Programme: B.E. II Year, Sem-4

Course Code: IT-2255 **Course Name: Operating System**

		Ι					
Q.No		Step wise Marking					
1 (a)	What are system calls? How are they different from API? List various system calls for process control and explain any two of them.	4 M					
Ans:	ANS: A system call is a method of interacting with the operating system via programs. A system call is a request from computer software to an operating system's kernel. The Application Program Interface (API) connects the operating system's functions to user programs. Process control create process, terminate process end, abort load, execute get process attributes, set process attributes wait for time wait event, signal event allocate and free memory Dump memory if error Debugger for determining bugs, single step execution Locks for managing access to shared data between processes wait() In some systems, a process needs to wait for another process to complete its execution. This type of situation occurs when a parent process creates a child process, and the execution of the parent process remains suspended until its child process executes. The suspension of the parent process automatically occurs with a wait() system call. When the child process ends execution, the control moves back to the parent process. exec() This system call runs when an executable file in the context of an already running process						
Q.No	that replaces the older executable file. However, the original process identifier remains as a new process is not built, but stack, data, head, data, etc. are replaced by the new process. (B) Describe the differences between symmetric and asymmetric multiprocessing.	Step wise Marking					
1(B)	What are three advantages and one disadvantage of multiprocessor systems? ANS:	TYTUT MILITS					
Ans:	Symmetric multiprocessing treats all processors as equals, and I/O can be processed	3 m					
1220	on any CPU. Asymmetric multiprocessing has one master CPU and the remainder CPUs are slaves. The						
	master distributes tasks among the slaves, and I/O is usually done by the master only.						
	Advantage:						
	1.Multiprocessors can save money, by not duplicating power supplies, housings, and peripherals.						
	2. They can execute programs more quickly,						
	3.Can have increased reliability.						
	Disadvantage: They are also more complex in both hardware and software than uniprocessor systems. cost is more						

Date: 30/06/2022 Name: Prof. K.R.Gavhale

Sign Every Page: Page No.:

Programme: B.E. II Year, Sem-4

Co	ourse Code:	IT-225	55			Cou	urse Name:	Operatin	ng System	T-
Q.No	(A) For the pr				_		of the followi ? Justify you	_	ling schemes	Step wise Markin g
2(A)			Process	Arrival 7	Гіте	Pr	ocessing Tim	ie		4M
	-		A		0		3			
		F	В		1		6			
	-		С		4		4			
			D		6		2			
				A. B. R		F (<mark>2m)</mark> slice=2(<mark>2</mark>	m)			
	Scheduling	Algorith	nm:		Process					
	Non pre-emptive shortest job first				Proces	s Arrival Time	Processing Time	Completion time	Turnaround time	
	Gantt chart	:		_	А	0	3	3	3	
	A	В	D C	:	В	1	6	9	8	
	0 3	9	11	15	С	4	4	15	11	
					D	6	2	11	5	
	Average turnar	round tim	ne = 27/4 = 6	5. 75						
	Scheduling Alg				Process	Arrival Time	Processing Time	Completion time	Turnaround time	
	Round Robin w	ith Quant	um value two							
	Gantt chart:				А	0	3	5	5	
	A B A	С	B D C	В	В	1	6	15	14	
	0 2 4	5 7	9 11	13 15	С	4	4	13	9	
					D	6	2	11	5	
	Average turna SJF will give the									
	531 Will give the	lowest av	erage turnaro	und time						
2(B)	(B) Descri	be the d	lifferences	among sh	ort-tern	n, mediun	n-term, and lo	ong-term s	cheduling.	3 M
	1					-	in memory,	those job	s which are	
	ready to execu									
	scheduling lev	vel. A s	wapping s	cheme is	implem	ented to 1	emove partia		intermediate ograms from	
	memory and re	einstate	them later	to contin	ue wher	e they lef	t off. (1m)			
	• Long-t processing. The					,	•	-	memory for ort-term must	
	select a new p	process	quite ofter	n. Long-te	erm is u	sed much	n less often s	ince it har	ndles placing	
	-	, ****	<i>y</i> ar		J				(=)	

Date: 30/06/2022 Name: Prof. K.R.Gavhale

Sign Every Page: Page No.:

Programme: B.E. II Year, Sem-4

Co	ourse Code: IT-2255 Course Name: Operating System	
Q.No		Step wise Markin
3(A)	(A) Define the following with suitable example i) race condition ii) critical section iii) semaphore.	6 marks
	ANS:	
	Race Condition (1m)	
	A race condition is a situation that may occur inside a critical section. This happens when the result of multiple thread execution in critical section differs according to the order in which the threads execute.	
	Race conditions in critical sections can be avoided if the critical section is treated as an atomic instruction. Also, proper thread synchronization using locks or atomic variables can prevent race conditions.	
	(1m)A simple example of a race condition is a light switch. In some homes, there are multiple light	
	switches connected to a common ceiling light. When these types of circuits are used, the switch	
	position becomes irrelevant. If the light is on, moving either switch from its current position turns the light off.	
	As another example of a race condition inside computer software, picture two computing threads working with a given memory space. A user has just committed a form, and the backend software is	
	writing this form into memory. Simultaneously, another user is reading out the fields of this form from the same memory space. Depending on what happens, the reading user may receive a partially	
	incorrect form with partially updated information. Critical Section(1m)	
	The critical section in a code segment where the shared variables can be accessed. Atomic action is	
	required in a critical section i.e. only one process can execute in its critical section at a time. All the other processes have to wait to execute in their critical sections.	
	The critical section is given as follows: (1m)	
	do{	
	Entry Section	
	Critical Section	
	Exit Section	
	Remainder Section	
	} while (TRUE);	
	In the above example, the entry sections handles the entry into the critical section. It acquires the resources needed for execution by the process. The exit section handles the exit from the critical section. It releases the resources and also informs the other processes that critical section is free. Semaphore(1m)	
	A semaphore is a signaling mechanism and a thread that is waiting on a semaphore can be signaled by another thread. This is different than a mutex as the mutex can be signaled only by the thread that called the wait function.	
	A semaphore uses two atomic operations, wait and signal for process synchronization. (1m)	
	The wait operation decrements the value of its argument S, if it is positive. If S is negative or zero, then no operation is performed.	
	wait(S){ while (S<=0);	
	S; }	
	The signal operation increments the value of its argument S.	
	signal(S){ S++;	

Date: 30/06/2022 Name: Prof. K.R.Gavhale

Page No.: **Sign Every Page:**

Yeshwantrao Chavan College of Engineering, Nagpur

Examination: ESE, Exam EVEN 2021-22 **Programme:** B.E. II Year, Sem-4

Course Code: IT-2255 **Course Name: Operating System** Step wise Q.No Markin A disk has 200 cylinders (numbered 0 through 199). At a given time, it was servicing the request of reading data from cylinder 120, and the previous request, served was for cylinder 4(A) 90. The pending requests (in order of their arrival) for cylinder numbers are: 82,170,43,140,24,16,190. Then for each of the following disk scheduling algorithms: (I) FCFS (II) SSTF (III) LOOK, and (IV) SCAN i) Find the sequence in which cylinders are served (draw graphs) ii) Compute total head movement to satisfy the requests. FCFS Total Head Movement = 648 SSTF Total Head Movements = 70+174 = 244 190 199 LOOK Total head movements = 70+174 = 244 0 16 24 43 82 140 SCAN Total head Movements = 79 + 183 = 262

Date: 30/06/2022 Name: Prof. K.R.Gavhale

Page No.: Sign Every Page:

Yeshwantrao Chavan College of Engineering, Nagpur

Examination: ESE, Exam EVEN 2021-22 **Programme:** B.E. II Year, Sem-4

Course Code: IT-2255 **Course Name: Operating System** A) Enlist various types of fragmentation in Memory Management. Also give various memory Step wise management schemes that suffer from each type and the remedy for the same. Markin Q.No ANS: Types of Fragmentation in Memory Management: (1m) 4 M **5(A)** i) Internal Fragmentation ii) External Fragmentation Ans: iii) Table Fragmentation Removing / Minimizing Fragmentation: (Summary given here, detailed explanation required) (3m) of MM Schemes suffering from this Type Technique to Remove/ Minimize Fragmentation fragmentation fragmentation Internal Static Memory Partitioning, Paging, Paged Use Dynamic Memory Partitioning Fragmentation Segmentation, Demand paging / Segmentation External Dynamic Memory Partitioning, Use Compaction and Coalescing of Fragmentation Segmentation holes, Use paging Table All memory management schemes (as No way Fragmentation every MM scheme requires data structures to manage memory) (B) Given main memory with partitions (initially all free) of 100 KB,500 KB,200 KB, 300KB, **5(B)** 3 M and 600KB (in order), then what will be the free list after application of first fit, Best fit and the worst fit algorithm(assuming Dynamic Memory Management) on the processes of sizes 212 KB, 417 KB, 112 KB and 426KB (in order)? Also show the allocations to partitions. Tist fit Pynamic Partitioning 212, 47, 112,426 start 100+B -> 500+B-> 200+B-> 600+B 212 KB $100 \rightarrow 288 \rightarrow 200 \rightarrow 300 \rightarrow 600$ 417 KB $100 \rightarrow 288 \rightarrow 200 \rightarrow 300 \rightarrow 183$ 112 KB $100 \rightarrow 288 \rightarrow 200 \rightarrow 300 \rightarrow 183$ 100 -> 176 -> 200 -> 300 -> 183 112 KB 426 KB - Wait. ii) Best fit: Procene : 212,417, 112,426 Start: $100 \rightarrow 500 \rightarrow 200 \rightarrow 300 \rightarrow 600$ 212: $100 \rightarrow 500 \rightarrow 200 \rightarrow 300 \rightarrow 600$ 212: $100 \rightarrow 500 \rightarrow 200 \rightarrow 88 \rightarrow 600$ 417: $100 \rightarrow 85 \rightarrow 200 \rightarrow 88 \rightarrow 600$ 112: $100 \rightarrow 83 \rightarrow 88 \rightarrow 88 \rightarrow 600$ 112: $100 \rightarrow 83 \rightarrow 88 \rightarrow 88 \rightarrow 174$ 426iii) worst fit procenes: 212,417,112,426

start: 100-3500-300-300-388 Algorithm Free list after allocation Allocations: Process -> Partition First Fit 212->500, 417->600, 112->200, 426->wait 100->176->200-.300->183 212->600, 417->500, 112->388, 426->600 Best Fit 100->83->88->88->174 Worst Fit 212->300, 417->500, 112->200, 426->wait 100->83->200->300->276

Date: 30/06/2022 Name: Prof. K.R.Gavhale

Page No.: Sign Every Page:

Yeshwantrao Chavan College of Engineering, Nagpur

Course Code: IT-2255

Examination: ESE, Exam EVEN 2021-22 Programme: B.E. II Year, Sem-4

Course Name: Operating System Step wise Q.No Markin **6(A)** 4 m (A) Calculate number pf Page faults for FIFO, LRU and Optimal Algorithms for the Page Trace: 1, 2, 3, 4, 2, 1, 5, 6, 2, 1, 2, 3, 7, 6, 3, 2, 1 with number of Page Frames=3. The given page reference string is: 1,2,3,4,2,1,5,6,2,1,2,3,7,6,3,2,1 No. of page frames allocated =3 a) Finding page faults for FIFO algorithm 5 6 MRS:-3 3 6 6 1144446 PFI 2 7 1 2 7 7 1 2 2211 2 PF2 5 6 6 6 1 3 3 3 5 5 1 PF3 -1 + + + + + + + + + + + + + Faults (+) No. of page faults=14 b) Finding page faults for LRU algorithm MRS:-2 PF1 4 5 4 5 3 3 3 3 3 3 6 6 PF2 2 6 2 2 2 PF3 6 6 6 2 3 1 ١ 1 3 3 Page Faults + + + + + + + + + (+) No. of page faults=14 Finding page faults for Optimal algorithm 2 3 4 2 1 5 6 2 33 2 4 3 3 PF low to approximate copies for the formation of 2 7 2 22 2 2 PF2 6 4 4 5 6 6 6 6 PF3 66 Page ++ + Faults + + + No. of page faults=10

Date: 30/06/2022 Name: Prof. K.R.Gavhale

Page No.: **Sign Every Page:**

Programme: B.E. II Year, Sem-4

C	ourse Code: IT-2255 Course Name: Operating System	
6(B)	(B) What do you mean by thrashing? State the ways to prevent it. ANS: If most of the processes in the system are above their upper page fault rate threshold, a system may exhibit a behavior known as thrashing. It is characterized by intensive paging activity. (1m) Ways to prevent Thrashing: (1m) Use local replacement policies Provide a process with as many frames as it needs using Working Set Model Use Page Fault frequency strategy to measure and control page fault rate	em

Date: 30/06/2022 Name: Prof. K.R.Gavhale

Page No.: **Sign Every Page:**