

Sequential Circuit Analysis

ECE 2372 | Modern Digital System Design | Texas Tech University

Lecture Overview

Timing Charts

Mealy versus Moore Machines

Sequential Circuit Analysis | Modern Digital System Design

 Analyze clocked sequential circuits to find the output sequence resulting from a given input sequence by tracing 0 and 1 signals through the circuit.

We've already been doing this.

Signal Tracing: Procedure

- 1. Assume an initial state of the flip-flops.
 - Assume at rest (Q = 0) unless otherwise specified.
- 2. For the first input in the given sequence, determine the circuit outputs and flip-flop inputs.
- 3. Determine the new set of flip-flop states after the next active clock edge.
- 4. Determine the outputs that correspond to the new states.
- 5. Repeat 2, 3, and 4 for each input in the given sequence.

 $X = \{0, 1, 1, 0, 1\}$ F = 0Cycle = 01 A' A $\mathbf{D}_{\mathtt{A}}$ $\mathbf{D}_{\mathtt{A}}$ X = 0X = 0

 $X = \{\mathbf{0}, \mathbf{1}\}$ Cycle = 4F = 00 A' A B' $\mathbf{D}_{\mathtt{A}}$ $\mathbf{D}_\mathtt{A}$ X = 0X = 0

 $X = \{1\}$ Cycle = 5F = 10 A' A B' $\mathbf{D}_{\mathtt{A}}$ $\mathbf{D}_\mathtt{A}$ X = 1X = 1

What questions do you have?

EXAM Question: Signal Tracing

For the sequential circuit shown on the next slide, what will the output be at the end of the input sequence?

A.
$$F = 0$$

B.
$$F = 1$$

A.
$$F=0$$

B.
$$F = 1$$

$$X = \{1, 0, 1, 0, 1\}$$

$$A. F = 0$$

B.
$$F = 1$$

$$X = \{1, 0, 1, 0, 1\}$$

A.
$$F = 0$$
 1 x

 B. $F = 1$
 1 B'

 $X = \{1, 0, 1, 0, 1\}$
 1 x

 Cycle = 0
 1 0

 B'
 B

 K_B
 X
 X

A.
$$F = 0$$
B. $F = 1$
 $X = \{0, 1, 0, 1\}$

Cycle = 1

1
0

A' A

 $\mathbf{K}_{\mathtt{A}}$

X

 $J_{\mathtt{A}}$

A.
$$F = 0$$
 1 x

 B. $F = 1$
 0 B'

 $X = \{1, 0, 1\}$
 1 x

 Cycle = 2
 0 A

 B'
 B

 K_B
 X
 X

$$A. F = 0$$

$$B. F = 1$$

$$X = \{1\}$$

$$Cycle = 4$$

$$0$$

$$1 \times 0$$

$$1 \times$$

Timing Charts

Sequential Circuit Analysis | Modern Digital System Design

Timing Charts

- We've already seen timing charts in our Verilog project.
- The GTKWave files that we view from our test benches are timing charts.

What questions do you have?

EXAM QUESTION: Timing Charts

What is the input sequence, X, that is shown in the following timing chart?

A.
$$X = \{1, 1, 0, 1, 0\}$$

B.
$$X = \{0, 1, 0, 1, 1\}$$

C.
$$X = \{1, 0, 0, 0, 1\}$$

$$D. X = \{0, 1, 0, 0, 1\}$$

EXAM QUESTION: Timing Charts

What is the input sequence, X, that is shown in the following timing chart?

A.
$$X = \{1, 1, 0, 1, 0\}$$
B. $X = \{0, 1, 0, 1, 1\}$
C. $X = \{1, 0, 0, 0, 1\}$
D. $X = \{0, 1, 0, 0, 1\}$

Mealy versus Moore Machines

Analysis of Sequential Circuits | Modern Digital System Design

Mealy versus Moore Machines

Sequential circuits are categorized into two types:

- 1. Moore Machines
- 2. Mealy Machines

Moore Machines

A Moore Machine is a sequential circuit in which the output is a function only of the present state.

Mealy Machine

A Mealy Machine is a sequential circuit in which the output is a function of both the present state and the input.

What questions do you have?

EXAM QUESTION: Mealy vs. Moore Machines

Is the sequential circuit a Mealy Machine or a Moore Machine?

- A. Mealy Machine
- B. Moore Machine

EXAM QUESTION: Mealy vs. Moore Machines

Is the sequential circuit a Mealy Machine or a Moore Machine?

- A. Mealy Machine
- B. Moore Machine

Lecture Recap

Timing Charts

Mealy versus Moore Machines

What questions do you have?

Sequential Circuit Analysis

ECE 2372 | Modern Digital System Design | Texas Tech University

