Q5. Suppose I convolve an image f with a mean-filter of size $(2a+1) \times (2a+1)$ where a > 0 is an integer to produce a result f_1 . Suppose I convolve the resultant image f_1 with the same mean-filter once again to produce an image f_2 , and so on until you get image f_k in the K^{th} iteration. Can you express f_k as a convolution of f with some kernel. If not, why not? If yes, with what kernel? Justify.

Ans. Mean-filter of size $(2a + 1) \times (2a + 1)$ is given by:

$$M = \frac{1}{(2a+1)^2} \begin{bmatrix} 1 & 1 & \cdots & 1 \\ 1 & 1 & \cdots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \cdots & 1 \end{bmatrix}_{(2a+1)\times(2a+1)}$$

One round of filtering on an image f will give us M * f. Let us assume we have the K^{th} kernel M_k . Then another round of filtering on image f will give us:

$$M*(M_k*f) = (M*M_k)*f$$
 As convolution is an associative operator
$$= M_{k+1}*f$$

Hence, by induction, the kernel operator for K^{th} operator is:

$$M_k = M * M * M * \dots * M$$
 K times

It is possible to convolve the image f with this filter to get the same result as convolving the image K times with the mean-filter. It is very difficult to get a closed matrix form of M_k in terms of a and k but as k becomes very large, we can approximate the overall filter to be a Gaussian filter of size $(2a + 1) \times (2a + 1)$ according to the central limit theorem.