Estructuras de Datos 2022-1 Práctica 5: Árboles AVL

Pedro Ulises Cervantes González confundeme@ciencias.unam.mx

Emmanuel Cruz Hernández emmanuel_cruzh@ciencias.unam.mx

Yessica Janeth Pablo Martínez yessica_j_pablo@ciencias.unam.mx

América Montserrat García Coronado ame_coronado@ciencias.unam.mx

Adrián Felipe Vélez Rivera adrianf_velez@ciencias.unam.mx

Fecha límite de entrega: 15 de diciembre de 2021 Hora límite de entrega: 23:59:59 hrs

1. Objetivo

Implementar y conocer el funcionamiento interno de la estructura de datos conocida como Árbol AVL.

Esta estructura se basa en un orden jerárquico y necesita un conjunto de elementos comparables para darle un lugar específico a cada elemento dentro de un árbol binario. Además mantiene la propiedad de ser ordenado, tomando la altura como base para lograrlo.

2. Actividad

Implementa las operaciones de la interfaz TDABinarySearchTree en una clase llamada AVLTree. El objetivo es programar el comportamiento de un árbol AVL.

2.1. Retrieve (0.5 puntos)

Implementa el método retrieve(K), que dada una clave k, regresa el elemento asociado a dicha clave o null si no existe.

2.2. Insert 0.5 puntos)

Implementa el método insert (T, K), que dada una clave k y un elemento t, inserta el elemento t con clave k en el árbol, considerando que en un nodo p con elemento e(p), tiene en el subárbol izquierdo a todos los elementos cuya clave es menor a e(p) y como subárbol derecho a todos los elementos con clave mayor a e(p).

Una vez insertado, este nodo debe rebalancer y actualizar las alturas a partir del nodo insertado hasta la raíz del árbol.

2.3. Delete (0.5 puntos)

Implementa el método $\mathtt{delete}(\mathtt{K})$, que dada una clave k elimina su elemento asociado en el árbol, además de regresar el elemento. En caso de no existir, se regresan null.

Una vez eliminado, este nodo debe rebalancer y actualizar las alturas a partir del nodo que toma el lugar del eliminado hasta la raíz del árbol.

2.4. FindMin (0.5 puntos)

Implementa el método findMin() que regresa el elemento con clave mínima en el árbol o null si el árbol es vacío.

2.5. FindMax (0.5 puntos)

Implementa el método findMin() que regresa el elemento con clave máxima en el árbol o null si el árbol es vacío.

2.6. is Empty (0.5 puntos)

Implementa el método is Empty () que regresa true si el árbol es vacío y false en otro caso.

2.7. rebalancea (6 puntos)

Implementa un método que permita rebalancear el árbol a partir de un nodo v hasta la raíz del árbol, que además actualice la altura de los nodos involucrados en el rebalanceo.

2.8. Recorridos (0.5 puntos)

Implementa los recorridos siguientes sobre el árbol AVL.

- Preorden
- Inorden
- Postorden

Visitar en este caso se tomará como imprimir el elemento actual del árbol.

2.9. Main (0.5 puntos)

Crea un método main en la clase AVLTree con un menú que permita hacer todas las operaciones definidas, así como salir del mismo.

3. Extra (1 Punto)

Implementa las operaciones de la interfaz *TDABinarySearchTree* en una clase llamada *RedBlack-Tree*. El objetivo es programar el comportamiento de un árbol rojinegro. Para la evaluación del punto, se considerarán los métodos siguientes

- insert (0.5 puntos)
- delete (0.5 puntos)

4. Recursos de apoyo

■ Presentación:

https://docs.google.com/presentation/d/1n3zvmOyqUTIcNYxqnc7iIpcLZ-qqV_eBTdZas-o8Cr8/edit?usp=sharing

5. Reglas Importantes

- No se recibirán prácticas en las que estén involucrados más de dos integrantes.
- Cumple con los lineamientos de entrega.
- Todos los archivos deberán contener nombre y número de cuenta.
- Tu código debe estar comentado. Esto abarca clases, atributos, métodos y comentarios extra.
- Utiliza correctamente las convenciones para nombrar variables, constantes, clases y métodos.
- No se pueden usar implementaciones de estructuras de datos ya hechas por Java. En caso de usarse, se evaluará con 0 la actividad.
- En caso de no cumplirse alguna de las reglas especificadas, se restará 0.5 puntos en tu calificación obtenida

