

Document Title	Specification of Floating Point Interpolation Routines
Document Owner	AUTOSAR
Document Responsibility	AUTOSAR
Document Identification No	398

Document Status	published
Part of AUTOSAR Standard	Classic Platform
Part of Standard Release	R22-11

	Document Change History							
Date	Release	Changed by	Description					
2022-11-24	R22-11	AUTOSAR Release Management	 Requirements added SWS_Ifl_91000 to SWS_Ifl_91003 Requirements added SWS_Ifl_00226, SWS_Ifl_00228, SWS_Ifl_00229, SWS_Ifl_00231, SWS_Ifl_00232, SWS_Ifl_00234, SWS_Ifl_00235 Modified SWS_Ifl_00170, SWS_Ifl_00011 and SWS_Ifl_00221 					
2021-11-25	R21-11	AUTOSAR Release Management	Editorial changes					
2020-11-30	R20-11	AUTOSAR Release Management	Chapter 7.1 Error sections updated					
2019-11-28	R19-11	AUTOSAR Release Management	Editorial changesChanged Document Status from Final to published					
2018-10-31	4.4.0	AUTOSAR Release Management	Editorial changes					
2017-12-08	4.3.1	AUTOSAR Release Management	Editorial changes					

2016-11-30	4.3.0	AUTOSAR Release Management	 Section 2 has been revisited to update Default Error Tracer instead of Development Error tracer Updated IFL document to support MISRA 2012 standard. (Removed redundant statements in SWS_Ifl_00209 which already exist in SWS_BSW document and SWS_SRS document) Updated the correct reference to SRS_BSW_General (SRS_BSW_00437) & (SRS_BSW_00448) for SWS_Ifl_00210 & SWS_Ifl_00224 requirements.
2015-07-31	4.2.2	AUTOSAR Release Management	 Updated Record layouts definitions for SWS_lfx_00170 Updated SWS_lfl_00001 for naming convention under Section 5.1, File Structure Updated valid range for float32 in Table 1 of Section 8.1
2014-10-31	4.2.1	AUTOSAR Release Management	 Added IFL RecordLayout Blueprint reference in section 3.1 The usage of const is updated in function parameters for SWS_Ifl_00010, SWS_Ifl_00021 & SWS_Ifl_00025 IFL Blueprint modified for the schema version Serial numbers in Section 3.2
2013-10-31	4.1.2	AUTOSAR Release Management	Corrected array-out-of-bounds for IfI_ IpoMap function Editorial changes

		I	1
2013-03-15	4.1.1	AUTOSAR Administration	 Corrected the formula for integrated map interpolation and map interpolation Corrected array out-of-bounds for curve interpolation Modified the reference to non-existant metamodel elementCalprmElementPrototype to Param-eterDataPrototype Corrected for 'DependencyOnArtifact'
2011-12-22	4.0.3	AUTOSAR Administration	 Error classification support and defi-nition removed as DET call not sup-ported by library Configuration parameter description / support removed for XXX_GetVersionInfo routine. XXX_GetVersionInfo routine name corrected.
2010-09-30	3.1.5	AUTOSAR Administration	 DPSearch function optimised using structure pointer Removal of normalised functions
2010-02-02	3.1.4	AUTOSAR Administration	Initial Release

Disclaimer

This work (specification and/or software implementation) and the material contained in it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intellectual property rights. The commercial exploitation of the material contained in this work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by any means, for informational purposes only. For any other purpose, no part of the work may be utilized or reproduced, in any form or by any means, without permission in writing from the publisher.

The work has been developed for automotive applications only. It has neither been developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

Contents

1	Introduction and functional overview	7
2	Acronyms and Abbreviations	8
3	Related documentation	9
	3.1 Input documents & related standards and norms	9
4	Constraints and assumptions	10
		10 10
5	Dependencies to other modules	11
	5.1 File structure	11
6	Requirements Tracing	12
7	Functional specification	14
	7.1.1 Development Errors 7.1.2 Runtime Errors 7.1.3 Transient Faults 7.1.4 Production Errors 7.1.5 Extended Production Errors 7.2 Error detection 7.3 Error notification 7.4 Initialization and shutdown 7.5 Using Library API	14 14 14 14 15 15 16
8		17
	8.2 Type definitions 8.3 Comment about rounding 8.4 Comment about routines optimized for target 8.5 Interpolation routines definitions 8.5.1 Distributed data point search and interpolation 8.5.1.1 Data Point Search 8.5.1.2 Curve interpolation 8.5.1.3 Map interpolation 8.5.1.4 Single point interpolation 8.5.2 Integrated data point search and interpolation	17 18 18 19 20 22 23 24 24
		25 26
		28

ΛΙ	ITO	\cap \wedge			$D \cap O$	4.4
AΙ] [()	5A	K	$(\cdot \cdot \cdot $	R22-	.

		8.5.2	.4	Mixed	l type ii	nterp	olatio	n of	inte	ege	r c	urv	'e				29
		8.5.2	.5		type ii					_							30
		8.5.2	.6		type ii												31
		8.5.3	Record														33
		8.5.3			d layo												33
		8.5.3	.2		d layou												34
	8.6	Example	s of use														34
	8.7	Version A															35
		8.7.1	Ifl_Get\														35
	8.8	Callback															35
	8.9	Schedule															35
	8.10	Expected															35
		8.10.1	Mandat														36
		8.10.2	Optiona														36
		8.10.3	Configu														36
9	Sogi	ience diagr	ame														37
9	Sequ	ierice diagi	anis														37
10	Conf	iguration s	pecificat	ion													38
	10.1 10.2	Published Configura															38 38
Α	Not a	applicable r	equirem	ents													39

1 Introduction and functional overview

AUTOSAR Library routines are the part of system services in AUTOSAR architecture and below figure shows position of AUTOSAR library in layered architecture.

Figure 1.1: Layered Architecture

This specification specifies the functionality, API and the configuration of the AUTOSAR library dedicated to interpolation and lookup routines for floating point values.

The interpolation library contains the following routines:

- Distributed data point search and interpolation
- Integrated data point search and interpolation

All routines are re-entrant. They may be used by multiple runnables at the same time.

2 Acronyms and Abbreviations

Acronyms and abbreviations, which have a local scope and therefore are not contained in the AUTOSAR glossary, must appear in a local glossary.

Abbreviation / Acronym	Description
DET	Default Error Tracer
ROM	Read only memory
hex	Hexadecimal
Rev	Revision
f32	Mnemonic for the float32, specified in AUTOSAR_SWS_PlatformTypes
IFL	Interpolation Floating point Library
Mn	Mnemonic
Lib	Library
s16	Mnemonic for the sint16, specified in AUTOSAR_SWS_PlatformTypes
s32	Mnemonic for the sint32, specified in AUTOSAR_SWS_PlatformTypes
s8	Mnemonic for the sint8, specified in AUTOSAR_SWS_PlatformTypes
u16	Mnemonic for the uint16, specified in AUTOSAR_SWS_PlatformTypes
u32	Mnemonic for the uint32, specified in AUTOSAR_SWS_PlatformTypes
u8	Mnemonic for the uint8, specified in AUTOSAR_SWS_PlatformTypes

3 Related documentation

3.1 Input documents & related standards and norms

- [1] IFL_RecordLayout_Blueprint AUTOSAR_MOD_IFL_RecordLayout_Blueprint.arxml
- [2] ISO/IEC 9899:1990 Programming Language C http://www.iso.org
- [3] General Specification of Basic Software Modules AUTOSAR SWS BSWGeneral

3.2 Related specification

AUTOSAR provides a General Specification on Basic Software modules [3, SWS BSW General], which is also valid for IFL Library.

Thus, the specification SWS BSW General shall be considered as additional and required specification for IFL Library.

4 Constraints and assumptions

4.1 Limitations

No limitations.

4.2 Applicability to car domains

No restrictions.

5 Dependencies to other modules

5.1 File structure

[SWS_IfI_00001] [The IfI module shall provide the following files:

• C files, Ifl_<name>.c used to implement the library. All C files shall be prefixed with 'Ifl '.

Implementation & grouping of routines with respect to C files is recommended as per below options and there is no restriction to follow the same.

Option 1 : <Name> can be function name providing one C file per function,

eg.: Ifl IntlpoMap f32f32 f32.c etc.

Option 2 : <Name> can have common name of group of functions:

- 2.1 Group by object family: eg.:lfl_lpoCur.c, lfl_DPSearch.c
- 2.2 Group by routine family: eg.: If IpoMap.c
- 2.3 Group by method family: eg.: Ifl lpo.c etc.
- 2.4 Group by other methods: (individual grouping allowed)

Option 3 : <Name> can be removed so that single C file shall contain all Ifl functions, eg.: Ifl.c.

Using above options gives certain flexibility of choosing suitable granularity with reduced number of C files. Linking only on-demand is also possible in case of some options. | ()

6 Requirements Tracing

Requirement	Description	Satisfied by
[SRS_BSW_00003]	All software modules shall provide version and identification information	[SWS_lfl_00215]
[SRS_BSW_00007]	All Basic SW Modules written in C language shall conform to the MISRA C 2012 Standard.	[SWS_lfl_00209]
[SRS_BSW_00304]	All AUTOSAR Basic Software Modules shall use only AUTOSAR data types instead of native C data types	[SWS_lfl_00212]
[SRS_BSW_00306]	AUTOSAR Basic Software Modules shall be compiler and platform independent	[SWS_lfl_00213]
[SRS_BSW_00318]	Each AUTOSAR Basic Software Module file shall provide version numbers in the header file	[SWS_lfl_00215]
[SRS_BSW_00321]	The version numbers of AUTOSAR Basic Software Modules shall be enumerated according specific rules	[SWS_lfl_00215]
[SRS_BSW_00348]	All AUTOSAR standard types and constants shall be placed and organized in a standard type header file	[SWS_lfl_00211]
[SRS_BSW_00374]	All Basic Software Modules shall provide a readable module vendor identification	[SWS_lfl_00214]
[SRS_BSW_00378]	AUTOSAR shall provide a boolean type	[SWS_lfl_00212]
[SRS_BSW_00379]	All software modules shall provide a module identifier in the header file and in the module XML description file.	[SWS_lfl_00214]
[SRS_BSW_00402]	Each module shall provide version information	[SWS_lfl_00214]
[SRS_BSW_00407]	Each BSW module shall provide a function to read out the version information of a dedicated module implementation	[SWS_IfI_00215] [SWS_IfI_00216]
[SRS_BSW_00411]	All AUTOSAR Basic Software Modules shall apply a naming rule for enabling/disabling the existence of the API	[SWS_lfl_00216]
[SRS_BSW_00437]	Memory mapping shall provide the possibility to define RAM segments which are not to be initialized during startup	[SWS_lfl_00210]
[SRS_BSW_00448]	Module SWS shall not contain requirements from other modules	[SWS_lfl_00224]
[SRS_LIBS_00001]	The functional behavior of each library functions shall not be configurable	[SWS_lfl_00218]
[SRS_LIBS_00002]	A library shall be operational before all BSW modules and application SW-Cs	[SWS_lfl_00200]
[SRS_LIBS_00003]	A library shall be operational until the shutdown	[SWS_IfI_00201]

Specification of Floating Point Interpolation Routines AUTOSAR CP R22-11

\triangle

Requirement	Description	Satisfied by
[SRS_LIBS_00005]	Each library shall provide one header file with its public interface	[SWS_lfl_91000] [SWS_lfl_91001] [SWS_lfl_91002] [SWS_lfl_91003]
[SRS_LIBS_00009]	All library functions shall be re-entrant	[SWS_lfl_91000] [SWS_lfl_91001] [SWS_lfl_91002] [SWS_lfl_91003]
[SRS_LIBS_00011]	All function names and type names shall start with "Library short name_"	[SWS_lfl_91000] [SWS_lfl_91001] [SWS_lfl_91002] [SWS_lfl_91003]
[SRS_LIBS_00013]	The error cases, resulting in the check at runtime of the value of input parameters, shall be listed in SWS	[SWS_lfl_00217] [SWS_lfl_00219]
[SRS_LIBS_00015]	It shall be possible to configure the microcontroller so that the library code is shared between all callers	[SWS_lfl_00206]
[SRS_LIBS_00017]	Usage of macros should be avoided	[SWS_lfl_00207]
[SRS_LIBS_00018]	A library function may only call library functions	[SWS_lfl_00208]

Table 6.1: RequirementsTracing

7 Functional specification

7.1 Error Classification

[SWS_IfI_00223] [Section 7.1 "Error Handling" of the document "General Specification of Basic Software Modules" describes the error handling of the Basic Software in detail. Above all, it constitutes a classification scheme consisting of five error types which may occur in BSW modules. | ()

Based on this foundation, the following section specifies particular errors arranged in the respective subsections below.

7.1.1 Development Errors

There are no development errors.

7.1.2 Runtime Errors

There are no runtime errors.

7.1.3 Transient Faults

There are no transient faults.

7.1.4 Production Errors

There are no production errors.

7.1.5 Extended Production Errors

There are no extended production errors.

7.2 Error detection

[SWS_IfI_00219] [Error detection: Function should check at runtime (both in production and development code) the value of input parameters, especially cases where erroneous value can bring to fatal error or unpredictable result, if they have the values allowed by the function specification. All the error cases shall be listed in SWS and the

function should return a specified value (in SWS) that is not configurable. This value is dependant of the function and the error case so it is determined case by case.

If values passed to the routines are not valid and out of the function specification, then such error are not detected. | (SRS_LIBS_00013)

E.g. If passed value > 32 for a bit-position

or a negative number of samples of an axis distribution is passed to a routine.

7.3 Error notification

[SWS_IfI_00217] [The functions shall not call the DET for error notification.] (SRS_-LIBS 00013)

7.4 Initialization and shutdown

[SWS_IfI_00200] [IfI library shall not require initialization phase. A Library function may be called at the very first step of ECU initialization, e.g. even by the OS or EcuM, thus the library shall be ready. | (SRS_LIBS_00002)

[SWS_IfI_00201] [IfI library shall not require a shutdown operation phase.] (SRS_-LIBS_-00003)

7.5 Using Library API

If IAPI can be directly called from BSW modules or SWC. No port definition is required. It is a pure function call.

The statement 'Ifl.h' shall be placed by the developer or an application code generator but not by the RTE generator

Using a library should be documented. if a BSW module or a SWC uses a Library, the developer should add an Implementation-DependencyOnArtifact in the BSW/SWC template.

minVersion and maxVersion parameters correspond to the supplier version. In case of AUTOSAR library, these parameters may be left empty because a SWC or BSW module may rely on a library behaviour, not on a supplier implementation. However, the SWC or BSW modules shall be compatible with the AUTOSAR platform where they are integrated.

7.6 Library implementation

[SWS_IfI_00206] [The IfI library shall be implemented in a way that the code can be shared among callers in different memory partitions. | (SRS_LIBS_00015)

[SWS_IfI_00207] [Usage of macros should be avoided. The function should be declared as function or inline function. Macro #define should not be used.] (SRS_LIBS_-00017)

[SWS_IfI_00208] [A library function can call other library functions because all library functions shall be re-entrant. A library function shall not call any BSW modules functions, e.g. the DET.|(SRS_LIBS_00018)

[SWS_IfI_00209] [The library, written in C programming language, should conform to the MISRA C Standard.

Please refer to SWS_BSW_00115 for more details. (SRS_BSW_00007)

[SWS_IfI_00210] [Each AUTOSAR library Module implementation library>*.c and library>*.h shall map their code to memory sections using the AUTOSAR memory mapping mechanism. | (SRS_BSW_00437)

[SWS_IfI_00211] [Each AUTOSAR library Module implementation library>*.c, that uses AUTOSAR integer data types and/or the standard return, shall include the header file Std Types.h.|(SRS_BSW_00348)

[SWS_IfI_00212] [All AUTOSAR library Modules should use the AUTOSAR data types (integers, boolean) instead of native C data types, unless this library is clearly identified to be compliant only with a platform.] (SRS_BSW_00304, SRS_BSW_00378)

[SWS_IfI_00213] [All AUTOSAR library Modules should avoid direct use of compiler and platform specific keyword, unless this library is clearly identified to be compliant only with a platform. eg. #pragma, typeof etc. | (SRS_BSW_00306)

[SWS_IfI_00220] [If input value is less than first distribution entry then first value of the distribution array shall be returned or used in the interpolation routines. If input value is greater than last distribution entry then last value of the distribution array shall be returned or used in the interpolation routines.]

[SWS_lfl_00221] [Axis distribution passed to lfx routines shall have normal monotony sequence.] ()

8 API specification

8.1 Imported types

In this chapter, all types included from the following modules are listed:

Module file	Imported Type
Std_Types.h	sint8, uint8, sint16, uint16, sint32, uint32, float32

It is observed that since the sizes of the integer types provided by the C language are implementation-defined, the range of values that may be represented within each of the integer types will vary between implementations.

Thus in order to improve the portability of the software these types are defined in Platform_Types.h [AUTOSAR_SWS_PlatformTypes]. The following mnemonic are used in the library routine names.

Size	Platform Type	Mnemonic	Range
unsigned 8-Bit	boolean	NA	[TRUE, FALSE]
signed 8-Bit	sint8	s8	[-128, 127]
signed 16-Bit	sint16	s16	[-32768, 32767]
signed 32-Bit	sint32	s32	[-2147483648, 2147483647]
unsigned 8-Bit	uint8	u8	[0, 255]
unsigned 16-Bit	uint16	u16	[0, 65535]
unsigned 32-Bit	uint32	u32	[0, 4294967295]
32-Bit	float32	f32	[-3.4028235E38, 3.4028235E38]

Table 8.1: Mnemonic for Base Types

As a convention in the rest of the document:

- mnemonics will be used in the name of the routines (using <InType> that means
 Type Mnemonic for Input)
- The real type will be used in the description of the prototypes of the routines (using <InTypeMn1> or <OutType>).

8.2 Type definitions

Structure definition:

[SWS_IfI_00005] [

Name	Ifl_DPResultF32_Type	
Kind	Structure	
Elements	Index	
	Туре	uint32
	Comment Data point index	
	Ratio	
	Туре	float32
	Comment Data point ratio	
Description	Structure used for data point search for index and ratio	
Available via	lfl.h	

10

[SWS_IfI_00006] [IfI_DPResultF32_Type structure shall not be read/write/modified by the user directly. Only IfI routines shall have access to this structure.] ()

8.3 Comment about rounding

Two types of rounding can be applied:

Results are 'rounded off', it means:

- 0 <= X < 0.5 rounded to 0
- 0.5 <= X < 1 rounded to 1
- -0.5 < X <= 0 rounded to 0
- -1 < X <= -0.5 rounded to -1

Results are rounded towards zero.

- 0 <= X < 1 rounded to 0
- -1 < X <= 0 rounded to 0

8.4 Comment about routines optimized for target

The routines described in this library may be realized as regular routines or inline functions. For ROM optimization purposes, it is recommended that the c routines be realized as individual source files so they may be linked in on an as-needed basis.

For example, depending on the target, two types of optimization can be done:

- Some routines can be replaced by another routine using integer promotion.
- Some routines can be replaced by the combination of a limiting routine and a routine with a different signature.

8.5 Interpolation routines definitions

Interpolation between two given points is calculated as shown below.

result =
$$y_0 + (y_1 - y_0) \bullet \frac{x - x_0}{x_1 - x_0}$$

Figure 8.1

where: X is the input value

x0 = data point before X

x1 = data point after X

y0 = value at x0

y1 = value at x1

Figure 8.2: Linear interpolation

Data point arrays can be grouped as one array or one structure for all elements as shown below.

one array for all elements:

float32 Curve_f32 []= $\{5,0.0,10.0,26.0,36.0,64.0,1.0,12.0,17.0,11.0,6.0\}$;

one structure for all elements:

struct

{ uint32 N = 5;

float32 $X[] = \{0.0, 10.0, 26.0, 36.0, 64.0\};$

float32 $Y[] = \{1.0, 12.0, 17.0, 11.0, 6.0\};$

} Curve f32;

where, number of samples = 5

X axis distribution = 0.0 to 64.0

Y axis distribution = 1.0 to 6.0

Interpolation routines accepts arguments separately to support above scenarios. Routine call example is given below for array and structure grouping respectively.

Example:

float32 lfl_IntlpoCur_f32_f32 (15, Curve_f32[0], &Curve_f32[1], &Curve_f32[6]);

float32 lfl IntlpoCur f32 f32 (15, Curve f32.N, &Curve f32.X, &Curve f32.Y);

Interpolation can be calculated in two ways as shown below:

- 1. Distributed data point search and interpolation
- 2. Integrated data point search and interpolation

8.5.1 Distributed data point search and interpolation

In this interpolation method data point search (e.g. index and ratio) is calculated using routine Ifl_DPSearch_f32 which returns result structure Ifl_DPResultF32_Type. It contains index and ratio information. This result can be used by curve interpolation and map interpolation.

8.5.1.1 Data Point Search

[SWS IfI 00010] [

Service Name	IfI_DPSearch_f32	
Syntax	<pre>void Ifl_DPSearch_f32 (Ifl_DPResultF32_Type* dpResult, float32 Xin, uint32 N, const float32* X_array)</pre>	
Service ID [hex]	0x001	
Sync/Async	Synchronous	
Reentrancy	Reentrant	
Parameters (in)	Xin	Input value
	N	Number of samples
	X_array Pointer to distribution array	
Parameters (inout)	None	
Parameters (out)	dpResult	Pointer to the result structure
Return value	None	

\triangle

Description	This routine searches the position of input Xin within the given distribution array X_array, and returns index and ratio necessary for interpolation.
Available via	lfl.h

10

[SWS_IfI_00011] [Returned Index shall be the lowest index for which $(X_array[index] < Xin < X_array[index + 1]).$

If $(X_array[0] \le Xin \le X_array[N-1])$, then returned Index shall be the lowest index.

dpResult->Index=indexdpResult->Ratio=(Xin-X_array[index]) / (X_array[index + 1] - X_array[index]) dpResult ->Index = index

dpResult ->Ratio = (Xin - X_array[index]) / (X_array [index+1] - X_array [index]) | (/)

For a given array float32 $X[] = \{0.0, 10.0, 26.0, 36.0, 64.0\};$

If Xin = 20.0 then

dpResult ->Index = 1

 $dpResult \rightarrow Ratio = (20.0 - 10.0) / (26.0 - 10.0) = 0.625$

[SWS_IfI_00012] [If the input value matches with one of the distribution array values, then

return respective index and ratio as 0.0.

If Input Xin == X array[index], then

dpResult ->Index = index (Index of the set point)

dpResult ->Ratio = 0.0 | ()

[SWS_IfI_00013] \lceil If (Xin < X_array[0]), then return first index of an array and ratio = 0.0

dpResult -> Index = 0

dpResult ->Ratio = 0.0 | ()

[SWS_IfI_00014] [If $(Xin > X_array[N-1])$, then return last index of an array and ratio = 0.0

dpResult ->Index = N - 1

dpResult ->Ratio = 0.0]()

[SWS IfI 00015] [The minimum value of N shall be 1 | ()

[SWS_IfI_00016] [If $X_{array}[Index+1] == X_{array}[Index]$, then the Ratio shall be zero.

dpResult->Ratio = 0.0 | ()

[SWS_IfI_00017] [This routine returns index and ratio through the structure of type IfI_DPResultF32_Type] ()

8.5.1.2 Curve interpolation

[SWS IfI 00021] [

Service Name	lfl_lpoCur_f32	Ifl_lpoCur_f32	
Syntax	const Ifl_DPResult:	<pre>float32 If1_IpoCur_f32 (const If1_DPResultF32_Type* dpResult, const float32* Val_array)</pre>	
Service ID [hex]	0x004		
Sync/Async	Synchronous	Synchronous	
Reentrancy	Reentrant	Reentrant	
Parameters (in)	dpResult	Data point search result	
	Val_array	Pointer to the result distribution array	
Parameters (inout)	None	None	
Parameters (out)	None	None	
Return value	float32	float32 Result of the Interpolation	
Description	Based on searched index a for curve.	Based on searched index and ratio information, this routine calculates and returns interpolation for curve.	
Available via	lfl.h		

10

[SWS IfI 00022] [index = dPResult->Index

if dPResult->Ratio == 0.0

Result = Val array[index]

else

Result = Val_array[index] + (Val_array[index+1] - Val_array[index]) * dpResult->Ratio (

[SWS_IfI_00180] [Do not call this routine until you have searched the axis using the IfI_DPSearch routine. Only then it is ensured that the search result (IfI_DPResultF32_Type) contains valid data and is not used uninitialized.] ()

8.5.1.3 Map interpolation

[SWS IfI 00025]

Service Name	lfl_lpoMap_f32		
Syntax	<pre>float32 Ifl_IpoMap_f32 (const Ifl_DPResultF32_Type* dpResultX, const Ifl_DPResultF32_Type* dpResultY, uint32 num_value, const float32* Val_array)</pre>		
Service ID [hex]	0x005		
Sync/Async	Synchronous	Synchronous	
Reentrancy	Reentrant		
Parameters (in)	dpResultX	Data point search result for x axis	
	dpResultY	Data point search result for y axis	
	num_value Number of y axis points		
	Val_array Pointer to result distribution array		
Parameters (inout)	None	None	
Parameters (out)	None		
Return value	float32	Result of the Interpolation	
Description	Based on searched indices and ratios information using the IfI_DPSearch_f32 routine, this routine calculates and returns the interpolation result for map.		
Available via	lfl.h		

10

[SWS_IfI_00026] [Based on searched indices and ratios information using the IfI_DPSearch_f32 routine, this routine calculates and returns the interpolation result for map.

```
BaseIndex = dpResultX->Index * num_value + dpResultY->Index
```

if (dpResultX->Ratio == 0)

if (dpResultY->Ratio == 0)

Result = Val_array [BaseIndex]

else

LowerY = Val_array [BaseIndex]

UpperY = Val array [BaseIndex + 1]

Result = LowerY + (UpperY - LowerY) * dpResultY->Ratio

else

if (dpResultY->Ratio == 0)

LowerX = Val_array [BaseIndex]

UpperX = Val_array [BaseIndex + num_value]

Result = LowerX + (UpperX - LowerX) * dpResultX->Ratio

else

LowerY = Val array [BaseIndex]

UpperY = Val_array [BaseIndex + 1]

LowerX = LowerY + (UpperY - LowerY) * dpResultY->Ratio

LowerY = Val array [BaseIndex + num value]

UpperY = Val array [BaseIndex + num value + 1]

UpperX = LowerY + (UpperY - LowerY) * dpResultY->Ratio

Result = LowerX + (UpperX - LowerX) * dpResultX->Ratio | ()

[SWS_IfI_00181] [Do not call this routine until you have searched the axis using the IfI_DPSearch routine. Only then it is ensured that the search result (IfI_DPResultF32_Type) contains valid data and is not used uninitialized.] ()

8.5.1.4 Single point interpolation

[SWS_IfI_00030] [

Service Name	Ifl_Interpolate_f32	
Syntax	<pre>float32 Ifl_Interpolate_f32 (float32 Value1, float32 Value2, float32 Coef)</pre>	
Service ID [hex]	0x006	
Sync/Async	Synchronous	
Reentrancy	Reentrant	
Parameters (in)	Value1 First value to be used in the interpolation.	
	Value2 Second value to be used in the interpolation.	
	Coef Interpolation coefficient.	
Parameters (inout)	None	
Parameters (out)	None	
Return value	float32 Iterpolated value	
Description	Returns the result of the linear interpolation (Result), determined according to the following equation.	
Available via	lfl.h	

10

[SWS_IfI_00031] [Result = Value1 + (Coef * (Value2 - Value1))]()

8.5.2 Integrated data point search and interpolation

In this method of interpolation, single routine does data point search (e.g. Index and ratio) and interpolation for curve, map.

8.5.2.1 Integrated curve interpolation

[SWS IfI 00035]

Service Name	Ifl_IntlpoCur_f32_f32		
Syntax	<pre>float32 If1_IntIpoCur_f32_f32 (float32 X_in, uint32 N, const float32* X_array, const float32* Val_array)</pre>		
Service ID [hex]	0x010		
Sync/Async	Synchronous		
Reentrancy	Reentrant		
Parameters (in)	X_in Input value		
	N Number of samples		
	X_array Pointer to X distribution		
	Val_array Pointer to Y values		
Parameters (inout)	None		
Parameters (out)	None		
Return value	float32 Result of the Interpolation		
Description	This routine calculates interpolation of a curve at position Xin using below equa-tion.		
Available via	lfl.h	lfl.h	

]()

[SWS_IfI_00036] \lceil index = minimum value of integer index if (X_array[index] < Xin < X_array[index+1])

RatioX = (Xin - X_array[index]) / (X_array [index+1] - X_array [index])

 $Result = Val_array[index] + (Val_array[index+1] - Val_array[index])*RatioX \](/)$

[SWS_IfI_00037] [If the input value matches with one of the distribution array values, then result will be the respective Y array element indicated by the index.

If (Xin == X_array[index]),

Result = Val_array[index] | ()

[SWS IfI 00038] [If Xin < X array[0], then

Result = Val_array[0] | ()

[SWS_lfl_00039] [If Xin > $X_{array}[N-1]$, then

Result = Val array[N-1]|()

[SWS_lfl_00040] [The minimum value of N shall be 1 | ()

8.5.2.2 Integrated map interpolation

[SWS IfI 00041] [

Service Name	lfl_IntlpoMap_f32f32_f32		
Syntax	<pre>float32 If1_IntIpoMap_f32f32_f32 (float32 Xin, float32 Yin, uint32 Nx, uint32 Ny, const float32* X_array, const float32* Y_array, const float32* Val_array)</pre>		
Service ID [hex]	0x011	0x011	
Sync/Async	Synchronous	Synchronous	
Reentrancy	Reentrant	Reentrant	
Parameters (in)	Xin	Input value for X axis	
	Yin	Input value for Y axis	
	Nx Number of X axis intervals		
	Ny	Ny Number of Y axis intervals	
	X_array	X_array Pointer to the X axis distribution array Y_array Pointer to the Y axis distribution array	
	Y_array		
	Val_array	Val_array Pointer to the result axis distribution array	
Parameters (inout)	None	None	
Parameters (out)	None	None	
Return value	float32	float32 Result of the Map Interpolation	
Description	This routine calculates Inte	This routine calculates Interpolation of a map at position X and Y using below equations.	
Available via	lfl.h		

10

[SWS_IfI_00042] $\lceil indexX = minimum value of index if (X_array[indexX] < Xin < X_array[indexX+1])$

indexY = minimum value of index if (Y array[indexY] < Yin < Y array[indexY+1])

RatioX = $(Xin - X \ array[indexX]) / (X \ array[indexX+1] - X \ array[indexX])$

RatioY = (Yin - Y array[indexY]) / (Y array [indexY+1] - Y array [indexY])

BaseIndex = IndexX * Ny + indexY

LowerY = Val_array [BaseIndex]

UpperY = Val array [BaseIndex + 1]

LowerX = LowerY + (UpperY - LowerY) * RatioY

LowerY = Val array [BaseIndex + Ny]

UpperY = Val_array [BaseIndex + Ny + 1]

UpperX = LowerY + (UpperY - LowerY) * RatioY

Result = LowerX + (UpperX - LowerX) * RatioX | ()


```
[SWS_lfl_00043] [If (Xin == X_{array}[indexX]) and (Y_{array}[indexY] < Yin < Y_{array}[indexY+1])
```

Result = Val_array [BaseIndex] + (Val_array [BaseIndex+1] - Val_array[BaseIndex]) * RatioY]()

[SWS_IfI_00044] [If (Yin == Y_array[indexY]) and (X_array[indexX] < Xin < X_array[indexX+1])

Result = Val_array [BaseIndex] + (Val_array [BaseIndex+Ny] - Val_array[BaseIndex]) * RatioX|()

[SWS_IfI_00045] [If (Xin == X array[indexX]) and (Yin == Y array[indexY])

Result = Val array [BaseIndex] | ()

[SWS_lfl_00046] [If Xin < X_array[0], then

indexX = 0,

RatioX = 0.0)

[SWS_lfl_00047] [If $Xin > X_array[Nx-1]$, then

indexX = Nx - 1,

RatioX = 0.0 | III

[SWS_IfI_00048] [If Yin < Y array[0], then

indexY = 0,

RatioY = 0.0 ()

[SWS IfI 00049] [If Yin > Y array[Ny-1], then

indexY = Ny - 1,

RatioY = 0.0|()

[SWS_IfI_00050] [The minimum value of N shall be 1 | ()

8.5.2.3 Cuboid 3D interpolation

[SWS IfI 91000]

Service Name	Ifl_IpoCub_f32	
Syntax	<pre>float32 Ifl_IpoCub_f32 (const Ifl_DPResultF32_Type* dpResultX, const Ifl_DPResultF32_Type* dpResultY, const Ifl_DPResultF32_Type* dpResultZ, uint16 num_x, uint16 num_y, const float32* Val_array)</pre>	
Service ID [hex]	0x12	
Sync/Async	Synchronous	
Reentrancy	Reentrant	
Parameters (in)	dpResultX	Data point search result for X axis
	dpResultY	Data point search result for Y axis
	dpResultZ Data point search result for Z axis	
	num_x Number of X axis points	
	num_y Number of Y axis points	
	Val_array Pointer to the result axis distribution array	
Parameters (inout)	None	
Parameters (out)	None	
Return value	float32 Result of the interpolation	
Description	Based on searched indices and ratios information using the relevant Ifl_DPSearch_f32 routine, this routine calculates and returns the interpolation result for a 3D cuboid.	
Available via	lfl.h	

(SRS LIBS 00005, SRS LIBS 00009, SRS LIBS 00011)

[SWS_lfl_00226] [|()

Based on searched indices and ratios information using the Ifl_DPSearch_f32 routine, this routine calculates and returns the interpolation result for 3D cuboids.

The axis order memory representation is [z][x][y]. This is the column-major orientation COLUMN DIR from ASAM standard. The first axis z specifies the selected slice.

Implementation:

Linear interpolation along x-axis between the result of two 2D interpolations between neighbouring X/Y Maps.

```
num slice = num x * num y
```

if(dpResultZ->Ratio==0.0)

Result=Ifl_IpoMap_f32 (dpResultX, dpResultY, num_y, Val_array[num_slice * dpResultZ->Index])

else

LowerXY=Ifl_IpoMap_f32 (dpResultX, dpResultY, num_y, Val_array[num_slice * dpResultZ ->Index])

UpperXY=Ifl_IpoMap_f32 (dpResultX, dpResultY, num_y, Val_array[num_slice * dpResultZ ->Index + 1])

Result=Ifl_Interpolate_f32 (LowerXY, UpperXY, dpResultZ->Ratio)

8.5.2.4 Mixed type interpolation of integer curve

[SWS IfI 91001] [

Service Name	lfl_lpoCur_ <lntypemn>_f32</lntypemn>	
Syntax	<pre>float32 If1_IpoCur_<intypemn>_f32 (const If1_DPResultF32_Type* dpResult, const <intype>* Val_array)</intype></intypemn></pre>	
Service ID [hex]	0x13 to 0x16	
Sync/Async	Synchronous	
Reentrancy	Reentrant	
Parameters (in)	dpResult	Data point search result
	Val_array	Pointer to the result axis distribution array
Parameters (inout)	None	
Parameters (out)	None	
Return value	float32 Result of the interpolation	
Description	Based on searched indices and ratios information using the relevant IfI_DPSearch_f32 routine, this routine calculates and returns the interpolation result for a curve.	
Available via	lfl.h	

](SRS_LIBS_00005, SRS_LIBS_00009, SRS_LIBS_00011)

[SWS_lfl_00228] [|()

index=dpResult->Index

if dpResult->Ratio==0.0

Result=Val array[index]

else

Result=Val_array[index] + (Val_array[index + 1]- Val_array[index]) * dpResult->Ratio [SWS_IfI_00229] []() Here is the list of implemented routines:

Routine ID[hex]	Routine prototype
0x013	float32 Ifl_lpoCur_u8_f32 (const Ifl_DPResultF32_Type* dpResult, const uint8* Val_array)
0x014	float32 Ifl_IpoCur_u16_f32 (const Ifl_DPResultF32_Type* dpResult, const uint16* Val_array)
0x015	float32 Ifl_lpoCur_s8_f32 (const Ifl_DPResultF32_Type* dpResult, const sint8* Val_array)
0x016	float32 lfl_lpoCur_s16_f32 (const lfl_DPResultF32_Type* dpResult, const sint16* Val_array)

8.5.2.5 Mixed type interpolation of integer map

[SWS IfI 91002]

Service Name	lfl_lpoMap_ <intypemn>_f32</intypemn>	2	
Syntax	<pre>float32 Ifl_IpoMap_<intypemn>_f32 (const Ifl_DPResultF32_Type* dpResultX, const Ifl_DPResultF32_Type* dpResultY, uint32 num_value, const <intype>* Val_array)</intype></intypemn></pre>		
Service ID [hex]	0x18 to 0x1b		
Sync/Async	Synchronous		
Reentrancy	Reentrant		
Parameters (in)	dpResultX	Data point search result for X axis	
	dpResultY	Data point search result for Y axis	
	num_value	Number of Y axis points	
	Val_array	Pointer to the result axis distribution array	
Parameters (inout)	None		
Parameters (out)	None		
Return value	float32	Result of the interpolation	
Description	Based on searched indices and ratios information using the relevant IfI_DPSearch_f32 routine, this routine calculates and returns the interpolation result for a map.		
Available via	lfl.h		

\((SRS_LIBS_00005, SRS_LIBS_00009, SRS_LIBS_00011)\)

[SWS_IfI_00231] [|()

Based on searched indices and ratios information using the Ifl_DPSearch_f32 routine, this routine calculates and returns the interpolation result for map.

```
BaseIndex = dpResultX->Index * num_value + dpResultY->Index
```

if (dpResultX->Ratio == 0.0)

if (dpResultY->Ratio == 0.0)

Result = Val_array [BaseIndex]

else

LowerY = Val array [BaseIndex]

UpperY = Val_array [BaseIndex + 1]

Result = LowerY + (UpperY - LowerY) * dpResultY->Ratio

else

if (dpResultY->Ratio == 0.0)

LowerX = Val array [BaseIndex]

UpperX = Val array [BaseIndex + num value]

Result = LowerX + (UpperX - LowerX) * dpResultX->Ratio else

LowerY = Val_array [BaseIndex]

UpperY = Val_array [BaseIndex + 1]

LowerX = LowerY + (UpperY - LowerY) * dpResultY->Ratio

LowerY = Val_array [BaseIndex + num_value]

UpperY = Val_array [BaseIndex + num_value + 1]

UpperX = LowerY + (UpperY - LowerY) * dpResultY->Ratio

Result = LowerX + (UpperX - LowerX) * dpResultX->Ratio

Here is the list of implemented routines.

[SWS_lfl_00232] []()

Routine ID[hex]	Routine prototype
0x018	float32 Ifl_IpoMap_u8_f32 (const Ifl_DPResultF32_Type* dpResultX, const Ifl_DPResultF32_Type* dpResultY, uint32 num_value, const uint8* Val_array)
0x019	float32 Ifl_lpoMap_u16_f32 (const Ifl_DPResultF32_Type* dpResultX, const Ifl_DPResultF32_Type* dpResultY, uint32 num_value, const uint16* Val_array)
0x01A	float32 IfI_lpoMap_s8_f32 (const IfI_DPResultF32_Type* dpResultX, const IfI_DPResultF32_Type* dpResultY, uint32 num_value, const sint8* Val_array)
0x01B	float32 Ifl_lpoMap_s16_f32 (const Ifl_DPResultF32_Type* dpResultX, const Ifl_DPResultF32_Type* dpResultY, uint32 num_value, const sint16* Val_array)

8.5.2.6 Mixed type interpolation of integer 3D Cuboid

[SWS IfI 91003] [

Service Name	lfl_lpoCub_ <intypemn>_f32</intypemn>		
Syntax	<pre>float32 Ifl_IpoCub_<intypemn>_f32 (const Ifl_DPResultF32_Type* dpResultX, const Ifl_DPResultF32_Type* dpResultY, const Ifl_DPResultF32_Type* dpResultZ, uint16 num_x, uint16 num_y, const <intype>* Val_array)</intype></intypemn></pre>		
Service ID [hex]	0x1C to 0x1F		
Sync/Async	Synchronous		
Reentrancy	Reentrant		

Δ

Parameters (in)	dpResultX	Data point search result for X axis	
	dpResultY	Data point search result for Y axis	
	dpResultZ Data point search result for Z axis		
	num_x Number of X axis points		
	num_y	Number of Y axis points	
	Val_array	Pointer to the result axis distribution array	
Parameters (inout)	None		
Parameters (out)	None		
Return value	float32 Result of the interpolation		
Description	Based on searched indices and ratios information using the relevant IfI_DPSearch_f32 routine, this routine calculates and returns the interpolation result for a 3D cuboid.		
Available via	lfl.h		

(SRS LIBS 00005, SRS LIBS 00009, SRS LIBS 00011)

[SWS_IfI_00234] [|()

Based on searched indices and ratios information using the Ifl_DPSearch_f32 routine, this routine calculates and returns the interpolation result for 3D cuboids.

The axis order memory representation is [z][x][y]. This is the column-major orientation COLUMN_DIR from the ASAM standard. The first axis z specifies the selected slice.

Implementation:

Linear interpolation along x-axis between the result of two 2D interpolations between neighboring X/Y Maps.

num slice = num x*num y

if (dpResultZ->Ratio == 0.0)

Result = Ifl_lpoMap_<InTypeMn>_f32 (dpResultX, dpResultY, num_y, Val_array[num_slice*dpResultZ->Index])

else

LowerXY = Ifl_lpoMap_<InTypeMn>_f32 (dpResultX, dpResultY, num_y, Val_ar-ray[num_slice*dpResultZ->Index])

UpperXY = Ifl_lpoMap_<InTypeMn>_f32 (dpResultX, dpResultY, num_y, Val_ar-ray[num_slice*dpResultZ->Index + 1])

Result = IfI Interpolate f32 (LowerXY, UpperXY, dpResultZ->Ratio)

Here is the list of implemented routines.

[SWS_lfl_00235] [|()

Routine ID[hex]	Routine prototype
0x01C	float32 IfI_lpoCub_u8_f32 (const IfI_DPResultF32_Type* dpResultX, const IfI_DPResultF32_Type* dpResultY, const IfI_DPResultF32_Type* dpResultZ, uint16 num_x, uint16 num_y, const uint8* Val_array)
0x01D	float32 Ifl_lpoCub_u16_f32 (const Ifl_DPResultF32_Type* dpResultX, const Ifl_DPResultF32_Type* dpResultY, const Ifl_DPResultF32_Type* dpResultZ, uint16 num_x, uint16 num_y, const uint16* Val_array)
0x01E	float32 IfI_lpoCub_s8_f32 (const IfI_DPResultF32_Type* dpResultX, const IfI_DPResultF32_Type* dpResultY, const IfI_DPResultF32_Type* dpResultZ, uint16 num_x, uint16 num_y, const sint8* Val_array)
0x01F	float32 IfI_lpoCub_s16_f32 (const IfI_DPResultF32_Type* dpResultX, const IfI_DPResultF32_Type* dpResultY, const IfI_DPResultF32_Type* dpResultZ, uint16 num_x, uint16 num_y, const sint16* Val_array)

8.5.3 Record layouts for interpolation routines

Record layout specifies calibration data serialization in the ECU memory which describes the shape of the characteristics. Single record layout can be referred by multiple instances of interpolation ParameterDataPrototype. Record layouts can be nested particular values refer to the particular property of the object. With different properties of record layouts it is possible to specify complex objects.

8.5.3.1 Record layout for map values

Due to optimization, the orientation of map values in memory is different depending on the usage of the inputs. See section 8.4.2.

- 1. If the "X" and "Y" inputs are not swapped then, values "Val" of maps have to be in COLUMN_DIR order.
- 2. If the "X" and "Y" inputs are swapped then, values "Val" of maps have to be in ROW_ DIR order.

According to ASAM standard [ASAM MCD-2MC Version 1.5.1 and 1.6], COLUMN_DIR and ROW_DIR are formats of storing map values (Val[]) and more information can be found in ASAM standard.

The "Z" input of cuboids is the third dimension and selects the slice X / Y or Y / X - 2D maps.

Example for cuboids order:

2x2x2 cuboid representation in memory

Example: $cub = [1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8]$

COLUMN DIR order [z][x][y]:

Specification of Floating Point Interpolation Routines AUTOSAR CP R22-11

Slice 1:
[1 2
3 4]
Slice 2:
[5 6
7 8]

8.5.3.2 Record layout definitions

Below table specifies record layouts supported for interpolation routines.

[SWS_IfI_00170] [

Record layout Name	Element1	Element2	Element3	Element4	Element5
Distr_f32	uint32 N	float32 X[]			
Curve_f32	float32 Val[]				
Map_f32	float32 Val[]				
Cub_f32	float32 Val[]				
IntCurve_f32_f32	uint32 N	float32 X[]	float32 Val[]		
IntMap_f32f32_ f32	uint32 Nx	uint32 Ny	float32 X[]	float32 Y[]	float32 Val[]

10

Remark:

All combinations have to be defined in IFL_RecordLayout_Blueprint, AUTOSAR_ MOD_IFL_RecordLayout_Blueprint.arxml

8.6 Examples of use of functions

None

8.7 Version API

8.7.1 IfI GetVersionInfo

[SWS IfI 00215]

Service Name	IfI_GetVersionInfo		
Syntax	<pre>void Ifl_GetVersionInfo (Std_VersionInfoType* versioninfo)</pre>		
Service ID [hex]	0xff		
Sync/Async	Synchronous		
Reentrancy	Reentrant		
Parameters (in)	None		
Parameters (inout)	None		
Parameters (out)	versioninfo	Pointer to where to store the version information of this module. Format according [BSW00321]	
Return value	None		
Description	Returns the version information of this library.		
Available via	lfl.h		

(SRS BSW 00407, SRS BSW 00003, SRS BSW 00318, SRS BSW 00321)

The version information of a BSW module generally contains:

- Module Id
- Vendor Id
- Vendor specific version numbers (SRS BSW 00407).

[SWS_IfI_00216] [If source code for caller and callee of IfI_GetVersionInfo is available, the IfI library should realize IfI_GetVersionInfo as a macro defined in the module's header file. | (SRS_BSW_00407, SRS_BSW_00411)

8.8 Callback notifications

None.

8.9 Scheduled routines

The Ifl library does not have scheduled routines.

8.10 Expected interfaces

None.

Specification of Floating Point Interpolation Routines AUTOSAR CP R22-11

8.10.1	Mandatory	interfaces
--------	-----------	------------

None.

8.10.2 Optional interfaces

None.

8.10.3 Configurable interfaces

None.

9 Sequence diagrams

Not applicable.

10 Configuration specification

10.1 Published Information

[SWS_IfI_00214] The standardized common published parameters as required by SRS_BSW_00402 in the General Requirements on Basic Software Modules [REF] shall be published within the header file of this module and need to be provided in the BSW Module Description. The according module abbreviation can be found in the List of Basic Software Modules [REF]. [SRS_BSW_00402, SRS_BSW_00374, SRS_BSW_00379)

Additional module-specific published parameters are listed below if applicable.

10.2 Configuration option

[SWS_IfI_00218] [The IfI library shall not have any configuration options that may affect the functional behavior of the routines. I.e. for a given set of input parameters, the outputs shall be always the same. For example, the returned value in case of error shall not be configurable.] (SRS_LIBS_00001)

However, a library vendor is allowed to add specific configuration options concerning library implementation, e.g. for resources consumption optimization.

A Not applicable requirements

[SWS_IfI_00224] [These requirements are not applicable to this specification.] (SRS_-BSW_00448)