Calculating Speed Practice

1 Match these moving objects to their typical speeds: **Express train**, **Truck on motorway**, **Road cyclist** and **Marathon runner** (but not in that order).

The speeds in m/s are given, but the speeds in km/h will need to be added from the following options: 100 km/h, 12 km/h, 24 km/h and 320 km/h.

Object	Speed (m/s)	Speed (km/h)
	3	
	7	
	27	
	90	

_ , , , , , , , , , , , , , , , , , , ,	2	A warthog runs at 20 m/s
---	---	--------------------------

(a) Complete the sentence: They run	metres every second.
(a) Complete the sentence. They full	illeties every second.

(b) Work out how far it will run in eight seconds using an equation.

(c) Work out how far it will run in $40 \, \mathrm{s}$ using an equation.

(d) Work out how far it would travel in 200 s.

- 3 A tractor on a farm travels at 8 m/s.
 - (a) How far does it travel every second?

(b) Work out how much time it will take to travel 160 m using an equation.

(c) Work out how much time it would take to travel 1 km (1000 m).

4	A hedgehog runs 180 m in 60 s.
	(a) How many metres does it move in one second?
	(b) Fill in the box with a number: The hedgehog's speed (in m/s) is
	(c) Fill in the boxes with words: To get the speed, I divided the by the
	(d) A kitesurfer travels 880 m in 40 s. Work out their speed using an equation. distance (m) = speed (m/s) \times time (s) \times 40
	(e) Work out the speed of a satellite which moves $160 \mathrm{m}$ in $0.02 \mathrm{s}$.
	(f) Work out the speed (in m/s) of a jet which travels 132 km in ten minutes.
5	Complete the word equations. (a) distance = (b) time =
6	Complete these equations using symbols. s is the distance, t is the time taken and v is the speed.
	(a) $s =$ (b) $v =$ (c) $t =$
7	Use your understanding of speed, or the equations, to calculate
	(a) the distance travelled when a runner runs at $6\ \text{m/s}$ for $40\ \text{s}$
	(b) the distance travelled when a truck travels at 25 m/s for 8 s
	(c) the time taken for a jogger to run $900~\mathrm{m}$ at $3~\mathrm{m/s}$
	(d) the speed of a trolley moving $15\mathrm{m}$ in $5\mathrm{s}$
	(e) the time taken for a tennis ball to travel $18\ \mathrm{m}$ at $36\ \mathrm{m/s}$

(f) the speed of a snail moving $10\,\mathrm{cm}$ in $20\,\mathrm{s}$. $(1\,\mathrm{cm}=0.01\,\mathrm{m})$

8	An athlete sprints at 9 m/s. How far will they run in (a) two seconds (b) 30 s?
9	A coach on a motorway travels at 100 km/h. How much time does it take to travel (a) 600 km (b) 25 km?
10	Use your understanding of speed, or the equations, to calculate
	(a) the distance if a 7.5 km/s satellite moves for one minute
	(b) the time taken for a train to travel $60 \ \text{km}$ at $200 \ \text{km/h}$
	(c) the speed if an airliner travels 6000 km in 7.5 h
	(d) the speed if a warthog runs $4.5\mathrm{km}$ in $5\mathrm{min}$. (Hint: how far will it run in one hour?)
11	A radio controlled car moves forward at $5\mathrm{m/s}$ for $4\mathrm{s}$ then backwards at $10\mathrm{m/s}$ for $3\mathrm{s}$. How far is it from its starting point?
12	A racing driver travels at 150 km/h for 20 min then at 90 km/h for 40 min.
	(a) How far have they travelled in total?
	(b) What is the average speed of the driver on this journey?
13	A 4 km length of road has 'average speed' cameras at both ends. The speed limit is $130 \ \text{km/h}$. A motorcycle rider travels the first and fourth kilometres at $120 \ \text{km/h}$ and the rest of the way at $150 \ \text{km/h}$.
	(a) How much time does it take the rider to travel between the cameras?
	(b) What is the average speed of the rider?
	(c) Will the camera operator know that the rider broke the law?