应用与设计

USB2.0 控制器 CY7C68013 的接口设计实现

林愿¹, 吴淑泉¹, 冼志妙²

(1. 华南理工大学 电子与信息学院; 2. 肇庆学院 物理学电子信息工程系)

摘要:介绍了一种基于 USB2.0 控制器 CY7C68130 的 USB - ATA 接口,将普通硬盘转化为 USB

Mass - Storage 的解决方案,文中给出了利用 CPIF实现该方案的相关设计方法。

关键词:USB2.0; ATA 接口; CY7C68130; GPIF

分类号: TP334.4 文献标识码:A 文章编号:1006 - 6977(2004)12 - 0013 - 04

Design of the Interface of USB2.0 Controller CY7C68013

LIN Yuan¹, WU Shu-quan¹, XIAN Zhi-Mao²

(1. College of Electron Info Engin, South China University of Technology, Guangzhou;

2. College of Electronics and Information, ZHAO Qing University;)

Abstract: A USB - ATA design scheme based on GPIF is described, the design can translate the ordinary hard disk into USB Mass - Storage using Cypress's EZ - USB FX2. The design scheme realizing USB Mass - Storage based on GPIF master control manner are given in the paper.

Key words: USB; ATA interface; CY7C68013; GPIF

1 引言

USB (Universal Serial Bus) 接口以其速度快、功耗低、支持即插即用(Plug & Play)、使用安装方便等优点而得到了广泛的应用。目前 USB 2.0 标准的传输速度已达 480Mb/s,这使得 USB 可以推广到硬盘、信息家电网络产品和其它快速外设。在某些应用场合,如基于硬盘的大容量数据采集与分析系统中,为了使用方便,需要将普通硬盘转化成海量存储器,这样在使

用时就不需关机重启或打开机箱来安装。本文介绍一种利用带 USB 接口的单片机芯片 CY/C68013 来控制普通硬盘的读写,从而将普通硬盘转化为 USB2.0 海量存储器的可行方案,本系统可扩展,完全可用于实现基于硬盘的大容量数据采集与分析系统。

2 硬件设计

2.1 USB 接口芯片 本设计选用的是 Cypress 公司的 EZ - USB

而且工作稳定,能够达到弹丸散布测试要求。由此可见,该放大电路完全符合设计要求,它能够较好地放大微弱信号,而且工作稳定,具有较好的抗干扰和抑制噪声能力,可广泛应用于弱信号的放大。

参考文献

- [1]童诗白.模拟电子技术基础[M].北京:高等教育出版社,1998.
- [2]倪晋平,王铁岭.光电靶工作原理及应用[J]. 西安工业学院学报,1997,(1):31.
- [3]宋玉贵,王铁岭.天幕靶抗蚊虫干扰数字滤波电路设计[J].西安工业学院学报,1998,(2):130.

- [4]诸邦田. 电子线路抗干扰技术手册[M]. 北京: 北京科学技术出版社,1988.
- [5]吴永忠,韩江洪,谢华,等.低噪声放大器设计中接地和屏蔽技术的研究[J].电测与仪表,2001, (7):8.
- [6]郑宗亚.减小放大器噪声的方法[J].上海海运学院学报,1995,(3):42.
- [7]李西安,付小宁.集成运放在应用中的性能提高与改善[J].现代电子技术,2002,(3):61.

收稿日期:2004 - 06 - 11 咨询编号:041203 FX2 系列芯片中的 CY7C68013, 这是一种带 USB 接口的单片机芯片,虽然采用低价的 8051 单片机,但仍然能获得很高的速度。它包括一个 8051 处理器、一个串行接口引擎 (SIE)、一个 USB 收发器、一个 8.5kB 片上 RAM、一个 4kB FIFO 存储器及一个通用可编程接口 (GPIF)。FX2 可提供全面集成的解决方案。它有 56SSOP、100TQFP、128TQFP 三种封装,本设计选用占用电路板空间较少的 56SSOP 封装。如果要进行扩展,也可选用 128TOFP 封装。

2.2 ATA 接口

ATA 接口是在 ST506 的基础上改进而成的,它将控制器集成到驱动器中,采用 8 个端口寄存器(即命令寄存器)来完成对硬盘的读写,各寄存器功能如表 1 所列。ATA 有两种工作模式: PIO 模式和 DMA模式。本设计采用的 DMA 传输模式不需要处理器参与整个数据传输过程,而是由 I/O 口直接将数据传送到存储器中,从而节约大量的 CPU 时间以更好的处理其它事件。控制器对硬盘的操作分为两种:8 位数据的命令操作和 16 位数据的数据传输操作。在对硬盘输出控制命令之前,程序需对端口完整输出 7

字节的命令块。其中前六个端口为参数,最后一个端口为命令码。读写数据端口一般以 512 字节作为数据块进行。硬盘执行命令后发出中断请求以表示操作结束(结束传输),也可以置控制器状态为空闲,以表示扇区请求传输(数据传

输)。最后,由控制器读取硬盘状态寄存器,以检测硬盘操作的成功与否。如操作正常,则进行下一次动作;否则进入错误处理程序。状态寄存器各位信息描述如表 2 所列。

2.3 GPIF与ATA接口

FX2 芯片的最主要特点是可通过 USB2.0 的通用可编程接口 (GPIF) 为特定的应用接口编程,以便使用多种协议完成与外围器件的无缝连接,如 EFDE/ ATAPI, IEEE1284, Utopia 等。其编程可以根据需要进行,且其中不需要 CPU 的干预,只是通过一些CPU 标志和中断即可与增强型 8051 内核进行通讯。系统结构框图如图 1 所示。

本设计采用"GPIF主控"接口模式,并使用PORTB和PORTD双向FIFO数据线来构成通向四个FX2端点FIFO(EP2、EP4、EP6、EP8)的16位数据接口,以用来连接数据线DD[15:0]并进行数据的传送;GPIF作为内部主控器与FIFO相连,并通过产生用户可编程的控制信号CTL[2:0]与外部接口进行通信。同时,GPIF还可以通过RDY[1:0]引脚采样外部信号并等待外部事件。由于GPIF的运行速度比

图 1 系统结构图

表 1 ATA 命令和控制寄存器功能及地址	分配	
-----------------------	----	--

A2	A1	A0	扇区读访问	扇区写访问	位数
0	0	0	数据寄存器	数据寄存器	16
0	0	1	错误寄存器	特征寄存器	
0	1	0	扇区数寄存器	扇区数寄存器	
0	1	1	扇区号寄存器 扇区号/块地址0~7	扇区号寄存器 扇区号/块地址0~7	
1	0	0	柱面寄存器 0 柱面 0~7/块地址 8~15	柱面寄存器 0 柱面 0~7/块地址 8~15	
1	0	1	柱面寄存器 1 柱面 8~15/块地址 16~23	柱面寄存器 1 柱面 8~15/块地址 16~23	
1	1	0	驱动器/磁头寄存器 驱动器/磁头号/块地址 24~27	驱动器/磁头寄存器 驱动器/磁头号/块地址 24~31	
1	1	1	状态寄存器	命令寄存器	

表 2 ATA接口状态寄存器各位信息

符号	位	描述	真值	符号	位	描述	真值
BSY	7	控制器忙	1	DRQ	3	服务器请求	1
DRDY	6	驱动器就绪	1	CORR	2	ECC 检验错误	1
DF	5	驱动器故障	1	IDX	1	收到索引	1
DSC	4	寻道结束	1	ERR	0	命令执行出错	1

FIFO 快得多, 因此其时序信号具有很好的编程分辨率。CPIF与 ATA 接口的硬件连接方式见表 3。

FX2 用 4 个波形描述符来控制各个状态。这些波形描述符可动态的配置给任何一个端点 FIFO。配置后,CPIF 将依据波形描述符产生相应的控制逻辑 CTL 及握手信号 RDY来和外界接口,以满足向 FIFO 读写数据的需要。CPIF 的数据总线可以是 8 位 FD [7:0],也可以是 16 位 FD[15:0],本设计采用 16 位数据总线。其硬盘读数据控制波形如图 2 所示。

每个波形描述符包含了 S0~ S6 七个有效状态 和一个空闲状态。在每个有效状态对应的时间段 里,经过预先设置,GPIF可以做以下几件事情:驱动 (使高或低)或浮接 CTL 输出、采样或驱动 FIFO 的数 据总线、增加 CPIF地址总线的值、增加指向当前 FF FO 指针的值和启动 GPIFWF(GPIF波形)中断。除此 之外,在每个状态, GPIF 还可以对以下几个信号中 的任意两个进行采样,它们是: RDYX输入端、FIFO 状态标志位、内部 RDY标志位和传输计数终止标志 位。每个 CPIF 动作都由七段组成,每个状态都可以 定义为 Non - Decision Interval (NDP) 或 Decision Point Interval (DP)。当某个状态定义为 NDP 时, 在执行此 状态动作时,系统只是用简单的延时来确定产生指 定电平的延续时间;而当执行 DP 状态时,它将根据 RDYO、RDYI 上的输入信号状态把其中的两个信号 相与、相或或者相异,然后根据结果跳转到其它任意 一个状态或延迟 1~256个 IFCL K时钟周期。当然也 可根据输入端信号进行跳转或延迟。

图 2 中,在第一个 DP 时刻,若硬盘中数据已准备就绪,硬盘会传给 GPIF 一个负脉冲信号 RD YO,根据此信号,波形将按顺序转入 2、3、4 状态,并使指向内部 FIFO 的指针在每个时钟上升沿加 1,然后依次读取四个数据,读取完数据后再利用 CTLO 的上升沿启动下一次读写操作。若在状态 1 时没有出现负

|--|

GPIF 信号线	ATA 接口信号线	GPIF 信号线	ATA 接口信号线
PA6	RESET	CTL2	DMACK
PB[7:0]	DD[7:0]	PA0	INTRQ
PD[7:0]	DD[15:8]	RD Y0	IORD Y
RD Y1	DMARQ	PA[3:1]	DA[2:0]
CTL0	DIOW#	PA4	CS0 #
CTL1	DIOR#	PA5	CS1 #

图 2 硬盘读数据控制波形

脉冲,则直接跳转到状态 6,之后重复执行此波形描述符。在这种方式下,所有的读写及控制逻辑均可通过 CY7C68013 的 GPIF 以软件编程的方式实现,且控制逻辑的变换非常方便灵活(只需改变接口的一个配置寄存器的值)。 GPIF 波形描述符可用 Cypress公司的 GPIF 工具 GPIFTOOL 来进行配置,它是一个可以运行于 Windows 平台的应用程序。

3 系统软件设计与实现

本系统软件设计包括:固件、应用程序和驱动程序的设计。其中,固件程序是指运行在设备 CPU 中的程序,是整个程序设计的核心,可采用汇编语言和 C 语言设计。只有在该程序运行时,外设才能称之为 具有给定功能的外部设备。

3.1 USB 设备固件程序设计

设备固件程序的主要功能是控制 EZ- USB FX2 接收并处理 USB 驱动程序的请求 (如请求设备描述符或设置设备状态,请求或设置设备接口等 USB2.0 标准请求)、控制芯片中应用程序控制指令的接收、控制硬盘数据的读写等。该固件程序除能够使内置的通用可编程接口 (GPIF) 在没有 CPU 的干涉下通过四个大的端点 FIFO(EP2、EP4、EP6、EP8) 来处理高速宽带外,还有如下固定的工作:配置端点、通过控制端点 0 来响应主机请求、控制和监测 GPIF 的活动等。其固件程序框图如图 3 所示。

设计时可采用 PIO 和 UDMA 两种模式, FX2 芯片的 BUL K端点大小可设置为 512 字节或 1024 字节。为实现 UDMA 功能,应将 CPIF中的 Slave FIFO与 USB 通讯中的端点 BUFFER 直接连接,数据的传送不再需要 CPU 的参与。当 BUFFER 写满后,置 BUFFER 满标志位,以使 CPIF 停止动作。实际上,也

图 3 固件程序框图

可运用 CPIF的 Re - execute 功能 (重复执行功能)。设定此功能后,CPIF可以不经过 IDLE 状态而仅根据采样 RD Y信号即可重复下次动作,直到出现指定的标志位后才停止动作。这项功能一般用于大批量数据的连续读写。如在 UDMA 模式下对一个或多个扇区的读写操作。为了实现 UDMA 模式下的 CRC 校验,还需设置特殊寄存器来完成 CRC 校验工作。

3.2 驱动程序设计

该系统需要两个驱动程序,即通用驱动和下载固件驱动。通用驱动用于完成与外设和用户程序的通信及控制;而下载固件驱动程序则负责在外设连接 USB 总线后把特定的固件程序下载到 FX2 的 RAM 中使 FX2 的 CPU 重启,同时模拟断开与 USB 总线的连接以完成对外设的重新设置,这样即可使主机能够根据新的设置来安装通用驱动程序,重新枚举外设为一个新的 USB 设备。通用驱动程序,重新枚举外设为一个新的 USB 设备。通用驱动程序一般不需要重新编写,可以使用 Cypress 公司已经编好的驱动 ezusb. sys。由于在 Windows 2000 操作系统中已经新增了媒体存储(Mass Storage)设备的驱动程序,并可使用批量传输功能,所以可以直接选择BUL KUSB. SYS 驱动程序,而下载固件驱动则必须定做,其详细操作过程见参考文献[2]。

3.3 用户程序的设计

用户程序是系统与用户的接口,它通过通用驱动程序来完成对外设的控制和通信。在编写用户程

序时,首先要建立与外设的连接,然后才能实施数据的传输。本设计使用 Visual Basic 6.0 编译环境中的 API 函数来将 ATI 函数包装成一个 VB. DLL 链接程序文件,其编程方法与串口编程类似;首先查找设备,打开设备的句柄,然后进行读写和控制操作,最后关闭设备句柄。程序中主要用到的两个 API 函数 Creat File ()和 Device loControl ()就是根据该句柄完成数据传输的。

4 结束语

本设计利用 CY7C68013 芯片的 ATA 接口将普 通硬盘转化为具有 USB2.0 接口的海量存储器,其 灵活的接口和可编程特性简化了外部硬件设计、提 高了系统稳定性,同时也有利于 PCB 板的制作和调 试。另外,USB设备的可热插拔特性使该系统具有了 便携式的特点,而且使用方便,无需关机重启或打开 机箱即可进行安装。该系统可采用 PIO 和 UDMA 两 种模式实现。为了实现 UDMA 方式, 所采用的 Corr ductors 导线部分为 80 - pin, 而不是传统的 40 - pin, 但是 Cable (也就是排线的连接头部分) 还是 40pin。本设计支持全速和高速传输两种状态,如果 PC 机是 USB1.1的,它也能向下兼容 USB1.1,而且速度 远高于采用纯粹的 USB 接口芯片外加微处理器所 构成的系统。从该方案可以看出,如果采用 128 TQFP 封装的 EZ- USB FX2 系列芯片, 还可利用其地址线 和数据线在此基础上进行其它扩展,从而实现基于 硬盘的大容量数据采集与分析。

参考文献

- [1] Cypress Semiconductor Corporation. EZ USB FX2 Technical Reference Mannual, 2003; 11.
- [2] Cypress Semiconductor Corporation. EZLOADER Design Notes , 1998. 5.
- [3] MINDSHARE, Inc. Universal Serial Bus System Architecture Second Edition, Don Anderson.
- [4]许永和. EZ- USB FX 系列单片机 USB 外围设备设计与应用[M]. 北京:北京航空航天大学出版社, 2002,11.
- [5] FRIEDHELM SCHMIDT. SCSI 总线和 IDE 接口、协议、应用和编程[M]. 北京:中国电力出版社, 2001,3.

收稿日期:2004 - 06 - 14 咨询编号:041204