"DATOS y PRE-PROCESADO"

Reconocimiento de Patrones

MAESTRÍA EN ELECTRÓNICA

Profesor: MSc. Felipe Meza

June 3, 2021

Agenda

- Metodología de Diseño.
- 2 Pre-procesado.
- 3 Preparación de los datos.
- 4 Algunas Tareas del Pre-procesado.
- 6 Análisis exploratorio de los datos (EDA).
- Opening the state of the sta
- Outliers.
- B Datos no-balanceados.
- Transformación de datos.
- Reducción de dimensiones.

Metodología de Diseño

Pre-procesado

- Consiste en identificar partes o componentes del conjunto de datos que sean incompletas, imprecisas, incorrectas o irrelevantes, de manera tal que puedan ser reemplazadas, modificadas o removidas.
- Puede implicar también la transformación de los datos "puros" a otros formatos que faciliten su manejo por parte de los algoritmos de minería de datos.
- Incluye también la reducción de los datos a menores dimensiones para agilizar su procesamiento.
- En inglés varios términos se refieren a tales tareas: data preparation, cleaning, pre-processing, cleansing, wrangling.

Preparación de los datos

- En las metodologías de diseño generalmente en las primeras etapas, corresponde llevar a cabo las tareas de selección de datos, pre-procesado o transformación.
- En python, se recurre al uso de librerías como pandas que resultan ser muy buenas para las tareas asociadas a la preparación de los datos.
- Las labores de prepraración no son un componente integral de los algoritmos de aprendizaje, sin embargo puede tomar un tiempo considerable dependiendo del conjunto de datos a analizar (80%-90% del proceso), por lo que se debe prestar especial atención.

Algunas Tareas del Pre-procesado

- Estandarizar, Normalizar.
- Análisis exploratorio de los datos.
- Valores faltantes.
- Outliers.
- Datos no-balanceados.
- Transformación de datos.

Normalizar, Estandarizar

- Normalizar (1) es llevar los datos a una nueva escala en un rango entre 0 y 1. Recomendado en casos donde los datos tengan múltiples escalas y donde los algoritmos sean sensibles a la escala.
- Estandarizar (2) consiste en llevar la distribución de los datos a una media de 0 y una desviación estándar de 1. Recomendado en casos donde el algoritmo es sensible a una distribución normal.

$$z = \frac{x - \min(x)}{\max(x) - \min(x)} \tag{1}$$

$$z = \frac{x - \mu}{\sigma} \tag{2}$$

Análisis exploratorio de los datos (EDA)

- Es la práctica del uso de métodos cuantitativos y visuales para comprender mejor un conjunto de datos sin tener que asumir hechos.
- Arrojar el conjunto de datos a un algoritmo y esperar los mejores resultados, NO es la mejor estrategia.
- Usualmente se lleva cabo una o varias de las siguientes actividades:
 - Visualización de un resumen estadístico del conjunto de datos.
 - Exploración visual de cualquier relación que pueda tener cada atributo con la clase que nos interesa predecir.
 - Mediante diagramas de dispersión observar cualquier tipo de agrupamiento que se pueda presentar en los datos.

Análisis exploratorio de los datos (EDA)

Ejemplo de EDA con conjunto de datos TITANIC

Valores faltantes

- No existe un método universal para instancias con valores faltantes.
- Algunas técnicas comúnes son:
 - Eliminar instancias.
 - Eliminar atributos.
 - · Calcular "media" del atributo faltante.
 - Calcular "mediana" del atributo faltante.
 - Calcular "moda" del atributo faltante.
 - Usar regresión para estimar el valor del atributo faltante.

Valores faltantes

pandas

```
1 # Drop the col where all elements are missing values:
df.dropna(axis=1, how='all')
3
4 # Drop the col where any of the elements're missing values
5 df.dropna(axis=1, how='any')
6
 # Keep only the rows which contain 2 missing values max
8 df.dropna(thresh=2)
9
 # Fill all missing values with the mean of the column
 df.fillna(df.mean())
12
# Fill any missing value in col 'A' with the col median
df['A'].fillna(df['A'].median())
```

Outliers

- Así como hay situaciones donde es importante mantenerlos en otros casos es necesario eliminarlos.
- Se recomienda hacer un análisis previo basado en la naturaleza de los datos.
- Algunas técnicas comúnes son:
 - Removerlos usando desviación estándar (PYTHON).
 - Removerlos usando percentiles (pandas).

Outliers - Desviación Estándar

Regla en distribución normal: Remover datos en $(mean + 2\sigma)$ y $(mean - 2\sigma)$

Regla 68-95-99 ó 3σ

Outliers - Desviación Estándar

PYTHON

```
1 import numpy
2
3 arr = [10, 386, 479, 491, 501 ... 411, 399, 363, 19, 543]
4
5 elements = numpy.array(arr)
6
7 mean = numpy.mean(elements, axis=0)
 sd = numpy.std(elements, axis=0)
9
10 final_list = [x \text{ for } x \text{ in arr if } (x > mean - 2 * sd)]
  final_list = [x \text{ for } x \text{ in final_list if } (x < mean + 2 * sd)]
print (final_list)
```

Datos no-balanceados

 Ocurre cuando una clase de datos en el conjunto, posee una mayoría importante de la cantidad de datos e.g un conjunto de datos de 2 clases, donde: CLASE1 = 98% y CLASE2 = 2%.

Datos no-balanceados

- Algunas técnicas comúnes son:
 - Usar otras métricas diferentes al porcentaje de exactitud, por ejemplo:
 - Precision/Specificity: cuantas instancias seleccionadas son relevantes.
 - Recall/Sensitivity: cuantas instancias relevantes son seleccionadas.
 - F1 score: media harmónica de "precision" y "recall".
 - Muestreo de datos:
 - sub-muestreo: Eliminar instancias abundantes (sólo si hay suficientes datos).
 - sobre-muestreo: Generar instancias faltantes (mediante métodos de repetición o generación, solo en caso de que sea posible)
 - Descomponer el conjunto de datos en subconjuntos.
 - Hacer clustering de grupo abundante.

Transformación de datos

- Ocurre cuando **transformamos** un valor zi en yi mediante una función f() de forma tal que yi = f(zi).
- Se hace con el fin de alinear los datos con alguna suposición estadística, mejorar la interpretación de los datos o bien obtener gráficos de mejor apariencia.
- Técnica muy común: One Hot Encode, permite convertir datos categóricos en numéricos (vectores binarios).

Sample	Category	Numerical
1	Human	1
2	Human	1
3	Penguin	2
4	Octopus	3
5	Alien	4
6	Octopus	3
7	Alien	4

Datos Categóricos

Vectores Binarios

Algunas Fuentes de DATASETS

- Kaggle Datasets
 - www.kaggle.com
- UCI Machine Learning Repository
 - https://archive.ics.uci.edu/ml/index.php
- Google's Datasets
 - https://toolbox.google.com/datasetsearch
- Microsoft Datasets
 - https://msropendata.com/
- Awesome Public Datasets
 - https://github.com/awesomedata/awesome-public-datasets

Questions?

Felipe Meza - fmeza@itcr.ac.cr