How to get coefficients and their confidence intervals in mixed effects models?

Asked 10 years, 11 months ago Modified 2 years, 2 months ago Viewed 79k times 🛟 Part of R Language Collective

In 1m and glm models, I use functions coef and confint to achieve the goal:

40

```
m = lm(resp \sim 0 + var1 + var1:var2) \# var1 categorical, var2 continuous coef(m) confint(m)
```

Now I added random effect to the model - used mixed effects models using <code>lmer</code> function from Ime4 package. But then, functions <code>coef</code> and <code>confint</code> do not work any more for me!

I tried to google and use docs but with no result. Please point me in the right direction.

EDIT: I was also thinking whether this question fits more to https://stats.stackexchange.com/ but I consider it more technical than statistical, so I concluded it fits best here (SO)... what do you think?

```
r Ime4 random-effects mixed-models
```

Share Improve this question Follow

asked Jun 17, 2012 at 15:36

To get you started until someone like @BenBolker shows up (an expert): ?lmer lists methods fixef and ranef in addition to coef . Since your error says it's having trouble combining the two, the issue is likely that your model specification is somehow "unusual". – joran Jun 17, 2012 at 16:01

Thanks @joran. My model spec is maybe unusual in omitting the intercept - I want to do this, because otherwise the coefficients are nonsense. var1 is categorical and I want "group specific intercepts" for each its category. If I allow the intercept (remove 0 + from formula), coef runs but doesn't give what I expect. fixef works great, thanks! However the confint doesn't work at all. - Tomas Jun 17, 2012 at 16:09

I would extract the data you need directly from the S4 object -- see this post's answers: stackoverflow.com/questions/8526681/... - baha-kev Jun 17, 2012 at 16:26

Thanks @baha-kev, but are you sure the confidence intervals are in this object? I don't think so... - Tomas Jun 17, 2012 at 21:52

1 I am fixing the bug(let)? in coef in the r-forge versions of Ime4 (Ime4.0, the currently stable branch which corresponds to CRAN-Ime4), and Ime4, the development branch). confint is a bigger can of worms, as has been discussed, although the development branch of Ime4 can calculate profile confidence intervals ... – Ben Bolker Jun 26, 2012 at 8:23

7 Answers

Sorted by: Highest score (default)

\$

Not sure when it was added, but now confint() is implemented in Ime4. For example the following example works:

```
17
```

```
library(lme4)
m = lmer(Reaction ~ Days + (Days | Subject), sleepstudy)
confint(m)
```


Share Improve this answer Follow

answered Mar 10, 2017 at 20:16

1 11 22

1,009

()

There are two new packages, ImerTest and Ismeans, that can calculate 95% confidence limits for lmer and glmer output. Maybe you can look into those? And coefplot2, I think can do it too (though as Ben points out below, in a not so sophisticated way, from the standard errors on the Wald statistics, as opposed to Kenward-Roger and/or Satterthwaite df approximations used in lmerTest and lsmeans)... Just a shame that there are still no inbuilt plotting facilities in package lsmeans (as there are in package effects(), which btw also returns 95% confidence limits on lmer and glmer objects but does so by refitting a model without any of the random factors, which is evidently not correct).

Share Improve this answer Follow

answered Jun 26, 2013 at 20:36

Tom Wenseleers
7,463 7 61 103

- 2 coefplot2 does it very naively, by computing 1.96 times the Wald standard errors -- it doesn't address the very significant issues of finite-size corrections to the CIs Ben Bolker Jun 26, 2013 at 21:14
- 1 Check also this post stats.stackexchange.com/questions/117641/... for a more detailed answer Tom Wenseleers Oct 1, 2015 at 11:29

1merTest is now nicely described in JoSS jstatsoft.org/article/view/v082i13 - radek Dec 19, 2017 at 6:47

9 Note that many of these comments are now quite outdated. Using emmeans or 1merTest is the way to go, and there are plotting methods now.

- Axeman ❖ May 15, 2018 at 9:00

I'm going to add a bit here. If m is a fitted (g)lmer model (most of these work for lme too):

43

- fixef(m) is the canonical way to extract coefficients from mixed models (this convention began with nlme and has carried
- you can get the full coefficient table with <code>coef(summary(m))</code>; if you have loaded <code>lmerTest</code> before fitting the model, or convert the model after fitting (and then loading <code>lmerTest</code>) via <code>coef(summary(as(m,"merModLmerTest")))</code>, then the coefficient table will include p-values. (The coefficient table is a matrix; you can extract the columns via e.g. <code>ctab[,"Estimate"]</code>, <code>ctab[,"Pr(>|t|)"]</code>, or convert the matrix to a data frame and use \$ -indexing.)
- As stated above you can get *likelihood profile* confidence intervals via <code>confint(m)</code>; these may be computationally intensive. If you use <code>confint(m, method="Wald")</code> you'll get the standard +/- 1.96SE confidence intervals. (<code>lme uses intervals(m)</code> instead of <code>confint()</code>.)

If you prefer to use broom.mixed:

over to 1me4)

- tidy(m,effects="fixed") gives you a table with estimates, standard errors, etc.
- tidy(as(m,"merModLmerTest"), effects="fixed") (or fitting with lmerTest in the first place) includes p-values
- adding conf.int=TRUE gives (Wald) Cls
- $\bullet \ \ \text{adding conf.method="profile"} \ \ (\text{along with conf.int=TRUE} \) \ \ \text{gives likelihood profile Cls} \\$

You can also get confidence intervals by parametric bootstrap (method="boot"), which is considerably slower but more accurate in some circumstances.

Share Improve this answer Follow

edited Mar 19, 2021 at 23:23

answered Mar 19, 2021 at 23:03

Hi Ben, thanks! I'm a bit confused, what does the standalone dot . mean? If it's just a model var name, why not use e.g. m?:-) — Tomas Mar 19, 2021 at 23:21

I could use m . Sometimes I use . as a placeholder. – Ben Bolker Mar 19, 2021 at 23:22

Assuming a normal approximation for the fixed effects (which confint would also have done), we can obtain 95% confidence intervals by

estimate + 1.96*standard error.

The following does not apply to the variance components/random effects.


```
library("lme4")
mylm <- lmer(Reaction ~ Days + (Days|Subject), data =sleepstudy)</pre>
```

standard error of coefficient

```
days_se <- sqrt(diag(vcov(mylm)))[2]</pre>
# estimated coefficient
days_coef <- fixef(mylm)[2]</pre>
upperCI <- days_coef + 1.96*days_se
lowerCI <- days_coef - 1.96*days_se</pre>
```

Share Improve this answer Follow

answered Jun 17, 2012 at 18:52

1 Hi julieth, nice idea, however there is a difference between the real confidence intervals (computed by confint) and these Maybe the tdistribution would give the same result as confint (not sure about this though), but in this case I don't know the df which should be used.

- Tomas Jun 17, 2012 at 21:57

In other words, this is the reason why I prefer to use functions like confint etc. to do all this for me... (especially if I'm not sure about the normal distribution of coefficients). - Tomas Jun 17, 2012 at 21:59

The t-distribution is asymptotically normal and the degrees of freedom for the error term in many multi-level designs is so high that the error distribution is normal at that point. Therefore, if you have a design with lots of degrees of freedom this is a perfectly reasonable confidence interval estimate. - John Jun 18, 2012 at 0:36

I suggest that you use good old Ime (in package nlme). It has confint, and if you need confint of contrasts, there is a series of choices (estimable in gmodels, contrast in contrasts, glht in multcomp).

Why p-values and confint are absent in Imer: see http://finzi.psych.upenn.edu/R/Rhelp02a/archive/76742.html.

Share Improve this answer Follow

answered Jun 17, 2012 at 16:24

Dieter Menne 10.1k 43 67

Thanks Dieter, I will try the older package. The absence of p-value - and possibility to tell significance right away - also alarmed me! Doesn't make any sense to me, if I will be able to get confidence interval then I will simply look whether it contains zero - and have the significance anyway! Regards, - Tomas Jun 17, 2012 at 22:07

I forget to mention that confint(glht... from package multcomp give asymptotic confidence intervals for lmer. Douglas Bates caveats still apply, but his bold move to leave the p-value out of Imer/gaussian certainly has stirred the soup. - Dieter Menne Jun 18, 2012 at 6:24

Dieter, what do you mean with "confint(glht"? There's no confint function in multcomp package... - Tomas Jun 18, 2012 at 11:00

Dieter, I tried the old package Ime, nice, it has p-values. But my main concern is to get the confidence interval of fixed effect coefficients. How do I do that? confint returns some big matrix, glht seems too complicated.. - Tomas Jun 18, 2012 at 11:20

using intervals(mix1) will you give you asymptotic confidence intervals as in @julieth's answer below; intervals(mix1)\$fixed extracts the fixed-effect intervals. These are based on the normal approximation, not the t distribution or anything more exotic ... - Ben Bolker Jun 26, 2012 at 8:27

To find the coefficient, you can simply use the summary function of Ime4


```
m = lm(resp ~ 0 + var1 + var1:var2) # var1 categorical, var2 continuous
m_summary <- summary(m)</pre>
```


to have all coefficients:

m_summary\$coefficient

If you want the confidence interval, multiply the standart error by 1.96:

```
CI <- m_summary$coefficient[,"Std. Error"]*1.96</pre>
print(CI)
```

Share Improve this answer Follow

I'd suggest tab_model() function from sjPlot package as alternative. Clean and readable output ready for markdown. Reference here and examples here.

1

For those more visually inclined <code>plot_model()</code> from the same package might come handy too.

Alternative solution is via parameters $\underline{package}$ using $model_parameters()$ $\underline{function}$.

1

edited Nov 7, 2020 at 19:31 answered Nov 7, 2020 at 19:18

radek

58 81

2 or broom.mixed::tidy() - Ben Bolker Nov 7, 2020 at 20:05

Share Improve this answer Follow

@Ben Bolker's should be the top rated answer IMO :) – Extrapolator Mar 19, 2021 at 8:17