Image Stitching

Image Stitching (Panorama)

Image Stitching: SIFT detector

Image Stitching: Geometric relationship

Image Stitching: Warping

Image Stitching

Image Stitching: Blending

Image Stitching

- Perform Transformations (Projective)
- 2. Computing Homography
- 3. Dealing with Outliers (RANSAC)
- 4. Warping and Blending images

Homography H that best "agrees" with the matches

Homography (conditions)

Scene of 3D world from single view point

Or

Plane in 3D world from different view point

Or

Scene is far away (Plane at infinity)

- 8 degree of freedom
- 4 pairs of matching points (minimum)

For a given pair i of corresponding points:

$$x_{d}^{(i)} = \frac{\tilde{x}_{d}^{(i)}}{\tilde{z}_{d}^{(i)}} = \frac{h_{11}x_{s}^{(i)} + h_{12}y_{s}^{(i)} + h_{13}}{h_{31}x_{s}^{(i)} + h_{32}y_{s}^{(i)} + h_{33}}$$
$$y_{d}^{(i)} = \frac{\tilde{y}_{d}^{(i)}}{\tilde{z}_{d}^{(i)}} = \frac{h_{21}x_{s}^{(i)} + h_{22}y_{s}^{(i)} + h_{23}}{h_{31}x_{s}^{(i)} + h_{32}y_{s}^{(i)} + h_{33}}$$

$$y_d^{(i)} = \frac{\tilde{y}_d^{(i)}}{\tilde{z}_d^{(i)}} = \frac{h_{21}x_s^{(i)} + h_{22}y_s^{(i)} + h_{23}}{h_{31}x_s^{(i)} + h_{32}y_s^{(i)} + h_{33}}$$

Rearranging the terms:

$$x_{d}^{(i)} \left(h_{31} x_{s}^{(i)} + h_{32} y_{s}^{(i)} + h_{33} \right) = h_{11} x_{s}^{(i)} + h_{12} y_{s}^{(i)} + h_{13}$$

$$y_{d}^{(i)} \left(h_{31} x_{s}^{(i)} + h_{32} y_{s}^{(i)} + h_{33} \right) = h_{21} x_{s}^{(i)} + h_{22} y_{s}^{(i)} + h_{23}$$

$$y_d^{(i)} (h_{31}x_s^{(i)} + h_{32}y_s^{(i)} + h_{33}) = h_{21}x_s^{(i)} + h_{22}y_s^{(i)} + h_{23}$$

$$x_d^{(i)} \left(h_{31} x_s^{(i)} + h_{32} y_s^{(i)} + h_{33} \right) = h_{11} x_s^{(i)} + h_{12} y_s^{(i)} + h_{13}$$
$$y_d^{(i)} \left(h_{31} x_s^{(i)} + h_{32} y_s^{(i)} + h_{33} \right) = h_{21} x_s^{(i)} + h_{22} y_s^{(i)} + h_{23}$$

Rearranging the terms and writing as linear equation:

Constrained Least Squares

Solve for **h**: $A \mathbf{h} = \mathbf{0}$ such that $\|\mathbf{h}\|^2 = 1$

Define least squares problem:

$$\min_{\mathbf{h}} \|A\mathbf{h}\|^2 \text{ such that } \|\mathbf{h}\|^2 = 1$$

We know that:

$$||A\mathbf{h}||^2 = (A\mathbf{h})^T (A\mathbf{h}) = \mathbf{h}^T A^T A \mathbf{h}$$
 and $||\mathbf{h}||^2 = \mathbf{h}^T \mathbf{h} = 1$

 $\min_{\mathbf{h}}(\mathbf{h}^T A^T A \mathbf{h}) \text{ such that } \mathbf{h}^T \mathbf{h} = 1$

Constrained Least Squares

$$\min_{\mathbf{h}}(\mathbf{h}^T A^T A \mathbf{h})$$
 such that $\mathbf{h}^T \mathbf{h} = 1$

Define Loss function $L(\mathbf{h}, \lambda)$:

$$L(\mathbf{h}, \lambda) = \mathbf{h}^T A^T A \mathbf{h} - \lambda (\mathbf{h}^T \mathbf{h} - 1)$$

Taking derivatives of $L(\mathbf{h}, \lambda)$ w.r.t \mathbf{h} : $2A^T A \mathbf{h} - 2\lambda \mathbf{h} = \mathbf{0}$

$$A^T A \mathbf{h} = \lambda \mathbf{h}$$
 Eigenvalue Problem

Eigenvector \mathbf{h} with smallest eigenvalue λ of matrix A^TA minimizes the loss function $L(\mathbf{h})$.