Heart Disease Detection - Project Report

Made by:

- --> Mohamed Ibrahim Hussein 2305026
- --> Rahma Mohamed Mahmoud 2305286
- --> Noreen Mohamed Mahmoud 2305308

Overview:

This project focuses on detecting heart disease using two approaches: Machine Learning modelsand a Rule-Based Expert System. It includes data preprocessing, model training, evaluation, and a user-friendly UI for making predictions.

Project Components:

. - - - - - - - - - - - - - - - - - -

- 1. Data:
 - raw_data.csv: Original dataset.
- cleaned_data_with_age_sex.csv: Cleaned dataset with important features like age and sex.
 - 2. Machine Learning:
 - train_model.py: Trains various ML models.
- predict.py: Uses trained model (heart_disease_model.pkl) to make predictions.
 - heart_disease_model.pkl: Saved model for quick predictions.
 - 3. Rule-Based System:
- expert_system.py: Diagnoses heart disease based on predefined medical rules.
 - rules.py: Contains the diagnostic rules.
 - 4. Notebooks:
 - data_analysis.ipynb: Data exploration and visualization.
 - model_training.ipynb: Model training and evaluation.
 - 5. Reports:
 - accuracy_comparison.ipynb / .md: Compares ML model accuracy.
 - comparison_plot.png: Visual representation of model performance.
 - 6. UI:
 - app.py: Streamlit app for user interaction and predictions.

Usage Instructions:

- 1. Install dependencies: pip install -r requirements.txt
- 2. Train Model: python ml_model/train_model.py
- 3. Predict: python ml_model/predict.py
- 4. Run Expert System: python rule_based_system/expert_system.py
- 5. Launch UI: streamlit run ui/app.py

Conclusion:

The Random Forest model showed the highest accuracy (88%) among all evaluated

models. The project demonstrates and expert knowledge	effective	heart	disease	detection	using	both	ΑI