EPC9137 1.5 kW 48 V/12 V Bi-Directional Power Module Evaluation Board Quick Start Guide

20–60 V Input, 12 V 125 A Output (Buck) 12–15 V Input, 48 V 29 A Output (Boost)

Revision 4.0

DESCRIPTION

The EPC9137 evaluation power module is designed for 48 V to/from 12 V DC-to-DC applications. It features the EPC2206 - enhancement mode eGaN® field effect transistors (FETs) with AEC-Q101 qualification. The EPC9137 is controlled using the EPC9528 controller module that includes the Microchip dsPIC33CK256MP503 16-bit digital controller. Other features include:

- High efficiency: >96% @ 12V/125A output (buck) >96% @ 48V/29A output (boost)
- Preset switching frequency: 250 kHz
- Re-programmable Average current mode control (default)
- Fault protection::
 - o Input undervoltage
 - o Input overvoltage
 - o Regulation error
 - o Input undervoltage
 - o Inductor overcurrent
 - o Overtemperature

REGULATORY INFORMATION

This power module is for evaluation purposes only. It is not a full-featured power module and cannot be used in final products. No EMI test was conducted. It is not FCC approved.

FIRMWARE UPDATES

The EPC9528 module is programmed as a Buck converter by default. To change to Boost converter, please re-program the module with the boost firmware available at the EPC website. Using the incorrect firmware could result in damage.

Every effort has been made to ensure all control features function as specified. It may be necessary to provide updates to the firmware. Please check the EPC and Microchip websites for the latest firmware updates.

Table 1: Absolute Maximum Ratings

Symbol	Parameter	Conditions	Min	Max	Units
V	la a de la constanta de la con	Buck		64	.,
V _{IN}	Input voltage	Boost		17	\ \
		Buck		125	
IOUT	Output current	Boost		29	A
T _{C, MAX}		Measured at heatsink base		95	°C

EPC9137 top view

EPC9137 bottom view

Table 2: Electrical Characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Units
V_{IN}	Input voltage	Buck	20	48	60	V
		Boost, during operation	11.3	12	16	V
		Boost, start up	12.3	12.5	16	V
V	la cont IN/I O town on coltano	Buck		20		V
V _{IN,on}	Input UVLO turn on voltage	Boost		12.3		V
V	Input UVLO turn off voltage	Buck		17.5		V
V _{IN,off}		Boost		11.3		V
V _{OUT}	Output Voltage	Buck	5	12	16	V
VOUT		Boost	20	48	50	V
t _{OUT,rise}	Output voltage rise time			100		ms
ΔV _{OUT}	Output voltage ripple	Buck, I _{OUT} = 30 A		80		mV
ΔV _{OUT}		Boost		-		mV
1	Output Current	Buck	0		125	Α
I _{OUT}		Boost	0		29	Α
1	Maximum current limit threshold	Buck, output current	130		145	Α
I _{MAX}		Boost, input current	130		145	Α
T _{MAX}	Maximum temperature limit threshold	During operation	93		98	°C
T _{Start, MAX}	Maximum temperature to start converter	Before startup, after over-temperature fault event			80	°C
f _{sw}	Switching frequency			250		kHz

ELECTRICAL PERFORMANCE

Typical efficiency and power loss

Figure 1. Measured buck converter efficiency and power loss at 12 V and 13.8 V load voltage up to 1.5 kW load power

Typical output voltage ripple

Figure 2: Measured buck converter output voltage ripple with $V_{IN} = 48 \text{ V}$, $V_{OUT} = 12 \text{ V}$, $I_{OUT} = 30 \text{ A}$

Typical transient response

Figure 3: Measured transient response with $V_{IN} = 48 \text{ V}$, $V_{OUT} = 12 \text{ V}$, output 15 A to 30 A 125 Hz transitions (Buck)

Startup waveform

Figure 4. Buck converter output voltage start up response

OPERATING CONSIDERATIONS

Buck/Boost Modes

The module is programmed with Buck mode by default. To operate as a Boost converter, please download the firmware available at the EPC website for Boost mode and re-program the control module.

Over-current protection

This module supports conventional average current mode control (ACMC).

Over-temperature protection

During operation, if the heatsink base temperature (sensed by AD590) exceeds 95°C, the over-temperature fault condition will be set, and the converter will shut down. After the temperature drops to below 80°C, the converter will be able to restart.

CONTROLLER

Please refer to EPC9528 Quick Start Guide for more information about the control module with Microchip dsPIC33CK256MP503.

The average current mode control (ACMC) is used for EPC9137.

Conventional, Robust Average Current Mode Control (ACMC)

(figure 5): With this firmware the power converter is controlled by one outer voltage loop providing a shared reference to two independent inner average current loops controlling the phase current of each converter phase. This conventional approach ensures proper current balancing between both phases of this interleaved converter, operating 180° out of phase to minimize the input current ripple and filtering. The inner current loops are adjusted to average cross-over frequencies of 10 kHz. To balance the current reference perturbation of the inner current loops, the outer voltage loop has been adjusted to an average cross-over frequency of 2 kHz, which determines the overall response time of the converter.

Figure 5. Interleaved buck converter average current mode control

Figure 6: Mechanical dimensions of the EPC9137 board

THERMAL MANAGEMENT

The EPC9137 is intended for bench evaluation at room ambient temperatures and under forced air cooling. The addition of a heatsink can significantly improve the heat dissipation from the eGaN IC's and increase the current capacity of these devices, while ensuring to not exceed the absolute maximum die temperature of 150°C.

The EPC9137 board is equipped with four mechanical spacers (S1, S2, S3, S4) that can be used to easily attach a standard eighth-brick converter heatsink as shown in figure 7, and only requires a thermal interface material (TIM), a heatsink, and screws.

The pre-installed heatsink is held in place using screws that fasten to the mechanical spacers which will accept 6 mm long M2 x 0.4 mm thread screws such as McMasterCarr 95836A109.

Figure 7: Details for attaching a heatsink to the board. (a) exploded 3D perspective, (b) top view showing the TIM location with respect to the eGaN FETs

A TIM is required between the FETs and the heatsink. The choice of TIM needs to consider the following characteristics:

- Mechanical compliance During the attachment of the heat spreader, the TIM underneath is compressed from its original thickness to the vertical
 gap distance between the spacers and the FETs. This volume compression exerts a force on the FETs. A maximum compression of 2:1 is recommended
 for maximum thermal performance and to constrain the mechanical force which maximizes thermal mechanical reliability.
- **Electrical insulation** The backside of the eGaN FET is a silicon substrate that is connected to source and thus the upper FET in a half-bridge configuration is connected to the switch-node. To prevent short-circuiting the switch-node to the grounded thermal solution, the TIM must be of high dielectric strength to provide adequate electrical insulation in addition to its thermal properties.
- **Thermal performance** The choice of thermal interface material will affect the thermal performance of the thermal solution. Higher thermal conductivity materials is preferred to provide higher thermal conductance at the interface.

EPC recommends the following thermal interface materials:

t-Global P/N: TG-A1780 X 0.5 mm (highest conductivity of 17.8 W/m.K)
 t-Global P/N: TG-A620 X 0.5 mm (moderate conductivity of 6.2 W/m.K)
 Bergquist P/N: GP5000-0.02 (~0.5 mm with conductivity of 5 W/m.K)

• **Bergquist** P/N: GPTGP7000ULM-0.020 (conductivity of 7 W/m.K)

The default TIM used for the EPC9137 is made by t-Global Technology, with P/N TG-A1780 and it 0.5 mm thick.

Thermal derating

Without sufficient cooling, the output current capability is reduced. The module temperature should be monitored to ensure the maximum temperature does not exceed the rating. Especially when the input voltage is higher than 48 V, the maximum output current is reduced.

QUICK START GUIDE

Table 3: Bill of Materials

ltem	Otv	Reference	Part Description	Manufacturer	Part#
		C1 CS1, C1 CS2, C1 CSi, C40, C41, C60 G1, C60 G2,			
1	11	C61_G1, C61_G2, C81_G1, C81_G2	0.1 μF, 25 V	Yageo	CC0402KRX7R8BB104
2	5	C2_CS1, C2_CS2, C2_CSi, C300, C302	2.2 μF	Murata	GRM155R61E225ME15D
3	3	C2_F1, C2_F2, C700	1 nF, 50 V	Kemet	C0402C102J5GACAUTO
4	6	C3_CS1, C3_CS2, C3_CSi, C5_CS1, C5_CS2, C5_CSi	330 pF	TDK	C1005C0G1H331J050BA
5	3	C4_CS1, C4_CS2, C4_CSi	820 nF	Yageo	CC0402KRX5R6BB824
6	1	C60	1 μF, 25 V	Murata	GRM155R61E105MA12D
7	2	C62_G1, C62_G2	22 nF, 25 V	TDK	C1005X7R1E223K050BB
8	1	C70	2.2 μF, 25 V	Murata	GRM155R61E225KE11D
9	1	C71	22 μF, 16 V	Samsung	CL10A226MO7JZNC
10	2	C80_G1, C80_G2	4.7 μF, 10 V	TDK	C1005X5R1A475K050BC
11	1	C90	0.22 μF, 100 V	Taiyo Yuden	HMK107C7224KAHTE
12	1	C91	1 μF, 16 V	TDK	C1005X6S1C105K050BC
13	1	C92	10 nF, 100 V	TDK	C1005X7S2A103K050BB
14	1	C93	3300 pF, 100 V	Murata	GRM155R72A332KA01D
15	1	C94	10 μF, 25 V	Murata	GRM188R61E106MA73D
16	1	C95	10 nF, 50 V	Murata	GRM155R71H103KA88D
17	8	Cb1, Cb2, Cb3, Cb4, Cb5, Cb6, Cb7, Cb8	47 μF 80 V	Panasonic	80SXV47M
18	4	Cb10, Cb11, Cb12, Cb13	390 μF 20 V	Panasonic	20SVPF390M
19	15	Ci1_P1, Ci1_P2, Ci2_P1, Ci2_P2, Ci3_P1, Ci3_P2, Ci4_P1, Ci4_P2, Ci5_P1, Ci5_P2, Ci6_P1, Ci6_P2, Ci7_P1, Ci7_P2, CMI3	220 nF, 100 V	Taiyo Yuden	HMK107C7224
20	20	Cm1_P1, Cm1_P2, Cm2_P1, Cm2_P2, Cm3_P1, Cm3_P2, Cm4_P1, Cm4_P2, Cm5_P1, Cm5_P2, Cm6_P1, Cm6_P2, Cm7_P1, Cm7_P2, Cm8_P1, Cm8_P2, Cm9_P1, Cm9_P2, Cm10_P1, Cm10_P2	1 μF, 100 V	TDK	C2012X7S2A105M125AB
21	4	CMI1, CMI2, CMO1, CMO2	10 μF, 75V	TDK	CGA6P1X7R1N106M250AC
22	16	CO1_F1, CO1_F2, CO2_F1, CO2_F2, CO3_F1, CO3_F2, CO4_F1, CO4_F2, CO5_F1, CO5_F2, CO6_F1, CO6_F2, CO7_F1, CO7_F2, CO8_F1, CO8_F2	22 μF, 25 V	TDK	C2012X5R1E226M125AC
23	3	D1_F1, D1_F2, D701	40 V 30 mA	Diodes Inc.	SDM03U40
24	1	D7	LED 0603 Orange	Lite-On	LTST-C193KFKT-5A
25	1	D41	3V3 300 mW	Diodes Inc.	BZT52C3V3T-7
26	2	D60_G1, D60_G2	5V1, 150 mW	Bournes	CD0603-Z5V1
27	4	D61_G1, D61_G2, D63_G1, D63_G2	40 V 30 mA	Diodes Inc.	SDM03U40
28	2	D64_G1, D64_G2	100 V 200 mA	ST	BAT41KFILM
29	1	D78	LED 0603 Yellow	Lite-On	LTST-C193KSKT-5A
30	2	DI1, DI2	100 V 215 mA	Nexperia	BAS16LD,315
31	3	FB1_CS1, FB1_CS2, FB1_CSi	1.8k Ω @ 100MHz	TDK	MMZ1005Y182CTD25
32	1	J60	1.0 mm micro edge card connector	Samtec	MEC1-120-02-F-D-EM2
33	6	J90, J91, J92A, J92B, J93A, J93B	M5 high current SMD terminal	Wurth	7466005R
34	2	L1_F1, L1_F2	2.2 μH, 0.74 mΩ	Vishay	IHTH1125KZEB2R2M5A
35	1	L70	10 μH	Coilcraft	LPS4012
36	1	L90	220 μH 400 mA	Murata	MDH6045C-221MB=P3
37	4	Q1_P1, Q1_P2, Q2_P1, Q2_P2	80 V 90 A 2.2 mΩ	EPC	EPC2206
38	2	Q60_G1, Q60_G2	100 V 2800 mΩ	EPC	EPC2038
39	6	R1_CS1, R1_CS2, R1_CSi, R2_CS1, R2_CS2, R2_CSi	10 Ω	Panasonic	ERJ-2RKF10R0X
22					

QUICK START GUIDE

Table 3: Bill of Materials (continued)

Item	Qty	Reference	Part Description	Manufacturer	Part #
41	3	R2_F1, R2_F2, R700	5.36 k	Panasonic	ERJ-2RKF5361X
42	6	R3_CS1, R3_CS2, R3_CSi, R3_F1, R3_F2, R702	20 Ω	Yageo	RT0402DRE0720RL
43	3	R6_CS1, R6_CS2, R6_CSi	1 Ω	Yageo	RC0402FR-071RL
44	1	R7	2.2 k	Panasonic	ERJ-2RKF2201X
45	1	R40	0 Ω	Vishay Dale	RCS04020000Z0ED
46	1	R41	3.48 k	Panasonic	ERA-2ARB3481X
47	9	R60, R61, R62, R63, R69, R71_G1, R71_G2, R76_G1, R76_G2	10 k	Yageo	RC0402FR-0710KL
48	2	R62_G1, R62_G2	27k	Panasonic	ERJ-2GEJ273X
49	4	R63_G1, R63_G2, R64_G1, R64_G2	20 Ω	Stackpole	RMCF0402JT20R0
50	10	R64, R65, R66, R67, R100, R101, R102, R103, R104, R105	1 M	Stackpole	RMCF0402FT1M00
51	1	R68	100 k	Panasonic	ERJ-2GEJ104X
52	5	R70, R71, R78_G1, R78_G2, R90	0 Ω	Panasonic	ERJ-3GEY0R00V
53	4	R70_G1, R70_G2, R75_G1, R75_G2	200 Ω	Panasonic	ERJ-2GEJ2R2X
54	1	R78	330 Ω	Panasonic	ERJ-2RKF3300X
55	4	R80_P1, R80_P2, R82_P1, R82_P2	1 Ω	Yageo	RC0402FR-071RL
56	4	R81_P1, R81_P2, R83_P1, R83_P2	0 Ω	Stackpole	RMCF0402ZT0R00
57	1	R91	43.2 k	Yageo	RC0603FR-0743K2L
58	1	R92	7.87 k	Yageo	RC0402FR-0714K7L
59	1	R93	51 k	Yageo	RC0402JR-0751KL
60	1	R94	11.3 k	Yageo	RC0402FR-0711K3L
61	1	R95	3.65 k	Yageo	RC0402FR-073K65L
62	1	R96	332 k	Vishay	MCT06030C3323FP500
63	2	R301, R302	3.3 k	Panasonic	ERA-2VRW3301X
64	3	RDCin, SHNT_F1, SHNT_F2	$0.2~\text{m}\Omega$	Bournes	CSS2H-3920R-L200F
65	4	S1, S2, S3, S4	Standoff M2	Wurth	9774010243R
66	4	SO1, SO2, SO3, SO4	Nylon standoff	Keystone	8834
67	4	TP1, TP2, TP3, TP4	Test point	Keystone	5015
68	3	U1_CS1, U1_CS2, U1_CSi	Current sensor	MicroChip	MCP6C02T-50E/CHY
69	1	U40	Temperature sensor	Analog	AD590JCPZ-R5
70	1	U70	IC REG BUCK 3.3 V	TI	TPS62177DQCR
71	2	U80_G1, U80_G2	100 V eGaN Driver	Texas Instruments	LM5113-Q1
72	1	U90	Buck Regulator 100 V, 300 mA	Texas Instruments	LM5018SD/NOPB
73	1	U300	Op-amp	Texas Instruments	OPA365AIDBVR

Table 4: Optional Components

Item	Qty	Reference	Part Description	Manufacturer	Part #
1	4	C70_G1, C70_G2, C75_G1, C75_G2	100 pF, 50 V	Yegeo	CC0402KRX7R9BB101
2	4	D1_P1, D1_P2, D2_P1, D2_P2	100 V, 2.1A	Vishay	V3PM10
3	1	J800	.05" Male Vert.	Sullins	GRPB031VWVN-RC
4	1	JP800	50 mil +Handle Red	Harwin Inc	M50-2020005

Table 5: Heatsink Kit

Item	Qty	Reference	Part Description	Manufacturer	Part #
1	4	SC1, SC2, SC3, SC4	M2 6 mm screw	McMasterCarr	95836A109
2	1	HS1	Heatsink 55x21x24mm Horz. Fin	Wakefield	567-94AB
3	1	TIM1,TIM2	0.5 mm thick custom cut Thermal interface material	t-Global	TG1780 0.5

Figure 8: EPC9137 Rev 4.0 main schematic

Figure 9: EPC9137 80 V to 5 V housekeeping power supply

Figure 10: EPC9137 3V3 housekeeping power supply

DC Input 64 Vmax.

HF Loop Capacitors

Power Stage Optional Diodes

Figure 11: EPC2206 phase leg

Figure 12: EPC9137 100 V AEC gate driver

Figure 13: EPC9137 48 V to 12 V AEC high current filter

Figure 14: EPC9137 bi-directional current sense amplifier

QUICK START GUIDE

Figure 15: EPC9137 1.65 V reference

Figure 17: EPC9137 basic 4 screw heatsink kit

Figure 16: EPC9137 AD590 temperature sense

EPC would like to acknowledge Microchip Technology Inc. (www.microchip.com) for their support of this project.

Microchip Technology Incorporated is a leading provider of smart, connected and secure embedded control solutions. Its easy-to-use development tools and comprehensive product portfolio enable customers to create optimal designs, which reduce risk while lowering total system cost and time to market. The company's solutions serve customers across the industrial, automotive, consumer, aerospace and defense, communications and computing markets.

The EPC9137 system features the dsPIC33CK256MP503 16-Bit Digital Signal Controller with High-Speed ADC, Op Amps, Comparators and High-Resolution PWM. Learn more at www.microchip.com.

For More Information:

Please contact **info@epc-co.com** or your local sales representative

Visit our website:

www.epc-co.com

Sign-up to receive EPC updates at bit.ly/EPCupdates or text "EPC" to 22828

EPC Products are distributed through Digi-Key. www.digikey.com

Demonstration Board Notification

The EPC9137 board is intended for product evaluation purposes only. It is not intended for commercial use nor is it FCC approved for resale. Replace components on the Evaluation Board only with those parts shown on the parts list (or Bill of Materials) in the Quick Start Guide. Contact an authorized EPC representative with any questions. This board is intended to be used by certified professionals, in a lab environment, following proper safety procedures. Use at your own risk.

As an evaluation tool, this board is not designed for compliance with the European Union directive on electromagnetic compatibility or any other such directives or regulations. As board builds are at times subject to product availability, it is possible that boards may contain components or assembly materials that are not RoHS compliant. Efficient Power Conversion Corporation (EPC) makes no quarantee that the purchased board is 100% RoHS compliant.

The Evaluation board (or kit) is for demonstration purposes only and neither the Board nor this Quick Start Guide constitute a sales contract or create any kind of warranty, whether express or implied, as to the applications or products involved.

Disclaimer: EPC reserves the right at any time, without notice, to make changes to any products described herein to improve reliability, function, or design. EPC does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, or other intellectual property whatsoever, nor the rights of others.