EC5.203 Communication Theory I (3-1-0-4):

Lecture 7:

Analog Communication Techniques: Amplitude Modulation - 3

Feb. 06, 2025

Recap

Key Concepts

- Two ways of encoding info in complex envelope
 - I and Q: amplitude modulation (several variants)
 - Envelope and phase: angle modulation (constant envelope)
- For example, for a sinusoid carrier

$$A_c(t)\cos(2\pi f_c(t)t + \theta_c(t))$$

where $A_c(t)$, $f_c(t)$, $\theta_c(t)$ are the amplitude, frequency, and the phase of the carrier respectively.

Amplitude Modulation

Frequency Modulation

Phase Modulation

AM: Double Sideband Suppressed Carrier

• Here the message m(t) modulates the I component of the passband signal u(t) and is given by

$$u_{DSB}(t) = m(t) \cdot A\cos(2\pi f_c t)$$

while the Fourier transform is given by

$$U_{DSB}(f) = \frac{A}{2}(M(f - f_c) + M(f + f_c))$$

DSB-SC signal for sinusoidal message

Here the signal is given by

$$u_{DSB}(t) = A_m \cos(2\pi f_m t) \cdot A \cos(2\pi f_c t)$$

while the Fourier transform is given by

$$U_{DSB}(f) = \frac{AA_m}{4} \{ \delta(f - f_c - f_m) + \delta(f - f_c + f_m) + \delta(f + f_c + f_m) + \delta(f + f_c - f_m) \}$$

(a) DSB time domain waveform

No impulses at f_c or $-f_c$!

(b) DSB spectrum

Example 2

• Consider a message signal m(t) with following frequency response M(f)

DSB-SC spectrum for Example 2

Demodulation of DSB-SC

- Standard downconverter to recover I component
- The received signal in the passband is

$$y_p(t) = Am(t)\cos(2\pi f_c t)$$

where θ_r is the phase difference arising from the phase offset with respect to local carrier at Rx.

• The output of multiplier followed by low pass filter is

$$\hat{m}(t) = Am(t)\cos\theta_r$$

Need of Coherent Detection

• The output of multiplier followed by low pass filter is

$$\hat{m}(t) = Am(t)\cos\theta_r$$

- For $\theta_r = 0$, $\hat{m}(t) = Am(t)$
- For $\theta_r = \pi/2$, $\hat{m}(t) = 0$
- For $\theta_r(t) = 2\pi\Delta f t + \phi$, time varying signal degradation in amplitude and unwanted sign changes.
- Need of synchronization of phase of the local oscillator with the phase of incoming signal:
 - Phased locked loop (PLL)
- Switch to other AM techniques which do not need synchronization
 - Conventional AM or DSB (with carrier)

Conventional AM

• Add a large carrier component to a DSB-SC signal so that the passband has the following form

$$u_{AM}(t) = (Am(t) + A_c)\cos(2\pi f_c t)$$
$$= Am(t)\cos(2\pi f_c t) + A_c\cos(2\pi f_c t)$$

• Taking Fourier transform

$$U_{\rm AM}(f) = \frac{A}{2} (M(f - f_c) + M(f + f_c)) + \frac{A_c}{2} (\delta(f - f_c) + \delta(f + f_c))$$

Conventional AM: spectrum

Sidestepping sync requirement

- The envelope (or magnitude of complex envelope) does not depend on carrier phase
- Suppose we can extract the envelope of a passband signal (will soon see a simple circuit for this purpose)
 - Does not require carrier sync
- Can we recover the message?

Modulation Index

• Condition needed for envelope to preserve message info

$$A m(t) + A_c > 0 \quad \forall t$$
$$A \min_{t} m(t) + A_c > 0$$

• Can be expressed in terms of modulation index

$$a_{\text{mod}} = \frac{AM_0}{A_c} = \frac{A|\min_t m(t)|}{A_c}$$

• For signal to be recoverable, $a_{\text{mod}} \leq 1$.

AM signal in terms of modulation index

• Convenient to normalize message so that the largest negative swing is -1

$$m_n(t) = \frac{m(t)}{M_0} = \frac{m(t)}{|\min_t m(t)|}$$

$$\min_t m_n(t) = \frac{\min_t m(t)}{M_0} = -1$$

• AM signal in terms of modulation index and normalized message

$$y_p(t) = B(1 + a_{\text{mod}}m_n(t))\cos(2\pi f_c t + \theta_r)$$

Effect of modulation index

Example of sinusoidal message

Envelope = message + DC

Envelope = message

Message info not preserved in envelope

Envelope Detectors

Positive carrier cycle → capacitor charges up (reaches value of envelope)

Negative carrier cycle → capacitor discharges with RC time constant

Conventional AM modulation

- Use of multiplier
 - Several ways: Analog multiplier such as Sheingold, Variable gain amplifier, etc
 - It is rather difficult to maintain linearity in this kind of amplifier
 - They are expensive
- Few of other simple yet practical methods
 - Non-linear modulators
 - Switching modulators

B.P.Lathi pages: 155-159

Power efficiency of conventional AM

• DSB expression

$$u_{\rm AM}(t) = Am(t)\cos(2\pi f_c t) + A_c\cos(2\pi f_c t)$$

• Power efficiency is given by

Extra Non-information carrying component

$$\eta = \frac{\text{Power in information carrying signal}}{\text{Power in total signal}}$$

• Prove that power efficiency for conventional AM is given by

$$\eta_{\rm AM} = \frac{a_{\rm mod}^2 \overline{m_n^2}}{1 + a_{\rm mod}^2 \overline{m_n^2}}$$

• Further prove that

$$\eta_{\rm AM} \leq 50\%$$

• Solve: Find η_{AM} for sinusoidal message signal $m(t) = A_m \cos(2\pi f_m t)$

Todays' Class

Amplitude Modulation: Single Side Band

SSB: Motivation

- Each sideband has enough information to extract the original message.
 m(t) is complex envelope of DSB
- Message m(t) is the I component of an DSB signal.
- Sending only one sideband reduces our bandwidth requirement by 50%.

DSB → USB (SSB)

Message signal

DSB → LSB (SSB)

Message signal

DSB signal

Recover Signal from USB Signal? Solve!

Message signal

Solution!

Corresponding Time Domain Equations

Message signal is I component of filter o/p

Downconversion (passband to baseband)

Recover Signal from USB Signal!

The original signal can be obtained from the USB signal by

- 1. Shifting the USB signal to right by f_c
- 2. Shifting the USB signal to left by f_c
- 3. Add the two signals
- 4. Pass the resultant signal through low pass filter to filter $2f_c$ component

Recover Signal from LSB Signal?

The original signal can be obtained from the USB signal by

- 1. Shifting the LSB signal to right by f_c
- 2. Shifting the LSB signal to left by f_c
- 3. Add the two signals
- 4. Pass the resultant signal through low pass filter to filter $2f_c$ component

Use of Hilbert Transform for SSB Generation

Motivation: Requirement of ideal filters

- Logical approach: Filtering one of the sideband requires rectangular filters with sharp cut-off!
- Practically infeasible!!!
- Implementing Hilbert transform in baseband avoids need for sharp filtering at passband!

Hilbert transform

$$H(f) = -j \operatorname{sgn}(f) \longleftrightarrow h(t) = \frac{1}{\pi t}$$

SSB in baseband using Hilbert Transform

- Implementing Hilbert transform in baseband avoids need for sharp filtering at passband!
- In next few slides, we will see why it works!

USB passband signal is real!

Baseband Message signal

m(t) will be real!

For a real signal x(t)

- $X(f) = X^*(-f)$ Even symmetry for magnitude spectrum
- $\operatorname{Re}\{X(f)\}=\operatorname{Re}\{X^*(-f)\}$, i.e., Even Symmetry
- $\operatorname{Im}\{X(f)\} = -\operatorname{Im}\{X^*(-f)\}\ \operatorname{Odd}\ \operatorname{Symmetry}$

m(t) is complex envelope of DSB In SSB discussion, u(t) will be complex envelope of USB

Complex envelope for USB signal

In SSB discussion, u(t) will be complex envelope of USB

I and Q components for SSB

USB Complex envelope U(f)

I component

Q component

USB I and Q components

$$U_c(f) = \frac{U(f) + U^*(-f)}{2}$$
$$U_s(f) = \frac{U(f) - U^*(-f)}{2j}$$

Prove

$$U_c(f) = A M(f)/2$$

$$U_s(f) = -j \operatorname{sgn}(f) U_c(f)$$

Sign Function

$$U_s(f) = -jU_c(f) \quad f > 0$$
$$U_s(f) = jU_c(f) \quad f < 0$$

$$U_s(f) = -j\operatorname{sgn}(f)U_c(f)$$

Message signal is I component of filter o/p

• The key to efficient SSB generation lies in this figure!

Hilbert transform

$$H(f) = -j \operatorname{sgn}(f) \longleftrightarrow h(t) = \frac{1}{\pi t}$$

SSB and Hilbert Transform

Hilbert transform of original message

• let
$$M(f) \triangleq c + jd$$
, then
for $f > 0$, $\check{M}(f) = -jM(f) = -jc + d \rightarrow \mathcal{R}\{\check{M}(f)\} = d$ and $\mathcal{I}\{\check{M}(f)\} = -c$
for $f < 0$, $\check{M}(f) = jM(f) = jc - d \rightarrow \mathcal{R}\{\check{M}(f)\} = -d$ and $\mathcal{I}\{\check{M}(f)\} = c$

Complex envelope for SSB signal

• USB baseband complex envelope in terms of message is given as

$$U(f) = U_c(f) + jU_s(f)$$
$$= M(f) + j\check{M}(f)$$

Taking inverse FT, we get

$$u(t) = m(t) + j\check{m}(t)$$

where $\check{m}(t) = m(t) * \frac{1}{\pi t}$.

• Thus for USB, $u_c(t) = m(t)$ and $u_s(t) = \check{m}(t)$.

Complex envelope for SSB signal

Real USB passband

Real in time
Even and Odd
Symmetric in frequency domain

Implementing SSB in baseband

$$u_{\text{USB}}(t) = \text{Re}\{u(t)e^{j2\pi f_c t}\}$$

$$= m(t)\cos(2\pi f_c t) - \check{m}(t)\sin(2\pi f_c t)$$

$$u_{\text{LSB}}(t) = \text{Re}\{l(t)e^{j2\pi f_c t}\}$$

$$= m(t)\cos(2\pi f_c t) + \check{m}(t)\sin(2\pi f_c t)$$

Implementing Hilbert transform in baseband avoids need for sharp filtering at passband

SSB for sinusoidal message

- Consider message $m(t) = \cos(2\pi f_m t)$.
 - Find $\check{m}(t)$.
 - Find $u_{\text{DSB}}(t)$, $u_{\text{USB}}(t)$, $u_{\text{LSB}}(t)$ assuming $\overline{u_{\text{DSB}}^2} = 1$.
 - Plot spectrum for DSB, USB, and LSB.

SSB demodulation: Coherent

• Synchronous demodulation to extract I component

• Prove that for SSB signal, Attenuation Interference $y_c(t) = m(t) \cos \theta_r - \check{m} \sin \theta_r$

where θ_r is the phase difference between the received signal and local oscillator. Assignment!

• Vulnerable to carrier phase offset!!

SSB demodulation: Noncoherent

- Add strong carrier component and employ envelope detection
- The expression for the received signal with strong carrier component

$$y_p(t) = (A + m(t))\cos 2\pi f_c t + \theta_r \pm \check{m}(t)\sin(2\pi f_c t + \theta_r)$$

• Message info preserved in envelope

$$e(t) = \sqrt{(A + m(t))^2 + \check{m}^2(t)} \approx A + m(t)$$

as long as $|(A + m(t))| \gg |\check{m}(t)|$.

Questions?

Quadrature Amplitude Modulation

QAM

$$u(t) = u_c(t) + ju_s(t)$$

$$u_{\text{QAM}}(t) = \text{Re}\{u(t)e^{j2\pi f_c t}\}$$

$$= u_c(t)\cos(2\pi f_c t) - u_s(t)\sin(2\pi f_c t)$$

Upconversion (baseband to passband)

Downconversion (passband to baseband)

QAM

Effect of Frequency and Phase Offset

Upconversion (baseband to passband)

Downconversion (passband to baseband)

• We have already seen this in Ch. 2: In this case

$$\tilde{u}_{c}(t) = u_{c}(t)\cos\phi(t) + u_{s}(t)\sin\phi(t)$$

$$\tilde{u}_{s}(t) = -u_{c}(t)\sin\phi(t) + u_{s}(t)\cos\phi(t)$$

where $\phi(t) = 2\pi\Delta f t + \gamma$ is the phase offset resulting from frequency offset Δf and the phase offset γ .

Coherent Detection: Synchronization

• Frequency offset and phase offset cause cross-interference between I and Q components

$$\tilde{u}_{c}(t) = u_{c}(t)\cos\phi(t) + u_{s}(t)\sin\phi(t)$$

$$\tilde{u}_{s}(t) = -u_{c}(t)\sin\phi(t) + u_{s}(t)\cos\phi(t)$$

where $\phi(t) = 2\pi\Delta t + \gamma$ is the phase offset resulting from frequency offset Δf and the phase offset γ .

- Either have tight synchronization, i.e., $\Delta f \approx 0$ and $\gamma \approx 0$.
- Compensate for the offset $u(t) = \tilde{u}(t)e^{j\phi}$.

Questions?