

CS201 DISCRETE MATHEMATICS FOR COMPUTER SCIENCE

Dr. QI WANG

Department of Computer Science and Engineering

Office: Room903, Nanshan iPark A7 Building

Email: wangqi@sustech.edu.cn

■ Want to compute the number of increasing triples (i, j, k) with $1 \le i < j < k \le n$.

Want to compute the number of increasing triples (i, j, k) with $1 \le i < j < k \le n$.

Claim: Number of increasing triples is exactly the same as number of 3-element subsets from $\{1, 2, ..., n\}$

• Want to compute the number of increasing triples (i, j, k) with $1 \le i < j < k \le n$.

Claim: Number of increasing triples is exactly the same as number of 3-element subsets from $\{1, 2, ..., n\}$

```
Why? Let X = \text{set of increasing triples and}

Y = \text{set of 3-element subsets from } \{1, 2, ..., n\}
```

• Want to compute the number of increasing triples (i, j, k) with $1 \le i < j < k \le n$.

Claim: Number of increasing triples is exactly the same as number of 3-element subsets from $\{1, 2, ..., n\}$

Why? Let X = set of increasing triples and $Y = \text{set of 3-element subsets from } \{1, 2, ..., n\}$

Define: $f: X \to Y$ by $f((i, j, k)) = \{i, j, k\}$

Claim: f is a bijection (why) so |X| = |Y|

Want to compute the number of increasing triples (i, j, k) with 1 ≤ i < j < k ≤ n.
 Claim: Number of increasing triples is exactly the same as number of 3-element subsets from {1, 2, ..., n}
 Why? Let X = set of increasing triples and Y = set of 3-element subsets from {1, 2, ..., n}

Define: $f: X \to Y$ by $f((i,j,k)) = \{i,j,k\}$ **Claim**: f is a **bijection** (why) so |X| = |Y| f is a bijection because f is one-to-one if $(i,j,k) \neq (i',j',k') \Rightarrow f((i,j,k)) \neq f((i',j',k'))$ f is onto

if γ is a 3-element subset then it can be written as $\gamma = \{i, j, k\}$ where i < j < k so $f((i, j, k)) = \gamma$.

Inclusion-Exclusion Principle Recall

- This can be used to determine the number of onto functions
 - A, B are two sets with |A| = m and |B| = n.
 - (a) How many onto functions are there from A to B?
 - (b) How many functions are there from A to B that map nothing to at least one element of B?

$$\#(a) + \#(b) = n^m$$

Set E_i – set of functions that map nothing to element i of B

$$\begin{aligned}
\#(b) &= |\cup_{i=1}^{n} E_{i}| \\
&= \sum_{k=1}^{n} (-1)^{k+1} \sum_{1 \leq i_{1} < i_{2} < \dots < i_{k} \leq n} |E_{i_{1}} \cap E_{i_{2}} \cap \dots \cap E_{i_{k}}| \\
&= \sum_{k=1}^{n} (-1)^{k+1} {n \choose k} (n-k)^{m}
\end{aligned}$$

In how many ways can we choose an ordered triple of distinct elements from $\{1, 2, ..., n\}$?

In how many ways can we choose an ordered triple of distinct elements from $\{1, 2, ..., n\}$?

More generally, in how many ways can we choose a list of k distinct elements from $\{1, 2, ..., n\}$?

In how many ways can we choose an ordered triple of distinct elements from $\{1, 2, ..., n\}$?

More generally, in how many ways can we choose a list of k distinct elements from $\{1, 2, ..., n\}$?

A list of *k* distinct elements chosen from a set *N* is called a *k*-element permutation of *N*

In how many ways can we choose an ordered triple of distinct elements from $\{1, 2, ..., n\}$?

More generally, in how many ways can we choose a list of k distinct elements from $\{1, 2, ..., n\}$?

A list of *k distinct* elements chosen from a set *N* is called a *k*-element permutation of *N*

Note that the case of k = n is special;

An *n*-element permutation of a set N of size |N| = n is what we earlier simply called a permutation.

• How many three-element permutations of $\{1, 2, \ldots, n\}$ are there?

• How many three-element permutations of $\{1, 2, ..., n\}$ are there?

n choices for first number

• How many three-element permutations of $\{1, 2, \ldots, n\}$ are there?

n choices for first number

For each way of choosing first number there are n-1 choices for the second

• How many three-element permutations of $\{1, 2, \ldots, n\}$ are there?

n choices for first number

For each way of choosing first number there are n-1 choices for the second

For each way of choosing first two numbers, there are n-2 choices for the third number

• How many three-element permutations of $\{1, 2, \ldots, n\}$ are there?

n choices for first number

For each way of choosing first number there are n-1 choices for the second

For each way of choosing first two numbers, there are n-2 choices for the third number

By product rule, there are n(n-1)(n-2) ways to choose the permutation

An Example

■ By product rule, there are n(n-1)(n-2) ways to choose the permutation

An Example

■ By product rule, there are n(n-1)(n-2) ways to choose the permutation

```
Ex: When n = 4, there are 4 \times 3 \times 2 = 24
3 -element permutations of \{1, 2, 3, 4\}
```

```
L = \{123, 124, 132, 134, 142, 143, 213, 214, 231, 234, 241, 243, 312, 314, 321, 324, 341, 342, 412, 413, 421, 423, 431, 432\}.
```


An Example

■ By product rule, there are n(n-1)(n-2) ways to choose the permutation

```
Ex: When n = 4, there are 4 \times 3 \times 2 = 24 3 -element permutations of \{1, 2, 3, 4\}
```

$$L = \{123, 124, 132, 134, 142, 143, 213, 214, 231, 234, 241, 243, 312, 314, 321, 324, 341, 342, 412, 413, 421, 423, 431, 432\}.$$

Note: This type of "dictionary" ordering of tuples (assuming that we treat numbers the same as letters) is called a *lexicographic ordering* and is used quite often.

■ **Theorem** If N is a positive integer and k is an integer with $1 \le k \le n$, then there are

$$P(n,k) = n(n-1)(n-2)\cdots(n-k+1)$$

k-element permutations with n distinct elements.

■ **Theorem** If N is a positive integer and k is an integer with $1 \le k \le n$, then there are

$$P(n, k) = n(n-1)(n-2)\cdots(n-k+1)$$

k-element permutations with n distinct elements.

How does this help us solve our original problem(from triangle program) of counting # of 3-element subsets?

■ **Theorem** If N is a positive integer and k is an integer with $1 \le k \le n$, then there are

$$P(n, k) = n(n-1)(n-2)\cdots(n-k+1)$$

k-element permutations with n distinct elements.

How does this help us solve our original problem(from triangle program) of counting # of 3-element subsets?

Note that every 3-element subset $\{i, j, k\}$ can be made into exactly 6 3-element perms

■ **Theorem** If N is a positive integer and k is an integer with $1 \le k \le n$, then there are

$$P(n, k) = n(n-1)(n-2)\cdots(n-k+1)$$

k-element permutations with n distinct elements.

How does this help us solve our original problem(from triangle program) of counting # of 3-element subsets?

Note that every 3-element subset $\{i, j, k\}$ can be made into exactly 6 3-element perms

(# 3-element perms) =
$$6 \times (\# 3\text{-element subsets})$$

■ **Theorem** If N is a positive integer and k is an integer with $1 \le k \le n$, then there are

$$P(n, k) = n(n-1)(n-2)\cdots(n-k+1)$$

k-element permutations with n distinct elements.

How does this help us solve our original problem(from triangle program) of counting # of 3-element subsets?

Note that every 3-element subset $\{i, j, k\}$ can be made into exactly 6 3-element perms

$$(\# 3\text{-element perms}) = 6 \times (\# 3\text{-element subsets})$$

$$P(n,3) = 3! \cdot C(n,3)$$

Binomial Coefficient

■ **Theorem** For integers n and k with $0 \le k \le n$, the number of k-element subsets of an n-element set is

$$\binom{n}{k} = C(n, k) = \frac{P(n, k)}{k!} = \frac{n!}{k!(n-k)!}.$$

This is the number of k-combinations of a set with n elements.

$$\binom{n}{0} = 1$$
 only one set of size 0.

$$\binom{n}{n} = 1$$
 only one set of size n .

 $\binom{n}{k} = \binom{n}{n-k}$ Obvious from equation. Can you think of a simple bijection that explains this?

 $\sum_{i=0}^{n} \binom{n}{i} = 2^n$

$$\sum_{i=0}^{n} \binom{n}{i} = 2^n$$

Use Sum Rule

```
Let P = \text{set of all subsets of } \{1,2,\ldots,n\}

S_i = \text{set of all } i \text{ subsets of } \{1,2,\ldots,n\}
```


$$\sum_{i=0}^{n} \binom{n}{i} = 2^n$$

Use Sum Rule

Let
$$P = \text{set of all subsets of } \{1,2,\ldots,n\}$$

 $S_i = \text{set of all } i \text{ subsets of } \{1,2,\ldots,n\}$

$$\Rightarrow |P| = \sum_{i=0}^{n} |S_i| = \sum_{i=0}^{n} \binom{n}{i}$$

Let $L = L_1 L_2 \dots L_n$ be a list of size n from $\{0, 1\}$ If $\mathcal{L} = \text{set of all such lists} \Rightarrow |\mathcal{L}| = 2^n$ There is a *bijection* between \mathcal{L} and P so $|P| = 2^n$ and we are done.

Let $L = L_1 L_2 \dots L_n$ be a list of size n from $\{0, 1\}$ If $\mathcal{L} = \text{set of all such lists} \Rightarrow |\mathcal{L}| = 2^n$ There is a *bijection* between \mathcal{L} and P so $|P| = 2^n$ and we are done.

Define the following function $f: \mathcal{L} \to P$

If $L \in \mathcal{L}$ then f(L) is the set $S \subseteq \{1, 2, ..., n\}$ defined by $i \in S \Leftrightarrow L_i = 1$

Let $L = L_1 L_2 \dots L_n$ be a list of size n from $\{0, 1\}$ If $\mathcal{L} = \mathsf{set}$ of all such lists $\Rightarrow |\mathcal{L}| = 2^n$

There is a *bijection* between \mathcal{L} and P so $|P| = 2^n$ and we are done.

Define the following function $f: \mathcal{L} \to P$

If $L \in \mathcal{L}$ then f(L) is the set $S \subseteq \{1, 2, ..., n\}$ defined by $i \in S \iff L_i = 1$

f is a bijection between \mathcal{L} and P (why?) so $|\mathcal{L}| = |P|$

Let $L = L_1 L_2 \dots L_n$ be a list of size n from $\{0, 1\}$ If $\mathcal{L} = \text{set of all such lists} \Rightarrow |\mathcal{L}| = 2^n$ There is a *bijection* between \mathcal{L} and P so $|P| = 2^n$ and we are done.

Define the following function $f: \mathcal{L} \to P$

If
$$L \in \mathcal{L}$$
 then $f(L)$ is the set $S \subseteq \{1, 2, ..., n\}$ defined by $i \in S \iff L_i = 1$

f is a *bijection* between $\mathcal L$ and P (why?) so $|\mathcal L|=|P|$

Ex:
$$n = 5$$

$$f(10101) = \{1, 3, 5\}, \ f(11101) = \{1, 2, 3, 5\}, \ f(00000) = \emptyset$$

Binomial Coefficients

n^{k}	0	1	2	3	4	5	6
0	1						
1	1	1					
2	1	2	1				
3	1	3	3	1			
4	1	4	6	4	1		
5	1	5	10	10	5	1	
6	1	6	15	20	15	6	1

Binomial Coefficients

n^{k}			2			5	6
0	$\sqrt{1}$		1 3 6 10 15				
1	1	1					
2	1	2	1				
3	1	3	3	1			
4	1	4	6	4	1		
5	1	5	10	10	5	1	
6	1	6	15	20	15	6	1

Each row begins with a 1 because $\binom{n}{0} = 1$

Binomial Coefficients

Each row begins with a 1 because $\binom{n}{0} = 1$

Each row ends with a 1 because $\binom{n}{n} = 1$.

Binomial Coefficients

n^{k}	0	1	2	3	4	5	6
0	1						
1	1	1					
2	1	2	1				
3	1	3	3	1			
4	1	4	6	4	1		
5	1	5	10	10	5	1	
6	1	6	15	20	15	6	1

Each row begins with a 1 because $\binom{n}{0} = 1$

Each row ends with a 1 because $\binom{n}{n} = 1$.

Each row increases at first then decreases.

Binomial Coefficients

Each row begins with a 1 because $\binom{n}{0} = 1$

Each row ends with a 1 because $\binom{n}{n} = 1$.

Each row increases at first then decreases.

Second half of each row is the reverse of the first half.

Binomial Coefficients

Each row begins with a 1 because $\binom{n}{0} = 1$

Each row ends with a 1 because $\binom{n}{n} = 1$.

Each row increases at first then decreases.

Second half of each row is the reverse of the first half. Sum of items on n-th row is 2^n

Take the table

n^{k}	0	1	2	3	4	5	6
0	1						
1	1	1					
2	1	2	1				
3	1	3	3	1			
4	1	4	6	4	1		
5	1	5	10	10	5	1	
6	1	6	15	20	15	6	1

Take the table

n^{k}	0	1	2	3	4	5	6
0	1						
1	1	1					
2	1	2	1				
3	1	3	3	1			
4	1	4	6	4	1		
5	1	5	10	10	5	1	
6	1	6	15	20	15	6	1

and shift each row slightly so that middle element is in middle

What is the next row in the table?


```
10 10
      15 20 15
1 7 21 35 35 21
```


Pascal identity

Each (non-1) entry in Pascal's

Triangle is the sum of
the two entries directly above it

Jeft and to right).

Pascal identity

Each (non-1) entry in Pascal's

Triangle is the sum of
the two entries directly above it

Jeft and to right).

Pascal's Identity

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$$

Pascal's Identity

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$$

A purely algebraic proof (manipulating formulas) is possible.

Pascal's Identity

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$$

A purely *algebraic* proof (manipulating formulas) is possible.

We will use a combinatorial proof.

 $\binom{n}{k}$ is the number of k-element subsets of an n-element set.

 $\binom{n}{k}$ is the number of k-element subsets of an n-element set.

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$$

Therefore, each term (left and right) represents the number of subsets of a particular size chosen from an appropriately sized set.

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$$

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$$

Number of k-subsets of an n-element set.

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$$

Number of k-subsets of an n-element set.

Number of (k-1)-subsets of an (n-1)-element set.

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$$

Number of k-subsets of an n-element set.

Number of (k-1)-subsets of an (n-1)-element set.

Number of k-subsets of an (n-1)-element set.

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$$

Number of k-subsets of an n-element set.

Number of (k-1)-subsets of an (n-1)-element set.

Number of k-subsets of an (n-1)-element set.

Try to use sum principle to explain relationship among these three terms.

Example:
$$n = 5$$
, $k = 2$

$$\binom{5}{2} = \binom{4}{1} + \binom{4}{2}.$$

$$\binom{5}{2} = \binom{4}{1} + \binom{4}{2}.$$

$$\binom{5}{2} = \binom{4}{1} + \binom{4}{2}.$$

Consider $S = \{A, B, C, D, E\}$.

$$\binom{5}{2} = \binom{4}{1} + \binom{4}{2}.$$

Consider $S = \{A, B, C, D, E\}$.

Set S_1 of 2-subsets of S

$$S_1 = \{\{A, B\}, \{A, C\}, \{A, D\}, \{A, E\}, \{B, C\}, \{B, D\}, \{B, E\}, \{C, D\}, \{C, E\}, \{D, E\}\}\}.$$

$$\binom{5}{2} = \binom{4}{1} + \binom{4}{2}.$$

Consider $S = \{A, B, C, D, E\}$.

Set S_1 of 2-subsets of S can be partitioned into 2 disjoint parts.

 S_2 the 2-subsets that contain E and

 S_3 , the set of 2-subsets that do not contain E.

$$S_1 = \{\{A, B\}, \{A, C\}, \{A, D\}, \{A, E\}, \{B, C\}, \{B, D\}, \{B, E\}, \{C, D\}, \{C, E\}, \{D, E\}\}\}.$$

$$\binom{5}{2} = \binom{4}{1} + \binom{4}{2}.$$

Consider $S = \{A, B, C, D, E\}$.

Set S_1 of 2-subsets of S can be partitioned into 2 disjoint parts.

 S_2 the 2-subsets that contain E and

 S_3 , the set of 2-subsets that do not contain E.

$$S_1 = \{\{A, B\}, \{A, C\}, \{A, D\}, \{A, E\}, \{B, C\}, \{B, D\}, \{B, E\}, \{C, D\}, \{C, E\}, \{D, E\}\}\}.$$

$$S_1 = \{\{A, B\}, \{A, C\}, \{A, D\}, \{A, E\}, \{B, C\}, \{B, D\}, \{B, E\}, \{C, D\}, \{C, E\}, \{D, E\}\}\}.$$

If n and k are integers satisfying 0 < k < n, then

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}.$$

If n and k are integers satisfying 0 < k < n, then

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}.$$

Proof: Apply sum rule.

If n and k are integers satisfying 0 < k < n, then

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}.$$

Proof: Apply sum rule.

Let S_1 be set of all k-element subsets.

If n and k are integers satisfying 0 < k < n, then

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}.$$

Proof: Apply sum rule.

Let S_1 be set of all k-element subsets.

To apply sum rule, partition S_1 into S_2 and S_3 .

Let S_2 be set of k-element subsets that contain x_n .

Let S_3 be set of k-element subsets that don't contain x_n

Blaise Pascal

Born 1623; Died 1662

French Mathematician

A Founder of Probability Theory

Inventor of one of the first mechanical calculating machines

Pascal Programming Language named for him

$$(x+y) = \binom{1}{0}x + \binom{1}{1}y$$

$$(x+y) = \binom{1}{0}x + \binom{1}{1}y$$

$$(x+y)^2 = x^2 + 2xy + y^2 = {2 \choose 0}x^2 + {2 \choose 1}x^1y^1 + {2 \choose 2}y^2$$

$$(x+y) = \binom{1}{0}x + \binom{1}{1}y$$

$$(x+y)^2 = x^2 + 2xy + y^2 = {2 \choose 0}x^2 + {2 \choose 1}x^1y^1 + {2 \choose 2}y^2$$

$$(x+y)^3 = x^3 + 3x^2y + 3xy^2 + y^3$$
$$= {3 \choose 0}x^3 + {3 \choose 1}x^2y + {3 \choose 2}xy^2 + {3 \choose 3}y^3$$

Number of k-element subsets of an n-element set is called a binomial coefficient because of its role in the algebraic expansion of a binomial $(x + y)^n$.

Number of k-element subsets of an n-element set is called a binomial coefficient because of its role in the algebraic expansion of a binomial $(x + y)^n$.

The Binomial Theorem For any integer $n \geq 0$,

$$(x+y)^{n} = \binom{n}{0}x^{n} + \binom{n}{1}x^{n-1}y + \binom{n}{2}x^{n-2}y^{2} + \ldots + \binom{n}{n-1}xy^{n-1} + \binom{n}{n}y^{n}$$

Number of k-element subsets of an n-element set is called a binomial coefficient because of its role in the algebraic expansion of a binomial $(x + y)^n$.

The Binomial Theorem For any integer $n \geq 0$,

$$(x+y)^{n} = \binom{n}{0}x^{n} + \binom{n}{1}x^{n-1}y + \binom{n}{2}x^{n-2}y^{2} + \ldots + \binom{n}{n-1}xy^{n-1} + \binom{n}{n}y^{n}$$

$$(x+y)^n = \sum_{i=0}^n \binom{n}{i} x^{n-i} y^i.$$

The Binomial Theorem

Number of k-element subsets of an n-element set is called a binomial coefficient because of its role in the algebraic expansion of a binomial $(x + y)^n$.

The Binomial Theorem For any integer $n \geq 0$,

$$(x+y)^{n} = \binom{n}{0}x^{n} + \binom{n}{1}x^{n-1}y + \binom{n}{2}x^{n-2}y^{2} + \ldots + \binom{n}{n-1}xy^{n-1} + \binom{n}{n}y^{n}$$

$$(x+y)^n = \sum_{i=0}^n \binom{n}{i} x^{n-i} y^i.$$

Proof?

Application of the Binomial Theorem

We may use the Binomial Theorem to prove

$$\sum_{i=0}^{n} \binom{n}{i} = 2^n$$

Suppose we have k labels of one kind, e.g., red and n-k labels of another, e.g., blue. In how many different ways can we apply these labels to n objects?

Suppose we have k labels of one kind, e.g., red and n-k labels of another, e.g., blue. In how many different ways can we apply these labels to n objects?

Show that if we have k_1 labels of one kind, e.g., red, k_2 labels of a second kind, e.g., blue, and $k_3 = n - k_1 - k_2$ labels of a third kind, then there are $\frac{n!}{k_1!k_2!k_3!}$ ways to apply these labels to n objects

Suppose we have k labels of one kind, e.g., red and n-k labels of another, e.g., blue. In how many different ways can we apply these labels to n objects?

Show that if we have k_1 labels of one kind, e.g., red, k_2 labels of a second kind, e.g., blue, and $k_3 = n - k_1 - k_2$ labels of a third kind, then there are $\frac{n!}{k_1!k_2!k_3!}$ ways to apply these labels to n objects

What is the coefficient of $x^{k_1}y^{k_2}z^{k_3}$ in $(x+y+z)^n$?

There are $\binom{n}{k_1}$ ways to choose the red items There are then $\binom{n-k_1}{k_2}$ ways to choose the blue items from the remaining $n-k_1$. The remaining k_3 items get labelled a third color.

There are $\binom{n}{k_1}$ ways to choose the red items There are then $\binom{n-k_1}{k_2}$ ways to choose the blue items from the remaining $n-k_1$. The remaining k_3 items get labelled a third color.

Using the *product rule* the total number of labellings is

$$\binom{n}{k_1} \binom{n-k_1}{k_2} = \frac{n!}{k_1!(n-k_1)!} \frac{(n-k_1)!}{(k_2)!(n-k_1-k_2)!}$$

$$= \frac{n!}{k_1!k_2!(n-k_1-k_2)!} = \frac{n!}{k_1!k_2!k_3!}$$

• When $k_1 + k_2 + k_3 = n$, we call

$$\frac{n!}{k_1!k_2!k_3!}$$

a trinomial coefficient and denote it as

$$\begin{pmatrix} n \\ k_1 & k_2 & k_3 \end{pmatrix}$$

• When $k_1 + k_2 + k_3 = n$, we call

$$\frac{n!}{k_1!k_2!k_3!}$$

a trinomial coefficient and denote it as

$$\begin{pmatrix} n \\ k_1 & k_2 & k_3 \end{pmatrix}$$

What is the coefficient of $x^{k_1}y^{k_2}z^{k_3}$ in $(x+y+z)^n$?

Suppose that 25 students are in a room. What is the probability that at least two of them share a birthday?

Suppose that 25 students are in a room. What is the probability that at least two of them share a birthday?

It's greater than 1/2! (only need 23)

Suppose that 25 students are in a room. What is the probability that at least two of them share a birthday?

It's greater than 1/2! (only need 23)

 A_n – "there are n students in a room and at least two of them share a birthday."

Suppose that 25 students are in a room. What is the probability that at least two of them share a birthday?

It's greater than 1/2! (only need 23)

 A_n – "there are n students in a room and at least two of them share a birthday."

We may assume that a year has 365 days and there are no twins in the room.

Suppose that 25 students are in a room. What is the probability that at least two of them share a birthday?

It's greater than 1/2! (only need 23)

 A_n – "there are n students in a room and at least two of them share a birthday."

We may assume that a year has 365 days and there are no twins in the room.

This will be very similar to the analysis of hashing *n* keys into a table of size 365.

 \blacksquare A_n – "there are n students in a room and at least two of them share a birthday."

Sample space: $|S| = 365^n$

 \blacksquare A_n – "there are n students in a room and at least two of them share a birthday."

Sample space: $|S| = 365^n$

 B_n – "there are n students in a room and none of them share a birthday."

 \blacksquare A_n — "there are n students in a room and at least two of them share a birthday."

Sample space:
$$|S| = 365^n$$

 B_n – "there are n students in a room and none of them share a birthday."

$$\#B_n = 365 \times 364 \times \cdots \times (365 - (n-1))$$

 \blacksquare A_n — "there are n students in a room and at least two of them share a birthday."

Sample space:
$$|S| = 365^n$$

 B_n – "there are n students in a room and none of them share a birthday."

$$\#B_n = 365 \times 364 \times \cdots \times (365 - (n-1))$$

$$\#A_n + \#B_n = 365^n$$

n	A_{n}	B_n	n	A_n	B_n
1	0.00000000	1.00000000	16	0.28360400	0.71639599
2	0.00273972	0.99726027	17	0.31500766	0.68499233
3	0.00820416	0.99179583	18	0.34691141	0.65308858
4	0.01635591	0.98364408	19	0.37911852	0.62088147
5	0.02713557	0.97286442	20	0.41143838	0.58856161
6	0.04046248	0.95953751	21	0.44368833	0.55631166
7	0.05623570	0.94376429	22	0.47569530	0.52430469
8	0.07433529	0.92566470	23	0.50729723	0.49270276
9	0.09462383	0.90537616	24	0.53834425	0.46165574
10	0.11694817	0.88305182	25	0.56869970	0.43130029
11	0.14114137	0.85885862	26	0.59824082	0.40175917
12	0.16702478	0.83297521	27	0.62685928	0.37314071
13	0.19441027	0.80558972	28	0.65446147	0.34553852
14	0.22310251	0.77689748	29	0.68096853	0.31903146
15	0.25290131	0.74709868	30	0.70631624	0.29368375
			I		or OF SO

Event A: at least two people in the room have the same birthday
Event B: no two people in the room have the same birthday

$$Pr[A] = 1 - Pr[B]$$

$$\Pr[B] = \left(1 - \frac{1}{365}\right) \cdot \left(1 - \frac{2}{365}\right) \cdot \dots \cdot \left(1 - \frac{n-1}{365}\right)$$
$$= \prod_{i=1}^{n-1} \left(1 - \frac{i}{365}\right).$$

$$\Pr[A] = 1 - \prod_{i=1}^{n-1} \left(1 - \frac{i}{365}\right)$$

Event A: at least two people in the room have the same birthday
Event B: no two people in the room have the same birthday

$$Pr[A] = 1 - Pr[B]$$

$$\Pr[B] = \left(1 - \frac{1}{365}\right) \cdot \left(1 - \frac{2}{365}\right) \cdot \dots \cdot \left(1 - \frac{n-1}{365}\right)$$
$$= \prod_{i=1}^{n-1} \left(1 - \frac{i}{365}\right).$$

$$\Pr[A] = 1 - \prod_{i=1}^{n-1} \left(1 - \frac{i}{365}\right)$$

$$p(n; H) := 1 - \prod_{i=1}^{n-1} (1 - \frac{i}{H})$$

Since $e^x = 1 + x + \frac{x^2}{2!} + \cdots$, for $|x| \ll 1$, $e^x \approx 1 + x$

Since $e^x = 1 + x + \frac{x^2}{2!} + \cdots$, for $|x| \ll 1$, $e^x \approx 1 + x$ Thus, we have $e^{-i/H} \approx 1 - \frac{i}{H}$.

Since $e^x = 1 + x + \frac{x^2}{2!} + \cdots$, for $|x| \ll 1$, $e^x \approx 1 + x$

Thus, we have $e^{-i/H} \approx 1 - \frac{i}{H}$.

Recall that
$$p(n; H) := 1 - \prod_{i=1}^{n-1} (1 - \frac{i}{H})$$

This probability can be approximated as

$$p(n; H) \approx 1 - e^{-n(n-1)/2H} \approx 1 - e^{-n^2/2H}$$
.

Since $e^x = 1 + x + \frac{x^2}{2!} + \cdots$, for $|x| \ll 1$, $e^x \approx 1 + x$

Thus, we have $e^{-i/H} \approx 1 - \frac{i}{H}$.

Recall that
$$p(n; H) := 1 - \prod_{i=1}^{n-1} (1 - \frac{i}{H})$$

This probability can be approximated as

$$p(n; H) \approx 1 - e^{-n(n-1)/2H} \approx 1 - e^{-n^2/2H}$$
.

Let n(p; H) be the smallest number of values we have to choose, such that the probability for finding a collision is at least p. By inverting the expression above, we have

$$n(p; H) \approx \sqrt{2H \ln \frac{1}{1-p}}.$$

The Euclidean algorithm in pseudocode

ALGORITHM 1 The Euclidean Algorithm.

```
procedure gcd(a, b): positive integers)

x := a

y := b

while y \neq 0

r := x \mod y

x := y

y := r

return x\{\gcd(a, b) \text{ is } x\}
```

The number of divisions required to find gcd(a, b) is $O(\log b)$, where $a \ge b$. (this will be proved later.)

The Euclidean algorithm in pseudocode

ALGORITHM 1 The Euclidean Algorithm.

```
procedure gcd(a, b): positive integers)
x := a
y := b
while y \neq 0
r := x \mod y
x := y
y := r
return x\{\gcd(a, b) \text{ is } x\}
```

The number of divisions required to find gcd(a, b) is $O(\log b)$, where $a \ge b$. (this will be proved later.)

Why?

Key steps in the Euclidean algorithm

```
egin{array}{lll} r_0 &= r_1 q_1 + r_2 & 0 \leq r_2 < r_1, \\ r_1 &= r_2 q_2 + r_3 & 0 \leq r_3 < r_2, \\ & \cdot & \\ & \cdot & \\ & \cdot & \\ r_{n-2} &= r_{n-1} q_{n-1} + r_n & 0 \leq r_n < r_{n-1}, \\ r_{n-1} &= r_n q_n \ . \end{array}
```

Key steps in the Euclidean algorithm

```
r_0 = r_1q_1 + r_2 0 \le r_2 < r_1, r_1 = r_2q_2 + r_3 0 \le r_3 < r_2, 0 \le r_3 < r_3, 0 \le r_3 < r_2, 0 \le r_3 < r_3, 0 \le r_3 < r_3
```

Observation:

$$r_{i+2} = r_i \mod r_{i+1}$$

Key steps in the Euclidean algorithm

```
r_0 = r_1q_1 + r_2 0 \le r_2 < r_1, r_1 = r_2q_2 + r_3 0 \le r_3 < r_2, 0 \le r_3 < r_3, 1 \le r_3,
```

Observation:

$$r_{i+2} = r_i \mod r_{i+1}$$

We claim that $r_{i+2} < \frac{1}{2}r_i$

Key steps in the Euclidean algorithm

$$r_0 = r_1q_1 + r_2$$
 $0 \le r_2 < r_1$, $r_1 = r_2q_2 + r_3$ $0 \le r_3 < r_2$, $0 \le r_3 < r_3$, $0 \le r_3 < r_2$, $0 \le r_3 < r_3$

Observation:

$$r_{i+2} = r_i \mod r_{i+1}$$

We claim that $r_{i+2} < \frac{1}{2}r_i$

Case (i):
$$r_{i+1} \leq \frac{1}{2}r_i$$
: $r_{i+2} < r_{i+1} \leq \frac{1}{2}r_i$.

Case (ii):
$$r_{i+1} > \frac{1}{2}r_i$$
: $r_{i+2} = r_i \mod r_{i+1} = r_i - r_{i+1} < \frac{1}{2}r_i$.

Key steps in the Euclidean algorithm

```
r_0 = r_1q_1 + r_2 0 \le r_2 < r_1, r_1 = r_2q_2 + r_3 0 \le r_3 < r_2, r_1 = r_1q_1 + r_2 0 \le r_3 < r_2, 0 \le r_3 < r_3, 0 \le r_3 <
```

Observation:

$$r_{i+2} = r_i \mod r_{i+1}$$

We claim that $r_{i+2} < \frac{1}{2}r_i$

Case (i):
$$r_{i+1} \leq \frac{1}{2}r_i$$
: $r_{i+2} < r_{i+1} \leq \frac{1}{2}r_i$.

Case (ii):
$$r_{i+1} > \frac{1}{2}r_i$$
: $r_{i+2} = r_i \mod r_{i+1} = r_i - r_{i+1} < \frac{1}{2}r_i$.

Next Lecture

solving linear recurrence ...

