Short Report: Mycotoxin Prediction in Corn Using Machine Learning

1. Preprocessing Steps & Rationale

1.1 Data Cleaning & Normalization

- Outlier Removal: Applied the Interquartile Range (IQR) method to remove extreme values, ensuring model stability.
- Log Transformation: Transformed the target variable (DON concentration) using log1p() to reduce skewness.
- Feature Scaling: Used MinMaxScaler to normalize spectral reflectance data, ensuring all features are within the same range for better model convergence.

1.2 Dimensionality Reduction (PCA)

- Applied Principal Component Analysis (PCA) to retain 95% variance, reducing 448 spectral bands to a smaller set of meaningful components.
- Rationale: PCA helped remove noise and redundant information, improving model performance.
- Insights: PC2, PC3, and PC1 were the most influential components, indicating that not all spectral bands contribute equally to prediction.

2. Model Selection, Training & Evaluation

2.1 Models Tested

Model	PCA Used?	MAE (Lower is Better)	RMSE (Lower is Better)	R ² Score (Higher is Better)
Random Forest	ĭ Yes	№ 1.81	№ 2.46	⊠ 0.24
Random Forest (Tuned)		№ 1.76	№ 2.37	№ 0.30
XGBoost	ĭ Yes	№ 1.70	№ 2.35	∅ 0.31 ⋈
XGBoost (Tuned)	ĭ Yes	№ 1.82	№ 2.48	№ 0.23
MLP (Neural Network)	ĭ Yes	№ 1.85	№ 2.44	№ 0.26
MLP (Tuned)		№ 3.00	№ 4.05	№ -1.05

2.2 Best Model: XGBoost (Untuned)

- Performance:
 - MAE: 1.70
 - o RMSE: 2.35
 - R² Score: 0.31 (Best among all models tested)
- Feature Importance Insights:
 - PC3 (29.5%) & PC2 (27.8%) were the most important features.

3. Key Findings & Suggestions for Improvement

3.1 Key Findings

- XGBoost (Untuned) performed best among all models tested based on raw performance.
- PCA significantly improved model accuracy by removing noise from spectral bands.
- Random Forest was a strong alternative due to stability & interpretability.
- Deep Learning model (MLP) improved slightly with tuning but was still outperformed by tree-based models.

3.2 Observations

- XGBoost (Untuned) had the best overall accuracy, but tuning worsened its performance, likely due to overfitting.
- Random Forest (Tuned) provided the second-best results, showing that tuning helped this model.
- MLP had inconsistent results, indicating that deep learning models need more data to perform well.
- PCA was essential in improving model accuracy by removing redundant spectral bands.

3.3 Areas for Improvement

 $\begin{tabular}{ll} \hline \mathbb{M} Test Different Feature Engineering Approaches \rightarrow Instead of PCA, extract domain-specific spectral features. \\ \hline \mathbb{M} Explore Hybrid Models with Different Base Models \rightarrow Combine RF + MLP instead of RF + XGB. \\ \hline \end{tabular}$