Superscalar Design

Instruction Flow

Virendra Singh

Associate Professor

Computer Architecture and Dependable Systems Lab

Department of Electrical Engineering

Indian Institute of Technology Bombay

http://www.ee.iitb.ac.in/~viren/

E-mail: viren@ee.iitb.ac.in

EE-739: Processor Design

Lecture 5 (28 Jan 2015)

CADSL

Superscalar Pipeline Stages

Two-level Branch Prediction

- BHR adds global branch history
 - Provides more context
 - Can differentiate multiple instances of the same static branch
 - Can correlate behavior across multiple static branches

Sources of Mispredictions

- Lack of history (training time)
- Randomized behavior
 - Usually due to randomized input data
 - Surprisingly few branches depend on input data values
- BHR capacity
 - Correlate to branch that already shifted out
 - e.g., loop count > BHR width
- PHT capacity
 - Aliasing/interference
 - Positive
 - Negative

YAGS Predictor

Based on bi-mode

T/NT PHTs cache
 only the exceptions

 A. N. Eden and T. N. Mudge. The YAGS Branch Prediction Scheme. MICRO, Dec 1998.

Branch Filtering

- Highly-biased branches
 - e.g. '11111'history
 - Eliminated from PHT
- P-Y Chang, M. Evers, and Y Patt.
 Improving Branch Prediction Accuracy by Reducing Pattern History Table Interference. PACT, October 1996.

Alloyed-History Predictors

- Local history vs. global history
- Kevin Skadron, Margaret Martonosi, and Douglas W. Clark. Alloyed Global and Local Branch History: A Robust Solution to Wrong-History Mispredictions. International Journal of Parallel Programming, 31(2), April 2003.

Path History

- Sometimes T/NT history is not enough
- Path history (PC values) can help

Path-Based Branch Predictor

 Ravi Nair. Dynamic Path-Based Branch Correlation.
 International Symposium on Microarchitecture, pp 15-23, December 1995.

Dynamic History Length

Branch history length:

- Some prefer short history (less training time)
- Some require longer history (complex behavior)
- Vary history length
 - Choose through profile/compile-time hints
 - Or learn dynamically

References

- Maria-Dana Tarlescu, Kevin B. Theobald, and Guang R. Gao. Elastic History Buffer: A Low-Cost Method to Improve Branch Prediction Accuracy. ICCD, October 1996.
- Toni Juan, Sanji Sanjeevan, and Juan J. Navarro. Dynamic History-Length Fitting: A Third Level of Adaptivity for Branch Prediction. ISCA, June 1998.
- Jared Stark, Marius Evers, and Patt. Variable Path Branch Prediction. ACM SIGPLAN Notices, 33(11):170-179, 1998

Loop Count Predictors

- To predict last loop iteration's NT branch:
 - Must have length(BHR) > loop count
 - Not feasible for large loop counts
- Instead, BHR has mode bit
 - Once history == '111...11' or '000...00' switch to count mode
 - Now nth entry in PHT trains to NT and predicts nth iteration as last one
 - Now length(BHR) > log₂(loop count) is sufficient
- Used in Intel Pentium M/Core Duo/ Core 2 Duo

Understanding Advanced Predictors

- Four types of history
 - Local (bimodal) history (Smith predictor)
 - Table of counters summarizes local history
 - Simple, but only effective for biased branches
 - Local outcome history (correlate with self)
 - Shift register of individual branch outcomes
 - Separate counter for each outcome history
 - Global outcome history (correlate with others)
 - Shift register of recent branch outcomes
 - Separate counter for each outcome history
 - Path history (overcomes CFG convergence aliasing)
 - Shift register of recent (partial) block addresses
 - Can differentiate similar global outcome histories
- Can combine or "alloy" histories in many ways

Understanding Advanced Predictors

- History length
 - Short history—lower training cost
 - Long history—captures macro-level behavior
 - Variable history length predictors
- Really long history (long loops)
 - Loop count predictors
 - Fourier transform into frequency domain
- Limited capacity & interference
 - Constructive vs. destructive
 - Bi-mode, gskewed, agree, YAGS

Combining or Hybrid Predictors

- Select best history
- Reduce interference w/partial updates
- Scott McFarling. Combining Branch Predictors. TN-36, Digital Equipment Corporation Western Research Laboratory, June 1993.

Branch Classification

- Static (profile-based) branch hints select which prediction to use
 - Static T/Static NT/Dynamic
 - PowerPC y-bit overrides static BTFN
- P-Y Chang, E Hao, TY Yeh, and Y Patt. Branch Classification: a New Mechanism for Improving Branch Predictor Performance. MICRO, Nov. 1994.
- D Grunwald, D Lindsay, and B Zorn. Static Methods in Hybrid Branch Prediction. PACT, October 1998

Multi-Hybrid Predictor

- Generalizes selector to choose from > 2 predictors
- Marius Evers, Po-Yung Chang, and Yale N. Patt. Using Hybrid Branch Predictors to Improve Branch Prediction Accuracy in the Presence of Context Switches. International Symposium on Computer Architecture, pages 3-11, May 1996.

Multiple History Lengths

- Championship Branch Prediction (CBP)
 - 2 contests, standardized methods and traces
- Insight from perceptron BP:
 - Some branches need short history
 - Others need very long history
- Geometric history length (O-GEHL) [Seznec]
 - Geometric series of history lengths
- Tagged Geometric History Length (TAGE)
 - Choose longest matching history

Branch Target Prediction

Partial tags sufficient in BTB

Return Address Stack

- Speculative update is painful
 - On each predicted branch, checkpoint head/tail
 - Further, checkpoint stack contents since speculative pop/push sequence is destructive
 - Conditional call/return causes more headaches

Branch Confidence Estimation

- Limit speculation (energy), reverse predictions, guide fetch for multithreaded processors
- Q Jacobson, E Rotenberg, and JE Smith. Assigning Confidence to Conditional Branch Predictions. MICRO, Dec 1996.

High-Bandwidth Fetch: Collapsing Buffer

- Fetch from two cache blocks, rotate, collapse past taken branches
- Thomas M. Conte, Kishore N. Menezes, Patrick M. Mills and Burzin A. Patel.
 Optimization of Instruction Fetch Mechanisms for High Issue Rates. International
 Symposium on Computer Architecture, June 1995.

High-Bandwidth Fetch: Trace Cache

Instruction Cache

(a) (b)

- Fold out taken branches by tracing instructions as they commit into a fill buffer
- Eric Rotenberg, S. Bennett, and James E. Smith. Trace Cache: A Low Latency Approach to High Bandwidth Instruction Fetching. MICRO, Dec 1996.

Intel Pentium 4 Trace Cache

- No first-level instruction cache: trace cache only
- Trace cache BTB identifies next trace
- Miss leads to fetch from level two cache
- Trace cache instructions are decoded (uops)
- Cache capacity 12k uops
 - Overwhelmed for database applications
 - Serial decoder becomes performance bottleneck

High-Bandwidth Fetch: Loop Buffers

- History: AMD29K Branch Target Cache
 - Don't cache the target address; cache 4 instructions from the target itself
 - Avoid accessing I\$ for first fetch group following a taken branch
 - If loop body is <= 4 instructions, effectively a loop cache
 - Room for 32/64 branch targets
- Also common in DSP designs, under s/w control (e.g. Lucent)
- Introduced in Intel Merom (Core 2 Duo)
 - Fetch buffer detects short backward branches, inhibits refetch from I\$
- Intel Nehalem (Core i7)
 - Moved loop buffer after decoders: contains uops
- Intel Sandybridge
 - General-purpose uop cache (not just loops)
 - 1.5K capacity

High Frequency: Next-line Prediction

- Embed next fetch address in instruction cache
 - Enables high-frequency back-to-back fetch
- Brad Calder and Dirk Grunwald. Next Cache Line and Set Prediction.
 International Symposium on Computer Architecture, pp. 287-296, June 1995.

High Frequency: Overriding Predictors

- Simple, fast predictor turns around every cycle
- Smarter, slower predictor can override
- Widely used: PowerPC 604, 620, Alpha 21264

Advanced Branch Prediction Summary

- Control Flow Speculation
 - Branch Speculation
 - Mis-speculation Recovery
- Branch Direction Prediction
 - Static Prediction
 - Dynamic Prediction
 - Hybrid Prediction
- Branch Target Prediction
- High-bandwidth Fetch
- High-Frequency Fetch

Thank You

