

#### Who we are

Nicolas FROT Data Squad





Florian BERGAMASCO EP/EXPLO/GTS/IGR





#### What is Big Data?



1956: 5 Mo, \$50k



2018: 256 Go, \$30



### What are the roles in a Big Data organization?



Data Manager



Data engineer
Data Architect



Data Scientist

Machine Learning Engineer



Data Analyst



























#### What is Machine Learning?

Machine learning algorithms build a mathematical model of sample data, known as "training data", in order to make predictions or decisions without being explicitly programmed to perform the task.

Machine learning is used in:

- Email filtering
- Image classification
- Fraud detection
- Etc...





#### Which use cases we saw at TOTAL?

#### Some basic vocabulary

Pb: predict the quantity of apples sold in a supermarket for a given day

Variable / feature

|                | Temp<br>ext (°C) | Day of<br>week | <br>Price/<br>kg for<br>apples |
|----------------|------------------|----------------|--------------------------------|
| 01/01/20<br>17 | -10              | 3              | <br>2                          |
| 02/01/20<br>17 | -8               | 4              | <br>2,03                       |
| 03/01/20<br>17 | 5                | 5              | <br>2,04                       |
| 04/01/20<br>17 | 6                | 6              | <br>2,50                       |
| 05/01/20       | 2                | 7              | <br>2,50                       |

Target variable

| Apples sold (kg) |  |
|------------------|--|
| 34               |  |
| 37               |  |
| 67               |  |
| 64               |  |
| 33               |  |
|                  |  |
| 87               |  |



What are the branches of machine learning? Customer Retention Discovery Classification Idenity Fraud Feature Diagnostics Classification Visualistaion Elicitation Reduction Advertising Popularity Supervised Recommender Unsupervised Prediction Systems Learning Learning Weather **Forecasting** Clustering Machine Regression Targetted **Population** Market Marketing Growth Forecasting Prediction Learning Estimating Segmentation life expectancy Real-time decisions Reinforcement Learning Robot Navigation Skill Acquisition Learning Tasks

#### Classification

Pb: (Spotify) Will the users buy our premium offer?

|        | Nb<br>streams<br>per day | Seniorit<br>y | Buy<br>after<br>triak? |
|--------|--------------------------|---------------|------------------------|
| User 1 | 12                       | 1             | 0                      |
| User 2 | 56                       | 24            | 0                      |
| User 3 | 467                      | 13            |                        |
|        | ***                      | •••           | 0                      |
| User n | 32                       | 4             |                        |

After the model has been fitted to the training set, let's apply the prediction on a new observation:

| User |  | ? |
|------|--|---|
| n+1  |  |   |





Seniority

The model tries to find the best border that splits the positive and negative observations





#### Regression

Pb: (MeilleursAgents) How to estimate the price of an appartment?

|       | Surface (m2) | Price<br>(k€) |
|-------|--------------|---------------|
| Apt 1 | 12           | 200 k         |
| Apt 2 | 56           | 450 k         |
| Apt 3 | 130          | 1200 k        |
|       | ***          | •••           |
| Apt n | 32           | 300 k         |



ing

Surface (m2)

Advertising Popularity

**Forecasting** 

Prediction

Regression

After the model has been fitted to the training set, let's apply the prediction on a new observation:

| Apt | ? |
|-----|---|
| n+1 |   |



#### Clustering

Pb: (Netflix) Can I group similar users by behaviour on the app?

|        | Nb movies<br>(/month) | Nb<br>connecti<br>ons |
|--------|-----------------------|-----------------------|
| User 1 | 12                    | 1                     |
| User 2 | 32                    | 24                    |
| User 3 | 46                    | 13                    |
|        |                       |                       |
| User n | 32                    | 44                    |

After the model has been fitted to the training set, let's apply the prediction on a new observation:





Nb movies

Clustering

Targetted Marketing

The model tries to find the best border that splits the positive and negative observations





#### Workflow of a ML project



#### What are we going to do today?

The Challenge

Predict the number of shared bikes rented every hour in San Diego given meteorological information

- Features:
  - Temperature
  - > Time
  - Humidity
  - Wheather
  - Weekday
  - Is\_holiday
  - Etc...
- > Data: records from 2016/2017
- **Tools**: using Python (via Jupyter Notebook)





#### What are we going to do today?

The steps

#### Theory & Hands on:

- Step 0:
  Introduction to Python and Jupyter
- Step 1:
  Build a first basic model
- Step 2:
  Improve your model: preprocessing
- Step 3:
  Improve your model: model choice and optimise the hyperparameters



# Step 0: Introduction to Python and Jupyter notebooks



#### Step 1: Build a 1st basic model

Get Data

Preprocess ing

Train the model

Evaluate the model

Improve

- Load data
- Do the minimum:
- Remove rows with NA values
- Dummify categorical values
- SplitDataframe in train and test

- Do the minimum:
- Choose 1 model only
- Do the minimum:
- Choose an evaluation metric
- Compute the score of your model

#### Step 1: Build a 1st basic model

Split the Dataset in order to evaluate your model



#### Step 1: Build a 1st basic model



## Step 2: Improve your model : Preprocessing

Get Data

Preprocessi ng Tra n

Train the model



Evaluate the model



Improve

- Load data
- Dummify categorical values
- Split Dataframe in train and test
- Impute missing values
- Add some feature engineering

Do the minimum:

Choose 1 model only

Do the minimum:

- Choose an evaluation metric
- Compute the score of your model

# Step 2: Improve your model: Preprocessing



#### Step 3: Improve your model: Models and hyperparameters optimisation

**Get Data** 

Preprocessi ng



Train the model



Evaluate the model



Improve

- Load data
- Dummify categorical values
- Split Dataframe in train and test
- Impute missing values
- Add some feature engineering

- Try several models (NNs, RFs, Gradient Boosting etc...)
  - Use several sets of hyperparamet ers

- Choose an evaluation metric
- Compute the score of your model

























































