Föreläsning 10: Slumpvariabler · 1MA020

Vilhelm Agdur¹

27 februari 2023

Vi fortsätter att diskutera diskret sannolikhetsteori, och introducerar slumpvariabler och deras väntevärden.

Vi använder den teori vi byggt upp för att bevisa några fler resultat inom kombinatoriken.

Slumpvariabler

Hittills är vad vi har sett bara hälften av vad man intuitivt tänker ingår i sannolikhetsteorin – vi har diskuterat slumpmässiga *händelser*, som antingen inträffar eller inte, men vi har inte definierat slumpmässiga tal. Frågan om ifall det kommer att regna imorgon eller inte kan vi modellera i vår formalism, men inte frågan om hur många millimeter det kommer regna.

Definition 1. Givet ett sannolikhetsrum (Ω, μ) är en *slumpvariabel X* som tar värden i V en funktion $X:\Omega\to V$. Givet varje utfall tar alltså vår slumpvariabel ett visst värde, och givet varje² delmängd $A\subseteq V$ blir $X\in A$ en händelse – specifikt är det händelsen

$$\{\omega \in \Omega \mid X(\omega) \in A\} = X^{-1}(A).$$

Det allra vanligaste fallet är när $V = \mathbb{R}$ eller någon delmängd till \mathbb{R} . I många introtexter om sannolikhetsteori *definierar* man att slumpvariabler tar värden i \mathbb{R} – men eftersom vi sysslar med kombinatorik kommer vi att vilja ha mer exotiska slumpvariabler, som slumpmässiga permutationer eller slumpmässiga mängder.

Exempel 2. Låt oss återbesöka vårt exempel med ett tärningskast. Vi konstaterade att vi kan ta $\Omega = \{1,2,3,4,5,6\}$ och $\mu(\omega) = 1/6$ för alla $\omega \in \Omega$.

Vi kan naturligt betrakta vårt tärningskast som en slumpvariabel – i detta fall blir det en mycket enkel funktion, $X:\Omega\hookrightarrow\mathbb{R}$ skickar helt enkelt varje ω på sig självt.³

Vårt tärningskast är ett specialfall av ett mer allmänt fenomen, som det kommer vara bekvämt att ha en terminologi för.

Definition 3. Givet en ändlig mängd V är ett *likformigt fördelat slumpmässigt element av* V en slumpvariabel X sådan att $\mathbb{P}\left(X=v\right)=\frac{1}{|V|}$ för varje $v\in V$.⁴ Alla element av V är alltså lika sannolika. Vi kan skriva detta som

$$X\stackrel{\mathrm{u}}{\in} V.$$

¹vilhelm.agdur@math.uu.se

² Detta är lite av en lögn i det allmänna fallet, eftersom det kan finnas *väldigt* skumma delmängder till *V*, men så länge vi tänker oss våra diskreta sannolikhetsrum är det sant.

 3 Vi fördjupar oss inte i definitionen av \hookrightarrow , men i vårt fall kan vi enkelt förklara det som att Ω är en delmängd av \mathbb{R} .

⁴ Vill man göra detta fullständigt rigoröst i vår formalism kan man säga att X är definierad på sannolikhetsrummet (V,μ) där $\mu(v)=\frac{1}{|V|}$ för alla $v\in V$, och $X:V\to V$ är identitetsfunktionen.

Men det blir väldigt många abstrakta ord för att inte säga så mycket alls som vi inte redan sade när vi definierade X som att den blir lika med varje element i V med samma sannolikhet.

Detta innebär alltså att för varje mängd $W \subseteq V$ så blir

$$\mathbb{P}\left(X \in W\right) = \frac{|W|}{|V|}.$$

Om någon säger att "vi låter X vara en slumpmässig graf / träd / mängd / etc." utan att specificera hur X är fördelad menar de att den är likformig.

Vi vet att om vi slår vår tärning många gånger kommer vi i genomsnitt att få upp 3.5. Hur gör vi den intuitionen rigorös?

Definition 4. Väntevärdet av en slumpvariabel X som tar värden i \mathbb{R} ges av⁵

$$\mathbb{E}\left[X\right] = \sum_{x \in X(\Omega)} x \mathbb{P}\left(X = x\right).$$

Vi tar alltså summan över alla tänkbara värden x för X, multiplicerar x med sannolikheten att X faktiskt blir x, och summerar. I specialfallet där X bara tar värden 0,1,2,... blir alltså formeln

$$\mathbb{E}\left[X\right] = \sum_{k=0}^{\infty} k \mathbb{P}\left(X = k\right).$$

Exempel 5. Så om vi åter tar exemplet med tärningskastet så blir alltså väntevärdet

$$\mathbb{E}[X] = 1\mathbb{P}(X = 1) + 2\mathbb{P}(X = 2) + \dots + 6\mathbb{P}(X = 6)$$
$$= \frac{1 + 2 + 3 + 4 + 5 + 6}{6} = \frac{7}{2} = 3.5$$

precis som vi förväntade oss.

Ibland är det mer användbart att skriva definitionen av väntevärde på en alternativ form:

Lemma 6. Det gäller att⁷

$$\mathbb{E}\left[X\right] = \sum_{\omega \in \Omega} X(\omega) \mu(\omega).$$

Proof. Vi kan skriva

$$\begin{split} \mathbb{E}\left[X\right] &= \sum_{x \in X(\Omega)} x \mathbb{P}\left(X = x\right) \\ &= \sum_{x \in X(\Omega)} x \left(\sum_{\omega \in \Omega: X(\omega) = x} \mu(\omega)\right) \\ &= \sum_{x \in X(\Omega)} \sum_{\omega \in \Omega: X(\omega) = x} x \mu(\omega) \\ &= \sum_{x \in X(\Omega)} \sum_{\omega \in \Omega: X(\omega) = x} X(\omega) \mu(\omega) \\ &= \sum_{\omega \in \Omega} X(\omega) \mu(\omega). \end{split}$$

⁵ Notera att detta är en summa över alla värden som X kan tänkas ta – eftersom vi antagit att Ω är ändligt eller uppräkneligt så kommer detta vara en summa över ändligt eller uppräkneligt många summander, vilket är okej.

Hade vi velat modellera en kontinuerlig slumpvariabel - som till exempel en normalfördelning, som nog många sett redan - som kan ta vilket reellt tal som helst som värde, hade vi behövt definiera detta som en integral, inte en summa. Att slippa ge definitioner som fungerar i dessa fall är en av anledningarna till varför vi begränsar oss till bara diskret sannolikhetsteori.

⁶ Notera att när den här summan löper över oändligt många tal är det fullt möjligt att den inte konvergerar, trots att $\sum_{x \in X(\Omega)} \mathbb{P}(x = X) = 1$. Det finns slumpvariabler som alltid tar ändliga värden, men ändå har oändligt väntevärde.

⁷ Det här fungerar bara för att vi har antagit att våra sannolikhetsrum är ändliga eller uppräkneligt oändliga, så vi kan skriva våra sannolikheter som summor. I det mer allmänna fallet hade vi behövt skriva en integral mot sannolikhetsmåttet, och det kräver betydligt mer avancerad analys än vad vi kan.

Eftersom vi definierat slumpvariabler som att de helt enkelt är funktioner från Ω kan vi göra all den algebra vi vanligen kan på funktioner in i \mathbb{R} . Till exempel är det, givet två slumpvariabler Xoch Y, helt väldefinierat att skriva X + Y, och det betyder precis vad vi förväntar oss att det skall betyda – vi slumpar ett X och ett Y och sedan adderar vi dem med varandra.

När vi nu har introducerat addition av slumpvariabler så kan vi bevisa vad som, i min mening, är en av de allra mest användbara satserna i hela matematiken.⁸

Lemma 7 (Väntevärdets linjäritet). Givet två slumpvariabler X och Y och två reella tal a och b gäller det att

$$\mathbb{E}\left[aX + bY\right] = a\mathbb{E}\left[X\right] + b\mathbb{E}\left[Y\right].$$

Väntevärdet är alltså linjärt, som funktion från rummet av slumpvariabler in i \mathbb{R} .9

Proof. Vi använder den alternativa formeln för väntevärde vi fann i Lemma 6 och skriver

$$\begin{split} \mathbb{E}\left[aX+bY\right] &= \sum_{\omega \in \Omega} (aX+bY)(\omega)\mu(\omega) \\ &= \sum_{\omega \in \Omega} (aX(\omega)+bY(\omega))\mu(\omega) \\ &= a\sum_{\omega \in \Omega} X(\omega)\mu(\omega) + b\sum_{\omega \in \Omega} Y(\omega)\mu(\omega) \\ &= a\mathbb{E}\left[X\right] + b\mathbb{E}\left[Y\right]. \end{split}$$

För att göra det här verkligt användbart behöver vi konceptet med indikatorvariabler, som vi introducerade när vi bevisade inklusionexklusion.

Proposition 8. För en händelse A blir dess indikatorfunktion $\mathbb{1}_A$, som ges av att $\mathbb{1}_A(\omega) = 1$ om $\omega \in A$ och noll annars, en slumpvariabel.¹⁰ Det gäller att

$$\mathbb{P}\left(A\right) = \mathbb{E}\left[\mathbb{1}_{A}\right].$$

Proof. Per definition har vi att

$$\begin{split} \mathbb{E}\left[\mathbb{1}_{A}\right] &= 0 \cdot \mathbb{P}\left(\mathbb{1}_{A} = 0\right) + 1 \cdot \mathbb{P}\left(\mathbb{1}_{A} = 1\right) \\ &= \sum_{\omega : \mathbb{1}_{A}(\omega) = 1} \mu(\omega) \\ &= \sum_{\omega \in A} \mu(\omega) = \mathbb{P}\left(A\right). \end{split}$$

⁸ Jag är så klart oerhört partisk, eftersom just gränslandet mellan kombinatorik och sannolikhetsteori är mitt område - men det är onekligen ett otroligt användbart resultat.

⁹ Detta sätt att formulera det skrapar lite på ytan av en väldigt djup teori väntevärden är nämligen "bara" integraler mot sannolikhetsmått, och samlingen av funktioner från Ω in i R blir ju ett vektorrum. Vi kan ge det vektorrummet en inre produkt genom att skriva $\langle X, Y \rangle = \mathbb{E}[XY]$, och vi har börjat med funktionalanalys.

Men detta är ju en kurs i kombinatorik, så att utforska detta får vänta till en framtida kurs för er.

10 Det är ju en funktion från utfall till reella tal - per definition är det en slumpvariabel. Vi behöver bara känna igen att den är det.

Sperners lemma

Låt oss nu ta vad vi har lärt oss och tillämpa det på ett faktiskt kombi-

Definition 9. En samling \mathcal{F} av delmängder till [n] kallas för en *antikedja* ifall det för varje par $F,G \in \mathcal{F}$ varken gäller att $F \subset G$ eller $G \subset F$.

Det gäller alltså för varje par av delmängder F och G att $F \cap G \neq F$ eller $F \cap G \neq G$.¹¹

Hur stor kan en anti-kedja vara? Ett enkelt sätt att skapa sig en sådan är att ta alla delmängder av storlek k till [n] för något k. Att dessa inte kan vara delmängder till varandra är uppenbart. Att det val av k som gör denna anti-kedja som störst blir $\left|\frac{n}{2}\right|$ är inte allt för svårt att se. 12 Är det möjligt att hitta en ännu större genom att ha med delmängder av olika storlekar? Sperners lemma säger oss att svaret är nej.

Lemma 10 (Sperners lemma). För varje anti-kedja \mathcal{F} i [n] gäller det att

$$|\mathcal{F}| \le \binom{n}{\lfloor \frac{n}{2} \rfloor}.$$

Proof. Vi tar en likformigt slumpmässig permutation σ av [n], och låter I vara mängden av i sådana att

$$\{\sigma(1), \sigma(2), \ldots, \sigma(i)\} \in \mathcal{F}.$$

Det är enkelt att se att *I* innehåller antingen noll eller ett element – om den innehöll både i och j, med i < j, vore ju

$$\{\sigma(1), \sigma(2), \ldots, \sigma(i)\} \subset \{\sigma(1), \sigma(2), \ldots, \sigma(i), \sigma(i+1), \ldots, \sigma(i)\},\$$

vilket skulle motsäga att \mathcal{F} är en antikedja.

Låt oss nu studera slumpvariabeln X = |I|. Att vi vet att I bara kan ha noll eller ett element ger oss omedelbart att $\mathbb{E}[X] \leq 1,^{13}$ men låt oss studera detta väntevärde också på ett annat sätt.

Vi kan räkna att14

$$\mathbb{E}[X] = \mathbb{E}[|I|] = \mathbb{E}\left[\sum_{i=1}^{n} \mathbb{1}_{\{i \in I\}}\right]$$
$$= \sum_{i=1}^{n} \mathbb{E}\left[\mathbb{1}_{\{i \in I\}}\right] = \sum_{i=1}^{n} \mathbb{P}(i \in I).$$

Vad är sannolikheten att i ligger i I? Att i ligger i I betyder att $\{\sigma(1), \sigma(2), \dots, \sigma(i)\} \in \mathcal{F}$, per definition. Så vad vi behöver förstå är den slumpmässiga mängden

$$U_i = {\sigma(1), \sigma(2), \ldots, \sigma(i)}.$$

- 11 Notera att delmängderna inte behöver vara disjunkta.
- $\frac{1}{2} \mid \frac{n}{2} \mid$ innebär att vi avrundar *ned* till närmaste heltal, det vill säga att om n är udda så slipper vi få "halva tal" efter tudelning. Vi hade också kunnat välja $\left\lceil \frac{n}{2} \right\rceil$, alltså av vi avrundar *upp* till nämaste heltal. Det ger samma storlek.

13 Detta kan vi göra till ett allmänt lemma:

Lemma 11. Om $X(\omega) < C$ för varje $\omega \in \Omega$ gäller det att $\mathbb{E}[X] \leq C$.

Proof. Vi kan räkna

$$\begin{split} \mathbb{E}\left[X\right] &= \sum_{\omega \in \Omega} X(\omega) \mu(\omega) \\ &\leq \sum_{\omega \in \Omega} C \mu(\omega) \\ &= C \sum_{\omega \in \Omega} \mu(\omega) = C. \end{split}$$

14 Här använder vi den kortare notationen $\mathbb{1}_{\{i \in I\}}$ för att beteckna $\mathbb{1}_{\{\omega\in\Omega:i\in I(\omega)\}}$.

Eftersom vi valde σ som en slumpmässig permutation finns det ingen anledning till varför något tal skulle vara mer sannolikt än något annat att dyka upp i denna mängd. U_i är alltså, av symmetriskäl, ett likformigt slumpmässigt element ur $\binom{[n]}{i}$, mängden av delmängder av storlek i.

Vad är sannolikheten att U_i faller i \mathcal{F} ? Jo, om vi låter \mathcal{F}_i beteckna samlingen av element i \mathcal{F} av storlek i vet vi att $\mathcal{F}_i \subseteq \binom{[n]}{i}$ och $U_i \stackrel{\text{\tiny u}}{\in}$ $\binom{[n]}{i}$, så vi måste ha att

$$\mathbb{P}\left(U_i \in \mathcal{F}_i\right) = \frac{|\mathcal{F}_i|}{\binom{n}{i}}.$$

Så samlar vi ihop vad vi har listat ut hittills i ett enda uttryck, och använder olikheten 15 $\binom{n}{\left\lfloor \frac{n}{2} \right\rfloor} \ge \binom{n}{i}$ för alla i, har vi att

$$1 \geq \mathbb{E}\left[X\right] = \sum_{i=1}^{n} \mathbb{P}\left(i \in I\right) = \sum_{i=1}^{n} \frac{|\mathcal{F}_{i}|}{\binom{n}{i}} \geq \sum_{i=1}^{n} \frac{|\mathcal{F}_{i}|}{\binom{n}{\left\lfloor\frac{n}{2}\right\rfloor}}$$

så multiplicerar vi bägge sidorna av detta med $\binom{n}{\lfloor \frac{n}{2} \rfloor}$ får vi att

$$\binom{n}{\left\lfloor \frac{n}{2} \right\rfloor} \ge \sum_{i=1}^{n} |\mathcal{F}_i| = |\mathcal{F}|$$

vilket är precis Sperners lemma, som vi ville bevisa.

Exempel 12. Om vi låter n=5 så får vi att den största antikedjan \mathcal{F} till [n] innehåller

$$\binom{5}{\left\lfloor \frac{5}{2} \right\rfloor} = \binom{5}{2} = 10$$

delmängder. För att få en intuition för varför det är så kan vi tänka oss hur många kombinationer vi kan skapa ur [5]. Om vi jämför

$$\binom{5}{0}$$
, $\binom{5}{1}$, $\binom{5}{2}$, $\binom{5}{3}$, $\binom{5}{4}$, $\binom{5}{5}$

vet vi att $\binom{5}{2}$ och $\binom{5}{3}$ är störst $(=10)^{16}$, och om vi skulle välja alla kombinationer av storlket 2 (eller 3) så vet vi att ingen av delmängderna kommer vara en delmängd till någon annan delmängd.¹⁷ Sperners lemma säger oss att vår antikedja inte kan bli större än så.

Caro-Weis sats

Antag att vi har en grupp av *n* personer på ett läger, och säg att person nummer i känner d_i andra personer sedan tidigare. Du vill bilda en mindre grupp av personer för en lära-känna-varandra-lek¹⁸, så du vill hitta en så stor grupp som möjligt av personer som inte känner varandra. Finns det någon garanti för hur stor grupp du kan skapa av personer som inte känner varandra?

15 Vi har strikt sett inte faktiskt bevisat den någon gång, men det bör vara någorlunda enkelt att övertyga sig själv om att den är sann.

- 16 Notera att binomialkoefficienterna är lika med talen på rad 5 i Pascals triangel: 1, 5, 10, 10, 5, 1 respektive. Det är talen i mitten, eller närmast mitten, i Pascals triangel som ger oss största antalet delmängder till en antikedja. 17 Kombinationerna i detta exempel blir 12, 13, 14, 15, 23, 24, 25, 34, 35, 45 och ingen av dem är en delmängd av en
- ¹⁸ Eftersom du är en fruktansvärt ondskefull person. Ingen tycker om sådana lekar.

Teorem 13 (Caro-Wei). Du kan välja den mindre gruppen sådan att den har åtminstone

$$\sum_{i=1}^{n} \frac{1}{d_i + 1}$$

medlemmar.

Eller formulerat i mer matematiska termer: Varje graf G på n noder, där nod i har grad d_i¹⁹, har alltid en oberoende mängd²⁰ S sådan att

$$|S| \ge \sum_{i=1}^n \frac{1}{d_i + 1}.$$

Proof. Numrera noderna i *G* från 1 till *n*, och välj sedan likformigt slumpmässigt ett nytt sätt att etikettera G, så att nod i nu har etikett $\sigma(i)$. σ är alltså en likformig permutation av [n].

Hur använder vi detta för att skapa vår oberoende mängd? Jo, beteckna mängden av grannar till i med N(i) – alltså mängden av alla noder som har en kant till i. Om vi lägger in i i S får vi alltså inte ta med något annat element i N(i) om S skall vara en oberoende mängd.21

Om vi nu låter

$$S = \{ i \in V_G \mid \sigma(i) < \sigma(j) \quad \forall j \in N(i) \}$$

så hävdar vi att detta måste vara en oberoende mängd. Varför? Tänk för motsägelse att det fanns ett par *i*, *j* i *S* med en kant mellan sig. Eftersom i ligger i S måste alla is grannar ha högre etikett än i – specifikt så måste alltså $\sigma(i) < \sigma(j)$. Men det betyder ju att jhar en granne med lägre etikett, så j kan inte ligga i S, och vi har en motsägelse.

19 Ett ord vi inte har definierat, som får en definition i sidnoterna:

Definition 14. *Graden* av en nod v i en graf $G = (V_G, E_G)$ är antalet kanter som går ut från v. Alltså

$$d_v = |e \in E_G \mid v \in e|.$$

²⁰ Nästa hitintills odefinierade term, och nästa sidnot:

Definition 15. En oberoende mängd $S \subseteq V_G$ i en graf $G = (V_G, E_G)$ är en mängd av noder sådana att det inte finns några kanter mellan något par av noder i S. Alltså, mängden

$$E(S) = \{ \{u, v\} \in E_G \mid u, v \in S \}$$

är tom.

21 Tänk er det som att vi lägger ett pussel, där varje bit är "formad som" en N(i), och vi inte får lov att välja två pusselbitar som överlappar. Målet är att lyckas lägga så många bitar som möjligt. (Det här går nog att omvandla till ett faktiskt spel - jag kräver inga royalties för idén.)

²² Figur inspererad av Vilhem Agdurs figur 1 från Föreläsning 10.

Vi vill alltså förstå oss på mängden S. Låt A_i vara händelsen att i fick en lägre etikett än alla sina grannar i vår slumpmässiga ometikettering - vi har då av väntevärdets linjäritet att

$$\mathbb{E}\left[|S|\right] = \mathbb{E}\left[\sum_{i=1}^{n} \mathbb{1}_{A_i}\right] = \sum_{i=1}^{n} \mathbb{P}\left(A_i\right).$$

Det räcker alltså för oss att förstå sannolikheterna för händelserna A_i . Eftersom σ var likformigt slumpmässig betyder det alltså att vi vill räkna antalet sätt att etikettera grafen sådana att i får en lägre etikett än alla sina grannar.

För att konstruera ett sådant sätt att etikettera G börjar vi med att välja vilka tal som skall stå på i och dess grannar – detta kan vi göra på $\binom{n}{d_{i+1}}$ sätt, eftersom vi skall ha d_i etiketter på dess grannar och en etikett på den själv.

Sedan väljer vi hur vi placerar dessa etiketter på d_i och N(i) – vi måste så klart välja att placera det lägsta av talen på i, men de återstående d_i talen kan vi placera ut fritt²³, och alltså på d_i ! sätt.

Till slut väljer vi hur vi placerar resten av etiketterna på noderna utanför is grannskap – detta kan vi också göra helt fritt, så på (n – $d_i - 1$)! sätt. Så totalt har vi sett att det finns

$$\binom{n}{d_i+1}d_i!(n-d_i-1)!$$

sätt att välja en etikettering av G sådan att i får en lägre etikett än alla

Så sannolikheten att en slumpmässig etikettering är sådan ges alltså av

$$\mathbb{P}(A_i) = \frac{1}{n!} \binom{n}{d_i + 1} d_i! (n - d_i - 1)!$$

$$= \frac{1}{n!} \frac{n!}{(d_i + 1)! (n - (d_i + 1))!} d_i! (n - d_i - 1)!$$

$$= \frac{1}{d_i + 1}$$

så

$$\mathbb{E}[|S|] = \sum_{i=1}^{n} \mathbb{P}(A_i) = \sum_{i=1}^{n} \frac{1}{d_i + 1}.$$

Vi har alltså visat att vi *i genomsnitt* hittar en oberoende mängd av vår sökta storlek med denna metoden. Men det genomsnittliga utfallet kan ju omöjligen vara mindre än alla specifika utfall²⁴ – alltså måste det finnas något specifikt val av σ sådant att storleken på $S(\sigma)$ blir åtminstone detta. Alltså är vi klara.

Exempel 17. Antag att vi är på ett litet läger med 10 personer. Figuren nedan visar relationerna mellan personerna på lägret. Varje nod

²⁴ Låt oss formulera detta som ett lemma och bevisa det:

Lemma 16. För varje slumpvariabel X med $\mathbb{E}[X] = C$ måste det finnas åtminstone ett ω sådant att $X(\omega) \geq C$.

Proof. Antag för motsägelse att $X(\omega)$ < C för alla ω . Då kan vi räkna att

$$C = \mathbb{E}[X] = \sum_{\omega \in \Omega} X(\omega)\mu(\omega)$$
$$< \sum_{\omega \in \Omega} C\mu(\omega)$$
$$= C \sum_{\omega \in \Omega} \mu(\omega) = C$$

så C < C, en motsägelse.

²³ Det är här som vår teknik med väntevärdets linjäritet verkligen lönar sig vi har kunnat zooma in bara på i, och behöver inte bry oss om vad som händer utanför just i. Hade vi inte gjort det hade vi kanske behövt bekymra oss om kanter mellan is grannar här, och inte kunnat placera ut etiketterna helt fritt.

representerar en person och varje granne till en nod/person betyder att den noden/personen känner sin granne. Antalet kanter från en nod n betyder alltså hur månger personer n känner.

Följt av formeln given i teorem 13 får vi:

$$|S| \ge \sum_{i=1}^{n} \frac{1}{d_i + 1} = \frac{1}{3} + \frac{1}{4} + \frac{1}{2} + \frac{1}{1} + \frac{1}{1} + \frac{1}{4} + \frac{1}{2} + \frac{1}{3} + \frac{1}{3} + \frac{1}{3}$$
$$= \frac{5}{6} + 4$$

Således kan vi garantera att vi kan skapa en grupp om minst 5 personer som inte känner varandra enligt Caro-Weis teorem (då vi avrundar uppåt eftersom personer inte kan delas upp i fem sjättedelar).

Första-moment-metoden

Hittills har vi sett ett sätt som väntevärden och sannolikheter kan samspela – om slumpvariabeln vi vill studera kan formuleras som antalet "ja" på en samling ja-nej-frågor så får vi att dess väntevärde är summan av sannolikheterna för ett "ja" på varje enskild fråga.

Detta låter oss alltså svara på en fråga om ett väntevärde genom att räkna ut en bunt sannolikheter. Hur gör vi om det vi verkligen är intresserade av är en sannolikhet?

Lemma 18 (Markovs olikhet). *Om en icke-negativ*²⁵ *slumpvariabel X har* väntevärde ν gäller det för varje C > 0 att²⁶

$$\mathbb{P}(X > C) \leq \frac{\nu}{C}$$
.

 $^{^{25}}$ Det vill säga, $X(\omega) \geq 0$ för alla $\omega \in \Omega$

⁻ den tar aldrig ett negativt värde.

²⁶ Eller ekvivalent att

$$\mathbb{P}\left(X>C\nu\right)<\frac{1}{C}.$$

Proof. Vi kan räkna att²⁷

$$\begin{split} \nu &= \mathbb{E}\left[X\right] = \sum_{\omega \in \Omega} X(\omega) \mu(\omega) \\ &\geq \sum_{\substack{\omega \in \Omega \\ X(\Omega) > C\nu}} X(\omega) \mu(\omega) \\ &> \sum_{\substack{\omega \in \Omega \\ X(\Omega) > C\nu}} C\nu \mu(\omega) \\ &= C\nu \mathbb{P}\left(X > C\nu\right) \end{split}$$

så om vi delar bägge sidor av detta med $C\nu$ får vi resultatet.

Vad för slags problem kan man tänkas tillämpa det här verktyget på?

Exempel 19. Tänk dig att du är en lärare på Uppsala Universitet och håller en kurs inom matematik. Du som lärare vill undersöka sannolikheten att en godtycklig student får minst 25 poäng på din tentamen. Du har från tidigare tentor beräknat väntevärdet till 21 poäng. Vad kan du säga om sannolikheten att den godtyckliga studenten får minst en fyra i betyg?

Först ser vi att $C = \frac{24}{21} = \frac{8}{7}$. Med hjälp av *Marokvs olikhet* har vi nu ett sätt att undersöka problemet. Sannolikheten blir

$$\mathbb{P}\left(X>24\right)<\frac{1}{\frac{8}{7}}=\frac{7}{8}$$

att en godtycklig student får minst en fyra i betyg.

Definition 20. En Erdős-Renyi-graf (med parametrar n och p) är en slumpmässig graf G på n noder, där varje kant är med med sannolikhet p, oberoende av om varje annan kant är med. Vi skriver att $G \sim G_{n,p}$.

Om $p = \frac{1}{2}$ så kommer alltså $G_{n,p}$ helt enkelt vara en likformigt slumpmässig graf på *n* noder, men för det mesta kommer vi vara intresserade av fallet när p är en funktion av n.

Vi kan säga en hel del om den "lokala" strukturen av en $G_{n,p}$ bara med de verktyg vi har lärt oss hittills – alltså de egenskaper hos den som vi kan avgöra om de gäller genom att studera den lokalt runt varje nod. Desto svårare blir det om vi ställer oss frågor om ifall den är, till exempel, sammanhängande.

Ett exempel på en lokal struktur är ifall vi har isolerade noder – om vi tänker oss det som att noderna är personer och kanterna är vänskapsrelationer är vi alltså intresserade av sannolikheten att inte ha några vänner.²⁸

²⁷ Var i beviset använder vi antagandet att X är ickenegativ?

²⁸ Som vi alla vet går denna upp markant om man studerar matematik, men vår modell är inte sofistikerad nog att fånga detta.

Proposition 21. Om $p > \frac{c \log(n)}{n}$ för något c > 1 så finns det asymptotiskt nästan säkert²⁹ inga isolerade noder³⁰ i $G_{n,p}$.

Proof. Beviset följer ett mönster som förhoppningsvis börjar bli bekant vid det här laget.

Låt $G \sim G_{n,v}$. Vi låter I_i vara händelsen att nod i är isolerad, och konstaterar att om I är mängden av isolerade noder i G så är

$$\mathbb{E}\left[\left|I\right|\right] = \sum_{i=1}^{n} \mathbb{P}\left(I_{i}\right)$$

så vad vi behöver räkna ut är sannolikheten att en viss given nod är isolerad.

Detta är en relativt enkel beräkning – det finns n-1 noder som ihade kunnat ha en kant till, och varje kant finns med sannolikhet p, oberoende av varje annan kant. Alltså är sannolikheten att inga av kanterna finns $(1-p)^{n-1}$, och vi har att

$$\mathbb{E}[|I|] = \sum_{i=1}^{n} \mathbb{P}(I_i) = n(1-p)^{n-1}$$

och Markovs olikhet ger oss nu, för varje C > 0, att

$$\mathbb{P}\left(\left|I\right| > C\nu\right) < \frac{1}{C}.\tag{1}$$

Hur omvandlar vi detta till det resultat vi vill ha? Om vi tar ett väldigt litet ϵ och låter $C = \frac{1-\epsilon}{\nu}$ så blir (1) till

$$\mathbb{P}\left(|I| > 1 - \epsilon\right) < \frac{\nu}{1 - \epsilon}.$$

Eftersom |I| självklart enbart tar heltalsvärden är händelsen i vänster led precis samma händelse som händelsen att $|I| \ge 1$, det vill säga $I \neq \emptyset$.³¹ Så om vi ersätter vänster led med detta får vi att

$$\mathbb{P}\left(I\neq\varnothing\right)<\frac{\nu}{1-\epsilon}$$

och här kan vi utan problem ta gränsvärdet $\epsilon
ightarrow 0$ och få 32

$$\mathbb{P}\left(I\neq\varnothing\right)\leq\nu.$$

Så det enda som återstår att göra är att visa att ν går mot noll.

- ²⁹ Vad sjutton betyder det? Det betyder att, om p_n är en följd sådan att $p_n >$
- $\frac{\log(n)}{n}$ för varje n, och G_n är en G_{n,p_n} för varje n, så går sannolikheten att G_n har en isolerad nod mot noll.
- 30 Och vad är en isolerad nod? Det är en nod utan grannar.

 $^{^{31}}$ Varje tänkbart värde på |I| som är större än $1 - \epsilon$ är också ≥ 1 , och vice versa.

³² Notera att vi, när vi tar gränsvärdet här, måste ersätta < med \le – för oss är det inget problem eftersom vi oavsett skall visa att ν går mot noll.

Enligt satsens antaganden har vi att $p > c \frac{\log(n)}{n}$, så vi kan räkna att

$$\begin{split} &\lim_{n\to\infty} \nu = \lim_{n\to\infty} n(1-p)^{n-1} \\ &\leq \lim_{n\to\infty} n \left(1-c\frac{\log(n)}{n}\right)^{n-1} \\ &= \lim_{n\to\infty} \frac{n}{1-c\frac{\log(n)}{n}} \left(1-\frac{c\log(n)}{n}\right)^n \\ &= \lim_{n\to\infty} n \underbrace{\frac{1}{1-c\frac{\log(n)}{n}}}_{\to 1 \text{ n\"ar } n\to\infty} \left(\underbrace{\left(1-\frac{c}{n/\log(n)}\right)^{\frac{n}{\log(n)}}}_{\to e^{-c} \text{ n\"ar } n\to\infty}\right)^{\log(n)} \\ &= \lim_{n\to\infty} n \left(e^{-c}\right)^{\log(n)} = \lim_{n\to\infty} n^{1-c} \end{split}$$

och eftersom c > 1 går detta mot noll, såsom önskat.³³

Det finns några saker som är värda att anmärka på här. Om vi hade valt $c \le 1$ hade inte vår räkning fungerat längre – och detta är inte ett sammanträffande eller ett resultat av att vi använde en svag metod.

I själva verket kan man visa att antalet isolerade noder faktiskt kommer gå mot oändligheten om $p < \frac{\log(n)}{n}$ – så vårt resultat är det bästa möjliga.

Vi nämnde innan att vi kan studera lokala problem som dessa enkelt, men att "globala" problem är svårare, och nämnde frågan om grafen är sammanhängande som ett exempel på en svår global fråga. I själva verket kan man visa att grafen kommer vara sammanhängande så snart vi inte längre har några isolerade noder – så detta resultat tillsammans med vad vi just visade visar alltså att en Erdős-Renyi-graf är sammanhängande så snart $p \ge \frac{c \log(n)}{n}$.

Räkneregler för slumpvariabler

Vi sammanfattar vad vi lärt oss om slumpvariabler hittills i följande räkneregler:34

Lemma 22. Om (Ω, μ) är något sannolikhetsrum, $A \subseteq \Omega$ någon händelse, och $X,Y:\Omega\to\mathbb{R}$ samt $Z:\Omega\to V$ är slumpvariabler som tar värden i \mathbb{R} och i någon godtycklig mängd V, så gäller att:

$$\mathbb{E}\left[X\right] = \sum_{x \in X(\Omega)} x \mathbb{P}\left(X = x\right) = \sum_{\omega \in \Omega} X(\omega) \mu(\omega).$$

2. För alla $a,b \in \mathbb{R}$ så är

1.

$$\mathbb{E}\left[aX + bY\right] = a\mathbb{E}\left[X\right] + b\mathbb{E}\left[Y\right].$$

33 I steget mellan rad fyra och fem går vi väldigt snabbt fram - egentligen hade man behövt kolla att

$$f(n,c) = \left(1 - \frac{c}{n/\log(n)}\right)^{\frac{n}{\log(n)}}$$

går mot e^{-c} snabbt nog att vi får lov att göra den substitutionen. Som tur är gäller det att $f(n,c) - e^{-c}$ är ungefär $\frac{\log(n)}{n}$ – specifikt

$$\frac{e^{-c} - f(n,c)}{\frac{\log(n)}{n}} \to \frac{c^2}{2e^c}$$

vilket är bra nog. Men detta är mycket mer analys än vad vi faktiskt vill göra i denna kurs.

34 Den här biten skippar vi på föreläsningen – den ligger här för att vara behjälplig som sammanfattning och när man gör övningarna. Den finns också i vår samling av formler och räkneregler.

Väntevärdet är alltså en linjär funktional.

3.

$$\mathbb{P}\left(A\right) = \mathbb{E}\left[\mathbb{1}_{A}\right].$$

- 4. Om $X(\omega) \leq C$ för varje ω , eller ekvivalent om $\mathbb{P}(X \leq C) = 1$, så är $\mathbb{E}[X] \leq C$.
- 5. Om $\mathbb{E}[X] = C$ så finns det åtminstone ett ω sådant att $X(\omega) \geq C$.
- 6. Markovs olikhet ger oss att, om $\mathbb{E}\left[X_n\right] o 0$ för någon följd av ickenegativa slumpvariabler X_n som enbart tar heltalsvärden, så måste också $\mathbb{P}(X_n > 0) \to 0.$
- 7. Om Z är likformigt fördelad på V så gäller det för varje delmängd $W\subseteq V$

$$\mathbb{P}\left(Z\in W\right)=\frac{|W|}{|V|}.$$

Övningar

Övning 1.

Definition 23. En familj \mathcal{F} av delmängder till [n] kallas för *skärande* om $A \cap B \neq \emptyset$ för alla par av A och B i \mathcal{F} .

Hur stor kan en skärande familj av mängder vara, om vi kräver att varje $A \in \mathcal{F}$ har storlek exakt k? Svaret ges av följande sats:

Teorem 24 (Erdős-Ko-Rado). För varje skärande familj \mathcal{F} av delmängder av storlek k till [n], där $k \leq \lfloor \frac{n}{2} \rfloor$, gäller det att

$$|\mathcal{F}| \le \binom{n-1}{k-1}.$$

Delfråga a: Hitta, för alla n och k, ett exempel på en skärande familj \mathcal{F} av delmängder av storlek k till [n] sådan att

$$|\mathcal{F}| \le \binom{n-1}{k-1}$$
.

Lösning delfråga a: Det finns en väldigt enkel metod för att skapa en familj med exakt $\binom{n-1}{k-1}$ delmängder: Börja med att fixera ett element i varje delmängd, på så vis är vi säkra på att alla delmängder kommer skära vid det elementet. Nu återstår n-1 element att välja bland samt k-1 element kvar att tilldela varje delmängd, vilket kan göras på $\binom{n-1}{k-1}$ sätt; välj alla sådana delmängder. 35 $|\mathcal{F}|$ kan inte bli större än så, men beviset sparas till delfråga c.

$$|\mathcal{F}| = \binom{n-1}{k-1}.$$

³⁵ Det finns en annan enkel metod som ger samma resultat: Börja med att välja en slumpmässig delmängd av storlekt k till [n], välj sedan en delmängd (av samma storlek) som skär den första i endast ett element. Resterande delmängder väljs så att de också skär i samma element, vilket leder till samma resultat,

Trivialt exempel: Låt k = 1, det vill säga att varje delmängd innehåller endast ett element. Då kan ${\mathcal F}$ innehålla endast en delmängd eftersom vi inte kan välja någon annan distinkt delmängd som skär denna mängd. Olikheten gäller fortfarande, men resultatet är trivialt,

$$|\mathcal{F}| \le \binom{n-1}{1-1} = \binom{n-1}{0} = 1.$$

Exempel på när olikheten *inte* gäller: Låt $k > \lfloor \frac{n}{2} \rfloor$, det vill säga att varje delmängd innehåller fler än hälften av alla element i [n].³⁶ Börja med att välja en delmängd som innehåller fler än hälften av alla element i [n]. När det är gjort kan vi inte välja någon delmängd som inte skär den första eftersom vi måste välja fler element än det finns "oanvända" element. Hur vi än väljer delmängder kommer varje par av delmängder i \mathcal{F} att skära varandra och därför gäller $|\mathcal{F}| = \binom{n}{k}$ då $k > \lfloor \frac{n}{2} \rfloor$.

³⁶ Detta bryter mot villkoret om att k inte får vara större än hälften av n i Erdős-Ko-Rados sats.

Delfråga b: Bevisa följande lemma:37

Lemma 25. Låt $\mathcal{F} \subseteq \binom{[n]}{k}$ vara en skärande familj, och låt för varje $s \in \{0, 1, \dots, n-1\}$

$$A_s = \{s, s+1, \dots, s+k-1\}$$

där additionen är modulo n. Då kan $\mathcal F$ innehålla högst k av mängderna A_s .

Dra sedan slutsatsen från detta att samma lemma gäller även om vi tar någon permutation $\sigma \in S_n$ och låter

$$A_s = {\sigma(s), \sigma(s+1), \dots, \sigma(s+k-1)}.$$

Delfråga c: Nu skall vi bevisa Erdős-Ko-Rado. Idén är att vi vill skapa en likformigt slumpmässig $A \stackrel{\text{\tiny u}}{\in} \binom{[n]}{k}$ och studera sannolikheten att denna ligger i \mathcal{F} – det finns ett uppenbart uttryck för denna sannolikhet, och vi vill skapa A på ett sätt som gör att vi också kan använda vårt lemma från förra delfrågan för att begränsa den.

Beviset börjar alltså med "Tag en likformigt fördelad permutation $\sigma \stackrel{\text{\tiny u}}{\in} S_n$ och ett likformigt fördelat heltal $s \stackrel{\text{\tiny u}}{\in} \{0,1,\ldots,n-1\}$ ". Skriv resten av beviset.

Övning 2. Bevisa följande proposition:

37 Den här delen kräver ingen probabilistisk metod, det är bara ett direkt bevis. Sannolikhetsteorin kommer in i nästa delfråga.

Proposition 26. Antag att v_1, v_2, \ldots, v_n är n stycken enhetsvektorer i \mathbb{R}^n , alltså $||v_i||=1$ för alla i. Då finns det en följd $\eta_1,\eta_2,\ldots,\eta_n$, med $\eta_i=\pm 1$ för varje i, sådan att

$$\left\| \sum_{i=1}^n \eta_i v_i \right\| \le \sqrt{n}.$$

Lösning:

Proof. Vi vill lösa $\|\sum_{i=1}^n \eta_i v_i\| \leq \sqrt{n}$ vilket vi kan skriva om som $\|\sum_{i=1}^n \eta_i v_i\|^2 \le n$. Vi börjar med att skriva om vänsterledet. Notera att $\sum_{i=1}^{n} \eta_i v_i$ är en vektor bestående av enhetsvektorer.

$$\left\| \sum_{i=1}^{n} \eta_i v_i \right\|^2 = \left(\sum_{i=1}^{n} \eta_i v_i \right) \cdot \left(\sum_{i=1}^{n} \eta_i v_i \right)$$
$$= \sum_{i,i=1}^{n} (\eta_i v_i \cdot \eta_j v_j)$$

 38 Eftersom $v_i \cdot v_j = 0$ när $i \neq j$ och 1 annars eftersom alla v_i är enhetsvektorer så får vi

$$\sum_{i=1}^{n} \eta_i^2$$

. Om vi nu tar väntevärdet av detta får vi

$$\mathbb{E}\left[\left\|\sum_{i=1}^{n}\eta_{i}v_{i}\right\|^{2}\right] = \mathbb{E}\left[\sum_{i=1}^{n}\eta_{i}^{2}\right] = \sum_{i=1}^{n}\mathbb{E}\left[\eta_{i}^{2}\right]$$

Eftesom för varje $\eta_i^2 = 1$ så får vi $\mathbb{E} \left[\eta_i^2 \right] = 1$ och vi får

$$\sum_{i=1}^{n} \mathbb{E}\left[\eta_i^2\right] = n$$

och vi har nu bevisat att det finns en följd så att $\|\sum_{i=1}^n \eta_i v_i\|^2 \le n$. \square

Övning 3. I denna övning skall vi bevisa följande resultat:

Teorem 27. Låt G = (V, E) vara någon graf, och antag att |V| = n och $|E| = n\frac{d}{2}$ för något $d \ge 1$. Då finns det en oberoende mängd i G av storlek åtminstone $\frac{n}{2d}$.

Idén för beviset är att vi tar en slumpmässig delmängd $S \subseteq V$ genom att ta med varje nod med sannolikhet $p = \frac{1}{d}$. Denna kommer så klart inte vara garanterad att vara en oberoende mängd - men om vi, för varje kant $\{u,v\}$ som kopplar ihop $u,v\in S$, tar bort u eller vur S så blir den återstående mängden av noder oberoende.

Bevisa satsen genom att räkna ut väntevärdet av storleken på S och väntevärdet av antalet noder vi tvingas ta bort ur S, och se att vi kommer ha i genomsnitt $\frac{n}{2d}$ noder kvar.

³⁸ Sista steget är linjär algebra mumbo jumbo som vi inte fokuseras i denna

Övning 4. Låt $p \in (0,1)$ vara fixt. För varje $i \in \mathbb{N}$, låt

$$X_i = \begin{cases} 1 & \text{med sannolikhet } p \\ 0 & \text{annars,} \end{cases}$$

så att X_1, X_2, X_3, \dots blir en slumpmässig följd av nollor och ettor. Låt Ivara det minsta I sådant att $X_I = 0$ – detta blir alltså ett slumpmässigt heltal.

Beräkna, för varje $i \in \mathbb{N}$, $\mathbb{P}(I = i)$. Räkna sedan ut $\mathbb{E}[I]$.

Lösning övning 4: Om det inte redan är uppenbart så är även I en slumpvariabel. Vi har alltså slumpvariabler X_i som antar värden 0 eller 1, och I som blir ett positivt heltal som anger på vilken plats vi får den första nollan i följden X_1, X_2, X_3, \dots Sannolikheten för att $X_1 = 0$ är

$$\mathbb{P}\left(I=1\right)=1-p.$$

Om vi får att $X_1 = 1$ och $X_2 = 0$ så är den första nollan på andra plats, det vill säga I = 2, och vi får sannolikheten (enligt multiplikationsregeln)

$$\mathbb{P}(I = 2) = p(1 - p).$$

Vi fortsätter med $X_1 = 1$, $X_2 = 1$ och $X_3 = 0$, alltså I = 3, och sannolikheten

$$\mathbb{P}(I=3) = p \cdot p(1-p) = p^2(1-p).$$

Nu kan vi ana ett mönster och beräkna $\mathbb{P}(I=i)$ för ett godtyckligt i:

$$\mathbb{P}\left(I=i\right) = p^{i-1}(1-p)$$

som är svaret på den första frågan i denna övning. Nu vill vi ta reda på väntevärdet för var den första nollan hamnar, som ges av

$$\mathbb{E}[I] = \sum_{i=1}^{\infty} i \mathbb{P}(I = i)$$

$$= 1 \mathbb{P}(I = 1) + 2 \mathbb{P}(I = 2) + 3 \mathbb{P}(I = 3) + \dots$$

$$= (1 - p) + 2p(1 - p) + 3p^{2}(1 - p) + \dots$$

När vi upptäcker att koefficienterna framför p och dess exponent är nära varandra men inte lika multiplicerar vi båda leden med p i ren frustration:

$$p\mathbb{E}[I] = p(1-p) + 2p^2(1-p) + 3p^3(1-p) + \dots$$

Nu känns det bättre, men vänsterledet är fel. Nästa steg är inte så uppenbart, men vi subtraherar $p\mathbb{E}[I]$ från $\mathbb{E}[I]$ och får

$$\mathbb{E}[I] - p\mathbb{E}[I] = (1-p) + 2p(1-p) - p(1-p) + 3p^2(1-p) - 2p^2(1-p) + \dots$$
$$= (1-p) + p(1-p) + p^2(1-p) + p^3(1-p) + \dots$$

Nu kan vi bryta ut (1-p) från båda sidor (äntligen!)

$$(1-p)\mathbb{E}[I] = (1-p)(1+p+p^2+p^3+\ldots)$$

 $\mathbb{E}[I] = 1+p+p^2+p^3+\ldots$

Ser högerledet bekant ut är det för att det är den genererande funktionen för talföljden {1,1,1,...}. Enligt formel- och räknesamling får vi

$$\mathbb{E}\left[I\right] = \frac{1}{1-p}.$$

Det viktiga att ta med sig från denna övning är att om $\mathbb{P}(X) = p$ så är $\mathbb{E}[X] = \frac{1}{n}$ då vi stöter på liknande problem, alltså "när händer Xför första gången?"

Tips: Tänk att något händer med en sannolikhet $\frac{1}{100}$. Då känns det naturligt att göra 100 försök och förvänta sig att det som kan hända faktiskt händer; väntevärdet är inversen av sannolikheten.

Övning 5. Antag att du samlar på Pokemonkort.³⁹ Vi föreställer oss en väldigt enkel modell för hur du får ett nytt kort – det finns n stycken distinkta kort totalt, och du kan köpa ett nytt kort åt taget. Det nya kortet du får är likformigt fördelat i samlingen av kort - varje kort är lika sannolikt.

När du köper ditt första kort är du garanterad att få ett kort du inte har innan. När du köper ditt andra kort är sannolikheten bara $\frac{1}{n}$ att du råkar få det kort du redan fick en gång – men när du redan har de flesta av korten kommer du oftast bara att få ett kort du redan äger, inte ett nytt, så du behöver köpa väldigt många paket för att gå från att ha en samling av n-1 kort till att ha en fullständig samling.

Låt T vara antalet gånger du behöver köpa ett nytt kort för att få en fullständig samling, om du börjar på noll. Beräkna $\mathbb{E}[T]$.⁴⁰

Lösning övning 5: Sannolikheten att få ett nytt kort följer alltså mönstret

$$1, \frac{n-1}{n}, \frac{n-2}{n}, \dots, \frac{n-i+1}{n}, \dots, \frac{1}{n}$$

där i är det ite kortet som ska erhållas.

Låt T_i vara antalet gånger vi behöver köpa ett nytt kort för att få det ite kortet i samlingen, givet att vi redan har alla kort upp till i-1. Det betyder att

$$\mathbb{E}\left[T\right] = \mathbb{E}\left[T_1 + T_2 + \ldots + T_n\right].$$

Enligt väntevärdets linjäritet (se Lemma 7) får vi

$$\mathbb{E}\left[T_1 + T_2 + \ldots + T_n\right] = \mathbb{E}\left[T_1\right] + \mathbb{E}\left[T_2\right] + \ldots + \mathbb{E}\left[T_n\right]$$

och nu kommer föregående övnings resultat till hands: Om vi inverterar sannolikheterna får vi väntevärdet för var och ett av korten som ska samlas,

$$\mathbb{E}\left[T_i\right] = \frac{n}{n-i+1}.$$

39 Ersätt med ditt favorit-gacha med lootboxes om du vill ha ett mer samtida exempel.

40 Ledtråd: Lösningen på det här problemet använder lösningen på föregående problem.

Stoppar vi in varje värde får vi

$$\mathbb{E}[T] = \frac{n}{n} + \frac{n}{n-1} + \frac{n}{n-2} + \dots + \frac{n}{2} + \frac{n}{1}$$
$$= n\left(1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}\right)$$
$$= nH_n$$

Där H_n är det nte harmoniska talet. Harmoniska tal har vi inte jobbat med under kursen och därför lämnar såhär.

Väntevärdet för hur många pokemonkort vi behöver köpa för att få en komplett samling ges alltså av att sätta in det totala antalet kort n i uttrycket ovan.