MA557 Problem Set 5

Carlos Salinas

October 16, 2015

Problem 5.1

For I an R-ideal consider the multiplicatively closed set S = 1 + I. Show that

- (a) $\tilde{S} = R \setminus Jm$, where the union is taken over all $m \in m\text{-}Spec(R) \cap V(I)$.
- (b) $\mathfrak{m}\text{-}\mathrm{Spec}(S^{-1}R)$ and $\mathfrak{m}\text{-}\mathrm{Spec}(R/I)$ are homeomorphic.

Proof. (a) By 4.19, we have

$$\tilde{S} = R \setminus \bigcup_{\substack{\mathfrak{p} \in \operatorname{Spec}(R) \\ \mathfrak{p} \cap S = \emptyset}} \mathfrak{p}.$$

But $\mathfrak{p} \cap S = \mathfrak{p} \cap (1+I) = \emptyset$ if and only if $\mathfrak{p} + I \neq R$ if and only if there is some maximal ideal $\mathfrak{m} \supset \mathfrak{p} + I$.

For the former equivalence: \Longrightarrow Suppose that $\mathfrak{p} \cap S = \mathfrak{p} \cap (1+I) = \emptyset$, then if $\mathfrak{p} + I = R$ for some $x \in \mathfrak{p}, y \in I$ we have x + y = 1. But then $x = 1 - y \in \mathfrak{p} \cap S$; this is a contradiction. \longleftarrow Conversely, if $\mathfrak{p} \cap S \neq \emptyset$, $x = 1 + y \in \mathfrak{p}$ for some $y \in I$ so $x - y = (1 + y) - y = 1 \in \mathfrak{p} + I$ implies $\mathfrak{p} + I = R$.

For the latter equivalence: \Longrightarrow Suppose $\mathfrak{p}+I\neq R$, then $\mathfrak{p}+I$ is a proper ideal of R so, by 1.5, is contained in a maximal ideal \mathfrak{m} . \longleftarrow Conversely, if $\mathfrak{m}\subsetneq R$ is a maximal ideal containing $\mathfrak{p}+I$ then $\mathfrak{p}+I\neq R$ for otherwise $\mathfrak{m}=R$. Then it suffices to take the union over all maximal ideals $\mathfrak{m}\supset I$.

(b) We will show that $\mathfrak{m}\text{-}\mathrm{Spec}(S^{-1}R) \approx \mathfrak{m}\text{-}\mathrm{Spec}(R) \cap V(I)$ and $\mathfrak{m}\text{-}\mathrm{Spec}(R/I) \approx \mathfrak{m}\text{-}\mathrm{Spec}(R) \cap V(I)$ so that, by the transitivity of homeomorphism, we have $\mathfrak{m}\text{-}\mathrm{Spec}(S^{-1}R) \approx \mathfrak{m}\text{-}\mathrm{Spec}(R/I)$. By 4.21(a), $\mathrm{Spec}(R/I) \approx V(I)$ so the restriction $\mathfrak{m}\text{-}\mathrm{Spec}(R/I) \approx \mathfrak{m}\text{-}\mathrm{Spec}(R/I) \cap V(I)$. To see that $\mathfrak{m}\text{-}\mathrm{Spec}(S^{-1}R) \approx \mathfrak{m}\text{-}\mathrm{Spec}(R) \cap V(I)$, let $\varphi \colon R \to S^{-1}R$ be the canonical homomorphism sending $x \mapsto x/1$, then φ induces a continuous closed map ${}^a\varphi \colon \mathrm{Spec}(S^{-1}R) \to \mathrm{Spec}(R)$ taking $\bar{\mathfrak{p}} \mapsto \mathfrak{p}$, i.e., ideal extension. Thus, by 4.13(d), there is a one-to-one correspondence between $\bar{\mathfrak{p}} \in \mathrm{Spec}(S^{-1}M)$ and its extension $\mathfrak{p} \in \mathrm{Spec}(R)$ with $\mathfrak{p} \cap S = \emptyset$ so that it suffices to show that ${}^a\varphi(\mathfrak{m}\text{-}\mathrm{Spec}(S^{-1}R)) = \mathfrak{m}\text{-}\mathrm{Spec}(R) \cap V(I)$. But this is easy: If $\bar{\mathfrak{m}} \in \mathfrak{m}\text{-}\mathrm{Spec}(S^{-1}R)$ then its contraction is a maximal ideal $\mathfrak{m} \supset I$ by part (a), hence is in $\mathfrak{m}\text{-}\mathrm{Spec}(R) \cap V(I)$. Conversely, if $\mathfrak{m} \in \mathfrak{m}\text{-}\mathrm{Spec}(R) \cap V(I)$, again, by part (a), \mathfrak{m} is a maximal ideal not meeting S so that by 4.13(d), there exist some maximal ideal $\bar{\mathfrak{m}}$ contracting to \mathfrak{m} . It follows that $\mathfrak{m}\text{-}\mathrm{Spec}(S^{-1}R) \approx \mathfrak{m}\text{-}\mathrm{Spec}(R/I)$.

Problem 5.2

Show that the following are equivalent for a ring R:

- (a) there exist rings $R_1 \neq 0$ and $R_2 \neq 0$ so that $R \cong R_1 \times R_2$;
- (b) there exist an idempotent $e \in R$ with $e \neq 0$ and $e \neq 1$;
- (c) Spec(R) is disconnected.

Proof. (a) \iff (b) is immediate for suppose $R \cong R_1 \times R_2$ by $\varphi \colon R \to R_1 \times R_2$. Then, since φ is a bijection, there exist an $r \in R$ that maps to the idempotent element $(1,0) \in R_1 \times R_2$.

Conversely, suppose $e \in R$ is idempotent. Then e' = 1 - e is also idempotent since

$$(e')^2 = (1-e)^2 = 1 - 2e + e^2 = 1 - 2e + e = 1 - e.$$

Moreover

$$ee' = e(1 - e) = e - e^2 = e - e = 0.$$

Let R_1 and R_2 be the subrings of R generated by e and e', respectively. Then we claim that $R \cong R_1 \times R_2$ via $\varphi(r) = (re, re')$. It is clear that φ is a ring homomorphism: take $r_1, r_2 \in R$ then

$$\varphi(r_1 + r_2) = ((r_1 + r_2)e, (r_1 + r_2)e') \qquad \qquad \varphi(r_1r_2) = (r_1r_2e, r_1r_2e')
= (r_1e + r_2e, r_1e' + r_2e') \qquad \qquad = (r_1r_2e^2, r_1r_2(e')^2)
= (r_1e, r_1e') + (r_2e, r_2e') \qquad \qquad = (r_1e, r_1e')(r_2e, r_2e')
= \varphi(r_1) + \varphi(r_2) \qquad \qquad = \varphi(r_1)\varphi(r_2).$$

To prove surjective take $(r, s) \in R_1 \times R_2$ then, $r = r_1 e$ and $s = r_2 e'$ for $r_1, r_2 \in R$ then

$$\varphi(r_1e + r_2e') = \varphi(r_1e) + \varphi(r_2e')$$

$$= (r_1e, r_1ee') + (r_2e'e, r_2ee')$$

$$= (r_1e, 0) + (0, r_2e')$$

$$= (r_1e, r_2e')$$

$$= (r, s).$$

To prove injectivity take $r \in \ker \varphi$. Then $\varphi(r) = (re, re') = (0, 0)$. Then $re - re' = r(e - e') = r \cdot 1 = 0$ so r = 0

(a) \Longrightarrow (c) Recall that a topological space X is disconnected if there exist disjoint open sets A, B with $X = A \cup B$. Suppose $R \cong R_1 \times R_2$. Then $\operatorname{Spec}(R) \approx \operatorname{Spec}(R_1 \times R_2)$: Keeping the notation as before, φ is a set bijection so it induces a bijection, call it φ^* , on $\operatorname{Spec}(R) \to \operatorname{Spec}(R_1 \times R_2)$ by sending $\operatorname{Spec}(I) \mapsto \operatorname{Spec}(\varphi(I))$; Now let $I \subset R$ be an ideal, then

$$\varphi^*(V(I)) = \varphi^*(V(eI + e'I)) = V(\varphi(eI) + \varphi(e'I)) = V(eI \times e'I)$$

is closed. Thus, φ^* is a homeomorphism. Now, we claim that the sets $A = V(R_1 \times 0)$ and $B = V(0 \times R_2)$ constitute a separation of R. First note by 4.20(2) that

$$A \cup B = V(R_1 \times 0) \cup V(0 \times R_2) = V((R_1 \times 0) \cap (0 \times R_2)) = V(0) = \operatorname{Spec}(R).$$

Moreover

$$A\cap B=V(R_1\times 0)\cap V(0\times R_2)=V(R_1\times 0+0\times R_2)=V(R)=\emptyset.$$

Problem 5.3

A topological space is called *Noetherian* if the set of closed sets satisfies the dcc. Show that if a ring R is Noetherian then so is Spec(R), but that the converse does not hold.

Proof. We will first prove the following useful results:

Lemma. Let R be a commutative ring with identity. Then

- (i) $V(I) = V(\sqrt{I})$.
- (ii) $I \subset J$ implies $V(I) \supset V(J)$. (iii) $V(I) \supset V(J)$ implies $\sqrt{I} \subset \sqrt{J}$.

Proof of lemma. (i) It is clear that for every prime ideal $\mathfrak{p} \supset \sqrt{I}$ we have $\mathfrak{p} \supset I$ so it suffice to prove that if $\mathfrak{p} \supset I$ then $\mathfrak{p} \supset \sqrt{I}$. But this is clear since if $x \in \sqrt{I}$ then $x^k \in I$ for some positive integer k so $x^k \in \mathfrak{p}$ and since \mathfrak{p} is prime $x \in \mathfrak{p}$. Thus, $V(I) = V(\sqrt{I})$.

- (ii) Suppose $I \subset J$. Then every prime ideal $\mathfrak{p} \supset J$ must also contain I. Thus, $V(I) \supset V(J)$.
- (iii) Suppose $V(I) \supset V(J)$. Then, for every prime ideal $\mathfrak{p} \supset J$, $\mathfrak{p} \supset I$ so

$$\sqrt{J} = \bigcap_{\mathfrak{p}\supset J} \mathfrak{p} \supset \bigcap_{\mathfrak{p}\supset J} \mathfrak{p} \cap \bigcap_{\substack{\mathfrak{q}\supset I\\\mathfrak{q}\not\supset J}} \mathfrak{q} = \sqrt{I}.$$

It suffices to reduce to the case of varieties of ideals in R since varieties generate the Zariski topology on Spec(R). Suppose

$$V(I_1) \supset V(I_2) \supset \cdots$$

is a descending chain of varieties in Spec(R). Then, by the (iii) of the lemma and the nullstellensatz, the latter chain is in one-to-one correspondence with the ascending chain of radical ideals

$$\sqrt{I_1} \subset \sqrt{I_2} \subset \cdots$$

which must stabilize since R is Noetherian. It follows that the chain $V(I_1) \supset V(I_2) \supset \cdots$ stabilizes so Spec(R) is Noetherian.

Problem 5.4

A nonempty closed subset V of a topological space is called *irreducible* if $V = V_1 \cup V_2$, V_1 and V_2 closed subset, implies $V_1 = V$ or $V_2 = V$.

- (a) Show that in a Noetherian topological space every nonempty closed subset is a finite union of irreducible closed subsets.
- (b) Show that $V(\mathfrak{p}), \mathfrak{p} \in \operatorname{Spec}(R)$, are exactly the irreducible closed subsets of $\operatorname{Spec}(R)$.

Proof. (a) Let X be a Noetherian topological space. Let

 $\Lambda = \{ V \subset X \mid V \text{ is closed and not a finite union of irreducible closed subsets} \}.$

Then, by the dcc, Λ contains a minimal element, say W. Then W is not irreducible so we can write $W = W_1 \cup W_2$ where $W_1 \neq W$ and $W_2 \neq W$. By minimality of W, W_1 and W_2 are finite unions of irreducible closed subsets so $W_1 = \bigcup_{i=1}^k W_1^{(i)}$ and $W_2 = \bigcup_{i=1}^\ell W_2^{(i)}$ so

$$W = W_1 \cup W_2 = \left(\bigcup_{i=1}^{\ell} W_1^{(i)}\right) \cup \left(\bigcup_{i=1}^{k} W_2^{(i)}\right)$$

a contradiction. Thus, every closed subset V can be expressed as the finite union of irreducible closed subsets.

(b) We prove the contrapositive. Suppose that $I \subset R$ is not prime. Then we can find $x, y \in R$ with $xy \in I$, but $x \notin I$, $y \notin I$. Thus,

$$V((I,x)) \cup V((I,y)) = V((I,x) \cap (I,y)) = V(I),$$

but neither $V((I,x)) \neq V(I)$ or $V((I,y)) \neq V(I)$ so V(I) is not irreducible.

Problem 5.5

Show that a Noetherian ring has only finitely many minimal prime ideals.

Proof. Since R is Noetherian, by Problem 5.3, $\operatorname{Spec}(R)$ is Notherian, that is, it satisfies the dcc. Thus, by Problem 5.4, $\operatorname{Spec}(R)$ is the union of finitely many irreducible subsets $V(0) = \bigcup_{i=1}^n V(\mathfrak{p}_i)$ where \mathfrak{p}_i is prime. Now, suppose \mathfrak{q} is a minimal prime (we are guaranteed one if $R \neq 0$ by the next problem). Then $\mathfrak{q} \in V(0)$ so $\mathfrak{q} \in V(\mathfrak{p}_i)$ for some $1 \leq i \leq n$. Then $\mathfrak{q} \supset \mathfrak{p}_i$, but by minimality $\mathfrak{q} = \mathfrak{p}_i$. It follows that R contains $\leq n$ minimal prime ideals, in particular, finitely many.

Problem 5.6

Show that a nonzero ring has at least one minimal prime ideal.

Proof. First we will prove the following useful result:

Lemma. Let $\{\mathfrak{p}_{\alpha}\}\subset R$ be a chain of prime ideals ordered by inclusion. Then $\bigcap\mathfrak{p}_{\alpha}$ is prime.

Proof of lemma. Put $\mathfrak{p} = \bigcap \mathfrak{p}_{\alpha}$. Suppose $xy \in \mathfrak{p}$. Then $xy \in \mathfrak{p}_{\alpha}$ for every α . Fix an α and, without loss of generality, suppose $x \in \mathfrak{p}_{\alpha}$. Seeking a contradiction, suppose $x \notin \mathfrak{p}_{\beta}$ for some β . Then, since $y \in \mathfrak{p}_{\beta}$. But $\mathfrak{p}_{\beta} \supset \mathfrak{p}_{\alpha}$ or $\mathfrak{p}_{\beta} \subset \mathfrak{p}_{\alpha}$.