The Complexity of Verifying Boolean Programs as Differentially Private

Ludmila Glinskih

Joint work with Mark Bun and Marco Gaboardi
Boston University

CSF 2022

Haifa, Israel

August 10, 2022

Plan of the talk

1. Prior work

- How hard is it to verify whether a program is DP for
 - Turing-complete languages
 - Boolean languages with bounded memory without loops

2. Our results and proof ideas

- BPWhile: Boolean language with loops and finite memory
- PSPACE-completeness of verifying DP for BPWhile
- PSPACE-hardness: reduction from TQBF
- PSPACE algorithm based on computing hitting probabilities in a Markov chain

Differential Privacy

C is (ϵ, δ) -differentially private if for every set of possible outputs O, and for every neighboring x, x':

$$P[C(x) \in O] \le e^{\epsilon} \cdot P[C(x') \in O] + \delta$$

Differential Privacy

C is (ϵ, δ) -differentially private if for every set of possible outputs O, and for every neighboring x, x':

$$P[C(x) \in O] \le e^{\epsilon} \cdot P[C(x') \in O] + \delta$$

Differential Privacy

C is (ϵ, δ) -differentially private if for every set of possible outputs O, and for every neighboring x, x':

$$P[C(x) \in O] \le e^{\epsilon} \cdot P[C(x') \in O] + \delta$$

Neighboring relation we consider:

- Inputs are bit strings which differ in one bit
- Can be extended to any bounded polyspace computable relation

Verification of Differential Privacy

Verification of Differential Privacy

Complexity depends on the expressivity of the language and the type of access to the code:

- Black box: no information about the algorithm, query access
 - Impossible to verify $(\epsilon,0)$ -DP

[Gilbert, McMillan'19]

- Linear-time algorithm in the size of automaton
 - For pure-DP

[Chadha, Sistla, Viswanathan'21]

- Linear-time algorithm in the size of automaton
 - For pure-DP
- #P-hardness for approximating parameters in labelled Markov chains
 - For approximate-DP
 - Undecidable to compute exactly

[Chadha, Sistla, Viswanathan'21]

[Chistikov, Murawski, Purser'19]

- Linear-time algorithm in the size of automaton
 - For pure-DP
- #P-hardness for approximating parameters in labelled Markov chains
 - For approximate-DP
 - Undecidable to compute exactly
- Undecidable for languages working with infinite data
 - Undecidable for Turing-complete languages

[Chadha, Sistla, Viswanathan'21]

[Chistikov, Murawski, Purser'19]

[Barthe, Chadha, Jagannath, Sistla, Viswanathan'20]

- Linear-time algorithm in the size of automaton
 - For pure-DP
- #P-hardness for approximating parameters in labelled Markov chains
 - For approximate-DP
 - Undecidable to compute exactly
- Undecidable for languages working with infinite data
 - Undecidable for Turing-complete languages

[Chadha, Sistla, Viswanathan'21]

[Chistikov, Murawski, Purser'19]

[Barthe, Chadha, Jagannath, Sistla, Viswanathan'20]

- For a simple Boolean language with bounded memory, if statements and random assignments, but without loops
 - $coNP^{\#P}$ -completeness for $(\epsilon, 0)$ -DP
 - Reduction from All-Min-SAT
 - $coNP^{\#P}$ -hard and in $coNP^{\#P^{\#P}}$ for (ϵ, δ) -DP

[Gaboardi, Nissim, Purser'20]

- Captures classical computations on real computers
- Simple to analyze

- Captures classical computations on real computers
- Simple to analyze

$$x := [a - z]^+$$
 Variable identifiers

We design a language to meet the following goals:

- Captures classical computations on real computers
- Simple to analyze

$$x := [a - z]^+$$
 Variable identifiers
b ::= true | false | random | x | b \land b | b \lor b | !b

Boolean expressions

- Captures classical computations on real computers
- Simple to analyze

```
x := [a - z]^+ Variable identifiers
b := true \mid false \mid random \mid x \mid b \land b \mid b \lor b \mid !b
c := skip \mid x := b \mid c; c \mid if b then c else c \mid while b then c Commands
```

- Captures classical computations on real computers
- Simple to analyze

```
x := [a - z]^+ Variable identifiers
b := true \mid false \mid random \mid x \mid b \land b \mid b \lor b \mid !b
c := skip \mid x := b \mid c; c \mid if b then c else c \mid while b then c
t := x \mid t, x List of Boolean variables
```

- Captures classical computations on real computers
- Simple to analyze

```
x ::= [a - z]^+ Variable identifiers

b ::= true \mid false \mid random \mid x \mid b \land b \mid b \lor b \mid !b

c ::= skip \mid x := b \mid c; c \mid if b then c else c \mid while b then c

t ::= x \mid t, x List of Boolean variables

p ::= input(t); c; return(t) Programs
```

We design a language to meet the following goals:

- Captures classical computations on real computers
- Simple to analyze

```
x ::= [a - z]^+ Variable identifiers

b ::= true \mid false \mid random \mid x \mid b \land b \mid b \lor b \mid !b

c ::= skip \mid x := b \mid c; c \mid if b then c else c \mid while b then c

t ::= x \mid t, x List of Boolean variables

p ::= input(t); c; return(t) Programs
```

Numbers of variables and input bits are fixed in the definition of the program

⇒ Length of the program is an upper bound on the size of the memory that the program uses

Example of a BPWhile program:

```
\mathtt{input}(\vec{c},\,\epsilon);
0.
1. \vec{k} := \lceil \log(2/\epsilon) \rceil;
                                                            Implementation of the Bounded
2. \vec{d} := (2^{\vec{k}+1} + 1)(2^{\vec{k}} + 1)^{n-1};
                                                            Geometric Mechanism in finite
3. \vec{u} := uniform(0, \vec{d}];
                                                            precision arithmetic
4. \vec{z} := 0;
5. \vec{r} := n;
      while \vec{z} < \vec{n} \wedge \vec{r} = n then
           if ec{z} < ec{c} then
               if \vec{u} \le 2^{\vec{k}(\vec{c}-\vec{z})}(2^{\vec{k}}+1)^{n-(\vec{c}-\vec{z})}
         then ec{r}:=ec{z}
9.
10.
               else skip
11.
            else
               if \vec{u} \le d - 2^{\vec{k}(\vec{z} - \vec{c} + 1)} (2^{\vec{k}} + 1)^{n - 1 - (\vec{z} - \vec{c})}
12.
              then ec{r}:=ec{z}
13.
14.
               else skip
15. \vec{z} = \vec{z} + 1;
        return(\vec{z});
16.
```

[Ghosh, Roughgarden, Sundararajan'09]

[Balcer, Vadhan'17]

Our results

Main result: if A is a BPWhile program, then the problem of verifying whether A is differentially private is PSPACE-complete.

Our results

Main result: if A is a BPWhile program, then the problem of verifying whether A is differentially private is PSPACE-complete.

It holds for the following notions of differential privacy:

- $(\epsilon, 0)$ -DP
- (ϵ, δ) -DP
- (ϵ, δ) -DP parameters approximation
- Renyi-DP
- Zero-Concentrated-DP
- Truncated Concentrated-DP

PSPACE-completeness of a problem A implies:

• A is solvable by a TM that uses polynomial space

- A is solvable by a TM that uses polynomial space
- A is solvable in exponential time

- A is solvable by a TM that uses polynomial space
- A is solvable in exponential time
- A is at least as hard as any problem solvable in polyspace

- A is solvable by a TM that uses polynomial space
- A is solvable in exponential time
- A is at least as hard as any problem solvable in polyspace
- No polytime algorithm for A, unless P = PSPACE
 - That is widely believed not to be true

PSPACE-completeness of a problem A implies:

- A is solvable by a TM that uses polynomial space
- A is solvable in exponential time
- A is at least as hard as any problem solvable in polyspace
- No polytime algorithm for A, unless P = PSPACE

To show PSPACE completeness we need:

PSPACE-completeness of a problem A implies:

- A is solvable by a TM that uses polynomial space
- A is solvable in exponential time
- A is at least as hard as any problem solvable in polyspace
- No polytime algorithm for A, unless P = PSPACE

To show PSPACE completeness we need:

1. Show hardness: construct sequence of reductions from TQBF

PSPACE-completeness of a problem A implies:

- A is solvable by a TM that uses polynomial space
- A is solvable in exponential time
- A is at least as hard as any problem solvable in polyspace
- No polytime algorithm for A, unless P = PSPACE

To show PSPACE completeness we need:

- 1. Show hardness: construct sequence of reductions from TQBF
- 2. Construct polynomial-space algorithm: analyze Markov chain based on the state graph of the program

PSPACE-hardness

PSPACE-hardness

Polyspace membership: algorithm for $(\epsilon,0)$ -DP

Polyspace membership: algorithm for $(\epsilon,0)$ -DP

PSPACE membership: state graph

State graph depends on the input values

D(b=1):

PSPACE membership: state graph

State graph depends on the input values line=6, r=0 D(b=1): line=5, r=0 line=2, r=0 input(b); if b == 1 then 3. r = rand();line=3, r=0 line=9, r=0 line=1, r=0 if r == 0 then5. while true skip; line=3, r=1 line=1, r=1 line=9, r=1 else skip; else skip; return(1) line=2, r=1

line=6, r=0 State graph depends on the input values D(b=1): line=5, r=0 line=2, r=0 input(b); 2. if b == 1 then 3. r = rand();line=3, r=0 line=9, r=0 line=1, r=0 if r == 0 then5. while true skip; line=3, r=1 line=1, r=1 line=9, r=1 else skip; else skip; return(1) line=2, r=1

line=6, r=0 State graph depends on the input values D(b=1): line=5, r=0 line=2, r=0 input(b); 1/2 2. if b == 1 then 3. r = rand();line=3, r=0 line=9, r=0 line=1, r=0 1/2 if r == 0 then5. while true skip; 1/2 line=3, r=1 line=1, r=1 line=9, r=1 else skip; else skip; return(1) 1/2 line=2, r=1

State graph depends on the input values

skip;

D(b=1):

```
    input(b);
    if b == 1 then
    r = rand();
    if r == 0 then
    while true
```

else skip;

else skip;

return(1)

line=2, r=0 1/2 line=3, r=0 line=1, r=0 1/2 1/2 line=3, r=1 line=1, r=1 1/2 line=2, r=1

PSPACE membership: algorithm for $(\epsilon,0)$ -DP

For a program D and all neighboring inputs x, x':

- Construct the Markov chain for D(x) and D(x')
- Compute and compare hitting probabilities

PSPACE membership: algorithm for $(\epsilon,0)$ -DP

For a program D and all neighboring inputs x, x':

- Construct the Markov chain for D(x) and D(x')
- Compute and compare hitting probabilities

Problem: Markov chain has exp-many states ⇒ cannot store it explicitly

PSPACE membership: algorithm for $(\epsilon,0)$ -DP

For a program D and all neighboring inputs x, x':

- Construct the Markov chain for D(x) and D(x')
- Compute and compare hitting probabilities

Problem: Markov chain has exp-many states ⇒ cannot store it explicitly

Need **space-efficient** algorithm for computing hitting probabilities with **implicit access** to the Markov chain

Polyspace algorithm for computing hitting probabilities in a Markov chain

Lemma [Simon'81]: If M is a Markov chain with at most 2^L states

- the initial distribution places all mass on one state,
- there is a set F of final states each with only one self-transition,
- every non-final state has outgoing transition probability 0 or ½.

Then there is an $O(L^6)$ -space deterministic algorithm that computes the hitting probability of every state in F.

Polyspace algorithm for computing hitting probabilities in a Markov chain

Lemma [Simon'81]: If M is a Markov chain with at most 2^L states

- the initial distribution places all mass on one state,
- there is a set F of final states each with only one self-transition,
- every non-final state has outgoing transition probability 0 or ½.

Then there is an $O(L^6)$ -space deterministic algorithm that computes the hitting probability of every state in F.

Note: to use the algorithm, we need to replace all transitions labelled by 1 in the state graph of the BPWhile program:

Polyspace algorithm for computing hitting probabilities in a Markov chain

Lemma [Simon'81]: If M is a Markov chain with at most 2^L states

- the initial distribution places all mass on one state,
- there is a set F of final states each with only one self-transition,
- every non-final state has outgoing transition probability 0 or ½.

Then there is an $O(L^6)$ -space deterministic algorithm that computes the hitting probability of every state in F.

Note: to use the algorithm, we need to replace all transitions labelled by 1 in the state graph of the BPWhile program:

- Clone all states
- For each state a with outgoing edge w.p. 1 replace it by two edges:
 - Edge (a,b) with weight ½ to original state
 - Edge (a,b') with weight ½ to the clone-state b' of b

PSPACE membership: exponentially long numbers

For a program *D*

for all neighboring inputs x, x':

- Construct the Markov chain for D(x) and D(x')
- Compare hitting probabilities of the final states with the same values

Problem:

Markov chain has exp-many states

PSPACE membership: exponentially long numbers

For a program *D*

for all neighboring inputs x, x':

- Construct the Markov chain for D(x) and D(x')
- Compare hitting probabilities of the final states with the same values

Problem:

Markov chain has exp-many states \Rightarrow hitting probabilities can be as small as $\frac{1}{2exp}$

PSPACE membership: exponentially long numbers

For a program *D*

for all neighboring inputs x, x':

- Construct the Markov chain for D(x) and D(x')
- Compare hitting probabilities of the final states with the same values

Problem:

Markov chain has exp-many states \Rightarrow hitting probabilities can be as small as $\frac{1}{2exp}$

⇒ numbers are exponentially long

Operations with exponentially long numbers

Operations with exponentially long numbers

Uniform family of log-depth circuits:

- One logspace algorithm provides implicit access to the circuits
- Each circuit has log-depth and poly size

Operations with exponentially long numbers

Uniform family of log-depth circuits:

- One logspace algorithm provides implicit access to the circuits
- Each circuit has log-depth and poly size

Lemma:

Uniform families of log-depth circuits exist for:

- Comparison
- Addition
- Multiplication by a fixed rational number
- Multiplication

[Reif'86]

[Ofman'62]

• Square roots

Yes/no

Extending the result to (ϵ, δ) -DP, RDP, zCDP, TCDP

For verifying (ϵ, δ) -DP we use a point-wise definition

Additionally use a summation of an exponentially long numbers

$$\sum_{o \in \{0,1\}^l \cup \{\bot\}} \left(\delta_{x,x'}(o) \right) \leq \delta$$

$$\delta_{x,x'}(o) = \max(\Pr[C(x) = o] - e^{\epsilon} \Pr[C(x') = o])$$

Extending the result to (ϵ, δ) -DP, RDP, zCDP, TCDP

For verifying (ϵ, δ) -DP we use a point-wise definition

Additionally use a summation of an exponentially long numbers

$$\sum_{o \in \{0,1\}^l \cup \{\bot\}} \left(\delta_{x,x'}(o) \right) \leq \delta$$

$$\delta_{x,x'}(o) = \max(\Pr[C(x) = o] - e^{\epsilon} \Pr[C(x') = o])$$

For verifying RDP, zCDP, TCDP

- Need to compute Rényi divergence
 - Logarithms
 - Exponentiations to rational degrees

$$D_{\alpha}(P|Q) = \frac{1}{\alpha - 1} \log \sum \frac{p_i^{\alpha}}{q_i^{\alpha - 1}}$$

Extending the result to (ϵ, δ) -DP, RDP, zCDP, TCDP

For verifying (ϵ, δ) -DP we use a point-wise definition

Additionally use a summation of an exponentially long numbers

$$\sum_{o \in \{0,1\}^l \cup \{\bot\}} \left(\delta_{x,x'}(o) \right) \leq \delta$$

$$\delta_{x,x'}(o) = \max(\Pr[C(x) = o] - e^{\epsilon} \Pr[C(x') = o])$$

For verifying RDP, zCDP, TCDP

- Need to compute Rényi divergence
 - Logarithms
 - Exponentiations to rational degrees
- Get infinite fractions
 - Computations with a fixed precision η
 - Consider gap-versions of the problem

$$D_{\alpha}(P|Q) = \frac{1}{\alpha - 1} \log \sum \frac{p_i^{\alpha}}{q_i^{\alpha - 1}}$$

Results and future work

- We showed PSPACE-completeness for the problems of checking:
 - Pure-DP
 - Approximate-DP
 - Gap-RDP
 - Gap-zCDP
 - Gap-TCDP

Results and future work

- We showed PSPACE-completeness for the problems of checking:
 - Pure-DP
 - Approximate-DP
 - Gap-RDP
 - Gap-zCDP
 - Gap-TCDP
- Possibly can extend the result to show PSPACE-completeness of verifying accuracy

Results and future work

- We showed PSPACE-completeness for the problems of checking:
 - Pure-DP
 - Approximate-DP
 - Gap-RDP
 - Gap-zCDP
 - Gap-TCDP
- Possibly can extend the result to show PSPACE-completeness of verifying accuracy
- Improve the exact polynomial in the space complexity of the algorithm
 - Improved analysis and more efficient algorithms for Markov chains analysis and long-numbers arithmetic operations are needed for tighter results

Polyspace algorithm for RDP, zCDP, TCDP

An algorithm is RDP/zCDP/TCDP if for a privacy parameter ρ and a fixed/any/bounded $\alpha>1$ Rényi divergence for any neighboring inputs x, x' is at most $\rho\alpha$

[Mironov'17],[Dwork-Rothblum'16,Bun-Steinke'16], [Bun,Dwork,Rothblum,Steinke'18]

New problems:

- To compute Rényi divergence we compute
 - Logarithms
 - Exponentiations to rational degrees
- Hence, get infinite fractions

Solution:

- Computations with a fixed precision η
- Consider gap-versions of the problem

$$D_{\alpha}(P|Q) = \frac{1}{\alpha - 1} \log \sum \frac{p_i^{\alpha}}{q_i^{\alpha - 1}}$$

$$D_{\alpha}(C(x)|C(x')) \le \rho \alpha$$

We define Gap-RDP on (C, ρ, α, η) as follows:

• Yes-instance, if for all neighboring x, x'

$$D_{\alpha}(C(x)|C(x')) \le \rho \alpha$$

• No-instance, if for at least one neighboring x, x'

$$D_{\alpha}(C(x)|C(x')) \ge \rho\alpha + \frac{1}{2^{\eta}}$$

Polyspace algorithm for zCDP

Another problem: an algorithm is zCDP if for all values of α Rényi divergence for any neighboring inputs x, x' is bounded by $\rho\alpha$

Solution: showed that it is sufficient to check values of α from the bounded range:

Lemma:

C is ρ -zCDP, then for all neighboring $x, x' \colon D_{\alpha}(C(x) | C(x')) \le \rho \alpha$

C is not $(\rho + 2^{-\eta})$ -zCDP, then exist neighboring x, x', exists $\alpha \in (1, 1 + 2^{poly(n)}/\rho)$:

- α is a multiple of $2^{-\eta}$
- $D_{\alpha}(C(x)|C(x')) \ge \rho\alpha + 2^{-\eta-1}$

Polyspace membership algorithm for Gap-zCDP

Yes/no