SOLUTION Section 4.7 – Representing Graphs and Graph Isomorphism

Exercise

Use the adjacency list to represent the given graph, then represent with an adjacency matrix

Solution

Vertex	Adjacent Vertices
а	<i>b, c</i>
b	a, d
С	a, d
d	a, b, c

$$\begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix}$$

Exercise

Use the adjacency list to represent the given graph, then represent with an adjacency matrix

Solution

Vertex	Adjacent Vertices
а	b, d
b	a, d, e
С	d, e
d	a, b, c
e	<i>b</i> , <i>c</i>

Use the adjacency list to represent the given graph, then represent with an adjacency matrix

Solution

Initial Vertex	Terminal Vertices
а	a, b , c, d
b	d
С	a, b
d	b, c, d

$$\begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix}$$

Exercise

Use the adjacency list to represent the given graph, then represent with an adjacency matrix

Solution

Initial Vertex	Terminal Vertices
а	b, d
b	a, c, d, e
С	<i>b, c</i>
d	a, e
e	c , e

Draw a graph with the given adjacency

$$\begin{array}{c|cccc}
a) & \begin{bmatrix} 0 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0 \\
\end{array}$$

Solution

b)

c)

Exercise

Represent the given graph using adjacency matrix

a)

b)

c)

Solution

Draw an undirected graph represented by the given adjacency

Solution

a)

c)

Find the adjacency matrix of the given directed multigraph with respect to the vertices listed in alphabetic order.

a)

b)

c)

Solution

$$a$$
)

$$\begin{bmatrix}
 0 & 1 & 0 & 0 \\
 0 & 1 & 1 & 0 \\
 0 & 1 & 1 & 1 \\
 1 & 0 & 0 & 0
 \end{bmatrix}$$

Exercise

Determine whether the given pair of graphs is isomorphic.

Exhibit an isomorphism or provide a rigorous argument that none exists.

Solution

Both graphs have 5 vertices and 5 edges.

However, each vertex in the second graph has of degree 2, whereas the first does not.

Exercise

Determine whether the given pair of graphs is isomorphic.

Exhibit an isomorphism or provide a rigorous argument that none exists.

Solution

Both graphs have 5 vertices and 7 edges.

However, the second graph has a vertex of degree 4, whereas the first does not.

Exercise

Determine whether the given pair of graphs is isomorphic.

Exhibit an isomorphism or provide a rigorous argument that none exists.

Solution

Both graphs have 7 vertices and 7 edges.

$$f\left(u_{1}\right) = v_{1}$$

$$f(u_2) = v_3$$

$$f(u_3) = v_5$$

$$f(u_4) = v_7$$

$$f(u_5) = v_2$$

$$f(u_6) = v_4$$

and
$$f(u_7) = v_6$$

.. The graphs are isomorphic.

Exercise

Determine whether the given pair of graphs is isomorphic.

Exhibit an isomorphism or provide a rigorous argument that none exists.

Solution

Both graphs have 5 vertices and 8 edges.

$$f(u_1) = v_1$$

$$f(u_2) = v_3$$

$$f(u_3) = v_2$$

$$f(u_4) = v_5$$

and
$$f(u_5) = v_4$$

:. The graphs are isomorphic.