	Final	Exam
Last Name	First Name	SID
Left Neighbor Firs	t and Last Name	Right Neighbor First and Last Name

Rules.

- Unless otherwise stated, all your answers need to be justified and your work must be shown. Answers without sufficient justification will get no credit.
- All work you want to be graded can be on both the front and back of the sheets in the space provided. Both sides will be scanned/graded.
- You have 10 minutes to read the exam and 160 minutes to complete the exam. (DSP students with X% time accommodation should spend $10 \cdot X\%$ time on reading and $160 \cdot X\%$ time on completing the exam).
- This exam is closed-book. You may reference two double-sided handwritten sheets of paper. No calculators or phones are allowed.
- Collaboration with others is strictly prohibited. If you are caught cheating, you may fail the course and face disciplinary consequences.

Problem	out of
Problem 1	25
Problem 2	25
Problem 3	32
Problem 4	20
Problem 5	25
Total	127

1 CTMC [25 points]

Consider a machine that operates for an $\text{Exp}(\mu)$ amount of time and then fails. Once it fails, it gets repaired. The repair time is an $\text{Exp}(\lambda)$ random variable and is independent of the past. The machine is as good as new after the repair is complete. Let X_t be the state of the machine at time t, 1 if it is up and 0 if it is down. This process is modelled as a continuous-time Markov chain (CTMC).

- (a) Write down your SID on the top right corner to get 4 points. (4 points)
- (b) Briefly explain why the rate matrix Q of the Markov chain is given by:

$$Q = \begin{bmatrix} -\lambda & \lambda \\ \mu & -\mu \end{bmatrix}$$

(3 points)

(c) Let $P(t) = \{p_{ij}(t)\}_{i,j\in[2]}$ denote the transition probability matrix of X(t) ($p_{ij}(t) = \mathbb{P}(X(t) = j|X(0) = i)$). Given

$$P(1) = \begin{bmatrix} \frac{\mu}{\lambda + \mu} & \frac{\lambda}{\lambda + \mu} \\ \frac{\mu}{\lambda + \mu} & \frac{\lambda}{\lambda + \mu} \end{bmatrix} + e^{-(\lambda + \mu)} \cdot \begin{bmatrix} \frac{\lambda}{\lambda + \mu} & -\frac{\lambda}{\lambda + \mu} \\ -\frac{\mu}{\lambda + \mu} & \frac{\mu}{\lambda + \mu} \end{bmatrix},$$

compute P(2). (4 points)

- (d) Determine the stationary distribution of the CTMC. Is the CTMC reversible? Justify your answer. (6 points)
- (e) Suppose the downtime cost of the machine is B per unit time. What is the minimum revenue rate A during the uptime needed to break even in the long run? (4 points)
- (f) Suppose the machine is working at time 0. Determine the convergence of the long-run rate of repair completions for this machine (both convergence type and value), i.e.,

$$\frac{\text{number of repairs completed before time } T}{T} \stackrel{?}{\to} ? (T \to \infty)$$

(4 points)

2 Graphs and Testing [25 points]

- (a) Write down your SID on the top right corner to get 3 points. (3 points)
- (b) An Erdos-Renyi random graph G = (V, E) is sampled from $\mathcal{G}(n, p)$. We observe the nodes V and the edges E. We also have a prior belief that $p \sim \mathsf{Beta}(\alpha, \beta)$. For this question, leave your answers in terms of α, β, n , and e = |E| (the number of edges observed).
 - (i) The posterior distribution of p given the observation G is $\mathsf{Beta}(a,b)$, find a and b. (5 points)
 - (ii) Find the MAP estimator for p given G in terms of a and b. (4 points)
 - (iii) Find the MMSE estimator for p given G in terms of a and b. (3 points)

Hint: Beta (α, β) is a distribution over the interval [0, 1] with the pdf at point x being $c(\alpha, \beta)x^{\alpha-1}(1-x)^{\beta-1}$ for some normalizing constant $c(\alpha, \beta)$ that depends on α and β . The mean of Beta (α, β) is $\frac{\alpha}{\alpha+\beta}$.

(c) Let V be a set of n nodes. An Erdos-Renyi random graph G = (V, E) is sampled from $\mathcal{G}(n, p)$ with the nodes labeled as V. We observe only the edges E and not the set of nodes V. For example, suppose n = 6 and V = (a, b, f, k, x, 2). For a random graph G = (V, E), we only observe the edge set like $E = \{(a, 2), (f, a), (k, 2)\}$. We do not know V or n; by looking at E, we can conclude that there V has at least the four elements a, 2, f, k.

Given the set E, find the joint MLE estimate for n and p. That is, find $(\hat{n}, \hat{p}) = \operatorname{argmax}_{n,p} P(E|n, p)$. (5 points)

Hint: leave your answers in terms of e = |E| (the number of edges observed) and m, where m is the number of distinct nodes seen in the edge set E.

(d) In a bin, there are four balls of color red, blue, yellow, and green. According to the null hypothesis, the probability of picking a ball Y is given as

$$H_0: Y \text{ is } \begin{cases} \text{Red} & \text{w.p. } 0.1\\ \text{Blue} & \text{w.p. } 0.2\\ \text{Yellow} & \text{w.p. } 0.3\\ \text{Green} & \text{w.p. } 0.4 \end{cases}$$
(1)

while according to the alternate hypothesis, the probability of picking a ball Y is given as

$$H_{1}: Y \text{ is } \begin{cases} \text{Red} & \text{w.p. } 0.15\\ \text{Blue} & \text{w.p. } 0.3\\ \text{Yellow} & \text{w.p. } 0.5\\ \text{Green} & \text{w.p. } 0.05. \end{cases}$$
(2)

Find an optimal test (and write it clearly in terms of the observation Y) that maximizes Probability of Correct Detection (PCD) subject to Probability of False Alarm (PFA) ≤ 0.5 (5 points).

3 Estimation [32 points]

Let X_1, \ldots, X_n $(n \ge 2)$ be i.i.d. samples from $\mathcal{N}(\mu, \sigma^2)$. In this problem, we consider Frequentist and Bayesian approaches to estimate μ and σ^2 .

- (a) Write down your SID on the top right corner to get 4 points. (4 points)
- (b) Frequentist:
 - (a) Find the maximum likelihood estimation (MLE) of μ and σ^2 . (8 points)
 - (b) Are the above MLE estimators unbiased? Justify your claim. (6 points)
- (c) Bayesian:
 - (a) Suppose σ^2 is known and we have prior $\mu \sim \mathcal{N}(\theta, \tau^2)$. Find the maximum a posteriori (MAP) estimator of μ . (4 points)
 - (b) We introduce the following inverse- χ^2 distribution:

The density of inverse- χ^2 distribution $\text{Inv}-\chi^2(\nu,\sigma^2)$ is given by

$$p(x|\nu,\sigma^2) = \begin{cases} \frac{(\nu\sigma^2/2)^{\nu/2}}{\Gamma(\nu/2)} x^{-\left(1+\frac{\nu}{2}\right)} e^{-\frac{\nu\sigma^2}{2x}}, & \text{if } x > 0\\ 0, & \text{otherwise} \end{cases}.$$

Here $\Gamma(z):=\int_0^\infty t^{z-1}e^{-t}dt$ is the gamma function. The mode and mean of $\operatorname{Inv}-\chi^2(\nu,\sigma^2)$ are $\frac{\nu\sigma^2}{\nu+2}$ and $\frac{\nu\sigma^2}{\nu-2}$ ($\nu>2$) respectively.

Suppose μ is known and we have prior $\sigma^2 \sim \text{Inv} - \chi^2(\theta, \tau^2)$. Find the MAP estimator of σ^2 . (4 points) *Hint: Does the posterior of* σ^2 *also follow inverse-* χ^2 *distribution?*

(c) Are the above MAP estimators minimum mean square error (MMSE) estimators? Justify your claim. (6 points)

4 Hypothesis Testing [20 points]

Under H_0 , a random variable has the cumulative distribution function $F_0(x) = x^2, 0 \le x \le 1$; and under H_1 , it has the cumulative distribution function $F_1(x) = x, 0 \le x \le 1$.

- (a) Write down your SID on the top right corner to get 4 points. (4 points)
- (b) Let X be sampled from H_0 and Y be sampled from H_1 , independently from each other. Find the linear least squares estimator (LLSE) $\mathbb{L}(X + Y | X Y)$. (6 points)
- (c) What is the Neyman-Pearson test of H_0 vs. H_1 , such that the probability of false alarm (PFA) is α ? (7 points) What is the probability of correct detection (PCD) of the above test? (3 points)

5 Kalman Filters [25 points]

- (a) Write down your SID on the top right corner to get 3 points. (3 points)
- (b) What color is the Pink Panther? (1 point)
- (c) Consider the standard Kalman Filter state updates but with a slight change. The observations have a constant and unknown bias Ω , and no other noise. Concretely, $\forall i \geq 0$,

$$X_{i+1} = aX_i \tag{3}$$

$$Y_i = X_i + \Omega. (4)$$

It is given that X_0 and Ω are zero-mean random variable and independent, with variances σ_X^2 and σ_Ω^2 respectively. We want to do Kalman Prediction, i.e., obtain $\hat{x}_{i|i-1} = \mathbb{L}[X_i|Y_0,\ldots,Y_{i-1}]$ and the corresponding errors $\sigma_{i|i-1}^2 = \mathbb{E}[(X_i - \hat{x}_{i|i-1})^2]$. In order to do so for this problem, we would need to keep track of three additional quantities which we define below:

$$\hat{\Omega}_i = \mathbb{L}[\Omega|Y_0, \dots, Y_i]$$

$$\lambda_i^2 = \mathbb{E}[(\Omega - \hat{\Omega}_i)^2]$$

$$\rho_i = \mathbb{E}[(X_{i+1} - \hat{x}_{i+1|i})(\Omega - \hat{\Omega}_i)]$$

- (i) With the understanding that $\hat{x}_{0|-1} = \mathbb{E}[X_0]$ and $\hat{\Omega}_{-1} = \mathbb{E}[\Omega]$, write down the expression for $\sigma_{0|-1}^2$, λ_{-1}^2 , and ρ_{-1} . (3 points)
- (ii) Find the Kalman update for $\hat{x}_{i+1|i}$. In other words, find the term K_i and \hat{Y}_i below in terms of $a, \hat{\sigma}_{i|i-1}^2, \rho_i, \lambda_{i-1}^2, \hat{x}_{i|i-1}, \hat{\Omega}_{i-1}$ and Y_i . (6 points)

$$\hat{x}_{i+1|i} = a\hat{x}_{i|i-1} + K_i\hat{Y}_i$$

(iii) Find the Kalman update for $\hat{\Omega}_i$. In other words, find the term L_i and \hat{Y}_i below in terms of $a, \hat{\sigma}_{i|i-1}^2, \rho_i, \lambda_{i-1}^2, \hat{x}_{i|i-1}, \hat{\Omega}_{i-1}$ and Y_i . (2 points)

$$\hat{\Omega}_i = \hat{\Omega}_{i-1} + L_i \hat{Y}_i$$

(iv) Find the Kalman update for $\sigma_{i+1|i}^2$. In other words, find the term α_i below in terms of $a, \sigma_{i|i-1}^2, \rho_{i-1}, \lambda_{i-1}^2$. (3 points)

$$\sigma_{i+1|i}^2 = a^2 \sigma_{i|i-1}^2 - K_i \alpha_i$$

(v) Find the Kalman update for λ_i^2 . In other words, find the term β_i below in terms of $a, \sigma_{i|i-1}^2, \rho_{i-1}, \lambda_{i-1}^2$. (3 points)

$$\lambda_i^2 = \lambda_{i-1}^2 - L_i \beta_i$$

(vi) Find the Kalman update for ρ_i . In other words, find the term γ_i below in terms of $a, \sigma_{i|i-1}^2, \rho_{i-1}, \lambda_{i-1}^2$. (4 points)

$$\rho_i = a\rho_{i-1} - L_i\alpha_i - K_i\beta_i + K_iL_i\gamma_i$$