CMPE 255

Analyzing User Feedback on Yelp Reviews: A Natural Language Processing and Data Mining Approach

Made By: TRISHALA M (SJSU ID: 015219646)

AKANKSHA GUPTA (SJSU ID: 014707784).

VANDANA PATEL (SJSU ID: 016114852) CHIRAG ARORA (SJSU ID: 016726567)

MOTIVATION

Customer feedback is essential for businesses as it provides insights into customer experiences, opinions, and preferences, which can help improve services and retain customers.

OBJECTIVES

- To develop models that can classify user comments as positive or negative sentiments using natural language processing and data mining techniques.
- To analyze the sentiment in greater detail to understand the reasoning behind positive or negative reviews.

ALGORITHMS USED

We used several classification algorithms, including

- **Naive Bayes** is a probabilistic algorithm that assumes independence among the features.
- **Decision Tree** algorithm splits the data into branches based on the most significant attribute.
- Support Vector Classifier tries to find the best hyperplane that separates the data into two classes.
- Random Forest is an ensemble learning algorithm that creates multiple decision trees and combines their results.

DATASETS USED

- Yelp Academic Dataset Business: 160585 rows and 143 columns (1.21 GB) (business_id, name, address, city, state, postal code, latitude, longitude, stars, review_count, is open, attributes, categories, hours)
- Yelp Academic Dataset Review: 879878 rows and 9 columns (6.25 GB) (review_id, user_id, business_id, stars, useful, funny, cool, text, date)

Methodology – Part-I Predicting user sentiment

- 1. Loading and Merging Datasets
- 2. Preprocessing
- 3. Filtering and Adding a New Column
- 4. Assigning Sentiment Values
- 5. Normalization: The next step was to perform tf-idf normalization of the rows to ensure that the dataset was scaled properly.
- 6. Splitting the Dataset: The dataset was split into an 80:20 ratio.
- 7. Finally, several machine learning models were used to predict the sentiment of the review.

RESULTS

Naive Bayes

Decision Tree

Precision Score of the model: 80.71481757259866 Recall Score of the model: 79.58883994126285 Accuracy score of the model: 73.15

F1 score of the model: 80.1478743068392

Support vector classifier

Precision Score of the model: 81.7780580075662 Recall Score of the model: 95.22760646108664 Accuracy score of the model: 82.3

F1 score of the model: 87.99185888738127

Random forest

To improve the results, we performed oversampling and hypertuning grid search cross validation

Naive Bayes

Best parameters for the algorithm - Alpha = 0.001Precision Score of the model: 87.4908558888076

Recall Score of the model: 87.81204111600587

Accuracy score of the model: 83.15 F1 score of the model: 87.651154268963

Support vector classifier

Best parameters for the algorithm SGDClassifier(alpha=0.0001, max_iter=20) Precision Score of the model: 85.62962962963
Recall Score of the model: 84.87518355359765
Accuracy score of the model: 80.0

F1 score of the model: 85.25073746312685

Part 2 - Analyzing the polarity of positive and negative sentiment

- 1. We analyzed Yelp restaurant reviews to understand factors contributing to positive or negative reviews.
- 2. We used Count Vectorizer and SVC classifier to obtain the score of each word.
- 3. Polarity score of a word indicates its contribution to the sentiment of that review.
- 4. We dropped obvious polarity words and identified top 10 words contributing to each cuisine type.
- We reinforced our analysis through exploratory data analysis.

RESULTS

POLARITY RESULTS

Positive and Negative sentiment polarity

	e	1	2		3 4		5	6	7	8	9
cuisine											
Japanese	friendly	fresh	recommend	f	un reasonable	creat	ive c	lean	variety	attentive	tasty
Chinese	friendly	fresh	authentic	reasonab	ole hot		fun	fast	tender	recommend	yummy
Vietnamese	friendly	fresh	recommend	reasonab	ole variety	attent	ive	fast	comfortable	yummy	authentic
Thai	fresh	clean	fast	recomme	end reasonable	ten	der f	ancy	refreshing	generous	yummy
French	sweet	tender	impeccable	recomme	end rich	attent	ive roma	ntic	perfection	incredible	friendly
	0	1	2	3	4	5	6	7	8		
cuisine											
Japanese	hard	cold	wrong	slow	bland	dark e	xpensive	rude	overpriced		
Chinese	sour	bland	cold	greasy	hard	slow	wrong	rude	overpriced		
Vietnamese	bland	greasy	expensive	weird	wrong	slow	hard	cold	sour		
Thai	bland	wrong	hard	slow	expensive	rude	greasy	dirty	weird		
French	cold e	expensive	slow	bland o	verpriced med	iocre	wrong	poor	squash		

RESULTS/OUTCOMES

- We used default parameters to predict the sentiment of user reviews and found that Naïve Bayes had the highest accuracy of 82.89%.
- We performed oversampling and hyper tuning grid search cross-validation to calculate the best parameters for each algorithm.
- The best performing algorithm was Naive Bayes with an accuracy of 83.15%.
- We identified the words that contributed significantly to the positive and negative sentiment of each cuisine type that we showed in previous slide.

CHALLENGES FACED AND OVERCOMING THEM

Challenge: Large dataset size (6 million rows, 6GB)

Solution: Filtered dataset to only include US-based restaurant reviews

Benefits of filtering dataset:

- 1. Reduced dataset size
- 2. Focused on relevant data
- 3. Increased efficiency of analysis
- 4. Derivation of valuable insights from data

Despite the challenges, we were able to overcome them and carry out our analysis effectively

Our approach can be applied to similar large datasets to extract insights and make informed decisions.

CONCLUSION

- The study highlights the importance of customer feedback in the food industry and how businesses can use it to improve their services.
- By developing models to classify customer sentiment and analyzing the factors contributing to positive and negative reviews, businesses can gain a better understanding of their customers.

