

532,738

Rec'd PCT/PTO

6 APR 2005

(12) NACH DEM VERFÄLLIG ÜBER DIE INTERNATIONALE ZUSAMMENFASSUNG AUF DEM GEBIET DES
PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

101532738

(19) Weltorganisation für geistiges Eigentum
Internationales Büro

(43) Internationales Veröffentlichungsdatum
21. Mai 2004 (21.05.2004)

PCT

(10) Internationale Veröffentlichungsnummer
WO 2004/042556 A2

(51) Internationale Patentklassifikation⁷: **G06F 9/00**

2, 90542 Eckental (DE). **KULZER, Heinrich** [DE/DE];
Tiefe Brücke 12a, 90475 Nürnberg (DE). **WISSMANN,
Dieter** [DE/DE]; Wachberg 20, 91361 Pinzberg (DE).

(21) Internationales Aktenzeichen: PCT/DE2003/003452

(74) Gemeinsamer Vertreter: **SIEMENS AKTIENGESELLSCHAFT**; Postfach 22 16 34, 80506 München (DE).

(22) Internationales Anmeldedatum: 17. Oktober 2003 (17.10.2003)

(81) Bestimmungsstaat (*national*): US.

(25) Einreichungssprache: Deutsch

(26) Veröffentlichungssprache: Deutsch

(30) Angaben zur Priorität:
102 50 638.8 30. Oktober 2002 (30.10.2002) DE

(84) Bestimmungsstaaten (*regional*): europäisches Patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR).

(71) Anmelder (*für alle Bestimmungsstaaten mit Ausnahme von US*): **SIEMENS AKTIENGESELLSCHAFT** [DE/DE]; Wittelsbacherplatz 2, 80333 München (DE).

Veröffentlicht:
— mit einer Erklärung gemäß Artikel 17 Absatz 2 Buchstabe a; ohne Zusammenfassung; Bezeichnung von der Internationalen Recherchenbehörde nicht überprüft

(72) Erfinder; und

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

(75) Erfinder/Anmelder (*nur für US*): **BÜRGEL, Marcus** [DE/DE]; Hauptstr. 123, 90562 Heroldsberg (DE). **FRANK, Edgar** [DE/DE]; Wilhelm-Späth-Str. 52, 90461 Nürnberg (DE). **HELLER, Rainer** [DE/DE]; Krokusweg

WO 2004/042556 A2

(54) Title: STRUCTURING, STORING AND PROCESSING OF DATA ACCORDING TO A GENERIC OBJECT MODEL

(54) Bezeichnung: STRUKTURIERUNG, SPEICHERUNG UND VERARBEITUNG VON DATEN GEMÄSS EINEM GENERISCHEN OBJEKTMODELL

(57) Abstract:

(57) Zusammenfassung:

Beschreibung

Strukturierung, Speicherung und Verarbeitung von Daten gemäß einem generischen Objektmodell

5

Die Erfindung betrifft ein System sowie ein Verfahren zur Strukturierung, Speicherung und Verarbeitung von Daten.

Üblicherweise werden Software-Applikationen

10 unterschiedlichster Art zur Lösung technischer Aufgabenstellungen, z. B. dem Engineering eines Automatisierungssystems, eingesetzt, wobei jede dieser Software-Applikationen einerseits spezifische technische Aufgaben erfüllt, andererseits mit anderen Software-
15 Applikationen zur Lösung einer technischen Aufgabe zusammenwirkt. Letzteres impliziert, dass die Software-Applikationen über Schnittstellen Daten austauschen. Die Schnittstellen, welche die einzelnen Software-Applikationen bieten, sowie die darüber transportierten Daten, sind meist
20 sehr heterogen und proprietär. In der Regel werden die zu transportierenden Daten jeweils für den individuellen Austauschbedarf strukturiert. Über verschiedene Software-Applikationen hinweg führt das jedoch zu inkompatiblen Austauschstrukturen.

25

Der Erfindung liegt die Aufgabe zugrunde, den Datenaustausch zwischen verschiedenen Software-Applikationen zu vereinfachen.

30 Diese Aufgabe wird durch ein System zur Strukturierung, Speicherung und Verarbeitung von Daten gemäß einem generischen Objektmodell gelöst, wobei das Objektmodell mindestens ein erstes Element aufweist, welches einem Typ Objekt entspricht, wobei der Typ Objekt folgende Merkmale
35 aufweist:

- eine eindeutige Bezeichnung der Identität des Objekts zur absoluten Referenzierung des Objekts,

- einen logischen Namen zur Benennung des Objekts und
- mindestens eine Verknüpfung mit einem zweiten Element, welches einem Typ Feature entspricht, wobei der Typ Feature folgende Merkmale aufweist:

5 - einen im Bezug auf das jeweilige verknüpfte Objekt eindeutigen Namen und

die Möglichkeit der Verknüpfung mit weiteren Elementen vom Typ Objekt, mit weiteren Elementen vom Typ Feature und mit Daten.

10

Diese Aufgabe wird durch ein Verfahren zur Strukturierung, Speicherung und Verarbeitung von Daten gemäß einem generischen Objektmodell gelöst, wobei das Objektmodell mindestens ein erstes Element aufweist, welches einem Typ

15 Objekt entspricht, wobei der Typ Objekt folgende Merkmale aufweist:

- eine eindeutige Bezeichnung der Identität des Objekts zur absoluten Referenzierung des Objekts,
- einen logischen Namen zur Benennung des Objekts und

20 - mindestens eine Verknüpfung mit einem zweiten Element, welches einem Typ Feature entspricht, wobei der Typ Feature folgende Merkmale aufweist:

- einen im Bezug auf das jeweilige verknüpfte Objekt eindeutigen Namen und

25 die Möglichkeit der Verknüpfung mit weiteren Elementen vom Typ Objekt, mit weiteren Elementen vom Typ Feature und mit Daten.

30 Die Erfindung beruht auf der Idee, komplexe, vorzugsweise hierarchisch aufgebaute Datenmengen mit einem einheitlichen Objektmodell zu beschreiben und zu strukturieren. Alle Elemente des Typs Objekt haben die gleiche Grundstruktur, sind jedoch in unterschiedlichen Granularitätsstufen einsetzbar. Die Struktur eines übergeordneten Elements vom Typ Objekt findet sich also in der Struktur eines untergeordneten Elements vom Typ Objekt wieder. Das gesamte Objektmodell besitzt somit bis zur untersten Ebene eine

annähernd fraktale Struktur. Die Strukturierung der Datenmenge gelingt durch Replikation weniger Grundmuster und Grundstrukturen. Durch die Verwendung dieses Darstellungsprinzips (Objekt, Feature, etc.) kann erreicht 5 werden, dass alle damit modellierten Datenbestände gemeinsame Grundstrukturen beinhalten, mit denen ein universelles Verständnis möglich ist. Alle Elemente stellen die Struktur-Information eines Datenbestands dar. Applikationen können so auf einheitliche Weise auf die Daten zugreifen bzw. in den 10 Objektgeflechten navigieren. Ferner können beliebige, heute noch nicht bekannte Abbildungsanforderungen erfüllt werden, die dann auch wieder in dieses grundsätzliche Verständnis der Einheitlichkeit einfließen und von anderen Applikationen verstanden werden. Applikationen die sich diesem 15 einheitlichen Format zukünftig anpassen, genießen dann automatisch auch die Kompatibilität mit allen vorherigen.

Die Bezeichnung der Identität eines Objektes wird nach der Erzeugung nie mehr geändert, insbesondere bleibt sie bestehen 20 beim Verschieben des Objekts innerhalb eines Datenbestandes oder dem Einfügen des Objektes in andere Datenbestände. Die Identität dient zur eindeutigen Identifizierung eines Objekts, d. h. über die Identität kann ein Objekt absolut, also ohne Bezug zu seiner Umwelt bzw. seinem Kontext, 25 referenziert werden.

Neben einer Identität hat jedes Objekt einen logischen Namen. Der Name kann im Gegensatz zur Identität geändert werden und muss auch nicht global eindeutig sein. Wenn jedoch 30 Eindeutigkeit unter den Namen der Objekte in jedem Feature herrscht, dann können diese zur Bildung sogenannter Pfad-Referenzen (Referenzen eines Objekts im Bezug auf seine Umwelt) dienen.

35 Elemente des Typs Feature bilden die Substruktur der Objekte. Sie gruppieren z. B. Parameter, Referenzen, Subobjekte,

Connectoren und Connections des Objekts und können auch selbst wieder über Features strukturiert werden.

- Gemäß einer vorteilhaften Ausgestaltung der Erfindung weist
5 der Typ Objekt als weitere Merkmale eine Kennzeichnung des Objektstyps und eine Kennzeichnung einer Version des Objekts auf. Dies ist insbesondere vorteilhaft zur Strukturierung von komplexen, zeitlich variablen Datenbeständen.
- 10 Eine weiter verbesserte Strukturierung der Daten lässt sich erreichen, wenn die durch ein Element vom Typ Feature verknüpften und gruppierten Elemente eine logisch zusammengehörige Teilmenge aller Elemente eines Objekts bilden. Grundlage der Gruppierung können zum einen eine
15 logische Zusammengehörigkeit der Elemente des Objekts zu einer bestimmten "Sicht" (z. B. HMI, Hardware, Software) auf das Objekt sein. Mit dieser Unterteilung können die jeweiligen Applikationen leichter jene Objekt-Daten lesen, die sie interessieren. Zum anderen können Features zur
20 Erweiterung von bestehenden Objekten um spezifische weitere Objektinformationen verwendet werden, die zum Objekt hinzugefügt werden sollen und evtl. nur für bestimmte Applikationen von Interesse sind. Dieser Weg kann sinnvollerweise im Gegensatz zur Erweiterung durch Ableitung
25 gewählt werden, um Produkte, die mit bestehenden Typen arbeiten, nicht inkompatibel werden zu lassen. Durch die Erweiterung über neue Features muss auf bestehende Applikationen keine Rücksicht genommen werden.
- 30 Des Weiteren können die Objekte über Features auch weitere (Sub-)Objekte und Referenzen zu anderen Objekten enthalten. Über die Aggregation entsteht so ein Baum aus Objekten, wobei durch die Referenzen Querbezüge zwischen den Elementen dieses Baums dargestellt werden können. Vorteilhafterweise werden
35 keine Rollen von Objekten explizit spezifiziert. Die Rollen werden implizit durch die Position eines Objekts im

Verhältnis zu anderen Objekten dargestellt, beziehungsweise durch die Referenzen von und zu anderen Objekten ausgedrückt.

Wird das Objektmodell durch eine erweiterbare

- 5 Kennzeichnungssprache beschrieben (z. B. XML = Extensible Markup Language), so erreicht man neben Einheitlichkeit und Erweiterbarkeit auch systematische Validierbarkeit.

Üblicherweise bilden Datenbestände, welche beim Engineering

- 10 von Automatisierungssystemen Verwendung finden, umfangreiche und komplexe hierarchische Strukturen. Um deren strukturellen Inhalt einheitlich und transparent für verschiedene beteiligte Applikationen zur Verfügung zu stellen, wird die Verwendung des erfundungsgemäßen Systems bzw. Verfahrens zum
15 Engineering einer Automatisierungslösung vorgeschlagen.

Nachfolgend wird die Erfundung anhand der in den Figuren dargestellten Ausführungsbeispiele näher beschrieben und erläutert.

20

Es zeigen:

FIG 1 die Grundidee des Objektmodells in Form eines UML-Diagramms und

25

FIG 2 ein System zum Engineering einer Automatisierungslösung.

- In FIG 1 wird die Grundidee des Objektmodells 10 in Form
30 eines UML-Diagramm dargestellt. UML (= Unified Modeling Language) ist eine durch die Object Management Group (OMG) standardisierte graphische Sprache zur Beschreibung objektorientierter Modelle. Im Mittelpunkt des Objektmodells 10 steht der Typ Objekt 100. Im Ausführungsbeispiel besitzt
35 jedes Objekt 100 die Attribute ID 2, OType 5, Version 4 und Name 3. Die ID 2 ist hierbei eine eindeutige Bezeichnung, die sich nie ändert. Die ID 2 kann zum Beispiel eine GUID (=

Globally Unique Identifier) sein. Sie dient zur eindeutigen Identifizierung des Objektes 100, d. h. über die ID 2 kann das Objekt 100 absolut, also ohne Bezug zu seiner Umwelt bzw. seinem Kontext, referenziert werden. Jedem Objekt 100 wird 5 ein Name 3 zugeordnet. Über den Namen 3 kann das Objekt 100 ebenfalls referenziert werden.

Wie im Diagramm von FIG 1 zu sehen, bilden Features 20 die Substruktur der Objekte 100. Sie gruppieren die Parameter 30, 10 Referenzen 60, Sub-Objekte 100, Connectoren 40 und Connections 50 des Objekts 100 und können auch selbst wieder über Features 20 strukturiert werden. Die Verknüpfung zum SubObjekt 100 ist im UML-Diagramm von FIG 1 mit dem Bezugszeichen 70 gekennzeichnet, das SubObjekt 100 erhält 15 jedoch das gleiche Bezugszeichen wie das oben erwähnte Objekt 100, da es die gleiche Struktur aufweist. Grundlage der Gruppierung sind zum einen die logische Zusammengehörigkeit der Bestandteile des Objekts 100 zu einer bestimmten "Sicht" (z.B. HMI, Hardware, Software) auf das Objekt 100. Mit dieser 20 Unterteilung können die jeweiligen Tools leichter jene Objekt-Daten lesen, die sie interessieren.

Zum anderen bilden Features 20 die Einheit der Erweiterung von Objekten 100 um produktspezifische Bestandteile. Features 25 20 können somit zur Erweiterung von bestehenden Objekttypen um spezifische weitere Objektinformationen verwendet werden, die zum Objekt 100 hinzugefügt werden sollen und evtl. nur für bestimmte Applikationen von Interesse sind. Dieser Weg wurde im Gegensatz zur Ableitung gewählt, um Produkte, die 30 mit bestehenden Typen arbeiten, nicht inkompatibel werden zu lassen. Wenn ein Objekttyp um Daten eines anderen Produkts erweitert werden soll, so wird ein neues Feature 20 definiert, das dann zu dem bestehenden Objekt 100 dazugefügt wird. Die Definition des ursprünglichen Objekttyps bleibt 35 dabei bestehen, damit die Tools, die mit dem bisherigen Objekttyp arbeiten, nicht beeinträchtigt werden. Durch die Erweiterung über Features 20 muss auf bestehende

Applikationen keine Rücksicht genommen werden. Features 20, die einen im Bezug auf das jeweilige Objekt 100 eindeutigen Namen 21 tragen, haben jeweils 1 zu n - Beziehungen zu Parametern 30, Connectoren 40 und Connections 50. Des Weiteren können die Objekte 100 über Features 20 auch Sub-Objekte 100 aggregieren und Referenzen 60/Relationen zu anderen Objekten 100 enthalten. Über die Aggregation entsteht ein Baum aus Objekten 100. Durch die Referenzen 60 können Querbezüge zwischen den Elementen dieses Baums dargestellt werden. Die Parameter 30, Connectoren 40 und Connections 50 stellen bildlich gesprochen das Laub des Baumes, also im Bezug auf die zu modellierenden Datenbestände die eigentlichen Daten dar. Features 20 können selbst wieder Features 20 enthalten. Objekte, Features und Referenzen stellen die Struktur-Information eines Datenbestandes dar.

Die Identität ID 2 eines Objektes 100 wird nach der Erzeugung nie mehr geändert. Insbesondere bleibt sie bestehen beim Verschieben des Objekts 100 innerhalb eines Datenbestandes und beim Einfügen des Objektes 100 in andere Bestände. Die ID 2 dient als absolute Referenz auf ein Objekt 100. D. h. über die ID 2 kann ein Objekt 100 absolut, also ohne Bezug zu seiner Umwelt/zu seinem Kontext referenziert werden. Neben einer ID 2 hat jedes Objekt 100 einen (logischen) Namen 3. Der Name 3 kann im Gegensatz zur ID 2 geändert werden und muss auch nicht global eindeutig sein. Wenn jedoch Eindeutigkeit unter den Namen 2 der SubObjekte 100 in jedem Feature 20 herrscht, dann können diese zur Bildung sogenannter Pfad-Referenzen (Referenzen, die ein Objekt 100 im Bezug auf seine Umwelt referenzieren) dienen.

Es werden keine Rollen von Objekten 100 explizit spezifiziert. Die Rollen werden vielmehr implizit durch die Position eines Objekts 100 im Verhältnis zu anderen Objekten 100 dargestellt, beziehungsweise sie werden durch die Referenzen 60 von und zu anderen Objekten 100 ausgedrückt.

Durch die Verwendung dieses Darstellungsprinzips (Objekt 100, Feature 20, etc.) kann erreicht werden, dass alle damit modellierten Datenbestände gemeinsame Grundstrukturen beinhalten, mit denen ein universelles Verständnis möglich

5 ist, sprich Applikationen auf einheitliche Weise auf die Inhalte zugreifen bzw. in den Objektgeflechten navigieren können. Ferner können beliebige, heute noch nicht bekannte Abbildungsanforderungen erfüllt werden, die dann auch wieder in dieses grundsätzliche Verständnis der Einheitlichkeit
10 einfließen, und von anderen Applikationen verstanden werden. Applikationen die sich diesem einheitlichen Format zukünftig anpassen, genießen dann automatisch auch die Kompatibilität mit allen vorherigen.

15 Wenn man diesen Gedanken in Schemas der Metasprache XML (=Extensible Markup Language) niederlegt, so erreicht man neben Einheitlichkeit und Erweiterbarkeit auch systematische Validierbarkeit. Das obige Objektmodell 10 sei im Folgenden anhand einer Darstellung als Schema in XML gezeigt:

20

```
<xsd:complexType name="ObjectT">
    <xsd:sequence>
        <xsd:element name="Features" type="FeaturesT" minOccurs="0"/>
    </xsd:sequence>
    <xsd:attribute name="ID" type="IdT" use="required"/>
    <xsd:attribute name="Name" type="xsd:string" use="required"/>
    <xsd:attribute name="Version" type="VersionT" use="optional"/>
    <xsd:attribute name="Type" type="xsd:QName" use="optional"/>
</xsd:complexType>

<xsd:complexType name="FeatureT" />
    <xsd:complexContent>
        <xsd:sequence>
            <xsd:element ref="Parameter" minOccurs="0"/>
            <xsd:element ref="Reference" minOccurs="0" />
            <xsd:element ref="Object" minOccurs="0" />
        </xsd:sequence>
```

30

35

```
<xsd:attribute name="Name" type="xsd:string" use="required"/>
</xsd:complexContent>
</xsd:complexType>
```

5

```
<xsd:complexType name="ParameterT">
  <xsd:annotation>
    <xsd:documentation>Base type for all DIA-X parameters that
      are used within features of objects</xsd:documentation>
  </xsd:annotation>
  <xsd:attribute name="MustUnderstand" type="xsd:boolean"
    use="optional" default="false" />
  <xsd:attribute name="Name" type="xsd:string" use="optional" />
</xsd:complexType>
```

15

Die der Erfindung zugrundeliegende Idee wird anhand eines weiteren Ausführungsbeispiels näher erläutert. Darzustellen sei ein Symbol, wie diese z. B. in der Automatisierungs-technik üblich sind. So ein Symbol enthält neben seinem Namen noch einen Typ, eine Richtung und einen Wert. Das zu zeigende Beispiel-Symbol sei dieses:

S7_AO_Niveau E0.3

25 Wobei "S7_AO_Niveau" der Name des Symbols ist. Typ und Richtung sind zusammen mit dem Wert in der Bezeichnung E0.3 in der Weise verschlüsselt, das "E" die (deutschsprachige) Richtungsbezeichnung für "Eingang" bedeutet, und in der Punkt-Darstellung sich die Adressierung eines Bits innerhalb 30 eines Wortes ausdrückt. Das Beispiel-Symbol würde gemäß dem obigen Objektmodell 10 wie folgt dargestellt werden, und auch validierbar sein, wenn man das oben gezeigte allgemeine Schema noch mit den anschließend gezeigten symbol-spezifischen Verfeinerungen versieht. Eine Instanz des 35 Beispiel-Symbols "S7_AO_Niveau" ist als XML-Schema folgendermaßen definiert:

10

```
<base:Symbol ID="{5ED19706-3840-4da0-ADD2-
27491C0A58BB}" Name="S7_AO_Niveau">
<base:AddressFeature>
<base:SymbolAddress Direction="In" AddressType="Bit" Value="3.0" />
5 </base:AddressFeature>
</base:Symbol>
```

Im Folgenden werden die genannten symbol-spezifischen Verfeinerungen beschrieben, mit deren Hilfe ein so
10 beschriebenes Symbol validierbar wird. Als Erstes ist vom allgemeinen Typ "Objekt" ein symbol-spezifischer Objekttyp (hier genannt "SymbolT") abzuleiten. Dieser enthält wie oben erklärt auch ein Feature (da er ja abgeleitet ist), nämlich wiederum ein symbol-spezifisches Feature. Es sei
15 "SymbolAddressFeatureT" genannt.

```
<xsd:element name="Symbol" type="SymbolT"
substitutionGroup="diam:Object"/>

20 <xsd:complexType name="SymbolT">
<xsd:complexContent>
<xsd:extension base="diam:ObjectT">
<xsd:sequence>
<xsd:element name="AddressFeature"
25 type="SymbolAddressFeatureT"/>
</xsd:sequence>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>
```

30 Dieses symbol-spezifische Feature (genannt "SymbolAddressFeatureT" - wobei "T" für Typ steht) enthält gemäß obigem Basis-Objekt einen Parameter, nämlich wiederum einen symbol-spezifischen, der "SymbolAddressT" heißt:

35 Feature SymbolAddressFeatureT

11

```
<xsd:complexType name="SymbolAddressFeatureT">
  <xsd:complexContent>
    <xsd:extension base="diam:FeatureT">
      <xsd:sequence>
        <5>          <xsd:element name="SymbolAddress"
type="SymbolAddressT"/>
      </xsd:sequence>
    </xsd:extension>
  </xsd:complexContent>
<10> </xsd:complexType>
```

Der symbol-spezifische Parameter "SymbolAddressT" wird im Folgenden definiert. Er enthält die restlichen Informationen: Datentyp, Richtung, Wert.

15 Parameter SymbolAddressT

```
<xsd:complexType name="SymbolAddressT">
  <xsd:complexContent>
<20>    <xsd:extension base="diam:ParameterT">
      <xsd:attribute name="AddressType" type="AddressTypeEnumT"
use="required"/>
      <xsd:attribute name="Direction" type="DirectionEnumT"
use="required"/>
<25>      <xsd:attribute name="Value" type="xsd:string"
use="required"/>
    </xsd:extension>
  </xsd:complexContent>
</xsd:complexType>
```

30 Mit weiteren Spezifikationen sind die im Adress-Parameter verwendeten Attribute ,Typ' und ,Richtung' definiert. Der "Wert" ist letztlich nur ein xsd:string ohne Einschränkungen. Damit genügt das obige Beispiel-Symbol dem generischen Grund-
35 Objektmodell 10 und ist voll validierbar festgelegt.

Üblicherweise sind Datenbestände 210, wie sie im Engineering 220 von Automatisierungssystemen 230 vorkommen, als umfangreiche, komplexe hierarchische Strukturen beschaffen.

Um deren strukturellen Inhalt einheitlich, und transparent

- 5 für andere zu machen, kann ein einfaches erfindungsgemäßes Objektmodell 10 als zentrales, generisches Grundelement der Darstellung definiert werden. Das sei im Folgenden am Beispiel eines Hardware-Projekts 200 mit seinem strukturellen Aufbau demonstriert (siehe FIG 2). Das mit "Projekt" 200
- 10 benannte hierarchische Gefüge beinhaltet eine Verarbeitungsstation 201, welche als "S7 300" bezeichnet wird. Diese enthält auf einem "Rack UR" 202 eine "CPU 315" 203, die unter vielem anderen in ihrem Symbol-Container das Symbol "S7_AO_Niveau" enthält. Zur validierbaren Darstellung dieser
- 15 Strukturen sind natürlich wiederum spezifische Verfeinerungen der Standard Schemas notwendig (zum Beispiel das StructuralFeature, das den Aufbau eines Objektes beschreibt), auf deren Darstellung hier jedoch verzichtet wird. Hier sei der Hinweis genug, dass derer beliebig viele durch
- 20 entsprechende Ableitung erstellt werden können, wodurch alle dargestellten Daten dann auch systematisch validierbar sind.

```
<base:Project ID="{3E397603-9E8C-46EC-8B41-10A60FAA3B17}" Name="Project">
  <base:StructuralFeature>
    <base:Device ID="{EEAD7EA6-2F73-46D8-BCF2-2DAC712CF813}" Name="S7300">
      <base:StructuralFeature>
        <base:Device ID="{E378890F-DEA9-41EF-8C35-6EEF76FD748B}" Name="UR">
          <base:StructuralFeature>
            <base:Device ID="{85852272-12E2-4D4...}" Name="CPU315">
              <base:SoftwareFeature>
                <base:Symbol ID="{85F306C6-412...}" Name="S7_AO_Niveau">
                  <base:AddressFeature>
                    <base:SymbolAddress Direction="In" AddressType="Bit"
Value="0.3"/>
                  </base:AddressFeature>
                </base:Symbol>
              ...
            
```

Zusammenfassend betrifft die Erfindung somit ein System sowie ein Verfahren zur Strukturierung, Speicherung und Verarbeitung von Daten. Der Datenaustausch zwischen verschiedenen Software-Applikationen wird vereinfacht durch

5 die Strukturierung, Speicherung und Verarbeitung gemäß einem generischen Objektmodell 10, wobei das Objektmodell 10 mindestens ein erstes Element aufweist, welches einem Typ Objekt 100 entspricht, wobei der Typ Objekt 100 folgende Merkmale aufweist:

10 - eine eindeutige Bezeichnung 2 der Identität des Objekts 100 zur absoluten Referenzierung des Objekts 100,

- einen logischen Namen 3 zur Benennung des Objekts 100 und

- mindestens eine Verknüpfung 6 mit einem zweiten Element, welches einem Typ Feature 20 entspricht, wobei der Typ

15 Feature 20 folgende Merkmale aufweist:

- einen im Bezug auf das jeweilige verknüpfte Objekt 100 eindeutigen Namen 21 und

- die Möglichkeit der Verknüpfung mit weiteren Elementen vom Typ Objekt 100, mit weiteren Elementen vom Typ Feature 20

20 und mit Daten 30, 40, 50.

Patentansprüche

1. System zur Strukturierung, Speicherung und Verarbeitung von Daten gemäß einem generischen Objektmodell (10), wobei

5 das Objektmodell (10) mindestens ein erstes Element aufweist, welches einem Typ Objekt (100) entspricht, wobei der Typ Objekt (100) folgende Merkmale aufweist:

- eine eindeutige Bezeichnung (2) der Identität des Objekts (100) zur absoluten Referenzierung des Objekts (100),
- 10 - einen logischen Namen (3) zur Benennung des Objekts (100) und
- mindestens eine Verknüpfung (6) mit einem zweiten Element, welches einem Typ Feature (20) entspricht, wobei der Typ Feature (20) folgende Merkmale aufweist:

15 - einen im Bezug auf das jeweilige verknüpfte Objekt (100) eindeutigen Namen (21) und

- die Möglichkeit der Verknüpfung mit weiteren Elementen vom Typ Objekt (100), mit weiteren Elementen vom Typ Feature (20) und mit Daten (30, 40, 50).

20

2. System nach Anspruch 1,

dadurch gekennzeichnet,
dass der Typ Objekt (100) als weitere Merkmale eine Kennzeichnung des Objektstyps (5) und eine Kennzeichnung einer Version (4) des Objekts (100) aufweist.

25 3. System nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
dass die durch ein Element vom Typ Feature (20) verknüpften
30 Elemente eine logisch zusammengehörige Teilmenge aller
Elemente eines Objekts (100) bilden.

35 4. System nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
dass die Elemente des Objekts (100) durch Referenzen (60)
verknüpft sind.

5. System nach einem der vorhergehenden Ansprüche,
d a d u r c h g e k e n n z e i c h n e t ,
dass das Objektmodell (10) durch eine erweiterbare
Kennzeichnungssprache beschrieben wird.

5

6. Verfahren zur Strukturierung, Speicherung und Verarbeitung
von Daten gemäß einem generischen Objektmodell (10), wobei
das Objektmodell (10) mindestens ein erstes Element aufweist,
welches einem Typ Objekt (100) entspricht, wobei der Typ

10 Objekt (100) folgende Merkmale aufweist:

- eine eindeutige Bezeichnung (2) der Identität des Objekts
(100) zur absoluten Referenzierung des Objekts (100),
 - einen logischen Namen (3) zur Benennung des Objekts (100)
und
- 15 - mindestens eine Verknüpfung (6) mit einem zweiten Element,
welches einem Typ Feature (20) entspricht, wobei der Typ
Feature (20) folgende Merkmale aufweist:
 - einen im Bezug auf das jeweilige verknüpfte Objekt (100)
eindeutigen Namen (21) und
 - die Möglichkeit der Verknüpfung mit weiteren Elementen
vom Typ Objekt (100), mit weiteren Elementen vom Typ
Feature (20) und mit Daten (30, 40, 50).
- 20

7. Verwendung eines Systems bzw. eines Verfahrens nach einem
25 der vorhergehenden Ansprüche zum Engineering (220) eines
Automatisierungssystems (230).

FIG 1

2/2

FIG 2

PATENT COOPERATION TREATY

10/532738

PCT

DECLARATION OF NON-ESTABLISHMENT OF INTERNATIONAL SEARCH REPORT
(PCT Article 17(2)(a), Rules 13ter.1(c) and 39)

Applicant's or agent's file reference 2002P16717WO	IMPORTANT DECLARATION	Date of mailing (day/month/year) 23/03/2004
International application No. PCT/DE 03/03452	International filing date (day/month/year) 17/10/2003	(Earliest) Priority Date (day/month/year) 30/10/2002
International Patent Classification (IPC) or both national classification and IPC G06F9/00		
Applicant SIEMENS AKTIENGESELLSCHAFT		

This International Searching Authority hereby declares, according to Article 17(2)(a), that no international search report will be established on the international application for the reasons indicated below.

1. The subject matter of the international application relates to:
 - a. scientific theories.
 - b. mathematical theories.
 - c. plant varieties.
 - d. animal varieties.
 - e. essentially biological processes for the production of plants and animals, other than microbiological processes and the products of such processes.
 - f. schemes, rules or methods of doing business.
 - g. schemes, rules or methods of performing purely mental acts.
 - h. schemes; rules or methods of playing games.
 - i. methods for treatment of the human body by surgery or therapy.
 - j. methods for treatment of the animal body by surgery or therapy.
 - k. diagnostic methods practised on the human or animal body.
 - l. mere presentations of information.
 - m. computer programs for which this International Searching Authority is not equipped to search prior art.
2. The failure of the following parts of the international application to comply with prescribed requirements prevents a meaningful search from being carried out:

the description the claims the drawings
3. The failure of the nucleotide and/or amino acid sequence listing to comply with the standard provided for in Annex C of the Administrative Instructions prevents a meaningful search from being carried out:

the written form has not been furnished or does not comply with the standard.
 the computer readable form has not been furnished or does not comply with the standard.
4. Further comments:

See Supplemental Sheet

Name and mailing address of the ISA/	Authorized officer
Facsimile No.	Telephone No.

It is not possible to carry out a meaningful search of all the claims since the latter relate to schemes, rules and methods for mental acts – PCT Rule 39.1(iii). Modelling constitutes a mental act, and the claims only contain a generic object model which still requires considerable additional modelling effort before it is able to be used in a concrete case.

Furthermore, the claims do not clearly characterise a system or method. As features, they do not contain any means or steps, but merely an abstract, generic object model which is intended to be used “for structuring, storing and processing data”. However, it is not possible for a person skilled in the art to determine or derive clearly the means or steps which have to be used for data processing (including storage) as per such an object model. Rather, any number of systems and methods can be imagined which, in the most varied ways, “structure”, store and process any given data in any given field of application as per such an object model. The use of such an unclear system or method in an automation system is consequently also unclear. The scope of protection of the claims is therefore so unclear (PCT Article 6) that a meaningful search is not possible. It was therefore not possible to draw up a search report for the present application.

The applicant is advised that claims relating to inventions in respect of which no international search report has been established cannot normally be the subject of an international preliminary examination (PCT Rule 66.1(e)). In its capacity as International Preliminary Examining Authority the EPO generally will not carry out a preliminary examination for subjects that have not been searched. This also applies to cases where the claims were amended after receipt of the international search report (PCT Article 19) or where the applicant submits new claims in the course of the procedure under PCT Chapter II. After entry into the regional phase before the EPO, however, an additional search can be carried out in the course of the examination (cf. EPO Guidelines, C-VI, 8.5) if the defects that led to the declaration under PCT Article 17(2) have been remedied.

PCT

ERKLÄRUNG ÜBER DIE NICHTERSTELLUNG EINES INTERNATIONALEN RECHERCHENBERICHTS

(Artikel 17 (2) a) und Regeln 13ter. 1 c) und 39 PCT)

Aktenzeichen des Anmelders oder Anwalts 2002P16717WO	WICHTIGE ERKLÄRUNG	<u>IPO Anmeldedatum</u> (Tag/Monat/Jahr) 23/03/2004
Internationales Aktenzeichen PCT/DE 03/03452	Internationales Anmeldedatum (Tag/Monat/Jahr) 17/10/2003	(Frühestes) Prioritätsdatum (Tag/Monat/Jahr) 30/10/2002
Internationale Patentklassifikation (IPC) oder nationale Klassifikation und IPC		G06F9/00
Anmelder SIEMENS AKTIENGESELLSCHAFT		

Die Internationale Recherchenbehörde erklärt gemäß Artikel 17(2)a), daß für die internationale Anmeldung aus den nachstehend aufgeführten Gründen **kein Internationaler Recherchenbericht erstellt wird.**

1. Der Gegenstand der internationalen Anmeldung betrifft folgende Gebiete:

- a. wissenschaftliche Theorien.
- b. mathematische Theorien.
- c. Pflanzensorten.
- d. Tierarten.
- e. im wesentlichen biologische Verfahren zur Züchtung von Pflanzen und Tieren mit Ausnahme mikrobiologischer Verfahren und der mit Hilfe dieser Verfahren gewonnenen Erzeugnisse.
- f. Pläne, Regeln und Verfahren für eine geschäftliche Tätigkeit.
- g. Pläne, Regeln und Verfahren für rein gedankliche Tätigkeiten.
- h. Pläne, Regeln und Verfahren für Spiele.
- i. Verfahren zur chirurgischen oder therapeutischen Behandlung des menschlichen Körpers.
- j. Verfahren zur chirurgischen oder therapeutischen Behandlung des tierischen Körpers.
- k. Diagnostizierverfahren zur Anwendung am menschlichen oder tierischen Körper.
- l. bloße Wiedergabe von Informationen.
- m. Programme von Datenverarbeitungsanlagen, in bezug auf die die Internationale Recherchenbehörde nicht für die Durchführung einer Recherche über den Stand der Technik ausgerüstet ist.

2. Die folgenden Teile der internationalen Anmeldung entsprechen nicht den vorgeschriebenen Anforderungen so daß eine sinnvolle Recherche nicht durchgeführt werden kann:

die Beschreibung die Ansprüche die Zeichnungen

3. Das Protokoll der Nucleotid- und/oder Aminosäuresequenzen entspricht nicht dem in Anlage C der Verwaltungsvorschriften vorgeschriebenen Standard, so daß eine sinnvolle Recherche nicht durchgeführt werden kann.

Die schriftliche Form wurde nicht eingereicht bzw. entspricht nicht dem Standard.

Die computerlesbare Form wurde nicht eingereicht bzw. entspricht nicht dem Standard.

4. Weitere Bemerkungen:

siehe Anhang

Name und Postanschrift der Internationalen Recherchenbehörde Europäisches Patentamt, P.B. 5818-Postfachlaan 2 NL-2280 HV Rijswijk Tel. (+31-70) 340-2040 Fax: (+31-70) 340-3016	Bevollmächtigter Bediensteter Katrin Sommermeyer
--	--

WEITERE ANGABEN

PCT/ISA/ 203

Eine sinnvolle Recherche auf der Grundlage aller Ansprüche ist nicht möglich, da diese sich beziehen auf - Plan, Regeln und Verfahren für gedankliche Tätigkeiten - Regel 39.1(iii) PCT. Modellierung stellt nämlich eine gedankliche Tätigkeit dar; und die Ansprüche enthalten nur ein generisches Objektmodell, das noch erheblichen zusätzlichen Modellierungsaufwand erfordert, um in einem konkreten Fall benutzt werden zu können.

Darüberhinaus bezeichnen die Ansprüche nicht auf klare Weise ein System oder Verfahren. Sie enthalten als Merkmale keine Mittel bzw. Schritte, sondern nur ein abstraktes, generisches Objektmodell, das "zur Strukturierung, Speicherung und Verarbeitung von Daten" verwendet werden soll. Es ist aber für einen Fachmann nicht möglich, die Mittel oder Schritte klar zu bestimmen oder abzuleiten, die zur Datenverarbeitung (incl. Speicherung) gemäß eines solchen Objektmodells benutzt werden müssen. Vielmehr sind beliebig viele Systeme und Verfahren denkbar, die gemäß eines solchen Objektmodells irgendwelche Daten irgendeines Anwendungsbereiches auf verschiedenste Arten "strukturieren", speichern und verarbeiten. Die Verwendung eines solch unklaren Systems oder Verfahrens in einem Automatisierungssystem ist folglich auch unklar. Der Schutzmfang der Ansprüche ist also in einem solchen Maße unklar (Artikel 6 PCT), dass eine sinnvolle Recherche nicht möglich ist. Daher konnte kein Recherchenbericht für die vorliegende Anmeldung erstellt werden.

Der Anmelder wird darauf hingewiesen, daß Patentansprüche auf Erfindungen, für die kein internationaler Recherchenbericht erstellt wurde, normalerweise nicht Gegenstand einer internationalen vorläufigen Prüfung sein können (Regel 66.1(e) PCT). In seiner Eigenschaft als mit, der internationalen vorläufigen Prüfung beauftragte Behörde wird das EPA also in der Regel keine vorläufige Prüfung für Gegenstände durchführen, zu denen keine Recherche vorliegt. Dies gilt auch für den Fall, daß die Patentansprüche nach Erhalt des internationalen Recherchenberichtes geändert wurden (Art. 19 PCT), oder für den Fall, daß der Anmelder im Zuge des Verfahrens gemäß Kapitel II PCT neue Patentansprüche vorlegt. Nach Eintritt in die regionale Phase vor dem EPA kann jedoch im Zuge der Prüfung eine weitere Recherche durchgeführt werden (Vgl. EPA-Richtlinien C-VI, 8.5), sollten die Mängel behoben sein, die zu der Erklärung gemäß Art. 17 (2) PCT geführt haben.