1 Exploring exponential smoothing

June 13, 2019

1 Usage of exponential smoothing in API

1.1 Ziel

Hier möchte ich zeigen, dass exponential smoothing wie in Koch, 3.3. Update of parameters erwähnt, im Wesentlichen eine Durchschnittsbildung ist.

1.2 Vorgehensweise

Den relevanten Code habe ich in der Datei "1 E_API_lin_single_leg.py" gespeichert. Hier gibt es in der Methode *update_parameters* zwei unterschiedliche return statements, einmal ohne und einmal mit exponential smoothing.

Die Ergebnisse der beiden Durchläufe habe ich gespeichert: * 1-no-exponential-smoothing-smallTest-False-API-lin-190612-1049: ohne exponential smoothing * 1-exponential-smoothing-smallTest-False-API-lin-190612-1055: mit exponential smoothing

Zu diesem Zeitpunkt habe ich den Algorithmus zur Approximate policy iteration (Koch Kapitel 3) für den linearen Fall (nicht piecewise) und ohne exploration vs. exploitation dilemma implementiert.

1.3 verwendete Daten

```
Als Beispieldatensatz wurde der folgende verwendet. data_by_name["smallTest"] = {}
    data_by_name["smallTest"]["products"] = np.arange(4) # n data_by_name["smallTest"]["revenues"]
= np.array([1000, 800, 600, 400])
    data_by_name["smallTest"]["times"] = np.arange(10) # T
    data_by_name["smallTest"]["customer_segments"] = np.arange(1) #

L data_by_name["smallTest"]["arrival_probabilities"] = np.array([0.5])
data_by_name["smallTest"]["preference_weights"] = np.array([[0.4, 0.8, 1.2, 1.6]])
    data_by_name["smallTest"]["var_no_purchase_preferences"] = np.array([[1]])
data_by_name["smallTest"]["preference_no_purchase_preferences"][0])
    data_by_name["smallTest"]["resources"] = np.arange(1) # m
```

```
data_by_name["smallTest"]["var_capacities"]
                                                                                                                                                                                 np.array([[4]])
data_by_name["smallTest"]["capacities"] = data_by_name["smallTest"]["var_capacities"][0]
       # capacity demand matrix A (rows: resources, cols: products) # a_ij = 1 if resource i is used by
product j data_by_name["smallTest"]["A"] = np.array([[1, 1, 1, 1]])
       Und für die Policy Iteration: K = 10 I = 100
In [11]: import pandas as pd
                       import numpy as np
                       import pickle
                       import copy
In [17]: with open(r"C:\Users\Stefan\LRZ Sync+Share\Masterarbeit-Klein\Code\Results\1-no-exponents
                                 thetas_no_es = pickle.load(f)
                       with open(r"C:\Users\Stefan\LRZ Sync+Share\Masterarbeit-Klein\Code\Results\1-no-exponents
                                pis_no_es = pickle.load(f)
                      thetas_calculated = copy.deepcopy(thetas_no_es)
                       for k in np.arange(len(thetas_no_es)-1)+1:
                                 thetas_calculated[k] = np.average(thetas_no_es[1:(k+1)], axis=0)
                      pis_calculated = copy.deepcopy(pis_no_es)
                      for k in np.arange(len(pis_no_es)-1)+1:
                                 pis_calculated[k] = np.average(pis_no_es[1:(k+1)], axis=0)
In [9]: with open(r"C:\Users\Stefan\LRZ Sync+Share\Masterarbeit-Klein\Code\Results\1-exponentian
                              thetas_es = pickle.load(f)
                     \textbf{with} \ open (\texttt{r"C:\Users\Stefan\LRZ Sync+Share\Masterarbeit-Klein\Code\Results\1-exponential}) and the action of the top of the stefan open (\texttt{r"C:\Users\Stefan\LRZ Sync+Share\Masterarbeit-Klein\Code\Results\1-exponential}) and the stefan open (\texttt{r"C:\Users\Stefan\LRZ Sync+Share\Masterarbeit-Klein\Code\Results\1-exponential}) and the stefan open (\texttt{r"C:\Users\Stefan\LRZ Sync+Share\Masterarbeit-Klein\Code\Results\N--exponential}) and the stefan open (\texttt{r"C:\Users\Stefan\LRZ Sync+Share\Masterarbeit-Klein\N--exponential}) and the stefan (\texttt{r"C:\Users\N--exponential}) and the stefan (\texttt{r"C:\Users\N--exponentia
                              pis_es = pickle.load(f)
In [14]: thetas_calculated - thetas_es
Out[14]: array([[[ 0.00000000e+00],
                                           [ 0.0000000e+00],
                                           [ 0.0000000e+00]],
                                         [[ 0.0000000e+00],
                                           [ 0.0000000e+00],
                                           [ 0.0000000e+00],
                                           [ 0.0000000e+00],
                                           [ 0.0000000e+00],
                                           [ 0.0000000e+00],
```

```
[ 0.0000000e+00],
 [ 0.0000000e+00],
 [ 0.0000000e+00],
 [ 0.0000000e+00]],
[[ 0.0000000e+00],
 [ 0.0000000e+00]],
[[-4.54747351e-13],
 [-2.27373675e-13],
 [ 2.27373675e-13],
 [ 0.0000000e+00],
 [-1.13686838e-13],
 [-1.13686838e-13],
 [ 0.0000000e+00],
 [-5.68434189e-14],
 [ 0.0000000e+00],
 [ 0.0000000e+00]],
[[ 0.0000000e+00],
 [-2.27373675e-13],
 [ 0.0000000e+00],
 [ 0.0000000e+00],
 [ 0.0000000e+00],
 [-1.13686838e-13],
 [ 0.0000000e+00],
 [-5.68434189e-14],
 [ 0.0000000e+00],
 [ 0.0000000e+00]],
[[ 0.0000000e+00],
 [-2.27373675e-13],
 [ 0.0000000e+00],
 [ 0.0000000e+00],
 [ 1.13686838e-13],
 [-1.13686838e-13],
 [ 0.0000000e+00],
 [-5.68434189e-14],
 [-2.84217094e-14],
```

[0.0000000e+00]],

```
[[ 0.0000000e+00],
 [-2.27373675e-13],
 [ 0.0000000e+00],
 [ 0.0000000e+00],
 [ 0.0000000e+00],
 [-1.13686838e-13],
 [ 0.0000000e+00],
 [-1.13686838e-13],
 [-2.84217094e-14],
 [ 0.0000000e+00]],
[[-4.54747351e-13],
 [-4.54747351e-13],
 [ 0.0000000e+00],
 [ 0.0000000e+00],
 [ 0.0000000e+00],
 [-1.13686838e-13],
 [ 0.0000000e+00],
 [-1.13686838e-13],
 [-5.68434189e-14],
 [ 1.42108547e-14]],
[[ 0.0000000e+00],
 [-2.27373675e-13],
 [ 0.0000000e+00],
 [ 0.0000000e+00],
 [ 0.0000000e+00],
 [-1.13686838e-13],
 [ 0.0000000e+00],
 [-1.13686838e-13],
 [-2.84217094e-14],
 [ 0.0000000e+00]],
[[ 0.0000000e+00],
 [-2.27373675e-13],
 [ 0.0000000e+00],
 [ 0.0000000e+00],
 [ 0.0000000e+00],
 [ 0.0000000e+00],
 [ 0.0000000e+00],
 [-5.68434189e-14],
 [-2.84217094e-14],
 [ 0.0000000e+00]],
[[ 4.54747351e-13],
 [-2.27373675e-13],
 [-2.27373675e-13],
```

```
[ 0.0000000e+00],
                 [-1.13686838e-13],
                 [-1.13686838e-13],
                 [ 0.0000000e+00],
                 [-5.68434189e-14],
                 [-2.84217094e-14],
                 [ 0.0000000e+00]])
In [18]: pis_calculated - pis_es
Out[18]: array([[[ 0.00000000e+00],
                 [ 0.0000000e+00],
                 [ 0.0000000e+00]],
                [[ 0.0000000e+00],
                 [ 0.0000000e+00]],
                [[ 0.0000000e+00],
                 [ 0.0000000e+00]],
                [[-5.68434189e-14],
                 [ 0.0000000e+00],
                 [ 0.0000000e+00],
                 [ 0.0000000e+00],
                 [-1.42108547e-14],
```

```
[-1.42108547e-14],
[-3.55271368e-15],
[ 0.0000000e+00],
[-8.88178420e-16],
[ 0.0000000e+00]],
[[ 0.0000000e+00].
[ 0.0000000e+00],
[ 0.0000000e+00],
[ 0.0000000e+00],
[-2.84217094e-14],
[ 0.0000000e+00],
[-7.10542736e-15],
[ 0.0000000e+00],
[-8.88178420e-16],
[ 0.0000000e+00]],
[[-5.68434189e-14],
[ 0.0000000e+00],
[ 0.0000000e+00],
[-2.84217094e-14],
[-2.84217094e-14],
[ 0.0000000e+00],
[-7.10542736e-15],
[ 0.0000000e+00],
[-8.88178420e-16],
[-4.44089210e-16]],
[[-5.68434189e-14],
[ 5.68434189e-14],
[ 0.0000000e+00],
[-2.84217094e-14],
[-1.42108547e-14],
[ 0.0000000e+00],
[-7.10542736e-15],
[ 0.0000000e+00],
[-8.88178420e-16],
[-4.44089210e-16]],
[[-1.13686838e-13],
[ 0.0000000e+00],
[-2.84217094e-14],
[-5.68434189e-14],
[-1.42108547e-14],
[ 0.0000000e+00],
[-7.10542736e-15],
[-1.77635684e-15],
```

[-1.77635684e-15],

```
[-4.44089210e-16]],
[[-1.13686838e-13],
 [ 5.68434189e-14],
 [-2.84217094e-14],
 [-2.84217094e-14],
 [-1.42108547e-14],
 [ 0.0000000e+00],
 [ 0.0000000e+00],
 [-1.77635684e-15],
 [ 0.0000000e+00],
 [ 0.0000000e+00]],
[[-1.13686838e-13],
 [ 0.0000000e+00],
 [ 2.84217094e-14],
 [ 0.0000000e+00],
 [ 1.42108547e-14],
 [ 0.0000000e+00],
 [7.10542736e-15],
 [-1.77635684e-15],
 [ 0.0000000e+00],
 [ 0.0000000e+00]],
[[-1.13686838e-13],
 [ 5.68434189e-14],
 [ 2.84217094e-14],
 [ 0.0000000e+00],
 [ 1.42108547e-14],
 [ 0.0000000e+00],
 [ 0.0000000e+00],
 [ 0.0000000e+00],
 [-1.77635684e-15],
 [-4.44089210e-16]])
```