Topos Theory - Exercise Sheet 2

1. Prove that a distributive lattice also satisfies the dual distributive law:

$$a \vee (b \wedge c) = (a \vee b) \wedge (a \vee c)$$

2. Recall that a *complement* of an element x of a lattice element a such that

$$x \lor a = 1$$
 $x \land a = 0$

Show that if X is a Heyting algebra and $x \in X$, then if a is a complement for x the it must be the negation of x. That is, show that $a = \neg x$ where $\neg x$ is defined as $x \Rightarrow 0$.

3. The purpose of this exercise will be to construct a map

$$\wedge:\Omega\times\Omega\to\Omega$$

which "internalizes" the meet of two subterminal objects.

- (a) Show that if $f: X \rightarrow A$ and $g: X \rightarrow B$ are monomorphisms, then so is $(f,g): X \rightarrow A \times B$.
- (b) Suppose

are two pullback squares. Show that the induced square

$$\begin{array}{ccc} A\times X & \longrightarrow & B\times Y \\ \downarrow & & \downarrow \\ C\times Z & \longrightarrow & D\times Y \end{array}$$

is also a pullback.

(c) Using the previous two steps, deduce that we have a map

$$\wedge: \Omega \times \Omega \to \Omega$$

such that for any pair of subterminal objects $U\rightarrowtail 1$ and $V\rightarrowtail 1$, the classifying diagram of the meet $U\times V\rightarrowtail 1$ may be factored as follows:

4. Harder: Can you construct maps

$$\forall:\Omega\times\Omega\to\Omega$$

$$\Rightarrow:\Omega\times\Omega\to\Omega$$

which classify the other operations we have defined on subterminal objects?