PROVA (PARTE 1)

Universidade Federal de Goiás (UFG) - Regional Jataí Bacharelado em Ciência da Computação Teoria de Grafos Esdras Lins Bispo Jr.

29 de agosto de 2017

ORIENTAÇÕES PARA A RESOLUÇÃO

- A avaliação é individual, sem consulta;
- A pontuação máxima desta avaliação é 10,0 (dez) pontos, sendo uma das 06 (seis) componentes que formarão a média final da disciplina: quatro testes, uma prova e os exercícios de aquecimento;
- \bullet A média final (MF) será calculada assim como se segue

$$MF = MIN(10, S)$$

 $S = (\sum_{i=1}^{4} 0, 2.T_i) + 0, 2.P + 0, 1.EA$

em que

- -S é o somatório da pontuação de todas as avaliações,
- $-T_i$ é a pontuação obtida no teste i,
- $-\ P$ é a pontuação obtida na prova, e
- -EA é a pontuação total dos exercícios de aquecimento.
- O conteúdo exigido compreende os seguintes pontos apresentados no Plano de Ensino da disciplina: (1) Noções Básicas de Grafos, (2) Caminhos e Circuitos, e (3) Subgrafos.

Nome:		
Assinatura		

Primeiro Teste

- 1. (5,0 pt) [E 1.14] Para qualquer inteiro positivo k, um cubo de dimensão k (ou k-cubo) é o grafo definido da seguinte maneira: os vértices do grafo são todas as sequências $b_1b_2...b_k$ de bits; dois vértices são adjacentes se e somente se diferem em exatamente uma posição. Por exemplo, os vértices do cubo de dimensão 3 são 000, 001, 010, 011, 100, 101, 110, 111; o vértice 000 é adjacente aos vértices 001, 010, 100 e a nenhum outro; e assim por diante. O cubo de dimensão k será denotado por Q_k .
 - (a) (2,0 pt) Faça figuras dos cubos Q_1 , $Q_2 \in Q_3$.

Resposta:

(b) (1,5 pt) Quantos vértices tem Q_k ? Justifique.

Resposta: Os vértices de um Q_k são todas as sequências distintas de k bits. Logo, aplicando o princípio multiplicativo, Q_k tem 2^k vértices.

(c) (1,5 pt) Quantas arestas tem Q_k ? Justifique.

Resposta: Todo grafo r-regular de n vértices tem rn/2 arestas. Cada vértice v de um Q_k tem grau k. Isto é verdade, pois cada um de seus vizinhos tem apenas um bit distinto de v. Logo, o Q_k é k-regular e tem $2^k \times (k/2)$ arestas.

2. (5,0 pt) **[E 1.33]** Se G é um K_n , quanto valem $\delta(G)$ e $\Delta(G)$? Quanto valem os parâmetros δ e Δ de um $K_{p,q}$? Justifique sua resposta.

Resposta: Qualquer vértice de um K_n tem n-1 vizinhos, i.e., o número máximo de vizinhos possível. Logo, se G é um K_n , $\delta(G) = \Delta(G) = n-1$.

Em um $K_{p,q}$, cada vértice branco tem q vizinhos e cada vértice preto tem p vizinhos. Logo, $\delta(K_{p,q}) = min(p,q)$ e $\Delta(K_{p,q}) = max(p,q)$.

Segundo Teste

3. (5,0 pt) **[E 1.29]** É verdade que o grafo do cavalo no tabuleiro t-por-t é bipartido? Justifique sua resposta.

Resposta: É verdade para t > 1. Para t = 1, é impossível estabelecer uma bipartição nos vértices do grafo, pois é necessário que cada partição seja não-vazia.

Entretanto, é possível estabelecer a bipartição para t > 1. Basta representarmos os vértices pretos e brancos pelas casas pretas e brancas do tabuleiro, respectivamente. Desta forma, garantimos que qualquer aresta do grafo tem uma ponta branca e uma ponta preta. Isto é verdade, pois o cavalo estando em uma casa preta, só consegue mover-se para uma casa branca (e vice-versa).

4. (5,0 pt) **[E 1.88]** Seja G um grafo, V' um subconjunto de V_G , e E' um subconjunto de E_G . É verdade que (V', E') é um subgrafo de G? Justifique sua resposta.

Resposta: Isto não é sempre verdade. Como contra-exemplo, pode-se mostrar o grafo G=(V,E) em que $V=\{a,b,c\}$ e $E=\{ab\}$. Faça $V'=\{c\}$ e $E'=\{ab\}$. Garante-se que $V'\subseteq V$ e $E'\subseteq E$, mas (V',E') não é um grafo e, por consequência, não é um subgrafo de G.