Assignment 1 - OpenMP

- Use OpenMP to parallelize the deqn code
 - The overall objective is to achieve good speedup by inserting OpenMP directives in the deqn code
 - You also need to
 - benchmark the runtime of each relevant loop and the runtime of the whole parallel program against the number of threads
 - Analyze the overhead of OpenMP

change the num of throunds

Assignment 1 - OpenMP

- Write a report
 - Explain in detail what you did with the sequential code
 - benchmark the runtime of each relevant loop and the runtime of the whole parallel program against the number of threads; present the runtimes in graph or table; analyze the results
 - Discuss the iteration scheduling in your program
 - Analyze the overhead of OpenMP
 - Presentation skills, spelling, punctuation and grammar
 - Up to four A4 pages

Submission

- Put all the codes and the report (pdf file) in a package and submit the package through Tabula
- Deadline: 12 noon, Feb 5th, Monday, 2019

degn

- Model the transfer of heat through a material
- **Expressed as a partial differential equation**

We toppose
$$\frac{\partial u}{\partial t} - \alpha(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}) = 0$$
 Fine t , and (x, y)

Discretise the equation over time and space using finite difference method

$$u_{x,y}^{t+k} = ru_{x+h_x,y}^t + ru_{x-h_x,y}^t + r'u_{x,y+h_y}^t + r'u_{x,y-h_y}^t + (1 - 2r - 2r')u_{x,y}^t$$

Given the initial temperature of the material, we can calculate the temperature of the material at any time point and space location

Data Dependency

$$\begin{aligned} \mathbf{u}_{x,y}^{t+k} &= r u_{x+h_x,y}^t + r u_{x-h_x,y}^t + r' u_{x,y+h_y}^t + r' u_{x,y-h_y}^t + (1-2r-2r') u_{x,y}^t \\ \mathbf{t} & \mathbf{u}_{\mathbf{x},\mathbf{y}-\mathbf{h}} & \mathbf{u}_{\mathbf{x},\mathbf{y}} \\ \mathbf{u}_{\mathbf{x}-\mathbf{h},\mathbf{y}} & \mathbf{u}_{\mathbf{x}+\mathbf{h},\mathbf{y}} & \mathbf{u}_{\mathbf{x}+\mathbf{h},\mathbf{y}} \\ \mathbf{t}+\mathbf{k} & \mathbf{u}_{\mathbf{x}-\mathbf{h},\mathbf{y}} & \mathbf{u}_{\mathbf{x},\mathbf{y}} & \mathbf{u}_{\mathbf{x}+\mathbf{h},\mathbf{y}} \\ \mathbf{t}+\mathbf{k} & \mathbf{u}_{\mathbf{x}-\mathbf{h},\mathbf{y}} & \mathbf{u}_{\mathbf{x}+\mathbf{h},\mathbf{y}} \\ \mathbf{t}+\mathbf{k} & \mathbf{u}_{\mathbf{x}-\mathbf{h},\mathbf{y}} & \mathbf{u}_{\mathbf{x}+\mathbf{h},\mathbf{y}} & \mathbf{u}_{\mathbf{x}+\mathbf{h},\mathbf{y}} \\ \mathbf{t}+\mathbf{k} & \mathbf{u}_{\mathbf{x}-\mathbf{h},\mathbf{y}} & \mathbf{u}_{\mathbf{x}-\mathbf{h},\mathbf{y}} & \mathbf{u}_{\mathbf{x}+\mathbf{h},\mathbf{y}} \\ \mathbf{t}+\mathbf{k} & \mathbf{u}_{\mathbf{x}-\mathbf{h},\mathbf{y}} & \mathbf{u}_{\mathbf{x}-\mathbf{h},\mathbf{y}} & \mathbf{u}_{\mathbf{x}-\mathbf{h},\mathbf{y}} & \mathbf{u}_{\mathbf{x}-\mathbf{h},\mathbf{y}} \\ \mathbf{t}+\mathbf{k} & \mathbf{u}_{\mathbf{x}-\mathbf{h},\mathbf{y}} & \mathbf{u}_{\mathbf{x}-\mathbf{h},\mathbf{y}} & \mathbf{u}_{\mathbf{x}-\mathbf{h},\mathbf{y} \\ \mathbf{t}+\mathbf{k} & \mathbf{u}_{\mathbf{x}-\mathbf{h},\mathbf{y}} & \mathbf{u}_{\mathbf{x}-\mathbf{h},\mathbf{y} \\ \mathbf{t}+\mathbf{h}$$

Question: How to parallelize the computation?

Parallelism

- Each thread calculates the temperature at any time and at its local space in parallel
- Thread communication