

Introduction to ggplot2

Saghir Bashir

ilustat & GitHub: @saghirb

28th Feb 2019

Relax

Experiment

Make Mistakes

Learn

Enjoy

Outline

Gapminder Data

Plotting Data

Facetting Plots

Summary

Gapminder Data

- Population (Total)
- GDP per capita (US\$, inflation-adjusted)
- Life expectancy at birth, in years
- Infant Mortality per 1000 births
- Total Fertility (children per woman)

First 10 Observations

continent	country	year	pop	gdpPercap	lifeexp	infmort	fertility
Europe	Albania	1960	1636054	NA	62.87	115.4	6.19
Europe	Albania	1965	1896125	NA	66.59	94.1	5.59
Europe	Albania	1970	2150602	NA	67.83	76.8	5.05
Europe	Albania	1975	2411229	NA	69.77	63.1	4.39
Europe	Albania	1980	2681245	1056.75	71.39	64.0	3.68
Europe	Albania	1985	2966799	1056.50	72.71	45.9	3.23
Europe	Albania	1990	3281453	980.16	73.30	35.1	2.97
Europe	Albania	1995	3106727	909.74	73.70	29.1	2.72
Europe	Albania	2000	3121965	1180.87	74.70	23.2	2.38
Europe	Albania	2005	3082172	1555.24	76.20	18.3	1.92

Last 10 Observations

continent	country	year	pop	gdpPercap	lifeexp	infmort	fertility
Africa	Zimbabwe	1970	5206311	515.23	57.22	72.4	7.42
Africa	Zimbabwe	1975	6170284	550.34	59.41	70.3	7.40
Africa	Zimbabwe	1980	7289083	501.28	62.48	66.4	7.10
Africa	Zimbabwe	1985	8862601	507.41	64.86	53.6	6.22
Africa	Zimbabwe	1990	10484771	536.20	63.00	51.2	5.18
Africa	Zimbabwe	1995	11683136	510.82	56.00	60.1	4.43
Africa	Zimbabwe	2000	12499981	535.20	47.90	63.5	4.07
Africa	Zimbabwe	2005	12984418	351.02	45.10	61.0	3.97
Africa	Zimbabwe	2010	13973897	288.57	49.10	55.8	3.72
Africa	Zimbabwe	2015	15602751	NA	59.30	46.6	3.35

Questions of Interest

What are the time trends for Portugal?

How does Portugal compare to other European countries?

How does Portugal perform on health and wealth?


```
install.packages("ggplot2")
install.packages("magrittr")
install.packages("data.table")
install.packages("here")
```

Imported Gapminder Data


```
library(data.table)
library(here)

gm <- fread(here("data", "gapminder.csv"))

# Create factor (categorical) variables to be used later.

gm[, continent:=as.factor(continent)]

gm[, country:=as.factor(country)]

gm[, fyear:=as.factor(year)]</pre>
```

Look at Imported Data

gm continent country year pop gdpPercap lifeexp infmort fertility fyear Europe Albania 1960 1636054 115.4 6.19 62.87 1960 Europe Albania 1965 1896125 66.59 94.1 5.59 1965 Europe Albania 1970 2150602 67.83 76.8 5.05 1970 4: Europe Albania 1975 69.77 2411229 63.1 4.39 1975 Europe Albania 1980 2681245 1056.7504 71.39 64.0 3.68 1980 ## 2216: Africa Zimbabwe 1995 11683136 510.8200 56.00 60.1 4.43 1995 Africa Zimbabwe 2000 12499981 ## 2217: 47.90 535.1974 63.5 4.07 2000 ## 2218: Africa Zimbabwe 2005 12984418 45.10 61.0 351.0233 3.97 2005 ## 2219: Africa Zimbabwe 2010 13973897 288.5683 49.10 55.8 3.72 2010 ## 2220: Africa Zimbabwe 2015 15602751 59.30 46.6 3.35 2015 NA

Structure of Gapminder Data

str(gm)

```
## Classes 'data.table' and 'data.frame': 2220 obs. of 9 variables:

## $ continent: Factor w/ 5 levels "Africa", "Americas", ..: 4 4 4 4 4 4 4 4 4 4 4 4 4 ...

## $ country : Factor w/ 185 levels "Albania", "Algeria", ..: 1 1 1 1 1 1 1 1 1 1 1 1 ...

## $ year : int 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 ...

## $ pop : int 1636054 1896125 2150602 2411229 2681245 2966799 3281453 3106727 3121965 3082172 ...

## $ gdpPercap: num NA NA NA NA 1057 ...

## $ lifeexp : num 62.9 66.6 67.8 69.8 71.4 ...

## $ infmort : num 115.4 94.1 76.8 63.1 64 ...

## $ fertility: num 6.19 5.59 5.05 4.39 3.68 3.23 2.97 2.72 2.38 1.92 ...

## $ fyear : Factor w/ 12 levels "1960", "1965", ..: 1 2 3 4 5 6 7 8 9 10 ...

## - attr(*, ".internal.selfref")=<externalptr>
```

What are the time trends for Portugal?

Portuguese Data

Create a dataset for Portugal

```
# Portuguese Data
options(width = 100)
gmPT <- gm[country == "Portugal"]</pre>
gmPT
##
       continent country year
                                   pop gdpPercap lifeexp infmort fertility fyear
         Europe Portugal 1960 8875311
##
  1:
                                        2363.976
                                                   64.23
                                                            84.6
                                                                      3.16 1960
         Europe Portugal 1965 8888635 3212.569
                                                            66.4
                                                   66.17
                                                                      3.18 1965
         Europe Portugal 1970 8670352 4615.613
                                                   67.14
                                                            55.4
                                                                     2.99 1970
   4:
         Europe Portugal 1975 9185876 5398.299
                                                   68.90
                                                            36.0
                                                                     2.71 1975
##
         Europe Portugal 1980 9755635 6518.493
                                                  71.71
                                                            22.8
                                                                     2.29
                                                                          1980
         Europe Portugal 1985 9929014 6693.814
                                                            16.5
##
                                                  73.22
                                                                     1.78
                                                                          1985
##
         Europe Portugal 1990 9890319 8854.322
                                                  74.20
                                                            11.5
                                                                     1.54 1990
##
         Europe Portugal 1995 10078431
                                                  75.50
                                                            7.4
                                                                     1.48 1995
                                        9455.050
                                                            5.5
## 9:
         Europe Portugal 2000 10278542 11412.078
                                                  76.80
                                                                     1.47 2000
                                                            3.7
## 10:
         Europe Portugal 2005 10480085 11663.632
                                                  78.40
                                                                     1.41
                                                                           2005
## 11:
         Europe Portugal 2010 10584837 11805.935
                                                  79.90
                                                                     1.33
                                                                           2010
## 12:
         Europe Portugal 2015 10349803
                                                   80.80
                                                             3.0
                                                                     1.31
                                                                           2015
```

```
options(width = widthDefault)
```

Life Expectancy

ggplot(gmPT)

Life Expectancy

ggplot(gmPT, aes(year, lifeexp))

Life Expectancy - Points


```
ggplot(gmPT, aes(year, lifeexp)) +
   geom_point()
```


Life Expectancy - Line


```
ggplot(gmPT, aes(year, lifeexp)) +
   geom_line()
```


Life Expectancy - Points & Line


```
ggplot(gmPT, aes(year, lifeexp)) +
  geom_point() +
  geom_line()
```


Life Expectancy - Colour


```
ggplot(gmPT, aes(year, lifeexp)) +
   geom_point(colour="blue") +
   geom_line(colour="blue")
```


Life Expectancy - Y-axis

Life Expectancy - Axis labels

Interpret this plot.

Exercises

Download: https://ilustat.com/shared/ggplot2-Intro.zip

Double Click on "ggplot2-Exercises.Rproj"

Open file "ggplot2-Exercises.Rmd"

Complete "Exercise 1 - Portugal"

Some comments (i)

Piping data to ggplot2

Some comments (ii)

Order matters

How does Portugal compare to other European countries?

Life Expectancy - Points

European Countries

```
gm[continent=="Europe"] %>%
ggplot(aes(year, lifeexp)) +
geom_point(colour="grey75") +
scale_y_continuous(limits=c(60,85))
```


Life Expectancy - Points

Add Portugal (blue)

Life Expectancy - Jitter

Jitter overlapping points

fyear is a factor variable

Cleaner x-axis

Modify points

Shapes & Values

 $1 \circ 2 \triangle 3 + 4 \times 5 \diamond$

7 ⋈

8 *

9 ↔

10 ⊕

11 ¤

12 ⊞

13 ∞

14 □ 15 ■

16 •

17 🔺

19 • 20 • 21 ∘ 22 □

23 ◊

24 △ 25 ▽

Final

Life Expectancy - Line Plot

Line for each country

Life Expectancy - Line Plot

Used geom_line() twice

See "gghighlight" package

Facetting Plots

Facetting by continent

```
gm[continent!="Oceania"] %>%
ggplot(aes(fyear, lifeexp)) +
geom_boxplot() +
scale_x_discrete(
  breaks=seq(1960, 2010, 10)) +
scale_y_continuous(limits=c(40,85)) +
facet_wrap(~continent)
```


Adding Portugal

Reduce outlier size

Exercises

Double Click on "ggplot2-Exercises.Rproj"

Open file "ggplot2-Exercises.Rmd"

Complete "Exercise 2 - Europe"

How does Portugal perform on health and wealth?

Health versus Wealth over Time

We will only use data for 1960, 1980, 2000 and 2010.

This is essentialy a subset of the famous gapminder plot

Health vs Wealth

Colour code by year

Not easy to interpret

Health vs Wealth - Facet

Plot years separately

```
yrs <- c(1960,1980,2000,2010)
gm[continent=="Europe" &
    year %in% yrs] %>%
ggplot(aes(gdpPercap, lifeexp,
         colour=fyear)) +
geom_point() +
facet_wrap(~fyear)
```


Health vs Wealth - Log Scale

Log scale x-axis

Health vs Wealth - Log Scale

Remove Legend

Health vs Wealth - Log Scale

Point size = population

Health vs Wealth - Portugal

Add Portugal

Health vs Wealth - Portugal

No need for year colours

Health vs Wealth

Move the legend below

Exercises

Double Click on "ggplot2-Exercises.Rproj"

Open file "ggplot2-Exercises.Rmd"

Complete "Exercise 3: Gapminder plot"

Summary

- Answer questions with data visualisations
- Define your plots and gglot2 does the rest
- Integrates well with R markdown
- Lots more than this short workshop could show
- Try it out and experiment to learn more!

This work is licensed under the

Creative Commons Attribution-NonCommercial 4.0 International License.

To view a copy of this license, visit

http://creativecommons.org/licenses/by-nc/4.0/