```
course = "Estimating the credibility of past research"
```

```
lesson_iteration = 12
lesson_title = "Intuitions for effect sizes"

auth = "Ian Hussey"
dept = "Psychology of Digitalisation"
```

Small / Medium / Large

Cohen S d

Differences in what?

Cohen's d

Differences in what?

$$d = \frac{M_1 - M_2}{SD_{pooled}}$$

aut = "Ian Hussey";

Understanding Cohen's d effect size Differences between groups

Differences in what?

Approximately for the sake of understanding:

$$d = \frac{M_1 - M_2}{mean(SD_1, SD_2)}$$

Understanding Cohen's d effect size Differences between groups

Differences in what?

Approximately for the sake of understanding:

$$d = \frac{M_1 - M_2}{mean(SD_1, SD_2)}$$

How can this go wrong?

How Cohen's d can go wrong

Approximately for the sake of understanding:

$$d = \frac{M_1 - M_2}{mean(SD_1, SD_2)}$$

- Differences in mean as a proportion of Standard Deviation
- "The Standard Error error"

Same difference in means, different Cohen's d

recruitment	n	mean_pre	sd_pre	mean_post	sd_post	mean_diff	cohens_d
'Severe' depression	100	37.0	7.0	32.0	7.0	-5	-0.7
General population	100	15.7	12.6	10.7	12.6	-5	-0.4

Standardized Mean Difference

Same Cohen's d, different difference in means

recruitment	n	mean_pre	sd_pre	mean_post	sd_post	mean_diff	cohens_d
'Severe' depression	100	36.2	6.7	33.2	6.7	-3	-0.4
General population	100	14.2	11.2	9.2	11.2	-5	-0.4

Different R packages produce different results for Cohen's d

https://errors.shinyapps.io/effect_size_percentiles/

https://errors.shinyapps.io/effect_size_percentiles/

https://errors.shinyapps.io/effect_size_percentiles/

Cohen's d > 2 are suspicious Cohen's d > 5 are silly Chocolates are more desirable than feces:

Cohen's d = 4.5, 95% CI [3.3, 5.7]

Pretest

In a pretest, we confirmed that chocolates were more desirable than feces. A separate group of participants (n = 20) rated how appealing, positive, likeable, attractive, and interesting both objects were. It should come as no surprise that averages across these qualities indicated that the chocolates (M = 5.5) were more desirable than the feces (M = 2.1), paired t(19) = 17.44, $p_{rep} = .99$, p < .001, d = 4.52.

Cohen's d

Streck & Kessels (2024) Gender stereotypes in children

Asking children

"Boys tend to wear skirts" vs. "Girls tend to wear skirts":

Cohen's d = 5.5, 95% CI [4.9, 6.1]

Mertens et al. (2021) The effectiveness of nudging

Mertens et al. (2021) The effectiveness of nudging

- *A Geier, B Wansink, P Rozin, Red potato chips: Segmentation cues can substantially decrease food intake. Heal. Psychol. 31, 398–401 (2012).
- *M Shimizu, CR Payne, B Wansink, When snacks become meals: How hunger and environmental cues bias food intake. Int. J. Behav. Nutr. Phys. Activity 7, 1–6 (2010).
- 217. *E van Kleef, M Shimizu, B Wansink, Serving bowl selection biases the amount of food served. J. Nutr. Educ. Behav. 44, 66–70 (2012).
- 220. *B Wansink, AS Hanks, Slim by design: Serving healthy foods first in buffet lines improves overall meal selection. PLoS ONE 8, 1–5 (2013).
- *B Wansink, J Kim, Bad popcorn in big buckets: Portion size can influence intake as much as taste. J. Nutr. Educ. Behav. 37, 242–245 (2005).
- 222. *B Wansink, K van Ittersum, Bottoms up! the influence of elongation on pouring and consumption volume. J. Consumer Res. 30, 455–463 (2003).
- *B Wansink, A Cardello, J North, Fluid consumption and the potential role of canteen shape in minimizing dehydration. Mil. Medicine 170, 871–873 (2005).
- 224. *B Wansink, JE Painter, J North, Bottomless bowls: Why visual cues of portion size may influence intake. Obes. Res. 13, 93–100 (2005).
- 225. *B Wansink, D Soman, KC Herbst, Larger partitions lead to larger sales: Divided grocery carts alter purchase norms and increase sales. J. Bus. Res. 75, 202–209 (2017).
- 226. *B Wansink, K van Ittersum, JE Painter, Ice cream illusions: Bowls, spoons, and self-served portion sizes. Am. J. Prev. Medicine 31, 240–243 (2006).
- 227. *B Wansink, K van Ittersum, CR Payne, Larger bowl size increases the amount of cereal children request, consume, and waste. The J. Pediatr. 164, 323–326 (2014).

Mertens et al. (2021) The effectiveness of nudging

- *A Geier, B Wansink, P Rozin, Red potato chips: Segmentation cues can substantially decrease food intake. Heal. Psychol. 31, 398–401 (2012).
- *M Shimizu, CR Payne, B Wansink, When snacks become meals: How hunger and environmental cues bias food intake. Int. J. Behav. Nutr. Phys. Activity 7, 1–6 (2010).
- 217. *E van Kleef, M Shimizu, B Wansink, Serving bowl selection biases the amount of food served. J. Nutr. Educ. Behav. 44, 66–70 (2012).
- 220. *B Wansink, AS Hanks, Slim by design: Serving healthy foods first in buffet lines improves overall meal selection. PLoS ONE 8, 1–5 (2013).
- *B Wansink, J Kim, Bad popcorn in big buckets: Portion size can influence intake as much as taste. J. Nutr. Educ. Behav. 37, 242–245 (2005).
- 222. *B Wansink, K van Ittersum, Bottoms up! the influence of elongation on pouring and consumption volume. J. Consumer Res. 30, 455–463 (2003).
- *B Wansink, A Cardello, J North, Fluid consumption and the potential role of canteen shape in minimizing dehydration. Mil. Medicine 170, 871–873 (2005).
- 224. *B Wansink, JE Painter, J North, Bottomless bowls: Why visual cues of portion size may influence intake. Obes. Res. 13, 93–100 (2005).
- 225. *B Wansink, D Soman, KC Herbst, Larger partitions lead to larger sales: Divided grocery carts alter purchase norms and increase sales. J. Bus. Res. 75, 202–209 (2017).
- 226. *B Wansink, K van Ittersum, JE Painter, Ice cream illusions: Bowls, spoons, and self-served portion sizes. Am. J. Prev. Medicine 31, 240–243 (2006).
- 227. *B Wansink, K van Ittersum, CR Payne, Larger bowl size increases the amount of cereal children request, consume, and waste. The J. Pediatr. 164, 323–326 (2014).

Mertens et al. (2021) The effectiveness of nudging

Cohen's d # Standardized Mean Difference

	Model	Study name		_5	Std diff in	means	and 95%						
			Std diff in means	Standard error	Variance	Lower limit	Upper limit	Z-Value	p-Value				
		Barnhofer et al. (2009)	0.829	0.374	0.140	0.095	1.563	2.213	0.027			1-	
		Clarke et al. (2014)	0.368	0.323	0.104	-0.265	1.001	1.140	0.254			-	
		Eisendrath et al. (2016)	0.486	0.154	0.024	0.184	0.789	3.151	0.002			-	_
		Fonagy et al. (2015)	0.467	0.179	0.032	0.117	0.817	2.612	0.009			I –	-
		Gloster et al. (2015)	0.777	0.361	0.130	0.069	1.484	2.152	0.031			- 1-	
		Harley et al. (2008)	0.881	0.481	0.232	-0.062	1.824	1.831	0.067			-	
		Hartmann Souza et al. (2016)	0.480	0.324	0.105	-0.155	1.116	1.481	0.139			-	_
て		Hinton et al. (2005)	2.226	0.402	0.162	1.438	3.015	5.532	0.000				T
		Isasi et al. (2010)	5.233	0.665	0.442	3.929	6.536	7.868	0.000				
U		Kocsis et al. (2009)	0.259	0.126	0.016	0.012	0.506	2.055	0.040			\blacksquare	
		Ludman et al. (2007)	0.458	0.281	0.079	-0.093	1.008	1.629	0.103			+	
2		Mantani et al. (2017)	0.572	0.159	0.025	0.260	0.885	3.592	0.000				
Q		Moore & Blackburn (1997)	1.653	0.776	0.602	0.132	3.173	2.130	0.033			I -	-
_		Nakagawa et al. (2017)	0.243	0.224	0.050	-0.197	0.683	1.084	0.278			\rightarrow	-
		Otto et al. (2003)	0.679	0.650	0.423	-0.596	1.954	1.044	0.297		+		
		Town et al. (2017)	0.748	0.239	0.057	0.280	1.216	3.131	0.002				\rightarrow
		Watanabe et al. (2011)	1.811	0.391	0.153	1.044	2.578	4.627	0.000				_ _
*		Wiles et al. (2013)	0.450	0.094	0.009	0.266	0.633	4.807	0.000				-
	Fixed	. ,	0.540		0.003	0.442	0.638	10.765	0.000				4
	Random		0.818	0.134									
วเม+ =										-1.00	-0.50	0.00	0.50

Favours comparison Favours treatment targeting no

Gloster et al. (2020) Treating treatment non-responders

Model	Study name		s	Std diff in means and 95%CI					
		Std diff in means	Standard error	Variance	Lower limit		Z-Value	p-Value	
	Barnhofer et al. (2009)	0.829	0.374	0.140	0.095	1.563	2.213	0.027	
	Clarke et al. (2014)	0.368	0.323	0.104	-0.265	1.001	1.140	0.254	
	Eisendrath et al. (2016)	0.486	0.154	0.024	0.184	0.789	3.151	0.002	—
	Fonagy et al. (2015)	0.467	0.179	0.032	0.117	0.817	2.612	0.009	
	Gloster et al. (2015)	0.777	0.361	0.130	0.069	1.484	2.152	0.031	
	Harley et al. (2008)	0.881	0.481	0.232	-0.062	1.824	1.831	0.067	
	Hartmann Souza et al. (2016)	0.480	0.324	0.105	-0.155	1.116	1.481	0.139	
	Hinton et al. (2005)	2.226	0.402	0.162	1.438	3.015	5.532	0.000	
	Isasi et al. (2010)	5.233	0.665	0.442	3.929	6.536	7.868	0.000	
	Kocsis et al. (2009)	0.259	0.126	0.016	0.012	0.506	2.055	0.040	
	Ludman et al. (2007)	0.458	0.281	0.079	-0.093	1.008	1.629	0.103	
	Mantani et al. (2017)	0.572	0.159	0.025	0.260	0.885	3.592	0.000	
	Moore & Blackburn (1997)	1.653	0.776	0.602	0.132	3.173	2.130	0.033	
	Nakagawa et al. (2017)	0.243	0.224	0.050	-0.197	0.683	1.084	0.278	
	Otto et al. (2003)	0.679	0.650	0.423	-0.596	1.954	1.044	0.297	
	Town et al. (2017)	0.748	0.239	0.057	0.280	1.216	3.131	0.002	
	Watanabe et al. (2011)	1.811	0.391	0.153	1.044	2.578	4.627	0.000	
	Wiles et al. (2013)	0.450	0.094	0.009	0.266	0.633	4.807	0.000	
Fixed	1	0.540	0.050	0.003	0.442	0.638	10.765	0.000	
andom	1	0.818	0.134	0.018	0.556	1.081	6.106	0.000	
									-1.00 -0.50 0.00 0.50 1. Favours comparison Favours treatment targeting non-resp

Effectiveness at post-treatment on symptom reduction

Gloster et al. (2020) Treating treatment non-responders

Model	Study name		s	tatistics fo	Std diff in means and 95%CI				
		Std diff in means	Standard error	Variance	Lower limit		Z-Value	p-Value	
	Barnhofer et al. (2009)	0.829	0.374	0.140	0.095	1.563	2.213	0.027	
	Clarke et al. (2014)	0.368	0.323	0.104	-0.265	1.001	1.140	0.254	
	Eisendrath et al. (2016)	0.486	0.154	0.024	0.184	0.789	3.151	0.002	-
	Fonagy et al. (2015)	0.467	0.179	0.032	0.117	0.817	2.612	0.009	
	Gloster et al. (2015)	0.777	0.361	0.130	0.069	1.484	2.152	0.031	
	Harley et al. (2008)	0.881	0.481	0.232	-0.062	1.824	1.831	0.067	
	Hartmann Souza et al. (2016)	0.480	0.324	0.105	-0.155	1.116	1.481	0.139	
	Hinton et al. (2005)	2.226	0.402	0.162	1.438	3.015	5.532	0.000	
	lsasi et al. (2010)	5.233	0.665	0.442	3.929	6.536	7.868	0.000	
	Kocsis et al. (2009)	0.259	0.126	0.016	0.012	0.506	2.055	0.040	
	Ludman et al. (2007)	0.458	0.281	0.079	-0.093	1.008	1.629	0.103	
	Mantani et al. (2017)	0.572	0.159	0.025	0.260	0.885	3.592	0.000	
	Moore & Blackburn (1997)	1.653	0.776	0.602	0.132	3.173	2.130	0.033	
	Nakagawa et al. (2017)	0.243	0.224	0.050	-0.197	0.683	1.084	0.278	
	Otto et al. (2003)	0.679	0.650	0.423	-0.596	1.954	1.044	0.297	
	Town et al. (2017)	0.748	0.239	0.057	0.280	1.216	3.131	0.002	
	Watanabe et al. (2011)	1.811	0.391	0.153	1.044	2.578	4.627	0.000	
	Wiles et al. (2013)	0.450	0.094	0.009	0.266	0.633	4.807	0.000	-
Fixed	1	0.540	0.050	0.003	0.442	0.638	10.765	0.000	
Random	1	0.818	0.134	0.018	0.556	1.081	6.106	0.000	
									-1.00 -0.50 0.00 0.50 1.00 Favours comparison Favours treatment targeting non-response

Effectiveness at post-treatment on symptom reduction

Zhao et al. (2023) Effect of acceptance and commitment therapy for depressive disorders

7	
S	M S
hen	701
0	701:72772740
#	*

	Exp	eriment	al	0	ontrol	Std. Mean Difference		Std. Mean Difference	Std. Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
Wendy T.M.Pots 2016	14.68	8.05	71	19.34	8.55	78	11.7%	-0.56 [-0.89, -0.23]	
Situ Yuyi 2022	12.51	3.26	30	15.52	2.35	30	10.3%	-1.05 [-1.59, -0.50]	
Shima Tamannaei Far 2017	28.2	16.28	10	18.54	7.65	9	7.4%	0.71 [-0.22, 1.65]	
Ren Zhihong 2012	13.61	9.48	92	26.05	10.06	76	11.7%	-1.27 [-1.60, -0.94]	- -
Mehdi Zemestani 2020	20.7	3.4	26	32.57	5.15	30	8.8%	-2.64 [-3.37, -1.91]	
Louise Hayes 2011	66.05	3.24	19	70.68	4.2	11	8.2%	-1.25 [-2.06, -0.43]	
Lappalainen 2015	13.34	6.75	18	17.85	7.34	20	9.4%	-0.62 [-1.28, 0.03]	
Ernst T.Bohlmeijer 2011	15.94	10.37	39	22.07	9.99	42	11.0%	-0.60 [-1.04, -0.15]	
Chunxiao Zhao 2022	13.61	9.48	92	26.05	10.06	76	11.7%	-1.27 [-1.60, -0.94]	- -
Chen Juan 2021	49.36	2.18	30	54.36	3.29	30	9.8%	-1.77 [-2.37, -1.17]	
A-Tjak 2018	11.08	1.36	33	7.91	1.51	25	0.0%	2.19 [1.53, 2.86]	
Total (95% CI)			427			402	100.0%	-1.05 [-1.44, -0.66]	•
Heterogeneity: Tau2 = 0.31; Ch	ni² = 55.1	8, df = 9) (P < 0	.00001)	$ ^2 = 84$	%			
Test for overall effect: $Z = 5.27$	(P < 0.0)	0001)							-4 -2 0 2 4
									Favours [experimental] Favours [control]

Intuitions for Pearson's r

$$r = \frac{Cov(X,Y)}{SD_X \times SD_Y}$$

Intuitions for Pearson's r

https://errors.shinyapps.io/correlations_percentiles/

https://errors.shinyapps.io/cronbachs_alpha_percentiles/

