WHAT IS CLAIMED IS:

2 3 4

1. A stent for placement in a bifurcated body lumen having a main branch and a side branch, said stent comprising:

a main tubular stent body having a first end, a second end, a lumen therethrough, and a side opening have a plurality of laterally deployable elements therein.

- 2. A stent as in claim 1, wherein the elements are formed as an integral part of the stent body.
- 1 3. A stent as in claim 2, wherein, prior to deployment, the laterally deployable elements are aligned in a tubular envelope defined by the tubular stent body.
- 4. A stent as in any of the preceding claims, wherein the main tubular stent body is resilient so that it may be released from constraint for deployment.
- 5. A stent as in any of the preceding claims, wherein the main tubular stent body is deformable so that it may be expanded by a balloon catheter.
- 1 6. A stent as in any of the preceding claims, wherein at least a portion 2 of the main stent body is radiopaque.
- 7. A stent as in claim 6, wherein at least a portion of the main stent body surrounding the side hole is radiopaque.
- 8. A stent as in any of the preceding claims, having a radially compressed configuration, wherein the length is less than 4 cm and the diameter is less than 2 cm.
- 9. A stent as in any of the preceding claims, wherein the side hole comprises a continuous band.
- 1 10. A stent as in claim 9, wherein the laterally deployable elements are inwardly projecting loops of the continuous band.
- 1 11. A stent for placement in a bifurcated body lumen, said stent comprising:

2

method comprising:

	. /
3	a main tubular body having a first end, a second end, and a side opening
4	between said ends, wherein a first portion of the main tubular body between the first end
5	and the side hole opens in response to a first radially outward pressure and a second
6	portion of the main tubular body between the side hole and the second end opens in
7	response to a second pressure, wherein the first pressure is less than the second pressure.
1	12. A stent as in claim 11, wherein the first pressure is in the range
2	from 1 atmospheres to 10 atmospheres and the second pressure is in the range from
3	2 atmospheres to 18 atmospheres.
1	13. A stent as in claim 11 or 12, wherein the first portion has a first
2	axial spine and the second portion has a second axial spine, wherein the first axial spine
3	opens circumferentially to a first force and the second axial spine opens circumferentially
4	in response to a second force, wherein the first force is less than the second force.
1	14. A stent as in claim 1 or 12, wherein the first portion comprises
2	serpentine rings with a first strut length and the second portion comprises serpentine ring
3	with a second strut length, wherein the first strut length is greater than the second strut
4	length.
1	15. A stent system comprising:
2	(a) a stent as in any of the preceding claims; and
3	(b) a second stent adapted to fit within and contact the laterally deployable
4	elements of the main tubular stent.
1	16. A method for attaching a second stent to a first stent, said method
2	comprising:
3	expanding a main tubular stent body; and
4	laterally deflecting a plurality of elements disposed about a side opening
5	on the main tubular stent body.
1	17. A method as in claim 16, further comprising placing a second ster
2	into the side hole so that said second stent engages the laterally deflected element.
1	18. A method for deploying a stent in a bifurcated body lumen, said

4

5

6

the bifurcation;

WO 99/36002 PCT/US99/00835 18 providing a stent having a first portion, a second portion, and a side hole 3 4 between said portions; expanding a first portion against a luminal wall segment on one side of the 5 6 bifurcation; aligning the side hole with the branch lumen; and 7 expanding the second portion on the other side of the bifurcation. 8 19. A kit comprising: 1 a stent as in any of claims 1 to 10; and 2 3 instructions for use setting forth a method including the following steps: (a) expanding the main tubular stent body in a body lumen so that a side 4 hole on the stent body is aligned with a branching body lumen; and 5 (b) laterally deflecting a plurality of elements disposed about the side 6 opening so that they enter into the branching body lumen. 7 1 20. A kit comprising: 2 a stent system in claim 9; and instructions for use setting forth a method including the following steps: 3 (a) expanding the main tubular stent body in a body lumen so that a side 4 5 hole on the stent body is aligned with a branching body lumen; 6 (b) laterally deflecting a plurality of elements disposed about the side 7 opening so that they enter into the branching body lumen; and 8 (c) placing the second stent into the side hole so that said second stent engages the laterally deflected plurality of elements. 9 A kit comprising: 1 21. a stent as in any of claims 11-14; and 2 instructions for use setting forth a method comprising the following steps: 3

ASS (17)

(a) expanding a first portion against a luminal wall segment on one side of

(c) expanding the second portion on the other side of the bifurcation.

(b) aligning the side hole with the branch lumen; and