Remaining Useful Life

Remaining Useful Life

The Remaining Useful Life is a key concept in predictive maintenance

The RUL refers to the time until a component becomes unusable

- If we can estimate the RUL of a component
- ...We can schedule maintenance operations only when they are needed

Current best practices are based on preventive maintenance

I.e. on having a fixed maintenance schedule for each component family

- RUL prediction can lead to significant savings
- ...By delaying maintenance operations w.r.t. the schedule
- ...But only as long as we are still able to prevent critical failures

The Dataset

We will consider the NASA <u>C-MAPSS dataset</u>

- The Modular Aero-Propulsion System Simulation (MAPSS)
- ...Is a NASA-developed simulator for turbofan engines

It comes with both a Military (MAPSS) and commercial versionn (C-MAPSS)

The Dataset

The C-MAPSS system can simulate a number of faults and defects

...And it was used to build a high-quality dataset for the PHM08 conference

- The dataset consists of 4 "training set" files and 4 "test set" files
- The training set files contain multiple run-to-failure experiments
- The test set files contain truncated experiments

PHM-08 hosted a competition based on this dataset

The goal was to predict the RUL at the end of each truncated experiment

- This is fine as long as the focus is on pure prediction
- ...But we want to tackle the whole predictive maintenance problem

As a consequence, we will focus only on the "training" data

The Dataset

Each training file refes to different faults and operating conditions

Dataset	Operating conditions	Fault modes
FD001	1 (sea level)	HPC
FD002	6	HPC
FD003	1 (sea level)	HPC, fan
FD004	6	HPC, fan

Fault modes refer to degration of either:

- The High Pressure Compressor
- The fan at the "mouth" of the engine

Inspecting the Data

Let's have a look at the row data

```
In [2]: data_folder = os.path.join('...', 'data')
          data = util.load data(data folder)
          data.head()
Out[2]:
                     src machine cycle
                                                                                                 s13
                                                                                                          s14
                                           p1
                                                   p2
                                                                                       s4 ...
                                                                                                                     s16 s1
           0 train FD001 1
                                                      100.0 518.67 641.82 1589.70 1400.60 ... 2388.02 8138.62 8.4195
                                       -0.0007 -0.0004
           1 train FD001 1
                                       0.0019
                                               -0.0003
                                                      100.0 518.67 642.15 1591.82 1403.14 ... 2388.07
                                                                                                     8131.49 8.4318
                                                                                                                     0.03 39
           2 train FD001 1
                                       -0.0043 0.0003
                                                      100.0 518.67
                                                                   642.35 1587.99 1404.20 ... 2388.03
                                                                                                     8133.23 8.4178
                                                                                                                    0.03 390
           3 train FD001 1
                                                                   642.35 1582.79 1401.87 ... 2388.08
                                                                                                     8133.83 8.3682
                                       0.0007
                                               0.0000
                                                      100.0
                                                           518.67
                                                                                                                     0.03 39:
           4 train FD001 1
                                       -0.0019 -0.0002 100.0 518.67 642.37 1582.85 1406.22 ... 2388.04 8133.80 8.4294
                                                                                                                     0.03 39
           5 rows × 28 columns
```

- Columns "p1, p2, p3" refer to controlled parameters
- Columns "s1" to "s21" refer to sensor reading
- Binning has already been applied in the original dataset

Statistics

Let's check some statistics

```
In [3]: dt_in = list(data.columns[3:-1]) # Exclude metadata
          data[dt in].describe()
Out[3]:
                                            p2
                                                           р3
                             p1
                                                                                                       s3
                                                                                                                      s4
            count 160359.000000
                                                160359.000000
                                                              160359.000000
                                                                             160359.000000
                                                                                            160359.000000
                                                                                                          160359.000000
                                                                                                                         160359.00
                                 160359.000000
                 17.211973
                                 0.410004
                                                95.724344
                                                                             597.361022
                                                                                            1467.035653
                                                                                                           1260.956434
                                                                                                                          9.894999
                                                               485.840890
            mean
                  16.527988
                                 0.367938
                                                12.359044
                                                               30.420388
                                                                             42.478516
                                                                                            118.175261
                                                                                                           136.300073
                                                                                                                          4.265554
            std
                  -0.008700
                                 -0.000600
                                                60.000000
                                                              445.000000
                                                                             535.480000
                                                                                            1242.670000
                                                                                                           1023.770000
                                                                                                                          3.910000
            min
                  0.001300
                                 0.000200
                                                100.000000
                                                              449.440000
                                                                                                           1126.830000
            25%
                                                                              549.960000
                                                                                            1357.360000
                                                                                                                          5.480000
                                 0.620000
                                                                                                           1271.740000
                                                                                                                          9.350000
                                                100.000000
                                                              489.050000
                                                                             605.930000
            50%
                  19.998100
                                                                                            1492.810000
            75%
                  35.001500
                                 0.840000
                                                100.000000
                                                               518.670000
                                                                             642.340000
                                                                                            1586.590000
                                                                                                           1402.200000
                                                                                                                          14.620000
                  42.008000
                                 0.842000
                                                100.000000
                                                              518.670000
                                                                             645.110000
                                                                                            1616.910000
                                                                                                           1441.490000
                                                                                                                          14.620000
            max
            8 rows × 24 columns
```

There are no missing values:

```
In [4]: data[dt_in].isnull().any().any()
```


Let's prepare for displaying all time series

First, we standardize each column:

```
In [5]: data_sv = data.copy()
  data_sv[dt_in] = (data_sv[dt_in] - data_sv[dt_in].mean()) / data_sv[dt_in].std()
```

Then, we split our data based on the source file:

```
In [6]: data_sv_dict = util.split_by_field(data_sv, field='src')
    print('{{{}}}'.format(', '.join(f'{k}: ...' for k in data_sv_dict.keys())))

{train_FD001: ..., train_FD002: ..., train_FD003: ..., train_FD004: ...}
```


Now, let's plot all parameters and sensors for FD001

- The data contains series for multiple machines
- These are highlighted at the top with different colors

Now, let's plot all parameters and sensors for FD002

- The series is much more variable in this case
- This is due to the multiple operating conditions

Now, let's plot all parameters and sensors for FD003

- Only one operating condition in this case (but two fault modes)
- The series is similar to FD001

Finally, let's plot all parameters and sensors for FD004

- Again six operating conditions
- ...And the series is similar to FD004

Let's plot one column in deeper detail for a single machine in FD001

A clear trend, possibly correlated to component wear

Let's see the same column for FD002

```
In [12]: tmp = data_sv_dict['train_FD002']
          tmp = tmp[tmp['machine'] == tmp['machine'].iloc[0]]
          util.plot_series(tmp['s4'], figsize=figsize)
           1.0
            0.5
            0.0
           -0.5
           -1.0
           -1.5
```

■ The trend is still present, but weaker and hidden by wide oscillations

...And then the same column for FD003

Clear trend, with small oscillations that are more frequent than FD001

Let's see the same column for FD004

```
In [14]: tmp = data_sv_dict['train_FD004']
          tmp = tmp[tmp['machine'] == tmp['machine'].iloc[0]]
          util.plot_series(tmp['s4'], figsize=figsize)
           1.0
            0.5
            0.0
           -0.5
           -1.0
           -1.5
```

Very weak trend, wide and frequent oscillations

