Organizacja partycji systemowej (na przykładzie FAT16)

- Boot Rekord (BR)
- Tablica FAT (File Allocation Table) Tablica Alokacji Plików
- Kopia Tablicy FAT
- Root Directory Katalog Główny
- Dane

Boot Record (BR)

- położenie: 1. sektor partycji (dyskietki) systemowej
- zawiera:
 - instrukcję skoku do programu ładującego system,
 - program ładujący system,
 - informacje o systemie,
 - informacje o dysku (wielkość sektora, wielkość klastra, liczba sektorów, bajt identyfikacji nośnika, itp.).

Boot Record systemu MS DOS:

Informacje o systemie i dysku zawarta w BR:

Bajt	Zawartość
0-2h	Instrukcja skoku do programu ładującego
3-Ah	Nazwa systemu
B-Ch	Wielkość sektora
Dh	Wielkość klastra
E-Fh	Liczba sektorów zarezerwowanych na początku dysku
10h	Liczba kopii FAT
11-12h	Maksymalna liczba plików w katalogu głównym
13-14h	Całkowita liczba sektorów na dysku do 32MB
15h	Bajt identyfikacji nośnika
16-17h	Liczba sektorów zajętych przez FAT
18-19h	Liczba sektorów na ścieżce
1A-1Bh	Liczba głowic (stron) dysku
1C-1Fh	Liczba sektorów ukrytych
20-23h	Całkowita liczba sektorów na dysku większym niż 32MB
24h	Numer mechanizmu dyskowego
25h	Zarezerwowane
26h	Zarezerwowane - znacznik 29h
27-2Ah	Numer seryjny dysku
2B-35h	Etykieta
36-3Dh	Zarezerwowane

```
OEM ID: +nB%7IHC
              Bytes per sector: 512
           Sectors per cluster: 1
Reserved sectors at beginning: 1
                    FAT Copies: 2
        Root directory entries: 224
         Total sectors on disk: 2880
         Media descriptor byte: F0 Hex
               Sectors per FAT: 9
             Sectors per track: 18
                         Sides: 2
        Special hidden sectors: 0
   Big total number of sectors: 0
         Physical drive number: 0
Extended Boot Record Signature: 29 Hex
```

Volume Serial Number: 2A1418FE Hex Volume Label: DYSKIETKA File System ID: FAT12

```
Physical Sector: Absolute Sector 0
00000000: EB 3C 90 2B 6E 42 25 37 - 49 48 43 00 02 01 01 00
                                                               .<.+nB%7IHC....
00000010: 02 E0 00 40 0B F0 09 00 - 12 00 02 00 00 00 00
00000020: 00 00 00 00 00 29 FE - 18 14 2A 44 59 53 4B 49
                                                              .....)...*DYSKI
00000030: 45 54 4B 41 20 20 46 41 - 54 31 32 20 20 20 33 C9
                                                              ETKA FAT12 3.
00000040: 8E D1 BC FC 7B 16 07 BD - 78 00 C5 76 00 1E 56 16
                                                              ....{...x..v..V.
00000050: 55 BF 22 05 89 7E 00 89 - 4E 02 B1 0B FC F3 A4 06
                                                              U."..~..N.....
                                                              ..|.E..8N$} ...
00000060: 1F BD 00 7C C6 45 FE 0F - 38 4E 24 7D 20 8B C1 99
00000070: E8 7E 01 83 EB 3A 66 A1 - 1C 7C 66 3B 07 8A 57 FC
                                                               .~...:f..|f;..W.
00000080: 75 06 80 CA 02 88 56 02 - 80 C3 10 73 ED 33 C9 FE
                                                              u.....V....s.3..
00000090: 06 D8 7D 8A 46 10 98 F7 - 66 16 03 46 1C 13 56 1E
                                                              ..}.F...f..F..V.
000000A0: 03 46 0E 13 D1 8B 76 11 - 60 89 46 FC 89 56 FE B8
                                                              .F....v.`.F..V..
000000B0: 20 00 F7 E6 8B 5E 0B 03 - C3 48 F7 F3 01 46 FC 11
                                                               ....^...H...F..
000000CO: 4E FE 61 BF 00 07 E8 28 - 01 72 3E 38 2D 74 17 60
                                                              N.a....(.r>8-t.
000000D0: B1 0B BE D8 7D F3 A6 61 - 74 3D 4E 74 09 83 C7 20
                                                              ....}..at=Nt...
000000E0: 3B FB 72 E7 EB DD FE 0E - D8 7D 7B A7 BE 7F 7D AC
                                                               ;.r....}{..□}.
000000F0: 98 03 F0 AC 98 40 74 0C - 48 74 13 B4 0E BB 07 00
                                                               . . . . . . @t. . Ht. . . . . . .
00000100: CD 10 EB EF BE 82 7D EB - E6 BE 80 7D EB E1 CD 16
                                                              . . . . . . } . . . . } . . . .
00000110: 5E 1F 66 8F 04 CD 19 BE - 81 7D 8B 7D 1A 8D 45 FE
                                                              ^f.....}.}..E.
00000120: 8A 4E 0D F7 E1 03 46 FC - 13 56 FE B1 04 E8 C2 00
                                                               .N....F...V.....
00000130: 72 D7 EA 00 02 70 00 52 - 50 06 53 6A 01 6A 10 91
                                                              r....p.RP.Sj.j..
00000140: 8B 46 18 A2 26 05 96 92 - 33 D2 F7 F6 91 F7 F6 42
                                                              .F..&...3.....B
00000150: 87 CA F7 76 1A 8A F2 8A - E8 C0 CC 02 0A CC B8 01
                                                              ...v........
00000160: 02 80 7E 02 0E 75 04 B4 - 42 8B F4 8A 56 24 CD 13
                                                               ..~..u..B...V$..
00000170: 61 61 72 0A 40 75 01 42 - 03 5E 0B 49 75 77 C3 03
                                                              aar.@u.B.^.Iuw..
00000180: 18 01 27 0D 0A 4E 69 65 - 70 72 61 77 69 64 6C 6F
                                                              ..'..Nieprawidlo
00000190: 77 79 20 64 79 73 6B 20 - FF 0D 0A 42 6C 61 64 20
                                                              wy dysk ...Blad
000001A0: 57 65 2F 57 79 20 20 20 - 20 FF 0D 0A 57 79 6D 69
                                                              We/Wy ...Wymi
000001B0: 65 6E 20 64 79 73 6B 20 - 69 20 6E 61 63 69 73 6E
                                                              en dysk i nacisn
000001C0: 69 6A 20 64 6F 77 6F 6C - 6E 79 20 6B 6C 61 77 69
                                                              ij dowolny klawi
000001D0: 73 7A 20 20 0D 0A 00 00 - 49 4F 20 20 20 20 20 20
                                                              sz ....IO
000001E0: 53 59 53 4D 53 44 4F 53 - 20 20 20 53 59 53 7F 01
                                                              SYSMSDOS SYS ...
000001F0: 00 41 BB 00 07 60 66 6A - 00 E9 3B FF 00 00 55 AA
                                                              .A...`fi..;...U.
```

Budowa systemu plików (na przykładzie FAT16)

Root Directory (katalog główny)

- wielkość katalogu głównego jest definiowana przy formatowaniu dysku (dyskietka - 14 sektorów, dyski twarde - 32 sektory),
- każdy wpis zajmuje 32B i zawiera:

Nr bajtu	Wielkość	Element wpisu w katalogu głównym
0-7h	8B	nazwa pliku
		Zarezerwowane wartości 1. bajtu:
		00h - wpis wolny
		E5h - plik skasowany
		2Eh - katalog bieżący "."
		2E2Eh - katalog nadrzędny ""
8-Ah	3B	rozszerzenie
Bh	1B	atrybuty pliku
C-15h	10B	zarezerwowane
16-17h	2B	czas utworzenia
18-19h	2B	datę utworzenia
1A-1Bh	2B	numer pierwszego klastra
1C-1F	4B	wielkość pliku (1C-1Dh - mniej znaczące bajty, 1E-1Fh
		- bardziej znaczące bajty)

Atrybuty plików i katalogów

Poszczególne bity bajta Bh odpowiadają atrybutom: - - A D V S H R

Katalog - widok "as Directory"

Katalog - widok "as Hex"

Sposób zapisu daty i czasu

уууууут mmmddddd

Dzień (5 bitów) - wartości od 0 (00000b) do 31 (11111b)

Miesiąc (4 bity) - wartości od 0 do 15

Rok (7 bitów) - wartości od 0 do 127

Data = (rok - 1980) x 512 + miesiąc x 32 + dzień => zmiana kolejności bajtów (bardziej znaczący bajt jako pierwszy)

Np. Data - 26 grudzień 2003 zostanie zapisana jako:

 $(2003 - 1980) \times 512 + 12 \times 32 + 26 = 12186 = 2F 9Ah => 9A 2Fh$

Godzina (5 bitów) - wartości od 0 do 31

Minuta (6 bitów) - wartości od 0 do 63

Sekundy (5 bitów) - wartości od 0 do 31

Czas = godzina x 2048 + minuta x 32 + sekunda/2 => zmiana kolejności bajtów

Klaster (cluster)

- Jest to tzw. jednostka alokacji pliku czyli najmniejszy obszar dysku, który system operacyjny potrafi zaadresować,
- wielkość klastra, w zależności od systemu operacyjnego i wielkości dysku, może wynosić 1 sektor (512B), 2 sektory (1KB), 4 sektory (2KB), itd. (potęgi liczby 2),
- w systemie plików FAT16 klaster nie może wynosić więcej niż 64 sektory,
- w systemie plików FAT16 system operacyjny dąży do tego, aby klaster był jak najmniejszy.

Ile maksymalnie klastrów na dysku może być w FAT16 (a ile w FAT32)?

Zależność wielkości klastra od wielkości partycji (na przykładzie FAT16)

Obliczanie wielkości i ilości klastrów

Ile klastrów i jakiej wielkości znajduje się na dysku logicznym 150MB

Wielkość klastra a strata przestrzeni na dysku

System operacyjny może przydzielić plikowi tylko **całkowitą liczbę** klastrów. Oznacza to np., że przy wielkości klastra 8KB, plik o rozmiarze 9KB będzie zajmował 2 klastry, czyli 16KB.

Zadanie

Ile klastrów i jakiej wielkości byłoby na partycji 1,5MB w systemie plików FAT10 (gdyby taki istniał)?

Odpowiedź

7

Wszystkich możliwych klastrów jest 2¹⁰ czyli 1024

Wielkość dysku to 1,5MB czyli 1,5 x 1024KB = 1536KB

Wielkość klastra wynosi: 1536KB / 1024 = 1,5KB => zaokrąglamy w górę do

najbliższej potęgi liczby 2 => **2KB**

Liczba klastrów wynosi: 1536KB / 2KB = **768**

File Allocation Table (FAT) w systemie plików FAT16

- każdemu klastrowi odpowiada dokładnie jedna komórka tablicy FAT,
- w komórkach tablicy FAT zapisywane są m.in. adresy klastrów,
- każda komórka tablicy FAT ma 16 bitów.

Tablica Alokacji Plików (FAT)

Obszar danych
klaste
klaster \
103
klaster 102
klaster
, 101
klaster 100
100
/ /
···

komórka	komórka 100	komórka 101	komórka 102	komórka 103
	101	103	0	EOF
komórka 104	komórka 105	komórka 106	komórka 107	komórka
0	0	0	0	

W tablicy FAT mogą znajdować się następujące wartości:

- 0 wolna komórka FAT'u,
- numer kolejnego klastra zajmowanego przez plik,
- EOF (End of File) informacja o końcu pliku (wartości FFF8 FFFFh),
- BAD informacja o uszkodzeniu nośnika (wartość FFF7h).

Uwaga: Pierwsze 4 bajty są zarezerwowane (1 bajt to bajt identyfikacji nośnika, kolejne 3 bajty mają wartości FFh).

Przykład:

Przykład:

Root Directory:

Nazwa pliku	Rozszerzenie	 Początkowy nr klastra
praca	doc	 372
start	bat	 380
list	txt	 387

FAT:

	0	1	2	3	4	5	6	7	8	9
370	0	0	373	374	375	376	<eof></eof>	0	0	0
380	381	382	<eof></eof>	<bad></bad>	<bad></bad>	0	0	388	389	390
390	391	392	393	<eof></eof>	0	0	0	0	0	0

Kasowanie plików

Podczas kasowania - pierwszy bajt nazwy pliku zamieniany jest na znak o kodzie ASCII 229 (E5h) i zerowane są zajmowane przez plik komórki tablicy FAT. *Jak realizowane jest "odzyskiwanie" skasowanych plików?*

Zapis struktury katalogów

Katalog jest plikiem o atrybucie D, a jego zawartością jest struktura wpisów identyczna z wpisami w katalogu głównym.

Błędy i nieprawidłowości w funkcjonowaniu systemu plików

- Bad Clusters uszkodzone klastry
- Cross Link skrzyżowanie plików
- Lost Clusters zagubione klastry
- Fragmentacja plików

Przykład

Jakie błędy w systemie plików można tu zaobserwować?

Nazwa pliku	Rozszerzenie	•••	Początkowy nr cluster'a
praca	doc		372
start	bat		376
list	txt		379
rysunek	pmd		390
arkusz	xls		391

	0	1	2	3	4	5	6	7	8	9
370	0	0	373	374	375	376	<eof></eof>	378	<eof></eof>	380
380	381	382	<eof></eof>	<bad></bad>	<bad></bad>	0	0	0	0	0
390	392	393	394	395	396	397	398	<eof></eof>	<eof></eof>	0

Odpowiedź

	0	1	2	3	4	5	6	7	8	9
370	0	0	373	374	375	376	<eof></eof>	378	<eof></eof>	380
			praca	praca	praca	praca	praca			list
							start			
380	381	382	<eof></eof>	<bad></bad>	<bad></bad>	0	0	0	0	0
	list	list	list							
390	392	393	394	395	396	397	398	<eof></eof>	<eof></eof>	0
	rysunek	arkusz	rysunek	arkusz	rysunek	arkusz	rysunek	arkusz	rysunek	

Tablica FAT:

•			Disk Ed	litor			
Object	Edit Lin	k View	Info Tools	Help			
Sector 1							
		<eof></eof>	5	<e0f></e0f>	<e0f></e0f>	<eof></eof>	<eof></eof>
<eof></eof>	<e0f></e0f>	11	(EOF)	(EOF)	<e0f></e0f>	<eof></eof>	16
17	18	19	<e0f></e0f>	21	22	23	24
25	<e0f></e0f>	<e0f></e0f>	28				
33			36				
41							
49							
57				61	62	63	64
65	66	67	<eof></eof>	<e0f></e0f>	<e0f></e0f>	<eof></eof>	72
73	74	75	(EOF)	77	78	79	80
<eof></eof>	82	83	84	85	86	87	88
89	90	<e0f></e0f>	92	93	94	95	<e0f></e0f>
97	98	99	100	<eof></eof>	102	103	104
105	106	107	108	109	110	<eof></eof>	112
<eof></eof>	<e0f></e0f>	<e0f></e0f>	〈EOF〉	117	<e0f></e0f>	<e0f></e0f>	<e0f></e0f>
<eof></eof>	<e0f></e0f>	<e0f></e0f>	124	<eof></eof>	(EOF)	127	128
129	130	131	132	133	134	135	136
137	138	139	140	141	142	143	144
<eof></eof>	<e0f></e0f>	147	<e0f></e0f>	<e0f></e0f>	<e0f></e0f>	<e0f></e0f>	<e0f></e0f>
<e0f></e0f>	〈EOF〉	4277	〈E0F〉	157	158	159	160
FAT (1s							Sector 1
F:\	D~1\PUBLIC	\PROGRAM	Y\DC32\DC32.I	EXE		Cluster 27,	. hex 1B

11

Charakterystyka dyskietki 3.5", 1.44MB

bajt identyfikacji nośnika: F0h

liczba głowic: 2

liczba ścieżek: 80

liczba sektorów na ścieżkę: 18

ogólna liczba sektorów = 2 x 80 x 18 = 2880

system plików: FAT12

wielkość FAT: 9 sektorów

wielkość Root Directory: 14 sektorów

liczba możliwych wpisów do katalogu głównego = (14 sektorów x 512B)/ 32B =

224

suma sektorów systemowych = 1 (BR) + 9 (FAT) + 9 (kopia FAT) + 14 (RD) =

33

wolne miejsce dla danych = $(2880 - 33) \times 512B = 1457664B$

wielkość klastra: 1 sektor

Norton Disk Editor

Wybór obiektu:

Wybór widoku:

13

Edycja:

Konfiguracja:

Plik - widok "as Hex":

Plik - widok "as Text"

```
Disk Editor

Object Edit Link View Info Tools Help

WinRAR - the RAR archiver v2.00 for Windows

integrated archive manager

graphical shell interface / command-line driven

- NEW compression algorithm, new modes:
 'multimedia' and 'large dictionary'
 'recovery record option, file order list
 - drag-and-drop facility, on-line help
 - alternate Installation SFX for DOS, OS/2 SFX

- management of non-RAR archives
 - special command-line module and more..

Cluster 16 949, Sector 542 848

...

Cluster 16 949, Sector 542 849

...

File
 F:\DYSK-D~1\PUBLIC\WINRAR\:czytaj.to
```