

Project Management for Managers

Lec – 39

Probability Models in Networks - I

Dr. M.K. Barua

Department of Management
Indian Institute of Technology Roorkee

Probability of achieving a project on completion date

If Ts as ""1 σ " towards left of Te than the area under curve would be ????and if it is "1 σ " towards right of Te, the areas would be ????%.

If Ts as 1 σ towards left of Te than area under the curve would be 15.9% and if it is 1 σ towards right of Te, the areas would be 84.1%.

Central limit theorem: Relationship b/w shape of population distribution and shape of sampling distribution of mean is called CLT.

Find critical path and variance along critical path. What is the probability that the project will be completed in 28 days?.

Activity to tp 3 1-2

9 13

1

7 4 15 7

3.36

.44

5.8

IIT ROORKEE

2-3

3-4

4-5

Appendix Table 1

Areas under the Standard Normal Probability Distribution between the Mean and Positive Values of z

Example:	Z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
To find the area		0.0000	0.0040	0.0080	0.0120	0.0160	0.0199	0.0239	0.0279	0.0319	0.0359
	0.0	0.0000	0.0040	0.0080	0.0517	0.0557	0.0596	0.0636	0.0675	0.0714	0.0753
under the curve	0.1	0.0398	0.0832	0.0871	0.0910	0.0948	0.0987	0.1026	0.1064	0.1103	0.1141
between the	0.2	0.1179	0.1217	0.1255	0.1293	0.1331	0.1368	0.1406	0.1443	0.1480	0.1879
mean and a point	0.4	0.1554	0.1591	0.1628	0.1664	0.1700	0.1736	0.1772	0.1808	0.2190	0.2224
	0.5	0.1915	0.1950	0.1985	0.2019	0.2054	0.2088	0.2123	0.2486	0.2517	0.2549
2.24 standard	0.6	0.2257	0.2291	0.2324	0.2357	0.2389	0.2422	0.2764	0.2794	0.2823	0.2852
deviations to the	0.7	0.2580	0.2611	0.2642	0.2673	0.2704	0.3023	0.3051	0.3078	0.3106	0.3133
right of the	0.8	0.2881	0.2910	0.2939	0.2967 0.3238	0.3264	0.3289	0.3315	0.3340	0.3365	0.3389
	0.9	0.3159	0.3186	0.3212	0.3485	0.3508	0.3531	0.3554	0.3577	0.3599	0.3621
mean, look up	1.0	0.3413	0.3436	0.3686	0.3708	0.3729	0.3749	0.3770	0.3790	0.3810	0.3830
the value	1.1	0.3849	0.3869	0.3888	0.3907	0.3925	0.3944	0.3962	0.3980	0.3997	0.4015
opposite 2.2 and	1.3	0.4032	0.4049	0.4066	0.4082	0.4099	0.4115	0.4131	0.4147	0.4102	0.4319
	1.4	0.4192	0.4207	0.4222	0.4236	0.4251	0.4265	0.4279	0.4418	0.4300	0.4441
under 0.04 in the	1.5	0.4332	0.4345	0.4357	0.4370	0.4382	0.4394	0.4515	0.4525	0.4535	0.4545
table; 0.4875 of	1.6	0.4452	0.4463	0.4474	0.4484	0.4495	0.4599	0.4608	0.4616	0.4625	0.4633
the area under	1.7	0.4554	0.4564	0.4573	0.4582	0.4591	0.4678	0.4686	0.4693	0.4699	0.4706
	1.8	0.4641	0.4649	0.4656	0.4664	0.4738	0.4744	0.4750	0.4756	0.4761	0.4767
the curve lies	1.9	0.4713	0.4719	0.4728	0.4788	0.4793	0.4798	0.4803	0.4808	0.4812	0.4817
between the	2.0	0.4772	0.4776	0.4830	0.4834	0.4838	0.4842	0.4846	0.4850	0.4854	0.4857
mean and a z	2.1	0.4861	0.4864	0.4868	0.4871	0.4875	0.4878	0.4881	0.4884	0.4887	0.4890
	2.3	0.4893	0.4896	0.4898	0.4901	0.4904	0.4906	0.4909	0.4911	0.4934	0.4936
value of 2.24.	2.4	0.4918	0.4920	0.4922	0.4925	0.4927	0.4929	0.4931	0.4949	0.4951	0.4952
	2.5	0.4938	0.4940	0.4941	0.4943	0.4945	0.4946	0.4961	0.4962	0.4963	0.4964
	2.6	0.4953	0.4955	0.4956	0.4957	0.4959	0.4970	0.4971	0.4972	0.4973	0.4974
	2.7	0.4965	0.4966	0.4967	0.4968	0.4977	0.4978	0.4979	0.4979	0.4980	0.4981
	2.8	0.4974	0.4975	0.4976	0.4983	0.4984	0.4984	0.4985	0.4985	0.4986	0.4986
	2.9	0.4981	0.4982	0.4982	0.4988	0.4988	0.4989	0.4989	0.4989	0.4990	0.4990
	3.0	0.4987	0.490/	0.4707	0.4700						THE RESERVE THE PERSON NAMED IN