Ambiguous Grammars

A CFG is *ambiguous* if one or more terminal strings have multiple leftmost derivations from the start symbol.

• Equivalently: multiple rightmost derivations, or multiple parse trees.

Example

Consider $S \to AS \mid \epsilon; A \to A1 \mid 0A1 \mid 01$. The string 00111 has the following two leftmost derivations from S:

$$\begin{array}{ccc} 1. & S \underset{lm}{\Rightarrow} & AS \underset{lm}{\Rightarrow} & 0.011S \underset{lm}{\Rightarrow} & 0.0111S \underset{lm}{\Rightarrow} & 0.011S \underset{lm}{\Rightarrow} & 0.01S \underset{lm$$

$$\begin{array}{cccc} 2. & S \Rightarrow & AS \Rightarrow & A1S \Rightarrow & 0A11S \Rightarrow & 00111S \Rightarrow \\ & & & & & & \\ 00111 & & & & \\ \end{array}$$

• Intuitively, we can use $A \rightarrow A1$ first or second to generate the extra 1.

Inherently Ambiguous Languages

A CFL L is inherently ambiguous if every CFG for L is ambiguous.

• Such things exist; see course reader.

Example

The language of our example grammar is not inherently ambiguous, even though the grammar is ambiguous.

• Change the grammar to force the extra 1's to be generated last.

$$\begin{array}{c|c} S \rightarrow AS & \epsilon \\ A \rightarrow 0A1 & B \\ B \rightarrow B1 & 01 \end{array}$$

Why Care?

- Ambiguity of the grammar implies that at least some strings in its language have different structures (parse trees).
 - ♦ Thus, such a grammar is unlikely to be useful for a programming language, because two structures for the same string (program) implies two different meanings (executable equivalent programs) for this program.
 - ♦ Common example: the easiest grammars for arithmetic expressions are ambiguous and need to be replaced by more complex,

unambiguous grammars (see course reader).

 An inherently ambiguous language would be absolutely unsuitable as a programming language, because we would not have any way of fixing a unique structure for all its programs.

Pushdown Automata

- Add a stack to a FA.
- Typically nondeterministic.
- An automaton equivalent to CFG's.

Example

Notation for "transition diagrams": $a, Z/X_1X + 2 \cdots X_k =$ "on input a, with Z on top of the stack, consume the a, make this state transition, and replace the Z on top of the stack by $X_1X_2 \cdots X_k$ (with X_1 at the top).

- p = starting to see a group of 0's and 1's; q = reading 0's and pushing X's onto the stack; r = reading 1's and popping X's until the X's are all popped.
- We can start a new group (transition from r to p) only when all X's (which count the 0's) have been matched against 1's.

Formal PDA

 $P = (Q, \Sigma, , \delta, q_0, Z_0, F)$, where Q, Σ, q_0 , and F have their meanings from FA.

- , = stack alphabet.
- Z_0 in , = start symbol = the one symbol on the stack initially.
- δ = transition function takes a state, an input symbol (or ϵ), and a stack symbol and gives you a finite number of choices of:

- 1. A new state (possibly the same).
- 2. A string of stack symbols to replace the top stack symbol.

Instantaneous Descriptions (ID's)

For a FA, the only thing of interest about the FA is its state. For a PDA, we want to know its state and the entire content of its stack.

- It is also convenient to maintain a fiction that there is an input string waiting to be read.
- Represented by an ID (q, w, α) , where q =state, w =waiting input, and $\alpha =$ stack, top left.

Moves of the PDA

If $\delta(q, a, X)$ contains (p, α) , then $(q, aw, X\beta) \vdash (p, w, \alpha\beta)$.

- Extend to ^{*} to represent 0, 1, or many moves.
- Subscript by name of the PDA, if necessary.
- Input string w is accepted if $(q_0, w, Z_0) \vdash (p, \epsilon, \gamma)$ for any accepting state p and any stack string γ .
- L(P) = set of strings accepted by P.

Example

$$(p,0110011,Z_0) \vdash (q,110011,XZ_0) \vdash (r,10011,Z_0) \vdash (r,0011,Z_0) \vdash (p,0011,Z_0) \vdash (q,011,XZ_0) \vdash (q,11,XXZ_0) \vdash (r,1,XZ_0) \vdash (r,\epsilon,Z_0) \vdash (p,\epsilon,Z_0)$$

Acceptance by Empty Stack

Another one of those technical conveniences: when we prove that PDA's and CFG's accept the same languages, it helps to assume that the stack is empty whenever acceptance occurs.

- N(P) = set of strings w such that $(q_0, w, Z_0) \stackrel{*}{\vdash} (p, \epsilon, \epsilon) \text{ for some state } p.$
 - \bullet Note p need not be in F.
 - ♠ In fact, if we talk about N(P) only, then we need not even specify a set of accepting states.

Example

For our previous example, to accept by empty stack:

- 1. Add a new transition $\delta(p, \epsilon, Z_0) = \{(p, \epsilon)\}.$
 - ◆ That is, when starting to look for a new 0-1 block, the PDA has the option to pop the last symbol off the stack instead.
- 2. p is no longer an accepting state; in fact, there are no accepting states.

Equivalence of Acceptance by Final State and Empty Stack

A language is $L(P_1)$ for some PDA P_1 if and only if it is $N(P_2)$ for some PDA P_2 .

- Given $P_1 = (Q, \Sigma, , , \delta, q_0, Z_0, F)$, construct P_2 :
 - 1. Introduce new start state p_0 and new bottom-of-stack marker X_0 .
 - 2. First move of P_2 : replace X_0 by Z_0X_0 and go to state q_0 . The presence of X_0 prevents P_2 from "accidentally" emptying its stack and accepting when P_1 did not accept.
 - 3. Then, P_2 simulates P_1 ; i.e., give P_2 all the transitions of P_1 .
 - 4. Introduce a new state r that keeps popping the stack of P_2 until it is empty.
 - If (the simulated) P₁ is in an accepting state, give P₂ the additional choice of going to state r on ε input, and thus emptying its stack without reading any more input.
- Given $P_2 = (Q, \Sigma, , \delta, q_0, Z_0, F)$, construct P_1 :
 - 1. Introduce new start state p_0 and new bottom-of-stack marker X_0 .
 - 2. First move of P_1 : replace X_0 by Z_0X_0 and go to state q_0 .
 - 3. Introduce new state r for P_1 ; it is the only accepting state.
 - 4. P_1 simulates P_2 .
 - 5. If (the simulated) P_1 ever sees X_0 , it knows P_2 accepts, so P_1 goes to state r on ϵ input.