

### PATENT ABSTRACTS OF JAPAN

(11) Publication number: 10160866 A

(43) Date of publication of application: 19 . 06 . 98

(51) Int. CI

G04C 3/14

H02K 1/22

H02K 1/27

H02K 7/116

H02K 37/16

H02K 37/24

(21) Application number: 08322035

(22) Date of filing: 02 . 12 . 96

(71) Applicant:

SEIKO EPSON CORP

(72) Inventor:

MATSUZAWA KINYA SEKINO HIROICHI

# (54) STEPPING MOTOR, TIME COUNTER AND ELECTRONIC APPARATUS

#### (57) Abstract:

PROBLEM TO BE SOLVED: To obtain a stepping motor effectively utilizing magnetic flux, having sufficient torque and, small power consumption.

SOLUTION: A magnetized disk rotor 1 is housed rotationably in a stator 2, a drive coil 3 is wound on the magnetic core 4, the rotor 1 is supported rotatably with a rotor shaft 5 and force is transmitted to the rotor 1 with a rotor pinion 6. The rotor 1 and the rotor pinion 6 are fixed to the rotor shaft 5 and rotated in one. For the rotor 1, sintered magnet of rare earth composed mainly of samarium and cobalt is used. For the stator 2 and magnetic core 4, permalloy is used. Here, by making the rotor pinion 6 is made nonmagnetic body such as brass, stainless steel, ceramics, etc., leak of magnetic flux can be suppressed and the magnetic flux density crossing the drive coil 3 is improved. Thus with this structure, a stepping motor with small power consumption is obtained.

COPYRIGHT: (C)1998, JPO



## (19)日本国特許庁 (JP)

# (12) 公開特許公報(A)



(11)特許出願公開番号

## 特開平10-160866

(43)公開日 平成10年(1998) 6月19日

| (51) Int.Cl. <sup>6</sup> |              | 識別記号            |      | FI   |     |          |     |          |      |         |
|---------------------------|--------------|-----------------|------|------|-----|----------|-----|----------|------|---------|
| G 0.4 C                   | 3/14<br>1/22 | 5 0 1           |      | G 0  | 4 C | 3/14     | L   |          |      |         |
| H02K                      |              |                 |      | H0.  | 2 K | 1/22     |     |          |      |         |
|                           | 1/27         |                 |      |      |     | 1/27     |     | 5 0      | 1 C  |         |
|                           | 7/116        |                 |      |      |     | 7/116    |     |          |      |         |
|                           | 37/16        |                 |      |      | :   | 37/16    |     | M        |      |         |
|                           |              |                 | 審査請求 | 未請求  | 农儲  | 項の数3     | OL  | (全 3     | 頁)   | 最終頁に続く  |
| (21)出顧番号                  | <del>}</del> | 特顏平8-322035     |      | (71) | 出願人 | . 000002 | 369 |          |      |         |
|                           |              |                 |      | ļ    |     | セイコ      | ーエプ | ソン株式     | 式会社  |         |
| (22)出願日                   |              | 平成8年(1996)12月2日 |      |      |     | 東京都      | 新宿区 | 西新宿      | 2 丁目 | 4番1号    |
|                           |              |                 |      | (72) | 発明者 | 松澤       | 欣也  |          | •    |         |
|                           |              |                 |      |      |     |          |     | 大和3二式会社  |      | 番5号 セイコ |
|                           |              |                 |      | (72) | 発明者 | 関野       | 博—  |          |      |         |
|                           |              |                 |      |      |     |          |     | 大和3二式会社区 |      | 番5号 セイコ |
|                           |              |                 |      | (74) | 代理人 | 弁理士      | 鈴木  | 喜三       | r (  | 外2名)    |
|                           |              |                 |      |      |     |          |     |          |      |         |
|                           |              |                 |      |      |     |          |     |          |      |         |
|                           |              |                 |      |      |     |          |     |          | •    |         |

## (54) 【発明の名称】 ステッピングモータ、計時装置および電子機器

## (57) 【要約】

【課題】 磁化された円盤状のロータと、このロータが 回転可能に収納されたステータと、ロータを回転可能に 支持するロータシャフトと、ロータに働く力を伝達する ためのロータかなとを有し、このロータかなとロータが 隣接した状態で回転するステッピングモータにおいて、 ロータからの漏洩磁束を減少し、省電力なステッピング モータを提供する。

【解決手段】 ロータかなを非磁性材料で構成する。



10

20

【特許請求の範囲】

【請求項1】 磁化された円盤状のロータと、このロー タが回転可能に収納されたステータと、前記ロータを回 転可能に支持するロータシャフトと、前記ロータに働く 力を前記ロータシャフトを介して伝達するためのロータ かなとを有し、前記ロータと前記ロータシャフトと前記 ロータかなが一体的に回転するステッピングモータにお いて、

前記ロータかなが非磁性体であることを特徴とするステ ッピングモータ。

【請求項2】 請求項1記載のステッピングモータと、 前記ステッピングモータの駆動コイルに駆動パルスを供 給する制御装置とを有することを特徴とする計時装置。

【請求項3】 請求項1記載のステッピングモータを動 力源として有することを特徴とする電子機器。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、腕時計装置などの 小型の電子機器の動力源として適したステッピングモー タに関するものである。

[0002]

【従来の技術】腕時計装置のような小型電子機器におい て、針を駆動するための動力源としては、主にステッピ ングモータが用いられている。電子機器の例として図2 に計時装置7の概要を示してある。制御装置8からこの ステッピングモータ10の駆動コイル3に駆動パルスを 供給することによりロータ1を所定のタイミングで回転 駆動し、その回転力を輸列9によって伝達し針を動かす ことができる。

[0003]

【発明が解決しようとする課題】このような小型携帯機 器においては、ステッピングモータ自身もまた小型化が 要求される。そのためロータの回転力を伝達するための **輸列機構、特に第1の伝達歯車であるロータかなが磁石** の近傍に存在することになる。従来、このロータかなは 軟磁性材料で構成されているためロータ磁石からロータ かなへ磁束が漏洩する。したがって、駆動コイル内を鎖 交する磁束が減少し運針のための十分なトルクを得るた めにはより大きな電流が必要となり、その結果消費電力 の増大という問題が生じる。そこで、本発明では、ロー タ磁石の磁束を有効に利用し、運針のための十分なトル クを得て、消費電力の小さいステッピングモータを得る ことを目的としている。

[0004]

【課題を解決するための手段】上記目的を達成するため の手段として、磁化された円盤状のロータと、このロー タが回転可能に収納されたステータと、ロータを回転可 能に支持するロータシャフトと、ロータに働く力をロー タシャフトを介して伝達するためのロータかなとを有

転するステッピングモータにおいて、ロータかなが非磁 性体であることを特徴とする。さらに、本発明により、 効率の良いステッピングモータを動力源とした計時装置 などの電子機器を提供することができる。

[0005]

【発明の実施の形態】以下に図面を参照しながら本発明 をさらに詳しく説明する。図1に本発明のステッピング モータを示す。本例のステッピングモータは、磁化され た円盤状のロータ1と、このロータ1が回転可能に収納 されたステータ2と、駆動コイル3と、駆動コイルを巻 くための磁心4と、ロータ1を回転可能に支持するロー タシャフト5と、ロータ1に働く力を伝達するためのロ ータかな6とを有する。ロータシャフト5は、それ自身 が回転軸となるようにその上下で軸受けによって軸止さ れている。ロータ1とロータかな6は、ロータシャフト 5と一体的に固着され、回転軸に対して一体的に回転す る。ロータかな6と輪列9は噛合しているため、ロータ 1の回転力はロータシャフト5とロータかな6を介して 輪列9に伝達され運針が可能となる。

【0006】ロータ1として使用している磁石は、サマ リウム、コバルトを主原料としたの希土類焼結磁石で最 大エネルギー積が32メガガウスエルステッド (MGO e) であり、その概形は径1.1mm、厚さ0.4mm の円盤形状を成す。ステータ2はパーマロイ材で、最大 透磁率が350000、飽和磁束密度が7500ガウス (G) である。磁心4もパーマロイ材で、最大透磁率が 50000、飽和磁束密度が15000ガウス (G) で ある。駆動コイル3は、8000ターン、2500Ωで ある。ロータかな6が軟磁性材料である炭素鋼の場合 は、駆動コイル3の内部の平均磁束密度は7300G 30 で、ロータかな6を非磁性材料である真鍮に変えたとき の駆動コイル3の内部の平均磁束密度は7300Gであ

った。また、図2の計時装置7の制御装置8の条件を固 定して、同じ条件で駆動したときの消費電力は、ロータ かな6が軟磁性材料である炭素鋼の場合は、0.4マイ クロワット (μW) であった。これに対し、ロータかな 6を非磁性材料である真鍮に変えたときの消費電力は 38μWであり、ロータかな6が磁性材料のときよ り消費電力が5%減少した。ロータかな6とロータシャ フト5は一体である。

【0007】従って、ロータかな6を非磁性体にするこ とにより、磁束の漏れを抑制することができる。このた め、漏洩磁束を低減して駆動コイル3を鎖交する磁束の 密度を向上するためにはロータかな6を非磁性体にする ことが非常に有効である。非磁性材料としては真鍮に限 られるものではなく、ステンレス鋼、セラミックス、樹 脂など特性に応じて使うことができる。

【0008】なお本例においては、計時装置7の動力源 として用いられるステッピングモータ10を例に説明し し、ロータとロータシャフトとロータかなが一体的に回 50 ているが、これに限定されず、本発明のステッピングモ

特開平10-160866

ータ10は気圧計や高度計などの計器などにも適用可能であり、本発明により省電力なステッピングモータを提供することができる。

### [0009]

【発明の効果】以上に説明したように、本発明においては、一部の部品を非磁性化することにより、省電力なステッピングモークを提供することができる。

【0010】さらに、本発明の省電力なステッピングモータを用いることにより、高効率な計時装置および電子機器を提供することができる。

## 【図面の簡単な説明】

【図1】本発明のステッピングモータを示す平面図である。

【図2】ステッピングモータを搭載した計時装置の概略 構成を示す図である。

### 【符号の説明】

1・・ロータ

2・・ステータ

3・・駆動コイル

4 · · 磁心

5・・ロータシャフト

6・・ロータかな

10 7・・計時装置

8・・制御装置

9・・輪列

10・・ステッピングモータ

【図1】



【図2】



フロントページの続き

(51) Int. Cl. 6

識別記号

HO2K 37/24

FΙ

H 0 2 K 37/24

U