$$A 38$$
 i)  $f: (-2, \infty) - > \mathbb{R}, f(x) := log(x+2)$ 

$$f'(x) = \frac{1}{x+2} \cdot 1 = (x+2)^{-1}$$
 da  $x \in (-2, \infty) = > x+2 > 0$ 

$$f''(x) = -(x+2)^{-2}$$
  $\log(x)$  ist an  $f(0,\infty)$  d.b.

$$f''(x) = 2(x+2)$$
 alle Ableitungen sind

$$f'(x) = -6(x+2)$$
 Wohldefiniert

$$f(1) = log(3)$$
  $f'(1) = \frac{1}{3}$   $f''(1) = \frac{1}{9}$   $f'''(x) = \frac{2}{27}$ 

$$T_3 + (x, 1) = f(1) + f'(1) \cdot (x-1) + \frac{f''(1)}{2} (x-1)^2 + \frac{f'''(1)}{6} (x-1)^3$$

$$= \log(3) + \frac{x-1}{3} + \frac{(x-1)^2}{2 \cdot 3^2} + \frac{2(x-1)^3}{6 \cdot 3^3}$$

$$= \log(3) + \frac{x-1}{3} + \frac{1}{2} \left(\frac{x-1}{3}\right)^2 + \frac{1}{3} \left(\frac{x-1}{3}\right)^3$$

A 40

a) 
$$\int_{a}^{b} \frac{f'(x)}{f(x)} dx$$
,  $f(ta,b]) = (0,\infty)$ 

Desintere  $g(x) := \frac{f'(x)}{f(x)}$  and  $G(x) := log(f(x))$ 
 $G'(x) = \frac{1}{f(x)} \cdot f'(x) = g(x)$ 
 $= > G(x)$  ist Stammfunction für  $g(x)$ 
 $\int_{a}^{b} \frac{f'(x)}{f(x)} dx = \int_{a}^{b} g(x) dx = G(b) - G(a)$ 
 $= log(f(b)) - log(f(a)) = log(\frac{f(b)}{f(a)})$ 

b)  $\int_{a}^{b} f'(x) \cdot f(x) dx$ 

Definiere  $g(x) := f'(x) \cdot f(x)$ ,  $h(x) := \frac{1}{2} \cdot k(x) := (f(x))^{2}$ 

and  $G(x) := (h \cdot k)(x)$ 
 $G'(x) = h'(x) \cdot k(x) + h(x) \cdot k'(x)$ 
 $= 0 \cdot k(x) + \frac{1}{2} \cdot 2f(x) \cdot f'(x) = f(x) \cdot f(x) = g(x)$ 
 $\int_{a}^{b} f'(x) \cdot f(x) dx = \int_{a}^{b} g(x) dx = G(b) - G(a)$ 
 $\int_{a}^{b} f'(x) \cdot f(x) dx = \int_{a}^{b} g(x) dx = G(b) - G(a)$ 
 $\int_{a}^{b} f'(x) \cdot f(x) dx = \int_{a}^{b} g(x) dx = G(b) - G(a)$ 
 $\int_{a}^{b} f'(x) \cdot f(x) dx = \int_{a}^{b} g(x) dx = G(b) - G(a)$ 
 $\int_{a}^{b} f'(x) \cdot f(x) dx = \int_{a}^{b} g(x) dx = G(b) - G(a)$ 

