Model Selection in practice

Timothy Daley

November 30, 2016

Dataset: Wage

► For this example I'm going to be looking at the Wage dataset in the ISLR package.

```
library(ISLR)
library(pander)
data(Wage)
library(glmnet)
library(MASS)
```

Wage

```
names(Wage)

## [1] "year" "age" "sex" "maritl"

## [6] "education" "region" "jobclass" "health"

## [11] "logwage" "wage"

levels(Wage$education)
```

Applying the lasso to predict wage: prepping the data

Using Cross-Validation to choose λ

▶ We use the function cv.glmnet

?cv.glmnet

cv.glmnet {g	lmnet}	R Documentation
	Cross-validation for glmnet	
Descripti	ion	
Does k-fold	cross-validation for glmnet, produces a plot, and returns a value for lambda	
Usage		
	x, y, weights, offset, lambda, type.measure, nfolds, foldid, grouped, keep, lle1,)	
Arguments		
×	x matrix as in glannet.	
У	response y as in qlmnet.	
weights	Observation weights; defaults to 1 per observation	
offset	Offset vector (matrix) as in glmnet	
lambda	Optional user-supplied lambda sequence; default is NULL, and $glamet$ chooses its own sequence	
nfolds	number of folds - default is 10. Although nfolds can be as large as the sample size (leave-one-out CV), it is not recommended for large datasets. Smallowable is nfolds=3	nallest value

Using Cross-Validation to choose λ

```
# lasso is alpha = 1
wage.cvfit = cv.glmnet(x, Wage$wage, alpha = 1)
wage.cvfit$lambda.min
```

```
## [1] 0.0285344
```

Using Cross-Validation to choose λ

plot(wage.cvfit)

Cross-Validated model

```
head(coef(wage.cvfit, s = "lambda.min"), 13)
```

```
## 13 x 1 sparse Matrix of class "dgCMatrix"
##
## (Intercept)
                             -2392.1122077
## year
                                 1.2260075
                                 0.2710652
## age
## sex2..Female
## maritl2..Married
                                17.0423512
## maritl3..Widowed
                                 1.5232654
## marit14..Divorced
                                 3.7478013
## maritl5..Separated
                                11.0884884
## race2..Black
                                -5.0042586
                                -2.6717244
## race3..Asian
## race4..Other
                                -5.9340531
## education2..HS.Grad
                                7.1210700
                                17.6820562
## education3..Some.College
```

Cross-Validated model

```
tail(coef(wage.cvfit, s = "lambda.min"), 13)
```

```
## 13 x 1 sparse Matrix of class "dgCMatrix"
##
## education4..College.Grad
                                30.592752
  education5..Advanced.Degree
                                53.288490
  region2..Middle.Atlantic
## region3..East.North.Central
## region4..West.North.Central
## region5..South.Atlantic
## region6..East.South.Central
## region7..West.South.Central
## region8..Mountain
## region9..Pacific
## jobclass2..Information
                                 3.556992
## health2....Very.Good
                                 6.484683
                               -17.533736
## health ins2..No
```

Why is sex not included?

```
table(Wage$sex)
```

```
##
## 1. Male 2. Female
## 3000 0
```

Oh. There's no females in the data.

Predicting MLB salary

data(Hitters)

[16] "PutOuts"

The hitters data set in ISLR has data from the 1986 and 1987 seasons. Let's see what individual statistics most contribute to salary

```
names(Hitters)
##
    [1] "AtBat"
                     "Hits"
                                  "HmRun"
                                               "Runs"
                                                            "RJ
                                                            "Cl
##
    [6] "Walks"
                     "Years"
                                  "CAtBat"
                                               "CHits"
## [11] "CRuns"
                     "CRBI"
                                  "CWalks"
                                               "League"
                                                            "D:
```

"Errors"

"Salary"

"Ne

```
Hitters = Hitters[which(!is.na(Hitters$Salary)), ]
```

"Assists"

Using the lasso to predict MLB salary: data prep

```
xfactors = model.matrix(Salary ~ League + Division +
                            interaction(League, Division),
                          data = Hitters)[,-1]
head(xfactors, 1)
##
               LeagueN DivisionW interaction(League, Divis:
## -Alan Ashby
##
               interaction(League, Division)A.W
## -Alan Ashby
               interaction(League, Division) N.W
##
## -Alan Ashby
                                                1
```

Using the lasso to predict MLB salary: fitting the lasso

```
## [1] 2.220313
```

Using the lasso to predict MLB salary: optimal λ for lasso

plot(MLBsalary.lasso.cvfit)

Using the lasso to predict MLB salary: lasso coefficients

head(coef(MLBsalary.lasso.cvfit), 12)

```
## 12 x 1 sparse Matrix of class "dgCMatrix"
##
## (Intercept) 144.3797046
## AtBat
## Hits
                 1.3638038
## HmRun
## Runs
## RBI
## Walks
                 1.4973110
## Years
## CAtBat
## CHits
## CHmRun
## CRuns
                 0.1527517
```

Using the lasso to predict MLB salary: lasso coefficients

```
tail(coef(MLBsalary.lasso.cvfit), 10)
```

```
## 10 x 1 sparse Matrix of class "dgCMatrix"
##
## CRBI
                                     0.32833941
## CWalks
## PutOuts
                                     0.06625755
## Assists
## Errors
## LeagueN
## DivisionW
   interaction.League..Division.N.E
   interaction.League..Division.A.W .
## interaction.League..Division.N.W .
```

Using ridge regression to predict MLB salary: fitting

```
## [1] 28.01718
```

Using ridge regression to predict MLB salary: optimal λ

plot(MLBsalary.rr.cvfit)

Using ridge regression to predict MLB salary: coefficients

```
head(coef(MLBsalary.rr.cvfit), 12)
```

```
## 12 x 1 sparse Matrix of class "dgCMatrix"
##
  (Intercept) 2.051021e+02
## AtBat
            9.371095e-02
## Hits
            3.896188e-01
## HmRun
            1.222685e+00
## Runs
              6.227768e-01
## RBT
              6.184842e-01
## Walks
            8.085052e-01
              2.539892e+00
## Years
## CAtBat
            7.891144e-03
## CHits
              3.052107e-02
              2.268930e-01
## CHmRiin
## CRuns
              6.116106e-02
```

Using ridge regression to predict MLB salary: coefficients

```
tail(coef(MLBsalary.rr.cvfit), 10)
```

```
## 10 x 1 sparse Matrix of class "dgCMatrix"
##
## CRBI
                                       0.063385593
  CWalks
                                       0.060508479
## PutOuts
                                       0.056023095
                                       0.007589146
## Assists
                                      -0.173441672
## Errors
                                       2.334635145
## LeagueN
## DivisionW
                                     -20.678801778
   interaction.League..Division.N.E
                                       9.804002150
   interaction.League..Division.A.W -20.311680354
## interaction.League..Division.N.W -6.393999590
```

Making sense of ridge regression coefficients

```
## AtBat Hits HmRun Runs RBI
## 37.8257316 42.0121640 14.2073188 34.0940699 31.8437034 3
## Years CAtBat CHits CHmRun CRuns
## 18.5711494 20.9710590 22.0419025 15.7099711 22.0926294 2
## CWalks PutOuts Assists Errors
## 15.7483095 16.2865315 0.9012905 -1.4904113
```

Standard regression

First let's look at the full regression

```
x.full = data.frame(x, Salary = Hitters$Salary)
MLBsalary.lm = lm(Salary ~ ., data = x.full)
```

Standard regression

Table 1: Fitting linear model: Hitters $Salary \sim$.

				_ , , , , ,
	Estimate	Std. Error	t value	Pr(> t)
AtBat	-1.998	0.6353	-3.145	0.001866
Hits	7.551	2.381	3.172	0.001709
HmRun	4.412	6.208	0.7108	0.4779
Runs	-2.382	2.984	-0.7981	0.4256
RBI	-1.054	2.604	-0.4047	0.686
Walks	6.211	1.828	3.398	0.0007929
Years	-3.453	12.55	-0.2752	0.7834
CAtBat	-0.1689	0.1355	-1.246	0.2139
CHits	0.1093	0.6719	0.1626	0.8709
CHmRun	-0.2066	1.615	-0.128	0.8983
CRuns	1.478	0.747	1.978	0.04903
CRBI	0.8245	0.6917	1.192	0.2344
CWalks	-0.8133	0.3281	-2.479	0.01387
PutOuts	0.2819	0.07746	3.64	0.0003335
Δssists	0 3721	0 2213	1 682	Ი ᲘႳᲕႳᲜ

Forward stepwise regression

+ CHmRun ## + CWalks

+ RBI

```
MLBsalary.null = lm(Salary \sim 1, data = x.full)
MLBsalary.forward =
  stepAIC(MLBsalary.null, scope =
            list(upper = MLBsalary.lm,
                 lower = MLBsalary.null),
          direction = "forward")
## Start: AIC=3215.77
## Salary ~ 1
##
##
                                       Df Sum of Sq
                                                          RSS
                                           17139434 36179679
## + CRBI
                                            16881162 3643795
## + CRuns
                                            16065140 37253973
## + CHits
## + CAtBat
                                           14759710 38559403
```

14692193 38626920

12792622 4052649:

10771083 42548030

Forward stepwise regression

pander(MLBsalary.forward, style = "simple")

Table 2: Fitting linear model: Salary \sim CRBI + Hits + PutOuts + DivisionW + AtBat + Walks + CWalks + CRuns + CAtBat + Assists

	Estimate	Std. Error	t value	Pr(> t)
CRBI	0.7743	0.2096	3.694	0.0002706
Hits	6.918	1.647	4.201	3.686e-05
PutOuts	0.2974	0.07444	3.995	8.504e-05
DivisionW	-112.4	39.21	-2.866	0.004511
A tBat	-2.169	0.5363	-4.044	6.996e-05
Walks	5.773	1.585	3.643	0.0003274
CWalks	-0.8308	0.2636	-3.152	0.001818
CRuns	1.408	0.3904	3.607	0.0003731
CAtBat	-0.1301	0.0555	-2.344	0.01986
Assists	0.2832	0.1577	1.796	0.07367
(Intercept)	162.5	66.91	2.429	0.01583

Backward stepwise regression

Step: AIC=3046.13

##

##

##

##

```
MLBsalary.backward =
    stepAIC(MLBsalary.lm, scope =
            list(upper = MLBsalary.lm,
                 lower = MLBsalary.null),
          direction = "backward")
## Start: AIC=3046.13
## Salary ~ AtBat + Hits + HmRun + Runs + RBI + Walks + Yes
```

```
##
       CAtBat + CHits + CHmRun + CRuns + CRBI + CWalks + Pt
##
       Assists + Errors + LeagueN + DivisionW + interaction
##
       interaction.League..Division.A.W + interaction.League
```

Salary ~ AtBat + Hits + HmRun + Runs + RBI + Walks + Yes

interaction.League..Division.A.W

CAtBat + CHits + CHmRun + CRuns + CRBI + CWalks + Pr

Assists + Errors + LeagueN + DivisionW + interaction

Backward stepwise regression

pander(MLBsalary.backward, style = "simple")

Table 3: Fitting linear model: Salary \sim AtBat + Hits + Walks + CAtBat + CRuns + CRBI + CWalks + PutOuts + Assists + DivisionW

	Estimate	Std. Error	t value	Pr(> t)
AtBat	-2.169	0.5363	-4.044	6.996e-05
Hits	6.918	1.647	4.201	3.686e-05
Walks	5.773	1.585	3.643	0.0003274
CA tBat	-0.1301	0.0555	-2.344	0.01986
CRuns	1.408	0.3904	3.607	0.0003731
CRBI	0.7743	0.2096	3.694	0.0002706
CWalks	-0.8308	0.2636	-3.152	0.001818
PutOuts	0.2974	0.07444	3.995	8.504e-05
Assists	0.2832	0.1577	1.796	0.07367
DivisionW	-112.4	39.21	-2.866	0.004511
(Intercept)	162.5	66.91	2.429	0.01583

Looks like the same model

Comparing forward and backward regression via LOOCV

```
forward error = 0
for(i in 1:dim(x.full)[1]){
  full model = lm(Salary ~ ., data = x.full[-i, ])
  null model = lm(Salary ~ 1, data = x.full[-i, ])
  forward model =
    step(null_model, scope = list(upper = full_model,
                                  lower = null model),
         direction = "forward", trace = 0)
  forward_error = forward_error +
    (x.full$Salary[i] -
     predict(forward_model, newdata = data.frame(x.full[i,])
             interval = "none"))^2
```

Comparing forward and backward regression via LOOCV

```
backward error = 0
for(i in 1:dim(x.full)[1]){
  full model = lm(Salary ~ ., data = x.full[-i, ])
  null model = lm(Salary ~ 1, data = x.full[-i, ])
  forward model =
    step(full_model, scope = list(upper = full_model,
                                  lower = null model),
         direction = "backward", trace = 0)
  backward_error = backward_error +
    (x.full$Salary[i] -
     predict(forward_model, newdata = data.frame(x.full[i,])
             interval = "none"))^2
```

Comparing forward and backward regression via LOOCV

```
forward_error

## -Alan Ashby
## 30060779

backward_error

## -Alan Ashby
```

##

28922347