

From the venn diagram, we observe that people in the black Shaded region reads only newspaper I, people in blue region reads only newspaper II and people in read shaded region reads only newspaper II.

People in black shaded region are:

10%-8%-2%+1%=1% (07 total population)

People in blue shaded region are:

30%-8%-4%+1= 19% (of total population)

People in Red shaded region are:

5%-4%-2%+1=0% (4 total population)

So only 20% of the people read only one newspaper.

So The number of people who read only one newspaper = 20 × 100,000 = 20,000.

Stin

Similarly the number of people who read atleast two newspaper correspond to the white region in the venn diagram. There are

81. +41. +21. -21. = 191.

So the number of people who read atleast two newspaper = 12 x 100,000 = 12,000.

Ans

Sol2 Det FUG=H, then P(EUFUG)=P(EUH)

=> P(EUFUG) = P(E)+P(H)-P(ENH) --- *

Now

 $P(E \cap H) = P[E \cap (F \cup G)] = P[E \cap F) \cup P(E \cap G)]$ $= P(E \cap F) + P(E \cap G) - P(E \cap F \cap F \cap G)$

 \Rightarrow P(ENH) = P(ENF) + P(ENG) - P(ENFNG) - (i)

also P(H)= P(FUG)= P(F)+P(G)-P(FNG)
- (ii)

Substituting the values From (i) and (ii) in *
we get

P(EUFUG) = P(E) + P(F) + P(G) - P(FNG)- P(ENF) - P(ENG) + P(ENFNG)proved

(b) P(Positive | Sterioduser) =
$$\frac{90}{100}$$
 (given)

=> P(Negative | Sterioduser) = $\frac{10}{100}$

P(Positive | Not Sterioduser) = $\frac{2}{100}$

P(Negative | Not Sterioduser) = $\frac{2}{100}$

P(Negative | Not Sterioduser) = $\frac{2}{100}$

P(Sterioduser | Negative) = $\frac{2}{100}$

By Bayer's Rule

P(Sterioduser | Negative) = $\frac{9}{100}$

P(Negative | sterioduser)

** P(Sterioduser)

P(Negative) = **

** P(Negative) = **

P(Negative) = **

P(Negative) + P(Sterioduser)

P(Negative) = **

P(Negative) = $\frac{10}{100}$ ($\frac{5}{100}$) + ($\frac{98}{100}$) ($\frac{95}{100}$) = 0.936

P(Sterioduser | Negative) = ($\frac{10}{100}$) ($\frac{5}{100}$)

** $\frac{936}{100}$

** $\frac{936}{100}$

** $\frac{936}{100}$

** $\frac{936}{100}$

Sol3 @

$$f_{X}(x) = \int_{-\infty}^{\infty} f(x,y) dy = \int_{-\infty}^{\infty} xe^{-(x+y)} dy = \int_{-\infty}^{\infty} xe^{-x}e^{-y} dy$$

$$= xe^{-x}e^{-y} \int_{-\infty}^{\infty} e^{-x}e^{$$

$$f_{X}(n) f_{Y}(y) = \pi e^{(n+y)} = f(n,y)$$

3

$$P\{X \ge 4\} = 1 - P\{X < 4\}$$

$$= 1 - \left[P\{X = 0\} + P\{X = 1\} + P\{X = 2\} + P\{X = 3\}\right]$$

$$= 1 - \left[\binom{15}{0}(0.05)^{0}(0.95)^{15} + \binom{15}{1}(0.05)^{10.95}\right]$$

$$+ \binom{15}{2}(0.05)^{2}(0.95)^{3} + \binom{15}{3}(0.05)^{10.95}$$

(b) E[X,] = 0.P{X,=0}+1.P{X,=1}+2.P{X=2}+3.P{x=3}

×	1	2	$P\{X_i = x\}$
1/2	100	1	3
	1	16	2/16
	3	1,	5
	1/8	1/4	3 8
P{X2=	2 8	8	
	X ₂	1 16 3 16 1/8	1 16 1 16 1 16 1 16 1 16 1 16 1 18 1 18

So
$$E[X_1] = 0 + 1(\frac{1}{8}) + \frac{1}{2}(\frac{5}{8}) + 3(\frac{3}{8}) = \frac{15}{8} = \frac{1.875}{8}$$

Var
$$(x_{2}) = E[x_{2}^{2}] - (E[x_{2}])^{2}$$

Now $E[x_{2}^{2}] = I^{2} P\{x_{2} = 1\} + 2^{2} P\{x_{2} = 2\}$

$$= I \cdot \frac{1}{2} + 4 \cdot \frac{1}{2} = \frac{5}{2}$$

$$\Rightarrow E[x_{2}^{2}] = \frac{5}{2}$$
and $E[x_{2}] = I \cdot \frac{9}{2} + 2 \cdot \frac{1}{2} = \frac{3}{2}$
So $Va_{2}(x_{2}) = \frac{5}{2} - (\frac{3}{2})^{2} = \frac{5}{2} - \frac{9}{4} = \frac{1}{4}$

$$\Rightarrow Var(x_{2}) = \frac{1}{4} Ans$$
and
$$Cov(x_{1}, x_{2}) = E[x_{1}x_{2}] - E[x_{1}] E[x_{2}]$$

$$E[x_{1}x_{2}] = (0)(1)\frac{1}{8} + (0)(2)\frac{1}{16} + (0)(1)\frac{1}{16} + (0)(2)\frac{1}{16}$$

$$+ (3)(1)\frac{3}{16} + (9)(2)\frac{1}{8} + (3)(1)(\frac{1}{8}) + (3)(2)(\frac{1}{4})$$

$$= \frac{1}{16} + \frac{2}{16} + \frac{6}{16} + \frac{4}{8} + \frac{3}{8} + \frac{6}{4} = \frac{1+2+6+8+6+24}{16}$$

$$E[x_{1}x_{2}] = 47$$

$$E[X_{1}X_{2}] = \frac{47}{16}$$
So $Cov(X_{1},X_{2}) = \frac{47}{16} - \frac{15}{8} \cdot \frac{3}{2} = \frac{47}{16} - \frac{45}{16} = \frac{2}{16}$

$$= \sum [Cov(X_{1},X_{2}) = \frac{1}{8} = 0.125]$$
Am

Let's first arrange the data from smallest to largest. 49,50,57,59,60,61,68,71,73,73,74,76) 78,82,84,87,88,90,90,92,93,99 10R= 03-01 For θ_1 , p = 1/4 n = 24, $np = \frac{24}{4} = 6$ (integer) OI is the average of the values in positions 6& 7. $\theta_1 = 61 + 68 = 64.5$ For 83, P=3/4, n=24, np===224 = 18, So 03 = 87 + 88 = 87.5

10R=87.5-64.5=23

Sol7

= M=50,000, 6=20,000 (Not Standard Normal)

(a) $P\{0 < X < 30,000\} = ?$

(where X is the monthly salary of an employ

 $P\{0 < X < 30,000\} = P\{0 < X < 50,000 < X - 50,000 < X -$

20,000-50,000

= $P\{0< x<30,000\}=P\{-\frac{5}{2}< Z<-1\}$

 $= P\{-2.5 < Z < -1\}$

 $= \phi(-1) - \phi(-2.5)$

= P{Z < -1} - P{Z < -2.5}

= 0.1587 - 0.0062 (using Table)

Pfo<x<30,000} = 0.1525

Approximately 15.25% employers, eggn less than \$30,000.

(b) P{ho,000 < X < 75,000}=P{-0.5 < Z < 1.25}

Approx.

58.59%. empolyees has salary blu \$40,000 8475,000

 $= \phi(1.25) - \phi(-0.5)$ = 0.8944 - 0.3085

= 0.5859