Table of Contents

get user input and set up file names
get default parameters
Concatenate variables
Convert times to bin vector times
create table and get click counts and max pp per bin
group effort in bins
get average of detection by effort
group data by days and weeks
Create plots, binlog and pplog files
Plot Inter-Click Interval
Plot Peak-to-peak
Percent log histogram PP click counting
Plot weekly mean of detections

function SumPPICIBin(varargin)

get user input and set up file names

```
n = 1;
while n <= length(varargin)</pre>
    switch varargin{n}
        case 'filePrefix'
            filePrefix = varargin{n+1}; n=n+2;
        case 'sp'
            sp = varargin\{n+1\}; n=n+2;
        case 'sdir'
            sdir = varargin{n+1}; n=n+2;
        case 'concatFiles'
            concatFiles = varargin{n+1}; n=n+2;
        case 'countType'
            countType = varargin{n+1}; n=n+2;
        case 'effort'
            effort = varargin{n+1}; n=n+2;
        case 'refTime'
            refStartTime = varargin{n+1}; n=n+2;
        otherwise
            error('Bad optional argument: "%s"', varargin{n});
    end
end
```

get default parameters

```
p = sp_setting_defaults('sp',sp,'analysis','SumPPICIBin');
Undefined function or variable 'sp'.
Error in SumPPICIBin (line 27)
```

```
p = sp_setting_defaults('sp',sp,'analysis','SumPPICIBin');
```

Concatenate variables

Convert times to bin vector times

```
vTT = datevec(TTall);
tbin = datetime([vTT(:,1:4), floor(vTT(:,5)/p.binDur)*p.binDur, ...
    zeros(length(vTT),1)]);
```

create table and get click counts and max pp per bin

```
data = timetable(tbin,TTall,PPall);
binData =
  varfun(@max,data,'GroupingVariable','tbin','InputVariable','PPall');
binData.Properties.VariableNames{'GroupCount'} = 'Count'; % #clicks
  per bin
binData.Properties.VariableNames{'max_PPall'} = 'maxPP';

positiveCounts = sum(binData.Count);
positiveBins = length(binData.Count);
```

group effort in bins

```
effort.diffSec = seconds(effort.End-effort.Start) ;
effort.bins = effort.diffSec/(60*p.binDur);
effort.roundbin = round(effort.diffSec/(60*p.binDur));
secMonitEffort = sum(effort.diffSec);
binMonitEffort = sum(effort.roundbin);
```

get average of detection by effort

```
NktTkt = positiveCounts/secMonitEffort;
```

```
NktTktbin = positiveBins/binMonitEffort;
disp(['Nkt/Tkt for click counting: ',num2str(NktTkt)]);
disp(['Nkt/Tkt for group counting: ',num2str(NktTktbin)]);
```

group data by days and weeks

```
Click = retime(binData(:,1),'daily','sum'); % #click per day
Bin = retime(binData(:,1),'daily','count'); % #bin per day
dayData = synchronize(Click,Bin);
weekData = retime(dayData,'weekly','mean');
```

Create plots, binlog and pplog files

Plot Inter-Click Interval

```
iciIdx = find(ICIall > p.iciRange(1) & ICIall < p.iciRange(2));</pre>
% statistics
miciSel = mean(ICIall(iciIdx));
sdiciSel = std(ICIall(iciIdx));
moiciSel = mode(ICIall(iciIdx));
meiciSel = median(ICIall(iciIdx));
figure(1); set(1, 'name', 'Inter-Click Interval')
h1 = qca;
centerIci = p.iciRange(1):1:p.iciRange(2);
[nhist] = histc(ICIall(iciIdx),centerIci);
bar(h1,centerIci,nhist, 'barwidth', 1, 'basevalue', 1)
xlim(h1,p.iciRange);
title(h1,sprintf('%s N=
%d',filePrefix,length(ICIall)), 'Interpreter', 'none')
xlabel(h1,'Inter-Click Interval (ms)')
ylabel(h1,'Counts')
% create labels and textbox
mnlabel = sprintf('Mean = %0.2f', miciSel);
stdlabel = sprintf('Std = %0.2f', sdiciSel);
melabel = sprintf('Median = %0.2f', meiciSel);
molabel = sprintf('Mode = %0.2f', moiciSel);
annotation('textbox',[0.58 0.75 0.1 0.1],'String',
{mnlabel,stdlabel,...
    melabel,molabel);
% save ici data and figure
icifn = [filePrefix,'_',p.speName,'_ici'];
% saveas(h1,fullfile(sdir,icifn),'png')
```

Plot Peak-to-peak

statistics

```
mpp = mean(PPall);
sdpp = std(PPall);
mopp = mode(PPall);
mepp = median(PPall);
% Plot histogram
figure(2); set(2, 'name', 'Received Levels')
h2 = qca;
center = p.threshRL:1:p.p1Hi;
[nhist] = histc(PPall,center);
bar(h2,center, nhist, 'barwidth', 1, 'basevalue', 1)
title(h2,sprintf('%s N=
%d',filePrefix,length(PPall)), 'Interpreter', 'none')
xlabel(h2,'Peak-Peak Amplitude (dB)')
xlim(h2,[p.threshRL, p.p1Hi])
% create labels and textbox
mnlabel = sprintf('Mean = %0.2f', mpp);
stdlabel = sprintf('Std = %0.2f', sdpp);
melabel = sprintf('Median = %0.2f', mepp);
molabel = sprintf('Mode = %0.2f', mopp);
annotation('textbox',[0.58 0.75 0.1 0.1],'String',
{mnlabel,stdlabel,...
    melabel,molabel);
% Save plot
ppfn = [filePrefix, '_', p.speName, '_pp'];
% saveas(h2,fullfile(sdir,ppfn),'png')
```

Percent log histogram PP click counting

```
figure(3); set(3,'name','Received Levels in logarithmic scale')
h3 = gca;
nper = nhist*100/length(PPall); % percentage
bar(h3,center,nper, 'barwidth', 1, 'basevalue',
 1,'EdgeColor','k','FaceColor','w');
set(h3,'YScale','log')
xlim(h3,[min(center)-0.5,max(center)+0.5]) % center is in the middle
 of the bin
title(h3,sprintf('%s N=
%d',filePrefix,length(PPall)), 'Interpreter', 'none')
ylabel(h3,'Percent of detections')
xlabel(h3,'Peak-Peak Amplitude (dB)');
% Save plot and pplog values in a mat file
pplog = [filePrefix,'_',p.speName,'_pplog'];
% save(fullfile(sdir,pplog),'center','nper')
% saveas(h3,fullfile(sdir,pplog),'png')
```

Plot weekly mean of detections

```
figure(4); set(4,'name','Weekly presence')
h4(1) = subplot(2,1,1);
h4(2) = subplot(2,1,2);
```

```
bar(h4(1),weekData.tbin,weekData.Count_Click)
bar(h4(2), weekData.tbin, weekData.Count Bin)
set(h4(1),'xticklabel', '');
ylabel(h4(1), {'Weekly mean'; 'of clicks per day'})
ylabel(h4(2), {'Weekly mean'; ['of ', num2str(p.binDur), ' min bins per
day']})
title(h4(1),'Click Counting')
title(h4(2), 'Group Counting');
axis (h4(1), 'tight')
axis (h4(2),'tight')
% define step according to number of weeks
if length(weekData.tbin) > 53 && length(weekData.tbin) <= 104 % 2</pre>
years
    step = calmonths(1);
elseif length(weekData.tbin) > 104 && length(weekData.tbin) <= 209 % 4</pre>
    step = calmonths(2);
elseif length(weekData.tbin) > 209 && length(weekData.tbin) <= 313 % 6</pre>
 years
    step = calmonths(3);
elseif length(weekData.tbin) > 313 && length(weekData.tbin) <= 417 % 8</pre>
 years
    step = calmonths(4);
elseif length(weekData.tbin) >= 417 % more than 8 years
    step = calyears(1);
end
% define tick steps only if more than 1 year of data
if length(weekData.tbin) > 53
    xtickformat('MMMyy')
    xticks(weekData.tbin(1):step:weekData.tbin(end))
    xtickangle(45)
end
% publish('summary','pdf')
% %plot diel pattern
% figure(fignum); fignum = fignum +1;
% sutc = 5;% shift to local midnight
% dm = mod(diel - sutc, 24);
% dcenter = 0.5:1:23.5;
% [dhist] = hist(dm,dcenter);
% hd = bar(dcenter, dhist, 'barwidth', 1, 'basevalue', 1);
% set(hd,'EdgeColor','k','FaceColor','w')
% xlim([0,24]);
% ylim([0,1.05*max(dhist)])
% ylabel(gca, 'Number of Bins', 'FontSize', 16)
% xlabel(qca,['Time of Day (UTC-',num2str(sutc),')'],'FontSize',16);
% dstr=[p.speName,' ',site,' Number Bins= ',num2str(length(diel))];
% title(dstr);
% dfn = [site,'_',p.speName,'_diel.pdf'];
% fnd = fullfile(detpn,dfn);
% saveas(qcf,fnd,'pdf')
```

```
% %plot pp bin data
% figure(fignum); fignum = fignum +1; %linear histogram
% %hist(pp,100);
% lbin = length(bin);
% mbin = mean(bin);
% sdbin = std(bin);
% %[n, center] = hist(pp,100);
% [nbhist] = hist(bin,center);
% h2 = bar(center, nbhist, 'barwidth', 1, 'basevalue', 1);
% set(h2,'EdgeColor','k','FaceColor','w')
% xlim([min(center),max(center)])
% ylim([0,1.05*max(nbhist)])
% ylabel(gca, 'Number of bins', 'FontSize', 16)
% xlabel(gca,'Peak-Peak Amplitude (dB)','FontSize',16);
% binstr=[p.speName,' ',site,' ','Mean= ',num2str(mbin),...
      'dB StDev= ',num2str(sdbin),' Number= ',num2str(length(bin))];
% title(binstr)
% figure(fignum); fignum = fignum +1; %percent log histogram PP click
% nbper = nbhist*100/lbin; % percentage
% h3 = bar(center,nbper, 'barwidth', 1, 'basevalue', 1);
% set(h3,'EdgeColor','k','FaceColor','w')
% %plot(center,n*100/lpp);
% set(qca,'YScale','loq')
% xlim([min(center),max(center)])
% ylim([.1,50])
% set(gca,'FontSize',12)
% title(binstr)
% ylabel(gca, 'Percent of bins','FontSize',16)
% xlabel(gca,'Peak-Peak Amplitude (dB)','FontSize',16);
% binlog = [site,'_',p.speName,'_binlog.mat'];
% fnblog = fullfile(detpn,binlog);
% save(fnblog,'center','nbper')
% binfn = [site,'_',p.speName,'_bin.pdf'];
% fn5 = fullfile(detpn,ppfn);
% saveas(gcf,fn5,'pdf')
```

end

Published with MATLAB® R2016b