Contrôle sur le cours

Une problème d'acoustique

Le but du travail est de préparer la résolution de problèmes d'acoustiques, en considérant successivement un problème stationnaire puis un problème évolutif. Le développement théorique consistera à présenter les méthodes de résolution ; ces méthodes pourraient être mises en œuvre dans un second temps.

Soit Ω le domaine rectangulaire $(-10,10)\times(-2,2)$, de frontière $\partial\Omega=\Gamma_1\cup\Gamma_2\cup\Gamma_3\cup\Gamma_4$, où $\Gamma_1=(-10,10)\times\{-2\}$, $\Gamma_2=\{10\}\times(-2,2)$, $\Gamma_3=(-10,10)\times\{2\}$, $\Gamma_2=\{-10\}\times(-2,2)$. L'équation qui régit les variations de pression p(x,t) en un point $x\in\Omega$ au temps 0< t< T est l'équation des ondes :

$$\frac{\partial^2 p}{\partial t^2}(x,t) - c^2(x)\Delta p(x,t) = g(x,t),$$

avec g(x,t) un terme de source et c(x) la vitesse locale des ondes acoustiques. On suppose que Γ_1 est une paroi absorbante, telle que

$$\frac{\partial p}{\partial n} = \frac{p}{Z}$$

où l'impédance Z est une constante donnée.

On suppose que Γ_2 et Γ_3 sont des parois parfaitement rigides, telles que

$$\frac{\partial p}{\partial n} = 0.$$

tandis que la paroi Γ_4 pourra être soit (i) une paroi parfaitement rigide ou (ii) une source vibratoire d'amplitude normale p_n .

À ces conditions aux limites, on rajoute des conditions initiales pour avoir un problème bien posé.

1. Le problème stationnaire

On se place dans le cas où le terme source est de la forme $g(x,t) = e^{i\omega t}g(x)$ avec $\omega > 0$ la pulsation et où la paroi Γ_4 est parfaitement rigide.

1) En recherchant une solution de la forme $e^{i\omega t}p(x)$, préciser les équations satisfaites par la fonction p(x).

- 2) À partir des équations obtenues au point 1 ci-dessus, donner une formulation variationnelle du problème. Préciser le choix des fonctions test et commenter les différents termes apparaissant dans la formulation variationnelle.
- 3) Que peut-on dire sur l'existence de solutions du problème ?

On s'intéresse à l'approximation par éléments finis Q_1 du problème stationnaire ci-dessus sur un maillage formé de rectangles.

- 4) Expliciter le problème approché, en précisant les fonctions de base et les termes de la formulation.
- 5) On suppose que le rectangle T de sommets (0, -2), (1, -2), (1, -1), (0, -1) appartient au maillage. Dans le cas où c, Z, g sont constants dans T, calculer les tableaux élémentaires correspondant à l'élément géométrique T des termes apparaissant dans la formulation variationnelle.
- 6) Remplacer la condition (i) sur Γ_4 par la condition (ii) et reprendre les points ci-dessus.

2. Le problème évolutif

- 7) Donner la semi-discrétisation en espace du problème évolutif dans la situation où Γ_4 est une paroi parfaitement rigide.
- 8) Écrire le problème résultant sous forme matricielle et proposer une méthode de discrétisation en temps pour résoudre le problème. Argumenter le choix retenu.