Ayudantía Álgebra N.4

Daniel Sánchez

1 de Abril 2022

1. Utilizando inducción, $\forall n \in \mathbb{N}$ demuestre que:

(a)
$$\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \dots + \frac{1}{(n+1)(n+2)} = \frac{n+1}{n+2}$$

(b)
$$\frac{1}{2} + \frac{2}{2^2} + \frac{3}{2^3} + \frac{4}{2^4} + \dots + \frac{n}{2^n} = 2 - \frac{n+2}{2^n}$$

- (c) $5^n 1$ es un múltiplo de 4.
- (d) $11^{n+2} + 12^{2n+1}$ es divisible por 133.
- (e) $2n + 1 \le 3^n$
- 2. Ejercicios propuestos:
 - (a) Sea ⊳ el conectivo lógico definido por la siguiente equivalencia lógica:

$$(p \triangleright q) \equiv (p \land \neg q) \lor (\neg p \land q)$$

Determine el valor de verdad de $p \Leftrightarrow q$ si se sabe que $p \triangleright (p \triangleright q)$ es falsa.

(b) Sea $a \in \mathbb{R}^+$ y $b \in \mathbb{R}$ tal que b < 2. Demuestre que:

$$b - 2a < 2 - ab$$