ASR Decoding Experiments Report

1. Comparison of Decoding Methods

We implemented and compared four ASR decoding methods:

- · Greedy decoding
- · Beam search decoding
- Beam search with LM scores fusion
- · Beam search with a second pass LM rescoring

Results

Method	CER	WER
beam	0.100943	0.270985
beam_lm	0.108999	0.316647
beam_lm_rescore	0.101553	0.274274
greedy	0.0849066	0.197297

2. Effect of Beam Width

We experimented with different beam width values to observe the effect on decoding quality.

Results

Method	Beam Width	CER	WER
beam	1 0.	123331 0.	.331329

beam	3 0.123331 0.331329
beam	5 0.123331 0.331329
beam	10 0.123331 0.331329
beam_lm	1 0.13018 0.397431
beam_lm	3 0.12816 0.388422
beam_lm	5 0.12816 0.388422
beam_lm	10 0.126139 0.370404
beam_lm_rescore	1 0.123331 0.331329
beam_lm_rescore	3 0.124957 0.340101
beam_lm_rescore	5 0.124957 0.340101
beam_lm_rescore	10 0.124957 0.340101

3. Effect of Alpha and Beta Parameters

We varied the language model weight (alpha) and word insertion bonus (beta) to find optimal values.

Results

Method	Alpha Bet	а	CER	WER
heam Im	0.5	ი ი ივ4	6637.0	146515

beam_lm	0.5	0.5 0.0444198 0.159673
beam_lm	0.5	1 0.0444198 0.159673
beam_lm	0.5	1.5 0.0395418 0.133357
beam_lm	1	0 0.0467849 0.227596
beam_lm	1	0.5 0.0407243 0.200569
beam_lm	1	1 0.037694 0.173542
beam_lm	1	1.5 0.0346637 0.146515
beam_lm	1.5	0 0.0735403 0.387624
beam_lm	1.5	0.5 0.0735403 0.374111
beam_lm	1.5	1 0.0644494 0.33357
beam_lm	1.5	1.5 0.054102 0.26707
beam_lm	2	0 0.0887657 0.492888
beam_lm	2	0.5 0.0906135 0.492888
beam_lm	2	1 0.0814486 0.41394
beam_lm	2	1.5 0.0765706 0.387624
beam_lm_rescore	0.5	0 0.0419808 0.146515
beam_lm_rescore	0.5	0.5 0.0419808 0.146515
beam_lm_rescore	0.5	1 0.0419808 0.146515
beam_lm_rescore	0.5	1.5 0.0419808 0.146515
beam_lm_rescore	1	0 0.0419808 0.146515
beam_lm_rescore	1	0.5 0.0419808 0.146515
beam_lm_rescore	1	1 0.0419808 0.146515
beam_lm_rescore	1	1.5 0.0419808 0.146515
beam_lm_rescore	1.5	0 0.0419808 0.146515
beam_lm_rescore	1.5	0.5 0.0419808 0.146515
beam_lm_rescore	1.5	1 0.0419808 0.146515
beam_lm_rescore	1.5	1.5 0.0419808 0.146515
beam_lm_rescore	2	0 0.0419808 0.146515
beam_lm_rescore	2	0.5 0.0419808 0.146515
beam_lm_rescore	2	1 0.0419808 0.146515
beam_lm_rescore	2	1.5 0.0419808 0.146515

4. Comparison of Different Language Models

We compared the performance of different n-gram language models.

Results

Method	LM Model	CER	WER
beam_lm	3-gram.pruned.1e-7	0.12816 0.3	388422
beam_lm	4-gram	0.12816 0.3	388422
beam_lm_resco	ore 3-gram.pruned.1e-7	0.124957 0.3	340101
beam_lm_resco	ore 4-gram	0.124957 0.3	340101

Conclusion

Based on our experiments, we can draw the following conclusions:

1. The **greedy decoding** method achieved the best results with a **WER of 0.197297** and **CER of 0.084907**.

This is an interesting finding, as more complex decoding methods involving language models did not outperform this baseline.

- 2. When analyzing the effect of beam width, we observed the following:
 - For **plain beam search**, increasing the beam width did not improve results (WER remained **0.331329** for all values).
 - For **beam_lm**, a small improvement was observed with larger beam widths:
 - WER decreased from **0.397431** (beam width = 1) to **0.370404** (beam width = 10).
 - For **beam_Im_rescore**, beam width had minimal effect:
 - Slightly worse WER at beam width 3–10 (0.340101) compared to width 1 (0.331329).
- 3. Experiments with **alpha** and **beta** parameters showed:
 - For beam_Im, best performance was achieved with alpha = 0.5 and beta = 1.5:
 - WER: 0.133357, CER: 0.0395418.
 - Increasing alpha (LM weight) typically worsened performance, especially for alpha > 1.0.
 - The **beta** parameter (word insertion bonus) helped balance results:
 - Optimal values found in the **1.0–1.5** range.
 - For beam_Im_rescore, alpha and beta had no observable effect:
 - WER remained **0.146515** across all values.
- 4. Comparison of **3-gram vs 4-gram language models** showed **no difference** in performance:
 - For **beam Im**: WER = **0.388422**, CER = **0.12816** (same for both models).
 - For **beam_Im_rescore**: WER = **0.340101**, CER = **0.124957** (same for both).
 - This suggests that a 3-gram model is sufficient for this test set, and adding a 4-gram model yields no additional benefits.