Fachrichtung Mathematik • Institut für Algebra • Prof. Dr. Ulrike Baumann

Mathematische Methoden für Informatiker INF-120 Sommersemester 2019

10. Übungsblatt für die Woche 17.06. - 23.06.2019 Differential gleichungen

(a) Finden Sie alle Parameterwerte $a, b \in \mathbb{R}$, für die die Funktion $y_s(x) = a\sin(2x) + b\cos(2x)$ eine Lösung der Differentialgleichung $y'' + 3y' + 2y = 3\cos(2x)$ ist.

(b) Es sind drei gewöhnliche Differentialgleichungen 1. Ordnung gegeben:

(i)
$$y' = 2\frac{y}{x}$$

(ii)
$$y' = 2\frac{x}{y}$$

(iii)
$$y' = 1 - y^2$$
.

Ordnen Sie die Differentialgleichungen dem passenden Richtungsfeld zu:

Ü56 (a) Bestimmen Sie für die folgenden gewöhnlichen Differentialgleichungen 1. Ordnung die allgemeine Lösung mit der Methode der Trennung der Veränderlichen:

(i)
$$y' = 2\frac{y}{x}$$

(ii)
$$y' = 2\frac{x}{y}$$

(b) Lösen Sie die folgenden Anfangswertprobleme:

(i)
$$y'(1-x^2) = xy$$
, $y(2) = 1$ (ii) $y' = 1 - y^2$, $y(0) = 1$.

(ii)
$$y' = 1 - y^2$$
, $y(0) = 1$

$$N'(t) = \alpha N(t)(a - N(t))$$

mit Parametern $\alpha, a > 0$.

- (a) Berechnen Sie diejenigen Lösungen N(t), für die N'(t) = 0 für alle $t \in \mathbb{R}$ gilt. Diese Lösungen heißen stationär. Warum?
- (b) Skizzieren Sie das Richtungsfeld der Differentialgleichung bzw. eine Reihe aussagekräftiger Lösungen. Lesen Sie daraus Eigenschaften der Lösungen ab.
- (c) Berechnen Sie die allgemeine Lösung N(t).

H58 A Gegeben ist die Differentialgleichung $y' = \frac{3-y}{2\sqrt{x}}, x > 0.$

- (a) Berechnen Sie die allgemeine Lösung y(x) durch Trennung der Veränderlichen.
- (b) Bestimmen Sie diejenige Lösung $y_s(x)$, die der Bedingung $y_s(0) = -2$ genügt, und geben Sie den Grenzwert $\lim_{x\to\infty}y_s(x)$ an.
- (a) Finden Sie alle Parameterwerte $c \in \mathbb{R}$, für die die Funktion $y(x) = \frac{c-x}{x+2}$ eine Lösung der Differential gleichung $(x^2 - 4)y' - 4y = 0$ ist.
 - (b) Berechnen Sie die allgemeine Lösung der Differentialgleichung $y' = \frac{4x}{x^2y + y}, y \neq 0$ mit der Methode der Trennung der Veränderlichen. Bestimmen Sie die spezielle Lösung $y_s(x)$, die die Bedingung y(-1) = 0 erfüllt, und geben Sie für diese Lösung an, für welche $x \in \mathbb{R}$ sie existiert.

H60 Lösen Sie die folgenden Anfangswertprobleme mit der Methode der Trennung der Veränderlichen:

(a)
$$y' = (xy)^2$$
, $y(0) = -2$, (b) $y' = \sqrt{1+y}$, $y(1) = -1$.

(b)
$$y' = \sqrt{1+y}$$
, $y(1) = -1$.

SS)
$$y''(x) + 3y'(x) + 2y(x) = 3\cos(2x)$$

harmonischer Oszillator

 $F = -ky$
 $y''(x) + ky'(x) = 0$
 $y''(x) = -ky - by'$

Ansatz für eine Spezielle Lüsung.

 $y''(x) = a \cdot \sin(2x) + b \cdot \cos(2x)$
 $y''(x) = 2a \cdot \cos(2x) - 2b \cdot \sin(2x)$
 $y''(x) = -4a \cdot \sin(2x) - 4b \cdot \cos(2x)$
 $y''(x) = -4a \cdot \sin(2x) - 4b \cdot \cos(2x)$
 $y''(x) = -4a \cdot \sin(2x) - 4b \cdot \cos(2x)$
 $y''(x) = -4a \cdot \sin(2x) - 4b \cdot \cos(2x) - 2b \cdot \sin(2x)$
 $y''(x) = -4a \cdot \sin(2x) - 4b \cdot \cos(2x) - 2b \cdot \sin(2x)$
 $y''(x) = -4a \cdot \sin(2x) - 4b \cdot \cos(2x) - 2b \cdot \sin(2x)$
 $y''(x) = -4a \cdot \sin(2x) - 4b \cdot \cos(2x) - 2b \cdot \cos(2x)$
 $y''(x) = -4a \cdot \sin(2x) - 4b \cdot \cos(2x) - 2b \cdot \cos(2x)$
 $y''(x) = -4a \cdot \sin(2x) - 4b \cdot \cos(2x) - 2b \cdot \cos(2x)$
 $y''(x) = -4a \cdot \sin(2x) - 4b \cdot \cos(2x) - 2b \cdot \cos(2x)$
 $y''(x) = -4a \cdot \sin(2x) - 4b \cdot \cos(2x) - 2b \cdot \cos(2x)$
 $y''(x) = -4a \cdot \sin(2x) - 4b \cdot \cos(2x) - 2b \cdot \cos(2x)$
 $y''(x) = -4a \cdot \sin(2x) - 4b \cdot \cos(2x) - 2b \cdot \cos(2x)$
 $y''(x) = -4a \cdot \sin(2x) - 4b \cdot \cos(2x) - 2b \cdot \cos(2x)$
 $y''(x) = -4a \cdot \sin(2x) - 4b \cdot \cos(2x) - 2b \cdot \cos(2x)$
 $y''(x) = -4a \cdot \sin(2x) - 4b \cdot \cos(2x) - 2b \cdot \cos(2x)$
 $y''(x) = -4a \cdot \sin(2x) - 4b \cdot \cos(2x) - 2b \cdot \cos(2x)$
 $y''(x) = -4a \cdot \sin(2x) - 4b \cdot \cos(2x) - 2b \cdot \cos(2x)$
 $y''(x) = -4a \cdot \sin(2x) - 4b \cdot \cos(2x) - 2b \cdot \cos(2x)$
 $y''(x) = -4a \cdot \sin(2x) - 4b \cdot \cos(2x) - 2b \cdot \cos(2x)$
 $y''(x) = -4a \cdot \sin(2x) - 4b \cdot \cos(2x) - 2b \cdot \cos(2x)$

-> < -40 (b +> a -> > S Q = 9
$= \begin{array}{c} -4a - 6b + 2a = 0 \\ -4b + 6a + 2b = 3 \end{array}$ $= \begin{array}{c} 3 \\ -2 \\ \end{array}$
Koeffizienten vergleich
$\Rightarrow y(x) = \frac{4}{20}S'_{11}(2x) - \frac{3}{20}C_{0}S(2x) ist eine Lösung$
(Siehe naichte ib allgmome Lisung.
Yth) = Yhom (x) + ys (x) mit yhom allg. Liss von
y" + sy + 2y = 0)
b) gewöhnt. Dat 1. Ordnung
$y'(x) = f(x, y(x))$ 2. B $\frac{\Delta y}{\Delta x} \sim y$
25€>dt {
$2xt>dt$ $\frac{dy}{dt}=cy$
Richtung Sfeld.

56) a) y =>==================================	Methode des TolV (falls möglich)
1. Fall Y-0	(Konstante Lissing)
2 Fall y ==	2
	$dx = \int \frac{2}{3} dx$
	$y = 2 \int \frac{1}{2\pi} dx$
	$= 2 h(x) + C_0$ $= x^2 \cdot e^{C_0}$
⇒ y(%)=	$= \pm e^{C_0} \cdot 5^2$ $= \cdot C \cdot C \cdot (5)$
=> allgemeine	Lissing:
	= C5, CER (c=0 ist 1. Fall) nur tür xco oder x>0
ii) y'= 2x => Fallunterscheiding:	$\frac{dy}{dx} \cdot y = 25$ $\frac{dy}{dy} \cdot y = 25 \cdot dx$

J	
b (;)	3=±1. D=±y
	x++1 1 Fall y=0 Konst. Lissing
	2 Fall Yto
	44 3
	$\Rightarrow \int \frac{1}{y} y dx = \int \frac{x}{1+x^2} dx$
	$\int \frac{1}{y} dy = \int \frac{3}{1-3} dx$
	ally lissing. yrs) = C Juney, CER
	(für C=0, 1 tall enthabten)
	esistieren für se-1, se (-1,1)
Antagsled.	y(z)=1 x>1
	$y(z) = C = \frac{1}{11-21} = \frac{C}{53} = 1$ $\Rightarrow C = \sqrt{3}$
	Ys (%) = 13 · 1
b(ii)	
,	1 Fall 1-42=0 => 4, (2) =-1 42 Konst
	(4 chm die from 1 Lismgen.

