

INTRODUÇÃO À SISTEMAS DE INFORMAÇÃO

AULA 12: SISTEMAS
OPERACIONAIS

PROF^a: LEONARA BRAZ LEONARABRAZ @ GMAIL.COM

- Um Sistema Operacional (SO) atua como um intermediário entre o usuário de um computador e o hardware do computador
- Sua finalidade é fornecer um ambiente no qual o usuário possa executar programas

• Um Sistema Operacional "é apenas um **conjunto de rotinas** executado pelo processador, de forma semelhante aos programas de usuário." (MACHADO e MAIA, 2007)

- Principal função do Sistema Operacional:
 - Controlar o funcionamento de um computador, gerenciando a utilização e o compartilhamento dos seus diversos recursos, como processadores, memória e dispositivos de entrada e saída

- · Facilita o acesso aos recursos do Sistema
 - Disponibiliza uma Interface entre os usuários e Recursos do Sistema
 - Usuário não precisa conhecer detalhes do hardware
 - Permite eficiência e menor chance de erro
- · Compartilhamento de recursos de forma organizada
 - Possibilita o acesso concorrente a recursos compartilhados de forma organizada e protegida
 - Exemplo: memórias, discos, impressoras

• Um SO não é executado de forma linear como a maioria das aplicações, com início, meio e fim

• Suas rotinas são executadas concorrentemente em função de eventos assíncronos, ou seja, eventos que podem ocorrer a qualquer momento

Papel do Sistema Operacional

- Hardware (CPU, memória e dispositivos de I/O)
 - Fornece os recursos básicos de computação do sistema
- Sistema Operacional
- Programas aplicativos
 - Definem as formas pelas quais esses recursos são utilizados para resolver os problemas computacionais dos usuários
- Usuários

Figura: Onde o SO se encaixa

• Modo Usuário:

- Somente algumas das instruções são acessíveis
- Programas de usuário (navegador Web, leitor de e-mail e reprodutor de música) operam nesse modo

Modo Núcleo:

- Acesso completo a todo o hardware do sistema
- Neste modo o Sistema Operacional pode executar qualquer instrução que a máquina seja capaz de executar
- Sistema Operacional trabalha nesse modo!

Figura: Onde o SO se encaixa

OS PROGRAMAS DO USUÁRIO PRECISAM SER EXECUTADOS NO HARDWARE

- Com isso, os programas terão que "conversar" com o Sistema Operacional para serem executados no hardware
- Assim, o Programa de Interface com o Usuário serve como um canal padrão de comunicação entre os programas do usuário e o Sistema Operacional

SEÇÃO 1 TIPOS DE SISTEMAS OPERACIONAIS

TIPOS DE SISTEMAS OPERACIONAIS

SISTEMAS MONOPROGRAMÁVEIS - MONOTAREFAS

- Sistema voltado a execução de um único programa/tarefa (primeiros SOs década de 60 e 70)
- Qualquer outra aplicação, para ser executada, deve aguardar o término da corrente
 - Processador, memória e periféricos exclusivamente dedicados a execução de um único programa
- Tarefa do SO passa a ser unicamente transferir o controle de um job (programa e dados) para outro

SISTEMAS MONOPROGRAMÁVEIS - MONOTAREFAS

Característica:

- Simples de implementação
- Não existe preocupação com compartilhamento de recursos

Desvantagens:

- Processador ocioso enquanto programa aguarda algum evento
- Memória subutilizada (não preenchida completamente, pois tem apenas um programa)
- **Exemplo:** MS-DOS (1981)

SISTEMAS MONOPROGRAMÁVEIS - MONOTAREFAS

- Implementa o conceito de Multiprogramação:
 - -SO mantém vários *jobs* na memória simultaneamente, e a CPU é dividida entre eles
 - -Parte deles fica em uma fila de jobs no disco (todos os processos residentes em disco aguardando alocação na memória principal)

- SO seleciona e começa a executar um dos jobs na memória
 - -Se o job pode ter de aguardar que alguma tarefa seja concluída
 - I. SO passa para um novo job e o executa
 - 2. Se job tem que aguardar, CPU seleciona outro job e assim por diante
- CPU nunca ficará ociosa

• Os Sistemas Multiprogramáveis – Multitarefa fornecem um ambiente em que os diversos recursos do sistema são utilizados eficientemente

Características:

- I. Vários programas na memória principal concorrendo pela utilização da CPU
- 2. CPU totalmente dedicada aos vários programas
- 3. Menos desperdício na utilização da UCP
- 4. Melhor uso da memória principal

- Em sistemas multiprogramáveis, as aplicações permanecem na memória principal do computador, concorrendo por um lugar no processador
- Todo esse processamento ocorre de forma transparente, fazendo com que o usuário não perceba as instruções entre uma aplicação e outra
- A grande Vantagem é a redução de custos em função da possibilidade de compartilhamento de recursos

- A partir do número de usuários que interagem com o sistema, os sistemas multiprogramáveis são classificados como:
 - -Monousuário (apenas um usuário)
 - -Multiusuários (dois ou mais usuários)

MONOUSUÁRIOS – MONOTAREFAS

- -Este sistema operacional foi criado para que um único usuário possa fazer uma tarefa por vez
- –Exemplos:
 - Palm OS dos computadores Palm é um exemplo de sistema monousuário
 - MS-DOS da Microsoft

MONOUSUÁRIOS – MULTITAREFAS

- -Este tipo de sistema operacional é o mais utilizado em computadores de mesa e laptops
- -As plataformas Microsoft Windows, Linux e Apple MacOS são exemplos de sistemas operacionais que permitem que um único usuário utilize diversos programas ao mesmo tempo

MULTIUSUÁRIOS

- Um SO multiusuário permite que diversos usuários utilizem simultaneamente os recursos do computador
- O SO deve se certificar de que as solicitações de vários usuários estejam balanceadas
- Cada um dos programas utilizados deve dispor de recursos suficientes, de forma que o problema de um usuário não afete toda a comunidade de usuários
- Exemplo: Unix, VMS (Virtual Memory System) e sistemas operacionais mainframe, como o MVS (Multiple Virtual Storage)

 Os Sistemas Multiprogramáveis – Multitarefas podem ser classificados pela forma como suas aplicações são

gerenciadas

Sistemas Multiprogramáveis - Multitarefas

Sistemas Batch

Sistemas de tempo Compartilhado Sistemas de tempo real

SISTEMAS BATCH

- Era utilizado por terminais de máquinas de grande porte, que reuniam um "lote de programas" para enviar para execução
- Foram os primeiros sistemas multiprogramáveis a serem implementados e caracterizam-se por terem seus programas executados de forma sequencial

SISTEMAS BATCH

- Com o passar do tempo, a palavra batch passou a designar um processo onde o usuário não interage com o seu programa
- Todas a entradas e saídas de dados da aplicação são implementadas por algum tipo de memória secundária
 - Programas submetidos são armazenados em fitas/discos onde são executado sequencialmente
- Exemplos de aplicações:
 - Compilações
 - Backups
 - Outras que não exigem interação com o usuário

SISTEMAS BATCH

SISTEMAS DE TEMPO COMPARTILHADO

- Permitem que diversos programas sejam executados a partir da divisão do tempo do processador em pequenos intervalos, denominados fatia de tempo (time-slice)
- Sistema cria um ambiente de trabalho próprio, dando a impressão de que todo o sistema está dedicado, exclusivamente para cada usuário
- Porém...
 - Programa não concluído no Time-Slace é substituído por outro

SISTEMAS DE TEMPO COMPARTILHADO

- Não somente o processador é compartilhado, mas também memória e periféricos
- Permitem a interação do usuário com o sistema através de terminais que incluem vídeo, teclado e mouse
 - Usuário interage com sistema através de comandos
 - Sistema responde em poucos segundo a execução dos comandos
- Aplicações comerciais utilizam esses sistemas

- Semelhantes em implementação ao sistema de tempo compartilhado
 - A maior diferença é o tempo de resposta exigido no processamento das aplicações
- Não existe a idéia de "Time-Slice"
 - O programa detém o processador o tempo que for necessário, ou até que apareça outro programa mais prioritário
 - Este controle é feito pela aplicação e não pelo Sistema operacional

O sistema de tempo real é um sistema computacional que requer não somente que os resultados computacionais estarem corretos, mas também que os resultados produzidos estejam dentro de um período pré-estabelecido. Resultados produzidos após o deadline, mesmo que corretos, podem não representar dados reais

- Possuem o tempo como parâmetro fundamental:
 - Prazos rígidos para a execução de determinadas tarefas
 - Exemplo: considere uma linha de montagem:
 - Cada ação deve ser executada por período específico
 - Se a ação for tomada muito cedo, muito depois ou durar um tempo a mais ou a menos, pode prejudicar o produto
- Muitos exemplos são encontrados no controle de processos aeronáuticos, militares, etc

I. Sistema de tempo real crítico

Ações precisam necessariamente acontecer em dados instantes ou períodos de tempo

2. Sistema de tempo real não crítico

Descumprimento ocasional de um prazo, embora não desejável, é perfeitamente aceitável

SISTEMAS DE TEMPO REAL CRÍTICO

- Tempo de execução da tarefa (deadline), não pode sofrer qualquer tipo de atraso
 - Exemplos: Controle de vôo, controle de esteiras de fábrica, sinais de trânsito, usinas nucleares, equipamentos para monitoramento de saúde, freios automotivos ABS

SISTEMAS DE TEMPO REAL NÃO CRÍTICO

- Tempo é parâmetro fundamental, porém uma possível falha ou retardo não ocasionará danos irreversíveis
 - Exemplos: Sistemas Operacionais tradicionais como Linux e Windows,
 MP3, gravadoras de CD/DVD, Playstation, telefones digitais

SISTEMAS COM MÚLTIPLOS PROCESSADORES

• Caracterizam-se por possuir dois ou mais processadores interligados e trabalhando em conjunto

Vantagem:

- -Vários programas executando ao mesmo tempo
- -Mesmo programa subdividido em partes para serem executadas simultaneamente em mais de um processador

SISTEMAS COM MÚLTIPLOS PROCESSADORES

Características:

- Multiprogramação
- Escalabilidade
 - Capacidade de ampliar o poder computacional do sistema adicionando novos processadores
- Disponibilidade
 - Capacidade de manter o sistema em operação mesmo diante de falhas
- Balanceamento de carga
 - Possibilidade de distribuir o processamento entre os diversos processadores

SISTEMAS COM MÚLTIPLOS PROCESSADORES

- Classificação:
 - -Os sistemas são classificados quanto a forma de comunicação entre os processadores e o grau de compartilhamento da memória e os dispositivos de entrada e saída
 - Sistemas Fortemente acoplados
 - Sistemas Fracamente acoplados

SISTEMAS FORTEMENTE ACOPLADOS

- Existem dois ou mais processadores compartilhando uma única memória e diversos dispositivos de Entrada e Saída
- Controlados por apenas um único Sistema Operacional
- Podem ser classificados quanto simétricos e assimétricos

Desvantagem:

- Problema de concorrência é introduzido
- Vários processadores tentando acessar a mesma área de memória

SISTEMAS FORTEMENTE ACOPLADOS

SISTEMAS FORTEMENTE ACOPLADOS - ASSIMÉTRICO

Organização "Mestre/Escravo"

Vantagem:

- Organização simples de implementar

Desvantagens:

- Pode ocorrer falha do processador mestre
- Não utiliza o hardware com eficiência.
- I. Somente o processador mestre pode executar serviços do sistema operacional
- 2. O Processador escravo deve fazer requisição ao processador mestre

SISTEMAS FORTEMENTE ACOPLADOS - SIMÉTRICO

Vantagens:

- Um programa pode ser executado por qualquer processador ou por vários processadores ao mesmo tempo (paralelismo)
- Quando um processador falha o sistema continua a funcionar

Desvantagens:

- Acessos simultâneos às mesmas áreas de memória
- Implementação bastante complexa

SISTEMAS FRACAMENTE ACOPLADOS

- Caracterizam-se por possuir dois ou mais sistemas de computação, conectados através de linhas de comunicação
- Cada sistema funciona de forma independente, possuindo seus próprios processadores, memória e dispositivos

TIPOS DE SISTEMAS OPERACIONAIS

- Os Sistemas Operacionais também podem ser classificados como:
 - 1. Sistemas Operacionais para computadores de grande porte
 - 2. Sistemas Operacionais para computadores portáteis
 - 3. Sistemas Operacionais embarcados

SISTEMAS OPERACIONAIS PARA COMPUTADORES DE GRANDE PORTE

- Computadores de grande porte
 - Aqueles que ocupam uma sala inteira, ainda encontrados em grandes corporações
- Principal diferença: grande capacidade em termos de E/S
 - Um grande número de discos e usuários no sistema
- · Processo simultâneo de inúmeras tarefas
 - A maioria delas necessita de quantidades prodigiosas de E/S
- Há três tipos de serviços:
 - Processamento em batch (lote)
 - Processamento de transações e
 - Processamento em tempo compartilhado

SO PARA COMPUTADORES DE GRANDE PORTE — TIPOS DE SERVIÇOS

- I. Processamento em batch (lote)
 - Processamento de tarefas de rotina, sem a presença interativa dos usuários do sistema
- 2. 2. Processamento de transações
 - Gerenciam grandes quantidades de pequenas requisições
- 3. Processamento de tempo compartilhado
 - Possibilitam que múltiplos usuários remotos executem suas tarefas simultaneamente no computador

SISTEMAS OPERACIONAIS PARA COMPUTADORES PORTÁTEIS

- É um tipo de sistema operacional desenvolvido especificamente para smartphones, tablets, PDAs ou outros dispositivos móveis.
 - Embora alguns computadores, como um típico laptop, sejam portáteis, os sistemas operacionais geralmente usados neles não são considerados móveis
- Combinam características de um sistema operacional do computador pessoal com outros recursos úteis para uso móvel
 - Tela sensível ao toque, Bluetooth, GPS de navegação móvel, câmera fotográfica, reconhecimento de voz

SISTEMAS OPERACIONAIS EMBARCADOS

- Sistemas embarcados:
 - São computadores que gerenciam dispositivos que não são considerados computadores
 - Exemplos: Micro-ondas, televisões, aparelhos de som, carros...
- Nenhum software não confiável não será executado por esse tipo de Sistema Operacional:
 - Normalmente, todas as aplicações já estão no sistema
 - Caso contrário, as aplicações são distribuídas pelas próprias empresas fabricantes
- Não há a necessidade de proteção entre as aplicações

SEÇÃO 2 CONCEITOS SOBRE SISTEMAS OPERACIONAIS

PARTES DE UM SISTEMA OPERACIONAL

- Gerência de processos
- Gerência de memória
- Gerência de armazenamento
- Gerência do sistema de arquivos
- Gerência de dispositivos

Um **processo** é basicamente um programa em execução. Associado a cada processo está o seu espaço de endereçamento e um conjunto de recursos e informações necessárias para executar um programa.

Um processo é fundamentalmente um container que armazena todas as informações necessárias para executar um programa

- Um processo precisa de vários recursos para executar uma tarefa
 - Exemplo: tempo de CPU, memória, dispositivos de E/S, etc.
- É responsabilidade do sistema operacional "organizar" esses processos no computador, permitindo que os mesmos compartilhem recursos de forma organizada
- Podemos dizer que o Sistema Operacional atua como um gerente de processos.
 - É cargo do Sistema Operacional gerenciar os processos, determinando a ordem de uso do processador, garantindo que cada um tenha acesso e tempo suficiente para executar normalmente.

- Em diferentes momentos, um processo pode estar utilizando-se do processador, ou simplesmente aguardando.
- Existem situações onde o processo, mesmo tendo o processador disponível, fica impossibilitado de prosseguir a execução, pois geralmente está aguardando por alguma entrada.
 - Para que não exista desperdício no uso do processador, processos que estejam aguardando algum dado externo ficam bloqueados, deixando aos demais processos disputarem o uso do processador

- Dessa forma, podemos dizer que os processos possuem três estados:
 - I. Em execução: realmente utilizando o processador
 - 2. Pronto: aguardando pelo uso do processador
 - 3. Bloqueado: impossibilitado de usar o processador até que algum evento

externo aconteça.

GERENCIAMENTO DE PROCESSO

- Ações relacionadas ao gerenciamento de processos:
 - Escalonamento de processos e threads
 - Criação e remoção de processos do usuário e do sistema
 - Suspender e reiniciar a execução de processos
 - Prover mecanismos para permitir a sincronização entre processos
 - Prover mecanismos para permitir a comunicação entre processos
 - Prover mecanismos para lidar com deadlocks

MEMÓRIA PRINCIPAL

- A memória principal é um vetor de bytes ou palavras:
 - Cada palavra ou byte do vetor possui endereço único
- Funciona como um imenso repositório de dados compartilhados pela CPU e dispositivos de E/S:
 - Os dados devem, primeiramente, passar pela memória principal, antes de serem entregues a CPU ou a E/S
 - Velocidade próxima a da CPU (oferece rápido acesso)
- Mas aonde entra o Sistema Operacional nessa história?

MEMÓRIA PRINCIPAL E O SO

- Para um programa ser executado, o seu código-fonte deve estar presente na memória principal:
 - O SO é responsável por alocar o espaço inicial e atribuir todos endereços necessários as palavras ou bytes
- Durante a execução do programa, novas informações (dados e códigos) podem surgir e devem estar na memória principal:
 - O SO também é responsável por gerenciar tudo isso
- Quando o programa termina, o SO também é responsável por liberar todos os espaços e deixar livre para outros programas

GERENCIAMENTO DE MEMÓRIA

- O problema básico para o gerenciamento de memória é que os programas atuais são muito grandes para rodarem, completamente, na memória cache
- O gerenciador de memória deve ser capaz de controlar parte da memória que está em uso (e quais não estão)
 - Alocar memória para processos quando eles necessitam e desalocar quando eles terminam
 - Gerenciar a troca entre a memória principal e o disco

ARMAZENAMENTO

- Computadores podem ter tipos distintos de meios físicos:
 - Por exemplo: Discos, fitas magnéticas, discos ópticos...
- Cada meio físico possui uma organização interna própria e características exclusivas
 - Por exemplo: método de acesso

ARMAZENAMENTO

- Umas das principais funções do sistema operacional é ocultar as peculiaridades dos discos e de outros dispositivos de E/S
 - Fornecendo ao programador um modelo de arquivos agradável e claro, independente de dispositivos

Outro conceito fundamental que compõe todos os Sistemas
 Operacionais é o sistema de arquivos

SISTEMA DE ARQUIVO

Os sistemas de arquivos estruturam a informação guardada em uma unidade de armazenamento, podendo ser representada de forma textual ou gráfica, utilizando um gerenciador de arquivos

SISTEMA DE ARQUIVO

- Mecanismo de abstração utilizado para armazenar dados no disco e de acessá-las de forma simples, rápida e segura
- Sistemas Operacionais disponibilizam diretórios:
 - Arquivos especiais que armazenam outros arquivos
- Um diretório pode armazenar arquivos e/ou outros diretórios criando um sistema hierárquico de arquivos

ARMAZENAMENTO E SO

- De uma maneira geral, em relação aos arquivos, são tarefas comuns ao Sistema Operacional:
 - Criar e remover arquivos e diretórios
 - Primitivas para manipular arquivos e diretórios
 - Mapear arquivos no armazenamento secundário
 - Fazer backup de arquivos em mídias de armazenamento não volátil
 - Gerenciamento do espaço livre e do espaço ocupado

SEGURANÇA

Se um sistema computacional possui múltiplos usuários e permite a execução simultânea de múltiplos processos, então o acesso aos dados deve ser gerenciado.

Por isso, há mecanismos que garantem que arquivos, segmentos de memória, CPU e outros recursos sejam operados somente por processos que foram autorizados para isso

SEGURANÇA E PROTEÇÃO

Proteção: É qualquer mecanismo para controlar o acesso de processos ou usuários aos recursos definidos pelo SO

- Na memória principal podem estar vários processos:
 - É tarefa do SO garantir que cada processo só tenha acesso às regiões que foram atribuídas a ele
- Isso também é válido para outros recursos de alto nível:
 - Proteção pode melhorar a confiabilidade do sistema ao detectar erros nas interfaces entre os subsistemas
 - Isso evita que um subsistema falho influencie no outro

SEGURANÇA E PROTEÇÃO

- Mas somente a proteção não é o suficiente para o sistema
- Considere a seguinte situação:
 - Um hacker invade o seu sistema e apaga os seus arquivos com sua conta de usuário (a proteção não foi violada)
- Segurança: Defesa do sistema contra ataques internos ou externos
- Proteções e segurança requerem que o sistema esteja apto para distinguir um usuário dos demais

O sistema operacional é importante porque:

- a) é onde se gravam documentos importantes em qualquer extensão de editor de texto.
- b) é a unidade central de procedimentos do computador.
- c) ele organiza e administra os recursos do computador para que seja possível usá-lo.
- d) é onde se navega na internet e veem filmes.

Com relação às características e funções básicas de um sistema operacional, julgue os itens seguintes.

As principais funções do núcleo de um sistema operacional são as seguintes: tratamento de interrupções; criação, eliminação, sincronização e comunicação entre processos; gerência de memória e gerência de arquivos.

- a) Certo
- b) Errado

Um programa carregado na memória e em execução é denominado processo. Nos sistemas operacionais de tempo compartilhado e nos multiprogramados, os jobs devem ser mantidos na memória ao mesmo tempo que são executados e, por isso, o sistema deve prover recursos de gerência de memória e proteção.

- a) Certo
- b) Errado

Um sistema operacional é considerado monolítico quando o seu kernel é executado como vários programas.

- a) Certo
- b) Errado

O conceito utilizado pelo sistema operacional, quando o tempo de CPU é compartilhado para atender a muitos processos, é:

- a) Memória Virtual
- b) Pipeline
- c) Time-Sharing
- d) Multiprocessamento
- e) Clustering

Sobre sistemas operacionais em geral, é INCORRETO afirmar que:

- a) Um sistema operacional é responsável pelo gerenciamento dos recursos de hardware de um computador, permitindo o uso destes recursos por programas em execução.
- b) Um sistema operacional oferece uma interface ao usuário que, no mínimo, permite a escolha e execução de programas.
- c) Sistemas operacionais multitarefa são construídos especificamente para computadores com mais de uma CPU, para oferecer o suporte adequado à execução de tarefas concorrentemente.
- d) Sistemas operacionais multiusuário devem ser multitarefa, para oferecer o suporte adequado a vários usuários concorrentemente.

"Sistemas Operacionais gerenciam aplicações e outras abstrações de software, como máquinas virtuais. Dessa forma, as finalidades primárias de um sistema operacional são aplicações a interagir com um hardware de computador e ______ os recursos de hardware e software de um sistema."

- Assinale a alternativa que completa correta e sequencialmente a afirmativa anterior.
- a) Gerenciar / habilitar
- b) Habilitar / gerenciar
- c) Habilitar / suspender
- d) Hospedar / amplificar

O sistema operacional controla e coordena o uso do *hardware* entre os programas aplicativos para os diversos usuários. Um sistema operacional de tempo compartilhado, ou multitarefa, possibilita que os usuários possam interagir com cada programa durante sua execução.

- a) Certo
- b) Errado