# Using Twitter to <a href="Predict">Predict</a> Power Outages



PETER GARCIA, RAFFY SANTAYANA, AMBAR KLEINBORT

### Agenda

- Problem Statement
- 2. Data Collection
- 3. Background Info
- 4. Outage Tweets Map
- 5. NLP and Modeling
- 6. Predicted Outage Tweets Map
- 7. Model Assessment
- 8. Future Directions



#### **Problem Statement**

- Blackouts are inevitable
- Blackout detection strategy:
  - Satellite Image Classification
  - Advanced Meter Infrastructure (AMI)
- Alternative until AMI is integrated:
  - Utilize social media data to predict where blackouts occur



#### **Data Collection**

- Scraped Tweets (Jan. '14 to Sept. '19)
  - Python library: twitterscraper
- True Blackouts:
  - Department of Energy
    - Dates Blackout Occurred and Returned
    - Cause of Blackout
    - Areas Affected

**Background** 



Probability of X or Less Months Until a Blackout in the USA







- 1. Tokenization
- 2. Frequency Threshold
  - a. Min\_df
- 3. Logistic Regression
- 4. Hyperparameter Tuning
  - a. Regularization with C
  - b. n\_grams





#### Predicted Outage Tweets Map

- Model Prediction
- Accuracy
  Clusters would
  be ideal

#### **Model Assessment**



Baseline - 77%

**Accuracy** - 84%



**O.5 Threshold** - Precision: 98% - Recall: 75%

**O.7 Threshold** - Precision: 69% - Recall: 92%



Twitter API & Location

Scale to more cities

Scale to other common languages in the US

Live map app



## Thanks!

Any questions?