學號: R05942114 系級: 電信一 姓名: 方敬匀

1. 請簡明扼要地闡述你如何抽取模型的輸入特徵 (feature) 答:

AMB_TEMP	前 1~9hour	CH4	前 1~9hour	СО	前 1~9hour
NMHC	前 1~9hour	NO	前 1~9hour	NO2	前 1~9hour
NOx	前 1~9hour	O3	前 1~9hour	PM10	前 1~9hour
PM2.5	前 1~9hour	RAINFALL	前 1~9hour	RH	前 1~9hour
SO2	前 1~9hour	THC	前 1~9hour		

2.請作圖比較不同訓練資料量對於 PM2.5 預測準確率的影響 答:

固定 Iteration=2000 的條件下,train data 數量以及對 train data 的 avg Error 分別為:

No. Train data	200	400	600	800	1000
Avg Error	29.572	35.375	36.831	38.476	40.121

3. 請比較不同複雜度的模型對於 PM2.5 預測準確率的影響 答:

固定 iteration=2000,train data=800(有依情況調整 learning rate),feature 分別為 1.所述 feature 取前:

前N小時	1hour	1~3hour	1~5hour	1-7hour	1-9hour
Avg Error	44.848	41.56	39.380	40.436	38.831

紅字部份可能因為 iteration 或 learning rate 設定不佳導致

4. 請討論正規化(regularization)對於 PM2.5 預測準確率的影響 答:

固定 iteration=2000,train data=800

lambda	0	10-10	10 ⁻⁵	1	10 ⁵
Avg Error	38.831	38.834	38.858	39.502	41.102

推測 Error 不會增加太多原因為 feature 都為一次式

5. 在線性回歸問題中,假設有 N 筆訓練資料,每筆訓練資料的特徵 (feature) 為一向量 \mathbf{x}^n ,其標註(label)為一存量 \mathbf{y}^n ,模型參數為一向量 \mathbf{w} (此處忽略偏權值 \mathbf{b}),則線性回歸的損失函數(loss function)為 $\sum_{n=1}^N \left| \mathbf{y}^n - \mathbf{w} \cdot \mathbf{x}^n \right|^2$ 。若將所有訓練資料的特徵值以矩陣 $\mathbf{X} = [\mathbf{x}^1 \ \mathbf{x}^2 \ \dots \ \mathbf{x}^N]$ 表示,所有訓練資料的標註以向量 $\mathbf{y} = [\mathbf{y}^1 \ \mathbf{y}^2 \ \dots \ \mathbf{y}^N]^T$ 表示,請以 \mathbf{X} 和 \mathbf{y} 表示可以最小化損失函數的向量 \mathbf{w} 。

答: (X^TX)⁻¹X^Ty = w