

Software Lab Computational Engineering Science

Group 12, Pusher Mechanism

Aaron Floerke, Arseniy Kholod, Xinyang Song and Yanliang Zhu

Informatik 12: Software and Tools for Computational Engineering (STCE) RWTH Aachen University

Contents

Preface

Introduction

Analysis

User Requirements

System Requirements

Design

Class Model(s)

Implementation

Development Infrastructure

Four-Bar Linkage Model

Software Tests

GUI

Results

27 movement types

Optimization problem

Documentation

Project Management

Live Software Demo

Preface

Four-bar linkage model

Grashof's Theorem

- s = length of shortest bar
- *l* = length of longest bar
- p, q =lengths of intermediate bar

Grashof's theorem states that a four-bar mechanism has at least one revolving link if

$$s + 1 \le p + q$$

(5-1)

and all three mobile links will rock if

$$s + 1 > p + q$$

(5-2)

The inequality 5-1 is Grashof's criterion.

https://www.cs.cmu.edu/~rapidproto/mechanisms/chpt5.html

Analysis

User Requirements

- Implement 27 motion types of the four-bar linkage with one bar fixed:
 - Classification values:

►
$$T_1 = g + h - b - a$$

►
$$T_2 = b + g - h - a$$

►
$$T_3 = h + b - g - a$$

- Implement GUI with motion animation and the ability to choose geometrical parameters:
 - Length of the bars
 - Position of the coupler
 - Input angle
 - Angle relative to the horizon
 - Classification values as alternative input

No.	$T_{_{I}}$	$T_{_2}$	$T_{_3}$	$T_{_1}T_{_2}$	$T_{_I}T_{_3}$	а	ь
1	+	+	+	+	+	crank	rocker
2	0	+	+	0	0	crank	π-rocker
3	-	+	+	-	-	π-rocker	π-rocker
4	+	0	+	0	+	crank	0-rocker
5	0	0	+	0	0	crank	crank
6	-	0	+	0	-	crank	crank
7	+	-	+	-	+	π-rocker	0-rocker
8	0	-	+	0	0	crank	crank
9	-	-	+	+	-	crank	crank
10	+	+	0	+	0	crank	π-rocker
11	0	+	0	0	0	crank	π-rocker
12	-	+	0	-	0	π-rocker	π-rocker
13	+	0	0	0	0	crank	crank
14	0	0	0	0	0	crank	crank
15	-	0	0	0	0	crank	crank
16	+	-	0	-	0	π-rocker	crank
17	0	-	0	0	0	crank	crank
18	-	-	0	+	0	crank	crank
19	+	+	-	+	-	0-rocker	π-rocker
20	0	+	-	0	0	0-rocker	π-rocker
21	-	+	-	-	+	rocker	rocker
22	+	0	-	0	-	0-rocker	crank
23	0	0	-	0	0	0-rocker	crank
24	-	0	-	0	+	0-rocker	0-rocker
25	+	-	-	-	-	rocker	crank
26	0	-	-	0	0	0-rocker	crank
27	-	-	-	+	+	0-rocker	0-rocker
a-201	8-26	1-26	6 by	Ivana	Cvet	kovic et	al.

Figure from "Classification, geometrical and kinematic analysis of four-bar linkages" 10.15308/Sinteza-2018-261-266

User Requirements

- Solve an optimization problem:
 - Push box with size 80×60 from x = 220 to x = 0
 - ▶ Do not cross the area of the labelling machine (Area with x < 80 and y > 70).
 - ▶ Pass above points (120, 80) and (220, 80)

System Requirements

Functional

Four-bar linkage model:

- System simulates all the motion types of the four-bar linkage.
- System does not crash with any input of geometrical configuration.

► Tests:

- Implement test cases for geometry.
- Implement test cases with bad input to test system stability.

Graphical User Interface:

- ► GUI provides the four-bar linkage visualization and motion animation.
- User can input geometrical data by moving a point on a slide bar.
- GUI is coupled with the four-bar linkage model to use implemented motion cases for animation.
- GUI provides tracing for trajectories of the points.
- GUI classifies of the linkage.

▶ Optimization problem:

- It should be possible to find a solution (manually) for the optimization problem using the four-bar linkage model.
- GUI visualizes the solution.

System Requirements

Non-Functional

Performance:

- The four-bar linkage model is fast enough to provide smooth GUI animations.
- ► GUI animations are not slower than 30 frames per second.

Usability:

- Every essential part of the four-bar linkage model is well documented.
- ▶ GUI is easy to operate and all functionalities are self-explanatory.
- GUI source code is well documented.

Development Infrastructure

► 1. Operating System:

Xubuntu/Windows

2. Developing Environment:

- Programming Language: Python.
- ▶ IDE: Spyder/Pycharm.
- Package Manager: Anaconda.

3. Libraries:

- Frontend: tkinter, math, numpy
- ► Backend: math, numpy

4. Version Control System:

GitHub: Remote code repositories for team collaboration, code reviews, and version control.

https://github.com/einsflash/Project_Pusher_Mechanism

► 5. Frameworks:

- Pdoc: Used for generating project documentation, helping the team understand and maintain the code better.
- Makefile: For build management.

Design

Class Model(s)

Four-Bar Linkage Model

- ▶ Tests classify motion of four-bar linkage based on values T_1 , T_2 , and T_3
- Verifies correct behavior for Crank, Rocker, and intermediate states
- Covers all possible combinations of positive, negative, and zero values
- Ensures accurate classification of input and output links
- ▶ Test cases include Crank-Rocker, Double Crank, Double Rocker, and Rocker-Crank scenarios
- Each test checks specific link motion configurations
- Automated with unittest framework for reproducibility and consistency

GUI, Tkinter Intro

► Initiate all tkinter objects inside GUI class and generate app window: GUI().tk.mainloop()

GUI, Animation

 Update objects in tk.Canvas every animation step using coords and/or itemconfigure for optimization

```
class GUI:
def __init__(self):
  self.init_toolbar()
def init_toolbar(self):
  self.enable_animation = tk.IntVar()
  self.animation_button = tk.Checkbutton(self.toolbar_frame, text="animation",
                                           variable=self.enable_animation.
                                           onvalue=1, offvalue=0, command=self.animation)
  self.animation_button.grid(sticky="W", row=10, column=2)
def refresh(self):
  self.linkage.run()
  self.update_linkage_display()
def animation(self):
  self.run_animation()
def run_animation(self):
  if self.enable_animation.get():
    self.linkage.animation_alpha() # alpha = alpha + d_alpha
    self.refresh()
    self.tk.after(25, self.run_animation)
def update_linkage_display(self):
  self.model_animation.coords(self.model_animation.AB_line, [A_x, A_y, B_x, B_y])
```

GUI, Show and hide objects

- ▶ To display different modes, some objects have to be hidden or shown.
- For objects in tk.Canvas use itemconfigure:
 - ► Hide:
 - self.model_animation.itemconfigure(self.model_animation.AB_line, state='hidden')
 - Show: self.model_animation.itemconfigure(self.model_animation.AB_line, state='normal')
- ► For widgets like tk.Scale or tk.Text:
 - Hide: self.slider_T1.grid_remove()
 - Show: self.slider_T1.grid()

GUI, Invalid Setup Handling

GUI, Invalid Setup Handling

```
class GUI:
def __init__(self):
  self.init_linkage_display()
def init_linkage_display(self):
  self.model_animation.invalid_text = self.model_animation.create_text(round(self.model_animation.width/2),
                                                                      round(self.model_animation.height/2),
                                                                      text="Invalid setup, change geometrical values",
                                                                      fill="black", font=('Helvetica 11 bold'))
  self.model_animation.itemconfigure(self.model_animation.invalid_text, state='hidden')
def update_linkage_display(self):
  if self.linkage.geometric_Validity:
    self.show_linkage()
    if self.enable_optimization_problem.get():
      self.show_optimization_problem()
    self.model_animation.itemconfigure(self.model_animation.invalid_text, state='hidden')
  else:
    self.hide_linkage()
    self.hide_optimization_problem()
    self.model_animation.itemconfigure(self.model_animation.invalid_text, state='normal')
    return
```

Results

27 movement types

 $T_{1,2,3} = 0.0, 1.0, 1.0$ $T_{1,2,3} = -1.0, 1.0, 1.0$

 $T_{1,2,3} = 0.0, 0.0, 1.0$

 $T_{1,2,3} = -1.0, 0.0, 1.0$ $T_{1,2,3} = 1.0, -1.0, 1.0$ $T_{1,2,3} = 0.0, -1.0, 1.0$ $T_{1,2,3} = -1.0, -1.0, 1.0$

 $T_{1,2,3} = 0.0, 1.0, 0.0$ $T_{1,2,3} = -1.0, 1.0, 0.0$ $T_{1,2,3} = 1.0, 0.0, 0.0$

 $T_{1,2,3} = 0.0, 0.0, 0.0$

 $T_{1,2,3} = -1.0, 0.0, 0.0$

Results

27 movement types

 $T_{1,2,3} = -1.0, -1.0, 0.0$

 $T_{1,2,3} = 0.0, 1.0, -1.0$

 $T_{1,2,3} = -1.0, 1.0, -1.0$

 $T_{1,2,3} = 1.0, 0.0, -1.0$

 $T_{1,2,3} = 0.0, 0.0, -1.0$

 $T_{1,2,3} = -1.0, 0.0, -1.0$ $T_{1,2,3} = 1.0, -1.0, -1.0$ $T_{1,2,3} = 0.0, -1.0, -1.0$

 $T_{1,2,3} = -1.0, -1.0, -1.0$

Results

Optimization problem

- ▶ 9 degrees of freedom (all lengths in cm):
 - Length of four bars: a = 124.0, b = 171.2, g = 172.1, h = 122.6.
 - ► Coupler position: $P_{pos} = 20.0\%$, $P_{offset} = 42.0\%$ of h.
 - Position of point A: $A_x = 27.0$, $A_y = 66.0$.
 - ▶ Angle of ground bar relative to horizon: $\theta = -70.0^{\circ}$

Software and for Computati Engineering

Documentation for Frontend(GUI)

Documentation for Backend

Project Management

Task

1.Discuss and Design:

- weekly discussion in discord.
- gathering information / generating ideas for program.

2.Frontend:

- Design of GUI
- ► Implementation
- Debug

► 3.Backend:

- Algorithm for calculating positions and angle extremum
- Interface for animation
- Two types of input
- Display information(Grashof condition, geometric validity)

4.Test the motion case:

5.Presentation:

- Analysis (user requirements)
- Frontend
- Project management
- Backend
- *The following page outlines the responsibilities of each person.

Project Management

Gantt Chart

Project Management

Task Assignment

A = ALL members in group
K = Kholod Arseniy
F = Floerke Aaron Albert
S= Song Xinyang

Z = Zhu Yanliang

Project Management

Person	Task	Duration	Start	End	18 August 2024			25 August 2024					01 September 2024								
					јм т	W	T	F .	s s	М	T۱	N 1	T F	S	s	M i	T W	/ T	F	s s	М
0	Four Bar Linkage Model	62 days	12.08	13.10																	
1	Discuss and Design	Weekly	12.08	15.09																	
Α	weekly discussion in discord	Wednesday	1	1																	
Α	gathering information / generating ideas for program	14 days	1	1																	
2	Frontend	35 days	09.09	06.10																	
K	Design of GUI	1	1	1																	
K	Implementation	1	1	1																	
Α	Debug	1	1	1																	ш
3	Backend	35 days	09.09	06.10																	
Z	Algorithm for calculating positions and angle extremum	1	1	1																	
K	Interface for animation	1	1	1																	
Z	Two types of input	1	1	1																	
S	Display information(Grashof condition, geometric validity)	1	1	1																	
4	Test Case	14 days	23.09	06.10																	
F	Test the motion case																				
5	Presentation	14 days	30.09	13.10																	
Α	Task assignment ()																				
F	Analysis (user requirements)																				
K	Frontend																				
S	Project management																				
Z	Backend																				

Live Software Demo

- 1. Changing the input of slidebar.
- 2. Start the animation.
- 3. Test different motion types.
- 4. Enable points tracing.
- 5. Solve the optimization problem.

Summary and Conclusion

Literature

Cvetkovic, Ivana and Stojicevic, Misa and Popkonstantinović, Branislav and Cvetković, Dragan. (2018). Classification, geometrical and kinematic analysis of four-bar linkages. 261-266. 10.15308/Sinteza-2018-261-266.