DACS: Diffusion-based Aerobatics with CBF-Guided Sampling for Urban Air Vehicles

Comprehensive Analysis and Improvement Framework

AI Model Analysis

October 14, 2025

Abstract

This document provides a comprehensive analysis of DACS (Diffusion-based Aerobatics with CBF-Guided Sampling), an enhanced transformer-based diffusion model for generating aerobatic UAV trajectories in urban environments. The model incorporates obstacle awareness through MLP-based obstacle encoding, Control Barrier Function (CBF) guidance for safety guarantees, and multi-modal conditional inputs including target waypoints, maneuver styles, historical observations, and obstacle information. We examine the enhanced architecture, CBF-guided sampling methodology, performance characteristics, and propose improvement strategies for urban air mobility applications.

Contents

1	Introduction					
2 Model Architecture Analysis						
	2.1	Overa	ll Framework			
	2.2	$Math\epsilon$	ematical Formulation			
		2.2.1	Diffusion Process with CBF Guidance			
		2.2.2	Control Barrier Function			
		2.2.3	Enhanced Transformer Architecture			
	2.3		onent Details			
		2.3.1	Obstacle Encoder MLP			
		2.3.2	Enhanced Condition Embedding			
3	Mo	del Co	onfiguration			
4	Str	and Innovations				
	4.1	_	tectural Advantages			
	4.2		ing Methodology			
5	Lin	nitation	ns and Improvement Areas			
	5.1		tectural Limitations			
			Obstacle Representation			

		5.1.2 Attention Mechanism	5
	5.2	Training Limitations	5
		5.2.1 Loss Function Complexity	5
		5.2.2 CBF Guidance Stability	5
6	Pro	posed Improvements	6
	6.1	Architectural Enhancements	6
		6.1.1 Dynamic Obstacle Processing	6
			6
	6.2	Training Improvements	6
		6.2.1 Adaptive CBF Guidance	6
		6.2.2 Enhanced Loss Balancing	6
			6
	6.3	Physical Constraints Integration	7
		6.3.1 Enhanced Dynamics Constraints	7
		6.3.2 Urban Environment Constraints	7
7	Exp	erimental Evaluation Framework	7
	7.1	Evaluation Metrics	7
	7.2	Ablation Studies	7
8	Imp	lementation Recommendations	7
	8.1	Code Improvements	7
	8.2	Computational Optimization	8
9	Urb	an Air Mobility Applications	8
	9.1	v 11	8
	9.2	1 0	8
10	Con	clusion and Future Directions	8

1 Introduction

The DACS model represents a significant advancement in UAV trajectory generation for urban environments, combining diffusion processes with transformer-based architecture and Control Barrier Function guidance. The model is designed to handle complex aerobatic maneuvers while maintaining physical constraints, obstacle avoidance, and maneuver style consistency in cluttered urban settings.

2 Model Architecture Analysis

2.1 Overall Framework

The DACS framework consists of four main components:

• Obstacle-Aware Diffusion Transformer: Core generative model with obstacle encoding

- CBF-Guided Diffusion Process: Safety-guaranteed sampling with barrier functions
- Multi-modal Conditioning System: Integrated obstacle, target, and style processing
- Obstacle Encoder MLP: Neural network for obstacle representation learning

2.2 Mathematical Formulation

2.2.1Diffusion Process with CBF Guidance

The forward diffusion process follows the standard formulation:

$$q(x_t|x_0) = \mathcal{N}(x_t; \sqrt{\bar{\alpha}_t}x_0, (1 - \bar{\alpha}_t)I) \tag{1}$$

where $\bar{\alpha}_t = \prod_{s=1}^t \alpha_s$ and $\alpha_t = 1 - \beta_t$. The reverse process is enhanced with CBF guidance:

$$p_{\theta}(x_{t-1}|x_t) = \mathcal{N}(x_{t-1}; \mu_{\theta}(x_t, t) - \gamma_t \nabla V(x_t), \sigma_t^2 I)$$
(2)

where $V(x_t)$ is the control barrier function and γ_t is the guidance strength.

Control Barrier Function

The CBF for multiple spherical obstacles:

$$V(x) = \sum_{\tau=1}^{T} \sum_{i=1}^{N_{obs}} \max(0, r_i - ||p_{\tau} - c_i||)^2$$
(3)

where p_{τ} is the position at time τ , c_i and r_i are obstacle centers and radii.

2.2.3 **Enhanced Transformer Architecture**

The diffusion transformer employs obstacle-aware conditioning:

$$h_0 = \text{InputProj}(x) + \text{PosEnc} + \text{EnhancedCondEmbed}(t, target, action, obstacles)$$
 (4)

$$h_l = \text{TransformerLayer}(h_{l-1}, h_{l-1}), \quad l = 1, \dots, L$$
 (5)

$$\hat{x}_0 = \text{OutputProj}(h_L) \tag{6}$$

2.3 Component Details

Obstacle Encoder MLP 2.3.1

The obstacle encoder processes multiple obstacles:

$$e_{obs} = \text{GlobalObstacleEncoder}\left(\text{AttentionAggregation}\left(\text{ObstacleMLP}(o_i)\right)_{i=1}^{N_{obs}}\right)$$
 (7)

2.3.2 Enhanced Condition Embedding

Multi-modal conditioning with obstacle fusion:

$$e_{cond} = \text{FusionLayer}([e_t; e_{target}; e_{action}; e_{obstacles}])$$
 (8)

3 Model Configuration

Table 1: Enhanced Model Configuration Parameters

Parameter	Value	Description
Latent Dimension	256	Transformer hidden size
Number of Layers	4	Transformer decoder layers
Number of Heads	4	Multi-head attention heads
Dropout Rate	0.1	Regularization parameter
Diffusion Steps	30	Number of diffusion steps
Sequence Length	60	Trajectory time steps
State Dimension	10	[speed, x, y, z, attitude(6)]
History Length	5	Historical observations
Target Dimension	3	Waypoint coordinates
Action Dimension	5	Maneuver styles
Max Obstacles	10	Maximum number of obstacles
Obstacle Feature Dim	4	[x, y, z, radius]
CBF Guidance Gamma	100.0	Barrier guidance strength
Obstacle Radius	5.0	Safe distance radius

4 Strengths and Innovations

4.1 Architectural Advantages

- 1. **Obstacle-Aware Generation**: MLP-based obstacle encoding integrated into transformer
- 2. CBF Safety Guarantees: Formal safety verification through barrier functions
- 3. Multi-scale Conditioning: Effective integration of temporal, spatial, behavioral, and obstacle constraints
- 4. Causal Attention: Proper temporal modeling with masked self-attention
- 5. **Unified Loss Function**: Comprehensive loss with obstacle avoidance and continuity terms

4.2 Training Methodology

• Enhanced Data Generation: Diverse aerobatic maneuver simulation with urban obstacles

- Progressive Normalization: Dimension-aware normalization strategy
- CBF-Guided Sampling: Safety-aware reverse diffusion process
- Obstacle-Aware Loss: Training with explicit obstacle avoidance objectives

5 Limitations and Improvement Areas

5.1 Architectural Limitations

5.1.1 Obstacle Representation

- Issue: Fixed maximum number of obstacles (10)
- Impact: Cannot handle arbitrarily large obstacle sets
- Solution: Dynamic obstacle processing or graph neural networks

5.1.2 Attention Mechanism

- Issue: Full self-attention has $O(N^2)$ complexity
- Impact: Limits sequence length and training efficiency
- Solution: Implement sparse attention or linear attention variants

5.2 Training Limitations

5.2.1 Loss Function Complexity

- Issue: Multiple loss components require careful balancing
- Impact: Sensitive to hyperparameter tuning
- Solution: Adaptive loss weighting or multi-task learning

5.2.2 CBF Guidance Stability

- Issue: Fixed guidance strength γ_t
- Impact: May cause training instability or over-constraint
- Solution: Learnable guidance scheduling or adaptive γ_t

Algorithm 1 Dynamic Obstacle Encoding

- 1: **procedure** DYNAMICOBSTACLEENCODE(obstacles, k)
- 2: $embeddings \leftarrow ObstacleMLP(obstacles)$
- 3: $indices \leftarrow \text{TopKByDistance}(embeddings, k)$
- 4: $selected \leftarrow embeddings[indices]$
- 5: $aggregated \leftarrow AttentionAggregate(selected)$ return aggregated
- 6: end procedure

Algorithm 2 Hierarchical Transformer Architecture

- 1: **procedure** HIERARCHICALENCODE(x, levels)
- 2: $patches \leftarrow Patchify(x, patch_size)$
- 3: $h \leftarrow \text{LocalAttention}(patches)$
- 4: **for** $i \leftarrow 1$ to levels **do**
- 5: $h \leftarrow \text{GlobalAttention}(h)$
- 6: $h \leftarrow \text{Downsample}(h)$
- 7: end forreturn h
- 8: end procedure

6 Proposed Improvements

6.1 Architectural Enhancements

6.1.1 Dynamic Obstacle Processing

6.1.2 Hierarchical Transformer

6.2 Training Improvements

6.2.1 Adaptive CBF Guidance

Learnable guidance scheduling:

$$\gamma_t = \gamma_{base} \cdot \sigma(W_t t + b_t) \tag{9}$$

6.2.2 Enhanced Loss Balancing

Uncertainty-weighted multi-task loss:

$$\mathcal{L}_{total} = \sum_{i=1}^{D} \frac{1}{2\sigma_i^2} \mathcal{L}_i + \log \sigma_i$$
 (10)

where σ_i are learnable uncertainty parameters.

6.2.3 Curriculum Learning

Progressive difficulty scheduling:

- 1. Phase 1: Basic trajectory learning without obstacles
- 2. Phase 2: Simple obstacle avoidance
- 3. Phase 3: Complex urban environments with multiple obstacles

6.3 Physical Constraints Integration

6.3.1 Enhanced Dynamics Constraints

$$\mathcal{L}_{physics} = \lambda_{vel} \|\hat{v} - v_{gt}\|^2 + \lambda_{acc} \|\hat{a} - a_{gt}\|^2 + \lambda_{jerk} \|\hat{j} - j_{gt}\|^2$$
(11)

6.3.2 Urban Environment Constraints

$$\mathcal{L}_{urban} = \lambda_{building} \sum \max(0, h_{min} - z_t) + \max(0, z_t - h_{max})$$
 (12)

7 Experimental Evaluation Framework

7.1 Evaluation Metrics

Table 2: Enhanced Evaluation Metrics for Urban Scenarios				
Metric	Description			
ADE	Average Displacement Error			
FDE	Final Displacement Error			
Z-Axis MAE	Mean Absolute Error in Z-axis			
Maneuver Fidelity	Style classification accuracy			
Obstacle Clearance	Minimum distance to obstacles			
Collision Rate	Percentage of colliding trajectories			
Physical Plausibility	Dynamics constraint satisfaction			
Diversity	Multi-modal distribution coverage			
Success Rate	Obstacle avoidance success percentage			

7.2 Ablation Studies

Recommended ablation studies for DACS:

- 1. Obstacle encoding ablation (MLP vs. simple concatenation)
- 2. CBF guidance ablation (with vs. without safety guidance)
- 3. Conditioning ablation (remove target/action/history/obstacles)
- 4. Architecture variants (different attention mechanisms)
- 5. Loss function components (obstacle term contribution)

8 Implementation Recommendations

8.1 Code Improvements

- Modularization: Separate obstacle processing, CBF guidance, and transformer components
- Configuration Management: Use config classes for urban scenario parameters

- Visualization Tools: Enhanced plotting for obstacle-aware trajectories
- Logging: Comprehensive training monitoring with safety metrics

8.2 Computational Optimization

- Mixed Precision: FP16 training for memory efficiency
- Gradient Checkpointing: Memory-efficient backpropagation
- Distributed Training: Multi-GPU support for large-scale urban scenarios
- Obstacle Caching: Efficient obstacle representation reuse

9 Urban Air Mobility Applications

9.1 Real-world Deployment Considerations

- Sensor Integration: Fusion with LiDAR, camera, and radar data
- Real-time Performance: Optimization for onboard computation
- Regulatory Compliance: Adherence to urban air traffic management
- Uncertainty Handling: Robustness to sensor noise and dynamic obstacles

9.2 Scalability to Complex Urban Environments

- Multi-building Scenarios: Handling urban canyons and complex geometries
- Dynamic Obstacles: Adaptation to moving vehicles and pedestrians
- Weather Conditions: Robustness to wind, precipitation, and visibility
- Communication Constraints: Operation in GPS-denied environments

10 Conclusion and Future Directions

The DACS model presents a comprehensive framework for urban aerobatic trajectory generation with several innovative features. The key strengths include obstacle-aware transformer architecture, CBF-guided safety guarantees, and unified training methodology. The main areas for improvement involve scalability to complex urban environments, real-time performance, and enhanced robustness.

Future research directions should explore:

- Real-world Urban Deployment: Transfer learning to actual urban environments
- Online Adaptation: Real-time obstacle avoidance and replanning
- Multi-agent Coordination: Swarm behavior in urban airspace

- Advanced Obstacle Representations: Signed distance fields and occupancy grids
- Uncertainty Quantification: Probabilistic safety guarantees
- Human-in-the-Loop: Interactive trajectory refinement

Appendix

A. Mathematical Derivations

A.1 CBF-Guided Reverse Diffusion

The CBF-guided reverse process derivation:

$$p_{\theta}(x_{t-1}|x_t) \propto p_{\theta}(x_{t-1}|x_t) \exp(-\gamma_t V(x_t)) \tag{13}$$

A.2 Obstacle Distance Gradient

Gradient of the barrier function:

$$\nabla V(x_t) = \sum_{i=1}^{N_{obs}} -2 \cdot \max(0, r_i - ||p_t - c_i||) \cdot \frac{p_t - c_i}{||p_t - c_i||}$$
(14)

B. Hyperparameter Search Space

Enhanced hyperparameter ranges for urban scenarios:

- Learning rate: [1e 5, 1e 3] (log scale)
- Latent dimension: {128, 256, 512}
- Number of layers: $\{4, 6, 8\}$
- Number of heads: {4,8,16}
- Diffusion steps: {50, 100, 200}
- CBF guidance strength: [10.0, 500.0]
- Obstacle weight: [1.0, 20.0]
- Maximum obstacles: {5, 10, 20, 50}

C. Urban Scenario Specifications

Table 3: Urban Environment Parameters			
Parameter	Typical Range		
Building Height	20-200 m		
Street Width	15-30 m		
Obstacle Density	$5-50 \text{ obstacles/km}^2$		
Minimum Clearance	5-20 m		
Maximum Climb Rate	10 m/s		
Urban Canyon Aspect Ratio	1:1 to 1:3		