Отчет по лабораторной работе $N_{2}3$

Снопов П.М.

30 декабря 2019 г.

Лабораторная работа №3

Определение меры обусловленности Тодда симметричной матрицы простой структуры с использованием методов прямой и обратной итерации.

Вариант 10

- 1. Постановка задачи Пусть дана симметричная матрица простой структуры $A \in M_n(\mathbb{R})$. Необходимо определить меру обусловленности Тодда. Раз матрица простой структуры, то количество ее собственных значений с учетом кратности равно ее размерности. Мера обусловленности Тодда же определяется как произведение норм матрицы и ее обратной. То есть, в силу симметричности матрицы, меру обусловенности Тодда можно определить как отношение абсолютной величины наибольшего собственного значения к абсолютной величине наименьшего.
- 2. Метод решения Чтобы определить меру обусловленности Тодда, необходимо сначала найти наибольшее и наименьшее по модулю собственное значение. Для этих задач воспользуемся методами прямой и обратной итерации. Метод прямой итерации позволит определить наибольшее по модулю собственное значение.

Описание степенного метода Пусть x_0 — произвольный вектор из \mathbb{R}_n . Вычисление собственного значения производится итерационно по следующей схеме:

$$\begin{cases} v^{(k)} = \frac{x^{(k)}}{\|x^{(k)}\|} \\ x^{(k+1)} = Av^{(k)} \\ \sigma^{(k)} = v^{(k)^T} x^{(k+1)} \\ k \in \mathbb{N} \end{cases}$$

B работе Praktische Verfahren der Gleichungsauflösung Рихарда фон Мизеса доказано, что

$$\begin{cases} \sigma^{(k)} = \lambda_{max} \\ v^{(k)} = \pm x_{max} \\ k \to \infty \end{cases}$$

Где x_{max} — собственный вектор, соответствующий собственному значению λ_{max}

Теперь применим метод обратной итерации для поиска наибольшего собственного значения для матрицы, обратной данной, которое также будет являться наименьшим собственной значением данной матрицы. Описание степенного метода Пусть также x_0 – произвольный вектор из \mathbb{R}_n . Вычисление собственного значения производится итерационно по следующей схеме:

$$\begin{cases} v^{(k)} = \frac{x^{(k)}}{\|x^{(k)}\|} \\ x^{(k+1)} = A^{-1}v^{(k)} \\ \alpha^{(k)} = v^{(k)^T}x^{(k+1)} \\ k \in \mathbb{N} \end{cases}$$

В статье Berechnung der Eigenschwingungen statisch-bestimmter Fachwerke Эрнста Полхаузена доказана следующая сходимость:

$$\begin{cases} \alpha^{(k)} = \frac{1}{\lambda_{min}} \\ v^{(k)} = \pm x_{min} \\ k \to \infty \end{cases}$$

Причем на каждом шаге вектор $x^{(k+1)}$ определяется как решение уравнения $Ax^{(k+1)}=v^{(k)}$. Тогда число обусловленности Тодда вычисляется по следующей формуле:

$$\mu(A) = \frac{|\lambda_{max}|}{|\lambda_{min}|}$$

3. Основные процедуры Основные функции, используемые при решении задачи:

def power_iteration(A: np.array, num_iterations: np.int64) -> np.double:
Функция, являющая реализацией метода прямых итераций
def inverse_iteration(A: np.array, num_iterations: np.int64) -> np.double:
Функция, являющая реализацией метода обратных итераций

4. Результаты тестирования Для тестирования придется генерировать матрицы с заданными собственными значениями и собственными векторами. Получим собственные значения с помощью равномерного распределения. Для получения собственных векторов, получим вектор из равномерного распределения ω и найдем матрицу Хаусхолдера H:

$$H = E - 2\omega\omega^T$$

Далее, для генерации матрицы, воспользуемся спектральным разложением матрицы, т.е. представлением матрицы A в виде произведения $H\Lambda H^-1$, где Λ – диагональная матрица с соответствующими собственными значениями на главной диагонали. Также будем число итераций K

вычислять так: K := 10N, где N – размерность системы. Помимо этого для тестирования будем генерировать различные интервалы, в которых лежат собственные значения. Т.к. np.random.rand генерирует собственные значения из интервала (0,1), то нужно построить соответствующий гомеоморфизм в необходимые интервалы (a,b). Это можно сделать, например, следующим образом:

$$f:(0,1)\to (a,b): x\mapsto a+(b-a)x$$

Так, что следующая диаграмма коммутативна:

Тестирование представлено в следующей таблице:

Таблица 1: Таблица тестирования

таолица 1. таолица тестирования					
Размерност	ь Диапазон	Число	Ср. отн.	Ср. отн.	Ср. отн.
системы	значений	итераций	точность	точность	точность
N	λ	K	$\mid \mu \mid$	λ_{max}	λ_{min}
10	(0,1)	100	0.0621	0.0062	$1.3356e^{-8}$
10	(0,10)	100	0.0287	0.0322	$5.0308e^{-12}$
10	(0,100)	100	0.4139	0.9149	$5.7731e^{-15}$
100	(0,1)	1000	0.0344	0.0002	$8.6736e^{-18}$
100	(0,10)	1000	0.1031	0.0006	$2.3564e^{-11}$
100	(0,100)	1000	0.0093	0.0070	0.0002
1000	(0,1)	10000	0.1300	$2.7441e^{-5}$	$9.427e^{-8}$
1000	(0,10)	10000	0.0721	0.0003	$3.2549e^{-8}$
1000	(0,100)	10000	1.3603	0.0136	$7.0295e^{-6}$