Metodi di Ottimizzazione per la Logistica e la Produzione

Linee guida per lo sviluppo della tesina

MOLP 1

Consegna e svolgimento

- La tesina è assegnata al gruppo di studenti durante lo svolgimento del corso
- Consiste in uno o più documenti di spunto per la risoluzione di un problema di ottimizzazione (articolo scientifico, insieme di dati, descrizione informale, ...)
- Varie esercitazioni di laboratorio sono a disposizione per sviluppare assieme la tesina nel modo più opportuno
- In caso di dubbi importanti o problemi gravi nello sviluppo, il gruppo può contattare un tutor, senza però abusare del suo tempo
- La tesina va presentata in date prefissate (Gennaio, Febbraio)
- La presentazione deve avere una durata di massimo 15 minuti

Consegna e svolgimento

- La data della discussione va prenotata su ESSE3. Ogni componente del gruppo deve registrarsi, il referente del gruppo deve inoltre inviare una mail prenotando il gruppo per l'appello
- Tutto il materiale concernente la tesina deve essere consegnato entro la mezzanotte del giorno precedente la discussione
- Il materiale deve contenere uno o più file .mos, uno o più file di input, una presentazione in pdf o power point, eventuale materiale integrativo ritenuto utile (ad esempio, dettaglio risultati computazionali ottenuti, relazione estesa integrativa alla presentazione, ...)
- Tutto il materiale va inserito in un file zippato avente titolo tesina-gruppo-XX (dove XX è il numero del gruppo)

Secondo semestre

- La tesina assegnata decade automaticamente alla fine della prima sessione di appello (febbraio). Qualora un gruppo non riesca a completate la tesina entro tale data, ogni componente del gruppo potrà richiedere una nuova tesina, da sviluppare da solo durante il secondo semestre
- Analogamente, qualora uno studente non partecipi al corso durante il primo semestre, e voglia prepararsi durante il secondo, allora potrà richiedere una tesina inviando una mail
- In tali circostanze lo studente deve sviluppare in autonomia il proprio lavoro

Valutazione

La tesina viene valutata, per un massimo di 30/30, sulla base dei seguenti punti:

- Comprensione del problema e autonomia nello sviluppo (3/30)
- Organizzazione del codice (strutturato in procedure, pulito, indentato, commentato, con lettura dati da file, ...) (3/30)
- Qualità del modello matematico proposto (dei modelli, se piú di uno) (4/30)
- Qualità dell'algoritmo euristico proposto (degli euristici, se piú di uno) (9/30)
- Abbondanza di risultati computazionali e loro interpretazione (5/30)
- Chiarezza della presentazione (6/30)

Se i punti soprastanti non si applicassero tutti a una tesina (ad esempio, nel caso nella tesina non sia richiesto di sviluppare un modello matematico, ma di sviluppare vari algoritmi euristici), allora sarà cura del docente adeguare la valutazione

Valutazione

Idealmente, una tesina per ottenere un punteggio massimo dovrebbe contenere i seguenti algoritmi euristici:

- Euristico costruttivo (o più di uno)
- 2 Approccio multi start con versione randomizzata dell'euristico
- Ricerca locale (o più di una), possibilmente inserita nell'approccio multi start
- Metaeuristico (a piacere, tra quelli descritti o altri a disposizione su internet)

Tesine che non contengano tutti questi approcci saranno comunque valutate positivamente, anche se difficilmente raggiungeranno il massimo punteggio

Presentazione

Introduzione:

- Spiegare per bene qual'è il problema affrontato, in modo che anche chi non abbia letto il testo lo capisca
- Introdurre la notazione matematica necessaria in modo formale

Esempio:

 Se ritenuto opportuno, ci si può avvalere di un piccolo esempio numerico per chiarire i concetti a chi ascolta, anche usandolo per esporre soluzioni ottenute dai modelli e dagli euristici

Modello matematico:

- Scrivere il modello matematico in modo rigoroso
- Non utilizzare copia/incolla dei modelli dal materiale fornito, ma riscrivere i modelli usando latex o equation editor

Presentazione

Algoritmi:

- Non copiare/incollare pezzi di codice presi da Xpress, ma fornire pseudo-codici intuitivi
- Non ripetere procedure descritte a lezione o comunque semplici (es. ordinamento di un vettore, algoritmo first fit, ...)
- Ove possibile, rendere chiara l'evoluzione di un algoritmo (tramite un esempio, un grafico, ...)

Risultati computazionali:

- Descrivere quanti e quali istanze sono state scelte per i test
- I gruppi possono liberamente recuperare istanze da internet, dalle tesine fornite, o crearne di nuove. L'importante è che le istanze permettano di testare in modo chiaro i metodi sviluppati, evidenziandone pregi e limiti
- Testare sempre almeno 10 diverse istanze (se sono di più, pure meglio)
- Precisare quando un'esecuzione è terminata per time limit o limite massimo licenza. Dire esplicitamente quale time limit è stato adottato

Presentazione

Risultati computazionali (continua):

- Per il modello matematico, per ogni istanza testata specificare il tempo di esecuzione, la miglior soluzione ottenuta e se questa è ottima o meno
- Per ogni algoritmo euristico, specificare sempre il tempo di esecuzione e il valore della soluzione ottenuta. Può essere utile anche specificare il gap percentuale (da un lower bound, dall'ottimo se noto, oppure dalla miglior soluzione ottenuta per quella istanza)
- I grafici possono essere molto utili per la comprensione dei risultati

Conclusioni:

- Trarre conclusioni accurate sul problema affrontato e sulla qualità dei metodi risolutivi proposti
- Rispettare i tempi
- Se lo ritenete necessario o utile, riportate eventuale materiale aggiuntivo (codici, tabelle estese, descrizioni) in una relazione allegata. Se avete troppo materiale, non cercate di farlo entrare a forza tutto in presentazione