CPSC 457 - Assignment 4 Erick Yip

30028293

1.

Process	Arrival Time	Burst Time	Start	Finish	Turnarou nd	Waiting
P1	0	12	0	22	22	10
P2	2	1	2	3	1	0
P3	3	3	3	7	4	1
P4	5	1	5	6	1	0
P5	9	5	9	14	5	0

Gantt Chart: (each block represent 1s quantum)

Average wait time: (10+1)/5 = 2.2 units

2.

Process	Arrival	Burst	Start	Finish	Turnarou nd	Waiting
P1	0	12	0	21	21	9
P2	2	1	2	3	1	0
P3	3	3	3	9	6	6
P4	5	1	6	7	2	6
P5	9	5	10	18	9	13

Gantt Chart: (each block represent 1s quantum)

Context Switches: 18 [none -> 1, 1 -> 2, 2 -> 1, 1 -> 3, 3 -> 4, 4 -> 3, 3 -> 1, 1 -> 3, 3 -> 5, 5 -> 1, 1 -> 5, 5 -> 1, 1 -> 5, 5 -> 1, 1 -> 5, 5 -> 1]

3. Gantt Chart: (each block represent 1s quantum, white text represent Q1, yellow represent Q2, red represent Q3)

5.

Process	Allocation	Request	Available
p1	0 0 1	121	010
p2	0 1 0	0 1 1	
р3	112	122	
p4	100	0 2 1	
p5	0 0 1	0 1 0	

Detection Algorithm

```
1. Initialize:
```

Work = Available

Finish[i] = (Allocation[i] == 0) for all i = 1,2,3, ... n

2. Find an index i such that:

Finish[i] == false and Request[i] ≤ Work

If no such i exists, go to step 4

3. Work = Work + Allocation[i]

Finish[i] = true

go to step 2

4. If Finish[i] == true for $1 \le i \le n$, then system is not in deadlock

Otherwise, all processes Pi for which Finish[i] == false are deadlocked

This system is not in a deadlock.

Full execution:

Step	i	work	Finish
1	-	{0,1,0}	{F,F,F,F,F}
2	5	{0,1,0}	{F,F,F,F,F}
3	5	{0,1,1}	{F,F,F,F,T}
2	2	{0,1,1}	{F,F,F,F,T}
3	2	{0,2,1}	{F,T,F,F,T}
2	4	{0,2,1}	{F,T,F,F,T}
3	4	{1,2,1}	{F,T,F,T,T}
2	1	{1,2,1}	{F,T,F,T,T}
3	1	{1,2,2}	{T,T,F,T,T}
2	3	{1,2,2}	{T,T,F,T,T}
3	3	{3,3,4}	$\{T,T,T,T,T\}$
2	Doesn't exist	{3,3,4}	$\{T,T,T,T,T\}$
4	Doesn't exist	{3,3,4}	{T,T,T,T,T}

Since Finish is true for $1 \le i \le 5$, the system is not in deadlock