www.chemistry.jamesmungall.co.uk

Born Haber Cycles

Example: Sodium Bromide

breaking down each of the stages

Example 1

Calculate the enthalpy change of the reaction $Na(s) + \frac{1}{2}Br_2(g)$ ---> NaBr(s)

 ΔH atomisation(Na) = +107 kJmol⁻¹

 ΔH atomisation(Br) = +97 kJmol⁻¹

 ΔH first ionisation energy(Na) = +496 kJmol⁻¹

 ΔH first electron affinity(Br) = -325 kJmol⁻¹

 ΔH lattice energy(NaBr) = -742 kJmol⁻¹

$$\Delta H = 107 + 496 + 97 - 325 - 742$$

= -367 kJmol^{-1}

Example 2

Which ions are present in MgO(s)? Mg^{2+} O²⁻

Calculate the enthalpy change for the reaction $Mg(s) + \frac{1}{2}O_2(g)$ \longrightarrow MgO(s)

What kind of enthalpy change is this? standard enthalpy of formation of MgO

 $\Delta H_{atm(O)}$ = +249 kJmol⁻¹

 $\Delta H_{\text{atm(Mg)}}$ = +148 kJmol⁻¹

 ΔH 1st ionisation energy(Mg) = +738 kJmol⁻¹

 ΔH 2nd ionisation energy(Mg) = +1451 kJmol⁻¹

 ΔH 1st electron affinity(O) = - 141 kJmol⁻¹

 ΔH 2nd electron affinity(O) = + 798 kJmol⁻¹

 ΔH lattice energy(MgO) = -3791 kJmol⁻¹

$$\Delta H$$
 = (148+1451+738) + (249+798-141) - 3791
= 2337 + 906 - 3791
= -548 kJmol⁻¹

The actual value for this reaction is -602 kJmol⁻¹
This is because there is a degree of covalent bonding in MgO. Therefore the bonds formed are slightly stronger than those predicted by a purely ionic model.

Example 3

Construct a Born-Haber cycle and use it to calculate the first electron affinity of chlorine.

```
\begin{split} \Delta H_{\text{atm}(\text{CI})} &= +\ 122\ \text{kJmol}^{-1} \\ \Delta H_{\text{atm}(\text{Mg})} &= +148\ \text{kJmol}^{-1} \\ \Delta H_{\text{1st ionisation energy}(\text{Mg})} &= +738\ \text{kJmol}^{-1} \\ \Delta H_{\text{2nd ionisation energy}(\text{Mg})} &= +1451\ \text{kJmol}^{-1} \\ \Delta H_{\text{lattice energy}(\text{MgCl}_2)} &= -2526\ \text{kJmol}^{-1} \\ \Delta H_{\text{formation}(\text{MgCl}_2)} &= -641\ \text{kJmol}^{-1} \end{split}
```


This is for 2 moles of CI.
Therefore the 1st electron affinity of chlorine is -696/2
= - 348 kJmol⁻¹