Your Name:		
Names of pe	ople you worked with:	

Task: Consider the distribution of: $\frac{\overline{X} - \mu}{s/\sqrt{n}}$ (which, incidentally, we know is distributed according to t_{n-1} if $X_i \stackrel{iid}{\sim} N(\mu, \sigma^2)$.)

Let

$$\hat{\theta}_b^*$$
 = estimate of θ from the b^{th} resample \hat{SE}_B^* = $\left[\frac{1}{B-1}\sum_{b=1}^B(\hat{\theta}_b^* - \hat{\theta}^*)^2\right]^{1/2}$

- 1. If you sample B times from a population, how many copies of \overline{X} will there be? How many copies of s/\sqrt{n} will there be?
- 2. If you re-sample B times from a dataset, how many copies of $\hat{\theta}_b^*$ will there be? How many copies of \hat{SE}_B^* ?
- 3. To address the problem, suggest a way of estimating the SE of $\hat{\theta}$ separately for each b.

Solution:

- When sampling from a population, there will be B copies each of \overline{X} and s/\sqrt{n} .
- When re-sampling from a dataset, there will be B copies of $\hat{\theta}_b^*$ and 1 copy of \hat{SE}_B^* .

To find $\hat{SE}^*(b)$, we must bootstrap twice. The algorithm is as follows:

- 1. Generate B_1 bootstrap samples (resamples from the original data), and for each sample \underline{X}^{*b} compute the bootstrap estimate $\hat{\theta}_b^*$.
- 2. Take B_2 bootstrap samples (resamples from the bootstrapped data) from \underline{X}^{*b} , and estimate the standard error, $\hat{SE}^*(b)$.
- 3. The resulting distribution will be based on B_1 values for $T^*(b) = \frac{\hat{\theta}_b^* \hat{\theta}}{\hat{SE}^*(b)}$.