Homework 7

Wang Xinshi 661975305 wangx47@rpi.edu

- 1. Suppose $s_1 = 2$ and $s_{n+1} = \frac{1}{5} (2s_n + 7)$ for $n \ge 1$.
 - (a) Prove that (s_n) is monotone
 - (b) Prove that (s_n) is bounded.
 - (c) Find $\lim s_n$.
 - (a). **Proof:** In order to prove (s_n) is monotone, we prove (s_n) is increasing. Suppose $n \in \mathbb{N}$. Let P(n) be the statement $s_n \leq s_{n+1}$ for all $n \in \mathbb{N}$. We prove this by mathematical induction.

We first show $P(1): s_1 \le s_2$ is true by substuting n = 1 into the LHS and showing $2 \le \frac{1}{5}(2 \times 2 + 7) = \frac{11}{5}$. Thus $P(1): s_1 \le s_2$ holds.

Next we let $k \in \mathbb{N}$ and assume $p(k): s_k \leq s_{k+1}$ is true and try to prove $p(k+1): s_{k+1} \leq s_{k+2}$ is true.

$$s_{k+1} \ge s_k$$

$$2s_{k+1} \ge 2s_k$$

$$2s_{k+1} + 7 \ge 2s_k + 7$$

$$\frac{1}{5}(2s_{k+1} + 7) \ge \frac{1}{5}(2s_k + 7)$$

$$s_{k+2} \ge s_{k+1}$$

Thus we have shown $P(n): s_n \leq s_{n+1}$ for all $n \in \mathbb{N}$ is true.

(b). **Proof:** In order to prove (s_n) is bounded, we need to show there exists constants b and a such that $a \le s_n \le b$ for all $n \in \mathbb{N}$. Let s_n be defined by $s_1 = 1$ and $s_{n+1} = \frac{1}{5}(2s_n + 7)$, we need to show there exists a and b such that (i). $s_n \ge a$ and (ii). $s_n \le b$.

Let a=0, we have $s_1 \geq a$ because $2 \geq 0$. Since we know s_n is an increasing sequence in part(a), $s_n \geq s_1 \geq a$ for all $n \in \mathbb{N}$. Thus $s_n \geq a$ for all $n \in \mathbb{N}$.

Let b=3. Suppose $n\in\mathbb{N}$. Let P(n) be the statement $s_n\leq b$ for all $n\in\mathbb{N}$. We prove this by mathematical induction. We first show $P(1):s_1\leq b$ is true by substituting n=1 into the LHS and showing $2\leq 3$. Thus $P(1):s_1\leq b$ holds. Next we let $k\in\mathbb{N}$ and assume $p(k):s_k\leq b$ is true and try

to prove $p(k+1): s_{k+1} \leq b$ is true.

$$s_{k} \le 3$$

$$2s_{k} \le 6$$

$$2s_{k} + 7 \le 13$$

$$\frac{1}{5}(2s_{k} + 7) \le \frac{13}{5}$$

$$s_{k+1} \le \frac{13}{5} \le 3 \le b$$

Thus we have shown there exists a=0 and b=3 such that $a \leq s_n \leq b$ for all $n \in \mathbb{N}$.

(c). **Proof:** Since we have shown s_n is bounded and monotone, we know by the monotone convergence theorem that there exists $s \in \mathbb{R}$ such that $\lim s_n = s$. Let s_n be defined by $s_1 = 1$ and $s_{n+1} = \frac{1}{5}(2s_n + 7)$, then we have

$$\lim_{n \to \infty} s_{n+1} = \lim_{n \to \infty} \frac{1}{5} (2s_n + 7)$$

$$\lim_{n \to \infty} s_{n+1} = \frac{2}{5} \lim_{n \to \infty} s_n + \frac{7}{5}$$

$$s = \frac{2}{5} s + \frac{7}{5}$$

$$\frac{3}{5} s = \frac{7}{5}$$

$$s = \frac{7}{3}$$

Thus $\lim s_n = \frac{7}{3}$.

2. Let S be a bounded infinite set and let $x = \sup(S)$. Prove that if $x \notin S$, then x is an accumulation point of S.

Proof: Our goal here is to prove if $x \notin S$, then x is an accumulation point of S. Let $\gamma > 0$ be given. A deleted neighborhood of x is $N^*(x,\gamma) = (x-\gamma,x) \cup (x,x+\gamma)$ by definition. Since $x = \sup(S)$ and $x \notin S$, we have x > s for all $s \in S$. Because $x - \gamma < x$, there exists $s' \in S$ such that $s' > x - \gamma$. Thus we have $x - \gamma < s < x$ which means $s' \in (x - \gamma, x)$. Therefore $s' \in (x - \gamma, x) \cup (x, x + \gamma)$ and $s' \in S$. Since S is an infinite set, $S \neq \emptyset$. Thus $(x - \gamma, x) \cup (x, x + \gamma) \cap S \neq \emptyset$ which means $N^*(x, \gamma) \cap S \neq \emptyset$. Hence we have shown x is an accumulation point of S if $x \notin S$.

Let (t_n) be a sequence of real numbers.

Define $A = \{t_n : n \in \mathbb{N}\}$ and note that A is the range of (t_n) .