初探台灣飲料市場需求體系

黎宏濬, 張立宏, 林孝儒, 許震浩*

2024/11/29

摘要

本研究目的在於透過分析不同飲料的需求彈性與價格敏感度,了解市場中商品間的替代與互補關係,並對健康趨勢的影響進行探討。本研究使用了「經濟部工業產銷存動態調查資料庫」的 1982 至 2024 年月度數據,涵蓋果菜汁、碳酸飲料、運動飲料、咖啡飲料與茶飲料等五種類型飲料的銷售量與銷售值,基於 AIDS 和 LAAIDS 模型,分析台灣飲料市場中五種飲料的需求結構,估算支出彈性、自身價格彈性與交叉價格彈性。分析結果顯示,碳酸飲料和運動飲料對價格高度敏感,其需求彈性顯著高於其他飲料,反映出健康趨勢對其消費行爲的影響。相比之下,果菜汁需求穩定,彈性較低,顯示其作爲健康飲食組成的重要性。未來可進一步研究健康資訊和政策對需求結構的影響,爲市場策略和政策制定提供參考。12

關鍵字

台灣飲料市場、需求系統分析、AIDS 和 LAAIDS 模型、健康趨勢

文章重點

- 1 基於 AIDS 和 LAAIDS 模型,分析台灣飲料市場中五種飲料的需求結構。
- 2 碳酸飲料和運動飲料對價格敏感,需求彈性高,反映健康趨勢對其消費行爲的影響。
- 3 果菜汁需求穩定,彈性較低,顯示其作爲健康飲食組成的重要性。

^{*}四位作者依序爲國立台灣大學農業經濟學系碩士班二年級, Email: r11627065@ntu.edu.tw; 國立台灣大學農業經濟學系碩士班二年級, Email: r11627026@ntu.edu.tw; 國立台灣大學農業經濟學系碩士班二年級, Email: r11627019@ntu.edu.tw; 國立台灣大學農業經濟學系碩士班一年級, Email: r12323052@ntu.edu.tw.

¹本文所有資料與程式碼開源於 https://github.com/HungChunLi/ResearchMethodology-DSE,供讀者下載重製。

²正文字數統計:4723。(不含附註、表格、摘要及圖說)

1 前言

1.1 研究背景

隨著全球健康意識的提升,消費者對飲料的選擇正發生顯著變化。在台灣,這一趨勢尤爲明顯。根據財政部統計,台灣飲料業者家數從 2017 年的 21,346 家增至 2021 年的 27,414 家,年均成長率達 6.4%,顯示市場持續擴張。在台灣,手搖飲料市場的蓬勃發展反映了消費者對多樣化飲品的追求。根據LnData (2022) 的分析,台灣手搖飲料市場呈現多樣性選擇,吸引各年齡層消費者,顯示消費者對口感和品味的無窮追求。然而,健康意識的提升可能正在改變這一市場的需求格局,消費者對健康的重視,正引導市場從傳統高糖飲料轉向無糖、低糖及功能性飲品(Walton and Wittekind, 2023)。

1.2 研究目的

爲深入探討健康意識對台灣飲料市場的影響,本研究透過應用 AIDS 和 LAAIDS 模型,分析健康意識提升如何影響無糖與低糖飲料的需求,並評估價格與支出變化對飲料需求的特徵。

2 文獻回顧

在探討台灣飲料市場需求系統時,我們聚焦於消費者健康意識增強及不同產品價格對偏好的影響。針對美國市場,Pokharel (2016)使用 AIDS 模型分析了飲料需求彈性,發現非碳酸飲料支出彈性較高,屬奢侈品,而咖啡和茶則爲必需品,表明不同飲料的需求對價格和支出的敏感性差異顯著。

Yohannes and Matsuda (2015) 運用 LA/QUAIDS 模型研究了日本市場健康標籤與功能性成分對偏好的影響,指出年輕人偏好果汁和牛奶,老年人偏好茶飲。此外,溫度對需求有明顯影響,氣溫升高時冷飲需求增多,熱飲需求減少,反映人口結構與季節性在需求系統中的重要性。

Zhou and Liu (2024) 和Walton and Wittekind (2023) 則表明製造商通過減糖、減鈉及「低糖」等健康標籤響應市場需求變化。此外,Natarajan and Jayadevan (2022) 提出了消費行為模型,認為消費者對具免疫增強等功能飲料的需求彈性顯著增強。

隨著消費者對含糖飲料健康風險的認知加深,市場對低糖或無糖飲料的需求顯著增長,尤其 青少年和老年群體更爲明顯 (Walton and Wittekind, 2023)。我們希望通過需求系統模型驗證這 一趨勢是否適用於台灣市場,並進一步探索台灣消費者對茶飲料需求的增長,評估健康意識增強 的具體影響。

3 資料蒐集與處理

3.1 資料蒐集及處理

本研究使用的資料主要來自於「經濟部工業產銷存動態調查資料庫」(經濟部統計處, 2024),涵蓋 5 種飲料類別(果蔬汁飲料 3 、碳酸飲料 4 、運動飲料 5 、咖啡飲料 6 及茶類飲料 7)的銷售量與銷售值的月資料。資料期間爲 1982 年至 2024 年,共 396 筆,爲 DSE (Demand System Estimation)分析提供了關鍵依據。

完成資料蒐集後,我們使用 R 進行資料清理,包括合併數據、去除重複值及處理遺漏值。由 於不同飲料類別的統計起始時間不一致,我們統一分析起始時間以確保資料可比性。此外,基於 銷售量與銷售值計算單位價格,爲模型估計提供了解釋變數。

3.2 敘述統計

表 1 顯示各飲料類別的銷量、銷售值及價格統計。茶的平均銷量與銷售值最高,分別達79,898.6 千元與 1,421,873.2 千元,顯示其市場需求和佔有率領先。運動飲料銷量與銷售值偏低,但平均價格 23.14 元位居第二。咖啡以 38.34 元的平均價格居首,凸顯其高端定位,與碳酸飲料19.74 元的低價形成對比,後者更適合大衆市場。運動飲料的價格標準差達 3.82 元,顯示其價格

³含天然果汁/蔬菜汁或還原果汁/蔬菜汁 10% 以上,直接供飲用之果汁/蔬菜汁飲料。例如稀釋果蔬汁、清淡果蔬汁、發酵果蔬汁、稀釋發酵果蔬汁、清淡發酵果蔬汁、果肉飲料。

 $^{^4}$ 在除去鹵素飲用水中加壓,添加二氧化碳及果實香料、果汁;或可樂子實葉抽出液;或 Saraparilla 根抽出液等調味料之碳酸飲料。例如汽水、可樂、沙士。

 $^{^5}$ 具可調解人體電解質功能之飲料,調整爲等張滲透壓,以便自人體腸道迅速吸收,PH 値在 $2.5\sim3.8$ 之間,電解質濃度 (ug/ml) 則分別爲鈉離子 552 以下、鎂離子 24 以下、鉀離子 195 以下、氯離子 639 以下、鈣離子 60 以下、磷酸根離子 190 以下。

 $^{^6}$ 利用咖啡粉或咖啡豆研磨、浸泡、萃取、調理,添加奶精、糖水或調味料之飲料,其咖啡因若超過 200ppm 則需標示,但不得超過 500ppm。例如純咖啡飲料、調味咖啡飲料。

⁷利用茶葉或茶葉梗浸泡、萃取、調理,添加糖水或調味料之飲料,其咖啡因若超過 200ppm 則需標示,但不得超過 500ppm。例如烏龍茶、花茶、紅茶、綠茶、調味茶 (如檸檬茶)。

變動幅度較大。

3.3 單根檢定 Augmented Dickey-Fuller (ADF) Test

在使用 AIDS 模型估計前,確認資料是否為定態是關鍵,非定態資料可能導致參數估計失準及檢定結果不可靠。AIDS 模型假設需求系統達到穩定均衡,非定態資料可能反映季節性或長期趨勢變化,違背模型假設。圖 1 顯示銷售量疑似存在趨勢變化,因此本節採用 Augmented Dickey-Fuller (ADF) Test 進行單根檢定,以確認資料的定態性。

ADF 檢定的虛無假設爲「序列存在單根(非定態)」;對立假設爲「序列無單根(定態)」。根據表 2 的檢定結果,果蔬汁銷量、碳酸飲料銷量、運動飲料銷量及果蔬汁和碳酸飲料銷售值的 p值均小於 0.05,表示這些變數爲定態。相對地,咖啡銷量、茶銷量、果蔬汁價格、碳酸飲料及運動飲料價格的 p值大於 0.05,顯示這些變數爲非定態,需進一步處理(如差分變換)以確保模型穩健性。

4 研究設計

本文分別採用 AIDS (Almost Ideal Demand System) 和 LAAIDS(Linear Approximate AIDS) 兩種需求系統模型進行分析。兩種方法皆用於分析多個商品的需求及其需求彈性,主要差別在於價格指數的處理方式,。以下兩節將分別敍述 AIDS 及 LAAIDS 的模型架構。

需求函數

模型中各商品的的需求函數為:

$$w_i = \alpha_i + \sum_{j=1}^5 \gamma_{ij} \ln(P_j) + \beta_i \ln\left(\frac{X}{P}\right), \tag{1}$$

其中, w_i 表示第 i 類飲料的支出比例,定義爲該類飲料的支出占總支出的比例,即:

$$w_i = \frac{P_i Q_i}{X}. (2)$$

在這裡, P_i 是第 i 類飲料的價格, Q_i 是該類飲料的消費數量,而 $X = \sum_{i=1}^5 P_i Q_i$ 是所有飲料的總支出,可能會隨月收入的變化而改變。此外, $\ln(P_j)$ 是第 j 類飲料價格的自然對數,用於反映價格變化對需求的影響。模型的待估參數包括 α_i 、 γ_{ij} 和 β_i , α_i 為基礎支出比例,表示在其他條件不變時,第 i 類飲料的消費佔比。 β_i 描述支出彈性,反映總支出變動對第 i 類飲料需求的影響。 γ_{ij} 描述第 j 類飲料價格對第 i 類飲料支出的影響。

價格指數

價格指數 P 用於調整總支出的影響。在 AIDS 模型中,其非線性表達式爲:

$$\ln(P) = \alpha_0 + \sum_{j=1}^{5} \alpha_j \ln(P_j) + \frac{1}{2} \sum_{j=1}^{5} \sum_{k=1}^{5} \gamma_{jk} \ln(P_j) \ln(P_k), \tag{3}$$

其中, α_0 是基準常數,用於表示價格指數的基本水平; α_j 是第 j 類飲料價格的影響係數; γ_{jk} 是第 j 和第 k 類飲料價格的交叉效應,用於衡量價格互動對需求的影響。由於價格指數 P 的非線性形式較難直接處理,在 LAAIDS 模型中,通常會選擇線性近似方法來簡化價格指數的計算,例如使用 Stone 指數:

$$\ln(P) \approx \ln(P) = \sum_{j=1}^{5} w_j \ln(P_j). \tag{4}$$

彈性

AIDS 模型允許我們計算幾種需求彈性:

支出彈性 (η_i):

$$\eta_i = 1 + \frac{\beta_i}{w_i},\tag{5}$$

該彈性表示總支出變化對第 i 類飲料需求的影響。

價格彈性 (ε_{ii}):

$$\varepsilon_{ij} = K + \frac{\gamma_{ii}}{w_i} - \beta_i \ln(X/P), \quad K = -1 \text{ if } i = j.$$
 (6)

該彈性衡量第j類飲料價格變化對第i類飲料需求的影響。若 $\varepsilon_{ij}>0$,則說明兩者爲替代品;若 $\varepsilon_{ij}<0$,則爲互補品。

5 AIDS 及 LAAIDS 模型參數估計結果

5.1 支出彈性

表 4 記錄了 AIDS 和 LAAIDS 模型的支出彈性結果,探討台灣市場中五種飲料在總支出變動下的需求敏感性。

運動飲料的支出彈性在 AIDS 和 LAAIDS 模型中分別為 1.41 和 1.38,為最高,顯示對總支出變動最敏感。茶飲料彈性為 1.34 和 1.32,需求隨總支出顯著增長。果蔬汁彈性分別為 0.52 和 0.55,需求穩定,總支出變動影響有限。咖啡飲料彈性為 0.54 和 0.50,同樣顯示穩定需求。碳酸飲料彈性分別為 0.85 和 0.91,接近 1,表明需求與總支出呈比例增長。

5.2 Marshallian 需求彈性

Marshallian 需求函數(未補償需求函數)描述消費者在給定收入與價格下的商品選擇,反映需求對價格變動的總反應。表 5 和表 6 顯示了各飲料的需求彈性,揭示其對價格變動的敏感性及市場定位。

果蔬汁的自價格彈性在 AIDS 和 LAAIDS 模型中分別為 -0.45 和 -0.04,需求穩定;碳酸飲料為 -0.59 和 -0.51,需求對價格較敏感,可能受健康意識影響;運動飲料為 -0.27 和 -0.66,需求對價格有所敏感;咖啡飲料為 0.37 和 0.84,反映品牌價值的影響;茶飲料為 -0.06 和 -0.35,需求對價格變動影響最小,穩定性最高。

交叉價格彈性中,果蔬汁與碳酸飲料表現一定互補性(-0.50 和 -0.42);果蔬汁與運動飲料顯示顯著替代效應(0.84 和 1.47)。咖啡與茶的互補效應顯著(-1.82 和 -2.60),表明兩者在功能性消費中高度聯動。

5.3 Hicksian 需求彈性

Hicksian 需求函數 (受補償需求函數) 描述消費者在給定效用水準下如何選擇商品以最小化支出,僅考慮替代效果。表 7 和表 8 顯示了 AIDS 和 LAAIDS 模型的 Hicksian 需求彈性估計結果。

碳酸飲料和運動飲料表現出極高的自價格彈性(-1.398 和 -1.466; -1.463 和 -1.307),顯示其需求對價格極爲敏感,價格上升 1% 導致支出占比顯著下降。果菜汁價格彈性在 AIDS 模型中爲-0.354,在 LAAIDS 模型中爲0.069,需求對價格變動不敏感。

茶飲料與碳酸飲料的替代效應最強,茶價格上升 1%,碳酸飲料支出占比在 AIDS 和 LAAIDS 模型中分別增加 1.909 和 1.806。茶飲料與運動飲料的替代效應也顯著,茶價格上升 1% 時,運動飲料支出占比增加 1.449 至 2.058。茶與咖啡的互補效應尤爲顯著,茶價格上升 1% 導致咖啡支出占比下降 1.594 至 2.389,表明兩者經常被同時購買。

6 穩健性分析

6.1 同質性與對稱性檢查

本研究對 AIDS 和 LAAIDS 模型進行了同質性與對稱性檢定。根據經濟理論,同質性要求當所有商品價格同比例變動且收入不變時,需求不應改變,表現爲每行 γ_{ij} 係數總和爲零 $(\sum \gamma_i = 0)$ 。檢定結果(表9和表10)顯示,兩模型的 γ_{ij} 總和均精確爲零,符合同質性假設。

對稱性檢定則要求 $\gamma_{ij}=\gamma_{ji}$,即替代關係具一致性。結果(表11和表12)顯示,兩模型 γ_{ij} 矩陣的偏差接近於零,支持對稱性假設。

我們還進行了同質性和對稱性的綜合檢定,其結果均為 TRUE,表明模型同時滿足同質性與對稱性假設。

6.2 似然比檢定 (Likelihood-ratio test)

似然比檢定用於比較無約束模型與相應約束模型的擬合度,以確定哪個模型更適合數據。似然比統計量 LR_{stat} 的計算公式為:

$$LR_{\text{stat}} = -2 \times (\ln L_{\text{AIDS}} - \ln L_{\text{LAAIDS}})$$

統計量 $LR_{\rm stat}=52.83248$ 且 p-value (3.63×10^{-13}) 遠小於 0.01,顯示在 1% 顯著性水準下拒絕 LAAIDS 模型足以描述數據的虛無假設。這表明 AIDS 模型的擬合效果顯著優於 LAAIDS模型,即增加的自由度改善了模型擬合。

6.3 殘差自相關檢定 (ACF) 分析

圖顯示了殘差自相關檢定的結果,在 AIDS 模型的 ACF 中,果蔬汁、碳酸飲料和茶飲料在低滯後期顯示顯著自相關,且自相關隨滯後增加呈周期性變化,可能與季節性消費相關。運動飲料和咖啡飲料在低滯後期的自相關顯著,但隨滯後增加逐漸衰減至不顯著。LAAIDS 模型的 ACF 與 AIDS 類似,但碳酸飲料和咖啡飲料的殘差自相關更強。

7 結論

本研究基於 AIDS 和 LAAIDS 模型,分析台灣飲料市場五種飲料的需求結構,估算支出彈性、自身價格彈性及交叉價格彈性,揭示商品間的替代與互補關係及健康相關趨勢。結果顯示,碳酸飲料和運動飲料對自身價格高度敏感,價格上漲促使消費者選擇替代品,反映其受健康趨勢影響顯著。果菜汁需求穩定,顯示需求彈性低,消費者視其爲日常或健康飲食的組成,即使價格上升影響有限。交叉價格彈性分析中,茶飲料與碳酸飲料替代效應最強,顯示消費者在這兩者間靈活轉換。茶飲料與咖啡飲料間的互補效應表明健康屬性可能促使搭配消費。未來研究可納入健康資訊或政策影響,並結合個體與市場數據,以量化健康趨勢對需求結構的改變。

參考文獻

- LnData (2022). Taiwan drink trends: Analysis of the beverage market.
- Natarajan, T. and G. R. Jayadevan (2022). Covid-19 pandemic and the consumption behaviour of branded functional beverages in india: a conceptual framework. *Nutrition & Food Science* 52(3), 423–444.
- Pokharel, K. P. (2016). Demand analysis for non-alcoholic beverages consumptin in the united states. *International Journal of Social Sciences and Management* 3(1), 38–46.
- Walton, J. and A. Wittekind (2023). Soft drink intake in europe-a review of data from nationally representative food consumption surveys. *Nutrients* 15(6).
- Yohannes, M. F. and T. Matsuda (2015). Demand analysis of non-alcoholic beverages in japan. *Journal of Agricultural Science* 7(5).
- Zhou, P. and Y. Z. Liu (2024). Promoting healthy diets through food reformulation: The demand for "better-for-you" beverage. *Agribusiness* 40(3), 641–660.
- 經濟部統計處 (2024). 經濟部統計查詢網: 工業產銷存動態調查. Accessed: 2024-11-19.

表格

表 1: 各變數的敍述統計

variable	count	mean	sd	min	med	max
銷售值						
果蔬汁	396	602916.50	134457.80	338694.00	579798.00	1096399.00
碳酸飮料	396	587473.60	242392.70	241473.00	525470.50	1394424.00
運動飮料	396	247255.90	121139.80	54881.00	216398.50	576126.00
咖啡	396	409561.40	108365.70	153917.00	427636.00	647208.00
茶	396	1421873.20	473283.60	213117.00	1445437.00	2781819.00
銷售量						
果蔬汁	396	25611.89	5479.89	14158.00	24787.50	48324.00
碳酸飮料	396	29587.72	11419.98	12690.00	26972.00	67064.00
運動飮料	396	11071.39	5908.76	2614.00	9409.00	26692.00
咖啡	396	10772.90	3059.93	3714.00	11513.50	16673.00
茶	396	79898.60	27855.82	8525.00	81416.00	150060.00
價格						
果蔬汁	396	23.60	2.28	20.23	22.99	38.57
碳酸飮料	396	19.74	1.45	15.81	19.65	23.76
運動飮料	396	23.14	3.82	14.80	22.02	37.30
咖啡	396	38.34	1.99	29.09	38.88	47.22
茶	396	18.20	2.48	14.25	17.15	25.00

Notes: 表1 提供了飲料市場各類別的銷售值、銷售量、價格的敍述統計數據,展示了不同飲料類別在市場需求、價格結構上的差異,爲後續分析提供基礎。

表 2: 各變數是否爲定態

	_4_4:_4:_	1	_4_4:
variable	statistic	p-value	stationary
銷售值			
果蔬汁	-5.94	0.01	Yes
碳酸飮料	-10.34	0.01	Yes
運動飮料	-7.18	0.01	Yes
咖啡	-2.23	0.48	No
茶	-2.75	0.26	No
銷量			
果蔬汁	-5.22	0.01	Yes
碳酸飮料	-11.64	0.01	Yes
運動飮料	-4.65	0.01	Yes
咖啡	-2.31	0.44	No
茶	-3.34	0.06	No
價格			
果蔬汁	-3.37	0.06	No
碳酸飮料	-1.88	0.63	No
運動飮料	-2.43	0.40	No
咖啡	-3.53	0.04	Yes
茶	-2.15	0.51	No

Notes: 銷售值的部分同樣是果蔬汁、碳酸飲料、運動飲料為定態;銷售量的部分,果蔬汁、碳酸飲料、運動飲料為定態;價格的部分只有咖啡價格為定態。

表 3: AIDS 及 LAAIDS 模型估計結果與顯著性

(a) Alpha 參數

變數	(1)	(2)
alpha 1	1.238***	1.164***
	(0.085)	(0.079)
alpha 2	0.537***	0.418***
	(0.129)	(0.116)
alpha 3	-0.300***	-0.269***
	(0.074)	(0.063)
alpha 4	0.694***	0.760***
	(0.063)	(0.056)
alpha 5	-1.169***	-1.073***
	(0.220)	(0.192)

(b) Beta 參數

變數	(1)	(2)
beta 1	-0.091***	-0.085***
	(0.007)	(0.007)
beta 2	-0.026*	-0.017.
	(0.011)	(0.010)
beta 3	0.030***	0.028***
	(0.006)	(0.005)
beta 4	-0.060***	-0.065***
	(0.005)	(0.005)
beta 5	0.147***	0.139***
	(0.019)	(0.016)

Notes: 此表展示 AIDS 模型中各項參數的估計值及 其顯著性檢驗結果。如 alpha 1 的估計值為 1.237, 表明該參數對模型中需求分配的影響為正,且數值 較大,標準誤為 0.085,顯示估計結果穩定。所有參 數的 p 值均遠小於 0.05,表示這些參數在統計上顯 著,同時也可看到 AIDS 模型在解釋台灣飲料市場 需求方面具有良好表現。*** 表示在 1% 顯著性水 準下顯著,** 表示在 5% 顯著性水準下顯著,* 表 示在 10% 顯著性水準下顯著。

(c) AIDS 及 LAAIDS 模型估計結果與顯著性

	1100 快坐	
變數	(1)	(2)
gamma 1 1	-0.007	0.081***
	(0.025)	(0.018)
gamma 1 2	-0.137***	-0.112***
	(0.023)	(0.017)
gamma 1 3	0.017.	-0.015*
	(0.010)	(0.007)
gamma 1 4	-0.024	0.031*
	(0.020)	(0.013)
gamma 1.5	0.152***	0.015
	(0.031)	(0.017)
gamma $2\ 1$	-0.137***	-0.112***
	(0.023)	(0.017)
gamma $2\ 2$	-0.111**	-0.119***
	(0.036)	(0.028)
gamma $2 \ 3$	-0.052***	-0.060***
	(0.012)	(0.009)
gamma 2 4	-0.008	0.017
	(0.026)	(0.017)
gamma 2 5	0.308***	0.274***
	(0.030)	(0.024)
gamma 3 1	0.017.	-0.015*
9.0	(0.010)	(0.007)
gamma 3 2	-0.052***	-0.060***
gamma 3 3	(0.012) -0.050***	(0.009) -0.037***
gamma 3 3	(0.007)	(0.005)
gamma 3 4	0.060***	0.039***
gamma 0 4	(0.008)	(0.006)
gamma 3 5	0.025.	0.074***
801111110 3 3	(0.014)	(0.011)
gamma 4 1	-0.024	0.031*
0	(0.020)	(0.013)
gamma 4 2	-0.008	0.017
	(0.026)	(0.017)
gamma $4\ 3$	0.060***	0.039***
	(0.008)	(0.006)
$\operatorname{gamma}44$	0.135***	0.170***
	(0.029)	(0.019)
gamma 4.5	-0.163***	-0.257***
	(0.020)	(0.012)
gamma 5 1	0.152***	0.015
	(0.031)	(0.017)
gamma 5 2	0.308***	0.274***
- 0	(0.030)	(0.024)
gamma 5 3	0.025.	0.074***
mo roo roo - F 4	(0.014)	(0.011)
gamma 5 4	-0.163***	-0.257***
gamma 5 5	(0.020) -0.322***	(0.012) -0.106**
gamma 5 5	(0.062)	(0.037)
	(0.002)	(0.001)

表 4: AIDS 及 LAAIDS 模型支出彈性估計結果

	變數	(1)	(2)
1	果蔬汁份額	0.52	0.55
2	碳酸飮料份額	0.85	0.91
3	運動飮料份額	1.41	1.38
4	咖啡飮料份額	0.54	0.50
5	茶飮料份額	1.34	1.32

Notes: 此表格顯示五種飲料類型的支出彈性 (Expenditure Elasticities),欄 (1) 為 AIDS 模型,欄 (2) 為 AIDS 模型。其反映了消費者對於總支出變化的敏感度,正彈性值代表需求量隨總支出增加而增加,例如運動飲料份額的支出彈性為 1.412,表示當總支出增加 1% 時,運動飲料的需求增加約 1.41%。負彈性值若存在,則表示總支出增加反而減少該商品的需求。此表中大多數彈性值大於 1,意味著台灣消費者對飲料類別的需求相對敏感,特別是運動飲料和茶飲。

表 5: AIDS 模型 Marshallian 需求彈性估計結果

	果蔬汁價格	碳酸飮料價格	運動飮料價格	咖啡飮料價格	茶飮料價格
果蔬汁份額	-0.45	-0.50	-0.04	0.26	0.22
碳酸飮料份額	-0.59	-1.55	-0.33	0.07	1.54
運動飮料份額	-0.27	-0.90	-1.57	0.48	0.84
咖啡飮料份額	0.37	0.16	0.34	0.42	-1.82
茶飮料份額	-0.06	0.56	0.15	-0.65	-1.33

Notes: 此表使用 AIDS 模型根據未補償需求 (Uncompensated Demand) 計算 Marshallian 需求彈性,反映價格變動對需求的影響,並考慮了收入效應。自價格彈性:如果蔬汁的自價格彈性為 -0.45,顯示價格每上升 1%,需求減少 0.45%。該值大於 Hicksian 需求彈性,因爲馬歇爾彈性包含收入效應。交叉價格彈性:例如果蔬汁對茶飲的交叉價格彈性爲 0.215,說明兩者之間的替代效應較低。相比希克斯彈性,馬歇爾彈性對政策制定更爲重要,因爲它包含了市場中實際的收入和價格變動對需求的綜合影響。

表 6: LAAIDS 模型 Marshallian 需求彈性估計結果

	果蔬汁價格	碳酸飮料價格	運動飮料價格	咖啡飮料價格	茶飮料價格
果蔬汁份額	-0.04	-0.42	-0.20	0.57	-0.47
碳酸飮料份額	-0.51	-1.63	-0.36	0.18	1.42
運動飮料份額	-0.66	-0.96	-1.41	0.19	1.47
咖啡飮料份額	0.84	0.32	0.17	0.77	-2.60
茶飮料份額	-0.35	0.52	0.26	-0.89	-0.85

Notes: 此表使用 LAAIDS 模型根據未補償需求 (Uncompensated Demand) 計算 Marshallian 需求彈性,反映價格變動對需求的影響,並考慮了收入效應。

表 7: AIDS 模型 Hicksian 需求彈性估計結果

	果蔬汁價格	碳酸飮料價格	運動飮料價格	咖啡飮料價格	茶飮料價格
果蔬汁份額	-0.35	-0.41	-0.00	0.33	0.44
碳酸飮料份額	-0.43	-1.40	-0.26	0.18	1.91
運動飮料份額	-0.01	-0.65	-1.46	0.67	1.45
咖啡飮料份額	0.48	0.25	0.38	0.49	-1.59
茶飮料份額	0.19	0.80	0.25	-0.48	-0.76

Notes: 此表使用 AIDS 模型展示基於補償需求 (Compensated Demand) 的 Hicksian 需求彈性,反映了在效用不變的情況下,價格變動對需求的影響。自價格彈性:位於對角線,例如果蔬汁飲料的彈性為 -0.354,表示果蔬汁的需求對自身價格的敏感程度爲負,價格每上升 1%,需求減少 0.354%。交叉價格彈性:反映商品間的替代或互補性,例如果蔬汁對茶飲的交叉價格彈性爲 0.437,顯示這兩類飲品之間有替代效應。若交叉價格彈性爲負,表示商品間具互補性;若爲正,則具替代性,本表中,多數飲品間呈現一定程度的替代效應,但也可能存在顯著的互補效應(如咖啡與茶飲)。

表 8: LAAIDS 模型 Hicksian 需求彈性估計結果

	果蔬汁價格	碳酸飮料價格	運動飮料價格	咖啡飮料價格	茶飮料價格
果蔬汁份額	0.07	-0.32	-0.16	0.64	-0.23
碳酸飮料份額	-0.34	-1.47	-0.29	0.30	1.81
運動飮料份額	-0.40	-0.72	-1.31	0.37	2.06
咖啡飮料份額	0.94	0.41	0.21	0.84	-2.39
茶飮料份額	-0.10	0.75	0.35	-0.72	-0.28

Notes: 此表使用 LAAIDS 模型展示基於補償需求 (Compensated Demand) 的 Hicksian 需求彈性,反映了在效用不變的情況下,價格變動對需求的影響。

表 9: AIDS 模型同質性檢查

•	Row	Row.Sum	Homogeneity.Check	Homogeneity * Symmetry.Check
	1	0	TRUE	TRUE
	2	0	TRUE	TRUE
	3	0	TRUE	TRUE
	4	0	TRUE	TRUE
	5	0	TRUE	TRUE

表 10: LAAIDS 模型同質性檢查

Row	Row.Sum	Homogeneity.Check	Homogeneity * Symmetry.Check
1	0	TRUE	TRUE
2	0	TRUE	TRUE
3	0	TRUE	TRUE
4	0	TRUE	TRUE
5	0	TRUE	TRUE

表 11: AIDS 模型對稱性檢查

Row	Column	Deviation	Symmetry.Check
1	2	0.0000012	TRUE
1	3	-0.0000009	TRUE
2	1	-0.0000012	TRUE
2	3	0.0000004	TRUE

表 12: LAAIDS 模型對稱性檢查

Row	Column	Deviation	Symmetry.Check
1	2	0.0000012	TRUE
1	3	-0.0000009	TRUE
2	1	-0.0000012	TRUE
2	3	0.0000004	TRUE

圖片

圖 1: 各變數時間趨勢

(b) 各商品價格時間趨勢

Notes: 1為各變數時間變動的趨勢,圖1a及圖1b分別為各商品的銷售量與價格。在銷售量隨時間變化的的圖1a中,可以看到明顯的季節性波動,顯示各種飲料在每年都有其週期性,其中可以看到茶的銷售量位居所有飲料之冠。在價格方面,圖 1b顯示以咖啡的單價最高。

圖 2: 各變數殘差自相關檢定 (ACF) 分析

Notes: qResid1 至 qResid5 分別爲果蔬汁、碳酸飲料、運動飲料、咖啡飲料和茶飲料。在 AIDS 模型的 ACF 中,果蔬汁、碳酸飲料和茶飲料在低滯後期顯示顯著自相關,且自相關隨滯後增加呈周期性變化,可能與季節性消費相關。運動飲料和咖啡飲料在低滯後期的自相關顯著,但隨滯後增加逐漸衰減至不顯著。LAAIDS 模型的 ACF 與 AIDS 類似,但碳酸飲料和咖啡飲料的殘差自相關更強。