Teoria da Computação Eliminação de Recursão à Esquerda

Prof. Jefferson Magalhães de Morais

Eliminar Recursão à Esquerda

- Uma gramática G = (N, T, P, S) tem recursão à esquerda se existe A ∈ N tal que
 - A + \rightarrow A α , $\alpha \in (N \cup T)^*$
- Uma gramática G = (N, T, P, S) tem recursão à direita se existe A
 ∈ N tal que
 - A + \rightarrow α A, $\alpha \in (N \cup T)^*$
- A recursão é dita direta se a derivação acima for em um passo, isto é:
 - G tem recursão direta à esquerda se existe produção A \rightarrow A $\alpha \in P$
 - G tem recursão direta à direita se existe produção A → αA ∈ P

Eliminar a Recursão à Esquerda

A importância de elminar a recursividade à esquerda é que alguns tipos de compiladores podem executar o processo de reconhecimento como chamadas de rotinas (procedimentos ou funções). Assim, uma gramática recursiva à esquerda, tal como por exemplo A → Aa|a, acaba gerando um laço infinito A ⇒ Aa ⇒ Aaa ⇒ Aaaa ⇒ ... e o processo de reconhecimento não finaliza nunca.

Eliminar a Recursão à Esquerda

Algoritmo:

recursões diretas: substituir cada regra

$$A \to A\alpha_1 |A\alpha_2| \cdots |A\alpha_n|\beta_1|\beta_2| \cdots |\beta_m$$
, onde nenhum

 β_i começa por A, por:

$$A \rightarrow \beta_1 A' | \beta_2 A' | \cdots | \beta_m A'$$

$$A' \rightarrow \alpha_1 A' |\alpha_2 A'| \cdots |\alpha_n A'| \varepsilon$$

Eliminar Recursão à esquerda

- Para Recursões indiretas:
 - Transformar produções com recursão indireta em recursão direta (fazer as substituições necessárias)

Eliminar Recursão à esquerda

- Exemplo: G = (N, T, P, S)
 - P: $S \rightarrow A$ a
 - $A \rightarrow Sb \mid cA \mid a$
 - Solução:
 - P': S → A a
 A → A a b | c A | a
 - P": $S \rightarrow A a$ $A \rightarrow c A A' \mid a A'$ $A' \rightarrow a b A' \mid \epsilon$