# Deep Generative Models: Markov Models

Fall Semester 2025

René Vidal

Director of the Center for Innovation in Data Engineering and Science (IDEAS),
Rachleff University Professor, University of Pennsylvania
Amazon Scholar & Chief Scientist at NORCE



## Taxonomy of Generative Models



#### Lecture Outline

- Stochastic Processes
  - Definition and Examples
- Markov Models and Markov Chains
  - Definition
  - Transition Probability and Transition Matrix
  - Examples
  - Stationarity and Convergence
- Maximum Log-Likelihood for Markov Chains

#### Stochastic Process

• Definition: A *stochastic process* refers to a sequence of random variables  $(X_1, X_2, ..., X_T)$ 

- Each  $X_t$  takes values from the same sample space  $\Omega$  (state space)
  - You can assume  $X_t$  has K states and  $\Omega \coloneqq \{1, ..., K\}$
- Example (Bernoulli Process):

$$X_t \sim \text{Bernouli}(p), \qquad t = 1, ..., T$$

• How many states does  $X_t$  has? What is  $\Omega$ ?

## Markov Property Revisited

• Issue: Modeling the joint distribution  $\mathbb{P}(X_1, X_2, ..., X_T)$  might require exponentially many parameters in the absence of any assumptions on P

• Conditional Independence Assumption (Markov property):



Consequence: We now only need linearly many parameters:

$$\mathbb{P}(x_1, ..., x_T) = \mathbb{P}(x_1) \mathbb{P}(x_2 \mid x_1) \mathbb{P}(x_3 \mid x_1, x_2) \cdots \mathbb{P}(x_T \mid x_1, ..., x_{T-2}, x_{T-1}) 
= \mathbb{P}(x_1) p(x_2 \mid x_1) \mathbb{P}(x_3 \mid x_2) \cdots \mathbb{P}(x_T \mid x_{T-1})$$

#### Markov Chains

• Definition: A (discrete time) Markov chain is a stochastic process  $(X_1, X_2, \dots, X_T)$  with the Markov property

$$\mathbb{P}(x_1, ..., x_T) = \mathbb{P}(x_1) \mathbb{P}(x_2 \mid x_1) \mathbb{P}(x_3 \mid x_2) \cdots \mathbb{P}(x_T \mid x_{T-1})$$

Without Markov Property:



• With Markov Property:



#### Parameters of Markov Chains

- Initial Probability  $\pi_1, ..., \pi_K$ :  $\pi_i \coloneqq \mathbb{P}(X_1 = i)$ .
- Transition Probability  $a_{ij}$ :

$$a_{ij} := \mathbb{P}(X_{t+1} = j \mid X_t = i) \qquad \forall i, j \in \Omega = \{1, \dots, K\}$$

- This is the probability that  $X_t$  transitions from state i to state j
- Matrix and Vector Notations:

$$A := \begin{bmatrix} a_{11} & \dots & a_{1K} \\ \vdots & \ddots & \vdots \\ a_{K1} & \dots & a_{KK} \end{bmatrix} \in \mathbb{R}^{K \times K}, \qquad \qquad \pi \coloneqq [\pi_1, \dots, \pi_K] \in \mathbb{R}^{1 \times K}$$

$$\pi \coloneqq [\pi_1, \dots, \pi_K] \in \mathbb{R}^{1 \times K}$$

A Markov chain is fully specified by its parameters  $\theta := (\pi, A)$ 

## Example: Markov Sentence Model

- State space  $\Omega = \{\text{all possible words}\}\$ 
  - The following are viewed as words and included in the state space
    - <s>: the start of the sentence
    - Digits
    - Punctuations
- Each sentence is a Markov chain where the words are random variables:



• Meaning of  $\mathbb{P}(x_{t+1}|x_t)$ : Given that the current word is  $x_t$ , what is the probability that the next word is  $x_{t+1}$ ?

- State Space  $\Omega = \{\mathcal{A}, \mathcal{C}, \mathcal{G}, \mathcal{T}\}$
- Transition Matrix A:

#### 0.143 0.167 0.331 0.384 0.156 0.023 0.437 0.306 0.199 0.150 0.345 0.182 0.284 0.357 0.177

Initial Probability Vector  $\pi$ :

```
\mathcal{A} 0.25
\mathcal{A} 0.359
                                                                                                                                  \mathcal{C} 0.25
                                                                                                                                       0.25
                                                                                                                                        0.25
```

- Question 1: Given C, what is the probability of getting DNA sequence  $\mathcal{CTGAC}$ ?
- Answer 1:

$$\mathbb{P}(\mathcal{C}\mathcal{T}\mathcal{G}\mathcal{A}\mathcal{C}|X_1 = \mathcal{C}) = \mathbb{P}(\mathcal{C}|\mathcal{T}) \cdot \mathbb{P}(\mathcal{T}|\mathcal{G}) \cdot \mathbb{P}(\mathcal{G}|\mathcal{A}) \cdot \mathbb{P}(\mathcal{A}|\mathcal{C}) \approx 0.00403$$

$$0.182 \qquad 0.345 \qquad 0.167 \qquad 0.384$$

• State Space  $\Omega = \{\mathcal{A}, \mathcal{C}, \mathcal{G}, \mathcal{T}\}$ 

```
\mathcal{A}
0.359
         0.143
                 0.167
                          0.331
0.384
        0.156
                0.023
                          0.437
0.306
        0.199
                0.150
                          0.345
0.284
        0.182
                          0.357
                 0.177
```

 ${\cal A}$  0.25  ${\cal C}$  0.25  ${\cal G}$  0.25  ${\cal T}$  0.25

- Question 2: What's the probability of  $X_3 = \mathcal{A}$  given  $X_1 = \mathcal{C}$ ?
- Question 3: What's the probability of  $X_3 = \mathcal{A}$ ?

• State Space  $\Omega = \{\mathcal{A}, \mathcal{C}, \mathcal{G}, \mathcal{T}\}$ 

- Question 2: What's the probability of  $X_3 = \mathcal{A}$  given  $X_1 = \mathcal{C}$ ?
- Question 3: What's the probability of  $X_3 = \mathcal{A}$ ?
- Answer 2: The state transition is  $\mathcal{C} \to x_2 \to \mathcal{A}$  for all possible  $x_2 \in \Omega$ :

$$\mathbb{P}(X_3 = \mathcal{A} | X_1 = \mathcal{C}) = \sum_{x_2 \in \Omega} \mathbb{P}(X_3 = \mathcal{A} | X_2 = x_2) \cdot \mathbb{P}(X_2 = x_2 | X_1 = \mathcal{C})$$

$$= [0.384, 0.156, 0.023, 0.437] \begin{bmatrix} 0.359 \\ 0.384 \\ 0.306 \\ 0.284 \end{bmatrix}$$

- This is the inner product of the second row and first column of the transition matrix A
- This is the (2,1)-th entry of  $A^2$

• State Space  $\Omega = \{\mathcal{A}, \mathcal{C}, \mathcal{G}, \mathcal{T}\}$ 

- Question 2: What's the probability of  $X_3 = \mathcal{A}$  given  $X_1 = \mathcal{C}$ ?
- Question 3: What's the probability of  $X_3 = \mathcal{A}$ ?
- Answer 2: The state transition is  $\mathcal{C} \to x_2 \to \mathcal{A}$  for all possible  $x_2 \in \Omega$ :

$$\mathbb{P}(X_3 = \mathcal{A} | X_1 = \mathcal{C}) = \sum_{x_2 \in \Omega} \mathbb{P}(X_3 = \mathcal{A} | X_2 = x_2) \cdot \mathbb{P}(X_2 = x_2 | X_1 = \mathcal{C})$$

• Answer 3: The state transition is  $x_1 \to x_2 \to \mathcal{A}$  for all possible  $x_1, x_2 \in \Omega$ :

$$\mathbb{P}(X_3 = \mathcal{A}) = \sum_{x_1 \in \Omega} \mathbb{P}(X_3 = \mathcal{A} | X_1 = x_1) \cdot \mathbb{P}(X_1 = x_1)$$
Question 2 Initial Probability

## Generalizing the DNA Sequencing Example

- State Space  $\Omega = \{1, ..., K\}$
- $(A^s)_{ij}$ : the (i,j)-th entry of  $A^s$
- $(A^s)_{:j}$ : the *j*-th column of  $A^s$
- $(\cdot)_i$ : the *j*-th entry of a vector

Transition Matrix A and initial probability distribution  $\pi$ :

$$A: = \begin{bmatrix} a_{11} & \dots & a_{1K} \\ \vdots & \ddots & \vdots \\ a_{K1} & \cdots & a_{KK} \end{bmatrix} \in \mathbb{R}^{K \times K}, \qquad \qquad \pi \coloneqq [\pi_1, \dots, \pi_K] \in \mathbb{R}^{1 \times K}$$

- Claim 1:  $\mathbb{P}(X_{t+s} = j \mid X_t = i) = (A^s)_{ii}$  $(\forall s, t, i, j)$
- Claim 2:  $\mathbb{P}(X_{S+1} = j) = (\pi A^S)_i$  $(\forall s, j)$
- Proof of Claim 2:

$$\mathbb{P}(X_{S+1} = j) = \sum_{i \in \Omega} \mathbb{P}(X_{S+1} = j | X_1 = i) \cdot \mathbb{P}(X_1 = i) = \sum_{i \in \Omega} (A^S)_{ij} \cdot \pi_i = \pi(A^S)_{:j} = (\pi A^S)_j$$
• Proof of Claim 1: By induction (next page)

#### Proof of Claim 1

- State Space  $\Omega = \{1, \dots, K\}$
- $(A^S)_{ij}$ : the (i,j)-th entry of  $A^S$
- $(A^s)_{:j}$ : the *j*-th column of  $A^s$
- $(\cdot)_i$ : the *j*-th entry of a vector

Transition Matrix A and initial probability distribution  $\pi$  :

$$A := \begin{bmatrix} a_{11} & \dots & a_{1K} \\ \vdots & \ddots & \vdots \\ a_{K1} & \cdots & a_{KK} \end{bmatrix} \in \mathbb{R}^{K \times K}, \qquad \pi \coloneqq [\pi_1, \dots, \pi_K] \in \mathbb{R}^{1 \times K}$$

- Claim 1:  $\mathbb{P}(X_{t+s} = j \mid X_t = i) = A_{ij}^s$
- Proof of Claim 1 (Induction):
  - $\forall s, t$ , it is easy to prove shift invariance:  $\mathbb{P}(X_{t+s} = j \mid X_t = i) = \mathbb{P}(X_{1+s} = j \mid X_1 = i)$
  - Next we prove  $\mathbb{P}(X_{1+s} = j \mid X_1 = i) = A_{ij}^s$  by induction on s:
    - The base case s=1 follows from the definition of A
    - Suppose we have  $\mathbb{P}(X_S = j \mid X_1 = i) = A_{ij}^{S-1}$  then:

$$\mathbb{P}(X_{1+s} = j \mid X_1 = i) = \sum_{k \in \Omega} \mathbb{P}(X_{s+1} = j \mid X_s = k) \cdot \mathbb{P}(X_s = k \mid X_1 = i) = \sum_{k \in \Omega} a_{kj} \cdot (A^{s-1})_{ik} = (A^s)_{ij}$$

## Limiting Behavior of Markov Chains

We have just proved

$$\mathbb{P}(X_{t+s} = j \mid X_t = i) = (A^s)_{ij} \qquad (\forall s, t, i, j)$$

$$\mathbb{P}(X_{s+1} = j) = (\pi A^s)_j \qquad (\forall s, j)$$

- Our next goal is to understand the limits  $\lim_{s\to\infty} A^s$ ,  $\lim_{s\to\infty} \pi A^s$ .
- The two limits are related to the eigenvalues of A:
  - Assume A is diagonalizable and write  $A = U\Lambda U^{-1}$  with eigenvalues  $\Lambda = \operatorname{diag}(\lambda_1, ..., \lambda_K)$ 
    - The diagonalizability assumption is not necessary but to simplify the exposition...
  - Then we have

$$\lim_{s\to\infty}A^s = U\left(\lim_{s\to\infty}\Lambda^s\right)U^{-1}, \qquad \lim_{s\to\infty}\pi A^s = \pi U\left(\lim_{s\to\infty}\Lambda^s\right)U^{-1}$$

• Hence, a necessary condition for the limits to exist is that  $|\lambda_k| \leq 1$  for all k.

## Eigenvalues of Transition Matrix

$$A := \begin{bmatrix} a_{11} & \dots & a_{1K} \\ \vdots & \ddots & \vdots \\ a_{K1} & \cdots & a_{KK} \end{bmatrix} \in \mathbb{R}^{K \times K}$$

• Proposition. Let  $\lambda_1, \dots, \lambda_K$  be eigenvalues of A. Then

$$\max_{k=1,\dots,K} |\lambda_k| = 1.$$

• Proof. We first show  $|\lambda_k| \le 1$ . Let  $(\lambda, u)$  be an eigen-pair with  $Au = \lambda u$ ,  $||u||_2 =$ 1 and  $u = [u_1, ..., u_K]^T$ . Let i be the index such that  $|u_i|$  is maximized, i.e.,  $i = \operatorname{argmax}_i |u_i|$ .

Then 
$$Au = \lambda u$$
 implies  $\sum_j a_{ij} u_j = \lambda u_i$ , which furthermore gives  $|\lambda| \le \left| \frac{\sum_j a_{ij} u_j}{u_i} \right| \le \sum_j |a_{ij}| \cdot \left| \frac{u_j}{u_i} \right| \le \sum_j |a_{ij}| = \sum_j a_{ij} = 1.$ 

Finally, A always has an eigenvalue 1:  $A\begin{bmatrix}1\\1\\\vdots\\1\end{bmatrix}=\begin{bmatrix}1\\1\\\vdots\\1\end{bmatrix}$ 

$$A \begin{vmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{vmatrix} = \begin{vmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{vmatrix}$$

## $|\lambda_k| \leq 1$ is not sufficient for convergence

- Intuition:
  - Assume A is diagonalizable and write  $A = U\Lambda U^{-1}$  with eigenvalues  $\Lambda = \operatorname{diag}(\lambda_1, ..., \lambda_K)$ 
    - The diagonalizability assumption is not necessary but to simplify the exposition...

• Then 
$$\lim_{S \to \infty} A^S = U\left(\lim_{S \to \infty} \Lambda^S\right) U^{-1} = U\left(\operatorname{diag}\left(\lim_{S \to \infty} \lambda_1^S, \dots, \lim_{S \to \infty} \lambda_K^S\right)\right) U^{-1}$$

- And  $\lim_{s\to\infty}\lambda_k^s$  ...
  - is equal to 0 if  $|\lambda_k| < 1$
  - is equal to 1 if  $\lambda_k = 1$
  - does not exist if  $\lambda_k = -1$
- $\lambda_k$  can even be a complex eigenvalue with  $|\lambda_k|=1$

#### Lesson

- Existence. In order for  $\lim_{s\to\infty}A^s$ ,  $\lim_{s\to\infty}\pi A^s$  to exist, we need to make assumptions such that:
  - A has no eigenvalues of magnitude 1 other than 1 itself.
- Uniqueness. In order for  $\lim_{s\to\infty} \pi A^s$  to be the same for different initial distribution  $\pi$ , we need to make assumptions such that:
  - 1 is the eigenvalue of A of geometric/algebraic multiplicity 1

- The assumptions should be "interpretable" in terms of Markov chains or states
  - e.g., assuming A to be diagonalizable is not interpretable

## Irreducibility and Strongly Connected Graph

• Definition. A directed graph is called *strongly connected* if there is a path in each direction between each pair of vertices of the graph.

• Definition. A transition matrix A is called *irreducible* if every state can be reached from any other state, i.e., for any i, j, there is some t such that  $\mathbb{P}(X_t = j \mid X_1 = i) > 0$ .

• Remark. Each state can be denoted by a vertex and, if  $a_{ij} > 0$  then we add a directed edge from vertex i to vertex j. This way, we obtain a directed graph. We can see that A is irreducible if and only if the graph is strongly connected

## Limiting Behavior of Markov Chains

- Theorem. Assume A is irreducible, then there is some  $v = [v_1, ..., v_K]$  such that
  - For any initial distribution  $\pi$  we have:

$$\lim_{S \to \infty} \frac{I + A + \dots + A^{S-1}}{S} = ev, \qquad \lim_{S \to \infty} \pi \left( \frac{I + A + \dots + A^{S-1}}{S} \right) = v \qquad e \coloneqq \begin{bmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix}$$

• If furthermore there is some  $a_{ii} > 0$ , then for any initial distribution  $\pi$  we have

$$\lim_{s\to\infty}A^s=ev,\qquad \qquad \lim_{s\to\infty}\pi A^s=v$$

• Remark. In the latter case, v is called the stationary distribution as it is the unique vector that satisfies:

$$vA = v$$
,  $v_i > 0 \ (\forall i)$ ,  $\sum_i v_i = 1$ 

• Remark on Proof. This result is related to Perron–Frobenius Theory (Google search it). For its proof, see Chapter 7 (Perron–Frobenius Theory) of "Matrix Analysis and Applied Linear Algebra", Second Edition (Carl D. Meyer, 2023).

## Example

- Let  $A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$  and v = [0.5, 0.5] and  $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ . Note that  $a_{11} = a_{22} = 0$ 
  - A has two eigenvalues, 1 and -1.
  - We have  $A^{2t} = I$  and  $A^{2t+1} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$  for any t, so  $\lim_{s \to \infty} A^s$  does not exist.
  - We have  $vA = \begin{bmatrix} 0.5, 0.5 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 0.5, 0.5 \end{bmatrix} = v$ , so  $\lim_{s \to \infty} vA^s = \begin{bmatrix} 0.5, 0.5 \end{bmatrix}$ . However, for any initial distribution  $\pi$  different from v,  $\lim_{s \to \infty} \pi A^s$  does not exist.
  - On the other hand, we have  $\left(\frac{I+A}{2}\right)^2 = \begin{bmatrix} 0.5 & 0.5 \\ 0.5 & 0.5 \end{bmatrix} = \frac{I+A}{2}$ , which implies

$$\lim_{s \to \infty} \left( \frac{I + A}{2} \right)^s = \frac{I + A}{2} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} [0.5, 0.5] = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \pi$$

#### Estimate Transition Parameters heta from Data

• We have derived some results based on the transition matrix ...

• In practice, we are given data samples rather than the transition matrix

• We will assume the data are sampled from a Markov chain, and then compute the transition matrix from data via maximum likelihood estimation (MLE)

### MLE of Markov Chains

$$X_1 \longrightarrow X_2 \longrightarrow \cdots \longrightarrow X_{T-1} \longrightarrow X_T$$

- Assume we have N i.i.d. samples  $\{x^{(n)}\}_{n=1}^N$  from distribution  $p_{\theta}(x)$ 
  - $x \coloneqq (x_1, \dots, x_T)$ each  $x_t$  has K status
  - $\theta = (A, \pi)$ : unknown transition matrix and initial probability distribution
- MLE:

Similar to

estimating

an exercise

 $\hat{A}_{ML}$ , so left as

$$(\hat{A}_{ML}, \hat{\pi}_{ML}) = \operatorname{argmax}_{A,\pi} \prod_{n=1}^{T} p_{A,\pi}(\boldsymbol{x}^{(n)})$$

$$\operatorname{Markov Property}$$

$$(\hat{A}_{ML}, \hat{\pi}_{ML}) = \operatorname{argmax}_{A,\pi} \prod_{n=1}^{N} p_{\pi} \left( x_{1}^{(n)} \right) \prod_{t=2}^{T} p_{A} \left( x_{t}^{(n)} \mid x_{t-1}^{(n)} \right)$$

$$\operatorname{Variables are separable}$$

 $\hat{\pi}_{ML} = \operatorname{argmax}_{\pi} \left| \quad p_{\pi} \left( x_1^{(n)} \right) \right|$ 

Our focus next  $\rightarrow$   $\hat{A}_{ML} = \operatorname{argmax}_A \left[ \begin{array}{c|c} p_A \left( x_t^{(n)} \mid x_{t-1}^{(n)} \right) \end{array} \right]$ 

## Simplifying The MLE

- $\mathbb{I}(\cdot)$ : indicator function
- $N_{ij}$ : the number of samples with transitions from state i to state j, i.e.,

 $\hat{A}_{ML} = \operatorname{argmax}_{A} \prod_{n=1}^{N} \prod_{t=2}^{N} p_{A} \left( x_{t}^{(n)} \mid x_{t-1}^{(n)} \right)$ 

$$N_{ij} := \sum_{n=1}^{N} \sum_{t=2}^{T} \mathbb{I}\left(x_t^{(n)} = j, x_{t-1}^{(n)} = i\right)$$

Then we have:

1. 
$$p_A(x_t^{(n)} \mid x_{t-1}^{(n)}) = \prod_{i=1}^K \prod_{j=1}^K (a_{ij})^{\mathbb{I}(x_t^{(n)} = j, x_{t-1}^{(n)} = i)}$$

2. 
$$\prod_{n=1}^{N} \prod_{t=2}^{T} p_A \left( x_t^{(n)} \mid x_{t-1}^{(n)} \right) = \prod_{n=1}^{N} \prod_{t=2}^{T} \prod_{i=1}^{K} \prod_{j=1}^{K} \left( a_{ij} \right)^{\mathbb{I} \left( x_t^{(n)} = j, x_{t-1}^{(n)} = i \right)}$$
$$= \prod_{i=1}^{K} \prod_{j=1}^{K} \left( a_{ij} \right)^{N_{ij}}$$

This gives:

$$\hat{A}_{ML} = \operatorname{argmax}_{A} \prod_{i=1}^{K} \prod_{j=1}^{K} (a_{ij})^{N_{ij}}$$

## Simplifying The MLE

$$\hat{A}_{ML} = \operatorname{argmax}_{A} \prod_{i=1}^{K} \prod_{j=1}^{K} (a_{ij})^{N_{ij}}$$

•  $N_{ij}$ : the number of samples with transitions from state i to state j

Taking logarithm and adding constraints  $\sum_i a_{ij} = 1$ :

$$\hat{A}_{ML} = \operatorname{argmax}_{A} \sum_{i=1}^{K} \sum_{j=1}^{K} N_{ij} \log a_{ij}$$
 subject to  $\sum_{j=1}^{K} a_{ij} = 1 \ (\forall i)$ 

Variables are separable

Solve the following for every i = 1, ..., K:

$$\widehat{a_{ij}}_{ML} = \operatorname{argmax}_{a_{ij}} \sum_{j=1}^{K} N_{ij} \log a_{ij}$$
 subject to  $\sum_{j=1}^{K} a_{ij} = 1$ 

Remark: We have seen how to solve it using Lagrangian multipliers (recall *EM for Gaussian Mixture Models*)

$$\widehat{a_{ij}}_{ML} = \frac{N_{ij}}{\sum_{j=1}^{K} N_{ij}}$$

Remark: The optimal transition matrix can be found by simply counting and classifying the number of the transitions of the sample states!

#### Conclusion

Markov chains have several applications

• For irreducible transition matrix with at least one positive entry, the Markov chain will eventually a stationary distribution

The transition matrix can be learned from data via maximum likelihood estimation