Unit 2 Association Analysis

Basic concept, Use of Association Analysis, Apriori algorithm, pruning

Objective

- Association Analysis Concepts
- Application
- Algorithm for Association Analysis
- Solving a problem

Corelation between data

- It is the measure of degree of dependency between two variables
- Statistical Approach
 - Corelation Analysis
 - statistical method used to measure the strength of the linear relationship between two variables and compute their association
 - A high correlation points to a strong relationship between the two variables, while a low correlation means that the variables are weakly related

Market Basket Analysis

- How to arrange the items (placements) to increase the cross-selling opportunities
- Where to display the new items
 - For example, if customers often buy bread and milk together, a store might place these items closer to each other

Cross-Selling in Online Retail

- Suggest additional products to customers based on the items they have added to their shopping carts or purchased.
- This helps in increasing revenue through cross-selling.

Customer Behavior Analysis

- Understand purchasing patterns and preferences of customers to improve marketing strategies and personalized recommendations
 - This is widely used in e-commerce and online platforms to enhance the user experience

Fraud Detection

- Identify unusual patterns or associations in financial transactions that may indicate fraudulent activities.
- For example, detecting instances where certain products are consistently bought together in fraudulent transactions.

- Telecommunications Network Optimization
 - Analyze call records to identify patterns of co-occurring calls and optimize network performance, leading to better resource allocation and improved service quality

Association Analysis

- Mining for associations among items in a large database of transactions is an important data mining function
- Association rules are statements of the form
 - {X1, X2, ..., Xn} => Y, meaning that if we find all of X1, X2,, Xn in the transaction then we have good chance of finding Y.

Unit 2: Association Analysis

 Association analysis mostly applied in the field of market basket analysis, web-based mining, intruder detection

Market Basket Analysis

- It is the study of items that are purchased or grouped together in a single transaction or multiple, sequential transactions
- Used for
 - Make recommendations
 - Cross-sell
 - Up-sell
 - Offer coupons / discounts

Market Basket Analysis

- The analysis can be applied in various ways:
 - Develop combo offers based on products sold together.
 - Organize and place associated products/categories nearby inside a store.
 - Determine the layout of the catalog of an e-commerce site.
 - Control inventory based on product demands and what products sell together.

Support

 The support of an association pattern is the percentage of taskrelevant data transaction for which the pattern is true

Support (A): Number of tuples containing A / Total number of tuples Support (A = > B): Number of tuples containing A and B / Total number of tuples

 While computing the association Minimum Support is used as threshold for computing

Support

- If minimum support is set too high, we could miss itemsets involving interesting rare items
 - e.g., expensive products
- If minimum support is set too low, it is computationally expensive and the number of itemsets is very large

Confidence

 Confidence is defined as the measure of certainty or trustworthiness associated with each discovered pattern

Confidence (A = > B): Number of tuples containing A and B / Total count of A

Unit 2: Association Analysis

Confidence is usually given in percentage

Item Set

A collection of one or more items.

Example: {Milk, Bread, Diaper}

An itemset that contains k items is called k-itemset

Frequent Itemset

 An itemset whose support is greater than or equal to a minimum support threshold.

Association Rule

 An implication expression of the form X => Y, where X and Y are itemsets.

Unit 2: Association Analysis

Example: {Milk, Diaper} => {Beer}

- Maximal Frequent Itemset
 - An itemset is maximal if none of its immediate supersets is frequent
- Closed Itemset
 - An itemset is closed if none of its immediate supersets has same support as of the itmeset

• Lift

 Lift is a measure of the performance of a targeting model (association rule) at predicting or classifying cases as having an enhanced response with respect to the population as a whole, measured against a random choice targeting model.

$$Lift = P(Y \mid X) / P(Y)$$

Association Rules Mining

- Given a set of transactions T, the goal of association rule mining is to find all rules having
 - support ≥ min_sup threshold and
 - confidence ≥ min_conf threshold
- Some of approaches for association rules mining are:
 - Brute-Force Approach
 - Frequent Itemset Generation Techniques

Brute- Force Approach

- List all possible association rules
- Compute the support and confidence for each rule
- Prune rules that fail to minimum support and minimum confidence level

Pros

- Easy Computation
- Easy Implementation
- Works perfect for smaller number of itemset
- Cons
 - Computationally expensive

Frequent Itemset Generation

Formulate some ways to

- Reduce the number of candidates
- Reduce the number of transactions
- Reduce the number of comparison

Pros

- Faster computation
- Faster convergence toward solution

Cons

Still slower (mostly depends on the min_support threshold)

Apriori Approach

- It is based on the Apriori Principle
 - Supersets of non-frequent item are also non-frequent
 - Or, If an itemset is frequent, then all of its subset also be frequent
- Two step Approach
 - 1) Frequent Itemset generation
 - 2) Rule Generation
- It use a level-wise search, k-itemsets are used to explore k+1 itemsets.
- At first, the set of frequent itemset is found and used to generate to frequent itemset at next level and so on

Apriori Algorithm

Algorithm

- Read the transaction database and get support for each itemset, compare the support with minimum support to generate frequent itemset at level 1.
- Use join to generate a set of candidate k-itmesets at next level.
- Generate frequent ietmsets at next level using minimum support.
- Repeat step 2 and 3 until no frequent itme sets can be generated.
- Generate rules form frequent itemsets from level 2 onwards using minimum confidence.

Example

Separate PDF

Reference

- Reference Reading:
 - Book: Data Mining Concepts and Techniques Morgan
 Chapter 6 Mining Frequent Patterns, Associations, and Correlations

Limitation of Apriori Algorithm

- Issues of Apriori Algorithm
 - Speed
 - High computational cost
 - Difficult to handle parallelism

Frequent Pattern Growth Algorithm

- Commonly Known as FP-Growth
- Improved version of Apriori Algorithm
- FP-growth algorithm is a tree-based algorithm for frequent itemset mining

 The algorithm represents the data in a tree structure known as FP-tree, responsible for maintaining the association information between the frequent items

FP-Growth

 The algorithm compresses frequent items into an FP-tree from the database while retaining association rules.

Unit 2: Association Analysis

 Then it splits the database data into a set of conditional databases (a special kind of projected database), each of which is associated with one frequent data item.

FP-Tree

- FP-tree is the core concept of the FP-growth algorithm.
- The FP-tree is a compressed representation of the database itemset, storing the DB itemset in memory and keeping track of the association between items.
- The tree is constructed by taking each itemset and adding it as a subtree.
- The FP-tree's whole idea is that items that occur more frequently will be more likely to be shared.

FP-Tree

- The root node in the FP-tree is null.
- Each node of the subtree stores at least the item name and the support (or item occurrence) number.
- Additionally, the node may contain a link to the node with the same name from another subtree (represents another itemset from the database).

Building FP-Tree

- The FP-growth algorithm uses the following steps to build FPtree from the database.
 - Scan itemsets from the database for the first time
 - Find frequent items (single item patterns) and order them into a list L in frequency descending order.

```
For example, L = \{A:5, C:3, D;2, B:1\}
```

- For each transaction order its frequent items according to the order in
- Scan the database the second time and construct FP-tree by putting each frequency ordered transaction onto it

Create a FP Tree of following dataset

ID	Items bought
100	{f, a, c, d, g, i, m, p}
200	{a, b, c, f, I, m, o}
300	{b, f, h, j, o}
400	{b, c, k, s, p}
500	{a, f, c, e, l, p, m, n}

- Step 1: Item wise support count and eliminate the item that has support < min support
 - Scan the dataset,
 - Create a frequency table containing each item from the database
 - Arrange them in descending order.
 - Filter items with a support value less than the minimum support

• For example, let's set up the minimum support value equal to 3. In that case, we will get the following frequency table:

Item	Frequecy	
{f}	4	
{c}	3	
{a}	3	
{b}	3	
{m}	3	
{p}	3	

2024, rughimire

- Step 2: Rebuild dataset with items that created in step 1
 - Scan the database the second time and arrange elements based on the frequency table
 - Items with higher a frequency number will come first
 - if two items have the same frequency number they will be arranged in alphabetical order

em	Frequecy			_	
{f}	4	ID	Items bought		Frequent Items (ordered
1.0		100	{f, a, c, d, g, i, m, p}		{f, c, a, m, p}
}	3	200	{a, b, c, f, l, m, o}		{f, c, a, b, m}
}	3	300	{b, f, h, j, o}		{f, b}
}	3	400	{b, c, k, s, p}		{c, b, p}
	3	500	{a, f, c, e, l, p, m, n}		{f, c, a, m, p}
n}	3				
p}	3				

- Step 3: Build Tree
 - We will create a tree based on the frequent items table of step 2
 - Scan through each dataset and build the tree => Parent Node = NULL

2024, rughimire 35

Add 2nd Item of itemset

- As we add the same element to the tree, we increment the support.
- But after item a we created a new node for item b because there was no item b in our initial tree after item a.
- And we have linked items m together because this is the same element located in different subtrees.

Add the all the dataset and populate the tree

Step 4: Build Association Rules

 It will take the item with the minor support count and trace that item through the FP-tree to achieve that goal.

• In our example, the item **p** has the lowest support count, and the FP-growth algorithm will produce the following paths:

{ {f, c, a, m, p : 2}, {c, b, p : 1} }.

 Note: The item p is located in two different subtrees of the FP-tree, so the algorithm traced both paths and added the minimum support value for every path.

 Similarly, the FP-growth will build the conditional pattern base table for all of the items from the FP-tree.

Conditional Pattern Base Generation

 Start with leaf node and traverse upward (except those attached to NULL node)

Conditional FP Tree Generation

Minimum support =3

- get all items from the Conditional Pattern Base column that satisfy the minimum support requirement.
- Let's calculate elements' occurrences for the p item:

```
\{ f, c, a, m : 2 \}, \{ c, b : 1 \} - > \{ f: 2, c:3, a:2, m:2, b:1 \}
```

- Only item c appears three times and satisfies the minimum support requirement.
- That means the algorithm will remove all other items except c.

Conditional FP Tree Generation

Minimum support =3

- After removing items that do not meet the minimum support requirement, the algorithm will construct the following table:

ltem	Conditional Pattern Base	Conditional FP-tree
р	{{f, c, a, m : 2}, {c, b : 1}}	{ c:3 }
m	{ { f, c, a : 2}, { f, c, a, b : 1 } }	{ f:3, c:3, a:3 }
b	{{f:1},{c:1},{f,c,a:1}}	
а	{{f,c:3}}	{ f:3, c:3 }
С	{{f:3}}	{ f:3 }

Generate frequent patterns

- Generate frequent patterns by pairing the items of the Conditional FPtree column with the corresponding item from the Item column.
 - For example, for the first row
 - { c:3 } from the Conditional FP-tree column,
 - create its combination with the p element and add the support count value

Item	Conditional Pattern Base	Conditional FP-tree	Generated Frequent Patterns
р	{{f, c, a, m : 2}, {c, b : 1}}	{ c:3 }	{c,p:3}
m	{{f, c, a : 2}, {f, c, a, b : 1}}	{ f:3, c:3, a:3 }	{f, m: 3}, {c, p: 3}, {a, m: 3}, {f, c, m: 3}, {f, a, m: 3}, {c, a, m: 3}, {f, c, a, m: 3}
b	{{f:1},{c:1},{f,c,a:1}}	-	
а	{{f,c:3}}	{ f:3, c:3 }	{f, a:3}, {c, a:3}, {f, c, a:3}
С	{{f:3}}	{f:3}	{f,c:3}

Generate Association Rules

Confidence: 70%

 Calculate the support and confidence for items in generated frequent pattern as done in Apriori Algorithm

Do it Yourself

- Explore of FP-growth algorithm using Python
 - mlextend library

```
from mlxtend.frequent_patterns import fpgrowth from mlxtend.frequent_patterns import association_rules
```

```
res = fpgrowth(dataset,min_support=0.05, use_colnames=True)
rules = association_rules(res, metric="lift", min_threshold=1)
```

Reference: https://hands-on.cloud/implementation-of-fp-growth-algorithm-using-python/

Thank you