

Technische Grundlagen der Informatik: Übungssatz 13

Aufgabe 13.1

In der Übung wird nur der Ansatz besprochen! Umstellen der Gleichungen nach der gesuchten Größe und berechnen des Zahlenbeispiels ist Hausaufgabe!

Gegeben sei die Schaltung eines Schmitt-Triggers mit CMOS-Gattern. Die Gatter sind ideal, d. h. sie schalten sprungartig bei der Umschaltspannung U_{SP} zwischen High und Low am Ausgang um.

Außerdem fließt kein Strom in einen Gattereingang hinein oder heraus.

$$R_1 = 500 \,\Omega, \ R_2 = 2.0 \,\mathrm{k}\Omega, \ U(L) = 0 \,\mathrm{V}, \ U(H) = 5 \,\mathrm{V}, \ U_{SP} = U(H)/2 = 2.5 \,\mathrm{V}$$

- (a) Wie groß ist U_A , wenn $U_E = U(L)$ bzw. $U_E = U(H)$?
- (b) Berechnen Sie die Schaltschwellen $U_E=U_{T+}$ (Low-High-Sprung am Ausgang) und $U_E=U_{T-}$ (High-Low-Sprung am Ausgang)!
- (c) Berechnen Sie die Größe der Hysterese!

Aufgabe 13.2

Gegeben sei folgende Schaltung einer astabilen Kippstufe (Multivibrator) mit einem idealen invertierendem CMOS-Schmitt-Trigger:

Schaltung:

Startzustand:

$$\begin{array}{rcl} t_0 & = & 0 \\ u_c(t_0) & = & \frac{1}{3}U_E \end{array}$$

Eigenschaften des Schmitt-Triggers:

Betriebsspannung: U_B High-Pegel: U_B 0V Low-Pegel: Ausgangswiderstand: $R_A \rightarrow 0$ Eingangswiderstand:

- Schaltschwellen:
- (a) Der Schmitt-Trigger hat zum Zeitpunkt to gerade umgeschalten. Skizzieren Sie qualitativ den Verlauf der Spannungen $u_C(t)$ und $u_a(t)$ bis zum Erreichen der anderen Umschaltschwelle!
- (b) Leiten Sie den Verlauf der Spannung $u_C(t)$ ab t_0 bis zum Zeitpunkt t_1 , an dem die anderen Umschaltschwelle erreicht wird, her! Wie groß ist dabei t_1 ?
- (c) Wie groß ist die Periodendauer T?

Aufgabe 13.3

Zusatzaufgabe: Gegeben sei nachfolgende Schaltung einer monostabilen Kippstufe mit idealen CMOS-Gattern:

- (a) Wie groß sind die Spannungen U_R und U_A im eingeschwungenen Zustand? $\left(\frac{d}{dt}=0\right)$
- (b) Mit welcher Eingangsflanke ist die Schaltung zu triggern?
- (c) Stellen Sie für einen Triggerzyklus den qualitativen Verlauf der Spannungen U_E , U_G , U_R , U_A und U_C graphisch dar.
- (d) Mit welchen Zeitkonstanten wird der Kondensator C umgeladen?
- (e) Berechnen Sie den Verlauf der Spannung $U_R!$ (Ansatz: $U_R(t) = k_1 + k_2 \cdot e^{-t/\tau}$)
- (f) Berechnen Sie die Haltezeit t_H und die Dauer der Erholphase t_E ! (Es soll angenommen werden, daß bei $||U_R|| = 0.05 U(H)$ die Schaltung erneut getriggert werden kann, ohne daß eine wesentliche Verfälschung der Haltezeit eintritt.)
- (g) Wie kann die Dauer der Erholphase verkürzt werden?

Aufgabe 13.4

Gegeben sei folgendes Master-Slave-Flipflop.

- (a) Betrachten Sie zunächst das Master-Flipflop:
 - i. Welches Basis-Flipflop (Grund-Flipflop) wird hier verwendet? Ordnen Sie den Signalen E_1 und E_2 die entsprechenden Bezeichnungen (Funktionen) zu!
 - ii. Geben Sie die Wahrheitstabelle für die Signale E_1 und E_2 in Abhängigkeit von den Eingängen des Master-Flipflops an und ordnen Sie jeweils den ausgeführten Flipflop-Befehl zu.

С	D	E_1	E_2	Befehl

- iii. Geben Sie die Daten- und Zeitsteuerung des Master-Flipflops an!
- iv. Zu welchem Zeitpunkt oder in welchem Zeitraum erfolgt die Datenübernahme von *D* in das Master-Fliplop?
- v. Ergänzen Sie oben stehendes Signalverlaufsdiagramm für Q_M und $\overline{Q_M}$!
- (b) Betrachten Sie jetzt das Slave-Flipflop:
 - i. Geben Sie die Daten- und Zeitsteuerung dieses Flipflops an! Ordnen Sie dazu Q_M und $\overline{Q_M}$ die äquivalenten Bezeichnungen (Funktionen) aus Sicht des Slaves zu!
 - ii. Zu welchem Zeitpunkt oder in welchem Zeitraum erfolgt die Datenübernahme vom Masterin das Slave-Fliplop?
 - iii. Ergänzen Sie oben stehendes Signalverlaufsdiagramm für Q_S und $\overline{Q_S}$!
- (c) Betrachten Sie abschließend die gesamte Schaltung!
 - i. Zu welchem Zeitpunkt oder in welchem Zeitraum erfolgt die Datenübernahme von D in das Gesamt-Flipflop (mit Ausgängen Q_S und $\overline{Q_S}$)?
 - ii. Geben Sie eine passende Bezeichnung für das Gesamt-Flipflop an!
- (d) **Zusatzaufgabe:** Reduzieren Sie die Gatteranzahl indem Sie unter Beibehaltung der selben Funktionalität im Slave-Flipflop die NOR-Gatter durch NANDs ersetzen.
- (e) **Zusatzaufgabe:** Implementieren Sie ein taktflankengesteuertes D-Flipflop welches die Daten zur negativen Taktflanke übernimmt. Zur Verfügung stehen NOT-, NAND- und NOR-Gatter. Achten Sie auf minimale Gatteranzahl.

Aufgabe 13.5 Zusatzaufgabe:

Ermitteln Sie die Funktion nebenstehender Schaltung, indem Sie die Wertetabelle aufstellen.

