Презентация по лабораторной работе №2

Расчёт сети Fast Ethernet

Галацан Николай

Российский университет дружбы народов, Москва, Россия

Докладчик

- Галацан Николай
- · 1032225763
- уч. группа: НПИбд-01-22
- Факультет физико-математических и естественных наук
- Российский университет дружбы народов

Цели и задачи

Цель данной работы — изучение принципов технологий Ethernet и Fast Ethernet и практическое освоение методик оценки работоспособности сети, построенной на базе технологии Fast Ethernet.

	Таблица 2.4					
No	Сегмент 1	Сегмент 2	Сегмент 3	Сегмент 4	Сегмент 5	Сегмент 6
1.	100BASE-	100BASE-	100BASE-	100BASE-	100BASE-	100BASE-
	ТХ, 96 м	ТХ, 92 м	ТХ, 80 м	ТХ, 5 м	ТХ, 97 м	ТХ, 97 м
2.	100BASE-	100BASE-	100BASE-	100BASE-	100BASE-	100BASE-
	ТХ, 95 м	ТХ, 85 м	ТХ, 85 м	ТХ, 90 м	ТХ, 90 м	ТХ, 98 м
3.	100BASE-	100BASE-	100BASE-	100BASE-	100BASE-	100BASE-
	ТХ, 60 м	ТХ, 95 м	ТХ, 10 м	ТХ, 5 м	ТХ, 90 м	ТХ, 100 м
4.	100BASE-	100BASE-	100BASE-	100BASE-	100BASE-	100BASE-
	ТХ, 70 м	ТХ, 65 м	ТХ, 10 м	ТХ, 4 м	ТХ, 90 м	ТХ, 80 м
5.	100BASE-	100BASE-	100BASE-	100BASE-	100BASE-	100BASE-
	ТХ, 60 м	ТХ, 95 м	ТХ, 10 м	ТХ, 15 м	ТХ, 90 м	ТХ, 100 м
6.	100BASE-	100BASE-	100BASE-	100BASE-	100BASE-	100BASE-
	ТХ, 70 м	ТХ, 98 м	ТХ, 10 м	ТХ, 9 м	ТХ, 70 м	ТХ, 100 м

Рис. 1: Конфигурации сети

Рис. 2: Топология сети

Таблица 2.1 Предельно допустимый диаметр домена коллизий в Fast Ethernet

Тип повторителя	Все сегменты ТХ или Т4	Все сегменты FX	Сочетание сегментов (Т4 и ТХ/FX)	Сочетание сегментов (ТХ и FX)	
Сегмент, соеди- няющий два узла без повторителей	100	412,0	-	-	
Один повтори- тель класса I	200	272,0	231,0	260,8	
Один повтори- тель класса II	200	320,0	-	308,8	
Два повторителя класса II	205	228,0	-	216,2	

Рис. 3: Предельно допустимый диаметр домена коллизий в Fast Ethernet

Временные задержки компонентов сети Fast Ethernet

Таблица 2.2

Компонент	Удельное время двойно- го оборота (би/м)	Максимальное время двойного оборота (би)		
Пара терминалов TX/FX	-	100		
Пара терминалов Т4	-	138		
Пара терминалов Т4 и TX/FX	-	127		
Витая пара категории 3	1,14	114 (100 м)		
Витая пара категории 4	1,14	114 (100 м)		
Витая пара категории 5	1,112	111,2 (100 м)		
Экранированная витая пара	1,112	111,2 (100 м)		
Оптоволокно	1,0	412 (412 м)		
Повторитель класса I	-	140		
Повторитель класса II, имеющий порты типа TX/FX	-	92		
Повторитель класса II, имеющий порты типа Т4	-	67		

Рис. 4: Временные задержки компонентов сети Fast Ethernet

	Сегмент 1	Сегмент 2	Сегмент 3	Сегмент 4			Работоспособность сети		
Nº					Сегмент 5	Сегмент 6	I модель	II модель	II модель с задержкой
1	100BASE-ТХ, 96 м	100BASE-ТХ, 92 м	100BASE-ТХ, 80 м	100BASE-ТХ, 5 м	100BASE-ТХ, 97 м	100BASE-ТХ, 97 м	198	504,176	508,176
2	100BASE-ТХ, 95 м	100BASE-ТХ, 85 м	100BASE-ТХ, 85 м	100BASE-TX, 90 м	100BASE-TX, 90 м	100BASE-TX, 98 м	283	598,696	602,696
3	100BASE-ТХ, 60 м	100BASE-TX, 95 м	100BASE-ТХ, 10 м	100BASE-TX, 5 м	100BASE-TX, 90 м	100BASE-TX, 100 м	200	506,4	510,4
4	100BASE-TX, 70 м	100BASE-ТХ, 65 м	100BASE-ТХ, 10 м	100BASE-ТХ, 4 м	100BASE-TX, 90 м	100BASE-TX, 80 м	164	466,368	470,368
5	100BASE-ТХ, 60 м	100BASE-TX, 95 м	100BASE-ТХ, 10 м	100BASE-TX, 15 M	100BASE-ТХ, 90 м	100BASE-TX, 100 м	210	517,52	521,52
6	100BASE-ТХ, 70 м	100BASE-TX, 98 м	100BASE-TX, 10 м	100BASE-ТХ, 9 м	100BASE-TX, 70 м	100BASE-TX, 100 м	207	514,184	518,184

Рис. 5: Результат: оценка работоспособности сетей по первой и второй модели

В результате выполнения лабораторной работы были изучены принципы технологий Ethernet и Fast Ethernet. Также были практически освоены методики оценки работоспособности сети, построенной на базе технологии Fast Ethernet.