Replica del moto

Replica del moto

Il chirurgo muove un braccio robotico e il movimento del chirurgo viene replicato da un altro robot, opportunamente scalato

Filtraggio del naturale tremore della mano

Filtraggio del tremore

- Tremore periodico: Il tremore avviene a una frequenza fissata
- Spostamento nella posizione

Il chirurgo può sopprimere il tremore con un feedback visivo

Si può adottare uno schema di previsione del moto basato su regressione lineare o non lineare

- a partire dai movimenti precedenti si predice la posizione successiva del chirurgo
- Se la predizione è $\geq \delta$ si filtra e si va alla posizione corrente comandata dal master robot.

Filtraggio del tremore

E' possibile utilizzare tecniche di decomposizione del segnale di moto usando funzioni di base Wavelet e poi filtrare le componenti a frequenza più elevata.

Per avere una efficace replicazione del moto, è necessario considerare la forza: controllo in forza Il sistema deve misurare la forza applicata dal chirurgo e calcolare lo spostamento relativo alla forza applicata.

Attenzione: Il robot deve compensare la forza di gravità

Nel controllo in forza può esserci un ritardo dovuto alla misura della forza e alla compensazione della gravità

Si può usare un braccio meccanico leggero specifico, con forze minime e opportune frizioni per evitare la gravità

Il problema è quindi quello di stimare la forza applicata all'effettore.

Robot ad 1 giunto

Momento (coppia) del giunto - joint torque:

$$t = r \times f$$

$$f = \begin{pmatrix} f_x \\ f_y \\ f_z \end{pmatrix}$$
, $f_z = 0$ è la forza applicata

$$r = \begin{pmatrix} \cos(\theta_1) \\ \sin(\theta_1) \end{pmatrix}$$
 è il vettore relativo al braccio

Il momento è un vettore coincidente con l'asse di rotazione e modulo $\tau = ||t||$

Robot a 2 giunti, assumendo due link di lunghezza unitaria:

$$\boldsymbol{r}_1 = \begin{pmatrix} \cos(\theta_1) \\ \sin(\theta_1) \end{pmatrix}$$

$$\boldsymbol{r}_2 = \begin{pmatrix} \cos(\theta_1 + \theta_2) \\ \sin(\theta_1 + \theta_2) \end{pmatrix}$$

Applicando la forza f all'estremità p il momento al giunto 2 sarà:

$$t_2 = r_2 \times f$$

Il momento al giunto 1 sarà:

$$\boldsymbol{t}_1 = (\boldsymbol{r}_1 + \boldsymbol{r}_2) \times \boldsymbol{f}$$

Sviluppando abbiamo:

$$\tau_1 = (c_1 + c_{12})f_y - (s_1 + s_{12})f_x$$

$$\tau_2 = c_{12}f_y - s_{12}f_x$$

In forma matriciale, considerando l_1 , l_2 :

$$\tau = \begin{pmatrix} \tau_1 \\ \tau_2 \end{pmatrix} = \begin{pmatrix} -l_1 s_1 - l_2 s_{12} & l_1 c_1 + l_2 c_{12} \\ -l_2 s_{12} & l_2 c_{12} \end{pmatrix} \begin{pmatrix} f_x \\ f_y \end{pmatrix}$$

Scriviamo allora:

$$\tau = A \cdot f^B$$

dove f^B è la forza riferita al sistema di coordinate di base. Il momento è proporzionale alla lunghezza dei giunti.

Se la forza è riferita al sistema di coordinate dell'effettore, dobbiamo riferirla al sistema di base tramite moltiplicazione per \mathbb{R}_2^0 . Non c'è necessità della componente traslazionale perché ci interessano le direzioni:

$$\boldsymbol{f}^B = \begin{pmatrix} c_{12} & -s_{12} \\ s_{12} & c_{12} \end{pmatrix} \cdot \boldsymbol{f}^E$$

Sostituendo si ha:

$$\tau = \mathbf{A} \cdot \begin{pmatrix} c_{12} & -s_{12} \\ s_{12} & c_{12} \end{pmatrix} \cdot \mathbf{f}^E = \begin{pmatrix} l_1 s_2 & l_2 + l_1 c_2 \\ 0 & l_2 \end{pmatrix} \cdot \mathbf{f}^E$$

Momento e Jacobiano

Forza planare:

$$\tau = tz$$

Prodotto scalare

Forza non planare:

$$\tau = (r \times f)z$$
$$t = (r \times f)z)z$$

in cui il contributo è dato solo dalla componente di $m{t}$ lungo $m{z}$

Teorema

Dato un robot con *n* giunti cilindrici,

- **f** la forza espressa nelle coordinate di base,
- p_{i-1} l'origine del giunto i
- z_{i-1} l'asse z del giunto i

I momenti $\tau_1, \tau_2, \cdots, \tau_n$ indotti dalla forza f sono dati da:

$$\begin{pmatrix} \tau_1 \\ \vdots \\ \tau_n \end{pmatrix} = \begin{pmatrix} \mathbf{z}_0 \times (\mathbf{p}_n - \mathbf{p}_0) \\ \vdots \\ \mathbf{z}_{n-1} \times (\mathbf{p}_n - \mathbf{p}_{n-1}) \end{pmatrix} \cdot \mathbf{f}$$

Dalla proprietà distributiva del prodotto vettore $a(b \times c) = (a \times b)c$ abbiamo che:

$$[(p_n - p_{i-1}) \times f] z_{i-1} = z_{i-1} [(p_n - p_{i-1}) \times f] = [z_{i-1} \times (p_n - p_{i-1})] f$$

Relazione con lo Jacobiano

$$J = \begin{pmatrix} J_v \\ J_\omega \end{pmatrix} = \begin{pmatrix} z_0 \times (\boldsymbol{p}_n - \boldsymbol{p}_0) & z_1 \times (\boldsymbol{p}_n - \boldsymbol{p}_1) & \cdots & z_{n-1} \times (\boldsymbol{p}_n - \boldsymbol{p}_{n-1}) \\ z_0 & z_1 & z_{n-1} \end{pmatrix}$$

Allora:

$$J_{v}^{T} = \begin{pmatrix} z_{0} \times (\boldsymbol{p}_{n} - \boldsymbol{p}_{0}) \\ z_{1} \times (\boldsymbol{p}_{n} - \boldsymbol{p}_{1}) \\ \vdots \\ z_{n-1} \times (\boldsymbol{p}_{n} - \boldsymbol{p}_{n-1}) \end{pmatrix}$$
 Confrontando:
$$\begin{pmatrix} \tau_{1} \\ \vdots \\ \tau_{n} \end{pmatrix} = \begin{pmatrix} \boldsymbol{z}_{0} \times (\boldsymbol{p}_{n} - \boldsymbol{p}_{0}) \\ \vdots \\ \boldsymbol{z}_{n-1} \times (\boldsymbol{p}_{n} - \boldsymbol{p}_{n-1}) \end{pmatrix} \cdot \boldsymbol{f} = J_{v}^{T} \boldsymbol{f}$$

La trasposta della parte superiore dello Jacobiano fornisce i momenti ai giunti

Supponiamo di applicare all'effettore un momento
$$m{m} = \begin{pmatrix} m_\chi \\ m_y \\ m_z \end{pmatrix}$$

Il momento al giunto è:

$$t = (mz)z$$

$$\tau = mz$$

$$J = \begin{pmatrix} J_v \\ J_\omega \end{pmatrix} = \begin{pmatrix} z_0 \times (\boldsymbol{p}_n - \boldsymbol{p}_0) & z_1 \times (\boldsymbol{p}_n - \boldsymbol{p}_1) & \cdots & z_{n-1} \times (\boldsymbol{p}_n - \boldsymbol{p}_{n-1}) \\ z_0 & z_1 & z_{n-1} \end{pmatrix}$$

$$\boldsymbol{J}_{\omega}^{T} = \begin{pmatrix} z_{0} \\ \vdots \\ z_{n-1} \end{pmatrix} \qquad \text{Quindi nel caso del momento applicato:} \qquad \begin{pmatrix} \tau_{1} \\ \vdots \\ \tau_{n} \end{pmatrix} = \begin{pmatrix} z_{0} \\ \vdots \\ z_{n-1} \end{pmatrix} \cdot \boldsymbol{m} = \boldsymbol{J}_{\omega}^{T} \boldsymbol{m}$$

$$\begin{pmatrix} \tau_1 \\ \vdots \\ \tau_n \end{pmatrix} = \boldsymbol{J}^T \begin{pmatrix} \boldsymbol{f} \\ \boldsymbol{m} \end{pmatrix}$$

Raggruppiamo le due equazioni: $\begin{pmatrix} \tau_1 \\ \vdots \\ \tau_n \end{pmatrix} = \boldsymbol{J}^T \begin{pmatrix} \boldsymbol{f} \\ \boldsymbol{m} \end{pmatrix}$ Questa equazione lega i momenti ai giunti allo Jacobiano

Feedback di forza basato su questa equazione

TABLE I
LIST OF SURGICAL ROBOTIC SYSTEMS WITH HAPTIC FEEDBACK CAPABILITIES

Name	Producer	Availability	Procedures
RIO System [90]	MAKO Surgical Corp., US	Commercially available	Orthopaedic Surgery (Hands-on)
ALF-X [178]	TransEnterix, US	Upcoming for commercial exploitation	RMIS
SPORT (Formerly Amadeus) [179]	Titan Medical Inc., Canada	Upcoming for commercial exploitation	Single-site RMIS
ACTIVE [180]	European FP7 consortium, led by Politecnico di Milano, Italy	Research prototype	Neurosurgery
Steady-hand Eye robot [131]	Johns Hopkins University, US	Research prototype	retinal microsurgery
M7 [181]	Stanford Research Institute, US	Research prototype	RMIS for battlefield and space applications
MiroSurge [182]	German Aerospace Center, Germany	Research prototype	RMIS
SOFIE [183]	Technical University of Eindhoven, the Netherlands	Research prototype	RMIS
RAVEN II [41]	Applied Dexterity, US	Research prototype	RMIS

TABLE III LIST OF RESEARCH STUDIES ON EFFECTS OF HAPTIC FEEDBACK IN ROBOT-ASSISTED SURGERY

Procedure	Ref.	Study	Results
RMIS [99] Application of hap knot tying		Application of haptic feedback to robotic knot tying	Significantly more consistent tensions applied to suture materials, without breakage, during robotic knot tying enhanced with haptic feedback compared to knots tied without feedback.
	[90]	Haptic feedback and sensory substitution on RMIS suturing forces	Force interaction information can assist the user in exerting lower amount of forces on tissue during telemanipulated suturing maneuvers.
	[101]	Force feedback in blunt dissection	Presence of force feedback reduced the number of errors leading to tissue damage by a factor of three.
	[92], [93]	Kinesthetic feedback in RMIS by comparison of MIS, RMIS, and RMIS + force feedback.	Unintentional injuries were reduced in RMIS when appropriate force feedback is available.
	[94]	Force feedback and sensory substitution in tissue differentiation	Subjects were more comfortable and more accurate at characterizing tissues with simultaneous vision and force feedback compared with vision feedback alone or force feedback alone.
	[96]	Haptic feedback and sensory substitution in tissue grasping force	A significant reduction of grip force during robotic manipulation with presence of tactile feedback in comparison with no-tactile-feedback interactions.
	[110]	Potential clinical implementation of tactile-feedback-equipped da Vinci robot	The experiments demonstrated that tactile feedback significantly decreased grasping forces for both expert and novice surgeons.
	[111]	Providing high-frequency vibration cues in RMIS	Despite positive subjective evaluation from the surgeons, the results did not demonstrate significant difference in task performance
Instrument positioning	[99]	Force enhancement for hands-on surgical brain cortex stimulation	Force enhancement resulted in 80% reduction in tissue indentation overshooting for novice users and 30% reduction in max. indentation force by the surgeons.
Needle insertion	[101]	Visual and haptic feedback in simulated needle insertion tasks	The addition of force feedback reduces error in detection of transitions between tissue layers by 55%.
	[105]	Force enhancement in hands-on needle insertion	The success rate of membrane hitting perception was significantly higher when the robot-assisted needle with amplified tip force was implemented.
Palpation	[125]	Multi-fingered pneumatic haptic device	Improvement in stiffness level discrimination, compared to that of single finger stimulation.
Microsurgery	[113]	Tooltip force enhancement in robotic membrane peeling for vitreoretinal surgery	Force scaling yielded the best overall performance in terms of mean forces showing the efficacy of providing tool tip interaction force feedback.
	[114]	Multi point force sensing for RMIS in retinal microsurgery	Improvements in precision and force minimization in sclerotomy. Successful retina vein tracing in an eye phantom with the introduced approach.