

PRACOWNIA FIZYCZNA 1

Instytut Fizyki Centrum Naukowo Dydaktyczne

SPRAWOZDANIE Z ĆWICZENIA LABORATORYJNEGO

Temat: P1-E2. Badanie rezonansu w szeregowym obwodzie LC				
Wydział AEil Kierunek Informatyka			Informatyka	
Nr grupy	1	Rok akademicki	2023/2024	
Rok studiów	2	Semestr	3	

L.P.	lmię i nazwisko
1.	Karol Pitera
2.	Dominik Kłaput
3.	

Data pomiarów	20.12.2023
---------------	------------

Ocena poprawności elementów sprawozdania

data	wstęp i cel	struktura		rachunek		zapis	
oceny	ćwiczenia	sprawozdania	obliczenia	niepewnośc	wykres	końcowy	wnioski
				i			

Ocena końcowa:

Ocena lub liczba punktów	
Data i podpis	

Wstęp[1]

Obwód rezonansowy LC to obwód elektryczny składający się z cewki (L) i kondensatora (C). Obwód może działać jako rezonator elektryczny. Układ taki wyprowadzony z równowagi wykonuje drgania swobodne przenosząc energię elektromagnetyczną z częstotliwością rezonansową między cewką a kondensatorem. Pobudzany drganiami okresowymi zachowuje się jak układ drgań wymuszonych, w stanie równowagi wykonuje drgania z częstotliwością pobudzania i amplitudą silnie zależną od częstotliwości.

Cel ćwiczenia:

Wykonać pomiary I, U_L , U_C dla różnych częstotliwości napięcia wymuszającego, wyznaczyć częstotliwość rezonansową.

Rys.1: Układ pomiarowy [1]

Przyrządy użyte w układzie pomiarowym:

Generator prądu sinusoidalnego o zmiennej częstotliwości i stałym napięciu – MOTECH FG503

Miernik prądu – METEX DMM M-3890 D

Mierników napięcia – METEX M-3800

Miernika częstotliwości – METEX M-3850

Opracowanie pomiarów:

Układ pomiarowy:

Indukcyjność cewki L = 144 [mH] Pojemność kondensatora C = 30 [nF] Teoretyczna częstotliwość rezonansowa f_t = 2421 [Hz] Opór obwodu R = 1183 [Ω]

Natężenie prądu skutecznego I_{sk} = 1,195 [mA] Natężenie prądu I = 1,691 [mA] Dobroć teoretyczna Q_t = 1,85 * 10³

1. Wykresy częstotliwości:

Rys.2: Wykresy zależności częstotliwościowej

2. Odczytanie częstotliwości rezonansowej z wykresu.

Z wykresu można odczytać że częstotliwość rezonansowa f_R znajduje się w pobliżu 2,325 kHz. Gdzie f_t =2,421 kHz

3. Niepewność u(f_R).

$$f_t = 2421 [Hz]$$

$$f_R = 2400[Hz]$$

Rozbieżność wyników jest spowodowana tym, że mierzone były wartości w zakresie rezonansu co 100 [Hz]. Zatem niepewność $u(f_R)\approx 1\%$ [Hz].

4. Ocenienie zgodności częstotliwości f_R z założoną na początku częstotliwością f_T .

Do oceny zgodności posłużono się wzorem błędu względnego:

$$\delta = \frac{|f_R - f_T|}{f_T} \cdot 100\% \approx 0.8\%$$

Wynika z niego, że wartości f_R i f_T są zgodne w 99,2%

5. Obliczenie dobroci badanego układu rezonansowego metodą szerokości połówkowej.

Do obliczeń użyto wzoru:

$$Q = \frac{f_R}{\Delta f}$$

$$f_R$$
 = 2400 Hz

$$\Delta f = 1.36 \, \text{Hz}$$

Dobroć, Q	1763
-----------	------

6. Obliczanie niepewności Q oraz Q_T metodą propagacji niepewności.

Do obliczeń u(Q) wykorzystano wzór:

$$u(Q) = \sqrt{\left(\frac{\partial Q}{\partial \Delta f} \cdot u(\Delta f)\right)^2 + \left(\frac{\partial Q}{\partial f_R} \cdot u(f_R)\right)^2}$$

Niepewność $u(Q)$ [Hz]	23,01	
Q [Hz]	1763(23)	

Do obliczeń $u(Q_T)$ użyto wzoru:

$$u(Q_T) = \sqrt{\left(\frac{\partial Q_T}{\partial R} \cdot u(R)\right)^2}$$

Niepewność $u(Q_T)$ [Hz]	24.14	
$Q_T[Hz]$	1850(24)	

7. Ocenienie zgodności dobroci Q z dobrocią Q_T .

Do oceny zgodności wykorzystano wzór błędu względnego:

$$\delta = \frac{|Q - Q_T|}{Q_T} \cdot 100\% \approx 4,7\%$$

Wynika z tego, że wartości Q i Q_T są zgodne w 95,3%

8. Wartość maksymalna natężenia prądu I_{max} odczytana z wykresu.

 $I_{max} = 1,198 [mA]$

Występuje dla częstotliwości f_R = 2,4 [kHz]

9. Teoretyczna wartość Io dla wartości rezonansowej i ocenienie zgodności z Imax.

I = 1,691 [mA]

 $I_0 = I_{sk} = 1,196 [mA]$

 $I_{max} = 1,198 [mA]$

Do oceny zgodności wykorzystano wzór błędu względnego:

$$\delta = \frac{|I_{max} - I_0|}{I_0} \cdot 100\% \approx 1.6\%$$

Wynika z tego, że wartości są I₀ i I_{max} zgodne w 98,4%.

10. przesunięcie fazowe.

$$tg\phi = \frac{L\omega - \frac{1}{C\omega}}{R}$$

$$\begin{split} L &= 144 \; [mH] \\ C &= 30 \; [nF] \\ R &= 1,183 \; [\Omega] \\ \omega &= f_t = 2,421 \; [kHz] \end{split}$$

tgφ = - 9 677,3 [°] (układ pojemnościowy)

Wnioski:

Przeprowadzenie eksperymentu okazało się czasochłonne, przez co byliśmy zmuszeni ograniczyć ilość pomiarów.

Zatem zdecydowaliśmy zwiększyć ilość pomiarów w obrębie kluczowych obszarów. Czego skutkiem otrzymaliśmy wyniki zbliżone do obliczonych wartości teoretycznych.

Uzyskaliśmy:

- wysoką zgodność częstotliwości: 99,2%

- zadawalającą zgodność dobroci: 95.3%

- przyzwoitą zgodność natężenia prądu: 98,4%

Wskazuje to na dużą dokładność urządzeń pomiarowych wykorzystanych w układzie.

Źródła:

Instrukcja do laboratorium[1]:

https://platforma.polsl.pl/rif/pluginfile.php/87/mod_resource/content/4/P1-E2-InstrukcjaStrona.pdf

Materiały pomocne w zrozumieniu zagadnienia[2]:

https://fizyka.uniedu.pl/6-obwody-pradu-przemiennego/

https://platforma.polsl.pl/rif/