2 Data wrangling

2.1 Contents

- · 2 Data wrangling
 - 2.1 Contents
 - 2.2 Introduction
 - 2.2.1 Recap Of Data Science Problem
 - 2.2.2 Introduction To Notebook
 - 2.3 Imports
 - 2.4 Objectives
 - 2.5 Load The Ski Resort Data
 - 2.6 Explore The Data
 - 2.6.1 Find Your Resort Of Interest
 - 2.6.2 Number Of Missing Values By Column
 - 2.6.3 Categorical Features
 - 2.6.3.1 Unique Resort Names
 - 2.6.3.2 Region And State
 - 2.6.3.3 Number of distinct regions and states
 - 2.6.3.4 Distribution Of Resorts By Region And State
 - 2.6.3.5 Distribution Of Ticket Price By State
 - 2.6.3.5.1 Average weekend and weekday price by state
 - 2.6.3.5.2 Distribution of weekday and weekend price by state
 - 2.6.4 Numeric Features
 - 2.6.4.1 Numeric data summary
 - 2.6.4.2 Distributions Of Feature Values
 - 2.6.4.2.1 SkiableTerrain ac
 - o 2.6.4.2.2 Snow Making ac
 - 2.6.4.2.3 fastEight
 - 2.6.4.2.4 fastSixes and Trams
 - 2.7 Derive State-wide Summary Statistics For Our Market Segment
 - 2.8 Drop Rows With No Price Data
 - 2.9 Review distributions
 - 2.10 Population data
 - 2.11 Target Feature
 - 2.11.1 Number Of Missing Values By Row Resort
 - 2.12 Save data
 - 2.13 Summary

2.2 Introduction

This step focuses on collecting your data, organizing it, and making sure it's well defined. Paying attention to these tasks will pay off greatly later on. Some data cleaning can be done at this stage, but it's important not to be overzealous in your cleaning before you've explored the data to better understand it.

2.2.1 Recap Of Data Science Problem

The purpose of this data science project is to come up with a pricing model for ski resort tickets in our market segment. Big Mountain suspects it may not be maximizing its returns, relative to its position in the market. It also does not have a strong sense of what facilities matter most to visitors, particularly which ones they're most likely to pay more for. This project aims to build a predictive model for ticket price based on a number of facilities, or properties, boasted by resorts (at the resorts). This model will be used to provide guidance for Big Mountain's pricing and future facility investment plans.

2.2.2 Introduction To Notebook

Notebooks grow organically as we explore our data. If you used paper notebooks, you could discover a mistake and cross out or revise some earlier work. Later work may give you a reason to revisit earlier work and explore it further. The great thing about Jupyter notebooks is that you can edit, add, and move cells around without needing to cross out figures or scrawl in the margin. However, this means you can lose track of your changes easily. If you worked in a regulated environment, the company may have a a policy of always dating entries and clearly crossing out any mistakes, with your initials and the date.

Best practice here is to commit your changes using a version control system such as Git. Try to get into the habit of adding and committing your files to the Git repository you're working in after you save them. You're are working in a Git repository, right? If you make a significant change, save the notebook and commit it to Git. In fact, if you're about to make a significant change, it's a good idea to commit before as well. Then if the change is a mess, you've got the previous version to go back to.

Another best practice with notebooks is to try to keep them organized with helpful headings and comments. Not only can a good structure, but associated headings help you keep track of what you've done and your current focus. Anyone reading your notebook will have a much easier time following the flow of work. Remember, that 'anyone' will most likely be you. Be kind to future you!

In this notebook, note how we try to use well structured, helpful headings that frequently are self-explanatory, and we make a brief note after any results to highlight key takeaways. This is an immense help to anyone reading your notebook and it will greatly help you when you come to summarise your findings. **Top tip: jot down key findings in a final summary at the end of the notebook as they arise. You can tidy this up later.** This is a great way to ensure important results don't get lost in the middle of your notebooks.

n this, and subsequ	ent notebooks, there	are coding tasks n	narked with	#Code	task :	n#	with code to
complete. The	will guide you to whe	ere you need to ins	sert code.				

2.3 Imports

Placing your imports all together at the start of your notebook means you only need to consult one place to check your notebook's dependencies. By all means import something 'in situ' later on when you're experimenting, but if the imported dependency ends up being kept, you should subsequently move the import statement here with the rest.

```
In [1]: #Code task 1#
    #Import pandas, matplotlib.pyplot, and seaborn in the correct lines belo
    w
    import pandas as pd
    import matplotlib.pyplot as plt
    import seaborn as sns
    import os
In [2]: pd.set_option('display.max_rows', 500)
    pd.set_option('display.max_columns', 500)
    pd.set_option('display.width', 1000)
```

2.4 Objectives

There are some fundamental questions to resolve in this notebook before you move on.

- Do you think you may have the data you need to tackle the desired question?
 - Have you identified the required target value?
 - Do you have potentially useful features?
- · Do you have any fundamental issues with the data?

2.5 Load The Ski Resort Data

```
In [3]: # the supplied CSV data file is the raw_data directory
ski_data = pd.read_csv('../raw_data/ski_resort_data.csv')
```

Good first steps in auditing the data are the info method and displaying the first few records with head.

```
In [4]: #Code task 2#
#Call the info method on ski_data to see a summary of the data
ski_data.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 330 entries, 0 to 329
Data columns (total 27 columns):
Column
Non_Mull Count

# Column Non-Null Count I	Dtype
0 Name 330 non-null	object
1 Region 330 non-null	object
2 state 330 non-null	object
3 summit_elev 330 non-null	int64
4 vertical_drop 330 non-null	int64
5 base_elev 330 non-null	int64
6 trams 330 non-null	int64
7 fastEight 164 non-null	float64
8 fastSixes 330 non-null	int64
9 fastQuads 330 non-null	int64
10 quad 330 non-null :	int64
11 triple 330 non-null	int64
12 double 330 non-null	int64
13 surface 330 non-null	int64
14 total_chairs 330 non-null	int64
15 Runs 326 non-null	float64
16 TerrainParks 279 non-null	float64
17 LongestRun_mi 325 non-null	float64
18 SkiableTerrain_ac 327 non-null	float64
3	float64
20 daysOpenLastYear 279 non-null	float64
21 yearsOpen 329 non-null	float64
22 averageSnowfall 316 non-null	float64
23 AdultWeekday 276 non-null	float64
24 AdultWeekend 279 non-null	float64
25 projectedDaysOpen 283 non-null	float64
26 NightSkiing_ac 187 non-null	float64
<pre>dtypes: float64(13), int64(11), object(3</pre>)
memory usage: 69.7+ KB	

Nothing too strange. Pretty straightforward; however, need inspection of 'fastEight' because it has 164 non-null values. Why? also, NightSkiing @ 187 non-nulls. Why is fast8 a float and not int? Check data type for apprpriate feature. Some of them don't make sense lol.

AdultWeekday is the price of an adult weekday ticket. AdultWeekend is the price of an adult weekend ticket. The other columns are potential features.

This immediately raises the question of what quantity will you want to model? You know you want to model the ticket price, but you realise there are two kinds of ticket price!

```
In [5]: #Code task 3#
#Call the head method on ski_data to print the first several rows of the
    data
    ski_data.head()
```

Out[5]:

	Name	Region	state	summit_elev	vertical_drop	base_elev	trams	fastEight	fastSixes
0	Alyeska Resort	Alaska	Alaska	3939	2500	250	1	0.0	0
1	Eaglecrest Ski Area	Alaska	Alaska	2600	1540	1200	0	0.0	0
2	Hilltop Ski Area	Alaska	Alaska	2090	294	1796	0	0.0	0
3	Arizona Snowbowl	Arizona	Arizona	11500	2300	9200	0	0.0	1
4	Sunrise Park Resort	Arizona	Arizona	11100	1800	9200	0	NaN	0

Notes: Whats a 'trams' column? find range on the summits, vert drop and height in general of the mountains; prob research vail; look at the regions in the US of the market. What's the deal with fastEight? What do they mean? Lot of good data to explore here! :) So far this is what I need to do:

- * change features to appropriate dtypes
- * investigate NaNs (keep in mind, .sum() ignores these?)
- * research ski definitions
- * geography of parks in the US
- * VAIL as comparison

The output above suggests you've made a good start getting the ski resort data organized. You have plausible column headings. You can already see you have a missing value in the fastEight column

2.6 Explore The Data

2.6.1 Find Your Resort Of Interest

Your resort of interest is called Big Mountain Resort. Check it's in the data:

In [6]: ski_data.head().T

Out[6]:

	0	1	2	3	4
Name	Alyeska Resort	Eaglecrest Ski Area	Hilltop Ski Area	Arizona Snowbowl	Sunrise Park Resort
Region	Alaska	Alaska	Alaska	Arizona	Arizona
state	Alaska	Alaska	Alaska	Arizona	Arizona
summit_elev	3939	2600	2090	11500	11100
vertical_drop	2500	1540	294	2300	1800
base_elev	250	1200	1796	9200	9200
trams	1	0	0	0	0
fastEight	0	0	0	0	NaN
fastSixes	0	0	0	1	0
fastQuads	2	0	0	0	1
quad	2	0	0	2	2
triple	0	0	1	2	3
double	0	4	0	1	1
surface	2	0	2	2	0
total_chairs	7	4	3	8	7
Runs	76	36	13	55	65
TerrainParks	2	1	1	4	2
LongestRun_mi	1	2	1	2	1.2
SkiableTerrain_ac	1610	640	30	777	800
Snow Making_ac	113	60	30	104	80
daysOpenLastYear	150	45	150	122	115
yearsOpen	60	44	36	81	49
averageSnowfall	669	350	69	260	250
AdultWeekday	65	47	30	89	74
AdultWeekend	85	53	34	89	78
projectedDaysOpen	150	90	152	122	104
NightSkiing_ac	550	NaN	30	NaN	80

In [7]: #Code task 4#

#Filter the ski_data dataframe to display just the row for our resort wi th the name 'Big Mountain Resort'

#Hint: you will find that the transpose of the row will give a nicer out put. DataFrame's do have a #transpose method, but you can access this conveniently with the `T` pro

ski data[ski data.Name == 'Big Mountain Resort'].T

Out[7]:

151

	151
Name	Big Mountain Resort
Region	Montana
state	Montana
summit_elev	6817
vertical_drop	2353
base_elev	4464
trams	0
fastEight	0
fastSixes	0
fastQuads	3
quad	2
triple	6
double	0
surface	3
total_chairs	14
Runs	105
TerrainParks	4
LongestRun_mi	3.3
SkiableTerrain_ac	3000
Snow Making_ac	600
daysOpenLastYear	123
yearsOpen	72
averageSnowfall	333
AdultWeekday	81
AdultWeekend	81
rojectedDaysOpen	123
NightSkiing_ac	600

Notes: Our col # is 151

It's good that your resort doesn't appear to have any missing values.

2.6.2 Number Of Missing Values By Column

Count the number of missing values in each column and sort them.

In [8]: ski_data.head(3).T

Out[8]:

	0	1	2
Name	Alyeska Resort	Eaglecrest Ski Area	Hilltop Ski Area
Region	Alaska	Alaska	Alaska
state	Alaska	Alaska	Alaska
summit_elev	3939	2600	2090
vertical_drop	2500	1540	294
base_elev	250	1200	1796
trams	1	0	0
fastEight	0	0	0
fastSixes	0	0	0
fastQuads	2	0	0
quad	2	0	0
triple	0	0	1
double	0	4	0
surface	2	0	2
total_chairs	7	4	3
Runs	76	36	13
TerrainParks	2	1	1
LongestRun_mi	1	2	1
SkiableTerrain_ac	1610	640	30
Snow Making_ac	113	60	30
daysOpenLastYear	150	45	150
yearsOpen	60	44	36
averageSnowfall	669	350	69
AdultWeekday	65	47	30
AdultWeekend	85	53	34
projectedDaysOpen	150	90	152
NightSkiing_ac	550	NaN	30

```
In [9]: #Code task 5#
  #Count (using `.sum()`) the number of missing values (`.isnull()`) in ea
  ch column of
  #ski_data as well as the percentages (using `.mean()` instead of `.sum()
  `).
  #Order them (increasing or decreasing) using sort_values
  #Call `pd.concat` to present these in a single table (DataFrame) with th
  e helpful column names 'count' and '%'
  missing = pd.concat([ski_data.isnull().sum(), 100 * ski_data.isnull().me
  an()], axis=1)
  missing.columns=['count', '%']
  missing.sort_values(by='count', ascending=False)
```

Out[9]:

	count	%
fastEight	166	50.303030
NightSkiing_ac	143	43.333333
AdultWeekday	54	16.363636
AdultWeekend	51	15.454545
daysOpenLastYear	51	15.454545
TerrainParks	51	15.454545
projectedDaysOpen	47	14.242424
Snow Making_ac	46	13.939394
averageSnowfall	14	4.242424
LongestRun_mi	5	1.515152
Runs	4	1.212121
SkiableTerrain_ac	3	0.909091
yearsOpen	1	0.303030
total_chairs	0	0.000000
Name	0	0.000000
Region	0	0.000000
double	0	0.000000
triple	0	0.000000
quad	0	0.000000
fastQuads	0	0.000000
fastSixes	0	0.000000
trams	0	0.000000
base_elev	0	0.000000
vertical_drop	0	0.000000
summit_elev	0	0.000000
state	0	0.000000
surface	0	0.000000

Note: fast3ight and nightskiing_ac are the obvious problems. The But there's also significant ones like the 15%. And what's up with the discrepancy between 54 adultweekday v weekend? Maybe something was double counted? Look into this. Ask, "what'd a number of null where it's okay to ignore?"

fastEight has the most missing values, at just over 50%. Unfortunately, you see you're also missing quite a few of your desired target quantity, the ticket price, which is missing 15-16% of values. AdultWeekday is missing in a few more records than AdultWeekend. What overlap is there in these missing values? This is a question you'll want to investigate. You should also point out that <code>isnull()</code> is not the only indicator of missing data. Sometimes 'missingness' can be encoded, perhaps by a -1 or 999. Such values are typically chosen because they are "obviously" not genuine values. If you were capturing data on people's heights and weights but missing someone's height, you could certainly encode that as a 0 because no one has a height of zero (in any units). Yet such entries would not be revealed by <code>isnull()</code>. Here, you need a data dictionary and/or to spot such values as part of looking for outliers. Someone with a height of zero should definitely show up as an outlier!

2.6.3 Categorical Features

So far you've examined only the numeric features. Now you inspect categorical ones such as resort name and state. These are discrete entities. 'Alaska' is a name. Although names can be sorted alphabetically, it makes no sense to take the average of 'Alaska' and 'Arizona'. Similarly, 'Alaska' is before 'Arizona' only lexicographically; it is neither 'less than' nor 'greater than' 'Arizona'. As such, they tend to require different handling than strictly numeric quantities.

Note, a feature can be numeric but also categorical. For example, instead of giving the number of fastEight lifts, a feature might be has_fastEights and have the value 0 or 1 to denote absence or presence of such a lift. In such a case it would not make sense to take an average of this or perform other mathematical calculations on it. Although you digress a little to make a point, month numbers are also, strictly speaking, categorical features. Yes, when a month is represented by its number (1 for January, 2 for Februrary etc.) it provides a convenient way to graph trends over a year. And, arguably, there is some logical interpretation of the average of 1 and 3 (January and March) being 2 (February). However, clearly December of one years precedes January of the next and yet 12 as a number is not less than 1.

The numeric quantities in the section above are truly numeric; they are the number of feet in the drop, or acres or years open or the amount of snowfall etc.

```
In [10]: #Code task 6#
    #Use ski_data's `select_dtypes` method to select columns of dtype 'objec
    t'
    ski_data.select_dtypes('object')
```

Out[10]:

	Name		Region	state
0		Alyeska Resort	Alaska	Alaska
1		Eaglecrest Ski Area	Alaska	Alaska
2		Hilltop Ski Area	Alaska	Alaska
3		Arizona Snowbowl	Arizona	Arizona
4		Sunrise Park Resort	Arizona	Arizona
5		Yosemite Ski & Snowboard Area	Northern California	California
6		Bear Mountain	Sierra Nevada	California
7		Bear Valley	Sierra Nevada	California
8		Boreal Mountain Resort	Sierra Nevada	California
9		Dodge Ridge	Sierra Nevada	California
10		Donner Ski Ranch	Sierra Nevada	California
11		Heavenly Mountain Resort	Sierra Nevada	California
12		June Mountain	Sierra Nevada	California
13		Kirkwood	Sierra Nevada	California
14		Mammoth Mountain Ski Area	Sierra Nevada	California
15		Mt. Shasta Ski Park	Sierra Nevada	California
16		Mountain High	Sierra Nevada	California
17		Mt. Baldy	Sierra Nevada	California
18		Northstar California	Sierra Nevada	California
19		Sierra-at-Tahoe	Sierra Nevada	California
20		Ski China Peak	Sierra Nevada	California
21		Snow Summit	Sierra Nevada	California
22		Snow Valley	Sierra Nevada	California
23		Soda Springs	Sierra Nevada	California
24		Sugar Bowl Resort	Sierra Nevada	California
25		Tahoe Donner	Sierra Nevada	California
26		Arapahoe Basin Ski Area	Colorado	Colorado
27		Aspen / Snowmass	Colorado	Colorado
28		Beaver Creek	Colorado	Colorado
29		Breckenridge	Colorado	Colorado
30		Copper Mountain Resort	Colorado	Colorado
31		Crested Butte Mountain Resort	Colorado	Colorado
32		Purgatory	Colorado	Colorado
33		Eldora Mountain Resort	Colorado	Colorado

Name	e	Region	state
34	Howelsen Hill	Colorado	Colorado
35	Keystone	Colorado	Colorado
36	Loveland	Colorado	Colorado
37	Monarch Mountain	Colorado	Colorado
38	Powderhorn	Colorado	Colorado
39	Silverton Mountain	Colorado	Colorado
40	Cooper	Colorado	Colorado
41	Ski Granby Ranch	Colorado	Colorado
42	Steamboat	Colorado	Colorado
43	Sunlight Mountain Resort	Colorado	Colorado
44	Telluride	Colorado	Colorado
45	Vail	Colorado	Colorado
46	Winter Park Resort	Colorado	Colorado
47	Wolf Creek Ski Area	Colorado	Colorado
48	Mohawk Mountain	Connecticut	Connecticut
49	Mount Southington Ski Area	Connecticut	Connecticut
50	Powder Ridge Park	Connecticut	Connecticut
51	Ski Sundown	Connecticut	Connecticut
52	Woodbury Ski Area	Connecticut	Connecticut
53	Bogus Basin	Idaho	Idaho
54	Brundage Mountain Resort	Idaho	Idaho
55	Kelly Canyon Ski Area	Idaho	Idaho
56	Lookout Pass Ski Area	Idaho	Idaho
57	Magic Mountain Ski Area	Idaho	Idaho
58	Pebble Creek Ski Area	Idaho	Idaho
59	Pomerelle Mountain Resort	Idaho	Idaho
60	Schweitzer	Idaho	Idaho
61	Silver Mountain	Idaho	Idaho
62	Soldier Mountain Ski Area	Idaho	Idaho
63	Sun Valley	Idaho	Idaho
64	Tamarack Resort	Idaho	Idaho
65	Chestnut Mountain Resort	Illinois	Illinois
66	Four Lakes	Illinois	Illinois
67	Ski Snowstar Winter Sports Park	Illinois	Illinois
68	Villa Olivia	Illinois	Illinois

	Name		Region	state
69		Paoli Peaks	Indiana	Indiana
70		Perfect North Slopes	Indiana	Indiana
71		Mt. Crescent Ski Area	Iowa	Iowa
72		Seven Oaks	Iowa	Iowa
73		Sundown Mountain	Iowa	Iowa
74		Big Squaw Mountain Ski Resort	Maine	Maine
75		Camden Snow Bowl	Maine	Maine
76		Lost Valley	Maine	Maine
77		Mt. Abram Ski Resort	Maine	Maine
78		Mt. Jefferson	Maine	Maine
79		New Hermon Mountain	Maine	Maine
80		Shawnee Peak	Maine	Maine
81		Sugarloaf	Maine	Maine
82		Sunday River	Maine	Maine
83		Wisp	Maryland	Maryland
84		Berkshire East	Massachusetts	Massachusetts
85		Blandford Ski Area	Massachusetts	Massachusetts
86		Blue Hills Ski Area	Massachusetts	Massachusetts
87		Bousquet Ski Area	Massachusetts	Massachusetts
88		Bradford Ski Area	Massachusetts	Massachusetts
89		Jiminy Peak	Massachusetts	Massachusetts
90		Nashoba Valley	Massachusetts	Massachusetts
91		Otis Ridge Ski Area	Massachusetts	Massachusetts
92		Ski Butternut	Massachusetts	Massachusetts
93		Ski Ward	Massachusetts	Massachusetts
94		Wachusett Mountain Ski Area	Massachusetts	Massachusetts
95		Alpine Valley Ski Area	Michigan	Michigan
96		Apple Mountain	Michigan	Michigan
97		Big Powderhorn Mountain	Michigan	Michigan
98		Bittersweet Ski Area	Michigan	Michigan
99		Big Snow Resort - Blackjack	Michigan	Michigan
100		Boyne Highlands	Michigan	Michigan
101		Boyne Mountain Resort	Michigan	Michigan
102		Caberfae Peaks	Michigan	Michigan
103		Cannonsburg	Michigan	Michigan

	Name	Region	state
104	Crystal Mountain	Michigan	Michigan
105	Big Snow Resort - Indianhead Mountain	Michigan	Michigan
106	Marquette Mountain	Michigan	Michigan
107	Mont Ripley	Michigan	Michigan
108	Mount Bohemia	Michigan	Michigan
109	Mt. Brighton	Michigan	Michigan
110	Mt. Holiday Ski Area	Michigan	Michigan
111	Mount Holly	Michigan	Michigan
112	Mulligan's Hollow Ski Bowl	Michigan	Michigan
113	Norway Mountain	Michigan	Michigan
114	Nubs Nob Ski Area	Michigan	Michigan
115	Pine Knob Ski Resort	Michigan	Michigan
116	Pine Mountain	Michigan	Michigan
117	Schuss Mountain at Shanty Creek	Michigan	Michigan
118	Ski Brule	Michigan	Michigan
119	Snow Snake Mountain Ski Area	Michigan	Michigan
120	Swiss Valley	Michigan	Michigan
121	The Homestead	Michigan	Michigan
122	Timber Ridge	Michigan	Michigan
123	Treetops Resort	Michigan	Michigan
124	Afton Alps	Minnesota	Minnesota
125	Andes Tower Hills Ski Area	Minnesota	Minnesota
126	Buck Hill	Minnesota	Minnesota
127	Buena Vista Ski Area	Minnesota	Minnesota
128	Coffee Mill Ski & Snowboard Resort	Minnesota	Minnesota
129	Elm Creek Winter Recreation Area	Minnesota	Minnesota
130	Giants Ridge Resort	Minnesota	Minnesota
131	Hyland Ski & Snowboard Area	Minnesota	Minnesota
132	Lutsen Mountains	Minnesota	Minnesota
133	Mount Kato Ski Area	Minnesota	Minnesota
134	Powder Ridge Ski Area	Minnesota	Minnesota
135	Spirit Mountain	Minnesota	Minnesota
136	Welch Village	Minnesota	Minnesota
137	Wild Mountain Ski & Snowboard Area	Minnesota	Minnesota
138	Hidden Valley Ski Area	Missouri	Missouri

	itailie		riegion	State
139)	Snow Creek	Missouri	Missouri
140)	Big Sky Resort	Montana	Montana
141	ı	Blacktail Mountain Ski Area	Montana	Montana
142	2	Bridger Bowl	Montana	Montana
143	3	Discovery Ski Area	Montana	Montana
144	1	Great Divide	Montana	Montana
145	5	Lost Trail - Powder Mtn	Montana	Montana
146	6	Maverick Mountain	Montana	Montana
147	7	Montana Snowbowl	Montana	Montana
148	3	Red Lodge Mountain	Montana	Montana
149)	Showdown Montana	Montana	Montana
150)	Teton Pass Ski Resort	Montana	Montana
151	ı	Big Mountain Resort	Montana	Montana
152	2	Diamond Peak	Sierra Nevada	Nevada
153	3	Elko SnoBowl	Nevada	Nevada
154	ı	Lee Canyon	Nevada	Nevada
155	5	Mt. Rose - Ski Tahoe	Sierra Nevada	Nevada
156	5	Attitash	New Hampshire	New Hampshire
157	7	Black Mountain	New Hampshire	New Hampshire
158	3	Bretton Woods	New Hampshire	New Hampshire
159)	Cannon Mountain	New Hampshire	New Hampshire
160)	Cranmore Mountain Resort	New Hampshire	New Hampshire
161	ı	Crotched Mountain	New Hampshire	New Hampshire
162	2	Dartmouth Skiway	New Hampshire	New Hampshire
163	3	Gunstock	New Hampshire	New Hampshire
164	1	King Pine	New Hampshire	New Hampshire
165	5	Loon Mountain	New Hampshire	New Hampshire
166	6	Mount Sunapee	New Hampshire	New Hampshire
167	7	Pats Peak	New Hampshire	New Hampshire
168	3	Ragged Mountain Resort	New Hampshire	New Hampshire
169)	Waterville Valley	New Hampshire	New Hampshire
170)	Whaleback Mountain	New Hampshire	New Hampshire
171	Ì	Wildcat Mountain	New Hampshire	New Hampshire
172	2	Campgaw Mountain	New Jersey	New Jersey
173	3	Mountain Creek Resort	New Jersey	New Jersey

Region

state

Name

	Name		Region	state	
174		Angel Fire Resort	New Mexico	New Mexico	
175		Enchanted Forest Ski Area	New Mexico	New Mexico	
176		Pajarito Mountain Ski Area	New Mexico	New Mexico	
177		Red River	New Mexico	New Mexico	
178		Sandia Peak	New Mexico	New Mexico	
179		Sipapu Ski Resort	New Mexico	New Mexico	
180		Ski Apache	New Mexico	New Mexico	
181		Ski Santa Fe	New Mexico	New Mexico	
182		Taos Ski Valley	New Mexico	New Mexico	
183		Belleayre	New York	New York	
184		Brantling Ski Slopes	New York	New York	
185		Bristol Mountain	New York	New York	
186		Buffalo Ski Club Ski Area	New York	New York	
187		Catamount	New York	New York	
188		Dry Hill Ski Area	New York	New York	
189		Gore Mountain	New York	New York	
190		Greek Peak	New York	New York	
191		Holiday Mountain	New York	New York	
192		Holiday Valley	New York	New York	
193		Holimont Ski Area	New York	New York	
194		Hunt Hollow Ski Club	New York	New York	
195		Hunter Mountain	New York	New York	
196		Kissing Bridge	New York	New York	
197		Labrador Mt.	New York	New York	
198		Maple Ski Ridge	New York	New York	
199	1	McCauley Mountain Ski Center	New York	New York	
200		Mount Peter Ski Area	New York	New York	
201		Oak Mountain	New York	New York	
202		Peek'n Peak	New York	New York	
203		Plattekill Mountain	New York	New York	
204		Royal Mountain Ski Area	New York	New York	
205		Snow Ridge	New York	New York	
206		Song Mountain	New York	New York	
207		Swain	New York	New York	
208		Thunder Ridge	New York	New York	

		riegion	otato
209	Titus Mountain	New York	New York
210	Toggenburg Mountain	New York	New York
211	West Mountain	New York	New York
212	Whiteface Mountain Resort	New York	New York
213	Willard Mountain	New York	New York
214	Windham Mountain	New York	New York
215	Woods Valley Ski Area	New York	New York
216	Appalachian Ski Mountain	North Carolina	North Carolina
217	Cataloochee Ski Area	North Carolina	North Carolina
218	Sapphire Valley	North Carolina	North Carolina
219	Beech Mountain Resort	North Carolina	North Carolina
220	Sugar Mountain Resort	North Carolina	North Carolina
221	Wolf Ridge Ski Resort	North Carolina	North Carolina
222	Alpine Valley	Ohio	Ohio
223	Boston Mills	Ohio	Ohio
224	Brandywine	Ohio	Ohio
225	Mad River Mountain	Ohio	Ohio
226	Snow Trails	Ohio	Ohio
227	Anthony Lakes Mountain Resort	Oregon	Oregon
228	Cooper Spur	Mt. Hood	Oregon
229	Hoodoo Ski Area	Oregon	Oregon
230	Mt. Ashland	Oregon	Oregon
231	Mt. Bachelor	Oregon	Oregon
232	Mt. Hood Meadows	Mt. Hood	Oregon
233	Mt. Hood Skibowl	Mt. Hood	Oregon
234	Spout Springs	Oregon	Oregon
235	Timberline Lodge	Mt. Hood	Oregon
236	Willamette Pass	Oregon	Oregon
237	Bear Creek Mountain Resort	Pennsylvania	Pennsylvania
238	Ski Big Bear	Pennsylvania	Pennsylvania
239	Big Boulder	Pennsylvania	Pennsylvania
240	Blue Knob	Pennsylvania	Pennsylvania
241	Blue Mountain Resort	Pennsylvania	Pennsylvania
242	Camelback Mountain Resort	Pennsylvania	Pennsylvania
243	Eagle Rock	Pennsylvania	Pennsylvania

Region

state

Name

Name		Region	state
244	Elk Mountain Ski Resort	Pennsylvania	Pennsylvania
245	Jack Frost	Pennsylvania	Pennsylvania
246	Liberty	Pennsylvania	Pennsylvania
247	Mount Pleasant of Edinboro	Pennsylvania	Pennsylvania
248	Roundtop Mountain Resort	Pennsylvania	Pennsylvania
249	Seven Springs	Pennsylvania	Pennsylvania
250	Shawnee Mountain Ski Area	Pennsylvania	Pennsylvania
251	Ski Sawmill	Pennsylvania	Pennsylvania
252	Montage Mountain	Pennsylvania	Pennsylvania
253	Spring Mountain Ski Area	Pennsylvania	Pennsylvania
254	Tussey Mountain	Pennsylvania	Pennsylvania
255	Whitetail Resort	Pennsylvania	Pennsylvania
256	Yawgoo Valley	Rhode Island	Rhode Island
257	Deer Mountain Ski Resort	South Dakota	South Dakota
258	Terry Peak Ski Area	South Dakota	South Dakota
259	Ober Gatlinburg Ski Resort	Tennessee	Tennessee
260	Alta Ski Area	Salt Lake City	Utah
261	Beaver Mountain	Utah	Utah
262	Brian Head Resort	Utah	Utah
263	Brighton Resort	Salt Lake City	Utah
264	Deer Valley Resort	Salt Lake City	Utah
265	Eagle Point	Utah	Utah
266	Park City	Salt Lake City	Utah
267	Powder Mountain	Utah	Utah
268	Snowbasin	Utah	Utah
269	Snowbird	Salt Lake City	Utah
270	Solitude Mountain Resort	Salt Lake City	Utah
271	Sundance	Utah	Utah
272	Nordic Valley Resort	Utah	Utah
273	Bolton Valley	Vermont	Vermont
274	Bromley Mountain	Vermont	Vermont
275	Burke Mountain	Vermont	Vermont
276	Jay Peak	Vermont	Vermont
277	Killington Resort	Vermont	Vermont
278	Mad River Glen	Vermont	Vermont

	Name	Region	state
279	Magic Mountain	Vermont	Vermont
280	Mount Snow	Vermont	Vermont
281	Okemo Mountain Resort	Vermont	Vermont
282	Pico Mountain	Vermont	Vermont
283	Smugglers' Notch Resort	Vermont	Vermont
284	Stowe Mountain Resort	Vermont	Vermont
285	Stratton Mountain	Vermont	Vermont
286	Sugarbush	Vermont	Vermont
287	Suicide Six	Vermont	Vermont
288	Bryce Resort	Virginia	Virginia
289	Massanutten	Virginia	Virginia
290	The Homestead Ski Area	Virginia	Virginia
291	Wintergreen Resort	Virginia	Virginia
292	49 Degrees North	Washington	Washington
293	Alpental	Washington	Washington
294	Bluewood	Washington	Washington
295	Crystal Mountain	Washington	Washington
296	Mission Ridge	Washington	Washington
297	Mt. Baker	Washington	Washington
298	Mt. Spokane Ski and Snowboard Park	Washington	Washington
299	Stevens Pass Resort	Washington	Washington
300	The Summit at Snoqualmie	Washington	Washington
301	White Pass	Washington	Washington
302	Canaan Valley Resort	West Virginia	West Virginia
303	Snowshoe Mountain Resort	West Virginia	West Virginia
304	Timberline Four Seasons	West Virginia	West Virginia
305	Winterplace Ski Resort	West Virginia	West Virginia
306	Alpine Valley Resort	Wisconsin	Wisconsin
307	Bruce Mound	Wisconsin	Wisconsin
308	Cascade Mountain	Wisconsin	Wisconsin
309	Christie Mountain	Wisconsin	Wisconsin
310	Christmas Mountain	Wisconsin	Wisconsin
311	Devils Head	Wisconsin	Wisconsin
312	Grand Geneva	Wisconsin	Wisconsin
313	Granite Peak Ski Area	Wisconsin	Wisconsin

Nar	ne	Region	state
314	Little Switzerland	Wisconsin	Wisconsin
315	Mount La Crosse	Wisconsin	Wisconsin
316	Nordic Mountain	Wisconsin	Wisconsin
317	Sunburst	Wisconsin	Wisconsin
318	Trollhaugen	Wisconsin	Wisconsin
319	Tyrol Basin	Wisconsin	Wisconsin
320	Whitecap Mountain	Wisconsin	Wisconsin
321	Wilmot Mountain	Wisconsin	Wisconsin
322	Grand Targhee Resort	Wyoming	Wyoming
323	Hogadon Basin	Wyoming	Wyoming
324	Jackson Hole	Wyoming	Wyoming
325	Meadowlark Ski Lodge	Wyoming	Wyoming
326	Sleeping Giant Ski Resort	Wyoming	Wyoming
327	Snow King Resort	Wyoming	Wyoming
328	Snowy Range Ski & Recreation Area	Wyoming	Wyoming
329	White Pine Ski Area	Wyoming	Wyoming

You saw earlier on that these three columns had no missing values. But are there any other issues with these columns? Sensible questions to ask here include:

- Is Name (or at least a combination of Name/Region/State) unique?
- Is Region always the same as state?

Region and state values are not all unique. Region is not always the same as state. While state means state. Region according to this data can be a state, part of the state or a city even.

2.6.3.1 Unique Resort Names

You have a duplicated resort name: Crystal Mountain.

Q1: Is this resort duplicated if you take into account Region and/or state as well?

NB because you know value_counts() sorts descending, you can use the head() method and know the rest of the counts must be 1.

A1: No, Crystal Mountain resort is not duplicated once you search for the (Name + Region) or (Name + state), which means there are two resorts in two different states.

```
In [15]: ski_data[ski_data['Name'] == 'Crystal Mountain']
Out[15]:
```

	Name	Region	state	summit_elev	vertical_drop	base_elev	trams	fastEight	f
104	Crystal Mountain	Michigan	Michigan	1132	375	757	0	0.0	
295	Crystal Mountain	Washington	Washington	7012	3100	4400	1	NaN	

So there are two Crystal Mountain resorts, but they are clearly two different resorts in two different states. This is a powerful signal that you have unique records on each row.

2.6.3.2 Region And State

What's the relationship between region and state?

You know they are the same in many cases (e.g. both the Region and the state are given as 'Michigan'). In how many cases do they differ?

Note: Of our 330 resorts, 33 (or 10%) of the data have 'Region' and 'state' as the same value.

You know what a state is. What is a region? You can tabulate the distinct values along with their respective frequencies using $value_counts()$.

In [17]: ski data['Region'].value counts() Out[17]: New York 29 Michigan Sierra Nevada 22 Colorado 22 Pennsylvania 19 New Hampshire 16 Wisconsin 16 Vermont 15 Minnesota 14 Montana 12 Idaho 12 Massachusetts Washington Maine New Mexico Wyoming Utah Salt Lake City Oregon North Carolina 6 Ohio Connecticut West Virginia Illinois Mt. Hood Virginia Iowa Alaska Arizona Missouri Nevada New Jersey South Dakota Indiana Marvland Northern California Tennessee 1 Rhode Island Name: Region, dtype: int64

A casual inspection by eye reveals some non-state names such as Sierra Nevada, Salt Lake City, and Northern California. Tabulate the differences between Region and state. On a note regarding scaling to larger data sets, you might wonder how you could spot such cases when presented with millions of rows. This is an interesting point. Imagine you have access to a database with a Region and state column in a table and there are millions of rows. You wouldn't eyeball all the rows looking for differences!

Bear in mind that our first interest lies in establishing the answer to the question "Are they always the same?"

- One approach might be to ask the database to return records where they differ, but limit the output to 10 rows. If there were differences, you'd only get up to 10 results, and so you wouldn't know whether you'd located all differences, but you'd know that there were 'a nonzero number' of differences.
- If you got an empty result set back, then you would know that the two columns always had the same value.
 At the risk of digressing, some values in one column only might be NULL (missing) and different databases treat NULL differently, so be aware that on many an occasion a seamingly 'simple' question gets very interesting to answer very quickly!

```
In [18]: len(ski data.columns)
Out[18]: 27
In [19]: #Code task 11#
         #Filter the ski data dataframe for rows where 'Region' and 'state' are d
         ifferent,
         #group that by 'state' and perform `value counts` on the 'Region'
         (ski data[ski data['Region'] != ski data['state']]
                      .groupby('state')
                      ['Region'].value counts())
Out[19]: state
         California
                     Sierra Nevada
                                            20
                     Northern California
         Nevada
                     Sierra Nevada
                     Mt. Hood
         Oregon
         Utah
                     Salt Lake City
         Name: Region, dtype: int64
In [ ]:
In [ ]:
```

The vast majority of the differences are in California, with most Regions being called Sierra Nevada and just one referred to as Northern California.

2.6.3.3 Number of distinct regions and states

```
In [20]: #Code task 12#
    #Select the 'Region' and 'state' columns from ski_data and use the `nuni
    que` method to calculate
    #the number of unique values in each
    ski_data[['Region', 'state']].nunique()
Out[20]: Region 38
    state 35
    dtype: int64
```

Because a few states are split across multiple named regions, there are slightly more unique regions than states.

2.6.3.4 Distribution Of Resorts By Region And State

Note .nunique() is for dataframes!

If this is your first time using <u>matplotlib (https://matplotlib.org/3.2.2/index.html)</u>,'s <u>subplots</u> (<u>https://matplotlib.org/3.2.2/api/ as_gen/matplotlib.pyplot.subplots.html</u>), you may find the online documentation useful.

```
In [21]: #Code task 13#
         #Create two subplots on 1 row and 2 columns with a figsize of (12, 8)
         fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(12,8))
         #Specify a horizontal barplot ('barh') as kind of plot (kind=)
         ski data.Region.value counts().plot(kind='barh', ax=ax[0])
         #Give the plot a helpful title of 'Region'
         #Label the xaxis 'Count'
         ax[0].set title('Region')
         ax[0].set xlabel('Count')
         #Specify a horizontal barplot ('barh') as kind of plot (kind=)
         ski data.state.value counts().plot(kind='barh', ax=ax[1])
         #Give the plot a helpful title of 'state'
         #Label the xaxis 'Count'
         ax[1].set title('state')
         ax[1].set_xlabel('Count')
         #Give the subplots a little "breathing room" with a wspace of 0.5
         plt.subplots adjust(wspace=0.5);
         #You're encouraged to explore a few different figure sizes, orientation
         s, and spacing here
         # as the importance of easy-to-read and informative figures is frequentl
         # and you will find the ability to tweak figures invaluable later on
```


How's your geography? Looking at the distribution of States, you see New York accounting for the majority of resorts. Our target resort is in Montana, which comes in at 13th place.

You should think carefully about how, or whether, you use this information.

- Does New York command a premium because of its proximity to population?
- Even if a resort's State were a useful predictor of ticket price, your main interest lies in Montana. Would you want a model that is skewed for accuracy by New York?
- · Should you just filter for Montana and create a Montana-specific model? This would slash your available data volume.

Your problem task includes the contextual insight that the data are for resorts all belonging to the same market share.

This suggests one might expect prices to be similar amongst them. You can look into this. A boxplot grouped by State is an ideal way to quickly compare prices. Another side note worth bringing up here is that, in reality, the best approach here definitely would include consulting with the client or other domain expert. They might know of good reasons for treating states equivalently or differently. The data scientist is rarely the final arbiter of such a decision. But here, you'll see if we can find any supporting evidence for treating states the same or differently.

2.6.3.5 Distribution Of Ticket Price By State

Our primary focus is our Big Mountain resort, in Montana. Does the state give you any clues to help decide what your primary target response feature should be (weekend or weekday ticket prices)?

2.6.3.5.1 Average weekend and weekday price by state

```
In [22]: ski data.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 330 entries, 0 to 329
         Data columns (total 27 columns):
              Column
                                 Non-Null Count Dtype
          0
              Name
                                 330 non-null
                                                 object
          1
              Region
                                 330 non-null
                                                 object
                                 330 non-null
          2
              state
                                                 object
              summit elev
                                 330 non-null
          3
                                                 int64
                                 330 non-null
          4
              vertical drop
                                                 int64
                                 330 non-null
          5
              base elev
                                                 int64
          6
              trams
                                 330 non-null
                                                 int64
          7
              fastEight
                                 164 non-null
                                                 float64
          8
              fastSixes
                                 330 non-null
                                                 int64
          9
              fastQuads
                                 330 non-null
                                                 int64
          10
                                 330 non-null
                                                 int64
              guad
          11
              triple
                                 330 non-null
                                                 int64
              double
                                 330 non-null
                                                 int64
          12
                                 330 non-null
          13
              surface
                                                 int64
          14
              total chairs
                                 330 non-null
                                                 int64
          15
              Runs
                                 326 non-null
                                                 float64
          16
              TerrainParks
                                 279 non-null
                                                 float64
          17
              LongestRun mi
                                 325 non-null
                                                 float64
              SkiableTerrain ac 327 non-null
                                                 float.64
          18
                                 284 non-null
                                                 float64
          19
              Snow Making ac
          20
              daysOpenLastYear
                                 279 non-null
                                                 float64
          21
              yearsOpen
                                 329 non-null
                                                 float64
          22
              averageSnowfall
                                 316 non-null
                                                 float64
          23
                                 276 non-null
                                                 float64
              AdultWeekday
          24
             AdultWeekend
                                 279 non-null
                                                 float64
             projectedDaysOpen 283 non-null
          25
                                                 float64
```

dtypes: float64(13), int64(11), object(3)

187 non-null

float64

26 NightSkiing ac memory usage: 69.7+ KB

```
In [23]: #Code task 14#
         # Calculate average weekday and weekend price by state and sort by the a
         verage of the two
         # Hint: use the pattern dataframe.groupby(<grouping variable>)[<list of
          columns>].mean()
         state price means = ski data.groupby(by='state')[['AdultWeekday', 'Adult
         Weekend']].mean()
         state_price_means.head()
```

Out[23]:

ctata

AdultWeekday AdultWeekend

State		
Alaska	47.333333	57.333333
Arizona	81.500000	83.500000
California	78.214286	81.416667
Colorado	90.714286	90.714286
Connecticut	47.800000	56.800000

```
In [24]: # The next bit simply reorders the index by increasing average of weekda
         y and weekend prices
         # Compare the index order you get from
         # state price means.index v.
         # state price means.mean(axis=1).sort values(ascending=False).index
         # See how this expression simply sits within the reindex()
         (state price means.reindex(index=state price means.mean(axis=1)
             .sort values(ascending=False)
             .plot(kind='barh', figsize=(10, 10), title='Average ticket price by
          State'))
         plt.xlabel('Price ($)');
```


The figure above represents a dataframe with two columns, one for the average prices of each kind of ticket. This tells you how the average ticket price varies from state to state. But can you get more insight into the difference in the distributions between states?

```
In [25]: ski data.loc[ski data['state']=='Rhode Island',:]
Out[25]:
                       Region state summit elev vertical drop base elev trams fastEight fastSixes
                Yawgoo
                        Rhode Rhode
                                            315
                                                        245
                                                                                NaN
                 Valley
                        Island
                              Island
```

2.6.3.5.2 Distribution of weekday and weekend price by state

Next, you can transform the data into a single column for price with a new categorical column that represents the ticket type.

```
In [26]: #Code task 15#
         #Use the pd.melt function, pass in the ski data columns 'state', 'AdultW
         eekday', and 'Adultweekend' only,
         #specify 'state' for `id vars`
         #gather the ticket prices from the 'Adultweekday' and 'AdultWeekend' col
         umns using the `value vars` argument,
         #call the resultant price column 'Price' via the `value_name` argument,
         #name the weekday/weekend indicator column 'Ticket' via the `var name` a
         ticket prices = pd.melt(ski data[['state', 'AdultWeekday', 'AdultWeeken
         d']],
                                 id vars='state',
                                 value vars=['AdultWeekday', 'AdultWeekend'],
                                 var name='Ticket',
                                 value name='Price')
In [27]: ticket prices.head()
Out[27]:
```

	state	Ticket	Price
0	Alaska	AdultWeekday	65.0
1	Alaska	AdultWeekday	47.0
2	Alaska	AdultWeekday	30.0
3	Arizona	AdultWeekday	89.0
4	Arizona	AdultWeekday	74.0

This is now in a format we can pass to seaborn (https://seaborn.pydata.org/)'s boxplot (https://seaborn.pydata.org/generated/seaborn.boxplot.html) function to create boxplots of the ticket price distributions for each ticket type for each state.

```
In [28]: #Code task 16#
          #Create a seaborn boxplot of the ticket price dataframe we created abov
          #with 'state' on the x-axis, 'Price' as the y-value, and a hue that indi
          cates 'Ticket'
          \#This\ will\ use\ boxplot's\ x,\ y,\ hue,\ and\ data\ arguments.
         plt.subplots(figsize=(12, 8))
         sns.boxplot(x='state', y='Price', hue='Ticket', data=ticket prices)
         plt.xticks(rotation='vertical')
         plt.ylabel('Price ($)')
         plt.xlabel('State');
```


Notes: Things to look for:

- outliers
- range
- top 3-5 states
- · your state of interest (Montana)
- max/min
- · weird patterns
- variability

Of all the states, Oregon, South Dakota, and Wyoming are the most comparable states to Montana based on price ranges and mean. This makes sense because these areas are in the same geography in the US.

Aside from some relatively expensive ticket prices in California, Colorado, and Utah, most prices appear to lie in a broad band from around 25 to over 100 dollars. Some States show more **variability** than others. Montana and South Dakota, for example, both show fairly small variability as well as matching weekend and weekday ticket prices. Nevada and Utah, on the other hand, show the most range in prices. Some States, notably North Carolina and Virginia, have weekend prices far higher than weekday prices.

You could be inspired from this exploration to **consider a few potential groupings of resorts**, those with low spread, those with lower averages, and those that charge a premium for weekend tickets.

However, you're told that you are taking all resorts to be part of the same market share, you could argue against further segment the resorts. Nevertheless, ways to consider using the State information in your modelling include:

- 1. disregard State completely
- 2. retain all State information
- $3\!.$ retain State in the form of Montana vs not Montana, as our target resort is in Montana

You've also noted another effect above: some States show a marked difference between weekday and weekend ticket prices. It may make sense to allow a model to take into account not just State but also weekend vs weekday.

Thus we currently have two main questions you want to resolve:

- What do you do about the two types of ticket price?
- · What do you do about the state information?

2.6.4 Numeric Features

Having decided to reserve judgement on how exactly you utilize the State, turn your attention to cleaning the numeric features.

2.6.4.1 Numeric data summary

```
In [29]: #Code task 17#
    #Call ski_data's `describe` method for a statistical summary of the nume
    rical columns
    #Hint: there are fewer summary stat columns than features, so displaying
    the transpose
    #will be useful again
    ski_data.select_dtypes(include=['float64', 'int64']).describe().T
```

Out[29]:

	count	mean	std	min	25%	50%	75%	max
summit_elev	330.0	4591.818182	3735.535934	315.0	1403.75	3127.5	7806.00	13487.0
vertical_drop	330.0	1215.427273	947.864557	60.0	461.25	964.5	1800.00	4425.0
base_elev	330.0	3374.000000	3117.121621	70.0	869.00	1561.5	6325.25	10800.0
trams	330.0	0.172727	0.559946	0.0	0.00	0.0	0.00	4.0
fastEight	164.0	0.006098	0.078087	0.0	0.00	0.0	0.00	1.0
fastSixes	330.0	0.184848	0.651685	0.0	0.00	0.0	0.00	6.0
fastQuads	330.0	1.018182	2.198294	0.0	0.00	0.0	1.00	15.0
quad	330.0	0.933333	1.312245	0.0	0.00	0.0	1.00	8.0
triple	330.0	1.500000	1.619130	0.0	0.00	1.0	2.00	8.0
double	330.0	1.833333	1.815028	0.0	1.00	1.0	3.00	14.0
surface	330.0	2.621212	2.059636	0.0	1.00	2.0	3.00	15.0
total_chairs	330.0	8.266667	5.798683	0.0	5.00	7.0	10.00	41.0
Runs	326.0	48.214724	46.364077	3.0	19.00	33.0	60.00	341.0
TerrainParks	279.0	2.820789	2.008113	1.0	1.00	2.0	4.00	14.0
LongestRun_mi	325.0	1.433231	1.156171	0.0	0.50	1.0	2.00	6.0
SkiableTerrain_ac	327.0	739.801223	1816.167441	8.0	85.00	200.0	690.00	26819.0
Snow Making_ac	284.0	174.873239	261.336125	2.0	50.00	100.0	200.50	3379.0
daysOpenLastYear	279.0	115.103943	35.063251	3.0	97.00	114.0	135.00	305.0
yearsOpen	329.0	63.656535	109.429928	6.0	50.00	58.0	69.00	2019.0
averageSnowfall	316.0	185.316456	136.356842	18.0	69.00	150.0	300.00	669.0
AdultWeekday	276.0	57.916957	26.140126	15.0	40.00	50.0	71.00	179.0
AdultWeekend	279.0	64.166810	24.554584	17.0	47.00	60.0	77.50	179.0
projectedDaysOpen	283.0	120.053004	31.045963	30.0	100.00	120.0	139.50	305.0
NightSkiing_ac	187.0	100.395722	105.169620	2.0	40.00	72.0	114.00	650.0

Recall you're missing the ticket prices for some 16% of resorts.

This is a fundamental problem that means you simply lack the required data for those resorts and will have to drop those records. But you may have a weekend price and not a weekday price, or vice versa. You want to keep any price you have.

- Just over 82% of resorts have no missing ticket price, 3% are missing one value, and 14% are missing both
- You will definitely want to drop the records for which you have no price information, however you will
 not do so just yet.
- There may still be useful information about the distributions of other features in that 14% of the data.

2.6.4.2 Distributions Of Feature Values

Note that, although we are still in the 'data wrangling and cleaning' phase rather than exploratory data analysis, looking at distributions of features is immensely useful in getting a feel for whether the values look sensible and whether there are any obvious outliers to investigate. Some exploratory data analysis belongs here, and data wrangling will inevitably occur later on. It's more a matter of emphasis.

Here, we're interesting in focusing on whether distributions look plausible or wrong. Later on, we're more interested in relationships and patterns.

In [31]: #Code task 18#

```
#Call ski_data's `hist` method to plot histograms of each of the numeric
features
#Try passing it an argument figsize=(15,10)
#Try calling plt.subplots_adjust() with an argument hspace=0.5 to adjust
the spacing
#It's important you create legible and easy-to-read plots
ski_data.hist(figsize=(15,10))
plt.subplots_adjust(hspace=0.5);
#Hint: notice how the terminating ';' "swallows" some messy output and 1
eads to a tidier notebook
```


What features do we have possible cause for concern about and why?

clustering

- SkiableTerrain_ac because values are clustered down the low end,
- Snow Making_ac for the same reason,

fastEight

• because all but one value is 0 so it has very little variance, and half the values are missing,

variability

- fastSixes raises an amber flag; it has more variability, but still mostly 0,
- trams also may get an amber flag for the same reason,

yearsOpen

 because most values are low but it has a maximum of 2019, which strongly suggests someone recorded calendar year rather than number of years.

2.6.4.2.1 SkiableTerrain ac

Out[32]:

	Name	Region	state	summit_elev	vertical_drop	base_elev	trams	fastEight	fastSix
39	Silverton	Colorado	Colorado	13487	3087	10400	0	0.0	

Q: 2 One resort has an incredibly large skiable terrain area! Which is it?

In [33]: #Code task 20#
 #Now you know there's only one, print the whole row to investigate all v
 alues, including seeing the resort name
 #Hint: don't forget the transpose will be helpful here
 ski data[ski data.SkiableTerrain ac > 10000].T

Out[33]:

39

	39
Name	Silverton Mountain
Region	Colorado
state	Colorado
summit_elev	13487
vertical_drop	3087
base_elev	10400
trams	0
fastEight	0
fastSixes	0
fastQuads	0
quad	0
triple	0
double	1
surface	0
total_chairs	1
Runs	NaN
TerrainParks	NaN
LongestRun_mi	1.5
SkiableTerrain_ac	26819
Snow Making_ac	NaN
daysOpenLastYear	175
yearsOpen	17
averageSnowfall	400
AdultWeekday	79
AdultWeekend	79
projectedDaysOpen	181
NightSkiing_ac	NaN

A: 2 Silverton Mountain

But what can you do when you have one record that seems highly suspicious?

You can see if your data are correct. Search for "silverton mountain skiable area". If you do this, you get some useful information (https://www.google.com/search?q=silverton+mountain+skiable+area).

Silverton Mountain information

Investigating Silverton Mountain: You can spot check data. You see your top and base elevation values agree, but the skiable area is very different. Your suspect value is 26819, but the value you've just looked up is 1819. The last three digits agree. This sort of error could have occured in transmission or some editing or transcription stage. You could plausibly replace the suspect value with the one you've just obtained. Another cautionary note to make here is that although you're doing this in order to progress with your analysis, this is most definitely an issue that should have been raised and fed back to the client or data originator as a query. You should view this "data correction" step as a means to continue (documenting it carefully as you do in this notebook) rather than an ultimate decision as to what is correct.

```
In [34]: #Code task 21#
    #Use the .loc accessor to print the 'SkiableTerrain_ac' value only for t
    his resort
    ski_data.loc[39, 'SkiableTerrain_ac']

Out[34]: 26819.0

In [35]: #Code task 22#
    #Use the .loc accessor again to modify this value with the correct value
    of 1819
    ski_data.loc[39, 'SkiableTerrain_ac'] = 1819

In [36]: #Code task 23#
    #Use the .loc accessor a final time to verify that the value has been mo
    dified
    ski_data.loc[39, 'SkiableTerrain_ac']
Out[36]: 1819.0
```

NB whilst you may become suspicious about your data quality, and you know you have missing values, you will not here dive down the rabbit hole of checking all values or web scraping to replace missing values.

What does the distribution of skiable area look like now?

You now see a rather long tailed distribution. You may wonder about the now most extreme value that is above 8000, but similarly you may also wonder about the value around 7000. If you wanted to spend more time manually checking values you could, but leave this for now. **The above distribution is plausible even with the outliers.**

2.6.4.2.2 Snow Making ac

In [39]: ski_data[ski_data['Snow Making_ac'] > 3000].T
Out[39]:

	··-
Name	Heavenly Mountain Resort
Region	Sierra Nevada
state	California
summit_elev	10067
vertical_drop	3500
base_elev	7170
trams	2
fastEight	0
fastSixes	2
fastQuads	7
quad	1
triple	5
double	3
surface	8
total_chairs	28
Runs	97
TerrainParks	3
LongestRun_mi	5.5
SkiableTerrain_ac	4800
Snow Making_ac	3379
daysOpenLastYear	155
yearsOpen	64
averageSnowfall	360
AdultWeekday	NaN
AdultWeekend	NaN
projectedDaysOpen	157
NightSkiing_ac	NaN

11

You can adopt a similar approach as for the suspect skiable area value and do some spot checking. To save time, here is a link to the website for Heavenly Mountain Resort (https://www.skiheavenly.com/the-mountain/about-the-mountain/mountain-info.aspx). From this you can glean that you have values for skiable terrain that agree. Furthermore, you can read that snowmaking covers 60% of the trails.

What, then, is your rough guess for the area covered by snowmaking?

This is less than the value of 3379 in your data so you may have a judgement call to make. However, notice something else. You have no ticket pricing information at all for this resort. Any further effort spent worrying about values for this resort will be wasted. **You'll simply be dropping the entire row!**

2.6.4.2.3 fastEight

Look at the different fastEight values more closely:

```
In [41]: ski_data.fastEight.value_counts()
Out[41]: 0.0    163
    1.0    1
    Name: fastEight, dtype: int64
```

Drop the fastEight column in its entirety; half the values are missing and all but the others are the value zero. There is essentially no information in this column.

```
In [42]: #Code task 24#
#Drop the 'fastEight' column from ski_data. Use inplace=True
ski_data.drop(columns='fastEight', inplace=True)
```

What about yearsOpen? How many resorts have purportedly been open for more than 100 years?

```
In [43]: #Code task 25#
#Filter the 'yearsOpen' column for values greater than 100
ski_data.loc[ski_data['yearsOpen'] > 100]
```

Out[43]:

	Name	Region	state	summit_elev	vertical_drop	base_elev	trams	fastSixes	fast0
3	Howelsen Hill	Colorado	Colorado	7136	440	6696	0	0	
11	Pine 5 Knob Ski Resort	Michigan	Michigan	1308	300	1009	0	0	

Okay, one seems to have been open for 104 years. But beyond that, one is down as having been open for 2019 years. This is wrong! What shall you do about this?

What does the distribution of yearsOpen look like if you exclude just the obviously wrong one?

In [44]: #Code task 26# #Call the hist method on 'yearsOpen' after filtering for values under 10 00 #Pass the argument bins=30 to hist(), but feel free to explore other val ues # ski_data.hist(figsize=(15,10)) ski_data.loc[ski_data.yearsOpen < 1000].hist(figsize=(15,10),bins=30) plt.subplots_adjust(hspace=0.5) plt.xlabel('Years open') plt.ylabel('Count') plt.title('Distribution of years open excluding 2019');</pre>

The above distribution of years seems entirely plausible, including the 104 year value. You can certainly state that no resort will have been open for 2019 years! It likely means the resort opened in 2019. It could also mean the resort is due to open in 2019. You don't know when these data were gathered!

Let's review the summary statistics for the years under 1000.

```
In [45]: ski data.yearsOpen[ski data.yearsOpen < 1000].describe()</pre>
Out[45]: count
                  328.000000
                    57.695122
         mean
                    16.841182
         std
                    6.000000
         min
         25%
                    50.000000
                    58.000000
         50%
                    68.250000
         75%
         max
                   104.000000
         Name: yearsOpen, dtype: float64
```

The smallest number of years open otherwise is 6. You can't be sure whether this resort in question has been open zero years or one year and even whether the numbers are projections or actual. In any case, you would be adding a new youngest resort so it feels best to simply drop this row.

```
In [46]: # overrides the dataset
ski_data = ski_data[ski_data.yearsOpen < 1000]</pre>
```

2.6.4.2.4 fastSixes and Trams

The other features you had mild concern over, you will not investigate further. Perhaps take some care when using these features.

2.7 Derive State-wide Summary Statistics For Our Market Segment

You have, by this point removed one row, but it was for a resort that may not have opened yet, or perhaps in its first season. Using your business knowledge, you know that **state-wide supply and demand of certain skiing resources may well factor into pricing strategies.**

- Does a resort dominate the available night skiing in a state?
- Or does it account for a large proportion of the total skiable terrain or days open?

If you want to add any features to your data that captures the state-wide market size, you should do this now, before dropping any more rows.

In the next section, you'll drop rows with missing price information. Although you don't know what those resorts charge for their tickets, you do know the resorts exists and have been open for at least six years. Thus, you'll now calculate some state-wide summary statistics for later use.

Many features in your data pertain to chairlifts, that is for getting people around each resort. These aren't relevant, nor are the features relating to altitudes.

Features that you may be interested in are:

- TerrainParks
- SkiableTerrain ac
- daysOpenLastYear
- · NightSkiing ac

When you think about it, these are features it makes sense to sum: the total number of terrain parks, the total skiable area, the total number of days open, and the total area available for night skiing. You might consider the total number of ski runs, but understand that the skiable area is more informative than just a number of runs.

A fairly new groupby behaviour is <u>named aggregation (https://pandas-docs.github.io/pandas-docs-travis/whatsnew/v0.25.0.html</u>). This allows us to clearly perform the aggregations you want whilst also creating informative output column names.

```
In [47]: #Code task 27#
         #Add named aggregations for the sum of 'daysOpenLastYear', 'TerrainPark
         s', and 'NightSkiing ac'
         #call them 'state total days open', 'state total terrain parks', and 'st
         ate total nightskiing ac',
         #respectively
         #Finally, add a call to the reset index() method (we recommend you exper
         iment with and without this to see
         #what it does)
         state summary = ski data.groupby('state').agg(
             resorts per state=pd.NamedAgg(column='Name', aggfunc='size'), #could
         pick any column here
             state total skiable area ac=pd.NamedAgg(column='SkiableTerrain ac',
         aggfunc='sum'),
             state total days open=pd.NamedAgg(column='daysOpenLastYear', aggfunc
         ='sum'),
             state total terrain parks=pd.NamedAgg(column='TerrainParks', aggfunc
         ='sum'),
             state total nightskiing ac=pd.NamedAgg(column='NightSkiing ac', aggf
         unc='sum')
         ).reset index()
         state summary.head()
```

Out[47]:

	state	resorts_per_state	state_total_skiable_area_ac	state_total_days_open	state_total_te
0	Alaska	3	2280.0	345.0	
1	Arizona	2	1577.0	237.0	
2	California	21	25948.0	2738.0	
3	Colorado	22	43682.0	3258.0	
4	Connecticut	5	358.0	353.0	

2.8 Drop Rows With No Price Data

You know there are two columns that refer to price: 'AdultWeekend' and 'AdultWeekday'. You can calculate the number of price values missing per row. This will obviously have to be either 0, 1, or 2, where 0 denotes no price values are missing and 2 denotes that both are missing.

About 14% of the rows have no price data. As the price is your target, these rows are of no use. Time to lose them.

```
In [49]: #Code task 28#
#Use `missing_price` to remove rows from ski_data where both price value
s are missing
ski_data = ski_data[missing_price != 2]
In [50]: # check that rows are dropped
len(ski_data)
Out[50]: 281
```

2.9 Review distributions

These distributions are much better. There are clearly **some skewed distributions**, so keep an eye on fastQuads, fastSixes, and perhaps trams. These lack much variance away from 0 and may have a small number of relatively extreme values.

Models failing to rate a feature as important when domain knowledge tells you it should be is an issue to look out for, as is a model being overly influenced by some extreme values.

If you build a **good machine learning pipeline**, hopefully it will be **robust to such issues**, but you may also wish to **consider poplinear transformations of features**.

2.10 Population data

Population and area data for the US states can be obtained from wikipedia. (wikipedia.org/wiki/List of U.S. states). Listen, you should have a healthy concern about using data you "found on the Internet". Make sure it comes from a reputable source. This table of data is useful because it allows you to easily pull and incorporate an external data set. It also allows you to proceed with an analysis that includes state sizes and populations for your 'first cut' model. Be explicit about your source (we documented it here in this workflow) and ensure it is open to inspection. All steps are subject to review, and it may be that a client has a specific source of data they trust that you should use to rerun the analysis.

```
In [52]: #Code task 29#
    #Use pandas' `read_html` method to read the table from the URL below
    states_url = 'https://simple.wikipedia.org/wiki/List_of_U.S._states'
    usa_states = pd.read_html(states_url)

In [53]: type(usa_states)

Out[53]: list

In [54]: len(usa_states)
Out[54]: 1
```

```
In [55]: usa states = usa states[0]
            usa states.head()
Out[55]:
                                                         Established[upper- Population[upper- Total area[4]
               Name &postal
               abbs. [1]
                                                                            alpha 2][3]
                                                          alpha 1]
                         Name
               Name
                         &postal
                                                          Established[upper-
                                                                            Population[upper-
                                 Capital
                                              Largest[5]
                                                                                              mi2
               &postal
                                                                                                      km
                                                                            alpha 2][3]
                         abbs.
                                                          alpha 1]
               abbs. [1]
                         [1].1
                                                               Dec 14, 1819
                                                                                     4903185
                                                                                               52420
                                                                                                      1;
               Alabama
                             AL Montgomery Birmingham
                                                                 Jan 3, 1959
                                                                                      731545 665384 17:
                 Alaska
                             ΑK
                                      Juneau
                                               Anchorage
                                     Phoenix
                                                               Feb 14, 1912
                                                                                     7278717 113990 29
                 Arizona
                             ΑZ
                                                 Phoenix
                                   Little Rock
                                               Little Rock
                                                                Jun 15, 1836
                                                                                     3017804
                                                                                               53179
            3 Arkansas
                                                    Los
            4 California
                                                                Sep 9, 1850
                                                                                    39512223 163695 4:
                             CA Sacramento
                                                 Angeles
```

Note, in even the last year, the capability of pd.read_html() has improved. The merged cells you see in the web table are now handled much more conveniently, with 'Phoenix' now being duplicated so the subsequent columns remain aligned. But check this anyway. If you extract the established date column, you should just get dates. Recall previously you used the .loc accessor, because you were using labels. Now you want to refer to a column by its index position and so use .iloc .For a discussion on the difference use cases of .loc and .iloc refer to the pandas documentation (https://pandas.pydata.org/pandas-docs/stable/user_quide/indexing.html).

Extract the state name, population, and total area (square miles) columns.

Out[58]:

	state	state_population	state_area_sq_miles
0	Alabama	Dec 14, 1819	4903185
1	Alaska	Jan 3, 1959	731545
2	Arizona	Feb 14, 1912	7278717
3	Arkansas	Jun 15, 1836	3017804
4	California	Sep 9, 1850	39512223

Do you have all the ski data states accounted for?

```
In [59]: state_summary.head()
```

Out[59]:

	state	resorts_per_state	state_total_skiable_area_ac	state_total_days_open	state_total_ter
0	Alaska	3	2280.0	345.0	
1	Arizona	2	1577.0	237.0	
2	California	21	25948.0	2738.0	
3	Colorado	22	43682.0	3258.0	
4	Connecticut	5	358.0	353.0	

```
In [60]: #Code task 32#
#Find the states in `state_summary` that are not in `usa_states_sub`
#Hint: set(list1) - set(list2) is an easy way to get items in list1 that
are not in list2
missing_states = set(state_summary.state) - set(usa_states_sub.state)
missing_states
```

Out[60]: {'Massachusetts', 'Pennsylvania', 'Rhode Island', 'Virginia'}

No??

If you look at the table on the web, you can perhaps start to guess what the problem is. You can confirm your suspicion by pulling out state names that *contain* 'Massachusetts', 'Pennsylvania', or 'Virginia' from usa states sub:

Delete square brackets and their contents and try again:

```
In [62]: #Code task 33#
         #Use pandas' Series' `replace()` method to replace anything within squar
         e brackets (including the brackets)
         #with the empty string. Do this inplace, so you need to specify the argu
         #to replace='\[.*\]' #literal square bracket followed by anything or not
         hing followed by literal closing bracket
         #value='' #empty string as replacement
         #regex=True #we used a regex in our `to replace` argument
         #inplace=True #Do this "in place"
         usa states sub.state.replace(to replace='\[.*\]', value="", regex=True,
         usa states sub.state[usa states sub.state.str.contains('Massachusetts | Pe
         nnsylvania|Rhode Island|Virginia')]
Out[62]: 20
              Massachusetts
         37
              Pennsylvania
         38
               Rhode Island
                   Virginia
         45
         47 West Virginia
        Name: state, dtype: object
In [63]: #Code task 34#
         #And now verify none of our states are missing by checking that there ar
         #state summary that are not in usa states sub (as earlier using `set()`)
         missing states = set(state summary.state) - set(usa states sub.state)
         missing states
Out[63]: set()
```

Better! You have an empty set for missing states now. You can confidently add the population and state area columns to the ski resort data.

In [64]: state_summary.head()

Out[64]:

	state	resorts_per_state	state_total_skiable_area_ac	state_total_days_open	state_total_ter
0	Alaska	3	2280.0	345.0	
1	Arizona	2	1577.0	237.0	
2	California	21	25948.0	2738.0	
3	Colorado	22	43682.0	3258.0	
4	Connecticut	5	358.0	353.0	

In [65]: usa states sub.head()

Out[65]:

	state	state_population	state_area_sq_miles
0	Alabama	Dec 14, 1819	4903185
1	Alaska	Jan 3, 1959	731545
2	Arizona	Feb 14, 1912	7278717
3	Arkansas	Jun 15, 1836	3017804
4	California	Sep 9, 1850	39512223

In [66]: #Code task 35#
#Use 'state_summary's `merge()` method to combine our new data in 'usa_s
 tates_sub'
 #specify the arguments how='left' and on='state'
 state_summary = state_summary.merge(usa_states_sub, how='left', on='state')
 state summary.head().T

Out[66]:

	0	1	2	3	4
state	Alaska	Arizona	California	Colorado	Connecticut
resorts_per_state	3	2	21	22	5
state_total_skiable_area_ac	2280	1577	25948	43682	358
state_total_days_open	345	237	2738	3258	353
state_total_terrain_parks	4	6	81	74	10
state_total_nightskiing_ac	580	80	587	428	256
state_population	Jan 3, 1959	Feb 14, 1912	Sep 9, 1850	Aug 1, 1876	Jan 9, 1788
state area so miles	731545	7278717	39512223	5758736	3565278

Having created this data frame of summary statistics for various states, it would seem obvious to join this with the ski resort data to augment it with this additional data. You will do this, but not now. In the next notebook you will be exploring the data, including the relationships between the states. For that you want a separate row for each state, as you have here, and joining the data this soon means you'd need to separate and eliminate redundances in the state data when you wanted it.

2.11 Target Feature

Finally, what will your target be when modelling ticket price? What relationship is there between weekday and weekend prices?

```
In [67]: #Code task 36#
  #Use ski_data's `plot()` method to create a scatterplot (kind='scatter')
  with 'AdultWeekday' on the x-axis and
  #'AdultWeekend' on the y-axis

ski_data.plot(x='AdultWeekday', y='AdultWeekend', kind='scatter', figsiz
  e=(15,10));
```


A couple of observations can be made. Firstly, there is a clear line where weekend and weekday prices are equal. Weekend prices being higher than weekday prices seem restricted to sub \$100 resorts. Recall from the boxplot earlier that the distribution for weekday and weekend prices in Montana seemed equal. Is this confirmed in the actual data for each resort? Big Mountain resort is in Montana, so the relationship between these quantities in this state are particularly relevant.

```
In [68]: #Code task 37#
#Use the loc accessor on ski_data to print the 'AdultWeekend' and 'Adult
Weekday' columns for Montana only
ski_data.loc[ski_data.state == 'Montana', ['AdultWeekend', 'AdultWeekda
y']]
```

Out[68]:

	AdultWeekend	AdultWeekday
141	42.0	42.0
142	63.0	63.0
143	49.0	49.0
144	48.0	48.0
145	46.0	46.0
146	39.0	39.0
147	50.0	50.0
148	67.0	67.0
149	47.0	47.0
150	39.0	39.0
151	81.0	81.0

Is there any reason to prefer weekend or weekday prices? Which is of the two tickets prices offered are missing the least?

```
In [69]: ski_data[['AdultWeekend', 'AdultWeekday']].isnull().sum()
Out[69]: AdultWeekend 4
   AdultWeekday 7
   dtype: int64
```

Weekend prices have the least missing values of the two, so drop the weekday prices and then keep just the rows that have weekend price.

```
In [71]: ski_data.shape
Out[71]: (277, 25)
```

Perform a final quick check on the data.

2.11.1 Number Of Missing Values By Row - Resort

Having dropped rows missing the desired target ticket price, what degree of missingness do you have for the remaining rows?

```
In [72]: missing = pd.concat([ski data.isnull().sum(axis=1), 100 * ski data.isnul
          1().mean(axis=1)], axis=1)
          missing.columns=['count', '%']
         missing.sort values(by='count', ascending=False).head(10)
Out[72]:
              count %
                 5 20.0
          329
                 5 20.0
                 5 20.0
          141
                 5 20.0
                 5 20.0
           74
                 5 20.0
          146
          184
                 4 16.0
                 4 16.0
          108
          198
                 4 16.0
```

These seem possibly curiously quantized...

39

4 16.0

```
In [73]: missing['%'].unique()
Out[73]: array([ 0., 4., 8., 12., 16., 20.])
```

Yes, the percentage of missing values per row appear in multiples of 4.

This is almost as if values have been removed artificially... Nevertheless, what you don't know is how useful the missing features are in predicting ticket price.

You shouldn't just drop rows that are missing several useless features.

```
In [75]: ski data.info()
         <class 'pandas.core.frame.DataFrame'>
        Int64Index: 277 entries, 0 to 329
        Data columns (total 25 columns):
         # Column
                               Non-Null Count Dtype
                               -----
                               277 non-null
                                              object
             Region
                               277 non-null
                                              object
             state
                               277 non-null
                                              object
             summit elev
                               277 non-null
                                              int64
             vertical drop
                               277 non-null
                                              int64
             base elev
                               277 non-null
                                              int64
         5
             trams
                               277 non-null
                                              int64
             fastSixes
                               277 non-null
                                              int64
         8
             fastOuads
                               277 non-null
                                              int64
         9
             guad
                               277 non-null
                                              int64
                               277 non-null
         10 triple
                                              int64
         11 double
                               277 non-null
                                              int64
         12 surface
                               277 non-null
                                              int64
         13 total chairs
                               277 non-null
                                              int64
         14 Runs
                               274 non-null
                                              float64
                               233 non-null
         15 TerrainParks
                                              float64
                               272 non-null
         16 LongestRun mi
                                              float64
         17 SkiableTerrain_ac 275 non-null
                                              float64
            Snow Making ac
                               240 non-null
                                              float64
             daysOpenLastYear 233 non-null
                                              float64
            yearsOpen
                               277 non-null
                                              float64
         21 averageSnowfall
                               268 non-null
                                              float64
         22 AdultWeekend
                               277 non-null
                                              float64
         23 projectedDaysOpen 236 non-null
                                              float64
         24 NightSkiing ac
                               163 non-null
                                              float64
        dtypes: float64(11), int64(11), object(3)
        memory usage: 56.3+ KB
```

There are still some missing values, and it's good to be aware of this, but leave them as is for now.

2.12 Save data

```
In [76]: ski_data.shape
Out[76]: (277, 25)
```

Save this to your data directory, separately. Note that you were provided with the data in raw_data and you should saving derived data in a separate location. This guards against overwriting our original data.

```
In [77]: datapath = '../data'
         # renaming the output data directory and re-running this notebook, for e
         # will recreate this (empty) directory and resave the data files.
         # NB this is not a substitute for a modern data pipeline, for which ther
         # various tools. However, for our purposes here, and often in a "one of
         # this is useful because we have to deliberately move/delete our data in
         order
         # to overwrite it.
         if not os.path.exists(datapath):
             os.mkdir(datapath)
In [78]: datapath skidata = os.path.join(datapath, 'ski data cleaned.csv')
         if not os.path.exists(datapath_skidata):
             ski data.to csv(datapath skidata, index=False)
In [79]: datapath states = os.path.join(datapath, 'state summary.csv')
         if not os.path.exists(datapath states):
             state summary.to csv(datapath states, index=False)
```

2.13 Summary

Q: 3 Write a summary statement that highlights the key processes and findings from this notebook.

This should include information such as:

- · the original number of rows in the data,
- whether our own resort was actually present etc.
- What columns, if any, have been removed? Any rows? Summarise the reasons why.
- Were any other issues found? What remedial actions did you take?
- · State where you are in the project.
- Can you confirm what the target feature is for your desire to predict ticket price?
- How many rows were left in the data?

Hint: this is a great opportunity to reread your notebook, check all cells have been executed in order and from a "blank slate" (restarting the kernel will do this), and that your workflow makes sense and follows a logical pattern. As you do this you can pull out salient information for inclusion in this summary. Thus, this section will provide an important overview of "what" and "why" without having to dive into the "how" or any unproductive or inconclusive steps along the way.

A: 3 Your answer here