CSE 135: Introduction to Theory of Computation CFLs: Closure Properties and Membership Test

Sungjin Im

University of California, Merced

03-31-2014

Let L_1 be language recognized by $G_1 = (V_1, \Sigma_1, R_1, S_1)$ and L_2 the language recognized by $G_2 = (V_2, \Sigma_2, R_2, S_2)$ ls $L_1 \cup L_2$ a context free language?

Let L_1 be language recognized by $G_1 = (V_1, \Sigma_1, R_1, S_1)$ and L_2 the language recognized by $G_2 = (V_2, \Sigma_2, R_2, S_2)$ ls $L_1 \cup L_2$ a context free language? Yes.

Let L_1 be language recognized by $G_1=(V_1,\Sigma_1,R_1,S_1)$ and L_2 the language recognized by $G_2=(V_2,\Sigma_2,R_2,S_2)$ ls $L_1\cup L_2$ a context free language? Yes. Just add the rule $S\to S_1|S_2$

Let L_1 be language recognized by $G_1=(V_1,\Sigma_1,R_1,S_1)$ and L_2 the language recognized by $G_2=(V_2,\Sigma_2,R_2,S_2)$ Is $L_1\cup L_2$ a context free language? Yes. Just add the rule $S\to S_1|S_2$ But make sure that $V_1\cap V_2=\emptyset$ (by renaming some variables).

Let L_1 be language recognized by $G_1 = (V_1, \Sigma_1, R_1, S_1)$ and L_2 the language recognized by $G_2 = (V_2, \Sigma_2, R_2, S_2)$ ls $L_1 \cup L_2$ a context free language? Yes.

Just add the rule $S o S_1 | S_2$

But make sure that $V_1 \cap V_2 = \emptyset$ (by renaming some variables).

Closure of CFLs under Union

$$G = (V, \Sigma, R, S)$$
 such that $L(G) = L(G_1) \cup L(G_2)$:

- ▶ $V = V_1 \cup V_2 \cup \{S\}$ (the three sets are disjoint)
- $\blacktriangleright \ \Sigma = \Sigma_1 \cup \Sigma_2$
- ► $R = R_1 \cup R_2 \cup \{S \to S_1 | S_2\}$

Proposition

CFLs are closed under concatenation and Kleene closure

Proposition

CFLs are closed under concatenation and Kleene closure

Proof.

Let L_1 be language generated by $G_1=(V_1,\Sigma_1,R_1,S_1)$ and L_2 the language generated by $G_2=(V_2,\Sigma_2,R_2,S_2)$

Proposition

CFLs are closed under concatenation and Kleene closure

Proof.

Let L_1 be language generated by $G_1=(V_1,\Sigma_1,R_1,S_1)$ and L_2 the language generated by $G_2=(V_2,\Sigma_2,R_2,S_2)$

► Concatenation:

Proposition

CFLs are closed under concatenation and Kleene closure

Proof.

Let L_1 be language generated by $G_1=(V_1,\Sigma_1,R_1,S_1)$ and L_2 the language generated by $G_2=(V_2,\Sigma_2,R_2,S_2)$

▶ Concatenation: L_1L_2 generated by a grammar with an additional rule $S \to S_1S_2$

Proposition

CFLs are closed under concatenation and Kleene closure

Proof.

Let L_1 be language generated by $G_1=(V_1,\Sigma_1,R_1,S_1)$ and L_2 the language generated by $G_2=(V_2,\Sigma_2,R_2,S_2)$

- ▶ Concatenation: L_1L_2 generated by a grammar with an additional rule $S \rightarrow S_1S_2$
- ► Kleene Closure:

Proposition

CFLs are closed under concatenation and Kleene closure

Proof.

Let L_1 be language generated by $G_1=(V_1,\Sigma_1,R_1,S_1)$ and L_2 the language generated by $G_2=(V_2,\Sigma_2,R_2,S_2)$

- ▶ Concatenation: L_1L_2 generated by a grammar with an additional rule $S \rightarrow S_1S_2$
- ▶ Kleene Closure: L_1^* generated by a grammar with an additional rule $S o S_1 S | \epsilon$

Proposition

CFLs are closed under concatenation and Kleene closure

Proof.

Let L_1 be language generated by $G_1=(V_1,\Sigma_1,R_1,S_1)$ and L_2 the language generated by $G_2=(V_2,\Sigma_2,R_2,S_2)$

- ▶ Concatenation: L_1L_2 generated by a grammar with an additional rule $S \rightarrow S_1S_2$
- ▶ Kleene Closure: L_1^* generated by a grammar with an additional rule $S \to S_1 S | \epsilon$

As before, ensure that $V_1 \cap V_2 = \emptyset$. S is a new start symbol.

Proposition

CFLs are closed under concatenation and Kleene closure

Proof.

Let L_1 be language generated by $G_1=(V_1,\Sigma_1,R_1,S_1)$ and L_2 the language generated by $G_2=(V_2,\Sigma_2,R_2,S_2)$

- ▶ Concatenation: L_1L_2 generated by a grammar with an additional rule $S \rightarrow S_1S_2$
- ▶ Kleene Closure: L_1^* generated by a grammar with an additional rule $S \to S_1 S | \epsilon$

As before, ensure that $V_1 \cap V_2 = \emptyset$. S is a new start symbol. (Exercise: Complete the Proof!)

Let L_1 and L_2 be context free languages.

Let L_1 and L_2 be context free languages. $L_1 \cap L_2$ is not necessarily context free!

Let L_1 and L_2 be context free languages. $L_1 \cap L_2$ is not necessarily context free!

Proposition

CFLs are not closed under intersection

Let L_1 and L_2 be context free languages. $L_1 \cap L_2$ is not necessarily context free!

Proposition

CFLs are not closed under intersection

Proof.

• $L_1 = \{a^i b^i c^j \mid i, j \ge 0\}$ is a CFL

Let L_1 and L_2 be context free languages. $L_1 \cap L_2$ is not necessarily context free!

Proposition

CFLs are not closed under intersection

- ► $L_1 = \{a^i b^i c^j \mid i, j \ge 0\}$ is a CFL
 - ▶ Generated by a grammar with rules $S \to XY$; $X \to aXb|\epsilon$; $Y \to cY|\epsilon$.

Let L_1 and L_2 be context free languages. $L_1 \cap L_2$ is not necessarily context free!

Proposition

CFLs are not closed under intersection

- ► $L_1 = \{a^i b^i c^j \mid i, j \ge 0\}$ is a CFL
 - ▶ Generated by a grammar with rules $S \to XY$; $X \to aXb|\epsilon$; $Y \to cY|\epsilon$.
- ► $L_2 = \{a^i b^j c^j \mid i, j \ge 0\}$ is a CFL.

Let L_1 and L_2 be context free languages. $L_1 \cap L_2$ is not necessarily context free!

Proposition

CFLs are not closed under intersection

- ► $L_1 = \{a^i b^i c^j \mid i, j \ge 0\}$ is a CFL
 - ▶ Generated by a grammar with rules $S \to XY$; $X \to aXb|\epsilon$; $Y \to cY|\epsilon$.
- ► $L_2 = \{a^i b^j c^j \mid i, j \ge 0\}$ is a CFL.
 - ▶ Generated by a grammar with rules $S \to XY$; $X \to aX|\epsilon$; $Y \to bYc|\epsilon$.

Let L_1 and L_2 be context free languages. $L_1 \cap L_2$ is not necessarily context free!

Proposition

CFLs are not closed under intersection

- ► $L_1 = \{a^i b^i c^j \mid i, j \ge 0\}$ is a CFL
 - ▶ Generated by a grammar with rules $S \to XY$; $X \to aXb|\epsilon$; $Y \to cY|\epsilon$.
- ► $L_2 = \{a^i b^j c^j \mid i, j \ge 0\}$ is a CFL.
 - ▶ Generated by a grammar with rules $S \to XY$; $X \to aX|\epsilon$; $Y \to bYc|\epsilon$.
- ▶ But $L_1 \cap L_2 =$

Let L_1 and L_2 be context free languages. $L_1 \cap L_2$ is not necessarily context free!

Proposition

CFLs are not closed under intersection

- ► $L_1 = \{a^i b^i c^j \mid i, j \ge 0\}$ is a CFL
 - ▶ Generated by a grammar with rules $S \to XY$; $X \to aXb|\epsilon$; $Y \to cY|\epsilon$.
- ► $L_2 = \{a^i b^j c^j \mid i, j \ge 0\}$ is a CFL.
 - ▶ Generated by a grammar with rules $S \to XY$; $X \to aX|\epsilon$; $Y \to bYc|\epsilon$.
- ▶ But $L_1 \cap L_2 = \{a^n b^n c^n \mid n \ge 0\}$ is not a CFL.

Proposition

If L is a CFL and R is a regular language then $L \cap R$ is a CFL.

Proposition

If L is a CFL and R is a regular language then $L \cap R$ is a CFL.

Proof.

Let P be the PDA that accepts L, and let M be the DFA that accepts R.

Proposition

If L is a CFL and R is a regular language then $L \cap R$ is a CFL.

Proof.

Proposition

If L is a CFL and R is a regular language then $L \cap R$ is a CFL.

Proof.

Let P be the PDA that accepts L, and let M be the DFA that accepts R. A new PDA P' will simulate P and M simultaneously on the same input and accept if both accept. Then P' accepts $L \cap R$.

▶ The stack of P' is the stack of P

Proposition

If L is a CFL and R is a regular language then $L \cap R$ is a CFL.

Proof.

- ▶ The stack of P' is the stack of P
- ► The state of P' at any time is the pair (state of P, state of M)

Proposition

If L is a CFL and R is a regular language then $L \cap R$ is a CFL.

Proof.

- ▶ The stack of P' is the stack of P
- ► The state of P' at any time is the pair (state of P, state of M): Q_{P'} = Q_P × Q_M

Proposition

If L is a CFL and R is a regular language then $L \cap R$ is a CFL.

Proof.

- ▶ The stack of P' is the stack of P
- ▶ The state of P' at any time is the pair (state of P, state of M): $Q_{P'} = Q_P \times Q_M$
- ▶ These determine the transition function of P'.

Proposition

If L is a CFL and R is a regular language then $L \cap R$ is a CFL.

Proof.

- ▶ The stack of P' is the stack of P
- ▶ The state of P' at any time is the pair (state of P, state of M): $Q_{P'} = Q_P \times Q_M$
- ▶ These determine the transition function of P'.
- ► The final states of *P'* are those in which both the state of *P* and state of *M* are accepting:

Proposition

If L is a CFL and R is a regular language then $L \cap R$ is a CFL.

Proof.

- ▶ The stack of P' is the stack of P
- ▶ The state of P' at any time is the pair (state of P, state of M): $Q_{P'} = Q_P \times Q_M$
- ▶ These determine the transition function of P'.
- ► The final states of P' are those in which both the state of P and state of M are accepting: $F_{P'} = F_P \times F_M$

Proposition

If L is a CFL and R is a regular language then $L \cap R$ is a CFL.

Proof.

Let P be the PDA that accepts L, and let M be the DFA that accepts R. A new PDA P' will simulate P and M simultaneously on the same input and accept if both accept. Then P' accepts $L \cap R$.

- ▶ The stack of P' is the stack of P
- ▶ The state of P' at any time is the pair (state of P, state of M): $Q_{P'} = Q_P \times Q_M$
- ▶ These determine the transition function of P'.
- ► The final states of P' are those in which both the state of P and state of M are accepting: $F_{P'} = F_P \times F_M$

Why does this construction not work for intersection of two CFLs?

Complementation

Let L be a context free language. Is \overline{L} context free?

Complementation

Let L be a context free language. Is \overline{L} context free? No!

Complementation

Let L be a context free language. Is \overline{L} context free? No!

Proof 1.

Suppose CFLs were closed under complementation.

Let L be a context free language. Is \overline{L} context free? No!

Proof 1.

Suppose CFLs were closed under complementation. Then for any two CFLs L_1 , L_2 , we have

Let L be a context free language. Is \overline{L} context free? No!

Proof 1.

Suppose CFLs were closed under complementation. Then for any two CFLs L_1 , L_2 , we have

▶ $\overline{L_1}$ and $\overline{L_2}$ are CFL.

Let L be a context free language. Is \overline{L} context free? No!

Proof 1.

Suppose CFLs were closed under complementation. Then for any two CFLs L_1 , L_2 , we have

▶ $\overline{L_1}$ and $\overline{L_2}$ are CFL. Then, since CFLs closed under union, $\overline{L_1} \cup \overline{L_2}$ is CFL.

Let L be a context free language. Is \overline{L} context free? No!

Proof 1.

Suppose CFLs were closed under complementation. Then for any two CFLs L_1 , L_2 , we have

▶ $\overline{L_1}$ and $\overline{L_2}$ are CFL. Then, since CFLs closed under union, $\overline{L_1} \cup \overline{L_2}$ is CFL. Then, again by hypothesis, $\overline{L_1} \cup \overline{L_2}$ is CFL.

Let L be a context free language. Is \overline{L} context free? No!

Proof 1.

Suppose CFLs were closed under complementation. Then for any two CFLs L_1 , L_2 , we have

- ▶ $\overline{L_1}$ and $\overline{L_2}$ are CFL. Then, since CFLs closed under union, $\overline{L_1} \cup \overline{L_2}$ is CFL. Then, again by hypothesis, $\overline{\overline{L_1} \cup \overline{L_2}}$ is CFL.
- ▶ i.e., $L_1 \cap L_2$ is a CFL

Let L be a context free language. Is \overline{L} context free? No!

Proof 1.

Suppose CFLs were closed under complementation. Then for any two CFLs L_1 , L_2 , we have

- ▶ $\overline{L_1}$ and $\overline{L_2}$ are CFL. Then, since CFLs closed under union, $\overline{L_1} \cup \overline{L_2}$ is CFL. Then, again by hypothesis, $\overline{\overline{L_1} \cup \overline{L_2}}$ is CFL.
- ▶ i.e., $L_1 \cap L_2$ is a CFL

i.e., CFLs are closed under intersection. Contradiction!

Let L be a context free language. Is \overline{L} context free? No!

Proof 1.

Suppose CFLs were closed under complementation. Then for any two CFLs L_1 , L_2 , we have

- ▶ $\overline{L_1}$ and $\overline{L_2}$ are CFL. Then, since CFLs closed under union, $\overline{L_1} \cup \overline{L_2}$ is CFL. Then, again by hypothesis, $\overline{\overline{L_1} \cup \overline{L_2}}$ is CFL.
- ▶ i.e., $L_1 \cap L_2$ is a CFL

i.e., CFLs are closed under intersection. Contradiction!

Proof 2.

 $L = \{x \mid x \text{ not of the form } ww\} \text{ is a CFL.}$

Let L be a context free language. Is \overline{L} context free? No!

Proof 1.

Suppose CFLs were closed under complementation. Then for any two CFLs L_1 , L_2 , we have

- ▶ $\overline{L_1}$ and $\overline{L_2}$ are CFL. Then, since CFLs closed under union, $\overline{L_1} \cup \overline{L_2}$ is CFL. Then, again by hypothesis, $\overline{L_1} \cup \overline{L_2}$ is CFL.
- ▶ i.e., $L_1 \cap L_2$ is a CFL

i.e., CFLs are closed under intersection. Contradiction!

Proof 2.

 $L = \{x \mid x \text{ not of the form } ww\} \text{ is a CFL.}$

L generated by a grammar with rules

Let L be a context free language. Is \overline{L} context free? No!

Proof 1.

Suppose CFLs were closed under complementation. Then for any two CFLs L_1 , L_2 , we have

- ▶ $\overline{L_1}$ and $\overline{L_2}$ are CFL. Then, since CFLs closed under union, $\overline{L_1} \cup \overline{L_2}$ is CFL. Then, again by hypothesis, $\overline{\overline{L_1} \cup \overline{L_2}}$ is CFL.
- ▶ i.e., $L_1 \cap L_2$ is a CFL

i.e., CFLs are closed under intersection. Contradiction!

Proof 2.

 $L = \{x \mid x \text{ not of the form } ww\} \text{ is a CFL.}$

▶ L generated by a grammar with rules $X \to a|b$, $A \to a|XAX$, $B \to b|XBX$, $S \to$

Let L be a context free language. Is \overline{L} context free? No!

Proof 1.

Suppose CFLs were closed under complementation. Then for any two CFLs L_1 , L_2 , we have

- ▶ $\overline{L_1}$ and $\overline{L_2}$ are CFL. Then, since CFLs closed under union, $\overline{L_1} \cup \overline{L_2}$ is CFL. Then, again by hypothesis, $\overline{\overline{L_1} \cup \overline{L_2}}$ is CFL.
- ▶ i.e., $L_1 \cap L_2$ is a CFL

i.e., CFLs are closed under intersection. Contradiction!

Proof 2.

 $L = \{x \mid x \text{ not of the form } ww\} \text{ is a CFL.}$

▶ L generated by a grammar with rules $X \to a|b$, $A \to a|XAX$, $B \to b|XBX$, $S \to A|B|AB|BA$

Let L be a context free language. Is \overline{L} context free? No!

Proof 1.

Suppose CFLs were closed under complementation. Then for any two CFLs L_1 , L_2 , we have

- ▶ $\overline{L_1}$ and $\overline{L_2}$ are CFL. Then, since CFLs closed under union, $\overline{L_1} \cup \overline{L_2}$ is CFL. Then, again by hypothesis, $\overline{\overline{L_1} \cup \overline{L_2}}$ is CFL.
- ▶ i.e., $L_1 \cap L_2$ is a CFL

i.e., CFLs are closed under intersection. Contradiction!

Proof 2.

 $L = \{x \mid x \text{ not of the form } ww\} \text{ is a CFL.}$

▶ L generated by a grammar with rules $X \to a|b$, $A \to a|XAX$, $B \to b|XBX$, $S \to A|B|AB|BA$

But $\overline{L} = \{ww \mid w \in \{a, b\}^*\}$ is not a CFL! (Why?)

Proposition

If L_1 is a CFL and L_2 is a CFL then $L_1 \setminus L_2$ is not necessarily a CFL

Proposition

If L_1 is a CFL and L_2 is a CFL then $L_1 \setminus L_2$ is not necessarily a CFL

Proof.

Because CFLs not closed under complementation, and complementation is a special case of set difference. (How?)

Proposition

If L_1 is a CFL and L_2 is a CFL then $L_1 \setminus L_2$ is not necessarily a CFL

Proof.

Because CFLs not closed under complementation, and complementation is a special case of set difference. (How?)

Proposition

If L is a CFL and R is a regular language then $L \setminus R$ is a CFL

Proposition

If L_1 is a CFL and L_2 is a CFL then $L_1 \setminus L_2$ is not necessarily a CFL

Proof.

Because CFLs not closed under complementation, and complementation is a special case of set difference. (How?)

Proposition

If L is a CFL and R is a regular language then $L \setminus R$ is a CFL

Proof.

$$L \setminus R = L \cap \overline{R}$$

Emptiness Problem

Given a CFG G with start symbol S, is L(G) empty?

Emptiness Problem

Given a CFG G with start symbol S, is L(G) empty? Solution: Check if the start symbol S is generating.

Emptiness Problem

Given a CFG G with start symbol S, is L(G) empty? Solution: Check if the start symbol S is generating. How long does that take?

Determining generating symbols

until Gen does not change

Algorithm

```
\begin{array}{l} \texttt{Gen = \{}\} \\ \texttt{for every rule } A \to x \texttt{ where } x \in \Sigma^* \\ \texttt{Gen = Gen } \cup \ \{A\} \\ \texttt{repeat} \\ \texttt{for every rule } A \to \gamma \\ \texttt{if all variables in } \gamma \texttt{ are generating then} \end{array}
```

 $Gen = Gen \cup \{A\}$

Determining generating symbols

Algorithm

```
\begin{array}{l} \texttt{Gen = \{} \\ \texttt{for every rule } A \to x \texttt{ where } x \in \Sigma^* \\ \texttt{Gen = Gen } \cup \ \{A\} \\ \texttt{repeat} \\ \texttt{for every rule } A \to \gamma \\ \texttt{ if all variables in } \gamma \texttt{ are generating then } \\ \texttt{Gen = Gen } \cup \ \{A\} \\ \texttt{until Gen does not change} \end{array}
```

▶ Both for-loops take O(n) time where n = |G|.

Determining generating symbols

Algorithm

```
\begin{array}{l} \texttt{Gen = \{} \\ \texttt{for every rule } A \to x \texttt{ where } x \in \Sigma^* \\ \texttt{Gen = Gen } \cup \ \{A\} \\ \texttt{repeat} \\ \texttt{for every rule } A \to \gamma \\ \texttt{ if all variables in } \gamma \texttt{ are generating then } \\ \texttt{Gen = Gen } \cup \ \{A\} \\ \texttt{until Gen does not change} \end{array}
```

- ▶ Both for-loops take O(n) time where n = |G|.
- ▶ Each iteration of repeat-until loop discovers a new variable. So number of iterations is O(n). And total is $O(n^2)$.

Membership Problem

Given a CFG $G = (V, \Sigma, R, S)$ in Chomsky Normal Form, and a string $w \in \Sigma^*$, is $w \in L(G)$?

Membership Problem

Given a CFG $G = (V, \Sigma, R, S)$ in Chomsky Normal Form, and a string $w \in \Sigma^*$, is $w \in L(G)$? Central question in parsing.

▶ Let |w| = n. Since G is in Chomsky Normal Form, w has a parse tree of size 2n - 1 iff $w \in L(G)$

- ▶ Let |w| = n. Since G is in Chomsky Normal Form, w has a parse tree of size 2n 1 iff $w \in L(G)$
- Construct all possible parse (binary) trees and check if any of them is a valid parse tree for w

- ▶ Let |w| = n. Since G is in Chomsky Normal Form, w has a parse tree of size 2n 1 iff $w \in L(G)$
- Construct all possible parse (binary) trees and check if any of them is a valid parse tree for w
- Number of parse trees of size 2n-1 is k^{2n-1} where k is the number of variables in G. So algorithm is exponential in n!

- ▶ Let |w| = n. Since G is in Chomsky Normal Form, w has a parse tree of size 2n 1 iff $w \in L(G)$
- Construct all possible parse (binary) trees and check if any of them is a valid parse tree for w
- Number of parse trees of size 2n-1 is k^{2n-1} where k is the number of variables in G. So algorithm is exponential in n!
- ▶ We will see an algorithm that runs in $O(n^3)$ time (the constant will depend on k).

Notation

Suppose $w=w_1w_2\cdots w_n$, where $w_i\in \Sigma$. Let $w_{i,j}$ denote the substring of w starting at position i of length j. Thus, $w_{i,j}=w_iw_{i+1}\cdots w_{i+j-1}$

Notation

Suppose $w = w_1 w_2 \cdots w_n$, where $w_i \in \Sigma$. Let $w_{i,j}$ denote the substring of w starting at position i of length j. Thus, $w_{i,j} = w_i w_{i+1} \cdots w_{i+j-1}$

Main Idea

For every $A \in V$, and every $i \leq n, j \leq n+1-i$, we will determine if $A \stackrel{*}{\Rightarrow} w_{i,j}$.

Notation

Suppose $w = w_1 w_2 \cdots w_n$, where $w_i \in \Sigma$. Let $w_{i,j}$ denote the substring of w starting at position i of length j. Thus, $w_{i,j} = w_i w_{i+1} \cdots w_{i+j-1}$

Main Idea

For every $A \in V$, and every $i \leq n$, $j \leq n+1-i$, we will determine if $A \stackrel{*}{\Rightarrow} w_{i,j}$.

Now, $w \in L(G)$ iff $S \stackrel{*}{\Rightarrow} w_{1,n} = w$; thus, we will solve the membership problem.

Notation

Suppose $w = w_1 w_2 \cdots w_n$, where $w_i \in \Sigma$. Let $w_{i,j}$ denote the substring of w starting at position i of length j. Thus, $w_{i,j} = w_i w_{i+1} \cdots w_{i+j-1}$

Main Idea

For every $A \in V$, and every $i \leq n$, $j \leq n+1-i$, we will determine if $A \stackrel{*}{\Rightarrow} w_{i,j}$.

Now, $w \in L(G)$ iff $S \stackrel{*}{\Rightarrow} w_{1,n} = w$; thus, we will solve the membership problem.

How do we determine if $A \stackrel{*}{\Rightarrow} w_{i,j}$ for every A, i, j?

Base Case

Substrings of length 1

Observation

For any A, i, $A \stackrel{*}{\Rightarrow} w_{i,1}$ iff $A \rightarrow w_{i,1}$ is a rule.

Base Case

Substrings of length 1

Observation

For any A, i, $A \stackrel{*}{\Rightarrow} w_{i,1}$ iff $A \rightarrow w_{i,1}$ is a rule.

Since G is in Chomsky Normal Form, G does not have any ε-rules, nor any unit rules.

Base Case

Substrings of length 1

Observation

For any A, i, $A \stackrel{*}{\Rightarrow} w_{i,1}$ iff $A \rightarrow w_{i,1}$ is a rule.

Since G is in Chomsky Normal Form, G does not have any ε-rules, nor any unit rules.

Thus, for each A and i, one can determine if $A \stackrel{*}{\Rightarrow} w_{i,1}$.

Inductive Step

Longer substrings

Suppose for every variable X and every $w_{i,\ell}$ $(\ell < j)$ we have determined if $X \stackrel{*}{\Rightarrow} w_{i,\ell}$

Inductive Step

Longer substrings

Suppose for every variable X and every $w_{i,\ell}$ $(\ell < j)$ we have determined if $X \stackrel{*}{\Rightarrow} w_{i,\ell}$

▶ $A \stackrel{*}{\Rightarrow} w_{i,j}$ iff there are variables B and C and some k < j such that $A \to BC$ is a rule, and $B \stackrel{*}{\Rightarrow} w_{i,k}$ and $C \stackrel{*}{\Rightarrow} w_{i+k,j-k}$

Inductive Step

Longer substrings

Suppose for every variable X and every $w_{i,\ell}$ $(\ell < j)$ we have determined if $X \stackrel{*}{\Rightarrow} w_{i,\ell}$

- ▶ $A \stackrel{*}{\Rightarrow} w_{i,j}$ iff there are variables B and C and some k < j such that $A \rightarrow BC$ is a rule, and $B \stackrel{*}{\Rightarrow} w_{i,k}$ and $C \stackrel{*}{\Rightarrow} w_{i+k,j-k}$
- ▶ Since k and j k are both less than j, we can inductively determine if $A \stackrel{*}{\Rightarrow} w_{i,j}$.

Cocke-Younger-Kasami (CYK) Algorithm

```
Algorithm maintains X_{i,j} = \{A \mid A \stackrel{*}{\Rightarrow} w_{i,j}\}.

Initialize: X_{i,1} = \{A \mid A \rightarrow w_{i,1}\}
for j = 2 to n do

for i = 1 to n - j + 1 do

X_{i,j} = \emptyset

for k = 1 to j - 1 do

X_{i,j} = X_{i,j} \cup \{A \mid A \rightarrow BC, \ B \in X_{i,k}, \ C \in X_{i+k,j-k}\}
```

Cocke-Younger-Kasami (CYK) Algorithm

```
Algorithm maintains X_{i,j} = \{A \mid A \stackrel{*}{\Rightarrow} w_{i,j}\}.
Initialize: X_{i,1} = \{A \mid A \rightarrow w_{i,1}\}
for j = 2 to n do

for i = 1 to n - j + 1 do

X_{i,j} = \emptyset
for k = 1 to j - 1 do

X_{i,j} = X_{i,j} \cup \{A \mid A \rightarrow BC, \ B \in X_{i,k}, \ C \in X_{i+k,j-k}\}
```

Correctness: After each iteration of the outermost loop, $X_{i,j}$ contains exactly the set of variables A that can derive $w_{i,j}$, for each i.

Cocke-Younger-Kasami (CYK) Algorithm

Algorithm maintains $X_{i,j} = \{A \mid A \stackrel{*}{\Rightarrow} w_{i,j}\}.$ Initialize: $X_{i,1} = \{A \mid A \rightarrow w_{i,1}\}$ for j = 2 to n do

for i = 1 to n - j + 1 do $X_{i,j} = \emptyset$ for k = 1 to j - 1 do $X_{i,j} = X_{i,j} \cup \{A \mid A \rightarrow BC, B \in X_{i,k}, C \in X_{i+k,j-k}\}$

Correctness: After each iteration of the outermost loop, $X_{i,j}$ contains exactly the set of variables A that can derive $w_{i,j}$, for each i. Time $= O(n^3)$.

Example

$$S \rightarrow AB \mid BC, A \rightarrow BA \mid a, B \rightarrow CC \mid b, C \rightarrow AB \mid a \text{ Let}$$

$$w = baaba$$
. The sets $X_{i,j} = \{A \mid A \stackrel{*}{\Rightarrow} w_{i,j}\}$:

Example

$$S o AB \mid BC, \ A o BA \mid a, \ B o CC \mid b, \ C o AB \mid a$$
 Let $w = baaba$. The sets $X_{i,j} = \{A \mid A \stackrel{*}{\Rightarrow} w_{i,j}\}$:

j/i	1	2	3	4	5
5					
4					
3					
2					
1	{ <i>B</i> }	{ <i>A</i> , <i>C</i> }	{ <i>A</i> , <i>C</i> }	{ <i>B</i> }	{ <i>A</i> , <i>C</i> }
	Ь	а	а	b	а

Example

$$S o AB \mid BC, \ A o BA \mid a, \ B o CC \mid b, \ C o AB \mid a$$
 Let $w = baaba$. The sets $X_{i,j} = \{A \mid A \stackrel{*}{\Rightarrow} w_{i,j}\}$:

j/i	1	2	3	4	5
5					
4					
3					
2	{ <i>S</i> , <i>A</i> }	{ <i>B</i> }	{ <i>S</i> , <i>C</i> }	{ <i>S</i> , <i>A</i> }	
_ 1	{ <i>B</i> }	$\{A,C\}$	{ <i>A</i> , <i>C</i> }	{ <i>B</i> }	{ <i>A</i> , <i>C</i> }
	Ь	а	a	b	а

Example

$$S \rightarrow AB \mid BC, A \rightarrow BA \mid a, B \rightarrow CC \mid b, C \rightarrow AB \mid a$$
 Let $w = baaba$. The sets $X_{i,j} = \{A \mid A \stackrel{*}{\Rightarrow} w_{i,j}\}$:

j/i	1	2	3	4	5
5					
4					
3	Ø	{ <i>B</i> }	{ <i>B</i> }		
2	{ <i>S</i> , <i>A</i> }	{ <i>B</i> }	{ <i>S</i> , <i>C</i> }	{ <i>S</i> , <i>A</i> }	
1	{ <i>B</i> }	{ <i>A</i> , <i>C</i> }	{ <i>A</i> , <i>C</i> }	{ <i>B</i> }	{ <i>A</i> , <i>C</i> }
	Ь	а	a	Ь	а

Example

$$S \rightarrow AB \mid BC, A \rightarrow BA \mid a, B \rightarrow CC \mid b, C \rightarrow AB \mid a$$
 Let $w = baaba$. The sets $X_{i,j} = \{A \mid A \stackrel{*}{\Rightarrow} w_{i,j}\}$:

j/i	1	2	3	4	5
5					
4	Ø	{ <i>S</i> , <i>A</i> , <i>C</i> }			
3	Ø	{ <i>B</i> }	{ <i>B</i> }		
2	{ <i>S</i> , <i>A</i> }	{ <i>B</i> }	{ <i>S</i> , <i>C</i> }	{ <i>S</i> , <i>A</i> }	
1	{ <i>B</i> }	$\{A,C\}$	{ <i>A</i> , <i>C</i> }	{ <i>B</i> }	{ <i>A</i> , <i>C</i> }
	Ь	а	а	Ь	а

Example

$$S o AB \mid BC, \ A o BA \mid a, \ B o CC \mid b, \ C o AB \mid a$$
 Let $w = baaba$. The sets $X_{i,j} = \{A \mid A \stackrel{*}{\Rightarrow} w_{i,j}\}$:

j/i	1	2	3	4	5
5	{ <i>S</i> , <i>A</i> , <i>C</i> }				
4	Ø	{ <i>S</i> , <i>A</i> , <i>C</i> }			
3	Ø	$\{B\}$	{ <i>B</i> }		
2	{ <i>S</i> , <i>A</i> }	$\{B\}$	{ <i>S</i> , <i>C</i> }	{ <i>S</i> , <i>A</i> }	
1	{ <i>B</i> }	{ <i>A</i> , <i>C</i> }	$\{A,C\}$	{ <i>B</i> }	{ <i>A</i> , <i>C</i> }
	Ь	а	a	Ь	a

▶ Is
$$L(G_1) = \Sigma^*$$
?

- ▶ Is $L(G_1) = \Sigma^*$?
- ▶ Is $L(G_1) \cap L(G_2) = \emptyset$?

- ▶ Is $L(G_1) = \Sigma^*$?
- ▶ Is $L(G_1) \cap L(G_2) = \emptyset$?
- ▶ Is $L(G_1) = L(G_2)$?

- ▶ Is $L(G_1) = \Sigma^*$?
- ▶ Is $L(G_1) \cap L(G_2) = \emptyset$?
- ▶ Is $L(G_1) = L(G_2)$?
- ▶ Is *G*₁ ambiguous?

- ▶ Is $L(G_1) = \Sigma^*$?
- ▶ Is $L(G_1) \cap L(G_2) = \emptyset$?
- ▶ Is $L(G_1) = L(G_2)$?
- ▶ Is G_1 ambiguous?
- ▶ Is $L(G_1)$ inherently ambiguous?

Given a CFGs G_1 and G_2

- ▶ Is $L(G_1) = \Sigma^*$?
- ▶ Is $L(G_1) \cap L(G_2) = \emptyset$?
- ▶ Is $L(G_1) = L(G_2)$?
- ▶ Is G_1 ambiguous?
- ▶ Is $L(G_1)$ inherently ambiguous?

All these problems are undecidable.