3 задача: Восьминашки

2 модуль, 2 семестр

ФИВТ МФТИ, 2019

Описание by Илья Белов

1. Текст задачи

«Восьминашки» – упрощенный вариант известной головоломки «Пятнашки». Восемь костяшек, пронумерованных от 1 до 8, расставлены по ячейкам игровой доски 3 на 3, одна ячейка при этом остается пустой. За один ход разрешается передвинуть одну из костяшек, расположенных рядом с пустой ячейкой, на свободное место. Цель игры – для заданной начальной конфигурации игровой доски за минимальное число ходов получить выигрышную конфигурацию (пустая ячейка обозначена нулем):

123

456

780

Формат входного файла

Во входном файле содержится начальная конфигурация головоломки – 3 строки по 3 числа в каждой.

Формат выходного файла

Если решение существует, то в первой строке выходного файла выведите минимальное число перемещений костяшек, которое нужно сделать, чтобы достичь выигрышной конфигурации, а во второй строке выведите соответствующую последовательность ходов: L означает, что в результате перемещения костяшки пустая ячейка сдвинулась влево, R – вправо, U – вверх, D – вниз. Если таких последовательностей несколько, то выведите любую из них. Если же выигрышная конфигурация недостижима, то выведите в выходной файл одно число –1.

Пример:

in	out
0 1 6 4 3 2 7 5 8	8 RDRULDDR
	22 RDLDRRULLDRUURDDLLURRD
1 2 3 8 0 4 7 6 5	-1

Иллюстрация примера:

0	1	6		1	0	6		1	3	6		1	3	6	
4	3	2	⇒	4	3	2	⇒	4	0	2	⇒	4	2	0	⇒
7	5	8		7	5	8		7	5	8		7	5	8	

1	3	0		1	0	3		1	2	3		1	2	3	
4	2	6	⇒	4	2	6	⇒	4	0	6	⇒	4	5	6	⇒
7	5	8		7	5	8		7	5	8		7	0	8	

1	2	3
4	5	6
7	8	0

2. Описание алгоритма

Запускаем BFS от исходной конфигурации. Дочерние вершины графа - конфигурации головоломки, в которые можно перейти из текущей. При этом эти конфигурации будем вычислять на лету

3. Доказательство корректности

BFS всегда находит кратчайший путь

4. Время работы и дополнительная память

$$T = O(V + E)$$
 но так как $|V| < E$, то $T = O(E)$ $M = O(V)$

5. Доказательство времени работы

Алгоритм использует BFS. Причём $V=\frac{4}{3}E^{-1},\ \ V=9!=362880$, число Бога 2 равно 31

 $^{^{1}}$ из 1/9 вершин можно попасть в 4, из 4/9 - в 3, из 4/9 - в 2, итого из каждой вершины в среднем можно попасть в 4/3 вершин

² https://ru.wikipedia.org/wiki/Игра_в_15#Текущие_результаты