III Symposium on Chemical and Physical Sciences for Young Researchers

Sc Y Re W

Murcia, 15th-16th June 2023

Monte Carlo simulation of the transport of energetic electrons in materials of technological and biomedical interest

Ana María Zamora-Vinaroz, Mario Mompean-Herrero, Pablo de Vera, Rafael Garcia-Molina

Departamento de Física - Centro de Investigación en Óptica y Nanofísica

III Symposium on Chemical and Physical Sciences for Young Researchers, Universidad de Murcia, June 15th 2023

Energetic electrons

- Energy range: [~eV, ~MeV]
- Ubiquitous particles:

Charged beams

Ionisation

P. de Vera, I. Abril, R. Garcia-Molina, *Phys. Chem. Chem. Phys.* **23** (2021) 5079-5095

Energetic electrons

- Energy range: [~eV, ~MeV]
- Ubiquitous particles:

Charged beams

Ionisation

P. de Vera, I. Abril, R. Garcia-Molina, *Phys. Chem. Chem. Phys.* **23** (2021) 5079-5095

Photons

Compton effect

Applications of energetic electrons

Technological: electron microscopy, material surface analysis

W. S. M. Werner, Surf. Interface Anal. 31 (2001) 141-176

Applications of energetic electrons

Technological: electron microscopy, material surface analysis

Biomedical: ion beam cancer therapy, targeted radionuclide therapy

W. S. M. Werner, Surf. Interface Anal. 31 (2001) 141-176

J. Zaheer, H. Kim, Y.-J. Lee, J. S. Kim, S. M. Lim, M. Sang, *Int. J. Molec. Sciences* **20** (2019) 5579

Monte Carlo simulations to increase knowledge and optimise applications

- Electrons behaviour for ↓↓E.
 - Deposition of dose.

$$\eta_B = \frac{\text{# of backscattered } e^-}{\text{# of total } e^-}$$

$$\eta_T = \frac{\# \ of \ transmitted \ e^-}{\# \ of \ total \ e^-}$$

$$\eta_A = \frac{\# \ of \ absorbed \ e^-}{\# \ of \ total \ e^-}$$

Stopping power formalism

- 1930s: Quantum Mechanics.
- Bethe formula (SI units):

Turner, J. Atoms, Radiation and Radiation Protection (Wiley-VCH, 2007).

- Empirical modifications: Bethe-Joy, Nguyen-Truong.

Stopping power results

- Great agreement for †E.
- Differences between models for ↓↓E.

Dependence on mass thickness of backscatter and transmission coefficients

M. Attarian Shandiz, F. Salvat, R. Gauvin, *Scanning*. **38** (2016) 475-491

- More differences for:
 - ↓↓E.
 - Experimental data.

Dependence on mass thickness of backscatter and transmission coefficients

M. Attarian Shandiz, F. Salvat, R. Gauvin, *Scanning*. **38** (2016) 475-491

- More differences for:
 - ↓↓E.
 - Experimental data.

Backscatter coefficient vs. E for elements

- For infinite foils.
- Differences among models for \$\dagger\$E.

Disagreement for water.

Agreement for PMMA.

- Several applications of electron-matter interaction:
 - Electron microscopy, material surface analysis...
 - Radiotherapy.
- Monte Carlo simulation: useful tool:
 - Interpreting electron-beam experiments,
 - Predicting dose distributions for treatment planning.

- Several applications of electron-matter interaction:
 - Electron microscopy, material surface analysis...
 - Radiotherapy.
- Monte Carlo simulation: useful tool:
 - Interpreting electron-beam experiments,
 - Predicting dose distributions for treatment planning.
- Good results for ↑E and materials with ↓Z.
 - For †Z, new cross section needed.
 - More research for ↓↓↓E.

- Several applications of electron-matter interaction:
 - Electron microscopy, material surface analysis...
 - Radiotherapy.
- Monte Carlo simulation: useful tool:
 - Interpreting electron-beam experiments,
 - Predicting dose distributions for treatment planning.
- Good results for ↑E and materials with ↓Z.
 - For ↑Z, new cross section needed.
 - More research for ↓↓↓E.
- Future improvements:
 - Dose calculations in water.
 - Study of electron-emitting radioisotopes.

- Several applications of electron-matter interaction:
 - Electron microscopy, material surface analysis...
 - Radiotherapy.
- Monte Carlo simulation: useful tool:
 - Interpreting electron-beam experiments,
 - Predicting dose distributions for treatment planning.
- Good results for ↑E and materials with ↓Z.
 - For ↑Z, new cross section needed.
 - More research for ↓↓↓E.
- Future improvements:
 - Dose calculations in water.
 - Study of electron-emitting radioisotopes.

Thank you very much for your attention!

Ministerio de Ciencia, Innovación y Universidades:

Project PID2021-122866NB-I00 (2022-2025)

"Nanoscale Biodamage induced by Swift Ions: towards a detailed Modelling and Simulation"

Fundación Séneca (Región de Murcia):

Project 22081/PI/22 (2023-2025)

"Energetic Particles Against Cancer: Detailed Simulations For A Better Use"

III Symposium on Chemical and Physical Sciences for Young Researchers, Universidad de Murcia, June 15th 2023

Backscatter coefficient vs. E for elements

- For infinite foils.
- Differences among models for ↓↓E.

Bad for gold, why?

Backscatter coefficient vs. Z for different E

- Explanation of bad behaviour for ↑Z and ↓↓E.
- Another model for elastic cross sections for 1Z.

