Contents

1	Chem 30324, Spring 2018, Homework 3 Solution			2
	1.1	Problem 1. Blackbody Radiators		2
		1.1.1	Stefan estimated that the power per unit area radiated	
			from the surface of the sun was 43.5 times greater than	
			that of a metal bar heated to 1950 deg C. What is the	
			temperature of the sun?	2
		1.1.2	Based on this temperature, what wavelength λ of light does the sun emit most intensely, in nm? What fre-	
			quency of light, in s^-1? What color does this corre-	
			· · · · · · · · · · · · · · · · · · ·	า
		1 1 9	spond to?	2
		1.1.3	What is the ultraviolet catastrophe, and what did Planck have to assume to circumvent it?	9
	1.0	D 11		3
	1.2		em 2. Photoelectric effect	3
		1.2.1	You set up an experiment in which you shine light of	
			varying intensity and constant frequency at a metal	
			surface and measure the maximum kinetic energy of	
			the emitted electrons. As an accomplished student of	
			classical physics, you know that the energy contained	
			in a wave is proportional to the square of its intensity.	
			Based on this knowledge, sketch how you <i>expect</i> the	
			kinetic energy of the electrons to vary in the experi-	
		1.0.0	ment. Briefly justify your answer	3
		1.2.2	Not finding a result that you like, you set up another	
			experiment in which you vary the frequency of light at	
			constant intensity. Not finding a result that you like,	
			you set up another experiment in which you vary the	
			frequency of light at constant intensity	4
		1.2.3	What is the metal? <i>Hint</i> : It is a coinage metal	5
	1.3		em 3. Diffraction	5
		1.3.1	The spacing between atoms in a Ag crystal is approx-	
			imately 2.9 Å, a distance that can be measured by	
			scattering photons of a comparable wavelength off the	
			crystal. What is the energy (in eV) of a photon of	
			wavelength 2.9 Å? What part of the electromagnetic	
			spectrum does this correspond to?	5
		1.3.2	Suppose you have a device that produces these pho-	
			tons at a power of 1 μ W. How many photons/s does	
			this correspond to?	6

1.3.3 The Ag spacing can also be measured by scattering electrons off a crystal. To what speed (in m/s) would an electron need to be accelerated to have the necessary de Broglie wavelength? What fraction of the 6 6 Calculate the energies of an electron in the n=1 and n=2 orbits, in eV............... 6 1.4.2 Would light need to be absorbed or emitted to cause an electron to jump from the n = 1 to the n = 2 orbit? What wavelength of light does this correspond to? . . 6 What is the circumference of the n = 2 orbit? What 1.4.3 is the de Broglie wavelength of an electron in the n=2 orbit? How do these compare? 6

1 Chem 30324, Spring 2018, Homework 3 Solution

1.1 Problem 1. Blackbody Radiators

1.1.1 Stefan estimated that the power per unit area radiated from the surface of the sun was 43.5 times greater than that of a metal bar heated to 1950 deg C. What is the temperature of the sun?

Temperature of Metal = T_m = 1950 deg.C = 2223 K Power of Metal by Stefan-Boltzmann Law is :

$$P = \sigma T_m^4$$

Power of Sun = 43.5 times Power of Metal. Hence

$$\sigma T_s^4 = 43.5 \sigma T_m^4$$

$$T_s = (43.5T_m^4)^{0.25} = 5709.023K$$

1.1.2 Based on this temperature, what wavelength λ of light does the sun emit most intensely, in nm? What frequency of light, in s^-1? What color does this correspond to?

Wien's Constant W = 2897768 nm*K By Wien's Displacement Law, $\lambda_{max}T_s=W$

$$\lambda_{max} = W/T_s = 507.577nm$$

The frequency μ is given by:

$$\nu = \frac{c}{\lambda_{max}} = 5.906 * 10^{14} s^{-1}$$

This corresponds to green light.

1.1.3 What is the ultraviolet catastrophe, and what did Planck have to assume to circumvent it?

Answer given in Python Notebook

- 1.2 Problem 2. Photoelectric effect
- 1.2.1 You set up an experiment in which you shine light of varying intensity and constant frequency at a metal surface and measure the maximum kinetic energy of the emitted electrons. As an accomplished student of classical physics, you know that the energy contained in a wave is proportional to the square of its intensity. Based on this knowledge, sketch how you *expect* the kinetic energy of the electrons to vary in the experiment. Briefly justify your answer.

The intensity I varies with kinetic energy, K as

$$I = K^2$$

The plot should look like:

1.2.2 Not finding a result that you like, you set up another experiment in which you vary the frequency of light at constant intensity. Not finding a result that you like, you set up another experiment in which you vary the frequency of light at constant intensity.

From the given table, by fitting the data, you get:

The negative intercept gives the Work Function. The slope gives the value of Planck's constant. W = 4.598 eV, Planck's contant $= 4.127*10^{-15} \text{ eV*s}$

1.2.3 What is the metal? Hint: It is a coinage metal.

The metal can be copper or silver (For a detailed explanation, see the Python Notebook)

1.3 Problem 3. Diffraction

1.3.1 The spacing between atoms in a Ag crystal is approximately 2.9 Å, a distance that can be measured by scattering photons of a comparable wavelength off the crystal. What is the energy (in eV) of a photon of wavelength 2.9 Å? What part of the electromagnetic spectrum does this correspond to?

Given $\lambda = 2.9 \text{ Å}$

$$E = \frac{hc}{\lambda} = 4275.86eV$$

This wavelength corresponds to X-rays.

1.3.2 Suppose you have a device that produces these photons at a power of 1 μ W. How many photons/s does this correspond to?

Given Power,
P = 1
$$\mu$$
 W = 6.2415*10¹² eV/s
$$n = P/E = 1.4597*10^{9} photons/s$$

1.3.3 The Ag spacing can also be measured by scattering *electrons* off a crystal. To what speed (in m/s) would an electron need to be accelerated to have the necessary de Broglie wavelength? What fraction of the speed of light is this?

Mass of electron,
$$m_e=9.109^*10^{-31}~kg$$

 Momentum of photon, $p=h/\lambda=2.284^*10^{-24}~kg~m/s$
 Speed of photon, $v=p/m_e=2.508^*10^6~m/s$
 It is 0.00837 of the speed of light.

- 1.4 Problem 4. The Bohr Atom
- 1.4.1 Calculate the energies of an electron in the n = 1 and n = 2 orbits, in eV.

Given
$$n_1 = 1$$
, $n_2 = 2$
By Bohr's formula,
 $E_1 = -13.606/(n_1)^2 = -13.606$ eV
 $E_2 = -13.606/(n_2)^2 = -3.401$ eV

1.4.2 Would light need to be absorbed or emitted to cause an electron to jump from the n = 1 to the n = 2 orbit? What wavelength of light does this correspond to?

$$\Delta$$
 E = E₂ - E₂ = 10.205 eV
$$\lambda = hc/\Delta$$
 E = 121.515 nm Light would need to be absorbed for the electron to jump

1.4.3 What is the circumference of the n=2 orbit? What is the de Broglie wavelength of an electron in the n=2 orbit? How do these compare?

Bohr Radius,
$$a_0 = 0.529 \text{ Å}$$

Circumference of $n = 2$ orbit is given by:

$$C_2 = a_0 * n^2 = 1.329 * 10^{-9} m$$

From the course outline, the electron momentum is:

$$p_n = e^2 m_e 2\pi/(4\pi\epsilon_0 hn) = 9.963 * 10^{-25} kgm/s$$

The electron wavelength is given by:

$$\lambda = h/p_n = 6.6501 * 10^{-10} m$$

By comparing both values, it is clear that C₂=2* λ