1 Locally Free Sheaves

2 Algebraic Vector Bundles

3 Derivations

Definition 3.0.1. Let \mathscr{A} be a sheaf of algebras and \mathscr{B} an \mathscr{A} -algebra and \mathscr{F} a \mathscr{B} -module. Then an \mathscr{A} -derivation $D: \mathscr{B} \to \mathscr{F}$ is a \mathscr{A} -module map such that on all local sections,

$$D(fg) = D(f)g + fD(g)$$

Furthermore, we write $\mathcal{D}_{erd}(\mathcal{B}, \mathcal{F}) \subset \mathcal{H}_{ord}(\mathcal{B}, \mathcal{F})$ for the \mathcal{A} -submodule of derivations.

Definition 3.0.2. If the functor $\mathscr{F} \mapsto \mathscr{D}_{er\mathscr{A}}(\mathscr{B}, \mathscr{F})$ is representable on the category on \mathscr{B} -modules then we say the representing pair $(\Omega_{\mathscr{B}/\mathscr{A}}, d)$ is the \mathscr{B} -module of \mathscr{A} -differentials where,

$$\mathcal{H}\!\mathit{om}_{\mathscr{A}}\!\!\left(\Omega_{\mathscr{B}/\mathscr{A}},\mathscr{F}\right)=\mathscr{D}\!\mathit{er}_{\mathscr{A}}(\mathscr{B},\mathscr{F})$$

and the derivation $d: \mathcal{B} \to \Omega_{\mathcal{B}/\mathcal{A}}$ is the universal element given by,

$$\mathrm{id} \in \mathscr{H}\!\mathit{om}_{\mathscr{A}}(\Omega_{\mathscr{B}/\mathscr{A}},\Omega_{\mathscr{B}/\mathscr{A}}) = \mathscr{D}\!\mathit{er}_{\mathscr{A}}(\mathscr{B},\Omega_{\mathscr{B}/\mathscr{A}})$$

Definition 3.0.3. Given morphism of locally ringed spaces $f: X \to S$ we say that $(\Omega_{X/S}, d)$ is the \mathcal{O}_X -module of $f^{-1}\mathcal{O}_S$ -differentials viewing \mathcal{O}_X as a $f^{-1}\mathcal{O}_S$ -algebra via the map $f^{-1}\mathcal{O}_S \to \mathcal{O}_X$.

4 Connections

Remark. Here we have a locally ringed space $X \to S$ over S. We write $\Omega_X = \Omega_{X/S}$ and

Definition 4.0.1. A connection on a vector bundle \mathcal{E} on X in a \mathcal{O}_S -linear derivation,

$$\nabla: \mathcal{E} \to \Omega^1_X \otimes_{\mathcal{O}_X} \mathcal{E}$$

Lemma 4.0.2. Suppose that $\nabla_1, \nabla_2 : \mathcal{E} \to \Omega^1_X \otimes_{\mathcal{O}_X} \mathcal{E}$ are connections. Then,

$$\nabla_1 - \nabla_2 : \mathcal{E} \to \Omega^1_X \otimes_{\mathcal{O}_X} \mathcal{E}$$

is a \mathcal{O}_X -module map.

Proof.
$$(\nabla_1 - \nabla_2)(fs) = f(\nabla_1 s - \nabla_2 s) + df \otimes s - df \otimes s = f(\nabla_1 - \nabla_2)s.$$

Remark. Therefore, the space of connections is a affine subspace of Hom $(\mathcal{E}, \Omega_X^1 \mathcal{E})$. Then if \mathcal{E} is finite locally free,

$$\operatorname{Hom}\left(\mathcal{E},\Omega^1_X\mathcal{E}\right)=H^0(X,\Omega^1_X\otimes_{\mathcal{O}_X}\operatorname{End}_{\mathcal{O}_S}\!(\mathcal{E}))$$

Definition 4.0.3. The first Chern class $c_1: \operatorname{Pic}(X) \to H^1(X,\Omega^1) \subset H^2_{\mathrm{dR}}(X)$ is defined by $H^1(X,-)$ applied to the map dlog: $\mathcal{O}_X^{\times} \to \Omega_X^1$ defined as $\operatorname{dlog}(f) = f^{-1} \mathrm{d} f$.

Proposition 4.0.4. A line bundle \mathcal{L} admits a connection $\nabla: \mathcal{L} \to \Omega^1_X \otimes_{\mathcal{O}_X} \mathcal{L}$ if and only if $c_1(\mathcal{L}) = 0$.

Proof. A line bundle \mathcal{L} is represented by a Cech cocycle $(U_i, f_{ij}) \in H^1(X, \mathcal{O}_X^{\times})$. Then a connection on a line bundle is represented by (U_i, ω_i) with $\omega_i \in \Omega^1_X(U_i)$ where (U_i, s_i) is a trivialization of \mathcal{L} with $\mathcal{O}_{U_i} \xrightarrow{s_i} \mathcal{L}|_{U_i}$ then $s_i|_{U_i \cap U_j} = f_{ij}s_j|_{U_i \cap U_j}$ and $\nabla s_i = \omega_i \otimes s_i$. However, we must have on $U_i \cap U_j$,

$$\nabla s_i = \nabla f_{ij} s_j = f_{ij} \nabla s_j + \mathrm{d} f_{ij} \otimes s_j$$

Therefore,

$$\omega_i \otimes f_{ij} s_j = f_{ij} \omega_j \otimes s_j + \mathrm{d} f_{ij} \otimes s_j$$

and thus,

$$(\omega_i - \omega_j)|_{U_i \cap U_j} = \operatorname{dlog}(f_{ij})$$

Consider the Cech differential d : $\check{C}^0(\mathfrak{U}, \Omega_X^1) \to \check{C}^1(\mathfrak{U}, \Omega_X^1)$ which takes the sections (ω_i) to the coboundary $(\omega_i - \omega_j)|_{U_{ij}}$. Therefore, such a connection i.e. such a class exists iff the class,

$$c_1(\mathcal{L}) = [\operatorname{dlog}(f_{ij})] \in \check{H}^1(X, \Omega_X^1)$$

is trivial since it is a coboundary.

5 Differential Operators

Definition 5.0.1. Let \mathscr{A} be a sheaf of algebras and \mathscr{B} an \mathscr{A} -algebra and \mathscr{F},\mathscr{G} be \mathscr{B} -modules. Then a differential operator $D:\mathscr{F}\to\mathscr{G}$ of order k is a \mathscr{A} -module map such that for all local sections $b\in\Gamma(U,\mathscr{B})$ the map, $D(b\cdot -)-b\cdot D:\Gamma(U,\mathscr{F})\to\Gamma(U,\mathscr{G})$ is a differential operator of order k-1. Where a differential operator of order k=0 is a \mathscr{B} -linear map $D:\mathscr{F}\to\mathscr{G}$. Furthermore, we write $\mathscr{D}_{\mathscr{B}/\mathscr{A}}(\mathscr{F},\mathscr{G})\subset\mathscr{H}_{\mathscr{B}}(\mathscr{F},\mathscr{G})$ to denote the \mathscr{B} -submodule of differential operators of order k.

- 6 Sheaves of Jets
- 7 The Atiyah Class
- 8 Riemann-Hilbert Correspondence