	No.
	Date · ·
中 Weyl不等式	The state of the s
122(A) - 22(AK) 511/	A-AKIZ SIIA-AKIF
Z:11 A-AKIN = 11A-	-AKIIM = NEDKS2
	SŦĸ
EP (Di(A)-QKK)23	[[]ak,s 2
	3+K-
每个圆盘中都至少含有	A的个特征值
	(111)

2.证明:
即证 min { E 2: det (A+E)=03 = 11A+112
设 ¬(A)≥ ¬(A)≥···≥ ¬(A)
则 in
全B=A+E
別min ~ !! Ell2: det(A+E)=03
= $\min \{ 11B-A1_2 : det(B) = 0 \}$
= min { 11B-A12: rank(B) < 17-13
曲最佳低铁遍迈
1-1= On(A) 1/10. AN = WARE (11/11/19)
.: 证毕

No.
Date · ·
3. 证明: 1771
··· mank (100 x)=1 < 1 11 11 11 11 11 11 11 11 11 11 11 1
$\therefore \det(vv^*) = 0$
·····································
(rank(w)) X=0 以有几个线性无关解质
二、0至少为、几日重特征根十一十八八十八八
wire tr(vv)= vv的所有特征值之和NNO
Chrymazza Styling of Chin Vint
ン*V是VV*的特征值
由Weyl不等式以下的大人
ユシレイナレレギ) = xilA) ta(異レレギ) -=
Service (Alix) (Alix) (minimo) = NN.02
If $\lambda i(A+\nu\nu^*) \leq \lambda i + i(A) + \lambda n + i(\nu\nu^*)$
FAH(A)
in AilA) = AilA+ UV*) = AiHCA) = NI
证毕

4.证明: ···A是Hermite矩阵 、崎昇值分解 A=UILIX,其中UECTY是西阵 今B=U「JA)
·JA(JA)
·JA(JA) 刚 $B^{*} = B$ 且 $rank(B) \leq k$ RUIA-BIZ = OKH(A)= min 11A-X112
rank(X) < K

5.			10	thị c
下证在R ⁿ 中	,两两夹角为钝角	的阿量不超	上口十八个	
反证:		ole (NV JOHN	
	R"中有 nt2个两	两夹角为钯角目	河量山水	V3, Vn+2
则存在不全	为0时实数CI;Cz	Cn+1, 使国	GVITGV2 T.	Com Vort = 0
	GV1+6242++ G			
=	C1 (1, Vn+27+ 12)	12, VON7+ +	Con < Von	1127=0
	< VI, Vn+27 ZO	< 1/2 , Vn+27 < 0	«Vnti,	Vnt27<6
不妨设任	, C2, C+ >0 C	2+11. O2+2, Cj	Ko Cj+1, Cj+	2, v. Cott \$
TI C	1<11-Vn+2>+ G<16.	M+27 + 1.+ Gi	Vi Vntz7	est. Ur
	- City C Vitt VINTO			
. <a.u></a.u>	= < G < VI, V 1727 H	Gi KUN VIII	27, - Con <br< td=""><td>H . VAH27</td></br<>	H . VAH27
		$0 \le \lambda \operatorname{in}(A)$		
RIJ GVIT	+GV2++ Gili	= - CitiVitt - (CitzVitz	- Cjuj = a
< a, 47 =	Kantavztint	Civi, - Cin Vin	- Citz Vitz -	Cjvj7
=	-G.Ci+l降 < V., Vit	17 - G Citz (VI	Vi+27	
17 M	这与 <a,a;< td=""><td>220矛盾,假设</td><td>分子成立</td><td></td></a,a;<>	220矛盾,假设	分子成立	
140/1/100	在尺"中,两两			四九个
	· 0 201 7. 301			
	0111		k=1,2,1	
\$51-0		現で、ここに上		
. 4170	4 11(11/2) 3-311	, utto or all	वस्त्रा ना राग	11.0