

Chemical Engineering 4H03

Non-Linear **I**terative **PA**rtial **L**east-**S**quares

Jake Nease McMaster University

Portions of this work are copyright of ConnectMV

Objectives for this Class

- Where we came from...
 - Computing p_k from Eigenvalue Decomposition
 - Gave us a fundamental understanding of how PCA works
 - Understand that there are advantages and disadvantages
- Now: is there a more "reliable" way to compute p_k ?
 - Don't want to compute all Eigenvectors at once
 - Want to handle missing data
- How will we do this?
 - 1. Introduce NIPALS (Non-Linear Iterative Partial Least-Squares)
 - 2. See how NIPALS can handle missing data (and what this means for our data matrix **X**)

NIPALS

Now I'll Probably Actually Lose Someone

Review: Linear Regression

• You may recall the LSOE that can be solved for the regression coefficients in our regression $\hat{y} = a_0 + a_1 x$:

$$\left[\begin{array}{ccc}
\sum_{i=1}^{N} 1 & \sum_{i=1}^{N} x_{i} \\
\sum_{i=1}^{N} x_{i} & \sum_{i=1}^{N} x_{i}^{2} \\
A
\right] = \left[\begin{array}{c}
\sum_{i=1}^{N} y_{i} \\
a_{1} \\
\sum_{i=1}^{N} y_{i}x_{i}
\end{array}\right]$$

QUESTION

– What is special about the data we are trying to regress in PCA?

ANSWER

– It is **centered**, thus $a_0 = 0$

Linear Regression in Vector Form

Our "system of equations" in that case simply boils down to one equation and one unknown:

$$a_1 = \frac{\sum_{i=1}^{N} y_i x_i}{\sum_{i=1}^{N} x_i^2}$$

Fun fact, these sums of the elements in each vector can pretty easily be written as dot-products

$$\sum_{i=1}^{N} y_i x_i = y^T x$$

$$\sum_{i=1}^{N} x_i^2 = x^T x$$

We can thus collapse our equation for a_1 into:

$$a_1 = \frac{y^T x}{x^T x}$$
 ----- At this point, I should not need to convince you that this expression is identical to the one for a_1 above

NIPALS

- Non-Linear Iterative Partial Least-Squares
- Why study it?
 - Additional insight into what loads and scores mean
 - A different way of looking at orthogonality
 - Handles missing data
 - Does not compute all Eigenvectors (efficient)
 - Used by most popular software packages
 - SIMCA
 - Aspen ProMV
 - Most pre-made Python packages

NIPALS: The Basic Idea

- NIPALS begins with X
 - X is pre-processed via scaling and centering
 - **NOMENCLATURE ADDITION**: X_a is the data set after a components have been fit to it (more on this later)
 - Thus, NIPALS initializes with $X_{a=0} \equiv X_0$ since no components are fit

FOR a = 1, 2, ..., A:

- 1. Select an (arbitrary) column as t_a
- 2. In a loop until convergence:
 - I. Regress columns from X_{a-1} onto t_a to get p_a
 - II. Normalize p_a to unit length
 - III. Regress rows from X_{a-1} onto p_a^T to get t_a
- 3. Deflate component from X_{a-1} to get X_a

END

These are much easier to visualize if we use the vector regression notation just discussed

QUESTION: what do you think this means?

- STEP 1 Select an arbitrary column for t_a
 - Any individual column in X
 - A column of normally distributed random numbers
 - Basically anything except the zero column (WHY??)

- STEP 2.1 Regress each column of X_{a-1} (x_k) onto t_a
 - Perform a LS regression of x_k onto t_a (regress y onto x)
 - Store the regression coefficient as $p_{k,a}$

• Recall that a linear equation with zero intercept is $\hat{y} = a_1 x$

$$a_1 = \frac{y^T x}{x^T x}$$

Therefore in this case:

$$p_{k,a} = \frac{\boldsymbol{t}_a^T \, \boldsymbol{x}_k}{\boldsymbol{t}_a^T \, \boldsymbol{t}_a}$$

- STEP 2.1 Repeat regression for all columns in X_{n-1}
- Can compute all regressions in one go (HOW!?)

$$\boldsymbol{p}_a^T = \frac{1}{\boldsymbol{t}_a^T \, \boldsymbol{t}_a} \cdot \boldsymbol{t}_a^T X_{a-1}$$

$$(1 \times K) = (1 \times 1) \cdot (1 \times N)(N \times K)$$

- $t_a \in \mathbb{R}^{N \times 1}$
- $X_{a-1} \in \mathbb{R}^{N \times K}$ $\boldsymbol{p}_a \in \mathbb{R}^{K \times 1}$

4H03 PCA 03

- STEP 2.2 Normalize the loadings
 - p_a will not have unit length (WHY?)
 - Rescale to magnitude of 1.0:

$$\boldsymbol{p}_a = \frac{\boldsymbol{p}_a}{\|\boldsymbol{p}_a\|}$$

Recall that
$$||x|| = \sqrt{x_1^2 + x_2^2 + \cdots}$$

- STEP 2.3 Regress each row of X_{a-1} (x_n) onto p_a^T
 - Perform a LS regression of x_n onto p_a^T (regress y onto x)
 - Store the regression coefficient as $t_{n,a}$
- Recall that a linear equation with zero intercept is $\hat{y} = a_1 x$

$$a_1 = \frac{y^T x}{x^T x}$$

Therefore in this case:

$$t_{n,a} = \frac{\boldsymbol{p}_a^T \, \boldsymbol{x}_n}{\boldsymbol{p}_a^T \, \boldsymbol{p}_a}$$

- STEP 2.3 Repeat regression for all rows in X_{a-1}
- Can compute all regressions in one go

$$\boldsymbol{t}_a = \frac{1}{\boldsymbol{p}_a^T \, \boldsymbol{p}_a} \cdot X_{a-1} \boldsymbol{p}_a$$

$$(N \times 1) = (1 \times 1) \cdot (N \times K)(K \times 1)$$

- $t_a \in \mathbb{R}^{N \times 1}$
- $X_{a-1} \in \mathbb{R}^{N \times K}$ $\boldsymbol{p}_a \in \mathbb{R}^{K \times 1}$

4H03 PCA 03

CHECK FOR CONVERGENCE

- WORKSHOP What are some methods we can use?
 - Compare t_a to t_a from previous iteration
 - Stop if $\Delta t_a \leq \sqrt{\epsilon} \approx 10^{-8}$ (demo in MATLAB)
 - Change could mean $\|\boldsymbol{t}_a^i \boldsymbol{t}_a^{i-1}\| \leq \sqrt{\epsilon}$ [absolute]
 - Change could mean $\frac{\|\boldsymbol{t}_a^i \boldsymbol{t}_a^{i-1}\|}{\|\boldsymbol{t}_a^{i-1}\|} \le \sqrt{\epsilon}$ [relative]
 - ALSO probably want an iterations limit in case (500 is good)

AT CONVERGENCE

- t_a and p_a are the a^{th} component
- Store in T and P, respectively!

- STEP 3 Deflate X_{a-1} to achieve X_a
- Deflation means removing the part we can explain
 - What can we explain? Why, \hat{X}_a of course!
 - $-E_a = X_{a-1} \hat{X}_a \quad \Rightarrow \quad E_a = X_{a-1} \boldsymbol{t}_a \boldsymbol{p}_a^T$
 - E_a are the residuals after fitting the a^{th} component
 - Therefore, let $X_a = E_a$ and repeat from step 1 for a + 1
 - Example: for a = 1, use X_0 which is preprocessed data
 - Example: for a=2, use X_1 which are residuals after 1 component
- A discussion about orthogonality
 - How do we know that subsequent components are orthogonal to those that came before it?

Interpretation of Regression Steps

- Let's teleport back to STEP 2.1 for a minute
 - STEP 2.1 Regress each column of X_{a-1} (x_k) onto t_a

$$\bullet \quad p_{k,a} = \frac{\mathbf{t}_a^T \mathbf{x}_k}{\mathbf{t}_a^T \mathbf{t}_a}$$

- What does regression look like for a strong relationship?
- Weak relationship?
- What does that mean about $p_{k,a}$?
- Regression can be used to predict $\hat{x} = t_a^T p_{k,a}$
- WORKSHOP: interpret step
 2.3 as a linear regression
 - STEP 2.3 Repeat regression for all rows in X_{a-1}

Properties After Convergence

Dropping subscripts (for simplicity), we have

$$- p = \frac{t^T X}{t^T t} \qquad t = \frac{Xp}{p^T p}$$

- Recall that p is of unit length, thus $p^T p = 1$
- Substitute t into equation for p to get:

$$-\boldsymbol{p} = \frac{X^T X \boldsymbol{p}}{\boldsymbol{t}^T t}$$
 OR $\boldsymbol{t}^T \boldsymbol{t} \; \boldsymbol{p} = X^T X \boldsymbol{p}$

- This gives $(X^TX \mathbf{t}^T \mathbf{t} I_K)\mathbf{p} = 0$ where I_K is a $K \times K$ identity
- And therefore*...
 - p is an eigenvector of X^TX
 - The eigenvalue for that eigenvector is $\lambda = t^T t$, which we know to be the variance explained in t

General NIPALS Comments

- In general, we can make the following remarks:
 - Convergence of NIPALS is guaranteed if left long enough
 - Convergence is fast if eigenvalues (variance explained by t) are well separated
 - In other words, each component fits a new source of variance
 - If two eigenvalues are close (nearly equal variance explained by each component), convergence will be slow for the first component and fast for the second
 - NIPALS is capable of handling missing data
 - More on this now...

Handling Missing Data

- Missing values are simply ignored
 - WORKSHOP: What does this mean in our algorithm?
 - WORKSHOP: How would you implement this in practice?

Final Remarks

- NIPALS: The GOOD
 - Calculates ONE component at a time
 - Can handle missing data
 - Convergence guaranteed
- NIPALS: The BAD
 - Round-off errors will accumulate
 - Can suffer from outliers
- Other points to note
 - $\hat{X} = t p^T \equiv (-t)(-p^T)$
 - Flipping signs does not matter; result will be the same
 - Can happen due to initial guesses, computer, blah blah

Next Up...

- Using model fitting statistics to improve accuracy
 - Filtering outliers from dataset
 - Using PCA on-line for soft sensors
- And finally, extension of PCA to PLS
 - Not much more, just one extra regression step in NIPALS!

