PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

TULLOCH, Peter, Archibald [AU/AU]; The Estate of Peter

Archibald Tulloch, c/o Nicholas O'Donoghue Lawyers, 180 Queen Street, Melbourne, VIC 3000 (AU). WARD, Colin,

Wesley [AU/AU]; 903 Rathdowne Street, Carlton, VIC 3053

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6: C07K 14/705, 14/71, G06F 17/50, 19/00, 159/00

(11) International Publication Number:

WO 99/28347

(43) International Publication Date:

10 June 1999 (10.06.99)

(21) International Application Number:

PCT/AU98/00998

A1

(22) International Filing Date:

27 November 1998 (27.11.98)

(30) Priority Data:

PP 0585 PP 2598

27 November 1997 (27.11.97) AU 25 March 1998 (25.03.98) AU (74) Agent: F.B. RICE & CO.; 605 Darling Street, Balmain, NSW 2041 (AU).

(71) Applicant (for all designated States except US): COMMON-WEALTH SCIENTIFIC AND INDUSTRIAL RESEARCH ORGANISATION [AU/AU]; Limestone Avenue, Campbell, ACT 2601 (AU).

(72) Inventors; and

(75) Inventors/Applicants (for US only): BENTLEY, John, David [AU/AU]; 85 Margaret Street, Macedon, VIC 3440 (AU). COSGROVE, Leah, Jane [AU/AU]; 22 Tarlton Street, Somerton Park, S.A. 5044 (AU). FRENKEL, Maurice, John [AU/AU]; 23 Ellington Street, South Caulfield, VIC 3162 (AU). GARRETT, Thomas, Peter, John [AU/AU]; 2 Gray Street, Brunswick, VIC 3055 (AU). LAWRENCE, Lynne, Jean [AU/AU]; 24 Cook Street, Brunswick, VIC 3055 (AU). LOU, Meizhen [CN/AU]; 10 Roma Street, Scoresby, VIC 3179 (AU). LOVRECZ, George, Oscar [AU/AU]; 2 Tovey Street, North Balwyn, VIC 3104 (AU). McKERN, Neil, Moreton [AU/AU]; Como Road, Lilydale, VIC 3170 (AU).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

With international search report.

(54) Title: METHOD OF DESIGNING AGONISTS AND ANTAGONISTS TO IGF RECEPTOR

(57) Abstract

The present invention relates to a method of designing compounds able to bind to a molecule of the insulin receptor family and to modulate the activity mediated by the receptor based on the 3-D structure coordinates of a IGF-1 receptor crystal of Figure 1.

EV 094 907 233 US

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG*	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of Americ
CA	Canada	1T	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	. SD	Sudan		1
DK	Denmark	LK	Sri Lanka	SE	Sweden		
Œ	Estonia	LR	'Liberia	SG	Singapore		

WO 99/28347 PCT/AU98/00998

METHOD OF DESIGNING AGONISTS AND ANTAGONISTS TO IGF RECEPTOR

Field of the Invention

5

10

15

20

25

30

35

This invention relates to the field of receptor structure and receptor/ligand interactions. In particular it relates to the field of using receptor structure to predict the structure of related receptors and to the use of the determined structures and predicted structures to select and screen for agonists and antagonists of the polypeptide ligands.

Background of the Invention

Insulin is the peptide hormone that regulates glucose uptake and metabolism. The two types of diabetes mellitus are associated either with an inability to produce insulin because of destruction of the pancreatic islet cells (Homo-Delarche, F. & Boitard, C.,1996, Immunol. Today 10: 456-460) or with poor glucose metabolism resulting from either insulin resistance at the target tissues, or from inadequate insulin secretion by the islets or faulty liver function (Taylor, S. I., et al., 1994, Diabetes, 43: 735-740).

Insulin-like growth factors-1 and 2 (IGF-1 and 2) are structurally related to insulin, but are more important in tissue growth and development than in metabolism. They are primarily produced in the liver in response to growth hormone, but are also produced in most other tissues, where they function as paracrine/autocrine regulators. The IGFs are strong mitogens, and are involved in numerous physiological states and certain cancers (Baserga, R., 1996, TibTech 14: 150-152).

Epidermal growth factor (EGF) is a small polypeptide cytokine that is unrelated to the insulin/IGF family. It stimulates marked proliferation of epithelial tissues, and is a member of a larger family of structurally-related cytokines, such as transforming growth factor α, amphiregulin, betacellulin, heparin-binding EGF and some viral gene products. Abnormal EGF family signalling is a characteristic of certain cancers (Soler, C. & Carpenter, G., 1994 In Nicola, N. (ed) Guidebook to Cytokines and Their receptors", Oxford Univ. Press, Oxford, pp194-197; Walker, F. & Burgess, A. W., 1994, In Nicola, N. (ed) Guidebook to Cytokines and Their receptors", Oxford Univ. Press, Oxford, pp198-201).

Each of these growth factors mediates its biological actions through binding to the corresponding receptor. The IR, IGF-1R and the insulin receptor-related receptor (IRR), for which the ligand is not known, are closely related to each other, and are referred to as the insulin receptor subfamily. A

10

15

20

25

30

35

large body of information is now available concerning the primary structure of these insulin receptor subfamily members (Ebina, Y., et al., 1985 Cell 40: 747-758; Ullrich, A., et al., 1985, Nature 313: 756-761; Ullrich, A. et al., 1986, EMBO J 5: 2503-2512; Shier, P. & Watt, V. M., 1989, J. Biol. Chem. 264: 14605-14608) and the identification of some of their functional domains (for reviews see De Meyts, P. 1994, Diabetologia 37: 135-148; Lee, J. & Pilch, P. F. 1994 Amer. J. Physiol. 266: C319-C334.; Schaffer, L. 1994, Eur. J. Biochem. 221: 1127-1132). IGF-1R, IR and IRR are members of the tyrosine kinase receptor superfamily and are closely related to the epidermal growth factor receptor (EGFR) subfamily, with which they share significant sequence identity in the extracellular region as well as in the cytoplasmic kinase domains (Ullrich, A. et al., 1984 Nature 309: 418-425; Ward, C. W. et al., 1995 Proteins: Structure Function & Genetics 22: 141-153). Both the insulin and EGF receptor subfamilies have a similar arrangement of two homologous domains (L1 and L2) separated by a cys-rich region of approximately 160 amino acids containing 22-24 cys residues (Bajaj, M., et al., 1987 Biochim. Biophys. Acta 916: 220-226; Ward, C. W. et al., 1995 Proteins: Structure Function & Genetics 22: 141-153). The C-terminal portion of the IGF-1R ectodomain (residues 463 to 906) is comprised of four domains: a connecting domain, two fibronectin type 3 (Fn3) repeats, and an insert domain (O'Bryan, J. P., et al., 1991 Mol Cell Biol 11: 5016-5031). The C-terminal portion of the EGFR ectodomain (residues 477-621) consists solely of a second cys-rich region containing 20 cys residues (Ullrich, A. et al., 1984, Nature 309: 418-425).

Little is known about the secondary, tertiary and quaternary structure of the ectodomains of these receptor subfamilies. Unlike the members of the EGFR subfamily which are transmembrane monomers which dimerise on binding ligand, the IR subfamily members are homodimers, held together by disulphide bonds. The extracellular region of the IR/IGF-1R/IRR monomers contains an α-chain (~ 703 to 735 amino acid residues) and 192-196 residues of the β-chain. There is a ~23 residue transmembrane segment, followed by the cytoplasmic portion (354 to 408 amino acids), which contains the catalytic tyrosine kinase domain flanked by juxtamembrane and C-tail regulatory regions and is responsible for mediating all receptor-specific functions (White, M. F. & Kahn, C. R. 1994 J. Biol. Chem. 269: 1-4). Chemical analyses of the receptor suggest that the α-chains are linked to the β-chains

10

15

20

25

30

35

via a single disulphide bond, with the IR dimer being formed by at least two α - α disulphide linkages (Finn, F. M., et al., 1990, Proc. Natl. Acad. Sci. 87: 419-423; Chiacchia, K. B., 1991, Biochem. Biophys. Res. Commun. 176, 1178-1182; Schaffer, L. & Ljungqvist, L., 1992, Biochem. Biophys. Res. Comm. 189: 650-653; Sparrow, L. G., et al., 1997, J. Biol. Chem. 47: 29460-29467).

Although the three-dimensional (3D) structures of the ligands EGF, TGF-alpha (Hommel, U., et al., 1992, J. Mol. Biol. 227:271-282), insulin (Dodson, E. J., et al., 1983, Biopolymers 22:281-291), IGF-1 (Sato, A., et al., 1993, Int J Peptide Protein Res 41:433-440) and IGF-2 (Torres, A. M., et al.,1995, J. Mol. Biol. 248:385-401) are known, and numerous analytical and functional studies of ligand binding to EGFR (Soler, C. & Carpenter, G., 1994 In Nicola (ed) Guidebook to Cytokines and Their receptors", Oxford Univ. Press, Oxford, pp194-197), IGF-1R and IR (see De Meyts, P., 1994 Diabetologia, 37:135-148) have been carried out, the mechanisms of ligand binding and subsequent transmembrane signalling have not been resolved.

Ligand-induced, receptor-mediated phosphorylation is the signalling mechanism by which most cytokines, polypeptide hormones and membrane-anchored ligands exert their biological effects. The primary kinase may be part of the intracellular portion of the transmembrane receptor protein, as in the tyrosine kinase receptors (for review see Yarden, Y., et al., 1988, Ann. Rev. Biochem. 57:443-478) or the Ser/Thr kinase receptors (Alevizopoulos, A. & Mermod, N., 1997, BioEssays, 19:581-591) or may be non-covalently associated with the cytoplasmic tail of the transmembrane protein(s) making up the receptor complex, as in the case of the haemopoietic growth factor receptors (Stahl, N., et al., 1995, Science 267:1349-1353). The end result is the same, ligand binding leads to receptor dimerization or oligomerization or a conformational change in pre-existing receptor dimers or oligomers, resulting in activation by transphosphorylation, of the covalently attached or non-covalently associated protein kinase domains (Hunter, T., 1995, Cell, 80:225-236).

Many oncogenes have been shown to be homologous to growth factors, growth factor receptors or molecules in the signal transduction pathways (Baserga, R.,1994 Cell, 79:927-930; Hunter, T., 1997 Cell, 88:333-346). One of the best examples is v-Erb (related to the EGFR). Since overexpression of a number of growth factor receptors results in ligand-dependent transformation, an alternate strategy for oncogenes is to regulate

10

15

20

25

30

35

the expression of growth factor receptors or their ligands or to directly bind to the receptors to stimulate the same effect (Baserga, R., 1994 Cell, 79:927-930). Examples are v-Src, which activates IGF-1 R intracellularly; c-Myb, which transforms cells by enhancing the expression of IGF1R; and SV40 T antigen which interacts with the IGF-1R and enhances the secretion of IGF-1 (see Baserga, R.,1994 Cell, 79:927-930 for review). Cells in which the IGF-1R has been disrupted or deleted cannot be transformed by SV40 T antigen. If oncogenes activate growth factors and their receptors, then tumour suppressor genes should have the opposite effect. One good example of this is the Wilm's tumour suppressor gene, WT1, which suppresses the expression of IGF-1R (Drummond, J. A., et al., 1992, Science, 257:275-277). Cells that are driven to proliferate by oncogenes undergo massive apoptosis when growth factor receptors are ablated, since, unlike normal cells, they appear unable to withdraw from the cell-cycle and enter into the G₀ phase (Baserga, R.,1994 Cell, 79:927-930).

The insulin-like growth factor-1 receptor (IGF-1R) is one of several growth-factor receptors that regulate the proliferation of mammalian cells. However, its ubiquitousness and certain unique aspects of its function make IGF-1R an ideal target for specific therapeutic interventions against abnormal growth, with very little effect on normal cells (see Baserga, R., 1996 TIBTECH, 14:150-152). The receptor is activated by IGF1, IGF2 and insulin, and plays a major role in cellular proliferation in at least three ways: it is essential for optimal growth of cells in vitro and in vivo; several cell types require IGF-1R to maintain the transformed state; and activated IGF-1R has a protective effect against apoptotic cell death (Baserga, R., 1996 TIBTECH, 14:150-152). These properties alone make it an ideal target for therapeutic interventions. Transgenic experiments have shown that IGF-1R is not an absolute requirement for cell growth, but is essential for the establishment of the transformed state (Baserga, R.,1994 Cell, 79: 927-930). In several cases (human glioblastoma, human melanoma; human breast carcinoma; human lung carcinoma; human ovarian carcinoma; human rhabdomyosarcoma; mouse melanoma, mouse leukaemia; rat glioblastoma; rat rhabdomyosarcoma; hamster mesothelioma) the transformed phenotype can be reversed by decreasing the expression of IGF-1R using antisense to IGF-1R (Baserga, R., 1996 TIBTECH 14:150-152); or by interfering with its function by antibodies to IGF-1R (human breast carcinoma; human

10

15

20

25

30

35

rhabdomyosarcoma) or by dominant negatives of IGF-1R (rat glioblastoma; Baserga, R.,1996 TIBTECH 14:150-152).

Three effects are observed when the function of IGF-1R is impaired: tumour cells undergo massive apoptosis which results in inhibition of tumourogenesis; surviving tumour cells are eliminated by a specific immune response; and such a host response can cause a regression of an established wild-type tumour (Resnicoff, M., et al., 1995, Cancer Res. 54:2218-2222). These effects, plus the fact that interference with IGF-1R function has a limited effect on normal cells (partial inhibition of growth without apoptosis) makes IGF-1R a unique target for therapeutic interventions (Baserga, R., 1996 TIBTECH 14:150-152). In addition IGF-1R is downstream of many other growth factor receptors, which makes it an even more generalised target. The implication of these findings is that if the number of IGF-1Rs on cells can be decreased or their function antagonised, then tumours cease to grow and can be removed immunologically. These studies establish that IGF-1R antagonists will be extremely important therapeutically.

Many cancer cells have constitutively active EGFR (Sandgreen, E. P., et al., 1990, Cell, 61:1121-135; Karnes, W. E. J., et al., 1992, Gastroenterology, 102:474-485) or other EGFR family members (Hines, N. E., 1993, Semin. Cancer Biol. 4:19-26). Elevated levels of activated EGFR occur in bladder, breast, lung and brain tumours (Harris, A. L., et al., 1989, In Furth & Greaves (eds) The Molecular Diagnostics of human cancer. Cold Spring Harbor Lab. Press, CSH, NY, pp353-357). Antibodies to EGFR can inhibit ligand activation of EGFR (Sato, J. D., et al., 1983 Mol. Biol. Med. 1:511-529) and the growth of many epithelial cell lines (Aboud-Pirak E., et al., 1988, J. Natl Cancer Inst. 85:1327-1331). Patients receiving repeated doses of a humanised chimeric anti-EGFR monoclonal antibody showed signs of disease stabilization. The large doses required and the cost of production of humanised monoclonal antibody is likely to limit the application of this type of therapy. These findings indicate that the development of EGF antagonists will be attractive anticancer agents.

Summary of the Invention

The present inventors have now obtained 3D structural information concerning the insulin-like growth factor receptor (IGF-1R). This information can be used to predict the structure of related members of the insulin

10

15

20

25

30

35

receptor family and provides a rational basis for the development of ligands for specific therapeutic applications.

Accordingly, in a first aspect the present invention provides a method of designing a compound able to bind to a molecule of the insulin receptor family and to modulate an activity mediated by the molecule, including the step of assessing the stereochemical complementarity between the compound and the receptor site of the molecule, wherein the receptor site includes:

- (a) amino acids 1 to 462 of the receptor for IGF-1, having the atomic coordinates substantially as shown in Figure 1;
 - (b) a subset of said amino acids, or;
- (c) amino acids present in the amino acid sequence of a member of the insulin receptor family, which form an equivalent three-dimensional structure to that of the receptor molecule as depicted in Figure 1.

The phrase "insulin receptor family" encompasses, for example, IGF-1R, IR and IRR. In general, insulin receptor family members show similar domain arrangements and share significant sequence identity (preferably at least 40% identity).

By "stereochemical complementarity" we mean that the biologically active substance or a portion thereof correlates, in the manner of the classic "lock-and-key" visualisation of ligand-receptor interaction, with the groove in the receptor site.

In a preferred embodiment of this aspect of the invention, the compound is selected or modified from a known compound identified from a database.

In a further preferred embodiment, the compound is designed so as to complement the structure of the receptor molecule as depicted in Figure 1.

In a further preferred embodiment, the compound has structural regions able to make close contact with amino acid residues at the surface of the receptor site lining the groove, as depicted in Figure 2.

In a further preferred embodiment, the compound has a stereochemistry such that it can interact with both the L1 and L2 domains of the receptor site.

In a further preferred embodiment, the compound has a stereochemistry such that it can interact with the L1 domain of a first monomer of the receptor homodimer, and with the L2 domain of the other monomer of the receptor homodimer.

In a further preferred embodiment, the interaction of the compound with the receptor site alters the position of at least one of the L1, L2 or cysteine-

10

15

20

25

30

35

rich domains of the receptor molecule relative to the position of at least one of the other of said domains. Preferably, the compound interacts with the β sheet of the L1 domain of the receptor molecule, thereby causing an alteration in the position of the L1 domain relative to the position of the cysteine-rich domain or of the L2 domain. Alternatively, the compound interacts with the receptor site in the region of the interface between the L1 domain an the cysteine-rich domain of the receptor molecule, thereby causing the L1 domain and the cysteine-rich domain to move away from each other. In another preferred embodiment, the compound interacts with the hinge region between the L2 domain and the cysteine-rich domain of the receptor molecule, thereby causing an alteration in the positions of the L2 domain and the cysteine-rich domain relative to each other.

In a further preferred embodiment, the stereochemical complementarity between the compound and the receptor site is such that the compound has a K_b for the receptor side of less than $10^{-6}M$, more preferably is less than $10^{-6}M$.

In a further preferred embodiment or the first aspect of the present invention, the compound has the ability to increase an activity mediated by the receptor molecule.

In a further preferred embodiment, the compound has the ability to decrease an activity mediated by the receptor molecule. Preferably, the stereochemical interaction between the compound and the receptor site is adapted to prevent the binding of a natural ligand of the receptor molecule to the receptor site. It is preferred that the compound has a K_1 of less than $10^{-6}M$, more preferably less than $10^{-6}M$ and more preferably less than $10^{-6}M$.

In a further preferred embodiment of the first aspect of the present invention, the receptor is the IGF-1R, or the insulin receptor.

In a second aspect, the present invention provides a computer-assisted method for identifying potential compounds able to bind to a molecule of the insulin receptor family and to modulate an activity mediated by the molecule, using a programmed computer including a processor, an input device, and an output device, including the steps of:

- (a) inputting into the programmed computer, through the input device, data comprising the atomic coordinates of the IGF-1R molecule as shown in Figure 1, or a subset thereof;
- (b) generating, using computer methods, a set of atomic coordinates of a structure that possesses stereochemical complementarity to the atomic

10

15

20

25

30

35

coordinates of the IGF-1R site as shown in Figure 1, or a subset thereof, thereby generating a criteria data set;

- (c) comparing, using the processor, the criteria data set to a computer database of chemical structures;
- (d) selecting from the database, using computer methods, chemical structures which are structurally similar to a portion of said criteria data set; and
- (e) outputting, to the output device, the selected chemical structures which are similar to a portion of the criteria data set.

In a preferred embodiment of the second aspect, the programmed computer includes a data storage system which includes the dtatbase of chemical structures.

In a preferred embodiment of the second aspect, the method is used to identify potential compounds which have the ability to decrease an activity mediated by the receptor.

In another preferred embodiment, the computer-assisted method further includes the step of selecting one or more chemical structures from step (e) which interact with the receptor site of the molecule in a manner which prevents the binding of natural ligands to the receptor site.

In another preferred embodiment, the computer-assisted method further includes the step of obtaining a compound with a chemical structure selected in steps (d) and (e), and testing the compound for the ability to decrease an activity mediated by the receptor.

In a further preferred embodiment, the computer-assisted method is used to identify potential compounds which have the ability to increase an activity mediated by the receptor molecule.

In another preferred embodiment, the computer-assisted method further includes the step of obtaining a molecule with a chemical structure selected in steps (d) and (e), and testing the compound for the ability to increase an activity mediated by the receptor.

In a further preferred embodiment of the second aspect of the present invention, the receptor is the IGF-1R, or the insulin receptor.

In a third aspect, the present invention provides a method of screening of a putative compound having the ability to modulate the activity of a receptor of the insulin receptor family, including the steps of identifying a putative compound by a method according to the first or second aspects, and testing the

compound for the ability to increase or decrease an activity mediated by the receptor.

In a preferred embodiment of the third aspect, the test is carried out in vitro.

In a further preferred embodiment of the third aspect, the test is a high throughput assay.

In a preferred embodiment of the third aspect, the test is carried out *in vivo*.

10 Brief Description of the Drawings

Figure 1. IGF-1R residues 1-462, in terms of atomic coordinates refined to a resolution of 2.6 Å (average accuracy ≈ 0.3 Å). The coordinates are in relation to a Cartesian system of orthogonal axes.

15

5

- Figure 2. Depiction of the residues lining the groove of the IGF-1R receptor fragment 1-462.
- Figure 3. Gel filtration chromatography of affinity-purified IGF-1R/462

 protein. The protein was purified on a Superdex S200 column (Pharmacia) fitted to a BioLogic L.C. system (Biorad), equilibrated and eluted at 0.8 ml/min with 40 mM Tris/150 mM NaCl/0.02% NaN3 adjusted to pH 8.0.

 (a) Protein eluting in peak 1 contained aggregated IGF-1R/462 protein, peak 2 contained monomeric protein and peak 3 contained the c-myc undecapeptide used for elution from the Mab 9E10 immunoaffinity column. (b) Non-reduced SDS-PAGE of fraction 2 from IGF-1R/462 obtained following Superdex S200 (Fig.1a). Standard proteins are indicated.
- Figure 4. Ion exchange chromatography of affinity-purified, truncated IGF1R ectodomain. A mixture of gradient and isocratic elution chromatography
 was performed on a Resource Q column (Pharmacia) fitted to a BioLogic
 System (Biorad), using 20 mM Tris/pH 8.0 as buffer A and the same buffer
 containing 1M NaCl as buffer B. Protein solution in TBSA was diluted at least
 1:2 with water and loaded onto the column at 2 ml/min. Elution was
 monitored by absorbance (280 nm) and conductivity (mS/cm). Target protein
 (peak 2) eluted isocratically with 20 mM Tris/0.14 M NaCl pH 8.0. Inset:

Isoelectric focusing gel (pH 3 - 7; Novex Australia Pty Ltd)of fraction 2. The pI was estimated at 5.1 from standard proteins (not shown).

Figure 5. Polypeptide fold for residues 1-462 of IGF-1R. The L1 domain is at the top, viewed from the N-terminal end and L2 is at the bottom. The space at the centre is of sufficient size to accommodate IGF-1. Helices are indicated by curled ribbon and b-strands by arrows. Cysteine side chains are drawn as ball-and-stick with lines showing disulfide bonds. The arrow points in the direction of view for L1 in Figure 7.

10

15

20

25

5

Figure 6. Amino acid sequences of IGF-1R and related proteins. a, L1 and L2 domains of human IGF-1R and IR are shown based on a sequence alignment for the two proteins and a structural alignment for the L1 and L2domains. Positions showing conservation physico-chemical properties of amino acids are boxed, residues used in the structural alignment are shown in Times Italic and residues which form the Trp 176 pocket are in Times Bold. Secondary structure elements for L1 (above the sequences) and L2 (below) are indicated as cylinders for helices and arrows for β -strands. Strands are shaded (pale, medium and dark grey) according to the β -sheet to which they belong. Disulfide bonds are also indicated. b, Cys-rich domains of human IGF-1R, IR and EGFR (domains 2 and 4) are aligned based on sequence and structural considerations. Secondary structural elements and disulfide bonds are indicated above the sequences. The dashed bond is only present in IR. Different types of disulfide bonded modules are labelled below the sequences as open, filled or broken lines. Boxed residues show conservation of physicochemical properties and structurally conserved residues for modules 4-7 are shown in Times Italic. Residues from EGFR which do not conform to the pattern are in lowercase with probable disulfide bonding indicated below and the conserved Trp 176 and the semi-conserved Gln 182 are in Times Bold.

30

Figure 7. Stereo view of a superposition of the L1 (white) and L2 (black) domains. Residues numbers above are for L1 and below for L2. The side chain of Trp 176 which protrudes into the core of L1 is drawn as ball-and-stick.

Figure 8. Schematic diagram showing the association of three β -finger motifs. β -strands are drawn as arrows and disulfide bonds as zigzags.

Figure 9: Sequence alignment of hIGF-1R, hIR and hIRR ectodomains,
derived by use of the PileUp program in the software package of the Genetics
Computer Group, 575 Science Drive, Madison, Wisconsin, USA.
For assignment of homologous 3D structures see Figure 6.

Gel filtration chromatography of insulin receptor ectodomain Figure 10 and MFab complexes. hIR -11 ectodomain dimer (5 - 20 mg) was complexed 10 with MFab derivatives (15-25 mg each) of the anti-hIR antibodies 18-44, 83-7 and 83-14 (Soos et al., 1986). Flution profiles were generated from samples loaded on to a Superdex S200 column (Pharmacia), connected to a BioLogic chromatography system (Biorad) and monitored at 280 nm. The column was eluted at 0.8 ml/min with 40 mM Tris/150 mM sodium chloride/0.02% 15 sodium azide buffer adjusted to pH 8.0: Profile 0, hIR -11 ectodomain, Profile 1, ectodomain mixed with MFab 18-44; Profile 2, ectodomain mixed with MFab18-44 and MFab 83-14; Profile 3, ectodomain mixed with MFab 18-44, MFab 83-14 and MFab 83-7. The apparent mass of each complex was determined from a plot of the following standard proteins: thyroglobulin (660 20 kDa), ferritin (440 kDa), bovine gamma globulin (158 kDa), bovine serum albumin (67 kDa), chicken ovalbumin (44 kDa) and equine myoglobin (17 kDa).

Figure 11 Schematic representations of electron microscopy images of the hIR ectodomain dimer.

Detailed Description of the Invention

30

35

We describe herein the expression, purification, and crystallization of a recombinant truncated IGF-1R fragment (residues 1-462) containing the L1-cysteine-rich-L2 region of the ectodomain. The selected truncation position is just downstream of the exon 6/exon 7 junction (Abbott, A. M., et al., 1992. J Biol Chem., 267:10759-10763), and occurs at a position where the sequences of the IR and EGFR families diverge markedly (Ward, C. W., et al., 1995, Proteins: Struct., Funct., Genet. 22:141-153; Lax, I., et al., 1988, Molec. Cellul. Biol. 8:1970-1978) suggesting it represents a domain boundary. To

15

20

25

30

35

limit the effects of glycosylation, the IGF-1R fragment was expressed in Lec8 cells, a glycosylation mutant of Chinese hamster ovary (CHO) cells, whose defined glycosylation defect produces N-linked oligosaccharides truncated at N-acetyl glucosamine residues distal to mannose residues (Stanley, P. 1989, Molec. Cellul. Biol. 9:377-383). Such an approach has facilitated glycoprotein crystallization (Davis, S. J., et al., 1993, Protein Eng. 6:229-232; Liu, J., et al., 1996, J. Biol. Chem. 271:33639-33646).

The IGF-1R construct described herein includes a c-myc peptide tag (Hoogenboom, H. R., et al.,1991, Nucleic Acids Res. 19:4133-4137) that is recognised by the Mab 9E10 (Evan, G. I., et al., 1985, Mol. Cell. Biol. 5:3610-3616) enabling the expressed product to be purified by peptide elution from an antibody affinity column followed by gel filtration over Superdex S200. The purified proteins crystallized under a sparse matrix screen (Jancarik, J. & Kim, S.-H., 1991, J. Appl. Cryst. 24:409-411) but the crystals were of variable quality, with the best diffracting to 3.0-3.5Å. Isocratic gradient elution by anion-exchange chromatography yielded protein that was less heterogenous and gave crystals of sufficient quality to determine the structure of the first three domains of the human IGF-1R.

The IGF-1R fragment consisted of residues 1-462 of IGF-1R linked via an enterokinase-cleavable pentapeptide sequence to an eleven residue c-myc peptide tag at the C-terminal end. The fragment was expressed in Lec8 cells by continuous media perfusion in a bioreactor using porous carrier disks. It was secreted into the culture medium and purified by peptide elution from an anti-c-myc antibody column followed by Superdex S200 gel filtration. The receptor fragment bound two anti-IGF-1R monoclonal antibodies, 24-31 and 24-60, which recognize conformational epitopes, but could not be shown to bind IGF-1 or IGF-2. Crystals of variable quality were grown as rhombic prisms in 1.7 M ammonium sulfate at pH 7.5 with the best diffracting to 3.0-3.5 Å. Further purification by isocratic elution on an anion-exchange column gave protein which produced better quality crystals, diffracting to 2.6 Å, that were suitable for X-ray structure determination.

The structure of this fragment (IGF-1R residues 1-462; L1-cys rich-L2 domains) has been determined to 2.6 Å resolution by X-ray diffraction. The L domains each adopt a compact shape consisting of a single stranded right-handed β -helix. The cys-rich region is composed of eight disulphide-bonded modules, seven of which form a rod-shaped domain with modules associated

PCT/AU98/00998

5

10

15

20

25

30

35

in a novel manner. At the centre of this reasonably extended structure is a space, bounded by all three domains, and of sufficient size to accommodate a ligand molecule. Functional studies on IGF-1R and other members of the insulin receptor family show that the regions primarily responsible for hormone-binding map to this central site. Thus this structure gives a first view of how members of the insulin receptor family might interact with their ligands.

Another group has reported the crystallization of a related receptor, the EGFR, in a complex with its ligand EGF (Weber, W., et al., 1994, J Chromat. 679:181-189). However, difficulties were encountered with these crystals which diffracted to only 6 Å, insufficient for the determination of an atomic resolution structure of this complex (Weber, W., et al., 1994, J Chromat 679:181-189) or the generation of accurate models of structurally related receptor domains such as IGF-1R and IR by homology modelling.

The present inventors have developed 3D structural information about cytokine receptors in order to enable a more accurate understanding of how the binding of ligand leads to signal transduction. Such information provides a rational basis for the development of ligands for specific therapeutic applications, something that heretofore could not have been predicted *de novo* from available sequence data.

The precise mechanisms underlying the binding of agonists and antagonists to the IGF-1R site are not fully clarified. However, the binding of ligands to the receptor site, preferably with an affinity in the order of 10⁻⁸M or higher, is understood to arise from enhanced stereochemical complementarity relative to naturally occurring IGF-1 ligands.

Such stereochemical complementarity, pursuant to the present invention, is characteristic of a molecule that matches intra-site surface residues lining the groove of the receptor site as eneumerated by the coordinates set out in Figure 1. The residues lining the groove are depicted in Figure 2. By "match" we mean that the identified portions interact with the surface residues, for example, via hydrogen bonding or by enthalpy-reducing Van der Waals interactions which promote desolvation of the biologically active substance within the site, in such a way that retention of the biologically active substance within the groove is favoured energetically.

Substances which are complemetary to the shape of the receptor site characterised by amino acids positioned at atomic coordinates set out in

10

15

20

25

30

35

BAISTOCHO JAMO GOOGLETAR I S

Figure 1 may be able to bind to the receptor site and, when the binding is sufficiently strong, substantially prohibit binding of the naturally occurring ligands to the site.

It will be appreciated that it is not necessary that the complementarity between ligands and the receptor site extend over all residues lining the groove in order to inhibit binding of the natural ligand. Accordingly, agonists or antagonists which bind to a portion of the residues lining the groove are encompassed by the present invention.

In general, the design of a molecule possessing stereochemical complementarity can be accomplished by means of techniques that optimize, either chemically or geometrically, the "fit" between a molecule and a target receptor. Known techniques of this sort are reviewed by Sheridan and Venkataraghavan, Acc. Chem Res. 1987 20 322; Goodford, J. Med. Chem. 1984 27 557; Beddell, Chem. Soc. Reviews 1985, 279; Hol, Angew. Chem. 1986 25 767 and Verlinde C.L.M.J & Hol, W.G.J. Structure 1994, 2, 577, the respective contents of which are hereby incorporated by reference. See also Blundell et al., Nature 1987 326 347 (drug development based on information regarding receptor structure).

Thus, there are two preferred approaches to designing a molecule, according to the present invention, that complements the shape of IGF-1R or a related receptor molecule. By the geometric approach, the number of internal degrees of freedom (and the corresponding local minima in the molecular conformation space) is reduced by considering only the geometric (hard-sphere) interactions of two rigid bodies, where one body (the active site) contains "pockets" or "grooves" that form binding sites for the second body (the complementing molecule, as ligand). The second preferred approach entails an assessment of the interaction of respective chemical groups ("probes") with the active site at sample positions within and around the site, resulting in an array of energy values from which three-dimensional contour surfaces at selected energy levels can be generated.

The geometric approach is illustrated by Kuntz et al., J. Mol. Biol. 1982 161 269, the contents of which are hereby incorporated by reference, whose algorithm for ligand design is implemented in a commercial software package distributed by the Regents of the University of California and further described in a document, provided by the distributor, which is entitled "Overview of the DOCK Package, Version 1.0,", the contents of which are

10

15

20

25

30

35

hereby incorporated by reference. Pursuant to the Kuntz algorithm, the shape of the cavity represented by the IGF-R1 site is defined as a series of overlapping spheres of different radii. One or more extant data bases of crystallographic data, such as the Cambridge Structural Database System maintained by Cambridge University (University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, U.K.) and the Protein Data Bank maintained by Brookhaven National Laboratory (Chemistry Dept. Upton, NY 11973, U.S.A.), is then searched for molecules which approximate the shape thus defined.

Molecules identified in this way, on the basis of geometric parameters, can then be modified to satisfy criteria associated with chemical complementarity, such as hydrogen bonding, ionic interactions and Van der Waals interactions.

The chemical-probe approach to ligand design is described, for example, by Goodford, J. Med. Chem. 1985 28 849, the contents of which are hereby incorporated by reference, and is implemented in several commercial software packages, such as GRID (product of Molecular Discovery Ltd., West Way House, Elms Parade, Oxford OX2 9LL, U.K.). Pursuant to this approach, the chemical prerequisites for a site-complementing molecule are identified at the outset, by probing the active site (as represented via the atomic coordinates shown in Fig. 1) with different chemical probes, e.g., water, a methyl group, an amine nitrogen, a carboxyl oxygen, and a hydroxyl. Favored sites for interaction between the active site and each probe are thus determined, and from the resulting three-dimensional pattern of such sites a putative complementary molecule can be generated.

The chemical-probe approach is especially useful in defining variants of a molecule known to bind the target receptor. Accordingly, crystallographic analysis of IGF-1 bound to the receptor site is expected to provide useful information regarding the interaction between the archetype ligand and the active site of interest.

Programs suitable for searching three-dimensional databases to identify molecules bearing a desired pharmacophore include: MACCS-3D and ISIS/3D (Molecular Design Ltd., San Leandro, CA), ChemDBS-3D (Chemical Design Ltd., Oxford, U.K.), and Sybyl/3DB Unity (Tripos Associates, St. Louis, MO).

10

15

20

25

30

35

ב ב בלבי המשפירה ביים מוצים ביים

Programs suitable for pharmacophore selection and design include: DISCO (Abbott Laboratories, Abbott Park, IL), Catalyst (Bio-CAD Corp., Mountain View, CA), and ChemDBS-3D (Chemical Design Ltd., Oxford, U.K.).

Databases of chemical structures are available from a number of sources including Cambridge Crystallographic Data Centre (Cambridge, U.K.) and Chemical Abstracts Service (Columbus, OH).

De novo design programs include Ludi (Biosym Technologies Inc., San Diego, CA), Sybyl (Tripos Associates) and Aladdin (Daylight Chemical Information Systems, Irvine, CA).

Those skilled in the art will recognize that the design of a mimetic may require slight structural alteration or adjustment of a chemical structure designed or identified using the methods of the invention.

The invention may be implemented in hardware or software, or a combination of both. However, preferably, the invention is implemented in computer programs executing on programmable computers each comprising a processor, a data storage system (including volatile and non-volatile memory and/or storage elements), at least one input device, and at least one output device. Program code is applied to input data to perform the functions described above and generate output information. The output information is applied to one or more output devices, in known fashion. The computer may be, for example, a personal computer, microcomputer, or workstation of conventional design.

Each program is preferably implemented in a high level procedural or object-oriented programming language to communicate with a computer system. However, the programs can be implemented in assembly or machine language, if desired. In any case, the language may be compiled or interpreted language.

Each such computer program is preferably stored on a storage medium or device (e.g., ROM or magnetic diskette) readable by a general or special purpose programmable computer, for configuring and operating the computer when the storage media or device is read by the computer to perform the procedures described herein. The inventive system may also be considered to be implemented as a computer-readable storage medium, configured with a computer program, where the storage medium so

10

15

20

25

30

configured causes a computer to operate in a specific and predefined manner to perform the functions described herein.

Compounds designed according to the methods of the present invention may be assessed by a number of *in vitro* and *in vivo* assays of hormone function. For example, the identification of IGF-1R antagonists of may be undertaken using a solid-phase receptor binding assay. Potential antagonists may be screened for their ability to inhibit the binding of europium-labelled IGF ligands to soluble, recombinant IGF-1R in a microplate-based format. Europium is a lanthanide fluorophore, the presence of which can be measured using time-resolved fluorometry. The sensitivity of this assay matches that achieved by radioisotopes, measurement is rapid and is performed in a microplate format to allow high-sample throughput, and the approach is gaining wide acceptance as the method of choice in the development of screens for receptor agonists/antagonists (see Apell et.al. J. Biomolec. Screening 3:19-27, 1998 : Inglese et. al. Biochemistry 37:2372-2377, 1998).

Binding affinity and inhibitor potency may be measured for candidate inhibitors using biosensor technology.

The IGF-1R antagonists may be tested for their ability to modulate receptor activity using a cell-based assay incorporating a stably transfected, IGF-1-responsive reporter gene [Souriau, C., Fort, P., Roux, P., Hartley, O., LeFranc, M-P. and Weill, M., 1997, Nucleic Acids Res. 25, 1585-1590]. An IGF-1-responsive, luciferase reporter gene has been assembled and transfected in 293 cells. The assay addresses the ability of IGF-1 to activate the reporter gene in the presence of novel ligands. It offers a rapid (results within 6-8 hours of hormone exposure), high-throughput (assay can be conducted in a 96-well format for automated counting) analysis using an extremely sensitive detection system (chemiluminescence). Once candidate compounds have been identified, their ability to antagonise signal transduction via the IGF-1R can be assessed using a number of routine invitro cellular assays such as inhibition of IGF-1-mediated cell proliferation, induction of apoptosis in the presence of IGF-1 and the ablation of IGF-1driven anchorage-independent cell growth in soft agar [D'Ambrosio, C., Ferber, A., Resnicoff, M. and Baserga, R., 1996, Cancer Res. 56, 4013-4020]. Such assays may be conducted on the P6 cell line, a cell line highly responsive to IGF as a result of the constitutive overexpression of the IGF-1R

15

20

25

30

35

(45-50,000 receptors/cell, [Pietrzkowski, Z., Sell, C., Lammers, R., Ullrich, A. and Baserga, R.,1992, Cell Growth.Diff. 3, 199-205]). Ultimately, the efficacy of any antagonist as a tumour therapeutic may be tested *in vivo* in animals bearing tumour isografts and xenografts as described [Resnicoff, M., Burgaud, J-L., Rotman, H. L., Abraham, D. and Baserga, R., 1995, Cancer Res. 55, 3739-3741; Resnicoff, M., Sell, C., Rubini, M., Coppola, D., Ambrose, D., Baserga, R. and Rubin, R., 1994 Cancer Res. 54: 2218-2222].

Tumour growth inhibition assays may be designed around a nude mouse xenograft model using a range of cell lines. The effects of the receptor antagonists and inhibitors may be tested on the growth of subcutaneous tumours.

A further use of the structure of the IGF-1R fragment described here is in facilitating structure determination of a related protein, such as a larger fragment of this receptor, another member of the insulin receptor family or a member of the EGF receptor family. This new structure may be either of the protein alone, or in complex with its ligand. For crystallographic analysis this is achieved using the method of molecular replacement (Brunger, Meth. Enzym. 1997 276 558-580, Navaza and Saludjian, ibid. 581-594, Tong and Rossmann, ibid. 594-611, Bentley, ibid. 611-619) in a program such as XPLOR. In this procedure diffraction data is collected from a crystalline protein of unknown structure. A transform of these data (Patterson function) is compared with a Patterson function calculated from a known structure. Firstly, the one Patterson function is rotated on the other to determine the correct orientation of the unknown molecule in the crystal. The translation function is then calculated to determine the location of the molecule with respect to the crystal axes. Once the molecule has been correctly positioned in the unit cell initial phases for the experimental data may be calculated. These phases are necessary for calculation of an electron density map from which structural differences may be observed and for refinement of the structure. Due to limitations in the method the search molecule must be structurally related to that which is to be determined. However it is sufficient for only part of the unknown structure (e.g. < 50%) to be similar to the search molecule. Thus the three dimensional structure of IGF-1R residues 1-462 may be used to solve structures consisting of related receptors, enabling a program of drug design as outlined above.

In summary, the general principles of receptor-based drug design can be applied by persons skilled in the art, using the crystallographic results presented above, to produce ligands of IGF-1R or other related receptors, having sufficient stereochemical complementarity to exhibit high affinity binding to the receptor site.

The present invention is further described below with reference to the following, non-limiting examples.

EXAMPLE 1

5

10

15

20

25

30

35

Expression, Purification and Crystallization of the IGF-1R Fragment.

Several factors hamper macromolecular crystallization including sample selection, purity, stability, solubility (McPherson, A., et al., 1995, Structure 3:759-768); Gilliland, G. L., & Ladner, J. E., 1996, Curr. Opin. Struct. Biol. 6:595-603), and the nature and extent of glycosylation (Davis, S. J., et al., 1993, Protein Eng. 6:229-232). Initial attempts to obtain structural data from soluble IGF-1R ectodomain (residues 1-906) protein, expressed in Lec8 cells (Stanley, P. 1989, Molec. Cellul. Biol. 9:377-383) and purified by affinity chromatography, produced large, well-formed crystals (1.0 mm x 0.2 mm x 0.2 mm) which gave no discernible X-ray diffraction pattern (unpublished data). Similar difficulties have been encountered with crystals of the structurally-related epidermal growth factor receptor (EGFR) ectodomain, which diffracted to only 6 Å, insufficient for the determination of an atomic resolution structure (Weber, W. et al., 1994, J Chromat 679:181-189). This prompted us to search for a fragment of IGF-1R that was more amenable to X-ray crystallographic studies.

The fragment expressed (residues 1-462) comprises the L1-cysteine-rich-L2 region of the ectodomain. The selected truncation position at Val462 is four residues downstream of the exon 6/exon 7 junction (Abbott, A. M., et al., 1992, J Biol Chem. 267:10759-10763), and occurs at a position where the sequences of the IR and the structurally related EGFR families diverge markedly (Lax, I., et al., 1988, Molec Cell Biol. 8:1970-1978; Ward, C. W., et al., 1995, Proteins: Struct., Funct., Genet. 22:141-153), suggesting that it represents a domain boundary. The expression strategy included use of the pEE14 vector (Bebbington, C. R. & Hentschel, C. C. G., 1987, In: Glover, D. M., ed. DNA Cloning. Academic Press, San Diego. Vol 3, p163) in glycosidase-defective Lec8 cells (Stanley, P., 1989, Molec. Cellul. Biol. 9:377-

383), which produce N-linked oligosaccharides lacking the terminal galactose and N-acetylneuraminic acid residues (Davis, S. J., et al., 1993, Protein Eng. 6:229-232; Liu, T., et al., 1996, J Biol Chem 271:33639-33646.). The construct contained a C-terminal c-myc affinity tag (Hoogenboom, H. R., et al., 1991, Nucl Acids Res. 19:4133-4137), which facilitated immunoaffinity purification by specific peptide elution and avoided aggressive purification conditions. These procedures yielded protein which readily crystallized after a further gel filtration purification step. This provided a general protocol to enhance crystallisation prospects for labile, multidomain glycoproteins.

The structure of this fragment is of considerable interest, since it contains the major determinants governing insulin and IGF-1 binding specificity (Gustafson, T. A. & Rutter, W. J., 1990, J. Biol. Chem. 265:18663-18667; Andersen, A. S., et al., 1990, Biochemistry, 29:7363-7366; Schumacher, R., et al., 1991, J. Biol. Chem. 266:19288-19295; Schumacher, R., et al., 1993, J. Biol. Chem. 268:1087-1094; Schäffer, L., et al., 1993, J. Biol. Chem. 268:3044-3047; Williams, P. F., et al., 1995, , J. Biol. Chem. 270:3012-3016), and is very similar to an IGF-1R fragment (residues 1-486) reported to act as a strong dominant negative for several growth functions and which induces apoptosis of tumour cells *in vivo* (D'Ambrosio, C., et al., 1996, Cancer Res. 56:4013-4020).

The expression plasmid pEE14/IGF-1R/462 was constructed by inserting the oligonucleotide cassette:

AatII 5' GACGTC GACGATGACGATAAG GAACAAAAACTCATC 25 E Q K L Ī D V D D D K (c-myc tail) (EK cleavage) S E E D L N (Stop) TCAGAAGAGGATCTGAAT TAGAATTC GACGTC 3' **EcoRI** AatII 30

encoding an enterokinase cleavage site, c-myc epitope tag (Hoogenboom, H. R., et al., 1991, Nucleic acids Res. 19:4133-4137) and stop codon into the AatII site (within codon 462) of Igf-1r cDNA in the mammalian expression vector pECE (Ebina, Y., et al., 1985, Cell, 40:747-758; kindly supplied by W. J. Rutter, UCSF, USA), and introducing the DNA comprising the 5' 1521 bp of

the cDNA (Ullrich, A., et al., 1986, EMBO J. 5:2503-2512) ligated to the oligonucleotide cassette into the EcoRI site of the mammalian plasmid expression vector pEE14 (Bebbington, C. R. & Hentschel, C. C. G., 1987, In: Glover, D. M., ed. DNA Cloning. Academic Press, San Diego. Vol 3, p163; Celltech Ltd., UK). Plasmid pEE14/IGF-1R/462 was transfected into Lec8 5 mutant CHO cells (Stanley, P. 1989, Molec. Cellul. Biol. 9:377-383) obtained from the American Tissue Culture Collection (CRL:1737), using Lipofectin (Gibco-BRL). Cell lines were maintained after transfection in glutamine-free medium (Glascow modification of Eagle's medium (GMEM; ICN Biomedicals, Australia) and 10% dialysed FCS (Sigma, Australia) containing 25 μM 10 methionine sulphoximine (MSX; Sigma, Australia) as described (Bebbington, C. R. & Hentschel, C. C. G., 1987, In: Glover, D. M., ed. DNA Cloning. Academic Press, San Diego. Vol 3, p163). Transfectants were screened for protein expression by Western blotting and sandwich enzyme-linked immunosorbent assay (ELISA) (Cosgrove, L., et al., 1995,) using monoclonal 15 antibody (Mab) 9E10 (Evan et al., 1985) as the capture antibody, and either biotinylated anti-IGF-1R Mab 24-60 or 24-31 for detection(Soos et al., 1992; gifts from Ken Siddle, University of Cambridge, UK). Large-scale cultivation of selected clones expressing IGF-1R/462 was carried out in a Celligen Plus bioreactor (New Brunswick Scientific, USA) containing 70 g Fibra-Cel Disks 20 (Sterilin, UK) as carriers in a 1.25 L working volume. Continuous perfusion culture using GMEM medium supplemented with non-essential amino acids, nucleosides, 25 μM MSX and 10% FCS was maintained for 1 to 2 weeks followed by the more enriched DMEM/F12 without glutamine, with the same supplemention for the next 4-5 weeks. The fermentation production run was 25 carried out three times under similar conditions, and resulted in an estimated overall yield of 50 mg of receptor protein from 430 L of harvested medium. Cell growth was poor during the initial stages of the fermentation when GMEM medium was employed, but improved dramatically following the switch to the more enriched medium. Target protein productivity was 30 essentially constant during the period from ~ 100 to 700 h of the 760 h fermentation, as measured by ELISA using Mab 9E10 as the capture antibody and biotinylated Mab 24-31 as the developing antibody.

Soluble IGF-1R/462 protein was recovered from harvested fermentation medium by affinity chromatography on columns prepared by coupling Mab 9E10 to divinyl sulphone-activated agarose beads (Mini Leak;

15

20

25

30

35

Kem En Tec. Denmark) as recommended by the manufacturer. Mini-Leak Low and Medium affinity columns with antibody loadings of 1.5-4.5 mg/ml of hydrated matrix were obtained, with the loading range of 2.5-3 mg/ml giving optimal performance (data not shown). Mab 9E10 was produced by growing hybridoma cells (American Tissue Culture Collection) in serum-free medium in the Celligen Plus bioreactor and recovering the secreted antibody (4 g) using protein A glass beads (Prosep-A, Bioprocessing Limited, USA). Harvested culture medium containing IGF-1R/462 protein was adjusted to pH 8.0 with Tris-HCl (Sigma), made 0.02% (w/v) in sodium azide and passed at 3-5 ml/min over 50 ml Mab 9E10 antibody columns at 4° C. Bound protein was recovered by recycling a solution of 2-10 mg of the undecamer c-myc peptide EQKLISEEDLN (Hoogenboom et al., 1991) in 20 ml of Tris-buffered saline containing 0.02% sodium azide (TBSA). Between 65% and 75% of the product was recovered from the medium as estimated by ELISA, with a further 15-25% being recovered by a second pass over the columns. Peptide recirculation (~10 times) through the column eluted bound protein more efficiently than a single, slower elution. Residual bound protein was eluted with sodium citrate buffer at pH 3.0 into 1 M Tris HCl pH 8.0 to neutralize the eluant, and columns were re-equilibrated with TBSA.

Gel filtration over Superdex S200 (Pharmacia, Sweden), of affinitypurified material showed a dominant protein peak at ~63 kDa, together with a smaller quantity of aggregated protein (Figure 3a). The peak protein migrated primarily as two closely spaced bands on reduced, sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE; Figure 3b), reacted positively in the ELISA with both Mab 24-60 and Mab 24-31, and gave a single sequence corresponding to the N-terminal 14 residues of IGF-1R. No binding of IGF-1 or IGF-2 could be detected in the solid plate binding assay (Cosgrove et al., 1995, Protein Express Purif. 6:789-798). The IGF-1R/462 fragment was further purified by ion-exchange chromatography on Resource Q (Pharmacia, Sweden). Using shallow salt gradients, protein enriched in the slowest migrating SDS-PAGE band was obtained (data not shown), which formed relatively large, well-formed crystals (see below). Isoelectric focussing showed the presence of one major and two minor isoforms. Protein purified on Resource Q with an isocratic elution step of 0.14 M NaCl in 20 mM TrisCl at pH 8.0 (fraction 2, Figure 4) showed less heterogeneity on isoelectric focussing (Figure 4 inset) and SDS-PAGE (data not shown), and

15

20

25

30

35

produced crystals of sufficient quality for structure determination (see below).

Crystals were grown by the hanging drop vapour diffusion method using purified protein concentrated in Centricon 10 concentrators (Amicon Inc, USA) to 5-10 mg/ml in 10-20 mM Tris-HCl pH 8.0 and 0.02% (w/v) sodium azide, or 100 mM ammonium sulfate and 0.02% (w/v) sodium azide. Crystallization conditions were initially identified using the factorial screen (Jancarik, J. & Kim, S.-H.,1991, J Appl Cryst 24:409-411), and then optimised. Crystals were examined on an M18XHF rotating anode generator (Siemens, Germany) equipped with Franks mirrors (MSC, USA) and RAXIS IIC and IV image plate detectors (Rigaku, Japan).

From the initial crystallization screen of this protein, crystals of about 0.1 mm in size grew in one week. Upon refining conditions, crystals of up to 0.6 x 0.4 x 0.4 mm could be grown from a solution of 1.7-2.0 M ammonium sulfate, 0.1 M HEPES pH 7.5. The crystals varied considerably in shape and diffraction quality, growing predominantly as rhombic prisms with a length to width ratio of up to 5:1, but sometimes as rhombic bipyramids, the latter form being favoured when using material which had been eluted from the Mab 9E10 column at pH 3.0. Each crystal showed a minor imperfection in the form of very faint lines from the centre to the vertices. Protein from dissolved crystals did not appear to be different from the protein stock solution when run on an isoelectric focusing gel. Upon X-ray examination, the crystals diffracted to 3.0-4.0 Å and were found to belong to the space group $P2_12_12_1$ with a = 76.8 Å, b = 99.0 Å, c = 119.6 Å. In the diffraction pattern, the crystal variability noted above was manifest as a large (1-2°) and anisotropic mosaic spread, with concomitant variation in resolution. To improve the quality of the crystals, they were grown in the presence of various additives or were recrystallized. These methods failed to substantially improve the crystal quality although bigger crystals were obtained by recrystallization. The variability in crystal quality appeared to be due to protein heterogeneity, as demonstrated by the observation that more highly purified protein, eluted isocratically from the Resource Q column and showing one major band on isoelectric focusing (Figure 4 inset), produced crystals of sufficient quality for structure determination. These crystals diffracted to 2.6 Å resolution with cell dimensions, a = 77.0 Å, b = 99.5 Å, c = 120.1 Å and mosaic spread of 0.5°. Heavy metal derivatives of the IGF-

1R/462 crystals have been obtained and are leading to the determination of an atomic resolution structure of this fragment, which contains the L1, cysteine-rich and L2 domains of human IGF-1R.

5

10

15

20

25

30

35

EXAMPLE 2

Structure of the IGF-1R/1-462

Crystals were cryo-cooled to-170°C in a mother liquor containing 20% glycerol, 2.2 M ammonium sulfate and 100 mM Tris at pH 8.0. Native and derivative diffraction data were recorded on Rigaku RAXIS IIc or IV area detectors using copper K α radiation from a Siemens rotating anode generator with Yale/MSC mirroroptics. The space group was P2₁2₁2₁ with a = 77.39 Å, b = 99.72 Å, and c = 120.29 Å. Data were reduced using DENZO and SCALEPACK (Otwinowski, Z. & Minor, W., 1996, Mode.Meth. Enzym. 276:307-326). Diffraction was notably anisotropic for all crystals examined.

Phasing by multiple isomorphous replacement(MIR) was performed with PROTEIN (Steigeman, W. Dissertation (Technical Univ. Munich, 1974) using anomalous scattering for both UO2 and PIP derivatives. Statistics for data collection and phasing are given in Table 1. In the initial MIR map regions of protein and solvent could clearly be seen, but the path of the polypeptide was by no means obvious. That map was subject to solvent flattening and histogram matching in DM (Cowtan, K.,1994, Joint CCP4 and ESF-EACBM newslett. Protein Crystallogr. 31:34-38). The structure was traced and rebuilt using O (Jones, T. A., et al., 1991, Acta Crystallogr. A47:110-119) and refined with X-PLOR 3.851 (Brunger, A. T., 1996, X-PLOR ReferenceManual 3.851, Yale Univ., New Haven, CT). After 5 rounds of rebuilding and energy minimisation the R-factor dropped to 0.279 and Rfree = 0.359 for data 7-2.6 Å resolution. The current model contains 458 amino acids and 3 N-linked carbohydrates but no solvent molecules. For residues with B(Ca) > 70, Å atomic positions are less reliable (37-42, 155-159, 305, 336-341, 404-406,453-458). There is weak electron density for residues 459-461, but the c-myc tail appears completely disordered.

The 1-462 fragment consists of the N-terminal three domains of IGF-1R (L1, cys-rich, L2), and contains regions of the molecule which dictate ligand specificity (17-23). The molecule adopts a reasonably extended structure (approximately 40 x 48 x 105 Å) with domain 2 (cys-rich region)

making contact along the length of domain 1 (L1) but very little contact with the third domain (L2) (see Figure 5). This leaves a space at the centre of the molecule of approximately 24 Å x 24 Å x 24 Å which is bounded on three sides by the three domains of the molecule. The space is of sufficient size to accommodate the ligand, IGF-1.

Table 1 Summary of Crystallographic data

10	Data set ^a	Resol. (Å)	Mean I/s	$R_{\rm merge}b$	Completeness (multiplicity)	No. of sites	R _{cullis} c	Phasing power ^d	FOMe
	Native PIP UO2Ac2	2.6 3.0 4.5	15.8	0.064 0.060 0.095	0.996 (4.1) 0.982 (2.2) 0.989 (2.3)		0.66 0.82	1.71 1.17	0.47 / 0.71
15									
	Refinement resolution (Å			No. of	Atoms I	Ceryst f	R _{free} f	Bonds ^e (Å)	Angles ^g (Å)
20	7.0-2.6	24270 (2693)		3903	3	0.237	0.304	0.017	0.048

 $^{^{\}rm a}$ PIP, Di- μ -iodobis(ethylenediamine)diplatinum dinitrate; UO2 Λc_2 , Uranyl acetate.

- C $R_{Cullis} = \Sigma_{h} \mid |F_{PH}F_{P}| |F_{Hcalc}| |/\Sigma_{h}| |F_{PH}| |F_{P}| |$, where F_{PH} , F_{P} and F_{Hcalc} are, respectively, derivative, native and heavy atom structure factors for centric reflections h.
- d Phasing power = Σ_h |FHcalc|/ Σ_h ϵ , where FHcalc is defined above and ϵ is the lack of closure.
- 30 e FOM(figure of merit) = $\langle \cos(\Delta\alpha_h) \rangle$, where $\Delta\alpha_h$ is the error in the phase angle for reflection h. Values are given before and after density modification at 3.0 and 2.8 Å resolution, respectively.
 - f R_{Cryst} and R_{free} are defined in Brunger, $\Lambda.T.$ XPLOR reference manual 3.851 (Yale Univ., New Haven, $C\Gamma$, 1996)

b $R_{merge} = \Sigma_h \Sigma_j |I_{h,j} - I_h| / \Sigma_h \Sigma_j |I_h|$, where $I_{h,j}$ is an intensity measurement j and I_h is the mean intensity for that reflection h.

8 r.m.s. deviation from ideal bond and angle-related (1-3) distances.

The L domains

5

10

15

20

25

30

35

Each of the L domains (residues 1-150 and 300-460) adopts a compact shape (24 x 32 x 37 Å) consisting of a single-stranded right handed $\beta\text{-helix}$ and capped on the ends by short α -helices and disulfide bonds. The body of the domain looks like a loaf of bread, with the base formed from a flat sixstranded $\beta\mbox{-sheet},\,5$ residues long and the sides being $\beta\mbox{-sheets}$ three residues long (Figures 5 & 6). The top is irregular, but in places is similar for the two domains. The two domains are superposable with an rms deviation in $C\!\alpha$ positions of 1.6 Å for 109 atoms (Figure 7). Although this fold is reminiscent of other β -helix proteins it is much simpler and smaller with very few elaborations, and thus it represents a new superfamily of domains. One notable difference between the two domains is that the indole ring of Trp 176 from the cys-rich region (Figure 6b) is inserted into the hydrophobic core of L1, and the C-terminal helix is only vestigial (Figure 8). For the insulin receptor family the sequence motif of residues which form the Trp pocket in L1 does not occur in L2 (Figure 6a). However in the EGF receptor, which has an additional cys-rich region after the L2 domain (14, 15), the pocket motif can be found in both L domains and the Trp is conserved in both cys-rich regions (Figure 6b).

The repetitive nature of the β-helix is reflected in the sequence and the first five turns were correctly identified by Bajaj, M., et al. (1987, Biochim.Biophys. Acta 916:220-226), the conserved Gly residues being found in turns making one bottom edge of the domain. However, their conclusions about the fold were incorrect. The helix-like repeat is actually a pair of bends at the top edge of the domain. In their Motif V, the Gly is not in a bend but is followed by the insertion of a conserved loop of 7-8 residues (see Figure 6a). Glycine is structurally important in the Gly bends as mutation of these residues compromises folding of the receptor [van der Vorm, E.R., et al., 1992, J. Biol. Chem. 267, 66-71; Wertheimer, E. et al., 1994, J. Biol. Chem. 269, 7587-7592].

Comparison of the L domains with other right-handed β -helix structures such as pectate lyase (Yoder, M. D., et al., 1993, Structure, 1:241-251-1507) and the p22 tailspike protein (Steinbacher, S., et al., 1997, J.Mol. Biol. 267:865-880) shows some striking similarities as well as differences. In

10

15

20

25

30

35

all cases the ends of the domain are capped by α -helices, but the L domains also have a disulphide bond at each end to hold the termini. The other β helix domains are considerably longer and have significant twist to their sheets, while the L domains have flat sheets. Although the sizes of the helix repeats are similar (here 24-25 residues vs 22-23 for pectate lyase) the crosssections are quite different. The L domains have a rectangular cross-section, while pectate lyase and p22 tailspike protein are V-shaped, and have many, and sometimes quite large, insertions (Yoder, M. D., et al., 1993, Structure, 1:241-251-1507; Steinbacher, S., et al., 1997, J.Mol. Biol. 267:865-880). In the hydrophobic core a common feature is the stacking of aliphatic residues from successive turns of the $\beta\text{-helix},$ and near the C-terminus of each Ldomain there is also a short Asn ladder, reminiscent of the long Asn ladder observed in pectate lyase (Yoder, M. D., et al., 1993, Structure 1:241-251-1507). On the opposite side of the L domains the Gly bend, as well as the two bends and sheet preceding it, have no counterpart in the other $\beta\text{-helix}$ domains. Thus although the L domains are built on similar principles to the other β -helix domains they constitute a separate superfamily.

The cys-rich domain

The cys-rich domain is composed of eight disulfide-bonded modules (Figure 6b), the first of which sits at the end of L1, while the remainder make a curved rod running diagonally across L1 and reaching to L2 (Figure 5). The strands in modules 2-7 run roughly perpendicular to the axis of the rod in a manner more akin to laminin (Stetefeld, J., et al.,1996, J.Mol.Biol. 257:644-657) than to TNF receptor (Banner, D. W., et al., 1993, Cell, 73:431-445), but the modular arrangement of the cys-rich domain is different to those of other cys-rich proteins for which structures are known. The first 3 modules of IGF-1R have a common core, containing a pair of disulfide bonds, but show considerable variation in the loops (Figure 6b). The connectivity of these modules is the same as in the first half of EGF (Cys 1-3and 2-4), but their structures do not appear to be closely related to any member of the EGF family. Modules 4 to 7 have a different motif, a β -finger, and best match residues 2152-2168 of fibrillin (Dowling, A. K., et al., 1996, Cell, 85:597-605). Each is composed of three polypeptide strands, the first and third being disulfide bonded and the latter two forming a $\beta\text{-ribbon}$. The $\beta\text{-ribbon}$ of each $\beta\text{-}$ finger module lines up antiparallel to form a tightly twisted 8-stranded $\beta\text{-}$ sheet (Figures 5 and 8). Module 6 deviates from the common pattern, with

10

15

20

25

the first segment being replaced by an α -helix followed by a large loop that is likely to have a role in ligand binding (see below). As module 5 is most similar to module 7 it is possible that the four modules arose from serial gene duplications. The final module is a disulfide-linked bend of five residues.

The fact that the two major types of cys-rich modules occur separately implies that these are the minimal building blocks of cys-rich domains found in many proteins. Although it can be as short as 16 residues, the motif of modules 4-7 is clearly distinct, and capable of forming a regular extended structure. Thus cys-rich domains such as these can be considered as being made of repeat units each composed of a small number of modules. Hormone binding

Attempts have been made to locate the IGF-1 (and insulin) binding site by examining natural (Taylor, S. I., 1992, Diabetes, 41:1473-1490) and site-directed mutants (Williams, P. F., et al., 1995, J. Biol. Chem. 270:3012-3016; Mynarcik, D. C et al., 1996, J. Biol. Chem. 271:2439-2442; Mynarcik, D. C., et al., 1997, J. Biol. Chem. 272:2077-2081), chimeric receptors (Andersen, A. S., et al., 1990, Biochemistry 29:7363-7366; Gustafson, T. A., & Rutter, W. J., 1990, J. Biol. Chem. 265:18663-18667; Schäffer, L., et al.,1993, J. Biol. Chem. 268:3044-3047; Schumacher, R., 1993, J. Biol. Chem. 268:1087-1094; Kjeldsen, T., et al., 1991, Proc. Natl Acad. Sci. USA, 88:4404-4408) and by crosslinking studies (Wedekind, F., et al., 1989, Biol. Chem Hoppe-Seyler, 370:251-258; Fabry, M., 1992, J. Biol. Chem. 267:8950-8956; Waugh, S. M., et al., 1989, Biochemistry, 28:3448-3458; Kurose, T., et al., 1994),.J. Biol. Chem.269:29190-29197-34). IGF-1R/IR chimeras not only show which regions of the receptors account for ligand specificity, but also provide an efficient means of identifying some parts of the hormone binding site. Paradoxically, regions controlling specificity are not the same for insulin and IGF-1. Replacing the first 68 residues of IGF-1R with those of IR confers insulin-binding ability on the chimeric IGF-1R (Kjeldsen, T., et al., 1991, Proc. Natl Acad. Sci. USA, 88:4404-4408), and replacing residues 198-300 in 30 the cys-rich region of IR with the corresponding residues 191-290 of IGF-1R allows the chimeric receptor to bind IGF-1 (Schäffer, L., et al.,1993, J. Biol. Chem. 268:3044-3047). Thus a receptor can be constructed which binds both IGF-1 and insulin with near native affinity. From the structure it is clear that if the hormone bound in the central space it could contact both these regions. 35

15

20

25

30

35

From analysis of a series of chimeras examined by Gustafson, T. A., & Rutter, W. J. (J. Biol. Chem. 265:18663-18667, 1990), the specificity determinant in the cys-rich region can be limited further to residues 223-274. This region corresponds to modules 4-6, and includes a large and somewhat mobile loop (residues 255-263, mean B[Cα atoms] = 57 Å2) which extends into the central space (see Figure 5). In IR this loop is four residues bigger, and is stabilised by an additional disulfide bond (Schäffer, L. & Hansen, P.H.,1996, Exp. Clin. Endocrinol. Diabetes, 104: Suppl. 2, 89). The larger loop of IR may serve to exclude IGF-1 from the hormone binding site while allowing the smaller insulin molecule to bind. It is interesting to note that mosquito IR homologue, which has a loop two residues larger than the mammalian IRs, also appears to bind insulin but not IGF-1 (Graf, R., et al., 1997, Insect Molec.Biol. 6:151-163). Analysis of the structure indicates that the insulin/IGF-1 specificity is controlled by residues in this loop (amino acids 253-272 in IGF-1R; amino acids 260-283 in IR)

As chimeras only address residues which differ between the two receptors, a more precise analysis of the site can be obtained from single site mutants. In particular, from an alanine-replacement study, four regions of L1 important for insulin binding were identified (Williams, P. F., et al., 1995, J. Biol. Chem. 270:3012-3016). The first three are at similar positions on successive turns of the β -helix and the fourth lies on the conserved bulge on the large β -sheet. Thus there is a footprint for insulin binding to the L1 domain which lies on the first half of the large β -sheet facing into the central space. Residues further along the sheet which are conserved in IGF-1R could also be important. The conservative substitution of leucine for methionine at residue 119 of IR (113 of IGF-1R) causes a mild form of leprechaunism [Hone, J. et al., 1994, J. Med. Genet. 31, 715-716]. This residue is buried, and the mutation could perturb neighbouring residues to affect insulin binding.

The axis of the L2 domain is perpendicular to that of the L1 domain, and the N-terminal end of its β -helix is presented to the hormone-binding site. On this face of the L2 domain the only mutation studied so far is the naturally occurring IR mutant, S323L, which gives rise to Rabson-Mendehall syndrome and severe insulin resistance (Roach, P.,1994, Diabetes 43:1096-1102). As this mutant only affects insulin binding and not cell-surface expression, residue 323 of IR (residue 313 of IGF-1R) is probably at or near the binding site. Structurally this residue lies in the middle of a region

10

15

(residues 309-318 of IGF-1R) which is conserved in both IR and IGF-1R, and the surrounding region, 332-345 (of IGF-1R), is also quite well conserved in the these receptors (Figure 6a). Therefore this region is quite likely to form part of the hormone-binding site, but would not have been detected by chimeras. It is interesting to note that in this region IRR is not as well conserved as the other two receptors (Shier, P. & Watt, V.M., 1989, J.Biol.Chem. 264:4605-14608).

The distance from this putative hormone-binding region on L2 to that found on L1 is about 30 Å (Figure 5). Thus L1 and L2 appear too far apart to bind IGF-1 or insulin. However, in the crystal structure there is a deep cleft between part of the cys-rich domain (residue 262)and L2 (residue 305), and this cleft is occupied by a loop from a neighbouring molecule. Thus it seems probable that the position of the L2 domain in the receptor structure or the hormone-receptor complex adopts a different position with respect to the cys-rich domain than that found in the crystal. The movement required to bring L2 sufficiently close to L1 is small, namely a rotation of approximately 25° about residue 298.

A number of IR mutants have been identified which constitutively activate the receptor, and the majority of these are found in the α chain. Curiously all α chain mutants involve changes to or from proline or the 20 deletion of an amino acid, implying that they cause local structural rearrangements. The mutation R86N is similar to wild type, but R86P reduces cell-surface expression and insulin binding while constitutively activating autophosphorylation [Grønskov, K. et al., 1993, Biochem. Biophys. Res. Commun. 192, 905-911]. The proline mutation probably disturbs 25 residues preceding 87 which lie in the interface between the L1 and cys-rich domains, but it could also affect insulin binding. In the cys-rich domain residues 233, 281, 244 and 247 of IR are not conserved in IGF-1R (Figure 6b), yet L233P [Klinkhamer, M.P. et al., 1989, EMBO J. 8, 2503-2507], deletion of N281 [Debois-Mouthon, C. et al., 1996, J. Clin. Endochronol. Metab. 81, 719-30 727] or the triple mutant P243R, P244R and H247D [Rafaeloff, R. et al., 1989, J. Biol. Chem. 264, 15900-15904] cause constitutive kinase activation. Due to their locations each of these three mutants appears likely to compromise the folding of a β -finger domain and, in turn, the structural integrity of the rodlike cys-rich domain. The structural ramifications of these mutations could be significant for the whole receptor ectodomain, as disturbing the L1/cys-

10

15

20

25

30

35

rich interface or distorting the rod-like domain could affect the relative position of L1 and the cys-rich domain in this context.

L1 has been further implicated, as deletion of K121 on the opposite side of L1 from the cys-rich domain was also found to cause autophosphorylation [Jospe, N. et al., 1994, J. Clin. Endochronol. Metab. 79, 1294-1302]. By contrast this mutation does not affect insulin binding. Thus a possible mechanism emerges for insulin binding and signal transduction. When insulin binds between L1 and L2 it modifies the relative position of L1 and the cys-rich domain in the receptor, perhaps by hinge motion between L2 and the cys-rich domain like that suggested above, and the structural rearrangement is transmitted across the plasma membrane. In the absence of insulin the same signal can be initiated by mutations in the cys-rich region or at the L1/cys-rich interface, but at the expense on insulin binding. The signal can also be initiated more directly by mutations on the opposite side of L1 which affect the interaction of L1 with other parts of the ectodomain, possibly the other half of the receptor dimer.

Ligand Studies

Although there is no structural information about an IGF-1/IGF-1R complex a number of studies have probed the nature of this interaction. Results from cross-linking experiments with IGF-1 and insulin and their cognate receptors are consistent with the hormone binding site proposed above. For example B29 of insulin can be cross-linked to the cys-rich region (residues 205-316([Yip, C. C., et al., 1988, Biochim. Biophys. Res. Commun. 157:321-329) or the L1 domain (Wedekind, F., et al., 1989, Biol. Chem Hoppe-Seyler, 370:251-258). However, these two regions are reasonably well separated, and those studies may indicate that B29 is mobile. Other studies unfortunately do not map the site any more precisely.

Analogues and site-directed mutants of IGF-1 and IGF-2 have been more fruitful. IGF-1 and IGF-2 contain two extra regions relative to insulin, the C region between B and A and a D peptide at the C-terminus. For IGF-1, replacement of the C region by a four Gly linker reduced affinity for IGF-1R by a factor of 40 but increased affinity for IR 5-fold (Bayne, M.L.,et al., 1988, J. Biol.Chem. 264:11004-11008). Changes in affinity are consistent with the deletion in IGF-1 complementing differences in the cys-rich regions of IGF-1R and IR noted above. Mutation of residues either side of the C region (residue 24 for IGF-1 [Cascieri, M.A., et al., 1988, Biochemistry 27:3229-

10

15

20

25

30

35

3233], residues 27,43 for IGF-2, [Sakano, K., et al., 1991, J. Biol. Chem. 266:20626-20635]) also has deleterious effects on the affinity of the hormone for IGF-1R, as has truncation of the nearby D peptide in IGF-2 (Roth, B.V., et al., 1991, Biochem. Biophys. Res. Commun. 181:907-914).

Insulin has been extensively mutated. Binding studies [summarised in Kristensen, C. et al., 1997, J. Biol. Chem. 272, 12978-12983] indicate that insulin may bind its receptor via a hydrophobic patch (residues A2, A3, A19, B8, B11, B12, B15 and possibly B23 & B24). However this patch is normally buried, and requires the removal of the B chain's C-terminus from the observed position. Assuming IGF-1, IGF-2 and insulin bind their receptors in the same orientation, these data suggest an approximate orientation for the hormone when bound to the receptor.

One notable feature of IGF-1 and IGF-2 is the large number of charged residues and their uneven distribution over the surface. Basic residues are predominantly found in the C region and, in solution, this region is not well ordered in either IGF-1 or -2 (Sato, A., et al., 1993, Int J Peptide Protein Res. 41:433-440; Torres, A. M., et al., 1995, J. Mol. Biol. 248:385-401). In contrast the binding site of the receptor has a sizable patch of acidic residues in the corner where the cys-rich domain departs from L1. Other acidic residues which are specific to this receptor are found along the inside face of the cys-rich domain and the loop (residues 255-263) extending from module 6. Thus it is possible that electrostatic interactions play an important part in IGF-1 binding, with the C region binding to the acidic patch of the cys-rich region near L1 and the acidic patch on the other side of the hormone directed towards a small patch of basic residues (residues 307-310) on the N-terminal end of L2.

Although the structure of this fragment gives significant information about the nature of the hormone binding site, residues outside this region have also been shown to affect binding of ligand. A number of studies have implicated residues 704-715 of IR (Mynarcik, D. C et al., 1996, J. Biol. Chem. 271, 2439-2442; Kurose, T., et al., 1994, J. Biol. Chem.269:29190-29197). These residues could contact insulin on one of the sides left open in the current structure. Using insulin labelled at the B1 residue, Fabry, M., et al.,(1992, J. Biol. Chem. 267:8950-8956) cross-linked insulin to the fragment 390-488, part of which is not near the site as described. The explanation for this could be either the region 390-488 reaches back to the hormone binding

10

15

20

30

35

site, or this region could contact another hormone bound to the other half of the receptor. Further structural information is needed to establish how these other regions contact the hormone and to elucidate how binding of the hormone is communicated to the kinase inside the cell.

The structure of the L1-cys-rich-L2 domains of IGF-1R presented here represents the first structural information for the extracellular portion of a member of the insulin receptor family. The L domains display a novel fold which is common to the EGF receptor family, and the modular architecture of the cys-rich domain implies that smaller building blocks should be used to describe the composition of cysteine-rich domains. This fragment contains the major specificity determinants of receptors of this class for their ligands. It has an elongated structure with a space in the middle which could accommodate the ligand. The three sides of this site correspond to regions which have been implicated in hormone binding. Although other sites are present in the receptor ectodomain which interact with the ligand, this structure gives us an initial view of how the insulin, IGF-1 and IGF-2 might interact with their cell surface receptors to control their metabolic and mitogenic effects

Such information will provide valuable insight into the structure of the corresponding domains of the IR and insulin receptor-related receptor as well as members of the related EGFR family (Bajaj, M., et al., 1987, Biochim Biophys Acta 916:220-226; Ward, C. W. et al., 1995, Proteins: Struct Funct Genet 22:141-153).

EXAMPLE 3

25 <u>Prediction of 3D Structure of the Corresponding Domains of IRR and IR</u> Based on Structure of IGF-1R Fragment

The sequence identities between the different members of the insulin receptor family are sufficient to allow accurate sequence alignments to facilitate 3D structure predictions by homology modelling. The alignments of the ectodomains of human IGF-1R, IR, and IRR are shown in Figure 9.

EXAMPLE 4

Single-Molecule Imaging of Human Insulin Receptor Ectodomain and its Fab Complexes

Cloning and expression of hIR -11 ectodomain protein

A full length clone of the human IR exon -11 form (hIR -11) was prepared by exchanging an Aat II fragment, nucleotides 1195 to 2987, of the

10

15

20

25

30

35

exon +11 clone (plasmid pET; Ellis et al., 1986; gift from Dr W. J. Rutter, UCSF) of hIR (Ebina et al., 1985, *Cell* 40, 747-758) with the equivalent Aat II fragment from a plasmid (pHIR/P12-1, ATCC 57493) encoding part of the extracellular domain and the entire cytoplasmic domain of hIR -11 (Ullrich et al., 1985, *Nature* 313, 756-761). The ectodomain fragment of hIR -11 (2901 bp, coding for the 27 residue signal sequence and residues His1-Asn914) was produced by SalI and SspI digestion and inserted into the mammalian expression vector pEE6.HCMV-GS (Celltech Limited, Slough, Berkshire, UK) into which a stop codon linker had been inserted, as described previously (Cosgrove et al., 1995, *Protein Expression and Purification* 6, 789-798) for the hIR exon +11 ectodomain.

The resulting recombinant plasmid pHIR II (2 µg) was transfected into glycosylation-deficient Chinese hamster ovary (Lec 8) cells (Stanley, 1989, Molec. Cellul. Biol. 9, 377-383) with Lipofectin (Gibco-BRL). After transfection, the cells were maintained in glutamine-free medium GMEM (ICN Biomedicals, Australia) as described previously (Bebbington & Hentschel, 1987, In DNA Cloning (Glover, D., ectodomain.), Vol III, Academic Press, san Diego; Cosgrove et al., 1995, Protein Expression and Purification 6, 789-798). Expressing cell lines were selected for growth in GMEM with 25 µM methionine sulphoximine (MSX, Sigma). Transfectants were screened for protein expression using sandwich ELISA with anti-IR monoclonal antibodies 83-7 and 83-14. Metabolic labelling of cells, immunoprecipitations, insulin binding assays and Scatchard analyses were performed as described previously for the exon +11 form of hIR ectodomain (Cosgrove et al., 1995, , Protein Expression and Purification 6, 789-798).

hIR -11 ectodomain production and purification

The selected clone (inoculum of 1.28 x 108 cells) was grown in a spinner flask packed with 10 g of Fibra-cel disc carriers (Sterilin, U.K.) in 500 ml of GMEM medium containing 10% fetal calf serum (FCS) and 25 μ M MSX. Selection pressure was maintained for the duration of the culture.

Ectodomain was recovered from harvested medium by affinity chromatography on immobilized insulin, and further purified by gel filtration chromatography on Superdex S200 (Pharmacia; 1 x 40 cm) in Tris-buffered saline containing 0.02% sodium azide (TBSA) as described previously (Cosgrove et al., 1995, *Protein Expression and Purification* 6, 789-798). Solutions of purified hIR -11 ectodomain were stored at 4° C prior to use.

10

15

20

25

30

35

Production of Fab fragments and their complexes with ectodomain

Purification of Mabs 83-7, 83-14 and 18-44 from ascites fluid by affinity chromatography using Protein A-Sepharose, and the production of Fabs, were based on the methodologies described in Coligan et al.,1993, Current Protocols in Immunology, Vol 1, pp 2.7.1-2.8.9, Greene Publishing Associates & Wiley - Interscience, John Wiley and Sons. Fab was produced from monoclonal antibody by mercuripapain digestion for 1-4 h, followed by gel filtration on Superdex S200. Products were monitored by reducing and non-reducing SDS-PAGE. For 83-7 Mab, an IgG Type 1 monoclonal antibody, the bivalent (Fab)2' isolated by this method was reduced to monovalent Fab 83-7 by mild reduction with mM L-cysteine.HCl in 100 mM Tris pH 8.0 (Coligan et al., 1993, Current Protocols in Immunology, Vol 1, pp 2.7.1-2.8.9, Greene Publishing Associates & Wiley - Interscience, John Wiley and Sons).

Complexes of Fab with hIR -11 ectodomain were produced by mixing ~ 2.5 to 3.5 molar excess of Fab with hIR -11 ectodomain at ambient temperature in TBSA at pH 8.0. After 1-3 h, the complex was separated from unbound Fab by gel filtration over a Superdex S200 column in the same buffer.

Electron microscopy

Uncomplexed hIR -11 ectodomain and the Fab complexes described above were diluted in phosphate-buffered saline (PBS) to concentrations of the order of 0.01-0.03 mg/ml. Prior to dilution, 10% glutaraldehyde (Fluka) was added to the PBS to achieve a final concentration of 1% glutaraldehyde. Droplets of ~ 3ml of this solution were applied to thin carbon film on 700-mesh gold grids after glow-discharging in nitrogen for 30 s. After 1 min. the excess protein solution was drawn off and followed by application and withdrawal of 4-5 droplets of negative stain [2% uranyl acetate (Agar), 2% uranyl formate (K and K), 2% potassium phosphotungstate (Probing and Structure) adjusted to pH 6.0 with KOH, or 2% methylamine tungstate (Agar) adjusted to pH 6.8 with NH4OH]. In the case of both uranyl acetate and uranyl formate staining, an intermediate wash with 2 or 3 droplets of PBS was included prior to application of the stain. The grids were air-dried and

10

15

20

25

30

35

then examined at 60kV accelerating voltage in a JEOL 100B transmission electron microscope at a magnification of 100,000x. It was found that there was a typical thickness of negative stain in which Fabs were most easily seen. Hence areas for photography had to be chosen from particular zones of the grid. Electron micrographs were recorded on Kodak SO-163 film and developed in undiluted Kodak D19 developer. The electron-optical magnification was calibrated under identical imaging conditions by recording single-molecule images of the antigen-antibody complex of influenza virus neuraminidase heads and NC10 MFab (Tulloch et al., 1986, J.Mol. Biol. 190, 215-225; Malby et al., 1994, Structure, 2, 733-746).

Image processing

Electron micrographs showing particles in a limited number of identifiable projections were chosen for digitisation. Micrographs were digitised on a Perkin-Elmer model 1010 GMS PDS flatbed scanning microdensitometer with a scanning aperture (square) size of 20 mm and stepping increment of 20 mm corresponding to a distance of 0.2 nm on the specimen. Particles were selected from the digitised micrograph using the interactive windowing facility of the SPIDER image processing system (Frank et al., 1996, *J. Struct. Biol.* 116, 190-199). Particles were scaled to an optical density range of 0.0 - 2.0 and aligned by the PSPC reference-free alignment algorithm (Marco et al., 1996, *Ultramicroscopy*, 66, 5-10). Averages were then calculated over a subset of correctly aligned particles chosen interactively as being representative of a single view of the particle. The final average image presented here is derived from a library of 94 images.

Biochemical characterization of expressed hIR -11 ectodomain

The recombinant protein examined corresponded to the the first 914 residues of the 917 residue ectodomain of the exon -11 form of the human insulin receptor (Ullrich et al., 1986, Nature 313, 756-761). Expressed protein was shown, by SDS-PAGE and autoradiography of immunoprecipitated product from metabolically labelled cells, to exist as a homodimeric complex of \sim 270 - 320 kDa apparent mass, which dissociated under reducing conditions into monomeric α and β ' subunits of respective apparent mass \sim 120 kDa and \sim 35 kDa (data not shown).

Purified hIR -11 ectodomain, expressed in Lec8 cells and purified by affinity chromatography on an insulin affinity column, eluted as a symmetrical peak on a Superdex S200 gel filtration column (Figure 10). The

15

20

25

30

protein eluted with an apparent mass of ~400 kDa, calculated from a standard curve generated by the elution positions of standard proteins (not shown). As expected for protein expressed in Lec 8 cells, whose glycosylation defect produces truncated oligosaccharides (Stanley, 1989, . *Molec. Cellul. Biol.* 9, 377-383), this value is less than the apparent mass (450 - 500 kDa) reported for hIR +11 ectodomain expressed in wild-type CHO-K1 cells (Johnson et al., 1988, *Proc. Natl Acad. Sci USA* 85, 7516-7520; Cosgrove et al., 1995, *Protein Expression and Purification* 6, 789-798).

Radioassay of insulin binding to purified ectodomain gave linear Scatchard plots and Kd values of 1.5 - 1.8 x 10-9 M, similar to the values of 2.4 - 5.0 x 10-9 M reported for the hIR -11 ectodomain (Andersen et al., 1990, Biochemistry 29, 7363-7366; Markussen et al., 1991, J. Biol. Chem. 266, 18814-18818; Schaffer, 1994, Eur. J. Biochem. 221, 1127-1132) and the values of ~1.0 - 5.0 x 10-9 M reported for the hIR +11 ectodomain (Schaefer et al., 1992, J. Biol. Chem. 267, 23393-23402; Whittaker et al., 1994, Molec. Endocrinol. 8, 1521-1527; Cosgrove et al., 1995, Protein Expression and Purification 6, 789-798).

Expression of hIGF-1R ectodomain

Cloning, expression and purification of this protein used elements common to those described for hIR -11 ectodomain (Cosgrove et al., 1995, Protein Expression and Purification 6, 789-798), and resulted in purified product that was recognised by receptor-specific Mabs 17-69, 24-31 and 24-60 (Soos et al., 1992, J. Biol. Chem. 267, 12955-63) and was composed of α and β ' subunits of mass similar to those of hIR ectodomain.

Preparation of hIR -11 ectodomain/MFab complexes

A complex of hIR -11 ectodomain and Fab from antibody 83-14 eluted as a symmetrical peak of 460 -500 kDa (Figure 10), as did complexes generated from a mixture of hIR -11 ectodomain with Fab from antibody 18-44 and a mixture of hIR -11 ectodomain with Fab 83-7 (not shown). A cocomplex of ectodomain with Fabs from antibodies 18-44 and 83-14 eluted at 620 kDa, as did a co-complex with MFabs 83-14/83-7 and another with MFabs 83-7/18-44 (not shown). A complex of hIR -11 ectodomain with all three MFab derivatives, 18-44, 83-7 and 83-14, eluted at an apparent mass of ~710 kDa (Figure 10).

35 Electron microscopy

Imaging of hIR -11 and hIGF-1R ectodomains

10

15

20

25

30

35

Single-molecule imaging of uncomplexed dimeric hIR -11 ectodomain was carried out under a variety of negative staining conditions, which emphasised different aspects of the structure of the molecular envelope. Images obtained by this investigation are depicted in Figure 11.

The least aggressive or penetrative stain was potassium phosphotungstate (KPT), which revealed consistent globular particles with very little internal structure other than a suggestion of a division into two parallel bars. Staining with methylamine tungstate also revealed the parallel bar images.

Further investigation using progressively more penetrative, but also potentially more disruptive, stains confirmed the observations above. Staining with uranyl acetate and uranyl formate showed the separation of the parallel bars most clearly, but uranyl acetate showed evidence of disrupting the structure of the particles, i.e. a decrease in the consistency of the particle shape and a tendency for particles to look unravelled or denatured despite having been subjected to chemical cross-linking prior to staining. In areas of thicker stain, parallel bars predominated, whereas in more thinly stained regions, U-shaped particles could be identified, sometimes outnumbering the parallel-bar structures (see Figure 11).

Imaging of hIR -11 ectodomain complexed with 83-7 MFab

This complex was particularly noteworthy for the consistency of the form of the particles, especially under the gentler staining conditions afforded by stains such as KPT and methylamine tungstate. The particles were interpreted as having been restricted in the views they presented, after air-drying on the carbon support film, by the almost diametrically opposite binding of the two Fab arms to the antigen to form a highly elongated complex structure. Under these conditions three distinct views could be recognised (see Figure 11). Two views (interpreted as top down/bottom-up) show the Fab arms displaced clockwise or anti-clockwise as extensions of the parallel plates with two-fold symmetry. The third view shows an image with the two Fab arms in line roughly through the centre of the receptor on its opposite sides, interpreted as a side projection of binding half-way up the plates.

The use of aggressive uranyl stains operating at lower pHs revealed internal structure of the molecular envelope at the expense of consistency of the particle morphology. For example, staining with uranyl acetate or uranyl

15

20

25

30

35

formate showed that parallel bars can be seen in particles in which the Fab arms are displaced either clockwise or anticlockwise but not where the intermediate central or axial position of the two Fab arms is presented in projection. These observations show 83-7 MFab binding roughly half-way up the side-edge of each hIR -11 ectodomain plate. The epitope recognised by Mab 83-7 has been mapped to the cys-rich region, residues 191-297, by analysis of chimeric receptors (Zhang and Roth, 1991, *Proc. Natl. Acad. Sci. USA* 88, 9858-9862).

Imaging of hIR -11 ectodomain complexed with either 83-14 MFab or 18-44 MFab

Complexes were formed with Fabs from the most insulin-mimetic antibody Mab 83-14. Projections showing the Fab arms bound to and extending out from near the base of the U-shaped particles were identified. A second field of particles showed objects composed of two parallel bars as observed for the undecorated ectodomain, with Fab arms projecting obliquely from diametrically opposite extremities (see Figure 11). Similar but less definitive images were also seen when MFab 18-44 was bound to hIR -11 ectodomain. The epitope for Mab 83-14 is between residues 469-592 (Prigent et al., 1990) in the connecting domain. This domain contains one of the disulphide bonds (Cys524-Cys524) between the two monomers in the IR dimer (Schaffer and Ljungqvist, 1992, Biochem. Biophys. Res. Commun. 189, 650-653). The epitope for Mab 18-44 is a linear epitope, residues 765-770 (Prigent et al., 1990, . J. Biol. Chem. 265, 9970-9977) in the β -chain, near the end of the insert domain (O'Bryan et al., 1991, Mol. Cell. Biol. 11, 5016-5031). The insert domain contains the second disulphide bond connecting the two monomers in the IR dimer (Sparrow et al., 1997, J. Biol. Chem., 272, 29460-29467).

Imaging of hIR -11 ectodomain co-complexed with two different MFabs per monomer

The double complex of hIR -11 ectodomain with MFabs 83-7 and 18-44 was stained with 2% KPT at pH 6.0, and revealed the molecular envelopes. The particle appears complex in shape, and can assume a number of different orientations on the carbon support film, giving rise to a number of different projections in the micrograph. The predominant view is of an asymmetric X-shape (some examples circled). It shows the 83-7 MFab arms bound at opposite ends of the parallel bars with the two 18-44 MFabs

10

15

20

25

30

35

appearing as shorter projections extending out from either side of each ectodomain.

Images of the double complex of hIR -11 ectodomain with 83-7 and 83-14 MFabs gave X-shaped images similar to those seen with the 83-7/18-44 double complex. In contrast the double complex of hIR -11 ectodomain with 18-44 and 83-14 MFabs did not present the characteristic asymmetric X-shapes described above. Instead, the molecular envelope appeared to be elongated in many views, with only an occasional X-shaped projection. While a detailed interpretation of these images would be premature, it is clear that MFabs 18-44 and 83-14, two of the more potent insulin mimetic antibodies (Prigent et al., 1990, J. Biol. Chem. 265, 9970-9977), can bind simultaneously to the receptor.

Imaging of hIR -11 ectodomain co-complexed with three different MFabs per monomer

A field of particles from a micrograph of hIR -11 ectodomain were complexed simultaneously with MFabs 83-7, 83-14 and 18-44. In the thicker stain regions the molecular envelope was X-shaped, and looked very similar to that of the double complexes of hIR -11 ectodomain with either 83-7 and 18-44 or 83-7 and 83-14. However, in the more thinly stained regions particles of greater complexity were visible, and it was possible occasionally to identify that there are in fact more than four MFabs bound to the ectodomain dimer.

The single-molecule imaging of hIR -11 ectodomain presented here suggests a molecular envelope for this dimeric species significantly different from that of any previously published study. However, an unequivocal determination of the molecular envelope even from the present study is not entirely straightforward. A major complicating factor here has been the relative fragility of the expressed ectodomain when exposed to the rigors of electron microscope preparation by negative staining. For example, staining with potassium phosphotungstate (KPT, pH 6.0-7.0) frequently suggested a denaturation of the dimeric molecules, but when appropriate conditions were satisfied, good seemingly interpretable molecular envelope images were achieved; staining with methylamine tungstate (pH ~7.0) supported the best KPT molecular envelope images, but had the suggestion of a swelling of the molecular structure at neutral pH; and the acid-pH stains of uranyl acetate (pH ~4.2) and uranyl formate (pH~3.0), with their ability to penetrate the

10

15

20

25

30

35

ectodomain structure, appeared to illuminate not so much the molecular envelope as the zones of high projected protein density within the dimer.

An amalgam of impressions from these various staining regimens has led to the following interpretation of single-molecule images of these undecorated, or naked, dimers: the predominant dimeric molecular image encountered here has been that of "parallel bars" of projected protein density. This view is so predominant, indeed, that it suggests there is either a single preferred orientation of the molecules on the glow-discharged carbon support film, or that this impression of parallel bars of density may represent a mixture of superficially similar structure projections, with the subtleties of these different projections being masked by the relatively coarse resolution of this single-molecule direct imaging. The impression of parallel bars of projected protein density is particularly predominant in regions of thicker negative stain. A second view of the molecular envelope, appreciably less well represented in regions of thicker stain but predominant in regions of thin staining, is that of 'open' U's, or V's. These two views of hIR -11 ectodomain were supported by the single-molecule imaging of hIGF-1R ectodomain under comparable conditions of negative staining.

If the assumption is made that these two recognisable projected views, that of parallel bars and of open U's/V's, are different views of the same dimeric molecule, an assumption strongly supported by the MFab complex imaging, a coarse model of the molecular envelope can be rationalized. The model structure is roughly that of a cube, composed of two almost-parallel plates of high protein density, separated by a deep cleft of low protein main-chain and side-chain density able to be penetrated by stain, and connected by intermediate stain-excluding density near what is assumed here to be their base (that is, nearest the membrane-anchoring region). The width of the low-density cleft appears to be of the order of 30-35Å, sufficient to accommodate the binding of the insulin molecule of diameter ca. 30Å, although we have no electron microscopical evidence to support insulinbinding in this cleft at this stage.

It has been established through imaging of bound 83-7 MFab that there is a dimeric two-fold axis normal to the membrane surface between these plates of density. Occasionally, dimer images display a relative displacement of the bars of density, interpreted here as a limited capacity for a shearing of the interconnecting zone between the two plates along their

10

15

20

25

30

35

horizontal axis parallel to the membrane; other images show bars skewed from parallel, implying a limited capacity for the plates to rotate independently around the two-fold axis, again via this interconnecting zone. These two observations each suggest a relatively flexible connectivity between the dimer plates in the membrane-proximal region of intermediate protein density, which could possibly contribute to the transmembrane signalling process.

The approximate overall measured dimensions of the ectodomain dimer are 110 x 90 x 120Å, calibrated against the dimensions of imaged influenza neuraminidase heads, known from the solved X-ray structure (Varghese et al., 1983, Nature 303, 35-40). It can be noted that there is a compatibility here between the molecular weights and molecular dimensions of these two molecular species: the compact tetrameric influenza neuraminidase heads of Mr $\sim\!200$ kDa occupy a volume almost 100 x 100 x 60 Å; the more open dimeric insulin receptor ectodomains of similar Mr $\sim\!240$ kDa imaged here occupy a volume approximately 110 x 90 x 120 Å , roughly twice that of the neuraminidase heads, accommodating the slightly higher molecular weight and substantial central low-density cleft.

The low-resolution roughly cubic compact structure proposed here differs substantially from the T-shaped model proposed by Christiansen et al. (1991, Proc. Natl. Acad. Sci. U. S. A. 88, 249-252) and Tranum-Jensen et al., (1994, J. Membrane Biol. 140, 215-223) for the whole receptor and the elongated model proposed by Schaefer et al. (1992, J. Biol. Chem. 267, 23393-23402) for soluble ectodomain. Significantly, those previous studies did not provide any convincing independent electron microscopical evidence that their imaged objects were in fact insulin receptor.

In the present study, the identity of the imaged molecules as hIR -11 ectodomain has been confirmed by imaging complexes of the dimer with Fabs of the three well-established conformational Mabs against native hIR, 83-7, 83-14 and 18-44 (Soos et al.,1986, Biochem. J. 235, 199-208; 1989, Proc. Natl Acad. Sci. USA 86, 5217-5221), bound singly and in combination. In all these instances, virtually every particle in the field of view exhibited MFab decoration through binding to conformational epitopes, establishing not only the identity of the imaged particles but also the conformational integrity of the expressed ectodomains. Furthermore, the cleanliness and uniformity of these hIR -11 ectodomain preparations, both naked and decorated, visualised

here by electron microscopy demonstrate their high suitability for X-ray crystallization trials.

The known flexibility of the Fab arms exacerbates image-to-image variability beyond the limited extent already described for the undecorated dimeric ectodomains, complicating any precise interpretation of these antigen-antibody complexes. Such molecular flexibility also renders largely impractical any single-molecule computer image averaging to facilitate image interpretation, progressively more so with the higher order antigen-antibody complexes studied here.

The most readily interpretable of these images, showing least image-

15

5

10

to-image variability, are those of 83-7 MFab bound to dimers where, fortuitously, the antigen-antibody complex is constrained in its degrees of rotational freedom on the carbon support film. Many projected images show the two Fab arms in line roughly through the centre of the antigen on its opposite sides, interpreted as a side projection of binding half-way up the plates from their membrane-proximal base. Other sub-sets of images show the two Fab arms still parallel but displaced clockwise or anticlockwise with 2-fold symmetry, each Fab approximating an extension of one of the parallel bars of antigen density, interpreted here as representing top or bottom projections along the 2-fold axis. The third projection, along the axis of the Fab arms, could not be sampled here because of the constraining geometry of this molecular complex. These observations suggest binding of 83-7 MFab roughly half-way up the side-edge of the hIR -11 ectodomain plate. This then

25

30

35

20

9862). The spatial separation and relative orientations of the two binding epitopes of Mab 83-7 on the hIR -11 ectodomain dimer as indicated here appear inconsistent with the proposal that Mab 83-7 could bind intramolecularly to hIR (O'Brien et al., 1987, Biochem J. 6, 4003-4010).

allows an initial attempt at spatially mapping the 83-7 MFab epitope, which has been sequence-mapped to residues 191-297 in the cys-rich region of the

insulin receptor (Zhang and Roth, 1991, Proc. Natl. Acad. Sci. USA 88, 9858-

Decoration of the ectodomain dimer with 83-7 MFab established that the two plates of high protein-density are arranged with 2-fold symmetry. Decoration with either 83-14 or 18-44 MFab, on the other hand, allowed sampling of the third projection of the ectodomain dimer precluded by 83-7 MFab binding. Significantly, this third view established unequivocally the U-shaped projection of the hIR -11 ectodomain dimer, something which was

10

15

20

25

30

35

only able to be assumed with the undecorated ectodomain images. Further, this projection has allowed a rough spatial mapping close to the base of the U-shaped dimer for the epitopes recognised by 83-14 MFab (residues 469-592, connecting domain) and 18-44 MFab (residues 765-770, b-chain insert domain; exon 11 plus numbering, Prigent et al., 1990, J. Biol. Chem. 265, 9970-9977).

Inherent in the model structure is the implication that, with the twofold axis aligned normal to the membrane surface, the mouth of the lowdensity cleft where insulin binding may occur would lie most distant from the transmembrane anchor, whilst the zone of intermediate density connecting the two high-density plates would be in close proximity to the membrane. It follows, in this model, that the L1/cys-rich/L2 domains(Bajaj et al., 1997, Biochim. Biophys. Acta 916, 220-226; Ward et al.,1995, Proteins: Struct., Funct., Genet. 22, 141-153), which comprise much of the insulinbinding region (see Mynarcik et al., 1997, . J. Biol. Chem. 272, 2077-2081), most probably lie in the membrane-distal upper halves of the two plates, whilst the membrane-proximal lower halves contain the connecting domains, the fibronectin-type domains, the insert domains and the interchain disulphide bonds (Schaffer and Ljungqvist, 1992, Biochem. Biophys. Res. Commun. 189, 650-653; Sparrow et al., 1997, J. Biol. Chem., 272, 29460-29467). Such a disposition of domains is supported by the images seen with the single MFab decoration, the 83-7 MFab epitope in the cys-rich region being spatially mapped roughly half-way up the side-edge of the ectodomain plates, and the 83-14 and 18-44 MFab epitopes (connecting domain and β chain insert domain, respectively) being mapped near the base of the plates. Our preference is for a single a-b¢ monomer to occupy a single plate, although the possibility of a single monomer straddling the two plates of protein density cannot be discounted.

The more complex images involving co-binding of two, and even more so of all three, MFabs to each monomer of the ectodomain dimer are not easily interpretable with respect to relative domain arrangements within the monomer at present, not least of all because of the difficulty of finding conditions of negative staining that will simultaneously maintain the integrity of the Fab binding while highlighting recognisable and reproducible details of the internal structure of the dimeric IR ectodomain.

The data presented here demonstrate the ability of single-molecule imaging to give an initial insight into the topology of multidomain structures such as the ectodomain of hIR, and the value of combining this technique with that of either single or multiple monoclonal Fab attachment per monomer as a potential means of epitope, and domain, mapping of the structure. By imaging Fab complexes of other members of the family, such as hIGF-1R ectodomain, and combining available sequence-mapped epitope information with that presented here, a more comprehensive understanding of domain arrangements within the IR family ectodomains should be forthcoming.

EXAMPLE 5

10

15

20

25

30

35

Structure-Based Design of Ligands for the IGF Receptor as Potential Inhibitors of IGF Binding

The structure of IGF receptor can be considered as a filter or screen to design, or evaluate, potential ligands for the receptor. Those skilled in the art can use a number of well known methods for de novo ligand design, such as GRID, GREEN, HSITE, MCSS, HINT, BUCKETS, CLIX, LUDI, CAVEAT, SPLICE, HOOK, NEWLEAD, PRO_LIGAND, ELANA, LEGEND, GenStar, GrowMol, GROW, GEMINI, GroupBuild, SPROUT, and LEAPFROG, to generate potential agonists or antagonists for IGF-1R. In addition, the IGF-1R structure may be used as a query for database searches for potential ligands. The databases searched may be existing eg ACD, Cambridge Crystallographic, NCI, or virtual. Virtual databases, which contain very large numbers (currently up to 10¹²) of chemically reasonable structures, may be generated by those skilled in the art using techniques such as DBMaker, ChemSpace, TRIAD and ILIAD.

The IGFR structure contains a number of sites into which putative ligands may bind. Search strategies known to those skilled in the art may be used to identify putative ligands for these sites. Examples of two suitable search strategies are described below:

(i) Database Search

The properties of key parts of the putative site may be used as a database search query. For example, the Unity 2.x database software may be used. A flexible 3D search can be run in which a "directed tweak" algorithm is used to find low energy conformations of potential ligands which satisfy the query.

(ii) De novo design of ligands

10

15

20

The Leapfrog algorithm as incorporated in the software package, Sybyl version 6.4.2 (Tripos Associates, St Louis), may be used to design potential ligands for IGF-1R sites. The coordinates of residues around the site may be taken from the x-ray structure, hydrogens and charges (Kollman all atom dictionary charges) added. From the size, shape and properties of the site, a number of potential ligands may be proposed. Leapfrog may be used to optimize the conformation of ligands and position on the site, to rank the likely strength of binding interactions with IGF-1R, and to suggest modifications to the structures which would have enhanced binding.

It is also possible to design ligands capable of interacting with more than one site. One way in which this may be done is by attaching flexible linkers to ligands designed for specific sites so as to join them. The linkers may be attached in such a way that they do not disrupt the binding to individual sites.

All references cited above are incorporated herein in their entirety by reference.

It will be appreciated by persons skilled in the art that numerous variations and/or modifications may be made to the invention as shown in the specific embodiments without departing from the spirit or scope of the invention as broadly described. The present embodiments are, therefore, to be considered in all respects as illustrative and not restrictive.

Claims:

10

- 1. A method of designing a compound able to bind to a molecule of the insulin receptor family and to modulate an activity mediated by the molecule, including the step of assessing the stereochemical complementarity between the compound and the receptor site of the molecule, wherein the receptor site includes:
- (a) amino acids 1 to 462 of the receptor for IGF-1, having the atomic coordinates substantially as shown in Figure 1;
 - (b) a subset of said amino acids, or;
- (c) amino acids present in the amino acid sequence of a member of the insulin receptor family, which form an equivalent three-dimensional structure to that of the receptor molecule as depicted in Figure 1.
- A method according to claim 1, in which the compound is selected or modified from a known compound identified from a database.
 - 3. A method according to claim 1, in which the compound is designed so as to complement the structure of the receptor molecule as depicted in Figure 1.
 - 4. A method according to any one of claims 1 to 3, in which the compound has structural regions able to make close contact with amino acid residues at the surface of the receptor site lining the groove, as depicted in Figure 2.
- 25 5. A method according to any one of claims 1 to 4, in which the compound has a stereochemistry such that it can interact with both the L1 and L2 domains of the receptor site.
- 6. A method according to any one of claims 1 to 4, in which the compound has a stereochemistry such that it can interact with the L1 domain of a first monomer of the receptor homodimer, and with the L2 domain of the other monomer of the receptor homodimer.
- 7. A method according to any one of claims 1 to 4, in which the interaction of the compound with the receptor site alters the position of at least one of the

- L1, L2 or cysteine-rich domains of the receptor molecule relative to the position of at least one of the other of said domains.
- 8. A method according to claim 7, in which the compound interacts with
 5 the β sheet of the L1 domain of the receptor molecule, thereby causing an alteration in the position of the L1 domain relative to the position of the cysteine-rich domain or of the L2 domain.
- 9. A method according to claim 7, in which the compound interacts with the receptor site in the region of the interface between the L1 domain an the cysteine-rich domain of the receptor molecule, thereby causing the L1 domain and the cysteine-rich domain to move away from each other.
- 10. A method according to claim 7, in which the compound interacts with the hinge region between the L2 domain and the cysteine-rich domain of the receptor molecule, thereby causing an alteration in the positions of the L2 domain and the cysteine-rich domain relative to each other.
- A method according to any one of claims 1 to 10, in which the
 stereochemical complementarity between the compound and the receptor site is such that the compound has a K_b for the receptor side of less than 10⁻⁶M.
 - 12. A method according to claim 11, in which the K_b is less than 10⁻⁸M.
- 25 13. A method according to any one of claims 1 to 12, in which the compound has the ability to increase an activity mediated by the receptor molecule.
- 14. A method according to any one of claims 1 to 12, in which the compound has the ability to decrease an activity mediated by the receptor molecule.
- 15. A method according to claim 14, in which the stereochemical interaction between the compound and the receptor site is adapted to prevent
 35 the binding of a natural ligand of the receptor molecule to the receptor site.

- 16. A method according to claim 14 or claim 15, in which the compound has a K_1 of less than $10^{-6}M$.
- 17. A method according to claim 16, in which the compound has a K₁ of less than 10.8 M.
 - 18. A method according to claim 17, in which the compound has a K_1 of less than $10^{-9}M$.
- 10 19. A method according to any one of claims 1 to 18, in which the receptor is the IGF-1R.
 - 20. A method according to any one of claims 1 to 18, in which the receptor is the insulin receptor.
 - 21. A computer-assisted method for identifying potential compounds able to bind to a molecule of the insulin receptor family and to modulate an activity mediated by the molecule, using a programmed computer including a processor, an input device, and an output device, including the steps of:
 - (a) inputting into the programmed computer, through the input device, data comprising the atomic coordinates of the IGF-1R molecule as shown in Figure 1, or a subset thereof;
 - (b) generating, using computer methods, a set of atomic coordinates of a structure that possesses stereochemical complementarity to the atomic coordinates of the IGF-1R site as shown in Figure 1, or a subset thereof, thereby generating a criteria data set;
 - (c) comparing, using the processor, the criteria data set to a computer database of chemical structures;
 - (d) selecting from the database, using computer methods, chemical structures which are structurally similar to a portion of said criteria data set; and
 - (e) outputting, to the output device, the selected chemical structures which are similar to a portion of the criteria data set.
- 22. A computer-assisted method according to claim 21, in which the method is used to identify potential compounds which have the ability to decrease an activity mediated by the receptor.

20

25

10

15

20

- 23. A computer-assisted method according to claim 21 or claim 22, which further includes the step of selecting one or more chemical structures from step (e) which interact with the receptor site of the molecule in a manner which prevents the binding of natural ligands to the receptor site.
- 24. A computer-assisted method according to any one of claims 21 to 23, which further includes the step of obtaining a compound with a chemical structure selected in steps (d) and (e), and testing the compound for the ability to decrease an activity mediated by the receptor.
- 25. A computer-assisted method according to claim 21, in which the method is used to identify potential compounds which have the ability to increase an activity mediated by the receptor molecule.
- 26. A computer-assisted method according to claim 25, further including the step of obtaining a molecule with a chemical structure selected in steps (d) and (e), and testing the compound for the ability to increase an activity mediated by the receptor.
 - 27. A computer-assisted method according to any one of claims 21 to 26, in which the receptor is the IGF-1R.
- 28. A computer-assisted method according to any one of claims 21 to 26, in which the receptor is the insulin receptor.
 - 29. A method of screening of a putative compound having the ability to modulate the activity of a receptor of the insulin receptor family, including the steps of identifying a putative compound by a method according to any one of claims 1 to 29, and testing the compound for the ability to increase or decrease an activity mediated by the receptor.
 - 30. A method according to claim 29, in which the test is carried out in vitro.
- 35 31. A method according to claim 29, in which the test is a high throughput assay.

- 32. A method according to claim 29, in which the test is carried out in vivo.
- 33. A method according to claim 30, in which the test is carried out in vivo.

Figure 1

			rigure	_			
			55.907 1	1.986	66.300 1	.00 59.11	AAAA C
ATOH	1 CB GLU	1 1				.00 78.17	AAAA C
ATOH	2 CG GLU	ì			64.321 1	.00 85.10	AAAA C
ATOH	3 CD GLU	1			64.796 1	00 86.18	AAAA O
ATOH	4 OE1 GLU	1			63.270 1	1.00 78.70	O AAAA
ATOH	5 OE2 GLU	1			66.350	.00 48.46	AAAA C
ATOH	6 C GLU	1			65.784	1.00 51.27	AAAA O
ATOH	7 O GLU	1				1.00 61.64	II AAAA
ATOH	10 II GLU	i			67.081	1.00 54.77	AAAA C
ATOH	12 CA GLU	2			66.375	1.00 37.66	aaaa ii
ATOH	13 H ILE	2			65.604	1.00 40.87	AAAA C
ATOH	15 CA ILE 16 CB ILE	2				1.00 41.97	AAAA C
ATOH		2			65.484	1.00 38.50	AAAA C
ATOH		2			67.663	1.00 46.58	AAAA C
ATON		2			68.498	1.00 32.29	AAAA C
ATOM	19 CD1 ILE	2			64.139	1.00 46.47	AAAA C
ATOI1	20 C ILE 21 O ILE	2				1.00 51.66	aaaa o
ATOH		3			63.196	1.00 49.61	AAAA II
ATOH		3			61.773	1.00 38.93	AAAA C
ATOM		3		15.708	61.302	1.00 42.06	AAAA C
ATOI1		3		15.521		1.00 42.37	AAAA O
FIOTA		3		13.415	60.999	1.00 35.66	AAAA C
I-OTA		3		12.004		1.00 36.98	aaaa s
ATOI4		4		16.709	60.580	1.00 42.39	AAAA I!
ATOM	29 II GLY	4		17.718	60.003	1.00 47.71	AAAA C
ATOI 1	31 CA GLY			18.407	58.869	1.00 48.23	AAAA C
ATOH	32 C GLY	4	52.916	18.345		1.00 55.36	O AAAA
ATOIT	33 O GLT	4 5	51.056	19.212	58.048	1.00 49.63	AAAA II
ATOH	34 (1 PRO	5	51.637	19.947	56.860	1.00 45.28	AAAA C
ATOI:	35 CD PRO		49.605	19.341	58.083	1.00 41.57	AAAA C
ATOH	36 CA PRO	5 5	49.397	20.703	57.474	1.00 44.30	AAAA C
ATOI1	37 CB PRO	5	50.632	21.036	56.683	1.00 46.43	AAAA C
MOTA	38 CG PRO	5	48.932	18.217	57.354	1.00 36.40	аааа с
ATOIL	39 C PRO	5	49.403	17.094	57.396	1.00 43.35	AAAA O
ATOI1	40 O PRO	6	47.787	18.438	56.795	1.00 39.15	II AAAA
ATON	41 N GLY	6	16.896	17.336	56.350	1.00 39.24	AAAA C
ATOH	43 CA GLY	6	47.710	16.365	55.529	1.00 33.68	AAAA C
ATOM	44 C GLY	6	48.510	16.863	54.753	1.00 36.00	AAAA O
ATOH	45 O GLY	7	47.586	15.111	55.788	1.00 35.70	AAAA H
ATOM	46 II ILE	7	18.307	14.053	55.141	1.00 37.65	аала с
ATOI1	48 CA ILE	7	48.556	12.797	55.933	1.00 36.31	аааа с
ATOM	49 CB ILE	7	49.043	11.700	54.988	1.00 34.67	AAAA C
ATON	50 CG2 ILE	7	49.561	12.857	57.067	1.00 39.34	AAAA C
ATOM	51 CG1 ILE	7	49.678	14.249	57.668	1.00 40.22	AAAA C
ATOH	52 CD1 ILE	7	47.338	13.762	53.977	1.00 45.00	AAAA C
ATOII	53 C ILE	7	46.150	13.843	54.195	1.00 51.52	AAAA O
ATON	54 O ILE 55 H ASP	8	47.767	13.631	52.751	1.00 45.60	AAAA II
ATON	55 II ASP 57 CA ASP	8	46.938	13.283	51.631	1.00 44.05	AAAA C
ATO11	58 CB ASP	8	47.003	14.469	50.651	1.00 44.21	AAAA C
ATOH	59 CG ASP	8	45.909	14.379	49.600	1.00 43.48	AAAA C
ATOH	60 OD1 ASP	8	45.660	13.262	49.096	1.00 51.77	AAAA O
ATOH		8	45.253	15.374	49.251	1.00 45.84	AAAA O
ATOH	61 OD2 ASP 62 C ASP	8	47.428	12.000	50.992	1.00 42.16	aaaa c
ATOI1	63 O ASP	8	48.423	12.143	50.339	1.00 48.50	O AAAA
HOTA	64 II ILE	٥	47.096	10.817	51.321	1.00 42.76	AAAA 11
ATOH	66 CA ILE	ڼ	47.441	9.505	50.939	1.00 44.05	AAAA C
ATOH	67 CB ILE	ģ	47.212	8.483	52.077	1.00 40.82	аљаа с
ATOH ATOH	68 CG2 ILE	وَ	47.669	7.085	51.653	1.00 36.35	AAAA C
	69 CG1 ILE	ó	47.888	8.917	53.364	1.00 41.17	AAAA C
ATOII	70 CD1 ILE	9	49.376	8.947	53.286	1.00 43.78	AAAA C
ATC(1	71 7 ILE	وَ	46.530	9.137	49.794	1.00 51.48	AAAA C
ATOH	72 O ILE	ő	45.338	9.420	49.832	1.00 63.05	AAAA O
ATOH ATOH	73 II ARG	10	47.004	8.417	48.812	1.00 54.87	H AAAA H
ATOH	75 CA ARG	10	46.283	8.089	47.600	1.00 54.17	AAAA C
ATOI	76 CB ARG	10	45.703	9.358	47.023	1.00 48.54	AAAA C
ATOH	77 CG ARG	10	46.361	10.169	45.952	1.00 46.55	AAAA C
ATOH	78 CD ARG	10	46.002	11.635	46.264	1.00 52.63	AAAA C
ATOH	79 HE ARG	10	45.082	12.226	45.284	1.00 59.27	II AAAA
ATOH	81 CZ ARG	10	44.269	13.262	45.498	1.00 56.22	AAAA C
ATOH	92 1/H1 ARG	10	44.153	13.891	46.666	1.00 55.14	II AAAA II
ATOH	85 HH2 ARG	10	43.455	13.803		1.00 52.29	II AAAA
ATOH	88 C ARG	10	47.019	7.373	46.492	1.00 57.23	AAAA C
ATO11	89 O ARG	10	48.240	7.288	46.281	1.00 56.32	AAAA O
ATOH	90 II ASII	11	46.248	6.654		1.00 57.23	II AAAA
ATOH	92 CA ASII	11	46.800			1.00 50.73	AAAA C
ATO! 1	93 CB ASII	11	47.704			1.00 44.65	AAAA C
ATO:	94 CG ASII	11	46.878				ÀAAA C
ATOI-I	95 OD1 ASH	11	45.749				AAAA O
ATOH	96 HD2 ASH	11	47.499				AAAA II
ATOH	99 C ASII	11	47.635				AAAA C
ATOH	100 O ASH	11	47.303				AAAA O
ATOH	101 # ASP	12	48.566				AAAA II
ATOH	103 CA ASP	12	49.204	3.570	16.263		AAAA C
7461							

WO 33/2	20347						
					2/58		AAAA C
ATOH	104 CB ASP	12				1.00 66.47 1.00 68.25	AAAA T
IOTA	105 CG ASP					1.00 58.31	AAAA O
ATOH	106 OD1 ASP 107 OD2 ASP	12 12			43.989	1.00 70.56	AAAA O
aton Aton	108 C ASP	12	49.061			1.00 59.23 1.00 59.65	AAAA C AAAA O
ATOI1	109 O ASP	12				1.00 59.64	II AAAA
ATOI1	110 H TYR	13 13				1.00 64.06	AAAA C
ATOI1	112 CA TYR 113 CB TYR	13		0.196	49.409	1.00 64.56	AAAA C
ATOH ATOH	114 CG TYR	13			50.721	1.00 69.18 1.00 72.71	AAAA C AAAA C
ATO:	115 CD1 TYR	13			51.248 52.450	1.00 71.51	AAAA C
ATOH	116 CEL TYR 117 CD2 TYR	13 13			51.457	1.00 70.36	AAAA I
HOTA NOTA	117 CD2 TYR 118 CE2 TYR	13	47.788 -	1.778	52.661	1.00 71.64	AAAA C
ATOII	119 CZ TYR	13			53.160	1.00 71.31 1.00 63.25	AAAA C AAAA O
ATOH	120 OH TYR	13			54.358 50.198	1.00 65.99	AAAA C
ATON	122 C TYR 123 O TYR.	13 13			51.354	1.00 65.01	AAAA O
HOTA	124 16 GLH	14	50.786	1.541	49.594	1.00 63.51 1.00 63.51	AAAA II AAAA C
ATOH	126 CA GLII	14	52.078	1.681	50.218 49.219	1.00 68.37	AAAA C
ATCH	127 CB GLU	14 14	53.174 52.863 -	0.078	48.686	1.00 84.62	AAAA C
ATOH ATOH	128 CG GLU 129 CD GLU	14		0.515	47.754	1.00 92.28	AAAA C
ATOH	130 OE1 GLII	14		0.161	46.573	1.00 94.82 1.00 98.03	AAAA () AAAA ()
ATOH	131 HE2 GLH	14	-	3.058	48.361 50.753	1.00 61.62	AAAA C
ATOH	134 C GLN 135 O GLN	14 14	52.434 53.266	3.292	51.644	1.00 62.09	AAAA C
ATOH ATOH	135 O GLN 136 N GLN	15	51.628	4.038	50.349	1.00 57.02	aaaa ii aaaa c
ATOH:	138 CA GLII	15	51.724	5.399	50.831	1.00 51.71 1.00 43.75	AAAA C
ATOH	139 CB GLU	15	50.861 51.566	6.220 6.605	49.911 48.648	1.00 59.65	AAAA C
ATOH ATOH	140 CG GLH 141 CD GLH	15 15	51.554	8.105	48.428	1.00 72.96	AAAA T
ATON	142 OE1 GLH	15	51.168	9.005	49.184	1.00 80.58 1.00 74.17	AAAA O II AAAA II
ATOH	143 HEZ GLH	1.5	52.016	8.378 5.530	47.211 52.258	1.00 50.15	AAAA C
ATOH	146 C GLN 147 O GLN	15 15	51.219 51.576	6.500	52.940	1.00 48.04	AAAA C
ATOH ATOH	147 O GLI! 148 H LEU	16	50.440	4.535	52.688	1.00 46.22	AAAA 11 AAAA C
HOTA	150 CA LEU	16	49.913	4.449	54.019 54.159	1.00 45.52 1.00 37.73	AAAA C
ATOM	151 CB LEU	16 16	48.950 47.502	3.295 3.425	53.707	1.00 41.40	AAAA C
MOTA	152 CG LEU 153 CD1 LEU	16	46.837	2.063	53.790	1.00 42.43	AAAA C
ATOH ATOH	154 CD2 LEU	16	46.687	4.424	54.545	1.00 35.93 1.00 51.52	AAAA C AAAA C
ATON	155 C LEU	16	51.042 50.913	4.280 4.601	55.039 56.235	1.00 52.53	AAAA O
ATOH	156 O LEU 157 H LYS	16 17	52.252	3.936	54.560	1.00 51.01	II AAAA
ATOH ATOH	159 CA LYS	17	53.422	3.914	55.404	1.00 50.73 1.00 56.10	AAAA C AAAA C
ATOH	160 CB LYS	17	54.609 54.539	3.252 1.733	54.737 54.831	1.00 62.40	AAAA C
ATON	161 CG LYS 162 CD LYS	17 17	54.768	1.278	53.387	1.00 63.85	AAAA C
ATOH ATOH	163 CE LYS	17	55.316	-0.141	53.426	1.00 68.40 1.00 73.83	aaaa c aaaa ii
ATOH	164 HZ LYS	17	56.537	-0.225 5.270	52.554 55.852	1.00 44.78	AAAA C
ATOH	168 C LYS 169 O LYS	17 17	53.944 54.492	5.262	56.933	1.00 39.39	AAAA C
ATOH ATOH	169 O LTS 170 H ARG	18	53.524	6.344	55.201	1.00 41.15	AAAA C
ATOH	172 CA ARG	18	53.827	7.673	55.676	1.00 43.01 1.00 43.97	AAAA C
ATOH	173 CB ARG	18 18	53.250 53.888	8.702 8.764	54.704 53.333	1.00 53.60	AAAA C
ATOH ATOH	174 CG ARG 175 CD ARG	18	52.964	9.362	52.269	1.00 60.34	AAAA C
ATCII	176 HE ARG	18	52.528	10.703	52.650	1.00 50.00 1.00 48.86	AAAA 11 AAAA 2
HOTA	178 CC ARG	19	51.628 51.068	11.444	52.021 50.943	1.00 47.96	AAAA II
ATOH	179 HH1 ARG 182 HH2 ARG	18 18	51.377	12.656	52.555	1.00 43.72	AAAA II
ATOH ATOH	185 C ARG	18	53.268	7.924	57.077	1.00 44.03	D AAAA C AAAA O
ATOH	186 O ARG	18	53.402	9.010 7.069	57.644 57.632		AAAA II
ATCH	187 H LEU 189 CA LEU	19 19	52.445 51.6 5 3	7.282	58.794		AAAA ?
ATOH ATOH	189 CA LEU 190 CB LEU	1.9	50.186	6.924	58.674	1.00 50.83	C AAAA C
ATON	191 CG LEU	19	49.202	7.371			AAAA C
ATO!1	192 CD1 LEU	19	47.946 49.918	6.743 8.866			AAAA C
ATOH ATOH	193 CD2 LEU 194 C LEU	19 19	52.210	6.428		1.00 49.87	AAAA C
ATON	195 O LEU	19	51.970	6.810			0 AAAA :: AAAA
ATOH	196 H GLU	20	53.270	5.708			AAAA C
ATOM	198 CA GLU	20 20	53.819 54.876	4.833 3.960		1.00 57.91	2 AAAA C
ATOH ATOH	199 CB GLU 200 CG GLU	20	55.893	4.840	59.272	1.00 70.16	AAAA C
ATOIL	201 CD GLU	20	57.095	4.077			AAAA C AAAA O
PIOTA	202 OE1 GLU	20	58.123	4.795 2.885			AAAA O
ATOH ATOH		20 20	56.993 54.310	5.417			AAAA C
ATON		20	54.301	4.652	2 62.93		o aaaa 1: aaaa
ATO!	206 II ASII	21	54.633	6.659			AAAA C
ATOI1		2 1	- 55.954	9.204 8.141		8 1.00 49.76	AAAA C
ATOH ATOH	D DC!!	21 21	54.066 54.229	8.456			AAAA C
A1O1							

WU 99/2				
			3/58	
ATOI1	211 CB ASH	21	56,370 6,003 63,290 1,00 59,11	D AAAA
ATOH	211 CB ASH 212 CG ASH	21	57.413 7.051 62.796 1.00 68.38	AAAA C
ATON	213 ODI ASH	22	57.499 5.855 63.122 1.00 58.51	aaaa o aaaa ii
ATOH	214 HD2 ASH	21	58.348 7.469 61.890 1.00 77.90 53.109 8.711 63.351 1.00 47.44	AAAA II
ATOI1	216 H CYS	22	22.12.	AAAA C
ATOH	218 CA CYS	22	32.10	AAAA C
HOTA	219 C CYS	22	51.215 9.089 65.021 1.00 40.45 50.750 7.923 65.069 1.00 36.07	AAAA O
ATOM	220 O CYS 221 CB CYS	22 22	51 182 9.921 62.690 1.00 44.82	AAAA C
ATOH ATOH	021 CB CYS 022 SG CYS	22	52.076 10.328 61.148 1.00 39.51	AAAA S
ATOM	223 11 THR	23	51.287 9.801 66.137 1.00 36.24	II AAAA
ATOH	225 CA THR	23	50.339 9.482 67.204 1.00 43.51	AAAA C AAAA C
ATOH	226 CB THR	23	50.944 9.481 68.593 1.00 41.38 51.410 10.843 68.822 1.00 51.21	AAAA O
ATOH!	227 OG1 THR	23	31.410	AAAA C
HOTA	229 CG2 THR	23	1 00 41 55	AAAA C
HOTA	230 C THR	23 23	49.250 10.599 67.116 1.00 44.33 48.085 10.414 67.481 1.00 45.95	AAAA O
ATOM	231 O THR 232 II VAL	24	19.646 11.797 66.689 1.00 33.03	AAAA II
HOTA MOTA	234 CA VAL	24	48.732 12.855 66.442 1.00 35.29	AAAA C
ATOM	235 CB VAL	24	48.925 13.979 67.456 1.00 30.60	AAAA C AAAA C
ATOII	236 CG1 VAL	24	48.056 15.157 67.082 1.00 27.21	AAAA C
ATOI1	237 CG2 VAL	24	48.656 13.566 68.886 1.00 25.37 48.895 13.447 65.043 1.00 41.52	AAAA C
ATOI1	238 C VAL	24	70.000	AAAA O
ATOIT	239 O VAL	24	49.987 13.963 64.791 1.00 44.40 47.855 13.450 64.203 1.00 40.13	AAAA II
ATO!·I	240 H ILE 242 CA ILE	25 25	47.908 14.094 62.882 1.00 32.05	AAAA C
MOTA HOTA	242 CA ILE 243 CB ILE	25	47,113 13,299 61.853 1.00 25.85	AAAA C
ATOI1	244 CG2 ILE	25	47.027 14.039 60.542 1.00 18.73	AAAA C
ATOH	245 CG1 ILE	25	47.677 11.896 61.705 1.00 29.80	AAAA C AAAA C
ATOH	246 CD1 ILE	35	47.169 11.155 60.471 1.00 27.41 17.397 15.490 62.941 1.00 32.92	AAAA C
ATOH	247 C ILE	25	47.33	AAAA O
ATOH	248 O ILE	25	46.223 15.776 63.213 1.00 40.91 48.264 16.472 63.042 1.00 36.60	II AAAA II
ATOH	249 N GLU 251 CA GLU	26 26	47.832 17.847 63.226 1.00 29.24	AAAA C
ATOH ATOH	251 CA GLU 252 CB GLU	26	48.875 18.703 63.856 1.00 29.92	AAAA C
ATOH	253 CG GLU	26	48.490 26.144 64.116 1.00 38.06	AAAA C
ATOH	254 CD GLU	26	49.561 20.762 65.013 1.00 37.39	AAAA C AAAA O
ATOM	255 OE1 GLU	26	50.654 20.937 64.489 1.00 41.56 49.571 21.175 66.182 1.00 49.16	AAAA O
ATOM	256 OE2 GLU	26	75.57	AAAA C
ATON	257 C GLU	26 26	47.413 18.376 61.869 1.00 37.79 48.161 19.069 61.181 1.00 39.68	AAAA O
MOTA	258 O GLU 259 N GLY	26 27	46.117 18.104 61.582 1.00 37.28	AAAA II
ATOM ATOM	259 N GLY 261 CA GLY	27	45.498 18.503 60.320 1.00 31.17	AAAA C
ATOM ATOM	262 C GLY	27	44.531 17.400 59.893 1.00 33.72	AAAA C
ATOM	263 O GLY	27	43.988 16.715 60.775 1.00 33.29	AAAA O
ATOH	264 II TYR	28	44.304 17.209 58.604 1.00 29.24	AAAA C
ATOH	266 CA TYR	28	43.318 16.189 58.253 1.00 28.93 42.403 16.794 57.217 1.00 31.53	AAAA C
ATOH	267 CB TYR	28	72.70	AAAA C
HOTA	268 CG TYR	28 28	43.058 17.256 55.962 1.00 31.75 43.764 16.355 55.116 1.00 36.07	AAAA C
ATOH	269 CD1 TYR 270 CE1 TYR	28	44.361 16.706 53.967 1.00 28.91	AAAA C
ATOH ATOH	271 CD2 TYR	28	43,130 18,572 55,606 1,00 30,98	AAAA C
ATON	272 CE2 TYR	28	43,769 18,972 54,428 1,00 28,77	AAAA C
ATOH	273 CS TYR	28	44.367 18.021 53.652 1.00 31.53	AAAA C
ATOM	274 OH TYR	28	44.971 18.425 52.464 1.00 44.74	AAAA O AAAA C
ATOM	276 C TYR	28	43.953 14.946 57.697 1.00 29.23 45.119 15.147 57.383 1.00 35.58	AAAA O
ATO:	277 O TYR.	28	45.119 15.147 57.383 1.00 35.58 43.250 13.900 57.445 1.00 26.63	AAAA II
ATOH	278 H LEU 280 CA LEU	29 29	43.764 12.730 56.803 1.00 29.83	AAAA C
ATOH ATOH	281 CB LEU	29	43.830 11.611 57.856 1.00 27.09	AAAA C
ATOI1	182 CG LEU	29	44.212 10.258 57.242 1.00 31.90	AAAA C
ATOH	283 CD1 LEU	29	45.538 10.396 56.469 1.00 35.03	AAAA C
ATOII	284 CD2 LEU	29	44.551 9.203 58.290 1.00 25.05	AAAA C AAAA C
ATOH	285 C LEU	3.6	42.897 12.342 55.616 1.90 33.84 41.689 12.165 55.906 1.00 43.29	AAAA O
ATOH	286 O LEU	29	25 25 25 25	AAAA II
ATOH	287 II HIS	30 30	43.389 12.285 54.395 1.00 35.95 42.681 11.891 53.197 1.00 34.92	AAAA C
ATOH	289 CA HIS 290 CB HIS	30	42.893 12.801 52.027 1.00 32.85	AAAA C
ATOH ATOH	291 CG HIS	30	42.372 14.155 52.046 1.00 25.08	AAAA C
ATON	292 CD2 HIS	30	41.519 14.753 52.907 1.00 40.88	AAAA C
ATOH	293 HD1 HIS	30	42.717 15.120 51.128 1.00 33.66	AAAA II
ATOIS	295 CE1 HIS	30	42.080 16.281 51.444 1.00 31.33	AAAA C AAAA II
HOTA	296 NE2 HIS	30	41.329 16.093 52.539 1.00 37.27 43.173 10.538 52.714 1.00 37.68	AAAA C
ATOH	298 C HIS	30 .		AAAA O
ATOH ATOH	299 O HIS 300 H ILE	30 31	42,308 9,542 52,584 1.00 40.02	II AAAA II
ATON	300 H ILE 302 CA ILE	31	42.750 8.271 51.992 1.00 39.47	AAAA C
ATOH	303 CB ILE	31	42.668 7.204 53.063 1.00 37.95	AAAA C
ATO!!	304 CG2 ILE	31	43.161 5.830 52.651 1.00 23.86	AAAA C
ATOH	305 CG1 ILE	31	43.481 7.555 54.335 1.00 41.66	AAAA C
ATON	306 CD1 ILE	31	43.170 6.575 55.473 1.00 28.22 41.884 8.044 50.755 1.00 46.52	AAAA C
ATON	307 C ILE 308 O ILE	31 31	41.884 8.044 50.755 1.00 46.52 40.753 7.589 50.827 1.00 43.56	AAAA C
ATOM	308 O ILE 309 !! LEU	32	42.314 8.489 49.556 1.00 49.89	O AAAA II AAAA
ATOH	311 CA LEU	32	41.484 8.235 48.380 1.00 49.77	AAAA C
ATO!				

			4/58	
ATOH	312 CB LEU	32	41.127 9.515 47.603 1.00 47.49	AAAA C
ATOH	313 C5 LEU	30	12.001 10.688 47.562 1.00 45.33	AAAA C AAAA C
ATOH	314 CD1 LEU	32	41.51	AAAA C
ATO(1	315 CD2 LEV	32	12.51 00	AAAA C
ATOH	316 C LEU	32	1 100 11 36	O AAAA
ATO!!	317 O LEU	32	43.338 7.370 47.186 1.00 41.36 41.270 6.722 46.497 1.00 50.74	AAAA 11
ATOH	318 II LEU	33 33	41.602 6.175 45.197 1.00 49.92	AAAA C
ATOH	320 CA LEU 321 CB LEU	33	42.091 7.262 44.182 1.00 34.83	AAAA C
ATOH ATOH	322 CG LEU	33	41.233 8.537 44.164 1.00 33.92	AAAA C
ATOH	323 CD1 LEU	33	41.892 9.587 43.298 1.00 37.49	AAAA C
ATON	324 CD2 LEU	33	39.823 8.313 43.644 1.00 33.01	AAAA C AAAA C
ATO! 1	325 C LEU	33	44.010 3.073 45.20 1.00 54.11	AAAA O
ATOH	326 O LEU	33	45.500 3.00 47.61	AAAA H
HOTA	327 II ILE	34	42.545	AAAA C
HOTA	329 CA ILE	34	43.523 3.184 46.546 1.00 51.76 44.101 3.346 47.963 1.00 57.98	AAAA C
ATOH	330 CP ILE	34 34	44.538 2.043 48.600 1.00 48.98	AAAA C
ATOH	331 CG2 ILE 332 CG1 ILE	34	45.267 4.371 47.967 1.00 46.70	AAAA C
ATOM HOTA	332 CG1 ILE 333 CD1 ILE	34	45.561 4.704 49.439 1.00 66.47	AAAA C
ATOH	334 C ILE	31	42.829 1.844 46.408 1.00 59.85	AAAA C
ATOH	335 O ILE	34	41.726 1.531 46.856 1.00 60.11	O AAAA 11 AAAA
ATOI1	336 II SER	35	43.622 0.833 46.013 1.00 67.79 43.048 -0.511 45.922 1.00 68.80	AAAA C
ATOH	338 CA SER	35	13:040	AAAA C
ATOt-1	339 CP SER	35	12.76	AAAA O
ATOH	340 OG SER	35	11.731	AAAA C
ATOI I	342 C SER	35	43.928 -1.564 46.537 1.00 76.73 44.885 -1.954 45.999 1.00 73.65	aaaa o
ATOH	343 O SER 344 H LYS	35 36	13.687 -2.017 47.740 1.00 74.75	AAAA II
ATOH	344 H LYS 346 CA LYS	36	44.465 -3.014 48.421 1.00 76.09	AMAA C
ATOH HOTA	317 CB LYS	36	44.046 -3.131 49.885 1.00 81.22	AAAA C
ATOIT	348 CG LYS	36	45.147 -3.654 50.775 1.00 78.87	AAAA C AAAA C
ATOI1	349 CD LYS	36	44.693 -4.575 51.887 1.00 81.39	AAAA C
ATOH	350 CE LYS	36	44.030	AAAA H
ATOH	351 NO LYS	36	44.51	AAAA C
ATC(-)	355 C LYS	36 36	44.252 -4.362 47.753 1.00 61.41 43.145 -4.772 47.451 1.00 78.20	AAAA O
MOTA	356 O LYS 357 H ALA	36 37	45.371 -5.080 47.615 1.00 88.27	AAAA II
ATOI1	357 II ALA 359 CA ALA	37	45.361 -6.396 46.986 1.00 90.10	AAAA C
ATOH ATOH	360 CB ALA	37	46.700 -6.655 46.327 1.00 95.49	AAAA C
ATOH	361 C ALA	37	45.011 -7.473 47.995 1.00 92.36	AAAA C
ATOH	362 O ALA	37	45.668 -7.627 49.012 1.00 92.35	O AAAA II AAAA
ATOH	363 H SER	38	10.00	AAAA C
NOTA	365 CA SER	38	43.320	AAAA C
MOTA	366 CB SER	38	42.405 -10.164 47.858 1.00 97.44 42.061 -11.176 48.814 1.00103.48	AAAA O
HOTA	367 OG SER	38	44.702 -10.263 48.821 1.00 96.87	AAAA C
ATOH	369 C SER	38 38	44.761 -10.778 49.924 1.00 98.06	aaaa o
ATOH	370 O SER 371 II ASE	39	45.584 -10.415 47.852 1.00 97.99	AAAA II
aton Aton	573 CA ASP	39	46.821 -11.148 47.980 1.00 99.19	AAAA C
ATON	374 CB ASP	39	47.579 -11.050 46.652 1.00102.13	AAAA C
ATCH	375 CG ASP	39	47.696 -12.387 45.949 0.01101.22	AAAA C AAAA O
ATO: I	376 OD1 ASP	35	46.644 -12.978 45.623 0.01101.42 48.833 -12.848 45.718 0.01101.41	O AAAA
ATOH	377 OD2 ASP	39	40.033	AAAA C
ATOH	378 C ASP	30	47.660 -10.564 49.105 1.00 99.40 47.692 -11.056 50.224 1.00 99.15	AAAA O
ATOH1	379 O ASP	39 40	10 351 -0 479 48 818 1.00100.96	II AAAA II
ATOH	380 H TYR 382 CA TYR	40	49.120 -8.706 49.802 1.00101.16	AAAA C
ATOH ATOH	383 CB TYR	40	49.511 -7.393 49.130 1.00103.67	аала с
ATOH	384 CG TYR	40	50.159 -6.281 49.887 1.00107.81	ааал с аааа с
ATOII	385 CD1 TYR	40	50.931 -5.325 49.228 1.00109.56 51.540 -4.280 49.910 1.00109.67	AAAA C
ATO!!	386 CEL TYR	40	51.54	AAAA C
ATCH	387 CJ2 TYR	40	00.01	AAAA C
ATOI1	388 CE2 TYR	10	50.618 -5.102 51.976 1.00109.83 51.372 -4.181 51.276 1.00110.16	AAAA C
ATOII	399 CE TYR 390 OH TYR	40 40	51.999 -3.127 51.893 1.00109.84	AAAA O
ATOH	390 OH TYR 392 C TYR	40	48.343 -8.529 51.100 1.00 99.10	C AAAA
HOTA HOTA	393 O TYR	40	47.168 -8.182 51.183 1.00 99.05	AAAA O
ATOIT	394 11 LYS	41	49.041 -8.653 52.218 1.00 98.62	II AAAA
ATO:1	396 CA LYS	41	48.443 -8.549 53.546 1.00100.30	AAAA C AAAA C
ATOH	397 CB LYS	41	49.385 -9.160 54.599 1.00104.42	AAAA C
HOTA	398 CG LVS	41	13.210	AAAA C
ATOH	399 CD LYS	41	4 01 00 00	AAAA C
ATOH	400 CE LYS	41	47.205 -10.880 56.308 0.01 99.86 47.882 -11.728 57.328 0.01 99.62	II AAAA II
ATOH	401 HC LYS	41 41	48.035 -7.136 53.947 1.00 98.99	AAAA C
ATOH ATOH	405 C LYS 406 O LYS	41	47.615 -6.371 53.057 1.00103.33	AAAA O
ATON	407 !! SER	42	48.198 -6.754 55.221 1.00 91.75	н алаа
ATOI	409 CA SER	42	47.825 -5.412 55.604 1.00 85.06	AAAA C
ATCI-1	410 CB SER	42	46.385 -5.520 56.147 1.00 95.33	2 AAAA 2 AAAA
ATOH	411 OG SER	42	46.547 -6.140 57.426 1.00104.63	AAAA O
ATCH:	413 C SER	40	48.628 -4.715 56.687 1.00 89.78 49.326 -5.259 57.538 1.00 81-93	aaaa o
ATO:1	414 . O . SER	- 45	10 405 -3 305 56 676 1 00 73.03	AAAA 1
ATOI1	415 H TYR 417 CA TYR	43 43	48.495 -3.395 56.676 1.00 73.03 49.069 -2.488 57.635 1.00 67.25	AAAA C
ATOI1	417 CA TYR	43	45.000 = 1100 01.000 ****	

4/58

WU 99/	28347						
					5/58	1.00 65.37	AAAA C
ATOH	419 CB TYR	4.5			56.965 55.727	1.00 63.92	AAAA C
ATO:1	419 CG TYR 420 CD1 TYR	43			55.406	1.00 63.87	AAAA C
ATOH ATOH	421 CEL TYR	43			•	1.00 66.09 1.00 63.30	AAAA C AAAA C
ATOI1	422 CD2 TYR	13				1.00 67.62	AAAA C
ATOH	423 CE2 TYR 424 CC TYR	43 43			53.432	1.00 66.94	AAAA 🤆
ATOH ATOH	125 OH TYR	.; 3	52.262 -			1.00 65.23 1.00 64.88	AAAA O AAAA C
ATOH	427 C TYR	÷3			58.925 59.030	1.00 62.90	AAAA O
ATOH	428 O TYR 429 H ARG	43 44		1.567	59.825	1.00 57.88	AAAA II
ATOH ATOH	431 CA ARG	44			61.039	1.00 56.45 1.00 46.51	AAAA C AAAA C
ATOH	432 CB ARG	44		·2.611 ·2.375	61.760 63.244	1.00 46.51	AAAA C
NOTA NOTA	433 CG ARG 434 CD ARG	44		3.327	63.986	1.00 58.54	AAAA C
ATOH	135 HE ARG	4.4		2.927	65.403 66.395	1.00 68.56 1.00 64.82	AAAA II AAAA C
ATOM	437 CC ARG 438 HH1 ARG	44		-3.536 -4.529	66.132	1.00 61.53	II AAAA
ATOH ATOH	438 HH1 ARG 441 HH2 ARG	44	46.674	-3.139	67.628	1.00 66.03 1.00 55.59	AAAA II AAAA C
ATOH	444 C ARG	44		-0.285 -0.552	61.845	1.00 58.43	AAAA O
ATOH	445 O ARG 446 H PHE	44 45	48.276	0.866	62.139	1.00 51.13	AAAA H
ATOH ATOH	448 CA PHE	45	48.865	1.944	62.863	1.00 45.94 1.00 35.89	AAAA C AAAA C
MOTA	149 CB PHE	45 45	48.774 49.106	3.249 2.937	61.978 60.554	1.00 30.29	AAAA C
ATOH ATOH	450 CG PHE 451 CD1 PHE	15	50.373	3.051	59.998	1.00 45.72	AAAA C AAAA C
ATOH	452 CD2 PHE	45	48.127	2.428	59.728 58.672	1.90 35.95 1.90 47.76	AAAA C
ATOH	453 CE1 PHE 454 CE2 PHE	45 45	50.653 48.358	2.715 2.096	58.406	1.00 39.92	AAAA C
ATOH ATOH	454 CEC PHE 455 CC PHE	45	49.612	2.244	57.967	1.00 46.44	C AAAA C AAAA
ATOH	456 C PHE	15	48.191 47.708	2.123 3.223	64.203 64.475	1.00 41.65 1.00 40.99	O AAAA
ATOH ATOH	457 O PHE 458 II PRO	46. 45	48.494	1.338	65.212	1.00 43.20	AAAA II
ATOM	459 CD PRO	46	49.300	0.097	65.132	1.00 47.74	AAAA C AAAA C
ATO: 1	460 CA PRO 461 CB PRO	16 16	48.032 48.514	1.530	66.560 67.380	1.00 44.92	aaaa c
HOTA	461 CB PRO 462 CG PRO	46	19.404	-0.464	66.514	1.00 45.48	AAAA C AAAA ©
ATOH	463 C PRO	46	48.558	2.768	67.233 68.443	1.00 41.30 1.00 44.57	AAAA O
ATOH	464 O PRO 465 H LYS	47 46	48.329 49.450	3.533	66.676	1.00 39.33	AAAA II
IIOTA FOTA	467 CA LYS	47	49.991	4.679	67.362	1.00 38.10 1.00 48.07	AAAA C AAAA C
ATOI1	468 CB LYS	47	51.378 52.032	4.981 [°] 3.995	66.852 65.902	1.00 67.95	AAAA C
ATOM ATOM	469 CG LYS 470 CD LYS	47 47	53.563	3.976	65.891	1.00 61.33	AAAA C
POTA	471 CE LYS	47	54.115	4.648	67.147 66.874	1.00 72.19 1.00 79.29	aaaa c aaaa ii
ATOH	472 HE LYS 476 C LYS	47 47	54.024 49.014	6.132 5.848	67.195	1.00 39.76	AAAA C
ATOH	477 O LY3	47	49.189	6.827	67.952	1.00 35.45	AAAA O AAAA II
ATO: 1	478 H LEU	13 18	48.300 47.370	5.886 7.004	66.053 65.800	1.00 36.45 1.00 40.40	AAAA C
I IOTA	480 CA LEU 481 CB LEU	18	46.823	6.919	64.389	1.00 28.59	AAAA C
ATON	492 CG LEU	4.6	45.947	7.967	63.787 63.878	1.00 31.04 1.00 36.86	C AAAA C AAAA
HOTA	483 CD1 LEV 484 CD2 LEU	16 18	46.637 45.591	9.310 7.738	62.294	1.00 34.49	AAAA C
HOTA HOTA	484 CD2 LEU 485 C LEU	18	46.186	7.022	66.807	1.00 42.21	AAAA C AAAA O
ATOH	486 O LEU	16 18	45.271 46.138	6.187 8.041	66.863 67.673	1.00 36.48 1.00 38.95	AAAA II
ATOM ATOM	487 II THR 489 CA THR	45	45.045	8.151	68.574	1.00 37.96	AAAA C
ATOH	490 CB THR	49	45.548	8.207 9.340			AAAA C AAAA O
ATOH	491 OG1 THR 493 CG2 THR	1 i 1 i	46.396 46.230	6.957		1.00 31.99	AAAA C
ATOH ATOH	494 C THR	19	44.230	9.425	68.321		AAAA C AAAA O
HOTA	495 O THR	49 50	43.111 44.735	9.451 10.415			AAAA II
ATOH ATOH	496 H VAL 498 CA VAL	50	43 995	11.664	67.418	1.00 38.72	AAAA C
ATOH	499 CB VAL	50	44.293	12.708			AAAA C AAAA C
ATOH	500 CG1 VAL 501 CG2 VAL	50 50	43.630 43.630	14.066		1.00 32.52	AAAA C
ATOH ATOH	502 C VAL	50	44.271	12.305	66.048		AAAA C
ATO: 1	503 O VAL	50	45.195	11.863			0 AAAA 11 AAAA
ATOH ATOH	504 H ILE 506 CA ILE	51 51	43.319 43.301	13.575		1.00 32.48	AAAA C
ATOH	507 CB 1LE	51	42.346	12.864	63.153	1.00 34.51	AAAA C AAAA C
ATO!!	508 CG2 ILE	51 51	41.995 43.026	13.802			AAAA C
I IOTA I IOTA	509 CG1 ILE 510 CD1 ILE	51 51	42.358	10.559	9 61.819	5 1.00 19.69	AAAA C
ATON	SIL C ILE	51	42.659				AAAA C AAAA O
ATOH ATOH	512 O ILE 513 H THR	51 52	41.546 43.342	16.05		8 1.00 33.93	AAAA II
HOTA	515 CA THR	52	42.806	17.30	5 64.71	9 1.00 33.83	AAAA C
ATOH	516 CB THR 517 OG1 THR	52 52	43.961 44.726				D AAAA O AAAA
ATOH ATOH	519 CG2 THR	5.0	44.775	17.92		1 .100 .2201	C AAAA
ATON	520 C THR	52	41.741 41.202				AAAA C
HOTA	521 O THR	52	41.202	19.03	0 64.24	2 2.00 30.00	AAAA o

WU 99/	26347		- /	
			6/58 41,524 17,477 62,639 1,00 36,93	II AAAA
ATOH	500 H GLU	53 53	41.524 17.477 62.639 1.00 36.93 40.434 17.953 61.785 1.00 38.38	AAAA C
ATOH	524 CA GLU 525 CB GLU	53 53	41.064 18.512 60.483 1.00 29.76	AAAA C
NTOH NOTA	526 CG GLU	53	42.061 19.552 60.834 1.00 30.48	AAAA C AAAA C
ATOH	507 CD GLU	53	12.517 20.396 59.697 1.00 40.82	AAAA O
ATO!!	528 OE1 GLU	53	42.638 19.908 58.556 1.00 57.56 42.799 21.559 59.931 1.00 35.74	AAAA O
ATOH	509 OE2 GLU 530 C GLU	53 53	39,506 16,789 61,388 1,00 39,19	AAAA C
ATOH ATOH	530 C GLU 531 O GLU	53	38.922 16.311 62.386 1.00 38.95	O AAAA II AAAA
ATOH	532 H TYR	54	39.639 16.353 60.102 1.00 30.60 38.666 15.342 59.713 1.00 35.96	AAAA C
ATOH	534 CA TYR	54	30.000 10.00 20 71	AAAA C
ATOH	535 CB TYR 536 CG TYR	54 54	37.654 15.802 58.636 1.00 30.71 38.247 16.476 57.388 1.00 21.18	AAAA C
ATOH ATOH	536 CG TYR 537 CD1 TYR	54	38.487 15.733 56.305 1.00 20.22	AAAA C
ATOH	538 CE1 TYR	54	38.980 16.243 55.086 1.00 21.04 38.577 17.844 57.307 1.00 23.97	AAAA C AAAA C
ATOH	539 CD2 TYR	54	30.311 11.01. 34.69	AAAA C
ATON	540 CE2 TYR 541 C2 TYR	54 54	39.049 18.384 56.124 1.00 24.05 39.263 17.569 55.032 1.00 26.72	AAAA C
ATOH ATOH	541 CZ TYR 542 OH TYR	54	39.763 18.047 53.847 1.00 37.55	AAAA O
ATON	544 C TYR	54	39.405 14.115 59.142 1.00 33.87	AAAA C AAAA O
ATOH	545 O TYR	54	40.313 14.300 50.00 1 00 03 24	AAAA II
ATON	546 II LEU 548 CA LEU	55 55	38.683 13.021 59.004 1.00 23.24 39.111 11.812 58.454 1.00 30.08	AAAA C
ATOH ATOH	548 CA LEU 549 CB LEU	55	39.011 10.663 59.510 1.00 14.78	AAAA C
ATOH	550 GG LEU	55	39.349 9.314 58.818 1.00 26.98	AAAA C AAAA C
HOTA	S51 CD1 LEU	55	40.668 9.477 58.040 1.00 26.66 39.496 8.093 59.705 1.00 14.45	AAAA C
ATOH	552 CD2 LEU 553 C LEU	55 55	39.496 8.093 59.705 1.00 14.43 38.201 11.548 57.238 1.00 37.43	AAAA C
HOTA HOTA	553 C LEU 554 O LEU	55	36,995 11,632 57,427 1,99 39,55	AAAA O
ATOH	555 II LEU	56	38.700 11.348 56.035 1.00 41.83	AAAA II AAAA C
ATOH	557 CA LEU	56	37.955 11.201 54.799 1.00 36.98 37.998 12.446 53.949 1.00 33.29	AAAA C
ATOH	558 CB LEU	56 56	37.998 12.446 53.949 1.00 33.29 37.984 12.514 52.416 1.00 30.35	AAAA C
ATOH ATOH	559 CG LEU 560 CD1 LEU	56	37.076 11.460 51.821 1.00 47.95	AAAA C
ATOH	561 CD2 LEU	56	37.286 13.807 51.985 1.00 33.47 38 595 10 047 54.008 1.00 39.75	АААА С АААА С
ATON	562 C LEU	56	30.333 13.44 30	AAAA O
ATOH	563 O LEU 564 H LEU	56 57	37.846 9.008 53.800 1.00 36.68	AAAA II
HOTA	564 II LEU 566 CA LEU	57	38.133 7.832 53.034 1.00 41.53	AAAA C AAAA C
ATOH	567 CB LEU	57	37.944 6.588 53.916 1.00 37.00 39.064 6.534 55.026 1.00 36.13	AAAA C
ATOH	568 CG LEU	57	39.064 6.534 55.026 1.00 36.13 38.513 6.890 56.417 1.00 33.26	
ATO!1	569 CD1 LEU 570 CD2 LEU	57 57	39.630 5.162 55.039 1.00 24.11	AAAA C
ATOH ATOH	571 C LEU	57	37.203 7.825 51.838 1.00 46.03	
ATOM	572 O LEU	57	35.985 7.993 51.969 1.00 44.78 37.792 7.898 50.642 1.00 47.07	
NOTA	573 II PHE	58	37.792 7.898 50.642 1.00 47.07 36.895 8.002 49.467 1.00 48.75	AAAA C
ATOH	575 CA PHE 576 CB PHE	58 58	36,704 9,448 49,102 1,00 46,67	
ATOH	577 CG PHE	58	36.447 9.815 47.692 1.00 54.66	
ATOH	578 CD1 PHE	5.6	37.413 9.706 46.697 1.00 55.19 35.200 10.301 47.326 1.00 53.86	
ATOH	579 CD2 FIIE	58 58	35.200 10.301 47.326 1.00 53.86 37.124 10.063 45.396 1.00 50.36	AAAA C
ATOH ATOH	580 CE1 PHE 581 CE2 PHE	58	34.885 10.655 46.011 1.00 41.84	
ATOH	582 CE PHE	58	35.877 10.521 45.037 1.00 46.50 37 351 7.052 48.379 1.00 49.71	
ATOH	583 C PHE	5.8	37.337	
ATOII	584 O PHE	58 59	38.487 7.073 47.934 1.00 52.10 36.471 6.118 47.944 1.00 44.20	II AAAA II
ATOH ATOH	585 H ARG 587 CA ARG	59	36,753 5,281 46,815 1.00 40.80	
ATO:1	588 CB ARG	59	36.911 5.993 45.427 1.00 23.79	
ATOH	589 CG ARG	50	33.00	
ATOM	590 CD ARG 591 HE ARG	5 <u>9</u> 59	35,822 6,422 42,806 1.00 49.23	AAAA II
ATOH ATOH	593 CE ARG	59	34.950 5.832 42.036 1.00 41.30	
ATOH	594 HH1 ARG	59	33.702 6.277 41.931 1.00 47.00 35.237 4.729 41.327 1.00 42.50	
ATO!1	597 11H2 ARG	59	35.237 4.729 41.327 1.00 42.5 38.037 4.494 47.049 1.00 42.2	
ATO! 1	600 C ARG 601 O ARG	59 59	38.981 4.513 46.232 1.00 44.1	1 AAAA O
ATOH	602 H VAL	40 20	38.001 3.625 48.023 1.00 40.8	
ATOH	504 CA VAL	60	39.101 2.743 48.341 1.00 39.1	
ATOH	605 CB VAL	60 60	33.024	
I IOTA I IOTA	606 CG1 VAL 607 CG2 VAL	60 60	40.407 1.872 50.296 1.00 35.0 40.425 4.352 49.893 1.00 28.8	_б дада С
ATOH	608 C VAL	60	38.539 1.337 48.368 1.00 43.5	
ATOH	609 O VAL	60	37.535 1.224 49.072 1.00 47.6	
ATOLI	610 H ALA	61 61	39.094 0.371 47.659 1.00 41.9 38.617 -0.992 47.749 1.00 42.0	5 AAAA C
ATOH ATOH	612 CA ALA 613 CB ALA	61 61	38.302 -1.483 46.364 1.00 52.4	O AAAA C
ATON	614 C ALA	61	39.613 -1.934 48.386 1.00 43.0	8 AAAA C
ATO:1	615 O ALA	61	40.757 -1.602 48.670 1.00 50.5	2 2888 11
ATOII	616 N GLY	62	39,200 -3.105 48.849 1.00 45.7 40,136 -4.079 49,385 1.00 45.3	AAAA C
ATO! I	618 CA GLY 619 C GLY	62 62	10 767 -3,900 50,877 1,00 48.0	1 MANA
HOTA HOTA			10 507 -4.835 51 604 1.90 52-	24 2000
ATOH	621 H LEU	63	39.985 -2.734 51.383 1.00 46.	70001
ATOI:	623 CA LEU	÷3	40.003 -2.443 52.805 1.00 49.1	

					7/58		
ATON	624 CB LEU	53	40.274	-0.953		1.00 41.41	AAAA C
ATON	625 OG LEU	63		-0.423		1.00 53.41 1.00 48.27	C AAAA
ATON	626 CD1 LEU	63	41.172	-1.164 1.047	55.416 54.246	1.00 50.51	AAAA C
ATOH ATOH	627 CD2 LEU 628 C LEU	63 63	38.643	-2.881	53.323	1.00 54.20	AAAA C .
ATOH	629 O LEU	63	37.587	-2.430	52.837	1.00 57.73 1.00 53.97	0 AAAA 11 AAAA
ATOH	630 II GLU	61	38.658	-3.862 -4.448	54.190 54.749	1.00 55.96	AAAA C
ATOH	632 CA GLU 633 CB GLU	64 64	37.462 37.689	-5.956	54.734	1.00 65.33	AAAA C
ATOH ATOH	633 CB GLU 634 CG GLU	64	37.832	-6.484	53.293	1.00 75.11	AAAA C
ATOI-I	635 CD GLU	64	37.104	-7.940	53.128	1.00 78.10 1.00 63.93	aaaa c aaaa o
ATON	636 OE1 GLU	64 64	37.424 37.036	-8.699 -8.320	54.132 51.978	1.00 88.77	AAAA O
ATOH ATOH	637 OE2 GLU 638 C GLU	64	37.096	-4.007	56.163	1.00 57.12	AAAA C
HOTA	639 O GLU	64	35.986	-4.332	56.600	1.00 59.82 1.00 50.64	aaaa 0 aaaa !1
ATON	640 II SER	65	37.766	-3.042 -2.523	56.761 58.060	1.00 30.84	AAAA ©
ATOH ATOH	642 CA SER 643 CB SER	65 65	37.539 37.743	-3.596	59.139	1.00 49.24	AAAA C
ATOH	644 OG SER	65	37.501	-2.971	60.429	1.00 50.90	AAAA O AAAA C
ATOH	646 C SER	65	38.516	-1.405	58.432 58.374	1.00 48.35 1.00 52.75	AAAA C
atoh Atoh	647 O SER 648 II LEU	65 66	39.716 38.054	-1.692 -0.289	58.984	1.00 41.03	AAAA II
HOTA	650 CA LEU	66	38.956	0.758	59.405	1.00 41.94	AAAA C
ATOH	651 CB LEU	66	38.247	2.083	59.498	1.00 25.25 1.00 34.49	AAAA C AAAA C
ATOH	652 CG LEU 653 CD1 LEU	66 66	37.283 36.974	2.476 3.951	58.402 58.512	1.00 30.81	AAAA C
ATOH ATOH	653 CD1 LEU 654 CD2 LEU	66	37.767	2.200	56.994	1.00 34.34	AAAA C
ATOH	655 C LEU	56	39.646	0.462	60.734	1.00 45.39	C AAAA O AAAA
ATOH	656 O LEU	66 67	40.762 39.000	0.947 -0.346	60.927 61.593	1.00 45.21	AAAA II
ATOH ATOH	657 H GLY 659 CA GLY	67	39.773	-0.672	62.799	1.00 48.14	AAAA C
ATON	660 C GLT	57	40.998	-1.508	62.445	1.00 44.51	AAAA C AAAA O
MOTA	661 O GLY	67 68	41.855 41.013	-1.724 -2.189	63.287 61.309	1.00 47.60	AAAA II
ATOH ATOH	662 II ASP 664 CA ASP	68	42.194	-2.834	60.738	1.00 50.99	AAAA C
ATOH	665 CB ASP	68	42.012	-3.417	59.361	1.00 39.43 1.00 45.82	AAAA C AAAA C
ATON	666 CG ASP	68 68	41.205 40.912	-4.678 -5.341	59.311 60.320	1.00 44.69	AAAA O
ATOH ATOH	667 OD1 ASP 668 OD2 ASP	68	40.819	-5.065	58.187	1.00 47.23	AAAA O
ATOH	669 C ASP	68	43.363	-1.837	60.596	1.00 45.89	aaaa c aaaa o
HOTA	670 O ASP	68	44.436	-2.269	60.903 60.247	1.00 44.84	AAAA II
ATOM ATOH	671 N LEU 673 CA LEU	69 69	43.145 44.175	-0.609 0.352	60.048	1.00 45.80	AAAA C
ATOM	674 CB LEU	69	43.920	1.393	58.945	1.00 45.25	AAAA C
ATOH	675 CG LEU	69	43.902	0.882	57.494	1.00 54.25 1.00 47.26	AAAA C AAAA C
ATOH	676 CD1 LEU 677 CD2 LEU	69 69	43.541 45.211	2.037 0.200	56.565 57.113	1.00 50.76	AAAA C
ATOM ATOM	678 C LEU	69	44.347	1.107	61.350	1.00 49.50	AAAA C
ATOH	679 O LEU	69	45.470	1.210	61.851 61.869	1.00 54.51 1.00 44.60	O AAAA 1: AAAA
ATOH ATOH	680 II FHE 682 CA PHE	70 70	43.296 43.423	2.564	63.046	1.00 39.67	AAAA C
ATOH	693 CB FHE	70	42.987	3.973	62.700	1.00 26.08	AAAA C
ATOH	684 CG PHE	70	13.465	4.501	61.390 60.384	1.00 45.32 1.00 47.41	AAAA C D AAAA
ATOH	685 CD1 PHE 686 CD2 PHE	70 70	42.532 44.815	4.748	61.130	1.00 48.77	AAAA C
ATOH ATOH	687 CE1 PHE	70	42.945	5.263	59.159	1.00 56.16	AAAA C
ATO:	688 CE2 PHE	70	45.229	5.256	59.895	1.00 47.24	AAAA C AAAA C
ATOH	689 C2 PHE	70 70	44.293	5.506 1.999	58.896 64.219	1.00 40.09	AAAA C
ATOH ATOH	691 O PHE	70	41.874	2.734	64.838	1.00 35.74	AAAA O
HOTA	692 II PRO	71	43.053	0.852		1.00 39.19 1.00 39.94	aaaa ii aaaa c
ATOH	693 CD PRO 694 CA PRO	71 71	44.269 42.444	0.058 0.237		1.00 35.30	AAAA C
ATOI1 ATOI1	695 CB PRO	71	43.308	-0.983	66.246	1.00 38.03	AAAA C
ATOH	696 CG PRO	71	44.669	-0.564		1.00 38.36	AAAA C AAAA C
ATOH	697 C PRO	71 71	42.453 42.005	1.089		1.00 33.72	AAAA O
ATOH ATOH	698 O PRO 699 II ASII	72	43.058	2.220		1.00 36.55	II AAAA II
ATOH	701 CA ASII	7.2	43.204	3.032	68.401	1.00 32.60	AAAA C
ATOH	TO2 CB ASH	72	44.637	2.916 1.638		1.00 36.89	I AAAA I AAAA
ATOH ATOH	703 CG ASH 704 ODL ASH	72 72	44.735	1.619		1.00 64.42	AAAA O
ATOH	705 HD2 ASH	72	44.880	0.475	69.169	1.00 63.17	II AAAA
ATO:	708 C ASI:	72	12.875	4.477 5.201		1.00 30.11	AAAA C AAAA O
ATON ATON	709 O ASH 710 H LEU	7 <u>2</u> 73	43.099 42.309			1.00 27.62	II AAAA II
ATOH	712 CA LEU	73	41.940	6.207	66.730	1.00 34.07	AAAA C
ATOH	713 CB LEU	73	41.476			1.00 28.37	AAAA C
11OTA 11OTA	714 CG LEU 715 CD1 LEU	73 73	40.819 41.918				AAAA C
ATON	716 CD2 LEU	73	40.202		63.478	1.00 32.07	AAAA C
ATOH	717 C LEU	7.3	40.929	6.569	67.817	1.00 32.14	AAAA C
HOTA HOTA	718 O LEU 719 H THR	73	40.073				AAAA O AAAA H
ATON	721 CA THR	74 74	40.150				AAAA C
		•					

WU 991	60347			
			8/58	
ATOH	TOO OB THR	74	41.028 7.744 70.952 1.00 46.09	AAAA C AAAA O
ATOH	723 OS1 THR	74	41.7	AAAA C
ATOI1	725 CG2 THR	74 74	39 424 9.155 69.602 1.00 35.48	AAAA C
ATOH	726 C THR 727 O THR	74	38.270 9.322 70.077 1.00 35.32	AAAA O
ATOH	728 II VAL	75	40.047 10.198 69.073 1.00 29.80	AAAA C
ATOH	730 CA VAL	75	50.055 1 00 26 03	AAAA C
ATOH	731 CB VAL 732 CG1 VAL	75 75	39 173 13.801 69.934 1.90 24.51	AAAA C
ATOH ATOH	732 CG1 VAL 733 CG2 VAL	75	39.675 11.910 71.366 1.00 19.87	AAAA C AAAA C
ATOH	734 C VAL	75	39.613 12.045 67.494 1.00 37.57 10.724 11.808 67.022 1.00 35.99	AAAA O
ATOH!	735 O VAL	75	40.724 11.808 67.022 1.00 35.95 38.600 12.555 66.796 1.00 35.91	AAAA II
ATON	736 II ILE 738 CA ILE	76 76	38 695 13.340 65.592 1.00 31.48	AAAA C
ATOH ATOH	739 CB ILE	76	37.831 12.769 64.492 1.00 29.60	AAAA C AAAA C
ATOH	740 CG2 ILE	76	37.856 13.630 63.208 1.00 19.54 38.222 11.314 64.277 1.00 28.52	AAAA C
ATON	741 CG1 ILE 742 CD1 ILE	76 76	37 149 10.556 63.478 1.00 28.85	AAAA C
ATOM ATOM	742 CD1 ILE 743 C ILE	76	38.157 14.718 66.000 1.00 33.84	AAAA C AAAA O
ATOM	744 O ILE	76	30.507 14.77 66 220 1 00 30 32	AAAA H
ATOH	745 II ARG 747 CA ARG	77 77	38.605 16.901 67.021 1.00 30.82	AAAA C
ATOH ATOH	747 CA ARG 748 CB ARG	77	39.961 17.475 67.461 1.00 26.62	aaaa c aaaa c
ATON	749 CG ARG	77	39.993 18.836 68.058 1.00 52.42	AAAA C
ATOH	750 CD ARG	77	41.250 10.30 23	AAAA II
ATOH	751 NE ARG 753 CC ARG	77 77	40 977 18.016 71.064 1.00 48.79	AAAA C
ATOH ATOH	754 HH1 ARG	77	40.440 19.104 71.610 1.00 30.34	11 AAAA 11 AAAA
ATON	757 HH2 ARG	77	41.061 17.012 71.941 1.00 40.38 37.643 17.733 66.225 1.90 31.75	AAAA C
ATOM	760 C ARG 761 O ARG	77 77	36 944 18 637 66 664 1.00 31.40	AFAA O
ATON ATON	761 O ARG 762 N GLY	78	37.688 17.661 64.884 1.00 32.87	II AAAA C AAAA
ATOH	764 CA GLY	78	36.982 18.409 63.950 1.00 16.23 37.199 19.880 64.063 1.00 31.58	AAAA C
ATON	765 C GLY 766 O GLY	78 78	36 363 20,775 63,674 1,60 34.03	AAAA O
atoh Atoh	766 O GLY 767 H TRP	79	38.439 20.321 64.304 1.60 31.21	AAAA II AAAA C
ATOH	769 CA TRP	79	38.757 21.740 64.337 1.00 30.80 40.177 21.943 64.845 1.00 39.07	AAAA C
ATOH	770 CB TRP 771 CG TRP	79 79	10 626 23.343 65.164 1.00 36.64	AAAA C
ATOH ATOH	771 CG TRP 772 CD2 TRP	79	41.691 24.001 64.433 1.00 28.52	AAAA C AAAA C
FIOTA	773 CE2 TRP	79	41.826 25.288 65.002 1.00 36.49 42.473 23.625 63.370 1.00 37.96	AAAA C
HOTA	774 CE3 TRP	79 79	10 199 24 235 66.113 1.00 29.59	AAAA C
ATON ATON	775 CDI TRP 776 HEI TRP	79	40.917 25.413 66.054 1.00 27.67	11 AAAA C
ATOH	778 C22 TRP	79	42.770 26.213 64.543 1.00 31.83 43.389 24.548 62.876 1.00 46.14	AAAA C
HOTA	779 CE3 TRP 780 CH2 TRP	79 79	43.389 24.548 62.876 1.00 46.14 43.525 25.794 63.470 1.00 35.31	AAAA C
ATOH ATOH	780 CH2 TRP 781 C TRP	79	38.606 22.418 62.986 1.00 28.75	aaaa c aaaa o
ATOH	782 O TRP	79	38.585 23.624 62.961 1.00 23.61 38.659 21.684 61.895 1.00 31.84	II AAAA
ATOH	783 H LYS 785 CA LYS	80 80	38.305 22.153 60.573 1.00 32.78	AAAA C
ATOH ATOH	786 CB LYS	80	39.453 22.498 59.689 1.00 41.17	AAAA C AAAA C
ATOH!	787 CG LYS	80	39.838 23.911 59.470 1.00 34.68 41.025 24.350 60.306 1.00 44.77	AAAA C
ATOH ATOH	788 CD LYS 789 CE LYS	80 80	1: 276 25 811 59.898 1.00 50.41	AAAA C
ATOH-	790 HZ LYS	80	42.530 25.752 59.092 1.00 57.20	AAAA :I AAAA C
PIOTA	791 C LYS	80	37.303	AAAA O
ATOM	792 O LTS 793 II LEU	80 81	36 477 21.267 59.207 1.00 31.77	AAAA II
ATO() ATO()	793 II LEU 795 CA LEU	61	35.742 20.157 58.600 1.00 31.02	AAAA C AAAA C
NOTA	796 CB LEU	81	50 500 100 36 97	AAAA C
ATOH	797 CG LEU 798 CD1 LEU	91 81	32 832 21.080 60.954 1.00 27.98	AAAA C
Atoh Atoh	799 CD2 LEU	81	34.089 18.955 61.297 1.00 28.77	AAAA C AAAA C
ATOH	800 C LEU	81	35.733 20.023 57.104 1.00 29.86 36.082 20.947 56.368 1.00 29.34	AAAA O
ATOH	801 O LEU 802 II PHE	81 82	36.082 20.947 56.368 1.00 29.34 35.430 18.813 56.594 1.00 27.78	II AAAA
HOTA HOTA	802 II PHE 804 CA PHE	82	35.176 16.653 55.182 1.00 28.68	2 AAAA 2 AAAA
ATOI1	805 CB EHE	82	35.513 17.226 54.795 1.00 32.78 35.348 16.901 53.357 1.00 30.48	AAAA C
ATOU	906 CG FHE 907 CD1 PHE	92 92	36 378 17,130 52,447 1.00 32.86	AAAA C
ATCH ATOH	807 CD1 PHE 808 CD2 PHE	82	34.142 16.361 52.914 1.00 30.93	аааа с аааа с
ATOI	809 CE1 PHE	82	36.217 16.769 51.104 1.20 43.27 33.363 16.061 51.538 1.90 26.30	AAAA C
ATON	910 CE2 PHE	82	33.963 16.061 51.538 1.90 26.30 35.005 16.238 50.672 1.00 37.73	AAAA C
I IOTA HOTA	911 CD PHE 912 C PHE	92 92	33.670 18.911 54.993 1.00 30.06	AAAA C
ATCH!	913 O PHE	82	32.830 18.045 55.278 1.00 27.36	0 AAAA 11 AAAA
ATOH	814 H TYR	83	33.362 33 505 51 633 1 00 10 76	AAAA C
ATOH ATOH	815 CA TYR 816 C TYR	83 83	31.043 19.977 55.726 1.00 44.00	AAAA C
ATOI	817 O TYR	93	30.075 19.210 55.487 1.99 50.47	даал О Даал С
ATON	818 CB TYR	83	31.359 20.199 53.269 1.00 31.55	аааа С
HOTA HOTA	919 -CG: TYR 920 - CD1 TYR	93 83	32.064 19.982 51.609 0.01 20.00	AAAA C AAAA C
POTA	821 CD2 TYR		31.906 21.998 51.575 0.01 20.00	Lange o

10 9912	.0347						
					9/58	0.01 20.00	дааа с
ATOH	922 CEL TYR	93	•			0.01 20.00	AAAA C
ATO: I	823 CEC TYR	P.3				0.01 20.00	AAAA C
ATC:1	824 CD TYR 825 OH TYR	63 83		22.222	48.989	0.01 20.00	AAAA O
ATOH ATOH	826 II ASH	84	31.043	20.461		1.00 40.91	AAAA II AAAA C
ATOH	827 CA ASH	84		20.057		1.90 36.54 1.90 47.84	AAAA C AAAA C
ATOH	828 CB ASII	84	_	20.046		1.00 60.75	AAAA C
ATOH	829 CG ASH	84		21.164 22.343	57.119	1.00 45.55	AAAA O
ATON	830 OD1 ASH 831 HD2 ASH	8.1 8.1		20.876	55.552	1.00 65.98	FAAA II
ATOH ATOH	832 C ASH	84		18.679	58.556	1.00 36.33	2 AAAA0 AAAA
ATCII	833 O ASH	84		18.206	59.580 57.800	1.00 38.24 1.00 32.78	AAAA II
ATON	834 H TYR	85		17.900 16.504	58.222	1.00 35.45	AAAA C
ATOI:	836 CA TYR 837 CB TYR	85 85		15.579	57.000	1.00 35.54	AAAA C
ATOH	937 CB TYR 838 CG TYR	85		15.733	56.453	1.00 41.35	AAAA C
HOTA	839 CD1 TYR	85		16.291	55.199	1.00 38.22	AAAA C AAAA C
HOTA	840 CE1 TYR	85		16.445 15.371	54.704 57.200	1.00 47.42	AAAA C
ATOM	841 CD2 TYR 842 CE2 TYR	85 85		15.533	56.705	1.00 45.91	аааа с
ATOH ATOH	842 CE2 TYR 843 CE TYR	85		16.072	55.445	1.00 46.06	AAAA C
ATOI!	844 OH TYR	85	26.258	16.315	54.886	1.00 46.05 1.00 32.08	AAAA O AAAA C
ATOH	846 C TYR	85	32.977	16.367	58.891 58.495	1.00 37.44	AAAA O
ATOM	847 O TYR	85 86	33.943 33.027	16.977 15.691	59.979	1.00 36.21	II AAAA II
ATOH ATOH	948 II ALA 850 CA ALA	86	34.257	15.325	60.670	1.00 34.10	AAAA C
ATOH	851 CB ALA	86	33.999	15.370	62.157	1.00 25.48	AAAA C AAAA C
ATOH	852 C ALA	86	34.729	13.962	60.216 60.577	1.00 32.67 1.00 35.10	AAAA O
ATOH	853 O ALA	36	35.795 33.832	13.481	59.597	1.00 28.56	II AAAA
ATOH	854 H LEU 856 CA LEU	97 97	34.188	11.805	59.323	1.00 29.26	AAAA C
ATOH ATOH	857 CB LEU	87	33.798	10.860	60.471	1.00 13.64	2 AAAA 2 AAAA
ATON	858 CG LEU	87	33.801	9.363	60.188	1.00 25.77 1.00 27.21	C AAAA C AAAA
ATOH	859 CD1 LEU	87	35.140 33.637	8.915 8.432	59.571 61.393	1.00 23.52	AAAA C
ATOI:	860 CD2 LEU 861 C LEU	87 87	33.530	11.429	58.021	1.00 35.60	AAAA C
ATO!	862 O LEU	87	32.320	11.421	58.001	1.00 38.97	AAAA O
ATOH	863 II VAL	88	34.174	11.300	56.875	1.00 37.86 1.00 33.32	aaaa ii aaaa c
ATOI-1	865 CA VAL	88	33.438 33.666	11.032	55.628 54.553	1.00 22.38	AAAA C
ATOH	866 CB VAL 867 CG1 VAL	88 88	32.974	11.675	53.261	1.00 19.24	<i>р</i> даа с
atoh Atoh	868 CG2 VAL	88	33.165	13.402	55.042	1.00 13.27	AAAA C
ATON	869 C VAL	88	33.898	9.684	55.114	1.00 31.79 1.00 33.57	AAAA C AAAA O
11OTA	870 O VAL	88	35.069	9.407 8.728	55.117 54.822	1.00 31.08	AAAA II
ATON	871 H ILE 873 CA ILE	89 89	33.078 33.361	7.433	54.280	1.00 30.45	AAAA C
ATOI1 ATOI1	874 CB ILE	89	32.941	6.384	55.296	1.00 30.17	AAAA C
ATOH	875 CG2 ILE	8 è	32.898	1.954	54.821	1.00 37.24	AAAA C AAAA C
ATO:1	876 CG1 ILE	69	33.893	6.420 5.613	56.500 57.675	1.00 24.92 1.00 23.96	AAAA C
ATOH	877 CD1 ILE 878 C ILE	8 è 8 è	33.424 32.509	7.206	53.027	1.00 40.64	AAAA C
ATON ATON	979 O ILE	g o	31.330	6.881	53.205	1.00 38.69	AAAA O
ATCH	880 II PHE	àÙ	33.082	7.464	51.845	1.00 41.45	aaaa c
ATOH	882 CA PHE	50	32.346	7.371 8.776	50.591 50.110	1.00 37.67 1.00 32.17	AAAA C
ATOH	883 CB PHE 884 CG PHE	90 90	32.347 31.591	9.081	48.865	1.00 39.77	AAAA C
ATON ATCIN	885 CD1 PHE	99	30.387	9.772	49.025	1.00 32.02	AAAA C
ATOH	886 CD2 PHE	90	32.052	8.721	47.620	1.00 29.28	AAAA C AAAA C
INTA	887 CE1 PHE	90	29.611	9.086	47.938 46.534	1.00 33.30	AAAA C
ATOH	888 CE2 PHE 889 CZ PHE	è0 è0	31.290 30.083	9.764	46.687	1.00 50.24	AAAA C
ATOH ATOH	890 C PHE	90	32.856	6.384	49.557	1.00 40.72	AAAA C
ATOH	891 O PHE	90	34.027	6.296		1.00 46.15	O AAAA N AAAA
ATOH:	892 II GLU	91	32.024	5.519		1.00 39.16 1.00 42.45	AAAA C
ATOH	894 CA GLU	91 91	32.248 32.479	4.601 5.231	47.954 46.583		AAAA C
ATOH ATOH	895 CB GLU 896 CG GLU	91	31.136	5.865		1.00 58.86	AAAA C
ATOH	897 CD GLU	91	30.955	5.776	44.757		AAAA C
ATO:	898 OE1 GLU	91	31.473	6.651			0 AAAA 0 AAAA
ATON	899 OE2 GLU	91	30.059	4.813 3.734			AAAA C
ATOH ATOH	900 C GLU	91 91	33.422 34.298	3.411			AAAA O
ATOH	902 II HET	92	33.352	3.209		1.00 46.52	II AAAA
ATO!!	904 CA HET	92	34.409	2.401	50.088		AAAA C AAAA C
ATOU	905 CB HET	92	34.299				AAAA C
ATOH	906 CG HET 907 SD HET	92 92	35.412 36.802	2.156 3.306		1.00 57.67	AAAA S
ATOH	908 CE HET	92	36.340			1.00 38.36	AAAA C
ATOH	909 C NET	92	34.012	1.005	49.745	1.00 43.37	AAAA C
ATOH	910 O MET	92	33.335				O AAAA 11 AAAA
ATC:1	911 H THR 913 CA THR	93 93	34.449 34.175				AAAA C
ATOH ATOH	914 CB THR	93	34.666	-1.28	16.868	1.00 55.28	AAAA C
ATO!	915 OG1 THR	93	34.013	-0.481	8 45.89	1.00 57.81	AAAA O
ATOH	917 CG2 THR	93	34.332	-2.71	5 46.516	3 1.00 44.71	AAAA C

WU 99/20	5347		
		10/58	
2001	918 C THR 93	34.885 -1.874 49.186 1.00 51.83	AAAA © AAAA O
HOTA	919 O THR 93	36.115 -1.777 49.361 1.00 57.91	I AAAA
ATON	920 II ASII 94	34.237 -2.983 49.493 1.00 49.85	AAAA C
ATOI1	922 CA ASH 94	34.747	AAAA C
ATOH	923 CB ASH 94	30.241	AAAA C
ATOH	924 CG ASU 94	36.494 -4.849 48.599 1.00 77.49 36.847 -4.081 47.688 1.00 77.49	AAAA O
ATOH	925 OD1 ASH 94 926 HD2 ASH 94	36 308 -6.153 48.408 1.00 79.63	AAAA II
ATOI1		34 522 -3.838 51.763 1.00 42.58	AAAA C
ATOH	929 C ASII 94 930 O ASII 94	34 752 -4.814 52.501 1.00 46.36	O AAAA II AAAA
ATOH ATOH	931 II LEU 95	34.308 -2.609 52.132 1.00 37.28	AAAA C
ATOH	933 CA LEU 95	34.324 -2.277 53.621 1.00 39.96	AAAA C
ATOH	934 CB LEU 95	34.183	AAAA C
ATOLL	935 CG LEU 95	34.323 -5.20 5 500 1 00 35 48	AAAA C
HOTA	936 CD1 LEU 95	33 847 1.177 55.344 1.00 25.46	AAAA C
ATOH	937 CD2 LEU 95 938 C LEU 95	33.163 -2.986 54.275 1.00 43.75	AAAA C
HOTA	939 O LEU 95	32.048 -2.936 53.772 1.00 44.04	aaaa o aaaa ii
ATON	940 H LYS 96	33.451 -3.863 55.213 1.00 46.50	AAAA C
ATCH:	942 CA LTS 96	32.364 -4.646 55 005 ' 00 41 41	AAAA C
ATOM	943 CB LTS 96	32.801	AAAA C
HOTA	944 CG LVS 96	32 984 -8.446 55.127 1.00 58.09	AAAA C
MOTA	. 10	33 772 -9.160 54.027 1.00 73.43	AAAA C
ATON	946 CE LTS 96 947 NE LTS 96	34.098 -10.556 54.489 1.00 /9.13	11 AAAA AAAA C
ATOH ATOH	951 C LYS 96	31.970 -4.055 57.122 1.00 45.29	AAAA O
ATOH	952 O LYS 96	30.978 -4.502 57.691 1.00 46.23 32.685 -3.071 57.645 1.00 45.15	AAAA II
ATOM	953 II ASE 97	50.001 100.17.15	AAAA C
ATO:I	955 CA ASP 97	32.23	AAAA C
ATOH	956 CB ASP 97	32.294 -3.292 60.059 1.00 40.05 33.662 -3.562 60.624 1.00 56.95	AAAA C
ATOH		34 579 -2.825 61.012 1.00 59.88	AAAA O
ATOH	958 OD1 ASF 97 959 OD2 ASF 97	33.931 -4.782 60.714 1.90 56.01	AAAA O
ATOH ATOH	960 C ASP 97	33.209 -1.224 59.201 1.00 41.25	AAAA C AAAA O
ATOH	961 O ASP 97	34.160 -1.074 58.437 1.00 47.03 32.822 -0.366 60.129 1.00 40.41	AAAA II
ATOH	962 H ILE 98	32.022 50.710 1.00.37 83	AAAA C
ATOH	964 CA ILE 98	33.073	AAAA C
ATOI 1	965 CB ILE 98	31 007 3.133 61.207 1.00 38.95	AAAA C
I-IOTA	200	31 835 2 488 60.092 1.00 34.84	AAAA C
ATO:	967 CG1 ILE 98	31.629 3.958 59.948 1.00 39.29	aaaa c aaaa c
ATOH ATOH	969 C ILE 98	34.854 0.322 61.114 1.00 33.11	AAAA O
ATON	970 O ILE 98	35.970	AAAA II
ATOI1	971 H GLY 99	34.610	AAAA C
ATO: 1	973 CA GLY 99	33.477	AAAA C
ATOH	974 C GLY 99	37 023 -0.572 64.899 1.00 38.21	AAAA O
ATOII	975 O GLY 99 976 H LEU 100	36 190 1,221 63,913 1,00 33,35	AAAA II
ATOH ATOH	978 CA LEU 100	36.763 2.215 64.771 1.00 31.65	AAAA C AAAA C
ATON	979 CB LEU 100	36.496 3.636 64.294 1.00 29.87	AAAA C
ATOH	980 CG LEV 100	30.743	AAAA C
ATOH	991 CD1 LEU 100	3619	AAAA C
ATO: I	982 CD2 LEU 190	38.412 3.599 62.644 1.00 31.94 36.312 1.976 66.194 1.00 31.94	AAAA C
ATOH	983 C LEU 100	35 350 12 863 66,979 1,00 31.95	AAAA O
LIOTA	984 O LEU 100 985 N TYR 101	36.704 0.851 66.779 1.00 31.87	AAAA II
ATOH ATOH	987 CA TYR 101	36.329 0.395 68.071 1.00 33.33	AAAA C AAAA C
ATOH	988 CB TIR 101	36.491 -1.104 68.264 1.00 41.03	AAAA C
ATOH	989 CG TYR 191	31.31.	AAAA C
ATC:1	000 CD1 TYR 101	30.3.1	AAAA C
HOTA	991 CE1 TYR 101	39.901 -1.743 69.749 1.00 49.44 38.615 -2.112 67.322 1.00 45.15	AAAA C
ATOH	992 CD2 TYR 101 993 CE2 TYR 101	39 527 -2.505 67.479 1.00 47.08	AAAA C
ATOH ATOH	993 CEC TYR 101 994 CZ TYR 101	40.548 -2.321 68.688 1.00 49.43	AAAA C
ATO:1	995 OH TYR 101	41.834 -2.662 68.997 1.90 55.82	aaaa c aaaa c
ATOH	997 C TTR 101	36.989 1.059 69.214 1.00 33.46	AAAA O
ATOH	998 O TIR 101	36.630	II AAAA
ATO:	999 II ASII 102	70 223 1 00 30 79	AAAA C
ATO:	1001 CA ASH 102	38.093 2.919 70.223 1.00 30.75 39.603 2.911 70.363 1.00 48.63	AAAA C
ATOH	1002 CB ASH 102 1003 CG ASH 102	10 110 1 004 71 768 1.00 54.01	AAAA C
ATOH	1003 CG ASH 102 1004 OD1 ASH 102	39.738 1.864 72.454 1.00 47.22	AAAA O II AAAA
HOTA HOTA	1005 HD2 ASH 102	40.864 0.845 70.767 1.00 43.06	AAAA C
ATOH	1008 C ASH 102	37.673 4.363 73.502 1.00 39.84	AAAA O
ATOH	1009 O ASH 102	38.047 5.564 68 882 1.00 35.28	AAAA II
ATOH	1010 H LEU 103	36.845 4.640 68.621 1.00 36.57	AAAA C
ATOH	1012 CA LEU 103	36.475	AAAA C
ATON	1013 CB LEU 103 1014 CG LEU 103	35.525 7.482 66.612 1.00 30.32	AAAA C
HOTA HOTA	1014 CG LEG 103	36.606 8.513 66.646 1.00 23.20	AAAA C
ATCII	1016 CD2 LEU 103	35.199 7.169 65.146 1.00 37.10	AAAA C AAAA C
ATON	1017 C LEU 103	35.484 6.508 69.691 1.00 37.31	алаа О
ATC:1	1018 0 LEU 101		AAAA !!
ATOH	1019 H ARG 10- 1021 CA ARG 10-		AAAA C
ATOH	1021 CA ARG 10		

••• • • • • • • • • • • • • • • • • • •	20347	11/50	
		11/58 35.568 7.657 73.018 1.60 38.17	ANAA C
ATOH ATOH	1022 CB ARG 104 1023 CG ARG 104	36.356 5.375 73.165 1.00 48.37	AAAA C
ATOH	1023 CG ARG 104	35.425 5.183 73.248 1.00 50.71	AAAA C AAAA II
ATOH	1925 HE ARG 104	34.582 5.320 74.413 1.00 52.38 34.900 4.847 75.621 1.00 72.73	AAAA C
HOTA	1027 CC ARG 104	34.300	AAAA II
AT'ON	1028 NH1 ARG 104 1031 NH2 ARG 104	33.990 5.070 76.577 1.00 78.27	II AAAA
ATON ATON	1031 HH2 ARG 104 1034 C ARG 104	34.466 9.273 71.540 1.00 32.58	AAAA C
ATOH	1035 O ARG 104	33.553 9.743 72.223 1.00 39.89	AAAA O AAAA II
ATO: I	1036 II ASII 105	-1 -2 20 20 27	AAAA C
ATOL	1038 CA ASH 105	34.549 11.450 70.590 1.00 30.97 34.907 12.149 69.310 1.00 31.00	AAAA C
HOTA	1044 C ASH 105 1045 O ASH 105	36 086 12.067 69.050 1.00 37.79	AAAA O
HOTA	1039 CB ASH 105	35.203 12.199 71.721 1.00 12.28	AAAA C AAAA C
ATOH	1040 CG ASH 105	34.786 13.568 71.756 1.00 24.93 35.125 14.549 71.127 1.00 38.14	AAAA O
INTA	1041 OD1 ASH 105 1042 HD2 ASH 105	35.125 14.549 71.127 1.00 38.14 33.828 13.985 72.649 1.00 35.96	II AAAA
HOTA	1042 HD2 ASH 105 1046 H ILE 106	33 969 12,669 68,576 1.00 31.90	AAAA II
ATOH	1048 CA ILE 106	34.129 13.551 67.469 1.00 23.39	AAAA C AAAA C
ATOH	1049 CB ILE 106	33.239 13.185 66.307 1.00 16.54 33.130 14.408 65.374 1.00 20.38	AAAA C
ATCI1	1050 CG2 ILE 106	33.232	AAAA C
ATOM	1051 CG1 ILE 106 1052 CD1 ILE 106	33.055 11.293 64.643 1.00 25.48	AAAA C
ATOM ATOM	1053 C ILE 106	33.803 14.909 68.009 1.00 27.40	AAAA C
ATOI-I	1054 O ILE 106	32.628 15.106 68.243 1.00 32.86 34.719 15.789 68.350 1.00 30.43	AAAA O AAAA H
ATOH	1055 II THR 107	34.713	AAAA C
HOTA	1057 CA THR 107 1058 CB THR 107	34.532 16.983 69.145 1.00 25.27 35.902 17.607 69.579 1.00 35.78	AAAA C
ATOH ATOH	1058 CB THR 107 1059 OG1 THR 107	36 819 16,503 69,738 1.00 40.26	AAAA O
ATOH	1061 CG2 THR 107	35.954 18.411 70.855 1.00 28.13	AAAA C AAAA C
HOTA	1062 C THR 107	33.728 17.950 69.332 1.00 27.95 33.392 19.060 68.831 1.00 32.99	AAAA O
ATON	1063 O THR 107 1064 U ARG 108	33.392 19.060 68.831 1.00 32.99 33.669 17.777 67.019 1.00 30.28	LI AAAA
ATOI1	1064 II ARG 108 1066 CA ARG 108	33.046 18.809 66.180 1.00 31.25	AAAA C
ATOM	1067 CB ARG 108	33.965 20.011 65.951 1.00 25.13	AAAA C AAAA C
ATO!!	1068 CG ARG 109	33.105 21.174 65.543 1.00 30.68 33.917 22.444 65.529 1.00 17.12	AAAA C
ATOH	1069 CD ARG 108 1070 HE ARG 108	33.517 22.444 65.529 1.00 17.12 33.511 23.376 64.451 1.00 33.40	AAAA !!
HOTA NOTA	1070 HE ARG 108 1072 CE ARG 108	34.045 23.608 63.266 1.00 46.41	AAAA C
ATOM	1073 HH1 ARG 108	35.162 22.929 62.868 1.00 40.30	II AAAA II AAAA
HOTA	1076 HH2 ARG 108	33.454 24.543 62.494 1.00 39.82 32.701 18.328 64.784 1.00 31.50	AAAA C
ATOM	1079 C ARG 108 1080 O ARG 108	32.701 18.328 64.784 1.00 31.50 33.379 17.381 64.430 1.00 32.67	AAAA O
ATOH ATOH	1080 O ARG 108 1081 H GLY 109	31.567 18.809 64.284 1.00 32.60	AAAA II
HOTA	1083 CA GLY 109	31.082 18.385 62.983 1.00 28.87	AAAA C AAAA C
HOTA	1084 C GLY 109	30.470 17.008 63.001 1.00 32.32 30.471 16.306 64.006 1.00 38.03	AAAA O
ATON	1085 O GLT 109 1086 H ALA 110	30.471 16.306 64.006 1.00 38.03 29.920 16.560 61.894 1.00 34.11	II AAAA
HOTA	1086 II ALA 110 1088 CA ALA 110	29.086 15.371 61.833 1.00 36.77	AAAA C
ATOL	1089 CB ALA 110	27.708 15.721 61.223 1.00 15.32	AAAA C AAAA C
ATOH	1090 C ALA 119	29.745 14.335 60.957 1.00 32.12 30.921 14.332 60.687 1.00 34.11	AAAA O
ATON	1091 O ALA 110 1092 H ILE 111	30.921 14.332 60.687 1.90 34.11 29.030 13.337 60.557 1.00 26.55	AAAA II
HOTA HOTA	1094 CA ILE 111	29.569 12.273 59.771 1.00 32.90	AAAA C
ATOH	1095 CB ILE 111	29.669 10.967 60.591 1.00 38.07	AAAA C AAAA C
HOTA	1096 CG2 ILE 111	30.091 11.140 62.036 1.00 34.05 28.345 10.237 60.684 1.00 26.54	AAAA C
ATOH	1097 CG1 ILE 111 1098 CD1 ILE 111	28.345 10.237 60.684 1.00 26.54 28.437 8.872 61.407 1.00 27.11	AAAA C
ATOI1	1099 C ILE 111	28.738 11.928 58.521 1.00 33.98	AAAA C
ATOH	1100 O ILE 111	27.533 12.179 58.532 1.00 32.15	0 AAAA 11 AAAA
HOTA	1101 II ARG 112	29.432 11.423 57.501 1.00 30.54 26.773 11.107 56.247 1.00 27.48	AAAA C
ATON	1103 CA ARG 112 1104 CB ARG 112	28.773 11.107 56.247 1.00 27.48 29.186 12.085 55.169 1.00 26.35	AAAA C
ATOH HOTA	1105 CG ARG 112	28.548 11.653 53.816 1.00 25.83	AAAA C
ATCH	1106 CD ARG 112	28.659 12.912 52.992 1.00 32.92	AAAA C AAAA !!
ATOH	1107 HE ARG 112	27.950 12.726 51.770 1.00 50.34 27.778 13.503 50.720 1.00 47.61	AAAA C
ATON	1109 CZ ARG 112 1110 UH1 ARG 112	27.778 13.503 50.720 1.00 47.61 28.334 14.695 50.696 1.00 44.92	AAAA N
ATOM ATOM	1110 UH1 ARG 112 1113 UH2 ARG 112	27.012 12.925 49.789 1.00 46.00	II AAAA II
ATOH	1116 C ARG 112	29.200 9.738 55.791 1.00 29.74	AAAA C
ATOH	1117 O ARG 112	30.343 9.611 55.406 1.00 36.52 08.306 8.754 55.886 1.00 33.99	O AAAA II AAAA
ATOH	1118 H ILE 113	28.326 8.754 55.886 1.00 33.99 28.612 7.376 55.555 1.00 36.26	AAAA C
ATOH ATOH	1120 CA ILE 113 1121 CB ILE 113	28.457 6.461 56.760 1.00 33.27	AAAA C
HOTA	1122 CG2 ILE 113	28.850 5.021 56.449 1.00 15.85	AAAA C
ATOH	1123 CG1 ILE 113	29.374 7.012 57.874 1.00 31.92 29.324 6.250 59.176 1.00 42.34	AAAA C AAAA C
ATOH ATOH		29.324 6.250 59.176 1.00 42.34 27.729 6.959 54.398 1.00 39.26	ÄÄÄÄÄ C
ATCH		26.637 6.482 54.664 1.00 50.72	AAAA O
ATO	1127 II GLU 114	28.175 7.199 53.190 1.00 35.86	AAAA II
TOTA,		27.491 7.103 £1.935 1.00 38.76 27.471 8.443 £1.216 1.00 25.58	AAAA C
IOTA IOTA		27.471 8.443 51.216 1.90 25.58 26.567 8.402 49.969 1.90 27.97	AAAA C AAAA C
ATOI		26.349 9.840 49.578 1.00 36.85.	AAAA C
ATO		26.763 10.662 50.414 1.00 45.57	AAAA O

WO 99	28347		
		12/58	
HOTA	1134 OE2 GLU 114	25.787 10.106 48.488 1.00 35.53	AAAA C AAAA C
ATOH	1135 C GLU 114	28.039 6.072 50.944 1.00 44.17 29.120 5.538 51.090 1.00 49.97	AAAA O
ATOH	1136 O GLU 114 1137 H LYS 115	27,191 5.556 50.096 1.00 40.55	AAAA I!
ATOH ATOH	1137 H LYS 115 1139 CA LYS 115	27.219 4.440 49.242 1.00 41.16	AAAA C AAAA C
ATOH	1140 CB LYS 115	27.275 4.764 47.718 1.00 23.62 27.019 6.194 47.411 1.00 18.39	AAAA C
MOTA	1141 CG LYS 115	26 537 6.355 45.982 1.00 24.74	AAAA C
ATON ATON	1142 CD LTS 115 1143 CE LTS 115	26.751 7.804 45.622 1.90 41.86	AAAA C
ATON	1144 NO LYS 115	27.165 8.045 44.196 1.00 60.91	II AAAA C AAAA
ATOM	1148 C LYS 115	28.287 3.421 49.611 1.00 42.39 29.102 3.103 48.749 1.00 46.68	AAAA O
ATOH	1149 O LTS 115 1150 H ASH 116	28.137 2.677 50.665 1.00 40.99	II AAAA
ATOH ATOH	1152 CA ASH 116	29.022 1.570 50.976 1.00 37.33	AAAA C AAAA C
ATOH	1153 CB ASII 116	29.534 1.868 52.381 1.90 46.12 30.372 3.153 52.345 1.90 48.92	AAAA C
ATOM	1154 CG ASH 116 1155 OD1 ASH 116	31.337 3.016 51.583 1.00 38.59	AAAA O
ATOH ATOH	1155 OD1 A3H 116	29.927 4.174 53.056 1.00 37.35	aaaa c
ATON	1159 C ASH 116	28.275 0.277 50.974 1.00 42.52 28.067 -0.361 52.033 1.00 48.24	AAAA O
HOTA	1160 O ASH 116	27 989 -0.188 49.772 1.00 40.94	II AAAA II
ATON:	1161 H ALA 117 1163 CA ALA 117	27.195 -1.376 49.542 1.00 43.35	AAAA C
ATOH	1164 CB ALA 117	27.494 -1.884 48.156 1.00 47.63 27.294 -2.504 50.529 1.00 46.55	дааа с Аааа с
ATOH	1165 C ALA 117	27.27	AAAA O
HOTA HOTA	1166 O ALA 117 1167 N ASP 118	28 484 -2.823 51.005 1.00 47.43	AAAA II
ATOM ATOM	1169 CA ASP 118	28.559 -3.980 51.920 1.00 45.74	D AAAA D AAAA
ATO:1	1170 CB ASF 118	29.659 -4.945 51.477 1.00 55.39 29.684 -5.119 49.958 1.00 59.40	AAAA C
HOTA	1171 CG ASP 118	28.870 -5.976 49.608 1.00 64.40	o arar
ATOH ATOH	1172 OD1 ASP 118 1173 OD2 ASP 118	30.448 -4.447 49.207 1.00 66.73	AAAA O
ATOM	1174 C A3P 118	28.818 -3.586 53.353 1.00 37.29 28.127 -4.536 54.026 1.00 42.89	O AAAA O AAAA
ATOH	1175 O ASP 118	28.670 -2.327 53.685 1.00 36.46	II AAAA II
HOTA HOTA	1176 H LEU 119 1178 CA LEU 119	28.986 -1.885 55.047 1.00 40.58	AAAA C C AAAA
ATOI1	1179 CB LEU 119	29.159 -0.389 55.145 1.00 34.31 29.640 0.331 56.378 1.00 36.58	AAAA C
ATOH	1180 CG LEU 119 1181 CD1 LEU 119	30.950 -0.101 56.948 1.00 35.77	AAAA C
ATOH ATOH	1182 CD2 LEU 119	29.791 1.830 56.104 1.00 29.68	AAAA C AAAA C
ATOH	1183 C LEU 119	27.937 -2.376 56.007 1.00 43.67 26.748 -2.248 55.743 1.00 45.32	AAAA O
HOTA	1184 O LEU 119 1185 N CYS 120	28.361 -2.967 57.110 1.00 43.53	H AAAA C AAAA
ATON	1187 CA CYS 120	27.378 -3.407 58.089 1.30 38.93 27.881 -2.921 59.426 1.00 41.91	AAAA C
ATOI-I	1188 C CYS 120 1189 O CYS 120	28,660 -1.960 59.446 1.00 43.66	AAAA O
HOTA	1199 O CYS 120 1190 CB CYS 120	27.285 -4.907 58.100 1.00 37.59	AAAA C AAAA S
ATOH	1191 SG CYS 120	20.300 3.022 3.00 3.00	AAAA II
ATOH	1192 // TYR 121 1194 CA TYR 121	27 795 -3.010 61.927 1.00 38.68	AAAA C
ATON ATON	1195 CB TYR 121	29.189 -3.572 62.130 1.00 34.61	2 AAAA 3 AAAA
ATOH	1196 CG TYR 121	28,950 -5,032 62,519 1,00 36,52 29,087 -6,045 61,582 1,00 33,58	AAAA C
ATOH	1197 CD1 TYR 121 1198 CE1 TYR 121	29.087 -6.045 61.582 1.00 33.36 28.852 -7.350 61.980 1.00 41.21	AAAA C
ATOH ATOH	1199 CD2 TYR 121	28.560 -5.337 63.817 1.00 36.31	AAAA C AAAA C
ATOH	1200 CE2 TYR 121	28.297 -6.630 64.201 1.00 39.48 28.432 -7.641 63.270 1.00 46.07	D AAAG
ATOH	1201 CC TYR 121 1202 OH TYR 121	28.161 -8.924 63.730 1.00 49.20	O AAAA
ATOH ATOH	1204 C TYR 121	27.674 -1.523 61.789 1.00 38.83	D AAAA O AAAA
ATOIL	1205 O TYR 121	28.445 -0.778 62.369 1.00 43.22 26.587 -1.045 61.180 1.00 39.58	II AAAA
HOTA	1206 H LEU 122 1208 CA LEU 122	26.361 0.405 61.090 1.00 44.82	AAAA C
ATOH ATOH	1209 CB LEU 122	25.990 0.715 59.634 1.00 46.48	AAAA C AAAA C
ATOH	1210 CG LEU 122	26.497 2.014 59.108 1.00 44.44 25.778 2.448 57.859 1.00 32.19	AAAA C
ATON	1211 CD1 LEU 123 1212 CD2 LEU 123	50 170 1 00 47 76	AAAA C
ATOH	1212 CD2 LEU 122 1213 C LEU 122	25.212 0.910 61.935 1.00 44.85	AAAA C AAAA O
ATON	1214 O LEU 123	25.269 1.759 62.839 1.00 47.66	AAAA II
ATON	1215 H SER 123	0 405 60 702 1 00 33 98	AAAA C
ATON ATON	1217 CA SER 121 1218 CB SER 121	21.754 -0.330 62.239 1.00 19.26	AAAA C
ATOM	1219 OG SER 12	21.964 -1.762 62.402 1.99 34.35	AAAA 0 AAAA C
ATOH	1021 C SER 121	23.1	AAAA O
ATOH ATOH	1222 O SER 12 1223 H THR 12	04.242 -0.698 64.432 1.00 39.03	II AAAA II O AAAA
ATOH	1225 CA THR 12	24.554 -1.165 65.753 1.00 37.79	PAAA €
ATON		26,502 -2,020 64,924 1.00 47,70	алаа о
HOTA HOTA		24.677 -3.622 65.006 1.00 40.93	2 AAAA 2 AAAA
ATO	1230 C THR 12	25.522 -0.206 66.445 1.00 39.29	AAAA O
ATO		25 727 1 001 65 995 1 00 37.80	AAAA II
ATO:		26.594 1.964 66.661 1.00 41.06	C AAAA C AAAA
ATO	1235 CB VAL 12	27.683 2.542 65.714 1.00 39.50	AAAA
ATO		3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	4444
POTA	i in con ton in		

					1	13/58		
ATOH	1238	C VAL	125	25.759		67.179	1.00 41.17	AAAA C
ATOH	1239	O VAL	125	24.94)		e6.531 68.367	1.00 41.22	O AAAA II AAAA
ATOH ATOH		H ASP CA ASP	126 126	26.072 25.310		68.967	1.00 37.44	AAAA C
ATOH		CB ASP	126	24.862	1.335	70.342 70.983	1.00 34.73 1.00 45.53	AAAA C . AAAA C
ATOH		CG ASP	126	23.879 23.699		70.685	1.00 43.33	AAAA O
ATOH ATOM		OD1 ASP OD2 ASP	126 126	23.220	4.865	71.964	1.00 52.32	AAAA O
ATOI1		C ASP	126	26.146	5.985	68.872 69.888	1.00 40.83 1.00 42.78	AAAA C AAAA O
ATOH		O ASP N TRP	126 127	26.740 26.029	6.400 6.649	67.704	1.00 35.42	II AAAA
ATOH ATOH	1251	CA TRP	127	26.777	7.856	67.410	1.00 33.02	AAAA C AAAA C
HOTA	1252	CB TRP	127 127	26.568 27.195	9.296 7.372	65.930 64.907	1.00 24.89	AAAA C
ATOH ATOH	1253 1254	CG TRP	127	28.587	7.208	64.518	1.00 28.60	AAAA C
ATOH	1255	CE2 TRP	127	28.631	6.186	63.579 64.873	1.00 29.06 1.00 35.51	AAAA C AAAA C
ATOH	1256 1257	CE3 TRP	127 127	29.778 26.465	7.845 6.450	64.188	1.00 18.67	AAAA C
ATOI1	1258	HE1 TRP	127	27.311	5.712	63.394	1.00 42.87	aaaa ii aaaa c
ATOM	1260	CC2 TRP	127 127	29.792 30.972	5.783 7.445	62.954 64.285	1.00 32.53 1.00 31.51	AAAA C
ATOH ATOH	1261 1262	CH2 TRP	127	30.937	6.405	63.336	1.00 37.86	AAAA C
ATOH	1263	C TRP	127	26.558	9.010	68.367	1.00 36.09 1.00 40.87	AAAA C AAAA O
ATOH	1264 1265	O TRP	127 129	27.382 25.493	9.977 8.931	68.497 69.171	1.00 31.24	· AAAA II
ATOH ATOH	1267	CA SER	128	25.201	10.041	70.081	1.00 34.04	AAAA C
ATOH	1268	CB SER	128	23.757	10.042 8.917	70.603 71.424	1.00 36.87 1.00 28.96	2 AAAA O AA AA
ATOH ATOH	1269 1271	OG SER	128 128	23.433 26.133	9.575	71.292	1.00 32.39	AAAA C
ATOH	1272	O SER	128	26.212	10.957	72.134	1.00 30.91	C AAAA II AAAA
HOTA	1273	ii LEU	156 156	26.662 27.701	8.792 8.607	71.549	1.00 27.18 1.00 36.73	AAAA C
HOTA HOTA	1275 1276	CA LEU	129	27.920	7.132	72.741	1.00 32.53	AAAA C
ATOH	1277	CG LEU	129	26.795 27.292	6.324 5.024	73.371 73.975	1.00 39.28 1.00 32.54	AAAA C AAAA C
ATOH ATOH	1278 1279	CD1 LEU	129 129	26.237	7.117	74.560	1.00 32.12	AAAA C
ATON	1280	C LEU	129	29.054	9.226	72.113 72.874	1.00 38.04 1.00 34.50	AAAA C AAAA O
MOTA NOTA	1281 1282	O LEU	129 130	29.645 29.316	10.001 9.217	70.807	1.00 42.09	AAAA N
ATOH	1284	CA ILE	130	30.480	9.743	70.144	1.00 41.35	AAAA C AAAA C
ATOM	1285	CB ILE	130	30.793 31.992	8.886 9.434	68.901 68.176	1.00 41.73 1.00 31.95	AAAA C
ATOH ATOM	1286 1297	CG2 ILE	130 130	30.969	7.413	69.347	1.00 26.64	AAAA C
ATOH	1288	CD1 ILE	130	31.053	6.457	68.165	1.00 42.65 1.00 46.48	АААА С АААА С
ATOH	1289 1290	O ILE	130 130	30.305 31.224	11.178	69.679 69.966	1.00 38.46	O AAAA
ATOH ATOH	1291	H LEU	131	29.089	11.495	69.193	1.00 45.14	AAAA II
ATON	1293	CA LEU		28.895 28.499	12.865	68.651 67.259	1.00 41.45 1.00 46.81	AAAA C AAAA C
ATOH ATOH	1294 1295	CB LEU		28.823	12.805	65.878	1.00 36.79	AAAA C
ATOH	1296	CD1 LEU	131	29.128	11.405	65.324	1.00 30.15 1.00 19.92	AAAA C C AAAA
ATOH ATOH	1297 1298	CDC LEU		27.625 27.661	13.581	65.334 69.285	1.00 39.22	AAAA C
ATOII	1299	O LEU	131	26.599	12.867	69.311	1.00 37.75	AAAA O AAAA II
ATOH	1300 1302	II ASP		27.742 26.610	14.811 15.542	69.518 70.003	1.00 33.73 1.00 38.20	AAAA C
ATOH	1302	CA ASP		27.017	16.944	70.381	1.00 43.17	AAAA C
HOTA	1304	CG ASP		27.349	17.137 16.122	71.834 72.521	1.00 43.29	AAAA C AAAA O
ATON ATON	1305 1306	OD1 ASP		27.536 27.413	18.331	72.208	1.00 60.58	AFAA O
ATOI1	1307	C ASP	132	25.520	15.659	68.946	1.30 43.46	AAAA C AAAA O
ATOI I	1308	O ASP		24.481 25.754	15.032 16.398	68.939 67.900	1.00 49.32	AAAA H
ATOH ATOH	1311	CA ALA		24.947	16.776	66.773	1.00 38.62	AAAA C
ATOH	1312	CB VE		25.628	17.987 15.669	66.092 65.775	1.00 33.82	AAAA C AAAA C
ATOH ATOH	1313 1314	C ALA		24.694 24.777	15.791	64.517		AAAA O
ATOH	1315	II VAL	, 134	24.115	14.565	66.219		AAAA C
ATOH	1317 1318	CB VAL		23.813	13.440	65.377 66.120		AAAA C
ATON:	1319	CG1 VAL		24.265	11.441	66.855	1.00 35.20	AAAA C
ATOH	1320	CG2 VAI		22.095 22.735	12.701	67.068 64.353		C AAAA
ATOH ATOH	1321 1322	C VAI		22.616	13.732 13.106	63.292	1.00 32.95	O AAAA
ATOI1	1323	II SEF	135	21.920	14.777	64.626	1.00 39.65	AAAA II AAAA C
ATOL	1325	CA SER		20.886	15.139 16.277			AAAA C
ATOH ATOH	1326 1327	OS SEI		20.882	17.369	64.684	1.00 39.25	AAAA O
FIOTA	1329	C SE	R 135	21.396	15.516			AAAA C AAAA O
ATCH ATCH	1330 1331	O SEI		20.815 22.615	15.642 15.911			AAAA U
ATON	1333	CA AS	136	23.298	16.353	60.978	1.00 37.21	? AAAA
ATOH ATOH	1334 1335			04,324 03,704	17.372 19.709			AAAA C AAAA C
ATOH	1336			22.695				AAAA O

****	20541								
					270		14/58 62.585	1.00 47.85	II AAAA
ATOH	•			136 136			60.259	1.00 35.31	AAAA C
ATCH ATOH				136		15.484	59.194	1.00 38.70	O AAAA II AAAA
ATOH		:: A	SII	137	24.057	14.035	60.793 60.126	1.00 29.11 1.00 32.98	AAAA C
ATOH				137	24.721 24.737	12.959 11.703	61.033	1.00 24.45	AAAA C
ATON			SH SH	137 137	25.631	11.965	62.217	1.00 26.63	AAAA C
ATOH ATCH	1347	OD1 A		137	26.970	13.121	62.369	1.00 30.22	AAAA O AAAA H
ATOH		HD2 A		137	25.830	10.923	63.000	1.00 18.90 1.00 35.89	AAAA C
ATOH	1351		SU	137	23.950 22.716	12.749 12.755	58.817 58.855	1.00 38.57	AAAA O
ATOH ATOH	1352 1353		SH TR	137 138	24.592	12.251	57.785	1.00 32.86	AAAA II
ATOH	1355		TR	138	24.093	11.983	56.489	1.00 30.25	AAAA C AAAA C
ATOH	1356		TR	138	24.682	12.861	55.421 54.078	1.00 27.10 1.00 37.89	AAAA C
ATOH	1357		TR TR	138 138	04.018 23.083	12.741	53.648	1.00 39.22	AAAA C
ATOH ATOH	1358 1359		YR	138	22.510	13.579	52.392	1.00 37.65	AAAA C
ATOH	1360	CD2 T	Ϋ́R	138	24.357	11.717	53.195	1.00 44.28	AAAA C AAAA C
ATOH:	1561		TR	138	23.801	11.615 12.562	51.951 51.564	1.00 39.42	AAAA C
ATOH	1362		YYR YYR	138 138	22.868 22.296	12.504	50.318	1.00 45.48	AAAA O
ATON ATON	1363 1365		TYR	138	24.373	10.578	56.051	1.00 31.33	AAAA C
ATOH	1366		IYR .	138	25.505	10.317	55.797	1.00 37.76 1.00 35.40	AAAA O
ATOH	1367		LE	139	23.461 23.637	9.660 8.249	56.116 55.935	1.00 34.04	AAAA C
HOTA	1369 1370		LE LE	139 139	23.234	7.450	57.171	1.00 28.66	AAAA C
ATOH ATOH	1371	CG2 1		139	23.640	5.984	57.093	1.00 21.99	AAAA C AAAA C
ATOH	1372	CS1 1		139	23.711	8.057	58.469	1.00 42.81 1.00 52.23	AAAA C
HOTA,	1373	CDI :		139	24.455 22.729	7.100 7.708	59.389 54.930	1.00 35.73	AAAA C
ATOH	1374 1375		ILE ILE	136 136	21.538	7.890	54.757	1.00 42.61	AAAA O
ATOH ATOH	1376		VAL	140	23.286	6.997	53.873	1.00 35.29	AAAA :I AAAA ⊂
ATOH	1378		VAL	140	22.533	6.481 7.627	52.755 51.881	1.00 32.39 1.00 36.05	AAAA C
ATOH	1379	CB CG1	VAL	140 140	21.967 22.800	8.375	50.881	1.00 25.88	AAAA C
ATOH ATOM	1380 1381		VAL	140	20.807	7.034	51.047	1.00 34.96	AAAA C AAAA C
ATOH	1392	C i	VAL	140	23.422	5.670	51.874 51.637	1.00 41.96 1.00 44.03	AAAA O
MOTA	1383		VAL	140	24.537 22.899	6.172 4.562	51.402	1.00 42.66	II AAAA II
HOTA HOTA	1384 1386		GLY GLY	141 141	23.381	3.805	50.278	1.00 30.94	AAAA C
ATON	1387		GLY	141	24.265	2.696	50.835	1.00 38.98 1.00 35.87	AAAA C AAAA O
ATOH	1398		GLY	141	25.132	2.003	50.176 52.116	1.00 33.07	II AAAA
HOTA	1389		ASII ASII	142 142	23.985 24.858	1.390	52.746	1.00 44.32	AAAA C
HOTA	1391 1392		ASII	142	25.257	1.774	54.187	1.00 43.12	AAAA C AAAA C
ATOM	1393	CG	ASH	142	26.131	3.022	54.152	1.00 42.00 1.00 40.47	AAAA O
ATO!!	1394	OD1		142 142	26.984 25.945	3.077 4.022	53.269 55.019	1.00 41.98	AAAA II
ATOH ATOH	1395 1398	HD2 C	ASII	142	24.153	0.066	52.687	1.00 45.84	AAAA C
ATON	1399	ō	ASII	142	23.113	-0.015	52.055	1.00 49.65 1.00 45.23	O AAAA II AAAA
ATOH	1400	!!	LïS	143	24.674	-0.990 -2.299	53.272 53.195	1.00 49.14	AAAA C
ATOH	1400	CA CB	LYS LYS	143 143	24.073 25.166	-3.328	53.433	1.00 41.49	AAAA C
HOTA	1404	OS	LTS	143	24.750	-4.686	53.832	1.00 44.96	AAAA C
ATOH	1405	CD	LYS	143	25.512	-5.743	53.100	1.00 48.66 1.00 38.35	AAAA C
ATOH	1406	CE	LYS	143	25.043 26.080	-7.131 -8.093	53.558 53.040		AAAA II
ATOH ATOH	1407 1411	112 C	LYS LYS	143 143	22.902	-2.431	_	1.00 52.85	AAAA C
ATON	1412	ŏ	LïS	143	22.960	-2.099		1.00 55.21	O AAAA II AAAA
ATO:1	1413	11	FRO	144	21.806	-3.047 -3.469			AAAA C
ATOH	1414 1415	CD CD	PRO PRO	144 144	21.617 20.559	-3.118	_	1.00 48.30	AAAA C
ATOH	1416		PRO	144	19.549	-3.602	53.455		AAAA C AAAA C
ATOH	1417		PRO	144	20.134	-3.299			AAAA C
ATOH	1418		PRO	144	20.621 20.904	-4.050 -5.236			AAAA O
ATOH ATOH	1419		PRO PRO	144 145	20.318			1.00 45.12	AAAA II
ATON	1421		PRO	145	20.123	-2.054			AAAA C AAAA C
ATOH	1422		FRO	145	20.448				AAAA C
ATOH	1423		FRO PRO	145 145	19.704 20.040				AAAA C
ATOH ATOH	1424 1425		PRO	145	19.993		58.155	1.00 47.17	AAAA C
ATON	1426		PRO	145	20.556				aaaa ii
ATOH	1427		LYS	146	19.979				AAAA €
ATOH ATOH			LTS LTS	146 146	18.268 16.894			1.00 65.44	AAAA C
ATOH			LYS	146	16.220		55.982	2 1.00 64.32	AAAA C
ATOH	143	2 CD	LYS	146	14.797	-8.422	2 56.45		аааа с аааа с
ATOH			LYS	146	14.194				II AAAA II
HOTA			LYS	146 146	12.720 19.138			6 1.00 61.40	AAAA C
ATON			LYS	146	19.23			2 1.00 66.22	дааа О дааа 1:
ATON	144	0 11	GLU	147	19.77	-7.64			AAAA 🤉
ATON	144		GLU	147 147	20.92				AAAA C
ATON	144	کار. ر	OLC.	47.	21.10	0.07		. •	

****	20041		,	. <i></i>		
				15/58 52.567	1.00 73.15	AAAA C
ATOH	1444 OG GLU 1445 OD GLU	147 147	19.967 -7.579	51.093	1.00 85.90	AAAA C
HOTA HOTA	1445 CD GLU 1446 OE1 GLU	147	21.339 -7.636	50.701	1.00 95.25	AAAA O
ATOH	1447 OE2 GLU	147	19.201 -7.053	50.376	1.00 87.47	AAAA O
ATOII	1448 C GLU	147	22.136 -8.470	55.541	1.00 69.40	AAAA C AAAA C
ATOH	1449 O GLU	147	22.883 -9.437	55.361 56.355	1.00 66.76	AAAA II
ATOH	1450 H CY3	148	22.506 -7.484 23.693 -7.588	57.183	1.00 64.65	AAAA C
ATOH ATOH	1452 CA CYS 1453 C CYS	148 148	23.598 -8.702	58.196	1.00 65.56	аааа с
ATOH	1454 O CYS	148	24.473 -9.524	58.414	1.00 65.89	AAAA O
ATOH	1455 CB CYS	148	23.952 -6.301	58.001	1.00 57.29	AAAA C AAAA S
ATOH	1456 SG CTS	148	24.565 -5.091	56.808 58,977	1.00 59.22 1.00 67.88	AAAA II
ATOH	1457 H GLT	149	22.514 -8.743 22.387 -9.744	60.029	1.00 62.15	AAAA C
ATOH	1459 CA GLY 1460 C GLY	149 149	23.443 -9.627	61.120	1.00 59.18	AAAA C
ATOH ATOH	1461 O GLT	149	23.925 -10.603	61.699	1.00 61.11	AAAA O
ATOH	1462 H ASP	150	23.717 -8.426	61.596	1.00 54.88	aaaa d aaaa c
ATOI4	1464 CA ASP	150	24.794 -8.198	62.533 62.750	1.00 55.78 1.00 49.10	AAAA C
HOTA	1465 CB ASP	150 150	25.041 -6.703 25.320 -6.034	61.410	1.00 58.50	AAAA C
ATOH	1466 CG ASP 1467 OD1 ASP	150	25.726 -6.796	60.480	1.00 57.73	AAAA O
ATOH ATOH	1468 OD2 ASP	150	25.102 -4.819	61.363	1.00 49.69	AAAA O
ATO:	1469 C ASP	150	24.519 -8.854	63.855	1.00 59.36	aaaa c aaaa o
ATON	1470 O ASP	150	23.392 -8.820	64.377 64.524	1.00 67.48 1.00 54.39	II AAAA
ATOM	1471 H LEU 1473 CA LEU	151 151	25.532 -9.369 25.314 +9.908	65.853	1.00 52.79	AAAA C
ATOH ATOH	1473 CA LEU 1474 CB LEU	151	25.208 -11.409	65.806	1.00 58.55	AAAA C
ATOH	1475 CG LEU	151	24.063 -12.101	65.092	1.00 69.45	AAAA C AAAA C
ATOH	1476 CD1 LEU	151	24.515 -13.421	64.489	1.00 65.26 1.00 65.43	AAAA C
ATOH	1477 CD2 LEU	151	22.937 -12.372 26.409 +9.454	65.951 66.805	1.00 51.93	AAAA C
ATOH-	1478 C LEU 1479 O LEU	151 151	27.598 -9.734	66.634	1.00 55.59	AAAA O
ATOH	1480 II CTS	152	26.024 -8.773	67.849	1.00 48.62	II AAAA
HOTA	1482 CA CYS	152	26.992 -8.189	68.740	1.00 56.73 1.00 63.58	AAAA C AAAA C
ATCH	1483 C CYS	152	27.650 -9.325 27.074 -10.405	69.493 69.575	1.00 62.40	AAAA O
HOTA HOTA	1484 O CYS 1485 CB CYS	152 152	26.358 -7.144	69.657	1.00 41.99	AAAA C
ATOH	1486 SG CYS	152	25.985 -5.635	68.703	1.00 55.83	AAAA S
ATO!	1487 II PRO	153	28.826 -9.072	70.059 69.903	1.00 68.05 1.00 66.66	aaaa ii aaaa c
ATOM	1488 CD PRO	153 153	29.618 -7.838 29.497 -10.094	70.851	1.00 70.60	AAAA C
ATOM ATOM	1489 CA PRO 1490 CB PRO	153	30.601 -9.323	71.557	1.00 69.98	AAAA C
ATOM	1491 CG PRO	153	30.861 -8.159	70.690	1.00 70.58	AAAA C
ATON	1492 C PRO	153	28.543 -10.734	71.850	1.00 69.64 1.00 69.58	АААА С АААА О
ATOM	1493 O PRO	153	27.859 -10.075 28.444 -12.049	72.615	1.00 71.23	AAAA II
NOTA NOTA	1494 N GLY 1496 CA GLY	154 154	27.610 -12.894	72.745	1.00 78.07	AAAA C
ATOH	1497 C GLY	154	26.245 -13.230	72.223	1.00 81.75	AAAA C
ATOH	1498 O GLY	154	25.786 -14.318	72.547	1.00 80.26 1.00 84.54	O AAAA II AAAA
ATCH	1499 U THR 1501 CA THR	155 155	25.649 -12.468 24.314 -12.683	71.314	1.00 89.38	AAAA C
ATO:	1501 CA THR	155	24.916 -11.661	69.705	1.00 85.07	AAAA C
ATOH	1503 OG1 THR	155	24.063 -10.417	70.420	1.00 84.51	AAAA O
ATO! I	1505 CG2 THR	155	22.686 -11.995	69.092	1.00 82.27 1.00 93.69	D AAAA C AAAA
ATOH	1506 C THR	155	24.060 -14.094 23.005 -14.664	70.353 70.617	1.00 95.92	AAAA O
ATOH ATOH	1507 O THR 1508 N MET	155 156	25.003 -14.655	69.617	1.00 97.23	AAAA H
ATOM	1510 CA HET	156	24.884 -15.973	69.024	1.00 99.05	AAAA C
ATO11	1511 CB HET	156	25.907 -16.190	67.896	1.00100.40 0.01 99.75	AAAA C AAAA C
ATOH	1512 CG MET	156 156	25.456 -15.675 23.687 -15.857	66.542 66.255	0.01 99.72	AAAA S
ATOH ATOH	1513 SD MET 1514 CE MET	156	23.664 -17.214	65.087	0.01 99.59	AAAA C
ATO14	1515 C HET	156	25.027 -17.106	70.032	1.00100.57	AAAA C
ATO!!	1516 O HET	156	24.353 -18.122	69.835	1.00101.64	AAAA O
ATOH	1517 H ALA	157	25.974 -17.057	70.967 71.986	1.00100.53 1.00101.00	11 AAAA O AAAA
ATOH ATOH	1519 CA ALA 1520 CB ALA	157 157	26.022 -18.102 27.317 -18.158	72.766		AAAA C
ATOH	1521 C ALA	157	24.856 -17.890	72.959		AAAA C
ATOH	1522 O ALA	157	23.993 -18.654	72,921		AAAA O
HOTA	1523 II GLU	158	24.984 -16.906	73.841 74.781		11 AAAA C 2 AAAA
ATOH	1525 CA GLU 1526 CB GLU	158 158	23.935 -16.629 23.128 -17.865	75.208		AAAA C
ATON ATON	1527 CG GLU	158	21.587 -17.546	75.560		AAAA C
ATO:	1528 CD GLU	158	21.347 -16.081	75.302		C AAAA
ATOH	1529 OE1 GLU	158	21.284 -15.733	74.096		O AAAA O AAAA
ATON	1530 OE2 GLU	158 158	21.199 -15.317 24.434 -15.915	76.282 76.025		AAAA C
HOTA HOTA	1531 C GLU 1532 O GLU	158	23.988 -16.117	77.145	1.00 95.89	C AAAA
ATOH	1533 II SER	159	25.276 -14.942	75.769	1.00 93.30	II AAAA II
ATO:	1535 CA SER	159	25.810 -14.119	76.848		AAAA C
IOTA IOTA	The state of the s	159	26.989 -14.805	77.517		2 AAAA O AAAA
ATON		159 159	26.972 -14.427 26.228 -12.793	79.886 76.226		AAAA C
ATO!	1540 O 3ER		27.368 -12.592	75.810	1.00 92.75	AAAA C
ATOI			25.196 -12.007	75.933	1.00 88.65	II AAAA II

	20047				1	16/58		
ATOH	1542 C	D FRO	160	23.789 -	12.122	76.395	1.00 86.67	AAAA C
AT'011	1543 C		160	25.463 -		75.361 75.456	1.00 84.74 1.00 84.79	AAAA C AAAA C
ATOH	1544 CI		160 160	24.125 23.370 -		76.515	1.00 84.62	AAAA C
ATOH ATOH	1545 C		160	26.503 -	10.025	76.236	1.00 79.60	AAAA C
ATOH	1547 0	PRO	160	26.319		77.456 75.596	1.00 79.70 1.00 74.45	AAAA O
ATON	1548 11		161 161	27.563 28.530		76.378	1.00 67.01	AAAA C
ATOH ATOH	1550 C		161	29.924	-9.178	76.038	1.00 69.93	AAAA C
ATOLI	1552 C		161	30.118 -		75.706	1.00 71.43 1.00 85.25	AAAA C AAAA S
ATON	1553 S		161	30.716 - 29.841 -	10.905	77.094 78.471	1.00 69.31	AAAA C
ATOH ATOH	1554 C 1555 C		161 161	28.358	-7.234	76.189	1.00 61.76	AAAA C
ATON	1556 0		161	28.788	-6.443	77.034	1.00 58.60	O AAAA H AAAA
ATOL	1557 17		162	27.493	-6.819 -5.384	75.095 74.938	1.00 54.81 1.00 49.76	AAAA C
ATOH ATOH	1559 C	A CYS	162 162	26.306	-4.777	75.670	1.00 51.52	AAAA C
ATOH	1561 0		162	25.224	-5.324	75.928	1.00 53.89	aaaa o aaaa c
HOTA		B CYS	162	27.422	-5.099 -6.064	73.459 72.432	1.00 48.31 1.00 54.02	AAAA S
ATON	1563 S 1564 H	G CYS GLU	162 163	28.533 26.409	-3.522	76.031	1.00 46.31	AAAA II
ATOH ATOH		A GLU	163	25.355	-2.675	76.538	1.00 47.19	AAAA C
ATOM	1567 C	B GLU	163	26.051	-1.412	77.027 78.465	1.00 49.95 1.00 62.30	AAAA C AAAA C
ATOH		G GLU D GLU	163 163	26.476 25.917	-1.364 -0.135	79.116	1.00 81.67	ANAA C
ATCII ATOH		D GLU E1 GLU	163	26.470	0.473	80.016	1.00 73.22	AAAA O
ATON	-	E2 GLU	163	24.646	0.208	78.721	1.00 80.93	AAAA O AAAA C
HOTA	1572 C		163	24.299 24.488	-2.340 -2.423	75.472 74.234	1.00 49.05 1.00 45.90	AAAA O
ATOH ATOH	1573 C 1574 D		163 164	23.142	-1.815	75.880	1.00 47.43	AAAA 1!
MOTA	-	A LYS	164	22.011	-1.499	75.081	1.00 43.92	AAAA C AAAA C
ATOH		B LYS	164	20.714 20.560	-2.244 -3.639	75.450 74.870	1.00 44.48	AAAA C
ATO:1		G LYS	164 164	19.480	-4.432	75.622	1.00 49.04	AAAA C
HOTA		E LYS	164	18.409	-5.012	74.720	1.00 49.21	AAAA C AAAA II
ATO:		II LYS	164	17.951	-6.372 -0.040	75.134 75.204	1.00 37.67 1.00 45.01	AAAA C
ATON ATON	1585 C		164 164	21.615 21.466	0.484	76.282	1.00 45.69	AAAA O
ATOM	1587		165	21.333	0.570	74.034	1.00 44.94	AAAA II
ATON:	1589 0	A THR	165	20.775	1.943 2.952	74.077 73.553	1.00 43.13 1.00 47.81	АААА С АААА С
ATOH		CB THR	165 165	21.831 22.053	2.689	72.127	1.00 39.13	AAAA O
ATON		CG2 THR	165	23.119	2.842	74.362	1.00 40.40	AAAA C
ATOH	1594	C THR	165	19.532	1.881 0.897	73.189 72.414	1.00 40.92 1.00 35.91	AAAA C AAAA O
HOTA		THR THR	165 166	19.346 18.781	2.985	73.173	1.00 39.18	AAAA II
ATON ATON		CA THR	166	17.689	2.991	72.182	1.00 42.97	AAAA C AAAA C
ATOH	1599	CB THR	166	16.297	3.096	72.833 72.819	1.00 55.99 1.00 41.42	AAAA O
1KOTA		DG1 THR DG2 THR	166 166	15.662 16.157	4.385	74.313	1.00 42.83	AAAA C
ATOH		C THR	166	17.983	4.051	71.137	1.00 40.17	AAAA C
ATOH	1604	O THR	166	18.219	5.206	71.509	1.00 35.72 1.00 42.21	O AAAA II AAAA
ATOH		N ILE CA ILE	167 167	17.912 18.182	3.725 4.672	69.866 68.777	1.00 41.05	AAAA C
HOTA		CA ILE	167	19.437	4.335	67.904	1.00 39.50	AAAA C
ATOH		CG2 ILE	167	19.589	5.346	66.716	1.00 15.26	AAAA C AAAA C
HOTA		CG1 ILE	167	20.722 21.899	4.305 3.665	68.724 67.966	1.00 36.20 1.00 35.70	AAAA C
ATOH ATCH		CD1 ILE	167 167	16.937	4.524	67.882	1.00 40.94	AAAA C
ATOH		O ILE	167	16.655	3.435	67.394	1.00 35.51	O AAAA II AAAA
ATO11		:I ASII	168	16.318 15.112	5.635 5.633	67.537 66.713	1.00 42.29 1.00 45.22	AAAA C
ATOH ATOH		CA ASII CB ASII	168 168	15.526	5.253	65.292	1.00 45.69	AAAA C
ATO:1		CG ASH	168	14.497	5.696	64.244	1.00 51.19	AAAA C AAAA O
ATOM		OD1 ASII	168	14.344 13.749	5.112 6.763	63.150 64.522	1.00 41.75 1.00 48.89	AAAA II
ATOH ATOH	1620 1623	IID2 ASH C ASH	168 168	13.954	4.739	67.141	1.00 46.55	AAAA C
ATOH	1624	O ASII	168	13.544	3.879	66.326	1.00 45.95	AAAA O
ATOH	1625	II ASII	169	13.644	4.728	68.433 69.007	1.00 45.12 1.00 43.67	AAAA 11 AAAA C
IICTA	1627 1628	CB ASII	169 169	12.717 11.315	3.759 4.106	68.540		AAAA C
ATOH ATOH	1629	CG ASII	169	10.943	5.487	69.093		AAAA C
ATO!	1630	OD1 ASII	169	10.917	5.779	70.280		AAAA O II AAAA
ATOH ATOH	1631 1634	HD2 ASH	169 169	10.658 13.003	6.448 2.306	68.213 68.719	1.00 44.69	AAAA C
ATON	1635	C ASII	169	12.100	1.544	68.383	1.00 45.72	AAAA O
ATOH	1636	H GLU	170	14.226	1.907			AAAA II AAAA C
ATOH		CA GLU	170	14.655 15.283				AAAA C
ATOH ATOH		CB GLU	170 170	15.028				AAAA C
ATON		CD GLU	170	14.517	-0.605	65.294	1.00 74.56	AAAA 🤉
ATO:1	1642	OE1 GLU	170	13.969				0 AAAA 0 AAAA
HOTA		OE2 GLU	170 170	14.763 15.647				2 AAAA
ATOH ATOH		o GLU	170	16.582				AAAA O
7.4 64 4								

							17/58		
ATOH	1646	11 5	TYR	171	15.344	-0.462	70.252	1.00 42.10	AAAA II
ATON	1648		TYR	171	16.231	-0.688 -0.861	72.097 73.359	1.00 51.81 1.00 49.94	AAAA C AAAA C
ATOH	1649 1650		TYR TYR	171 171	15.434 16.175	-1.168	74.620	1.00 48.90	AAAA C
ATOH	1651	CD1 1	TTR	171	16.980	-0.210	75.237	1.00 46.46	AAAA C AAAA C
ATOH	1652		TYR TYR	171 171	17.634 16.065	-0.469 -2.429	76.407 75.194	1.00 41.17	AAAA C
ATON ATON	1653 1654		TYR	171	16.734	-2.675	76.366	1.00 44.44	AAAA C
ATOH	1555	co '	TYR	171	17.516	-1.718	76.973	1.00 43.58 1.00 40.16	аааа с аааа о
ATON	1656 1658		TYR TYR	171 171	18.174 17.058	-2.017 -1.938	78.146 71.832	1.00 51.41	AAAA C
ATON ATON	1659		TYR	171	16.519	-3.024	71.889	1.00 52.59	AAAA O
ATOH	1560		IISA	172	18.331	-1.752	71.493	1.00 53.70	aaaa II aaaa c
ATOH ATOH	1662 1663		ASH ASH	172 172	19.203 19.085	-2.898 -3.278	60.703	1.00 55.43	AAAA C
ATOH	1664	CG 2	HEA	172	18.939	-1.766	69.498	1.00 61.75	AAAA C AAAA O
ATOH	1565	OD1		172 172	19.233 18.449	-5.646 -5.048	70.304 68.295	1.00 61.61 1.00 57.97	H AAAA
ATOH ATOH	1666 1669	11D2 /	ASH	172	20.665	-2.712	71.560	1.00 43.81	AAAA C
STOH	1670	O .	ASI:	172	21.163	-1.760	72.213	1.00 39.38	O AAAA II AAAA
ATOH	1671 1673		TYR Tyr	173 173	21.373 22.794	-3.796 -3.929	71.393 71.698	1.00 43.20 1.00 44.76	AAAA C.
ATOH ATCH	1674		TYR	173	23.223	-5.374	71.514	1.00 41.66	AAAA C
ATOH:	1675		TTR	173	22.759	-6.274	72.630	1.00 45.18 1.00 46.48	AAAA C AAAA C
ATOH ATOH	1676 1677	CD1	TYR TYR	173 173	21.931 21.438	-7.316 -8.181	72.237 73.193	1.00 51.36	AAAA C
ATOH	1678	CD2		173	23.081	-6.132	73.978	1.00 44.86	AAAA C
ATOH	1679		TYR	173	22.583	-7.016	74.916 74.535	1.00 46.92 1.00 50.33	C AAAA C AAAA
ATOH ATOH	1690 1691		TYR TYR	173 173	21.757 21.171	-8.038 -9.006	75.328	1.00 50.64	AAAA O
ATO!!	1693	Ċ	TYR	173	23.673	-3.699	70.762	1.00 46.94	AAAA C
ATOH Emori	1684 1685		TYR ARG	173 174	23.389	-2.983 -2.318	69.567 71.366	1.00 49.76 1.00 47.79	O AAAA N AAAA
ATOH ATOH	1687		ARG	174	25.517	-1.496	70.577	1.00 49.13	AAAA C
ATOH	1688		ARG	174	25.537	-0.132	71.233	1.00 44.32	AAAA C AAAA C
aton Atom	1689 1690	CD CD	ARG ARG	174 174	24.219	0.623	70.003	1.00 51.47	AAAA C
ATOH	1691	HE	ARG	174	21.974	0.760	70.039	1.00 48.35	AAAA !!
ATOH	1693 1694	CS UH1	ARG	174 174	21.144 21.477	0.570	69.017 67.864	1.00 48.23 1.00 38.96	AAAA C AAAA II
ATON	1697	11112		174	19.909	1.022	69.197	1.00 54.65	II AAAA
ATOH	1700		ARG	174	26.921	-2.094	70.461	1.00 45.98 1.00 44.97	AAAA C AAAA O
ATOM ATOM	1701 1702		ARG CYS	174 175	27.548 27.493	-2.557 -2.183	71.406 69.294	1.00 46.21	AAAA II
ATOH	1704		CIS	175	28.787	-2.758	68.997	1.00 45.60	AAAA C
ATOM	1705		CYS	175 175	29.407 28.755	-2.395 -2.018	67.665 66.665	1.00 46.23 1.00 44.78	AAAA C AAAA O
ATOH	1706 1707	O CB	CYS	175	28.576	-4.253	69.167	1.00 35.62	AAAA C
ATON	1708	SG	CVS	175	27.812	-5.181	67.827	1.00 51.92	AAAA S
ATOM ATOM	1709 1711	D CA	TRP	176 175	30.764 31.430	-2.517 -2.091	67.583 66.325	1.00 48.16 1.00 42.48	aaaa ii aaaa c
ATOM	1712	CB	TRP	176	32.769	-1.409	66.564	1.00 36.38	T AAAA
ATOH	1713	CG.	TRP	176	32.689	-0.069	67.203	1.00 25.56 1.00 23.71	D AAAA D AAAA
ATOH ATOH	1714 1715	CES CES	TRP	176 176	32.588 32.559	1.186	66.480 67.422	1.00 32.40	AAAA C
ATON	1716	CE3		176	32.535	1.520	65.141	1.00 24.31	AAAA C
ATON	1717	CDI		176 176	32.730 32.636	0.257 1.636	68.525 68.678	1.00 28.37 1.00 37.21	AAAA C AAAA H
ATON ATON	1718 1720	CCC	TRP	176	32.441	3.565	67.088	1.00 28.51	AAAA C
ATOM	1721		TRF	176	32.447	2.822	64.789	1.00 22.23	AAAA C
ATOM ATOM	1722 1723	CH2 C	TRP	176 176	32.406 31.631	3.817 -3.268	65.745 65.108	1.00 29151	AAAA C
ATOH	1724	ŏ	TRP	176	31.703	-3.121	64.199	1.00 39.15	AAAA O
ATOH ATOH	1725 1727	II CA	THR	177 177	31.682 31.964	-1.460 -1.460	66.005 65.161	1.00 41.33	AAAA D AAAA C
ATOH	1728	CB	THR	177	33.480	-6.062	65.162	1.00 43.66	AAAA C
ATOH	1729	051	THR	177	34.309	-5.025	64.613	1.00 47.85	AAAA O
ATOH ATOH	1731 1732	CG2 C	THR	177 177	33.676 31.290	-7.271 -6.814	64.283 65.859	1.00 58.51 1.00 48.76	AAAA C AAAA C
ATON	1733	Ö	THR	177	30.982	-6.539	67.001	1.00 51.53	O AAAA
ATON	1734	H	THR	178	31.269	-8.600	65.331	1.00 51.96	II AAAA
ATOH ATOH	1736 1737	CA CB	THR	178 178	30.924	-9.236 -10.500	65.946 65.946	1.00 58.95 1.00 66.55	C AAAA C AAAA
ATCH.	1738	0 G 1	THR	178	31.505	-10.066	63.73,	1.00 75.70	AAAA O
ATOH	1740	000	THR	178		-11.489		1.00 74.23 1.00 60.25	AAAA C AAAA C
ATON HOTA	1741 1742	د	THR	178 178	31.714 31.204	-9.539 -10.202	67.213 68.135	1.00 66.05	AAAA O
ATON	1743	11	ASH	179	32.977	-9.130	67.253	1.00 57.56	ii aaa
ATOH	1745	CA	ASH	179 179	33.793	-9.392 -10.024	68.443	1.00 53.39	AAAA C AAAA C
ATOH ATOH	1746 1747	CB CB	ASII ASII	179		-11.218	68.068 67.124	1.00 48.46 1.00 56.25	AAAA C
ATON	1748		ASH	179	34.412	-12.294	67.553	1.30 51.38	O AAAA II AAAA
ATON ATON	1749 1752	ב בפוו	ASH ASH	179 179	35.229 34.096	-11.063 -8.120	65.863 69.208	1.00 48.10 1.10 50.78	PAAA.
ATOH	1753	Ö	7311	179	34.556	-8.377	70.426	1.00 57.97	AAAA O

AAAA C

AAAA O

AAAA C

AAAA S

AAAA II

AAAA C

AAAA C

AAAA O

II AAAA

AAAA C AAAA C AAAA C

AAAA C

85.195

85.017

B4.769

85.535 84.806

84.323

82.886

82.082

82.524

81.364

81.214

28.568 15.288 81.202 1.00 84.69 28.207 16.733 80.723 1.00 90.15 26.713 16.806 80.471 1.00 91.83

10.331

11.327

8.372

7.001

10.322

11.521 11.834 10.932

13.052

13.520

15.035

1.00 57.29 1.00 57.70

1.00 57.56

1.00 58.67

1.00 56.91

1.00 57.28

1.00 59.62

1.00 57.91

1.00 62.78

1.00 67.72

1.00 72.76

						18/58		
ATOH	1754 11	ARG	130	33.626	-7.022	68.913	1.00 47.06	AAAA ::
ATOI	1756 CA		180		-5.820	69.691	1.00 48.25	AAAA C AAAA C
ATC44	1757 CB	ARG	180	34.925	-4.962	69.074 69.285	1.00 49.72	AAAA C
ATCII	1758 CG		180	36.324 37.288	-5.501 -4.948	68.279	1.00 70.83	AAAA C
ATOH	1759 CD 1760 HE		180 180	38.569	-5.605	68.203	1.00 76.18	AAAA :I
ATOH ATOH	1762 CD		180	39.298	-5.895	69.276	1.00 76.59	AAAA C
ATOH		II ARG	180	38.877	-5.608	70.498	1.00 80.82 1.00 79.33	II AAAA II AAAA
ATOH		12 ARG	180	40.474 32.530	-6.478 -4.977	69.190 69.821	1.00 48.10	AAAA C
HOTA	1769 C	ARG ARG	180 180	31.862	-4.476	68.905	1.00 46.99	AAAA O
ATOH ATOH	1770 0	CIS	181	32.230	-4.728	71.063	1.00 44.80	AAAA II
ATOH	1773 CA		181	31.199	-3.924	71.619	1.00 45.20	AAAA C AAAA C
ATO!	1774 C	CYS	181	31.646	-2.463	71.692 71.724	1.00 44.50	AAAA O
ATOH	1775 0		191 191	32.835 30.940	-2.227 -4.282	73.110	1.00 43.88	AAAA C
ATOH	1776 CE		181	30.363	-5.944	73.346	1.00 56.08	AAAA S
HOTA HOTA	1778 II	GLII	182	30.659	-1.600	71.690	1.00 39.30	AAAA II
ATOH	1780 CA	A GLH	182	30.948	-0.177	71.690	1.00 43.43	AAAA C AAAA C
HOTA	1791 CE		182	29.749	0.619 2.085	71.196 71.435	1.00 28.57	AAAA C
ATOI1	1782 CC		182 182	29.809 28.757	2.867	70.733	1.00 29.35	D AAAA
HOTA HOTA		El GLII	182	27.898	2.304	70.033	1.00 38.55	AAAA O
ATOH		E2 GLH	182	28.857	4.164	70.912	1.00 28.14	AAAA II AAAA C
ATOH	1788 €	GLH	182	31.218	0.089	73.162 74.041	1.00 46.07 1.00 47.01	AAAA C
ATCH	1789 O		182	30.458 32.213	-0.327 0.866	73.524	1.00 46.98	AAAA 11
ATOH	1790 II 1792 C		183 193	32.479	1.064	74.934	1.00 45.26	AAAA C
ATOH ATOH	1793 CI		183	33.966	1.275	75.185	1.00 48.68	AAAA C
ATON	1794 C	G LTS	183	34.865	0.267	74.482	1.00 47.95	C AAAA C AAAA
MOTA	1795 C		193	36.337	0.734	74.523 73.684	1.00 46.78	AAAA C
ATOI1	1796 C		183 183	37.178 38.499	-0.654	74.158	1.00 44.00	II AAAA
ATOH ATOH	1797 II 1801 C		183	31.659	2.205	75.477	1.00 48.13	AAAA C
ATO:1	1802 0		183	31.679	3.305	74.946	1.00 48.84 1.00 52.59	AAAA O AAAA 1:
ATCH	1803 !!		184	31.165	2.014	76.698 77.413	1.00 53.22	AAAA C
ATOH	1805 C		184	30.388 28.927	3.041 2.613	77.537	1.00 54.27	AAAA C
ATOH ATOH	1806 C		184 184	27.855	2.955	76.536	1.00 56.16	AAAA C
ATON		D HET	184	26.911	1.601	75.912	1.00 57.56	AAAA S
ATOH		E MET	184	26.738	1.855	74.171	1.90 46.57 1.00 50.55	AAAA C AAAA C
ATOH	1810		184	31.951 31.779	3.200 2.292	78.770 79.116	1.00 48.82	AAAA O
ATON	1811 C		184 185	30.796	4.195	79.565	1.00 53.97	AAAA II
ATOI 1 ATOI 1		A CYS	185	31.342	4.365	80.892	1.00 58.63	AAAA C
ATOH	1815		185	30.297	4.320	81.989	1.00 65.16 1.00 65.87	AAAA C AAAA O
ATCI1) CTS	185	29.133	4.649 5.772	81.761 81.000	1.00 60.37	AAAA C
ATOH	_	CB CYS	185 185	31.965 33.623	5.771	80.312	1.00 60.09	AAAA S
IOTA IOTA		I PRO	186	30.688	3.978	83.206	1.00 69.41	AAAA I!
ATON		D FRO	196	32.066	3.777	83.702	1.00 71.11 1.00 69.11	AAAA C AAAA C
ATC11		TA PRO	186	29.717	3.933	84.304 85.503	1.00 68.03	AAAA C
ATOH		B PRO	196	30.523 31.910	3.487 3.920	85.198	1.00 71.02	AAAA C
ATOH ATOH		CG PRO	186 186	29.120	5.320	84.431	1.00 69.47	AAAA C
ATCH		D PRO	186	29.820	6.345	84.507		AAAA O
ATOU		1 SER	187	27.801	5.367	84.546		AAAA C
ATCH		CA SER	187	27.050	6.592 6.287	84.750 85.129		AAAA C
ATOH		OB SER	187 187	25.594 25.474	4.935	85.566	1.00 91.78	AAAA O
ATOH:		C SER	187	27.630	7.476	85.836	1.00 67.19	AAAA C
ATON		O SER	197	27.606	8.708			O AAAA H AAAA
INTA	1834	II THR	188	28.108	6.853 7.507			AAAA C
ATOH		CA THR	188 189	28.870 29.805	6.459			AAAA C
ATCH ATOH		CB THR	188	28.943	5.365		1.00 89.33	AAAA O
ATOH		CG2 THR	188	30.605	7.048	89.759		AAAA C
ATON	1841	C THR	188	29.802	8.583			AAAA C AAAA O
ATO:1	_	O THR	188	29.843	9.739 8.247			AAAA II
HOTA		II CYS	189 189	30.643 31.583				AAAA C

1845

1846

1847

1848

1849

1850

1852

1953

1854 0

1855 11

1857

1958

1859 C2

1960 CD

1861 CE

HOTA

ATOH

ATOH

ATOU

FIOTA

ATOI1

ATOH

HOTA

ATOH

ATOH

ATO:

ATON

ATOH:

ATCH!

ATOH

CYS

CYS

GLY

GLY

GLY

LYS

LYS

LYS

LYS

LT3

CA CYS

CB CTS

SG CYS

CA GLT

CA LTS

CB

11

189

189

189

189

189

190

190

190

190

191

191

191

191

191

191

31.583

30.951

31.648

32.416 33.347

29.689

29.038 29.444 29.609 29.842

30.359

30.058

1	a	/5	Я
	=	/ .)	О

							,		AAAA E
ATOH	1962	110 3	LYS	191	26.368	16.182	79.152	1.00 97.62	
			LYS	191	31.868	13.299	81.270	1.00 70.13	aaaa c
ATOI1				191		13.935	80.415	1.00 71.76	O AAAA
ATOI1			LYS			12.441	82.079	1.00 66.29	AAAA ::
HOTA	1968		ARG	192	32.488			1.00 59.95	AAAA C
HOTA	1970	CA /	ARG	190		12.171	82.044	1.00 66.58	AAAA C
HOTA	1871	CB /	ARG	192	34.505	12.070	83.432		
			ARG	192	34.670	13.400	84.131	1.00 71.59	AAAA C
ATOI1				192	34.386	13.330	85.625	1.00 73.91	AAAA C
ATOH!			ARG			13.280	86.377	1.00 85.74	II AAAA II
HOTA	1874	HE .	ARG	192	35.622			1.00 90.67	AAAA C
ATOH:	1876	CI .	ARG	192	35.968	12.407	87.330		
ATOH		HH1		192	35.026	11.486	87.600	1.00 88.49	AAAA II
					37.162	12.463	87.950	1.00 72.95	aaaa ::
ATOH	-	HH2		192		10.851	81.337	1.00 58.83	AAAA C
ATOH	1883	Ç .	ARG	192	34.221			1.00 55.13	AAAA O
ATOH	1884	0	ARG	192	33.336	10.007	81.176		
ATOH			ALA	193	35.521	10.795	BQ.968	1.00 50.19	AAAA !!
			ALA	193	35.962	9.557	80.355	1.00 46.24	AAAA C
ATOH						9.921	79.541	1.00 45.15	AAAA C
ATOH	1888	CB .	ALA	193	37.167			1.00 48.97	AAAA C
ATCH	1889	C .	ALA	193	36.221	8.525	81.451		AAAA O
ATOH		0	ALA	193	36.220	8.908	82.616	1.00 44.80	
			CYS	194	36.544	7.304	81.065	1.00 50.30	AAAA ::
ATO14	1891					6.302	82.043	1.00 57.50	AAAA C
ATOH	1893		CTS	194	36.836			1.00 61.25	AAAA C
ATOH	1894	С	CYS	194	37.834	5.304	81.448		AAAA O
HOTA	1895	O	CTS	194	37.952	5.291	80.216	1.00 61.52	
			CYS	194	35.510	5.741	82.504	1.00 57.96	AAAA C
ATOH	1896				34.785	4.524	81.402	1.00 54.49	raaa s
ATOH	1897	SG	C.I.R	194				1.00 58.51	1 AAAA
HOTA	1898	11	THR	195	38.422	4.499	82.311		AAAA C
ATOH	1900	CA	THR	195	39.462	3.584	81.913	1.00 57.42	
	1901	СВ	THR	195	40.237	3.142	83.188	1.00 65.73	aaaa c
ATOH						4.248	84.091	1.00 70.15	AAAA O
ATOH	1902		THR	195	40.288			1.00 77.91	AAAA C
ATOH	1994	CG2	THR	195	41.684	2.864	82.745		
1 IOTA	1905	С	THR	195	38.857	2.404	81.226	1.00 54.59	
	1906	0	THR	195	37.633	2.315	81.318	1.00 58.75	aaaa o
ATOII					39.610	1.408	80.882	1.00 55.95	II AAAA II
ATON.	1907	1:	GLU	196			80.364	1.00 60.07	AAAA C
ATOI1	1909	CA	GLU	196	39.139	0.145			AAAA C
ATO:1	1910	CB	GLU	196	40.395	-0.612	79.914	1.00 68.06	
ATON	1911	CG	GLU	196	40.479	-1.146	78.526	1.00 73.96	AAAA C
	1912	CD	GLU	196	39.235	-0.983	77.670	1.00 83.08	AAAA C
HOTA					38.356	-1.884	77.687	1.00 81.19	AAAA O
ATOH	1913		GLU	196				1.00 82.10	AAAA C
ATO! I	1914	OE2	GLU	196	39.060	0.041	76.939		AAAA C
HOTA	1915	С	GLU	196	38.382	-0.579	81.467	1.00,63.91	
ATOH	1916	0	GLU	196	37.690	-1.537	81.159	1.00 63.51	AAAA O
					38.666	-0.312	82.739	1.00 67.40	aaaa ii
ATOH	1917	11:	ASII	197			83.886	1.00 69.21	AAAA C
ATOH	1919	CA	ASH	197	38.025	-0.947			AAAA C
ATOH	1920	CB	ASH.	197	39.021	-1.394	84.966	1.00 68.49	
ATOII	1921	CG	ASH	197	39.722	-2.692	84.672	0.01 69.09	AAAA C
					40.364	-3.273	85.551	0.01 69.04	O AAAA O
ATO(1	1922		ASII	197				0.01 68.97	AAAA 11
ATO:1	1923	HD2	ASII	197	39.622	-3.183	83.443		AAAA C
ATOH	1926	С	ASH	197	37.033	0.043	84.486	1.00 69.01	
ATOH	1927	0	ASII	197	36.845	0.281	85.664	1.00 68.24	aaaa o
ATC:1	1928	11	ASH	198	36.384	0.795	83.607	1.00 69.91	II AAAA II
					35.356	1.734	84.048	1.00 68.48	AAAA C
ATOII	1930	CA	ASII	198				1.00 60.12	AAAA C
ATOH	1931	CB	ASI!	198	34.120	0.880	84.373		
ATOM:	1932	CG	ASII	198	33.806	0.095	63.102	1.00 69.29	AAAA C
ATOH	1933		ASII	198	33.475	0.654	82.054	1.00 73.20	O AAAA
					33.980	-1.206	63.268	1.00 65.34	AAAA ::
ATOH	1934		IIZA	198			85.228	1.00 64.01	AAAA 🤆
ATOH	1937	С	ASII	198	35.784	2.563			AAAA O
HOTA	1938	O	ASII	198	34.992	2.827	86.117	1.00 64.20	
ATOH	1939	11	GLU	199	36.955	3.164	85.157	1.00 64.75	AAAA II
	1941	CA	GLU	199	37.342	4.054	86.255	1.00 64.64	AAAA C
ATOH					38.702	3.624	86.744	1.00 66.11	AAAA C
ATOH:	1942	CB	GLU	199			88.233		AAAA · C
I IOTA	1943	CG	GLU	199	38.846	3.717			AAAA C
ATOI-I	1944	CD	GLU	199	39.579	2.532	88.832		
ATO(1	1945	OE 1	GLU	199	39.385	2.406	90.066		O AAAA
ATOI:	1946		GLU	199	40.282	1.821	88.079	1.00 77.94	AAAA C
				199	37.314	5.463	85.690	1.00 62.92	AAAA C
ATON	1947	C	GLU						C AAAA
ATCII	1948	0	GLU	199	37.922	5.676			II AAAA II
ATO14	1949	ы	CYS	200	36.605	6.393			
ATOH	1951	CA	CYS	200	36.600	7.721	85.740	1.00 55.11	AAAA C
	1952	C	CYS	200	37.978	8.315		1.00 57.77	AAAA C
ATOH									AAAA O
ATON	1953	0	CYS	200	38.884	8.058			AAAA C
ATO:	1954	CB	CYS	500	35.824	8.664			AAAA S
ATCH	1955	SG	CYS	200	34.196	8.100	87.098		
ATOH	1956	11	CYS	201	38.124	9.192		1.00 54.50	i AAAA
			CYS	201	39.338				AAAA C
ATOM	1958	CA							AAAA C
HOTA	1959		CYS	201	39.236				AAAA O
I IOTA	1960	0	CYS	201	38.165				
ATOM	1961		CYS	201	39.590				AAAA C
ATOH				201	39.644		91.747	1.00 51.42	aaaa s
ATOI-I				202	40.254				AAAA II
			HIS						
ATO:1				202	40.290				AAAA C
ATON			HIS	202	39.284		1 84.289	1.00 46.59	дала С
ATOH	1967	7 0	HIS	202	39.176	13.851			AAAA O
ATO!					41.713				AAAA C
			HI3		41.996				AAAA S
ATO									AAAA ::
ATO!	1970	. 14L)1 HIS	202	41.50	16.40	84.550	0 1.00 51.32	CALCADO

110 22	2004,						20/58		
	1071	CCA		202	41.387	17.528	85.178	1.00 47.62	AAAA C
ATON ATON	1971 1972		HIS	202	42.665	15.813	86.340	1.00 39.59	AAAA C
ATOH	1973		HIS	202	42.563	17.207	86.258	1.00 43.48 1.00 47.74	11 AAAA 11 AAAA
ATO:	1975	11	PRO	203	38.738 38.758	15.293 15.840	84.711 86.082	1.00 47.74	AAAA C
ATOH ATOH	1976 1977	CV CD	FRO FRO	203 203	37.780	15.987	83.879	1.00 46.44	AAAA C
ATON	1978	CB	PRO	203	37.248	17.107	84.742	1.00 39.47	AAAA C
ATOH	1279	CG	PRO	203	38.131	17.210 16.519	85.910 82.607	1.00 43.37 1.00 53.27	AAAA C AAAA C
ATOM	1980 1981	٥ ز	PRO FRO	203 203	38.440 37.698	17.045	81.731	1.00 53.16	AAAA O
ATOH ATOH	1982	11	GLU	204	39.792	16.535	82.561	1.00 50.34	AAAA II
ATOH	1984	CA	GLU	204	10.439	17.139	81.381 81.804	1.00 50.52	AAAA C AAAA C
ATOH ATOH	1985 1986	CB CG	GLU	204 204	41.727 41.397	17.891 19.251	92.397	1.00 43.74	AAAA C
ATOII	1287	CD	GLU	204	10.778	20.282	81.501	1.00 55.26	AAAA C
ATOH	1988		GLU	204	40.766	20.344	80.248 82.141	1.00 64.04 1.00 57.66	AAAA O AAAA
ATOM ATOM	1989 1990	OE2 C	GLU	204 204	40.226 40.718	21.198 16.084	80.319	1.00 45.71	AAAA C
ATOM	1991	ŏ	GLU	204	41.238	16.405	79.251	1.00 46.56	AAAA O
ATOH	1992	11	CYS	205	40.612	14.830	80.735 79.838	1.00 42.05 1.00 45.81	AAAA II
ATOH	1994	CA C	CYS	205 205	40.997 39.892	13.764 13.628	78.819	1.00 49.20	AAAA C
ATOH	1995 1996	ō	CYS	205	38.746	13.920	79.133	1.00 50.34	AAAA O
ATOH	1997	CB	CIS	205	41.288	12.491	80.572	1.00 51.55 1.00 52.89	AAAA C AAAA S
ATOH	1998	SG	CYS	205 206	42.923 40.232	12.246 13.579	81.251 77.520	1.00 49.68	AAAA II
HOTA	1999	II CA	LEU	206	39.169	13.446	76.533	1.00 41.49	AAAA C
ATOH	2002	CB	LEU	206	39.266	14.505	75.462 74.305	1.00 48.65 1.00 47.45	2
ATCH	2003	OG OD1	LEU	206 206	38.274 36.879	14.365 14.243	74.895	1.00 45.79	AAAA C
HOTA HOTA	2004 2005		LEU	206	38.331	15.599	73.420	1.00 50.71	AAAA C
ATOH	2006	C	LEU	206	39.310	12.109	75.912	1.00 38.44	AAAA C AAAA O
MOTA	2007	N	CLY	206 207	40.400 38.264	11.568 11.359	75.813 75.681	1.00 42.41	AAAA II
ATOH	2008 2010	CA	GLï	207	38.403	10.098	74.978	1.00 40.57	AAAA C
ATOH	2011	C	GLT	207	38.466	9.061	76.058	1.00 47.15	AAAA C AAAA O
PLOTE	2012	O N	GLT SER	207 208	37.668 39.622	8.102 9.079	76.057 76.760	1.00 50.36	AAAA 11
ATOH ATOH	2015	CA	SER	208	39.832	7.898	77.660	1.00 48.27	AAAA C
ATOH	2016	CB	SER	208	39.909	6.631	76.787	1.00 35.77 1.00 61.34	AAAA C AAAA O
ATON	2017	OG C	SER SER	208 208	40.600	5.597 8.068	77.461 78.377	1.00 49.17	AAAA C
ATCH HOTA	2019	o	SER	208	41.781	9.084	78.163	1.00 48.24	AAAA O
ATOH	2021	Ħ	CYS	209	41.599	7.123 7.307	79.189 79.964	1.00 52.04 1.00 55.98	AAAA C
ATOM	2023	CA C	CYS.	209 209	42.824 43.453	6.035	80.484	1.00 57.41	AAAA C
ATOH ATOH	2025	ō	CYS	209	42.862	4.963	80.423	1.00 58.33	AAAA O
ATOH	2026	CB	CYS	209	42.629	8.258	81.146 82.261	1.00 52.51 1.00 58.22	AAAA C AAAA S
ATOM ATOM	2027 2028	SG 11	CYS SER	209 210	41.380	7.602 6.145	80.883	1.00 59.37	AAAA !!
ATON	2030	CA	SER	210	45.506	4.950	91.318	1.00 58.10	AAAA C AAAA C
ATOH	2031	CB	SER	210	47.022 47.546	5.083 6.204	91.105 81.818	1.00 55.07 1.00 64.49	AAAA O
ATOH ATOH	2032 2034	OG C	SER SER	210 210	45.331	4.713	82.826	1.00 56.34	AAAA C
ATO(1	2035	0	SER	210	45.529	3.614	83.326	1.00 54.42	AAAA O AAAA II
ATOI1	2036	11	ALA	211 211	45.105 44.980	5.806 5.684	83.548 85.004	1.00 52.79 1.00 56.60	AAAA C
aton Aton	2038	CA CB	ALA ALA	211	46.333	5.926	85.649	1.00 63.41	AAAA C
ATOI1	2040	C	ALA	211	43.962	6.747	85.395	1.00 56.58 1.00 50.78	АРАЛ С ААЛА О
ATOH ATOH	2041 2042	O H	ALA PRO	211 212	43.957 43.117	7.792 6.416	84.711 86.359	1.00 55.93	AAAA II
ATOH	2043	CD	PRO	212	43.042	5.166	87.115	1.00 55.86	AAAA C
ATOH	2044	CA	PRO	212	41.951	7.257 6.470	86.575 97.556	1.00 55.50 1.00 59.65	AAAA C AAAA C
ATOH ATOH	2045 2046	CB CG	FRO FRO	212 212	41.104	5.483	88.175	1.00 51.56	AAAA C
ATOH	2047	c	PRO	212	42.409	8.535	87.177	1.00 53.64	AAAA C
HOTA	2048	0	FRO	212	43.611	8.725 9.492	87.393 87.347	1.00 57.46 1.00 53.87	O AAAA 11 AAAA
ATOH ATOH	2049 2051	II CA	ALA ALA	213 213	41.537 41.912	10.710	88.057	1.00 59.41	AAAA C
ATOH	2052	CB	ALA	213	41.783	10.255	39.541	1.00 66.40	AAAA C AAAA C
ATO!!	2053		ALA ALA	213 213	43.289 43.729	11.300 12.202	87.907 88.652	1.00 61.40 1.00 60.03	AAAA O
ATCH ATOH	2054 2055	(I	ASH	214	44.068	10.999	86.899	1.00 64.80	AAAA !!
ATOI1	2057	ÇA	ASII	314	45.366	11.551	86.596	1.00 63.36	AAAA C AAAA C
ATOH	2063		ASII	214	45.300 45.198	12.284 11.794	85.251 84.117	1.00 61.56 1.00 58.38	AAAA O
ATOH	2058 2058		ASII ASII	214 214	46.336	10.379		1.00 67.32	AAAA C
ATOH	2059	CG	ASII	214	47.697	10.896	86.362	1.00 75.48	AAAA C
ATON	2060 2061		1 ASII	214	48.254	11.105		1.00 83.64	AAAA O AAAA II
ATOH	2065		ASP	214 215	48.513 45.666			1.00 59.78	II AAAA
ATOH	2063	CF	4 Ase	215	45.618	14.432	84.143	1.00 56.47	O AAAA O AAAA
ATOH	2068 2068		ASP ASP	215 215	15.430			1.00 40.19 1.00 56.36	Faaa C
ATOH ATCH	200:		1 ASF	215	46.671 46.590				O AAAA

					•	21/58		
ATOH	2671 OD2 7	vsr.	215	47.766	15.926	84.941	1.00 60.51	AAAA O
ATOH		4.SP	215	46.819	14.315	83.221	1.00 53.78	AAAA C
ATOH		ASP	215	46.998	15.148	82.322	1.00 53.58	AAAA O
ATOH	2074 # 1	LHK	216	47.719	13.425	83.511	1.00 50.87	I! AAAA
ATOH	2076 CA 1	THR	216	48.883	13.114	82.734	1.00 45.76	AAAA C
ATOH	2077 CB 1	THE	216	50.201	13.176	83.529	1.00 53.46	AAAA C
ATOH	2078 OGL 1	THR	216	50.403	11.477	84.335	1.00 45.14	AAAA O
ATOH	2080 CG2 1	rhr -	216	50.436	14.314	64.518	1.00 41.38	AAAA C
ATOH	2081 © 3	THR	216	48.681	11.712	82.158	1.00 48.34	D AAAA O AAAA
ATO(1	2082 0 0	THR	216	49.596	11.282	81.444	1.00 47.49	AAAA II
ATOH	2093 11 /	ALA	217	47.559	11.057	82.476	1.60 49.65	AAAA C
A.TOH	2085 CA /	ALA	217	47.259	9.760	81.845	1.00 51.83	D AAAA
ATOH:		ALA	217	46.908	8.775	82.943	1.00 52.62	AAAA C
ATOH	2087 🗇 7	ALA	217	46.207	9.747	80.709	1.00 50.60	AAAA O
ATOI1		ALA	217	15.775	8.632	80.335	1.00 49.13 1.00 43.56	AAAA II
ATCH		CYS	218	45.744	10.905	80.226	1.00 48.09	AAAA C
ATOH		CTS	218	44.802	11.030	79.157	1.00 47.06	AAAA C
ATQ11		CYS	218	15.166	10.331	77.869 77.642	1.00 55.57	AAAA O
ATOH:		CYS	218	46.300	9.967	78.775	1.00 51.54	AAAA C
HOTA		CYS	218	44.536	12.501	80.302	1.90-56.98	AAAA S
ATOH		CTS	218	44.256	13.494	75.978	1.00 43.40	AAAA H
HOTA		VAL	219	44.226	10.085 9.547	75.654	1.00 35.22	AAAA C
ATOH		VAL	219	44.575 43.693	8.427	75.242	1.00 32.26	AAAA C
ATOH!		VAL	219	43.952	7.873	73.886	1.00 36.19	AAAA C
ATOH		VAL	219 219	43.811	7.144	76.071	1.00 45.51	AAAA C
ATON		VAL	219	44.453	10.750	74.735	1.00 32.06	AAAA C
ATOH		VAL VAL	219	45.303	10.897	73.874	1.00 42.27	O AAAA
ATOH			220	43.729	11.759	75.187	1.00 24.24	II AAAA II
ATOM		ALA ALA	220	13.630	12.985	74.385	1.00 27.99	AAAA C
ATON		ALA	220	42.536	12.919	73.331	1.00 28.42	AAAA C
ATON		ALA	220	43.292	14.071	75.390	1.00 29.21	AAAA C
ATOH ATOH	2108 C 2109 C	ALA	220	42.846	13.604	76.455	1.00 37.88	AAAA O
MOTA	2110 11	CYS	221	43.285	15.334	75.058	1.00 30.27	II AAAA II
ATOH	2112 CA	CIS	221	42.753	16.382	75.875	1.00 35.55	AAAA C
ATOH	2113 C	CYS	221	41.460	17.055	75.452	1.00 47.06	AAAA C
ATOH	2114 0	CYS	221	41.265	17.598	74.368	1.00 49.57	AAAA O
ATON	2115 CB	CY3	221	43.904	17.478	76.063	1.00 47.45	AAAA C
ATOH	2116 SG	CYS	221	45.494	16.935	76.538	1.00 47.06	AAAA S
ATOM	2117 11	ARG	222	40.503	17.133	76.396	1.00 51.47	AAAA II
ATOH	2119 CA	ARG	222	39.281	17.906	76.338	1.00 51.86	AAAA C
ATOH	2120 CB	ARG	222	38.647	18.074	77.712	1.00 54.53	AAAA C
ATOH	3121 03	ARG	222	37.314	18.687	77.854	1.00 45.56	AAAA C
ATOH	2122 CD	ARG	222	36.538	18.338	79.087	1.00 54.45	AAAA C
ATOH	2123 HE	ARG	222	36.272	16.947	79.269	1.00 65.53	AAAA N
ATON	2125 C2	ARG	222	35.534	16.080	78.617	1.00 67.60	AAAA C
ATON	2126 UH1	ARG	222	34.925	16.599	77.533	1.00 70.26	AAAA 11
ATCH	2129 HH2	ARG	222	35.342	14.780	78.901	1.00 54.11	II AAAA
ATOH	2130 C	ARG	222	39.562	19.286	75.740	1.00 50.66	C AAAA
ATOH	2133 0	ARG	222	38.737	19.845	75.009	1.00 58.34	0 AAAA 11 AAAA
ATON	2134 !!	HIS	223	40.556	19.981	76.190	1.00 45.65	2 AAAA
ATON	2136 CA	HIS	223	40.988	21.291	75.321 77.011	1.00 46.93	AAAA C
ATOH	2137 GB	HIS	223	41.057	22.251	77.617	1.00 49.51	AAAA C
ATOH:	2138 05	HIS	223	39.710	22.344	77.556	1.00 61.08	AAAA C
ATCH		HIS	223	38.820	23.360	78.425	1.00 63.28	I AAAA
ATOH		HIS	223 223	39.082	21.388	78.759	1.06 58.01	AAAA C
ATOH		HIS	223	37.881 37.681	23.010	78.232	1.00 48.56	II AAAA
ATOH		HIS HIS	223	42.363	21.260	75.122	1.00 50.78	AAAA C
HOTA	2145 C 2146 O	HIS	223	42.506	20.753	74.003	1.00 47.43	AAAA O
ATOH	2147 11	TTR	224	43.359	21.847	75.769	1.00 49.20	II AAAA II
ATOH ATOH	2149 CA	TTR	224	44.712	21.992	75.259	1.00 48.17	AAAA C
ATOII	2150 CB	TTR	224	45.144	23.430	75.426	1.00 44.07	AAAA C
ATON	2151 CG	TYR	224	44.318	24.234	74.417	1.00 51.77	AAAA C
ATCH		TYR	224	43.193	24.869	74.904	1.00 48.94	AAAA C
HOTA		TYR	224	42.401	25.633			AAAA C
ATOH		TYR	224	44.623	24.358			AAAA C
ATON	2155 CE2		224	43.847	25.131	72.233		AAAA C
ATON	2156 CE	TYR	224	42.739	25.745			AAAA C
ATO:1	2157 OH	TYR	224	41.915		72.017	1.00 61.70	AAAA Û
ATOH	2159 C	TTR	224	45.725			1.00 48.19	AAAA C
ATOH	2160 0	TYR	224	45.776		77.111	1.00 55.75	AAAA O
ATOH	2161 11	TTR	225	46.584	20.514	75.077	1.00 48.79	II AAAA II
ATOH	2163 CA	TTR	225	47.655				AAAA C
ATOH	2164 CB	TYR	225	48.029				AAAA C
ATOH	2165 CG	TYR	225	49.286				AAAA C
ATON		TYR	225	49.299			1.00 43.57	AAAA C
I IOTA		TYR	225	50.450			1.00 47.26	AAAA C
HOTA		TYR	225	50.487	18.407	74.421	1.00 52.82	AAAA C
ATOH	2169 CE2		225	51.656	17.791	74.781	1.00 53.94	AAAA C
ATON	2170 CE	TYR	225	51.639		75.644	1.00 52.31	VAAA C
ATOH		TTR	225	52.886				AAAA o
ATO!!	2173 C	TYR	225	48.972				AAAA c
ATO:	2174 O	TYR	225	49.080				aaaa o
ATOH	2175 !!	TTR	226	49.634	20.253	76.821	1.00 56.84	AAAA II

							,		
ATON	2177	ÇΛ	TTR	226	50.811	21.001	77.172	1.00 56.83	AAAA C
ATCH!	2178		TTR	226	50.455	22.343	77.785	1.00 59.51	aaaa c
					51.741	23.126	77.941	1.00 65.45	AAAA C
ATOH	2179	CG	TYR	226			79.197	1.00 69.12	AAAA C
ATOH	2180	CDI	TTR	226	52.121	23.557			AAAA C
HOTA	2181	CE1	TYR	226	53.289	24.275	79.400	1.00 70.77	
ATON	2182		TYR	226	52.580	23.409	76.864	1.00 69.38	AAAA C
				226	53.758	24.118	77.920	1.00 70.94	AAAA C
ATOH	2183		TIR				78.301	1.00 72.96	AAAA C
ATOH	2184	CS	TïR	226	54.099	24.549			AAAA O
ATO: 1	2185	OH	TYR	226	55.267	25.254	78.435	1.00 70.84	
ATOH	2187	C	TYR	226	51.784	20.356	78.165	1.00 57.55	AAAA C
		ō	TYR	226	51.492	20.133	79.350	1.00 56.90	AAAA O
ATCH	2188					20.080	77.642	1.00 53.82	AAAA !!
ATOH	2189	{ ;	ALA	227	52.978			1.00 51.82	AAAA C
HOTA	2191	CA	ALA	227	54.061	19.557	78.440		
HOTA	2192	CB	ALA	227	54.528	20.620	79.428	1.00 55.81	AAAA C
HOTA	2193	С	ALA	227	53.600	18.309	79.170	1.00 53.56	AAAA C
			ALA	227	53.663	18.218	80.413	1.00 49.63	AAAA O
ATOH	2194	0					78.393	1.00 50.68	AAAA ::
ATO!	2195	11	GLY	228	53.076	17.360			AAAA C
ATOH	2197	CA	GLY	228	52.585	16.135	79.028	1.00 49.02	
ATOH:	2198	C	GLY	228	51.312	16.330	79.861	1.00 51.61	AAAA C
ATOH	2199	0	GLY	228	51.028	15.538	80.776	1.00 51.10	AAAA O
				229	50.643	17.495	79.791	1.00 47.09	AAAA II
ATOH	2200	li .	VAL				80.635	1.00 51.11	AAAA C
ATCH	2202	CA	VAL	229	49.489	17.671			AAAA C
ATOH	2203	CB	VAL	229	49.908	18.610	81.774	1.00 56.52	
ATC:1	2204	CGI	VAI,	229	48.627	18.896	82.5 6 6	1.00 38.39	AAAA C
ATON	2205		VAL	229	51.002	18.035	82.682	1.00 50.16	AAAA C
					48.255	18.173	79.873	1.00 51.37	AAAA C
ATOH	2206	Ċ	VAL	229			79.309	1.00 53.71	AAAA O
ATOH	2207	0	VAL	229	48.344	19.279			AAAA II
ATOH	220B	11	CYS	230	47.100	17.518	80.036	1.00 42.21	
TOIL	2210	CA	CYS	230	45.981	18.117	79.473	1.00 40.32	AAAA C
				230	45.456	19.350	80.229	1.00 38.42	AAAA C
ATOH	2211	Ċ	CUS				81.321	1.00 41.62	AAAA C
ATOH	2212	0	CYS	230	44.964	19.248			AAAA C
ATOH	2213	CB	CYS	230	44.746	17.132	79.370	1.00 31.54	
ATOI1	2214	3G	CYS	230	45.149	15.753	78.266	1.00 43.61	AAAA S
	2215	11	VAL	231	45.637	20.534	79.731	1.00 39.83	AAAA II
ATOL						21.769	80.462	1.00 46.57	AAAA C
HOTA	2217	CA	VAL	231	45.445			1.00 50.99	AAAA C
ATOH	2218	CB	JAV.	231	46.618	22.736	80.088		AAAA C
ATO:1	2219	CG1	VAL	231	46.798	23.878	81.053	1.00 50.41	
HOTA	2220	CG2	VAL	231	47.838	21.913	80.506	1.00 44.95	AAAA C
ATOH	2221	C	VAL	231	44.111	22.321	80.057	1.00 52.59	aaaa c
				231	43.599	22.183	78.936	1.00 55.30	aaaa o
ATOH	2222	0	VAL				80.913	1.00 54.28	II AAAA
ATO 1	2223	į į	PRO	232	43.482	23.105			AAAA C
HOTA	2224	CD	PRO	232	43.830	23.385	82.320	1.00 54.25	
ATOH	2225	CA	FRO	232	42.153	23.625	80.575	1.00 54.39	AAAA C
HOTA	2226	CB	PRO	232	41.537	23.877	81.928	1.00 53.73	AAAA C
			PRO	232	42.683	24.287	82.765	1.00 55.00	AAAA C
ATCH	2227	CG				24.913	79.795	1.00 56.37	AAAA C
ATON	2228	С	PRO	232	42.361			1.00 55.79	AAAA O
ATON	2229	0	FRO	232	41.498	25.482	79.137		AAAA II
ATOH	2230	11	ALA	233	43.615	25.400	79.901	1.00 54.76	
ATOH	2232	CA	ALA	233	43.998	26.569	79.124	1.00 49.93	AAAA C
	2233	OB	ALA	233	43.440	27.807	79.746	1.00 35.43	AAAA C
ATOH					45.502	26.662	78.974	1.00 49.79	AAAA C
ATOH	5534	Ç	ALA	233				1.00 51.41	AAAA O
ATOH	2235	0	ALA	233	46.195	25.879	79.616		
ATOH1	2236	11	CYS	234	45.984	27.508	78.072	1.00 45.07	AAAA II
ATOM	2238	CA	CYS	234	47.430	27.518	77.907	1.00 48.63	. Aaaa C
	2239	C.	CYS	234	48.001	28.340	79.076	1.00 50.93	AAAA C
ATO:					47.650	29.513	79.250	1.00 47.57	AAAA O
ATOH	2240	0	CYS	234			76.511	1.00 43.10	AAAA C
ATOH	2241	CB	C.I.Z	234	47.816	28.034		1.00 43.10	AAAA S
ATCH	2242	SG	CAS	234	47.608	26.789	75.226	1.00 43.04	
IPTA	2243	- 11	PRO	235	49.127	27.853	79.599	1.00 49.55	II AAAA
ATOH	2244	CD	PRO	235	49.692	26.557	79.207	1.00 48.75	лала с
	2245	CA		235	49.911	28.569	80.599	1.00 51.69	AAAA C
ATOH			PRO		50.984	27.581	80.975	1.00 50.80	AAAA C
ATON	2246	CB	PRO	235				1.00 50.06	AAAA C
ATOH	2247	CG	PRO	235	50.912	26.417	80.077		
ATOI1	2248	C	PRO	235	50.487	29.852	80.050	1.00 57.11	AAAA C
ATOH:	2249	0	FRO	235	50.848	29.957	78.870	1.00 59.60	O AAAA
	2250	н	FRO	236	50.676		80.887	1.00 59.85	AAAA 11
ATO!							82.363	1.00 55.85	AAAA C
ATOH	2251	CD	PRO	236	50.405			1.00 52.27	AAAA C
ATCH	2252	CA	PRO	236	51.323		80.493	1.00 52.27	AAAA C
ATOH	2253	CB	PRO	236	51.695		81.826		
HOTA	2254	CG	F'RO	236	50.652	32.277	82.754	1.00 56.73	AAAA C
ATO:1	2255	Ğ.	FRO	236	52.545		79.671	1.00 44.21	AAAA C
				236	53.219		79.928	1.00 43.40	AAAA O
ATOI1	2256	0	PRO				78.716	1.00 46.54	AAAA II
ATOH	2257	11	ASII	237	52.837				AAAA C
ATCH	2259	ÇA	ASII	237	53.895		77.716	1.00 45.94	AAAA C
HOTA	2260	ÇB		237	55.259	32.653	78.456	1.00 58.65	
ATOH	2261			237	55.357		79.371	1.00 58.51	AAAA C
ATOTI	2262		1 ASH				80.379	1.00 72.25	AAAA O
				237	56.044			1.00 62.99	II AAAA II
ATCII	2263		2 ASH	237	54.631		79.051	16 97	AAAA C
HOTA	2266		ASII	237	53.897		76.788		AAAA O
ATOH	2267	0	ASII	237	54.963		76.325		
ATOH	2268		THR		52.617		76.692	1.00 42.91	AAAA II
ATOH	2270				52.617		75.780	1.00 40.20	AAAA c
					52.461				AAAA c
ATOH	2271				51.22	20.240	017		AAAA O
ATO:	2272		1 THR		51.22				
ATON	2274	CC	C THR	239	53.55	27.986	77.424	1.00 34.04	AAAA c

						.5/50		
ATOH	2275	C THE	238				1.06 42.55	AAAA C
ATOI1		O THR	238	50.569		75.509	1.00 42.51	PAAA O
ATOH		II TTR	239	51.051		73.832	1.00 42.62	AAAA II
ATOH		CA TYR	239	49.949	29.959	73.024	1.00 41.87	AAAA C
ATOH		CB TTR	239	50.457	30.907	71.931	1.00 44.86	AAAA C
ATOH		CG TYR	239	51.099		72.564	1.00 42.05	AAAA C
ATOH		CD1 TYR	239	52.467	32.086	72.815	1.00 39.41	AAAA C
		CE1 TYR	239		33.152	73.415	1.00 43.27	AAAA C
ATOH		CD2 TYR	239		33.230	72.923	1.00 44.15	AAAA C
ATOII		CE2 TYR	239		34.310	73.536	1.00 46.22	AAAA C
ATOM		CE TYR	239			73.779	1.00 50.42	C AAAA
ATON			239			74.387	1.00 55.47	AAAA O
ATOH	2287		239			72.315	1.00 45.54	AAAA C
ATOH	2289		239			72.021	1.00 46.65	AAAA O
ATOH	2290	O TYR	240			72.126	1.00 40.62	AAAA II
ATOH		II ARG	240		27.892	71.426	1.00 38.78	AAAA C
HOTA	2293	CA ARG	240			71.452	1.00 39.77	AAAA ©
ATOH	2294	CB ARG	240		28.944	72.588	1.00 43.37	AAAA C
ATOII	2295	CG ARG	240	43.573	28.957	72.683	1.00 38.60	AAAA C
ATOH	2296	CD ARG		43.114	29.683	71.455	1.00 53.98	II AAAA II
ATOH	2297	HE ARG	210	43.123	31.015	71.530	1.00 48.07	AAAA C
HOTA	2299	CE ARG	540	43.513	31.562	72.668	1.00 47.65	11 AAAA 11
ATOM	2300	HH1 ARG	240	42.788	31.778	70.533	1.00 51.03	II AAAA II
POTA	2303	IIH2 ARG	240	47.627	27.737	69.979	1.00 31.72	AAAA C
ATOI	2306	C ARG	240	47.937	28.730	69.302	1.00 32.37	AAAA O
ATOH	2307	O ARG	240	47.779	26.542	69.549	1.00 27.95	II AAAA II
ATOH	2308	HE PHE	241	48.182	26.269	68.183	1.00 30.41	AAAA C
ATOH	2310	CA PHE	241	49.678	25.940	68.151	1.00 34.83	AAAA C
ATO::	2311	CB PHE	241		25.653	66.773	1.00 26.84	AAAA C
ATOH	2312	CG PHE	241	50.235	26.567	35.753	1.00 25.31	AAAA C
ATO: 1	2313	CD1 BHE	241	50.165 50.785		66.573	1.00 27.38	AAAA C
ATO: I	2314	CD2 PHE	241	50.785	24.417 26.232	64.509	1.00 37.24	AAAA C
HOTA	2315	CE1 PHE	241		24.101	65.320	1.00 38.45	AAAA C
ATOH	2316	CE2 PHE	241	51.294		64.281	1.00 21.17	AAAA C
ATOH	2317	CE PHE	241	51.281	25.010	67.621	1.00 35.77	AAAA C
ATOH	2318	C PHE	241	47.382	25.089	68.186	1.00 36.77	AAAA O
ATO:	2319	O PHE	241	47.543	24.013 25.301	66.468	1.00 32.30	II AAAA
ATO: 1	2320	II GLU	242	46.738		65.805	1.00 35.43	AAAA C
ATOH	2322	CA GLU	242	45.964	24.269	65.472	1.00 37.98	AAAA C
ATOH	2323	CB GLU	242	46.953	23.144	64.314	1.00 38.63	AAAA C
ATOH	2324	CG GLU	242	47.867	23.415	63.075	1.00 39.27	AAAA C
HOTA	2325	CD GLU	242	47.207	23.965	62.517	1.00 42.79	AAAA O
HOTA	2326	OE1 GLU	242	16.380	23.205	62.626	1.00 36.36	AAAA O
ATO:	2327	OE2 GLU	242	47.354	25.109		1.00 34.36	AAAA C
ATO!!	2328	C GLU	242	44.752	23.771	66.600	1.00 28.53	AAAA O
ATO:1	2329	o GLU	242	44.390	22.611	66.511	1.00 36.94	AAAA II
ATOH	2330	n GLY	243	44.135	24.589	67.449	1.00 34.57	AAAA C
ATOH	2332	CA GLY	243	43.048	24.154	68.303	1.00 37.76	AAAA C
ATOH	2333	C GLY	243	43.128	23.107	69.319 69.746	1.00 43.00	AAAA O
HOTA	2334	O GLT	243	42.474		69.611	1.00 39.53	AAAA II
ATON	2335	H TRP	244	44.637	22.636	70.566	1.00 40.85	AAAA C
ATO!	2337	CA TRP	244	44.797	21.536	69.764	1.00 26.76	AAAA C
ATO: I	2338	CB TRP	244	44.774	20.271	69.028	1.00 43.19	AAAA C
ATON	2339	CG TRP	244	46.012	19.885	69.498	1.00 39.55	AAAA C
ATCI-I	2340	CD2 TRP	244	47.019	18.983	68.489	1.00 35.50	AAAA C
HOTA	2341	CE2 TRP	244	47.998	18.906	70.692	1.00 32.18	AAAA C
ATOII	2342	CE3 TRP	244	47.186	18.254	67.779	1.00 43.37	AAAA C
ATO: 1	2343	CD1 TRP	244	46.424	20.308	67.169	1.00 38.89	AAAA II
ATOII	2344	HE1 TRP	244	47.595	19.727		1.00 39.01	AAAA C
ATOII	2346	CS2 TRP	244	49.150	18.128	68.620	1.00 43.98	AAAA C
ATOH	2347	CC3 TRP	244	48.336	17.478	70.815	1.00 42.50	AAAA C
IOTA	2348	CH2 TRP	514	49.322	17.425	69.784 71.509	1.00 42.98	AAAA C
ATOH	2349	C TRP	244	15.998	21.517	72.146	1.00 42.70	AAAA O
ATOH	2350	O TRP	244	46.253	22.485	71.435	1.00 44.16	AAAA H
ATCH	2351	II ARG	245	16.888		72.095		AAAA C
ATO:	2353	CA ARG	245	48.169	22.472	71.367	1.00 47.30	AAAA C
ATO:	2354	CB ARG	245	49.203		70.203		AAAA C
ATOI	2355	CG ARG	245	49.985	22.309	69.819		AAAA C
ATC:1	2356	CD ARG	245	51.129	21.552			II AAAA
ATO: 1	2357	HE ARG	245	51.586	21.665	68.444		AAAA C
ATO:1	2359	CS ARG	245	52.629	21.044	67.895 68.653		AAAA H
HOTA	2360	HH1 ARG	245	53.344	20.236	66.638		II AAAA
ATOH	2363	IIH2 ARG	215	53.072	21.126 23.863			AAAA C
ATOIS		C ARG	215	48.771	24.793			AAAA O
ATON			245	48.394	23.881	73.317		AAAA II
ATON			246	49.625				AAAA C
ATON			546	50.246				AAAA C
ATOH			246	51.695				AAAA O
ATO:			246	52.476				AAAA C
ATOI			246	50.102				AAAA S
HOTA			516	48.386		75.797	1.00 43.68	AAAA II
ATOH			247	52.121				÷AAA C
ATOL				53.417				AAAA C
ATO:			-	53.569				AAAA C
ATOL				53.089				AAAA C
ATOH	2380	CG2 VAL	247	53.129	27.602	69.729		~~~~ ¢

WO 99	9/28347	7							PC
							24/58		
		_		247	53.969	27.812	72.373	1.00 39.37	AAAA C
ATOH	2381	?	WL	247	53.230	28.770	72.540	1.00 38.80	AAAA O
ATO!1	2382	i)	VAL	248	55.291	27.820	72.711	1.00 45.21	II AAAA II
ATOH	2383	11	ASP	_	55.895	29.115	73.098	1.00 40.19	AAAA C
aton	2385	ÇA	ASP	248	57.091	28.946	73.953	1.90 42.63	AAAA C
ATOH	2386	CB	ASP	248		27.997	73.394	1.00 58.81	AAAA C
HOTA	2387	CG	ASP	248	58.126 59.067	27.795	74.187	1.00 53.06	AAAA O
I-IOTA	2388	OD1	ASP	248		27.395	72.313	1.00 69.51	AAAA O
ATOI1	2389	OD2	ASP	248	58.167	29.883	71.839	1.00 36.99	AAAA C
ATOH:	2390	С	ASP	248	56.315	29.288	70.772	1.00 39.70	AAAA O
ATOM	2391	0	ASP	248	56.292		71.918	1.00 30.72	AAAA II
ATOIL	2392	11	ARG	249	56.545	31.163	70.906	1.00 36.17	AAAA C
ATOII	2394	CA	ARG	249	56.950	32.057	71.491	1.00 21.29	AAAA C
HOTA	2395	ĊΒ	ARG	249	57.223	33.485		1.00 24.96	AAAA C
ATOI1	2396	CG	ARG	249	57.594	34.424	70.326	1.00 21.23	AAAA C
HOTA	2397	CD	ARG	249	57.814	35.811	70.843	1.00 39.75	AAAA II
ATO:1	2398	HE	ARG	249	56.658	36.150	71.689	1.00 39.35	AAAA C
ATO:	2400	CΞ	ARG	546	55.632	36.823	71.101	1.00 39.33	AAAA :I
ATO: 1	2401	11111	ARG	249	55.642	37.118	69.801	1.00 23.41	AAAA II
NOTA	2404	11112	ARG	249	54.641	37.118	71.946	1.00 40.63	AAAA C
ATOH	2407	C	ARG	249	58.134	31.685	70.010	1.00 40.53	AAAA O
HOTA	2408	0	ARG	249	58.086	31.923	68.797		AAAA H
ATOI-I	2409	П	ASP	250	59.149	30.974	70.468	1.00 41.87	AAAA C
ATO!!	2411	CA	ASP	250	60.287	30.739	69.606	1.00 46.90	AAAA C
ATOI1	2412	СВ	ASP	250	61.740	30.726	70.154	1.00 53.11	AAAA C
B TO L	2113	CG	ASP	250	62.421	32,122	70.081	1.00 71.49	WWW C

	20547					ne /e Q		
			25.0	62.880	24.139	25/58 55.020	1.30 79.60	AAAA O
ATOH) ALA 1 GLU	258 259		26.109	55.651	1.00 79.05	II AAAA
ATOH ATOH		TA GLU	259		26.621	54.342	1.00 83.84	T AAAA
ATOH		TB GLU	259		26.457	54.135	1.00 86.99	AAAA C AAAA C
ATOH		os GLU	25.9		25.049	54.314 55.057	1.00 89.38	AAAA C
ATOH		TD GLU	259		25.032 24.088	55.838	1.00101.45	AAAA O
ATOH	-	DE1 GLU DE2 GLU	259 259		26.002	54.837	1.00 94.58	O AAAA
HOTA		C GLU	259		28.078	51.083	1.00 85.43	AAAA C
ATOH		o GLU	259		29.009	54.903	1.00 88.01 1.00 84.66	AAAA O II AAAA
ATO: I		II SER	260	62.298	28.338 29.625	52.799 52.254	1.00 84.03	AAAA C
ATOH		CA SER CB SER	260 260	62.725 63.753	29.269	51.173	1.00 87.24	AAAA C
ATOH ATOH		OG SER	260	63.306	29.419	49.835	1.00 93.65	AAAA O
ATOH		C SER	260	61.558	30.466	51.789	1.00 80.84	AAAA C AAAA O
ATOH		O SER	260	61.496	30.889 30.785	50.635 52.685	1.00 78.56	AAAA II
ATON		N SER CA SER	261 261	60.617 59.423	31.540	52.308	1.00 72.13	AAAA C
ATOH ATOH		CB SER	261	58.179	31.297	53.170	1.00 67.30	AAAA C
ATOII		OG SER	261	57.436	30.334	52.451	1.00 74.74	O AAAA O AAAA
ATOH	2510	C SER	261	59.683	33.032 33.588	52.318 53.334	1.00 63.24	AAAA O
ATOH	2511 2512	O SER H ASP	261 262	60.048 59.364	33.659	51.204	1.00 65.30	AAAA II
ATOH ATOH	2514	CA ASP	262	59.358	35.071	50.915	1.00 58.55	AAAA C
ATOH	2515	CB ASP	262	59.268	35.285	49.400	1.00 64.85	AAAA C AAAA C
ATOH	2516	CG ASP	262	59.389	36.713	48.931 49.701	1.00 76.42	AAAA 0
ATOH	2517	OD1 ASP	262	59.473 59.404	37.708 36.873	47.671	1.00 80.46	AAAA O
ATCH ACCH	2518 2519	OD2 ASP	262 262	58.121	35.706	51.529	1.00 56.88	AAAA C
ATOH	2520	O ASP	262	57.851	36.918	51.515	1.00 52.48	AAAA C AAAA II
ATOH	2521	:! SER	263	57.259	34.849	52.119 52.734	1.00 53.43 1.00 52.84	AAAA C
ATOH	2523	CA SER	263 263	56.047 55.020	35.352 34.245	52.985	1.00 46.60	AAAA C
ATON HOTA	2524 2525	CB SER	263	55.149	33.348	51.791	1.00 66.80	AAAA O
ATON	2527	C SER	263	56.310	35.965	54.117	1.00 49.52	2 AAAA
HOTA	2528	O SER	263	57.396	35.737	54.709 54.540	1.00 42.33 1.00 38.93	O AAAA II AAAA
ATON	2529	CA GLU	264 264	55.320 55.362	36.783 37.222	55.921	1.00 36.70	AAAA C
ATOI1 ATOI1	2531 2532	CA GLU	264	54.359	38.337	56.208	1.00 43.71	AAAA C
ATON	2533	CG GLU	264	54.575	39.482	55.213	1.00 37.74	AAAA C AAAA C
ATOH	2534	CD GLU	264	55.374	40.632	55.793 57.034	1.00 34.36 1.00 41.55	AAAA O
ATOH	2535	OE1 GLU	264 264	55.493 55.832	40.600 41.576	55.146	1.00 39.60	AAAA O
NOTA I IOTA	2536 2537	OE2 GLU	264	55.098	36.056	56.827	1.00 35.84	AAAA C
ATOH	2538	o GLU	264	54.368	35.151	56.355	1.00 39.60	O AAAA H AAAA
ATOH	2539	II GLY	265	55.801	35.938	57.962 58.727	1.00 35.64	AAAA C
ATO!	2541 2542	CA GLY	265 265	55.671 54.622	34.690 34.716	59.829	1.00 39.51	AAAA C
ATOH ATOH	2543	O GLY	265	53.951	35.699	60.135	1.00 37.20	C AAAA
HOTA	2544	H PHE	266	54.537	33.569	60.516	1.00 35.75 1.00 33.70	II AAAA C AAAA
ATOH	2546	CA FHE	266	53.637	33.434 32.155	61.625 62.396	1.00 33.70	AAAA C
ATCH ATOH	2547 2548	CB PHE	266 266	53.924 53.356	30.958	61.671	1.00 37.07	AAAA C
VIOU	2549	CD1 PHE	266	53.760	30.618	60.377	1.00 34.72	AAAA C
ATOH	2550	CD2 PHE	266	52.383	30.195	62.313	1.00 25.65	AAAA C AAAA C
ATOH	2551	CE1 PHE	266 266	53.225 51.879	29.506	59.760 61.672	1.00 37.72	AAAA C
I IOTA I-IOTA	2552 2553	CE2 PHE	266	52.260	28.708		1.00 23.58	aaaa c
ATON	2554	C PHE	266	53.571	34.570	62.608	1.00 35.82	AAAA C
ATOI 1	2555	O PHE	266	54.446	35.372		1.00 39.23 1.00 37.10	AAAA O AAAA II
ATO: 1	2556 2558	II VAL	267 267	52°. 360 52.118	34.763 35.812		1.00 36.09	2 AAAA
HOTA	2559	CA VAL	267	51.315	36.974		1.00 39.01	AAAA C
ATON	2560	CG1 VAL	267	51.626	37.601			AAAA C
ATOH	2561	CG2 VAL	267	19,990	36.400			T AAAA T D AAAA
ATOH	2562 2563	C VAL	267 267	51.506 51.202	35.260 34.098	_		AAAA. O
ATOH ATOH	2564	O VAL		51.539			1.00 35.98	AAAA H
ATOH	2566	CA ILE	268	50.867	35.573			AAAA 🤉
HOTA	2567	CB ILE		51.791	35.232			D AAAA D AAAA
ATOH	2568	CG2 ILE		50.922 52.403	35.253 33.866			PAAA C
IOTA IOTA	2569 2570	CD1 ILE		53.421	33.546			aaaa c
ATON		C ILE		49.806		68.060		AAAA C
ATOI	2572	O ILE		50.116				O AAAA 11 AAAA
ATOH ATOH		CA HIS		48.528 47.491				AAAA C
HOTA				46.885			1.00 45.48	AAAA C
ATON	2577	CG HIS	269	45.915		67.079	1.00 54.33	AAAA C
ATON		_		44.551		67.096	1.00 46.61	o arak II araa
ATON ATON				46.356 45.282				AAAA T
HOTA				44.175			1.00 46.97	AAAA II
ATCH	2281	C H13	269	46.423	36.74	0 59.074	1 1.00 45.54	AAAA C
ATO		O HIS		46.076			1.00 42.94	AAAA C

W O 33	720347							
					:	26/58		
LIOTA	2596	II ASE	270	45.953	37.526	70.059 71.001	1.00 49.82	AAAA C AAAA C
ATOH	2588	CA ASP	270 270	44.948 43.573	37.025 37.014	70.339	1.00 63.63	AAAA C
ATOH ATOH	2589 2590	CB ASP	270	42.919	38.393	70.294	1.00 80.82	AAAA C
ATOII	2591	OD1 ASP	270	41.737	38.379	69.835	1.00 90.92	AAAA O
ATOH	2592	OD2 ASE	270	43.407	39.494	70.652	1.00 86.49	AAAA C
HOTA	2593	C ASP	270 270	45.226 44.357	35.667 34.782	71.594 71.576	1.00 45.54	AAAA O
ATOH ATOH	2594 2595	O ASP	271	46.477	35.379	71.924	1.00 41.63	AAAA II
ATON	2597	CA GLY	271	46.839	34.117	72.506	1.00 37.20	AAAA C
ATOH	2598	C GLY	271	46.818	32.998	71.537	1.00 39.15 1.00 46.56	AAAA C AAAA O
HOTA	2599	O GLY	271 272	46.775 47.015	31.865 33.292	72.039 70.251	1.00 41.49	AAAA II
ATON ATON	2600 2602	M GLU	272	47.108	32.092	69.371	1.00 43.56	AAAA C
ATOH	2603	CB GLU	272	45.752	31.737	68.876	1.00 37.58	AAAA C AAAA C
ATON	2604	CC GLU	272 272	45.778 44.413	30.600 30.528	67.839	1.00 45.30 1.00 36.92	AAAA C
aton Aton	2605 2606	OE1 GLU	272	43.545	31.345	67.533	1.00 48.41	AAAA O
ATON	2607	OEC GLU	272	44.223	29.696	66.286	1.00 44.10	AAAA O
ATOH	2608	C GLU	272	48.211	32.324	68.335 67.896	1.00 40.32 1.00 37.04	AAAA C AAAA O
ATO:1	2609	O GLU	272 273	48.445 48.942	33.447 31.237	68.138	1.00 38.83	AAAA II
HOTA	2610 2612	CA CYS	273	50.046	31.187	67.188	1.00 40.27	AAAA C
ATC11	2613	C Cis	273	49.321	30.810	65.883	1.00 42.16 1.00 40.86	AAAA C AAAA O
ATOM	2614	O CYS	273 273	48.713 51.098	29.712 30.148	65.831 67.529	1.00 40.30	AAAA C
ATOH ATCH	2615 2616	CB CYS	273	52.337	29.825	66.260	1.00 39.79	AAAA S
ATOH	2617	II MET	274	49.373	31.749	64.933	1.00 33.70	II AAAA
HOTA	2619	CA HET	274	48.586	31.351	63.720 63.847	1.00 36.68	AAAA C AAAA C
ATOH	262 0 2621	CB HET	274 274	47.136 46.923	31.261 33.379	63.691	1.00 36.51	AAAA C
ATOH ATOH	2622	SD HET	271	45.477	33.921	64.677	1.00 40.00	AAAA S
ATO!!	2623	CE HET		45.659	35.658	64.754 62.608	1.00 22.47	AAAA C AAAA C
ATON ATON	2624 2625	C HET		49.426 50.167	31.900 32.880	62.672	1.00 41.00	AAAA O
ATOH	2626	ii GLI	275	49.378	31.353	61.428	1.00 42.55	AAAA II
ATOH	2628	CA GLU		50.041 49.618	31.834 30.765	60.232 59.242	1.00 37.69 1.00 34.01	AAAA C AAAA C
ATC:1 ATC:1	2629 2630	CB GLII		49.329	31.274	57.864	1.00 56.40	AAAA C
ATOM	2631	CD GLH		49.275	30.190	56.812	1.00 66.46	AAAA C AAAA O
ATOH:	2632	OE1 GLII		49.941	29.151	56.910 55.799	1.00 67.24 1.00 78.29	AAAA H
ATON ATOM	2633 2636	HE2 GLH		48.451 49.721	30.436 33.195	59.720	1.00 35.41	AAAA C
ATON	2637	O GLII		50.526	33.831	59.064	1.00 35.95	AAAA 0 AAAA 11
A.TOI I	2638	H GLU		48.566 48.222	33.754 35.080	60.056 59.571	1.00 41.70 1.00 43.96	AAAA C
ATOH ATOH	2640 2641	CA GLU		47.387	34.884	58.245	1.00 42.40	AAAA C
ATOH	2642	OG GLU		47.154	36.269	57.650	1.00 53.84 1.00 61.37	AAAA C AAAA C
HOTA	2643	OE1 GLU		48.359 49.356	37.198 36.595	57.460 56.943	1.00 61.37	AAAA O
I IOTA	2644 2645	OE2 GLU		48.242	38.411	57.811	1.00 45.10	AAAA C
ATOH	2646	c GLU	276	47.444	35.935	60.540	1.00 39.74 1.00 45.06	AAAA C AAAA O
ATOH	2647	O GLU		46.760 47.495	35.449 37.235	61.444 60.500	1.00 45.00	AAAA II
ATOH ATOH	2648 2650	CA CYS		16.718	38.089	61.332	1.00 46.11	AAAA C
ATON1	2651	C CYS	277	45.205	37.938	60.994	1.00 52.70	AAAA C AAAA O
ATOU	2652	O CYS		44.760 47.039	37.511 39.537	59.936 61.111	1.00 49.43 1.00 45.56	AAAA C
ATOH ATOH	2653 2654	OB CYS		48.629	40.083	61.645	1.00 52.86	AAAA S
HOTA	2655	II PRO		44.380	38.261	61.993	1.00 54.63 1.00 57.20	AAAA II AAAA C
ATOH1	2656 2657	CD PRO		44.824 42.946	38.778 38.185	63.311 61.899	1.00 55.82	AAAA C
ATOH ATOH	2658	CB PRO		12.145	38.635	63.267	1.00 55.61	AAAA C
ATOH	2659	CG PRO		43.605	38.670	64.153	1.00 55.58 1.00 52.55	AAAA C
ATOI1	2660 2661	C PRO		42.487 43.083	39.116 40.195	60.781 60.631	1.00 48.76	AAAA O
ATOH ATOH	2662	II SEI		41.370	38.845	65.143	1.00 49.35	AAAA II
ATOH	2664	CA SE		40.915	39.720	59.140	1.00 52.03	AAAA C AAAA C
ATOL	2665 2666	OB SE		39.280 39.320	39.572 38.778	58.975 57.785	1.00 47.02	AAAA O
HOTA HOTA	2668	C SEI		41.003		59.173	1.00 55.40	AAAA C
ATOLI	2669	O SE		41.225	41.740		1.00 55.40	O AAAA II AAAA
ATOH	2670 2672	II GL		40.775 40.968		60.247 59.868	1.00 48.58	AAAA C
ATOH	2673			42.248	43.890	60.479	1.00 55.98	AAAA C
ATO11	2674	0 GL	7 280				1.00 56.00	0 AAAA 11 AAAA
ATOH ATOH	2675 2677	CA PH		43.213 44.506				AAAA C
ATON	2678	CB PH		44.938		62.523	1.00 61.20	AAAA C
ATO11	2679	CG PH	E 291	43.958				AAAA C C AAAA
ATOH ATOH	2689 2691			44.142			1.00 60.90	AAAA C
ATOH	2682	CEI PH	E 291	43.272	43.901	65.678	1.00 64.71	AAAA C
ATOM	2683			41.931	42.162			AAAA C
ATON	2684	الم يون	E 581	42.141	40.11		1.00	

***	20047						05/50		
							27/58	1.00 48.00	AAAA C
ATOII	2685	:	PHE	281	45.630	43.217 42.395	60.240 59.327	1.00 38.84	AAAA O
ATOH	2686	0	PHE	281 282	45.738 46.570	13.990	60.557	1.00 49.55	II AAAS
ATOH ATOH	2687 2689	II CA	ILE	282	47,907	43.984	59.748	1.00 45.00	AAAA C
ATOI1	2690	CB.	ILE	282	47.945	45.188	58.799	1.00 30.25	AAAA C
ATOI1	2691		ILE	282	48.041	16.494	59.507	1.00 24.60	AAAA C AAAA C
ATOH	2692	CG1		282	49.092	15.022	57.795 56.669	1.00 38.71 1.00 33.38	AAAA C
ATOI-I	2693		ILE	282	49.194 49.081	46.043	60.673	1.00 44.30	AAAA C
ATOH ATOH	2694 2695	С 0	ILE	282 282	49.001	44.447	61.759	1.00 48.49	AAAA O
ATOM ATOM	2696	:1	ARG	283	50.126	43.153	60.298	1.00 48.68	II AAAA
ATOI1	2698	CA	ARG	283	51.396	43.094	61.048	1.00 39.30	AAAA C AAAA C
ATON:	2699	CB	ARG	283	52.300	42.200	60.286 60.515	1.00 41.10	AAAA C
ATOI-I	2700	CG	ARG	283 283	52.295 53.078	40.696 39.986	59.451	1.00 29.85	AAAA C
ATOH ATOH	2701 2702	CD	ARG ARG	283	52.923	38.545	59.404	1.00 29.39	II AAAA
ATOH	2704	CS	ARG	283	51.962	38.024	58.646	1.00 37.61	AAAA C
ATOI4	2705	HH1	ARG	283	51.965	38.846	57.944	1.00 31.41 1.00 31.97	11 AAAA 11 AAAA
ATOI-I	2708		ARG	283	51.651	36.722	58.596 61.190	1.00 31.97	AAAA C
HOTA	2711	0	ARG ARG	283 283	51.945 51.931	44.498 45.228	60.173	1.00 43.42	AAAA O
ATOH ATOH	2712 2713	11	ASN	284	52.362	44.886	62.422	1.00 39.49	II AAAA II
ATOH	2715	CA	ASII	284	52.733	46.311	62.574	1.00 42.07	AAAA C
ATOH	2721	C	ASH	284	54.978	46.656	61.929	1.00 41.64	AAAA C AAAA O
ATOH	2722	0	ASII	284	54.431	47.798	61.742 64.032	1.00 39.01 1.00 37.33	AAAA C
ATOM	2716	CB CG	ASII ASII	284 284	52.734 53.917	46.760	64.611	1.00 50.21	AAAA C
ATOH ATOH	2717 2718		ASII	284	54.609	45.104	64.192	1.00 44.30	AAAA O
ATOH	2719		ASH	284	54.323	46.432	65.842	1.00 42.46	II AAAA
ATOH	2723	1 i	GLY	285	54.931	15.600	61.562	1.00 40.10 1.00 26.91	AAAA II AAAA C
ATOH	2725	€A C	GLY	285	55.971 56.091	45.815	60.593 59.848	1.00 33.12	AAAA C
ATOH ATOH	2726 2727	Ċ.	GLY GLY	285 285	55.584	43.331	60.187	1.00 29.51	AAAA O
ATOH	2728	11	SER	286	56.915	44.619	58.766	1.00 26.53	AAAA II
ATOH	2730	CA	SER	286	57.109	43.385	57.975	1.00 32.67	aaaa c aaaa c
ATOI1	2731	CB	SER	286	57.944	43.681	56.757 56.014	1.00 33.19 1.00 31.95	AAAA O
ATOH	2732 2734	og C	SER SER	286 286	58.283 57.750	42.480	58.836	1.00 34.57	AAAA C
ATOH ATOH	2735	0	SER	286	58.700	42.495	59.607	1.00 44.29	O AAAA
ATOH	2736	11	GLN	287	57.227	41.148	58.940	1.00 34.45	AAAA H
ATOH	2738	CA	GLH	287	57.738	40.005	59.634	1.00 35.25 1.00 27.97	AAAA C AAAA C
ATO!	2739 2740	CB CG	GLN	287 287	59.139 59.037	39.610 39.234	59.083 57.664	1.00 27.37	AAAA C
ATOH ATOH	2741	CD	GLII	287	58.539	37.963	57.130	1.00 21.25	AAAA C
HOTA	2742		GLII	287	58.192	37.023	57.845	1.00 28.18	AAAA O
ATOII	2743		GLII	287	58.492	37.838 40.286	55.782 61.111	1.00 27.55 1.00 30.25	AAAA C
ATOM ATOM	2746 2747	Ç.	GLN GLN	287 287	57.773 58.163	39.415	61.908	1.00 32.78	AAAA O
ATON	2748	11	SER	288	57.021	41.217	61.624	1.00 32.49	H AAAA
ATOH	2750	CA	SER	288	56.596	41.322	63.043	1.00 28.98	AAAA C
ATOH	2751	CB	SER	288	56.024	42.675	63.313 64.701	1.00 35.79 1.00 36.61	2 AAAA 0 AAAA
ATOH ATOH	2752 2754	⊙3	SER SER	288 288	55.639 55.665	40.285	63.442	1.00 28.96	AAAA C
ATOH	2755	ō	SER	288	54.993	39.776	62.553	1.00 31.16	AAAA O
ATOH	2756	[]	THI	289	55.774	39.720	64.621	1.00 32.51	AAAA II
ATOH!	275B	CA	HET	289	54.975	38.697	65.105	1.00 34.53 1.00 30.31	AAAA C AAAA C
ATOH	2759	CB	HET	289 289	55.507 56.571	37.823 36.872	66.153 65.680	1.00 30.51	AAAA C
ATOM ATOM	2760 2761	CG SD	HET	289	56.977	35.623	66.881	1.00 31.65	AAAA S
ATOH	2762	CE	HET	289	55.745	34.315	66.508	1.00 30.47	AAAA C
ATOI1	2763	С	HET	289	53.557	39.286	65.703	1.00 35.55	AAAA C
ATOH	2764	0	MET	289	52.630	38.512	66.014 65.742	1.00 38.37 1.00 29.54	AAAA O II AAAA
ATOH ATOH	2765 2767	II CA	TYR TYR	290 290	53.380 52.3 6 3	40.565 41.358	66.297	1.00 38.81	AAAA C
ATOH	2768	CB	TYR	290	52.947	42.589	67.042	1.00 36.72	AAAA C
ATON	2769	OS.	TYR	290	53.570	42.184	68.351	1.00 41.94	AAAA C
ATOII	2770		TTR	290	54.932	41.780	68.350	1.00 37.79	AAAA C
ATON	2771 2772	_	TYR	290 290	55.548 52.997	41.368	69.503 69.570	1.00 32.60 1.00 39.93	AAAA C AAAA C
ATGI	2773		2 TYR 2 TYR	290	53.501	41.750	70.748	1.00 36.16	AAAA C
ATOH	2774	<u>75</u>	TYR	290	54.822	41.355	70.693	1.00 38.85	AAAA C
ATON	2775	ОН	TYR	290	55.581	40.923	71.751	1.00 43.41	AAAA O
ATOH	2777	C	TYR	290	51.361	41.955	65.270	1.00 45.54	дааа с аааа о
ATOI1	2778 2779	0	TTR CTS	290 291	51.733 50.071	42.520 41.698	64.227 65.537	1.00 47.10	AAAA II
ATOI	2781	II CA	CIS	291	49.017	42.205	64.685	1.00 47.20	AAAA C
ATO!	2782	C	CYS	291	48.295	43.434	65.194	1.00 46.06	AAAA C
ATON	2783	-	CYS	291	47.992	43.550		1.00 49.45	AAAA O
ATOH ATOH	2784 2785	CB		291	47.973	41.103		1.00 43.44 1.00 45.49	AAAA C
ATCH	2786		CYS ILE	291 292	45.766 43.136	39.715 44.453		1.00 46.82	AAAA II
ATOH	2788	CA		292	47.399	45.651	64.755	1.00 50.64	AAAA. C
ATC:1	2799		ILE	292	49.267	46.932	64.779		AAAA C
ATOH	2790 2791		2 ILE 1 ILE	292	19,537	46.885		1.00 44.39	AAAA C
ATO:	_ / 21		- iit	292	48.920	47.095	63.402	1.90 44.25	AAAA C

110 //	20547								
							28/58		AAAA C
HOTA	2792	CDI		292	19.234	48.568	63.108 63.806	1.00 32.80 1.00 50.01	AAAA C
ATOH	2793	Ċ	ILE	292	46.240 46.165	46.003 45.526	62.670	1.00 46.64	AAAA O
ATOH	2794	0	I LE PRO	292 293	45.150	46.507	61.395	1.00 51.86	II AAAA II
ATO!!	2795 2796	CD	PRO	293	45.009	16.804	65.839	1.00 51.05	AAAA C
ATOH	2797	CA	PRO	293	43.958	46.930	63.675	1.00 51.40	AAAA C
ATOM	2798	CB	PRO	293	43.170	47.784	64.681	1.00 49.00	AAAA C AAAA C
ATO:1	2799	CG	PRO	293	43.533	47.112	65.951	1.00 53.73 1.00 51.68	AAAA C
ATOLL	2800	?	PRO	293	44.253 45.053	47.870 48.788	62.525 62.737	1.00 51.92	AAAA O
ATOI1	2801	0	PRO CYS	293 294	43.607	47.621	61.408	1.00 50.66	AAAA II
HOTA	2902 2904	II CA	CYS	294	43.811	19.464	60.254	1.00 57.90	AAAA C
ATOI1	2805	Ċ.	CYS	294	43.219	49.848	60.345	1.00 59.59	AAAA C
ATO!1	2806	0	CYS	294	43.744	50.814	59.785	1.00 60.87	AAAA C
HOTA	2807	CB	CYS	294	43.229	47.686	59.046	1.00 57.59	AAAA S
ATOH	2808	SG	CYS	294	44.408 42.009	46.460 50.031	58.563 60.854	1.00 65.87	II AAAA
ATOH	2809 2811	CA	ALA ALA	295 295	41.391	51.386	60.804	1.00 71.19	AAAA C
ATOH ATOH	2812	CB	ALA	295	42.311	52.459	61.393	1.00 63.82	AAAA C
ATOL	2813	c	ALA	295	40.971	51.770	59.370	1.00 69.17	AAAA C
ATO!1	2814	0	ALA	295	41.421	52.717	58.762	1.00 64.70	O AAAA 11 AAA
ATCH	2815	11	GLT	296	40.153	50.920	58.775	1.00 71.30	AAAA C
MOTA	2817	CA	GLY	296	39.640 39.895	51.049 49.686	57.416 56.769	1.00 74.20	AAAA C
ATOH	2818	С	GLY GLY	296 296	40.408	48.819	57.490	1.00 75.04	AAAA O
ATOH ATOH	2819 2820	Q H	PRO	297	39.561	19.510	55.497	1.00 71.98	II AAAA II
ATOH	2821	CD	PRO	297	38.928	50.561	54.637	1.00 72.15	AAAA C
ATOIT	2822	CA	PRO	297	39.958	48.344	54.777	1.00 68.03	AAAA C
PECTA	2823	CB	PRO	297	39.488	48.603	53.369	1.00 72.57 1.00 74.04	2 AAAA 2 AAAA
ATOH	2824	CG.	FRO	297	38.470	49.687 48.306	54.860 53.490	1.00 65.78	AAAA C
ATON	2825 2826	Ċ	FRO	297 297	41.480 42.147	49.323	54.997	1.00 62.72	AAAA Q
ATOH ATOH	2827	O (1	PRO CYS	298	42.039	47.135	55.073	1.00 63.85	II AAAA II
ATC:1	2829	CA	CYS	298	43.464	46.953	55.248	1.00 54.47	AAAA C
ATOH	2830	C	CYS	298	44.109	47.303	53.908	1.00 54.56	AAAA C
HOTA	2831	0	CYS	298	43.621	47.030	52.820	1.00 54.83	AAAA C AAAA C
HOTA	2932	CB	CYS	298	43.665	45.544	55.669 57.371	1.00 46.12	AAAA S
ATCH	2833	SJ	CYS PRO	298 299	43.501 45.310	45.115	53.967	1.00 49.83	AAAA II
HOTA	2834 2835	CD II	PRO	299	46.087	48.168	55.194	1.00 48.14	аааа с
ATOH	2936	CA	FRO	299	46.055	48.212	52.787	1.00 43.67	AAAA C
ATOI-I	2837	СВ	PRO	299	47.267	48.965	53.281	1.00 44.08	AAAA C
ATO: 1	2838	CG	PRO	299	47.454	48.361	54.628	1.00 51.38 1.00 38.86	AAAA C AAAA C
ATOI 1	2839	C	PRO	299	46.341	46.969 45.874	52.010 52.546	1.00 42.85	AAAA O
HOTA	2840	0	PRO LTS	299 300	46.372 46.310	47.073	50.712	1.00 38.39	AAAA II
ATON ATOM	2841 2843	II CA	LYS	300	46.484	45.958	49.812	1.00 42.62	AAAA C
ATOH	2844	CB	LYS	300	45.176	45.226	49.595	1.00 34.29	AAAA C
ATO!!	2845	CG	LYS	300	45.346	43.901	48.920	1.00 41.45	AAAA C AAAA C
ATOI1	2846	CD	LYS	300	44.013	43.413	49.378 47.797	1.00 48.31	AAAA C
ATOI1	2847	CE	LYS	300	44.388 43.662	42.027 42.031	46.478	1.00 63.70	AAAA II
HOTA HOTA	2848 2852	112 C	LTS LTS	300 300	46.964	46.479	18.432	1.00 48.72	AAAA C
ATOTE	2853	ō	LTS	300	46.413	47.383	47.776	1.00 46.09	aaaa o
ATOH	2854	11	VAL	301	48.150	45.984	18.054	1.00 48.15	II AAAA II
ATO:1	2856	CA	VAL	301	48.802	46.462	46.871	1.00 44.52	C AAAA C AAAA
ATO:1	2857	CB	VAL	301	50.292	46.729	47.074	1.00 51.52 1.00 43.07	AAAA C
ATOH	2858		VAL	301	51.008 50.495	47.200 47.794	45.796 45.141	1.00 49.50	AAAA C
ATOH ATOH	2859 2860	Ç.	VAL VAL	301 301	48.526	45.410	45.837	1.00 44.59	AAAA C
ATOH	2861	o	VAL	301	48.913	44.291	46.060	1.00 43.70	AAAA O
ATOM		11	CïS	302	47.910	45.816	44.718	1.00 47.98	II AAAA
HOTA	2864	CA	CYS	302	47.645	44.735	43.739	1.00 55.19 1.00 57.64	AAAA C AAAA C
ATOH	2865		CYS	302	18.594	44.968 46.152	42.583 42.313	1.00 60.23	AAAA O
ATON	2866		CYS	302 302	48.952 46.196	44.630		1.00 68.30	AAAA C
ATOH	2867 2868			302	45.070	44.360		1.00 70.31	aaaa s
ATON	2869		GLU	303	49.183	43.921	42.075	1.00 58.15	AAAA II
ATOH	2871			393	50.174	43.932		1.00 62.85	AAAA C
ATCH	2872			303	51.503	44.006		1.00 67.85	AAAA C AAAA C
ATOII	2873			303	51.760			0.01 67.46 0.01 67.94	AAAA C
ATON	2874			303 303	51.999 53.011	41.992 41.514		0.01 67.67	AAAA O
ATOI1	2875 2876		1 GLU 2 GLU	303	51.147	41.290		0.01 67.65	AAAA O
ATOH	2877		GLU	303	50.096		40.194	1.00 64.12	AAAA C
ATOIS	2876	0	GLU	303	50.162	41.562		1.00 65.08	0 AAAA 11 AAAA
ATOII	2979		GLU	304	49.867			1.00 67.37	AAAA C
ATON				304	49.672				AAAA C
ATOH ATOH				304 304	48.285 47.339				AAAA C
HOTA				304	45.930		36.195	1.00 87.56	AAAA C
HOTA		5 05	El GLU	304	45.438	41.571	37.179		aaaa o
ATCH		6 OE	2 GLU	304	45.249				aaaa o
ATOH	288		-SLU	304	50.966				7 AAAA 0 KAAA
ATOH	2881	8 0	GLU	304	51.911	41.962	37.217	1.00 74.78	Mari

					4	29/30		
n mout	2989 1	: GLU	305	50.899	40.126	36.568	1.00 77.31	AAAA II
ATOH.		CA GLU	305	51.932	39.656	35.674	1.00 75.90	AAAA C
ATO!				51.467	38.380	34.970	1.00 79.95	AAAA 🤈
ATOH		TB GLU	305			33.807	1.00 87.28	AAAA C
ATOH		og GLU	305	52.307	37.937	32.886	0.01 83.39	AAAA C
MOTA	5664	CD GLU	305	51.758	36.891		0.01 83.66	AAAA O
ATOLL	2995	DEI GLU	305	50.762	36.234	33.252		AAAA O
ATOH	2896	OEC GLU	305	52.310	36.700	31.720	0.01 83.73	AAAA C
ATO:	_	C GLU	305	52.276	10.737	34.666	1.00 75.97	
		o GLU	305	53.381	41.268	34.613	1.00 76.54	AAAA O
ATOH			306	51.291	41.181	33.888	1.00 78.22	AAAA II
ATOH	-	UTS		51.479	42.329	33.004	1.00 75.99	aaaa c
ATOH	_	CA LYS	306			31.855	1.00 79.78	AAAA C
ATOI!		CB LYS	306	50.467	12.253	30.527	1.00 94.52	AAAA C
ATO: I	2903	CG LYS	306	51.208	12.227		1.00 92.78	AAAA C
ATOH	2904	CD LYS	306	50.313	42.191	29.314		
HOTA	2205	CE LYS	306	50.740	43.227	28.261	1.00 97.10	AAAA C
ATOH	2906	HE LYS	306	50.938	44.554	28.929	1.00 84.87	AAAA II
ATOH		C LYS	306	51.381	43.669	33.703	1.00 73.85	AAAA C
		O LYS	306	50.703	43.862	34.718	1.00 76.08	AAAA O
ATOH	_		307	52.000	44.700	33.180	1.00 71.15	II AAAA
ATOH		II LYS			16.053	33.692	1.00 69.45	AAAA C
HOTA		CA LTS	307	51.934			1.00 79.64	AAAA C
MOTA	2915	CB LYS	307	53.022	46.903	33.008	1.00 78.88	AAAA C
ATOM	2916	CG LYS	307	54.419	4€.837	33.564		
ATOH	2917	CD LYS	307	55.257	18.084	33.374	1.00 85.84	AAAA C
ATOM	2918	CE LYS	307	55.708	48.215	31.924	1.00 97.07	AAAA C
ATOM		HG LYS	307	54.649	48.840	31.067	1.00 97.80	AAAA II
	2923	C LTS	307	50.562	46.716	33.525	1.00 67.97	aaaa c
ATOI1				50.919	47.369	34.431	1.00 64.46	AAAA O
ATOH	2924	O LYS	307		46.661	32.323	1.00 65.84	AAAA :I
ATOH		II THR	308	49.979		32.091	1.00 64.56	AAAA C
ATOIT	2927	CA THR	308	48.709	47.319		1.00 59.91	AAAA C
ATOH:	2028	CB THR	308	48.714	47.977	30.711		
MOTA	2929	O31 THR	308	49.834	48.843	30.577	1.00 61.97	AAAA O
ATOH	2931	CG2 THR	308	47.392	48.742	30.561	1.00 63.64	AAAA C
ATOIL	2932	C THR	308	47.514	46.379	32.234	1.00 61.82	AAAA C
ATOH	2933	O THR	308	47.412	45.415	31.477	1.00 62.05	AAAA O
			309	46.675	46.719	33.211	1.00 55.66	II AAAA II
ATOH	2934		309	45.456	45.926	33.445	1.00 54.67	AAAA C
ATOH	2936	CA LYS			45.880	34.904	1.00 56.82	AAAA C
ATOI1	2937	CB LYS	309	45.043		35.223	1.00 57.50	AAAA C
ATOH	2938	CG LYS	309	43.601	45.541		1.00 59.50	AAAA C
ATOH.	2939	CD LYS	309	43.390	44.039	35.086		AAAA C
ATOH	3940	CE LYS	309	42.703	13.448	36.324	1.00 57.31	
ATOH!	2941	HE LYS	309	42.758	41.954	36.236	1.00 57.22	AAAA II
ATOH	2945	C LYS	309	44.391	46.570	32.548	1.00 51.21	AAAA C
	2946	O LYS	309	44.074	47.763	32.680	1.00 47.23	O AAAA
HOTA			310	43.895	45.772	31.610	1.00 47.67	aaaa ii
ATOH	2947	H THR			46.328	30.733	1.00 51.89	AAAA C
ATO:1	2949	CA THR	310	42.862		29.266	1.00 54.81	AAAA C
ATOH	2950	CB THR	310	43.161	46.015		1.00 66.29	AAAA O
HOTA	2951	OG1 THR	310	41.909	45.710	28.635		AAAA C
ATOH	2953	CG2 THR	310	44.032	44.791	29.139	1.00 55.18	
ATOH	2954	C THR	310	41.468	45.841	31.117	1.00 51.15	AAAA C
HOTA	2955	O THR	310	41.162	44.680	30.991	1.00 49.27	AAAA O
ATOLL	2956	II ILE	311	40.684	46.706	31.732	1.00 50.18	ii aaaa
ATOH	2958	CA ILE	311	39.363	46.453	32.276	1.00 48.67	aaaa c
	2959	CB ILE	311	39.120	47.396	33.462	1.00 49.27	AAAA C
ATOH				37.655	47.596	33.799	1.00 50.72	AAAA C
ATOH	2960		311		46.930	34.500	1.00 41.34	AAAA C
HOTA	2961	CG1 ILE	311	39.896		35.739	1.00 52.22	AAAA C
NOTA	2962	CD1 ITE	311	39.847	48.073		1.00 45.37	AAAA C
A'POI1	2963	C ILE	311	38.334	46.729	31.186		
ATOI:1	5664	O ILE	311	38.132	47.875	30.758	1.00 37.14	AAAA O
ATOH	2965	II ASP	312	37.871	45.678	30.524	1.00 50.10	AAAA II
ATOH:	2967	CA ASP	312	36.991	45.842	29.377	1.00 56.35	AAAA C
ATON	2968	CB ASP	312	37.546	45.150	29:128	1.00 59.45	AAAA -C
HOTA	2969	CG ASP	312	37.761	43.671	28.392	1.00 65.64	aaaa c
ATOH	2970	OD1 ASP	312	38.525	43.034	27.636	1.00 72.60	O AAAA
ATOH	2971	OD2 ASE	312	37.154	43.176		1.00 66.86	O, AAA.
			312	35.589		29.693	1.00 59.39	AAAA C
ATOM	2972	C ASP					1.00 61.00	O AAAA
ATOH	2973	O ASP	312	34.729				II AAAA II
ATOH:	2974	II SER	313	35.278				O AAAA
ATO: I	2976	CA SER	313	34.053				
ATO::	2277	CB SER	313	34.121	43.201	31.093		aaaa c
ATOH	2978	OG SER	313	34.373	42.514	32.282		AAAA O
ATOH	2980	C SER	313	33.998	44.818	32.941	1.00 57.87	аала с
ATOH	2981	O SER	313	34.802			1.00 66.47	AAAA O
ATOI	2992	II VAL		33.001				AAAA II
ATOL	2934	CA VAL		32.849				AAAA C
ATOH	2005			31.360				AAAA C
	2985			31.024				2 AAAA
HOTA		CG1 VAL						AAAA C
ATOH		CG2 VAL		30.927				AAAA C
HOTA		C VAL	314	33.492				
ATOH		O VAL	314	34.029				AAAA O
HOTA	2990			33.468	42.011	3:.878	1.00 61.82	AAAA 11
ATOH				34.029			1.00 63.44	AAAA C
ATOH				33.618				AAAA C
ATOIL				32.403				C AAA.
ATOI				33.339				AAAA C
				35.54				AAAA C
ATON		- 1111	315	35.54	40.971	35.323	, 1.00 05.02	~~~~ ·

			30/58	
ATOH	2098 O THE	315	36.217 40.339 36.206 1.90 66.41	0 AAAA 11 AAAA
ATOH	2999 II SER	316	30.071	AAAA C
ATON	3001 CA SER 3002 CB SER	316 316	37.795 42.537 32.900 1.00 52.20	AAAA C
ATOH	3003 OG SER	316	37.298 43.859 32.933 1.00 48.04	AAAA C
ATOH	3005 C SER	316	35 500 1 00 50 96	AAAA O
ATOH	3006 O SER 3007 II ALA	316 317	37,310 43,362 36,111 1.00 55.86	II AAAA II
ATOH ATOH	3009 CA ALA	317	37.750 44.184 37.191 1.00 57.17	AAAA C AAAA C
ATOH	3010 C8 ALA	317	36.833 45.409 37.269 1.00 54.23 37.689 43.487 38.538 1.00 62.05	AAAA C
ATOH ATOH	3011 C ALA 3012 O ALA	317 317	37,702 44,128 39,599 1,00 60,30	AAAA O
ATOH	3013 H GLH	318	37.361 42.205 38.523 1.00 67.91	aaaa d aaaa c
HOTA	3015 CA GLN	319	37.185 41.380 39.713 1.00 70.72 36.857 39.956 39.293 1.00 74.48	AAAA C
ATON ATON	3016 CB GLN 3017 CG GLN	318 318	36.624 38.947 40.383 1.00 89.82	AAAA C
ATOH	3018 CD GLII	318	35.265 39.080 41.048 1.00 92.69 34.256 38.807 40.391 1.00 98.57	aaaa c aaaa o
ATON	3019 OE1 GLH 3020 HE2 GLH	318 318	35.356 39.509 42.308 1.00 92.51	N AAAA
ATOH	3020 HE2 GLH	318	38.380 41.413 40.653 1.60 72.63	AAAA C
ATOH	3024 O GLH	318	38.294 41.855 41.894 1.00 68.92 39.562 41.062 40.153 1.00 75.18	0 AAAA 11 AAAA
ATOH	3025 H HET 3027 CA HET	319 319	40.846 41.175 40.826 1.00 71.85	AAAA C
ATOH ATOH	3027 CA MET 3028 CB MET	319	41.950 40.960 39.772 1.00 82.00	AAAA C AAAA C
ATOH	3029 CG HET	319	41.740 39.644 39.050 1.00 91.16 43.123 38.482 39.185 1.00106.72	AAAA C
ATOH	3030 SD MET 3031 CE NET	319 319	43.123 38.482 39.185 1.00106.72 42.486 37.105 38.231 1.00 97.56	AAAA C
ATOH ATOH	3031 CE NET	319	41.118 42.509 41.471 1.00 67.68	AAAA C AAAA O
ATOH	3033 0 NET	319	41.517 42.541 42.612 1.00 69.73 40.740 43.639 40.897 1.00 62.95	AAAA II
ATOH ATOH	3034 H LEU 3036 CA LEU	320 320	40.907 44.938 41.531 1.00 62.31	AAAA C
ATOM	3037 CB LEU	320	40.440 46.085 40.623 1.00 54.93	AAAA C AAAA C
ATOM	3038 CG LEU	320	41.091 46.163 39.238 1.00 53.48 41.005 47.552 38.692 1.00 51.31	AAAA C
ATOH ATOH	3039 CD1 LEU 3040 CD2 LEU	320 320	42.557 45.709 39.403 1.00 58.43	AAAA C
ATOH	3041 C LEU	320	40.209 45.008 42.881 1.00 60.30	aaaa c aaaa o
ATOH	3042 O LEU 3043 (I GLII	320 321	39.267 44.106 43.112 1.00 59.62	II AAAA
ATOH ATOH	3043 (I GLII 3045 CA GLII	321	38.482 44.128 44.343 1.00 63.50	AAAA C AAAA C
ATOI1	3046 CB GLII	321	37.373 43.089 44.250 1.00 62.52 36.611 42.854 45.522 1.00 56.83	AAAA C
aton Aton	3047 CG GLH 3048 CD GLH	321 321	35.337 42.064 45.221 1.00 68.77	AAAA C
ATON	3049 OE1 GLH	321	35.362 40.969 44.718 1.00 70.37 34.218 42.632 45.764 1.00 63.77	O AAAA 11 AAAA
HOTA	3050 HE2 GLH 3053 C GLH	321 321	39.367 44.030 45.594 1.00 60.97	AAAA C
ATOH ATOM	3053 C GLII 3054 O GLII	321	40.262 43.196 45.782 1.00 57.29	O AAAA II AAAA
ATOH	3055 H GLY	322	39.092 44.928 46.546 1.90 57.62 39.855 44.928 47.790 1.00 60.63	AAAA C
ATOIL	3057 CA GLY 3058 C GLY	322 322	41.126 45.773 47.812 1.90 61.78	AAAA C
ATON ATON	3059 O GLY	322	41.584 46.198 48.889 1.00 60.16	aaaa o aaaa ii
ATON	3060 N CYS	323	41.719 46.124 46.676 1.00 60.03 42.938 46.845 46.528 1.00 54.20	AAAA C
HOTA	3062 CA CYS 3063 C CYS	323 323	42.924 48.307 46.910 1.00 53.48	AAAA C
HOTA	3064 O CYS	323	42.105 49.148 46.503 1.00 56.43	AAAA C
ATGH	3065 CB CYS 3066 SG CYS	323 323	43.458 46.822 45.096 1.00 53.33 43.325 45.222 44.248 1.00 66.22	AAAA S
ATON ATON	3066 SG CYS 3067 H THR	324	43.994 48.718 47.580 1.90 49.83	AAAA 11 AAAA C
ATOH	3069 CA THR	324	44.164 50.161 47.811 1.00 52.29 44.623 50.324 49.264 1.00 52.84	AAAA C
ATOH ATOH	3070 CB THR 3071 OG1 THR	324 324	45.245 49.087 49.634 1.00 59.82	AAAA O
ATON	3073 CG2 THR	324	43.432 50.517 50.193 1.00 60.00	AAAA C AAAA C
ATOH	3074 C THR 3075 O THR	324 324	45.154 50.802 46.844 1.00 48.91 45.277 52.016 46.710 1.00 46.90	AAAA O
ATOM ATOM	3075 O THR 3076 H ILE	325	46.021 49.963 46.254 1.00 46.87	N AAAA C AAAA
ATOII	3078 CA ILE	325	47.114 50.511 45.445 1.00 45.10 48.473 50.577 46.183 1.00 43.60	AAAA C
ATOH ATOH	3079 CB ILE 3080 CG2 ILE	325 325	49.585 50.905 45.163 1.00 47.47	AAAA C
HOTA	3081 CG1 ILE	325	48.394 51.623 47.294 1.00 34.03	AAAA C AAAA C
HOTA	3082 CD1 ILE	325	49.595 52.010 48.028 1.00 41.94 47.265 49.642 44.229 1.00 42.88	AAAA C
HOTA HOTA	3083 C ILE 3084 O ILE	325 325	47.406 48.429 44.469 1.00 42.99	AAAA O
ATOH	3085 II PHE	326	47.170 50.238 43.042 1.00 41.19 47.332 49.334 41.880 1.00 42.98	AAAA II AAAA C
IOTA	3087 CA PHE 3088 CB PHE	326 326	46.166 49.437 40.877 1.00 39.15	дааа с
HOTA HOTA	3089 CG PHE	326	46.403 48.474 39.738 1.00 38.03	д ааа С ааа а С
ATOI1	3090 CD1 PHE	326	46.186 47.125 39.951 1.00 39.68 46.917 48.892 38.525 1.00 37.31	AAAA C
ATOI1 ATOI1		326 326	16.447 46.139 39.023 1.00 36.52	AAAA C
ATOH		326	47.136 47.919 37.551 1.00 45.74	AAAA C
ATON	3094 CE PHE	326	46.924 46.570 37.787 1.00 39.92 48.682 49.673 41.280 1.00 48.78	AAAA C
ATOH ATOH		326 326	49.024 50.826 40.966 1.00 51.39	O AAAA
ATON	3097 II LYS	327	49.623 48.751 41.379 1.00 50.22	AAAA II
ATON ATON			50.964 49.963 40.831 1.00 51.49 52.050 48.091 41.519 1.00 58.64	
W1.74				

110)),	20547					31/58		
ATOH	3101	CG LYS	327	53.254	48.997	41.991	1.00 59.15	AAAA C
ATOM	3102	CD LYS	327	54.528	48.257	41.617	1.00 63.49	D AAAA D AAAA
NOTA	31 03	CE LYS	327 327	55.400 56.260	48.951 47.889	40.592 39.938	1.00 71.97	II AAAA
ATOH ATOH	3104 3108	C LYS	327	50.895	18.464	39.391	1.00 45.70	AAAA C
ATOH	3109	O LYS	327	50.901	47.245	39.127	1.00 49.55	aaaa o aaaa ii
ATOH	3110	H GLY	328	50.760 50.6 1 7	49.397 19.038	38.502 37.086	1.00 39.68	AAAA C
ATOH ATOH	3112 3113	CA GLY	328 328	49.845	50.161	36.427	1.00 39.49	AAAA C
ATOH	3114	O GLY	328	49.858	51.307	36.881	1.00 31.92	AAAA O
ATOH	3115	II ASH	329	49.286	49.813	35.289 34.543	1.00 41.47	AAAA C
ATOH	3117 3118	CB ASII	329 329	48.467 49.185	50.750 50.942	33.211	1.00 42.50	AAAA C
ATOI1 ATOI-I	3119	CG ASII	329	50.624	51.426	33.357	1.00 42.26	AAAA C
ATON1	3120	OD1 ASII	329	50.954	52.331	34.156	1.00 34.77	O AAAA 11 AAAA
ATOM	3121 3124	C ASII	329 329	51.425 47.038	50.769 50.207	32.530 34.357	1.00 50.37	AAAA C
ATOH ATOH	3125	O ASII	329	46.736	49.015	34.119	1.00 50.17	AAAA O
ATON	3126	II LEU	330	46.090	51.143	34.413 34.151	1.00 47.13 1.00 42.53	AAAA C
HOTA	3128 3129	CA LEU	330 330	44.691 43.751	50.860 51.530	35.153	1.00 42.84	AAAA C
ATON	3130	CG LEU	330	43.768	50.995	36.598	1.00 38.65	AAAA C
ATON	3131	CD1 LEU	330	42.864	51.924	37.417	1.00 38.12 1.00 38.74	AAAA C AAAA C
ATON	3132 3133	CD2 LEU	330 330	43.283 44.352	49.565 51.377	36.669 32.758	1.00 39.10	AAAA C
HOTA HOTA	3134	O LEU	330	44.509	52.545	32.460	1.00 40.71	AAAA O
ATO: I	3135	II LEU	331	43.933	50.516	31.904	1.00 36.10 1.00 43.10	aaaa c
ATON	3137	CA LEU	331 331	43.367 43.958	50.869 49.894	30.625 29.585	1.00 42.29	AAAA C
ATO!	3138 3139	CG LEU	331	43.301	49.960	28.221	1.60 40.89	AAAA C
ATOM	3140	CD1 LEU	331	43.501	51.319	27.627	1.00 46.64	AAAA C AAAA C
ATOH	3141	CD2 LEU	331 331	43.844 41.872	48.834 50.568	27.367 30.705	1.00 41.12	AAAA C
ATOM ATOM	3142 3143	O LEU	331	41.562	49.365	30.779	1.00 40.08	AAAA O
ATO: I	3144	II ILE	332	41.029	51.566	30.862	1.00 41.13	AAAA C
ATOH ATOH	3146 3147	CA ILE		39.606 38.885	51.241 52.085	31.044 32.076	1.00 34.77	AAAA C
ATOH	3148	CG2 ILE		37.413	51.612	32.195	1.00 34.66	AAAA C
ATOH	3149	CG1 ILE		39.550 39.479	51.095 53.152	33.452 34.337	1.00 33.64 1.00 48.21	AAAA C AAAA C
MOTA MOTA	3150 3151	CD1 ILE		38.959	51.367	29.688	1.00 34.03	AAAA C
ATOH	3152	O ILE		38.867	52.489	29.200	1.00 35.89	AAAA O
ATOH	3153	H ASH		38.569	50.273	29.094 27.737	1.00 35.25	AAAA C
ATOM ATOM	3155 3156	CA ASII	333 333	38.014 38.960	50.283 49.499	26.797	1.00 50.50	AAAA C
HOTA	3157	CG ASI	333	38.668	49.493	25.310	1.00 59.29	AAAA C
ATOI1	3158	OD1 ASII		37.845	48.711	24.784	1.00 64.54 1.00 45.83	O AAAA II AAAA
ATOI I ATOI I	3159 3162	C ASH		39.290 36.566	50.350 49.581	27.755	1.00 47.63	AAAA C
HOTA	3163	O ASH		36.462	48.409	27.398	1.00 44.40	AAAA O
ATOL	3164	II ILE		35.644 34.332	50.213	28.315 28.460	1.00 54.13	AAAA II AAAA C
ATON ATON	3166 3167	CA ILE		33.788	49.537 49.826	29.876	1.00 61.98	AAAA C
ATOH	3168	CG2 ILE	334	32.362	49.355	30.047	1.00 54.04	AAAA C
ATOH	3169	CG1 ILE	334	34.737 34.346	49.224 49.687	30.915 32.317	1.00 60.43	AAAA C AAAA C
ATOH ATOH	3170 3171	CDI ILE		33.271	50.032	27.476	1.00 59.45	AAAA C
HOTA	3172	O ILE	334	32.726	51.136	27.635	1.00 56.22	AAAA O
ATOH:	3173 3175	N ARG		32.919 31.910	49.181 49.567	26.550 25.573	1.00 59.69	AAAA 11 AAAA C
HOTA HOTA	3176	CB ARG	_	32.262	48.903	247.240	1.00 74.44	AAAA C
ATOH	3177	CG ARC	335	33.729	48.932	23.918	1.00 82.97	AAAA C
ATOH ATOH	3178 3179	CD ARC		34.102 34.361	49.289 48.040	22.500 21.777	1.00 86.49	AAAA C
ATOH	3181	CE ARC		34.011	47.838	20.496	1.00 93.67	AAAA C
ATOH	3182	UH1 ARC		33.409	48.852	19.843	1.00 87.24	AAAA II
ATON	3185 3188	UH2 ARC		34.256 30.492	46.674 49.233	19.877 26.021	1.00 75.31	AAAA II AAAA C
ATOH ATOH	3189	O ARG		29.664	50.115	26.239	1.00 84.11	AAAA O
ATOH	3190	II ALI		30.208	47.953	26.234	1.00 87.51	II AAAA
HOTA HOTA	3192 3193	CB AL		28.878 28.835	47.484 45.980	26.601 26.633	1.00 92.40	аааа с Заааа с
ATOH	3194	C AL		28.479			1.00 96.61	AAAA C
ATOH	3195	O AL		29.316			1.00 96.96	AAAA O
HOTA	3196 3198			27.298			1.00 99.74	AAAA II AAAA C
ATOIL				26.986 25.568			1.00105.51	AAAA C
ATOIL	3200	O GT.	337	24.801	50.267	29.596	1.00106.64	AAAA O
ATOH ATOH				25.243			1.00105.41	11 AAAA C AAAA
ATON				23.886 23.714				AAAA C
ATOI	3205	CG AS	14 338	24.403	45.544	30.928	1.00112.30	AAAA C
ATOH				.25.598				AAAA O AAAA II
ATO: I				23.604 23.790				AAAA C
AIGH		- no	338	20.790		22		

2	2	/5	Ω

						-	,		
	2211	o i	45H	338	23.544	50.345	31.739	1.00103.97	O AAAN
ATOH				339	24.290		33.099	1.00105.47	II AAAA
ATOI1			asii		24.529	19.740	34.159	1.00107.10	AAAA C
ATOH			ASH	339			34.945	1.00109.15	AAAA C
ATON	3215	CB I	ASH	339	23.252	49.915		0.01107.52	AAAA C
ATOH	3216	CG i	ASH	339	22.777	51.351	35.003		AAAA O
ATOI1		OD1	ASH	339	22.715	51.931	36.088	0.01107.49	
		IID2		339	22.441	51.932	33.859	0.01107.46	AAAA II
ATOH				339	25.697	49.237	35.007	1.00106.33	AAAA C
ATO!!			ASH			48.390	35.886	1.00108.82	AAAA O
NOTA	3222		ASH	335	25.520			1.00101.36	AAAA II
ATOH:	3223	H	ILE	340	26.897	49.527	34.510		AAAA C
ATOH		CA	ILE	340	28.136	49.101	35.138	1.00 97.43	
			ILE	340	29.040	48.354	34.151	1.00 93.63	AAAA C
ATON				340	28.194	47.252	33.499	1.00 99.38	AAAA C
ATO! I	3227		ILE			49.158	33.070	1.00 85.50	AAAA C
ATON	3228		ILE	310	29.726		31.915	1.00 92.53	AAAA C
МОТЛ	3229	CD1	ILE	310	28.897	49.634			AAAA C
HOTA	3230	C	ILE	340	28.783	50.357	35.706	1.00 95.32	
	3231		ILE	340	29.472	51.099	34.997	1.00 97.86	AAAA O
ATOH			ALA	341	28.409	50.739	36.915	1.00 89.89	AAAA II
HOTA	3232				28.892	52.008	37.450	1.00 88.45	AAAA C
HOTA	3234		ALA	341			37.006	1.00 84.56	AAAA C
ATOH	3235	CB	ALA	341	28.068	53.201		1.00 85.37	AAAA C
ATOH	3236	C	ALA	341	28.786	51.968	38.970		
	3237		ALA	341	28.910	52.935	39.690	1.00 86.09	AAAA O
ATON				342	28.204	50.877	39.386	1.00 84.24	II AAAA
ATOH	3238	[]	SER			50.601	40.780	1.00 82.05	AAAA C
HOTA	3240	CA	SER	342	27.910		41.112	1.00 85.51	AAAA C
HOTA	3241	C3	SER	342	26.426	50.667		1.00 86.02	AAAA Q
ATOH:	3242	03	SER	342	26.145	51.271	42.361		ANAA C
ATOH	3244	Ć	SER	342	28.487	49.196	10.965	1.00 76.62	
			SER	342	29.119	48.966	41.964	1.00 71.76	о аааа
HOTA	3245	0			28.373	48.409	39.905	1.90 76.23	AAAA II
HOTA	3246	11	GLU	343			39.820	1.00 74.59	AAAA C
ATOH	3248	CA	GLU	343	29,001	47.109		1.00 78.62	AAAA C
ATOI1	3249	CB	GLU	343	28.595	46.300	38.616		
ATON	3250	CG	GLU	343	27.118	46.105	38.316	1.00 85.33	AAAA C
		CD	GLU	343	26.898	45.121	37.169	1.00 92.76	AAAA C
ATOIL	3251				27.209	43.911	37.310	1.00 96.41	aaaa o
ATOH	3252		GLU	343		45.517	36.082	1.00 98.55	AAAA O
ATOH	3253	QE 2	GLU	343	26.123		39.804	1.00 77.75	AAAA C
ATOH	3254	С	GLU	343	30.525	47.319		1.00 75.73	AAAA O
ATO: I	3255	0	GLU	343	31.273	46.787	10.637	1.00 75.65	II AAAA
ATOH	3256	11	LEU	344	31.022	48.237	38.966		AAAA C
	3258	ÇA	LEU	344	32.415	48.596	38.839	1.00 72.36	
ATOH			LEU	344	32.760	49.697	37.808	1.00 64.33	AAAA C
ATOH	3259	CB			32.687	49.397	36.311	1.00 50.12	aaaa c
ATOH	3260	OG.	LEU	344		50.577	35.519	1.00 57.00	аааа с
ATOM	3261		LEU	344	33.224		35.905	1.00 51.62	AAAA C
ATO! 1	3262	CDC	LEU	344	33.401	48.127		1.00 69.74	AAAA C
ATOH	3263	Ċ	LEU	344	32.963	49.130	40.174		AAAA O
ATOH	3264	o	LEU	344	34.079	48.739	40.551	1.00 69.12	
HOTA	3265	11	GLU	345	32.166	49.959	40.822	1.00 63.10	H AAAA
	3267	CA	GLU	345	32.555	50.591	42.061	1.00 65.42	AAAA C
ATOH				345	31.592	51.714	42.478	1.30 55.59	AAAA C
ATON	3268	CB	GLU			52.607	43.486	1.00 68.78	AAAA C
ATOH	3269	ÇĞ	GLU	345	32.267		44.376	1.00 81.31	AAAA C
ATOH	3270	CD	GLU	345	31.324	53.374		1.00 85.60	AAAA O
ATOH	3271	OE1	GLU	345	30.614	54.320	43.976		
ATOH	3272		GLU	345	31.237	53.078	45.595	1.00 88.79	AAAA O
	3273	C	GLU	345	32.706	49.652	43.255	1.00 63.31	AAAA C
ATON				345	33.501	49.913	44.134	1.00 60.06	aaaa o
ATOH	3274	0	GIJU		32.151	48.462	43.202	1.00 62.25	AAAA II
ATOH	3275	;1	IIZA	346		47.403	44.173	1.00 63.82	AAAA C
ATOt-I	3277	CA	ASH	346	32.285		44.095	1.00 61.66	AAAA C
ATOH	3278	CB	ASII	346	31.024	46.498			AAAA C
ATOH	3279	CG	ASII	346	31.110	45.292	45.006	1.00 30.73	
ATOI-I	3280		ASH	346	31.188	45.352	46.224	1.00 69.11	O AAAA
			ASII	346	31.155	44.092	44.444		II AAAA II
HOTA	3261				33.532	46.580	43.870	1.00 63.71	AAAA C
NOTA	3284	Ç	ASII	346			43.905		AAAA O
ATOH!	3285	0	ASII	346	33.636	45.336			II AAAA II
ATOH!	3286	11	PHE	347	34.419		43.066		AAAA C
ATO:	3288	CA	PHE	347	35.54C	16.411	42.506		AAAA C
ATOI I	3289	CB	PHE	347	35.123	45.854	41.170	1.00 61.38	
			PHE	317	34.457		41.142	1.00 65.57	AAAA C
ATOII	3290				33.090		40.982		AAAA C
ATO!1	3291		PHE	347					AAAA C
HOTA	3292	CD:	2 PHE	347	35.148				AAAA C
ATO:1	3293	CE:	3H4	347	32.425				AAAA C
ATO!!	3294		2 PHE	347	34.512	42.130			
ATON	3295		PHE	347	33.152		41.095	1.00 72.74	AAAA C
			FHE	3.17	36.712		_	1.00 57.70	AAAA C
ATO! 1	3296				37.770				C AAAA
ATON	3297		PHE	347					II AAAA II
ATO!!	3298	- 11	HET	348	36.482			10 00	AAAA C
ATOH	3300	CA	HET	348	37.500	19.630			AAAA C
ATOH	3301		HET	348	37.402	50.096	40.493	- 00 70 10	
ATOL	3302		THET	348	37.426		39.471		AAAA C
ATOI					37.566			1.00 44.79	aaaa s
	3303			348					AAAA C
ATOM				348	38.408				AAAA C
ATOH			HET	348	37.368				
ATOH	3306	6 0	HET	348	38.210	51.77			AAAA O
ATOU			GLY	3.10	36.29				AAAA II
ATOM					25991	51.96	5 44.50		AAAA C
			GLY	310	36.98	·			AAAA C
ATOH			SLY				9 46.15		AAAA O
ATOH	331	1 0	111	319	37.03	, ,,,,,,,,			

W O 33	120347								
							33/58		
ATON	3312	II L	EU	350	37,791	51.159	45.925	1.00 56.17	AAAA II
ATOH			EU	350	39.735	51.256	47.021	1.00 58.04	AAAA C AAAA C
ATOH			EU	350	38.873	16.919	17.834	1.00 49.00 1.00 50.79	AAAA C
ATOH			EU	350	37.871	50.020	49.031 49.700	1.00 52.92	AAAA C
ATOI1	3317	CD1 L		350	37.705	48.680 51.106	50.038	1.00 56.11	AAAA C
ATOH		CD2 L		350 350	38.247 40.144	51.727	46.685	1.00 61.34	AAAA C
ATOH ATOH			.EV .EV	350	40.931	£1.962	47.619	1.00 63.52	AAAA O
ATON			LE	351	40.446	51.677	45.370	1.00 57.89	AAAA II
ATOH	3323		LE	351	41.729	52.088	44.873	1.00 48.69	AAAA C
ATCI4	3324	CB I	LE	351	41.814	51.912	43.352	1.00 48.19	D AAAA D AAAA
HOTA	3325		LE	351	43.101	52.416	42.757	1.00 40.01	AAAA C
ATOH	3326		LE	351	41.535	50.418 50.351	43.058 41.581	1.00 36.46	AAAA C
HOTA	3327	CD1 I	LE	351 351	41.172	53.533	45.178	1.00 46.80	AAAA C
ATOH ATOH	3328 3329		LE	351	41.367	54.358	44.626	1.00 42.87	O AAAA
ATOH	3330		LU	352	43.002	53.866	46.015	1.00 50.61	·AAAA II
ATOI1	3332		LU	352	43.381	55.241	46.248	1.00 51.20	AAAA C
ATOH	3333	CB G	LU	352	43.907	55.353	47.678	1.00 52.12	AAAA C
ATON	3334		LU	352	42.912	55.769	18.735	1.00 65.55 1.00 71.49	AAAA C AAAA C
ATOH	3335		LU	352	43.034	54.834	49.947 50.765	1.00 71.49	AAAA O
ATOH	3336	OE1 0		352 352	43.881 42.330	55.244 53.799	50.009	1.00 76.07	AAAA O
HOTA	3337 3338		SLU	352	44.502	55.751	45.314	1.00 47.43	AAAA C
HOTA	3339		SLU	352	44.798	56.951	45.182	1.00 40.38	AAAA O
ATOH	3340		/AL	353	45.342	54.838	44.852	1.00 43.54	AAAA II
ATOH	3342		/AL	353	46.512	55.236	44.078	1.00 43.71	AAAA C
ATOH	3343	CB V	AL	353	47.759	55.540	44.911	1.00 45.01	AAAA C AAAA C
ATOH	3344	CG1 V		353	47.766	55.261	16.387	1.00 30.84 1.00 42.55	AAAA C
ATOH	3345	062 V		353	48.988	54.233	44.310 42.957	1.00 41.41	AAAA C
ATOH	3346 3347		:AL VAL	353 353	46.823 46.843		43.172	1.00 39.19	o Aras
ATOH ATOH	3348		VAL	354	47.074		41.816	1.00 36.31	II AAAA
ATOH	3350		VAL	354	47.586		40.651	1.00 43.97	AAAA C
HOTA	3351		VAL	354	46.725		39.407	1.00 40.86	AAAA C
ATOi1	3352	CG1		354	47.347		36.123	1.00 36.72 1.00 35.35	O AAAA O AAAA
ATOH	3353	CG2		354	45.293		39.678 40.388	1.00 33.33	AAAA C
HOTA	3354		VAL VAL	354 354	49.043 49.366		10.288	1.00 43.32	AAAA O
ATOM ATOM	3355 3356		THR	355	49.973		40.431	1.00 43.83	AAAA II
ATON	3358		THR	355	51.392		40.284	1.00 44.85	AAAA C
ATOM	3359		THR	355	52.374	52.799	40.653	1.00 42.40	AAAA C
ATOM	3360	OG1 '	THR	355	52.273		39.695	1.00 45.30	AAAA O
NOTA	3362	CG2 '	THR	355	52.210		42.039	1.00 38.13	дааа с дааа с
HOTA	3363		THR	355	51.746		38.851	1.00 43.84 1.00 44.26	AAAA O
ATOH	3364		THR	355	52.463		38.697 37.870	1.00 44.26	II AAAA
ATOH	3365 3367		GLY GLY	356 356	51.127 51.358		36.470	1.00 37.91	AAAA C
ATOH ATOH	3368		GLY	356	50.505		35.955	1.00 38.07	AAAA C
ATOH	3369		GLT	356	50.36-		36.615	1.00 34.65	AAAA O
ATOH	3370	11	TTR	357	49.910		34.800	1.00 38.47	AAAA !!
ATOH	3372		TYR	357	48.983		34.205	1.00 38.03	AAAA C AAAA C
ATOH	3373		TYR	357	49.55		32.805 31.812	1.00 31.44	AAAA C
ATOH	3374		TYR	357 357	49.473 48.333		31.012	1.00 32.86	AAAA C
ATON ATON	3315 3376	CD1 CE1	TYR	357	48.35			1.00 32.83	AAAA C
ATOH	3377		TYR	357	50.63			1.00 34.28	AAAA C
ATOH	3378		TYR	357	50.70			1.00 32.51	AAAA C
ATOH	3379	CE	TYR	357	49.55			1.00 37.26	AAAA C
HOTA	3380		TYR	357	49.720			1.00 35.85	O AAAA O AAAA
ATOH	3382	Ç	TYR	357	47.58			1.00 38.55 1.00 36.11	AAAA O
ATOH	3383 3384	0 11	TYR	357 358	47.450 46.59			1.00 40.98	II AAAA
HOTA HOTA	3386	CA	VAL VAL	358	45.19				AAAA C
ATOM	3387	CB	YAL	358	44.21				aaaa c
ATO:	3388	CG1		358	42.81			1.00 33.12	AAAA C
ATOH	3389	CG2	VAL	358	44.74				AAAA C
HOTA	3390	C	VAL	358	44.76			1.00 35.64	AAAA C
ATOH	3391	0	VAL	358	14.79				O AAAA II AAAA
HOTA	3392	11	LYS	359 359	44.38				D AAAA
IOTA IOTA	3394 3395	CA CB	LY3 LYS	359	43.99 44.84				AAAA C
ATOH	3396	c.s	Lïs	359	44.34				AAAA C
ATON	3397	CD	LTS	359	35.04				2 AAAA
ATOH	3398	CE	LïS	359	45.95	8 54.402	25.986		AAAA C
ATOI	3399	115	Lïs	359	45.41				AAAA II
ATON	3403	C	LYS	359	42.42				AAAA C
ATON	3404	0	LYS	359	42.05				0 AAAA 11 6335
ATOI	3405 3405	11	ILE	360	41.60 40.16				AAAA C
iota Mota	3408	CA CB	ILE	360 360	39.29				AAAA C
ATOH	3409		ILE	360 360	37.88				AAAA C
ATOH	3410		ILE.		39.76				AAAA C
ATOIT	3411	CDI	1 LE	360	39.42	3 56.03	32.491	1.00 33.16	
ATOH!	3412	C	ILE	360	39.88	8 55.837	.83. בי	1.00 39.49	AAAA C

0 ,,,						24/50		
						3 4/58 27.235 1	1.00 37.32	C AAAA
ATOH	3413 0	ILS	360	40.014 39.567	56.942 54.721		1.00 34.34	AAAA II
ATOM	3414 H 3416 CA	ARG ARG	361 361	39.472	54.782	25.744	1.00 41.24	AAAA C
ATOH ATOH	3417 CB	ARG	361	40.783	54.213		1.00 47.92	AAAA C
ATOH	3418 CG	ARG	361	40.805	54.203		1.00 50.39 1.00 51.36	AAAA C
HOTA	3419 CD	ARG	361	41.943	53.357 51.974		1.00 50.97	AAAA 11
ATOH	3420 IIE	ARG	361 361	41.473	50.962		1.00 55.78	AAAA C
ATOH ATOH	3422 CD 3423 HH1	ARG ARG	361	43.612	51.074	23.616	1.00 51.62	AAAA II
ATOH		ARG	361	41.834	19.719		1.00 54.52	AAAA II AAAA C
ATOH	3429 €	ARG	361	38.382	53.866		1.00 42.06 1.00 38.93	AAAA O
ATOH	3430 0	ARG HIS	361 362	38.336 37.514	52.661 54.342		1.00 46.19	II AAAA II
HOTA	3433 CA	HIS	362	36.372	53.555		1.00 49.34	AAAA C
ATOH	3434 CB	HIS	362	37.000	52.300		1.00 40.94 1.00 42.78	AAAA C
ATOH	3435 CG	HIS	362	37.849	52.610 53.765		1.00 48.32	AAAA C
ATOH		HIS HIS	362 362	38.049 38.628	51.676	21.469	1.00 43.59	AAAA II
ATOH ATOH		HIS	362	39.256	52.247		1.00 46.01	AAAA C
ATON		HIS	362	38.923	53.515		1.00 49.22 1.00 50.32	AAAA II AAAA C
ATC:1	3442 0	HIS	362	35.295 34.686	53.113 52.030		1.00 41.31	AAAA O
ATOH	3443 O 3444 N	HIS SER	362 363	35.222	53.875		1.00 46.96	II AAAA II
ATOH ATOH	3444 N 3446 CA	SER	363	34.402	53.456	27.139	1.00 52.19	AAAA C
ATCI-I	3447 CB	SER	363	35.231	53.837	28.400	1.00 53.73	AAAA C AAAA O
ATO:	3448 OG	SER	363	35.713 33.005	52.558 54.072	28.816 27.046	1.00 49.08	AAAA C
ATOH	3450 C 3451 O	SER SER	363 363	32.653	55.040	27.694	1.00 37.49	AAAA O
ATOH ATOH	1452 11	HIS	364	32.243	53.577	26.058	1.60 52.05	AAAA II AAAA II
ATON	3454 CA	iiIS	364	30.954	54.173	25.717	1.00 53.66 1.00 48.77	AAAA C
ATO:1	3455 €	HIS	364 364	29.879 29.297	53.937 54.899	26.760 27.280	1.00 51.44	AAAA C
ATOH ATOH	3456 O 3457 CB	HIS HIS	364	30.485	53.699	24.348	1.00 49.83	AAAA C
HOTA	3458 CG	HIS	364	31.493	54.182	23.338	1.00 51.51	AAAA C AAAA II
ATON		HIS	364	31.870	55.502 55.533	23.156	1.00 44.83	AAAA C
ATOH		HIS	364 364	32.798 32.194	53.393	22.472	1.00 38.62	AAAA C
ATOH ATOH		HIS	364	32.992	54.274	21.810	1.00 41.44	AAAA II
ATOH	3464 11	ALA	365	29.949	52.819	27.427	1.00 47.53	AAAA N AAAA C
ATO!	3466 CA	ALA	365	29.211 29.678	52.488 51.133	28.621 29.150	1.00 40.28	AAAA C
ATOH HOTA	3467 CB	ALA ALA	365 365	29.318	53.473	29.768	1.00 44.70	AAAA C
ATOH	3469 0	ALA	365	28.576	53.206	30.726	1.00 45.28	aaaa o aaaa ii
ATOH	3470 11	LEU	366	30.158 30.415	54.517 55.243	29.762 30.968	1.00 40.30	AAAA C
ATOI1	3472 CA 3473 CB	LEU LEU	366 366	31.885	55.241	31.350	1.00 43.78	AAAA C
I FOTA	3473 CB	LEU	366	32.740	54.037	31.667	1.00 51.52	AAAA C
ATOH	3475 CD	1 LEU	366	34.192	54.373	32.043	1.00 51.77	AAAA C
INTA	•	2 LEN	366	32.118 29.974	53.305 56.687	32.834 30.896	1.00 46.36	AAAA C
ATOH ATOH	3477 C 3478 O	LEU LEU	366 366	30.305	57.248	29.849	1.00 48.40	AAAA O
ATOH	3479 11	VAL	3.57	29.521	57.275	32.015	1.00 43.68	II AAAA C AAAA
ATO!	3481 CA	VAL	367	29.072	58.675	31.940 32.376	1.00 44.18	AAAA C
ATOH	3482 CB	VAL 1 VAL	367 367	27.557 26.923	59.727 60.073	32.571	1.00 41.69	AAAA C
HOTA HOTA		2 VAL	367	26.697	57.949	31.365	1.00 34.00	AAAA C
ATCH	3185 C	VAL	367	29.923		32.845	1.00 44.90	AAAA C AAAA O
ATO:1	3486 0	VAL	367 368	29.965 30.591		32.720 33.757	1.00 48.72	AAAA H
POTA POTA	3487 II 3489 CA	SER SER		31.487			1.00 52.70	AAAA C
ATOH	3490 CB		368	30.658			1.00 55.32 1.00 64.86	aaaa c aaaa o
ATOH	3491 03		368	31.300 32.590			1.00 52.76	AAAA C
ATOH ATOH	3493 C 3494 O	SER SER	368 368	32.352			1.00 48.99	AAAA O
ATOH	3495 11	LEU	369	33.631			1.00 53.86	AAAA C
ATOH	3497 CA		369	34.716			1.00 60.15	AAAA C
ATOH	3499 CE		369 369	36.073 36.325			1.00 45.96	AAAA C
ATOI1		1 LEU	369	37.669		34.154	1.00 53.97	AAAA C
ATON		D2 LEW	369	36.207			1.00 38.77	AAAA C AAAA C
ATOH	3502 C	LEU	369 369	34.645 35.569			1.00 59.33	AAAA O
HOTA	3503 O 3504 II	LEU SER	370	33.43			1.00 56.26	AAAA II
ATCII ATCII	3504 H		370	33.089	58.431	39.690	1.00 53.88	AAAA C AAAA C
. ATOH	3507 CE	SER	370	31.67			1.00 57.50	AAAA O
ATOH ATOH	3508 O		370 370	30.771 33.069			1.00 47.97	AAAA C
ATOH			370	33.22		3 41.596		0 AAAA 11 AAAA
ATON	3512 11		371	32.96	7 55.93	39.792		AAAA C
ATOI			371	33.22				AAAA C
ATCII ATCII		B PHE G PHE	371 371	32.95 33.72		9 38.012	1.00 56.45	AAAA C
ATOI		DI THE	37.1	.34.60	5 52.80	7 37.764		AAAA C TAAAA C
ATOI	3518 C	DZ PHE	371	33.37	1 54.51			AAAA C
ATON	3519 C	E1 PHE	371	35.49	8 52.94			

WO 99	1/2834/								
						;	35/58		
ATOH	3520	CEC F	HE	371	34.048	\$4.546	35.917	1.00 56.49	AAAA C AAAA C
ATOH	3521		HE	371	35.119	53.716	35.579 40.895	1.00 54.84	AAAA C
ATOH			HE	371	34.654	54.467 53.592	41.728	1.00 52.23	AAAA O
ATOH	3523		HE	371 372	35.005 35.633	55.305	40.510	1.00 50.17	AAAA 1:
ATOH ATOH	3524 3526		.EU .EU	372	36.92B	55.395	41.109	1.00 46.25	AAAA C
ATOH	3527		.EU	372	38.171	55.812	40.276	1.00 44.82	AAAA C
ATOH	3528		EU	372	38.111	54.800	39.114	1.00 36.78	AAAA C
ATOH	3529	CD1 L	.EU	372	38.853	55.643	37.934	1.00 45.04	AAAA C AAAA C
ATON	3530	CD2 I		372	39.260	53.657	39.565 42.243	1.00 35.55	AAAA C
ATC(4	3531		LEU	372	36.715 37.224	56.392 57.507	42.364	1.00 38.37	AAAA O
ATON	3532		EU	372 373	35.970	55.862	43.192	1.00 47.06	AAAA 11
ATOH ATOH	3533 3535		.YS .YS	373	35.527	56.509	44.415	1.00 50.19	AAAA C
ATOH	3536		s	373	34.546	55.521	45.077	1.00 56.74	AAAA C
ATO:	3537		s	373	33.645	56.162	46.119	1.00 59.64	AAAA C AAAA C
ATO:	3538		s	373	32.529	56.955	45.441	0.01 60.17 0.01 60.45	AAAA C
ATOI	3539		.YS	373	31.674	57.687 58.933	15.899 16.160	0.01 60.38	II AAAA
ATOH	3540		LYS	373 373	31.083 36.646	56.863	15.366	1.00 49.72	AAAA C
ATOI1	3544 3545		LYS	373	36.636	57.960	45.907	1.00 42.42	AAAA O
ATON	3546		ASII	374	37.657	55.986	45.513	1.00 54.43	II AAAA
ATOI-I	3548		ASH!	374	38.765	56.352	46.410	1.00 59.92	AAAA C AAAA C
ATON	3549		ASN	374	39.080	55.154	47.314	1.00 63.16 1.00 64.53	AAAA C
ATOI 1	3550		ASII	374	38.009	54.978 53.972	48.396 49.096	1.00 66.40	AAAA O
ATOH	3551	OD1 /		374 374	37.892 37.160	55.965	48.578	1.00 52.88	AAAA 11
ATOH ATOH	3552 3555	11D2 /	ASN	374	40.043	56.892	45.786	1.90 62.35	AAAA C
ATOM ATOM	3556		IIZA	374	41.031	57.223	46.479	1.00 63.98	AAAA O
ATOH	3557		LEU	375	40.091	56.893	44.438	1.00 58.34	AAAA II
ATOH	3559		LEU	375	41.305	57.374	43.795	1.00 54.73	AAAA C AAAA C
IOTA	3560		LEU	375	41.099	57.359	42.288	1.00 56.41 1.00 54.12	AAAA C
HOTA	3561		LEU	375	42.396	57.422 56.112	41.459 41.689	1.00 37.88	AAAA C
ATOH ATOH	3562 356 3	CD1 CD2		375 375	43.135 42.030	57.796	40.041	1.00 40.97	AAAA C
ATOH	3564		LEU	375	41.712	58.754	44.245	1.00 52.37	AAAA C
ATOH	3565		LEU	375	41.151	59.77 7	43.877	1.00 52.11	AAAA O
ATOH	3566		ARG	376	42.801	58.874	44.982	1.00 55.16	AAAA C
ATO:	3568		ARG	376	43.320	60.155	45.434 46.928	1.00 55.45 1.00 58.68	AAAA C
ATOH	3569		ARG	376	43.706 44.288	60.222 58.907	47.415	1.00 69.10	AAAA C
ATON	3570 3571		ARG ARG	376 376	44.286	58.817	48.944	1.00 81.17	AAAA C
aton Atom	3572		ARG	376	45.377	57.926	49.410	1.00 84.46	II AAAA II
ATOM	3574		ARG	376	46.618	58.380	49.598	1.00 85.64	AAAA C
ATON	3575	11111		376	46.966	59.645	19.383	1.00 81.84	II AAAA II AAAA
ATO:	3578	11112		376	47.571	57.548	50.012	1.00 94.15 1.00 50.16	AAAA C
ATO:1	3581		ARG	376	44.556 44.746	60.544 61.728	44.633 44.465	1.00 44.25	AAAA O
ATC:1	3582 3583		ARG LEU	376 377	45.375	59.578	44.219	1.00 50.99	AAAA II
ATOH ATCH	3585		LEU	377	46.526	59.942	43.379	1.00 49.40	AAAA C
ATOH	3586		LEU	377	47.596	60.411	44.329	1.00 64.72	AAAA C
ATOH	3587	CG	LEU	377	48.806	59.577	14.667	1.00 70.76	AAAA C
ATOH	3588	CD1		377	50.031	60.157	43.954	1.00 63.32	AAAA C AAAA C
ATO!!	3589	CDS		377	49.010	59.696	46.179	1.00 46.33	AAAA C
ATOH	3590 3591	٥ ت	LEU	377 377	47.043 46.868	59.022 57.788	42.286	1.00 45.17	AAAA O
ATOH ATOH	3592	11	ILE	378	47.448	59.675	41.199	1.00 45.12	AAAA II
HOTA	3594	CA	ILE	37B	48.042	58.976	40.042	1.00 49.10	AAAA C
ATOH	3595	CB	ILE	378	47.342	59.303	38.724	1.00 46.36	AAAA C
ATO:1	3596	CG2		378	48.115	58.696	37.574	1.00 34.36 1.00 38.59	AAAA C AAAA C
ATO11	3597	CG1		378	45.871	58.862 59.515	38.829 37.765	1.00 37.18	AAAA C
ATOH ATOH	3598 3599	CD1	ILE	378 378	44.999 49.524	59.381	40.003	1.00 49.87	AAAA C
ATOM ATOM	3600	ō	ILE	378	49.801	60.595	40.040	1.00 44.72	AAAA O
ATOH	3601	11	LEU	379	50.454	58.423	40.067	1.00 49.97	II AAAA
ATOI-I	3603	CA	LEU	379	51.866	58.712		1.00 48.48	AAAA C
ATO:	3604	CB	LEU	379	52.575	57.531	41.054	1.00 48.44	2 AAAA 2 AAAA
ATON	3605	CG	LEU	379	52.234	57.363		1.00 50.28	AAAA C
ATOH ATOH	3606		LEU LEU	37 <u>9</u> 379	52.926 52.616			1.00 42.89	AAAA C
ATOH	3607 3608	CD2	LEU	379	52.609			1.00 50.94	AAAA C
ATCH	3609	Ö	LEU	379	53.576				AAAA O
ATOI1	3610	11	GLY	380	52.175			1.00 48.67	II AAAA II
ATOI1	3612	CA	GLT	380	52.931	58.715	36.702	1.00 49.94	AAAA C G AAAA
ATON	3613	C	GLY	380	54.249			1.00 52.70	AAAA O
ATOIL	3614	0	GLY	380	55.026				AAAA II
ATOH	3615 3617		GLU	381 381	54.549 55.949				AAAA C
ATOI			GLU GLU	381	55.849 56.055			1.00 45.22	AAAA C
ATOH	3619	CG	GLU	381	55.402		39.636	1.00 52.91	AAAA C
ATOH			GLU	381	56.050	55.192			AAAA C
ATON			GLU	381	56.160				AAAA C
ATOI!			GLU GLU	381 7*381	56.379 56.078				AAAA c
ATON:			GLU	381	57.21				AAAA C
AIGH					=				reton C

			36/58	
ATOH	3625 H 500	382	54.980 55.449 35.157 1.00 53.56	AAAA D AAAA C
ATOH	3627 CA GLU	382	55.0e1 55.018 33.766 1.00 48.15 55.051 53.550 33.532 1.00 35.27	AAAA C
ATOH	3628 CB GLU	382 382	55.051 53.550 33.532 1.00 35.27 54.739 53.225 32.051 1.00 49.69	AAAA C
ATOH ATOH	3629 CG GLU 3630 CD GLU	382	54.676 51.719 31.807 1.00 56.45	AAAA C
ATOH	3631 OE1 GLU	382	55.062 50.924 32.705 1.00 61.66 54.264 51 201 30.745 1.00 57.69	AAAA O AAAA O
ATOH	3632 OE2 GLU	382	54.264 51.201 30.745 1.00 57.69 54.006 55.732 32.973 1.00 50.84	AAAA C
ATON	3633 C GLU 3634 O GLU	382 382	53.097 56.282 33.598 1.00 49.44	AAAA O
ATON ATON	3635 II GLII	383	54.347 56.256 31.780 1.00 52.25	AAAA C
ATOH	3637 CA GLII	383	53.498 57.153 31.016 1.00 40.15 53.914 58.609 31.155 1.00 28.50	AAAA C
ATOH	3638 CB GLII 3639 CG GLII	383 383	54.489 58.909 32.542 1.00 31.10	AAAA C
ATOH ATOH	3639 CG GLH 3640 CD GLH	383	54.950 60.301 32.752 1.00 33.19	AAAA C AAAA O
ATON	3641 OE1 GLII	383	55.186 60.840 31.683 1.00 40.34 55.043 60.943 33.934 1.00 36.30	AAAA II
MOTA	3642 HE2 GLH 3645 C GLH	383 383	55.043 60.943 33.934 1.00 36.30 53.426 56.744 29.563 1.90 40.45	AAAA C
HOTA HOTA	3645 C GLII 3646 O GLII	383	54.131 55.858 29.139 1.00 43.45	AAAA O
ATOH	3647 II LEU	384	52.375 57.195 28.860 1.00 42.54 52.375 56.889 27.443 1.00 43.24	aaaa ii aaaa c
HOTA	3649 CA LEU	354	52.257 56.889 27.443 1.00 43.24 50.814 57.011 26.949 1.00 43.79	AAAA C
ATO!	3650 CB LEU 3651 CG LEU	384 384	49.818 56.235 27.861 1.00 41.21	AAAA C
ATOI1 ATOI1	3652 CD1 LEU	384	48.611 57.095 28.221 1.00 33.99	AAAA C AAAA C
ATOM	3653 CD2 LEU	384	45.405	AAAA C
ATOH	3654 C LEU 3655 O LEU	384 384	53.582 58.872 27.177 1.00 29.66	AAAA O
ATOH ATOH	3655 O LEU 3656 N GLU	385	53.659 57.319 25.531 1.00 45.22	AAAA C
ATOH	3658 CA GLU	385	54.410 58.116 24.570 1.00 49.98 54.424 57.475 23.174 1.00 60.50	AAAA C
ATOIT	3659 CB GLU	385 385	54.424 57.475 23.174 1.00 60.50 55.045 56.095 23.106 1.00 68.76	AAAA C
ATON ATON	3660 CG GLU 3661 CD GLU	385	54.195 54.951 23.592 1.00 72.07	AAAA C
ATOH	3662 OE1 GLU	385	53.150 55.213 24.244 1.00 81.88 54.565 53.786 23.301 1.00 73.13	О АААҚ О АААЛ
ATCH	3653 OE2 GLU	385	54.565 53.786 23.301 1.00 73.13 53.828 59.515 24.450 1.00 47.41	AAAA C
HOTA	3664 C GLU 3665 O GLU	385 385	52.635 59.706 24.184 1.00 54.43	AAAA O
ATOH	3666 H GLY	386	54.614 60.470 24.902 1.00 43.69 54.181 61.870 24.897 1.00 40.34	aaaa d aaaa c
ATO11	3668 CA GLT	386	54.181 61.870 24.897 1.00 40.34 54.286 62.449 26.308 1.00 40.65	AAAA C
MOTA MOTA	3669 C GLY 3670 O GLY	386 386	53.930 63.615 26.491 1.00 39.75	AAAA O
ATOH	3671 II ASII	387	54.441 61.537 27.272 1.00 40.75 54.479 61 912 28.675 1.00 49.18	дааа 11 а аа а С
ATOM	3673 CA ASII	387	54.479 61.912 28.675 1.00 49.18 55.500 63.084 28.874 1.00 44.41	AAAA C
ATOLL	3674 CB ASII 3675 CG ASII	387 387	56,925 62,541 28,722 1,00 61,51	AAAA C
ATOH ATOH	3676 OD1 ASII	387	57.199 61.313 28.677 1.90 57.85	o aaaa H aaaa
ATOH	3677 11D2 ASII	387	58.063 63.251 28.592 1.00 61.96 53.095 62.100 29.299 1.00 48.46	AAAA C
ATON	3680 C ASH 3681 O ASH	387 387	52.836 62.891 30.218 1.00 48.99	AAAA O
HOTA HOTA	3682 II TYR	388	52.214 61.116 29.058 1.00 46.29	II AAAA C AAAA
ATOH	3684 CA TYR	388	30.040 01.100 10.10 70	аала с
ATOH	3695 CB TYR 3686 CG TYR	398 388	40.025 62.056 27.373 1.00 42.24	AAAA C
ATOH ATOH	3686 CG TYR 3687 CD1 TYR	389	50.343 61.854 26.064 1.00 44.39	AAAA C AAAA C
ATON	3688 CE1 TYR	398	50.401 62.885 25.157 1.00 35.51 49.525 63.356 27.709 1.00 44.67	AAAA C
ATOI	3689 CD2 TYR 3690 CE2 TYR	388 388	49.509 64.428 26.830 1.00 38.14	AAAA C
HOTA HOTA	3691 CZ TYR	388	50.087 64.148 25.555 1.00 41.27	д ал а с ала а о
ATOH	3692 OH TYR	366	50.151 65.181 24.604 1.00 50.18 50.563 60.288 30.714 1.00 41.88	AAAA C
ATOM	3694 C TTR 3695 O TTR	388 388	50.727 59.092 30.511 1.00 32.99	AAAA O
ATON ATON	3696 H SER	389	50.020 60.917 31.763 1.00 45.42	и аааа С аааа
ATOM	3698 CA SER	389	49.591 60.131 32.931 1.00 50.13 49.798 60.894 34.261 1.00 45.57	AAAA C
ATOH	3699 CB SER 3700 OG SER	389 389	51.185 60.899 34.504 1.00 51.11	-AAAA O
HOTA HOTA	3702 C SER	389	48.097 59.813 32.804 1.00 48.11	AAAA C AAAA O
ATOH	3703 O SER	389	47.686 58.792 33.336 1.00 49.25 47.321 60.685 32.196 1.00 42.56	AAAA II
ATOH	3704 II PHE 3706 CA PHE	390 390	45.867 60.595 32.146 1.00 40.76	AAAA C
ATOH ATOH	3707 CB PHE	390	45.241 61.581 33.139 1.00 44.80	D AAAA D AAAA
ATOH	3708 CG PHE	390	43.764 61.358 33.328 1.00 40.53 43.406 60.273 24.089 1.00 40.80	AAAA C
ATOH	3709 CD1 PHE 3710 CD2 PHE	390 390	42 768 62 157 32 748 1.00 35.59	AAAA C
ATCH ATCH	3711 CE1 PHE	390	42.050 59.985 34.312 1.00 47.09	AAAA C AAAA C
ATOH	3712 CE2 PHE	390	41.454 61.824 32.965 1.00 44.50 41.063 60.745 33.739 1.00 34.54	AAAA C
ATOM	3713 CZ PHE 3714 C PHE	390 390	15 372 60 829 30 720 1.00 38.54	AAAA C
ATON ATON		390	45.542 61.918 30.126 1.00 40-29	aaaa o . aaaa ii
ATO:1	3716 II TYR	391	44.819 59.818 30.096 1.00 33.48 44.596 59.782 28.663 1.00 38.58	AAAA C
ATOH		391	100 39 05	AAAA C
ATON ATON		391 391	45.760 59.006 26.503 1.00 44.54	AAAA C
ATON	3721 CD1 TYR	391	46.822 59.815 26.052 1.00 47.14	AAAA C AAAA T
ATOM	3722 CE1 TYR		47.057 35.553 36 501 1 00 46 94	C AAAA
ATOI1			45.157 58.560 24.242 1.00 47.45	AAAA C
ATOH			46.207 59.350 23.830 1.00 45.84	AAAA C

110))	2004.					0 = / E 0		
						37/58	1.00 44.70	AAAA O
ATOH	3726 OH	TYR	391		59.492 59.232	22.481 28.349	1.00 39.74	AAAA C
ATO:	3728 C	TTR	391		58.103	28.730	1.00 38.49	AAAA O
ATOH	3729 0 3730 II	TYR VAL	391 392	42.417	60.158	27.779	1.00 37.07	AAAA II
ATOH	3732 CA	VAL	392	40.958	59.874	27.603	1.00 39.52	AAAA C AAAA C
ATOH	3733 CB	VAL	392	40.075	60.880	28.440	1.00 41.12 1.00 37.96	AAAA C
ATOH	3734 CG1	VAL	392	30.612	60.464	28.472	1.00 37.96	AAAA C
ATOH	3735 CG2	VAL	392	40.666	61.041 60.092	29.841	1.00 31.08	AAAA C
ATOI1	3736 C	VAL VAL	392 392	40.531 40.508	61.277	25.804	1.00 34.71	O AAAA
ATOH ATOH	3737 O 3738 II	LEU	393	40.299	59.113	25.383	1.00 34.62	AAAA II
ATOH	3740 CA	LEU	393	39.948	59.259	23.977	1.00 38.12	AAAA C AAAA C
ATOH	3741 CB	LEU	323	41.200	59.036	23.096	1.00 42.49 1.00 26.48	AAAA C
ATON	3742 CG	LEU	393	41.023 41.128	58.649 59.879	20.753	1.00 26.57	AAAA C
ATON		LEU	393 393	42.978	57.589	21.244	1.00 29.98	AAAA C
ATON ATON	3745 C	LEU	393	38.821	58.375	23.492	1.00 39.15	AAAA C
ATO! I	3746 0	LEU	393	38.760	57.173	23.799	1.00 37.90 1.00 43.30	O AAAA II AAAA
ATOH	3747 !!	ASP	364	38.015	58.973	22.565 21.975	1.00 44.77	AAAA C
ATOH	3749 CA	ASP	394 394	36.888 37.445	58.215 57.073	21.120	1.00 44.80	AAAA C
ATOH	3750 CB 3751 CG	ASP ASP	394	36.466	56.477	20.156	1.00 47.14	aaaa c
ATOH		ASP	394	36.750	55.577	19.333	1.00 52.91	AAAA O
ATOH		ASP	394	35.311	56.948	20.180	1.00 49.27 1.00 43.17	aaaa c
ATOH	3754 C	ASP	394	35.936 35.831	57.619 56.385	23.021 23.212	1.00 43.51	AAAA O
ATOM	3755 O 3756 II	ASF ASH	394 395	35.299	58.495	23.746	1.00 39.90	AAAA II
ATOH ATOH	3758 CA	ASII	395	34.305	58.158	24.776	1.00 46.32	AAAA C
ATOH	3759 CB	ASII	395	34.804	59.512	26.212	1.00 42.96	AAAA C AAAA C
ATO:1	3760 CG	ASII	395	35.992	57.619	26.579 26.796	1.00 36.92 1.00 21.65	AAAA O
ATOH	3761 OD1		395 395	36.013 37.075	55.394 58.409	26.559	1.00 27.87	AAAA N
ATOH ATOH	3762 IID2 3765 €	ASII	395	32.932	58.816	24.541	1.00 40.44	AAAA C
ATON	3766 0	ASII	395	32.749	59.982	24.882	1.00 37.06	O AAAA II AAAA
ATON	3767 11	GLH	396	32.073	58.055	23.877 23.421	1.00 46.74 1.00 52.93	AAAA C
ATOH	3769 CA	GLH	396 396	30.771 29.848	58.582 57.567	22.744	1.00 52.29	AAAA C
HOTA HOTA	3770 CB 3771 CG	GLH	396	30.173	57.405	21.257	1.00 46.42	AAAA C
ATOM	3772 CD	GLU	396	29.817	55.991	20.840	1.00 55.21	AAAA C AAAA O
ATOM	_	GLH	396	28.835	55.421 55.411	21.312	1.00 61.17 1.00 55.79	II AAAA
ATOH ATOH	3774 NE:	GLN GLN	396 396	30.628 29.874	59.224	24.458	1.00 48.64	AAAA C
ATOM ATOM	3778 U	GLH	396	29.407	60.287	24.113	1.00 51.63	AAAA O
MOTA	3779 11	ASH	397	29.717	58.681	25.633	1.00 48.95 1.00 51.72	aaaa ii aaaa c
HOTA	3781 CA	ASH	397 397	28.783 27.969	59.196 57.959	26.632 27.093	1.00 35.94	AAAA C
ATOH ATOH	3782 CB 3783 CG	ASH ASH	397	27.231	57.430	25.860	1.00 49.09	AAAA C
ATOH	-	1 ASH	397	26.591	58.304	25.229	1.00 49.32	AAAA O
HOTA		uea c	397	27.258	56.175	25.431	1.00 43.31 1.00 52.98	AAAA C
ATON	3788 C	ASH	397	29.367 28.586	59.945 60.344	27.800 28.627	1.00 53.33	AAAA O
ATOH ATOH	3789 O 3790 H	ASH LEU	397 398	30.682	59.990	28.001	1.00 55.73	II AAAA II
ATOH	3792 CA	LEU	328	31.312	60.550	29.179	1.00 52.12	BAAA C
ATO!1	3793 CB	LEU	398	32.927	60.388	29.149	1.00 48.47	D AAAA D AAAA
ATOI	3794 CG	LEU	398	33.606 33.417	60.283 58.939	30.460 31.136	1.00 40.35	AAAA C
HOTA HOTA		1 LEU 2 LEU	398 398	35.070	60.508	30.082	1.00 39.03	AAAA C
PIOTA	3797 C	LEU	398	30.923	61.995	29.353	1.00 52.35	.AAAA C
ATOH	3798 O	LEU	398	31.422	62.509	28.681	1.00 49.91 1.00 58.76	AAAA O AAAA ::
ATOH	3799 II 3801 CA	SLH	399 399	30.241 29.688	62.225 63.558	30.169 30.796	1.00 60.03	AAAA C
ATON ATON	3801 CA 3802 CB		399	28.236	63.331	31.262	1.00 59.55	AAAA C
ATON	3893 CG		399	27.235	63.962	30.316	1.00 73.07	AAAA C
ATOH	3804 CD		399	25.944	63.146	30.340	1.00 78.39 1.00 71.79	AAAA C AAAA O
ATCH		1 GLN	300	25.097 25.856	63.455 62.158			AAAA II
ATOH ATOH	3806 HE 3809 C	2 GLN GLN	399 399	30.490	64.252	31.888	1.00 54.49	AAAA C
ATOH	3810 0	GLII	399	30.528	65.477		1.90 51.96	AAAA O
HOTA	3911 II	GLH	400	31.058	63.389		1.00 50.44	AAAA II
ATOI	3813 CA		400	31.938				aaaa c aaaa c
ATOH ATOH	3814 CE 3815 CG		400 400	31.215 30.717	64.314 63.150			AAAA C
ATOM	3816 00		100	30.678	63.430	37.389	1.00 65.82	AAAA C
ATOH	3817 ÖE	:1 GLH	400	30.906	64.502	37.962		O AAAA II AAAA
HOTA HOTA		2 GLII	100	30.341 33.113				AAAA C
ATON	3821 C	GLII GLII	100 100	33.107			1.90 51.99	AAAA O
ATOH	3823 11	LEU	401	34.073	-	34.751	1.00 49.58	II AAAA
ATON	3825 C/	A LEU	401	35.175	62.844	35.334	1.00 49.57	C AAAA
ATOH ATCH			401	36.379 36.638				AAAA C AAAA C
ATON		5 LEU Di LEU	401 401	37.658				AAAA C
ATOH	3829 C	D2 LEU	401	36.915	63.06	32.860	1.00 40.72	AAAA C
1 IOTA	3930 €		401	34.866				AAAA C
HOTA	3931 0	LEU	401	34.258	61.29	36.892	1.00 49.06	AAAA O

						00/=0		
				35.297		38/58 37.690	1.00 54.58	AAAA II
ATOH ATOH		: TRP	402 402			39.097	1.00 59.76	AAAA C
ATON		CB TRP	402		62.953	39.933	1.00 59.56	AAAA C
MOTA	3936	CS TRP	402			39.737 38.784	1.00 58.17 1.00 53.18	AAAA C AAAA C
ATOH		CD2 TRP	402 402			39.002	1.00 56.61	AAAA C
ATOH ATOH		CE2 TRP CE3 TRP	402			37.764	1.00 43.25	AAAA C
ATOII		CD1 TRP	102	36.719	60.517	40.459	1.00 53.50	AAAA C AAAA II
ATOH	_	HE1 TRP	102	37.488	59.467	40.032 38.249	1.00 57.66	AAAA C
HOTA		CSS TRP CSS TRP	402 402	39.212 39.546	59.160 61.199	37.026	1.00 53.69	2 AAAA
ATOH ATOH		CH2 TRP	102	39.820	59.857	37.263	1.00 50.75	AAAA C
ATOH	3846	C TRP	402	34.223	64.389	39.429 38.808	1.00 64.09 1.00 61.98	AAAA C AAAA O
ATON		O TRP	402 403	34.408 33.503	65.449 64.418	40.551	1.00 68.85	AAAA II
ATOH ATOH		N ASP CA ASP	403	32.947	65.668	41.068	1.90 67.83	AAAA C
ATOH	-	CB ASP	403	31.918	65.343	42.151	1.00 72.19 1.00 73.08	AAAA C AAAA C
ATOI1		CG ASP	403	30.853 31.177	66.417 67.625	42.306 42.297	1.00 71.67	AAAA O
ATOH ATOH		OD1 ASP OD2 ASF	103 103	29.693	65.979	42.454	1.00 75.08	AAAA O
ATOH		C ASP	403	34.005	66.607	41.607	1.00 66.63	AAAA C AAAA O
HOTA		O ASP	403	34.245	66.672 67.588	40.846	1.00 67.18 1.00 69.29	AAAA II
ATOH		II TRP	404 404	34.449 35.412	68.588	41.291	1.00 77.11	AAAA C
ATOH ATOH		CB TRP	404	35.859	69.409	40.063	1.00 79.10	AAAA C
ATOH	3861	CG TRP	404	36.504	68.509	39.047 39.322	1.00 82.59 1.00 84.82	AAAA C AAAA C
ATOH	3862	CD2 TRP	404 404	37.294 37.686	67.346 66.813	38.081	1.00 84.56	AAAA C
ATOH ATOH	3863 3864	CE3 TRP	404	37.703	6€.710	40.506	1.90 80.95	AATA C
ATOH	3865	CD1 TRP	404	36.460	68.622	37.694	1.00 83.37 1.00 80.33	aaaa I aaaa II
ATOI:	3866	HE1 TRP	404	37.165 38.477	67.617 65.662	37.111 37.982	1.00 85.91	AAAA C
ATOH	3868 3869	CZ2 TRP CZ3 TRP	404 404	38.471	65.573	40.392	1.00 86.36	AAAA C
ATOH	3870	CH2 TRP	404	38.860	65.051	39.133	1.00 85.05 1.00 81.60	AAAA C AAAA C
ATOH	3871	C TRP O TRP	404 404	35.934 35.387	69.517 70.709	42.420 42.504	1.00 84.57	AAAA C
ATOH ATOH	3872 3873	O TRP	405	34.281	69.063	43.393	1.00 84.45	II AAAA
ATOH	3875	CA ASP	405	33.771	69.861 70.365	44.496	1.00 87.48 1.00 88.04	AAAA C AAAA C
ATOH ATOH	3876 3877	CB ASP	405 405	32.352 32.274	71.612	43.409	1.00 92.54	AAAA C
ATON	3878	OD1 ASP	405	33.306	72.285	43.207	1.00 94.82	AAAA O AAAA O
ATOI1	3879	OD2 ASP	405	31.130	71.854 68.906	42.955 45.693	1.00 95.26 1.00 87.80	AAAA C
ATOH ATOH	3880 3881	C ASP O ASP	405 405	33.730 34.245	69.224	46.743	1.00 92.18	AAAA O
ATON	3882	II ALA	406	33.239	67.709	15.460	1.00 84.46	AAAA C
ATOH	3884	CA ALA	406	33.176 31.943	66.671 65.805	46.451	1.00 82.87 1.00 76.32	AAAA C
ATOH ATOH	3885 3886	CB ALA	406 406	34.445	65.840	46.459	1.00 85.77	AAAA C
ATCH	3687	O ALA	406	34.470	64.823	47.185 45.577	1.00 89.38 1.00 83.74	O AAAA II AAAA
ATOH	3890 3890	II ARG CA ARG	407 407	35.433 36.541	66.073 65.151	45.400	1.00 79.60	C AAAA
ATOH ATOH	3891	CB ARG	407	36.165	64.140	44.297	1.00 77.84	AAAA C AAAA C
ATOH	3992	CG ARG	:07	35.457 35.362	62.950 61.688	44.921	1.00 81.91 1.00 86.97	AAAA C
HOTA HOTA	38 93 3894	CD ARG	407 407	36.281	60.660	44.607	1.00 86.94	AAAA II
ATOH	3896	CD ARG	407	37.564	60.583	44.279	1.00 92.1↓ 1.00 97.06	aaaa c aaaa ii
ATON	3897	HH1 ARG	407 407	38.169 38.309	61.441 59.616	43.469	1.00 96.33	II AAAA II
ATOH ATOH	3900 3903	HH2 ARG	407	37.880	65.749	45.048	1.00 76.72	AAAA C
HOTA	3904	O ARG	407	37.989	66.774 65.081	44.410 45.453	1.00 77.47 1.00 75.75	0 AAAA 11 AAAA
ATOH ATOH	3905 3907	II ASII CA ASII	408 408	38.958 40.311	65.556	45.173	1.00 73.79	AAAA C
ATON	3908	CB ASII	408	40.938	66.240	16.388	1.00 74.46	AAAA C AAAA C
HOTA	3909	CG ASI	108	41.986	67.242	45.947 46.240		AAAA O
ATOH	3910 3911	OD1 ASII	108 108	41.913 43.028	68.429 66.821	45.253	1.00 84.46	II AAAA II
ATOH ATOH	3914	C ASII	408	41.257	64.468	44.654		AAAA C AAAA C
ATOH	3915	O ASII	408	41.251	63.374 64.793			AAAA II
HOTA ATOH	3916 3918	H LEU	40 0	42.041 42.896	63.872	42.947	1.00 60.90	AAAA C
ATOH	3919	CB LEU	409	42.153	63.250			AAAA C AAAA C
ATOIS	3920	CG LEU	409	42.992 43.488	62.553 61.205			AAAA C
ATOH ATOH	3921 3922	CD1 LEU CD2 LEU	106 106	42.094	62.445		1.00 55.74	AAAA C
ATOH	3923	C LEU	409	44.151	64.599			AAAA C AAAA O
ATOH		O LEU	409 410	44.141 45.281	65.809 63.903		1.00 63.74	ii aaaa
ATOH ATOH		II THR	410	46.588	64.462	42.131	1.00 60.44	AAAA C
ATOH	3928	CB THR	410	47.454	64.676			AAAA C
ATOII			410 410	46.870 48.909				AAAA C
ATOII ATOII			410	47.426	63.565	41.216	1.00 56.62	C AAAA O AAAA
ATO!!	3933	O THR	410	47.382				AAAA I
ATOH ATOH			411 411	48.977 48.897				AAAA C
AIGH	5.50	J., 220		·•			•	

W O 99	120341								
							39/58	. 20 10 8:	AAAA C
ATON	3937	CB	ILE	411	48.409 49.216	63.854 63.128	37.864 36.806	1.00 49.81 1.00 30.86	AAAA C
ATOH	3938	CG1		411 411	46.911	63.489	37.729	1.00 40.83	AAAA C
HOTA HOTA	3939 3940	CDI		411	46.322	63.547	36.338	1.00 38.51	AAAA C
HOTA	3941	C	ILE	411	50.319	64.018	39.568	1.00 55.38	AAAA C
ATOH	3942	0	ILE	411	50.656	65.179	39.291 40.270	1.00 57.59 1.00 54.26	O AAAA II AAAA
ATOH	3943 3945	CA	SER SER	412 412	51.073 52.434	63.182 63.502	40.689	1.00 54.46	AAAA C
ATOH ATOH	3946	CB	SER	412	53.071	62.210	41.248	1.00 55.78	AAAA C
ATOH	3947	OG	SER	412	53.756	62.536	42.434	1.00 67.12	AAAA O
ATON	3949	C	SER	412	53.326	63.910	39.523	1.00 55.52 1.00 55.04	aaaa c aaaa o
ATOH ATOH	3950 3951	0	SER ALA	412 413	54.081 53.254	64.876 63.124	39.527 38.438	1.00 50.12	II AAAA
ATOH	3953	CA	ALA	413	54.064	63.402	37.281	1.00 50.01	AAAA C
I-10TA	3954	CB	ALA	413	55.334	62.520	37.365	1.00 34.96	AAAA C
ATOH	3955	O C	ALA ALA	413 413	53.301 52.495	63.078 62.168	35.994 35.998	1.00 48.71 1.00 48.81	AAAA C AAAA O
HOTA	3956 3957	li .	GLY	414	53.675	63.690	34.895	1.00 47.92	II AAAA
ATOH	3959	CA	GLï	414	53.057	63.454	33.607	1.00 51.75	AAAA C
HOTA	3960	C	GLY	414	52.017	64.524	33.294	1.00 52.77	AAAA C AAAA O
ATOH ATOH	3961 3962	0	GLY LYS	414 415	51.684 51.385	65.370 64.406	34.114 32.138	1.00 53.23 1.00 56.31	II AAAA
ATOH	3964	CA	LYS	415	50.289	65.317	31.759	1.00 52.49	AAAA C
ATOI1	3965	CB	LYS	415	50.884	66.358	30.833	1.00 50.94	AAAA C
ATOH	3966	CG	LYS	415	51.198	65.855	29.429 28.765	1.00 54.39 1.00 53.96	AAAA C AAAA C
ATOH ATOH	3967 3968	CD	LYS LYS	415 415	52.288 52.785	66.691 66.151	27.441	1.00 56.01	AAAA C
ATOH	3969	112	LYS	415	52.426	67.032	26.284	1.00 66.36	II AAAA
ATOH	3973	С	LYS	415	49.110	64.576	31.155	1.00 50.04	AAAA C
HOTA	3974	0	LYS	415	49.077	63.337	31.036	1.00 49.77 1.00 48.34	AAAA 0 !! AAAA
ATOH ATOH	3975 3977	II CA	HET	416 416	48.091 46.890	65.353 64.734	30.771 30.186	1.00 46.77	AAAA C
ATOM ATOM	3978	CB	MET	416	45.629	65.186	30.949	1.00 42.79	AAAA C
ATOH	3979	CG	TET	416	45.836	65.880	32.273	1.00 40.91	AAAA C AAAA S
HOTA	3980	SD	MET	416	44.511 44.002	65.636 67.366	33.517 33.690	1.00 56.20 1.00 35.94	AAAA C
HOTA HOTA	3981 3982	CE C	T3H T3M	416 416	46.623	65.064	28.729	1.00 40.40	AAAA C
ATOH	3983	ō	HET	416	46.963	66.137	28.247	1.00 34.84	AAAA O
ATOH	3984	11	TYR	417	45.893	64.169 64.387	28.104 26.765	1.00 38.49 1.00 39.50	11 AAAA C AAAA
ATOH ATOH	3986 3987	CA CB	TYR TYR	417 417	45.355 46.156	63.471	25.831	1.00 32.02	AAAA C
ATO:	3988	CG	TYR	417	45.583	63.430.		1.00 39.48	AAAA C
ATON	3989		TYR	417	45.730	64.501	23.511	1.00 39.29	AAAA C
ATOH ATOH	3990 3991		TYR TYR	417	45.196 44.884	64.429 62.321	22.253 24.005	1.00 34.56 1.00 36.81	AAAA C AAAA C
ATOH	3992		TYR	417	44.379	62.241	22.722	1.00 38.80	AAAA C
HOTA	3993	CI	TYR	417	44.535	63.292	21.872	1.00 44.20	AAAA C AAAA O
ATOH	3994	OH C	TYR TYR	417 417	44.053 43.853	63.361 64.065	20.552 26.698	1.00 58.10 1.00 44.18	AAAA C
ATOH ATOH	3996 3997	ō	TYR	117	43.376	62.974	27.135	1.00 42.19	O AAAA
ATOH	3998	11	PHE	118	13.068	64.971	26.100	1.00 45.84	AAAA II
ATON	4000	CA CB	PHE	418 418	41.644	64.701 65.657	25.910 26.730	1.00 45.67 1.00 47.19	AAAA C AAAA C
ATOH HOTA	4001 4002	CG	PHE	118	10.675	65.264	28.177	1.00 43.44	AAAA C
ATCH	4003	CD1	PHE	119	41.552	65.685	29.132	1.00 38.43	AAAA C
ATOH	1004		PHE	418	39.638	64.417 65.291	28.544 30.440	1.00 51.21 1.00 46.44	AAAA C AAAA C
ATOH ATOH	4005 4006		PHE	418 418	41.402 39.486	64.023	29.845	1.00 46.63	AAAA C
ATOH	4007	CZ	PHE	418	40.358	64.454	30.801	1.00 44.68	AAAA C
ATOI	4008	С	PHE	418	41.251	64.730	24.440	1.00 44.64	AAAA C
ATOH ATOH	4009 4010	0	PHE	418 419	41.375 40.554	65.762 63.713	23.812 23.936	1.00 47.69	AAAA II
ATOH	4012	CA	ALA	419	40.015	63.793.		1.00 39.21	AAAA C
ATO14	4013	СВ	ALA	419	41.090	63.562	21.555	1.00 30.88	AAAA C
ATOH	4014 4015	c o	ALA ALA	419 419	38.837 38.871	62.846 61.628	22.366 22.557	1.00 41.77	AAAA C AAAA O
ATOH ATOH	4016	ы	PHE	420	37.829	63.398	21.618	1.00 40.41	AAAA II
ATOI-I	4018	CA	PHE	420	36.742	62.621	21.070	1.00 40.03	AAAA C
ATO!	4019	CB	PHE	420	37.157	61.430	20.180	1.00 45.54	AAAA C AAAA C
ATOH ATOH	4020 4021	CG	PHE PHE	420 420	37.832 39.221	61.909 61.987	18.912 18.751	1.00 54.18 1.00 49.23	AAAA C
ATOI1	4022		PHE	420	37.006	62.345	17.871	1.00 47.65	AAAA C
ATOI:	4023		PHE	420	39.783	62.496	17.567	1.00 46.00	AAAA C
ATOH	4024		2 PHE	450	37.572 38.964	62.833	16.725 16.549	1.00 51.10 1.00 44.01	AAAA C AAAA C
ATON	4025 4026	CZ C	PHE	420 420	35.762	62.928 62.146	22.126	1.00 41.65	AAAA C
ATON	4027	ō	PHE	450	35.352	60.991	22.215	1.00 38.35	AAAA O
HOTA	4028	H	ASII	421	35.459	63.024	23.049	1.00 45.35	AAAA II
ATON	1030	CA	ASII	421	34.477	62.960	24.112 25.449	1.00 46.86 1.00 43.60	AAAA C AAAA C
ATOM ATOM	4031 4032	CB CG	ASII ASI:	421 421	35.183 36.407	63.276 62.401	25.449	1.00 47.90	AAAA C
ATON	4033		LASII	421	36.426	61.147	25.714	1.00 44.83	AAAA O
ATOI	1034		2 ASTI	421	37.541	63.101	25.732	1.00 37.46	11 ጸዳጸል 2 ጸዳጸል
I FOTA	4037 4038	c o	ASII ASII		33.432 33.617	64.069 65.233	23.835	1.00 47.83 1.00 38.85	AAAA C
	7030	-		7-4	55.01.			2.02 30.03	

AAAA II

```
22.968
22.372
                                                            1.00 47.86
                                   32.453
                                            53.777
HOTA
       4039 #
                  PRO
                                   32.213
                                            62.423
                                                             1.00 44.11
                                                                               AAAA C
                         422
HOTA
       1040
             CD
                  PRO
                                                                               AAAA C
                                   31.463
                                            64.776
                                                     22.605
                                                              1.00 47.85
                  PRO
ATCII
       1041
              CA
                                                     21.446
                                                              1.00 44.86
                                                                               AAAA
                                   30.731
                                            64.084
                         422
                  PRO
ATOI4
       4042
              CB
                                                              1.00 43.01
                                                                               AAAA
                                                     21.606
                         422
                                   30.947
                                            62.623
                  PRO
ATOH
       1013
              CG
                                                     23.735
                                                              1.00 51.16
                  FRO
                                   30.577
                                            65.284
                         422
ATOH
       1044
                                                              1.00 48.54
                                                                               AAAA
                                   30.223
                                            66.486
       1045
                  PRO
ATOH
                                                     24.774
                                                              1.00 52.90
                                                                               AAAA D
                         423
                                   30.320
                                            54.487
              :1
                  LYS
       1046
ATOH
                                                     25.865
                                                              1.00 58.82
                                                                               AAAA
                                            64.908
              CA
                  LïS
                         423
                                   29.431
       404B
ATOH.
                                                                               AAAA C
                                            63.721
                                                     26.360
                                                              1.00 52.93
       4049
                  LYS
                         423
                                   28.556
HOTA
                                                              1.00 70.55
                                                     25.196
                                                                               AAAA
                                            62.810
                                   28.209
              CG.
                         423
       4050
                  LYS
ATOH
                                                              1.00 73.79
                                                                               AAAA
                                            62.448
                                                     24.996
                                   26.743
       4051
              CD
                  LYS
                         423
ATOH
                                                              1.00 77.06
                                                                               AAAA
                                   26.030
                                            63.374
                                                     24.021
       4052
              CE
                  LYS
                         423
ATOH
                                                                               AAAA II
                                                              1.00 64.99
                                                     24.614
                                   25.949
                                            64.748
       1053
              172
                  LYS
                         153
ATOH
                                                              1.00 57.43
                                                                                AAAA C
                                                     27.071
                         423
                                   30.158
                                            65.482
        4057
                   LYS
ATOH
                                                              1.00 55.22
                                                                                AAAA O
                                   29.582
                                            65.478
                                                     28.152
                         423
       4058
              0
                  LYS
ATOII
                                                              1.00 55.95
                                                                                AAAA II
                                            65.859
                                                     26.862
                                   31.425
                         424
        1059
              11
                  LEU
HOTA
                                                                                AAAA C
                                                              1.00 57.07
                                   32.261
                                            66.162
                                                     28.017
                  LEU
                         424
              CA
MOTA
        4061
                                                                                AAAA C
                                                              1.00 49.16
                                                     28.237
                                   33.463
                                            65.250
                  LEU
                         424
              CB
ATOH
        1062
                                                                                AAAA
                                            65.748
                                                     29.370
                                                              1.00 68.27
                                   34.390
                  LEU
                         424
              CG
ATO!!
        4063
                                                     30.734
                                                              1.00 60.66
                                                                                AAAA C
                                   33.821
                                            65.362
              CD1 LEU
                         424
        1064
ATO:1
                                                              1.00 60.35
                                                     29.123
                                                                                AAAA
              CD2 LEU
                         424
                                   35.825
                                            65.276
        4065
ATOH
                                                              1.00 56.29
                                                                                AAAA C
                                                     27.878
                                            67.585
                                   32.709
        1066
              C
                   LEU
                         424
MOTA
                                                              1.00 59.98
                                                                                AAAA O
                                                     27.201
                                            67.861
        4067
              0
                   LEU
                         424
                                   33.696
HOTA
                                                     28.492
                                                              1.00 58.76
                                                                                II AAAA II
                                            68.488
        4068
              11
                   CTS
                         425
                                   31.995
ATO! I
                                                                                AAAA C
                                                              1.00 60.39
                                            69.916
                                                     28.406
                   CYS
                          425
                                   32.342
        1070
              CA
ATO:4
                                                                                AAAA C
                                                              1.00 62.59
                                                     28.810
                          425
                                   33.771
                                            70.119
        4071
                   CYS
ATOM
                                                              1.00 64.45
                                                                                AAAA C
                                            69.665
                                                     29.831
                                   34.288
                   CYS
                          425
        4072
ATOH.
                                                                                AAAA C
                                                              1.00 68.23
                                            70.644
                                                     29.214
              CB
        4073
                   CIS
                          425
                                   31.249
ATOH
                                                                                AAAA
                                            71.303
                                                     28.086
                                                              1.00 81.03
                          425
                                    29.916
        4074
               SG
                   CYS
ATO: I
                                                                                AAAA N
                                            70.953
                                                     28.102
                                                              1.00 65.31
                          426
                                   34.529
HOTA
        1075
              ::
                   VAL
                                                                                AAAA
                                                              1.00 65.49
                                            71.149
                                                     28.358
               CA.
                          426
                                    35.943
HOTA
        4077
                   VAL
                                                                                AAAA
                                                     27.310
                                                              1.00 66.66
                                            72.022
                                   36.644
ATON:
        4078
               CB
                   VAL
                          426
                                                                                AAAA
                                                     25.925
                                                              1.00 62.49
                                            71.413
                                    36.715
ATOI:
        1079
               CG1 VAL
                          426
                                                              1.00 60.92
                                                                                AAAA
                                            73.365
                                                     27.239
                                    35.962
        4080
               CG2 VAL
                          426
ATOH
                                                              1.00 65.99
                                                                                AAAA
                                                     29.757
                                    36.105
                                            71.711
        1081
               C
                   VAL
                          426
ATOH
                                                                                O AAAA
                                                              1.00 64.51
                                            71.724
                                                     30.388
                                    37.180
                   VAL.
                          426
ATO:1
        1082
               0
                                                              1.90 67.67
                                                                                II AAAA
                                            72.361
                                                     30.267
                   SER
                          427
                                    35.090
ATOM
        4083
               11
                                                                                AAAA
                                                               1.00 66.85
                                                     31.599
               CA
                   SER
                          427
                                    35.091
                                             72.927
        4085
HOTA
                                                               1.00 61.16
                                                                                AAAA C
                                                      31.864
                                             73.499
        4086
               CB
                   SER
                          427
                                    33.685
MOTA
                                                                                AAAA O
                                                      32.098
                                                               1.00 67.05
                                             74.860
                          427
                                    34.088
        4087
                   SER
ATO14
                                                                                AAAA C
                                                      32.701
                                                               1.00 64.24
                                             71.972
                   SER
                          427
                                    35.515
        4089
ATOI1
                                                                                AAAA O
                                                               1.00 63.66
                                                      33.573
                                             72.328
                                    36,332
        4090
               0
                   SER
                          427
FIOTA
                                                              1.00 58.75
                                                                                 AAAA II
                                             70.771
                                                      32.618
                                    34.965
        4091
               П
                   GLU
                          428
 ATO:1
                                                               1.00 63.39
                                                                                 AAAA C
                                             69.753
                                                      33.585
                                    35.384
               CA.
        4093
                   GLU
                          428
 ATOI1
                                                                                 AAAA C
                                                               1.00 68.67
                                    34.594
                                             68.485
                                                      33.240
 ATOH
        4094
               CB
                   GLU
                          428
                                                                                 AAAA C
                                                               1.00 66.59
                                    33.115
                                             68.560
                                                      33.537
        4095
               CG
                   GLU
                          428
 ATOH
                                                               1.00 72.33
                                                                                AAAA C
                                    32.785
                                             68.560
                                                      35.023
                          428
                   GLU
 HOTA
        1096
               CD
                                                                                AAAA O
                                                               1.00 81.62
                                                      35,722
                                    32.729
                                             67.522
               OE1 GLU
                          428
        1097
 ATO: 1
                                                               1.00 79.97
                                                                                AAAA O
                                                      35.517
                                    32.581
                                             69.688
                   GLU
                          128
         4098
               OE2
 ATO: I
                                                                                ARAA C
                                                               1.00 61.63
                                                      33.429
                                             69.485
                                    36.870
         1059
                    GLU
                          428
 LIOTA
                                                                                AAAA O
                                             59.696
                                                      34.307
                                                               1.00 62.03
                                    37.671
         4100
                    GLU
                          428
 ATOH.
                                                               1.00 61.26
                                                                                 AAAA II
                                             69.263
                                                      32.165
                                    37.265
                          455
         4101
               11
                    ILE
 LIOTA
                                                                                 AAAA C
                                                      31.789
                                                               1.00 61.09
                                             69.938
                          120
                                    38.631
         4103
               CA
                    ILE
 ATO!!
                                                                                 HAAA C
                                                               1.00 59.32
                                    38.759
                                             68.933
                                                      30.263
 HOTA
         4104
               CB
                    ILE
                          429
                                                                                 AAAA
                                                               1.00 45.93
                                             68.915
                                                      29.895
                                    40.257
 ATOH
         4105
               CG2 ILE
                          429
                                                                                 AAAA
                                                               1.00 57.66
                                    37:968
                                             67.719
                                                      29.794
         4106
               OGI ILE
                          129
 ATO!!
                                                               1.00 53.48
                                                                                 AAAA C
                                             67.555
                                                      28.285
                                    38.038
                          429
         4107
               CD1 ILE
 ATOH
                                                               1.00 61.90
                                                                                 AAAA C
                                             70.166
                                                      32.323
                           129
                                    39.498
         4108
                    ILE
 HOTA
                                                                                 O AAAA
                                                               1.00 61.28
                                             70.017
                                                      32.867
                           429
                                     40.592
         4109
               0
                    T L.E.
 HOTA
                                                                                 AAAA II
                                                      32.200
32.719
                                                               1.00 65.34
                                    38.987
                                             71.384
                           430
 ATOH
         4110
               11
                    TYR
                                                               1.00 68.10
                                                                                 AAAA C
                                     39.729
                                             72.543
                           430
                    TYR
 ATO!
         4112
                CA
                                                               1.00 71.02
                                                                                 AAAA C
                                                      32.099
                                     39.180
                                             73.822
                           430
                CB
                    TYR
 ATOM
         4113
                                                                                 AAAA C
                                                               1.00 75.98
                                                      30.639
                           430
                                     39.538
                                             74.006
                CG
                    TIR
 MOTA
         4114
                                                                                 AAAA C
                                                       29.599
                                                               1.00 77.60
                                             73.821
                                     38.653
                CD1
                    TYR
                           430
         4115
 HOTA
                                                                                 AAAA C
                                             73.977
                                                       28.270
                                                               1.00 75.72
                           430
                                     38.953
 ATO!
         4116
                CEL
                    TYR
                                                               1.00 75.95
                                                                                 AAAA
                                                       30.260
                                     40.810
                                              74.401
                           430
         4117
                CD2 TYR
 ATOH!
                                                                                 AAAA
                                                               1.00 74.81
                                              74.575
                                                       28.937
                                     41.155
                           430
  HOTA
         4118
                CE2
                    TYR
                                                               1.00 78.51
                                                                                 AAAA
                                                       27.952
                                              74.359
                                     40.221
                    TYR
                           430
  ATO!
         4119
                                                                                 AAAA
                                     40.564
                                                       26.616
                                                               1.00 85.40
                                              74.542
  ATOI-I
         4120
                OH
                    TYR
                           430
                                                                                 AAAA
                                                                1.00 63.72
                                                       34.241
                                     39.779
                                              72.634
  HOTA
         4122
                    TYR
                           430
                                                                                 AAAA O
                                                                1.00 SB.26
                                              73.321
                                     40.654
                           430
  ATOH
         4123
                0
                    TYR
                                                       34.907
                                                                1.00 65.53
                                                                                 II AAAA II
                                              72.017
                                     38.819
                           431
  ATOH!
         4124
                11
                    ARG
                                                       36.356
                                                                1.00 68.15
                                                                                 AAAA C
                                     38.747
                                              72.043
                    ARG
                           431
  ATOH
         4126
                CA
                                                                                 AAAA C
                                                                1.00 73.32
                                                       36.898
                                              71.748
                                     37.348
                    ARG
                           431
                CB
  LIOTA
         4127
                                                                                 AAAA
                                                                1.00 82.99
                                                       38.430
                                              71.815
                           431
                                     37.345
                CG
                    ARG
  ATON
         41.28
                                                                                 AAAA
                                                                1.00 88.39
                                                       38.860
                                              73.279
                    ARG
                           431
                                     37,270
         4129
                CD
  ATOH
                                                                                 AAAA II
                                                                1.00 92.48
                                              73.472
                                                       40.258
                                     37.698
                    ARG
                           431
  ATOH
          4130
                HE
                                                                                 AAAA C
                                                                1.00 94.93
                                                       41.259
                                     36.835
                                              73.258
                    ARG
                           431
                CZ
  ATOH.
          4132
                                                                                 II AAAA
                                                                1.00 87.40
                                                       40.872
                                              72.872
                HH1 ARG
                                     35.610
                           431
  ATOH
          4133
                                                                                 AAAA II
                                                                1.00 95.17
                                                       42.567
                                              73.371
                HH2 ARG
                           431
                                     37.021
  HOTA
          4136
                                                                                 AAAA C
                                                       36.677
                                                                1.00 67.75
                                              70.986
                                     39.718
                            431
          4139
                     ARG
  ATOH
                                                                                 AAAA O
                                                       37.629
                                                                1.00 66.74
                                              71.292
                                     40.637
          4146
                9
                     ARG
                           131
  ATOH
                                                                                 AAAA II
                                                                1.20 63.87
                                              69.791
                                                       36.305
                                     39.541
                     HET
          4141
  ATOH:
                                                                1.00 64.40
                                                                                 AAAA C
                                                       36.652
                                              68,703
                Ch
                    HET
                            432
                                     40.437
  HOTA
          4143
```

WO 99	/28347				,				PCT/
							41/58		
								1.00 54.25	AAAA C
ATCH	4144		HET	432	40.237	67.522	35.719	1.00 54.25	AAAA C
ATO:1	4145		HET	432	41.254	66.426	35.971 35.112	1.00 52.21	AAAA S
ATO:1	4146		HET	432	40.829	64.925	36.137	1.00 54.99	AAAA C
ATON	4147		HET	432	41.582	63.681	36.626	1.00 64.65	AAAA C
ATOH	4148	-	HET	432	41.991	69.170 68.992	37.653	1.00 65.88	AAAA O
ATOH	1116	-	HET	133 135	42.530 42.331	69.811	35.556	1.00 65.78	AAAA I
ATOH	4150		GLU GLU	133	43.622	70.469	35.510	1.00 69.16	AAAA C
ATOH	4152 4153		GLU	433	43.704	71.506	34.401	1.00 69.58	AAAA C
HOTA	4154		GLU	133	44.121	70.967	33.048	1.00 76.91	AAAA C
ATOIL	1155		GLU	433	44.623	72.149	32.242	1.00 82.02	AAAA C
ATOI	4156		GLU	433	44.718	73.224	32.874	1.00 86.82	AAAA O
ATOL	4157	OE2		433	44.905	72.050	31.042	1.00 88.26	AAAA O
ATOH	4158	C	GLU	433	44.016	71.219	36.781	1.00 71.29	AAAA C
ATOI1	4159	0	GLU	433	45.133	71.083	37.294	1.00 74.29	AAAA O
ATOH	4160	11	GLU	434	43.178	72.120	37.280	1.00 72.93	AAAA II AAAA C
ATO:I	4162	CA	GLU	434	43.505	72.873	38.485	1.00 72.88	AAAA C
ATOH	4163	CB	GLU	434	42.458	73.916	38.840	1.00 81.36	AAAA C
ATOM:	4164	CG	GLU	434	41.191	73.956	38.032	1.00 97.32	AAAA C
ATO:1	4155	CD	SLU	134	40.191	75.004	38.432	1.00 97.34	AAAA O
ATOI-I	4166	OE1		434	39.521	74.928	39.505 37.583	1.00 99.95	AAAA O
ATOH	4167	OE2		131	40.080 43.675	75.941 71.886	39.632	1.00 71.46	AAAA C
ATOH	4168	C	GLU	434	44.728	71.858	40.251	1.00 78.49	AAAA O
HOTA	4169	0	VAL	434 434	42.670	71.095	39.926	1.00 66.34	H AAAA
ATOH	4170 4172	CA	VAL	435	42.711	70.129	41.001	1.00 62.49	AAAA C
IOTA IOTA	4173	CB	VAL	435	41.451	69.217	40.972	1.00 60.38	AAAA C
ATOH	4174		VAL	135	41.547	68.214	42.104	1.00 52.32	AAAA C
ATOH	4175		VAL	135	40.203	70.073	41.029	1.00 50.79	AAAA C
ATOH	4176	C	VAL	135	43.939	69.253	41.018	1.00 60.74	AAAA C
ATOH	4177	0	VAL	435	44.607	69.165	42.034	1.00 62.37	AAAA O
ATOH	4178	11	THE	436	44.282	68.506	39.988	1.00 60.67	AAAA N
ATOH	4180	CA	THR	436	45.335	67.516	39.936	1.00 56.36	АААА С А ААА С
ATOH	4181	CB	THR	436	45.199	66.565	38.736	1.00 50.92	AAAA O
ATOH	4182		THR	436	44.913	67.283	37.503	1.00 47.03	AAAA C
ATOH.	4184	CG2	THR	136	44.108	65.526	38.901 39.930	1.00 60.55	AAAA C
HOTA	4185	ç	THR	136	46.701	68.184 67.490	40.024	1.00 60.61	AAAA O
ATON	4186	0	THR	436	47.714 46.836	69.496	39.835	1.00 60.65	AAAA N
ATOI-I	4187	II CA	GLY GLY	437 437	48.102	70.164	39.749	1.00 59.47	AAAA C
ATOH ATOH	4189 4190	C	GL i	437	48.800	69.864	38.424	1.00 64.78	AAAA C
ATOM ATOM	4191	ō	GLY	437	49.983	70.254	38.245	1.00 62.70	AAAA O
ATON	4192	11	THR	138	48.112	69.387	37.380	1.00 63.79	H AAAA
ATON	4194	CA	THR	438	48.731	69.169	36.076	1.00 65.09	AAAA C
ATON	4195	CB	THR	438	47.967	68.027	35.411	1.00 66.87	AAAA C
ATON	4196		THR	438	46.600	68.385	35.731	1.00 62.22	O AAAA
ATON	4198	CG2	THR	438	48.208	66.659	36.019	1.00 68.74	AAAA C
ATOH:	4199	C	THR	438	48.590	70.415	35.220	1.00 66.14	AAAA C
ATOI:	4200	0	THE	438	49.003	70.543	34.070	1.00 67.37	AAAA II

48.089 71.481 35.822 1.00 67.37 AAAA II HOTA 4201 11 LTS AAAA C 1.00 71.08 72.757 35.154 439 47.927 CA INTA 4003 LTS 73.708 1.00 69.23 AAAA C 36.034 CB LYS 439 47.114 4204 ATO: I 1.00 77.26 AAAA C 74.938 35.265 4205 139 46.677 ÇĞ LïS ATOH aaaa c 1.00 81.65 CD 439 45.832 75.942 36.014 ATOI1 4205 1.00 87.39 75.475 36.102 AAAA C HOTA 4207 CE LïS 439 44.385 1.00 93.85 AAAA II 37.100 43.667 76.431 73.396 ATOH 4008 112 LTS 139 34.752 1.00 73.01 AAAA C 4212 C LYS 439 49.249 ATOH 73.986 1.00 74.60 AAAA O 35.541 49.996 4213 0 LïS 139 ATOH 1.00 73.33 II AAAA II 49.517 73.453 74.167 33.441 ATON 4214 11 GLY 440 1.00 71.39 AAAA C 50.733 33.014 ATOI 4216 CA GLï 440 AAAA C 51.716 32.389 1.00 71.20 73.204 ATOI1 4217 С GLY 440 73.650 31.822 1.00 72.70 AAAA O 52.684 ATOH 4218 O GLY 440 AAAA N 71.908 32.436 1.00 72.99 51.445 ARG 441 11OTA 4219 11 AAAA C 4221 4222 4223 4224 ARG 441 52.343 70.945 31.831 1.00 74.12 CA ATO(1 AAAA C 1.00 69.44 52.617 69.740 32.716 AR:3 441 CB ATO:1 AAAA C 1.00 63.34 441 51.847 69.695 34.003 CG ARG ATOI: 1.00 67.64 AAAA C 52.060 68.314 34.595 CD ARG 441 ATO! I II AAAA 1.00 61.00 4225 HE ARG 441 52.244 68.395 36.030 HOTA 1.00 59.21 AAAA C 36.831 4227 ARG 441 52.326 67.357 ATOH CI 1.00 60.57 AAAA II 66.117 36.395 HOTA 4228 HH1 ARG 441 52.258 1.00 72.94 AAAA II 67.596 38.128 ATOH 4231 TIH2 ARG 441 52.468 30.511 1.00 73.50 AAAA C ATOH 4234 C ARG 441 51.760 70.446 AAAA O 1.00 74.73 69.424 30.012 52.195 ATOH 4235 · O ARG 441 II AAAA II 30.043 1.00 74.69 GLB 442 50.732 71.114 HOTA 4236 н AAAA C 28.914 1.00 75.13 19.959 70.646 GLH 442 ATOH 4238 CA AAAA C 442 48.457 70.875 29.126 1.00 68.73 CB GLD ATOH 4239 AAAA C 1.00 71.20 442 47.669 69.576 29.195 CG GLII 4240 ATOH AAAA C 1.00 70.98 69.028 30.607 CD GLII 442 47.623 ATOM 4241 AAAA O 30.868 1.00 78.66 47.714 67.822 OE1 GLII 442 ATO:1 4242 AAAA II 1.00 66.86 47.477 69.907 31.584 HE2 GLH HOTA 4243 442 1.00 77.69 AAAA C 4246 4247 442 50.326 71.359 27.627 GLII HOTA C 1.00 75.57 AAAA O 442 50.227 72.569 27.530 0 GLD ATOH: AAAA II 70.554 26.575 1.00 81.54 4248 ALA 113 50.474 ATOLL 11 AAAA C 25.236 1.00 82.95 ALA 50.643 71.148 ÇΛ ATOH 4250 443 AAAA C ALA 51.104 70.118 24.220 1.30 81.69 CB ATOM 4251 113

						4	12/58		
ATOH	4050	C AL	\ 4.	43			•	1.00 83.73	AAAA C
ATOH		O ALA		4.3		71.744 72.052		1.00 83.87 1.00 86.20	aaaa c aaaa ii
ATOI I		O LYS		4 4 4 4		72.524	23.482	1.00 85.88	AAAA C
HOTA		CA LT: CB LT:		44		73.997	23.128	1.00 83.99	AAAA C
ATO:1		CG LT		4.4		74.734	24.241	1.00 93.60	АААА С АААА С
AT'OI I	4259	CD LY		44		73.841	25.186 26.614	1.00 95.14 1.00 97.04	AAAA C
ATOH		CE LY.	-	4 4 4 4		73.786 73.090	27.473	1.00 97.22	AAAA II
INTA		HE LY: C LY:		44	46.659	71.779	22.508	1.00 84.20	AAAA C
ATOH ATOH		O LY		44	45.428	71.901	22.635	1.00 85.63	AAAA C AAAA II
ATO: I		H GL		45	47.214	70.734	21.916	1.00 78.85 1.00 75.06	AAAA C
ATOI:I		CA GL		45	46.368 45.803	69.786 68.844	21.208	1.00 72.30	AAAA C
ATOH	4270 4271	O GL		45 45	44.963	67.993	21.940	1.00 74.90	AAAA O
ATOH ATOH	4272	II AS			46_300.	68.981.	23.492	1.00 67.97	aaaa :: aaaa c
ATOI1	4274	CA AS		46	45.914	68.174	24.642 25.873	1.00 62.81 1.00 55.24	AAAA C
ATOH	4275	CB AS		46	46.754 48.213	68.552 68.169	25.801	1.00 54.07	AAAA C
ATOH	4276 4277	CG AS		46 46	48.693	67.385	24.946	1.00 45.08	AAAA O
ATOH ATOH	4278	OD2 AS		46	49.091	68.595	26.593	1.00 50.12	AAAA O
HOTA	4279	C AS		146	44.438	68.274	25.016	1.00 58.07 1.00 55.59	C AAAA C AAAA
ATOH	4280	0 A3		116	43.610 44.043	67.369 69.527	25.127 25.226	1.00 54.13	AAAA 1
ATOH	4281	CA IL		147 147	42.652	69.822	25.510	1.00 54.09	AAAA C
HOTA HOTA	4283 4284	CB II		147	42.505	70.502	26.877	1.00 48.92	AAAA C
ATOH	4285	CGC II		147	41.030	70.663	27.182	1.00 41.02 1.00 52.36	AAAA C AAAA C
ATOH	4286	CG1 II		147	43.211	69.621	27.932 29.237	1.00 48.47	AAAA C
ATON	4287	CD1 II		147 147	43.468 42.027	70.327 70.591	24.364	1.00 53.06	C KAAA
ATOH ATOH	4288 4289	o II		447	41.718	71.772	24.423	1.00 56.08	AAAA O
ATOH	4290	II AS		148	41.625	69.915	23.307	1.00 53.17	AAAA :
ATON	4292	CA AS		448	41.013	70.642	22.202	1.00 54.61 1.00 49.17	AAAA C
ATOII	1293	CB AS		448 448	41.283 40.415	69.982 68.786	20.577	1.00 49.40	AAAA C
MOTA HOTA	4294 4295	CG AS		448	39.287	68.977	20.113	1.00 52.34	AAAA O
ATOM	4296	11D2 A	SH	448	40.990	67.622	20.871	1.00 52.49 1.00 56.44	aaaa :: aaaa ::
HOTA	4299	_		448	39.518 38.816	70.824 69.974	22.402 22.939	1.00 55.83	AAAA O
ATOH	4300 4301			448 449	39.071	71.917	21.764	1.00 58.52	AAAA II
ATOH ATOH	4303			419	37.682	72.351	21.901	1.00 58.62	AAAA C AAAA C
ATOH	4304			449	37.497	73.845	22.169 20.943	1.00 55.90 1.00 68.89	AAAA O
MOTA	4305	OG1 T		449 449	37.913 38.354	74.485	23.310	1.00 59.06	AAAA C
ATOH ATOH	4307 4308	CG2 T	HR	449	36.920	72.053	20.628	1.00 56.82	AAAA C
ATO:1	4309		HR	449	35.750	72.381	20.473	1.00 60.87 1.00 55.76	AAAA C AAAA II
HOTA	4310		RG.	450	37.539 36.887	71.304 70.935	19.757 18.507	1.00 54.66	AAAA 🤉
HOTA	4312 4313		RG RG	450 450	37.845	71.179	17.377	1.00 48.33	AAAA C
ATOH ATOH	4314		RG	450	38.385	69.975	16.645	1.00 54.81	AAAA C AAAA C
ATOH	4315	CD A	RG	450	39.487	70.561	15.696 16.489	1.00 44.92 1.00 52.49	AAAA II
ATOH	4316		IRG	450	40.706 41.544	70.719 69.757	15.882	1.00 39.08	AAAA :
HOTA HOTA	4318 4319	CE P	ARG ARG	450 450	41.176	68.572	16.466	1.00 41.07	AAAA I:
ATOH	4322	HH2 F		450	42.601	70.001	17.610	1.00 45.18 1.00 56.82	11 AAAA 3 AAAA
MOTA	4325		\R∕G	450	36.267	69.553 69.303			AAAA C
ATO!!	1326		ARG ASII	450 451	35.186 36.800	68.583		1.00 56.66	AAAA ti
ATOH ATOH	4327 4329		ASII	451	36.107		19.434	1.00 50.27	AAAA C AAAA C
ATON	4330		ASH	451	36.725				AAAA C
ATOI1	4331		ASH	451	38.243 38.779				AAAA O
HOTA	4332 4333	OD1 /		451 451	38.707			1.00 544.88	AAAA II -
ATOH ATOH	4336		ASII	451	35.849	66.854			C AAAA C AAAA
ATOI1	4337	0	ASH	451	35.330				AAAA II
HOTA	4338		ASH	452 452	36.126 35.769			1.00 55.88	AAAA C
ATOH ATOH	1311 1310		ASII ASII	452	36.947		24.136	1.00 54.62	AAAA C
ATON			ASII	452	37.936	66.73			AAAA C AAAA C
ATOH	4343	OD1		452	37.646				AAAA ii
ATOH				452 452	39.153 34.603			1.00 58.11	AAAA 🤉
ATOI I			ASII ASII	452	34.789		9 23.657	1.00 55.07	AAAA C AAAA I:
ATOH			GLY	453	33.44	67.81			AAAA C
HOTA	4351	L CA	GLY	453	32.313			4 1.00 64.95	AAAA C
ATOI			GLY GLY	453 453	31.500 30.30		_	6 1.00 65.71	AAAA O
ATO:			GLU	454	31.91	0 69.10	9 21.91	0 1.00 67.44	AAAA :: AAAA C
FOTA			GLU	454	31.26				AAAA C
ATON	1 435	7 CB	GLU	454	31.73				AAAA C
ATOI-			GLU	454 454	32.34 32.36		_	1 1.00 54.61	AAAA C
IOTA IOTA				454	31.36	8 66.63	7 17.70	2 0.01 54.10	⊕ AAAA ⊕ AAAA
ATO			GLU	454	33.41	7 56.00			AAAA C
ATO	_		GLU	454	29.76	2 69.30	1 20.76	, 1.30 03.41	

						2	43/58		
	1363	Ġ	GLU	454	29.022	70.089	20.169	1.00 67.86	O AAAA
ATOH	4364	11	ARG	455		68.187	21.333	1.00 66.45	AAAA II
ATO!!	4366	CA	ARG	455	27.843	67.997	21.371	1.00 69.33	AAAA C
ATOIL	4367	CB	ARG	455	27.448	66.733	20.652	1.00 73.38	AAAA C
ATOH	4368	CG	ARG	455	28.467	65.912	19.924	1.00 74.27	AAAA C
ATO!	4369	CD	ARG	455		64.740	19.240	1.00 79.54	AAAA C
ATO:1	4370	HE	ARG	455	27.301	63.638	20.052	1.00 86.31	AAAA N
ATOH	4372	CO	ARG	455	27.802	62.412		1.00 88.60	AAAA C
ATOH	4373	HH1	ARG	455	28.990	61.997	19.538	1.00 84.52	II AAAA
ATOH	4376	11H2	ARG	455		61.523	21.003	1.00 87.36	II AAAA
ATOH	4379	C	ARG	455	27.213	67.934	22.756	1.00 67.35	AAAA C
ATOH	4380	0 .	ARG	455	26.423	67.025	22.961	1.00 66.26	AAAA O
ATOH	4381	11	ALA	456	27.499	68.879	23.623	1.00 66.52	II AAAA
ATOH	4383	CA	ALA	456	26.947	68.906	24.964	1.00 72.01	AAAA C AAAA C
ATOH	4384	CB	ALA	456	27.832	68.147	25.939	1.00 61.84	AAAA C
ATOM	4385	С	ALA	456	26.802	70.379	25.371	1.00 75.25	AAAA O
ATOH	4386	0	ALA	456	27.706	71.219	25.202	1.00 81.30 0.50 71.9i	AAAA N
ATOH	4387	11	SER	457	25.653	70.720	25.939		AAAA C
ATOH	4389	CA	SER	157	25.431	72.095	26.358	0.50 69.64 0.50 73.30	AAAA C
ATO!1	4390	CB	SER	457	23.991	72.247	26.836	0.50 73.30	AAAA O
HOTA	4391	OG	SER	457	23.422	73.294	26.060	0.50 69.27	AAAA C
ATOI-I	4393	C	SER	457	26.418	72.510	27.437	0.50 67.32	AAAA O
ATOM	4394	0	SER	457	26.458	71.957	28.530	0.50 70.44	AAAA II
ATOH	1395	11	CYS	458	27.197	73.531	27.117	0.50 72.57	AAAA C
ATC!!	4397	CA	CXZ	458	28.287	73.960	27.972	0.50 72.54	AAAA C
ATO!!	4398	C	CYS	158	27.949	75.205	28.757	0.50 76.63	AAAA O
ATOH	4399	0	CYS	458	27.065	75.128	29.606	0.50 75.38	AAAA C
ATOH	4400	CB	CYS	458	29.527	74.171	27.089	0.50 72.18	AAAA S
ATOH:	4.101	SG	CIS	458	30.844	73.032	27.490	0.50 70.13	AAAA II
ATOH	4402	11	ALA	459	28.607	76.306	28.441	0.50 70.05	AAAA C
ATON	4404	CA	ALA	459	28.445	77.572	29.116	0.50 70.57	AAAA C
ATOH	4405	CB	ALA	459	27.046	78.149	28.996 30.601	0.50 70.13	AAAA C
ATO!!	4406	С	ALA	159	28.826	77.461		0.50 69.96	AAAA O
HOTA	4407	0	ALA	459	29.080	78.556 76.301	31.154 31.054	0.50 68.22	AAAA O
MOTA	4407	OT	ALA	459	28.855	7.102	61.119	1.00 88.13	AAAA C
ATOI:1	4522	C1	HAG	461	59.581	7.102	59.697	1.00 91.94	AAAA C
ATON	4524	C2	HAG	461 461	59.964 58.738	7.699	58.920	1.00 92.72	II AAAA
ATO!!	4526	H2 C7	HAG HAG	461	58.400	9.020	58.999	1.00 96.97	AAAA C
ATOH	4528 4529	07	NAG	461	58.879	9.774	59.726	1.00 98.62	AAAA O
ATON ATOM	4530	C8	NAG	461	57.323	9.390	58.043	1.00100.60	AAAA C
ATOM	4534	C3	HAG	461	60.725	6.225	59.085	1.00 94.77	aaaa c
ATOM	4536	03	HAG	461	61.417	6.725	57.930	1.00 98.51	AAAA O
ATOH	4538	C4	NAG	461	61.873	5.869	60.064	1.00 96.01	AAAA C
ATOH	4540	04	HAG	461	62.661	4.821	59.484	1.00 99.20	AAAA O
ATOM	4542	C5	HAG	461	61.359	5.529	61.474	1.00 95.13	AAAA C
ATOI1	4545	C6	HAG	461	62.465	5.321	62.495	1.00 93.66	AAAA C
ATOH	4548	06	NAG	461	62.745	6.364	63.354	1.00 92.13	AAAA O
ATOH	4544	05	NAG	461	60.625	6.648	61.949	1.00 91.92	AAAA O
ATOH	4550	C1	HAG	463	33.054	15.249	72.938	1.00 43.58	AAAA C
ATOI1	4552	C2	IIAG	463	31.644	15.282	73.412	1.00 43.62	AAAA C
ATOH	1554	112	HAG	463	30.709	14.527	72.541	1.00 42.16	AAAA II
ATOH	4556	C7	HAG	463	29.912	13.584	73.099	1.00 40.84	AAAA C
HOTA	4557	07	HAG	463	29.928	13.406	74.222	1.00 40.10	AAAA O
ATOH	4558	C8	HAG	463	28.975	12.694	72.394	1.00 35.17	AAAA C
ATO11	4562	C3	HAG	463	31.150	16.675	73.118	1.00 45.40	AAAA C
ATOH	4564	03	HAG	463	29.979	16.555		1.00 45.99	AAAA C
I IOTA	4566	C4	HAG	463	32.117	17.617	74.171	1.00 50.36	AAAA O
ATO!!	4568	04	NAG	463	31.596	18.919	73.891	1.00 53.97	AAAA C
ATOI-I	1569	C5	HAG	463	33.589	17.477	73.725	1.00 48.50 1.00 48.34	AAAA C
ATOI1	4572	C6	HAG	463	34,490	17.996	74.742	1.00 48.34	AAAA O
ATOH	4575	06	HAG	463	34.906	18.739	75.671	1.00 48.58	AAAA O
ATOI1	4571	05	HAG	463	33.942	16.120	73.583	1.00 81.45	AAAA C
ATOH	4576		FUC	164	34.544	19.954	76.083	1.00 86.35	AAAA C
ATOH	1578		FUC	464	35.179	21.173	75.463 74.021	1.00 92.94	AAAA O
HOTA	4579		FUC	464	35.153	21.169	75.945	1.00 B6.79	AAAA C
ATON	4582			464	34.252	22.284 23.613	75.596	1.00 87.83	AAAA O
ATOH	4584			464	34.691	22.274	77.412	1.00 86.67	AAAA C
IOTA	4586			164	33.871 34.598	23.297	78.115	1.00 87.06	AAAA O
ATOIL	1588			464	33.921	20.894	78.040	1.00 85.85	AAAA C
HOTA HOTA	4590			164 164	34.279	20.768		1.00 83.37	AAAA C
	4593 4592			464	35.042	20.150		1.00 82.43	AAAA O
HOTA	4592			165	31.575	19.813		1.00 64.68	AAAA C
ATOL	4597			165	31.267	21.207		1.00 69.57	AAAA C
ATOH ATOH	4601			165	32.480	21.642			AAAA II
ATOH	1603			465	32.401	21.953		1.00 73.86	AAAA C
ATOI	4604			465	31.373	21.835		1.00 74.80	AAAA O
ATOH	4605			465	33.679	. 22.401		1.00 76.00	AAAA C
ATOH	1603			465	31.050				AAAA C
ATOH	4611			465	30.713			1.00 71.03	AAAA O
ATOH	4613			465	30.035				AAAA C
ATOIT	4615			465	29.993	22.409			AAAA O
ATOI	4617			165	30.498			1.00 75.45	AAAA C
ATOI	4620			465	29.461	19.647			AAAA C
			•						

******	20541					,	14/58		
ATON	4623	06	HAG	165	28.385		14/30 77.142	1.00 76.25	AAAA O
ATOH	4619	05	HAG	165			75.807	1.00 71.44	AAAA O
ATO:	1625	C1	HAG	467 467		11.058 11.751	87.926 89.100	1.00 96.51	AAAA C AAAA C
HOTA ATOH	4627 4629	G2 H2	HAG HAG	467		12.898	89.459	1.00101.79	II AAAA
ATON	4631	C7	NAG	467	49.299	13.021	90.759	1.00103.63	АААЛ С АААА О
ATOI I	4632	07	HAG	167	49.541 48.526	12.267 14.239	91.586 91.102	1.00105.48	AAAA C
ATOH	4633 4637	C8 C3	HAG HAG	467 467	51.967	12.134	88.802	1.00101.03	AAAA C
ATON ATON	4639	03	HAG	467	52.535	12.761	80.010	1.00100.89	AAAA O AAAA C
ATO!!	4641	C4	HAG	467	52.643	10.771 10.834	88.506 88.441	1.00101.15	AAAA O
ATOLL	4643 4645	C2 04	HAG HAG	467 467	54.067 52.039	10.054	87.218	1.00100.16	AAAA C
ATOH ATOH	4648	C6	HAG	467	52.746	8.852	86.934	1.00 99.75	AAAA C AAAA O
ATOI1	4651	06	NAG	467	52.088	7.704 9.918	87.302 87.503	1.00101.54 1.00 98.59	AAAA O
ATOIT	4647 4653	05 C1	HAG HAG	467 469	50.671 55.375	46.143	66.863	1.00 48.45	AAAA C
HOTA	4655	C2	IIAG	169	56.601	46.993	66.861	1.00 50.42	AAAA C AAAA II
ATOI1	4657	112	IIAG	469	57.106	47.015	65.451 64.746	1.00 51.50 1.00 48.88	AAAA C
HOTA	4659	∵7 07	HAG HAG	469 469	57.135 56.849	48.143	65.234	1.00 55.62	о алаа
ATOH ATOH	4660 4661	C8	NAG	469	57.838	48.134	63.394	1.00 43.70	AAAA C
ATOI-I	4665	€3	HAG	469	57.608	46.491	67.844	1.00 49.62 1.00 47.76	AAAA C AAAA O
ATOH	4667	03	HAG HAG	169 169	58.640 56.843	47.461 46.263	68.031 69.172	1.00 48.47	AAAA C
ATCH ATOH	4669 4671	O4	NAG	169	57.826	45.80C	70.134	1.00 50.06	AAAA O
ATOH	4672	C5	HAG	469	55.847	45.130	68.959	1.00 50.81	AAAA C AAAA C
ATOM	4675	C.G	HAG	469	55.190	44.720 45.551	70.239 71.193	1.00 56.25	AAAA O
ATCH arou	4678 4674	06 05	HAG HAG	469 469	54.829 54.914	45.599	68.043	1.60 55.45	AAAA O
ATOH ATOH	4679	CI	FU/2	470	53.830	46.395	71.203	1.00 61.17	AAAA C AAAA C
ATOI1	4681	C2	FUC	470	53.642	47.121	72.534	1.00 59.23 1.00 55.14	AAAA O
ATOH	4682	O2 C3	FUC FUC	470 470	54.861 53.421	46.876 48.429	73.241 71.757	1.00 58.39	AAAA C
ATOH ATOH	1685 1687	03	EUC	470	53.381	49.515	72.637	1.00 56.30	AAAA O
ATOH	4689	C4	FUC	470	52.245	48.255	70.809 71.544	1.00 61.24 1.00 63.74	AAAA C AAAA O
ATOH	1691	O4 C5	FUC FUC	470 470	51.061 52.455	47.904 47.086	69.828	1.00 62.20	AAAA C
ATOH ATOH	4693 4696	C6	FUC	470	51.462	46.723	68.784	1.00 59.15	AAAA C AAAA O
ATOI1	1695	05	FUC	470	52.567	45.889	70.781 71.149	1.00 64.68 1.00 37.00	AAAA C
ATON	4700	C1 C2	HAG	471 471	58.034 58.977	46.760 46.225	72.186	1.00 40.30	AAAA C
ATOH ATOH	4702 4704	112	NAG	471	58.958	44.787	72.509	1.00 36.82	AAAA II AAAA C
HOTA	4706	C7	HAG	471	57.856	44.183	72.903	1.00 44.21 1.00 51.50	AAAA O
ATOU	4707	07	HAG	471 471	56.892 58.202	44.744 42.814	72.885 73.323	1.00 46.02	AAAA C
ATOH ATOH	4708 4712	C8	HAG	471	58.901	47.250	73.291	1.00 34.50	AAAA C
ATOH	4714	03	HAG	471	59.698	46.917	74.385	1.00 35.84 1.00 38.52	АЛАА О АААА С
ATOH	4716	C4	HAG	471 471	59.645 59.754	48.488 49.464	72.694 73.694	1.00 37.44	O AAAA
HOTA	4718 4719	04 05	HAG	471	59.056	48.958	71.332	1.00 36.94	AAAA C AAAA C
ATOH	4722	Ç6	HAG	471	60.116	49.692	70.525 71.080	1.00 36.14 1.00 43.49	AAAA O
HOTA	4725	06	HAG	471 471	61.106 58.853	50.390 47.785	70.530	1.00 34.98	O AAAA
ATOH ATCH	4721 4727	05 01	HAH	472	61.035	19.984	73.959	1.00 53.37	AAAA C
ATON	4729	C2	HAII	472	60.920	51.497	74.260	1.00 56.72	AAAA O
ATOH	4730			472 470	59.924 62.216	51.584 52.031	75.272 74.840	1.00 60.70	AAAA C
ATOH ATOH	4733 4735			472	62.028	53.337	75.383	1.00 60.70	O AAAA
HOTA	4736		HAH	472	62.787	51.161	75.932	1.00 55.46 1.00 57.16	AAAA C AAAA O
ATOI1	4738			472 472	64.085 62.797	51.595 49.685		1.00 52.10	AAAA C
ATOH ATOH	4740			472	63.458	48.905	76.595		AAAA C
ATOH	4746	06	нан	472	62.990	48.969			O AAAA O AAAA
ATOI-I	4742			472 473	61.443 62.594	49.407 54.401			AAAA C
ATOH ATOH	4748 4750			473	62.417	55.679	75.569	1.00 75.28	AAAA C
ATOII	4751			473	63.378				AAAA C AAAA C
ATOH	4754			473	60.977 60.941				AAAA O
ATOH	4756 4756			473 473	60.341			1.00 78.70	AAAA C
ATOH ATOH	4760			473	58.983	56.571			AAAA C AAAA C
ATOH				473	60.499				AAAA C
ATOH				473 473	59.968 60.239		- · · - ·	3 1.00 71.39	AAAA O
ATOH!				173	61.916		73.46	3 1.00 74.97	АААА О ВВВВ С
ATOI			B ALA	479	42.462				BBBB C
ATON	440			479	40.017				BBBB O
ATON					40.393 40.696			4 1.00 86.43	6888 II
NOTA NOTA					41.033	74.10	8 16.03	3 1.00 89.85	BBBB C BBBB II
ATO	441	6 11	ALA	490	38.749				BBBB C
ATO				_	37.684 37.929			9 1.00 86.84	BBBB C
ATOI ATOI					36.30	·			BBBB C
		_							

								2888 O
	4421 0	ALA -	490	35.415	74.647 1		1.00 93.79	
ATO!!			481	36.135	75.304 1	5.564	0.01 89.69	BBBB III
ATOH	4422 0					14.915	1.00 87.19	5888 C
ATOH	4424 C		481				0.01 92.74	BBBB €
ATOH	4425 C	B GLN	481					DBBB C
	4426 €		491	34.277	17.627		1.00 99.93	
ATOH			481		79.003	14.626	1.00103.59	BBBB C
ATOH		D GLII					1.00103.27	BBBB O
ATOH	4458 G	El GLN	481				1.00108.00	6888 11
ATOH	4429 1	E2 GLN	481	32.792				
	-		481	34.755	73.947	14.005	1.00 85.31	BBBB C
ATOI1	4432 C					13.456	1.00 83.41	GBBB O
ATOH	4433 C	GLII	481				1.00 82.85	BBBB 11
ATOH	4434 11	LYS	482	35.849				
			482	35.982	71.990	13.089	1.00 73.49	BBBB C
ATOI 1		A LYS				12.480	1.00 73.13	BBBB C
HOTA	4437 0	B LïS	482	•	_		1.00 76.33	BBBB C
ATOI-I	4438	G LYS	182	38.287		12.494		
			482	39.413	72.968	11.471	1.00 80.62	BBBB C
ATOI I						11.027	0.01 76.66	BBBB C
I-IOTA	4440 C	E LYS	482	•			0.01 76.20	BBBB 1:
ATOH	4441	IC LYS	482	41.252		10.262		
			482	35.779	70.701	13.872	1.00 67.70	BBBB C
ATCH	4445					15.092	1.00 69.99	BBBB O
ATOH	4446) LTS	482	35.879			1.00 61.47	BEBB I:
ATOH	1447 1	: LEU	483	35.530	69 - 585	13.199		
			483		68.356	13.896	1.00 59.03	BBBB C
ATOM					67.529	13.039	1.00 55.20	BBBB C
ATOH	4450	CB LEU	483			12.875	1.00 61.94	BBBB C
ATOI!	4451 9	GG LEU	483	32.779				BBBB C
		D1 LEU	483	32.405	69.154	13.595	1.00 44.78	
ATOM					67.707	11.395	1.00 44.63	BBBB C
ATOL		DD2 LEU	183	32.433	-	14.229	1.00 59.73	BBBB C
I-IOTA	4454 (: LEU	483	36.421	67.509			FBBB O
		D LEU	483	36.465	66.709	15.165	1.00 57.22	
I IOTA				37.345	67.543	13.262	1.00 56.21	PBBE II
ATC! 1	4456 1	1 ILE	184			13.367	1.00 52.58	BBBB C
ATOH	4458 4	CA ILE	484	30.597	66.820			
		TP ILE	484	38.490	65.390	11.870	1.00 50.27	
ATOH				37.769	65.319	11.524	1.00 44.85	BBBB €
ATOI1	1160	CG2 ILE	484			12.756	1.00 39.78	BBBB C
ATO:1	4461	CG1 ILE	484	39.870	64.766			BBBB C
ATOH		CD1 ILE	484	39.888	63.291	12.404	1.00 30.43	
			184	39.623	67.645	12.608	1.00 53.49	BBBB C
ATOII		_				11.942	1.00 48.33	BBBB O
ATOLI	4164	O ILE	484	39.158	68.568			BBBB H
ATO:1	4465	II SER	485	40.911	67.499	12.887	1.00 50.86	
		CA SER	485	41.898	68.335	12.209	1.00 49.78	BBBB C
ATOH					69.753	12.747	1.00 46.06	BBBB C
ATON	4468	CB SER	485	41.969			1.00 63.03	BBBB O
ATOI:1	4469	OG SER	485	43.190	70.035	13.376		BBBB C
		C SER	485	43.294	67.711	12.240	1.00 50.57	
ATOM				43.510	66.601	12.740	1.00 46.55	BBBB O
ATON!	4472	O SER	485			11.604	1.00 52.16	BBBB !!
ATOI1	4473	II GLU	486	44.246	68.389			BBBB C
	4475	CA GLU	486	45.624	67.874	11.509	1.00 59.12	
ATOH			486	16.547	68.683	10.59B	1.00 59.71	BBBB C
ATOH	4476	CB GLU			70.162	10.568	1.00 76.75	BBBB C
ATOH	4477	CG GLU	486	46.221				BBBB C
ATON	4478	CD GLU	486	47.370	71.045	10.983	1.00 80.53	
		OE1 GLU	486	48.315	70.404	11.472	1.00 91.67	BBBB O
ATO!	4479				72.289	10.897	1.00 B6.00	BBBB O
ATOI1	4480	OE2 GLU	486	47.480			1.00 56.50	BBBB C
ATOH	4481	C GIN	186	46.272	67.773	12.896		
	4482	o GLU	486	46.768	66.747	13.326	1.00 49.83	BBBB O
ATOH				45.955	68.738	13.732	1.00 58.37	BBBB II
ATOM:	4483	II GLU	437			15.169	1.00 59.36	BBBB C
ATOH	4485	CA GLU	487	46.129	68.736			BBBB C
ATOH	1186	CB GLU	447	45.303	69.887	15.729	1.00 61.32	
			487	45.645	70.232	17.159	1.00 79.21	BBB9 €
HOTA	4187	CG GLU			71.545	17.177	1.00 86.09	BBBB C
ATO!	4488	CD GLU	487	46.397			1.00 92.00	PBBB O
ATOI1	1189	OE1 GLU	487	45.768	72.610	17.320		
		OEC GLU	187	47.637	71.452	17.026	1.00 96.51	BBBB O
ATOH	4490					15.841	1.00 58.84	BBBB C
HOTA	4491	C GLU	487	45.735	67.436	16.761	1.00 61.93	BBBB O
HOTA	4492	o GLU	487	46.421	67.018		1.00 01.55	
ATOH	4493	II ASP	188	44.748	66.661	15.474	1.00 56.50	5668 II
		CA ASP	488	44.446	65.347	15.932	1.00 55.61	BBBB C
ATOH	1495				64.977	15.699	1.00 51.22	BBBB C
ATOH	4496	OB ASP	488	42.947			1.00 45.27	BBBB C
LIOTA	4497	CG ASP	188	42.047	66.008	16.267		
	4198	OD1 ASP	188	42.114	66.563	17.387	1.00 56.45	BBBB O
ATOH				41.154	66.399	15.492	1.00 55.11	BBBB O
ATOH	4499	OD2 ASP	188				1.00 58.91	BBBB C
MOTA	4500	C ASP	188	45.206	64.211	15.238		
ATOH	4501	O ASP	488	44.967	63.042	15.634	1.00 57.00	BBBB O
			489	45.933	64.513	14.163	1.00 57.39	BBBB II
ATOH	4502	II LEU				13.528	1.00 64.03	BBBB C
I IOTA	4504	CA LEU	489	46.659	63.426			
ATOH	4505	CB LEU	183	46.722	63.677	12.024	1.00 62.69	BBBB C
ATOI-I		CG LEU	489	45.746	62.788	11.226	1.00 53.71	BBBB C
					63.243	11.514		BBBB C
ATOH		CD1 LEV	189	44.324				BBBB C
ATOH	4508	CD2 LEU	489	46.072	62.967	9.766		
ATOI-1		C LEU	489	48.017	63.355	14.210		BBBB C
				48.860				BBBB O
ATOI1		O LEU	489					BBBB II
ATOH	4511	II ASII	460	48.306	64.318			
ATOI		CA ASI	490	49.497	64.424	15.855	1.00 75.04	BBBB C
				49.734	65.910			BBBB C
ATOI:1	4514	CB ASII	160					BBBB C
ATO:	4515	CG ASII	490	51.191	66.105			
ATO		OD1 ASII	490	52.082	65.342	16.178	1.00 97.25	BBBB O
				51.459				BBBB 11
ATO		HD2 ASH	490					BBBB C
ATON	4520	C ASII	490	49.350				
ATO		O ASII	490	49.891	62.484	17.264	1.00 80.97	BBBB C
			190	48.510			1.00 89.51	BBBB O
ATO						_		DDDD S
-KOTA	1 4770	s sul	493	37.234	-7.808			

						4	16/58		
ATC:1	4771	01	SUL	193				1.00112.65	DDDD O
ATOH	4772		SUL	193				1.00110.21 1.00109.93	O GGGG
IOTA IOTA	4774		SUL SUL	493 493		-8.978	65.639	1.00107.58	DDDD O
LIOTA	1775		SUL	494		-		1.00109.81 1.00107.98	DDDD S DDDD O
ATOH	4776		SUL SUL	194 194				1.00112.59	DDDD O
ATOH ATOH	4777 4778		SUL	494			66.267	1.00111.35	DDDD O
ATOI1	4779		SUL	494		18.792		1.00109.86 1.00114.67	DDDD O
ATCH	4780 4781	S 01	SUL	495 495				1.00111.38	DDDD C
ATOH ATOH	1782	02	SUL	495	35.476	10.329		1.00113.60	DDDD O
HOTA	4783	03	SUL	495 495		11.860 10.278		1.00112.77	o ddda
ATOH HOTA	4784 4785	S 01	SUL	156	35.466	24.844	59.093	1.00 50.73	DDDD S
ATOH	4786	01	SUL	196		24.843		1.00 62.59 1.00 48.59	DDDD 0
ATCH	1787	02 03	SUL SUL	496 496	36.002 35.880	23.581 26.084		1.00 56.74	DDDD O
ATOH HOTA	4788 4789	01	SUL	196	33.958	24.953		1.00 59.34	DDDD O
ATO:	4790	S	SUL	197	47.653 47.849	-2.303 -1.058	70.199 70.996	1.00 68.98 1.00 68.52	ODDD O
ATOM ATOM	4791 4792	01 02	SUL	197 197	48.594	-2.509	69.072	1.00 70.94	DDDD O
ATON	4793	03	SUL	497	46.187	-2.393	69.810 71.129	1.00 73.47 1.00 71.33	DDDD O
ATOH	1794	04 5	SUL SUL	497 498	47.799 56.527	-3.446 35.758	75.513	1.00 71.48	DDDD S
ATOH ATOH	4795 4796	01	SUL	198	55.870	35.013	76.621	1.00 72.97	O DODO
HOTA	÷797	02	SUL	498	57.759	34.996	75.167 75.785	1.00 69.11	DDDD O
ATOH ATOH	4798 4799	O3	SUL	498 498	56.619 55.623	35.809	74.330	1.00 72.74	o dada
ATOIL	4800	S	SUL	100	10.639	27.365	69.499	1.00 74.04 1.00 76.00	DDDDD S DDDDD C
ATO!!	4891	01	SUL	159	40.218 42.089	26.039	70.045 69.835	1.00 75.15	DDDD O
ATOH ATOH	4902 4803	O2 O3	SUL SUL	198 199	39.823	28.467	70.098	1.00 77.27	DDDD O
ATOI1	4804	04	SUL	499	40.424	27.245	68.018 20.568	1.00 75.70 1.00 83.89	DDDD O DDDD S
NOTA HOTA	4806 4805	s Oi	SUL	500 500	44.996 45.080	53.228 54.400	21.461	1.00 84.79	DDDD O
ATOH	4807	02	SUL	500	46.109	52.266	20.827	1.00 90.38 1.00 92.23	O DDDD
ATOM	4808	03	SUL SUL	500 500	45.032 43.762	53.674 52.396	19.135 20.723	1.00 91.61	O DDDD
MOTA MOTA	4809 4810	OM O4	WAT	501	29.970	6.904	77.713	1.00 34.84	O DODO
ATOH	4913	OM	WAT	502	42.522 37.561	18.998 21.003	78.232 67.518	1.00 55.27 1.00 41.63	DDDD O
MOTA HOTA	4816 4819	OM OM	TAW TAW	503 504	50.446	5.721	63.485	1.00 57.37	DDDD O
ATOH	4822	C/A	WAT	505	56.668	24.854	72.729 22.72 7	1.00 57.34 1.00 54.26	O DDDD O
ATOH	4825	ON OM	WAT WAT	506 507	50.605 55.123	57.695 37.781	61.204	1.00 43.71	DDDD O
ATOH ATOH	4828 4831	OM	WAT	508	17.414	-9.070	74.793	1.00 48.79 1.00 28.64	O DDDQ O DDDQ
ATOH	1831	014	TAW	509	44.263 45.085	20.885 19.708	63.811	1.00 49.09	O DDDD
ATOH ATOH	1837 4840	ON	WAT	510 511	33.537	1.927	71.115	1.00 60.39	0 DDDQ 0 DDDQ
ATOH	1613	Oi:1	WAT	513	19.279	-0.835 -0.835	75.254 68.996	1.00 55.23 1.00 57.51	DDDD O
ATOH	1816 1816	ŮΝ ⊍Ν	WAT	513 514	11.502 24.591	17.207	56.665	1.00 56.36	DDDD O
ATOH ATOH	4852	OW	WAT	515	56.947	34.914	62.552	1.00 36.47 1.00 30.34	DDDD O
HOTA	4855	ON	TAW TAW	516 517	58.092 48.308	39.983 40.726	66.234 56.768	1.00 81.69	O DDDD
HOTA	4858 4861	OW	WAT	518	25.776	2.355	85.630	1.00 66.34	
ATOI1	4864	OM	WAT	519	30.644	69.108 54.257	30.765 43.611	1.00 82.28 1.00 43.41	O GGGG
ATOH ATOH	4867 4870		WAT WAT	520 521	38.739 22.886	4.470	64.871	1.00 48.71	DDDD C
ATOH	1873	OM	WAT	522	30.939	50.249	19.364 42.441	1.00 54.00	O DDDD O DDDD
HOTA	4876 4879		TAW TAW	523 524	32.413 41.019	9.061 42.560		1.00 43.40	O DDDD
IOTA IOTA	4882			525	54.268	51.393	37.513	1.00 55.10 1.00 46.49	ODDD O
HOTA	4985	014		526 527	37.130 42.585	13.599 10.244		1.00 35.95	DDDD O
HOTA HOTA	1861 1888			528	43.661	61.633	18.450	1.00 41.05	DDDD O
ATOH	4894		WAT	529	27.980			1.00 54.59 1.00 37.96	0 0000
IOTA	4897			530 531	59.527 22.451	38.520 1.046		1.00 59.31	DDDD O
ATOH ATOH	4900 4903			532	30.380	16.123	70.205	1.00 40.39 1.00 52.34	DDDD O
INTA	4906	S ON		533	46.835			1.00 46.05	DDDD O
ATOM ATOM	4909 4913			534 535	39.446 46.992	51.272	50.722	1.00 52.62	O DDDD O DDDD
HOTA	491	5 OV	I WAT	536	44.263	18.776		1.00 40.61 1.00 51.56	O DDDD
POTA	191			537 538	33.670 52.469			1.00 61.98	DDDD O
IOTA	492) 492)				49.985	44.871	37.324	1.00 45.45	O DDDD O
ATOI1	492	7 01	TAW W		24.074				DDDD O
HOTA					35.207 31.231		62.362	1.00 48.33	DDDD O
ATON		6 O	TAW K	5.43	41.726	-5.15	55.290		O DDDD O
ATOH	153				48.56- 49.501			1.00 44.88	DDDD O
HOTA					54.85				DDDD O

Q,

PCT/AU98/00998 WO 99/28347

47/58 30.459 -14.959 70.554 1.00 84.42 57.310 32.779 60.849 1.00 50.77 O DDDD ATOH 4948 ON WAT ATOH 4951 ON WAT END 547 548

	40/50
	335R 336R 38N
	335R 336R V) 338N
	6 28
	38 14
	32 (34)
	F (8 >
က	310T 3 316S) 115T 314V 343E
Ø	310f (3168) 3138 315f 314V (344V) 343E 338l
Face 3	*
u_	309K 312D 3 (3168) 3138 Q 3151 33 7F 314V (344V) 6Q 343E 338
	309I 9M 318G 347F 346G
	80 g
	31 31
	305E)2C) ₃
	3(G)
	(3
∼ .	(3 (5)
Cleft 2	8 /
$\stackrel{\circ}{\sim}$	H = 98
0	305E 304E (302C) _{319M} 282I 300K 318Q 298C (322G)321Q 347F 5) 346Q
	52D 305E 3 264E (302C)319M 282I 300K 3186 298C (322G)321Q 347 (280G) 346
	2D (28
	26 38 % % (
2	S 26,776 277
မ	2 , Q ₂ ∑
Face 2	2 L 75:75
	259E 256L 266F 2 272E 10R 270D
	255 257 277 277 277
	259 251 266F 41F 272 272 240R
_	25
Cleff 1	5E 2E V
8	24 24
•	5P (G) (777
	(27 (27 (27 (27 (27 (27 (27)
	95 7 8 8 N
	28 28 25 32 32 32 4 32 4 32 4 32 4 32 4 32 4
	8D OH 0 85 85
Face 1	30 30 36 36 36 36 36 36 36
ğ	10 12 12 12 13 13 14
F	S 88 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	11 31 9 9 9 9
	(12D) 11N 10R 8D (6G) 5P (61A) 59R 58F 56L 54Y 53E 242I 91E 90F (88V) 83Y 80K 79W (140V) 12R 85Y 84N 108R
	(1) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A
	(33
	(12D) 11N 10R 8D (6G) 5P 256L 263S 264E (61A) 59R 58F 56L 54Y 53E 242E 241F (274M) 272E 275G 298C 115K 114E 12R 85Y 80K 79W 240R 270D (140V) 250V

Figure 2

Figure 3

50/58

Figure 4

Figure 5

a GT AN DYTTE LEENCE VIELE GOLL HILL GOLL HELE NOT VIELE GOLL HELE GOLL HELE GOLL HELE GOLL VIELE GOLL HELE GOLL VIELE GOLL HELE GOLL VIELE GOLL HELE GOLL HEL Y REP KLI VITE Y LL LER V A G L ES L C D LEP NEITVIRGS R L F F N Y A L L S F P KLI MI T D T Y L L LER V Y G L ES L K D L E P N L T V I R G S R L F F N Y A L L S F L K T I O E V A G F L L L I D A W P E N R I D L H A F E N L E L I R G E T L E L G IN Y S L A N L G L L E E L S G Y L K I R R S Y A L V S L S F I L K N L R L I L G E E Q L E G W Y S P YNLR WI YNLMNI YNLMNI K(2) PMRNLQEI WSKHNL TI WSKHNL TU b 183 190 189 545 EGFR D2 ACVACR HTYY AGYCV PACPPN 237 KCVACR NEY L DGRCVET CPPP 244 CCLVCR KFR DEATICK DT CPPL 243 NCIOCA HY DGPHCV KII CPAG 575 Modula 4 Module 2 TYREE GWRCVDRDFCANIL
YYHEO DWRCVNFSFCODLHHKCKNS
KYSEG ATCVK
VWKYADAGHVGH I CHPRCLYBCLGDB Module 5 GPCP 299 GPCP 309 GPCP 310

Figure 6

Figure 7

Figure 9: Sequence Alignment of hIGF-1R, hIR and hIRR ectodomains.

Derived by use of the PileUp program in the software package of the Genetics Computer Group, 575 Science Drive, Madison, Wisconsin, USA.

Symbol Comparison table: GenRunData:PileUpPep.Cmp CompCheCk: 1254 GapWeight: 3.0 GapLengthWeight: 0.1 972 CheCk: 1781 Weight: 1.00 Name: Higflr Len: Len: 972 CheCk: 2986 Weight: 1.00 Name: Hir Len: 972 CheCk: 9819 Weight: 1.00 Name: Hirr HigflrEICGP GIDIRNDYQQ LKRLENCTVI EGYLHILLIS K..AEDYRSY 43 Hir HLYPGEVC.P GMDIRNNLTR LHELENCSVI EGHLQILLMF KTRPEDFRDL 49 HirrMNVC.P SLDIRSEVAE LRQLENCSVV EGHLQILLMF TATGEDFRGL 45 Higflr RFPKLTVITE YLLLFRVAGL ESLGDLFPNL TVIRGWKLFY NYALVIFEMT 93 SFPKLIMITD YLLLFRVYGL ESLKDLFPNL TVIRGSRLFF NYALVIFEMV 99 Hir SFPKLIMITD YLLLFRVYGL ESLKULFFNL IVINGSRUFF SFPKLTQVTD YLLLFRVYGL ESLKULFPNL AVIRGTRLFL GYALVIFEMP 95 Higflr NLKDIGLYNL RNITRGAIRI EKNADLCYLS TVDWSLILDA VSNNYIVGNK 143 Hir HLKELGLYNL MNITRGSVRI EKNNELCYLA TIDWSRILDS VEDNYIVLNK 149 Hirr HLRDVALPAL GAVLRGAVRV EKNQELCHLS TIDWGLLQPA PGANHIVGNK 145 Higflr PPK.ECGDLC PGTMEEKPM. CEKTTINNEY NYRCWTTNRC QKMCPSTCGK 191 Hir DDNEECGDIC PGTAKGKTN. CPATVINGQF VERCWTHSHC QKVCPTICKS 198 Hirr LG.EECADVC PGVLGAAGEP CAKTTFSGHT DYRCWTSSHC QRVCPCPHG. 193 Higflr RACTENNECC HPECLGS CSA PONDTACVAC RHYYYAGVCV PACPPNTYRF 241 HIR HGCTAEGLCC HSECLGNCSQ PDDPTKCVAC RNFYLDGRCV ETCPPPYYHF 248 Hirr MACTARGECC HTECLGGCSQ PEDPRACVAC RHLYFQGACL WACPPGTYQY 243 *----* Higflr EGWRCVDRDF CANILSAES. ... SDSEGFV IHDGECMQEC PSGFIRNGSQ 287 HIR QDWRCVNESF CQDLHHKCKN SRRQGCHQYV IHNNKCIPEC PSGYTMNSSN 298 Hirr ESWRCVTAER CASLHSVPG. RASTFG IHQGSCLAQC PSGFTRNSS. 287 Higflr SMYCIPCEGP CPKVCEEEKK TKTIDSVTSA QMLQGCTIFK GNLLINIRRG 337 Hir .LLCTPCLGP CPKVCHLLEG EKTIDSVTSA QELRGCTVIN GSLIINIRGG 347 Hirr SIFCHKCEGL CPKECKV..G TKTIDSIQAA QDLVGCTHVE GSLILNLRQG 335 Higflr NNIASELENF MGLIEVVTGY VKIRHSHALV SLSFLKNLRL ILGEEQLEGN Hir NNLAABLEAN LGLIEEISGY LKIRRSYALV SLSFFRKLRL IRGETLEIGN 385 Hirr YNLEPQLQHS LGLVETITGF LKIKHSFALV SLGFFKNLKL IRGDAMVDGN Higflr YSFYVLDNON LOOLWDWDHR NLTIKAGKMY FAFNPKLCVS EIYRMEEVTG 437 Hir YSFYALDNON LROLWDWSKH NLTITOGKLF FHYNPKLCLS EIHKMEEVSG 447

Hirr YTLYVLDNON LOQLGSWVAA GLTIPVGKIY FAFNPRLCLE HIYRLEEVTG 435

			* !End o	f 1-462 fra	gment	
Higflr	TKGRQSKGDI	NTRNNGERAS		S TTTSKNRII		
Hir	TKGRQERNDI	ALKTNGDQAS	CENEL LKFS	Y IRTSFDKIL	L RWEPYWPPD	F 497
Hirr	TRGRONKAEI	NPRTNGDRAA	COTRT LRFV	S NVTEADRIL	L RWERYEPLE	A 485
•	_					
Higflr	RDLISFTVYY	KEAPFKNVTE	YDGQDA <i>C</i> GSN	SWNMVDVDLP	PNKDV	532
Hir	RDLLGFMLFY	KEAPYONVTE	FDGODA <i>C</i> GSN	SWTVVDIDPP	LRSNDPKSQN	547
Hirr	RDLLSFIVYY	KESPFONATE	HVGPDACGTQ	SWNLLDVELP	LSRTQ	530
			_			F 0 0
Higflr	EPGILLHGLK	PWTQYAVYVK	AVTLTMVEND	HIRGAKSEIL	YIRTNASVPS	582 596
Hir	HPGWLMRGLK	PWTQYAIFVK	TL.VTFSDER	RTYGAKSDII	YVQTDATNPS	596 580
Hirr	EPGVTLASLK	PWTQYAVFVR	AITLTTEEDS	PHQGAQSPIV	YLRTLPAAPT	560
Higflr	TREDVISASM	SSSOLTVKWN	PPSLPNGNLS	YYIVRWOROP	ODGYLYRHNY	632
Hir	VPLDPTSVSN	SSSOTTLKWK	PPSDPNGNIT	HYLVFWERQA	EDSELFELDY	646
Hirr	VPODVISTSN	SSSHLLVRWK	PPTQRNGNLT	YYLVLWQRLA	EDGDLYLNDY	630
*****	· · · · · · · · · · · · · · · · · · ·					
	*			* ** **	*	
Higflr	CSKD.KIPIR	KYADGTIDIE	EVTENPKTEV	C GGEKGP CC A	CPKTEAE	678
Hir	CLKGLKLPSR	TWS.PPFESE	DSQKHNQSE.	YEDSAGE <i>CC</i> S	CPKTDSQ	691
Hirr	CHRGLRLPTS	N.NDPRFDGE	DGDPEAEME.	SD <i>CC</i> P	<i>C</i> QHPPPGQVL	673
			α	><- β		728
Higflr	KQAEKEEAEY	RKVFENFLHN	SIFVPRPERK	RRDVMQVANT	TMSSRSRNTT	738
Hir	ILKELEESSF	RKTFEDYLHN	VVFVPRPSRK	RRSLGDVGNV	TVAVPIV	722
Hirr	PPLEAQEASF	QKKFENFLHN	AITIPISPWK	AL2TMK2LOK	D. SGRIRRAN	, , ,
					*	
···	33 DMVNTM	DDEET EFFVD	FFESRVDNKE	RTVISNLRPF	TLYRIDIHSC	776
Higflr	AADIIMII	DECEPTELL	FEKVVNKE	SLVISGLRHF	TGYRIELOAC	786
Hir	AAF PNISSIS	VEISEEDKE	RE	RAVISGLEHE	TEYRIDIHAC	764
Hirr	GLTKTGGW22	DESIGEDMAS		141120021412		
	*					
Higflr	NHEAEKLGCS	ASNEVEARTM	PAEGADDIPG	PVTWEPRPEN	SIFLKWPEPE	826
Hir	NODTPEERCS	VAAYVSARTM	PEAKADDIVG	PVTHEIFENN	VVHLMWQEPK	836
Hirr	-	AATFVFARTM	PHREADGIPG	KVAWEASSKN	SVLLRWLEPP	814
HILL	MINALIVOOD					
			. · · · · · · · · · · · · · · · · · · ·	*		
Higflr	NPNGLILMYE	IKYGS.QVED	QRECVSRQEY	RKYGGAKLNR	LNPGNYTARI	875
Hir	EDNICE TATIVE	VSYPRYCDEF	LHLCVSRKHF	ALERG <i>C</i> RLRG	LSPGNYSVKI	880
Hirr	DPNGLILKYE	IKYRRLGEEA	TVLCVSRLRY	AKFGGVHLAL	LPPG <u>NYS</u> ARV	864
	_					
				₹		906
Higflr	QATSLSGNGS	WIDPVFFYVC	AKTGYENFIH	r L		917
	RATSLAGNGS	WIEPTYFYVI	DYLDVPSNIA	H		895
Hirr	RATSLAGNGS	WIDSVARYII	. GPEEEDAGGL	**		

Figure 10

PRISOCOLO, AND COMORATA + 1

58/58

Schematic	interpretations	of EM in	nages
Sample	Projecti y axis	on along: z axis	x axis
hIR		U	
hIR/ 83-7			
hIR/ 83-14			
hIR/ 18-44/83-14			
hIR/ 83-7/18-44			
hIR/ 83-7/83-14			

INTERNATIONAL SEARCH REPORT

International application No. PCT/AU 98/00998

A.	CLASSIFICATION OF SUBJECT MATTER		
Int Cl ⁶ :	C07K 14/705, 14/71; G06F 17/50, 19/00, 159:00		
According to	International Patent Classification (IPC) or to both	national classification and IPC	
В.	FIELDS SEARCHED		
Minimum docu	umentation searched (classification system followed by c	classification symbols)	
Documentation	n searched other than minimum documentation to the ex	tent that such documents are included in	the fields searched
	a base consulted during the international search (name of DN-LINE: keywords :keywords	f data base and, where practicable, search	ı terms used)
C.	DOCUMENTS CONSIDERED TO BE RELEVANT	•	
Category*	Citation of document, with indication, where ap	propriate, of the relevant passages	Relevant to claim No.
х	WO 90/00562 (DEMEYTS) 25 January 1990 See whole document		1-33
P,X	Protein Science, 1997, no. 6, pages 2663-2666 No of the first 3 domains of the human idsulin-lila pages whole document	Mckern. NM et al. "Crystallization growth factor -1 receptor	1-33
X	Further documents are listed in the continuation of Box C	X See patent family ar	nnex
"A" document of the interior with another of the interior with another or with another of the interior with a superior with	ial categories of cited documents: ment defining the general state of the art which is onsidered to be of particular relevance er application or patent but published on or after international filing date ment which may throw doubts on priority claim(s) which is cited to establish the publication date of intercitation or other special reason (as specified) ment referring to an oral disclosure, use, bition or other means ment published prior to the international filing but later than the priority date claimed	priority date and not in conflict with understand the principle or theory understand the principle or theory undocument of particular relevance: the be considered novel or cannot be considered novel or cannot be considered to involve an inventive combined with one or more other succombination being obvious to a personal confliction.	the application but cited to inderlying the invention e claimed invention cannot usidered to involve an attach alone in claimed invention cannot be claimed invention cannot be step when the document is such documents, such son skilled in the art
	tual completion of the international search	Date of mailing of the international sear 2 8 JAN 1999	rch report
	iling address of the ISA/AU N PATENT OFFICE	Authorized officer OI LEE CHAI	
AUSTRALIA		Telephone No.: (02) 6283 2482	

Form PCT/ISA/210 (second sheet) (July 1998) copdeg

BHEDDOID AND SMERTALLS

INTERNATIONAL SEARCH REPORT

International application No.

PCT/AU 98/00998

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT							
Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.					
P.X	Nature, vol 394, published 23 July 1998, pages 395-399, Garrett TPJ et al, "Crystal Structure of the first 3 domains of the type -1 insulin-litu growth factor-1 receptor See whole document	1-33					

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No PCT/AU 98/00998

END OF ANNEX

This Annex lists the known "A" publication level patent family members relating to the patent documents cited in the above-mentioned international search report. The Australian Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

Patent Doo	cument Cited in Search Report			Paten	t Family Member		
wo	90/00562	AU	39822/89	DE	68927854	EP	378671
		JP	3501487	US	5227466		
	•						

Form PCT/ISA/210 (extra sheet) (July 1998) copdeg

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6: C07K 14/705, 14/71, G06F 17/50, 19/00, 159/00

(11) International Publication Number:

WO 99/28347

(43) International Publication Date:

10 June 1999 (10.06.99)

(21) International Application Number:

PCT/AU98/00998

(22) International Filing Date:

27 November 1998 (27.11.98)

(30) Priority Data:

PP 0585 PP 2598 27 November 1997 (27.11.97) ΑŪ AU

25 March 1998 (25.03.98)

(71) Applicant (for all designated States except US): COMMON-WEALTH SCIENTIFIC AND INDUSTRIAL RESEARCH ORGANISATION [AU/AU]; Limestone Avenue, Campbell, ACT 2601 (AU).

(71) Applicant (for US only): TULLOCH, Paul, Alexander (legal representative for the deceased Inventor) [AU/AU], 11 Kingston Court, Denmark, W.A. 6333 (AU).

(72) Inventors; and

(75) Inventors/Applicants (for US only): BENTLEY, John, David AU/AU]; 85 Margaret Street, Macedon, VIC 3440 (AU). COSGROVE, Leah, Jane [AU/AU]; 22 Tarlton Street, Somerton Park, S.A. 5044 (AU). FRENKEL, Maurice, John [AU/AU]; 23 Ellington Street, South Caulfield, VIC 3162 (AU). GARRETT, Thomas, Peter, John [AU/AU]; 2 Gray Street, Brunswick, VIC 3055 (AU). LAWRENCE, Lynne, Jean [AU/AU]; 24 Cook Street, Brunswick, VIC 3055 (AU).

LOU, Meizhen [CN/AU]; 10 Roma Street, Scoresby. VIC 3179 (AU). LOVRECZ, George, Oscar [AU/AU]; 2 Tovey Street, North Balwyn, VIC 3104 (AU). McKERN, Neil, Moreton [AU/AU]; Como Road, Lilydale, VIC 3170 (AU). TULLOCH, Peter, Archibald (deceased). WARD, Colin, Wesley [AU/AU]; 903 Rathdowne Street, Carlton, VIC 3053 (AU).

(74) Agent: F.B. RICE & CO.; 605 Darling Street, Balmain, NSW 2041 (AU).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD. GE, GH, GM, HR, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK. SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW). Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

With international search report.

(54) Title: METHOD OF DESIGNING AGONISTS AND ANTAGONISTS TO IGF RECEPTOR

(57) Abstract

The present invention relates to a method of designing compounds able to bind to a molecule of the insulin receptor family and to modulate the activity mediated by the receptor based on the 3-D structure coordinates of a IGF-1 receptor crystal of Figure 1.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	Fl	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	ΙE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of Americ
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal ·		,
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		ŧ
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	. SG	Singapore		

\$21 (COO)(C) - WO 00003.2781 18