Convergence in a metric space

Idea: as $k \to \infty$, we say points $x^{(k)} \to x$ if "they gets closer and closer (in terms of d)": $d(x^{(k)}, x) \to 0$.

 $(\varepsilon-N)$ **Definition:** Let (M,d) be a metric space, and consider a sequence in M, $\{x^{(k)}\}_{k=1}^{\infty}$. We say that $\{x^{(k)}\}$ converges to $x \in M$ (with respect to d), denoted by " $\lim_{k\to\infty} x^{(k)} = x''$ or simply " $x^{(k)} \to x''$, if:

for all $\varepsilon > 0$, there exists natural number $N(\varepsilon)$ such that, for all $n \geqslant N$,

$$d(x^{(k)}, x) < \varepsilon$$
.

- Example 0: in \mathbb{R} , $(-1/k)_{k=1}^{\infty} \to 0$.
- Example 1: in \mathbb{R}^2 with the Euclidean metric, the sequence $\{(1/k,1/k)\}$ converges to (0,0) as follows:

Let $\varepsilon > 0$ be arbitrary. Let $N > \sqrt{2}/\varepsilon$. Then, whenever $k \geqslant N$,

$$d((1/k, 1/k), (0, 0)) = \sqrt{1/k^2 + 1/k^2} = \sqrt{2}/k < \varepsilon.$$

• Example 1': (same sequence, but with l^1 metric)

We claim that $x^{(k)} \to (0,0)$ with respect to l^1 metric: Let $\varepsilon > 0$ be arbitrary. Let $N > 2/\varepsilon$, then for all $k \geqslant N$, (calculate $d(x^{(k)}, x)$)

$$||(1/k, 1/k) - (0, 0)||_1 = 2/k < \varepsilon.$$

• QUESTION: for \mathbb{R}^n , if we use different $d(x, y) = ||x - y||_p$, will convergence/limit be different? (One example of this will be answered soon.)

Very general facts about convergence in any metric space (M, d):

• Limits are unique (if exist):

In (M,d), if $(x_k) \to y$ and $(x_k) \to z$, then y=z.

Proof: Let $\varepsilon > 0$ be arbitrary. Since $(x_k) \to y$ and $(x_k) \to z$, we can choose N_1 and N_2 such that whenever $n \geqslant N_1$, $d(x_k, y) < \varepsilon$; whenever $n \geqslant N_2$, $d(x_k, z) < \varepsilon$. Then, let $N = \max{(N_1, N_2)}$. [By triangle inequality and symmetry,]

$$d(y,z) \leq d(x_k,y) + d(x_k,z) < 2\varepsilon.$$

By "nonnegativity", and because $\varepsilon > 0$ is arbitrary, d(y, z) = 0.

(Again by metric space property) Therefore y = z.

- Definition of **bounded sequence** in (M, d): there exists a positive K > 0 and a point p (*usually p = 0 for vector space*) such that for all terms of the sequence, $d(x_k, p) \leq K$.
- Statement: If $\{x^{(k)}\}$ is a sequence of points in M with respect to the metric d, then $\{x^{(k)}\}$ is bounded in (M,d).
 - \circ (Idea: choose $\varepsilon=1;$ 'all later terms' have small distance; for finitely many earlier terms, take max distance.)

Proof: Let $p \in M$ be a point [in \mathbb{R} , this is just 0]. Let $x^{(k)} \to x$, and call L = d(x,p) [in \mathbb{R} , this is just |x|]. Choose $\varepsilon_0 = 1$, then for some natural number N and all $k \geqslant N$, $d(x^{(k)},x) < 1 = \varepsilon_0$ [subscript of ε is to emphasize that I've made a choice for concreteness]. By triangle inequality,

$$d(x^{(k)}, p) \leq d(x^{(k)}, x) + d(x, p) < 1 + L.$$

[But don't forget $x^{(1)}, x^{(2)}, \ldots, x^{(N-1)}$] Therefore if we choose

$$K = \max(d(x^{(1)}, p), \dots, d(x^{(N-1)}, p), 1 + L)$$

then the distance from any $\boldsymbol{x}^{(k)}$ to the point p will be bounded above by K as required.

Back to \mathbb{R}^n together with l^1, l^2, l^∞ metric.

Theorem: a sequence of points $x^{(k)}$ in \mathbb{R}^n converges to x in l^2 distance if and only if

$$\lim_{k\to\infty} x_i^{(k)} = x_i (\forall i=1,2,\ldots n).$$

• Lemma: In \mathbb{R}^n , for all i,

$$\sum_{i=1}^{n} |v_i| = ||v||_1 \geqslant ||v||_2 \geqslant ||v||_\infty = \max_i |v_i| \geqslant |v_i|.$$

Proof of theorem: First, suppose $x^{(k)} \to x$ in 2-norm. Then $\forall \varepsilon > 0, \exists N, \forall k \geqslant N$,

$$|x_i^{(k)} - x_i| \leq \text{lemma} \|x^{(k)} - x\|_2 < \text{conv} \varepsilon \Longrightarrow \lim_{k \to \infty} x_i^{(k)} = x_i$$

i.e. each coordinate converges.

Next, suppose for all i and for all $\varepsilon>0$, $\lim_{k\to\infty}x_i^{(k)}=x_i$. Then for each i, there exists N_i such that whenever $k\geqslant N_i$, $|x_i^{(k)}-x_i|<\varepsilon/n$. Then, taking $N=\max_{1\leqslant i\leqslant n}(N_i)$, whenever $k\geqslant N$,

$$||x^{(k)} - x||_2 \le ||x^{(k)} - x||_1 = \sum_{i=1}^n |x_i^{(k)} - x_i| < n\varepsilon/n = \varepsilon.$$

Therefore we conclude that $\lim_{k \to \infty} x^{(k)} = x$ in l^2 -norm.

(Quick comment: actually, for finite dimensional \mathbb{R}^n , ALL p-norms "have the same convergence", i.e. "coordinate-wise convergence". Not true for infinite dimension, leading to interesting examples.)

Topology of Metric Space

(Up to this point, from specific to general, we have seen: $\mathbb{R} \leadsto \mathbb{R}^n \leadsto$ normed vector space \leadsto metric space, where we understand convergence and limit.)

(We will define: open set, closed set; interior, exterior, boundary, closure)

- Let (M,d) be a metric space for all of the following discussion.
- Open ball of radius r: $B_r(x) = \{ y \in M : d(y, x) < r \}$.
- (Closed ball: $\overline{B_r}(x) = \{ y \in M : d(y, x) \leq r \}$)
- (Sphere: $\partial B_r(x) = \{ y \in M : d(y, x) = r \}$)
- Next, consider a subset $X \subset M$.
- Interior: $X^{\circ} = \{x \in M : \exists r > 0, B_r(x) \subset X\}$ (some small open ball around x is contained in X).
- Exterior: $\operatorname{Ext}(X) = (X^c)^\circ = \{ y \in M : \exists r > 0, B_r(y) \cap X = \emptyset \}$ (for some small open neighborhood, an open ball does not interset X.)

• Boundary: Any open ball centered at z intersets both X and X^c :

$$\partial X = \{ z \in M : \forall r > 0, B_r(z) \cap X \neq \emptyset, B_r(z) \cap X^c \neq \emptyset \}.$$

- Closure of X (definition 1): $\overline{X} = X \cup \partial X$.
- Open set (definition 1): X is open if $X = X^{\circ}$.
- Closed set (definition 1): X is closed if X^c is open.
- Closed set definition 2: X is closed if $\overline{X} = X$.

Next time: closed set vs "limit of some sequence"; union, intersetctions of open/closed sets;

Continuous functions on metric space: $\varepsilon - \delta$ definition, and topological definitions (in terms of inverse image of open sets).