Optimization algorithms

10/10 分 (100%)

测验, 10 个问题

✔ 恭喜!	您通过了!	下一项
~	1/1分	
	notation would you use to denote the 3rd layer's activa put is the 7th example from the 8th minibatch?	ations when
0	$a^{[3]\{8\}(7)}$	
正确		
	$a^{[3]\{7\}(8)}$	
	$a^{[8]\{7\}(3)}$	
	$a^{[8]\{3\}(7)}$	
~	1/1分	
2。 Which agree	of these statements about mini-batch gradient descen with?	t do you
	Training one epoch (one pass through the training se mini-batch gradient descent is faster than training on using batch gradient descent.	
	You should implement mini-batch gradient descend without an explicit for-loop over different mini-batch that the algorithm processes all mini-batches at time (vectorization).	itches, so

One iteration of mini-batch gradient descent (computing on a single mini-batch) is faster than one iteration of batch gradient

descent.

正确

Optimization algorithms

10/10 分 (100%)

测验, 10 个问题

~	1/1分
-	the best mini-batch size usually not 1 and not m, but instead ning in-between?
	If the mini-batch size is 1, you end up having to process the entire training set before making any progress.
未选择	译的是正确的
	If the mini-batch size is 1, you lose the benefits of vectorization across examples in the mini-batch.
正确	
	If the mini-batch size is m, you end up with batch gradient descent, which has to process the whole training set before making progress.
正确	
	If the mini-batch size is m, you end up with stochastic gradient descent, which is usually slower than mini-batch gradient descent.
未选择	峰的是正确的
✓	1/1分

Suppose your learning algorithm's cost J, plotted as a function of the number of iterations, looks like this:

Optimization algorithms

测验, 10 个问题

10/10 分 (100%)

Which of the following do you agree with?

0	If you're using mini-batch gradient descent, this looks acceptable. But if you're using batch gradient descent, something is wrong.
正确	
	If you're using mini-batch gradient descent, something is wrong. But if you're using batch gradient descent, this looks acceptable.
	Whether you're using batch gradient descent or mini-batch gradient descent, something is wrong.
	Whether you're using batch gradient descent or mini-batch gradient descent, this looks acceptable.

1/1分

5。

Suppose the temperature in Casablanca over the first three days of January are the same:

Optimization algorithms

测验, 10 个问题

Jan 1st:
$$\theta_1 = 10^{\circ} C$$

10/10 分 (100%)

Jan 2nd: $\theta_2 10^{o} C$

(We used Fahrenheit in lecture, so will use Celsius here in honor of the metric world.)

Say you use an exponentially weighted average with $\beta=0.5$ to track the temperature: $v_0=0$, $v_t=\beta v_{t-1}+(1-\beta)\theta_t$. If v_2 is the value computed after day 2 without bias correction, and $v_2^{corrected}$ is the value you compute with bias correction. What are these values? (You might be able to do this without a calculator, but you don't actually need one. Remember what is bias correction doing.)

$$v_2 = 10, v_2^{corrected} = 7.5$$

$$v_2 = 7.5, v_2^{corrected} = 10$$

正确

$$v_2 = 7.5, v_2^{corrected} = 7.5$$

$$v_2 = 10, v_2^{corrected} = 10$$

1/1分

6.

Which of these is NOT a good learning rate decay scheme? Here, t is the epoch number.

$$\alpha = 0.95^t \alpha_0$$

$$\bigcirc \quad \alpha = e^t \alpha_0$$

正确

$$\bigcirc \quad \alpha = \frac{1}{1+2*t} \alpha_0$$

1/1分

Optimization algorithms

10/10 分 (100%)

测验, 10 个问题

You use an exponentially weighted average on the London temperature dataset. You use the following to track the temperature: $v_t = \beta v_{t-1} + (1-\beta)\theta_t.$ The red line below was computed using $\beta = 0.9$. What would happen to your red curve as you vary β ? (Check the two that apply)

igcup Decreasing eta will shift the red line slightly to the right.

未选择的是正确的

Increasing eta will shift the red line slightly to the right.

正确

True, remember that the red line corresponds to $\beta=0.9$. In lecture we had a green line \$\$\beta=0.98\$) that is slightly shifted to the right.

Decreasing eta will create more oscillation within the red line.

正确

True, remember that the red line corresponds to $\beta=0.9$. In lecture we had a yellow line \$\$\beta=0.98\$ that had a lot of oscillations.

Increasing β will create more oscillations within the red line.

Optimization algorithms 未选择的是正确的

测验, 10 个问题

10/10 分 (100%)

1/1分

8。

Consider this figure:

These plots were generated with gradient descent; with gradient descent with momentum (β = 0.5) and gradient descent with momentum (β = 0.9). Which curve corresponds to which algorithm?

- (1) is gradient descent. (2) is gradient descent with momentum (large β). (3) is gradient descent with momentum (small β)
- (1) is gradient descent with momentum (small β), (2) is gradient descent with momentum (small β), (3) is gradient descent
- (1) is gradient descent with momentum (small β). (2) is gradient descent. (3) is gradient descent with momentum (large β)
- (1) is gradient descent. (2) is gradient descent with momentum (small β). (3) is gradient descent with momentum (large β)

正确

1/1分

9。

Suppose batch gradient descent in a deep network is taking excessively long to find a value of the parameters that achieves a small value for the **Optimizational golishyms** $[a,b^{[1]},\dots,W^{[L]},b^{[L]})$. Which of the following techniques could help find parameter values that attain a small value for

10/10 分 (100%)

测验, 10 个问题

techniques could help find parameter values that attain a small value for \mathcal{J} ? (Check all that apply)

正确	Try better random initialization for the weights
正确	Try using Adam
正确	Try mini-batch gradient descent
未选择	Try initializing all the weights to zero 译的是正确的
正确	Try tuning the learning rate $lpha$
~	Try tuning the learning rate $lpha$
\	
\	1/1分
\	1/1分 of the following statements about Adam is False? We usually use "default" values for the hyperparameters eta_1,eta_2

Adam should be used with batch gradient computations, not with mini-batches

with mini-batches. Optimization algorithms

10/10 分 (100%)

测验, 10 个问题

正确

