

NASA Contractor Report 166214

(NASA-CR-166214) ANALYSIS OF MACH NUMBER
0.8 TURBOPROP SLIPSTREAM WING/NACELLE
INTERACTIONS Final Report (Douglas Aircraft
Co., Inc.) 84 p HC A05/MF A01

CSCL 01A

N81-30085

Unclassified
G3/02 34269

Analysis of Mach Number 0.8 Turboprop Slipstream Wing/Nacelle Interactions

H. Robert Welge
Dan H. Neuhart
John A. Dahlin

McDonnell Douglas Corporation
Douglas Aircraft Company
Long Beach, California 90846

Contract NAS2-10881
August 6, 1981

National Aeronautics and
Space Administration

Ames Research Center
Moffett Field, California 94035

REPRODUCED BY
**NATIONAL TECHNICAL
INFORMATION SERVICE**
U.S. DEPARTMENT OF COMMERCE
SPRINGFIELD, VA. 22161

Analysis of Mach Number 0.8 Turboprop Slipstream Wing/Nacelle Interactions

**H. Robert Welge
Dan H. Neuhart
John A. Dahlin**

**McDonnell Douglas Corporation
Douglas Aircraft Company
Long Beach, California 90846**

**Contract NAS2-10881
August 6, 1981**

**National Aeronautics and
Space Administration**

**Ames Research Center
Moffett Field, California 94035**

**REPRODUCED BY
U.S. DEPARTMENT OF COMMERCE
NATIONAL TECHNICAL
INFORMATION SERVICE
SPRINGFIELD, VA 22161**

TABLE OF CONTENTS

	Page
I Summary	1
II Introduction	3
III Nomenclature	5
IV Description of Test Model	7
V Analysis of Data	9
VI Comparison With Theory	13
VII Design Philosophy	17
VIII Design Modification	23
IX Conclusions and Recommendations	25
X References	27

I. SUMMARY

An experimental test program of a powered propeller and nacelle mounted on a supercritical wing was conducted by the NASA Ames Research Center in the 14-Foot Tunnel. Analysis of this data by the Douglas Aircraft Company, under contract to NASA with Al Lavin as the program manager, is contained in this report. The design condition for this study was $M_0 = 0.8$.

Analysis of the data indicated that the installation of the nacelle significantly affected the wing flow and that the flow on the upper surface of the wing is separated near the leading edge under powered conditions. Comparisons of various theories with the data indicated that the Neumann surface panel solution and the Jameson transonic solution gave results adequate for design purposes. A modified wing design was developed (Mod 3) which reduces the wing upper surface pressure coefficients and section lift coefficients at powered conditions to levels below those of the original wing without nacelle or power. A contoured over-the-wing nacelle is described that can be installed on the original wing without any appreciable interference to the wing upper surface pressures.

Page Intentionally Left Blank

II. INTRODUCTION

The recent increases in fuel prices for aircraft has resulted in the consideration of alternate propulsion system concepts that would reduce fuel consumption. One of the primary candidates is a propeller-turboshaft (turboprop) powerplant. Several system studies have been conducted that indicate fuel savings from 15 to 30% in fuel burned for a given mission when compared to turbofan engines (References 1 through 6). Flight speeds of $M_0 = 0.8$ are considered necessary for compatibility with existing airline operation and advanced propeller designs called Prop-Fans have been developed that give efficient performance at these speeds. A wing of the supercritical type is recommended to maximize performance.

One of the aerodynamic concerns about the turboprop installation is the interference drag that will result from the placement of the gas generator/nacelle and propeller on a supercritical type wing. Several years ago, a test was run by Douglas Aircraft under contract to NASA Ames (Reference 7) to experimentally evaluate these interferences. A flow-through ejector powered nacelle located ahead of the wing was used to simulate the onset flow of the propeller. This experimental approach permitted independently varying the various propeller parameters to obtain a basic understanding of the power-wing interactions. Many useful results and observations resulted from this early exploratory program but a more accurate representation of the flow is obtained by using an actual rotating propeller.

Preceding page blank

The test results discussed in this report used the same wing design as the previous simulator test. A semispan test installation was used mounted to the floor of the Ames 14-foot tunnel. Test conditions covered the Mach range from 0.6 to 0.85. The Reynolds numbers based on the mean aerodynamic chord varied from 7.8×10^6 at $M_0 = 0.6$ to 9.1×10^6 at $M_0 = 0.85$. An air-driven motor powered an 8 bladed propfan propeller designated SR-2C (Reference 8). The installation, development of the motor, fabrication and testing were all done by NASA Ames. This report covers the analysis of the data, comparison with theory and configuration modifications performed by the Douglas Aircraft Company (a division of the McDonnell Douglas Corporation) located in Long Beach, California.

III. NOMENCLATURE

AR	Wing aspect ratio
b	Wing span
c	Local chord
C_D	Configuration drag coefficient
C_L	Section lift coefficient
C_{LWB}	Wing-body lift coefficient based on wing trapezoidal area
C_{LW}	Wing lift coefficient based on exposed wing trapezoidal area
C_p	Pressure coefficient
ΔC_{D_i}	Incremental induced drag coefficient
C_{mac}	Mean aerodynamic chord
M_0	Free stream Mach number
M_L	Local Mach number
P_T/P_{T0}	Propeller total pressure to freestream total pressure ratio
R_e_c	Reynolds number based on chord
RPM	Revolutions per minute
r/R	Propeller blade local radius divided by maximum radius
S_{TRAP_EXP}	Exposed trapezodial reference area
t/c	Wing thickness to chord ratio
x,y,z	Coordinate system x streamwise, y spanwise, z vertical
x/c	Fraction of local chord
α	Configuration angle of attack measured relative to fuselage reference plane
α_s	Swirl angle, degrees
β	propeller blade angle setting, degrees
η	Percent semispan of wing

λ

Taper ratio

$\Lambda c/4$

Wing quarter chord sweep

IV. DESCRIPTION OF THE MODEL

A photograph of the model is shown in Figure 1. The wing coordinates were obtained from Douglas Aircraft. The wing had been tested previously as part of the Douglas Aircraft supercritical wing development program and had demonstrated good drag rise characteristics near $M_\infty = 0.8$. The design also had been used previously as part of an earlier NASA sponsored test where the propeller onset flow had been simulated by using an ejector powered flow through nacelle mounted ahead of the wing (Reference 7 and Figure 2). The planform of the NASA model with the nacelle installed is shown in Figure 3 including the location of pressure rows to be discussed later. Coordinates for the wing are given in Table 1 and Figure 4 shows a side view of the nacelle.

The propeller was an SR-2C design (Reference 8) and was powered by an air driven turbine. Air to power the turbine was supplied through the floor and wing and exhausted under the wing through a nozzle at about 50% chord.

Page Intentionally Left Blank

V. ANALYSIS OF THE DATA

Force Data

Analysis by NASA and Douglas determined that the force data for this test was not reliable. Subsequent analysis by NASA did result in some usable force data, but for the purposes of the work described in this report the force data will not be referred to.

Pressure Data

The pressure data on the wing were integrated to obtain the wing lift coefficient (C_{L_w}), and these results are shown on Figure 5. The analysis will focus on an angle of attack of 2 degrees or a C_{L_w} near 0.5.

The pressure distributions on the wing are shown in Figures 6 through 12 for a fixed propeller blade angle of 57° . Figures 6 through 10 show the flow development for a fixed angle of attack of 2° and Figures 11 and 12 show the variation with angle of attack at $M_0 = 0.8$. The data indicates that there is a significant effect of the nacelle on the pressures inboard of the nacelle at 36.5 and 41.5 percent semispan, but that there is a negligible effect outboard of the nacelle. The pressure distributions indicate that small separations may occur inboard due to the nacelle installation, and at $M_0 = 0.8$, a normal shock is indicated. Available oil flow photographs shown in Figures 13 and 14 indicate that the flow has been significantly disturbed by the nacelle but large regions of flow separation are not apparent. The presence of the normal shock inboard of the nacelle can be seen in Figure 14.

When full propeller power is added, the flow velocities are increased in the propeller wash region (included on the figures) and there is also a change in the local angle of attack. The isolated propeller flow one blade chord downstream of the propeller is shown in Figure 15. (These data were not part of the current test but were measured separately as part of NASA's propeller development program.) The propeller rotation for this test created increased wing section angle of attack inboard of the nacelle (upwash) and decreased angle of attack outboard (downwash). The pressure distributions on the wing due to power show increased upper surface pressure peaks and as the Mach number is increased, the presence of a flow separation becomes more apparent. Available oil flow photographs with power-on, shown in Figures 16 and 17, illustrate clearly that there is a significant flow separation and extreme inboard flow from the outboard region of the nacelle.

The section lift data obtained by integrating the above pressure distributions (and removing obviously bad points) are shown in Figures 18 and 19. The installation of the nacelle reduces the c_l at the inboard stations with little effect outboard. The windmilling propeller reduces the c_l further probably due to a loss in dynamic pressure. The application of power significantly increases the c_l values inboard due to propeller upwash and increases the velocity to levels which caused the flow separations. Outboard the c_l is reduced because of the propeller downwash.

At $M_0 = 0.7$, the c_l data (solid symbols Figure 20) was used to calculate the induced drag increment due to the nacelle installation by a Trefftz plane method. The increment was found to be 12 counts ($\Delta C_{D_i} = 0.0012$).

To summarize these results for later reference during the wing redesign discussion (Section VII), the region outboard of the nacelle is not seriously affected by the installation of the nacelle or power and wing modifications are not required in this region. However, inboard the nacelle significantly increases the upper surface pressure peaks but not to levels that cause large flow separations. However, a significant 12 count induced drag penalty was calculated. At $M_0 = 0.8$, a small normal shock is present near the nacelle on the wing, further contributing to the drag. The increased flow velocity and upwash due to power are sufficient to increase upper surface pressure levels and c_L 's to conditions where attached flow can not be maintained by the original wing design.

Comparison With Simulator Data (Reference 7).

It was found that the flow from the ejector powered simulator most nearly matched the 59° blade angle data (Figure 21), therefore the comparisons are made for this blade angle. Since the simulator test did not have a nacelle mounted on the wing, only incremental effects due to power from each test are compared.

Figures 22 through 27 compare the pressure distributions and span loads between the two tests at $M_0 = 0.7$ and 0.8 . Qualitatively the pressure distributions agree fairly well, with the peak pressure levels and the general shape of the plots being very similar. It is interesting to note that the pressure increase near 60% chord at 50% semispan on the upper surface due to power is indicated in both sets of data (Figure 25).

The incremental c_L values are not as large for the simulator test as for the propeller test as shown on Figures 26 and 27. However, the c_L levels with power are comparable.

Page Intentionally Left Blank

VI. COMPARISON WITH THEORY

Lifting Line Program

The lifting line program is a method which uses a vortex filament at the quarter chord point at several spanwise locations on the wing and a control point at the three-quarter chord location. The wing zero-lift-line and the propeller onset flow are input. The nacelle geometry cannot be input. The strength of the vortex is then determined to satisfy the condition of tangential flow at the control point. Forces are calculated by repeated application of the Kutta-Joukowski law. This theory is compared to the simulator data in Figures 28 and 29. Agreement with the clean wing is good but the increments due to power are overpredicted. Both positive (up-inboard) and negative (up-outboard) swirl cases are shown.

Comparisons with the propeller data are shown in Figures 30 and 31. Increments due to the nacelle taken from the previous Figures (18 and 19) are indicated. At $M_0 = 0.7$, the clean wing data is below predictions inboard in contradiction to the data measured for the simulator case, suggesting a difference in wing geometry. This may have been caused by a difference in wing twist under load caused by the difference in wing fabrication methods or scale. The powered data are well predicted except in the region immediately outboard of the nacelle. At $M_0 = 0.8$ the same conclusions apply except the clean wing data is underpredicted outboard, again suggesting a difference in wing twist.

In summary, the powered data for the simulator is underpredicted by the theory perhaps because of the presence of the ejector nacelle or nacelle

boundary layer flowing over the wing. Powered predictions for the propeller are generally good except just outboard of the nacelle. Nacelle interferences, not included in the theory, may cause this discrepancy.

Neumann Theory

The Neumann program is an incompressible surface panel solution using unknown source and dipole singularities to satisfy the zero normal flow condition at control points located in a number of panels describing the body surface (Reference 9). In regions washed by the propeller, the propeller onset flow is input at each affected control point to be included with the free stream flow when the singularity strengths are found. The program can calculate flows about completely arbitrary configurations.

The program contains the option of using the Goethert correction for compressibility. However, when this option is applied, the zero normal flow boundary condition is not exactly satisfied. Because of the complex geometries dealt with and the small included angles between some body surface panels, the compressibility option was not employed in order to avoid potential numerical errors in some cases.

A description of the paneling used for the simulator case is shown in Figure 32. The results are shown in Figures 33 and 34. (The Neumann program is compared to the data at the same configuration C_{L_W} . Since the Neumann program did not include viscous effects, the same C_{L_W} is achieved at an angle of attack 1° less than the data, Figure 5.) The pressure distributions generally agree well but the upper surface peaks near the leading edge are underpredicted. Agreement is good if incremental effects are compared. The section lift agreement is good with the exception of the power and swirl case at 35% semispan.

The paneling for the propeller case is shown in Figure 35. The circular body extending aft of the wing trailing edge is the representation of the exhaust flow. The pressure distributions inboard and outboard of the nacelle for the clean wing, wing plus nacelle and wing plus nacelle plus power are shown in Figures 36 through 41. (Again, note the 1° angle difference. The powered data are for $\beta = 57^{\circ}$, run 69). The agreement of the theory with the data is good. The experimental separation inboard of the nacelle with power can be easily identified in Figure 38.

The section lift distribution data (Figure 42) does not agree as well. Neither the level nor the increments are reasonably predicted inboard of the nacelle but outboard the agreement is better. The disagreement inboard may be caused by local separations and transonic flows not correctly included in the theory.

The Neumann pressure distributions are compared to the data at the same angle of attack as the data (2°) in Figures 43 through 48.

Jameson Theory

The Jameson Theory is a fully transonic solution restricted to wings only. The wing is mapped into a computational plane and the full compressible potential flow equations are solved (Reference 10).

The Jameson theory agreement with the data for the clean wing is excellent as shown on Figures 49 and 50. To approximately account for propeller onset flow effects, the wing was twisted in accordance with the propeller swirl and an incremental free stream Mach number was applied to account for slipstream velocity increases. The nacelle effect is not

accounted for. These results are shown in Figures 51 through 56. As noted, if the incremental Mach effect is not included, the agreement between the theory and data is adequate to be used for design purposes.

The Jameson theory, applied in the manner discussed above, was the primary method used to design the modified wings described in the next section. This computer code was used because it is a transonic method and would give an adequate representation of the transonic flow development. However, nacelle effects are not properly accounted for and the Neumann computer code was used to include these effects. Uncertainty exists by using either program because of a limitation in the geometry capability (lack of a nacelle in Jameson) or transonic flow computational capability (Neumann). These factors will be discussed further during the discussion of the wing design in the next section.

VII. DESIGN PHILOSOPHY

Design Criteria

To reduce upper surface separations (Figures 16 and 17) and subsequent degradations in wing performance, it was necessary to reduce the magnitude of the high negative pressures on the wing upper surface inboard of the nacelle (Figures 7 and 9) and reduce the wing c_l values (Figures 18 and 19) to acceptable design limits. Since the clean original wing performed well and did not have any flow separations, the clean wing data was used to establish the design criteria. These criteria were minimum upper surface pressure levels, chordwise pressure gradients and spanwise upper surface isobar patterns. The c_l levels at any span station and the distribution of c_l as it affects induced drag were also used. The objective of the redesign work was to achieve levels on the new wing which were equal to or less than the above criteria.

Wing Redesign

The airfoil section shape inboard of the nacelle was modified to conform to the above described criteria within the constraints of the existing hardware. No problems were identified outboard of the nacelle so no modifications were made there. The hardware constraints were that the airfoil remain unchanged except for the forward or aft 20 to 25% of the chord.

Modified airfoils that fit within the existing planform could not be found which conformed to the design criteria. Therefore, a leading or trailing edge extension was required. A trailing edge extension was ruled out because of difficulties with the aft pressure gradients and unsweeping

of the isobars. Therefore, a 15% leading edge extension was selected as shown on Figure 57. The closer proximity of the propeller to the leading edge is a concern and may shorten useable propeller test time.

The airfoil section for the modified planform was developed to reduce upper surface peaks and gradients at transonic conditions ($M_0 = 0.8$, $C_{L_W} = 0.5$) and fair smoothly into the existing airfoil shape at about 25% chord. The airfoil shapes were developed using a 2-D transonic analysis method prior to 3-D analysis to insure a pressure distribution over the entire airfoil that conformed to accepted design practice. The 3-D Jameson computer code was used to evaluate the various designs in three dimensions.

Two of the best designs developed are shown in Figures 58 through 62, and are identified as Mod 2 and Mod 3. The $\eta = 0.12$ section shape is the same for either Mod. The Jameson results with and without power, compared to the original wing, are shown in Figures 63 and 64. Mod 3 has pressure peaks near the leading edge about half of the original wing and the transonic flow over the entire upper surface is free of shock waves even with power. The C_p levels with power are less than the clean original wing, the gradients are less and constant C_p levels occur at similar x/c values indicating swept isobar patterns. Mod 2 has higher nose peaks than Mod 3 but, as will be discussed, Mod 2 may be less sensitive to nacelle interferences. The spanwise distribution of lift is shown on Figure 65 and the c_L values are less everywhere than for the clean original wing. The desired spanwise distribution of lift to reduce induced drag could not be achieved.

Incompressible Jameson solutions at $M_0 = 0.1$ were calculated for reference to subsequent discussions of the incompressible Neumann solutions to follow which calculated results for the wing/fuselage and the nacelle.

The Jameson results are shown in Figures 66 and 67. Note that the Mod 3 design has higher nose peaks than Mod 2. However, the transonic development of Mod 3 was much better than Mod 2 indicating that at the design condition of $M_0 = 0.8$, Mod 3 will be the better design.

The incompressible Neumann solutions for the 3 wings (original wing, Mod 2, and Mod 3) with and without the nacelle and power at the 37% semispan station are shown in Figures 68, 69 and 70. In all cases, Mod 3 has lower pressure coefficients and gradient levels near the leading edge on the upper surface than the clean original wing, and it is also better than Mod 2.

The same data presentation is shown at the 41% semispan station in Figures 71, 72 and 73. At this station, the Mod 3 design significantly reduces the negative C_p peaks compared to the original wing, especially with power as shown in Figure 73. However, the negative C_p peaks are higher than the original wing without nacelle and power and are higher than Mod 2 with nacelle and power. The uncertainty here is whether the results shown at the 41% semispan would also occur at transonic conditions. The Mod 3 results were worse in the Jameson code at freestream conditions similar to the Neumann solution ($M_0 = 0$) but the pressure distribution development into the transonic region ($M_0 = 0.8$) was better. Since a transonic code including the nacelle body was not available for this study, the transonic development in the presence of the nacelle could not be evaluated. Since the Mod 3 design is better at 37% semispan using the Neumann and is better everywhere at transonic conditions as evaluated in the Jameson, it has been selected as the preferred design and is recommended for test. If the adverse effects nearer the nacelle (41%) occur during test, these effects can be treated locally with a small fillet.

To evaluate whether or not the pressure peak calculated for Mod 3 at 41% semispan will cause a flow separation, the results shown on Figure 72 are compared to the power-off flow visualization photos on Figures 13 and 14. The flow photos did not indicate a large region of flow separation although a limited normal shock was indicated at $M_0 = 0.8$. The pressure peak calculated by the Neumann at these conditions was -1.4 as shown on Figure 72. Therefore, a -1.4 C_p should be marginally acceptable to avoid significant flow separation.

The peak C_p for Mod 3 with nacelle and power calculated by the Neumann is -1.4 as shown on Figure 73. This level indicates that flow conditions similar to the power-off case on the original wing would occur (like Figure 13 and 14) and the powered performance of Mod 3 should be acceptable.

Figure 74 shows results for all the configurations and conditions at 56% semispan. In all cases, the pressure distributions are more favorable than the original wing.

The spanwise distribution of lift for all cases is shown in Figure 75. The desired c_l values (less than the original wing) are achieved inboard of the nacelle for either Mod 2 or 3.

To amplify the conclusions drawn and to indicate sensitivity to angle of attack, the Neumann results are shown at 1° higher angle of attack in Figures 76 through 81. All the conclusions drawn previously apply to these data. Note that in Figure 79, Mod 3 has a higher negative C_p at the nose without nacelle and power than Mod 2, just like the Jameson results.

Nacelle Contouring

The streamlines about the isolated wing computed using the Neumann program are shown in Figures 82 and 83.

Underwing Nacelle - The nacelle geometry for this case was constrained to adding fairings to the existing nacelle or contouring aft of the motor so that installation of the air drive motor would be assured.

The aft part of the nacelle and nozzle centerline were contoured to the lower surface streamline as indicated in Figure 84. This contouring did not produce adequate favorable effects to warrant further consideration as shown in Figure 85.

Limited contouring of the nacelle was developed using the upper surface streamlines. As indicated in Figure 83, no contouring is possible inboard of the nacelle because of the relationship of the wing leading edge and rotating hub and propeller. A local fillet can be used outboard to fair between the nacelle and the wing leading edge. In the profile view (Figure 82) a local "bump" on the nacelle upper surface in the region of the wing leading edge will make the nacelle conform more closely with the streamline. The two fairings are shown by photographs of a subscale mock-up in Figure 86.

These limited fairings probably won't have a significant impact on the performance. The geometric limitations precluded contouring to the extent necessary. These fairings can be tested in the tunnel depending on test results of the modified wing and basic nacelle.

Overwing Nacelle - An overwing nacelle was also considered and is shown in Figure 87. For this case, the approach was to aerodynamically contour the nacelle and then determine if the air drive motor can be installed. Since this work was done in parallel with the development of Mod 3, the original

wing was used. Also, because the objective of this work was to evaluate what can be achieved by nacelle contouring with the power effects being treated using wing modifications, the power effects were not included.

The contouring was accomplished by maintaining the longitudinal cross-sectional area distribution of the nacelle to give the best chance of the motor fitting inside. The centers of these areas were shaped to conform to the flow streamlines. The resulting nacelle shape is shown in Figures 88 and 89. The contouring achieved excellent results as shown in Figures 90 through 92. At the 43% semispan location, the upper surface pressure peak and gradient with the nacelle installed is significantly less than for the non-contoured nacelle case and is almost identical to the original wing without the nacelle. Significantly better span loading is also achieved as shown in Figure 93, which should provide significantly less induced drag. It is recommended that this contoured nacelle and the non-contoured nacelle be tested to confirm these results.

VIII. DESIGN MODIFICATIONS

The wing coordinates for Mod 3 are given at 10 spanwise locations in Table 2. These coordinates conform to the existing wing at approximately 25% of the original wing chord. The geometry of the overwing contoured nacelle has been given to NASA Ames in the form of a computer tape containing a parametric cubic definition of the nacelle. The plan and profile view were shown in Figures 88 and 89.

Page Intentionally Left Blank

IX. CONCLUSIONS AND RECOMMENDATIONS

The following conclusions are drawn from this study:

- 1) The force data could not be used during this study because of uncertainties in accuracy.
- 2) Both the nacelle and power had significant effects on the wing flow. With power, the upper surface of the wing was separated at a wing C_{L_w} near 0.5.
- 3) The increments in the pressure data due to power agreed fairly well between the earlier simulator test and the propeller test. The absence of a nacelle in the simulator test makes a direct comparison impossible.
- 4) The Lifting Line computer code agreed better with the propeller power-on data than with the previous simulator data. This program could be used for preliminary design purposes.
- 5) The Neumann Surface Panel computer code predicted the wing surface pressure distributions with sufficient accuracy for design purposes. The agreement with the propeller model C_p distributions was excellent. The c_x values were not predicted as well.
- 6) The Jameson Transonic Program gives results adequate for design purposes if the power effects are accounted for by wing twist.

- 7) A new wing planform and new airfoil sections were developed (Mod 3). At $M_0 = 0.8$, the upper surface peak C_p values with power for this configuration are approximately half of the original wing with power. The pressure distribution is shock free and should result in performance with power approaching that of the original clean wing without power. Some uncertainty is present regarding the effects of the nacelle on this wing at transonic speeds. It is recommended that test data on Mod 3 be obtained to evaluate its performance.
- 8) A contoured upper surface nacelle was developed for the original wing which can be installed on the wing without producing any appreciable interference to the wing pressures. It is recommended that this nacelle be built and tested to evaluate performance.

X. REFERENCES

1. J. P. Hopkins, and H. E. Wharton, "Study of the Cost/Benefit Tradeoffs for Reducing the Energy Consumption of the Commercial Air Transportation System." (LR-27769-1, Lockheed-California Co.; NASA Contract NAS2-8612.) NASA CR-137927, 1976.
2. J. P. Hopkins, "Study of the Cost/Benefit Tradeoffs for Reducing the Energy Consumption of the Commercial Air Transportation System." (LR-27769-2, Lockheed-California Co.; NASA Contract NAS2-8612.) NASA CR-137926, 1976.
3. E. F. Kraus, and J. C. Van Abkoude, "Cost/Benefit Tradeoffs for Reducing the Energy Consumption of the Commercial Air Transportation System. Vol. I: Technical Analysis." (MDC-J7340-Vol.-1, Douglas Aircraft Co., Inc.; NASA Contract NAS2-8618.) NASA CR-137923, 1976.
4. Energy Consumption Characteristics of Transports Using the Prop-Fan Concept: Summary." (D6-75780, Boeing Commercial Airplane Co.; NASA Contract NAS2-9104.) NASA CR-137938, 1976.
5. "Energy Consumption Characteristics of Transports Using the Prop-Fan Concept: Final Report." (D6-75780, Boeing Commercial Airplane Co.; NASA Contract NAS2-9104.) NASA CR-137938, 1976.

6. I. M. Goldsmith, "A Study to Define the Research and Technology Requirements for Advanced Turbo/Propfan Transport Aircraft." (Douglas Aircraft Company; NASA Contract NAS2-10178) NASA CR 166138, February 1981.
7. H. R. Welge, and J. P. Crowder, "Simulated Propeller Slipstream Effects on a Supercritical Wing." (Douglas Aircraft Company; NASA Contract NAS2-9472.) NASA CR-152138, June 1978.
8. R. J. Jeracki, D. C. Mikkelsen, and B. J. Blaha, "Wind Tunnel Performance of Four Energy Efficient Propellers Designed for Mach 0.8 Cruise." NASA TM-79124, April 1979.
9. Hess, J. L.: The Problem of Three-Dimensional Lifting Potential Flow and Its Solution by Means of Surface Singularity Distribution, Computer Methods in Applied Mechanics and Engineering, Vol. 4, 1974, pp. 283-319.
10. Henne, P. A.: Transonic Wing Analysis Using Advanced Computational Methods, AIAA Paper 78-105, 1978.

TABLE 1
ORIGINAL AIRFOIL COORDINATES

X' IS IN WRP	UPPER SURFACE							
	12 Z X = 10.5904	35 Z X = 30.8888	70 Z X = 61.7775	100 Z X = 88.2537	Y	Z	Y	Z
100.0	50.2101	-6.1735	50.9467	-2.0874	63.1242	-1.1630	73.5625	-.4253
97.5	49.1409	-5.9629	50.2149	-1.8628	62.6302	-1.0284	73.2718	-.3584
95.	48.0713	-5.7671	49.4831	-1.6549	62.1359	-.8976	72.9810	-.2963
92.5	47.0017	-5.5380	48.7513	-1.4684	61.6415	-.7803	72.6899	-.2378
90.	45.9325	-5.3171	48.0199	-1.3004	61.1472	-.6756	72.3992	-.1856
85.	43.7933	-4.6320	46.5562	-1.0053	60.1584	-.4940	71.8177	-.0981
80.	41.6545	-4.1119	45.0926	-7.517	59.1701	-.3407	71.2368	-.0272
75.	39.5157	-3.6142	43.6290	-1.5358	58.1813	-.2128	70.6447	.0290
70.	37.3769	-3.1641	42.1654	-1.3529	57.1926	-.1077	70.0733	.0720
65.	35.2377	-2.7030	40.7028	-1.2055	56.2042	-.0843	69.4918	.1029
58.5	32.4571	-2.1741	38.7993	-1.0595	54.9189	-.0518	68.7357	.1263
55.	30.9601	-1.9062	37.799	.0022	54.4226	-.0823	68.3288	.1316
50.	28.8209	-1.5504	36.8113	.0639	53.1061	-.1081	67.7470	.1312
45.	26.6821	-1.2214	34.8977	.1011	52.2497	-.1195	67.1655	.1228
40.	24.5433	-.9193	33.2845	.1150	51.2610	.1150	66.5891	.1059
35.	22.4041	-.6421	31.9209	.1037	50.2726	.0948	66.0022	.0809
30.	20.2653	-.3900	30.4572	.0687	49.2839	.0573	65.4207	.0469
25.	18.1264	-.1658	28.9936	.0004	48.3952	.0004	64.8393	*
20.	15.9876	.0243	27.5300	-.0967	47.3064	-.0783	64.2578	-.0573
15.	13.8484	-.1338	26.0668	-.2319	46.3346	-.1805	63.6763	-.1283
10.	11.7096	-.0386	24.6032	-.4220	45.3293	-.3187	63.0948	-.2189
7.5.	10.6400	-.1231	23.8714	-.5517	44.8350	-.4142	62.8041	-.2768
5.	9.5708	-.3889	23.1396	-.7164	43.9406	-.8252	62.5130	.3468
2.5.	8.5012	-.8483	22.4077	-.9560	43.8466	-.6874	62.2223	.9485
1.25.	7.9664	-.12578	22.0420	-.1490	43.6992	-.8172	62.0771	.2168
.5.	7.6456	-.16716	21.8223	-.13529	43.4511	-.9391	61.9100	.5166
.25.	7.5386	-.18911	21.7491	-.14853	43.4015	-.10067	61.9626	.6237
.05.	7.4533	-.21671	21.6906	-.15798	43.3622	-.11019	61.9374	.6767
0.00.	7.4316	-.23917	21.6759	-.16625	43.3522	-.11791	61.9315	.7189
LOWER SURFACE								
0.00.	7.4316	-2.3917	21.6759	-1.6625	43.2522	-1.1791	61.9315	-.7189
.05.	7.4533	-2.6185	21.6906	-1.8099	43.3622	-1.2556	61.9374	-.7605
.25.	7.5386	-2.9817	21.7491	-1.9605	43.4015	-1.3537	61.7606	-.8141
.5.	7.6456	-3.1456	21.8222	-2.0327	43.4511	-1.4269	61.9900	-.8542
1.25.	7.9664	-3.6215	22.0420	-2.2832	43.5992	-1.5629	62.0771	-.9284
2.5.	8.5012	-4.1920	22.4077	-2.5174	43.8466	-1.7143	62.2223	-1.0089
5.	9.5708	-4.9167	23.1396	-2.8162	44.3406	-1.9050	62.5130	-1.1089
7.5.	10.6400	-5.9773	23.8714	-3.0140	44.8350	-2.0285	62.8041	-1.1707
10.	11.7096	-5.8464	24.6032	-3.1621	45.3293	-2.1157	63.0948	-1.2151
15.	13.8484	-6.3087	26.0668	-3.3664	46.3346	-2.2414	63.6763	-1.2688
20.	15.9876	-6.5932	27.5300	-3.5013	47.3064	-2.3163	64.2578	-1.2967
25.	18.1264	-6.7653	28.9936	-3.5936	48.2952	-2.3649	64.8393	-1.3096
30.	20.2653	-6.8535	30.4572	-3.6565	49.2839	-2.3913	65.4207	-1.3100
35.	22.4041	-6.8493	31.9209	-3.6359	50.2726	-2.3979	66.0022	-1.2997
40.	24.5433	-6.8744	33.2845	-3.6873	51.2610	-2.3847	66.5891	-1.2784
45.	26.6821	-6.8166	34.8977	-3.6917	52.2497	-2.3476	67.1655	-1.2445
50.	28.8209	-6.7770	36.3113	-3.5782	53.1061	-2.2855	67.7470	-1.1949
55.	30.9601	-6.7606	37.7749	-3.4828	54.2261	-2.1866	68.3288	-1.1266
58.5.	32.4571	-6.6907	38.7993	-3.3233	54.9189	-2.0980	69.7357	-1.0648
65.	35.2377	-6.5234	40.7022	-3.0445	56.2042	-1.8914	69.4918	-.9321
70.	37.3769	-6.4326	42.1654	-2.7864	57.1926	-1.7069	70.0733	-.8134
75.	39.5157	-6.3422	43.6290	-2.5145	58.1813	-1.5129	70.6447	-.6899
80.	41.6545	-6.2869	45.0926	-2.2580	59.1701	-1.3276	71.3362	-.5783
85.	43.7933	-6.1841	46.5562	-2.0352	60.1529	-1.1693	71.8177	-.4705
90.	45.9325	-6.1804	48.0199	-1.8711	61.1472	-1.0619	72.3992	-.3977
92.5	47.0017	-6.1272	49.7513	-1.8727	61.6415	-1.0446	72.6899	-.3834
95.	48.0713	-6.1320	49.4831	-1.9036	62.1359	-1.0600	72.9810	-.3911
97.5	49.1409	-6.1566	50.2149	-1.9940	62.6302	-1.1170	73.3718	-.4846
100.	50.2101	-6.2327	50.9463	-2.1462	63.1246	-1.2218	73.5632	-.4837

81-GEN-24220

Page Intentionally Left Blank

TABLE 2
MOD 3 WING COORDINATES

X	Y	Z
15.812860	0.0	-0.740680
14.054580	0.0	-0.450590
12.325220	0.0	-0.207010
10.636840	0.0	0.097710
8.978100	0.0	0.181100
7.325220	0.0	0.316520
5.623460	0.0	0.414910
4.333900	0.0	0.478790
2.911010	0.0	0.508770
1.560150	0.0	0.506260
0.286730	0.0	0.472290
-0.064210	0.0	0.407260
-0.997980	0.0	0.312010
-1.202820	0.0	0.187120
-2.326950	0.0	0.033570
-4.754530	0.0	-0.146690
-5.469750	0.0	-0.350210
-6.679780	0.0	-0.577720
-6.582210	0.0	-0.826880
-6.975060	0.0	-1.098590
-7.256770	0.0	-1.392240
-7.426250	0.0	-1.765150
-7.482820	0.0	-2.415160
-7.426250	0.0	-2.379360
-7.256770	0.0	-2.739880
-6.975060	0.0	-3.183160
-6.582210	0.0	-3.472570
-6.679780	0.0	-3.947270
-5.469750	0.0	-4.226230
-4.754530	0.0	-4.666940
-3.936950	0.0	-4.987230
-3.620230	0.0	-5.364220
-2.007080	0.0	-5.734170
-0.064210	0.0	-6.095380
0.286730	0.0	-6.445230
1.560150	0.0	-6.789510
2.911010	0.0	-7.092600
4.333900	0.0	-7.395130
5.623460	0.0	-7.666320
7.325220	0.0	-7.969590
8.978100	0.0	-8.128780
10.636840	0.0	-8.290130
12.325220	0.0	-8.412710
14.054580	0.0	-8.496420
15.812860	0.0	-8.542060

81-GEN-24215

TABLE 2 (CONT)
MOD 3 WING COORDINATES

X	Y	Z
21.010529	10.590440	-0.474080
19.501648	10.590440	-0.393140
18.016922	10.590440	-0.152990
16.562256	10.590440	-0.028640
15.143310	10.590440	0.063190
13.765720	10.590440	0.128370
12.434910	10.590440	0.167240
11.156130	10.590440	0.180550
9.934440	10.590440	0.168860
8.774670	10.590440	0.133300
7.681380	10.590440	0.075040
6.658910	10.590440	-0.005340
5.711270	10.590440	-0.186710
4.842210	10.590440	-0.228500
4.065160	10.590440	-0.379010
3.353230	10.590440	-0.529380
2.739190	10.590440	-0.705650
2.215450	10.590440	-0.897760
1.784100	10.590440	-1.104490
1.446820	10.590440	-1.325060
1.204950	10.590440	-1.558400
1.059440	10.590440	-1.891500
1.010880	10.590440	-2.057810
1.059440	10.590440	-2.314670
1.204950	10.590440	-2.585460
1.446820	10.590440	-2.859330
1.784100	10.590440	-3.137140
2.215450	10.590440	-3.474140
2.739190	10.590440	-3.698900
3.353230	10.590440	-3.879450
4.065160	10.590440	-4.257800
4.842210	10.590440	-4.532260
5.711270	10.590440	-4.800430
6.658910	10.590440	-5.061160
7.681380	10.590440	-5.312740
8.774670	10.590440	-5.553420
9.934440	10.590440	-5.781800
11.156130	10.590440	-5.995530
12.434910	10.590440	-6.192460
13.765720	10.590440	-6.371090
15.143320	10.590440	-6.559240
16.562241	10.590440	-6.661230
18.016922	10.590440	-6.762860
19.501648	10.590440	-6.834590
21.010529	10.590440	-6.877040

81-GEN-24221

ORIGINAL PAGE IS
OF POOR QUALITY

TABLE 2 (CONT)
MOD 3 WING COORDINATES

Y=13.9735			Y=17.3565		
X	Y	Z	X	Y	Z
22.670883	13.973560	-0.380840	24.331223	17.356491	-0.287610
21.241469	13.973560	-0.244560	22.981155	17.356491	-0.185980
19.834888	13.973560	-0.187530	21.652679	17.356491	-0.102870
18.456696	13.973560	-0.033660	20.351105	17.356491	-0.038560
17.112411	13.973560	0.033620	19.081497	17.356491	0.042130
15.887320	13.973560	0.076130	17.848892	17.356491	0.021980
14.546550	13.973560	0.094560	16.658142	17.356491	0.021910
13.335660	13.973560	0.091360	15.513960	17.356491	0.002170
12.177660	13.973560	0.065980	14.428840	17.356491	-0.036870
11.078910	13.973560	0.019470	13.363130	17.356491	-0.091350
10.043160	13.973560	-0.046700	12.404910	17.356491	-0.169980
9.074490	13.973560	-0.132730	11.490400	17.356491	-0.269130
8.176720	13.973560	-0.236570	10.632130	17.356491	-0.367340
7.255240	13.973560	-0.351430	9.884550	17.356491	-0.477330
6.677740	13.973560	-0.496600	9.564330	17.356491	-0.622160
5.342770	13.973560	-0.519150	8.522270	17.356491	-0.769620
4.351040	13.973560	-0.517250	7.922250	17.356491	-0.928800
4.056210	13.973560	-0.500650	7.514230	17.356491	-1.090550
4.136570	13.973560	-1.192410	7.126280	17.356491	-1.258970
3.907530	13.973560	-1.307010	6.826550	17.356491	-1.465970
3.769680	13.973560	-1.511000	6.610050	17.356491	-1.665400
3.722380	13.973560	-1.523570	6.479890	17.356491	-1.855650
3.769680	13.973560	-2.064200	6.436440	17.356491	-2.070780
3.907530	13.973560	-2.205470	5.479990	17.356491	-2.276280
4.136670	13.973560	-2.528890	5.610080	17.356491	-2.498700
4.456210	13.973560	-2.763540	6.265500	17.356491	-2.707750
4.864860	13.973560	-3.432290	7.126280	17.356491	-2.927450
5.361640	13.973560	-3.262660	7.514230	17.356491	-3.147920
5.942770	13.973560	-3.533300	7.982850	17.356491	-3.367700
6.607760	13.973560	-4.028550	8.532270	17.356491	-3.584740
7.353390	13.973560	-4.269110	9.169330	17.356491	-3.798300
8.176720	13.973560	-4.506170	9.264540	17.356491	-4.067360
9.074490	13.973560	-4.734650	10.642130	17.356491	-4.216510
10.043160	13.973560	-4.964100	11.490400	17.356491	-4.406950
11.078910	13.973560	-5.164230	12.404910	17.356491	-4.595460
12.177660	13.973560	-5.263710	13.363130	17.356491	-4.775250
13.335660	13.973560	-5.550510	14.428840	17.356491	-4.945620
14.546550	13.973560	-5.723140	15.513950	17.356491	-5.105490
15.887320	13.973560	-5.880490	16.658142	17.356491	-5.252830
17.112411	13.973560	-6.028890	17.948892	17.356491	-5.388990
18.456210	13.973560	-6.139830	19.081497	17.356491	-5.512540
19.834888	13.973560	-6.634190	20.351105	17.356491	-5.618440
21.241469	13.973560	-6.301540	21.652679	17.356491	-5.705510
22.670883	13.973560	-6.342700	22.981155	17.356491	-5.768890
			24.331223	17.356491	-5.888360

81-GEN-24216

TABLE 2 (CONT)
MOD 3 WING COORDINATES

Y=20.7395			Y=24.1227		
X	Y	Z	X	Y	Z
25.991668	20.739578	-0.194370	27.651993	24.122681	-0.101130
24.726947	20.739578	-0.127410	26.464739	24.122681	-0.068330
23.476596	20.739578	-0.076560	25.288528	24.122681	-0.051140
22.245560	20.739578	-0.043520	24.149030	24.122681	-0.048480
21.056629	20.739578	-0.028770	23.019760	24.122681	-0.059660
19.890518	20.739578	-0.031320	21.932144	24.122681	-0.084560
18.769710	20.739578	-0.050750	20.881454	24.122681	-0.123410
17.639382	20.739578	-0.087450	19.947157	24.122681	-0.176220
16.607760	20.739578	-0.130440	18.947116	24.122681	-0.242510
15.687400	20.739578	-0.168180	17.901659	24.122681	-0.318110
14.766710	20.739578	-0.210400	17.128855	24.122681	-0.413010
13.905650	20.739578	-0.257530	16.221250	24.122681	-0.514930
13.197610	20.739578	-0.496310	15.573100	24.122681	-0.626170
12.375750	20.739578	-0.616740	14.886570	24.122681	-0.746150
11.712960	20.739578	-0.748230	14.265590	24.122681	-0.874310
11.121840	20.739578	-0.883590	13.711420	24.122681	-1.009660
10.604740	20.739578	-1.040450	13.226530	24.122681	-1.152050
10.163630	20.739578	-1.204550	12.813130	24.122681	-1.301340
9.800420	20.739578	-1.367610	12.472570	24.122681	-1.455340
9.516390	20.739578	-1.549520	12.206200	24.122681	-1.612280
9.312700	20.739578	-1.718890	12.015320	24.122681	-1.772390
9.190160	20.739578	-1.897730	11.900450	24.122681	-1.929880
9.149270	20.739578	-2.077260	11.862110	24.122681	-2.083750
9.190160	20.739578	-2.257080	11.900450	24.122681	-2.237890
9.312700	20.739578	-2.443320	12.015320	24.122681	-2.395940
9.516390	20.739578	-2.631960	12.206200	24.122681	-2.556170
9.800420	20.739578	-2.822690	12.472570	24.122681	-2.717750
10.163630	20.739578	-3.013170	12.813130	24.122681	-2.878420
10.604740	20.739578	-3.202160	13.226630	24.122681	-3.036490
11.121840	20.739578	-3.387370	13.711420	24.122681	-3.199010
11.712960	20.739578	-3.568550	14.265590	24.122681	-3.338790
12.375750	20.739578	-3.744910	14.886570	24.122681	-3.482460
13.107610	20.739578	-3.915540	15.573100	24.122681	-3.629570
13.905650	20.739578	-4.079840	16.321250	24.122681	-3.752730
14.766710	20.739578	-4.236810	17.128855	24.122681	-3.878170
15.687400	20.739578	-4.386170	17.991669	24.122681	-3.997680
16.654078	20.739578	-4.527520	18.907318	24.122681	-4.169430
17.626942	20.739578	-4.664450	19.871657	24.122681	-4.215430
18.769710	20.739578	-4.784590	20.881454	24.122681	-4.315180
19.800420	20.739578	-4.892590	21.932144	24.122681	-4.406560
20.245560	20.739578	-4.984150	22.819760	24.122681	-4.492620
23.476596	20.739578	-5.178440	24.149030	24.122681	-4.575640
24.726947	20.739578	-5.258340	25.288528	24.122681	-4.648140
25.991668	20.739578	-5.274400	27.651993	24.122681	-4.730650

81-GEN-24217

TABLE 2 (CONT)
MOD 3 WING COORDINATES

Y=27.5057			Y=30.8888		
X	Y	Z	X	Y	Z
29.312332	27.505692	-8.907829	30.972717	30.888779	0.885349
28.200485	27.505692	-8.010259	29.940262	30.888779	0.849338
27.106400	27.505692	-8.025689	28.924316	30.888779	-0.000226
26.034454	27.505692	-8.053440	27.928999	30.888779	-0.058489
24.988846	27.505692	-8.098660	26.957977	30.888779	-0.121459
23.973724	27.505692	-8.137799	26.015135	30.888779	-0.191029
22.993057	27.505692	-8.196076	25.184706	30.888779	-0.268739
22.050751	27.505692	-8.265410	24.229691	30.888779	-0.354668
21.150513	27.505692	-8.345489	23.393738	30.888779	-0.448350
20.295883	27.505692	-8.425830	22.600143	30.888779	-0.549650
19.406265	27.505692	-8.505020	21.852051	30.888779	-0.657040
18.736801	27.505692	-8.642320	21.153496	30.888779	-0.769729
18.038513	27.505692	-8.756840	20.503367	30.888779	-0.885910
17.398117	27.505692	-8.875560	19.900382	30.888779	-1.004989
16.818146	27.505692	-9.000300	19.379758	30.888779	-1.126460
16.306919	27.505692	-9.129730	18.849457	30.888779	-1.249810
15.848440	27.505692	-9.253350	18.476291	30.888779	-1.375260
15.462590	27.505692	-9.402240	18.111983	30.888779	-1.503140
15.144650	27.505692	-9.534680	17.816757	30.888779	-1.630810
14.896110	27.505692	-9.684830	17.585968	30.888779	-1.756790
14.717870	27.505692	-9.825890	17.428456	30.888779	-1.879390
14.610650	27.505692	-9.961950	17.326892	30.888779	-1.993960
14.574870	27.505692	-8.092420	17.287674	30.888779	-2.096720
14.616650	27.505692	-8.218580	17.326892	30.888779	-2.199500
14.717870	27.505692	-8.348570	17.428456	30.888779	-2.301190
14.896110	27.505692	-8.489380	17.585968	30.888779	-2.444530
15.144650	27.505692	-8.612910	17.816757	30.888779	-2.588660
15.462590	27.505692	-8.746380	18.111983	30.888779	-2.689350
15.848440	27.505692	-8.876660	18.476291	30.888779	-2.765300
16.306919	27.505692	-9.002350	18.849457	30.888779	-2.852000
16.818146	27.505692	-9.129440	19.379758	30.888779	-2.939000
17.398117	27.505692	-9.229910	19.900382	30.888779	-3.027550
18.038513	27.505692	-9.355510	20.503367	30.888779	-3.106440
18.736801	27.505692	-9.425520	21.153496	30.888779	-3.198520
19.406265	27.505692	-9.519530	21.852051	30.888779	-3.268590
20.205883	27.505692	-9.686000	22.600143	30.888779	-3.319920
21.150513	27.505692	-9.691340	23.393738	30.888779	-3.273250
22.050751	27.505692	-9.778410	24.229691	30.888779	-3.365300
22.993057	27.505692	-9.845870	25.184706	30.888779	-3.376550
23.973724	27.505692	-9.918900	26.015135	30.888779	-3.427500
24.988846	27.505692	-9.987470	26.957977	30.888779	-3.479120
25.034454	27.505692	-8.064250	27.728909	30.888779	-3.532850
27.106400	27.505692	-8.119470	28.924316	30.888779	-3.590880
28.200485	27.505692	-8.176240	29.940262	30.888779	-3.637390
29.312332	27.505692	-8.205310	30.972717	30.888779	-3.670970

B1-GEN-24218

TABLE 2 (CONT)
MOD 3 WING COORDINATES

Y=34.4630			Y=38.0373		
X	Y	Z	X	Y	Z
33.245972	34.462992	0.988369	35.519333	30.877338	0.887380
32.558194	34.462992	0.851400	34.576218	30.877338	0.854470
31.286209	34.462992	0.885544	33.648193	30.877338	0.811294
30.233862	34.462992	-0.045490	32.738928	30.877338	-0.040550
29.404939	34.462992	-0.109650	31.852065	30.877338	-0.097540
28.503098	34.462992	-0.176630	30.999052	30.877338	-0.162240
27.631866	34.462992	-0.252210	30.159134	30.877338	-0.235580
26.794768	34.462992	-0.335920	29.265933	30.877338	-0.317230
25.994919	34.462992	-0.427360	28.569267	30.877338	-0.406280
25.235672	34.462992	-0.525990	27.871292	30.877338	-0.502320
24.519943	34.462992	-0.630460	27.187943	30.877338	-0.603880
23.850571	34.462992	-0.740110	26.549843	30.877338	-0.710500
23.230194	34.462992	-0.853460	25.956528	30.877338	-0.821820
22.661255	34.462992	-0.979360	25.413315	30.877338	-0.935750
22.146011	34.462992	-1.098500	24.921371	30.877338	-1.054550
21.686493	34.462992	-1.212340	24.482635	30.877338	-1.174870
21.284500	34.462992	-1.335360	24.098831	30.877338	-1.295460
20.941635	34.462992	-1.459190	23.771146	30.877338	-1.415240
20.659241	34.462992	-1.588840	23.501946	30.877338	-1.538870
20.438446	34.462992	-1.699460	23.291831	30.877338	-1.642130
20.280900	34.462992	-1.814620	23.139847	30.877338	-1.748660
20.184345	34.462992	-1.922480	23.048904	30.877338	-1.851810
20.153076	34.462992	-2.021910	23.018585	30.877338	-1.947090
20.184845	34.462992	-2.121340	23.048904	30.877338	-2.043170
20.280900	34.462992	-2.218250	23.139847	30.877338	-2.135310
20.438446	34.462992	-2.315170	23.291831	30.877338	-2.225760
20.659241	34.462992	-2.412840	23.501946	30.877338	-2.317620
20.941635	34.462992	-2.508740	23.771146	30.877338	-2.408560
21.284500	34.462992	-2.601200	24.098831	30.877338	-2.497290
21.686493	34.462992	-2.688630	24.482635	30.877338	-2.581960
22.146011	34.462992	-2.776520	24.921371	30.877338	-2.661750
22.661255	34.462992	-2.846540	25.413315	30.877338	-2.735510
23.230194	34.462992	-2.917570	25.956528	30.877338	-2.804490
23.850571	34.462992	-2.983670	26.548843	30.877338	-2.868810
24.519943	34.462992	-3.044670	27.187943	30.877338	-2.928460
25.235672	34.462992	-3.101580	27.871292	30.877338	-2.984240
25.994919	34.462992	-3.154900	28.569267	30.877338	-3.036550
26.794768	34.462992	-3.206790	29.359813	30.877338	-3.086180
27.631866	34.462992	-3.258660	30.159134	30.877338	-3.133570
28.503098	34.462992	-3.303230	30.999052	30.877338	-3.179860
29.449338	34.462992	-3.351330	31.852065	30.877338	-3.223530
30.333852	34.462992	-3.404260	32.738922	30.877338	-3.267650
31.286209	34.462992	-3.451680	33.648193	30.877338	-3.312560
32.258194	34.462992	-3.493260	34.576218	30.877338	-3.349110
33.245972	34.462992	-3.522940	35.519333	30.877338	-3.374990

B1-GEN-24219

ORIGINAL PAGE IS
OF POOR QUALITY

FIGURE 1. NASA MODEL INSTALLED IN AMES 14-FOOT TUNNEL

81-GEN-23245

FROM UPSTREAM OF THE MODEL

ORIGINAL PAGE IS
OF POOR QUALITY

81-GEN-23244

FIGURE 2. SIMULATOR TEST INSTALLATION

FIGURE 3. NASA MODEL PLANFORM

FIGURE 4. SIDE VIEW OF UNDERWING NACELLE

81 GEN 23204

81-GEN-23221

FIGURE 5. WING LIFT CURVES

81-GEN-24111

FIGURE 6. CHORDWISE PRESSURE DISTRIBUTION FOR ORIGINAL TURBOPROP CONFIGURATION AT $M_o = 0.6$

FIGURE 7. CHORDWISE PRESSURE DISTRIBUTIONS FOR ORIGINAL TURBOPROP CONFIGURATIONS AT $M_0 = 0.7$

FIGURE 8. CHORDWISE PRESSURE DISTRIBUTION FOR ORIGINAL TURBOPROP CONFIGURATION AT $M_0 = 0.78$

FIGURE 9. CHORDWISE PRESSURE DISTRIBUTIONS FOR ORIGINAL TURBOPROP CONFIGURATION AT $M_0 = 0.8$

FIGURE 10. CHORDWISE PRESSURE DISTRIBUTION FOR ORIGINAL TURBOPROP CONFIGURATION AT $M_0 = 0.82$

FIGURE 11. PRESSURE DISTRIBUTION AT REDUCED ANGLE OF ATTACK FOR $M_0 = 0.8$ AND ORIGINAL CONFIGURATION

FIGURE 12. PRESSURE DISTRIBUTION AT INCREASED ANGLE OF ATTACK FOR $M_0 = 0.8$ AND ORIGINAL CONFIGURATION

$M_0 = 0.75$
 $\alpha = 2 \text{ DEG}$
WINDMILL
UPPER SURFACE

81 GEN 23184A

FIGURE 13. OIL FLOW PHOTOGRAPH AT $M_0 = 0.75$ – WINDMILL CONDITIONS

$M_0 = 0.8$
 $\alpha = 2 \text{ DEG}$
WINDMILL
UPPER SURFACE

81 GEN 23181A

FIGURE 14. OIL FLOW PHOTOGRAPH AT $M_0 = 0.8$ – WINDMILL CONDITIONS

ORIGINAL PAGE IS
OF POOR QUALITY

81 GEN 242U/

FIGURE 15. PROPELLER SWIRL AND TOTAL PRESSURE RATIO CHARACTERISTICS – ONE BLADE CHORD DOWNSTREAM – BLADE ANGLE, $\beta = 57$ DEGREES

$M_o = 0.75$
 $\alpha = 2$ DEG
8100 RPM
UPPER SURFACE

81 GEN 23183A

FIGURE 16. OIL FLOW PHOTOGRAPH AT $M_o = 0.75$ – MAXIMUM POWER

$M_0 = 0.8$
 $\alpha = 2 \text{ DEG}$
 8500 RPM
 UPPER SURFACE

81 GEN 23182A

FIGURE 17. OIL FLOW PHOTOGRAPH AT $M_0 = 0.8$ — MAXIMUM POWER

81 GEN 23189

FIGURE 18. COMPARISON OF WING SECTION LIFT DISTRIBUTIONS AT $M_0 = 0.7$

ORIGINAL PAGE IS
OF POOR QUALITY

FIGURE 19. COMPARISON OF WING SECTION LIFT DISTRIBUTIONS AT $M_\infty = 0.8$

FIGURE 20. LIFT DISTRIBUTION USED FOR INDUCED DRAG CALCULATION

81 GEN 24213

FIGURE 21. COMPARISON OF SIMULATOR EXIT CONDITIONS AND ISOLATED PROPELLER DATA AT $\beta = 59$ DEGREES

81 GEN 23247

FIGURE 22. COMPARISON OF SIMULATOR AND PROPELLER DATA AT $M = 0.7$ AND $\eta = 0.36$

B1-GEN-24222

FIGURE 23. COMPARISON OF SIMULATOR AND PROPELLER DATA AT $M_o = 0.7$ AND $\eta = 0.5$

B1 GEN 23229

FIGURE 24. COMPARISON OF SIMULATOR AND PROPELLER DATA AT $M_o = 0.8$ AND $\eta = 0.36$

FIGURE 25. COMPARISON OF SIMULATOR AND PROPELLER DATA AT $M_\infty = 0.8$ AND $\eta = 0.5$

FIGURE 26. COMPARISON OF SIMULATOR AND PROPELLER SECTION LIFT DISTRIBUTION AT $M_\infty = 0.7$

FIGURE 27. COMPARISON OF SIMULATOR AND PROPELLER SECTION LIFT DISTRIBUTION AT $M = 0.8$

FIGURE 28. COMPARISON OF LIFTING LINE AND EXPERIMENTAL SPAN LOAD FOR CLEAN WING

FIGURE 29. COMPARISON OF WING SECTION LIFT DISTRIBUTION WITH LIFTING LINE THEORY - SIMULATOR MODEL

FIGURE 30. COMPARISON OF WING SECTION LIFT DISTRIBUTIONS WITH LIFTING LINE THEORY - PROPELLER MODEL

FIGURE 31. COMPARISON OF WING SECTION LIFT DISTRIBUTIONS WITH LIFTING LINE THEORY — PROPELLER MODEL

81 GEN 23191

FIGURE 32. NEUMANN PANELING FOR SIMULATOR MODEL

FIGURE 33. SIMULATOR/NEUMANN PRESSURE DISTRIBUTION COMPARISON

FIGURE 34. SIMULATOR/NEUMANN SECTION LIFT COEFFICIENT COMPARISON

81-GEN-23201

FIGURE 35. NEUMANN PANELING FOR PROPELLER MODEL

81-GEN-23198

FIGURE 36. COMPARISON OF NEUMANN AND DATA FOR CLEAN WING

81-GEN-23199

FIGURE 37. COMPARISON OF NEUMANN AND DATA FOR WING AND NACELLE – NO POWER

81-GEN-23197

FIGURE 38. COMPARISON OF NEUMANN AND DATA FOR WING AND NACELLE WITH POWER

81-GEN-23196

FIGURE 39. COMPARISON OF NEUMANN AND DATA FOR CLEAN WING

81-GEN-23195

FIGURE 40. COMPARISON OF NEUMANN AND DATA FOR WING AND NACELLE - NO POWER

FIGURE 41. COMPARISON OF NEUMANN AND DATA FOR WING AND NACELLE WITH POWER

FIGURE 42. DATA COMPARISON OF SECTION LIFT DISTRIBUTION FOR NEUMANN

FIGURE 43. COMPARISON OF NEUMANN AND DATA FOR CLEAN WING AT $\alpha = 2$ DEGREES

81-GEN-24184

FIGURE 44. COMPARISON OF NEUMANN AND DATA FOR WING/NACELLE NO POWER AT $\alpha = 2$ DEGREES

81 GEN 24190

FIGURE 45. COMPARISON OF NEUMANN AND DATA WITH POWER AT $\alpha = 2$ DEGREES

81 GEN 24186

FIGURE 46. COMPARISON OF NEUMANN AND DATA FOR CLEAN WING AT $\alpha = 2$ DEGREES

81-GEN-24185

FIGURE 47. COMPARISON OF NEUMANN AND DATA FOR WING NACELLE NO POWER AT
 $\alpha = 2$ DEGREES

81-GEN-24187

FIGURE 48. COMPARISON OF NEUMANN AND DATA WITH POWER AT $\alpha = 2$ DEGREES

FIGURE 49. COMPARISON OF JAMESON AND EXPERIMENTAL CHORDWISE PRESSURE DISTRIBUTIONS FOR CLEAN WING CONFIGURATION $M_o = 0.7$

81-GEN-23243A

FIGURE 50. COMPARISON OF JAMESON AND EXPERIMENTAL CHORDWISE PRESSURE DISTRIBUTIONS FOR CLEAN WING CONFIGURATION $M_o = 0.800$

FIGURE 51. COMPARISON OF JAMESON AND EXPERIMENTAL CHORDWISE PRESSURE DISTRIBUTIONS – WITH POWER $M_0 = 0.7$

FIGURE 52. COMPARISON OF JAMESON AND EXPERIMENTAL CHORDWISE PRESSURE DISTRIBUTIONS – WITH POWER $M_0 = 0.7$

FIGURE 53. EXPERIMENTAL WING SECTION LIFT COMPARISON WITH THEORY AT $M_0 = 0.7$

FIGURE 54. COMPARISON OF JAMESON AND EXPERIMENTAL CHORDWISE PRESSURE DISTRIBUTIONS FOR POWERED PROP CONFIGURATION

FIGURE 55. COMPARISON OF JAMESON AND EXPERIMENTAL CHORDWISE PRESSURE DISTRIBUTIONS FOR POWERED PROP CONFIGURATION AT $M_o = 0.8$

FIGURE 56. WING SECTION LIFT COMPARISON WITH THEORY AT $M_o = 0.8$

81-GEN-23213

FIGURE 57. PLANFORM MODIFICATION

81-GEN-24195

FIGURE 58. MOD 2 AND MOD 3 AIRFOILS AT $\eta = 0.120$

FIGURE 59. MOD 2 AIRFOIL AT $\eta = 0.350$

81-GEN-23212

FIGURE 60. MOD 2 AIRFOIL AT $\eta = 0.43$

81-GEN-24193

FIGURE 61. MOD 3 AIRFOIL AT $\eta = 0.350$

81 GEN 23226

FIGURE 62. MOD 3 AIRFOIL AT $\eta = 0.43$

81 GEN 24194

FIGURE 63. COMPARISON OF CALCULATED CHORDWISE PRESSURE DISTRIBUTIONS USING JAMESON — CLEAN WING $M_0 = 0.800$

FIGURE 64. COMPARISON OF JAMESON CALCULATED CHORDWISE PRESSURE DISTRIBUTIONS FOR POWERED CONFIGURATIONS $M_0 = 0.800$

81 GEN 23187

FIGURE 65. SECTION LIFT CHANGE DUE TO WING MOD 2 AND MOD 3

81-GEN-23222

FIGURE 66. INCOMPRESSIBLE JAMESON AT $\eta = 0.38$

81-GEN-23223

FIGURE 67. INCOMPRESSIBLE JAMESON AT $\eta = 0.42$

81-GEN-23237

FIGURE 68. PRESSURE DISTRIBUTION FOR CLEAN WINGS AT $\eta = 0.37$

FIGURE 69. PRESSURE DISTRIBUTION FOR WINGS PLUS NACELLE WITHOUT POWER AT $\eta = 0.37$

FIGURE 70. PRESSURE DISTRIBUTION FOR WINGS WITH NACELLES AND POWER AT $\eta = 0.37$

81-GEN-23234

FIGURE 71. PRESSURE DISTRIBUTION FOR CLEAN WINGS AT $\eta = 0.41$

81-GEN-23233

FIGURE 72. PRESSURE DISTRIBUTION FOR WINGS PLUS NACELLE WITHOUT POWER AT $\eta = 0.41$

81-GEN-23238

FIGURE 73. PRESSURE DISTRIBUTIONS FOR WINGS WITH NACELLES AND POWER AT $\eta = 0.41$

81-GEN-23232

FIGURE 74. PRESSURE DISTRIBUTION OUTBOARD OF NACELLE, WITH NACELLE AND POWER $\eta = 0.56$

81-GEN-23216

FIGURE 75. COMPARISON OF SECTION LIFT DISTRIBUTION CALCULATED USING NEUMANN

81-GEN-24183

FIGURE 76. PRESSURE DISTRIBUTION FOR CLEAN WING AT $\eta = 0.37$ AND $\alpha = 2$ DEGREES

81-GEN-24198

FIGURE 77. PRESSURE DISTRIBUTION FOR WINGS PLUS NACELLE WITHOUT POWER $\eta = 0.37$ AND $\alpha = 2$ DEGREES

81-GEN-24188

FIGURE 78. PRESSURE DISTRIBUTION FOR WINGS WITH NACELLE AND POWER AT $\eta = 0.37$ AND $\alpha = 2$ DEGREES

81-GEN-24181

FIGURE 79. PRESSURE DISTRIBUTION FOR CLEAN WINGS AT $\eta = 0.41$ AND $\alpha = 2$ DEGREES

81-GEN-24199

FIGURE 80. PRESSURE DISTRIBUTION FOR WINGS PLUS NACELLE WITHOUT POWER AT $\eta = 0.41$ AND $\alpha = 2$ DEGREES

81-GEN-24191

FIGURE 81. PRESSURE DISTRIBUTIONS FOR WINGS WITH NACELLES AND POWER AT $\eta = 0.41$ AND $\alpha = 2$ DEGREES

81-GEN-23203

FIGURE 82. CLEAN WING STREAMLINE — PROFILE VIEW

B1-GEN-23242

FIGURE 83. CLEAN WING STREAMLINES – PLAN VIEW

B1-GEN-23214

FIGURE 84. STREAMLINE CONTOURED LOWER SURFACE AFT NACELLE

81-GEN-23227

FIGURE 85. EFFECT OF CONTOURING AFT PORTION OF UNDERWING NACELLE

ORIGINAL PAGE IS
OF POOR QUALITY

81-GEN-23211

FIGURE 86. SUBSCALE MOCKUP OF POTENTIAL UNDERWING NACELLE CONTOURING

81-GEN-24203

FIGURE 87. SIDE VIEW NONCONTOURED OVERWING NACELLE

81-GEN-23218

FIGURE 88. PLAN VIEW OF OVERWING CONTOURED NACELLE

81-GEN-23220

FIGURE 89. SIDE VIEW OF OVERWING CONTOURED NACELLE

81-GEN-24196

FIGURE 90. PRESSURE DISTRIBUTION COMPARISON FOR CONTOURED NACELLE AT $\eta = 0.37$ PERCENT

81-GEN-23200

FIGURE 91. PRESSURE DISTRIBUTION COMPARISON FOR CONTOURED NACELLE AT $\eta = 43$ PERCENT

81-GEN-24197

FIGURE 92. PRESSURE DISTRIBUTION FOR CONTOURED NACELLE AT $\eta = 0.56$ PERCENT

FIGURE 93. EFFECT OF NACELLE CONTOURING ON SECTION LIFT DISTRIBUTION

1. Report No. NASA CR 166214	2. Government Accession No.	3. Recipient's Catalog No.	
4. Title and Subtitle Analysis of Mach Number 0.8 Turboprop Slipstream Wing/Nacelle Interactions		5. Report Date August 6, 1981	
		6. Performing Organization Code	
7. Author(s) H. Robert Welge, Dan H. Neuhart, John A. Dahlin		8. Performing Organization Report No. ACCE-25-FR-1564	
		10. Work Unit No.	
9. Performing Organization Name and Address Douglas Aircraft Company 3855 Lakewood Blvd. Long Beach, Ca 90846		11. Contract or Grant No. NAS2-10881	
12. Sponsoring Agency Name and Address National Aeronautics and Space Administration Ames Research Center Moffett Field, CA 94035		13. Type of Report and Period Covered Contract Final Report	
		14. Sponsoring Agency Code	
15. Supplementary Notes Technical Monitor: Al Levin (227-2) NASA Research Center Moffett Field, CA 94035			
16. Abstract An experimental test program of a powered propeller and nacelle mounted on a supercritical wing was conducted by the NASA Ames Research Center in the 14-foot tunnel. Analysis of this data by the Douglas Aircraft Company, under contract to NASA with Al Lavin as the program manager, is contained in this report. The design condition for this study was $M_0 = 0.8$.			
Analysis of the data indicated that the installation of the nacelle significantly affected the wing flow and that the flow on the upper surface of the wing is separated near the leading edge under powered conditions. Comparisons of various theories with the data indicated that the Neumann surface panel solution and the Jameson transonic solution gave results adequate for design purposes. A modified wing design was developed (Mod 3) which reduces the wing upper surface pressure coefficients and section lift coefficients at powered conditions to levels below those of the original wing without nacelle or power. A contoured over-the-wing nacelle is described that can be installed on the original wing without any appreciable interference to the wing upper surface pressures.			
17. Key Words (Suggested by Author(s)) Turboprop Propfan Wing Design Propulsion Integration		18. Distribution Statement Unrestricted	
19. Security Classif. (of this report) Unclassified	20. Security Classif. (of this page) Unclassified	21. No. of Pages	22. Price*

* For sale by the National Technical Information Service, Springfield, Virginia 22151

DOUGLAS AIRCRAFT COMPANY

3855 Lakewood Boulevard, Long Beach, California 90846 (213) 593-5511

Printed in U.S.A. 8/81 S81-2445