

Hausaufgaben und Übungen zur Vorlesung

Analysis 2

Stefan Waldmann

Wintersemester 2023/2024

Last changes by (None) on (None) Git revision of ana2-ws2324: (None) (None)

01. 11. 2023 (22 Punkte. Abzugeben am 08. 11. 2023)

Hausaufgabe 3-1: (Nicht-)analytische C^{∞} -Funktion

i.) Benutzen Sie Proposition 5.6.9, um zu zeigen, dass

$$g(x) = \sin(x)\cosh(x), \qquad x \in \mathbb{R}$$

durch die zugehörige Taylorreihe im Punkt $x_0 = 0$ mit Konvergenzradius $R = +\infty$ dargestellt wird. (3 Punkte)

ii.) Zeigen Sie, dass $f: \mathbb{R} \to \mathbb{R}$ mit

$$f(x) = \begin{cases} \exp\left(-\frac{1}{x^2}\right), & x \neq 0, \\ 0, & \text{sonst} \end{cases}$$

nicht durch ihre Taylorreihe um x = 0 dargestellt wird. Warum ist dies kein Widerspruch zu Proposition 5.6.9? (2 Punkte)

Hausaufgabe 3-2: Fehlerabschätzung durch Taylor

Es sei $f: \mathbb{R}_0^+ \to \mathbb{R}$ definiert durch $f(x) = \sqrt[3]{x}$. Geben Sie das Taylorpolynom P_2 von f mit Entwicklungspunkt $x_0 = 1$ an und schätzen Sie den maximalen Fehler von $|f(x) - P_2(x)|$ auf dem Intervall $\left[\frac{1}{2}, \frac{3}{2}\right]$ ab. (4 Punkte)

Hausaufgabe 3-3: Diverse Taylorpolynome

Bestimmen Sie die Taylorpolynome vom Grad 30 der folgenden Funktionen in x_0 :

- i.) $f(x) = x^3 3x^2 + 3x + 2$ im Punkt $x_0 = 2$, (2 Punkte)
- *ii.*) $g(x) = \sin^2(\pi x)$ in $x_0 = 3$, (3 Punkte)
- iii.) $h(x) = \arcsin(x)$ in $x_0 = 0$. (3 Punkte)

Hausaufgabe 3-4: Riemann-Integral zu Fuß

Bestimmen Sie die Ober- und Untersummen von exp : $[0,1] \to \mathbb{R}$ für die markierten Zerlegungen (J_n, Ξ_n) mit der Auswahl $\Xi_n = \{0, \frac{1}{n}, \frac{2}{n}, ..., \frac{n-1}{n}, 1\}$ für $n \in \mathbb{N}$. Zeigen Sie anschließend, dass die zugehörigen Ober- und Untersummen gegen denselben Wert konvergieren. (5 Punkte)