Многоклассовая классификация

<u>Бинарная</u>, классификация

1) houpedobato
0505usuto antoputu
=> dal K maccob

· Bunapuas

Многоклассовая классификация

2) K maccob

The Monthso

Ex -Macobas

. Othornacebal maecupunagul

~ Anomaly detection

Многоклассовая классификация

One-vs-All (One-vs-Rest)

https://www.cc.gatech.edu/classes/AY2016/cs4476 fall/results/proj4/html/jnanda3/index.html

acru) → logley. Kanus pool a, e Pr (x & 1) One-vs-All (probi calibration sk(eavy) az + // (xez) • K классов: $\mathbb{Y} = \{1, ..., R\}^{\epsilon}$ **Q**, 3 • $X_k = (x_i, [y_i = k])_{i=1}^{\ell}$ Обучаем $a_k(x)$ на X_k , k = 1, ..., K $a_k(x)$ должен выдавать оценки принадлежности классу (например, $\langle w, x \rangle$ или $\sigma(\langle w, x \rangle)$ Итоговая модель $a(x) = \arg\max_{k=1,\dots K} a_k(x)$ 30 M not ucanoone

One-vs-All

- Модель $a_k(x)$ при обучении не знает, что её выходы будут сравнивать с выходами других моделей
- Нужно обучать К моделей

All-vs-All (One-vs-One)

Äll-vs-All • $X_{km} = \{(x_i, y_i) \in X \mid y_i = k \text{ или } y_i = m\}$ a ken(x) • Обучаем $a_{km}(x)$ на X_{km} Итоговая модель: $a(x) = \arg\max_{k \in \{1, \dots, K\}} \sum_{m=1}^{n} \left[a_{km}(x) = k \right]$

All-vs-All

- Нужно обучать порядка K^2 моделей
- Зато каждую обучаем на небольшой выборке

Доля ошибок

• Функционал ошибки — доля ошибок (error rate)

$$Q(a,X) = \frac{1}{\ell} \sum_{i=1}^{\ell} [a(x_i) \neq y_i]$$

• Нередко измеряют долю верных ответов (accuracy):

$$Q(a, X) = \frac{1}{\ell} \sum_{i=1}^{\ell} [a(x_i) = y_i]$$

• Подходит для многоклассового случая!

Общие подходы

Микро-усреднение

Вычисляем TP_k , FP_k , FN_k , TN_k для каждого класса

Суммируем по всем классам, получаем TP, FP, FN, TN

Подставляем их в формулу для precision/recall/...

Precision =
$$\frac{\sum_{k} TP_{k}}{\sum_{k} TP_{k} + \sum_{k} FP_{k}}$$

Макро-усреднение

Вычисляем нужную метрику для каждого класса (например, $\operatorname{precision}_1, \dots, \operatorname{precision}_K$)

Усредняем по всем классам

$$Precision = \frac{\sum_{k} Precision_{k}}{K}$$

Общие подходы

Микро-усреднение

Макро-усреднение

Крупные классы вносят больший вклад

Игнорирует размеры классов

e one hot

N rateropin - [001,00] * on misson

- one hot

- one hot

- one hot

N rateropin - [001,00] * on misson

+ unexpression

+ unexpression

+ ne not pryname

+ d evalues | - nopedox regree

+ unexp

- un neperpy

• une Thu

Работа с категориальными признаками

Кодирование категориальных признаков

Район	
ЦАО	
ЮАО	
ЦАО	
CAO	
ЮАО	

Label encoding

- Значения признака «район»: $U = \{u_1, ..., u_m\}$
- Новые признаки вместо x_j : каждая категория заменяется числом от 0 до m-1
- Label encoding

Label encoding

Label encoding

• Label encoding может плохо работать для категориальных признаков, но хорошо — для порядковых

One-hot encoding

- Значения признака «район»: $U = \{u_1, ..., u_m\}$
- Новые признаки вместо x_j : $[x_j = u_1]$, ..., $[x_j = u_m]$
- One-hot encoding

One-hot encoding

ЦАО	ЮАО	CAO
1	0	0
0	1	0
1	0	0
0	0	1
0	1	0

One-hot encoding

• One-hot encoding может плохо работать в случае большого числа категориальных признаков с большим числом категорий

repersent bers.

yeron

voroport

ye aro

Район	Цена
ЦАО	10.000.000
ЮАО	4.000.000
ЦАО	9.000.000
CAO	7.000.000
ЮАО	5.000.000

- Не хотим сильно увеличивать размер выборки только из-за кодирования признаков
- Хотим передать информацию о целевой переменной в данные это может позволить ускорить обучение
- Mean encoding (target encoding)

- Значения признака x_i : $U_i = \{u_1, ..., u_m\}$
- Посчитаем все категории в обучающей выборке:

$$count(j, u_p) = \sum_{i=1}^{\ell} [x_{ij} = u_p]$$

- Значения признака x_i : $U_i = \{u_1, ..., u_m\}$
- Для классификации посчитаем классы в категории:

$$\operatorname{target}_{k}(j, u_{p}) = \sum_{i=1}^{\ell} [x_{ij} = u_{p}] [y_{i} = k]$$

- Задача регрессии
- Заменим категориальный признак на числовой:

$$\widetilde{x_{ij}} = \frac{\operatorname{target}(j, x_{ij})}{\operatorname{count}(j, x_{ij})}$$

- Задача классификации
- Заменим категориальный признак на K числовых:

$$\widetilde{x_{ij}} = \left(\frac{\operatorname{target}_1(j, x_{ij})}{\operatorname{count}(j, x_{ij})}, \dots, \frac{\operatorname{target}_K(j, x_{ij})}{\operatorname{count}(j, x_{ij})}\right)$$

Район	Цена
ЦАО	10.000.000
ЮАО	4.000.000
ЦАО	9.000.000
CAO	7.000.000
ЮАО	5.000.000

Район	Счётчик	Цена
ЦАО	9.500.000	10.000.000
ЮАО	4.500.000	4.000.000
ЦАО	9.500.000	9.000.000
CAO	7.000.000	7.000.000
ЮАО	4.500.000	5.000.000

- В отличие от label encoding, где мы кодируем признак случайными категориями, тут намного больше смысла
- Однако, раз мы добавляем информацию о целевой переменной в данные, то можно легко переобучиться

• Решение 1: добавление шума + N(0,?) -50 10

Район	Счётчик	Цена
ЦАО	9.500.000	10.000.000
ЮАО	4.500.000	4.000.000
ЦАО	9.500.000	9.000.000
CAO	7.000.000	7.000.000
ЮАО	4.500.000	5.000.000

Район	Счётчик	Цена
ЦАО	9.130.000	10.000.000
ЮАО	4.023.000	4.000.000
ЦАО	10.124.000	9.000.000
CAO	7.942.000	7.000.000
ЮАО	4.728.000	5.000.000

 Решение 2: добавление априорных величин в счётчики (сглаживание)

$$\widetilde{x_{ij}} = \frac{\operatorname{target}(j, x_{ij}) + a}{\operatorname{count}(j, x_{ij}) + b}$$

• Например:

$$\widetilde{x_{ij}} = \frac{\operatorname{target}(j, x_{ij}) + w * mean(y)}{\operatorname{count}(j, x_{ij}) + w}$$

- Mean encoding позволяет заменить категориальный признак на один числовой
- Могут привести к переобучению
- Можно бороться с ним через добавление шума, априорных значений или кросс-валидацию

upurepus ourningarin

Que class - SVM | Isolation tree octobre typical, re aronamus 0.39