Practical 1

Aim: Write a python program to plot word cloud for a wikipedia page of any topic.

```
Code: from wordcloud import WordCloud, STOPWORDS import matplotlib.pyplot as plt import wikipedia as wp

result = wp.page('Computer Science')
final_result = result.content print(final_result)

def plot_wordcloud(wc):
plt.axis("off")
plt.figure(figsize=(10,10))
    plt.imshow(wc)
    plt.show()

wc=WordCloud(width=500, height=500, background_color="blue", random_state=10,stopwords=STOPWORDS).generate(final_result)
wc.to_file("cs.png")
plot_wordcloud(wc)
```

Output:

Computer science is the study of computation, information, and automation. Computer science spans theoretical disciplines (su ch as algorithms, theory of computation, and information theory) to applied disciplines (including the design and implementat ion of hardware and software). Though more often considered an academic discipline, computer science is closely related to computer programming. Algorithms and data structures are central to computer science.

mputer programming.Algorithms and data structures are central to computer science.

The theory of computation concerns abstract models of computation and general classes of problems that can be solved using the mem. The fields of cryptography and computer security involve studying the means for secure communication and for preventing security vulnerabilities. Computer graphics and computational geometry address the generation of images. Programming language theory considers different ways to describe computational processes, and database theory concerns the management of repositor ies of data. Human-computer interaction investigates the interfaces through which humans and computers interact, and software engineering focuses on the design and principles behind developing software. Areas such as operating systems, networks and embedded systems investigate the principles and design behind complex systems. Computer architecture describes the construction of computer components and computer-operated equipment. Artificial intelligence and machine learning aim to synthesize goal-orientated processes such as problem-solving, decision-making, environmental adaptation, planning and learning found in humans and animals. Within artificial intelligence, computer vision aims to understand and process image and video data, while natural language processing aims to understand and process textual and linguistic data.

The fundamental concern of computer science is determining what can and cannot be automated. The Turing Award is generally re cognized as the highest distinction in computer science.

Practical 2:

Web scraping: Web scraping is the process of collecting and parsing raw data from the Web.

Aim: Write a python program to perform Web Scrapping

01.Html scrapping- use Beautiful Soup

Code:

```
import pandas as pd from bs4
import BeautifulSoup from
urllib.request import urlopen
url = "https://en.wikipedia.org/wiki/List of Asian countries by area"
page = urlopen(url) html page = page.read().decode("utf-8")
soup=BeautifulSoup(html page,"html.parser")
table=soup.find("table")
print(table)
SrNo=[]
Country=[] Area=[]
rows=table.find("tbody").find all("tr")
                   cells =
for row in rows:
row.find all("td")
                     if(cells):
     SrNo.append(cells[0].get text().strip("\n"))
     Country.append(cells[1].get text().strip("\xa0").strip("\n").strip("\[2]*"))
    Area.append(cells[3].get_text().strip("\n").replace(",",""))
countries df=pd.DataFrame()
countries df["ID"]=SrNo countries df["Country
Name"]=Country
countries df["Area"] = Area print(countries df.head(10))
Output:
```

```
</
```

	ID	Country Name	Area
0	1	Russia	13083100 (5051400)
1	2	China	9596961 (3705407)
2	3	India	3287263 (1269219)
3	4	Kazakhstan	2600000 (1000000)
4	5	Saudi Arabia	2149690 (830000)
5	6	Iran	1648195 (636372)
6	7	Mongolia	1564110 (603910)
7	8	Indonesia	1488509 (574717)
8	9	Pakistan	881913 (340509)
9	10	Turkey	759805 (293362)

02.json scrapping

Code:

```
import pandas as pd
import urllib.request import
json
```

```
id= "https://jsonplaceholder.typicode.com/users" response
= urllib.request.urlopen(url)
data = json.loads(response.read())

id=[] username=[]
email=[]

for item in data: if "id"
in item.keys():
id.append(item["id"])
else:
    id.append("NA") if
"username" in item.keys():
```

```
username.append(item["userna
me"]) else:
    username.append("NA")
if "email" in item.keys():
    email.append(item["email"])
else:
    email.append("NA")

user_df = pd.DataFrame()
user_df["User ID"]=id_user_df["User
Name"]=username_user_df["Email
Address"] = email
print(user_df.head(10))
```

Output:

	User ID	User Name	Email Address
0	1	Bret	Sincere@april.biz
1	2	Antonette	Shanna@melissa.tv
2	3	Samantha	Nathan@yesenia.net
3	4	Karianne	Julianne.OConner@kory.org
4	5	Kamren	Lucio_Hettinger@annie.ca
5	6	Leopoldo_Corkery	Karley_Dach@jasper.info
6	7	Elwyn.Skiles	Telly.Hoeger@billy.biz
7	8	Maxime_Nienow	Sherwood@rosamond.me
8	9	Delphine	Chaim_McDermott@dana.io
9	10	Moriah.Stanton	Rey.Padberg@karina.biz

Practical 3:

Aim: Exploratory Data Analysis of mtcars.csv Dataset in R (Use functions of dplyr like select, filter, mutate, rename, arrange, group by, summarize and data visualizations) mtcars.csv:

Motor Trend Car Road Tests-The data was extracted from the 1974 Motor Trend US magazine, and comprises fuel consumption and 10 aspects of automobile design and performance for 32 automobiles (1973--74 models).

Format

A data frame with 32 observations on 12 (numeric) variables.

```
[, 1] mpg Miles/(US) gallon
```

[, 2] cyl Number of cylinders

[, 3] disp Displacement (cu.in.)

[, 4] hp Gross horsepower

[, 5] drat Rear axle ratio

[, 6] wt Weight (1000 lbs)

[, 7] qsec 1/4 mile time

[, 8] vs Engine (0 = V-shaped, 1 = straight)

[, 9] am Transmission (0 = automatic, 1 = manual)

[,10] gear Number of forward gears

[,11] Carb Number of carburetors

Motor Trend is a magazine about the automobile industry. Looking at a data set of a collection of cars, they are interested in exploring the relationship between a set of variables and miles per gallon (MPG) (outcome).

```
Rstudio
cars df=read.csv("mtcars.csv")#read
View(cars df) str(cars df)
dim(cars df) names(cars df)
row.names(cars df)
row.names(cars df)=cars df$model
cars df=cars df[,-1] View(cars df)
library(dplyr)
#Select fuction - for extracting specific columns
#df1=select(cars df,mpg:hp)
dfl=cars df %>% select(mpg:hp) #pipe of dplyr it will take out content of one
column to the output of other column View(df1)
df1 = cars df %>% select(c(mpg,disp,wt,gear))
View(df1)
#Filter function - for extracting specific rows or observation
#extract record where gears=4 and columns to be displayed are mpg, disp, wt
and gears. df1 = cars df %>% filter(gear==4) %>%
select(c(mpg,disp,wt,gear))
View(df1)
# extract record where cyl=4 or mpg>20 and columns are required are mpg,cl
df1 = cars df \% > \% filter(cyl == 4 | mpg > 20) \% > \% select(c(mpg,cyl))
View(df1)
#extract records where mpg<20 and carb = 3 and coumns needed are mpg and
carb
```

Code: #Do In

```
df1 = cars df \% > \% filter(mpg < 20 \& carb == 3) \% > \% select(c(mpg,carb))
view(df1)
# Arrange function -Sort as per specific columns dfl
=cars df %>% arrange(cyl,desc(mpg))
View(df1)
#Rename function - change names of one or more column dfl
= cars df \% > \%
rename(MilesPerGallon=mpg,Cylinders=cyl,Displacement=disp)
View(df1)
#Mutate function - creating new columns on the basis of existing column dfl
= cars df %>% mutate(Power=hp*wt)
View(df1)
#Group by and summaries - segregating data as per categorical variable and
summarizing
df1\$gear = as.factor(df1\$gear) str(df1)
summary df = df1\% > \% group by (df1\$gear) \% > \% summarise (no=n(), mean fixed for a fixed 
mean mpg=mean(mpg), mean wt=mean(wt)) summary df
summary df = df1%>% group by(df1$Cylinders) %>% summarise(no=n(),
mean mpg=mean(mpg), mean wt=mean(wt)) summary df
#Data Visualization
#histogram - for single column frequency hist(df1$mpg,
main="Histogeam of
MilePergallon(mtcars)",col="lightgreen",xlab="Miles Per Gallon")
#box plot - diagrammatic representation of summary
summary(df1$mpg) boxplot(df1$mpg)
```

#bar plot - categorical variable representation'
table(df1\$gear) barplot(table(df1\$gear))

#scatter plot - plot() - plots relationship between two variable
plot(df1\$mpg~df1\$disp) plot(df1\$mpg~df1\$cyl)
plot(df1\$mpg~df1\$wt)

Output:

^	model	mpg =	cyl	disp	hp 😑	drat =	wt ÷	qsec +	vs ÷	am ÷	gear ÷	carb
1	Mazda RX4	21.0	6	160.0	110	3.90	2.620	16.46	0	1	4	4
2	Mazda RX4 Wag	21.0	6	160.0	110	3.90	2.875	17.02	0	1	4	4
3	Datsun 710	22.8	4	108.0	93	3.85	2.320	18.61	1	1	4	1
4	Hornet 4 Drive	21.4	6	258.0	110	3.08	3.215	19.44	1	0	3	1
5	Hornet Sportabout	18.7	8	360.0	175	3.15	3.440	17.02	0	0	3	2
6	Valiant	18.1	6	225.0	105	2.76	3.460	20.22	1	0	3	1
7	Duster 360	14.3	8	360.0	245	3.21	3.570	15.84	0	0	3	4
8	Merc 240D	24.4	4	146.7	62	3.69	3.190	20.00	1	0	4	2
9	Merc 230	22.8	4	140.8	95	3.92	3.150	22.90	1	0	4	2
10	Merc 280	19.2	6	167.6	123	3.92	3.440	18.30	1	0	4	4
11	Merc 280C	17.8	6	167.6	123	3.92	3.440	18.90	1	0	4	4
12	Merc 450SE	16.4	8	275.8	180	3.07	4.070	17.40	0	0	3	3
13	Merc 450SL	17.3	8	275.8	180	3.07	3.730	17.60	0	0	3	3
14	Merc 450SLC	15.2	8	275.8	180	3.07	3.780	18.00	0	0	3	3
	6 PH EL . 1		_	470.0	205	2.22		77.00	_		_	

Name of Instructor: Maya Nair

```
'data.frame':
                 32 obs. of 12 variables:
  $ model: chr "Mazda RX4" "Mazda RX4 Wag" "Datsun 710" "Hornet 4 Drive" ...
  $ mpg : num 21 21 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 ...
         : int
                  6646868446...
  $ cyl
   disp : num
                 160 160 108 258 360 ...
                  110 110 93 110 175 105 245 62 95 123 ...
  $ hp
          : int
                  3.9 3.9 3.85 3.08 3.15 2.76 3.21 3.69 3.92 3.92 ...
  $ drat : num
          : num 2.62 2.88 2.32 3.21 3.44 ...
  $ wt
  $ qsec : num 16.5 17 18.6 19.4 17 ...
          : int
                 0 0 1 1 0 1 0 1 1 1 ...
  $ VS
          : int 1110000000 ...
  $ gear : int 4 4 4 3 3 3 3 4 4 4 ...
  $ carb : int 4 4 1 1 2 1 4 2 2 4 ...
[1] 32 12
 [1] "model" "mpg" "cyl" "disp" "hp"
                                            "drat" "wt"
                                                               "qsec" "vs"
                                                                               "am"
                                                                                        "gear"
[12] "carb"
[1] "1" "2" "3" "4" "5" "6" "7" "8" "9" "10" "11" "12" "13" "14" "15" "16" "17" "18"
[19] "19" "20" "21" "22" "23" "24" "25" "26" "27" "28" "29" "30" "31" "32"
                         † disp † hp
                                       drat wt
                                                       qsec + vs
            ↑ mpg ÷ cyl
                                                                           gear
     Mazda RX4
                 21.0
                          6
                             160.0
                                      110
                                            3.90
                                                  2.620
                                                         16.46
                                                                  0
                                                                         1
                                                                                4
                                                                                       4
                                                                                       4
  Mazda RX4 Wag
                 21.0
                             160.0
                                     110
                                            3.90
                                                  2.875
                                                        17.02
                                                                  0
                          6
                                                                         1
     Datsun 710
                 22.8
                             108.0
                                      93
                                            3.85
                                                  2.320
                                                        18.61
                                                                  1
                                                                         1
                                                                                       1
   Hornet 4 Drive
                 21.4
                             258.0
                                     110
                                            3.08
                                                  3.215
                                                         19.44
Hornet Sportabout
                 18.7
                          8
                             360.0
                                     175
                                            3.15
                                                  3,440
                                                        17.02
                                                                  0
                                                                         0
                                                                                3
                                                                                       2
        Valiant
                 18.1
                          6
                             225.0
                                     105
                                            2.76
                                                  3.460
                                                         20.22
                                                                  1
                                                                         0
                                                                                3
                                                                                       1
     Duster 360
                 14.3
                             360.0
                                     245
                                            3.21
                                                  3.570
                                                         15.84
                                                                  0
                                                                                       4
      Merc 240D
                 24.4
                             146.7
                                      62
                                            3.69
                                                  3.190
                                                         20.00
                                                                  1
                                                                         0
                                                                                       2
      Merc 230
                 22.8
                          4
                             140.8
                                      95
                                            3.92
                                                  3.150
                                                         22.90
                                                                  1
                                                                         0
                                                                                       2
      Merc 280
                 19.2
                             167.6
                                     123
                                                  3.440
                                                         18.30
                                            3.92
      Merc 280C
                 17.8
                          6
                             167.6
                                     123
                                            3.92
                                                  3.440
                                                         18.90
                                                                  1
                                                                         0
                                                                                4
                                                                                       4
     Merc 450SE
                 16.4
                          8
                             275.8
                                     180
                                            3.07
                                                  4.070
                                                         17.40
                                                                  0
                                                                         0
                                                                                       3
                                                                                3
                             275.8
                                                  3.730
                                                                                       3
     Merc 450SL
                 17.3
                                     180
                                            3.07
                                                         17.60
    Merc 450SLC
                 15.2
                          8
                             275.8
                                      180
                                            3.07
                                                  3.780
                                                         18.00
                                                                  0
                                                                         0
                                                                                3
                                                                                       3
                mpg = cyl
                                    disp
       Mazda RX4
                      21.0
                                 6
                                      160.0
                                                 110
  Mazda RX4 Wag
                                      160.0
                      21.0
                                 6
                                                 110
      Datsun 710
                      22.8
                                 4
                                      108.0
                                                  93
    Homet 4 Drive
                      21.4
                                      258.0
                                                 110
                                 6
Hornet Sportabout
                      18.7
                                      360.0
                                                 175
          Valiant
                      18.1
                                 6
                                      225.0
                                                 105
       Duster 360
                                                 245
                      143
                                 8
                                      360.0
       Merc 240D
                      24.4
                                 4
                                      146.7
                                                  62
        Merc 230
                      22.8
                                 4
                                      140.8
                                                  95
        Merc 280
                      19.2
                                 6
                                      167.6
                                                 123
       Merc 280C
                      17.8
                                 6
                                      167.6
                                                 123
      Merc 450SE
                      16.4
                                 8
                                      275.8
                                                 180
      Merc 450SL
                      17.3
                                 8
                                      275.8
                                                 180
     Merc 450SLC
                      15.2
                                 8
                                      275.8
                                                 180
```

-	mpg	7	disp	7	wt	÷	gear	3
Mazda RX4	21	.0	160	.0	2.62	20		4
Mazda RX4 Wag	21	.0	160	.0	2.87	75		4
Datsun 710	22	.8	108	.0	2.32	20		4
Hornet 4 Drive	21	.4	258	.0	3.21	15		3
Hornet Sportabout	18	.7	360	.0	3.44	10		3
Valiant	18	.1	225	.0	3.46	0		3
Duster 360	14	.3	360	.0	3.57	0		3
Merc 240D	24	.4	146	.7	3.19	0		4
Merc 230	22	.8	140	.8	3.15	0		4
Merc 280	19	.2	167	.6	3.44	10		4
Merc 2800	17	.8	167	.6	3.44	10		4
Merc 450SE	16	.4	275	.8	4.07	70		3
Merc 450SL	. 17	.3	275	.8	3.73	30		3
Merc 450SLC	15	.2	275	.8	3.78	30		3
^ 1	mpg ÷	d	isp 🗦	W	t ÷	g	ear 🕀	
Mazda RX4	21.0		160.0		2.620		4	
Mazda RX4 Wag	21.0		160.0		2.875		4	
Datsun 710	22.8		108.0		2.320		4	
Merc 240D	24.4		146.7		3.190		4	
Merc 230	22.8		140.8		3.150		4	
Merc 280	19.2		167.6		3.440		4	
Merc 280C	17.8		167.6		3.440		4	
Fiat 128	32.4		78.7		2.200		4	
Honda Civic	30.4		75.7		1.615		4	
Toyota Corolla	33.9		71.1		1.835		4	
Fiat X1-9	27.3		79.0		1.935		4	
Volvo 142E	21.4		121.0		2.780		4	

*	mpg ÷	cyl
Mazda RX4	21.0	6
Mazda RX4 Wag	21.0	6
Datsun 710	22.8	4
Hornet 4 Drive	21.4	6
Merc 240D	24.4	4
Merc 230	22.8	4
Fiat 128	32.4	4
Honda Civic	30.4	4
Toyota Corolla	33.9	4
Toyota Corona	21.5	4
Fiat X1-9	27.3	4
Porsche 914-2	26.0	4
Lotus Europa	30.4	4
Volvo 142E	21.4	4

*	mpg ÷	carb ©
Merc 450SE	16.4	3
Merc 450SL	17.3	3
Merc 450SLC	15.2	3

*	mpg =	cyl	disp =	hp ÷	drat	wt ÷	qsec =	VS ÷	am ÷	gear	carb
Toyota Corolla	33.9	4	71.1	65	4.22	1.835	19.90	1	1	4]
Fiat 128	32.4	4	78.7	66	4.08	2.200	19.47	1	1	4	1
Honda Civic	30.4	4	75.7	52	4.93	1.615	18.52	1	1	4	2
Lotus Europa	30.4	4	95.1	113	3.77	1.513	16.90	1	1	5	2
Flat X1-9	27.3	4	79.0	66	4.08	1.935	18.90	1	1	4	3
Porsche 914-2	26.0	4	120.3	91	4.43	2.140	16.70	0	1	5	2
Merc 240D	24.4	4	146.7	62	3.69	3.190	20.00	1	0	4	2
Datsun 710	22.8	4	108.0	93	3.85	2.320	18.61	1	1	4	1
Merc 230	22.8	4	140.8	95	3.92	3.150	22.90	1	0	4	2
Toyota Corona	21.5	4	120.1	97	3.70	2.465	20.01	1	0	3	3
Volvo 142E	21.4	4	121.0	109	4.11	2.780	18.60	1	1	4	2
Hornet 4 Drive	21.4	6	258.0	110	3.08	3.215	19.44	1	0	3	3
Mazda RX4	21.0	6	160.0	110	3.90	2.620	16.46	0	1	4	4
Mazda RX4 Wag	21.0	6	160.0	110	3.90	2.875	17.02	0	1	4	4
	707	-	3.50		2.00		35.50		-	-	

	MilesPer	rGallon =	Cylinde	ers ‡ D	isplaceme	nt [‡] h	p ‡	drat	wt	qsec	⇒ vs	¢	am ‡	gear *	C
Mazda RX4		21.0		6		160.0	110	3.9	2.620	16.	46	0	1	4	
Mazda RX4 Wag		21.0		6		160.0	110	3.9	2.875	17.	02	0	1	4	
Datsun 710		22.8		4		108.0	93	3.8	5 2.320	18.	61	1	1	4	
Hornet 4 Drive		21.4		6		258.0	110	3.0	3.215	19.	44	1	0	3	
Hornet Sportabout		18.7		8		360.0	175	3.1	3.440	17.	02	0	0	3	
Valiant		18.1		6		225.0	105	2.7	3.460	20.	22	1	0	3	
Duster 360		14.3		8		360.0	245	3.2	3.570	15.	84	0	0	3	
Merc 240D		24.4		4		146.7	62	3.6	3.190	20.	00	1	0	4	
Merc 230		22.8		4		140.8	95	3.9	3.150	22.	90	1	0	4	
Merc 280		19.2		6		167.6	123	3.9	3.440	18.	30	1	0	4	
Merc 280C		17.8		6		167.6	123	3.9	2 3.440	18.	90	1	0	4	
Merc 450SE		16.4		8		275.8	180	3.0	7 4.070	17.	40	0	0	3	2000
Merc 450SL		17.3		8		275.8	180	3.0	7 3.730	17.	60	0	0	3	10000
Merc 450SLC		15.2		8		275.8	180	3.0	7 3.780	18.	00	0	0	3	
^	mpg ÷	cyl ‡	disp ‡	hp ‡	drat 0	wt	qsec	÷ V		am =	gear	÷ ,	carb =	Power	+
Mazda RX4	21.0	6	160.0	110	3.90	2.620	16	5.46	0	1		4	4	288.20	0
Mazda RX4 Wag	21.0	6	160.0	110	3.90	2.875	17	7.02	0	1		4	4	316.25	0
Datsun 710	22.8	4	108.0	93	3.85	2.320	18	3.61	1	1		4	1	215.76	0
Hornet 4 Drive	21.4	6	258.0	110	3.08	3.215	19	9.44	1	0		3	1	353.65	0
Hornet Sportabout	18.7	8	360.0	175	3.15	3.440	17	7.02	0	0		3	2	602.00	0
Valiant	18.1	6	225.0	105	2.76	3.460	20	0.22	1	0		3	1	363.30	0
Duster 360	14.3	8	360.0	245	3.21	3.570	15	5.84	0	0		3	4	874.65	0
Merc 240D	24.4	4	146.7	62	3.69	3.190	20	0.00	1	0		4	2	197.78	0
Merc 230	22.8	4	140.8	95	3.92	3.150	22	2.90	1	0		4	2	299.25	0
Merc 280	19.2	6	167.6	123	3.92	3.440	18	3.30	1	0		4	4	423.12	0
Merc 280C	17.8	6	167,6	123	3.92	3.440	18	3.90	1	0		4	4	423.12	0
Merc 450SE	16.4	8	275.8	180	3.07	4.070	17	7.40	0	0		3	3	732.60	0
Merc 450SL	17.3	8	275.8	180	3.07	3.730	17	7.60	0	0		3	3	671.40	0
Merc 450SLC	15.2	8	275.8	180	3.07	3.780	18	3.00	0	0		3	3	680.40	0
\$ cyl : - \$ disp : r \$ hp : - \$ drat : r \$ wt : r \$ qsec : r \$ vs : -	int (num : int : num : num : num : num : num :		6 8 6 0 108 0 93 9 3.8 .88 2 7 18.	5 8 4 3 258 110 1 35 3.0 2.32 3 6 19.	360 . .75 10)8 3.1 3.21 3 4 17 1 1 .	 5 245 5 2.7 .44 .	6 62 6 3	95	123						
\$ gear : F \$ carb : F \$ Power: F A tibble: `df1\$gear	int A num 2 3 x	4 4 1 288 31 4	1 2 1 6 216	4 2 5 354	2 4 . 602 .		2	2 2	11:	112	2 2 2	2 .	••		
<fct></fct>	<in< td=""><td></td><td>< db7</td><td></td><td>db7></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></in<>		< db7		db7>										
⊥ <mark>3</mark>		15	16.		3.89										
2 4		12	24.		2.62										
3 5		5	21.	4	2.63										

Histogeam of MilePergallon(mtcars)

Practical No:4

Aim: Exploratory data analysis in Python using Titanic Dataset It is one of the most popular datasets used for understanding machine learning basics. It contains information of all the passengers aboard the RMS Titanic, which unfortunately was shipwrecked. This dataset can be used to predict whether a given passenger survived or not.

Data Dictionary

Variable	Definition	Key
Survival	Survival	0 = No, 1 = Yes
Pclass	Ticket class	1 = 1st, $2 = 2$ nd, $3 = 3$ rd
Sex	Sex	
Age	Age in years	
Sibsp	# of siblings / spouses	
	aboard the Titanic	
Parch	# of parents / children	
	aboard the Titanic	
Ticket	Ticket number	
Fare	Passenger fare	
Cabin	Cabin number	
Embarked	Port of Embarkation	C = Cherbourg, Q =
		Queenstown, S =
		Southampton

Seaborn:

It is a python library used to statistically visualize data. Seaborn, built over Matplotlib, provides a better interface and ease of usage. It can be installed using the following command,

pip3 install seaborn

Features: The titanic dataset has roughly the following types of features:

□ Categorical/Nominal: Variables that can be divided into multiple categories but having no order or priority.

Eg. Embarked (C = Cherbourg; Q = Queenstown; S = Southampton)
Binary: A subtype of categorical features, where the variable has only two categories. Eg: Sex (Male/Female)

• Ordinal: They are similar to categorical features but they have an order(i.e can be sorted).

Eg. Pclass (1, 2, 3)

Name of Instructor: Maya Nair

• Continuous: They can take up any value between the minimum and maximum values in a column.

Eg. Age, Fare

• Count: They represent the count of a variable. Eg. SibSp, Parch Useless: They don't contribute to the final outcome of an ML model. Here, *PassengerId*, *Name*, *Cabin* and *Ticket* might fall into this category.

Code:

```
import pandas as pd titanic =
pd.read csv("train.csv")
titanic.head() titanic.info()
titanic.describe()
titanic.isnull().sum()
titanic cleaned =
titanic.drop(['PassengerId','Name','Ticket','Fare','Cabin'],axis=1)
titanic cleaned.info() import seaborn as sns import
matplotlib.pyplot as plt
%matplotlib inline
sns.catplot(x="Sex",hue="Survived",kind="count",data=titanic cleaned)
titanic cleaned.groupby(['Sex','Survived'])['Survived'].count()) group1
= titanic cleaned.groupby(['Sex','Survived'])
sns.heatmap(gender survived,annot=True,fmt="d")
sns.heatmap(gender survived,annot=True,fmt="d")
sns.violinplot(x="Sex",y="Age",hue="Survived",data=titanic cleaned,split=Tru
print("Oldest Person on Board:",titanic cleaned['Age'].max()) print("Youngest
Person on Board:",titanic cleaned['Age'].min()) print("Average age of Person
on Board:",titanic_cleaned['Age'].mean()) titanic_cleaned.isnull().sum() def
                Age = cols[0] Pclass = cols[1]
                                                   if pd.isnull(Age):
impute(cols):
Pclass==1:
                  return 38
                                 elif Pclass==2:
       return 29
else:
       return 24
else:
    return Age
titanic cleaned['Age']=titanic cleaned[['Age','Pclass']].apply(impute,axis=1)
titanic cleaned.isnull().sum() titanic cleaned.corr(method='pearson')
sns.heatmap(titanic cleaned.corr(method="pearson"),annot=True,vmax=1)
import numpy as np from sklearn import datasets
x,y,coef=datasets.make regression(n samples=100, n features=1,
n informative=1, noise=10,coef=True, random state = 0)
```

 $\begin{array}{l} x = & np.interp(x,(x.min(),x.max()),(0,20)) \\ print(len(x)) & print(x) \\ y = & np.interp(y,(y.min(),y.max()),(20000,150000)) \\ print(y) \end{array}$

Output:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/02. 3101282	7.9250	NaN	S
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S

Name of Instructor: Maya Nair

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype
0	PassengerId	891 non-null	int64
1	Survived	891 non-null	int64
2	Pclass	891 non-null	int64
3	Name	891 non-null	object
4	Sex	891 non-null	object
5	Age	714 non-null	float64
6	SibSp	891 non-null	int64
7	Parch	891 non-null	int64
8	Ticket	891 non-null	object
9	Fare	891 non-null	float64
10	Cabin	204 non-null	object
11	Embarked	889 non-null	object
dtyn	es float64/2) int64(5) ohi	ect(5)

dtypes: float64(2), int64(5), object(5)

memory usage: 83.7+ KB

	Passengerld	Survived	Pclass	Age	SibSp	Parch	Fare
count	891.000000	891.000000	891.000000	714.000000	891.000000	891.000000	891.000000
mean	446.000000	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208
std	257.353842	0.486592	0.836071	14.526497	1.102743	0.806057	49.693429
min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000
25%	223.500000	0.000000	2.000000	20.125000	0.000000	0.000000	7.910400
50%	446.000000	0.000000	3.000000	28.000000	0.000000	0.000000	14.454200
75%	668.500000	1.000000	3.000000	38.000000	1.000000	0.000000	31.000000
max	891.000000	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200

PassengerId 0
Survived 0
Pclass 0
Name 0
Sex 0
Age 177
SibSp 0
Parch 0
Ticket 0
Fare 0
Cabin 687
Embarked 2
dtype: int64

Name of Instructor: Maya Nair

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 7 columns):

#	Column	Non-Nu.	ll Count	Dtype
0	Survived	891 no	n-null	int64
1	Pclass	891 no	n-null	int64
2	Sex	891 no	n-null	object
3	Age	714 no	n-null	float64
4	SibSp	891 no	n-null	int64
5	Parch	891 no	n-null	int64
6	Embarked	889 noi	n-null	object
dtyn	ac floats	1(1) in	nt61(1)	object(2)

dtypes: float64(1), int64(4), object(2)

memory usage: 48.9+ KB

Sex	Survived	
female	0	81
	1	233
male	0	468
	1	109

Name: Survived, dtype: int64

Survived 0 1

Sex		
female	81	233
male	468	109

<AxesSubplot:xlabel='Survived', ylabel='Sex'>

<AxesSubplot:xlabel='Sex', ylabel='Age'>

Oldest Person on Board: 80.0

Youngest Person on Board: 0.42

Average age of Person on Board: 29.69911764705882

Survived	0
Pclass	0
Sex	0
Age	177
SibSp	0
Parch	0
Embarked	2
dtype: int6	4

Name of Instructor: Maya Nair

Survived 0
Pclass 0
Sex 0
Age 0
SibSp 0
Parch 0
Embarked 2
dtype: int64

	Survived	Pclass	Age	SibSp	Parch
Survived	1.000000	-0.338481	-0.046746	-0.035322	0.081629
Pclass	-0.338481	1.000000	-0.411805	0.083081	0.018443
Age	-0.046746	-0.411805	1.000000	-0.243877	-0.171917
SibSp	-0.035322	0.083081	-0.243877	1.000000	0.414838
Parch	0.081629	0.018443	-0.171917	0.414838	1.000000

<AxesSubplot:>


```
100
[[ 9.09621765]
[14.63742853]
 [12.25580785]
 [ 7.21515957]
 [ 6.90562848]
 [12.42799856]
 [ 6.53450315]
[12.36358975]
[11.45101022]
 [ 9.29527704]
 [ 8.46897323]
 [11.11359701]
 [ 4.21646281]
 [ 8.92109838]
 [13.29785748]
 [15.47570863]
 [ 9.84113925]
 [17.99332461]
 [16.61818648]
 [ 7.74737185]
 Fa. c.c.
 100
 68555.820963 108021.44227128 55778.0199934 101586.97979347
  103966.61856971 76826.00913959 73657.03907056 96439.33831133
  43282.85644907 73119.73495559 109692.0380975 128125.74670244
   87499.26503386 136438.82955292 140414.06203468 75920.22641562
  122765.94046351 138676.79599883 90840.21480164 99453.36502726
  118663.17132396 125247.52951645 144470.99004202 98454.6493064
  92321.3919241 133162.35931048 61723.07434352 77095.35501897
  59042.68149761 109559.00643186 77206.62874325 109743.44545302
  103902.53136675 82585.66146856 81088.97054957 62200.35300958
  111971.74647069 101515.0451792 47090.60230288 141613.36480828
  99370.060872
                 72953.14343772 131312.34257614 68957.25418311
  135509.14233685 90658.86260334 75147.59074288 46071.12989863
   01100 01040550 105106 40540000 110017 0745170 100770 70107700
```

Practical 5

Aim: Exploratory data analysis in Python using Titanic Dataset The following figure illustrates simple linear regression:

The package **scikit-learn** is a widely used Python library for machine learning, built on top of NumPy and some other packages, It provides the means for preprocessing data, reducing dimensionality, implementing regression, classification, clustering, and more. Like NumPy, scikit-learn is also open source.

It is used as sklearn in python

1)Write a python program to build a regression model that could predict the salary of an employee from the given experience and visualize univariate linear regression on it.

Code:

```
import numpy as np from sklearn import datasets
x,y,coef=datasets.make regression(n samples=100, n features=1,
n informative=1, noise=10,coef=True, random state = 0)
x=np.interp(x,(x.min(),x.max()),(0,20))
print(len(x)) print(x)
y=np.interp(y,(y.min(),y.max()),(20000,150000))
print(len(y)) print(y) import matplotlib.pyplot as
plt plt.plot(x,t,'.',label="training data")
plt.xlabel("Years of Experience")
plt.ylabel("Salary") plt.title("Experience vs
Salary") from sklearn.linear model import
LinearRegression reg model = LinearRegression()
reg model.fit(x,y) y pred=reg model.predict(x)
plt.plot(x,y pred,color="black")
plt.plot(x,y,'.',label="training data")
plt.xlabel("Years of Experience")
plt.ylabel("Salary") plt.title("Experience vs
Salary")
import pandas as pd
data = {'Experience':np.round(x.flatten()),'Salary':np.round(y)}
df=pd.DataFrame(data)
df.head(10)
```

Output:

Text(0.5, 1.0, 'Experience vs Salary')

Text(0.5, 1.0, 'Experience vs Salary')

	Experience	Salary
0	9.0	78311.0
1	15.0	103898.0
2	12.0	97836.0
3	7.0	80550.0
4	7.0	68556.0
5	12.0	108021.0
6	7.0	55778.0
7	12.0	101587.0
8	11.0	103967.0
9	9.0	76826.0

2) Write a python program to simulate linear model Y=10+7*x+e for random 100 samples and visualize univariate linear regression on it.

Code:

```
x1=[[13.0]] y1=reg_model.predict(x1)
print(np.round(y1))
reg_model1=LinearRegression()
x=np.random.rand(100,1)
yintercept=10 slope=7
error=np.random.rand(100,1)
y=yintercept+slope*x+error
reg_model1.fit(x,y)
y_pred=reg_model1.predict(x)
plt.scatter(x,y,s=10)
plt.xlabel("X") plt.ylabel("Y")
plt.plot(x,y pred,color="black")
```

Output:

[105534.]

[<matplotlib.lines.Line2D at 0x26fbd74c8b0>]

Practical 6

Aim: Write a python program to implement multiple linear regression on the Dataset Boston.csv

The dataset provides Housing Values in Suburbs of Boston The medv(Price) variable is the target /dependent variable.

Data description

The Boston data frame has 506 rows and 14 columns.

This data frame contains the following columns:

crim per capita crime rate by town.

zn proportion of residential land zoned for lots over 25,000

sq.ft. indus proportion of non-retail business acres per town. chas

Charles River dummy variable (= 1 if tract bounds river; 0 otherwise). nox nitrogen oxides concentration (parts per 10 million). rm average number of rooms per dwelling. age proportion of owner-occupied units built prior to 1940.

dis weighted mean of distances to five Boston employment centres. rad index of accessibility to radial highways.

tax full-value property-tax rate per

\\$10.000.

ptratio pupil-teacher ratio

by town.

black

 $1000(Bk - 0.63)^2$ where Bk is the proportion of blacks by town.

lstat lower status of the population (percent).

Medv(Price) median value of owner-occupied homes in \\$1000s.

Code:

import pandas as pd import
matplotlib.pyplot as plt
import sklearn
boston = pd.read_csv("Boston.csv") boston.head()
boston.info()
boston = boston.drop(columns="Unnamed: 0")
boston.info() boston_x =
pd.DataFrame(boston.iloc[:,:13]) boston_y =
pd.DataFrame(boston.iloc[:,-1])
boston_x.head() boston_y.head()
from sklearn.model selection import train test split

Name of Instructor: Maya Nair

```
X_train, X_test, Y_train, Y_test = train_test_split(boston_x, boston_y, test_size=0.3) print("xtrain shape", X_train.shape) print("ytrain shape", Y_train.shape) print("xtest shape", X_test.shape) print("ytest shape", Y_test.shape) from sklearn.linear_model import LinearRegression regression=LinearRegression() regression.fit(X_train,Y_train) Y_pred_linear = regression.predict(X_test) Y_pred_df = pd.DataFrame(Y_pred_linear,columns=["Predicted"]) Y_pred_df.head() plt.scatter(Y_test, Y_pred_linear, c="green") plt.xlabel("Actual Price(medv)") plt.ylabel("Predicted Pric(medv)") plt.ylabel("Predicted Pric(medv)") plt.title("Actual vs Prediction") plt.show()
```

Output:

	Unnamed: 0	crim	zn	indus	chas	nox	rm	age	dis	rad	tax	ptratio	black	Istat	medv
0	1	0.00632	18.0	2.31	0	0.538	6.575	65.2	4.0900	1	296	15.3	396.90	4.98	24.0
1	2	0.02731	0.0	7.07	0	0.469	6.421	78.9	4.9671	2	242	17.8	396.90	9.14	21.6
2	3	0.02729	0.0	7.07	0	0.469	7.185	61.1	4.9671	2	242	17.8	392.83	4.03	34.7
3	4	0.03237	0.0	2.18	0	0.458	6.998	45.8	6.0622	3	222	18.7	394.63	2.94	33.4
4	5	0.06905	0.0	2.18	0	0.458	7.147	54.2	6.0622	3	222	18.7	396.90	5.33	36.2

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 506 entries, 0 to 505
Data columns (total 15 columns):
Column Non-Null Count Dtype

#	Column	Non-Null Cou	int Dtype
0	Unnamed: 0	506 non-null	int64
1	crim	506 non-null	float64
2	zn	506 non-null	float64
3	indus	506 non-null	float64
4	chas	506 non-null	int64
5	nox	506 non-null	float64
6	rm	506 non-null	float64
7	age	506 non-null	float64
8	dis	506 non-null	float64
9	rad	506 non-null	int64
10	tax	506 non-null	int64
11	ptratio	506 non-null	float64
12	black	506 non-null	float64
13	lstat	506 non-null	float64
14	medv	506 non-null	float64
44	C1 1 /		

dtypes: float64(11), int64(4)

memory usage: 59.4 KB

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 506 entries, 0 to 505
Data columns (total 14 columns):
Column Non-Null Count Dtype

#	Column	Non-Null Count	Dtype
0	crim	506 non-null	float64
1	zn	506 non-null	float64
2	indus	506 non-null	float64
3	chas	506 non-null	int64
4	nox	506 non-null	float64
5	rm	506 non-null	float64
6	age	506 non-null	float64
7	dis	506 non-null	float64
8	rad	506 non-null	int64
9	tax	506 non-null	int64
10	ptratio	506 non-null	float64
11	black	506 non-null	float64
12	lstat	506 non-null	float64
13	medv	506 non-null	float64
J.L	C1+	ca/aa\ :-+ca/3\	

dtypes: float64(11), int64(3)

memory usage: 55.5 KB

	crim	zn	indus	chas	nox	rm	age	dis	rad	tax	ptratio	black	Istat
0	0.00632	18.0	2.31	0	0.538	6.575	65.2	4.0900	1	296	15.3	396.90	4.98
1	0.02731	0.0	7.07	0	0.469	6.421	78.9	4.9671	2	242	17.8	396.90	9.14
2	0.02729	0.0	7.07	0	0.469	7.185	61.1	4.9671	2	242	17.8	392.83	4.03
3	0.03237	0.0	2.18	0	0.458	6.998	45.8	6.0622	3	222	18.7	394.63	2.94
4	0.06905	0.0	2.18	0	0.458	7.147	54.2	6.0622	3	222	18.7	396.90	5.33

medv 0 24.0 1 21.6 2 34.7 3 33.4

4 36.2

xtrain shape (354, 13) ytrain shape (354, 1) xtest shape (152, 13) ytest shape (152, 1)

Predicted

0 22.984672

1 23.549732

2 19.280036

3 25.237437

4 36.235906

Practical 7:

K Nearest Neighbor classification Algorithm

Aim: Write a python program to implement KNN algorithm to predict breast cancer using breast cancer wisconsin dataset.

Data Set Information:

Features are computed from a digitized image of a fine needle aspirate (FNA) of a breast mass. They describe characteristics of the cell nuclei present in the image.

```
Attribute Information:
1)
                                   ID
                                            number
2)
                                   Diagnosis
                                                               malignant, B
                                                  (M
                                            benign)
(3-32)
Ten
      real-valued
                     features
                                     computed
                                                  for
                                                        each
                                                               cell
                                                                       nucleus:
                               are
a)
                                                                     radius
                                                                     (mean of
                                                                     distances
                                                                     from
                                                                     center to
                                                                     points on
                                                                     the
                                                                     perimeter
b)
                                                                     texture
                                                                     (standard
                                                                     deviation
                                                                     of
                                                                     gray-
                                                                     scale
                                                                     values)
c)
                                                                     perimeter
d)
                                                                          area
                         (local
e)
       smoothness
                                    variation
                                                   in
                                                          radius
                                                                      lengths)
                            (perimeter^2
                                               /
f)
        compactness
                                                                           1.0)
                                                       area
                  (severity
                                   concave
g)
     concavity
                              of
                                               portions
                                                          of
                                                               the
                                                                      contour)
```

- h) concave points (number of concave contour) portions of the i) symmetry
- j) fractal dimension ("coastline approximation" 1)

Code:

```
import numpy as np import pandas as pd import
matplotlib.pyplot as plt from sklearn.datasets
import load breast cancer from sklearn.metrics
import confusion matrix from sklearn.neighbors
import KNeighborsClassifier from
sklearn.model selection import train test split
import seaborn as sns
breast cancer df = load breast cancer()
x=pd.DataFrame(breast cancer df.data,columns=breast cancer df.feature nam
es)
x.head()
columns to select = ["mean area", "mean compactness"]
x=x[columns to select] x.head()
y=pd.Categorical.from codes(breast cancer df.target,breast cancer df.target n
ames)
print(y)
y=pd.get dummies(y,drop first=True) print(y)
X train, X test, Y train, Y test = train test split(x, y, random state=1)
knn=KNeighborsClassifier(n neighbors=5,metric="euclidewan")
knn.fit(X train,Y train) sns.set()
sns.scatterplot(x="mean
                                                                area",y="mean
compactness",hue="benign",data=X text.join(Y test,how="outer"))
y pred=knn.predict(X test)
plt.scatter(X test["mean
                                                          area"],X test["mean
compactness"],c=y pred,cmap="coolwarm",alpha=0.7)
cf=confusion matrix(Y test,y pred) print(cf)
labels=["True Negative", "False Positive", "False Negative", "True Positive"]
labels=np.asarray(labels).reshape(2,2) categories=["Zero","One"]
ax=plt.subplot() sns.heatmap(cf,annot=True,ax=ax)
ax.set xlabel("Predicted Values")
ax.set ylabel("Actual Values")
ax.set title("Confusion Matrix")
ax.xaxis.set ticklabels(["Malignant", "Benign"])
ax.yaxis.set ticklabels(["Malignant","Benign"])
```

Output:

	mean radius	mean texture	mean perimeter	mean area	mean smoothness	mean compactness	mean concavity	mean concave points	mean symmetry	mean fractal dimension	 worst radius	worst texture	worst perimeter	worst area	worst smoothness
0	17.99	10.38	122.80	1001.0	0.11840	0.27760	0.3001	0.14710	0.2419	0.07871	 25.38	17.33	184.60	2019.0	0.1622
1	20.57	17.77	132.90	1326.0	0.08474	0.07864	0.0869	0.07017	0.1812	0.05667	 24.99	23.41	158.80	1956.0	0.1238
2	19.69	21.25	130.00	1203.0	0.10960	0.15990	0.1974	0.12790	0.2069	0.05999	 23.57	25.53	152.50	1709.0	0.1444
3	11.42	20.38	77.58	386.1	0.14250	0.28390	0.2414	0.10520	0.2597	0.09744	 14.91	26.50	98.87	567.7	0.2098
4	20.29	14.34	135.10	1297.0	0.10030	0.13280	0.1980	0.10430	0.1809	0.05883	 22.54	16.67	152.20	1575.0	0.1374

5 rows × 30 columns

mean area mean compactness 0 1001.0 0.27760 1 1326.0 0.07864 2 1203.0 0.15990 3 386.1 0.28390 4 1297.0 0.13280

['malignant', 'malignant', 'malignant', 'malignant', 'malignant', 'malignant', 'malignant', 'malignant', 'malignant', 'ben ign']

Categories (2, object): ['malignant', 'benign']

	benign	
0	0	
1	0	
2	0	
3	0	
4	0	
	•••	
564	0	
565	0	
566	0	
567	0	
568	1	

[569 rows x 1 columns]

<AxesSubplot:xlabel='mean area', ylabel='mean compactness'>

<matplotlib.collections.PathCollection at 0x260054d1fa0>

[[42 13] [9 79]]

[Text(0, 0.5, 'Malignant'), Text(0, 1.5, 'Benign')]

Practical 8:

Aim: Introduction to NOSQL using MongoDB

Perform the following:

1.Create a database Company ,Create a Collection Staff and Insert ten documents in it with fields: empid,empname,salary and designation.

- Display all documents in Staff and display only empid and designation.db
- Sort the documents in descending order of Salary
- Display employee with designation with "Manager" or salary greater than Rs. 50,000/-.
- Update the salary of all employees with designation as "Accountant" to Rs.45000.
- Remove the documents of employees whose salary is greater than Rs100000.
- 2. Create a database Institution .Create a Collection Student and Insert ten documents in it with fields: RollNo,Name,Class and TotalMarks(out of 500).
 - Display all documents in Student.
 - Sort the documents in descending order of TotalMarks.
 - Display students of class "MSc" or marks greater than 400.
 - Remove all the documents with TotalMarks<200

Code and Output:

1.Create a database Institution, Create a Collection Staff and Insert ten documents in it with fields: empid, empname, salary and designation. use Institution db.createCollection("Staff")

```
> use Institution
switched to db Institution
> db.createCollection("Staff")
```

db

db.Staff.insertMany([{ "empid": 1, "empname": "John Doe", "salary": 60000, "designation": "Manager" }, { "empid": 2, "empname": "Jane Smith", "salary": 55000, "designation": "Accountant" }, { "empid": 3, "empname": "Michael Johnson", "salary": 70000, "designation": "Manager" }, { "empid": 4,

```
"empname": "Emily Brown", "salary": 45000, "designation": "Accountant" }, {
"empid": 5, "empname": "David Wilson", "salary": 80000, "designation":
"Developer" }, { "empid": 6, "empname": "Sarah Lee", "salary": 95000,
"designation": "Manager" }, { "empid": 7, "empname": "Christopher Martinez",
"salary": 50000, "designation": "Accountant" }, { "empid": 8, "empname":
"Amanda Davis", "salary": 120000, "designation": "Manager" }, { "empid": 9,
"empname": "Jason Rodriguez", "salary": 40000, "designation": "Intern" }, {
"empid": 10, "empname": "Jessica Taylor", "salary": 110000, "designation":
"Manager" } ])
```

Db.Staff.find().pretty()

```
> db.Staff.find().pretty()
{
        "_id" : ObjectId("65deecde8cbdbaebf7136c4f"),
        "empid" : 1,
        "empname" : "John Doe",
        "salary" : 60000,
        "designation" : "Manager"
}
{
        "_id" : ObjectId("65deecde8cbdbaebf7136c50"),
        "empid" : 2,
        "empname" : "Jane Smith",
        "salary" : 55000,
        "designation" : "Accountant"
}
{
        "_id" : ObjectId("65deecde8cbdbaebf7136c51"),
        "empid" : 3,
        "empname" : "Michael Johnson",
        "salary" : 70000,
        "designation" : "Manager"
}
{
        "_id" : ObjectId("65deecde8cbdbaebf7136c52"),
        "empid" : 4,
        "empname" : "Emily Brown",
        "salary" : 45000,
        "designation" : "Accountant"
}
```

 Display all documents in Staff and display only empid and designation. db.Staff.find().pretty()

```
b. Staff.find().pretty()
{
    "_id" : ObjectId("65deecde8cbdbaebf7136c4f"),
    "empid" : 1,
    "empname" : "John Doe",
    "salary" : 60000,
    "designation" : "Manager"
}
{
    "_id" : ObjectId("65deecde8cbdbaebf7136c50"),
    "empid" : 2,
    "empname" : "Jane Smith",
    "salary" : 55000,
    "designation" : "Accountant"
}
{
    "_id" : ObjectId("65deecde8cbdbaebf7136c51"),
    "empid" : 3,
    "empname" : "Michael Johnson",
    "salary" : 70000,
    "designation" : "Manager"
}
{
    "_id" : ObjectId("65deecde8cbdbaebf7136c52"),
    "empname" : "Emily Brown",
    "salary" : 45000,
    "designation" : "Accountant"
}
```

```
{
    "_id" : ObjectId("65deecde8cbdbaebf7136c54"),
    "empid" : 6,
    "empname" : "Sarah Lee",
    "salary" : 95000,
    "designation" : "Manager"
}
{
    "_id" : ObjectId("65deecde8cbdbaebf7136c55"),
    "empid" : 7,
    "empname" : "Christopher Martinez",
    "salary" : 50000,
    "designation" : "Accountant"
}
{
    "_id" : ObjectId("65deecde8cbdbaebf7136c56"),
    "empid" : 8,
    "empname" : "Amanda Davis",
    "salary" : 120000,
    "designation" : "Manager"
}
{
    "_id" : ObjectId("65deecde8cbdbaebf7136c57"),
    "empid" : 9,
    "empname" : "Jason Rodriguez",
    "salary" : 40000,
    "designation" : "Intern"
}
```

Db.staff.find({], {" id":0, "empid":1, "designation":1}).pretty()

```
> db.Staff.find({}, { "_id": 0, "empid": 1, "designation": 1 }).pretty()
{ "empid" : 1, "designation" : "Manager" }
{ "empid" : 2, "designation" : "Accountant" }
{ "empid" : 3, "designation" : "Manager" }
{ "empid" : 4, "designation" : "Accountant" }
{ "empid" : 5, "designation" : "Developer" }
{ "empid" : 6, "designation" : "Manager" }
{ "empid" : 7, "designation" : "Accountant" }
{ "empid" : 8, "designation" : "Manager" }
{ "empid" : 9, "designation" : "Intern" }
{ "empid" : 10, "designation" : "Manager" }
```

• Sort the documents in descending order of Salary

```
db.Staff.find().sort({ "salary": -1 })
```

```
> db.Staff.find().sort({ "salary": -1 })
{ "id" : ObjectId("65deecde8cbdbaebf7136c56"), "empid" : 8, "empname" : "Amanda Davis", "salary" : 120000, "designation " : "Manager" }
{ "id" : ObjectId("65deecde8cbdbaebf7136c58"), "empid" : 10, "empname" : "Jessica Taylor", "salary" : 110000, "designation " : "Manager" }
{ "id" : ObjectId("65deecde8cbdbaebf7136c54"), "empid" : 6, "empname" : "Sarah Lee", "salary" : 95000, "designation" : "Manager" }
{ "id" : ObjectId("65deecde8cbdbaebf7136c53"), "empid" : 5, "empname" : "David Wilson", "salary" : 80000, "designation" : "Developer" }
{ "id" : ObjectId("65deecde8cbdbaebf7136c51"), "empid" : 3, "empname" : "Michael Johnson", "salary" : 70000, "designation" : "Manager" }
{ "id" : ObjectId("65deecde8cbdbaebf7136c51"), "empid" : 1, "empname" : "John Doe", "salary" : 60000, "designation" : "Manager" }
{ "id" : ObjectId("65deecde8cbdbaebf7136c50"), "empid" : 2, "empname" : "Jane Smith", "salary" : 55000, "designation" : "Accountant" }
{ "id" : ObjectId("65deecde8cbdbaebf7136c55"), "empid" : 7, "empname" : "Christopher Martinez", "salary" : 50000, "designation" : "Accountant" }
{ "id" : ObjectId("65deecde8cbdbaebf7136c52"), "empid" : 4, "empname" : "Emily Brown", "salary" : 45000, "designation" : "Accountant" }
{ "id" : ObjectId("65deecde8cbdbaebf7136c52"), "empid" : 4, "empname" : "Emily Brown", "salary" : 45000, "designation" : "Accountant" }
{ "id" : ObjectId("65deecde8cbdbaebf7136c52"), "empid" : 4, "empname" : "Emily Brown", "salary" : 45000, "designation" : "Accountant" }
{ "id" : ObjectId("65deecde8cbdbaebf7136c57"), "empid" : 9, "empname" : "Jason Rodriguez", "salary" : 40000, "designation" : "Intern" }
```

• Display employee with designation with "Manager" or salary greater than Rs. 50,000/-.

db.Staff.find({ \$or: [{ "designation": "Manager" }, { "salary": { \$gt: 50000 } }] })

```
b db.Staff.find({ Sor: [{ "designation": "Manager" }, { "salary": { $gt: 50000 } }] })
{ "_id" : ObjectId("65deecde8cbdbaebf7136c4f"), "empid" : 1, "empname" : "John Doe", "salary" : 60000, "designation" : "
Manager" }
{ "_id" : ObjectId("65deecde8cbdbaebf7136c51"), "empid" : 3, "empname" : "Michael Johnson", "salary" : 70000, "designation" : "Manager" }
{ "_id" : ObjectId("65deecde8cbdbaebf7136c53"), "empid" : 5, "empname" : "David Wilson", "salary" : 80000, "designation" : "Developer" }
{ "_id" : ObjectId("65deecde8cbdbaebf7136c54"), "empid" : 6, "empname" : "Sarah Lee", "salary" : 95000, "designation" : "Manager" }
```

• Update the salary of all employees with designation as "Accountant" to Rs.45000.

db.Staff.updateMany({ "designation": "Accountant" }, { \$set: { "salary": 45000 } })

```
> db.Staff.updateMany({ "designation": "Accountant" }, { $set: { "salary": 45000 } })
{ "acknowledged" : true, "matchedCount" : 3, "modifiedCount" : 2 }
```

db.Staff.din({"designation": "Accountant"})

```
> db.Staff.find({"designation": "Accountant"})
{ "_id" : ObjectId("65deecde8cbdbaebf7136c50"), "empid" : 2, "empname" : "Jane Smith", "salary" : 45000, "designation"
"Accountant" }
{ "_id" : ObjectId("65deecde8cbdbaebf7136c52"), "empid" : 4, "empname" : "Emily Brown", "salary" : 45000, "designation"
: "Accountant" }
{ "_id" : ObjectId("65deecde8cbdbaebf7136c55"), "empid" : 7, "empname" : "Christopher Martinez", "salary" : 45000, "des gnation" : "Accountant" }
```

• Remove the documents of employees whose salary is greater than Rs100000.

db.Staff.deleteMany({ "salary": { \$gt: 100000 } }) db.Staff.find()

```
b db.Staff.deleteMany(( "salary": { $gt: 100000 } })
[ "acknowledged" : true, "deletedCount" : 2 }
db.Staff.find()
[ "jd" : ObjectId("65deecde8cbdbaebf7136c4f"), "empid" : 1, "empname" : "John Doe", "salary" : 60000, "designation" : "lanager" }
[ "jd" : ObjectId("65deecde8cbdbaebf7136c50"), "empid" : 2, "empname" : "Jane Smith", "salary" : 45000, "designation" : "Accountant" }
[ "jd" : ObjectId("65deecde8cbdbaebf7136c51"), "empid" : 3, "empname" : "Michael Johnson", "salary" : 70000, "designation" : "Manager" }
[ "jd" : ObjectId("65deecde8cbdbaebf7136c52"), "empid" : 4, "empname" : "Emily Brown", "salary" : 45000, "designation" : "Accountant" }
[ "jd" : ObjectId("65deecde8cbdbaebf7136c52"), "empid" : 5, "empname" : "David Wilson", "salary" : 80000, "designation" : "Developer" }
[ "jd" : ObjectId("65deecde8cbdbaebf7136c54"), "empid" : 6, "empname" : "Sarah Lee", "salary" : 95000, "designation" : "Manager" }
[ "jd" : ObjectId("65deecde8cbdbaebf7136c55"), "empid" : 7, "empname" : "Christopher Martinez", "salary" : 45000, "designation" : "Racountant" }
[ "jd" : ObjectId("65deecde8cbdbaebf7136c55"), "empid" : 9, "empname" : "Jason Rodriguez", "salary" : 40000, "designation" : "Intern" }
[ "jd" : ObjectId("65deecde8cbdbaebf7136c57"), "empid" : 9, "empname" : "Jason Rodriguez", "salary" : 40000, "designation" : "Intern" }
[ "jd" : ObjectId("65deecde8cbdbaebf7136c57"), "empid" : 9, "empname" : "Jason Rodriguez", "salary" : 40000, "designation" : "Intern" }
[ "ja" : ObjectId("65deecde8cbdbaebf7136c57"), "empid" : 9, "empname" : "Jason Rodriguez", "salary" : 40000, "designation" : "Intern" }
[ "ja" : ObjectId("65deecde8cbdbaebf7136c57"), "empid" : 9, "empname" : "Jason Rodriguez", "salary" : 40000, "designation" : "Intern" }
[ "ja" : ObjectId("65deecde8cbdbaebf7136c57"), "empid" : 9, "empname" : "Jason Rodriguez", "salary" : 40000, "designation" : "Intern" }
[ "ja" : ObjectId("65deecde8cbdbaebf7136c57"), "empid" : 9, "empname" : "Jason Rodriguez", "salary" : 40000, "designation" : "Intern" }
[ "ja" : ObjectId("65dee
```

2. Create a database Institution .Create a Collection Student and Insert ten documents in it with fields: RollNo,Name,Class and TotalMarks(out of 500). db.createCollection("Student") db

```
> db.createCollection("Student")
{ "ok" : 1 }
> db
Institution
```

db.Student.insertMany([{ "RollNo": 101, "Name": "Alice Johnson", "Class": "BSc", "TotalMarks": 480 }, { "RollNo": 102, "Name": "Bob Smith", "Class": "MSc", "TotalMarks": 450 }, { "RollNo": 103, "Name": "Charlie Brown", "Class": "MSc", "TotalMarks": 420 }, { "RollNo": 104, "Name": "David Davis", "Class": "BSc", "TotalMarks": 400 }, { "RollNo": 105, "Name": "Eva Wilson", "Class": "MSc", "TotalMarks": 490 }, { "RollNo": 106, "Name": "Frank Martinez", "Class": "BSc", "TotalMarks": 360 }, { "RollNo": 107, "Name": "Grace Lee", "Class": "MSc", "TotalMarks": 510 }, { "RollNo": 108, "Name": "Henry Taylor", "Class": "BSc", "TotalMarks": 320 }, { "RollNo": 109, "Name": "Isabel Rodriguez", "Class": "MSc", "TotalMarks": 380 }, { "RollNo": 110, "Name": "Jack Harris", "Class": "BSc", "TotalMarks": 250 }])

db.Student.find({})

```
bd.Student.find({})
{ ".id" : ObjectId("65def1918cbdbaebf7136c59"), "RollNo" : 101, "Name" : "Alice Johnson", "Class" : "BSc", "TotalMarks" : 480 }
{ ".id" : ObjectId("65def1918cbdbaebf7136c5a"), "RollNo" : 102, "Name" : "Bob Smith", "Class" : "MSc", "TotalMarks" : 45 }
} { ".id" : ObjectId("65def1918cbdbaebf7136c5b"), "RollNo" : 103, "Name" : "Charlie Brown", "Class" : "MSc", "TotalMarks" : 420 }
{ ".id" : ObjectId("65def1918cbdbaebf7136c5c"), "RollNo" : 104, "Name" : "David Davis", "Class" : "BSc", "TotalMarks" : 400 }
{ ".id" : ObjectId("65def1918cbdbaebf7136c5d"), "RollNo" : 105, "Name" : "Eva Wilson", "Class" : "MSc", "TotalMarks" : 490 }
{ ".id" : ObjectId("65def1918cbdbaebf7136c5d"), "RollNo" : 106, "Name" : "Frank Martinez", "Class" : "BSc", "TotalMarks" : 490 }
{ ".id" : ObjectId("65def1918cbdbaebf7136c5e"), "RollNo" : 106, "Name" : "Frank Martinez", "Class" : "MSc", "TotalMarks" : 360 }
{ ".id" : ObjectId("65def1918cbdbaebf7136c5f"), "RollNo" : 107, "Name" : "Grace Lee", "Class" : "MSc", "TotalMarks" : 320 }
{ ".id" : ObjectId("65def1918cbdbaebf7136c60"), "RollNo" : 108, "Name" : "Henry Taylor", "Class" : "BSc", "TotalMarks" : 320 }
{ ".id" : ObjectId("65def1918cbdbaebf7136c61"), "RollNo" : 109, "Name" : "Isabel Rodriguez", "Class" : "MSc", "TotalMarks" : 380 }
{ ".id" : ObjectId("65def1918cbdbaebf7136c62"), "RollNo" : 110, "Name" : "Jack Harris", "Class" : "BSc", "TotalMarks" : 250 }
}
```

• Display all documents in Student.

```
db.Student.find({})
```

Sort the documents in descending order of TotalMarks.
 db.Student.find().sort({ "TotalMarks": -1 })

```
db.Student.find({})
"_id" : ObjectId("65def1918cbdbaebf7136c59"), "RollNo" : 101, "Name" : "Alice Johnson", "Class" : "BSc", "TotalMarks"
      : ObjectId("65def1918cbdbaebf7136c5a"), "RollNo" : 102, "Name" : "Bob Smith", "Class" : "MSc", "TotalMarks" : 49
      : ObjectId("65def1918cbdbaebf7136c5b"), "RollNo" : 103, "Name" : "Charlie Brown", "Class" : "MSc", "TotalMarks"
        ObjectId("65def1918cbdbaebf7136c5c"), "RollNo" : 104, "Name" : "David Davis", "Class" : "BSc", "TotalMarks" :
        ObjectId("65def1918cbdbaebf7136c5d"), "RollNo": 105, "Name": "Eva Wilson", "Class": "MSc", "TotalMarks"
      : ObjectId("65def1918cbdbaebf7136c5e"), "RollNo" : 106, "Name" : "Frank Martinez", "Class" : "BSc", "TotalMarks'
      ,
: ObjectId("65def1918cbdbaebf7136c5f"), "RollNo" : 107, "Name" : "Grace Lee", "Class" : "MSc", "TotalMarks" : 51
      : ObjectId("65def1918cbdbaebf7136c60"), "RollNo" : 108, "Name" : "Henry Taylor", "Class" : "BSc", "TotalMarks"
      : ObjectId("65def1918cbdbaebf7136c61"), "RollNo" : 109, "Name" : "Isabel Rodriguez", "Class" : "MSc", "TotalMark
      : ObjectId("65def1918cbdbaebf7136c62"), "RollNo" : 110, "Name" : "Jack Harris", "Class" : "BSc", "TotalMarks" :
     udent.find().sort({ "TotalMarks": -1 })
: ObjectId("65def1918cbdbaebf7136c5f"), "RollNo" : 107, "Name" : "Grace Lee", "Class" : "MSc", "TotalMarks" : 5
                                        "RollNo" : 105, "Name" : "Eva Wilson", "Class" : "MSc",
                                        "RollNo" : 101, "Name" : "Alice Johnson",
                                        "RollNo" : 102, "Name" : "Bob Smith", "Class" : "MSc",
                                               : 104, "Name" : "David Davis", "Class" : "BSc"
                                        "RollNo" · 109 "Name" · "Isabel Rodriguez"
                             bf7136c5e"). "RollNo" : 106. "Name" : "Frank Martinez". "Class" : "BSc". "TotalMarks
                                               : 108, "Name" : "Henry Taylor", "Class" : "BSc",
      ObjectId("65def1918cbdbaebf7136c62"), "RollNo" : 110, "Name" : "Jack Harris", "Class" : "BSc", "TotalMarks"
```

Display students of class "MSc" or marks greater than 400.
 db.Student.find({ \$or: [{ "Class": "MSc" }, { "TotalMarks": { \$gt: 400 } }]})

Remove all the documents with TotalMarks<200
 db.Student.deleteMany({ "TotalMarks": { \$lt: 200 } })
 db.Student.find({})

```
> db.Student.deleteMany({ "TotalMarks": { $1t: 200 } })
{ "acknowledged" : true, "deletedCount" : 0 }
> db.Student.find({)}
{ "_id" : ObjectId("65def1918cbdbaebf7136c59"), "RollNo" : 101, "Name" : "Alice Johnson", "Class" : "BSC", "TotalMarks" : 480 }
{ "_id" : ObjectId("65def1918cbdbaebf7136c5a"), "RollNo" : 102, "Name" : "Bob Smith", "Class" : "MSc", "TotalMarks" : 450 }
{ "_id" : ObjectId("65def1918cbdbaebf7136c5b"), "RollNo" : 103, "Name" : "Charlie Brown", "Class" : "MSc", "TotalMarks" : 420 }
{ "_id" : ObjectId("65def1918cbdbaebf7136c5c"), "RollNo" : 104, "Name" : "David Davis", "Class" : "BSC", "TotalMarks" : 460 }
{ "_id" : ObjectId("65def1918cbdbaebf7136c5d"), "RollNo" : 105, "Name" : "Eva Wilson", "Class" : "MSc", "TotalMarks" : 490 }
{ "_id" : ObjectId("65def1918cbdbaebf7136c5d"), "RollNo" : 106, "Name" : "Frank Martinez", "Class" : "BSc", "TotalMarks" : 4360 }
{ "_id" : ObjectId("65def1918cbdbaebf7136c5f"), "RollNo" : 107, "Name" : "Grace Lee", "Class" : "MSc", "TotalMarks" : 510 }
{ "_id" : ObjectId("65def1918cbdbaebf7136c60"), "RollNo" : 108, "Name" : "Henry Taylor", "Class" : "BSc", "TotalMarks" : 320 }
{ "_id" : ObjectId("65def1918cbdbaebf7136c60"), "RollNo" : 109, "Name" : "Isabel Rodriguez", "Class" : "MSc", "TotalMarks" : 320 }
{ "_id" : ObjectId("65def1918cbdbaebf7136c61"), "RollNo" : 109, "Name" : "Isabel Rodriguez", "Class" : "MSc", "TotalMarks" : 320 }
{ "_id" : ObjectId("65def1918cbdbaebf7136c62"), "RollNo" : 109, "Name" : "Isabel Rodriguez", "Class" : "MSc", "TotalMarks" : 380 }
{ "_id" : ObjectId("65def1918cbdbaebf7136c62"), "RollNo" : 110, "Name" : "Jack Harris", "Class" : "BSc", "TotalMarks" : 380 }
{ "_id" : ObjectId("65def1918cbdbaebf7136c62"), "RollNo" : 110, "Name" : "Jack Harris", "Class" : "BSc", "TotalMarks" : 380 }
{ "_id" : ObjectId("65def1918cbdbaebf7136c62"), "RollNo" : 110, "Name" : "Jack Harris", "Class" : "BSc", "TotalMarks" : 380 }
}
```