

Visualization Analysis and Design

What: Data Abstraction

Why: Task Abstraction

Jinwook Seo, Ph.D.

Department of Computer Science and Engineering Seoul National University

Why Do Data Semantics and Types Matter?

Basil, 7, S, Pear

- What does each word mean?
 - → Semantics: real-world meaning

ID	Name	Age	Shirt Size	Favorite Fruit
1	Amy	8	S	Apple
2	Basil	7	S	Pear
3	Clara	9	M	Durian
4	Desmond	13	L	Elderberry
5	Ernest	12	L	Peach
6	Fanny	10	S	Lychee
7	George	9	M	Orange
8	Hector	8	L	Loquat
9	Ida	10	M	Pear
10	Amy	12	M	Orange

Visualization Analysis and Design

What: Data Abstraction

Why Do Data Semantics and Types Matter?

- Types of the data: structural or mathematical interpretation
 - Data level → Data Types
 - what kind of thing is it?
 - item, attribute, link, position, grid
 - Dataset level → Dataset Types
 - how are these data types combined into a larger structure
 - table, tree, field of sampled values
 - Attribute level → Attribute Types
 - what kinds of math operations are meaningful for it?
 - attribute: property that can be measured, observed, or logged
 - → variable, dimension
 - Number of detergents: quantity addition/subtraction
 - Postal code: code category

Data Types

- Attribute: specific property that can be measured, observed, or logged (a.k.a variable or dimension)
- Item: individual entity that is discrete
- Link: relationship between items
- **Grid**: specifies the *strategy for sampling continuous data* in terms of both geometric and topological relationships between its cells
- Position: spatial data, providing a location

Visualization Analysis and Design

Chapter 2. What: Data Abstraction

Dataset Types and Data types

- Dataset
 - collection of info that is the target of analysis
 - arise from combinations of data types

Tables	Networks & Trees	Fields	Geometry	Clusters, Sets, Lists
Items	Items (nodes)	Grids	Items	Items
Attributes	Links	Positions	Positions	
	Attributes	Attributes		

Basic Dataset Types

→ Tables

→ Networks

→ Fields (Continuous)

→ Geometry (Spatial)

→ Multidimensional Table

→ Trees

Visualization Analysis and Design

What: Data Abstraction

Dataset Type: Tables

- item/record/tuple
- attribute/field/ variable/dimension
- cell contains value
 - quantitative
 - ordinal
 - nominal

Α	В	С	S	Т	U
Order ID	Order Date	Order Priority	Product Container	Product Base Margin	Ship Date
3	10/14/06	5-Low	Large Box	0.8	10/21/06
6	2/21/08	4-Not Specified	Small Pack	0.55	2/22/08
32	7/16/07	2-High	Small Pack	0.79	7/17/07
32	7/16/07	2-High	Jumbo Box	•1	7/17/07
32	7/16/07	2-High	Medium Box	attribute	7/18/07
32	7/16/07	2-High	Medium Box	0.03	7/18/07
35	10/23/07	4-Not Specified	Wrap Bag	0.52	10/24/07
35	10/23/07	4-Not Specified	Small Box	0.58	10/25/07
36	11/3/07	1-Urgent	Small Box	0.55	11/3/07
65	3/18/07	1-Urgent	Small Pack	0.49	3/19/07
66	1 /20 /05	5-Low	Wrap Bag	0.56	1/20/05
69	item 5	4-Not Specified	Small Pack	0.44	6/6/05
69	5	4-Not Specified	Wrap Bag	0.6	6/6/05
70	12/18/06		Small Box	0.59	12/23/06
70	12/18/06	5-Low	Wrap Bag	0.82	12/23/06
96	4/17/05	2-High	Small Box	0.55	4/19/05
97	1/29/06	3-Medium	Small Box	0.38	1/30/06
129	11/19/08	5-Low	Small Box	0.37	11/28/08
130	5/8/08	2-High	Small Box	0.37	5/9/08
130	5/8/08	2-High	Medium Box	0.38	5/10/08
130	5/8/08	2-High	Small Box	0.6	5/11/08
132	6/11/06	3-Medium	Medium Box	0.6	6/12/06
132	6/11/06	3-Medium	Jumbo Box	0.69	6/14/06
134	5/1/08	4-Not Specified	Large Box	0.82	5/3/08
135	10/21/07	4-Not Specified	Small Pack	0.64	10/23/07
166	9/12/07		Small Box	0.55	9/14/07
193	8/8/06	1-Urgent	Medium Box	0.57	8/10/06
194		3-Medium	Wrap Bag	0.42	4/7/08

• multidimensional table: indexed with multiple keys

hcĭ lab

Dataset Type: Networks and Trees

- well-suited when there is some kind of relationship b/w
 items
- Node: item
 - Can have associated attributes
- Link: relation between two items
- Trees: networks with hierarchical structure
 - Unlike network, there are no cycles

9

Visualization Analysis and Design

What: Data Abstraction

Dataset Type: Geometry

Geometry (Spatial)

- Specifies info about the **shape** of items with explicit spatial positions
- Often includes hierarchical structure at multiple scales
 - May be intrinsic or may be derived from the original data
- Not necessarily have attributes
- Simply showing a geometric dataset is not an interesting problem for a vis designer

hcĭ lab

Dataset Type: Combinations

- Set: unordered group of items
- List: ordered group of items
- Cluster: grouping based on attribute similarity
- Path: ordered set + links connecting nodes
- Compound network: network with an associated tree

Figure 1: Directory structure of a Web site visualized as a Treemap with external links overlaid as curves. Blue curves are HTML links, red curves are image links.

Visualization Analysis and Design

14

What: Data Abstraction

Abstraction and Availability

- Data Abstraction
 - domain-specific to GENERIC
 - translate domain-specific terms into words that are as generic as possible
- Data Availability
 - Static File: available all at once
 - Dynamic Streams

Attribute Types

• Hierarchical Attributes: within an attribute or between multiple attributes

16 Visualization Analysis and Design

What: Data Abstraction

Levels of Measurements

http://www.socialresearchmethods.net/kb/measlevl.php

Semantics - Key vs. Value Semantics

- Key attribute acts as an index used to look up value attributes
- Flat Tables: only one key
 - Implicit key: keys are simply the index of the row

Α	В	С	S	T	U
Order ID	Order Date	Order Priority	Product Container	Product Base Margin	Ship Date
3	10/14/06	5-Low	Large Box	0.8	10/21/06
6	2/21/08	4-Not Specified	Small Pack	0.55	2/22/08
32	7/16/07	2-High	Small Pack	0.79	7/17/07
32	7/16/07	2-High	Jumbo Box	0.72	7/17/07
32	7/16/07	2-High	Medium Box	0.6	7/18/07
32	7/16/07	2-High	Medium Box	0.65	7/18/07
35	10/23/07	4-Not Specified	Wrap Bag	0.52	10/24/07
35	10/23/07	4-Not Specified	Small Box	0.58	10/25/07
36	11/3/07	1-Urgent	Small Box	0.55	11/3/07
65	3/18/07	1-Urgent	Small Pack	0.49	3/19/07
66	1/20/05	5-Low	Wrap Bag	0.56	1/20/05

- Explicit key: keys may be categorical or ordinal attributes (unique)
- Multidimensional Tables: multiple keys required
 - combination of all keys must be unique for each item, even though an individual key may contain duplicates
 - independent keys vs. dependent values

18 Visualization Analysis and Design

Task Abstraction

- Consider tasks in abstract form, rather than domain-specific way
 - Otherwise, hard to make useful comparisons between domain situations
- domain-specific task descriptions

"Contrast the prognosis of patients who were intubated in the ICU more than one month after exposure to patients hospitalized within the first week"

"See if the results for the tissue samples treated with LL-37 match up with the ones without the peptide"

- Abstract form: "compare values between two groups"
- Task abstraction should guide data abstraction

22 Visualization Analysis and Design

Actions

Actions define User Goals

- High-level: Analyze
 - Consume, Produce
- Mid-level: Search
 - Lookup, Browse, Locate, Explore
- Low-level: Query
 - Identify, Compare, Summarize
- Choices at each level are independent
- Describe all of actions at all three levels

	Target known	Target unknown	
Location known	• • • Lookup	• Browse	
Location unknown	⟨ஂੑੑੑ⊙ੑ∙> Locate	<: • Explore	

Actions

→ Enjoy

High-Level: Analyze – Consume (existing information)

- Discover (= explore)
 - Find new knowledge that was not previously known
 - generate a new hypothesis or verify an existing hypothesis
 - Often for scientific inquiry
- Present (= explain)
 - The communication of information that is specific and already understood
 - e.g. infographic (static information graphics)
 - output of a discover session -> input to a present session
- Enjoy
 - Motivated by users' enjoyment
 - Casual encounters with vis for enjoyment
 - Users are driven by Curiosity stimulated and satisfied by vis
 - e.g. Name Voyager

→ Present

→ Consume

→ Discover

5 Visualization Analysis and Design

Actions

High-level: Analyze – Produce (new information as input to a next instance)

- Annotate (~ tag)
 - Attaches temporary info to existing elements

→ Produce

→ Derive

Record

- To save or capture vis elements as persistent artifacts
- e.g. screen shots, interaction logs, etc.
- Derive (= transform)
 - To produce new data elements (= derived attributes) based on existing elements
 - Could expand the design space of possible vis idioms
 - · Changing types of data
 - Transform with additional info
 - Using arithmetic/logical/statistical operations

Actions

High-level: Analyze - Produce - Record

- Record
 - graphical history of visual exploration

→ Produce

A GraphTrail analysis showing two parallel exploration paths

p://research.microsoft.com/en-us/um/people/nath/docs/graphtrail_chi2012.pd

27

Visualization Analysis and Design

Actions

High-level: Analyze - Produce - Derive

- Do not just draw what you are given
 - Decide what the right thing to show is
 - Create it by transformations
 - · and draw it!

→ Produce

CHART of EXPORTS and IMPORTS to and from the EAST INDIES

From the Year 1700 to 1780 by W. Playfair

judging the difference in height

The Bottom Line is Divided into Years the Right hand Line into HUNDRED THOUSAND POUNDS about The Bublished in the sel Gioine 16 "Aug. 1705"

28

Actions

High-level: Analyze - Produce - Drive

- Do not just draw what you are given
 - Decide what the right thing to show is
 - Create it by transformations
 - and draw it!
 - detail is aggregated away, but

judging position along a common frame

29 Visualization Analysis and Design

Actions

Mid-level: Search (Find with successful outcome)

• High-level analyze cases require the user to search for elements of interest

	Target known	Target unknown	
Location known	• • • Lookup	• Browse	
Location unknown	₹ ! Locate	₹ ©•> Explore	

Mid-level: Search (Find with successful outcome)

- e.g. a tree vis for Tree of Life
 - Lookup
 - Looking up human (target O) knowing it belongs to mammals (location O)
 - Locate
 - Locating rabbits (target O) not knowing where it belongs to (location X)
 - Browse
 - Browsing all leafs (target X)
 of the mammal subtree (location O)
 - Explore
 - Exploring for a family having the largest number of species (target X, location X)

	Target known	Target unknown
Location known	• • • Lookup	Browse
Location unknown	₹ Ocate	< O Explore

http://tolweb.org/tree/home.pages/aboutoverview.html

31

Visualization Analysis and Design

Actions

hori lab

Low-level: Query

- Once targets for a search has found,
 - → QUERY the targets

- Query
 - → Identify

- e.g. a choropleth map of US election results
 - **Identify** (a single target)
 - *identify* the election results for one state
 - Compare (multiple targets)
 - compare the election results of one state to another
 - Summarize / Overview (all possible targets)
 - *summarize* the election results across all states to determine how many favored one candidate

Targets

Targets that actions refer to

• Some aspect of the data that is interest of the user

Visualization Analysis and Design

Targets

33

Targets - All Data Level

- All Data level
 - Trends (= pattern)
 - a high-level characterization of a pattern in the data
 - e.g. increases, decreases, peaks, regression fit etc.
 - Outliers (= anomalies, novelties, deviants, surprises)
 - Features
 - Any particular structures of interest
 - Task-dependent definition
 - clusters in cluster analysis

Targets – Attributes Level

- Attributes level
 - One attribute
 - · An individual value
 - extremes (maximum, minimum)
 - Multiple attributes
 - Dependency
 - An attribute depends on another attribute
 - Correlation
 - Tendency of values of two attributes are tied
 - Similarity
 - · Quantitative measurement of how values of two attributes are similar

35

Targets

Targets

- Targets for specific types of datasets
 - Network data
 - Topology
 - paths
 - · Spatial data
 - Shape
 - And more..

→ Network Data

→ Shape

✓ These targets can be expressed in domain-specific terms,

→ Spatial Data But should always recognize these abstractions

How: A Preview

How a vis idiom is constructed? - a set of design choices

hcĭ lab

• Questions?