Inleiding Implementatie Performance Toepassingen Conclusie

Simulation of a many-particle system using space partitioning

Roald Frederickx Kasper Meerts

10 November 2010

Titularis: Prof. Walter Troost Met dank aan Matthijs van Dorp

- Inleiding
- 2 Implementatie
- 3 Performance
- 4 Toepassingen
- Conclusie

Veel fysische systemen te modelleren door interagerende deeltjes Bijvoorbeeld

- Ideaal gas
- Elektronen in metaal
- Diffusie
- Warmtegeleiding
- Adsorptie

Enkel korte-afstand interactie ("botsen")!

- Elk paar apart bekijken
- n(n-1)/2 paren $\Rightarrow O(n^2)$
- Veel overbodig werk

- Ruimte onderverdelen in "dozen"
- n deeltjes
- x deeltjes per doos
- n/x dozen
- Complexiteit $O(n/x \cdot x^2) = O(nx) = O(n)$

- Programmeertaal: C
- Harde bollen
- Elastische botsingen
 - A posteriori
 - Backtracking
- "Doos" = lijst

Testen op botsingen

- Binnen eigen doos
- Buurdozen

- Genereer willekeurige positie
- Zolang botsing: probeer opnieuw

Volumefractie gestapelde bollen:

- Maximaal $\approx 74\%$ op een regelmatig rooster
- Willekeurig ≈ 63% mits "schudden"
- Ons algoritme $\approx 52\%$

10 000 deeltjes

- $O(n^2) \rightarrow O(n)$
- $\bullet \ 5 \ jaar \rightarrow 1 \ seconde$

8000 deeltjes

10 000 deeltjes 1 groot deeltje

- Van der Waals correctie
- Diffusie
- Warmte-geleiding
- Klassiek adsorptiemodel

Inleiding Implementatie Performance Toepassingen Conclusie

Space partitioning:

- Korte-afstand interacties
- $O(n^2) \rightarrow O(n)$
- Zonder verlies van correctheid