

© International Baccalaureate Organization 2021

All rights reserved. No part of this product may be reproduced in any form or by any electronic or mechanical means, including information storage and retrieval systems, without the prior written permission from the IB. Additionally, the license tied with this product prohibits use of any selected files or extracts from this product. Use by third parties, including but not limited to publishers, private teachers, tutoring or study services, preparatory schools, vendors operating curriculum mapping services or teacher resource digital platforms and app developers, whether fee-covered or not, is prohibited and is a criminal offense.

More information on how to request written permission in the form of a license can be obtained from https://ibo.org/become-an-ib-school/ib-publishing/licensing/applying-for-a-license/.

© Organisation du Baccalauréat International 2021

Tous droits réservés. Aucune partie de ce produit ne peut être reproduite sous quelque forme ni par quelque moyen que ce soit, électronique ou mécanique, y compris des systèmes de stockage et de récupération d'informations, sans l'autorisation écrite préalable de l'IB. De plus, la licence associée à ce produit interdit toute utilisation de tout fichier ou extrait sélectionné dans ce produit. L'utilisation par des tiers, y compris, sans toutefois s'y limiter, des éditeurs, des professeurs particuliers, des services de tutorat ou d'aide aux études, des établissements de préparation à l'enseignement supérieur, des fournisseurs de services de planification des programmes d'études, des gestionnaires de plateformes pédagogiques en ligne, et des développeurs d'applications, moyennant paiement ou non, est interdite et constitue une infraction pénale.

Pour plus d'informations sur la procédure à suivre pour obtenir une autorisation écrite sous la forme d'une licence, rendez-vous à l'adresse https://ibo.org/become-an-ib-school/ib-publishing/licensing/applying-for-a-license/.

© Organización del Bachillerato Internacional, 2021

Todos los derechos reservados. No se podrá reproducir ninguna parte de este producto de ninguna forma ni por ningún medio electrónico o mecánico, incluidos los sistemas de almacenamiento y recuperación de información, sin la previa autorización por escrito del IB. Además, la licencia vinculada a este producto prohíbe el uso de todo archivo o fragmento seleccionado de este producto. El uso por parte de terceros —lo que incluye, a título enunciativo, editoriales, profesores particulares, servicios de apoyo académico o ayuda para el estudio, colegios preparatorios, desarrolladores de aplicaciones y entidades que presten servicios de planificación curricular u ofrezcan recursos para docentes mediante plataformas digitales—, ya sea incluido en tasas o no, está prohibido y constituye un delito.

En este enlace encontrará más información sobre cómo solicitar una autorización por escrito en forma de licencia: https://ibo.org/become-an-ib-school/ib-publishing/licensing/applying-for-a-license/.

Química Nivel Medio Prueba 1

Viernes 14 de mayo de 2021 (mañana)

45 minutos

Instrucciones para los alumnos

- No abra esta prueba hasta que se lo autoricen.
- Conteste todas las preguntas.
- Seleccione la respuesta que considere más apropiada para cada pregunta e indique su elección en la hoja de respuestas provista.
- Como referencia, se incluye la tabla periódica en la página 2 de esta prueba.
- La puntuación máxima para esta prueba de examen es [30 puntos].

								Ta	Tabla periódica	riódic	ä							
	_	7	ო	4	ß	9	7	∞	6	10	7	12	13	41	15	16	17	8
	- I ,0,1			ZÜ.	Número atómico	ojico	_											2 He 4,00
7	3 Li 6,94	4 Be 9,01		Masa	Masa atómica relativa	alativa							5 B 10,81	6 C 12,01	7 N 14,01	8 O 16,00	9 F 19,00	10 Ne 20,18
က	11 Na 22,99	12 Mg 24,31											13 Al 26,98	14 Si 28,09	15 P 30,97	16 S 32,07	17 CI 35,45	18 Ar 39,95
4	19 K 39,10	20 Ca 40,08	21 Sc 44,96	22 Ti 47,87	23 V 50,94	24 Cr 52,00	25 Mn 54,94	26 Fe 55,85	27 Co 58,93	28 Ni 58,69	29 Cu 63,55	30 Zn 65,38	31 Ga 69,72	32 Ge 72,63	33 As 74,92	34 Se 78,96	35 Br 79,90	36 Kr 83,90
S.	37 Rb 85,47	38 Sr 87,62	39 Y 88,91	40 Zr 91,22	41 Nb 92,91	42 Mo 95,96	43 Tc (98)	44 Ru 101,07	45 Rh 102,91	46 Pd 106,42	47 Ag 107,87	48 Cd 112,41	49 In 114,82	50 Sn 118,71	51 Sb 121,76	52 Te 127,60	53 I 126,90	54 Xe 131,29
9	55 Cs 132,91	56 Ba 137,33	57 † La 138,91	72 Hf 178,49	73 Ta 180,95	74 W 183,84	75 Re 186,21	76 Os 190,23	77 Ir 192,22	78 Pt 195,08	79 Au 196,97	80 Hg 200,59	81 TI 204,38	82 Pb 207,2	83 Bi 208,98	84 Po (209)	85 At (210)	86 Rn (222)
7	87 Fr (223)	88 Ra (226)	89‡ Ac (227)	104 Rf (267)	105 Db (268)	106 Sg (269)	107 Bh (270)	108 Hs (269)	109 Mt (278)	110 Ds (281)	111 Rg (281)	112 Cn (285)	113 Unt (286)	114 Uug (289)	115 Uup (288)	116 Uuh (293)	117 Uus (294)	118 Uuo (294)
			+	58 Ce 140,12	59 Pr 140,91	60 Nd 144,24	61 Pm (145)	62 Sm 150,36	63 Eu 151,96	64 Gd 157,25	65 Tb 158,93	66 Dy 162,50	67 Ho 164,93	68 Er 167,26	69 Tm 168,93	70 Yb 173,05	71 Lu 174,97	

58 59 (Ce Pr 140,12 140,91 14	90 91 6 Th Pa 232,04 231,04 23
60 61 Nd Pm 144,24 (145)	92 93 U Np 238,03 (237)
62 n Sm 5) 150,36	94 Pu (244)
63 Eu 151,96	95 Am (243)
64	96
Gd	Cm
157,25	(247)
65	97
Tb	Bk
158,93	(247)
66	98
Dy	Cf
162,50	(251)
67	99
Ho	Es
164,93	(252)
68 Er 167,26	100 Fm (257)
69	101
Tm	Md
168,93	(258)
70	102
Yb	No
173,05	(259)
71	103
Lu	Lr
174,97	(262)

1. Se mezclan 0,20 mol de magnesio con 0,10 mol de ácido clorhídrico.

$$Mg(s) + 2HCl(aq) \rightarrow MgCl_2(aq) + H_2(g)$$

¿Cuál es correcto?

	Reactivo limitante	Rendimiento máximo de H ₂ / mol
A.	HCl	0,10
B.	Mg	0,20
C.	HCl	0,05
D.	Mg	0,10

- 2. ¿Qué cantidad, en mol, de cloruro de sodio se necesita para preparar 250 cm³ de solución 0,10 mol dm⁻³?
 - A. 4.0×10^{-4}
 - B. 0,025
 - C. 0,40
 - D. 25
- 3. ¿Qué molécula tiene la misma fórmula empírica y molecular?
 - A. CH₃COOH
 - B. C₂H₅OH
 - C. C₂H₄
 - D. C₄H₁₀
- 4. ¿Cuál es la suma de los coeficientes cuando se ajusta la ecuación con números enteros?

$$_Sn(OH)_4(aq) + _NaOH(aq) \rightarrow _Na_2SnO_3(aq) + _H_2O(l)$$

- A. 4
- B. 5
- C. 6
- D. 7

5.	¿Qu	é representa "²-" en ^A ZX²-?
	A.	pérdida de electrón
	B.	ganancia de electrón
	C.	pérdida de protón
	D.	ganancia de protón
6.	¿Có	mo se forman los espectros de emisión?
	A.	Se absorben fotones cuando los electrones promovidos regresan a un nivel de energía menor
	B.	Se absorben fotones cuando los electrones son promovidos a un nivel de energía mayor.
	C.	Se emiten fotones cuando los electrones son promovidos a un nivel de energía mayor.
	D.	Se emiten fotones cuando los electrones promovidos regresan a un nivel de energía menor.
7.	¿Qu	é propiedad aumenta hacia abajo en el grupo 1?
	A.	radio atómico
	B.	electronegatividad
	C.	energía de primera ionización
	D.	punto de fusión
8.	¿Cu	ál es un elemento del bloque d?
	A.	Ca
	B.	Cf
	C.	Cl
	D.	Со
9.	Qu,	é compuesto tiene mayor volatilidad en las mismas condiciones?
	A.	SO ₂
	B.	SiO ₂
	C.	SnO ₂
	D.	SrO

- 10. ¿Qué compuesto tiene el enlace de C a N más corto?
 - A. HCN
 - B. CH₃CH₂NH₂
 - C. CH₃CHNH
 - D. (CH₃)₂NH
- 11. ¿Cuál es la fórmula del compuesto formado a partir de Ca²⁺ y PO₄³⁻?
 - A. CaPO₄
 - B. $Ca_3(PO_4)_2$
 - C. $Ca_2(PO_4)_3$
 - D. $Ca(PO_4)_2$
- **12.** ¿Cuál es el orden correcto basado en la fuerza **creciente**?
 - A. enlaces covalentes < enlaces de hidrógeno < fuerzas dipolo-dipolo < fuerzas de dispersión
 - B. fuerzas dipolo-dipolo < fuerzas de dispersión < enlaces de hidrógeno < enlaces covalentes
 - C. fuerzas de dispersión < fuerzas dipolo-dipolo < enlaces de hidrógeno < enlaces covalentes
 - D. fuerzas de dispersión < fuerzas dipolo-dipolo < enlaces covalentes < enlaces de hidrógeno
- 13. ¿Cuál describe una reacción exotérmica?

	Transferencia de calor	Entalpía
A.	del entorno al sistema	reactivos > productos
B.	del entorno al sistema	productos > reactivos
C.	del sistema al entorno	productos > reactivos
D.	del sistema al entorno	reactivos > productos

14. ¿Cuál es la variación de calor, en kJ, cuando 100,0 g de aluminio se calientan desde 19,0 °C a 32,0 °C?

Capacidad calorífica específica del aluminio: 0,90 J g⁻¹ K⁻¹

A.
$$0,90 \times 100, 0 \times 13, 0$$

B.
$$0,90 \times 100,0 \times 286$$

C.
$$\frac{0,90 \times 100,0 \times 13,0}{1000}$$

D.
$$\frac{0,90 \times 100,0 \times 286}{1000}$$

15. ¿Cuál es la variación de entalpía de reacción, ΔH ?

16. ¿Qué cambio causa mayor aumento de la velocidad inicial de la reacción entre ácido nítrico y magnesio?

$$2HNO_3(aq) + Mg(s) \rightarrow Mg(NO_3)_2(aq) + H_2(g)$$

	[HNO ₃]	Tamaño de los trozos de metal
A.	duplicada	reducido a la mitad
B.	duplicada	duplicado
C.	reducida a la mitad	reducido a la mitad
D.	reducida a la mitad	duplicado

17. La gráfica muestra la curva de distribución de energía de Maxwell–Boltzmann para un gas dado a cierta temperatura.

- ¿Cómo cambiaría la curva si la temperatura del gas disminuye mientras se mantienen constantes las demás condiciones?
- A. El máximo sería menor y a la izquierda de M.
- B. El máximo sería menor y a la derecha de M.
- C. El máximo sería más elevado y a la izquierda de M.
- D. El máximo sería más elevado y a la derecha de M.
- **18.** ¿Qué efecto tiene un catalizador sobre la posición de equilibrio y el valor de la constante de equilibrio, K_c , para una reacción exotérmica?

	Posición de equilibrio	Valor de la constante de equilibrio
A.	se desplaza hacia los productos	aumenta
B.	permanece igual	aumenta
C.	permanece igual	permanece igual
D.	se desplaza hacia los productos	permanece igual

- 19. ¿Cuál no puede actuar como base de Brønsted-Lowry?
 - A. HPO₄ 2-
 - B. H₂O
 - C. CH₄
 - D. NH₃
- 20. ¿Cuál causa deposición ácida?
 - A. SO₂
 - B. SiO₂
 - C. SrO
 - D. CO₂
- **21.** ¿Cuál es el estado de oxidación del oxígeno en el H_2O_2 ?
 - A. -2
 - B. -1
 - C. +1
 - D. +2
- 22. ¿Cuáles son los productos de la electrólisis de cloruro de potasio fundido, KCl(l)?

	Ánodo (electrodo positivo)	Cátodo (electrodo negativo)
A.	К	Cl
B.	Cl_2	К
C.	Cl	К
D.	К	Cl ₂

23. ¿Qué sucede en un ánodo?

	Pila voltaica	Celda electrolítica
A.	oxidación	reducción
B.	reducción	oxidación
C.	reducción	reducción
D.	oxidación	oxidación

- **24.** ¿Cuál pertenece a la misma serie homóloga del CH₃OCH₃?
 - A. CH₃COCH₃
 - B. CH₃COOCH₃
 - C. CH₃CH₂CH₂OH
 - D. CH₃CH₂CH₂OCH₃
- **25.** ¿Cuál es el nombre IUPAC de la molécula mostrada?

$$\begin{array}{cccc} \mathsf{CH_3} & \mathsf{CH_2CH_3} \\ & & | \\ \mathsf{H_3C} \textcolor{red}{\longleftarrow} \mathsf{CH} \textcolor{blue}{\longleftarrow} \mathsf{CH_2} \textcolor{blue}{\longleftarrow} \mathsf{CH} \textcolor{blue}{\longrightarrow} \mathsf{CH_3} \end{array}$$

- A. 2,4-dimetilhexano
- B. 3,5-dimetilhexano
- C. 2-metil-4-etilpentano
- D. 2-etil-4-metilpentano

26. ¿Qué monómero forma el polímero mostrado?

- A. $CH(Cl)=CH(CH_3)$
- B. CH₂=C(Cl)CH₃
- C. (CH₃)₂CHCl
- D. CH₂=CHCl
- **27.** ¿Cuál es la etapa de propagación en el mecanismo de sustitución por radicales libres del etano con cloro?
 - A. $Cl_2 \rightarrow 2 \cdot Cl$
 - B. ${}^{\bullet}C_2H_5 + Cl_2 \rightarrow C_2H_5Cl + {}^{\bullet}Cl$
 - C. ${}^{\bullet}C_2H_5 + {}^{\bullet}Cl \rightarrow C_2H_5Cl$
 - D. $C_2H_6 + \bullet Cl \rightarrow C_2H_5Cl + \bullet H$
- **28.** ¿Qué espectro mostraría la diferencia entre 2-propanol, CH₃CH(OH)CH₃, y propanal, CH₃CH₂CHO?
 - I. de masas
 - II. infrarrojo
 - III. RMN de ¹H
 - A. Solo I y II
 - B. Solo I y III
 - C. Solo II y III
 - D. I, II y III

29. ¿Cómo se debe mostrar la diferencia entre 27,0 \pm 0,3 y 9,0 \pm 0,2?

- A. $18,0 \pm 0,1$
- B. $18,0 \pm 0,3$
- C. $18,0 \pm 0,5$
- D. $18,0 \pm 0,6$

30. Se añadió un líquido a una probeta. ¿Qué se puede deducir de la gráfica?

	Gradiente	intersección con el eje y
A.	densidad del líquido	cantidad de líquido
B.	densidad del líquido	masa de la probeta vacía
C.	velocidad de añadido de líquido	cantidad de líquido
D.	velocidad de añadido de líquido	masa de la probeta vacía