i jako iloczyn cykli rozłącznych.
- 4K. Załóżmy, że $f: G \to H$ jest homomorfizmem grup, $g \in G$ i $n \in \mathbb{Z}$. Udowodnić, że:
 - (a) $f(g^n) = (f(g))^n$;
 - (b) jeśli f jest różnowartościowy, to $\operatorname{ord}_G(g) = \operatorname{ord}_H(f(g));$
 - (c) jeśli $\operatorname{ord}_G(g) = k$ jest skończony, to $g^n = e$ wtedy i tylko wtedy, gdy k|n.
- 5K. Piętnastka to następująca układanka: w ramce z miejscami na 16 kostek umieszczone jest 15 kostek z liczbami od 1 do 15, jedno miejsce pozostaje wolne. W pojedynczym ruchu można przesuwać poziomo lub pionowo kostkę na wolne miejsce, z miejsca sąsiedniego. Udowodnić, że w ten sposób z układu:

1	2	3	4
5	6	7	8
9	10	11	12
13	14	15	

nie można w żadnej liczbie ruchów przejść do układu:

	1	2	3
4	5	6	7
8	9	10	11
12	13	14	15

- 6. Wyznaczyć rzędy następujących permutacji z S_n , gdzie $n \ge 7$:
 - (a) (1,2)(4,5,6,7);
 - (b) (1,2,3)(4,5);
 - (c) $\sigma \circ \tau$, gdzie σ to cykl długości k, τ to cykl długości l oraz cykle te są rozłączne.
- 7. Załóżmy, że H jest nietrywialną podgrupą grupy (\mathbb{Z} , +) (tzn. $H \neq \{0\}$).
 - (a) Udowodnić, że istnieje liczba dodatnia, która należy do H.
 - (b) Niech k będzie najmniejszą liczbą dodatnią należącą do H. Udowodnić najpierw, że $k\mathbb{Z} \subseteq H$ i następnie udowodnić, że $k\mathbb{Z} = H$.

Wywnioskować stąd, że każda podgrupa grupy (\mathbb{Z} , +) jest postaci $k\mathbb{Z}$ dla pewnego $k\in\mathbb{N}$.

- 8. Załóżmy, że grupa G jest skończona. Udowodnić, że G jest cykliczna wtedy i tylko wtedy, gdy istnieje $a \in G$ taki, że $\operatorname{ord}(a) = |G|$.
- 9. Udowodnić, że każda podgrupa grupy cyklicznej jest cykliczna.
- 10. Doskonałe tasowanie zbioru 2n kart do gry to permutacja:

Jaka jest najmniejsza liczba doskonałych tasowań 52 kart, po której karty są w wyjściowym układzie? Jaka jest ta liczba dla 50 kart?

11. Dla wielomianu $W(x_1,x_2,x_3,x_4)$ i permutacji $\sigma\in S_4$ definiujemy wielomian $W^{\sigma}(x_1,x_2,x_3,x_4)$ wzorem:

$$W^{\sigma}(x_1, x_2, x_3, x_4) = W(x_{\sigma(1)}, x_{\sigma(2)}, x_{\sigma(3)}, x_{\sigma(4)}).$$

Niech $G_W = \{ \sigma \in S_4 : W = W^{\sigma} \}$ (G_W jest zawsze pewną podgrupą S_4). Wyznaczyć G_W dla następujących wielomianów:

- (a) $(x_1 + x_2)(x_3 + x_4)$;
- (b) $(x_1-x_2)(x_3-x_4)$;
- (c) $(x_1 x_2)(x_3 x_4)$, (c) $(x_1 - x_2)^2 + (x_2 - x_3)^2 + (x_3 - x_4)^2 + (x_4 - x_1)^2$.