МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Ижевский государственный технический университет имени М.Т. Калашникова»

УТВЕРЖДАЮ Декан/Директор /Соболев В.В. 93. 05. 20 83 г. РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ Теория тепло и массообмена 10/ наименование - полностью направление (специальность) 01.04.04 «Прикладная математика» код, наименование - полностью направленность (профиль/ программа/специализация) «Разработка программного обеспечения математических методов решения задач с использованием искусственного интеллекта» наименование - полностью уровень образования: магистратура форма обучения: очная очная/очно-заочная/заочная зачетных единиц(ы) общая трудоемкость дисциплины составляет:

Кафедра «Прикладная математика и информационные технологии» полное наименование кафедры, представляющей рабочую программу
Составитель Русяк Иван Григорьевич, д.т.н., профессор
Ф.И.О.(полностью), степень, звание
Рабочая программа составлена в соответствии с требованиями федерального государственного образовательного стандарта высшего образования и рассмотрена на заседании кафедры
Протокол от
Заведующий кафедрой
СОГЛАСОВАНО
Количество часов рабочей программы и формируемые компетенции соответствуют учебному плану 01.04.04 «Прикладная математика» по программе «Разработка программного обеспечения и математических методов решения задач с использованием искусственного интеллекта»
Протокол заседания учебно-методической комиссии по УГСН
<u>010000 «Математика и механика»</u> от <u>11.05.</u> 20 <u>13</u> г. № <u>3</u> код и наименование – полностью
Председатель учебно-методической комиссии по УГСН
010000 «Математика и механика»
код и наименование – полностью
В.Г. Суфиянов

_К.В. Кетова __20*я3* г.

Руководитель образовательной программы

МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Ижевский государственный технический университет имени М.Т. Калашникова»

	_ 20	_ г.
Декан/Директор /(Соболе	ев В.В.
УТВЕРЖДАЮ		

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Теория тепло и массообмена

	наименование	– полностью	
направление (специальности	·	ИКЛАДНАЯ МАТЕМ вание – полностью	атика»
направленность (профиль/			
программа/специализация)	«Разработка	программного	обеспечения и
математических методов ре	шения задач с	использованием	и искусственного
интеллекта»			
		наименование – полн	остью
уровень образования: магис	<u>гратура</u>		
форма обучения: очная			
	очная/	очно-заочная/заочная	
общая трудоемкость дисцип	лины составля	тет: <u>3</u> за	ачетных единиц(ы)

Кафедра «Прикладная математика и информационные технологии» полное наименование кафедры, представляющей рабочую программу

Ф.И.О.(полностью), степень, звание
Рабочая программа составлена в соответствии с требованиями федерального государственного образовательного стандарта высшего образования и рассмотрена на заседании кафедры
Протокол от 20 г. №
Заведующий кафедройИ.Г. Русяк20 г.
СОГЛАСОВАНО
Количество часов рабочей программы и формируемые компетенции соответствуют учебному плану 01.04.04 «Прикладная математика» по программе «Разработка программного обеспечения и математических методов решения задач использованием искусственного интеллекта»
Протокол заседания учебно-методической комиссии по УГСН 010000 «Математика и механика» от 20 г. № код и наименование – полностью
Председатель учебно-методической комиссии по УГСН 010000 «Математика и механика» код и наименование – полностью
Руководитель образовательной программы

Аннотация к дисциплине

Название дисциплины	Теория тепло и массообмена
Направление (специальность) подготовки	01.04.04 «Прикладная математика»
Направленность (профиль/программа/ специализация)	«Разработка программного обеспечения и математических методов решения задач с использованием искусственного интеллекта»
Место дисциплины	Обязательная часть Блока 1 «Дисциплины (модули)»
Трудоемкость (з.е. / часы)	3 з.е., 108 часов
Цель изучения дисциплины	Усвоение студентами технологии математического моделирования и методов расчета тепловых режимов и процессов тепло и массообмена
Компетенции, формируемые в результате освоения дисциплины	ОПК-1. Способен обобщать и критически оценивать опыт и результаты научных исследований в области прикладной математики
Содержание дисциплины (основные разделы и темы)	Формализация задач кондуктивного теплообмена Виды и типы граничных условий. Формализация задач конвективного теплообмена теплообмена Виды и типы граничных условий. Формализация задач лучистого теплообмена Виды и типы граничных условий. Постановка задач сопряженного тепло и массообмена. Виды и типы граничных условий
Форма промежуточной аттестации	Зачет

1. Цели и задачи дисциплины:

Целью преподавания дисциплины является усвоение студентами технологии математического моделирования и методов расчета тепловых режимов и процессов тепло и массообмена.

Задачи дисциплины:

- обучение практическим основам курса и методам расчета тепловых режимов и процессов тепло и массообмена;
- овладение методами решения практических задач и приобретения навыков самостоятельной научной деятельности.

2. Планируемые результаты обучения

В результате освоения дисциплины у студента должны быть сформированы

Знания, приобретаемые в ходе освоения дисциплины

№	Знания			
п/п З				
1.	Виды тепло и массообмена.			
2.	Инструментальные средства и методы расчета тепловых режимов.			
3.	Основы математического аппарата и методы расчета процессов тепло и массообмена.			

Умения, приобретаемые в ходе изучения дисциплины

№ п/п У	Умения				
1.	Формализация задачи тепло и массообмена.				
2.	Разработка схем моделирующих алгоритмов решения практических задач.				
3.	Оценка точности результатов численного моделирования.				

Навыки, приобретаемые в ходе изучения дисциплины

№ п/п	Навыки						
1.	Осуществление постановок задач тепло и массообмена систем и процессов.						
2.	Применение моделирующих вычислительных алгоритмов с использованием						
	собственного кода и пакетов прикладных программ.						
3.	Проведение анализа и интерпретация результатов моделирования.						

Компетенции, приобретаемые в ходе изучения дисциплины

Компетенции	Индикаторы	Знания	Умения	Навыки
ОПК-1. Способен	ОПК-1.1. Знать: фундаментальные	1,2,3		
обобщать и критически	основы в формулировке и решении			
оценивать опыт и	актуальных и значимых проблем			
результаты научных	прикладной математики			
исследований в области	ОПК-1.2. Уметь: обобщать и		1,2,3	
прикладной математики	критически оценивать опыт и			
прикладной математики	результаты научных исследований в			
	профессиональной деятельности			
	ОПК-1.3. Владеть: навыками решения			1,2,3
	актуальных и значимых проблем			
	прикладной математики			

3. Место дисциплины в структуре ООП:

Дисциплина относится к обязательной части Блока 1 «Дисциплины (модули)».

Дисциплина изучается на 1 курсе во 2 семестре.

Изучение дисциплины базируется на знаниях, умениях и навыках, полученных при освоении дисциплин (модулей): Алгоритмы и структуры данных, Принципы построения математических моделей.

Перечень последующих дисциплин (модулей), для которых необходимы знания, умения и навыки, формируемые данной учебной дисциплиной (модулем): Прикладное программное обеспечение в механике сплошных сред, Методы оптимизации и теория оптимального управления.

4. Структура и содержание дисциплины

4.1. Разделы дисциплин и виды занятий

<u>№</u>	Раздел дисциплины. Форма	Всего часов на раздел	Семестр	Распределение трудоемкости раздела (в часах) по видам учебной работы					Содержание самостоятельной		
п/п	промежуточной	ro pa	Cel		контактная		работы				
	аттестации (по семестрам)	Bce		лек	пр	лаб	КЧА	CPC	-		
1	2	3	4	5	6	7	8	9	10		
1	Задачи кондуктивного теплообмена	28	2	2	2	8	-	16	Защита лабораторной работы		
2	Задачи конвективного теплообмена	28	2	2	2	8	-	16	Защита лабораторной работы		
3	Задачи лучистого теплообмена	28	2	2	2	8	-	16	Защита лабораторной работы		
4	Задачи сопряженного тепло и массообмена	22	2	2	2	-	-	18	Защита лабораторной работы		
5	Зачет	2	2	_	_	_	0,3	1,7	Зачет выставляется по совокупности результатов текущего контроля успеваемости		
	Итого:	108	2	8	8	24	0,3	67,7			

4.2. Содержание разделов курса

№ п/п	Раздел дисциплины	Коды компетенции и индикаторов	Знания	Умения	Навыки	Форма контроля
1	Задачи кондуктивного теплообмена. Постановка задачи. Разработка алгоритма решения задачи. Реализация кода на ЭВМ. Исследование различных режимов кондуктивного теплообмена.	ОПК-1.1 ОПК-1.2 ОПК-1.3	1,2,3	1,2,3	1,2,3	Защита лабораторной работы
2	Задачи конвективного теплообмена. Постановка задачи. Разработка алгоритма решения задачи. Реализация кода на ЭВМ. Исследование различных режимов конвективного теплообмена.	ОПК-1.1 ОПК-1.2 ОПК-1.3	1,2,3	1,2,3	1,2,3	Защита лабораторной работы
3	Задачи лучистого теплообмена. Постановка задачи. Разработка алгоритма решения задачи. Реализация кода на ЭВМ. Исследование различных режимов лучистого теплообмена.	ОПК-1.1 ОПК-1.2 ОПК-1.3	1,2,3	1,2,3	1,2,3	Защита лабораторной работы
4	Задачи сопряженного тепло и массообмена. Постановка задачи. Разработка алгоритма решения задачи. Реализация кода на ЭВМ. Исследование различных режимов лучистого теплообмена.	ОПК-1.1 ОПК-1.2 ОПК-1.3	1,2,3	1,2,3	1,2,3	Защита лабораторной работы

4.3. Наименование тем практических занятий, их содержание и объем в часах

№ п/п	№ раздела дисциплины	Наименования тем практических занятий	Трудоемкость (час)
1	3	Постановка и решение задач стационарного лучистого	4
		теплообмена.	
2	4	Постановка и решение задач стационарного тепло и	4
		массообмена.	
Всего			8

4.4. Наименование тем лабораторных работ, их содержание и объем в часах

№ п/п	№ раздела дисциплины	Наименование тем лабораторных работ	Трудоемкость (час)
1	1	Анализ нестационарного кондуктивного теплообмена через многослойную плоскую стенку.	8
2	2	Анализ нестационарного конвективного теплообмена в многослойной цилиндрической трубе.	8
3	1-4	Анализ эффективности тепловой защиты через многослойную оконную систему.	8
Всего			24

5. Оценочные материалы для текущего контроля успеваемости и промежуточной аттестации по дисциплине

Для контроля результатов освоения дисциплины проводится защита лабораторных работ.

Примечание: оценочные материалы (типовые варианты тестов) приведены в приложении к рабочей программе дисциплины.

Промежуточная аттестация по итогам освоения дисциплины – зачет.

6. Учебно-методическое и информационное обеспечение дисциплины: а) Основная литература

- 1. Дерюгин В.В. Тепломассообмен: учебное пособие / В.В. Дерюгин, В.Ф. Васильев, В.М. Уляшева. СПб.: Санкт-Петербургский государственный архитектурно-строительный университет, ЭБС АСВ, 2019. 244 с. [Электронный ресурс] 978-5-9227-0690-2. Режим доступа: http://www.iprbookshop.ru/74378.html.
- 2. Теория теплообмена: лабораторный практикум / 3. И. Зарипов, М. С. Курбангалеев, А. А. Мухамадиев, И. Х. Хайруллин. 2-е изд. Казань: Казанский национальный исследовательский технологический университет, 2017. 80 с. [Электронный ресурс] 978-5-7882-2268-4. Режим доступа: http://www.iprbookshop.ru/79558.html.
- 3. Агеев М.А. Тепломассообменные процессы и установки промышленной теплотехники: учебное пособие для студентов вузов, обучающихся по направлению 13.03.01 «Теплоэнергетика и теплотехника» всех форм обучения / М. А. Агеев, А. Н. Мракин. Саратов: Ай Пи Эр Медиа, 2018. 229 с. [Электронный ресурс] 978-5-4486-0115-6. Режим доступа: http://www.iprbookshop.ru/70284.html.

б) Дополнительная литература

- 1. Газодинамические и теплофизические процессы в ракетных двигателях твердого топлива: [монография] / Губертов А.М. [и др.]; ред. Коротеев А.С. М.: Машиностроение, 2018. 511 с. (5 экз.).
- 2. Теплотехника: учебник для вузов / [В. Н. Луканин и др.]; под ред. В. Н. Луканина. Изд.5-е, стер. М.: Высшая школа, 2019. 671 с. (11 экз.).

3. Цветков Ф.Ф. Тепломассообмен: учеб. пособие для вузов / Цветков, Ф.Ф., Григорьев, Б.А. – 3-е изд., стер. – М.: Изд-во МЭИ, 2019. - 548 с. (15 экз.).

в) перечень ресурсов информационно-коммуникационной сети Интернет

- 1. Электронно-библиотечная система IPRbooks http://istu.ru/material/elektronno-bibliotechnaya-sistema-iprbooks
- 2. Электронный каталог научной библиотеки ИжГТУ имени М.Т. Калашникова Web ИРБИС http://94.181.117.43/cgi-bin/irbis64r_12/cgiirbis_64.exe?LNG=&C21COM=F&I21DBN=IBIS&P21DBN=IBIS
- 3. Национальная электронная библиотека http://нэб.рф.
- 4. Мировая цифровая библиотека http://www.wdl.org/ru/
- 5. Международный индекс научного цитирования Web of Science http://webofscience.com.
- 6. Научная электронная библиотека eLIBRARY.RU https://elibrary.ru/defaultx.asp

г) программное обеспечение

- 1. Microsoft Office Standard 2007.
- 2. Doctor Web Enterprise Suite (комплексная защита) + ЦУ (до 21.02.2021).
- 3. Среда программирования MS Visual Studio Community 2017.
- 4. Система компьютерной алгебры Махіта.

д) методические указания

1. Русяк И.Г. Методические указания к выполнению лабораторных работ по дисциплине «Теория тепло и массообмена» для студентов направления 01.04.04 «Прикладная математика». – Ижевск: ИжГТУ имени М.Т. Калашникова, 2021. –24 с. (Рег. номер МиЕН 1-19/2021).

7. Материально-техническое обеспечение дисциплины:

1. Лекшионные занятия.

Учебные аудитории для лекционных занятий укомплектованы мебелью и техническими средствами обучения, служащими для представления учебной информации большой аудитории (наборы демонстрационного оборудования (проектор, экран, компьютер/ноутбук), учебно-наглядные пособия, тематические иллюстрации).

2. Практические занятия.

Учебные аудитории для практических занятий укомплектованы специализированной мебелью и техническими средствами обучения (проектор, экран, компьютер/ноутбук).

3. Лабораторные работы.

Для лабораторных занятий используются аудитория №6-309, оснащенная следующим оборудованием: проектор, экран, компьютер/ноутбук

4. Самостоятельная работа.

Помещения для самостоятельной работы оснащены компьютерной техникой с возможностью подключения к сети «Интернет» и доступом к электронной информационно-образовательной среде ИжГТУ имени М.Т. Калашникова:

- научная библиотека ИжГТУ имени М.Т. Калашникова (ауд. 201 корпус № 1, адрес: 426069, Удмуртская Республика, г. Ижевск, ул. Студенческая, д.7);
- помещения для самостоятельной работы обучающихся (ауд. 309, корпус №6, адрес: 426069, Удмуртская Республика, г. Ижевск, ул. Студенческая, д.48).

При необходимости рабочая программа дисциплины (модуля) может быть адаптирована для обеспечения образовательного процесса инвалидов и лиц с ограниченными возможностями здоровья, в том числе для обучения с применением дистанционных образовательных технологий. Для этого требуется заявление студента (его законного представителя) и заключение психолого-медикопедагогической комиссии (ПМПК).

Лист согласования рабочей программы дисциплины (модуля) на учебный год

Рабочая программа дисциплины (модуля) «Теория тепло и массообмена» по направлению подготовки

01.04.04 Прикладная математика»

код и наименование направления подготовки (специальности)

по направленности (профилю/программе/специализации)

«Разработка программного обеспечения и математических методов решения задач

с использованием искусственного интеллекта»

наименование направленности (профиля/программы/специализации)

согласована на ведение учебного процесса в учебном голу:

Учебный год	«Согласован заведующий каф ответственной з (подпись и дая	редрой, ва РПД
2023 – 2024	Mercs-	27.09, 2013
2024 – 2025		

Лист согласования рабочей программы дисциплины (модуля) на учебный год

Рабочая программа дисциплины (модуля) «Теория тепло и массообмена» по направлению подготовки

01.04.04 Прикладная математика»

код и наименование направления подготовки (специальности)

по направленности (профилю/программе/специализации)

«Разработка программного обеспечения и математических методов решения задач

с использованием искусственного интеллекта»

наименование направленности (профиля/программы/специализации)

согласована на ведение учебного процесса в учебном году:

Учебный год	« Согласовано»: заведующий кафедрой, ответственной за РПД (подпись и дата)
2023 – 2024	
2024 – 2025	

МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Ижевский государственный технический университет имени М.Т. Калашникова»

Оценочные средства по дисциплине

Теория тепло и массообмена

наименование – полностью

направление (специальность) 01.04.04 «Прикладная математика»

код, наименование – полностью

направленность (профиль/ программа/специализация) «Разработка программного обеспечения и математических методов решения задач с использованием искусственного интеллекта»

наименование – полностью

уровень образования: магистратура

форма обучения: очная

общая трудоемкость дисциплины составляет: 3 зачетных единиц(ы)

1. Оценочные средства

Оценивание формирования компетенций производится на основе результатов обучения, приведенных в п. 2 рабочей программы и ФОС. Связь разделов компетенций, индикаторов и форм контроля (текущего и промежуточного) указаны в таблице 4.2 рабочей программы дисциплины.

Оценочные средства соотнесены с результатами обучения по дисциплине и индикаторами достижения компетенций, представлены ниже.

№ п/п	Коды компетенции и индикаторов	Результат обучения (знания, умения и навыки)	Формы текущего и промежуточного контроля
1	ОПК-1.1. Знать: фундаментальные основы в формулировке и решении актуальных и значимых проблем прикладной математики	31: виды тепло и массообмена 32: инструментальные средства и методы расчета тепловых режимов 33: основы математического аппарата и методы расчета процессов тепло и массообмена	Защита лабораторной работы
2	ОПК-1.2. Уметь: обобщать и критически оценивать опыт и результаты научных исследований в профессиональной деятельности	У1: формализация задачи тепло и массообмена У2: разработка схем моделирующих алгоритмов решения практических задач У3: оценка точности результатов численного моделирования	Защита лабораторной работы
3	ОПК-1.3. Владеть: навыками решения актуальных и значимых проблем прикладной математики	Н1: осуществление постановок задач тепло и массообмена систем и процессов Н2: применение моделирующих вычислительных алгоритмов с использованием собственного кода и пакетов прикладных программ Н3: проведение анализа и интерпретация результатов моделирования	Защита лабораторной работы

Типовые задания для оценивания формирования компетенций

Наименование: зачет

Представление в ФОС: перечень вопросов

Перечень вопросов для проведения зачета:

- 1 Законы Фурье и Фика. Вывод нестационарного уравнения теплопроводности в произвольной системе координат.
- 2 Запись уравнения теплопроводности в различных системах координат. Виды граничных условий.

- 3 Уравнения конвективного теплообмена. Приближение Эйлера. Постановка граничных условий.
- 4 Уравнения конвективного теплообмена. Приближение Рейнольдса. Постановка граничных условий.
- 5 Уравнения конвективного теплообмена. Приближение Навье-Стокса. Постановка граничных условий.
- 6 Лучистый теплообмен. Основные понятия и определения. Законы лучистого теплообмена. Постановка граничных условий.
- 7 Постановка сопряженных задач теплопроводности и конвекции. Уравнения теплообмена. Граничные условия.
- 8 Постановка задач в условиях сложного теплообмена. Основные уравнения. Постановка граничных условий.
- 9 Уравнения тепло и массообмена с учетом химических реакций. Система уравнений. Постановка граничных условий.
- 10 Постановка задачи тепло и массообмена с учетом вдува. Системы уравнений. Граничные условия.

Критерии оценки: приведены в разделе 2.

Наименование: тест.

Представление в ФОС: набор вопросов для проведения тестирования.

1. Уравнение, описывающее нестационарный теплообмен многослойной плоской стенки помещения имеет вид:

a)
$$c(x)\rho(x)\frac{\partial T(x,t)}{\partial t} = \frac{\partial}{\partial x}\left[\lambda(x)\frac{\partial T(x,t)}{\partial x}\right];$$

$$\tilde{o}) - \lambda_{k} \frac{\partial T(\delta, t)}{\partial x} = \alpha_{H} [T(\delta, t) - T_{H}(t)];$$

$$e) - \lambda_1 \frac{\partial T(0,t)}{\partial x} = \alpha_{\rm B} [T_{\rm B}(t) - T(0,t)];$$

$$\varepsilon \int \frac{d}{dx} \left[\lambda(x) \frac{dT(x,t)}{dx} \right] = 0.$$

- 2. Под разностной схемой понимается:
- а) условие Дирихле, применённое к обыкновенным дифференциальным уравнениям или к дифференциальным уравнениям в частных производных, определяет поведение системы на границе области;
- δ) совокупность разностных уравнений, аппроксимирующих основное дифференциальное уравнение и дополнительные условия;
- в) представляет собой систему линейных алгебраических уравнений с числом уравнений, равным числу неизвестных;
- г) закон конвективного теплообмена между поверхностью тела и окружающей средой;
- 3. Схема теплонесущей трубы имеет вид:

a)

4. Критическая толщина изоляции определяется из следующего условия:

a)
$$(\delta_2)_{1,2} = 0.5 \left(\frac{\lambda_2}{\lambda_3}\delta_3 + \frac{\lambda_2}{\alpha_H} - 2(r_2 + \delta_3)\right) \pm \sqrt{\frac{0.25 \left[\frac{\lambda_2}{\lambda_3}\delta_3 + \frac{\lambda_2}{\alpha_H} - 2(r_2 + \delta_3)\right]^2 - \left[(r_2 + \delta_3)^2 - \frac{\lambda_2}{\lambda_3}\delta_3(r_2 + \delta_3) - \frac{\lambda_2 r_2}{\alpha_H}\right]};$$

$$\delta) (c_{_{\mathrm{T}}} G T_{_{\mathrm{B}}})_{_{1}} = (c_{_{\mathrm{T}}} G T_{_{\mathrm{B}}})_{_{2}} + \int_{_{0}}^{z} \frac{T_{_{\mathrm{B}}}(\xi) - T_{_{\mathrm{H}}}}{R_{_{\mathrm{T}}}} d\xi;$$

$$s) \int_{T_{1}}^{T_{2}} \frac{dT}{T_{R} - T_{H}} = -\int_{0}^{l_{yy}} \frac{dz}{c_{x} GR_{y}};$$

z)

$$P(Q) = \frac{T_{\text{B}} - T_{\text{H}}}{R_{\text{S}}}, \quad R_{\text{S}}(\delta_{2}) \rightarrow \min, \ Q(\delta_{2}) \rightarrow \max.$$

5. Разностная схема Лаосонена является устойчивой при выполнении условия:

a)
$$\ln \left(\frac{T_{_{\rm B2}} - T_{_{\rm H}}}{T_{_{\rm B1}} - T_{_{\rm H}}} \right) = -\frac{l_{_{\rm yq}}}{c_{_{\rm T}} G R_{_{\Sigma}}}$$

$$\tilde{o}) \ \tau_k \leq 0.5 h_k^2 \frac{c_k \rho_k}{\lambda_k}, \ \tau = \min_k \{\tau_k\},$$

$$s) \frac{\partial \left(\lambda(r)r\frac{\partial T}{\partial r}\right)}{\partial r} = 0$$

$$P(r,0) = 9(r)$$

Ключи теста:

Вопрос	1	2	3	4	5
Ответ	a	б	В	Γ	б

Критерии оценки: приведены в разделе 2.

Наименование: защита лабораторных работ.

Представление в ФОС:

Варианты заданий представлены в методических указаниях:

Русяк И.Г. Методические указания к выполнению лабораторных работ по дисциплине «Теория тепло и массообмена» для студентов направления 01.04.04 «Прикладная математика». – Ижевск: ИжГТУ имени М.Т. Калашникова, 2021. –24 с. (Рег. номер МиЕН 1-19/2021).

Критерии оценки: Приведены в разделе 2.

2. Критерии и шкалы оценивания

Результат обучения по дисциплине считается достигнутым при успешном прохождении обучающимся всех контрольных мероприятий, относящихся к данному результату обучения.

При оценивании результатов обучения по дисциплине в ходе текущего контроля успеваемости используются следующие критерии. Минимальное количество баллов выставляется обучающемуся при выполнении всех показателей, допускаются несущественные неточности в изложении и оформлении материала.

Наименование, обозначение	Показатели выставления минимального количества баллов
	Лабораторная работа выполнена в полном объеме;
	Представлен отчет, содержащий необходимые расчеты, выводы,
Лабораторная	оформленный в соответствии с установленными требованиями;
работа	Продемонстрирован удовлетворительный уровень владения материалом при
	защите лабораторной работы, даны правильные ответы не менее чем на 50%
	заданных вопросов.

Промежуточная аттестация по дисциплине проводится в форме зачета. Итоговая оценка по дисциплине может быть выставлена на основе

результатов текущего контроля с использованием следующей шкалы:

Оценка	Набрано баллов
«зачтено»	80-100
«не зачтено»	40-80

Если сумма набранных баллов менее 40 — обучающийся не допускается до промежуточной аттестации.

Если сумма баллов составляет от 40 до 80 баллов, обучающийся допускается до зачета.

Билет к зачету включает 1 теоретическое и 1 практическое задание. Промежуточная аттестация проводится в письменной форме.

Время на подготовку: 60 минут. При оценивании результатов обучения по дисциплине в ходе промежуточной аттестации используются следующие критерии и шкала оценки:

Оценка	Критерии оценки		
	Обучающийся демонстрирует знание основного учебно-программного		
//2011TALIO\\	материала в объеме, необходимом для дальнейшей учебы, умеет		
«зачтено»	применять его при выполнении конкретных заданий, предусмотренных		
	программой дисциплины		
	Обучающийся демонстрирует значительные пробелы в знаниях		
(///2 20////2//0))	основного учебно-программного материала, допустил принципиальные		
«не зачтено»	ошибки в выполнении предусмотренных программой заданий и не		
	способен продолжить обучение		