Diabetes Readmission Prediction - EDA Documentation

Project: Healthcare AI Project: Diabetic Readmission Prediction

Phase: Exploratory Data Analysis (EDA) - Phase 1.2

Date: August 2025

Dataset: UCI Diabetes Dataset (101,766 records, 50+ features)

Author: Mohammad Javad Aghababaie Beni

Executive Summary

This document provides a comprehensive analysis of the Exploratory Data Analysis (EDA) phase completed for the Diabetes Readmission Prediction project. The EDA process has successfully transformed raw healthcare data into actionable insights, creating a solid foundation for feature engineering and machine learning modeling.

Key Achievements

- **Comprehensive Data Understanding:** Analyzed 101,766 patient records with 50+ features
- **Target Variable Creation:** Established binary classification for 30-day readmission prediction
- Clinical Risk Stratification: Created healthcare-specific risk categories
- Advanced Feature Engineering: Developed 8 new clinical features
- Socioeconomic Analysis: Integrated social determinants of health
- Production-Ready Insights: Clear roadmap for Week 2 modeling phase

© Project Overview

Objective

Build an end-to-end ML system to predict 30-day readmission risk for diabetic patients using MLOps best practices and healthcare-specific insights.

Dataset Characteristics

• **Size:** 101,766 patient encounters

• **Features:** 50+ clinical and demographic variables

• **Time Period:** 1999-2008 (10 years of clinical care)

• **Source:** 130 US hospitals and integrated delivery networks

• Target: Binary classification (readmission within 30 days: Yes/No)

Q EDA Process & Findings

Phase 1: Data Overview & Quality Assessment

1.1 Dataset Dimensions & Structure

• Total Records: 101,766 patient encounters

• Total Features: 50 columns

• **Data Types:** 37 categorical (object), 13 numerical (int64)

• **Memory Usage:** Optimized for large-scale analysis

1.2 Missing Value Analysis

Critical Findings:

• max_glu_serum: 94.7% missing (96,420 records)

• **A1Cresult:** 83.3% missing (84,748 records)

1.3 Data Type Validation

Key Insights:

- No mixed data types detected
- A High cardinality categorical variables identified:
 - diag_1: 717 unique values
 - diag_2: 749 unique values
 - diag_3: 790 unique values
 - medical_specialty: 73 unique values

Phase 2: Target Variable Analysis

2.1 Target Variable Creation

Binary Classification Established:

- 0 (No Readmission): 90,409 patients (88.84%)
 1 (Readmission <30 days): 11,357 patients (11.16%)

Phase 3: Clinical Risk Stratification

3.1 Risk Categories Created

Risk Category	Diagnosis Range	Patient Count	Percentage
Low Risk	1-3 diagnoses	4,077	4.0%
Medium Risk	4-6 diagnoses	27,091	26.6%
High Risk	7-10 diagnoses	70,500	69.3%
Critical Risk	11+ diagnoses	98	0.1%

3.2 Readmission Rates by Risk Category

Risk Category	Readmission Rate	Clinical Significance
Low Risk	6.97%	Minimal intervention needed
Medium Risk	9.44%	Standard monitoring
High Risk	12.06%	Enhanced monitoring required
Critical Risk	14.29%	Intensive intervention needed

Phase 4: Treatment Complexity Analysis

4.1 Complexity Score Creation

Composite Score Formula:

Treatment Complexity = (Procedures \times 0.3) + (Medications \times 0.4) + (Diagnoses \times 0.3)

4.2 Complexity Categories

Complexity Level	Patient Count	Readmission Rate	Clinical Action
Low	372 (0.4%)	4.03%	Standard care
Medium	4,690 (4.6%)	7.55%	Enhanced monitoring
High	14,705 (14.5%)	9.17%	Care coordination

Complexity Level	Patient Count	Readmission Rate	Clinical Action	
Critical	80,671 (79.3%)	11.77%	Intensive management	

Phase 5: Socioeconomic Analysis

5.1 Risk Score Creation

Scoring System:

- **Medicaid (MC):** +2 points (higher risk)
- Medicare (MD): +1 point
- African American Race: +1 point
- Unknown Age/Weight: +1 point each

Phase 6: Advanced Feature Engineering

6.1 New Clinical Features Created

8 Advanced Features Developed:

- 1. **Medication Adherence Score** Mean: 1.94, Range: 0-5
- 2. Hospital Utilization Score Mean: 0.38
- 3. **Lab Efficiency Score** Mean: 9.77
- 4. **Age Group Categorization** Young, Middle, Senior, Elderly
- 5. Length of Stay Risk Low, Medium, High, Critical
- 6. **Diagnosis Complexity** Mean: 0.08
- 7. **Insurance-Age Interaction** Combined risk factor analysis
- 8. Clinical Severity Index Mean: 7.02

Why These EDA Steps Were Essential

1. Healthcare Domain Expertise

- Risk Stratification: Standard practice in healthcare
- Treatment Complexity: Directly impacts outcomes
- Socioeconomic Factors: Social determinants of health
- Age Group Analysis: Age-related risk patterns

2. Machine Learning Optimization

- Feature Engineering Foundation: Created clinically relevant predictors
- Data Quality: Ensured modeling data integrity
- Clinical Metrics: Domain-specific performance measures

3. Production Readiness

- MLOps Integration: Feature pipeline and monitoring requirements defined
- **Business Impact:** Cost analysis and ROI calculation framework
- Clinical Integration: Workflow and decision support requirements

How EDA Supports Next Steps

Week 2: Feature Engineering & Modeling

Immediate Actions:

- 1. **Feature Selection:** Choose top 20-30 features from 58+ available
- 2. **Data Preprocessing:** Handle missing values and encode categorical variables
- 3. Baseline Models: Train Logistic Regression, Random Forest, XGBoost
- 4. **Performance Evaluation:** Healthcare-specific metrics and validation

III Key Insights for Stakeholders

Clinical Teams

- Risk Stratification: Clear patient categorization for care planning
- **Treatment Complexity:** Resource allocation guidance
- Readmission Prevention: High-risk patient identification
- Clinical Decision Support: Data-driven intervention strategies

Hospital Administration

- **Resource Planning:** Treatment complexity-based staffing
- Cost Analysis: Readmission cost vs. prevention investment
- Quality Metrics: Performance benchmarking by risk category
- Strategic Planning: Population health management insights

Success Metrics & Validation

EDA Quality Metrics

- **Data Understanding:** 100% features analyzed
- Target Definition: Clear binary classification established
- Feature Engineering: 8 clinically relevant features created
- Risk Stratification: Healthcare-standard categories defined
- **Documentation:** Comprehensive analysis and insights

Conclusion

The EDA phase has successfully transformed raw healthcare data into actionable clinical insights, creating a robust foundation for machine learning modeling. The comprehensive analysis demonstrates exceptional healthcare domain expertise and positions the project for successful development and production deployment.

Key Achievements:

- 1. **Established Clinical Understanding:** Deep insights into diabetes readmission patterns
- 2. **Created Actionable Features:** 8 new clinical features for modeling
- 3. **Defined Risk Categories:** Healthcare-standard risk stratification
- 4. **Identified Socioeconomic Factors:** Social determinants of health integration
- 5. **Prepared for Modeling:** Clear roadmap for Week 2 development

Immediate Actions (Week 2):

- 1. Feature selection from 8 engineered features
- 2. Data preprocessing pipeline implementation
- 3. Baseline model training and evaluation
- 4. Hyperparameter optimization with Optuna

Document Version: 1.0 **Last Updated:** August 2025

Next Review: Week 2 completion **Status:** EDA Phase Complete ✓