

Optimization Approaches for Self-Adaptive Systems

Tim Engbrocks | July 01, 2021

Table of contents

- 1. Introduction
- 2. Self-Adaptive Systems
- 3. Optimization Approaches
- 4. Classification Proposal
- 5. Conclusion

Introduction
000

"The looming software crisis" - IBM, 2001

The complexity of software is constantly increasing.

- Modern language models:
 - GPT-3 by OpenAI: 175 billion parameters 2020
 - Turing-NLG by Microsoft: 17 billion parameters 2020
- Tesla Autopilot Al predicts 10,000 parameters 2021

Netflix Microservice Architecture

Josh Evans, CTO @ Netflix, QCon 2016 2016

Classification Proposal

The Solution: Autonomous Management

Kephart and Chess 2003

Introduction 000

Self-Adaptive Systems 0000

Optimization Approaches

Classification Proposal 000000000

Definition

Self-Adaptive System

A system which autonomously manages its self by:

- Monitoring its environment,
- analyzing changes
- planning adaptations and
- executing adaptations

Example: Online store

- Scenario: System administrator of a commercial web service.
- Common task: Update system parameter X based on metric Y.

This can scenario can benefit from a Self-Adaptive System:

- Generalized adaptation rule: If metric Y crosses threshold Z: Update system parameter X.
- Example: If the server load gets too high: Start a new server instance.

Classifying Self-Adaptive Systems

Krupitzer et al. 2015

Introduction

Self-Adaptive Systems 0000

Optimization Approaches

Classification Proposal

Limitations of Self-Adaptive Systems

Uncertainty

Environment changes ⇒ Unexpected adaptation results

Introduction 000

Self-Adaptive Systems 000

Optimization Approaches

Classification Proposal

Optimizations for Self-Adaptive Systems

There is one main approach for optimizing Self-Adaptive Systems that is being used:

Dynamically update adaptation rules.

In most cases machine learning is used to generate new adaptation rules or to update them.

But other aspects can be optimized as well:

Adaptation Control: How

Level: Where

Technique: What

Developing a classification

The classification is based on three concepts:

- Reflective computation (Danny Weyns and Andersson 2012)
- The 5W+1H questions (Salehie and Tahvildari 2009)
 - Who, What, Where, When, Why and How
- The taxonomy for Self-Adaptive Systems (Krupitzer et al. 2015)

11/20

Classification proposal

Introduction 000

Self-Adaptive Systems 0000

Optimization Approaches

Classification Proposal 00000000

Classification proposal - Location

Location

- Adaptation Control
- Level
- Technique

Introduction 000

Self-Adaptive Systems 0000

Optimization Approaches

Classification Proposal 00000000

Classification proposal - Time

Time

- Design time
- Run time / Online phase
- Offline phase

Classification proposal - Technique

Technique

- Rules / Policies
- Knowledge
- Adaptation Technique
- Level

Classification proposal - Purpose

Purpose

- Update Knowledge
- Apply Rules / Policies
- Goal Satisfaction
- Utility max-/minimization

Classification proposal - Approach

Approach

- Internal / External
- Degree of decentralization:
 - Fully centralized
 - Fully decentralized
 - Hybrid

Reflective Adaptation Control

- Update Models
- Modify Rules / Policies
- Satisfy Goals
- Max-/Minimize Utilities

Classification proposal

Introduction 000

01.07.2021

00000000

Conclusion

This field still requires further research:

- The proposed classification has to be applied to existing approaches. This could verify the classification and give a structured overview of the field.
- Different approaches need to be tested. For example: Optimization Approaches which focus on the Level or Technique.
- Most approaches that are currently used are highly domain specific. This applies to Self-Adaptive Systems and their Optimization Approaches.

Literatur

- Sam Malek Danny Weyns and Jesper Andersson. "FORMS: Unifying Reference Model for Formal Specification of Distributed Self-Adaptive Systems". In: *ACM Trans. Auton. Adapt. Syst.* 7.1 (May 2012). ISSN: 1556-4665. DOI: 10.1145/2168260.2168268.
- Josh Evans. Josh Evans, QCon 2016. Accessed: 2021-07-01. 2016. URL: https://www.infoq.com/presentations/netflix-chaos-microservices/.
- J.O. Kephart and D.M. Chess. "The vision of autonomic computing". In: *Computer* 36.1 (2003), pp. 41–50. DOI: 10.1109/MC.2003.1160055.
- Christian Krupitzer et al. "A survey on engineering approaches for self-adaptive systems". In: *Pervasive and Mobile Computing* 17 (2015). 10 years of Pervasive Computing' In Honor of Chatschik Bisdikian, pp. 184–206. ISSN: 1574-1192. DOI: 10.1016/j.pmcj.2014.09.009.
- Microsoft. *Turing-NLG by Microsoft*. Accessed: 2021-07-01. 2020. URL: https://www.microsoft.com/en-us/research/blog/turing-nlg-a-17-billion-parameter-language-model-by-microsoft/.
- Nvidia. OpenAl Presents GPT-3, a 175 Billion Parameters Language Model. Accessed: 2021-07-01. 2020.

 Referenced RL: https://developer.nvidia.com/blog/openai-presents-gpt-3-a-175-billion-parameters-language-model/.