```
[1]: import pandas as pd import numpy as np
```

[3]: df.head()

[3]:		Brand	Model	Year	Selling_Price	KM_Driven	Fuel	\
	0	Maruti	Maruti 800 AC	2007	60000	70000	Petrol	
	1	Maruti	Maruti Wagon R LXI Minor	2007	135000	50000	Petrol	
	2	Hyundai	Hyundai Verna 1.6 SX	2012	600000	100000	Diesel	
	3	Datsun	Datsun RediGO T Option	2017	250000	46000	Petrol	
	4	Honda	Honda Amaze VX i-DTFC	2014	450000	141000	Diesel	

		Seller_Type	Transmission	Owner
(0	Individual	Manual	First Owner
	1	Individual	Manual	First Owner
2	2	Individual	Manual	First Owner
:	3	Individual	Manual	First Owner
4	4	Individual	Manual	Second Owner

[4]: df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 4340 entries, 0 to 4339 Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	Brand	4340 non-null	object
1	Model	4340 non-null	object
2	Year	4340 non-null	int64
3	Selling_Price	4340 non-null	int64
4	KM_Driven	4340 non-null	int64
5	Fuel	4340 non-null	object
6	Seller_Type	4340 non-null	object
7	Transmission	4340 non-null	object
8	Owner	4340 non-null	object

dtypes: int64(3), object(6) memory usage: 305.3+ KB

[5]: df.describe()

[5]:		Year	Selling_Price	KM_Driven
	count	4340.000000	4.340000e+03	4340.000000
	mean	2013.090783	5.041273e+05	66215.777419
	std	4.215344	5.785487e+05	46644.102194
	min	1992.000000	2.000000e+04	1.000000
	25%	2011.000000	2.087498e+05	35000.000000
	50%	2014.000000	3.500000e+05	60000.000000
	75%	2016.000000	6.000000e+05	90000.000000
	max	2020.000000	8.900000e+06	806599.000000

[6]: df[["Brand"]].value_counts()

[6]: Brand

σιαιια	
Maruti	1280
Hyundai	821
Mahindra	365
Tata	361
Honda	252
Ford	238
Toyota	206
Chevrolet	188
Renault	146
Volkswagen	107
Skoda	68
Nissan	64
Audi	60
BMW	39
Fiat	37
Datsun	37
Mercedes-Benz	35
Mitsubishi	6
Jaguar	6
Land	5
Ambassador	4
Volvo	4
Jeep	3 2 2
OpelCorsa	2
MG	2
Isuzu	1
Force	1
Daewoo	1
Kia	1

```
[7]: df[["Model"]].value_counts()
 [7]: Model
      Maruti Swift Dzire VDI
                                               69
      Maruti Alto 800 LXI
                                               59
      Maruti Alto LXi
                                               47
      Hyundai EON Era Plus
                                               35
      Maruti Alto LX
                                               35
      Mahindra KUV 100 G80 K4 Plus
      Mahindra KUV 100 mFALCON D75 K8
                                                1
      Mahindra KUV 100 mFALCON D75 K8 AW
                                                1
      Mahindra KUV 100 mFALCON G80 K2 Plus
                                                1
      Volvo XC60 D5 Inscription
                                                1
      Length: 1491, dtype: int64
 [8]: df[["Fuel"]].value_counts()
 [8] : Fuel
      Diesel
                  2153
      Petrol
                  2123
                    40
      CNG
      LPG
                    23
      Electric
                     1
      dtype: int64
 [9]: df[["Seller_Type"]].value_counts()
 [9] : Seller_Type
      Individual
                           3244
      Dealer
                            994
      Trustmark Dealer
                            102
      dtype: int64
[10]: df[["Transmission"]].value_counts()
[10]: Transmission
      Manual
                       3892
      Automatic
                        448
      dtype: int64
[11]: df[["Owner"]].value_counts()
[11] : Owner
      First Owner
                               2832
```

dtype: int64

```
Third Owner
                               304
      Fourth & Above Owner
                                81
      Test Drive Car
                                17
      dtype: int64
[12]: df.columns
[12]: Index(['Brand', 'Model', 'Year', 'Selling_Price', 'KM_Driven', 'Fuel',
             'Seller_Type', 'Transmission', 'Owner'],
            dtype='object')
[13]: df.shape
[13]: (4340, 9)
[14]: df.replace({"Fuel":{"Petrol":0,"Diesel":1,"CNG":2,"LPG":3,"Electric":
       →4}},inplace=True)
[15]: df_replace({"Seller_Type":{"Individual":0,"Dealer":1,"Trustmark Dealer":
       →2}},inplace=True)
[16]: df_replace({"Transmission":{"Manual":0, "Automatic":1}},inplace=True)
[17]: df.replace({"Owner":{"First Owner":0, "Second Owner":1, "Third Owner":2, "Fourth &...
       ⇔Above Owner*:3, *Test Drive Car*:4}},inplace=True)
[18]: y=df["Selling_Price"]
[19]: y.shape
[19]: (4340,)
[20]: y
[20]: 0
               60000
              135000
      2
              600000
      3
              250000
              450000
      4
      4335
              409999
      4336
              409999
      4337
              110000
      4338
              865000
      4339
              225000
      Name: Selling_Price, Length: 4340, dtype: int64
```

Second Owner

1106

```
[21]: x=df[["Year", "KM_Driven", "Fuel", "Seller_Type", "Transmission", "Owner"]]
[22]: x.shape
[22]: (4340, 6)
[23]: x
[23]:
            Year KM_Driven Fuel Seller_Type Transmission Owner
            2007
                      70000
      1
            2007
                      50000
                                0
                                                           0
                                                                  0
      2
            2012
                     100000
                                             0
                                                                  0
                                1
                                                           0
      3
            2017
                      46000
                                0
                                                                  0
            2014
                     141000
                                1
                                                                  1
      4335 2014
                      80000
                                1
                                                           0
                                                                  1
      4336 2014
                      80000
      4337 2009
                      83000
      4338 2016
                      90000
      4339 2016
                      40000
                                                                  0
      [4340 rows x 6 columns]
[24]: from sklearn.model_selection import train_test_split
[25]: x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.
       →3,random_state=2529)
[26]: x_train.shape,x_test.shape,y_train.shape,y_test.shape
[26]: ((3038, 6), (1302, 6), (3038,), (1302,))
[27]: from sklearn.linear_model import LinearRegression
[28]: Ir=LinearRegression()
[29]: Ir.fit(x_train,y_train)
[29]: LinearRegression()
[30]: y_pred=lr_predict(x_test)
[31]: y_pred.shape
[31]: (1302,)
[32]: y_pred
```

[32]: array([502458.82786413, 646333.17428704, 521962.74075836, ..., 620183.32683781, 315403.82788569, 731862.54196037])

[33]: from sklearn.metrics import mean_squared_error,mean_absolute_error,r2_score

[34]: mean_squared_error(y_test,y_pred)

[34]: 193242972302.19577

[35]: mean_absolute_error(y_test,y_pred)

[35]: 228808.95522977936

[36]: r2_score(y_test,y_pred)

[36]: 0.40755633943708325

[37]: import matplotlib.pyplot as plt
plt.scatter(y_test,y_pred)
plt.xlabel("Actual prices")
plt.ylabel("Predicted prices")
plt.title("Actual price vs Predicted price")
plt.show()


```
[38]: df_new=df_sample(1)
[39]: df_new
                               Model Year Selling_Price
           Brand
                                                          KM_Driven Fuel \
[39]:
      425 Maruti Maruti Wagon R VXI 2004
                                                  130000
                                                              46000
                                                                        0
                       Transmission Owner
           Seller_Type
      425
[40]: df_new.shape
[40]: (1, 9)
[41]: x_new=df_new.drop(["Brand", "Model", "Selling_Price"],axis=1)
[42]: y_pred_new=lr_predict(x_new)
[43]: y_pred_new
[43]: array([-67004.63380739])
 []:
```