MNO: Tarea 5

Pregunta 1

Estudia y entiende los archivos definiciones.
h y funciones.c de ahí, en particular investiga por qué se usan "" en la línea que tiene #
include en funciones.c en lugar de usar < >. Investiga el uso de static en la definición de variables externas de funciones.c .

$\mathbf{R}.$

definiciones.h y funciones.h sirven para inicializar y llenar valores en un vector o matriz dado un archivo externo. La diferencua entre usar <> o "" al llamar un programa en el header es que al usar <> se busca el archivo en un path específico mientras que al usar " " se busca el archivo en el mismo directorio del programa. Las variables deinidas como static tienen la particularidad de que "sobreviven" cuando se acaba de ejecutar el programa o función en la que viven.

Pregunta 2

Investiga* sobre BLAS, CBLAS, LAPACK, ATLAS y las operaciones de nivel 1, nivel 2 y nivel 3 de BLAS y reporta sobre esta investigación que realizas. Es una investigación que contiene principalmente una descripción sobre los paquetes y niveles anteriores.

R.-

BLAS

BLAS (Basic Linear Algebra Subprograms) es un grupo de rutinas que permiten realizar operaciones algebraicas básicas. Este tipo de rutinas se dividen en 3 niveles los cuales son: Nivel 1.- Operaciones vector-vector (normas, productos punto, multiplicaciones, etc.) Nivel 2.- Operaciones matriz-vector (multiplicaciones, resolver matrices triangulares, etc.) Nivel 3.- Operaciones matriz- matriz (rankeo, multiplicacion, resolución de matrices, etc.) BLAS se utiliza como base para el desarrolo de rutinas más avanzadas como LAPACK. CBLAS es la implementación en C de BLAS.

LAPACK

LAPACK es una paquetería para realizar operaciones algebraicas de alto nivel, tales como resolver sistemas de ecuaciones simultanios, problemas de eigevalores, factorización matricial, etc. LAPACK usa BLAS como base.

ATLAS

ATLAS o Automatically Tuned Linear Algebra es un proyecto que se encuentra actualmente en desarrollo. Este pretende proveer un sodtware de algebra lineal portable. Usa como base BLAS y algunas cosas de ATLAS.

Pregunta 3

Se definieron nuevas V1 y V2 El output fue: ./programa.out 8

 $vector: vector[0] = 53.00000 \ vector[1] = 65.00000 \ vector[2] = 144.00000 \ vector[3] = 30.00000 \ vector[4] = -333.00000 \ vector[5] = 4.00000 \ vector[6] = 34.00000 \ vector[7] = 234.00000$

 $vector: vector[0] = 45.00000 \ vector[1] = 38.00000 \ vector[2] = 542.00000 \ vector[3] = -234.00000 \ vector[4] = 23.00000 \ vector[5] = -34.00000 \ vector[6] = 0.00000 \ vector[7] = 0.00000$

resultado: 68088.000000

Pregunta 4

Investiga* sobre la subrutina de Fortran ddot (parámetros que recibe y la salida).

$\mathbf{R}.$

ddot recibe: N: tamaño de vector DX: Vector X INCX: espacio del vector x en memoria DY: Vector Y INCY: espacio del vector y en memoria

Da el producto punto entre el vector x y el vextor y

Pregunta 5

Salida del programa mult_escalar.c

programa1.out 8

 $vector: vector[0] = 53.00000 \ vector[1] = 65.00000 \ vector[2] = 144.00000 \ vector[3] = 30.00000 \ vector[4] = -333.00000 \ vector[5] = 4.00000 \ vector[6] = 34.00000 \ vector[7] = 234.00000$

 $vector: vector[0] = 45.00000 \ vector[1] = 38.00000 \ vector[2] = 542.00000 \ vector[3] = -234.00000 \ vector[4] = 23.00000 \ vector[5] = -34.00000 \ vector[6] = 0.00000 \ vector[7] = 0.00000$

resultado: 468.000000