PENACITY METHOL Tranciamo un Problema vincolato como segue: $\begin{cases} \min & f(x) \\ g(x) \leq \emptyset & \forall i=1...m \end{cases}$ Doue quindi definions X = { xeR": 2; (k) & o } Penality function Definione la fonzione di penalità f(x): f(x) = \(\infty \, g_{\cdot (k)}^{2} Considerious de il problema sonza vincoli $\begin{cases} \min & f(x) + \frac{1}{\varepsilon} f(x) = f_{\varepsilon}(x) \\ x \in \mathbb{R}^{m} \end{cases}$ (PE) De notore che per sua definizione $\int_{\mathcal{E}} (x) = f(x) + x \in X$ porche in tel coso $f(x) = \emptyset$. Attimenti $\forall x \notin X$ abbiens Je (x) > f(x) TROPOSIZIONI 1) SE f e g; sono continue e différenziabili, ALLORA

JE(X) è continue e différenziabile e il suo gradiente: 7/E(x) = 7/(x) + 3 = max (0, 9:(x) } 79:(x) 2) 55 f e g; somo converse Allora le e converse

- 3) Ogni gradema Pe e un rilassamento di P, orvero che $v(P_{\epsilon}) \leqslant v(P)$ $\forall \epsilon > \emptyset$.
- 4) SS X* riselve Pe e X*EX ALLORA X*E e office port

PASSI DEL METODO

- 1) Setta Ep>0, Ze(0,1), K=0
- 2) Tourse la soluzione ottima XX per PEX
- 3) SE XKE X ALLORA STOP ACTRIMENTI EXXX = TEX, K++ e ricomincia do 1.

TSORSMA

- 1) 55 f e corciva, Allora la sequenza EXXI e Cimitata a cogni punto stazionerio è una soluzione ottima por P
- 2) SE {KK} comerge a K*, Allora x* e- ottimo per P
- 3) SE {XX} converge a X* c ; gradienti dei vincoli attivi in X* sono linearmente indipendenti, Allora X* e ma soluzione ottima per P e la sequenza dei vettori {XX} definita:

1 = 2 max 20, 8; (xx)3

convocase al vottere 1 che et un moltiplicatore KKT essociato a x*.

EXACT PENAZITY METHOD Considerieure de un problème converse, e definieure vouselmente a prime P, P(x), PE. Note: por questi prodem non abbiamo bisagno di usara una sequenza Ex->0 per tovora l'attimo di P, esiste infatti un precise E che minimizza PE che coincide PROPOSIZIONS Sipponendo x* ottimo per P e 1* ottimo per il KKT vottera dei multiplicatori associato a x* ALCORA esiste un set di soluzioni ottime por P e PE usuala per entrambi posche $\varepsilon \in (\emptyset, \frac{1}{\|x\|_{\infty}})$ TASSI DEL METODO 1) Setta Ep>0, Ye(0,1), K=0 2) Tenora la soluzione ottima XX per PEX S XXE X ALLORA STOP ACTRIMENTI Exts = TEX, K++ e Eignincia de 1 TOORKHA L'exac quality mathed tourine deso un munero finite di itorazioni con la soluzione ottima di P.

BARRIER METHODS Questo metodo genera una sequenca di punti omnissibili che approssima l'ottimo por P. Suin f(k) 8; (k) ≤0 ∀c=1...m: 7 Considerando il grimale P, sotto le seguenti assunzioni vole la strong duality: 1) f e gi converse, continue e différenziabili 2 volte emitto emisulas *x E (s 3) 3 x : 9; (k) < 0 LOGARITHMIC BARRIER In questo notodo consideriamo l'interne di X: int(X) come set ammissibile, e approssimmant di consequenza P: $\begin{cases} \min \ f(x) - \varepsilon \sum_{i=1}^{m} \log(-g_i(x)) = f_{\varepsilon}(x) \\ x \in \inf(x) \end{cases}$ Dove definions B(x) = - \(\sum_{i=1}^{m} \log (-g_i(x)) \) Co funzione borriora Cogarituica: \left\ \times \text{int(x)} - \varepsilon \varepsilon(x) \\ \varepsilon \text{int(x)} \end{array} \quad \text{Peag}

Nota: Per x che tende alla frantiera di X, PE(x)->+00 TROPRIETA DI B(x)
1) dominio di B = int(x) 2) B & Convessa 3) B = decivabile con: a) $\nabla B(x) = -\sum_{i=1}^{n} \frac{1}{2i(x)} \nabla g_i(x)$ b) $\nabla^2 B(x) = -\sum_{i=1}^{n} \frac{1}{g_{i}^2(x)} \nabla g_{i}(k) \nabla g_{i}^{T}(k) + \sum_{i=1}^{n} \frac{1}{g_{i}^2(k)} \nabla g_{i}^{2}(k)$ Se X & e C'ottimo di Palloca Vf(X*)+EVB(X*)=0. Definito il Cograngiano di P: $L(x, \lambda) = f(x) + \sum_{i=1}^{n} \lambda_i g_i(x)$ Possiame definire la sue solizione ottima 1/2 $1_{\varepsilon}^{*} = \left(Q_{(\kappa_{\varepsilon}^{*})}, \dots, Q_{(\kappa_{\varepsilon}^{*})} \right) > \infty$ Da cui VL (XE, 1/2) = 0. Ma data che abbianno assunto P convesso e che la strong duality valga, abbianno che V(P) = max inf L(x, 1)

De au consegue che

$$V(P) > \min_{x} L(x, \lambda) = L(x_{\varepsilon}^*, \lambda_{\varepsilon}^*)$$

$$f(x_{\varepsilon}^*) > v(P) > L(x_{\varepsilon}^*, \lambda_{\varepsilon}^*) = f(x_{\varepsilon}^*) + m \varepsilon$$

TNN

I probleme KKT view approssimato

PASSI COGARITHMIC BARRIOR METHOD

- 0) Setta 870, TE(0,1), E170, x0E int(x), K=1
- 1) Trava la soluzione ottima XX di Pag, con XX-1 come Purto di partenza
- 3) SE MEX < J ALLORA STOP ALTRIMENTI
 - a) Ex+1 = T Ex
 - b) K++
 - c) ricomincia de 1

COME SCEGLIERE XOE INT(X) Per forle possiones considerara il problema ansiliario: (min S x, s (&i(x) ≤ S ∀i=1...m 1) Proudianne un XERN e travioure 3> max { g; (x)} 2) Exchiams (x*, s*) othino dell'ausiliancio 3) SE S*<0 ALLORA X*E int(X)
ALTRIMENTI int(X) = Ø.