CS60073: Advanced Machine Learning

Class Test II

Time: 1 hrs, Marks: 20 (10+10)

Solve the problem <u>neatly</u> on paper. Write your <u>Name and Roll number</u> clearly on top of the paper. Take photograph of the paper(s) and convert to a SINGLE pdf file. Upload the file in MS Teams.

- 1. In a course the probability that a student gets a grade "A" is $P(A) = \frac{1}{2}$, a "B" grade is $P(B) = \mu$, a grade "C" is $P(C) = 2\mu$, and a grade "D" is $P(D) = \frac{1}{2} 3\mu$. We are told that c students get "C" and d students get "D". We do not know how many students got exactly an "A" or exactly a "B". But we do know that h students got either "A" or "B", i.e., a + b = h. Our goal is to use the Expectation Maximization algorithm to obtain an estimate of μ . Derive the E-Step and the M-Step. Show your work.
- 2. Suppose that $p(\mathbf{x})$ is some fixed distribution and that we wish to approximate it using a Gaussian distribution $q(\mathbf{x}) = \mathcal{N}(\mathbf{x}|\boldsymbol{\mu},\boldsymbol{\Sigma})$. By writing down the form of the KL divergence KL($p \mid \mid q$), show that minimization of the KL divergence with respect to $\boldsymbol{\mu}$ and $\boldsymbol{\Sigma}$ leads to the result that $\boldsymbol{\mu}$ is given by the expectation of \mathbf{x} under $p(\mathbf{x})$ and that $\boldsymbol{\Sigma}$ is given by its covariance.