Simply-connected locally Nash groups

Juan de Vicente

Universidad Autónoma de Madrid

Summer School in Tame Geometry, Konstanz, 2016

Outline

What is a locally Nash group?

- 2 Why do we study locally Nash groups?
- 3 A description of simply-connected two-dimensional abelian locally Nash groups

Locally Nash Groups (LNGs)

Definition

Let G be a (real) Lie group with an analytic atlas \mathcal{A} . Then G is a LNG if $\exists (U,\varphi) \in \mathcal{A}$, $1 \in U$, for which $\{(gU,\varphi_g)\}_{g \in G}$ is an analytic atlas

$$\varphi_{\mathsf{g}}: \mathsf{g}U \to \varphi(U): \mathsf{g}u \mapsto \varphi(u)$$

s.t. its transition maps are Nash maps and $\cdot,^{-1}$ (seen through the charts) are locally Nash maps. Notation: $(G,(U,\varphi))$

Locally Nash Groups (LNGs)

Definition

Let G be a (real) Lie group with an analytic atlas \mathcal{A} . Then G is a LNG if $\exists (U,\varphi) \in \mathcal{A}$, $1 \in U$, for which $\{(gU,\varphi_g)\}_{g \in G}$ is an analytic atlas

$$\varphi_{\mathsf{g}}: \mathsf{g}U \to \varphi(U): \mathsf{g}u \mapsto \varphi(u)$$

s.t. its transition maps are Nash maps and \cdot ,⁻¹ (seen through the charts) are locally Nash maps. Notation: $(G, (U, \varphi))$

$$\therefore$$
 for (U, φ) , $\exists V, V_g \subset U \ (g \in G)$, $1 \in U$, s.t.

$$(C_1)$$
 $\varphi(V) \times \varphi(V) \longrightarrow \varphi(U) : (x,y) \mapsto \varphi(\varphi^{-1}(x)\varphi^{-1}(y))$

$$(\mathcal{C}_2)$$
 $\varphi(V_g)$ $\longrightarrow \varphi(U): \quad \mathsf{x} \mapsto \varphi(\mathsf{g}^{-1}(\varphi^{-1}(\mathsf{x}))^{-1}\mathsf{g})$

are Nash maps.

Definition

Let $(G, (U, \varphi))$ and $(H, (V, \psi))$ be LNGs.

A homomorphism (isomorphism) of Lie groups $f: G \to H$ is a locally Nash homomorphism (resp. isomorphism) if $\exists W \subset U \cap f^{-1}(V)$, $1 \in W$, s.t.

$$\varphi(W) \to \psi(V) : x \mapsto \psi \circ f \circ \varphi^{-1}(x)$$

is a Nash map.

- $(\mathbb{R}, (\mathbb{R}, \sin)).$

- $\bullet \ \, \big(\mathbb{R},(\mathbb{R},\textit{exp})\big) \quad \overset{\textit{exp}}{\simeq} \quad \big(\mathbb{R}_{>0},(\mathbb{R}_{>0},\textit{id})\big).$
- $(\mathbb{R}, (\mathbb{R}, \sin)).$

- $(\mathbb{R},(\mathbb{R},\sin)).$
- The direct product of LNGs is a LNG.
- The universal covering of a LNG is a LNG.
- The quotient of a LNG by a discrete subgroup is a LNG.
- Every algebraic group has a natural structure of LNG.

- $(\mathbb{R},(\mathbb{R},\sin)).$
- The direct product of LNGs is a LNG.
- The universal covering of a LNG is a LNG.
- The quotient of a LNG by a discrete subgroup is a LNG.
- Every algebraic group has a natural structure of LNG.

Theorem (Hrushovski-Pillay [HP94])

The LNGs are, up to local Nash isomorphism, precisely the quotient of universal coverings of algebraic groups by discrete subgroups.

IF $(\mathbb{R}^n, (U, \varphi))$ is a LNG THEN

$$\varphi(V) \times \varphi(V) \longrightarrow \varphi(U) : (x, y) \mapsto \varphi(\varphi^{-1}(x) + \varphi^{-1}(y))$$
$$\varphi(V) \times \varphi(V) \longrightarrow \varphi(U) : (\varphi(u), \varphi(v)) \mapsto \varphi(u + v)$$

are Nash maps.

IF $(\mathbb{R}^n, (U, \varphi))$ is a LNG THEN

$$\varphi(V) \times \varphi(V) \longrightarrow \varphi(U) : (x, y) \mapsto \varphi(\varphi^{-1}(x) + \varphi^{-1}(y))$$
$$\varphi(V) \times \varphi(V) \longrightarrow \varphi(U) : (\varphi(u), \varphi(v)) \mapsto \varphi(u + v)$$

are Nash maps.

Algebraic Addition Theorem (AAT)

Let U be an open neighborhood of 0. An analytic map $\varphi:U\to\mathbb{R}^n$ admits an AAT if $\varphi_1(u+v),\ldots,\varphi_n(u+v)$ are algebraic over

$$\mathbb{R}(\varphi_1(u),\ldots,\varphi_n(u),\varphi_1(v),\ldots,\varphi_n(v)).$$

This definition generalizes to holomorphic and meromorphic maps.

Historical motivation

Nash groups and semialgebraic groups

A natural problem in Tame Geometry is to find a classification of semialgebraic groups over the real field, *i.e.* of groups definable over

$$\mathcal{R} := <\mathbb{R}; <, +, \cdot, 0, 1 > .$$

In [Pil88], it is shown that these groups admit an additional analytic structure and hence they can be viewed as Nash groups (and conversely, every Nash group is a semialgebraic group).

The one-dimensional classification of Nash groups was done by Madden and Stanton in [MS92] by getting first a classification of simply-connected one-dimensional LNG.

Notation

IF $\varphi: \mathbb{C}^n \to \mathbb{C}^n$ is a real meromorphic map admitting an AAT s.t. $\exists U \subset \mathbb{R}^n$, $0 \in U$, $\exists k \in \mathbb{R}^n$ s.t.

$$\psi: U \to \mathbb{R}^n: x \mapsto \varphi(x+k)$$

is a real analytic diffeomorphism THEN $(\mathbb{R}^n, (U, \psi))$ is a LNG. Notation independent of U and k: (\mathbb{R}^n, φ)

Notation

IF $\varphi: \mathbb{C}^n \to \mathbb{C}^n$ is a real meromorphic map admitting an AAT s.t. $\exists U \subset \mathbb{R}^n$, $0 \in U$, $\exists k \in \mathbb{R}^n$ s.t.

$$\psi: U \to \mathbb{R}^n: x \mapsto \varphi(x+k)$$

is a real analytic diffeomorphism THEN $(\mathbb{R}^n, (U, \psi))$ is a LNG. Notation independent of U and k: (\mathbb{R}^n, φ)

The Weierstrass \wp_{Λ} -function $\wp_{\Lambda}: \mathbb{C} \to \mathbb{C}$ is a meromorphic function admitting an AAT which is not analytic at 0.

An adecuate translation of \wp_{Ω} is an analytic diffeomorphism at 0, \therefore $(\mathbb{R},\wp_{\Lambda})$ is a LNG.

Theorem (Madden-Stanton [MS92])

Classification of simply-connected one-dimensional LNGs:

- \bullet (\mathbb{R} , id),
- \bullet (\mathbb{R} , exp),
- \bullet (\mathbb{R} , sin),
- $(\mathbb{R}, \wp_{\Lambda})$ for some lattice $\Lambda < (\mathbb{C}, +)$.

None of the above LNGs is locally Nash isomorphic to one of a different class. The fourth case subdivides in different cases.

Simply-connected two-dimensional abelian LNGs

Theorem (Baro-dV-Otero [BdVO15])

- **1** Extension: Every simply-connected two-dimensional abelian LNG is locally Nash isomorphic to one of the form (\mathbb{R}^2, φ) for some real meromorphic map $\varphi := (\varphi_1, \varphi_2) : \mathbb{C}^2 \to \mathbb{C}^2$ admitting an AAT.
- ② Painlevé families: Both φ_1 and φ_2 are algebraic over a field of a unique member of the six following families:

 $(\varphi_1, \varphi_2) : \mathbb{C}^2 \to \mathbb{C}^2$. Both φ_1 , φ_2 are algebraic over one and only one of:

Painlevé families

$$\mathcal{P}_1 := \{\mathbb{C}((u, v) \circ \alpha) : \alpha \in GL_2(\mathbb{C})\}$$

$$\mathcal{P}_2 := \left\{ \mathbb{C}((u, e^{\mathsf{v}}) \circ \alpha) : \alpha \in \mathsf{GL}_2(\mathbb{C}) \right\}$$

$$\mathcal{P}_3 := \left\{ \mathbb{C} \left((e^u, e^v) \circ \alpha \right) : \alpha \in GL_2(\mathbb{C}) \right\}$$

 $(\varphi_1, \varphi_2) : \mathbb{C}^2 \to \mathbb{C}^2$. Both φ_1 , φ_2 are algebraic over one and only one of:

Painlevé families

$$\mathcal{P}_1 := \left\{ \mathbb{C} \big((u, v) \circ \alpha \big) : \alpha \in GL_2(\mathbb{C}) \right\}$$

$$\mathcal{P}_2 := \left\{ \mathbb{C}((u, e^{v}) \circ \alpha) : \alpha \in GL_2(\mathbb{C}) \right\}$$

$$\mathcal{P}_3 := \left\{ \mathbb{C} \left(\left(e^u, e^v \right) \circ \alpha \right) : \alpha \in \mathit{GL}_2(\mathbb{C}) \right\}$$

$$\mathcal{P}_4:=\left\{\mathbb{C}\big((\wp_\Omega(u),v-\mathsf{a}\zeta_\Omega(u))\circ\alpha\big):\mathsf{a}\in\{0,1\};\Omega<(\mathbb{C},+);\alpha\in\mathsf{GL}_2(\mathbb{C})\right\}$$

$$\mathcal{P}_5 := \left\{ \mathbb{C}\left(\left(\wp_{\Omega}(u), \frac{\sigma_{\Omega}(u-a)}{\sigma_{\Omega}(u)} e^{v} \right) \circ \alpha \right) : a \in \mathbb{C}; \Omega < (\mathbb{C}, +); \alpha \in GL_2(\mathbb{C}) \right\}$$

 \mathcal{P}_6 : All the possible fields of abelian functions (corresponding to lattices of \mathbb{C}^2) of transcendence degree 2 over \mathbb{C} .

Proof: Extension

Proposition (Baro-dV-Otero [BdVO15])

IF $(\mathbb{R}^n, (U, \varphi))$ is a LNG THEN $\exists \psi := (\psi_1, \dots, \psi_n) : \mathbb{C}^n \to \mathbb{C}^n$ a real meromorphic map admitting an AAT s.t.

- ② $\exists \psi_0 : \mathbb{C}^n \to \mathbb{C}$ a real meromorphic map algebraic over $\mathbb{R}(\psi_1, \dots, \psi_n)$ s.t. for each $f \in \mathbb{R}(\psi_0, \psi_1, \dots, \psi_n)$

$$f(u+v) \in \mathbb{R}(\psi_0(u), \psi_1(u), \dots, \psi_n(u), \psi_0(v), \psi_1(v), \dots, \psi_n(v)).$$

 \therefore the classification of locally Nash structures of \mathbb{R}^2 reduces to the study of real meromorphic maps $\psi:\mathbb{C}^2\to\mathbb{C}^2$ that admit an AAT.

Proof: Painlevé families

Theorem (Painlevé [Pai03])

IF $\varphi_1, \varphi_2 : \mathbb{C}^2 \to \mathbb{C}$ are functionally independent meromorphic functions s.t. $\varphi := (\varphi_1, \varphi_2)$ admits an AAT THEN $\exists i \in \{1, \dots, 6\}$ s.t. φ_1 and φ_2 are algebraic over one of the fields of the family \mathcal{P}_i .

Bibliography I

E. Baro, J. de Vicente, and M Otero.

Two-dimensional simply connected abelian locally Nash groups.

http://arxiv.org/abs/1506.00405, 2015.

Ehud Hrushovski and Anand Pillay.

Groups definable in local fields and pseudo-finite fields.

Israel J. Math., 85(1-3):203-262, 1994.

James J. Madden and Charles M. Stanton.

One-dimensional Nash groups.

Pacific J. Math., 154(2):331–344, 1992.

Paul Painlevé.

Sur les fonctions qui admettent un théorème d'addition.

Acta Math., 27(1):1-54, 1903.

Bibliography II

Anand Pillay.

On groups and fields definable in o-minimal structures. *Journal of Pure and Applied Algebra*, 53(3):239–255, 1988.

Masahiro Shiota.

Nash manifolds, volume 1269 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1987.