

WATERMELON QUALITY PREDICTION

COGS 109 group 19: Junkee Shin, Odemuno Ogelohwohor, Janet Lin

Purpose

- Judging watermelon quality based on its apparent properties such as texture or color is difficult.
- Scientific concern in agriculture and food retail

Objective

 Predict the watermelon quality using Logistic Regression and K-Nearest Neighbors regression (KNN)

Hypothesis

 Will belly button, sound and sugar rate be the best predictors for the quality of a watermelon?

Relevant data (from Kaggle)

- 209 data points
- 6 categorical & 2 numerical predictors
- 1 categorical outcome label (Good / Bad)

Categorical: color, root, texture, belly_button, sound, touch **Numerical**: density, sugar rate

METHODS

Logistic Regression

- Uses a parametric algorithm
- Categorical outcome
- Applies to binary classification
- Tests the significance for individual regression coefficients

K-Nearest Neighbors

- Uses a non-parametric algorithm
- More flexible
- Does not need to be normal distributed
- Calculates the distance to all points in our data based on the K closest points

RESULTS & INTERPRETATION

import pandas as pd # data processing, input CSV file

import matplotlib.pyplot as plt # plotting data

import statsmodels.api as sm # linear & Logistic regression

import numpy as np # linear algebra

import seaborn as sns # confusion matrix heatmap

import statsmodels.formula.api as smf # Log-odds ratio

Data Exploration df['GB'].value counts()

130 Yes 79 Train set has: 103 bad watermelons Train set has: 64 good watermelons

Test set has: 27 bad watermelons Test set has: 15 good watermelons

Plot RMSE values to find best K(k=3)

From the confusion matrix:

	Logistic	KNN
Accuracy	66.66%	88.09%
Precision	54.54%	91.66%
Error rate	33.33%	11.90%

RESULTS & INTERPRETATION

Dep. Variable:			GB N		No. Observations:		209	
Model:			Logit		Df Residuals:		200	
Method:		1	MLE		Df Model:		8	
Date: Sun		, 18 Jul 2	18 Jul 2021		Pseudo R-squ.:		0.2839	
Time:		21:5	21:50:47		Log-Likelihood:		-99.236	
converg	ged:		True		LL-Null:	-138	3.58	
Covariance Type:		nonro	nonrobust		LLR p-value:		8.958e-14	
	coef	std err	Z	P> z	[0.025	0.975]		
Intercept	-5.3908	1.648	-3.271	0.001	-8.621	-2.161		
Color	-0.2767	0.349	-0.793	0.428	-0.961	0.407		
Root	0.4966	0.541	0.917	0.359	-0.565	1.558		
Sound	1.1058	0.447	2.472	0.013	V	1.962		
Texture	0.2569	0.468	0.549	0.583	-0.659	1.173		
Belly_button	0.3981	0.338	1.179	0.238	-0.264	1.060		
Touch	-0.4919	0.820	-0.600	0.549	-2.099	1.116		
Density	2.1697	2.322	0.934	0.350	-2.382	6.721		
sugar rate	6.4586	2 468	2.617	0.009	-	11.200		

- In choosing the best model, KNN gives the best accuracy and lowest error rate, but does not tell us about the predictor significance
- We chose logistic regression for better interpretability for predictors using coefficient table
- Only sound and sugar rate have significant influence (p-values < 0.05) on predicting the qualities of the watermelons
 - There is minimal overlap for sugar rate, so this proves our hypothesis for this predictor Each unit increase in sound increases the log odds of having good watermelons by 3.02

REFLECTION

- Logistic regression gives us what predictors are the most important, which confirms our hypothesis that sugar rate and sound are the best predictors of watermelon
- However, our model denies our hypothesis that belly button is an important predictor
- Limitation: we do not know certainly how sensory data like color, sound, texture, and touch are measured; they may vary based on the observer.
 For "Texture", it is subjective to differentiate "blurry" from "very blurry"
- If you want to choose a sweet watermelon, the sound heard when tapping it should be clear as opposed to turbid! (trust the science & your guts)

THANK YOU!

Any questions?

