Table 1: Results of the eight algorithms for the CEC 2020 benchmark test suite when D=10 with the Wilcoxon rank sum test. "+" or "-" denotes that the current result is significantly better or statistical worse than the result of SMSDE in terms of the Wilcoxon rank sum test at a 0.05 significance level, respectively. Meanwhile, " \approx " represents that there is no significant difference

				Average (star	Average (standard deviation)			
Function	IMODE	AGSK	NL-SHADE-RSP	EA4eig I	(7)	APGSK-IMODE-FL	AMCDE	SMSDE
F1	0.00E+00	0.00E + 00	0.00E + 00	0.00E+00	0.00E + 00	0.00E+00	0.00e+00	0.00E+00
	$(0.00E+00)\approx$	$(0.00\text{E}{+}00){\approx}$	$(0.00\mathrm{E}{+00})$	$(0.00\mathrm{E}+00)$	$(0.00\mathrm{E}{+00})\!pprox$	$(0.00\mathrm{E}{+00}){pprox}$	$(0.00\mathrm{E}+00)$	(0.00E+00)
F2	$3.93\mathrm{E}{+00}$	$3.42\mathrm{E}{+01}$	7.03E-01	4.42E + 00	2.47E-01	$6.04\mathrm{E}{+00}$	$5.52\mathrm{E}{+00}$	$3.28\mathrm{E}{+00}$
	$(3.41E+00) \approx (3.86E+01) -$	(3.86E+01)-	(2.06E+00)+	$(5.10\mathrm{E}{+00})$	(5.94E-01)+	(4.80E+00)-	(3.11E+00) - (2.35E+00)	$(2.35\mathrm{E}{+}00)$
F3	$1.24\mathrm{E}{+01}$	$9.20\mathrm{E}{+00}$	7.97E+00	1.07E+01	$1.04\mathrm{E}{+01}$	$1.20\mathrm{E}{+01}$	9.91E+00	$1.19E{+}01$
	$(7.58\text{E}-01)\approx$	$(4.20\mathrm{E}{+00}){\approx}$	(1.85E+01)+	(1.22E+00)+	(2.35E-02)+	$(7.73\text{E}-01)\approx$	(3.05E+00)+	(1.05E+00)
F4	2.96E-03	6.01E-01	0.00E+00	3.08E-01	1.66E-01	1.14E-01	0.00E+00	6.92E-03
	$(4.60E-03)\approx$	(1.40E-01)-	(0.00E+00)+	(7.35E-02)-	(2.97E-02)-	(7.40E-02)-	(0.00E+00)+	(1.08E-02)
F5	4.23E-01	2.91E-01	2.47E-01	5.55E-02	$5.69\mathrm{E}{+00}$	5.51E-01	1.87E-01	1.23E-01
	(3.88E-01)-	(2.16E-01)-	$(7.64\text{E}-02)\approx$	(9.36E-02)+	(2.13E+01)-	(4.05E-01)-	$(1.38\text{E-}01)\approx$	(2.28E-01)
F6	1.20E-01	3.76E-01	6.90E-02	4.78E-02	1.13E-01	7.30E-02	3.97E-02	8.82E-02
	$(7.22E-02)\approx$	(0.00E+00)-	(5.83E-03)+	(9.67E-02)+	(1.53E-01)-	(9.29E-02)+	(2.77E-02)+	(5.73E-02)
F7	6.76E-04	1.24E-03	1.10E-03	2.09E-02	1.36E-01	8.52E-04	1.28E-04	2.65E-04
	(7.30E-04)-	(1.82E-03)-	(1.37E-06)-	(7.96E-02)-	(2.01E-01)-	(1.53E-03)-	$(1.61\text{E}-04)\approx$	(4.62E-04)
F.8	2.72E+00	$2.39\mathrm{E}{+01}$	$3.29\mathrm{E}{+00}$	$1.00\mathrm{E}{+02}$	$1.00\mathrm{E}{+02}$	$3.20\mathrm{E}{+01}$	$2.45\mathrm{E}{+00}$	$4.31E{+00}$
	$(7.46E+00) \approx (3.03E+01) -$	(3.03E+01)-	$(5.70\mathrm{E}{+01}){pprox}$	(0.00E+00)-	(0.00E+00)-	$(3.62E{+}01){-}$	$(7.27\mathrm{E}+00)\approx$	(7.86E+00)
F9	$4.15\mathrm{E}{+01}$	7.00E+01	$6.44\mathrm{E}{+01}$	$2.56\mathrm{E}{+02}$	$2.57\mathrm{E}{+02}$	$8.85\mathrm{E}{+01}$	$6.43\mathrm{E}{+01}$	$5.98E{+01}$
	$(4.38\mathrm{E}\!+\!01)\!pprox(4.66\mathrm{E}\!+\!01)\!pprox$	$(4.66E{+}01){\approx}$	$(2.28\mathrm{E}{+03}){pprox}$	(9.65E+01)-	(1.03E+02)-	(3.11E+01)-	$(4.80E+01) \approx (4.48E+01)$	$(4.48\mathrm{E}{+}01)$
F10	$3.98\mathrm{E}{+02}$	3.18E + 02	$3.68\mathrm{E}{+02}$	4.09E + 02	$4.08\mathrm{E}{+02}$	$3.58\mathrm{E}{+02}$	$3.68\mathrm{E}{+02}$	$1.36\mathrm{E}{+02}$
	(3.42E12) -	(1.34E+02)-	(8.25E+03)-	(1.96E+01)-	(1.93E+01)-	(1.03E+02)-	(9.08E+01)-	(9,21E+01)
≈/-/+	0/3/7	0/2/3	4/2/4	3/5/2	2/7/1	1/7/2	3/2/5	

Table 2: Results of the eight algorithms for the CEC 2020 benchmark test suite when D=20 with the Wilcoxon rank sum test. "+" or "-" denotes that the current result is significantly better or statistical worse than the result of SMSDE in terms of the Wilcoxon rank sum test at a 0.05 significance level, respectively. Meanwhile, " \approx " represents that there is no significant difference

				Average (sta	Average (standard deviation)			
Function	IMODE	AGSK	NL-SHADE-RSP	${ m EA4eig}$	NL-SHADE-LBC	NL-SHADE-LBC APGSK-IMODE-FL	AMCDE	SMSDE
F1	0.00E+00	0.00E + 00	0.00E+00	0.00E+00	0.00E + 00	0.00E+00	0.00E + 00	0.00E+00
	$(0.00E+00) \approx (0.00E+00)$	$(0.00\text{E}+00)\approx$	$(0.00\mathrm{E}{+00})$	$(0.00\mathrm{E}{+00})$	$(0.00\mathrm{E}{+00})\!\!pprox$	$(0.00\mathrm{E}{+00})$	$(0.00E+00)\approx$	(0.00E+00)
F2	3.46E-01	$1.41\mathrm{E}{+00}$	1.98E-02	$3.53\mathrm{E}{+00}$	3.17E-03	2.63E-01	$1.25\mathrm{E}{+00}$	1.93E-01
	(5.66E-01)-	(1.10E+00)-	(4.36E-04)+	(2.30E+00)-	(9.36E-03)+	$(5.13\text{E}-01)\approx$	(1.01E+00)-	(4.23E-01)
F3	$2.05\mathrm{E}{+01}$	$2.04\mathrm{E}{+01}$	$2.04\mathrm{E}{+01}$	$2.22\mathrm{E}{+01}$	$2.04\mathrm{E}{+01}$	$2.04\mathrm{E}{+01}$	2.04E+01	2.04E+01
	(1.24E-01)-	(0.00E+00)+	$(0.00\mathrm{E}{+00})$	(8.19E-01)-	$(0.00\mathrm{E}{+00})\!\!pprox$	(0.00E+00)+	$(7.77E-02)\approx$	(0.00E-01)
F4	5.00E-01	7.89E-01	0.00E+00	7.24E-01	3.81E-01	5.50E-01	4.74E-01	3.44E-01
	(8.08E-02)-	(9.00E-02)-	(0.00E+00)+	(1.32E-01)-	$(5.69\text{E}-02)\approx$	(5.73E-02)-	(8.27E-02)-	(9.26E-02)
F5	1.05E+01	$3.67\mathrm{E}{+01}$	$1.37\mathrm{E}{+01}$	1.26E + 01	9.83E+01	$6.57\mathrm{E}{+00}$	$4.24\mathrm{E}{+00}$	2.86E+01
	(4.11E+00)-(3.	(3.51E+01)-	(9.28E+02)-	$(2.97E+01)\approx$	(7.09E+01)-	(3.41E+00)-	$(2.77E+00)\approx$	(1.21E+01)
F6	2.87E-01	$4.49\mathrm{E}{+02}$	1.38E-01	1.63E-01	5.94E-01	2.03E-01	1.77E-01	2.02E-01
	(7.40E-02)-	(2.89E-13)-	(1.83E-03)+	(9.35E-02)+	(1.07E-01)-	$(6.80\text{E}-02)\approx$	$(1.24E-01)\approx$	(6.10E-02)
F7	5.10E-01	4.29E-01	2.05E-01	5.72E-01	1.90E+01	1.43E + 00	4.85E-01	$1.62\mathrm{E}{+00}$
	(1.78E-01)-	(1.81E-01)-	$(7.73\text{E}-03)\approx$	(1.56E+00)-	(4.28E+01)-	(2.88E+00)-	(1.33E-01)-	(8.55E-02)
F8	$8.42\mathrm{E}{+01}$	$1.00\mathrm{E}{+02}$	$8.80\mathrm{E}{+01}$	1.00E+02	$1.00\mathrm{E}{+02}$	$9.82\mathrm{E}{+01}$	9.23E+01	7.50E+00
	(1.83E+01)-(0.	(0.00E+00)-	(3.29E+02)-	(2.12E-13)-	(0.00E+00)-	(6.09E+00)-	(1.59E+01)-	(1.75E+00)
F9	$9.67\mathrm{E}{+01}$	$1.00\mathrm{E}{+02}$	$1.00\mathrm{E}{+02}$	$4.06\mathrm{E}{+02}$	$3.75\mathrm{E}{+02}$	$1.32\mathrm{E}{+02}$	9.80E+01	9.17E+01
	$(1.83E+01)\approx (0.$	$(0.00\mathrm{E}+00)$	$(3.43\text{E}\text{-}26)\approx$	(3.24E+00)-	(1.90E+01)-	(9.98E+01)-	$(1.07\text{E}+01)\approx$	$(2.64\mathrm{E}{+}01)$
F10	$4.00\mathrm{E}{+02}$	$3.99\mathrm{E}{+02}$	$3.99\mathrm{E}{+02}$	$4.06\mathrm{E}{+02}$	$4.14\mathrm{E}{+02}$	$4.05\mathrm{E}{+02}$	$4.08\mathrm{E}{+02}$	$3.99\mathrm{E}{+02}$
	(4.44E-01)-	(2.01E+00)+	(1.19E-01)+	(1.53E-02)-	(1.00E-02)-	(5.66E+00)-	(7.20E+00)-	(2.00E+00)
≈/-/+	0/8/2	2/6/2	4/2/4	1/7/2	1/6/3	1/6/3	0/5/2	

Table 3: Results of the eight algorithms for the CEC 2022 benchmark test suite when D=10 with the Wilcoxon rank sum test. "+" or "-" denotes that the current result is significantly better or statistical worse than the result of SMSDE in terms of the Wilcoxon rank sum test at a 0.05 significance level, respectively. Meanwhile, " \approx " represents that there is no significant difference

.				Average (stal	Average (standard deviation)			
Function	IMODE	AGSK	NL-SHADE-RSP	${ m EA4eig}$ ${ m N}$	NL-SHADE-LB $ m \check{C}$ $^{\!\!\!/}$	APGSK-IMODE-FL	AMCDE	SMSDE
F1	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	$0.00E{+}00$	0.00E+00	0.00E+00
	$(0.00E+00)\approx$	$(0.00E+00) \approx (0.00E+00) \approx$	$(0.00\mathrm{E}{+00})$	(0.00E+00)	$(0.00\mathrm{E}{+00})\!\!pprox$	$(0.00\mathrm{E}{+00}){\approx}$	(0.00E+00)	(0.00E+00)
F2	0.00E+00	$0.00\mathrm{E}{+00}$	$0.00E{+}00$	$1.20\mathrm{E}{+00}$	1.33E-01	$0.00\mathrm{E}{+00}$	$0.00\mathrm{E}{+00}$	0.00E+00
	$(0.00E+00)\approx$	$(0.00\text{E}+00)\approx (0.00\text{E}+00)\approx$	$(0.00\mathrm{E}{+00})$	(1.86E+00)-	$(7.16\text{E}\text{-}01)\approx$	$(0.00\mathrm{E}{+00}){\approx}$	$(0.00\mathrm{E}+00)pprox$	(0.00E+00)
F3	0.00E+00	3.79E-14	0.00E+00	$0.00\mathrm{E}{+00}$	$0.00\mathrm{E}{+00}$	0.00E+00	0.00E+00	$0.00\mathrm{E}{+00}$
	$(0.00E+00)\approx$	(5.45E-14)-	$(0.00\mathrm{E}{+00})$	(0.00E+00)	$(0.00\mathrm{E}{+00})\!\!pprox$	$(0.00\mathrm{E}{+00}){\approx}$	(0.00E+00)	(0.00E+00)
F4	$6.70\mathrm{E}{+00}$	$4.25\mathrm{E}{+00}$	$9.06\mathrm{E}{+00}$	3.32E-01	5.97E-01	$3.25\mathrm{E}{+00}$	$2.26\mathrm{E}{+00}$	$8.16\mathrm{E}{+00}$
	(1.54E+00)+	(1.38E+00)+	$(5.05\mathrm{E}{+00}){pprox}$	(6.58E-01)+	(5.51E-01)+	(1.11E+00)+	(1.17E+00)+	$(2.27\mathrm{E}{+00})$
F5	0.00E+00	0.00E+00	0.00E+00	0.00E+00	$0.00\mathrm{E}{+00}$	0.00E+00	0.00E+00	0.00E+00
	$(0.00E+00)\approx$	$(0.00E+00) \approx (0.00E+00) \approx$	$(0.00\mathrm{E}{+00})\!\!pprox$	(0.00E+00)	$(0.00\mathrm{E}{+00})\!\!pprox$	$(0.00\mathrm{E}{+00}){\approx}$	$(0.00\mathrm{E}{+00})$	(0.00E+00)
F6	1.22E-01	4.26E-02	3.48E-02	8.10E-03	2.19E-01	4.60E-02	6.66E-02	1.48E-02
	(9.16E-02)-	(2.63E-02)-	(5.61E-04)-	(3.65E-02)+	(1.76E-01)-	(4.05E-02)-	(6.93E-02)-	(1.03E-02)
F7	0.00E+00	7.58E-15	0.00E+00	0.00E+00	$0.00\mathrm{E}{+00}$	0.00E+00	0.00E+00	0.00E+00
	$(0.00E+00)\approx$	$(4.15\text{E}-14)\approx$	$(0.00\mathrm{E}{+00})$	(0.00E+00)	$(0.00\mathrm{E}{+00})\!\!pprox$	$(0.00\mathrm{E}{+00})$	(0.00E+00)	(0.00E+00)
F8	8.53E-03	4.76E-02	2.23E-02	2.57E-03	4.12E-03	1.76E-02	8.12E-03	9.95E-03
	$(1.06E-02)\approx$	(5.74E-02)-	$(5.84\text{E}-04)\approx$	(4.74E-03)+	(5.83E-03)+	$(4.11E-02)\approx$	$(7.59\text{E}-03)\approx$	(9.73E-03)
F9	$2.22\mathrm{E}{+02}$	$2.10\mathrm{E}{+02}$	$2.22\mathrm{E}{+02}$	$1.86\mathrm{E}{+02}$	$2.29\mathrm{E}{+02}$	$2.14\mathrm{E}{+02}$	$2.14\mathrm{E}{+02}$	$1.80\mathrm{E}{+02}$
	(4.19E+01)-	(6.17E+01)-	(1.75E+03)-	(0.00E+00)-	(4.67E-06)-	(5.82E+01)-	(5.82E+01)-	(8.56E+01)
F10	$1.70\mathrm{E}{+01}$	9.83E+01	$0.00E{+}00$	$1.00\mathrm{E}{+02}$	$1.03\mathrm{E}{+02}$	$8.04\mathrm{E}{+01}$	9.50E-01	4.53E-01
	(3.35E+01)-	(6.14E+00)-	(0.00E+00)+	(4.02E-02)-	(1.79E+01)-	(4.03E+01)-	(1.52E+00)-	$(1.16\mathrm{E}{+00})$
F11	0.00E+00	2.43E-13	$0.00E{+}00$	$0.00\mathrm{E}{+00}$	$0.00\mathrm{E}{+00}$	$0.00\mathrm{E}{+00}$	$0.00\mathrm{E}{+00}$	$0.00\mathrm{E}{+00}$
	$(0.00E+00)\approx$	(2.31E-13)-	$(0.00\mathrm{E}{+00}){pprox}$	(0.00E+00)	$(0.00\mathrm{E}{+00})\!\!pprox$	$(0.00\mathrm{E}{+00}){pprox}$	(0.00E+00)	(0.00E+00)
F12	$1.59E{+02}$	$1.59\mathrm{E}{+02}$	$1.60\mathrm{E}{+02}$	$1.46\mathrm{E}{+02}$	$1.65\mathrm{E}{+02}$	$1.59\mathrm{E}{+02}$	$1.60\mathrm{E}{+02}$	$1.59\mathrm{E}{+02}$
	$(7.05\text{E}-01)\approx$	(2.89E-14)+	(1.33E+00)-	(2.45E+00)+	(3.99E-01)-	$(4.87E-01)\approx$	(1.13E+00)-	(9.36E-01)
≈/-/+	1/3/8	2/6/4	1/3/8	4/3/5	2/4/6	1/3/8	1/4/7	

Table 4: Results of the eight algorithms for the CEC 2022 benchmark test suite when D=20 with the Wilcoxon rank sum test. "+" or "-" denotes that the current result is significantly better or statistical worse than the result of SMSDE in terms of the Wilcoxon rank sum test at a 0.05 significance level, respectively. Meanwhile, " \approx " represents that there is no significant difference

Timotion				`	Average (standard deviation)			
r uncelon	IMODE	AGSK	NL-SHADE-RSP	EA4eig	NL-SHADE-LBC ∤	NL-SHADE-LBC APGSK-IMODE-FL	AMCDE	SMSDE
F1	0.00E+00	1.89E-15	0.00E + 00	0.00E + 00	0.00E+00	$0.00E{+}00$	0.00E + 00	0.00E+00
	$(0.00E+00)\approx$	$(1.04E-14)\approx$	$(0.00\mathrm{E}{+00})\!pprox$	$(0.00\mathrm{E}{+00})$	$(0.00\mathrm{E}{+00})\!\!pprox$	$(0.00\mathrm{E}{+00}){\approx}$	$(0.00E+00) \approx (0.00E+00)$	(0.00E+00)
F2	$4.27\mathrm{E}{+01}$	$1.63\mathrm{E}{+00}$	$3.62\mathrm{E}{+01}$	5.32E-01	$4.91\mathrm{E}{+01}$	$1.37\mathrm{E}{+01}$	$3.46\mathrm{E}{+01}$	0.00E+00
	(1.46E+01)-	$ (8.20E+00)\approx$	(3.39E+02)-	(1.38E+00)-	(9.54E-07)-	(1.81E+01)-	(1.94E+01)-	(0.00E+00)
F3	0.00E+00	1.10E-13	3.79E-15	7.58E-15	0.00E+00	2.65E-14	0.00E+00	0.00E+00
	(0.00E+00)	(2.08E-14)-	$(4.31E-28)\approx$	$(2.88E-14)\approx$	$(0.00\mathrm{E}{+00})\!\!pprox$	(4.89E-14)-	$(0.00\mathrm{E}+00)$	(0.00E+00)
F4	$4.87\mathrm{E}{+01}$	$3.11\mathrm{E}{+01}$	$5.19\mathrm{E}{+01}$	$8.59\mathrm{E}{+00}$	$3.42\mathrm{E}{+00}$	$2.05\mathrm{E}{+01}$	$8.86\mathrm{E}{+00}$	$4.88E{+01}$
	$(6.49E+00)\approx (6$	(6.84E+00)+	$(7.50\mathrm{E}{+}01){\approx}$	(3.32E+00)+	(9.15E-01)+	(3.85E+00)+	(1.35E+01)+	(7.57E+00)
F5	$0.00\mathrm{E}{+00}$	$0.00\mathrm{E}{+00}$	$0.00E{+}00$	$0.00\mathrm{E}{+00}$	$0.00\mathrm{E}{+00}$	$0.00\mathrm{E}{+00}$	$0.00\mathrm{E}{+00}$	0.00E+00
	$(0.00E+00) \approx (0.00E+00) \approx$	$(0.00E+00)\approx$	$(0.00\mathrm{E}{+00})$	$(0.00\mathrm{E}{+00})$	$(0.00\mathrm{E}{+00})\!\!pprox$	$(0.00\mathrm{E}{+00}){\approx}$	$(0.00E+00)\approx$	(0.00E+00)
F6	2.88E-01	2.29E-01	4.44E-01	1.23E-01	5.18E-01	2.39E-01	3.19E-01	1.38E-01
	(7.98E-02)-	(1.06E-01)-	(1.56E-01)-	(1.55E-01)+	(4.21E-01)-	(9.65E-02)-	(8.74E-02)-	(4.88E-02)
F7	$1.96\mathrm{E}{+00}$	$1.19\mathrm{E}{+00}$	5.40E-02	$2.40\mathrm{E}{+00}$	8.34E-02	$1.36\mathrm{E}{+00}$	$1.79E{+00}$	$1.63\mathrm{E}{+00}$
	$(7.58E-01) \approx ($	(1.27E+00)+	(5.93E-02)+	$(3.56\text{E}{+00}){\approx}$	(1.60E-01)+	$(9.00\text{E}\text{-}01)\approx$	(9.29E-01)≈	(7.57E-01)
F8	$1.62\mathrm{E}{+01}$	$1.76\mathrm{E}{+01}$	$1.69\mathrm{E}{+01}$	$1.63\mathrm{E}{+01}$	$1.28\mathrm{E}{+01}$	$1.47\mathrm{E}{+01}$	$1.35\mathrm{E}{+01}$	$1.49\mathrm{E}{+01}$
	$(4.19E+00) \approx (5.42E+00) -$	(5.42E+00)-	(3.56E+01)-	(7.56E+00)-	$(8.44\mathrm{E}{+00})\!\!pprox$	$(7.72\mathrm{E}{+00}){pprox}$	$(6.70\mathrm{E}+00)\approx$	$(5.12\mathrm{E}{+00})$
F9	$1.81E{+02}$	$1.81\mathrm{E}{+02}$	$1.81\mathrm{E}{+02}$	$1.65\mathrm{E}{+02}$	$1.81\mathrm{E}{+02}$	$1.81E{+02}$	$1.81E{+02}$	$1.59E{+02}$
	(8.67E-14)-	(8.67E-14)-	(7.52E-27)-	(0.00E+00)-	(6.33E-06)-	(8.67E-14)-	(8.67E-14)-	$(3.63\mathrm{E}{+}01)$
F10	$0.00E \pm 00$	$1.00\mathrm{E}{+02}$	$0.00E{\pm}00$	$1.08\mathrm{E}{+02}$	$1.00\mathrm{E}{+02}$	$1.00\mathrm{E}{+02}$	$0.00\mathrm{E}{+00}$	0.00E+00
	$(0.00E+00)\approx$	(1.87E-02)-	$(0.00\mathrm{E}{+00})$	(2.93E+01)-	(1.99E-02)-	(4.34E-02)-	$(0.00\mathrm{E}+00)$	(0.00E+00)
F11	$3.00\mathrm{E}{+02}$	$2.00\mathrm{E}{+01}$	$2.90\mathrm{E}{+02}$	$3.23\mathrm{E}{+02}$	$3.00\mathrm{E}{+02}$	$1.20\mathrm{E}{+02}$	$3.00\mathrm{E}{+02}$	2.00E+01
	(0.00E+00)-(7	(7.61E+01)-	(3.00E+03)-	(4.30E+01)-	(0.00E+00)-	(1.49E+02)-	(0.00E+00)-	$(7.61\mathrm{E}{+}01)$
F12	$2.34\mathrm{E}{+02}$	$2.33\mathrm{E}{+02}$	$2.38\mathrm{E}{+02}$	$2.00\mathrm{E}{+02}$	$2.37\mathrm{E}{+02}$	$2.31\mathrm{E}{+02}$	$2.32\mathrm{E}{+02}$	$2.33E{+02}$
	$(1.98E+00)\approx (1$	(1.34E+00)+	(1.22E+01)-	(3.32E-04)+	$(3.69\mathrm{E}{+00}){-}$	(1.21E+00)+	(1.68E+00)+(2.08E+00)	$(2.08\mathrm{E}{+00})$
≈/-/+	0/4/8	3/6/3	1/6/5	3/5/4	2/6/4	2/6/4	2/4/6	

Table 5: Ablation Experiment

Function	IMODE	IMODE+	SMSDE
F1	$0.00\mathrm{E}{+00}$	$0.00\mathrm{E}{+00}$	0.00E + 00
Г1	(0.00E+00)	(0.00E+00)	(0.00E+00)
F2	4.13E + 00	$2.10\mathrm{E}{+00}$	9.25E-01
ΓZ	(3.12E+00)	(2.94E+00)	(1.33E+00)
F3	$1.61\mathrm{E}{+01}$	$1.59\mathrm{E}{+01}$	$1.55\mathrm{E}{+01}$
гэ	(3.53E-01)	(3.28E-01)	(2.42E+00)
F4	3.72E-01	2.26E-01	2.66E-01
Г4	(9.17E-02)	(8.62E-02)	(9.23E-02)
F5	8.11E + 00	3.42E + 00	4.12E + 00
гэ	(3.66E+00)	(1.77E+00)	(1.98E+00)
F6	$5.79\mathrm{E}{+00}$	2.79E + 00	2.45E + 00
01	(3.18E+00)	(3.09E+00)	(2.68E+00)
F7	6.30E-01	4.75E-01	2.17E-01
Г	(2.24E-01)	(1.35E-01)	(1.16E-01)
F8	7.51E-01	$1.54\mathrm{E}{+00}$	$3.66\mathrm{E}{+00}$
61	(4.11E+00)	(4.90E+00)	(7.27E+00)
EO	9.67E + 01	8.67E + 01	9.67E + 01
F9	(1.83E+01)	(3.46E+01)	(1.83E+01)
E10	4.00E+02	4.00E+02	2.40E+02
F10	(0.00E+00)	(0.00E+00)	(1.28E+02)

Table 6: Outcome of Friedman Test for results of the pre-experiment to select secondary mutation strategies. 1 represents the original secondary mutation strategy in IMODE, while the other numbers denote the additional secondary mutation strategies in sequence

Combination	1&2	1&2&3	1&2&3&4	1&2&3&5	1&2&3&6	1&2&3&6&7
Friedman ranking	4.27	3.05	3.73	3.91	2.64	3.41

Table 7: Outcome of Friedman Test for results of the pre-experiment to determine sequence of the selected secondary mutation strategies

Sequence	1&2&3&6	1&2&6&3	1&3&6&2	1&6&2&3	1&3&6&2	1&6&3&2	1&3&2&6
Friedman ranking	3.14	4.18	5.05	4.05	5.05	3.55	3.00