Regresion no lineal

2024-09-10

```
library(MASS)
library(nortest)
library(e1071)
library(lmtest)
## Loading required package: zoo
##
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
##
       as.Date, as.Date.numeric
##
M = cars
head(M)
##
     speed dist
## 1
        4
## 2
        4 10
        7
## 3
        7
           22
## 5
        8
           16
## 6
             10
shapiro.test(M$speed)
##
   Shapiro-Wilk normality test
## data: M$speed
## W = 0.97765, p-value = 0.4576
shapiro.test(M$dist)
##
   Shapiro-Wilk normality test
## data: M$dist
## W = 0.95144, p-value = 0.0391
ad.test(M$speed)
##
## Anderson-Darling normality test
##
## data: M$speed
## A = 0.26143, p-value = 0.6927
```

```
ad.test(M$dist)
##
##
    Anderson-Darling normality test
##
## data: M$dist
## A = 0.74067, p-value = 0.05021
par(mfrow = c(1, 2))
qqnorm(M$speed, main = "QQ Plot - Speed")
qqline(M$speed, col = "red")
hist(M$speed, freq = FALSE, main = "Histogram - Speed", xlab = "Speed", ylab = "Density", col = "lightg
lines(density(M$speed), col = "red")
curve(dnorm(x, mean = mean(M$speed), sd = sd(M$speed)), from = min(M$speed), to = max(M$speed), add = T
               QQ Plot - Speed
                                                           Histogram - Speed
                                                     90.0
      20
Sample Quantiles
                                                     0.04
                                               Density
      15
                                                     0.02
      10
      2
                                                     0.00
             -2
                         0
                               1
                                     2
                                                          0
                                                                5
                   -1
                                                                     10
                                                                          15
                                                                               20
                                                                                    25
               Theoretical Quantiles
                                                                     Speed
par(mfrow = c(1, 2))
qqnorm(M$dist, main = "QQ Plot - Dist")
qqline(M$dist, col = "red")
hist(M$dist, freq = FALSE, main = "Histogram - Dist", xlab = "Dist", ylab = "Density", col = "lightgray
lines(density(M$dist), col = "red")
```

curve(dnorm(x, mean = mean(M\$dist), sd = sd(M\$dist)), from = min(M\$dist), to = max(M\$dist), add = TRUE,

Histogram - Dist


```
skew_speed <- skewness(M$speed)
skew_dist <- skewness(M$dist)

kurtosis_speed <- kurtosis(M$speed)
kurtosis_dist <- kurtosis(M$dist)

cat("Sesgo de Speed:", skew_speed, "\n")</pre>
```

```
## Sesgo de Speed: -0.1105533
cat("Curtosis de Speed:", kurtosis_speed, "\n")

## Curtosis de Speed: -0.6730924
cat("Sesgo de Dist:", skew_dist, "\n")

## Sesgo de Dist: 0.7591268
```

```
## Curtosis de Dist: 0.1193971
```

cat("Curtosis de Dist:", kurtosis_dist, "\n")

Como podemos ver speed sigue una distribuci
in aproximadamente normal, tiene ligeras desviaciones pero con l
sa graficas podemos asumir normalidad, mientras tanto la variable dist
 muestra un alejamiento mas claro de la normalidad.

Este alejamiento se puede dar por muchas cosas, puede ser el tamaño de los valores o tambien de factores que no fueron capturados en el conjunto de los datos, ya que en el contexto del problema, la variable distancia puede ser afectada de diferente manera.

```
modelo <- lm(dist ~ speed, data = M)
summary(modelo)</pre>
```

```
##
## Call:
## lm(formula = dist ~ speed, data = M)
##
## Residuals:
       Min
                                3Q
##
                1Q Median
                                       Max
  -29.069 -9.525 -2.272
                             9.215 43.201
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) -17.5791
                            6.7584 -2.601
                                             0.0123 *
                            0.4155
                                     9.464 1.49e-12 ***
## speed
                 3.9324
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 15.38 on 48 degrees of freedom
## Multiple R-squared: 0.6511, Adjusted R-squared: 0.6438
## F-statistic: 89.57 on 1 and 48 DF, p-value: 1.49e-12
coeficientes <- coef(modelo)</pre>
slope <- coeficientes["speed"]</pre>
intercept <- coeficientes["(Intercept)"]</pre>
plot(M$speed, M$dist, main = "Regresión Lineal: Distancia vs Velocidad",
     xlab = "Velocidad (speed)", ylab = "Distancia (dist)", pch = 19, col = "blue")
abline(modelo, col = "red", lwd = 2)
```

Regresión Lineal: Distancia vs Velocidad


```
cat("Media de los residuos:", mean(residuos), "\n")
## Media de los residuos: 2.220446e-16

qqnorm(residuos)
qqline(residuos, col = "red")
```

Normal Q-Q Plot


```
##
## Shapiro-Wilk normality test
##
## data: residuos
## W = 0.94509, p-value = 0.02152

dwtest(modelo)

##
## Durbin-Watson test
##
## data: modelo
## DW = 1.6762, p-value = 0.09522
## alternative hypothesis: true autocorrelation is greater than 0
```

plot(modelo, which = 1)

plot(modelo, which = 1)


```
boxcox_result <- boxcox(modelo)</pre>
      -100
log-Likelihood
      -150
      -200
                                                                                             2
              -2
                                                      0
                                                                          1
                                  -1
                                                      λ
lambda_optimo <- boxcox_result$x[which.max(boxcox_result$y)]</pre>
cat("El valor óptimo de lambda para la transformación Box-Cox es:", lambda_optimo, "\n")
## El valor óptimo de lambda para la transformación Box-Cox es: 0.4242424
Y(\lambda) = \begin{cases} \frac{Y^{\lambda} - 1}{\lambda}, & \text{si } \lambda \neq 0\\ \ln(Y), & \text{si } \lambda = 0 \end{cases}
M$dist_boxcox_exact <- (M$dist^lambda_optimo - 1) / lambda_optimo</pre>
M$dist_boxcox_approx <- log(M$dist)</pre>
cat("Medidas originales:\n")
## Medidas originales:
cat("Sesgo:", skewness(M$dist), "Curtosis:", kurtosis(M$dist), "\n")
## Sesgo: 0.7591268 Curtosis: 0.1193971
cat("Transformación exacta (Box-Cox):\n")
## Transformación exacta (Box-Cox):
cat("Sesgo:", skewness(M$dist_boxcox_exact), "Curtosis:", kurtosis(M$dist_boxcox_exact), "\n")
## Sesgo: -0.1701619 Curtosis: -0.186884
cat("Transformación aproximada (Log):\n")
## Transformación aproximada (Log):
cat("Sesgo:", skewness(M$dist_boxcox_approx), "Curtosis:", kurtosis(M$dist_boxcox_approx), "\n")
## Sesgo: -1.302538 Curtosis: 2.543008
```

```
shapiro.test(M$dist)
##
## Shapiro-Wilk normality test
##
## data: M$dist
## W = 0.95144, p-value = 0.0391
shapiro.test(M$dist_boxcox_exact)
## Shapiro-Wilk normality test
## data: M$dist_boxcox_exact
## W = 0.99168, p-value = 0.9773
shapiro.test(M$dist_boxcox_approx)
## Shapiro-Wilk normality test
##
## data: M$dist_boxcox_approx
## W = 0.91024, p-value = 0.001066
par(mfrow = c(1, 3))
hist(M$dist, main = "Datos originales", xlab = "Distancia", col = "lightblue", freq = FALSE)
lines(density(M$dist), col = "red")
hist(M$dist_boxcox_exact, main = "Box-Cox (Exacto)", xlab = "Distancia transformada", col = "lightgreen
lines(density(M$dist_boxcox_exact), col = "red")
hist(M$dist_boxcox_approx, main = "Log (Aprox)", xlab = "Distancia transformada", col = "lightcoral", f
lines(density(M$dist_boxcox_approx), col = "red")
```


Boxplot de Distancia


```
modelo_clean <- lm(dist ~ speed, data = M_clean)
boxcox_result_clean <- boxcox(modelo_clean)</pre>
```



```
lambda_optimo_clean <- boxcox_result_clean$x[which.max(boxcox_result_clean$y)]

M_clean$dist_boxcox_exact <- (M_clean$dist^lambda_optimo_clean - 1) / lambda_optimo_clean

qqnorm(M_clean$dist_boxcox_exact)
qqline(M_clean$dist_boxcox_exact, col = "red")</pre>
```

Normal Q-Q Plot

Regresión Lineal: Log(Distancia) vs Velocidad


```
shapiro.test(residuals(modelo2))
##
##
    Shapiro-Wilk normality test
## data: residuals(modelo2)
## W = 0.95734, p-value = 0.06879
dwtest(modelo2)
##
##
   Durbin-Watson test
##
## data: modelo2
## DW = 1.8247, p-value = 0.2194
## alternative hypothesis: true autocorrelation is greater than 0
plot(M$speed, M$dist, main = "Regresión Lineal: Distancia vs Velocidad",
     xlab = "Velocidad (speed)", ylab = "Distancia (dist)", pch = 19, col = "blue")
abline(modelo, col = "red", lwd = 2)
```

Regresión Lineal: Distancia vs Velocidad

Regresión Lineal: Log(Distancia) vs Velocidad

Modelo No Lineal: Distancia vs Velocidad

El modelo 2 es mejor, ya que este proporciona un mejor ajuste y mejora la validez del modelo en terminos de normalidad de los residuos y homocedasticidad.