PRANVEER SINGH INSTITUTE OF TECHNOLOGY KANPUR

Even Semester

Session 2022-23

Pre-University

Theory of Automata and Formal Languages (KCS 402)

Theory of Mutomata and Polimar Eurigens		
CO Number	Course Outcome	
CO1	Define [L1:Remember] various types of automata, languages and grammars.	
CO2	Express [L2:Understand] languages using grammar, automaton and to review class of language.	
CO3	Interpret [L3:Apply] the behaviour of machines (such as FA, TM &PDA) and grammars.	
CO4	Analyse[L4:Analysis] ambiguity and decidability of grammars and languages	

Section A

Time: 3 Hrs.

M. M. 100

(2X10 = 20 Marks)

CO₁

CO₁

Q1. Attempt all questions:		
a)	Define non deterministic finite automata (NDFA).	
b)	List the difference between formal language and regular language.	

c) Construct DFA to accept the language $L=\{00,11\}$. CO₃ Define Moore Machine with an example. d) CO₁

Construct Moore Machine to produce 1's complement. e)

CO3 f) Discuss Chomsky's Hierarchy of Grammars. CO₂ Give the steps to eliminate useless symbols from the given context-free grammar. g) CO₁

List the properties of recursive and recursive enumerable language. h) Give the configuration of Turing machine. i)

State the closure properties of context-free languages. j)

CO₁ CO₁

CO₁

Section B

Q2. At	tempt all questions.	,
(a)	Examine that Halting problem	is undecidable.
	0	

(10X3 = 30 Marks)CO₄

Construct Turing Machine that replace all occurrence of 111 by 101 from sequence of 0's b-(i) CO₃ and 1's.

OR

(ii)	Construct a Turing Machine to recognize binary palindrome of the even length.
c-(i)	Construct PDA for the language on home on the manual of

CO₃

Construct PDA for the language $a^{m}b^{m}c^{m+m}$, where n, m>=0.

CO3

(ii) Construct PDA for language L = { $w \in \{0, 1\}^* \mid w = w^R$ } Section C

CO₃

Q3. Attempt all questions:

Express the following NFA into DFA

(10X5 = 50 Marks)

CO₂

