R training for Médecins Sans Frontières

Hello!

We are Didac Fortuny and Paula Subias

We are here because we want to do good through data.

You can find us at in/didacfortuny

in/paula-subías

Hello!

We are part of dataforgoodBCN

You can find us at @dataforgoodBCN

Goal

- You are self-sufficient to use R for your daily computational tasks
- You know about what R can offer

Day 1: What we need to know about R and statistics

- Introduction to R
- Statistics hands-on

Day 2: Data frames and reporting tools

- Manipulating data frames.
- Reports

Day 3: Beyond basic R

- Plots
- Dashboards
- Other topics

What we need to know about R and statistics

R environment, data structures, and statistics

- What is programming
- What is R
- What is R Studio
- RStudio basics
- R basics

What is programming

 Create a list of instructions that can be performed automatically by a computer to fulfill a given task.

What is programming

- Speed.
- Precision.
- Reproducibility.

What is R

- High-level programming language.
- Interpreted language.
- Open source.
- Not a visual programming language.

- Integrated Development Environment (IDE).
- Open source.

RStudio basics

RStudio basics

• Working directory:

RStudio basics

- Keyboard shortcuts:
 - Ctrl + ENTER: Run one cell.
 - Ctrl + SHIFT + F10: Restart session.

R basics

Go to first template.

R basics

Saving data when exiting the session

- Types of distribution
- Statistical measures
- Sampling from distributions
- Comparing distributions

Statistics allows to generalise from a sample of data to a true state of nature.

To make this work the data must be obtained by a carefully designed experiment.

Types of distribution

Price to pay: we need probability to quantify the chance element in the data.

Types of distribution

Statistical measures

Statistical measures

Sampling distributions

The sampling distribution of a statistic is the distribution of that statistic, considered as a random variable, when derived from a random sample of size n.

Go to R.

Descriptive statistics univariate with R				
Variable type		Graphical representation	Numerical summary	
Categorical qualitative	Nominal	Pie plot: pie(table(x))	Absolute Frequency Table: table(x) Relative Frequency Table: prop.table(x)	
	Ordinal	Bar plot: barplot(table(x))	Absolute Frequency Table: table(x) Relative Frequency Table: prop.table(x) Cumulative Absolute Frequency Table: cumsum(table(x)) Cumulative Relative Frequency Table: cumsum(prop.table(table(x)))	
Numerical quantitative	Discrete	Histogram: hist(x)	Summary: summary(x) Central Tendency Statistics: Mean: mean(x) Median: median(x) Positional Statistics: Minimum, Maximum: min(x), max(x) Quartiles (Q1,Q3): quantile(x,0.25), quantile(x,0.75) Percentile (alpha): quantile(x,alpha) Dispersion Statistics: Variance: var(x) Standard deviation: sd(x) IQR (Interquartile range=Q3-Q1): IQR(x)	

Descriptive statistics bivariate with R				
Variable type	Graphical representation	Numerical summary		
f: categorical g: categorical	Grouped Bar diagram: barplot(table(f,g)) Mosaic Plot: mosaicplot(table(f,g))	Absolute Contingency Table: table(f,g) Relative Contingency Table: prop.table(table(f,g))		
x: numeric g: categorical	Points Diagram: $plot(g,x)$ Grouped BoxPlot: $boxplot(x \sim g)$ Grouped Histogram: $by(x,g,hist)$	Group Statistics: by(x,g,summary)		
x: numeric y: numeric	Scatterplot: plot(x,y)	Linear correlation: cor(x,y)		

Go to R.

A **statistical test** chooses between two possibilities: the null hypothesis H_0 and the alternative hypothesis H_1 .

Comparing distributions

Comparing distributions

Parametric tests assume your data meets some assumptions, which, basically, are:

- Interval level data
- Reasonably normally distributed
- Equal variances
- Reasonable sample size

Non-parametric tests:

- Valid for most distributions
- Often easier to compute

Checking for normality: QQ-plot

A QQ-plot can reveal whether data (approximately) follows a certain population curve, e.g. the normal curve.

Go to R.

Data frames and reporting tools

Let's create the first analyses and reports

Reports with R Markdown

R Markdown

from R Studio

- Tool for automating reports.
- Supporting multiple languages.

Reports with R Markdown

Publish report

- Publish in PDF:
 - Needs Latex installed: miktex.org/download
 - Needs the tinytext package installed:
 - install.packages("tinytex")
 - tinytex::install_tinytex()

- R Markdown file structure:
 - Header (between ---)
 - Code chunks (between ```)
 - Simple text.

- Header:
 - Contains basic information about the report.

Code chunks

- Simple text:
 - Markdown format: markdown-guide.readthedocs.io
 - Inline code: `r _____`

- Keyboard shortcuts:
 - Ctrl + Alt + C: Run current chunk.
 - Ctrl + Alt + I: Insert new chunk.
 - Ctrl + Shift + K: Publish document.

Online tutorial: rmarkdown.rstudio.com

Beyond basic R

Plots, dashboards and everything else

ggplot2: the most powerful library for plots!

- Distribution: histogram, boxplot
- Correlation: scatterplot
- Ranking: barplot, spider
- Check out the R graph gallery!

Plots

- ggplot() Create a new ggplot.
- aes() Construct aesthetic mappings.
- + (<gg>) Add components to a plot.
- ggsave Save a ggplot.
- qplot() Quick plot.

Go to cheatsheet.

Histogram

Density plot

Scatterplot

Compare distributions

For more details and information, visit this link: https://plot.ly/r/

Plug-in to include them in Powerpoint: <u>here</u>

Interactive plots

What is Shiny?

Go to R.

Check out the official <u>tutorial!</u>


```
shiny_example.r x app.r x
                    1 # install.packages("shiny")
                       2 library(shiny)
        App
                          ui <- fluidPage(
                            numericInput(inputId = "n",
                                       "Sample size",
                                       value = 25),
                            plotOutput(outputId = "hist")
                      10
                      11 * server <- function(input, output) {
                            output$hist <- renderPlot({
                             hist(rnorm(input$n))
                      13
                      14
                             })
                      15
                      16
                          shinyApp(ui = ui, server = server)
                      18
                          (Top Level) $
                     Concolo -/Documents/Brainstos/dfahen r for m
                    > runApp()
Execution
```

Listening on http://127.0.0.1:6014

Input functions Output functions ui <- fluidPage(server <- function(input, output) {</pre> numericInput(inputId = "n", output\$hist <- renderPlot({ "Sample size", hist(rnorm(input\$n)) value = 25). plotOutput(outputId = "hist" shinyApp(ui = ui, server = server)

Go to R.

Thanks!

Any questions?

You can find us at

- dacfortuny at gmail dot com
- paulasubias at gmail dot com

Special thanks to all the people who made and released these awesome resources for free:

Presentation template by <u>SlidesCarnival</u>