

SPACE FORCE: The Space Saving Workbench

Matthew Beall, Zachary Cross, Demetrick McDonald, Andrew Saku, Devon Zollinhofer

DEPARTMENT OF MECHANICAL ENGINEERING, UNIVERSITY OF MARYLAND ENME 472 – INTEGRATED PRODUCT AND PROCESS DESIGN AND DEVELOPMENT

Objective

Purpose

To create a full-size workbench
 that is mobile and collapsible
 for normal use and easy
 storage.

Benefits

- Full-size workbench
- Complete folding functionality
- Able to be moved and stored with ease

Market Need

Typical full-size workbenches take up a considerable amount of space which can be better utilized while the workbench is not in use.

Competitive Advantage

- Folding center table top
- Folding auxiliary table tops
- Locking casters
- Comparable strength to a static table

Concept 1	Concept 2	Concept 3
Eccentric action lock	Spring/ball	Barrel Lock
Casters with Locks	Casters with electronic locks	Solid feet
OTS Folding Bracket	Custom Folding bracket	No Support
Strap hinges	Butt hinge	eye-hook
Pine	Extruded 80/20	Pine
Continuous hinge	Door hinge	Continuous hinge
Custom	Quarter	Full Scale
Supports and Back Brace	Telescopic Brace	3 Supports

Final Design

Customer Requirements

- Strength
- Safety
- Cost
- Large enough for various uses
- Small enough to be stored
- Easy to move around

Engineering Characteristics

- Bracket strength
- Caster strength
- Table top surface area
- Folded position width
- Material cost

Calculations

- Max Screw Stress: 26 kpsi
- Screw Yield Stress: 30 kspi
- Factor of Safety: **1.13**
- Max Edge Load For Instability: 87.6 lbs
- Max Uniform Load for Instability: **0.51 psi**

Prototype Components

- Folding and locking brackets
- Swivel and locking casters
- Front and back supports
- Various hinges

Cost Analysis

• Prototype: \$250

Final Product est.: \$380

Isometric View, Unfolded

57"L X 24"W X 27"H

Front View, Folded 15"L X 24"W X 27"H

Prototype & Testing

Proof of Concept Prototype

- Center support with a bracket and flap on either side
- Displays tabletop functionality
- Folds and locks into place, as expected

Testing

Center

Max Load: 250 lbs.

Max Deflection: 5/16"

One Inner Flap

Max Load: 210 lbs.

Max Deflection: 1/4"

Side Flap

Max Load: 150 lbs.

Max Deflection: 3/16"

Finite Element Analysis (FEA)

Future Work

- Mechanism that allows all four internal brackets to be activated simultaneously
- Upgraded material for the table top
- Larger overall dimensions
- Accessory design implementation, such as electrical outlets, storage, and handles
- Casters that can disengage allowing the workbench to rest solid on the ground
- Additional support in the center for the table top to withstand more weight
- Stronger strap hinge for bottom brace

Special Thanks To:
Dr. Jamil Abdo
Mr. Kevin Fearon
Mr. Duane Miller