Digital-electronics-1

Labs/04-segment

Dominik Grenčík, 220815

Digital-electronics-1

1. Preparation tasks

• Table with connection of 7-segment displays on Nexys A7 board

Anode	Board	7-seg display	Board	
AN0	J17	CA	T10	
AN1	J18	СВ	R10	
AN2	Т9	CC	K16	
AN3	J14	CD	K13	
AN4	P14	CE	P15	
AN5	T14	CF	T11	
AN6	K2	CG	L18	
AN7	U13	DP	H15	

• Decoder truth table for common anode 7-segment display

Hex	Inputs	Α	В	С	D	E	F	G
0	0000	0	0	0	0	0	0	1
1	0001	1	0	0	1	1	1	1
2	0010	0	0	1	0	0	1	0
3	0011	0	0	0	0	1	1	0
4	0100	1	0	0	1	1	0	0
5	0101	0	1	0	0	1	0	0
6	0110	0	1	0	0	0	0	0
7	0111	0	0	0	1	1	1	1
8	1000	0	0	0	0	0	0	0
9	1001	0	0	0	0	1	0	0

Hex	Inputs	Α	В	С	D	E	F	G
Α	1010	0	0	0	1	0	0	0
b	1011	1	1	0	0	0	0	0
С	1100	0	1	1	0	0	0	1
d	1101	1	0	0	0	0	1	0
E	1110	0	1	1	0	0	0	0
F	1111	0	1	1	1	0	0	0

2. Seven-segment display decoder

Listing of VHDL architecture from source file hex_7seg.vhd

```
architecture Behavioral of hex_7seg is
begin
p_7seg_decoder : process(hex_i)
   begin
       case hex_i is
           when "0000" =>
              seg_o <= "0000001"; -- 0
           when "0001" =>
              seg_o <= "1001111"; -- 1
           when "0010" =>
              seg_o <= "0010010"; -- 2
           when "0011" =>
               seg_o <= "0000110"; -- 3
           when "0100" =>
               seg_o <= "1001100"; -- 4
           when "0101" =>
               seg_o <= "0100100"; -- 5
           when "0110" =>
               seg_o <= "0100000"; -- 6
           when "0111" =>
               seg_o <= "0001111"; -- 7
           when "1000" =>
               seg_o <= "0000000"; -- 8
           when "1001" =>
               seg_o <= "0000100"; -- 9
           when "1010" =>
               seg_o <= "0001000"; -- A
           when "1011" =>
               seg_o <= "1100000"; -- b
           when "1100" =>
               seg_o <= "0110001"; -- C
           when "1101" =>
               seg_o <= "1000010";
                                    -- d
```

Listing of VHDL stimulus process from testbench file tb_hex_7seg.vhd

```
p_stimulus : process
  begin
       -- Report a note at the begining of stimulus process
      report "Stimulus process started" severity note;
               <= "0000"; wait for 100 ns;</pre>
      s hex
      s_hex <= "0001"; wait for 100 ns;</pre>
      s hex
               <= "0010"; wait for 100 ns;</pre>
      s hex
                <= "0011"; wait for 100 ns;
              <= "0100"; wait for 100 ns;
      s_hex
                <= "0101"; wait for 100 ns;
      s_hex
      s hex <= "0110"; wait for 100 ns;
      s hex
                <= "0111"; wait for 100 ns;
            <= "1000"; wait for 100 ns;
      s hex
      s_hex
                <= "1001"; wait for 100 ns;
                <= "1010"; wait for 100 ns;
      s_hex
       s hex
                <= "1011"; wait for 100 ns;
                <= "1100"; wait for 100 ns;
       s_hex
               <= "1101"; wait for 100 ns;
       s hex
                <= "1110"; wait for 100 ns;
       s hex
       s hex
                <= "1111"; wait for 100 ns;
       -- Report a note at the end of stimulus process
      report "Stimulus process finished" severity note;
```

```
wait;
end process p_stimulus;
```

Screenshot with simulated time waveforms

· Listing of VHDL code from source file top.vhd

```
entity top is
    Port
         SW : in STD_LOGIC_VECTOR (3 downto 0);
         CA : out STD_LOGIC;
         CB : out STD_LOGIC;
         CC : out STD_LOGIC;
         CD : out STD_LOGIC;
         CE : out STD_LOGIC;
         CF : out STD_LOGIC;
         CG : out STD_LOGIC;
         LED : out STD_LOGIC_VECTOR (8 - 1 downto 0);
         AN : out STD_LOGIC_VECTOR (8 - 1 downto 0)
    );
end top;
architecture Behavioral of top is
begin
-- Instance (copy) of hex 7seg entity
    hex2seg : entity work.hex_7seg
         port map(
             hex_i \Rightarrow SW,
              seg_o(6) \Rightarrow CA,
             seg_o(5) \Rightarrow CB,
             seg_o(4) \Rightarrow CC,
             seg_o(3) \Rightarrow CD,
              seg_o(2) \Rightarrow CE,
              seg_o(1) \Rightarrow CF,
              seg_o(0) \Rightarrow CG
         );
```

```
AN <= b"1111_0111";

LED(3 downto 0) <= SW;

LED(4) <= '1' when (SW = "0000") else '0';

LED(5) <= '1' when (SW > "1001") else '0';

LED(6) <= '1' when (SW = "0001" or SW = "0011" or SW = "0101" or SW =

"0111" or SW = "1001" or SW = "1011" or SW = "1101" or SW = "1111") else '0';

LED(7) <= '1' when (SW = "0001" or SW = "0010" or SW = "0100" or SW =

"1000") else '0';

end Behavioral;
```

3. LED(7:4) indicators

• Truth table for LEDs(7:4)

Hex	Inputs	LED4	LED5	LED6	LED7
0	0000	1	0	0	0
1	0001	0	0	1	1
2	0010	0	0	0	1
3	0011	0	0	1	0
4	0100	0	0	0	1
5	0101	0	0	1	0
6	0110	0	0	0	0
7	0111	0	0	1	0
8	1000	0	0	0	1
9	1001	0	0	1	0
Α	1010	0	1	0	0
b	1011	0	1	1	0
С	1100	0	1	0	0
d	1101	0	1	1	0
E	1110	0	1	0	0
F	1111	0	1	1	0

• Listing of VHDL code for LEDs(7:4) from source file top.vhd

```
entity top is
    Port
         SW : in STD_LOGIC_VECTOR (3 downto 0);
         CA : out STD_LOGIC;
         CB : out STD_LOGIC;
         CC : out STD_LOGIC;
         CD : out STD_LOGIC;
         CE : out STD_LOGIC;
         CF : out STD_LOGIC;
         CG : out STD_LOGIC;
         LED : out STD_LOGIC_VECTOR (8 - 1 downto 0);
         AN : out STD_LOGIC_VECTOR (8 - 1 downto 0)
    );
end top;
architecture Behavioral of top is
begin
-- Instance (copy) of hex_7seg entity
    hex2seg : entity work.hex_7seg
         port map(
              hex_i
                       => SW,
              seg_o(6) \Rightarrow CA,
              seg_o(5) \Rightarrow CB,
              seg_o(4) \Rightarrow CC,
              seg_o(3) \Rightarrow CD,
              seg_o(2) \Rightarrow CE,
              seg_o(1) \Rightarrow CF,
              seg_o(0) \Rightarrow CG
         );
         AN <= b"1111_0111";
         LED(3 downto ∅) <= SW;
         LED(4) \leftarrow '1' \text{ when } (SW = "0000") \text{ else '0'};
         LED(5) \leftarrow '1' \text{ when } (SW > "1001") \text{ else } '0';
         LED(6) \ll 1' when (SW = "0001" or SW = "0011" or SW = "0101" or SW =
"0111" or SW = "1001" or SW = "1011" or SW = "1101" or SW = "1111") else '0';
         LED(7) <= '1' when (SW = "0001" \text{ or } SW = "0010" \text{ or } SW = "0100" \text{ or } SW = "0100")
"1000") else '0';
end Behavioral;
```

Listing of VHDL code for LEDs(7:4) from testbench file tb_top.vhd

```
architecture Behavioral of tb_top is
    signal s_hex : std_logic_vector (4 - 1 downto 0);
    signal s_LED : std_logic_vector (8 - 1 downto 0);
    signal s_AN : std_logic_vector (8 - 1 downto 0);
begin
    uut_top : entity work.top
        port map(
           SW
                      => s_hex,
           LED
                      => s_LED,
                      => s_AN
           AN
        );
    p_stimulus : process
    begin
        -- Report a note at the begining of stimulus process
        report "Stimulus process started" severity note;
        s_hex
                <= "0000"; wait for 100 ns;</pre>
                <= "0001"; wait for 100 ns;
        s_hex
                 <= "0010"; wait for 100 ns;
        s_hex
        s hex
                 <= "0011"; wait for 100 ns;
        s_hex
                <= "0100"; wait for 100 ns;</pre>
                 <= "0101"; wait for 100 ns;
        s_hex
        s hex
                 <= "0110"; wait for 100 ns;
                 <= "0111"; wait for 100 ns;
        s_hex
        s hex
                 <= "1000"; wait for 100 ns;
        s hex
                 <= "1001"; wait for 100 ns;
                 <= "1010"; wait for 100 ns;
        s hex
        s hex
                 <= "1011"; wait for 100 ns;
                 <= "1100"; wait for 100 ns;
        s_hex
        s hex
                 <= "1101"; wait for 100 ns;
                 <= "1110"; wait for 100 ns;
        s_hex
                 <= "1111"; wait for 100 ns;
        s hex
```

```
-- Report a note at the end of stimulus process
    report "Stimulus process finished" severity note;
    wait;
end process p_stimulus;
end Behavioral;
```

• Screenshot with simulated time waveforms

