MEAM 520 Lecture 26: Wrap-Up

Cynthia Sung, Ph.D.

Mechanical Engineering & Applied Mechanics

University of Pennsylvania

Centralized: All robots are directed by a centralized planner/controller

If 1 robot is d-DOF, N robots are Nd-DOF State space goes to O(Nd) dimensions

Distributed: Robots make their own decisions

Deadlock/Livelock
Communications complexity

Optimal

Computationally Tractable

Previously: Interesting Problems in Multi-Robots

- Planning
- Task Allocation

Strategy: Decompose into individual robots except at coordination

Previously: Interesting Problems in Multi-Robots

- Planning
- Task Allocation
- Consensus

Strategy: Average values from neighbors

Previously: Interesting Problems in Multi-Robots

- Planning
- Task Allocation
- Consensus
- Flocking

All of these problems are extensions on problems we have looked at in class. The main difference is communication between agents.

Strategy: Balance matching heading and distance from neighbors

Boids, Stanley & Stella Breaking the Ice, 1987 https://www.youtube.com/watch?v=3bTqWsVqyzE

Final Project Reminders

- Presentations next week (3 min/group)
 - 1 min problem definition
 - 1 min results
 - 1 min lessons learned / remaining challenges
- Schedule posted online submit your slides/demos ahead of time
- Final reports due 12/12
 - Remember to include an intro that defines the problem you are solving (there is no lab handout for a final project!)

What we covered this semester

	Lecture	Topic
	1	Introduction
ation	2	Background and Definitions
	3	Rotations in 2D and 3D
	4	Homogeneous Transformations
ient	5	Forward Kinematics of a Serial Manipulator
Planning Position/Orientation	6	Denavit-Hartenberg Parameters
	7	Inverse Position Kinematics
	8	Inverse Orientation Kinematics
	9	Quaternions
	10	Trajectory Planning in Joint Space
	11	Trajectory Planning in Configuration Space
	12	Probabilistic Trajectory Planning
	13	Planning on Other Robot Types
	14	Velocity Kinematics

Lecture	Topic	
15	More Velocity Kinematics	
16	Inverse Velocity Kinematics	
17	Guest: Medical Robotics	
18	Jacobians and Statics	
19	Trajectory Planning with Potential Fields	
20	Guest: Legged Robotics	
21	Joint Space Dynamics	
22	More Joint Space Dynamics	
23	Control and Actuation	
24	Modern Planning and Control	
25	Guest: Multi-Robot Systems	
26	Design	
27	Final Presentations	
28	Final Presentations	

Forward Kinematics (Lab 1)

1) For any serial manipulator, you can draw a sequence of coordinate frames

2) With these frames, you can define **Denavit-Hartenberg parameters**...

cep	$a_i \\ \text{Link Length}$	distance between z_{i-1} and z_i , measured along x_i	
x step	$lpha_i$ Link Twist	angle between z_{i-1} and z_i , measured in the plane normal to x_i (right hand rule)	
step	$d_i \\ \text{Link Offset}$	distance between x_{i-1} and x_i , measured along z_{i-1}	
z st	$ heta_i$ Joint Angle	angle between x_{i-1} and x_i , measured in the plane normal to z_{i-1} (right hand rule)	

3) ...that give you transformation matrices for the manipulator FK

$$\mathbf{T}_n^0 = A_1(q_1) \cdots A_n(q_n)$$

$$A_{i} = \begin{bmatrix} c_{\theta_{i}} & -s_{\theta_{i}}c_{\alpha_{i}} & s_{\theta_{i}}s_{\alpha_{i}} & a_{i}c_{\theta_{i}} \\ s_{\theta_{i}} & c_{\theta_{i}}c_{\alpha_{i}} & -c_{\theta_{i}}s_{\alpha_{i}} & a_{i}s_{\theta_{i}} \\ 0 & s_{\alpha_{i}} & c_{\alpha_{i}} & d_{i} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Inverse Kinematics (Lab 2)

Given
$$\mathbf{H} = \begin{bmatrix} \mathbf{R} & o \\ 0 & 1 \end{bmatrix}$$
 and a certain manipulator with n joints, find $q_1,...,q_n$ such that $\mathbf{T}_n^0(q_1,...,q_n) = \mathbf{H}$

1) Kinematic decoupling allows you to separate position IK from orientation IK

$$\begin{bmatrix} x_c \\ y_c \\ z_c \end{bmatrix} = \begin{bmatrix} o_x - d_6 r_{13} \\ o_y - d_6 r_{23} \\ o_z - d_6 r_{33} \end{bmatrix}$$
position

$$\begin{bmatrix} x_c \\ y_c \\ z_c \end{bmatrix} = \begin{bmatrix} o_x - d_6 r_{13} \\ o_y - d_6 r_{23} \\ o_z - d_6 r_{33} \end{bmatrix} \qquad \mathbf{R}_6^3 = (\mathbf{R}_3^0)^{-1} \mathbf{R} = (\mathbf{R}_3^0)^{\mathrm{T}} \mathbf{R}$$
orientation

2) There are often multiple solutions to the IK problem

3) Algebraic and geometric techniques are useful for finding these solutions

$$\theta_1 = \operatorname{atan2}\left(\frac{o_y}{o_x}\right) - \operatorname{atan2}\left(\frac{a_2 \sin \theta_2}{a_1 + a_2 \cos \theta_2}\right)$$

$$\theta_2 = \cos^{-1}\left(\frac{o_x^2 + o_y^2 - a_1^2 - a_2^2}{2a_1a_2}\right)$$

Trajectory Planning (Labs 3 and 5)

1) Grid-based search is resolutioncomplete but computationally expensive

3) Potential fields are computationally cheap but may have local minima

2) Sampling-based planners are probabilistically complete

4) Kinodynamic planners incorporate dynamics

Jacobians (Labs 4 and 5)

1) The velocity of a point on a manipulator can be described with using the manipulator Jacobian

2) Velocity FK and IK involve manipulating a matrix equation

$$v_n^0 = J_v \dot{q}$$

$$v_n^0 = J_v \dot{q} \qquad \dot{q} = J_v^{-1} v_n^0$$

forward velocity kinematics

inverse velocity kinematics

3) Singularities occur whenever a robot loses the ability to move its end effector in a certain direction (J loses rank)

4) When a robot is static, endpoint forces and torques can be computed using the transpose of the Jacobian

Application: Potential Fields

Dynamics and Control

1) **Euler-Lagrange**: For small DOF, closed-form manipulator dynamics can be described using the manipulator equation

$$\tau = D(q)\ddot{q} + C(q,\dot{q})\dot{q} + g(q)$$

$$D = \sum_{i=1}^{N} (m_i J_{vci}^{\mathsf{T}} J_{vci} + J_{\omega i}^{\mathsf{T}} R_i I_i R_i^{\mathsf{T}} J_{\omega i}) \qquad g = \frac{\partial}{\partial q} \sum_{i=1}^{N} m_i \vec{g} \cdot \vec{r}_i$$

$$(C\dot{q})_{k} = \sum_{i,j} \frac{1}{2} \left(\frac{\partial d_{kj}}{\partial q_{i}} + \frac{\partial d_{ki}}{\partial q_{j}} - \frac{\partial d_{ij}}{\partial q_{k}} \right) \dot{q}_{i} \dot{q}_{j}$$

- 2) **Newton-Euler**: For large DOF, iterative approaches provide force info for a particular time evolution
 - 1. Start with $\omega_0 = 0$, $\alpha_0 = 0$, $a_{c,0} = 0$, $a_{e,0} = 0$
 - 2. Solve kinematic constraints for *i* from 1 to *n*
 - 3. Start with $f_{n+1} = 0$, $\tau_{n+1} = 0$
 - 4. Solve force/moments for i from n to 1

3) Given these dynamics, we can generate feedback and feedforward controllers to follow desired trajectories and estimate state

Concept Map of Robotics

Aerial/Underwater

in 3D

minus fixed based

Mobile Robots

state estimation localization and mapping

plus DOF

Legged Robots

underactuation stability contact dynamics

Manipulator Arms

kinematics motion planning statics/dynamics control design

times N

Multi-Robot Systems

communication task allocation consensus failure recovery plus environment

Applications

human-robot interaction self-driving cars medical robotics manufacturing

minus rigidity

Soft/Semirigid Robots

continuum mechanics underactuation model simplification

What's on the horizon?

https://youtu.be/HSA5Bq-1fU4

Amazon Warehouse

Multiple robots in an **structured space** with **global tracking** and **no human** interference.

Solved

https://youtu.be/aaOB-ErYq6Y

Waymo Self-Driving Car

Multiple robots in an **structured space** with **local tracking** and **human** interference.

Open questions:

- **Deep learning** for car/pedestrian detection, behavior prediction
- Motion planning long range vs short range
- Localization/SLAM when driving on/off the map
- Multi-robot systems for multi-car communications

https://youtu.be/97KX-j8Onu0

Manufacturing Line

Robot in an **structured space** manipulating **identical parts** with **no human** interference.

Solved

https://youtu.be/zLXvzitRSCQ

Picking Challenge

Multiple objects of different **shapes** with **inaccurate tracking**.

Open questions:

- Deep learning for grasp planning
- Motion planning/Localization in the presence of uncertainty
- **Soft material robotics** for robust grasping

The **Denavit-Hartenberg transform** results from successive rotations and translations via the four DH parameters

The transform from i to i-1 is

Three DH parameters will be **constant** for each joint's transformation, and one will **vary**.

Plug DH parameters into the above formula to find each joint's transformation matrix.

The final transformation matrix from tip to base is

$$\mathbf{T}_n^0 = A_1(q_1) \cdots A_n(q_n)$$

The **Denavit-Hartenberg transform** results from successive rotations and translations via the four DH parameters

a parameterization for homogeneous transformations

The transform from i to i-1 is

Where do we put the links and joints?

Marchese et al. SoRo 2015

$$A_{i} = \begin{bmatrix} c_{\theta_{i}} & -s_{\theta_{i}}c_{\alpha_{i}} & s_{\theta_{i}}s_{\alpha_{i}} & a_{i}c_{\theta_{i}} \\ s_{\theta_{i}} & c_{\theta_{i}}c_{\alpha_{i}} & -c_{\theta_{i}}s_{\alpha_{i}} & a_{i}s_{\theta_{i}} \\ 0 & s_{\alpha_{i}} & c_{\alpha_{i}} & d_{i} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Three DH parameters will be **constant** for each joint's transformation, and one will **vary**.

Plug DH parameters into the above formula to find each joint's transformation matrix.

The final transformation matrix from tip to base is

$$\mathbf{T}_n^0 = A_1(q_1) \cdots A_n(q_n)$$

These robots actually have an infinite number of DOF!

Where do we put the links and joints?

S, Mises (Avg: 75%) 0.07 bar 0.08 bar 0.1 ba Ecoflex 0030 S, Mises (Avg: 75%) +9.000e+06 0.24 bar 0.26 bar 0.32 ba Ecoflex 0050 Elsayed et al. SoRo 2014.

Marchese et al. SoRo 2015

The **Denavit-Hartenberg transform** results from successive rotations and translations via the four DH parameters

Where do we put the links and joints?

Marchese et al. SoRo 2015

 A_{i+1} matrix depends on θ_i !

$a_i \\ \text{Link Length}$	distance between z_{i-1} and z_{i} , measured along x_{i}
$lpha_{\!\scriptscriptstyle i}$ Link Twist	angle between z_{i-1} and z_i , measured in the plane normal to x_i (RHR)
$\frac{d_i}{\text{Link Offset}}$	distance between x_{i-1} and x_i , measured along z_{i-1}
$ heta_i$ Joint Angle	angle between x_{i-1} and x_i , measured in the plane normal to z_{i-1} (RHR)

The **Denavit-Hartenberg transform** results from successive rotations and translations via the four DH parameters

Where do we put the links and joints?

Marchese et al. SoRo 2015

$$A_{i} = \begin{bmatrix} R(z_{i-1}, \theta_{i}) & L_{i} \cos(\theta_{i}/2) \\ R(z_{i-1}, \theta_{i}) & L_{i} \sin(\theta_{i}/2) \\ 0 & 0 & 1 \end{bmatrix}$$

a. Link Length	distance between z_{i-1} and z_{i} , measured along x_i
$lpha_i$ Link Twist	angle between z_{i-I} and z_i , measured in the plane normal to x_i (RHR)
d_i Link Offset	distance between x_{i-1} and x_i , measured along z_{i-1}
$ heta_i$ Joint Angle	angle between x_{i-I} and x_i , measured in the plane normal to z_{i-I} (RHR)

Where do we put the links and joints?

Marchese et al. SoRo 2015

$$A_{i} = \begin{bmatrix} L_{i}\cos(\theta_{i}/2) \\ R(z_{i-1}, \theta_{i}) & L_{i}\sin(\theta_{i}/2) \\ 0 & 0 & 1 \end{bmatrix}$$

Rigid robots can resist external forces using motors and material stiffness.

Where do we put the links and joints?

Marchese et al. SoRo 2015

Reduced Parameter Models for Compliant Structures

Yim, Sung, Miyashita, Rus, Kim, IJRR 37.6 (2018): 611-628.

$$\tau + J^T f_{ext} = D(q)\ddot{q} + C(q,\dot{q})\dot{q} + g(q) + Kq$$

Closed-Loop Dynamic Curvature Controller

(Tracking of a cosinusoidal reference)

Compliant Origami Legs

Control Mechanics using Geometry

Deyuan Chen

Prof. James Pikul

Jaimie Carlson

Control Mechanics using Geometry

Morphological Computation

Appropriate use of the body morphology leads to a reduction of the total amount of computation that is required to complete the task.

What is robotics?

Robotics is a subset of Mechatronics, the synergistic integration of mechanics, electronics, controls, and computer science.

Preface of SHV

Subfields of robotics (non-exhaustive)

DESIGN

mechanisms actuators kinematics/dynamics bioinspired design manufacturing

TYPES/APPLICATIONS

legged mobile aerial underwater micro/nano manipulators and graspers parallel robots soft robots

SENSING

force and tactile sensing perception computer vision range sensing sensor fusion

ALGORITHMS

learning
motion planning
navigation
localization and mapping
failure recovery
robot networks
multi-robot coordination
scheduling

CONTROL

PID control
adaptive control
optimization and optimal control
collision avoidance
distributed robotics
grasping and manipulation
human-robot interaction
underactuated robotics

Next time: Final Project Presentations

22: Kulkarni, Sharma

Dec. 4	Dec. 6
Dec. 4 10: Ma, Wang 23: Lyu, Peng, Zhang 24: Li, Misra 9: Chang, Li 32: Bernstein, Schwartz, Wang, Winograd 15: Remba, Walsh 29: Shen, Wang 33: Brink, Glen 27: Blumenstein, Ingerman, Moberg 17: Li, Yang 25: Gollapudi, Patel, Wang 6: Hu, Yang 41: Zhao 13: Chari, Shinkle 31: Lan, Xie 36: Kopli 44: Shur 2: Gelb, Mitchnik, Raizen 35: Huang 1: Kao, Shatalin 11: Cao, Zhang, Zheng	Dec. 6 39: Sorna 49: Chordia, Shirsath 38: Stabile 14: Beser, Gui, Kustikova, Salam 34: Dcunha 3: Gu, Zhao 8: Brundage, Grey, Hawkes, van Hoffelen 7: Chun, Hussey, Mok, Zhao 19: Jia, Zhou 4: Collins, Fine, Tu 16: Hussein, Wain 43: Mohan 5: Wang, Yu, Zhang 42: Huang 28: He 37: Ning 26: Sun, Zheng 20: Arcot, Vasudevan 40: Sekar 30: Bhat, Kalluraya, Yadav 21: Kaufman, Savant
18: Friberg	12: Hsu, Scheuer