P=W conjecture

[[MISSED OPENING REMARKS]]

 Σ is a Riemann surface with genus $g \geq 2$ Let n > 0 and $d \in \mathbb{Z}$ and $\gcd = 1$.

$$\mathcal{M}_{\text{betti}} \to \mathcal{M}_{\text{Dol}}$$
 (1)

$$\mathcal{M}_{\text{Betti}}\{A_i, B_i \in GLnC, i = 1, \dots, g | \pi[A_i, B_i] = \xi_n^d I_n\} / GLn\mathbb{C}$$
(2)

$$\mathcal{M}_{\text{Dol}} = \{ \text{stable higgs bundles of rank } n \text{ and degree } d \}$$
 (3)

NAHT implies $H^*(\mathcal{M}_{Betti}) = H^*\mathcal{M}_{Dol}$ Want to see he difference on the level of coholomogy groups How? Mixed hodge structures.

1 Sheaf cohomologies

Definition 1.1. Let X be a complex algebraic variety. $\mathcal{D}_{C}^{b}(X)$ is the derived category of constructible sheaves.

The objects are complexes of sheaves of abelian groups such that their cohomologies are constructable. That is for a given chain there exists a stratification such that ...

The morphisms are chain maps, modulo null-homotopic ones and invert quasi isomorphism.

 $E_p \in dcat$ gives rise to $H^*(X, E_{\bullet})$ Choose $E_{\bullet} = I_{\bullet}$ and I such that I_i are injective objects. and apply $\Gamma(X, I_{\bullet})$ $H^i(X, E_{\bullet}) := H^i(\Gamma(X, I_{\bullet}))$

For instance if we have a finite filtration

$$E^1_{\bullet} \to E^2_{\bullet} \to \cdots \bigcup_i E^i_{\bullet} = E_{\bullet}$$
 (4)

It induces a filtration at the level of homology groups $H^*(X, E_{\bullet})$.

2 W

Recall from usual Hodge theory we know that $\mathbb{C} \cong \Omega_X^*$ (analytic). Thus $H^*(X,\mathbb{C}) \cong H^*(X,\Omega_X^*)$ Ω_X^* admits a stupid filtration

$$(F^i \Omega_X^*) = \begin{cases} 0 & n (5)$$

Hodge: If X is a Kahler and compact, then:

$$H^n(X,\mathbb{C}) \cong \bigoplus_{p+q=n} = H^{p,q}(X,\mathbb{C})$$
 (6)

and $H^{p,q}(X) \cong \overline{H^{q,p}(X)}$

Let us suppose that X is not compact, but smooth. and we have a compactification $X \to \bar{X}$ and $Y \subset \bar{X}$ is the complement set. It is a collection of divisors on \bar{X}

On \bar{X} we can define meromorphic 1-forms, locally modelled on dz_i/z_i where $Y = \bigcap Y_i$. Want divisor to have at worst normal crossings

Definition 2.1.

$$\Omega_X^1 \langle Y \rangle = \{ \text{sheaf of 1-forms generated by } \Omega_X^1 \text{ and } dz_i/z_i \}, \quad \Omega_X^p \langle Y \rangle = \Lambda^p(\Omega_X^1 \langle Y \rangle)$$
 (7)

Fact

$$H^*(X,\mathbb{C}) = H^*(\dots) \tag{8}$$

Definition 2.2. $W_n(\Omega^p_{\bar{X}}\langle Y\rangle) := \langle \alpha \wedge dz_{i_1}/z_{i_1}... \rangle$ weighted filtration.

Now we have two filtration on $H^*(X,\mathbb{C})$: W_{\bullet} is increasing, F^{\bullet} is decreasing.

Theorem 2.3. (Deligne) Let X be an algebraic variety over \mathbb{C} . In every cohomological degree n, the graded piece $\operatorname{Gr}_L^W := W_L/W_{L-1}$ admits a canonical decomposition

$$\operatorname{Gr}_{L}^{W} = \bigoplus \operatorname{Gr}_{P}^{F}(\operatorname{Gr}_{L}^{W}), \quad \operatorname{Gr}_{F}^{P} \cong \overline{\operatorname{Gr}_{F}^{L-P}}$$
 (9)

 $H^2=H^{2,0}\oplus H^{1,1}\oplus H^{0,2}$ grading gives map $H^2\to H^2_{(2)}\oplus H^2_{(2)}\oplus H^2_{(2)}$ No longer have 'pure hodge' decomposition. have a filtrated.

Properties: W_{\bullet} and F^{\bullet} commute with pullbacks. Compatible with Kunneth cup product. On H^{j} , W has non-zero degrees. $[j, z_{j}]$ is X is smooth non-compact. [0, j] if X is singular compact. [j] if X is smooth compact. [0, 2j] in general.

Non abelian hodge theory in rank 1.

 $\mathcal{M}_{\mathrm{Betti}} = (\mathbb{C}^*)^{2g} \to \mathrm{Jac}_{\Sigma} \times \mathbb{C}^g = \mathcal{M}_{\mathrm{Dol}}$

 $H^*(\mathcal{M}_{\mathrm{Betti}}) = H^*(\mathbb{C}^*)^{\otimes 2g}$

 $H^*(\mathbb{C}^*) = \mathbb{C} \oplus \mathbb{C}$ cohomology degree (0,1) Weight (0,2).

On the side of $\mathcal{M}_{\mathrm{Dol}}$ the weight filtration is trivial.

So question is what happens if the filtration is carried across. The answer comes in the form of perverse sheaves....

Hitchin-Base \mathcal{B}

$$\mathcal{M}_{\mathrm{Dol}} \to \mathcal{B}$$
 (10)

Have

$$H^*(\mathcal{M}_{\mathrm{Dol}}, \mathbb{C}) \cong H^*(\mathcal{B}, \pi_* \underline{\mathbb{C}})$$
 (11)

taking the stupid filtration. Gives Leray filtration, and this is not the right one!!

Instead take the category inside perverse sheaves...

The conjecture: Under natural diffeomorphism $\mathcal{M}_{Dol} \cong \mathcal{M}_{Betti}$ then P = W

Low rank cases dealt with.

[[A LOT MISSING HERE]]