# Topic 11 FSM Optimizations

## **Optimization by State Reduction**

- Goal: Reduce number of states in FSM without changing behavior
  - Fewer states potentially reduce size of state register
- Consider the two FSMs below with x=1, then 1, then 0, 0



For the same sequence of inputs, the output of the two FSMs is the same

## Moore vs. Mealy FSMs



- FSM implementation architecture
  - Next state logic function of present state and FSM inputs
  - Output logic
    - Depends on present state only Moore FSM it is a type
    - Depends on present state and FSM inputs Mealy FSM

the difference is only on the "output logic"

## **Moore FSM Representation**



State Diagram



**State Table** 

| In | P.S. | N.S. | Out |
|----|------|------|-----|
| 0  | S0   | S3   | 0   |
| 1  | S0   | S1   | 0   |
| 0  | S1   | S0   | 1   |
| 1  | S1   | S2   | ı   |
| 0  | S2   | S1   | 0   |
| 1  | S2   | S2   | 0   |
| 0  | S3   | S2   | 1   |
| 1  | S3   | S1   |     |

# **Mealy FSM Representation**

## State Diagram



#### State Table

| In | P.S. | N.S. | Out |
|----|------|------|-----|
| 0  | S0   | S0   | 0   |
| 1  | S0   | S1   | 1   |
| 0  | S1   | S1   | 1   |
| 1  | S1   | S2   | 0   |
| 0  | S2   | S2   | 0   |
| 1  | S2   | S0   | 1   |
| 0  | S3   | S3   | 0   |
| 1  | S3   | S1   | 1   |

**Present State** 

## Design of an FSM - Mealy

Example: design a non-overlapping sequence detector as Mealy FSM



Z is determined every three bits, Z = 1, as soon as an input sequence
 101 is detected

| X =  | 0 | 0 | 1 | 1 | 0 | 1        | 1 | 0 | 0 | 1 | 0  | $\sqrt{1}$ | 0  | 1  | 0  |
|------|---|---|---|---|---|----------|---|---|---|---|----|------------|----|----|----|
| Z=   | 0 | 0 | 0 | 0 | 0 | <b>1</b> | 0 | 0 | 0 | 0 | 0  | <b>*</b> 1 | 0  | 0  | 0  |
| time | 0 | 1 | 2 | 3 | 4 | 5        | 6 | 7 | 8 | 9 | 10 | 11         | 12 | 13 | 14 |

one input: X

one output: Z

## **Development of State Diagram**

Drawing the state diagram



## **FSM Optimization – State Reduction**

Two states are equivalent iff both their next states and outputs are identical

| Present | Next      | State      | Output |       |   |
|---------|-----------|------------|--------|-------|---|
| State   | X = 0     | X = 1      | X = 0  | X = 1 |   |
| A0      | A4        | A1         | 0      | 0     |   |
| A1      | A2        | A5         | 0      | 0     |   |
| A2      | <b>A0</b> | <b>A0</b>  | 0      | 1     |   |
| —A3     | A4        | A1         | 0      | 0     | - |
| A4      | A5        | A5         | 0      | 0     |   |
| A5      | <b>A0</b> | A0         | 0      | 0     |   |
| -A6     | A4        | <b>A</b> 1 | 0      | 0-    |   |

Alternative representation of state table

- Easier for state reduction
- Harder for truth table

equivalent states

## **Reduced State Table**

#### Reduced state table

| Present | Next | State | Out | tput |
|---------|------|-------|-----|------|
| State   | X=0  | X=1   | X=0 | X=1  |
| A0      | A4   | A1    | 0   | 0    |
| A1      | A2   | A5    | 0   | 0    |
| A2      | A0   | A0    | 0   | 1    |
| -A3     | A4   | A1    | 0   | 0    |
| A4      | A5   | A5    | 0   | 0    |
| A5      | A0   | A0    | 0   | 0    |
| -A6     | A4   | A1    | 0   | 0    |

 $A0 \rightarrow S0$   $A1 \rightarrow S1$   $A2 \rightarrow S2$   $A4 \rightarrow S3$   $A5 \rightarrow S4$ 

| Present | Next | State | Output |     |  |
|---------|------|-------|--------|-----|--|
| State   | X=0  | X=1   | X=0    | X=1 |  |
| S0      | S3   | S1    | 0      | 0   |  |
| S1      | S2   | S4    | 0      | 0   |  |
| S2      | S0   | S0    | 0      | 1   |  |
| S3      | S4   | S4    | 0      | 0   |  |
| S4      | S0   | S0    | 0      | 0   |  |

## **Reduced State Diagram**



## **State Assignment**

• Number of bits of binary number should be enough to represent all the states

| S0  | S1  | S2  | S3  | S4  |
|-----|-----|-----|-----|-----|
| 000 | 001 | 010 | 011 | 100 |



| Present | Next    | State | Output |     |
|---------|---------|-------|--------|-----|
| State   | X=0 X=1 |       | X=0    | X=1 |
| 000     | 011     | 001   | 0      | 0   |
| 001     | 010     | 100   | 0      | 0   |
| 010     | 000     | 000   | 0      | 1   |
| 011     | 100     | 100   | 0      | 0   |
| 100     | 000     | 000   | 0      | 0   |



## **State and Output Equations**

| ln | Pres | sent S | State | Ne | xt Sta | ate | Out |
|----|------|--------|-------|----|--------|-----|-----|
| Χ  | P2   | P1     | P0    | n2 | n1     | n0  | Z   |
| 0  | 0    | 0      | 0     | 0  | 1      | 1   | 0   |
| 0  | 0    | 0      | 1     | 0  | 1      | 0   | 0   |
| 0  | 0    | 1      | 0     | 0  | 0      | 0   | 0   |
| 0  | 0    | 1      | 1     | 1  | 0      | 0   | 0   |
| 0  | 1    | 0      | 0     | 0  | 0      | 0   | 0   |
|    |      |        |       |    | 2      | X   |     |
| 1  | 0    | 0      | 0     | 0  | 0      | 1   | 0   |
| 1  | 0    | 0      | 1     | 1  | 0      | 0   | 0   |
| 1  | 0    | 1      | 0     | 0  | 0      | 0   | 1   |
| 1  | 0    | 1      | 1     | 1  | 0      | 0   | 0   |
| 1  | 1    | 0      | 0     | 0  | 0      | 0   | 0   |
|    |      |        |       |    |        | X   |     |



| n2 = | p0 | <b>X</b> + | <b>p</b> 1 | p( |
|------|----|------------|------------|----|
|------|----|------------|------------|----|

| <b>10</b> p1p0 |    |    |    |    |  |  |  |  |
|----------------|----|----|----|----|--|--|--|--|
| X p2           | 00 | 01 | 11 | 10 |  |  |  |  |
| 00             | 1  | 0  | 0  | 0  |  |  |  |  |
| 01             | 0  | X  | X  | X  |  |  |  |  |
| 11             | 0  | X  | X  | X  |  |  |  |  |
| 10             | 1  | 0  | 0  | 0  |  |  |  |  |

$$n0 = p2'p1'p0'$$

| <b>n1</b> p1p0 |    |    |    |    |  |  |  |  |  |
|----------------|----|----|----|----|--|--|--|--|--|
| X p2           | 00 | 01 | 11 | 10 |  |  |  |  |  |
| 00             | 1  | 1  | 0  | 0  |  |  |  |  |  |
| 01             | 0  | X  | X  | X  |  |  |  |  |  |
| 11             | 0  | X  | X  | X  |  |  |  |  |  |
| 10             | 0  | 0  | 0  | 0  |  |  |  |  |  |

$$n1 = p2'p1'X'$$



$$Z = p1p0'X$$

Z depends on the present state and the input

## **Completed Logic Circuit**

- Circuit Implementation of FSM
  - Using D FFs



## **Alternative Design of the FSM – Moore**

Example: design a non-overlapping sequence detector as Moore FSM



 Z is determined every three bits, Z = 1 at the next edge after desired sequence is detected

| X =  | 0 | 0 | 1 | 1 | 0 | $\boxed{1}$ | 1          | 0 | 0 | 1 | 0  |    | 0          | 1  | 0  |
|------|---|---|---|---|---|-------------|------------|---|---|---|----|----|------------|----|----|
| Z =  | 0 | 0 | 0 | 0 | 0 | 0/          | <b>^</b> 1 | 0 | 0 | 0 | 0  | 0  | <b>*</b> 1 | 0  | 0  |
| time | 0 | 1 | 2 | 3 | 4 | 5           | 6          | 7 | 8 | 9 | 10 | 11 | 12         | 13 | 14 |

one input: X

one output: Z

## **Development of State Diagram**

Drawing the state diagram



## **FSM Optimization – State Reduction**

Two states are equivalent iff their next states and outputs are identical

| Present         | Next      | State     | Output |          |                   |
|-----------------|-----------|-----------|--------|----------|-------------------|
| State           | X = 0     | X = 1     | Output |          |                   |
| A0              | A4        | A1        | 0      | <b>-</b> |                   |
| A1              | A2        | A5        | 0      |          |                   |
| A2              | <b>A0</b> | A3        | 0      |          |                   |
| A3              | A4        | A1        | 1      |          | equivalent states |
| A4              | A5        | A5        | 0      |          |                   |
| A5              | <b>A0</b> | <b>A0</b> | 0      |          |                   |
| <del>- A6</del> | A4        | A1        | 0      | <b>-</b> |                   |

## **Reduced State Table**

#### Reduced state table

| Present | Next  | State | Output |  |
|---------|-------|-------|--------|--|
| State   | X = 0 | X = 1 | Output |  |
| A0      | A4    | A1    | 0      |  |
| A1      | A2    | A5    | 0      |  |
| A2      | A0    | A3    | 0      |  |
| A3      | A4    | A1    | 1      |  |
| A4      | A5    | A5    | 0      |  |
| A5      | A0    | A0    | 0      |  |
| A6      | A4    | A1    | 0      |  |

 $A0 \rightarrow S0$   $A1 \rightarrow S1$   $A2 \rightarrow S2$   $A3 \rightarrow S3$   $A4 \rightarrow S4$   $A5 \rightarrow S5$ 

| Present    | Next    | State | Output |  |
|------------|---------|-------|--------|--|
| State      | X=0 X=1 |       | Output |  |
| S0         | S4      | S1    | 0      |  |
| <b>S</b> 1 | S2      | S5    | 0      |  |
| S2         | S0      | S3    | 0      |  |
| S3         | S4      | S1    | 1      |  |
| S4         | S5      | S5    | 0      |  |
| S5         | S0      | S0    | 0      |  |

## **Reduced State Diagram**



## **State Assignment**

• Number of bits of binary number should be enough to represent all the states

| S0  | S1  | S2  | S3  | S4  | S5  |
|-----|-----|-----|-----|-----|-----|
| 000 | 001 | 010 | 011 | 100 | 101 |



| Present | Next    | State | Output |  |
|---------|---------|-------|--------|--|
| State   | X=0 X=1 |       | Output |  |
| 000     | 100     | 001   | 0      |  |
| 001     | 010     | 101   | 0      |  |
| 010     | 000     | 011   | 0      |  |
| 011     | 100     | 001   | 1      |  |
| 100     | 101     | 101   | 0      |  |
| 101     | 000     | 000   | 0      |  |



| In | Pres | sent S | State | Ne | ext Sta | ate | Out |
|----|------|--------|-------|----|---------|-----|-----|
| Χ  | p2   | р1     | р0    | n2 | n1      | n0  | Z   |
| 0  | 0    | 0      | 0     | 1  | 0       | 0   | 0   |
| 0  | 0    | 0      | 1     | 0  | 1       | 0   | 0   |
| 0  | 0    | 1      | 0     | 0  | 0       | 0   | 0   |
| 0  | 0    | 1      | 1     | 1  | 0       | 0   | 1   |
| 0  | 1    | 0      | 0     | 1  | 0       | 1   | 0   |
| 0  | 1    | 0      | 1     | 0  | 0       | 0   | 0   |
|    |      |        |       |    | )       | Κ   |     |
| 1  | 0    | 0      | 0     | 0  | 0       | 1   | 0   |
| 1  | 0    | 0      | 1     | 1  | 0       | 1   | 0   |
| 1  | 0    | 1      | 0     | 0  | 1       | 1   | 0   |
| 1  | 0    | 1      | 1     | 0  | 0       | 1   | 1   |
| 1  | 1    | 0      | 0     | 1  | 0       | 1   | 0   |
| 1  | 1    | 0      | 1     | 0  | 0       | 0   | 0   |
|    |      |        |       |    | 2       | X   |     |

## **State and Output Equations**

| In | Pres | sent S | State | Ne | Next State |    |   |
|----|------|--------|-------|----|------------|----|---|
| Χ  | p2   | р1     | p0    | n2 | n1         | n0 | Z |
| 0  | 0    | 0      | 0     | 1  | 0          | 0  | 0 |
| 0  | 0    | 0      | 1     | 0  | 1          | 0  | 0 |
| 0  | 0    | 1      | 0     | 0  | 0          | 0  | 0 |
| 0  | 0    | 1      | 1     | 1  | 0          | 0  | 1 |
| 0  | 1    | 0      | 0     | 1  | 0          | 1  | 0 |
| 0  | 1    | 0      | 1     | 0  | 0          | 0  | 0 |
|    |      |        |       | X  |            |    |   |
| 1  | 0    | 0      | 0     | 0  | 0          | 1  | 0 |
| 1  | 0    | 0      | 1     | 1  | 0          | 1  | 0 |
| 1  | 0    | 1      | 0     | 0  | 1          | 1  | 0 |
| 1  | 0    | 1      | 1     | 0  | 0          | 1  | 1 |
| 1  | 1    | 0      | 0     | 1  | 0          | 1  | 0 |
| 1  | 1    | 0      | 1     | 0  | 0          | 0  | 0 |
|    |      |        |       |    |            | X  |   |







$$n0 = p2p0'+p2'X$$



$$n1 = p1p0'X+$$
  
 $p2'p1'p0X'$ 



$$Z = p1p0$$

moore

## Mealy FSM vs. Moore FSM

- Output
  - Mealy: depends on both inputs and presents
  - Moore: doesn't depend on inputs
- State Diagram general cases
  - Mealy: less states -> potentially less number of flip-flops
  - Moore: more states than Mealy -> possibly bigger circuit
- Speed of output response to the inputs
  - Mealy: quick, as soon as input changes
  - Moore: as long as one clock cycle delay
- TIMING ISSUE
  - Mealy: asynchronous, may cause serious problem
  - Moore: synchronous, more stable

### **Standard Architecture of FSM**





# **Modeling of FSM – Mealy**



```
module seq det mealy lexp (clock, reset, in bit, out bit);
  input clock, reset, in bit;
  output out bit;
  reg [2:0] curr state, next state;
  parameter init = 3'b000;
  parameter zero 1 = 3'b001;
  parameter one 1 = 3'b010;
  parameter zero 2 = 3'b011;
  parameter one 2 = 3'b100;
  always @ (posedge clock or posedge reset) ← State register
    if (reset == 1) curr state <= init;</pre>
    else
                 curr state <= next state;</pre>
                                              Combinational logic
  always @ (curr state or in bit) ←
                                              for next state
    case (curr state)
      init: if (in bit == 0) next state <= zero 1; else
            if (in bit == 1) next state <= one 1; else</pre>
                             next state <= init;</pre>
```

```
zero 1: if (in bit == 0) next state <= zero 2; else
               if (in bit == 1) next state <= one 1; else</pre>
                                  next state <= init;</pre>
      zero 2: if (in bit == 0) next state <= zero 2; else</pre>
               if (in bit == 1) next state <= one 1; else</pre>
                                  next state <= init;</pre>
      one 1: if (in bit == 0) next state <= zero 1; else
               if (in bit == 1) next state <= one 2; else</pre>
                                  next state <= init;</pre>
      one 2: if (in bit == 0) next state <= zero 1; else
               if (in bit == 1) next state <= one 2; else</pre>
                                  next state <= init;</pre>
      default:
                                  next state <= init;</pre>
    endcase
  assign out bit = (((curr state==zero 2) &&(in bit==0))||
                     ((curr state==one 2) && (in bit==1))) ? 1 : 0;
endmodule
                          Combinational logic
                          for FSM outputs
```

# Modeling of FSM – Moore



```
... // the same as Mealy
      zero 1: if (in bit == 0) next state <= zero 2; else
               if (in bit == 1) next state <= one 1; else</pre>
                                 next state <= init;</pre>
      zero 2: if (in bit == 0) next state <= zero 2; else
               if (in bit == 1) next state <= one 1; else</pre>
                                 next state <= init;</pre>
      one 1: if (in bit == 0) next state <= zero 1; else
               if (in bit == 1) next state <= one 2; else</pre>
                                 next state <= init;</pre>
      one 2: if (in bit == 0) next state <= zero 1; else
               if (in bit == 1) next state <= one 2; else</pre>
                                  next state <= init;</pre>
      default:
                                  next state <= init;</pre>
    endcase
  assign out bit = ((curr state==zero 2)||(curr state==one 2))
                    ? 1 : 0;
endmodule
```

Combinational logic for FSM outputs

27

## Mealy and Moore can be Combined

May be combined in same FSM



## **Another Method for State Reduction**



Example on the first slide

| Х | P.S.     | N.S.     | Z |
|---|----------|----------|---|
| 0 | S0       | S0       | 0 |
| 1 | S0       | S1       | 0 |
| 0 | S1       | S2<br>S1 | 1 |
| 1 | S1       |          | 1 |
| 0 | S2       | S2       | 0 |
| 1 | S2       | S3       | 0 |
| 0 | S3<br>S3 | S0<br>S3 | 1 |
| 1 | S3       | S3       | 1 |

Can't reduce more, No equivalent states

- State reduction through state table inspection isn't optimal
- A more methodical approach Implication Tables
- Example:









- Mark (with an X) state pairs with different outputs as non-equivalent:
  - (S1,S0): At S1, y=1 and at S0, y=0. So S1 and S0 are non-equivalent.
  - (S2, S0): At S2, y=0 and at S0, y=0. So we don't mark S2 and S0 now.
  - (S2, S1): Non-equivalent
  - (S3, S0): Non-equivalent
  - (**S3**, **S1**): Don't mark
  - (S3, S2): Non-equivalent
- Unmarked pairs (S2, S0) and (S3, S1)
  might be equivalent, but only if their next
  states are equivalent



 List next states of unmarked state pair's corresponding to every combination of inputs

- (**S2**, **S0**)
  - From S2, when x=1 go to S3
     From S0, when x=1 go to S1
     So add (S3, S1) as a next state pair
  - From S2, when x=0 go to S2
     From S0, when x=0 go to S0
     So add (S2, S0) as a next state pair
- (S3, S1)
  - By a similar process, add the next state pairs (S3, S1) and (S0, S2)



 Mark (with X) the state pair if one of its next state pairs is marked (non-equivalent)



- Next state pair (S3, S1) is not marked
- Next state pair (\$2, \$0) is not marked
- So we do nothing and move on
- (S3, S1)
  - Next state pair (S3, S1) is not marked
  - Next state pair (S0, S2) is not marked
  - So we do nothing and move on



Inputs: x; Outputs: y

y=0

**S1** 

v=1

v=0

v=1

- Made a pass through the entire implication table
- Make additional passes until no change occurs
- Implied by the table, unmarked state pairs are equivalent



|   | Step                                                                                                                                                                                        | Description                                                                                                                                |
|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| 1 | Mark state pairs having different outputs as nonequivalent                                                                                                                                  | States having different outputs obviously cannot be equivalent.                                                                            |
| 2 | For each unmarked state pair, write the next state pairs for the same input values                                                                                                          |                                                                                                                                            |
| 3 | For each unmarked state pair,<br>mark state pairs having nonequivalent<br>next-state pairs as nonequivalent.<br>Repeat this step until no change<br>occurs, or until all states are marked. | States with nonequivalent next states for the same input values can't be equivalent. Each time through this step is called a <i>pass</i> . |
| 4 | Merge remaining state pairs                                                                                                                                                                 | Remaining state pairs must be equivalent.                                                                                                  |

## **State Reduction Example**

- Given FSM on the right
  - Step 1: Mark state pairs having different outputs as nonequivalent



#### **State Reduction Example**

- Given FSM on the right
  - Step 1: Mark state pairs having different outputs as nonequivalent
  - Step 2: For each unmarked state pair, write the next state pairs for the same input values



#### **State Reduction Example**

- Given FSM on the right
  - Step 1: Mark state pairs having different outputs as nonequivalent
  - Step 2: For each unmarked state pair, write the next state pairs for the same input values
  - Step 3: For each unmarked state pair, mark state pairs having nonequivalent next state pairs as nonequivalent.
    - Repeat this step until no change occurs, or until all states are marked.
  - Step 4: Merge remaining state pairs



All state pairs are marked – there are no equivalent state pairs to merge

#### **A Larger State Reduction Example**





- Step 1: Mark state pairs having different outputs as nonequivalent
- Step 2: For each unmarked state pair, write the next state pairs for the same input values
- Step 3: For each unmarked state pair, mark state pairs having nonequivalent next state pairs as nonequivalent.
  - Repeat this step until no change occurs, or until all states are marked.
- Step 4: Merge remaining state pairs

#### A Larger State Reduction Example





- Step 2: For each unmarked state pair, write the next state pairs for the same input values
- Step 3: For each unmarked state pair, mark state pairs having nonequivalent next state pairs as nonequivalent.
  - Repeat this step until no change occurs, or until all states are marked.
- Step 4: Merge remaining state pairs



χ'

Χ

S0

y=0

S1,S2

y=1

## **Complex FSM**

#### Automation needed

- Table for large FSM too big for humans to work with
  - *n* inputs: each state pair can have 2<sup>n</sup> next state pairs.
  - 4 inputs  $\rightarrow$  2<sup>4</sup>=16 next state pairs



- 100 states would have table with 100\*100=100,000 state pairs cells
- State reduction typically automated

#### Mealy FSM Reduction with Implication Table

Example:



 Should have both next state pairs and output pairs in a cell for comparison

# **Optimization by State Encoding**



## **Optimization by State Encoding**

- Encoding: Assigning a unique bit representation to each state
- Different encodings may optimize size, or tradeoff between size and speed
- Consider push button example
  - Regular binary encoding: 14 gate inputs
  - Try alternative encoding:

- x = s1 + s0
- n1 = s0
- n0 = s1'b + s1's0
- Only 8 gate inputs
- Known as Gray Code



|     | ]      | Inputs                             |        | Outputs |        |                 |
|-----|--------|------------------------------------|--------|---------|--------|-----------------|
|     | s1     | s0                                 | b      | Х       | n1     | n0              |
| Off | 0<br>0 | 0<br>0                             | 0<br>1 | 0<br>0  | 0<br>0 | 0<br>1          |
| On1 | 0      | 1<br>1                             | 0<br>1 | 1<br>1  | 1<br>1 | <u>0</u> 1      |
| On2 | 1<br>1 | <del>-0</del> 1<br><del>-0</del> 1 | 0<br>1 | 1<br>1  | 1<br>1 | <del>1</del> -0 |
| On3 | 1<br>1 | 10<br>10                           | 0<br>1 | 1<br>1  | 0      | 0<br>0          |

#### **State Encoding: One-Hot Encoding**

#### One-hot encoding

- One bit per state a bit being '1' corresponds to a particular state
- For A, B, C, D: A: 0001, B: 0010, C: 0100, D: 1000
- Example: FSM that outputs
   0, 1, 1, 1
  - Equations if one-hot encoding:
    - n3 = s2; n2 = s1; n1 = s0; x = s3 + s2 + s1
  - Fewer gates and only one level of logic – less delay than two levels, so faster clock frequency



## **State Encoding: One-Hot Encoding**

|    | Inp | outs | Outputs |    |   |
|----|-----|------|---------|----|---|
|    | \$1 | s 0  | n1      | nO | X |
| A  | 0   | Q    | 8       | 1  | 0 |
| В  | 0   | 1    | 1       | 0  | 1 |
| C  | 1   | 0    | 1       | 1  | 1 |
| D/ | 1   | 1    | 0       | 0  | J |

|   |     | Inp | uts |     | Outputs |    |    |    |   |
|---|-----|-----|-----|-----|---------|----|----|----|---|
|   | s 3 | s2  | s1  | s 0 | n3      | n2 | n1 | n0 | Χ |
| A | 0   | 0   | 0   | 1   | 0       | 0  | 1  | 0  | 0 |
| В | 0   | 0   | 1   | 0   | 0       | 1  | 0  | 0  | 1 |
| C | 0   | 1   | 0   | 0   | 1       | 0  | 0  | 0  | 1 |
| D | 1   | 0   | 0   | 0   | 0       | 0  | 0  | 1  | 1 |





## **Optimization by Self-Starting FSM**

#### Given an FSM



| Present State |    |    | Next State |    |           |
|---------------|----|----|------------|----|-----------|
| _p2           | p1 | p0 | n2         | n1 | <u>n0</u> |
| 0             | 0  | 0  | 0          | 1  | 0         |
| 0             | 0  | 1  | Χ          | Χ  | Χ         |
| 0             | 1  | 0  | 0          | 1  | 1         |
| 0             | 1  | 1  | 1          | 0  | 1         |
| 1             | 0  | 0  | Χ          | Χ  | Χ         |
| 1             | 0  | 1  | 1          | 1  | 0         |
| 1             | 1  | 0  | 0          | 0  | 0         |
| 1             | 1  | 1  | X          | X  | X         |
|               |    |    |            |    |           |







$$n1 = p1' + p2'p0'$$



$$n0 = p2'p1$$

## **Self-Starting FSM**

- Start-up States
  - At power-up, FSM may be in an unused or invalid state
  - Designer must guarantee it (eventually) enters a valid state
- Self-starting Solution
  - Design the FSM so that invalid states eventually go to a valid state
  - May limit exploitation of don't cares
- With current design, unused states go:
  - $-001 \rightarrow 110$
  - $-100 \rightarrow 010$
  - $-111 \rightarrow 100$



#### **Self-Starting FSM**

- If in case an unused state does not come back to the valid states by the current design
  - Designer should bring it back to a valid state
  - Update the state table to explicitly specify the next state
  - Update equations
- Example: Let the FSM recover from state 111 faster



## **Self-Starting FSM**

Update state table and equations

| Pre | sent S | State |    | kt Sta    | te        |
|-----|--------|-------|----|-----------|-----------|
| _p2 | p1     | p0    | n2 | <u>n1</u> | <u>n0</u> |
| 0   | 0      | 0     | 0  | 1         | 0         |
| 0   | 0      | 1     | Χ  | Χ         | Χ         |
| 0   | 1      | 0     | 0  | 1         | 1         |
| 0   | 1      | 1     | 1  | 0         | 1         |
| 1   | 0      | 0     | Χ  | X         | Χ         |
| 1   | 0      | 1     | 1  | 1         | 0         |
| 1   | 1      | 0     | 0  | 0         | 0         |
| 1   | 1      | 1     | 0  | 0         | 0         |



$$n2 = p1'p0 + p2'p0$$



$$n1 = p1' + p2'p0'$$



$$n0 = p2'p1$$

- Given a circuit of FSM, figure out the behavior
  - Mealy or Moore?
  - How many states?
  - Logic for next state?
  - State table?
  - State diagram?



- Given a circuit of FSM, figure out the behavior
  - $y = s1 \cdot s0'$ , Moore!
  - 2 bit state register, 4 states
  - Logic for next state:

$$n1 = a \cdot s1' \cdot s0 + a \cdot s1 \cdot s0'$$
  
 $n0 = a \cdot s1' \cdot s0'$ 

- State table?
- State diagram?



- Given a circuit of FSM, figure out the behavior
  - $-y = s1 \cdot s0'$ , Moore!
  - 2 bit state register, 4 states
  - Logic for next state:

$$n1 = a \cdot s1' \cdot s0 + a \cdot s1 \cdot s0'$$
  
 $n0 = a \cdot s1' \cdot s0'$ 

- State table:
- State diagram?

| In | P. S | tate | N. S | State | Out |  |
|----|------|------|------|-------|-----|--|
| а  | s1   | s0   | n1   | n0    | У   |  |
| 0  | 0    | 0    | 0    | 0     | 0   |  |
| 0  | 0    | 1    | 0    | 0     | 0   |  |
| 0  | 1    | 0    | 0    | 0     | 1   |  |
| 0  | 1    | 1    | 0    | 0     | 0   |  |
| 1  | 0    | 0    | 0    | 1     | 0   |  |
| 1  | 0    | 1    | 1    | 0     | 0   |  |
| 1  | 1    | 0    | 1    | 0     | 1   |  |
| 1  | 1    | 1    | 0    | 0     | 0   |  |

- Given a circuit of FSM, figure out the behavior
  - State diagram

| In | P. S | tate | N. S | State | Out |
|----|------|------|------|-------|-----|
| а  | s1   | s0   | n1   | n0    | y   |
| 0  | 0    | 0    | 0    | 0     | 0   |
| 0  | 0    | 1    | 0    | 0     | 0   |
| 0  | 1    | 0    | 0    | 0     | 1   |
| 0  | 1    | 1    | 0    | 0     | 0   |
| 1  | 0    | 0    | 0    | 1     | 0   |
| 1  | 0    | 1    | 1    | 0     | 0   |
| 1  | 1    | 0    | 1    | 0     | 1   |
| 1  | 1    | 1    | 0    | 0     | 0   |



#### **Summary: FSM Design Procedure**

- 1. From the given problem statement, construct a state diagram (Mealy or Moore)
- 2. Derive a state table from the state diagram
- 3. Reduce the number of the states by eliminating duplicate states
- 4. Represent each state by state encoding (binary, one-hot, ...)
- 5. Redraw the reduced state table (truth table)
- 6. Determine FSM architecture
- 7. Realize and simplify the next state equations and output equations
- 8. Check the completeness of the design, make sure the resulted FSM is a self-starting FSM
- 9. Bring back any unused state that does not come back to a valid state by current design and update state table and equations
- 10. Check your design by signal tracing, computer simulation, or hardware testing