Homework 1

Qi'ao Chen 21210160025

March 2, 2022

Exercise 1. Consider the structure $(\mathbb{Z}, +, \cdot, <)$. Show that there is a complete type $p \in S_1(\mathbb{Z})$ containing the formula n < x for each $n \in \mathbb{Z}$ *Proof.* Let $\Gamma = \{n < x : n \in \mathbb{Z}\}$. Then Γ is finitely satisfiable and hence there is a complete type $q \in S_1(\mathbb{Z})$ s.t. $q(x) \supset \Gamma$ *Exercise* 2. Let $p \in S_1(\mathbb{Z})$ be as in the previous problem, meaning that the formula n < x is in p(x) for all $n \in \mathbb{Z}$. Suppose $M \succeq \mathbb{Z}$ and $q \in S_1(M)$ is an heir of p. Show that q(x) contains the formula n < x for each $n \in M$ *Proof.* If for some $n \in M$, $\psi(x,n) := n < x \notin q(x)$. Then $\neg \psi(x,n) \in q(x)$ and hence there is $n' \in \mathbb{Z}$ s.t. $\neg \psi(x, n') \in p$, which is impossible *Exercise* 3. Find a first-order formula $\varphi(x,y,z)$ equivalent to $\exists^{\infty} w(xw^2+yw+yw+yw)$ z=0) in the structure $\mathbb C$ *Proof.* Let $\psi(x) := \forall y (y \cdot x = x)$ and let $\varphi(x, y, z) := \psi(x) \land \psi(y) \land \psi(z)$ *Exercise* 4. Let $M = \mathbb{R} \setminus [0, 2]$ and $N = \mathbb{R} \setminus [0, 1)$. From quantifier elimination in DLO, one can show that $(M, \leq) \leq (N, \leq) \leq (\mathbb{R}, \leq)$. It turns out that tp(0/N) is an heir of tp(0/M). Show that tp(0/N) is not a strong heir of

tp(0/M)