Математическая логика, 4 семестр ПИ, Конспекты

Собрано 6 июня 2023 г. в 18:29

Содержание

1. Математическая логика	1
1.1. Пропозициональная формула: ПП, логическая связка, скобочная структура	. 1
1.2. Конъюнктивная (дизъюнктивная) нормальная форма. Теорема о существовании	
КНФ и ДНФ для произвольной формулы	. 2
1.3. Совершенная конъюнктивная (дизъюнктивная) нормальная форма. Теорема о существовании СКНФ и СДНФ	. 2
1.4. Существенные и несущественные переменные пропозициональной формулы. Добавление фиктивных переменных	. 3
1.5. Валентность $\Pi\Phi$, тавтологии. Теорема о тавтологии. Выражение произвольной $\Pi\Phi$ через три логические связки. Законы классической логики	
1.6. Логическое следствие	
1.7. Формула исчисления предикатов: ПП, ПК, ФС, ПС, кванторы, терм, атомарная формула, скобочная структура	
1.8. Свободные и связанные переменные в ФИП, замкнутый терм, замкнутая формула,	
свобода терма для подстановки	. 7
1.9. Секвенция: список формул, антецедент, сукцедент, аксиомы, правила вывода, вывод в исчислении секвенций, выводимая секвенция, допустимые правила вывода,	
формульная интерпретация секвенции	. 8
1.10. Теории в языке исчисления предикатов, выводимая формула, присоединение след-	
ствий, противоречивая и непротиворечивая теория	. 9
1.11. Алгебраическая структура для языка исчисления предикатов: имя предиката в алгебраической структуре, имя константы в алгебраической структуре, имя	
функтора в алгебраической структуре	. 10
1.12. Интерпретация ЯИП в алгебраической структуре: значение терма в алгебраической структуре, истинность ФИП в алгебраической структуре, выполнимость	, 10
ФИП, понятие модели	. 11
1.13. Теорема о значении терма	
1.14. Теорема об истинности	
1.15. Теорема о семантическом обосновании исчисления секвенций	
1.16. Непротиворечивость теории, имеющей модель	
1.17. Теория равенства	
1.18. Аксиомы согласования с равенством	
1.19. Теория групп	
1.20. Теория порядка	
1.21. Парадокс Рассела	
1.22. Алфавит. Слово в алфавите. Язык над алфавитом. Равенство слов. Конкатенация	
слов. Подслово. Интервал вхождения. Подстановка	. 14

Раздел #1: Математическая логика

1.1. Пропозициональная формула: $\Pi\Pi$, логическая связка, скобочная структура

Определение 1 (Пропозициональный алфавит). Определим пропозициональный алфавит следующим образом.

$$\mathcal{A} = \{x, |, \#, \neg, \&, \lor, \supset, \equiv, (,)\}.$$

Определение 2 (Пропозициональная буква). Пропозициональную букву (ПБ) определим рекурсивно.

- $x \Pi B$.
- Если $\epsilon \Pi B$, то $\epsilon | \Pi B$.
- Других ПБ нет.

Определение 3 (Пропозициональная переменная). Пропозициональная переменная (ПП) имеет следующий вид: $\Pi B \#$.

Замечание. Под следующими равенствами будем понимать синтаксическое равенство.

- $x_0 = x \#$.
- $\bullet \ \ x_1 = x | \#.$
- ...
- $\bullet \ x_n = x|...n_{times}...|\#.$

При этом, если говорим, что $u-\Pi\Pi$, то подразумеваем, что существует такое i, что u = x_i синтаксически.

Определение 4 (Пропозициональная формула). Определим пропозициональную формулу (П Φ) рекурсивно.

- $\Pi\Pi \Pi\Phi$.
- Если A и $B-\Pi\Phi$, то $(A*B)-\Pi\Phi$, где *- один из следующих символов: $\&,\lor,\supset,\equiv$.
- Если $A \Pi \Phi$, то $(\neg A) \Pi \Phi$.
- Других П Φ нет.

Определение 5 (Логическая связка). Логической связкой будем называть один из следующих символов: \neg , &, \lor , \supset , \equiv .

1.2. Конъюнктивная (дизъюнктивная) нормальная форма. Теорема о существовании КНФ и ДНФ для произвольной формулы

Определение 6 (Элементарная дизъюнкция (конъюнкция)). Пусть $x_1,...,x_n$ — список ПП. Определим элементарную дизъюнкцию (конъюнкцию) рекурсивно.

- ПП из списка $x_1, ..., x_n$.
- Отрицание (¬) ПП из $x_1, ..., x_n$.
- Если X, Y ЭД (ЭК), то $X \vee Y ЭД$ (X & Y ЭК).
- Других ЭД (ЭК) нет.

Определение 7 (Полная элементарная дизъюнкция (конъюнкция)). ЭД (ЭК) называется полной, если все ее переменные входят ровно по одному разу.

Пример. Пусть x_1, x_2, x_3 — список ПП.

- $x_1 ЭДи ЭК.$
- $x_1 \lor x_3 ЭД.$
- $x_2 \& x_3 \Im K$.
- $x_1 \lor x_2 \lor x_3 \Pi ЭД.$
- $x_1 \& x_2 \& x_3 \Pi \ni K$.

Определение 8 (Конъюнктивная (дизъюнктивная) нормальная форма). П Φ находится в КН Φ (ДН Φ), если она является либо ЭД (ЭК), либо конъюнкцией (дизъюнкцией) ЭД (ЭК).

Теорема 1 (Теорема о существовании КНФ и ДНФ для произвольной формулы). Любая ПФ формула A может быть приведена к КНФ (ДНФ) A^* , такой, что $A \sim A^*$.

1.3. Совершенная конъюнктивная (дизъюнктивная) нормальная форма. Теорема о существовании СКНФ и СДНФ

Определение 9 (Совершенная конъюнктивная (дизъюнктивная) нормальная форма). П Φ находится в СКН Φ (СДН Φ), если она находится в КН Φ (ДН Φ), а также каждая ее ЭД (ЭК) является полной.

Теорема 2 (Теорема о существовании СКНФ и СДНФ). Пусть A — не тождественно ложная ПФ. Тогда существует ПФ A^* , которая находится в СКНФ (СДНФ), такая, что $A \sim A^*$.

1.4. Существенные и несущественные переменные пропозициональной формулы. Добавление фиктивных переменных

Определение 10 (Существенные и несущественные переменные пропозициональной формулы). ПП α_i пропозициональной формулы $\mathcal{A}(\alpha_1,...,\alpha_n)$ является существенной, если существует набор значений $\beta_1,...,\beta_{i-1},\beta_{i+1},...,\beta_n$ для переменных $\alpha_1,...,\alpha_{i-1},\alpha_{i+1},...,\alpha_n$, такой, что

$$A(\beta_1,...,\beta_{i-1},true,\beta_{i+1},...,\beta_n) \neq A(\beta_1,...,\beta_{i-1},false,\beta_{i+1},...,\beta_n).$$

ПП называется фиктивной (несущественной), если она не является существенной.

Замечание (Добавление фиктивных переменных). Добавление фиктивных переменных не влияет на значение $\Pi\Phi$ при любой возможной интерпретации σ .

1.5. Валентность $\Pi\Phi$, тавтологии. Теорема о тавтологии. Выражение произвольной $\Pi\Phi$ через три логические связки. Законы классической логики

1.6. Логическое следствие

Определение 11 (Валентность ПФ). Рассмотрим таблицу истинности ПФ A, а точнее ее строку с номером j. Будем говорить, что валентность ПФ A на наборе $e_{j1},...,e_{jn}$ (n — количество ПП, входящих в ПФ A) равна δ_j (true/false) и писать

$$val_{e_{j1},\dots,e_{jn}}A = \delta_j.$$

Определение 12 (Интерпретация). Пусть $A = A(v_1, ..., v_n) - \Pi \Phi$. Интерпретацией называется правило (функция), сопоставляющее каждой $\Pi\Pi \ v_1, ..., v_n$ значение И или Π .

Замечание. Обозначение:

$$\sigma: \{\Pi\Pi\} \to \{\Pi, \Pi\}.$$

Определение 13 (Истинность формулы при интерпретации). Пусть $A = A(v_1, ..., v_n) - \Pi \Phi$,

 σ — некоторая интерпретация.

Определим отношение $\sigma \models A$ (формула истинна при интерпретации σ) рекурсивно.

- $\sigma \vDash v$ тогда, и только тогда, когда $\sigma(v) = \mathsf{И}$.
- $\sigma \vDash \neg A$ тогда, и только тогда, когда не выполнено $\sigma \vDash A$.
- $\sigma \models A\&B$ тогда, и только тогда, когда $\sigma \models A$ и $\sigma \models B$.
- $\sigma \models A \lor B$ тогда, и только тогда, когда $\sigma \models A$ или $\sigma \models B$.
- $\sigma \models A \supset B$ тогда, и только тогда, когда $\sigma \models \neg A \lor B$.
- $\sigma \models A \equiv B$ тогда, и только тогда, когда $\sigma \models (A \supset B) \& (B \supset A)$.

Определение 14 (Выполнимая $\Pi\Phi$). $\Pi\Phi$ A называется выполнимой, если существует интерпретация σ , такая, что $\sigma \models A$.

Определение 15 (Тавтология). ПФ A называется тавтологией, если для интерпретации σ верно, что $\sigma \vDash A$.

Замечание. Обозначение: $\models A$.

Определение 16 (Противоречие). ПФ B называется противоречием, если $\models \neg B$.

Определение 17 (Логическое следствие). ПФ B является логическим следствим ПФ A, если $\models (A \supset B)$.

Замечание. Обозначение: $A \Rightarrow B$.

Теорема 3 (О тавтологии). Если $\models A, A \Rightarrow B$, то $\models B$.

Замечание. Произвольная $\Pi\Phi$ может быть выражена через логические связки ¬ и ∨. Для этого используются законы классической логики, некоторые из которых рассмотрим далее.

- $\neg(A \lor B) = \neg A \& \neg B$ и $\neg(A \& B) = \neg A \lor \neg B$ законы де Моргана.
- $A \equiv B = (A \supset B) \& (B \supset A)$.
- $A \supset B = \neg A \lor B$.
- $\bullet \neg \neg A = A$.
- $A \supset B = \neg B \supset \neg A$ закон контрпозиции.

• $A\&(B\lor C)=(A\&B)\lor(A\&C)$ и $A\lor(B\&C)=(A\lor B)\&(A\lor C)$ — закон дистрибутивности.

1.7. Формула исчисления предикатов: $\Pi\Pi$, ΠK , ΦC , ΠC , кванторы, терм, атомарная формула, скобочная структура

Определение 18 (Алфавит языка исчисления предикатов). Алфавит языка $\mathcal L$ исчисления предикатов содержит следующие символы.

$$\mathcal{L} = \{x, c, P, F, |, \#, \forall, \exists, \neg, \lor, \&, \supset, \equiv, (,)\}.$$

Определение 19 (Номер). Номер — это слово в алфавите $\{|\}$.

Замечание. Введем следующие обозначения.

- $0 = \Lambda$.
- 1 = 0|.
- ...
- $n = \widetilde{n+1} = n|$.

Волна над числом говорит нам о том, что это единый символ.

Определение 20 (Сумма). Конкатенацию номеров назовем их суммой и будем обознать эту операцию знаком +.

Теорема 4. Верны следующие утверждения.

- k + l = l + k.
- k + (l + m) = (k + l) + m.
- Если k = l, то k + m = l + m.

Определение 21 (<, \le). Будем писать $k \le l$ тогда и только тогда, когда k — начало слова l, то есть k+m=l для некоторого m. В этом случае говорят, что k меньше или равно l (l больше или равно k). Если при этом $k \ne l$, то пишут k < l и говорят, что k строго меньше l (l строго больше k).

Теорема 5. Верны следующие утверждения.

• $k \le k$.

- Если $k \le l$ и $l \le k$, то k = l.
- Если $k \le l$ и $l \le m$, то $k \le m$.
- Если k < l, то k + m < l + m.

Замечание. Теоремы выше показывают, что класс всех номеров устроен так, как требуется от натуральных чисел в плане счёта, нумерации и порядка. Таким образом, $0 < 1 < 2 < 3 < 4 < 5 < \dots$

Определение 22 (Предметная переменная). Предметной переменной (ПП) называется слово вида xHOMEP#.

Замечание. Отметим, что $\Pi\Pi$ в написании совпадает с пропозициональной переменной, однако, содержательная её часть иная.

Определение 23 (Предметная константа). Предметной константой (ПК) называется слово вида cHOMEP#.

Замечание. Если n — номер, то запись xn# будет сокращена до записи x_n . Тоже самое касается и записи cn#, которая заменяется на c_n . Более того, для обозначения переменных (констант) мы будем часто использовать буквы, присущие для этого по контексту (y, z, u, ... для переменных, 100, 5, 4, ... для констант). В этом случае если мы говорим, что v является переменной, то это означает, что для некоторого номера n имеет место $v = x_n$. Аналогично объясняется и смысл фразы "m есть константа".

Определение 24 (Предикатный символ). Слово вида $P_k^n = \#nPk\#$, где n и k являются номерами, называется предикатным символом (ПС или просто предикат). Номер n называется местностью предиката, а k — это его порядковый номер в классе всех n-местных предикатов.

Замечание. Мы говорим, что Q-n-местный предикат, если для некоторых $n,\ k$ верно $Q=P_k^n.$

Пример. На данном этапе подобные примеры являются бессмысленными, однако помогают понять, для чего предикатные символы понадобятся далее.

Предикат EOL(x, y) — двуместный предикат который равен W если x = y, а в ином случае

Предикат EQL(x,y) — двуместный предикат, который равен И, если x=y, а в ином случае Л.

Определение 25 (Функциональный символ). Слово вида $F_k^n = \#nFk\#$, где n и k являются номерами, называется функциональным символом (Φ C).

Номер n называется арностью Φ C, а k — это его порядковый номер в классе всех n-арных Φ C.

Замечание. Мы говорим, что G-n-арный ΦC , если для некоторых n, k верно $G = F_k^n$.

Определение 26 (Терм). Опредим слово, называемое термом, рекурсивно.

- ПП является термом.
- ПК является термом.
- ullet если $t_1,...,t_n$ термы, F-n-арный ΦC , то $F(t_1,...,t_n)$ терм.
- Других термов нет.

Замечание. Пусть t — терм, а $v_1,...,v_l$ — список всех (без повторений) ПП, входящих в терм t. В этом случае будем писать $t = t(v_1,v_2,...,v_l)$.

Определение 27 (Атомарная формула). Атомарной формулой (АФ) называется слово вида $P(t_1,...,t_n)$, где P-n-местный $\Pi C,\,t_1,...,t_n$ — термы.

Определение 28 (Формула исчисления предикатов). Определим слово, называемое формулой исчисления предикатов (ФИП или просто формула), рекурсивно.

- $A\Phi \Phi \Pi \Pi$.
- Если $A \Phi \Pi \Pi$, то $\neg A \Phi \Pi \Pi$.
- Если A и $B \Phi \Pi \Pi$, то слова $(A \vee B)$, (A & B), $(A \supset B)$, $(A \equiv B) \Phi \Pi \Pi$.
- Если $A \Phi \Pi \Pi$, а $x \Pi \Pi$, то слова $(\forall x A)$ и $(\exists x A) \Phi \Pi \Pi$.
- Других ФИП нет.

1.8. Свободные и связанные переменные в $\Phi \Pi \Pi$, замкнутый терм, замкнутая формула, свобода терма для подстановки

Определение 29 (Зона действия квантора). Формула A в ФИП ($\forall xA$) и ($\exists xA$) называется зоной действия (вхождения) квантора по переменной x.

Определение 30 (Свободные и связанные переменные ФИП). Вхождение ПП называется связанным, если оно имеет место непосредственно в зоне действия квантора по этой переменной. Вхождение переменной, не являющееся связанным, называется свободным.

Переменная x называется связанной (свободной) переменной формулы A, если она имеет хотя бы одно связанное (свободное) вхождение в эту формулу.

Определение 31 (Замкнутый терм). Терм, не содержащий ни одного вхождения ПП, то есть терм без переменных, называют постоянным или замкнутым.

Определение 32 (Замкнутая формула). Формула, не содержащая свободных переменных называется замкнутой формулой или утверждением (высказыванием).

Определение 33 (Свобода терма для подстановки). Пусть t — терм, A — формула языка \mathcal{L}, x — ПП. Говорят, что t свободен для подстановки в A вместо x, если ни одно свободное вхождение x в A не имеет место в зоне действия квантора по переменной, имеющей вхождение в t.

Более простыми словами, терм свободен для подстановки, если в формулу $[A]_t^x$ все переменные терма t входят свободно.

Пример. Пусть $\forall x \varphi(x,y)$ — некоторая формула. Терм x не является свободным для подстановки вместо y. Терм S(x,y) также не является свободным для подстановки вместо y. Терм z является свободным для подстановки вместо y.

1.9. Секвенция: список формул, антецедент, сукцедент, аксиомы, правила вывода, вывод в исчислении секвенций, выводимая секвенция, допустимые правила вывода, формульная интерпретация секвенции

Определение 34 (Список формул). Под списком формул мы понимаем конечный или пустой набор формул.

Определение 35. Пусть Γ — список формул.

- $\vee\Gamma$ дизъюнкция всех формул из Γ .
- $\neg \Gamma$ список формул, который можно получить приписыванием к каждой формуле из Γ отрицания.
- ∨ и ¬ пустого списка формул есть Л (ложь).

Определение 36 (Секвенция, антецедент, сукцедент). Секвенция — выражение вида $\Gamma \to \Delta$, где Γ и Δ — списки формул.

Запись $\Gamma \to \Delta$ понимается как сокращение $\Gamma \to \Delta := \vee (\neg(\Gamma), \Delta)$. Список формул слева от стрелки называется антецедентом, а справа — сукцедентом.

Замечание. Смысл: при допущении всег формул списка Γ мы получаем хотя бы одну из формул списка Δ .

Определение 37 (Аксиома). Секвенция вида $\Gamma_1, A, \Gamma_2 \to \Delta_1, A, \Delta_2$ называется аксиомой.

Определение 38 (Правило вывода). Правилом вывода называется запись вида

$$\frac{S_1, \dots, S_n}{T_1, \dots, T_k},$$

где $S_i, T_j (1 \le i \le n, 1 \le j \le k)$ — секвенции (первые называются посылками, а последние — заключениями).

Замечание. Смысл: из справедливости посылок следует справедливость заключений.

Определение 39 (Вывод). Пусть $G = \{S_1, ..., S_n\}$ — набор секвенций. Выводом из списка G называется набор секвенций $T_1, ..., T_k$, при этом каждая из секвенций T_j

- либо является аксиомой,
- либо является одной из секвенций S_i ,
- либо получается из предыдущих при помощи правил вывода.

Определение 40 (Выводимая секвенция). Секвенция T называется выводимой из списка G, если существует вывод, такой, что T — это последняя секвенция этого вывода.

Обозначение: $G \vdash T$.

Секвенция T называется выводимой, если она выводима из пустого списка.

Обозначение: $\vdash T$.

Определение 41 (Выводимая формула). Формула A выводима из списка формул $A_1,...,A_n$, если выводима секвенция $A_1,...,A_n \to A$.

Формула называется выводимой, если она выводима из пустого списка.

Соответствующие факты будем записывать $A_1, ..., A_n \vdash A$ и $\vdash A$.

Определение 42 (Допустимое правило вывода). Правило вывода называется допустимым, если при его добавлении к существующим правилам вывода, класс выводимых секвенций не изменяется.

Определение 43. Формульным образом (интерпретацией) секвенции $\Gamma \to \Delta$ называется формула $\Phi = (\&\Gamma) \supset (\lor \Delta)$.

1.10. Теории в языке исчисления предикатов, выводимая формула, присоединение следствий, противоречивая и непротиворечивая теория

Определение 44 (Теория). Теорией T называется класс формул.

Определение 45 (Выводимая формула). Формула A называется выводимой из теории T, если существует конечная часть T' в T, такая, что выводима секвенция $T' \to A$.

Замечание. Обозначение: $T \vdash A$. Если T — пустая теория, то $\vdash A$.

Определение 46 (Присоединение следствий). Операция присоединения следствий — это теория $\mathfrak{G}(T)$, получающаяся доавлением к теории T всех ее теорем. Иными словами, $A \in \mathfrak{G}(T)$ тогда, и только тогда, когда $T \vdash A$.

Определение 47 (Противоречивая и непротиворечивая теория). Теория называется противоречивой, если существует формула A, такая, что $T \vdash (A \& \neg A)$. Теория, не являющаяся противоречивой, называется непротиворечивой.

Замечание (Непротиворечивая теория). Для всякой непротиворечивой теории T существует максимально непротиворечивая теория T', являющаяся расширением T, то есть $T \subset T'$, при этом T' непротиворечива, а также для любой непротиворечивой теории T_1 , которая также является расширением T, верно, что $T_1 \subseteq T'$.

1.11. Алгебраическая структура для языка исчисления предикатов: имя предиката в алгебраической структуре, имя константы в алгебраической структуре, имя функтора в алгебраической структуре

Определение 48 (Алгебраическая структура). Пусть M — некоторое множество, \mathfrak{F} — множество алгебраических операций на M (то есть $* \in \mathfrak{F}$ тогда и только тогда, когда * — есть функция с областью определения $M^n = M \times M \times ... \times M$ (для некоторого n), принимающая значения в M), а \mathfrak{B} — множество отношений на M (отношением, точнее n-местным отношением, называется произвольное подмножество $R \subset M^n$).

Тогда тройка \mathfrak{M} =< $M,\mathfrak{F},\mathfrak{B}$ > называется алгебраической структурой.

Определение 49. Пусть L_1 — формализованный язык исчисления предикатов с равенством, \mathfrak{M} — некоторая алгебраическая структура. Определим функцию Π следующим образом.

- Для каждой константы c языка L_1 положим $\Pi(c)$ некоторый элемент M.
- Для каждого функционального символа F положим $\Pi(F)$ алгебраическая операция на M соответствующей арности.
- Для каждого предикатного символа P положим $\Pi(P)$ отношение на M соответствующей арности.

Таким образом, для каждого специального символа a языка L_1 определено его имя $\Pi(a)$ в алгебраической структуре. В дальнейшем будем писать $a^{\mathfrak{M}}$.

1.12. Интерпретация ЯИП в алгебраической структуре: значение терма в алгебраической структуре, истинность ФИП в алгебраической структуре, выполнимость ФИП, понятие модели

Определение 50 (Интерпретация ЯИП в алгебраической структуре). Функция s, заданная на множестве всех (предметных) переменных языка L_1 и принимающая значения в M называется интерпретацией L_1 в M.

Определение 51 (Значение терма в алгебраической структуре). Для каждого терма t в L_1 и интерпретации s определим значение терма t в структуре \mathfrak{M} при интерпретации s, которое будем обозначать $t^{\mathfrak{M}}[s]$.

- Если $t = x \Pi\Pi$, то $t^{\mathfrak{M}}[s] = s(x)$.
- Если $t = c \Pi K$, то $t^{\mathfrak{M}}[s] = c^{\mathfrak{M}}$.
- Если $t_1, ..., t_2$ термы, а $t = F(t_1, ..., t_n)$ Φ С, то $t^{\mathfrak{M}}[s] = F^{\mathfrak{M}}(t_1^{\mathfrak{M}}[s], ..., t_n^{\mathfrak{M}}[s])$.

Пример. Пусть $L(\theta, e, \epsilon, P, S)$ — язык алгебраических выражений с соответствующей структурой, где $\theta, e - \Pi K, \epsilon - \Pi C, P, S - \Phi C$.

Пусть $\mathfrak{N} = <\mathbb{N}, +, *, => -$ алгебраическая структура.

Свяжем ее с языком, выдав ПК, ПС и ФС имена:

$$\theta^{\mathfrak{N}} = 0, e^{\mathfrak{N}} = 1, \epsilon^{\mathfrak{N}} = -, P^{\mathfrak{N}} = +, S^{\mathfrak{N}} = *.$$

Рассмотрим следующие интерпретации.

$$s_1(x) = s_1(y) = 1; s_2(x) = 2, s_2(y) = 0.$$

Также рассмотрим терм

$$t_1(x,y) \coloneqq S(P(x,y),e).$$

Распишем этот терм в алгебраической структуре $\mathfrak N$ при интерпретации s_1 .

$$t_1^{\mathfrak{N}}[s_1] \coloneqq S^{\mathfrak{N}}(P^{\mathfrak{N}}(s_1(x), s_1(y)), e^{\mathfrak{N}}).$$

$$t_1^{\mathfrak{N}}[s_1] := +(*(1,1),1) = (1*1) + 1 = 2.$$

Далее при интерпретации s_2 .

$$t_1^{\mathfrak{N}}[s_1] \coloneqq +(*(s_2(x), s_2(y)), 1) = (2*0) + 1 = 1.$$

Определение 52 (Истинность ФИП в алгебраической структуре). Пусть $L_1 - ЯИ\Pi$, $\mathfrak{M} -$ алгебраическая структура, $\varphi(x_1,...,x_n) - \Phi \Pi$, s — интерпретация L_1 в \mathfrak{M} . Определим соответствие $\mathfrak{M} \models \varphi[s]$ рекурсивно по определению $\Phi \Pi$.

- Если $\varphi = P(t_1, ..., t_m)$ атомарная формула (АФ), то $\mathfrak{M} \models \varphi(s)$ тогда и только тогда, когда $< t_1^{\mathfrak{M}}[s], ..., t_m^{\mathfrak{M}}[s] > \in P^{\mathfrak{M}}$ ($P^{\mathfrak{M}}$, в свою очередь, принадлежит множеству отношений, которое мы обозначили \mathfrak{B}) [предположительно, можно выразиться также следующим образом: $P^{\mathfrak{M}}(t_1^{\mathfrak{M}}[s], ..., t_m^{\mathfrak{M}}[s])$ истинна].
- Если $\varphi = \neg \varphi_1$, то $\mathfrak{M} \models \varphi[s]$ тогда и только тогда, когда не $\mathfrak{M} \models \varphi_1[s]$.
- Если $\varphi = \varphi_1 \vee \varphi_2$, то $\mathfrak{M} \models \varphi[s]$ тогда и только тогда, когда $\mathfrak{M} \models \varphi_1[s]$ или $\mathfrak{M} \models \varphi_2[s]$.
- ...
- Если $\varphi = \exists x \varphi_1(x, x_1, ..., x_n)$, то $\mathfrak{M} \models \varphi[s]$ тогда и только тогда, когда найдется элемент $m \in M$, такой, что

$$\mathfrak{M} \vDash \varphi_1(x_1, ..., x_n) [s \binom{x}{m}],$$

где $s\binom{x}{m}$ — это такая интерпретация s_1 , что $s_1(x) = m$ и $s_1(y) = y$ для любого $y \neq x$.

• Если $\varphi = \forall x \varphi_1(x, x_1, ..., x_n)$, то $\mathfrak{M} \models \varphi[s]$ тогда и только тогда, когда $\mathfrak{M} \models \neg \exists x \neg \varphi_1[s]$.

Определение 53 (Выполнимость ФИП и понятие модели). Теория T называется выполнимой, если существует алгебраическая структура \mathfrak{M} такая, что для каждого утверждения $\alpha \in T$ $\mathfrak{M} \models \alpha$. В этом случае говорят, что \mathfrak{M} является моделью теории T.

1.13. Теорема о значении терма

Теорема 6 (О значении терма). Пусть $L_1 - \mathfrak{A}\mathsf{И}\Pi$, $\mathfrak{M} -$ алгебраическая структура, $s_1, s_2 -$ интерпретации L_1 в \mathfrak{M} , $t = t(x_1, ..., x_n) -$ терм в L_1 . Если $s_1(x_i) = s_2(x_i)(1 \le i \le n)$, то $t^{\mathfrak{M}}[s_1] = t^{\mathfrak{M}}[s_2]$.

1.14. Теорема об истинности

Теорема 7 (Об истинности). Пусть $L_1 - \mathfrak{A} \mathfrak{U} \Pi$, $\mathfrak{M} -$ алгебраическая структура, $\varphi(x_1,...,x_n) - \Phi \mathfrak{U} \Pi$, $s_1, s_2 -$ интерпретации L_1 в \mathfrak{M} , которые имеют одинаковые значения на всех

свободных переменных формулы φ . Тогда $\mathfrak{M} \models \varphi[s_1]$ тогда и только тогда, когда $\mathfrak{M} \models \varphi[s_2]$.

1.15. Теорема о семантическом обосновании исчисления секвенций с.106 или 54?

1.16. Непротиворечивость теории, имеющей модель

Теорема 8. Если теория выполнима (имеет модель), то она непротиворечива. Верно и обратное, всякая непротиворечивая теория имеет модель (теорема Геделя о полноте).

1.17. Теория равенства

Определение 54 (Теория равенства). Теорией равенства называется теория, которая имеет язык $\mathfrak{L}_{=}$ (его сигнатура содержит единственный двухместный предикат =). Этот предикат называется предикатом равенства. Для него выполнены следующие аксиомы (равенства).

- $\forall x(x=x)$.
- $\forall x \forall y ((x = y) \supset (y = x)).$
- $\forall x \forall y \forall z ((x = y) \& (y = z) \supset (x = z)).$

1.18. Аксиомы согласования с равенством

Определение 55 (Теория с равенством, аксиомы согласования с равенством). Пусть T — некоторая теория в языке \mathfrak{L} . Пусть в сигнатуре данной теории выделен двухместный предикатный символ =, для которого в T входят аксиомы равенства.

Предположим, что для любого ПС P и для любого ФС F в \mathfrak{L}_T справедливы следующие аксиомы, которые называются аксиомами согласования с равенством.

- $\forall x_1... \forall x_l \forall y_1... \forall y_l (x_1 = y_1 \& ... \& x_l = y_l \supset (P(x_1, ..., x_l) \equiv P(y_1, ..., y_l))).$
- $\forall x_1... \forall x_l \forall y_1... \forall y_l (x_1 = y_1 \& ... \& x_l = y_l \supset (F(x_1, ..., x_l) = F(y_1, ..., y_l))).$

Тогда теория называется теорией с равенством.

1.19. Теория групп

Определение 56 (Теория групп). Теория групп T_G в сигнатуре языка помимо $\Pi C =$ имеет ещё ΠK 1 и $\Phi C \times$. Кроме аксиом равенства и согласования с равенством собственными аксиомами теории групп являются следующие.

- $\forall x \forall y \forall z (x \times (y \times z) = (x \times y) \times z).$
- $\forall x(x \times 1 = x)$.
- $\forall x \exists y (x \times y = 1)$.

1.20. Теория порядка

Определение 57 (Теория порядка). Теория порядка — теория с равенством, язык которой содержит двухместный предикатный символ ≤, а также выполнены следующие аксиомы (порядка).

- $\forall x (x \leq x)$.
- $\forall x \forall y ((x \le y) \& (y \le x) \supset (x = y)).$
- $\forall x \forall y \forall z ((x \leq y) \& (y \leq z) \supset (x \leq z)).$

1.21. Парадокс Рассела

Замечание (Парадокс Рассела). Рассмотрим множество $R := \{x : x \notin x\}$.

Верно ли, что $R \in \mathbb{R}$?

Если $R \in R$, то так как R обладает свойством, определяющим R, то $R \notin R$.

Но если $R \notin R$, то R обладает свойством, определяющим R и, следовательно, $R \in R$.

Таким образом, $R \in R$ тогда и только тогда, когда $R \notin R$, что и является противоречием, называемым парадоксом Рассела.

1.22. Алфавит. Слово в алфавите. Язык над алфавитом. Равенство слов. Конкатенация слов. Подслово. Интервал вхождения. Подстановка

Определение 58 (Алфавит). Алфавит — конечное множество символов.

Определение 59 (Язык). Язык — множество слов в алфавите \mathcal{A} .

Определение 60 (Слово). Слово в алфавите \mathcal{A} — последовательность символов из \mathcal{A} .

- Λ слово в языке L (в алфавите \mathcal{A}), где Λ пустое слово (слово, которое не содержит ни одного символа).
- ullet Если X- слово, lpha- буква, то Xlpha- слово.
- Других слов нет.

Определение 61 (Равенство слов). Слова называются равными, если они равны графически, то есть состоят из одинаковых символов, которые идут в одинаковом порядке.

Определение 62 (Длина слова). Длина слова — количество символов (букв) в нем.

- $|\Lambda| = 0$.
- $|X\alpha| = |X| + 1$.

Определение 63 (Конкатенация слов). Конкатенация слов A и B (приписывание одного слова к другому) — операция, которую обозначим AB и определим следующим образом.

- Если $B = \Lambda$, то AB = A.
- Если $B = \beta B'$, то $AB = A\beta B'$ конкатенация слов $A\beta$ и B'.

Определение 64 (Вхождение в слово (подслово)). Слово A входит в слово B (является его подсловом), если существуют слова Δ_1 и Δ_2 (возможно и пустые), что

$$B = \Delta_1 A \Delta_2$$
.

Замечание. Вхождение слова X в слово θ будем обозначать $\Sigma = \theta_1 \downarrow X \downarrow \theta_2 \ (\downarrow -$ не является символом алфавита).

Замечание. Очевидно, что вхождения слова A в слово B могут быть упорядочены отношением "быть левее".

Пример. Пусть B = abcabcabcabca, A = cabc.

- $\Sigma_1 = ab \downarrow cabc \downarrow abcabca$.
- $\Sigma_2 = abcab \downarrow cabc \downarrow abca$.
- $\Sigma_3 = abcabcab \downarrow cabc \downarrow a$.

Определение 65 (Интервал вхождения). Пусть $\Sigma = \theta_1 \downarrow A \downarrow \theta_2$ — вхождение слова A в слово $B, k = |\theta_1|, l = |\theta_1A|$.

Тогда (k,l) — интервал вхождения (в \mathbb{N}).

Определение 66 (Подстановка). Пусть слово A входит в слово B, C — любое слово в языке L.

Результатом подстановки слова C вместо k-ого вхождения слова A в слово B называется

слово

$$[B_k]_C^A$$
,

которое получается заменой k-ого вхождения слова A на слово C.

Замечание.
$$[B_{kl}]_{C_1C_2}^{A_1A_2}$$
 = $[[B_k]_{C_1\ l}^{A_1}]_{C_2}^{A_2}$.