Biostatistics I: Introduction to R

Introduction

Eleni-Rosalina Andrinopoulou

Department of Biostatistics, Erasmus Medical Center

■ e.andrinopoulou@erasmusmc.nl

y@erandrinopoulou

Introduction to R

- ▶ **R** is a great tool to explore and investigate the data
- Several statistical methods can be performed with R
- ▶ It is important to understand the methods before applying them in R

How to use

R uses packages that perform specific tasks

- ► Install package only once
- Load package every time you open R

Introduction to R

- ► For this course: Rstudio (http://www.rstudio.org/)
 - ► free
 - works fine in Windows, MacOS and Linux
 - ► helpful with errors
 - alternative output options

Introduction to R

Basic functions

- getwd(), setwd(),
- is.na(),
 is.finite(),
 is.null()

Import/Export

- read.csv(), write.csv()
- read.xlsx(), write.xlsx()
- read.table(), write.table()

Save/Load

- ► save(), saveRDS()
- ▶ load(), readRDS()

Data Types/Structures

The simplest data types are:

- ▶ numeric : quantitative data
- ► character : qualitative data
- ► integer : whole numbers
- ▶ logical : TRUE or FALSE
- ► factors : qualitative data (levels)

Data Types/Structures

The most important data structures are:

- ► Scalar a single element
- ▶ **Vectors** have the same type of elements
- ▶ Matrices have the same type of elements with the same length
- ► Arrays have the same type of elements with the same length but can store the data in more than two dimensions
- ▶ Data frames have elements of different type with the same length
- ▶ **Lists** have elements of different type and length

Data Types/Structures

Data types

- ▶ is.numeric() / as.numeric()
- is.character() / as.character()
- ▶ is.integer() / as.integer()
- ▶ is.logical/as.logical()
- ▶ is.factor() / as.factor()
- ▶ str(), mode()

Data structures

- **c**()
- matrix()
- array()
- data.frame()
- ▶ list()

Other

▶ ls(), objects()

Indexing/Subsetting

- ▶ This can be done using square bracket ([]) notation and indices.
- ► Three basic types
 - position indexing
 - ► logical indexing
 - name indexing

Indexing/Subsetting

Vectors

- **>** []
- ► [""] for categorical variables

Matrices

- **(**,]
- **▶** [[]], []

Arrays

• [, ,]

Data frames

- **(**,]
- **(**[]], []
- **>** \$

Lists

- **[**]
- **▶** [[]]
- **>** (

Data Transformation/Exploration/Visualization

Transformation

- round()
- ▶ factor()
- ▶ order()
- reshape()

Exploration

- ▶ mean(), sd()
- ▶ median(), IQR()
- ► table()

Visualization

- ▶ plot(), legend()
- ▶ hist()
- ▶ barchart()
- boxplot()
- xyplot(), ggplot()
- ▶ par()

Correlation

Pearson correlation

- magnitude of association
- ► linear association
- direction of the relationship

A relationship is linear when a change in one variable is associated with a proportional change in the other variable

Correlation

Spearman correlation

- direction of the relationship
- monotonic relationship

In a monotonic relationship, the variables tend to change together, but not always at a constant rate (as in the linear case)

Test hypothesis

- parametric (assumptions about the distribution) / non-parametric (distribution-free)
- ▶ one sample / two samples / .. / M samples
 - compare one group with a value
 - compare two groups paired / unpaired
 - ► compare *M* groups
- one-sided (one-tailed) / two-sided (two-tailed)

$$H_1: \theta \neq \theta_0$$
 (two-sided)
 $H_0: \theta = \theta_0$ $H_1: \theta > \theta_0$ (one-sided)
 $H_1: \theta < \theta_0$ (one-sided)

Test hypothesis

- ▶ Choose a null hypothesis H_0 and an alternative hypothesis H_1
- Collect and visualize the data
- ► Choose and calculate the test statistic, which is a numerical summary of the data
- ▶ Determine the sampling distribution under the condition that the null-hypothesis holds
- ▶ Choose the type I error (significant level) α , usually α =0.05
- Determine the corresponding critical value(s)
- ► Compare the test statistic with critical value(s) and reject or not