File Systems Part 2

Disk Map

Friday's Quiz

Suppose a new file is created. (At this point it occupies zero blocks.) Then one byte is written to it at byte offset $(266 \times 2^{10}) + 1$. Assume the block size is 2^{10} and block addresses occupy four bytes. How many blocks are required to represent the file, not counting its inode?

- a) more than 270
- b) 270
- c) 3
- d) 1

Quiz 1

Suppose one now writes to all locations in the file, from its beginning up to the location written to in the previous slide (byte offset (266×2^{10}) + 1). How many blocks are required to represent the file, not counting its inode?

- a) more than 270
- b) 270
- c) 3
- d) 1

S5FS Free List

S5FS Free Inode List

13	
44	
11	
6	
6 12	
4	

Super Block

I-list

Disk Architecture

CS167 Disk Drive

Rotation speed	10,000 RPM
Number of surfaces	8
Sector size	512 bytes
Sectors/track	500-1000; 750 average
Tracks/surface	100,000
Storage capacity	307.2 billion bytes
Average seek time	4 milliseconds
One-track seek time	.2 milliseconds
Maximum seek time	10 milliseconds

S5FS on CS167

(A Marketing Disaster ...)

- CS167's maximum transfer speed?
 - -63.9 MB/sec
- S5FS's average transfer speed on CS167?
 - average seek time:
 - < 4 milliseconds (say 2)
 - average rotational latency:
 - ~3 milliseconds
 - per-sector transfer time:
 - negligible
 - time/sector: 5 milliseconds
 - transfer time: 102.4 KB/sec (.16% of maximum)

What to Do About It?

- Hardware
 - employ pre-fetch buffer
 - filled by hardware with what's underneath head
 - helps reads; doesn't help writes
- Software
 - better on-disk data structures
 - increase block size
 - minimize seek time
 - reduce rotational latency

FFS

- Better on-disk organization
- Longer component names in directories
- Retains disk map of S5FS

Larger Block Size

The Down Side ...

Two Block Sizes ...

Rules

- File-system blocks may be split into fragments that can be independently assigned to files
 - fragments assigned to a file must be contiguous and in order
- The number of fragments per block (1, 2, 4, or 8) is fixed for each file system
- Allocation in fragments may only be done on what would be the last block of a file, and only for small files

Use of Fragments (1)

	-	٠,	4	+	т.	4	┯	7
	-	-	4	-	-	-	÷	÷
	_	_		_	-	-	ш	_
1	_	$\overline{}$	Д,	ь.	Ų.	_	Д,	Ц,
Н							\equiv	Н
	+	4	4	+	т.	4	┯	7
		_	÷	_		7	÷	Ť
		T	ш			Ľ	ф	Ė
	-	-	٠.	4	w	-	٠.	4
Н	-	$\overline{}$	Ξ.	Τ.		Ţ	\equiv	щ
		_	ч	_		_	ч	\mathbf{T}
-	_	-	7	-	-	-	T	7
		1	Н	Ţ.	1	Τ,		—
	_	т'		_	т	т.	ш	_
	-	7		-	q.	Ψ.		щ
	+	÷	-	-	÷	÷	-	Ŧ
		_		_	۰.	4	_	_
		- 1	1					

Use of Fragments (2)

	_			_	_		_			
	СΤ	т	т	T	Ľ	т'	т'	T	Т	
			Q.	J	Į	$\overline{}$	\neg	Ţ	$\overline{}$	Ξ,
	_	•	_	-	٠	-	-	-	-	7
		т	_	T	Т	т	т'	Т	т	Т
	_	L,	\Box	$\overline{}$	Ţ	$\overline{}$	\neg	$\overline{}$	$\overline{}$	Ξ,
-	_	-	-	-	•	-	-	•	-	-
		Т		T	П	Т	Т	Т	т	Т
				\Box						
1	7			-	-		-	-	-	_
		$\overline{}$	\mathbf{T}		П	т	T	I	т	
	-	_	_	_	٠,	_	_	_	_	
	亡	Т		T	Ľ			т	т	
		Ξ	Ξ	Ţ	5	Ţ	Į	Ţ	Τ	
#		Ŧ	Ŧ	Ė		Ī	Į	Ī	I	
			T T						I	
			T I				T		I	
								T	T T T	
		T							T T T	
		<u> </u>								
		T T							T T T T	
		T T T T T T T T T T T T T T T T T T T							T T T T T T	

Use of Fragments (3)

_	_	_	_	_		_	_	-
	_	т.	1 1	_	_	т,		_
	_	т,	—	_	_	-	_	7
		~		-	~	~	-	4
$\overline{}$	т-	•	~	1	_	•	_	т.
	_	-	-	-	-		_	
\perp	\perp		-			\perp	\perp	Ц
	щ,	Щ.		Д,	Д,	ц.		
		_	_			_	_	_
1		7	1	į	1	_	1	7
	_	_	ТΤ	$\overline{}$	_	т:		
$\overline{}$	_	-		-	-	-		7
		_	-	~	~	~	-	٦
	т*т	-	~	1	_	•	т.	г
				щ	Ų.			Ц
	┯┺-	4		-	٠,	4		,
	_	7	т т	_	_	_	_	۰,
TT			1			1	т.	П
				_				
_	-	-	-	-	-	_	_	٦
		_		-	-	-		~
	Ŧ	+	+++	~	_	т,	1	_

Minimizing Seek Time

- Keep related things close to one another
- Separate unrelated things

Cylinder Groups

Minimizing Seek Time

The practice:

- attempt to put new inodes in the same cylinder group as their directories
- put inodes for new directories in cylinder groups with "lots" of free space
- put the beginning of a file (direct blocks) in the inode's cylinder group
- put additional portions of the file (each 2MB) in cylinder groups with "lots" of free space

How Are We Doing?

- Configure CS167 with 20 cylinders per group
 - 2-MB file fits entirely within one cylinder group
 - average seek time within cylinder group is ~.3 milliseconds
 - average rotational delay still 3 milliseconds
 - .12 milliseconds required for disk head to pass over 8KB block
 - 3.42 milliseconds for each block
 - 2.4 million bytes/second average transfer time
 - 20-fold improvement
 - 3.7% of maximum possible

Minimizing Latency (1)

Numbers

- CS167 spins at 10,000 RPM
 - 6 milliseconds/revolution
- Disk I/O done one block at a time
- 100 microseconds required to field diskcompletion interrupt and start next operation
 - typical of early 1980s
- Each block takes 120 microseconds to traverse disk head
- Reading successive blocks is timeconsuming!

Minimizing Latency (2)

How're We Doing Now? (part 1)

- Time to read successive blocks (two-way interleaving):
 - after request for second block is issued, must wait 20 microseconds for the beginning of the block to rotate under disk head
 - factor of 300 improvement!

How're We Doing Now? (part 2)

- Same setup as before
 - 2-MB file within one cylinder group
 - actually fits in one cylinder
 - block interleaving employed: every other block is skipped
 - .3-millisecond seek to that cylinder
 - 3-millisecond rotational delay for first block
 - 50 blocks/track, but 25 read in each revolution
 - 10.24 revolutions required to read all of file
 - 32.4 MB/second (50% of maximum possible)

Quiz 2

If file access is one (8KB) block at a time and we employ 2-way block interleaving, can we do better than the 50% of maximum transfer speed achieved by FFS?

- a) yes we can get arbitrarily close to 100%
- b) yes, but the limit is somewhere between 50% and 100%
- c) no we've reached the limit

Further Improvements?

- S5FS: 0.16% of capacity
- FFS without block interleaving: 3.8% of capacity
- FFS with block interleaving: 50% of capacity
- What next?

Larger Transfer Units

- Allocate in whole tracks or cylinders
 - too much wasted space
- Allocate in blocks, but group them together
 - transfer many at once
 - wasted space, but not as bad

Block Clustering

- Allocate space in blocks, eight at a time
- Linux's Ext2 (an FFS clone):
 - allocate eight blocks at a time
 - extra space is available to other files if there is a shortage of space
- FFS on Solaris (~1990)
 - delay disk-space allocation until:
 - 8 blocks are ready to be written
 - or the file is closed

Extents

Problems with Extents

- Could result in highly fragmented disk space
 - lots of small areas of free space
 - solution: use a defragmenter
- Random access
 - linear search through a long list of extents
 - solution: multiple levels

Extents in NTFS

Good File Layout

Quiz 3

So far we've been attempting to optimize *logical locality* in file systems: bytes that are logically near one another within a file are physically near one another on disk.

- a) This is important on both single-user systems and busy (multi-client) file servers
- b) This is important on single-user systems, but of marginal importance on busy (multi-client) file servers
- c) This is of marginal importance on singleuser systems