Travaux dirigés CC1 Vitesse de réaction

CC1.1. Vitesses initiales

On étudie la transformation modélisée par l'équation de réaction :

$$H_2O_2 + 2 Br^- + 2 H^+ = Br_2 + 2 H_2O$$

L'expérience montre que la loi de vitesse est d'ordre partiel 1 pour chacun des réactifs.

- 1. Si le pH (= -log[H⁺]) initial est diminué d'une unité entre deux expériences, comment la vitesse est-elle modifiée ?
- 2. Dans des conditions expérimentales données, la vitesse initiale de consommation de Br^- est 0,01 mol. L^{-1} . s^{-1} . Quelle est la vitesse initiale de disparition de H_2O_2 et quelle est la vitesse initiale de la réaction ?
- 3. Dans les mêmes conditions que précédemment, on divise la concentration de chacun des réactifs par deux. Quelle est la vitesse initiale d'apparition du dibrome ?

CC1.2. Oxydation de l'acide oxalique

On étudie la cinétique de la réaction du permanganate MnO_4^- avec l'acide oxalique $C_2O_4H_2$ en milieu acide. Les produits formés sont Mn^{2+} et CO_2 .

- 1. Écrire l'équation de la réaction.
- 2. L'allure de la courbe donnant la concentration en permanganate est donnée ci-dessous : en déduire l'allure de la courbe de la vitesse de réaction.

- 3. Comment sera modifiée la courbe de la vitesse si on refait l'expérience à plus haute température ?
- 4. Est-ce que la réaction a un ordre ?

CC1.3. Méthode différentielle

Les ions mercure (II) peuvent être réduits par les ions fer (II) selon la réaction :

$$2 \text{ Fe}^{2+} + 2 \text{ Hg}^{2+} = \text{Hg}_2^{2+} + 2 \text{ Fe}^{3+}$$

On étudie expérimentalement la cinétique de la réaction en introduisant 0,01 mol de chaque réactif dans 100 mL d'eau distillée. La concentration des ions Fe³⁺ au cours du temps est donnée dans le tableau suivant :

$10^{5}.t(s)$	v (mol.L ⁻¹ .s ⁻¹)	$[Fe^{3+}]$ (mol.L ⁻¹)
0	$5,00.10^3$	0
1	$1,25.10^3$	0,05
4	$2,00.10^2$	0,08
9	50,0	0,09
19	12,5	0,095

Déterminer l'ordre de la réaction et sa constante de vitesse.

CC1.4. Énergie d'activation

L'éthanal (CH₃CHO) se décompose à haute température avec une constante de vitesse k dont on donne ci-dessous la valeur à différentes températures.

T (°C)	k (L.mol ⁻¹ .s ⁻¹)
427	0,011
487	0,105
537	0,789
727	145

- 1. À l'aide d'une analyse dimensionnelle (analyse des unités), déterminer l'ordre global de la réaction.
- 2. Calculer l'énergie d'activation.

CC1.5. Synthèse de H₂S

La synthèse de H_2S en phase gaz peut être réalisée en mélangeant des vapeurs de soufre et du dihydrogène. La loi de vitesse prend la forme suivante :

$$\frac{d[H_2S]}{dt} = k.[H_2]^m.[S]^n$$

On réalise deux séries d'expériences (I) et (II) à 402°C

expérience (I)				
masse initiale de S	P(H ₂) initiale	vitesse initiale de formation de H ₂ S		
(en g)	(en mmHg)	$(en g.cm^{-3}.s^{-1})$		
0,0534	51	$3,98.10^{-8}$		
0,0534	102	$7,98.10^{-8}$		
0,0534	153	$11,95.10^{-8}$		

expérience (II)				
masse initiale de S	P(H ₂) initiale	vitesse initiale de formation de H ₂ S		
(en g)	(en mmHg)	$(en g.cm^{-3}.s^{-1})$		
0,0534	153	$11,95.10^{-8}$		
0,1000	153	$16,44.10^{-8}$		
0,1500	153	$20,14.10^{-8}$		

- 1. Calculer les ordres initiaux m et n.
- 2. Quel est l'ordre global initial de la réaction ?

La constante de vitesse à 402°C est 3,56 fois plus élevée qu'à 374,5°C.

3. Calculer l'énergie d'activation.