FPGA y placas de desarrollo

Maestría en Sistemas Digitales

Alejandro J. Cabrera Sarmiento

Dpto. de Automática y Computación Universidad Tecnológica de La Habana "José Antonio Echeverría" CUJAE

alex @automatica.cujae.edu.cu

Sumario

- Field Programmable Gate Arrays: FPGA
- FPGA de Xilinx
 - Virtex-II, Spartan3/3A/3E
 - Virtex-4, -5, -6
 - Spartan-6, Virtex-7
 - Zynq 7000 (SoC-FPGA)
- Placas de desarrollo de FPGA
 - Spartan-3A/3E Starter Kit

FPGA: Field Programmable Gate Array

- Funcionalidad lógica programable
 - CLB, LE
- Interconexiones programables
 - A través de transistores
 - Mayor demora que ASIC
- Apropiados para diseños complejos
- Principales fabricantes:
 - Xilinx, Intel (Altera), Microsemi (Actel)

Estructura básica de un FPGA

Bloque de E/S

Interfaz con los terminales del dispositivo

CLBs: Bloques lógicos configurables

 Elementos funcionales para implementar la lógica del usuario

Red de interconexión

 Caminos para interconectar los recursos del FPGA

Red de interconexión

Las demoras (frecuencia máxima de operación) en un FPGA se deben a las interconexiones

Recursos de FPGA

+ Controladores de memoria, Endpoint PCIe, etc.

SoC-FPGA (Zynq 7000)

Bloques lógicos Xilinx

(CLB - XC4000)

Bloques de E/S: IOBs

Evolución de FPGA

FPGA	Transistores	Año	Fabricante	Proceso
XC2064	85,000	1985	Xilinx	2.5 um
Virtex	~70,000,000	1997	Xilinx	250 nm
Virtex-E	~200,000,000	1998	Xilinx	180 nm
Virtex-II	~350,000,000	2000	Xilinx	150 nm
Virtex-II PRO	~430,000,000	2002	Xilinx	130 nm
Virtex-IV	1,000,000,000	2004	Xilinx	90 nm
Virtex-5	1,100,000,000	2006	Xilinx	65 nm
Stratix IV	2,500,000,000	2008	Altera	40 nm
Stratix V	3,800,000,000	2011	Altera	28 nm
Virtex-7	6,800,000,000	2011	Xilinx	28 nm

- 1985, XC2064
- 85.000 Ts
- 18 MHz

- **2011, Virtex 7**
- 6.800 mill. Ts
- 28 nm

FPGA de Xilinx

FPGAs de Xilinx

4K
SPARTAN*
FPGA
VIRTEX
SPARTAN ² II

	Familia	Características	Diseño digital	Procesadores empotrados	Arquitectura computadores	DSP	soc
	XC4000	1.6K – 85K puertas	✓				
	Spartan	5K – 40K puertas	✓				
	Virtex	58K – 4M puertas	√	√	√		
	VIIICOX	BRAM: 32K – 132K					
	15K – 300K puertas	\		1			
	Spartan-II	BRAM: 16K - 64K	Y	Y	Y		
1	Virtex-II	40K – 8M puertas BRAM: 72K – 3M 4 – 168 multiplicadores		✓	✓	√	
	Virtex-II Pro	Virtex-II + 0 - 4 PPC 4 - 24 Rocket I/O transc. 12 - 556 multiplicadores		✓	√	✓	✓

Obsoletas o descontinuadas

FPGAs de Xilinx (cont.)

	Familia	Características	Diseño digital	Procesadores empotrados	Arquitectura computadores	DSP	soc
	Spartan-3	50K – 5M puertas BRAM: 72K – 1.8M 4 – 104 multiplicadores		√	√	\	✓
	Spartan-6	526-3 K slices*; 45 nm BRAM:144K – 4.8M 4 – 182 DSP slices		✓	✓	>	✓
	Virtex-4	15K – 200K celdas logicas BRAM: 0,8M – 6M; 0-2 PPC Multiplataforma		~	✓	✓	✓
S.A.	Virtex-5	5K-15 K slices*; 65 nm 32-640 DSP slices BRAM: 1 - 8M; Multiplataforma:		√	√	✓	✓
	Virtex-6	5K-15 K slices*; 45 nm 288-2K DSP slices BRAM: 5 - 38M; Multiplataforma:		√	✓	✓	✓

4K

XC4000 & Spartan

- Incorporan:
 - Memoria RAM distribuida
 - Lógica de acarreo
 - Buses 3-state internos
- Velocidad de operación: 80 MHz
- > IEEE 1149.1 (Boundary scan)

XC4000E: 5 V.

XC4000XL: 3.3 V. (0.35 μm)

XC4000XE: 2.5 V. (0.25 μm)

Spartan: 5 V.

Spartan-XL: 3.3 V. (0.35/0.25 μm)

Virtex & Spartan-II

- Incorporan:
 - Bloques de memoria RAM
 - 4 DLL (Delay Locked Loop)
 - Lógica de acarreo
 - Soporte para multiplicadores
- Velocidad de operación: 200 MHz
- 16/19 interfaces estándar

Spartan-II: 2.5 V. - 0.25 μm - (200K)

Spartan-IIE: 1.8 V. - 0.22 μm - (300K)

Virtex: 2.5 V. - 0.22 μm - (4M)

Virtex & Spartan-II CLB

Dispone de 2 buffers tri-state accesibles para todas las salidas del CLB

LUT como bloque lógico

- LUT: Cualquier función de 4 entradas
- MUXF5: Combina 2 LUT para formar:
 - Cualquier función de 5 entradas
 - Un multiplexor de 4:1
 - Determinadas funciones de 9 entradas
- MUXF6: Combina 2 slices para formar:
 - Cualquier función de 6 entradas
 - Un multiplexor de 8:1
 - Determinadas funciones de 19 entradas

LUT como RAM distribuida

LUT

LUT

- > LUT: RAM 16x1 bit
 - Escritura síncrona
 - Lectura síncrona o asíncrona (usando el flipflop del LC)

- Mayor tamaño
- 1 ó 2 puertos

DPRA1
DPRA2
DPRA3

RAM16X1S

WE

◇ WCLK

LUT como registro de desplazamiento

- Cada LUT puede configurarse como un registro de desplazamiento
 - Entrada serie, salida serie
- Retraso programable de forma dinámica hasta 16 ciclos
- Conectable en cascada para conseguir mayores retrasos
- Pueden usarse los flip-flops de los CLBs para añadir profundidad

Virtex & Spartan-II BRAM

- Bloques de memoria RAM síncrona de doble puerto de 4096-bits
- Cada bloque tiene una altura de 4 CLBs
- Configurable con CORE Generator

Table 5: Block RAM Port Aspect Ratios

Width	Depth	ADDR Bus	Data Bus
1	4096	ADDR<11:0>	DATA<0>
2	2048	ADDR<10:0>	DATA<1:0>
4	1024	ADDR<9:0>	DATA<3:0>
8	512	ADDR<8:0>	DATA<7:0>
16	256	ADDR<7:0>	DATA<15:0>

Virtex & Spartan-II Reloj

- > 4 pads específicos (GCLKPAD)
- 4 buffers globales (GCLKBUF)
- Red de distribución de reloj
- 4 Delay-Locked Loops (CLKDDL)

Virtex & Spartan-II DLL

4 Delay-Locked Loops (CLKDDL)

DLL (funciones)

- Doblar la frecuencia de reloj
- Dividir por 1.5, 2, 2.5, 3, 4, 5, 8 ó 16
- Generar relojes de 4 fases
- Eliminar retrasos en la distribución de reloj (deskew)

Virtex & Spartan-II IOB

IOB

Virtex & Spartan-II IOB

I/O organizada en 8 bancos diferentes que permiten el uso simultáneo de múltiples estándares

Standard	V_{REF}	V _{CCO}
Chip to Chip Inte	rface	
LVTTL	na	3.3
LVCMOS2	na	2.5
LVCMOS18	na	1.8
LVDS	na	2.5
LVPECL	na	3.3
Backplane Interf	ace	
PCI 33MHz 3.3V	na	3.3
PCI 66MHz 3.3V	na	3.3
GTI	0.80	na

1.00

1.32

na

na

3.3

2.5

Memory Interface

GTL+

AGP-2X

Bus LVDS

HSTL-I	0.75	1.5
HSTL-III & IV	0.90	1.5
SSTL3-I & II	1.50	3.3
SSTL2-I & II	1.25	2.5
CTT	1.50	3.3

Virtex-II & Spartan-3

- Incorporan:
 - RAM: bloques (18K) y distribuida (CLBs)
 - Multiplicadores de 18x18 bits
 - Digital Clock Manager (DCM)
 - Impedancia de I/O programable
- Velocidad de operación: 420/326 MHz
- Velocidad I/O: 840/622 Mbps

Virtex-II: 1.5/3.3 V - 0.15 mm

Virtex-II Pro: 1.5/2.5 V - 0.13 mm

- Añade:
 - Rocket IO transceiver (3.125 Gbps)
 - Power PC RISC (32 bit / 300 MHz)

Spartan-3/3E: 1.2/3.3 V - 90 nm

Virtex-II & Spartan-3 CLB

COUT

TBUF

COUT

- 2 LUTs de 4 entradas (SliceM y SliceL)
- 2 elementos de memoria (SliceM)

Virtex-II & Spartan-3 Memoria

Table 9: Distributed SelectRAM Configurations

RAM	Number of LUTs
16 x 1S	1
16 x 1D	2
32 x 1S	2
32 x 1D	4
64 x 1S	4
64 x 1D	8
128 x 1S	8

Table 16: 18 Kbit Block SelectRAM Port Aspect Ratio

Width	Depth	Address Bus	Data Bus	Parity Bus
1	16,384	ADDR[13:0]	DATA[0]	N/A
2	8,192	ADDR[12:0]	DATA[1:0]	N/A
4	4,096	ADDR[11:0]	DATA[3:0]	N/A
9	2,048	ADDR[10:0]	DATA[7:0]	Parity[0]
18	1,024	ADDR[9:0]	DATA[15:0]	Parity[1:0]
36	512	ADDR[8:0]	DATA[31:0]	Parity[3:0]

Notes:

S = single-port configuration; D = dual-port configuration

Distributed RAM

bytes

Block RAM

External RAM megabytes

Up to 400 Mbps/pin DDR & QDR

kilobytes

Bloques de RAM (BRAM)

- Simple o doble puerto
- Puertos independientes
- Lectura y escritura síncrona
- Relojes independientes
- Entradas y salidas separadas
- Bit de paridad
 - En anchos de byte

Table 16: 18 Kbit Block SelectRAM Port Aspect Ratio

Width	Depth	Address Bus	Data Bus	Parity Bus
1	16,384	ADDR[13:0]	DATA[0]	N/A
2	8,192	ADDR[12:0]	DATA[1:0]	N/A
4	4,096	ADDR[11:0]	DATA[3:0]	N/A
9	2,048	ADDR[10:0]	DATA[7:0]	Parity[0]
18	1,024	ADDR[9:0]	DATA[15:0]	Parity[1:0]
36	512	ADDR[8:0]	DATA[31:0]	Parity[3:0]

Virtex-II & Spartan-3 Multiplicadores

- Multiplicadores dedicados de 18 bits
- Los buses de entrada aceptan datos en complemento a 2 (18-bit signed ó 17-bit unsigned)

- Primitivas:
 - MULT 18X18 (asíncrono)
 - MULT 18X18S (con registro de salida)
- Mediante CORE Generator es posible obtener multiplicadores de diferentes tamaños y funciones complejas que empleen estas primitivas

XAPP467: Using Embedded Multipliers in Spartan-3 FPGAs

Virtex-II & Spartan-3 Reloj

Digital Clock Manager (DCM)

- Delay-Locked Loop (DLL)
 - Eliminación de retrasos en la distribución de reloj (deskew)
 - Desfases de 90, 180 y 270 º
- Digital Frequency Synthesizer (DFS)
 - Generación de reloj de frecuencia m/n
- Phase Shift (PS)
 - Ajuste de fase en incrementos de 1/256 de la señal de reloj
- Configurable mediante Architecture Wizard

XAPP462: Using Digital Clock Managers (DCMs) in Spartan-3 FPGAs

Virtex-II & Spartan-3 IOB

- Cada IOB puede ser usado como entrada y/o salida
- Dos IOBs pueden configurarse como un par diferencial
- Estándares para single-ended I/O (19/16):
 - LVTTL, LVCMOS
 - PCI-X, CardBus, GTL, GTLP, AGP-2X
 - HSTL, SSTL
- Estándares para señales diferenciales (7):
 - LVDS, BLVDS, ULVDS,LDT, LVPCEL
- Impedancia de salida programable
 - DCI (Digitally controlled impedance

Familia de FPGA Spartan-3/3E/3A/3AN/3ADSP

Mayor cantidad de lógica que S3

Mayor cantidad de pines de E/S que S3E

Sustituye los multiplicadores por bloques DSP y +BRAMs

Spartan-3A DSI DSP-optimized Spartan-3AN Non-volatile

Configuración en Flash en lugar de SRAM

Familia de FPGA Spartan-3A/3E

			(CLB Array (One CLB = Four Slices)				Block	No. BRAM	
Device	System Gates	Equivalent Logic Cells		Columns	Total CLBs	Total Slices	Distributed RAM bits ⁽¹⁾	RAM bits ⁽¹⁾	Dedicated Multipliers	DCMs
XC3S50A	50K	1,584	16	12	176	704	11K	54K	3	2
XC3S200A	200K	4,032	32	16	448	1,792	28K	288K	16	4
XC3S400A	400K	8,064	40	24	896	3,584	56K	360K	20	4
XC3S700A	700K	13,248	48	32	1,472	5,888	92K	360K	20	8
XC3S1400A	1400K	25,344	72	40	2,816	11,264	176K	576K	32	8
XC3S100E	100K	2,160	22	16	240	960	15K	72K	4	2
XC3S250E	250K	5,508	34	26	612	2,448	38K	216K	12	4
XC3S500E	500K	10,476	46	34	1,164	4,656	73K	360K	20	4
XC3S1200E	1200K	19,512	60	46	2,168	8,672	136K	504K	28	8
XC3S1600E	1600K	33,192	76	58	3,688	14,752	231K	648K	36	8

Virtex-4

A partir de la familia Virtex-4, Xilinx introduce una serie de *cambios significativos* en la estructura y filosofía de las FPGAS

>Estructura:

 Pasa de una arquitectura de matriz simétrica a una arquitectura ASMBL (Application Specific Modular BLock Architecture) donde todas las funciones – incluidas las de E/S – se organizan en columnas

>Filosofía:

- Pasa del concepto de "Plataforma de uso general" al de subfamilias especializadas en aplicaciones específicas:
 - LX: aplicaciones lógicas
 - FX: plataformas empotradas (1 ó 2 PPC 405 @450 MHz)
 - SX: procesado digital de señal

Sub-familias en Virtex-4

Lógica

SoPC

- > LX (8)
 - Celdas lógicas: 15k 200k
 - DCM (*Digital Clock Manager*): 4 8
 - DSP slices: 32 96
 - BRAM: 96kb 1392kb
- > SX (3)
 - Celdas lógicas: 25k 55k
 - DCM (Digital Clock Manager): 4 8
 - DSP slices: 128 512
 - BRAM: 160kb 384kb
- > **FX** (6)
 - Celdas lógicas: 12k 140k
 - DCM (Digital Clock Manager): 4 20
 - DSP slices: 32 192
 - BRAM: 86kb 987kb
 - Power PC: 1 2, Ethernet MACs: 2 4, I/O Transc.: 0 24

Sub-familias en Virtex-4 (cont.)

Virtex-5

- Continuación de la familia Virtex-4 pero con cambios significativos en:
 - Tecnología: 65 nm
 - Reducción del consumo de potencia
 - Mayor velocidad de operación (550 MHz)
 - Énfasis en bloques de DSP e interfaces serie
- > Sub-familias de Virtex-5
 - LX: aplicaciones lógicas
 - LXT: aplicaciones lógicas con conectividad serie
 - SXT: procesado digital de señal
 - FXT: procesador empotrado
 - TXT: aplicaciones de gran ancho de banda

Arquitectura Virtex-5

<u>Mejorado</u>

36Kbit Dual-Port Block RAM
/ FIFO with Integrated ECC

550 MHz Clock Management Tile with DCM and PLL

SelectIO with ChipSync Technology and XCITE DCI

Advanced Configuration Options

25x18 DSP Slice with Integrated ALU

Tri-Mode 10/100/1000 Mbps Ethernet MACs

Most Advanced High-Performance Real 6 LUT Logic Fabric

PCI Express® Endpoint Block

System Monitor Function with Built-in ADC

Next Generation PowerPC® Embedded Processor

RocketIO™ Transceiver
Options
Low-Power GTP: Up to 3.75
GbpsHigh-Performance GTX:
Up to 6.5 Gbps

Familias Virtex-6 / Spartan-6

- □ Cambios significativos en:
 - Tecnología: 45 nm
 - Optimización de slices (tres tipos)
 - Hardcore de controlador de memoria DDR
 - LUTs de 6 entradas
 - Eliminan PPC
- □ Sub-familias de Virtex-6 / Spartan-6
 - LX: Lógica
 - HX: Alta velocidad
 - SX: Procesado de señal
 - -T: Endpoint de PCle

CLB en Virtex-6 / Spartan-6

- CLB:
 - 2 Slices
- Slice:
 - 4 LUT de 6 entradas
 - Equivale a 4 LUT de 4
 - 8 biestables
 - Tres tipos: -M. -L, -X

Slices en Spartan-6

SliceM (25%)

SliceL (25%)

NO RAM, SRL

SliceX (50%)

NO RAM, SRL, acarreo, MUX

Comparación Spartan-6 vs Spartan 3A

Doble de capacidad, Mitad de consumo de potencia , Hard Blocks!

Feature	Extended Spartan-3A (90nm) Spartan-6 (45nm)		
Logic Cells (Kbit)	Up to 55K	Up to 150K	
LUT Design	4-input LUT + FF	6-input LUT + 2FF	
Block RAM (Mbit)	Up to 2 Mbit	Up to 5 Mbit	
Transceiver Count / Speed	no	Up to 8 / Up to 3.125 Gbps	
Voltage Scaling	No (1.2V only)	Yes (1.2V, 1.0V)	
Static Power (typ mW)	11 mW (smallest density) Up to 60% less		
Memory Interface	400 Mbps	DDR3 800 Mbps	
Max Differential IO	640 Mbps	1050 Mbps	
Multipliers/DSP	Up to 126 Multipliers / DSP	Up to 184 DSP48 Blocks	
Memory Controllers	no Up to 4 Hard Bloc		
Clock Management	DCM Only	DCM & PLL	
PCI Express Endpoint	no Yes, Gen 1		
Security	Device DNA Only Device DNA & AES		

Evolución familia Virtex

Virtex-7: 28 nm, 22 nm, 18 nm...

Serie 7

- Comparten arquitectura con Virtex-6/Spartan-6
 ...con mejoras
- Diferentes (sub) familias en Serie 7:
 - Spartan-7: Similar a Spartan-6
 - Artix-7: Bajo costo y la menor disipación de potencia
 - Kintex-7: Mejor relación precio-prestaciones
 - Virtex-7: Mayores prestaciones y productividad

Serie 7

ARTIX.7

KINTEX?

	Lowest Power & Cost	Industry's Best Price/Performance	Industry's Highest System Performance
Logic Cells	20K – 355K	30K – 410K	285K – 2,000K
DSP Slices	40 – 700	120 – 1540	700 – 3,960
Max. Transceivers	4	16	80
Transceiver Performance	3.75Gbps	6.6Gbps 10.3Gbps	10.3Gbps 13.1Gbps 28Gbps
Memory Performance	800Mbps	2133Mbps	2133Mbps
Max. SelectIO™	450	500	1200
SelectIO™ Voltages	3.3V and below	3.3V and below 1.8V and below	3.3V and below 1.8V and below

SoC-FPGA

- Cambio en concepción de realizaciones SoC sobre FPGA
- Eliminación de hardcore de procesadores
- Potente sistema de procesamiento basado en ARM:
 - 1 4 núcleos
 - FPU
 - Caches L1 y L2
 - Memoria y controladores de memoria externa
 - Múltiples periféricos e interfaces
- Lógica programable (FPGA)

Filosofía adoptada por los principales fabricantes de FPGA

SoC-FPGA (Zynq 7000)

Flujo de diseño de FPGAs Xilinx ISE

Placas de desarrollo de FPGA

Placas de desarrollo de FPGAs

- Incorporan diversas interfaces y componentes
 - Reloj, puerto serie, memorias, E/S
 - USB, Ethernet, conversores A/D y D/A, audio, video, etc.
- Relativamente bajo costo
- Gran variedad
- Facilitan el desarrollo de prototipos...

...y también de soluciones definitivas

Placa XS40-005XL XC4000

Montaje Real

Placa Spartan 3 Starter KIT

Placa Spartan 3E Starter KIT

Placa Spartan 3A Starter KIT

Placa Atlys Spartan-6 Development Kit

Placa Spartan-6 SP605

Placa XUPV5-LX110T

Placa Zedboard (Zynq 7020)

Placa Zybo-Z7 (Zynq 7010)

Características de las placas Spartan-3A/3E Starter Kit

- > FPGA:
 - Spartan-3A (XC3S700A)
 - 700k compuertas, FG-484
 - Spartan-3E (XC3S500E)
 - 500k compuertas, FT-320
- Reloj de 50 MHz
- Flash serie de configuración (16 Mbit)
- 64 MB DDR2 / DDR SDRAM

Características de las placas Spartan-3A/3E Starter Kit (cont.)

- > LCD de 2 x 16 caracteres
- > 8 LEDs; 4 interruptores; 4 push-buttons; ...
- Puertos Serie (DTE y DCE), PS-2 y VGA
- > Interfaz 10/100 Ethernet PHY
- > 4x DAC de 12 bit con interfaz SPI
- > 2x ADC de 14 bit con interfaz SPI, con preamplificador con ganancia programable
- Salida de audio estéreo

Características de las placas Spartan-3A/3E Starter Kit (cont.)

- > CPLD XC2C64A
- > 1-Wire SHA-1 EEPROM
 - Protección de .bit
- > Conectores de expansión:
 - Hirose 100 pin; PMOD 6 pin
- > Flash paralela de 32/128 Mb (4/16 MB)
- > Interfaz de configuración mediante JTAG

Placa Spartan 3A Starter KIT

