MATH221: Mathematics for Computer Science Outline Solutions to Tutorial Sheet Week 3

Autumn 2017

1. (i) Note 1: "V" is only False when both parts are False.

Note 2: "\improx" is only False when the first part is True and the second is False.

Therefore, we have a contradiction for Q. Thus the statement is a tautology.

(ii) Note 1: "V" is only False when both parts are False.

Note 2: "\improx" is only False when the first part is True and the second is False.

There is no contradiction. Therefore, the statement is NOT a tautology.

(iii) Note 1: "V" is only False when both parts are False.

Note 2: "\improx" is only False when the first part is True and the second is False.

Note 3: " \wedge " is only True when both parts are True.

We have a contradiction for Q. Thus the statement is a tautology.

2. (i)
$$((P \land Q) \Longrightarrow R) \equiv (\sim (P \land Q) \lor R)$$
 [Thm 1.4.2, 6]
 $\equiv ((\sim P \lor \sim Q) \lor R)$ [DeMorgan's Laws]
 $\equiv (\sim P \lor \sim Q \lor R)$ [Thm 1.4.2, 2]

(ii)
$$(P \implies (P \lor Q)) \equiv (\sim P \lor (P \lor Q))$$
 [Thm 1.4.2, 6]
 $\equiv (\sim P \lor P \lor Q)$ [Thm 1.4.2, 2]

3. (i) Firstly,
$$(P \Longrightarrow Q) \equiv (\sim P \lor Q)$$
 [Thm 1.4.2, 6]
Thus, $\sim (P \Longrightarrow Q) \equiv \sim (\sim P \lor Q)$ [DeMorgan's Laws, Thm 1.4.2, 5]
 $\equiv (P \land \sim Q)$ [Thm 1.4.2, 4]

(ii)
$$((P \land \sim Q) \implies R) \equiv (\sim (P \land \sim Q) \lor R)$$
 [Thm 1.4.2, 6]
 $\equiv ((\sim P \lor \sim \sim Q) \lor R)$ [DeMorgan's Laws, Thm 1.4.2, 5]
 $\equiv ((\sim P \lor Q) \lor R)$ [Thm 1.4.2, 4]
 $\equiv (\sim P \lor (Q \lor R))$ [Thm 1.4.2, 2]
 $\equiv (P \implies (Q \lor R))$ [Thm 1.4.2, 6]

4. (i)
$$P \implies (Q \lor P) \equiv (\sim P \lor (Q \lor P))$$
 [Thm 1.4.2, 6]
 $\equiv (\sim P \lor Q \lor P)$ [Thm 1.4.2, 2]
 $\equiv (\sim P \lor P \lor Q)$ [Thm 1.4.2, 1]

However, $\sim P \vee P$ is a tautology, therefore, by the Conclusion, this statement is also a tautology, that is, $P \implies (Q \vee P)$ is a tautology.

(ii)
$$(P \land Q) \implies (\sim R \lor (P \implies Q))$$

$$\equiv (\sim (P \land Q) \lor (\sim R \lor (P \implies Q))) \qquad [Thm 1.4.2, 6]$$

$$\equiv ((\sim P \lor \sim Q) \lor \sim R \lor (\sim P \lor Q)) \qquad [Thm 1.4.2, 5, 2 \text{ and } 6]$$

$$\equiv (\sim P \lor \sim Q \lor \sim R \lor \sim P \lor Q) \qquad [Thm 1.4.2, 2]$$

$$\equiv (Q \lor \sim Q \lor \sim P \sim R) \qquad [Thm 1.4.2, 1]$$

As in part (i), we have a tautology as $Q \vee \sim Q$ is a tautology.

- **5.** (i) The proposition is true: If x is a positive integer, then $x^2 \le 3 \implies x \le \sqrt{3}$. Now $\sqrt{3} \approx 1.7$ and so x = 1.
 - (ii) The proposition is false. You should have tried proving it using DeMorgan's Laws and failed. Now, find values of x and y that make the statement false. Let x=0 and y=1. $\sim (x>1) \lor \sim (y\leq 0)$ is True.

 $(x \le 1) \land (y > 0)$ is also True. Thus, $\sim ((x \le 1) \land (y > 0))$ is False and the proposition is False.

6. (i) (a)
$$(\sim (x > 1) \implies \sim (y \le 0)) \equiv (\sim \sim (x > 1) \lor \sim (y \le 0))$$
 [Thm 1.4.2, 6] $\equiv ((x > 1) \lor (y > 0))$ [Thm 1.4.2, 4] (b) $((y \le 0) \implies (x > 1)) \equiv (\sim (y \le 0) \lor (x > 1))$ [Thm 1.4.2, 6] $\equiv ((y > 0) \lor (x > 1))$

The statements are the same!

(ii)
$$\sim (\sim (P \lor Q) \land \sim Q)$$
 $\equiv (\sim \sim (P \lor Q) \lor \sim \sim Q)$ [DeMorgan's Laws] $\equiv ((P \lor Q) \lor Q)$ [Thm 1.4.2, 4] $\equiv (P \lor Q)$ [Thm 1.4.2, 2]

- 7. (i) Every real number that is not zero is either positive or negative.

 The statement is true.
 - (ii) The square root of every natural number is also a natural number. The statement is false (consider n=2).
 - (iii) Every student in MATH221 can correctly solve at least one assigned problem. Lecturers are yet to work out if this is true or false!
- **8.** (i) $\forall x \in \mathbb{R}, \forall y \in \mathbb{R}, (xy = 0 \implies (x = 0 \land y = 0))$ The statement is false (consider x = 1 and y = 0).
 - (ii) $\forall x \in \mathbb{R}, \exists y \in \mathbb{Z}, x \leq y$ The statement is true.
 - (iii) \exists student S in MATH221, \forall lecturer's jokes $j,\ S$ hasn't laughed at j Caz hopes this is false.

- **9.** Let H be the set of all people (human beings).
 - (i) $P \equiv \exists p \in H, \ \forall q \in H, \ p \text{ loves } q.$ $\sim P \equiv \sim (\exists p \in H, \ \forall q \in H, \ p \text{ loves } q).$ $\equiv \forall p \in H, \ \sim (\forall q \in H, \ p \text{ loves } q).$ $\equiv \forall p \in H, \ \exists q \in H, \ p \text{ doesn't love } q.$

In a nice world, P is true!

(iii) $P \equiv \exists p \in H, \exists q \in H, p \text{ loves } q.$ $\sim P \equiv \sim (\exists p \in H, \exists q \in H, p \text{ loves } q).$ $\equiv \forall p \in H, \sim (\exists q \in H, p \text{ loves } q).$ $\equiv \forall p \in H, \forall q \in H, p \text{ doesn't love } q.$

P is definitely true!

- (v) $P \equiv \forall x \in \mathbb{Q}, x \in \mathbb{Z}$ $\sim P \equiv \sim (\forall x \in \mathbb{Q}, x \in \mathbb{Z})$ $\equiv \exists x \in \mathbb{Q}, x \notin \mathbb{Z}$ $\sim P$ is true.
- $\begin{array}{ll} \text{(vii)} & P \; \equiv \; \exists n \in \mathbb{N}, \; n \; \text{is not prime.} \\ \\ & \sim P \; \equiv \sim (\exists n \in \mathbb{N}, \; n \; \text{is not prime)} \\ \\ & \equiv \; \forall n \in \mathbb{N}, n \; \text{is prime.} \\ \\ P \; \text{is true.} \end{array}$
- 10. (i) $\forall x \in \mathbb{R}, (x > 1 \implies x > 0)$ This statement is **true**. Clearly, 0 < 1 < x, so x > 0.
 - (iii) $\exists x \in \mathbb{R}, (x > 1 \implies x^2 > x)$ This statement is **true**. Let x = 2. Then x > 1 and $x^2 = 4 > 2 = x$
 - (v) $\forall x \in \mathbb{R}, \ \forall y \in \mathbb{R}, \ x^2 + y^2 = 9$ This statement is **false**. Let x = 1 and y = 1, then $x^2 + y^2 = 2 \neq 9$.
 - (vii) $\exists x \in \mathbb{R}, \ \forall y \in \mathbb{R}, \ x^2 + y^2 \ge 0$ This statement is **true**. Let x = 0. For each $y \in \mathbb{R}, \ y^2 \ge 0$, and we have $x^2 + y^2 = y^2 \ge 0$.

(ii) $P \equiv \forall p \in H, \ \forall q \in H, \ p \ \text{loves} \ q.$ $\sim P \equiv \sim (\forall p \in H, \ \forall q \in H, \ p \ \text{loves} \ q).$ $\equiv \exists p \in H, \ \sim (\forall q \in H, \ p \ \text{loves} \ q).$ $\equiv \exists p \in H, \ \exists q \in H, \ p \ \text{doesn't love} \ q.$

In a perfect world, P is true!

(iv) $P \equiv \forall p \in H, \ \exists q \in H, \ p \text{ loves } q.$ $\sim P \equiv \sim (\forall p \in H, \ \exists q \in H, \ p \text{ loves } q).$ $\equiv \exists p \in H, \ \sim (\exists q \in H, \ p \text{ loves } q).$ $\equiv \exists p \in H, \ \forall q \in H, \ p \text{ doesn't love } q.$

In our world, P is probably true!

- (vi) $P \equiv \sim (\forall n \in \mathbb{N}, \exists p \in \mathbb{N}, n = 2p)$ $\equiv \exists n \in \mathbb{N}, \sim (\exists p \in \mathbb{N}, n = 2p)$ $\equiv \exists n \in \mathbb{N}, \forall p \in \mathbb{N}, n \neq 2p$ $\sim P \equiv \sim \sim (\forall n \in \mathbb{N}, \exists p \in \mathbb{N}, n = 2p)$ $\equiv \forall n \in \mathbb{N}, \exists p \in \mathbb{N}, n = 2p$ P is true.
- $\begin{aligned} \text{(viii)} \quad P &\equiv \forall \text{ triangle } T, \ T \text{ is a right triangle.} \\ \sim P &\equiv \sim (\forall \text{ triangle } T, \ T \text{ is a right triangle} \\ &\equiv \exists \text{ triangle } T, \ T \text{ is not a right triangle.} \\ \sim P \text{ is true.} \end{aligned}$
- (ii) $\forall x \in \mathbb{R}, (x > 1 \implies x > 2)$ This statement is **false**. Let x = 1/5. Then x > 1 but x < 1/5.
- (iv) $\exists x \in \mathbb{R}, \ \left(x > 1 \Longrightarrow \frac{1}{x} \underbrace{\text{but } x <_1}_{x^2 + 1} < \frac{2}{3}\right)$ This statement is **true**. Let x = 3. Then x > 1 and $\frac{x}{x^2 + 1} = \frac{3}{10} < \frac{1}{3}$.
- (vi) $\forall x \in \mathbb{R}, \ \exists y \in \mathbb{R}, \ x^2 < y + 1$ This statement is **true**. For $x \in \mathbb{R}$, let $y = x^2$. Then clearly $x^2 < y + 1$.
- (viii) $\exists x \in \mathbb{R}, \ \exists y \in \mathbb{R}, \ (x < y \implies x^2 < y^2)$ This statement is **true**. Let x = 0 and y = 1. Then x < y and $x^2 = 0 < 1 = y^2$.
- **11.** (i) (a) $\sim (\forall \varepsilon > 0, \exists x \neq 0, |x| < \varepsilon) \equiv \exists \varepsilon > 0, \sim (\exists x \neq 0, |x| < \varepsilon) \equiv \exists \varepsilon > 0, \forall x \neq 0, |x| > \varepsilon$
 - (b) The negation of the statement is false.
 - (c) For any $\varepsilon > 0$, we can take $x = \frac{\varepsilon}{2}$ and we have $x \neq 0$ but $|x| < \varepsilon$.
 - (ii) (a) $\sim (\exists y \in \mathbb{R}, \ \forall x \in \mathbb{R}, \ y < x^2) \equiv \ \forall y \in \mathbb{R}, \ \sim (\forall x \in \mathbb{R}, \ y < x^2)$ $\equiv \ \forall y \in \mathbb{R}, \ \exists x \in \mathbb{R}, \ y \geq x^2$
 - (b) The negation of the statement is false.
 - (c) Let u = -1. We know $x^2 > 0$ for all $x \in \mathbb{R}$ in $x^2 > u$

(iii) (a)
$$\sim \left(\forall y \in \mathbb{R}, \ \forall x \in \mathbb{R}, \ \left(x < y \implies x < \frac{x+y}{2} < y \right) \right)$$

$$\equiv \exists y \in \mathbb{R}, \ \sim \left(\forall x \in \mathbb{R}, \ \left(x < y \implies x < \frac{x+y}{2} < y \right) \right)$$

$$\equiv \exists y \in \mathbb{R}, \ \exists x \in \mathbb{R}, \ \sim \left(x < y \implies x < \frac{x+y}{2} < y \right)$$

$$\equiv \exists y \in \mathbb{R}, \ \exists x \in \mathbb{R}, \ \left(x < y \land \left(\frac{x+y}{2} \le x \lor \frac{x+y}{2} \ge y \right) \right)$$

$$\equiv \exists y \in \mathbb{R}, \ \exists x \in \mathbb{R}, \ \left(x < y \land \left(y \le x \lor x \ge y \right) \right)$$

- (b) The negation of the statement is false.
- (c) Clearly, $x < y \ \land \ (y \le x \ \lor \ x \ge y)$ is equivalent to $x < y \ \land \ x = y$, which is impossible.