Piotr Durniat

I rok, Fizyka Wtorek, 8:00-10:15 Data wykonania pomiarów: 27.05.2025

Prowadząca: dr Iwona Mróz

Ćwiczenie nr 38

Pomiar napięcia powierzchniowego

Spis treści

1	Wstęp teoretyczny	2
	1.1 Napięcie powierzchniowe	2
	1.2 Zjawiska związane z napięciem powierzchniowym	2
	1.3 Metody pomiaru napięcia powierzchniowego	
2	Opis doświadczenia	3
	2.1 Metoda odrywania	3
	2.2 Metoda stalagmometru	
3	Opracowanie wyników pomiarów	3
	3.1 Tabele pomiarowe	3
	3.2 Obliczenia	
	3.2.1 Obliczenia dla metody odrywania:	
	3.2.2 Obliczenia dla metody stalagmometru:	
4	Ocena niepewności pomiaru	6
	4.1 Obliczenia niepewności dla metody odrywania	6
	4.2 Obliczenia niepewności dla metody stalagmometru	8
5	Wnioski	8
6	Wykresy	9

1 Wstęp teoretyczny

1.1 Napięcie powierzchniowe

Napięcie powierzchniowe jest zjawiskiem fizycznym występującym na granicy faz, najczęściej ciecz-gaz, i wynika z oddziaływań międzycząsteczkowych w cieczy. Cząsteczki znajdujące się wewnątrz cieczy oddziałują z sąsiednimi cząsteczkami we wszystkich kierunkach, natomiast cząsteczki na powierzchni oddziałują głównie z cząsteczkami znajdującymi się pod nimi. Ta nierównowaga sił powoduje, że powierzchnia cieczy zachowuje się jak napięta błona, dążąc do przyjęcia kształtu o minimalnej powierzchni. Napięcie powierzchniowe (σ) definiuje się jako stosunek siły (F) działającej stycznie do powierzchni cieczy wzdłuż linii o długości (l):

$$\sigma = \frac{F}{l} \tag{1}$$

Jednostką napięcia powierzchniowego w układzie SI jest N/m (newton na metr).

1.2 Zjawiska związane z napięciem powierzchniowym

Na granicy ośrodków ciecz-ciało stałe-gaz obserwuje się zjawisko menisku (wklęsłego lub wypukłego), zależnie od oddziaływań między cieczą a ciałem stałym. Jeśli siły przyciągania między cząsteczkami cieczy a ciałem stałym są silniejsze niż między samymi cząsteczkami cieczy, powstaje menisk wklęsły (np. woda w szklanej rurce). W przeciwnym przypadku tworzy się menisk wypukły (np. rtęć w szklanej rurce). Zjawisko włoskowatości (kapilarności) jest bezpośrednim skutkiem napięcia powierzchniowego i zwilżalności powierzchni. Polega ono na samorzutnym podnoszeniu się lub obniżaniu cieczy w wąskich kapilarach. Wysokość słupa cieczy w kapilarze zależy od napięcia powierzchniowego, gęstości cieczy oraz promienia kapilary.

1.3 Metody pomiaru napięcia powierzchniowego

W niniejszym ćwiczeniu wykorzystano dwie metody pomiaru napięcia powierzchniowego:

• Metoda odrywania - polega na pomiarze siły F potrzebnej do oderwania płytki od powierzchni cieczy. Napięcie powierzchniowe σ jest zdefiniowane jako siła działająca na jednostkę długości krawędzi. Całkowita długość krawędzi styku płytki (o długości l i grubości d) z cieczą wynosi 2(l+d). Zatem siła napięcia powierzchniowego F (równa sile odrywania, po uwzględnieniu ciężaru płytki oraz przy założeniu kąta zwilżania $\gamma \approx 0$, czyli $\cos \gamma \approx 1$) wyraża się jako $F = \sigma \cdot 2(l+d)$. Przekształcając ten wzór, otrzymujemy:

$$\sigma = \frac{F}{2(l+d)} \tag{2}$$

gdzie F to mierzona siła odrywania (po skompensowaniu ciężaru płytki), l to długość płytki, a d to jej grubość.

• Metoda stalagmometru - opiera się na pomiarze masy kropel cieczy, które odrywają się od kapilary o znanym promieniu. Napięcie powierzchniowe wyznacza się, porównując masy kropel badanej cieczy i cieczy wzorcowej o znanym napięciu powierzchniowym.

Napięcie powierzchniowe zależy od temperatury (na ogół maleje liniowo wraz z jej wzrostem) oraz od obecności zanieczyszczeń i substancji powierzchniowo czynnych, które mogą znacząco obniżyć jego wartość. Wstęp teoretyczny został opracowany na podstawie podręcznika [3] oraz materiałów dydaktycznych Politechniki Wrocławskiej [2].

2 Opis doświadczenia

Celem doświadczenia było wyznaczenie napięcia powierzchniowego dla wody destylowanej, alkoholu i acetonu przy użyciu dwóch metod: metody odrywania oraz metody stalagmometru.

2.1 Metoda odrywania

Pomiary wykonano przy użyciu wagi torsyjnej (Rys. 1 w instrukcji).

- 1. Zmierzono 3-krotnie grubość d płytki pomiarowej za pomocą śruby mikrometrycznej oraz długość jej podstawy l za pomocą suwmiarki. Płytkę następnie osuszono i zawieszono na haczyku wagi.
- 2. Odaretowano wagę i zważono płytkę, notując jej masę spoczynkową (wskazanie wagi bez dodatkowego obciążenia).
- 3. Pod płytkę podstawiono naczynko z badaną cieczą (wodą destylowaną) tak, aby dolna krawędź płytki niemal dotykała powierzchni cieczy. Waga była zaaretowana.
- 4. Odaretowano wagę, doprowadzając do zanurzenia dolnej części płytki w cieczy. Następnie powoli obracano pokrętłem wagi, zwiększając siłę, aż do momentu oderwania płytki od powierzchni cieczy. Odczytano maksymalną siłę F (wskazanie wagi w jednostkach masy [mg]) działającą w momencie odrywania.
- 5. Pomiar siły odrywającej F wykonano 10-krotnie dla wody destylowanej.
- 6. Kroki 3-5 powtórzono dla alkoholu i acetonu.

2.2 Metoda stalagmometru

- 1. Zważono czyste i osuszone naczynko pomiarowe.
- 2. Sprawdzono drożność kapilary stalagmometru i zmierzono jej zewnętrzny promień R.
- 3. Napełniono naczynko 30 kroplami wody destylowanej, które odrywały się od kapilary, a następnie zważono naczynko z cieczą.
- 4. Pomiar masy 30 kropel (krok 3) powtórzono 3-krotnie dla wody destylowanej.
- 5. Zanotowano temperaturę otoczenia.
- 6. Kroki 1, 3 i 4 powtórzono dla alkoholu i acetonu.

3 Opracowanie wyników pomiarów

3.1 Tabele pomiarowe

Długość płytki l	[mm]
9,5	

Tabela 1: Zmierzona długość płytki pomiarowej.

Grubość płytki [mm]				
Wskazanie	Błąd wskazania zerowego (Δd)	Wartość skorygowana		
0,92	0,46	0,46		

Tabela 2: Pomiar grubości płytki pomiarowej wraz z korektą błędu wskazania zerowego.

Masa spoczynkowa	[mg]
272	

Tabela 3: Masa spoczynkowa płytki pomiarowej.

Siła odrywająca [mg]					
Pomiar	Woda	Alkohol	Aceton		
1	398	308	312		
2	394	310	312		
3	392	310	310		
4	392	310	314		
5	396	312	312		
6	396	308	312		
7	398	308	314		
8	398	310	314		
9	398	312	314		
10	398	310	312		

Tabela 4: Siła odrywająca płytkę dla różnych cieczy.

Nr pomiaru	Ciecz	$m_n[g]$	$m_{nw}\left[\mathrm{g}\right]$
1	Woda	2,007	3,452
2	Woda	2,038	3,537
3	Woda	2,016	3,519
1	Alkohol	1,997	2,186

Tabela 5: Pomiary masy naczynia dla różnych cieczy. m_n - masa naczynia, m_{nw} - masa naczynia z cieczą.

3.2 Obliczenia

3.2.1 Obliczenia dla metody odrywania:

Obliczono średnią arytmetyczną wartości siły odrywającej płytkę \bar{F}_{mg} (wskazania wagi w jednostkach masy [mg]) dla każdej cieczy na podstawie 10 pomiarów.

$$\bar{F}_{\rm mg} = \frac{\sum_{i=1}^{n} F_i}{n}$$

gdzie F_i to kolejne pomiary siły, a n to liczba pomiarów (n=10). Od każdego pomiaru siły odrywającej należy odjąć masę spoczynkową płytki m_0 , aby uzyskać siłę netto:

$$F_{\text{netto}} = F_{\text{zmierzone}} - m_0$$

Przeliczono średnią siłę netto $\bar{F}_{\rm N}$ na niutony [N], wykorzystując zależność, że 1 [mg] odpowiada sile 9,807 · 10⁻⁶ [N].

$$\bar{F}_{\mathrm{N}} = \bar{F}_{\mathrm{netto}} \cdot 9.807 \cdot 10^{-6} \,\mathrm{N/mg}$$

Obliczono wartość napięcia powierzchniowego σ dla każdej cieczy, korzystając ze wzoru (2):

$$\sigma = \frac{\bar{F}_{\rm N}}{2(l+d)}$$

Wymiary płytki:

- Długość (l): 9,5 mm = 0,00950 m
- Grubość skorygowana ($d_{\rm sk}$): 0,46 mm = 0,00046 m
- Obwód całkowity $2(l + d_{sk}) = 2(0,00950 + 0,00046) = 0,01992$ m

Przykładowe obliczenia dla wody destylowanej:

Średnia siła odrywająca (wskazanie wagi):

$$\begin{split} \bar{F}_{\text{mg, woda}} &= \frac{398 + 394 + 392 + 392 + 396 + 396 + 398 + 398 + 398 + 398}{10} \\ &= \frac{3960}{10} = 396,00 \text{ mg} \end{split}$$

Siła netto (po odjęciu masy spoczynkowej $m_0=272,00$ mg):

$$\bar{F}_{\text{netto, woda}} = 396,00 - 272,00 = 124,00 \text{ mg}$$

= 124,00 · 9,807 · 10⁻⁶ = 0,00121607 N

Napięcie powierzchniowe wody:

$$\sigma_{\text{woda}} = \frac{0,00121607}{0.01992} = 0,0610 \frac{\text{N}}{\text{m}}$$

Wyniki obliczeń dla wszystkich cieczy:

Ciecz	\bar{F}_{mg} [mg]	\bar{F}_{netto} [mg]	$\bar{F}_{\mathbf{N}}$ [N]	σ [N/m]
Woda destylowana	396,00	124,00	0,00121607	0,0610
Alkohol	309,80	37,80	0,00037070	0,0186
Aceton	312,60	40,60	0,00039816	0,0200

Tabela 6: Zestawienie obliczonych wartości siły odrywającej i napięcia powierzchniowego.

Poniższa tabela 7 przedstawia wartości napięcia powierzchniowego (w $N m^{-1}$) dla wody, etanolu i acetonu w temperaturze 20 °C. Główne wartości pochodzą ze źródła [1].

Substancja	Napięcie powierzchniowe (N/m)
Woda	0,07280
Etanol	0,02210
Aceton	0,02520

Tabela 7: Wartości napięcia powierzchniowego dla wybranych cieczy w temp. 20 °C.

3.2.2 Obliczenia dla metody stalagmometru:

Masę cieczy obliczono jako różnicę masy naczynia z cieczą i masy pustego naczynia:

$$m_w = m_{nw} - m_n$$

Przykładowe obliczenia dla wody (pomiar 1):

$$m_w = 3,452 \text{ g} - 2,007 \text{ g} = 1,445 \text{ g}$$

Średnia masa 30 kropli wody:

$$\bar{m}_w = \frac{1,445 \text{ g} + 1,499 \text{ g} + 1,503 \text{ g}}{3} = 1,4823 \text{ g}$$

Masa pojedynczej kropli (dla wody):

$$m_{w1} = \frac{\bar{m}_w}{30} = \frac{1,4823 \text{ g}}{30} = 0,0494 \text{ g}$$

Dla alkoholu:

$$m_a = 2,186 \text{ g} - 1,997 \text{ g} = 0,1890 \text{ g}$$

 $m_{a1} = \frac{0,1890 \text{ g}}{30} = 0,0063 \text{ g}$

Stosunek napięć powierzchniowych obliczono ze wzoru:

$$\frac{\sigma_a}{\sigma_w} = \frac{\rho_a m_{a1}}{\rho_w m_{w1}}$$

gdzie:

- $\rho_w = 0.9982 \text{ g/cm}^3$ gęstość wody w 20°C
- $\rho_a = 0.789 \ \mathrm{g/cm}^3$ gęstość alkoholu w 20°C
- m_{w1}, m_{a1} masy pojedynczych kropli

Podstawiając wartości:

$$\frac{\sigma_a}{\sigma_w} = \frac{0,789 \cdot 0,0063}{0,9982 \cdot 0,0494} = 0,1008$$

Wartość tablicowa stosunku napięć powierzchniowych:

$$\left(\frac{\sigma_a}{\sigma_w}\right)_{\text{ref}} = \frac{0,02210 \text{ N/m}}{0,0728 \text{ N/m}} = 0,3036$$

Błąd względny:

$$\delta = \frac{|0,1008 - 0,3036|}{0.3036} \cdot 100\% = 66,8\%$$

4 Ocena niepewności pomiaru

4.1 Obliczenia niepewności dla metody odrywania

Niepewność złożoną napięcia powierzchniowego $u_c(\sigma)$ obliczono korzystając z prawa przenoszenia niepewności standardowych. Dla funkcji $\sigma = \frac{F}{2(l+d)}$:

$$u_c(\sigma) = \sqrt{\left(\frac{\partial \sigma}{\partial F}\right)^2 u^2(F) + \left(\frac{\partial \sigma}{\partial l}\right)^2 u^2(l) + \left(\frac{\partial \sigma}{\partial d}\right)^2 u^2(d)}$$

Pochodne cząstkowe wynoszą:

$$\begin{split} \frac{\partial \sigma}{\partial F} &= \frac{1}{2(l+d)} \\ \frac{\partial \sigma}{\partial l} &= -\frac{F}{2(l+d)^2} = -\sigma/(l+d) \\ \frac{\partial \sigma}{\partial d} &= -\frac{F}{2(l+d)^2} = -\sigma/(l+d) \end{split}$$

Składowe niepewności:

1. Niepewność pomiaru siły u(F) składa się z:

• Niepewności typu A (rozrzut pomiarów):

$$u_A(F) = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (F_i - \bar{F})^2}$$

- Niepewności typu B (dokładność wagi): $u_B(F) = \frac{1 \text{ mg}}{\sqrt{3}} \cdot 9,807 \cdot 10^{-6} \text{ N/mg}$
- 2. Niepewność pomiaru długości u(l):

$$u(l) = \frac{0.05 \text{ mm}}{\sqrt{3}} = 0.029 \text{ mm} = 2.9 \cdot 10^{-5} \text{ m}$$

3. Niepewność pomiaru grubości u(d):

$$u(d) = \frac{0.01 \text{ mm}}{\sqrt{3}} = 0.0058 \text{ mm} = 5.8 \cdot 10^{-6} \text{ m}$$

Przykładowe obliczenia dla wody:

Niepewność typu A siły (dla wody):

$$u_A(F) = \sqrt{\frac{1}{9} \sum_{i=1}^{10} (F_i - 124,00)^2} \text{ mg} \cdot 9,807 \cdot 10^{-6} \text{ N/mg}$$

= 0,000008 N

Niepewność typu B siły:

$$u_B(F) = \frac{1}{\sqrt{3}} \cdot 9,807 \cdot 10^{-6} = 0,000006 \text{ N}$$

Całkowita niepewność siły:

$$u(F) = \sqrt{u_A^2(F) + u_B^2(F)} = 0,000010 \text{ N}$$

Podstawiając do wzoru na niepewność złożoną napięcia powierzchniowego:

$$u_c(\sigma) = \sqrt{\left(\frac{1}{0,01992}\right)^2 (0,000010)^2 + \left(-\frac{0,0610}{0,00996}\right)^2 (2,9 \cdot 10^{-5})^2 + \left(-\frac{0,0610}{0,00996}\right)^2 (5,8 \cdot 10^{-6})^2}$$

$$= 0,0005 \text{ N/m}$$

Wyniki końcowe z niepewnościami:

Ciecz	σ [N/m]	$u_c(\sigma)$ [N/m]
Woda destylowana	0,0610	0,0005
Alkohol	0,0186	0,0004
Aceton	0,0200	0,0004

Tabela 8: Wartości napięcia powierzchniowego wraz z niepewnościami standardowymi złożonymi.

4.2 Obliczenia niepewności dla metody stalagmometru

Dla metody stalagmometru obliczono niepewność stosunku napięć powierzchniowych. Uwzględniono niepewność pomiaru masy:

• Niepewność pomiaru masy: $\Delta m = 0.001$ g

Dla stosunku napięć powierzchniowych $\frac{\sigma_a}{\sigma_w} = \frac{\rho_a m_a}{\rho_w m_w}$ niepewność względną obliczono ze wzoru na prawo przenoszenia niepewności maksymalnych, uwzględniając tylko niepewności mas (gęstości są wartościami tablicowymi):

$$\frac{\Delta(\sigma_a/\sigma_w)}{|\sigma_a/\sigma_w|} = \frac{\Delta m_a}{|m_a|} + \frac{\Delta m_w}{|m_w|}$$

Podstawiając wartości:

$$\frac{\Delta m_a}{|m_a|} = \frac{0,0001}{0,0063} = 0,0159$$

$$\frac{\Delta m_w}{|m_w|} = \frac{0,0001}{0,0494} = 0,00202$$

Całkowita niepewność względna:

$$\frac{\Delta(\sigma_a/\sigma_w)}{|\sigma_a/\sigma_w|} = 0.0179$$

Stąd niepewność bezwzględna stosunku napięć powierzchniowych:

$$\Delta(\sigma_a/\sigma_w) = 0.0179 \cdot 0.1008 = 0.0012$$

5 Wnioski

W ramach przeprowadzonego doświadczenia wyznaczono wartości napięcia powierzchniowego dla cieczy w temperaturze pokojowej, wykorzystując dwie metody pomiarowe.

Metoda odrywania płytki:

Poniższa tabela przedstawia zestawienie otrzymanych wyników wraz z wartościami tablicowymi oraz analizą błędów:

Ciecz	σ [N/m]	$u_c(\sigma)$ [N/m]	$\sigma_{ m ref} \ [{ m N/m}]$	$\Delta \sigma \ [N/m]$	δ [%]
Woda destylowana	0,0610	0,0005	0,0728	0,0118	16,2
Alkohol	0,0186	0,0004	0,0223	0,0037	16,6
Aceton	0,0200	0,0004	0,0237	0,0037	15,6

Tabela 9: Zestawienie wyników pomiarów z wartościami tablicowymi (w temp. 20°C). σ - wartość zmierzona, $u_c(\sigma)$ - niepewność złożona, σ_{ref} - wartość tablicowa, $\Delta \sigma$ - różnica bezwzględna, δ - błąd względny.

Analiza błędów względnych wykazała systematyczne zaniżenie wyników o podobną wartość procentową (około 16%) dla wszystkich cieczy, co sugeruje obecność systematycznego błędu w metodzie pomiarowej, który w podobnym stopniu wpływa na wszystkie wykonane pomiary. Niepewności pomiarowe są stosunkowo małe (rzędu 1-2% wartości mierzonej), co świadczy o dobrej powtarzalności pomiarów.

Metoda stalagmometru:

Dla metody stalagmometru wyznaczono stosunek napięć powierzchniowych alkoholu i wody:

$$\frac{\sigma_a}{\sigma_w} = 0.1008 \pm 0.0012$$

Porównując z wartością tablicową tego stosunku (0,3036), otrzymano znacznie większy błąd względny (66,8%) niż w metodzie odrywania.

Porównanie metod:

- Metoda odrywania płytki wykazała systematyczne zaniżenie wyników o około 16% dla wszystkich badanych cieczy, zachowując przy tym dobre wartości niepewności pomiarowych.
- Metoda stalagmometru dała znacznie gorsze wyniki, z błędem względnym ponad 66%.
- Obie metody wykazały systematyczne zaniżenie wyników względem wartości tablicowych, co może sugerować obecność czynników systematycznie wpływających na pomiary, takich jak temperatura czy czystość cieczy.

6 Wykresy

Literatura

- [1] DataPhysics Instruments GmbH. Surface tension values of some common test liquids for surface energy analysis. https://www.surface-tension.de/common-liquids/, 2024. Accessed on June 2, 2025.
- [2] Zbigniew Gumienny. Napięcie powierzchniowe. https://lpf.wppt.pwr.edu.pl/opisy/cw033.pdf, 2023.
- [3] William Moebs, Samuel J. Ling, and Jeff Sanny. Fizyka dla szkół wyższych, Tom 2. Open-Stax, 2018. Dostęp: 14.04.2024.