In Class Work - April 07

- (1) Let $\mathbf{u}_1 = \begin{bmatrix} 2 \\ -3 \end{bmatrix}$, $\mathbf{u}_2 = \begin{bmatrix} 6 \\ 4 \end{bmatrix}$, and $\mathbf{x} = \begin{bmatrix} 9 \\ -7 \end{bmatrix}$. Show that $\{\mathbf{u}_1, \ \mathbf{u}_2\}$ is an orthogonal basis for \mathbb{R}^2 , then express \mathbf{x} as a linear combination of \mathbf{u}_1 and \mathbf{u}_2 .
- (2) Let $\mathbf{u}_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$, $\mathbf{u}_2 = \begin{bmatrix} -1 \\ 4 \\ 1 \end{bmatrix}$, $\mathbf{u}_3 = \begin{bmatrix} 2 \\ 1 \\ -2 \end{bmatrix}$, and $\mathbf{x} = \begin{bmatrix} 8 \\ -4 \\ -3 \end{bmatrix}$. Show that $\{\mathbf{u}_1, \ \mathbf{u}_2, \ \mathbf{u}_3\}$ is an

orthogonal basis for \mathbb{R}^3 , then express \mathbf{x} as a linear combination of \mathbf{u}_1 , \mathbf{u}_2 and \mathbf{u}_3 .

- (3) Compute the orthogonal projection of $\begin{bmatrix} 1 \\ 7 \end{bmatrix}$ onto the line through $\begin{bmatrix} -4 \\ 2 \end{bmatrix}$ and the origin.
- (4) Let $\mathbf{y} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$ and $\mathbf{u} = \begin{bmatrix} 4 \\ -7 \end{bmatrix}$. Write \mathbf{y} as the sum of two orthogonal vectors, one in Span $\{\mathbf{u}\}$ and one orthogonal to \mathbf{u} .
- (5) Let $\mathbf{y} = \begin{bmatrix} -1 \\ 4 \\ 3 \end{bmatrix}$, $\mathbf{u}_1 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$, $\mathbf{u}_2 = \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}$. Verify that $\{\mathbf{u}_1, \mathbf{u}_2\}$ is an orthogonal set, and
- (6) Let $\mathbf{y} = \begin{bmatrix} 4 \\ 3 \\ 3 \\ -1 \end{bmatrix}$, $\mathbf{u}_1 = \begin{bmatrix} 1 \\ 1 \\ 0 \\ 1 \end{bmatrix}$, $\mathbf{u}_2 = \begin{bmatrix} -1 \\ 3 \\ 1 \\ -2 \end{bmatrix}$, $\mathbf{u}_3 = \begin{bmatrix} -1 \\ 0 \\ 1 \\ 1 \end{bmatrix}$. Let W be the subspace spanned

by the \mathbf{u} 's, and write \mathbf{y} as the sum of a vector in W and a vector orthogonal to W.

(7) Let $\mathbf{y} = \begin{bmatrix} 3 \\ 1 \\ 5 \\ 1 \end{bmatrix}$, $\mathbf{v}_1 = \begin{bmatrix} 3 \\ 1 \\ -1 \\ 1 \end{bmatrix}$, $\mathbf{v}_2 = \begin{bmatrix} 1 \\ -1 \\ 1 \\ -1 \end{bmatrix}$. Find the closest point to \mathbf{y} in the subspace W

spanned by \mathbf{v}_1 and \mathbf{v}_2

(8) Let $\mathbf{u}_1 = \begin{bmatrix} 1 \\ 1 \\ -2 \end{bmatrix}$, $\mathbf{u}_2 = \begin{bmatrix} 5 \\ -1 \\ 2 \end{bmatrix}$, and $\mathbf{u}_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$. Note that \mathbf{u}_1 and \mathbf{u}_2 are orthogonal but \mathbf{u}_3

is not orthogonal to \mathbf{u}_1 or \mathbf{u}_2 . It can be shown that \mathbf{u}_3 is not in the subspace W spanned by \mathbf{u}_1 and \mathbf{u}_2 . Use this fact to construct a nonzero vector \mathbf{v} in \mathbb{R}^3 that is orthogonal to \mathbf{u}_1 and \mathbf{u}_2 .

1

(9) Let

$$A = \begin{bmatrix} 2 & 3 \\ 2 & 4 \\ 1 & 1 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} 7 \\ 3 \\ 1 \end{bmatrix}$$

- (a) Solve $A\mathbf{x} = \mathbf{b}$. Is the system consistent, i.e. is $\mathbf{b} \in \text{Col}A$?
- (b) Use Gram-Schmidt to produce an orthonormal basis of ColA.
- (c) Find $\hat{\mathbf{b}} = \operatorname{proj}_{\operatorname{Col} A} \mathbf{b}$.
- (d) Solve $A\hat{\mathbf{x}} = \hat{\mathbf{b}}$.
- (d) Use the normal equations to find the least-squares solution for $A\mathbf{x} = \mathbf{b}$. Compare your solution to your solution in part (d).
- (10) Plot the data points $\{(0,1), (1,1), (2,2), (3,2)\}$. Find the equation $y = \beta_0 + \beta_1 x$ of the least squares line that best fits the given data points.
- (11) A certain experiment produces the data $\{(1,1.8), (2,2.7), (3,3,4), (4,3.8), (5,3.9)\}$. Describe the model that produces a least-squares fit of these points by a function of the form

$$y = \beta_1 x + \beta_2 x^2.$$

Such a function might arise, for example, as the revenue from the sale of x units of a product, when the amount offered for sale affects the price to be set for the product.

- a. Give the design matrix, the observation vector, and the unknown parameter vector.
- b. Find the associated least-squares curve for the data.
- (12) Suppose radioactive substances A and B have decay constants of 0.02 and 0.07, respectively. If a mixture of these two substances at time t=0 contains $M_{\rm A}$ grams of A and $M_{\rm B}$ grams of B, then a model for the total amount y of the mixture present at time t is

$$y = M_{\rm A} e^{-0.02t} + M_{\rm B} e^{-0.07t}$$
.

Suppose the initial amounts M_A , M_B are unknown, but a scientist is able to measure the total amount present at several times and records the following points (t_i, y_i) :. (10, 21.34), (11, 20.68), (12, 20.05), (14, 18.87), and (15, 18.30).

- a. Describe a linear model that can be used to estimate $M_{\rm A}$ and $M_{\rm B}$.
- b. Find the least-squares curve based on the model.