幾何学 1 演義 2025 年 10 月 17 日

3 多様体上の微分形式 (1)

13. 多様体 M の点 p に対し,p の開近傍 U と C^∞ 級関数 $f \in C^\infty(U)$ の組 (U,f) すべて からなる集合を S_p とする. S_p に次のような関係 \sim を導入する:

 $(U,f) \sim (U',f')$ $\stackrel{\text{def}}{\Longleftrightarrow}$ 点 p のある開近傍 $V \subset U \cap U'$ が存在して $f|_V = f'|_V$.

- (1) ~が同値関係であることを示せ.
- (2) 商集合 $C_p^\infty = S_p/\sim$ を考える(C_p^∞ の元を C^∞ 級関数の点 p における \mathbf{y} という). 接ベクトル $v \in T_p M$ を自然に C_p^∞ を定義域とする写像 $C_p^\infty \to \mathbb{R}$ とみなすこともできるが,それはなぜか説明せよ. [ヒント:つまり,与えられた C_p^∞ の元 s について,s の代表元 (U,f) を任意に選び $\tilde{v}(s) = v(f)$ と定めることにすれば,well-defined な写像 $\tilde{v}: C_p^\infty \to \mathbb{R}$ がえられる.その理由を説明してほしい.]
- 14. V を n 次元実ベクトル空間とし、 V^* をその双対空間とする.
 - (1) v_1 , v_2 , ……, v_n を V の基底とし, α^1 , α^2 , ……, α^n を双対基底とする.すな わち,各 α^i は $\alpha^i(v_j) = \delta^i_j$ により定義される V の双対空間 V^* の元である*. α^1 , α^2 , ……, α^n が実際に V^* の基底となっていることを示せ.
 - (2) v_1, v_2, \dots, v_n とは別の基底 $\tilde{v_1}, \tilde{v_2}, \dots, \tilde{v_n}$ が与えられたとして、基底の取りかえの行列を $P=(p_{ij})$ とする。すなわち

$$\tilde{v}_j = \sum_{i=1}^n p_{ij} v_i.$$

そのとき、 $\tilde{v_1}$ 、 $\tilde{v_2}$, ……, $\tilde{v_n}$ の双対基底 $\tilde{\alpha}^1$, $\tilde{\alpha}^2$, ……, $\tilde{\alpha}^n$ は α^1 , α^2 , ……, α^n を用いてどのようにあらわすことができるか説明せよ.

15. 多様体 M で定義された(C^{∞} 級の)関数 f に対し

$$(df)_p(v) = v(f)$$
 $(v \in T_pM)$

と定め, $df = \{(df)_p\}_{p \in M}$ とおく.df が M で定義された(C^∞ 級の)微分 1 形式であることを示せ(問題 4 で定義した df の多様体への一般化.本問の df も f の**微分**ないし**全微分**という).

 $^{*\}delta^i_j$ は Kronecker のデルタ. すなわち i=j のとき $\delta^i_j=1$, それ以外のとき $\delta^i_j=0$.

16. 多様体 M 上の微分 1 形式 ω に対し、曲線 γ : $[a,b] \to M$ に沿った ω の線積分を

$$\int_{\gamma} \omega = \int_{a}^{b} \omega_{\gamma(t)} \left(\frac{d\gamma}{dt} \right) dt$$

で定義する($\frac{d\gamma}{dt}$ は γ の時刻 t における速度ベクトルで, $T_{\gamma(t)}M$ に属する). $\omega=df$ のときは

$$\int_{\gamma} df = f(\gamma(b)) - f(\gamma(a))$$

であることを示せ(問題4の一般化).

17. \mathbb{R}^3 の単位球面 $S^2 = \{(x,y,z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 = 1\}$ を考える. f(x,y,z) = z と おく (\mathbb{R}^3 上の関数とも思えるが,ここでは S^2 上の関数とみなす). $\omega = df$ によって S^2 上の微分 1 形式 ω を定義する.

ここで S^2 の次のチャート (U; u, v) を考える: $U = S^2 \setminus \{(0, 0, 1)\}$ で

$$u = \frac{x}{1-z}, \qquad v = \frac{y}{1-z}$$

とする(北極 (0,0,1) に関する立体射影).このチャートを用いて $\omega|_U$ すなわち $df|_U$ を局所座標表示せよ.

18. 前問に引き続き \mathbb{R}^3 の単位球面 S^2 を考える. 前問のチャート (U; u, v) において

$$\eta = \frac{-v \, du + u \, dv}{(1 + u^2 + v^2)^2}$$

で与えられる(U 上の)微分 1 形式 η を考える. S^2 で定義された微分 1 形式 ω であって $\omega|_U=\eta$ となるようなものが存在するかどうか判定せよ.