Введение в искусственный интеллект

На базе дисциплины «Вычислительные сети, системы и телекоммуникации»

Технологический университет Королёв 2020

Введение в искусственный интеллект

Лекция №3 — «Обучение без учителя и сверточные нейронные сети».

- Обучение без учителя
- Метод k-средних
- Автокодировщик
- Сверточная нейронная сеть
- Генеративно-состязательная сеть

Обучение без учителя

Кластеризация:

разбивка данных на кластеры, в которых:

- элементы внутри кластера похожи,
- элементы в разных кластерах отличаются.

Автокодирование:

- обобщение данных,
- поиск корреляций,
- сжатие информации.

Кластеризация, метод k-средних

Алгоритм:

- 1. Выбираем N центроидов в пространстве данных.
- 2. Каждый элемент относится к тому кластеру, к центроиду которого он ближе.
- 3. В каждом кластере определяется новый центроид, равный среднему значению элементов кластера.
- 4. Если центроиды изменились, возвращаемся к шагу №2.

Кластеризация, метод k-средних

Кластеризация, метод k-средних

Проблемы:

- 1. Алгоритм останавливается в первом достигнутом локальном минимуме.
- 2. Результат зависит от изначального выбора центроидов.
- 3. Нужно заранее знать число кластеров N.

Особенности:

- Размерность входа всегда совпадает с размерностью выхода.
- Размерность внутренних слоёв всегда меньше, чем размерность входного и выходного.
- Цель сети восстановить входное значение, для чего приходится выделять общие признаки и сжимать информацию.

Использования:

- Сжатие информации после обучения убираем выходной слой и используем только кодировщик.
- Предобучение для выбранного слоя добавляем выходной слой, совпадающий с входным, и обучаем получившийся автокодировщик на примерах из пространства входов. Затем убираем выходной слой и используем получившиеся веса выбранного слоя.

- На вход подаются двумерные матрицы, обычно в нескольких каналах (цветах).
- Далее идет одна или несколько пар слоев свёртки и пулинга.
- В конце располагается обычный перцептрон.

Это позволяет существенно уменьшить число обрабатываемых параметров без потери существенной информации.

Слой свёртки извлекает и агрегирует информацию из окрестность элемента.

При этом может уменьшаться размерность матрицы и увеличиваться число каналов.

Ядро
$$W: w_{ij}, \quad 0 \le i, j < N.$$

$$Y_{ij} = f(\sum_{a=0}^{N-1} \sum_{b=0}^{N-1} w_{ab} X_{(i+a)(j+b)})$$

где X — вход слоя, Y — выход слоя, f() — активационная функция.

Сверточная нейронная сеть - свёртка

1	3	2
4	1	5
0	2	6

0	17
10	17

Слой пулинга уменьшает размерность матрицы.

При этом число каналов сохраняется.

Для пулинга NxN

$$Y_{ij} = max(X_{ab}), i \le a < i + N, j \le b < j + N$$

где X — вход слоя, Y — выход слоя.

Сверточная нейронная сеть - пулинг

1	0	2	8
5	3	0	4
7	2	6	7
0	1	2	5

5	8
7	7

Генеративно-состязательная сеть

Генеративно-состязательная сеть

Цель генератора – создавать изображения, который дискриминатор не сможет отличить от настоящих.

Цель дискриминатора — отличать изображения, созданные генератором, от реальных образцов изображений.

Материалы

- 1. http://datascientist.one/k-means-algorithm/
- 2. https://habr.com/ru/company/antiplagiat/blog/41817
- 3. https://habr.com/ru/post/309508/
- 4. https://neurohive.io/ru/osnovy-data-science/gan-ruko

Спасибо за внимание!