Name	Centre/Index No/
Signature	
545/2	
CHEMISTRY	
Paper 2	
2023	
2 hours	

AITEL JOINT MOCK EXAMINATION

Uganda Certificate of Education

CHEMISTRY

Paper 2

2 hours

INSTRUCTIONS TO CANDIDATES:

SECTION A: Consists of 10 structured questions.

Answer all questions in this section.

Answers to questions in section A should be written in the spaces provided on this question paper.

SECTION B: Consists of Semi – structured questions.

Attempt any TWO questions from this section.

Answers to the questions must be written in the answer sheet provided.

In both sections, all working must be clearly shown.

1 mole of a gas occupies 22,400 cm³ at **s.t.p** 1 mole of a gas occupies 24,000 cm³ at **room temperature**. Use the following where necessary H=1, C=12, O=16, Mg=24, Fe=56

	For Examiner's use only													
1	2	3	4	5	6	7	8	9	10	11	12	13	14	TOTAL

© 2023 AITEL MOCKS Turn Over

SECTION A

Attempt ALL questions in this section.

(a)	During the industrial manufacture of oxygen from air, water vapour a carbondioxide gas are removed before the process of isolating oxygen	
(i)	What name is given to this industrial process?	(½ mark)
(ii)	Explain why water vapour and carbon dioxide are removed from air.	(1 ½ mark
(iii)	State the principle of isolation of oxygen from air.	(½ mark)
(iv)	Give any two practical applications of the process named in (i) above	.(1 mark)
(a)	Sodium carbonate is referred to as a normal salt.	
(i)	Define the term normal salt.	(1 mark)
(ii)	State two uses of sodium carbonate.	(1 mark)
(d)	Sodium carbonate dissolves in water to form carbonic acid and sodium hyd solution according to the following equation.	lroxide
	$Na_2CO_{3(q)} + 2H_2O_{(l)} \longrightarrow H_2CO_{3(aq)} + 2NaOH_{(aq)}$	
(i)	State what is observed if the resultant solution is tested with litmus paper.	(½ mark)

	(2 ½ mai
Barium nitrate solution reacts with aqueous sodium hydrobelow.	oxide according to the equ
Ba(NO ₃) _{2(aq)} + 2NaOH _(aq) \rightarrow Ba(OH) _{2(s)} + 2NaNO ₃	(20)
Excess Barium nitrate solution was added to 20cm ³ of 2M beaker, the mixture stirred, filtered and the residue dried.	I sodium hydroxide in a
(a) Calculate the maximum mass of the dried residue. (H	Ba = 137, O =16, H=1)
(b) The dried residue was strongly heated in a test tube,	write equation of reaction
(b) The dried residue was strongly heated in a test tube,	write equation of reaction
(b) The dried residue was strongly heated in a test tube,	
(b) The dried residue was strongly heated in a test tube,	

4. Equal volumes of different water samples X,Y and Z were separately titrated with soap solution until a permanent lather formed.

	Unboiled	d water		Boiled water		
Water sample	X	Y	Z	X	Y	Z
Volume of soap required / cm ³	50	4	30	50	4	7

(i)	Sample X	(1 ½ marks)
Expl	anation	
(ii)	Sample Z	
Expl	anation	
(b)	State two techniques that can be applied to water sample X so that the vosolution reduces from 50cm ³ to 7cm ³ .	olume of soap (1 mark)
(c)	Mention two disadvantages of using water sample Y.	(1 mark)
(a)	Chlorine can be prepared in the laboratory by the action of manganese(I's substance Q.	V) oxide on
(i)	Name substance Q	(½ mark)
(ii)	State the function of manganese(IV) oxide	(½ mark)
(iii)	Write equation for the reaction.	(1 ½ marks
	© 2023 AITEL MOCKS To	urn over

(b)	Chlorine was bubbles through a saturated solution of potassium iodi	ac.
(i)	State what is observed.	(1 mark)
(ii)	Give a reason for your observation.	(1 mark)
(c)	Give a reason why chlorine belongs to group(VII) in the periodic tal	ole. (½ mark
	en 0.6gm of Zinc powder was added to 40cm ³ of 0.15M Copper(II) ni plastic beaker, the temperature of the solution rose from 24°c to 33°c	
in a	-	
in a	plastic beaker, the temperature of the solution rose from 24°c to 33°c	
in a (a) (plastic beaker, the temperature of the solution rose from 24°c to 33°c (i) Other than increase in temperature, state what else was observed.	. (1 mark)
in a (a) (plastic beaker, the temperature of the solution rose from 24°c to 33°c (i) Other than increase in temperature, state what else was observed. Write the ionic equation for the reaction that took place.	. (1 mark)

© 2023 AITEL MOCKS

Turn over

(ii)	the molar heat of reaction.	(2 ma
(a) (i) State the conditions under which magnesium can react with water.	(1 ma
(ii)	Write equation for the reaction between water and magnesium.	(1 ½ 1
(b)	The product from (a) was shaken with water. State what was observe	ed. (1 m
		
(c)	Dilute nitric acid was added to the product in (b).	
	Write equation for the reaction.	(1 ½ 1
) What is an allotrope?	(1 ma
(a)(i		/1
(a)(i (ii)	Name two crystalline allotropes of carbon	(1 ma
	Name two crystalline allotropes of carbon	(1 ma

(i)	One property of each of the allotropes of carbon named in (a)	(1 ma
(ii)	one use of each of the allotropes named in (a)	(1 ma
(c)	Name one allotrope of carbon that is used	
(i)	For making shoe-polish	(½ m
(ii)	In sugar industry	(½ n
(a)(i)Deifne the term water of crystallization	(1 ma
(ii)	State two physical properties of salts that can be affected by the proof crystallization	resence of (1 ma
(b)	A hydrated salt contains 16.10% sodium, 4.20% carbon, 16.80% of 62.90% water of crystallization.	oxygen an

© 2023 AITEL MOCKS

Turn over

(ii) State what would be observed whe allowed to stand in air for a long ti	en the crystals of the salt in b(i) above are me. Give a reason. (1 mark)
The diagram below shows Copper-Iron Ton P R	electro-chemical cell
(a) Name	Copper(II) Nitrate solution (1 ½ max
(i) P	
(ii) Q	
(iii) R	
(b) (i) State the purpose of P.	(½ mark

10.

	(ii) Name one substance contained in P										mark)
	(c)	Indicate on the d	liagram	the dir	rection	of flow	of elect	trons.		(1/2	mark)
	(d) Write the equation of reaction at the cathode.										
			SI	ECTIO	ON B (3	0 MAR	kKS)				
		An	swer an	y two	questio	ns from	this sec	ction.			
		Additi	onal qu	estions	answe	red will	not be	marked	1.		
11.	(a)	What is meant b	y the te	rm "rat	te of a c	hemica	l reaction	on?		(1 n	nark)
	(b)	Explain how the	follow	ing fac	tors aff	ects the	rate of	a chem	ical rea	ction	
	(i)	Temperature.								(2 n	narks)
	(ii)	Surface area								(2 1/2	2 marks)
	(iii)	Concentration of	f reacta	nts						(2 n	narks)
	(c)	The table below various time inte	ervals w					•	•		
	Tim	e (minutes)	0	1	2	3	4	5	6	7	8
Volur	ne of	hydrogen / cm ³	0	40	56	65	71	75	77	78	78
	(i)	Plot a graph of v	olume	of hydı	rogen co	ollected	(vertic	al axis)	against	time.(3 marks)
	(ii)	State why excess	s 2M hy	drochl	loric wa	is used				(1 n	nark)
	(iii)	From the graph,	determ	ine the	rate of	reaction	n at 2 m	ninutes	and at 5	minut	es.
										(3 m	narks)
	(iv)	Comment on the	values	of the	rate ob	tained.				(1 1/2	ź marks)

© 2023 AITEL MOCKS

Turn over

- 12. (a)(i) Describe how a dry sample of calcium nitrate can be prepared in the laboratory from calcium carbonate. (7 marks)
 - (ii) Calcium nitrate was strongly heated in a dry test tube. State what was observed and write the equation for the reaction. (4 marks)
 - (b) Calcium nitrate reacts with aqueous sodium hydroxide according to the following equation.

$$Ca(NO_3)_{2(aq)} + 2NaOH_{(aq)} \longrightarrow Ca(OH)_{2(s)} + 2NaNO_{3(aq)}$$

When excess aqueous sodium hydroxide was added to 50cm³ of calcium nitrate solution, 1.85gm of calcium hydroxide was formed.

- (i) State what is observed when excess sodium hydroxide is added to calcium nitrate solution in a test tube. (1 mark)
- (ii) Calculate the concentration of calcium nitrate solution in moles per litre. (3 marks)
- 13. (a) In the Haber process, nitrogen reacts with Hydrogen according to the equation:

$$N_{2(g)} + 3H_{2(g)}$$
 \longrightarrow $2NH_{3(g)}$ $\Delta H = -ve$

Explain how the yield of ammonia is affected by;

- (i) High pressure (2 marks)
- (ii) Low temperature (2 marks)
- (b) State one other factor that affects the yield of ammonia (½ mark)
- (c) Ammonia can be oxidized in the presence of a catalyst to nitric acid.
- (i) Name the catalyst used (½ mark)
- (ii) Outline using equations only the reactions leading to the formation of nitric acid from ammonia (4 ½ marks)
- (d) Ammonium nitrate is widely used as a fertilizer. It dissolves in water according to the following equation

$$NH_4NO_{3(s)} + H_2O_{(l)} \longrightarrow NH_4OH_{(aq)} + HNO_{3(aq)}$$

- (i) What is a fertilizer? (1 mark)
- (ii) Explain why calcium nitrate is often used as a fertilizer. (4 ½ marks)

14.	(a)	Name the common ore of sodium and write its formula.	(1 mark)
	(b)	Briefly describe how sodium can be extracted from the named ore in equations(s) to illustrate your answer	(a) and write (5 marks)
	(c)	State what would be observed and write equation when sodium meta	1
	(i)	reacts with oxygen	(3 marks)
	(ii)	is dropped in a beaker of cold water	(3 ½ marks)

(iii) reacts with chlorine gas (2 ½ marks)
