Texture vs shape bias in computer vision networks

Aksenenko Veronika 211

How CNNs recognise objects?

Shape hypothesis - CNNs combine low-level features to complex shapes until the object can be classified

Texture hypothesis - object textures are more important than global object shapes for CNN object recognition

Cue conflict

(c) Texture-shape cue conflict

63.9% Indian elephant

26.4% indri

9.6% black swan

(a) Texture image

81.4% Indian elephant

10.3% indri

8.2% black swan

(b) Content image

71.1% tabby cat 17.3% grey fox 3.3% Siamese cat

Human observers (red circles)

AlexNet (purple diamonds)

VGG-16 (blue triangles)

GoogLeNet (turquoise circles)

ResNet-50 (grey squares).

How to induce texture bias?

- Texture recognition is easier than shape recognition?
- Stylized ImageNet

ResNet-50 on Stylized-ImageNet (orange squares)

ResNet-50 on ImageNet (grey squares)

Human data (red circles)

Some more results

architecture	$IN \rightarrow IN$	$IN \rightarrow SIN$	$SIN \rightarrow SIN$	SIN→IN
ResNet-50	92.9	16.4	79.0	82.6
BagNet-33 (mod. ResNet-50)	86.4	4.2	48.9	53.0
BagNet-17 (mod. ResNet-50)	80.3	2.5	29.3	32.6
BagNet-9 (mod. ResNet-50)	70.0	1.4	10.0	10.9

- SIN is a much harder task than IN since textures are no longer predictive
- ImageNet features generalise poorly to SIN
- SIN data set we propose does actually remove local texture cues, forcing a network to integrate long-range spatial information

Are there any benefits of shape bias?

+ accuracy

+ robustness against distortions

			object recognition		object de	tection
name	training	fine-tuning	top-1 IN accuracy (%)	top-5 IN accuracy (%)	Pascal VOC mAP50 (%)	MS COCO mAP50 (%)
vanilla ResNet	IN	-	76.13	92.86	70.7	52.3
	SIN	-	60.18	82.62	70.6	51.9
	SIN+IN	-	74.59	92.14	74.0	53.8
Shape-ResNet	SIN+IN	IN	76.72	93.28	75.1	55.2

Results

- CNNs mostly recognise texture rather than shapes
- We can develop shape bias with suitable dataset
- Shape bias is beneficial

Why texture bias could cause problems?

Vulnerable to adversarial attacks

- Makes it difficult for models to learn human-relevant vision task
- CNNs model of choice for modelling primate visual cortex
- Sensible to compare human and machine vision

Reasons of texture bias

- Datasets
- Augmentation
- Objective
- Architecture

Datasets

Shape bias - the percentage of the time it classified images from the GST dataset according to shape, provided it classified either shape or texture correctly

We call a model *shape-biased* if its shape bias is > 50%, and *texture-biased* if it is < 50%

Shape match and texture match indicate - the percentage of the time the model chose the image's correct shape or texture label, respectively, as opposed to choosing some other label

Datasets

Role of augmentation

- Random-crop data augmentation increases texture bias
- Appearance-modifying data augmentation reduces texture bias

Model	Shape Bias		Shape Match		Texture Match		ImageNet Top-1 Acc.	
	Random	Center	Random	Center	Random	Center	Random	Center
AlexNet	28.2%	37.5%	16.4%	19.3%	41.8%	32.1%	56.4%	50.7%
VGG16	11.2%	15.8%	7.6%	10.7%	60.1%	57.1%	71.8%	62.5%
ResNet-50	19.5%	28.4%	11.7%	16.3%	48.4%	41.1%	76.6%	70.7%
Inception-ResNet v2	23.1%	27.9%	15.1%	19.8%	50.2%	51.2%	80.3%	77.3%

Augmentation	Shape Bias	Shape Match	Texture Match	ImageNet Top-1 Acc.
Baseline	19.5%	11.7%	48.4%	76.6%
Rotate 90° , 180° , 270°	19.4%	10.8%	45.1%	75.7%
Cutout	21.4%	12.3%	45.2%	76.9%
Sobel filtering	24.8%	12.8%	38.9%	71.2%
Gaussian blur	25.2%	14.1%	41.7%	75.8%
Color distort.	25.8%	15.3%	44.2%	76.9%
Gaussian noise	30.7%	17.2%	38.8%	75.6%

Effect of training objective

Rotation classification

Guess rotation

Exemplar

Triplet Loss

BigBiGAN

Generator - converts latent codes into images

Encoder - converts images to latent codes

SimCLR

Learns representations by maximizing agreement between differently augmented views of the same data example

Effect of training objective

- Rotation model had significantly lower texture bias than supervised models
- Shape bias is higher for AlexNet than for ResNet-50

Objective	Shape Bias		Shape Match		Texture Match		ImageNet Top-1 Acc.	
	AlexNet	ResNet-50	AlexNet	ResNet-50	AlexNet	ResNet-50	AlexNet	ResNet-50
Supervised	29.8%	21.9%	17.5%	13.5%	41.2%	48.2%	57.0%	75.8%
Rotation	47.0%	32.3%	21.6%	14.2%	24.3%	29.8%	44.8%	44.4%
Exemplar	29.9%	14.4%	12.6%	7.5%	29.5%	44.7%	37.2%	41.8%
BigBiGAN	-	31.9%	· —	17.7%	-	37.7%		55.4%
SimCLR	-	37.0%	1-	17.3%	- 0	29.4%		69.2%
Supervised w/								
SimCLR aug.	-	40.4%	-	23.1%	-	34.0%	-	76.3%

Effect of architecture

Vision transformers (ViT)

- ViTs are significantly less biased towards local textures, compared to CNNs
- ViTs demonstrate shape recognition capability comparable to that of human visual system

Vision transformers (ViT)

 ViT-22B fine-tuned on ImageNet (red, green, blue) have the highest shape bias recorded in a ML model to date

Results

- Shape bias is useful
- Shape bias depends on various factor
- ViTs perform best of all

Hyperparameters