Hurtownie danych Laboratorium Czw 11:15

Projekt

Kajetan Pynka 254495

Spis treści

S	pis treści	2
Ε	tap 1	3
	1. Zakres realizacji projektu	3
	1.1. Tytuł projektu	3
	1.2. Charakterystyka dziedziny problemowej	3
	1.3. Krótki opis obszaru analizy	3
	1.4. Problemy i potrzeby	3
	1.5. Cel przedsięwzięcia	3
	1.5.1. Oczekiwania	3
	1.5.2. Zakres analizy – badane aspekty	4
	1.6. Źródła danych (lokalizacja, format, dostępność)	4
	2. Profilowanie danych	5
	2.1. Analiza danych	5
	2.2. Ocena przydatności danych	8
	2.3. Definicja typów encji/klas oraz związków	9
	2.4. Propozycja wymiarów, hierarchii, miar	13
	2.5. Diagram klas	14
	3. Utworzenie bazy danych	14
	Wnioski:	14

Etap 1

1. Zakres realizacji projektu

1.1. Tytuł projektu

Analiza systemu rowerów publicznych Bay Area Bike Share w San Francisco.

1.2. Charakterystyka dziedziny problemowej

System rowerów publicznych oferowany przez przedsiębiorstwa prywatne związany jest z następującymi elementami:

- Utrzymywanie rowerów wykorzystywanych przez klientów w stanie nadającym się do użytku
- Zarządzanie i zapewnianie poprawnego działania stacji rowerowych
- Zbieranie anonimowych danych ze stacji / rowerów czy też od klientów
- Zapewnianie klientom możliwości opłaty roweru ze stacji lub wygodnie z aplikacji mobilnej
- Monitorowanie stanu zapełnienia stacji rowerowych i reagowanie w odpowiednim czasie
- Prowadzenie działu obsługi klienta (telefonicznego / internetowego)

1.3. Krótki opis obszaru analizy

W ramach tego projektu skupię się na danych zebranych i udostępnionych przez byłą firmę Bay Area Bike Share. Przedstawiają one użytkowanie poszczególnych rowerów, stacji rowerowych oraz dane pogodowe w okresie między 29 sierpnia 2013r. a 1 września 2015r. Dane dotyczą stacji znajdujących się w regionie Zatoki San Francisco (pochodzą z różnych miast, a same stacje posiadają informacje o długości i szerokości geograficznej).

1.4. Problemy i potrzeby

- Zoptymalizowanie wykorzystania stacji rowerowych
- Zachęcenie użytkowników do zakupienia subskrypcji
- Analiza wpływu pogody na użytkowanie rowerów
- Analiza przychodów pod kątem: regionu (miasta, stacji), czasu (pory dnia, pory roku)
- Wykorzystanie najdłuższych wycieczek rowerowych do wyznaczenia potencjalnych miejsc nowych stacji

1.5. Cel przedsięwzięcia

1.5.1. Oczekiwania

Wykrycie trendów i korelacji pomiędzy danymi, dostarczenie prognoz na kolejne lata funkcjonowania stacji rowerowych, zaproponowanie kroków do podjęcia w celu zwiększenia zysków czy też wydajności.

1.5.2. Zakres analizy – badane aspekty

- 1. Sumaryczna długość wycieczek ze względu na dzień tygodnia dla każdej stacji.
- 2. Liczba wycieczek ze względu na zachmurzenie według miast.
- 3. Procentowy udział klientów niezarejestrowanych oraz subskrybentów ze względu na miasto.
- 4. Liczba wycieczek podczas mgły ze względu na godzinę i miasto.
- 5. Liczba wycieczek dla każdej stacji ze względu na opady (=0 brak, T-nieznaczne, < 0.20 średnie, > 0.20 znaczące).
- 6. Średnia długość wycieczki dla każdej stacji z San Jose i rodzaju klienta.
- 7. Zestawienie najpopularniejszej stacji docelowej dla każdej stacji ze względu na miesiąc.
- 8. Liczba wycieczek dla klientów zamieszkujących pod każdym kodem pocztowym ze względu na miesiąc.
- 9. Sumaryczna długość wycieczek dla każdego roweru ze względu na godzinę.
- 10. Liczba unikalnych klientów rozpoczynających lub kończących wycieczkę dla każdej stacji ze względu na miesiąc.

1.6. Źródła danych (lokalizacja, format, dostępność)

L.p.	Plik	Тур	Liczba rekordów	Rozmiar [MB]	Opis
1	station.csv	CSV	70	0.00565	Łańcuchy znaków w języku angielskim, daty w formacie MM/DD/YYYY, brak znaków specjalnych, liczby całkowite jak i zmiennoprzecinkowe o małej precyzji. Niektóre stacje zmieniły lokalizację i nazwę.
2	status.csv	CSV	72.000.000	1990	Małe liczby całkowite mieszczące się w bajcie. Czas w formacie YYYY/MM/DD HH:mm:SS.
3	trip.csv	CSV	670.000	80.21	Łańcuchy znaków w języku angielskim, liczby całkowite. Czas w formacie MM/DD/YYYY HH:mm. Rodzaj subskrypcji jako typ wyliczeniowy 2 łańcuchów znakowych: "Subscriber" i "Customer".
4	weather.csv	CSV	3665	0.43806	Data w formacie MM/DD/YYYY. Liczby zmiennoprzecinkowe o małej precyzji, liczby całkowite, łańcuchy znaków w języku angielskim.

2. Profilowanie danych

2.1. Analiza danych

Plik: station.csv						
L.p.	L.p. Atrybut Typ danych		Zakres wartości	Uwagi – ocena jakości danych		
1	id	int	2-84	W pełni poprawne dane		
2	name	varchar(45)	9-45 znaków	W pełni poprawne dane, nastąpiła		
				zmiana nazw niektórych stacji		
3	lat	float(6, 4)	37.3297-37.8048 W pełni poprawne dane, nastąpiła			
		zmia		zmiana położenia niektórych stacji		
4	long	float(7, 4)	-122.419	W pełni poprawne dane, nastąpiła		
		do -121.8773 zmiana położ		zmiana położenia niektórych stacji		
5	dock_count	int	11-27	W pełni poprawne dane		
6	city	varchar(13) 8-13 znaków W pełni poprawne dane		W pełni poprawne dane		
7	7 installation_date datetime 8/5/2013 – W pełni		W pełni poprawne dane, format			
			4/9/2014	MM/DD/YYYY		

Plik: status.csv							
L.p. Atrybut Typ danych		Typ danych	Zakres wartości	Uwagi – ocena jakości danych			
1	1 station_id int		2-84	W pełni poprawne dane			
2	2 bikes_available int		0-27	W pełni poprawne dane			
3	docks_available	int	0-27	W pełni poprawne dane			
4	time	datetime	2013/08/29	W pełni poprawne dane, czas w			
			12:06:01 -	formacie YYYY/MM/DD HH:mm:SS.			
			2015/08/31				
			12:06:01				

Plik:	Plik: trip.csv					
L.p.	Atrybut	Typ danych	Zakres wartości	Uwagi – ocena jakości danych		
1	id	int	4079-913459	W pełni poprawne dane		
2	duration	int	60-17270400	W pełni poprawne dane, czas		
				mierzony w sekundach		
3	start_date	datetime	8/29/2013 9:38	W pełni poprawne dane, data w		
			-8/31/2015	formacie MM/DD/YYYY HH:mm.		
			23:26			
4	start_station_name	varchar(45)	9-45	W pełni poprawne dane, nazwa		
				niektórych stacji uległa zmianie w		
				czasie		
5	start_station_id	int	2-84	W pełni poprawne dane		
6	end_date	datetime	8/29/2013 9:41	W pełni poprawne dane, data w		
			-8/31/2015	formacie MM/DD/YYYY HH:mm.		
			23:39			
7	end_station_name	varchar(45)	9-45	W pełni poprawne dane, nazwa		
				niektórych stacji uległa zmianie w		
				czasie		
8	end_station_id	int	2-84	W pełni poprawne dane		
9	bike_id	int	9-878	W pełni poprawne dane		
10	subscription_type	varchar(10)	8-10 znaków	W pełni poprawne dane, przyjmuje		
				zasadniczo dwie wartości:		
				"Subscriber" oraz "Customer"		
11	zip_code	varchar(11)	1-11 znaków	Około 1% rekordów posiada wartości		
				puste, około 2% rekordów posiada		
				nieprawidłowe wartości:		
				zdecydownie za mało albo za dużo		
				cyfr, występują też przypadki liter.		

L.p.	weather.csv Atrybut	Typ danych	Zakres wartości	Uwagi – ocena jakości danych
1	date	datetime	8/29/2013 – 8/31/2015	W pełni poprawne dane, data w formacie MM/DD/YYYY
2	Max_temperatu re f	int	44-102	Występują 4 rekordy puste (mniej niż 1% wszystkich)
3	Mean_temperat	int	38-84	Występują 4 rekordy puste (mniej
<u> </u>	ure_f	IIIC	30-04	niż 1% wszystkich)
4	Min_temperatu re_f	int	25-75	Występują 4 rekordy puste (mniej niż 1% wszystkich)
5	Max_dew_point f	int	20-68	Występują 54 rekordy puste (około 1% wszystkich)
6	Mean_dew_poi	int	13-65	Występują 54 rekordy puste (około 1% wszystkich)
7	Min_dew_point	int	2-63	Występują 54 rekordy puste (około
•	f		2 03	1% wszystkich)
8	Max_humidity	int	24-100	Występują 54 rekordy puste (około
9	Mean_humidity	int	24-96	1% wszystkich) Występują 54 rekordy puste (około 1% wszystkich)
10	Min_humidity	int	4-93	Występują 54 rekordy puste (około
-0	iviii_iiaiiiaicy	1110	1 33	1% wszystkich)
11	Max_sea_level_	float(4,2)	29.5-30.65	Występuje 1 rekord pusty (mniej niż
	pressure_inches	11001(4,2)	23.3 30.03	1% wszystkich)
12	Mean_sea_level	float(4,2)	29.43-30.41	Występuje 1 rekord pusty (mniej niż
12	_pressure_inche	11001(4,2)	23.43-30.41	1% wszystkich)
13	Min_sea_level_ pressure_inches	float(4,2)	28.98-30.37	Występuje 1 rekord pusty (mniej niż 1% wszystkich)
14	Max_visibility_ miles	int	5-20	Występuje 13 rekordów pustych (mniej niż 1% wszystkich)
15	Mean_visibility_ miles	int	4-20	Występuje 13 rekordów pustych (mniej niż 1% wszystkich)
16	Min_visibility_m iles	int	0-20	Występuje 13 rekordów pustych (mniej niż 1% wszystkich)
17	Max_wind_spee d_mph	int	0-128	Występuje 1 rekord pusty (mniej niż 1% wszystkich)
18	Mean_wind_sp eed_mph	int	0-23	Występuje 1 rekord pusty (mniej niż 1% wszystkich)
19	Max_gust_spee d mph	int	6-114	25% rekordów jest pustych
20	Precipitation_in ches	varchar(4)	1-4 znaków	Występuje 1 rekord pusty. W 96% przypadków jest to float(4,2) natomiast dla 4% rekordów znak 'T' oznaczający nieznaczne opady.
21	Cloud_cover	int	0-8	Występuje 1 rekord pusty (mniej niż 1% wszystkich)
22	Events	varchar(17)	3-17 znaków	86% rekordów jest pustych, pozostałe posiadają jedną z pięciu wartości: "Rain", "Fog", "Fog-Rain", "Rain-Thunderstorm", "rain".

23	Wind_dir_degre	int	0-2772	Występuje 1 rekord pusty (mniej niż
	es			1% wszystkich)
24	Zip_code	int	94041-95113	Dane w pełni poprawne, występuje
				pięć kodów pocztowych: 94107,
				94063, 94301, 94091, 95113

2.2. Ocena przydatności danych

L.p.	Plik	Ocena jakości danych
1	station.csv	Brak pustych pól, wszystkie są poprawne. Dla
		niektórych stacji zmieniła się nazwa oraz położenie
		(nie jest to problemem ponieważ dalej obowiązuje ten
		sam identyfikator).
2	status.csv	W pełni poprawne dane, 3 niewielkie liczby całkowite
		wraz z czasem co do sekundy (w praktyce każdy zapis
		był dokonywany co minutę). Format YYYY/MM/DD
		HH:mm jest akceptowalny. Ogólnie jednak dane nie są
		przydatne jeśli o chodzi o założenia projektowe, więc
		można zignorować ten plik.
3	trip.csv	Wszystkie kolumny, poza jedną, są wypełnione
		poprawnymi danymi i są w pełni użyteczne. Należy
		pamiętać o tym, że również występuję tu kwestia
		zmiany nazw niektórych stacji. Kod pocztowy po
		oczyszczeniu będzie się nadawał do dalszej analizy.
4	weather.csv	W większości kolumn występują marginalne brakujące
		dane, nieistotne dane atmosferyczne możemy
		odrzucić na potrzeby dalszych analiz. Liczba opadów
		pozostanie jako łańcuch znakowy, należy pamiętać o
		znaku 'T' jako jednej z możliwości tej kolumny. Należy
		oczyścić kolumnę zdarzeń atmosferycznych i połączyć
		"Rain" oraz "rain" w jedno zdarzenie. Kod pocztowy
		do przekształcenia na miasto (wtedy odpowiada
		miastu ze stacji).

2.3. Definicja typów encji/klas oraz związków

Encje:

Encja: DIM_TIME								
Nazwa atrybutu	Opis atrybutu	Тур	OBL(+) OPC(-)					
PK_TIME	Klucz główny, identyfikator w formie łańcucha znaków	varchar(12)	+					
Year	Rok zapisany jako liczba całkowita	integer	+					
Month	Miesiąc zapisany jako liczba całkowita	integer	+					
Day	Dzień zapisany jako liczba całkowita	integer	+					
Hour	Godzina zapisana jako liczba całkowita	integer	-					
Minute	Minuta zapisana jako liczba całkowita	integer	-					

Encja: DIM_STATION							
Nazwa atrybutu	Opis atrybutu	Тур	OBL(+) OPC(-)				
STATION_ID	Klucz główny, identyfikator pojedynczej stacji	integer	+				
Name	Nazwa stacji rowerowej zapisana jako łańcuch znaków	varchar(45)	+				
Lat	Szerokość geograficzna położenia stacji	float(6,4)	+				
Long	Długość geograficzna położenia stacji	float(7,4)	+				
Dock_Count	Liczba możliwych rowerów do zaparkowania w stacji	integer	+				
City	Ciąg znaków oznaczający nazwę miasta, w której znajduje się stacja	varchar(13)	+				
Installation_Date	Klucz obcy, referencja do czasu przechowywanego w DIM_TIME	varchar(12)	+				

Encja: DIM_BIKE			
Nazwa atrybutu	Opis atrybutu	Тур	OBL(+) OPC(-)
BIKE_ID	Klucz główny, identyfikator roweru	integer	+

Encja: DIM_CUSTOMER							
Nazwa atrybutu	Opis atrybutu	Тур	OBL(+) OPC(-)				
CUSTOMER_ID	Klucz główny, identyfikator klienta w formie liczby całkowitej	integer	+				
Cust_Zip_Code	Łańcuch znaków reprezentujący kod pocztowy klienta, zły kod pocztowy zastąpiony przez NULL	varchar(11)	-				
Subscription_Type	Łańcuch znaków reprezentujący status klienta: "Customer" albo "Subscriber"	varchar(10)	+				

Encja: DIM_WEATHER					
Nazwa atrybutu	Opis atrybutu	Тур	OBL(+) OPC(-)		
Measure_Date	Klucz główny, klucz obcy z referencją do czasu przechowywanego w DIM_TIME	varchar(12)	+		
Measure_City	Ciąg znaków oznaczający miasto, w którym dokonanu pomiaru	varchar(13)	+		
Max_Temperature	Liczba całkowita oznaczająca maksymalną osiągniętą temperaturę	integer	-		
Mean_Temperature	Liczba całkowita oznaczającą średnią osiągniętą temperaturę	integer	-		
Min_Temperature	Liczba całkowita oznaczającą minimalną osiągniętą temperaturę	integer	-		
Max_Humidity	Liczba całkowita oznaczająca maksymalną osiągniętą wilgotność	integer	-		

Mean_Humidity	Liczba całkowita oznaczająca średnią osiągniętą wilgotność	integer	-
Min_Humidity	Liczba całkowita oznaczająca minimalną osiągniętą wilgotność	integer	-
Max_Pressure	Liczba zmiennoprzecinkowa oznaczająca maksymalne osiągnięte ciśnienie	float(4,2)	-
Mean_Pressure	Liczba zmiennoprzecinkowa oznaczająca średnie osiągnięte ciśnienie	float(4,2)	-
Min_Pressure	Liczba zmiennoprzecinkowa oznaczająca minimalne osiągnięte ciśnienie	float(4,2)	-
Max_Visibility	Liczba całkowita oznaczająca maksymalną widoczność w milach	integer	-
Mean_Visibility	Liczba całkowita oznaczająca średnią widoczność w milach	integer	-
Min_Visibility	Liczba całkowita oznaczająca minimalną widoczność w milach	integer	-
Precipitation_Inches	Łańcuch znaków określający liczbę opadów w calach lub znak 'T' gdy opady były niewielkie.	varchar(4)	-
Cloud_Cover	Liczba całkowita oznaczająca zachmurzenie w skali 0-8	integer	-
Events	Zdarzenie atmosferyczne zapisane jako ciąg znaków, jedno z 4 wydarzeń: "Rain", "Fog", "Fog-Rain", "Rain-Thunderstorm"	varchar(17)	-

Encja: FACT_TRIP					
Nazwa atrybutu	Opis atrybutu	Тур	OBL(+) OPC(-)		
TRIP_ID	Klucz główny, liczba całkowita oznaczająca identyfikator wycieczki	integer	+		
Start_Time	Klucz obcy, referencja czasu przechowywanego w DIM_TIME	varchar(12)	+		
End_Time	Klucz obcy, referencja czasu przechowywanego w DIM_TIME	varchar(12)	+		
Start_Station	Klucz obcy, referencja do identyfikatora stacji z DIM_STATION	integer	+		
End_Station	Klucz obcy, referencja do identyfikatora stacji z DIM_STATION	integer	+		
Start_Station_Name	Ciąg znaków reprezentujący nazwę stacji startowej	varchar(45)	+		
End_Station_Name	Ciąg znaków reprezentujący nazwę stacji końcowej	varchar(45)	+		
Trip_Customer	Klucz obcy, referencja do klienta z DIM_CUSTOMER	integer	+		
Trip_Bike	Klucz obcy, referencja do roweru z DIM_BIKE	integer	+		
Trip_Weather	Klucz obcy, referencja do pogody z DIM_WEATHER na podstawie Start_Time	varchar(12)	+		
Duration	Liczba całkowita oznaczająca długość wycieczki w sekundach	integer	+		

Związki:

- DIM_TIME(1) (0..*)DIM_WEATHER
- DIM_TIME(1) (0..*)DIM_STATION
- DIM TIME(2) (0..*)FACT TRIP
- DIM_STATION(2) (0..*)FACT_TRIP
- DIM_WEATHER(1) (0..*)FACT_TRIP
- DIM CUSTOMER(1) (0..*)FACT TRIP
- DIM_BIKE(1) (0..*)FACT_TRIP

2.4. Propozycja wymiarów, hierarchii, miar

Wymiary:

- DIM TIME
- DIM STATION
- DIM_BIKE
- DIM CUSTOMER
- DIM_WEATHER

Hierarchie:

- DIM_TIME: Year -> Month -> Day -> Hour -> Minute
- DIM STATION: City -> Name

Miary:

- Długość wycieczki
- Liczba unikalnych klientów
- Liczba unikalnych rowerów
- Liczba wycieczek

2.5. Diagram klas

3. Utworzenie bazy danych

Rysunek przedstawia utworzoną strukturę bazy danych.

Wnioski:

W celu przygotowania odpowiedniej hurtowni danych musimy być świadomi wymagań biznesu by wiedzieć po co nam ma służyć dana hurtownia. Następnie, po dogłębnej analizie danych możemy wstępnie zaplanować naszą hurtownię, tak aby móc w przyszłości wytworzyć kostkę, a co za tym idzie by móc skutecznie dokonywać analizy danych znajdujących się w hurtowni.