Classification

• Qualitative variables take values in an unordered set C, such as:

```
eye color∈ {brown, blue, green}
email∈ {spam, ham}.
```

- Given a feature vector X and a qualitative response Y taking values in the set C, the classification task is to build a function C(X) that takes as input the feature vector X and predicts its value for Y; i.e. $C(X) \in C$.
- Often we are more interested in estimating the *probabilities* that X belongs to each category in C.

Classification

• Qualitative variables take values in an unordered set C, such as:

```
eye color \in \{brown, blue, green\}
email \in \{spam, ham\}.
```

- Given a feature vector X and a qualitative response Y taking values in the set C, the classification task is to build a function C(X) that takes as input the feature vector X and predicts its value for Y; i.e. $C(X) \in C$.
- Often we are more interested in estimating the *probabilities* that X belongs to each category in C.

For example, it is more valuable to have an estimate of the probability that an insurance claim is fraudulent, than a classification fraudulent or not.

Example: Credit Card Default

Linear versus Logistic Regression

The orange marks indicate the response Y, either 0 or 1. Linear regression does not estimate $\Pr(Y=1|X)$ well. Logistic regression seems well suited to the task.

Linear Regression continued

Now suppose we have a response variable with three possible values. A patient presents at the emergency room, and we must classify them according to their symptoms.

$$Y = \begin{cases} 1 & \text{if stroke;} \\ 2 & \text{if drug overdose;} \\ 3 & \text{if epileptic seizure.} \end{cases}$$

This coding suggests an ordering, and in fact implies that the difference between stroke and drug overdose is the same as between drug overdose and epileptic seizure.

Logistic Regression

Let's write $p(X) = \Pr(Y = 1|X)$ for short and consider using balance to predict default. Logistic regression uses the form

$$p(X) = \frac{e^{\beta_0 + \beta_1 X}}{1 + e^{\beta_0 + \beta_1 X}}.$$

 $(e \approx 2.71828)$ is a mathematical constant [Euler's number.]) It is easy to see that no matter what values β_0 , β_1 or X take, p(X) will have values between 0 and 1.

Logistic Regression

Let's write $p(X) = \Pr(Y = 1|X)$ for short and consider using balance to predict default. Logistic regression uses the form

$$p(X) = \frac{e^{\beta_0 + \beta_1 X}}{1 + e^{\beta_0 + \beta_1 X}}.$$

 $(e \approx 2.71828)$ is a mathematical constant [Euler's number.]) It is easy to see that no matter what values β_0 , β_1 or X take, p(X) will have values between 0 and 1.

A bit of rearrangement gives

$$\log\left(\frac{p(X)}{1-p(X)}\right) = \beta_0 + \beta_1 X.$$

This monotone transformation is called the $log \ odds$ or logit transformation of p(X). (by log we mean $natural \ log: ln.$)

Linear versus Logistic Regression

Logistic regression ensures that our estimate for p(X) lies between 0 and 1.

Maximum Likelihood

We use maximum likelihood to estimate the parameters.

$$\ell(\beta_0, \beta) = \prod_{i: y_i = 1} p(x_i) \prod_{i: y_i = 0} (1 - p(x_i)).$$

This *likelihood* gives the probability of the observed zeros and ones in the data. We pick β_0 and β_1 to maximize the likelihood of the observed data.

Making Predictions

What is our estimated probability of **default** for someone with a balance of \$1000?

$$\hat{p}(X) = \frac{e^{\hat{\beta}_0 + \hat{\beta}_1 X}}{1 + e^{\hat{\beta}_0 + \hat{\beta}_1 X}} = \frac{e^{-10.6513 + 0.0055 \times 1000}}{1 + e^{-10.6513 + 0.0055 \times 1000}} = 0.006$$

Making Predictions

What is our estimated probability of **default** for someone with a balance of \$1000?

$$\hat{p}(X) = \frac{e^{\hat{\beta}_0 + \hat{\beta}_1 X}}{1 + e^{\hat{\beta}_0 + \hat{\beta}_1 X}} = \frac{e^{-10.6513 + 0.0055 \times 1000}}{1 + e^{-10.6513 + 0.0055 \times 1000}} = 0.006$$

With a balance of \$2000?

$$\hat{p}(X) = \frac{e^{\hat{\beta}_0 + \hat{\beta}_1 X}}{1 + e^{\hat{\beta}_0 + \hat{\beta}_1 X}} = \frac{e^{-10.6513 + 0.0055 \times 2000}}{1 + e^{-10.6513 + 0.0055 \times 2000}} = 0.586$$

Lets do it again, using **student** as the predictor.

	Coefficient	Std. Error	Z-statistic	P-value
Intercept	-3.5041	0.0707	-49.55	< 0.0001
student[Yes]	0.4049	0.1150	3.52	0.0004

Lets do it again, using **student** as the predictor.

	Coefficient	Std. Error	Z-statistic	P-value
Intercept	-3.5041	0.0707	-49.55	< 0.0001
student[Yes]	0.4049	0.1150	3.52	0.0004

$$\begin{split} \widehat{\Pr}(\mathbf{default=Yes}|\mathbf{student=Yes}) &= \frac{e^{-3.5041 + 0.4049 \times 1}}{1 + e^{-3.5041 + 0.4049 \times 1}} = 0.0431, \\ \widehat{\Pr}(\mathbf{default=Yes}|\mathbf{student=No}) &= \frac{e^{-3.5041 + 0.4049 \times 0}}{1 + e^{-3.5041 + 0.4049 \times 0}} = 0.0292. \end{split}$$

Logistic regression with several variables

$$\log\left(\frac{p(X)}{1-p(X)}\right) = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p$$
$$p(X) = \frac{e^{\beta_0 + \beta_1 X_1 + \dots + \beta_p X_p}}{1 + e^{\beta_0 + \beta_1 X_1 + \dots + \beta_p X_p}}$$

	Coefficient	Std. Error	Z-statistic	P-value
Intercept	-10.8690	0.4923	-22.08	< 0.0001
balance	0.0057	0.0002	24.74	< 0.0001
income	0.0030	0.0082	0.37	0.7115
student[Yes]	-0.6468	0.2362	-2.74	0.0062

Why is coefficient for **student** negative, while it was positive before?