Otimização Linear Lista 1

Lourenço Bogo - 11208005

18 de outubro de 2020

1 Questão 1

Sejam u e v elementos de C. Agora seja x = Au e y = Av, desse modo, temos que: tx + (1-t)y = tAu + (1-t)Av = A(tu + (1-t)v), onde $t \in [0,1]$ Como C é convexo, tu + (1-t)v está em C, logo tx + (1-t)y está em A(C).

2 Questão 2

Não. Contraexemplo:

Suponha um conjunto qualquer C pertencente a \mathbb{R}^2 . Se pegarmos a transformação linear $A = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$, vamos mapear o conjunto inteiro para o ponto (0,0), inclusive se o conjunto era aberto.

3 Questão 3

Não. contraexemplo:

Suponhamos a curva (x,e^x) . O gráfico dessa curva é um conjunto fechado. Agora suponhamos a transformação linear $A=\begin{bmatrix}0&0\\0&1\end{bmatrix}$. Quando aplicamos essa transformação linear na curva mencionada, ficamos com a nova curva $(0,e^x)$, cujo gráfico não é um conjunto fechado, pois o gráfico fica abitrariamente próximo do ponto (0,0), mas o ponto em si não está no conjunto.

4 Questão 4

Sim, continua. Prova:

Seja C um compacto em \mathbb{R}^n e T uma transformação linear. Vamos primeiro provar que T(C) é limitado:

Seja v um vetor genérico em C. Podemos reescrevê-lo como $v_1e_1+v_2e_2+\cdots+v_ne_n$ onde todos os e_i são a base do espaço e os v_i são os coeficientes do vetor. Como o conjunto C é limitado, os valores de v_i são limitados por números $k_i \in \mathbb{R}$. Ao aplicarmos a transformação linear no vetor v, por linearidade, temos que o vetor resultante será: $v_1T(e_1)+v_2T(e_2)+\cdots+v_nT(e_n)$.

Isso é necessariamente menor que $\sum_{i=1}^{n} k_i T(e_i)$, nos provando que o conjunto resultante também é limitado.

Agora, precisamos mostrar que T(C) é fechado.

Suponhamos uma sequência convergente y_1, y_2, \ldots, y_n que converge para y no conjunto T(C). Para todo y_i existe pelo menos um x_i tal que $T(x_i) = y_i$. Como C é limitado, existe uma subsequência de x_i convergente. Vamos chamar essa subsequência de a_i e o valor que ela converge de a. Como C é fechado, $a \in C$. Como toda transformação linear é contínua, podemos dizer que:

 $\lim T(a_i) = T(\lim a_i) = T(a)$. Como $T(a_i)$ é uma subsequência de y_i o limite de $T(a_i)$ é igual a y. Portanto $y = T(a) \in T(C)$. Como toda sequência convergente em T(C) converge para um ponto em T(C), o conjunto é fechado.

5 Questão 5

Formulando o problema temos 6 restrições:

- R1: $x + y \ge 7$
- R2: $x + y \le 10$
- R3: $2x + y \le 12$
- R4: $x + 2y \le 12$
- R5: $x \ge 0$
- R6: $y \ge 0$

e queremos maximizar: 500x + 300y.

Primeiro vamos plotar as restrições e achar a região factível:

A região factível é o triângulo formado pelas restrições R1, R3 e R4.

Com isso, agora iremos achar os vértices desse triângulo, ou seja, os pontos que são a intersecção de duas dessas 3 restrições:

• R1 com R3: (5,2)

• R1 com R4: (2,5)

• R3 com R4: (4,4)

Agora vamos avaliar o valor da função objetiva em cada um dos pontos:

- 500*5+300*2=3100
- 500 * 2 + 300 * 5 = 2500
- 500*4 + 300*4 = 3200

A solução para o problema é o ponto (4,4), pois é o ponto que maximiza a função objetiva satisfazendo as restrições. Ou seja, o fazendeiro deveria plantar 4 acres de cada.

6 Questão 6

Formulando o problema temos 5 restrições:

• R1: $a+b \geq 3$

• R2: $2a + b \ge 8$

• R3: $b \le 2a$

• R4: $a \ge 0$

• R5: $b \ge 0$

e queremos maximizar 2a + 3b.

Aqui faremos a mesma coisa que no exercício anterior, vamos plotar e achar a região factível:

A região factível é o polígono formado pelas restrições R1, R2, R3 e R5. Acharemos os vértices factíveis:

• R1 com R3: (1,2)

• R1 com R5: (3,0)

• R2 com R3: (2,4)

• R3 com R5: (4,0)

Colocaremos os pontos na função objetiva e nossa solução será o que der o melhor resultado:

4

• 2*1+3*2=8

• 2*3+3*0=6

- 2*2+3*4=16
- 2*4+3*0=8

Portanto nossa solução é o ponto (2,4), ou seja, processar 2 toneladas da fonte A e 4 da fonte B.

7 Questão 7

- $\bullet \ x_n$ é o número de livros enviados de Novato para São Francisco
- $\bullet \ y_n$ é o número de livros enviados de Novato para Sacramento
- x_l é o número de livros enviados de Lodi para São Francisco
- $\bullet \ y_l$ é o número de livros enviados de Lodi para Sacramento

Formulando o problema temos 8 restrições:

- R1: $x_n + x_l = 600$
- R2: $y_n + y_l = 400$
- R3: $x_n + y_n \le 700$
- R4: $x_l + y_l \le 800$
- R5, R6, R7, R8: $x_n, y_n, x_l, y_l \ge 0$

e queremos minimizar $5x_n + 10y_n + 15x_l + 4y_l$.

Primeiro vamos expressar x_l e y_l em função de x_n e y_n para conseguirmos plotar as restrições.

- $\bullet \ x_l = 600 x_n$
- $y_l = 400 y_n$

Isso nos dá um novo conjunto de restrições:

- R1: $x_n + y_n \le 700$
- R2: $x_l + y_l = 600 x_n + 400 y_n \le 800 \rightarrow 200 \le x_n + y_n$
- R3: $x_n \ge 0$
- R4: $y_n \ge 0$
- R5: $x_l \ge 0 \to 600 \ge x_n$
- R6: $y_l \ge 0 \to 400 \ge x_n$

e a seguinte função objetiva: $5x_n + 10y_n + 15(600 - x_n) + 4(400 - y_n) = 10600 - 10x_n + 6y_n$ Plotando e achando a região factível:

5

A região factível é o polígono formado pelas 6 restrições. Acharemos os vértices factíveis:

- R1 com R5: (600, 100)
- R1 com R6: (300, 400)
- R2 com R3: (0, 200)
- R2 com R4: (200,0)
- R3 com R6: (0,400)
- R4 com R5: (600,0)

Colocaremos os pontos na função objetiva e nossa solução será o que der o melhor resultado:

- 10600 10 * 600 + 6 * 100 = 5200
- 10600 10 * 300 + 6 * 400 = 10000
- 10600 10 * 0 + 6 * 200 = 11800
- $\bullet \ 10600 10 * 200 + 6 * 0 = 8600$
- $\bullet \ 10600 10 * 0 + 6 * 400 = 13000$
- $\bullet \ 10600 10 * 600 + 6 * 0 = 4600$

Portanto nossa solução é o ponto (0,400), ou seja, mandar 600 cópias de Novato pra São Francisco e mandar 400 de Lodi para Sacramento.

8 Questão 8

Primeiro vamos escrever o problema na forma canônica e vamos introduzir as varáveis novas:

$$\begin{cases}
-2x + y + P = 0 \\
2x + 3y + s_1 = 3 \\
x + 5y + s_2 = 1 \\
2x + y + s_3 = 4 \\
4x + y + s_4 = 5 \\
x, y \ge 0
\end{cases}$$

Agora, vamos escrever na forma de matriz:

X	у	s_1	s_2	s_3	s_4	Р	RHS
2	3	1	0	0	0		3
1	5	0	1	0	0	0	1
2	1	0	0	1	0	0	4
4	1	0	0	0	1	0	5
-2	-1	0	0	0	0	1	0

Escolherei o x como pivô, e usarei a linha 2 para o processo de trocar a base:

X	y	s_1	s_2	s_3	s_4	Р	RHS
0	-7	1	-2	0	0	0	1
	5						
0	-9	0	-2	1	0	0	2
0	-19	0	-2	0	1	0	1
0	9	0	2	0	0	1	2

O que fiz para zerar a primeira coluna com exceção da segundalinha foi:

- Subtrai $2L_2$ de L_1
- Subtrai $2L_2$ de L_3
- Subtrai $4L_2$ de L_4
- Adcionei $2L_2$ em L_5

Todos os valores da última linha agora são positivos, indicando que achamos a solução. Nossas variáveis livres são y e s_2 , ou seja, trocaremos elas por 0 na nossa solução. Com o sistemas de equação que temos e trocando x e s_2 por 0, temos que:

- $\bullet \ \ x=1$
- y = 0
- $s_1 = 1$
- $s_2 = 0$
- $s_3 = 2$
- $s_4 = 1$

Ou seja, o valor máximo é 2, que ocorre quando x é 1 e y é 0.

9 Questão 9

- Se a ou b são 0, o problema não tem solução, pois o gradiente invertido irá apontar pra uma direção que sempre podemos ir, ou seja, podemos deixar o custo infinitamente menor.
- Se a=0 e b=0, qualquer ponto dentro da região factível é um ponto ótimo pois nosso gradiente será (0,0) sempre.
- Se a=0 e b>0, qualquer ponto tal que y=0 e $x\geq 6$ é ótimo. Isso acontece pois se o x for maior ou igual à 6 nós estaremos dentro da região factível e o nosso gradiente é perpendicular ao eixo x, ou seja, nossa solução se encontra nessa reta.
- Se a > 0 e b = 0, o argumento de cima vale para o eixo y ao invés do x.
- Se o vetor (a, b) for paralelo ao vetor (2, 1), toda a reta 2x + y = 6 será uma solução ótima, desde que o ponto escolhido esteja dentro da região factível
- Se o vetor (a, b) for paralelo ao vetor (1, 2), toda a reta x + 2y = 6 será uma solução ótima, desde que o ponto escolhido esteja dentro da região factível
- Por último, se a, b > 0 temos 3 subcasos:
 - Se (a,b) pode ser escrito como $\alpha(1,0) + \beta(2,1)$ com $\alpha,\beta > 0$ temos que a solução ótima será o ponto (0,6).
 - Se (a,b) pode ser escrito como $\alpha(2,1) + \beta(1,2)$ com $\alpha,\beta > 0$ temos que a solução ótima será o ponto (2,2).
 - Se (a,b) pode ser escrito como $\alpha(0,1) + \beta(1,2)$ com $\alpha,\beta > 0$ temos que a solução ótima será o ponto (6,0).

10 Questão 10

- $\bullet\,$ Se a e b são 0, todos os pontos da região factível são ótimos.
- Se b < 0 ou se a > 0, não temos solução ótima.
- Se b=0 e a<0, a reta x=4 é solução ótima desde que $y\geq 6$
- Se a=0 e b>0, a reta y=0 é solução ótima desde que $x\leq -2$
- Se o vetor (a, b) for paralelo ao vetor (-2, 1), toda a reta $-2x + y \ge -2$ é solução ótima, desde que o ponto escolhido esteja dentro da região factível
- Se o vetor (a, b) for paralelo ao vetor (-1, 2), toda a reta $-x + 2y \ge 2$ é solução ótima, desde que o ponto escolhido esteja dentro da região factível
- Por último, se a < 0 e b > 0, temos 3 subcasos:
 - Se (a,b) pode ser escrito como $\alpha(-2,1)+\beta(-1,0)$ com $\alpha,\beta>0$ temos que a solução ótima será o ponto (4,6).
 - Se (a, b) pode ser escrito como $\alpha(-2, 1) + \beta(-1, 2)$ com $\alpha, \beta > 0$ temos que a solução ótima será o ponto (2, 2).
 - Se (a,b) pode ser escrito como $\alpha(-1,2) + \beta(0,1)$ com $\alpha,\beta > 0$ temos que a solução ótima será o ponto (-2,0).