

2.3 Darstellung ganzer Zahlen – Horner-Schema

Frage. Wie berechnet man den Wert einer in *b*-adischen Darstellung gegebenen Zahl möglichst effizient?

Lösung. Horner-Schema:

$$\sum_{i=0}^{\ell-1} z_i \underbrace{\cdots}_{(l-1)} \underbrace{b^i}_{(l-2)} = z_0 + b(z_1 + b(z_2 + \dots b(z_{\ell-2} + b \cdot z_{\ell-1})))$$

Bemerkung. Zur Berechnung des Ausdrucks auf der linken Seite benötigt man

 $\ell-1$ Additionen $2\ell-3$ Multiplikationen

Zur Berechnung des Ausdrucks auf der rechten Seite benötigt man

 $\ell-1$ Additionen $\ell-1$ Multiplikationen

Codierung negativer ganzer Zahlen

Naheliegend: Darstellung mit explizitem Vorzeichen: (0 = +, 1 = -)

0	0000	-0	1000
1	0001	-1	1001
2	0010	-2	1010
3	0011	-3	1011
4	0100	-4	1100
5	0101	-5	1101
6	0110	-6	1110
7	0111	-7	1111

Nachteile:

- Null hat zwei verschiedene Darstellungen
- Addition kann nicht unmittelbar auf Addition von Binärzahlen ohne Vorzeichen zurückgeführt werden.

Binäre Komplementdarstellung

- zunächst wie oben: führendes Bit zeigt Vorzeichen (0 = +, 1 = -)item aber: negative
- aber: negative Zahlen werden komplementär dargestellt.
- $z \in \{-2^{\ell-1}, -2^{\ell-1}+1, \dots, -1\}$ wird dargestellt als $z+2^{\ell}$

1	0001	-1	1111
2	0010	-2	1110
3	0011	-3	1101
4	0100	-4	1100
5	0101	-5	1011
6	0110	-6	1010
7	0111	-7	1001
0	0000	-8	1000

Beachte: $\mod 2^{\ell}$ sind z und $z + 2^{\ell}$ gleich.

2.4 Das b-Komplement

Definition 2.1. Für $\ell \in \mathbb{N}_{\geq 1}, b \in \mathbb{N}_{\geq 2}$ und $n \in \{0, 1, \dots, b^{\ell} - 1\}$ ist

$$K_b^{\ell}(n) := -n \mod b^{\ell}$$

das ℓ -stellige b-Komplement von n.

Beispiel. • $n = 15, b = 10, \ell = 2$

$$K_{10}^2(15) = -15 \mod 10^2 = 85$$

• $b = 2, \ell = 4$

$$K_2^4(15) = -15 \mod 2^4 = 1$$

Lemma 2.2. Für $\ell \geq 1, b \geq 2$ und $n = \sum_{i=0}^{\ell-1} z_i b^i$ mit $z_i \in \{0, 1, \dots, b-1\}$ gilt:

(i)

$$K_b^{\ell}(n+1) = \sum_{i=0}^{\ell-1} (b-1-z_i)b^i$$

 $f\ddot{u}r \ n + b^{\ell} - 1$; außerdem $K_b^{\ell}(0) = 0$

(ii)

$$K_b^{\ell}(K_b^{\ell}(n)) = n$$

Beweis. (i)

$$K_b^{\ell}(0) = -0 \mod b^{\ell} = 0.$$

Für $n \in \{0, \dots, b^{\ell} - 2\}$ gilt

$$\begin{split} K_b^\ell(n+1) &= -(n+1) \mod b^\ell \\ &= b^\ell - 1 - n \\ &= \sum_{i=0}^{\ell-1} (b-1) b^i - \sum_{i=0}^{\ell-1} z_i b^i \\ &= \sum_{i=0}^{\ell-1} (b-1-z_i) b^i \end{split}$$

Zahldarstellungen

(ii) Wegen Rechenregeln für die modulo-Rechnung gilt

$$K_b^\ell(K_b^\ell(n)) = (-(-n \mod b^\ell)) \mod b^\ell = n \mod b^\ell = n$$

Bemerkung. Berechne also b-Komplement von n > 0 wie folgt: nimm b-adische Darstellung von n - 1 und bilde stellenweise Differenz zu b - 1.

2.5 b-Komplementdarstellung ganzer Zahlen

Definition 2.3. Es seien $\ell \geq 1, b \geq 2, n \in \{-\lfloor \frac{b^{\ell}}{2} \rfloor, \dots, \lceil \frac{b^{\ell}}{2} \rceil - 1\}$. Die ℓ -stellige Komplement-darstellung von n ist die b-adische Darstellung von n (falls $n \geq 0$) bzw. von $K_b^l(-n)$ (falls n < 0), vorne mit Nullen zu einer ℓ -stelligen Zahl aufgefüllt.

Beispiel. $b=2, \ell=4$

- Die 4-stellige 2-Komplementdarstellung von n=5 ist 0101.
- Die 4-stellige 2-Komplementdarstellung von n = -5 ist $K_2^4(5) = 1011$.

Satz 2.4. Für
$$\ell \geq 1, b \geq 2, Z = \{-\lfloor \frac{b^{\ell}}{2} \rfloor, \dots, \lceil \frac{b^{\ell}}{2} \rceil - 1\}$$
 sei

$$f: Z \to \{0, 1, \dots, b^{\ell} - 1\}, n \to \begin{cases} n & falls \ \ell \ge 0 \\ K_b^{\ell}(-n) & falls \ \ell < 0 \end{cases}$$

das heißt, $f(n) = n \mod b^{\ell}$. Dann ist f bijektiv und für $x, y \in Z$ gilt:

(i) ist
$$x + y \in Z$$
, so gilt $f(x + y) = (f(x) + f(y)) \mod b^{\ell}$

(ii) ist
$$x \cdot y \in Z$$
, so gilt $f(x \cdot y) = (f(x) \cdot f(y)) \mod b^{\ell}$

Beweis. Für $n \in \mathbb{Z} = \{-\lfloor \frac{b^{\ell}}{2} \rfloor, \dots, \lceil \frac{b^{\ell}}{2} - 1 \rceil \}$ ist $f(n) = n \mod b^{\ell}$. Da $|\mathbb{Z}| = b^{\ell}$, ist f bijektiv.

(i) und (ii) folgen aus Rechenregeln für modulo-Rechnung.

Bemerkung. • Mit der b-Komplementdarstellung kann man also ohne Fallunterscheidung rechnen.

- Ignoriert man Über- und Unterschreitung des zulässigen Bereichs Z, so rechnet man mit Komplementdarstellung genau wie mit b-adischer Darstellung.
- Für b = 2 und $x \in Z$ gilt: $x \ge 0 \iff$ Führendes Bit ist 0.

2.6 Darstellung ganzer Zahlen im Computer

Zahlen werden in Speicherblöcken zu je 8 Bits ("Bytes") gespeichert.

2.7 Darstellung großer ganzer Zahlen im Computer

Frage. Wie kann ich Zahlen darstellen, die nicht in einen Speicherblock passen?

Lösung. • Nutze $k \geq 2$ Blöcke zur Darstellung größerer Zahlen n.

- Stelle n bzw f(n) in b-adischer Darstellung mit Basis b^{ℓ} ($\ell = \text{Anzahl Bits eines Speicherblocks})$
- Damit kann jede Zahl

$$n \in Z = \left\{ -\left| \frac{b^{\ell}}{2} \right|, \dots, \left\lceil \frac{b^{\ell}}{2} \right\rceil - 1 \right\}$$

als $f(n) = n \mod b^k$ dargestellt werden.

Beispiel. $b = 2^8, n = -11215$. Wähle k = 2, denn:

$$-\left[\frac{b^2}{2}\right] = -32768 \le n \le 32767 = \left[\frac{b^2}{2}\right] - 1$$

Dann ist

$$f(n) = n \mod b^2 = 54321$$

= $(212 \ 49)_b$
= $(11010100 \ 00110001)_2$

Darstellung im Hauptspeicher ist umgekehrt:

00110001 11010100

2.8 Exakte Arithmetik

Für jede Zahl $n \in \mathbb{Z}$ gibt es ein geeignetes $k \geq 1$, so dass

$$n \in Z_k := \left\{ -\left| \frac{b^k}{2} \right|, \dots, \left\lceil \frac{b^k}{2} \right\rceil - 1 \right\}$$

Frage. Ist n eine Variable, wie kann man k dynamisch anpassen?

Lösung. Es seien $n \in \mathbb{Z}$ und $k, k' \geq 1$, so dass $n \in \mathbb{Z}_k \cap \mathbb{Z}_{k'}$. Weiter seien

$$f_k(n) = n \mod b^k \text{ und } f_{k'}(n) = n \mod b^{k'}.$$

Eine Darstellung von n in k Blöcken kann dann einfach umgerechnet werden in eine Darstellung in k' Blöcken.

1. Fall: Für $n \ge 0$ ist $f_{k'}(n) = f_k(n) = n$, also Voranstellen (bzw. Löschen) von k' - k Null-Blöcken.

2. Fall: Für n < 0 ist $f_{k'}(n) = f_k(n) - b^k + b^{k'}$, also Voranstellen (bzw. Löschen) von k' - k Eins-Blöcken.

29. Oktober 2024

Beispiel. $b = 2^8 = 256$

$$Z_1 = \{-128, \dots, 127\}$$

 $Z_2 = \{-32768, \dots, 32767\}$

Beispiel 1:
$$n = 65$$
, $f_1(n) = f_2(n) = 65$.

$$\underbrace{01000001}_{k=1} \longleftrightarrow \underbrace{00000000}_{k=2} \underbrace{01000001}_{}$$

Beispiel 2:
$$n = -63, f_1(n) = 193, f_2(n) = 65473$$

$$\underbrace{11000001}_{k=1} \longleftrightarrow \underbrace{1111111}_{k=2} \underbrace{11000001}_{k}$$