<u>Área personal</u> / Mis cursos / <u>Grado</u> / <u>Ciencias Básicas</u> / <u>Análisis Matemático II</u> / <u>Examen final 17 de diciembre 2020</u>

/ ETAPA 1-REGULARES-17dic2020

Comenzado el	jueves, 17 de diciembre de 2020, 08:15
Estado	Finalizado
Finalizado en	jueves, 17 de diciembre de 2020, 10:35
Tiempo	2 horas 20 minutos
empleado	
Puntos	16,10/22,00
Calificación	73,18 de 100,00

Parcialmente correcta

Puntúa 1,60 sobre 2,00

Sea la curva dada por $\mathbf{r}(t)=(-\sin(2t),\cos(t)),\ -\frac{\pi}{2}\leq t\leq \frac{\pi}{2}.$ Se busca los valores $\mathbf{r}\left(\frac{\pi}{4}\right)$, $\mathbf{r}'\left(\frac{\pi}{4}\right)$ y $\mathbf{r}''\left(\frac{\pi}{4}\right)$, así como la curvatura en el punto correspondiente a $t=\frac{\pi}{4}.$

Para calcular esta última puede usar la fórmula para la curvatura de una curva dada paramétricamente, $\kappa = \frac{|\dot{x}\ddot{y} - \dot{y}\ddot{x}|}{\left(\dot{x}^2 + y^2\right)^{3/2}}$.

Indique, además, cuál de los siguientes es el gráfico que corresponde a esta curva:

 $\mathbf{r}''\left(\frac{\pi}{4}\right)$

El gráfico que corresponde es el número

 $\kappa(\pi/4)$

 $\mathbf{r}'\left(\frac{\pi}{4}\right)$

 $\mathbf{r}\left(\frac{\pi}{4}\right)$

(4, -sqrt(2)/2)	~
3	~
1/4	×

(0, -sqrt(2)/2)
(-1, sqrt(2)/2)

Respuesta parcialmente correcta.

Ha seleccionado correctamente 4.

La curva es la número 3. Basta ver una tabla de valores como por ejemplo

t	$-\sin(2t)$	$\cos(t)$
$-\pi/2$	0	0
$-\pi/4$	1	$\sqrt{(2)/2}$
0	0	1
$\pi/4$	-1	$\sqrt{(2)/2}$
$\pi/2$	0	0

Como $\mathbf{r}(t) = (-\sin(2t), \cos(t))$, se tiene que

$$\mathbf{r}'(t) = (-2\cos(2t), -\sin(t)) \text{ y } \mathbf{r}''(t) = (4\sin(2t), -\cos(t))$$

y
$$r(\pi/4) = (-1, \sqrt{2}/2), \mathbf{r}'(\pi/4) = (0, -\sqrt{2}/2) \mathbf{y} \mathbf{r}''(\pi/4) = (4, -\sqrt{2}/2).$$

La curvatura, según la fórmula presentada es

$$\kappa(t) = \frac{|2\cos(2t)\cos(t) + \sin(t)4\sin(2t)|}{(4\cos^2(2t) + \sin^2(t))^{3/2}}$$
$$\kappa(\pi/4) = 2\sqrt{2}$$

La respuesta correcta es:

$$\mathbf{r}''\left(\frac{\pi}{4}\right)$$

$$\rightarrow$$
 (4, -sqrt(2)/2),

El gráfico que corresponde es el número \rightarrow 3,

$$\kappa(\pi/4)$$

→ 2sqrt(2),

$$\mathbf{r}'$$
 $\left(\frac{\pi}{4}\right)$

$$\rightarrow$$
 (0, -sqrt(2)/2),

$$\mathbf{r}\left(\frac{\pi}{4}\right)$$

$$\rightarrow$$
 (-1, sqrt(2)/2)

Pregunta 2 Correcta

Puntúa 1,00 sobre 1,00

Dada la curva paramétrica $\mathbf{r}(t) = (-\sin(2t),\cos(t))\,,\; -\frac{\pi}{2} \leq t \leq \frac{\pi}{2},\;$ calcule el área de la región encerrada por la curva. Exprese su respuesta con un número redondeado a dos decimales.

Sugerencia: puede usar el Teorema de Green.

Fórmulas trigonométricas que pueden ser de utilidad:

$$\cos lpha \cos eta = \frac{1}{2}(\cos(lpha - eta) + \cos(lpha + eta))$$

$$\cos \alpha \cos \beta = \frac{1}{2}(\cos(\alpha - \beta) + \cos(\alpha + \beta))$$
$$\sin \alpha \sin \beta = \frac{1}{2}(\cos(\alpha - \beta) - \cos(\alpha + \beta))$$

Respuesta: 1.33

> Aplicando el Teorema de Green podemos calcular el área encerrada por la curva (si está positivamente orientada, que lo está) como

$$A = \iint\limits_R dA = \oint\limits_C \mathbf{F} \cdot d\mathbf{r}$$

y, en este caso da lo mismo trabajar con $\mathbf{F} = \left(-\frac{y}{2}, \frac{x}{2}\right)$ o con $\mathbf{F} = (-y, 0)$, pero esta última hace el trabajo más corto. Entonces:

$$A = \int_{-\pi/2}^{\pi/2} (-\cos(t), 0) \cdot (-2\cos(2t), -\sin(t)) dt$$

$$= \int_{-\pi/2}^{\pi/2} 2\cos(t)\cos(2t) dt$$

$$= \int_{-\pi/2}^{\pi/2} 2\frac{\cos(3t) + \cos(t)}{2} dt \quad \text{(ver fórmula en el enunciado)}$$

$$= \left(\frac{\sin(3t)}{t} + \sin(t)\right) \Big|_{-\pi/2}^{\pi/2} = \frac{4}{3}.$$

La respuesta correcta es: 1,3333

Parcialmente correcta

Puntúa 2,00 sobre 3,00

Las superficies $z=2x^2+y^2\;$ y $z=4-y^2\;$ encierran un sólido de volumen V.

El sólido está delimitado por B ✓ (seleccione de la lista que se da a continuación)

- A- Un paraboloide elíptico y un cono.
- B-Un cilindro parabólico y un paraboloide elíptico.
- C-Dos paraboloides elípticos.
- D-Un cilindro y una parábola en el plano yz.
- E-Ninguna de las anteriores.

El volumen del sólido puede calcularse mediante la integral

✗ (seleccione de la lista que se da a continuación)

$$ext{F-} \int_{-2}^2 \int_{-\sqrt{2-x^2}}^{\sqrt{2-x^2}} \int_{2x^2+y^2}^{y^2-4} \, dz \, dy \, dx.$$

$$\operatorname{G-}\!\int_{-\sqrt{2}}^{\sqrt{2}} \int_{-\sqrt{2}}^{\sqrt{2}} \int_{2x^2+y^2}^{y^2-4} \, dz \, dy \, dx.$$

$$ext{H-}\int_0^{2\pi}\int_0^{\sqrt{2}}\int_{2r^2}^{r^2sen^2 heta-4}rdz\,dr\,d heta.$$

$$-\int_0^{2\pi} \int_0^{\sqrt{2}} (4r - 2r^3) \, dr \, d\theta.$$

J-
$$\int_{0}^{2\pi}\int_{0}^{\sqrt{2}}(2r^{2}-4)\,dr\,d heta$$

$$ext{K-} \int_0^{2\pi} \int_0^2 \int_{2r^2}^{r^2 sen^2 heta - 4} r dz \, dr \, d heta.$$

L-Ninguna de las anteriores.

El volumen del sólido encerrado es

0

(seleccione de la lista que se da a continuación)

M-
$$V=\pi$$

N-
$$V=\pi/2$$

O-
$$V=4\pi$$

P-
$$V=2\pi$$

Q- Ninguna de las anteriores

Respuesta parcialmente correcta.

Ha seleccionado correctamente 2.

Las superficies $z=2x^2+y^2$ y $z=4-y^2$ encierran un sólido de volumen V. El sólido está delimitado por B \Rightarrow (seleccione de la lista que se da a continuación) B-Un cilindro parabólico y un paraboloide elíptico.

La superficie $z=2x^2+y^2$ representa un paraboloide elíptico con eje en el eje z; la superficie $z=4-y^2$ representa un cilindro parabólico (por Geometría reconocemos esas ecuaciones). Así que el sólido está delimitado pro un cilindro parabólico y por un paraboloide elíptico, ya que estas superficies de hecho delimitan un sólido (el paraboloide se abre hacia arriba, el cilindro se abre hacia abajo y encierran un sólido).

El volumen del sólido puede calcularse mediante la integral
$$|-\int_0^{2\pi} \int_0^{\sqrt{2}} (4r-2r^3) \, dr \, d\theta.$$

Para calcular el volumen del sólido debemos primero decidir cómo plantearemos la integral. Parece conveniente trabajar con coordenadas rectangulares o cilíndricas, tomando la integral con respecto a z como la integral más interna, haciendo que z vaya "de superficie a superficie". Para esto, debemos conocer cuál es la región en el plano z=0 sobre la cual se proyecta este sólido; la hallamos igualando

$$z = 2x^{2} + y^{2} y z = 4 - y^{2}$$

$$2x^{2} + y^{2} = 4 - y^{2}$$

$$2x^{2} + 2y^{2} = 4$$

$$x^{2} + y^{2} = 2,$$

ecuación de una circunferencia en el plano z=0, con centro en el origen de coordenadas y radio $\sqrt{2}$. El volumen puede hallarse planteando integrales en coordenadas rectangulares, como por ejemplo

$$V = \int_{-\sqrt{2}}^{+\sqrt{2}} \int_{-\sqrt{2-x^2}}^{+\sqrt{2-x^2}} \int_{2x^2+y^2}^{4-y^2} dz \, dy \, dx$$

o en coordenadas cilíndricas, como por ejemplo

$$V = \int_0^{2\pi} \int_0^{+\sqrt{2}} \int_{2r^2 \cos^2 \theta + r^2 \sin^2 \theta}^{4-r^2 \sin^2 \theta} r \, dz \, dr \, d\theta;$$

también se puede plantear la integral sobre la región en el plano z=0 de la diferencia de funciones, usando, por ejemplo, coordenadas polares:

$$V = \int_0^{2\pi} \int_0^{+\sqrt{2}} r(4 - r^2 \sin^2 \theta - 2r^2 \cos^2 \theta - r^2 \sin^2 \theta) dr d\theta$$
$$= \int_0^{2\pi} \int_0^{+\sqrt{2}} (4r - 2r^3) dr d\theta.$$

Completando el cálculo anterior, hallamos el volumen

$$V = 4\pi$$
.

La respuesta correcta es:

Las superficies $z=2x^2+y^2\;$ y $z=4-y^2\;$ encierran un sólido de volumen V.

El sólido está delimitado por [B] (seleccione de la lista que se da a continuación)

A- Un paraboloide elíptico y un cono.

B-Un cilindro parabólico y un paraboloide elíptico.

C-Dos paraboloides elípticos.

D-Un cilindro y una parábola en el plano yz.

E-Ninguna de las anteriores.

El volumen del sólido puede calcularse mediante la integral [I] (seleccione de la lista que se da a continuación)

$$\begin{split} & \operatorname{F-} \int_{-2}^2 \int_{-\sqrt{2}-x^2}^{\sqrt{2}-x^2} \int_{2x^2+y^2}^{y^2-4} \, dz \, dy \, dx \\ & \operatorname{G-} \int_{-\sqrt{2}}^{\sqrt{2}} \int_{-\sqrt{2}}^{\sqrt{2}} \int_{2x^2+y^2}^{y^2-4} \, dz \, dy \, dx. \end{split}$$

$$ext{H-} \int_0^{2\pi} \int_0^{\sqrt{2}} \int_{2r^2}^{r^2 sen^2 heta - 4} r dz \, dr \, d heta.$$

I-
$$\int_0^{2\pi}\int_0^{\sqrt{2}}(4r-2r^3)\,dr\,d heta$$
 .

J-
$$\int_0^{2\pi} \int_0^{\sqrt{2}} (2r^2-4)\,dr\,d heta$$

$$ext{K-} \int_0^{2\pi} \int_0^2 \int_{2r^2}^{r^2 sen^2 heta - 4} r dz \, dr \, d heta.$$

L-Ninguna de las anteriores.

El volumen del sólido encerrado es [O] (seleccione de la lista que se da a continuación)

M-
$$V=\pi$$

N-
$$V=\pi/2$$

O-
$$V=4\pi$$

P-
$$V=2\pi$$

Q- Ninguna de las anteriores

Pregunta **4**

Incorrecta

Puntúa 0,00 sobre 2,00

Aproxime el valor de $f(x,y) = e^x ln(1+y)$ en P(0.9,0.2) utilizando polinomio de Taylor de segundo orden desarrollado en Q(1,0) (a cinco cifras significativas).

- a. Ninguna de las restantes respuestas es correcta
- b. 0.43492
- c. 0.44844
- od. 0.32619
- e. 0.38056

Respuesta incorrecta.

La respuesta correcta es:

0.43492

Pregunta **5**Correcta

Puntúa 2 00 sobre 2 00

Sea el campo vectorial $\mathbf{F}(x,y)=(M,N)$. Sea la región

 $R: 0 \le x \le 1, 0 \le y \le 1$ y sea C la curva frontera de la región R, orientada positivamente.

Utilice el Teorema de Green (en sus formas normal y tangencial) para calcular las integrales de línea indicadas en cada caso. Elija la respuesta correcta.

Si
$$M(x,y)=x+y$$
 y $N(x,y)=x-y$, entonces
$$\oint_C F \cdot T ds = 0$$

Si
$$M(x,y)=y-x$$
 y $N(x,y)=x-y$, entonces

$$\oint_C F \cdot N ds =$$

Si
$$M(x,y)=x+y$$
 y $N(x,y)=x+y$, entonces

$$\oint_C F \cdot T ds + \oint_C F \cdot N ds =$$

Si
$$M(x,y)=y-x$$
 y $N(x,y)=y-2x$, entonces

$$\oint_C F \cdot T ds = \boxed{ \quad \quad }$$

Respuesta correcta

Notemos que en este caso el área de la región R vale 1: área de R=1. Además, todas las combinaciones de campos escalares M y N presentados satisfacen las hipótesis del Teorema de Green. Recordemos que éste afirma en sus formas tangencial y normal respectivamente que

$$\int_C \mathbf{F} \cdot \mathbf{T} \, ds = \iint_R (N_x - M_y) dA; \quad \int_C \mathbf{F} \cdot \mathbf{n} \, ds = \iint_R (M_x + N_y) dA.$$

1)
$$N_x - M_y = 1 - 1 = 0$$
; $\int_C \mathbf{F} \cdot \mathbf{T} \, ds = \iint_B (N_x - M_y) dA = \iint_B 0 \, dA = 0$.

2)
$$M_x + N_y = -1 - 1 = -2$$
; $\int_C \mathbf{F} \cdot \mathbf{n} \, ds = \iint_R (M_x + N_y) dA = \iint_R (-2) \, dA = -2$ área $R = -2$.

3)
$$N_x - M_y = 0$$
; $M_x + N_y = 2$; $\int_C \mathbf{F} \cdot \mathbf{T} \, ds + \int_C \mathbf{F} \cdot \mathbf{n} \, ds = \iint_R (0+2) \, dA = 2$.

4)
$$N_x - M_y = -3$$
; $\int_C \mathbf{F} \cdot \mathbf{T} \, ds = \iint_R (N_x - M_y) dA = \iint_R (-3) \, dA = -3$.

La respuesta correcta es: Si M(x,y)=x+y y N(x,y)=x-y, entonces

$$\oint_C F \cdot T ds = \\ \to \text{O},$$
 Si $M(x,y) = y-x \;\; \text{y} \;\; N(x,y) = x-y, \; \text{entonces}$

$$\oint_C F \cdot N ds =$$

$$\rightarrow$$
 -2, Si $M(x,y)=x+y$ y $N(x,y)=x+y$, entonces

$$\oint_C F \cdot T ds + \oint_C F \cdot N ds =$$

$$\ \rightarrow$$
 2, Si $\ M(x,y)=y-x$ y $\ N(x,y)=y-2x,$ entonces

$$\oint_C F \cdot T ds =$$

→ -3

Pregunta 6

Correcta

Puntúa 2,00 sobre 2,00

Sea la EDO lineal, no homogénea dada por $y^{III}-2y^{II}+y^{I}=x+xe^{x}$, para resolverla por el método de coeficientes indeterminados proponemos una solución particular de la forma:

Seleccione una:

- a. $y_p = Ax^2 + Bx + Cx^3e^x + Dx^2e^x$
- \bigcirc b. $y_p = (Ax+B)x + (Cx+D)xe^x + Ee^{-x}$
- \bigcirc c. $y_p = (Ax+B)x + (Cx+D)e^x + Ee^{-x}$
- od. Ninguna de las otras respuestas propuestas es correcta.
- \circ e. $y_p = Ax + B + (Cx + D)e^x + Ee^{-x}$

Respuesta correcta

Sea la ecuación $y''' - 2y'' + y' = x + xe^x$. Buscamos su solución complementaria, trabajando con la ecuación auxiliar:

$$r^3 - 2r^2 + r = 0 \Leftrightarrow r_1 = 0, r_2 = r_3 = 1,$$

de donde $y_c = c_1 + c_2 e^x + c_3 x e^x$. La función propuesta A PRIORI podría ser $y_p = (Ax + B) + (Cx + D)e^x$, pero debemos evitar conicidir con soluciones de la ecuación homogénea. Podemos ver que la expresión constante B es una solución de la ecuación homogénea, como también lo son De^x y Cxe^x . Debemos multiplicar por factores x para evitar esos problemas.

Entonces la función propuesta debe ser $y_p = (Ax + B)x + (Cx + D)x^2e^x$.

La respuesta correcta es: $y_p = Ax^2 + Bx + Cx^3e^x + Dx^2e^x$

Pregunta **7**Correcta
Puntúa 2,00 sobre 2,00

La ecuación ydy=xdx cumple:

Seleccione una o más de una:

- a. ninguna de las restantes respuestas es correcta.
- b. no es lineal
- c. no es a variables separables
- d. es lineal, exacta y a variables separables
- e. es exacta y a variables separables.

Respuesta correcta

La ecuación diferencial ydy = xdx

- es a variables separables ya que tiene la forma h(y)dy = g(x)dx o $h(y)\frac{dy}{dx} = g(x)$.
- no es lineal ya que no se puede poner en la forma

$$P(x)y'(x) + Q(x)y(x) = R(x),$$

debido a que aparecen y y dy multiplicándose.

• es exacta ya que de la expresión -xdx + ydy = 0, si llamamos M = -x y N = y, podemos ver que $N_x - M_y = 0$, que es la condición para que sea exacta una ecuación diferencial de primer orden.

Luego, son correctas las afirmaciones:

- * es exacta y a variables separables;
- * no es lineal.

Las respuestas correctas son: es exacta y a variables separables., no es lineal

Pregunta 8 Correcta

Puntúa 2,00 sobre 2,00

Dada la función

$$f(x) = \left\{egin{array}{ll} 5x, & ext{ si } 0 \leq x < 3, \ 0, & ext{ si } 3 \leq x < 6. \end{array}
ight.$$

y sabiendo que los coeficientes de Fourier de f son

$$a_0 = \frac{15}{2}$$

$$egin{aligned} a_n &= rac{15}{n^2\pi^2}((-1)^n-1)\,,\,\, n=1,2,\dots \ b_n &= rac{15}{n\pi}(-1)^{n+1},\,\, n=1,2,\dots, \end{aligned}$$

$$b_n = \frac{15}{n\pi}(-1)^{n+1}, \ n = 1, 2, \dots$$

indique cuál de las siguientes representa la Serie de Fourier generada por f: d

$$a) \; F(x) = rac{15}{2} + \sum_{n=1}^{\infty} \left(rac{15}{n^2 \pi^2} ((-1)^n - 1) + rac{15}{n \pi} (-1)^{n+1}
ight)$$

$$f(x) = rac{15}{4} + \sum_{n=1}^{\infty} \left(rac{15}{n^2 \pi^2} ((-1)^n - 1) + rac{15}{n \pi} (-1)^{n+1} \right)$$

c)
$$F(x) = \frac{15}{2} + \sum_{n=1}^{\infty} \left(\frac{15}{n^2 \pi^2} ((-1)^n - 1) \cos(\frac{n\pi x}{3}) + \frac{15}{n\pi} (-1)^{n+1} \sin(\frac{n\pi x}{3}) \right)$$

d)
$$F(x) = \frac{15}{4} + \sum_{n=1}^{\infty} \left(\frac{15}{n^2 \pi^2} ((-1)^n - 1) \cos(\frac{n\pi x}{3}) + \frac{15}{n\pi} (-1)^{n+1} \sin(\frac{n\pi x}{3}) \right)$$

e)
$$F(x) = \frac{15}{2} + \sum_{n=1}^{\infty} \left(\frac{15}{n^2 \pi^2} ((-1)^n - 1) \cos(\frac{n\pi x}{6}) + \frac{15}{n\pi} (-1)^{n+1} \sin(\frac{n\pi x}{6}) \right)$$

f)
$$F(x) = \frac{15}{4} + \sum_{n=1}^{\infty} \left(\frac{15}{n^2 \pi^2} ((-1)^n - 1) \cos(\frac{n\pi x}{6}) + \frac{15}{n\pi} (-1)^{n+1} \sin(\frac{n\pi x}{6}) \right)$$

g) Ninguna de las restantes opciones es correcta.

✓ ; y la serie de senos generada por f, evaluada en -3/2, vale La serie de cosenos generada por f, evaluada en -3/2, vale 15/2

-15/2

La serie ninguna de las restantes ✓ generada por f es continua en el intervalo (6,12).

Respuesta correcta

La serie de Fourier generada por una función tiene la forma

$$F(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos \frac{n\pi x}{p} + b_n \sin \frac{n\pi x}{p} \right),$$

donde p es la semilongitud del intervalo; en este caso p=3. Luego la opción correcta es la d. Para conocer los valores de las series de cosenos y de senos de Fourier en el punto $x=-\frac{3}{2}$, conviene recurrir a los gráficos, que conocemos gracias al Teorema de convergencia para series de Fourier.

En este gráfico a = 3 y m = 5.

Podemos ver que la serie de cosenos en -3/2 vale 15/2; y la serie de senos en -3/2 vale -15/2. Ninguna de las tres funciones será continua en el intervalo (6,12) ya que son periódicas y ninguna lo es en el intervalo (0,6).

La respuesta correcta es:

Dada la función

$$f(x) = \begin{cases} 5x, & \text{si } 0 \le x < 3, \\ 0, & \text{si } 3 \le x < 6. \end{cases}$$

y sabiendo que los coeficientes de Fourier de f son

$$a_0 = \frac{15}{2}$$

$$a_n = rac{15}{n^2\pi^2}((-1)^n - 1)\,,\,\, n = 1, 2, \dots$$

$$b_n = \frac{15}{n\pi}(-1)^{n+1}, \ n = 1, 2, \dots,$$

indique cuál de las siguientes representa la Serie de Fourier generada por f: [d]

a)
$$F(x) = \frac{15}{2} + \sum_{n=1}^{\infty} \left(\frac{15}{n^2 \pi^2} ((-1)^n - 1) + \frac{15}{n\pi} (-1)^{n+1} \right)$$

b)
$$F(x) = \frac{15}{4} + \sum_{n=1}^{\infty} \left(\frac{15}{n^2 \pi^2} ((-1)^n - 1) + \frac{15}{n\pi} (-1)^{n+1} \right)$$

c)
$$F(x) = \frac{15}{2} + \sum_{n=1}^{\infty} \left(\frac{15}{n^2 \pi^2} ((-1)^n - 1) \cos(\frac{n\pi x}{3}) + \frac{15}{n\pi} (-1)^{n+1} \sin(\frac{n\pi x}{3}) \right)$$

d)
$$F(x) = \frac{15}{4} + \sum_{n=1}^{\infty} \left(\frac{15}{n^2 \pi^2} ((-1)^n - 1) \cos(\frac{n\pi x}{3}) + \frac{15}{n\pi} (-1)^{n+1} \sin(\frac{n\pi x}{3}) \right)$$

e)
$$F(x) = \frac{15}{2} + \sum_{n=1}^{\infty} \left(\frac{15}{n^2 \pi^2} ((-1)^n - 1) \cos(\frac{n\pi x}{6}) + \frac{15}{n\pi} (-1)^{n+1} \sin(\frac{n\pi x}{6}) \right)$$

f)
$$F(x) = \frac{15}{4} + \sum_{n=1}^{\infty} \left(\frac{15}{n^2 \pi^2} ((-1)^n - 1) \cos(\frac{n\pi x}{6}) + \frac{15}{n\pi} (-1)^{n+1} \sin(\frac{n\pi x}{6}) \right)$$

g) Ninguna de las restantes opciones es correcta.

La serie de cosenos generada por f, evaluada en -3/2, vale [15/2]; y la serie de senos generada por f, evaluada en -3/2, vale [-15/2]. La serie [ninguna de las restantes] generada por f es continua en el intervalo (6,12).

Parcialmente correcta

Puntúa 1,50 sobre 2,00

Sea f una función de tres variables independientes, sea S una superficie de nivel de f y sea $P_0(x_0,y_0,z_0) \in S$. El gráfico muestra la superficie de nivel de f, S.

- a) De los vectores presentados en el gráfico, el $abla f(P_0)$ podría ser el $oldsymbol{arphi}$
- b) La derivada direccional de f en P_0 en la dirección del vector $\mathbf{u}=(1,1,1)$ se puede hallar haciendo: (elija de la siguiente lista)
 - 1. $abla f(P_0) \cdot \mathbf{u}$
 - 2. $\lim_{h \to 0} \frac{f(P_0 + h\mathbf{u}) f(P_0)}{h}$
 - 3. otra cosa
- c) La ecuación del plano tangente a S por P₀ es: 4
 - 4. $f_x(P_0)(x-x_0)+f_y(P_0)(y-y_0)+f_z(P_0)(z-z_0)=0$
 - 5. $f_x(P_0)(x-x_0) + f_y(P_0)(y-y_0) (z-z_0) = 0$
 - 6. otra cosa
- d) La linealización de f en P₀ es: 7

7.
$$L(x,y,z) = f(P_0) + f_x(P_0)(x-x_0) + f_y(P_0)(y-y_0) + f_z(P_0)(z-z_0)$$

8.
$$L(x,y) = f(P_0) + f_x(P_0)(x-x_0) + f_y(P_0)(y-y_0)$$

9. otra cosa

Respuesta parcialmente correcta.

Ha seleccionado correctamente 3.

Este ejercicio se sigue inmediatamente de las definiciones pedidas en cada caso, recordando que se trata de una función de tres variables y que la superficie mostrada NO ES EL GRÁFICO de la función sino que es una superficie de nivel de la misma.

El gradiente es un vector que es normal a la superficie de nivel en cada punto.

La derivada direccional se busca usando la definición, en la dirección de un vector unitario u.

La respuesta correcta es:

Sea f una función de tres variables independientes, sea S una superficie de nivel de f y sea $P_0(x_0,y_0,z_0) \in S$. El gráfico muestra la superficie de nivel de f, S.

- a) De los vectores presentados en el gráfico, el $abla f(P_0)$ podría ser el [C].
- b) La derivada direccional de f en P_0 en la dirección del vector $\mathbf{u} = (1, 1, 1)$ se puede hallar haciendo: (elija de la siguiente lista) [3]
 - 1. $\nabla f(P_0) \cdot \mathbf{u}$
 - $2. \lim_{h \to 0} \frac{f(P_0 + h\mathbf{u}) f(P_0)}{h}$
 - 3. otra cosa
- c) La ecuación del plano tangente a S por P₀ es: [4]

4.
$$f_x(P_0)(x-x_0) + f_y(P_0)(y-y_0) + f_z(P_0)(z-z_0) = 0$$

5.
$$f_x(P_0)(x-x_0)+f_y(P_0)(y-y_0)-(z-z_0)=0$$

- 6. otra cosa
- d) La linealización de f en P₀ es: [7]

7.
$$L(x,y,z) = f(P_0) + f_x(P_0)(x-x_0) + f_y(P_0)(y-y_0) + f_z(P_0)(z-z_0)$$

8.
$$L(x,y) = f(P_0) + f_x(P_0)(x-x_0) + f_y(P_0)(y-y_0)$$

9. otra cosa

Parcialmente correcta

Puntúa 1,00 sobre 2,00

Dada una función $f:D\subset\mathbb{R}^2 o\mathbb{R}$, si f es continua en D, entonces

- 1) el valor medio (VM) de f sobre D d (elija de la lista a continuación).
 - a) se define como VM= (área de $\mathrm{D})\cdot\iint\limits_{\mathrm{D}}f(x,y)\,dA.$
 - b) cumple VM \geq f(x,y) para todo (x,y) perteneciente a D.
 - c) es un valor siempre mayor o igual que 0.
 - d) otra cosa.
- 2) si en la región $D=\left[-\frac{1}{2},\frac{1}{2}\right] imes [-1,1]$ se define $f(x,y)=x^4-x^2+y^2$, el valor medio de f sobre D es otro valor

Respuesta parcialmente correcta.

Ha seleccionado correctamente 1.

Revisar la definición de valor medio de una función de dos variables: $VM = \frac{1}{\text{área de D}} \iint_D f \, dA$.

$$\text{área de D} = 1 \times 2 = 2; \qquad VM = \frac{1}{2} \int_{-1/2}^{1/2} \int_{-1}^{1} (x^4 - x^2 + y^2) \, dy \, dx = \frac{1}{2} \left(-\frac{1}{10} \right) = -\frac{1}{20}.$$

La respuesta correcta es:

Dada una función $f:D\subset\mathbb{R}^2 o\mathbb{R}$, si f es continua en D, entonces

- 1) el valor medio (VM) de f sobre D [d] (elija de la lista a continuación).
 - a) se define como VM= (área de D) $\cdot \iint\limits_{D} f(x,y) \, dA$.
 - b) cumple $VM \ge f(x,y)$ para todo (x,y) perteneciente a D.
 - c) es un valor siempre mayor o igual que 0.
 - d) otra cosa.
- 2) si en la región $D=\left[-\frac{1}{2},\frac{1}{2}\right]\times\left[-1,1\right]$ se define $f(x,y)=x^4-x^2+y^2$, el valor medio de f sobre D es [-1/20].

Parcialmente correcta

Puntúa 1,00 sobre 2,00

El Teorema de existencia y unicidad de solución para PVI de primer orden dice: (complete observando las opciones listadas abajo)

Sea R una región rectangular en el plano xy, definida por a $\le x \le b$, $c \le y \le d$, y sea (x_0,y_0) un punto 3 \checkmark . Si 6 \checkmark son continuas en R, entonces existe un intervalo $I=(x_0-h,x_0+h)$, h>0, contenido en [a,b], y existe una única función y definida en I que es solución del problema con valores iniciales

$$\begin{cases} A, & \text{donde A=} 11 \end{cases}$$
 x y B= 13

- 1) del plano \mathbb{R}^2
- 2) en una región abierta que contiene a R
- 3) interior a R
- 4) $\frac{\partial f}{\partial y}$ y $\frac{\partial y}{\partial x}$
- 5) f y $\frac{\partial f}{\partial x}$
- 6) f y $\frac{\partial \hat{f}}{\partial y}$
- 7) $\frac{\partial f}{\partial x}$ y $\frac{\partial f}{\partial y}$
- 8) otra cosa

- 9) y'(x) = y(x)
- 10) y(x) = f(x, y)
- 11) y'(x) = f(x, y)
- 12) f(x, y) = 0
- 13) $y(x_0) = y_0$
- 14) $f(x_0)=y_0$
- 15) $y'(x_0) = f(x_0)$
- 16) $y'(x_0) = y_0$

Respuesta parcialmente correcta.

Ha seleccionado correctamente 2.

Revisar el enunciado del Teorema en la teoría o en el texto de la materia.

La respuesta correcta es:

El Teorema de existencia y unicidad de solución para PVI de primer orden dice: (complete observando las opciones listadas abajo) Sea R una región rectangular en el plano xy, definida por a $\le x \le b$, c $\le y \le d$, y sea (x_0,y_0) un punto [3]. Si [6] son continuas en R, entonces existe un intervalo $I=(x_0-h,x_0+h)$, h>0, contenido en [a,b], y existe una única función y definida en I que es solución del problema con valores iniciales

$$\begin{cases} A, \\ B, \end{cases}$$
, donde A=[10] y B=[16].

- 1) del plano \mathbb{R}^2
- 2) en una región abierta que contiene a R
- 3) interior a R
- 4) $\frac{\partial f}{\partial y}$ y $\frac{\partial y}{\partial x}$
- 5) f y $\frac{\partial f}{\partial x}$
- 6) f y $\frac{\partial f}{\partial y}$
- 7) $\frac{\partial f}{\partial x}$ y $\frac{\partial f}{\partial y}$
- 8) otra cosa

- 9) y'(x) = y(x)
- 10) y(x) = f(x, y)
- 11) y'(x) = f(x, y)
- 12) f(x, y) = 0
- 13) $y(x_0) = y_0$
- 14) $f(x_0) = y_0$
- 15) $y'(x_0) = f(x_0)$
- 16) $y'(x_0) = y_0$

Ir a...