

৯ম শ্রেণি একাডেমিক প্রোগ্রাম ২০২০

গণিত

লেকচার : M-26

অধ্যায় ০৯ : ত্রিকোণমিতিক অনুপাত

বিশেষ কিছু কোণের ত্রিকোণমিতিক অনুপাত

আমরা আগে ত্রিকোণমিতিক অনুপাতের সংজ্ঞা ও কিছু সম্পর্ক নিয়ে পড়েছি।

এখন আমরা জানি যে কোনো নির্দিষ্ট কোণের মানের জন্য ত্রিকোণমিতিক অনুপাতগুলো নির্দিষ্ট সংখ্যা হয়।

এজন্য কিছু নির্দিষ্ট বা বিশেষ কোণের জন্য ত্রিকোণমিতিক অনুপাত অনেক গুরুত্বপূর্ণ হয়।

তাই আমরা কিছু নির্দিষ্ট কোণের জন্য অনুপাতের মানগুলো দেখবো

30^0 ও 60^0 এর জন্য ত্রিকোণমিতিক অনু

$$\Delta ABD \supset,$$

$$AC^{2} = CO^{2} + AD^{2}$$

$$A^{2} = CD^{2} + \left(\frac{q^{2}}{2}\right)^{2}$$

$$A^{2} = CD^{2} + \left(\frac{q^{2}}{2}\right)^{2}$$

$$A^{2} = CD^{2} + \left(\frac{q^{2}}{2}\right)^{2}$$

$$A^{2} = CD^{2} + AD^{2}$$

$$A^{2} = CD^{2} +$$

$$\sin 30^\circ = \frac{BD}{BC} = \frac{\frac{9}{2}}{9} = \frac{1}{2}$$

$$\cos 30^\circ = \frac{AD}{BC} = \frac{53}{2}$$

$$\tan 60^\circ - N5$$

$$= \frac{1}{2}$$

$$\tan 60^\circ - N5$$

$$= \frac{1}{2}$$

$$\tan 60^\circ - N5$$

$$= \frac{1}{2}$$

$$\tan 80^\circ - N5$$

$$= \frac{1}{2}$$

V39:

450 এর জন্য ত্রিকোণমিতিক অনুপাত

$$sin A = \frac{BC}{AC}$$

$$\cos A = \frac{AB}{AC} = \frac{9}{\sqrt{2}}$$

$$Ae^2 = AB^2 + BC^2$$
$$= o^2 + a^2$$

$$= \frac{\sqrt{2}}{\sqrt{2}}$$

$$\frac{1}{\sqrt{2}}$$

$$\frac{1}{\sqrt{2}}$$

$$\frac{1}{\sqrt{2}}$$

$$\frac{1}{\sqrt{2}}$$

$$\frac{1}{\sqrt{2}}$$

$$\frac{1}{\sqrt{2}}$$

Poll Question-01

- (C) 0.866
- (d) কোনোটিই নয়

$\mathbf{0}^{\mathbf{0}}$ এর জন্য ত্রিকোণমিতিক অনুপাত

$$Sin 0 = \frac{\pi 3}{900537} = \frac{0}{000537} = 0$$

$$\frac{\sin 0}{\cos a} = \frac{0}{1} = 0$$

900 এর জন্য ত্রিকোণমিতিক অনুপাত

$$\cos 90^\circ = \frac{3\sqrt{3}}{3\sqrt{3}} = \frac{6}{3\sqrt{3}}$$

ত্রিকোণমিতিক অনুপাতের ছক (বিশেষ কোণের জন্য)

		6		う つ	
অনুপাত/কোণ	0° +	30°	45°	60°	90°
sine	0	$rac{1}{2}$.	$\left(\frac{1}{\sqrt{2}}\right)$	$\frac{\sqrt{3}}{2}$	1
cosine	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0
tangent	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	অসংজ্ঞায়িত
cotangent	অসংজ্ঞায়িত	$\sqrt{3}$	1	$\frac{1}{\sqrt{3}}\int$	0
secant	1	$\frac{2}{\sqrt{3}}$	$\sqrt{2}$	2 2	অসংজ্ঞায়িত
cosecant	অসংজ্ঞায়িত	2	$\sqrt{2}$	$\frac{2}{\sqrt{3}}$	1

পূরক কোণের জন্য ত্রিকোণমিতিক অনুপাত

Poll question-02

$$\Box$$
 $sinA + cosecA = 2$ হল $cosA + cotA = \overline{\bullet \circ}$?

$$3in A + \frac{1}{sin A} = 2$$

$$\frac{\sin^2 A + 1}{\sin A} = 2$$

$$(\sin A - 1)^2 = 0$$

$$\Rightarrow$$
 মান নির্ণয় করোঃ $\frac{1-\cot^2 60}{1+\cot^2 60}$

$$\Rightarrow$$
 মান নির্ণয় করোঃ $\frac{1-\cos^2 60}{1+\cos^2 60} + \sec^2 60$

$$=\frac{1-(\frac{1}{2})^{2}}{1+(\frac{1}{2})^{2}}$$

❖ দেখাও যে, sin60.cos30 + cos60.sin30 = sin90

LHS =
$$\frac{\sqrt{3}}{2} \cdot \frac{\sqrt{3}}{2} + \frac{1}{2} \cdot \frac{1}{2}$$

Poll Question-03

 \Box tan(10A) = cot(5A) হলে A এর মান কত?

(d) 18°

$$tan(10A) = ext(5A)$$

 $tan(10A) = tan(90-5A)$
 $10A = 90-5A$

$$A = \frac{90}{15}$$

eot(
$$\theta$$
) = tan($90-\theta$)
eot $5A = tan(90-5A)$

$$\clubsuit$$
 দেখাও যে, $A=45^0$ হলে, $\underline{sin2A}=\frac{2tanA}{1+tan^2A}$

্ এখন, $\cos(A-B)=1$, $2\sin(A+B)=\sqrt{3}$ হলে এবং A,B সূক্ষ্যকোণ হলে, A এবং B এর মান নির্ণয় করতে হবে।

$$eos(A-B) = 1$$
 $eos(A-B) = eos0$
 $A-B = 0$
 $A-B = 0$

2 sin
$$(A+B)$$
 = $\sqrt{3}$
2N, sin $(A+B)$ = $\sqrt{3}$
2N sin $(A+B)$ = $\sqrt{3}$
2N sin $(A+B)$ = $\sqrt{3}$
 $A+B$ = $\sqrt{60}$

$$2A = 60^{\circ}$$

A = 30°

(Au)

$$\Rightarrow$$
 সমাধান কর, $\frac{\cos A - \sin A}{\cos A + \sin A} = \frac{\sqrt{3} - 1}{\sqrt{3} + 1}$

1 ce ásspro

$$\frac{\omega_{S}A - \sin A + \omega_{S}A + \sin A}{\omega_{A}A - \sin A} = \frac{\sqrt{3} - 1 + \sqrt{3} + 1}{\sqrt{3} - 1 - \sqrt{3} - 1}$$

$$\frac{\sqrt{3} - 1 - \sqrt{3} - 1}{\sqrt{3} - 1 - \sqrt{3} - 1}$$

$$Co + A = Co + 30^{\circ}$$

$$A = 30^{\circ}$$

$$A = 30$$

Poll Question-04

$$\square$$
 $\triangle ABC$ তে, $\cos\left(\frac{B+C}{2}\right) = \overline{\Phi}$ ত?

(a)
$$\cos\left(\frac{A}{2}\right)$$

(b)
$$\sin\left(\frac{A}{2}\right)$$

(C)
$$\sin\left(\frac{A}{4}\right)$$

(d)
$$\cos\left(\frac{A}{4}\right)$$

$$2\pi$$
, $\frac{B+C}{2} = \frac{40^{\circ} - \frac{\Delta}{2}}{2}$

$$\frac{1}{2} + \cos(40 - 6) = \sin 0$$

$$\cos\left(\frac{2}{B+c}\right)$$

$$= \cos \left(90^{\circ} - \frac{A}{2}\right)$$

=
$$\sin \frac{A}{2}$$

$$\clubsuit$$
 সমাধান কর, $sinA + cosA = 1$ যেখানে, $00 \le A \le 900$

COS2A + sin2A = [cos2A + sin2A = [-sin2A

$$\sin A + \cos A = 1$$

Al, $(\cos A)^2 = (1 - \sin A)^2$
 $\cos^2 A = 1 - 2\sin A + \sin^2 A$

Al, $(-\sin^2 A)^2 = 1 - 2\sin A + \sin^2 A$

Al, $(-\sin^2 A)^2 = 1 - 2\sin A + \sin^2 A$

Al, $(-\sin^2 A)^2 = 1 - 2\sin A + \sin^2 A$

Al, $(-\sin^2 A)^2 = 1 - 2\sin A + \sin^2 A$

Al, $(-\sin^2 A)^2 = 1 - 2\sin A + \sin^2 A$

Al, $(-\sin^2 A)^2 = 1 - 2\sin A + \sin^2 A$

Al, $(-\sin^2 A)^2 = 1 - 2\sin A + \sin^2 A$

Al, $(-\sin^2 A)^2 = 1 - 2\sin A + \sin^2 A$

Al, $(-\sin^2 A)^2 = 1 - 2\sin A + \sin^2 A$

Al, $(-\sin^2 A)^2 = 1 - 2\sin A + \sin^2 A$

Al, $(-\sin^2 A)^2 = 1 - 2\sin A + \sin^2 A$

Al, $(-\sin^2 A)^2 = 1 - 2\sin A + \sin^2 A$

Al, $(-\sin^2 A)^2 = 1 - 2\sin A + \sin^2 A$

Al, $(-\sin^2 A)^2 = 1 - 2\sin A + \sin^2 A$

Al, $(-\sin^2 A)^2 = 1 - 2\sin A + \sin^2 A$

Al, $(-\sin^2 A)^2 = 1 - 2\sin A + \sin^2 A$

Al, $(-\sin^2 A)^2 = 1 - 2\sin A + \sin^2 A$

Al, $(-\cos^2 A)^2 = 1 - 2\sin A + \sin^2 A$

Al, $(-\cos^2 A)^2 = 1 - 2\sin A + \sin^2 A$

Al, $(-\cos^2 A)^2 = 1 - 2\sin A + \sin^2 A$

Al, $(-\cos^2 A)^2 = 1 - 2\sin A + \sin^2 A$

Al, $(-\cos^2 A)^2 = 1 - 2\sin A + \sin^2 A$

Al, $(-\cos^2 A)^2 = 1 - 2\sin^2 A$

Al, $(-\cos^2$

$$2 \sin A = 0 \qquad \text{or} \qquad \sin A - 1 = 0$$

$$3 \sin A = 0 \qquad \text{or} \qquad \sin A = 1$$

$$2n \quad \sin A = \sin 0 \qquad 2n \quad \sin A = \sin 90^{\circ}$$

$$A = 0 \qquad A = 90^{\circ}$$

(Am) A = 0° or 90°

* সমাধান কর, $2 \sin^2 A + 3 \cos A - 3 = 0$, A সূক্ষাকোণ

$$2 \sin^{2}A + 3 \cos_{3}A - 3 = 0$$

$$A = 2 (1 - \cos^{2}A) + 3 \cos_{3}A - 3 = 0$$

$$A = 2 \cos^{2}A + 3 \cos_{3}A - 3 = 0$$

$$A = 2 \cos^{2}A + 3 \cos_{3}A - 1 = 0$$

$$A = 2 \cos^{2}A + 2 \cos_{3}A + \cos_{3}A - 1 = 0$$

$$A = 2 \cos_{3}A + \cos_{3}A - 1 = 0$$

$$A = 2 \cos_{3}A + \cos_{3}A - 1 = 0$$

$$A = 2 \cos_{3}A + \cos_{3}A - 1 = 0$$

$$A = 2 \cos_{3}A + \cos_{3}A - 1 = 0$$

$$A = 2 \cos_{3}A + \cos_{3}A - 1 = 0$$

$$A = 2 \cos_{3}A + \cos_{3}A - 1 = 0$$

$$A = 2 \cos_{3}A + \cos_{3}A - 1 = 0$$

$$A = 2 \cos_{3}A + \cos_{3}A - 1 = 0$$

$$A = 2 \cos_{3}A + \cos_{3}A - 1 = 0$$

$$A = 2 \cos_{3}A + \cos_{3}A - 1 = 0$$

$$A = 2 \cos_{3}A + \cos_{3}A - 1 = 0$$

$$A = 2 \cos_{3}A + \cos_{3}A - 1 = 0$$

$$A = 2 \cos_{3}A + \cos_{3}A - 1 = 0$$

$$A = 2 \cos_{3}A + \cos_{3}A - 1 = 0$$

$$A = 2 \cos_{3}A + \cos_{3}A - 1 = 0$$

$$A = 2 \cos_{3}A + \cos_{3}A - 1 = 0$$

$$A = 2 \cos_{3}A + \cos_{3}A - 1 = 0$$

$$A = 2 \cos_{3}A + \cos_{3}A - 1 = 0$$

$$A = 2 \cos_{3}A + \cos_{3}A - 1 = 0$$

$$A = 2 \cos_{3}A + \cos_{3}A - 1 = 0$$

$$A = 2 \cos_{3}A + \cos_{3}A - 1 = 0$$

$$A = 2 \cos_{3}A + \cos_{3}A - 1 = 0$$

$$A = 2 \cos_{3}A + \cos_{3}A - 1 = 0$$

$$A = 2 \cos_{3}A + \cos_{3}A - 1 = 0$$

$$A = 2 \cos_{3}A + \cos_{3}A - 1 = 0$$

$$A = 2 \cos_{3}A + \cos_{3}A - 1 = 0$$

$$A = 2 \cos_{3}A + \cos_{3}A - 1 = 0$$

$$A = 2 \cos_{3}A + \cos_{3}A - 1 = 0$$

$$A = 2 \cos_{3}A + \cos_{3}A - 1 = 0$$

$$A = 2 \cos_{3}A + \cos_{3}A - 1 = 0$$

$$A = 2 \cos_{3}A + \cos_{3}A - 1 = 0$$

$$A = 2 \cos_{3}A + \cos_{3}A - 1 = 0$$

$$A = 2 \cos_{3}A + \cos_{3}A - 1 = 0$$

$$A = 2 \cos_{3}A + \cos_{3}A - 1 = 0$$

$$A = 2 \cos_{3}A + \cos_{3}A - 1 = 0$$

$$A = 2 \cos_{3}A + \cos_{3}A - 1 = 0$$

$$A = 2 \cos_{3}A + \cos_{3}A - 1 = 0$$

$$A = 2 \cos_{3}A + \cos_{3}A - 1 = 0$$

$$A = 2 \cos_{3}A + \cos_{3}A - 1 = 0$$

$$A = 2 \cos_{3}A + \cos_{3}A + \cos_{3}A - 1 = 0$$

$$A = 2 \cos_{3}A + \cos_{3}A + \cos_{3}A + \cos_{3}A - 1 = 0$$

$$A = 2 \cos_{3}A + \cos_{3$$

$$COSA - 1 = 0$$
 Or $1 - 2 cosA = 0$
 $COSA = 1$ Or, $1 = 2 cosA$
 $COSA = cosO$ Or, $cosA = \frac{1}{2}$
 $COSA = 0$ OY, $cosA = cosGO$
 $COSA = 0$ OY, $cosA = cosGO$

❖ সমাধান করো,

$$\tan^2 A - \left(1 + \sqrt{3}\right)tanA + \sqrt{3} = 0$$

Poll Question-05

$$\Box$$
 12 cot² $A - 31cosecA + 32 = 0$ হলে sinA = কত?

$$3\sqrt{\frac{3}{4}},\frac{4}{5}$$

(C)
$$\frac{1}{4}$$
, $\frac{1}{2}$

গণিত

(3 esseA - 4) = 0

X= cap 25

না বুঝে মুখস্থ করার অভ্যাস প্রতিভাকে ধবংস করে

