Meeting July 29, 2024 Forward and inverse modeling of wave propagation combining classical and machine learning approaches

Student: Oscar Andrés Rincón Cardeño Advisors: Nicolas Guarín Zapata and Silvana Montoya

Applied Mechanics research group Universidad EAFIT

Content

- Literature review
- ❖ Reproduction of the results presented in Raissi et al. (2019)
- ❖ Problem statement

Literature review

- 1. Modeling of Mechanical Wave Propagation Narrative
- 2. Standard Numerical Methods to Model Wave Equation Narrative
- 3. Machine learning Methods to Model Mechanical Wave Propagation Narrative
- 4. Applications- Systematic

Introduction

Queries:

- "machine learning" OR "deep learning" OR
 "neural networks" AND "wave propagation" OR
 "wave equation" AND (modeling OR modelling OR
 model OR simulation)
- PUBYEAR > 2009 AND PUBYEAR < 2024

Possible causes

- □ Hardware
 - GPU
 - Storage
- Available data
- ☐ Open-source packages
 - Tensorflow
 - PyTorch
 - JAX

Modeling of Mechanical Wave Propagation

Modeling of Mechanical Wave Propagation

Machine learning Methods to solve Diferential Equations

- Machine Learning
 - Reinforced Suport VectorMachine
 - Neural Networks

- Neural Networks
 - Data Driven
 - Physics Based

- Shallow Networks
 - Extreme Learning Machine Pseudo-inverse
- Deep Learning
 - Backpropagation

Physics-informed neural networks - PINN

Raissi et al. (2019)

- Collocation points
- Solution points

Continuous time inference

Continuous Forward Schrodinger Equation	
PDE equations	$f_u = u_t + 0.5v_{xx} + v(u^2 + v^2), f_v = v_t + 0.5u_{xx} + u(u^2 + v^2)$
Initial conditions	$u(0,x)=2\mathrm{sech}(x),v(0,x)=0$
Periodic boundary conditions	$u(t,-5) = u(t,5), v(t,-5) = v(t,5), u_x(t,-5) = u_x(t,5), v_x(t,-5) = v_x(t,5)$
The output of net	$\left[u(t,x),v(t,x) ight]$
Layers of net	$[2] + 4 \times [100] + [2]$
Sample count from collection points	20000
Sample count from the initial condition	50
Sample count from boundary conditions	50
Loss function	$MSE_0 + MSE_b + MSE_c$

- $\bullet~$ Total training time: 5.652×10^2 seconds
- Total number of iterations: 20,968
- $\bullet~L_2\!\!:1.307\times10^{-3}$

Discrete time inference

Discrete Forward AC Equation	
PDE equations	$f^{n+c_j} = 5.0u^{n+c_j} - 5.0(u^{n+c_j})^3 + 0.0001u_{xx}^{n+c_j}$
Periodic boundary conditions	$u(t,-1)=u(t,1), u_x(t,-1)=u_x(t,1)$
The output of net	$[u_1^n(x),\ldots,u_q^n(x),u_{q+1}^n(x)]$
Layers of net	[1] + 4 * [200] + [101]
The number of stages (q)	100
Sample count from collection points at $oldsymbol{t_0}$	200⁺
Sample count from solutions at t_0	200⁺
$t_0 o t_1$	0.1 ightarrow 0.9
Loss function	$SSE_s^0 + SSE_c^0 + SSE_b^1$
* Same points used for collocation and solutions.	

- Total training time: 5.652×10^2 seconds
- Total number of iterations: 20,968
- \mathbb{L}_2 : 1.307×10^{-3}

Discrete time identification

Continuous Inverse Navier-Stokes Equation	
PDE equations	$f = u_t + \lambda_1(uu_x + vu_y) + p_x - \lambda_2(u_{xx} + u_{yy}), g = v_t + \lambda_1(uv_x + vv_y) + p_y - \lambda_2(v_{xx} + v_{yy})$
Assumptions	$u=\psi_y, v=-\psi_x$
The output of net	$[\psi(t,x,y),p(t,x,y)]$
Layers of net	$[3] + 8 \times [20] + [2]$
Sample count from collection points	5000*
Sample count from solution	5000*
Loss function	$SSE_s + SSE_c$
* Same points used for collocation and solutions.	

Clean data

- Total training time: 26.440×10^3 seconds
- Total number of iterations: 231, 424
- Error in estimating λ₁: 0.007 %
- Error in estimating λ₂: 1.864 %

Noisy data

- Total training time: 26.236×10^3 seconds
- Total number of iterations: 228,766
- Error in estimating λ₁: 0.029 %
- Error in estimating λ_2 : 3.290 %

https://github.com/oscar-rincon/ReScience-PINNs/tree/main/main/continuous time identification%20(Navier-Stokes)

Continuous time identification

Discrete Inverse KdV Equation	
PDE equations	$f^{n+c_j} = -\lambda_1 u^{n+c_j} u_x^{n+c_j} - \lambda_2 u_{xxx}^{n+c_j}$
Dirichlet boundary conditions	u(t,-1)=u(t,1)=0
The output of net	$[u_1^n(x),\dots,u_q^n(x),u_{q+1}^n(x)]$
Layers of net	$[1] + 3 \times [50] + [50]$
The number of stages (q)	50
Sample count from collection points at $oldsymbol{t_0}$	250*
Sample count from solutions at $oldsymbol{t_0}$	250*
$t_0 o t_1$	0.1 ightarrow 0.9
Loss function	${\rm SSE}^0_s + {\rm SSE}^0_c + {\rm SSE}^1_b$
* Same points used for collocation and solutions.	

Clean data

- Total training time: 1.53754×10^3 seconds
- Total number of iterations: 61,348
- Error in estimating λ₁: 0.004 %
- Error in estimating λ_2 : 0.005 %

Noisy data

- Total training time: 1.7998×10^3 seconds
- Total number of iterations: 53, 235
- Error in estimating λ_1 : 0.119 %
- Error in estimating λ₂: 0.048 %

Systematic Review of Applications

Advantages / Disadvantages of PINN vs Standard numerical methods

- ☐ Simple implementation -> Interdisciplinary
- Easily adaptable to both problems with (inverse)or without data (forward)
- ☐ Fast model evaluation (seconds)
- Possibility of transfer learning

- ☐ Uncertainty on required architecture
- Unacurate
- ☐ Slow training times (hours vs minutes)
- Possible local minimals
- ☐ Function approximation of Large or complex domains

Extreme Learning Machine - ELM

- ➤ It runs quickly pseudoinverse
- Comparable accuracies to standard methods
- Not local minimals
- Can be used with orthogonal neural networks
- Still not applied to elastic wave equations

