Probabilidade

Permutação

Prof. Dr. Tetsu Sakamoto Instituto Metrópole Digital - UFRN Sala A224, ramal 182 Email: tetsu@imd.ufrn.br

Slides e notebook em:

github.com/tetsufmbio/IMD0033/

Permutação

Permutação: diferentes formas de ordenar um conjunto de objetos.

Interesse: fórmula que calcule o número de permutações em função do número de objetos em um conjunto.

# de letras	permutações	# de permutações
1	а	1
2	a,b b,a	2
3	a,b,c a,c,b b,a,c b,c,a c,a,b c,b,a	6

Permutação

de permutações de n-objetos = $n \times (n - 1) \times ... \times 2 \times 1 = n!$

Fatorial de 0

Para
$$n > 0$$
, $n! = n \times (n - 1) \times ... \times 2 \times 1$

Mas e quando n = 0?!

De quantas formas diferentes é possível permutar 0 objetos?

$${a,b}: (a,b) (b,a)$$

0! = 1

Uma forma de permutar o conjunto vazio

Aplicações básicas de permutação

de ordens diferentes que você pode visitar três cidades (Natal, João Pessoa, Fortaleza)

de ordens = $3! = 3 \times 2 \times 1 = 6$

de anagramas que você pode formar com 5 letras (P, E, R, A, S)

de anagramas = $5! = 5 \times 4 \times 3 \times 2 \times 1 = 120$

Anagramas com restrição

1. A, R ser adjacente nesta ordem (PARSE, ESPAR):

Permutação de conjunto de 4 objetos: P, S, E e AR 4! = 24

2. A, R ser adjacente em qualquer ordem (PARSE, ESPRA):

Duas formas de ordenar $\{A,R\}$: (A,R) e (R,A) 2*4! = 48

3. A, R não serem adjacentes (PERSA, PRESA):

Regra da subtração: 5! - 2*4! = 120 - 48 = 72

Permutação parcial

	Qualquer dígito	Dígitos distintos	
ldentificador de 2 dígitos	10 65 33	10 65 33	
	10 × 10	10 × 9	
	Qualquer letra	Letras distintas	
Anagramas com 3 letras	abc voa pop	abc voa pop	
	26 x 26 x 26	26 x 25 x 24	

de permutações parciais

número de permutações de tamanho k em um conjunto n:

$$n.(n-1).(n-2).....(n-k+1) = \frac{n!}{(n-k)!}$$

Exemplo do anagrama de 3 letras distintas: n = 26 e k = 3

$$\frac{26!}{(26-3)!} = 26.25.24$$

Revisão

Permutação

- a ordem com que elementos de um conjunto podem ser dispostos → utilizando todos os elementos;
- n!

Permutação parcial

- A ordem com que os elementos de um conjunto podem ser dispostos → não utilizando todos os elementos;
- n! / (n-k)!

Exercícios do notebook

github.com/tetsufmbio/IMD0033/