

Inteligência Artificial Aplicada à Automação

Inteligência Artificial Aplicada à Automação

1. Introdução à IA

Mini-currículo do Professor

- Pós-doutorado em Ciências (Sistemas Eletrônicos) pela POLI/USP (2023)
- Doutor em Ciências (Sistemas Eletrônicos) pela POLI/USP (2021)
- Mestre em Engenharia Mecânica pela UNISANTA (2017).
- Tutoria EAD pela FGV (2004) e Docência Nível Superior pela FGV (2002).
- MBA Em Gestão Empresarial pela Fundação Getúlio Vargas RJ (2001), com extensão de MBA na Universidade da Califórnia Campus Irvine (2001).
- Professor Licenciado para ensino de nível segundo grau pelo CEFET Paraná (1995).
- Engenheiro Eletrônico pela UNISANTA (1991).
- Professor Titular EBTT (2022) da IFSP Cubatão desde 1992. Professor da UNISANTOS (2003 2015) e FORTEC (1990 1992).
- Pesquisador do EAILab e dos grupos de pesquisa Labmax e AutomSystem do IFSP.
- É colaborador e possui tutoriais publicados no Site Teleco (www.teleco.com.br), desde 2011.
- Obteve Certificações Cisco Business Transformation (2015), PMI (2012), Wireless CWNA, Cisco CCNA & CCNP de Router & Switches (2011).
- Inglês e Espanhol fluentes. Noções de Frances.
- Atuou profissionalmente em todo o Brasil, EUA, Inglaterra, França, Romênia, China e toda LATAM.
- Possui cursos de Fibras Óticas, Microcontroladores, Redes Wireless, Cisco (CCNA, QoS, VoIP),
 Gerenciamento de Projetos, entre outros.
- Atuou em empresas como Medidata, Cisco, Alcatel-Lucent (Nokia), MSI (hoje Mentum), Evadin,
 TV Tribuna (Afiliada Rede Globo), ocupando cargos Técnicos, de Consultoria e Gerencia.

Definição:

Genericamente, um *sistema inteligente* é aquele capaz de:

- Raciocinar
- Planejar
- Resolver problemas
- Realizar indução, dedução, lógica e abdução
- Armazenar conhecimento;
- Comunicar-se através de uma linguagem;
- Perceber e adaptar-se ao meio;
- Aprender.

Definição:

- Inteligência artificial (IA) é a inteligência similar à humana, exibida por mecanismos ou software (Wikipedia).
- A IA é o campo dedicado à construção de artefatos que são inteligentes, onde o "inteligente" é operacionalizado através de testes de inteligência (como a Wechsler Adult Intelligence Scale), e outros testes de capacidade mental (incluindo, por exemplo, testes de habilidade mecânica, criatividade, e assim por diante) (Stanford).
- A IA é um ramo da ciência da computação voltado para o desenvolvimento de sistemas capazes de executar tarefas que normalmente requerem inteligência humana(Toda Materia - https://www.todamateria.com.br/inteligencia-artificial/)

Definição:

- 4 Metas possíveis para a IA de acordo com o livro Artificial Intelligence: A
 Modern Approach AIMA (Stanford)
 - Disponível em: https://archive.org/details/artificial-intelligence-modern-approach-3rd-ed.-russell-norvig. Acessado em Maio 13, 2024.

	Baseado em Humanos	Racionalidade Ideal
Raciocínio Fundamentado	Sistemas que pensam como humanos	Sistemas que pensam racionalmente
Baseado em Comportamento	Sistemas que agem como humanos	Sistemas que agem racionalmente

Teste de Turing:

- Alan Turing (1950) propôs um teste capaz de determinar se uma máquina demonstra ou não inteligência (artificial).
 - "Embora não tenhamos uma definição de inteligência, podemos assumir que o ser humano é inteligente. Portanto, se uma máquina fosse capaz de se comportar de tal forma que não pudéssemos distingui-la de um ser humano, essa máquina estaria demonstrando algum tipo de inteligência que, nesse caso,

só poderia ser inteligência artificial."

Questões para Respondedores
Respostas para Questionador

Computador
respondedor
questionador
respondedor

Vantagens do uso da IA:

- Redução de erros: Uma vez que são máquinas tem reduzidas as chances de falharem, tendo maior grau de precisão.
- Exploração: Máquinas podem realizar um trabalho mais laborioso e duro, superando as limitações humanas.
- Aplicações diárias: A sua utilização está presente em vários mecanismos do nosso cotidiano.
- **Sem pausas:** As máquinas, ao contrário dos seres humanos, não precisam de intervalos frequentes.
- Velocidade: Apresentam soluções muito mais rapidamente que outros sistemas.
- Adaptabilidade: São capazes de se adaptar as mudanças de condições de operação.

Desvantagens do uso da IA:

- Custo Elevado: devido a sua complexidade o seu custo de produção é alto.
- Falta de criatividade: A inteligência artificial não é desenvolvida ao ponto de atuar como o cérebro humano, de forma criativa.
- **Desemprego:** Como são capazes de executar tarefas antes exclusivas aos humanos de maneira mais otimizada e eficiente, tendem a substituir a atividade humana em larga escala.
- Representação do conhecimento: para criar sistemas de inteligência artificial é necessário desenvolver um sistema de representação do conhecimento, o que geralmente é dispendioso.

Subcampos da IA:

Aplicações de Inteligência Artificial

Aplicações de Ciência Cognitiva

- Sistemas Especialistas
- Sistemas de Aprendizagem
- Lógica não clássica e Raciocínio
- Algoritmos Genéticos
- Redes Neurais
- Agentes Inteligentes

Aplicações em Robótica

IA

- Percepção Visual
- Tátil
- Destreza
- Locomoção
- Navegação

Aplicações de Interface Natural

- Linguagem Natural
- Reconhecimento Fala
- Interfaces multissensoriais
- Realidade Virtual

EAILAB. 10 Tendências de Aplicação de Inteligência Artificial em 2024! Disponível Em:

https://eailab.labmax.org/2023/11/28/10-tendencias-de-aplicacao-de-inteligencia-artificial-em-2024/

Abordagens de IA:

- Conexionista: hipótese de causa-efeito, onde um modelo suficientemente preciso do cérebro humano é suficiente para reproduzir a inteligência que o homem possui. Ela trata de problemas imprecisos e que podem ser definidos através de exemplos (ex: reconhecimento de caligrafia). Principal contribuição são as redes neurais artificiais.
- **Simbólica**: hipótese do sistema de símbolos físicos, onde um conjunto de estruturas simbólicas e um conjunto de regras de manipulação dessas estruturas são os meios necessários e suficientes para se criar inteligência. Ela trata problemas bem definidos (ex: planejamento de tarefas). Principal contribuição são os **sistemas especialistas**.
- Evolucionária: inspirada na teoria evolutiva de Darwin. Pode-se modelar sistemas inteligentes simulando a evolução de uma população de indivíduos (aleatórios), que carregam genes com informação suficiente para dar origem à solução de um problema, usando operações genéticas de recombinação e mutação. Ela trata de problemas de otimização (ex: escalonamento de produção). Principal contribuição são os algoritmos genéticos.

Abordagens de IA (cont.):

- Sistemas Especialistas (expert system): sistema de computador que emula a habilidade de tomada de decisão de um especialista humano.
- Redes Neurais Artificiais RNA: técnicas computacionais que apresentam um modelo matemático inspirado na estrutura neural de organismos inteligentes e adquirem conhecimento através da experiência.
- Florestas de Decisão Aleatórias (random forest): são um método de aprendizado conjunto para classificação, regressão e outras tarefas que operam construindo uma infinidade de árvores de decisão no momento do treinamento.
- Aprendizado de máquina (machine learning ML): algoritmos que possam aprender à partir de dados e generalizar para dados não vistos, então realizar tarefas sem instruções explicitas.
- Aprendizado de máquina minúsculo (Tiny ML): aplicação de ML em dispositivos de baixíssimo consumo de energia e poder de processamento limitado, trazendo a IA para a computação de borda (edge computing).

Exemplos de IA:

- Através da IA pode-se ensinar um robô a caminhar: https://www.youtube.com/watch?v=SBf5-eF-Elw
- Robôs Humanoides: https://www.youtube.com/watch?v=W0_DPi0PmF0
- Veículos autônomos: https://www.youtube.com/watch?v=TsaES--OTzM
- Drifiting Simulado: https://youtu.be/opsmd5yuBF0
- A* in Action AI Robotics: https://youtu.be/qXZt-B7iUyw
- Um algoritmo genético que aprende como lutar: https://youtu.be/u2t77mQmJiY
- Algoritmo genético evolução de um carro 2D: https://youtu.be/FKbarpAlBkw

Referências

- Bringsjord, Selmer and Naveen Sundar Govindarajulu, "Artificial Intelligence", The Stanford Encyclopedia of Philosophy (Summer 2024 Edition), Edward N. Zalta & Uri Nodelman (eds.) Disponível em: https://plato.stanford.edu/archives/sum2024/entries/artificial-intelligence/. Acessado em Maio 5, 2024.
- RUSSELL, Stuart J.; NORVIG, Peter. Artificial intelligence: a modern approach. Pearson, 4th edition, 2016.
- Kerschbaumer, R. Introdução à Tópicos m Inteligência Artificial, Instituto Federal Catarinense, Campus Luzerna.
 Disponível em: https://ricardokers.github.io/Anexos/Slides%20Introdução%20a%20TIA.pdf. Acessado em Maio 10, 2024.
- CARVALHO, A. 10 Tendências de Aplicação de Inteligência Artificial em 2024! EAILab, IFSP. Nov. 2023. Disponível em: https://eailab.labmax.org/2023/11/28/10-tendencias-de-aplicacao-de-inteligencia-artificial-em-2024/. Acessado em Maio 13, 2024.
- CARVALHO, A. 10 Tendências em Edge Computing. EAILab, IFSP. Dez. 2023. Disponível em: https://eailab.labmax.org/2023/12/12/tendencias-em-edge-computing/. Acessado em Maio 13, 2024.

Inteligência Artificial Aplicada à Automação

2. Lógica e IA

Mini-currículo do Professor

- Pós-doutorado em Ciências (Sistemas Eletrônicos) pela POLI/USP (2023)
- Doutor em Ciências (Sistemas Eletrônicos) pela POLI/USP (2021)
- Mestre em Engenharia Mecânica pela UNISANTA (2017).
- Tutoria EAD pela FGV (2004) e Docência Nível Superior pela FGV (2002).
- MBA Em Gestão Empresarial pela Fundação Getúlio Vargas RJ (2001), com extensão de MBA na Universidade da Califórnia Campus Irvine (2001).
- Professor Licenciado para ensino de nível segundo grau pelo CEFET Paraná (1995).
- Engenheiro Eletrônico pela UNISANTA (1991).
- Professor Titular EBTT (2022) da IFSP Cubatão desde 1992. Professor da UNISANTOS (2003 2015) e FORTEC (1990 1992).
- Pesquisador do EAILab e dos grupos de pesquisa Labmax e AutomSystem do IFSP.
- É colaborador e possui tutoriais publicados no Site Teleco (www.teleco.com.br), desde 2011.
- Obteve Certificações Cisco Business Transformation (2015), PMI (2012), Wireless CWNA, Cisco CCNA & CCNP de Router & Switches (2011).
- Inglês e Espanhol fluentes. Noções de Frances.
- Atuou profissionalmente em todo o Brasil, EUA, Inglaterra, França, Romênia, China e toda LATAM.
- Possui cursos de Fibras Óticas, Microcontroladores, Redes Wireless, Cisco (CCNA, QoS, VoIP),
 Gerenciamento de Projetos, entre outros.
- Atuou em empresas como Medidata, Cisco, Alcatel-Lucent (Nokia), MSI (hoje Mentum), Evadin,
 TV Tribuna (Afiliada Rede Globo), ocupando cargos Técnicos, de Consultoria e Gerencia.

Raciocínio em IA:

- Raciocinar é um ato de derivar uma conclusão a partir de certas premissas usando uma metodologia.
- Raciocínio é um processo de pensar, logicamente argumentando, tirando inferência.
- Quando um sistema é requerido para fazer alguma coisa, porém não é explicitamente explicado como fazê-lo, deve-se raciocinar. Deve-se descobrir o que precisa saber a partir do que já sabe.
- Muitos tipos de raciocínios tem sido identificados e reconhecidos, porém muitas questões relativas às suas propriedades lógicas e computacionais ainda permaneciam sob controvérsia.
- Métodos populares de raciocínio incluem: abdução, indução, baseado em modelo, explicação e confirmação. Todos eles estão intimamente relacionados com problemas de revisão de crenças e desenvolvimento de teorias, assimilação de conhecimento, descoberta e aprendizagem.

Capacidade de raciocínio humano:

- Amplamente é dividido em 3 áreas:
 - Raciocínio matemático: axiomas, definições, teoremas e provas.
 - Raciocínio lógico: dedutivo, indutivo, abdutivo.
 - Raciocínio não lógico: linguístico, linguagem.
- Os três mencionados acima estão em todos os seres humanos, mas o nível de habilidade depende da educação, da genética e do meio ambiente.
- Quociente Inteligência (QI) = raciocínio matemático + raciocínio lógico, enquanto o quociente emocional depende principalmente de capacidades de raciocínio não lógico.
- O raciocínio lógico é a maior preocupação em IA.

Lógica e IA

Raciocínio Lógico

- Lógica é uma linguagem de raciocínio. Ela é uma coleção de regras chamadas argumentos lógicos que se usa quando raciocinando logicamente.
- Raciocínio Lógico é um processo de extrair conclusões a partir de premissas usando regras de inferência.
- O estudo é dividido em 2: lógica formal e informal.
- Lógica formal é também chamada de lógica simbólica.
- Lógica Simbólica é o estudo de abstração simbólica (construção) que captura as características formais da inferência lógica por um sistema formal.
- Sistema Formal consiste de 2 componentes, uma linguagem formal e um conjunto de regras de inferência. O sistema formal tem axiomas.
- Axioma é uma sentença que é sempre verdade dentro do sistema.
- Sentenças são derivadas usando os axiomas do sistema e regras de derivação chamadas de teoremas.

Lógica Formal

- Estudo da inferência com conteúdo puramente formal, ou seja, onde o conteúdo é explicitado.
- Argumentos lógicos são conjunto de regras para manipular símbolos.
 - Regras de sintaxe: como construir expressões significativas
 - Regras de inferência: como obter fórmulas verdadeiras de outras fórmulas verdadeiras.
- Necessita semântica, que diz como assinalar significado às expressões.

Lógica Informal

- Estudo dos argumentos apresentados na linguagem natural.
- A análise das estruturas de argumentos em linguagem comum é parte da lógica informal.
- O foco está em distinguir bons argumentos (válidos) e argumentos ruins (inválidos).

Incerteza em Raciocínio

- O mundo é um lugar de incertezas.
 - Muitas vezes o conhecimento é imperfeito, que causa incertezas.
 - Assim sendo, raciocínio deve ser capaz de operar com incertezas.
- Sistemas de IA devem ter a habilidade de raciocinar sob condições de incerteza:
 - Conhecimento incompleto: compensa lacunas de conhecimento.
 - Inconsistências de conhecimento: resolve ambiguidades e contradições.
 - Mudando o conhecimento: atualiza o conhecimento com o tempo.

Lógica e IA

Outros Tipos de Lógica

- Lógica Matemática: Estuda as bases matemáticas da lógica. É uma extensão da lógica simbólica para o estudo dos modelos, teoria da demonstração, teoria dos conjuntos e teoria da recursão.
- Lógica Proposicional: Estuda as proposições e as operações lógicas que podem ser realizadas com elas.
- Lógica de Primeira Ordem: Estuda os predicados e as quantificações que podem ser aplicadas a eles.
- Lógica Modal: Estuda a relação entre a possibilidade, a necessidade e a contingência.
- Lógica Difusa: Estuda a lógica dos valores vagos e imprecisos.
- Lógica Paraconsistente: Estuda sistemas formais que podem apresentar contradições sem que, com isso, seja possível derivar uma proposição qualquer dentro do sistema.

Referências

- Bringsjord, Selmer and Naveen Sundar Govindarajulu, "Artificial Intelligence", The Stanford Encyclopedia of Philosophy (Summer 2024 Edition), Edward N. Zalta & Uri Nodelman (eds.) Disponível em: https://plato.stanford.edu/archives/sum2024/entries/artificial-intelligence/. Acessado em Maio 5, 2024.
- RUSSELL, Stuart J.; NORVIG, Peter. Artificial intelligence: a modern approach. Pearson, 4th edition, 2016.
- PRIEST, G.; TANAKA, K.; WEBER, Z. Paraconsistent Logic. The Stanford Encyclopedia of Phylosophy, Metaphysics Research Lab, Stanford University, 2022. Disponível em: https://plato.stanford.edu/cgi-bin/encyclopedia/archinfo.cgi. Acessado em Maio, 16, 2024.
- CINTULA, P. FERMULLER, C. G.; NOGUERA, C. Fuzzy Logic. The Stanford Encyclopedia of Phylosophy, Metaphysics Research Lab, Stanford University, 2023. Disponível em: https://plato.stanford.edu/cgi-bin/encyclopedia/archinfo.cgi?entry=logic-fuzzy. Acessado em Maio, 16, 2024.
- SHAPIRO, S.; KOURI KISSEL, T. Classical Logic. The Stanford Encyclopedia of Phylosophy, Metaphysics Research Lab, Stanford University, 2024. Disponível em: https://plato.stanford.edu/entries/logic-classical/. Acessado em Maio, 16, 2024.

Para Finalizar

Perguntas?

adecarvalhojr@ifsp.edu.br