

Informatik 10 - Datenbanken (Teil 1)

Informatik 10 - Datenbanken (Teil 1)

Stunde 1+2 Wdh: Klassen und Objekte

Stunde 3+4

Wdh: Aufbau von (relationalen) Datenbanken

SQL Spickzettel

Übung: SQL Island

Stunde 5+6

SQL Puzzle

Wdh: SQL Basics

Stunde 7+8

Tabellenbeziehungen: Fremdschlüssel Tabellenbeziehungen im Klassendiagramm Kardinalitäten

Stunde 9+10

SQL: Tabellen verbinden Kreuzprodukt / Join Join Beispiel

Stunde 11+12 Join Beispiel

SQL mit Kreuzprodukt und Join

Outline

Stunde 1+2

tunde 3+4

Stunde 5+6

Stunde 7+8

stunde 9+10

Stunde 11+12

Objekte

repräsentieren **Gegenstände** in einem Computerprogramm. **Klassen** sind der <mark>Bauplan</mark>, der **Eigenschaften** () einer bestimmten Objektart

festlegt, welche **Eigenschaften** (gespeichert werden sollen. Man stellt sie dar mit:

erden sonen. Man stent sie dar inn

Klassenkarte

Objekte

repräsentieren **Gegenstände** in einem Computerprogramm. Klassen sind der Bauplan, der festlegt, welche Eigenschaften (Attribute) und Fähigkeiten () einer bestimmten Objektart

gespeichert werden sollen. Man stellt sie dar mit:

Klassenkarte

L

Objekte repräsentieren **Gegenstände** in einem Computerprogramm. **Klassen** sind der **Bauplan**, der festlegt, welche **Eigenschaften** (**Attribute**) und **Fähigkeiten** (**Methoden**) einer bestimmten Objektart gespeichert werden sollen. Man stellt sie dar mit:

Klassenkarte

L

Objekte repräsentieren **Gegenstände** in einem Computerprogramm. **Klassen** sind der **Bauplan**, der festlegt, welche **Eigenschaften** (**Attribute**) und **Fähigkeiten** (**Methoden**) einer bestimmten Objektart gespeichert werden sollen. Man stellt sie dar mit:

Klassenkarte

Person String hobby int alter boolean hatHaustier String peinlichesErlebnis void atmen()

L

Objekte repräsentieren **Gegenstände** in einem Computerprogramm. **Klassen** sind der **Bauplan**, der festlegt, welche **Eigenschaften** (**Attribute**) und **Fähigkeiten** (**Methoden**) einer bestimmten Objektart gespeichert werden sollen. Man stellt sie dar mit:

Klassenkarte

Person String hobby int alter boolean hatHaustier String peinlichesErlebnis void atmen()

spitze Ecken

Objektkarte

Objekte repräsentieren **Gegenstände** in einem Computerprogramm. **Klassen** sind der **Bauplan**, der festlegt, welche **Eigenschaften** (**Attribute**) und **Fähigkeiten** (**Methoden**) einer bestimmten Objektart gespeichert werden sollen. Man stellt sie dar mit:

Klassenkarte

Person

String hobby

int alter

void atmen()

boolean hatHaustier

String peinlichesErlebnis

spitze Ecken

 \leftarrow Klassenname

 $\overline{\text{Objektname}}: \mathsf{Klassenname} \to$

Attribute

Attribute

 \leftarrow Methoden

Objekte repräsentieren **Gegenstände** in einem Computerprogramm. **Klassen** sind der **Bauplan**, der festlegt, welche **Eigenschaften** (**Attribute**) und **Fähigkeiten** (**Methoden**) einer bestimmten Objektart gespeichert werden sollen. Man stellt sie dar mit:

Klassenkarte

Person String hobby int alter boolean hatHaustier String peinlichesErlebnis void atmen()

 \leftarrow Klassenname

Objektname : Klassenname \rightarrow

Attribute

Objektkarte

p1 : Person hobby = "Klettern"

alter = 23

hatHaustier = false

peinlichesErlebnis = "..."

spitze Ecken

← Methoden

Objekte repräsentieren **Gegenstände** in einem Computerprogramm. **Klassen** sind der Bauplan, der festlegt, welche Eigenschaften (Attribute) und Fähigkeiten (Methoden) einer bestimmten Objektart gespeichert werden sollen. Man stellt sie dar mit:

Klassenkarte

Person String hobby int alter boolean hatHaustier String peinlichesErlebnis void atmen()

 \leftarrow Klassenname

Objektname : Klassenname \rightarrow

Attribute

Objektkarte

p1 : Person

hobby = "Klettern"

alter = 23

hatHaustier = false

peinlichesErlebnis = "..."

runde Ecken

spitze Ecken

← Methoden

Objektkarten Memory

- Erstelle auf einem Blatt eine Objektkarte der Klasse Person zu dir selbst. → 3x
 falten
- Gib deine Objektkarte bei der Lehrkraft ab. → Objektkarten werden gemischt.
- Ziehe eine Objektkarte und versuche, das zugehörige Objekt zu finden.
 - Frage deine:n Gegenüber dafür, ob die Attributwerte auf deiner gezogenen Karte auf sie/ihn zutreffen.
 - Ihr dürft euch nicht gegenseitig die Objektkarten zeigen!
 - Wer gefunden wurde, gibt seine aktuelle Objektkarte weiter und setzt sich.
 - Der/Die Finder:in sammelt alle gefundenen Objekte.

Outline

Stunde 1+2

Stunde 3+4

Stunde 5+6

Stunde 7+8

Stunde 9+10

tunde 11+12

With Vote dar Manne zur Tabelle.

2. Abstrat zur Stelle, der dem sich Chijde der Raus Perus unreich ben.

2. Abstrat zur zur der Tabelle, der dem sich Chijde der Raus Perus unreich ben.

1. Der der Gleiche Stelle geleiche Stelle der Geleiche Abstrat Raus Raus der Geleiche Leiter der Geleiche Abstrat Raus Raus Raus Geleiche Frauszur und mersbertet mehren Begriffe Charles auch dem Chijar Frauszur dem Saus für Weben Bergeite Stelle gestelle der Stelle gestelle der Stelle gestelle der Stelle gestelle der Geleiche Stelle gestelle ges

With Authors von (relationales) Datenbasken

Desirative pushen Demotates in Estilia De

Spalinosisrativitae septembren desirativitae septembren de

spalinosisrativitae septembren de

spalinosisrativitae septembren de

spalinosisrativitae septembren de

spalinosisrativitae de

spalinosisrativit

SOL Spricksentel

- Solit Spricksentel

- So

Wdh: Von der Klasse zur Tabelle

- Zeichnet zu zweit eine Tabelle, in der man alle Objekte der Klasse Person sammeln kann.
- Tragt eure beiden Objekte (vom Objektkarten-Memory) in die Tabelle ein.
- Ordnet die folgenden Begriffe den Teilen der Tabelle zu.
 Achtung: Nicht alle Begriffe passen und manches hat mehrere Begriffe!
 Datensatz Tabelle Zelle Klasse Objekt Parameter Attribut Spalte Feld Methode Board Zeile Datentyp Attributwert

Wdh: Von der Klasse zur Tabelle

- Zeichnet zu zweit eine Tabelle, in der man alle Objekte der Klasse Person sammeln kann.
- Tragt eure beiden Objekte (vom Objektkarten-Memory) in die Tabelle ein.
- Ordnet die folgenden Begriffe den Teilen der Tabelle zu.

Achtung: Nicht alle Begriffe passen und manches hat mehrere Begriffe!

Datensatz Tabelle Zelle Klasse Objekt Parameter Attribut Spalte Feld Methode Board Zeile Datentyp Attributwert

Lösung:

Attribut/ Feld/

Spaltenname

name	alter	groesse	geschlecht	brille	•••
Herrmann	24	1.62	m	false	
Zell	e/ Attributw	ert			

Tabelle

Klasse/ Spaltennamen

Datensatz/Zeile/ Objekt

Nicht verwendete Begriffe: Parameter, Methode, Board, Datentyp

 $Feld: \ Wird \ oft \ synonym \ zu \ Attribut \ verwendet, \ v.a. \ in \ Programmen \ wie \ LibreOffice \ Base \ oder \ MS \ Access.$

Datenbanken speichern Datensätze in Die repräsentieren die Attribute (Synonym: Feld) und bilden zusammen eine Klasse. Die (=Zeilen) entsprechen

(oft

Objekten und in den Spalten stehen die Attributwerte. Jede Tabelle hat einen auch "ID"), der Datensätze eindeutig identifiziert. Oft werden die Datensätze hiermit einfach durchnummeriert. Im Tabellenschema wird er unterstrichen und im Klassendiagramm immer als erstes Attribut aufgelistet.

Der Aufbau einer Tabelle kann mit oder dargestellt werden. Dessen Aufbau ist: TABELLENNAME(Datentyp Primärschlüssel, Datentyp Spalte1, Datentyp Spalte2, ...)

Zum Beispiel:

Datenbanken speichern Datensätze in Tabellen . Die repräsentieren die Attribute (Synonym: Feld) und bilden zusammen eine Klasse. Die (=Zeilen) entsprechen

(oft

Objekten und in den Spalten stehen die Attributwerte. Jede Tabelle hat einen auch "ID"), der Datensätze eindeutig identifiziert. Oft werden die Datensätze hiermit einfach durchnummeriert. Im

Tabellenschema wird er unterstrichen und im Klassendiagramm immer als erstes Attribut aufgelistet. Der Aufbau einer Tabelle kann mit oder dargestellt werden. Dessen Aufbau ist:

TABELLENNAME(Datentyp Primärschlüssel, Datentyp Spalte1, Datentyp Spalte2, ...) Zum Beispiel:

Datenbanken speichern Datensätze in **Tabellen** . Die **Spaltenüberschriften** repräsentieren die **Attribute** (Synonym: Feld) und bilden zusammen eine **Klasse**. Die (=Zeilen) entsprechen

(oft

auch "ID"), der Datensätze eindeutig identifiziert. Oft werden die Datensätze hiermit einfach durchnummeriert. Im Tabellenschema wird er unterstrichen und im Klassendiagramm immer als erstes Attribut aufgelistet.

Der Aufbau einer Tabelle kann mit oder dargestellt werden. Dessen

Aufbau ist:

TABELLENNAME(<u>Datentyp Primärschlüssel</u>, Datentyp Spalte1, Datentyp Spalte2, ...)

Zum Beispiel:

Objekten und in den Spalten stehen die Attributwerte. Jede Tabelle hat einen

Datenbanken speichern Datensätze in **Tabellen** . Die Spaltenüberschriften repräsentieren die Attribute (Synonym: Feld) und bilden zusammen eine Klasse. Die Datensätze (=Zeilen) entsprechen

(oft

Objekten und in den Spalten stehen die Attributwerte. Jede Tabelle hat einen auch "ID"), der Datensätze eindeutig identifiziert. Oft werden die Datensätze hiermit einfach durchnummeriert. Im Tabellenschema wird er unterstrichen und im Klassendiagramm immer als erstes Attribut aufgelistet.

Der Aufbau einer Tabelle kann mit oder dargestellt werden. Dessen Aufbau ist:

TABELLENNAME(Datentyp Primärschlüssel, Datentyp Spalte1, Datentyp Spalte2, ...) Zum Beispiel:

Datenbanken speichern Datensätze in **Tabellen** . Die **Spaltenüberschriften** repräsentieren die **Attribute** (Synonym: Feld) und bilden zusammen eine **Klasse**. Die **Datensätze** (=**Zeilen**) entsprechen

(oft

auch "ID"), der Datensätze eindeutig identifiziert. Oft werden die Datensätze hiermit einfach durchnummeriert. Im Tabellenschema wird er unterstrichen und im Klassendiagramm immer als erstes Attribut aufgelistet.

Der Aufbau einer Tabelle kann mit

oder

dargestellt werden. Dessen

Objekten und in den Spalten stehen die Attributwerte. Jede Tabelle hat einen Primärschlüssel

Aufbau ist:

TABELLENNAME(<u>Datentyp Primärschlüssel</u>, Datentyp Spalte1, Datentyp Spalte2, ...)

Zum Beispiel:

Datenbanken speichern Datensätze in **Tabellen** . Die **Spaltenüberschriften** repräsentieren die Attribute (Synonym: Feld) und bilden zusammen eine Klasse. Die Datensätze (=Zeilen) entsprechen

(oft

Objekten und in den Spalten stehen die Attributwerte. Jede Tabelle hat einen Primärschlüssel auch "ID"), der Datensätze eindeutig identifiziert. Oft werden die Datensätze hiermit einfach durchnummeriert. Im Tabellenschema wird er unterstrichen und im Klassendiagramm immer als erstes Attribut aufgelistet.

Der Aufbau einer Tabelle kann mit Klassenkarte oder dargestellt werden. Dessen Aufbau ist:

TABELLENNAME(Datentyp Primärschlüssel, Datentyp Spalte1, Datentyp Spalte2, ...) Zum Beispiel:

Datenbanken speichern Datensätze in **Tabellen** . Die **Spaltenüberschriften** repräsentieren die **Attribute** (Synonym: Feld) und bilden zusammen eine **Klasse**. Die **Datensätze** (=**Zeilen**) entsprechen

(oft

auch "ID"), der Datensätze eindeutig identifiziert. Oft werden die Datensätze hiermit einfach durchnummeriert. Im Tabellenschema wird er unterstrichen und im Klassendiagramm immer als erstes Attribut aufgelistet.

Der Aufbau einer Tabelle kann mit **Klassenkarte** oder **Tabellenschema** dargestellt werden. Dessen Aufbau ist:

TABELLENNAME (Datentyn Primärschlüssel Datentyn Spalte) Datentyn Spalte?

Objekten und in den Spalten stehen die Attributwerte. Jede Tabelle hat einen Primärschlüssel

TABELLENNAME(<u>Datentyp Primärschlüssel</u>, Datentyp Spalte1, Datentyp Spalte2, ...) Zum Beispiel:

TABELLENNAME(Datentyp Primärschlüssel, Datentyp Spalte1, Datentyp Spalte2, ...)

Datenbanken speichern Datensätze in **Tabellen** . Die **Spaltenüberschriften** repräsentieren die **Attribute** (Synonym: Feld) und bilden zusammen eine **Klasse**. Die **Datensätze** (=**Zeilen**) entsprechen **Objekten** und in den Spalten stehen die Attributwerte. Jede Tabelle hat einen **Primärschlüssel** (oft

auch "ID"), der Datensätze eindeutig identifiziert. Oft werden die Datensätze hiermit einfach durchnummeriert. Im Tabellenschema wird er unterstrichen und im Klassendiagramm immer als erstes Attribut aufgelistet.

Der Aufbau einer Tabelle kann mit **Klassenkarte** oder **Tabellenschema** dargestellt werden. Dessen Aufbau ist:

Zum Beispiel:
Person(int id, String name, int alter, ...)

SQL Spickzettel

Folgender SQL-Spickzettel enthält alle SQL-Grundlagen der 9. Klasse. Ihr dürft (sollt!) ihn bei allen SQL-Aufgaben benutzen. Über das Vorlagensymbol 🚨 oben könnt ihr den Spickzettel als eigenes PDF öffnen.

Auswahl von Datensätzen über Bedingungen				
WHERE	In der Ergebnistabelie werden nur die Datensätze (Zeilen) angezeigt, welche die angegebene Bedingung erfüllen. Eine Bedingung wird mit einem Vergleich formuliert. Neben den typischen Vergleichsoperatoren wie e, , , , , , , ,			

	Funitionen AND, OR und NOT verhnüght werden. Ggf. müssen die einzelnen Ausdrücke dabei sinnooll geldammert werden Beispiel WHERE jahr > 2015 AND laufwätet - 90			
	AND NOT fsk = 18			
LIKE	Kann in einer Bedingung zur Mustererkennung von Einträgen verwendet werden. Folgende zwei Platzhalter (wildcards) werden häufig eingesetzt:			
	 % steht für beliebig viele Zeichen, auch keines (* bei MS Access) _ für genau ein beliebiges Zeichen (? bei MS Access) Beispiele: 			
	WHERE titel LIKE "You's" – findet alle Titel die mit "You" beginnen Groß-/Kleinschreibung wird nicht berücksichtigt WHERE titel LIKE "%Jove" – findet alle Titel die "love" enthalten WHERE titel LIKE "L" – "– findet alle Titel die mit L beginnen und genau 4 Zeichen			
	lang sind			
NULL	Bedeutet, dass kein Wert in einer Zelle eingetragen ist.			
IS NULL	Überprüft (in einer Bedingung), ob kein Wert in einer Zelle eingetragen ist.			

Aggregatfunktionen				
AVG	Berechnet den Durchschnitt aller Werte einer Spalte.			
COUNT	Gibt die Anzahl der Einträge einer Spalte aus.			
MAX bzw. MIN	Gibt das Maximum bzw. Minimum aller Werte einer Spalte aus.			
SUM	Berechnet die Summe aller Werte einer Spalte.			
Beispiel	SELECT COUNT(*) AS "Anzahl afrikanischer Länder " FROM Land WHERE kontinent = "Afrika"			

Gruppierung	
GROUP BY	Datensätze mit demseiben Wert in der angegeben Spalte werden gruppiert. Gruppierungen sind nur in Kombination mit Aggregatfunktionen sinnvoll.
HAVING	An gruppierte Datensätze werden Bedingungen mit HAVING formuliert.
Beispiel	SELECT fsk, MIN(laufzeit) FROM Film WHDRF genera = "Filmkomödie" OR genre2 = "Filmkomödie" GROUP BY fsk HAVING Fsk < 16

SQL keywords should be in **lower case!**

select name, id
from products
where discount = 0
order by price asc;

Noooo, they must be in **upper case!**

SELECT name, id FROM products WHERE discount = 0 ORDER BY price ASC;

sElEcT nAmE, iD fRoM PrOdUcTs WhErE dIsCoUnT = 0 OrDeR bY pRiCe AsC;

'Sarcastic Query Language' • by u/casperdewith

Übung: SQL Island

sql-island.informatik.uni-kl.de/

- 1. Was sind die Primärschlüssel der Tabellen, die die einzelnen Objekte eindeutig identifizieren?
- → Notiert das vollständige Tabellenschema der Datenbank von SQL Island (mit Datentypen und Markierung der Primärschlüssel)

2. Stellt die Tabellen der Datenbank mit Klassenkarten dar.

Übung: SQL Island

sql-island.informatik.uni-kl.de/

- 1. Was sind die Primärschlüssel der Tabellen, die die einzelnen Objekte eindeutig identifizieren?
 - → Notiert das vollständige Tabellenschema der Datenbank von SQL Island (mit Datentypen und Markierung der Primärschlüssel)

 $BEWOHNER(\underline{int\ bewohnernr}\ ,\ String\ name,\ int\ dorfnr,\ String\ geschlecht,\ String\ beruf,\ int\ gold,\ String\ status)$

 ${\tt GEGENSTAND}(\underline{{\tt String~gegenstand}},\, {\tt int~besitzer})$

DORF(int dorfnr, String name, int haeuptling)

2. Stellt die Tabellen der Datenbank mit Klassenkarten dar.

Übung: SQL Island

sql-island.informatik.uni-kl.de/

- 1. Was sind die Primärschlüssel der Tabellen, die die einzelnen Objekte eindeutig identifizieren?
 - → Notiert das vollständige Tabellenschema der Datenbank von SQL Island (mit Datentypen und Markierung der Primärschlüssel)

BEWOHNER(int bewohnern , String name, int dorfnr, String geschlecht, String beruf, int gold, String status) GEGENSTAND(String gegenstand, int besitzer)

DORF(int dorfnr, String name, int haeuptling)

2. Stellt die Tabellen der Datenbank mit Klassenkarten dar.

BEWOHNER			
int bewohnernr			
String name			
int dorfnr			
String geschlecht			
String beruf			
int gold			
String status			

DORF	
int dorfnr	
String name	
int haeuptling	

Für Schnelle

Für Schnelle: Spielt SQL Island, der SQL-Spickzettel hilft euch dabei.

Outline

Stunde 1+2

Stunde 3+4

Stunde 5+6

Stunde 7+8

stunde 9+10

Stunde 11+12

With: Von der Klasse zur Tabelle

2 zeicher zu weit einr Tabell, in der mas ein Objekte der Kasse Person sammeln kenn.
Trags unw baseln Objekte (om Objekte zeiten Memory) in der Tabelle ein.

Odrond de Gögmeine Begriff den Teilen der Tabelle zu Addrung Nocht siel Begriffe passen und manchen bestehn Begriffe bismister. Tabelle Zielen Zielen State Objekte Vorsonster Addruck Ligden Wild Mehrsten kenn der Mannet State State Coste Co

Which, Authors user (neutronistes) Directorisms

Directorism quality and position in the limit of the position of the position

Spicksternel

Sp

SQL Puzzle

In dieser Aufgabe geht es immer um die Tabelle land, deren erste Datensätze du hier siehst:

ıd	name	einwohner	flaeche	hauptstadt
1	Deutschland	83.24	358	Berlin
	Frankreich	67.39	544	Paris
	Brasilien	212.60	8516	Rio de Janeiro

Welche SQL-Abfrage (rechte Seite) führt zu welcher Ergebnistabelle (linke Seite)? Ordne richtig zu!

Lösung:

1) iv) 2) viii) 3) vii)	4) i) 5) ix) 6) iii)	7) v) 8) ii) 9) vi)
-------------------------	----------------------------	---------------------------

Wdh: SQL Basics

Bearbeite die Aufgabe Wdh - SQL Basics auf antemis, tum, de. Artemis gibt dir immer, wenn du auf Submit drückst, die ersten Zeilen der Ergebnistabelle und ob deine SQL-Abfrage (bzw. welche Teile von ihr) richtig sind, aus.

Wenn du eine Abfrage richtig hast, notiere sie unten im Skript.

Falls du bei Gruppierung und Aggregatfunktionen Schwierigkeiten hast, hilft dir dieses Video (bitte Kopfhörer verwenden!): bycs.link/simpleclub-group-sort-aggregat

1) Vervollständige die SQL-Abfrage so, dass sie ID, Name, Art und URL aller Freibäder ausgibt. SELECT id, name, art, urlFROM SchwimmbadWHERE art=

Freibad

SQL Puzzle

In dieser Aufgabe geht es immer um die Tabelle **land**, deren erste Datensätze du hier siehst:

id	name	einwohner	flaeche	hauptstadt
1	Deutschland	83.24	358	Berlin
2	Frankreich	67.39	544	Paris
3	Brasilien	212.60	8516	Rio de Janeiro

Welche SQL-Abfrage (rechte Seite) führt zu welcher Ergebnistabelle (linke Seite)? Ordne richtig zu

In dieser Aufgabe geht es immer um die Tabelle land, deren erste Datensätze du hier siehst:

id	name	einwohner	flaeche	hauptstadt
1	Deutschland	83.24	358	Berlin
2	Frankreich	67.39	544	Paris
3	Brasilien	212.60	8516	Rio de Janeiro

Welche SQL-Abfrage (rechte Seite) führt zu welcher Ergebnistabelle (linke Seite)? Ordne richtig zu!

Lösung:

- 1) iv)
- 2) viii)

In dieser Aufgabe geht es immer um die Tabelle land, deren erste Datensätze du hier siehst:

id	name	einwohner	flaeche	hauptstadt
1	Deutschland	83.24	358	Berlin
2	Frankreich	67.39	544	Paris
3	Brasilien	212.60	8516	Rio de Janeiro
 .	ļ.,			

Welche SQL-Abfrage (rechte Seite) führt zu welcher Ergebnistabelle (linke Seite)? Ordne richtig zu! Lösung:

1) iv)

- 2) viii)
 - V T T T .
- 3) vii)

In dieser Aufgabe geht es immer um die Tabelle land, deren erste Datensätze du hier siehst:

id	name	einwohner	flaeche	hauptstadt
1	Deutschland	83.24	358	Berlin
2	Frankreich	67.39	544	Paris
3	Brasilien	212.60	8516	Rio de Janeiro

Welche SQL-Abfrage (rechte Seite) führt zu welcher Ergebnistabelle (linke Seite)? Ordne richtig zu!

Lösung:

4) i)

- 1) iv)
 - 2) viii)
 - 3) vii)

In dieser Aufgabe geht es immer um die Tabelle **land**, deren erste Datensätze du hier siehst:

id	name	einwohner	flaeche	hauptstadt
1	Deutschland	83.24	358	Berlin
2	Frankreich	67.39	544	Paris
3	Brasilien	212.60	8516	Rio de Janeiro

Welche SQL-Abfrage (rechte Seite) führt zu welcher Ergebnistabelle (linke Seite)? Ordne richtig zu! Lösung:

- 1) iv) 4) i) 2) viii) 5) ix)
- 2) viii) 5) ix 3) vii)

In dieser Aufgabe geht es immer um die Tabelle land, deren erste Datensätze du hier siehst:

id	name	einwohner	flaeche	hauptstadt
1	Deutschland	83.24	358	Berlin
2	Frankreich	67.39	544	Paris
3	Brasilien	212.60	8516	Rio de Janeiro

Welche SQL-Abfrage (rechte Seite) führt zu welcher Ergebnistabelle (linke Seite)? Ordne richtig zu! Lösung:

1) iv		4) i)

- 1) iv) 4) i) 2) viii) 5) ix
- 2) vii) 5) ix) 3) vii) 6) iii)

In dieser Aufgabe geht es immer um die Tabelle land, deren erste Datensätze du hier siehst:

id	name	einwohner	flaeche	hauptstadt
1	Deutschland	83.24	358	Berlin
2	Frankreich	67.39	544	Paris
3	Brasilien	212.60	8516	Rio de Janeiro

Welche SQL-Abfrage (rechte Seite) führt zu welcher Ergebnistabelle (linke Seite)? Ordne richtig zu!

	Lösung:

1) 10)	7) 1)
2) viii)	5) ix)
3) vii)	6) iii)

In dieser Aufgabe geht es immer um die Tabelle land , deren erste Datensätze du hier sieh	atensätze du hier siehst:
--	---------------------------

name	einwohner	flaeche	hauptstadt
Deutschland	83.24	358	Berlin
Frankreich	67.39	544	Paris
Brasilien	212.60	8516	Rio de Janeiro
	Deutschland Frankreich Brasilien	Deutschland 83.24 Frankreich 67.39 Brasilien 212.60	Deutschland 83.24 358 Frankreich 67.39 544 Brasilien 212.60 8516

Welche SQL-Abfrage (rechte Seite) führt zu welcher Ergebnistabelle (linke Seite)? Ordne richtig zu!

	Lösur

1) 10)	4) 1)	/) V)
2) viii)	5) ix)	8) ii)
3) vii)	6) iii)	

In dieser Aufgabe geht es immer um die Tabelle **land**, deren erste Datensätze du hier siehst:

id	name	einwohner	flaeche	hauptstadt
1	Deutschland	83.24	358	Berlin
2	Frankreich	67.39	544	Paris
3	Brasilien	212.60	8516	Rio de Janeiro
Walcha SOL-Ah	frage (rechte Seite) füh	ort zu welcher Fraehnis	tabelle (linke Seite)? C	rdne richtig zul

ng:

		Lösur

1) iv)	4) i)	7) v)
2) viii)	5) ix)	8) ii)
3) vii)	6) iii)	9) vi)

Bearbeite die Aufgabe Wdh - SQL Basics auf artemis.tum.de. Artemis gibt dir immer, wenn du auf Submit drückst, die ersten Zeilen der Ergebnistabelle und ob deine SQL-Abfrage (bzw. welche Teile von ihr) richtig sind, aus.

Wenn du eine Abfrage richtig hast, notiere sie unten im Skript.

Falls du bei Gruppierung und Aggregatfunktionen Schwierigkeiten hast, hilft dir dieses Video (bitte Kopfhörer

verwenden!): bycs.link/simpleclub-group-sort-aggregat

1) Vervollständige die SQL-Abfrage so, dass sie ID, Name, Art und URL aller Freibäder ausgibt.

Bearbeite die Aufgabe Wdh - SQL Basics auf artemis.tum.de. Artemis gibt dir immer, wenn du auf Submit drückst, die ersten Zeilen der Ergebnistabelle und ob deine SQL-Abfrage (bzw. welche Teile von ihr) richtig sind, aus.

Wenn du eine Abfrage richtig hast, notiere sie unten im Skript.

Falls du bei Gruppierung und Aggregatfunktionen Schwierigkeiten hast, hilft dir dieses Video (bitte Kopfhörer

verwenden!): bycs.link/simpleclub-group-sort-aggregat

1) Vervollständige die SQL-Abfrage so, dass sie ID, Name, Art und URL aller Freibäder ausgibt.

SELECT id, name, art, url

FROM Schwimmbad WHERE art= Freibad

2) Schreibe eine SQL-Abfrage, die ausgibt, wie viele Gemeinden es im Regierungsbezirk

Oberbayern gibt.

3) Schreibe eine SQL-Abfrage, die Name, Straße und URL (also die Internetadresse) alle Zoos in der Gemeinde mit Schluessel

Schluessel 09162000 ausgibt.

2) Schreibe eine SQL-Abfrage, die ausgibt, wie viele Gemeinden es im Regierungsbezirk

Oberbayern gibt. SELECT COUNT(*) FROM Gemeinde WHERE regierungsbezirk= **Oberbayern**

3) Schreibe eine SQL-Abfrage, die Name, Straße und URL (also die Internetadresse) alle Zoos in der Gemeinde mit

Schluessel 09162000 ausgibt.

2) Schreibe eine SQL-Abfrage, die ausgibt, wie viele Gemeinden es im Regierungsbezirk

gibt. SELECT COUNT(*)

Oberbayern

FROM Gemeinde

WHERE regierungsbezirk=

Oberbayern

3) Schreibe eine SQL-Abfrage, die Name, Straße und URL (also die Internetadresse) alle Zoos in der Gemeinde mit

Schluessel 09162000

SELECT name, strasse, url

WHERE gemeindeschluessel =

09162000

ausgibt.

FROM Zoo

4) Schreibe eine SQL-Abfrage, die die Summe aller weiblichen Einwohnerinnen und die Summe aller männlichen

Einwohner gruppiert nach Regierungsbezirk und den Namen des jeweiligen Regierungsbezirks ausgibt.

5) Schreibe eine SQL-Abfrage, die die durchschnittliche Fläche der Gemeinde eines Kreises (=Landkreis) und den Namen und Regierungsbezirk des jeweiligen Landkreises anzeigt. Sortiere die Ausgabe nach Name des Landkreises.

4) Schreibe eine SQL-Abfrage, die die Summe aller weiblichen Einwohnerinnen und die Summe aller männlichen

Einwohner gruppiert nach Regierungsbezirk und den Namen des jeweiligen Regierungsbezirks ausgibt.

SELECT regierungsbezirk, SUM(einwohner_w), SUM(einwohner_m)

FROM gemeinde GROUP BY regierungsbezirk

5) Schreibe eine SQL-Abfrage, die die durchschnittliche Fläche der Gemeinde eines Kreises (=Landkreis) und den Namen und Regierungsbezirk des jeweiligen Landkreises anzeigt. Sortiere die Ausgabe nach Name des Landkreises.

4) Schreibe eine SQL-Abfrage, die die Summe aller weiblichen Einwohnerinnen und die Summe aller männlichen

Einwohner gruppiert nach Regierungsbezirk und den Namen des jeweiligen Regierungsbezirks ausgibt.

SELECT regierungsbezirk, SUM(einwohner_w), SUM(einwohner_m)

GROUP BY regierungsbezirk

5) Schreibe eine SQL-Abfrage, die die durchschnittliche Fläche der Gemeinde eines Kreises (=Landkreis) und den Namen und Regierungsbezirk des jeweiligen Landkreises anzeigt. Sortiere die Ausgabe nach Name des Landkreises.

SELECT regierungsbezirk, kreis, avg(flaeche)

FROM Gemeinde
GROUP BY regierungsbezirk, kreis

ORDER BY kreis

FROM gemeinde

6) Schreibe eine SQL-Abfrage, die die Namen und Einwohnerzahlen aller Gemeinde, die mehr als 100.000 männliche und mehr als 100.000 weibliche Einwohner:innen haben, ausgibt.

7) Schreibe eine SQL-Abfrage, die die Namen und Einwohnerzahlen aller Gemeinde, die mehr als 75.000 männliche oder mehr als 75.000 weibliche Einwohner:innen haben, ausgibt.

männliche und mehr als 100.000 weibliche Einwohner:innen haben, ausgibt.

SELECT name, einwohner_m, einwohner_w

FROM Gemeinde WHERE einwohner_m > 100000

AND einwohner_w > 100000

7) Schreibe eine SQL-Abfrage, die die Namen und Einwohnerzahlen aller Gemeinde, die mehr als 75.000 männliche oder mehr als 75.000 weibliche Einwohner:innen haben, ausgibt.

FROM Gemeinde

männliche und mehr als 100.000 weibliche Einwohner:innen haben, ausgibt.

SELECT name, einwohner_m, einwohner_w

WHERE einwohner_m > 100000

AND einwohner_w > 100000

7) Schreibe eine SQL-Abfrage, die die Namen und Einwohnerzahlen aller Gemeinde, die mehr als 75.000 männliche oder mehr als 75.000 weibliche Einwohner:innen haben, ausgibt.

SELECT name, einwohner_m, einwohner_w

FROM Gemeinde WHERE einwohner_m > 75000

OR einwohner_w > 75000

8) Schreibe eine SQL-Abfrage, die Name, Landkreis, Fläche und die Einwohnerzahlen aller Gemeinden ausgibt, die jeweils mehr als 50.000 männliche und weibliche Einwohner:innen oder eine Fläche größer als 100 km² hat.

9) Schreibe eine SQL-Abfrage, die die durchschnittlichen männlichen und weiblichen Einwohnerzahlen aller Gemeinde mit mehr als 100 km² Fläche pro Landkreis und den Namen des jeweiligen Landkreises ausgibt.

8) Schreibe eine SQL-Abfrage, die Name, Landkreis, Fläche und die Einwohnerzahlen aller Gemeinden ausgibt, die jeweils mehr als 50.000 männliche und weibliche Einwohner:innen oder eine Fläche größer als 100 km² hat.

SELECT name, kreis, flaeche, einwohner_m, einwohner_w

FROM Gemeinde

WHERE (einwohner_m > 50000 AND einwohner_w > 50000) OR flaeche > 100

9) Schreibe eine SQL-Abfrage, die die durchschnittlichen männlichen und weiblichen Einwohnerzahlen aller

Gemeinde mit mehr als 100 km² Fläche pro Landkreis und den Namen des jeweiligen Landkreises ausgibt.

jeweils mehr als 50.000 männliche und weibliche Einwohner:innen oder eine Fläche größer als 100 km² hat.

SELECT name, kreis, flaeche, einwohner_m, einwohner_w

FROM Gemeinde WHERE (einwohner_m > 50000 AND einwohner_w > 50000)

OR flaeche > 100

9) Schreibe eine SQL-Abfrage, die die durchschnittlichen männlichen und weiblichen Einwohnerzahlen aller Gemeinde mit mehr als 100 km² Fläche pro Landkreis und den Namen des jeweiligen Landkreises ausgibt.

SELECT kreis, AVG(einwohner_m), AVG(einwohner_w)

FROM Gemeinde WHERE flaeche > 100 GROUP BY kreis

10) Schreibe eine SQL-Abfrage, die die Anzahl von Wanderwegen, die zu einer Gemeinde führen in einer Spalte

Anzahl und den jeweiligen Gemeindeschlüssel absteigend nach Anzahl sortiert, ausgibt.

10) Schreibe eine SQL-Abfrage, die die Anzahl von Wanderwegen, die zu einer Gemeinde führen in einer Spalte

Anzahl und den jeweiligen Gemeindeschlüssel absteigend nach Anzahl sortiert, ausgibt.

SELECT gemeindeschluessel, COUNT(*) as Anzahl

FROM Wanderweg_zu_Gemeinde

GROUP BY gemeindeschluessel ORDER BY Anzahl DESC

Outline

- Stunde 1+2
 - Stunde 3+4
- Stunde 5+6

- Stunde 7+8
- stunde 9+10
- Stunde 11+12

In dieser Aufgabe geht es immer um die Tabelle land, deren erste Datensätze du hier siehst:

id	name	einwohner	flaeche	hauptstadt
1	Deutschland	83.24	358	Berlin
	Frankreich	67.39	544	Paris
	Brasilien	212.60	8516	Rio de Janeiro

Lösung:

1) iv) 4) i) 7) v)

	4) 1)	/) V)
2) viii)	5) ix)	8) ii)
3) vii)	6) iii)	9) vi)

Wdh: SQL Basics

Bearbeite die Aufgabe Wdh - SQL Basics auf antemis. tum. de. Artemis gibt dir immer, wenn du auf Submit drückst, die ersten Zeilen der Ergebnistabelle und ob deine SQL-Abfrage (bzw. welche Teile von ihr) richtig sind, aus

Wenn du eine Abfrage richtig hast, notiere sie unten im Skript.

Falls du bei Gruppierung und Aggregatfunktionen Schwierigkeiten hast, hilft dir dieses Video (bitte Kopfhörer verwenden!): bycs.link/simpleclub-group-sort-aggregat

Vervollständige die SOL-Abfrage so, dass sie ID, Name, Art und URL aller Freibäder ausgibt
 SELECT 1d, name, art, urlFRON SchwimmbadNHERE art=
 Freibad

Tabel lenbur inhungen

1. Variativery District, van Vajarden in variahen Derfar.

1. Variativery District, van Vajarden ja variahen Derfar.

2. Derfaren van der derfaren til dene som "Balden deresten kanse, van der jund for Spalmej sokenander in Bereitung stehen.

2. Derfaren van der derfaren van "Balden deresten kanse, van der jund for Spalmej sokenander in Bereitung stehen.

- 1. Visualisiere (mit Bleistift), wer Häuptling in welchem Dorf ist.
- 2. Überlege, wie du allgemein für diese zwei Tabellen darstellen kannst, wie sie (und ihre Spalten) miteinander in Beziehung stehen.

SELECT * FROM dorf							
dorfnr	name	haeuptling					
1	Affenstadt	1					
2	Gurkendorf	6					
3	Zwiebelhausen	7					

SELECT * FROM Bewohner							
bewohnernr	name	dorfnr	geschlecht	beruf	gold	status	
1	Paul Backmann	1	m	Baecker	850	friedlich	
2	Ernst Peng	3	m	Waffenschmied	280	friedlich	
3	Rita Ochse	1	W	Baecker	350	friedlich	
4	Carl Ochse	1	m	Kaufmann	250	friedlich	
5	Dirty Dieter	3	m	Schmied	650	boese	
6	Gerd Schlachter	2	m	Metzger	4850	boese	
7	Peter Schlachter	3	m	Metzger	3250	boese	
8	Arthur Schneiderpaule	2	m	Pilot	490	gefangen	

- 1. Visualisiere (mit Bleistift), wer Häuptling in welchem Dorf ist.
- 2. Überlege, wie du allgemein für diese zwei Tabellen darstellen kannst, wie sie (und ihre Spalten) miteinander in Beziehung stehen.

SELECT * FROM dorf						
dorfnr	name	haeuptling				
1	Affenstadt	1				
2	Gurkendorf	6				
3	Zwiebelhausen	7				

SELECT * FROM Bewohner							
bewohnernr	name	dorfnr	geschlecht	beruf	gold	status	
1	Paul Backmann	1	m	Baecker	850	friedlich	
2	Ernst Peng	3	m	Waffenschmied	280	friedlich	
3	Rita Ochse	1	w	Baecker	350	friedlich	
4	Carl Ochse	1	m	Kaufmann	250	friedlich	
5	Dirty Dieter	3	m	Schmied	650	boese	
6	Gerd Schlachter	2	m	Metzger	4850	boese	
7	Peter Schlachter	3	m	Metzger	3250	boese	
8	Arthur Schneiderpaule	2	m	Pilot	490	gefangen	

- 1. Visualisiere (mit Bleistift), wer Häuptling in welchem Dorf ist.
- 2. Überlege, wie du allgemein für diese zwei Tabellen darstellen kannst, wie sie (und ihre Spalten) miteinander in Beziehung stehen.

SELECT*	FROM dorf			SELECT * FROI	M Bewohner					
dorfnr	name	haeuptling		bewohnernr	name	dorfnr	geschlecht	beruf	gold	status
1	Affenstadt	1		1	Paul Backmann	1	m	Baecker	850	friedlich
2	Gurkendorf	6		2	Ernst Peng	3	m	Waffenschmied	280	friedlich
3	Zwiebelhausen	7		3	Rita Ochse	1	w	Baecker	350	friedlich
				4	Carl Ochse	1	m	Kaufmann	250	friedlich
				5	Dirty Dieter	3	m	Schmied	650	boese
			\	6	Gerd Schlachter	2	m	Metzger	4850	boese
				7	Peter Schlachter	3	m	Metzger	3250	boese
				8	Arthur Schneiderpaule	2	m	Pilot	490	gefangen

- 1. Visualisiere (mit Bleistift), wer Häuptling in welchem Dorf ist.
- 2. Überlege, wie du allgemein für diese zwei Tabellen darstellen kannst, wie sie (und ihre Spalten) miteinander in Beziehung stehen.

- 1. Visualisiere (mit Bleistift), wer Häuptling in welchem Dorf ist.
- 2. Überlege, wie du allgemein für diese zwei Tabellen darstellen kannst, wie sie (und ihre Spalten) miteinander in Beziehung stehen.

- 1. Visualisiere (mit Bleistift), wer Häuptling in welchem Dorf ist.
- 2. Überlege, wie du allgemein für diese zwei Tabellen darstellen kannst, wie sie (und ihre Spalten) miteinander in Beziehung stehen.

Tabellenbeziehung im Klassendiagramm

- 1. Ergänze das Klassendiagramm entsprechend den beiden Tabellen oben.
- 2. Wie kann man die Beziehungen zwischen den beiden Tabellen im Klassendiagramm darstellen? <u>Tipp: Unsere Überleg</u>ungen von oben helfen dabei.

Dorf int dorfnr String name int bewohnernr
String name
String geschlecht
String beruf
int gold
String status

Tabellenbeziehung im Klassendiagramm

- 1. Ergänze das Klassendiagramm entsprechend den beiden Tabellen oben.
- 2. Wie kann man die Beziehungen zwischen den beiden Tabellen im Klassendiagramm darstellen? <u>Tipp: Unsere Überleg</u>ungen von oben helfen dabei.

Tabellenbeziehung im Klassendiagramm

- 1. Ergänze das Klassendiagramm entsprechend den beiden Tabellen oben.
- 2. Wie kann man die Beziehungen zwischen den beiden Tabellen im Klassendiagramm darstellen? Tipp: Unsere Überlegungen von oben helfen dabei.

Tabellenbeziehungen: Fremdschlüssel

durch

(manchmal

Wenn Datensätze mittels Primärschlüssel in einer anderen Tabelle verwendet werden, spricht man dort von einem

Fremdschlüssel. Im Tabellenschema werden die

auch

Taballanka-Sakumanan Fusan daskilisasal

Tabellenbeziehungen: Fremdschlüssel

Wenn Datensätze mittels Primärschlüssel in einer anderen Tabelle verwendet werden, spricht man dort von einem

Fremdschlüssel

durch

(manchmal

Fremdschlüssel. Im **Tabellenschema** werden die

auch

(manchmal

Tabellenbeziehungen: Fremdschlüssel

Fremdschlüssel

durch

überstreichen

Fremdschlüssel. Im **Tabellenschema** werden die

auch

Wenn Datensätze mittels Primärschlüssel in einer anderen Tabelle verwendet werden, spricht man dort von einem

Tabellenbeziehungen: Fremdschlüssel

Wenn Datensätze mittels Primärschlüssel in einer anderen Tabelle verwendet werden, spricht man dort von einem durch überstreichen (manchmal

Fremdschlüssel. Im **Tabellenschema** werden die Fremdschlüssel

unterpunkten) markiert. Ein Beispiel in SQL-Island ist der Häuptling eines Dorfes, der in der Tabelle auch Dorf mittels bewohnernr eingetragen wird. Die bewohnernr ist hierbei in der Tabelle **Bewohner** und in der Tabelle Dorf (heißt hier aber haeuptling).

Tabellenbeziehungen: Fremdschlüssel

Wenn Datensätze mittels Primärschlüssel in einer anderen Tabelle verwendet werden, spricht man dort von einem durch überstreichen (manchmal

Fremdschlüssel. Im **Tabellenschema** werden die **Fremdschlüssel**

unterpunkten) markiert. Ein Beispiel in SQL-Island ist der Häuptling eines Dorfes, der in der Tabelle auch Dorf mittels bewohnernr eingetragen wird. Die bewohnernr ist hierbei Primärschlüssel in der Tabelle **Bewohner** und in der Tabelle Dorf (heißt hier aber haeuptling).

Tabellenbeziehungen: Fremdschlüssel

Wenn Datensätze mittels Primärschlüssel in einer anderen Tabelle verwendet werden, spricht man dort von einem durch überstreichen (manchmal

Fremdschlüssel. Im **Tabellenschema** werden die Fremdschlüssel

unterpunkten) markiert. Ein Beispiel in SQL-Island ist der Häuptling eines Dorfes, der in der Tabelle auch Dorf mittels bewohnernr eingetragen wird. Die bewohnernr ist hierbei Primärschlüssel in der Tabelle Bewohner und **Fremdschlüssel** in der Tabelle Dorf (heißt hier aber haeuptling).

- Beziehungspfeil immer vom Fremd- zum Primärschlüssel.
- 'fremdschluessel' ist eine Spalte der TabelleA, wird dort aber nicht eingetragen.
- Die Form der Pfeilspitze ist wichtig und muss genau so sein, da andere Spitzen andere Bedeutungen haben!
- Kardinalität an der Pfeilspitze ist immer 1 (bei Datenbanken), da in einer Spalte (eines Datensatzes) immer nur ein Wert stehen kann.

• m:n, z.B.

Die Kardinalität beschreibt, wie viele Objekte auf jeder Seite einer Beziehung stehen können. Es gibt folgende Arten:

Bewohner hat.

Schulklassen pro Lehrer (in

• 1:1, z.B. Häuptling pro Dorf, der auch nur in einem Dorf Häuptling ist.

Lehrer pro Schulklasse +

- 1:n, z.B. jeder Bewohner wohnt in einem Dorf, das aber
- 1:n, z.B. jeder Bewohner wohnt in einem Dorf, das aber

Datenbanken nicht direkt umsetzbar, dazu später mehr).

• m:n, z.B.

Die Kardinalität beschreibt, wie viele Objekte auf jeder Seite einer Beziehung stehen können. Es gibt folgende Arten:

Bewohner hat.

Schulklassen pro Lehrer (in

• 1:1, z.B. Häuptling pro Dorf, der auch nur in einem Dorf Häuptling ist. ein

Lehrer pro Schulklasse +

- 1:n, z.B. jeder Bewohner wohnt in einem Dorf, das aber

Datenbanken nicht direkt umsetzbar, dazu später mehr).

• m:n, z.B.

Die Kardinalität beschreibt, wie viele Objekte auf jeder Seite einer Beziehung stehen können. Es gibt folgende Arten:

Schulklassen pro Lehrer (in

- 1:1, z.B. Häuptling pro Dorf, der auch nur in einem Dorf Häuptling ist. ein
- Bewohner hat.
- 1:n, z.B. jeder Bewohner wohnt in einem Dorf, das aber mehrere

Lehrer pro Schulklasse +

Datenbanken nicht direkt umsetzbar, dazu später mehr).

• m:n, z.B.

Die Kardinalität beschreibt, wie viele Objekte auf jeder Seite einer Beziehung stehen können. Es gibt folgende Arten:

Schulklassen pro Lehrer (in

- 1:1, z.B. Häuptling pro Dorf, der auch nur in einem Dorf Häuptling ist. ein
- Bewohner hat.
- 1:n, z.B. jeder Bewohner wohnt in einem Dorf, das aber mehrere

Lehrer pro Schulklasse +

Datenbanken nicht direkt umsetzbar, dazu später mehr).

beliebig viele

• m:n, z.B.

Die Kardinalität beschreibt, wie viele Objekte auf jeder Seite einer Beziehung stehen können. Es gibt folgende Arten:

beliebig viele

Schulklassen pro Lehrer (in

- 1:1, z.B. Häuptling pro Dorf, der auch nur in einem Dorf Häuptling ist. ein
- Bewohner hat.

Lehrer pro Schulklasse +

1:n, z.B. jeder Bewohner wohnt in einem Dorf, das aber mehrere

Datenbanken nicht direkt umsetzbar, dazu später mehr).

beliebig viele

Klassendiagramm Flugverspätung

Bearbeite diese Aufgabe auf artemis.tum.de.

Erstelle ein Klassendiagramm für die Datenbank unter dbiu.de/flugverspaetungen/.

Damit du weniger schreiben musst, kannst du die letzten 6 Spalten der Tabelle Flug durch ... ersetzen.

Achte auf korrektes Format, Datentypen und Kardinalitäten. Zeichne das Diagramm anschließend unten auf:

Klassendiagramm Flugverspätung

Bearbeite diese Aufgabe auf artemis.tum.de.

Erstelle ein Klassendiagramm für die Datenbank unter dbiu.de/flugverspaetungen/.

Damit du weniger schreiben musst, kannst du die letzten 6 Spalten der Tabelle Flug durch ... ersetzen.

Achte auf korrektes Format, Datentypen und Kardinalitäten. Zeichne das Diagramm anschließend unten auf:

Outline

Stunde 1+2

nde 3+4

Stunde 5+6

Stunde 7+8

Stunde 9+10

tunde 11+12

Klassendiagramm Flugverspätung

Bearbeite diese Aufgabe auf artemis.tum.de.

Erstelle ein Klassendiagramm für die Datenbank unter dbiu.de/flugverspaetungen/.

Damit du weniger schreiben musst, kannst du die letzten 6 Spalten der Tabelle Flug durch ... ersetzen.

Achte auf korrektes Format, Datentypen und Kardinalitäten. Zeichne das Diagramm anschließend unten auf:

Klassendiagramm Flugverspätung

Bearbeite diese Aufgabe auf artemis.tum.de.

Erstelle ein Klassendiagramm für die Datenbank unter dbiu.de/flugverspaetungen/.

Damit du weniger schreiben musst, kannst du die letzten 6 Spalten der Tabelle Flug durch ... ersetzen.

Achte auf korrektes Format, Datentypen und Kardinalitäten. Zeichne das Diagramm anschließend unten auf:

SQL: Tabellen verbinden

aus diesen Tabellen auch zusammengehörende Datensätze abfragen. Öffne dafür www.dbiu.de/flugverspaetungen und führe folgende SQL-Abfrage aus:

SELECT *

FROM Fluggesellschaft, Flug

SQL: Tabellen verbinden

werden die beiden Tabellen miteinander kombiniert?

Was beobachtest du? Werden nur zusammengehörende Datensätze angezeigt? Falls nicht, nach welchem Muster

SQL: Tabellen verbinden

Was beobachtest du? Werden nur zusammengehörende Datensätze angezeigt? Falls nicht, nach welchem Muster werden die beiden Tabellen miteinander kombiniert?

Nein, es werden alle Datensätze aus einer mit allen Datensätzen aus der anderen kombiniert und die Spalten einfach hintereinander aufgereiht.

omma

Möchte man Daten aus zwei Tabellen mit Beziehung zueinander abfragen, gibt man beide Tabellen mit Komma getrennt nach FROM an.

Die SQL-Abfrage bildet dann das der Tabellen. Die Ergebnistabelle enthält von Datensätzen beider Tabellen (Merkregel:).

Um nur zusammengehörige Datensätze (also solche, die miteinenader in Beziehung stehen, z.B. eine Bewohner mit seinem Dorf) auszuwählen, ergänzt man als **Selektion** eine **Gleichheitsbedingung** zwischen Fremd- und zugehörigem . Dann spricht man von einem .

Zum Beispiel kann man in SQL-Island die Daten aller Dörfer und ihrer zugehörigen Häuptlinge so ausgeben:

SELECT *
FROM Dorf, Bewohner

Möchte man Daten aus zwei Tabellen mit Beziehung zueinander abfragen, gibt man beide Tabellen mit Komma

getrennt nach FROM an. Die SQL-Abfrage bildet dann das Kreuzprodukt der Tabellen. Die Ergebnistabelle enthält

von Datensätzen beider Tabellen (Merkregel: Um nur zusammengehörige Datensätze (also solche, die miteinenader in Beziehung stehen, z.B. eine Bewohner mit seinem Dorf) auszuwählen, ergänzt man als Selektion eine Gleichheitsbedingung zwischen Fremd- und

zugehörigem . Dann spricht man von einem

Zum Beispiel kann man in SQL-Island die Daten aller Dörfer und ihrer zugehörigen Häuptlinge so ausgeben:

FROM Dorf, Bewohner

WHERE Dorf.haeuptling = Bewohner.bewohnernr

SELECT*

alle

Möchte man Daten aus zwei Tabellen mit Beziehung zueinander abfragen, gibt man beide Tabellen mit Komma getrennt nach FROM an.

Die SQL-Abfrage bildet dann das Kreuzprodukt der Tabellen. Die Ergebnistabelle enthält Kombinationen von Datensätzen beider Tabellen (Merkregel: Um nur zusammengehörige Datensätze (also solche, die miteinenader in Beziehung stehen, z.B. eine Bewohner

mit seinem Dorf) auszuwählen, ergänzt man als Selektion eine Gleichheitsbedingung zwischen Fremd- und zugehörigem . Dann spricht man von einem

Zum Beispiel kann man in SQL-Island die Daten aller Dörfer und ihrer zugehörigen Häuptlinge so ausgeben:

SELECT* FROM Dorf, Bewohner

amma.

Möchte man Daten aus zwei Tabellen mit Beziehung zueinander abfragen, gibt man beide Tabellen mit Kommagetrennt nach FROM an.

Die SQL-Abfrage bildet dann das Kreuzprodukt der Tabellen. Die Ergebnistabelle enthält alle Kombinationen von Datensätzen beider Tabellen (Merkregel: Jeder mit Jedem).
Um nur zusammengehörige Datensätze (also solche, die miteinenader in Beziehung stehen, z.B. eine Bewohner mit seinem Dorf) auszuwählen, ergänzt man als Selektion eine Gleichheitsbedingung zwischen Fremd- und

zugehörigem . Dann spricht man von einem

Zum Beispiel kann man in SQL-Island die Daten aller Dörfer und ihrer zugehörigen Häuptlinge so ausgeben:

SELECT *
FROM Dorf, Bewohner

alle

Möchte man Daten aus zwei Tabellen mit Beziehung zueinander abfragen, gibt man beide Tabellen mit Komma getrennt nach FROM an.

Die SQL-Abfrage bildet dann das Kreuzprodukt der Tabellen. Die Ergebnistabelle enthält von Datensätzen beider Tabellen (Merkregel: Jeder mit Jedem

Kombinationen Um nur zusammengehörige Datensätze (also solche, die miteinenader in Beziehung stehen, z.B. eine Bewohner mit seinem Dorf) auszuwählen, ergänzt man als Selektion eine Gleichheitsbedingung zwischen Fremd- und zugehörigem Primärschlüssel . Dann spricht man von einem

Zum Beispiel kann man in SQL-Island die Daten aller Dörfer und ihrer zugehörigen Häuptlinge so ausgeben:

SELECT * FROM Dorf, Bewohner

alle

Möchte man Daten aus zwei Tabellen mit Beziehung zueinander abfragen, gibt man beide Tabellen mit Komma getrennt nach FROM an.

Die SQL-Abfrage bildet dann das Kreuzprodukt der Tabellen. Die Ergebnistabelle enthält Kombinationen von Datensätzen beider Tabellen (Merkregel: Jeder mit Jedem Um nur zusammengehörige Datensätze (also solche, die miteinenader in Beziehung stehen, z.B. eine Bewohner mit seinem Dorf) auszuwählen, ergänzt man als Selektion eine Gleichheitsbedingung zwischen Fremd- und

zugehörigem Primärschlüssel . Dann spricht man von einem Join

SELECT*

Zum Beispiel kann man in SQL-Island die Daten aller Dörfer und ihrer zugehörigen Häuptlinge so ausgeben:

FROM Dorf, Bewohner

Join Beispiel Lehrkraft kuerzel Her Ext

schule MTG

Dante

SELECT* FROM Lehrkraft, Schule

WHERE Lehrkraft.schule = Schule.id

ort Haidh Haidh. Sendl.

ort

Schule

id

MTG

Dante

id <u>kuerzel</u> schule id

•	1101			i idiaii.				
2	Ext	Dante	MTG	Haidh.				
1	Her	MTG	Dante	Sendl.				
2	Ext	Dante	Dante	Sendl.				
Ergebnistabelle des Joins								

Ergebnistabelle des Joins							
id	kuerzel	schule	id	ort			
1	Her	MTG	MTG	Haidh.			
2	Ext	Dante	Dante	Sendl.			

Outline

Stunde 1+2

Stunde 3+4

Stunde 5+6

Stunde 7+8

Stunde 9+10

Stunde 11+12

Exempendad / Join

Matte me Dann van Taellen om Barthung ausrender aktigen, gilt mer bede Talelen om Somme
Stern (1998) og det stern (1998) og det stern bede Talelen om Somme
Stern (1998) og det stern (19

SQL mit Kreuzprodukt und Join

Bearbeite diese Aufgabe auf artemis. tum. de. Du bekommsteine automatische Rückmeldung, ob deine Abgabe korrekt ist. Alle Aufgaben beziehen sich auf die Datenbank mit untem stehendem Klassendiagramm. Eine Online-Version gibt es unter www. db 1u. de/bayern/, dort ist auch das Tabellenschema zu finden.

Gib immer genau die geforderten Daten aus und nicht mehr. Sortiere nicht, wenn du nicht dazu aufgefordert wirst.

Join Beispiel Lehrkraft id | kuerzel | s 1 | Her | 1 2 | Ext | [

schule

MTG

Dante

SELECT * FROM Lehrkraft, Schule

WHERE Lehrkraft.schule = Schule.id

ort

id ort
MTG Haidh.
Dante Sendl.

Schule

id kuerzel schule id

MTG MTG Haidh. Her Ext MTG Haidh. **Dante** Her MTG Sendl. **Dante** Ext Sendl. **Dante** Dante

Ergebnistabelle des Joins							
id	kuerzel	schule	id	ort			
1	Her	MTG	MTG	Haidh.			
2	Ext	Dante	Dante	Sendl.			

SQL mit Kreuzprodukt und Join

Bearbeite diese Aufgabe auf artemis.tum.de. Du bekommst eine automatische Rückmeldung, ob deine Abgabe korrekt ist. Alle Aufgaben beziehen sich auf die Datenbank mit untem stehendem Klassendiagramm. Eine Online-Version gibt es unter www.dbiu.de/bayern/, dort ist auch das Tabellenschema zu finden. Gib immer genau die geforderten Daten aus und nicht mehr. Sortiere nicht, wenn du nicht dazu aufgefordert wirst.

Gib immer genau die geforderten Daten aus und nicht mehr. Sortiere nicht, wenn du nicht dazu aufgefordert wirst.

Notiere unten anschließend deine korrekten SQL-Abfragen unten.

SQL mit Kreuzprodukt und Join

Verändere die SQL-Abfrage so, dass die Namen und Internetadressen (=url) aller Zoos und der Name und Regierungsbezirk der jeweiligen Gemeinde ausgegeben wird:

SELECT Zoo.name, Gemeinde.name

FROM Zoo, Gemeinde

Verändere die SQL-Abfrage so, dass die Namen und Internetadressen (=url) aller Zoos und der Name und Regierungsbezirk der jeweiligen Gemeinde ausgegeben wird:

SELECT Zoo.name, Gemeinde.name , Gemeinde.regierungsbezirk, Zoo.url

FROM Zoo, Gemeinde

Verändere die SQL-Abfrage so, dass die Namen und Internetadressen (=url) aller Zoos und der Name und Regierungsbezirk der jeweiligen Gemeinde ausgegeben wird:

SELECT Zoo.name, Gemeinde.name , Gemeinde.regierungsbezirk, Zoo.url

FROM Zoo, Gemeinde

WHERE Zoo.gemeindeschluessel = Gemeinde.schluessel

Verändere die SQL-Abfrage so, dass die Namen und Straßen aller Freizeitparks und die Namen der jeweils zugehörigen Gemeinde ausgegeben wird.

SELECT Freizeitpark.name, Gemeinde.name

FROM Freizeitpark, Gemeinde

Verändere die SQL-Abfrage so, dass die Namen und Straßen aller Freizeitparks und die Namen der jeweils zugehörigen Gemeinde ausgegeben wird.

SELECT Freizeitpark.name, Gemeinde.name , Freizeitpark.strasse

FROM Freizeitpark, Gemeinde

Verändere die SQL-Abfrage so, dass die Namen und Straßen aller Freizeitparks und die Namen der jeweils zugehörigen Gemeinde ausgegeben wird.

SELECT Freizeitpark.name, Gemeinde.name , Freizeitpark.strasse

FROM Freizeitpark, Gemeinde

WHERE Gemeinde.schluessel = Freizeitpark.gemeindeschluessel

Schreibe eine SQL-Abfrage, die Namen und Art aller Schwimmbäder und den Namen und alle Einwohnerzahlen der zugehörigen Gemeinden ausgibt.

Schreibe eine SQL-Abfrage, die Namen und Art aller Schwimmbäder und den Namen und alle Einwohnerzahlen der zugehörigen Gemeinden ausgibt.

SELECT Schwimmbad.name, Schwimmbad.art,

Gemeinde.name, Gemeinde.einwohner_m, Gemein<u>de.einwohner_w</u>

FROM Schwimmbad, Gemeinde

WHERE Gemeinde.schluessel = Schwimmbad.gemeindeschluessel

Schreibe eine SQL-Abfrage, die die Anzahl an Schwimmbädern in Gemeinden mit **mehr** als 1000 weiblichen Einwohnerinnen ausgibt.

Tipp: Hier brauchst du mehrere verknüpfte Bedingungen

Schreibe eine SQL-Abfrage, die die Anzahl an Schwimmbädern in Gemeinden mit **mehr** als 1000 weiblichen Einwohnerinnen ausgibt.

Tipp: Hier brauchst du mehrere verknüpfte Bedingungen

SELECT COUNT(*)

EDOM Sobwimmbod Comoins

FROM Schwimmbad, Gemeinde WHERE Gemeinde.schluessel = Schwimmbad.gemeindeschluessel

AND Gemeinde.einwohner_w > 1000

Schreibe eine SQL-Abfrage, die die Namen aller Gemeinde in Oberbayern oder Niederbayern, zu denen ein Wanderweg führt, ausgibt. Dopplungen dürfen auftreten und sollte nicht entfernt werden!

Tipp: Hier brauchst du wieder mehrere verknüpfte Bedingungen. Überlege bei der Verknüpfung von Bedingungen.

Tipp: Hier brauchst du wieder mehrere verknüpfte Bedingungen. Überlege bei der Verknüpfung von Bedingungen, ob du Klammern setzen musst!

Schreibe eine SQL-Abfrage, die die Namen aller Gemeinde in Oberbayern oder Niederbayern, zu denen ein Wanderweg führt, ausgibt. Dopplungen dürfen auftreten und sollte nicht entfernt werden!

Tipp: Hier brauchst du wieder mehrere verknüpfte Bedingungen. Überlege bei der Verknüpfung von Bedingungen, ob du Klammern setzen musst!

SELECT Gemeinde.name

FROM Gemeinde, Wanderweg_zu_Gemeinde

WHERE Gemeinde.schluessel = Wanderweg_zu_Gemeinde.gemeindeschluessel

AND (Gemeinde.regierungsbezirk='Oberbayern'

OR Gemeinde.regierungsbezirk='Niederbayern')

Schreibe eine SQL-Abfrage, die aus den Tabellen Gemeinde und Wanderweg_zu_Gemeinde die Anzahl der Wanderwege, die zu Gemeinden mit mehr als 500 000 männlichen Einwohnern führen, ausgibt.

Schreibe eine SQL-Abfrage, die aus den Tabellen Gemeinde und Wanderweg_zu_Gemeinde die Anzahl der Wanderwege, die zu Gemeinden mit mehr als 500 000 männlichen Einwohnern führen, ausgibt.

SELECT COUNT(*)

FROM Gemeinde, Wanderweg_zu_Gemeinde

WHERE Gemeinde.schluessel = Wanderweg_zu_Gemeinde.gemeindeschluessel

AND einwohner_m > 500000

Schreibe eine SQL-Abfrage, die eine Liste mit den Namen aller Gemeinden, die ein 'Freibad' haben, und die Namen der jeweiligen Freibäder ausgibt.

Schreibe eine SQL-Abfrage, die eine Liste mit den Namen aller Gemeinden, die ein 'Freibad' haben, und die Namen der jeweiligen Freibäder ausgibt.

SELECT Gemeinde.name, Schwimmbad.name

FROM Gemeinde, Schwimmbad

WHERE Gemeinde.schluessel=Schwimmbad.gemeindeschluessel

AND Schwimmbad.art='Freibad'

Schreibe eine SQL-Abfrage, die die Anzahl an Radwegen, die an Gemeinden im PLZ-Bereich **größer** als 96400 angrenzen, ausgibt.

Schreibe eine SQL-Abfrage, die die Anzahl an Radwegen, die an Gemeinden im PLZ-Bereich **größer** als 96400 angrenzen, ausgibt.

SELECT COUNT(*)

FROM Gemeinde, Radweg_zu_Gemeinde

WHERE Gemeinde.schluessel=Radweg_zu_Gemeinde.gemeindeschluessel

AND Gemeinde.plz > 96400

Schreibe eine SQL-Abfrage, die die Namen aller Zoos in einer Gemeinde namens 'Erlangen' ausgibt.

Schreibe eine SQL-Abfrage, die die Namen aller Zoos in einer Gemeinde namens 'Erlangen' ausgibt. SELECT Zoo.name

FROM Zoo, Gemeinde

WHERE Zoo.gemeindeschluessel = Gemeinde.schluessel

AND Gemeinde.name='Erlangen'

Schreibe eine SQL-Abfrage, die die IDs aller Radwege, die zu Gemeinden in Oberfranken oder Unterfranken führen, ausgibt. Dopplungen sollen nicht entfernt werden.

Schreibe eine SQL-Abfrage, die die IDs aller Radwege, die zu Gemeinden in Oberfranken oder Unterfranken führen, ausgibt. Dopplungen sollen nicht entfernt werden.

SELECT Radweg_zu_Gemeinde.radweg_id

FROM Radweg_zu_Gemeinde, Gemeinde

WHERE Gemeinde.schluessel = Radweg_zu_Gemeinde.gemeindeschluessel

AND (Gemeinde.regierungsbezirk = 'Oberfranken'

OR Gemeinde.regierungsbezirk='Unterfranken')