WHAT IS CLAIMED IS:

10

20

- 1. A method of ameliorating a dermatological condition in the skin of a mammal, comprising:
- administering a composition comprising a substituted fullerene to at least a portion of the skin of the mammal afflicted with the dermatological condition or potentially afflicted with the dermatological condition, wherein the substituted fullerene comprises a fullerene core (Cn) and at least one of:
 - (i) from 1 to 3 (>CX¹X²) groups bonded to the fullerene core;
 - (ii) from 1 to 18 -X³ groups bonded to the fullerene core;
 - (iii) from 1 to 6 -X⁴- groups bonded to the fullerene core; or
 - (iv) from 1 to 6 dendrons bonded to the fullerene core.
- 2. The method of claim 1, wherein the substituted fullerene comprises a fullerene core (Cn) having 60 carbon atoms or 70 carbon atoms.
 - 3. The method of claim 1, wherein each X¹ and X² is independently selected from -H, -COOH, -CONH₂, -CONHR', -CONR'₂, -COOR', -CHO, -(CH₂)_dOH, -R, -RCOOH, -RCONH₂, -RCONHR', -RCONR'₂, -RCOOR', -RCHO, -R(CH₂)_dOH, or a salt thereof, wherein each R is a hydrocarbon moiety having from 1 to about 6 carbon atoms and each R' is independently (i) a hydrocarbon moiety having from 1 to about 6 carbon atoms or (ii) a hydrocarbon moiety having from 1 to about 6 carbon atoms and a terminal carboxylic acid, and d is an integer from 0 to about 20.
- 25 4. The method of claim 1, wherein the substituted fullerene comprises C_{60} and 3 (>CX¹X²) groups in the C3 orientation or the D3 orientation.
 - 5. The method of claim 1, wherein the substituted fullerene comprises C_{60} and 2 (>CX¹X²) groups in the trans-2 orientation, the trans-3 orientation, the e orientation, or the cis-2 orientation.

- 6. The method of claim 1, wherein the substituted fullerene comprises C_{70} and 2 (> $CX^{1}X^{2}$) groups in the bis orientation.
- 7. The method of claim 1, wherein the substituted fullerene has the structure shown in Figure 8B.
 - 8. The method of claim 1, wherein the substituted fullerene comprises from 1 to about $6 X^3$ groups and each X^3 group is independently selected from:

 $-N^{+}(R^{2})(R^{3})(R^{4})$, wherein R^{2} , R^{3} , and R^{4} are independently -H or -(CH₂)_d-CH₃, wherein d is an integer from 0 to about 20;

 $-N(R^2)(R^3)(R^8)$, wherein R^2 and R^3 are independently -H or $-(CH_2)_d$ -CH₃, wherein d is an integer from 0 to about 20, and each R^8 is independently $-(CH_2)_f$ -SO₃⁻,

-(CH₂)_f-PO₄, or -(CH₂)_f-COO, wherein f is an integer from 1 to about 20;

10

15

20

25

-C(R^5)(R^6)(R^7), wherein R^5 , R^6 , and R^7 are independently -COOH, -H, -CH(=O), or -CH₂OH;

 $-C(R^2)(R^3)(R^8)$, wherein R^2 and R^3 are independently -H or $-(CH_2)_d$ -CH₃, wherein d is an integer from 0 to about 20, and each R^8 is independently $-(CH_2)_f$ -SO₃, $-(CH_2)_f$ -PO₄, or $-(CH_2)_f$ -COO, wherein f is an integer from 1 to about 20;

-(CH₂)_e-COOH, -(CH₂)_e-CONH₂, -(CH₂)_e-COOR', or a peptidyl moiety, wherein e is an integer from 1 to about 6 and each R' is independently (i) a hydrocarbon moiety having from 1 to about 6 carbon atoms or (ii) a hydrocarbon moiety having from 1 to about 6 carbon atoms and a terminal carboxylic acid; or

an aromatic heterocyclic moiety containing a cationic nitrogen.

9. The method of claim 1, wherein each $-X^4$ - group is independently

$$\begin{picture}(20,0) \put(0,0){\line(0,0){100}} \put(0,0){\line(0,0){100$$

integer from 0 to about 20, and R^8 is independently - $(CH_2)_f$ - SO_3^- , - $(CH_2)_f$ - PO_4^- , or - $(CH_2)_f$ - COO^- , wherein f is an integer from 1 to about 20.

- \mathbb{N}^{+} \mathbb{R}^{2} \mathbb{R}^{3}
- 10. The method of claim 1, wherein each -X⁴- group is independently R³, wherein each R² and R³ is independently -H or -(CH₂)_d-CH₃, wherein d is an integer from 0 to about 20.
 - 11. The method of claim 1, wherein each $-X^4$ group is independently

15

20

wherein each R² is independently -H or -(CH₂)_d-CH₃, wherein d is an integer from 0 to about 20, and each R⁹ is independently -H, -OH, -OR', -NH₂, -NHR', -NHR'₂, or -(CH₂)_dOH, wherein each R' is independently (i) a hydrocarbon moiety having from 1 to about 6 carbon atoms or (ii) a hydrocarbon moiety having from 1 to about 6 carbon atoms and a terminal carboxylic acid.

- 10 12. The method of claim 1, wherein the substituted fullerene has a structure selected from Figures 9A-9G.
 - 13. The method of claim 1, wherein the substituted fullerene comprises an endohedral metal.

14. The method of claim 1, wherein the composition further comprises an amphiphilic fullerene having the formula $(B)_b$ - C_n - $(A)_a$, wherein C_n is a fullerene moiety comprising n carbon atoms, wherein n is an integer and $60 \le n \le 240$; B is an organic moiety comprising from 1 to about 40 polar headgroup moieties; b is an integer and $1 \le b \le 5$; each B is covalently bonded to the C_n through 1 or 2 carbon-carbon, carbon-oxygen, or

carbon-nitrogen bonds; A is an organic moiety comprising a terminus proximal to the C_n and one or more termini distal to the C_n , wherein the termini distal to the C_n each comprise $-C_xH_y$, wherein x is an integer and $8 \le x \le 24$, and y is an integer and $1 \le y \le 2x+1$; a is an integer, $1 \le a \le 5$; $2 \le b+a \le 6$; and each A is covalently bonded to the C_n through 1 or 2 carbon-carbon, carbon-oxygen, or carbon-nitrogen bonds.

- 15. The method of claim 1, wherein the dermatological condition is sunburn, aging, psoriasis, acne, or smoker's face.
- 10 16. A composition for ameliorating a dermatological condition in the skin of a mammal, comprising:

a substituted fullerene; and

a carrier

wherein the substituted fullerene comprises a fullerene core (Cn) and at least one

15 of:

5

- (i) from 1 to 3 (>CX¹X²) groups bonded to the fullerene core;
- (ii) from 1 to 18 -X³ groups bonded to the fullerene core;
- (iii) from 1 to 6 -X⁴- groups bonded to the fullerene core; or
- (iv) from 1 to 6 dendrons bonded to the fullerene core.

20

25

- 17. The composition of claim 19, wherein each X¹ and X² is independently selected from -H, -COOH, -CONH₂, -CONHR', -CONR'₂, -COOR', -CHO, -(CH₂)dOH, -R, -RCOOH, -RCONH₂, -RCONHR', -RCONR'₂, -RCOOR', -RCHO, -R(CH₂)dOH, or a salt thereof, wherein each R is a hydrocarbon moiety having from 1 to about 6 carbon atoms and each R' is independently (i) a hydrocarbon moiety having from 1 to about 6 carbon atoms or (ii) a hydrocarbon moiety having from 1 to about 6 carbon atoms and a terminal carboxylic acid, and d is an integer from 0 to about 20.
- 18. The composition of claim 16, wherein the substituted fullerene has the structure shown in Figure 8B.

19. The composition of claim 16, wherein the substituted fullerene comprises from 1 to about $6 - X^3$ groups and each $-X^3$ group is independently selected from:

 $-N^+(R^2)(R^3)(R^4)$, wherein R^2 , R^3 , and R^4 are independently -H or -(CH₂)_d-CH₃, wherein d is an integer from 0 to about 20;

 $-N(R^2)(R^3)(R^8)$, wherein R^2 and R^3 are independently -H or - $(CH_2)_d$ - CH_3 , wherein d is an integer from 0 to about 20, and each R^8 is independently - $(CH_2)_f$ - SO_3 -,

-(CH₂)_f-PO₄, or -(CH₂)_f-COO, wherein f is an integer from 1 to about 20;

-C(R⁵)(R⁶)(R⁷), wherein R⁵, R⁶, and R⁷ are independently -COOH, -H, -CH(=O), or -CH₂OH;

-C(R²)(R³)(R⁸), wherein R² and R³ are independently -H or -(CH₂)_d-CH₃, wherein d is an integer from 0 to about 20, and each R⁸ is independently -(CH₂)_f-SO₃, -(CH₂)_f-PO₄, or -(CH₂)_f-COO, wherein f is an integer from 1 to about 20;

- $(CH_2)_e$ -COOH, - $(CH_2)_e$ -CONH₂, - $(CH_2)_e$ -COOR', or a peptidyl moiety, wherein e is an integer from 1 to about 6 and each R' is independently (i) a hydrocarbon moiety having from 1 to about 6 carbon atoms or (ii) a hydrocarbon moiety having from 1 to about 6 carbon atoms and a terminal carboxylic acid; or

an aromatic heterocyclic moiety containing a cationic nitrogen.

20 20. The composition of claim 16, wherein each -X⁴- group is independently

5

10

15

, wherein R^2 is independently -H or -(CH₂)_d-CH₃, wherein d is an integer from 0 to about 20, and R^8 is independently -(CH₂)_f-SO₃-, -(CH₂)_f-PO₄-, or -(CH₂)_f-COO-, wherein f is an integer from 1 to about 20.

21. The composition of claim 16, wherein each -X⁴- group is independently

 R^2 , wherein each R^2 and R^3 is independently -H or -(CH₂)_d-CH₃, wherein d is an integer from 0 to about 20.

5 22. The composition of claim 16, wherein each $-X^4$ - group is independently

wherein each R^2 is independently -H or -(CH₂)_d-CH₃, wherein d is an integer from 0 to about 20, and each R^9 is independently -H, -OH, -OR', -NH₂, -NHR', -NHR'₂, or -(CH₂)_dOH, wherein each R' is independently (i) a hydrocarbon moiety having from 1 to about 6 carbon atoms or (ii) a hydrocarbon moiety having from 1 to about 6 carbon atoms and a terminal carboxylic acid.

23. The composition of claim 16, wherein the substituted fullerene has a structure selected from Figures 9A-9G.