Razvoj funkcije u Taylorov polinom (Taylorov red)

Na predavanjima smo vidjeli da za $I \subset \mathbb{R}$ otvoreni interval, $c \in I$ točku u I te $f: I \to \mathbb{R}$ funkciju koja ima neprekidnu derivaciju n-tog reda na I, možemo definirati n-ti **Taylorov polinom** funkcije f u točki c kao

$$T_n(x) = f(c) + \frac{f'(c)}{1!}(x-c) + \frac{f''(c)}{2!}(x-c)^2 + \dots + \frac{f^{(n)}(c)}{n!}(x-c)^n, \ x \in \mathbb{R}.$$

Red

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(c)}{n!} (x-c)^n = f(c) + \frac{f'(c)}{1!} (x-c) + \frac{f''(c)}{2!} (x-c)^2 + \dots + \frac{f^{(n)}(c)}{n!} (x-c)^n + \dots$$

nazivamo Taylorov red. Za c = 0 dobivamo Maclaurinov red

su različiti od nule (i tako do trećeg ne-nul člana).

$$f(0) + \frac{f'(0)}{1!}x + \frac{f''(0)}{2!}x^2 + \ldots + \frac{f^{(n)}(0)}{n!}x^n + \ldots$$

Zadana je funkcija

formulu uvrstiti x^2 .

$$f(x) = \frac{1}{1+r^2}.$$

- 1. (10 bodova) Odredite Taylorov polinom funkcije f(x) u točki x=0 koji sadrži prva tri člana koji su različiti od nule. Pokažite sve korake deriviranja i uvrštavanja. **Napomena:** može biti jednostavnije naći Taylorov polinom za funkciju $\frac{1}{1+x}$ i onda u tu
- 2. (10 bodova) Napišite kod u R-u ili Pythonu koji vizualizira funkciju f(x) i Taylorove polinome s jednim, dva i tri člana na segmentu [-0.8, 0.8]. Uočite da konkretne Taylorove polinome koje koristite trebate izračunati u prvom dijelu zadatka i da u ovom dijelu ne piše da koristite $T_1(x)$, $T_2(x)$ i $T_3(x)$, već one polinome koji koriste članove razvoja koji
- 3. (10 bodova) Kvantificirajte točnost aproksimacije Taylorovim polinomima tako da za svaki Taylorov polinom $T_n(x)$, gdje je n jednak onim stupnjevima polinoma određenima u točkama 1 i 2, numerički izračunate:

$$\max_{x \in [-0.8, 0.8]} |f(x) - T_n(x)|$$

Napomena: Ovdje nije potrebna analitička procjena greške — dovoljno je numerički usporediti funkcijske vrijednosti u velikom broju točaka (recimo 1.000).

4. (10 bodova) Prikažite dobivene pogreške u tablici i komentirajte što se događa s pogreškom kada se red produljuje. Kada Taylorova aproksimacija dobro funkcionira, a kada gubi točnost?

Zadatke predajete u Wordu ili Power Pointu na Slacku. Preferirano bi bilo predati zadatke u PDF-u koji je generiran iz LATEXkoda i za takve dokumente se mogu dobiti dodatni bodovi.