

Técnicas Digitales I Ingeniería electrónica

Primer parcial 2021 Tema A

Condiciones de entrega:

Horario y duración:

- a. La hora de inicio es 9.00hs y la de finalización es 12.00hs
- b. Todas las entregas realizadas fuera de término no serán tenidas en cuenta para su corrección

Entrega:

- c. Se utilizará el repositorio individual utilizado para la entrega de los trabajos prácticos
- d. Todos los archivos .vhd y resoluciones de los ejercicios junto con el tema del parcial deben ser subidos a una carpeta con el nombre 1P. El nombre de los archivos vhd deben coincidir con el nombre de la entidad.
- e. Se recomienda hacer un commit cada 30 minutos.
- f. Al finalizar el parcial debe hacer el commit al repositorio.

Parte práctica:

- 1. (2.5 Puntos)Implemente un circuito que calcule el cuadrado de un número de 4 bits signado.
 - a. Indique la cantidad de bits necesarios para el port del resultado.
 - b. Escriba la tabla de la verdad.
 - c. Implemente utilizando compuertas de dos entradas y dibuje el circuito.
 - d. Determine la demora máxima del circuito considerando un t_a de 0.5ns e indiquelo en el circuito.
 - e. Escriba la tabla de la verdad reducida en una variable e implemente con multiplexores de 3 entradas de control.
- 2. (2.5 Puntos)Implemente un circuito que ordene 3 números signados de N bits de mayor a menor.
 - a. Dibuje el diagrama de bloques del circuito.
 - b. Realice la descripción del circuito en VHDL

```
entity myCmp is
Generic (N: integer := 4);
Port ( a: in std_logic_vector (N-1 downto 0);
        b: in std_logic_vector (N-1 downto 0);
        c: in std_logic_vector (N-1 downto 0);
        mayor: out std_logic_vector (N-1 downto 0);
        medio: out std_logic_vector (N-1 downto 0);
        menor: out std_logic_vector (N-1 downto 0);
end myCmp;
```

- 3. (1 Puntos)Explique la diferencia entre carry y overflow en la operación de suma de dos números de N bits. Ejemplifique cada caso.
- 4. (1.5 Punto)Implemente un FFT con enable y reset asincrónico ambos activos alto. El clock es activo flanco descendente.
 - a. Dibuje el circuito a nivel de compuertas y flip-flop
 - b. Realice la descripción del circuito en VHDL

```
entity myFft is
Port ( t: in std_logic;
        ena: in std_logic;
        rst: in std_logic;
        clk: in std_logic;
        q: out std_logic);
end myFft;
```


Técnicas Digitales I Ingeniería electrónica

Primer parcial 2021 Tema A

5. (2.5 Puntos)Dado el siguiente circuito

	Min[ns]	Max[ns]
ts	0,2	1
th	0,1	0,5
tcq	2	3
tg	1,5	1,5

Determine:

- a. Determine si el circuito funciona correctamente para F = 150MHz, Justifique la respuesta.
- b. Determine si el circuito funciona correctamente para F = 100MHz, Justifique la respuesta.
- c. Para t_{SK} = 0 halle la F_{MAX}