

LLM-TALK PHONE FEEDBACK AGENT

Réalisés Par :

- KACHMAR Mohamed
- EL OUALI HAMZA
- FAKRAOUI Ayoub
- Ennya Imane

Encadré Par :

• GAMOUH Hamza

INTRODUCTION

12 TECHNOLOGIES UTILISÉES

1 ARCHITECTURE DU SYSTÈME

07 DÉMONSTRATION

08 CONCLUSION

TABLE DE MATIERE

INTRODUCTION

Objectifs et Vision du Projet

01. INTRODUCTION

OBJECTIFS ET VISION DU PROJET

Notre projet vise à créer un système d'appels automatisés intelligents, combinant LLM, TTS/STT et Hybrid RAG pour mener des enquêtes vocales dynamiques.

L'objectif est d'offrir une solution adaptative capable de dialoguer, comprendre, et analyser les réponses en temps réel.

Nous aspirons à transformer les enquêtes classiques en interactions vocales intelligentes, modulaires et facilement déployables via Docker.

Le pipeline

- → L'utilisateur crée une campagne (survey + KB)
- → Données stockées dans MongoDB et Qdrant
- → Twilio lance l'appel, le LLM orchestre la conversation.
- → Réponses et analyses sont enregistrées

ARCHITECTURE DU SYSTÈME

+ Stack Technologique

2/1. TECHNOLOGIES UTILISÉES

Couche Intelligence Artificielle

Communication

Couche applicative

Stockage

Deploiement

STACK **TECHNOLOGIQUE**

2/2. ARCHITECTURE GLOBALE

ARCHITECTURE CONVERSATIONNELLE HYBRIDE AVEC RAG ET LLM

2/3. POURQUOI LE RAG?

→ Pour fournir des réponses contextuelles, précises et enrichies à l'utilisateur pendant l'appel vocal, en combinant la puissance du LLM avec des données métier utiles.

Stratégies de récupération disponibles

L'algorithme choisit automatiquement une stratégie parmi :

- SIMPLE : recherche sémantique directe (vectorielle).
- HYBRID : combine recherche sémantique et par mots-clés.
- **CONTEXTUAL** : intègre l'historique de conversation pour adapter la requête.

• ADAPTIVE : choisit dynamiquement la meilleure stratégie selon

le type de requête.

2/4. ANALYSE DE SENTIMENT – DÉFINITION & INTÉGRATION

L'analyse de sentiment permet d'évaluer automatiquement l'émotion exprimée par l'utilisateur dans sa réponse (positive, négative ou neutre), grâce à un modèle de langage (LLM). En cas d'échec, une méthode de secours basée sur des mots-clés est utilisée.

 \rightarrow Le score obtenu contribue à mesurer la satisfaction globale dans les enquêtes vocales.

- STT via Twilio: conversion voix → texte après la réponse utilisateur
- LLM (GPT-4) : analyse sémantique et scoring du ressenti

 →Le score est basé sur : le ton émotionnel, le contexte, et les nuances du langage.
- Fallback mots-clés : méthode de secours si le LLM échoue
- Stockage MongoDB : score par question + moyenne globale
- Score = $\begin{cases} \min(0.8, \ 0.3 + 0.1 \times P) & \text{si } P > N \\ \max(-0.8, \ -0.3 0.1 \times N) & \text{si } N > P \\ 0.0 & \text{si } P = N \end{cases}$
- Usage métier : score exploité pour adapter le dialogue et mesurer la satisfaction

DÉMONSTRATION

CONCLUSION

OBJECTIF GLOBAL

Fournir une expérience conversationnelle automatisée, intelligente et évolutive, capable de s'adapter dynamiquement aux réponses utilisateur tout en capitalisant sur les données internes (KB, sondages).

PERSPECTIVES

Évolutions futures et extensions possibles de l'architecture. Intégration de technologies émergentes et amélioration continue des performances.

MACHINE LEARNING

Amélioration continue du scoring de sentiment via apprentissage supervisé sur les retours utilisateur.

INTÉGRATION OMNICANALE

chatbot, WhatsApp, email, etc., via la même logique intelligente.

THANK YOU Special thanks to our Professor Gamouh Hamza for all the efforts during this project.