Anexo capítulo 02

Relación entidad mejorada (EER) Modelado

Bosquejo del capítulo

- Conceptos del modelo EER
 - Incluye todos los conceptos de modelado de ER
 - básico Conceptos
 - adicionales: subclases/superclases
 - especialización/generalización
 - herencia de atributos y relaciones
 - Limitaciones a la especialización/generalización
- Los conceptos adicionales de EER se utilizan para modelar aplicaciones de forma más completa y precisa
 - EER incluye algunos conceptos orientados a objetos, como herencia

Subclases y Superclases (1)

- Un tipo de entidad puede tener significados adicionales subagrupaciones de sus entidades
 - Ejemplo: EL EMPLEADO puede agruparse a su vez en: SECRETARIO, INGENIERO, TÉCNICO,...
 - Basado en el puesto de trabajo del EMPLEADO
 - GERENTE
 - EMPLEADOS que son gerentes (el rol que desempeñan)
 - EMPLEADO_ASALARIO, EMPLEADO_HORARIO
 - Basado en el método de pago del EMPLEADO
- Los diagramas EER amplían los diagramas ER para representar estos subgrupos adicionales, llamados subclases o subtipos.

Subclases y superclases

Subclases y Superclases (2)

- Cada uno de estos subgrupos es un subconjunto de EMPLEADO entidades
- Cada uno se denomina subclase de EMPLEADO.
- EMPLEADO es la superclase de cada una de estas subclases
- Éstas se denominan relaciones superclase/subclase:
 - EMPLEADO/SECRETARIO
 - EMPLEADO/TÉCNICO
 - EMPLEADO/GERENTE

...

Subclases y Superclases (3)

- También se denominan relaciones IS-A.
 - LA SECRETARIA ES EMPLEADA, EL TÉCNICO ES EMPLEADA,
- Nota: Una entidad que es miembro de una subclase representa la misma entidad del mundo real que algún miembro de la superclase:
 - El miembro de la subclase es la misma entidad en un rol específico distinto

Subclases y Superclases (4)

- Ejemplos:
 - Un asalariado que también sea ingeniero pertenece a la dos subclases:
 - INGENIERO, y
 - EMPLEADO ASALARIO
 - Un empleado asalariado que también es gerente de ingeniería. pertenece a las tres subclases:
 - GERENTE,
 - INGENIERO, y
 - EMPLEADO_ASALARIO

Representación de Especialización en EER Diagramas

Figure 4.4

EER diagram notation for an attribute-defined specialization on Job_type.

Herencia de atributos en superclase / Relaciones de subclase

- Una entidad que es miembro de una subclase hereda
 - Todos los atributos de la entidad como miembro de la superclase
 - Todas las relaciones de la entidad como miembro de la superclase

■ Ejemplo:

- En la diapositiva anterior, la SECRETARIA (así como el TÉCNICO y el INGENIERO) heredan los atributos Nombre, SSN,..., del EMPLEADO.
- Cada entidad SECRETARIA tendrá valores para el atributos heredados

Especialización (1)

- La especialización es el proceso de definir un conjunto de subclases de una superclase
- El conjunto de subclases se basa en algunas Características distintivas de las entidades de la superclase.
 - Ejemplo: {SECRETARIO, INGENIERO, TÉCNICO} es una especialización de EMPLEADO según el tipo de trabajo.
 - Ejemplo: MANAGER es una especialización de EMPLEADO según el rol que desempeña el empleado
 - Puede tener varias especializaciones de la misma superclase

Especialización (2)

- Ejemplo: Otra especialización de EMPLEADO basada en el método de pago es {SALARIED_EMPLOYEE, HOURLY EMPLOYEE}.
 - Las relaciones de superclase/subclase y la especialización se pueden representar esquemáticamente en diagramas EER.
 - Los atributos de una subclase se denominan específicos o locales. atributos.
 - Por ejemplo, el atributo TypingSpeed de SECRETARIO
 - La subclase también puede participar en una relación específica. tipos.
 - Por ejemplo, una relación BELONGS_TO de HOURLY EMPLOYEE

Especialización (3)

Generalización

- La generalización es lo contrario del proceso de especialización. ■
- Varias clases con características comunes se generalizan en una superclase; las
 - clases originales se convierten en sus subclases
- Ejemplo: COCHE, CAMIÓN generalizado en VEHÍCULO;
 - tanto CAR como TRUCK se convierten en subclases de la superclase VEHÍCULO.
 - Podemos ver {CAR, TRUCK} como una especialización de VEHÍCULO
 - Alternativamente, podemos ver VEHÍCULO como una generalización de COCHE y CAMIÓN

Generalización (2)

Figure 4.3

Generalization. (a) Two entity types, CAR and TRUCK. (b) Generalizing CAR and TRUCK into the superclass VEHICLE.

Generalización y Especialización (1)

- A veces se utilizan notaciones esquemáticas para distinguir entre generalización y especialización.
 - La flecha que apunta a la superclase generalizada representa una generalización.
 - Las flechas que apuntan a las subclases especializadas.
 representan una especialización
 - No utilizamos esta notación porque a menudo es subjetivo en cuanto a qué proceso es más apropiado para una situación particular

Recomendamos no dibujar flechas

Generalización y Especialización (2)

- Modelado de datos con especialización y Generalización
 - Una superclase o subclase representa una colección (o conjunto o agrupación) de entidades.
 - Se muestran en rectángulos en diagramas EER (al igual que los tipos de entidad)
 - Podemos llamar clases a todos los tipos de entidad (y sus correspondientes colecciones), ya sean tipos de entidad, superclases o subclases.

Mostrar una especialización definida por atributos en diagramas EER

Figure 4.4

EER diagram notation for an attributedefined specialization on Job_type.

Limitaciones a la especialización y Generalización (3)

- Se pueden aplicar dos restricciones básicas a una especialización/generalización:
 - Restricción de desunión:
 - Restricción de integridad:

Limitaciones a la especialización y Generalización (4)

- Restricción de disjunción:
 - Especifica que las subclases de la especialización deben ser disjuntas:
 - una entidad puede ser miembro de como máximo una de las subclases de la especialización
 - Especificado por <u>d</u>en el diagrama EER
 - Si no es independiente, la especialización se superpone:
 - que es la misma entidad puede ser miembro de más de una subclase de la especialización
 - Especificado por o en el diagrama EER

Limitaciones a la especialización y Generalización (5)

- Restricción de integridad (exhaustividad):
 - Total especifica que cada entidad en la superclase debe ser miembro de alguna subclase en la especialización/

los diagramas EER mediante una doble línea .

generalización.

Se muestra en

- Parcial permite que una entidad no pertenezca a ninguna de las subclases
- Se muestra en diagramas EER mediante una sola línea

Limitaciones a la especialización y Generalización (6)

- Por tanto, tenemos cuatro tipos de especialización/generalización:
 - Disjuntos, total
 - Disjuntos, parciales
 - Superpuestos, totales
 - Superpuestos, parciales
- Nota: La generalización suele ser total porque la superclase se deriva de las subclases.

Ejemplo de especialización parcial disjunta

Figure 4.4

EER diagram notation for an attribute-defined specialization on Job_type.

Ejemplo de especialización total superpuesta

Jerarquías de especialización/generalización, Celosías y subclases compartidas (1)

- Una subclase puede tener otras subclases especificadas
 - en ella forma una jerarquía o un entramado
- La jerarquía tiene la restricción de que cada subclase tenga sólo una superclase (lo que se denomina herencia única); esto es básicamente una estructura de árbol
- En una red, una subclase puede ser subclase de más de una superclase (lo que se denomina herencia múltiple)

Subclase compartida "Engineering_Manager"

Figure 4.6

A specialization lattice with shared subclass ENGINEERING_MANAGER.

Jerarquías de especialización/generalización, Celosías y subclases compartidas (2)

- En una red o jerarquía, una subclase hereda atributos no sólo de su superclase directa, sino también de todas sus superclases predecesoras.
- Una subclase con más de una superclase se denomina subclase compartida (herencia múltiple)
- Puede tener:
 - jerarquías o retículos de especialización ,
 - o jerarquías o retículos de generalización , dependiendo de cómo se derivaron
- Sólo utilizamos la especialización (para representar el resultado final de ya sea especialización o generalización)

Jerarquías de especialización/generalización, Celosías y subclases compartidas (3)

- En especialización, comience con un tipo de entidad y luego defina subclases del tipo de entidad por especialización sucesiva.
 - Ilamado proceso de refinamiento conceptual de arriba hacia abajo
- En la generalización, comience con muchos tipos de entidades y generalice aquellos que tengan propiedades comunes.
 - Llamado proceso de síntesis conceptual de abajo hacia arriba.
- En la práctica, se suele emplear una combinación de ambos procesos.

Celosía de especialización/generalización Ejemplo (UNIVERSIDAD)

Figure 4.7 A specialization lattice with multiple inheritance for a UNIVERSITY database.