中华人民共和国国家标准

物理科学和技术中使用的数学符号

GB 3102. 11 — 93

代替 GB 3102.11-86

Mathematical signs and symbols for use in the physical sciences and technology

引言

本标准参照采用国际标准 ISO 31-11:1992《量和单位 第十一部分:物理科学和技术中使用的数学标志与符号》。

本标准是目前已经制定的有关量和单位的一系列国家标准之一,这一系列国家标准是:

- GB 3100 国际单位制及其应用;
- GB 3101 有关量、单位和符号的一般原则;
- GB 3102.1 空间和时间的量和单位;
- GB 3102.2 周期及其有关现象的量和单位;
- GB 3102.3 力学的量和单位;
- GB 3102.4 热学的量和单位;
- GB 3102.5 电学和磁学的量和单位;
- GB 3102.6 光及有关电磁辐射的量和单位;
- GB 3102.7 声学的量和单位;
- GB 3102.8 物理化学和分子物理学的量和单位;
- GB 3102.9 原子物理学和核物理学的量和单位;
- GB 3102.10 核反应和电离辐射的量和单位;
- GB 3102.11 物理科学和技术中使用的数学符号;
- GB 3102.12 特征数;
- GB 3102.13 固体物理学的量和单位。

上述国家标准贯彻了《中华人民共和国计量法》、《中华人民共和国标准化法》、国务院于1984年2月27日公布的《关于在我国统一实行法定计量单位的命令》和《中华人民共和国法定计量单位》。

本标准特殊说明:

变量(例如x,y等)、变动附标(例如 Σx_i 中的i)及函数(例如f,g等)用斜体字母表示。点A、线段AB及弧CD用斜体字母表示。在特定场合中视为常数的参数(例如a,b等)也用斜体字母表示。

有定义的已知函数 (例如 sin, exp, ln, Γ等)用正体字母表示。其值不变的数学常数 (例如 e=2.718 281 8···, π =3.141 592 6···, i^2 =-1 等)用正体字母表示。已定义的算子 (例如 div, δx 中的 δ 及 df/dx 中的 d)也用正体字母表示。

数字表中数(例如 351 204,1.32,7/8)的表示用正体。

函数的自变量写在函数符号后的圆括号中,且函数符号与圆括号之间不留空隙,例如 f(x), $\cos(\omega t + \varphi)$ 。如果函数的符号由两个或更多的字母组成且自变量不含十,一,×,• 或 / 等运算时,括于自变量的圆括号可以省略,这时在函数与自变量符号之间应留一空隙,例如 ent 2. 4, sin $n\pi$, arcosh 2A,

Ei x

为了避免混淆,常采用圆括号。例如不应将 $\cos(x)+y$ 或 $(\cos x)+y$ 写成 $\cos x+y$,因为后者可能被误解为 $\cos(x+y)$ 。

当一个表示式或方程式需断开、用两行或多行来表示时,最好在紧靠其中记号=,+,-,±,干,×, • 或/后断开,而在下一行开头不应重复这一记号。

用来表示某确定物理量的标量、矢量和张量与坐标系的选择无关,尽管矢量或张量的分量与坐标系的选择有关。

对"矢量 a 的分量"即 a_z , a_y 和 a_z 与"a 的分矢量"即 $a_z e_z$, $a_y e_y$ 和 $a_z e_z$ 加以区别是重要的。

径矢量的笛卡儿分量等同于径矢量端点的笛卡儿坐标。

物理量中的矢量可写成数值矢量与单位相乘的形式,

例:

分量
$$F_z$$
 数值矢量
$$\mathbf{F} = (3\mathbf{N}, -2\mathbf{N}, 5\mathbf{N}) = (3, -2, 5)\mathbf{N}$$
 数值 单位 单位

这里的单位 N 为标量,同样的办法也适用于二阶和高阶张量。

本标准的主要内容以表格形式列出。

如果在表格的同一项号中所给出的数学符号或表示式多于一个时,它们应是等同的。但在列出的顺序中,总是将常用的数学符号、相应的名称或表示式靠前列出。

在本表格备注一栏中给出的是符号的使用说明和应用示例。

本标准规定物理科学、工程技术和有关的教学中一般常用的数学符号;过于专门的数学符号未列入。

在本标准中,将国际标准 ISO 31-11:1992《量和单位 第十一部分:物理科学和技术中使用的数学标志与符号》称为[1],将原国家标准 GB 789-65《数学符号(试行草案)》称为[2]。

1 主题内容与适用范围

本标准规定了物理科学和技术中使用的数学符号的含义、读法和应用。本标准适用于所有科学技术领域。

2 物理科学和技术中使用的数学符号表

2.1 几何符号¹⁾

项号	符号	意义或读法	备注及示例
11-1-1	\overline{AB} , AB	[直] ²⁾ 线段 AB the line segment AB	用 <i>AB</i> , <i>AB</i> 或小写的拉丁字母表示该直线段的长。 矢量的表示参阅 11-12.1
11-1. 2	_	[平面]角 plane angle	参阅 GB 3102.1 的 1-1 及 1-1.a ~1-1.d
11-1.3	AВ	弧 AB the arc AB	当 AB 为圆弧时,可用 AB 表示 圆弧 AB [对应]的度数
11-1.4	π	圆周率 ratio of the circumference of a circle to its diameter	圆周长与直径的比, π=3.1415926····
11-1.5	Δ	三角形 triangle	
11-1.6		平行四边形 parallelogram	
11-1.7	•	圆 circle	
11-1.8		垂直 is perpendicular to	
11-1.9	//,	平行 is parallel to	■用于表示平行且相等
11-1.10	S	相似 is similar to	
11-1.11	S	全等 is congruent to	

¹⁾ 几何符号取材于[2]。

²⁾ 行文中方括号内的文字表示可以略去或不读,下同。

2.2 集合论符号

项号	符号	应用	意义或读法	备注及示例
11-2. 1	€	$x \in A$	x 属于 A;x 是集合 A 的一个元[素] x belongs to A; x is an element of the set A	集合 A 可简称为集 A
11-2. 2	∉	y otin A	y 不属于 A;y 不是集合 A 的 一个元 [素] y does not belong to A; y is not an element of the set A	也可用€或∈
11-2.3		A x	集 A 包含[元] x the set A contains x (as element)	
11-2. 4		A y	集 A 不包含 $[元]y$ the set A does not contain y (as element)	也可用 或
11-2.5	{,,}	$\{x_1,x_2,\cdots,x_n\}$	诸元素 x_1,x_2,\dots,x_n 构成的集 set with elements x_1,x_2,\dots,x_n	也可用 $\{x_i, i \in I\}$,这里的 I 表示指标集
11-2. 6	{ }	$\{x \in A \mid p(x)\}$	使命题 $p(x)$ 为真的 A 中诸元[素] 之集 set of those elements of A for which the proposition $p(x)$ is true	例: $\{x \in R x \le 5\}$,如果从前后关系来看,集 A 已很明确,则可使用 $\{x p(x)\}$ 来表示,例如: $\{x x \le 5\}$ $\{x \in A p(x)\}$ 有时也可写成 $\{x \in A : p(x)\}$ 或 $\{x \in A : p(x)\}$
11-2. 7	card	card(A)	A 中诸元素的数目; A 的势(或基数) number of elements in A; cardinal of A	
11-2.8	Ø		空集 the empty set	

项号	符号	应用	意义或读法	备注及示例
11-2.9	,N		非负整数集;自然数集 the set of positive integers and zero; the set of natural numbers	={0,1,2,3,···} 自 11-2.9至11-2.13集内排除0的集,应上标星号或下标十 号,例如 *或 +; _k ={0,1,····,k-1}
11-2. 10	,Z		整数集 the set of integers	={····,-2,-1,0,1,2,····} 参阅 11-2. 9 的备注
11-2. 11	,Q		有理数集 the set of rational numbers	参阅 11-2.9 的备注
11-2. 12	,R		实数集 the set of real numbers	参阅 11-2.9 的备注
11-2. 13	,с		复数集 the set of complex numbers	参阅 11-2.9 的备注
11-2.14	[,]	[a ,b]	中由 a 到 b 的闭区间 closed interval in from a (included) to b (included)	$[a,b] = \{x \in a \leqslant x \leqslant b\}$
11-2. 15].]] a,b] (a,b]	中由 a 到 b(含于内)的左 半开区间 left half-open interval in from a (excluded) to b (included)	
11-2. 16	[,[$\begin{bmatrix} a,b \end{bmatrix}$	中由 a(含于内)到 b 的右 半开区间 right half-open interval in from a (included) to b (excluded)	$[a,b] = \{x \in a \leq x < b\}$
11-2.17],[a,b[(a,b)	中由 a 到 b 的开区间 open interval in from a (excluded) to b (excluded)	

项号	符号	应用	意义或读法	备注及示例
11-2. 18	IN	$B \subseteq A$	B 含于 A; B 是 A 的子集 B is included in A; B is a subset of A	<i>B</i> 的每一元均属于 <i>A</i> ,也可以 用⊂
11-2. 19	¥	B⊊A	B 真包含于 A; B 是 A 的真 子集 B is properly included in A; B is a proper subset of A	B 的每一元均属于 A ,但 B 不等于 A
11-2. 20	\$	C⊈A	C 不包含于 A; C 不是 A 的 子集 C is not included in A; C is not a subset of A	也可用⊄
11-2. 21	N	A⊇B	A 包含 B[作为子集] A includes B (as subset)	A 包含了 B 的每一元,也可用 \bigcirc 。 $A \supseteq B 与 B \subseteq A$ 的含义相同
11-2. 22	¥	$A \supseteq B$	A 真包含 B A includes B properly	A 包含了 B 的每一元,但 A 不等于 B 。 $A \supseteq B \cup B \subseteq A$ 的含义相同
11-2. 23	⊉	$A \not\supseteq C$	A 不包含 C[作为子集] A does not include C (as subset)	也可用 $几$ 。 $A 口 C 与 C ⊈ A 的含义相同$
11-2. 24	U	$A \cup B$	A 与 B 的并集 union of A and B	属于 A 或属于 B 或属于两者的所有元的集。 $A \cup B = \{x \mid x \in A \ \forall x \in B\}$ 参阅 11-3. 2
11-2. 25	U	$\displaystyle{\bigcup_{i=1}^{n}}A_{i}$	诸集 A_1, \dots, A_n 的并集 union of a collection of sets A_1, \dots, A_n	$\ddot{\bigcup}_{i=1}^{n} A_{i} = A_{1} \cup A_{2} \cup \cdots \cup A_{n}$ 至少属于诸集 A_{1}, \cdots, A_{n} 之一的所有元的集。 也可用 $\bigcup_{i=1}^{n}, \bigcup_{i \in I}$ 与 $\bigcup_{i \in I}$, 其中 I 表示指标集

项号	符号	应用	意义或读法	备注及示例
11-2. 26	Λ	$A \cap B$	A 与 B 的交集 intersection of A and B	所有既属于 A 又属于 B 的元的集。 $A \cap B = \{x \mid x \in A \land x \in B\}$ 参阅 11-3. 1
11-2. 27	Λ	${\displaystyle\bigcap_{i=1}^{n}}A_{i}$	诸集 A_1, \dots, A_n 的交集 intersection of a collection of sets A_1, \dots, A_n	$ \bigcap_{i=1}^{n} A_i = A_1 \cap A_2 \cap \cdots \cap A_n $ 共属于诸集 A_1, A_2, \cdots, A_n 的 所有元的集。 也可用 $\bigcap_{i=1}^{n} , \bigcap_{i \in I} $
11-2. 28	\	$A \setminus B$	A与B之差;A减B difference of A and B; A minus B	所有属于 A 但不属于 B 的元的集。 $A \setminus B = \{x \mid x \in A \land x \notin B\}$ 也可用 $A - B$
11-2. 29		дB	A 中子集 B 的补集或余集 complement of subset B of A	A 中不属于子集 B 的所有元的集。 ${}_{A}B = \{x \mid x \in A \land x \notin B\}$ 如果行文中集 A 已很明确,则常可省去符号 A 。 也可写成 ${}_{A}B = A \setminus B$
11-2. 30	(,)	(a,b)	有序偶 a,b; 偶 a,b ordered pair a,b; couple a, b	(a,b) = (c,d) 当且仅当 a=c 及 b=d 不与其他符号混淆时,也可用 ⟨a,b⟩
11-2. 31	(,,)	(a_1,a_2,\cdots,a_n)	有序 n 元组 ordered n-tuplet	也可用〈a1,a2,…,a,〉
11-2. 32	×	$A \times B$	A 与 B 的笛卡儿积 cartesian product of A and B	所有由 $a \in A$ 与 $b \in B$ 作成的有序偶(a,b)的集。 $A \times B = \{(a,b) a \in A \land b \in B\}$ $A \times A \times \cdots \times A $

项号	符号	应用	意义或读法	备注及示例
11-2. 33	Δ	Δ_A	$A \times A$ 中点对 (x,x) 的集,其 中 $x \in A$; $A \times A$ 的对角集 set of pairs (x,x) of $A \times$ A , where $x \in A$; diagonal of the set $A \times A$	$\Delta_A = \{(x,x) x \in A\}$ 也可用 id_A

2.3 数理逻辑符号

项号	符号	应用	符号名称	意义、读法及备注
11-3. 1	٨	$p \wedge q$	合取符号 conjunction sign	p 和 q
11-3. 2	V	p∨q	析取符号 disjunction sign	p 或 q
11-3. 3	_	¬ p	否定符号 negation sign	p 的否定;不是 p;非 p
11-3. 4	⇒	$p \Rightarrow q$	推断符号 implication sign	若 p 则 q ; p 蕴含 q 也可写为 q ← p 有时也用→
11-3. 5	\Leftrightarrow	$p \Leftrightarrow q$	等价符号 equivalence sign	$p \Rightarrow q \perp q \Rightarrow p; p$ 等价于 q 有时也用 \leftrightarrow
11-3. 6	A	$\forall x \in A p(x)$ $(\forall x \in A) p(x)$	全称量词 universal quantifier	命题 $p(x)$ 对于每一个属于 A 的 x 为真。 当考虑的集合 A 从上下文看很明白时,可用记号 $\forall x p(x)$
11-3. 7	Ξ	$\exists x \in A p(x)$ $(\exists x \in A) p(x)$	存在量词 existential quantifier	存在 A 中的元 x 使 $p(x)$ 为真。 当考虑的集合 A 从上下文看很明白时,可用记号 x $p(x)$ 。 $\exists !$ 或 \exists 用来表示存在一个且只有一个元素使 $p(x)$ 为真

2.4 杂类符号

项号	符号	应用	意义或读法	备注及示例
11-4.1	=	a = b	a 等于 b a is equal to b	■用来强调这一等式是数学上 的恒等[式]
11-4. 2	#	$a \neq b$	a 不等于 b a is not equal to b	
11-4.3	def	a def b	按定义 a 等于 b 或 a 以 b 为 定义 a is definition equal to b	例: p
11-4. 4	\triangleq	a riangleq b	a 相当于 b a corresponds to b	例如在地图上当 1 cm 相当于 10 km 长时,可写成 1 cm 10 km
11-4.5	*	a pprox b	a 约等于 b a is approximately equal to b	符号 ~ 被用于 " 渐近等于 " ;参 阅 11-6.11
11-4.6	8	a ∞b	a 与 b 成正比 a is proportional to b	在[1]中也用~
11-4.7	•	a:b	a 比 b ratio of a to b	选自[2]
11-4.8	<	a b	a 小于 b a is less than b	
11-4.9	>	b>a	b 大于 a b is greater than a	
11-4. 10	W	$a \leqslant b$	a 小于或等于 b a is less than or equal to b	不用≦
11-4. 11	/	$b\geqslant a$	b 大于或等于 a b is greater than or equal to a	不用≧
11-4. 12	«	$a \ll b$	a 远小于 b a is much less than b	
11-4. 13	>>	b≫a	b 远大于 a b is much greater than a	

项号	符号	应用	意义或读法	备注及示例
11-4.14	∞		无穷[大]或无限[大] infinity	
11-4. 15	~	<i>a</i> ∼ <i>b</i>	数字范围 the range of numbers	这里的 a 和 b 为不同的实数, 例如 5~10 表示由 5 至 10。 选自[2]
11-4. 16	•	13. 59	小数点 decimal point	整数和小数之间用处于下方位置的小数点"."分开。参阅 GB 3101 的 3.3.2
11-4. 17	• •	3. 123 82	循环小数 circulator	即:3. 123 823 82…
11-4. 18	%	5%~10%	百分率 percent	~前的%不应省略
11-4. 19	()		圆括号 parentheses	
11-4. 20			方括号 square brackets	
11-4. 21	{ }		花括号 braces	
11-4. 22	< >		角括号 angle brackets	
11-4. 23	±		正或负 positive or negative	
11-4. 24	+		负或正 negative or positive	
11-4. 25	max		最大 maximum	
11-4. 26	min		最小 minimum	

2.5 运算符号

项号	符号,应用	意义或读法	备注及示例
11-5. 1	a+b	a 加 b a plus b	
11-5. 2	a-b	a 减 b a minus b	
11-5. 3	$a\pm b$	a 加或減 b a plus or minus b	
11-5. 4	a∓b	a 减或加 b a minus or plus b	$-(a\pm b) = -a\mp b$
11-5. 5	$ab, a \cdot b, a imes b$	a 乘以 b a multiplied by b	参阅 11-2. 32, 11-12. 6 及 11-12. 7。 数的乘号用叉(×)或上下居中的圆点(•)。如出现小数点符号时,数的相乘只能用叉。 参阅GB 3101的3. 1. 3和3. 3. 3
11-5.6	$\frac{a}{b}$, a/b , ab^{-1}	a 除以b 或 a 被 b 除 a divided by b	参阅 GB 3101 的 3.1.3
11-5. 7	$\sum_{i=1}^{n} a_{i}$	$a_1+a_2+\cdots+a_n$	也可记为 $\sum_{i=1}^{n} a_i, \sum_{i} a_i, \sum_{i} a_i, \sum_{i} a_i$ $\sum_{i=1}^{\infty} a_i = a_1 + a_2 + \dots + a_n + \dots$
11-5.8	$\prod_{i=1}^{n} a_{i}$	$a_1 \cdot a_2 \cdot \cdots \cdot a_n$	也可记为 $\prod_{i=1}^n a_i, \prod_i a_i, \prod_i a_i, \prod a_i$ $\prod_{i=1}^\infty a_i = a_1 \cdot a_2 \cdot \cdots \cdot a_n \cdot \cdots$
11-5. 9	a^p	a 的 p 次方或 a 的 p 次幂 a to the power p	
11-5. 10	$a^{1/2}, a^{\frac{1}{2}},$ \sqrt{a}, \sqrt{a}	a 的二分之一次方;a 的平方 根 a to the power 1/2; square root of a	参阅 11-5. 11

项号	符号,应用	意义或读法	备注及示例
11-5. 11	$a^{1/n}, a^{\frac{1}{n}},$ $\sqrt[n]{a}, \sqrt[n]{a}$	a 的 n 分之一次方;a 的 n 次 方根 a to the power 1/n; nth root of a	在使用符号 〈 或 * /时,为了避免混淆,应采用括号把被开方的复杂表示式括起来
11-5. 12	a	a 的绝对值;a 的模 absolute value of a; modules of a	也可用 abs a
11-5. 13	sgn a	a 的符号函数 signum a	对于实数 a : $ sgn a = \begin{cases} 1 & \text{if } a > 0 \\ 0 & \text{if } a = 0 \\ -1 & \text{if } a < 0 \end{cases} $ 对于复数 a , 参阅 11-9. 7
11-5. 14	\overline{a} , $\langle a \rangle$	a 的平均值 mean value of a	如果平均值的求法在文中不明了,则应指出其形成的方法。若 ā 容易与 a 的复共轭混淆时,就用 〈a〉
11-5. 15	n!	n 的阶乘 factorial n	$n\geqslant 1$ 时, $n!=\prod_{k=1}^n k=1\times 2\times 3\times \cdots \times n$ $n=0$ 时, $n!=1$
11-5. 16	$\binom{n}{p}$, C_n^p	二项式系数;组合数 binomial coefficient n,p	$\binom{n}{p} = \frac{n!}{p! (n-p)!}$
11-5. 17	ent a,E(a)	小于或等于 a 的最大整数; 示性 a the greatest integer less than or equal to a; characteristic of a	例:ent 2. 4=2 ent(-2. 4)=-3 有时也用[a]

2.6 函数符号

项号	符号,应用	意义或读法	备注及示例
11-6. 1	f	函数 f function f	也可以表示为 $x \rightarrow f(x)$
11-6. 2	$f(x)$ $f(x,y,\cdots)$	函数 f 在 x 或在 (x,y,\cdots) 的值 value of the function f at x or at (x,y,\cdots) respectively	也表示以 x , y , … 为自变量的 函数 f
11-6.3	$f(x) _a^b \ [f(x)]_a^b$	f(b)-f(a)	这种表示法主要用于定积分计 算
11-6. 4	$g\circ f$	f 与 g 的合成函数或复合函数 the composite function of f and g	$(g \circ f)(x) = g(f(x))$
11-6. 5	<i>x</i> → <i>a</i>	x 趋于 a x tends to a	用 $x_n \rightarrow a$ 表示序列 $\{x_n\}$ 的极限为 a
11-6.6	$\lim_{x \to a} f(x)$ $\lim_{x \to a} f(x)$	x 趋于 a 时 $f(x)$ 的极限 limit of $f(x)$ as x tends to a	$\lim_{x\to a} f(x) = b$ 可以写为: $f(x) \to b$ 当 $x\to a$ 右极限及左极限可分别表示 为: $\lim_{x\to a} + f(x)$ 和 $\lim_{x\to a} - f(x)$
11-6.7	lim	上极限 superior limit	
11-6.8	<u>lim</u>	下极限 inferior limit	
11-6. 9	sup	上确界 supremum	
11-6. 10	inf	下确界 infimum	11-6.7至11-6.10取材于[2]
11-6. 11	~	渐近等于 is asymptotically equal to	例: $\frac{1}{\sin(x-a)} \simeq \frac{1}{x-a} \exists \ x \to a$

项号	符号,应用	意义或读法	备注及示例
11-6. 12	O(g(x))	f(x) = O(g(x))的含义为 $ f(x)/g(x) $ 在行文所述的 极限中有上界 $ f(x)/g(x) $ is bounded above in the limit implied by the context	当 f/g 与 g/f 都有界时,称 f 与 g 是同阶的
11-6. 13	o(g(x))	f(x) = o(g(x))表示在行文 所述的极限中 $f(x)/g(x)$ $\rightarrow 0$ $f(x)/g(x) \rightarrow 0$ in the limit implied by the context	
11-6. 14	Δx	x 的[有限]增量 (finite) increment of x	
11-6. 15	$rac{\mathrm{d}f}{\mathrm{d}x}$ $\mathrm{d}f/\mathrm{d}x$ f'	单变量函数 f 的导[函]数或微商 derivative of the function f of one variable	也可用 Df 。 即: $\frac{\mathrm{d}f(x)}{\mathrm{d}x}$, $\mathrm{d}f(x)/\mathrm{d}x$, $f'(x)$, $Df(x)$ 。 如自变量为时间 t ,也可用 f 表示 $\mathrm{d}f/\mathrm{d}t$
11-6. 16	$ \left(\frac{\mathrm{d}f}{\mathrm{d}x} \right)_{x=a} $ $ \left(\frac{\mathrm{d}f}{\mathrm{d}x} \right)_{x=a} $ $ f'(a) $	函数 f 的导[函]数在 a 的值 value at a of the derivative of the function f	也可用 $\frac{\mathrm{d}f}{\mathrm{d}x}\Big _{x=a}$ 或 $\mathrm{D}f(a)$
11-6. 17	$rac{\mathrm{d}^n f}{\mathrm{d} x^n}$ $\mathrm{d}^n f / \mathrm{d} x^n$ $f^{(n)}$	单变量函数 f 的 n 阶导函数 nth derivative of the function f of one variable	也可用 $D^n f$ 。 当 $n=2,3$ 时,也可用 f'',f''' 来代替 $f^{(n)}$ 。如自变量是时间 t ,可用 f 来代替 $\frac{\mathrm{d}^2 f}{\mathrm{d}t^2}$
11-6. 18	<u>∂f</u> ∂ar ∂f/∂ar ∂ _z f	多变量 x,y,\cdots 的函数 f 对于 x 的偏微商或偏导数 partial derivative of the function f of several variables x,y,\cdots with respect to x	即: $\frac{\partial f(x,y,\cdots)}{\partial x}$, $\partial f(x,y,\cdots)/\partial x$, $\partial f(x,y,\cdots)$ 。 也可用 \int_z 或 $\left(\frac{\partial f}{\partial x}\right)_{y}$ $D_z=\frac{1}{\mathrm{i}}\partial_z$ 等常用于 Fourier 变换

项号	符号,应用	意义或读法	备注及示例
11-6. 19	$\frac{\partial^{m+n} f}{\partial x^n \partial y^m}$	函数 f 先对 y 求 m 次偏微 商,再对 x 求 n 次偏微商;混合偏导数 nth partial derivative of the function $\partial^n f/\partial y^m$ of several variables x , y , with respect to x ; mixed partial derivative	
11-6. 20	$\frac{\partial(u,v,w)}{\partial(x,y,z)}$	u,v,w 对 x,y,z 的函数行列式 Jacobian; functional determinant of the functions u,v,w with respect to x,y,z	即: $\begin{vmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} & \frac{\partial u}{\partial z} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} & \frac{\partial v}{\partial z} \\ \frac{\partial w}{\partial x} & \frac{\partial w}{\partial y} & \frac{\partial w}{\partial z} \end{vmatrix}$ 11-6. 19 与 11-6. 20 选自[2]
11-6. 21	df	函数 f 的全微分 total differential of the function f	$\mathrm{d}f(x,y,\cdots)=rac{\partial f}{\partial x}\mathrm{d}x\ +$ $rac{\partial f}{\partial y}\mathrm{d}y\ +\cdots$
11-6. 22	δf	函数 f 的(无穷小)变分 (infinitesimal) variation of the function f	
11-6. 23	$\int f(x) \mathrm{d}x$	函数 f 的不定积分 an indefinite integral of the function f	
11-6. 24	$\int_{a}^{b} f(x) dx$ $\int_{a}^{b} f(x) dx$	函数 f 由 a 至 b 的定积分 definite integral of the function f from a to b	
11-6. 25	$\iint\limits_A f(x,\!y)\;\mathrm{d}A$	函数 $f(x,y)$ 在集合 A 上的二重积分 the double integral of function $f(x,y)$ over set A	选自[2]。 \int_{S} , \int_{S} , \int_{S} 分别用于沿曲 线 C ,沿曲面 S ,沿体积 V 以及沿闭曲线或闭曲面的积分

项号	符号,应用	意义或读法	备注及示例
11-6. 26	δ_{ik}	克罗内克δ符号 Kronecker delta symbol	$\delta_{ik} = \begin{cases} 1 & \text{if } i = k \\ 0 & \text{if } i \neq k \end{cases}$ 式中 i 与 k 均为整数
11-6. 27	Eijk	勒维-契维塔符号 Levi-Civita symbol	$egin{array}{cccccccccccccccccccccccccccccccccccc$
11-6. 28	$\delta(x)$	狄拉克δ分布[函数] Dirac delta distribution (function)	$\int_{-\infty}^{+\infty} f(x)\delta(x)\mathrm{d}x = f(0)$
11-6. 29	$\varepsilon(x)$	单位阶跃函数;海维赛函数 unit step function; Heaviside function	$ \epsilon(x) = \begin{cases} 1 & \text{if } x > 0 \\ 0 & \text{if } x < 0 \end{cases} $ 也可用 $\mathbf{H}(x)$ $\mathbf{f}(t)$ 用于时间的单位阶跃函数
11-6. 30	f * g	f 与 g 的卷积 convolution of f and g	$(f * g)(x) = \int_{-\infty}^{+\infty} f(y)g(x - y)dy$

2.7 指数函数和对数函数符号

项号	符号,表达式	意义或读法	备注及示例	
11-7.1	a^x	x 的指数函数(以 a 为底) exponential function (to the base a) of x	比较 11-5.9	
11-7. 2	e	自然对数的底 base of natural logarithms	$e = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n = 2.718 \ 281 \ 8 \cdots$	
11-7.3	e ^x ,exp x	x 的指数函数(以e为底) exponential function (to the base e) of x	在同一场合中,只用其中一种 符号	

项号	符号,表达式	意义或读法	备注及示例	
11-7. 4	$\log_a x$	以 a 为底的 x 的对数 logarithm to the base a of x	当底数不必指出时,常用 logx 表示	
11-7.5	ln x	$\ln x = \log_e x$ x 的自然对数 natural logarithm of x	$\log x$ 不能用来代替 $\ln x$, $\log x$, $\log \log_0 x$, $\log \log_0 x$, $\log 2 x$	
11-7.6	lg x	$\lg x = \log_{10} x$ x 的常用对数 $subsetem common (decimal)$ $subsetem common (decimal)$	参阅 11-7.5 的备注	
11-7.7	lb x	$1b \ x = \log_2 x$ x 的以 2 为底的对数 binary logarithm of x	参阅 11-7.5 的备注	

2.8 三角函数¹⁾和双曲函数符号

项号	符号,表达式	意义或读法	备注及示例
11-8. 1	sin x	x 的正弦 sine of x	
11-8. 2	cos x	x 的余弦 cosine of x	
11-8. 3	tan x	x 的正切 tangent of x	也可用 tg x
11-8. 4	cot x	x 的余切 cotangent of x	$\cot x = 1/\tan x$
11-8. 5	sec x	x 的正割 secant of x	$\sec x = 1/\cos x$
11-8. 6	csc x	x 的余割 cosecant of x	也可用 $\cos x$ $\csc x = 1/\sin x$

¹⁾ 在[1]中称为圆函数。

项号	符号,表达式	意义或读法	备注及示例
11-8. 7	$\sin^m x$	sin x 的 m 次方 sin x to the power m	选自[2]。 其他三角函数和双曲函数的 <i>m</i> 次方的表示法类似
11-8. 8	arcsin x	x 的反正弦 arc sine of x	$y = \arcsin x \Leftrightarrow x = \sin y$, $-\pi/2 \leqslant y \leqslant \pi/2$ 反正弦函数是正弦函数在上述 限制下的反函数
11-8. 9	arccos x	x 的反余弦 arc cosine of x	$y = \arccos x \Leftrightarrow x = \cos y$, $0 \leqslant y \leqslant \pi$ 反余弦函数是余弦函数在上述 限制下的反函数
11-8. 10	arctan x	x 的反正切 arc tangent of x	也可用 $\operatorname{arctg} x$ 。 $y = \operatorname{arctan} x \Leftrightarrow x = \operatorname{tan} y$, $-\pi/2 < y < \pi/2$ 反正切函数是正切函数在上述 限制下的反函数
11-8. 11	arccot x	x 的反余切 arc cotangent of x	$y = \operatorname{arccot} x \Leftrightarrow x = \cot y$, $0 < y < \pi$ 反余切函数是余切函数在上述 限制下的反函数
11-8. 12	arcsec x	x 的反正割 arc secant of x	$y = \operatorname{arcsec} x \iff x = \operatorname{sec} y$, $0 \leqslant y \leqslant \pi, y \neq \pi/2$ 反正割函数是正割函数在上述限制下的反函数
11-8. 13	arcese x	x 的反余割 arc cosecant of x	也可用 $\operatorname{arccosec} x$ 。 $y = \operatorname{arccsc} x \Leftrightarrow x = \operatorname{csc} y$, $-\pi/2 \leqslant y \leqslant \pi/2$, $y \neq 0$ 反余割函数是余割函数在上述限制下的反函数。 对于 $11-8$. $8 \cong 11-8$. $13 \cong 3 \cong 11-8$ $13 \cong 11-8$

项号	符号,表达式	意义或读法	备注及示例	
11-8. 14	sinh x	x 的双曲正弦 hyperbolic sine of x	也可用 sh x	
11-8. 15	cosh x	x 的双曲余弦 hyperbolic cosine of x	也可用 ch <i>x</i>	
11-8. 16	tanh x	x 的双曲正切 hyperbolic tangent of x	也可用 th x	
11-8. 17	coth x	x 的双曲余切 hyperbolic cotangent of x	$\coth x = 1/\tanh x$	
11-8. 18	sech x	x 的双曲正割 hyperbolic secant of x	$\mathrm{sech}\ x = 1/\mathrm{cosh}\ x$	
11-8. 19	csch x	x 的双曲余割 hyperbolic cosecant of x	也可用 $\operatorname{cosech} x$ 。 $\operatorname{csch} x = 1/\sinh x$	
11-8. 20	arsinh x	x 的反双曲正弦 inverse hyperbolic sine of x	也可用 $arsh x$ 。 $y = arsinh x \leftrightarrow x = sinh y$ 反双曲正弦函数是双曲正弦函数的反函数	
11-8. 21	arcosh x	x 的反双曲余弦 inverse hyperbolic cosine of x	也可用 $arch x$ 。 $y = arcosh x \Leftrightarrow x = cosh y$, $y \geqslant 0$ 反双曲余弦函数是双曲余弦函数在上述限制下的反函数	
11-8. 22	artanh x	x 的反双曲正切 inverse hyperbolic tangent of x	也可用 $arth x$ 。 $y = artanh x \Leftrightarrow x = tanh y$ 反双曲正切函数是双曲正切函数的反函数	
11-8. 23	arcoth x	x 的反双曲余切 inverse hyperbolic cotangent of x	$y = \operatorname{arcoth} x \leftrightarrow x = \operatorname{coth} y$, $y \neq 0$ 反双曲余切函数是双曲余切函 数在上述限制下的反函数	

项号	符号,表达式	意义或读法	备注及示例
11-8. 24	arsech x	x 的反双曲正割 inverse hyperbolic secant of x	$y = \operatorname{arsech} x \Leftrightarrow x = \operatorname{sech} y$, $y \geqslant 0$ 反双曲正割函数是双曲正割函 数在上述限制下的反函数
11-8. 25	arcsch x	x 的反双曲余割 inverse hyperbolic cosecant of x	也可用 $arcosech x$ 。 $y = arcsch x \Leftrightarrow x = csch y$, $y \neq 0$ 反双曲余割函数是双曲余割函数在上述限制下的反函数。 对于反双曲函数,不应使用 $sinh^{-1}x$, $cosh^{-1}x$ 等符号,因 为可能被误解为 $(sinh x)^{-1}$, $(cosh x)^{-1}$ 等

2.9 复数符号

2.3 反致1	1.2		
项号	符号,表达式	意义或读法	备注及示例
11-9. 1	i,j	虚数单位,i ² =-1 imaginary unit	在电工技术中常用 j, 参阅 GB 3102.5的 5-44.1 的备注
11-9. 2	Re z	z 的实部 real part of z	
11-9. 3	Im z	z 的虚部 imaginary part of z	z=x+iy 其中 $x=\text{Re }z$, $y=\text{Im }z$
11-9. 4	z	z 的绝对值;z 的模 absolute value of z; modulus of z	也可用 mod z
11-9.5	arg z	z 的辐角;z 的相 argument of z; phase of z	$z=re^{i\varphi}$ 其中 $r= z $, $\varphi=\arg z$, 即 Re $z=r\cos \varphi$,Im $z=r\sin \varphi$
11-9.6	z*	z 的[复]共轭 (complex) conjugate of z	有时用 ₹ 代替 z*
11-9.7	sgn z	z 的单位模函数 signum z	当 $z\neq 0$ 时,sgn $z=z/ z =$ exp(i arg z); 当 $z=0$ 时,sgn $z=0$

2.10 矩阵符号

项号	符号,表达式	意义或读法	备注及示例
11-10.1	$A \ \begin{pmatrix} A_{11} \cdots A_{1n} \\ \vdots & \vdots \\ A_{m1} \cdots A_{mn} \end{pmatrix}$	$m \times n$ 型的矩阵 A matrix A of type m by n	也可用 A = (A _{ij}), A _{ij} 是矩阵 A 的元素; m 为行数, n 为列数。当 m = n 时, A 称为[正]方阵。矩阵元可用小写字母表示。 也可用方括号代替矩阵表示中的圆括号
11-10.2	AB	矩阵 A与 B 的积 product of matrices A and B	$(AB)_{ii} = \sum_{j} A_{ij} B_{ji}$ 式中 A 的列数必须等于 B 的行数
11-10.3	E,I	单位矩阵 unit matrix	方阵的元素 $E_{ik} = \delta_{ik}$,参阅 11-6.26
11-10. 4	A^{-1}	方阵 A 的逆 inverse of the square matrix A	$AA^{-1} = A^{-1}A = E$
11-10.5	A^{T} , \widetilde{A}	A的转置矩阵 transpose matrix of A	(A ^T) _{ii} =A _{ii} 也可用 A'
11-10.6	A*	A的复共轭矩阵 complex conjugate matrix of A	$(A^*)_{it} = (A_{it})^* = A_{it}^*$ 在数学中也常用 \overline{A}
11-10.7	A^{H} , A^{\dagger}	A的厄米特共轭矩阵 Hermitian conjugate matrix of A	$(A^{\mathrm{H}})_{ii} = (A_{ii})^* = A_{ii}^*$ 在数学中也常用 A^*
11-10.8	$\begin{vmatrix} A_{11} \cdots A_{1n} \\ \vdots & \vdots \\ A_{n1} \cdots A_{nn} \end{vmatrix}$	方阵 A 的行列式 determinant of the square matrix A	
11-10.9	tr A	方阵 A 的迹 trace of the square matrix A	$\operatorname{tr} A = \sum_{i} A_{ii}$
11-10.10	$\ A\ $	矩阵 A 的范数 norm of the matrix A	矩阵的范数有各种定义,例如 范数 $\ A\ = (\operatorname{tr}(AA^{\operatorname{H}}))^{1/2}$

2.11 坐标系符号

项号	坐标	径矢量及其微分	坐标系名称	备注
11-11.1	x ,y ,z	$r=xe_z+ye_y+ze_z$, $dr=dx e_z+dy e_y+dz e_z$	笛卡儿坐标 cartesian coordinates	e_z , e_y 与 e _z 组成一标准正交 右手系,见图 1
11-11.2	ho , $arphi$, z	$r= ho e_{ ho}(\varphi)+ze_{z},\ dr=$ $d\rho \ e_{ ho}(\varphi)+ ho \ d\varphi \ e_{arphi}(\varphi)+dz \ e_{z}$	圆柱坐标 cylindrical coordinates	e_{ρ} , e_{φ} 与 e_{z} 组成一标准正交 右手系, 见图 3 和图 4 。 若 $z=0$,则 ρ 与 φ 成为极坐 标
11-11.3	r , $ heta$, $oldsymbol{arphi}$	$r = re_r(\theta, \varphi), dr = dr e_r(\theta, \varphi) + r d\theta e_{\theta}(\theta, \varphi) + r \sin \theta d\varphi e_{\varphi}(\varphi)$	球坐标 spherical coordinates	e,,e,与e,组成一标准正交 右手系,见图3和图5

注:如果为了某些目的,例外地使用左手坐标系(见图 2)时,必须明确地说出,以免引起符号错误

2.12 矢量和张量符号

项号	符号,表达式	意义或读法	备注及示例
11-12.1	a → a	矢量或向量 a vector a	这里,笛卡儿坐标用 x , y , z 或 x_1 , x_2 , x_3 表示,在后一种情况,指标 i , j , k , l 从 1 到 3 取值,并采用下面的求和约定:如果在一项中某个指标出现两次,则表示该指标对 1,2,3 求和。印刷用黑体 a ,书写用 \vec{a}
11-12.2	a a	矢量 a 的模或长度 magnitude of vector a	也可用 a
11-12. 3	e_a	a 方向的单位矢量 unit vector in the direction of a	$e_a = a/ a $ $a = ae_a$
11-12. 4	e_x,e_y,e_z i,j,k e_i	在笛卡儿坐标轴方向的单位 矢量 unit vectors in the directions of the cartesian coordinate axes	
11-12.5	a_x, a_y, a_z a_i	矢量 a 的笛卡儿分量 cartesian components of vector a	$a=a_ze_z+a_ye_y+a_ze_z=(a_x,a_y,a_z),$ a_ze_z 等为分矢量。 $r=xe_x+ye_y+ze_z$ 为矢径
11-12.6	a • b	a 与 b 的标量积或数量积 scalar product of a and b	$egin{aligned} a \cdot b &= a_z b_z + a_y b_y + a_z b_z \ , \ a \cdot b &= a_i b_i &= \sum_i a_i b_i ($
11-12.7	$a \times b$	a 与 b 的矢量积或向量积 vector product of a and b	在右手笛卡儿坐标系中,分量 $(a \times b)_x = a_y b_z - a_z b_y$, $-般 (a \times b)_i = \sum_j \sum_k \epsilon_{ijk} a_j b_k$ 对于 ϵ_{ijk} ,参阅 11-6. 27

项号	符号,表达式	意义或读法	备注及示例
11-12.8	∇ →	那勃勒算子或算符 nabla operator	也称矢量微分算子。 $ \nabla = e_z \frac{\partial}{\partial x} + e_y \frac{\partial}{\partial y} + e_z \frac{\partial}{\partial z} = e_i \frac{\partial}{\partial x_i} $ 也可用 $\frac{\partial}{\partial r}$
11-12.9	abla arphi grad $arphi$	φ的梯度 gradient of φ	也可用 grad $oldsymbol{arphi}$ $ abla oldsymbol{arphi} = oldsymbol{e}_i rac{\partial oldsymbol{arphi}}{\partial x_i}$
11-12.10	$ abla \cdot a$ div a	a 的散度 divergence of a	$ abla \cdot a = \frac{\partial a_i}{\partial x_i}$
11-12.11	∇×a rot a curl a	a 的旋度 curl of a	气象学上称为涡度。 也可用 rot a , curl a 。 $(\nabla \times a)_x = \frac{\partial a_z}{\partial y} - \frac{\partial a_y}{\partial z}$, $- 般(\nabla \times a)_i = \sum_j \sum_k \epsilon_{ijk} \frac{\partial a_k}{\partial x_j}$ 关于 ϵ_{ijk} ,参阅 11-6. 27
11-12. 12	$ abla^2 \\ \Delta$	拉普拉斯算子 Laplacian	$\Delta = \frac{g}{ax^2} + \frac{g}{ay^2} + \frac{g}{az^2}$ 若与 11-6. 14 中有限增量的符号容易混淆时,就用 ∇^2
11-12. 13		达朗贝尔算子 Dalembertian	$\Box = \frac{\partial}{\partial x^2} + \frac{\partial}{\partial y^2} + \frac{\partial}{\partial z^2} - \frac{1}{c_2} \frac{\partial}{\partial z^2}$ 式中 c 为电磁波在真空中的传播速度,参阅 GB 3102.6 的 6-6
11-12.14	T	二阶张量 T tensor T of the second order	也用 $ec{m{r}}$
11-12. 15	T_{zz} , T_{zy} , , T_{zz} T_{ij}	张量 T 的笛卡儿分量 cartesian components of tensor T	$T=T_{xx}e_{x}e_{x}+T_{xy}e_{x}e_{y}+\cdots$, $T_{xx}e_{x}e_{x}$ 等为分张量

项号	符号,表达式	意义或读法	备注及示例
11-12. 16	ab ,a⊗b	两矢量 a 与 b 的并矢积或张 量积 dyadic product; tensor product of two vectors a and b	即具有分量(ab) _{ij} = a _i b _j 的二 阶张量
11-12.17	T⊗S	两个二阶张量 T 与 S 的张量积 tensor product of two tensors T and S of the second order	即具有分量 $(T \otimes S)_{ijkl} = T_{ij}S_{kl}$ 的四阶张量
11-12. 18	T•S	两个二阶张量 T 与 S 的内积 inner product of two tensors of second order T and S	即具有分量 $(oldsymbol{T \cdot S})_{it} = \sum_{j} T_{ij} S_{jt}$ 的二阶张量
11-12. 19	T • a	二阶张量 T 与矢量 a 的内积 inner product of a tensor of second order T and a vector a	即具有分量 $(oldsymbol{T}ullet oldsymbol{a})_{oldsymbol{i}} = \sum_{oldsymbol{j}} oldsymbol{T}_{ioldsymbol{j}}oldsymbol{a}_{oldsymbol{j}}$ 的矢量
11-12. 20	T:S	两个二阶张量 T 与 S 的标量积 scalar product of two tensors of second order T and S	即标量 $T: S = \sum_{i} \sum_{j} T_{ij} S_{ji}$ 11-12. 1 至 11-12. 20 注: 矢量 和张量往往用其分量的通用符号 表示,例如矢量用 a_i ,二阶张量用 T_{ij} ,并矢积用 a_ib_j 等等,但这里 指的都是张量的协变分量,张量 还具有其他形式的分量,如逆变 分量、混合分量等

2.13 特殊函数符号

项号	符号,表达式	意义或读法	备注及示例
11-13.1	$\mathrm{J}_l(x)$	[第一类]柱贝塞尔函数 cylindrical Bessel functions (of the first kind)	即方程 $x^2y'' + xy' + (x^2 - l^2)y = 0$ 的特解 $J_l(x) = \sum_{k=0}^{\infty} \frac{(-1)^k (x/2)^{l+2k}}{k!\Gamma(l+k+1)}$ $(l \geqslant 0)$ 关于 Γ ,参阅 11-13. 19
11-13. 2	$N_l(x)$	柱诺依曼函数;第二类柱贝塞尔函数 cylindrical Neumann functions; cylindrical Bessel functions of the second kind	$N_l(x) = \lim_{k o l} rac{\mathrm{J}_k(x) \cos k\pi - \mathrm{J}_{-k}(x)}{\sin k\pi}$ 也记作 $\mathrm{Y}_l(x)$
11-13.3	$egin{aligned} &\mathrm{H}_{l}^{(1)}(x)\ &\mathrm{H}_{l}^{(2)}(x) \end{aligned}$	柱汉开尔函数;第三类柱贝塞尔函数 cylindrical Hankel functions; cylindrical Bessel functions of the third kind	$egin{aligned} &\mathrm{H}_l^{(1)}(x)=&\mathrm{J}_l(x)+\mathrm{i}\mathrm{N}_l(x),\ &\mathrm{H}_l^{(2)}(x)=&\mathrm{J}_l(x)-\mathrm{i}\mathrm{N}_l(x) \end{aligned}$
11-13. 4	$egin{aligned} & \mathrm{I}_l(x) \ & \mathrm{K}_l(x) \end{aligned}$	修正的柱贝塞尔函数 modified cylindrical Bessel functions	$x^2y'' + xy' - (x^2 + l^2)y = 0$ 的特解 $I_l(x) = i^{-l}J_l(ix)$, $K_l(x) = (\pi/2)i^{l+1}(J_l(ix) + iN_l(ix))$
11-13.5	$j_l(x)$	[第一类]球贝塞尔函数 spherical Bessel functions (of the first kind)	$x^2y'' + 2xy' + [x^2 - l(l + 1)]y = 0$ ($l \ge 0$) 的特解 $j_l(x) = (\pi/2x)^{1/2}J_{l+1/2}(x)$
11-13.6	$n_l(x)$	球诺依曼函数;第二类球贝塞尔函数 spherical Neumann functions; spherical Bessel functions of the second kind	$\mathbf{n}_l(x) = (\pi/2x)^{1/2} \mathbf{N}_{l+1/2}(x)$ 也记作 $\mathbf{y}_l(x)$

项号	符号,表达式	意义或读法	备注及示例
11-13. 7	$h_{l}^{(1)}(x)$ $h_{l}^{(2)}(x)$	球汉开尔函数;第三类球贝塞尔函数 spherical Hankel functions; spherical Bessel functions of the third kind	$h_{l}^{(1)}(x) = j_{l}(x) + in_{l}(x) = (\pi/2x)^{1/2}H_{l+1/2}^{(1)}(x),$ $h_{l}^{(2)}(x) = j_{l}(x) - in_{l}(x) = (\pi/2x)^{1/2}H_{l+1/2}^{(2)}(x)$ 修正的球贝塞尔函数分别写为 $i_{l}(x)$ 与 $k_{l}(x)$;比较 11-13. 4
11-13. 8	$\mathrm{P}_l(x)$	勒让德多项式 Legendre polynomials	$(1-x^2)y'' - 2xy' + l(l+1)y = 0$ 的特解 $P_l(x) = \frac{1}{2^l l!} \frac{d^l}{dx^l} (x^2 - 1)^l$ $(l \in l)$
11-13.9	$\mathbf{P}_{l}^{m}(x)$	关联勒让德函数 associated Legendre functions	$(1-x^2)y''-2xy'+[l(l+1)-rac{m^2}{1-x^2}]y=0$ 的特解 $P_l^m(x)=(1-x^2)^{m/2}rac{d^m}{dx^m}P_l(x)$ $(l,m\in ;m\leqslant l)$
11-13. 10	$\mathbf{Y}_{l}^{m}(heta,oldsymbol{arphi})$	球面调和函数,球谐函数 spherical harmonics	$\frac{1}{\sin\theta} \frac{\partial}{\partial t} (\sin\theta \frac{\partial y}{\partial t}) + \frac{1}{\sin^2\theta} \frac{\partial^2 y}{\partial \phi^2} + l(l+1)y = 0 \text{ 的特解}$ $Y_l^m(\theta, \phi) = (-1)^m \times \left[\frac{(2l+1)}{4\pi} \frac{(l- m)!}{(l+ m)!} \right]^{1/2} \times P_l^{ m } (\cos\theta) e^{im\phi}$ $(l, m \in ; m \leq l)$
11-13. 11	$H_n(x)$	厄米特多项式 Hermite polynomials	$y'' - 2xy' + 2ny = 0$ 的特解 $H_n(x) = (-1)^n e^{x^2} \frac{d^n}{dx^n} e^{-x^2}$ $(n \in)$
11-13. 12	$\mathrm{L}_{\mathfrak{n}}(x)$	拉盖尔多项式 Laguerre polynomials	$xy'' + (1-x)y' + ny = 0$ 的特解 $L_n(x) = e^x \frac{d^n}{dx^n} (x^n e^{-x})$ $(n \in)$

项号	符号,表达式	意义或读法	备注及示例
11-13. 13	$\mathcal{L}_n^m(x)$	关联拉盖尔多项式 associated laguerre polynomials	$xy'' + (m+1-x)y' + (n-m)y = 0$ 的特解 $L_n^m(x) = \frac{d^m}{dx^m}L_n(x) (m,n \in n)$; $m \leq n$
11-13. 14	$\mathrm{F}(a,b;c;x)$	超几何函数 hypergeometric functions	$x(1-x)y''+[c-(a+b+c)x]y'-aby=0$ 的特解 $F(a,b;c;x)=1+\frac{ab}{c}x+$ $\frac{a(a+1)b(b+1)}{2!c(c+1)}x^2+\cdots$
11-13. 15	$\mathrm{F}(a;c;x)$	合流超几何函数 confluent hypergeometric functions	$xy'' + (c-x)y' - ay = 0$ 的特解 $F(a;c;x) = 1 + \frac{a}{c}x + \frac{a(a+1)}{2!c(c+1)}x^2 + \cdots$
11-13. 16	$\mathrm{F}(k,\!arphi)$	第一类[不完全]椭圆积分 (incomplete) elliptic integral of the first kind	$F(k, \varphi) = \int_{0}^{\varphi} \frac{d\theta}{\sqrt{1 - k^2 \sin^2 \theta}}$ $F(k) = F(k, \pi/2) (0 < k < 1)$ 为第一类完全椭圆积分
11-13. 17	$\mathrm{E}(k , \! arphi)$	第二类[不完全]椭圆积分 (incomplete) elliptic integral of the second kind	$\mathrm{E}(k, oldsymbol{arphi}) = \int\limits_0^{oldsymbol{arphi}} \sqrt{1 - k^2 \sin^2\! heta} \; \mathrm{d} heta$ $\mathrm{E}(k) = \mathrm{E}(k, \pi/2) (0 < k < 1)$ 为第二类完全椭圆积分
11-13. 18	$\Pi(k,n,oldsymbol{arphi})$	第三类[不完全]椭圆积分 (incomplete) elliptic integral of the third kind	$\Pi(k,n,\varphi) =$ $\int_{0}^{\varphi} \frac{d\theta}{(1+n\sin^{2}\theta)\sqrt{1-k^{2}\sin^{2}\theta}}$ $\Pi(k,n,\pi/2) (0 < k < 1)$ 为第三类完全椭圆积分

项号	符号,表达式	意义或读法	备注及示例
11-13. 19	$\Gamma(x)$	Γ(伽马)函数 gamma function	$\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} dt (x > 0)$ $\Gamma(n+1) = n! (n \in \mathbb{N})$
11-13. 20	$\mathrm{B}(x,y)$	B(贝塔)函数 beta function	$B(x,y) = \int_{0}^{t^{x-1}} (1-t)^{y-1} dt$ $(x,y \in ;x > 0,y > 0)$ $B(x,y) = \Gamma(x)\Gamma(y)/\Gamma(x+y)$
11-13. 21	Ei x	指数积分 exponential integral	$\operatorname{Ei} x = \int_{x}^{\infty} \frac{\mathrm{e}^{-t}}{t} \mathrm{d}t (x \neq 0)$
11-13. 22	erf x	误差函数 error function	erf $x = \frac{2}{\sqrt{\pi}} \int_{\mathbf{e}^{-t^2} dt}$, erf(∞) = 1 erfc $x = 1$ —erf x 称为余误差 函数。 在统计学中,使用分布函数 $\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \mathbf{e}^{-t^2/2} dt$
11-13. 23	ξ(x)	黎曼(泽塔)函数 Riemann zeta function	$\xi(x) = \frac{1}{1^x} + \frac{1}{2^x} + \frac{1}{3^x} + \cdots$ $(x > 1)$

附加说明:

本标准由全国量和单位标准化技术委员会提出并归口。

本标准由全国量和单位标准化技术委员会第七分委员会负责起草。

本标准主要起草人李志深。