Artificial neural networks and backpropagation

E. Decencière

MINES ParisTech
PSL Research University
Center for Mathematical Morphology

Contents

- Introduction
- 2 Artificial neuron
- Artificial neural networks
- Deep learning today and tomorrow

Contents

- Introduction
- 2 Artificial neuron
- Artificial neural networks
- Deep learning today and tomorrow

Artificial neural networks and deep learning history

For a very complete state of the art on deep learning, see the overview by Schmidhuber [Schmidhuber, 2015].

- 1958: Rosenblatt's perceptron [Rosenblatt, 1958]
- 1980's: the backpropagation algorithm (see, for example, the work of Le Cun [LeCun, 1985])
- 2006-: CNN implementations using Graphical Processing Units (GPU): up to a 50 speed-up factor.
- 2011-: super-human performances [Cireşan et al., 2011]
- 2012: Imagenet image classification won by a CNN [Krizhevsky et al., 2012].

Contents

- Introduction
- Artificial neuron
 - Activation functions
 - An artificial neuron as a classifier
- Artificial neural networks
- 4 Deep learning today and tomorrow

Neuron

- The human brain contains 100 billion (10¹¹) neurons
- A human neuron can have several thousand dendrites
- The neuron sends a signal through its axon if during a given interval of time the net input signal (sum on excitatory and inhibitory signals received through its dentrites) is larger than a threshold.

Artificial neuron

General principle

An artificial neuron takes p inputs $\{x_i\}_{1 \le i \le p}$, combines them to obtain a single value, and applies an activation function g to the result.

- The first artificial neuron model was proposed by [McCulloch and Pitts, 1943]
- Input and output signals were binary
- Input dendrites could be inhibitory or excitatory

Modern artificial neuron

- The neuron computed a linear combination of the inputs
- The bias b is a variable linked to the neuron. It can be interpreted as defining a threshold on the sum
- The activation function g somehow decides, depending on its input, if a signal (the neuron's activation) is produced

Contents

- 2 Artificial neuron
 - Activation functions
 - An artificial neuron as a classifier

The role of the activation function

- The initial idea behind the activation function is that is works somehow as a gate
- If its input in "high enough", then the neuron is activated, i.e. a signal (other than zero) is produced
- It can be interpreted as a source of abstraction: information considered as unimportant is ignored

Activation: binary

$$g(x) = \begin{cases} 1, & \text{if } x > 0 \\ 0, & \text{otherwise} \end{cases}$$

Remarks

- Biologically inspired
- + Simple to compute
- + High abstraction
 - Gradient nil except on one point

Activation: sigmoid

$$g(x) = \frac{1}{1 + e^{-x}}$$

Remarks

- + Similar to binary activation, but with usable gradient
- However, gradient tends to zero when input is far from zero
- More computationally intensive

Activation: hyperbolic tangent

$$g(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

Remarks

Similar to sigmoid

Activation: rectified linear unit

$$g(x) = \begin{cases} x, & \text{if } x > 0 \\ 0, & \text{otherwise} \end{cases}$$

Remarks

- + Usable gradient when activated
- + Fast to compute
- + High abstraction

Contents

- 2 Artificial neuron
 - Activation functions
 - An artificial neuron as a classifier

What can an artifical neuron compute?

In \mathbb{R}^p , $b+\sum_{i=0}^p w_ix_i=0$ corresponds to a hyperplane. For a given point $\mathbf{x}=\{x_0,\ldots,x_p\}$, decisions are made according to the side of the hyperplane it belongs to.

The power of an artificial neuron: illustration

- p = 2: 2 dimensional inputs (can be represented on a screen!)
- Activation: binary
- Classification problem

Gaussian clouds

Gaussian clouds

Circles

Circles

Artificial neuron compact representation

Solution

Notations

We will often use:

$$\mathbf{W} = (w_1, \dots, w_p)^T$$
$$\mathbf{x} = (x_1, \dots, x_p)^T$$

Therefore, we can simply write:

$$g(b+\sum_{i=1}^{p}w_{i}x_{i})=g(b+\mathbf{W}^{T}\mathbf{x})$$

Contents

- Introduction
- 2 Artificial neuron
- Artificial neural networks
- 4 Deep learning today and tomorrow

Artificial Neural Network (ANN)

Deep neural network

(from http://www.jtoy.net)

Layers

- Neurons are typically arranged in layers
- The first and last layers are respectively called the input and output layers
- Any intermediate layers are called hidden layers

Artificial Neural Network (ANN)

Definition

Feed-foward artificial Neural Network (ANN)

Definition

Universal approximation theorem

Let f be a continuous real-valued function of $[0,1]^p$ ($p \in \mathbb{N}^*$) and ϵ a strictly positive real. Let g be a non-constant, increasing, bounded real function.

Then there exist an integer n, real vectors $\{\mathbf{W}_i\}_{1\leq n}$ of \mathbb{R}^p , and reals $\{b_i\}_{1\leq n}$ and $\{v_i\}_{1\leq n}$ such that for all \mathbf{x} in $[0,1]^p$:

$$\left| f(\mathbf{x}) - \sum_{i=1}^{n} v_i g(\mathbf{W}_i^T \mathbf{x} + b_i) \right| < \epsilon$$

A first version of this theorem, using sigmoid activation functions, was proposed by [CYBENKO, 1989]. The version above was demonstrated by [Hornik, 1991].

Universal approximation theorem: what does it mean?

$$\left| f(\mathbf{x}) - \sum_{i=1}^{n} v_i g(\mathbf{W}_i^T \mathbf{x} + b_i) \right| < \epsilon$$

This means that function f can be approximated with a neural network containing

- an input layer of size p;
- a hidden layer containing n neurons with activation function g, weights \mathbf{W}_i and biases b_i ;
- an output layer containing a single neuron, with weigths v_i (and an identity activation function).

Convolutional neural networks (ConvNets or CNNs)

(from https://www.researchgate.net)

The triggering factor to the success of neural networks

- Appropriate architectures: graphical processing units (GPUs)
- Optimized software
- Large annotated databases

Contents

- Introduction
- 2 Artificial neuron
- Artificial neural networks
- 4 Deep learning today and tomorrow

Practical considerations

For a deep-learning solution to work, you need:

- A lot of annotated data
- A lot of fiddling (different architectures; hyper-parameters)
- GPUs, at least from training

Deep learning can produce astonishing results [Nguyen et al., 2015]...

The web giants

- Google, Facebook, Microsoft, Amazon etc. are actively investing in deep-learning
- Competition is intense
- Most of them are sharing their deep learning libraries

Setup:

$$egin{aligned} n,q &\in \mathbb{N}^* \ \mathbf{x} &\in \mathbb{R}^n \ \mathbf{W} &\in \mathbb{R}^q imes \mathbb{R}^n \ \mathbf{b}, \mathbf{t}, \mathbf{y} &\in \mathbb{R}^q \ L &\in \mathbb{R} \end{aligned}$$

Local gradients:

Forward pass:

$$\mathbf{t} = \mathbf{W}\mathbf{x} + \mathbf{b}$$
 $\mathbf{y} = \mathbf{g}(\mathbf{W}\mathbf{x} + \mathbf{b})$
 $L = L(\mathbf{y})$

$$\frac{\partial \mathbf{t}}{\partial \mathbf{W}} = \mathbf{x}^{t}$$

$$\frac{\partial \mathbf{t}}{\partial \mathbf{b}} = 1$$

$$\frac{\partial \mathbf{y}}{\partial \mathbf{t}} = \mathbf{g}'$$

Backpropagation:

$$\frac{\partial L}{\partial \mathbf{t}} = \frac{\partial L}{\partial \mathbf{y}} \cdot \frac{\partial \mathbf{y}}{\partial \mathbf{t}}$$
$$= \frac{\partial L}{\partial \mathbf{y}} \odot \mathbf{g}'(\mathbf{t})$$

Backpropagation:

$$\frac{\partial L}{\partial \mathbf{W}} = \frac{\partial L}{\partial \mathbf{t}} \cdot \frac{\partial \mathbf{t}}{\partial \mathbf{W}}
= \frac{\partial L}{\partial \mathbf{y}} \odot \mathbf{g}'(\mathbf{t}) \cdot \mathbf{x}^{t}$$

$$\frac{\partial L}{\partial \mathbf{b}} = \frac{\partial L}{\partial \mathbf{y}} \odot \mathbf{g}'(\mathbf{t})$$

References I

- [Cireşan et al., 2011] Cireşan, D., Meier, U., Masci, J., and Schmidhuber, J. (2011).
 A committee of neural networks for traffic sign classification. In Neural Networks (IJCNN), The 2011 International Joint Conference on, pages 1918–1921. IEEE.
- [CYBENKO, 1989] CYBENKO, G. (1989). Approximations by superpositions of a sigmoidal function. Mathematics of Control, Signals and Systems, 2:183–192.
- [Hornik, 1991] Hornik, K. (1991). Approximation capabilities of multilayer feedforward networks. Neural Networks, 4(2):251–257.
- [Krizhevsky et al., 2012] Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012).
 ImageNet Classification with Deep Convolutional Neural Networks. In Pereira, F.,
 Burges, C. J. C., Bottou, L., and Weinberger, K. Q., editors, Advances in Neural Information Processing Systems 25, pages 1097–1105. Curran Associates, Inc.
- [LeCun, 1985] LeCun, Y. (1985). Une procedure d'apprentissage pour reseau a seuil asymmetrique (A learning scheme for asymmetric threshold networks).
- [McCulloch and Pitts, 1943] McCulloch, W. S. and Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity. The bulletin of mathematical biophysics, 5(4):115–133.

References II

- [Nguyen et al., 2015] Nguyen, A., Yosinski, J., and Clune, J. (2015). Deep neural networks are easily fooled: High confidence predictions for unrecognizable images. In 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 427–436.
- [Rosenblatt, 1958] Rosenblatt, F. (1958). The perceptron: A probabilistic model for information storage and organization in the brain. *Psychological Review*, 65(6):386–408.
- [Schmidhuber, 2015] Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural Networks, 61:85–117.