Instituto Tecnológico de Costa Rica Escuela de Computación

Maestria en Ciencias de la Computacion **Curso: Aprendizaje automático**

Profesor: Ph. D. Saúl Calderón Ramírez

QUIZ 2

Entrega:15 de Mayo 2022, a través del TEC digital Debe subir un *pdf* con la respuesta.

Valor: 100 pts.
Puntos Obtenidos: _____

Nota: _____

Nombre del (la) estudiante:

Carné:

1. (100 pts) La distancia de Mahalanobis entre dos vectores \overrightarrow{x} , $\overrightarrow{w} \in \mathbb{R}^n$ viene dada por:

$$d_{M}\left(\overrightarrow{x},\overrightarrow{w}\right) = \sqrt{\left(\overrightarrow{x} - \overrightarrow{w}\right)^{T} \Sigma^{-1} \left(\overrightarrow{x} - \overrightarrow{w}\right)}$$

donde $\Sigma\mathbb{R}^{n\times n}$ es la matriz de covarianza. Demuestre que si la matriz tiene covarianzas nulas, y varianzas de $\frac{1}{a^2}$, la distancia de Mahalanobis $d_M(\overrightarrow{x},\overrightarrow{w})$ equivale a la distancia Euclidiana entre ambos vectores \overrightarrow{x} y \overrightarrow{w} , multiplicada por a. Es decir, demuestre que, dadas tales condiciones:

$$d_{M}\left(\overrightarrow{x},\overrightarrow{w}\right) = \sqrt{\left(\overrightarrow{x} - \overrightarrow{w}\right)^{T} \Sigma^{-1} \left(\overrightarrow{x} - \overrightarrow{w}\right)} = a \left\|\overrightarrow{x} - \overrightarrow{w}\right\|_{2}$$