Description

SUSPEND-RESUME PROGRAMMING METHOD FOR FLASH MEMORY

5

TECHNICAL FIELD

The invention relates to programming non-volatile semiconductor flash memories and, in particular, to such programming with suspend and resume commands.

10

15

20

25

30

BACKGROUND ART

In programming or loading of non-volatile flash memories with data or programs, it is sometimes necessary to interrupt programming in order to read data. For example, the system may require data from the memory. Once the data is read, programming may resume.

Opcodes in the programming sequence will indicate suspend and resume requests for this purpose. From U.S. Pat. No. 5,287,469 to T. Tsuboi it is known that as a data write or programming process is suspended, a programming timer is suspended and the programming voltage is halted. When the suspension is lifted, programming proceeds, with the programming timer active again. Of course, it is possible that a program will request very frequent data updates, requiring frequent suspension of the programming process. situation, the programming process may not finish or may experience long delays because on start of programming a pre-charge step is typical for set up. An object of the invention is to devise a programming process for a nonvolatile memory wherein programming is subject to suspend requests but programming can be completed efficiently.

SUMMARY OF THE INVENTION

The above object is achieved by creating a programming technique in which suspend requests are

-2-

received but programming continues nonetheless, at least for an interval. Time-based pre-defined break points are established within a programming pulse for a non-volatile When a suspend request is received, the programming operation does not immediately stop, but 5 . proceeds to the next break point where the suspend When a resume request is received, request is executed. a program counter points to the next break point. programming cycle has proceeded in time past this break point, without a suspend request, the break point is 10 ignored and the program counter points to the next further break point. When a suspend request is received programming continues to that break point. procedure is repeated until the end of the programming 15 Whenever a suspend request is executed at a break point, the programming voltage is reduced and a timer clocks the elapsed programming time. The timer does not count any time during the non-programming period. In this manner the timer counts the regular length of a 20 programming step.

BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 is a graph of programming voltage with respect to time without suspend requests for a non-volatile memory in accordance with the present invention.

Fig. 2 is a graph of programming voltage with respect to time, as shown in Fig. 1, but with suspend and resume requests.

Fig. 3 is a block diagram of digital logic organization for implementing a suspend-resume procedure as shown in Fig. 2.

Fig. 4 is a logic diagram of a main timer shown in the block diagram of Fig. 3.

Fig. 5 is a logic diagram of a suspend-resume counter shown in the block diagram of Fig. 3.

25

30

-3-

DESCRIPTION OF THE INVENTION

With reference to Fig. 1, a programming operation in a flash memory device is a relatively long operation, perhaps taking tens of micro seconds, as seen by pulse 11. The pulse consists at least the following 5 phases: high voltage charging up, PRE CHARGE voltage ramp 13, programming pulse, PGM PULSE voltage level 15, and a discharge, PGMDCH voltage ramp pulse 17. In order to allow the system to quickly retrieve data, the 10 programming operation can be temporarily suspended. Afterwards, programming may resume with a resume command. The present invention deals with the manner of implementing the suspend and resume operation using a series of time based break points 21, 23, and 25 that are pre-defined at selected locations. For example, the 15 break points may evenly divide the programming pulse into intervals of equal time. Alternatively, the break points may be defined.

The user can input a programming suspend request any time during programming operation. The set of time-based break points 21, 23, and 25 are preset in the PGM_PULSE phase. There are break points only in the PGM_PULSE phase because this is the only phase during which actual programming takes place.

With reference to Fig. 2, upon receiving a suspend request 20, after charging up a PRE_CHARGE voltage ramp 131 has begun, the programming operation indicated by the level PGM_PULSE 151 will not stop immediately. Instead the programming operation will proceed to the next break point 21, then discharge the high voltage at level PGMDCH 171 and get into suspend mode represented by interval 181. A suspend/resume counter keeps track of which break point the suspend mode stops at. When the user issues a programming resume command 31, control logic will enable a programming main timer and the programming operation starts again from the

20

25 .

30

PRE_CHARGE level. The duration of PGM_PULSE 152 phase is shortened depending on the pulse time represented by the level PGM_PULSE 151 that occurred before the device gets into previous suspend mode at the first break point 21. So the total pulse duration is the same for the programming operations with and without suspend, and the cell margins after programming are more uniform.

Even if a user issues a suspend request 20 at PRE_CHARGE level 131, the programming operation does not stop there. Otherwise a programming operation may never finish if the user frequently issues suspend and resume commands. Before the device gets into suspend mode 181, some of the actual programming is done on the device in the interval of level PGM_PULSE 151. So the device can successfully finish the programming operation after several consecutive suspend and resume loops.

. After the first break point 21, the level PGM PULSE 151 stops and the voltage discharge or PGMDCH level 171 starts and gets into suspend mode 181 after that. The main timer is reset but the suspend and resume counter does not get reset. A signal BREAK PT<1> stays Later the user issues the resume commands at RESUME REQ 31. To respond to this request, the programming control enables the main timer again, raising the programming voltage during precharge phase, the level PRE CHARGE 132. The programming operation restarts during the interval and level PGM PULSE 152. user enters a suspend request indicated by SUSPEND REQ 24 during PGM PULSE phase 152 after the second break point The programming control allows the PGM PULSE phase 152 to continue until it reaches the next break point 25 which is the third one. Then the device starts a discharge phase, PGMDCH phase 172 and gets into a suspend mode afterwards, indicated by interval 182.

Now a signal BREAK_PT<3> goes high to indicate programming operation stops at break point 25. Later the

5

10

15

20

25

30

user inputs a resume command, indicated by RESUME_REQ 33. Then the programming control enables the main timer again and starts PRE_CHARGE phase 133 to restore the programming voltage whereupon programming may again begin, indicated by the level PGM_PULSE 153 until the total time of the programming pulse has elapsed. At this time, voltage is lowered in the interval PGMDCH 173 to complete the programming operation. Notice that PGM_PULSE duration is calculated so that deviations from programming time have been deducted from the total pulse time to keep the total PGM_PULSE duration the same as if no suspend request had been received.

With reference to Fig. 3, input buffer and command decoder ("IBCD") 41 functions to receive 15 information externally from the system. The information typically includes address bits 51 on a data bus, data bits 53, also on a bus, a chip enable bit 55 and a write enable bit 57, plus other bits. A logic section of IBCD 41 examines these input bits and decodes them into different logical signals. For example, PGM ENABLE 20 signal 65 is asserted for program enable commands, PGM SUSPEND REQ signal 61 is asserted for a programming suspend request, and PGM RESUME REQ signal 63 is asserted for a programming resume request. These outputs are sent to programming control block 43 that generates logical 25 signals to control different programming phases. previously described, signal PRE CHARGE 71 enables onchip charge pumps and ramps up voltage; signal PGM PULSE 73 enables actual programming; signal PGMDCH 75 stops the 30 actual programming and discharges the high voltages. actual duration of these phases are controlled by the main timer. Whenever the signal NEXT PHASE signal 85 is asserted, the programming cycle will shift from the current phase to the next. PGM SUSP MODE indicates the 35 flash memory device is in suspend mode and the system may begin to read out data from the flash device.

5

programming control unit 43 also generates the internal clocks PGM CLK 89 to control the counts of main timer unit 45. The time base break points are also preset inside the main timer 45. The suspend/resume counter unit 47 stores the previous break point information which is important for determining the remaining time of programming pulse phase after the programming operation is resumed. This control is through the bus signal BREAK PT 83 which contains a number of individual signals equal to the number of preset break points. suspend/resume counter increments to the next break point upon receipt of an INC SUSPCNT signal on line 81 from main counter 45. Signal INC SUSPCNT is asserted every time the main timer counts to the break point. programming control unit 43 asserts a signal PSUSP REQ 87 if a suspend request is received. The main timer 45 will continue to count to the next break point, and then issue the NEXT PHASE pulse on line 85. This signal tells the programming control unit 43 the current program pulse phase can stop. In turn, unit 43 will reset the timer by a low pulse RESET TIMERb and issue the signal PGMDCH to discharge the program voltage. After this phase finished, the flash array is ready for the read operation and signal PGM SUSPEND MODE is asserted. Upon receiving the resume program opcode signal, PGM RESUME REQ 63 is asserted. Through the signal RESET TIMERD 91 and PGM CLK 89, programming control unit 43 will start the main timer If there is another suspend request, the process will repeat itself as mentioned above and next BREAK PT signal will be set. If there is no further suspend request, the timer will count to finishing point. This finishing point depends on the status of signals on the BREAK PT bus. The position of the finishing point will make the total duration of program pulse a constant regardless number of suspensions. When the finishing point is reached, the control unit 43 generates signal

5

10

15

20

25.

30

RST TIMERb 91 and signal RST SUSP CNTb 79 to reset the main timer 45 and the counter unit 47, respectively.

The operation is illustrated in more detail in the logic of main timer 45 seen in Fig. 4. This drawing illustrates an exemplary number of break points equal to Counter module 115 includes a 4-bit binary counter and its decoder using internal programming clock PGM CLK 89 as inputs to count. All three phases of the programming cycle, namely pre-charge phase, program pulse phase and program discharge phase use the same counter to keep track of respective durations. The 16 output signals CNT OUT<15:0> are fed to the MUX 113 which is controlled by the select signals SEL CNT2, SEL CNT3, ..., SEL CNT15. The select signals choose the corresponding counts among CNT OUT<15:0> as the end count of the current operating phase. Notice that the signal END-CNT 117 is fed into a shift register 119. Therefore, the actual duration of the current phase is actually equal to the timer count plus one. For example, the pre-charge phase controlled by signal PRE CHARGE will activate MUX control signal SEL CNT5. In turn, the MUX 113 will choose CNT OUT<5> as END CNT. However, the signal NEXT PHASE 85 will not be asserted until one clock cycle later because of the shift register. The total time of 25 the pre-charge phase in this example will be 6 clock cycles long. Similarly, the program discharge phase will have the duration of three clock cycles. The total phase length of program pulse is ended at CNT OUT<15> having a duration of 16 clock cycles. The 3 pre-set break points can be represented by signals CNT_OUT<3>, CNT_OUT<7> and CNT OUT<11>. Each has the time duration of 4, 8, and 12 cycles. They are all 4 cycles apart from each other. These counts are chosen as END CNT by signals SEL CNT15, SEL_CNT3, SEL_SNT7 and SEL_CNT11. Notice that signal SEL CNT2 and SEL CNT5 only respond to signal PGMDCH 75 (for program discharge) and PRE CHARGE 71 (for pre-

5

10

15

20

30

charge), respectively, but not PSUSP REQ, these two phases will proceed to finish without interruption regardless of when the suspend command comes in. Logic gates 101 have input lines 73 and 87 to generate the CONT PULSE on line 103 and the BREAK NEXTb on line 105. Signal BREAK NEXTb 105 responds to signal PSUSP REQ and PGM PULSE can only be high during the program PGM PULSE. phase. BREAK NEXTb activates all the break point selection signals as well as placing the finishing point selection signal high. In this way, when, and only when, 10 the timer counts to one of the break points (CNT OUT<3, 7, 11>) or the ending point (CNT_OUT<15>), the signal END CNT 117 can be asserted and the phase of the program pulse can be stopped. Then suspend action occurs. 15 Signal INC SUSP CNT is generated from the break point CNT OUT<3, 7, 11, 15> and PGM PULSE instructs the SUSPEND/RESUME COUNTER (Fig. 5) to recode the passing break points. SUSPEND/RESUME COUNTER returns the bus BREAK PT<3.0> to tell how many cycles remain in the phase of program pulse. After the resume operation starts, 20 CONT PULSE 103 is activated by signal PSUSP REQ going low. Logic unit 111 now decides what should be in the MUX selection signal to finish the remaining cycle of the program pulse from the state of bus BREAK PT<3.0>. the suspend operation occurred at the first break point 25 CNT OUT<3>, upon resume, the bus content of BREAK PT<3.0> is 0010. In this case, SEL CNT11 would be activated and the NEXT PHASE will activated after 12 clock cycles. case another suspend operation occurs at break point 3, CNT OUT<11>, the BREAK PT bus would return a value of 30 1000 for only 4 clock cycles remaining. In this way, no matter how many suspend operations may occur, the total time of phase program pulse adds up to 16 clock cycles.

Fig. 5 shows the logic associated with the suspend and resume counter. The logic contains a binary counter 121 and its decoder 123, and register 124.

Counter 121 uses INC SUSP CNT as its clock, keeping track of the passing break points as well as the finishing point of the phase of the whole program pulse. Counter 121 and registers 124 are only reset after the flash memory device completes the entire PGM PULSE phase. outputs of this counter are loaded into the registers 124 by signal PGM SUSPEND MODE 77. Their outputs are decoded by decoder 123 to generate bus BREAK PT<3.0>. is no suspend command received in the entire program operation, registers 124 are not loaded. BREAK PT<3.0> remains at its original value which is 0001, and the program pulse will end in 16 clock cycles (Fig. 4). Whenever a suspend operation occurs, registers 124 are updated with the passing break point information. This information generates the correct contents for the bus BREAK PT<3.0> which selects the correct remaining cycles for the program pulse upon a resume operation as mentioned above. Signal END PGM PULSE indicates the finish of the entire phase of the program pulse when the outputs of counter 121 reach the ending point (in this example when SUSP CNT BIT<2> goes high).

5

10

15