

Repaso clasificación procesos estocásticos

Discreta

Variable

Evolución anual del rating crediticio de una institución

Sistema de control de inventarios de tiempo fijo

Discreto

Fuente: https://www.informit.com/articles/article.aspx?p=2167438&seqNum=7

Parámetro

Estado de falla y reparación de una máquina

Fuente: https://cdnc.itec.kit.edu/downloads/RC1_WS_2011_lecture5.pdf

Dinámica de stocks en la bolsa

Fuente: https://finance.yahoo.com/quote/AAPL/

Continuo

Cadenas de Markov de parámetro continuo

El parámetro suele ser el tiempo, por lo tanto, en la bibliografía se conoce como:

Continous Time Markov Chains (CTMC)

Clasificación por estados:

- Estado finito
- Estado infinito

Cadenas de Markov de tiempo continuo

Si intentamos achicar el paso del parámetro t, en la probabilidad de transición:

Ejemplo: robot de picking

https://www.mecalux.com.ar/blog/robot-de-picking

tiempo

Cadenas de Markov de tiempo continuo

Si intentamos achicar el paso del parámetro t, en la probabilidad de transición:

Dado que la probabilidad de transición depende de la extensión de Δt :

- A menor ventana menor probabilidad de observar transición.
- Las probabilidades de transición tienden a "0".

¿Cómo trabajamos con parámetro continuo?

Cadenas de Markov de tiempo continuo

Siendo T(t) la matriz de transición de paso continuo t.

Si derivamos respecto del tiempo, podemos encontrar la matriz de tasas de transición:

$$\frac{dT(t)}{dt} = \lim_{\Delta t \to 0} \frac{T(t + \Delta t) - T(t)}{\Delta t}$$

Recordemos Champan-Kolmogórov

En una Cadena de Markov de tiempo discreto que sea homogénea, se cumple:

$$T^{m+s} = T^m \times T^s$$

Entonces, aplicando la misma regla en CTMC:

$$T(t + \Delta t) = T(t)T(\Delta t)$$

Cadenas de Markov de tiempo continuo

Aplicando Chapman-Kolmogórov en D:

$$\frac{dT(t)}{dt} = \lim_{\Delta t \to 0} \frac{T(t + \Delta t) - T(t)}{\Delta t} = \lim_{\Delta t \to 0} \frac{T(t)T(\Delta t) - T(t)}{\Delta t}$$

(Recordemos que son matrices)

$$= \lim_{\Delta t \to 0} \frac{T(t)[T(\Delta t) - I]}{\Delta t} = T(t) \lim_{\Delta t \to 0} \frac{T(\Delta t) - I}{\Delta t}$$

Denominamos Q a una matriz de tasa de saltos o matriz generadora:

$$Q = \lim_{\Delta t \to 0} \frac{T(\Delta t) - I}{\Delta t}$$

Por lo tanto, reemplazando en la expresión anterior de ${}^{dT(t)}\!/_{dt}$, llegamos a la siguiente ecuación diferencial:

$$\frac{dT(t)}{dt} = T(t)Q$$

Se denomina Chapman-Kolmógorov Forward Equation.

$$\frac{dT(t)}{dt} = T(t)Q$$

Intuición:

- La matriz de transición T(t) depende de cuánto tiempo t pasa.
- La ecuación relaciona la tasa de cambio de probabilidades, con la probabilidad acumulada de transición.
- Esta relación se logra introduciendo el concepto de matriz generadora o de tasa de saltos (Q)

Matriz generadora infinitesimal

$$Q = \begin{bmatrix} q_{aa} & q_{ab} & q_{ac} & \cdots & q_{an} \\ q_{ba} & q_{bb} & q_{bc} & \cdots & q_{bn} \\ q_{ca} & q_{cb} & q_{cc} & \cdots & q_{cn} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ q_{na} & q_{nb} & q_{nc} & \cdots & q_{nn} \end{bmatrix}$$

Las tasas q_{ij} de cada componentes son escalares, representan la tasa de transición o de saltos entre estados.

La ecuación diferencial tiene solución formal:

$$T(t) = e^{tQ}$$

Aparece la exponencial.

Esto se puede expresar como una serie con una expansión de Taylor:

$$T(t) = e^{tQ} = I + tQ + \frac{t^2Q^2}{2!} + \dots + \frac{t^nQ^n}{n!}$$

Veamos qué pasa con los componentes:

$$T(t) = I + tQ + \frac{t^2Q^2}{2!} + \dots + \frac{t^nQ^n}{n!}$$

Si el t es muy chico, los términos de mayor orden son despreciables (más adelante vamos a ver el significado)

$$T(t) = I + tQ + \varepsilon(t)t$$

$$Si\lim_{t\to 0}\varepsilon(t)=0$$

Por ejemplo, del estado i al j en un lapso de tiempo t:

$$T(t) = \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{bmatrix} + t \begin{bmatrix} q_{aa} & q_{ab} & q_{ac} & \cdots & q_{an} \\ q_{ba} & q_{bb} & q_{bc} & \cdots & q_{bn} \\ q_{ca} & q_{cb} & q_{cc} & \cdots & q_{cn} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ q_{na} & q_{nb} & q_{nc} & \cdots & q_{nn} \end{bmatrix} + \varepsilon(t)t$$

Si p_{ij} son los componentes de T(t), veamos algunos ejemplos:

$$p_{ab} = tq_{ab} + \varepsilon(t)t$$

$$p_{bb} = 1 + tq_{bb} + \varepsilon(t)t$$

Generalizando:

Probabilidad de transición entre estados, con tasa de transición q_{ij} :

$$p_{ij} = tq_{ij} + \varepsilon(t)t$$
 $i \neq j$

Probabilidad de permanencia entre estados, con tasa de permanencia q_{ii} :

$$p_{ii} = 1 + tq_{ii} + \varepsilon(t)t$$

¿Qué son las tasas q_{ij} ?

Eventos en parámetro continuo

- Proceso sin memoria: la realización de un evento aleatorio en un intervalo $[t_0, t_0 + t]$ depende únicamente de la longitud t del intervalo y no de la posición en el tiempo.
- La distribución por excelencia que permite el proceso sin memoria es la exponencial.
- La duración de tiempo, un instante antes de producirse un evento, es una variable $T \sim \exp(\lambda)$.

• Siendo λ , la tasa de ocurrencia de un evento.

Distribución exponencial

Función de densidad de probabilidad:

$$f(x) = \lambda e^{-\lambda x}$$

Acumulada de densidad de probabilidad:

$$F(x) = 1 - e^{-\lambda x}$$

Esperanza:

$$\mathbb{E}[x] = \frac{1}{\lambda}$$

https://www.sciencedirect.com/topics/mathematics/exponential-distribution

Tasas de permanencia y ocurrencia

Al aumentar el tiempo, siendo una variable discreta que sigue una distribución exponencial:

La probabilidad de transición aumenta, por lo tanto la tasa de transición es:

$$q_{ij} = \lambda_{ij}$$

La probabilidad de permanencia disminuye, por lo tanto la tasa de permanencia es:

$$q_{ii} = -\lambda_{ii}$$

Tasa de permanencia

■ El tiempo que pasa en un estado es una variable $T \sim \exp(\lambda)$.

La probabilidad de no transicionar, es el caso que el evento no ocurra:

$$p_{ii}(t) = P(X_{t_0+t} = i | X_{t_0} = i) = 1 - \lambda_{ii}t + \varepsilon(t)t$$

Si $t \rightarrow 0$:

$$\lambda_{ii} = \lim_{t \to 0} \frac{1 - p_{ii}(t)}{t}$$

Tasa de transición

La probabilidad de transicionar, es el caso que el evento ocurra:

$$p_{ij}(t) = P(X_{t_0+t} = j \mid X_{t_0} = i) = \lambda_{ij}t + \varepsilon(t)t \quad \text{si } i \neq j$$

Si $t \rightarrow 0$:

$$\lambda_{ij} = \lim_{t \to 0} \frac{p_{ii}(t)}{t}$$

Intuición en la probabilidad de permanencia

• Probabilidad de que el evento no ocurra en $[t_0, t_0 + t]$, tal que no ocurrió todavía en t.

 $Si\lim_{t\to 0}\varepsilon(t)=0$

Intuición en la probabilidad de transición

■ Probabilidad de que el evento ocurra en $[t_0, t_0 + t]$, tal que no ocurrió todavía en t.

 $Si\lim_{t\to 0}\varepsilon(t)=0$

Regla de sumatoria de tasas de transición

En Cadenas de Markov discreto se cumple:

$$\sum_{j} p_{ij}(t) = 1$$

En Cadenas de Markov de Tiempo Continuo, se puede demostrar:

$$\sum_{i \neq j} q_{ij} = 0$$

Regla de sumatoria de tasas de transición

Partiendo del resultado anterior:

$$\sum q_{ij} = 0$$

Aislando la tasa de permanencia:

$$q_{ii} + \sum_{i \neq j} q_{ij} = 0$$

$$q_{ii} = -\sum_{i \neq j} q_{ij}$$

Esta expresión relaciona la tasa de permanencia con la de transición a otros estados.

Matriz infinitesimal

Por lo tanto la matriz generadora infinitesimal se puede expresar como:

$$Q = \begin{bmatrix} -\sum_{j \neq a} q_{aj} & q_{ab} & q_{ac} & \cdots & q_{an} \\ q_{ba} & -\sum_{j \neq b} q_{bj} & q_{bc} & \cdots & q_{bn} \\ q_{ca} & q_{cb} & -\sum_{j \neq c} q_{cj} & \cdots & q_{cn} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ q_{na} & q_{nb} & q_{nc} & \cdots & -\sum_{j \neq n} q_{nj} \end{bmatrix}$$

Ejemplo: grafo de matriz generadora

$$Q = \begin{bmatrix} -\sum_{j \neq a} q_{aj} & q_{ab} & q_{ac} & \cdots & q_{an} \\ q_{ba} & -\sum_{j \neq b} q_{bj} & q_{bc} & \cdots & q_{bn} \\ q_{ca} & q_{cb} & -\sum_{j \neq c} q_{cj} & \cdots & q_{cn} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ q_{na} & q_{nb} & q_{nc} & \cdots & -\sum_{j \neq n} q_{nj} \end{bmatrix}$$

Con el método de sistemas de ecuaciones de Chapman-Kolmogórov:

$$\pi T(t) = \pi$$

Derivamos respecto de t:

$$\frac{d(\pi T(t))}{dt} = \frac{d(\pi)}{dt}$$

 π es un vector de escalares, que representan la probabilidad.

Por lo tanto:

$$\pi \frac{d(\mathbf{T}(\mathbf{t}))}{dt} = \overline{\mathbf{0}}$$

$$\pi Q = \overline{0}$$

$$[p_{a} \quad p_{b} \quad p_{c} \quad \dots \quad p_{n}] \begin{bmatrix} q_{aa} & q_{ab} & q_{ac} & \cdots & q_{an} \\ q_{ba} & q_{bb} & q_{bc} & \cdots & q_{bn} \\ q_{ca} & q_{cb} & q_{cc} & \cdots & q_{cn} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ q_{na} & q_{nb} & q_{nc} & \cdots & q_{nn} \end{bmatrix} = \overline{0}$$

Sabiendo que:

$$\sum_{i} p_i = 1$$

Agregamos la ecuación adicional al sistema para evitar que sea indeterminado:

$$[p_{a} \quad p_{b} \quad p_{c} \quad \dots \quad p_{n}] \begin{bmatrix} q_{aa} & q_{ab} & q_{ac} & \cdots & q_{an} & 1 \\ q_{ba} & d_{bb} & q_{bc} & \cdots & q_{bn} & 1 \\ q_{ca} & q_{cb} & q_{cc} & \cdots & q_{cn} & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots & 1 \\ q_{na} & q_{nb} & q_{nc} & \cdots & q_{nn} & 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ \dots \\ 1 \end{bmatrix}$$

$$[p_{a} \quad p_{b} \quad p_{c} \quad \dots \quad p_{n}] \begin{bmatrix} q_{aa} & q_{ab} & q_{ac} & \cdots & q_{an} & 1 \\ q_{ba} & q_{bb} & q_{bc} & \cdots & q_{bn} & 1 \\ q_{ca} & q_{cb} & q_{cc} & \cdots & q_{cn} & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots & 1 \\ d_{na} & q_{nb} & q_{nc} & \cdots & q_{nn} & 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ \dots \\ 1 \end{bmatrix}$$

$$\pi A = B$$

Si resolvemos la inversa de A, llegamos a la solución.

$$\pi = BA^{-1}$$

En una línea industrial dos máquinas hacen picking automático de piezas en paralelo.

Las máquinas suelen fallar siguiendo un proceso estocástico.

Para la máquina 1 la tasa de fallas/mes es de $\lambda_1=10\,$ y para la máquina 2 de $\lambda_2=8\,.$

Ocurrida la falla, una persona especialista de mantenimiento las repara con tasas de $\mu_2=11$ y $\mu_2=7$ reparaciones/mes.

Toshiba Piece-picking Robot, https://www.youtube.com/watch?v=Snf2D1v3y9s

Agentes:

Tasas de transición:

Agentes:

- Máquina 1 (M1)
- Máquina 2 (M2)
- Especialista de Mantenimiento (R)

Tasas de transición:

- Falla máquina 1 (λ_1)
- Falla máquina 2 (λ_2)
- Reparación máquina 1 (μ_1)
- Reparación máquina 2 (μ_2)

Estados de los agentes *(no es lo mismo que del sistema)*:

Estados de los agentes *(no es lo mismo que del sistema)*:

- M1: en falla / en producción.
- M2: en falla / en producción.
- R: ocioso / reparación M1 / reparación M2.

Espacio de estados del sistema:

Espacio de estados del sistema (discusión):

- Máquina 1 y Máquina 2 en producción.
- Máquina 1 en reparación, máquina 2 en producción.
- Máquina 2 en reparación, máquina 1 en producción.
- Máquina 1 en reparación y máquina 2 en reparación.

Espacio de estados del sistema:

- Máquina 1 y Máquina 2 en producción.
- Máquina 1 en reparación, máquina 2 en producción.
- Máquina 2 en reparación, máquina 1 en producción.
- Máquina 1 en reparación y máquina 2 en reparación.

Espacio de estados del sistema:

- Máquina 1 y Máquina 2 en producción.
- Máquina 1 en reparación, máquina 2 en producción.
- Máquina 2 en reparación, máquina 1 en producción.
- Máquina 1 en reparación y máquina 2 en reparación.

Ejemplo: grafo y matriz de tasas

Espacio de estados del sistema:

Referencias:

- M1: Máquina 1.
- M2: Máquina 2.
- R: Especialista de Mantenimiento.

Matriz de transición de tasas (generadora):

Matriz de transición de tasas (generadora):

$$Q = \begin{bmatrix} -\lambda_1 - \lambda_2 & \lambda_1 & \lambda_2 & 0 & 0 \\ \mu_1 & -\lambda_1 - \mu_1 & 0 & \lambda_2 & 0 \\ \mu_2 & 0 & -\lambda_2 - \mu_2 & 0 & \lambda_1 \\ 0 & 0 & \mu_1 & -\mu_1 & 0 \\ 0 & \mu_2 & 0 & 0 & -\mu_2 \end{bmatrix} \begin{array}{l} \text{M1 y M2 en producción} \\ \text{M1 reparación, M2 producción} \\ \text{M2 reparación, M1 producción} \\ \text{M1 y M2 reparación (R en M1)} \\ \text{M1 y M2 reparación (R en M2)} \\ \end{array}$$

A partir de los datos de tasas de reparación y falla, se quiere dimensionar la capacidad operativa de la planta para confeccionar el master plan para el siguiente período.

Sabiendo las cadencias de producción de M1 y M2: ¿Cómo se puede estimar la capacidad operativa?

Calculamos el estacionario:

$$[p_0 \quad p_1 \quad p_2 \quad p_3 \quad p_4] \begin{bmatrix} -\lambda_1 - \lambda_2 & \lambda_1 & \lambda_2 & 0 & 0 & 1 \\ \mu_1 & -\lambda_1 - \mu_1 & 0 & \lambda_2 & 0 & 1 \\ \mu_2 & 0 & -\lambda_2 - \mu_2 & 0 & \lambda_1 & 1 \\ 0 & 0 & \mu_1 & -\mu_1 & 0 & 1 \\ 0 & \mu_2 & 0 & 0 & -\mu_2 & 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$

Luego, podemos estimar:

- Probabilidad de estar en producción, output de producto máximo.
- Probabilidad de estar en reparación, costo de mantenimiento, pérdida de tiempo productivo.
- **-** ...

Caso de uso: carga de vehículos eléctricos

Campo de estudio en SmartGrid: Ing. Eléctrica + TI + Comunicación.

Sikeridis et. Al (2020) "Joint Capacity Modeling for Electric Vehicles in V2I-enabled Wireless Charging Highways"

Investigación en Autopistas con carga inalámbrica.

- Capacidad de carga y comunicación de la autopista.
- Modelización con CTMC de estado finito.
- Performance demanda/consumo.

Fig. 1. Wireless Charging Highway Architecture

Fig. 2. Continuous-time Markov Chain for WCH Joint Capacity Modeling

Fuente: https://www.researchgate.net/publication/348083410_Joint_Capacity_Modeling_for_Electric_Vehicles_in_V2I-enabled_Wireless_Charging_Highways

Adicional

Adicional

Demostraciones:

1) Sumatoria de tasas de transición igual a 0.

1) Regla de sumatoria de tasa de transición

Sabemos que:

$$\sum_{j} p_{ij}(t) = 1$$

Si derivamos esta expresión:

$$\frac{d\sum_{j}p_{ij}(t)}{dt} = \frac{d(1)}{dt} = \mathbf{0}$$

1) Regla de sumatoria de tasas de transición

Partiendo de la expresión:

$$T(t) = I + tQ + \varepsilon(t)t$$

Sumando ambos lados:

$$\sum_{j} T(t) = \sum_{j} (I + tQ + \varepsilon(t)t)$$

$$\sum_{j} T(t) = \sum_{j} I + \sum_{j} tQ + \sum_{j} \varepsilon(t)t$$

1) Regla de sumatoria de tasas de transición

Dado que:

$$-\sum_{i} T(t) = \overline{1}$$

$$\bullet \sum_{j} I = \overline{1}$$

$$\blacksquare \lim_{t \to 0} \varepsilon(t) = 0$$

Reemplazamos:

$$\overline{1} = \overline{1} + \sum_{j} tQ + \sum_{j} \varepsilon(t)t$$

$$\overline{0} = t \sum_{i} Q$$

Por lo tanto,:

$$\overline{0} = \sum_{j} Q$$

Lo que implica: $\sum_{j} q_{ij} = 0$ $\forall i$

