K.G.C.E. Karjat - Raigad Tutorial 2

Page No.:

KGCEKGCEKGC	EKGCEKGCEKGCEKGCEKGCEKGCEKGCEKGCEKGCEKGC
	To understand State Space Problem Formulation.
	Name: - Pranali Jibhau Jagtap
	Roll No. :- 25
	Subject :- IS
	class :- BEJ7
	D.O.P D.O.C Marks Sign

ALTERIA SERIA SERIA S	1.2
	To understand State Space problem Formulation
	Aim: To understand State Space based problem
	Solving Agent and Environments can be applied.
	Theory: - First we understand the problem solving agent
0	Program For Problem, then determenies or rather
	Searches an action Sequence, after which it return
	the next action to be executed in sequential manner
	Function SIMPLE-PROBLEM-SOLVING-(Precept) return an adio Static: seg. an action sequence, initially empty
	State, some description of current world state
	god, a god, initially empty null
	problem, a problem Formulation.
	State CState, Percept)
	if seq is empty then do
	goal & FORMULATE-GOAL(state)
	Problem - FORMULATE - PROBLEM (Stale, goal)
	Seg - SEARCH (Problem)
	action - FIRST (seq)
	geg < RESTESEQT
	return action.
	Figure 3: Problem Solving Agent Architecture.

KGCEKGCEKGCEKGC	CEKGCEKGCEKGCEKGCEKGCEKGCEKGCEKGCEKGCEKG
	Defining the Problem is referred to as problem Formulation. It involves defining following Five things:-
	Initial state: - It is the starting state that the problem is in.
	Action :- It defines all possible action available to agent given it is in some state (urrently- It is a function Action that return list of all possible actions
	Transition Model: - Il also known as successor function which define which state the system tend to move to when a particular action in executed by the agent. Successive application of Transition model gives rise to what is known as state space
	Goal Test: This act as a stopping condition when the State passed to this Function is goal state it will return true and Searching would stop.
	Path cost !- It is accumulated cost of performing Certain sequence of actions. This can help in determining weather the action sequence under consideration is Optimal.

WEST-WOOD-WOOD-WOOD-	Date:
KGCEKGCEKGCEK	GCERGCERGCERGCERGCERGCERGCERGCERGCERGCER
	Thus a problem can Formally specified
	by Identifying initial state action coperations
	transition model (Sucessor Function), goal test and
	Path cost. In term of problem solving agent
	Solution is the path Form Initial State to a
	goal Strue, optimal solution is the lowest path
	Cost of all solutions, process of finding a solution
	is called Search
	Working Based on understanding of problem
	Formulation students needs to formulate
	Following problem. They will clearly show state
	Space up to depth level 3 or till goal node
	which ever is shallowest.
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	1. Navigate to KGCF Workshop From HOD IT cabin
	with minimum number of moves, moves can
	be climbing or alighiting staircase, turning left
	making through a corridor
	2. S Puzzle problem
	3. The missionaries and cannilable problem. There
	are three missionaries and three cannibals who
	must crosss at river using a boat which can
	carry at most two people, under the constraint
	that, For bothe banks, if there are missionaries
	present on the bank, they cannot be outnumbered
	by cannibals If they were the cannibals would
	cat the missionaries. The boat cannot crossthe

Page No.:

Date:

on board.

4. cross N Queen's problem Arrange N Queens on

4. cross N gueen's problem Arrange N gueens on N cross N chees board where no two gueens attack each other.

5. + Two room Vaccum cleaner world

6. Water Jug Problem.

Résources :- Référ to second chapter from Artifical
Intelligence Amodein approach

i) 8- Puzzle problem :-

The problem can be formulated as:.

- States: states can be represented by a 3x3

an under score! - 1.

1) Initial State: { [1,2,33, {4,8,-08, {7,6,53}}

2) Actions: The black space moves in left, right, up and down direction specifying the actions.

3) Succesor function! If we apply 'down' operation to the State the next State has '5'

and 1-) switched

4) Goal text = { {1,2,33, {4,5,63, {7,8,-3}}

5) part cost: Normber of steps to reach to the final state.

Page No. :

Page No. :

	Date :
KGCEKGCEKGCEKGC	EKBCEKGCEKGCEKGCEKGCEKGCEKGCEKGCEKGCEKGCEKG
	Water Jug Problem:
	There are two jugs of volume A little and Blits Neither has any meassuring mark on it. There is a pump that can be used to Fill the jugs with water. A water Jug problem. You are give two Jug, a 4-gallon and 3-gallon one a pump which has unlimited water which you can use to Fill the jug
	Powred.