Pontificia Universidad Católica de Chile Facultad de Matemáticas 1° semestre 2020

Ayudantía 09

21 de Abril

MAT1106 - Introducción al Cálculo

Durante todo el enunciado, x_n será una sucesión, y x_{n_k} será una subsucesión de x_n .

- 1) Sea x_n sucesión y supongamos que existe x_{n_k} tal que
 - x_{n_k} es monótona.
 - x_{n_k} deja fuera una cantidad finita de términos de x_n .

¿Se puede concluir que x_n es monótona?

Solución. No. Consideremos $x_n = \sqrt[n]{n}$ es estricamente decreciente con $n \geq 3$. Notar que $x_1 = 1$, y $x_2 = \sqrt{2} > \sqrt{1} = 1$, por lo que x_n no es decreciente ni creciente (ya que $x_3 > x_4$). Pero vieron en clase que $\{x_n\}_{n\geq 3}$ es monótona (y además deja solo 2 términos fuera), por lo que se cumplen las condiciones del enunciado.

2) Muestre que x_n es monótona si y solo si todas las x_{n_k} también son monótonas.

Demostración. Probaremos la doble implicancia.

 \implies Asumamos que x_n es creciente (el otro caso es análogo). Luego, para todos k, j, se cumple $k < j \implies x_k \le x_j$. Consideremos x_{n_k} y tomemos dos términos consecutivos x_{n_a} y $x_{n_{a+1}}$. Como x_{n_k} es subsucesión, tenemos que $n_a < n_{a+1}$. Luego, como x_n es creciente, tenemos que $n_a < n_{a+1} \implies x_{n_a} \le x_{n_{a+1}}$. Como esto se cumple para cualquier a, tenemos que x_{n_k} es creciente, y por lo tanto monótona.

Probando ambas implicancias, tenemos lo pedido.

3) Sea $f: \mathbb{N} \to \mathbb{N}$ estrictamente creciente. Muestre que $x_f + y_f$ es subsucesión de $(x+y)_n$.

Demostración. Recordemos que $\{(x+y)_n\}_{n\in\mathbb{N}}$ estaba definida como $(x+y)_n=x_n+y_n$. Luego, $(x+y)_f$ es una subsucesión de $(x+y)_n$ (por def. de subsucesión). Pero $(x+y)_f=x_f+y_f$, que era lo que buscábamos.

Por lo tanto, $x_f + y_f$ es subsucesión de $(x + y)_n$

4) Sea x_n una sucesion. Muestre que una subsucesión de una subsucesión de x_n también es una subsucesión de x_n .

Demostración. Tenemos que una subsucesión de x_n está definida por un conjunto $S_1 \subset \mathbb{N}$ infinito de índices. Luego, la subsucesión de la subsucesión toma $S_2 \subset S_1$ infinito de índices. Luego, por transitividad, tenemos que $S_2 \subset \mathbb{N}$, que era la condición faltante para mostrar que es subsucesión de x_n . Por lo tanto, tenemos lo pedido.

5) Supongamos que x_n tiene una cantidad finita de x_{n_k} distintas. Pruebe que x_n es eventualmente constante (es decir, existe un $k \in \mathbb{N}$ tal que $x_n = c$ para todo $n \geq k$ y c fijo).

Demostración. Probaremos la contrarrecíproca. Supongamos que x_n no es eventualmente constante. Consideremos $S = \{x \in \mathbb{R} : \exists n : x_n = x\}$. Tenemos dos casos:

- S es infinito: Para cada elemento x de S existe un (n_0, x) tal que $x_{(n_0,x)} = x$ y $x_k \neq x$ para cada $k < (n_0,x)$ $((n_0,x)$ existe por buen orden). Ahora, consideremos las subsucesiones $\{x_n\}_{n\geq (n_0,x)}$ para cada x. Como hay infinitos x en S hay infinitas subsucesiones, y por construcción todos los primeros términos de las subsucesiones son distintos entre sí. Esto implica que existen infinitas subsucesiones distintas.
- S es finito. Sean s_1, s_2, \ldots, s_k los elementos de S. Notemos que uno de estos elementos aparece infinitas veces en la sucesión. Si esto no pasara, entonces s_1 aparece c_1 veces, s_2 aparece c_2 veces, y así sucesivamente hasta s_k . Pero entonces x_n tendría una cantidad finita de

términos
$$\left(\sum_{i=1}^k c_i\right)$$
, $\rightarrow \leftarrow$.

Digamos que s_1 es el término que aparece infinitas veces (los otros casos son análogos). Ahora, consideremos las sucesiones formadas por k veces s_1 , un elemento distinto de s_1 y todos los elementos a partir de ese. Estamos tomando infinitos términos, por lo que el único problema que podríamos llegar a tener es que no exista un elemento distinto de s_1 para elegir. Pero si eso pasara tendríamos que la sucesión es eventualmente constante (ya que desde un índice en adelante todos los términos serían s_1), $\rightarrow \leftarrow$.

Como para cada k natural podemos construir la subsucesión, y todas las subsucesiones son distintas entre sí (por la cantidad de términos iguales a s_1 al inicio), tenemos que existen infinitas subsucesiones distintas.

Uniendo los casos, tenemos lo pedido.