

FUSING VISUAL AND TEXTUAL INFORMATION TO DETERMINE CONTENT SAFETY

Rodrigo Leonardo¹ Amber Hu² Mohammad Uzair³ Qiujing Lu⁴ Iris Fu⁵ Keishin Nishiyama⁵ Sooraj Subrahmannian⁵ Divyaa Ravichandran⁵

¹Universidad del Valle de Guatemala ²Yale University ³National University of Science and Technology ⁴University of California Los Angeles ⁵GumGum Inc.

18th IEEE International Conference on Machine Learning and Applications December 16-19, Boca Raton, Florida, USA

Project jointly sponsored by the Institute for Pure and Applied Mathematics at UCLA, GumGum Inc. and NSF Grant (DMS) 1440415

MOTIVATION & PROBLEM STATEMENT

- Our aim is to classify the content safety of web pages containing images and text using multimodal machine learning algorithms
 - Fusion of information from computer vision and natural language processing models

UNDERSTANDING THE DATA

Threat Categor y	Description
GGT0	Safe
GGT1	Violence/Gore
GGT2	Criminal
GGT3	Drugs and Alcohol
GGT4	Sexually Charged
GGT5	Obscene/Disgust
GGT6	Hate
GGT7	Disasters
GGT8	Malware
GGT9	Illness

Web pages

COMPUTER VISION & NLP MODELS

Computer Vision model: Squeeze-and-excitation network¹

Natural Language Processing model: Universal Language Model Fine-tuning² (ULMFiT)

[0.7, 0.3, 0.0, ..., 0.0]

Each model produces a 10-dimensional vector, where each entry represents the probability that the sample is classified into a threat category (e.g. 0th entry is probability of GGT0)

¹J. Hu, L. Shen, and G. Sun, "Squeeze-and-excitation networks," in 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018, pp. 7132-7141.

²J. Howard and S. Ruder, ``Fine-tuned language models for text classification," Jan. 2018.

BASELINE & LATE FUSION

Late fusion: extract **output** features from the CV and NLP models, then train a classifier on these features for two classification tasks:

OUR LATE FUSION APPROACH

Using these classifiers:

EARLY FUSION BACKGROUND

Early fusion: extract **intermediate** features from the CV and NLP models, then train a classifier on these features

Two methods to deal with these higher-dimensional features:

OUR EARLY FUSION APPROACH

- Method 1: Autoencoder for dimension reduction, followed by classification
 - Separate autoencoders for visual and textual features
 - Multi-layer autoencoder architecture to reduce visual and textual features each to length 128
 - Concatenation to fuse features
 - Classification using random forest
- Method 2: CNN for binary classification

RESULTS

Binary

Classification							
	Model	F_1	F_2	Precision	Recall		
LF	CO Minmax	0.615	0.605	0.633	0.598		
	CO Average	0.641	0.672	0.596	0.694		
	SVC Minmax	0.656	0.711	0.581	0.753		
	SVC Average	0.673	0.727	0.600	0.767		
	SVC Concat	0.697	0.753	0.621	0.795		
	RF Minmax	0.691	0.742	0.620	0.781		
	RF Average	0.689	0.744	0.614	0.785		
	RF Concat	0.716	0.748	0.668	0.772		
EF	Dim. Red.	0.702	0.700	0.705	0.699		
	CNN	0.753	0.795	0.691	0.826		
	Baseline	0.622	0.739	0.492	0.845		

Thank you! Questions?