Paul Gustafson

Texas A&M University - Math 620

Instructor: Frank Sottile

HW₂

1 Let E be a k-vector space of dimension n+1 and let $\mathbb{P}(E)$ be the associated projective space. If $u \in GL(E)$, u induces a bijection \overline{u} from $\mathbb{P}(E)$ to itself which we call a homography.

- a) What can we say about u when $\overline{u} = \text{Id}$?
- b) Show that the image of a projective subspace of dimension d under a homography is again a projective subspace of dimension d.
- c) Conversely, show that if V and W are two projective subspaces of dimension d, then there is a homography \overline{u} such that $\overline{u}(V) = W$.
- d) Assume $E = k^2$ and

$$u = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

such that $ad - bc \neq 0$. Take that point (1,0) in $\mathbb{P}^1(k) = \mathbb{P}(E)$ to be the point at infinity, so points x in k can be identified with points (x,1) in $\mathbb{P}^1(k) - \{\infty\}$. Determine \overline{u} explicitly and explain the origins of the word homography.

Proof. For (a), suppose $\overline{u} = \text{Id.}$ Let $(e_i)_{i=1}^k$ be a basis for E. Then $ue_i = \lambda_i e_i$ for some $\lambda_i \in k^{\times}$ for all i. If $\lambda_i \neq \lambda_j$, then $u(e_i + e_j)$ is not a multiple of $e_i + e_j$, a contradiction. Thus we have $u = \lambda \text{Id}$ for some $\lambda \in k^{\times}$. This condition is obviously sufficient as well.

For (b), suppose \overline{F} is a projective subspace of $\mathbb{P}(E)$ of dimension d. Then $F \leq E$ with $\dim(F) = d+1$, so $\dim(u(F)) = d+1$ by the rank-nullity theorem. Hence $\dim(\overline{u}(\overline{F})) = \dim(\overline{(u(F))}) = d$.

For (c), there exist $F, G \leq E$ with $V = \overline{F}$ and $W = \overline{G}$. Pick a basis f_1, \ldots, f_d for F and extend it to a basis $(f_i)_{i=1}^d$ for E. Do the same for G to get a basis $(g_i)_{i=1}^{n+1}$ for E with $G = \operatorname{span}(g_1, \ldots, g_d)$. Define a linear transformation $u: E \to E$ by sending $f_i \mapsto g_i$ for all i. Then $\overline{u}(V) = \overline{u(F)} = \overline{G} = W$.

For (d), $\overline{u}(x,1) = (\frac{ax+b}{cx+d},1)$ for $x \neq -d/c$, and $\overline{u}(-d/c,1) = (1,0)$. For the point at infinity, $\overline{u}(1,0) = (a/c,1)$ unless c = 0, in which case $\overline{u}(1,0) = (1,0)$.

Homography means "same graph", the transformation is supposed to be only a change of perspective. $\hfill\Box$

- **2** Using the same notation as in 1, we denote the canonical projection from $E \{0\}$ to $\mathbb{P}(E)$ by p. A marking of $\mathbb{P}(E)$ consists of n+2 points x_0, \ldots, x_{n+1} of $\mathbb{P}(E)$ such that there is a basis e_1, \ldots, e_{n+1} of E such that $p(e_i) = x_i$ for all i and $p(e_1 + \ldots + e_{n+1}) = x_0$.
- a) Assume n=1. Prove that a marking of $\mathbb{P}(E)$ (i.e., the projective line) is exactly the data of three distinct points. (For example, in $\mathbb{P}^1(k)$ we can take $0=(0,1), \infty=(1,0),$ and 1=(1,1).)

- b) Prove that n+2 points $x_0, \ldots, x_{n+1} \in \mathbb{P}(E)$ form a marking if and only if no n+1 of them are contained in a hyperplane.
- c) Prove that if x_0, \ldots, x_{n+1} and y_0, \ldots, y_{n+1} are two markings of $\mathbb{P}(E)$, then there is a unique homography which sends each x_i to y_i . Study the case n=1 in detail.

Proof. For (a), let x_0, x_1, x_2 be a marking of $\mathbb{P}(E)$. Pick a basis e_1, e_2, e_3 for E corresponding to the x_i as in the definition above. Clearly $x_1 \neq x_2$ since e_2 and e_3 are linearly independent. Also $p^{-1}(x_0) = \operatorname{span}(e_1 + e_2)$ does not coincide with $\operatorname{span}(e_1)$ or $\operatorname{span}(e_2)$. Hence all the x_i are distinct.

Conversely, if $x_0, x_1, x_2 \in \mathbb{P}(E)$ are distinct, then no two of them lie in a proper subspace of $\mathbb{P}(E)$ (which must be 0-dimensional). Hence, by part (b) they form a marking.

For (b), suppose $x_0, \ldots, x_{n+1} \in \mathbb{P}(E)$ form a marking with corresponding e_0, \ldots, e_{n+1} as in the definition. It is easy to see that any n+1 elements of $\{e_1, \ldots, e_n, \sum_i e_i\}$ form a basis.

Conversely, suppose $x_0, \ldots, x_{n+1} \in \mathbb{P}(E)$ such that no n+1 of them are contained in a hyperplane. For each i, pick $e_i \in E$ such that $p(e_i) = x_i$. Any choice of n+1 of the e_i must be a basis since the x_i cannot be contained in a proper subspace of P(E). In particular, e_1, \ldots, e_n forms a basis for E.

Hence $e_0 = \sum_{i \geq 1} a_i e_i$ for some $a_i \in k$. Moreover if $a_j = 0$ for some $j \geq 1$ then $(e_i)_{i \geq 0, i \neq j}$ is not a basis for E, a contradiction. Thus the $a_i \neq 0$ for $i \geq 1$. Hence, by replacing e_i with $a_i e_i$, WLOG $a_i = 1$ for all $i \geq 1$. Then $p(e_1 + \ldots + e_n) = x_0$, so the x_i form a marking.

For (c), for each i there exist e_i , f_i such that $p(e_i) = x_i$ and $p(f_i) = y_i$ and such that $\sum_{i \ge 1} e_i = e_0$ and $\sum_{i \ge 1} f_i = f_0$. Since $(e_i)_{i \ge 1}$ is a basis, we can define $u: E \to E$ by $u(e_i) = f_i$ for $i \ge 1$. Then \overline{u} is a homography sending each x_i to y_i .

For the uniqueness part, suppose \overline{t} is a homography sending x_i to y_i for each i. Then $t(e_i) = \lambda_i f_i$ for some $\lambda_i \in k^{\times}$ for each $i \geq 1$, and $t(e_0) = \alpha f_0$ for some $\alpha \in k^{\times}$. Then $\sum_{i \geq 1} \lambda_i f_i = t(e_0) = \alpha f_0 = \alpha \sum_{i \geq 1} f_i$. Since $(f_i)_{i \geq 1}$ are linearly independent, we have $\lambda_i = \alpha$ for all $i \geq 1$. Thus $t = \alpha u$, so $\overline{t} = \overline{u}$.