Übungsblatt 8

Tobias Baake (247074), Dylan Ellinger (247316), Nikiforos Tompoulidis (247714)

June 9, 2024

1 Transformationsmatrizen

a)
$$y = 2x - 5$$

Spiegelung der Gerade y beinhaltet mehrere Schritte

- Translation zum Ursprung
- Rotation zur x-Achse
- Spiegelung
- Rückrotation
- • Rücktranslation • $T(x_1,y_1)\cdot R(a)\cdot S_p\cdot R^{-1}(\alpha)\cdot T(-x_1,-y_1)$

Transformationsmatrix:

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 5 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} \cos(\alpha) & -\sin(\alpha) & 0 \\ \sin(\alpha) & \cos(\alpha) & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} \cos(\alpha) & \sin(\alpha) & 0 \\ -\sin(\alpha) & \cos(\alpha) & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & -5 \\ 0 & 0 & 1 \end{pmatrix}$$

b) Affine Transformation 2d:

$$\begin{pmatrix} x' \\ y' \\ w \end{pmatrix} = \begin{pmatrix} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$

Zuerst muss man die Original-Bildpunkt-Paare homogen darstellen:

$$x_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \rightarrow x_1' = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, x_2 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \rightarrow x_2' = \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix}, x_3 = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} \rightarrow x_3' = \begin{pmatrix} 9 \\ -6 \\ 1 \end{pmatrix}$$

Paare als Matrizen aufchreiben:

$$\begin{pmatrix} 1 & 3 & 9 \\ 1 & 2 & -6 \\ 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 0 & 1 & 1 \\ 0 & 0 & 2 \\ 1 & 1 & 1 \end{pmatrix}$$

Nun kann man immer ewinzeln die Variablen durch das multißplizieren der Zeilen der einen Matrix mit den Spalten der anderen bestimmen:

Element 1.1

$$a \cdot 0 + b \cdot 0 + c \cdot 1 = 1$$
$$c = 1$$

Element 1.2

$$a \cdot 1 + b \cdot 0 + c \cdot 1 = 3$$
$$a + c = 3$$
$$a + 1 = 3$$
$$a = 2$$

Element 1.3

$$a \cdot 1 + b \cdot 2 + c \cdot 1 = 9$$
$$2 + 2b + 1 = 9$$
$$2b = 6$$
$$b = 3$$

Element 2.1

$$(d \cdot 0 + e \cdot 0 + f \cdot 1) = 1$$
$$f = 1$$

Element 2.2

$$(d \cdot 1 + e \cdot 0 + f \cdot 1) = 2$$
$$d + f = 2$$
$$d + 1 = 2$$
$$d = 1$$

Element 2.3

$$(d \cdot 1 + e \cdot 2 + f \cdot 1) = -6$$
$$1 + 2e + 1 = -6$$
$$2e = -8$$
$$e = -4$$

Jetzt sind alle Werte bestimmt:

$$a = 2, b = 3, c = 1, d = 1, e = -4, f = 1$$

Einsetzen in die Transformationsmatrix:

$$B = \begin{pmatrix} 2 & 3 & 1 \\ 1 & -4 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

c)

Wir können die affinen Transformation in homogenen Koordinaten nutzen.

C muss in der Form $C = \begin{pmatrix} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{pmatrix}$ gegeben sein.

Die Transformationen sind bereits in der Aufgabenstellung gegeben.

Es müssen also nur noch die Werte eingesetzt werden.

$$C = \begin{pmatrix} \pi & \cos^2(\alpha) & -3\\ \tan(\alpha) & -\sin^2(\alpha) & \frac{\pi}{2} - 2\\ 0 & 0 & 1 \end{pmatrix}$$

d)

Gegebene Werte als homogene Koordinaten umschreiben

$$\begin{pmatrix} x \\ y \\ 1 \end{pmatrix} \to D \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} x \\ y \\ 1 \end{pmatrix} \to d \begin{pmatrix} 3 \\ \frac{\pi \cdot x}{y-1} + \pi \\ 1 \end{pmatrix}$$

Erste Komponente der Zielabbildung ist 3. Sie ist konstant.

Die Zweite K Omponente ist etwas komplizierter mit $\frac{\pi \cdot x}{y-1} + \pi$, aber durch probieren kann man auf die Lösung schließen.

Hier dasselbe Prinzip wie bei den vorherigen Aufgaben:

$$D \cdot \begin{pmatrix} x \\ y \\ 1 \end{pmatrix} = \begin{pmatrix} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \\ 1 \end{pmatrix} = \begin{pmatrix} 3 \\ \frac{\pi \cdot x}{y - 1} + \pi \\ 1 \end{pmatrix}$$

Selbes Prinzip wie immer: Zeile mal SPalte für das Ergebnis. Damit wir 3 bekommen setzen wir a=0,b=0,c=3 damit:

$$(0 \cdot x + 0 \cdot y + 3 \cdot 1) = 3$$

Wie bereits erwähnt ist die zweite Zeile komplizierter:

d und f sind offensichtlich, denn wenn $d=\pi$ und $f=\pi$ führt zu $x\cdot\pi=\pi x$ und $\pi\cdot 1=\pi$ Für e stellen wir den Ausdruck um.

Man zieht π als gemeinsamen Faktor aus beiden Termen heraus.

$$\frac{\pi \cdot x}{y-1} + \pi = \pi \cdot \left(\frac{x}{y-1} + 1\right)$$

so ist es leicht e als $-\pi$ zu bestimmen.

Wir erhalten als Lösung folgende 3x3 Matrix D:

$$D = \begin{pmatrix} 0 & 0 & 3 \\ \pi & -\pi & \pi \\ 0 & 0 & 1 \end{pmatrix}$$

2 Komposition von Transformationen

Die Eckpunkte des blauen Rechtecks sind:

$$a = (1, 2)$$

$$b = (2, 2)$$

$$c = (1, 3)$$

$$d = (2, 3)$$

Die Eckpunkte des orangefarbenen Rechtecks sind:

$$a' = (11, 4.5)$$

$$b' = (7, 8.5)$$

$$c' = (6, 7.5)$$

$$d' = (10, 3.5)$$

Bestimmung der Transformation

1. Berechnung der Skalierung:

- Die Seitenlänge des blauen Rechtecks beträgt 1.
- Die Seitenlänge des orangefarbenen Rechtecks beträgt $\sqrt{4.5^2 + 4.5^2} = 4.5\sqrt{2}$.
- Daher beträgt die Skalierung $s = 4.5\sqrt{2}$.

2. Berechnung der Drehung:

- Das Rechteck wurde um $45^{\circ} + 90^{\circ} = 135^{\circ}$ gegen den Uhrzeigersinn gedreht.
- Die Drehmatrix für eine Drehung um θ ist:

$$R = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$

• Für $\theta = 135^{\circ}$:

$$R = \begin{pmatrix} -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix}$$

3. Berechnung der Gesamttransformation:

• Die Skalierungs- und Drehmatrix wird kombiniert:

$$T = sR = 4.5\sqrt{2} \begin{pmatrix} -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix} = \begin{pmatrix} -4.5 & -4.5 \\ 4.5 & -4.5 \end{pmatrix}$$

4. Homogene Matrix: Um die homogene Transformation zu erhalten, fügen wir die Translation hinzu:

$$T = \begin{pmatrix} -4.5 & -4.5 & 0\\ 4.5 & -4.5 & 0\\ 11 & 4.5 & 1 \end{pmatrix}$$

4

Diese Matrix kombiniert die Skalierung, Drehung und Translation in einer einzigen Transformation.

3 Affine und Projektive Abbildungen

a)

projektiv und affin, da parralellität und kollineraität erhalten bleibt. Eine Drehung um 45° ist eine projektive Transformation, da sie durch eine Kombination aus einer Rotation und einer Translation erreicht werden kann.

b)

Diese Transformation ist projektiv, aber nicht affin, da die Parallellität nicht erhalten bleibt. Die Punkte bleiben zwar auf einer Linie, dennoch werden sie verzerrt.

c)

Diese Transformation ist weder affin noch projektiv, da die Kollinearität und Parallellität nicht erhalten bleiben. Die Punkte bleiben werder aufeiner Linie, noch behalten sie ihre Abstände zueinander.

d)

Diese Transformation ist affin, da sie durch eine Kombination aus einer Translation, Skalierung (relative Skalierung) und Rotation erreicht werden kann. Sie ist auch projektiv, da sie Kollinearität erhält.

e)

Diese Transformation vertauscht die Punkte und verzerrt ihre Positionen. Diese Transformation ist daher weder affin noch projektiv, da die Parallellität und Kollinearität nicht erhalten bleiben.

f)

Diese Transformation ist projektiv, da sie Kollinearität erhält, jedoch nicht die Paraalelität.