24 TRIBHUVAN UNIVERSITY INSTITUTE OF ENGINEERING

Examination Control Division

2070 Magh

Exam.	New Back (2066 & Later Batch)			
Level	BE	Full Marks	80	
Programme	BEL, BEX, BCT, B.Agri.	Pass Marks	32	
Year / Part	II / II	Time	3 hrs.	

Subject: - Numerical Method (SH553)

- ✓ Candidates are required to give their answers in their own words as far as practicable.
- √ Attempt <u>All</u> questions.
- ✓ The figures in the margin indicate Full Marks.
- ✓ Assume suitable data if necessary.

[4]

[6]

[6]

[8]

[8]

[8]

[8]

- 1 Discuss the importance of Numerical Methods in the field of Science and Engineering.
- 2. Write pseudo-code for finding a real root of a non-linear equation using False Position Method.
- 3. Find a real root of the following equation, correct to three decimals, using the Fixed Point iteration method.

$$\sin x + 3x - 2 = 0$$

4. Solve the following systems of linear equations using the Gauss-Seidal iteration method.

$$x_1 + 3x_2 - x_3 + 7x_4 = 19$$

$$2x_1 + 8x_2 + x_3 - x_4 = 17$$

$$3x_1 + x_2 + 9x_3 - x_4 = 15$$

$$9x_1 - x_2 - x_3 + 2x_4 = 13$$

5. Find the largest Eigen value and corresponding vector of the following matrix using power method.

$$\begin{bmatrix} 2 & 5 & 1 \\ 5 & -2 & 3 \\ 1 & 3 & 10 \end{bmatrix}$$

6. Compute the value of y(3) and y(7) from the following data using Newton's interpolation formula.

X	2	4	6	8	10	12
у	5.1	4.2	3.1	3.5	6.2	7.3

7. Fit the following data to the curve $y = log_e (ax+b)$.

X	0	1	2	3	4	5	6
у	0.9	1.0	1.5	1.9	2.1	2.4	2.5

- 8. Evaluate the following, using simpson's 1/3 rule. (take h = 0.2) $\int_{0}^{2} \frac{4e^{x}}{1+x^{3}} dx$ [5]
- 9. Evaluate $\int_{2}^{3} \frac{\cos 2x}{1+\sin x} dx$ using Gauss quadrature three-point formula. [5]

Solve the following boundary value problem using finite difference method.

$$y'' = e^x + 2y' - y;$$
 $y(0) = 1.5;$ $y(2) = 2.5$

. Explain the technique of solving an initial value problem using Euler's method.

12. Find the value of u(x,y) satisfying the Laplace equation $\nabla^2 u = 0$, at the pivotal points of the square region with boundary conditions as shown below.

[10]

