Optimization-Based Data Analysis

Recitation 9

1. Let $f: \mathbb{R} \to \mathbb{R}$ be twice differentiable with $f''(x) \leq M$ for some $M \in \mathbb{R}$. If f(0) and f'(0) are known, give an upper bound on f(h) for fixed $h \in \mathbb{R}$.

Solution. By Taylor's theorem we have

$$f(h) = f(0) + f'(0)h + \frac{1}{2}f''(\eta)h^2,$$

for some η between 0 and h. Applying our bound shows

$$f(h) \le f(0) + f'(0)h + \frac{1}{2}Mh^2.$$

- 2. Let $f: \mathbb{R}^n \to \mathbb{R}$ be twice differentiable.
 - (a) Show that

$$f(\vec{x} + \vec{h}) = f(\vec{x}) + \nabla f(\vec{x})^T \vec{h} + \frac{1}{2} \vec{h}^T \nabla^2 f(\vec{\eta}) \vec{h},$$

where $\vec{\eta}$ is on the line segment between \vec{x} and $\vec{x} + \vec{h}$.

(b) Suppose all eigenvalues of $\nabla^2 f(\vec{x})$ lie in the interval [m, M] where $0 < m \le M$ for all $\vec{x} \in \mathbb{R}^n$. Use this to give bounds on $f(\vec{x} + \vec{h})$.

Solution.

(a) Define $g:[0,1]\to\mathbb{R}$ by $g(s)=f(\vec{x}+s\vec{h})$. Then we have

$$f(\vec{x} + \vec{h}) = g(1) = g(0) + g'(0) + \frac{1}{2}g''(\xi),$$

where $\xi \in (0,1)$. This gives

$$f(\vec{x} + \vec{h}) = f(\vec{x}) + \nabla f(\vec{x})^T \vec{h} + \frac{1}{2} \vec{h}^T \nabla^2 f(\vec{x} + \xi \vec{h}) \vec{h},$$

so let $\vec{\eta} = \vec{x} + \xi \vec{h}$.

(b) By the above we have

$$f(\vec{x}) + \nabla f(\vec{x})^T \vec{h} + m \|\vec{h}\|_2^2 / 2 \le f(\vec{x} + \vec{h}) \le f(\vec{x}) + \nabla f(\vec{x})^T \vec{h} + M \|\vec{h}\|_2^2 / 2.$$

3. Let $f: \mathbb{R}^n \to \mathbb{R}$ be twice differentiable with all eigenvalues of $\nabla^2 f(\vec{x})$ lying in the interval [m, M] where $0 < m \le M$ for all $\vec{x} \in \mathbb{R}^n$. We want to use gradient descent to minimize f.

- (a) Explain why having the upper bound M is useful when proving gradient descent converges quickly.
- (b) Explain why having the lower bound m is useful when proving gradient descent converges quickly.

Solution.

(a) If our step is $-s\nabla f(\vec{x})$ then we have

$$f(\vec{x} - s\nabla f(\vec{x})) \le f(\vec{x}) - s\|\nabla f(\vec{x})\|_2^2 + Ms^2\|\nabla f(\vec{x})\|_2^2/2.$$

This quadratic can be minimized over s = 1/M. Intuitively, if there is no upper bound on the Hessian then the gradient can change quickly, and thus we need to take very short steps.

(b) Note that

$$f(\vec{x} + \vec{h}) \ge f(\vec{x}) + \nabla f(\vec{x})^T \vec{h} + \frac{m}{2} ||\vec{h}||_2^2.$$

The righthand side is a quadratic in \vec{h} that is minimized (by computing the gradient) at $\vec{h} = -\frac{1}{m}\nabla f(\vec{x})$. This gives

$$f(\vec{x} + \vec{h}) \ge f(\vec{x}) - \frac{1}{2m} \|\nabla f(\vec{x})\|_2^2.$$

If we let $\vec{x} + \vec{h} = \vec{x}^*$, the unique global minimizer of f (since f is strictly convex) we see

$$2m(f(\vec{x}) - f(\vec{x}^*)) \le ||\nabla f(\vec{x})||_2^2.$$

Combining with the previous part shows, for s = 1/M, that

$$f(\vec{x} - s\nabla f(\vec{x})) - f(\vec{x}^*) \le f(\vec{x}) - f(\vec{x}^*) - \frac{1}{2M} \|\nabla f(\vec{x})\|_2^2 \le (f(\vec{x}) - f(\vec{x}^*))(1 - m/M).$$

Intuitively, this says if there is no lower bound on the Hessian, then $\nabla f(\vec{x})$ can be small, and thus we may not make much progress each step.

- 4. Suppose $f: \mathbb{R}^2 \to \mathbb{R}$ is given by $f(\vec{x}) = \frac{1}{2}\vec{x}^T A \vec{x}$ where A is symmetric.
 - (a) Under what conditions is f convex/concave?
 - (b) Under what conditions does f have a local minimum/maximum at 0?
 - (c) What are the possible shapes for the contour lines of f?

Solution.

- (a) Convex if A is positive semidefinite, concave if negative semidefinite.
- (b) If convex/concave.

- (c) Elliptical (if strictly convex or concave), hyperbolic (if indefinite), or lines (if non-strictly convex or concave).
- 5. Show that if $A \in \mathbb{R}^{n \times n}$ is symmetric positive semidefinite then $A = BB^T$ for some $B \in \mathbb{R}^{n \times n}$.

Solution. Did this on homework. Write $A = QDQ^T$ and let $B = Q\sqrt{D}$. Alternatively, let $B = Q\sqrt{D}Q^T$ where B is symmetric.

- 6. Suppose $A \in \mathbb{R}^{n \times n}$ is symmetric positive semidefinite.
 - (a) Must the trace of A be non-negative?
 - (b) Must every diagonal element of A be non-negative?
 - (c) Suppose every diagonal element of A is 1 and n > 2.
 - i. Must A be positive definite?
 - ii. Are there any restrictions on the value of $A_{12} = A_{21}$?
 - iii. Suppose $A_{12} = A_{21} = 1$. Must A not be positive definite?

Solution.

- (a) Note that $\operatorname{tr} A = \operatorname{tr} QDQ^T = \operatorname{tr} DQQ^T = \operatorname{tr} D$, where $A = QDQ^T$ is the spectral decomposition.
- (b) Note that $D_{ii} = \operatorname{tr} e_i^T A e_i \geq 0$.
 - i. No. For example, if the entire matrix was 1 it wouldn't be invertible.
 - ii. Yes, $A_{12} \in [-1, 1]$ by Cauchy-Schwarz. To see this, write $A = B^T B$ showing that every column of B has norm 1.
 - iii. Yes, the first two rows of A must be equal by Cauchy-Schwarz.