

Camera Calibration (Compute Camera Matrix P)

簡韶逸 Shao-Yi Chien

Department of Electrical Engineering

National Taiwan University

Fall 2018

Outline

Camera calibration

[Slides credit: Marc Pollefeys]

Resectioning

$$X_i \leftrightarrow X_i \qquad P?$$

Basic Equations

$$\mathbf{x}_{i} = \mathbf{PX}_{i}$$
$$\left[\mathbf{x}_{i}\right] \times \mathbf{PX}_{i}$$

$$\begin{bmatrix} \mathbf{0}^{\top} & -w_i \mathbf{X}_i^{\top} & y_i \mathbf{X}_i^{\top} \\ w_i \mathbf{X}_i^{\top} & \mathbf{0}^{\top} & -x_i \mathbf{X}_i^{\top} \\ -y_i \mathbf{X}_i^{\top} & x_i \mathbf{X}_i^{\top} & \mathbf{0}^{\top} \end{bmatrix} \begin{pmatrix} \mathbf{P}^1 \\ \mathbf{P}^2 \\ \mathbf{P}^3 \end{pmatrix} = \mathbf{0}$$

$$\begin{bmatrix} \mathbf{0}^{\top} & -w_i \mathbf{X}_i^{\top} & y_i \mathbf{X}_i^{\top} \\ w_i \mathbf{X}_i^{\top} & \mathbf{0}^{\top} & -x_i \mathbf{X}_i^{\top} \end{bmatrix} \begin{pmatrix} \mathbf{P}^1 \\ \mathbf{P}^2 \\ \mathbf{P}^3 \end{pmatrix} = \mathbf{0}$$

$$Ap = 0$$

Basic Equations

$$Ap = 0$$

minimal solution

P has 11 dof, 2 independent eq./points

 \Rightarrow 5½ correspondences needed (say 6)

Over-determined solution

$$n \ge 6$$
 points

minimize $\|Ap\|$ subject to constraint

$$\|\mathbf{p}\| = 1$$

or
$$\|\hat{\mathbf{p}}^3\| = 1$$

$$P = \hat{p}^3$$

Degenerate Configurations

More complicate than 2D case

(i) Camera and points on a twisted cubic

(ii) Points lie on plane or single line passing through projection center

Data Normalization

Less obvious

(i) Simple, as before

(ii) Anisotropic scaling

Line Correspondences

Extend DLT to lines

$$\Pi = \mathbf{P}^{\mathrm{T}} \mathbf{1}_{i}$$
 (back-project line)

$$l_i^T P X_{1i} \quad l_i^T P X_{2i}$$
 (2 independent eq.)

Geometric Error

$$\sum_{i} d(\mathbf{x}_{i}, \hat{\mathbf{x}}_{i})^{2}$$

$$\min_{\mathtt{P}} \sum_{i} d(\mathbf{x}_{i}, \mathtt{P}\mathbf{X}_{i})^{2}$$

Gold Standard Algorithm

Objective

Given $n \ge 6$ 2D to 2D point correspondences $\{X_i \leftrightarrow x_i'\}$, determine the Maximum Likelyhood Estimation of P

Algorithm

- Linear solution:
 - (a) Normalization: $\tilde{X}_i = UX_i$ $\tilde{x}_i = Tx_i$
 - (b) DLT:
- (ii) Minimization of geometric error: using the linear estimate as a starting point minimize the geometric error:

$$\min_{\mathbf{P}} \sum_i d(\mathbf{\tilde{x}}_i, \mathbf{\tilde{P}}\mathbf{\tilde{X}}_i)^2$$
 Denormalization: $\mathbf{P} = \mathbf{T}^{\text{-1}}\mathbf{\tilde{P}}\mathbf{U}$

Calibration Example

- (i) Canny edge detection
- (ii) Straight line fitting to the detected edges
- (iii) Intersecting the lines to obtain the images corners

typically precision <1/10

(HZ rule of thumb: 5n constraints for n unknowns

	f_y	f_x/f_y	skew	x_0	y_0	residual
linear	1673.3	1.0063	1.39	379.96	305.78	0.365
iterative	1675.5	1.0063	1.43	379.79	305.25	0.364

Errors in the World

$$\sum_{i} d(\mathbf{X}_{i}, \widehat{\mathbf{X}}_{i})^{2} \qquad \mathbf{x}_{i} = P\widehat{\mathbf{X}}_{i}$$

Errors in the image and in the world

$$\sum_{i=1}^{n} d_{\text{Mah}}(\mathbf{x}_i, \mathbf{P}\widehat{\mathbf{X}}_i)^2 + d_{\text{Mah}}(\mathbf{X}_i, \widehat{\mathbf{X}}_i)^2$$

$$\widehat{\mathbf{X}}_i$$

Geometric Interpretation of Algebraic error

$$\sum_{i} (\hat{w}_{i} d(\mathbf{x}_{i}, \hat{\mathbf{x}}_{i}))^{2}$$

$$\hat{w}_{i} (\hat{x}_{i}, \hat{y}_{i}, 1) = PX_{i} \qquad \hat{w}_{i} = \pm \|\hat{\mathbf{p}}^{3}\| \operatorname{depth}(\mathbf{X}; \mathbf{P})$$
therefore, if $\|\hat{\mathbf{p}}^{3}\| = 1$ then
$$\hat{w}_{i} d(\mathbf{x}_{i}, \hat{\mathbf{x}}_{i}) \sim fd(\mathbf{X}_{i}, \hat{\mathbf{X}}_{i})$$

note invariance to 2D and 3D similarities given proper normalization

Estimation of Affine Camera

$$\begin{bmatrix} \mathbf{0}^{\top} & -w_i \mathbf{X}_i^{\top} & y_i \mathbf{X}_i^{\top} \\ w_i \mathbf{X}_i^{\top} & \mathbf{0}^{\top} & -x_i \mathbf{X}_i^{\top} \end{bmatrix} \begin{pmatrix} \mathbf{P}^1 \\ \mathbf{P}^2 \\ \mathbf{P}^3 \end{pmatrix} = \mathbf{0}$$

$$\begin{bmatrix} \mathbf{0}^{\top} & -\mathbf{X}_i^{\top} \\ \mathbf{X}_i^{\top} & \mathbf{0}^{\top} \end{bmatrix} \begin{pmatrix} \mathbf{P}^1 \\ \mathbf{P}^2 \end{pmatrix} + \begin{pmatrix} y_i \\ -x_i \end{pmatrix} = \mathbf{0}$$

$$||\mathbf{A}\mathbf{p}||^2 = \sum_i (x_i - \mathbf{P}^{1\top}\mathbf{X}_i)^2 + (y_i - \mathbf{P}^{2\top}\mathbf{X}_i)^2 = \sum_i d(\mathbf{x}_i, \hat{\mathbf{x}}_i)^2$$

note that in this case algebraic error = geometric error

Gold Standard Algorithm

Objective

Given $n \ge 4$ 2D to 2D point correspondences $\{X_i \leftrightarrow x_i^*\}$, determine the Maximum Likelyhood Estimation of P (remember $P^{3T}=(0,0,0,1)$)

Algorithm

- (i) Normalization: $\widetilde{X}_i = UX_i$ $\widetilde{x}_i = Tx_i$
- (ii) For each correspondence

$$\begin{bmatrix} \mathbf{0}^{\top} & -\mathbf{X}_i^{\top} \\ \mathbf{X}_i^{\top} & \mathbf{0}^{\top} \end{bmatrix} \begin{pmatrix} \mathbf{P}^1 \\ \mathbf{P}^2 \end{pmatrix} + \begin{pmatrix} y_i \\ -x_i \end{pmatrix} = \mathbf{0}$$

$$A_8p_8 = b$$

(iii) solution is

$$p_8 = A_8^+ b$$

(iv) Denormalization: $P = T^{-1}\tilde{P}U$