Laws of the Algebra of Sets

Idempotent Laws	1a. $A \cup A = A$	1b. $A \cap A = A$	
Associative Laws	2a. $(A \cup B) \cup C = A \cup (B \cup C)$	$2b.(A \cap B) \cap C = A \cap (B \cap C)$	
Commutative Laws	3a. $A \cup B = B \cup A$	3b. $A \cap B = B \cap A$	
Distributive Laws	4a. $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$	4b. $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$	
Identity Laws	5a. $A \cup \emptyset = A$	5b. $A \cap S = A$	
lucility Laws	6a. $A \cup S = S$	6b. $A \cap \emptyset = \emptyset$	
Involution Law	$7. \left(A^{C}\right)^{C} = A$		
Complement Laws	8a. $A \cup A^C = S$	8b. $A \cap A^C = \emptyset$	
	9a. $S^C = \emptyset$	9b. $\varnothing^C = S$	
De Morgan's Laws	$10a. (A \cup B)^C = A^C \cap B^C$	$10b. (A \cap B)^C = A^C \cup B^C$	

Laws of the Algebra of Propositions

Idempotent Laws	1a. $p \lor p \equiv p$	1b. $p \wedge p \equiv p$	
Associative Laws	2a. $(p \lor q) \lor r \equiv p \lor (q \lor r)$	$2b.(p \land q) \land r \equiv p \land (q \land r)$	
Commutative Laws	3a. $p \lor q \equiv q \lor p$	3b. $p \wedge q \equiv q \wedge p$	
Distributive Laws	4a. $p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$	4b. $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$	
Identity Laws	5a. $p \lor F \equiv p$	5b. $p \wedge T \equiv p$	
	6a. $p \lor T \equiv T$	6b. $p \wedge F \equiv F$	
Complement Laws	7a. $p \lor \sim p \equiv T$	7b. $p \land \sim p \equiv F$	
Complement Laws	8a. $\sim T \equiv F$	8b. $\sim F \equiv T$	
Involution Law	9. $\sim (\sim p) \equiv p$		
De Morgan's Laws	10a. $\sim (p \lor q) \equiv \sim p \land \sim q$	10b. $\sim (p \land q) \equiv \sim p \lor \sim q$	

Truth Tables

p	q	~ p	$p \wedge q$	$p \lor q$	$p \rightarrow q$	$p \leftrightarrow q$
T	T	F	T	T	Т	T
T	F	F	F	T	F	F
F	Т	T	F	T	Т	F
F	F	T	F	F	Т	Т

Rules of Differentiation:

$$\frac{d}{dx}(c) = 0$$
, c is constant

$$\frac{d}{dx}(x^r) = r x^{r-1}$$
, r is any real number integration

$$\frac{d}{dx} [f(x) \pm g(x)] = f'(x) \pm g'(x)$$

$$\frac{d}{dx}[f(x)g(x)] = f'(x)g(x) + f(x)g'(x)$$

$$\frac{d}{dx}\left[\frac{f(x)}{g(x)}\right] = \frac{f'(x)g(x) - f(x)g'(x)}{\left[g(x)\right]^2}$$

$$\frac{d}{dx} \Big[f(g(x)) \Big] = f'(g(x))g'(x)$$

Rules of Integration:

Indefinite integral:

$$\int f(x)dx = F(x) + c,$$

where c is the constant of

Definite integral:

$$\int_a^b f(x) dx = F(b) - F(a)$$

$$\int x^r dx = \frac{x^{r+1}}{r+1} + c, \quad r \neq -1$$