

Turing Machines

Reading: Chapter 8

Turing Machines are...

 Very powerful (abstract) machines that could simulate any modern day computer (although very, very slowly!)

For every input, answer YES or NO

- Why design such a machine?
 - If a problem cannot be "<u>solved</u>" even using a TM, then it implies that the problem is undecidable
- Computability vs. Decidability

A Turing Machine (TM)

B: blank symbol (special symbol reserved to indicate data boundary)

You can also use:

→ for R

← for L

Transition function

- One move (denoted by |---) in a TM does the following:
 - $\delta(q,X) = (p,Y,D)$

- q is the current state
- X is the current tape symbol pointed by tape head
- State changes from q to p
- After the move:
 - X is replaced with symbol Y
 - If D="L", the tape head moves "left" by one position.
 Alternatively, if D="R" the tape head moves "right" by one position.

-

ID of a TM

- Instantaneous Description or ID :
 - $X_1X_2...X_{i-1}qX_iX_{i+1}...X_n$ means:
 - q is the current state
 - Tape head is pointing to X_i
 - $X_1X_2...X_{i-1}X_iX_{i+1}...X_n$ are the current tape symbols
- $\delta(q,X_i) = (p,Y,R)$ is same as:

$$X_1...X_{i-1}qX_i...X_n$$
 |---- $X_1...X_{i-1}YpX_{i+1}...X_n$

• $\delta(q, X_i) = (p, Y, L)$ is same as:

$$X_1...X_{i-1}qX_i...X_n$$
 |---- $X_1...pX_{i-1}YX_{i+1}...X_n$

Way to check for Membership

Is a string w accepted by a TM?

Initial condition:

- The (whole) input string w is present in TM, preceded and followed by infinite blank symbols
- Final acceptance:
 - Accept w if TM enters <u>final state</u> and halts
 - If TM halts and not final state, then reject

Example: L = {0ⁿ1ⁿ | n≥1}

Strategy:

$$w = 000111$$

TM for {0ⁿ1ⁿ | n≥1}

- Mark next unread 0 with X and move right
- 2. Move to the right all the way to the first unread 1, and mark it with Y
- Move back (to the left) all the way to the last marked X, and then move one position to the right
- If the next position is 0, then goto step 1.
 - Else move all the way to the right to ensure there are no excess 1s. If not move right to the next blank symbol and stop & accept.

TM for {0ⁿ1ⁿ | n≥1}

	Next Tape Symbol				
Curr. State	0	1	X	Y	В
\rightarrow q ₀	(q ₁ ,X,R)	-	-	(q ₃ ,Y,R)	-
q_1	(q ₁ ,0,R)	(q ₂ ,Y,L)	-	(q ₁ ,Y,R)	-
q_2	(q ₂ ,0,L)	-	(q ₀ ,X,R)	(q ₂ ,Y,L)	-
q_3	-	-	-	(q ₃ ,Y,R)	(q ₄ ,B,R)
*q ₄	-		-	-	-

TMs for calculations

- TMs can also be used for calculating values
 - Like arithmetic computations
 - Eg., addition, subtraction, multiplication, etc.

Example 2: monus subtraction

"
$$m - n$$
" = $max\{m-n,0\}$
 $0^{m}10^{n} \rightarrow \dots B 0^{m-n} B.. (if m>n)$
...BB...B.. (otherwise)

- For every 0 on the left (mark X), mark off a 0 on the right (mark Y)
- 2. Repeat process, until one of the following happens:
 - // No more 0s remaining on the left of 1 Answer is 0, so flip all excess 0s on the right of 1 to Bs (and the 1 itself) and halt
 - 2. //No more 0s remaining on the right of 1 Answer is m-n, so simply halt after making 1 to B

Example 3: Multiplication

0^m10ⁿ1 (input), 0^{mn}1 (output)

Pseudocode:

- Move tape head back & forth such that for every 0 seen in 0^m, write n 0s to the right of the last delimiting 1
- Once written, that zero is changed to B to get marked as finished
- After completing on all m 0s, make the remaining n 0s and 1s also as Bs

Calculations vs. Languages

A "calculation" is one that takes an input and outputs a value (or values)

A "language" is a set of strings that meet certain criteria

The "language" for a certain calculation is the set of strings of the form "<input, output>", where the output corresponds to a valid calculated value for the input

E.g., The language L_{add} for the addition operation

. .

Membership question == verifying a solution e.g., is "<15#12,27>" a member of L_{add} ?

Language of the Turing Machines

Recursive Enumerable (RE) language

Variations of Turing Machines

Next

state

New

Storage symbol

TMs with storage

Current

Storage

• $\delta([q_0,B],a) = ([q_1,a],a,R)$

Tape

•
$$\delta([q_1,a],a) = ([q_1,a], a, R)$$

•
$$\delta([q_1,a],B) = ([q_2,B], B, R)$$

[q,a]: where q is current state, a is the symbol in storage

Are the standard TMs equivalent to TMs with storage?

Yes

Multi-track Turing Machines

 TM with multiple tracks, but just one unified tape head

Multi-Track TMs

but w/o modifying original input string

Second track mainly used as a scratch space for marking

Multi-tape Turing Machines

- TM with multiple tapes, each tape with a separate head
 - Each head can move independently of the others

Non-deterministic TMs

- A TM can have non-deterministic moves:
 - $\delta(q,X) = \{ (q_1,Y_1,D_1), (q_2,Y_2,D_2), \dots \}$
- Simulation using a multitape deterministic TM:

 An unrestricted grammar or phrase structured grammar is 4 tuple G=(V, T, P, S), where V and T are disjoint set of variables and terminals, respectively. S is the element of V called the starting symbol; and P is the set of productions of the form

$$\alpha \rightarrow \beta$$

where $\alpha, \beta \in (V \cup T)^*$ and α contains at least one variable.

Recall from CFG, the process of derivation from G

$$\alpha = = >^*_G \beta$$

means that β can be derived from α in zero or more steps.

The language of G is formally defined as

$$L(G)=\{x \in T^* \mid S==>^*_{G}x\}.$$

Let

$$L = \{a^n b^n c^n \mid n \ge 1\}$$

The grammar to generate L has the productions

$S \rightarrow FS_1$	S1→ABCS ₁	S1→ABC
BA→AB	CA→AC	CB→BC
FA→a	aA → aa	aB → ab
bB→bb	bC→bc	cC→cc

- Let us consider the string aabbcc
- The derivation for this string is as fallows.

```
S=>F<u>S</u><sub>1</sub> =>FABC<u>S</u><sub>1</sub> =>FAB<u>CA</u>BC
=>FA<u>BA</u>CBC =>FAAB<u>CB</u>C =><u>FA</u>ABBCC
=><u>aA</u>BBCC =>a<u>aB</u>BCC =>aa<u>bB</u>CC
=>aabbCC =>aabbcC
```


Chomsky Hierarchy

Chomsky Hierarchy

Туре	Languages	Forms of production in grammar	Accepting Device
3	Regular	$A \rightarrow aB, A \rightarrow a$ (A,B ϵ V, a ϵ T)	DFA
2	Context free	$A \rightarrow \alpha$ (A $\in V$, $\alpha \in (V UT)^*$)	PDA
1	Context Sensitive	$\alpha \rightarrow \beta$ (α, $\beta \in (V UT)^*$, $ \beta \ge \alpha $, α contains a variable)	LBA
0	Recursively Enumerable	$\alpha \rightarrow \beta$ (α, $\beta \in (V UT)^*$, α contains a variable)	TM

Undecidability

Post's Correspondence Problem (PCP)

- □An instance of PCP is called a correspondence system and consists of a set of pairs (a₁, b₁), (a₂, b₂),.....(a_n, b_n), where a_i's and b_i's are non null strings over an alphabet ∑.
- □ The question we are interested in for an instance like this is whether there is a sequence of one or more integers i_1 , i_2 ,, i_k , each i_k satisfying $1 \le i_k \le n$ and i_j 's are not necessarily distinct, so that $a_{i_1}, a_{i_2}, \ldots, a_{ik} = b_{i_1}, b_{i_2}, \ldots, b_{ik}$.

Undecidability

□The instance is a yes-instance if there is a such a sequence, and we call the sequence a solution sequence for the instance.

15234434

Α	В
10	101
01	100
0	10
100	0
1	010

- TMs == Recursively Enumerable languages
- TMs can be used as both:
 - Language recognizers
 - Calculators/computers
- Basic TM is <u>equivalent</u> to all the below:
 - 1. TM + storage
 - 2. Multi-track TM
 - Multi-tape TM
 - 4. Non-deterministic TM
- TMs are like universal computing machines with unbounded storage

34