Problem 1

Find the solution (x^*, y^*) to the following problem.

subject to
$$x + y = 10$$

Problem 2

The SVM optimization can be defined by the primal form:

$$\min_{w} \frac{1}{2} \|\boldsymbol{w}\|^2$$

subject to
$$y_i(\mathbf{w}^T \mathbf{x}_i + b) \ge 1$$
, $i = 1, ..., N$

Or by its the dual form:

$$\max_{\alpha} J(\alpha) = \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j y_i y_j \left(\mathbf{x}_i^T \mathbf{x}_j \right)$$

subject to
$$\alpha_i \ge 0$$
, $i = 1, ... N$ and $\sum_{i=1}^{N} \alpha_i y_i = 0$

What is the Lagrangian function $L(w, b, \alpha)$ evaluated at w that minimizes that function? Note this is the objective function $J(\alpha)$.

Hints:

- 1. Write the primal problem in standard form
- 2. Form the Lagrangian function $L(\mathbf{w}, b, \alpha)$
- 3. Find w and b that minimize $L(w, b, \alpha)$
- 4. Plug the results back into $L(\mathbf{w}, b, \alpha)$