

WOJEWÓDZKI KONKURS PRZEDMIOTOWY Z FIZYKI

organizowany przez Łódzkiego Kuratora Oświaty dla uczniów szkół podstawowych w roku szkolnym 2022/2023

TEST - ETAP REJONOWY

- Na wypełnienie testu masz 90 min.
- Arkusz liczy 14 stron i zawiera 21 zadań, w tym brudnopis.
- Przed rozpoczęciem pracy sprawdź, czy Twój arkusz jest kompletny. Jeżeli zauważysz usterki, zgłoś je Komisji Konkursowej.
- Zadania czytaj uważnie i ze zrozumieniem.
- Odpowiedzi wpisuj długopisem bądź piórem, kolorem czarnym lub niebieskim.
- Dbaj o czytelność pisma i precyzję odpowiedzi.
- W zadaniach zamkniętych zaznacz prawidłową odpowiedź, wstawiając znak X we właściwym miejscu.
- Jeżeli się pomylisz, błędne zaznaczenie otocz kółkiem i zaznacz znakiem X inną odpowiedź.
- Oceniane będą tylko te odpowiedzi, które umieścisz w miejscu do tego przeznaczonym.
- Do każdego numeru zadania podana jest maksymalna liczba punktów możliwa do uzyskania za prawidłową odpowiedź.
- Pracuj samodzielnie. Postaraj się udzielić odpowiedzi na wszystkie pytania.
- Nie używaj korektora. Jeśli pomylisz się w zadaniach otwartych, przekreśl błędną odpowiedź i wpisz poprawną.
- Korzystaj tylko z przyborów i materiałów określonych w regulaminie konkursu.

Powodzenia

Maksymalna liczba punktów - 100	
Liczba uzyskanych punktów	
lmię i nazwisko ucznia: wypełnia Komisja Koni	kursowa po zakończeniu sprawdzenia prac
Podpisy członków komisji sprawdzających	prace:
1(imię i nazwisko)	(podpis)
2. (imię i nazwisko)	(podpis)

Na podstawie wykresu szybkości od czasu dla jadącego samochodu oblicz pokonaną przez niego drogę w czasie pierwszych 30 s.

Zadanie nr 2

Motocyklista przebył ruchem jednostajnym prostoliniowym z prędkością v_1 =15 m/s drogę s_1 =8 km, a następnie jechał z przyspieszeniem a=0,1 m/s² przez czas t=1/6 h. Oblicz średnią szybkość motocyklisty na całej drodze.

...../8pkt.

W ZOO do zważenia żyrafy użyto dwóch identycznych wag. Obie przednie nogi żyrafy ustawiono na pierwszej wadze, a obie tylne nogi – na drugiej. Gdy żyrafa pozostawała nieruchoma waga pierwsza pokazała 3000 N, a waga druga – 4000N. Oblicz masę żyrafy. Przyspieszenie ziemskie wynosi 10 m/s².

Zadanie nr 4

Na rysunku przedstawiono wykresy zależności przyspieszenia od działającej siły uzyskane na podstawie pomiarów przyspieszenia dwóch ciał A i B o różnych masach. Pomiary zostały wykonane w warunkach, gdy na ciała działały różne siły. Ustal, który z wykresów dotyczy ciała o większej masie.

...../4 pkt.

Oblicz przyspieszenie układu klocków przedstawionych na rysunku. Przyjmij, że współczynnik tarcia klocka o stół wynosi f=0,2, a przyspieszenie ziemskie g=10 m/s².

																			./	11		0	ı	p	k	t	
--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	----	----	--	---	---	---	---	---	--

Oblicz energię kinetyczną i potencjalną piłki w położeniu B, jeżeli piłka spada swobodnie z położenia A na wysokości h nad powierzchnią ziemi. Energia potencjalna piłki na wysokości h wynosi E_p= 90J.

...../4 pkt.

(liczba uzyskanych punktów / maksymalna liczba punktów

Zadanie nr 7

Wykres przedstawia zależność drogi od czasu dla dwóch ciał: ciała A o masie 4kg i ciała B o masie 9 kg. Oblicz różnicę energii kinetycznych tych ciał.

...../7 pkt.

Wykres przedstawia zależność energii potencjalnej od czasu dla wiadra z zaprawą wciąganego przez robotnika na piętro budynku. Napisz jakim ruchem wciągane jest wiadro. Odpowiedź uzasadnij.

...../2 pkt.

(liczba uzyskanych punktów / maksymalna liczba punktów

Zadanie nr 9

Aby przygotować naleśniki mama potrzebuje ok. 35 dag mąki pszennej o gęstości 70 dag/dm³. Oblicz, ile szklanek mąki powinna odmierzyć mama na ciasto naleśnikowe, jeżeli pojemność jednej szklanki wynosi 0,2 dm³.

A. 3,5

B. 3

C. 2,5

D. 2

...../1 pkt.

(liczba uzyskanych punktów / maksymalna liczba punktów)

Zadanie nr 10

Pusty słoik ma masę m =250 g, napełniony wodą – m_1 = 750 g, a napełniony olejem – m_2 = 710 g. Oblicz gęstość oleju. Gęstość wody d_w = 1000 kg/m³.

...../7 pkt.

Korzystając z danych na wykresie, oblicz wartość ciśnienia atmosferycznego na wysokości 2,5 km. Ciśnienie atmosferyczne na poziomie morza wynosi 10⁵Pa.

p₀ – ciśnienie atmosferyczne na poziomie morza

p – ciśnienie na danejwysokości

h - wysokość nad poziomem morza

...../2 pkt.

(liczba uzyskanych punktów / maksymalna liczba punktów)

Zadanie nr 12

Do dwóch jednakowych menzurek nalano wody i nafty. Ustal, w jakim stosunku powinny być wysokości słupów wody i nafty, aby ciśnienia wywierane na dno każdej menzurki były jednakowe. Gęstość wody wynosi 1000 kg/m³, a gęstość nafty – 800 kg/m³.

Zaznacz na rysunku menzurkę, w której znajduje się woda.

...../5 pkt.

Uczeń zawiesił metalową figurkę na siłomierzu. Odczytał wskazanie siłomierza – F_1 =11,3 N. Następnie zawieszoną na siłomierzu figurkę zanurzył w wodzie i ponownie odczytał wskazanie siłomierza – F_2 =10,3 N. Oblicz gęstość materiału, z którego wykonana jest figurka. Gęstość wody d=1000 kg/m³. Przyspieszenie ziemskie g= 10 m/s².

		-	•			•				•			•			•	-			./	7	7	p	k	t.	
--	--	---	---	--	--	---	--	--	--	---	--	--	---	--	--	---	---	--	--	----	---	---	---	---	----	--

(liczba uzyskanych punktów / maksymalna liczba punktów)

Zadanie nr 14

Tabela zawiera temperaturę początkową T_o , temperaturę końcową T_k oraz przyrost temperatury ΔT . Uzupełnij brakujące dane.

T _o (°C)	T _k (⁰ C)	ΔT (°C)
	0	26
-4		19

...../2 pkt.

Oblicz ilość ciepła jaką należy dostarczyć bryłce lodu o masie m=2 kg i temperaturze t=-10°C, aby zamienić ją w wodę o temperaturze t_k =100 °C. Ciepło topnienia lodu L=332 10^3 J/kg, ciepło właściwe lodu c_l = 2100 J/kgK, ciepło właściwe wody c_w =4200 J/kgK.

...../9 pkt.

Na poziomej płycie wykonanej z izolatora leży metalowa puszka. Opisz w jaki sposób zachowa się puszka, jeśli zbliżymy do niej (bez dotykania) dodatnio naelektryzowaną laskę. Wyjaśnij zachowanie puszki.

...../4 pkt.

(liczba uzyskanych punktów / maksymalna liczba punktów)

Zadanie nr 17

Napięcie elektryczne między chmurą a powierzchnią Ziemi podczas wyładowania atmosferycznego może wynosić 100 mln V, a przepływający ładunek wynosi 30 C. Oblicz ile wody o temperaturze początkowej 20°C można zagotować zużywając energię z wyładowania atmosferycznego. Ciepło właściwe wody c_w=4200 J/kgK.

...../6 pkt.

Wykonano pomiary napięcia zasilania i odpowiadające im natężenia prądu elektrycznego dla dwóch spiral grzejnych. Wykorzystaj wyniki pomiarów i porównaj oporności obu spiral.

Wyniki pomiarów

Spirala z wolframu

Spirala z chromonikieliny

U(V)	10	20	40	80
I(A)	2	4	8	16

U(V)	10	20	40	80
I(A)	4	8	16	32

- A. Oporności obu spiral są jednakowe
- B. Oporność spirali z chromonikieliny jest dwa razy większa od oporności spirali z wolframu
- C. Oporność spirali z chromonikieliny jest dwa razy mniejsza od oporności spirali z wolframu
- D. Oporność spirali z chromonikieliny jest cztery razy mniejsza od oporności spirali z wolframu

																		./	1	1	p		k۱	t.	
--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	----	---	---	---	--	----	----	--

(liczba uzyskanych punktów / maksymalna liczba punktów)

Zadanie nr 19

Grzałka czajnika elektrycznego ma moc P=1840 W i jest przeznaczona do pracy pod napięciem 230 V. Oblicz czas, w którym przez grzałkę przepłynie ładunek 1500 C.

...../4 pkt.

Ania suszyła włosy suszarką o mocy 1200W w czasie 10 min. 75% energii prądu elektrycznego zostało zamienione w pracę mechaniczną silnika suszarki, 10% w energię cieplną na ogrzanie strumienia powietrza, a reszta energii została rozproszona. Oblicz sprawność suszarki oraz ilość energii całkowitej i rozproszonej w czasie suszenia włosów.

/6	pkt.
----	------

Na podstawie przedstawionego schematu obwodu elektrycznego podaj napięcie między punktami A i B, a następnie oblicz natężenia prądów zaznaczone na rysunku.

																				./	9	pk	t.
-	-	-	-	-	-	-	-	-	-	-	-	•	-	-	•	•	-	•	•	••	•	P	•

BRUDNOPIS

