CSE 1004: INTRODUCTORY GRAPH THEORY

(Classes with effective from 08.01.2020)

REQUIRED COURSE TEXTBOOKS:

1. INTRODUCTION TO GRAPH THEORY BY DOUGLAS B. WEST(PEARSON) No Other Textbooks will be used or entertained

Course format: 3 Classes / week/, 1 hr. / Class, 1 2hr Problem Solving Session/week = 4 credits Grading - external: 45 % Theory Exam+15% In Lab Exam = 60%

Grading - internal: 15 % Mid Term + 10% major lab/session assignments/quizzes +10% minor assignments + 5% attendance = 40 %

Lesson Plan

Lecture	Topics	Chapters	Problems to be
Hour			discussed in class and
			Assignment problems
1	Syllabus		3 .
	Grading, Assignments,		
	Examinations,		Definition-1.1.2,1.1.4
	Attendance		Example-1.1.1,1.1.3
	Introduction	Chapter 1(1.1)	, ,
	What is a Graph?		
	The Definition		
2	Graphs as Models	Chapter 1(1.1)	Definition-
			1.1.8,1.1.10,1.1.12,
			1.1.15,1.1.16
			Example-1.1.7,1.1.9,1.1.11,
			1.1.13,1.1.14,
3	Matrices and Isomorphisms	Chapter 1(1.1)	Definition-
	•		1.1.17,1.1.20,1.1.27
			Example-
			1.1.19,1.1.21,1.1.30
4	Decomposition and Special	Chapter 1(1.1)	Definition-1.1.32
	Graphs		Example-1.1.33,1.1.35
5	Problem solving	EXERCISE(1.1)	Exercise-
			No.1.1.1,1.1.4,1.1.5,1.1.6,
			1.1.8,1.1.9,1.1.10,1.1.11,
			1.1.16
			Assignment-
			No.1.1.18
6	Paths, Cycles and Trails	Chapter 1(1.2)	Definition-1.2.2,1.2.6,1.2.8
	Connection in Graphs		Example-1.2.3,1.2.4,1.2.9
			Lemma-1.2.5
			Proposition-1.2.11
7	Connection in Graphs	Chapter 1(1.2)	Definition-
	Bipartite Graphs		1.2.12,1.2.17,1.2.20
			Example-1.2.13,1.2.21
			Theorem-1.2.14
			Theorem-1.2.18(Only
			statement)

8	Eulerian Circuits	Chapter 1(1.2)	Definition-1.2.24
	Edicitati Circuito	Onaptor I(1.2)	Lemma-1.2.25
			Theorem-1.2.26
9	Problem solving	EXERCISE(1.2)	Exercise-
9	Problem solving	EXERCISE(1.2)	
			No.1.2.1,1.2.2,1.2.3,1.2.5,
		21 1 1 1 1 2 2	1.2.6,1.2.8,1.2.10
10	Vertex Degrees and Counting	Chapter 1(1.3)	Definition-1.3.1,1.3.2
	Counting and Bijections		Proposition-1.3.3,1.3.9
			Corollary-1.3.5,1.3.6
11	Graphical Sequences	Chapter 1(1.3)	Definition-1.3.27,1.3.29
			Example-1.3.30
			Proposition-1.3.28
			Theorem-1.3.31(Only
			statement)
12	Problem solving	EXERCISE(1.3)	Exercise-
			No.1.3.1,1.3.8,1.3.9
13	Directed Graphs	Chapter 1(1.4)	Definition-
	Definitions and Examples		1.4.2,1.4.3,1.4.6,1.4.9,
			1.4.10,1.4.12
			Example-
			1.4.1,1.4.11,1.4.13
14	Vertex Degrees	Chapter 1(1.4)	Definition-
	Eulerian Digraphs	, ,	1.4.17,1.4.22,1.4.27
	Orientations and		Example-1.4.28
	Tournaments		Proposition-1.4.18
			Lemma-1.4.23
15	Problem solving	EXERCISE(1.4)	Exercise-
			No.1.4.1,1.4.3,1.4.7,1.4.8,
			1.4.9
16	Trees and Distance	Chapter 2(2.1)	Definition-2.1.1
	Basic Properties	Onapto: 2(2.1)	Example-2.1.2
	Properties of Trees		Proposition-2.1.6
	Troportion of Tropo		Lemma-2.1.3
			Theorem-2.1.4
			Corollary-2.1.5
17	Distance in Trees and Graphs	Chapter 2(2.1)	Definition-2.1.9
1 ''	Distance in Trees and Graphs	Onapici Z(Z.1)	Example-2.1.10
			Theorem-2.1.11
18	Problem solving	EXERCISE(2.1)	Exercise-
10	Froblem solving	EXERCISE(2.1)	
			2.1.2,2.1.3,2.1.6,2.1.15,
40	O	01 (0/0 0)	2.1.19,2.1.22
19	Spanning Trees and	Chapter 2(2.2)	Theorem-2.2.3,2.2.12(Only
	Enumeration		statements for both)
	Enumeration of Trees		Example-2.2.6,2.2.9,2.2.11
	Spanning Tree in Graphs		Definition-2.2.7
			Proposition-2.2.8(Only
			statement)
20	Problem solving	EXERCISE(2.2)	Exercise-2.2.2,2.2.3
21	Optimization and Trees	Chapter 2(2.3)	Algorithm-2.3.1,2.3.5
	Minimum Spanning Tree		Example-2.3.2,2.3.6
22	Problem solving	EXERCISE(2.3)	Exercise-2.3.3,2.3.5

23	Matchings and Factors	Chapter 3(3.1)	Definition-3.1.1
	Matchings and Covers		Example-3.1.2,3.1.3
24	Maximum Matchings	Chapter 3(3.1)	Definition-3.1.4,3.1.6,3.1.7
		, , ,	Example-3.1.5,3.1.8
			Lemma-3.1.9
25	Hall's Matching Condition	Chapter 3(3.1)	Theorem-
	Min-Max Theorems		3.1.11,3.1.16(Only
			statements for both)
			Corollary-3.1.13
			Definition-3.1.14
			Example-3.1.15
26	Independent Sets and Covers	Chapter 3(3.1)	Example-3.1.18,3.1.23
			Definition-3.1.19,3.1.20
			Lemma-3.1.21
			Theorem-3.1.22(Only
			statement)
			Corollary-3.1.24
27	Problem solving	EXERCISE(3.1)	Exercise-
			3.1.1,3.1.4,3.1.6,3.1.7
28	Matchings in General Graphs	Chapter 3(3.3)	Definition-3.3.1,3.3.6
	Tutte's 1-Factor Theorem		Remark-3.3.2
			Theorem-3.3.3,3.3.9(Only
			statements for both)
			Corollary-3.3.8(Only
			statement)
			Example-3.3.10
29	Problem solving	EXERCISE(3.3)	Exercise-3.3.1,3.3.2,3.3.3
30	Coloring of Graphs	Chapter 5(5.1)	Definition-
	Vertex Coloring and Upper		5.1.1,5.1.4,5.1.6,5.1.9
	Bounds		Remark-5.1.2
			Example-5.1.3,5.1.5.5.1.10
31	Vertex Coloring and Upper	Chapter 5(5.1)	Proposition-5.1.7,5.1.13
	Bounds		
32	Problem solving	EXERCISE(5.1)	Exercise-5.1.1,5.1.2,5.1.4,
			5.1.12, 5.1.13, 5.1.14
33	Enumerative Aspects	Chapter 5(5.3)	Definition-5.3.1
			Example-5.3.2,5.3.5
			Proposition-5.3.3,5.3.4
34	Enumerative Aspects	Chapter 5(5.3)	Example-5.3.7
			Theorem-5.3.6
35	Problem solving	EXERCISE(5.3)	Exercise-5.3.1, 5.3.2, 5.3.4
36	Planar Graphs	Chapter 6(6.1)	Definition-6.1.4,
	Embeddings and Euler's		6.1.7,6.1.11
	Formula		Example-6.1.1, 6.1.8,
	Dual Graphs		6.1.10,6.1.12
			Proposition-6.1.2
37	Embeddings and Euler's	Chapter 6(6.1)	Proposition-6.1.13
	Formula		Theorem-6.1.16
	Dual Graphs		

38	Euler's Formula	Chapter 6(6.1)	Theorem-6.1.21, 6.1.23
			Example-6.1.24,
			Definition-6.1.25
			Proposition-6.1.26
39	Problem solving	EXERCISE(6.1)	Exercise-6.1.1, 6.1.2, 6.1.3,
			6.1.5, 6.1.8, 6.1.9, 6.1.10
40	Edges and Cycles	Chapter 7(7.1)	Definition-7.1.1, 7.1.3,
	Line Graphs and Edge-		7.1.4, 7.1.8, 7.1.11
	coloring		Example-7.1.2, 7.1.5
41	Problem solving	EXERCISE(7.1)	Exercise-7.1.1, 7.1.3, 7.1.4,
			7.1.7, 7.1.8
42	Hamiltonian Cycles	Chapter 7(7.2)	Definition-7.2.1, 7.2.4
			Example-7.2.2,7.2.5
			Proposition-7.2.3
43	Hamiltonian Cycles	Chapter 7(7.2)	Definition-7.2.15
			Remark-7.2.16
			Theorem-7.2.8
			Lemma-7.2.9
44	Problem solving	EXERCISE(7.2)	Exercise-7.2.1, 7.2.3, 7.2.4,
			7.2.12