Logică matematică și computațională

Examen ianuarie 2023

$\mathbf{Nume:}\ __$	
Prenume:	
Grupa:	

Indicații:

- Bifați <u>doar</u> variantele pe care le considerați corecte și folosiți un singur stil de bifare! Spre exemplu, o variantă bifată poate arăta așa: ⊠. În cazul în care ați greșit, scrieți de mână, sub variante: "Răspuns(uri) corect(e): [lista răspunsurilor]". **Atenție:** în acest caz, doar răpunsurile scrise de mână vor fi luate în considerare pentru acel subiect.
- În cazul exercițiilor cu forma normală prenex și forma normală Skolem, ipoteza este următoarea:

Fie \mathcal{L} un limbaj de ordinul întâi care conține:

- două simboluri de relații unare S, T și un simbol de relație binară R;
- un simbol de operație unară f;
- un simbol de constantă c.

Varianta 5.

Partea I. Probleme cu rezolvare clasică

1 Logica propoziţională

(P1) [1 punct] Fie $g, h: V \to \{0,1\}$ astfel încât, pentru orice $n \in \mathbb{N}$,

$$g(v_n) = \begin{cases} 0 & \text{dacă } n \text{ este par,} \\ 1 & \text{dacă } n \text{ este impar.} \end{cases}$$

și $h(v_n)=1-g(v_n)$. Să se găsească $\Sigma\subseteq Form$ cu $Mod(\Sigma)=\{g,h\}$. Să se justifice răspunsul.

- (P2) [1,5 puncte] Fie $\Gamma \subseteq Form$ şi $\varphi \in Form$. Să se arate că $\Gamma \vDash \neg \varphi$ este echivalent cu faptul că $\Gamma \cup \{\varphi\}$ este nesatisfiabilă.
- **(P3)** [1 punct] Fie δ , $\chi \in Form$. Să se arate, fără a face apel la Teorema de completitudine, că $\vdash (\delta \lor \chi) \to (\chi \lor \delta)$.

2 Logica de ordinul I

- (P4) [1 punct] Fie \mathcal{L} un limbaj de ordinul I. Să se arate că pentru orice \mathcal{L} -formule φ , ψ şi orice variabilă $x \notin FV(\varphi)$, $\forall x(\psi \to \varphi) \vDash \exists x\psi \to \varphi$.
- (P5) [1,5 puncte] Fie x o variabilă. Să se dea exemple de limbaj de ordinul I, \mathcal{L} , şi de formule ρ , θ ale lui \mathcal{L} astfel încât $\exists x \rho \land \exists x \theta \not\models \exists x (\rho \land \theta)$.

Partea II. Probleme de tip grilă

(P6) [2 răspunsuri corecte] Fie următorul enunț în \mathcal{L} :

$$\varphi := \exists u \forall x \forall z \exists v ((T(x) \to R(x, y)) \lor (S(v) \to R(z, v)))$$

Care dintre următoarele formule sunt forme normale Skolem pentru φ ?

- \square A: $\forall x \forall z ((T(x) \rightarrow R(x,l)) \lor (S(n(x,z)) \rightarrow R(z,n(x,z))))$, unde l este simbol nou de constantă, iar n este simbol nou de operație binară.
- \square B: $\forall x \forall z ((T(x) \rightarrow R(x, l)) \lor (S(h(z)) \rightarrow R(z, h(z))))$, unde l este simbol nou de constantă, iar h este simbol nou de operație unară.
- \square C: $\forall x \forall z ((T(x) \rightarrow R(x,e)) \lor (S(h(x,z)) \rightarrow R(z,h(x,z))))$, unde e este simbol nou de constantă, iar h este simbol nou de operație binară.
- \square D: $\forall x \forall z ((T(e(x)) \rightarrow R(e(x), u)) \lor (S(h(v)) \rightarrow R(z, h(v))))$, unde e este simbol nou de constantă, iar h este simbol nou de operație unară.
- \square E: $\forall x \forall z ((T(x) \to R(x, l(x))) \lor (S(h(x, z)) \to R(z, h(z))))$, unde h şi l sunt simboluri noi de operații binare.
- (P7) [1 răspuns corect] Fie următoarea formulă în \mathcal{L} :

$$\varphi := \forall x S(x) \vee \neg \exists y S(y)$$

Care dintre următoarele afirmații este adevărată?

- \square A: $\exists x \forall y (\neg S(x) \lor \neg S(y))$ este o formă normală prenex pentru φ .
- \square B: $\forall x \forall y (S(x) \vee S(y))$ este o formă normală prenex pentru $\varphi.$
- \square C: $\forall x \forall y (S(x) \vee \neg S(y))$ este o formă normală prenex pentru $\varphi.$
- \square D: $\exists x \exists y \neg (\neg S(x) \land S(y))$ este o formă normală prenex pentru φ .
- \square E: $\exists x\exists y(S(x)\wedge S(y))$ este o formă normală prenex pentru $\varphi.$
- (P8) [2 răspunsuri corecte] Fie următoarea mulțime de clauze:

$$S = \{C_1 = \{v_2, \neg v_4\}, C_2 = \{v_1, v_2, v_3\}, C_3 = \{\neg v_2, v_4\}, C_4 = \{\neg v_1, v_3\}, C_5 = \{v_1, v_4\}\}$$

Care dintre următoarele sunt derivări corecte prin rezoluție?

- \square A: $C_6 = \{v_1, v_2\}$ (rezolvent al C_1, C_5) şi $C_7 = \{v_3\}$ (rezolvent al C_2, C_6).
- \square B: $C_6 = \{v_3, v_4\}$ (rezolvent al C_4, C_5) și $C_7 = \{v_2, v_3\}$ (rezolvent al C_1, C_6).
- \square C: $C_6 = \{v_1, v_2, v_3, v_4\}$ (rezolvent al C_2, C_5) și $C_7 = \{\neg v_1, v_2, v_4\}$ (rezolvent al C_4, C_6).
- \square D: $C_6 = {\neg v_2, \neg v_1}$ (rezolvent al C_3, C_4).
- \square E: $C_6 = \{v_1, v_3, v_4\}$ (resolvent al C_2, C_3) şi $C_7 = \{v_3, v_4\}$ (resolvent al C_4, C_6).
- (P9) [1 răspuns corect] Fie următoarea formulă în \mathcal{L} :

$$\varphi := \neg \forall y \left((f(y) = c) \to \neg \forall x S(x) \right) \to (\exists x T(x) \vee \forall y T(y))$$

Care dintre următoarele afirmații este adevărată? $\square A: \exists y \forall x \forall u \exists v \left(\left(\left((\neg f(y)) = c \right) \to S(x) \right) \to \left(T(u) \vee T(v) \right) \right) \text{ este o formă normală prenex pentru } \varphi.$ $\square B: \forall y \exists x \exists u \forall v \left(\left((f(y) = c) \to S(x) \right) \vee \neg \left(T(u) \vee T(v) \right) \right) \text{ este o formă normală prenex pentru } \varphi.$ $\square C: \forall y \forall x \exists u \forall v \left(\neg \left((f(y) = c) \to \neg S(x) \right) \to \left(T(u) \vee T(v) \right) \right) \text{ este o formă normală prenex pentru } \varphi.$ $\square D: \forall y \exists x \exists u \forall v \left(\neg \left((f(y) = c) \to S(x) \right) \to \left(T(u) \vee T(v) \right) \right) \text{ este o formă normală prenex pentru } \varphi.$ $\square E: \forall y \exists x \exists u \forall v \left(\neg \left((f(y) = c) \to \neg S(x) \right) \to \left(T(u) \vee T(v) \right) \right) \text{ este o formă normală prenex pentru } \varphi.$
(P10) [2 răspunsuri corecte] Fie următoarea formulă în limbajul logicii propoziționale:
$\varphi := (v_1 \wedge v_3) \to (\neg v_2 \vee (v_1 \wedge v_2 \wedge v_3))$
Care dintre următoarele afirmații sunt adevărate? \square A: φ este tautologie. \square B: φ nu este satisfiabilă. \square C: φ nu este tautologie. \square D: Dacă e este o evaluare astfel încât $e^+(\varphi) = 1$, atunci $e(v_1) = e(v_2) = 1$ și $e(v_3) = 0$. \square E: Dacă e este o evaluare astfel încât $e(v_1) = e(v_3) = 0$ și $e(v_2) = 1$, atunci $e^+(\varphi) = 1$.
(P11) [1 răspuns corect] Fie următoarea formulă:
$\varphi := (v_1 \to (v_2 \lor v_3)) \to (v_2 \land \neg v_3)$
Care dintre următoarele afirmații este adevărată? $\square A: (v_1 \wedge \neg v_2 \wedge \neg v_3) \vee v_2 \vee \neg v_3 \text{ este FND a lui } \varphi.$ $\square B: (v_1 \wedge \neg v_2 \wedge \neg v_3) \vee \neg v_2 \vee v_3 \text{ este FND a lui } \varphi.$ $\square C: (v_1 \vee \neg v_2 \vee \neg v_3) \wedge (v_2 \vee \neg v_3) \text{ este FND a lui } \varphi.$ $\square D: (v_1 \wedge v_2) \vee (v_1 \wedge v_3) \vee (v_2 \wedge v_3) \text{ este FND a lui } \varphi.$ $\square E: (v_1 \wedge \neg v_2 \wedge \neg v_3) \vee (v_2 \wedge \neg v_3) \text{ este FND a lui } \varphi.$
(P12) [2 răspunsuri corecte] Fie următoarea mulțime de clauze:
$\mathcal{S} = \{\{v_4\}, \{v_1, \neg v_2\}, \{v_1, \neg v_4\}, \{\neg v_2, \neg v_4\}, \{\neg v_3, \neg v_4\}, \{\neg v_1, v_2, v_3\}\}$
Aplicând algoritmul Davis-Putnam pentru intrarea \mathcal{S} şi alegând succesiv $x_1 := v_1, x_2 := v_4,$ $x_3 := v_2, x_4 := v_3$ obţinem: \square A: $U_3 = \{\{v_3, \neg v_3\}\}.$ \square B: $U_4 = \{v_3\}.$ \square C: \mathcal{S} este nesatisfiabilă. \square D: $\mathcal{S}_5 = \{\{v_4\}\}.$ \square E: $\mathcal{S}_4 = \{\{v_3\}, \{\neg v_3\}\}.$
(P13) [1 răspuns corect] Fie următoarea formulă:
$\psi := (v_1 \vee v_2) \to (\neg v_3 \to v_1)$
Care dintre următoarele afirmații este adevărată? $\square A: \neg v_1 \lor v_2 \lor v_3 \text{ este FNC a lui } \psi.$ $\square B: v_1 \lor \neg v_2 \lor v_3 \text{ este FNC a lui } \psi.$ $\square C: \neg v_1 \lor \neg v_2 \lor \neg v_3 \text{ este FNC a lui } \psi.$ $\square D: v_1 \lor \neg v_2 \lor \neg v_3 \text{ este FNC a lui } \psi.$ $\square E: (\neg v_1 \lor \neg v_2 \lor \neg v_3) \land (\neg v_1 \lor v_2 \lor v_3) \text{ este FNC a lui } \psi.$
(P14) [2 răspunsuri corecte] Fie $\mathcal{L}_{ar} = (\dot{<}, \dot{+}, \dot{\times}, \dot{S}, \dot{0}), \mathcal{L}_{ar}$ -structura $\mathcal{N} = (\mathbb{N}, <, +, \cdot, S, 0)$ și $e: V \to \mathbb{N}$ o evaluare arbitrară. Considerăm formulele:

$$\varphi := x \dot{\preceq} \dot{3} \text{ si } \psi := \neg(x \dot{\preceq} \dot{5}), \text{ unde } \dot{3} := \dot{S} \dot{S} \dot{S} \dot{0}, \dot{5} := \dot{S} \dot{S} \dot{3}.$$

Care dintre următoarele afirmații sunt adevărate?

- \square A: $\mathcal{N} \vDash (\varphi \land \psi)[e_{x \leftarrow 4}]$.
- \square B: $\mathcal{N} \vDash (\exists x \varphi \rightarrow \forall x \psi)[e]$.
- \square C: $\mathcal{N} \vDash (\exists x (\varphi \land \psi))[e]$.
- \square D: $\mathcal{N} \vDash (\exists x \psi)[e]$.
- $\square \to \mathbb{E}: \mathcal{N} \models (\varphi \lor \psi)[e_{x \leftarrow 7}].$

(P15) [2 răspunsuri corecte] Fie următoarea formulă în limbajul logicii propoziționale:

$$\theta := \neg(\neg v_1 \lor \neg v_2) \to (v_1 \to v_2)$$

Care dintre următoarele afirmații sunt adevărate?

- \square A: $e^+(\theta) = e^+(v_1 \to (\neg v_1 \to v_2))$ pentru orice evaluare e.
- \square B: $e^+(\theta) = e^+((v_1 \land v_2) \to (\neg v_2 \lor \neg v_1))$ pentru orice evaluare e.
- \square C: $e^+(\theta) = e^+(\neg(v_1 \lor v_2) \to \neg v_1)$ pentru orice evaluare e.
- \square D: $e^+(\theta) = e^+(\neg(v_1 \lor v_2) \to v_1)$ pentru orice evaluare e.
- \square E: $e^+(\theta) = e^+(v_1 \lor (\neg v_1 \to v_2))$ pentru orice evaluare e.