Spark Session: minilibx

Session description:

Learn the basics of working with miniLibX

This tutorial was written with help from Harm Smits and Jelle van Snik's <u>MiniLibX</u> tutorial.

Topics

- 1. Window Management
- 2. Pixel Putting
- 3. More Pixels
- 4. Events & Hooks

Window Management

Our first step will be to open up some windows! (30 mins)

- To use the miniLibX library, you'll need to first include the mlx header in your file. (5 mins)
- 2. mlx_init has to be called before we call any other mlx function. What does it do and what is its prototype? What does it return? (5 mins)
- 3. Let's try opening a small empty window. What is the prototype for mlx_new_window and what does it return? Now create a window with a width of 800, height of 480, and a title of "My first window". (10 mins)
- 4. What happens if you compile and run the program at this point? Your window should have only popped up for a moment.
 - To make it stay longer, we need to use mlx_{loop} . What does it do and what is its prototype? (5 mins)
- 5. Once you understand that, add mlx_loop to your code. (5 mins)
 - Do you now get a window that stays open? Press Ctrl-C to close it when you're done admiring your work.
 - Important: mlx_loop should be called last in your code. Do you know why?

Break (5 mins)

Pixel Putting

Time to put something on that empty window. (60 mins)

- Rather than <u>inefficiently pushing pixels</u> one by one to the window using mlx_pixel_put , we should draw our pixels onto an **image** first, then push that image to our window. So we need mlx_new_image . (10 mins)
 - What is mlx_new_image 's prototype and return?
 - \circ Once you understand that, go ahead and initialise an image with a size of $800~x~480\,.$
- 2. In order to know where we can put our pixels, we need to get the **memory address** of our image. That's where <code>mlx_get_data_addr</code> comes in. What arguments does it take and what does it return? (10 mins)

3. Since the function requires a lot of extra variables, let's keep things neat by using a struct for our image data. (10 mins)

```
typedef struct s_img
{
    void    *img_ptr;
    char    *address;
    int     bits_per_pixel;
    int     line_size;
    int     endian;
}
```

- Notice that we shifted the image pointer into the struct. Adjust your initialisation of mlx_new_image accordingly.
- Then call mlx_get_data_addr and pass it the appropriate arguments/references.
- 4. As explained in point #1, mlx_pixel_put is rather inefficient, so here's a much faster version to use in your code: (10 mins)

```
void my_pixel_put(t_img *img, int x, int y, unsigned int colour)
{
    char *dst;
    int offset;

    offset = y * img->line_size + x * (img->bits_per_pixel / 8);
    dst = img->address + offset;
    *(unsigned int *)dst = colour;
}
```

- What is this function doing? What is offset?
- Now, using your my_pixel_put function, put a white pixel in the middle of your image. (10 mins)
- 6. Our image is all ready to be shown! Let's look at mlx_put_image_to_window. What parameters does it take? Add the function to your code and see if your little white dot is showing in your window. (10 mins)

Break (5 mins)

More Pixels

Let's get fancier. Now we're gonna try drawing lines. (25 mins)

- 1. Draw a single horizontal white line running across the middle of the entire screen. You'll need to call my_pixel_put in a loop. (15 mins)
- 2. Now draw a single vertical white line down the middle of the entire screen. (10 mins)

You should end up with what looks like a crosshair in your window.

Events & Hooks

Having to do Ctrl-C every time is probably getting annoying. Let's learn how to close the window when the 'X' button of your window (not your keyboard) is pressed. (35 mins)

- 1. Hooks, along with events, are vital to making your program interactive. They allow you to intercept keyboard or mouse events and respond to them. You can think of hooks as functions that get called when an event occurs. What is the prototype for mlx_hook? (5 mins)
- 2. miniLibX uses the event codes and masks set out in the X11 library. What do event codes and masks do? (5 mins)
- 3. What are the **event codes** and **masks** for key presses, key releases, and the 'X' close button? (10 mins)
- 4. Write a function that: (10 mins)
 - takes as its argument a struct containing at least your mlx pointer and window pointer (either make a new struct or expand your existing one);
 - destroys your window and exits your program.
- 5. Add a call to mlx_hook in your main that calls this exiting function when the 'X' button is pressed. (5 mins)
 - Does your window close now when you press the 'X' close button on your window?

Bonus

Let's get some movement on screen: make your crosshair move in 4 directions!

First, however, let's make our crosshair smaller, because who needs a crosshair that big?

- 1. Expand your struct to include **at least** the following variables you'll need for your drawing function:
 - object width & height;
 - starting x & y positions (i.e. the coordinates of the leftmost pixel of your crosshair).
- 2. Make a draw_crosshair function that:
 - accepts your data/game struct as its parameter;
 - can render a crosshair of a particular width and height, instead of only the height/width of the screen;
 - renders that crosshair in the middle of the screen (you'll have to do some math using the object dimensions and starting positions, sorry);
 - calls mlx_put_image_to_window at the end.
- 3. Get a 30×30 pixel crosshair onto your window. Did it work?

Now let's hook into keyboard events!

- Add a call to mlx_hook in your main that calls a function keypress when keys are...well, pressed.
- 2. Write that keypress function that:
 - calls your exit function when the ESC key is pressed;
 - moves the crosshair up, down, left, and right when the corresponding key is pressed.
 - you can choose to use the arrow keys or W A S D keys.
 - I've included helpful diagrams below for the keycodes you'll need.

- 3. Add a call to mlx_loop_hook in your main that calls a function to render the new image with the modified object coordinates.
- 4. Do you now have a crosshair that can move across your screen?
 - If you're seeing a trail of crosshairs, you're probably not rendering the background each time.
 - If your program is crashing when you hit one of the walls, perhaps you should add checks to your keypress function.

mac0S

Linux