Data Mining ECS766P Data Mining Assignment 1

- 1. Consider the following sales data: [3, 16, 20, 4, 2, 5, 10, 9, 13, 7, 14, 8]. Apply the following binning techniques on the data, assuming 3 bins in each case:
 - 1. Equal-frequency binning
 - 2. Smoothing by bin boundaries
- 2. Use the below methods to normalize the following data: [10, 5, 25, 50, 35]:
 - 1. min-max normalization with min=0 and max=1.
 - 2. z-score normalization
- 3. Students at two universities, University A and University B, have been provided with feedback forms on student satisfaction, with the below responses recorded. Is student satisfaction correlated with a specific university? Use a chi-square test to find out, assuming a significance level of 0.001 and a corresponding chi-square significance value of 10.828. [1 mark out of 5]

Rating/University University A University B
Satisfied 71 129
Dissatisfied 37 73

- 4. Load the CSV file country-income.csv which includes both numerical and categorical attributes. Perform data cleaning in order to replace any NaN values with the mean of the value for a given field. Then replace any categorical labels with numerical labels. Display the resulting dataset. You can use the sklearn.impute and sklearn.preprocessing packages to assist you.
- 5. Load the CSV file shoesize.csv, which includes measurements of shoe size and height (in inches) for 408 subjects, both female and male. Plot the scatterplots of shoe size versus height for female and male subjects separately. Compute the Pearson's correlation coefficient of shoe size versus height for female and male subjects separately. What can be inferred by the scatterplots and computed correlation coefficients? You can implement your own formulation of the correlation coefficient or use the scipy.stats package to assist you.

6. Using the pre-processed breast cancer dataset from subsection 1.1 of this notebook (which replaced any missing values with their median), perform Principal Component Analysis with 2 components. Compute the explained variance ratio for each component, and plot the scatterplot of all samples along the two principal components, color-coded according to the "Class" column (this column should not be used in the PCA analysis). Ensure that your data is normalized prior to performing PCA. What insights can you obtain by the explained variance ratio of each component, and by viewing the scatterplot of the principal components?

Part 1 of 2

Question 1:

Data: 3, 16, 20, 4, 2, 5, 10, 9, 13, 7, 14, 8

Sorted Data: 2, 3, 4, 5, 7, 8, 9, 10, 13, 14, 16, 20

A:

List count/bin count = count in each bin

12/3 = 4

Use the sorted list and bin each number consecutively, until it fills up to the bin count. Then move to the next bin.

Bin 1: 2, 3, 4, 5

Bin 2: 7, 8, 9, 10

Bin 3: 13, 14, 16, 20

B:

Use the result from equal-frequency binning, change the value of each value to the minimum or maximum of their respective bin, whichever is closer.

Bin 1: 2, 2, 5, 5

Bin 2: 7, 7, 10, 10

Bin 3: 13, 13, 13, 20

Question 2:

Data: 10, 5, 25, 50, 35

Sorted Data: 5, 10, 25, 35, 50

Min: 5 Max: 50

Range = 50-5 = 45

A:

For each value, subtract the minimum and divide by the range.

Original	5	10	25	35	50
Calculation	5-5/45	10-5/45	25-5/45	35-5/45	50-5/45
Normalised	0	0.11	0.44	0.67	1

B:

For each value, subtract the mean and divide by the standard deviation.

Mean: 5 + 10 + 25 + 35 + 50 / 5 = 25

Standard deviation:

The square root of ((the sum of the values subtract the mean)/number of values)

Values	5	10	25	35	50
Sub Mean	-20	-15	0	10	25
Squared	400	225	0	100	625

Sum squared = 1350

Number of values = 5

3350/5 = 270

Square root of 270 = 16.43

Original	5	10	25	35	50
Calculation	5-25/16.43	10-25/16.43	25-25/16.43	35-25/16.43	50-25/16.43
Z	-1.22	-0.91	0	0.61	1.52
Normalised					

Question 3:

RAW VALUES	Α		В	TOTAL
SATISFIED		71	129	200
DISSATISFIED		37	73	110
TOTAL		108	202	310

EXPECTED	Α	В
SATISFIED	69.67742	130.3226
DISSATISFIED	38.32258	71.67742

CHI SQUARED	Α	В
SATISFIED	0.025105	0.013422
DISSATISFIED	0.045645	0.024404

Chi square = 0.025 + 0.013 + 0.04 + 0.02 = 0.108575 (not rounded in calculation)

The expected value is the total of one group multiplied by the total of an outcome divided by the total of both groups. For example: satisfied and A is expected to be $200 \times 108 / 310 = 69.8$

The chi squared test: for each value you subtract the expected value, then square this. Then divide that by the expected value. For example for satisfied and A, the calculation is $((71 - 69.7)^2)/69.7 = 0.025$

Sum up the results of all values, and then evaluate if this is statistically significant (higher is a more significant difference from the expected).

0.108 is less than 10.828, therefore

we can accept the null hypothesis, which means that the two universities and satisfactions are independent and not correlated.

Question 4:

Replacing NaN values with mean:

import pandas as pd income = pd.read_csv('country-income.csv') income2 = income.fillna(income.mean()) income2

Output:

	Region	Age	Income	Online Shopper
0	India	49.000000	86400.000000	No
1	Brazil	32.000000	57600.000000	Yes
2	USA	35.000000	64800.000000	No
3	Brazil	43.000000	73200.000000	No
4	USA	45.000000	76533.333333	Yes
5	India	40.000000	69600.000000	Yes
6	Brazil	43.777778	62400.000000	No
7	India	53.000000	94800.000000	Yes
8	USA	55.000000	99600.000000	No
9	India	42.000000	80400.000000	Yes

Replacing categorical variables with numerical:

from sklearn.preprocessing import LabelEncoder
labenc = LabelEncoder()
income2['Online Shopper'] = labenc.fit_transform(income2['Online Shopper'])
income2['Region'] = labenc.fit_transform(income2['Region'])

income2

Output:

	Region	Age	Income	Online Shopper
0	1	49.000000	86400.000000	0
1	0	32.000000	57600.000000	1
2	2	35.000000	64800.000000	0
3	0	43.000000	73200.000000	0
4	2	45.000000	76533.333333	1
5	1	40.000000	69600.000000	1
6	0	43.777778	62400.000000	0
7	1	53.000000	94800.000000	1
8	2	55.000000	99600.000000	0
9	1	42.000000	80400.000000	1

Question 5

Plotting genders separately:

```
shoe = pd.read_csv('shoesize.csv')
shoeM = shoe.loc[shoe.Gender == 'M']
shoeF = shoe.loc[shoe.Gender == 'F']

fig, (a1,a2) = plt.subplots(2, 1, figsize=(10,15), sharex=True)
shoeM.plot(ax=a1, kind='scatter', x='Height', y='Size')
shoeF.plot(ax=a2, kind='scatter', x='Height', y='Size', color='red')
a1.set_title("Male")
a2.set_title("Female")
```

Output:

Calculating Pearson's correlation coefficient

from scipy import stats

m_coef = stats.pearsonr(shoeM.loc[:, 'Height'], shoeM.loc[:, 'Size'])

f_coef = stats.pearsonr(shoeF.loc[:, 'Height'], shoeF.loc[:, 'Size'])

print('Coefficient for male is: ' +

str(m_coef[0]))

print('Coefficient for female is: ' +

str(f_coef[0]))

Output:

Coefficient for male is: 0.7677093547300977

Coefficient for female is: 0.707811941714397

Pearson's correlation coefficient gives out a value from -1 to +1. As the value computed here is close to 1, it shows a strong correlation between height and shoe size. The male coefficient is higher which suggests that the correlation is truer for males rather than females.

Question 6:

PCA:

```
cancer = data2
from sklearn.decomposition import PCA
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
scaled_data = scaler.fit_transform(cancer)
pca = PCA(n\_components = 2)
dim_reduced = pca.fit_transform(scaled_data)
dim_reduced
Output:
array([[-1.45622036, -0.11021043],
    [ 1.46627924, -0.54489351],
    [-1.5793114, -0.07485359],
    [ 3.8253587 , -0.18046559],
    [2.26948193, -1.11343514],
    [ 2.66445312, -1.19724198]])
Explained Variance Ratio
pca.explained_variance_ratio_ = 0.65445704, 0.0860859
Plotting:
reduced = pd.DataFrame(dim_reduced, columns=['dim1','dim2'])
reduced2 = reduced.join(breast.Class)
colors = {2:'r', 4:'g'}
markerTypes = {2:'+', 4:'x'}
for classedtype in markerTypes:
  r = reduced2[reduced2['Class'] == classedtype]
  plt.scatter(r['dim1'],r['dim2'], c=colors[classedtype], marker=markerTypes[classedtype])
```


As PCA has reduced the attribute dimensions, we can see all of the attributes plotted in 2D. Samples classed as '2' (red) or '4' (green) are loosely grouped together, which is what we expect given that a human has decided the class of each sample non-computationally. The red values are more similar as they are grouped closer together, however, the green values are more sparsely spread which suggests that samples in this class do not have as similar attributes. It also shows that there are many values which overlap each class, this could suggest that the sample has been classed wrongly, or there is a 'grey area'.

However, the explained variance ratio shows us that the first principal component explains 65% of the data, and the second only 8%. So, with these two components, 74% of the data is explained.

Part 2 of 2

- 1. In Section 1, what kind of relationship can be inferred from summary statistics regarding ``ACT composite score`` and ``SAT total score``? Which visualisations make this relationship apparent?
- 2. Based on the box plots presented in Section 1, what is the relationship between ``parental level of education`` and ``parental income``? Using table visualisation, find and show the entire rows that correspond to the outliers regarding ``parental income`` whose parents have a master's degree.
- 3. Using an example, explain the importance of scaling features so that their magnitudes are comparable when computing distances.
- 4. In Section 1, the distance matrix visualisation is not very informative. However, it is still possible to infer that the average distance between students whose parents only have some high school education and students whose parents have a master's degree is larger

than the average distance between students whose parents only have some high school education. Explain how this inference is possible from the visualisation.

- 5. In Section 2, increase the number of evenly spaced numbers from 10 to 100 for both axes and observe the corresponding heat map created through nearest neighbour interpolation. Read about this interpolation method and explain what you observed.
- 6. The function ``load_wine`` from ``sklearn.datasets`` can be used to load the *wine dataset* into a ``DataFrame`` by using the commands ``data = load_wine()``, ``df = pd.DataFrame(data.data, columns=data.feature_names)``, and ``df['target'] = pd.Series(data.target)``.
- 6.1. Load the wine dataset. Compute the frequency of each value of the 'target' feature.
- 6.2. Compute univariate and multivariate summaries for all numerical features (except from the target feature). Group observations by the target feature and compute the corresponding **median** for each numerical feature.
- 6.3. Group observations by the target feature and create one box plot of ``alcohol`` for each group.
- 6.4. Create a scatter plot for the pair of **distinct** numerical features with the highest correlation.
- 6.5. Exclude the target feature, standardize the remaining numerical features, and display a projection obtained by multidimensional scaling. Color the points by the target feature.

Question 1:

Both SAT and ACT score are strongly correlated, from the value of 0.89 which is close to the value of 1 which would imply a perfect correlation. You can see this correlation in the pairplot. The ACT and SAT scores have different ranges, with the SAT score ranging from 1498 - 2397 and the ACT score ranging from 19 - 36, thus, we cannot make comparisons on the summary statistics in this current form.

Question 2:

The categories with higher education, have spreads higher than categories lower than it, generally, the higher the parental education level, the higher the full range of parental income.

Outliers:

```
Code:
```

```
masters = df[df['parental level of education'] == "master's degree"]
Q3 = masters.loc[:, "parental income"].quantile(0.75)
Q1 = masters.loc[:, "parental income"].quantile(0.25)
IQR = Q3 - Q1
upper = Q3 + 1.5 * IQR
lower = Q1 - 1.5 * IQR
def outlier(row):
  if row.loc["parental income"] > upper:
     return "Outlier"
  elif row.loc["parental income"] < lower:
     return "Outlier"
  else:
     return "No"
outlier_pre = masters.assign(Outlier = masters.apply(outlier, axis=1))
outliers = outlier_pre.loc[(outlier_pre.Outlier == 'Outlier')]
outliers
Output:
```

		ACT composite score	SAT total score	parental level of education	parental income	high school gpa	college gpa	years to graduate
4	111	31	2108	master's degree	120391	4.0	3.6	4
4	20	28	2097	master's degree	59724	3.9	3.2	4

Question 3:

Attributes are scaled to make sure they are equally weighted amongst each other. This prevents features that have large ranges (such as the parental income 1882 - 120391), 'looking' as if it has a bigger difference than smaller-ranged features (like ACT score 19-36). One method is to make all the values scaled from 0-1 (0 being the lowest value and 1 being the highest).

For income, the value 54000 would be converted like so:

54000-1882/120391-1882 = 0.44

For ACT score, the value 28 would be converted like so:

28-19/36-19 = 0.52

Hence, you can now compare these two values: the ACT score is higher up in its range than the income.

Ouestion 4:

The heatmap is arranged in 6x6 blocks dependent on the number of education groups, with a mirror image on either side of the downward diagonal. From left to right and top to

down it begins with high school descending to masters. It is hard to see where the boundary between the groups is, but if you look at the bottom left corner, this area shows the distances of high school compared to masters, which is very dark compared to the rest of the heatmap. This darkness shows that the distances are larger between high school and masters.

Ouestion 5:

Looks smoother because nearest neighbour relies on the closest single point. When we increase the amount of data points (like increasing the linspace), there are more points to be nearest neighbours, so the resulting image looks like it has a smooth gradient.

Question 6:

1:

```
from sklearn.datasets import load_wine
data = load_wine()
df = pd.DataFrame(data.data, columns=data.feature_names)
df['target'] = pd.Series(data.target)
freq_target = df['target'].value_counts()/len(df)
freq_target
```

Output:

- 1 0.398876
- 0 0.331461
- 2 0.269663

2:

Univariate:

	ALC OHO L	MALIC _ACID	ASH	ALCALINIT Y_OF_ASH	MAGN ESIUM	TOTAL_P HENOLS	FLAVA NOIDS	NONFLAVANO ID_PHENOLS	PROANTH OCYANINS	COLOR_I NTENSITY	HUE	OD280/OD315_OF _DILUTED_WINES	PRO LINE
CO UN T	178	178	178	178	178	178	178	178	178	178	178	178	178
ME AN	13.0 0062	2.3363 48	2.36 6517	19.49494	99.741 57	2.295112	2.0292 7	0.361854	1.590899	5.05809	0.95 7449	2.611685	746. 8933
STD	0.81 1827	1.1171 46	0.27 4344	3.339564	14.282 48	0.625851	0.9988 59	0.124453	0.572359	2.318286	0.22 8572	0.70999	314. 9075
MI N	11.0 3	0.74	1.36	10.6	70	0.98	0.34	0.13	0.41	1.28	0.48	1.27	278
25 %	12.3 625	1.6025	2.21	17.2	88	1.7425	1.205	0.27	1.25	3.22	0.78 25	1.9375	500. 5
50 %	13.0 5	1.865	2.36	19.5	98	2.355	2.135	0.34	1.555	4.69	0.96 5	2.78	673. 5
75 %	13.6 775	3.0825	2.55 75	21.5	107	2.8	2.875	0.4375	1.95	6.2	1.12	3.17	985
MA	14.8	5.8	3.23	30	162	3.88	5.08	0.66	3.58	13	1.71	4	1680

no_target = df.drop(columns="target")
no_target.describe()

Medians

median = df.groupby('target').median()

median

TA RG	ALC OH	MALI C_ACI	A S	ALCALINI TY_OF_A	MAG NESIU	TOTAL_ PHENO	FLAV ANOI	NONFLAVAN OID_PHENO	PROANT HOCYANI	COLOR_I NTENSIT	H U	OD280/OD315_ OF_DILUTED_WI	PR OLI
ET	OL	D	Н	SH	М	LS	DS	LS	NS	Y	E	NES	NE
0	13.7 5	1.77	2. 4 4	16.8	104	2.8	2.98	0.29	1.87	5.4	1. 07	3.17	109 5
1	12.2 9	1.61	2. 2 4	20	88	2.2	2.03	0.37	1.61	2.9	1. 04	2.83	495
2	13.1 65	3.265	2. 3 8	21	97	1.635	0.685	0.47	1.105	7.55	0. 66 5	1.66	627 .5

Multivariate

no_target.corr()

	AL CO HO L	MAL IC_ ACI D	AS H	ALCALI NITY_O F_ASH	MA GNE SIU M	TOTA L_PH ENOL S	FLA VAN OIDS	NONFLAV ANOID_P HENOLS	PROAN THOCY ANINS	COLOR _INTE NSITY	HU E	OD280/OD31 5_OF_DILUT ED_WINES	PR OLI NE
ALCOHOL	1	0.09 439 7	0.2 115 45	0.31023 5	0.27 079 8	0.289 101	0.23 6815	-0.155929	0.1366 98	0.5463 64	0.0 717 47	0.072343	0.6 437 2
MALIC_ACID	0.0 943 97	1	0.1 640 45	0.2885	0.05 457 5	0.335 167	0.41 1007	0.292977	0.2207 46	0.2489 85	0.5 612 96	-0.36871	0.1 920 11
ASH	0.2 115 45	0.16 404 5	1	0.44336 7	0.28 658 7	0.128 98	0.11 5077	0.18623	0.0096 52	0.2588 87	0.0 746 67	0.003911	0.2 236 26

ALCALINITY_ OF_ASH	0.3 102 35	0.28 85	0.4 433 67	1	0.08 333 3	0.321 113	0.35 137	0.361922	0.1973 27	0.0187 32	0.2 739 55	-0.276769	0.4 405 97
MAGNESIUM	0.2 707 98	0.05 457 5	0.2 865 87	0.08333	1	0.214 401	0.19 5784	-0.256294	0.2364 41	0.1999 5	0.0 553 98	0.066004	0.3 933 51
TOTAL_PHE NOLS	0.2 891 01	0.33 516 7	0.1 289 8	0.32111	0.21 440 1	1	0.86 4564	-0.449935	0.6124 13	0.0551 36	0.4 336 81	0.699949	0.4 981 15
FLAVANOIDS	0.2 368 15	0.41 100 7	0.1 150 77	0.35137	0.19 578 4	0.864 564	1	-0.5379	0.6526 92	0.1723 79	0.5 434 79	0.787194	0.4 941 93
NONFLAVAN OID_PHENOL S	0.1 559 29	0.29 297 7	0.1 862 3	0.36192 2	0.25 629 4	0.449 935	0.53 79	1	0.3658 45	0.1390 57	0.2 626 4	-0.50327	0.3 113 85
PROANTHOC YANINS	0.1 366 98	0.22 074 6	0.0 096 52	0.19732	0.23 644 1	0.612 413	0.65 2692	-0.365845	1	0.0252	0.2 955 44	0.519067	0.3 304 17
COLOR_INTE NSITY	0.5 463 64	0.24 898 5	0.2 588 87	0.01873 2	0.19 995	0.055 136	0.17 2379	0.139057	0.0252 5	1	0.5 218 13	-0.428815	0.3 161
HUE	- 0.0 717 47	0.56 129 6	0.0 746 67	0.27395 5	0.05 539 8	0.433 681	0.54 3479	-0.26264	0.2955 44	0.5218 13	1	0.565468	0.2 361 83
OD280/OD31 5_OF_DILUT ED_WINES	0.0 723 43	0.36 871	0.0 039 11	0.27676 9	0.06 600 4	0.699 949	0.78 7194	-0.50327	0.5190 67	0.4288 15	0.5 654 68	1	0.3 127 61
PROLINE	0.6 437 2	0.19 201 1	0.2 236 26	0.44059 7	0.39 335 1	0.498 115	0.49 4193	-0.311385	0.3304 17	0.3161	0.2 361 83	0.312761	1

3: ax = sns.boxplot(x='target', y='alcohol', data=df) plt.title('Boxplot: Target and Alcohol')

import textwrap
ax.set_xticklabels([textwrap.fill(t.get_text(), 10) for t in ax.get_xticklabels()])
plt.show()

4:
Total phenols and flavonoids
sns.scatterplot(x='flavanoids', y='total_phenols', data=df)
plt.show()

5: from sklearn.preprocessing import StandardScaler from sklearn.manifold import MDS sns.color_palette("rocket", as_cmap=True) df_sorted = df.sort_values(by='target', ascending=True) target_sorted = df_sorted['target']

```
X = df_sorted.drop(columns='target').to_numpy()
scaler = StandardScaler()
X = scaler.fit_transform(X)
embedding = MDS(n_components=2)
Xp = embedding.fit_transform(X)
df_projection = pd.DataFrame({'x': Xp[:, 0], 'y': Xp[:, 1],
                    'target': target_sorted})
sns.scatterplot(x='x', y='y', hue='target', data=df_projection, palette="viridis")
plt.legend(title='Target', bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.)
plt.show()
      6
                                                                                 Target
                                                                                      0
                                                                                      1
      4
                                                                                      2
      2
      0
    -2
    -4
                                -2
           -6
                     -4
                                           0
                                                     2
                                                                4
                                         Х
```