Mitschrieb: Differentialtopologie I WS 17 / 18

tensor.produkt@gmx.de

2. Februar 2018

Vorwort

Dies ist ein Mitschrieb der Vorlesungen vom 1.12.17 bis zum 22.01.18 des Kurses DIFFERENTIALTOPOLOGIE I an der Universität Heidelberg.

Dieses Dokument wurde "live" in der Vorlesung getext. Sämtliche Verantwortung für Fehler übernimmt alleine der Autor dieses Dokumentes.

Auf Fehler kann gerne hingewiesen werden bei folgende E-Mail-Adresse

tensor.produkt@gmx.de

Ferner kann bei dieser E-Mail-Adresse auch der Tex-Code für dieses Dokument erfragt werden.

Inhaltsverzeichnis

1	ABI	RISS 5
	1.1	Topologie
	1.2	Mannigfaltigkeiten
	1.3	Vektorraumbündel
4	VEI	KTORRAUMBÜNDEL 17
	4.1	Glatter Approximationssatz
	4.2	Homogenität von Mannigfaltigkeiten
	4.3	Theorie der Abbildungsgrade
	4.4	Orientierungen
	4.5	Anwendungen des Abbildunggrades
5	DE	RHAM KOHOMOLOGIE 33
	5.1	Äußere Algebren
	5.2	Äußeres Produkt
	5.3	Glatte Differentialformen auf Offenen Mengen im \mathbb{R}^n 40
	5.4	Das Äußere Produkt auf der Kohomologie
	5.5	Funktorialität
	5.6	Pullback auf die de Rham-Kohomologie
	5.7	De Rham-Kohomologie von Glatten Mannigfaltigkeiten 53
	5.8	Integration auf Glatten Mannigfaltigkeiten
	5.9	Der Allgemeine Satz von Stokes
		Das Homotopieaxiom für de Rham-Kohomologie 60
		Exakte Sequenzen
		Die Mayer-Vietoris-Sequenz
6	Koi	HOMOLOGIE MIT KOMPAKTEN TRÄGERN 69
-	6.1	Mayer-Vietoris für H_c^*
	6.2	Poincare-Lemma für H_c^*

6.3	Zurück zum Abbildungsgrad	76
6.4	Endlich-Dimensionalität der Kohomologie	78
6.5	Der Kohomologiering von $\mathbb{C}P^n$	84
6.6	Kartesische Produkte	89
6.7	Die Signatur einer Mannigfaltigkeit	93

Kapitel 1

ABRISS

1.1 Topologie

1.1.1 Lemma: Lebesgue

Abriss vorhergehender Vorlesungen

Sei X ein kompakter Raum mit Metrik d. $(U_i)_{i\in I}$ sei eine Überdeckung von X durch offene Mengen. Dann gibt es eine Konstante $\delta > 0$, die sogenannte **Lebesgue-Konstante**, sodass für jede Teilmenge $A \subset X$ gilt

$$\operatorname{diam}(A) = \sup\{d(a,b) \mid a,b \in A\} < \delta \Longrightarrow \exists i \in I : A \subset U_i$$

Beweis

Für jedes $x \in X$ wählen wir ein $\varepsilon(x) > 0$ und ein $i(x) \in I$ mit

$$B_{2\varepsilon(x)}(x) \subset U_{i(x)}$$

Die Menge $\{B_{\varepsilon(x)}(x)\}_{x\in X}$ ist eine Überdeckung von X durch offene Mengen und eine Verfeinerung von $\{U_i\}_{i\in I}$. Da X kompakt ist, erhalten wir eine endliche Teilüberdeckung $\{B_{\varepsilon(x_i)}(x_i)\}_{i=1}^n$ von X. Setze

$$\delta := \min\{\varepsilon(x_1), \ldots, \varepsilon(x_n)\}$$

Sei nun $A \subset X$ mit

$$\operatorname{diam}(A) \subset \delta$$

Dann gibt es ein $x \in \{x_1, \dots, x_n\}$ mit $a_0 \in B_{\varepsilon(x)}(x) \cap A \neq \emptyset$. Es gilt dann für alle $a \in A$

$$d(a, x) \le d(a, a_0) + d(a, x) < \delta + \varepsilon(x) \le 2\varepsilon(x)$$

Daraus folgt

$$A \subset B_{2\varepsilon(x)}(x) \subset U_{i(x)}$$

1.1.2 Definition

Eine Überdeckung eines topologischen Raumes durch offene Mengen heißt lokal endlich, wenn jeder Punkt des Raumes eine Umgebung besitzt, die nur endlich viele Elemente der Überdeckung schneidet.

1.1.3 Definition

Ein topologischer Raum heißt **parakompakt**, wenn jede Überdeckung durch offene Mengen eine lokal endliche Verfeinerung besitzt.

1.1.4 Bemerkung

- Ist ein Raum parakompakt, so ist er auch **normal**, d. h., zwei disjunkte abgeschlossene Teilmengen besitzen in diesem Raum zwei disjunkte Umgebungen.
- Jeder metrische Raum ist parakompakt.
- Im Allgemeinem impliziert Parakompaktheit nicht Metrisierbarkeit.

1.1.5 Definition

Sei X ein topologischer Raum mit einer Überdeckung $\{U_i\}_{i\in I}$ durch offene Mengen. Eine **Zerlegung der Eins** bzgl. $\{U_i\}_{i\in I}$ ist eine Familie $\{f_i\}$ von stetigen Funktionen

$$f_i:X\longrightarrow\mathbb{R}$$

mit

- i.) supp $f_i := Cl(\{x \in X \mid f(x) \neq 0\}) \subset U_i$,
- ii.) Für alle $x \in X$ gilt

$$f_i(x) = 0$$

für fast alle $i \in I$

iii.) und

$$\sum_{i \in I} f_i(x) = 1$$

für alle $x \in X$.

1.1.6 Satz

Ein parakompakter Raum besitzt bzgl. jeder Überdeckung durch offene Mengen eine Zerlegung der Eins.

1.2 Mannigfaltigkeiten

Jede Mannigfaltigkeit, die sich durch zwei Karten mit zusammenhängendem Schnitt überdecken lässt, ist orientierbar.

1.2.1 Definition

Sei $\varphi: M \to N$ eine glatte Abbildung glatter Mannigfaltigkeiten.

1.) $p \in M$ heißt ein **kritischer Punkt**, falls

$$\varphi_{p,*}:T_pM\to T_{\varphi(p)}N$$

nicht surjektiv ist.

- 2.) $q \in N$ heißt ein **kritischer Wert**, falls es einen kritischen Punkt $p \in \varphi^{-1}(q)$ gibt.
- 3.) Ist $q \in N$ nicht kritisch, so nennen wir q einen **regulären Wert**.

1.2.2 Bemerkung

• Ist dim $M < \dim N$, so gilt für $q \in N$

$$q$$
 ist regulär $\iff q \notin \varphi(M)$

- Ist dim $M \ge \dim N$, so gilt für $q \in N$ q ist regulär $\iff \forall p \in \varphi^{-1}(q) : \varphi_{p,*}$ hat als lineare Abbildung einen Rang von dim N
- Alle $q \in N \varphi(M)$ sind reguläre Werte.

1.2.3 Satz: Sard

Sei $f:U\overset{o}{\subset}\mathbb{R}^n\to\mathbb{R}^p$ glatt. Setze

$$C := \{ x \in \mathbb{R}^n \mid x \text{ ist kein regulärer Punkt für } f \}$$

Dann ist f(C) eine Nullmenge.

Beweis

Wir führen eine Induktion nach n: Setze

 $C_k := \{x \in U \mid \text{alle partiellen Ableitungen von } f \text{ der Ordnung } k \text{ verschwinden in } x\}$

Es gilt dann

$$C \supseteq C_1 \supseteq C_2 \supseteq \dots$$

Wir proklamieren folgende Dinge

- (1) $f(C \setminus C_1)$ ist eine Nullmenge.
- (2) $f(C_k \setminus C_{k+1})$ ist eine Nullmenge.
- (3) Es gibt ein k, sodass $f(C_k)$ eine Nullmenge ist.

Hieraus folgt dann, dass f(C) eine Nullmenge ist. Wir zeigen nun die proklamierten Dinge

(1) $f(C \setminus C_1)$ ist eine Nullmenge: Sei $x' \in C \setminus C_1$. Dann gilt

$$\frac{\partial f_1}{\partial x_1}(x') \neq 0$$

Betrachte

$$h: U \longrightarrow \mathbb{R}^n$$

 $x \longmapsto (f_1(x), x_2, \dots, x_n)$

hist dann in einer Umgebung von x'invertierbar. Betrachte für ein passendes $V \overset{o}{\subset} \mathbb{R}^n$

$$g := f \circ h^{-1} : V \longrightarrow \mathbb{R}^p$$

Betrachte

$$C' := h(C \cap V)$$

C' ist gerade die Menge der kritischen Punkte von g. Ferner genügt es zu zeigen, dass $g(C') = f(C \cap V)$ eine Nullmenge ist. Betrachte die Einschränkung

$$g_t: V \cap \{t\} \times \mathbb{R}^{n-1} \longrightarrow \mathbb{R}^n$$

g ist gerade so definiert, dass gilt

$$g(x_1,\ldots,x_n)=(x_1,y_2,\ldots,y_p)$$

Deswegen ist der erste Eintrag der Jacobimatrix von g eine Eins. Insofern gilt

$$C' = \bigcup_t C_t$$

wobei C_t die kritischen Punkte von g_t sind. Nach der Induktionsvoraussetzung haben aber alle

$$g_t(C_t)$$

Maß 0. Nach dem Satz von Fubini hat damit auch g(C') Maß Null. Damit hat auch $f(C - C_1)$ Maß Null.

(2) $f(C_k \setminus C_{k+1})$ ist eine Nullmenge: Sei $x' \in C_k \setminus C_{k+1}$. Dann gilt ohne Einschränkung

$$\frac{\partial^{k+1} f_1}{\partial x_1 \dots \partial x_{k+1}} (x') \neq 0$$

Betrachte

$$h: U \longrightarrow \mathbb{R}^n$$

$$x \longmapsto (\frac{\partial^k f_1}{\partial x_1 \dots \partial x_k}(x), x_2, \dots, x_n)$$

Nach der vorherigen Überlegung folgt nun für h

$$h(C^h - C_1^h)$$
 hat Maß Null

Hieraus folgt die Behauptung.

(3) Es gibt ein k, sodass $f(C_k)$ eine Nullmenge ist:

Sei $I^n \subset \mathbb{R}^n$ ein Würfel mit Seitenlängen δ . Es genügt zu zeigen, dass $f(C_k \cap I^n)$ Nullmaß hat.

Seien x und x + h aus $I^n \cap C$. Durch eine Taylorentwicklung von f bei x sieht man ein, dass

$$||f(x+h) - f(x)|| \le c \cdot ||h||^{k+1}$$

Setze k=n. Durch Unterteilung von I^n erhält man 2^n viele neue Unterwürfel (jedes I wird halbiert). Dadurch wird die maximale Länge von h halbiert. Ergo wird die maximale Distanz von Bildwerten von f eines Unterwürfels um den Faktor 2^{n+1} reduziert. Hieraus folgt nun, dass $f(C_n \cap I^n)$ Maß Null haben muss, da wir sonst einen Widerspruch erhalten.

1.2.4 Korollar: Satz von Brown

Sei $f: M \to N$ glatt. Dann ist die Menge der regulären Werte von f in N dicht.

1.2.5 Definition

Sei $\varphi: M \to N$ eine glatte Abbildung glatter Mannigfaltigkeiten.

- 1.) φ heißt **Submersion**, falls $\varphi_{p,*}:T_pM\to T_{\varphi(p)}N$ für alle $p\in M$ surjektiv ist.
- 2.) φ heißt **Immersion**, falls $\varphi_{p,*}:T_pM\to T_{\varphi(p)}N$ für alle $p\in M$ injektiv ist.
- 3.) (M, φ) heißt eine **Untermannigfaltigkeit** von N, falls φ eine injektive Immersion ist.
- 4.) (M, φ) heißt eine **Einbettung** in N, falls sie eine Untermannigfaltigkeit ist und ein φ einen Homöomorphismus von M auf ihr Bild ist.

1.2.6 Proposition

Sei $\varphi:M\to N$ eine glatte Abbildung glatter Mannigfaltigkeiten der Dimensionen m bzw. n. $p\in M$ sei ein beliebiger Punkt.

• Ist φ immersiv bei p, so existieren Karten $U \subset M, V \subset N$, um p bzw. $\varphi(p)$ und eine Abbildung

$$\widetilde{\varphi}: \mathbb{R}^m \longrightarrow \mathbb{R}^n$$

 $(x_1, \dots, x_m) \longmapsto (x_1, \dots, x_m, 0, \dots, 0)$

sodass folgendes Diagramm kommutiert

$$U \xrightarrow{\varphi} V$$

$$\downarrow \cong \qquad \qquad \downarrow \cong$$

$$\mathbb{R}^m \xrightarrow{\widetilde{\varphi}} \mathbb{R}^n$$

• Ist φ submersiv bei p, so existieren Karten $U \subset M, V \subset N$, um p bzw. $\varphi(p)$ und eine Abbildung

$$\widetilde{\varphi}: \mathbb{R}^m \longrightarrow \mathbb{R}^n$$

 $(x_1, \dots, x_m) \longmapsto (x_1, \dots, x_n)$

sodass folgendes Diagramm kommutiert

$$\begin{array}{ccc} U & \stackrel{\varphi}{\longrightarrow} V \\ \downarrow^{\cong} & \downarrow^{\cong} \\ \mathbb{R}^m & \stackrel{\widetilde{\varphi}}{\longrightarrow} \mathbb{R}^n \end{array}$$

1.2.7 Korollar

Sei $\varphi: M \to N$ eine glatte Abbildung glatter Mannigfaltigkeiten. Ist $q \in N$ regulär, so ist $\varphi^{-1}(q) \subset M$ eine eingebettete Untermannigfaltigkeit der Dimension dim M – dim N.

1.2.8 Satz

Seien $U, V \subset M$ glatte eingebettete Untermannigfaltigkeit. U und V schneiden sich **transversal**, wenn für alle $x \in U \cap V$ gilt

$$T_r U + T_r V = T_r M$$

In einem solchen Fall ist $U \cap V$ eine eingebettete Untermannigfaltigkeit der Dimension $\dim U + \dim V - \dim M$.

1.3 Vektorraumbündel

1.3.1 Definition

Ein **Vektorraumbündel** von Rang n ist Tripel (p, E, B), bei der E, B topologisch Räume und $p: E \to B$ eine stetige Abbildung sind, die folgende Eigenschaften erfüllen

• p ist **lokal trivial**, d.h., jeder Punkt $b \in B$ hat eine Umgebung $U \subset B$ zusammen mit einem Diffeomorphismus

$$\varphi_U: p^{-1}(U) \longrightarrow U \times \mathbb{R}^n$$

sodass folgendes Diagramm kommutiert

$$p^{-1}(U) \xrightarrow{\varphi_U} U \times \mathbb{R}^n$$

• Obiges φ_U induziert **faserweise** Isomorphismen, d.h., für alle $x \in U$ hat $p^{-1}(x)$ eine gegebene Vektorraumstruktur, für die

$$\varphi_{|x}: p^{-1}(x) \longrightarrow \{x\} \times \mathbb{R}^n$$

ein Isomorphismus von Vektorräumen ist.

In diesem Setting heißt B der **Basisraum**, E der **Totalraum**, p die lokal triviale **Projektion** und $p^{-1}(b)$ die **Faser** über $b \in B$.

1.3.2 Bemerkung

Ist ein Vektorraumbündel wie oben gegeben, so erhalten wir für zwei Karten $U, V \subset B$ folgendes Diagramm

 θ_{UV} ist dabei von der Gestalt

$$\theta_{UV}(x,y) = (x, \mathfrak{g}_{U,V}(x) \cdot y)$$

mit $\mathfrak{g}_{U,V}:U\cap V\to GL_n(\mathbb{R})$ stetig. $GL_n(\mathbb{R})$ nennt man hier die **Strukturgruppe** von (p,E,B) und die $\mathfrak{g}_{U,V}$ nennt man die **Übergangsfunktionen**. Diese erfüllen funktorielle Eigenschaften:

- $\mathfrak{g}_{U,U} = \mathrm{Id}$
- $\bullet \ \mathfrak{g}_{V,W} \cdot \mathfrak{g}_{U,V} = \mathfrak{g}_{U,W}$

1.3.3 Definition

Seien (p, E, B) und (p', E', B') zwei Vektorraumbündel. Eine **Homomorphismus** von Vektorraumbündeln ist ein kommutatives Diagramm

$$E \xrightarrow{F} E'$$

$$\downarrow^{p} \qquad \downarrow^{p'}$$

$$B \xrightarrow{f} B'$$

wobei F und f stetig sind, und F faserweise linear ist, d.h.

$$F_{|p^{-1}(b)}: p^{-1}(b) \longrightarrow p'^{-1}(f(b))$$

ist ein Homomorphismus von Vektorräumen für alle $b \in B$.

1.3.4 Bemerkung

Ein Homomorphismus (F, f) von Vektorraumbündeln ist genau dann ein Isomorphismus, wenn f homöomorph ist und F auf jeder Faser einen Isomorphismus induziert.

1.3.5 Definition

(p, E, B) heißt **trivial**, falls $E \cong B \times \mathbb{R}^n$.

1.3.6 Definition

Eine glatte Mannigfaltigkeit heißt **parallelisierbar**, wenn ihr Tangentialbündel trivial ist.

1.3.7 Satz: Einbettungssatz von Whitney

Sei M eine glatte, geschlossene Mannigfaltigkeit der Dimension n. Dann existiert eine Einbettung $M \subset \mathbb{R}^{2n+1}$ von M als Untermannigfaltigkeit.

Beweis

• Sei U_1, \ldots, U_k eine Überdeckung von M durch Karten mit Diffeomorphismen $\varphi_1, \ldots, \varphi_k$. Wir wählen zusätlich offene Mengen V_1, \ldots, V_k so, dass diese M überdecken und dass gilt

$$\overline{V_i} \subset U_i$$

Ferner wählen wir glatte Funktionen $\lambda_i: M \to \mathbb{R}$ mit

$$\lambda_{i|V_i} \equiv 1 \text{ und supp} \lambda_i \subset U_i$$

Definiere nun glatte Abbildungen

$$\psi_i: M \longrightarrow \mathbb{R}$$

$$x \longmapsto \begin{cases} \lambda_i(x)\varphi_i(x) & x \in U_i \\ 0 & x \notin U_i \end{cases}$$

Wir erhalten nun eine glatte Abbildung

$$\Theta: M \longrightarrow (\mathbb{R}^n)^k \times \mathbb{R}^k$$
$$x \longmapsto (\psi_1(x), \dots, \psi_k(x), \lambda_1(x), \dots, \lambda_k(x))$$

• Wir wollen zeigen, dass Θ eine Einbettung ist. Sei $p \in V_i, 0 \neq v \in T_pM$. Angenommen es gilt

$$\Theta_{*,p}(v) = 0$$

Dann gilt insbesondere

$$\psi_{i,*,p}(v) = 0$$

 λ_i ist in einer Umgebung von p konstant 1, ergo gilt

$$\varphi_{i,p,*}(v) = 0$$

Aber $\varphi_{j,p,*}$ ist ein Diffeomorphismus, ergo erhalten wir einen Widerspruch. Insofern ist Θ immersiv.

Anhand der Definition sieht man auch ein, dass Θ injektiv ist. Ferner ist Θ ein Homöomorphismus auf sein Bild, da M kompakt und \mathbb{R}^{nk+k} ein Hausdorffraum ist.

1.3. VEKTORRAUMBÜNDEL

15

• Wir haben nun eine Einbettung

$$\Theta: M \longrightarrow \mathbb{R}^N$$

und wollen N auf 2n+1 verringern. Dazu nehmen wir an, dass es ein $0 \neq w \in \mathbb{R}^N$ gibt mit

$$w \text{ ist tangential zu } \Theta(M)$$

$$\forall x,y \in \Theta(M): x \neq y \Longrightarrow x-y \text{ ist nicht parallel zu } w$$

In diesem Fall ergibt sich folgendes Diagramm

wobei Θ' wieder eine Einbettung liefert.

ullet Wir wollen die Existenz von oben proklamierten ws zeigen und betrachten die Projektion

$$\mathbb{R}^N \longrightarrow P^{N-1}\mathbb{R}$$

Wir erhalten zwei Abbildungen

$$\tau: \mathcal{T}M - M \subset \mathbb{R}^N \longrightarrow P^{N-1}\mathbb{R}$$
$$v \longmapsto [v]$$
$$\sigma: M \times M - \Delta(M) \longrightarrow P^{N-1}\mathbb{R}$$
$$(x, y) \longmapsto [x - y]$$

Laut dem Satz von Sard besitzen beide Abbildungen einen gemeinsamen regulären Wert [w]. Da

$$\dim M \times M = \dim \mathcal{T}M = 2n < N - 1 = \dim P^{N-1}\mathbb{R}$$

kann dieser Wert nicht in den Bildern von τ und σ liegen, ergo erfüllt w obige Eigenschaften.

1.3.8 Definition

Sei M eine n-dimensionale glatte Mannigfaltigkeit mit einer Einbettung $M \subset \mathbb{R}^{n+k}$. Setze

$$E := \{ (p, v) \in M \times \mathbb{R}^{n+k} \mid x \perp T_p M \}$$

Dann ist (π, E, M) das **Normalenbündel** von Rang k bzgl. $M \subset \mathbb{R}^{n+k}$.

1.3.9 Satz: Tubenumgebung

Ist M kompakt im obigen Setting, so existiert eine offene **Tubenumgebung** $U \subset \mathbb{R}^{n+k}$ von M mit

$$U \cong E$$

Inbesondere kommt U mit einem Deformationsretrakt $r:U\to M$ einher.

Beweis

Wir setzen für $\varepsilon > 0$

$$E(\varepsilon) := \{ (p, v) \in E \mid ||v|| < \varepsilon \}$$

Offensichtlich liegt dann folgende Isomorphie vor

$$E(\varepsilon) \cong E$$

Durch die Exponentialabbildung von \mathbb{R}^{n+k} erhalten wir eine glatte Abbildung

$$\exp: E(\varepsilon) \longrightarrow \mathbb{R}^{n+k}$$
$$(p,v) \longmapsto \exp_p(v) = p+v$$

Da M kompakt ist, können wir ε so klein wählen, dass exp zu einer Einbettung der Untermannigfaltigkeit $E(\varepsilon)$ wird. Dann setzen wir

$$U:=\exp(E(\varepsilon))$$

Kapitel 4

VEKTORRAUMBÜNDEL

Vorlesung vom 1.12.17

4.1 Glatter Approximationssatz

4.1.1 Proposition

Sei M eine glatte Mannigfaltigkeit, $A \overset{c}{\subset} M$, $f: M \to \mathbb{R}^k$ stetig, sodass $f_{|A}$ glatt ist. Dann existiert für alle $\varepsilon > 0$ ein Abbildung $g: M \to \mathbb{R}^k$ mit:

- 1.) g ist glatt
- 2.) $g_{|A} = f_{|A}$
- 3.) $||f(x) g(x)|| < \varepsilon \ \forall x \in M$
- 4.) $g \simeq f$ relativ A durch eine ε -kleine Homotopie, d. h., es existiert eine Homotopie $H: M \times I \to \mathbb{R}^k$ mit
 - (a) $H(x,t) = H(x,0) \quad \forall t \in I, x \in A$
 - (b) $H(x,0) = f(x) \quad \forall x \in A$
 - (c) $H(x,1) = g(x) \quad \forall x \in A$
 - (d) $d(H(x,t_1),H(x,t_2)) < \varepsilon \quad \forall x \in M, t_1,t_2 \in I$

Beweis

Für alle $x \in M$ wählen wir:

Fall 1 $x \in A$:

Dann existiert eine offene Umgebung $V_x\subset M$ und eine glatte Abbildung $h_x:V_x\to\mathbb{R}^k$ mit

$$h_{x|V_x \cap A} = f_{|V_x \cap A}$$

Fall 2 $x \notin A$:

Wähle $V_x \stackrel{o}{\subset} M$ mit

$$V_r \cap A = \emptyset$$

und wähle $h_x: V_x \to \mathbb{R}^k$ glatt mit

$$h_x(y) = f(x)$$

für alle $y \in V$. Außerdem stellen wir sicher, dass die V_x so klein sind, dass für $x, x' \notin A$ gilt

$$||h_x(y) - f(x')|| < \frac{\varepsilon}{2}, \quad ||f(y) - f(x)|| < \frac{\varepsilon}{2}$$

Sei $(U_{\alpha})_{\alpha}$ eine lokal endliche Verfeinerung von $(V_x)_x$ mit

$$U_{\alpha} \subset V_{x(\alpha)}$$

Sei $(\lambda_{\alpha})_{\alpha}$ eine glatte Partition der Eins mit supp $\lambda_{\alpha} \subset U_{\alpha}$. Wir setzen

$$g(y) := \sum_{\alpha} \lambda_{\alpha}(y) h_{x(\alpha)}(y)$$

Dann ist $g: M \to \mathbb{R}^k$ bereits glatt.

Sei $y \in A$. Wenn $y \notin V_{x(\alpha)}$, dann ist $\lambda_{\alpha}(y) = 0$, denn $\operatorname{supp}(\lambda_{\alpha}) \subset V_{x(\alpha)}$. Daraus folgt

$$g(y) = \sum_{\alpha: y \in V_{x(\alpha)} \cap A} \lambda_{\alpha}(y) h_{x(\alpha)}(y) = \sum_{\alpha: y \in V_{x(\alpha)} \cap A} \lambda_{\alpha}(y) f(y) = f(y)$$

bzw.

$$f_{|A} = g_{|A}$$

Sei $y \notin A$

$$g(y) - f(y) = \sum_{\alpha} \lambda_{\alpha}(y) (h_{x(\alpha)}(y) - f(y))$$

Da
$$||h_{x(\alpha)}(y) - f(y)|| \le ||h_{x(\alpha)}(y) - f(x)|| + ||f(x) - f(y)|| \le \varepsilon$$
, folgt $||g(y) - f(y)|| \le \varepsilon$

Wir definieren nun die Homotopie zwischen f und g durch

$$H(x,t) := t \cdot f(x) + (1-t)g(x)$$

4.1.2 Satz: Glatter Approximationssatz

Sei M eine glatte Mannigfaltigkeit der Dimension m, sei N eine glatte, kompakte und metrische Mannigfaltigkeit der Dimension n. Sei $A \stackrel{c}{\subset} M$, $f: M \to N$ stetig. f sei auf A eingeschränkt glatt. Dann gilt:

Für jedes $\varepsilon > 0$ existiert eine glatte Abbildung $h: M \to N$, sodass gilt:

- 1. h stimmt auf A mit f überein.
- 2. f und h sind durch eine ε -kleine Homotopie relativ zu A verbunden.

Beweis

N habe eine glatte Einbettung $\iota: N \hookrightarrow \mathbb{R}^k$. Da N kompakt ist, existiert für jedes $\varepsilon > 0$ ein $\delta > 0$, sodass für alle $p, q \in N$ gilt

$$||\iota(p) - \iota(q)|| < \delta \Longrightarrow d(p,q) < \varepsilon$$

d. h., ι^{-1} ist gleichmäßig stetig.

Dies motiviert im Folgenden $||\cdot||$ auf \mathbb{R}^k statt d auf N zu betrachten.

Wir fixieren ein $\varepsilon > 0$. Der Satz über Tubenumgebungen impliziert die Existenz einer $\frac{\delta}{2}$ -Umgebung $U \overset{o}{\subset} \mathbb{R}^k$ von $\iota(N)$, sodass $U \cong E(\frac{\delta}{2})$, wobei E das Normalenbündel zu ι war.

Aus der vorhergenden Proposition folgt nun die Existenz einer glatten Abbildung $g:M\to\mathbb{R}^k$, die $\frac{\delta}{2}$ -klein und relativ zu A homotop zu $\iota\circ f$ ist. Das Bild von g liegt dann ganz in U.

Sei $r:U\to N$ ein glatter Deformationsrektrakt. Wir können fordern, dass diese eine $\frac{\varepsilon}{2}$ -kleine Homotopie induziert. Dann ist $r\circ g$ glatt und homtop zu f via einer ε -kleinen Homotopie relativ zu A.

4.1.3 Bemerkung

• Der Metrisierbarkeitssatz von Smirnov besagt.

Ist X ein parakompakter, lokal metrisierbarer Hausdorffraum, so ist X global metrisierbar.

Insbesondere sind Mannigfaltigkeiten immer metrisierbar.

• Sei $f: M \to S^n$ eine stetige Abbildung. $m = \dim M < n$. Der Glatte Approximationssatz impliziert nun die Existenz einer glatten Abbildung $f: M \to S^n$, die homotop zu f ist.

Der Satz von Sard proklamiert nun die Existenz eines regulären Wert $p \in S^n$ von g. Da m < n, folgt aber hieraus

$$p \notin g(M)$$

 $S^n - p \cong \mathbb{R}^n$, ergo erhalten wir eine glatte Abbildung $g: M \to \mathbb{R}^n$. Hieraus folgt aber, dass g nullhomotop ist. Insbesondere ist auch f nullhomotop. D. h., eine stetige Abbildung von einer glatten Mannigfaltigkeit in eine höherdimensionale Sphäre ist immer null-homotop.

• $\partial D^{n+1} = S^n$ ist kein Retrakt von D^{n+1} . Denn angenommen, es gäbe eine Retraktion $r: D^{n+1} \to S^n$. Definiere

$$D_{\leq \frac{1}{2}}^{n+1} = \left\{ x \in \mathbb{R}^{n+1} \mid ||x|| \leq \frac{1}{2} \right\} \text{ und } \partial D_{\leq \frac{1}{2}}^{n+1} = S_{\frac{1}{2}}^{n}$$

Analog erhalten wir $r_{\frac{1}{2}}:D^{n+1}_{\leq \frac{1}{2}}\to S^n_{\frac{1}{2}}.$ Betrachte ferner

$$p: \mathbb{R}^{n+1} \to S^n, x \mapsto \frac{x}{||x||}$$

Definiere nun

$$f: \mathbb{R}^{n+1} \longrightarrow S^n$$

$$x \longmapsto \begin{cases} p(r_{\frac{1}{2}}(x)) & ||x|| \leq \frac{1}{2} \\ p(x) & ||x|| \geq \frac{1}{2} \end{cases}$$

f ist glatt in einer kleinen Umgebung vom S^n . Betrachte

$$f_{|D^{n+1}} \longrightarrow S^n$$

Diese Abbildung ist stetig, ergo homotop zu einer glatten Abbildung $g: D^{n+1} \to S^n$, wobei $f_{|S^n} = g_{|S^n}$.

Mit dem Satz von Sard existiert ein regulärer Wert für g (und $g_{|S^n}$). $g^{-1}(p)$ ist dann eine glatte, kompakte Untermannigfaltigkeit der Dimension 1

mit Rand. Es gilt folgende Randformel

$$\partial g^{-1}(p) = (g^{-1}(p)) \cap \partial D^{n+1}$$

Dann ist $g^{-1}(p)$ eine endliche Vereinigung von Kreisen in $\operatorname{int}(D^n)$ und kompakten Intervallen mit Randpunkten in S^n . Allerdings gilt

$$\partial g^{-1}(p) = \{p\}$$

da g die ganze Faser $g^{-1}(p)$ auf p schickt und g auf S^n die Identität ist. Deswegen kann die Zahl der Randpunkte von $g^{-1}(p)$ nicht gerade sein.

4.1.4 Lemma

Sei $(M, \partial M)$ eine berandete Mannigfaltigkeit, $g: M \to N$ glatt. $p \in N$ sei regulär für g und für $g_{|\partial M}$. Dann gilt

$$\partial g^{-1}(p) = g^{-1}(p) \cap \partial M$$

4.1.5 Beispiel

Betrachte $g: D^2 \to \mathbb{R}$ durch

$$g(x,y) = x^2 + y^2$$

p=1 ist ein regulärer Wert für g, aber nicht für $g_{|S^1} \stackrel{\text{konst.}}{=} 1$. Es gilt

$$g^{-1}(p) \cap \partial D^2 = S^1 \cap S^1 = S^1$$

aber

$$\partial q^{-1}(p) = \partial S^1 = \emptyset$$

4.1.6 Korollar: Brownscher Fixpunktsatz

Vorlesung vom 4.12.17

Jede stetige Abbildung $f: D^n \to D^n$ hat einen Fixpunkt.

Beweis

Wir nehmen an, $f:D^n\to D^n$ habe keinen Fixpunkt. Wir definieren dann folgende stetige Abbildung

$$r: D^n \longrightarrow S^{n-1}$$

 $x \longmapsto x + t(x - f(x))$

s.d. $x + t(x - f(x)) \in S^{n-1}$. Er ist insbesondere ein Retrakt auf S^{n-1} , da r die Identität auf S^{n-1} ist. Dies steht im Widerspruch zum obigen Satz.

4.1.7 Korollar

Sphären sind nicht zusammenziehbar.

Beweis

Angenommen, S^n wäre zusammenziehbar. Dann existiert eine Homotopie

$$H: S^n \simeq p \in S^n$$

der folgendes Diagramm induziert

$$S^{n} \times I \xrightarrow{H} S^{n}$$

$$\downarrow^{Quot} \xrightarrow{\exists_{1}\overline{H}} S^{n}$$

$$S^{n} \times I/S^{n} \times \{1\}$$

Wir haben also eine stetige Abbildung

$$\overline{H}:D^{n+1}\longrightarrow S^n$$

wobei gilt

$$\overline{H}_{|S^n} = \mathrm{Id}_{S^n}$$

Ergo ist \overline{H} ein Retrakt von D^{n+1} auf S^n . Dies ist ein Widerspruch.

4.2 Homogenität von Mannigfaltigkeiten

Wir wollen Folgendes zeigen in diesem Kapitel.

4.2.1 Satz

Sei M eine zusammenhängende, geschlossene Mannigfaltigkeit und $p,q\in M$ beliebige Punkte. Dann existiert ein Diffeomorphismus $\varphi:M\to M$, der sogar isotop zur Identität ist, mit

$$\varphi(p) = q$$

4.2.2 Lemma

Für $p=0\in\mathbb{R}^n$ und $q\in\mathbb{R}^n$ mit ||q||<1 existiert ein Diffeomorphismus $\tau:\mathbb{R}^n\to\mathbb{R}^n$ mit

i.
$$\tau(p) = q$$

ii.
$$\tau(x) = x$$
 für alle $x \in \mathbb{R}^n$ mit $||x|| \ge 1$

iii. τ ist isotop zu $\mathrm{Id}_{\mathbb{R}^n}$

Beweis

Ohne Einschränkung liege $q \in [0, 1)$ auf einer Achse. Wähle eine glatte Funktion $\lambda : \mathbb{R}^n \to \mathbb{R}$ mit

$$\lambda(x) > 0$$
 für $||x|| < 1$
 $\lambda(x) = 0$ für $||x|| \ge 1$

Sei $v_0 \in S^{n-1}$. Wir definieren folgendes Vektorfeld auf \mathbb{R}^n

$$v(x) := \lambda(x) \cdot v_0$$

Dann ist v(x) = 0 für $||x|| \ge 1$.

Wir betrachten nun folgende gewöhnliche Differentialgleichung

$$\begin{cases} x'(t) = v(x(t)) \\ x(0) = x_0 \end{cases}$$

Diese hat lokal eine eindeutige Lösung x(t), die glatt von x_0 abhängt. Hier existiert die Lösung für alle $t \in \mathbb{R}$, da v(x) außerhalb einer kompakten Menge verschwindet. Definiere

$$\tau_t(x_0) := x(t)$$
$$\tau_0(x_0) := x_0$$

Die $\{\tau_t \mid t \in \mathbb{R}\}\subset \text{Diffeo}(\mathbb{R}^n)$ bilden dann eine Einparametergruppe von Diffeomorphismen. Es gilt

$$\{\tau_t(0) \mid t \in \mathbb{R}^n\} = [0, 1)$$

Ergo erfüllt eines der τ_t die Voraussetzungen.

Beweis: Satz 4.2.1

Seien $p, q \in M$.

• Liegen p,q im Definitionsbereich einer Karte $U \subset M$, dann konstruieren wir ein Koordinatensystem x um p mit

$$x(p) = 0$$

$$x(q) = (\frac{1}{2}, 0, \dots, 0)$$

Dann verwenden wir das $\tau:U\to U$ aus dem vorhergehenden Lemma, um p auf q abzubilden und setzen τ durch die Identität zu einem Diffeomorphismus auf M fort.

ullet Sind p,q beliebig auf M verteilt, so können wir M mit endlich vielen Karten überdecken und eine Sequenz von Punkten

$$p = p_0 \to p_1 \to p_2 \to \ldots \to p_k = q$$

finden, bei denen zwei hintereinander folgende Punkte in einer Karte liegen. Wir konstruieren nun induktiv Diffeomorphismen $\tau: p \mapsto p_i$.

4.3 Theorie der Abbildungsgrade

Seien M, N glatte, geschlossene Mannigfaltigkeiten derselben Dimension n. Sei $f: M \to N$ eine glatte Abbildung.

Wir wollen f einen **Abbildungsgrad** deg $f \in \mathbb{Z}/2\mathbb{Z}$ zuordnen, sodass gilt

$$\deg f = \deg g$$

für $f \simeq g$. Dadurch wird der Abbildungsgrad zu einer Homotopieinvariante von f. Sei $p \in N$ ein regulärer Wert von f. Dann ist $f^{-1}(p)$ eine nulldimensionale, kompakte Untermannigfaltigkeit von M, also eine endliche Menge von Punkten. Wir setzen

$$\deg_p f := \# f^{-1}(p) \mod 2$$

4.3.1 Lemma

Seien $f,g:M\to N$ glatt und sei $H:M\times I\to N$ ein Homotopie von f nach g. Ist p ein regulärer Wert für f,g und H, so gilt

$$\deg_p f = \deg_p g \mod 2$$

Beweis

 $H^{-1}(p)$ ist eine kompakte eindimensionale Untermannigfaltigkeit von $M \times I$ mit Rand

$$\partial H^{-1}(p) = \partial (M \times I) \cap H^{-1}(p) = f^{-1}(p) \times \{0\} \cup g^{-1}(p) \times \{1\}$$

 $H^{-1}(p)$ ist eine disjunkte Vereinigung von endlich vielen Kreisen und kompakten Intervallen. Daraus folgt

$$\#\partial H^{-1}(p) \equiv 0 \mod 2$$

Nun gilt aber

$$\#\partial H^{-1}(p) = \#f^{-1}(p) + \#g^{-1}(p)$$

Daraus folgt die Behauptung.

4.3.2 Lemma

In Lemma 4.3.1 genügt es anzunehmen, dass p ein regulärer Wert für f und g ist.

Beweis

Auf einer hinreichend kleinen Umgebung eines Urbildes von p unter f ist f ein lokaler Diffeomorphismus, da p regulär ist und dim $M = \dim N$.

Also ist jeder Punkt, der hinreichend nahe bei p liegt, auch ein regulärer Wert von f und g.

Laut dem Satz von Sard existiert ein p' hinreichend nahe bei p, sodass p' ein regulärer Wert von H ist. p' ist dann insbesondere regulär für f und g.

4.3.3 Lemma

Sei N zusammenhängend. Seien p,q reguläre Werte von f. Dann gilt

$$\deg_p f = \deg_q f \mod 2$$

Beweis

Aus der Homogenität von N folgt die Existenz eines Diffeomorphismus $\tau: p \mapsto q$, der isotop zur Identität ist. Es gilt

$$(\tau f)^{-1}(q) = f^{-1}(p)$$

Nun gilt

$$\deg_q f \equiv \deg_q \tau \circ f = \deg_p f \mod 2$$

4.4 Orientierungen

Seien V, W reelle Vektorräume der Dimension n.

Vorlesung vom 8.12.17

4.4.1 Definition

Eine **Orientierung** von V ist die Äquivalenzklasse einer geordneten Basis $(\alpha_1, \ldots, \alpha_n)$ von V, wobei zwei geordnete Basen $(\alpha_1, \ldots, \alpha_n)$ und $(\beta_1, \ldots, \beta_n)$ genau dann äquivalent sind, wenn die Determinante des Isomorphismus Φ , der α_i auf β_i abbildet, positiv ist.

4.4.2 Bemerkung

Ist n > 0, so hat V genau eine Orientierung. Anderenfalls hat V genau eine Orientierung.

4.4.3 Definition

Die kanonische Orientierung von \mathbb{R}^1 ist gegeben durch

$$[(+1)]$$

4.4.4 Bemerkung

Sind V und W orientiert¹, so ist auch $V \oplus W$ orientiert. D. h.

$$V : [(\alpha_1, \dots, \alpha_n)]$$

$$W : [(\beta_1, \dots, \beta_n)]$$

$$V \oplus W : [(\alpha_1, \dots, \alpha_n, \beta_1, \dots, \beta_n)]$$

Insbesondere ist \mathbb{R}^n kanonisch orientiert.²

4.4.5 Definition

Eine **stabile Orientierung** von V ist eine Orientierung $V \oplus \mathbb{R}^1$. ³

¹Ein **orientierter** Vektorraum ist ein Vektorraum zusammen mit einer fixierten Orientierung.
²Haben $V \oplus W$ und $W \oplus V$ dieselbe Orientierung?

³Also eigentlich eine von $V \oplus \mathbb{R}^n$ für n > 0. Beachte, dass \mathbb{R}^n kanonisch orientiert ist für alle n > 0, und diese Orientierungen können kompatibel gewählt werden, d. h., $\mathbb{R}^n \oplus \mathbb{R}^m \cong \mathbb{R}^{n+m}$ ist kanonisch orientiert, wenn \mathbb{R}^n und \mathbb{R}^m beide kanonisch bzw. antikanonisch orientiert sind.

4.4.6 Bemerkung

Jeder Vektorraum hat genau zwei stabile Orientierungen.

4.4.7 Beispiel

Der nulldimensionale Vektorraum hat die beiden stabilen Orientierungen

$$[(+1)]$$
 und $[(-1)]$

die wir kurz auch einfach nur als + und - bezeichnen werden.

4.4.8 Prinzip

Sind zwei der Elemente aus $\{V, W, V \oplus W\}$ stabil orientiert, so ist auch das dritte auf kanonische Weise stabil orientiert.

4.4.9 Beispiel

Es sei V=0. $W=\mathbb{R}^1$ kanonisch orientiert. $V\oplus W=\mathbb{R}^1$ sei antikanonisch orientiert⁴. Dann erhält V die stabile Orientierung -.

4.4.10 Definition

Ein Vektorraumhomomorphismus $\Phi: V \to W$ heißt **orientierungserhaltend**, falls

$$[(\Phi(\alpha_1),\ldots,\Phi(\alpha_n))] = [(\beta_1,\ldots,\beta_n)]$$

Anderenfalls heißt Φ orientierungsumkehrend.

4.4.11 Definition

Sei $p:E\to B$ ein Vektorraumbündel von Rang n mit lokaler Trivialisierung

$$p^{-1}(U_{\alpha}) \stackrel{\varphi_{\alpha}}{\longrightarrow} U_{\alpha} \times \mathbb{R}^n$$

Eine **Orientierung** von p ist eine Familie von Orientierungen der $p^{-1}(b), b \in B$, sodass alle

$$p^{-1}(b) \xrightarrow{\varphi_{\alpha}} \{b\} \times \mathbb{R}^n$$

⁴An dieser Stelle ist es wichtig zu erwähnen, dass der kanonische Isomorphismus $V \oplus W \cong \mathbb{R}^1$ hier orientierungserhaltend gewählt ist.

orientierungserhaltend sind, wobei $\{b\} \times \mathbb{R}^n$ kanonisch orientiert ist. Dies ist genau dann der Fall, wenn die Übergangsfunktionen

$$\varphi_{\alpha\beta}: U_{\alpha} \cap U_{\beta} \longrightarrow \mathrm{GL}_n(\mathbb{R})$$

nur orientierungserhaltende Isomorphismen als Bilder annehmen, d. h.

$$\det \varphi_{\alpha\beta}(x) > 0 \quad \forall x \in U_{\alpha} \cap U_{\beta}$$

4.4.12 Bemerkung

Ein orientierbares Vektorraumbündel mit einem zusammenhängenden Basisraum hat genau zwei stabile Orientierungen.

Denn, seien α, β zwei Orientierungen von $p: E \to B$. Die Menge der $b \in B$ an denen α und β übereinstimmen ist offen. Die Menge, in denen sich α und β unterscheiden ist aber auch offen. Allgemein können wir eine Orientierung als eine stetige Abbildung

or :
$$B \longrightarrow \{+, -\}$$

auffassen.

4.4.13 Beispiel

Das Möbiusbündel ist nicht orientierbar.

4.4.14 Prinzip

Sind zwei Elemente aus der Menge der Vektorbündel $E, E', E \oplus E'$ über B orientiert, so bestimmt dies eindeutig und kanonisch eine Orientierung des Dritten.

4.4.15 Bemerkung

Vektorraumbündel über nullhomotopen Basisräumen sind immer orientierbar.

Beweis

Definiere

$$\widehat{X} := \left\{ (x, \alpha) \mid x \in X, \alpha : \text{ Orientierung von } p^{-1}(x) \right\}$$

Dies liefert eine Überlagerung von Grad 2.

4.4.16 Proposition

Sei M eine glatte Mannigfaltigkeit. M ist genau dann orientierbar, wenn $\mathcal{T}M$ orientierbar ist.

Beweis

Die $\varphi_{\alpha\beta}$ sind gerade die Jacobimatrizen der Kartenwechsel.

4.4.17 Bemerkung

Sei $(M, \partial M)$ eine glatte berandete Mannigfaltigkeit. Es gilt

$$\mathcal{T}M_{|\partial M} = \mathcal{T}(\partial M) \oplus \mathbb{R}^1$$

Denn auf ∂M können wir einen Schnitt angeben, indem wir einen Vektor im Tangentialraum identifizieren, der vom Rand nach **innen** rein geht.

Ist M orientiert, so ist es auch $\mathcal{T}M$, dadurch auch $\mathcal{T}\partial M$ und ergo auch ∂M . Beachte, dass wir immer den nach innen weisenden Randvektor für \mathbb{R}^1 instrumentalisieren.

4.4.18 Definition

Seien M, N geschlossene orientierte glatte Mannigfaltigkeiten der Dimension n. $f: M \to N$ sei glatt.

Sei ferner $p \in N$ ein regulärer Wert von f. Definiere

$$\deg_p f := \sum_{q \in f^{-1}(p)} \varepsilon_q$$

wobei

$$\varepsilon_q := \begin{cases} +1 & \mathrm{d} f_q : T_q M \to T_p N \text{ ist orientierungserhaltend} \\ -1 & \mathrm{d} f_q : T_q M \to T_p N \text{ ist orientierungsumkehrend} \end{cases}$$

4.4.19 Bemerkung

Wie im nicht orientierten Fall zeigt man, dass $\deg_p f$ unabhängig von p und eine Homotopieinvariante bzgl. f ist.

Denn ist M orientiert, $f \simeq g$, so ist $M \times I$ orientiert, da I kanonisch orientiert ist. Ergo ist auch $f^{-1}(p)$ orientiert, da $\partial H^{-1}(p)$ orientiert ist. Alle Punkte in $f^{-1}(p)$ und $g^{-1}(p)$ haben eine Orientierung. Ihre Epsilonwerte subtrahieren sich zu Null.

4.5 Anwendungen des Abbildunggrades

Im Folgenden seien M,N geschlossene glatte orientierte Mannigfaltigkeiten der Dimension n.

Vorlesung vom 11.12.17

4.5.1 Lemma

Sei $f: M \to N$ glatt. Ist deg $f \neq 0$, dann ist f surjektiv.

Beweis

Wäre f nicht surjektiv, dann wählen wir $p \in N - f(M)$. Damit ist p regulär und es gilt

$$\deg f = \deg_p f = 0$$

4.5.2 Satz: Fundamentalsatz der Algebra

Jedes nichtkonstante komplexe Polynom hat eine Nullstelle.

Beweis

Sei $f:\mathbb{C}\to\mathbb{C}$ ein nichtkonstantes komplexes Polynom. Ohne Einschränkung hat f folgende Gestalt

$$f(z) = z^{n} + a_{n-1}z^{n-1} + \ldots + a_{1}z + a_{0}$$

Es gilt notorischerweise

$$\lim_{z \to \infty} f(z) = \infty$$

finduziert somit eine stetige Fortsetzung \overline{f} auf der Ein-Punkt-Kompaktifizierung von $\mathbb{C}.$

$$\overline{f}: \mathbb{C} \cup \{\infty\} \longrightarrow \mathbb{C} \cup \{\infty\}$$
$$z \in \mathbb{C} \longmapsto f(z)$$
$$\infty \longmapsto \infty$$

Wir fassen im Folgenden $\mathbb{C} \cup \infty$ als S^2 auf. Wir wollen den Abbildungsgrad von \overline{f} bestimmen. Betrachte hierzu folgende Homotopie

$$H: S^2 \times I \longrightarrow S^2$$

 $(z,t) \longmapsto z^n + a_{n-1}tz^{n-1} + \dots + a_1tz + a_0t$

hierdurch werden \overline{f} und \overline{g} homotop für $g(z):=z^n$. Ergo haben \overline{f} und \overline{g} den selben Abbildungsgrad. Der Abbildungsgrad von \overline{g} ist gerade n. Betrachte zum Beispiel den regulären Wert 1. Dieser hat n n-te Einheitswurzeln.

Ergo verschwindet der Abbildungsgrad von \overline{f} nicht, ergo ist \overline{f} surjektiv, ergo ist f surjektiv, ergo hat f eine Nullstelle.

4.5.3 Bemerkung

Es liegt folgender Isomorphismus vor

$$\left\{ \begin{array}{l} \text{punktierte Homotopieklassen von} \\ \text{stetigen Abbildungen } f: S^n \to S^n \end{array} \right\} \stackrel{\cong}{\longrightarrow} \mathbb{Z}$$

$$[f] \longmapsto \deg f$$

Kapitel 5

GLATTE DIFFERENTIALFORMEN UND DE RHAM KOHOMOLOGIE

Motivation

Für jede glatte Funktion $f: U \stackrel{o}{\subset} \mathbb{R} \to \mathbb{R}$ existiert eine glatte **Stammfunktion** $F: U \to \mathbb{R}$, d. h.

$$\frac{\mathrm{d}}{\mathrm{d}x}F = f$$

Kann das auf Funktionen in mehreren Veränderlichen verallgemeinert werden? Betrachten wir hierzu eine glatte Abbildung

$$f: U \stackrel{o}{\subset} \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$

Frage Existiert ein Potential $F: U \to \mathbb{R}$ sodass

$$f = (\frac{\mathrm{d}}{\mathrm{d}x}F, \frac{\mathrm{d}}{\mathrm{d}y}F) =: (f_1, f_2)$$

Wenn ja, dann gilt auch

$$\frac{\mathrm{d}f_1}{\mathrm{d}y} = \frac{\mathrm{d}^2 F}{\mathrm{d}x\mathrm{d}y} = \frac{\mathrm{d}^2 F}{\mathrm{d}y\mathrm{d}x} = \frac{\mathrm{d}f_2}{\mathrm{d}x}$$

Dadurch erhalten wir folgende notwendige Bedingung

$$\frac{\mathrm{d}f_1}{\mathrm{d}y} = \frac{\mathrm{d}f_2}{\mathrm{d}x}$$

Frage Ist diese Bedingung hinreichend? Schauen wir uns dazu folgendes Beispiel an:

$$f: \mathbb{R}^2 - 0 \longrightarrow \mathbb{R}^2$$
$$(x_1, x_2) \longmapsto \frac{1}{x_1^2 + x_2^2} (-x_2, x_1)$$

ferfüllt obige Bedingung. Angenommen es gäbe ein Potential $F:\mathbb{R}^2-0\to\mathbb{R}$ für f. Betrachte

$$\int_0^{2\pi} \frac{\mathrm{d}}{\mathrm{d}\theta} F(\cos\theta, \sin\theta) \mathrm{d}\theta = F(\cos 2\pi, \sin 2\pi) - F(\cos 0, \sin 0) = 0$$

Andererseits gilt

$$\frac{\mathrm{d}}{\mathrm{d}\theta}F(\cos\theta,\sin\theta) = -\sin\theta \frac{\partial F}{\partial x_1}(\cos\theta,\sin\theta) + \cos\theta \frac{\partial F}{\partial x_2}(\cos\theta,\sin\theta)$$
$$= \frac{\sin^2\theta}{\cos^2\theta + \sin^2\theta} + \frac{\cos^2\theta}{\cos^2\theta + \sin^2\theta} = 1$$

woraus folgen würde

$$\int_0^{2\pi} \frac{\mathrm{d}}{\mathrm{d}\theta} F(\cos\theta, \sin\theta) \mathrm{d}\theta = \int_0^{2\pi} 1 \mathrm{d}\theta = 2\pi$$

Dies ist ein Widerspruch, ergo ist obige Bedingung nicht hinreichend.

5.0.4 Definition

Eine Menge $U \subset \mathbb{R}^n$ heißt **sternförmig** bzgl. $x_0 \in U$, wenn für alle $x \in U$ die Strecke

$$\{tx + (1-t)x_0 \mid t \in [0,1]\}$$

in U enthalten ist.

5.0.5 Proposition

Ist $U \subset \mathbb{R}^2$ sternförmig und erfüllt die glatte Funktion $f: U \to \mathbb{R}^2$ die Bedingung

$$\frac{\mathrm{d}f_1}{\mathrm{d}x_2} = \frac{\mathrm{d}f_2}{\mathrm{d}x_1}$$

dann hat f ein Potential auf U.

Beweis

Ohne Einschränkung ist $x_0=0$ das Zentrum von U. Dann setzen wir

$$F(x_1, x_2) = \int_0^1 x_1 f_1(tx_1, tx_2) + x_2 f_2(tx_1, tx_2) dt$$

5.0.6 Bemerkung

Die Existenz eines Potentials hängt also irgendwie von der Topologie der Definitionsmenge ab.

Umformulierung

Sei $U \subset \mathbb{R}^2$. Wir definieren den **Gradient** durch

$$\nabla: C^{\infty}(U, \mathbb{R}) \longrightarrow C^{\infty}(U, \mathbb{R}^2)$$
$$f \longmapsto \left(\frac{\mathrm{d}f}{\mathrm{d}x_1}, \frac{\mathrm{d}f}{\mathrm{d}x_2}\right)$$

Die Rotation definieren wir durch

$$\operatorname{rot}: C^{\infty}(U, \mathbb{R}^2) \longrightarrow C^{\infty}(U, \mathbb{R})$$
$$f_1, f_2 \longmapsto \frac{\mathrm{d}f_1}{\mathrm{d}x_2} - \frac{\mathrm{d}f_2}{\mathrm{d}x_1}$$

Es gilt dann

$$rot \circ \nabla = 0$$

D. h., Bild $\nabla \subset \text{Kern rot}$. Wir definieren die erste Kohomologiegruppe von U durch

$$H^1(U) := \mathsf{Kern} \, \operatorname{rot}/\mathsf{Bild} \nabla$$

5.0.7 Beispiel

Wir wissen bereits

$$H^1(\text{sternf\"{o}rmig}) = 0$$

und

$$H^1(\mathbb{R}^2 - 0) \neq 0$$

5.1 Äußere Algebren

Sei V ein endlich dimensionaler reeller Vektorraum. Es bezeichne V^k das k-fache kartesische Produkt von V mit Vektorraumstruktur.

5.1.1 Definition

Eine k-lineare Abbildung $\omega: V^k \to \mathbb{R}$ heißt **alternierend**, wenn

$$\omega(v_1,\ldots,v_k)=0$$

für alle v_1, \ldots, v_k , in denen ein Vektor v_i mindestens an zwei Stellen vorkommt. Das ist äquivalent dazu zu fordern, dass ω für alle linear abhängige System v_1, \ldots, v_k verschwindet.

5.1.2 Bemerkung

Für ein alternierendes ω gilt

$$\omega(v_1,\ldots,v_i,\ldots,v_j,\ldots,v_k) = -\omega(v_1,\ldots,v_j,\ldots,v_i,\ldots,v_k)$$

5.1.3 Definition

Unter $Alt^k(V) \subset \mathsf{Hom}_{\mathbb{R}}(V^k,\mathbb{R})$ verstehen wir den reellen Vektorraum der alternierenden Formen. Wir legen ferner folgende Konvention fest

$$Alt^0(V) := \mathbb{R}$$

5.1.4 Beispiel

Ist $k = \dim V$, so ist $Alt^k(V)$ eindimensional und wird von der Determinante erzeugt.

5.1.5 Lemma

- 1.) $Alt^k(V) = 0$ für $k > \dim V$
- 2.) $\omega(v_1, \ldots, v_n) = \operatorname{sgn}(\sigma) \cdot \omega(v_{\sigma(1)}, \ldots, v_{\sigma(n)})$ für eine Permutation $\sigma \in S_k = \operatorname{Bij}(\{1, \ldots, k\}, \{1, \ldots, k\})$

5.2 Äußeres Produkt

Wir wollen ein Produkt auf dem System der $Alt^k(V)$ konstruieren.

$$\wedge: Alt^p(V) \times Alt^q(V) \longrightarrow Alt^{p+q}(V)$$

Für p = q = 1 legen wir fest

$$(\omega_1 \wedge \omega_2)(v_1, v_2) = \omega_1(v_1)\omega_2(v_2) - \omega_1(v_2)\omega_2(v_1)$$

5.2.1 Definition

Eine Permutation $\sigma \in S_{p+q}$ heißt (p,q)-Shuffle, wenn gilt

$$\sigma(1) < \sigma(2) < \ldots < \sigma(p)$$

und $\sigma(p+1) < \sigma(p+2) < \ldots \sigma(p+q)$

Ein (p,q)-Shuffle ist eindeutig durch sein Verhalten auf $\{1,\ldots,p\}$ festgelegt. Daraus folgt

$$\#S_{p,q} = \binom{p+q}{p}$$

wobei $S_{p,q} \subset S_{p+q}$ die Menge aller (p,q)-Shuffles bezeichnet.

5.2.2 Definition

Seien p, q beliebig, $\omega_1 \in Alt^p(V), \omega_2 \in Alt^q(V)$. Wir definieren das **Wedge-Produkt** der beiden Funktionale durch

$$(\omega_1 \wedge \omega_2)(v_1, \dots, v_{p+q}) := \sum_{\sigma \in S_{p,q}} \operatorname{sgn}(\sigma) \omega_1(v_{\sigma(1)}, \dots, v_{\sigma(p)}) \omega_2(v_{\sigma(p+1)}, \dots, v_{\sigma(p+q)})$$

Dann erhalten wir eine bilineare Abbildung

$$\wedge: Alt^p(V) \otimes Alt^q(V) \longrightarrow Alt^{p+q}(V)$$

Es gilt ferner

$$(\omega_1 \wedge \omega_2)(v_1, \dots, v_{p+q}) = \frac{1}{p!q!} \sum_{\sigma \in S_{p+q}} \operatorname{sgn}(\sigma) \omega_1(v_{\sigma(1)}, \dots, v_{\sigma(p)}) \omega_2(v_{\sigma(p+1)}, \dots, v_{\sigma(p+q)})$$

5.2.3 Lemma

Vorlesung vom 15.12.17

Das Wedge-Produkt ist assoziativ, bilinear und ein graduiert kommutatives Produkt, d. h.

i.
$$(\omega_1 \wedge \omega_2) \wedge \omega_3 = \omega_1 \wedge (\omega_2 \wedge \omega_3)$$

ii.
$$(\omega_1 + \omega_2) \wedge \omega_3 = \omega_1 \wedge \omega_3 + \omega_2 \wedge \omega_3$$

iii.
$$(\lambda \omega_1) \wedge \omega_2 = \lambda(\omega_1 \wedge \omega_2) = \omega_1 \wedge (\lambda \omega_2)$$

iv.
$$\omega_1 \wedge \omega_2 = (-1)^{pq} (\omega_2 \wedge \omega_1)$$

für $\omega_1 \in Alt^p(V), \omega_2 \in Alt^q(V), \omega_3 \in Alt^t(V), \lambda \in \mathbb{R}.$

5.2.4 Definition

Setze

$$Alt^*(V) = \bigcup_{p>0} Alt^p(V)$$

 $(Alt^*(V), +, \wedge)$ bildet eine graduierte \mathbb{R} -Algebra, die sogenannte **Äußere Algebra** von V. Sie ist graduiert kommutativ.

5.2.5 Lemma

Für 1-Formen $\omega_1, \ldots, \omega_p \in Alt^1(V)$ gilt

$$(\omega_1 \wedge \ldots \wedge \omega_p)(v_1, \ldots, v_p) = \det \begin{pmatrix} \omega_1(v_1) & \cdots & \omega_1(v_p) \\ \vdots & & \vdots \\ \omega_p(v_1) & \cdots & \omega_p(v_p) \end{pmatrix}$$

Beweis

Wir beweisen dies durch Induktion nach p.

Es sei p = 2. Dann gilt

$$(\omega_1 \wedge \omega_2)(v_1, v_2) = \omega_1(v_1)\omega_2(v_2) - \omega_2(v_1)\omega_1(v_2) = \det \begin{pmatrix} \omega_1(v_1) & \omega_1(v_2) \\ \omega_2(v_1) & \omega_2(v_2) \end{pmatrix}$$

Im Induktionsschritt rechnen wir nun

$$\omega_1 \wedge (\omega_2 \wedge \ldots \wedge \omega_p)(v_1, \ldots, v_p) = \sum_j (-1)^{j+1} \omega_1(v_j)(\omega_2 \wedge \ldots \wedge \omega_p)(v_1, \ldots, \widehat{v_j}, \ldots, v_p)$$

die Aussage ergibt sich nun, indem man

$$\begin{pmatrix} \omega_1(v_1) & \cdots & \omega_1(v_p) \\ \vdots & & \vdots \\ \omega_p(v_1) & \cdots & \omega_p(v_p) \end{pmatrix}$$

nach der ersten Zeile entwickelt.

5.2.6 Lemma

Sei $\{e_1, \ldots, e_n\}$ eine Basis von V und $\{\varepsilon_1, \ldots, \varepsilon_n\}$ die dazu duale Basis von $Alt^1(V) = V^*$. Dann ist

$$\{ \varepsilon_{i_1} \wedge \varepsilon_{i_2} \wedge \ldots \wedge \varepsilon_{i_p} \mid 1 \leq i_1 < i_2 < \ldots < i_p \leq n \}$$

eine Basis für $Alt^p(V)$. Insbesondere gilt

$$Alt_p(V) = \binom{n}{p}$$

Beweis

Es gilt nach Lemma 1 für $1 \le j_1 < \ldots < j_p \le n$

$$(\varepsilon_{i_1} \wedge \varepsilon_{i_2} \wedge \dots \wedge \varepsilon_{i_p})(e_{j_1}, \dots, e_{j_p}) = \det \begin{pmatrix} \varepsilon_{i_1}(e_{j_1}) & \cdots & \varepsilon_{i_1}(e_{j_p}) \\ \vdots & & \vdots \\ \varepsilon_{i_p}(e_{j_1}) & \cdots & \varepsilon_{i_p}(e_{j_p}) \end{pmatrix}$$

$$= \det \begin{pmatrix} \delta_{i_1, j_1} & \cdots & \delta_{i_1, j_p} \\ \vdots & & \vdots \\ \delta_{i_p, j_1} & \cdots & \delta_{i_p, j_p} \end{pmatrix} = \begin{cases} \operatorname{sign}(\sigma) & \{i_1, \dots, i_p\} = \{j_1, \dots, j_p\} \text{ und } \exists \sigma \in S_p : \sigma(i_k) = j_k \\ 0 & \operatorname{sonst} \end{cases}$$

Insbesondere gilt für eine p-Form $\omega \in Alt^p(V)$

$$\omega(e_{j_1}, \dots, e_{j_p}) = \sum_{i_1 < \dots < i_p} \omega(e_{i_1}, \dots, e_{i_p}) \cdot (\varepsilon_{i_1} \wedge \dots \wedge \varepsilon_{i_p})(e_{j_1}, \dots, e_{j_p})$$

Definiert man $c_{i_1,\ldots,i_p} = \omega(e_{i_1},\ldots,e_{i_p})$, so folgt mit der Linearität von ω

$$\omega = \sum_{i_1 < \dots < i_p} c_{i_1, \dots, i_p} (\varepsilon_{i_1} \wedge \dots \wedge \varepsilon_{i_p})$$

Ergo wird $Alt^p(V)$ linear von den Produkten $\varepsilon_{i_1} \wedge \ldots \wedge \varepsilon_{i_p}$ erzeugt. Diese Produkte sind linear unabhängig, denn wenn

$$\sum_{i_1 < \dots < i_p} b_{i_1, \dots, i_p} (\varepsilon_{i_1} \wedge \dots \wedge \varepsilon_{i_p}) = 0$$

für Koeffizienten $b_{i_1,\ldots,i_p} \in \mathbb{R}$, dann gilt

$$b_{j_1,\dots,j_p} = \sum_{i_1 < \dots < i_p} b_{i_1,\dots,i_p} (\varepsilon_{i_1} \wedge \dots \wedge \varepsilon_{i_p}) (e_{j_1},\dots,e_{j_p}) = 0$$

für alle $1 \leq j_1 < \dots j_p \leq n$.

5.2.7 Beispiel

Für p = n ist $Alt^p(V)$ eindimensional und erzeugt durch $\varepsilon_1 \wedge \ldots \wedge \varepsilon_n$.

5.3 Glatte Differentialformen auf Offenen Mengen im \mathbb{R}^n

Sei $U \subseteq \mathbb{R}^n$ offen.

5.3.1 Definition

Eine glatte **Differentialform** vom Grad p auf U ist eine glatte Abbildung

$$\omega: U \to Alt^p(\mathbb{R}^n) \cong \mathbb{R}^{\binom{n}{p}}$$

Es gilt

$$\omega = \sum_{i_1 < \dots < i_p} f_{i_1, \dots, i_p}(x) (\varepsilon_{i_1} \wedge \dots \wedge \varepsilon_{i_n})$$

für glatte Funktionen $f_{i_1,\dots,i_p} \in C^{\infty}(U,\mathbb{R})$.

Es bezeichne $\Omega^p(U)$ den \mathbb{R} -Vektorraum aller glatten Differentialformen vom Grad p auf U.

Schreibweise Schreibt man für $1 \le i_1 < \dots i_p \le n$

$$I = (i_1, \dots, i_p)$$

so schreibe man weiterhin

$$f_I = f_{i_1, \dots, i_p}$$

und

$$\varepsilon_I = \varepsilon_{i_1} \wedge \ldots \wedge \varepsilon_{i_n}$$

und

$$\omega = \sum_{I} f_{I} \varepsilon_{I}$$

5.3.2 Definition

Wir definieren **Richtungsableitungen** bei $x \in U$

$$\mathcal{D}_x \omega : \mathbb{R}^n \longrightarrow Alt^p(\mathbb{R}^n)$$

$$e_i \longmapsto \frac{\mathrm{d}\omega}{\mathrm{d}x_i}(x) := \frac{\mathrm{d}}{\mathrm{d}t_{t=0}} \omega(x + te_i)$$

Für $\omega = \sum_{I} f_{I} \varepsilon_{I}$ ist

$$(\mathcal{D}_x\omega)(e_i) = \sum_I \frac{\partial f_I}{\partial x_i}(x)\varepsilon_I$$

5.3.3 Definition

Mithilfe von \mathcal{D}_x definieren wir die **äußere Ableitung**

$$d: \Omega^p(U) \longrightarrow \Omega^{p+1}(U)$$

 $\omega \longmapsto d\omega$

 $_{
m mit}$

$$(d\omega)(x)(v_1,\ldots,v_{p+1}) := \sum_{j=1}^{p+1} (-1)^{j+1} (\mathcal{D}_x\omega)(v_j)(v_1,\ldots,\widehat{v_j},\ldots,v_{p+1})$$

5.3.4 Beispiel

$$\mathbf{d}:\Omega^0(U)=C^\infty(U,\mathbb{R})\longrightarrow\Omega^1(U)$$
mit

$$\mathrm{d}f = \sum_{i=1}^{n} \frac{\partial f}{\partial x_i} \varepsilon_i$$

Insbesondere gilt für $f = x_j$

$$\mathrm{d}x_i = \varepsilon_i$$

Insofern werden wir in Zukunft d x_i statt ε_i schreiben und ferner

$$\varepsilon_I = \varepsilon_{i_1} \wedge \ldots \wedge \varepsilon_{i_p} = \mathrm{d} x_{i_1} \wedge \ldots \wedge \mathrm{d} x_{i_p} =: \mathrm{d} x_I$$

5.3.5 Lemma

Für $\omega = f \varepsilon_I$ gilt

$$d\omega = (df) \wedge \varepsilon_I$$

Beweis

$$(d\omega)(x)(v_1,\ldots,v_{p+1}) = \sum_j (-1)^{j+1} (\mathcal{D}_x\omega)(v_j)(v_1,\ldots,\widehat{v_j},\ldots,v_p)$$

es gilt dabei mit $v = \sum_{i=1}^{n} \varepsilon_i(v) e_i$

$$(\mathcal{D}_x\omega)(v) = \sum_{i=1}^n \varepsilon_i(v)\mathcal{D}_x(f\varepsilon_I)(e_i)$$

Ferner gilt

$$\sum_{i=1}^{n} \varepsilon_i(v) \frac{\partial f}{\partial x_i}(x) \varepsilon_I = \mathrm{d}f(x)(v) \varepsilon_I$$

Daraus folgt

$$(d\omega)(x)(v_1,\ldots,v_{p+1}) = \sum_j (-1)^{j+1} df(x)(v_j) \varepsilon_I(v_1,\ldots,\widehat{v_j},\ldots,v_{p+1})$$
$$= ((df)(x) \wedge \varepsilon_I)(v_1,\ldots,v_{p+1})$$

Lemma 5.3.6

Die Zusammensetzung

$$\Omega^p(U) \xrightarrow{\mathrm{d}} \Omega^{p+1}(U) \xrightarrow{\mathrm{d}} \Omega^{p+2}(U)$$

verschwindet.

Beweis

Es genügt dies für Formen der Gestalt $\omega=f\varepsilon_I$ zu zeigen. Es gilt laut vorhergehendem Lemma

$$d\omega = df \wedge \varepsilon_I = \sum_{i=1}^n \frac{\partial f}{\partial x_i} \varepsilon_i \wedge \varepsilon_I$$

und

$$d(d\omega) = \sum_{i,j} \frac{\partial^2 f}{\partial x_i \partial x_j} \varepsilon_i \wedge \varepsilon_j \wedge \varepsilon_I = \sum_{i < j} \left(\frac{\partial^2 f}{\partial x_i \partial x_j} - \frac{\partial^2 f}{\partial x_j \partial x_i} \right) \varepsilon_j \wedge \varepsilon_i \wedge \varepsilon_I$$

Das verschwindet aber, da

$$\frac{\partial^2 f}{\partial x_i \partial x_j} = \frac{\partial^2 f}{\partial x_j \partial x_i}$$

5.3.7 Definition

Vorlesung vom 18.12.17

Wir definieren ein äußeres Produkt auf der Menge der glatten Differentialformen durch

$$\wedge: \Omega^p(U) \times \Omega^q(U) \longrightarrow \Omega^{p+q}(U)$$
$$(\omega, \eta) \longmapsto [x \in U \mapsto \omega(x) \wedge \eta(x)]$$

Dies ist zulässig, da $\omega \wedge \eta$ tatsächlich eine glatte Abbildung $U \to Alt^{p+q}(\mathbb{R}^n)$ ist. Es gilt dann

$$(f \cdot \omega) \wedge \eta = f(\omega \wedge \eta) = \omega \wedge (f\eta)$$

und

$$f \wedge \omega = f \cdot \omega$$

5.3.8 Lemma

Seien glatte Differentialformen $\omega \in \Omega^p(U), \eta \in \Omega^q(U)$. Dann gilt folgende **Produkt-regel** für Differentialformen

$$d(\omega \wedge \eta) = (d\omega) \wedge \eta + (-1)^p \omega \wedge (d\eta)$$

Beweis

Es genügt dies auf Ebene von erzeugenden Formen der Gestalt

$$\omega = f \varepsilon_I \text{ und } \eta = q \varepsilon_J$$

zu zeigen für $I=(i_1,\ldots,i_p), J=(j_1,\ldots,j_q)$. Es gilt

$$\omega \wedge \eta = (fg)\varepsilon_I \varepsilon_J$$

und deswegen

$$d(\omega \wedge \eta) = d(fg) \wedge \varepsilon_I \wedge \varepsilon_J$$

$$= \sum_i \frac{\partial (fg)}{\partial x_i} \varepsilon_i \wedge \varepsilon_I \wedge \varepsilon_J$$

$$= \sum_i \left(\frac{\partial f}{\partial x_i} g + f \frac{\partial g}{\partial x_i} \right) \varepsilon_i \wedge \varepsilon_I \wedge \varepsilon_J$$

$$= \sum_i \frac{\partial f}{\partial x_i} g \varepsilon_i \wedge \varepsilon_I \wedge \varepsilon_J + \sum_i f \frac{\partial g}{\partial x_i} \varepsilon_i \wedge \varepsilon_I \wedge \varepsilon_J$$

$$= g \cdot (df) \wedge \varepsilon_I \wedge \varepsilon_J + f \cdot (dg) \wedge \varepsilon_I \wedge \varepsilon_J$$

$$= (df) \wedge \varepsilon_I \wedge (g \cdot \varepsilon_J) + (-1)^p (f \cdot \varepsilon_I) \wedge (dg \wedge \varepsilon_J)$$

$$= d\omega \wedge \eta + (-1)^p \omega \wedge (d\eta)$$

5.3.9 Definition

Wir definieren die Algebra der glatten Differentialformen durch

$$(\Omega^*(U) = \bigoplus_{p \ge 0} \Omega^p(U), +, \wedge, d)$$

 $(\Omega^*(U) = \bigoplus_{p \geq 0} \Omega^p(U), +, \wedge)$ ist eine graduiert-kommutative graduierte $C^{\infty}(U, \mathbb{R})$ Algebra. $(\Omega^*(U), d)$ ist ferner ein Komplex von \mathbb{R} -Vektorräumen, d. h. $d^2 = 0$.
Zwischen diesen beiden Strukturen existiert eine Interaktion¹, nämlich ist d eine Derivation auf der Algebra, d. h., es gilt

$$d(\omega \wedge \eta) = (d\omega) \wedge \eta + (-1)^p \omega \wedge (d\eta)$$

5.3.10 Proposition: Eindeutigkeit von d

Es existiert genau eine Familie linearer Abbildungen

$$d:\Omega^p(U)\longrightarrow\Omega^{p+1}(U)$$

sodass gilt:

¹Im Englischen nennt man eine solche Struktur **D**ifferential **gr**aded **a**lgebra.

(i)
$$df = \sum_{i} \frac{\partial f}{\partial x_i} dx_i$$
 für $f \in \Omega^0(U)$

(ii)
$$d^2 = 0$$

(iii)
$$d(\omega \wedge \eta) = (d\omega) \wedge \eta + (-1)^p \omega \wedge (d\eta)$$
 für $\omega \in \Omega^p(U), \eta \in \Omega^q(u)$

5.3.11 Beispiel: Klassische Integralsätze von Green, Stokes und Gauß

Betrachte $U \overset{\circ}{\subset} \mathbb{R}^2$. Alle nicht verschwindenden Gruppen von Differentialformen sind $\Omega^0(U), \Omega^1(U), \Omega^2(U)$. Ab $p \geq 3$ verschwinden die Gruppen, da ab da die alternierenden Räume verschwinden. Es gilt für $f \in \Omega^0(U) = C^{\infty}(U, \mathbb{R})$

$$df = \frac{\partial f}{\partial x_1} dx_1 + \frac{\partial f}{\partial x_2} dx_2 = \nabla f \cdot \begin{pmatrix} dx_1 \\ dx_2 \end{pmatrix}$$

Für $\omega = f_1 dx_1 + f_2 dx_2 \in \Omega^1(U)$ gilt

$$d\omega = df_1 \wedge dx_1 + df_2 \wedge dx_2$$

$$= \left(\frac{\partial f_1}{\partial x_1} dx_1 + \frac{\partial f_1}{\partial x_2} dx_2\right) \wedge dx_1 + \left(\frac{\partial f_2}{\partial x_1} dx_1 + \frac{\partial f_2}{\partial x_2} dx_2\right) \wedge dx_2$$

$$= \left(\frac{\partial f_2}{\partial x_1} - \frac{\partial f_1}{x_2}\right) dx_1 \wedge dx_2$$

$$= \operatorname{rot}(f_1, f_2) dx_1 \wedge dx_2$$

Sei nun $U \stackrel{o}{\subset} \mathbb{R}^3$. Wir betrachten d: $\Omega^1(U) \to \Omega^2(U)$ und $\omega = f_1 dx_1 + f_2 dx_2 + f_3 dx_3$. Es gilt

$$d\omega = \left(\frac{\partial f_2}{\partial x_1} - \frac{\partial f_1}{\partial x_2}\right) dx_1 \wedge dx_2 + \left(\frac{\partial f_3}{\partial x_2} - \frac{\partial f_2}{\partial x_3}\right) dx_2 \wedge dx_3 + \left(\frac{\partial f_1}{\partial x_3} - \frac{\partial f_3}{\partial x_1}\right) dx_3 \wedge dx_1$$

$$= \operatorname{rot}(f_1, f_2, f_3) \cdot \begin{pmatrix} dx_1 \wedge dx_2 \\ dx_2 \wedge dx_3 \\ dx_3 \wedge dx_1 \end{pmatrix}$$

Betrachte nun $\omega = g_3 dx_1 \wedge dx_2 + g_1 dx_2 \wedge dx_3 + g_2 dx_3 \wedge dx_1 \in \Omega^2(U)$. Es gilt

$$d\omega = \left(\frac{\partial g_1}{\partial x_1} + \frac{\partial g_2}{\partial x_2} + \frac{\partial g_3}{\partial x_3}\right) dx_1 \wedge dx_2 \wedge dx_3 = \operatorname{div}(g) dx_1 \wedge dx_2 \wedge dx_3$$

In der klassischen Physik gilt, was hier w
g. $d^2=0$ offensichtlich ist

5.3.12 Definition

Wir definieren die p-te Kohomologiegruppe der de Rham-Kohomologie durch

$$H^p(U) := \ker(\mathrm{d}: \Omega^p(U) \to \Omega^{p+1}(U)) / \mathsf{Bild}(\mathrm{d}: \Omega^{p-1}(U) \to \Omega^p(U))$$

Wir setzen ferner $H^p(U) = \Omega^p(U) = 0$ für p < 0.

5.3.13 Bemerkung

$$H^{0}(U) = \ker \mathbf{d} = \{ f \in C^{\infty}(U, \mathbb{R}) \mid \mathbf{d}f = 0 \} = \{ f \in C^{\infty}(U, \mathbb{R}) \mid \frac{\partial f}{\partial x_{i}} = 0 \}$$
$$= \{ f \in C^{\infty}(U, \mathbb{R}) \mid f \text{ ist lokal konstant auf } U \}$$

Daraus folgt

$$\dim_{\mathbb{R}} H^0(U) = \text{Zahl der Wegzshgkomp. von } U$$

5.4 Das Äußere Produkt auf der Kohomologie

5.4.1 Definition

Wir definieren auf den Kohomologiegruppen ein Produkt durch

$$\wedge: H^p(U) \times H^q(U) \longrightarrow H^{p+q}(U)$$

$$([\omega], [\eta]) \longmapsto [\omega \wedge \eta]$$

Dies ist wohldefiniert, denn für $\omega \in \Omega^p(u), \eta \in \Omega^q(U)$ mit d $\omega = 0, d\eta = 0$ gilt

$$d(\omega \wedge \eta) = (d\omega) \wedge \eta + (-1)^p \omega \wedge (d\eta) = 0$$

ergo liegt $\omega \wedge \eta$ ebenfalls im Kern von d. Ferner gilt für andere Repräsentanten $[\omega'] = [\omega], [\eta'] = [\eta]$

$$\omega' = \omega + d\alpha \text{ und } \eta' = \eta + d\beta$$

und somit

$$\omega' \wedge \eta' = (\omega + d\alpha) \wedge (\eta + d\beta)$$

$$= \omega \wedge \eta + d\alpha \wedge \eta + \omega \wedge d\beta + d\alpha \wedge d\beta$$

$$= \omega \wedge \eta + d(\alpha \wedge \eta + (-1)(\omega \wedge \beta) + (\alpha \wedge d\beta))$$

Insofern bildet $(H^*(U), +, \wedge)$ eine graduiert-kommutative graduierte Algebra. \wedge nennt man in diesem Zusammenhang auch Cup-Produkt.

5.5 Funktorialität

5.5.1 Beispiel: Lineare Algebra

Seien V,W reelle Vektorräume und $A:V\to W$ eine lineare Abbildung. Sei $\eta\in Alt^p(W),v_1,\ldots,v_p\in V.$ Dann setze

$$\omega(v_1,\ldots,v_p) := \eta(A(v_1),\ldots,A(v_p))$$

Dann ist $\omega \in Alt^p(V)$. Setze $Alt^p(A)(\eta) := \omega$. Dadurch erhalten wir eine lineare Abbildung

$$Alt^p(A): Alt^p(W) \longrightarrow Alt^p(V)$$

Für eine weitere lineare Abbildung $B:W\to P$ gilt

$$Alt^p(B \circ A) = Alt^p(A) \circ Alt^p(B)$$

Ferner gilt

$$Alt^p(\mathrm{Id}_V) = \mathrm{Id}_{Alt^p(V)}$$

Insofern liefern die $(Alt^p)_p$ eine Familie kontravarianter Funktoren von der Kategorie der reellen Vektorräume in die Kategorie der reellen Vektorräume.

5.5.2**Definition**

Vorlesung

Seien $U_1 \subset \mathbb{R}^n, U_2 \subset \mathbb{R}^m$ offen und $\varphi: U_1 \to U_2$ eine glatte Abbildung. Wir definieren vom folgenden Vektorraumhomomorphismus

22.12.17

$$\varphi^*: \Omega^p(U_2) \longrightarrow \Omega^p(U_1)$$
$$\eta \longmapsto Alt^p(\varphi_*)(\eta \circ \varphi)$$

D. h., für $x \in U_1$ ist folgender Vektorraumhomomorphismus gegeben

$$\varphi^*(\eta)(x): (\mathcal{T}_x U_1)^p \longrightarrow \mathbb{R}$$
$$(v_1, \dots, v_p) \longmapsto \eta(\varphi(x))(\varphi_{*,x} v_1, \dots, d\varphi_{*,x} v_p)$$

Bemerkung 5.5.3

Die Zuweisung $\varphi \mapsto \varphi^*$ ist funktoriell, d.h., es gilt

$$(\varphi \circ \psi)^* = \psi^* \circ \varphi^* \text{ und } \mathrm{Id}_U^* = \mathrm{Id}_{\Omega^p(U)}$$

Bemerkung 5.5.4

Die Zuweisung $\varphi \mapsto \varphi^*$ ist eindeutig durch folgende Rechenregeln bestimmt:

- $\varphi^*(f\omega) = f\varphi^*(\omega)$ für $f \in \Omega^0(U_2)$
- $\varphi^*(\omega_1 \wedge \omega_2) = \varphi^*(\omega_1) \wedge \varphi^*(\omega_2)$
- $d \circ \varphi^* = \varphi^* \circ d$

5.5.5 Beispiel

- $\varphi^*(\mathrm{d}x_i) = \mathrm{d}(\varphi^*(x_i)) = \mathrm{d}(x_i \circ \varphi) = \mathrm{d}\varphi_i$
- Sei $\gamma:(a,b)\to U\overset{o}{\subset}\mathbb{R}^n$ eine glatte Kurve, $\omega=f_1\mathrm{d} x_1+\ldots+f_n\mathrm{d} x_n$ sei eine 1-Differential form auf U. Es gilt

$$\gamma^*(\omega) = \gamma^*(f_1) \wedge \gamma^*(\mathrm{d}x_1) + \ldots + \gamma^*(f_n) \wedge \gamma^*(\mathrm{d}x_n)$$
$$= f_1(\gamma(t))\mathrm{d}\gamma_1 + \ldots + f_n(\gamma(t))\mathrm{d}\gamma_n$$
$$= \langle f(\gamma(t)), \gamma'(t) \rangle \, \mathrm{d}t$$

• Für die Volumenform $dx_1 \wedge \ldots \wedge dx_n$ von U_2 gilt

$$\varphi^*(\mathrm{d}x_1 \wedge \dots \wedge \mathrm{d}x_n) = \mathrm{d}\varphi_1 \wedge \dots \wedge \mathrm{d}\varphi_n$$

$$= \left(\sum_{i=1}^n \frac{\partial \varphi_1}{\partial x_i} \mathrm{d}x_1\right) \wedge \dots \wedge \left(\sum_{i=1}^n \frac{\partial \varphi_n}{\partial x_i} \mathrm{d}x_1\right)$$

$$= \det\left(\left(\frac{\partial \varphi_i}{\partial x_j}\right)_{i,j}\right) \mathrm{d}x_1 \wedge \dots \wedge \mathrm{d}x_n$$

$$= \det(J_{\varphi}) \mathrm{d}x_1 \wedge \dots \wedge \mathrm{d}x_n$$

• Betrachte die glatte Abbildung $\varphi: U \times \mathbb{R} \to U, U \overset{\circ}{\subset} \mathbb{R}^n$, mit

$$\varphi(x,t) = \psi(t) \cdot x$$

für eine glatte Funktion $\psi: \mathbb{R} \to \mathbb{R}$. Es gilt

$$\varphi^*(\mathrm{d}x_i) = \mathrm{d}\varphi_i = \mathrm{d}(\psi(t) \cdot x_i) = x_i \cdot \mathrm{d}\psi(t) + \psi(t) \cdot \mathrm{d}x_i = x_i \psi'(t) \mathrm{d}t + \psi(t) \mathrm{d}x_i$$

5.6 Pullback auf die de Rham-Kohomologie

Im Folgenden sei $\varphi: U_1 \subset \mathbb{R}^n \to U_2 \subset \mathbb{R}^m$ immer eine glatte Abbildung.

5.6.1 Definition

Eine Form $\omega \in \Omega^p(U)$ heißt **geschlossen**, falls $d\omega = 0$. ω heißt **exakt**, wenn es ein $\eta \in \Omega^{p-1}(U)$ gibt, mit $\omega = d\eta$.

5.6.2 Bemerkung

 $\varphi: U_1 \to U_2$ induziert einen Ringhomomorphismus

$$\varphi^*: H^*(U_2) \longrightarrow H^*(U_1)$$

da φ^* den Kern und das Bild von d
 erhält. Dadurch folgt, dass die de Rham-Kohomologie ein kontravarianter Funktor ist.

5.6.3 Satz: Poincare-Lemma

Sei $U \subset \mathbb{R}$ offen und sternförmig. Dann gilt

$$H^p(U) \cong \left\{ egin{array}{ll} 0 & p > 0 \\ \mathbb{R} & p = 0 \end{array} \right.$$

Beweis

 \bullet Ohne Einschränkung sei 0 der Mittelpunkt des sternförmigen Gebietes U. Setze dann

$$ev: \Omega^0(U) \longrightarrow \mathbb{R}$$

 $\omega \longmapsto \omega(0)$

Wir wollen im Folgenden eine Kettenhomotopie $s_p: \Omega^p(U) \to \Omega^{p-1}(U)$ konstruieren, für die gilt

$$ds_p + s_{p+1}d = \begin{cases} Id & p > 0\\ Id - ev & p = 0 \end{cases}$$

Dann folgt nämlich für $\omega \in \Omega^p(U), p > 0$,

$$d\omega = 0 \Longrightarrow ds_p(\omega) = ds_p(\omega) + s_{p+1}d\omega = \omega$$

also $[\omega]=0,$ da $\omega\in\mathsf{Bild}$ d. Ferner gilt für p=0

$$\omega - \omega(0) = s_1 d\omega = 0$$

also $\omega = \omega(0)$ ist konstant.

• Eine Differentialform $\omega \in \Omega^p(U \times \mathbb{R})$ hat die Gestalt

$$\omega = \sum_{I} f_{I}(x, t) dx_{I} + \sum_{J} g_{J}(x, t) dt \wedge dx_{J}$$

Definiere daher folgende Abbildung

$$\widehat{S}_p: \Omega^p(U \times \mathbb{R}) \longrightarrow \Omega^{p-1}(U)$$

$$\omega \longmapsto \sum_J (\int_0^1 g_J(x, t) dt) dx_J$$

Dann gilt

$$d\widehat{S}_p(\omega) + \widehat{S}_{p+1}(d\omega) = \sum_{I} \left(\int_0^1 \frac{\partial f_I}{\partial t} dt \right) dx_I = \sum_{I} \left(f_I(x, 1) - f_I(x, 0) \right) dx_I$$

 \bullet Sei nun $\psi:\mathbb{R}\to\mathbb{R}$ eine glatte Funktion mit

$$\psi(t) \in \begin{cases} \{0\} & t \le 0 \\ [0,1] & t \in [0,1] \\ \{1\} & t \ge 1 \end{cases}$$

Definiere dann

$$\varphi: U \times \mathbb{R} \longrightarrow U$$
$$(x,t) \longmapsto \psi(t) \cdot x$$

und setze

$$s_p(\omega) := \widehat{S}_p \circ \varphi^*(\omega)$$

Die so definierte Funktion tut das Gewünschte.

5.7 De Rham-Kohomologie von Glatten Mannigfaltigkeiten

5.7.1 Definition

Vorlesung vom 8.1.18

Sei M eine (kompakte) glatte Mannigfaltigkeit der Dimension n. Durch Whitneys Einbettungssatz erhalten wir eine glatte Einbettung $M \subset \mathbb{R}^{2n+1}$. Durch den Satz über Tubenumgebungen wissen wir um die Existenz einer offenen Umgebung U von M in \mathbb{R}^{2n+1} , sodass

$$U \cong E(\nu)$$

wobei $E \stackrel{p}{\twoheadrightarrow} M$ der Totalraum des Normalenbündels ist. Dieser induziert einen Deformationsretrakt $r: U \to M$.

 H^* soll eine Homotopieinvariante sein. Dies würde einen Isomorphismus

$$r^*: H^*(M) \xrightarrow{\sim} H^*(U)$$

implizieren. In diesem Sinne definieren wir die **Kohomologiegruppen** von M durch

$$H^k(M) := H^k(U)$$

Diese Definition hängt von der Einbettung von M ab. Insofern wäre es wünschenswert eine intrinsische Definition von $H^*(M)$ zu finden.

5.7.2 Definition

Sei M eine glatte Mannigfaltigkeit der Dimension n.

Wir betrachten Familien $\omega = \{\omega_p\}_{p \in M}$ mit $\omega_p \in Alt^k(T_pM)$. Sei eine glatte Karte

$$\varphi: U' \stackrel{o}{\subset} M \stackrel{\sim}{\to} U \stackrel{o}{\subset} \mathbb{R}^n$$

gegeben. Betrachte für jedes $p \in U'$ die Abbildung

$$Alt^k(\varphi_{*,\varphi(p)}^{-1}): Alt^k(T_pM) \xrightarrow{\sim} Alt^k(T_{\varphi(p)}U) \cong Alt^k(\mathbb{R}^n)$$

Wir definieren den **Pullback** von ω durch

$$(\varphi^{-1})^*\omega: U \longrightarrow Alt^k(\mathbb{R}^n)$$
$$x \longmapsto Alt^k(\varphi_{x,*}^{-1})(\omega_{\varphi^{-1}(x)})$$

 ω heißt eine **glatte Differential**-k-Form auf M, wenn $(\varphi^{-1})^*\omega$ für jede Karte φ glatt ist.

Es bezeichne $\Omega^k(M)$ den reellen Vektorraum aller glatter Differential-k-Formen auf M.

5.7.3 Definition

Die Karte φ von M induziert einen Isomorphismus

$$\varphi_{*,n}: T_n M \xrightarrow{\sim} T_x U$$

für $x = \varphi(p)$. Dadurch erhalten wir einen Isomorphismus

$$Alt^{k+1}(\varphi_{*,p}): Alt^{k+1}(T_xU) \xrightarrow{\sim} Alt^{k+1}(T_pM)$$

Wir können so folgende k + 1-Form definieren

$$d\omega_p := Alt^{k+1}(\varphi_{*,p}) \left(d((\varphi^{-1})^* \omega)(\varphi(p)) \right)$$

Dadurch erhalten wir eine glatte Differentialform d ω auf M. Diese Definition ist unabhängig von der Wahl der Karte φ . Es gilt d² = 0 auf $\Omega^*(M)$. Wir erhalten folglich einen Kokettenkomplex ($\Omega^*(M)$, d).

5.7.4 Definition

Die **de Rham-Kohomologie** von M ist definiert als die Kohomologie des Kokettenkomplexes $(\Omega^*(M), d)$, d. h.

$$H^k(M) := H^k(\Omega^*(M), \mathbf{d}) = \frac{\mathsf{Kern}(\mathbf{d} : \Omega^k(M) \to \Omega^{k+1}(M))}{\mathsf{Bildd} : (\Omega^{k-1}(M) \to \Omega^k(M))}$$

5.7.5 Definition

Zu glatten Differentialformen $\omega = \{\omega_p\}, \eta = \{\eta_p\}$ auf M definieren wir das **äußere Produkt** punktweise durch

$$(\omega \wedge \eta)_p := \omega_p \wedge \eta_p$$

 $\omega \wedge \eta$ ist wieder eine glatte Differentialform auf M. Ferner gilt hierfür offensichtlich wieder die Produktregel, d.h.

$$d(\omega \wedge \eta) = (d\omega) \wedge \eta + (-1)^k \omega \wedge d(\eta)$$

für $\omega \in \Omega^k(M)$. Wir erhalten dadurch wieder eine graduiert kommutative Algebra $\Omega^*(M)$.

Das äußere Produkt auf $\Omega^*(M)$ steigt wie im affinen Fall wohldefiniert auf $H^*(M)$ ab. Dadurch wird auch $H^*(M)$ zu einer graduiert kommutativen Algebra.

5.7.6 Definition

Sei $\varphi: M \to N$ eine glatte Abbildung und $\omega = \{\omega_q\}_{q \in N} \in \Omega^k(N)$ eine glatte Differentialform. Für einen Punkt $p \in M$ erhalten wir eine lineare Abbildung

$$Alt^k(\varphi_{*,p}): Alt^k(T_{\varphi(p)}M) \longrightarrow Alt^k(T_pM)$$

In diesem Sinn setzen wir

$$(\varphi^*\omega)_p := Alt^k(\varphi_{*,p})(\omega_{\varphi(p)})$$

und erhalten eine glatte Differentialform

$$\varphi^*\omega := \{(\varphi^*\omega)_p\}_{p \in M}$$

auf M. Dadurch erhalten wir eine lineare Abbildung

$$\varphi^*: \Omega^k(N) \to \Omega^k(M)$$

Wie im affinen Fall ist die Zuweisung

$$M \longmapsto \Omega^k(M)$$
$$\varphi \longmapsto \varphi^*$$

ein kontravarianter Funktor. Es gilt wieder

- $\varphi^*(\omega \wedge \eta) = (\varphi^*\omega) \wedge (\varphi^*\eta)$
- $d_M \circ \varphi^* = \varphi^* \circ d_N$

 φ^* steigt wohldefiniert auf die Kohomologie ab und liefert Abbildungen

$$\varphi^*: H^k(N) \longrightarrow H^k(M)$$

Dadurch wird die de Rham-Kohomologie zu einem kontravarianten Funktor von der Kategorie der glatten Mannigfaltigkeiten in die Kategorie der reellen Vektorräume.

5.8 Integration auf Glatten Mannigfaltigkeiten

5.8.1 Definition

Sei $U \subset \mathbb{R}^n$ offen, $\omega \in \Omega^n(U)$ sei eine *n*-Form. Wir definieren den **Träger** von ω durch

$$\operatorname{supp}\omega := Cl_U\{x \in U \mid \omega_x \neq 0\}$$

wobei Cl_U den Abschluss einer Menge in U bezeichnet.

Hat ω einen kompakten Träger, so hat ω eine glatte Fortsetzung durch Null auf \mathbb{R}^n . Da ω eine n-Form ist, hat es die Gestalt

$$\omega = f(x_1, \dots, x_n) dx_1 \wedge \dots \wedge dx_n$$

Wir definieren folgendes Integral zu ω

$$\int_{U} \omega := \int_{\mathbb{R}^n} \omega := \int_{\mathbb{R}^n} f \mathrm{d}x_1 \dots \mathrm{d}x_n$$

5.8.2 Bemerkung

Seien $V, U \subset \mathbb{R}^n$ offen, $\theta: V \to U$ ein Diffeomorphismus.

Sei ferner $\omega = f dx_1 \wedge \dots dx_n \in \Omega^n(U)$ mit kompakten Träger. Dies induziert uns eine Differentialform $\theta^*\omega \in \Omega^n(V)$, welche ebenfalls kompakten Träger hat. Es gilt

$$\theta^*\omega = \theta^*(f dx_1 \wedge \ldots \wedge dx_n) = f \circ \theta \cdot \theta^*(dx_1 \wedge \ldots \wedge dx_n) = f \circ \theta \cdot \det(J_\theta) \cdot dx_1 \wedge \ldots \wedge dx_n$$

Es ergibt sich nun

$$\int_{V} \theta^{*} \omega = \int_{\mathbb{R}^{n}} f \circ \theta \cdot \det(J_{\theta}) \, dx_{1} \dots dx_{n}$$

$$\stackrel{\text{Traforegel in } \mathbb{R}^{n}}{=} \pm \int_{\mathbb{R}^{n}} f \, dx_{1} \dots dx_{n} = \pm \int_{U} \omega$$

Ist U zusammenhängend, so ist das Vorzeichen hier gerade das Vorzeichen der Jacobie-Determinante.

Ist θ orientierungserhaltend und U zusammenhängend, so gilt also

$$\int_{V} \theta^* \omega = \int_{U} \omega$$

5.8.3 Definition

Sei nun M eine glatte, orientierte Mannigfaltigkeit der Dimension n und $\omega \in \Omega^n(M)$. Sei $\varphi : U' \to U$ eine orientierte Karte von M. Es gelte ferner

$$\operatorname{supp}(\omega) \subset U'$$
 ist kompakt

Wir setzen dann

$$\int_{M} \omega := \int_{U} (\varphi^{-1})^* \omega$$

Dies ist wohldefiniert. Ist nämlich $\psi: U' \to U$ eine weitere orientierte Karte, so gilt

$$(\varphi^{-1})^* = (\varphi^{-1})^* \psi^* (\psi^{-1})^* \omega$$

Setzt man $\psi \circ \varphi^{-1} =: \theta$, so folgt mit obiger Bemerkung

$$\int_{U} (\varphi^{-1})^* \omega = \int_{U} (\psi^{-1})^* \omega$$

5.8.4 Definition

Sei nun $\omega \in \Omega^n(M)$ mit kompakten Träger. Im Allgemeinem liegt supp f nicht in einer einzelnen Karte von M.

Deswegen sei $(f_i)_i$ eine glatte Partition der Eins auf M, sodass supp $f_i \subset U_i$, wobei die Paare $(U_i, \varphi_i)_i$ orientierte Karten seien, die suppf überdecken, und, bei denen $\overline{U_i}$ kompakt ist.

Wir setzen

$$\int_{M} \omega := \sum_{i} \int_{M} f_{i} \omega$$

Dies ist ein wohldefiniertes Integral. Es ist unabhängig von der Wahl der Partition, denn sei $(g_j)_j$ eine weitere Partition der Eins, dann gilt ja

$$f_i = \sum_j f_i g_j$$
 und $g_j = \sum_i f_i g_j$

Ergo folgt

$$\sum_{i} \int f_{i}\omega = \sum_{i,j} \int f_{i}g_{j}\omega = \sum_{i} \int g_{j}\omega$$

5.9 Der Allgemeine Satz von Stokes

Vorlesung vom 12.1.18

5.9.1 Definition

Sei $(M, \partial M)$ eine n-dimensionale Mannigfaltigkeit mit Rand. M sei orientiert, dadurch ist auch ∂M orientiert. $\iota: \partial M \to M$ bezeichne die Inklusion des Randes. Für $\omega \in \Omega^*(M)$ erhalten wir unter ι eine Pullbackform

$$\omega_{|\partial M} := \iota^* \omega \in \Omega^*(\partial M)$$

Wir nennen dies die Einschränkung auf den Rand von ω .

5.9.2 Satz: Allgemeiner Satz von Stokes

Sei $(M, \partial M)$ eine n-dimensionale orientierte Mannigfaltigkeit mit Rand. $\omega \in \Omega^{n-1}(M)$ sei eine n-1-Form auf M mit kompakten Träger. Dann hat $\mathrm{d}\omega \in \Omega^n(M)$ kompakten Träger und es gilt

$$\int_M \mathrm{d}\omega = \int_{\partial M} \iota^* \omega$$

Beweis

Wir führen den Beweis in lokalen Koordinaten x_1, \ldots, x_n . Der Rand soll lokal beschrieben werden durch

$$\partial M = \{(x_1, \dots, x_n) \mid x_1 = 0\}$$

wobei allgemeine Punkte $x_1 \leq 0$ erfüllen.

 ω habe die Gestalt

$$\omega = \sum_{j=1}^{n} f_j dx_1 \wedge \ldots \wedge \widehat{dx_j} \wedge \ldots \wedge dx_n$$

Es gilt nun

$$\iota^* \omega = \sum_{j=1}^n (f_j \circ \iota) (\mathrm{d}x_1 \circ \iota) \wedge \ldots \wedge (\widehat{\mathrm{d}x_j \circ \iota}) \wedge \ldots \wedge (\mathrm{d}x_n \circ \iota)$$

$$= (f_1)_{|\partial M} \mathrm{d}x_2 \wedge \ldots \wedge \mathrm{d}x_n$$

$$= f_1(0, x_2, \ldots, x_n) \mathrm{d}x_2 \wedge \ldots \wedge \mathrm{d}x_n$$

 $da x_1 \circ \iota = 0.$

Ohne Einschränkung nehmen wir nun an, dass ω folgende Form hat

$$\omega = f dx_1 \wedge \ldots \wedge \widehat{dx_j} \wedge \ldots \wedge dx_n$$

Es gilt nun

$$d\omega = \sum_{k} \frac{\partial f}{\partial x_{k}} dx_{k} \wedge dx_{1} \wedge \dots \wedge \widehat{dx_{j}} \wedge \dots \wedge dx_{n}$$
$$= (-1)^{j-1} \frac{\partial f}{\partial x_{j}} dx_{1} \wedge \dots \wedge dx_{n}$$

Wir nehmen nun ferner an, dass ω kompakten Träger folgender Gestalt habe

$$\operatorname{supp}\omega \subset \{x \mid -a \le x_1 \le 0, |x_j| \le a \forall j = 2, \dots, n\}$$

Es gilt nun

$$\int_{M} d\omega = (-1)^{j-1} \int_{-a}^{+a} \dots \int_{-a}^{+a} \int_{-a}^{0} \frac{\partial f}{\partial x_{j}} dx_{1} \dots dx_{n}$$

Wir unterscheiden nun zwei Fälle. Beachte hierbei, dass f auf dem Rand von supp ω verschwindet.

Fall 1 $j \neq 1$: In diesem Fall gilt

$$\int_{M} d\omega = (-1)^{j-1} \int_{-a}^{+a} \dots \int_{-a}^{+a} \int_{-a}^{0} f |_{x_{j}=-a}^{x_{j}=a} dx_{1} \dots \widehat{dx_{j}} \dots dx_{n} = 0$$

$$\operatorname{da} f|_{x_{i}=-a}^{x_{j}=a} = 0, \operatorname{da} f|_{x_{i}=a\neq 0} = 0.$$

Fall 2 j = 1: In diesem Fall gilt

$$\int_{M} d\omega = \int_{-a}^{+a} \dots \int_{-a}^{+a} f \Big|_{x_{1}=-a}^{x_{1}=0} dx_{2} \dots dx_{n} = \int_{-a}^{+a} \dots \int_{-a}^{+a} f(0, x_{2}, \dots, x_{n}) dx_{2} \dots dx_{n} = \int \iota^{*} \omega$$

$$da \ f(-a, x_{2}, \dots, x_{n}) = 0.$$

Es sei ω nun beliebig. Sei $\{g_j\}_j$ eine glatte Partition der Eins mit

$$supp g_i \subset \{x \mid -a \le x_1 \le 0, |x_i| \le a \forall j = 2, ..., n\}$$

Es gilt $\omega = \sum_{j} g_{j}\omega$ und somit

$$\int_{M} d\omega = \int_{M} d(\sum_{j} g_{j}\omega) = \sum_{j} \int_{M} d(g_{j}\omega) = \sum_{j} \int_{\partial M} \iota^{*}(g_{j}\omega) = \int_{\partial M} \iota^{*}(\sum_{j} g_{j}\omega) = \int_{\partial M} \iota^{*}\omega$$

 \neg

5.10 Das Homotopieaxiom für de Rham-Kohomologie

5.10.1 Definition

Ein Komplex bzw. Kokettenkomplex (C^*, d) ist eine Familie $(C^p)_{p \in \mathbb{Z}}$ reeller Vektorräume mit einer Familie linearer Abbildungen

$$d: C^p \longrightarrow C^{p+1}$$

für die gilt

$$d \circ d = 0$$

5.10.2 Definition

Sind (C^*, d_C) und (D^*, d_D) Komplexe, so ist ein **Homomorphismus** von Komplexen $\varphi: C^* \to D^*$ eine Familie von linearen Abbildungen

$$\varphi^p:C^p\longrightarrow D^p$$

so, dass folgendes Diagramm kommutiert

$$C^{p} \xrightarrow{\varphi^{p}} D^{p}$$

$$\downarrow^{d_{C}} \qquad \downarrow^{d_{D}}$$

$$C^{p+1} \xrightarrow{\varphi^{p+1}} D^{p+1}$$

5.10.3 Definition

Unter einer (Ketten)-Homotopie zwischen Morphismen $\varphi, \psi: C^* \to D^*$ verstehen wir einen Kettenmorphismus $K: C^* \to D^{*-1}$, d.h.

$$K^p: C^p \longrightarrow D^{p-1}$$

sodass gilt

$$dK - Kd = \varphi - \psi$$

Wir schreiben in diesem Fall

$$\varphi \simeq \psi$$

5.10.4 Lemma

Gilt $\varphi \simeq \psi$, so folgt

$$H(\varphi) = H(\psi) : H^*(C^*) \longrightarrow H^*(D^*)$$

Beweis

Sei
$$[c] \in H^*(C^*)$$
, d. h., $dc = 0$. Es gilt

$$H(\varphi)[c]-H(\psi)[c]=[\varphi(c)]-[\psi(c)]=[(\varphi-\psi)(c)]=[(\mathrm{d}K-K\mathrm{d})(c)]=[\mathrm{d}Kc]=0$$

5.10.5 Bemerkung

Betrachte die Projektion

$$\pi: \mathbb{R}^n \times \mathbb{R}^1 \longrightarrow \mathbb{R}^n$$
$$(x,t) \longmapsto x$$

und den Schnitt

$$s: \mathbb{R}^n \longrightarrow \mathbb{R}^n \times \mathbb{R}^1$$
$$x \longmapsto (x,0)$$

Formen auf $\mathbb{R}^n \times \mathbb{R}^1$ sind Linear kombinationen von Formen des Types

- (i) $f(x,t)(\pi^*\eta)$
- (ii) $(\pi^*\eta) \wedge f(x,t) dt$

wobei $\eta \in \Omega^*(\mathbb{R}^n)$.

5.10.6 Bemerkung

Wir definieren eine Homotopie $K: \Omega^*(\mathbb{R}^n \times \mathbb{R}^1) \longrightarrow \Omega^{*-1}(\mathbb{R}^n \times \mathbb{R}^1)$ durch

$$K(f(x,t)(\pi^*\eta)) = 0$$

$$K((\pi^*\eta) \wedge f(x,t) dt) = (\pi^*\eta) \cdot \int_0^t f(x,t) dt$$

Durch die Rechnung im Beweis des Poincare-Lemmas wissen wir nun, dass gilt

$$dK - Kd = \pm (\mathrm{Id}_{\Omega^*(\mathbb{R}^n \times \mathbb{R}^1)} - \Omega(\pi) \circ \Omega(s))$$

Daraus folgt

$$H^*(\pi) \circ H^*(s) = \operatorname{Id}$$

Trivialerweise gilt

$$H^*(s) \circ H^*(\pi) = \mathrm{Id}$$

da $\pi \circ s = \mathrm{Id}_{\mathbb{R}^n}$. Daraus folgt, dass $H^*(\pi) : H^*(\mathbb{R}^n) \to H^*(\mathbb{R}^n \times \mathbb{R}^1)$ ein Isomorphismus ist.

5.10.7 Korollar

$$H^p(\mathbb{R}^n) \cong H^p(\mathbb{R}^{n-1}) \cong \ldots \cong H^p(\mathbb{R}^0) \cong \begin{cases} \mathbb{R} & p = 0 \\ 0 & p > 0 \end{cases}$$

5.10.8 Bemerkung

Sei nun M eine glatte Mannigfaltigkeit. Betrachte die Projektion

$$\pi: M \times \mathbb{R} \longrightarrow M$$

und den dazu gehörenden Schnitt $s:M\to M\times\mathbb{R}$. Es gilt dann bereits

$$H^*(s)H^*(\pi) = \operatorname{Id}$$

Seien Karten $\{U_{\alpha}\}_{\alpha}$ auf M gegeben. Dann ist $\{U_{\alpha} \times \mathbb{R}\}_{\alpha}$ ein korrespondierender Atlas für $M \times \mathbb{R}$. Mithilfe dieser Karten kann K wie zuvor definiert werden, d.h., wir erhalten

$$K: \Omega^*(M \times \mathbb{R}) \longrightarrow \Omega^{*-1}(M \times \mathbb{R})$$

mit

$$dK - Kd = \pm (\mathrm{Id}_{\Omega^*(M \times \mathbb{R})} - \Omega(\pi)\Omega(s))$$

Dadurch folgt wieder

$$H^*(\pi)H^*(s) = \operatorname{Id}$$

Und $H^*(\pi): H^*(M) \to H^*(M \times \mathbb{R})$ ist ein Isomorphismus.

5.10.9 Satz: Homotopieaxiom

Seien $f,g:M\to N$ zue
inander homotope glatte Abbildungen. Dann gilt

$$H^*(f)=H^*(g):H^*(N)\to H^*(M)$$

Beweis

Sei $F: M \times \mathbb{R}^1 \to N$ eine glatte Homotopie, F(x,t) = f(x) für alle $t \geq 1$ und F(x,t) = g(x) für alle $t \leq 0$.

Betrachte ferner $s_0, s_1 : M \to M \times \mathbb{R}^1$ mit $s_0(x) = (0, x)$ und $s_1(x) = (1, x)$. Da $H(\pi)H(s_0) = \text{Id} = H(\pi)H(s_1)$ und $H(\pi)$ isomorph ist, folgt

$$H(s_0) = H(s_1)$$

Da $F \circ s_0 = g$ und $F \circ s_1 = f$, gilt nun

$$H(g) = H(s_0) \circ H(F) = H(s_1) \circ H(F) = H(f)$$

5.10.10 Korollar

Vorlesung vom 15.1.18

Sind M, N Homotopie-äquivalente, glatte Mannigfaltigkeiten, so gilt

$$H^*(M) \cong H^*(N)$$

5.11 Exakte Sequenzen

5.11.1 Definition

Im folgenden seien A, B und C reelle Vektorräume und $f: A \to B, g: B \to C$ lineare Abbildungen.

Die Sequenz

$$A \xrightarrow{f} B \xrightarrow{g} C$$

heißt \mathbf{exakt} bei B, falls

$$\mathsf{Kern} g = \mathsf{Bild} f$$

Eine **kurze exakte Sequenz** ist eine Sequenz der Form

$$0 \longrightarrow A \longrightarrow B \longrightarrow C \longrightarrow 0$$

die exakt bei A, B und C ist.

5.11.2 Beispiel

Sind $U \subset V$ Vektorräume, so ist folgende kurze exakte Sequenz gegeben

$$0 \longrightarrow U \longrightarrow V \longrightarrow V/U \longrightarrow 0$$

5.11.3 Definition

Seien A^*, B^* und C^* Koketten-Komplexe reeller Vektorräume zusammen mit Morphismen $i: A^* \to B^*$ und $j: B^* \to C^*$.

Die Sequenz

$$A^* \stackrel{i}{\longrightarrow} B^* \stackrel{j}{\longrightarrow} C^*$$

heißt **exakt** bei B^* , falls sie gradweise exakt ist, d.h.

$$A^p \longrightarrow B^p \longrightarrow C^p$$

ist exakt bei B^p für alle $p \in \mathbb{Z}$.

5.11.4 Lemma: Zick-Zack- bzw. Schlangenlemma

Eine kurze exakte Sequenz

$$0 \longrightarrow A^* \stackrel{i}{\longrightarrow} B^* \stackrel{j}{\longrightarrow} C^* \longrightarrow 0$$

von Koketten-Komplexen induziert eine lange exakte Sequenz der Kohomologiegruppen

$$\dots \xrightarrow{j^*} H^{p-1}(C^*) \xrightarrow{\delta} H^p(A) \xrightarrow{i^*} H^p(B) \xrightarrow{j^*} H^p(C) \xrightarrow{\delta} H^{p+1}(A) \xrightarrow{i^*} \dots$$

Beweis

Benutze Diagrammjagd.

5.12 Die Mayer-Vietoris-Sequenz

Sei M eine glatte Mannigfaltigkeit, $U, V \subset M$ offen mit $M = U \cup V$. Es ergeben sich folgende kommutative Diagramm

$$U \cap V \stackrel{i_U}{\longrightarrow} U \qquad \Omega^*(U \cap V) \stackrel{i_U^*}{\longleftarrow} \Omega^*(U)$$

$$\downarrow^{i_V} \qquad \downarrow^{j_U} \qquad \hookrightarrow \qquad i_V^* \qquad \qquad j_U^* \uparrow$$

$$V \stackrel{j_V}{\longleftarrow} M \qquad \qquad \Omega^*(V) \stackrel{i_U^*}{\longleftarrow} \Omega^*(M)$$

5.12.1 Proposition

Definiert man im obigen Setting folgende Abbildungen

$$\Omega^*(M) \xrightarrow{(i_U^*, j_V^*)} \Omega^*(U) \oplus \Omega^*(V) \qquad \qquad \Omega^*(U) \oplus \Omega^*(V) \longrightarrow \Omega^*(U \cap V)$$

$$\omega \longmapsto (j_U^*\omega, j_V^*\omega) \qquad \qquad (\omega, \eta) \longmapsto i_V^*\eta - i_U^*\omega$$

So liegt folgende kurze exakte Sequenz vor

$$0 \longrightarrow \Omega^*(M) \longrightarrow \Omega^*(U) \oplus \Omega^*(V) \longrightarrow \Omega^*(U \cap V) \longrightarrow 0$$

Beweis

1) $i_V^* - i_U^*$ ist surjektiv:

Sei $\{f_U, f_V\}$ eine Partition der Eins auf M bzgl. $\{U, V\}$. Ist ω in $\Omega^*(U \cap V)$, so ist $f_U\omega$ in $\Omega^*(V)$ und $f_V\omega$ in $\Omega^*(U)$. Es gilt

$$(i_V^* - i_U^*)(-f_V\omega, f_U\omega) = f_U\omega_{|U\cap V} - (-f_V\omega)_{|U\cap V} = (f_U + f_V)(\omega) = \omega$$

- 2) (j_U^*, j_V^*) ist injektiv: Sei $\omega \in \Omega^*(M)$ mit $j_U^*(\omega) = 0$ und $j_V^*(\omega) = 0$. Dann verschwindet ω auf U und V, also auch auf $M = U \cup V$. Ergo $\omega = 0$.
- 3) Exaktheit in der Mitte: Ist $(\omega, \eta) \in \Omega^*(U) \oplus \Omega^*(V)$, s. d.

$$\eta_{|U\cap V} - \omega_{|U\cap V} = 0$$

dann stimmen ω und η auf $U \cap V$ überein. Dann ist es möglich ω durch η auf V fortzusetzen und dadurch eine glatte Form $\tau \in \Omega^*(M)$ zu erhalten mit

$$\tau_{|U} = \omega \text{ und } \tau_{|V} = \eta$$

Ist umgekehrt ein $\tau \in \Omega^*(M)$ gegeben, so gilt offensichtlich

$$(i_V^* - i_U^*) \circ (j_U^*, j_V^*)(\tau) = (i_V^* - i_U^*)(\omega_{|U}, \omega_{|V}) = \omega_{|U \cap V} - \omega_{|V \cap U} = 0$$

5.12.2 Bemerkung

Durch das Zick-Zack-Lemma erhalten wir folgende lange exakte Sequenz der Kohomologie-Gruppen

$$\ldots \to H^{p-1}(U\cap V) \to H^p(M) \to H^p(U) \oplus H^p(V) \to H^p(U\cap V) \to H^{p+1}(M) \to \ldots$$

5.12.3 Beispiel

Vorlesung

Wir wollen die Kohomologiegruppen von $\mathbb{R}^2-\{0\}\sim S^1$ berechnen. Dazu sollen U vom und V Umgebungen von zwei Hälften von S^1 sein. Dann besteht $U\cap V$ aus zwei 19.1.18 Wegzusammenhangkomponenten.

U,V sind homotop zu Punkten und $U\cap V$ ist homotop zu zwei Punkten. Es ergibt sich folgende Mayer-Vietoris-Sequenz:

$$0 \longrightarrow H^0(S^1) \longrightarrow H^0(U) \oplus H^0(V) \longrightarrow H^0(U \cap V)$$

$$\longrightarrow H^1(S^1) \longrightarrow H^1(U) \oplus H^1(V) \longrightarrow H^1(U \cap V)$$

$$\longrightarrow H^2(S^1) \longrightarrow H^2(U) \oplus H^2(V) \longrightarrow H^2(U \cap V) \longrightarrow \dots$$

Wir kennen nun folgende Kohomologiegruppen

$$H^p(U) \cong H^p(V) \cong \begin{cases} \mathbb{R} & p = 0\\ 0 & \text{sonst} \end{cases}$$

Da $H^0(U\cap V)$ genau von den Wegzusammenhangkomponenten von $U\cap V$ abhängt, folgt

$$H^0(U \cap V) = \mathbb{R} \oplus \mathbb{R}$$

Es ergibt sich nun folgende exakte Sequenz

$$0 \longrightarrow H^0(S^1) \longrightarrow \mathbb{R} \oplus \mathbb{R} \xrightarrow{f} \mathbb{R}^2$$
$$\longrightarrow H^1(S^1) \longrightarrow 0 \oplus 0 \longrightarrow H^1(U \cap V)$$
$$\longrightarrow H^2(S^1) \longrightarrow 0 \oplus 0 \longrightarrow H^2(U \cap V) \longrightarrow \dots$$

f ist dabei gegeben durch

$$f(u,v) = u - v$$

Ergo hat f einen eindimensionalen Kern und ein eindimensionales Bild. Es folgt aufgrund der Exaktheit

$$H^0(S^1)\cong \operatorname{Kern} f\cong \mathbb{R} \text{ und } H^1(S^1)\cong \mathbb{R}^2/\operatorname{Bild} f\cong \mathbb{R}$$

Für den Rest gilt nun

$$H^{p+1}(S^1) \cong H^p(U \cap V) = 0$$

da $\Omega^{p+1}(S^1)=0$ für $p\geq 1.$ Unterm Strich erhalten wir

$$H^p(\mathbb{R}^2 - 0) \cong H^p(S^1) \cong \begin{cases} \mathbb{R} & p = 0, 1 \\ 0 & \text{sont} \end{cases}$$

Kapitel 6

KOHOMOLOGIE MIT KOMPAKTEN Trägern

6.0.4 Definition

Für $U \subset \mathbb{R}^n$ offen definieren wir den Raum der **Differentialformen mit kompakten Träger** durch

$$\Omega_c^p(U) := \{ \omega \in \Omega^p(U) \mid \text{supp } \omega \text{ ist kompakt} \}$$

Ist supp ω kompakt, so ist auch supp d ω kompakt. Dadurch können wir d
 wohldefiniert auf $\Omega_c^*(U)$ einschränken. Dadurch erhalten wir folgenden Koketten-Komplex von reellen Vektorräumen

$$d|: \Omega_c^p(U) \longrightarrow \Omega_c^{p+1}(U)$$

Die Kohomologiegruppen dieses Komplexes definieren die **Kohomologiegruppen** mit kompakten **Trägern**

$$H_c^p(U) := H^p(\Omega_c^*(U))$$

6.0.5 Beispiel

Wir wollen $H^1_c(\mathbb{R}^1)$ bestimmen. Betrachte dazu die Abbildung

$$\int : \Omega_c^1(\mathbb{R}^1) \longrightarrow \mathbb{R}$$
$$\omega \longmapsto \int_{\mathbb{R}^1} \omega$$

 \int ist offensichtlich linear und surjektiv. Wir wollen den Kern bestimmen. Zuerst zeigen wir

$$\mathsf{Bild}\ \mathrm{d}|\subset\ker\int$$

Sei dazu $\omega = \mathrm{d}f, f \in \Omega_c^0(\mathbb{R})$. Dann gilt

$$\int \omega = \int \mathrm{d}f = \int_{-\infty}^{\infty} \frac{\partial f}{\partial x} \mathrm{d}x$$

Der kompakte Träger von f sei enthalten in [a, b]. Dann haben wir

$$\int \omega = \int df = \int_a^b \frac{\partial f}{\partial x} dx = f(a) - f(b) = 0 - 0 = 0$$

Ferner behaupten wir

$$\ker \int \subset \mathsf{Bild}\ d$$

Denn sei $\omega = g(x) dx \in \Omega_c^1(\mathbb{R}^1)$ mit $\int_{-\infty}^{\infty} g(x) dx = 0$. Ferner hat g kompakten Träger. Wir definieren dann die wohldefinierte Funktion

$$G(x) := \int_{-\infty}^{x} g(x) \mathrm{d}x$$

Es gilt dann

$$dG = G'dx = qdx = \omega$$

G hat tatsächlich einen kompakten Träger, denn g ist kompakt und $\int_{-\infty}^{\infty} g(x) dx = 0$. Insofern ist G nur auf einem kompakten Intervall ungleich Null. Es gilt nun

$$H_c^1(\mathbb{R}^1) = \ker \mathrm{d}/|\mathrm{Bildd}| = \Omega_c^1(\mathbb{R}^1)/\ker \int \cong \mathbb{R}^1$$

Dies unterscheidet sich von der gewöhnlichen De-Rham-Kohomologie, für die gilt

$$H^1(\mathbb{R}^1) = 0$$

Insbesondere ist H_c^* keine Homotopieinvariante.

6.0.6 Definition

Ist M eine beliebige, glatte Mannigfaltigkeit, dann definieren wir

$$\Omega^p_c(M) := \{\omega \in \Omega^p(M) \mid {\rm supp} \omega \text{ ist kompakt}\}$$

und

$$H^p_c(M):=H^p(\Omega^*_c(M))$$

6.0.7 Bemerkung

Sei $\Phi: M \to N$ eine glatte Abbildung. Der Pullback unter φ induziert im Allgemeinem **keine** Abbildung auf H_c^* .

Z. Bsp. kann man

$$\varphi: \mathbb{R}^1 \longrightarrow *$$

betrachten. Der Pullback einer Differentialform auf dem einpunktigen Raum * gibt eine konstante Abbildung auf \mathbb{R}^1 , die im Allgemeinem keinen kompakten Träger hat.

6.0.8 Bemerkung

Wir klassifizieren zwei Abbildungen von glatten Mannigfaltigkeiten, die trotzdem Abbildungen auf den Kohomologiegruppen induzieren:

1) **6.0.9 Definition**

Eine stetige Abbildung $f: X \to Y$ topologischer Raum heißt **eigentlich**¹, falls das Urbild jeder kompakten Menge wieder kompakt ist, d.h.

$$A \subset Y$$
 kompakt $\Longrightarrow f^{-1}(A) \subset X$ kompakt

6.0.10 Beispiel

Ist F ein kompakter Raum, so ist

$$\mathbb{R}^n \times F \longrightarrow \mathbb{R}^n$$

eigentlich.

Die Abbildung

$$\mathbb{R}^n \longrightarrow *$$

ist nicht eigentlich.

Eigentliche, glatte Abbildungen $\varphi:M\to N$ von Mannigfaltigkeiten induzieren kontravariant Abbildungen

$$\varphi^*: H_c^*(N) \longrightarrow H_c^*(M)$$
$$[\omega] \longmapsto [\varphi^*\omega]$$

¹Im Englischen *proper*.

2) Sei $\iota: U \hookrightarrow M$ die Inklusion einer offenen Teilmenge. Dann wird **kovariant** eine Abbildung

$$\iota_*: H_c^*(U) \longrightarrow H_c^*(M)$$

induziert, indem $\omega \in \Omega_c^*(U)$ durch die Null auf M fortgesetzt wird.

6.1 Mayer-Vietoris für H_c^*

Sei M eine glatte Mannigfaltigkeit, $U, V \subset M$ offen mit $U \cup V = M$. Wir erhalten folgende kommutative Diagramme

$$U \cap V \stackrel{i_U}{\longrightarrow} U \qquad \Omega_c^*(U \cap V) \xrightarrow{i_{U,*}} \Omega_c^*(U)$$

$$\downarrow_{i_V} \qquad \downarrow_{j_U} \rightsquigarrow \qquad \downarrow_{i_{V,*}} \qquad \downarrow_{j_{U,*}}$$

$$V \stackrel{j_V}{\longrightarrow} M \qquad \Omega_c^*(V) \xrightarrow{j_{V,*}} \Omega_c^*(M)$$

Dadurch erhalten wir die kurze exakte Sequenz

$$0 \longrightarrow \Omega_c^*(U \cap V) \longrightarrow \Omega_c^*(U) \oplus \Omega_c^*(V) \longrightarrow \Omega_c^*(M) \longrightarrow 0$$

und die folgende lange exakte Sequenz

$$\ldots \longrightarrow H^p_c(U \cap V) \longrightarrow H^p_c(U) \oplus H^p_c(V) \longrightarrow H^p(M)_c \longrightarrow H^{p+1}_c(U \cap V) \longrightarrow \ldots$$

Beachte, diese Sequenz ist analog zu der langen exakten Sequenz auf den normalen Kohomologiegruppen bis auf die Tatsache, dass M und $U \cap V$ hier die Positionen getauscht haben.

6.2 Poincare-Lemma für H_c^*

Betrachte die Projektion

$$\pi: M \times \mathbb{R}^1 \longrightarrow M$$

Vorlesung vom 22.1.18

 π ist nicht eigentlich. Trotzdem behaupten wir, dass π kovariant eine Abbildung

$$\pi_*: \Omega^p_c(M \times \mathbb{R}^1) \longrightarrow \Omega^{p-1}_c(M)$$

induziert. Diese Abbildung nennt man Integration entlang der Faser. Wir unterscheiden dazu zwei Typen von Elementen in $\Omega_c^*(M \times \mathbb{R}^1)$

- (1) $\pi^* \eta \cdot f(x,t)$ mit $\eta \in \Omega^*(M)$ und f hat kompakten Träger
- (2) $(\pi^* \eta) \wedge f(x, t) dt$ mit $\eta \in \Omega^{*-1}(M)$

Wir definieren π_* durch

$$\pi_*(\pi^* \eta \cdot f(x,t)) = 0$$

$$\pi_*((\pi^* \eta) \wedge f(x,t) dt) = \eta \int_{-\infty}^{\infty} f(x,t) dt$$

Es bleibt nun nachzuprüfen

$$d\pi_* = \pi_* d$$

Dadurch erhalten wir eine wohldefinierte Abbildung

$$\pi_*: H_c^*(M \times \mathbb{R}^1) \longrightarrow H_c^{*-1}(M)$$

Wir behaupten, dass π_* ein Isomorphismus auf den Kohomologiegruppen ist, und wollen eine Umkehrabbildung konstruieren.

Sei hierzu e(t) eine glatte Funktion auf \mathbb{R} mit $\int_{-\infty}^{\infty} e(t) dt = 1$ und supp $e(t) \subset \mathbb{R}$ kompakt. Definiere

$$e := e(t) dt \in \Omega^1_c(\mathbb{R}^1)$$

und

$$e_*: \Omega_c^{*-1}(M) \longrightarrow \Omega_c^*(M \times \mathbb{R})$$

 $\eta \longmapsto (\pi^* \eta) \wedge e(t) dt$

Auch in diesem Fall rechnet man nach

$$d \circ e_* = e_* \circ d$$

Dadurch ergibt sich eine wohldefinierte Abbildung

$$e_*: H_c^{*-1}(M) \longrightarrow H_c^*(M \times \mathbb{R}^1)$$

Es bleibt nun zu zeigen, dass e_* und π_* auf Ebene der Kohomologiegruppen tatsächlich invers zueinander sind.

Wir erhalten hierdurch folgende Isomorphie

$$H_c^k(M \times \mathbb{R}^1) \stackrel{\pi_*}{\cong} H_c^{k-1}(M)$$

6.2.1 Lemma: Poincare für H_c^*

$$H_c^n(\mathbb{R}^n) = H_c^0(\mathbb{R}^0) = \mathbb{R}$$

6.2.2 Satz

Sei M eine glatte, zusammenhängende, orientierbare Mannigfaltigkeit der Dimension n ohne Rand. Dann gilt

$$H_c^n(M) \cong \mathbb{R}$$

Beweis

Schritt 1 $\dim_{\mathbb{R}} H_c^n(M) \ge 1$:

Sei dazu $U\subset M$ eine Karte $U\cong \mathbb{R}^n$. $\omega\in\Omega^n_c(U)$ sei eine n-Form mit

$$\int_{U} \omega \neq 0$$

Der Satz von Stokes impliziert nun, dass ω ist nicht exakt, d. h., $\omega\notin\mathsf{Bild}$ d. Damit folgt aber auch

$$0\neq [\omega]\in H^n_c(M)$$

Schritt 2 $\dim_{\mathbb{R}} H_c^n(M) \leq 1$:

Sei $\omega' \in \Omega^n_c(M)$. Wir müssen zeigen, dass es ein $c \in \mathbb{R}$ und ein $\eta \in \Omega^{n-1}_c(M)$ gibt, sodass

$$\omega' = c\omega + \mathrm{d}\eta$$

Dazu nehmen wir uns Karten $U_1, \ldots, U_k \subset M$ mit $U_i \cong \mathbb{R}^n$ und

supp
$$\omega' \subset U_1 \cup \ldots \cup U_k$$

Sei ferner f_1, \ldots, f_k eine glatte Partition der Eins mit supp $f_i \subset U_i$ kompakt. Dann gilt

$$\omega' = \sum_{i} f_{i} \omega'$$

Angenommen, es gäbe $c_i \in \mathbb{R}$ und $\eta \in \Omega_c^{n-1}(U_i)$ mit

$$f_i\omega'=c_i\omega+\mathrm{d}\eta_i$$

für alle i. Dann ergäbe sich

$$\omega' = (\sum_{i} c_i)\omega + d(\sum_{i} \eta_i)$$

Insofern genügt es also, die Existenz von c_i und η_i nachzuweisen. D. h., wir können ohne Einschränkung annehmen, dass ω' kompakten Träger in einer Karte $V \subset M$, $V \cong \mathbb{R}^n$, hat.

Beachte, dass

$$\operatorname{supp}\,\omega\subset U\text{ und supp }\omega'\subset V$$

Da M zusammenhängend ist, finden wir offene Karten $U_1, \ldots, U_r \subset M$ mit

$$U_i \cong \mathbb{R} \qquad U_1 = U$$

$$U_i \cap U_{i+1} \neq \emptyset \qquad U_r = V$$

Sei $\omega_1 \in \Omega_c^n(U_1)$ mit $\emptyset \neq \text{supp } \omega_1 \subset U_1 \cap U_2$. Dies führen wir für $i = 2, \ldots, r-1$ fort und erhalten

$$0 \neq \omega_i \in \Omega_c^n(U_i \cap U_{i+1})$$

Mit dem Poincare Lemma folgt nun

$$H_c^n(U_i) \cong \mathbb{R}$$

Deswegen existieren $c_1 \in \mathbb{R}$ und $\eta_1 \in \Omega_c^{n-1}(U_1)$ mit

$$\omega_1 = c_1 \omega + \mathrm{d}\eta_1$$

Und analog folgt die Existenz von $c_2, \ldots, c_{r-1} \in \mathbb{R}$ und η_2, \ldots, η_r mit

$$\omega_i = c_i \omega_{i-1} + \mathrm{d}\eta_i$$

Zusammenfügen ergibt

$$\omega' = c_1 \cdots c_{r-1}\omega + d(\eta_{r-1} + c_{r-1}\eta_{r-2} + \dots + c_1 \cdots c_{r-2}\eta_1)$$

6.2.3 Bemerkung

Ist M nicht orientierbar, so gilt

$$H_c^n(M) = 0$$

Der Beweis hierfür wird ähnlich geführt wie oben.

6.3 Zurück zum Abbildungsgrad

6.3.1 Definition

Sei $\varphi:M\to N$ eine glatte Abbildung glatter, orientierter, zusammenhängender, geschlossener Mannigfaltigkeiten der Dimension n.

Sei $\omega_0 \in \Omega_c^n(N)$ eine Form mit

$$\int_{M} \omega_0 \neq 0$$

Dann ist $\varphi^*\omega$ eine *n*-Form auf *M*. Definiere

$$d(\varphi) := \frac{\int_M \varphi^* \omega_0}{\int_N \omega_0}$$

 $d(\varphi)$ ist unabhängig von der Wahl von ω_0 , denn ist $\omega \in \Omega^n_c(N)$ eine weitere n-Form, so gilt

$$\omega = c\omega_0 + \mathrm{d}\eta$$

und es gilt

$$\frac{\int_{M} \varphi^* \omega}{\int_{N} \omega} = \frac{\int_{M} c \varphi^* \omega_0 + \varphi^* d\eta}{\int_{N} c \omega_0 + d\eta} = \frac{\int_{M} \varphi^* \omega_0}{\int_{N} \omega_0} = d(\varphi)$$

da $\int_N d\eta = 0$, da N keinen Rand hat.

6.3.2 Bemerkung

 $d(\varphi)$ ist auch dann wohldefiniert, wenn M,N nicht kompakt sind, aber φ eigentlich ist.

6.3.3 Satz

In obiger Situation gilt

$$d(\varphi) = \deg(\varphi)$$

Insbesondere ist $d(\varphi)$ immer eine ganze Zahl.

Beweis

Sei $p \in N$ ein regulärer Wert von φ und $\varphi^{-1}(p) = \{q_1, \dots, q_k\} \subset M$. Wir haben Isomorphismen

$$\varphi_{*,q_i}: T_{q_i}M \xrightarrow{\cong} T_pN$$

Nach dem Satz über umkehrbare Funktionen ist φ lokal in der Nähe der q_i ein Diffeomorphismus. Ergo existiert eine Karte $\mathbb{R}^n \cong V \subset N$ um p und weitere Karten $\mathbb{R}^n \cong U_i \subset M$ um q_i , sodass

$$\varphi_{|U_i}:U_i\longrightarrow V$$

ein Diffeomorphismus ist für alle i.

Sei $\omega_0 \in \Omega_c^n(V)$ mit

$$\int_{N} \omega_0 \neq 0$$

Dann ist der Träger supp $\varphi^*\omega_0$ in $U_0\cup\ldots\cup U_k$ enthalten. Wir erhalten k Kopien von ω_0

$$\varphi_{|U}^*\omega_0\in\Omega_c^n(U_i)$$

Es folgt

$$\int_{M} \varphi^* \omega_0 = \sum_{i=1}^{k} \int_{U_i} \varphi_{|U_i}^* \omega_0$$

und es gilt

$$\int_{U_i} \varphi_{|U_i}^* \omega_0 = \varepsilon_i \int_V \omega_0$$

wobei

$$\varepsilon_i = \begin{cases} +1 & \varphi_{*,q_i} \text{ ist orientierungserhaltend} \\ -1 & \varphi_{*,q_i} \text{ ist orientierungsumkehrend} \end{cases}$$

Dadurch folgt

$$d(\varphi) = \frac{\int_{M} \varphi^* \omega_0}{\int_{N} \omega_0} = \frac{\sum_{i=1}^{k} \varepsilon_i \int_{N} \omega_0}{\int_{N} \omega_0} = \sum_{i=1}^{k} \varepsilon_i = \deg(\varphi)$$

6.4 Endlich-Dimensionalität der Kohomologie

Vorlesung vom 26.1.18

Sei M eine glatte Mannigfaltigkeit der Dimension n.

6.4.1 Definition

Eine offene Überdeckung $\{U_{\alpha}\}_{\alpha}$ von M heißt \mathbf{gut} , wenn alle nichtleeren endlichen Schnitte $U_{\alpha_1} \cap U_{\alpha_2} \cap \ldots \cap U_{\alpha_k}$ diffeomorph zu \mathbb{R}^n sind.

6.4.2 Lemma

M besitzt eine gute Überdeckung. Diese kann endlich gewählt werden, wenn M kompakt ist.

Beweisskizze

Wähle eine Riemannsche Metrik auf M. Man kann zeigen, dass jeder Punkt von M eine geodätisch konvexe Umgebung besitzt. Der Durchschnitt geodätischer konvexer Mengen ist wieder geodätisch konvex, sofern die beiden Mengen klein genug sind. Außerdem sind geodätische konvexe Mengen diffeomorph zu \mathbb{R}^n .

Insofern genügt es eine Überdeckung von M durch geodätisch konvexe Mengen zu wählen, die klein genug sind.

6.4.3 Satz

Hat M eine gute endliche Überdeckung, so gilt für alle p

$$\dim_{\mathbb{R}} H^p(M) < \infty$$

Beweis

Schritt 1: Seien $U, V \subset M$ offen mit

$$\dim H^{p}(U) < \infty$$

$$\dim H^{p}(V) < \infty$$

$$\dim H^{p}(U \cap V) < \infty$$

für alle p. Betrachte folgende exakte Sequenz

$$H^p(U\cap V) \xrightarrow{\delta^*} H^p(U\cup V) \xrightarrow{\iota^*} H^p(U) \oplus H^p(V) \longrightarrow H^p(U\cap V)$$

Es gilt dann

$$H^p(U \cup V) \cong \mathsf{Bild}\iota^* \oplus \mathsf{Bild}\delta^*$$

Da $H^p(U \cap V)$, $H^p(U)$ und $H^p(V)$ endliche Dimension haben, haben dies auch die Bilder von ι^* und δ^* . Ergo auch $H^p(U \cap V)$.

- Schritt 2: Wir führen eine vollständige Induktion nach der Kardinalität κ einer endlichen guten Überdeckung:
 - $\kappa = 1$: Dann ist $M \cong \mathbb{R}^n$. Damit folgt auch

$$H^p(M) \cong H^p(\mathbb{R}^n)$$

 $H^p(\mathbb{R}^n)$ ist nach dem Poincare-Lemma endlich dimensional.

• $\kappa - 1 \to \kappa$: Sei U_1, \dots, U_{κ} eine gute Überdeckung von M. Setze

$$U := U_1 \cup \ldots \cup U_{\kappa-1}$$

und

$$V := U_{\kappa} \cong \mathbb{R}^n$$

Durch die Induktionsannahme folgt

$$\dim H^p(U) < \infty$$
 und $\dim H^p(V) < \infty$

für alle p. Betrachte

$$U \cap V = (U_1 \cap U_{\kappa}) \cup \ldots \cup (U_{\kappa} \cap U_{\kappa})$$

 $U \cap V$ besitzt die gute Überdeckung

$$U_1 \cap U_{\kappa}, \ldots, U_{\kappa-1} \cap U_{\kappa}$$

der Kardinalität $\kappa-1$. Mit der Induktionsannahme gilt also

$$\dim H^p(U \cap V) < \infty$$

für alle p. Mit Schritt 1 folgt nun

$$\dim H^p(M) = \dim H^p(U \cup V) < \infty$$

für alle p.

Wir wollen Folgendes zeigen: Ist M orientiert und hat keinen Rand, so gilt

$$\dim H^p(M) = \dim H_c^{n-p}(M)$$

Dies nennt man Poincare-Dualität.

Wir wollen eine Beschreibung des Verbindungshomomorphismus

$$\delta^*: H^p(U \cap V) \longrightarrow H^{p+1}(U \cup V)$$

in der Mayer-Vietoris-Sequenz erarbeiten. Sie ergibt sich durch eine Diagrammjagd aus folgendem Diagramm

$$0 \longrightarrow \Omega^{p}(U \cup V) \longrightarrow \Omega^{p}(U) \oplus \Omega^{p}(V) \longrightarrow \Omega^{p}(U \cap V) \longrightarrow 0$$

$$\downarrow^{\mathrm{d}} \qquad \qquad \downarrow^{\mathrm{d}} \qquad \qquad \downarrow^{\mathrm{d}}$$

$$0 \longrightarrow \Omega^{p+1}(U \cup V) \longrightarrow \Omega^{p+1}(U) \oplus \Omega^{p+1}(V) \longrightarrow \Omega^{p+1}(U \cap V) \longrightarrow 0$$

Es gilt somit für $\omega \in \Omega^p(U \cap V)$

$$\delta^*[\omega]_{|U} = -[\mathrm{d}(f_V \cdot \omega)]$$
$$\delta^*[\omega]_{|V} = [\mathrm{d}(f_U \cdot \omega)]$$

wobei

$$\omega = (f_U \omega)_{|V} + (f_V \omega)_{|U}$$

Wir können $\delta^*: H^{n-p-1}_c(U \cup V) \to H^{n-p}_c(U \cap V)$ beschreiben, indem wir für ein $[\omega] \in H^{n-p-1}_c(U \cup V)$ eine Fortsetzung durch Null von $\delta^*[\omega]$ auf U und V erhalten durch jeweils

$$-[\mathrm{d}(f_V\omega)]$$
 und $[\mathrm{d}(f_U\omega)]$

6.4.4 Lemma: Fünfer-Lemma

$$\begin{array}{cccc}
A & \longrightarrow & B & \longrightarrow & C & \longrightarrow & D & \longrightarrow & E \\
\downarrow^{\alpha} & & \downarrow^{\beta} & & \downarrow^{\gamma} & & \downarrow_{\delta} & & \downarrow^{\varepsilon} \\
A' & \longrightarrow & B' & \longrightarrow & C' & \longrightarrow & D' & \longrightarrow & E'
\end{array}$$

Kommutiert obiges Diagramm und sind α, β, δ und ε Isomorphismen, so ist auch γ isomorph.

Beweis

Diagrammjagd.

6.4.5 Bemerkung

Sei $\langle \cdot \mid \cdot \rangle : V \times W \to \mathbb{R}$ eine Bilinearform, V, W seien endlich-dimensionale Vektorräume.

Man erinnere sich daran, dass

$$V^* = \operatorname{Hom}_{\mathbb{R}}\left(V, \mathbb{R}\right)$$

gilt. $\langle \cdot | \cdot \rangle$ induziert lineare Abbildungen

$$V \longrightarrow W^*$$
$$v \longmapsto \langle v \mid \cdot \rangle$$

und

$$W \longrightarrow V^*$$
$$w \longmapsto \langle \cdot \mid w \rangle$$

Man erinnere sich daran, dass $\langle \cdot | \cdot \rangle$ nicht-ausgeartet heißt, wenn für alle $0 \neq v \in V$ und $0 \neq w \in W$ Vektoren $v' \in V, w' \in W$ existieren mit

$$\langle v \mid w' \rangle \neq 0 \text{ und } \langle v' \mid w \rangle \neq 0$$

6.4.6 Lemma

 $\langle \cdot \mid \cdot \rangle$ ist genau dann nicht-ausgeartet, wenn die beiden obigen induzierten Abbildungen Isomorphismen sind.

6.4.7 Definition

Sei M eine orientierte, glatte Mannigfaltigkeit ohne Rand der Dimension n. Wir definieren eine Paarung durch

$$\langle \cdot \mid \cdot \rangle : H^p(M) \times H^{n-p}_c(M) \longrightarrow \mathbb{R}$$

$$([\omega], [\eta]) \longmapsto \int_M \omega \wedge \eta$$

 $\omega \wedge \eta$ ist in $\Omega_c^n(M)$, da η kompakten Träger hat. Insofern ist obiges Integral wohldefiniert.

Die Paarung ist unabhängig von der Wahl der Repräsentanten ω, η . Dies folgt aus der Produktregel und dem Satz von Stokes, da M keinen Rand hat.

6.4.8 Satz: Poincare-Dualität

Sei M eine orientierte glatte Mannigfaltigkeit ohne Rand der Dimension n, die eine endliche gute Überdeckung besitzt. Dann ist

$$\langle \cdot | \cdot \rangle : H^p(M) \times H^{n-p}_c(M) \longrightarrow \mathbb{R}$$

nicht-ausgeartet für alle p.

Beweis

Seien $U, V \subset M$ offen. Die Poincare-Dualität gelte für U, V und $U \cap V$.

Indem wir den kontravarianten, exakten Funktor _* auf die untere Zeile anwenden, erhalten wir

$$H^{p-1}(U) \oplus H^{p-1}(V) \longrightarrow H^{p-1}(U \cap V) \stackrel{\delta^*}{\longrightarrow} H^p(U \cup V) \stackrel{\iota^*}{\longrightarrow} H^p(U) \oplus H^p(V) \longrightarrow H^p(U \cap V)$$

$$\downarrow \cong \qquad \qquad \downarrow \cong \qquad \qquad \downarrow f \qquad \qquad \downarrow \cong \qquad \qquad \downarrow \cong \qquad \qquad \downarrow \cong \qquad \downarrow \cong \qquad \downarrow \cong \qquad \downarrow H^{n-p+1}(U)^* \oplus H^{n-p+1}(V)^* \longrightarrow H^{n-p+1}(U \cap V)^* \stackrel{\delta^*}{\longrightarrow} H^{n-p}(U \cup V)^* \stackrel{\iota^*}{\longrightarrow} H^{n-p}(U)^* \oplus H^p(V)^* \longrightarrow H^{n-p}(U \cap V)^*$$

Mit dem Fünferlemma würde nun folgen, dass f ein Isomorphismus ist, unter der Voraussetzung, dass obiges Diagramm kommutiert.

Für die Kommutativität ist zu zeigen

$$\langle \delta^* \omega, \eta \rangle = \langle \omega, \delta^* \eta \rangle$$

Tatsächlich gilt

$$\langle \delta^* \omega, \eta \rangle = \int_{U \cap V} \delta^* \omega \wedge \eta = \int d(f_U \omega) \wedge \eta = \int df_U \wedge \omega \wedge \eta$$

und

$$\langle \omega, \delta^* \eta \rangle = \int \omega \wedge \delta_* \eta = \int \omega \wedge d(f_V \eta) = \int \omega \wedge df_U \wedge \omega = (-1)^p \int df_U \wedge \omega \wedge \eta$$

Somit kommutiert obiges Diagramm bis auf Vorzeichen. Ergo ist

$$f: H^p(U \cup V) \to H^{n-p}_c(U \cup V)^*$$

ein Isomorphismus.

Um den Beweis abzuschließen, führen wir wieder Induktion nach der Kardinalität einer endlichen guten Überdeckung von M.

Der Induktionsanfang ist hierbei gegeben durch die Poincare-Lemmata. □

6.4.9 Korollar

Insbesondere folgt aus obigem Satz

$$H^p(M) \cong H_c^{n-p}(M)^*$$

für alle p.

Der Kohomologiering von $\mathbb{C}P^n$ 6.5

Vorlesung vom 29.1.18

Definition 6.5.1

Wir definieren den komplexen projektiven Raum durch

$$\mathbb{C}P^n := (\mathbb{C}^{n+1} - \{0\}) / \sim$$

wobei

$$(x_1,\ldots,x_{n+1})\sim(\lambda x_1,\ldots,\lambda x_{n+1})$$

für alle $(x_1, \ldots, x_{n+1}) \in \mathbb{C}^{n+1} - \{0\}$ und $\lambda \in \mathbb{C} - \{0\}$. Die Punkte von $\mathbb{C}P^n$ lassen sich durch **homogene Koordinaten** beschreiben:

$$(x_1:x_2:\ldots:x_{n+1}):=[(x_1,\ldots,x_{n+1})]_{\sim}$$

6.5.2Beispiel

Betrachte $\mathbb{C}P^1$ in $\mathbb{C}P^2$ gegeben durch

$$\mathbb{C}P^1 = \{(0: x_1: x_2)\} \subset \mathbb{C}P^2$$

Es gilt nun

$$\mathbb{C}P^2 - \mathbb{C}P^1 = \{(1: x_1: x_2) \mid x_1, x_2 \in \mathbb{C}\} \cong \mathbb{C}^2$$

Dies zeigt, dass $\mathbb{C}P^2$ eine glatte reelle Mannigfaltigkeit der Dimension 4 ist. Allgemeiner gilt

$$\dim_{\mathbb{R}} \mathbb{C}P^n = 2n$$

Im Detail haben wir für $\mathbb{C}P^2$ folgende Karten

$$\{(1:u:v) \mid u,v \in \mathbb{C}\} \longrightarrow \mathbb{C}^2$$

$$(1:u:v) \longmapsto (u,v)$$

$$\{(u:1:v) \mid u,v \in \mathbb{C}\} \longrightarrow \mathbb{C}^2$$

$$(u:1:v) \longmapsto (u,v)$$

$$\{(u:v:1) \mid u,v \in \mathbb{C}\} \longrightarrow \mathbb{C}^2$$

$$(u:v:1) \longmapsto (u,v)$$

6.5.3 Definition

Wir führen **Polarkoordinaten** auf $\mathbb{C}^2 = \mathbb{C}P^2 - \mathbb{C}P^1$ ein

$$u = re^{2\pi i\theta}$$
$$v = se^{2\pi i\varphi}$$

für $(u, v) \in \mathbb{C}^2$ und $r, s \ge 0, \theta, \varphi \in [0, 1)$.

Wir deklarieren folgende 1-Formen auf $\mathbb{C}P^2 - \mathbb{C}P^1$

$$\eta(u,v) = \frac{r^2 d\theta + s^2 d\varphi}{1 + r^2 + s^2}$$

Allerdings ist r im Allgemeinem nicht glatt in Abhängigkeit von u, aber $r^2 = x^2 + y^2 = u \cdot \overline{u}$ ist glatt für x = Re(u), y = Im(u).

 θ ist nicht einmal stetig. Aber $2\pi r^2 d\theta$ ist glatt, denn

$$2\pi r^2 d\theta = 2\pi (x^2 + y^2) d(\frac{1}{2\pi} a tan(\frac{y}{x}))$$

$$= (x^2 + y^2) (\frac{\partial}{\partial x} a tan(\frac{y}{x}) dx + \frac{\partial}{\partial y} a tan(\frac{y}{x}) dy)$$

$$= (x^2 + y^2) \frac{1}{1 + (\frac{y}{x})^2} (-\frac{y}{x^2} dx + \frac{1}{x} dy)$$

$$= (x^2 + y^2) \frac{x^2}{x^2 + y^2} (-y \frac{dx}{x^2} + x \frac{dy}{x^2})$$

$$= x dy - y dx$$

D.h., $\eta \in \Omega^1(\mathbb{C}P^2 - \mathbb{C}P^1)$. Setze

$$\omega := \mathrm{d} \eta \in \Omega^2(\mathbb{C}P^2 - \mathbb{C}P^1)$$

 ω ist dann geschlossen auf $\mathbb{C}P^2 - \mathbb{C}P^1$. Ferner lässt sich ω glatt auf $\mathbb{C}P^2$ fortsetzen. Betrachte die Karte $(u_1:1:v_1)\mapsto (u_1,v_1)$:

$$(u_1:1:v_1)=(r_1e^{2\pi i\theta_1}:1:s_1e^{2\pi i\varphi_1})$$

Ist zum Beispiel $u_1 \neq 0$, so gilt

$$(u_1:1:v_1) = (1:\frac{1}{r_1e^{2\pi i\theta_1}}:\frac{s_1e^{2\pi i\varphi_1}}{r_1e^{2\pi i\theta_1}})$$
$$= (1:\frac{1}{r_1}e^{-2\pi i\theta_1}:\frac{s_1}{r_1}e^{2\pi i(\varphi_1-\theta_1)})$$

Dies lässt sich in obige Formel einsetzen. Da $\mathbb{C}P^2 - \mathbb{C}P^1$ dicht in $\mathbb{C}P^2$ liegt und ω stetig ist, ist die Fortsetzung auf $\mathbb{C}P^2$ eindeutig. Aus dem selben Grund gilt

$$d\omega = 0$$

auf ganz $\mathbb{C}P^2$. Wir erhalten so $\omega \in \mathsf{Kern} \ d \subset \Omega^2(\mathbb{C}P^2)$. Ergo ist ω geschlossen auf ganz $\mathbb{C}P^2$. η lässt sich nicht glatt auf $\mathbb{C}P^2$ fortsetzen, insofern ist ω nicht exakt auf ganz $\mathbb{C}P^2$.

Es gilt nun

$$\omega \wedge \omega = \frac{8rs}{(1+r^2+s^2)^3} dr d\theta ds d\varphi \in \Omega^4(\mathbb{C}P^2)$$

und

$$\int_{\mathbb{C}P^2} \omega \wedge \omega = 8 \int_0^\infty \int_0^1 \int_0^\infty \int_0^1 \frac{8rs}{(1+r^2+s^2)^3} dr d\theta ds d\varphi \in \Omega^4(\mathbb{C}P^2)$$
$$= \int_0^\infty \int_0^\infty \frac{rs}{(1+r^2+s^2)^3} dr ds = 1$$

Daraus folgt ω^2 ist nicht exakt auf $\mathbb{C}P^2$. Es gilt somit

$$0 \neq [\omega] \in H^2(\mathbb{C}P^2)$$
$$0 \neq [\omega]^2 \in H^4(\mathbb{C}P^2)$$

Wir wissen, dass $\mathbb{C}P^2$ geschlossen und orientiert ist. Mit der Poincare-Dualität folgt nun

$$\dim H^4(\mathbb{C}P^2) = \dim H^0(\mathbb{C}P^2) = 1$$

da $\mathbb{C}P^2$ zusammenhängend ist. Insofern wird $H^4(\mathbb{C}P^2)$ von $[\omega^2]$ als reeller Vektorraum erzeugt.

Ferne folgt aus obigem

$$\dim H^2(\mathbb{C}P^2) \ge 1$$

Um dim $H^2(\mathbb{C}P^2)$ genau zu bestimmen, brauchen wir nun relative Kohomologie.

6.5.4 Definition: Relative Kohomologie

Sei $\iota:N\hookrightarrow M$ eine geschlossene glatte eingebettete Untermannigfaltigkeit. Setze

$$\Omega^k(M,N) := \left\{ \omega \in \Omega^k(M) \mid \iota^*(\omega) = 0 \right\} = \operatorname{Kern}(\iota^* : \Omega^k(M) \to \Omega^k(N))$$

Ist $\omega \in \Omega^k(M, N)$, so gilt

$$\iota^*(\mathrm{d}\omega) = \mathrm{d}(\iota^*\omega) = 0$$

d.h., d steigt wohldefiniert auf $\Omega^*(M, N)$ ab. Dadurch erhalten wir den **relativen** de **Rham-Komplex** $(\Omega^*(M, N), d)$.

Wir definieren die k-te **relative Kohomologiegruppe** durch

$$H^k(M,N) := H^k(\Omega^*(M,N), d)$$

Wir erhalten insbesondere folgende kurze exakte Sequenz

$$0 \longrightarrow \Omega^*(M,N) \longrightarrow \Omega^*(M) \xrightarrow{\iota^*} \Omega^*(N) \longrightarrow 0$$

Die Surjektivität von ι^* gilt, denn:

Lokal ist ι gegeben durch

$$\iota: \mathbb{R}^n \hookrightarrow \mathbb{R}^m = \mathbb{R}^n \times \mathbb{R}^{m-n}$$

mit einer Projektion

$$\pi: \mathbb{R}^n \times \mathbb{R}^{m-n} \longrightarrow \mathbb{R}^n$$

Daraus folgt

$$\pi \circ \iota = \mathrm{Id}$$

und damit

$$\iota^* \circ \pi^* = \mathrm{Id}$$

Daraus folgt die Surjektivität von ι^* .

Global folgt die Surjektivität durch eine Zerlegung der Eins.

Wir erhalten dadurch folgende lange exakte Sequenz

$$\dots \xrightarrow{\delta^*} H^k(M,N) \longrightarrow H^k(M) \xrightarrow{\iota^*} H^k(N) \xrightarrow{\delta^*} H^{k+1}(M,N) \longrightarrow \dots$$

6.5.5 Proposition: Alternative Beschreibung der Relativen Kohomologie

Durch Fortsetzung durch Null erhält man eine Abbildung

$$\Omega_c^*(M-N) \longrightarrow \Omega^*(M,N)$$

Diese vertauscht mit d. Sind M, N kompakt, so erhalten wir einen Isomorphismus

$$H_c^*(M-N) \xrightarrow{\cong} H^*(M,N)$$

6.5.6 Bemerkung: Zurück zu $\mathbb{C}P^2$

Betrachte $N = \mathbb{C}P^1 \stackrel{\iota}{\hookrightarrow} \mathbb{C}P^2 = M$. Es liegt folgende exakte Sequenz vor

$$H^2(\mathbb{C}P^2, \mathbb{C}P^1) \longrightarrow H^2(\mathbb{C}P^2) \longrightarrow H^2(\mathbb{C}P^1) \longrightarrow H^3(\mathbb{C}P^2, \mathbb{C}P^1)$$

Ferner gilt²

$$H^3(\mathbb{C}P^2,\mathbb{C}P^1) \cong H^3_c(\mathbb{C}P^2 - \mathbb{C}P^1) \cong H^3_c(\mathbb{R}^4) = 0$$

und

$$H^2(\mathbb{C}P^2, \mathbb{C}P^1) = H_c^2(\mathbb{R}^4) = 0$$

Daraus folgt

$$H^2(\mathbb{C}P^1) \cong H^2(\mathbb{C}P^2)$$

Es gilt nun

$$H^2(\mathbb{C}P^2) \cong H^0(\mathbb{C}P^1)^* \cong \mathbb{R}$$

Daraus folgt

$$H^2(\mathbb{C}P^2) \cong \mathbb{R} \left\langle \omega \right\rangle$$

Betrachte ferner

$$H^1(\mathbb{C}P^2, \mathbb{C}P^1) \longrightarrow H^1(\mathbb{C}P^2) \xrightarrow{\iota^*} H^1(\mathbb{C}P^1)$$

Es gilt nun

$$H^1(\mathbb{C}P^2, \mathbb{C}P^1) \cong H^1_c(\mathbb{R}^4) = 0$$

und

$$H^1(\mathbb{C}P^1) \cong H^1(S^2) = 0$$

Daraus folgt

$$H^1(\mathbb{C}P^2)=0$$

Mit der Poincare-Dualität folgt nun, da $\mathbb{C}P^2$ orientierbar ist.

$$H^3(\mathbb{C}P^2)=0$$

Unterm Strich erhalten wir folgende Isomorphie von graduierten \mathbb{R} -Algebren

$$H^*(\mathbb{C}P^2) \cong \mathbb{R}[[\omega]]/([\omega]^3 = 0)$$

wobei $[\omega]$ Grad 2 hat.

Allgemeiner gilt

$$H^*(\mathbb{C}P^n) \cong \mathbb{R}[\ [\omega]\]/([\omega]^{n+1} = 0)$$

²Anmerkung des Autors: Die Isomorphie $H^3_c(\mathbb{C}P^2 - \mathbb{C}P^1) \cong H^3_c(\mathbb{R}^4)$ gilt, obwohl H^*_c keine Homotopie-Invariante ist, weil $\mathbb{C}P^2 - \mathbb{C}P^1 \cong \mathbb{R}^4$ ein eigentlicher Diffeomorphismus ist.

6.6 Kartesische Produkte

Seien M, N glatte Mannigfaltigkeiten. Wir fragen uns, wie wir die Kohomologie von $H^*(M \times N)$ berechnen können.

6.6.1 Bemerkung: Tensorprodukte

Seien V, W reelle endlich-dimensionale Vektorräume. Wir definieren das **Tensoprodukt** $V \otimes W$ durch

$$V \otimes W := \mathbb{R} \langle V \times W \rangle / I$$

wobei I der Untervektorraum ist, der durch folgende Elemente erzeugt wird

$$(v + v', w + w') - (v, w) - (v, w') - (v', w) - (v', w')$$
$$(\lambda v, \eta w) - \lambda \eta(v, w)$$

für $v, v' \in V, w, w' \in W, \lambda, \eta \in \mathbb{R}$. Die Klasse von (v, w) in $V \otimes W$ bezeichnen wir mit $v \otimes w$. Es gilt dann

$$(v + v') \otimes (w + w') = v \otimes w + v' \otimes w + v \otimes w' + v' \otimes w'$$
$$(\lambda v) \otimes (\eta w) = \lambda \eta (v \otimes w)$$

Vorlesung vom 02.02.18

Elemente von $V \oplus W$ sind endliche Linearkombinationen der Gestalt

$$\lambda_1 \cdot v_1 \otimes w_1 + \ldots + \lambda_k \cdot v_k \otimes w_k$$

für $\lambda_i \in \mathbb{R}, v_i \in V$ und $w_i \in W$. In diesem Sinne nennt man Elemente der Gestalt $v \oplus w$ Elementartensoren.

Ist v_1, \ldots, v_n eine Basis von V und w_1, \ldots, w_m eine Basis von W, so ist

$$\{v_i \otimes w_j \mid i = 1, \dots, n, \ j = 1, \dots, m\}$$

eine Basis von $V \otimes W$.

Es liegt eine kanonische Abbildung

$$V \times W \longrightarrow V \otimes W$$
$$(v, w) \longmapsto v \otimes w$$

vor. Diese ist bilinear, aber nicht linear. Tatsächlich liegt folgende Äquivalenz vor:

$$\left\{ \begin{array}{l} \text{Bilineare Abbildungen} \\ V \times W \longrightarrow U \\ (v, w) \longmapsto \beta(v, w) \end{array} \right\} \longleftrightarrow \left\{ \begin{array}{l} \text{Lineare Abbildungen} \\ V \otimes W \to U \\ v \otimes w \longmapsto \beta(v, w) \end{array} \right\}$$

Zurück zu Produktmannigfaltigkeiten

Es seien wieder M, N glatte Mannigfaltigkeiten. Dann ist $M \times N$ ebenfalls eine glatte Mannigfaltigkeit mit Projektionen

$$\pi: M \times N \longrightarrow M$$
$$\rho: M \times N \longrightarrow N$$

Betrachte die bilineare Abbildung

$$H^p(M) \times H^q(N) \longrightarrow H^{p+q}(M \times N)$$

 $([\omega], [\eta]) \longmapsto [\pi^* \omega \wedge \eta^* \eta]$

bzw. die lineare Abbildung

$$\kappa_{p,q}: H^p(M) \otimes H^q(N) \longrightarrow H^{p+q}(M \times N)$$

$$[\omega] \otimes [\eta] \longmapsto [\pi^* \omega \wedge \eta^* \eta]$$

Diese induzieren uns eine lineare Abbildung

$$\kappa = \sum_{p+q=k} \kappa_{p,q} : \bigoplus_{p+q=k} H^p(M) \otimes H^q(N) \longrightarrow H^k(M \times N)$$

6.6.2 Satz: Satz von Künneth

 κ ist ein Isomorphismus, d. h.

$$\bigoplus_{p+q=k} H^p(M) \otimes H^q(N) \cong H^k(M \times N)$$

Beweis

Wir zeigen die Aussage nur im Fall, dass M eine endliche gute Überdeckung hat. Wir führen wieder eine Induktion nach der Kardinalität einer endlichen guten Überdeckung.

Induktions basis: $M \cong \mathbb{R}^n$

Daraus folgt $M \times N = \mathbb{R}^n \times N$. In diesem Fall folgt die Behauptung aus dem Poincare-Lemma.

Induktionsschritt: Wir wollen wieder ein Argument via Mayer-Vietoris-Sequenz und Fünferlemma machen. Dazu seien $U,V\subset M$ gegeben, dann erhalten wir folgende exakte Sequenz

$$H^p(U \cup V) \longrightarrow H^p(U) \oplus H^p(V) \longrightarrow H^p(U \cap V) \stackrel{\delta^*}{\longrightarrow} H^{p+1}(U \cup V)$$

Tensorieren mit $H^q(N)$ erhält die Exaktheit, da Vektorräume flach sind. Dadurch erhalten wir folgende exakte Sequenz

$$H^p(U \cup V) \otimes H^q(N) \longrightarrow H^p(U) \otimes H^q(N) \oplus H^p(V) \otimes H^q(N) \longrightarrow H^p(U \cap V) \otimes H^q(N) \stackrel{\delta^*}{\longrightarrow} H^{p+1}(U \cap V) \otimes H^q(N) \longrightarrow H^p(U \cap V) \otimes H^q(N) \longrightarrow H^q(N) \longrightarrow H^p(U \cap V) \otimes H^q(N) \longrightarrow H^p(U \cap$$

Wir bilden für alle p+q=k die direkte Summe der Sequenzen. Dies erhält weiterhin die Exaktheit, ergo erhalten wir folgende exakte Sequenz

$$\bigoplus_{p+q=k} H^p(U \cup V) \otimes H^q(N) \longrightarrow \bigoplus_{p+q=k} H^p(U) \otimes H^q(N) \oplus \bigoplus_{p+q=k} H^p(V) \otimes H^q(N) \longrightarrow \bigoplus_{p+q=k} H^p(U \cap V)$$

Da $U \times N$ und $V \times N$ offene Teilmengen von $M \times N$ sind, haben diese ihrerseits eine exakte Mayer-Vietoris-Sequenz

$$H^k((U \cup V) \times N) \longrightarrow H^k(U \times N) \oplus H^k(V \times N) \longrightarrow H^k((U \cap V) \times N) \xrightarrow{\delta^*} H^{k+1}((U \cup V) \times N)$$

Ferner erhalten wir durch die Abbildungen κ ein Diagramm

$$\bigoplus_{p+q=k} H^p(U \cup V) \otimes H^q(N) \longrightarrow \bigoplus_{p+q=k} H^p(U) \otimes H^q(N) \oplus \bigoplus_{p+q=k} H^p(V) \otimes H^q(N) \longrightarrow \bigoplus_{p+q=k} H^p(U \cap V) \otimes H^q(N) \xrightarrow{\delta^*} \bigoplus_{p+q=k+1} H^p(U \cup V) \otimes H^q(N)$$

$$\downarrow^{\kappa} \qquad \qquad \downarrow^{\kappa} \qquad \qquad \downarrow^{\kappa} \qquad \qquad \downarrow^{\kappa}$$

$$H^k((U \cup V) \times N) \longrightarrow H^k(U \times N) \oplus H^k(V \times N) \longrightarrow H^k((U \cap V) \times N) \xrightarrow{\delta^*} H^{k+1}((U \cup V) \times N)$$

Wegen der Induktionshypothese können wir annehmen, dass alle κ außer

$$\kappa: \bigoplus_{p+q=k} H^p(U \cup V) \otimes H^q(N) \longrightarrow H^k((U \cup V) \otimes N)$$

Isomorphismen sind. Wir wollen die Kommutativität des Diagramms zeigen. Für alle Quadrate, die nicht das δ^* involvieren, ist dies klar. Für

$$\bigoplus_{p+q=k} H^p(U \cap V) \otimes H^q(N) \xrightarrow{\delta^*} \bigoplus_{p+q=k+1} H^p(U \cup V) \otimes H^q(N)$$

$$\downarrow^{\kappa} \qquad \qquad \downarrow^{\kappa}$$

$$H^k((U \cap V) \times N) \xrightarrow{\delta^*} H^{k+1}((U \cup V) \times N)$$

gilt

$$\kappa \delta^*(\omega \otimes \eta) = \kappa((\delta^* \omega) \otimes \eta)
= \kappa(\mathrm{d}(f_U \omega) \otimes \eta)
= \pi^*(\mathrm{d}(f_U \omega)) \wedge \rho^* \eta
= \mathrm{d}(\pi^* f_U \cdot \pi^* \omega \wedge \rho^* \eta)
= \mathrm{d}(\pi^* f_U \cdot \kappa(\omega \otimes \eta))
= \delta^* \kappa(\omega \times \eta)$$

wobei $f_U \circ \pi, f_V \circ \pi$ eine Partition der Eins bzgl. $U \times N$ und $V \times N$ ist. Daraus folgt, dass

$$\kappa: \bigoplus_{p+q=k} H^p(U \cup V) \otimes H^q(N) \longrightarrow H^k((U \cup V) \otimes N)$$

ein Isomorphismus ist.

6.6.3 Beispiel

$$\begin{split} H^*(S^3 \times S^2) &= H^*(S^3) \otimes H^*(S^2) \\ &= (H^0(S^3) \oplus H^3(S^3)) \otimes (H^0(S^2) \oplus H^2(S^2) \\ &= H^0(S^3) \otimes H^0(S^2) \oplus H^0(S^3) \otimes H^2(S^2) \oplus H^3(S^3) \otimes H^0(S^3) \oplus H^3(S^3) \otimes H^2(S^2) \end{split}$$

Daraus folgt

$$H^{p}(S^{3} \times S^{2}) = \begin{cases} H^{0}(S^{3}) \otimes H^{0}(S^{2}) = \mathbb{R} & p = 0 \\ H^{0}(S^{3}) \otimes H^{2}(S^{2}) = \mathbb{R} & p = 2 \\ H^{3}(S^{3}) \otimes H^{0}(S^{2}) = \mathbb{R} & p = 3 \\ H^{3}(S^{3}) \otimes H^{2}(S^{2}) = \mathbb{R} & p = 5 \\ 0 & \text{sonst} \end{cases}$$

6.7 Die Signatur einer Mannigfaltigkeit

Sei M eine glatte orientierte geschlossene Mannigfaltigkeit der Dimension n=4k. Betrachte die Bilinearform

$$\langle \cdot \mid \cdot \rangle : H^{2k}(M) \times H^{2k} \longrightarrow \mathbb{R}$$

$$([\omega], [\eta]) \longmapsto \int_{M} \omega \wedge \eta$$

Diese Bilinearform ist symmetrisch und nicht ausgeartet wegen der Poincare-Dualität. Deswegen existiert eine Basis v_1, \ldots, v_{s+t} von $H^{2k}(M)$, in der die Matrixdarstellung von $\langle \cdot | \cdot \rangle$ diagonal ist. D. h.

$$\langle v_i | v_j \rangle_{i,j} = \begin{pmatrix} p_1 & & & & & 0 \\ & \ddots & & & & \\ & & p_s & & & \\ & & & n_1 & & \\ & & & & \ddots & \\ 0 & & & & n_t \end{pmatrix}$$

mit $p_i > 0$ und $n_i < 0$. Die **Signatur**

$$\sigma(\langle \cdot \mid \cdot \rangle) := s - t$$

ist dann definiert als die Anzahl der positiven Eigenwerte von $\langle \cdot | \cdot \rangle$ minus die Anzahl der negativen Eigenwerte von $\langle \cdot | \cdot \rangle$.

Wir definieren die **Signatur** der Mannigfaltigkeit M durch

$$\sigma(M) := \sigma(\langle \cdot | \cdot \rangle : H^{2k}(M) \otimes H^{2k}(M) \to \mathbb{R}) = s - t$$

Die Signatur einer Mannigfaltigkeit ist offenbar eine orientierte Homotopieinvariante.

Frage Wann ist $\sigma(\langle \cdot | \cdot \rangle)$ gleich Null für eine beliebige symmetrische nicht-ausgeartete Bilinearform $\langle \cdot | \cdot \rangle : V \otimes V \to \mathbb{R}$?

6.7.1 Definition

Ein Untervektorraum $L \subset V$ heißt Lagrangscher Untervektorraum bzgl. $\langle \cdot \mid \cdot \rangle$, falls

- i.) $\langle \cdot | \cdot \rangle_L = 0$
- ii.) $\dim L = \frac{1}{2} \dim V$

6.7.2 Satz

 $\sigma(\langle\cdot|\cdot\rangle)$ ist genau dann Null, wenn V einen Lagrangschen Untervektorraum hat.