Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики

УЧЕБНЫЙ ЦЕНТР ОБЩЕЙ ФИЗИКИ ФТФ

Группа	M32081	К работе допущен
Студент	Эседулаева З.А.	Работа выполнена
Преполавате	пь Рахманова Г Р	Отчет принят

Рабочий протокол и отчет по моделированию №1

Моделирование физического маятника

Задача:

Пусть на неподвижном шарнире подвешен маятник – груз массы m, находящийся на конце стержня длины l. Шарнир считается идеально гладким в том смысле, что в нем не

Шарнир считается идеально гладким в том смысле, что в нем не происходят потери энергии на трение. Стержень считается невесомым и абсолютно жестким, т.е. его кинетическая и потенциальная энергии равны нулю, а груз не может совершать движений вдоль оси стержня.

Груз имеет небольшие размеры по сравнению с длиной стержня (материальная точка); ускорение свободного падения g постоянно.

Рабочие формулы:

Колебания маятника под действием сил тяжести:

$$\frac{d^2\alpha}{dt^2} = -\frac{g}{l}\sin\alpha$$

Частота собственных колебаний:

$$\omega_0^2 = \frac{g}{l}$$

Учитывая трение на шарнирах:

$$\frac{d^2\alpha}{dt^2} = -\omega_0^2 \sin \alpha - \gamma \frac{d\alpha}{dt},$$

где коэффициент затухания у представляет меру тормозящей силы.

Исходные данные:

$$g = 9.8 \frac{M}{c^2}$$

 $\gamma = 0.6$
 $l = 1.0 M$

Решение поставленных задач:

Введём угловую скорость $\omega(t) = \frac{d\alpha}{dt}$.

Тогда дифференциальное уравнение можно представить как:

$$\omega'(t) = -\omega_0 \sin \alpha - \gamma \omega(t)$$

Такое ДУ решается в рабочем коде с помощью функции *odeint* в подключенной библиотеке *scipy.integrate*:

Графики строятся по результатам работы программы. Демонстрацию работы физического маятника можно посмотреть в видео pendulum demonstration.mp4.

Сравнение периодов (п.6):

Без тормозящей силы за 12 секунд было совершено 6,5 колебаний. С тормозящей силой за то же время было совершено 5 колебаний.

$$T_1 = \frac{12}{6,5} = 1,85$$

$$T_2 = \frac{12}{5} = 2,4$$

$$T_1 < T_2$$

Результаты работы:

см. *pendulum_demonstration.mp4* для анимации полученных результатов пример конечного кадра:

Выводы:

Была смоделирована работа физического маятника с тормозящей силой, полученный результат совпадает с предложенными выходными данными. Были вычислены периоды при уравнениях с тормозящей силой и без нее, а также было произведено их сравнение.