© Laurent Garcin MP Dumont d'Urville

Devoir à la maison n°12

- Le devoir devra être rédigé sur des copies doubles.
- Les copies ne devront comporter ni rature, ni renvoi, ni trace d'effaceur.
- Toute copie ne satisfaisant pas à ces exigences devra être intégralement récrite.

Problème 1 – Mines-Ponts 2017 Maths 1 MP – Séries et caractères

Dans tout le problème, $\mathbb N$ désigne l'ensemble des entiers, $\mathbb Z$, l'ensemble des entiers relatifs et $\mathbb N$ un entier supérieur ou égal à 2.

L'ensemble des classes d'équivalence pour la division euclidienne par N est noté $\mathbb{Z}/N\mathbb{Z}$. L'élément générique de cet anneau sera noté \overline{a} . On note P l'ensemble des éléments de $\{1,\ldots,N-1\}$ qui sont premiers avec N. L'ensemble des éléments inversibles pour la multiplication de $\mathbb{Z}/N\mathbb{Z}$ est noté $(\mathbb{Z}/N\mathbb{Z})^*$. On rappelle que φ , l'indicatrice d'Euler, est telle que $\varphi(N)$ représente le cardinal de P. Si a divise b dans \mathbb{Z} , on notera $a \mid b$.

On rappelle aussi le lemme suivant : soit $(u_k)_{k \in \mathbb{N}^*}$ et $(\alpha_k)_{k \in \mathbb{N}^*}$ deux suites réelles. Si pour tout entier $n \ge 1$, on pose

$$T_n = \sum_{k=0}^n \alpha_k$$

alors

$$\sum_{k=n}^{m} \alpha_k u_k = -u_n \mathbf{T}_{n-1} + \sum_{k=n}^{m-1} \mathbf{T}_k (u_k - u_{k+1}) + u_m \mathbf{T}_m$$

pour n, m entiers tels que $2 \le n < m$.

On suppose fixée une application χ de $\mathbb Z$ dans $\mathbb R$ qui satisfait les propriétés suivantes :

- A. $\chi(0) = 0$ et χ non identiquement nul.
- B. Pour tout $a \in \mathbb{Z}$, non premier avec N,

$$\chi(a)=0.$$

C. Pour tous les entiers relatifs a et b,

$$\chi(ab) = \chi(a)\chi(b).$$

D. χ est N-périodique :

$$\chi(a + N) = \chi(a)$$
, pour tout $a \in \mathbb{Z}$.

I Cas particuliers

- 1 Calculer $\chi(1)$.
- **2** Lorsque N = 2, déterminer χ .

On suppose jusqu'à la fin de cette partie que N = 4.

- 3 Montrer que $\chi(3)$ ne peut prendre que les valeurs 1 ou -1.
- 4 On suppose maintenant que $\chi(3) = -1$. Montrer la convergence et calculer la somme de la série

$$\sum_{n\in\mathbb{N}^*} \frac{\chi(n)}{n}$$

II Convergence de la série $\sum_{n \in \mathbb{N}^*} \frac{\chi(n)}{n}$

Dans cette partie, a est un entier supérieur ou égal à 1 et premier avec N.

- Montrer que $|\chi(a)| = 1$.

 On pourra utiliser le théorème d'Euler.
- 6 Etablir l'identité:

$$\sum_{k=1}^{N-1} \chi(ak) = \sum_{k=1}^{N-1} \chi(k)$$

On suppose dorénavant qu'il existe a premier avec N tel que $\chi(a) \neq 1$.

- Pour chaque entier n, calculer $\sum_{k=n}^{n+N-1} \chi(k)$.

 On pourra commencer par le cas n=0.
- **8** Montrer, pour tout entier $m \ge 1$, l'inégalité

$$\left|\sum_{k=1}^{m} \chi(k)\right| \le \varphi(N)$$

 $\boxed{\mathbf{9}} \text{ Montrer que la suite } \left(\sum_{k=1}^{n} \frac{\chi(k)}{k}\right)_{n \in \mathbb{N}^*} \text{ est convergente.}$

III Comportement asymptotique

Pour tout entier $n \ge 1$, on pose

$$f_n = \sum_{d \mid n} \chi(d)$$

où, dans la définition, d décrit l'ensemble des diviseurs entiers (positifs) de n.

- **10** Soient *n* et *m* deux entiers strictement positifs, premiers entre eux. Montrer que $f_{nm} = f_n f_m$.
- 11 Soient p un nombre premier et $\alpha \in \mathbb{N}^*$. Calculer $f_{p^{\alpha}}$.
- **12** Pour tout entier $n \ge 1$, établir l'encadrement :

$$0 \le f_n \le n$$

- 13 Pour tout entier $n \ge 1$, montrer que $f_{n^2} \ge 1$.
- 14 Déterminer le rayon de convergence de la série entière

$$\sum_{n\in\mathbb{N}^*} f_n x^n$$

On note f(x) la somme de cette série.

15 Montrer, pour tout $x \in [1/2, 1[$:

$$f(x) \ge \frac{1}{\sqrt{-\ln(x)}} \int_{\sqrt{\ln(2)}}^{+\infty} e^{-u^2} du$$

On pourra utiliser une comparaison d'une série à une intégrale.