Dundigal, Hyderabad - 500 043 Ph: 8886234501, 8886234502 jare.ac.in

LABORATORY WORK SHEET

		Date:
Roll No. 2295540305 Name: E-63535		
Exp No: Experiment Name:	longitudinal vibration of	herscal spring

DAY TO DAY EVALUATION:

		Algorithm	Source Code	Program Execution		
	Preparation	Performance in the Laboratory	Calculations and Results and Error Analysis		Viva voce	Total
Max. Marks	5	5	10	5	5	30
Obtained	4	4	4	4)	19

Signature of Lab I/C

START WRITING FROM HERE:

Aim: To study the longitudinal vibration of helical sking and to determine the frewhency and time period of osceration.

Description:

one end of open coil stoing is fixed to the nut having a hole which itself is mounted on a Msstoip fixed on one side of the main frame the lower end of the string is attached to the pattorn carrying the weight.

Procedure:

- -> fix one end of the helical shing to upper somew
- -> Determine free rength
- -> put some weight to piatform and notedown the deflection.
- -> Stoetch the spring through some distance and relax.

calculation:

* count the time rewarded in sec for say 10.20 oscillation

* Repeat the Procedure for different weights.

Formula:

$$\rightarrow$$
 stiffness (x) = $\frac{\omega}{s}$ kg/m

Observation:

٥ بر . ۶	weight attached (9)	Deflection in Sking (tm) (tm)	staffness (K) (Kg/cm)	(KWIKB) Styttuezz Weau
1.	150	110	3.75	
2.	500	L(1-4	12 - 0	[0.23
3.	650	u3.5	\ 4.94	

5 NO	werght attached (9)	no of	Time remusied for In)	Theo exp (sec)	(761) 6x6 1460	(HZ)	(HS)
(.	(30	10	Ц	1.49	4	0.4	2-5
2 ·	500	10	4-65	4-48	L4-65	0.465	2.15
3.	6 50	10	5-7L	6-47	5.7	0.57	1-75

Precautions:

- * Do the experiment property
- * Keep the loads accordingly
- * stay for, while the load is been oscillated.

Result:

The frewvency and time - Period oscillation of the longitudinal helical spring is being determined.

S-NO	werght	Deflection	Time (sec)	(km)	Tact	Tth	Fact	Fth
[-	500	Ų	5.3	9.1	0-53	4-61	1-8	٥٠٢
2.	1000	6	5.7	9-1	0.57	6-2r	1.75	٥-٢

$$Km = \frac{\omega}{8} = \frac{K1tk2}{2} = \frac{(0.75t7.5)}{2} = q.1$$
 $K_1 = \frac{\omega}{8} = \frac{43}{4} = 10.75$
 $K_2 = \frac{45}{6} = 7.5$

$$Ta(t = \frac{T}{h} = \frac{53}{10} = 0.53 \text{ sec}$$

$$= 2\pi \times \sqrt{500 \times 10^{3}} \times 9.81$$

$$= \frac{1}{10} = 0.21$$

$$= \frac{1}{10} = \frac{1}{10} = 1.88 \text{ Hz}$$