19 Internetsicherheit

Für unsere Untersuchung betrachten wir 3 Angreifertypen:

- Typ 1 hat Zugang zu einem Zwischenknoten und versucht
 - passive Angriffe durchzuführen (ausspähen)
 Verletzung des Schutzziels Vertraulichkeit
 - aktive Angriffe durchzuführen (manipulieren)
 Verletzung der Schutzziele Integrität und Verfügbarkeit
- Typ 2 versucht einen Endknoten (Client) anzugreifen
 - Eindringen in das lokale Netz
 Verletzung der Ziele Vertraulichkeit, Integrität, Verfügbarkeit
 - Störung der Funktionsfähigkeit (Denial of Service)
 Verletzung des Schutzziels Verfügbarkeit
- Typ 3 ist ein bösartiger Endknoten (Server), der versucht
 - die Identität eines vertrauenswürdigen Servers anzunehmen

19.1 Angreifertyp 1: Kommunikationssicherheit

- Sicherheit spielte in der Anfangszeit des Internet keine Rolle
- Keine Mechanismen für Vertraulichkeit und Authentizität vorgesehen

TCP/IP-Referenzmodell

OSI-Layer	TCP/IP-Layer	Beispiele
5-7	Application Layer	http, ftp, smtp, imap
4	Transport Layer	TCP, UDP
3	Internet Layer	IPv4, IPv6
1-2	Link Layer	Ethernet, FDDI

Typischer Aufbau:

						TCP Header	Nutzlast		
			IP Header	Nutzlast					
		MAC Empf.	MAC Sender	Type		Nutzlast		Frame Check	
Präamble 10···10	$\begin{array}{c} \text{Start} \\ 1 \cdots 1 \end{array}$	Nutzlast					Inter- frame Gap		

- TCP-Header: Port Empfänger, Port Sender, Paketnummer
- IP-Header: IP-Adresse Empfänger, IP-Adresse Sender

Schutzmaßnahmen

- Auf Application Layer (anwendungsspezifisch):
 - S/MIME (Secure / Multipurpose Internet Mail Extensions)
 - pgp (Pretty Good Privacy)
 - ssh (Secure Shell)
- Auf Transport Layer (transportprotokollspezifisch)
 - tls (transport layer security)
 - Für alle Anwendungen, die TCP nutzen (http, ftp, smtp)

- Internet Layer (transportprotokollunabhängig)
 - IPSec (IP Security)

Transport Layer Security

TLS bietet

- Symmetrische Verschlüsselung der Nutzlast (AES, Triple DES)
- Datenauthentisierung der Nutzlast (HMAC)

Application Layer (https, IMAPS, SMTPS, SFTP)							
Handshake	Change Cipher	Alert	Application Data				
Protocol	Spec. Protocol	Protocol	Protocol				
Record Protocol (Verschlüsselung und Datenauthentisierung)							
Transport Layer (TCP)							
• • • •							

Handshake-Protokoll

- 1. Client: Random Number r_1
- 2. Client \rightarrow Server: client_hallo tls-version, time, r_1 , session-id, cipher-suite (Möglichkeiten) cipher-suite: Algorithmen für Instanzauthentisierung, Schlüsseleinigung Verschlüsselung, Datenauthentisierung
 - Bsp. 1: TLS_RSA_with_AES_128_CBC_Sha256
 - Bsp. 2: TLS_DHE_RSA_with_AES_128_CBC_Sha256
- 3. Server: Random Number r_2
- 4. Server \rightarrow Client: server_hallo tls-version, time, random r_2 , session-id, cipher-suite (ausgewählt)
- 5. Server \rightarrow Client: Server Certificate C_S (für public key pk_S)
- 6. Server \rightarrow Client: Demand Client Certificate (optional)

- 7. Client: Verify Server Certificate Rootzertifikate zum Validieren werden mit den Browsern ausgeliefert
- 8. Client \rightarrow Server: Client Certificate C_C (für public key pk_C) (optional)
- 9. Server: Verify Client Certificate (optional)
- 10. Client: Signatur über alle bisherigen Daten (mit sk_S) (optional)
- 11.a. Fall DHE: Client \leftrightarrow Server:
 - Austausch eines Geheinmisses g über authentisiertes Diffie-Hellman Signatur der Schlüsselanteile über sk_S und sk_C (optional)
 - Ableitung eines Pre Master Key (PMK) aus g, r_1, r_2
- 11.b. Fall RSA: Client \rightarrow Server:
 - Client generiert PMK aus Zufall, r_1, r_2
 - Client schickt PMK verschlüsselt (mit pk_S) an Server
 - 12. Beide: Ableitung von Verschlüsselungs-, Authentisierungsschlüssel, IV
 - 13. Client \leftrightarrow Server (Abschluss), Beide schicken
 - Change Cipher Spec (ab jetzt wird verschlüsselt und authentisiert)
 - Hashwert aller bisherigen Daten (zur Kontrolle)

Sicherheitsbewertung:

- Keine Replay-Attacken möglich (wegen r_1, r_2 , gehen in Schlüssel ein)
- Authentisierung Server:
 - Fall RSA: Nur Server kann PMK entschlüsseln
 - Fall DHE: Schlüsselanteil Server ist authentisiert
- Authentisierung Client: (optional)
 - Fall RSA: Client signiert u.a. r_2 (challenge-response)
 - Fall DHE: Schlüsselanteil Client ist authentisiert
- Kein Schutz der Metadaten (wer komm. wann mit wem)