Noncommutative Poincare recurrence and multiple recurrence

Antareep Saud

August 5, 2024

C*-algebra

Definition (Banach algebra)

A Banach algebra A is an algebra over $\mathbb C$ with a norm with respect to which it is a normed space and is sub-multiplicative: for all $x,y\in A,\ \|xy\|\leq \|x\|\,\|y\|.$

Definition (Involution)

An *involution* on algebra A is a map $A \ni x \mapsto x^* \in A$ such that

$$(x+y)^* = x^* + y^*, \quad (\lambda x)^* = \overline{\lambda} x^*, \quad (xy)^* = y^* x^*, \quad x^{**} = x.$$

 x^* is called *adjoint* of x.

Definition (C*-algebra)

A *C*-algebra* is a Banach algebra with an involution that satisfies the C*-condition:

$$||x^*x|| = ||x||^2$$
.

C*-algebra

Example

- 1. $\mathcal{B}(\mathcal{H})$ on a Hilbert space H
- 2. Norm-closed *-subalgebras of $\mathcal{B}(\mathcal{H})$ are called 'concrete' C*-algebras.
- 3. $L^{\infty}(\mathbb{R})$ with pointwise operations and involution $(f \mapsto \overline{f})$.
- 4. $L^1(\mathbb{R})$ with convolution and above involution is not a C*-algebra.
- 5. $C_0(X)$ on locally compact Hausdorff space X and by Gelfand-Naimark theorem, every commutative C*-algebra is isometrically isomorphic to some $C_0(X)$.

Positive elements

$$a \in \mathcal{B}(\mathcal{H})$$

Definition

Resolvent $\rho(a) = \{\lambda \in \mathbb{C} \mid \lambda - a \text{ is invertible}\}.$ Spectrum $\sigma(a) = \mathbb{C} \setminus \rho(A).$

Definition (Positive elements)

 $a \in \mathcal{B}(\mathcal{H})$ is positive if $a^* = a$ and $\sigma(a) \geq 0$.

Theorem

The following are equivalent:

- (i) a is positive.
- (ii) $a = b^2$ for some $b \in \mathcal{B}(\mathcal{H})$.
- (iii) $a = x^*x$ for some $x \in \mathcal{B}(\mathcal{H})$.
- (iv) $\langle x\xi,\xi\rangle \geq 0$ for all $\xi\in\mathcal{H}$.

Positive elements span $\mathcal{B}(\mathcal{H})$.

States

Definition

Positive functional A functional $\phi: A \to \mathbb{C}$ if $\phi(a) > 0$ when a > 0.

States A positive linear functional of norm 1.

Example

 $0 < \xi \in H$, define $\phi : \mathcal{B}(H) \to \mathbb{C}, \ \phi(x) = \langle x\xi, \xi \rangle$ is positive. ϕ is a state if $\|\xi\| = 1$.

Theorem

- (i) Positive linear functionals are continuous.
- (ii) If e_{λ} is an approximate identity on A, then $\|\phi\| = \lim \phi(e_{\lambda})$.
- (iii) A continuous linear functional is a state, if for some approximate identity e_{λ} , $\|\phi\| = 1 = \lim \phi(e_{\lambda})$.

GNS-representation

Definition

Representation Representation of A on a Hilbert space H is a *-homomorphism from A to $\mathcal{B}(H)$.

Cyclic vector $\xi \in H$, for the representation $\pi : A \to \mathcal{B}(H)$ if $\{\pi(x)\xi \mid x \in A\}$ is dense in H.

Theorem (GNS construction)

For any state, ϕ on A, there exists a representation π_{ϕ} on a Hilbert space H_{ϕ} , with a cyclic vector ξ_{ϕ} such that $\|\phi\| = \|\xi_{\phi}\|^2$ and

$$\phi(x) = \langle \pi_{\phi}(x)\xi_{\phi}, \xi_{\phi} \rangle \ \forall x \in A.$$

 $(H_{\phi}, \pi_{\phi}, \xi_{\phi})$ is called the GNS triple for ϕ . We denote the vector $\pi_{\phi}(x)\xi_{\phi}$ as \hat{x} .

Weak topology

Definition (Weak topology)

 $\{f_i: X \to X_i\}_{i \in I}$ is a family of maps, and τ_i is a topology on X_i with subbases S_i . We define a topology τ on X, called the *weak topology induced by* $\{f_i\}$, by defining a subbases, $S = \{f_i^{-1}(V) \mid V \in S_i\}_{i \in I}$.

Theorem

- (i) τ is the smallest topology such that the f_i 's are continuous.
- (ii) For a topological space Z and a function $g: Z \to X$, g is continuous if and only if $f_i \circ g$ is continuous for all $i \in I$.
- (iii) A net $\{x_{\lambda}\}_{{\lambda}\in{\Lambda}}$ converges to x in τ if and only if the net $f_i(x_{\lambda})_{{\lambda}\in{\Lambda}}$ converges to $f_i(x)$ in τ_i for all $i\in{I}$.

Weak topologies

Definition (Topology induced by seminorms)

If X is a vector space, and $\{p_i \mid i \in I\}$ is a family of seminorms on X. For $x \in X$, $i \in I$, define linear forms $f_{i,x}: X \to [0,\infty)$, $f_{i,x}(y) = p_i(y-x)$. Then the topology τ on X induced by these linear forms is called the *topology induced by seminorms*.

Theorem

- (i) For each $x \in X$, $i \in I$, $\varepsilon > 0$. define $U_{(i,x,\varepsilon)} = \{ y \in X \mid p_i(y-x) < \varepsilon \}$. The family $\{ U_{(i,x,\varepsilon)} \mid x \in X, \ i \in I, \ \varepsilon > 0 \}$ forms a subbases for τ .
- (ii) A net $\{x_{\lambda}\}_{{\lambda}\in{\Lambda}}$ converges to x in τ if and only if the net $\{p_i(x_{\lambda}-x)\}_{{\lambda}\in{\Lambda}}$ converges to 0 in $\mathbb R$ for all $i\in{I}$.
- (iii) (X, τ) is a topological vector space.
- (iv) τ is the smallest topology such that (X,τ) is a topological vector space with p_i continuous for all $i \in I$.

Topologies on $\mathcal{B}(\mathcal{H})$

Weak operator is induced by the family of semi-norms

$$x \mapsto |\langle x\xi, \eta \rangle|$$
 for $\xi, \eta \in \mathcal{H}$.

Strong operator is induced by the family of semi-norms

$$x \mapsto ||x\xi|| \text{ for } \xi \in \mathcal{H}.$$

Ultraweak or σ -weak or w-topology is induced by the family of semi-norms

$$x \mapsto \left| \sum_{k=1}^{\infty} \langle x \xi_k, \eta_k \rangle \right| \text{ for } \{\xi_k\}, \{\eta_k\} \in \mathcal{H},$$
$$\sum_{k=1}^{\infty} \|\xi_k\|^2 < \infty, \sum_{k=1}^{\infty} \|\eta_k\|^2 < \infty.$$

Topologies on $\mathcal{B}(\mathcal{H})$

- ► For $\xi, \eta \in \mathcal{H}$, define the linear forms on $\mathcal{B}(\mathcal{H})$, $\omega_{\xi,\eta}(\mathbf{x}) = \langle \mathbf{x}\xi, \eta \rangle$.
- Let $\mathcal{B}(\mathcal{H})_{\sim}$ be the vector space generated by these forms in $\mathcal{B}(\mathcal{H})^*$ and let $\mathcal{B}(\mathcal{H})_*$ be the norm closure of $\mathcal{B}(\mathcal{H})_{\sim}$ in $\mathcal{B}(\mathcal{H})^*$.
- ▶ Then wo-topology is also $\sigma(\mathcal{B}(\mathcal{H}), \mathcal{B}(\mathcal{H})_{\sim})$. And we can show w-topology is given by $\sigma(\mathcal{B}(\mathcal{H}), \mathcal{B}(\mathcal{H})_*)$. This follows from the density of finite-rank operators in trace-class operators.

Theorem

Let \mathcal{H} be a Hilbert space. Then

- (i) $\mathcal{B}(\mathcal{H})_{\sim}$ is the set of all wo-continuous linear forms on $\mathcal{B}(\mathcal{H})$.
- (ii) $\mathcal{B}(\mathcal{H})_*$ is the set of all w-continuous linear forms on $\mathcal{B}(\mathcal{H})$.
- (iii) wo-topology and w-topology coincide in $\mathcal{B}(\mathcal{H})_1$.
- (iv) A linear form ϕ on $\mathcal{B}(\mathcal{H})$ is w-continuous \iff its restriction to $\mathcal{B}(\mathcal{H})_1$ is wo-continuous.

von Neumann algebra

Definition (Commutant)

Let $\mathcal{X} \subset \mathcal{B}(\mathcal{H})$, then commutant of \mathcal{X} , $\mathcal{X}' = \{x' \in \mathcal{B}(\mathcal{H}) \mid x'x = xx' \text{ for all } x \in \mathcal{X}\}$

Theorem (von Neumann density theorem)

Let $\mathcal{A} \subset \mathcal{B}(\mathcal{H})$ be a unital *-subalgebra, then

$$\mathcal{A}'' = \overline{\mathcal{A}}^{wo} = \overline{\mathcal{A}}^{so} = \overline{\mathcal{A}}^{\sigma-wo}$$

Definition (von Neumann algebra)

A subalgebra $\mathcal{M} \subset \mathcal{B}(\mathcal{H})$ is a von Neumann algebra if it is unital, self-adjoint and equals one of the above.

Operators on Hilbert space

On the set of all self-adjoint operators, $\mathcal{B}(\mathcal{H})_{sa}$, we have an order relation:

$$x, y \in \mathcal{B}(\mathcal{H})_{sa}, \ x \ge y \iff x - y \ge 0.$$

Theorem

Let $\{x_i\} \subset \mathcal{B}(\mathcal{H})_{sa}$ be a bounded increasing net. Then, there is an $x \in \mathcal{B}(\mathcal{H})_{sa}$ such that $x = \sup_i x_i$. Moreover, $x = so\text{-}\lim_i x_i$.

Theorem (Borel functional calculus)

 $x \in \mathcal{B}(\mathcal{H})_{sa}$, then we have a *-homomorphism $\mathcal{B}(\sigma(x)) \ni f \mapsto f(x) \in \mathcal{R}(\{x\})$, the von Neumann algebra generated by x.

Corollary

A von Neumann algebra equals the norm-closed linear span of its projections.

Lattice of projections

Denote the set of all projections on $\mathcal{B}(\mathcal{H})$ by $\mathcal{P}_{\mathcal{B}(\mathcal{H})}$.

Definition

Let $\{e_i\}_{i\in I}\subset \mathcal{P}_{\mathcal{B}(\mathcal{H})}$. Define

- ▶ $\bigvee_{i \in I} e_i = \text{projection onto } \overline{\sum_{i \in I} e_i \mathcal{H}}$. It is the least upper bound of the family $\{e_i\}$
- ▶ $\bigwedge_{i \in I} e_i$ = projection onto $\bigcap_{i \in I} e_i \mathcal{H}$. It is the greatest lower bound of the family $\{e_i\}$

Theorem

 $\mathcal{P}_{\mathcal{B}(\mathcal{H})}$ forms a complete lattice.

Theorem

Let \mathcal{M} be a von Neumann algebra and \mathcal{N} be a left ideal, then there exists a unique projection $e \in \mathcal{M}$ such that $\overline{\mathcal{N}}^w = \mathcal{M}e$.

Kaplansky density theorem

Theorem

Let $\mathcal{M} \subset \mathcal{B}(\mathcal{H})$ be a von Neumann algebra. If $\mathcal{A} \subset \mathcal{M}$ be a so-dense *-subalgebra of \mathcal{M} , then the unit ball of \mathcal{A} is so-dense in the unit ball of \mathcal{M} .

Corollary

Let $\mathcal{M} \subset \mathcal{B}(\mathcal{H})$ be a unital *-algebra. Then \mathcal{M} is a von Neumann algebra if and only if \mathcal{M}_1 is w-compact.

Corollary

Let $\phi: \mathcal{M}_1 \to \mathcal{M}_2$ be a unital w-continuous *-homomorphism between von Neumann algebra, then $\phi(\mathcal{M}_1)$ is a von Neumann algebra.

W*-algebra

Definition (W*-algebra)

A C*-algebra $\mathcal M$ if it admits a predual $\mathcal M_*$, that is, $\mathcal M$ is isometrically isomorphic to the dual space of some Banach space, which we call the predual of $\mathcal M$ and denote by $\mathcal M_*$.

Theorem

Every von Neumann algebra is a W*-algebra.

(The converse is also true)

Hence, the double dual of a C*-algebra is a von Neumann algebra and by Goldstine theorem, it is weak*-dense. Using this we can reduce C*-algebras problems to von Neumann algebra.

Conditional expectation

Definition

Let $\mathcal A$ be a C*-algebra, $\mathcal B\subset\mathcal A$ be a C*-subalgebra, then a linear map $\Phi:\mathcal A\to\mathcal B$ is a

Projection if $\Phi(b) = b$ for every $b \in \mathcal{B}$. Then $\Phi \circ \Phi = \Phi$.

 \mathcal{B} -linear if $\Phi(ab) = \Phi(a)b$ and $\Phi(ba) = b\Phi(a)$ for $a \in \mathcal{A}, b \in \mathcal{B}$.

Conditional expectation if it is \mathcal{B} -linear and a positive map.

Theorem

Every projection of norm 1, $\Phi: \mathcal{A} \to \mathcal{B}$ is a conditional expectation.

Envelopping von Neumann algebra

Definition (Enveloping von Neumann algebra of a C*-algebra)

Let A be a C*-algebra and consider the universal representation,

$$\pi_{\mathcal{A}} = igoplus_{\phi \in \mathcal{S}(\mathcal{A})} \pi_{\phi} : \mathcal{A} o \mathcal{B}(\mathcal{H}_{\mathcal{A}}).$$

The enveloping von Neumann algebra of A, N_A is defined to be w-closure of $\pi_A(A)$.

Theorem

There is a map $N_A \to A^{**}$ which is a surjective linear isometry and a $(w, \sigma(A^{**}, A^*))$ -homeomorphism.

Theorem

Let \mathcal{M} be a von Neumann algebra with predual \mathcal{M}_* , there exists a unique central projection $p \in \mathcal{N}_{\mathcal{M}}$ such that the map $\mathcal{M} \ni x \mapsto \pi_{\mathcal{M}}(x)p \in (\mathcal{N}_{\mathcal{M}})p$ is a surjective *-isomorphism.

Poincare recurrence in von Neumann algebra

Theorem

Let \mathcal{M} be a von Neumann algebra, ϕ a faithful normal state on \mathcal{M} , and $\alpha: \mathcal{M} \to \mathcal{M}$ be a *-homomorphism such that $\phi \circ \alpha = \phi$. Then, for every $p \in \mathcal{M}$ and every $n \in \mathbb{N}$,

$$\bigvee_{k=n}^{\infty} \alpha^k(p) = \bigvee_{k=0}^{\infty} \alpha^k(p) \ge p.$$

This implies Poincare recurrence: for every projection $p \in \mathcal{M}$,

$$p \wedge \bigwedge_{n=0}^{\infty} \bigvee_{k=n}^{\infty} \alpha^{k}(p) = p.$$

Poincare recurrence in von Neumann algebra

Proof.

We show α is unital and normal. This gives, $\ker(\alpha) = \mathcal{M}(1_{\mathcal{M}} - q)$, which implies $\mathcal{M}q \cong \alpha(\mathcal{M})$. Then,

$$\alpha \left(\bigvee_{k=n}^{\infty} \alpha^{k}(p) \right) = \alpha \left(\left(\bigvee_{k=n}^{\infty} \alpha^{k}(p) \right) q \right)$$

$$= \alpha \left(\left(\bigvee_{k=n}^{\infty} \alpha^{k}(p) q \right) \right)$$

$$= \bigvee_{k=n}^{\infty} \alpha(\alpha^{k}(p)q)$$

$$= \bigvee_{k=n}^{\infty} \alpha^{k+1}(p)$$

C*-dynamical systems

Definition (C*-dynamical system)

A C^* -dynamical system is a triplet $(\mathfrak{A},\phi,\alpha)$, where \mathfrak{A} is a C^* -algebra, ϕ is a state and $\alpha:\mathfrak{A}\to\mathfrak{A}$ is a C^* -algebra homomorphism.

Definition (State-preserving C*-dynamical system)

A C*-dynamical system $(\mathfrak{A}, \phi, \alpha)$ is *state-preserving* if $\phi \circ \alpha = \phi$.

Example

Given a MPS (X, \mathcal{B}, μ, T) , we have a C*-dynamical system, $(\mathfrak{A}, \phi, \alpha)$, where $\mathfrak{A} = L^{\infty}_{\mu}(X)$, $\phi(f) = \int f d\mu$, and $\alpha = U_T$.

Noncommutative Poincare Recurrence

Definition (Relatively dense set)

A subset $N \subset \mathbb{N}$ is *relatively dense* if there is an L > 0 such that every interval in \mathbb{N} of length L has an element of N.

Note, relatively dense set will have positive density.

Theorem (Noncommutative Khintchine recurrence theorem)

In state-preserving C*-dynamical system, $(\mathfrak{A}, \phi, \alpha)$, for every $x \in \mathfrak{A}$ and every $\varepsilon > 0$, there is a relatively dense set $\mathbb{N} \subset \mathbb{N}$ such that, for all $n \in n$,

$$\Re \phi(\alpha^n(x^*)x) \ge |\phi(x)|^2 - \varepsilon.$$

Noncommutative Poincare Recurrence

Theorem (Noncommutative Poincare recurrence theorem)

Let $(\mathfrak{A},\phi,\alpha)$ be a state-preserving C*-dynamical system. Then

$$\liminf_{n\to\infty}\frac{1}{n}\sum_{k=0}^{n-1}|\phi(\alpha^k(a^*)a)|>0,$$

for every $a \in \mathfrak{A}$ with $\phi(a) > 0$.

Recall,

Lemma

For bounded sequences a_n , $d\text{-}\lim_{n\to\infty}a_n=a\iff \lim_{n\to\infty}\frac{1}{n}\sum_{k=0}^{n-1}|a_k-a|=0.$

Noncommutative Khintchine Recurrence

Definition

Let $\mathfrak A$ be a C*-algebra, ϕ a state and $\alpha: \mathfrak A \to \mathfrak A$ a positive linear map such that $\phi \circ \alpha = \phi$. Consider the GNS triple $(H_{\phi}, \pi_{\phi}, \xi_{\phi})$ for state ϕ . The linear map $\alpha: \mathfrak A \to \mathfrak A$ induces a linear map $U_{\alpha}: H_{\phi} \to H_{\phi}, \ U_{\alpha}(\hat{x}) = \widehat{\alpha(x)}$.

Lemma

- 1. If $\phi(\alpha(x)^*\alpha(x)) \leq \phi(x^*x)$ for all $x \in \mathfrak{A}$, then
 - (i) U_{α} is a contraction.
 - (ii) $U_{\alpha}\xi_{\phi}=\xi_{\phi}$.
 - (iii) If P is the orthogonal projection onto $\{\xi \in H_{\phi} \mid U_{\alpha}\xi = \xi\}$, then $U_{\alpha}P = PU_{\alpha} = U$, and $\frac{1}{n}\sum_{k=0}^{n-1}U_{\alpha}^{k} \xrightarrow{so} P$.
- 2. If α is multiplicative, then
 - (i) U_{α} is an isometry.
 - (ii) $U_{\alpha}U_{\alpha}^{*}$ is the orthogonal projection onto $\overline{\pi_{\phi}(\alpha(\mathfrak{A}))\xi_{\phi}}$, and thus, belongs to the commutant of $\pi_{\phi}(\alpha(\mathfrak{A}))$.
 - (iii) $U_{\alpha} \circ \pi_{\phi}(a) = \pi_{\phi}(\alpha(a)) \circ T_{\alpha}$ for all $a \in \mathfrak{A}$.

Noncommutative Khintchine Recurrence

We consider a unital C*-dynamical system for simplicity.

Lemma

Let H be a Hilbert space and let $T: H \to H$ be an operator such that ||Tx|| = ||x||, for all $x \in H$ and Tv = v for some $v \in H$ with norm 1. Then, for every $x \in H$ and $\varepsilon > 0$, there is a relatively dense set $N \subset \mathbb{N}$ such that, for all $n \in n$,

$$\Re \langle T^n x, x \rangle \ge |\langle x, v \rangle|^2 - \varepsilon.$$

Proof of Khintchine recurrence.

Note, U_{α} is an isometry and $U_{\alpha}(\pi_{\phi}(1)) = \hat{1}$. We apply the lemma on $H = H_{\phi}$, $U = U_{\alpha}$ and $v = \hat{1}$. Then

$$\Re \langle U_{\alpha}^{n} \hat{\mathbf{x}}, \hat{\mathbf{x}} \rangle = \Re \phi(\alpha^{n}(\mathbf{x}^{*})\mathbf{x}) \geq |\langle \pi_{\phi}(\mathbf{x}), \pi_{\phi}(1) \rangle|^{2} - \varepsilon \geq |\phi(\mathbf{x})|^{2} - \varepsilon.$$

Definition (Compact systems)

A C*-dynamical system $(\mathfrak{A}, \phi, \alpha)$ if $\{U^n(\hat{x}) \mid n \in \mathbb{N}\}$ is precompact in H_{ϕ} for all $x \in \mathfrak{A}$.

Theorem

Let $(\mathfrak{A}, \phi, \alpha)$ be a compact state preserving C^* -dynamical system, with the support projection of ϕ , $s(\phi)$ in the double dual \mathfrak{A}^{**} being central, then for every $p \in \mathbb{N}$, $m_0, m_1, \ldots, m_p \in \mathbb{N}$,

 $x_0, x_1, \ldots, x_p \in \mathfrak{A}$ and $\varepsilon > 0$, there is a relatively dense set $N \subset \mathbb{N}$ such that

$$|\phi(\alpha^{m_0n}(x_0)\alpha^{m_1n}(x_1)\dots\alpha^{m_pn}(n_k))-\phi(x_0x_1\dots x_p)|\leq \varepsilon \text{ for all } n\in N,$$

Note, $s(\phi)$ is central if and only if ξ_{ϕ} is cyclic for $\pi_{\phi}(\mathfrak{A})$.

It follows that

$$\phi(\alpha^{m_0n}(x_0)\alpha^{m_1n}(x_1)\dots\alpha^{m_pn}(n_p))\geq \phi(x_0x_1\dots x_p)-\varepsilon \text{ for all } \varepsilon>0.$$

As in the proof of noncommutative Poincare recurrence, we have the multiple recurrence property: for $0 < a \in \mathfrak{A}$, if $\phi(a) > 0$, then

$$\liminf_{n\to\infty}\frac{1}{n+1}\sum_{k=0}^n|\phi(a\alpha^{m_1k}(a)\ldots\alpha^{m_pn}(a))|>0.$$

Lemma

Let (X, d) is a totally bounded metric space and $\epsilon > 0$, then the set $\{n \in \mathbb{N} \mid \text{ there are } x_1, \dots, x_n \in X \text{ such that } d(x_j, x_k) > \epsilon \text{ for } j \neq k\}$ is bounded.

Theorem

Let (Ω, d) be a metric space, $T : \Omega \to \Omega$ an isometry, and $\omega \in \Omega$, then the following statements are equivalent:

- (i) the orbit of ω , $\{T^n\omega \mid n \in \mathbb{N}\}$ is totally bounded.
- (ii) for all $\varepsilon > 0$ there exists a relatively dense set $N \subset \mathbb{N}$ such that $d(T^n\omega,\omega) \leq \varepsilon$, for all $n \in N$.

Consider a contraction U on a Hilbert space H. Define the set of almost periodic vectors,

$$H_{AP}^{U} = \{ \xi \in H \mid \{ U^{n}(\xi) \mid n \in \mathbb{N} \} \text{ is relatively norm-compact} \}.$$

It is a U-invariant, linear subspace of H and it is easy to show that it closed.

Lemma

Let H be a Hilbert space, $\mathcal{M} \subset \mathcal{B}(\mathcal{H})$ a closed linear subspace, $\xi_0 \in H$ such that $\overline{\mathcal{M}'\xi_0} = H$ and U a linear isometry on H such that $\mathcal{M}\xi_0 \subset H^U_{AP}$. For a linear contraction $\theta: H \to H \mid \theta(T)\xi_0 \in \overline{\{U^nT\xi_0 \mid n \in \mathbb{N}\}}$ for $T \in \mathcal{M}$. θ has the following recurrence property:

For any integer

 $p \in \mathbb{N}, \ \theta_1, \dots, \theta_p \in \mathcal{G}, \ T_1, \dots, T_p \in \mathcal{A}, \ \xi_1, \ \dots, \xi_p \in \mathcal{H}$ and $\varepsilon > 0$, there exists a relatively dense set $N \subset \mathbb{N}$ such that

$$\|\theta_i^n(T_j)\xi_j - T_j\xi_j\| \le \varepsilon \text{ for } 1 \le j \le p, \ n \in \mathbb{N}.$$

Theorem

Let $\mathfrak A$ be a C^* -algebra, ϕ a state on $\mathfrak A$ such that support $s(\phi)$ in $\mathfrak A^{**}$ is central, and $\alpha:\mathfrak A\to\mathfrak A$ a positive linear map such that $\phi\circ\alpha=\phi$.

- (i) If $\phi(\alpha(x)^*\alpha(x)) \leq \phi(x^*x)$, then then there is a normal positive linear map, $\Psi: \pi_{\phi}(\mathfrak{A})'' \to \pi_{\phi}(\mathfrak{A})''$ such that $\Psi(T)\xi_{\phi} = U_{\alpha}(T\xi_{\phi})$ for $T \in \pi_{\phi}(\mathfrak{A})''$, $\Psi(1_{H_{\phi}}) = 1_{H_{\phi}}$, $\|\Psi\| \leq \|\alpha\|$, preserving $\omega_{\xi_{\phi}}|\pi_{\phi}(\mathfrak{A})''$ and $\Psi(\pi_{\phi}(a)) = \pi_{\phi}(\alpha^{**}(a))$, $a \in \mathfrak{A}^{**}$.
- (ii) If α is multiplicative, then $\pi_{\phi}(\alpha(\mathfrak{A}))''$ is a von Neumann subalgebra of $\pi_{\phi}(\mathfrak{A})''$, the central support of the projection $U_{\alpha}U_{\alpha}^{*}$ in $\pi_{\phi}(\alpha(\mathfrak{A}))''$ is $1_{H_{\phi}}$, and we have $\Psi(T)U_{\alpha}U_{\alpha}^{*}=U_{\alpha}TU_{\alpha}^{*}$.

Lemma

Let $\mathfrak A$ be a C^* -algebra, ϕ a state on $\mathfrak A$ such that support $s(\phi)$ in $\mathfrak A^{**}$ is central, and let $\mathcal M_{AP}=\{T\in\pi_\phi(\mathfrak A)''\mid T\xi_\phi\in(H_\phi)_{AP}\}.$ Then,

for any $p \in \mathbb{N}$, $m_1, \ldots, m_p \ge 1, T_1, \ldots, T_p \in \mathcal{M}_{AP}$, $\xi_1, \ldots, \xi_p \in \mathcal{H}_{\phi}$ and $\varepsilon > 0$, there exists a relatively dense set $N \subset \mathbb{N}$ such that

$$\|\Psi^{m_jn}(T_j)\xi_j-T_j\xi_j\|\leq \varepsilon \text{ for all } 1\leq j\leq p,\ n\in N.$$

Corollary

Let $\mathfrak A$ be a C^* -algebra, ϕ a state on $\mathfrak A$ such that support $s(\phi)$ in $\mathfrak A^{**}$ is central, then for any $p\in\mathbb N$, $m_1,\ldots,m_p\geq 1$, $T_1,\ldots,T_p\in\mathcal M_{AP},\,S_1,\ldots s_{p-1}\in\mathcal B(H_\phi),\,\xi\in H_\phi$ and $\varepsilon>0$, there exists a relatively dense set $N\subset\mathbb N$ such that

$$\|\Psi^{m_1n}(T_1)S_1\dots\Psi^{m_pn}\xi-T_1S_1\dots T_p\xi\|\leq \varepsilon \text{ for all }n\in\mathbb{N}.$$

References

- S. Strătilă, L. Zsidó, *Lectures on von Neumann algebras*, Cambridge University Press, 2019.
- S. Strătilă, L. Zsidó, *Operator Algebras: the Banach Algebra Approach*, Institute of Mathematics of the Romanian Academy, 2005.
- C. P. Niculescu, A. Ströh, *A Hilbert space approach of Poincare recurrence theorem*, Rev. Roumaine Math. Pures et Appl. 44 (1999), No. 5-6, pp. 799-805.
- C. P. Niculescu, A. Ströh, L. Zsidó, *Noncommutative extensions of classical and multiple recurrence theorems*, Journal of Operator Theory , Summer 2003, Vol. 50, No. 1 (Summer 2003), pp. 3-52.