Matematiikan olympiavalmennus

Toukokuun 2011 helppo tehtäväsarja

1. Laske

$$\frac{1^4 + 2010^4 + 2011^4}{1^2 + 2010^2 + 2011^2}.$$

- **2.** Kun $n, k \in \mathbb{N}$, binomikertoimen $\binom{n}{k}$ voidaan määritellä olevan joukon $\{0, \ldots, n-1\}$ (tai yhtäpitävästi minkä tahansa n-alkioisen joukon) k-alkioisten osajoukkojen lukumäärä. Siis $\binom{n}{0} = 1$, sillä \emptyset on ainoa 0-alkioinen joukko, ja $\binom{n}{n} = 1$, sillä $\{0, \ldots, n-1\}$ itse on ainoa joukon $\{0, \ldots, n-1\}$ n-alkioinen osajoukko.
 - a) Osoita myös, että tuttu rekursiokaava

$$\binom{n+1}{k+1} = \binom{n}{k+1} + \binom{n}{k},$$

kun $n, k \in \mathbb{N}$, on voimassa.

- b) Laske Pascalin kolmiosta kymmenen ensimmäistä riviä, ts. binomikertoimet $\binom{n}{k}$, kun $n, k \in \mathbb{N}, k \leq n < 10$.
- c) Laske edellisen kohdan avulla ilman taskulaskinta osamäärä

$\frac{1\,009\,036\,084\,126\,126\,084\,036\,009\,001}{1\,006\,015\,020\,015\,006\,001}.$

- **3.** Luvun $n\in\mathbb{N}$ kertoma n! taas on joukon $\{0,\ldots,n-1\}$ permutaatioiden eli bijektioiden $f\colon\{0,\ldots,n-1\}\to\{0,\ldots,n-1\}$ lukumäärä. Olkoon $n,k\in\mathbb{N},\,k\geq n.$
 - a) Perustele tuttu kaava

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}.$$

b) Näytä, että

$$\binom{n}{k+1} = \frac{n-k}{k+1} \binom{n}{k}.$$

- c) Mikä on suurin binomikertoimista $\binom{n}{r}$, kun n on kiinnitetty ja $r \in \mathbb{N}$?
- **4.** Todista, että kaikilla $n, m \in \mathbb{N}$ on voimassa

$$\sum_{k=0}^{n} \binom{k}{m} = \binom{n+1}{m+1}.$$

5. Merkitään jokaisella $n \in \mathbb{N}$

$$s_n = \sum_{k=0}^n \binom{n-k}{2k}.$$

Osoita, että jono $(s_n)_{n\in\mathbb{N}}$ on itse asiassa ns. Fibonaccin lukujono, ts. $s_0=s_1=1$ ja kaikilla $n\in\mathbb{N}$ pätee $s_{n+2}=s_{n+1}+s_n$.

6. Todista binomilause: Kun $a, b \in \mathbb{R}$ ja $n \in \mathbb{N}$, niin

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k} = \binom{n}{0} a^0 b^n + \binom{n}{1} a^1 b^{n-1} + \dots + \binom{n}{n} a^n b^0.$$

7. Todista, että

$$\sum_{k=0, k \text{ parillinen}}^{n} \binom{n}{k} = \sum_{k=0, k \text{ pariton}}^{n} \binom{n}{k},$$

kun $n \in \mathbb{Z}_+$. Mikä on yhtälön kombinatorinen tulkinta?

- **8.** Todista, että $\binom{2^s}{k}$ on parillinen, kun $s, k \in \mathbb{Z}_+$ ja $k < 2^s$.
- **9.** Olkoon X äärellinen n-alkioinen joukko, missä $n \in \mathbb{N}, n \geq 2$. Olkoon $k \in \mathbb{N}, k \geq n$ ja \mathcal{A} sellainen perhe joukon X k-alkioisia osajoukkoja, että eri joukkojen $A, B \in \mathcal{A}$ leikkauksessa $A \cap B$ on korkeintaan k-2 alkioita. Todista, että

$$|\mathcal{A}| \le \frac{1}{k} \binom{n}{k-1}.$$

10. Olkoon $S \subset \{1, 2, 3, \dots, 2008\}$ 756 luvun joukko. Osoita, että on olemassa eri alkiot $a, b \in S$, joille $8 \mid a + b$.

Ratkaisuja voi lähettää (mieluiten toukokuun kuluessa) osoitteeseen

Kerkko Luosto Koroistentie 4d A10 00280 Helsinki