Université d'Angers

MASTER DATA SCIENCE - STATISTIQUE ET SCIENCE DES DONNÉES POUR LA BIOLOGIE

Examen Final (2h)

Le barème est donné à titre indicatif. Les exercices sont indépendants.

Il sera tenu compte de la rédaction.

Introduction à l'Analyse de Survie

Exercice 1. (4 points)

On suppose que le temps de survie X admet pour densité

$$f(t) := \begin{cases} \frac{\theta}{t^{\theta+1}} & \text{si } t \ge 1, \\ 0 & \text{si } t < 1, \end{cases}$$
 (1)

où $\theta > 1$.

On définit par X le temps de survie aléatoire et C la censure aléatoire et on suppose que l'on travaille avec un modèle de censure à droite, c'est-à-dire, que l'on observe les instants $T := \min(X, C)$ muni de l'indicateur de censure $\delta := \mathbb{1}_{\{X \leq C\}}$. On note aussi par la suite $(T_i, \delta_i)_{1 \leq i \leq n}$ un échantillon aléatoire i.i.d. issu de (T, δ) .

- 1. Montrer que la fonction de survie associée à X est donnée par $S(t) = t^{-\theta}$ pour $t \ge 1$ et 1 sinon.
- 2. Proposer une transformation de \widehat{S}_n pour justifier l'adéquation de X à la distribution décrite par f dans (1) et expliquer comment l'appliquer (on pourra chercher à obtenir une transformation qui rend S linéaire en θ).
- 3. Calculer la fonction de log-vraisemblance pour la distribution (1).
- 4. En déduire l'estimateur du maximum de vraisemblance $\widehat{\theta}_n$.

Exercice 2. (6 points)

On définit par X le temps de survie aléatoire et C la censure aléatoire et on suppose que l'on travaille avec un modèle de censure à droite, c'est-à-dire, que l'on observe les instants $T := \min(X, C)$ muni de l'indicateur de censure $\delta := \mathbb{1}_{\{X \leq C\}}$. On note aussi par la suite $(T_i, \delta_i)_{1 \leq i \leq n}$ un échantillon aléatoire i.i.d. issu de (T, δ) .

On suppose que X et C sont continus et indépendants et on rappelle que l'estimateur de Kaplan-Meier pour la fonction de survie de X est alors donné par

$$\widehat{S}(t) = \prod_{T_{(i)} \leqslant t} \left(1 - \frac{1}{n-i+1} \right)^{\delta_{(i)}}$$

où $\delta_{(i)}$ est l'indicateur de censure associé à $T_{(i)}$.

1. Expliquer en quoi l'estimateur

$$\widehat{S}_C(t) = \prod_{T_{(i)} \leqslant t} \left(1 - \frac{1}{n - i + 1} \right)^{1 - \delta_{(i)}}$$

est un candidat pour estimer la fonction de survie de C.

2. Soit $k \in \{1, 2, \dots, n-1\}$ et t > 0 un réel tel que $T_{(k)} \leqslant t < T_{(k+1)}$.

Montrer que

$$\prod_{T(i) \le t} 1 - \frac{1}{n-i+1} = \frac{n-k}{n}$$

et en déduire que $\forall t > 0$

$$\prod_{T_{(i)} \leq t} 1 - \frac{1}{n-i+1} = \frac{1}{n} \sum_{i=1}^{n} \mathbb{1}_{\{T_i > t\}}.$$

3. A l'aide des questions précédentes, montrer que le produit de \widehat{S} et \widehat{S}_C renvoi l'estimateur empirique pour la fonction de survie de T. Pouvait-on s'y attendre en regardant l'expression théorique de $\mathbb{P}(T > t)$, $\forall t > 0$?

Exercice 3 (5 points)

On suppose que le temps de survie X admet pour densité

$$f(t) := \begin{cases} 0 & \text{si } t > \tau, \\ \beta \exp(-\beta(\tau - t)) & \text{si } t \leqslant \tau, \end{cases}$$

où β et τ sont des paramètres strictement positifs.

On définit par C la censure aléatoire et on suppose que l'on travaille avec un modèle de censure à gauche, c'est-à-dire, que l'on observe les instants $T := \max(X, C)$ muni de l'indicateur de censure $\delta := \mathbb{1}_{\{X \geqslant C\}}$. On note aussi par la suite $(T_i, \delta_i)_{1 \leqslant i \leqslant n}$ un échantillon aléatoire i.i.d. issu de (T, δ) .

- 1. Calculer les fonctions de survie S et de risque instantané λ associées à X.
- 2. Montrer que la variable aléatoire X suit la même loi que τY où Y est une variable aléatoire dont on précisera la loi.

On suppose à présent que $C \leqslant \tau$ presque sûrement.

- 3. Proposer modèle de censure à droite à partir de T et δ .
- 4. Montrer que $\hat{\tau}_n := \max(T_i, i = 1, ..., n)$ est un estimateur consistant de τ .
- 5. Déduire des questions précédentes une procédure d'estimation pour les paramètres τ et β à partir de l'échantillon $(T_i, \delta_i)_{1 \le i \le n}$. On ne demande pas de montrer la consistance de chacun des estimateurs.