

FIG. 1 1/17

	GCCACTGTCG		GCACGCTACT
GTGTGCTGGA		CCGATCTCGC	
GCTGCTGCTC	GCCCGTCGTC	CCCCATCGTG	CACTAAGCGG
TCCCAAAAGA	TTCAAAGTCC GTGAATCTTC	AAG ATG GCAG	CCCTCAAGGA
CCAGCTGATT		TTAAGGAAGA	ACAGGTCCCC
CAGAACAAGA	TTACAGTTGT	TGGGGTTGGT	GCTGTTGGCA
TGGCTTGTGC	CATCAGTATC	TTAATGAAGG	ACTTGGCTGA
TGAGCTTGCC	CTTGTTGATG	TCATAGAAGA	TAAGCTAAAG
GGAGAGATGA	TGGATCTTCA	GCATGGCAGC	CTTTTCCTTA
AGACACCAAA	AATTGTCTCC	AGCAAAGATT	ATAGTGTGAC
TGCAAACTCC	AAGCTGGTCA	TTATCACCGC	GGGGGCCCGT
CAGCAAGAGG	GAGAGAGCCG	GCTCAATTTG	GTCCAGCGAA
ACGTGAACAT	CTTCAAGTTC	ATCATTCCAA	ATGTTGTGAA
ATACAGTCCA	CAGTGCAAAC	TGCTCATCGT	CTCAAACCCA
GTGGATATCT	TGACCTACGT	GGCTTGGAAG	ATCAGCGGCT
TCCCCAAAAA	CAGAGTTATT	GGAAGTGGTT	GCAATCTGGA
TTCGGCTCGG	TTCCGTTACC	TGATGGGAGA	AAGGCTGGGA
GTTCATCCAC	TGAGCTGTCA	CGGGTGGGTC	CTGGGAGAGC
ATGGCGACTC	CAGTGTGCCT	GTGTGGAGTG	GTGTGAACGT
CGCCGGCGTC	TCCCTGAAGT	CTCTGAACCC	GCAGCTGGGC
ACGGATGCAG	ACAAGGAGCA	GTGGAAGGAT	GTGCACAAGC
AGGTGGTTGA	CAGTGCATAC	GAAGTGATCA	AGCTGAAAGG
TTACACATCC	TGGGCCATTG	GCCTCTCCGT	GGCAGACTTG
GCCGAGAGCA	TAATGAAGAA	CCTTAGGCGG	GTGCATCCCA
TTTCCACCAT	GATTAAGGGT	CTCTATGGAA	TCAAGGAGGA
TGTCTTCCTC	AGCGTCCCAT	GTATCCTGGG	ACAAAATGGA
ATCTCAGATG	TTGTGAAGGT	GACACTGACT	CCTGACGAGG
AGGCCCGCCT	GAAGAAGAGT	GCAGATACCC	TCTGGGGAAT
CCAGAAGGAG	CTGCAGTTC T	AA AGTCTTCC	CAGTGTCCTA
GCACTTCACT	GTCCAGGCTG	CAGCAGGGTT	TCTATGGAGA
CCACGCACTT	CTCATCTGAG	CTGTGGTTAG	TCCAGTTGGT
CCAGTTGTGT	TGAGGTGGTC	TGGGGGAAAT	CTCAGTTCCA
CAGCTCTACC	CTGCTAAGTG	GTACTTGTGT	AGTGGTAACC
TGGTTAGTGT	GACAATCCCA	CTGTCTCCAA	GACACACTGC
CAACTGCATG	CAGGCTTTGA	TTACCCTGTG	AGCCTGCTGC
ATTGCTGTGC	TACGCACCCT	CACCAAACAT	GCCTAGGCCA
TGAGTTCCCA	GTTAGTTATA	AGCTGGCTCC	AGTGTGTAAG
TCCATCGTGT	ATATCTTGTG	CATAAATGTT	CTACAGGATA
TTTTCTGTAT	TATATGTGTC	TGTAGTGTAC	ATTGCAATAT
TACGTGAAAT	GTAAGATCTG	CATATGGATG	ATGGAACCAA
CCACTCAAGT	GTCATGCCAA	GGAAAACACC	AAATAAACCT
TGAACAGTG	FIG	$\mathcal{O}\Lambda$	
	~ / / / ~	<i>1</i> 🚨	

FIG. 2A 2/17 MAALKDQLIVNLLKEEQVPQNKITVVGVGAVGMACAISILMKDLADEL ALVDVIEDKLKGEMMDLQHGSLFLKTPKIVSSKDYSVTANSKLVIITA GARQQEGESRLNLVQRNVNIFKFIIPNVVKYSPQCKLLIVSNPVDILT YVAWKISGFPKNRVIGSGCNLDSARFRYLMGERLGVHPLSCHGWVLGE HGDSSVPVWSGVNVAGVSLKSLNPQLGTDADKEQWKDVHKQVVDSAYE VIKLKGYTSWAIGLSVADLAESIMKNLRRVHPISTMIKGLYGIKEDVF LSVPCILGQNGISDVVKVTLTPDEEARLKKSADTLWGIQKELQF

FIG. 2B

FIG. 3

FIG. 5

4/17

5/17

FIG. 7B

FIG. 7C 6/17

GLUCOSE

NAD+

2 NADH

PYRUVATE

CYCLING

ACETYL COA

NADH

LACTATE

LDH

ACETYL COA

NADH

PYRUVATE

LTCA

PYRUVATE

TCA

NADH

NAD

FIG. 8

FIG. 9 8/17

- RAT MSKNSGGYTYTETSVLFFHFKVPKDSKSK
- •MOUSE MSKSSGGYTYTETSVLFFHFKVSKDSKSK
- HUMAN MGEPSGGYTYTQTSIFLFHAKIPFGSKSN
- CONS MSK SGGYTYTETSVLFFHFKVPKDSKSK

FIG. 11

CGCTCTACTT	GCTGTAGG AC	TCTGGGTG AT	G GGAGAAGAG	CGGGAGGCA
GTTCTTTAAC	CGTG TAA GAG	GAGGGACCAT	<u>C</u> CCTTTTGGG	GTTCATCAAG
ATG AGTAAGA	ACTCAGGCGG	CTACACATAT	ACGGAGACCT	CAGTATTATT
* * *				
TTTCCATTTC	AAGGTCCCAA	AAGATTCAAA	${\tt GTCCAAG} {\bm {\rm ATG}}$	GCAGCCCTCA
			\$\$\$	
AGGACCAGCT	GATTGTGAAT	CTTCTTAAGG	AAGAACAGGT	CCCCCAGAAC
AAGATTACAG	TTGTTGGGGT	TGGTGCTGTT	GGCATGGCTT	GTGCCATCAG
TATCTTAATG	AAGGACTTGG	CTGATGAGCT	TGCCCTTGTT	GATGTCATAG
AAGATAAGCT	AAAGGGAGAG	ATGATGGATC	TTCAGCATGG	CAGCCTTTTC
CTTAAGACAC	CAAAAATTGT	CTCCAGCAAA	GATTATAGTG	TGACTGCAAA
CTCCAAGCTG	GTCATTATCA	CCGCGGGGGC	CCGTCAGCAA	GAGGGAGAGA
GCCGGCTCAA	TTTGGTCCAG	CGAAACGTGA	ACATCTTCAA	GTTCATCATT
CCAAATGTTG	TGAAATACAG	TCCACAGTGC	AAACTGCTCA	TCGTCTCAAA
CCCAGTGGAT	ATCTTGACCT	ACGTGGCTTG	GAAGATCAGC	GGCTTCCCCA
AAAACAAAGT	TATTGGAAGT	GGTTGCAATC	TGGATTCGGC	TCGGTTCCGT
TACCTGATGG	GAGAAAGGCT	GGGAGTTCAT	CCACTGAGCT	GTCACGGGTG
GGTCCTGGGA	GAGCATGGCG	ACTCCAGTGT	GCCTGTGTGG	AGTGGTGTGA
ACGTCGCCGG	CGTCTCCCTG	AAGTCTCTGA	ACCCGCAGCT	GGGCACGGAT
GCAGACAAGG	AGCAGTGGAA	GGATGTGCAC	AAGCAGGTGG	TTGACAGTGC
ATACGAAGTG	ATCAAGCTGA	AAGGTTACAC	ATCCTGGGCC	ATTGGCCTCT
CCGTGGCAGA	CTTGGCCGAG	AGCATAATGA	AGAACCTTAG	GCGGGTGCAT
CCCATTTCCA	CCATGATTAA	GGGTCTCTAT	GGGATCAAGG	AGGATGTCTT
CCTCAGCGTC	CCATGTATCC	TGGGACAAAA	TGGAATCTCA	GATGTTGTGA
AGGTGACACT	GACTCCTGAC	GAGGAGGCCC	GCCTGAAGAA	GAGTGCAGAT
ACCCTCTGGG	GAATCCAGAA	GGAGCTGCAG	$\mathtt{TTC} \mathbf{TAA} \mathtt{AGTC}$	TTCCCAGTGT
CCTAGCACTT	CACTGTCCAG	GC TGCAGCAG	GGTTTCTATG	GAGACCACGC
ACTTCTCATC	TGAGCTGTGG	TTAGTCCAGT	TGGTCCA	

- * MITOCHONDRIAL START SITE
- •\$ CYTOSOLIC START SITE
- •OVERLINED 5'ORF
- •PRIMER SEQUENCES ARE UNDERLINED

FIG. 12A 10/17 MSKNSGGYTYTETSVLFFHFKVPKDSKSKMAALKDQLIVNLLKEEQVPQ
NKITVVGVGAVGMACAISILMKDLADELALVDVIEDKLKGEMMDLQHGS
LFLKTPKIVSSKDYSVTANSKLVIITAGARQQEGESRLNLVQRNVNIFK
FIIPNVVKYSPQCKLLIVSNPVDILTYVAWKISGFPKNRVIGSGCNLDS
ARFRYLMGERLGVHPLSCHGWVLGEHGDSSVPVWSGVNVAGVSLKSLNP
QLGTDADKEQWKDVHKQVVDSAYEVIKLKGYTSWAIGLSVADLAESIMK
NLRRVHPISTMIKGLYGIKEDVFLSVPCILGQNGISDVVKVTLTPDEEA
RLKKSADTLWGIQKELQF

FIG. 12B

GAGCAACTTGCCGCTCTACTTGCTGTAGGGCTCTGGGTGATGGGAGAAGAGCGGGAG GGCAGCTTTCTAACCATATAAGAGGAGATACCATCCCCTTTTGGTTCATCAAG ATGA GTAAGTCCTCAGGCGGCTACACGTACACGGAGACCTCGGTATTATTTTTCCATTTCA AGGTCTCAAAAGATTCAAAGTCCAAGATGGCAACCCTCAAGGACCAGCTGATTGTGA ATCTTCTTAAGGAAGAGCAGGCTCCCCAGAACAAGATTACAGTTGTTGGGGTTGGTG CTGTTGGCATGGCTTGTGCCATCAGTATCTTAATGAAGGACTTGGCGGATGAGCTTG CCCTTGTTGACGTCATGGAAGACAAACTCAAGGGCGAGATGATGGATCTCCAGCATG GCAGCCTCTTCCTTAAAACACCAAAAATTGTCTCCAGCAAAGACTACTGTGTAACTG CGAACTCCAAGCTGGTCATTATCACCGCGGGGGCCCGTCAGCAAGAGGGGGGAGAGCC GGCTCAACCTGGTCCAGCGAAACGTGAACATCTTCAAGTTCATCATTCCCAACATTG TCAAGTACAGTCCACACTGCAAGCTGCTGATCGTCTCCAATCCAGTGGATATCTTGA CCTACGTGGCTTGGAAAATCAGTGGCTTTCCCAAAAACCGAGTAATTGGAAGTGGTT GCAATCTGGATTCAGCGCGGTTCCGTTACCTGATGGGAGAGAGGCTGGGGGTTCACG CGCTGAGCTGTCACGGCTGGGTCCTGGGAGAACATGGCGACTCCAGTGTGCCTGTGT GGAGTGGTGAATGTTGCCGGCGTCTCCCTGAAGTCTCTTAACCCAGAACTGGGCA $\tt CTGACGCAGACAAGGAGCAGTGGAAGGAGGTTCACAAGCAGGTGGTGGACAGTGCCT$ ACGAGGTGATCAAGCTGAAAGGTTACACATCCTGGGCCATTGGCCTCTCTGTGGCAG ACTTGGCTGAGAGCATAATGAAGAACCTTAGGCGGGTGCATCCCATTTCCACCATGA TTAAGGGTCTCTATGGAATCAATGAGGATGTCTTCCTCAGTGTCCCATGTATCCTGG GACAAAATGGAATCTCGGATGTTGTGAAGGTGACACTGACTCCTGAGGAAGAGGCCC GCCTGAAGAAGAGCGCAGACACCCTCTGGGGAATCCAGAAGGAGCTGCAGTTCTAAA GTCTTCCCCGTGTCCTAGCACTTCACTGTCCAGGCTGCAGCAGGGCTTCTAGGCAGA CCACACCCTTCTCGTCTGAGCTGTGGTTAGTACAGTGGTGTTGAGATGGTGTGGGGA AACATCTCACTCCCCACAGCTCTGCCCTGCTGCCAAGTGGTACTTGTGTAGTGGTGA CCTGGTTAGTGTGACAGTCCCACTGTCTCTGAGACACTGCCAACTGCAGGCTTCG ATTACCCCTGTGAGCCTGCTGCATTGCTGCCCTGCACCAAACAGCCTAGGCCGACGA GTTCCCAGTTAAGTCGTATAACCTGGCTCCAGTGTGTACGTCCATGATGCATATCTT GTGCATAAATGTTGTACAGGATATTTTATATATATATGTGTCTGTAGTGTGCATTG TCATGCCAAATAAAACCTTGAACAGTG

FIG. 12C

MSKSSGGYTYTETSVLFFHFKVSKDSKSKMATLKDQLIVNLLKEEQAPQ
NKITVVGVGAVGMACAISILMKDLADELALVDVMEDKLKGEMMDLQHGS
LFLKTPKIVSSKDYCVTANSKLVIITAGARQQEGESRLNLVQRNVNIFK
FIIPNIVKYSPHCKLLIVSNPVDILTYVAWKISGFPKNRVIGSGCNLDS
ARFRYLMGERLGVHALSCHGWVLGEHGDSSVPVWSGVNVAGVSLKSLNP
ELGTDADKEQWKEVHKQVVDSAYEVIKLKGYTSWAIGLSVADLAESIMK
NLRRVHPISTMIKGLYGINEDVFLSVPCILGQNGISDVVKVTLTPEEEA
RLKKSADTLWGIOKELOF

FIG. 12D

CTCTGGTGTTTACTTGAGAAGCCCTGGCTGTGTCCTTGCTGTAGGAGCCGGAGTAG CTCAGAGTGATCTTGTCTGAGGAAAGGCCAGCCCCACTTGGTTAATAAACCGCGAT GGGTGAACCCTCAGGAGGCTATACTTACACCCAAACGTCGATATTCCTTTTCCACG CTAAGATTCCTTTTGGTTCCAAGTCCAATATGGCAACTCTAAAGGATCAGCTGATT TATAATCTTCTAAAGGAAGAACAGACCCCCCAGAATAAGATTACAGTTGTTGGGGT TGGTGCTGTTGGCATGGCCTGTGCCATCAGTATCTTAATGAAGGACTTGGCAGATG AACTTGCTCTTGTTGATGTCATCGAAGACAAATTGAAGGGAGAGATGATGGATCTC CAACATGGCAGCCTTTTCCTTAGAACACCAAAGATTGTCTCTGGCAAAGACTATAA TGTAACTGCAAACTCCAAGCTGGTCATTATCACGGCTGGGGCACGTCAGCAAGAGG GAGAAAGCCGTCTTAATTTGGTCCAGCGTAACGTGAACATATTTAAATTCATCATT CCTAATGTTGTAAAATACAGCCCGAACTGCAAGTTGCTTATTGTTTCAAATCCAGT GGATATCTTGACCTACGTGGCTTGGAAGATAAGTGGTTTTCCCAAAAACCGTGTTA TTGGAAGTGGTTGCAATCTGGATTCAGCCCGATTCCGTTACCTGATGGGGGAAAGG CTGGGAGTTCACCCATTAAGCTGTCATGGGTGGGTCCTTGGGGAACATGGAGATTC ${\tt CAGTGTGCCTGTATGGAGTGGAATGATGTTGCTGGTGTCTCTCTGAAGACTCTGC}$ ACCCAGATTTAGGGACTGATAAAGATAAGGAACAGTGGAAAGAGGTTCACAAGCAG GTGGTTGAGAGTGCTTATGAGGTGATCAAACTCAAAGGCTACACATCCTGGGCTAT TGGACTCTCTGTAGCAGATTTGGCAGAGAGTATAATGAAGAATCTTAGGCGGGTGC ACCCAGTTTCCACCATGATTAAGGGTCTTTACGGAATAAAGGATGATGTCTTCCTT AGTGTTCCTTGCATTTTGGGACAGAATGGAATCTCAGACCTTGTGAAGGTGACTCT GACTTCTGAGGAAGAGCCCCGTTTGAAGAAGAGTGCAGATACACTTTGGGGGATCC AAAAGGAGCTGCAATTTTAAAGTCTTCTGATGTCATATCATTTCACTGTCTAGGCT ACAACAGGATTCTAGGTGGAGGTTGTGCATGTTGTCCTTTTTATCTGATCTGTGAT TAAAGCAGTAATATTTTAAGATGGACTGGGAAAAACATCAACTCCTGAAGTTAGAA ATAAGAATGGTTTGTAAAATCCACAGCTATATCCTGATGCTGGATGGTATTAATCT TGTGTAGTCTTCAACTGGTTAGTGTGAAATAGTTCTGCCACCTCTGACGCACCACT GCCAATGCTGTACGTACTGCATTTGCCCCTTGAGCCAGGTGGATGTTTACCGTGTG TTATATAACTTCCTGGCTCCTTCACTGAACATGCCTAGTCCAACATTTTTTCCCAG TGAGTCACATCCTGGGATCCAGTGTATAAATCCAATATCATGTCTTGTGCATAATT CTTCCAAAGGATCTTATTTTGTGAACTATATCAGTAGTGTACATTACCATATAATG TAAAAAGATCTACATACAAACAATGCAACCAACTATCCAAGTGTTATACCAACTAA AACCCCCAATAAACCTTGAACAGTG

FIG. 12E

MGEPSGGYTYTQTSIFLFHAKIPFGSKSNMATLKDQLIYNLLKEEQTP QNKITVVGVGAVGMACAISILMKDLADELALVDVIEDKLKGEMMDLQH GSLFLRTPKIVSGKDYNVTANSKLVIITAGARQQEGESRLNLVQRNVN IFKFIIPNVVKYSPNCKLLIVSNPVDILTYVAWKISGFPKNRVIGSGC NLDSARFRYLMGERLGVHPLSCHGWVLGEHGDSSVPVWSGMNVAGVSL KTLHPDLGTDKDKEQWKEVHKQVVESAYEVIKLKGYTSWAIGLSVADL AESIMKNLRRVHPVSTMIKGLYGIKDDVFLSVPCILGQNGISDLVKVT LTSEEEARLKKSADTLWGIOKELOF

FIG. 12F

CLUSTALW (V1.4) MULTIPLE SEQUENCE ALIGNMENT

```
3 SEQUENCES ALIGNED
                             ALIGNMENT SCORE = 26102
                             CONSERVED IDENTITIES = 1013
GAPS INSERTED = 78
PAIRWISE ALIGNMENT MODE: SLOW
PAIRWISE ALIGNMENT PARAMETERS:
   OPEN GAP PENALTY = 10.0
                             EXTEND GAP PENALTY = 5.0
MULTIPLE ALIGNMENT PARAMETERS:
   OPEN GAP PENALTY = 0.0
                             EXTEND GAP PENALTY = 5.0
                             TRANSITIONS: WEIGHTED
   DELAY DIVERGENT = 40%
PROCESSING TIME: 8.7 SECONDS
                    CGCTC-TACTTGCTGT-AGGA-CTCTGG-GTGA-TGG
RAT
                                                            32
       1
HUM
                    CTCTGGTGTTTACT - TGAGAAGCCCTGGCTGTCCTTG
                                                            38
MOU
       1 GAGCAACTTGGCGCTC - TACTTGCTGT - AGGG - CTCTGG - - GTGA - - TGG
                                                            43
                         * ** ** * **
RAT
      33 GAG-AAGAGCGGGAGGGCAGTTCTT--TAACCGTGTAAGAGGGGGGCCA
                                                            79
HUM
      39 CTGTAGGAGCCGGA~-GTAGCTCAGAGTGATCTTGTCTGAGGAAAGGCCA
                                                            86
MOU
      44 GAG-AAGAGCGGGAGGCAGCTTTC--TAACCATATAAGAGGAGATACCA
                                                            90
                                    * * * * * ****
           * * **** *** * ** *
RAT
      80 TCCCT-TTTGG--GGTTCATCAAGATGAGTAAGAACTCAGGCGGCTACAC 126
HUM
      87 GCCCCACTTGGTTAATAAACCGCGATGGGTGAACCCTCAGGAGGCTATAC 136
      91 TCCCC-TTTTG--G-TTCATCAAGATGAGTAAGTCCTCAGGCGGCTACAC 136
MOU
                               **** ** *
                                           ***** **** **
RAT
     127 ATATACGGAGACCTCAGTATTATTTTTCCATTTCAAGGTCCCAAAAGATT 176
      137 TTACACCCAAACGTCGATATTCCTTTTCCACGCTAAGATTCCTTTTGGTT 186
HUM
      137 GTACACGGAGACCTCGGTATTATTTTTCCATTTCAAGGTCTCAAAAGATT
MOU
          *** * *
RAT
     177 CAAAGTCCAAGATGCCAGCCCTCAAGGACCAGCTGATT-GTGAATCTTCT 225
      187 CCAAGTCCAATATGGCAACTCTAAAGGATCAGCTGATTTAT-AATCTTCT 235
HUM
      187 CAAAGTCCAAGATGGCAACCCTCAAGGACCAGCTGATT-GTGAATCTTCT 235
MOU
         226 TAAGGAAGAACAGGTCCCCCAGAACAAGATTACAGTTGTTGGGGTTGGTG 275
RAT
     236 AAAGGAAGAACAGACCCCCAGAATAAGATTACAGTTGTTGGGGTTGGTG 285
HUM
      236 TAAGGAAGAGCAGGCTCCCCAGAACAAGATTACAGTTGTTGGGGTTGGTG 285
MOU
                        ******* **************
          ****** ***
RAT
     276 CTGTTGGCATGGCTTGTGCCATCAGTATCTTAATGAAGGACTTGGCTGAT 325
HUM
     286 CTGTTGGCATGGCCTGTGCCATCAGTATCTTAATGAAGGACTTGGCAGAT
      286 CTGTTGGCATGGCTTGTGCCATCAGTATCTTAATGAAGGACTTGGCGGAT 335
MOU
```

FIG. 13A

RAT	326	GAGCTTGCCCTTGTTGATGTCATAGAAGATAAGCTAAAGGGAGAGATGAT	375
HUM	336	GAACTTGCTCTTGTTGATGTCATCGAAGACAAATTGAAGGGAGAGATGAT	385
MOU	336	GAGCTTGCCCTTGTTGACGTCATGGAAGACAAACTCAAGGGCGAGATGAT	385
		** **** ****** ***** **** * * * * * * *	
RAT	376	GGATCTTCAGCATGGCAGCCTTTTCCTTAAGACACCAAAAATTGTCTCCA	425
			435
HUM	386	GGATCTCCAACATGGCAGCCTTTTCCTTAGAACACCAAAGATTGTCTCTG	
MOU	386		435
		***** ** ******* ***** ****** *****	
RAT	426	GCAAAGATTATAGTGTGACTGCAAACTCCAAGCTGGTCATTATCACCGCG	475
	436		485
HUM			
MOU	436		485
		****** **	
RAT	476	GGGGCCCGTCAGCAAGAGGGAGAGAGCCGGCTCAATTTGGTCCAGCGAAA	525
HUM	486	GGGGCACGTCAGCAAGAGGGAGAAAGCCGTCTTAATTTGGTCCAGCGTAA	
	486	GGGGCCCGTCAGCAAGAGGGGGAGAGCCGGCTCAACCTGGTCCAGCGAAA	
MOU	400	**** ******** ** ** ** ** ** ** ** ** *	535
		***** ********** ** **** ** ** ** **	
RAT	526	CGTGAACATCTTCAAGTTCATCATTCCAAATGTTGTGAAATACAGTCCAC	575
HUM	536	CGTGAACATATTTAAATTCATCATTCCTAATGTTGTAAAATACAGCCCGA	585
MOU	536	CGTGAACATCTTCAAGTTCATCATTCCCAACATTGTCAAGTACAGTCCAC	
1100	550	******* ** ** ** ****** ** ** *** ** **	505
RAT	576	AGTGCAAACTGCTCATCGTCTCAAACCCAGTGGATATCTTGACCTACGTG	625
HUM	586	ACTGCAAGTTGCTTATTGTTTCAAATCCAGTGGATATCTTGACCTACGTG	635
MOU	586	ACTGCAAGCTGCTGATCGTCTCCAATCCAGTGGATATCTTGACCTACGTG	635
		* **** *** ** ** ** ** ** *********	
RAT	626	GCTTGGAAGATCAGCGGCTTCCCCAAAAACAAAGTTATTGGAAGTGGTTG	675
MUH	636	GCTTGGAAGATAAGTGGTTTTCCCAAAAACCGTGTTATTGGAAGTGGTTG	685
MOU	636	GCTTGGAAAATCAGTGGCTTTCCCAAAAACCGAGTAATTGGAAGTGGTTG	685
		****** ** ** ** ** ** ****** ** *******	
77 M	676		725
RAT	• • •	CAATCTGGATTCGGCTCGGTTCCGTTACCTGATGGGAGAAAGGCTGGGAG	
HUM		${\tt CAATCTGGATTCAGCCCGATTCCGTTACCTGATGGGGGAAAGGCTGGGAG}$	735
MOU	686	CAATCTGGATTCAGCGCGGTTCCGTTACCTGATGGGAGAGAGGCTGGGGG	735
		******* ** ** ** ******** ** ** ***** *	
RAT	726	TTCATCCACTGAGCTGTCACGGGTGGGTCCTGGGAGAGCATGGCGACTCC	775
HUM		TTCACCCATTAAGCTGTCATGGGTGGGTCCTTGGGGAACATGGAGATTCC	
		TTCACGCGCTGAGCTGTCACGGCTGGGTCCTGGGAGAACATGCGACTCC	
MOU	/36		/05

RAT	776	AGTGTGCCTGTGGAGTGGTGTGAACGTCGCCGGCGTCTCCCTGAAGTC	825
HUM	786	AGTGTGCCTGTATGGAGTGGAATGAATGTTGCTGGTGTCTCTCTGAAGAC	835
MOU		AGTGTGCCTGTGTGGAGTGTGTGAATGTTGCCGGCGTCTCCCTGAAGTC	
		********** ****** *** ** ** ** ** ** **	

FIG. 13B 14/17

RAT	826	TCTGAACCCGCAGCTGGGCACGGATGCAGACAAGGAGCAGTGGAAGGATG	875
HUM	836	TCTGCACCCAGATTTAGGGACTGATAAAGATAAGGAACAGTGGAAAGAGG	885
MOU	836	TCTTAACCCAGAACTGGGCACTGACGCAGACAAGGAGCAGTGGAAGGAGG	885
		*** **** * * * * * * * * * * * * * * * *	
D 7 CC	076		005
RAT	876	TGCACAAGCAGGTGGTTGACAGTGCATACGAAGTGATCAAGCTGAAAGGT	925
HUM	886	TTCACAAGCAGGTGGTTGAGAGTGCTTATGAGGTGATCAAACTCAAAGGC	935
MOU	886	TTCACAAGCAGGTGGTGGACAGTGCCTACGAGGTGATCAAGCTGAAAGGT	935
		* ******* ** ** **** ** ** ***** ** **	
RAT	926	TACACATCCTGGGCCATTGGCCTCTCCGTGGCAGACTTGGCCGAGAGCAT	975
HUM	936	TACACATCCTGGGCTATTGGACTCTCTGTAGCAGATTTGGCAGAGAGTAT	985
MOU	936	TACACATCCTGGGCCATTGGCCTCTCTGTGGCAGACTTGGCTGAGAGCAT	985
		************ ***** ** ** ** ** ** ** **	
RAT	976	AATGAAGAACCTTAGGCGGGTGCATCCCA - TTTCCACCATGATTAAGGGT	1024
HUM	986	AATGAAGAATCTTAGGCGGGTGCA - CCCAGTTTCCACCATGATTAAGGGT	1034
MOU	986	AATGAAGAACCTTAGGCGGGTGCATCCCA - TTTCCACCATGATTAAGGGT	1034
		******* ******** ****	
ייי ע כו	1005		1074
RAT	1025	CTCTATGGGATCAAGGAGGATGTCTTCCTCAGCGTCCCATGTATCCTGGG	
HUM	1035	CTTTACGGAATAAAGGATGATGTCTTCCTTAGTGTTCCTTGCATTTTGGG	1084
MOU	1035	CTCTATGGAATCAATGAGGATGTCTTCCTCAGTGTCCCATGTATCCTGGG	1084
		** ** ** ** ** ** ** ** ** ** ** ** **	
RAT	1075	ACAAAATGGAATCTCAGATGTTGTGAAGGTGACACTGACTCCTGACGAGG	1124
HUM	1085	ACAGAATGGAATCTCAGACCTTGTGAAGGTGACTCTGACTTCTGAGGAAG	1134
MOU	1085	ACAAAATGGAATCTCGGATGTTGTGAAGGTGACACTGACTCCTGAGGAAG	1134
1400	1005	*** ****** ** ******* ** ***** *** ***	TIDI
RAT	1125	AGGCCCGCCTGAAGAAGAGTGCAGATACCCTCTGGGGAATCCAGAAGGAG	1174
HUM	1135	AGGCCCGTTTGAAGAAGAGTGCAGATACACTTTGGGGGATCCAAAAGGAG	1184
MOU	1135	AGGCCCGCCTGAAGAAGAGCGCAGACACCCTCTGGGGAATCCAGAAGGAG	1184
		****** ****** **** ** ** ** **** ****	
RAT	1175	CTGCAGTTCTAAAGTCTTCCCAGTGTCCTAGCACTTCACTGTCCAGGCTG	1224
HUM	1185		1233
MOU	1182	CTGCAGTTCTAAAGTCTTCCCCGTGTCCTAGCACTTCACTGTCCAGGCTG	1234
		**** ** ******	
RAT	1225	CAGCAGGGTTTCTATGG-AGACCACGCAC-TTC-TCATCTGAG	1264
HUM	1234	CAACAGGATT-CTAGGTGG-AGGTTGTGCATGTTGTCCTTTTTATCTGAT	1281
MOU	1235	CAGCAGGGCTTCTA GGCAGACCACACCC - TT C - TC GTCTGAG	1274
		** *** * *** * * * * * * * * *	
ייי א כו	1005		1200
		CTGTGGTTAGTCCAGTTG - GTCCAAAG	1290
		CTGTGATTAAAGCAGTAATATTTTAAGATGGACTGGGAAAAACATCAACT	
MOU	1275	CTGTGGTTAGTACAGT-G-GTGTTGAGATGGTGTGGGGAAA-CATCT	1318
		**** *** *** * **	

FIG. 13C 15/17

RAT	1291		1290
HUM	1332	CCTGAAGTTAGAAATAAGAATGGTTTGTAAAATCCACAGCTATATCCTGA	1381
MOU	1319	CACTC	1341
RAT	1291		1290
HUM	1382	TGCTGGATGGTATTAATCTTGTGTAGTCTTCAACTGGTTAGTGTGAAATA	1431
MOU	1342	TGCCAAGTGGTACTTGTGTAGTGGTGACCTGGTTAGTGTGACA	1384
RAT	1291		1290
MUH	1432	$\tt GTTCTGCCACCTCTGACGCACCACTGCCAATGCTGTACGTAC$	1481
MOU	1385	${\tt GTCCCACTGTCTCTGAGACAC-ACTGCCAACTGCA-G-GCTTCGATTA}$	1429
RAT	1291		1290
MUH	1482	$\tt CCCCTTGAGCCAGGTGGATGTTTACCGTGTGTTATATAACTTCCTGGCTC$	1531
MOU	1430	CCCCTG-TG-A-GCC-TGCTGC-A-TTGCTG-C-C	1456
RAT	1291		1290
MUH	1532	$\tt CTTCACTGAACATGCCTAGTCCAACATTTTTTCCCAGT-GAGTCACATC-$	1579
MOU	1457	$\tt CTGCACCAAACA-GCCTAGGCCGACGAGTTCCCAGTTAAGTCGTATAA$	1503
RAT	1291		1290
HUM	1580	CTGGGATCCAGTGTATAAATCCAATAT -CATGTCTTGTGCATAATTCTTC	1628
MOU	1504	CCTGGCTCCAGTGTACGTCCATGATGCATATCTTGTGCATAAATGTTG	1553
RAT	1291		1290
HUM	1629	CAAAGGATCTTATTT-TGTGAACTATATCAGTAGTGTACATTACCATATA	1677
MOU	1554	TACAGGATATTTTATATATATATGTGTCTGTAGTGTGCATTGCAATATT	1603
RAT	1291		1290
HUM	1678	ATGTAA-AAAGATCTACATACAAACAATGCAACCAACTATCCAAGTG	1723
		ATGTGAGATGTAAGATCTGCATATGGATGATGGAACCAACC	
RAT	1291	1290	
		TTATACCAACTAAAACCCCCAATAA - ACCTTGAACAGTG 1761	
MOU	1654	TCATGCCAAATAAAACCTTGAACAGTG 1680	

FIG. 14 17/17