Computing fundamental domains of crystallographic groups With connections to topological interlocking

Lukas Schnelle

GAPDays Summer 2024

Crystallographic groups

Let $\varphi: \mathbb{R}^n \to \mathbb{R}^n$ be a surjective map. Then φ is called an *isometry* if:

Crystallographic groups

Let $\varphi: \mathbb{R}^n \to \mathbb{R}^n$ be a surjective map. Then φ is called an *isometry* if:

$$\forall v, w \in \mathbb{R}^n$$
:

Crystallographic groups

Let $\varphi: \mathbb{R}^n \to \mathbb{R}^n$ be a surjective map. Then φ is called an *isometry* if:

$$\forall v, w \in \mathbb{R}^n : d(v^{\varphi}, w^{\varphi}) = d(v, w).$$

with d(-,-) the Euclidean distance.

Crystallographic groups

Let $\varphi: \mathbb{R}^n \to \mathbb{R}^n$ be a surjective map. Then φ is called an *isometry* if:

$$\forall v, w \in \mathbb{R}^n : d(v^{\varphi}, w^{\varphi}) = d(v, w).$$

with d(-,-) the Euclidean distance.

The set of all isometries of dimension n is denoted as E(n) and called the Euclidean group.

Lemma

Let E(n) be the set of all isometries of a dimension $n \in \mathbb{N}$.

Crystallographic groups

Let $\varphi: \mathbb{R}^n \to \mathbb{R}^n$ be a surjective map. Then φ is called an *isometry* if:

$$\forall v, w \in \mathbb{R}^n : d(v^{\varphi}, w^{\varphi}) = d(v, w).$$

with d(-,-) the Euclidean distance.

The set of all isometries of dimension n is denoted as E(n) and called the Euclidean group.

Lemma

Let E(n) be the set of all isometries of a dimension $n \in \mathbb{N}$. Then E(n) is a group with the composition of homomorphisms as the group operation.

There is an isometry

Crystallographic groups

$$E(n) \cong O(n) \ltimes \mathbb{R}^n$$
.

We denote with φ_o the orthogonal part of φ and with φ_t the vector/translation part of φ .

Then the group operation of $\varphi, \psi \in E(n)$ is as follows:

There is an isometry

Crystallographic groups

$$E(n) \cong O(n) \ltimes \mathbb{R}^n$$
.

We denote with φ_0 the orthogonal part of φ and with φ_t the vector/translation part of φ .

Then the group operation of $\varphi, \psi \in E(n)$ is as follows:

$$(\varphi_o, \varphi_t) \circ (\psi_o, \psi_t) \coloneqq (\underbrace{\varphi_o \circ \psi_o}_{\text{op. in } O(n)}, \psi_t^{\varphi_o} + \varphi_t),$$
i.e. comp. of maps

There is an isometry

Crystallographic groups

$$E(n) \cong O(n) \ltimes \mathbb{R}^n$$
.

We denote with φ_o the orthogonal part of φ and with φ_t the vector/translation part of φ .

Then the group operation of $\varphi, \psi \in E(n)$ is as follows:

$$(\varphi_o, \varphi_t) \circ (\psi_o, \psi_t) \coloneqq (\underbrace{\varphi_o \circ \psi_o}_{\text{op. in } O(n)}, \psi_t^{\varphi_o} + \varphi_t),$$
i.e. comp. of maps

and the action of E(n) on \mathbb{R}^n extends to the action of $O(n) \ltimes \mathbb{R}^n$ on \mathbb{R}^n :

There is an isometry

$$E(n) \cong O(n) \ltimes \mathbb{R}^n$$
.

We denote with φ_o the orthogonal part of φ and with φ_t the vector/translation part of φ .

Then the group operation of $\varphi, \psi \in E(n)$ is as follows:

$$(\varphi_o, \varphi_t) \circ (\psi_o, \psi_t) \coloneqq (\underbrace{\varphi_o \circ \psi_o}_{\text{op. in } O(n)}, \psi_t^{\varphi_o} + \varphi_t),$$
i.e. comp. of maps

and the action of E(n) on \mathbb{R}^n extends to the action of $O(n) \ltimes \mathbb{R}^n$ on \mathbb{R}^n :

$$\mathbb{R}^n \times (O(n) \ltimes \mathbb{R}^n) \to \mathbb{R}^n : (v, (\varphi_o, \varphi_t)) \mapsto v^{(\varphi_o, \varphi_t)} = v^{\varphi_o} + \varphi_t.$$

Crystallographic groups

Let λ be a partition of \mathbb{R}^n and let $\emptyset \neq V \subseteq \mathbb{R}^n$ be a set.

Crystallographic groups

Let λ be a partition of \mathbb{R}^n and let $\emptyset \neq V \subseteq \mathbb{R}^n$ be a set.

Then we call V a system of representatives of the partition λ if Vcontains exactly one element of each class of λ .

Crystallographic groups

Let λ be a partition of \mathbb{R}^n and let $\emptyset \neq V \subseteq \mathbb{R}^n$ be a set.

Then we call V a system of representatives of the partition λ if V contains exactly one element of each class of λ .

Definition

Let $\Gamma \leq E(n)$ be a subgroup and $F \subseteq \mathbb{R}^n$ a closed set. Then F is called a fundamental domain for Γ if:

Crystallographic groups

Let λ be a partition of \mathbb{R}^n and let $\emptyset \neq V \subseteq \mathbb{R}^n$ be a set.

Then we call V a system of representatives of the partition λ if V contains exactly one element of each class of λ .

Definition

Let $\Gamma \leq E(n)$ be a subgroup and $F \subseteq \mathbb{R}^n$ a closed set. Then F is called a fundamental domain for Γ if:

(i)
$$\bigcup_{\gamma \in \Gamma} F^{\langle \gamma \rangle} = \mathbb{R}^n$$
,

Crystallographic groups

Let λ be a partition of \mathbb{R}^n and let $\emptyset \neq V \subseteq \mathbb{R}^n$ be a set.

Then we call V a system of representatives of the partition λ if V contains exactly one element of each class of λ .

Definition

Let $\Gamma < E(n)$ be a subgroup and $F \subseteq \mathbb{R}^n$ a closed set. Then F is called a fundamental domain for Γ if:

- (i) $\bigcup_{\gamma \in \Gamma} F^{\langle \gamma \rangle} = \mathbb{R}^n$,
- (ii) there is a system of representatives $V \subseteq \mathbb{R}^n$ w.r.t. the partition given by the orbits of Γ acting on \mathbb{R}^n such that

$$F^{\circ} \subseteq V \subseteq F$$
.

Example

Crystallographic groups

00000

$$p4 := \left\langle \rho := \left(\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \end{pmatrix}^T \right),$$

$$\tau_1 := \left(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \end{pmatrix}^T \right),$$

$$\tau_2 := \left(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}^T \right) \right\rangle$$

Let $u, v \in \mathbb{R}^n$ be two points. We call

Let $u, v \in \mathbb{R}^n$ be two points. We call

$$H^+(u,v) := \{ w \in \mathbb{R}^n \mid d(u,w) \le d(v,w) \}$$

the *halfspace* which includes all points that are closer to u than to v (or have the same distance).

Let $u, v \in \mathbb{R}^n$ be two points. We call

$$H^+(u,v) := \{ w \in \mathbb{R}^n \mid d(u,w) \le d(v,w) \}$$

the halfspace which includes all points that are closer to u than to v (or have the same distance).

Definition ([3, Def. III.1])

Let $O \subseteq \mathbb{R}^n$ be a discrete set and $u \in O$ be a point. We call

$$D(u, O) = \bigcap_{w \in O, w \neq u} H^+(u, w).$$

the Dirichlet cell of u.

Crystallograp	hic groups	Dirichlet cells ○●○	Computational aspects	Outlook 00	Reference
	•		•	•	
	•		•	•	
	•		•	•	
	•		•	•	

Let $\Gamma \leq E(n)$ be a crystallographic group and $v \in \mathbb{R}^n$ be a point. We say v is in *special position for* Γ if

Let $\Gamma \leq E(n)$ be a crystallographic group and $v \in \mathbb{R}^n$ be a point. We say v is in *special position for* Γ if $\operatorname{Stab}_{\Gamma}(v) \neq \{Id\}$,

Let $\Gamma \leq E(n)$ be a crystallographic group and $\nu \in \mathbb{R}^n$ be a point. We say v is in special position for Γ if $\operatorname{Stab}_{\Gamma}(v) \neq \{Id\}$, otherwise we say v is in general position for Γ .

Theorem ([2, Thm. III.11 (ii)])

Let $\Gamma \leq E(n)$ be a crystallographic group and $u \in \mathbb{R}^n$ a point in general position.

Let $\Gamma \leq E(n)$ be a crystallographic group and $v \in \mathbb{R}^n$ be a point. We say v is in special position for Γ if $\operatorname{Stab}_{\Gamma}(v) \neq \{Id\}$, otherwise we say v is in general position for Γ .

Theorem ([2, Thm. III.11 (ii)])

Let $\Gamma \leq E(n)$ be a crystallographic group and $u \in \mathbb{R}^n$ a point in general position. Then the Dirichlet cell $D(u, u^{\Gamma})$ is a fundamental domain for Γ .

Definition ([1, §3, Thm. 7, with remark after])

Let $B \subset \mathbb{R}^n$ be a closed subset. We define the *volume* of B as the Lebesgue measure of B, so $vol(B) := \lambda(B)$ in the notation of [1].

Definition ([1, §3, Thm. 7, with remark after])

Let $B \subset \mathbb{R}^n$ be a closed subset. We define the *volume* of B as the Lebesgue measure of B, so $vol(B) := \lambda(B)$ in the notation of [1].

Theorem ([1, §3, Thm. 2])

Let $B \subset \mathbb{R}^3$ a closed subset, $\varphi \in E(3)$.

Definition ([1, §3, Thm. 7, with remark after])

Let $B \subset \mathbb{R}^n$ be a closed subset. We define the *volume* of B as the Lebesgue measure of B, so $vol(B) := \lambda(B)$ in the notation of [1].

Theorem ([1, §3, Thm. 2])

Let $B \subset \mathbb{R}^3$ a closed subset, $\varphi \in E(3)$. Then $vol(B^{\varphi}) = vol(B)$.

Definition ([1, \S 3, Thm. 7, with remark after])

Let $B \subset \mathbb{R}^n$ be a closed subset. We define the volume of B as the Lebesgue measure of B, so $vol(B) := \lambda(B)$ in the notation of [1].

Theorem ([1, §3, Thm. 2])

Let $B \subset \mathbb{R}^3$ a closed subset, $\varphi \in E(3)$. Then $vol(B^{\varphi}) = vol(B)$.

It can be shown that all fundamental domains of crystallographic groups have the same volume.

Remark

For every crystallographic group Γ there is a certain subgroup called the translation subgroup that is denoted by

$$\mathcal{T}(\Gamma) \leq \Gamma$$
.

Theorem

Let $\Gamma \leq E(n)$ be a crystallographic group with fundamental domain F and $u \in \mathbb{R}^n$ a point in general position. Then we choose a generating set for Γ and I, K finite index sets, such that

$$\Gamma = \langle \rho_i, \tau_k \mid i \in I, k \in K \rangle,$$

$\mathsf{Theorem}$

Let $\Gamma \leq E(n)$ be a crystallographic group with fundamental domain F and $u \in \mathbb{R}^n$ a point in general position. Then we choose a generating set for Γ and I, K finite index sets, such that

$$\Gamma = \langle \rho_i, \tau_k \mid i \in I, k \in K \rangle,$$

with $\tau_k \in \mathcal{T}(\Gamma)$ for all $k \in K$ and $\{(\tau_k)_t \mid k \in K\}$ are a basis for the lattice induced by $\mathcal{T}(\Gamma)$. Furthermore, let $\rho_i \in \Gamma$ for $i \in I$ be chosen such that

$$\Gamma = \bigcup_{i \in I} \rho_i \mathcal{T}(\Gamma).$$

$\mathsf{Theorem}$

Let $\Gamma \leq E(n)$ be a crystallographic group with fundamental domain F and $u \in \mathbb{R}^n$ a point in general position. Then we choose a generating set for Γ and I, K finite index sets, such that

$$\Gamma = \langle \rho_i, \tau_k \mid i \in I, k \in K \rangle,$$

with $\tau_k \in \mathcal{T}(\Gamma)$ for all $k \in K$ and $\{(\tau_k)_t \mid k \in K\}$ are a basis for the lattice induced by $\mathcal{T}(\Gamma)$. Furthermore, let $\rho_i \in \Gamma$ for $i \in I$ be chosen such that

$$\Gamma = \bigcup_{i \in I} \rho_i \mathcal{T}(\Gamma).$$

Then there is an $A \in \mathbb{N}$ such that the Dirichlet cell $D(u, u^{\Gamma})$ is the intersection of halfspaces $H^+(u, w)$ for words w of length at most A + 1.

Data: a crystallographic group

 $\Gamma = \langle \rho_i, \tau_k \mid i \in I, k \in K \rangle \leq E(n)$ such that

 $\Gamma = \bigcup_{i \in I} \rho_i \mathcal{T}(\Gamma)$, a point u in general position w.r.t. Γ

and the maximal *length* of words in *gens* to check

Result: *triangularComplex*, a triangular complex that is a fundamental domain.

 $\textit{wordsOfLenghtL} \leftarrow \textit{all words in the generators } \textit{gens} \textit{ of length at most } \textit{length}$

for γ in wordsOfLenghtL **do**

Add(elementsInOrbit, u^{γ});

end

halfspaces \leftarrow halfspaces $H_{u,v}$ for all $v \in elementsInOrbit$; fundDom \leftarrow triangular complex given by intersection of halfspaces;

return fundDom;

Time for some examples

Example

Current state Previously presented algorithm is already implemented as part of my masters thesis.

Example

Current state Previously presented algorithm is already implemented as part of my masters thesis.

Next steps

Implement above in SimplicialSurfaces Package

Improve algorithm by automatically running until expected volume is reached

Check if h-vector conversion can be done more efficiently

Consider numerical effects

Why work on this?

Goal is to deform fundamental domains in such a way, that they continue to be fundamental domains but also fulfill the *topological interlocking property*.

Why work on this?

Goal is to deform fundamental domains in such a way, that they continue to be fundamental domains but also fulfill the topological interlocking property.

Definition

A block $B \subseteq \mathbb{R}^3$ is called topologically interlocking, if there is an assembly of it, such that by fixing a subset of the assembly there is no subset of the remaining blocks that can be moved without intersecting any blocks.

References:

- [1]O. Forster. Analysis 3: Maß- und Integrationstheorie. Integralsätze im IRn und Anwendungen. Aufbaukurs Mathematik. Vieweg+Teubner Verlag, 2012. ISBN: 9783834823748, URL: https://books.google.de/books?id=BNojBAAAQBAJ.
- [2] Wilhelm Plesken. Kristallographische Gruppen, Summer semester, 1994.
- [3] Wilhelm Plesken. Kristallographische Gruppen, Summer semester, 2014.
- [4] A. Szczepanski. Geometry of Crystallographic Groups. Algebra and discrete mathematics. World Scientific, 2012. ISBN: 9789814412261. URL: https://books.google.de/books?id=wX26CgAAQBAJ.