Eksamen på Økonomistudiet vinter 2016-2017

Lineære Modeller

20. januar 2017

(3-timers prøve med hjælpemidler)

Dette eksamenssæt består af 2 sider.

OBS: Bliver du syg under selve eksamen på Peter Bangsvej, skal du kontakte et tilsyn, blive registreret som syg hos denne. Derefter afleverer du en blank besvarelse i systemet og forlader eksamen. Når du kommer hjem, skal du kontakte din læge og indsende lægeerklæring til Det Samfundsvidenskabelige Fakultet senest en uge efter eksamensdagen.

KØBENHAVNS UNIVERSITETS ØKONOMISKE INSTITUT

LM Januar 2017

Eksamen i Lineære Modeller

Fredag d.20 januar 2017.

Dette er en 3-timers eksamen (2 sider med i alt 4 opgaver).

Brug af bøger, noter og lignende er tilladt, men brug af lommeregner og casværktøjer er ikke tilladt.

Opgave 1.

Vi betragter den lineære afbildning $L: \mathbf{R}^4 \to \mathbf{R}^2$, som med hensyn til standardbaserne i begge rum har afbildningsmatricen

$$L = \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 \end{pmatrix} .$$

- (1) Bestem en basis for nulrummet for L. Er L injektiv?
- (2) Vis at vektoren v = (1, 2, -1, -1) ligger i nulrummet for L, og bestem koordinaterne til v med hensyn til den fundne basis for nulrummet.
- (3) Bestem en basis for billedrummet, R(L), for L. Er L surjektiv?
- (4) Bestem løsningsmængden til ligningen Lx = y, hvor $y \in \mathbb{R}^2$.
- (5) Den lineære afbildning $T: \mathbf{R}^2 \to \mathbf{R}^2$ er givet ved $T(y_1, y_2) = (y_1 + y_2, y_1 y_2)$. Ved sammensætning TLx (som betyder T(Lx)) fås da en lineær afbildning $TL: \mathbf{R}^4 \to \mathbf{R}^2$. Vis, at nulrummet for TL er identisk med nulrummet for L.

Opgave 2. Vi betragter 3×3 matricen

$$A = \begin{pmatrix} 3 & 0 & a \\ 0 & 2 & 0 \\ a & 0 & 3 \end{pmatrix} .$$

- (1) Det oplyses at v = (1, 0, 1) er en egenvektor for A og at den tilhørende egenværdi er 4. Bestem tallet a.
- (2) Bestem alle egenværdierne for A og deres multipliciteter.
- (3) Bestem egenværdierne for matricen $(A-4E)^2$.

- (4) Bestem determinanten for matricen A^{-1} .
- (5) Bestem vektoren $A^{-1}v$.

Opgave 3.

- (1) Beregn integralet $\int \sin(ax)\sin(bx)\cos(x)dx$, hvor a og b er positive, reelle tal.
- (2) Løs den komplekse andengradsligning $(2+i)z^2 (3+i) = (1+2i)z^2$. Løsningen ønskes angivet på rektangulær form a+ib.

Opgave 4.

Vi betragter funktionen f, som er sumfunktion for rækken

$$\sum_{n=0}^{\infty} \left(\frac{1}{e^{2ax} - 4e^{ax} + 4}\right)^n,$$

hvor a er et positivt, reelt tal.

- (1) Bestem de værdier af x, for hvilke funktionen f er veldefineret.
- (2) Bestem en regneforskrift for funktionen f.
- (3) Bestem monotoniforholdene for funktionen f.
- (4) Bestem værdimængden for funktionen f, og undersøg om funktionen er injektiv.
- (5) Løs ligningen f(x) = y (med hensyn til x) for et givet y beliggende i værdimængden for funktionen f.
- (6) For hvilke værdier af y i værdimængden for funktionen f har ligningen f(x) = y netop en løsning.