Introduction au cours de transfert de chaleur

Présentation des 3 modes de transfert de chaleur

Exemples industriels

Les fondements physiques

Le plan du cours

Remarques de conclusion

Présentation des 3 modes de transfert de chaleur

Exemples industriels

Les fondements physiques

Le plan du cours

Remarques de conclusion

Découvrons la Thermique sur des exemples simples

Rayonnement

Chaleur de la flamme vers la viande, à travers l'air

Oui, mais l'air chaud peut aussi réchauffer la viande!

Découvrons la Thermique sur des exemples simples

Cette énergie est transférée du soleil vers la terre à travers le vide spatial

Il s'agit là d'un premier mode de transfert de chaleur qui n'a donc pas besoin de support matériel

- Tout comme la lumière qui nous vient du soleil, cette énergie se propage sous forme d'ondes électromagnétiques.
- On parle alors de transfert par rayonnement ou de transfert radiatif

Remarques

- 1. La lumière met en jeu des longueurs d'ondes situées dans la domaine du visible (0.4 à 0.7 μ).
- 2. Le rayonnement thermique met en jeu une gamme de longueurs d'ondes beaucoup plus large.
- 3. Tous les corps émettent du rayonnement

Une partie du cours de transfert de chaleur sera consacrée au transfert par rayonnement

CONVECTION

Présence d'un fluide en mouvement : ici pas de pompe, pas de ventilateur

Convection naturelle

Circulation du fluide assurée par une pompe:

convection forcée

Remarque

On note fréquemment la présence simultanée des modes de transfert de chaleur :

- Conduction,
- Rayonnement
- Convection

Les premières contributions au transfert de chaleur

CONDUCTION

Fourier 1822

CONVECTION

Navier 1822

Stokes 1846

Reynolds 1883

RAYONNEMENT

Planck 1901

Présentation des 3 modes de transfert de chaleur

Exemples industriels

Les fondements physiques

Le plan du cours

Remarques de conclusion

Poursuivons sur des exemples industriels

Moteurs électriques

Satellites

Thermique des machines électriques

Tôles du rotor

Canaux rotoriques

Thermique et électronique

Puce = effet Joule

Rayonnement

Convection

Thermique des satellites

- Rayonnement solaire incident et réfléchi par la terre
- Rayonnement infra rouge émis par le satellite et par la terre

En orbite, en principe, pas de convection

Présentation des 3 modes de transfert de chaleur

Exemples industriels

Les fondements physiques

Le plan du cours

Remarques de conclusion

Une vision des transferts à l'échelle microscopique

1) Conduction

Gaz

Les molécules sont en perpétuelle agitation. Les gaz monoatomiques ont 3 degrés de liberté x,y, et z

1 atome Masse m Vitesse moyenne \bar{v}

La règle de l'équipartition de l'énergie s'écrit:

$$3\left(\frac{kT}{2}\right) = \frac{1}{2}m\bar{v}^2$$

La chaleur apparaît donc comme une traduction de l'agitation moléculaire. Elle s'échange lors des chocs.

Libre parcours moyen entre chocs: lpm # 100 nm !

Les molécules proches de la paroi chaude (rouges) ont une vitesse moyenne élevée. Lors des chocs, elles cèdent de l'énergie cinétique aux molécules plus froides (oranges) et contribuent à remonter ainsi leur niveau de température. Même chose entre les molécules oranges et bleues

Une vision des transferts à l'échelle microscopique

Solide isolant

1 atome : une masse m

Les forces d'interaction: # un ressort de raideur k

Appliquons une perturbation en bout de réseau

Une « onde » se propage de proche en proche , apportant un surplus d'énergie cinétique et d'énergie potentielle

Ce surplus d'énergie se propage sous la forme d'une augmentation de la température locale

Ces ondes sont équivalentes à des quasi particules, les phonons

Solide métallique

En plus des phonons liés au réseau cristallin, le métal possède des électrons « mobiles » parmi les ions. L'ensemble de ces électrons peut être assimilé à un gaz ou chaque électron est porteur d'énergie cinétique.

De fait ils peuvent donc comme les molécules des gaz réels contribuer à transférer de la chaleur par leur agitation cinétique.

En pratique les électrons sont plus efficaces que les ondes cristallines et un métal a donc une meilleure conductivité thermique

2) Convection

Un ventilateur impose le mouvement d'ensemble du fluide, qui entre à $T_0 < T_1$, température de la paroi du tuyau

Convection = 2 Mécanismes:

Températures

Conduction (chocs moléculaires)

+Advection (lié au mouvement d'ensemble)

3) Rayonnement

Gaz

Mécanisme moléculaire

L'énergie d'une molécule prend des valeurs discrètes.

Les transitions s'effectuent par absorption ($E1 \rightarrow E2$) ou par émission ($E2 \rightarrow E1$) d'un photon

Un spectre radiatif de gaz présente des raies

discrètes

Raies de l'hydrogène

Pour un solide, l'interaction entre les émetteurs (atomes d'un solide) conduit à un spectre continu

Spectre du corps noir

Présentation des 3 modes de transfert de chaleur

Exemples industriels

Les fondements physiques

Le plan du cours

Remarques de conclusion

Transfert de chaleur par Conduction

Plan du cours et commentaires

Introduction

Leçon 1

Phénoménologie de la conduction et équation de la chaleur

Leçon 2

Les problèmes stationnaires

Géométrie 1D : plane, cylindrique, sphérique

Présence de sources

Concept de résistance thermique

Leçon 3

Les conditions aux limites, et aux interfaces

Leçon 4

Les ailettes

Leçon 5

Ouverture vers les problèmes 2 D et 3 D

Leçon 6

Les problèmes non stationnaires

Mur semi fini

Mur fini

Régime quasi périodique

Présentation des 3 modes de transfert de chaleur

Exemples industriels

Les fondements physiques

Le plan du cours

Remarques de conclusion

Commentaires

Dans l'introduction de ce cours de transfert de chaieur, nous avons observé que la conduction nécessite la présence d'un milieu matériel, qui sert de support au transfert

Ainsi, solides, liquides, gaz, peuvent-ils être le siège de transfert conductif. Cependant les fluides peuvent aisément de prêter à l'apparition de mouvements d'ensemble, qui participent au transfert de chaleur (convection) et qui peuvent même devenir un mode d'échange dominant.

C'est donc le plus fréquemment dans les solides que se pose à l'ingénieur la maîtrise de la conduction

Ajoutons que dans la pratique, on a souvent à considérer les 3 modes fondamentaux de transfert:

Conduction,

Rayonnement,

Convection

comme présents simultanément.

Rayonnement

Conduction

Convection

Cependant, dans certains cas, à l'échelle d'un sous système, le seul mécanisme de transfert qui opère est la conduction

Exemples:

- Au cœur du stator d'un moteur électrique
- Au cœur d'un circuit intégré
- Dans un mur de bâtiment
- Dans la paroi d'une chambre de combustion

Ici, au cœur de la matière, c'est bien d'un transfert conductif dont il s'agit

Par contre, convection et rayonnement jouent un rôle important, mais à titre de conditions aux limites

Une vision résumée du cours

Après une introduction de la phénoménologie propre à la conduction, le cours sera consacré à la présentation et à l'analyse d'exercices simples, utiles à l'ingénieur et concernant successivement :

- Les régimes stationnaires : les champs de température y sont indépendants du temps
- Les régimes transitoires : les champs de température y évoluent avec le temps