Travail pratique

Heuristiques pour la coloration de graphes

La table 1 présente les caractéristiques principales des graphes à étudier ainsi que le nombre de couleurs utilisées par trois heuristiques gloutonnes différentes. De gauche à droite le contenu de chaque colonne est

- 1) le nom du fichier contenant le graphe G = (V, E) à colorier (sans l'extension .txt);
- 2) le nombre n de sommets du graphe (n = |V|);
- 3) le nombre m d'arêtes du graphe (m = |E|);
- 4) la densité D du graphe, en %, définie comme le quotient entre m et le nombre maximal d'arêtes d'un graphe simple sur n sommets : $D = \frac{2m}{n(n-1)}$;
- 5) le degré maximal Δ des sommets du graphe $(\Delta = \max_{v \in V} \deg(v))$;
- 6) le nombre Lex de couleurs utilisées en coloriant séquentiellement le graphe dans l'ordre croissant des numéros de ses sommets (ordre lexicographique);
- 7) le nombre LF de couleurs utilisées en coloriant séquentiellement le graphe à l'aide de l'heuristique « *largest-first* » de Welsh et Powell;
- 8) le nombre DSAT de couleurs utilisées en coloriant séquentiellement le graphe à l'aide de l'heuristique « DSATUR » de Brélaz.

Table 1 – Caractéristiques des graphes à colorier et résultats obtenus pour trois heuristiques de coloration séquentielle.

Instance	n	m	D	Δ	Lex	$_{ m LF}$	DSAT
R500_1	500	12 481	10.0	79	36	33	30
$R500_5$	500	62366	50.0	391	156	140	134
R500_9	500	112302	90.0	499	332	316	313
R1000_1	1000	49 980	10.0	138	67	58	52
R1000_5	1000	249863	50.0	807	294	278	255
R1000_9	1000	449626	90.0	999	648	609	610
R2000_1	2000	200053	10.0	268	123	112	91
R2000_5	2000	999515	50.0	1625	561	542	519
R2000_9	2000	1799047	90.0	1999	1285	1221	1232
R4000_1	4000	800 073	10.0	509	230	229	172
R4000_5	4000	3998358	50.0	3278	1083	1059	1012
R4000_9	4000	7199158	90.0	3999	2523	2430	2456
R8000_1	8000	3199456	10.0	1023	436	449	339
R8000_5	8000	15994563	50.0	6548	2121	2107	2050
R8000_9	8000	28805651	90.0	7999	5009	4842	4877
VLSI1	17845	26171065	16.4	4039	1385	1437	1254
VLSI2	29514	42000902	9.6	3858	1340	1602	1226
VLSI3	38478	89635719	12.1	6827	2486	2485	2220