CAR T Cell Therapy in B-cell Acute Lymphoblastic Leukemia

Jasmin Jean-Louis and Kristen Mosley Dr.Kara Math Modeling

Background and Motivation

CAR T cell therapy is a growing form of treatment for cancer patients that uses gene-transfer technology to instruct T lymphocytes to recognize and kill cancer cells. Because it is still evolving, and clinical trials are showing positive results, there are a lot of unanswered questions.

Mathematical models can provide a mechanistic understanding of oncological treatments, and can help to find the best strategies to improve treatment outcomes.

T Cell

A key fighter in the immune system

CAR

A specific receptor is added to the T cell

CAR T Cell

The T cell with the CAR added helps find and fight specific targeted cells

Summary

- For clinical application of CARs, the patient's T cells are obtained, genetically engineered ex vivo to express the synthetic receptor, expanded and infused back into the patient.
- Success in trials have led to the approval of CAR T therapies for use against CD19 for treatment of B-ALL and diffuse large B-cell lymphomas.
- Patients relapse despite the success of CAR T cell therapy.

CD19

Cell surface protein that is restricted to B cell lymphocytes (neoplastic or normal)

B-AII

B-Cell Acute Lymphoblastic Leukaemia

Cancer that affects B lymphocytes in a bone marrow cell

Scientific Question

How does the number of CAR T cells in a leukemia patient affect the outcome of the treatment?

How can we control CD19⁺ relapses by re-challenging the cancer early with CAR T cells?

The Approach

The Approach

They use Lotka-Volterra predator-prey dynamics to predict that CD19 cancer relapses could be the result of competition between leukemia and CAR T cells.

Within the model, they account for the contribution of generations of new B-cells while simplifying the system.

After CAR T injection, they add the expansion of the cells and their effect on the leukemia and healthy B cells.

ODE Terms

The model accounts for the evolution over time of several interacting cellular populations distributed into five compartments.

C(t)	Number of CAR T cells	$oxed{rac{dC}{dt}} = ho_C(L+B)C + ho_eta IC - rac{1}{ au_C}C$
L(t)	Number of leukemic cells	$\sqrt{rac{dL}{dt}} = ho_L L - lpha L C$
B(t)	Number of mature healthy B cells	$\frac{dB}{dt} = \frac{1}{\tau_I}I - \alpha BC - \frac{1}{\tau_B}B$
P(t)	CD19 ⁻ haematopoietic stem cells (HSCs)	$oxed{rac{dP}{dt}} = ho_P(2a_Ps(t)-1)P - rac{1}{ au_P}P$
l(t)	CD19 ⁺ B cell progenitors	$oxed{rac{dI}{dt}} = ho_I(2a_Is(t)-1)I - rac{1}{ au_I}I + rac{1}{ au_P}P - lphaeta IC$

In the differential equations, there is no death term for C(t) because the CAR T cells do not undergo apoptosis (death)

ODE Terms

Parameter	Meaning	Value	Units
$ au_B$	B-lymphocyte	30 - 60	day
	lifetime		
$ ho_L$	Leukaemic growth rates	1/30 - 1/60	day^{-1}
$ au_C$	Activated CAR T	14 - 30	day
	cell lifetime		
$ ho_C$	Mitotic stimulation	$(0.05-2)\times\alpha$	day^{-1}
	of CAR T cells by		\times cell ⁻¹
	$\mathrm{CD}19^+ \mathrm{cells}$		
α	Killing efficiency	$\sim 10^{-11}$	day^{-1}
	of CAR T cells		\times cell ⁻¹
k	ρ_C and α ratio	0.05 - 2	dimensionless
$ au_I$	Immature bone marrow	2 - 6	day
	B cell lifetime		
β	Fraction of CAR T cells	0.01 - 0.5	dimensionless
	in the bone marrow		

$$egin{aligned} rac{dC}{dt} &=
ho_C(L+B)C +
ho_eta IC - rac{1}{ au_C}C \ rac{dL}{dt} &=
ho_L L - lpha LC \ rac{dB}{dt} &= rac{1}{ au_I}I - lpha BC - rac{1}{ au_B}B \ rac{dP}{dt} &=
ho_P(2a_P s(t) - 1)P - rac{1}{ au_P}P \ rac{dI}{dt} &=
ho_I(2a_I s(t) - 1)I - rac{1}{ au_I}I + rac{1}{ au_P}P - lphaeta IC \end{aligned}$$

ODE Terms

Parameter	Meaning	Value	Units
$ au_B$	B-lymphocyte	30 - 60	day
	lifetime		
$ ho_L$	Leukaemic growth rates	1/30 - 1/60	day^{-1}
$ au_C$	Activated CAR T	14 - 30	day
	cell lifetime		
$ ho_C$	Mitotic stimulation	$(0.05-2)\times\alpha$	day^{-1}
	of CAR T cells by		\times cell ⁻¹
	$\mathrm{CD}19^+ \mathrm{cells}$		
α	Killing efficiency	$\sim 10^{-11}$	day^{-1}
	of CAR T cells		\times cell ⁻¹
k	ρ_C and α ratio	0.05 - 2	dimensionless
$ au_I$	Immature bone marrow	2 - 6	day
	B cell lifetime		
β	Fraction of CAR T cells	0.01 - 0.5	dimensionless
	in the bone marrow		

$$egin{aligned} rac{dC}{dt} &=
ho_C(L+B)C +
ho_eta IC - rac{1}{ au_C}C \ rac{dL}{dt} &=
ho_L L - lpha LC \ rac{dB}{dt} &= rac{1}{ au_I}I - lpha BC - rac{1}{ au_B}B \ rac{dP}{dt} &=
ho_P(2a_P s(t) - 1)P - rac{1}{ au_P}P \ rac{dI}{dt} &=
ho_I(2a_I s(t) - 1)I - rac{1}{ au_I}I + rac{1}{ au_P}P - lphaeta IC \end{aligned}$$

Results and Conclusions

- The number of CAR T cells initially injected does not affect the subsequent dynamics.
 - Doctors should store part of the cells generated so they can be ready for later rechallenging in case of a CD19⁺ relapse
 - Periodic treatment with CAR T cells is ineffective in avoiding relapse and the model provides optimal time for re-injection
- To combat the disease, fast action after detection and an injection of a substantial number of CAR T cells is essential.
- Role of the flux of generation of CD19⁺ progenitors from CD19- hematopoietic stem cells
 - Future research should consider the pharmacological stimulation of the process of stem cell asymmetric division and separation.

CAR T Cell Therapy in B-cell Acute Lymphoblastic Leukemia

Jasmin Jean-Louis and Kristen Mosley Dr.Kara Math Modeling

