Chapter 3

Dr. Md Abu Sayeed EET 340

Binary Addition

Four Basic Rules of Binary Addition:

$$0+0=0$$
 sum = 0, carry = 0
 $0+1=1$ sum = 1, carry = 0
 $1+0=0$ sum = 1, carry = 0
 $1+1=10$ sum = 0, carry = 1

For addition, in the computer, it is a bitwise addition. It adds one bit by one bit every time.

Example 1: 110 + 100 = ?

Example 2: 111 + 11 = ?

Binary Subtraction

Example 1: 8 - 3 = ?

```
1 0 0 0 : 8
+ 1 1 0 1 : 2's complement of 3 (-3)
0 1 0 1 : 5
```

Example 2: 7 - 6 = ?

Example 1: 101 - 011 = ?

borrow is required

Example 2: 110 - 101 = ?

borrow is required

Binary Multiplication

Four Basic Rules of Binary Multiplication:

$$0 \times 0 = 0$$

$$0 \times 1 = 0$$

$$1 \times 0 = 0$$

$$1 \times 1 = 1$$

- It involves forming partial products, shifting each successive partial product left one place, and then adding all the partial products.
- The computer can only do addition and shift operation. So, for multiplication, it will be converted to simple shift and addition operation.

Example 1: $11 \times 01 = ?$

Example 2: 111 X 101 = ?

Floating Point Numbers

Scientific notation: A notation that renders numbers with a single digit to the left of the decimal point.

Normalized Number: A number in scientific notation that has no leading 0s is called a normalized number

For example, 0.000000001 is floating point number (decimal). $1.0_{\text{ten}} \times 10^{-9}$ is in normalized scientific notation, but $0.1_{\text{ten}} \times 10^{-8}$ and $10.0_{\text{ten}} \times 10^{-10}$ are not.

For example, 1001.001 is fractional binary number. $1.001001_{\text{two}} \times 2^3$ is in normalized scientific notation

Floating Point Numbers

- Floating-point number (also known as a real number) consists of two parts plus a sign. The mantissa is the part of a floating-point number that represents the magnitude of the number and is between 0 and 1. The exponent is the part of a floating-point number that represents the number of places that the decimal point (or binary point) is to be moved.
- For binary floating-point numbers, the format is defined by ANSI/IEEE Standard 754-1985 in three forms:
 - single-precision
 - double-precision

IEEE 754 Single Precision Format

S	EXPONENT	FRACTION
1 bit	8 bits	23 bits

- S: Sign bit ($0 \rightarrow$ Nonnegative, $1 \rightarrow$ Negative)
- Exponent = Actual Exponent + Bias For single precision, Bias = 127
- Fraction: 23 bit fractions from normalized numbers

The value of the floating-point number can be determined by the following expression:

$$(-1)^{S} \times (1 + Fraction) \times 2^{(Exponent-Bias)}$$

Example: Convert the decimal value 2.75 to IEEE-754 single precision format. Write your converted result in hexadecimal format.

```
①Convert to binary: 0.75 * 2 = 1.5 0.5 * 2 = 1.0 10.11
(2) Normalized: 1.011 * 2^1
③Calculation of the three components: (-1)^{S} * (1 + Fraction) * 2^{(Exponent-Bias)}
Single Precision:
                    Fraction = 0.011;
                    Bias = 127;
                      Exponent = 128;
0, 1000, 0000, 0110, 0000, 0000, 0000, 0000, 000_2 = 0X40300000_{hex}
       Exponent
                             Fraction
 S
```

Example: Convert the decimal value -4.25 to IEEE-754 single precision format. Write your converted result in hexadecimal format.

```
② Normalized: 1.0001 * 2^2
③ Calculation of the three components: (-1)^S * (1 + Fraction) * 2^{(Exponent-Bias)}
Single Precision:
           Fraction = 0.0001;
            Bias = 127;
             Exponent = 129:
 Exponent
                 Fraction
```

Example: Convert each of the following IEEE-754 floating point representation to decimal values.

- a. 0x41380000
- b. 0xC0E80000

a.

- ① Convert to binary: 0100, 0001, 0011, 1000, 0000, 0000, 0000
- ②Find three components:

 S = 0;

 Fraction = 0.0111;

 Bias = 127;

 Exponent = 130:
- ③ Substitution the three components in the equation: $(-1)^S*(1+Fraction)*2^{(Exponent-Bias)}$

$$(-1)^0 * (1 + 0.4375) * 2^{(130-127)} = 11.5$$

b.

- ① Convert to binary: 1100, 0000, 1110, 1000, 0000, 0000, 0000
- ②Find three components: S = 1;

```
Fraction = 0.1101;
Bias = 127;
Exponent = 129;
```

③ Substitution the three components in the equation: $(-1)^S*(1+Fraction)*$ $_{2(Exponent-Bias)}$

$$(-1)^1 * (1 + 0.8125) * 2^{(129-127)} = -7.25$$

IEEE 754 Double Precision Format

S	EXPONENT	FRACTION
1 bit	11 bits	52 bits

- S: Sign bit ($0 \rightarrow \text{Non-negative}, 1 \rightarrow \text{Negative}$)
- Exponent = Actual Exponent + Bias For double precision, Bias = 1023
- Fraction: 52-bit fractions from normalized number

The value of the floating-point number can be determined by the following expression:

$$(-1)^{S} \times (1 + Fraction) \times 2^{(Exponent-Bias)}$$

Example: Convert the decimal value 2.75 to IEEE-754 double precision format. Write your converted result in hexadecimal format.

```
①Convert to binary: 0.75 * 2 = 1.5 0.5 * 2 = 1.0 10.11
(2)Normalized: 1.011 * 21
Double Precision:
                      Fraction = 0.011;
                     Bias = 1023;
        Exponent
                      Exponent = 1024;
0, 1000, 0000, 000, 0110, 0000, 0000, 0000, 0000, 0000, 0000, 0000, 0000, 0000, 0000, 0000,
00002 = 0X40060000000000000hex
                                                Fraction
```

Example: Convert the decimal value -4.25 to IEEE-754 double precision format. Write your converted result in hexadecimal format.

Example: Convert the following IEEE-754 floating point representation to decimal values.

a. **0X4035000000000000**

Solution:

①Convert to binary: 0100, 0000, 0011, 0101, 0000, 0000, 0000, 0000, 0000, 0000, 0000, 0000, 0000, 0000, 0000, 0000, 0000, 0000

②Find three components:

S = 0;

Fraction = 0.0101;

Bias = 1023;

Exponent = 1027:

③ Substitution the three components in the equation: $(-1)^S*(1+Fraction)*$ $2^{(Exponent-Bias)}$

$$(-1)^0 * (1 + 0.3125) * 2^{(1027-1023)} = 21$$

Floating Point Addition (Decimal)

Consider a 4-digit decimal example: $9.999 \times 10^{1} + 1.610 \times 10^{-1}$

- 1. Align decimal points:
 - Align decimal point of the number with smaller exponent
 - $9.999 \times 10^{1} + 0.016 \times 10^{1}$
- 2. Add significands:

$$9.999 + 0.016 = 10.015$$

result = 10.015×10^{1}

- 3. Normalize result: 1.0015×10^2
- 4. Round and renormalize if necessary: 1.002×10^2

NB. We assumed that significands can be only 4 bits or digits.

Floating Point Addition (Binary)

- 1. Align binary points:
 - Align binary point of the number with smaller exponent
- 2. Add significands:
- 3. Normalize result:
- 4. Round and renormalize if necessary:

NB. We assumed that significands can be only 4 bits or digits.

Problem: Perform binary floating-point addition and convert the resulting values to IEEE-754 single and IEEE-754 double precision format. Finally convert them to hexadecimal values.

$$0.5 + 0.4375$$

SOLUTION:

Convert 0.5 to Binary:

$$0.5 \times 2 = 1.0$$
 - 0.1

Normalized: 1.0 X 2⁻¹

Convert 0.4375 to Binary:

$$0.4375 \times 2 = 0.875$$

 $0.875 \times 2 = 1.75$
 $0.75 \times 2 = 1.5$
 $0.5 \times 2 = 1.0$

Normalized: 1.11 X 2⁻²

1. Align Binary Points:

$$0.5 = 1.000 \times 2^{-1}$$

 $0.4375 = 0.111 \times 2^{-1}$

2. Add Significands:

$$1.000 + 0.111 = 1.111$$

Resulting value = 1.111 X 2⁻¹

- 3. Normalized Result = 1.111×2^{-1}
- 4. Round and Renormalize: No change

Single Precision Format (from Normalized result):

Sign = 0
Exponent =
$$-1 + 127 = 126_{10} = 011111110_2$$

Fraction = 0.111

	0	01111110	111 0000000000000000000000000000000000
Si	gn (1)	Exponent (8)	Fraction (23)

Single Precision Format (from Normalized result):

Sign = 0
Exponent =
$$-1 + 1023 = 1022_{10} = 011111111110_2$$

Fraction = 0.111

	0	0111	11111	10	111	00000	000000	000	0	
Sign (1)		Exponent (11)		Fraction (52)						
00)11	1111	1110	1110	0000	0000	0000	0000	0000	0000
Ω	000	0000	0000	0000	0000	0000 :	= 0X3I	FEE000	00000	0000

Floating Point Subtraction (Binary)

- 1. Align binary points:
 - Align binary point of the number with smaller exponent
- 2. Add significands:
- 3. Normalize result:
- 4. Round and renormalize if necessary:

NB. We assumed that significands can be only 4 bits or digits.

Problem: Perform binary floating-point subtraction and convert the resulting values to IEEE-754 single. Finally convert them to hexadecimal values.

$$0.5 - 0.4375$$

SOLUTION:

Convert 0.5 to Binary:

$$0.5 \times 2 = 1.0$$
 \rightarrow 0.1

Normalized: 1.0 X 2⁻¹

Convert 0.4375 to Binary:

$$0.4375 \times 2 = 0.875$$

 $0.875 \times 2 = 1.75$
 $0.75 \times 2 = 1.5$
 $0.5 \times 2 = 1.0$

Normalized:

$$-0.4375_{10} = -1.11 \times 2^{-2}$$

1. Align Binary Points:

$$0.5 = 1.000 \times 2^{-1}$$

- $0.4375 = -0.111 \times 2^{-1}$

2. Add Significands:

2's complement of
$$0.111 = 1.000 + 1 = 1.001$$

 $1.000 + 1.001 = 10.001$
Resulting value = 0.001×2^{-1}

- 3. Normalized Result = 1.000×2^{-4}
- 4. Round and Renormalize: No change

Single Precision Format (from Normalized result):

Sign = 0
Exponent =
$$-4 + 127 = 123_{10} = 01111011_2$$

Fraction = 0.0

	0		011110)11	000000000000000000000000000000000000000
Si	gn (1)	Exponent	(8)	Fraction (23)
$\mathbf{\Omega}$	11	110	1 1000	Ω	0000 0000 0000 0000 - 0

 $0011\ 1101\ 1000\ 0000\ 0000\ 0000\ 0000\ 0000 = 0X3D800000$

Floating Point Multiplication

- 1. Add exponents:
- 2. Multiply significands:
- 3. Normalize result:
- 4. Round and renormalize if necessary:
- 5. Determine the sign of result from signs of operands

NB. We assumed that significands can be only 4 digits of the significands and two digits of the exponents .

Floating Point Multiplication (Decimal)

Consider a 4-digit decimal example: $(1.110 \times 10^{10}) \text{ X} (9.2 \times 10^{-5})$

- 1. Add exponents:
 - e1 =10 e2=-5
 - e = e1 + e2 = 10 5 = 5
- 2. Multiply significands:

1.110 X 9.2 =
$$10.212$$
 result = 10.212×10^5

- 3. Normalize result: 1.0212×10^6
- 4. Round and renormalize if necessary: 1.021×10^6
- 5. Determine the sign= (+) * (+) = +

$$1.021 \times 10^6$$

Problem: Perform binary floating-point multiplication and convert the resulting values to IEEE-754 single precision format. Finally convert them to hexadecimal values.

$$0.5 * -0.4375$$

SOLUTION:

Convert 0.5 to Binary:

$$0.5 \times 2 = 1.0$$
 \rightarrow 0.1

Normalized: 1.0 X 2⁻¹

Convert 0.4375 to Binary:

$$0.4375 \times 2 = 0.875$$

 $0.875 \times 2 = 1.75$
 $0.75 \times 2 = 1.5$
 $0.5 \times 2 = 1.0$

Normalized: 1.11 X 2⁻²

- 1. Add exponents:
 - e1 = -1 e2 = -2
 - e = -1 2 = -3
- 2. Multiply significands:

$$1.000 X 1.110 = 1.110000$$

result =
$$1.11 \times 2^{-3}$$

- 3. Normalize result: 1.11 \times 2⁻³
- 4. Round and renormalize if necessary: No change
- 5. Determine the sign= (+) * (-) = -

Single Precision Format (from Normalized result):

Sign = 1
Exponent =
$$-3 + 127 = 124_{10} = 011111100_2$$

Fraction = 0.11

	1	01111100	110000000000000000000000000000000000000
Si	ign (1	Exponent (8)	Fraction (23)
۱۸	11	1110 0110 0000	000000000000000000000000000000000000

 $1011\ 1110\ 0110\ 0000\ 0000\ 0000\ 0000\ 0000 = 0$ XBE600000

Note: The figures, text etc included in slides are borrowed from books, other sources for academic purpose only. The author does not claim any originality.

Source:

1.Computer Organization and Design (ARM Edition) by David A. Patterson