WHAT IS CLAIMED IS:

1	1. A method for processing signals in a pulse oximeter to determine		
2	oxygen saturation and pulse rate, comprising:		
3	receiving waveforms corresponding to two different wavelengths of light from		
4	a patient;		
5	ensemble averaging said waveforms in a first ensemble averager;		
6	calculating a pulse rate based on an output of said first ensemble averager;		
7	normalizing said waveforms to produce normalized waveforms;		
8	ensemble averaging said normalized waveforms in a second ensemble		
9	averager; and		
10	calculating an oxygen saturation based on an output of said second ensemble		
11	averager.		
	The mostless described a Coloine 1 Couthern accountainer.		
1	2. The method of claim 1 further comprising:		
2	said ensemble averaging using variable weights;		
3	selecting first metrics for said first ensemble averager to optimize said		
4	calculating a pulse rate; and		
5	selecting second metrics for said second ensemble averager to optimize said		
6	calculating an oxygen saturation.		
1	3. The method of claim 2 wherein said first and second metrics both		
2	include an arrhythmia metric for detecting an arrhythmic pulse, said arrhythmia metric for		
3	said first metrics, in connection with calculating a pulse rate, having a lower associated		
4	threshold for recognizing arrhythmia than said arrhythmic metric for said second metrics.		
1	4. The method of claim 2 wherein said first and second metrics both		
2	include a short term metric which is a measure of short-term changes in pulse amplitude;		
3	said first ensemble averager increasing an ensemble averaging weight in		
4	response to a short-term decrease in pulse amplitude faster than said second ensemble		
5	averager.		
1	5. A pulse oximeter for determining oxygen saturation and pulse rate,		
2	comprising:		
3	a detector which receives waveforms corresponding to two different		
4	wavelengths of light from a patient;		

5	a first ensemble averager;		
6	a pulse rate calculator, coupled to an output of said first ensemble averager;		
7	a normalizer coupled to said detector for normalizing said waveforms to		
8	produce normalized waveforms;		
9	a second ensemble averager; and		
10	an oxygen saturation calculator coupled to an output of said second ensemble		
11	averager.		
l	6. The pulse oximeter of claim 5 further comprising:		
2	wherein said ensemble averagers are configured to ensemble average using		
3	variable weights;		
4	a signal quality metric calculator configured to provide first metrics for said		
5	first ensemble averager to optimize said calculating a pulse rate, and second metrics for said		
6	second ensemble averager to optimize said calculating an oxygen saturation.		
1	7. A method for processing signals in a pulse oximeter to determine		
2			
	oxygen saturation and pulse rate, comprising:		
3	receiving waveforms corresponding to two different wavelengths of light from		
4	a patient;		
5	low pass filtering said waveforms in a first low pass filter;		
6	calculating a pulse rate based on an output of said first low pass filter;		
7	normalizing said waveforms to produce normalized waveforms;		
8	low pass filtering said normalized waveforms in a second low pass filter; and		
9	calculating an oxygen saturation based on an output of said second low pass		
10	filter.		
1	8. The method of claim 7 further comprising:		
2	selecting first metrics for said first low pass filter to optimize said calculating		
3	a pulse rate; and		
4	selecting second metrics for said second low pass filter to optimize said		
5	calculating an oxygen saturation.		

1	9	. The method of claim 8 wherein:		
2	ti	ne low-pass filtering weight associated with said first low pass filter is based		
3	on a frequency ratio metric which quantifies the frequency-content of said waveforms relative			
4	to a pulse-rate e	stimate.		
1	1	O The mostle defection 9 colors in		
1		O. The method of claim 8 wherein:		
2		low-pass filtering weight for said second low pass filter is based on		
3	a frequency ratio metric which quantifies the frequency-content of said			
4	waveforms relative to a pulse-rate estimate that metric, and			
5	a	separate Ratio-of-Ratios variance metric.		
1	1	1. A method for processing signals in a pulse oximeter to determine		
2	oxygen saturation and pulse rate, comprising:			
3	r	eceiving waveforms corresponding to two different wavelengths of light from		
4	a patient;			
5	10	ow pass filtering and ensemble averaging said waveforms in a first low pass		
6	filter and ensem	ble averager;		
7	c	alculating a pulse rate based on an output of said first low pass filter and		
8	ensemble averag	ger;		
9	n	ormalizing said waveforms to produce normalized waveforms;		
10	10	ow pass filtering and ensemble averaging said normalized waveforms in a		
11	second low pass	filter and ensemble averager; and		
12	c	alculating an oxygen saturation based on an output of said second low pass		
13 .	filter and ensem	ble averager.		
1		2. A pulse oximeter for determining oxygen saturation and pulse rate,		
2	comprising:			
3	a	detector which receives waveforms corresponding to two different		
4	wavelengths of l	ight from a patient;		
5	a	first low pass filtering;		
6	a	pulse rate calculator, coupled to an output of said first low pass filter;		
7	а	normalizer coupled to said detector for normalizing said waveforms to		
8	produce normali	zed waveforms;		
9	a	second low pass filter; and		

10	0 an oxygen saturation calculator coupled to	an output of said second low pass		
11	1 filter.			
1	1 13. The pulse oximeter of claim 12 furt	her comprising:		
2	wherein said low pass filters are configured	l to ensemble average using		
3	3 variable weights;			
4	4 a signal quality metric calculator configure	d to provide first metrics for said		
5	5 first low pass filter to optimize said calculating a pulse rat	e, and second metrics for said		
6	6 second low pass filter to optimize said calculating an oxyg	gen saturation.		
1	1 14. The pulse oximeter of claim 12 who	erein:		
2	2 the low-pass filtering weight associated with	th said first low pass filter is based		
3	on a frequency ratio metric which which quantifies the frequency-content of said waveforms			
4	relative to a pulse-rate estimate.			
1	1 15. The pulse oximeter of claim 12 who	erein:		
2	2 a low-pass filtering weight for said second	low pass filter is based on		
3	a frequency ratio metric which which quan	tifies the frequency-content of said		
4	4 waveforms relative to a pulse-rate estimate that metric, an	waveforms relative to a pulse-rate estimate that metric, and		
5	5 a separate Ratio-of-Ratios variance metric.			
1	1 16. A pulse oximeter for determining of	xygen saturation and pulse rate,		
2	2 comprising:	,		
3	a detector which receives waveforms corre-	sponding to two different		
4	4 wavelengths of light from a patient;	wavelengths of light from a patient;		
5	a first low pass filtering and ensemble aver	ager;		
6	a pulse rate calculator, coupled to an outpu	t of said first low pass filter and		
7	7 ensemble averager;			
8	8 a normalizer coupled to said detector for no	ormalizing said waveforms to		
9	9 produce normalized waveforms;			
10	a second low pass filter and ensemble average	ager; and		
11	l an oxygen saturation calculator coupled to	an output of said second low pass		
12	2 filter and ensemble averager.			
1	1 A method for processing signals in	a pulse oximeter to determine		
2	2 oxygen saturation, comprising:			

3	receiving waveforms corresponding to two different wavelengths of light from
4	a patient;
5	processing a new waveform after a pulse period trigger to ensemble average
6	with a historical average waveform; and
7	when said new waveform differs from said historical average waveform by
8	more than a predetermined threshold, interpolating between the new waveform and the
9	historical average waveform for a first few samples of a new, composite historical average
10	waveform.

1

2