Math 6010

9-27-2023

Objectives

▶ Define exponential functions $(f(x) = C \cdot a^x)$

Objectives

▶ Define exponential functions $(f(x) = C \cdot a^x)$

► Graph exponential functions

Objectives

▶ Define exponential functions $(f(x) = C \cdot a^x)$

► Graph exponential functions

▶ Understand basic properties of exponential functions

Want a function like

$$f(x) = C \cdot a^x$$

Want a function like

$$f(x) = C \cdot a^x$$

Recall: if
$$x = \frac{m}{n}$$
, then $a^x = a^{\frac{m}{n}} = \sqrt[n]{a^m}$

Want a function like

$$f(x) = C \cdot a^x$$

Recall: if
$$x = \frac{m}{n}$$
, then $a^x = a^{\frac{m}{n}} = \sqrt[n]{a^m}$

But x might not be $\frac{m}{n}$, for integers m, n...

Want a function like

$$f(x) = C \cdot a^x$$

Recall: if $x = \frac{m}{n}$, then $a^x = a^{\frac{m}{n}} = \sqrt[n]{a^m}$

But x might not be $\frac{m}{n}$, for integers m, n...

 $ightharpoonup x = \pi, \sqrt{2}$, and so on

Want a function like

$$f(x) = C \cdot a^x$$

Recall: if
$$x = \frac{m}{n}$$
, then $a^x = a^{\frac{m}{n}} = \sqrt[n]{a^m}$

But x might not be $\frac{m}{n}$, for integers m, n...

$$ightharpoonup x = \pi, \sqrt{2}$$
, and so on

...but every number has a decimal expansion

$$\frac{2}{5} = 0.4,$$
 $\frac{1}{3} = 0.3333...,$ $\pi = 3.14159...,$ $\sqrt{2} = 1.41421...$

Want a function like

$$f(x) = C \cdot a^x$$

Recall: if
$$x = \frac{m}{n}$$
, then $a^x = a^{\frac{m}{n}} = \sqrt[n]{a^m}$

But x might not be $\frac{m}{n}$, for integers m, n...

$$ightharpoonup x = \pi, \sqrt{2}$$
, and so on

...but every number has a decimal expansion

$$\frac{2}{5} = 0.4,$$
 $\frac{1}{3} = 0.3333...,$ $\pi = 3.14159...,$ $\sqrt{2} = 1.41421...$

Approximate any number x by finitely many of its decimal digits.

$$a^{\pi} \approx a^{3.14} = a^{\frac{314}{100}} = \sqrt[100]{a^{314}}$$

The more digits we use, the closer we get to the true value of a^{π}

2^3	$2^{3.1}$	$2^{3.14}$	$2^{3.141}$	$2^{3.1415}$	 2^{π}
8.0000	8.5742	8.8152	8.8213	8.8244	 8.8250

The more digits we use, the closer we get to the true value of a^{π}

2^3	$2^{3.1}$	$2^{3.14}$	$2^{3.141}$	$2^{3.1415}$	• • •	2^{π}
8.0000	8.5742	8.8152	8.8213	8.8244		8.8250

So we can use any number x in the exponent. Hooray!

The more digits we use, the closer we get to the true value of a^{π}

2^3	$2^{3.1}$	$2^{3.14}$	$2^{3.141}$	$2^{3.1415}$	 2^{π}
8.0000	8.5742	8.8152	8.8213	8.8244	 8.8250

So we can use any number x in the exponent. Hooray!

Better still, we get to keep all the properties of exponents that we already know:

Exponent Properties

If x, y are any real numbers, and a, b > 0, then

$$\bullet a^{x} \cdot a^{y} = a^{x+y} \quad \bullet (a^{x})^{y} = a^{xy} \quad \bullet (ab)^{x} = a^{x} \cdot b^{x}$$

$$\bullet 1^{x} = 1 \quad \bullet a^{-x} = \frac{1}{a^{x}} = \left(\frac{1}{a}\right)^{x} \quad \bullet a^{0} = 1$$

$$\bullet \ 1^x = 1 \qquad \bullet \ a^{-x} = \frac{1}{a^x} = \left(\frac{1}{a}\right)^x \quad \bullet \ a^0 = 1$$

Now that we know what a^x means for any x, we can define an exponential function.

Exponential Function

An **exponential function** is a function f such that

$$f(x) = C \cdot a^x,$$

where

- $ightharpoonup C \neq 0$ is called the **initial value**, and
- ▶ a > 0, $a \neq 1$ is called the **growth factor**.

Consider the exponential function $f(x) = 5 \cdot 2^x$. Let's make a table of values

$$\begin{array}{c|cc} x & f(x) \\ \hline -2 & 1.25 \\ -1 & 2.5 \\ 0 & 5 \\ 1 & 10 \\ 2 & 20 \\ \end{array}$$

Consider the exponential function $f(x) = 5 \cdot 2^x$. Let's make a table of values

$$\begin{array}{c|cc} x & f(x) \\ \hline -2 & 1.25 \\ -1 & 2.5 \\ 0 & 5 \\ 1 & 10 \\ 2 & 20 \\ \end{array}$$

ightharpoonup f(x) goes up by $\times 2 = a$ each time x increases

Consider the exponential function $f(x) = 5 \cdot 2^x$. Let's make a table of values

$$\begin{array}{c|cc} x & f(x) \\ \hline -2 & 1.25 \\ -1 & 2.5 \\ 0 & 5 \\ 1 & 10 \\ 2 & 20 \\ \end{array}$$

- ▶ f(x) goes up by $\times 2 = a$ each time x increases
- f(0) = 5 = C.

$$f(x) = C \cdot a^x$$

• $f(0) = C \cdot a^0 = C$, the initial value

$$f(x) = C \cdot a^x$$

- $ightharpoonup f(0) = C \cdot a^0 = C$, the initial value
- ightharpoonup The growth factor: how much the function grows every time x goes up by 1

$$f(x+1) = a \cdot f(x)$$

$$f(x) = C \cdot a^x$$

- $ightharpoonup f(0) = C \cdot a^0 = C$, the initial value
- The growth factor: how much the function grows every time x goes up by 1

$$f(x+1) = a \cdot f(x)$$

because

$$\frac{f(x+1)}{f(x)} = \frac{C \cdot a^{x+1}}{C \cdot a^x}$$

$$f(x) = C \cdot a^x$$

- $ightharpoonup f(0) = C \cdot a^0 = C$, the initial value
- The growth factor: how much the function grows every time x goes up by 1

$$f(x+1) = a \cdot f(x)$$

because

$$\frac{f(x+1)}{f(x)} = \frac{C \cdot a^{x+1}}{C \cdot a^x} = \frac{a^{x+1}}{a^x}$$

$$f(x) = C \cdot a^x$$

- $ightharpoonup f(0) = C \cdot a^0 = C$, the initial value
- The growth factor: how much the function grows every time x goes up by 1

$$f(x+1) = a \cdot f(x)$$

because

$$\frac{f(x+1)}{f(x)} = \frac{C \cdot a^{x+1}}{C \cdot a^x} = \frac{a^{x+1}}{a^x} = a^{x+1-x} = a$$

Let's try to graph the function $f(x) = 5 \cdot 2^x$ from before. First, extend the table of values

Let's try to graph the function $f(x) = 5 \cdot 2^x$ from before. First, extend the table of values

j

Let's try to graph the function $f(x) = 5 \cdot 2^x$ from before. First, extend the table of values

x	f(x)
-5	0.16125
-4	0.3125
-3	0.625
-2	1.25
-1	2.5
0	5
1	10
2	20
3	40
4	80
5	160

It seems that $f(x) \to 0$ as $x \to -\infty$, and $f(x) \to \infty$ as $x \to \infty$

