University of British Columbia Department of Mechanical Engineering

MECH366 Modeling of Mechatronic Systems Midterm exam

Examiner: Dr. Ryozo Nagamune October 13 (Friday), 2017, 3pm-3:50pm

Last name, First name		
Name:	Student #:	
Signature:		

Exam policies

- Allowed: One-page letter-size hand-written cheat-sheet (both sides).
- Not-allowed: PC, calculators.
- Write all your answers on this booklet. No extra sheet will be provided.
- Motivate your answers properly. (No chance to defend your answers orally.)
- 20 points in total.

Before you start ...

- Use washroom before the exam.
- Turn off your mobile phone.
- No eating.
- Questions are NOT allowed.

If you finish early ...

• Please stay at your seat until the end of exam, i.e., 3:50pm. (You are not allowed to leave the room before the end of exam, except going to washroom.)

To be filled in by the instructor/marker

Problem #	Mark	Full mark
1		5
2		5
3		10
Total		20

(a)	For what purpose can a mathematical model of a physical sy used? (Giving only one such purpose is enough.)	stem be
	Write your answer here.	\
(b)	For thermal systems, what is the through variable?	(1pt
	Write your answer here.	
(c)	For fluid systems, what is the across variable? Write your answer here.	(1pt
(d)	In thermal systems, write the constitutive equation for the T-t ment. Write your answer here.	ype ele (1pt
(e)	In electrical systems, write the constitutive equation for the element.	A-typ (1pt
	Write your answer here.	

2. Consider a three-water-tank system in the figure below. Here, A_i , i = 1, 2, 3, are tank section areas, h_i , i = 1, 2, 3, are the water heights of the tanks, and u_i , i = 1, 2, are input mass flow rates. The nonlinear state equation of this system is assumed to be expressed as

$$\dot{h}_{1}(t) = \frac{1}{\rho A_{1}} \left(-K\sqrt{h_{1}(t)} + u_{1}(t) \right),
\dot{h}_{2}(t) = \frac{1}{\rho A_{2}} \left(-K\sqrt{h_{2}(t)} + u_{2}(t) \right),
\dot{h}_{3}(t) = \frac{1}{\rho A_{3}} \left(-K\sqrt{h_{3}(t)} + K\sqrt{h_{1}(t)} + K\sqrt{h_{2}(t)} \right),$$

where ρ and K are given positive constants.

We linearize the nonlinear state equation around the situation when we maintain the water heights at $h_1(t) = h_{10}$ and $h_2(t) = h_{20}$, where h_{10} and h_{20} are given positive constant heights.

- (a) Obtain the corresponding constant input flow rates $u_1(t) = u_{10}$ and $u_2(t) = u_{20}$ in terms of given constants h_{10} and h_{20} . (1pt)
- (b) Obtain the corresponding constant water height $h_3(t) = h_{30}$ in terms of given constants h_{10} and h_{20} . (1pt)

- (c) Derive a linearized state equation $\dot{\delta h}(t) = A\delta h(t) + B\delta u(t)$ around the equilibrium point $(h_1, h_2, h_3) = (h_{10}, h_{20}, h_{30})$ and $(u_1, u_2) = (u_{10}, u_{20})$. To answer this question, you do **not** need to use solutions obtained in (a) and (b); just use the notations (h_{10}, h_{20}, h_{30}) and (u_{10}, u_{20}) . (2pt)
- (d) Define the state vector δh and the input vector δu in the linearized model in (c). (1pt)

3. Consider a lumped model of a wind turbine system in the figure below. The notations are indicated in the figure, and given as follows. (We ignore friction and damping in this model.)

Notation	Meaning
τ	Aerodynamic torque (input)
$J_{L_1} \& \omega_{L_1}$	Moment of inertia & angular velocity of the rotor (blades)
$J_{L_2} \& \omega_{L_2}$	Moment of inertia & angular velocity of the low-speed gear
$J_{H_1} \& \omega_{H_1}$	Moment of inertia & angular velocity of the generator
$J_{H_2} \& \omega_{H_2}$	Moment of inertia & angular velocity of the high-speed gear
$R_L \& R_H$	Radius of the low-speed gear & of the high-speed gear
$k_L \& k_H$	Spring constant of the low-speed shaft & of the high-speed shaft

(Note: In this question, you do not need to derive the state equation.)

(a) The two rotational velocities ω_{L_2} and ω_{H_2} are related as $\omega_{H_2} = r\omega_{L_2}$ due to the gear. Obtain the positive constant r. (1pt)

	Below, you can use the notation r , instead of using R_L and R_H .	
(b)	Draw a linear graph, by introducing notations appropriately.	(4pt
(c)	Select the state variables. (It is fine even if you include redundant variables.)	stat (1pt
(d)	Write the constitutive equations for the passive elements and the (transformer) in the linear graph.	gea (2pt
(e)	Write loop equations and node equations for the linear graph.	(2pt
	——— (End of Midterm Exam) ———	