Lab 6

Name: Wayne Lai, Partner: Gautam

This lab took approximately 4 hours outside of the classroom, about 7 hours total.

```
In [1]: %matplotlib inline
   import numpy as np
   import scipy
   from scipy import stats
   from matplotlib import pyplot as plt
   plt.rcParams["figure.figsize"] = (10,5)
```

```
In [7]:
        # Problem 1
        # First, a distribution was made. It is a poisson distribution with average of 100 at 100000
        points.
        # The standard deviation is calculated. For a sigma 5 value, I multiplied the standard devia
        # 5 then add it to the mean of the distribution. To simulate real life, if the background fo
        # base of the detection, there should be only extraordinary signals above the background. In
        conclusion
        # the 5 sigma sensitivity threshold is the upper limit.
        mean = 100:
        background = stats.poisson.rvs(mean, size = 10000)
        background2 = background #backup
        plt.title('Background Distribution')
        plt.xlabel('Data Points')
        plt.ylabel('Value')
        plt.plot(background)
        plt.show()
        sig = np.std(background)
        sig5 = sig * 5
        ave = np.mean(background)
        upper = ave + sig5
        print('The upper limit is ' + str(upper))
```


The upper limit is 149.34269979203077

```
In [3]: # Problem 2
        # (a) The histogram below indicates signals of 8 sigma strength injected into the background
        # visual graph clearly distinguishes the background and the injected signals, as there are t
        wo mounds
        # of data. The pile on the right, with higher mean, is the injected signal, as the size of i
        t depends
        # on the number of signals. In the case below, there are 10000 points of background against
         500
        # points of 8 sigma signal, so there is considerable size difference.
        # (b) The observed value is stronger than the true injected signal, as the plot was set to h
        # injected signal added onto the background noise. This is further shown in the histogram, a
        s the mean
        # value for the observed value is at around 179, much higher than the 100 of the background.
        The second
        # histogram on the bottom is the injected signal at greater zoom. The distribution should fo
        Llow that
        # of the poisson as it is a constant value added to a poisson distributed noise. The poisson
        is not
        # symmetric, but the increase in the mean value will have it look more like a gaussian.
        # The signal is made at 8 sigma, value is calculated.
        sig8signal = np.std(background2) * 8;
        # Made an array of random numbers that will be the index to the background data.
        randIdx = np.random.choice(len(background2), 500, replace = False)
        # The sigma 8 value is added to the data at the index found above.
        newBackground = background2
        for x in randIdx:
            newBackground[x] = newBackground[x] + sig8signal
        # Histogram of the result.
        plt.subplot(1,2,1)
        plt.title('Observed Signal')
        plt.xlabel('Data Value')
        plt.ylabel('Frequency')
        plt.hist(newBackground, bins = 100)
        plt.subplot(1,2,2)
        plt.title('Zoomed')
        plt.xlabel('Data Value')
        plt.xlim(150, 220)
        plt.ylim(0, 100)
        plt.hist(newBackground, bins = 100)
        plt.show()
```



```
In [13]: # Problem 3
         # (a) The following simulation takes the background data and injects them with signal of dif
         # sensitivity. In a 2 dimensional histogram, the background data is represented horizontall
         y. There will
         # be a gradient that peaks at the mean of the distribution. In the class example, all the ba
         ckground data
         # has the signal data applied, so we see only one collected bright spot at the mean. If the
          iniected
         # signal only applies to some data points, then there will be two peaks, one for the mean of
         the background
         # and another for the mean of the injected signal. Depending on how strong the injected sign
         al, stronger
         # has larger sigma, the secondary peak will move further away from the background peak. Due
          to limited
         # python knowledge, I was not able to create a 2d histogram.
         # (b) If we look across horizontally for the v axis value of 8 sigma, we see brightness at t
         he backaround
         # mean at x = 100, then a weaker brightness at x = 179. This corresponds to the graph we hav
         e previously.
         # The previous graph is just a slice of the 2d histogram at y = 8.
         # (c) The meaning of this histogram is the frequency of occurance for some value of a data p
         oint. At sigma
         # of greater than 5, we can see how often the injected signal occur and the amplitude of it
          above the
         # background distribution. The injected signal will be a poisson distribution, as we are add
         ina a value onto
         # a poisson distributed background. The histogram mean is the amount of sigma determined for
         this problem.
         # Using 6 sigma signal to inject into background data.
         signalStrength2 = np.ones(10000) * 6 * sig
         injectedSignal2 = signalStrength2 + background2
         plt.hist(injectedSignal2, bins = 68)
         plt.show()
         \# (d)
         oneSigma = np.std(injectedSignal2)
         print('The 1 sigma value for part d is ' + str(oneSigma))
         # (e) After injecting a sigma 6 signal to all the background noise the sigma value at one re
         mains the same
         # as the background noise, because the behavior of the distribution has only shifted up in a
         mplitude, nothing
         # else changed. If we were to pick a few random points to have the signal added to it, the s
         igma value
         # increases as there is now a bias of higher amplitude signal, and it pulls the mean and sta
         ndard deviation
         # towards higher values.
         # Suit of signals to be injected from no sigma up to 30 sigma.
         signalStrength = np.linspace(0,30,10000) * sig
         # Two matices. One is the background data along the x axis, then repeated or stacked for how
         # values there are in the y axis. The other is the signal strength from 0 to 30 sigma.
         xx, signal = np.meshgrid(background, signalStrength)
         # Add the noise to the signal
         obsSignal = xx + signal
```

#plt.hist2d(obsSignal, signal)
#plt.show()

The 1 sigma value for part d is 9.910119958406154

```
In [9]: # Problem 4
#
    # (a) Signal at between 0 and 1 sigma
    signalStrength3 = np.linspace(0,1,10000) * sig

injectedSignal3 = signalStrength3 + background2

plt.hist(injectedSignal3, bins = 100)
plt.show()

# (b) The probability density function represents the percentage of each data value based on frequency.
# The more varied the data is, the wider the shape of the curve, and Lower the peak. The sig
```

nal is # extending to zero makes sense, because of the area underneath the curve must add up to on

extending to zero makes sense, because of the area underneath the curve must add up to on e. Since,

the area is a finite value, the curve is not going to be reaching closer to zero without e ver getting

to it, instead, it will eventually end given a finite amount of data.


```
In [10]: # (c) The mean and standard deviation can be calculated, while the number of samples are pre
    determined,
    # and the z-score at 95% is 1.96.

xBar = np.mean(injectedSignal3)
    xSigma = np.std(injectedSignal3)
    xNum = len(injectedSignal3)
    zScore = 1.96

confInt = xBar + zScore * xSigma / np.sqrt(xNum)
    print('The 95% confidence upper bound is ' + str(confInt))
```

The 95% confidence upper bound is 104.94934122218265

In []: