Three estimators of 0

Three estimators of 0

Definition

Let $\widehat{\theta}$ be an estimator of a parameter θ .

The mean squared error of $\widehat{\theta}$ is denoted and defined by

$$MSE(\hat{\theta}) = E[(\hat{\theta} - \theta)^2]$$
error

Note: If $\widehat{\theta}$ is an <u>unbiased</u> estimator of θ , its <u>mean squared error</u> is simply the variance of θ .

Definition

Let $\widehat{\theta}$ be an estimator of a parameter θ .

The bias of $\widehat{\theta}$ is denoted and defined by

$$B(\hat{\theta}) = E[\hat{\theta}] - \theta$$

An unbiased estimator has a bias of zero.

Let $\widehat{\theta}$ be an estimator of a parameter θ .

$$MSE(\hat{\theta}) = E[(\hat{\theta} - \theta)^{2}]$$

$$= E[(\hat{\theta} - E[\hat{\theta}] + E[\hat{\theta}] - \theta)^{2}]$$

$$= E[((\hat{\theta} - E[\hat{\theta}]) + B[\hat{\theta}])^{2}]$$

• $E[(\hat{\boldsymbol{\theta}} - E[\hat{\boldsymbol{\theta}}])^2] = Var[\hat{\boldsymbol{\theta}}]$

Let $\widehat{\theta}$ be an estimator of a parameter θ .

$$MSE(\hat{\theta}) = E[(\hat{\theta} - \theta)^{2}]$$

$$= E[(\hat{\theta} - E[\hat{\theta}] + E[\hat{\theta}] - \theta)^{2}]$$

$$= E[((\hat{\theta} - E[\hat{\theta}]) + B[\hat{\theta}])^{2}]$$

 $2E[(\hat{\theta} - E[\hat{\theta}])B[\hat{\theta}]$

$$E[\hat{\theta}] - E[E[\hat{\theta}]] = E[\hat{\theta}] - E[\hat{\theta}] = 0$$

Let $\widehat{\theta}$ be an estimator of a parameter θ .

$$MSE(\hat{\theta}) = E[(\hat{\theta} - \theta)^{2}]$$

$$= E[(\hat{\theta} - E[\hat{\theta}] + E[\hat{\theta}] - \theta)^{2}]$$

$$= E[((\hat{\theta} - E[\hat{\theta}]) + B[\hat{\theta}])^{2}]$$

• $E[(B[\hat{\theta}])^2] = (B[\hat{\theta}])^2$

Let $\widehat{\theta}$ be an estimator of a parameter θ .

$$MSE(\hat{\theta}) = Var[\hat{\theta}] + (B[\hat{\theta}])^2$$

Relative Efficiency

Let $\widehat{\boldsymbol{\theta}}_1$ and $\widehat{\boldsymbol{\theta}}_2$ be two unbiased estimators of a parameter $\boldsymbol{\theta}$.

$$\hat{\boldsymbol{\theta}}_1$$
 is more efficient than $\hat{\boldsymbol{\theta}}_2$ if
$$Var[\hat{\boldsymbol{\theta}}_1] < Var[\hat{\boldsymbol{\theta}}_2]$$

The relative efficiency of $\hat{\theta}_1$, relative to $\hat{\theta}_2$ is denoted/defined as

$$Eff(\hat{\theta}_1, \hat{\theta}_2) = \frac{Var[\hat{\theta}_2]}{Var[\hat{\theta}_1]}$$

Relative Efficiency

The relative efficiency of $\hat{\theta}_1$, relative to $\hat{\mathbf{A}}_2$ is denoted/defined as

$$Eff(\hat{\theta}_1, \hat{\theta}_2) = \frac{Var[\hat{\theta}_2]}{Var[\hat{\theta}_1]}$$

• Eff($\hat{\theta}_1, \hat{\theta}_2$) > 1

$$\Rightarrow$$
 $\widehat{\theta}_1$ is more "efficient" at estimating θ than $\widehat{\theta}_2$