Practice Exam 1

- 1. (a) Give a definition of a closed set.
 - (b) Give at least two equivalent definitions of a continuous function.

Solution: See textbook or lecture notes.

2. Let **u** and **v** be two points in \mathbb{R}^n . Let R, r > 0. Show that if $dist(\mathbf{u}, \mathbf{v}) = R + r$, then the open balls $B_R(\mathbf{u})$ and $B_r(\mathbf{v})$ are disjoint (i.e. $B_R(\mathbf{u}) \cap B_r(\mathbf{v}) = \emptyset$).

Solution: To show that these sets are disjoint we show that if $\mathbf{w} \in B_R(\mathbf{u})$ then $\mathbf{w} \notin B_r(\mathbf{v})$. Since $\mathbf{w} \in B_R(\mathbf{u})$ we must have $dist(\mathbf{w}, \mathbf{u}) < R$. Then by the reverse triangle inequality

$$|R + r - ||\mathbf{w} - \mathbf{u}|| = |||\mathbf{u} - \mathbf{v}|| - ||\mathbf{w} - \mathbf{u}|| \le ||\mathbf{w} - \mathbf{v}||.$$

Because $dist(\mathbf{w}, \mathbf{u}) = ||\mathbf{w} - \mathbf{u}|| < R$ we must have that

$$r < (R - ||\mathbf{w} - \mathbf{u}||) + r = |R + r - ||\mathbf{w} - \mathbf{u}|| \le ||\mathbf{w} - \mathbf{v}||.$$

Thus $dist(\mathbf{w}, \mathbf{v}) > r$ and hence $\mathbf{w} \notin B_r(\mathbf{v})$.

Showing that $w \in B_r(\mathbf{v})$ implies $w \notin B_R(\mathbf{u})$ is completely equivalent. This implies that $B_R(\mathbf{u}) \cap B_r(\mathbf{v}) = \emptyset$.

3. Prove that the set $A = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + xy + z^3 \neq 0\} \subseteq \mathbb{R}^3$ is open in \mathbb{R}^3 .

Solution: First observe that the function $f: \mathbb{R}^3 \to \mathbb{R}$ is continuous since it is a polynomial in the projection component functions $f = p_1^2 + p_1 p_2 + p_3^3$, and p_1, p_2, p_3 are continuous. Note that $\mathbb{R}^3 \setminus A = f^{-1}(\{0\})$. The intervals $(-\infty, 0)$ and $(0, \infty)$ are open and therefore their union $(-\infty, 0) \cup (0, \infty)$ is open (this is a basic property of open sets). Since f is continuous, $f^{-1}((-\infty, 0) \cup (0, \infty))$ is open. But

$$f^{-1}((-\infty,0) \cup (0,\infty)) = A.$$

4. Let A be an unbounded set. Show that there is a sequence $\{\mathbf{u}_k\}_{k\geqslant 1}$ in A such that no subsequence of $\{\mathbf{u}_k\}_{k\geqslant 1}$ converges.

Solution: Because A is unbounded, for any M > 0, we can find $\mathbf{u} \in A$ such that $||\mathbf{u}|| \ge M$. Thus for each $k \in \mathbb{Z}_{\ge 0}$, there is \mathbf{u}_k such that $||\mathbf{u}_k|| \ge k$. In this way we construct a sequence $\{\mathbf{u}_k\}_{k\ge 0}$. We show that $\{\mathbf{u}_k\}_{k\ge 0}$ has no subsequences that converge. Suppose for a contradiction that there is a subsequence $\{\mathbf{u}_{k_j}\}_{j\ge 0}$ of $\{\mathbf{u}_k\}_{k\ge 0}$ that converges to \mathbf{u} . Set $\ell = ||\mathbf{u}||$. We know that the norm function is continuous so it must be the case that $\lim_{j\to\infty} ||\mathbf{u}_{k_j}|| = ||\mathbf{u}||$. However, since

$$k_i \leq ||\mathbf{u}_{k_i}||$$

then

$$\ell < \infty = \lim_{j \to \infty} k_j \leqslant \lim_{j \to \infty} ||\mathbf{u}_{k_j}||$$

a contradiction.

5. Let $f: \mathbb{R}^n \to \mathbb{R}$ be the function defined so that

$$f(x_1, x_2, ..., x_n) = \begin{cases} 1 & \text{if all } x_i \text{ are rational for } 1 \leq i \leq n \\ 0 & \text{otherwise.} \end{cases}$$

Prove that f is not continuous at any point in \mathbb{R}^n .

Solution: We first show that f is not continuous at all points $\mathbf{x} = (x_1, x_2, \dots, x_n)$ such that all x_i are rational for $1 \le i \le n$. Assume for a contradiction that f is continuous at such a point \mathbf{x} . Then for $\epsilon = \frac{1}{2}$ we can find $\delta > 0$ so that for all $\mathbf{v} \in B_r(\mathbf{u})$,

$$|f(\mathbf{v}) - f(\mathbf{u})| < \frac{1}{2}.$$

But for any $\delta > 0$ we can find an irrational number $y_1 \in \mathbb{R}$ such that $|y_1 - x_1| < \delta$. Set

$$\mathbf{y} = (y_1, x_2, \dots, x_n).$$

Then

$$||\mathbf{y} - \mathbf{x}|| = ||(y_1 - x_1, 0, \dots, 0)|| = |y_1 - x_1| < \delta$$

so $\mathbf{y} \in B_r(\mathbf{u})$ but $|f(\mathbf{y}) - f(\mathbf{x})| = |1 - 0| = 1 > \frac{1}{2}$ a contradiction. So f is not continuous at $\mathbf{x} = (x_1, \dots, x_n)$ such that x_i are rational.

The case of $\mathbf{x} = (x_1, \dots, x_n)$ where at least one x_i is irrational is completely analogous.

6. Show that the function $f:(0,1] \to \mathbb{R}$ defined by $f(x) = \ln(x^2)$ is continuous but not uniformly continuous. (You can assume that $\ln(x)$ is continuous on $(0,\infty)$.

Solution: To prove that f is continuous, note that $g:(0,1]\to\mathbb{R}$ defined by $g(x)=x^2$ is continuous on (0,1] and $g((0,1])=(0,\infty)$. We also know that $h:(0,\infty)\to\mathbb{R}$ defined by $h(x)=\ln(x)$ is continuous on $(0,\infty)$. Since the domain of h and image of g match up $(g((0,1])\subseteq(0,\infty))$, then $h\circ g=f$ is continuous.

Consider the sequences $u_k = 1/k$ and $v_k = 1/k^2$. Then

$$\lim_{k \to \infty} dist(u_k, v_k) = \lim_{k \to \infty} \left| \frac{1}{k} - \frac{1}{k^2} \right| = \lim_{k \to \infty} \left| \frac{k - 1}{k^2} \right| = 0.$$

On the other hand

$$\lim_{k\to\infty} dist(f(u_k),f(v_k)) = \lim_{k\to\infty} \left|\ln\left(\frac{1}{k^2}\right) - \ln\left(\frac{1}{k^4}\right)\right| = \lim_{k\to\infty} \left|\ln\left(\frac{k^2-1}{k^4}\right)\right| = \infty.$$

This is a contradiction. So f is not uniformly continuous.