Teorema Reziduurilor si aplicatii

Autor: Tapalaga Ecaterina Simona Conducator stiintific: Prof. Dr. Salagean Grigore

> Universitatea Babes-Bolyai Cluj-Napoca Facultatea de Matematica si Informatica

> > **lulie 2013**

Despre Teorema reziduurilor

- ► Teorema reziduurilor e o unealta puternica a analizei complexe.
- Este utilizata in evaluarea integralelor functiilor analitice pe contururi.
- Reduce calculul integralei la mult mai simpla evaluare a rezidurilor.
- ► Adesea poate fi folosita la calculul integralelor reale.

Structura lucrarii

- ► Lucrarea ilustreaza asemenea aplicatii. Unele integrale prezentate nu pot fi evaluate prin metode elementare.
- Lucrarea este impartita in trei capitole:
 - ► Notiuni introductive
 - ► Teorema reziduurilor
 - Aplicatii ale teoremei reziduurilor

Aplicatii ale teoriei reziduurilor la calculul unor integrale definite reale

(*) Fie integrala $I=\int_0^{2\pi} R(\sin x,\cos x) \,\mathrm{d}x$, unde R(u,v) este o functie rationala reala ce nu are poli pe cercul $u^2+v^2=1$.

Atunci:
$$\int_0^{2\pi} R(\sin x, \cos x) \, \mathrm{d}x = 2\pi \sum_{z \in \mathcal{U}(0;1)} \mathrm{Rez}(f;z)$$
 unde
$$f(z) = \frac{1}{z} R\left(\frac{z - \frac{1}{z}}{2i}, \frac{z + \frac{1}{z}}{2}\right)$$

(**) Fie integrala

$$I = \int_{-\infty}^{\infty} f(x) e^{i\alpha x} dx$$

unde f=P/Q , $Q(x) \neq 0$, $x \in \mathbb{R}$, $\mathit{grad}\ P=k$, $\mathit{grad}\ Q=p$, iar $p \geq k+1$.

Daca $\alpha > 0$, atunci:

$$I = \int_{-\infty}^{\infty} f(x)e^{i\alpha x} dx = 2\pi i \sum_{\text{Im } z>0} \text{Rez}(g;z)$$

, unde $g(z) = f(z)e^{i\alpha z}$.

Aplicatii concrete

Sa se calculeze integrala

$$I = \int_{-\infty}^{\infty} \frac{\cos x}{x^2 + a^2} \, \mathrm{d}x, \text{ unde } a > 0.$$

Fie
$$I_1 = \int_{-\infty}^{\infty} \frac{\cos x}{x^2 + a^2} dx$$

si $I_2 = \int_{-\infty}^{\infty} \frac{\sin x}{x^2 + a^2} dx (= 0 \text{ pe ca e impara})$
si fie $I = I_1 + iI_2$
 $\implies I = \int_{-\infty}^{\infty} \frac{e^{ix}}{x^2 + a^2} dx$

$$P(x)=1$$
 $Q(x)=a^2+x^2$ $\begin{cases} grad \ Q \geq grad \ P+1 \end{cases}$ $2 \geq 1$ $f(z)=rac{e^{iz}}{a^2+z^2}$

 $a^2+z^2=0 \implies z_{1,2}=\pm ia$, dar doar $z_1=ia$ pol de gradul l \in semiplanul superior

$$\implies I = 2\pi i \operatorname{Rez}(f; z_1) = 2\pi i \operatorname{Rez}(f; ia)$$

$$\operatorname{Rez}(f; ia) = \lim_{z \to ia} (z - ia) \frac{e^{iz}}{z^2 + a^2} = \frac{e^{-a}}{z + ia} = \frac{e^{-a}}{2ia}$$

$$\implies I = 2\pi i \frac{e^{-a}}{2ia} = \frac{e^{-a}\pi}{a}$$

$$I_1 = \operatorname{Re} I \quad I_2 = \operatorname{Im} I \implies I_1 = \frac{e^{-a}\pi}{a}; \quad I_2 = 0$$