2 OLIMPIADA INTERNACIONAL DE FÍSICA BUDAPEST, HUNGRÍA, 1968

Problema 1. En un plano inclinado de 30° un bloque, de masa $m_2 = 4$ kg, está unido por un cable de luz a un cilindro sólido, de masa $m_1 = 8$ kg, radio r = 5 cm (Fig. 1). Determinar la aceleración si los cuerpos están en liberados. El coeficiente de fricción entre el bloque y el plano inclinado es $\mu = 0.2$. La fricción en el cojinete y la fricción de rodadura son insignificantes.

Problema 2. Hay 300 cm³ de tolueno de temperatura 0°C en un vaso y 110 cm³ de tolueno de temperatura 100°C en otro vaso. (La suma de los volúmenes es de 410 cm³.) Hallar el volumen final después de que los dos líquidos se mezclan. El coeficiente de expansión de volumen de tolueno es $\beta = 0.001$ (°C)⁻¹. Despreciar la pérdida de calor.

Problema 3. Rayos de luz paralelos están cayendo sobre la superficie plana de un semi-cilindro de vidrio, en un ángulo de 45° , en el cual un plano es perpendicular al eje del semi-cilindro (Fig. 4). (Índice de refracción es $\sqrt{2}$.) ¿Dónde están los rayos que emergen de la superficie cilíndrica?

