- Definimos a distância entre pixels a função D (ou métrica
 D) se:
 - (i) $D(p, q) \ge 0$ (D(p, q) = 0 se e somente se p = q)
 - (ii) D(p, q) = D(q, p), e
 - (iii) $D(p, z) \le D(p, q) + D(q, z)$

• A distância Euclidiana – D_e entre p e q é definida como $D_e(p, q) = [(x - s)^2 + (y - t)^2]^{1/2}$

• Na distância Euclidiana, os pixels com uma distância menor ou igual a um valor d, formam um disco de raio d centrado em p.

- Apesar da distância Euclidiana ser mais próxima do caso contínuo, requer mais esforço computacional.
- A distância city-block D_4 é definida por: $D_4(p, q) = |x s| + |y t|$

• Note que os pixels a uma distância D_4 de p, menor ou igual a algum valor d formam um losango centrado em p.

A distância chessboard – D8 é definida por: $D_8(p, q) = \max\{|x - s|, |y - t|\}$

• Note que os pixels a uma distância D8 de p, menor ou igual a algum valor d formam um quadrado centrado em p.

 A distância D4 entre dois pixels p e q é igual ao comprimento do caminho mais curto considerando vizinhança – 4, do mesmo modo D8 corresponde ao caminho considerando vizinhança – 8

Operações Lógicas e Aritméticas

 Após uma imagem ter sido adquirida e digitalizada, ela pode ser vista como uma matriz de inteiros.

• Utilizando operações lógicas e/ou aritmética é possível manipular essas matrizes.

• As operações podem ser efetuadas pixel a pixel ou orientadas a vizinhança.

Adição

- Efeito sobre a imagem: Z é o resultado da soma dos valores de intensidade de X e Y
- Se Y for um escalar positivo, Z será uma versão mais clara de X; o acréscimo de intensidade será o próprio valor de Y

• Aplicações: Normalização de brilho de imagens e Remoção de ruídos

Subtração

- Efeito sobre a imagem: Z é o resultado da diferença dos valores de intensidade de X e Y
- Se Y for um escalar positivo, Z será uma versão mais escura de X; o decréscimo de intensidade será o próprio valor de Y

 Aplicações: Normalização de brilho de imagens e Remoção de ruídos

Multiplicação

- Efeito sobre a imagem: Z é o produto dos valores de intensidade de X e Y .
- Se Y for um escalar positivo, os valores de intensidade de Z serão diretamente proporcionais a X por um fator Y .

Aplicações: Calibração de brilho

Divisão

- Efeito sobre a imagem: Z é o razão dos valores de intensidade de X pelos valores correspondentes em Y .
- Se Y for um escalar positivo, os valores de intensidade de Z serão inversamente proporcionais a X por um fator Y .

• Aplicações: Normalização de brilho

Operações Lógicas pixel a pixel

 Todas as operações lógicas (ou booleanas) conhecidas podem ser aplicadas entre imagens, inclusive a operação de complemento (NOT), que é uma operação unária (requer apenas um operando)

 Operações lógicas podem ser efetuadas em imagens com qualquer número de níveis de cinza mas são melhor compreendidas quando vistas em imagens binárias.

Operações Lógicas pixel a pixel

EXERCÍCIO 4

- Implemente um algoritmo para adição de imagens
- Considere as imagens disponíveis em <u>https://links.uwaterloo.ca/Repository.html</u>
- Gere um ruído Gaussiano branco (média zero e desvio padrão 100) e adiciona à imagem ao lado

- O processo de convolução bidimensional é uma expansão do processo de convolução unidimensional
- Considere uma imagem que pode ser representada pela seguinte matriz, A,

• e uma matriz B (máscara)
$$\begin{bmatrix} 2 & 1 & 0 \\ 1 & 1 & -1 \\ 0 & -1 & -2 \end{bmatrix}$$

A operação de convolução bidimensional será

• O resultado da convolução será uma matriz de mesma dimensão de A

20	10	2	26	23	6	9	4
18	1	-8	2	7	3	3	-11
14	22	5	-1	9	-2	8	-1
29	21	9	-9	10	12	-9	-9
21	1	16	-1	-3	-4	2	5
15	-9	-3	7	-6	1	17	9
21	9	1	6	-2	-1	23	2
9	-5	-25	-10	-12	-15	-1	-12

- Para calcular os valores resultantes dos pixels próximos às bordas da imagem, podem ser adotadas diversas estratégias, dentre elas:
- 1. preencher com zeros o contorno da imagem, de maneira condizente com o tamanho de máscara utilizado
- 2. preencher o contorno da imagem com os mesmos valores da(s) primeira(s) e última(s) linha(s) e coluna(s)
- Prevenir a eventual introdução de erros nas regiões de bordas da imagem causados
 por qualquer um dos métodos anteriores, considerando na imagem resultante apenas
 os valores para os quais a máscara de convolução ficou inteiramente contida na
 imagem original.

Aplicações: Detecção de pontos isolados

$$\begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$$

• Essa máscara é um exemplo de operador de convolução que, quando aplicado a uma imagem, destacará pixels brilhantes circundados por pixels mais escuros

• Este operador corresponde a um filtro passa-altas

Aplicações: Detecção de linhas

$$\begin{bmatrix} -1 & -1 & -1 \\ 2 & 2 & 2 \\ -1 & -1 & -1 \end{bmatrix}$$
 Linhas horizontais
$$\begin{bmatrix} -1 & 2 & -1 \\ -1 & 2 & -1 \\ -1 & 2 & -1 \end{bmatrix}$$
 Linhas verticais
$$\begin{bmatrix} -1 & 2 & -1 \\ -1 & 2 & -1 \\ -1 & 2 & -1 \end{bmatrix}$$

$$\begin{bmatrix} -1 & -1 & 2 \\ -1 & 2 & -1 \\ 2 & -1 & -1 \end{bmatrix}$$
 Linhas Diagonais
$$\begin{bmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{bmatrix}$$

• Define-se borda (edge) como a fronteira entre duas regiões cujos níveis de cinza predominantes são razoavelmente diferentes:

- borda de luminosidade é uma descontinuidade na luminosidade de uma imagem.
- borda de textura ou borda de cor é uma descontinuidade na textura, é usada em imagens onde as informações de textura ou cor, respectivamente, são as mais importantes

APLICAÇÕES: DETECÇÃO DE BORDAS

O tema deteção de bordas (edge detection) vem desafiando os pesquisadores da área de Processamento de Imagens há muitos anos e sobre ele continuam sendo experimentadas novas técnicas, cujos resultados são publicados ainda hoje nos mais conceituados periódicos científicos mundiais

Trata-se, portanto, de um tema em aberto, a deteção de bordas em cenas consideradas "difíceis"

Trataremos apenas as bordas de luminosidade, às quais denominaremos simplesmente bordas

- Apenas para efeito didático à operação de convolução com máscaras apresentaremos algumas máscaras que podem ser utilizadas para a tarefa de deteção de bordas
- Para a deteção e realce de bordas, aplicam-se habitualmente filtros espaciais lineares de dois tipos:
 - (a) baseados no gradiente da função de luminosidade, I(x, y), da imagem, e(b) baseados no laplaciano de I(x, y).
- Tanto o gradiente quanto o laplaciano costumam ser aproximados por máscaras de convolução ou operadores 3 × 3.

Operador	Vertical	Horizontal
Roberts	$\begin{bmatrix} 0 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$	$\begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$
Sobel	$\frac{1}{4} \begin{bmatrix} 1 & 0 & -1 \\ 2 & 0 & -2 \\ 1 & 0 & -1 \end{bmatrix}$	$ \frac{1}{4} \begin{bmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \end{bmatrix} $
Prewitt	$\frac{1}{3} \begin{bmatrix} 1 & 0 & -1 \\ 1 & 0 & -1 \\ 1 & 0 & -1 \end{bmatrix}$	$\frac{1}{3} \begin{bmatrix} -1 & -1 & -1 \\ 0 & 0 & 0 \\ 1 & 1 & 1 \end{bmatrix}$
Frei-Chen	$\frac{1}{2+\sqrt{2}} \begin{bmatrix} 1 & 0 & -1\\ \sqrt{2} & 0 & -\sqrt{2}\\ 1 & 0 & -1 \end{bmatrix}$	$\frac{1}{2+\sqrt{2}} \begin{bmatrix} -1 & -\sqrt{2} & -1 \\ 0 & 0 & 0 \\ 1 & \sqrt{2} & 1 \end{bmatrix}$

(a) imagem original

(b) realce de bordasutilizando osoperadores de Prewitt

horizontal e vertical

(c) realce de bordas utilizando os operadores de Sobel horizontal e vertical.

Aplicações: Detecção de bordas usando Laplaciano

Embora o laplaciano seja insensível à rotação, e portanto capaz de realçar ou detectar bordas em qualquer direção, seu uso é restrito devido a sua grande suscetibilidade a ruído.

Aplicações: Detecção de bordas usando Laplaciano

EXERCÍCIO 5

- Implemente um algoritmo para detecção de linhas usando convolução com máscara e aplique nas imagens ao lado.
- Considere as imagens disponíveis em https://links.uwaterloo.ca/Repository.html

EXERCÍCIO 6

- Implemente um algoritmo para detecção de bordas usando convolução com máscara e aplique na imagem ao lado
- Considere a imagem disponível em <u>https://links.uwaterloo.ca/Repository.html</u>

