GRAPHS

Outline

- Graph- Concept
- Graph terminology: vertex, edge, adjacent, incident, degree, cycle, path, connected component, spanning tree
- Types of graphs: undirected, directed, weighted
- Graph representations: adjacency matrix, array adjacency lists, linked adjacency lists
- Graph search methods: breath-first, depth-first search

What is a graph?

- A data structure that consists of a set of nodes (vertices) and a set of edges that relate the nodes to each other
- The set of edges describes relationships among the vertices

Formal definition of graphs

A graph G is defined as follows:

$$G=(V,E)$$

V(G): a finite, nonempty set of vertices

E(G): a set of edges (pairs of vertices)

- Vertices are also called nodes and points.
- Each edge connects two vertices.
- Edges are also called arcs and lines.
- Vertices i and j are adjacent vertices iff (i, j) is an edge in the graph
- The edge (i, j) is incident on the vertices i and j

Graphs

- Undirected edge has no orientation (no arrow head)
- Directed edge has an orientation (has an arrow head)
- Undirected graph all edges are undirected
- Directed graph all edges are directed

u — V u — V undirected edge

Undirected Graph

Directed Graph (Digraph)

Directed vs. undirected graphs

 When the edges in a graph have no direction, the graph is called *undirected*

Directed vs. undirected graphs (cont.)

 When the edges in a graph have a direction, the graph is called directed (or digraph)

Trees vs graphs

Trees are special cases of graphs!!

Graph terminology

 Adjacent nodes: two nodes are adjacent if they are connected by an edge

5 is adjacent to 77 is adjacent from 5

- Path: a sequence of vertices that connect two nodes in a graph
- Complete graph: a graph in which every vertex is directly connected to every other vertex

Graph terminology (cont.)

 What is the number of edges in a complete directed graph with N vertices?

$$O(N^2)$$

A

B

C

D

(a) Complete directed graph.

Graph terminology (cont.)

 What is the number of edges in a complete undirected graph with N vertices?

$$O(N^2)$$

(b) Complete undirected graph.

Graph terminology (cont.)

 Weighted graph: a graph in which each edge carries a value

Applications – Communication Network

Applications - Driving Distance/Time Map

Applications - Street Map

- Streets are one- or two-way.
- A single directed edge denotes a one-way street
- A two directed edge denotes a two-way street
- Read Example 16.1 and see Figure 16.2

Path

- A sequence of vertices $P = i_1, i_2, ..., i_k$ is an i_1 to i_k path in the graph G=(V, E) iff the edge (i_j, i_{j+1}) is in E for every j, $1 \le j < k$
- What are possible paths in Figure 16.2(b)?

Simple Path

 A <u>simple path</u> is a path in which all vertices, except possibly in the first and last, are different

Length (Cost) of a Path

- Each edge in a graph may have an associated <u>length</u> (or cost). The length of a path is the sum of the lengths of the edges on the path
- What is the length of the path 5, 9, 11, 10?

Subgraph & Cycle

- Let G = (V, E) be an undirected graph
- A graph H is a <u>subgraph</u> of graph G iff its vertex and edge sets are subsets of those of G
- A <u>cycle</u> is a simple path with the same start and end vertex
- List all cycles of the graph of Figure 16.1(a)?
 - 1, 2, 3, 1
 - 1, 4, 3, 1
 - 1, 2, 3, 4, 1

Graph Properties

Number of Edges – Undirected Graph

- Each edge is of the form (u,v), u!= v.
- The no. of possible pairs in an n vertex graph is n*(n-1)
- Since edge (u,v) is the same as edge (v,u), the number of edges in an undirected graph is n*(n-1)/2
- Thus, the number of edges in an undirected graph is ≤ n*(n-1)/2

Number of Edges - Directed Graph

- Each edge is of the form (u,v), u != v.
- The no. of possible pairs in an n vertex graph is n*(n-1)
- Since edge (u,v) is not the same as edge (v,u), the number of edges in a directed graph is n*(n-1)
- Thus, the number of edges in a directed graph is $\leq n^*(n-1)$

Vertex Degree

• The **degree** of vertex *i* is the no. of edges incident on vertex *i*.

e.g., degree(2) = 2, degree(5) = 3, degree(3) = 1

In-Degree of a Vertex

• **In-degree** of vertex *i* is the number of edges incident to *i* (i.e., the number of incoming edges).

e.g., indegree(2) = 1, indegree(8) = 0

Out-Degree of a Vertex

- Out-degree of vertex *i* is the number of edges incident from *i* (i.e., the number of outgoing edges).
- e.g., outdegree(2) = 1, outdegree(8) = 2

Complete Undirected Graphs

• A complete undirected graph has n(n-1)/2 edges (i.e., all possible edges) and is denoted by K_n

 What would a complete undirected graph look like when n=5? When n=6?

Connected Graph

- Let G = (V, E) be an undirected graph
- G is <u>connected</u> iff there is a path between every pair of vertices in G

Example of Not Connected

Example of Connected Graph

Representation of Unweighted Graphs

- The most frequently used representations for unweighted graphs are
 - Adjacency Matrix
 - Linked adjacency lists
 - Array adjacency lists

Adjacency Matrix

- 0/1 n x n matrix, where n = # of vertices
- A(i, j) = 1 iff (i, j) is an edge.

	1	2	3	4	5
1	0	1	0	1	0
2	1 0	0	0	0	1
3	0	0	0	0	1
4	1 0	0	0	0	1
5	0	1	1	1	0

Adjacency Matrix Properties

- Diagonal entries are zero.
- Adjacency matrix of an undirected graph is symmetric (A(i,j) = A(j,i) for all i and j).

	1	2	3	4	5
1	0	1	0	1	0
2	1 0	0	0	0	1
2	0	0	0	0	1
4	1	0	0	0	1
5	0	1	1	1	0

Adjacency Matrix for Digraph

- Diagonal entries are zero(only if there is no self loop)
- Adjacency matrix of a digraph need not be symmetric.

Adjacency Lists

- Adjacency list for vertex i is a linear list of vertices adjacent from vertex i.
- An array of n adjacency lists for each vertex of the graph.

$$aList[1] = (2,4)$$

$$aList[2] = (1,5)$$

$$aList[3] = (5)$$

$$aList[4] = (5,1)$$

$$aList[5] = (2,4,3)$$

Linked Adjacency Lists • Each adjacency list is a chain.

Array length = n.

of chain nodes = 2e (undirected graph)

of chain nodes = e (digraph)

Array Adjacency Lists

Each adjacency list is an array list.
Array length = n.
of chain nodes = 2e (undirected graph)
of chain nodes = e (digraph)

Representation of Weighted Graphs

- Weighted graphs are represented with simple extensions of those used for unweighted graphs
- The <u>cost-adjacency-matrix</u> representation uses a matrix
 C just like the adjacency-matrix representation does
- Cost-adjacency matrix: C(i, j) = cost of edge (i, j)
- Adjacency lists: each list element is a pair (adjacent vertex, edge weight)

For the digraph Figure 16.2(b)

(a) adjacency matrix

(c) Array adjacency list

(b) Linked adjacency list

Graph Traversals (Search)

- We have covered some of these with binary trees
 - Breadth-first search (BFS)
 - Depth-first search (DFS)
- A traversal (search):
 - An algorithm for systematically exploring a graph
 - Visiting (all) vertices
 - Until finding a goal vertex or until no more vertices

Only for connected graphs

Breadth-first search

- One of the simplest algorithms
- Also one of the most important
 - It forms the basis for MANY graph algorithms

BFS: Level-by-level traversal

- Given a starting vertex s
- Visit all vertices at increasing distance from s
 - Visit all vertices at distance k from s
 - Then visit all vertices at distance k+1 from s
 - Then

BFS in a tree

BFS: visit all siblings before their descendants

ABCDEFGHIJKLM

BFS: Graph

ABEGCDF

BFS(graph g, vertex s)

```
1. unmark all vertices in G
2. q ← new queue
3. mark s // s is starting vertex
4. enqueue (q, s)
5. while (not empty(q))
6. curr ← dequeue (q)
7. visit curr // e.g., print its data
8. for each edge <curr, V>
      if V is unmarked
9.
         mark V
10.
    enqueue (q, V)
11.
```

BFS algorithm

Undirected Graph

Starting vertex = d

Queue	Marked	Curr	BFS
0	{}	-	
{d}-	{d}	d	d
{a/, b, e}	{d, a,b,e}	а	d, a
{\b/,e}	{d,a,b,e}	b	d,a,b
{e,c}	{d,a,b,e,c}	е	d,a,b,e
{c}-	{d,a,b,e,c}	С	d,a,b,e,c
{}	{d,a,b,e,c}		

queue	Marked	Curr	BFS
{}	{}		
X1}	{1}	1	1
{2,3,6}	{1,2,3,6}	2	1, 2
{3,6,4}	{1,2,3,6,4}	3	1,2,3
{6,4}	{1,2,3,6,4}	6	1,2,3,6
{4,5}	{1,2,3,6,4,5}	4	1,2,3,6,4
<i>{5}</i>	{1,2,3,6,4,5}	5	1,2,3,6,4,5
empty	algo terminat	es	BFS= 1,2,3,6,4,5

Interesting features of BFS

- Complexity: O(|V| + |E|)
 - All vertices put on queue exactly once
 - For each vertex on queue, we expand its edges
 - In other words, we traverse all edges once
- BFS finds shortest path from s to each vertex
 - Shortest in terms of number of edges
 - Why does this work?
 - Takes too much memory.
 - Runs out of memory before it runs out of time.

Stack	Marked	Curr	DFS
{}	{}		
{X}	{1}	1	1
{2,3,6}	{1,2,3,6}	2	1,2
{Á,3,6}	{1,2,3,6,4}	4	1,2,4
{b,3,6}	{1,2,3,6,4,5}	5	1,2,4,5
(3,6)	{1,2,3,6,4,5}	3	1,2,4,5,3
£6 }	{1,2,3,6,4,5}	6	1,2,4,5,3,6
empty	algo terminates	DF:	S: 1,2,4,5,3,6

Depth-first search

- Again, a simple and powerful algorithm
- Given a starting vertex s
- Pick an adjacent vertex, visit it.
 - Then visit one of its adjacent vertices
 -
 - Until impossible, then backtrack, visit another

DFS(graph g, vertex s)

11.

1. unmark all vertices in G 2. Stack ← new stack 3. Push(stack, s) 4. while (not empty(stack)) 5. curr ← pop(stack) 6. If not marked curr 7. visit curr // e.g., print its data 8. Mark curr 9. for each edge <curr, V> 10. if V is unmarked

push(stack, V)

Current vertex: A

Start with A. Mark it.

Current: B

Expand A's adjacent vertices. Pick one (B). Mark it and re-visit.

Current: C

Now expand B, and visit its neighbor, C.

Current: F

Visit F.

Pick one of its neighbors, E.

Current: E

E's adjacent vertices are A, D and F. A and F are marked, so pick D.

Current: D

Visit D. No new vertices available. Backtrack to E. Backtrack to F. Backtrack to C. Backtrack to B

Current: G

Visit G. No new vertices from here. Backtrack to B. Backtrack to A. E already marked so no new.

Current:

Done. We have explored the graph in order:

ABCFEDG

Method 1

Stack	Marked	Curr	DFS
K	A	A B	A,B
B,C,F E,C,F	A,B,C,F,E	 E	A,B,E
∅ ,C,F	A,B,C,F,E	D 0	A,B,E,D
€ ,F	A,B,C,F,E	- C	A,B,E,D,C
. *	A,B,C,F,E	F	A,B,E,D,C,F<==DFS SEQUENCE

Method 2

stack		C	urr			DFS				94
<i>A</i> /			Α			Α				_
8			В	•	,	A,B	,	,	,	Ľ.
E			E,			A,B,E			,	¢Ĵ
, D'			Ď			A,B,E,	D _,		,	[+
K			C			A,B,E,	D,C		,	4
Þ			F			A,B,E,I),C,F<	==DF	S SEQU	JEINOI
		٠		٠	٠	٠	1	٠	٠	•
Marke	d= {A, E	B,E,D,0	C, F,}			٠			,	

Interesting features of DFS

- Complexity: O(|V| + |E|)
 - All vertices visited once, then marked
 - For each vertex on stack, we examine all edges
 - In other words, we traverse all edges once
- DFS does not necessarily find shortest path
 - Why?
- Not a good choice when the goal node is at shallow level on right side of the graph