${\bf Vorlesung smitschrift}$

DIFF II

Prof. Dr. Dorothea Bahns

Henry Ruben Fischer

Auf dem Stand vom 29. Juli 2020

Disclaimer

Nicht von Professor Bahns durchgesehene Mitschrift, keine Garantie auf Richtigkeit ihrerseits.

Inhaltsverzeichnis

1.	Metris	che Räume	6	
	1.I.	Charakterisierung topologischer Grundbegriffe in metrischen Räumen .	17	
	1.II.	Vollständigkeit	19	
	1.III.	Betrachtungen in vollständigen metrischen Räumen		
	1.IV.	Stetige Abbildungen auf metrischen Räumen	27	
	1.V.	Kompaktheit	30	
	1.VI.	Äquivalenz von Metriken		
2.	Normi	erte Vektorräume	38	
	2.I.	Stetige Abbildungen in normierten Vektorräumen	44	
	2.	I.1. Lineare Abbildungen	44	
	2.II.	Vektorräume mit Skalarprodukt	49	
3.	Differenzierbarkeit in \mathbb{R}^n			
	3.I.	Geometrische Anschauung, partielle Ableitung	59	
	3.II.	Beispiele und Erläuterungen	63	
	3.III.	Implizite Funktionen	72	
	3.IV.	Der Satz von der Umkehrabbildung		
	3.V.	Lokale Extrema unter Nebenbedingungen	88	
	3.VI.	Höhere Ableitungen, Taylorformel	92	
	3.VII.	Der Laplace-Operator		
	3.VIII.			
	3.IX.	Lokale Extrema	103	
4.	Unterr	mannigfaltigkeiten des \mathbb{R}^n	109	
	4.I.	Tangential- und Normalraum	130	
	4.II.	Flächenbemessung auf Untermannigfaltigkeiten	138	
5.	Differentialgleichungen			
	5.I.	Geometrische Interpretation	143	
	5.II.	Existenz- und Eindeutigkeitssatz	145	
	5.III.	Lineare Differentialgleichungen		
	5 IV	Lineare DGL-Systeme mit konstanten Koeffizienten		

In halts verzeichn is

6.	Lebesg	gue-Integration	182	
	6.I.	Etwas Maßtheorie	190	
	6.II.	Weitere Folgerungen	192	
	6.III.	Messbare Funktionen	196	
	6.IV.	Zum Verhältnis von Lebesgue- / Riemann-Integral	197	
	6.V.	Produkt-Maße		
	6.VI.	Der Transformationssatz	207	
7.	Integra	ation auf Untermannigfaltigkeiten	214	
	7.I.	Der Integralsatz von Gauß	220	
	7.II.	Tensorkalkül und Differentialformen	228	
	7.III.	Koordinatendarstellung	231	
	7.IV.	Zusammenhang zu Integration auf Untermannigfaltigkeiten		
De	finition	en	239	
Wi	Nichtige Sätze			

Vorlesungsverzeichnis

1.	Mo 20.04. 10:15	6
2.	Do 23.04. 10:15	16
3.	Mo 27.04. 10:15	25
4.	Do 30.04. 10:15	36
5.	Mo 04.05. 10:15	44
6.	Do 07.05. 10:15	55
7.	Mo 11.05. 10:15	63
8.	Do 14.05. 10:15	74
9.	Mo 17.05. 10:15	80
10.	Do 21.05. 10:15	88
11.	Mo 25.05. 10:15	.00
12.	Do 28.05. 10:15	.09
13.	Do 04.06. 10:15	.22
14.	Mo 08.06. 10:15	.30
15.	Do 11.06. 10:15	.43
16.	Mo 15.06. 10:15	.53
17.	Do 18.06. 10:15	.62
18.	Mo 15.06. 10:15	.71
19.	Do 25.10. 10:15	.82
20.	Mo 29.06. 10:15	.90
21.	Do 02.07. 10:15	.99
22.	Mo 06.07. 10:15	207
23.	Do 09.07. 10:15	214
24.	Mo 13.07. 10:15	223
25	Do 16 07 10:15	21

Vorlesung 25

Do 16.07. 10:15

Definition 7.17. Sei $U \subset \mathbb{R}^m$ offen (n-dimensionale Untermannigfaltigkeit des \mathbb{R}^m). Ein *Tensorfeld* auf U (s-fach kontravariant, r-fach kovariant) ist eine Abbildung

$$\alpha \colon U \ni a \mapsto \alpha(a) \in T_r^s(T_a U).$$

Eine Differentialform von Grad r ist eine Abbildung

$$\omega \colon U \ni a \mapsto \omega(a) \in \Lambda^r(T_a U^*)$$

 $\Omega^r(U) = \{\, \omega \text{ Differential form vom Grad } r \,\}.$ α wird C^k genannt, falls

$$U \ni a \mapsto \alpha(a)(u_1, \dots, u_r, w^1, \dots, w^s) \in \mathbb{R}$$

für jedes fest gewählte Tupel

$$(u_1, \dots, u_r, w^1, \dots, w^s) \in (\mathbf{T}_a U)^r \times (\mathbf{T}_a U^*)^s$$

 C^k ist.

Speziell ist $\omega \in \Omega(U)$ C^k falls

$$U \ni a \mapsto \omega(a)(u_1, \ldots, u_r) \in \mathbb{R}$$

 C^k ist für jedes $(u_1, \ldots, u_r) \in (T_a U)^r$.

Bemerkung. i) Tensorfelder und Differentialformen vom Grad 0 sind Funktionen

ii) Ein einfach kontravariantes Tensorfeld ist ein Vektorfeld: $\alpha(a) \in T_1(T_a U^*)$

$$\alpha(a) \in (\mathbf{T}_a U^*)^* \approx \mathbf{T}_a U,$$

$$\alpha(a) = \sum_{i=1}^m \alpha(a)^i e_i$$

mit (e_1, \ldots, e_n) eine Basis von $T_a U$.

7.III. Koordinatendarstellung

Sei $\varphi \colon U \to \mathbb{R}^n$ die kanonische Parametrisierung von $U, \, \varphi(x) = x.$ Dann ist (vgl. 4.10)

$$T_x U = \operatorname{Span}(e_1, \dots, e_m)$$
kanonische Einheits-Basis

Die dazu duale Basis bezeichnet man mit dx^1,\dots,dx^m . Es gilt für $v=\sum v^ie_i\in {\rm T}_x\,U$:

$$dx^j(v) = v^j$$
.

Nach Bemerkung?? nach?? ist

$$\left\{ dx^{j_1} \wedge \dots \wedge dx^{j_r} \mid j_i \in \{1, \dots, n\} \right\}$$

eine Basis von $\Omega^r(U)$ also

$$\omega \in \Omega^r(U) \implies \omega = \sum \omega_{j_1 \cdots j_r} dx^{j_1} \wedge \cdots \wedge dx^{j_r}$$

mit Funktionen $\omega_{j_1\cdots j_r}\colon U\to\mathbb{R}$. Beachte: ω ist genau dann C^k wenn $\omega_{j_1\cdots j_r}$ C^k ist.

Beispiel. $m=2, u,v \in T_a U \cong \mathbb{R}^2$

$$dx^{1} \wedge dx^{2}(u,v) = \det \begin{pmatrix} dx^{1}(u) & dx^{1}(v) \\ dx^{2}(u) & dx^{2}(u) \end{pmatrix} = \det \begin{pmatrix} u^{1} & v^{1} \\ u^{2} & v^{2} \end{pmatrix}$$

Definition 7.18. Sei $\varphi \colon U \to \mathbb{R}^n$ C^1 , $U \subset \mathbb{R}^m$ offen mit $\varphi(U) = V$ offen. Sei $\omega \in \Omega^r(V)$. Dann definiert

$$(\varphi^*\omega)(t)(v_1,\ldots,v_r) := \omega(\varphi(t))(D\varphi(t)v_1,\ldots,D\varphi(t)v_r) \quad \forall t \in U, \ \forall v_1,\ldots,v_r \in \mathbb{R}^m$$

r-Form auf $U, \varphi^*\omega \in \Omega^r(U)$, den sogenannten pullback (Zurückziehung) von ω unter φ . In Koordinaten:

$$\omega = \sum_{i_1 < \dots < i_r} \omega_{i_1 \dots i_r} \, dx^{i_1} \wedge \dots \wedge dx^{i_k}.$$

Dann ist $\varphi^*\omega = \sum \omega_{i_1\cdots i_r} \circ \varphi d\varphi^{i_1} \wedge \cdots \wedge d\varphi^{i_k}$ mit

$$d\varphi^i = \sum_{k=1}^m \partial_k \varphi^i \, dt^k \tag{*}$$

Beweis durch Nachrechnen. $\varphi^*\omega$ ist also tatsächlich in $\Omega^r(U)$.

Definition 7.19. Cartan-Ableitung (äußere Ableitung) $U \subset \mathbb{R}^n$. $f \in \Omega^0(U)$ sei C^k mit $k \geq 1$. Dann setze:

$$df := \sum_{j=1}^{m} \partial_j f \, dx^j$$
 (Siehe oben (*))

 $\omega \in \Omega^r(U)$ sei C^k mit $k \geq 1$. Dann setze:

$$d\omega := \sum_{q \leqslant i_1 < \dots < i_r \leqslant n} d(\omega_{i_1 \dots i_r}) \wedge dx^{i_1} \wedge \dots \wedge dx^{i_r}$$

 $d\omega \in \Omega^{r+1}(U)$

Beispiel 7.20. $\omega = p dx + q dy$

$$d\omega = (\partial_1 p \, dx + \partial_2 p \, dy) \wedge dx + (\partial_1 q \, dx + \partial_2 q \, dy) \wedge dy$$
$$= (\partial_1 q - \partial_2 p) \, dx \wedge dy$$

 $d\omega = 0$ falls $\partial_1 q = \partial_2 p$ Integrabilitätsbedingung bei den exakten DGLn

Das ist insbesondere der Fall, wenn $\omega = d(f), f(x, y), \partial_1 f = p, \partial_2 f = q$ $f \in C^2$. Beachten Sie die Ähnlichkeit zum Satz von Gauß in 2 Dimensionen \rightsquigarrow später mehr.

Bemerkung / Definition 7.21. Teilweise längere Rechnungen zeigen: $\omega, \tilde{\omega}$ $C^k, k \geq 1$.

$$d \colon \Omega^r(U) \to \Omega^{r+1}(U)$$
 ist linear

$$d(\omega \wedge \tilde{\omega}) = d\omega \wedge \tilde{\omega} + (-1)^r \omega \wedge \tilde{\omega} \text{ für } \omega \in \Omega^r(U)$$

$$d(d\omega) = 0, \ \omega \ C^k, \ k > 2.$$

 $\omega \in \Omega^r(U)$ heißt geschlossen falls $d\omega = 0$ und exakt falls $\exists \alpha \in \Omega^{r-1}(U)$ s. d. $d\alpha = \omega$. α heißt Potential für ω . $U \subset \mathbb{R}^m$ Ist $d\omega = 0$, U sternförmig, d. h. \exists Punkt $a \in U$ s. d. die Verbindungslinien von a zu allen Punkten von U in U liegen, so \exists Potential. Die Konstruktion funktioniert im wesentlichen so, wie bei den exakten DGLn (Partielle Integration entlang der Verbindungslinien). Lemma von Poincaré

Bemerkung 7.22. Zusammenhang zu Differentialgleichungen:

i) Exakte DGLn: Schreibe statt g(x,y)y' + h(x,y) = 0

$$\omega := g(x, y) dy + h(x, y) dx.$$

Die Integrabilitätsbedingung impliziert $d\omega = 0 \implies$ (auf sternförmigem Gebiet) $\exists f \text{ s. d. } \omega = df \text{ (also exakt)}, g = \partial_y f, h = \partial_x f, \text{ Satz "über implizite Funktionen:} \\ \exists x \mapsto y(x) \text{ s. d. } f(x, y(x)) = 0 \rightarrow \text{die L"osung } y(x) \text{ der DGL.}$

ii) Merkregel bei DGLn mit getrennten Variablen. Schreibe statt y' = f(x)g(y)

$$\frac{1}{g(y)} \, dy = f(x) \, dx$$

7.IV. Zusammenhang zu Integration auf Untermannigfaltigkeiten

Definition 7.23. $U \subset \mathbb{R}^m$ offen, $\omega = f \, dx^1 \wedge \cdots \wedge dx^m$. ω heißt integrierbar über $V \subset U$ falls $f|_V$ integrierbar ist. Man setzt dann:

$$\int_{V} \omega := \int_{V} f \, dx^{1} \wedge \dots \wedge dx^{m} := \int_{V} f(x) \, dx$$

Lemma 7.24. $U, V \subset \mathbb{R}^m$ offen, $\varphi \colon U \to \mathbb{R}^m$, $\varphi(U) = V$, Diffeomorphismus auf V. Sein $K \subset U$ kompakt. Dann gilt

$$\int_{\varphi(K)} \omega = \int_{K} \varphi^{*} \omega \quad \text{falls } \det \varphi > 0$$
$$= -\int_{K} \varphi^{*} \omega \quad \text{falls } \det \varphi < 0$$

Beweis. $\omega = f dx^1 \wedge \cdots \wedge dx^m \implies \varphi^* \omega = (f \circ \omega) \det d\varphi dx^1 \wedge \cdots \wedge dx^m$ (nachrechnen). Die Behauptung folgt mit der Transformationsformel

$$\int_{\varphi(K)} \omega = \int_{\varphi(K)} f \, dx = \int_{K} f(\varphi(y)) |\det d\varphi(y)| \, dy \qquad \Box$$

Diese Definition können wir auf beliebige orientierbare Untermannigfaltigkeiten übertragen. Orientierbar: \exists Beschreibung durch lokale Parametrisierungen

$$\{ \varphi \colon U_i \to V_i \mid i \in I \}$$

s.d.

$$\Phi_{ij} := \varphi_i^{-1} \circ \varphi_j \colon \varphi^{-1}(V_i \cap V_j) \to \varphi^{-1}(V_i \cap V_j)$$

 $\det d\Phi_{ij} > 0$ erfüllt.

Wählt man eine Basis $(\partial_j \psi)_{j=1\cdots m}$ von $T_a M$ und ist $a \in \varphi(U) \cap \psi(\tilde{U})$ so ist $(\partial_j \psi)_{j=1,\dots,m}$ gleich orientiert, d. h. der Basiswechsel A hat positive Determinante:

$$d\varphi = \left(d(\underbrace{\varphi^{-1} \circ \psi})\right)^{-1} \cdot d\psi \quad \text{(Kettenregel)}$$

Bemerkung 7.25. Ist M Hyperfläche, also $\dim(M) = n - 1$, $M \subset \mathbb{R}^n$, so ist Orientierbarkeit zur Existenz eines stetigen Einheitsnormalenvektorfeldes:

Beweis. " \Longrightarrow " \exists genau 2 Einheitsnormalenvektoren bei $a = \varphi(t_0) \in M$. Wähle den, für den $(\nu(a), \partial_1 \varphi(t_0), \dots, \partial_{n-1} \varphi(t_0))$ die selbe Orientierung hat wie (e_1, \dots, e_n) (*).

" \Leftarrow " Ist $\nu \colon M \to \mathbb{R}^n$ stetiges Einheitsnormalenvektorfeld so ist durch (*) eine Orientierung vorgegeben. Solche Parametrisierungen gibt es, da man durch Umsortieren der Komponentenfunktionen (*) erreichen kann.

Beispiel 7.26. G aus dem Satz von Gauß ist also orientierbar, das Möbiusband dagegen nicht.

Bemerkung 7.27. Das Übertragen des Integrals über m-Formen auf m-dimensionale orientierbare Untermannigfaltigkeiten funktioniert wie zuvor:

- Zunächst für m = n (siehe oben)
- Dann für $K \subset M \subset \mathbb{R}^m$ $(n \geq m)$. K kompakt unter der Annahme, dass

$$\exists \varphi \colon U \to \mathbb{R}^n$$

mit $K \subset \varphi(U)$. Mit 7.18 folgt:

$$\int_K \omega \coloneqq \int_{\varphi^{-1}(K)} \varphi^* \omega$$

ist eine sinnvolle Definition, die von der Wahl von φ nicht abhängt:

$$\varphi = \psi \circ (\underbrace{\psi^{-1} \circ \varphi}_{\det d \cdots > 0})$$

• Dann für $K \subset M$ mit $\{\varphi_i \colon U_i \to V_i\}_{i \in I}$ eine Beschreibung von M durch gleich orientierte Parametrisierungen. K kompakt \Longrightarrow endlich viele U_1, \ldots, U_l überdecken $K \Longrightarrow$ Integralbegriff mit Hilfe einer untergeordneten Teilung der Eins.

Beispiel 7.28. $\omega = (\partial_1 g - \partial_2 f) dx \wedge dy$ auf $U \subset \mathbb{R}^2$. Dann gilt für $G \subset U$ wie im Satz von Gauß

$$\int_{C} \omega = \int_{\partial C} \langle F, \nu \rangle \, ds(t)$$

 $mit F = \begin{pmatrix} g \\ -f \end{pmatrix}$

$$ds(t) = \sqrt{\det d\gamma} \, dt = \|\gamma'(t)\|_{\mathcal{E}} \, dt, \quad \nu(\gamma(t)) = \begin{pmatrix} \gamma_2'(t) \\ -\gamma_1'(t) \end{pmatrix} \frac{1}{\|\gamma\|_{\mathcal{E}}}$$

Also

$$\int_{G} \omega = \int_{\partial G} \langle Fv, d \rangle s(t)
= \int_{a}^{b} (F_{1}(\gamma(t))\gamma'_{2}(t) - F_{2}(\gamma(t))\gamma'_{1}(t)) dt
= \int_{\partial G} F_{1} dy - F_{2} dx
\uparrow
dx^{i} = d(\gamma_{i}(t)) = \gamma'_{i} dt
= \int_{\partial G} \underbrace{g \, dy + f \, dx}_{=:\alpha}$$

Notation aus 243. Es ist $\omega = d\alpha = (\partial_1 g - \partial_2 f) dx \wedge dy$. Also schreibt sich der Satz von Gauß hier:

$$\int_{G} d\alpha = \int_{\partial G} \alpha$$

Das ist kein Zufall! (siehe unten)

Zunächst etwas Vorarbeit:

Satz 7.29. Sei M orientierbare, m-dimensionale Mannigfaltigkeit in \mathbb{R}^n mit Rand. Dann ist auch die (m-1)-dimensionale Untermannigfaltigkeit ∂M orientierbar.

Beweis-Idee. Sei $\varphi \colon U \to V$ Parametrisierung $(U \subset \mathbb{R}_{\leq 0} \times \mathbb{R}^{m-1} \text{ offen})$ s. d. $\varphi(U \cap \{0\} \times \mathbb{R}^{m-1} = V \cap \partial M \neq U)$ und $\{\varphi, \varphi_i\}_i$ sei eine Beschreibung von M durch orientierte Parametrisierung.

Betrachte die letzte Spalte von $d\varphi$, also

$$d\varphi(t_0).e_m =: v, \quad \varphi(t_0) = p \in \partial M$$

Eine Basis (w_1, \ldots, w_{m-1}) von $T_p(\partial M)$ ist dann so zu wählen, dass die Basis $(v, w_1, \ldots, w_{m-1})$ von T_pM gleich orientiert ist wie die Orientierung von T_pM .

Bemerkung. Mann nennt diese Orientierung als die von der Orientierung von M induzierte.

Beispiel 7.30.

 $\overline{D}(v,w)$ orientiert wie \mathbb{R}^2 mit $(e_1,e_2) \implies w \nwarrow$

 \implies Der Rand wird von den orientierten Parametrisierungen gegen Uhrzeigersinn durchlaufen.

Satz 7.31 (Spezialfall des Satzes von Stokes). Sei $\omega \in \Omega^{m-1}(\mathbb{R}^m)$ C^1 und mit kompaktem Träger supp ω (supp $\omega = \overline{\{*\}} p \in \mathbb{R}^m | \omega(p) \neq \text{Nullform}$ in Koordinaten: $\omega_{i_1 \cdots i_{m-1}}$ hat kompakte Träger). Dann gilt:

$$\int_{\mathbb{R}^m_-} d\omega = \int_{\partial \mathbb{R}^m_-} \omega$$

wobei $\mathbb{R}^m_- = \mathbb{R}_{\leq 0} \times \mathbb{R}^{m-1}, \, \partial \mathbb{R}^m_- = \{\, 0 \,\} \times \mathbb{R}^{m-1}.$

Beweis.

$$\omega = \sum_{i=1}^{m} \omega_{i_1 \cdots i_{m-1}} dx^{i_1} \wedge \cdots \wedge dx^{i_{m-1}}$$
$$=: \sum_{j=1}^{m} (-1)^{j-1} \alpha_j dx^1 \wedge \cdots \wedge \widehat{dx^j}_{\text{fehlt}} \wedge \cdots \wedge dx^n$$

Kompakter Träger $\implies \exists K$ kompakt s.d. $\alpha_j|_{\mathbb{R}^m \setminus K} = 0 \,\forall j$

$$d\omega = \sum_{j=1}^{m} (\partial_{1}\alpha_{j}) dx^{1} \wedge \cdots \wedge dx^{m}$$

$$\varphi \colon \mathbb{R}^{m-1} \to \partial \mathbb{R}^{m-1}_{-}, \quad \left(t^{1} \cdots t^{m-1}\right) \mapsto \left(0, t^{1}, \dots, t^{m-1}\right)$$

$$\varphi^{*}\omega = \sum_{j=1}^{m} (-1)^{j-1} (\alpha_{j} \circ \varphi) d\varphi^{1} \wedge \cdots \wedge \widehat{d\varphi^{j}} \wedge \cdots \wedge d\varphi^{m}$$

$$d\varphi^{1} = 0 \quad (\varphi^{1}(t) = 0 \,\forall t)$$

$$d\varphi^{j} = dt^{j-1} \quad (\varphi^{j}(t) = t^{j-1}) \text{ für } j \geq 2$$

$$\Longrightarrow \varphi^{*}\omega = (\alpha_{1} \circ \varphi) dt^{1} \wedge \cdots \wedge dt^{m-1}$$

$$\Longrightarrow \int_{\partial \mathbb{R}^{m}} \omega = \int_{\mathbb{R}^{m-1}} d\omega = \int_{\mathbb{R}^{m-1}} \alpha_{1}(0, t^{1}, \dots, t^{m-1}) dt$$

Linke Seite:

$$\int_{R_{-}^{m}} d\omega = \int_{\mathbb{R}_{-}^{m}} \left(\sum_{j=1}^{m} \partial_{j} \alpha_{j} \right) dx$$

$$\int_{\mathbb{R} \leq 0} \partial_{1} \alpha_{1}(x) dx^{1} = \int_{-\infty}^{0} \partial_{1} \alpha_{1}(x) dx^{1} = \alpha_{1}(0, x^{2}, \dots, x^{m})$$

$$\int_{\mathbb{R} \leq 0 \times \mathbb{R}^{m-2}} \left(\underbrace{\int_{-\infty}^{\infty} \partial_{j} \alpha_{j}(x) dx_{j}}_{=0} \right) dx_{1} \cdots \widehat{dx_{j}} \cdots dx_{m}$$

 \implies Beh.

Satz 7.32 (Integralsatz von Stokes). Sei M orientierte m-dimensionale Untermannigfaltigkeit des \mathbb{R}^n mit Rand ∂M , der die induzierte Orientierung trägt. Sei $\omega \in \Omega^{m-1}(M)$ mit kompaktem Träger und C^1 . Dann gilt

$$\int_{M} d\omega = \int_{\partial M} \omega.$$

Beweisidee. Sei $\varphi \colon U \to M$ globale Parametisierung von supp ω (sonst: Zerlegung der Eins). Setze $\varphi^*\omega$ durch 0 fort zu einer Differentialform auf ganz \mathbb{R}^m_- .

• Ist U offen in \mathbb{R}^m ist $\varphi(U) \cap \partial M = \emptyset$. Beide Seiten sind 0.

• Ist U offen in \mathbb{R}^m_- also $\varphi(U) \cap \partial M \neq \emptyset$, gilt

$$\int_{M} d\omega = \int_{U} \varphi^{*}(d\omega) = \int_{U} d(\varphi^{*}\omega)$$
Nachrechnen!
$$= \int_{\mathbb{R}^{m}_{-}} d(\varphi^{*}\omega)^{7.31} \int_{\partial \mathbb{R}^{m}_{-}} \varphi^{*}\omega$$

$$= \int_{\partial U} \varphi^{*}\omega = \int_{\varphi(\partial M)} \omega = \int_{\partial M} \omega$$

Beispiel. Satz von Gauß,....

Beispiel.
$$n = 3$$
 $\omega = f_1 dx^1 + f_2 dx^2 + f_3 dx^3$

$$d\omega = (\partial_2 f_3 - \partial_3 f_2) dx^2 \wedge dx^3$$
$$+ (\partial_3 f_1 - \partial_1 f_3) dx^3 \wedge dx^1$$
$$+ (\partial_1 f_2 - \partial_2 f_1) dx^1 \wedge dx^2$$

Koeffizienten heißen auch Rotation von $f=\begin{pmatrix}f_1\\f_2\\f_3\end{pmatrix}$

$$M$$
 2-dim $\subset \mathbb{R}^3$

$$\int_M d\omega = \int_{\partial M} \omega \quad \text{Kurvenintegral vgl. Beispiel nach 7.24}$$

$$\int f_1 dx^1 + \dots + f_3 dx^3 = \int (f_1(\gamma(t))\gamma_1'(t) + \dots + f_3(\gamma(t))\gamma_3'(t)) dt$$
$$= \int \langle f(\gamma(t), \gamma'(t)), d \rangle t$$

Definitionen

Cartan-Ableitung, 232

Differential form, 231

Integralsatz von Stokes, 237

 $orientierbare\ Untermannig faltigkeiten,$

234

Potential, 233

pullback (Zurückziehung), 232

Tensorfeld, 231

Wichtige Sätze

Spezialfall des Satzes von Stokes, $236\,$