for the order

National Bureau
Libuary 7

IONOSPHERIC DATA

ISSUED JUNE 1955

U. S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS CENTRAL RADIO PROPAGATION LABORATORY BOULDER, COLORADO

CRPL F 130

NATIONAL BUREAU OF STANDARDS CENTRAL RADIO PROPAGATION LABORATORY 24 JUNE 1955 BOULDER, COLORADO

IONOSPHERIC DATA

CONTENTS

	Page
Symbols, Terminology, Conventions	2
World-Wide Sources of Ionospheric Data	5
Hourly Ionospheric Data at Washington, D. C	7, 13, 26, 52
Ionospheric Storminess at Washington, D. C	7, 38
Sudden Ionosphere Disturbances	8, 39
Radio Propagation Quality Figures	8, 40
Observations of the Solar Corona	9, 42
Relative Sunspot Numbers	10, 48
Observations of Solar Flares	11, 50
Indices of Geomagnetic Activity	11, 51
Tables of Ionospheric Data	13
Graphs of Ionospheric Data	52
Index of Tables and Graphs of Ionospheric Data in CRPL-F130	91

SYMBOLS, TERMINOLOGY, CONVENTIONS

Beginning with data reported for January 1952, the symbols, terminology, and conventions for the determination of median values used in this report (CRPL-F series) conform as far as practicable to those adopted at the Sixth Meeting of the International Radio Consultative Committee (C.C.I.R.) in Geneva, 1951. Excerpts concerning symbols and terminology from Document No. 626-E of this Meeting are given on pages 2-7 of the report CRPL-F89, "Ionospheric Data," issued January 1952. Reprints of these pages are available upon request.

Beginning with data for January 1945, median values are published wherever possible. Where averages are reported, they are, at any hour, the average for all the days during the month for which numerical data exist.

The following conventions are used in determining the medians for hours when no measured values are given because of equipment limitations and ionospheric irregularities. Symbols used are those given in Document No. 626-E referred to above, plus an additional symbol, R: "Scaling of characteristic is influenced or prevented by absorption in the neighborhood of the critical frequency," (May 1955).

a. For all ionospheric characteristics:

Values missing because of A, C, F, L, M, N, Q, R, S, or T are omitted from the median count.

b. For critical frequencies and virtual heights:

Values of foF2 (and foE near sunrise and sunset) missing because of E are counted as equal to or less than the lower limit of the recorder. Values of h*F2 (and h*E near sunrise and sunset) missing for this reason are counted usually as equal to or greater than the median. Other characteristics missing because of E are omitted from the median count.

Values missing because of G are counted:

- 1. For foF2, as equal to or less than foF1.
- 2. For h*F2, as equal to or greater than the median.

The symbol W is included in the median count only when it replaces a height characteristic; the symbol D, only when it replaces a frequency characteristic.

Values missing for any other reason are omitted from the median count.

c. For MUF factor (M-factors):

Values missing because of ${\sf G}$ or ${\sf W}$ are counted as equal to or less than the median.

Values missing for any other reason are omitted from the median count.

d. For sporadic E (Es):

Values of fEs missing because of E or G (and B when applied to the daytime E region only) are counted as equal to or less than the median foE, or equal to or less than the lower frequency limit of the recorder.

Values of fEs missing for any other reason, and values of h'Es missing for any reason at all are omitted from the median count.

Beginning with data for November 1945, doubtful monthly median values for ionospheric observations at Washington, D. C., are indicated by parentheses, in accordance with the practice already in use for doubtful hourly values. The following are the conventions used to determine whether or not a median value is doubtful:

- l. If only four values or less are available, the data are considered insufficient and no median value is computed.
- 2. For the F2 layer, if only five to nine values are available, the median is considered doubtful. The E and F1 layers are so regular in their characteristics that, as long as there are at least five values, the median is not considered doubtful.
- 3. For all layers, if more than half of the values used to compute the median are doubtful (either doubtful or interpolated), the median is considered doubtful.

The same convertions are used by the CRPL in computing the medians from tabulations of daily and hourly data for stations other than Washington, beginning with the tables in TRPL-F18.

The tables and graphs of ionospheric data are correct for the values reported to the CRPL, but, because of variations in practice in the interpretation of records and scaling and manner of reporting of values, may at times give an erroneous conception of typical ionospheric characteristics at the station. Some of the errors are due to:

- a. Differences in scaling records when spread echoes are present.
- b. Omission of values when foF2 is less than or equal to foF1, leading to erroneously high values of monthly averages or median values
- c. Omission of values when critical frequencies are less than the lower frequency limit of the recorder, also leading to erroneously high values of monthly average or median values.

These effects were discussed on pages 6 and 7 of the previous F-series report IRPL-F5.

Ordinarily, a blank space in the fEs column of a table is the result of the fact that a majority of the readings for the month are below the lower limit of the recorder or less than the corresponding values of foE. Blank spaces at the beginning and end of columns of h°Fl, foFl, h°E, and foE are usually the result of diurnal variation in these characteristics. Complete absence of medians of h°Fl and foFl is usually the result of seasonal effects.

The dashed-line prediction curves of the graphs of ionospheric data are obtained from the predicted zero-muf contour charts of the CRPL-D series publications. The following points are worthy of note:

- a. Predictions for individual stations used to construct the charts may be more accurate than the values read from the charts since some smoothing of the contours is necessary to allow for the longitude effect within a zone. Thus, inasmuch as the predicted contours are for the center of each zone, part of the discrepancy between the predicted and observed values as given in the F series may be caused by the fact that the station is not centrally located within the zone.
- b. The final presentation of the predictions is dependent upon the latest available ionospheric and radio propagation data, as well as upon predicted sunspot number.
- c. There is no indication on the graphs of the relative reliability of the data; it is necessary to consult the tables for such information.

The following predicted smoothed 12-month running-average Zürich sunspot numbers were used in constructing the contour charts:

Month	Predicted Sunspot Number										
	1955	1954	1953	1952	1951	1950	1949	1948	1947	1946	1945
December		11	15	33	53	86	108	114	126	85	38
November		10	16	38	52	87	112	115	124	83	36
October		10	17	43	52	90	114	116	119	81	2 3
September		8	18	46	54	91	115	117	121	79	22
August		8	18	49	57	96	111	123	122	77	20
July		8	20	51	60	101	108	125	116	73	
June		9	21	52	63	103	108	129	112	67	
May	16	10	22	52	68	102	108	130	109	67	
April	13	10	24	52	74	101	109	133	107	62	
March	14	11	27	52	78	103	111	133	105	51	
February	14	12	29	51	82	103	113	133	90	46	
January	12	14	30	53	85	105	112	130	88	42	

WORLD - WIDE SOURCES OF IONOSPHERIC DATA

The ionospheric data given here in tables 1 to 78 and figures 1 to 156 were assembled by the Central Radio Propagation Laboratory for analysis and correlation, incidental to CRPL prediction of radio propagation conditions. The data are median values unless otherwise indicated. The following are the sources of the data in this issue:

Australian Department of Supply and Shipping, Bureau of Mineral Resources, Geology and Geophysics:
Watheroo, Western Australia

Meteorological Service of the Belgian Congo and Ruanda-Urundi: Elisabethville, Belgian Congo Leopoldville, Belgian Congo

British Department of Scientific and Industrial Research, Radio Research Board:

Falkland Is.
Ibadan, Nigeria (University College of Ibadan)
Inverness, Scotland
Port Lockroy
Singapore, British Malaya
Slough, England

Defence Research Board, Canada:
Baker Lake, Canada
Churchill, Canada
Ottawa, Canada
Resolute Bay, Canada
Winnipeg, Canada

Radio Wave Research Laboratories, National Taiwan University, Taipeh, Formosa, China: Formosa, China

French Ministry of National Defense (Section for Scientific Research):

Fribourg, Germany

Institute for Ionospheric Research, Lindau Uber Northeim, Hannover, Germany:

Lindau/Harz, Germany

The Royal Netherlands Meteorological Institute: De Bilt. Holland

Icelandic Post and Telegraph Administration: Reykjavik, Iceland

All India Radio (Government of India), New Delhi, India:
Bombay, India
Delhi, India
Madras, India
Tiruchy (Tiruchirapalli), India

Norwegian Defence Research Establishment, Kjeller per Lillestrom, Norway:

Oslo, Norway Tromso, Norway

Manila Observatory: Baguio, P. I.

South African Council for Scientific and Industrial Research: Capetown, Union of South Africa Johannesburg, Union of South Africa Nairobi, Kenya (East African Meteorological Department)

Research Institute of National Defence, Stockholm, Sweden: Upsala, Sweden

Royal Board of Swedish Telegraphs, Radio Department, Stockholm, Sweden:

Lulea, Sweden

Post, Telephone and Telegraph Administration, Berne, Switzerland: Schwarzenburg, Switzerland

United States Army Signal Corps:
Adak, Alaska
Ft. Monmouth, New Jersey
Okinawa I.
White Sands, New Mexico

National Bureau of Standards (Central Radio Propagation Laboratory):

Fairbanks, Alaska (Geophysical Institute of the University of Alaska)

Guam I.

Huancayo, Peru (Instituto Geofisico de Huancayo)

Maui, Hawaii

Narsarssuak, Greenland

Panama Canal Zone

Point Barrow, Alaska

Puerto Rico. W. I.

Talara, Peru (Instituto Geofisico de Huancayo)

Washington, D. C.

HOURLY IONOSPHERIC DATA AT WASHINGTON, D. C.

The data given in tables 79 through 90 follow the scaling practices given in the report IRPL-C61, "Report of International Radio Propagation Conference," pages 36 to 39, and the median values are determined by the conventions given above under "Symbols, Terminology, Conventions." Beginning with September 1949, the data are taken at Ft. Belvoir, Virginia.

IONOSPHERIC STORMINESS AT WASHINGTON, D.C.

Table 91 presents ionosphere character figures for Washington, D. C., during May 1955, as determined by the criteria given in the report IRPL-R5, "Criteria for Ionospheric Storminess," together with Cheltenham, Maryland, geomagnetic K-figures, which are usually covariant with them.

SUDDEN IONOSPHERE DISTURBANCES

Tables 92 and 93 list respectively the sudden ionosphere disturbances observed at Washington, D. C., for May 1955 and in the Netherlands for April 1955.

RADIO PROPAGATION QUALITY FIGURES

Tables 94a and 94b give for April 1955 the radio propagation quality figures for the North Atlantic area, the relevant CRPL advance and short-term forecasts, a summary geomagnetic activity index and sundry comparisons, specifically as follows:

- (a) radio propagation quality figures, Qa, separately for each 6-hour interval of the Greenwich day, viz., 00-06, 06-12, 12-18, 18-24 hours UT (Universal Time or GCT).
- (b) whole-day radio quality indices (beginning October 1952). Each index is a weighted average of the four quarter-day Qa-figures, before rounding off, with half weight given to quality grades 5 and 6. This procedure tends to give whole-day indices suitable for comparison with whole-day advance forecasts which designate whenever possible the days when significant disturbance or unusually quiet conditions will occur.
- (c) short-term forecasts, issued by CRPL every six hours (nominally one hour before 00^h , 06^h , 12^h , 18^h UT) and applicable to the period 1 to 13 (especially 1 to 7) hours ahead. Note that new scoring rules have been adopted beginning with October 1952 data.
- (d) advance forecasts, issued semiweekly (CRPL-J reports) and applicable 1 to 3 or 4 days ahead, 4 or 5 to 7 days ahead, and 8 to 25 days ahead. These forecasts are scored against the whole-day quality indices.
- (e) half-day averages of the geomagnetic K indices measured by the Cheltenham Magnetic Observatory of the U. S. Coast and Geodetic Survey.
- (f) illustration of the comparison of short-term forecasts with Qafigures and also with estimates of radio quality based on CRPL observations only.
- (g) illustration of the outcome of advance forecasts (1 to 3 or 4 days ahead) and, for comparison, the outcome of a type of "blind" forecast. For the latter the frequency for each quality grade, as determined from the distribution of quality grades in the four most recent months of the current season, is partitioned among the grades observed in the current month in proportion to the frequencies observed in the current month.

These radio propagation quality figures, Qa, are prepared from radio traffic data reported to CRPL by American Telephone and Telegraph Company, Mackay Radio and Telegraph Company, RCA Communications, Inc., Marconi Company, British Admiralty Signal and Radar Establishment, and the following agencies of the U.S. Government:--Coast Guard, Navy, Army Signal Corps, and U.S. Information Agency. The method of calculation, summarized below, is similar to that described in a 1946 report, IRPL-R31, now out of print. Only reports of radio transmission on North Atlantic paths closely approximating New York-London are included in the estimation of quality.

The original reports are submitted on various scales and for various time intervals. The observations for each 6-hour interval are averaged on the quality scale of the original reports. These 6-hour indices are then adjusted to the 1 to 9 quality-figure scale by a conversion table prepared by comparing the distribution of these indices for at least four months, usually a year, with a master distribution determined from analysis of the reports originally made on the 1 to 9 quality-figure scale. A report whose distribution is the same as the master is thereby converted linearly to the Q-figure scale. The 6-hourly quality figures are (subjectively) weighted means of the reports received for that period. These 6-hourly quality figures replace, beginning January 1953, the half-daily quality figures which formerly appeared in this table. (These forecasts and quality indices are prepared by the North Atlantic Radio Warning Service, the CRPL forecasting center at Ft. Belvoir, Virginia.)

These quality figures are, in effect, a consensus of reported radio propagation conditions. The reasons for low quality are not necessarily known and may not be limited to ionospheric storminess. For instance, low quality may result from improper frequency usage for the path and time of day. Although, wherever it is reported, frequency usage is included in the rating of reports, it must often be an assumption that the reports refer to optimum working frequencies. It is more difficult to eliminate from the indices conditions of low quality because of multipath, interference, etc. These considerations should be taken into account in interpreting research correlations between the Q-figures and solar, auroral, geomagnetic or similar indices.

Note: A tabulation of forecasts for the North Pacific area and comparisons with observed radio propagation conditions will appear in a later issue.

OBSERVATIONS OF THE SOLAR CORONA

Tables 95 through 97 give the observations of the solar corona during May 1955, obtained at Climax. Colorado, by the High Altitude Observatory of Harvard University and the University of Colorado. Tables 98 through 100 list the coronal observations obtained at

Sacramento Peak, New Mexico, during May 1955, derived by Harvard College Observatory as a part of its performance of a research contract with the Upper Air Research Observatory, Geophysical Research Directorate, Air Force Cambridge Research Center. The data are listed separately for east and west limbs at 5-degree intervals of position angle north and south of the Solar Equator at the limb. The time of observation is given to the nearest tenth of a day, GCT.

Beginning with January 1, 1955, the Climax, Colorado, coronal measurements are reported in absolute units rather than on the arbitrary relative scale that has been used in the past. Absolute intensities are given in millionths of the intensity in one angstrom of the spectrum of the center of the solar disk at the wavelength of the coronal line. Two conversion tables from arbitrary relative to absolute units were published in CRPL-F127, March 1955. One table gave the green-line conversions to absolute units applicable for all readings made since 1943. The other table gave the red-line conversions applicable for the years 1952 to the present. For earlier years a table is available from the High Altitude Observatory, Boulder, Colorado, showing changes in red-green sensitivity. Absolute yellow-line $(\lambda 5694)$ intensities may be obtained approximately by multiplying the values in the $\lambda 5303$ table by 0.75. Absolute far red ($\lambda 6702$) may be obtained approximately by multiplying the values in the $\lambda 6374$ table by 0.9.

The Sacramento Peak measurements will continue to be on an arbitrary relative scale.

Table 95 gives the intensities of the green (5303A) line of the emission spectrum of the solar corona; table 96 gives similarly the intensities of the first red (6374A) coronal line; and table 97, the intensities of the second red (6702A) coronal line; all observed at Climax in May 1955.

Table 98 gives the intensities of the green (5303A) coronal line; table 99, the intensities of the first red (6374A) coronal line; and table 100, the intensities of the second red (6702A) coronal line; all observed at Sacramento Peak in May 1955.

The following symbols are used in tables 95 through 100; a. observation of low weight for whole limb (if in date column) or for portion of limb indicated; -, corona not visible; and X, no observation for whole limb (if in date column) or for portion of limb indicated.

RELATIVE SUNSPOT NUMBERS

Table 101 lists the daily provisional Zürich relative sunspot number, R_Z , for May 1055, as communicated by the Swiss Federal Observatory. Table 102 contains the daily American relative sunspot number, R_A , for April 1955, as compiled by the Solar Division, American Association of Variable Star Observers.

OBSERVATIONS OF SOLAR FLARES

Table 103 gives the preliminary record of solar flares reported to the CRPL. These reports are communicated on a rapid schedule at the sacrifice of detailed accuracy. Definitive and complete records are published later in the Quarterly Bulletin of Solar Activity, I.A.U., in various observatory publications, and elsewhere. The present listing serves to identify and roughly describe the phenomena observed. Details should be sought from the reporting observatory.

Reporting directly to the CRPL are the following observatories: Mt. Wilson, McMath-Hulbert, U. S. Naval, Wendelstein, Kanzel and High Altitude at Sacramento Peak, New Mexico. The remainder report to Meudon (Paris) and the data are taken from the Paris-URSIgram broadcast, monitored fairly regularly by the CRPL. The data on solar flares reported from Sacramento Peak, New Mexico, communicated by the High Altitude Observatory at Boulder, Colorado, are provided by Harvard University as the result of work undertaken on an Air Materiel Command Research and Development Contract administered by the Air Force Cambridge Research Laboratories.

The table lists for each flare the reporting observatory, date, times of beginning and ending of observation, duration (when known), total area (corrected for foreshortening), and heliographic coordinates. For the maximum phase of the flare is given the time, intensity, area relative to the total area, and the importance. The column "SID observed" is to indicate when a sudden ionosphere disturbance, noted elsewhere in these reports, occurred at the time of a flare. Times are in Universal Time (GCT).

INDICES OF GEOMAGNETIC ACTIVITY

Table 104 lists various indices of geomagnetic activity based on data from magnetic observatories widely distributed throughout the world. The indices are: (1) preliminary international character-figures. C; (2) geomagnetic planetary three-hour-range indices. Kp; (3) daily "equivalent amplitude" Ap; (4) magnetically selected quiet and disturbed days.

The C-figure is the arithmetic mean of the subjective classification by all observatories of each day's magnetic activity on a scale of O (quiet) to 2 (storm). The magnetically quiet and disturbed days are selected by the international scheme outlined on pages 219-227 in the December 1943 issue of Terrestrial Magnetism and Atmospheric Electricity. The details of the currently used method follow. For each day of a month, its geomagnetic activity is assigned by weighting equally the following three criteria: (1) the sum of the eight Kp's; (2) the greatest Kp; and (3) the sum of the squares of the eight Kp's.

Kp is the mean standardized K-index from 11 observatories between geomagnetic latitudes 47 and 63 degrees. The scale is 0 (very quiet) to 9 (extremely disturbed), expressed in thirds of a unit, e.g., 5- is 4 2/3, 50 is 5 0/3, and 5+ is 5 1/3. This planetary index is designed to measure solar particle-radiation by its magnetic effects, specifically to meet the needs of research workers in the ionospheric field. A complete description of Kp has appeared in Bulletin 12b, "Geomagnetic Indices C and K, 1948," published in Washington, D. C., 1949, by the Association of Terrestrial Magnetism and Electricity, International Union of Geodesy and Geophysics.

Ap indicates magnetic activity on a linear scale rather than the quasi-logarithmic scale of the K-indices. The column headed Ap gives the daily average for the eight values ap per day, where ap is defined as one-half the average gamma range of the most disturbed of the three force components, in the three-hour interval at standard stations. Ap is computed from the 8 indices Kp per day, see IATME Bulletin No. 12h (for 1953), p. VIII f. Values of Ap (like Kp and Cp) have been published for the Polar Year 1932/33 and currently since January 1937.

The Committee on Characterization of Magnetic Disturbance, ATME, IUGG, has kindly supplied this table. The Meteorological Office, De Bilt, Holland, collects the data and compiles C and selected days. The Chairman of the Committee computes the planetary index. Current tables are also published quarterly in the <u>Journal of Geophysical Research</u> along with data on sudden commencements (sc) and solar flare effects (sfe).

3.05

(3.05)

TABLES OF IONOSPHERIC DATA

Table 1 Washington, D. C. (38.7°N, 77.1°W) May 1955 h*E foE f Es (M3000)F2 h*Fl foFl 3.0 <1.7 <1.7 <1.6 <1.6 <1.6 <1.6 3.4 4.6 4.7 4.4 3.9 3.5 3.2 3.7 3.5 3.3 <1.6 3.1 3.1

(1.9) 2.4 2.7 2.9 3.1 3.2 (3.2) 3.3 3.2 3.0 2.9 2.5 2.1

<1.6 <1.7

110

100

3.4 3.25 3.3 3.2 3.1 3.1 3.0 3.0 3.3 3.2 3.1

3.0 3.1 3.1 3.2 3.2 3.3

April 1955

Norway (69.7°N, 19.0°E) Tromso. April 1955 Time h°F2 foF2 h'F1 foFl h e E foE f Es (M3000)F2 4.6 ---01 ---02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 ------(435) 3.9 4.2 4.2 4.4 4.5 4.4 4.3 4.3 3.5 3.6 3.8 3.8 2.9 3.0 2.6 240 110 2.2 2.4 2.5 2.6 2.7 2.7 2.6 2.4 2.3 2.1 2.0 (2.95) 3.05 3.0 3.1 3.1 3.1 3.1 3.15 3.1 3.15 3.15 (390) 390 380 215 220 215 110 105 105 3.8 3.8 3.8 3.7 3.5 350 350 210 210 105 110 210 210 220 350 350 110 (315) 110 2.0 2.6 2.8 3.6 3.7 4.2 4.2 (300) (285) 4.4 235 110 110 240 ---4.0 4.0 3.7 (4.0) (3.7) (265) (255) 245 110

Table 2

h'F2

01

280

280 280

(280)

250

250 320

300 310

330

320

300

270 240

220

240

250

foF2

3.3

3.0 2.8 2.5 2.2 2.8

4.0 4.5 4.9 5.0 5.2 5.3 5.6 5.6 5.7 6.0 6.2 5.1 4.4

3.8

220

210

200 200

210 210

220 230

Time: 75.0°W.. Sweep: 1.0 Mc to 25.0 Mc in 13.5 seconds.

23

(250)

Time: 15.0° E. Sweep: 0.7 Mc to 25.0 Mc in 5 minutes, automatic operation.

Table 3

ime	h'F2	foF2	h'Fl	foF1	h°E	foE	f Es	(M3000)F2
00	(320)	(2,6)					5.2	(3.0)
01	(320)	(2.2)					5.4	(3.0)
02	(350)	(2.3)					6.0	(2.9)
03	(320)	(2.7)					5.0	(2.95)
04	(320)	(2.6)					5.8	(3.0)
05	(250)	(3.0)	260				4.1	(3.0)
06	480	3.4	240	3.2	110	(1.9)	4.0	(2.6)
07	530	3.6	220	3.4	110	2.2	3.3	(2.6)
80	(620)	3.6	210	3.6	110	2.4	2.7	(2.3)
09	(650)	3.9	220	3.6	100	2.6	2.6	(2,2)
10	520	4.0	210	3.8	100	2.6	3.6	2.6
11	480	4.2	200	3.8	100	2.7	2.8	2.7
12	440	4.3	210	3.8	100	2.8	4.5	2.8
13	420	4.4	210	3.9	100	2.8	3.8	2.85
14	<400	4.4	210	3.9	100	2.6	2.9	2.9
15	370	4.4	210	3.8	100	2.5	3.5	3.1
16	370	4.3	220	(3.7)	110	2.4	2.6	3.1
17	<350	4.2	220		110	2.1	2.3	3.2
18	290	4.1	230		120	(1.7)	1.9	3.2
19	250	(3.7)	230		140	(1.2)	2.2	(3,2)
20	260	(3,2)					3.4	(3.1)
21	270	(3.2)					2.6	(3.1)
22	270	(3.1)					4.1	(3.1)
23	280	(2.7)					4.6	(3.0)

Narsars	suak, Gree	enland (6	51.2°N.	45.4°W)				April 1955
Time	h*F2	foF2	h'Fl	foFl	h°E	foE	f Es	(M3000)F2
00		(2.3)					3.9	
01		(2.4)					3.4	
02							4.3	
03							4.0	
04							4.7	
05	(270)	(3.0)					4.1	(3.35)
06	3 2 0	<3.4	220	3.3			3.6	3.3
07	G	3.6	250	3.5	120	2.1		2.7
08	410	3.9	230	3.6	120	2.3		2.9
09	410	4.2	210	3.8	110	2.4		2.9
10	400	4.2	220	3.0	110	(2.4)		3.0
11	400	4.4	220	3.9	110			2.9
12	380	4.5	210	3.9	110			3.0
13	380	4.5	220	3.9	110			3.0
14	370	4.6	220	3.9	110	(2.4)		3.0
15	360	4.6	220	3.8	110	2.4		3.0
16	360	4.4	230	3.7	110	2.2		3.05
17	330	4.4	240	3.5	120	2.1		3.1
18	300	4.2	230	3.2	120	1.9	3.7	3.2
19	300	3.0					4.0	3.2
20	200	(3.4)					4.9	(3.2)
21	290	(3.1)					5.0	3.2
22	(270)	2.9					4.2	3.2
23	(300)	2.4					4.4	(3.1)

Table 4

Time: 150.0°W. Sweep: 1.0 Mc to 25.0 Mc in 13.5 seconds.

Time: 45.0°W. Sweep: 1.0 Mc to 25.0 Mc in 13.5 seconds.

				Table 5				
slo, N	orway (60	.0°N, 11	.1°E)		•			April 1955
ime	h°F2	foF2	h 'Fl	foF1	h° E	foE	f Es	√5-/00)F2
00		2.5						2.95
01	(300)	2.0						2.9
02	290	2.0					1.2	2.85
03	300	1.8					1.4	2.85
04	290	2.0					2.5	2.95
05	260	2.7			120	1.4	1.2	3.15
06	255	3.4	235		115	1.7		3.2
07	(280)	3.7	225	3.6	110	2.1	1.6	3.2
08	350	4.1	215	3.6	110	2.4	2.4	3.1
09	390	4.2	210	3.8	105	2.6	2.5	3.0
10	370	4.6	210	4.0	105	2.7	2.9	3.0
11	350	4.7	210	4.0	105	2.8	2.9	3.1
12	350	4.8	200	4.0	105	2.8		3.1
13	340	4.8	210	4.0	105	2.8	2.5	3.2
14	330	4.8	205	4.0	105	2.8		3.1
15	350	4.8	215	4.0	105	2.7		3.05
16	310	4.8	220	3.8	110	2.5		3.15
17	295	4.9	230	3.6	110	2.3	1.4	3.2
18	(265)	4.8	240		115	1.9	2.1	3.2
19	250	4.8	250		120	1.6	1.8	3.2
20	250	4.5					(2.8)	3.2
21	250	3.9						3.2
22	250	3.0						3.1
23		2.9						3.0

Table 5

				Table 0				
Upsala.	Sweden	(59.8°N.	17.6°E)					April 1955
T ime	h°F2	foF2	h'Fl	foFl	h'E	foE	f Es	(M3000)F2
00	310	(2.4)					2.0	2.9
01	330	(2.3)						2.9
02	330	(2.0)					2.2	2.9
03	330	(1.9)					2.5	2.9
04	290	2.3				Ε	2.1	3.0
05	250	3.0				E	2.3	3.2
06	260	3.5	225	(3.1)	115	1.8	2.7	3.2
07	390	3.9	220	3.5	115	2.2	3.0	3.1
08	380	4.3	215	3.7	110	2.4	3.2	2.9
09	360	4.5	210	3.9	110	2.6	3.4	3.1
10	340	4.8	210	4.0	105	2.8	3.4	3 .2
11	340	5.0	200	4.0	105	2.8	3.4	3.15
12	330	5.0	200	4.1	195	2.8	3.1	3.1
13	350	5.0	205	4.0	105	2.8	3.0	3.1
14	335	4.9	210	4.0	105	2.8	3.1	3.15
15	320	4.9	220	3.9	105	2.6	3.1	3.1
16	300	4.9	2 25	3.7	110	2.4	3.1	3.2
17	280	4.8	235	3.4	115	2.2	2.8	3.2
18	260	4.8	240	(2.9)	120	1.8	2.8	3.2
19	240	4.6				E	1.9	3.2
20	240	4.5				E		3.1
21	240	4.2						3.1
22	270	2.9					2.0	3.0
23	300	(2.5)						3.0

Table 6

Time: 15.0°E. Sweep: 0.7 Mc to 25.0 Mc in 5 minutes, automatic operation.

Time: 15.0°E. Sweep: 1.4 Mc to 17.0 Mc in 6 minutes, automatic operation.

Table 7							Table_8										
Adak, Al	aska (51,	9°N, 176	6.6°W)					April 1955	White S	ands, New	Mexico	(32.3°N.	106.5°W)			April 1955
Time	h*F2	foF2	h'Fl	.foFl	h*E	foE	f Es	(M3000)F2	Time	h°F2	foF2	h'F1	foF1	h°E	foE	f Es	(M3000)F2
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23	260 270 280 280 280 270 360 360 350 350 310 290 270 240 240 240 240 250	3.4 3.2 3.0 3.0 3.4 4.0 4.1 4.5 4.6 4.8 5.1 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4	260 230 220 220 220 210 200 210 210 220 220 230	3.3 3.6 3.9 4.0 4.1 4.2 4.2 4.1 3.9 3.7	140 120 110 110 110 110 110 110 110 110 11	1.5 1.9 2.3 2.6 2.9 3.0 2.9 2.8 2.9 2.7 2.5 2.1	2.0 2.6 3.2 5.0 3.8 4.4 5.0 3.7 3.8 3.3 2.4 2.4 2.1	3.0 3.0 2.9 3.0 3.05 3.15 3.0 3.0 3.1 3.1 3.1 3.2 3.25 3.3 3.3 3.3 3.3 3.3 3.3 3.3	00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23	290 290 270 250 260 270 240 280 350 350 350 350 360 330 300 270 250 220 220 220 240 280	3.5 3.4 3.4 3.2 3.1 3.9 4.6 5.4 5.4 5.6 6.3 6.6 6.2 6.3 6.6 6.5 6.3 6.6 6.3 6.3 6.6 6.3 6.3 6.3 6.3 6.3	240 230 210 200 200 200 200 210 220 230 240	3.5 4.0 4.4 4.3 4.4 4.3 4.3 4.3 4.3	110 100 100 100 110 100 110 110 110	2. 2 2. 9 3. 1 3. 2 3. 3 3. 2 3. 2 3. 7 2. 3	2.8 3.3 3.4 3.6 4.0 3.8 3.3 3.4 3.5 3.2 3.0 2.7	2.9 2.9 3.0 3.1 3.1 3.0 3.3 3.25 3.2 3.0 2.9 3.0 2.95 3.0 3.1 3.1 3.25 3.4 3.4 3.4 3.2 3.0

Time: -180.0°W. 5weep: 1.0 Mc to 25.0 Mc in 27 seconds.

Time: 105.0°W. Sweep: 1.0 Mc to 25.0 Mc in 13.5 seconds.

				Table 9				
Okinawa	I. (26,3	ON. 127.8	°E)					April 1955
Time	h°F2	foF2	h*F1	foFl	h° E	foE	f Es	(M3000)F2
00	300	4.1					2.4	2.9
01	280	(4.2)					2.4	(3.05)
02	250	4.2					2.2	3,3
03	220	3.5					2.3	(3.5)
04	270	2.5					2.3	3.0
0\$	290	2.6					2.0	3.0
06	250	4.8			140	2.0	2.6	3.5
07	250	5.8	240		120	2.4	3.6	3.6
80	270	6.0	240	4.1	120	2.8	3.9	3.5
09	290	6.5	230	4.4	110	3.1	4.0	3.3
10	330	7.2	220	4.6	120	3.3	4.3	3.0
11	340	8.2	220	4.6	120	(3,3)	4.4	2.9
12	340	9.4	220	4.6	120	3.4	4.2	2.95
13	320	10.6	230	4.6	120	3.3	4.0	3.0
14	300	11.0	230	4.5	110	3.3	3.8	3.1
15	300	10.6	230	4.4	110	3.1	3.8	3.1
16	290	10.5	240	4.1	110	2.8	3.6	(3.1)
17	280	11.0	260		120	2.4	3.7	(3.3)
18	250	(10.8)					3.2	(3.4)
19	230	(8.3)					2.4	(3.3)
20	230	5.7					2.4	3,3
21	270	4.2					2.3	2.9
22	320	(4.1)					2.4	2.8
23	320	(4.1)					2.2	2.8

Time: 127,5°E. Sweep: 1.0 Mc to 25,0 Mc in 13,5 seconds.

				Table 1	0			
Formosa,	China	(25,0°N,	121.5°E)					April 1955
Time	h*F2	foF2	b°F1	foF1	h*E	foE	f Es	(M3000)F2
00	260	5.8					2.9	3.0
01	240	5.4					2.4	3.15
02	220	4.9					2.6	3.3
03	240	3.9					2.4	3.1
04	250	3.0					2.1	3.1
05	260	2.7					2.0	3.1
06	230	4.6					2.4	3,3
07	220	6.1			100	2.2	3.4	3.8
08	240	6.7	220	4.1	100	2.9	3.7	3.5
09	260	6.7	220	4.3	100	3.1	3.8	3.3
10	300	7.7	210	4.6	100	3.3	3.6	3.1
11	320	9.2	210	4.6	100	3.4	3.8	3.1
12	300	10.0	200	4.6	100	3.4	3.9	3.0
13	280	11.5	220	4.6	100	3.2	4.1	3.2
14	280	12.2	220	4.6	100	3.3	3.9	3.3
15	260	12.6	220	4.4	100	3.1	3.2	3.3
16	260	12.3	220	4.2			3.3	3.2
17	240	11.8	230	4.0	110		3.5	3.5
18	220	11.1					3.3	3.6
19	200	9.8					2.8	3.6
20	200	7.0					2.6	3.4
21	220	6.0					2.3	3.2
22	280	5.0					2.2	2.9
23	280	5.4					2.8	3.0

Time: 120.0°E . Sweep: 1.1~Mc to 19.5~Mc in 15~minutes, manual operation.

Maui, Ha	April 1955							
Time	h°F2	foF2	h°F1	foF1	h° E	foE	f Es	(M3000)F2
00	300	4.5						2.85
01 02	280 260	4.0 3.5						3.0 3.1
03	290	3.0						2.85
04	320	2.6						2.7
05	320 300	2.5 3.2						2.8 2.9
0 6 07	280	5.6	270		130	2.1	2.4	3.2
08	310	6.6	260	(4.0)	120	2.6	4.7	3.1
09	320	7.0	240	4.4	120	3.0	4.9	2.9
10	360	7.2	230	4.6	120	3.2	5.6	2.7
11 12	420 410	8.3 9.7	220 220	4.7 4.6	120 120	3.3	5.3 4.8	2.5 2.6
13	370	11.0	220	4.6	120	3.4	5.0	2.7
14	340	11.4	240	4.5	120	3.3	5.0	2.8
15	340	11.0	260	4.5	120	3.2	5.0	2.8
16	320	11.2	260	4.3	120	2.9	4.0	2.9
17 18	300 280	10.8 10.2	270 280	4.0	(130) 130	2.5 1.8	4.2 4.2	3.0 3.1
19	260	9.0	200		130	1.0	3.4	3.1
20	250	6.4					2.8	3.0
21	290	4.8					2.2	2.7
22	320	4.6					2.0	2.65
23	340	4.5					2.0	2.6

Time: 150.0°W. Sweep: 1.0 Mc to 25.0 Mc in 13.5 seconds.

Time	Rico, W.	foF2	b°F1	foF1	h° E	foE	f Es	M3000)F2
		1012	011	1011	" "	102	140	
00	280	4.4						3.05
01	270	4.4						3.1
02	250	4.2						3.15
03	240	3.9						3.2
04	240	3.4						3.2
05	260	3.1						3.15
06	250	3.2						3.3
07	240	4.9	230		120	2.0	2.4	3.6
08	260	5,2	220	3.9	110	2.5		3.5
09	300	5.4	210	4.2	110	2.9	3.2	3.2
10	330	5.9	210	4.4	110	3.1	3.4	3.1
11	340	6.6	220	4.5	110	3.3		3.0
12	310	7.5	230	4.5	110	3.4		3.0
13	300	8.6	220	4.5	110	3.4		3.1
14	300	8.8	240	4.4	110	3.3	4.5	3.2
15	280	8.4	230	4.4	110	3,2		3.2
16	290	8.1	230	4.2	110	2.9	4.4	3.2
17	280	8.2	240	3.9	110	2.5	4.0	3.25
18	250	8.1	240		110	1.8	3.2	3.3
19	230	7, 2					2.8	3.4
20	230	5.9					2.2	3.1
21	260	4.9					2.4	3.0
22	280	4.6						2.9
23	280	4.4						2.9

Time: 60.0°W. Sweep: 1.0 Mc to 25.0 Mc in 13.5 seconds.

April 1955

(M3000)F2

3.0

3.2

3.3

3.2

3.5

3.3

3.2

2.85 2.9 2.9

2.9

3.1

3.3

3.4

3.5

3.05

3.0

3.1

March 1955

March 1955

fEs

1.9

2.2

1.9

3.2

3.6

4.4

4.5

4.5

4.6

4.4

4.4

4.0

3.6 3.7 2.6 2.7

2.3

					Table 1	.3			
	Guam I.	(13,6°N,	144.9°E)						April 1955
-	Time	h*F2	foF2	h*F1	foFl	h° E	foE	f Es	(M3000)F2
_	00	300	5.4		-				2.9
	01	280	5.3						3.1
	02	250	5.2						3.2
	03	250	4.5						3.3
	04	240	3.8						3.4
	05	240	3.6					2.0	3.5
	06	220	3.6					2.0	3.4
	07	230	5.8			110	1.9	3.0	3.6
	08	250	6.6	220		110	2.5	3.2	3.45
	09	280	7.6	210		110	2.9	3.8	3.05
	10	320	8.3	200	4.4	100	3.1	3.5	2.75
	11	340	8.4	200	4.5	100	3.3		2.5
	12	360	8.8	200	4.5	(110)	3.4	3.5	2.45
	13	350	9.0	200	4.5	(100)	(3.4)	3.9	2.5
	14	340	9.4	200	4.5	100	3.3	3.4	2.6
	15	320	9.9	210	4.4	110	3.1	3.8	2.8
	16	310	10.3	220	4.2	110	2.8	3.4	2.9
	17	280	11.1	220		110	2.4	3.4	3.0
	18	260	12.0	240		120	1.7	3.0	3.2
	19	230	10.4					2.6	3.2
	20	240	8.5						3.1
	21	260	7.4					2.0	3.0
	22	260	6.9					2.2	3.0
	23	270	6.2						3.0

Time: 75.0°W.

Time

00

01

02

03 04

05 06

07

08

09

10

11

12

13

14

15

16

18 19

20

21

22

23

March 1955

4.8 1.0 Mc to 25.0 Mc in 13.5 seconds. 5weep:

Panama Canal Zone (9.4°N. 79.9°W)

foF2

4.6

4.5 4.2

3.6

3.0

3.1

4.8

5.4 6.1 7.8 8.7

9.8

10.6

11.8

12.4

11.6

9.8

7.6

6.1

5.8

h°F1

210 210

220 220

210

220

220

230

220

230

h°F2

270

250

240

240

240

230

250

240

300

370

360 360

350

340

320

300

280

250

230

220

240

260

250

250

Point Barrow, Alaska (71.3°N,

Time: 150.0°E. 1.0 Mc to 25.0 Mc in 13.5 seconds. 5weep:

Resolute Bay, Canada (74.7°N, 94.9°W)

Time	h°F2	foF2	b°F1	foFl	h* E	foE	f Es	(M3000)F2
00	250	2.8					3.3	3.2
01	250	2.4						3.1
02	250	2.8						3.2
03	260	2.6					1.8	3.1
04	260	2.5					3.0	3.2
05	250	2.6					3.3	3,2
06	260	2.7			110	1.2	3.0	3.25
07	260	3.0	250		110	1.4		3.2
08	260	3.2	240	3.0	110	1.7		3.2
09	300	3.4	240	3.0	110	1.8		3.2
10	350	3.6	240	3.0	110	2.0		3.0
11	370	3.5	230	3.0	110	2.0		2.9
12	360	3.9	230	3.0	110	2.1		3.1
13	400	3.5	230	3.1	110	2.1		2.7
14	360	3.8	230	3.1	110	2.0		3.0
15	380	3.4	230	3.0	110	2.0		3.0
16	280	3.5	230	3.0	110	1.8		3.1
17	270	3.5	230	2.8	110	1.6		3.2
18	260	3.4			110	1.4		3.2
19	250	3.3			120	1.2		3.2
20	240	3.3			120	1.1		3.1
21	250	2.9					2.3	3.1
22	250	2.9					3.0	3.1
23	250	2.6						3.2

Table 15

Time: 90.0°W. 5weep: 1.0 Mc to 25.0 Mc in 13.5 seconds.

Time h°F2 foF2 foFl h*E foE f Es (M3000)F2 (2.9) (2.8) (2.7) 6.3 7.0 5.4 (3,2) (3,0) 00 (270) 01 (320)(280) (3.1) 02 03 04 05 ---(2.8)4.8 ___ 4.3 ------3.8 ---4.0 06 07 08 09 10 (3.0) (3.0)(320) (3.3)4.3 4.3 (2.85)2.1 (2.3) 2.3 (2.2) ---3.0 250 (340)3.5 3.3 3.4 3.4 (400) (3.8) 240 3.8 3.0 110 3.0 11 360 (3.9)230 (4.0) 220 110 2.7 3.1 (340)12 13 300 (4.0)210 230 (3.4) 110 110 3.0 14 15 300 4.2 250 (3.2) 120 2.0 3.05 4.1 330 (3.1) (3.1) 16 300 (4.3)260 (3.1)120 (1.7)2.2 17 270 (4.0)250 ------18 260 (4.0) ---2.8 (3.1) (3.1) 19 20 (3.0) (2.7) 250 3.8 3.05 260 (3.0) 21 (270) (2.5) (2.7) 4.2 6.4 22 ---(2.7) 7.6 ---

Table 14

foF1

(4.2) 4.5

4.5

4.5

4.5

4.4

4.4

(3,9)

Table 16

156.8°W)

h*E

120

110 110

110

110

110

110

110

110

110

110

2.6

3.2

3.4

3.5

3.4

3.2 (2.9)

2.4

Time: 150.0°W.

1.0 Mc to 25.0 Mc in 13.5 seconds.

Lulea, Sweden (65,6°N, 22,1°E)

					Table 1	7			
	Tromso,	Norway	(69.7°N,	19.0°E)					March 1955
Ι	Time	h°F2	foF2	h°F1	foFl	h* E	foE	f Es	(M3000)F2
	00							4.2	
	01								
	02								
	03								
	04								
	05								
	06								
	07		3.4	240			1.8	3.0	(3.1)
	80	(255)	3.8	230		110	2.0	2.6	(3.35)
	09		4.2	220		110	2.1	2.8	(3.3)
	10		4.3	220		110	2.2	2.6	(3.15)
	11	(295)	4.4	215	3.6	120	2.4	2.7	3.35
	12	290	4.4	220	3.6	120	2.4		3.3
	13	280	4.4	215	3.6	120	2.4		3.35
	14	(260)	4.3	225		115	2.2		3.3
	15	(255)		230		120	2.0	3.0	3,35
	16	250	4.0	235		115	1.9	3.0	3.3
	17	245	3.8	2 35		120	1.7	3.0	3.3
	18	245	3.4			115	1.3	3.4	3.1
	19	(240)						3.6	(3.1)
	20		(2.8)					3.6	(3.05)
	21		(2.6)					4.4	(3,05)
	22		(2,6)					3.8	(3.0)
	23							3.8	

Time	h*F2	foF2	b°F1	foFl	h° E	foE	f Es	(M3000)F2
00 01	340	1.8						
02 03	(350)	(1.7)					1.8	
04 05	340	(2.0)						
06 07	260	2.7				1.7		
08 09	250	3.7	220	3.5	120	2.1	2.3	
10 11	270	4.3	200	3.5	110	2.4	2.4	
12 13	280	4.6	200	3.6	110	2.4		
14 15	260	4.6	200	3.5	125	2.3		
16 17	240	4.3			140	1.9		
18 19	250	3.8						
20 21	270	2.5						
22 23	280	(2,2)						

Table 18

Time: 15.0°E.

5weep: 0.7 Mc to 25.0 Mc in 5 minutes, automatic operation.

Time: 15.0°E.

5weep: 1.5 Mc to 10.0 Mc in 6 minutes, automatic operation.

Fairban	ks. Alaska	(64.9°)	N. 147.8	oW)				March 1955
Time .	h°F2	foF2	h'Fl	foFl	h°E	foE	f Es	(M3000)F2
00	(350)	(1.8)					4.9	(2,85)
01	(370)	(2.0)					5.2	(2.85)
02	<400	(2.3)					5.4	
03	(330)	(2.0)					4.5	(2.9)
04	<360	(1.9)					4.9	(2.85)
05	340	(2,2)					5.4	(2.95)
06	270	(2.6)					4.3	(3.1)
07	270	3.2	240				2.2	3.3
08	250	3.7	230		110	2.0	2.1	3.3
09	350	3.9	210	3.4	110	2.2	2.2	(3,3)
10	320	4.0	210	3.5	110	2.4		3.0
11	(360)	4.2	210	3.6	110	2.4	2.5	(3,1)
12	290	4.8	210	3.6	110	2.5	2.6	3.3
13	340	4.5	210	3.6	110	2.5		3.1
14	280	4.6	220	3.6	110	(2.4)		3.3
15	<260	4.5	210	3.5	110	2.2		3.3
16	240	4.8	240		120	(2.0)		3.35
17	240	4.5	240		130	(1.6)		3.4
18	240	4.0						3,3
19	240	(3.5)						(3,2)
20	260	(2.8)					3.9	(3.0)
21	290	(2.1)					4.4	(3.1)
22	300	(2.0)					4.4	(3,1)
23	(310)	(2.2)					5.0	(3.2)

Time: 150.0°W. Sweep: 1.0 Mc to 25.0 Mc in 13.5 seconds.

Baker Lake, Canada (64.3°N, 96.0°W) March 1955 h°F2 Time foF2 h°F1 foF1 foE f Es (M3000)F2 110 125 120 140 120 260 260 260 280 2.6 2.4 2.3 2.2 3, 1 3, 1 3, 1 3, 0 00 1.0 1.0 1.0 1.2 1.3 1.6 2.0 2.4 2.8 2.9 3.0 3.0 2.9 2.6 2.6 2.4 2.6 5.3 5.0 5.7 4.8 5.4 5.1 5.0 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 22 23 270 280 280 280 3.1 3.05 2.2 2.4 2.5 3.1 3.5 3.8 4.2 4.3 4.6 4.8 4.3 4.3 4.0 3.9 3.3 3.1 3.3 3.3 3.2 6.0 270 290 320 340 350 3.0 3.3 3.5 3.7 3.7 3.6 3.4 3.2 3.1 220 250 250 250 240 240 230 5.6 3.1 3.0 3.1 6.0 5.4 6.0 5.5 5.2 5.1 5.8 5.0 5.0 3.1 3.0 3.1 3.15 3.15 3.2 3.2 360 360 350 300 240 240 290 260 260 250 250 270 260 1.5 1.3 1.2 5.0 6.3 9.0 5.2 3.1 3.1 115 110 250 250 2.6 130 120 1.1 3.1

Table 20

Time: 90.0°W. Sweep: 0.6 Mc to 10.0 Mc in 16 seconds.

Reykjavik, Iceland (64.1°N, 21.8°W)										
Time	h'F2	foF2	h°F1	foFl	h°E	foE	f Es	(M3000)F2		
00							4.3			
01							3.8			
02							4.7			
03							4.4			
04							3.7			
05							3.2			
06	(230)	(2.7)					(2.8)			
07	(250)	(3.0)						(3.25)		
08	270	3.5	230					3.3		
09	300	3.9	220	3.3				3.3		
10	290	4.2	200	3.5				3.2		
11	300	4.5	210	3.6				3.3		
12	300	4.7	220	3.6				3.3		
13	300	4.6	220	3.7				3.3		
14	300	4.6	230	3.6				3.2		
15	300	4.4	220	3.6				3.2		
16	300	4.3	240	3.5				3.2		
17	260	4.0	260					3,2		
18	260	4.0					3.2	3.2		
19	270	(3.5)					6.4	(3,1)		
20	(260)	(3.2)					6.8			
21							4.8			
22							4.4			
23							4.9			

Time: 15.0°W. 5weep: 1.0 Mc to 25.0 Mc in 16.2 seconds.

				lable 2	2			
Churchi	ll. Canada	(58.80)	N. 94.2°	W)				March 1955
Time	h°F2	foF2	h*Fl	foFl	h*E	foE	f Es	(M3000)F2
00	280	2.9					7.4	
01	(300)	(2,0)					7.0	
02	280	2.6					6.0	
03	(300)	(2.7)					5.3	
04							5.0	
05							5.0	
06		(2.8)					5.0	
07	310	3.3				(2,5)	5.0	(3.2)
08	280	3.7			110	2.4	5.0	3.2
09	380	4.0	240	3.7	110	2.7	5.4	3.0
10	400	4.2	230	3.7	110	2.7	5.2	3.0
11	440	4.2	230	3.8	120	2.8	5.0	3.0
12	410	4.4	220	3.8	110	2.8	4.6	3.0
13	390	4.5	230	3.8	110	2.9	4.6	3.0
14	380	4.6	240	3.8	120	2.8	4.8	3.0
15	360	4.6	240	3.6	120	2.7	4.6	3.0
16	330	4.8	250	3.5	120	2.5	4.5	3.2
17	300	4.2	250	3.1	120	2.3	4.5	3.2
18	280	4.0			120	(2,2)	4.3	3.2
19	280	3.6		•		2.5	4.4	(3.1)
20	310	3.5					4.5	(2.9)
21	290	3,0					5.0	
22	280	3.0					6.3	
23	280	2.8					7.3	

Time: 90.0°W. 5weep: 0.6 Mc to 10.0 Mc in 16 seconds.

				Table 2	3			
Oe Bilt.	. Holland	(52.1°N,	5.2°E)					March 1955
Time	h°F2	foF2	h'Fl	foFl	h° E	foE	f Es	(M3000)F2
00	280	2.8						2.9
01	280	2.6						2.8
02	280	2.7						2.7
03	280	2.5						2.9
04	<280	2.4						2.9
05	250	2.1						3.0
06	240	2.8						3.1
07	230	3.8	220	2.6	120	1.9		3.4
08	270	4.5	220	3.6	110	2.3		3.3
09	280	4.9	220	3.8	110	2.6	3.2	3.3
10	280	5.2	200	4.0	110	2.8	3.2	3,3
11	280	5.2	200	4.0	110	2.8	3.2	3.3
12	280	5.7	210	4.1	110	2.9	3.0	3.3
13	280	5.6	215	4.0	110	2.9		3.3
14	270	5.5	210	4.0	110	2.7		3.3
15	260	5.2	220	3.6	110	2.5		3.3
16	250	5.3	230	3.3	110	2.3		3,3
17	240	5.0	230	2.7	120	1.9		3.3
18	240	4.8						3.2
19	240	4.7						3.1
20	240	4.1						3.1
21	250	3.4						3.0
22	260	3.0						3.0
23	<280	2.8						2.9

Time: 0.0°. Sweep: 1.4 Mc to 11.2 Mc in 6 minutes, automatic operation.

	Harz, Ger							March 1955
Time	h'F2	foF2	h'F1	foFl	h°E	foE	f Es	(M3000)F2
00	290	2,8					2.0	3.1
01	265	2.6					2.0	3.05
02	265	2.6					2.0	3.0
03	265	2.6					2.0	3,0
04	260	2.6					2.0	3,1
05	250	2.2					2.0	3.1
06	250	2.2					2.0	3.25
07	230	3.5	220			E	2.0	3.5
08	250	4.2	220		120	2.0	2.1	3.5
09	260	4.6	205	3,6	105	2.3	3.0	3.4
10	275	5.0	205	3.8	105	2.6	3.4	3.4
11	280	5.4	200	3.9	105	2.8	3.5	3.4
12	285	5.4	200	4.0	105	2.8	3.5	3.4
13	275	5.6	200	4.0	105	2.8	3.5	3.4
14	265	5.6	210	3.8	105	2.7	3.4	3.4
15	260	5.4	215	3.8	105	2.6	3.2	3.5
16	250	5.3	215		110	2.3	3.0	3.4
17	240	5.1	225		120	2.0	2.0	3.4
18	230	4.9				E	2.0	3.4
19	235	5.0					2.0	3,2
20	240	4.5					2.0	3.2
21	240	3.8					2.0	3.2
22	255	3.2						3.15

Time: 15.0°E. 5weep: 1.0 Mc to 16.0 Mc in 8 minutes.

					Table 2	5			
	Winnipe	g. Canada	(49,9°N,	97.40	1)				March 1955
-	Time	h*F2	foF2	h*F1	foF1	h° E	foE	f Es	(M3000)F2
-	00	(330)	2.0						
	01		2.0					2.8	
	02		2.2					3.0	
	03		(2.0)					3.5	(2.9)
	04		(2,0)					3.2	
	05		(2,1)					3.2	
	06		2.2						
	07	250	2.9						3.2
	08	260	3.8	230	3.5	120	2.1		3.2
	09	340	4.0	220	3.7	120	2.5		3.1
	10	380	4.3	220	3.8	115	2.8		2.9
	11	370	4.5	210	3.9	115	2.9		3.0
	12	360	4.7	210	4.0	115	3.0		3.0
	13	360	4.8	220	4.0	115	3.0		2.9
	14	340	4.9	220	3.9	115	3.0		3.0
	15	340	4.9	230	3.9	115	2.8		3.1
	16	320	4.9	230	3.7	120	2.6		3.1
	17	280	4.6	230	3.2	120	2.3		3.2
	18	260	4.5	240		130	(2.0)		3.2
	19	240	4.1						3.1
	20	260	3.3						3.0
	21	270	2.7						3.0
	22	.270	2.5						3.0
	23	300	2.0						(3,0)

Time: 90.0°W. Sweep: 1.0 Mc to 10.0 Mc in 16 seconds.

Table 26

Time: 15.0°E. 5weep: 1.0 Mc to 25.0 Mc in 30 seconds.

				Table	27			
Ottawa	Canada (45.4°N.	75.9°W)					March 1955
Time	h*F2	foF2	h*F1	foFl	h*E	foE	f Es	(M3000)F2
00	320	2.0						3.0
01	(370)	1.9						
02	(360)	1.8						
03	(360)	2.0						(3.0)
04	(350)	(1,9)					2.0	(2.95)
05	(350)	2,0					2.2	(3.0)
06	290	2.1						3.1
07	240	3.3	230		120	2.0		3.4
08	280	4.0	220	3.5	110	2.3		3.3
09	360	4.2	210	3.7	110	2.7		3.0
10	350	4.6	200	4.0	110	2.9		3.1
11	370	4.8	200	4.0	110	3.0		3.0
12	370	4,7	210	4.0	110	3.2	3.2	3.0
13	360	4.9	210	4.0	110	3.1	3.1	3.0
14	340	5.0	220	3.9	110	3.0		3.1
15	340	5.0	230	3.8	110	2.8		3.05
16	300	4.9	230	3.7	120	2.5		3.15
17	280	4.9	240	3.3	120	2.0		3.2
18	250	4.8				1.7		3.2
19	240	4.4						3.2
20	250	3.5						3.1
21	270	2.8						3.1
22	300	2.5						3.0
23	300	2.1						3.0

Time: 75.0°W. 5weep: 1.0 Mc to 10.0 Mc in 15 seconds.

			1	lable 20				
Ft. Mor	mouth, New	Jersey	(40.0°N,	74.0°W)				March 1955
Time	h*F2	foF2	h*Fl	foF1	h⁴E	foE	f Es	(M3000)F2
00		2.3						3.0
01		2.3						2.9
02		2.2						3.0
03	270	2.2						3.0
04	(260)	2.2						3.1
05		2.1						3.1
06	250	2.7						3.2
07	260	3.9	240		120	1.9		3,4
08	290	4.3	220	3.6	120	2.3	2.3	3.4
09	320	4.6	210	3.8	110	(2.6)		3,25
10	350	4.9	200	4.0	110	2.8		3.1
11	360	5.0	200	4.1	110	2.9		3.1
12	350	5.1	200	4.1	110	3.0		3.1
13	350	5.2	210	4.1	110	3.0		3.1
14	330	5.3	220	4.0	110	2.9		3.0
15	320	5.4	220	3.9	110	2.7		3.1
16	300	5.4	230	3.6	120	2.4		3.2
17	260	5.1	240		120	2.0		3.2
18	240	5.0						3.3
19	240	4.5						3, 2
20	240	3.7						3.2
21	250	3.2						3.1
22	<260	2.7						3.0
23	(260)	2.5						3.05

Time: 75.0°W. 5weep: 1.0 Mc to 25.0 Mc in 13.5 seconds.

				Table 2	9			
Baguio,	P. I. (16	.4°N, 1	20.6°E)		_			March 1955
Time	h*F2	foF2	h'Fl	foFl	h*E	foE	f Es_	(M3000)F2
00	250	6.4			-			3,15
01	240	6.1						3.3
02	210	6.1						3.6
03	200	4.4						3.6
04	210	3.0					1.8	3.6
05	230	1.9					2.3	3.5
06	250	3.0					2.5	3.3
07	230	5.4			110	2.0	3.8	3.5
08	(270)	6.7	210		110	2.5	4.0	3,2
09	300	7.7	200		110	3.0	4,3	3.0
10	320	8.6	200	4.3	100	3.2	5.2	2.7
11	330	9.3	190	4.4	100	3.2	4.8	2.5
12	330	9.2	190	4.4	100	3.3	4.0	2.5
13	320	9.4	190	4.3	100	3.3	4.0	2.5
14	320	10.0	190		100	3.2	4.1	2.8
15	300	10.6	200		100	3.0	3.8	3.0
16	200	11.0	220		110	2.7	3.8	3.2
17	250	11.0	220		110	2.2	4.0	3.4
18	230	10.5					3.0	3.3
19	230	10.0					2.3	3.2
20	220	9.3					1.9	3.2
21	220	8.4						3.2
22	230	7.7						3.1
23	260	7.1						3.05

Time: 120.0°E. 5weep: 1.0 Mc to 25.0 Mc in 13.5 seconds.

Table 30 March 1955 Leopoldville, 8elgian Congo (4.3°S, 15.4°E) Time foF2 h*F1 foFl foE f Es (M2000)F2 h'F2 4.2 3.4 3.1 2.9 2.6 $\begin{array}{c} 2.5 \\ 2.3 \\ 2.4 \\ 2.6 \\ 2.75 \\ 3.0 \\ 2.7 \\ 2.1 \\ 2.1 \\ 2.1 \\ 2.2 \\ 2.3 \\ 2.3 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.5 \\ 2.5 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.5 \\ 2.7 \\ 2.5 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.5 \\ 2.7 \\ 2.5 \\ 2.7 \\ 2.5 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.5$ 00 220 01 250 260 245 02 03 04 05 06 230 230 1.6 2.3 3.1 2.9 3.4 5.8 2.1 2.7 3.1 3.3 3.4 3.5 3.4 3.3 3.1 2.8 2.3 6.0 6.2 7.1 8.9 07 08 260 300 210 210 4.4 4.4 4.5 4.5 4.5 4.4 4.3 110 110 205 200 200 210 220 110 110 110 09 360 10 375 360 350 335 310 290 280 110 110 12 13 10.9 11.5 12.0 12.0 11.6 10.7 11.0 10.7 9.5 7.8 6.2 4.7 14 15 16 220 230 230 110 110 3.3 3.0 2.7 1.9 17 18 19 250 250 240 230 215 210 210 215 20 21 22 23

Time: 0.0°. 5weep: 1.0 Mc to 16.0 Mc in 7 seconds.

				Table	31								Table 3	2			
Talara.	Peru (4.6	5°S, 81.3	SOM)	10010				March 1955	Elisahe	thville.	Belgian	Congo (1	1.6°S, 2	7.5°E)			March 1955
Time	h*F2	foF2	h°F1	foF1	h ª E	· foE	f Es	(M3000)F2	Time	h°F2	foF2	h°F1	foF1	h°E	foE	f Es	(M2000)F2
00	200	7.8					3.5	3.5 •	00	230	3.0						2.6
01	210	6.4					3.2	3.4	01	(240)	2.7					1.5	2.4
02	220	5.0					3.1	3.4	02	(270)	2.4					1.7	2.4
03	220	3.8					3.1	3.5	03	260	2.3					1.8	2.5
04	230	2.8					2.4	3.4	04	250	2.8					1.8	2.6
05	240	2.4					1.8	3.4	05	240	5.4	230		120	1.9	2.8	2.8
06	250	(2,2)			100		3.4	(3,3)	06	250	6.2	220		110	2,6	3.4	2.7
07	240	5.0			110	1.8	2.9	3.5	07	280	6.3	220	4.3	110	3.0	3.8	2.5
08	(270)	6.6	220		110	2.5	3.5	3,2	08	300	6.9	220	4.4	110	3.2		2.4
09	300	7.5	200		110	3.0	4.4	2.8	09	300	7.5	220	4.6	105	3.4		2.4
10	340	7.9	200	4.3	100	3.3	4.7	2.6	10	330	7.6	220	4.6	105	3.5		2.2
11	370	8.1	200	4.4	100	3.4	4.0	2.4	11	320	8.0	240	4.6	105	3.5		2,2
12	370	8.4	200	4.4	100	3.5	3.6	2.4	12	320	8.5	250	4.5	105	3.3		2,2
13	370	8.6	200	4.4	100	3.5	3.9	2.3	13	305	9.0	240	4.4	110	3.1	3.2	2.3
14	350	8.8	200	4.4	100	3.4	4.6	2,5	14	290	9.1	230	4.2	110	2.9	4.0	2.4
15	320	9.0	200	4.2	100	3,2	5.0	2.65	15	265	8.8	230		115	2.5	3.5	2,4
16	290	9.6	200	4.1	100	3.0		2.8	16	245	8.2	240		120	1.8	2.9	2.5
17	(270)	9.7	220		100	2.6	3.3	2.8	17	230	7.7					2.5	2,5
18	240	9.2			110	2.1	3.0	2.9	18	230	7.0					2.2	2,55
19	240	9.1					2.2	2.9	19	225	6,0					1.8	2.6
20	270	8.7						2.9	20	240	4.5					1.6	2.4
21	250	8.8						3.1	21	240	3.6					1.6	2,35
22	220	9.0						3.4	22	255	3.4						2.5
23	210	8.8					2.8	3.4	23	240	3.6					2.4	2.5
										1							

Time: 75.0°N. Sweep: 1.0 Mc to 25.0 Mc in 13.5 seconds.

Time: 0.0°. 5weep: 1.0 Mc to 16.0 Mc in 7 seconds.

				Table 3	33			
Huancay	o. Peru (12.0°S.	75.3°W)					March 1955
Time	h°F2	foF2	h*Fl	foF1	h' E	foE	f Es	(M3000)F2
00	230	6.8						3.3
01	230	6.3						3.3
02	220	5.0						3.4
03	230	3.8						3.4
04	240	2.5						3.4
05	250	2.0						3,4
06	260	3.3				Ε	4.5	3.2
07	(260)	6.3	230		110	2.2	5.8	3.5
08	(280)	7.6	210		110	2.7	9.4	3,3
09	310	8.1	200	4.3	110		11.3	2.9
10	340	8.0	200	4.4	100		11.9	2,6
11	350	7.2	190	4.4	100		12.0	2.6
12	360	7,2	190	4.4	100		12.0	2.6
13	350	7.4	190	4.4	100		11.5	2.6
14	340	7.6	190	4.3	100		11.9	2.6
15	310	8.0	190	4.2	110		11.2	2.7
16	(290)	8.4	190		110		10.5	2.7
17	(260)	8.4	200		110	2.4	8.0	2.8
18	250	8.4			120	(1.8)	4.6	2.8
19	270	8.0						2.8
20	270	7.8						2,9
21	240	8.0						3, 2
22	230	7.6					2.7	3,3
23	220	7.2						3.3

Time: 75.0°W. Sweep: 1.0 Mc to 25.0 Mc in 13.5 seconds.

				Table 3	4			
Watheroo	. W. Aust	ralia (3	0.3°S,_	115.9°E)				March 1955
Time	h°F2	foF2	h*Fl	foFl	h*E	foE	f Es	(M3000)F2
00	260	3.6					2.0	3.0
01	270	3.5					2.6	3.0
02	250	3.6					2.2	3.0
03	250	3.5					2.0	3.15
04	240	3,2					1.6	3.2
05	250	3.0					1.3	3.1
06	250	3.2					1.4	3.2
07	240	4.3				1.8		3.5
08	280	5.0	230	3.8		2.4	2.8	3.8
09	300	5.4	210	4.2		2.8	3.8	3.3
10	290	5.8	200	4.3		3.0	3.8	3,35
11	320	6.0	200	4.4		3.2	3.7	3.2
12	320	6.5	200	4.4		3.2	3.6	3.1
13	310	6.5	200	4.4		3.3	3.7	3.1
14	300	6.6	200	4.4		3.2	3.7	3.1
15	300	6.8	220	4.2		3.0	3.6	3.2
16	280	6.7	220	4.0		2.8	3.7	3.3
17	260	6.5	230	3.6		2.3	3.5	3.4
18	240	6.0				(1.8)	1.9	3.5
19	220	(5,0)						(3.4)
20	220	4.0						3.3
21	250	3:9						3.0
22	250	3.6						3.0
23	260	3.5						3.0

Time: 120.0°E. 5weep: 1.0 Mc to 16.0 Mc in 2 minutes.

				Table 3	5			
Point B	arrow, Ala	ska (71.	3°N, 15	6.30%)			Fo	bruary 1955
Time	h'F2	foF2	h°F1	foFl	h'E	foE	f Es	(M3000)F2
00		(2,6)					5.6	(3,4)
01		(2.5)					7.0	
02		(2,9)					6.5	
03		(2.5)					6.0	(3.1)
04							4.7	
05							4.2	
06							4.2	
07							4.2	
08							4.4	
09	(260)	(3.0)					4.4	(3,2)
10	(250)	3.6					3.5	3.3
11	270	3.8					2.6	3.3
12	270	4.0						3.3
13	250	4.3	220					3.4
14	25 0	4.7	230					3,4
15	240	4.9						3.3
16	250	(4.5)						(3, 3)
17	250	(3.9)					2.5	(3.2)
18	250	(3.0)					3.4	(3,2)
19	(240)	(2.2)					3.5	(3,3)
20		(1.9)					4.1	(3.3)
21							4.3	
22							4.6	
23							5.8	

Time: 150.0°W. Sweep: 1.0 Mc to 25.0 Mc in 13.5 seconds.

Reykjavi	k. Icelar	id (64,19	N. 21.8	야!!)			Fe	bruary 1955
Time	h'F2	foF2	h°F1_	foFl	h¹E	foE	f Es	(M3000)F:
00							3.8	
01							5.2	
02							5.0	
03							5.0	
04							4.2	
05							3.6	
06	(320)	(2,2)					3.2	(3.1)
07	(300)	(2.1)					2.8	
08	270	2.6						3.2
09	250	3.5						3.3
10	250	4.1						3,35
11	260	4.3						3.4
12	260	4.5	230					3.3
13	260	4.6	210					3.4
14	270	4.6	240					3.3
15	250	4.4						3.3
16	260	4.0						3.3
17	250	(3.8)					1.9	3.2
18	260	(3.4)					4.2	(3.1)
19	(280)						3.9	
20		(2.5)					5.0	
21							4.0	
22							4.1	

Time: 15.0°. Sweep: 1.0 Mc to 25.0 Mc in 16.2 seconds.

				Table 3	7								Table 3	38			
Lindau/	Harz, Ger	many (51	.6°N, 10), 1°E)			Fe	hruary 1955	Talara,	Peru (4.	6°S. 81.	3°W)				F	ebruary 1955
Time	h*F2	foF2	h*F1	foFl	h°E	foE	f Es	(M3000)F2	Time	h¹F2	foF2	h°F1	foFl	h*E	foE	f Es	(M3000)F2
00 01 02 03 04 05 06 07 08 09 10 11 12	275 250 250 250 250 255 250 300 250 225 230 230 240 235	2.8 3.0 2.9 2.9 2.8 2.2 1.9 2.4 4.1 4.8 5.4 5.6 5.9 5.7	210 205 205 205 200 205	foF1	120 110 105 105 105	E 2.0 2.4 2.6 2.6 2.6	2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 3.1 3.1	(M3000)F2 3.1 3.1 3.1 3.1 3.1 3.1 3.5 3.6 3.6 3.6 3.5 3.5 3.5 3.5	Time 00 01 02 03 04 05 06 07 08 09 10 11 12 13	230 230 210 210 220 230 240 (270) 300 350 350 370 350	6.8 6.7 5.7 3.5 3.3 (2.5) 5.0 6.8 7.6 8.3 8.4 8.5	230 210 200 200 190 190	foF1 4.1 4.3 4.4 4.5 4.5	110 110 110 100 100 100 100	1.7 2.5 2.9 3.2 3.4 3.5 3.5	fEs 3.9 2.4 2.0	(M3000)F2 3.35 3.4 3.6 3.55 3.4 (3.3) 3.4 3.3 3.1 2.95 2.6 2.4 2.5
14 15 16 17 18 19 20 21 22 23	240 240 225 215 215 230 230 240 255 270	5.7 5.8 5.6 5.1 4.6 4.2 3.7 3.2 2.9 2.8	205 210 215 		105 110 120 	2.5 2.4 2.0 E	3.0 3.0 2.6 2.0 2.0 2.0 2.0 2.0 2.0	3.4 3.6 3.5 3.3 3.3 3.3 3.2 3.2 3.1	14 15 16 17 18 19 20 21 22 23	330 330 270 230 230 230 230 230 230 220	9.3 9.6 9.5 9.2 8.9 8.0 7.3 7.3	200 200 200 200 230	4.3	100 100 100 100	3.3 3.1 2.6	4.1 5.2 4.5 2.8 2.8 3.4 3.7	2.8 2.9 3.0 3.0 3.2 3.2 3.2 3.3

Time: 15.0°E. Sweep: 1.0 Mc to 16.0 Mc in 8 minutes.

Time: 75.0°W. Sweep: 1.0 Mc to 25.0 Mc in 13.5 seconds.

				Table 3	9								Table (10			
Johanne	sburg, Un	ion of S	. Africa	(26.2°S	, 28.10	E)	F	ebruary 1955	Capetow	n. Union	of S. Af	rica (34.	.2°S, 18	.3°E)		Fe	bruary 1955
Time	h°F2	foF2	h*Fl	foFl	h°E	foE	f Es	(M3000)F2	Time	h*F2	foF2	h°F1	foFl	h°E	foE	f Es	(M3000)F2
00 01 02 03 04 05 06	250 250 240 240 240 250 240 270	3.7 3.7 3.6 3.3 3.1 2.9 3.8 4.8	230	3.6	120 110	1.6 2.2	1.8 1.8 2.1 1.8	3.0 3.0 3.15 3.1 3.1 3.0 3.3	00 01 02 03 04 05 06	260 260 260 250 250 250 250 250 250	3.7 3.5 3.6 3.5 3.6 3.3 3.4	240	3.2	130	1,9	1.9 1.9 2.1 2.5 1.9	2.9 3.0 3.1 3.0 3.1 3.0 3.1
08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23	330 330 320 310 300 320 310 300 280 280 230 230 230 240	4.6 6.1 6.8 7.2 7.0 6.6 6.6 6.2 6.4 5.8 4.9 4.2 3.8	230 220 210 200 200 190 190 200 210 220 230	4.1 4.3 4.4 4.5 4.6 4.6 4.2 3.9 3.3	110 110 110 110 110 110 110 110 110 110	2.7 3.1 3.2 3.4 3.4 3.4 3.2 3.0 2.6 2.1	3.0 4.0 4.1 3.8 3.7 3.7 3.6 3.5 2.8 2.3 2.0 1.8 1.7	3.1 3.0 3.0 3.05 3.05 3.1 3.05 3.0 3.1 3.1 3.2 3.2 3.2 3.1	08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23	310 310 330 340 340 340 340 320 300 290 260 230 240 250	4.5 5.6 5.9 6.2 6.5 6.6 6.6 6.3 6.0 7 5.7 5.3 5.2 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3	240 230 220 220 210 210 200 210 230 230 230 240	3.2 3.9 4.1 4.3 4.4 4.5 4.5 4.4 4.4 4.3 4.1 3.6	120 110 110 110 110 110 110 110 110 110	2.9 3.1 3.3 3.4 3.4 3.3 3.2 3.1 2.9 2.6 2.0	3.3 3.6 3.0 3.8 3.7 3.6 3.7 3.2 2.7 1.9	3.1 3.0 3.0 3.0 2.9 2.9 2.9 2.95 3.0 3.1 3.1 3.2 3.2 3.2 3.2

Time: 30.0°E. Sweep: 1.0 Mc to 15.0 Mc in 7 seconds.

Time: 30.0°E. Sweep: 1.0 Mc to 15.0 Mc in 7 seconds.

				Table 4	1								Topic 4	-			
Point B	arrow. Ala	ska (71.	3°N, 15	6.8°W)				January 1955	Point B	arrow, Al	aska (71	.3°N, 15	6.8011)			Ѐ	ecember 1954
Time	h°F2	foF2	h*F1	foF1	h°E	foE	f Es	(M3000)F2	Time	h*F2	foF2	h*F1	foFl	h° E	foE	fEs	(M3000)F2
00							5.6		00							4.8	
01							5.8		01							5.4	
02							6.5		02							5.2	
03		(1.7)					5.0	(3.1)	03							4.5	
04							4.7		04							4.3	
05							4.6		05							4.4	
06		(3.2)					4.5		06							4.4	
07							4.7		07							4.8	
80		(2.2)					4.6		08							4.6	
09		(2.3)					4.5	(3.0)	09		(2.0)					4.5	(3.1)
10	(290)	(2.8)					4.0	(3.1)	10	280	(2.2)					4.0	(3.1)
11	250	(3.4)					3.5	(3.3)	11	250	(3.0)					3.8	(3.3)
12	250	3.8					3.3	3.3	12	250	(3.4)					3.5	(3,2)
13	240	(4.1)					2.8	(3.3)	13	230	(3.8)					3.2	(3,2)
14	230	(4.0)					2.4	3.3	14	240	(3.5)					3.2	(3.2)
15	240	(4.0)					3.5	3.2	15	230	(3.1)					3.3	(3.3)
16	250	(3.5)					3.2	(3.2)	16	(250)	(2.4)					2.8	(3,2)
17	240	(2.8)					(4.3)	(3.3)	17	250	(2.0)					3.7	(3.3)
18	(250)	(2.0)					3.5	3.2	18		(1.5)					3.9	(3.3)
19		(1.6)					3.7	(3.25)	19		(1.4)					3.8	
20		(1.6)					3.7	(3.2)	20							3.8	
21	(290)	(2.6)					3.8	(3.2)	21							3.9	
22							4.4		22							4.0	
23							5.8		23							4.8	

Time: 150.0°W. Sweep: 1.0 Mc to 25.0 Mc in 13.5 seconds.

Time: 150.0°W. Sweep: 1.0 Mc to 25.0 Mc in 13.5 seconds.

			Table	43
Inverness	Scot land	(57.4°N.	4.20W)	

				Table 4	3.			
Inverne	ss, Scotl	and (57.4	4°N, 4.2°	W)			De	ecember 1954
Tlme	h*F2	foF2	h*Fl	foF1	h° E	foE	f Es	(M3000)F2
00	305	(1.9)						2.8
01	305	1.7						2.9
02	290	1.8						2.8
03	300	1.6					1.9	2.8
04	290	(1.5)					2.4	2.9
05	290	1.4					2.4	2.9
06	280	1.4					2.5	3.1
07	280	1.5					2.0	3.1
08	270	(2.0)					2.4	3.1
09	210	3.6			(150)	(1.6)	2.7	3.5
10	215	4.6			135	1.8	2.6	3.6
11	215	4.9			130	1.9	2.4	3.7
12	215	5.2	210	2.9	130	2.0	2.4	3.7
13	215	5.2	(210)	(2.6)	130	2.0	2.3	3.7
14	215	4.9			135	1.8	2.4	3.6
15	210	4.6			145	1.7	2.4	3.7
16	210	4.1					2.0	3.5
17	230	3.0						3.3
18	250	2.2						3.3
19	290	1.8						3.0
20	305	1.7						3.0
21	295	1.7						2.9
22	320	(1.6)					2.3	2.9
23	335	(1.6)					2.4	(2.8)

0.00 Time:

Sweep: 0.67 Mc to 25.0 Mc in 5 mlnutes.

*Average values except foF2 and fEs, which are median values.

23 Tlme:

Slough.

Time

01

02

04 05

06 07 08

09 10

11

12 13

14 15

16

17

18

20

21 22

0.0°. 0.55 Mc to 16.5 Mc ln 5 mlnutes. Sweep:

England (51.5°N. 0.6°W)

foF2

3.0

2.8

2.3

2.2 3.6 4.7

5.1 5.5 5.6 5.2

5.3

3.3 2.6 2.5 2.7 2.6 2.7

2.8

h Fl

220

220

220 215

h*F2

255

260

260 255

245 250

255 230

220

225

230

230

225

225 225

225

220

230 255

260

255 255

265

*Average values except foF2 and fEs, which are medlan values.

Table 44°

h * E

145

foE

1.5 1.8 2.1 2.3 2.3

2.1

f Es

2.6

2.6

2.6

2.6

2.6

2.6 3.2 3.6 3.7 3.6 3.3 3.1 2.9 2.6 2.3 2.6 2.2

2.4

foFl

3.0 3.3 3.3 3.2 2.9

December 1954

(M3000)F2

3.0

3.0

3.0 3.0 3.1

3. 15 3. 2 3. 5 3. 65

3.65

3.6 3.65

3.6 3.55 3.5

3.35 3.1 3.1 3.15

3.1

3.0

December 1954 103.8°E) British Malaya (1.3°N, Singapore. (M3000)F2 Time h°F2 foF2 h Fl foFl h°E foE f Es 3.1 2.9 2.6 2.5 2.4 2.4 2.8 01 02 270 285 2.8 275 260 3.0 03 04 05 06 07 08 2.0 2.0 2.2 (3,3) (3.3) 2.2 3.5 5.8 160 250 2.1 2.7 3.0 240 120 3.1 3.2 (285) 390 6.5 215 120 4.0 09 210 2.5 2.3 2.1 2.1 2.2 2.3 2.3 2.4 2.5 2.6 2.8 2.9 10 11 12 13 440 455 6.9 210 205 110 110 3.2 4.3 4.4 4.4 4.3 4.2 3.4 3.3 3.2 3.0 2.7 2.2 7.8 200 200 110 110 450 5.0 4.7 420 8.1 8.2 8.3 8.2 7.8 4.8 14 15 16 200 210 110 110 395 360 (340) 115 3.6 3.5 2.7 2.7 2.9 255 240 125 17 18 19 20 21 22 260 285 7.0 6.4 6.2 6.7 285 265 225 2.1 3.0 23 225 3.5

Time: 105.0°E.

*Average values except foF2 and fEs, wich are median values.

Nairobi	Kenya (1.3°S, 3	6.8°E)	10010			De	cember 1954
Tlme	h°F2	foF2	h*Fl	foFl	h° E	foE	f Es	(M3000)F2
00	<220	4.4						3.15
01	240	3.4						2.95
02	260	3.2						3.0
03	<260	3.3						3.0
04	<250	2.9						3.2
05	<250	2.8						3.2
06	<240	2.8						3.2
07	240	4.8	230		120	2.0	2.6	3.3
80	300	>6.0	220	4.0	110	2.6	3.4	3.2
09	340	6.4	210	4.2	110	2.9		2.9
10	360	>7.5	200	4.4	100	3.2		2.8
11	360	8.4	200	4.5	100	3.4	3.9	2.8
12	380	8.7	200	4.5	100	3.4		2.8
13	390	9.0			110		3.8	2.7
14	380	8.8	200		100	3.3	3.8	2.8
15	370	8.6	200	4.3	100	3.2		2.8
16	350	8.7	210	4.2	110	3.0	3.7	2.8
17	350	8.6	220	3.9	110	2.6	3.6	2.8
18	320	8.6	250	3.5			3.1	2.8
19	280	>7.0					2.6	2.9
20	300	>5.8						(2.8)
21	300	>6.4						(2,9)
22	250	>6.4						3.2
23	210	>7.1						3.2

Tlme: 45.0°E.

Sweep: 1.0 Mc to 15.0 Mc in 7 seconds.

				Table 4	47*			
Falklan	d Is. (51.	,7°S, 57	.8°W)				No	vember 1954
Time	h*F2	foF2	h °Fl	foFl	h° E	foE	f Es	(M3000)F2
00	275	5.8					2.3	2.9
01	290	5.8					2.8	2.8
02	290	5.6					2.8	2.8
03	270	5.4					1.8	2.9
04	260	5.5				1.4		2.9
05	270	6.1	245		120	1.7	2.7	3, 1
06	290	5.8	235		110	2.3	3.7	3,1
07	300	5.9	240	4.0	110	2.6	4.0	3.0
08	305	6.0	(235)	4.1	110	2.8	4.8	3.1
09	325	6.4	(215)	4.1	105	3.0	6.0	3.0
10	315	6.6	(215)	4.4	105	3.1	5.9	3.0
11	315	6.6	(220)	4.4	105	3.1	5.3	3.1
12	315	6.8	215	4.4	105	3.2	4.9	3.1
13	300	6.5	215	4.4	105	3.1	5.0	3.1
14	300	6.3	220	4.3	105	3.1	4.6	3.2
15	300	5.9	230	4.2	105	2.9	4.2	3.2
16	295	6.1	230	4.0	110	2.7	3.9	3.2
17	280	6.4	(235)	3.8	115	2.4	5.0	3.3
18	275	6.6	(245)	(3.5)	130	2.0	3.8	3.1
19	260	6.9					3.5	3.0
20	265	6.8					4.0	3.0
21	275	6.8					3.6	2.8
22	270	6.6					2.9	2.9
23	280	6.3					3.0	2.9

Sweep: 0.67 Mc to 25.0 Mc ln 5 minutes.
*Average values except foF2 and fEs, which are median values.

Dowe I.o.	ckroy (64	000 43	com)	Table 4	<u>18</u> *			1054
								ovember 1954
Time	h*F2	foF2	h*Fl	foFl	h*E	foE	f Es	(M3000)F2
00	260	7.0						2.8
01	265	6.6						2.7
02	270	6.6						2.7
03	270	6.5	265		145	1.6		2.7
04	255	6.3	255		135	1.7	2.5	2.8
05	275	6.3	245		125	1.9	2.5	2.8
06	295	5.9	240	3.5	110	2.3	3.5	2.9
07	310	6.0	235	3.8	100	2.4	4.0	2.9
08	295	5.8	220	3.9	100	2.6	4.5	3.0
09	320	5.3	220	4.0	100	2.7	5.4	2.9
10	310	5.2	215	4.1	100	2.8	5.0	2.9
11	330	5.1	220	4.1	100	2.8	5.1	.3.0
12	320	5.3	220	4.1	100	2.9	5.2	3.0
13	315	5.1	215	4.1	100	2.9	5.5	3.0
14	330	5.0	230	4.1	100	2.8	4.9	3.0
15	310	5.1	230	3.9	100	2.7		3.1
16	310	5.2	230	3.9	105	2.6	4.1	3.1
17	295	5.2	245		105	2.5	3.0	3.0
18	300	5.6	240		115	2.3	3.7	3.0
19	285	6.1	245		115	1.9	3.1	2.9
20	265	6.6			130	1.7	2.6	2.8
21	265	7.0						2.8
22	260	7.3					2.1	2.8
23	255	7.2						

Time: 60.0°M. Sweep: 0.67 Mc to 25.0 Mc ln 5 minutes. *Average values except foF2 and fEs, which are median values.

August 1954

				Table 4	1 9 #			
Ibadan,	Nigeria	(7.4°N.	4.0°E)				Sep	tember 1954
Time	h°F2	foF2	h*Fl	foFl	h°E	foE.	f Es	(M3000)F2
00	260	5.4					1.8	3.0
01	255	5.0					2.2	3.1
02	240	4.0					1.9	3.3
03	250	2.8					2.0	3.4
04	240	2.3					2.1	3.4
05	245	1.5					2.0	3.4
06	245	4.9			122	1.8	4.9	3.4
07		6.4	230		110	2.5	4.9	3.3
08	305	7.3	210	4.1	110	3.0	6.6	3.0
09	340	7.7	203	4.3	102	3.3	9.0	2.6
10	375	7.0	200	4.4	101	3.4	10.2	2.4
11	380	6.7	188	4.4	101	3.5	10.2	2.5
12	370	7.0	196	4.4	101	3.5	10.0	2.6
13	355	7.5	197	4.4	104	3.5	9.3	2.6
14	335	7.6	200	4.2	104	3.3	9.2	2.6
15	315	8.1	200	4.1	108	3.0	6.6	2.6
16		8.1	211		110	2.6	4.7	2.6
17		8.6	245		120	1.9	4.9	2.7
18	255	8.7			(140)	(1.4)	3.7	2.8
19	275	8.2						2.8
20	265	7.7						3.1
21	250	7.2						3.3
22	240	6.6						3.3
23	250	5.8						3.2

Time: 0.00

*Sweep: 0.67 Mc to 25.0 Mc in 5 minutes. *Average values except foF2 and fEs, which are median values.

Table 51* Nigeria (7.4°N, 4.0°E) July 1954 Ibadan, h ª E (M3000)F2 Time h'F2 foF2 h°F1 foE f Es 00 (3.3) 1.2 **2**80 01 280 280 1.3 ---02 ---1.2 1.3 1.3 03 310 ---04 280 ---2.0 05 (330) 3.4 06 07 245 285 4.3 5.7 (125)(1.7)235 110 2.5 3.9 3.0 08 09 330 215 205 110 5.2 3.1 110 5.5 355 6.8 2.5 2.5 2.5 8.8 9.0 10 400 6.7 200 (110) 3.4 3.4 3.4 6.2 4.3 4.3 11 420 195 (110)12 425 200 (105) 9.0 13 14 4.2 3.4 405 6.1 200 110 6.8 2.5 200 6.7 2.6 110 385 6.4 2.7 15 200 4.0 110 3.0 6.6 360 6.6 16 17 320 6.9 7.2 215 3.6 110 2.8 5.1 5.2 290 235 110 2.9 18 3.0 250 7.2 ---(135) (1.5)4.6 4.6 2.2 2.0 250 6.8 20 255 6.0 21 260 4.6 3.8 3.3 275 3.3 1.8 23 285 (3.8)2.0

Time: 0.0°.

5weep: 0.67 Mc to 25.0 Mc in 5 minutes. *Average values except foF2 and fEs, which are median values.

Bombay	y, India (19.0°N, 73.0°E) <u>Table 53</u>							June_1954
Time	*	foF2	h# Fl	foFl	h [†] E	foE	fΕε	(M3000)F2
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18	270 300 300 330 360 360 360 360 360 330 33	5.0 5.9 6.3 6.8 8.2 8.9 9.1 9.2 9.0 8.2 7.4	h ¹ Fl	foFl	h E	foE	fEe	3.2 3.05 3.0 2.9 2.75 2.7 2.65 2.8 2.75 2.8 2.9 3.06 3.2
21 22 23	270 240	5.2 4.2						3.35 3.5

Time: 75.0°E.

Sweep: 1.5 Mc to 18.0 Mc in 5 minutes, manual operation.

*Height at 0.83 foF2.

**Average values; other columns, median values.

Time h*F2 h 'Fl (M3000)F2 foF2 f oF 1 h º E f Es foE 00 290 (3.2)1.4 01 305 (2.2) 1.0 290 270 02 (1.8)03 (2.3) (1.7) 250

4.0°E)

Table 50*

------04 260 250 3.3 06 (250) 130 4.5 4.0 6.1 6.9 7.2 2.4 3.0 3.3 3.3 3.1 2.9 235 220 07 (265)110 08 310 4.1 5.4 09 340 4.3 105 6.6 10 7.0 4.3 8.2 2.6 370 205 105 3.4 3.4 3.4 3.3 3.1 11 390 200 105 6.6 2.5 2.5 2.5 2.6 12 400 200 4.3 105 105 9.2 9.0 13 205 380 14 15 375 355 200 200 4.2 110 6.8 7.0 4.1 110 16 115 125 2.6 6.4 17 (290)7.6 7.9 225 2.1 4.9 2.8 18 255 (135) 4.1 255 265 2.6 19 7.2 3.0 20 6.4 5.1 3.0 21 255 22 4.4 3.8 3.1 260 2.0

Time:

0.0°. : 0.67 Mc to 25.0 Mc in 5 minutes. Sweep:

260

Nigeria (7.4°N.

Ibadan.

*Average values exept foF2 and fEs, which are median values.

Table 52 Oelhi, India (28.6°N, 77.1°E) June 1954 Time foF2 h 8 F1 foFl hIE foE fEs (M3000)F2 00 4.9 01 ---4.8 3.25 02 ---4.8 3.4 03 04 4.4 3.55 05 260 4.4 3.4 06 260 4.7 3.4 07 260 5.4 3.4 08 280 >6.2 3.3 3.3 0.9 280 5.9 3.15 2.95 2.95 10 280 6.2 320 6.6 >6.8 >6.9 12 320 13 320 3.05 7.2 14 320 3.05 300 3.05 16 280 3.15 6.8 17 280 18 280 3.3 19 250 3.45 20 240 6.3 5.3 5.2 3,55 21 22 260 280 3.45 3.4 23 (280)

75.0°E. Time:

oweep: 1.5 Mc to 18.0 Mc in 5 minutes, manual operation. *Height at 0.83 foF2. Sweep:

**Average values; other columns, median values.

Table 54

	lndia (1							June_1954
Time	*	foF2	h?Fl	foFl	h1E	foE	fEs	(M3000)F2
00								
01								
02								
03								
04								
05								
06	330	5.2						3.0
07	360	6.1						2.8
80	390	6.6						2.7
09	390	6.8						2.6
10	420	6.5						2.5
11	420	6.4						2.5
12	420	6.6						2.45
13	420	6.8						2,45
14	420	7.0						2,45
15	420	7.1						2.5
16	420	7.4						2.5
17	,420	7.7						2.55
18	390	>7.5						2.65
19	390	>6.9						2.7
20	380	>5.9						2.75
21	330	5.1						2.95
22								
23								

Time: 75.0°E.

1.5 Mc to 18.0 Mc in 5 minutes, manual operation. Sween:

*Height at 0.83 foF2.

**Average values; other columns, median values.

Tiruchy	India	(10.8°N.	78 8°F)	Table 5	<u>5</u>			June_1954
Tims	. 111070	foF2	h! Fl	foFl	h* E	foE	fEs	(M3000.) IF2
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22	380 390 420 420 450 450 460 480 480 450 450 420 390 (420)	4.8 6.0 6.4 6.5 6.2 6.2 5.9 6.1 6.3 6.7 7.0		1012				2.65 2.55 2.45 2.4 2.3 2.3 2.35 2.35 2.4 2.5 2.6 2.65 2.65 2.65

Time: 75.0° E. Sweep: 1.5 Mc to 18.0 Mc in 5 mlnutes, manual operation.

**Average values; other columns, median values.

				Table 5	7=			
Ibadan.	Nigeria	(7.4°N, 4	1.0°E)					May 1954
Tims	h°F2	foF2	h'Fl	foFl	h° E	foE	f Es	(M3000)F2
00	295							
01	345							
02	314	(1.8)					1.0	
03	(295)	(1,1)					1.2	
04	270	(1.3)					1.0	
05	(345)						1.0	
06	245	4.6			115	1.7	2.4	3.4
07	(275)	6.3	240		110	(2.5)	4.0	3.3
08	300	>6.8	225	4.1	110	2.8	4.8	3.2
09	330	7.5	220	4.3	110	3.3	6.6	2.8 2.7
10	345	7.8	215	4.3	105	3.3	7.6	2.7
11	345	8.2	205	4.4	110	3.4	8.3	2.6
12	345	8.0	200	4.4	105	3.4	8.2	2.7
13	340	8.5	200	4.3	110	3.4	6.0	2.7
14	335	8.6	195	4.3	110	3.2	5.5	2.7
15	310	9.0	205	(4.2)	110	3.0	6.0	2.9
16	300	8.6	220		110	2.7	4.6	2.9
17	(270)	8.8	(230)		110	1.9	5.2	3.1
18	255	8.5			105	(1.5)	2.1	3.1
19	250	7.5					1.3	3.2
20	255	6.2						3.2
21	255	(5.3)						3.2
22	270	(3,9)						3.2
23	290	(3.5)						

Time: 0.0°. Sweep: 0.67 Mc to 25.0 Mc in 5 minutes.

*Average values except foF2 and fEs, which are median values.

Table 59

/-/		-0-1	Table 2	4			
India (20	3.6°N, 77	•1°E)					May 1953
*	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F2
							3.0
							3.2
							3.1
280	3.9						3.2
280	4.4						3.3
260	5.4						3.4
260	6.2						3.4
280	6.4						3.3
280	6.6						3.2
280	7.0						3.2
300	7.8						3.0
320	8.7						3.0
320	9.1						3.0
300	> 9.2						3.0
300	> 9.5						3.0
300							3.2
300	> 8.4						3.2
(280)	> 7.6						3.3
	> 6.5						3.5
							3.2
	> 5.2						3.2
(300)	(4.8)						3.2
(280)	> 4.0						3.2
	* 280 280 260 280 320 320 320 300 300 (280) (280)	* foF2	280 3.9 280 4.14 260 5.4 260 6.2 280 6.4 280 6.6 280 7.0 300 7.8 320 9.1 300 9.2 300 9.5 300 8.4 (280) > 7.6 > 6.5 > 6.5 > 6.5 (280) > 5.2 (300) (4.8)	India (28.6°N, 77.1°E) * foF2 h'F1 foF1 280 3.9 280 4.4 260 6.2 280 6.4 280 6.6 280 7.0 300 7.8 320 9.1 300 > 9.2 300 > 9.5 300 8.4 (280) > 7.6 > 6.5 (280) > 5.2 (300) (4.8)	* foF2 h'F1 foF1 h'E	India (28.6°N, 77.1°E) * foF2 h'F1 foF1 h'E foE 280 3.9 280 4.4 260 5.4 260 6.2 280 6.4 280 6.6 280 7.0 300 7.8 320 9.1 320 9.1 320 9.1 320 9.5 330 8.8 320 8.7 320 9.1 320 9.6 320 9.7 320 9.6 320 9.7 320 9.6 320 9.7 320 9.6 320 9.7 320	India (28.6°N, 77.1°E) * foF2 h'F1 foF1 h'E foE fEs 280 3.9 280 4.4 260 5.4 260 6.2 280 6.4 280 6.6 280 7.0 300 7.8 320 9.1 320 9.1 320 9.1 320 9.5 300 > 9.5 300 8.6 (280) > 7.6 > 6.5 > 6.5 > 6.5 > 6.5 (280) > 5.2 (300) (4.8)

Time: 75.0° E. Sweep: 1.5 Ma to 18.0 Ma in 5 minutes, manual operation. *Height at 0.83 forz.

**Avsrage valuss; other columns, median valuss.

Time 00 (255) (4.0) 1.3 1.2 1.2 ---01 ... 02 03 ------04 ---05 06 07 08 ---(1.5) (2.5) 3.0 (3.3) 3.3 4.3 5.6 6.3 3.4 3.3 3.2 2.9 2.6 250 (110) 290 320 (230) 220 (110)4.0 4.2 4.2 4.2 (110) 5.1 09 340 6.6 210 2.6 2.5 2.6 2.6 2.7 2.8 2.9 110 10 380 6.8 200 (3.4) 3.4 (3.4) 8.5 8.7 8.8 6.7 5.7 4.8 11 12 405 6.6 200 (110)

(4.2)

4.1 (3.9)

Table_56*

foF1

h°E

110

(110)

110

(110)

(110)

(110)

June 1954

(M3000)F2

3.0

3.3

3.3

f Es

foE

3.2 (3.0)

(2.4)

(2.0)

4.4 2.2 2.2

1.2

Ibadan.

13

14 15

16 17

18

20

21

23

(4.2) Time: 0.0°. Sweep: 0.67 Mc to 25.0 Mc in 5 minutes.

6.4

6,8 (6.8) 7.1 7.0

7.1 (6.4)

(5.2)

(4.6) (4.1)

Nigeria (7.4°N, 4.0°E)

foF2

h°F1

200

(200)

200

(200)

(215)

(230)

hºF2

400

405

365 (340)

310

250

(240) 250

250

260

(245)

*Average values except foF2 and fEs, which are median values.

Table_58

			20010	<u>,,,,</u>			
g, Germany	(48.1°	W. 7.801)				May 1953
h'F2	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F2
270	3.6					2.0	2.9
270	3.4					2.0	2.9
270	3.2					1.8	2.9
270	3.2					2.0	2.9
< 270	3.1						2.9
320	3.8	255	2.8	131	1.7		3.0
325	4.2	240	3.4	115			3.1
350	4.7	230		109			3.0
340	5.2	225		105			3.1
340	5.1						3.0
365	5.2	215		103			3.1
350		215		103			3.1
			4.3				3.1
	5.4	220		104			3.1
368	5.1	230		105			3.0
355							3.0
342	5.4						3.0
315	5.5	240					3.1
290		250					3.1
265							3.1
240	6.2						3.2
240							3.1
245	4.7						3.1
262	4.0					1.9	2.9
	h'F2 270 270 270 270 270 270 320 325 350 340 340 365 350 352 352 3538 355 342 342 240 240	h'F2 foF2 270 3.6 270 3.2 270 3.2 270 3.2 270 3.2 270 3.1 320 3.8 325 4.2 350 4.7 340 5.2 350 5.3 352 5.2 350 5.3 352 5.2 350 5.4 368 5.1 345 5.4 368 5.1 345 5.4 368 5.1 345 5.4 368 5.1 345 5.4 368 5.1 345 5.4 368 5.1 345 5.4 368 5.1	h'F2 foF2 h'F1 270 3.6 270 3.4 270 3.2 270 3.2 270 3.2 270 3.2 270 3.1 320 3.8 25 320 3.8 25 32 32 350 4.7 230 340 5.2 225 340 5.1 215 365 5.2 225 340 5.1 215 350 5.3 215 352 5.2 225 350 5.4 220 368 5.1 230 355 5.1 230 355 5.1 230 315 5.5 240 255 240 255 240 255 240 6.2 255 240 255 240 245 4.7 240 245 4.7 240 245 4.7 240 245 240 245 246 245 246	g, Germany (48.1°M, 7.8°M) h'F2 foF2 h'F1 foF1 270 3.6 270 3.4 270 3.2 270 3.2 270 3.1 320 3.8 255 2.8 325 4.2 240 3.4 350 4.7 220 3.7 340 5.2 225 4.0 340 5.1 215 4.1 365 5.2 215 4.2 350 5.3 225 4.3 352 5.4 220 4.3 352 5.4 220 4.3 352 5.2 225 4.3 352 5.2 225 4.3 352 5.2 225 4.3 352 5.2 225 4.3 352 5.2 225 4.3 352 5.2 225 4.3 352 5.2 225 4.3 352 5.2 225 4.3 353 5.2 225 4.3 352 5.2 225 4.3 352 5.2 225 4.3 352 5.2 225 4.3 353 5.2 225 4.3 356 5.1 230 4.3 256 5.1 230 4.3 257 5.1 225 4.1 342 5.4 250 4.3 258 5.6 225 240 3.8 290 5.8 250 3.4 265 6.2 255 240 6.2 240 6.2	h'F2 f0F2 h'F1 f0F1 h'E 270 3.4 3.4 3.4 3.2 3.4 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.4 131 320 3.8 255 2.8 131 325 4.2 240 3.4 115 3.4 125 4.1 105 3.4 125 4.1 105 340 5.2 225 4.0 105 340 5.2 225 4.0 105 340 5.2 225 4.1 105 365 5.2 215 4.2 103 350 5.3 215 4.2 103 350 5.3 215 4.3 103 352 5.2 225 4.3 104 368 5.1 220 4.2 105 355 5.1 220 4.2 105 345 2.0 4.2 105 345 5.4 220 4.2 </td <td>g, Germany (48.1°M, 7.8°E) h'F2 foF2 h'F1 foF1 h'E foE 270 3.6 270 3.2 270 3.2 270 3.2 270 3.2 270 3.2 270 3.2 270 3.2 270 3.2 270 3.2 270 3.2 270 3.2 270 3.2 270 3.1 320 3.8 255 2.8 131 1.7 325 4.2 240 3.4 115 2.2 350 4.7 230 3.7 109 2.4 340 5.2 225 4.0 105 2.8 340 5.1 215 4.1 105 2.9 365 5.2 215 4.2 103 3.1 350 5.3 215 4.3 103 3.2 350 5.3 215 4.3 103 3.2 350 5.4 220 4.3 104 3.2 350 5.5 225 4.3 103 3.2 350 5.4 220 4.3 104 3.2 350 5.4 220 4.3 104 3.2 350 5.4 220 4.3 104 3.2 350 5.4 220 4.3 104 3.2 350 5.5 5.1 225 4.1 105 3.0 342 5.4 230 4.0 109 2.8 315 5.5 240 3.8 110 2.5 290 5.8 290 3.4 112 2.1 265 6.2 255 1.6</td> <td>g, Germany (48.1°M, 7.8°E) h F2 foF2 h F1 foF1 h E foE fE8 270 3.6 2.0 270 3.2 1.8 270 3.2 2.0 270 3.2 2.0 270 3.2 2.0 270 3.2 2.0 270 3.2 2.0 270 3.2 2.0 270 3.2 2.0 270 3.2 2.0 270 3.2 2.0 270 3.2 2.0 270 3.2 2.0 270 3.2 2.0 280 3.8 255 2.8 131 1.7 2.5 325 4.2 240 3.4 115 2.2 3.1 320 4.7 230 3.7 109 2.4 3.6 340 5.2 225 4.0 105 2.8 3.8 340 5.2 225 4.0 105 2.8 3.8 340 5.1 215 4.1 105 2.9 4.0 365 5.2 215 4.2 103 3.1 352 5.2 225 4.3 103 3.2 3.8 352 5.2 225 4.3 103 3.2 3.8 353 5.4 220 4.3 104 3.2 3.9 368 5.1 230 4.2 105 3.1 3.6 355 5.1 225 4.1 105 3.0 3.5 342 5.4 230 4.0 109 2.8 3.5 343 5.5 240 3.8 110 2.5 3.5 290 5.8 250 3.4 112 2.1 3.3 265 6.2 255 1.6 2.7 240 6.2 240 5.6 220 240 5.6 220 240 5.6 220 240 5.6 220 240 5.6 220 240 5.6 220 240 5.6 220 240 5.6 220 240 5.6 220 240 5.6 220 240 5.6 220 240 5.6 220 240 5.6 220 240 5.6 220 240 5.6 220 240 5.6 220 240 5.6 220 250 3.8 100 </td>	g, Germany (48.1°M, 7.8°E) h'F2 foF2 h'F1 foF1 h'E foE 270 3.6 270 3.2 270 3.2 270 3.2 270 3.2 270 3.2 270 3.2 270 3.2 270 3.2 270 3.2 270 3.2 270 3.2 270 3.2 270 3.1 320 3.8 255 2.8 131 1.7 325 4.2 240 3.4 115 2.2 350 4.7 230 3.7 109 2.4 340 5.2 225 4.0 105 2.8 340 5.1 215 4.1 105 2.9 365 5.2 215 4.2 103 3.1 350 5.3 215 4.3 103 3.2 350 5.3 215 4.3 103 3.2 350 5.4 220 4.3 104 3.2 350 5.5 225 4.3 103 3.2 350 5.4 220 4.3 104 3.2 350 5.4 220 4.3 104 3.2 350 5.4 220 4.3 104 3.2 350 5.4 220 4.3 104 3.2 350 5.5 5.1 225 4.1 105 3.0 342 5.4 230 4.0 109 2.8 315 5.5 240 3.8 110 2.5 290 5.8 290 3.4 112 2.1 265 6.2 255 1.6	g, Germany (48.1°M, 7.8°E) h F2 foF2 h F1 foF1 h E foE fE8 270 3.6 2.0 270 3.2 1.8 270 3.2 2.0 270 3.2 2.0 270 3.2 2.0 270 3.2 2.0 270 3.2 2.0 270 3.2 2.0 270 3.2 2.0 270 3.2 2.0 270 3.2 2.0 270 3.2 2.0 270 3.2 2.0 270 3.2 2.0 280 3.8 255 2.8 131 1.7 2.5 325 4.2 240 3.4 115 2.2 3.1 320 4.7 230 3.7 109 2.4 3.6 340 5.2 225 4.0 105 2.8 3.8 340 5.2 225 4.0 105 2.8 3.8 340 5.1 215 4.1 105 2.9 4.0 365 5.2 215 4.2 103 3.1 352 5.2 225 4.3 103 3.2 3.8 352 5.2 225 4.3 103 3.2 3.8 353 5.4 220 4.3 104 3.2 3.9 368 5.1 230 4.2 105 3.1 3.6 355 5.1 225 4.1 105 3.0 3.5 342 5.4 230 4.0 109 2.8 3.5 343 5.5 240 3.8 110 2.5 3.5 290 5.8 250 3.4 112 2.1 3.3 265 6.2 255 1.6 2.7 240 6.2 240 5.6 220 240 5.6 220 240 5.6 220 240 5.6 220 240 5.6 220 240 5.6 220 240 5.6 220 240 5.6 220 240 5.6 220 240 5.6 220 240 5.6 220 240 5.6 220 240 5.6 220 240 5.6 220 240 5.6 220 240 5.6 220 240 5.6 220 250 3.8 100

Time: Local.

Sweep: 1.25 Mc to 20.0 Mc in 10 minutes, automatic operation.

Table 60

India (1	19.0°N, 7	3.0°E)					May 1953
*	foF2	h'Fl	foFl	h¹E	foE	fEs	(M3000)F2
							3.0
	7.4						2.8
	7.9						2.7
							2.6
							2.6
							2.5
							2.4
							2.4
							2.4
							2.5 2.6
							2.6
360							2.7
	8 2						2.8
							3.0
							3.0
300	6.0						3.0
	330 360 360 390 420 450 450 450 390 390 360 360 360 3320	* foF2 330 6.3 360 7.4 360 7.9 390 9.6 420 10.6 420 10.8 450 11.4 450 11.6 420 11.4 390 10.6 390 9.6 360 9.4 360 8.2 330 7.2 320 6.6	* foF2 h'F1 330 6.3 360 7.4 360 7.9 390 8.7 390 9.6 420 10.6 420 10.8 450 11.4 450 11.6 420 11.4 390 10.6 390 9.6 360 9.4 360 8.2 330 7.2 320 6.6	* foF2 h'F1 foF1 330 6.3 360 7.4 360 7.9 390 8.7 390 9.6 420 10.6 420 10.8 450 11.4 450 11.6 420 11.4 390 10.6 390 9.6 390 9.6 360 9.4 360 8.2 330 7.2 320 6.6	* foF2 h'F1 foF1 h'E 330 6.3 360 7.4 360 7.9 390 8.7 390 9.6 420 10.6 420 10.8 450 11.4 450 11.6 420 11.4 390 10.6 390 9.6 390 9.6 360 9.4 360 8.2 330 7.2 320 6.6	* foF2 h'F1 foF1 h'E foE 330 6.3 360 7.4 360 7.9 390 8.7 390 9.6 420 10.6 420 10.8 450 11.4 450 11.6 420 11.4 390 10.6 390 9.6 390 9.6 360 9.4 360 8.2 330 7.2 320 6.6	330 6.3 360 7.4 360 7.9 390 8.7 390 9.6 420 10.6 420 10.8 450 11.4 450 11.6 420 11.4 390 10.6 390 9.6 390 9.6 390 9.6 360 9.4 360 8.2 330 7.2

Time: 75.0° E. Sweep: 1.5 Mc to 18.0 Mc in 5 minutes, manual operation. *Height at 0.83 foF2.

**Average values; other columns, median values.

1	ah	10	-61

Wadras,	India (13.0°N, 8	0.2°E)					May 1953
Time	*	foF2	h'Fl	foF1	h'E	foE	fEs	(M3000)F2
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 18	320 360 360 420 420 450 450 420 420 420 390 360 360	5.6 7.1 7.6 7.8 7.4 7.4 7.4 8.2 9.1 70.0 > 9.4 > 10.0 > 9.4 > 7.5 > 6.2						3.0 2.9 2.7 2.6 2.4 2.4 2.4 2.5 2.6 2.6 2.7 2.8

Time: 75.0°E. Sweep: 1.5 Mc to 18.0 Mc in 5 minutes, manual operation. *Height at 0.83 foF2.

**Average values; other columns, median values.

Table 63

Fribour	g, Germany	(48.1	F, 7.8°E)					April 1953
Time	h'F2	foF2	h'F1	foFl	h'E_	foE	f Es	(M3000)F2
00	290	3.2					1.8	2.8
01	290	3.3					1.8	2.8
02	280	3.1						2.8
03	< 275	2.9					1.7	2.9
04	< 270	2.7					1.9	2.9
05	260	2.8		-			1.8	3.2
06	252	3.8	240		125	1.6	2.3	3.3
07	302	4.1	230	3.4	114	2.2	2.7	3.2
08	350	4.5	< 230	3.8	111	2.6	3.1	3.1
09	335	5.0	220	4.0	107	2.8	3.3	3.1
10	335	5.5	212	4.1	105	3.0	3.4	3.2
11	325	5.6	215	4.2	107	3.0	3.6	3.1
12	322	5.8	210	4.3	105	3.2	3.7	3.2
13	325	5.8	225	4.2	107	3.1	3.7	3.1
14	318	5.8	230	4.2	107	3.0	3.5	3.2
15	305	5.8	225	4.0	109	2.8	3.4	3.2
16	302	5.6	240	3.8	111	2.6	3.1	3.2
17	282	5.7	240	3.4	115	2.2	2.9	3.2
18	255	5.6	250		121	1.7	2.0	3.3
19	250	5.8	-				2.2	3.2
20	240	5.4					2.2	3.1
21	245	4.7					2.0	3.1
22	250	3.9					1.9	3.0
23	282	3.4					1.8	2.9

Tims: Local.

Sweep: 1.25 Mc to 20.0 Mc in 10 minutes, automatic operation.

Bombay	, India (19.0°N,	73.0°E)	Table 6	<u>.5</u>			April_1953
Tims		foF2	h'F1	foFl	h E	foE	fEs	(M3000)F2
00								
01								
02								
03								
04								
05								
06 07	700							
08:30	300	6.6						3.1
08:30	330 360	7.4 7.9						2.9
10	375	9.0						2.6
11	390	10.2						2.7
12	420	11.2						2.6 2.5
13	420	11.7						2.5
14	450	12.2						2.4
15	450	12.0						2.4
16	450	12.2						2.4
17	420	11.5						2.5
18	390	10.6						2.6
19	360	9.9						2.8
20	360	8.6						2,6
21	330	7.2						3.0
22	300	6.1						3.0
22: 30	300	5.4						3, 1

Swsep: 1.5 Mc to 18.0 Mc in 5 minutes, manual operation. *Height at 0.83 foF2.

**Avsrage values; other columns, median values.

Time	*	foF2	h'F1	foFl	h'E	foE	ſEs	'(M3000)F2
00 01 02 02 03 04 05 06 06 07 08 09 11 11 12 13 14 15 16 17 11 18 19 20 21 22 23	360 420 450 480 500 510 510 510 510 510 480 480 420	5.1 7.0 7.5 7.4 7.0 7.0 7.4 7.7 8.3 8.3 8.5 8.0 7.9				-30		2.8 2.4 2.3 2.2 2.2 2.2 2.2 2.2 2.3 2.3 2.4 2.3

Time: 75.0° E. Sweep: 1.5 Ma to 18.0 Ma in 5 minutes, manual operation. *Height at 0.83 fore.

**Average values; other columns, median values.

Table 64

Delhi, India (28.6°N, 77.1°E) April 1953 Time foF2 h'Fl foFl h*E foE (M3000)F2 00 300 3.6 3.1 01 300 02 (300) (3.0) (3.2)03 280 3.4 3.9 04 3.2 05 280 3.3 06 07 260 5.1 240 6.4 3.6 6.7 7.2 8.2 260 3.4 3.3 3.1 3.1 09 280 10 300 11 12 320 9.8 300 >10.9 3.1 13 300 >11.2 3.2 3.3 3.4 14 280 >11.2 280 16 17 260 260 9.7 9.1 3.4 8.2 7.1 4.7 18 250 19 240 3.5 20 260 3.3 21 280 4.2 22 320 3.9 3.1 23 320 3.8

Time: 75.0°E. Sweep: 1.5 Mo to 18.0 Mc in 5 minutss, manual operation.

*Height at 0.83 for2.

**Avsrage values; other columns, median values.

Table 66

Madras. India (13.0°N. 80.2°E) April 1953

Madras	, India (10.0-11,	00.5 2)				*	**
Time	*	foF2	h'Fl	foFl	h*E	foE	fEs	(M3000)F2
00								
01								
02								
03								
04								
05								
06	300	5.7						3.0
07	360	7.4						2.9
80	390	8.2						2.6
09	420	7.9						2.5 2.5
10	420	7.6						2.5
11	420	7.9						
12	450	8.2						2.4 2.4
13	450	8.6						
14	420	9.4						2.5 2.5
15	420	>9.8						2.5
16	420	10.4						2.6
17	420	11.2						2.6
18	420	10.3						2.6
19	390	9.5						
20	390	>8.8						2.7 2.8
21	360	>8.0						(2.8)
22		>8.2						(2.0)
23								

Tims: 75.00E.
Sweep: 1.5 Mo to 18.0 Mc in 5 minutss, manual operation.

*Hsight at 0.83 foF2.

**Avorage values; other columns, msdian values.

		Table

Tiruoh	y. India	(10.8°N,	78.8°E)	Table	.01			April 1953
Time		foF2	h*Fl	foFl	h E	foE	fEs	(M3000)F2
00 01 02								
03 04 05								
06 07	360 420	4.8 7.3						2.8 2.6
08	450	7.9						2.4
09 10	480 510	7.5 7.5						2.3 2.2
11 12	51.0 540	7.5 7.8						2.2
13	540	7.9						2.2
14 15	540 510	8.2 8.8						2.2 2.2
16	510 510	9.4 10.0						2.2
17 18	480	9.3						2.3
19 20	480 480	9.2 8.4						2.3 2.4
21 22 23	450	7.6						2.4

Time: 75,0°E.

Sweep: 1.5 Mc to 18.0 Mc in 5 minutee, manual operation.

"Height at 0.83 foF2.

"Average values; other columns, median values.

Delhi,	March 1953							
Time		foF2	h'J1	foF1	h!E	foE	fBs	(M3000)15
00	280	3.0						3.1
01	290	3.0						3.1
02	(300)	(2.9)						(3.1)
	(300)	(2.0)						
03	280	2.6						3.2
04		>3.0						3.4
05	260							3.4
06	260	3.7						3,6
07	240	5.4						3.4
08	240	6.0						3.3
09	280	6.6						3.3
10	260	7.6						3.2
11	280	>8.4						
12	280	9.2						3.2
13	280	9.8						3.3
14	260	9.7						3.4
15	260	9.4						3.4
16	260	>9.0						3.4
17	250	7.6						3.4
18	240	6.7						3.6
19	240	6.1						3,8
20	240	4.3						3.6
21	280	3.6						3.3
22	280	3.6						3.3
27	280	3 2						3.2

Time: Local.

6weep: 1.5 Mo to 18.0 Mc in 5 minutee, manual operation.

**Height at 0.83 foF2.

**Average values; other columns, median values.

				Table 7	<u>1</u>			
Madras,	, India (13.0°N,	80.2°E)					March 1953
Time	+	foF2	h'F1	foF1	h † E	foE	fEs	(M3000)F2
00								
01								
02								
03								
04								
05								
06								
07	300	5.9						3.0
08	360	7.3						2.8
09	390	8.3						2.6
10	420	8.5						2.6
11	420	8.2						2.4
12	420	8.1						2.5
13	420	8.1						2.5
14	420	8.6						2.4
15	420	9.0						2.5
16	420	9.7						2.6
17	420	10.2						2,6
18	420	10.2						2.5
19	390	>9.4						2.6
20	390	8.7						2.6
21	360	8.7						2.8
SS	360	8.4						2.8
23								

Time: Local.

Swesp: 1.5 Mc to 18.0 Mo in 5 minutes, manual operation.
"Height at 0.83 for 2.
"Average values; other columns, median values.

Table 68

	rg. German							March 195
Time	h'F2	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F
00	<280	2.9						2.9
01	280	2.8					1.6	2.9
02	275	2.7					1.5	2.8
03	270	2.5					1.8	2.8
04	260	2.4					1.7	2.9
05	252	2.1					1.7	3.1
06	245	2.8				E	2.0	3.2
07	. 240	3.9	230		123	1.9	2.0	3.3
08	270	4.4	225	3.4	117	2.2	2.3	3.4
09	285	4.8	222	3.8	113	2.5	3.3	3.3
10	310	5.2	220	3.9	111	2.7	3.4	3.3
11	305	5.3	212	4.0	111	2.8	3.2	3.3
12	305	5.4	220	4.1	111	2.9	3.3	3.2
13	305	5.4	220	4.0	111	2.8	2.5	3.2
14	295	5.4	225	3.9	111	2.8	2.6	3.2
15	280	5.4	230	3.8	113	2.6	2,4	3.3
16	275	5.4	235	3.5	117	2.4	2.3	3.3
17	2 50	5.4	240		119	2.0	2.0	3.3
18	240	5.0				,E	2.0	3.2
19	230	4.9						3.2
20	240	4.3					1.7	3.1
21	245	3.8						3.0
22	270	3.3					1.8	2.9
23	268	3.1						2.9

Time: Local. Sweep: 1.25 Mc to 20.0 Mc in 10 minutes, automatic operation.

Table 70

Bombay.	India (19.0°N,	73.0°E)	Table	<u>10</u>			March 1953
Time	: *	foF2	h'Fl	foFl	h 'E	foE	fEa	(M3000)F2
00								
01								
02								
03								
04								
05								
06								
07	300	6.1						3.1
08:30	330	7.4						2.9
09	360	7.9						2.8
10	360	8.8						2.8
11	390	10.0						2, 6
12	390	10.8						2.6
13	420	11.3						2.6 2.5
14	420	11.8						
15	420	12.1						2.5
16	420	12.0						2.5 2.6
17	390	11.4						
18	360	10.6						2.8
19	360	9.8						2.8
20	330	8.5						2.9
21.	300	7.4						3.0
22	300	6.4						3.0
22: 30	300	5.5						3.1

Time: Local.
Sweep: 1.5 Mc to 18.0 Mc in 5 minutes, manual operation.
*Height at 0.83 foF2.

**Average values; other columns, median values.

Tiruohy	, India	(10.8°N,	78.8°E)	Table 72	-			March 1953
Time		foF2	h'Fl	foFl	h t E	foE	fEs	(M3000)F2
00								
01								
02								
03								
04								
05								
06	360	4.6						2.8
07	390	6.5						2.6
08	450	7.5						2.4
09	480	7.8						2.3
10	510	7.7						2.2
11	510	7.6						2.2
12	540	7.6						2.2
13	540	7.7						2.2
14	540	7.8						2.2
15	540	8.5						2.2
16	540	8.9						2.2
17	510	8.7						2.2
18	510	8.4						2.2
19	510	8.0						2.2
20	480	8.0						2.3
21	465	7.6						2.4
22	465	7.4						2.4

Time: Local,
Sweep: 1.5 Mc to 18.0 Mc in 5 minutse, manual operation.
*Height at 0.83 for2.

**Avsrage values; other columne, median values.

				Table	73			
Pr1bou	rg, German	y (48.1°	N. 7.8°I	3)			7	bruary 1953
Time	h'F2	foF2	h'Fl	foF1	h'E	foE	fEs	(M3000)F2
00	255	3.0						2.9
01	255	3.2						2.9
02	< 265	3.1						2.9
03	265	3.2						2.9
04	260	2.9						3.0
05	250	2.3						3.1
06	240	2.3						3.2
07	230	3.4						3.4
08	220	4.7	222		121	1.8	1.8	3.6
09	225	5.3	220		115	2.2	2.1	3.6
70	245	5.7	215	3.6	111	2.5	2.6	3.5
11	258	5.8	220	3.8	113	2.7	2.2	3.4
12	255	5.9	220	3.9	113	2.8	2.2	3.5
13	250	5.7	230	3.8	117	2.8	2.0	3.5
14	250	5.5	225	3.6	117	2.6	1.7	3.5
15	240	5.7	230		117	2.4	1.8	3.4
16	235	5.7	230		121	2.1	2.0	3.5
17	222	5.2				-	1.8	3.5
18	220	4.2						3.2
19	240	4.2						3.2
20	235	3.8						3.2
21	240	3.2						3.1
22	260	2.9						3.0
23	252	3.1						3.0

Time: Local. Sweep: 1.25 Mc to 20.0 Mc in 10 minutes, automatic operation.

Teble 75 Fribourg, Germany (49.1°N, 7.8°E) December 1952

Time | h'F2 foF2 h'F1 foF1 h'E foE fEs (M3000)F2

TIME	17.15	1012	W.N.T	1011	W.T	IOT	ING	(20000112
00	260	3.3						2.9
01	< 266	3.1					1.8	2.9
02	266	3.2						2.9
03	270	3.0						2.9
04	260	2.7						3.0
05	245	2.4						3.0
80	< 235	2.3						3.2
07	235	2.5					2.0	3.2
80	216	4.5				1,5	2.3	3.6
09	220	5.5	225		121	2.0	2.1	3.5
10	225	5.6	228		< 117	2.3	2.5	3.6
11	225	8.7	225		113	2.6	2.6	3.5
12	225	8.4	220	3.4	121	2.5	2.7	3.5
13	230	6.3	228	-	121	2.5	2.5	3.5
14	230	6.3	235		122	2.3	2.8	3.6
15	225	8.0	232		124	2.0	2.1	3.6
15	220	6.0				1.5	2.1	3.4
17	220	4.4				_	2.5	3.3
18	235	3.5					2.0	3.2
19	240	3.2					2.0	3.2
20	235	3.2					1.8	3.2
21	256	3.0					_,-	3.0
22	270	3.2						3.0
23	260	3.2						2.9

Time: Local. Sweep: 1.25 Mc to 20.0 Mc in 10 minutee, automatic operation.

Teble 77

Fribou	rg, Germa	ny (48.1	°N, 7.8°	E)	_		Oct	ober 1952
Time	h'F2	foF2	h'F1	foF1	h!E	foE	fEe	(M3000)#2
00	290	3.2					2.0	2.8
01	290	3.2					1.9	2.8
02	290	3.1					2.1	2.9
03	280	3.1					2.0	2.9
04	276	3.0					2.0	2.9
06	235	2.7					2.1	3.2
05	250	2.9						3.1
07	235	4.5	230		121	1.8	2.3	3.4
80	235	5.6	232	3.4	116	2.3	3.1	3.5
09	255	6.0	230	3.8	113	2.5	3.7	3.4
10	260	6.4	220	4.0	110	2.8	3.8	3.5
11	255	7.1	222	4.1	111	2.8	4.1	3.4
12	255	6.9	222	4.0	111	3.0	3.7	3.3
13	255	5.7	225	4.0	111	2.8	3.5	3.4
14	255	7.0	230	3.9	109	2.8	3.4	3.4
16	250	6.7	240		111	2.5	3.3	3.4
18	240	6.6	240		113	2.2	3.1	3.4
17	230	6.3				1.8	2.8	3.4
18	235	5.8					2.9	3,2
19	235	5.4					2.6	3.3
20	235	4.1					2.1	3.2
21	255	3.4					2.4	3.0
22	270	3.4					2.2	2.9
23	286	3.2					2.2	2.8

Time: Local.
Sweep: 1.25 Mc to 20.0 Mc in 10 minutes, automatic operation.

Table 74

Fribour	g, German	y (48.1°	N, 7.8°E)				January 1953
Time	h'F2	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F2
00	260	3.0					1.6	3.0
01	265	3.1					-	2.9
02	< 270	3.0						3.0
03	260	3.0						3.0
04	255	2.8						3.1
05	240	2.4						3.2
06	240	2.2						3.2
07	24 5	2.5						3.1
08	220	4.8			< 141	1.6	2.4	3.5
09	220	6.0	230		113	2.1	2.2	3.6
10	235	6.3	230		111	2.4	1.9	3.6
11	240	6.7	230		111	2.6	1.9	3.5
12	235	6.6	222	3.5	117	2.6		3.5
13	240	6.4	225			2.6		3.5
14	240	6.3	230		120	2.4		3.5
15	230	6.0	230		121	2.2	2.0	3.5
16	220	5.4			<128	1.8	2.0	3.6
17	220	4.4					1.9	3.4
18	235	3.7						3.2
19	235	3.2						3.2
20	< 260	2.9						3.0
21	275	3.0					1.9	3.0
22	275	3.0						2.9
23	270	2.9						2.9

Time: Local.
Sweep: 1.25 Mc to 20.0 Mc in 10 minutee, automatic operation.

Teble 76

			°N. 7.8°		-			
Fribou	rg, Germa	ny (48.1		Nover	ber 1962			
Time	P.ES	foF2	h'F1	foFl	hIE	foE	fEs	(M3000)F2
00	< 275	3.1		_			2.3	2.9
01	276	3.2					2.0	2.9
02	265	3.2						2.9
03	256	3.2						3.0
04	< 250	2.9						3.0
06	< 245	2.5						3.2
05	225	2.4						3.2
07	230	3.9						3.4
80	215	5.3	226		123	1.8	2.0	3.5
09	226	6.0	225		< 119	2.3	2.8	3.5
10	235	6.7	230		115	2.5	3.3	3.6
11	235	7.0	225		115	2.6	3.2	3.5
12	235	6.8	220		112	2.7	3.4	3.6
13	235	5.5	225		119	2.5	3.1	3.6
14	240	6.6 5.5	235		118	2.6	2.4	3.5
16	230		235		121	2.2	2.4	3.6
15	220	6.7				1.8	2.6	3.5
17	218	4.5					2.5	3.4
18	230	3.9					2.1	3.2
19	230	3.8					1.7	3.2
20	235	3.2						3.2
21	245	3.0						3.0
22	272	3.0						3.0
23	270	3.2					2.1	2.9

Time: Local. Sweep: 1.25 Mc to 20.0 Me in 10 mimutee, automatic operation.

Table 78

Fribou	rg, Germe	ду (48.1	°E, 7.8°	E)			Sept	ember 1962
Time	P.LS	foF2	h'F1	foF1	h¹E	foE	fle	(M3000)F2
00	280	3.6					1.9	2,8
01	290	3.5					1.7	2.8
02	< 280	3.4					2.0	2.8
03	270	3.1					2.0	2.8
04	270	3.0					2.0	2.8
05	<256	2.8					2.0	3.0
06	245	3.8	240		131	1.6	2.5	3.2
07	255	4.7	240	3.4	113	2.2	3.2	3.4
80	295	4.8	230	3.8	111	(2.6)	3.4	3.3
09	320	6.2	225	4.1	110	2.8	3.6	3.1
10	305	6.0	215	4.3	109	(3.0)	4.1	3.2
11	300	5.9	21.5	4.4	109	(3.1)	3:5	3.3
12	308	5.9	215	4.4	109	3.2	3.5	3.2
13	290	8.0	220	4.4	107	3.2	3.4	3.2
14	285	6.0	220	4.3	107	3.0	3.2	3.3
16	290	5.1	225	4.1	109	2.8	3.1	3,2
16	270	6.3	235	3.9	109	2.5	3.2	3.3
17	258	5.2	245		116	2.2	2.8	3.2
18	245	6.4	260			<1.6	2.8	3.2
19	240	6.4					3.0	3.1
20	240	6.7					3.1	3.2
21	240	4.9					2.4	3.2
22	252	4.2					2.2	3.0
23	270	3.7					2.3	2.8

Time: Local.
Sweep: 1.25 Mc to 20.0 Mc in 10 minutes, automatic operation.

Form adopted June 1946

Scaled by: E.J.W., J.W.P. (Institution) L.F.N

TABLE 79 Central Radio Prapagatian Labaratary, National Bureau af Standards, Washington 25, D $_{\text{C}}$

1955

May (Month)

h'F2 Km (Characteristic) (Unit)

DATA IONOSPHERIC

		1	Î																																	-
L.F.M., J.J.S.	J.J.S.																						-			_	-	_							+	-
	N.B.	3	0	0,	260	0,	10	, O,	0	280 K	K	0.	10 *	220	0	(o) S	40 K	270 *	0.0	0	0	0	(250)A	0	0	0	0	× 0	0	10 K	Q	00			0	3
nstifution	V.P.	23	270	340	4	340	240	1 250	270	< ×	KA	2	[250] \$ 250		_	, K (280)	0 K 240	×	250	240	_	260	Я		270	260	280	0 K 250	270	250	250	250	S H	\vdash	250	29
J.W.P	W., J.W.	22	250	240	(260)	220	0 230	0 1 250	0 270	0 (290)	×	. 6		0 220	0 230	210" 250	230K 250	0 K 250	240	0 240	0 240	220	(240)	0 230	0 250	0) 7 230	300	0 K 250	0 270	3)4 240	3)4 230	, ,	(250)	\vdash	0 240	30
E.J.W., J.W.P.	by: E.J.W.,	12	220	230	220	210	240	0 K 240	230	* 220 K	× o	1)4 240	0 K 2504	1)4 230	200	_	×	1 A10	210	220	220	210	210	220	260	(220)	240	0 \$ 250		14 (300)4	0 (220)4			\vdash	6	30
Scaled by:	Calculated by:	20	220	210	220	230	280	240			240	(260)	x 240	(220)	220	K JZO	1 250	1 210	220	230	220	220	220	230)A 210	250	\dashv	5 240 ×	230	(240)	240	240	(230)4		, 0	31
Sc	S	61	340	220	220] 4 230	350	x 270	230	× 230	K 2.50	220	N 280	240	230	K 230	K 260	(230)	250	240	230	240	240	-	(240)4)A 250	250	270	230	JK 270	240	250	260	-	240	31
		81	270	360	260	[260]	260) k 330	260	× 260	1 290	240	1 280	260	360	1 270	x 290	× 260	270	270	260	260	270	270		(270)	270	320		200K	300	270	260	-	8	3.
		17	300	270	290	280	300	(099)	260	310	350	280	x 300	280	280	A 340	330	K 320 K	310	280	280	300	310	-	280	290	280	x 350		1 340K	330	280	290	-	300	3.1
		91	320	300	280	300	310	500	300	350	370	320	340	280	300	A [420]	H 400	N 380	330	330	300	300	330	310	300	290	320	4 400	330	K 400	380	300	320		320	31
Į -		15	320	310	270	320	330	9 ,	300	300	380	320	, A 380	280	-	×	K 400 H		370	340	330	H 330	320	300	3.10		350	4 390	-	K 500 K	340	330	330	-	-	31
[Time	14	330	300	300	290	320	K 520	310	360	390	390	K 420	300	350	1410	S 410	(520)	380	-	300	330	350	320	330	330	340	x (460)x	410	ж (3-	360	330	320		-	3/
2	Mean	13	380	310	350	310	340	§	320	360	K 520	340	¥	330	340	G	(470)	0	410	320	300	320	390	350	380	320	340	× 450	320	e)	360	380	330	-+	(,)	30
	75°W	12	390	360	. 380	330	380	(440)	360	390	S.	330	k G	370	370	440	8	430	440	330	310	340#	420	320	350	330	350	K			₩ 380 H	_	340		* 1	30
		=	350	350	330	320	410	500	280	370 K	4	360	9	380	350	390	510	160	S×S	360	300	340	4 450	310	320	320	310	5	-	[5°00]*	320	400	390			3.
2		2	350	290	340	310	360	Ð	280	500	5 400	410	\$ 500	330	290	450	390	370	(500)	1330]	300	310	¥(01H)	310	300	360	360	9	340	530	(430) ^F	_	310	-		30
		60	380	270	280	310	360	9	290	6	(380)	-1	[470]	310	310	350	470	340	300	280	300	(320)	K	(290)	_		280	380*	320	A	360	290	270		310	38
		80	350	280	280	280	[389]	330	(270)	5	370	300	440	300	350	330	420	450	310	280	300	270	330	280	250	280	280	350	330	A	370	300	290	,	300	30
		07	350	270	280	260	370	340	250		430 K	330	1	(270)		320 F	340		270 ×		360 "	410	3 40	260	250	260	350	9	330	A	300	270	290			27
		90	220	130	260	230	220	240	230	220		340	230		c	. ,	- 1		250 K	240	250 A	300	300 H	260		(340)	230	, P	230		_	-1	280		250	25
		0.5	250	340	250	250	250	360	280	- 1	(280) A	280	250	A	360	(250) A	(300) 4		220 K	230	230	240	230		230 H		220	280 K	240	240	240	250	270		250	29
Ê	77.1°W	04	5 (086)	(300) 5	(300)	250	(320) 5	(290)			_	(290)5	280	(290)	(280)	(280)	(290)	[290]5	(300) k	300	250	280	250	0	230	250	(240)A		(310)5	290	(290)	260	260		(280)	30
C Connection	Jug G	03	260	260	290	250	A	(280) 5	230		280	290	(29)	280	260	- 1		(280)	(300)	280	230	290	260	ಲ	240	250		(340) S		(280) 5	300	260	280		280	29
Washington	Lat 38.7°N	0.5	s (08°)	360	280	240	А	300	260	(280) x	(300) A	280		(300)	260	260	(280)5		(300) S	300	A	260	270	J	250	250	- 1	(330) ^S _K	1		[300]	270	[230]		280	٦٦
	Lat 3	Ю	(3/0) \$	280	280	. 260	(320) A	270	280	(280)	[300]	(300) &		270K	270	270	(260)5		- 1	300	250	250	270	A	270	250		[300]	- 1	- 1	(290) 5	360	280		280	29
(Characteristic)	D D	00	(280) 5	290	270	360	[280] A	270	290 ×	(300) 5	(290) K	A K	280	250 K	(240)5	280	(280)×	230 K	(290) F	300	(300)4	240	270	(290) A	260	250	(270) A	(270) S	220 K	(330) A	(280) S	260	270		280	30
(Ch	in paylasgo	Day	-	2	Ю	4	2	9	7	ω	6	01	Ξ	12	13	4	15	91	17	-8	6-	20	21	22	23	24	25	26	27	28	59	30	31		Median	Caunt

Sweep1.0 Mc ta25.0 Mc in 13.5 sec. Manual □ Autamatic B

 $TABLE \quad 8O$ Central Radia Propagation Labaratory, Natlanal Bureau of Standards, Washington 25, D.C.

Form adopted June 1946

National Bureau of Standards
Scaled by: E.J.W., J.W.P. L.F.M., J.J.S.

IONOSPHERIC DATA

955

Ma y (Month)

foF2 Mc (Unit)

(0)		ļ								İ																										
L.F.M., J.J.S	N.B., J.J.S.							-																												
110n)	į	23	2.8 F	4.0	3.5	2.9 F	1.4	3.8 %	14	2.7 F	¥	2.6 F	3.5 1	3.7	3.0	(2.8) F	4.0 *	2.5 F	2.8	4.2	4.0	3.6	3.3	4.0	(4.6) ?	3.8	4.3	4.3 K	4.7	(3.8) E	4.0	4.2	(4.3) A		3.8	30
J. W. P.	J.W.P.	22	3.2 F	4.5	3.8	4.1	4.9	3.9 K	4.4	(3.0) \$	A k	(3.3) 5	39] A	4.5	3.7	[3.7] 5 X	H.S. K	2.9 *	3.5	4.6	4.4	4.4	4.2	4.8	(H.8) S	4.3	(5.0) E	(4.8) P	4.2	4.2 A K	(4.8) S	4.5	19.6]3		4.4	30
	E.J.W	21	4.2	5.2	4.8	5.6	4.9	4.8 K	5,2	₽ S	×	4.2	4.4 K	(5.2) \$	0.9	(4.6) FIT	ľ	¥	4.7	5.7	5.2	9.0	(5.0)	5.6	5.2	5.8		(4.7) g "	5.0 F	4.8 K	рv	(5.2) E	5.0		5.1	30
E.J.W.		20	5.8	0.9	0.9	h.9	5.8 J	5.6 K	7.0	6.3 KK	5.4 K	5.0 F	4.8 4	7.0	7.2	(5.8) ^f ^k	5.9 K	5.3 K	6.2	6.3	9.9	7.2	(5.8) 5	7.0	9.9	7.0	_	5.0 KK	6.7	5.4 ×	0.9	8.9	63		6.2	31
Scaled by:_	Colculated by:	61	7.9	7.1	9.9	7.1	6.7	(5.6) S	7.1	7.4 K	5.3 K	58	4.9 *	7.7	7.5	(6.2) F "		5.5K	6.3	9.9	5.8	2.9	5.4	7.0	9-9	6.9	(6.0)	4.8 W	7.1	5.0 K	6.7	7.1	8.9		9.9	31
		81	5.7	9.9		A [8.9]	5.8	4.9 K		7.5 K	5.0 K	9.9	5.0 K	7.4	- 1	5.5" " (5.4 11	5.6	0.9	5.7	6.4	5.4	8.9	0.9	4.9	9.2 (4.6 x	7.6	4.9 H	5.4	7.0	6.3		6.0	31
		17	5.4	6.3	5.7	6.5	5.6	(3.9) S	7.4	P.8 K	4.8 K	4.9	5.0 K	8.9		5.0 K	4.9 K	5.2 "	5.3	5.7	5.6	0.9	52	4.9	5.7	6.2	9.0	4. P x	9.9	4.9 K	5.2	6.7	6.3		5.7	31
		91	5.4	5.9	6.3	4.9	5.4	4.3 K	7.0	5.7 K	4.9 K	5.9	5.0 K	1.9	- 1	14.61 x	46 K 1	5.0 K	5.2	5.6	5.6	5.9	5.2	6.0	5.8	6.3	8.0	4.7 K 1	7 4.9	×	5.0	9.9	60		5.7	31
		15	5.4 S	5.9	8.9	6.0	5.6	3.9 K	9.9	6.0 K	4.9 K	5.7	4.9 K	6.7			4.7 H		5.0	5.5	5.3 6	55 5	5.4	1.9	6.0	6.7	8 8.9	4.9 " 4	6.7 6	4.6 ×	5.4	6.7	5.6		5.6	31
DA - A		14	5.5 5	6.3 5	9 1.9	6.3 6	5.7 5	4.4 K < 3	8.9	5.8 K	4.9 × 4	5.1 5	4.8 × 4	6.3	5.6 6	4.7 1 13	4.6 " 7	4.5 4	5.0	5.6 5	5.7 5	5.7 # 3	5.3 5	60 6	6.0	6.4	6.3	(4.8) A 1	5.6 6	4.2 K	5.3	9 0.9	6.1	\dashv	5.6 5	31 3
	Meon Time	13	5.0 5	9 1.9	5.9 6) 49	5.5	4.2 G 4	6.3	5.5 K	4.6 K 4	52	4.55	6.0	5.3	9	4.6 K	9	5.0	5.9	5.8	59#	5.0	5.8	5.5	1.9	0.9	4.7 K	5.4	<4.3 g <	5.3	5.9	5.7	_	5.5 5	31
	- 1	12	5.0 5.	5.8	5.3	9 1.9	5.3 4 5	(4.8) F < 4	6.3 6	5.0 × 5	4.3 G 1	5.3 H	4.2 6 K L	54 6	5.2 5	47 142	4.2 6 4	47 4.3	4.8 5	5.5 5	5.9 5	5.6 # 5	4.9 5	5.9 5	5.4 5	9 1.9	5.6 6	A K	5.5 5	\square	5.2 H 5.	5.7 5	5.7 5	+	5.3	30
	75°W	Н	5.0 5.	5.5 5.	5.4 5	9 0.9	5.0 5	H.3 (H	63	5.1 %	4.2 8 44	5.2 5	426 < 4	5.1 5	5.2 5	H.8 H	4.6 44	4.7 4	U)	5.2 5	5.8 5	5.6 5	7 8.4	6.1	909	5.8	5.8	4.2 G	6.0 " 5	[H.6]# 4	5.4 # 5	5.8	5.4 5	+	5.2 5	31
	1	01	4.9 5	60 5	5.2 5.	5.6 6	5.1 5	4 9 h	9 8.9	4.7 K 5	4.6 M < 4	4.7 5	4.6 < 4	4.9 5	5.3 5	4.5 4	h 9.h	5.0 4	4.6 4 < 4.3	[5.2] ⁵ 5	6.0 5	(5.6)# 5	H + (1.4)	5.7 6	6.0	5.5 5	5.2 5	4.2% < 4	5.9 6	4.6 [4	5.2F 5	6.0] 6	5.6		5.2 5	31
_		-	#	9 49	4.9 5	5.2 S	5.0 5	5	5.9 6	७ ¥	(4.8) S 4	4.5 4	[H.H] A 4	4.9 4	4.8 5	(4.8) F H	4.4	4.9 5		5.0 # 5.0	5.8	5.6 (5		(5:7)# 5	9.09	5.5 5	5.8 5	4.4× < +	5.7F 3		7	6.7 [6	6.0 5	-+	5.0 5	30 3
			S F 4.7	\dashv	-		on.	7 F < 4.0	_	7 K < 3.9	×	-	4.3 [4.	4.8 4		4.5 F (4	4.6 4	1	İ	- 1	5.7 5	5.8 5	4.6 [4	5.1 (5	5.9 6	5.6			5.4 # 5		4.7 F 5		5.5 6	+	4.9 5	30 3
		7 08	2 4.5	5 6.2	9 5.4	5.2 5.4	[H:H]	4.9	2 5.0) F < 3.7	0 K 4.4	H.5 4.7		4.4	4.0 4	4.0	-	4.2 4	4.8 K			4.5 5	4.5 H	5.4 5		5.2 5	ŧ	৬×			(4.5)" 4.	\dashv	-	4	,	30 3
		5 07	Y	4 5.5	3 4.9	\dashv	h μ.(5 4.1	1 5.2	5 K (39)		-	1.4.1		· b	(4.2)	1.4		ž×		8.4 4.8		x	-	4.8 5.5		2# 4.7	6 × 3.6	8.4		_	4.6 5.4	4.5 5.3	-	+	
		5 06	5 3.8		4.3	£ 4.3	3.4	Ϋ́	3 3.7	L.S	5 K 3.8	5 3.8	u_	-	7 < 3.4	0.4.0	9.6		9 K 4.1	4:4	5 4.6	9 4.0	7 4.4	14.7	Ξ.	is I	1) 5 4.2	8 K < 31	1.4.1	3	3 4.2	9	3 4	+	_	31
	W	0	2.5) F 28	2.8	3 2.8	1 F 2.7	05 2.4	3.3	(2.2) * (2.5)	2 × 2.5		4	2.8	2 F 2.7	a. II.	2) F 2.6	100	1.9 K 2.9	1 F 3.0	(2.5) 3.5	(2.6)} 2.9	9.2	-	3.7	() E (3.2)	9 (3.3)	S 2.8	9 5		(2.5) A 3.3	3,		4		30
(Month)	77.1°W	0 4)F 2.1	F (2.1)	3.2	5 2.3	J A 1.9	2.0		0- CL	X.0	2.3	4	2.1		a_0	¥	(1.6)	ν×	UL.	4	\dashv	1 2.9	0)		1) [(2.4)		S		K W	ьц.		3.0	-	8	29
ď	٠, ل	03) [(2.4)	7 7.3	.5 2,3	\dashv) A [2.0]	2.1		P (2.5)	5 K 2.1		1 F 2.4	F. 2.2	F 2.5	(2.6)	-	C.	(1.9)	F 23)4 2.8) F 2.9	3.1	J	- 1	2 [(2.5)	4	υ×		05 (34)	3	7	47 (3.1	-	8	29
(Unit) Washinaton.	Lot 38.7°N	02	(2.2)	F 2.5	7	2.8	(2.2)	2.2	3.0) F K (3.0)	12 2.3		F 2.4	7.K 2.2)F 2.5	2.8	-	K 2.9	× × 0	-		(3.0)	3.1		5 F 3.3	3.2]^ (3.2)	SX) 5 " (2.6)		11 1	ST	3	-	~	29
	Lo	10	(2.1)	J. A.6	2.8	3,0) J (2.1)			N LL	(2.4) A	ж Э.З	1		L		_	7 K 3.2	x 2.1	2.4	, F 3.8	3.4	4	3.1	3.5	\dashv	5 (3.47)) F) § (3.0)		u.v.	400	3	-	3	30
(Characteristic)		00 /	(2.3)	2.5	3.3	3.3	(2.5)	3.3	3.2	(3.5)	9 2.4	4	(2.7)F	3.0	3.2	3.	5 2.6	3.5	2.2	2.4	3.7	3.8	3.4	3.1	3.6	4.3	3.5	K (3.8)	(3.9) s	3.8	(9.3)	(3.3)	4.6		7	30 Jun
			_	(4)	1.7	V .	u/	9	-	w	U/	U	_	(V)	1171	V 1	11/1	W	1-1	W)	U	U		LVII	PJI	V 1	LI J	WI	171	W.	071	01		_	=	7

Form adopted June 1946

E. J. W., J.W.P. L.F.M., J.J.S.

National Bureau of Standards

 $TABLE\ 81$ Central Radio Prapagation Labaratory, National Bureau of Standards, Washington 25, D C.

IONOSPHERIC DATA

1955

M ay (Month)

Mc (Unit)

(Characteristic) foF2

S.																																				
F.M.	.B., J.J.S																																			
: إنـ ، إنه	a:	2330	2.7	3.5	3.4	[2.7] A	35	K 3.4	35	K 26F		(26)	3.3K	3,55	3,0	FK (2.7) }	3.6K	2.35	2.4	4.0	4.0	3.5	3,1		(4 S) S	3.7	4.25	K (40) 5	3.9 F	K (3.3) F	(3.6) {	3.9 F	4.3		32	3.0
-	×	2230	3.15	0.4	3.6	33	4.5	K 3.9	4.2	K 2.8F		2.8 F	3.7 K	4.3	3.3	K (2.7) F	4.3K	2.7K	32	4.3	4.3	4.0	3.7	4.2	(4.8)	3.9	S(87)	(4.5)}	(4.0) F	K(4.0) F	(4.1)3	44	4.3		4.0	30
E. ∪	E. J. W.	2130	4.0	4.6	4.2	4.6F	5.83	94 x	4.4	K(35)5		. 35F	404	5.2	94	K[3.8] F	48K	32K	3.7	5,2	4.9	5.0	4.5	5.2	4.9	5.0	(6.2)7	4.6K	40F	K 45	5.03	4.75	+3		4.6	30
by:	lated by	2030	5.0	2,6	5.4	6.3	(6.2)3	K(6 0) 3	5:7	×	ļ	4.6F	46K	0.9	8.9	K (4.8) P	(5.9)E	45K	5.6	6.2	0.9	(6.9)5	5.63	9.9	5.8	4.9	4.4	5.0 K	19.9	K 5.2	5.8	0.9	5.9	,	5,8	31
Scaled by	Calculated	1930	6.2	68	6.4	8.9	6.2	K 5,83	7.1	K 7.1		5.3	5.0K	7.4	7.4	K (6.4) }	(6.0) Z	5,8K	6.4	8.9	64	7.0	5,7	7.0	89	7.1	8.5	5.0 K	89	K 5.4	6.2	8.9	8.9		6.4	31
		1830	5.8	72	65	7.0	5:8	K 5.2	89	K 8.0	5.1K		4.9K	72	7.2	K 5.8	5.2K	55K	58	6.4	5.6	6.6	5,3	68	6.2	6.4	9:8	4.6K	7.6	K 49	5.8	1.7	R(4.9)	,	62	31
		1730	[5.5]	6.5	8'5	1.9	5.6	X 45	9.9	41t	5.0k	99	4.9K	7.0	9.9	K 54	5.0K	53 K	5.6	5.8	56	6.2	5.3	9.9	5.8	6.1	44	4.7K	7.0	K 5.0	5,3	67	65	Ç	5.8	3/
		1630	5.4	J	2,8	9.9	5,5	K 4.3	7.3	K 6.0	4.8 K	62	5.0 K	6.6	8.9	K 4.6F	4.6K	5.2 K	5.4	5.7	5.6	6,0	5.3	6.3	5.7	62	8.9	46K	64	K4.9	5.2	6.7	6.3		5.7	3
		1530	5,3	[5.3]c	6.7	0.9	5.6	K 4:2	6.7	K 5,8	4.8K	5,7	5.0k	6.6	63	K 46F	4.6 K	4.8K	5.2	5.8	5.6	5.7	52	60	6.0	6.5	7.4	4.6K	6.2	K ++7	5.23	6.3	5.7		5.7	31
	me	1430	5.4	6.1	8:9	(6.1) 3	5,5	K 4.3	8.9	K GO	48K	5.5	49K	99	6.2	8 H X	4.8K	4.7	5.0	5.7	5.5	5.7	5.4	0.9	1.9	9.9	6.2	48K	5.7	1917	5.2F	0.9	0.9		5.7	31
)	Mean Time	1330	5.0	63	6,5	4.9	5.6	K<4.16	6.4	K 5,8	47K	5.0	4.6K	63	5.2	1914>	(4:6)R	C4.26	4.9	56	28	5.8 H	52	0.9	5.8	0.9	6.1	47K	5.8	4.26	5.1	6.2	5.8	ì	5.6	3
j	75°W	1230	5.0 H	6.1	5.6	6.3	5.4	H-7	6.3	K 5.2	45K	5.1	L426	56	5.4	84	1.4	(4.36	4.9	5.8	5.6	5,8#	5.0	0.9	5.8	6.3	5.7	Аĸ	56	K[4.7]A	5.3	0.9	(5.T)A	1	5.5	30
)	7	1130	64	56	5.3	((0.1)5	5,2	94	0.9	K 5.0	4.4K	(5:0)	C#28	5.0	5.3	4.9	C4.2G	C446	4.6	55	8.5	55	49	0.0	5.6	5.9	5.9	AK	5.9F	K[4.6]A	50 F	55	5,6		5.5	30
)		1030	49	6.01	5.3	5.5	5.0	C4.16	6.7	K 5.0 1	<4.3g	4.8	C426	5.0	4.9	7:4	<4.26	4.7	4.5	1.5	5.9	5.4	4.8	6.3	8'5	5.8	[5,3]A	C4.2 G	5.9	(+2)A	(5.3)"	0	5.2	(5.0	30
		0930	47 F	6.0	5.3	5.7	5,3	5 94 >	6.6	<400 l	< 4.2G	1+1		49	5.0	4.7 F	54.16	5.0	4.9 K	5.4	5.7	(5.8)	4.7	2,8	5.9	5:4	H (5:5)	C+26	5.6F	A	5.1F	U	5.4	i	5.1	29
		0830	454	6.7	5.8	53	4.8	(4.5)5	5.6		(4.6)5 X	4.5F	45	4.9	475	(4.7) F	4.3	4.5	5.3 K	5,6	5,7	H(0.9)	H.5)A	5.8 H	6.0	5.6	5.6	4.9K	5.6	A	48F	6.3	5.6		5.1	30
		0730	4.5 F	0.0	5.0	5.3	4:4	(4.2)5	5.0	35FK(3.761	4.3K	8:4	4.3	4.7	4:4	4.3	1:4	42	4.8 A	5.3 H	5.4	(4.9)A	4.9	5,3	6.3	5.2	5.4	3.7K	5.0 H	А	(4,3)F	5.6	[5:4]A		4.8	30
		0630	39	50	4.9	94	3.8	39	4.5	K35F	4.0 K	1:4	4.2	43 Y	3.6	3.9	4.0	4.0	4.4K	4.5	45	[4:3] A	4:7	5.2	44	(4:4)F	44	3.5K	45	5 0H>	(++) F	5.0	8.4		44	3
		0530	3.3	3.8	3.7	3.7	32	31	3.1	L	3.2.K	32	33F	3.3	3.1	3.5	(3.1JA)	3.0	3.7K	4.2	4:3	3.8	5(04)	U	44	4.2	3.7F	3.0K	3.9		(3.5) F	1:1	3.8	,	3.5	30
	Wo1.7		(2.1)F	2.1	2.3	22	2.1	20	1.83	4(20) \$ K32	(22]A	2.3F	2.2F	22	2.1	24	2.3	1.8	ジス	(23)E	28	2.6	2.8	U	3.0	26F	[2.9]A	BK	22	3.05	(28)F	(3.1) [(2g)A		2.3	29
D C	. Lang 77.1°W	0330	(22)F	(2.1) 5	22	77	22A	2.1	7	K 2.3F	2.0 K	24	23F	2.2	23	2.4	(2 3)A	(1.95	2.0 K	21F	28	285	2.8	C	28	2.6F	(3.2)5	Τ Λχ	(2.0)E	(3.2)	[2 GA	(2.9) J	3.15		23	29
	Lot 38.7°N		(2.3) F	2.4 F	2.5	2.7	22	22	28	K (2.9) }	.22 F	2.6F	(2.3)F	3(22)	4.2	24	2.3	2.7	2.1 K (1.9) J	2.2 F	36	28	3.1	C	3.1	28 F	(3.3) J	K(2.3) F	K24	3.8 F	3(1.2)	(3.0) 5	3.3		व	30
Washington,	Lat 38	0130	(2.2)F	2.5F	2.7	3.0	7.7	2.43	3.0	(2.7) }	2 4 K	2.9 F	24F	25	(26)F	2.8F	24	3.0	13. TX	22F	(3.7) J	3.2 F	3,1	U	3.4	3,3	[3.4]A	T SX	K(2.7) F	3.65	(3.0) }	(3.1)	3.5F		25.00	29
13110		0030	(2.2)F	2.6 F	3.0	32	2.4	3.0	3.1	3.4	K(2.4)3	A	2.4 F	12 8 A	(3.2) [3.0 F	2.1	3.4 ×	22 F	2.4	3.9 F	3.7	3.2	31	3.5	3.9	3.5	ſŢ	K(3.6) F 1	3.7 F	(29)F	(3.3) 5	3.8 F	-	ë,	57
Observed at		Day	-	2	3	4	5	9	7	80	6	01	Ξ	12	<u>~</u>	41	15	91	17	18	61	20	21	22	23	24	25		27	28	29	30	3.1		Median	Caunt

Sweep.LO Mc ta.25.0 Mc in 135 sec.

×

AX

220K

210

200 220 (230)#

(200)

1704

190

190 H

1704 [190]C (180)A

T

T

Œ

210 220

200

180 4

190

1804

180 #

Œ

K

K

K

210K

210x

220k

210K

240K

AK

200 G

700 K

200K

230K

220

Q

190

22 23 24 25 56 27 28 29 30 2

200

(200)A

210 H

210

1901 2000

200H (230)

210

2101

(190) A

(012)

250

210

220

220

(230) A

TABLE~82 Central Radia Propagatian Labaratary, National Bureau of Standards, Washington 25, D. C.

May (Month)

KA (Unit)

(Characteristic) Observed at

N

Day

4

Ω 9 _

8 D 0 = N 2 4 5 9 _ 8 6 20

Washington, D. C.

National Bureau of Standards EJW.J.W.P. DATA IONOSPHERIC

Form adopted June 1946

L.F.M., J.J.S.

Scaled by:

N.B., J.J.S. 23 E.J.W., J.W.P. 22 2 Calculated by: 20 230 <u>6</u> × × X X X X × 270x AK 220k 220 240 230K 220 200 M 240x 2405 230 2204 220 020) 260 240 220 230 (220) 200 20 K 230K 2004 2301 220H 200 220 210 210 190 200 200 200 220 200 A 200 H 210x 240% [210]A 210 K 190" 2007 210 (250)4 210 K 200 200 (210)5 200 220 20 210 210 210 210 2007 9 210 K 220K 210K 190" 200 210 H 2007 2404 220 240 210 200k 220# 2001 200" 220H (200) [220] 210 210 210 200 2 1804 210 H 200H (200)A 200K 210# 190# 200 H (200)A 2004 220# 1804 (220) 1904 190 220 260 200% 210 210 200 240 4 Time 200H 190K 190K 180 H (200)A T 200 H 200 180 H ¥ H 200% 200K 4(061) 1904 230 1000 200 (200)A 200 210 200 200 180 200 2 180 H 210K [200]A 220" 230K 180 H 200 A (220) (200)A 190 200 220" 200H 190 H 200" [200] 210 180 190 230 75°W 2 190K 1904 1804 1804 220 1904 200 4 190 H 1804 180# 210 170 (200) 230 210 180 200 2007 180 190 200 190 190K (200) A 200 H 2009 190 H 200 H 180 H (010) H (0P1) (220) 210H 1804 200 190 210 200 A 200 190 200 200 200K 1904 1804 200 H 1904 180 H 210 200 2002 1904 200 200 180 190 200 K A. 200# 2004 2100 210 190 H 2007 2103 200 200 210 200 200 190 F 210 200 200 200 K 08 220 (220)A 220 200% (220) 210 210 210 # 200 220 210 200 200 210 270 07 Œ (200) A 230K 220 K Q 220 230 (230) 230 230 220 g g d Ø 0.5 , Lang 77.1°W 04 03 Lot 38.7°N 02 0 00

Sweep 10 Mc 10 25.0 Mc in 13.5 sec.

230

220

2.10

210

200 200

200

200

200

000

200

210

220

Median Count

00

210#

23

12

29

30

30

26

200

m

30

27

24

Manual [] Automatic DD

Form odopted June 1946

L.F.M., J.J.S.

E.J.W., J.W.P.

Scaled by: _

National Bureau of Standards

 $TABLE\ 83$ Central Radia Propagatian Labaratary, National Bureau of Standards, Washington 25, D.C.

IONOSPHERIC DATA

1955

M dy (Month)

Mc (Unit)

Washington, D.C.

Observed at

N.B., J.J.S. 23 E.J.W., J.W.P. 22 2 Calculated by: 20 6 × × (3.2) 1 3.3 × (3.4) [3.4. 3.2 (33) H 0/ 3.7 K 3.7 4.0 3 00 7.7 3.8) 30 3.7 3.7 3.7 3.7 3.9 Ħ H H H 36 4.0 × 4.7. 4.2.4 4.0 # (4.1) A 4.0 H (4.0) x 3.9 H 4.2" 4.0 # (H.2) S 4.2 4.0 9.4 4.0 1.4 9.4 4.0 7 4.7 7 ---<u>_</u> 7 1.1 01 1. 4.1 1.4 A 7 30 4.3 H 4.2 4.0 H 4.7# 4.3 # (H.O) 17 + 4.7 4.7 4.4 2 4.1 1.4 4.1 П 4.3 30 4.2 × 4.3 # 1.7 4.3 # 424 7.7 ¥ - ' 7 7 4.7 # サンド 43 4 4.0 1 F.2 X (4.5) H 4 Git 30 4.4 4.3 C. 4.7 4.3 4.5 4:59 4:3 4 43 5.4 5 (4.1) 4.7 4.7 1 V Mean Time (4.5) H 4.3 4.2 4.7 " 4.3 # 42.4 4.7 4.4 47 4.5 # 1-4.3 4.7 4.3 4:4 4.5 13 43 44 4.6 H 4.4 (vo 4.4 4.4 4.3 4.3 4.3 # 14.4]A T.Z.Z 4.5" 4.3 H 4.5 4 4.4 15°W (4.2) 4.2 4.7.4 4.4 4.4 43 4.3 4.7 4.5 4.5 (4.5) 4.3 7 7 A 78 2 4.3 4.4 4.4 4.3 4.1 4 4.3 H A 7.4 14.2) A H.4 H 4.3 # 4.4 4.7 * 4.7 4.7 4.5 7.7 4.3 " 4.5 1.1 4.4 4.3 4.4 4. 4.3 4.3 4.3 4.4 4.4 4,4 4.7 1.4 7 4 4.3 3 = 4.3 # 4.7 , (4.7) 4.3 # 4.2 4.27 43 4 4.3 4.4 (43) 4.4 (H:H) 4.4 4:4 4.7 4.3 3-4.3 4.5 1.4 4.3 7 4.3 0 4.3 7.4 4.1 4.3 4.7 4.1# 4.3 # 404 (4.x) # 4.3 # 4.1 x (4.2)A 4.24 (H.O) A (H.O) ? H.0]A 4.0 # (4.4)^H (4.0) 4.2 × 4.7 (H.1) 4.7 4.0 4.2 43 4.2 30 4.0 4.3 4.3 4.0 4.0 60 H 4.04 4.1 4 4.014 3.9 x [H.0] A 4.0 7 4.0 H.O.H 3.7 / 4.0 # 4.2 4.1 39 % 4.0 (3.9) 4.1 4.7 38 0.4 90 300 П A T (3.5) (36) (3.6) (3.8) 3.7 4.7 3.6 (3.5) 3.9 3.7 25 36 (sq 33 (3.8) 3.6 3.8 3,00 3.7 3 07 H H 3.1 (3.3) 3.4) 3,2 (3.6) 90 37 Q 3.4 3 q 9 9 9 9 9 _ 05 , Lang 77.1°W 0 4 03 Lat 38.7°N 02 0 00 Median Caunt Day 4 7 2 α S 9 В σ = 4 ~ 8 20 2

2

2

15 91 22 23

<u></u>

25 56 27 28 53 30 3

24

Sweep 1.0 Mc ta 25.0 Mc in 135 sec. Manual

Autamatic

Manual DATA IONOSPHERIC

, 1955

May (Month)

Washington, D. C. K (Unit)

bserved at ы Ъ

ģ

~ σ

М

сЛ

N ю

LFM.JJS National Bureau of Standards Scaled by: E.J.W., J.W.P.

Form adopted June 1946

N.B., J.J.S. Calculated by: E.J.W., J.W.P.

ζ.

<u>~</u> Sweep.1.0 Mc ta 25.0 Mc in 13.5 sec. Manual D Autamatic 10

dian unt

_

 Form adapted June 1946

National Bureau of Standards
E.J.W., J. W. Putton L. F.M., J.J.S.

Scaled by: _

 $TABLE\ 85$ Central Radia Propagatian Labaratary, National Bureau of Standards, Washington 25, D C.

955 el .

May (Month)

Mc

(Characteristic)

Observed at foE

Washington, D. C.

DATA IONOSPHERIC N.B., J.J.S. 23 E.J.W., J.W.P. 22 2 Calculated by: 20 6 S X × X X × × × X X X N X AK 2. K 2.2K 2-1 # 1.9 x 19 H (14)5 A X 2,0 7, ej. 2.0 23 2.2 2.2 2.2 81. <u>ه</u> Æ i 2,1 A Æ × (25)A (26)5 25# 2.5% 2.7# 2.9# [2.6]A (2.4) 2.5 26 25 0,6 2.7 2.7 K Æ Œ A(P.2) (3.0)A 74 2. S. 20 Cl N(87) 2.8 x 3.0 x 2.9 3.0 5.0 6.6 5,5 2.9 T 30 K 3.0 K 3,0 H 20 A(72) 3.0 k (3.2)A 30 3.0 3, 3.0 m V 20 X 180 34 H [3.2] A .33 4 3,2 33 3,2 3,2 R T (3.1) A 3,2 # 3.2 33 3,3 33 3.5 10 A 34 33 K T A 32 # A (3.1) P (3.2) W°67 13 2 A æ K æ \triangleleft A K A A 3.3 # (3.1) A (3.1) A A 3 K = K \overline{x} A T K A Æ K A(8 2) J. X A (3.2)A 13,0) (3.4)Z (3,1)P (3.0) H 3.0 3. 3.0 3.0 IJ R ~ K K U 0 V ¥ V A 2.9 K (3.D) A 2.9 30 50 2.9 5.0 80 3.0 8 27 V 3.1 ⋖ A 2.7 H A(1.2) [28]A H 8'6 A X [2.8]A A 2.9 H 12.9) (2.9)A (82) 2,6 F 3.6 2.6 X 0 2.7 20 200 27 2.7 4 38 A K K 08 T K W 25# 2.4# 2.4 # 2.3 A A (25) 24 23 2.4 2.4 2 25 2.4 50 25 4 2,5 07 1.8)" 1.9.1 ~ ∓x (2.0) H (2.0)A AK (1.9) 00: 6.1 13 6.1 17 A 90 K K A K K K K S A A V 05 Lot 38.7°N , Long 77.1°W 0 4 03 02 0 00 Median Day Count 17 М 4 _ 6 8 2 56 N S 9 00 0 = 2 5 4 5 9 6 20 22 23 24 25 27 28 53 30 ы

Sweep.LO Mc to 25.0 Mc in 135 sec.

Manual

Autamatic

Manual

TABLE 86
Central Radio Propagation Laboratary, National Bureau of Standards, Washington 25, D.C.

ONOSPHERIC

955

Mo1.75 Lang 77.1°W

Washington, D. C.

(Characteristic)

bserved at S E

d y

2

ω σ 0 2

9

4

М

N

Mean Time

M°57

DATA

J.J.S.

L.F.M. B

J.W.P. EJW.J.W.P.

E. J. W.,

National Bureau of Standards

J.J.S.

form adopted June 1946

37,00 41.7 -m <1.75 <1.65 63120 36/110 22 41.6 30 ×165 5.27,10 3.3120 011 27 100 41.6 9 2 2.0 110 2.9 110 001 6 5.4 110 Calculated by: 100 20 70 7 011 74 47 100 347 H <u>6</u> 3 <1.65 3.5 120 1011 5 8 40 120 44130 26130 120 b J Y 100 120 3.7 3 35 120 00/ 0// S b 3.2 9 ~ 4.6 100 110 50 110 45 5 84 001 44 110 42 110 34 J 48 100 42 100 b 4 300 120 31 89001 7.07,10 b 001 100 P P 001 00/ Y Ġ 3 6 5 3 100 47 43×110 100 44 2 b 001 100 37 110 47 31 = 1001 33/10 4.5 100 001,4 50 100 J 76 30 9 100/0 3.2 110 11.2 100 37/100 3.87,00 0010A 33 100 7.7 100 0// 007 4.6 -60 44 100 52 / OO 4.4 90 2 J 40 H 30 0.7 40% 20120 130 120 501,10 19130 4.0 /10 3.6 / 00 18/00 29120 6 00/ 29,20 34 110 72110 48 100 34 90 31 ×165 S 36,00 30,00 27,20 301,10 31 110 00 77 917 <165 0.5 K165 4165 165 34/110 165 5 K165 S 27,20 24 100 31 110 ×1.65 6165 5 41.6 30 4 165 4.2,110 45,100 2.8 100 25120 23/00 25,00 < 1.65 5 28,00 45/00 <10E E <155 S 28,00 27,10 41.6 30 03 <1.65 <1.65 <1.65 ×165 ×155 5 ×165 5.7 100 5.0 100 29,20 00/64 4.0,00 34,00 32,00 <1.65 5 <1.65 S <1.65 <1.65 S 2.4/10 <1.55 S <1.6 30 02 58120 1<1.65 2.9 120 001 28/10 41.7 3 <1.65 <1.65 5 33,30 <17 <1.65 00 165 165

Sweep 1.0 Mc to 25.0 Mc in 13.5 sec.

dian

unt

Monual

Automatic

Monual

Ś ل. ال. ل

L.F.M.,

National Bureau of Standards

Scaled by: E.J.W., J. W. Instit

Form adopted June 1946

TABLE 87 Central Radia Propagatian Laboratory, National Bureau of Standards, Washington 25, D.C.

DATA IONOSPHERIC

955

ΜQ

M(500)F2

Washington, D. C.

Observed of

Day

2

4 S 9 ~ 8 σ 0 = 12

5

4 5 9 17 89 <u>o</u> 20

S J. J. Β, z 20K A 2.1K K (1.9) 5 22k 2.0K (2.1)5 2.0 2 7 29 2.1 (2.0) 5 N E.J.W., J.W.P. (2.1) 22K NX 2.0x K (19) 8 2,2 26 2,0 (2,0,2) 43 23 2.3 13. X 2.2x (2.3)F 22 K 2.4. 大 2.1x 2.1x 22x 2.2 K (22) 31 23 7.4 22 2,3 23 20 7 23 23 23 3 2,3 2,2 33 6.7 23 (2-1)x 2.2K K(2.2) 5 2.3× 2.1K 2.2 K 7 5,3 2.2 36 2,3 2,1 3 N'X EX. 2.0 K ひ ろ ス 2.3K S. X 2.2 22 23 2,0 2.0 30 1 20 3 2.1 K 2.0 K 1.9 x 1.9 K el × 2,0 K 0 2.0 2. ż 4 2.1 3 1.9 K A 1.9 x 2-X 30 1-9 x 1.9 × <u>--</u> 2.0 2.2 i 2.0 is 3 7.7 A 2,0x 2.0x 1.8 K 1.7 K P 2.2k 2. X 30 40 4 3 ex 60 20 8 2.0 63 S ex ex 9 3 68 5. 2 -9-X 2.0 K 7.0× (8.E) GK 2.0 31 2.2 2.0 2,0 2 2.0 5 87 ex ex 4 1.7 K P 2.0x 1.8 x 1.8 X P X 2.0 2.0 20 2.0 0.5 30 7.7 5 3 -100 6: 7:7 b 10 b 9 x 2.1# A 1.8 K 20.0 (1.8)F 20 K × 2.0 20 2,0 5. 30 2.0 5. 8 33 7 4 75°W 6. 00 200 1.9 0 4 6-1 8 Q X P R A P 3.00 3,0 30 20 9.6 el -6 9 67 4 2.1 = P X H(8)1 -7 2.2 2.0 2.0 i 25 ė 29 7 24 3 -U b 0 (2.0)H 2.2 (2.1) 2,3 3 64 < b 2.1x 2.0F P 20. S 92F 22 2,3 23 7.5 3 27 X 2,3 7 7 5: 2,tx (2.2) 223 G A 2(61) 19 2.2 30 7 4,6 4 23H 2,4 H P X 2,1# 33 <u>m</u> 2.4 64 b S, S 23.2x 25K 2.3# (23)5 2.4 F 2.4 (2.5) 23 30 23 2.0 40 63 2.2 23 32 2. 0 (20)F (23)5 (2.0)g (2.2)F 27 . Lang 77.1°W (2.2) 7 30 2,0 2.0 7.7 4.4 7 S Щ 142.05K 1.9 F 20K (2.2) E Q.05 22F 23F (2.1) 5 (2.0) E (1.9)5 (2.1) E 26 (20) K(2,1) F 2.0F 20.2 20.0 2.4 20 20 22 ż 13 d 23 03 U T (2.2)A 2.0F 2.0K 38.7°N リンド 4 22F 7 C 17 26 9.F 0.0 20 23 2.0 4 N 6 -4 щ 02 K A 2.1F 2, IF 13(1.2) TX X (2.1) 6 e4 17 22 F 2.7× (1.9)5 2.0F (2.0)A (2.0) 2.1F 2.17 2.00 88 0.4 4 2.0 22 20 5 3 6 4 T ō (22)FK 2---0--⊼ 20.X 22K 75.6 2. K 2.2K (2.0)5 J A (1.9) } X (2.1)F (1.9)E (2.0) e.j 2.0 29 2.0 2.0 2.0 2.0 2,0 Ą 5 20 7. 4 2 00 Median

Sweep LQ Mc ta 25.0 Mc in 13.5 sec.

Saunt

56

25

27

28

2

23 24

22

59

30

23

 $TABLE\ 88$ Central Radio Propagation Laborotory, Notional Bureau of Standards, Washington 25, D.C.

Form adopted June 1946

Scoled by: E.J.W., J.W.P. L.F.M., J.J.S.

National Bureau of Standards

IONOSPHERIC DATA

<u>55</u>61, _

May (Month)

served of Washington, D. C. M3000)F2

1	i	1	1	ı	1	ı	1	ı	i	1	Į.	1	ı	1	1		9	ı	ı			8													_
J.J.S.																																			
P. N.B.	23	32 F	3.1	3.1	3.1 F	3.1	3.0 4	2.9	3.1	A K	3.3 F	31 8	33	3.0	(2.9) E	3.1 ×	3.2 F	3.2	3.1	3,1	3.1	3.1	3:1-	(3.1) P	3.1	2.8	3.0 ×		(3.1) 5	3.0	3.0	Я		3.1	29
J.W.F	22	3.2 F	3.2	3.2	3.2	3.1	31 K	3.0	(3,1) A	ЯК	(3.3) &	A K	3.2	3.3	T S	3.0 A	3.2 K	3.3	32	3.3	3.3	3.3	3.2	(3.1) 8	3.2	(2.8) \$	(2.9) 8	3.0	3.1 4	ب م	3.0	S		3.2	26
E. J.W	21	3.3	3.2	32	3.5	32	3.1 ×	3.1	J	× H	3.3	32 K	(3.3) P	3.4	₩ ₩	32 x	3.3 ×	3.5	3.3	34	3.5	(3.4) 5	3.4	3.3	3.3	(2.9) 5	(3.0) 8	3.3 F	3.0 K	2	(3.4) 5	3.1		3.3	27
Catculated by:	20	3.3	3.4	33	3.1	(2.8) 5	3.1 *	3.3	3.1 K	3.2 K	(3.3) 3	3.1 K	3.5	3.3	(3.4) £	3.7.	3.5 K	33	3.2	3.4	3.3	(33) 5	3.4	3.2	3.3	2.9	32 4	3.1	32 K	32	3.3	3.2		(S)	31
Cateul	61	3.3	3.3	34	3.2	31	(3.1) 5	3.3	3.3 #	3.2 X	3.4	3.3 *	33	3.4	(3.2) 5	3.2 K	33 K	32	3.1	33	3.2	33	3.3	3.2	3.2	(2.8) 5	3.1	3.1	3.1 K	3.2	34	31		32	31
	18	32	32	33	Н	33	7 P.C	3.1	31 #	32 K	33	9.4 K	32	3.0	3.3 K	3.2. K	33 K	3.2	3.2	3.3	3.2	3.4	3.3	33	3.2	3.0	3.1 ×	3.0	3.1 #	3.1	3.1	33		3.2	30
	-21	3.2	3.2	3.2	3.2	3.1	(22) \$	3.3	7.9 ×	x 9 K	37	32 K	3.1	3.1	3.0 A	3.1 ×	3.1 K	3.1	3.2	3.3	3.1	- m	3.2	3.3	3,2	3.1	3.1 ×	2.9	3.0 ×	3.0	3.2	32		3.1	31
	91	3.2	3.2	3.3	14	3.1	2.6 11	3.1	2.9 ×	2.9 K	3.1	32 K	3.1	3.0	Я	2.9 #	2.9 K	3.1	3.0	3.2	3.2	3.1	3 /	32	32	29	29 K	3.0	2.9 ×	2.9	3.1	31		- in	30
	15	3.1	3.2	ы Э	3.0	3.1	J 5	3.1	32 K	3.0 K	3.1	3.0 K	32	3.7	H K	2.9 %	2.8 K	3.0	3.0	3.1	31	3.2	32	3.1	3.1	3.8	2.9 K	2.9	2.6 K	3.1	3.0	3.1		3.1	30
ше	4	3.1	32	3.2	3.3	3.2	2.5 K	3.2	3.0 K	3.0 K	2.9	2.9 *	3.2	3.0	2.9 K	2.9 X	2.5	3.0	3.2	3.3	3.2 #	3.1	3.7	3.1	3.0	3.0	(2.7) A	2.8	G.	3.0	3.1	3.2		3.0	31
Меал Тіте	<u></u>	3.0	3.2	3,0	3.2	32	G K	3.1	30 K	2.6 ×	3.2	J 2	3.1	3.1	9	2.7 K	G	2.8	3.2	3.3	3.1 #	3.0	3.0	3.0	3.1	31	2,7 K	3.2	× S	3.0	2.9 .	3.2		3.0	30.
75°W	12	3.0	3.0	3.0	3.0	3.0 "	(2.7) #	2.9	3.0 X	G K	31 "	G M	3.0	2.9	2.8	b	2.9	2.8	3.2	32	3.1 %	2.9	3.1	3.1	3.1	3.1	A K	2.7	2.7 K	3.0 H	2.6	3.1		3.0	30
7	=	3.1	3.1	3.2	3.1	2.9	2.6	3.3	30 K	G K	3.1	х У	3.0	3.1	3.0	2.6	2.8	5	3.1	33	32	2.8	3.1	3.2	3.2	3.4	¥ 9	Э.) н	× H	3.3 4	29	3.0		3.	30
	0	3.1	3.4	3.1	3.3	3.1	G	3.3	2.5 K	2.9 X	2.9	2.6	3.7	3.5	2.8	3.0	3.0	2.6 x	O)	3.3	(3.2) #	(2.7) A	3.3	60	~ ~	3.1	× 0	3,1	2.5	2.8 F	0	3.3		3.	29
	60	3.0 #	3.3	3.5	32	3.0	G	3.3	¥	(2.8) S	3.1 H	Н	3.4	3.4	(3.1)	2.7	3.2	3.4 K	3.3 #	3.3	32	В	(3.0) #	33	3.4	3.6	3.1 K	3.2 F	A	3.1	3.3	3.5		32	38
	0.8	3.1 F	3.3.	3.4	3.4	S	3.2 /	3.3	G K	3.0 //	3.4	2.8	3.4	3.1	33 F	2.8	3.8	3.3 K	3.3 #	31	3.5	33	3.4	3.4	3.4	34		3.) #	H	3.0 F	3,3	3.4		3.3	68
	20	3.1	3.4	3.4	3.5	3.0	3.2	3.5	(3.4) \$	(2.9) S	32	3.4	93	3.1	(32) [32	2.9	3 5 ×	35	3.1	3.8	32	3.4	3.4	3.5	3.1 #	G K	32	A	(3.3) "	3.4	3.4		3.25	30
	90	3.4	34	3.3	3.5	3.3	3.3	34	π×	×	3.2	9.4	33	9	3.3	3.1	3.1	35	3.5	3 + 4	3.3	. J. J.	3.4	3.4	3.5	3.4	×	3.5	2.9	З.н	34	3.5		7	31
	0.5	3.4	3.1	3.2	3.4	3.3	3.4	3.2	(3.6) 5		3.1	35 F	3.2	3,2	3.3	3.0	3.1	₹ -9	3.3	3 4	3.0	3.5	J	33 #	(3.4) 5	T S	×	\dashv	32	3.4	3.3	3.2		(A)	30
Wol.	0.4	3.0	(3.2) &	3.0	- 1	3.1 F	(3.1) 3	3.2	(3.2) FK	×	3.0	3.1 F	3.2	3.0 F	(2.9) P	(3.1) §	JS	32 F	3.0 F	(3.3) 8	(3.0) }	32	J	- 7	(3.2) \$		(/) ×	3.0 F	3.0	(3.2) P	7 5	- i		~ ~	27
, Long 77.1°W	03	(3.1) F	3.2 F	3.1	3.3	A	3.0	3.4	(3.1) =		3.0	3.0 €	3.3	3.2	(3.0) E	H	(32) \$	(3.0) ^{\$}	3.2 F	3.3 F	3.0	3.1	eJ		(3.1) §	3.3	FS	2.9 x		7 6	(3.0) §	31) §		7.	26
1 10		(2.9) F	3	3.	9.3	A	3.0	3.0	(2.9) PX	3.1 F	3.2 F	2.9 F	3.0 F	3.1 F	3.1		4	×	3.1	(32) 4	3.0) §	3.1	ر.	3.2	3.1 F	(3.1) #	NX.	(30) §	(29) \$ 1	2.6	H	A		3.1	76
Lot 38.7°N	ō		30 6	3.0	3.2	(3.0) 8	3.0		æ 11	×		3.1 F	3.1 K	(3.1) 8	3.1	3.7	3.1 K	 T.x			3.1 F	3.1	3.1	32 F	3.1 F	- 1	FS	× 1	2.9 5	2.9 F	(2.9) §	3.0 F		9	28
	00	1	3.1 F	3.0	3.0	A D			(2.9) S	3.0 F	A K	(3.1) F	33 *	32 F	3.0	3.1 K	29 %	328	30	31 F	 	31	3.0	31	3.1	31	3(8.8)	(33) E	2.3	(30) §	(3.0) §	31 F		0.0	29
																											×	×		×			_		

Manual 🗆 Automatic 🗷

J.J.S.

L.F.M.

National Bureau of Standards

Scaled by: E.J.W., J.W.P.

Form odopted June 1946

TABLE 89 Central Radia Propagatian Laboratory, National Bureau of Standards, Washington 25, D. C.

IONOSPHERIC DATA

03

ō

00

Day

ы

4 2 9 ~ ω

2

2 5 4 5 9 -8 6 20

Washington, D. C. Lot 38.7°N 02

Observed at _

(M3000) FI

N.B., J.J.S. 23 E.J.W., J.W.P. 22 2 Calculated by: 20 6 (3.6) L (36) t 3.6 K A × 37 7 (8 €) ∢ 300 35 E 36 K 37 X 3 6 F 37 K 3.7 # 35 3.7 # (3.8) 4 ∢ 3.9 30 ⋖ 90 3.6 K 36 # A 5 (6€) 36 37 " 37# 37 00 M 37 36 9 3.8 H 3.9 # 3.7 K A 300 3 % 39 # ب ض ج (38) 39 300 2 Ø H(0.4) 3.8 # 3 8 # 37 K 3.8 ₹ 3.7 # 38# 39# ~ ∞ ×× A X 3.9 4 00 04 3.8 # 404 40 K H (1 H) 40 K 3 9 H 3.9 K 4 7 X 3 9 0 4 40 39 04 3.0 0 4 04 13 4 1 4 4.0 H A (0 4) 3 9 H 404 3.8 # 39 7 4.1 K 39# 3.8 K 404 38 # 4 - 4 (4.2)5 4.0 M°57 3.9 3.9 4.0 38 3.7 ∢ 2 ⋖ A 404 3.9 H HOH (39)# 40K 424 39 4 40 K 30 : 5 0 4 0 4 0 4 1 7 3.9 40 7 = 1 4 14 39# H 1 H 4.3 H # 0 4 39# 39 H 4.0 K 3.9 # 394 0 4 39 1.4 1.4 4.1 9 A (3.9)H 39 71 (4 2) S (3 6) 5 H / H 394 43# 39 1 7 ⋖ ∢ 3.9 # 3.7 H 3 % 3 9 H 41 K H 0 H 397 37 # (39) 5 0 4 0 4 1-08 V. ∢ ⋖ 36 K 3.7 H (38) (3.9)4 (36) 36 36 00 M 0 4 37 00 m 36 3.7 39 07 (38) 8 (37) 4 3.5 90 5 3.8 3.6 d 00 1 Ø 4 B Ø d 4 _1 _4 0.5 .. Long 77.1°W 04

Sweep 1.0 Mc to 25.0 Mc in 135 sec. Manual

Autamatic 38

1

3 6

3.7 25

3.7 29

2.8

29

8

76

30

3.8

3.9

4.0

4.0

3.9 29

3.9 27

₩;

00 M

36

edian

30 31 aunt

25

74

00

3.7

37 #

3.8

Þ

∢

∢

3.9

0 4

A

4

Þ 1

(3.6)k

37 # X

3.80

3.9 K

3.8 X 38# 4.0 t

A

7 - X

4 7 x

4.1.4

3.9 K

3.00

3.8

22 23

2

25 56 27 28 29

24

3 6

1 7

1.4

39

36

Ø

37

3.6#

3.9

⋖ _1 ∢

3

04

3.9

3.00

04

3.9 H

36

JA 8

30

1 _

0 4

39 H

1.7

₩ 80 2 X

G 00 X

3.8 x

ナンドサ

4 ⊼

1 4

(41)A

Þ

(3.5) 4

 $TABLE \hspace{0.2cm} 90$ Central Radia Prapagatian Labardary, National Bureau af Standards, Washington 25, D.C.

Form adopted June 1946

National Bureau of Standards
Scaled by: E.J.W., J.W.P.Hallon, L.J.S.

IONOSPHERIC DATA

500

May (Month)

(Unit)

(Characteristic) 11500) E

J.S.	J.S.																																		-
E.J.W., J.W.P. L.F.M., J.J.S	N.B., J.J.S	23																								-									
W.P.	J.W.P.	22	_			1							-																						_
W. , J.	E.J.W., J.W.	21											-																						
	by:	20																					-												_
Scaled by:_	Calculated	61		_	_			×		X	×		×			×	×	×		5								X		A A					
		18	44	# 4 4	S	4.5	A	42 tt	s (4 H)	Вк	A	A	45 K	A	45	4 X	7 7 h	45K	44	h h	44	٧	43	A	A	A	h h	4 4 K	4.4	A	4.4	44	A	44	0,
		17	4.4	44	(4.5) P	5 4	4.5	4.4 K	(4.3)A	45K	4.5 K	44	HHK	# 4 4	44	H H H	4 4 K	4.5 K	4.6 H	424	(4.4) s	45 H	A	5 4	A	A	4.4	44 K	44	A	A	4.5	A	4.4	25
		91	44	# 44	# # #	45	44	4 H H	4	4 4 K	43 K	4.4	45 K	(4 H)	4.4	43 K	4 4 K	4.4 K	45	4.5	4 (H H)	4.6	4 9 h	(4.4)A	¥	A	A	AK	44	A	∢	4.4	A	4.4	2.2
,		15	4.5	4.3	45	A	H.H.H	4.4 x	A (4 4)	HH K	4.4 K	44	A K	45	h h	43 K	4.4 K	H5K	4	45	A (4 4)	₩ 8 Н	A	H H H	V	A	V	AK	A	A K	A	H 4.4	A	44	1 6
	ше	14	44	4.3	Ą	A	43	4 4 H	¥	45 K	4.3 K	454	A	4.4	H h h	A	4.4 K	5.4	(4 E) P	45	(4.4) A	42	A	H 9 H	A	A	A	AK	44	A K	A	A	∢	4.4	17
	Mean Time	13	4.5	4.5	5 4	45	A	A	A	4.5 K	4.4 K	V	A	A	4.5	A(2 H)	A	H 5 H	A	44	44	45	A	A	45	4	4	A	44	A	A	45	A	45	Lr.
	₩°57	12	4	45	(45) P	d(5 H)	A	H(S H)	(4.5)A	(4 5) R	A	A	A	A	4 4 4	¥	₹	d (5 h)	(4 E) P	A	Ą	# (5 h)	A	A	A	A	V	A	A	A	(4 5)A	45	A	(4 5)	7
	7	=	H 9 H	4.4	(4.6) A	(4.6) A	V	(4.4)A	4.4	4.5 K	A K	∢	AK	A	H.H	A	4	4.5	A	A	4	A	# 5 4	Ą	A	A	A	A	¥	AK	A	H 9 H	∢	4.5	
		0	4.5	4.5	(4 6) A	a (9 H)	A	H(3 H)	4.3	45 K	A	V	4.4	A	4 5	44	4	15	4.5 H	A	(4 S) A	A	A	A	₹.	4.5	(4.5)A	(4.5)A	А	A	A	J	4	45	9/
		60	₹	4.5	(4.6) A	4.6	Ą	4	43	4.5 K	A K	V	4.4	(4.4) A	54	44	A	4.5	AK	4.5	A	∢	A	4.5	Ą	9 4	(4 S) A	45 K	Ą	¥	4	₹	V	45	5
		90	4.3 H	454	(4 5)A	5 4	45	454	(e h)	A	46 H	∀	44	A	45	5 4	A	44	A	4 44	A	∢	47	424	V	A	(4 2) A	A	(H H) A	4	₹	45	Ą	45	00
		07	₹	44	4.5	# 44	45	454	(4x) H	45 K	A K	∢	43 н	43 H	hh	44	A	45	44 H	45	A	4.5	454	45	A		(4.5) ^A	4	45	А	44	4.4	45	45	23
	,	90	∢	4.5	(+ +) b	(42)#	¥.	45	Ą	(4 3) H	A	∢	A	4	∢	A	S	d (5 H)	45 K	45	45	A	(4 5) A	V	(4 5) A	A	(4 h)	A	A	A	Ą	44	¥	(45)	- 3
		0.5																																	
	7.1°W	0.4																																	
DC	., Lang 27.1°W	03																																	
Washington, D. C.	Lat 38.7°N	02																																	
	Lat 3	Ю																																	
served at		00																																	
, de		>		<u> </u>	2					_	_				_																			u D	÷

Sweep.LQ Mc ta 25.0 Mc in 13.5 sec. Manual □ Autamatic 18

Table 91

Ionospheric Storminess at Washington, D. C.

May 1955

5 3		No.	Principal			and a state
Day	Ionospheric		Beginning			character**
	00-12 GCT	12-24 GCT	GCT	GCT	00-12 GCT	12-24 GCT
1	3	2			2	1
2	1	2			1	2
3	1	2			2	2
4	0	3			1	2
5	3	1			2	3
6	1	5	1300		4	4
7	1	3		0000	4	3
8	2	3	0200		4	4
9	3	5			2	2 2
10	2 2	2		0100	3	2
11		5	1100		2	1
12	1	1		0100	2 2 3	2 2 2 2
13	1	2				2
14	1	4	1400		3	2
15	2	4		0000	`2	2
			1300			
16	3	5		0100	4	1
			1500			
17	4	3		1000	2	1
18	3	2 2 2			1	2
19	0	2			1	1
20	1				2	2
21	2	3			1	2
22	2	1			2	2
23	1	1			1	1
24	1	2			2	2
25	2	1]	5
26	3	5	0000		6	2
27	1	1		0300	2	4
28	2	5	1100		5	3
29	2	2		0000	3	2
30	1	1			1	2
31	2	1			2	2

^{*}Ionosphere character figure (I-figure) for ionospheric storminess at Washington, D. C., during 12-hour period, on an arbitrary scale of O to 9. 9 representing the greatest disturbance.

**Average for 12 hours of Cheltenham, Maryland, geomagnetic K-figures on an arbitrary scale of 0 to 9, 9 representing the greatest disturbance.
---Dashes indicate continuing storm.

 $\underline{\text{Erratum}}$: In table 91 of F129, the storm listed as beginning at 0200 on the 25th began at 0200 on the 26th of April.

<u>Table 92</u>

<u>Sudden Ionosphere Disturbances Observed at Washington, D. C.</u>

May 1955

1955 Day	GCT Beginnir		Location of transmitters	Relative intensity at minimum*	Other phenomena
May 27	1545	1630	Ohio, England, Mexico, North Dakota	0.02	Solar flare** 1540

^{*}Ratio of received field intensity during SID to average field intensity before and after, for station KQ2XAU (formerly W8XAL), 6080 kilocycles, 600 kilometers distant.

**Time of observation at Sacramento Peak, New Mexico.

<u>Table 93</u>

<u>Sudden Ionosphere Disturbances Reported by the Netherlands Postal and</u>

<u>Telecommunication Services</u>, as Observed at Nederhorst den Berg, Netherlands

April 1955

1955	GCT				
Day	Beginnin	g End	Location of	transmitters	Other phenomena
April 26	1706	1 7 18	Washington, Karachi	Paramaribo,	Reinforcement (of atmospheric long-wave noise) 1706-1712

Note: Observers are invited to send to the CRPL information on times of beginning and end of sudden ionosphere disturbances for publication as above. Address letters to the Central Radio Propagation Laboratory, National Bureau of Standards, Boulder, Colorado; Attention: Mr. Vaughn Agy.

Table 94a

Radio Propagation Quality Figures

(Including Comparisons with Short-Term and Advance Forecasts)

North Atlantic Path - April 1955

Day	-	th A 6-ho lity	urly		iss	ued	abou	recasts it one ice of:	Whole day quality index	(J-re	ports	ecasts) for issued e by:	Geom · net ^K O	ic
pay	00 to 06	06 to 12	12 to 18	18 to 24	00	06	12	18		1-4 days	4-7 days	8-25 days	Half	De.y
1 2 3 4 5	(4) (4) (4) (4) 5	(3) (4)	6 6 7 7	6 6 6 6	(4) 5 5 5 5	(4) 5 5 5 (4)	6 6 6 7 6	6 6 6 6	5 (4) 5 5 5	(4) (4) 5 5	6 5 5 5		3 3 2 3	2 3 2 3 3
6 7 8 9 10	55556	(4) (4) (4) (4) (4)	6 7 7 7	7 7 7 7 7	5 6 5 6	(4) (4) 5 5 6	7 7 7 7 7	6 6 7 7	5 6 6 6 6	(4) (4) 5 6	(4) (4) 5 6	x	3 (4) 2 2 1	2 2 2 1 2
11 12 13 14 15	6 5 5 5 6	5 (4) (4) 5 6	7 7 7 7 7	7 6 6 7 7	7 6 6 6	6 6 5 6	7 7 7 7 7	7 7 6 6 7	6 6 5 6 6	66666	6 5 5 7		3 3 3 3 2	2 2 3 1 2
16 17 18 19 20	6 7 7 7 6	5 (4) 5 5	7 7 7 7 7	7 7 7 7 7	7 7 7 7 7	6 6 6 6 5	7 7 7 7 7	7 7 7 7 7	7 7 6 7 6	66666	7 6 6 6		1 2 0 1 3	2 2 1 1 2
21 22 23 24 25	6 6 6 7 6	5 6 5 5 6	7 7 7 7 7	7 7 7 7 7	6 7 7 7 5	5 6 6 6 5	7 7 7 7 7	7 7 7 6 7	6 7 7 7 6	6 6 7 7	6 6 7 7		2 3 1 2 2	2 2 1 (4) 2
26 27 28 29 30	5 (2) (3) (3)	(4) (4) (2) (3) (2)	6 6 5 6	6 (4) 5 6 7	6 5 (3) (2) (4)	5 (4) (2) (2) (4)	6 (4) 5 6	6 6 (4) 5 6	5 5 (3) (4) (4)	6 6 (3) (4)	66666		3 (4) (4) (4)	3 (4) (4) 3 3
Score		et Pe	erio	ds	P 11 S 12 U 0 F 0	5 7 0 0	25 5 0	20 9 0		12 13 0 1	12 13 0 1			
:	Disturb	ed Pe	rio		P 1 S 6 U 0 F 0	5 7 2 4	0 0 0	0 0 0 1		2 1 0 1	0 0 0 4			

Scales:
Q-scale of Radio Propagation Quality

- (1) useless (2) very poor (3) poor (4) poor to fair
- 5 fair 6 fair to good
- 7 good 8 very good 9 excellent

K-scale of Geomagnetic Activity 0 to 9, 9 representing the greatest disturbance; $K_{\text{Ch}} \gg 4$ indicates significant disturbance, enclosed in () for emphasis Scoring: (beginning October 1952)

P - Perfect: forecast quality equal to observed S - Satisfactory: (beginning October 1952)

forecast quality one grade different from observed

- U Unsatisfactory: forecast quality two or more grades different from observed when both forecast and observed were ≥5, or both ≤5
 F Failure: other times when forecast quality
- two or more grades different from observed

Symbols:
X - probable disturbed date

Note: All times are UT (Universal Time or GCT)

<u>Table 94b</u>
Short-Term Forecasts — April 1955

Ò

Table 95a

Coronal observations at Climax, Colorado (5303A), east limb

(Absolute values in millionths of the brightness of one angstrom at the center of the solar disk)

		٠,٠														6110	1100				9116										90I						
Date									of t										00	<u></u>											lar						
UT	90	85	80	75	70	65	60	55	50	45	40	35	30	25	20	15	10	5	-	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90
195 5																																					
May 1.6	_	-	-	-	-	-	100	-	-	_	_	-	-	_	_	_	_	-	-	-	_							3	1	1	-	-	-	-	-	-	-
2.9	-	-	-	-	_		_	-	_	_		-	-	_	_	_	-	-	-	-	-	-	-	12	22	29	12	_	_	-	-	_	-	-	-	-	-
3.x																																					
4.6	-	-	-	_	-	_	-	_	-	-	-	-	-	-	_	-	_	-	-	-	_	_	-	1	4	2	1	_	-	-	-	_	-	-	-	-	-
5.x																																					
6.7	-	_	_	-		_	_	_	_	_	-	-	_	_	_	-	_	-	-	-	-	-	_	-	-	\rightarrow	***	-	_	_	_	_	_	_	-	-	-
7.6	-	_	_	_	_	_	_	1	2	2	639	***	_	_	_	_	-	-	_	-	_	_	_	-	-	-	1	1	_	-	-	_	-	-	-	-	-
8.x																		- 1																			
9.6a	_	_	_	_	_	-	X	X	X	X	X	X	X	X	X	X	_	-	-	-	\rightarrow	-	-	_	_	_	_	-	-	_	-	-	-	_	-	X	X
10.x																		1																			
11.6	-	_	_	_	_	_	_	1	2	1	1	1	-	uito	_	_	_	-	-	-	_	-	1	2	3	1	1	-	_	-	-	-	-	-	-	-	-
12.6	-	-	_	_	_	_	-	_	-	_	_	-	_	_	_	_	_	-	_	-	100.3	_	3	7	11	3	4	40	-	-	-	_	-	-	-	-	-
13.x																																					
14.7	Х	X	_	-	_	_	_	_	_	_	_	1	2	5	2	2	1	1	-	-	_	_	1	1	1	_	_	-	_	-	_	_	-	X	X	X	X
15.6	-	_	_	_	_	_	-	_	_	_	2	4	5	5	2	_	-	-	-	-	-	_	-	_	_	\rightarrow	-	-	_	-	_	_	-	-	409	-	-
16.x																																					
17.x																																					
18.x																		- 1																			
19.x																																					
20.7a	_	_	_	_	_	_	_	_	_	_	3	6	1	1	CHIP	-	_	-	-	-	_	_	_	_	_	***	_	_	_	_	-	-	_	-	_	-	-
21.x																																					
22.X																																					
23.6	-	_	_	_	-	-	1	1	1	4	9	19	28	24	3	cosp	_	-	-	-	-	-	_	1	1	2	1	_	-	-	-	_	_	_	883	-	-
24.6a	_	_	_	_	_	_	-	_	_	_	_	-	_	_	_	_	_	-	-	-	_	_	_	_	_	_	_	_	-	_	_	-	_	-	-	-	-
25.x																																					
26.9	X	Χ	-	-	-	-	1	2	2	2	2	2	1	_	_	-	_	-	-	-	-	-	-	-	-	-	_	-	-	-	_	-	-	-	-	_	-
27.X																																					
28.7	-	-	-	-	_	-	_	-	-	_	_	_	-	_	_	_	-	-	-	-	-	-	CHIMP	_	-	_	_	-	_	-		_	-	-	-	-	-
29.7	-	-	-	-	_	-	_	-	_	_	-	_	-	-	_	_	_	-	_	-	-	-	_	8		23	-	_	-	_	_	_	_	_	-	-	-
3 1. 0	_	-	-	-	-	-	-	-	_	-	-	_	-	_	_	-	-	-	-	-	-	-	-	1	3	5	2	1	1	_	-	_	-	-	-	-	-
31.7a	-	-	_	_	_	_	_	_	-	_	-	_	-	-	-	-	_		-	-	-		-	5	8	11	8	3	_	_	_	_	-	-	-	-	-

Table 96a

Coronal observations at Climax, Colorado (6374A), east limb

(Absolute values in millionths of the brightness of one angstrom at the center of the solar disk)

Date				Deg	ree	es n	ort	h c	of t	he	sol	ar	equ	atc	r			\neg	00				De	gre	es	sou	th	of	the	sc	lar	· eq	uat	or			
UT	90	85														15	10	5	0-	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90
195 5																		7																			
May 1.6	1	1	-	-	-	-	_	_	-	-	_	_	1	1	2	2	2	4	1	1	3	2	2	2	5	8	2	_	-	-	_	_	-	_	-	-	1
2.9	-	_	-	_	_	_	_	_	_	1	2	2	2	2	1	1	Τ	1	1	2	1	2	2	5	3	4	_	_	_	_	_	_	_	_	-	_	-
3.x														_	_	_				_			_	_	_									,			
4.6	-	-	-	_	_	_	-	_	-	-	-	-	-	1	2	2	1	2	2	2	2	3	2	2	3	_	_	_	_	_	-	-	_	_	-,	-	-
5.x																						_	_	_	_	_								,	,	,	,
6.7	1	1	_	-	_	_	-	_	_	_	_	-	_	3	2	2	2	2	2	2	2	2	2	1	Ţ	1	Ţ	_	_	_	_	***	_	Т	Т	Т	1
7.6	-	-	-	_	-	_	-	_	_	_	_	_	_	2	2	1	1	4	1	1	3	3	3	2	1	Τ	Τ	Τ	_	-	_	-	_	_	-	-	-
8.x																	_		_			_			-	,	,	,	,	,						Х	v
9.6a	-	_	-	-	-	_	X	X	X	X	X	Χ	Х	Х	Х	Χ	1	2	3	2	Τ	Т	Τ	Τ	Т	Т	Т	Т	Τ.	Τ	_	-	_	_	-	Λ	Δ
10.x							_		_										,		-	,	,	-	7	-	2	7	7							_	_
11.6	-	_	_	_	-	_	1	1	1	_	_	_	_	_	_	-	_	4	1	3	7	Ţ	Ţ	Ţ	Τ.	Τ	2	Т	Т	_	_	_	_	_	_	_	1
12.6	1	1	-	-	-	_	_	_	_	-	_	_	_	_	_	_	-	٦	Т	3	Τ	Т	Τ	Τ	Т	_	_	-	_	_	-	_	_	_	_	_	7
13.x														_	_	_	_																	v	Х	v	v
14.7	X	X	-	_	_	_	_	_	-	_	-	_	_	1	3	1	1	4	1	-	_	_	_	_	_	_	_	_	_	_	_	_	_	Λ	Λ	Λ.	Δ
15.6	1	1	1	_	-	_	_	_	_	-	_	_	1	1	4	3	3	7	2	1	1	_	-	_	_		_	-	-	_	_	_	_	_	eas.	_	-
16.x																																					
17.x																																					
18.x																		-																			
19.x										_		_	-		- ~	_			~	_	7	-	-	2	-											_	_
20.7a	1	1	-	_	_	_	_	_	-	1	3	2	5	15	17	9	4	4	7	7	.1	5	7	3	Т	_	_	_	-	_	_	_	_	_	-	_	_
21.x																		- 1																			
22.x	_	_										_	,	-	~		4	1	2	2	2	7	-	-	7	٦.					_	_	_	_	_	_	_
23.6	1	1	-	_	_	_	_	_	_	-	-	3	4	5	5	6	4	1	~	~	~	Τ.	Т	Т			_	_	_	_	_	_	_	_	_	_	_
24.6a	-	-	-	_	_	-	_	_	_	-	_	_	-	_	_	-	_	1	-	-	_	-	_	_	_	_	_	-	_	_	_	_	_	_			
25.x														-		2	2	1	3	2	2	3	3	3	2	7	7				_	_	_	_	_	_	_
26.9	X	X	-	-	-	_	_	_	_	-	_	_	-	Τ	1	2	2	1	3	2	~	2	2))	Т	Т	-	_	_	_	_	_	_		_	
27.x											-	-	,	_	2	,	-	1	٠, ١	,	,	7	٦.	7	-	1	,			_	_	_	_	_	_	_	_
28.7	1	-	-	_	-	_	-	-	-	1	Ţ	Ţ	Ţ	3	2	3	7	#	1	4	7	2	7	Τ	16	11		2	1	_	_	_	_	_	_	_	_
29.7		-	-	_	_	-	-	-	-	Τ	2	2	3	3	3	3	2	1		1	3	2	2	3	16	11	4	1		_	_	_	_	_	_	_	-
31.0	-	-	-	-	_	-	-	-	439	-	Ţ	2	2	7	2	2	2	귀	1 2	2	2	5	2	2	2	2	2	2	2	2	2	2	2	_	_	-	_
31.7a	-	-	_	_	-	-	_	-	_	_	2	2	2	2	2	2	2	4	~	~	~)	4	4	~	£,	24	2.	24	~	~	~	~				

Table 95b

Coronal observations at Climax, Colorado (5303A), west limb (Absolute values in millionths of the brightness of one angstrom at the center of the solar disk)

		(4	1030													6	1100	- (, - 02															
Date									of t										o°				De	egre	ees	no	rth	of	the	2 50	olar	e e	luat	or			
UT	90	85	80	75	70	65	60	55	50	45	40	35	30	25	20	15	10	5		5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90
1955																				ļ																	
May 1.6	-	-	_	_	_	_	-	_	-	1	3	2	1	_	_	_	-	-	-	1	1	3	3	3	4	2	4	4	2	-	-	-	-	_	-	-	-
2.9	-	-	_	_	-	_	_	-	-	_	-	_	-	-	-	-	-	-	-	-	-	_	1	1	1	1	1	2	2	-	_	-	_	-	-	-	-
3.x																		- [1																	
4.6	-	-	_	_	_	-	-	-	-	-	1	1	2	-	-	_	_	-	-	-	-	_	-	-	_	2	2	1	_	_	_	-	_	_	-	-	-
5.x																																					
6.7	_	-	-	_	-	_	-	-	-	-	_	_	-	-	_	_	-	-	-	-	_	-	1	2	3	2	2	1	_	-	_	_	_	_	-	-	-
7.6	-	_	_	_	_	-	_	-	_	_	-	_	-	-	_	_	-	-	_	-	_	1	4	6	5	3	1	-	_	-	440	-	_	-	-	-	-
8.x																																					
9.6a	X	Х	-	-	-	_	-		-	_	_	_	-	_	_	_	_	-	-	-	-	3	9	4	6	3	3	2	-	-	_	_	-	_	_	-	-
10.x																		- 1		ļ																	
11.6	-	-	-	-	_	_	-	-	-	-	-	-	-	_	-	-	_	-	_	-	_	-	-	-	_	2	3	1	1	1	1	-	-	-	_	-	-
12.6	-	-	_	-	-	-	-	_	-	-	-	-	-	_	-	-	_	-	_	-	-	_	_	_	1	2	3	3	1	-	_	-	-	-	-	-	-
13.x																		- [
14.x																		ļ																			
15.6	-	-	_	-	-	_	-	-	_	_	1	8	7	_	-	_	_	-	-	-	-	_	-	_	_	2	2	_	_	-	_	_	-		-	_	-
16.x																																					
17.x																		- 1																			
18.x																																					
19.x																																					
20.7	-	_	90	-	-	-	_	1	1	1	-	-	-	-	-	-	_	-	_	-	-	_	-	-	-	_	-	-	_	-	_	-	-	-	-	-	-
21.x																																					
22.x																													_	_	_						
23.6	-	-	_	-	-	-		-	-	-	-	_	_	_	_	-	-	-	_	-	_	-	-	-	_	-	-	-	1	1	1		_	463	1000		-
24.6a	-	-	_	-	_	-	-	-	-	-	_	_	_	_	-	_	-	-	-	-	-	-	_	_	_	-	_	_	-		_	-	-	_	-	-	
25.x																					_					_											
26.9	-	-	_	_	_	_	_	Х	Х	Х	X	X	X	X	X	X	Х	X	X	X	Х	Х	Х	Х	Х	Х	Х	Х	Х	X	Х	X	X	Х	X	X	X
27.x																																					
28.7	-	-	-	-	_	-	-	-	-	-	1	2	2	1	-	-	_	-	_	-						20		4	4	-	_	-	-	-	-		-
29.7	-	-	-		_	-	-	-	-	-	-	1	2	3	3	1	-	-	-	-						25		5	6	6	2	1	-	-		=	-
31.0	_	-	-	-	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-						10		5	2	2			***			-	***
31.7a	-	-	-	-	Х	X	Х	X	Х	Х	X	Χ		-	-	-	-	-	-	-	-	-	21	17	16	5	2	-	-	-	-			X	X	Х	X

Table 96b Coronal observations at Climax, Colorado (6374A), west limb (Absolute values in millionths of the brightness of one angstrom at the center of the __iar disk)

Date Degrees south of the solar equator Degrees north of the solar equator 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 UT 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 1955 1.6 3 May 1 1 1 1 1 1 1 1 1 1 2 2 2 3 3 2 1 1 1 1 1 2.9 2 1 1 -3.x 4.6 1 2 3 2 2 1 1 1 5.x 3 6.7 11-2 2 1 1 2 1 1 1 1 2 1 1 1 1 7.6 1 1 2 2 2 2 2 3 3 2 1 3 1 x.8 9.6a 1 1 1 1 2 1 1 3 1 1 1 5 5 1 -10.x 1 4 15 2 2 1 11.6 2 3 1 1 -2 2 3 12.6 2 3 1 13.x 14.X 15.6 7 6 2 2 2 2 3 3 4 3 3 2 2 1 16.x 17.X 18.X 19.x 20.7 3 3 2 2 3 2 2 2 2 1 1 21.x 22.x 1 2 3 1 23.6 3 2 2 2 3 3 3 1 1 1 1 24.6a 3 3 25.x 26.9 X X X X X X Х ΧÌ X X X X X X X X X27.x 28.7 1 1 3 2 4 10 6 20 23 2 1 1 2 1

336

2

1

2

3 3 3

2

3

29.7

31.0

31.7a

1 1

1 1 1

X X X X X X X X 3

323

3 3

326

3 4 4 4 10 10 2 18 25 22 19 3

7 3

2 _

2

3 _ -

31. 0 31. 7a

Table 97a
Coronal observations at Climax, Colorado (6702A), east limb

(Absolute values in millionths of the brightness of one angstrom at the center of the solar disk) Degrees south of the solar equator 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 Degrees north of the solar equator Date 00 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 TTT 1955 May 1.6 2.9 3.x 4.6 5.x 6.7 7.6 8.x X x x x x x x х х 9.6a 10.x 11.6 12.6 13.x - X ΧХ X 14.7 15.6 16.x 17.x 18.x 19.x 20.7a 21.X 22.X 23.6 1 1 24.6a 25.x 26.9 27. x 28.7 29.7

Table 98a

Coronal observations at Sacramento Peak, New Mexico (5303A), east limb
(Arbitrary Scale)

																(AL	oitr	ar.	y 50	a10	,																- 1
Date				Deg	ree	es r	ort	h c	ft	he	so]	ar	equ	ato	r				0°	Г			De	gre	es	SOL	ıth	of	the	e so	lar	ec	quat	or			-
UT	90	85	80	75	70	65	60	55	50	45	40	35	30	25	20	15	10	5	U	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90
1955																		\neg																			1
May 1.x	ĺ																			1																	
2.x																		- 1																			1
3.6	-		-	-	2	_	3	3	4	4	5	4	3	2	3	2	2	\dashv	-	2	2	3	2	5			40			5	7	7	4	-	-	-	- 1
4.6	-	-	-	-	-	-	_	_	2	2	3	3	2	3	2	_	-	-	_	-	_	2	3	4	5	11	14	13	8	5	6	5	4	-	-	-	-
5.x	1																			l																	
6.x																				l											,						
7.7	-	_	-	-	-	2	3	4	5	6	5	4	4	5	3	2	2	-	-	-	_	_	_	_	-	2	3	4	5	5	6	5	4	-	-	-	-
8.x	1																			ĺ																	1
9.6	-	-	-	-	2	3	3	4	5	8	9	8	7	4	4	3	2	-	-	-	-	-	-	-	2	3	4	4	4	3	2	2	-	-	-	-	-
10.x																																					1
11.x																																					la la
12.6a	-	_	-	-	_	2	4	6	5	7	7	6	5	7	5	13	11	8	3	2	-	2	3			18		8	5	5	4	3	-	-	~	-	-
13.7	-	-	-	_	_	3	4	5	5	6	6	7	8	9	11	10	7	4	3	-	-	2	3	8	14	16	15	7	5	4	3	2	_	-	-	-	-
14.8a	-	_	_	_	_	_	_	3	3	2	3	3	3	4	5	4	3	4	-	-	_	_	_	_	3	4	5'	4	3	3	-	-	_	_	-	_	-
15.7a	-	_	-	_	_	2	2	3	2	3	4	5	8	8	7	5	4	\dashv	-	100	_	_	-	-	2	3	3	2	3	4	4	3	-	-	-	-	-
16.6	_	-	-	-	_	-	2	3	4	4	8	11	14	16	18	13	5	3	-	-	_	-	_	2	3	4	5	7	5	3	2	-	_	-	-	-	- 1
17.7	-	_	_	_	_	2	2	3	3	4	5	8	11	18	32	36	5	3	2	-	_	_	3	2	3	3	4	5	5	4	3	2	_	-	-	-	-
18.x																																					
19.x																																					1
20.6	-	-	_	2	3	3	3	5	8	8	9	13	16	14	11	7	4	2		-		-	_	2	3	4	8	6	5	3	3	2	_	-	-	-	- ,
21.6	- 1	_	_	_	_	2	4	5	4	8	9	11	14	20	16	13	8	3	-	-	com	_	-	-	2	2	3	4	3	3	2	_	_	-	-	-	-
22.7a	-		_	_	_	_	_	2	3	4	5	8	11	20	23	16	11	3	-	_	_		-	-	_	_	2	2	3	2	2	-	_	-	.–	-	-
23.7a	-	_	-	-	-	_	_	2	3	3	4	6	8	11	13	11	3	2	-	-	-	_	-	-	-	-	2	3	3	2	2	-	_	-	-	-	-
24.7a	-	-	-	_	_	_	_	_	3	3	4	6	7	6	6	5	4	4	3	-	_	_	_	-		2	2	2	-	-	-	_	_	-	-	-	-
25.x																																					
26.6	-	_	-	_	_	_	_	3	4	5	6	6	5	4	3	2	_	4	-	_	-	_	-	_	-	2	3	3	2	_	_	-	-	-	-	-	-
	i -	_	_	_	_	_	2	4	ġ	5	7	6	3	3	2	_	-	4	-	_	-	-	-	2	2	3	5	6	4	3	2	2	_	-	-	-	-
28.x										-			-																								
	-	_	_	_	_	_	_	-	_	2	2	2	3	3	2	_	_	4	-	-	_	-	2	3	3	5	12	11	5	3	2	2	-	-		1000	411
27.6	-	-	-	<u>-</u>	-	-	2	4	8	5	7	Ī	3	3	2	-	-	-	-	-	-	-	2	3		5			·			2	-	-	-		-

Table 97b

Coronal observations at Climax, Colorado (6702A), west limb

(Absolute values in millionths of the brightness of one angstrom at the center of the solar disk)

		1 20.	201											4				_					Do	gree		1071	-h .	· P	tho		lor	001	10+	022			
Date				Deg	ree	S 5	outl	1 01	'tl	ne s	ola	r e	qua	tor	•			ᅴ	o°	_		-	Def	gree	SI	101	on c) T	cne	50	TAI	eq.	70	75 (00.0)E (20
UT	90	85	80	75	70	65	60 5	55 5	0 4	5 4	0 3	5 3	50 2	5 2	20]	L5 .	10_	기		5	10 .	L5 (40 .	45 3	0 3	25 4	10 4	£5 .	50	55	00	00	70	15	80 E	30 3	20
1955																											_		_	_	_	_	_	_	_	_	_
May 1.6	_	_	_	_	_	-	-	-	-	-	-	-	-	-	-	-	_	-	-	_	-	_	_	-	_	_	_	_	_		_	_	_	_	_	_	_
May 1.6 2.9	_	_	_	_	-	-	-	-	-	_	-	-	-	-	_	-	-	-	-	_	-	-	_	_	-	_	_	_	_	_	_	_	_	_	_		
3.x	1															•		- [ì															_	_	_	_
4.6	-	_	_	_	_	-	-	-	_	-	-	-	-	-	-	-	-	+	-	-	-	_	_	-	_	_	_	_	_	-	_	_	_	_	_	_	_
5.x																																_	_	_	_	-	_
6.7	_	_	_	_	-	-	-	-	-	-	-	-	-	-	-	_	-	+	-	-	-	_	_	-	_	_	-	-	_	_	-	_	_	_	_	_	_
7.6	_	_	_	_	_	-	-	_	_	-	-	-	-	-	-	_	-	4	-	-	-	_	_	-	_	_	-	_	_	_	_	_	_	_	_	_	_
8.x																																				_	_
9.6a	l x	X	_	_	-	-	_	_	_	_	-	-	-	-	-	-	-	+	-	-	-	-	_	_	_	-	_	-	_	_	-	_	_	_	_	_	_
10. x																														_	_	_	_	_	_	_	_
11.6	-	_	-	_	-	_	-	-	_	_	-	-	-	-	-	-	-	1	-	-	_	_	_	-	_	-	_	_	_	_	_	_	_	_	_	_	_
12.6	-	-	_	_	-	_	_	-	-	-	-	-	-	_	-	-	_	+	-	-	-	_	_	-	-	-	-	_	_	_	_	_	_	_	_		
13. x																		-1																			
14.x																																		_		_	_
15.6	_	_	_	_	_	_	-	_	_	-	-	-	-	-	-	-	-	+	-	-	-	-	-	_	-	_	-	-	_	-	_	_	_	_		_	_
16. x	ľ																																				
17.x	1																	- 1																			
18. x																																					
19. x																												_	_	_	_	_	_	_	_	_	_
20.7	-	_	_	-	_	_	-	_	_	-	-	-	-	-	_	-	_	†	_	-	-	-	_	_	_	_	_	_	_	_	-,						
21. x	-																																				
22. x																	•										_	_	_	_	_	_	_	_	_	_	_
23.6	-	_	_	_	-	-	-	-	-	-	-	-	-	_	_	-	-	†	_	-	_	-	_	_	_	_	_	_	_	_	_	_	_	_	_	-	_
24.6a	-	_	_	_	-	_	-	-	-	-	-	-	-	~	_	_	-	†	-	-	-	_	_	_	-	_	_	_	_	_							
25. x																		1	77	١.,	77	v	v	v	v	v	٠,	Y	Y	Y	Y	Y	X	Y	Х	X	X
26.9	-	-	_	-	-	_	-	X	Х	Х	X	X	X	X	X	X	X	- †	X	l X	A	A	Α	Α	Λ	•	Α	А	^	Λ		Α.	- 1	41.	21	**	22
27. x	ŀ																	- [7	2	2	2	1	_	_	_	_	_	_	_	_	_	-
28.7	-	-	-	-	-	-	-	-	-	_	-	-	-	-	-	-	_	1	-	-	-	-	1	1	7	2	1	_	_	_	_	_	_	_	_	_	-
29.7	_	-	_	-		_	_	-	-	_	_	-	_	-	-	-	-	†	-	_	_	_		Τ.		~		_	_	_	_	_	_	_	_	-	-
31.0	-	-	-	-	-	-	_	-	-	-	-	-	_	_	_	_	_	1	_	-	_	_	_	_	_			_	_	_		_	_	X	X	X	X
31.7a	-	-	_	-	- X	X	X	X	X	Х	X	X	-	-	-	-	-	†	_	-	_	-	_	_	_	_	_	_	_	_		_			16.		
														-						-							_										

Table 98b

Coronal observations at Sacramento Peak, New Mexico (5303A), west limb (Arbitrary Scale)

																	(Art	11	rary	50	ale)															
Date				Deg	ree	S E	sout	h c	of t	he	sol	ar	equ	ato	r			\neg	0°				De	egre	ees	noi	th	of	the	e so	olar	• eç	uat	or			
UT	90	85	80	75	70	65	60	55	50	45	40	35	30	25	20	15	10	-5	U	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90
1955																		П																			
May 1.x																		1																			
2.x																		- 1																			
3.6	-	-	_	-	_	_	_	2	3	5	5	6	7	8	7	6	4	3	-	2	3	4	5	5	6	8	13	16	18	14	10	7	4	-	-	_	-
4.6	-	-	_	-	_	-	_	2	3	3	3	4	5	11	7	4	3	2	-	-	2	3	3	3	4	4	5	8	9	5	4	3	_	-	-	-	-
5.x																				l																	
6.x	ŀ																	- 1																			
7.7	-	_	_	X	X	X	Х	Х	Х	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	Х	X	X	X	Х	X	-	_	-
8.x																																					
9.6	-	-	-	-	-	-	2	3	4	3	2	3	3	2	2	_	-		-	2	3	4	5	23	32	28	32	16	14	8	5	6	4	3	-	-	-
10.x																																					
ll.x																																					
12.6	-	-	_	-	-	-	2	2	3	2	2	3	3	3	2	-	-	\dashv	-	-	-	-	3	4	5	6	8	11		11	8	8	4	-	-	-	-
13.7	_	_	-	-	_	2	2	3	2	2	3	4	3	2	_	_	-	٦	-	-	_	-	2	3	3	5	6	7	5	5	6	5	3	-	-	-	-
14.8a	-	-	-	-	_	-	-	-	-	2	3	3	3	4	2	-	-	-1	-	-	_	-	-	_	-	-	-	-	_	-	-	-	-	-	-	-	-
15.7a	-	_	-	-	_	-	2	3	3	4						3	2	-1	-	-	-	-	2	2	2	2	2	3	3	3	3	2	\rightarrow	-	-	-	-
16.6	-	_	-	-	_	2	3	4	3	4				39		3	-	\dashv	_	-	_	-	-	_	2	2	2	3	3	3	3	2	2	-	-	-	-
17.7	-	-	-	-	-	2	2	3	4	3	5	11	20	16	11	5	3	٦	-	-	_	-	-	2	3	2	2	2	2	2	2	2	3	2	-	_	-
18.x																				İ																	
19.x																															_	_					
20.6	-	-	-	-	-	2	5	6	8	7	7	6	5	3	_	-		Ⅎ	-	-	_	-	-	2	3	2	-	2	2	3	2	2	-	-	-	-	-
21.6	-	-	-	-	-	2	3	4	3	5	4	4	3	2	-	-	-	Н	-	-	-	-	_	_	-	-	_	_	_	2	2	2	3	2	-	_	-
22.7a	-	-	-	-	-	-	-	2	2	3	3	2	2	_	_	_	-	٦	-	-	-	-	_	-	_	_	2	3	2	2	2	_	_	_	-	-	-
23.7a	-	-	-	-	_	-	-	2	2	3	3	2	2	2	_	-	-	\dashv	-	-	-	-	-	_	2	3	2	3	3	4	5	4	3	-	-	-	-
24.7a	-	_	_	-	-	-	-	_	_	2	3	3	2	2	2	-	-	1	-	-	-	-	_	_	2	3	4	3	_	_	-	_	-	-	-	_	-
25.x									_	_			_	,	_	_		- 1				_	_						~		-	,	_				
26.6	-	-	-	-	-	-	-	-	2	2	3	4	5	-6	5	3		7	-	-	2	3			14					4	3	4	2	_	-	-	-
27.6	-	-	-	-	-	-	-	-	2	3	4	12	14	17	T8	11	4	3	-	-	2	3	11	23	42	43	41	14	11	8	6	5	3	2	-	_	-
28.x																		i																			
29.x																		1																			
30.x								_	_	_	0	_	_								_	2	-	0.2	20	21	10	17	o	4	_	4	_	2			
31.7a	-	-	-	_	-	-	-	2	3	3	3	2	2	-	-	_	_		-	-	2	3	5	23	32	24	Τ./	ΤŢ	8	О	5	6)	9	-	_	_

Table 99a

Coronal observations at Sacramento Peak, New Mexico (6374A), east limb
(Arbitrary Scale)

Date UT 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 6 50 15 20 25 30 35 40 45 50 55 60 65 70 75 1955 May 1.x 2.x 3.6 3 3 2 2 3 4 3 3 3 5 8 7 5 5 6 7 8 8 11 12 13 13 14 14 16 17 15 5 3 - 2 - 2 2 4 6 8 7 8 9 11 5 4 3 3 3 2 2 3 2 2 2 2 2 3 4 3 4 4 5 6 8 7 7 7 8 7 5 4 3 2 4 5 4 3 3 3 2 2 3 2 2 3 2 2 3 2 2 3 2 3 3 3 3 3 2 2 3	2 3 2 2 3 3 3	3 2	
UT 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 5 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 1955	2 3 2 2 3	3 2	3 3
May 1.x 2.x 3.6 3 3 2 2 3 4 3 3 3 5 8 7 5 5 6 7 8 8 11 12 13 13 14 14 16 17 15 5 3 - 2 - 2 2 4 6 8 7 7 7 7 3 3 3 2 2 3 2 2 3 2 2 2 2 2 3 4 3 4 4 8 11 10 11 10 8 8 7 8 9 11 5 4 3 3 3 2 2 3 8 8 8 8 8 8 9 10 12 12 12 11 4 2 2 - 3 2 2 10 10 10 10 10 10 10 10 10 10 10 10 10	3 3	2	3
2.x 3.6 3.6 3.2 2.3 4.3 3.5 8.7 5.5 6.7 8.8 11 12 13 13 14 14 16 17 15 5.3 - 2 - 2 2 2 3 4 5 4 9 11 12 11 10 8 9 9 10 11 12 12 11 4 2 2 - 3 2 2 3 8 8 7 7 7 8 7 8 8 9 10 11 12 12 11 10 8 9 9 10 11 12 12 11 4 2 2 - 3 2 2 3 3 3 3 2 2 3 3 3 3 2 2 3 3 3 3 3	3 3	2	3
3.6 3 3 2 2 3 4 3 3 3 5 8 7 5 5 6 7 8 8 11 12 13 13 14 14 16 17 15 5 3 - 2 - 2 2 2 4 6 8 7 8 9 10 11 12 12 11 4 2 2 - 3 2 2 3 2 2 2 2 2 3 4 3 4 4 5 6 8 7 7 7 8 7 5 4 3 2 4 5 4 3 3 2 2 3 3 3 3 3 2 2 3 3 3 3 3 3 2 2 3 3 3 3 3 3 3 2 2 3	3 3	2	3
4.6 3 2 2 3 2 2 3 - 2 3 5 4 3 4 9 11 12 11 10 8 9 9 10 11 12 12 11 4 2 2 - 3 2 2	3 3	2	3
5.x 6.x 7.7 3 3 2 2 3 2 2 2 2 2 3 4 3 4 4 8 H 10 H 10 8 8 7 8 9 H 5 4 3 3 3 2 2 3 8.x 9.6 10.x 11.x 12.6a 3 3 3 3 3 2 2 2 2 2 2 3 4 3 4 5 4 3 5 6 H 14 10 9 4 4 8 14 8 5 3 3 3 2 2 - 13.7 13.8 13.7 14.8a	3 3	4	. 3
6.x 7.7 8.x 9.6 9.6 10.x 11.x 12.6a 13.7 14.8a 15.7a 2 2 2 2 2 2 3 3 3 3 3 2 2 3 3 3 3 3 2 2 3 3 3 3 3 2 3 3 3 3 2 3 3 3 3 2 2 3 3 3 3 3 2 2 3 3 3 3 3 2 2 3 3 3 3 3 2 2 3 3 3 3 3 2 3 3 3 3 2 3 3 3 3 2 3 3 3 3 2 3 3 3 3 2 3 3 3 3 2 3 3 3 3 3 2 3 3 3 3 3 2 3 3 3 3 3 2 3 3 3 3 3 3 2 3		·	
7.7 3 3 2 2 3 2 2 2 2 2 3 4 3 4 4 8 11 10 11 10 8 8 7 8 9 11 5 4 3 3 3 2 2 3 8 8 9 11 5 4 3 3 3 2 2 3 8 8 9 11 5 4 3 3 3 2 2 3 10 10 10 10 10 10 10 10 10 10 10 10 10		·	
8.x 9.6 10.x 11.x 12.6a 13.7 14.8a 1		·	
9.6 3 3 3 3 2 2 3 2 2 3 4 3 4 4 5 6 8 7 7 7 8 7 5 4 3 2 4 5 4 3 3 2 2 - 10.x	- 2	3	2
9.0 3 3 3 2 2 3 2 2 3 4 4 5 6 11 14 10 9 4 4 8 14 8 5 3 3 3 2 2 2 2 3 2 7 4 3 3 2 2 2 4 6 8 9 8 8 6 4 3 2 5 3 3 2 2 2 2 3 3 3 3	~ 1 2	_	~
11.x 12.6a 13.7 14.8a 15.7a 12.2 16.6 13.7 14.8a 15.7a 16.6 13.3 13.7 14.8a 15.7a 16.6 17.7 18.x 19.x	3 2		
12.6a 3 3 2 3 3 3 2 2 3 3 4 5 4 3 5 4 3 5 6 11 14 10 9 4 4 8 14 8 5 3 3 3 3 2 3 13.7 14.8a 15.7a 12.2 2 2 2 2 3 3 3 2 3 3 3 3 3	2 2		
13.7))	4	3
14.8a 15.7a 16.6 17.7 18.x 19.x	3 4	3	
15.7a 15.7a 16.6 17.7 18.x 19.x		_	_
16.6 3 3 3 2 3 3 2 4 5 2 2 2 4 6 8 7 8 8 6 7 6 8 7 4 3 3 2 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2		2	3
17.7 3 3 3 2 2 3 3 5 4 2 2 3 3 14 17 14 13 13 11 12 12 13 11 5 4 3 3 2 2 2 3 2 2 3 18.x 19.x	2 3	3	3
18. x 19. x	3 4	2	3
19.x			
10.4			
20.6 4 3 3 3 3 3 2 2 3 3 6 7 8 11 16 13 10 11 12 13 14 13 12 11 5 3 2 2 2 3 3 2 3	3 3	4	. 3
21.6 3 2 2 - 2 2 2 4 3 5 8 16 18 4 4 6 8 7 5 4 4 4 3 3 2 - 2 2 2	- 2	3	3
22.7a 3 2 2 - 2 - 2 2 2 2 3 - 11 14 16 8 8 9 10 9 8 6 5 4 4 3 4 5 3 2 2	- 2	2	2
23.7a 2 2 - 2 - 2 - 2 - 3 2 4 3 5 6 11 14 13 11 9 8 8 7 6 5 4 4 3 2 2 2	→ 2	2	2 -
24.7a 2 3 - 3 2 2 2 11 7 8 7 7 6 5 4 4 3 3 4 3		-	. –
25. x			
26.6 2 2 2 3 2 2 2 2 3 2 - 2 2 3 3 5 6 8 7 7 6 5 5 6 8 6 5 4 2 3 2 2 2 2	2 3	2	2
27.6 3 4 3 3 2 3 3 3 5 3 4 7 8 11 12 14 14 11 12 9 8 9 10 11 14 5 5 3 3 2 3 2 3	33	3	3
28. x			
29. x			
30. x			
31.7a 2 2 2 - 2 - 2 3 2 3 4 4 5 4 5 4 5 6 4 6 7 6 5 4 5 4 3 2 - 2		3	3 2

Table 100a

Coronal observations at Sacramento Peak, New Mexico (6702A), east limb
(Arbitrary Scale)

															(Art	oit	arj	r S	cale	:)				,													
Date	Т			Deg	ree	es r	ort	h o	f t	he	sol	ar	equ	ato	r				00	П			De	gre	es	sou	th	of	the	S	olar	eç	luat	or			
UT	90	85	80	75	70	65	60	55	50	45	40	35	30	25	20	15	10	5	O	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90
195 5																		\neg																			
May 1.x																																					
2.x	1																	ŀ																			
3.6	-	_	_	_	-	_	_	-	-	_	-	-	_	_	_	_	-	-	-	-	_	_	_	_	2	3	3	2	-	-	-	_	-	-	-	-	-
4.6	-	_	_	-	_	_	_	-	-	_	-	-	_	_	_	_	-	-	_	-	-	-	_	-	-	_	-	_	-	-	-	-	-	-	-	-	-
5.x																		- 1																			
6.x																																					
7.7	-	_	_	-	_	_	-	-	_	_	_	6873		-	_	_	_	-		-	_	_	_	_	_	-	_	_	-	-	-	_	-	-	-	-	-
x.8																				ł																	
9.6	-	_	-		_	_	_	-	_	_	_	-	-	_	_	_	_	-	_	-	_	_	-	-	_	-	-	_	-	4.0	-	_	-	_	-	-	-
10.x																																					
11.x																				1																	
12.6a	-	-	-	-	-	_	_	-	_	_	_	-	_	-	_	_	_	-	-	- 1	-	_	_	_	_	-	-	-	-	_	-	-	-	\rightarrow	-	-	-
13.7	-	-	_	-	_	_	_	-	_	_	_	_	_	_	_	_	_	-	-	-	-	_	-	-	-	-	-	_	-	-	-	-	-	-	-	-	-
14.8a	-	_	-	-	-	-	-	_	-	_	_	-	_	_	_	_		-	-	-	_	_	_	_	_	-	-	-	_	-	-	-		-	-	-	-
15.7a	-	_	_	_	_	-	-	_	_	_	-	_	-	_	_	_	_	-	-	-	_	-	_	_	-	-	-	_	-	-	-	-	-	-	-	-	-
16.6	-	_	_	_	_	_	-	-	_	-	_	-	-	-		_	_	-	_	-	-	_	_	_	-	-	-	-	-	-	-	-	_	$\overline{\cdot}$	-	-	-
17.7	_	_	_	_	_	_	_	_	_	_	_	-	2	3	5	3	2	-	_	-	_	-	_	_	-	-	_	-	-	_	-	-	-	-	_	-	-
18.x	1																																				
19.x																		- 1																			
20.6	-	_	_	_	_	_	-	-	-	_	-	_	-	_	-	_	_	-	_	-	_	-	_	_	-	-	_	_	-	_	-	-	-	-	-	-	-
21.6	-	_	_	_	-	_	_	-	-	_	_	_	2	3	2	2	_	4	-	-	-	-	_	-	_	_	-	-	-	-	-	_	-	-	-	-	-
22.7a	-	_	-	-	_	-	_	-	-	-	_	_	2	3	3	2	_	4	-	_	_	_	-	-	-	-	-	-	-	-	-	-	-	-	_	-	-
23.7a	-	_	-	_	_	_	-	-	-	_	-	_	_	2	2	_	-	4	_	-	_	-	-	-	-	-	_	_	_	-	-	_	_	-	-	-	-
24.7a	-	_	-	-	_	-	_	-	_	-	-	-	_	-	-	_	_	-	-	-	_	_	-	_	-	-	-	_	_	-	-	_	-	-	-	-	-
25.x																																					
26.6	-	_	_	_	-	_	-	-	-	-	_	-	_	-	-	-	-	4	-	-	-	_	_	-	-	-	_	-	-	-	-	-	-	-	-	-	-
27.6	-	_	_	-	-	_	-	-	-	_	_	_	_	_	-	-	_	4	-	-	-	_	-	_	-	-	-	_	-	-	-	-	-	-	-	-	-
28.x																																					
29.x																		-		}																	
30.x																																					
31.7a	_	-	_	-	_	_	_	_	_	_	-	-	_	-	-	_	_	-	-	-	_	-	_	_	_	_	_	-	-	-	-	-	-	en-	-	+45	en
	1																			I																	

Table 99b

Coronal observations at Sacramento Peak, New Mexico (6374A), west limb (Arbitrary Scale)

Date				Dee	ree	SE	out	h c	of t	he	so.	ar	eat	iato	òr			_	0°	Ť			D	egre	ees	no	rth	of	the	S	olar	ec	uat	or			
UT	90	85					60									15	10	- 5	0,	5	10	15							50						80	85	90
1955								_			_							_		1													-				
May 1.x																																					
2.x																																					
3.6	3	3	2	4	3	4	2	3	3	4	4	2	3	3	3	5	8	14	13	12	11.	6	4		3	2	2	2	2	3	3	3	3	3	2	5	3
4.6	3		2	4	4	3	3	2	3	4	3	3	4	3	2	4	5	8	10	11	8	7	5	3	4	3	3	4	2	3	3	2	2	2	2	3	3
5.x																																					
6.x																																					
7.7	3	X	X	X	Х	X	Х	X	Х	X	Х	Х	X	X	X	X	X	X	X	X	Х	Х	Х	X	X	Х	Х	Х	X	X	X	Х	Х	3	2	3	3
8.x																													_			_				_	_
9.6	2	2	2	-	-	2	3	3	2	3	2	3	5	6	4	5	4	8	7	8	10	7	16	22	19	14	16	4	3	-	2	2	-	2	2	3	3
10.x																																					
11.x																				l.					_	_	_		_		_	_		_	_		
12.6	3	3	2	2	3	2	2	2	3	3	4	4	5	6	7				10					8	9	7	5	3	2	3	3	3	3	3	3	4	3
13.7	3	3	2	2	2	3	2	3	3	3	4	3	5	7	8				11				10	9	8	8	5	3	2	3	2	2	2	2	3	4	3
14.8a	-	-	-	-	-	-	-	-	-	-	3	4	5	5	- 5	4	5	4		5	6	5	5		3	3	4	_	_	-	_	_	_	_	_	_	_
15.7a	3	-	-	_	-	-	-	-	-	_	-	16				11	8		-	6	6	7	5		4	4	5	2	2	2	2	3	2	2		2	2
16.6	3	3	3	3	2	2	2	-	3	-,									11	8	7	6	7		7	2	6	3	3	2	2	3	3	3	4	3	3
17.7	3	4	3	3	3	2	2	3	2	-	8	20	21	12	8	9	11	14	11	10	8	7	8	9	8	3	5	4	3	3	2	2	2	3	3	3	3
18.x																																					
19.x													_	_						L					_	,	,	,	,	-	,	2	2	2	2	,	,
20.6	3	2	3	3	2	3	2	2	4	4	4	4	5	9	10	11	12	14	13	끧	12	11	11	10	5	4	4	4	4	2	4	3	2	3	2	4	4
21.6	3	2	2	-	2	2	2	2	2	2	3	4	5	7	4	5	8	7		9	8	8	7	_	4	2	2	3	3	2	2	3	2		2	2	3
22.7a	2	2	2	_	-	2	2	3	3	2	4	5	4	3	3	5	6	7	8	9	8	8	8	7	6 8	5 8	6	2	3	3	2	2	2)	~	2	2
23.7a	-	_	-	X	X	X	Х	_	-	2	2	3	4	4	3	3	4	2	6	5	5	5	5	5	5	0	0	3	2)	~	~	2	-	-	~	~
24.7a	-	-	-	-	_	-	-	-	-	2	3	4	4	5	5	4	4	5	l °	10	4	2	4	2)	4	4)	_	_	-	_	_	-	_	_	_
25.x	_	_	_	_		^			_		2	2	,	2	_		2	2	8	7	4	_	6	10	11	11	5	2	2	_	2	_	_	_	2	2	2
26.6		2	3	3	_	2	-	_	2	_	2	2	4	2	2 8	_	3					5						2	3	3	3	3	4	3	3	4	3
27.6	3	3	3	3	3	2	3	3	3	3	3	4	3	4	8	7	10	כב	14	13	14	14	ТО	20	٥٥	27	20	~))))	4))	4)
28.x																																					
29.x																																					
30.x	2	2	3	2	3	2	_	2	2	2	2	3	2	3	_		5	8	9	10	8	7	11	20	16	17	13	2	_	2	3	2	2	2	_	2	2
31.7a	_ ~	~	ر	_~	ر				~	~)			_ >		7	1 0	0			~0	-0							~	~	~		~	~

Table 100b

Coronal observations at Sacramento Peak, New Mexico (6702A), west limb (Arbitrary Scale)

															(Aı	eb11	rar	У :	Scal	e)																	
Date					ree														o°	Π											lar						
UT	50	85	80	75	70	65	60	55	50	45	40	35	30	25	20	15	10	5	U	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90
1955																																					
May 1.x	ł																																				
2.x	ļ																	- [l																	
3.6	-	_	_	_	-	_	-	_	-	-	_	_	_	_	-	-	-	\dashv	-	-	-	-	-	-	-	-	-	2	2	_	_	-	-	-	-	-	-
4.6	-	_	-	-	-	-	-	-	-	-	-	-	-	-	-	_	-	-	-	-	-	-	-	-	-	-	_	-	_	_	-	-	-	-	-	-	-
5.x	1																	Į																			
6.x																																					
7.7	-	Х	Х	X	X	Х	Х	X	X	X	Х	Х	Х	X	X	X	X	X	X	Х	Х	Х	Х	Х	X	X	Х	Х	Х	X	X	X	X	-	-	-	-
8.x	l																	1		1																	
9.6	-	-	-	-	-	-	-	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_	-	2	3	2	-	-	-	_	-	-	-	-	-
10.x																		- 1																			
11.x	1																																				
12.6	- 1	_	-	_	_	-	_	_	_	_	-	_	_	_	_	_	_	4	-	-	-	-	-	-	-	_	-	-	-	_	_	_	_	-	-	-	-
13.7	-	_	_	_	_	_	_	-	_	_	-	-	_	_	-	_	_	4	-	-	_	-	-	-	-	_	-	-	-	-	-	-	_	-	-	-	-
14.8a	-	_	_	_	_	_	_	-	_	_	-	-	_	-	_	_	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	_	-	-	-
15.7a	-	÷	-	_	-	-	-	_	_	-	-	-	-	-	-	-	-	-	-	-	_	-	_	_	-	-	-	-	_	_	_	-	_	-	-	-	-
16.6	-	_	_	-	_	_	_	-	_	_	2	2	3	2	2	-	_	-	-	_	-	-	_	_	-	_	-	-	-	-	-	-	-	-	-	-	-
17.7	-	_	_	_	-	-	-	-	-	_	-	_	_	_	_	_	_	4	-	-	_	-	_	-	_	_	_	-	-	-	-	-	-	-	-	-	-
18.x	1																	-		ļ																	
19.x																				ŀ																	
20.6	-	-	-	_	_	_	_	_	_	_	_	_	-	_	-	_	_	4	_	-	••	-	_	_	-	-	-	-	_	-	-	-	-	_	_	-	-
21.6	-	_	-	_	_	_	_	_	_	_	_	_	_	-	_	-	-	4	_	-	-	_	_	_	-	-	-	-	_	-	-	-	-	-	_	_	-
22.7a	-	_	_	-	-	-	_	_	_	_	_	_	-	_	_	_	-	-	_	-	-	-	_	_	_	-	-	_	_	_	_	-	-	-	-	-	-
23.7a	-	_	-	-	_	_	-	-	_	_	_	_	-	_	-	-	_	4	_	_	-	_	-	-	-	-	-	_	-	-	-	_	-	-	-	-	-
24.7a	-	-	_	_	-	-	_	-	-	_	-	_	_	-	W3	_	-	4	_	-	-	-	_	_	_	-	_	_	-	-	-	-	-	-	-	-	-
25.x	1																	- 1		i																	
26.6	·-	_	_	_	_	_	_	-	_	_	_	_	_	_	-	-	_	4	_	-	_	_	_	2	2	-	_	_	-	-	_	_	-	_	_	-	-
27.6	-	_	_	_	_	_	-	_	_	_	_	_	_	_	_	_	_	4	_	_	-	_	2	3	4	5	3	2	-	_	-	_	_	_	-	_	
28.x																		ı							,												
29.x																																					
30.x																																					
31.7a	-	_	_	-	_	_	-	_	_	_	-	_	_	_	-	-	_	-	_	_	_	_	2	3	5	4	2	2	-	-	-	-	-	-	_	-	-

Table 101

Zürich Provisional Relative Sunspot Numbers

May 1955

Date	Rz*	Date	R _Z *
1	23	17	29
2	21	18	32
3	32	19	34
4	45	20	45
5	44	21	60
6	28	22	51
7	20	23	55
. 8	17	24	50
9	o	25	46
10	0	26	47
11	9	27	47
12	7	28	47
13	0	29	45
14	0	30	36
15	7	31	24
16	16	Mean:	29.6

^{*} Dependent on observations at Zürich Observatory and its stations at Locarno and Arosa.

Table 102

American Relative Sunspot Numbers

April 1955

Date	R _A ,	Date	R _A ,
1	12	17	5
2	2	18	0
3	6	19	0
4	7	20	3
5	21	21	2
6	32	22	1
7	29	23	1
8	26	24	1
9	15	25	0
10	9	26	2
11	3	27	14
12	0	28	21
13	1	29	25
14	Ú	30	26
15	13	Moone	9.7
16	13	Mean:	3.1

Table 103

Solar Flares, May 1955

SID Obser-	No-Wash. No-Wash. Yes	
Impor- tance	(1-) $(1-)$ (1) (1)	(1-)
Rela- tive Area of Maximum	0.5	0.8
Int. of Maxi- mum	13	10
Time of Maxi- mum	1551 1650 1546	1855 2234
Position iti- Long- ide itude Diff	E42 E34 E22	E14
Posi Lati- tude	S34 N30 N31	N30 N30
Area (Mill) (of) (Visible) (Hemisph)	40 90 98	37
Dura- tion	35 15 25	. 25
red red End- ing (GCT)	1605 1655 1605	1910
Time Observed Begin-En	1530 1640 1540	1845 2230
Date 1955	May 6 May 26 May 27	Jan 23* Jan 23*
Observa- tory	S. Peak S. Peak S. Peak	S. Peak S. Peak

* The two small flares of Jan. 23 should have appeared in CRPL-126.

S. Peak = Sacramento Peak.

() Importance rating deduced by CRPL from the reported observations.

 $\underline{\underline{Table~104}}$ Indices of Geomagnetic Activity for April 1955

Preliminary values of international character-figures, C; Geomagnetic planetary three-hour-range indices, Kp; Daily "equivalent amplitude", Ap; Magnetically selected quiet and disturbed days

Apr. 1955	С	Values Kp Three-hour Gr. interval 1 2 3 4 5 6 7 8 Su	m Ap	Final Selec te d Days
1 2 3 4 5	1.1 1.1 0.8 1.0	3+ 3+ 3- 30 20 10 1+ 50 22 30 3+ 3- 3- 4- 30 30 40 25 2+ 3- 3- 3+ 30 3- 2+ 2- 21 20 20 2- 4- 3- 3+ 4- 40 23 4+ 30 4- 30 5- 2- 30 2- 25	+ 17 - 12 o 15	Five Quiet 16 17 18
6 7 8 9 10	0.9 1.0 0.4 0.3 0.6	4- 4- 20 4- 30 3- 10 4- 23 4+ 40 3+ 40 2+ 20 3- 3- 25 20 3- 30 10 1+ 20 1+ 2+ 16 2- 2+ 1+ 1+ 0+ 0+ 1- 30 11 10 0+ 0+ 4- 40 30 1+ 2+ 16	18 8 0 6	19 23
11 12 13 14 15	0.4 0.7 1.0 0.2 0.4	20 3+ 3- 2- 20 20 1+ 2- 17 30 3+ 2+ 2+ 30 1+ 2+ 3- 20 40 40 3- 20 20 2+ 2+ 40 23+ 3- 30 2+ 2+ 2- 1- 0+ 1- 14- 1+ 1+ 1+ 10 2+ 20 10 10 11+	12 16 7	Five Disturbed 5 7
16 17 18 19 20	0.1 0.2 0.1 0.0 0.5	1- lo lo l-	5 2 4	27 28 29 Ten Quiet
21 22 23 24 25	0.4 0.6 0.0 1.3 0.9	1+ 2- 2+ 2- 3- 20 1+ 20 2+ 3+ 2- 20 10 10 2+ 1+ 150	5 3 19	9 14 15 16 17 18
26 27 28 29 30 Mean:	1.0 1.7 1.6 1.3 0.9	4- 3+ 3+ 4- 20 2- 30 40 25- 4- 3+ 3- 1- 1+ 5- 8- 7+ 31+ 70 4- 5- 40 3- 3+ 4+ 6- 35+ 50 4- 3+ 4- 4- 4+ 4+ 32- 4+ 40 2+ 3+ 20 20 3- 3+ Mea	54 44 27 16	19 21 22 23

 \geq

≥ 400

HEIGHT

VIRTUAL S

MARCH 1955

II.6°S, 27.5°E

Fig. 71. REYKJAVIK, ICELAND 64.1°N, 21.8°W FE

FEBRUARY 1955

1.3°S, 36.8°E DECEMBER 1954

ΣX

7.4°N, 4.0°E

JUNE 1954

z

HEIGHT

VIRTUAL

19.0°N, 73.0°E

F2

¥ 400 <u>≥</u>

foF2

MAY 1953

MAY 1953

Fig. 123, TIRUCHY, INDIA

10.8°N, 78.8°E

Index of Tables and Graphs of Ionospheric Data

in CRPL-F130

								Tab	le page	Figure page
Adak, Alaska										
April 1955									14	55
Baguio, P. I.	• •	•	•	۰	۰	٥	۰	0		00
March 1955		۰	۰					۰	17	66
Baker Lake, Canada										
March 1955			•		۰	٠	9	•	16	61
Bombay, India										
June 1954	• •	•	•	•		۰	0	•	21 -	7 8
May 1953		۰	•		0	•	٥		22	81
April 1953			•			•		۰	23	84
March 1953			•	۰		0		•	24	86
Capetown, Union of S. Afric	a									
February 1955	• •	۰	•		•	0	0	•	19	71
Churchill, Canada										
March 1955		0	•	•	•	۰	۰	۰	16	62
De Bilt, Holland										
	• •	•		•	•	0	•	٥	16	63
Delhi, India										
June 1954							0	•	21	77
May 1953	• •	۰		•	۰	0	9	•	22	81
April 1953		•		0	•			۰	2 3	83
March 1953				0	0	0	0	•	24	86
Elisabethville, Belgian Con	-									
March 1955		0		0	•		۰	Φ.	18	67
Fairbanks, Alaska										
April 1955		•		0	•	0	•	0	13	5 3
March 1955	• •	•	6	٥	•	0	0	©	16	61
Falkland Is.										
November 1954		•		•	•	9	0	۰	20	75
Formosa, China										
April 1955	0 0	•	• •	0	•	۰	۰	э	14	56
Ft. Monmouth, N. J.										
March 1955		•	• •	0	0	0	0	•	17	65
Fribourg, Germany										
May 1953			o 6	9	•	۰	0	٠	22	80
April 1953		•		•	0	•	0	۰	2 3	83
March 1953		•		0	0	0	0	0	24	85
February 1953		•		b	•	۰	0	٠	25	88
January 1953		•	• •	•	•	•	0	۰	25	88
December 1952	0 0	•	٥ (b	•	0	۰	۰	25	89
November 1952	• •	•		•	•	•	•	0	25	89
October 1952		•	• •	>	•	•	0	۰	2 5	90
September 1952	0 0	0 (٥)	۰	0	0	۰	25	90

Index (CRPL-F130, continued)

	Table page	Figure page
Guam I.		
April 1955	. 15	58
Huancayo, Peru		
March 1955	. 18	68
Ibadan, Nigeria		
September 1954	. 21	76
August 1954		76
July 1954		77 70
June 1954		79
May 1954	. 22	80
Inverness, Scotland	. 20	73
December 1954	. 20	(3
February 1955	. 19	71
Leopoldville, Belgian Congo	. 17	11
March 1955	. 17	66
Lindau/Harz. Germany	• 11	00
March 1955	. 16	63
February 1955		70
Lulea. Sweden		, ,
March 1955	. 15	60
Madras. India	•	
June 1954	. 21	7 8
May 1953		82
April 1953		84
March 1953	. 24	8 7
Maui, Hawaii		
April 1955	. 14	57
Nairobi, Kenya		
December 1954	. 20	74
Narsarssuak, Greenland		
April 1955	. 13	53
Okinawa I.		-/
April 1955	. 14	56
Oslo, Norway	10	<i>5.4</i>
April 1955	. 13	54
Ottawa, Canada	17	65
March 1955	. 17	03
April 1955	. 15	58
Point Barrow. Alaska	. 13	30
March 1955	. 15	59
February 1955	. 18	69
January 1955	î 19	72
December 1954	. 19	72

Index (CRPL-F130, concluded)

Table page	Figure page
Port Lockroy November 1954	75
November 1954 20 Puerto Rico. W. I.	13
April 1955	57
Resolute Bay, Canada	
March 1955	59
Reykjavik, Iceland	0,
March 1955	62
February 1955	69
Schwarzenburg, Switzerland	
March 1955 17	64
Singapore, British Malaya	
December 1954 20	74
Slough, England	
December 1954 20	73
Talara, Peru	
March 1955 18	67
February 1955 19	70
Tiruchy, India	
June 1954	79
May 1953	82
April 1953 24	85
March 1953 24	87
Tromso, Norway	
April 1955	52
March 1955 15	60
Upsala, Sweden	- 4
April 1955	54
Washington, D. C.	
May 1955	52
Watheroo, W. Australia	
March 1955	68
White Sands, New Mexico	5.5
April 1955	55
Winnipeg, Canada	/ 4
March 1955 17	64

CRPL Reports

[A detailed list of CRPL publications is available from the Central Radio Propagation Laboratory upon request]

Daily:
Radio disturbance forecasts, every half hour from broadcast stations WWV and WWVH of the National Bureau of Standards.

Telephoned and telegraphed reports of ionospheric, solar, geomagnetic, and radio propagation data.

Semiweekly:

North Atlantic Radic Propagation Forecast (of days most likely to be disturbed during following CRPL—J.

CRPL-Jp. North Pacific Radio Propagation Forecast (of days most likely to be disturbed during following month).

Semimonthly:

CRPL—Ja. Semimonthly Frequency Revision Factors For CRPL Basic Radio Propagation Prediction Reports.

Monthly:

Basic Radio Propagation Predictions—Three months in advance. (Dept. of the Army, TB 11-499-, monthly supplements to TM 11-499; Dept. of the Navy, DNC 13 () series; Dept. of the Air Force, TO 16-1B-2 series.) On sale by Superintendent of Documents, U. S. Government Printing Office, Washington 25. D. C. Members of the Armed Forces should address cognizant military office. CRPL—D.

CRPL-F. Ionospheric Data. Limited distribution. This publication is in general disseminated only to those individuals or scientific organizations which collaborate in the exchange of ionospheric, solar, geomagnetic or other radio propagation data or in exchange for copies of publications on radio, physics and geophysics for the CRPL library.

Circulars of the National Bureau of Standards pertaining to Radio Sky Wave Transmission: NBS Circular 462. Ionospheric Radio Propagation.

NBS Circular 462.

Instructions for the Use of Basic Radio Propagation Predictions. NBS Circular 465.

These circulars are on sale by the Superintendent of Documents, U. S. Government Printing Office, Washington 25, D. C. Members of the Armed Forces should address the respective military office having cognizance of radio wave propagation.

The publications listed above may be obtained without charge from the Central Radio Propagation Laboratory, unless otherwise indicated.

CRPL Reports

[A detailed list of CRPL publications is available from the Central Radio Propagation Laboratory upon request]

Daily: Radio disturbance forecasts, every half hour from broadcast stations WWV and WWVH of the National Bureau of Standards.

Telephoned and telegraphed reports of ionospheric, solar, geomagnetic, and radio propagation data.

Semiweekly:

CRPL-J. North Atlantic Radic Propagation Forecast (of days most likely to be disturbed during following month).

North Pacific Radio Propagation Forecast (of days most likely to be disturbed during following CRPL-Jp. month).

Semimonthly:

CRPL-Semimonthly Frequency Revision Factors For CRPL Basic Radio Propagation Prediction Reports.

Monthly: CRPL-D.

Basic Radio Propagation Predictions—Three months in advance. (Dept. of the Army, TB 11-499-, monthly supplements to TM 11-499; Dept. of the Navy, DNC 13 () series; Dept. of the Air Force, TO 16-1B-2 series.) On sale by Superintendent of Documents, U. S. Government Printing Office, Washington 25. D. C. Members of the Armed Forces should address cognizant military office.

CRPL-F. Ionospheric Data. Limited distribution. This publication is in general disseminated only to those individuals or scientific organizations which collaborate in the exchange of ionospheric, solar, geomagnetic or other radio propagation data or in exchange for copies of publications on radio, physics and geophysics for the CRPL library.

Circulars of the National Bureau of Standards pertaining to Radio Sky Wave Transmission: NBS Circular 462. Ionospheric Radio Propagation.

Instructions for the Use of Basic Radio Propagation Predictions. NBS Circular 465.

These circulars are on sale by the Superintendent of Documents, U. S. Government Printing Office, Washington 25, D. C. Members of the Armed Forces should address the respective military office having cognizance of radio wave propagation.

The publications listed above may be obtained without charge from the Central Radio Propagation Laboratory, unless otherwise indicated.

III. 2. 2. 2. 8. 9. 9. 4. 8. III