|   |   |                   | 51.50  |         |         | WITE OF                      | A 1 1 1 1 1 7 1 |        | THE SAME           | F 65 (11)                   |           |                  |                                 |  |
|---|---|-------------------|--------|---------|---------|------------------------------|-----------------|--------|--------------------|-----------------------------|-----------|------------------|---------------------------------|--|
| / |   | 29 158<br>SSIFIED | THERM  | OPHYSIO | CAL AND | VITY OF<br>ELECTR<br>FAYETTE | ONIC PE         | OPERTI | ES INFO<br>I ET AL | RMATION<br>MAR 8<br>/G 11/6 | l<br>13 - | 1/ <b>1</b><br>L |                                 |  |
|   |   |                   | CINOAB |         |         |                              |                 |        |                    |                             |           |                  |                                 |  |
|   |   |                   |        |         |         |                              |                 |        |                    |                             |           |                  |                                 |  |
|   |   |                   |        |         |         |                              |                 |        |                    |                             |           |                  |                                 |  |
|   |   |                   |        |         |         |                              |                 |        |                    |                             |           |                  |                                 |  |
|   |   |                   |        |         |         |                              |                 |        |                    |                             |           |                  |                                 |  |
|   |   |                   |        |         |         |                              |                 |        |                    |                             |           |                  |                                 |  |
|   |   |                   |        |         |         |                              |                 |        |                    |                             |           |                  | END                             |  |
|   |   |                   |        |         |         |                              |                 |        |                    |                             |           |                  | PATE<br>FILMED<br>47-83<br>DTIC |  |
| · | _ | -                 |        |         |         |                              |                 |        |                    | _                           |           |                  |                                 |  |



MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A

# CINDAS





THERMOPHYSICAL PROPERTIES RESEARCH CENTER
ELECTRONIC PROPERTIES INFORMATION CENTER
THERMOPHYSICAL AND ELECTRONIC PROPERTIES INFORMATION ANALYSIS CENTER
UNDERGROUND EXCAVATION AND ROCK PROPERTIES INFORMATION CENTER

## ELECTRICAL RESISTIVITY OF ALUMINUM AND MANGANESE

Вy

P. D. Desai, H. M. James, and C. Y. Ho

CINDAS Report 65

March 1983

Prepared for

OFFICE OF STANDARD REFERENCE DATA
National Bureau of Standards
U.S. Department of Commerce
Washington, D.C. 20234

This document has been approved for public release and sules he distribution is unlimited.

83 06 07 091



CENTER FOR INFORMATION AND NUMERICAL DATA ANALYSIS AND SYNTHESIS

PURDUE UNIVERSITY
PURDUE INDUSTRIAL RESEARCH PARK
2595 YEAGER ROAD
WEST LAFAYETTE, INDIANA 47906

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

| REPORT DOCUMENTATION F                                                                                                                                                                                                        | PAGE                                                                                               | READ INSTRUCTIONS BEFORE COMPLETING FORM                                                                                                                                         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. REPORT NUMBER                                                                                                                                                                                                              | 2. GOVT ACCESSION NO.                                                                              | 3. RECIPIENT'S CATALOG NUMBER                                                                                                                                                    |
| 4. TITLE (and Subtitle) ELECTRICAL RESISTIVITY OF ALUMINU MANGANESE                                                                                                                                                           | M AND                                                                                              | 5. TYPE OF REPORT & PERIOD COVERED  State-of-the-Art Report  6. PERFORMING ORG. REPORT NUMBER                                                                                    |
|                                                                                                                                                                                                                               |                                                                                                    | CINDAS Report 65 8. CONTRACT OR GRANT NUMBER(s)                                                                                                                                  |
| P. D. Desai, H. M. James, and C.                                                                                                                                                                                              | Ү. Но                                                                                              | S. CONTRACT ON GRANT REMOCAÇO                                                                                                                                                    |
| Performing organization name and address Thermophysical and Electronic Pro Information Analysis Center, CIND 2595 Yeager Rd., W. Lafayette, IN 4                                                                              | AS/Purdue Univ.                                                                                    | 10. PROGRAM ELEMENT, PROJECT, TASK<br>AREA & WORK UNIT NUMBERS                                                                                                                   |
| 1. CONTROLLING OFFICE NAME AND ADDRESS Defense Technical Information Cen                                                                                                                                                      | ter, Defense                                                                                       | 12. REPORT DATE March 1983                                                                                                                                                       |
| Logistics Agency, Attn: DTIC-AI, Alexandria, VA 22314                                                                                                                                                                         |                                                                                                    | 13. NUMBER OF PAGES                                                                                                                                                              |
| ALEXARDITA, VA 22314  14. MONITORING AGENCY NAME & ADDRESS(II different                                                                                                                                                       | from Controlling Office)                                                                           | 15. SECURITY CLASS. (of this report) Unclassified                                                                                                                                |
| 16. DISTRIBUTION STATEMENT (of this Report)                                                                                                                                                                                   | <br>                                                                                               | 15a. DECLASSIFICATION DOWNGRADING SCHEDULE N/A                                                                                                                                   |
| 17. DISTRIBUTION STATEMENT (of the abstract entered i                                                                                                                                                                         | n Block 20, it different fro                                                                       | m Report)                                                                                                                                                                        |
| 18. SUPPLEMENTARY NOTES  CINDAS/TEPIAC Publication: (DTIC Microfiche copies available from                                                                                                                                    |                                                                                                    | 571);                                                                                                                                                                            |
| 19. KEY WORDS (Continue on reverse side if necessary and #Aluminum*Manganese                                                                                                                                                  | lidentify by block number)                                                                         | *Electrical Resistivity                                                                                                                                                          |
| and discusses the available data of aluminum and manganese and precritical evaluation, correlation, and information. The recommended corrected for the thermal expansionand to 700K for manganese. The eare about +2% to +5%. | and information sents the recommanalysis, and a values presented on of the matering point into the | on the electrical resistivity mended values resulting from synthesis of the available dated are uncorrected and also lals and cover the temperature me molten state for aluminum |
| DD 1 JAN 73 1473 EDITION OF I NOV 45 IS OBSOL                                                                                                                                                                                 | UNU                                                                                                | CLASSIFIED SSIFICATION OF THIS PAGE (When Date Entere                                                                                                                            |

and the second of the second o

|   | SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered) |   |
|---|---------------------------------------------------------|---|
|   |                                                         |   |
|   |                                                         |   |
|   |                                                         | · |
|   |                                                         |   |
|   |                                                         |   |
|   |                                                         |   |
|   |                                                         |   |
|   |                                                         |   |
|   |                                                         | İ |
|   |                                                         |   |
|   |                                                         |   |
|   |                                                         |   |
|   |                                                         |   |
|   |                                                         |   |
|   |                                                         |   |
|   |                                                         |   |
|   | -                                                       |   |
|   |                                                         |   |
|   |                                                         |   |
|   |                                                         |   |
|   |                                                         |   |
|   |                                                         |   |
|   |                                                         |   |
|   |                                                         |   |
|   |                                                         |   |
|   | ·                                                       |   |
|   |                                                         |   |
|   |                                                         |   |
|   |                                                         |   |
|   |                                                         |   |
|   |                                                         |   |
| l |                                                         |   |
|   |                                                         |   |
|   |                                                         |   |
|   |                                                         |   |

## ELECTRICAL RESISTIVITY OF ALUMINUM AND MANGANESE

By

P. D. Desai, H. M. James, and C. Y. Ho

CINDAS Report 65

March 1983

Prepared for

OFFICE OF STANDARD REFERENCE DATA
National Bureau of Standards
U.S. Department of Commerce
Washington, D.C. 20234

| Acces                 | sion F  | OF     |    |
|-----------------------|---------|--------|----|
|                       | GRALI   |        | M  |
| DTIC                  | _       |        | ī  |
| Unanr                 | ounced  |        |    |
| Justi                 | ficati  | on     |    |
| Ву                    |         |        |    |
| Distr                 | ibution | n/     |    |
| Avai                  | labili  | ty Cod | 05 |
|                       | Avail   | and/or |    |
| Dist                  | Spec    | ial    |    |
|                       | )       | 1      |    |
| Λ                     |         | ł      |    |
| $\boldsymbol{\wedge}$ |         |        | `  |
|                       | /       |        |    |
| /                     | DTIC    | 1      |    |
| (                     | DOPY    | • )    |    |
|                       | ,,      | /      |    |

CENTER FOR INFORMATION AND NUMERICAL DATA ANALYSIS AND SYNTHESIS

Purdue University
2595 Yeager Road
West Lafayette, Indiana 47906

Copyright © 1983 by the Purdue Research Foundation, West Lafayette, Indiana

All rights reserved. This work or any part thereof may not be reproduced in any form without written permission of the Purdue Research Foundation.

#### **PREFACE**

This technical report was prepared by the Center for Information and Numerical Data Analysis and Synthesis (CINDAS), Purdue University, West Lafayette, Indiana, under the auspices of the Office of Standard Reference Data of the National Bureau of Standards (NBS), Department of Commerce, Washington, D.C.

This report represents the most exhaustive compilation and critical evaluation of the recorded world knowledge on the electrical resistivity of aluminum and manganese and is one of a series of technical reports on the electrical resistivity of selected elements. The literature search and data compilation have been done in a most extensive and detailed manner, making it possible for all users of the subject to have access to the original data without having to duplicate the laborious and costly process of literature search and data extraction. Also, for the active researchers in the field, a detailed discussion is presented for each material, reviewing the available data and information, giving details of data analysis and synthesis, and discussing the considerations involved in arriving at the final recommended values.

It is hoped that this work will prove useful not only to the engineers and scientists in the field but also to other engineering research and development programs and for industrial applications, as it provides a wealth of knowledge heretofore unknown or inaccessible to many. In particular, it is thought that the critical evaluation, analysis and synthesis, and reference data generation constitute a unique aspect of this work.

Although this report is primarily the result of financial support and interest of the NBS Office of Standard Reference Data, the extensive documentary activity essential to this work was supported by the Defense Logistics Agency of the Department of Defense. Thanks are due Dr. H. J. White, Jr., of the NBS Office of Standard Reference Data for his guidance, cooperation, and sympathetic understanding during the course of this work.

#### ABSTRACT

This work compiles, reviews, and discusses the available data and information on the electrical resistivity of aluminum and manganese and presents the recommended values resulting from critical evaluation, correlation, analysis, and synthesis of the available data and information. The recommended values presented are uncorrected and also corrected for the thermal expansion of the material and cover the temperature range from 1 K to above the melting point into the molten state for aluminum and to 700 K for manganese. The estimated uncertainties in most of the recommended values are about  $\pm 2\%$  to  $\pm 5\%$ .

Key Words: aluminum; manganese; conductivity; critical evaluation; data analysis; data compilation; data synthesis; electrical conductivity; electrical resistivity; elements; metals; recommended values; resistivity.

# CONTENTS

|    |                                                                 | Page  |
|----|-----------------------------------------------------------------|-------|
|    | PREFACE                                                         | iii   |
|    | ABSTRACT                                                        | iv    |
|    | LIST OF TABLES                                                  | Vi    |
|    | LIST OF FIGURES                                                 | Vii   |
|    | NOMENCLATURE                                                    | ,viii |
| 1. | INTRODUCTION                                                    | . 1   |
| 2. | GENERAL BACKGROUND                                              | 3     |
|    | 2.1. Theoretical Background                                     | 3     |
|    | 2.2. Presentation of Data and Information                       | 6     |
| 3. | ELECTRICAL RESISTIVITY DATA AND INFORMATION                     | 9     |
|    | 3.1. Aluminum                                                   | 9     |
|    | 3.2. Manganese                                                  | 39    |
| 4. | ACKNOWLEDGHENTS                                                 | 51    |
| 5. | APPENDICES                                                      | 53    |
|    | 5.1. Methods for the Measurement of Electrical Resistivity      | 53    |
|    | 5.2. Conversion Factors for the Units of Electrical Resistivity | 54    |
| 6. | REFERENCES                                                      | 55    |

# LIST OF TABLES

|    |                                                                      | Page |
|----|----------------------------------------------------------------------|------|
| 1. | Recommended Values for the Electrical Resistivity of Aluminum        | 13   |
| 2. | Measurement Information on the Electrical Resistivity of Aluminum    | 17   |
| 3. | Experimental Data on the Electrical Resistivity of Aluminum          | 32   |
| 4. | Recommended Values for the Electrical Resistivity of Manganese       | 42   |
| 5. | Measurement Information on the Electrical Resistivity of Manganese . | 45   |
| 6. | Experimental Data on the Electrical Resistivity of Manganese         | 48   |

# LIST OF FIGURES

|     |            |             |    |            |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   | PAR | Ş |
|-----|------------|-------------|----|------------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|-----|---|
| 1.  | Electrical | Resistivity | of | Aluminum - | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | 14  |   |
| 2.• | Electrical | Resistivity | of | Aluminum   | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | 15  | i |
| 3.* | Electrical | Resistivity | of | Aluminum   | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | 16  | i |
| 4.• | Electrical | Resistivity | of | Manganese  | • | • | • | • | • | • | • | • | • | • | • | • | • |   |   | • | • | 43  |   |
| 5.* | Electrical | Resistivity | of | Manganese  | • |   |   | • | • |   |   | • |   |   | • |   |   |   |   | • | • | 44  |   |

<sup>\*</sup>Figures include the recommended values.

#### **NOMENCLATURE**

- A Constant in Eqs. (3b) and (8)
- c Impurity concentration
- C Constant in Eq. (3a)
- e Base of natural logarithm
- h Planck constant divided by  $2\pi$
- k Boltzmann constant
- L Length of specimen at T
- Lo Length of specimen at To
- $\Delta L = L L_0$
- M Atomic weight
- RRR Residual resistivity ratio
- T Temperature
- T Reference temperature
- $x = h\omega/kT$
- a Constant in Eqs. (7) and (8)
- Δ Deviation from the Matthiessen's rule
- θ Debye temperature
- 0 Characteristic temperature for intrinsic electrical resistivity
- ρ Electrical resistivity
- ρ<sub>0</sub> Residual electrical resistivity
- p Electrical resistivity due to electron-electron scattering
- ρ Intrinsic electrical resistivity
- e Phonon angular frequency

#### 1. INTRODUCTION

The principal objective of this project was to exhaustively compile, critically evaluate, analyze, and synthesize all the available data and information on the electrical resistivity of a large number of selected elements and to generate recommended values over a full range of temperature from 1 K to the melting point and beyond. The results on the electrical resistivity of aluminum and manganese are presented in this work (for manganese the recommended values cover the temperatures up to 700 K only), which is one in a series of similar works on the electrical resistivity of selected elements, some published 1-3. The comprehensive study of the electrical resistivity of the elements at the Center for Information and Numerical Data Analysis and Synthesis (CINDAS) has been a continuation of a similar extensive work on the thermal conductivity of the elements 4.

The general background information on this work is given in Section 2, which includes a brief introduction to the theory of the electrical resistivity of metals and a detailed explanation of the specifics and conventions used in the presentation of the data and information.

The experimental data and information and the recommended values for the electrical resistivity of the two elements are presented in Section 3. In the discussion of the electrical resistivity of each element, individual pieces of available data and information are reviewed, details of data analysis and synthesis are given, the considerations involved in arriving at the final assessment and recommendation are discussed, the recommended values and the experimental data are compared, and the uncertainties in the recommended values are stated. The recommended values uncorrected and corrected for the thermal expansion of the material are both presented in this section. The values cover the temperature range from 1 K to above the melting point for aluminum and to 700 K for manganese.

The last three sections are for acknowledgments, appendices, and references. There are two appendices given. The first appendix presents a logical organization of the methods for the measurement of electrical resistivity. The methods are designated with respective code letters and the same code letters are used in the 'Method Used' column of the Table of Measurement Information for indicating the experimental methods used by the various authors. The

second appendix presents conversion factors for the units of electrical resistivity, which may be used to convert easily the electrical resistivity values in the SI units given in this work to values in any of the several other units listed.

#### GENERAL BACKGROUND

## 2.1. Theoretical Background

It was found experimentally by Matthiessen<sup>5,6</sup> that the increase in the electrical resistivity of a metal due to the presence of a small amount of another metal in solid solution is independent of the temperature. According to this Matthiessen's rule, the total electrical resistivity of an impure metal may therefore be separated into two additive contributions and written in the form

$$\rho(c,T) = \rho_0(c) + \rho_1(T) \tag{1}$$

where  $\rho_0$  is the residual resistivity caused by the scattering of electrons by impurity atoms and lattice defects and is temperature-independent but dependent on the impurity concentration, c, and  $\rho_i$  is the temperature-dependent intrinsic resistivity arising from the scattering of electrons by lattice waves or phonons.

In reality, however, deviations from Matthiessen's rule do occur. Thus, in general the electrical resistivity of an impure metal is given by

$$\rho(c,T) = \rho_0(c) + \rho_1(T) + \Delta(c,T),$$
 (2)

where  $\Delta$  is the deviation from the Matthiessen's rule.

The intrinsic electrical resistivity which is due to scattering of electrons by phonons may be approximated by the Bloch-Grüneisen formula 7,8:

$$\rho_{i} = \frac{C}{M\theta_{R}} \left( \frac{T}{\theta_{R}} \right)^{5} \int_{0}^{\theta_{R}/T} \frac{x^{5}e^{x} dx}{(e^{x}-1)^{2}}$$
(3a)

$$= A \left[ \frac{T}{\theta_R} \right]^5 \int_0^{\theta_R/T} \frac{x^5 e^x dx}{(e^x - 1)^2} , \qquad (3b)$$

where C is a constant characteristic of the metal and proportional to the square of the electron-phonon interaction constant, M is the atomic weight,  $\theta_{\rm R}$  is a characteristic temperature of the metal which characterizes its intrinsic electrical resistivity in the same way as the Debye temperature,  $\theta_{\rm D}$ , characterizes its lattice specific heat, and  $A \equiv C/M\theta_{\rm R}$ . The dimensionless variable of integration  $x = h\omega/kT$ , where h is the Planck constant divided by  $2\pi$ ,  $\omega$  is the

phonon angular frequency, and k is the Boltzmann constant. The derivation of Eq. (3) is based on the simplifying assumptions that the Fermi surface is spherical, that the conduction electrons can be treated as free in the first approximation, that the spectrum of lattice vibrations is that of the Debye model, that the phonon distribution is essentially undisturbed by the scattering processes, and that electron-phonon Umklapp processes can be ignored. Consequently, it is perhaps most reasonable to expect the Bloch-Grüneisen formula to agree with experiment in the case of monovalent metals. Nevertheless, the intrinsic resistivity of many metals can be well represented by Eq. (3) over a wide temperature range by a suitable choice of  $\theta_{\rm p}$  and C, though no single values of  $\theta_{\rm p}$  can fit the data at all temperatures.

At low temperatures (T  $\leq \theta_{\rm p}/20$ ), Eq. (3a) reduces to

$$\rho_{i} = \frac{124.4C}{M\theta_{R}} \left( \frac{T}{\theta_{R}} \right)^{5}, \tag{4}$$

while at high temperatures (T >  $\theta_{\rm p}$ ), to a good approximation, it reduces to

$$\rho_{i} \approx \frac{C}{4M\theta_{R}} \left[ \frac{T}{\theta_{R}} \right] . \tag{5}$$

Thus it agrees with the experimental facts that at very low temperatures the intrinsic or ideal electrical resistivity (after subtracting  $\rho_0$  from  $\rho$ ) of most metallic elements is proportional to  $T^5$  which is attributed to electron-phonon intraband scattering, and at high temperatures the resistivity of most metals increases approximately linearly with temperature.

In separating the electrical resistivity into its components, the temperature dependent part sometimes includes the electrical resistivity due to electron-electron scattering,  $\rho_e$ ; indeed, this is thought to be the dominant temperature-dependent term in transition metals at low temperatures. That is,

$$\rho = \rho_0 + \rho_e + \rho_i(T). \tag{6}$$

As in the case of the scattering of electrons by phonons, electronelectron collisions are of two types: normal processes in which the total wave vector is conserved, and Umklapp processes in which the total wave vectors before and after the collision differ by a reciprocal lattice vector. On the other hand, unlike electron-phonon Umklapp processes which are frozen out at low temperatures if the Fermi surface is everywhere clear of the zone boundary, electron-electron Umklapp processes are not frozen out at low temperatures. Normal processes, involving the collision between two s-band conduction electrons, do not contribute directly to the electrical resistivity because they do not change the total momentum and thus have no effect on the current. Normal processes involving the scattering of an s-band conduction electron by a non-conducting d-band electron do contribute to the electrical resistivity, and are thought to be the dominant temperature-dependent resistive processes in transition elements and their alloys at very low temperatures, since their resistivities show the T<sup>2</sup> temperature dependence expected for electron-electron scattering rather than the T<sup>5</sup> temperature dependence expected for the intrinsic resistivity. This temperature dependence of the electrical resistivity due to electron-electron scattering:

$$\rho_{a} = aT^{2} \tag{7}$$

comes about through the double application of the exclusion principle in the scattering processes; it applies to both the initial states and final states. In Eq. (7),  $\alpha$  is a constant.

Umklapp processes between two conduction electrons do contribute to the electrical resistivity. Because these processes involve a reciprocal lattice vector, the wave functions of the electrons involved cannot be regarded as simple plane waves, but must be treated as true Bloch functions having the periodicity of the lattice. The results of this are to introduce into the expression for the resistivity the square of an interference factor. Apparently this factor is quite small, as the low temperature electrical resistivity of most ordinary metals does not show the T<sup>2</sup> temperature dependence expected for such a resistive mechanism.

Substituting Eqs. (7) and (3b) into Eq. (6) yields

$$\rho = \rho_0 + \alpha T^2 + A \left[ \frac{T}{\theta_R} \right]^5 \int_0^{\theta_R/T} \frac{x^5 e^x dx}{(e^x - 1)^2} . \tag{8}$$

Equation (8) has been used frequently in analyzing the experimental data and in generating the recommended values for the electrical resistivity at low temperatures.

### 2.2. Presentation of Data and Information

In each of the subsections in Section 3, electrical resistivity data and information for each element are presented in the following order:

- (1) A discussion text.
- (2) A table of recommended values,
- (3) A figure presenting experimental data as a function of temperature in a log-log scale (for manganese, due to the relatively small number of data sets, this figure is not given),
- (4) A figure presenting recommended values and selected experimental data (on which the recommendations were based) as a function of temperature in a log-log scale,
- (5) A figure presenting recommended values and selected experimental data (on which the recommendations were based) as a function of temperature in a linear scale,
- (6) A table giving measurement information on the experimental data presented in the figures, and
- (7) A table of experimental data for all the data sets listed in item 6 above.

In the discussion text on the electrical resistivity of each element, individual pieces of available data and information are reviewed, details of data analysis and synthesis are given, the considerations involved in arriving at the final assessment and recommendation are discussed, the recommended values and the experimental data are compared, and the uncertainties of the recommended values are stated.

The recommended values are for well-annealed high-purity and unoxidized specimens of the respective elements; however, those values for low temperatures are applicable only to the particular specimens having residual electrical resistivities as given at 1 K in the tables.

The recommended values uncorrected and corrected for the thermal expansion of the element are both given in the table. The uncorrected and corrected values are related by the following equation:

$$\rho_{\text{corrected}}(T) = \left(1 + \frac{\Delta L(T)}{L_0}\right) \rho_{\text{uncorrected}}(T), \tag{9}$$

where  $\Delta L = L - L_0$  and L and  $L_0$  are the lengths of the specimen at any temperature T and at a reference temperature  $T_0$ , respectively. The thermal expansion correction for aluminum amounts roughly to about -0.5% to -0.9% at very low

temperatures, zero at room temperature, about 0.5% at 500 K, and about 1.6% near the melting point of the element. For manganese, the correction is about -0.3% at low temperature, zero at room temperature, and 0.8% at 500 K.

The recommended values in some cases are given with more significant figures than warranted, which is merely for tabular smoothness or for the convenience of internal comparison. Hence, the number of significant figures given in the table has no bearing on the degree of accuracy or uncertainty in the values; the uncertainty in the values is always explicitly stated.

In the figures, a data set consisting of a single data point is denoted by a number enclosed by a square, and a curve that connects a set of two or more data points is denoted by a ringed number. These data set numbers correspond to those listed in the accompanying tables providing measurement information and tabulating numerical data for each of the data sets. When several sets of data are too close together to be distinguishable, some of the data sets, though listed and tabulated in the tables, are omitted from the figure for the sake of clarity. The data set numbers of those data sets omitted from the figure are asterisked in both tables providing the measurement information and tabulating the experimental data.

The tables providing the measurement information contain for each set of experimental data the following information: data set number, reference number, author(s), year of publication, experimental method used for the measurement, temperature range covered by the data, name and specimen designation, specimen composition, specification and characterization, and information on measurement conditions, which are contained in the original paper. The experimental methods used for the measurement of the electrical resistivity are indicated in the column headed 'Method Used' in the table by the following code letters:

- A Direct-current potentiometer method
- B Direct-current bridge method
- C Alternating-current potentiometer method
- D AC bridge method
- K Direct heating method
- P Van der Paw method
- R Rotating magnetic field method

This symbol means either that the method described by the author is not sufficient for assigning a specific code letter or that the use of a code letter would not convey enough of the information reported in the research document, and therefore the method used is described briefly in the last column of the table.

Details of these and other methods for the measurement of electrical resistivity may be found in the literature references given in Appendix 5.1, which presents a complete scheme for the classification and organization of the methods.

In the tables tabulating the experimental data, all the original data reported in different units have been converted to have the same units: the SI units  $10^{-8}~\Omega$  m. The recommended values generated are also given in the same units. Conversion factors for the units of electrical resistivity, which may be used to convert the electrical resistivity values in the SI units given in this work to values in other units, are given in Appendix 5.2.

#### 3. ELECTRICAL RESISTIVITY DATA AND INFORMATION

#### 3.1. Aluminum

There is a large body of data and information available on the electrical resistivity of aluminum. This includes data not only on very pure bulk material (indicated by a 5N purity, very large RRR of up to 46000, and very low residual resistivity,  $\rho_0$ , of the order of  $10^{-12}~\Omega$  m) but also on thin films as well as on effects such as those of cold-work, quenching, annealing, deformation, irradiation, and pressure. Over 190 data sets, mostly on the bulk material as a function of temperature, are presented in this work.

The information on specimen characterization and on the measurement condition for each of the data sets is given in Table 2. The data sets are tabulated in Table 3 and shown partially in Fig. 1. Only those data sets used in the recommendation procedure are shown in Figs. 2 and 3.

The work reported in the last several years (data sets 1-67) is concentrated on the study of the low-temperature behavior of the electrical resistivity and the origin of the so-called DMR (deviation from Matthiessen's rule). It has been reported that various scatterers such as impurities, dislocations, and surfaces (as in the size effect) can change the temperature-dependent resistivity substantially and can produce large DMR. Many of the data sets reported in Tables 2 and 3 can be rejected as the basis for estimation of the electrical resistivity of pure aluminum because of the impurity content, cold work, or inadequate annealing of the samples. Other data sets are for specimens subjected to procedure intended to produce oxidized surface layers. Most of the available data appears to be uncorrected for thermal expansion of the samples, although this correction amounts to 1.6% near the melting point. Among the data sets reported in Table 2, only the data of Cook et al. 22 (data set 69), Radenac et al. 44 (data set 104), Wilkes 53 (data set 115) and of Simmons and Bailuffi 74 (data set 150) are explicitly stated to have been corrected for thermal expansion, and the opposite has been assumed in all other cases.

Deviations from Matthiessen's rule are quite significant in aluminum and have been carefully studied. Ribot et al. (data sets 1-21) concluded that Matthiessen's rule is obeyed below 4.2 K. However, their studies do not extend above this temperature. Another complicating factor is the importance of

surface scattering for the resistance at low temperatures of pure samples in the form of foils or wires of diameter much less than 1 mm. This size-dependent contribution to the measured resistance, which is about proportional to  $T^2$ , is comparable to the temperature-dependent resistance at 2 K. Its role in the reported low-temperature behavior of electrical resistivity for aluminum has been the subject of study and disagreement. It is attributed to a change in the electron distribution near the surface and is reported by van der Mass et al. 97 to depend only on the surface resistivity. Sample-dependent anomalies complicate the study of the temperature dependence of the size effect below 4 K.

There has been an active interest in measuring and analyzing the bulk resistivity of aluminum in the low-temperature range. Sambles et al. 98 have given an extensive list of effective single-power laws that have been used in representing this resistivity over various temperature ranges below 60 K. Generally speaking, the temperature dependent part of the resistivity drops from T<sup>5</sup> dependence above 20 K to a T<sup>2</sup> dependence around 2 K. The careful studies of Ribot et al. 9 (data sets 1-21), based on their measurements of aluminum samples with RRR up to 40600, yield a temperature dependent resistivity that can be represented by AT2 + BT5 below 2.2 K, with the T2 term dominant. This form has been found to be useful by others over a considerably wider temperature range. The T2-dependence around 2 K has been confirmed by Garland and Van Harlingen 13 (data sets 48-54), van Kempen et al. 99, and Boysel et al. 100. According to the elementary theory of electron-electron scattering in metals, it would give rise to a T2 term in the resistivity, and the observed T2-dependence of the electrical resistivity in aluminum around 2 K is commonly attributed to this scattering. The observed T2 term is, however, much larger than that given by the simple theory of electron-electron scattering. A promising elaboration of the theory has been suggested by MacDonald 101. Other researchers who deal with this subject are Nakamichi and Kino 10 (data sets 22-28), Babic et al. 18 (data sets 60,61), Aleksandrov and D'yakov 68 (data sets 139-141), Senoussi and Campbell<sup>32</sup> (data sets 85,86), and Refs. 104-108.

The recommended values for the electrical resistivity at low temperatures are based on the data of Nakamichi and Kino<sup>10</sup> (data sets 22-28) who studied samples of such high purity that surface scattering of the carriers became a significant factor in small wires or thin foils. Specifically, their values

for the resistivity of bulk aluminum (data set 28), derived by extrapolating their results for thicker and thicker samples, were used as the basis for the recommended values below 40 K. These are the representative values to be expected for bulk samples with  $\rho_0$  of the order  $10^{-12}$   $\Omega$  m, or RRR approaching 27000. From 40 to 400 K, the recommended values follow closely the data of Cook et al. 22 (data set 69), Seth and Woods 45 (data set 105), Wilkes 33 (data set 115) Moore et al. 60 (data set 125), and of Simmons and Balluffi 4 (data set 150). From 400 K to the melting point, the recommended values are based on the reasonably concordant (allowing for the different treatments of thermal expansion) results of Kedves et al. 28 (data set 79), Redenac et al. 44 (data set 104), and of Logunov and Zverev 48 (data set 109). It is worth noting that their data show a progressive increase in the electrical resistivity values above the expected linearly extrapolated values above 700 K. This was attributed by Simmons and Balluffi 40 scattering by thermally generated point defects of the type which add atomic sites (vacancy-type defects).

There are about 15 data sets available for the electrical resistivity of aluminum in the liquid region. The temperature range covered by these data sets is from 933 to 1973 K. There is a general agreement (±5%) between most of the data sets. The recommended values in the liquid region are based on these data sets, giving weight to the data of Romanova and Persion<sup>35</sup> (data set 89), Levin et al. 40 (data set 95), Powell et al. 63 (data set 130), Roll et al. 78 (data set 157), and of Matuyama 88 (data set 181).

The recommended values for the electrical resistivity given in Table 1 and shown in Figs. 2 and 3 are for well-annealed unoxidized aluminum of purity 99.99% or higher, but those below 40 K apply specifically to samples with  $\rho_0$  = 1.00 x 10<sup>-12</sup>  $\Omega$  m. The table gives both values uncorrected and corrected for thermal expansion, while Figs. 2 and 3 show only the uncorrected recommended values along with the experimental data which were used to generate these values. Thermal expansion values needed to carry out thermal expansion correction were taken from ref. 109. The uncertainty in the recommended values is estimated to be within ±1% below 400 K, ±2% from 400 K up to the melting point, and about ±3% for the liquid.

As mentioned earlier, electrical resistivity measurements for aluminum reported in the literature are not only for bulk material but also for aluminum under various physical as well as thermal conditions. Additional information

is available in refs. 110-188. In the following paragraphs, an attempt is made to sort the source documents to highlight important effects.

The electrical resistivity studies at low temperature of thin films is of great interest to many researchers. The main purpose of the study appears to study so-called 'size effect.' Some of the works are cited above. The effect of grain boundary scattering on the electrical resistivity was reported by Bandyopadhyay and Pal and by Andrews et al. 190. Additional information on the thin films in general is reported in refs. 191-211.

Properties such as specific heat as well as electrical resistivity show a progressive increase above the linearly extrapolated values at high temperatures. As mentioned earlier, this increase is ascribed to scattering by thermally generated point defects. Several semiempirical approaches to calculate contribution to vacancy-type defects have been proposed by various investigators. In addition to the study of Simmons and Balluffi<sup>74</sup> reported here, the readers are directed to refs. 212-230.

The lattice defects of solids induced at low temperature by irradiation have received considerable attention in the recent years. These studies are reported in refs. 231-250. The effect of deformation on the electrical resistivity is also an equally well investigated area. Interested readers may refer to refs. 251-269 for information on the electrical resistivity of deformed aluminum. Last but not least, magnetic field effects are reported in refs. 270-277, effects of heat treatment, quenching, and cold-working are given in refs. 278-290, and effects of high pressure are discussed in refs. 291-296.

TABLE 1. RECOMMENDED VALUES FOR THE ELECTRICAL RESISTIVITY OF ALUMINUM<sup>2</sup> [Temperature, T, K; Electrical Resistivity,  $\rho$ ,  $10^{-8}~\Omega$  m]

| T   | ρ           |           | T      | ρ           |           |
|-----|-------------|-----------|--------|-------------|-----------|
|     | uncorrected | corrected |        | BRCOFFected | corrected |
| 1   | 0.000100    | 0.000100  | 700    | 7.350       | 7.322     |
| 2   | 0.000102    | 0.000102  | 800    | 8.700       | 8.614     |
| 4   | 0.000109    | 0.000109  | 900    | 10.18       | 10.005    |
| 7   | 0.000139    | 0.000140  | 933,52 | 10.74(s)    | 10.565(s) |
| 10  | 0.000193    | 0.000192  | 933.52 |             | 24.77(l)  |
| 15  | 0.000346    | 0.000345  | 1000   |             | 25.88     |
| 20  | 0.000755    | 0.000748  | 1100   |             | 27.46     |
| 25  | 0.00187     | 0.00186   | 1200   |             | 28.95     |
| 30  | 0.00453     | 0.00451   | 1300   |             | 30.38     |
| 40  | 0.0181      | 0.0180    | 1400   |             | 31.77     |
| 50  | 0.0478      | 0.0476    | 1500   |             | 33.11     |
| 60  | 0.0959      | 0.0955    | 1600   |             | 34.40     |
| 70  | 0.1624      | 0.1618    | 1700   |             | 35.69     |
| 80  | 0.245       | 0.2439    | 1800   |             | 36.93     |
| 90  | 0.339       | 0.338     | 1900   |             | 38.18     |
| 100 | 0.442       | 0.440     | 2000   |             | 39.34     |
| 150 | 1.006       | 1.003     |        |             |           |
| 200 | 1.587       | 1.584     |        |             |           |
| 250 | 2.157       | 2.155     |        |             |           |
| 273 | 2.417       | 2.417     |        | •           |           |
| 293 | 2.650       | 2.650     |        |             |           |
| 300 | 2.733       | 2.733     |        |             |           |
| 400 | 3.866       | 3.875 ·   |        |             |           |
| 500 | 4.995       | 5.020     |        |             |           |
| 600 | 6.130       | 6.122     |        |             |           |

The values are for well-annealed aluminum of purity 99.99% or higher, but those below 40 K apply specifically to samples with  $\rho_0=1.00 \times 10^{-12}~\Omega$  m. The columns headed uncorrected and corrected refer to values uncorrected and corrected for thermal expansion, respectively. Solid line separating tabular values indicates solid to liquid state transformation.







TABLE 2. MEASUREMENT INFORMATION OF THE ELECTRICAL RESISTIVITY OF ALUMINISM AS

| Sample 2 Sample 3          | Ref. Author(s)   Year   Hethod   Temp.          | Author(s) Year Hethod Libot, J.H.J.M., 1961 + Rass, J., van Kempen, H., van Yucht, R.J.M., | s) Year Method<br>1, Used<br>1, 1981 +<br>1, Kempen,<br>1, R.J.M., | Hethod<br>Used | Temp.<br>Range, K<br>1.600-2.1 | =     | Mame and<br>Specimen<br>Designation<br>Sample I | Composition (weight percent), Specifications and Remarks  High purity apecimen; nominal impurity <0.5 ppm; po = 0.0000928 x  10 <sup>-6</sup> fm; RR = 29000; 1.4 mm diam. and about 1.5 m long cylindrical wire wound in double helix around quarts cylinder; before mounting,                                                                                                                                                                                                                                                                                                                                                                                                                     |
|----------------------------|-------------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------|----------------|--------------------------------|-------|-------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sample 2 Sample 3          | and Myder, P.                                   | and Wyder, P.                                                                              | and Wyder, P.                                                      |                |                                |       |                                                 | namples were cleaned in 40% NaOH solution to facilitate apot welding to immediate ultrapure aluminum potential leads; welds were made to it me diam ultrapure aluminum potential leads; welds were made with minimum electrical energy needed to achieve mechanical stabilities and abowed no extra oxide formation; after annealing, test weld had resistance & x 10 <sup>-1</sup> for 4.2 %; samples were annealing, test weld had cooled slowly to room temperature; lead wires were superconducting, attached using superconducting solder, T = 1.18 %; measurement ulilized superconducting flux gated galvonometer and current comparator with optimal precision of 0.1 ppm; series "a" data. |
| Sample 2                   | 9 Ribot, J.M.J.M., 1981 + 1.298-3.842<br>et al. | 1981 +                                                                                     | 1981 +                                                             | •              | 1.298-                         | 3.842 |                                                 | Same as above except measurements designated as series "b".                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Sample 2 Sample 3 Sample 4 | 9 Ribot, J.H.J.H., 1981 + 1.600,2.171<br>et al. | 1981                                                                                       | 1981                                                               | •              | 1.600,                         | 2.171 |                                                 | Same as above except measurements designated as series $^{\prime\prime}c^{\prime\prime}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Sample 3                   | 9 Ribot, J.H.J.M., 1981 + 2.631-4.221<br>et al. | 1961                                                                                       | 1961                                                               | •              | 2.631-                         | 4.221 | Sample 2                                        | Same as in data set 1 except sample diam. 3.0 mm; $\rho_0=0.0000667 \times 10^{-3} \rm Gm; RRR = 40.600; measurements designated as series "a".$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Sample 3                   | 9 Ribot, J.R.J.M., 1981 + 2.362-3.997 et al.    | 1961                                                                                       | 1961                                                               | •              | 2.362~                         | 3.997 |                                                 | Same as above except measurements designated as series "b",                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Sample 3                   | 9 Ribot, J.W.J.M., 1981 + 4.134,4.224<br>et el. | 1981                                                                                       | 1981                                                               | •              | 4.134,4                        | .224  |                                                 | Same as above except measurements designated as setles "C",                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Sample 3                   | 9 Ribot, J.W.J.M., 1981 + 1.180-2.172<br>et ml. | 1981                                                                                       | 1981                                                               | •              | 1.180-2                        | .172  |                                                 | Same as above except measurements designated as series "d".                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Sample 4                   | 9 Ribot, J.H.J.M., 1981 + 2.578-4.220 et al.    | 1981 +                                                                                     | 1981 +                                                             | •              | 2.578-4                        | .220  | Sample 3                                        | Same as in data set 1 except sample diam. 3.0 mm; $\rho_0=0.0013~\rm x$ $10^{-6}\Omega_{BS}$ RRR = 21000; nominal impurity <5 ppm; measurements designated as series "a".                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Sample 4                   | 9 Ribot, J.H.J.M., 1981 + 1.950-2.80 et al.     | 1981 +                                                                                     | 1981 +                                                             | +              | 1.950-2                        | 8     |                                                 | Same as above except measurements designated as series "b".                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Sample 4                   | 9 Kibot, J.H.J.M., 1981 + 1,292-1,900 et al.    | 1981                                                                                       | 1981                                                               | •              | 1,292-1                        | 98.   |                                                 | Same as above except measurements designated as series "c".                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Sample 4                   | 9 Ribot, J.H.J.M., 1981 + 1.253-1.451<br>et al. | 1981                                                                                       | 1981                                                               | +              | 1.253-1                        | .451  |                                                 | Same as above except measurements designated as series "d".                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                            | 9 Ribot, J.M.J.M., 1981 + 2.049,2.100 et al.    | 1981 +                                                                                     | 1981 +                                                             | •              | 2.049,                         | 2.100 |                                                 | Same as in data set 1 except nominal impurity <8 pps; sample dism. 3.0 mm; $\rho_0$ = 0.000292 x 10 $^9$ fm; RR = 9300; measurements designated as series "d".                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

TABLE 2. MEASUREMENT INFORMATION ON THE KLECTRICAL RESISTIVITY OF ALIMINIM AL (continued)

| Pata<br>Se | ie ie | Author (s)                    | Year | Method<br>Used | Temp.<br>Range, K | Name and<br>Spacimen<br>Designation | Composition (weight percent), Specifications and Remarks                                                                                                                                                                                                                                                                                                                                                                                                              |
|------------|-------|-------------------------------|------|----------------|-------------------|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| å          | •     | Ribot, J.H.J.M., et al.       | 1981 | +              | 3.183-4.133       |                                     | Same as above except measurements designated as series $^{\rm N}b^{\rm H}$ ,                                                                                                                                                                                                                                                                                                                                                                                          |
| 3          | •     | Ribot, J.H.J.M.,<br>et al.    | 1981 | +              | 1.501-4.221       |                                     | Same as above except measurements designated as series $^{\rm M_{\rm C}}$ .                                                                                                                                                                                                                                                                                                                                                                                           |
| \$         | •     | Ribot, J.H.J.M.,<br>et al.    | 1961 | ÷              | 4.209             |                                     | Same as above except measurements designated as series " $d^{\prime\prime}$ .                                                                                                                                                                                                                                                                                                                                                                                         |
| 3          | •     | Ribot, J.H.J.M.,<br>at al.    | 1961 | •              | 1.254-1.601       |                                     | Same as above except measurements designated as series "e".                                                                                                                                                                                                                                                                                                                                                                                                           |
| *          | •     | Ribot, J.H.J.M.,<br>et al.    | 1981 | <b>†</b>       | 1.522-4.218       | Sample 5                            | Nominal impurity <100 ppm; $\rho_0 = 0.01066 \times 10^{-6} \Omega m$ ; RRR = 255; cylindrical wire 2.0 am diam. and 10 cm long; cleaned in NaOH solution, annealed in hydrogen as described in data set 1 and then recleaned in solution; ultrapure, 3 cm long aluminum potential leads were then spot-welded to sample 2 cm in from each end; mounting of sample was achieved as described in data set 1.                                                           |
| 184        | •     | Mibot, J.H.J.M., et al.       | 1981 | +              | 1.294-4.200       | Sample 6                            | Sume as above (data set 17) except impurity unknown; $\rho_0=0.01106 \times 10^{-6}\mathrm{Gm}_1$ RRR = 245; specimen diam. 1.0 mm.                                                                                                                                                                                                                                                                                                                                   |
| <b>*61</b> | •     | Ribot, J.R.J.M., et al.       | 1961 | •              | 1,224-4,206       | Sample 7                            | Intermediate purity sample, impurity <10 ppm; $\rho_0 = 0.000663 \text{ x}$ $10^{-8}  \mathrm{Gm}_1  \mathrm{RR} = 4100;$ samples were spark-cut from aluminum sheet I mm thick, 10 cm long, and I mm wide contained four tabs I mm wide and 2 mm long located approximately symmetrically no the sample about I cm in from each end; cleaned in MeOH solution; suneshed in air; potential contacts were soldered to ends of two tabs on the same side of the sample. |
| 20*        |       | Mibot, J.H.J.M., et el.       | 1981 | <b>+</b>       | 1.371-4.229       | Sample 8                            | Same as above (data set 19) except $\rho_0 = 0.000601 \times 10^{-4}  \mathrm{Gm}$ ; RRR = 4500; sample annealed in hydrogen for 22 h.                                                                                                                                                                                                                                                                                                                                |
| 214        | •     | Eibot, J.E.J.M.,<br>et al.    | 1981 | +              | 1.241-4.211       | Sample 9                            | Same as above (data set 19) except $ ho_0$ = 0.002245 x $10^{-6}\Omega$ m; RRR = 1100; sample left unannealed.                                                                                                                                                                                                                                                                                                                                                        |
| 22*        | 9     | Mekamichi, I. and<br>Kino, T. | 1980 | <b>∢</b>       | 7                 |                                     | Specimen made from block (10 x 20 x 90 mm³) cut from zone tefined polycrystalline Al bar (RRR = 26000); thickness 0.0195 mm x 5 mm (reduced thickness 0.019 mm based on 2 x cross section divided by perimeter); specimen annealed for 3 h at 600°C in air and then cooled down in furnace; RRR = 1692; data taken from figure.                                                                                                                                       |
| 23*        | 91    | Makamichi, I. and<br>Kino, T. | 1980 | ∢              | 1-43              |                                     | Similar to the above except thickness 1.484 mm and width 2.94 mm (reduced thickness 0.986 mm); RRR = 17310; values are fairly close to the bulk values calculated from data for strips using Fuchs—Sondheimer relation; data taken from figure.                                                                                                                                                                                                                       |
| 24*        | 9     | Mekamichi, I. and<br>Kimo, T. | 1980 | ∢              | 1-35              |                                     | Similar to the above except thickness 0.1955 was and width 3.17 mm (reduced thickness 0.184 mm); RRR = 7523; data taken from figure.                                                                                                                                                                                                                                                                                                                                  |
| 100        | a los | Mot show in figure.           |      | l              |                   |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

TABLE 2. MEASUREMENT INFORMATION ON THE ELECTRICAL RESISTIVITY OF ALIMINIM AL (continued)

| Pets<br>Se G | ğ <u>ê</u> | Author(s)                         | Year | Method<br>Used | Tomp.<br>Range, K   | Name and<br>Specimen<br>Designation | Composition (weight percent), Specifications and Remarks                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|--------------|------------|-----------------------------------|------|----------------|---------------------|-------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 258          | 2          | Maksmichi, I. and<br>Kino, T.     | 1980 | <              | 1-41                |                                     | Similar to the above except thickness 0.101 mm and width 4.66 mm (reduced thickness 0.099 mm); RRR = 4697; data taken from figure.                                                                                                                                                                                                                                                                                                                                                             |
| <b>5</b>     | 2          | Maksaichi, I. and<br>Kino, T.     | 1980 | ∢              | 1-42                |                                     | Similar to the above except thickness 0.039 mm and width 5 mm (reduced thickness 0.039 mm); RRR = 2717; data taken from figure.                                                                                                                                                                                                                                                                                                                                                                |
| 272          | 2          | Makamichi, I. and<br>Kino, T.     | 1980 | <b>◄</b>       | 1-42                |                                     | Similar to the above except thickness 0.030 mm and width 5 mm (reduced thickness 0.030 mm); RR = 2041; data taken from figure.                                                                                                                                                                                                                                                                                                                                                                 |
| <b>78</b>    | 07         | Makamichi, I. and<br>Kino, T.     | 1980 | ∢              | 1-40                |                                     | Values for bulk material based on their measurements for 0.0195-1.484 mm thick strips of zone refined aluminum bar of bulk RRR - 26000 and Fuchs-Sondheimer relation; the values are fairly close to the values for 1.484 mm thick strip.                                                                                                                                                                                                                                                      |
| 29           | #          | Kim, S.H. and Wang,<br>S.T.       | 1978 | ∢              | <b>4</b> :3         | Aluminum #1                         | 99.999 Al; polycrystalline supplied by D. Koop of Alcos; $0.7$ cm diam. x 3.5 cm long; soft shouldered on both ands with copper bars 1.8 cm diam. x 7.5 cm long; resistivity obtained from following relationship: $\rho(c,B) = \rho_0 + \rho_0 $ (c) + $\rho_{\rm m}$ (c), $\beta$ (c & B have no significance since was considered at zero strain (c) and saro magnetic field (B); data taken from figure; reported error $10X$ .                                                            |
| å            | =          | Kin, S.H. and Wang,<br>S.T.       | 1978 | 4              | 4.2                 | Aluminum #3                         | Similar to above specimen.                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 31           | =          | Kim, S.H. and Wang,               | 1978 | <              | <b>7</b> . <b>7</b> | Aluminum 94                         | Statlar to above specimen.                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 8            | 12         | Bowlands, J.A. and<br>Hoods, S.B. | 1978 | •              | 10-33               | A1(1)                               | 99.999 Al; obtained from Koch-Light (type 8013 h, batch 1); 0.508 em diam; reduced by rolling and drawing through diamond diam to various diameters, and through a varying number of dies which accounts for reducing specimen diam, by 11% and changes in $\rho_0$ ; number of dies zero for this specimen; annealed at 340°C for 3 h; $\rho_0=0.001306 \times 10^{-8}\Omega_{\rm H}$ ; values calculated from graphically extracted values for $\rho_T$ , temperature dependent resistivity. |
| æ            | 77         | Bowlands, J.A. and<br>Woods, S.B. | 1978 | •              | 10-33               | <b>VI</b> (1)                       | Same as above except $\rho_0 = 0.00222 \times 10^{-9}  \Omega m_{\odot}$ number of dies is 1.                                                                                                                                                                                                                                                                                                                                                                                                  |
| *            | 21         | Rowlands, J.A. and<br>Woods, S.B. | 1978 | •              | 10-33               | VT(1)                               | Same as above except $\rho_0=0.00309 \times 10^{-8}\mathrm{Gm}$ ; number of dies are 2.                                                                                                                                                                                                                                                                                                                                                                                                        |
| x            | 21         | Rowlands, J.A. and<br>Woods, S.B. | 1978 | •              | 10-33               | A1(1)                               | Same as above except $\rho_0=0.00391\times 10^{-8}\mathrm{Gm}$ ; number of dies are 3.                                                                                                                                                                                                                                                                                                                                                                                                         |
| *            | 12         | Rowlands, J.A. and<br>Woods, S.B. | 1978 | •              | 10-33               | <b>(1)</b>                          | Same as above except $\rho_0=0.00447 \times 10^{-8}\Omega m_s$ number of dies are 4.                                                                                                                                                                                                                                                                                                                                                                                                           |
| 33           | 71         | Rovlands, J.A. and<br>Woods, S.B. | 1978 | •              | 10-33               | <b>A1</b> (1)                       | Same as above except $\rho_0=0.00499 \times 10^{-8} \mathrm{Rm}$ ; number of dies are 5.                                                                                                                                                                                                                                                                                                                                                                                                       |
| Mot          | apoqe      | what shown in figure.             |      |                |                     |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

TABLE 2. MEASUREMENT INFORMATION ON THE ELECTRICAL RESISTIVITY OF ALUMINUM AL (continued)

| Beta<br>Bet | <u> </u> | Author (s)                           | Year | Method<br>Used | Temp.<br>Range, K | Name and<br>Specimen<br>Designation | Composition (weight percent), Specifications and Remarks                                                                                                                                                                                                                                        |
|-------------|----------|--------------------------------------|------|----------------|-------------------|-------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 25          | 13       | Rowlands, J.A. and<br>Woods, S.B.    | 1978 | <b></b>        | 10-48             | A1 (2)                              | Similar to above specimen; $\rho_0=0.00874 \times 10^{-8}\Omega_{\rm B}$ ; number of dies are zero; run I.                                                                                                                                                                                      |
| 33          | 77       | Rowlands, J.A. and<br>Woods, S.B.    | 1978 | •              | 10-48             | A1(2)                               | Same as above except $\rho_0 = 0.0121 \times 10^{-9}  \Omega m_1$ number of dies is 1.                                                                                                                                                                                                          |
| 2           | 77       | Mowlands, J.A. and<br>Woods, S.B.    | 1978 | •              | 10-48             | A1(2)                               | Same as above except $\rho_0=0.0127 \times 10^{-8}\Omega_{\rm H}$ ; number of dies are 2.                                                                                                                                                                                                       |
| 7           | 13       | Rowlands, J.A. and<br>Woods, S.B.    | 1978 | •              | 10-48             | A1 (2)                              | Same as above except $\rho_0 = 0.0147 \times 10^{-8}  \Omega m_{\odot}$ number of dies are 4.                                                                                                                                                                                                   |
| 424         | 21       | Mowlands, J.A. and<br>Woods, S.B.    | 1978 | •              | 10-48             | A1 (2)                              | Same as above except $\rho_0 = 0.0148 \times 10^{-8} \Omega m_{\rm i}$ number of dies are 6.                                                                                                                                                                                                    |
| <b>43</b>   | 12       | Nowlands, J.A. and<br>Woods, S.E.    | 1978 | •              | 13,20             | A1 (2)                              | Similar to above specimen; $\rho_0=0.00877 \times 10^{-6} \mathrm{Gm}$ ; number of dies are sero; run II.                                                                                                                                                                                       |
| \$          | 12       | Rowlands, J.A. and<br>Woods, S.B.    | 1978 | •              | 10-33             | A1 (2)                              | Same as above except diam. " 0.494 mm; $\rho_0$ = 0.00963 x $10^{-8}\Omega_{m_1}$ number of diam are 1.4.                                                                                                                                                                                       |
| 45*         | 21       | Rowlands, J.A. and<br>Woods, S.B.    | 1978 | m              | 10-33             | A1 (2)                              | Same as above except dism. = 0.482 mm; $\rho_0$ = 0.0102 x $10^{-6}\Omega$ m; number of dism are 1.2.                                                                                                                                                                                           |
| *           | 13       | Rowlands, J.A. and<br>Woods, S.B.    | 1978 | <b>s</b> a     | 10-33             | A1 (2)                              | Same as above except diam. " 0.469 mm; $\rho_0$ = 0.0111 x $10^{-6}\mathrm{Gm}$ ; number of dies are 1.4.                                                                                                                                                                                       |
| 474         | 77       | Rowlands, J.A. and<br>Woods, S.B.    | 1978 | •              | 10-33             | A1(2)                               | Same as above except diam. = 0.458 mm; $\rho_0$ = 0.01174 x $10^{-8}$ in; number of dies is 1.                                                                                                                                                                                                  |
| <b>*</b>    | ជ        | Gerland, J.C. and<br>Harlingen, D.J. | 1978 | <b>∢</b>       | 1.35-6.46         | A1-1                                | Pure, polycrystalline 30 mm diam. rods; $\rho_0=0.0002057 \times 10^{-8} \Omega_B$ ; normal resistance ratio = 12000; annealed in air at 550°C for several hours; RRR = 12327; values calculated from graphically reported $\rho_T^{-D}_0$ vs. I values; voltage measured using SQUID detector. |
| 464         | 13       | Garland, J.C. and<br>Marlingen, D.J. | 1978 | ∢              | 1.5-4.0           | A1-2                                | Similar to above specimen; values are calculated from $\rho=\rho_o+AT^2$ using $\rho_o=0.0002341\times10^{-9}\Omega_m$ , and $A=5.4\pm0.4\times10^{-9}n\Omega$ cm $K^{-2}$ .                                                                                                                    |
| \$          | t        | Garland, J.C. and<br>Harlingen, D.J. | 1978 | ∢              | 1.5-4.0           | A1-3                                | Similar to above specimen; $\rho_0=0.0002012 \times 10^{-6}\mathrm{Gm}$ ; RRR = 12586, A = 5.7 ± 0.4 × 10 <sup>-5</sup> nG cm K <sup>-2</sup> .                                                                                                                                                 |
| \$15        | <b>1</b> | Garland, J.C. and<br>Marlingen, D.J. | 1978 | ∢              | 1.5-4.0           | A1-4                                | Similar to above specimen but cold-worked after annealing; $\rho_0$ = 0.0006195 x 10 <sup>-8</sup> $\Omega_{\rm H}$ ; RRR = 4201, A = 6.7 x 10 <sup>-8</sup> $\Omega_{\rm H}$ cm K <sup>-2</sup> .                                                                                              |
| \$2¢        | 13       | Garland, J.C. and<br>Marlingen, D.J. | 1978 | ∢              | 1.5-4.0           | A1-5                                | Similar to above specimen; $\rho_0=0.0000519~{\rm x~10^{-9}~\Omega m;~RRR}=5030,~A=5.2~{\rm x~10^{-1}~\Omega cm~K^{-2}}.$                                                                                                                                                                       |
| \$3*        | <b>a</b> | Garland, J.C. and<br>Harlingen, D.J. | 1978 | <b>«</b>       | 1.5-4.0           | A1-6s                               | Similar to Al-1; $\rho_0 = 0.0000944 \times 10^{-9}  \mathrm{GHz}$ RRR = 25999, A = 4.3 x $10^{-9}  \mathrm{m}\Omega$ cm $\mathrm{K}^{-2}$ .                                                                                                                                                    |
| ğ           | ehove    | *Not shown in figure.                | ,    |                |                   |                                     |                                                                                                                                                                                                                                                                                                 |

TABLE 2. MEASUREMENT INFORMATION ON THE ELECTRICAL RESISTIVITY OF ALUMINIM Al (continued)

| Set 2 | Ref. Asthor(s)<br>No.                                                 | į              | if the   | Tamp.     | Name and<br>Specimen<br>Designation | Composition (weight percent), Specifications and Remarks                                                                                                                                                                                                                                                                                                                                                                           |
|-------|-----------------------------------------------------------------------|----------------|----------|-----------|-------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       | 13 Garlame, J.C. and<br>Marijagen, B.J.                               | 1978           | <        | 1.5-4.0   | A1–6b                               | Similar to above specimen but cold-worked after annealing; $\rho_0$ = 0.00004639 x $10^{-9}$ GH; RRR = 5625, A = 4.6 x $10^{-8}$ nG cm K <sup>-2</sup> .                                                                                                                                                                                                                                                                           |
|       | 14 Mesovic, D.R. and<br>Zekovic, S.                                   | 1978           | < .      | 933       |                                     | No details given.                                                                                                                                                                                                                                                                                                                                                                                                                  |
|       | 15 Klopkin, M.H., Panova,<br>G.Kh., and Semollov,<br>B.H.             | . 1977         | 4        | 2-295     |                                     | 99.999 Al; RRR = 5900; $\rho_o=0.00046 \times 10^{-6}$ first values calculated from graphically reported $\rho_T^{-\rho_o}$ values which are temperature dependent resistivity.                                                                                                                                                                                                                                                    |
|       | 16 Pujita, T. and Obtouka, T.                                         | 1917           | 4        | 1.51-9.72 | † .                                 | 99.999 Al; some refined specimen wires 0.6 mm in diam.; annealed in vacuum at 600°C for 2 days; all specimens chemically etched and rinsed with distilled water; p <sub>0</sub> = 0.000448 x 10° fm; measurement done with 8QUID galvonometer with voltage sensitivity ±10° 1³ V; heating effects magligible; data extracted from figure; a main source of error was the specimen size; SQUID detector used; uncertainty about 1%. |
|       | 16 Pujita, T. and<br>Ohtsuka, T.                                      | 1977           | 4        | 1.50-9.09 | A1-1a                               | Similar to the above specimen except it was cold-worked; sandwiched between class Al sheets and rolled to 0.3 $m_{\rm c}$ thick plate form; $\rho_0=0.001355 \times 10^{-9}\rm Gm.$                                                                                                                                                                                                                                                |
|       | 17 Káita, M., Steineann,<br>S., Kinser, M.U., and<br>Cintherodt, M.J. | na, 1977<br>ad | ° c      | 933-1122  |                                     | No details given; liquid state specimen; data extracted from figure.                                                                                                                                                                                                                                                                                                                                                               |
|       | 18 Babic, E., Krenik, R.,<br>and Ocko, M.                             | A., 1976       | ∢        | 10-20     |                                     | 99.999 Al from Koch Light; temperature controlled by helium exchange gas and by resistance heater; $\rho_0=0.022 \times 10^{-6} \Omega_m$ .                                                                                                                                                                                                                                                                                        |
| -     | 18 Babic, E., et al.                                                  | 1976           | <b>▼</b> | 10-20     |                                     | Similar to above except $\rho_0 = 0.053 \times 10^{-6}  \mathrm{Gm}$ .                                                                                                                                                                                                                                                                                                                                                             |
|       | 19 Kausta, S.                                                         | 1976           | <b>∀</b> | 300       | VIII-1                              | 99.999 Al; some refined; pg = 0.000193 x 10 <sup>-8</sup> Nm.                                                                                                                                                                                                                                                                                                                                                                      |
|       | 20 Krevet, B. and<br>Schauer, W.                                      | 1976           |          | 4.2-32    | Sample 1                            | Pure; polycrystalline; from Vereinigte Aluminumwerke, AG, Bonn; Al<br>tape samples 0.3 x 6 mm² cross-section; liquid hydrogen cryostat used;<br>RRR = 2200; data extracted from figure.                                                                                                                                                                                                                                            |
|       | 20 Krevet, B. and<br>Schauer, W.                                      | 1976           | ∢        | 4.2-32    | Semple II                           | Similar to above specimen; RRR = 3800.                                                                                                                                                                                                                                                                                                                                                                                             |
|       | 20 Krevet, B. and<br>Schauer, W.                                      | 1976           | ∢        | 4.2-32    | Sample III                          | Similar to above specimen; RRR = 5600.                                                                                                                                                                                                                                                                                                                                                                                             |
|       | 20 Krevet, B. and<br>Schauer, W.                                      | 1976           | <b>∢</b> | 5.5-32    | Sample IV                           | Similar to above specimen; RRR - 8900.                                                                                                                                                                                                                                                                                                                                                                                             |
|       | 20 Krevet, B. and<br>Schauer, W.                                      | 1976           | <b>ح</b> | 4.2-32    | Semple VI                           | Similar to above specimen; RM = 13900.                                                                                                                                                                                                                                                                                                                                                                                             |
|       | 20 Martwig, K.T. and<br>Morzale, F.J.                                 | 1976           | •        | 273       |                                     | Pure; melted in induction furnace in high purity graphite crucibles under argon; ingots from the melt (1 in. diam.) were extruded to 1/4 in. diam.; specimens were then cut to 2 in. lengths and homogenized in air at 873 K for 12 h, then water quenched and immersed in liquid nitrogen for storage.                                                                                                                            |

The show is fleure

TABLE 2. MEASUREMENT INFORMATION ON THE ELECTRICAL RESISTIVITY OF ALLMINUM AL (continued)

| 2 % é | 2 4        | Author(s)                                                       | ž    | Method<br>Used | Temp.<br>Range, K | Mape and<br>Specimen<br>Designation | Composition (weight percent), Specifications and Remarks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-------|------------|-----------------------------------------------------------------|------|----------------|-------------------|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| \$    | 2          | Cook, J.G., Moore,<br>J.P., Matematte,<br>and Ven der Nor, M.P. | 1975 | 4              | 4.2-400           | ·                                   | 99.9999 Al; specimens purchased from Cominco Ltd., Ombyille, Omtario; three samples measured with three techniques; sample with RR = 11,000 annealed at Cominco Ltd.; sample with RRR = 8500 annealed at REC; sample with RRR = 950 of commercial purity; data extracted from tabulated values which were obtained by purity; data extracted from tabulated values which were obtained by passing a smooth curve approximately midway between the high and low results for the pure specimen; data reported were corrected for thermal expansion; author's estimated uncertainty 0.8%. |
| 8     | 8          | Rapp, O. and<br>Populboln, R.                                   | 1975 | 4              | 316               | Sample 1                            | Pure; <4 ppm of transition metal impurities and <36 ppm total impur-<br>ities; rolled and drawn into wire 0.25 mm diam.; annealed at 450°C<br>for 6 h.                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 71.   | 23         | Rapp, O. and<br>Fogalholm, E.                                   | 1975 | 4              | 316               | Sample 2                            | Similar to above specimen.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 2     | *          | Bowlands, J.A. and<br>Woods, S.B.                               | 1975 | •              | 7-26              | A1 1<br>Type 8013h                  | 99.999 Al from Koch-Light; I mm diam, wires reduced in diam, in stages by drawing through dies to final diam, of 0.02 in.; annealed at 340°C for 3 h is vacuum to remove physical defects and inhibit growth of very large crystallites which would prevent uniform drawing; p <sub>0</sub> = 0.00124 x 10° 0m; values obtained from graphically reported temperature dependent electrical resistivity, p <sub>T</sub> .                                                                                                                                                               |
| 22    | *          | Novlends, J.A. and<br>Woods, S.B.                               | 1975 | •              | 7-26              | 1 14                                | Same as above except plastically elongated at toom temperature by amounts 5-300% by drawing them through dise, or, for small strains, stretching them.                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| *     | *          | Rowlends, J.A. and<br>Woods, S.B.                               | 1975 | •              | 7-25              | A1 2                                | Similar to the above annealed specimen except $\rho_0=0.0088 \times 10^{-8}\Omega\mathrm{m}_2$ data extracted from figure.                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 22    | 7          | Bowlands, J.A. and<br>Woods, S.B.                               | 1975 | •              | 8-25              | 2 77                                | Same as above except cold-worked to the smallest value of $\boldsymbol{\rho}_{T}$ data extracted from figure.                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 76*   | ສ          | Kauste, S. and<br>Kino, T.                                      | 1975 | ∢              | 4.2-300           |                                     | 99.999 Al supplied by Sumitomo Chemical Co. 1rd.; none-refined; polycrystalline wire of 1 mm diam.; RRR = 12200-16200.                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 11    | <b>5</b> 8 | Srivestave, S.K.                                                | 1975 |                | 938               |                                     | No details gives.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 22    | 22         | Bradley, J.M. and<br>Stringer, J.                               | 1974 | ∢              | 293               |                                     | 99.999 Al; cold rolled to a thickness of 0.5 mm from which rectangular specimen (5 mm x 40 mm) was cut; specimen was solution treated at 500°C and water quenched immediately prior to measurement of resistivity.                                                                                                                                                                                                                                                                                                                                                                     |
| 62    | 28         | Kedves, F.J., Gergely,<br>L., and Hordos, M.                    | 1973 | <              | 26.4-947.9        |                                     | 99.999 Al; 50 mm long (at low temp.), 100-1200 mm long (at high temp.); wound to form a coil on a mica sheat; cold drawn (0.8-1.0 mm diam.); annealed and homogenized at 620-630°C for l h; double chamber cryostat used; data extracted from figure; reported error il%.                                                                                                                                                                                                                                                                                                              |
| 90    | \$2        | Osseurs, K., Hirosks.<br>T., and Murakani, Y                    | 1073 | ⋖              | 4.2,77            | SN Grade                            | 99.9999 Al; 59 grade; supplied by Asahi Metal Co.; RRR = 9700.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| TO T  | Book       | Whot shows in figure.                                           |      |                |                   |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

TABLE 2. NEASUREMENT INFORMATION ON THE ELECTRICAL RESISTIVITY OF ALIMINOM AL (continued)

| 9        | 8  | Author (s)                                             | Year | Wethod   | Temp.<br>Range, K | Specimen<br>Designation | Composition (weight percent), Specifications and Remarks                                                                                                                                                                                                                    |
|----------|----|--------------------------------------------------------|------|----------|-------------------|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| =        | 23 | Osemata, K., Hiroska,<br>T., and Marakasi, T.          | 1973 | 4        | 3.2-200           | 5N Grade                | 99.999 Al. 59 grade; wire specimen 0.6 mm in diam.; supplied by Asahi Metal Co.; RER = 9700; low temperature unpublished data from Nakamura, Furukawa, and Takamura; data extracted from figure.                                                                            |
| 2        | 8  | Oceanita, K., ot al.                                   | 1973 | ∢        | 4.2,77            |                         | 0.175 Zn; specimen 50 mm x 4 mm with long projecting Hall probes and 70 µm thick; supplied by Samitomo Mining Co.; cold-rolled, solution treated for 1 h at 450°C, cooled and held for 1 h at 300°C; quenched in water at 0°C, and immediately immersed in liquid nitrogen. |
| 2        | 2  | Stallard, J.M. and<br>Davis, C.M., Jr.                 | 1973 |          | 976,1302          | MRC VP Grade            | 99.995 Al; rod 5.08 cm.                                                                                                                                                                                                                                                     |
| 3        | 2  | Thompson, G.E. and<br>Hobie, E.                        | 1973 | 4        | 74.98,266.5       |                         | High purity; cast under argon in an induction furnace; ingots were extruded, bomogenized, and cold-rolled to 1.3 mm strip; data extracted from figure.                                                                                                                      |
| 2        | 32 | Semousei, S. and<br>Campbell, I.A.                     | 1973 | ∢        | 1.32-4.21         | Commercial<br>SN Al     | Commercial SN Al wire (RRR = 1200); $\rho_0$ = 0.002409 x $10^{-6}\Omega_{\rm Hi}$ geometrical factor of the order of $10^3$ ; data takes from figure of $\rho-\rho_0/\rho$ vs $T^3$ .                                                                                      |
| 498      | 32 | Semousei, S. and<br>Campbell, I.A.                     | 1973 | 4        | 2.98-4.19         | Commercial<br>3W Al     | Connercial 3H Al wire (RRR = 65); $\rho_0$ = 43.31 nG cm; geometrical factor of the order of $10^4$ ; data taken from figure of $\rho$ - $\rho_0/\rho$ vs T <sup>3</sup> .                                                                                                  |
| 6        | æ  | Korochking, L.H. and<br>Kasimirov, V.P.                | 1973 |          | 993               |                         | Pure; no other details are given.                                                                                                                                                                                                                                           |
| <b>1</b> | *  | Enderby, J.E. and<br>Hove, R.A.                        | 1973 |          | 1120              |                         | Pure.                                                                                                                                                                                                                                                                       |
| 2        | 33 | Romanova, O.V. and<br>Persion, Z.V.                    | 1973 |          | 842.5-1041.3      |                         | Pure aluminum specimen.                                                                                                                                                                                                                                                     |
| ş        | *  | Strote, M.M.,<br>Gostishcher, W.I.,<br>and Drosd, A.A. | 1972 |          | 4.2,273           |                         | Single crystal; 60 x 4 x 3 mm; specimen axis along <110> direction; $\rho(273)$ calculated from resistance ratio of order of 6000 (assumed equal to resistivity ratio) and $\rho(4.2~{\rm K})$ .                                                                            |
| **       | 33 | Horak, J.A. and<br>Blowitt, T.H.                       | 1972 | 4        | 4.5,295           |                         | Polycrystalline wire specimen; approximately 5 cm long with a diam. of 0.025 cm.                                                                                                                                                                                            |
| *26      | 2  | Callarotti, R.C. and<br>Alfonso, H.                    | 1972 | •        | *                 |                         | Bar of very common atructural aluminum; 12 cm long, 9.5 mm diam; inductive method.                                                                                                                                                                                          |
| *16      | *  | Callarotti, R.C. and<br>Alfonso, M.                    | 1972 | •        | "                 |                         | Similar to the above; restative method.                                                                                                                                                                                                                                     |
| 3        | 2  | Levin, E.S., Ayushins, C.D., and Cal'd, P.V.           | 1972 | <b>*</b> | 1923              | AV-000                  | 99.99 Al; data taken from figure; contactless method.                                                                                                                                                                                                                       |
| \$       | \$ | Levin, E.S., et al.                                    | 1972 | æ        | 1923,1798         | AV-00                   | 99.99 Al; data taken from figure; reported error 7%; contactless                                                                                                                                                                                                            |

TABLE 2. HEASUREMENT INFORMATION ON THE ELECTRICAL RESISTIVITY OF ALMINUM AL (continued)

| 2 2 5    | 1   | Author(s)                                                       | Year | Method<br>Used | Temp.<br>Range, K | Name and<br>Specimen<br>Designation | Composition (weight percent), Specifications and Remarks                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|----------|-----|-----------------------------------------------------------------|------|----------------|-------------------|-------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ×        | 3   | Levin, E.S. and<br>Ayushins, G.D.                               | 1972 | #              | 1973              | 000 AV                              | 99.99 Al; data taken from figure; contactless method.                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ř        | 3   | DiMelfi, B.J. and<br>Siegel, R.W.                               | 1971 | 4              | 4:2               | Specimen No. 1                      | 99.9999 Al; <0.03 at. ppm Ag, 0.1 at. ppm Cu, 0.5 at. ppm Fe, 0.1 at. ppm Mg, 0.5 at. ppm Si; from Cowinco American Inc.; ribbon shaped, 18 cm long, 0.080 cm wide, and 0.017 cm thick; annealed in air at 600 ± 5°C for zero h.                                                                                                                                                                                                                                                                           |
| ż        | 3   | Dibaifi, R.J. and<br>Siegel, R.V.                               | 1971 | ∢              | 4.2               | Specimen No. 2                      | Same as above except annealed for 5 h.                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| <b>‡</b> | 7   | DiMelfi, R.J. and<br>Siegel, R.V.                               | 1971 | ∢              | 4.2               | Specimen No. 3                      | Same as above except annealed for 20 h.                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 100      | 7   | Distri, R.J. and<br>Siegal, R.V.                                | 1971 | ∢              | 4.2               | Specimen No. 4                      | Same as above except annealed for 23 h.                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 101      | 3   | DiMelfi, R.J. and<br>Siegel, R.V.                               | 1971 | ∢              | 4.2               | Specimen No. 5                      | Same as above except annealed for 36 h.                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 102      | 3   | DiMelfi, R.J. and<br>Siegal, R.V.                               | 1971 | 4              | 4.2               | Specimen No. 6                      | Same as above except annealed for 48 h.                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 103      | \$  | Alp, T., Brough, I.,<br>Sanderson, S.J., and<br>Entwistel, K.H. | 1970 | ∢              | 273               |                                     | 99.9999 Al; zone refined; 8 ppm impurities by weight; 0.508 mm diam. wire; quenched in ice water at 0°C from 200°C.                                                                                                                                                                                                                                                                                                                                                                                        |
| ğ        | \$  | Rademac, A., Lacoste,<br>M., and Boux, C.                       | 1970 | <b>a</b> t     | 300-900           |                                     | 99.995 Al; 0.0040 Mg, 0.0005 Fe, 0.0002 Cu, and 0.0002 Sl; 4 mm diam. x 3 mm; expansion corrected; uncertainty 13%; contactless method.                                                                                                                                                                                                                                                                                                                                                                    |
| <b>3</b> | \$  | S.B. and Woods,<br>S.B.                                         | 1970 | ∢              | 10-295            | Grede 58                            | 99.999 Al; polycrystalline; obtained from Consolidated Mining and Smelting Co. of Canada; 6 mm diam, rod drawn through steel dies to 1.5 mm diam, then etched, then drawn through diamond dies to 0.5 mm diam,; annealed for 12 h at $400^\circ$ tin $10^{-3}$ for atmosphere; electrical restatance ratio $R(29)$ $R/R(4)$ K) $\sim 4000$ ; resistivity deduced from p = p_1 + p_0, p_0 = 0.0007 $\mu$ D (273.2 K) = 2.429 $\mu$ D cm, and smoothed values of $p_1(T)/p_1(273.2$ K) extracted from table. |
| 10       | \$  | S.B. and Woods,                                                 | 1970 | ∢              | 273.2             |                                     | 0.12 Mg; 6 wm diam. rods made by melting freshly cleaned pellets in evacuated sealed quarts tubes, then drawn through steel dies to 1.5 mm diam.; etched and drawn through diamond dies to 0.5 mm diam.; annealed at 400°C for 12 h in 10 Torr H; atmosphere in close-fitting Pyrex containst; residual resistivity 0.0487 µû cm.                                                                                                                                                                          |
| 107      | \$  | Söhm, R. and Wachtel,<br>E.                                     | 1969 |                | 194-408           |                                     | 99.997% Al; impurities 0.001 Cu, 0.001 Fe, 0.001 Si; cylindrical specimen 10 mm in diam.                                                                                                                                                                                                                                                                                                                                                                                                                   |
| <b>9</b> | *   | Rubemenko, I.R. and<br>Grossman, M.I.                           | 1969 |                | 293               |                                     | $7 \times 7 \times 28$ mm; measuring temperature assumed 20°C.                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Hot      | E S | Mot shown in figure.                                            |      | ı              |                   |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

TABLE 2. MEASUREMENT INFORMATION ON THE ELECTRICAL RESISTIVITY OF ALIMINIM AL (continued)

| 2 % e       | j a   | Author (e)                              | Year | Method<br>Used | Tap.     | Mane and<br>Specimen<br>Designation | Composition (weight percent), Specifications and Remarks                                                                                                                                                                                                                                                                                                                                           | - |
|-------------|-------|-----------------------------------------|------|----------------|----------|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| 109         | 3     | Logunov, A.V. and<br>Zverov, A.F.       | 1961 | 4              | 321-693  |                                     | 99.946 Al; 4 mm diam. x 100 mm; data takan from figure; not corrected for expansion of sample; reported error <0.5%.                                                                                                                                                                                                                                                                               |   |
| 977         | \$    | Wilkes, K.E. and<br>Poseil, R.V.        | 1968 | 4              | 577,273  |                                     | 99.99989 Al; polycrystallina; 0.5 ppm Cu, 0.5 ppm Si, 0.1 ppm Mg; obtained from Advanced Research Materials; 1.225 cm diam. x 10.16 cm.                                                                                                                                                                                                                                                            |   |
| <b>.</b>    | 2     | Von Basewitz, A. and<br>Mitchall, E.H.  | 1968 | 4              | 4.6-90.3 |                                     | 99.999 AI.                                                                                                                                                                                                                                                                                                                                                                                         |   |
| 11.7*       | ×     | Sharm, J.K.H.                           | 1967 | Δ.             | 1.5,293  |                                     | 99.999 Al; polycrystalline wire specimen obteimed from Aluminum Laboratories; RRR = 664; 1 mm diam. x 70 cm long.                                                                                                                                                                                                                                                                                  |   |
| 1134        | ×     | Merenson, R.                            | 1967 |                | 35       | <b>35</b>                           | 99.999 Al; wire obtained from Consolidated Mining and Smalting Co.; received extensive deformation in the wire-drawing process and further deformation when wound on mandrale of 0.5 in. diam. in making the samples for the experiment; mounted samples annualed at 150°C for 4 h; resistivity ratio = 476; residual electrical resistivity = 5.74 x 10°11 Ω m; data extracted from smooth curve. |   |
| Ħ           | 23    | Stevenson, I.                           | 1967 |                | 9-35     | 3                                   | Similar to the above except remistivity ratio = 1173; $\rho_0$ = 2.27 x $10^{-11}$ $\Omega$ m; data extracted from smooth curve.                                                                                                                                                                                                                                                                   |   |
| <b>511</b>  | æ     | Willes, E.E.                            | 1967 | ∢              | 78-298   |                                     | 99.99999 Al, 0.00005 Cu, 0.00005 Si, and 0.00001 Mg; 1.226 cm diam. x 10.16 cm long; obtained from tempor at corrected for thermal expansion by multiplying the room temporature disensions by (1 + $\alpha_0$ ) where $\alpha_0$ , is everage coefficient of linear thermal expansion and T is the change from room temporature.                                                                  |   |
| <b>9</b> 11 | *     | husch, G. and<br>Gincherodt, H.J.       | 1967 | v              | 883-1080 |                                     | No details given.                                                                                                                                                                                                                                                                                                                                                                                  |   |
| m           | 23    | Bosto, G., Bugo, M.,<br>and Risatto, C. | 1966 | •              | 4.2      |                                     | 99.995 Al; the specimen was annealed in air for one day at 610°C, then quenched in iced sait water for less than a second; the measurement was taken using a Keitly nanovoltmeter, whose calibration was better than 3%.                                                                                                                                                                           |   |
| 911         | %     | Nobili, D. and<br>Debecci, N.A.         | 1966 | <b>◄</b>       | 298-173  |                                     | 99.99 Al, <0.005 S, 0.003 Cu, 0.003 Fe, <0.001 Mg, and <0.001 Zn; cylindrical specimen; annealed at 550°C for 2 h; reported error <1X.                                                                                                                                                                                                                                                             |   |
| 611         | 57    | Mealy, E.R. and<br>Socia, A.            | 1366 |                | 70.4     |                                     | 99.9999 Al; specimen supplied by United Minerals Corp.; wire drawn to diam. of 0.0053 cm.                                                                                                                                                                                                                                                                                                          |   |
| 170         | 23    | Healy, H.H. and<br>Socia, A.            | 1966 |                | \$0.€    |                                     | 99.995 Al; wire supplied by Aluminum Corporation of America; was drawn to 0.0053 cm diam.                                                                                                                                                                                                                                                                                                          |   |
| 121         | 22    | Pewlek, F. and<br>Rogalla, D.           | 1966 | •              | 4-273    | Extra pure Al;<br>99.999            | 99.999 Al, 0.00024 Fe, 0.00019 Cu, 0.00015 Si, and 0.0003 remaining impurities; 2 mm diam. wire received, with works analysis, from Aluminium-Fütte Rheinfelden GabH, Rheinfelden; electrical resistivity ratio p(273 K)/of4.2 K) = 2210, p(293 K)/o/20.4 K) = 1130.                                                                                                                               |   |
| i i         | a see | Mot shown in figure.                    |      |                |          |                                     |                                                                                                                                                                                                                                                                                                                                                                                                    |   |

TABLE 2. NEASTREMENT INFORMATION ON THE ELECTRICAL RESISTIVITY OF ALIMINUM Al (continued)

| P S G | 2 2   | Author(s)                                        | Tear | Method<br>Used | Temp.<br>Range, K | Name and<br>Specimen<br>Designation | Composition (weight percent), Specifications and Remarks                                                                                                                                                                                                                                                                                           |
|-------|-------|--------------------------------------------------|------|----------------|-------------------|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 122   | 22    | Period, P. and<br>Rogalla, D.                    | 1966 | •              | 4-273             | Very pure Al                        | 99.994 AI, 0.0024 Cu, 0.0020 Si, and 0.0012 Fe; 2 mm diam, wire supplied by Versinigte Aluminiumwerke AG, Bonn; annealed I h in Figo. at 300°C (authors report annealing temperature as 300°C in Fig. 5, but 400°C on p. 17 of their paper); cooling rate <50°C/h; electrical resistivity ratio p(273 K)/p(4.2 K) = 400, p(293 K)/p(20.4 K) = 328. |
| 123   | 2 2   | Paulok, F. and<br>Rogalla, D.                    | 1966 | •              | 4-273             | Pure A1,<br>A1 99.9                 | 99.8673 Al, 0.0730 Fe, 0.0420 Si, 0.0140 Zm, 0.0020 km, and 0.0017 Cu; shallar to the above except electrical resistivity ratio $p(273~{\rm K})/p(4.2~{\rm K}) = 55.2$ , $p(293~{\rm K})/p(20.4~{\rm K}) = 57.1$ .                                                                                                                                 |
| 124   | 22    | Pavlek, F. and<br>Rogalla, D.                    | 9961 | •              | 4-273             | A1 99.7                             | 99.814 A1, 0.1100 Fe, 0.0580 S1, 0.0100 Zn, 0.0040 T1, 0.0020 Cu, and 0.0020 hn; similar to the above except electrical resistivity ratio $\rho(273~K)/\rho(4.2~K)=28.3,~\rho(293~K)/\rho(20.4~K)=28.6.$                                                                                                                                           |
| 125   | 8     | Moore, J.P., McElroy,<br>D.L., and Barlsoni, M.  | 1966 | •              | 100-360           |                                     | 99,999 Al; RRR = 520; cylindrical specimen machined from a stock obtained from Raynolds Aluminum Co.; estimated uncertainty 10.6%.                                                                                                                                                                                                                 |
| 126*  | 19    | Wiser, M.                                        | 1966 |                | 973               |                                     | No detaile given.                                                                                                                                                                                                                                                                                                                                  |
| 121   | 62    | Powell, R.W., Tye,<br>R.P., and Woodman,<br>M.J. | 1965 | <              | 313-673           |                                     | 99.993 Alirod obtained from British Aluminum Co.; specimen 2.53 cm in diam. and 20.4 cm long.                                                                                                                                                                                                                                                      |
| 128   | 62    | Powell, R.W., et al.                             | 1965 | ∢              | 323-873           |                                     | 99.993 Al; from British Aluminum Co.; specimen 2.81 cm in diam. and 28.0 cm long; smoothed values from table; longitudinal heat flow apparatus used.                                                                                                                                                                                               |
| 129   | 62    | Powell, R.W., et al.                             | 1965 | <              | 123-323           |                                     | 99.993 Al; from British Aluminum Co.; specimen 8.0 $\times$ 0.44 $\times$ 0.44 cm; smoothed values from table.                                                                                                                                                                                                                                     |
| 130   | 3     | Povell, R.W., Tye,<br>R.P., and Metcalf,<br>S.C. | 1965 | ∢              | 973–1273          |                                     | 99.993 Al; from British Aluminum Co.; in molten state; smoothed values from table.                                                                                                                                                                                                                                                                 |
| 101   | 3     | Forevoll, K. and<br>Holwech, I.                  | 1964 |                | 4.2               | Specimen 1                          | 99.99 Al; containing 0.004 Zn; zone refined; bulk registance ratio R <sub>293</sub> /R <sub>4.2</sub> = 26500.                                                                                                                                                                                                                                     |
| 1324  | 3     | Forevoll, K. and<br>Holwech, I.                  | 1964 |                | 4.2               | Specimen 2                          | 99,999 Al; containing 0.001 Zn; zone refined; bulk resistance ratio R.19, R.19, R. 26500.                                                                                                                                                                                                                                                          |
| 133*  | 3     | Frois, C. and<br>Dimitrov, O.                    | 1964 |                | 20.4              |                                     | 99.95 Al, 0.05 total impurities; aluminum purified by 15 passages in zone refinement; values measured immediately after deformation in liquid hydrogen; data extracted from figure.                                                                                                                                                                |
| 134   | 65    | Frois, C. and<br>Dimitrov, O.                    | 1964 |                | 20.4              |                                     | Similar to above specimen.                                                                                                                                                                                                                                                                                                                         |
| 196   | shows | *Not shown in figure.                            |      |                |                   |                                     |                                                                                                                                                                                                                                                                                                                                                    |

TABLE 2. MEASUREMENT INFORMATION ON THE ELECTRICAL RESISTIVITY OF ALLMINUM AL (continued)

| Pet<br>Bor<br>Bo | <u> </u> | Author (e)                                             | Year | Mathod<br>Used | Temp.<br>Range, K | Specimen<br>Designation | Composition (weight percent), Specifications and Remarks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|------------------|----------|--------------------------------------------------------|------|----------------|-------------------|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 51               | 3        | Featon, E.V., Rogers,<br>J.S., and Woods, S.B.         | 1963 |                | 2-28              | A1 3                    | 99.9999 Al; some refined sheet 0.010 in, thick x 0.125 in, diam, rode; supplied by Research Labs, of Consolidated Mining and Smelting Co. of Canada, Trail, British Columbia; acid-ected to remove surface contamination before annealing; rode passed through rollers producing a square cross section that degenerated to rhombold after several passes; specimen drawn once through steal die to restore cross section to nearly round shape about half way through reduction; further etched to remove surface contamination; annealed in air at 550°C for 10 minutes; $\rho_0=0.39903 \times 10^{-8}$ M m. |
| 136              | 3        | Fenton, E.W., et al.                                   | 1963 |                | 2-21              | 9 77                    | Same as the above except $\rho_0$ = 0.000568 x $10^{-6}$ Ω m.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 137              | 6        | Purcell, J.R. and<br>Jacoba, R.B.                      | 1963 | ∢              | <b>4-30</b>       | 99.9983 pure            | 99.9983 Al; specimen (approx.) 0.004 in. x 0.25 in. x 40 in.; supplied by Consolidated Aluminas Co., Jackson, Tennessee; annealed at 350°C for 2 h; R(300)/R(4) = 1,370; sample completely immersed in bath of either liquid helium or liquid helium draing seasurements; resistivities computed from resistance ratios, value used for room temperature resistivity 2.7 x 10 <sup>-6</sup> 0 cm (Rutter, J.W. and Reekie, J. [81]; reported error 10%.                                                                                                                                                         |
| 136              | 5        | Purcell, J.R. and<br>Jacobs, R.B.                      | 1963 | <              | <del>4-</del> 30  | 99.999 pure             | 99.999 Al; approximate specimen dimensions 0.030 in, x 0.125 in, x 40 in,; supplied by A.1.A.C. Metals Inc., New York, New York; annesled at 350°C for 2 h; R(300)/R(4) = 2,600; sample completely immersed in bath of alther liquid helium or liquid hydrogen during measurements; resistivities computed from resistance ratios, value used for room temperature resistivity 2.7 x 10 <sup>-6</sup> fi cm (Rutter, J.W. and Reekle, J. [81]; reported error 102.                                                                                                                                              |
| 1394             | 3        | Aleksendrov, B.W. and D'yakov, I.G.                    | 1963 | <              | 273-650           |                         | 99.9 Al, 0.05 Si, 0.03 B; $\rho_{2/3}$ K = 2.417 x $10^{-8}$ G m assumed; data of Pochapsky [96]; error in resistance 11%.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 140*             | 3        | Aleksandrov, B.N. and D'yakov, I.G.                    | 1963 | <              | 14-290            |                         | Single crystal with wire axis coincident with either principal axis or [110] direction; wire diam. 10-15 mm; data taken from figure.                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 141              | 3        | Aleksendrov, B.N. and<br>D'yakov, I.G.                 | 1963 | <              | 14-261            |                         | Polycrystalline Al wire with axis coincident either with the principal axis or with [110] direction; purified by zone melting; $\rho_{v,z}/\rho_{zzz}=3.4\times10^{-5}$ ; below <14 K, $\rho$ $\sim$ I <sup>2</sup> ; data extracted from figure.                                                                                                                                                                                                                                                                                                                                                               |
| 142*             | <b>5</b> | Swanson, H.L.,<br>Piercy, G.R., and<br>MacKinnon, D.J. | 1962 | <              | 8.<br>8.          | -                       | 99.99 Al; strip specimen 0.003 in. thick; annealed 0.010 in. wires rolled at room temperature; annealed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1434             | 69       | Swanson, M.L., et al.                                  | 1962 | ∢              | 1.8               | 2                       | Similar to the above specimen.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 144              | \$       | Swanson, M.L., et al.                                  | 1962 | 4              | 1.8               | c                       | Same so above specimen.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 145*             | \$       | Stanson, M.L., et al.                                  | 1962 | ∢              | 1.8               | •                       | 99.999 Al; strip specimen 0.008 in. thick; annealed 0.010 in. wires rolled at room temperature; annealed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1464             | 2        | Korel'kov, A.M. and Shashkov, D.F.                     | 1962 |                | 294-1073          |                         | No details given.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

TABLE 2. MEASUREMENT INFORMATION ON THE ELECTRICAL RESISTIVITY OF ALIMINUM A1 (continued)

| B S is | Est.  | Author (e)                                            | Year | Method<br>Used | Temp.<br>Lange, K | Name and<br>Specimen<br>Designation | Composition (weight percent), Specifications and Remarks                                                                                                                                                                                                                                                                                                                                                                                                                       |
|--------|-------|-------------------------------------------------------|------|----------------|-------------------|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 147*   | T.    | Strota, M.M.                                          | 1962 |                | 20-372            |                                     | No details given; data taken from figure.                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 3      | 2     | Powell, R.L., Hell,<br>W.J., and Roder, H.M.          | 1960 | 4              | 4-76              | Single crystel<br>High purity       | 99.995 Al, originally; single crystal; the JM 340 rod made from Johnson-Matthey stock by Horizons, Inc., Cleveland, Ohio; ground to 3.66 mm diam; chemical etching after the reduction in diameter indicated the material was still a single crystal; after the last fabrication the rod was amealed in vacuum at about 400°C for 2 h; data extracted from amouth curve; reported error 2%.                                                                                    |
| 149    | 52    | Medgcock, F.T., Muir,<br>W.B., and Wallingford,<br>E. | 1960 | <b>∢</b>       | 2.7-26            | ði s                                | <0.002 Cu, <0.002 Fe, <0.002 Mg, <0.001 Mn, <0.001 S1; prepared by the Aluminum Co. of Canada; cold-rolled; annealed in helium at 300°C for 24 h; values calculated from graphically reported $\rho/\rho_{100}$ values using $\rho_{100} = 2.77 \times 10^{-6} \Omega$ m; reported error 0.5%.                                                                                                                                                                                 |
| 951    | *     | Simmons, R.O. and<br>Balluffi, R.W.                   | 1960 |                | 287-928           | High purity Al                      | 99.995 Al, 0.003 Cu, 0.001 Fe, and 0.001 Si; material domated by Aluminum Co. of America; annealed a few degrees below 933 K for several days; swaged and drawn into 0.43 mm diam. wire; R(273 K) K(4.2 K) = 444 after annealing and essentially the same value for the starting material; resistance ratios corrected for thermal expansion from crude dimensional measurements on apecimen p(20°C) = 2.70 ± 0.12 µR cm; therefore, standard value of p(20°C) = 2.6548 µR cm. |
| 151    | 2     | Deforbo, V.                                           | 1958 | ∢              | 1-20              | Zone refined                        | Spectroscopic composition: "trace" of Cu, specimen 0.020 in. dism. x 7-9 ft. long; obtained from W. E. Trogert; single crystal obtained after 6 passes of zone-refining, machined, swaged, and then drawn; between each mwaging and each drawing, metal pickled in warm 15% NIOH solution; drawing done with dismond dist, heat treatent: annealed for several hours at 550°C and cooled 2-3°C/min.                                                                            |
| 152    | 22    | DeSorbo, W.                                           | 1958 | ∢              | 1-20              | Zone refined                        | Same sample as above except heat treatment air quenched from 350°C.                                                                                                                                                                                                                                                                                                                                                                                                            |
| 153    | 25    | DeSorbo, W.                                           | 1958 | ∢              | 1-20              | Zone refined                        | Same sample as above except heat treatment air quenched from $550^{\circ}\mathrm{C}_{\odot}$                                                                                                                                                                                                                                                                                                                                                                                   |
| 151    | 22    | DeSorbo, W.                                           | 1958 | ∢              | 1-20              | Zone refined                        | Same sample as above except heat treatment fast quenched from 510°C.                                                                                                                                                                                                                                                                                                                                                                                                           |
| 155    | 92    | Mikryokov, V.E.                                       | 1958 | ×              | 339-795           |                                     | Pure; polycrystal; data from figure; error 1-1.5%; Kohlrausch method.                                                                                                                                                                                                                                                                                                                                                                                                          |
| 156    | 11    | Mikryokov, V.E.                                       | 1957 | ×              | 338-797           |                                     | 99.99 Al; polycrystalline.                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 157    | 82    | Roll, A., Motz, H.,<br>and Felger, H.                 | 1957 | ×              | 933-1473          |                                     | Pure liquid Al; data is represented by linear equation $\rho$ (in $\mu\Omega$ cm) = 0.0146-T(K) + 10.56.                                                                                                                                                                                                                                                                                                                                                                       |
| 158*   | 62    | Broom, T.                                             | 1952 | £              | 90-373            |                                     | 99.996* Al; impurities 0.002 Mg, <0.001 Si, <0.0005 Cu, Fe; wire drawn from 0.183 cm to 0.056 cm diam. then annealed at 500°C for 2 h and furnace cooled; Kelvin double bridge method.                                                                                                                                                                                                                                                                                         |
| 159*   | 90    | Andrews, T.A., Webber,<br>R.T., and Spohr, D.A.       | 1951 | ∢              | 4.2,273           | 1 14                                | 99.996* A1, 0.001 Mg, 0.001 S1, 0.0006 Fe, 0.0004 Cu, and 0.0004 Na; single crystal rods, 0.15 in. diam. x 4 in. long; from Alcoa; $p_0$ = 0.00304 x $10^{-8}$ R m; Wenner potentiometer; reported error <27.                                                                                                                                                                                                                                                                  |
| Hot    | ahoun | *Not shown in figure.                                 |      | 1              |                   |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

TABLE 2. MEASUREMENT INFORMATION ON THE ELECTRICAL RESISTIVITY OF ALIMINM AL (continued)

| Set<br>No.  | Ref.      | Author(s)                                                        | Year | Method<br>Used | Temp.<br>Range, K | Neme and<br>Specimen<br>Designation | Composition (weight percent), Specifications and Remarks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-------------|-----------|------------------------------------------------------------------|------|----------------|-------------------|-------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3           | 2         | Andrews, F.A., et al.                                            | 1921 | ٧              | 4.2,273           | 11 TV                               | Similar to the above specimen; po = 0.00385 x 10 0 m.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| <b>*191</b> | 2         | Andrews, F.A., et al.                                            | 1921 | ₹              | 4.2,273           | 111 74                              | 99.995 <sup>4</sup> Al, 0.002 Mg, 0.001 Si, and trace Cu, Fe, and Na; polycrystalline; from Johnson and Matthey; rode 0.15 in. diam. x 4 in. long; $\rho_0=0.00551~x~10^{-6}~\Omega$ m.                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 162*        | <b>5</b>  | Butter, J.W. and<br>Reskie, J.                                   | 1950 |                | 20-297            | H-S brand                           | 99.999 Al; polycrystalline; rod specimen; from Johnson, Matthey Ltd.; H-S brand; not cold worked.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1634        | <b>18</b> | Rutter, J.W. and<br>Reskin, J.                                   | 1950 |                | 20-297            | #<br>•                              | Same as the above specimen except percent reduction of area was 17.9%, i.e., cold worked from annealed state by drawing through diamond dies at uniform speed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 164         | <b>=</b>  | Butter, J.W. and<br>Reekia, J.                                   | 1950 |                | 20-297            | H~8                                 | Same as the above specimen except percent reduction of area was 40.4%.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1654        | <b>2</b>  | Butter, J.W. and<br>Reckie, J.                                   | 1950 |                | 20-297            | H-S                                 | Same as the above specimen except percent reduction of area was 60.2%.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1991        | 28        | Butter, J.W. and<br>Reskie, J.                                   | 1950 |                | 20-297            | H-8                                 | Same as the above specimen except percent reduction of area was 83.1%.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 167*        | 8         | Fowell, H. and Evans, E.J.                                       | 1942 |                | 273               |                                     | 99.99 Al; 0.4 cm x 2.5 cm x 12 cm; electrically refined aluminum from Aluminum Industries, A. G. Nenhansen, Switzerland; specimen heated up to the annealing temperature and maintained at that temperature from 2-3 weeks, specimen then allowed to cool slowly to room temperature; resistivity was measured at 273 K, specimen was then heated in furnace and previous annealing temperature was continued for about 3 weeks; after cooling the resistivity of each specimen at 273 K was again determined, this process was continued until no change in resistivity at 273 K was found upon further annealing; density 2.71 g cm <sup>-3</sup> . |
| 168*        | 82        | Fowell, H. and<br>Evans, E.J.                                    | 1942 |                | 273               |                                     | Same as the above specimen before annealing.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 169*        | 2         | Taylor, C.S., Willey,<br>L.A., Smith, D.W.,<br>and Edwards, J.D. | 1938 |                | 293               | High purity                         | 99.9960 Al (by difference), 0.0020 Si, 0.0010 Cu, 0.0003 Ca, 0.0003 Mg, 0.0003 Ma, and 0.0001 Fe; specimen 14 gage sheet, 1 in. wide, 24 in. long; produced by Compagnie des Produts Chimiques et Electrometallugiques d'Alais Froges et Camargue; electrolytically refined notch-bat ingot remelted in graphite crucible, cast in sheet ingot 1.5 in. thick, cold-rolled to 1 in. thick, surface of slab removed by machining, and further cold-rolled.                                                                                                                                                                                              |
| 170         | 2         | Eucken, A. and<br>Warrertrup, H.                                 | 1935 |                | 273.2             |                                     | 99.7 Al.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 171*        | <b>£</b>  | Kapitsa, P.                                                      | 1929 | ∢              | <b>60</b>         | ı,                                  | 99.951 Al, 0.021 Cu, 0.013 St, 0.012 Pe, 0.002 Tt, 0.001 Vn; wire specimen 0.17 mm in diam. from American Aluminum Co.; remistance ratio R(29 K)/R(91 K) = 8.77; units not explicitly given, presume they are in $\Omega$ cm.                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ğ           | shows     | Mot shown in figure.                                             |      | 1              |                   |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

TABLE 2. MEASUREMENT INFORMATION ON THE ELECTRICAL RESISTIVITY OF ALUMINIM A1 (continued)

|          | į        | Aelec(e)                       | }    | Method   | Temp.        | Mane and         | Commented and teacher present Constituent and Deserts                                                                                                                                                                                                                                                                                           |
|----------|----------|--------------------------------|------|----------|--------------|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2        |          | AUCHOL(8)                      | 1001 | Vsed     | Range, K     | Designation      | COMPOSITION (MELMIT PETCENT), SPECIALIZATION SAGE PERMITE                                                                                                                                                                                                                                                                                       |
| <b></b>  |          | Kapitta, P.                    | 1929 | <b>⋖</b> | 60<br>63     | A111             | Spectroscopic comparison with Aly showed Ally somewhat more impure than Aly, chief impurity copper; strip specimen 0.1 has thick and about 0.5 has wide; from Aluminum Co. of America, gift of Dr. Chadwick; resistance ratio $R(290\ K)/R(91\ K) \approx 7.09$ ; units not explicitly given, presume they are in $\Omega$ cm.                  |
| <b>2</b> |          | Kapitza, P.                    | 1929 | ∢        | 99           | A111             | Spectroacopic comparison showed AllII somewhat more impure than AlII, copper chief impurity; wire specimen 0.15 in diam.; from Hartmann and Braun; resistance ratio $R(290\ R)/R(91\ R) = 7.14$ ; units not explicitly given, presume they are in $\Omega$ cm.                                                                                  |
| •        | <b>S</b> | Kapitus, P.                    | 1929 | <        | <b>9</b>     | M <sub>III</sub> | The above specimen after magnetoresistivity measurements performed with magnetic field perpendicular to current; resistance ratio R(290 K)/R(88 K) = 8.26; units not explicitly given, presume they are in $\Omega$ cm.                                                                                                                         |
| ∞        | 98       | Stambler, 7.                   | 1929 |          | 92-476       |                  | Pure.                                                                                                                                                                                                                                                                                                                                           |
| €        | 2        | Grunelsen, E. and<br>Goens, E. | 1927 | <b>∢</b> | 21. 2-273. 2 | Aluminum 1       | Rather pure; source Aluminum Co. of America; turned into small rod from coarse-grained catting; annealed in vacuum at 300°C for 2.5 h; thermal resistivity 0.0500 and 0.289 $\mathrm{Wcm^{-1}K^{-1}}$ at 21.2 and 83.2 K, respectively; Wiedemann-Franz-Lorenz number 1.77 and 1.27 x $10^{-8}$ f W K $^{-2}$ at 21.2 and 83.2 K, respectively. |
| ₩        | 28       | Grünelsen, E. and<br>Goens, E. | 1927 | ∢        | 21.2-273.2   | <b>A1</b> 3      | Same as above; grain eize 5-15 mm long; drawn and annealed, then stretched 2.5%, and recrystallized by annealing thermal resistivity 0.0840 and 0.290 W cm^2 k^2 at 21.2 and 83.2 K, respectively; Wiedemann-Frant-Lorenz number 1.97 and 1.32 x $10^{-8}$ W K <sup>-2</sup> at 21.2 and 83.2 K, respectively.                                  |
| -        | 81       | Grüneisen, E. and<br>Goens, E. | 1927 | ∢        | 21.2-273.2   | A1 100           | Technically pure; source unknown, commercial conductor; annested in vacuum at 250°C; thermal resistivity 0.341 and 0.374 $\mu_{\rm cm}^{-1} K^{-1}$ at 21.2 and 83.2 K, respectively; Wiedemann-Franz-Lorenz number 2.18 and 1.47 x 10°8 M K <sup>-2</sup> at 21.2 and 83.2 K, respectively.                                                    |
| <b>®</b> | <b>8</b> | Grünelsen, E. and<br>Goens, E. | 1927 | ∢        | 21.2-273.2   | A1 101           | Same as above; after annealing stretched 3% and recrystallized by annealing; thermal restativity 0.470 and 0.408 ${\rm Wcm^{-1}K^{-1}}$ at 21.2 and 83.2 K, respectively; Wiedemann-Franz-Lorenz number 2.20 and 1.55 x 10 <sup>-9</sup> ${\rm fl}$ W T <sup>-1</sup> at 21.2 and 83.2 K, respectively; measuring length = 2 crystal grains.    |
| ₩        | 2        | Grümetsen, E. and<br>Goene, E. | 1927 | ∢        | 21.2-273.2   | A1 21            | Hoderately pure; single crystal; grown by recrystallization; thermal resistivity 0.730 and 0.481 $W cm^{-1}K^{-1}$ at 21.2 and 83.2 K, respectively; Wiedemann-Franz-Lorenz number 2.20 and 1.66 x $10^{-8}$ N K <sup>-2</sup> at 21.2 and 83.2 K, respectively.                                                                                |
|          | 2        | Matuyama, T.                   | 1927 |          | 959-1198     |                  | Chemically pure; melting point 931.65 K, r = 2.58 mm, $t$ = 62.2 mm, $\sigma_{\rm em} = 25.5 \times 10^{-6}$ .                                                                                                                                                                                                                                  |
| 18       | 5        | Mot shown in figure.           |      | ,        |              |                  |                                                                                                                                                                                                                                                                                                                                                 |

The second secon

TABLE 2. NEASUREMENT INFORMATION ON THE ELECTRICAL RESISTIVITY OF ALUMINOM AL (continued)

| Beta<br>No. | F F | Author (a)                          | Year  | Hethod<br>Used | Yemp.<br>Range, K | Mame and<br>Specimen<br>Designation | Composition (weight percent), Specifications and Remarks                                                                                                                                                                                                                                                                                                                                          |
|-------------|-----|-------------------------------------|-------|----------------|-------------------|-------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 182*        | 6   | Smith, A.W.                         | 1925  | •              | 296.2             |                                     | 99.97 $^{4}$ Al; 1.9 cm diam, x 10 cm long; specimen from Aluminum Co. of America.                                                                                                                                                                                                                                                                                                                |
| <b>61</b>   | 8   | Schoffeld, F.H.                     | 1925  | <              | 289-814           |                                     | 99.7 Al; free from discontinuities between core and surrounding layers, inclusion of dross, oxidized skin, and unsoundness; supplied by British Aluminium Co., Ltd.; 6.75 in. diam. billets cast from a maximum temperature of 973 K, annealed at 773 K for 2.5 h, extruded at 693 k to 0.75 in. diam.; annealed at 723 K for 2.5 h, density 2.70 g cm <sup>-3</sup> at 294 K; reported error IX. |
| 184*        | 16  | Bolborn, L.                         | 1921  |                | 273,293           | VI IV                               | 99.59 Al; 0.22 Si, 0.18 Fe, and 0.01 C.                                                                                                                                                                                                                                                                                                                                                           |
| 185*        | 16  | Bolborn, L.                         | 1921  |                | 273,293           | AI TV                               | Same as the above except specimen was annealed.                                                                                                                                                                                                                                                                                                                                                   |
| 186*        | 16  | Molborn, L.                         | 1921  |                | 273,293           | 1A TY                               | 99.9 Al, 0.06 Cu, 0.02 Si, and trace of Fe; wire specimen I mm in diam. and 7.3 m wound on porcelain tube; material from specimen Al IV above purified, drawn by Heraeus.                                                                                                                                                                                                                         |
| 187*        | 16  | Bolborn, L.                         | 1921  |                | 273,293           | IA TV                               | Above specimen annealed for a long time at 250°C.                                                                                                                                                                                                                                                                                                                                                 |
| 186*        | 93  | Holborn, L.                         | 1919  |                | 20-195            |                                     | 99.6 Al, 0.4% impurities; polycrystalline.                                                                                                                                                                                                                                                                                                                                                        |
| 189         | 93  | Bornessann, K. and<br>Vagermann, K. | 1914  |                | 973-1573          |                                     | Pure aluminum specimen was obtained from Reubausen                                                                                                                                                                                                                                                                                                                                                |
| 190*        | 2   | Wolff, F.A. and<br>Dellinger, J.H.  | 11611 |                | 293               |                                     | 99.52-99.60 Al, 0.26-0.34 Si, and 0.14-0.15 Pe; commercial hard-drawn aluminum wire; density 2.70 g cm <sup>-3</sup> .                                                                                                                                                                                                                                                                            |
| 161         | 86  | Miccolai, G.                        | 1908  |                | 84-673            |                                     | Wire specimen obtained from Firma C.A.F. Kahibaum; 0.5 mm diam. x $\theta$ m long.                                                                                                                                                                                                                                                                                                                |

Mot shown in figure.

TABLE 3. EXPERIMENTAL DATA ON THE ELECTRICAL RESISTIVITY OF ALUMINUM A1 [Temperature, T, K; Electrical Resistivity,  $\rho,\ 10^{-0}\ \Omega$  m]

|               |       |         |                 | -       | 2                         |        |                      |        | 1              |       |                      |
|---------------|-------|---------|-----------------|---------|---------------------------|--------|----------------------|--------|----------------|-------|----------------------|
| DATA SET 1*   |       | DATA SE | 4 128           | DATA SE | DATA SET & Comp 14        | DATA S | DATA CET 13 (cont 14 | ATA A  | DATA SET 18*   | DATA  | DATA SET 21 (cont.)* |
| 1             |       | }       | 1               |         |                           |        | 711000 00 00         |        |                | •     |                      |
|               | x 10_ | 2.631   |                 | 3.770   | 1.3720                    | 3.593  | 2.9857               | 1.294  | 110.640 x 10-4 |       |                      |
| 1.650 0.93631 |       | 3.7%    | 0.73259         | 3.978   | 1.3836                    | 1.785  | 7 9967               | 1.535  | 110.642        | 2.620 | 22.470               |
| _             |       | 4.221   | 0.75419 x 10-   | 4 123   | 1 3020                    | 1 078  | 2000                 | 1.776  | 110.645        | 3.016 | 22.481               |
|               |       |         |                 | 200     | 100 1 2000 1              |        | 4-010                | 000    | 110 648        | 3.402 | 22.496               |
|               |       | DATA    | SET 54          | 7.550   | 7.370 A 10                | 4.133  | 07 M 9670.5          | 7 167  | 110 651        | 3.699 |                      |
|               |       |         |                 |         |                           | 1      |                      |        | 110 661        | 270 2 |                      |
|               |       | 2,43    | 4_UL - 76787 U  | DATA    | DATA SET 9"               | DATA   | DATA SET 14"         | 7.017  | 100.011        | 4 211 | 22 540 - 10-4        |
|               |       | 200.0   | 4 4 4 4 4 4 4   |         | 1                         |        |                      | 110.5  | 110.6/3        |       | 4                    |
|               |       | 790.7   | 0.69098         | 1.950   | 1.3135 x 10-7             | 1.501  | 2.9268 x 10-         | 3.400  | 110.694        |       |                      |
| _             | _     | 2.7.28  | 0.69456         | 2.000   |                           | 1.700  | 2.9290               | 3.800  | 110.721        |       | DATA SET 22"         |
|               |       | 2.989   | 0.70186         | 2.050   | 1.3151                    | 1.800  | 2.9303               | 4.200  | 110.755 x 10-* |       |                      |
|               | _     | 3.1875  | 0.70819         | 2.101   | 1.3160                    | 1.900  | 2.9317               |        |                |       | 12.4 x 10            |
| 2.145 0.94299 | _     | 3.378   | •               | 2.171   | 1.3172                    | 2.000  | 2.9332               | DATA   | DATA SET 19*   | 4.1   | 15.4                 |
| 2,156 0.94318 | _     | 3.596   | 0.72343         | 2 320   | 1 3200                    | 2.171  | 2 9362               |        |                | 6.2   | 15.9                 |
|               |       | 1.797   |                 | 9 448   | 1 3333                    | 0 3 6  | 2070                 | 1.224  | 6.6282 × 10-4  | 8.0   | 17.0                 |
|               |       | 1 997   | 0.74195 × 10-   |         |                           | 200    | 20163                | 1 443  | 6.6298         |       | 18.1                 |
| _             | 101   |         |                 | 7.00    | ×                         | 6.57   | 7666.7               |        | 2000           | 7     | 19.2                 |
|               |       | į       |                 |         |                           | 7.726  | 2.9497               | 1.900  | 0.0314         |       |                      |
|               |       | DATA    | SET 6*          | DATA    | DATA SET 10 *             | 2.988  | 2.9584               | 1.773  | 6.6332         | 13.3  | 50.0<br>70.0         |
| DATA SET 2*   |       |         |                 |         |                           | 3.380  |                      | 1.989  | 6.6361         | 15.5  | 23.5                 |
|               |       | 4.134   | 0.74837 × 10"   | 1.292   | 1.3060 × 10-4             | 4.221  | 3.0266 × 10"         | 2.167  | 6.6388         | 17.4  | 25.6                 |
| 1.298 0.93306 | x 10_ | 4.224   | 0.753804 x 10-4 | 1 402   | •                         | !      |                      | 2,628  | 6.6481         | 19.0  | 28.8                 |
|               |       |         |                 |         | 1 3030                    | ATAM   | DATA COT 154         | 9.019  | 7659.9         | 21.4  | 33.1                 |
|               |       | ATAG    | DATA GET 74     | 7.7     | . 2002                    | 4      | -CT 190              | 207    | 6 6743         | 23.9  | 40.0                 |
|               |       |         |                 | 1.341   | 1.3083                    | ,      | 4100                 | 100    | 70.0           | 75.7  | 46.4                 |
|               |       |         | ****            | 1.601   | 1.30%                     | \$07.  | 3.0254 × 10          | 3.193  | 6.69.9         |       | 4 7 5                |
|               |       | 1.100   | X /47/0.        | 1.650   | 1.3095                    |        |                      | 4.101  |                |       | 7 7 7                |
| _             |       | 1.191   |                 | 1.701   | 1.3101                    | DATA   | DATA SET 16*         | 4.206  | 6.7198 × 10-7  |       |                      |
| _             | _     | 1.225   | 0.67176         | 1.750   | 1.3107                    |        |                      |        |                | 31.4  | 6.67                 |
| 1.453 0.93436 |       | 1.298   | 0.67231         | 1.800   | 1.3114                    | 1.254  | 2.9246 x 10"         | DATA 1 | DATA SET 20*   | 32.2  | 86.8                 |
| 1.500 0.93479 | _     | 1.401   | 0.67316         | 1.850   | 1.3121                    | 1.302  | 2.9250               |        |                | 34.4  | 109.0                |
| 1.550 0.93526 |       | 1,500   | 0.67406         | 8       | 1 3128 - 10-4             | 1 353  | 2 9254               | 1.371  | 6.0091 x 10-4  | 36.0  | 129.0                |
|               |       | 3       | 0.67506         |         | •                         | 7      | 0.000                | 1 663  |                |       | 135.0                |
| •             |       | 102     | 71770           |         | ***                       | 7.705  | 2.9239               | 500    | 4 0151         | 37.6  | 153.0                |
|               |       |         | 010.00          | DATA    | SET II.                   | 1.041  |                      | 100.   | 0.0131         | . 00  | 184.0                |
|               |       | 1.80    | 0.6//3/         |         |                           | 1.601  | 2.9279 x 10"         | 7.102  | 6.01/6         |       | 101 : 0 : 101        |
| _             |       | 1.901   | 0.67868         | 1.253   | 1.3056 x 10 <sup>-</sup>  |        |                      | 2.613  | 6.0277         | 41.0  | 01 X 0.777           |
|               | _     | 2.001   | 0.68014         | 1.289   | 1.3059                    | DATA   | DATA SET 17*         | 3.022  | 6.0392         |       |                      |
| 3.401 0.97660 | _     | 2.101   | 0.68168         | 1.152   | 1,3065                    |        |                      | 3.395  | 6.0534         | DATA  | DATA SET 23*         |
|               |       | 2.172   | 0.68286 x 10"   | 1 451   | 1 2074 - 10-4             | 1 522  | 106 801 - 10-4       | 1.803  | 6.0737         |       |                      |
| _             |       |         |                 | -       |                           | 1 76.1 |                      | 7 103  | 6.0981         | 1.5   | 1.60 x 10-           |
|               |       | -       |                 | į       |                           | 7.70   | 100.004              |        |                | 7     |                      |
| 1.000         | 101   | DATA    | 1 251 0         | DATA    | DATA SET 12*              | 1.986  | 106.681              | 4.449  | ×              |       | 1.13                 |
| 4.100 I.00%   | ) T   |         |                 |         | •                         | 2.162  | 106.811              |        | •              | Ņ. (  | 11.1                 |
|               |       | 2.578   | 1.3260 x 10"    | 2.049   | 2.9341 x 10 <sup>-1</sup> | 2.610  | 106.821              | DATA   | DATA SET 21*   | 7.5   | 80.1                 |
| DATA SET 34   |       | 2.725   | 1.3300          | 2.100   | 2.9349 x 10-4             | 2.994  | 106.834              |        | ٠              |       | 1.70                 |
|               |       | 2.986   | 1,3362          |         |                           | 3.389  | 106.853              | 1.241  | 22.449 × 10-4  |       | 2.25                 |
| 1.600 0.93577 | *     | 3.186   | 1.7454          | DATA    | DATA GET 134              | 2 289  | 104 852              | 1.521  | 22.452         |       | 3.33                 |
|               |       | 1.178   | •               |         |                           |        | 106.001              | 1.762  | 22.454         | 15.6  | 3.88                 |
|               | •     |         | 3000            | ;       | 4                         | 20.0   |                      |        | 700            |       | 6 57                 |
|               |       |         |                 |         |                           |        | 1-00                 | -      | 97 7 66        |       |                      |

TABLE 3. EXPERIMENTAL DATA ON THE ELECTRICAL RESISTIVITY OF ALUMINUM AL (continued)

| -                                            | a                     | F          | o.           | L           | a           | ţ.       | ø                       | ı           | d            | <b>.</b> | d                                      |
|----------------------------------------------|-----------------------|------------|--------------|-------------|-------------|----------|-------------------------|-------------|--------------|----------|----------------------------------------|
| DATA SET                                     | DATA SET 23 (cont.)*  | DATA SET 2 | 25 (cont.)*  | DATA SET 2  | 27 (cont.)* | DATA 8   | DATA SET 30 *           | DATA SET    | 36 (cont.)   | DATA SET | 41 (cont.)                             |
| 20.7                                         | 9.24                  | 12.1       | 7.55         | 4.1         | 12.7        | 4.2      | 5.517 x 10-*            | 70          | 53.5         | 11       | 154.0                                  |
| 23.1                                         | 12.9                  | 14.2       | 9.17         | 5.7         | 12.7        |          |                         | 22          | 0.99         | 2        | 160.0                                  |
| 25.0                                         | 18.3                  | 16.3       | 10.2         | 8.0         | 13.8        | DATA SET | ET 31                   | 32.8        | 118.0 x 10-" | 22       | 176.0                                  |
| 26.7                                         | 24.1                  | 17.9       | 12.4         | 9.7         | 14.9        |          |                         |             |              | 32.8     | 234.0                                  |
| <b>7</b> 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | <br>                  | 20.7       | 14.5         | 11.2        | 15.5        | 4.2      | 6.706 x 10              | DATA SET 37 | SET 37       | 47.9     | 555.0 x 10"                            |
| 77.67                                        | • •                   | 33.0       | 7.7          | 2.5         | 1.7         | DATA COT | :                       | 5           | 4.01 2.00    | i        |                                        |
| 72.5                                         | 61.3                  | 26.0       | 28.4         | 17.6        | 21.0        | - WING   | *                       | 2 5         | 51.9         | NIVI     | DAIA SEI 42                            |
| 33.6                                         | 75.7                  | 27.7       | 34.7         | 19.3        | 24.0        | 01       | 14.3 x 10 <sup>-4</sup> | 11          | 54.9         | 01       | 149.0 x 10-4                           |
| ¥.7                                          | 8.98                  | 29.7       | 47.0         | 21.7        | 28.8        | 13       |                         | 20          | 58.9         | :1       | 151.0                                  |
| 35.6                                         | 98.0                  | 31.7       | <b>8</b> 0.8 | 23.9        | 34.7        | 11       | 1.61                    | 25          |              | 11       | 156.0                                  |
| 37.1                                         | 121.0                 | 33.7       | 7.7          | 25.7        | 0.04        | 2 50     | 20.6                    | 32.8        | 126.0 x 10"  | 20       | 161.0                                  |
| 7.67                                         | 195.0                 | , r        | 97.0         | 27.5        |             | 77       | 23.7                    |             | 90           | 25       | 179.0                                  |
| 42.0                                         | 217.0 × 10-           | . 9        | 151.0        | 23.3        | 73.5        | 37.0     | 07.7 % 10               | VIVO        | UAIA 561 30  | 37.0     | 0.147                                  |
| ?                                            | 1                     | 40.4       | 182.0 x 10-  | 32.6        | 82.0        | DATA SET | ET 33                   | 10          | 89.4 x 10"   | ;        | •                                      |
| DATA 5                                       | DATA SET 24*          | !          |              | 34.7        | 102.0       |          | 1                       | 13          | 92.5         | DATA     | DATA SET 43                            |
|                                              |                       | DATA SEF   | ET 26*       | 36.0        | 119.0       | 01       | 22.9 × 10 <sup>-1</sup> | 11          | 98.2         |          |                                        |
| 1.5                                          | 3.73 x 10"            |            |              |             | 139.0       | 13       | 24.1                    | 20          | 105.0        | 13       | 92.1 × 10 <sup>-1</sup>                |
| ۲.                                           | 3.23                  | 1.5        | 9.56 x 10"   |             |             | 11       | 27.2                    | 22          | 123.0        | 70       | 107.0 × 10-4                           |
| 5.5                                          | 3.77                  | 4.3        | _            | 41.5        | 218.0 x 10" | 20       | 31.0                    | 32.8        |              |          |                                        |
| 7.3                                          | 4.32                  | 2.7        | 10.6         |             |             | 25       | 43.6                    | 6.74        | 500.0 × 10_  | DATA     | DATA SET 44                            |
| 10.0                                         | 4.35                  | 9.9        | 10.6         | DATA SET 28 | ET 28       | 32.8     | 95.4 x 10 <sup>-7</sup> |             |              |          | •                                      |
| 12.2                                         | 96.                   | 0.0        | 10.7         | ,           | 1           |          |                         | DATA        | DATA SET 39  | 9        | 98.0 × 10-                             |
| 13.9                                         | 5.43                  | 0.6        | 11.2         | 1.5         | 1.02 × 10   | DATA SET | ET 34                   | ;           | 4000         | 13       | 100.0                                  |
| 15.8                                         | 6.53                  | 10.3       | 11.7         | 4.2         | 8.5         | ;        | . 4                     | 9           | 122.0 x 10   | 17       | 106.0                                  |
| 17.9                                         |                       | 13.0       | 13.4         | 0.9         | 1.27        | 9:       | 31.5 x 10               | 13          | 124.0        | 20       | 112.0                                  |
| 19.0<br>19.0                                 | 10.2                  | 9.5        | <br>         | 7.S         | 1.49        | 3:       | 32.6                    | 17          | 129.0        | 52       |                                        |
| (11.)                                        | 7.                    | 9.75       | 7.7          |             |             | 1 8      | 9.6                     | 0 50        | 134.0        | 32.8     | 187.0 x 10 .                           |
| 25.4                                         | 7.07                  |            | 20.5         | 10.0        | 1.90        | 2 2      | 29.5                    | 3 62        | 0.101        |          | ************************************** |
| 27.1                                         | 27.3                  | 22.8       | 27.3         | 15.0        | 3.70        | 32.8     | 102.0 × 10-             | 6,74        | 528.0 × 10"  | 4147     | C 130                                  |
| 29.3                                         | 39.0                  | 24.7       | 31.5         | 17.5        | 5.14        |          |                         | :           | :            | 10       | 103.0 × 10-1                           |
| 30.6                                         | 48.0                  | 26.5       | 38.4         | 20.0        | 7.62        | DATA SET | ET 35                   | DATA        | DATA SET 40  | 13       | 106.0                                  |
| 32.8                                         | 65.6                  | 27.7       | 43.2         | 22.5        | 11.4        |          | 1                       | ,           |              | 17       | 111.0                                  |
| 33.1                                         |                       | 29.2       | 51.2         | 25.0        | 17.8        | 0 :      | 39.7 × 10-7             | 10          | 128.0 × 10   | 20       | 112.0                                  |
| ¥.2                                          | /9.9 × 10             | 25.5       | 57.0         | 27.5        | 28.5        | 13       | 40.7                    | £ :         | 130.0        | 25       | 133.0                                  |
|                                              |                       | 77.        | 9.5          | 0.00        | • • • •     | 3 6      | 43.0                    | 3 8         | 133.0        | 37.8     | 07 × 0.691                             |
|                                              | 7                     | 16.1       | 113.0        | 35.0        | 0.4.0       | 2 2      | 9.74                    | 2,5         | 157.0        | 1740     | 77 130 110                             |
| 1.5                                          | 5.32 x 10"            | 37.8       | 137.0        | 37.5        |             | 32.8     | 112.0 x 10-             | 32.8        |              | 414      |                                        |
| 4.3                                          |                       |            | 173.0        | 40.0        | 175.4 x 10- |          |                         | 47.9        | 534.0 x 10-4 | 10       | 112.0 x 10-1                           |
| 5.1                                          | 5.36                  | 41.5       | 210.0 x 10-  |             |             | DATA !   | DATA SET 36             |             |              | 17       | 119.0                                  |
| ;                                            | 6.44                  |            |              | DATA S      | DATA SET 29 |          |                         | DATA SET 41 | SET 41       | 20       | 125.0                                  |
| 7.5                                          | 6.44                  | DATA SET   | ET 27*       | ,           | ;<br>;      | 91       | 45.4 × 10               |             |              | 25       | 141.0                                  |
|                                              | ? ;                   | •          | 4-01         | 4.2         | 5.80 x 10 ' | Ξ:       | . <del>.</del> 6. 5     | 9:          | 148.0 × 10 ° | 32.8     | 200.0                                  |
| 10.3                                         | X:/                   | 1:3        | 01 x /.71    |             |             | 1        | 49.4                    | 7           | 150.0        |          |                                        |
| 報のにの数                                        | "Hot shown in figure. |            |              |             |             |          |                         |             |              |          |                                        |

TABLE 3. EXPERIMENTAL DATA ON THE ELECTRICAL RESISTIVITY OF ALMINUM AL (continued)

| 10 119.0<br>113 113.0<br>117 113.0<br>25 148.0<br>32.8 205.0 | *            |          | :                        |             |                         |             |              |          |                                         |          |                      |
|--------------------------------------------------------------|--------------|----------|--------------------------|-------------|-------------------------|-------------|--------------|----------|-----------------------------------------|----------|----------------------|
| 10 11 12 12 13 23 2 2 2 2 2 2 2 2 2 2 2 2                    |              | DATA SET | 48 (cont.)"              | DATA        | SET 54*                 | DATA SET    | 58 (cont.)*  | DATA SET | 63 (cont.)*                             | DATA SET | DATA SET 66 (cont.)* |
| 113 11<br>123 13<br>22.6 2<br>124 24                         | 4-0 0 0.     |          | 900                      |             | 4-01 - 37 7             | ;           | ;            | ,        | ;                                       |          |                      |
| 25.8<br>22.8<br>24.8                                         | 113.0 2.10   |          | 277                      |             | OT # 60.4               | 80.         | 13.61        | 15.8     | 18.2                                    | 7.66     | 3.10                 |
| 25 1<br>22.8 2<br><u>pata</u> se                             | 2.1.2        | 7.7      | 7.244                    | <b>.</b>    | 90.4                    | 70.         | 13.63        | 17.8     | 20.7                                    | 10.0     | 3.71                 |
| 23.8 2<br>24.8 2                                             | 125.0        | 7.6      | 2.255                    | 0.5         | 3.5                     | 4.26        | 13.64        | 19.8     | 23.9                                    | 12.1     | 4.01                 |
| 32.8 2<br>DATA SE                                            |              | 5.72     | 2.267                    | •<br>•      | 4.71 x 10 <sup>-4</sup> | 4.65        | 13.66        | 21.6     | 28.6                                    | 13.8     | 50.7                 |
| DATA SE                                                      | 205.0 x 10"  | 5.81     | 2.275                    |             |                         | 5.38        | 13.75        | 23.6     | 35.9                                    | 17.8     | 2                    |
| DATA SE                                                      |              | 5.92     | 2.284                    | DATA SET    | T 55*                   | 6.23        | .13.77       | 25.5     | 42.3                                    | 9 01     | 6.6                  |
|                                                              | +87 1        | 6.01     | 2.294                    |             |                         | 6.41        | 13.85        | 27.6     |                                         | 7        |                      |
|                                                              |              | 6.12     | 2.301                    | 933         | 24.2                    | 7.20        | 13.92        | 29.6     | 7.59                                    |          |                      |
| 1.35                                                         | 2.068 × 10-4 | 6.23     | 2.316                    |             |                         | 7.63        | 2 1          |          | 200 - 10-6                              |          | 19.1                 |
|                                                              | •            | , ,      | , 323                    | 1144 CPF 54 | 75 +                    |             | 60.41        | 71.1     | 07 x 0.6/                               | 23.7     | 25.4                 |
| : :                                                          |              | 44.4     | 2 330 - 10 <sup>-6</sup> | -           | 3                       |             | 60.41        | į        | • * * * * * * * * * * * * * * * * * * * | 27.6     | 34.6                 |
| 3                                                            | 100          | }        |                          | •           | 4-01-77                 | 6 6         | 16 20 4 10   | NIA      | DAIA SEI 04                             | 29.5     |                      |
| 3 :                                                          |              | 4 11 11  | 104                      | * ;         | 4                       | 7.0         | AT V 07-61   |          | 41                                      | 31.3     | 61.3 x 10"           |
|                                                              | 7.0.7        | DAIA SEI | SEI 49#                  | 6.63        | · ;                     |             | ;            | 4.21     | 6.62 x 10                               |          |                      |
| <b>.</b>                                                     | 2.0/9        |          | 4100                     | 90.00       | C 77                    | DATA SET 39 | 2            | 7.05     | 6.92                                    | DATA     | DATA SET 67*         |
| £.5                                                          | 2.080        | ?        | ×                        | 3.5         | 7.67                    |             | ;            | 9.77     | 7.84                                    |          |                      |
| 7.07                                                         | 2.081        | 2.0      | 2.36                     | 30.45       | 55.7                    | 973.6       | 24.4         | 11.8     | 8.78                                    | 4.20     | 1.86 × 10-           |
| 2.18                                                         | 2.063        | 3.0      |                          | 40.42       | 195.2 x 10"             | 997.7       | 24.8         | 13.8     | 10.0                                    | 6.05     | 1.85                 |
| 2.23                                                         | 2.065        | 0.4      | 2.43 x 10 <sup>-1</sup>  | 295         | 2.66                    | 1023.6      | 25.1         | 15.8     | 11.2                                    | 6        | 2.46                 |
| 2.41                                                         | 2.009        |          |                          |             |                         | 1040.7      | 25.3         | 17.8     | 13.4                                    | 2        | 3,4                  |
| 8.5                                                          | 2.091        | DATA     | DATA SET 50*             | DATA        | DATA SET 57*            | 1074.2      | 25.8         | 70.      | 16.0                                    | 2.5      | 97.7                 |
| 2.58                                                         | 2.094        |          |                          |             |                         | 1001        | 25.7         | 2        | - 62                                    |          | 9.5                  |
| 2.69                                                         | 2.097        | 1.5      | 2.03 x 10-4              | 1.51        | 4.49 x 10-4             | 1109.7      | 26.2         | 25.7     |                                         | 13.9     | 8.6                  |
| 2. 83                                                        | 2 000        | 0 0      | 2.04                     | 2.51        | A. 51                   | 1122 3      | 76.3         | 7        |                                         | 6.01     |                      |
| 9                                                            |              |          | 3                        | :           | 5                       |             |              | 2.4      |                                         | 6.71     | 6.18                 |
|                                                              | 701.7        | 9 0      | 2.30                     | 7.5         |                         |             | ;<br>;       | 67.4     | 27.5                                    | 19.7     | 8.39                 |
| 2.                                                           | 57.7         | •        | OT # OT .7               | 77.7        |                         | DATA        | 201          | 31.4     | 79.0 × 10 ×                             | 21.6     | 11.8                 |
|                                                              | 2.106        | į        |                          |             | ٠.٠                     | ;           |              |          |                                         | 23.7     | 17.2                 |
| 3.21                                                         | 2.112        | DATA     | 867 51*                  | 4.41        | 4.59                    | 07          | 222.0 x 10   | DATA     | DATA SET 65*                            | 25.8     | 25.1                 |
| 3.32                                                         | 2.116        |          |                          | 4.8         | 4.64                    | *           | 227.0        |          |                                         | 29.7     | 52.1                 |
| 2.3                                                          | 2.122        | 1.5      | 6.21 × 10 <sup>-</sup>   | 5.85        | 4.72                    | 20          | 242.0 x 10-4 | 4.20     | 3.77 x 10"4                             | 7 12     | 1-01 - 7 37          |
| 3.50                                                         | 2.124        | 2.0      | 6.22                     | 6.36        | 4.80                    |             |              | 5.93     | ₹.07                                    |          | 07 x **C0            |
| 3.61                                                         | 5.1.2        | 3.0      | 6.26                     | 6.93        | 99.7                    | DATA        | SET 63       | 2        | 87 7                                    |          | 107                  |
| 7.72                                                         | 71.7         | Q.4      | 6. 30 × 10-4             | 7.33        | ¥6.4                    |             |              | 9        | 9 5                                     | DAIA     | DAIA SEI 68"         |
| 1                                                            | 121          | •        | 1                        | 7           | 2                       | •           | 4.00 - 10-6  | 2:       | 2.5                                     |          | :                    |
|                                                              | 7.13/        |          |                          | ? .         | 3 3                     | 3:          | ×            | 6.13     | 97.0                                    | 273      | 2.46                 |
| 6.5                                                          | 2,139        | DATA     | 351 34                   | 17.0        | 2.63                    | <b>5</b> 8  | 937.0        | 13.9     | 7.17                                    |          |                      |
| 5 :                                                          | 2,143        | •        | 4-01                     | 8.6         |                         | 07          | 07 × 0.766   | 10.0     | 8.10                                    | DATA     | DATA SET 69          |
| \$1.5<br>0                                                   | 2.152        | ?        | >. 20 × 10               | 9. Ly       |                         |             |              | 17.8     | 10.3                                    |          |                      |
|                                                              | 2.159        | 0.2      | 5.21                     | 9.72        | 01 × 40.0               | DATA        | SET 62       | 19.7     | 12.8                                    | 4.2      | 0.00025              |
| ÷.3                                                          | 2.167        | 9.0      |                          |             | •                       |             |              | 21.7     | 16.3                                    | 20       | 0.000                |
|                                                              | 2.171        | 0.4      | 5.27 x 10 <sup>-</sup>   | DATA        | SET 58"                 | 300         | 2.733        | 23.7     | 21.6                                    | 30       | 0.0043               |
| 4.55                                                         | 2.177        |          |                          |             | •                       |             |              | 25.7     | 29.5                                    | 07       | 0.0179               |
|                                                              | 2.182        | DATA     | SET 53*                  | 0           | 13.55 × 10"             | DATA        | DATA SET 63* | 27.7     | 38.4                                    | 5        | 0.0472               |
| 4.75                                                         | 2,188        |          |                          | 1.50        | 13.55                   |             |              | 29.6     | 52.7                                    | 3        | 0 0053               |
|                                                              | 2.198        | 1.5      | 0.95 x 10"               | 1.89        | 13.56                   | 4.09        | 11.7 x 10-4  | -        | 66.7 × 10-4                             | 3 5      | 6171                 |
|                                                              | 2.204        | 2.0      |                          | 2.06        | 13.56                   | 7.92        |              |          | •                                       | 2 6      | 0.101.0              |
| 5.10                                                         | 2 208        | 3.0      | 0.98                     | 2.38        | 13.57                   | 6           | -            | ATAG     | DATA COT 66#                            | 8 8      | 66.00                |
| 2.12                                                         | 2 214        | 0.4      | 1.01 × 10.1              | 2.76        | 13.57                   | - T         | 14.9         |          |                                         | 2 :      | 0.3377               |
| 9                                                            | 111          | ;        |                          | 20.5        | 17.50                   |             | 16.31        | 73 3     | 4-01 - 00 6                             | 8        | 0.4401               |
| <b>;</b>                                                     |              |          |                          | ;           | 67.64                   | 77.0        |              | 3.30     | 07 × 00.7                               | 120      | 0.6601               |

TABLE 3. EXPERIMENTAL DATA ON THE ELECTRICAL RESISTIVITY OF ALIMINIM ' Al (continued)

| 140 0.8899<br>140 0.8899<br>150 1.123<br>180 1.356<br>200 1.389<br>200 1.389<br>240 2.049<br>240 2.78<br>280 2.278<br>300 2.378 |                       |          |              |              |                     |             | •                   | -            |                      |               |              |
|---------------------------------------------------------------------------------------------------------------------------------|-----------------------|----------|--------------|--------------|---------------------|-------------|---------------------|--------------|----------------------|---------------|--------------|
|                                                                                                                                 | (cont.)               | DAT      | DATA SET 74  | DATA SET     | DATA SET 79 (cont.) | DATA SET    | DATA SET 81 (cont.) | DATA SET     | DATA SET 85 (cont.)* | DATA S        | DATA SET 92* |
|                                                                                                                                 | 0.8699                | 7.99     | 89.0 x 10"   | 416.0        | 3.989               | 58.9        | 0.097               | 4.13         | 24.186               | "             | 0.748        |
|                                                                                                                                 | 1.123                 | 10.5     | 91.0         | 442.3        | 4.255               | 63.8        | 0.125               | 4.21         | 24.192 x 10-4        |               | •            |
|                                                                                                                                 | 1.356                 | 13.2     | 93.0         | 468.6        | 4.653               | <b>9.99</b> | 0.14                |              |                      | DATA S        | DATA SET 93* |
|                                                                                                                                 | 1.589                 | 16.9     | 196.0        | 499.2        | 4.964               | 8.69        | 0.17                | DAT          | DATA SET 86*         |               |              |
|                                                                                                                                 | 1.820                 | 19.6     | 260.0        | 551.8        | 5.584               | 17.2        | 0.22                |              |                      | 71            | 0.705        |
|                                                                                                                                 | 2.049                 | 24.6     | 448.0 × 10   | 573.6        | 5.894               | 81.6        | 0.25                | 2.98         | 433.15 × 10"         |               |              |
|                                                                                                                                 | 2.278                 | į        | 1            | 604.3        | 6.249               | 98.6        | 0.31                | 3.20         |                      | DATA SET 94   | 76 I         |
|                                                                                                                                 | 2.506                 | DAT      | DATA SET 75  | 634.9        | 6.647               | 91.1        | 0.33                | 3.57         | 433.18               |               |              |
|                                                                                                                                 | 2.733                 |          |              | 661.2        | 7.002               | 100.5       | 0.44                | 3.74         | 433.19               | 1923          | 39.89        |
|                                                                                                                                 | 2.961                 | 8.19     | 89.0 x 10    | 678.7        | 7.179               | 106.6       | 0.49                | 3.91         | 433.21               |               |              |
|                                                                                                                                 | 3.189                 | 10.5     | 102.0        | 705.0        | 7.533               | 122.8       | 0.67                | 3.97         | 433.21               | DATA SET 95   | T 95         |
|                                                                                                                                 | 3.416                 | 13.2     | 118.0        | 735.6        | 7.932               | 140.6       | 0.87                | 4.12         | 433.22               |               |              |
|                                                                                                                                 | 3.645                 | 16.5     | 160.0        | 744.3        | 8.109               | 145.5       | 96.0                | 4.19         | 433.23 x 10-1        | 1798          | 35.56        |
|                                                                                                                                 | 3.875                 | 19.6     | 214.0        | 761.9        | 8.286               | 162.1       | 0.14                |              |                      | 1923          | 37.23        |
|                                                                                                                                 |                       | 24.6     | 382.0 x 10"  | 786.1        | 8.552               | 165.8       | 1.19                | DATA SET 87  | 3ET 87               |               |              |
| DATA SET                                                                                                                        | <b>*</b> 0¢           |          |              | 814.4        | 8.863               | 169.5       | 1.23                |              |                      | DATA SET 96   | T 96         |
| ١                                                                                                                               | ļ                     | DAT      | DATA SET 76* | 845.0        | 9.306               | 179.5       | 1.36                | 993          | 24.7                 |               |              |
| 318                                                                                                                             | 2.943                 |          | i            | 880.1        | 9.749               | 181.6       | 1.39                |              |                      | 1973          | 88.615       |
|                                                                                                                                 |                       | 4.2      | 0.000182     | 893.2        | 10.10               | 189.5       | 1.49                | DATA SET 88* | T 88*                |               |              |
| DATA SET 71*                                                                                                                    | 71.                   | 273.15   | 2.429        | 919.4        | 10.50               | 200.0       | 1.59                |              |                      | DATA SET 97 # | * 4 0 1 4    |
|                                                                                                                                 | 1                     | 96<br>96 | 2.733        | 928.2        | 10.63               |             | •                   | 1120         | 27.0                 |               |              |
| 318                                                                                                                             | 2.945                 |          |              |              |                     | DATA        | DATA SET 82*        |              |                      | 4.2           | 12.43 × 10-4 |
|                                                                                                                                 |                       | DATA :   | DATA SET 77  | DATA         | DATA SET 80         |             |                     | DATA SET 89  | ET 89                |               |              |
| DATA SET                                                                                                                        | 72                    |          |              |              |                     | 4.2         | 0.018               |              | <u> </u>             | DATA SET 98*  | ET 98*       |
|                                                                                                                                 |                       | 938      | 24.20        | 4.2          | 0.00231             | 11          | 0.265               | 842.5        | 9.6                  |               |              |
| 7.09                                                                                                                            | 3.0 x 10"             |          | ,            |              | 0.237               |             |                     | 872.0        | 10.30                | 4.2           | 14.35 x 10~4 |
| _                                                                                                                               |                       | DATA SET | 8ET /8"      |              | į                   | DATA SET 83 | .1 83               | 897.8        | 10.68                |               |              |
|                                                                                                                                 | 13.6                  |          | ;            | DATA         | DATA SET 81         |             |                     | 930.2        | 11.19                | DATA SE       | SET 99*      |
|                                                                                                                                 | 14.3                  | 293      | 7.02         |              |                     | 976         | 24.8                | 932.5        | 11.60                |               |              |
|                                                                                                                                 | 15.3                  |          |              | 3.2          | 0.000               | 1302        | 29.6                | 933.9        | 24.81                | 4.2           | 13.22 x 10-* |
| _                                                                                                                               | 17.0                  | DATA SET | SET 79       | 6.2          | 0.0002              |             |                     | 943.4        | 24.98                |               |              |
|                                                                                                                                 | 19.9                  | ;        |              | 0.6          | 0.0006              | DATA        | DATA SET 84*        | 949.3        | 25.15                | DATA SET 100* | T 100*       |
|                                                                                                                                 | 25.3                  | 2.5      | 0.00014      | 11.7         | 0.000               |             |                     | 957.4        | 25.14                |               |              |
| 22.0 25                                                                                                                         | 29.0                  | 35.0     | 0.04         | 14.4         | 0.000               | 74.98       | 0.4318              | 967.0        | 25.13                | 4.2           | 13.95 x 10-4 |
|                                                                                                                                 | 43.9 x 10-            | 74.5     | 0.222        | 16.3         | 0.0011              | 266.5       | 2.713               | 8.986        | 25.47                |               |              |
|                                                                                                                                 |                       | 79.24    | 0.261        | 18.4         | 0.0016              |             |                     | 1007.4       | 25.81                | DATA SET 101  | T 101        |
| DATA SE                                                                                                                         | SET 73                | 96.7     | 0.419        | 21.3         | 0.0023              | DATA        | SET 85*             | 1014.0       | 25.80                |               |              |
|                                                                                                                                 | [                     | 110.4    | 0.611        | 24.1         | 0.0032              |             | İ                   | 1030.2       | 25.97                | 4.2           | 13.29 x 10-1 |
| 7.09                                                                                                                            | 2.6 x 10°             | 125.4    | 0.802        | 25.2         | 0.0042              | 1.30        | 24.093 x 10-4       | 1041.3       | 26.35                |               |              |
| _                                                                                                                               |                       | 155.3    | 1.069        | 28.2         | 0.0056              | 1.50        | 24.095              |              |                      | DATA SET 102  | T 102*       |
| 10.0                                                                                                                            | 13.0                  | 189.7    | 1.439        | 28.5         | 0.0072              | 2.27        | 24.106              | DATA         | DATA SET 90*         |               |              |
|                                                                                                                                 | 13.5                  | 210.5    | 1.694        | 32.0         | 9600.0              | 2.45        | 24.110              |              |                      | 4.2           | 13.47 x 10-4 |
|                                                                                                                                 | 14.1                  | 237.8    | 1.980        | 34.6         | 0.0126              | 2.56        | 24.113              | 4.2          | 0.00012              |               |              |
| 16.5                                                                                                                            | 15.6                  | 264.4    | 2.299        | 35.3         | 0.015               | 2.71        | 24.117              | 273.2        | 0.72                 | DATA SET 103  | T 103        |
|                                                                                                                                 | 18.1                  | 280.3    | 2.394        | 38.4         | 0.022               | 3.00        | 24.127              |              |                      |               |              |
|                                                                                                                                 | 23.5                  | 297.8    | 2.660        | 42.5         | 0.034               | 3.12        | 24.132              | DATA         | DATA SET 91*         | 273           | 2.521        |
|                                                                                                                                 | ~                     | 359.1    | 3.324        | 46.3         | 0.034               | 3.59        | 24.152              |              | * 120                |               |              |
| -                                                                                                                               | 42.4 × 10"            | 369.6    | 3.679        | <b>\$0.8</b> | 0.055               | 4.01        | 24.178              | 4.5          | 0.00102              |               |              |
| Wast about                                                                                                                      | What shows in figure. |          |              |              |                     |             |                     | 295          | 2.33                 |               |              |

TABLE 3. EXPERIMENTAL DATA ON THE ELECTRICAL RESISTIVITY OF ALUMINIM AL (continued)

| Mail of the control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Marie   Mari                                                                                      | -           | a          | 1           | Q           | 1          | d           | H       | ď                      | T      | a       | L        | ٥        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------|-------------|-------------|------------|-------------|---------|------------------------|--------|---------|----------|----------|
| 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.0                                                                                      | DATA S      | 104        | DATA S      | - 1         | DATA SET 1 | 13 (cont.)* | DATA SE | T 116                  | DATA 8 | ET 121* | DATA SET | r 126*   |
| 1, 10, 10, 10, 10, 10, 10, 10, 10, 10,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,00                                                                                      | 8           | 2.65       | 321         | 3.03        | 20.4       |             | 883     | 10.3                   | 4.2    | 0.00111 | 973      | 25       |
| Color                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 347         3.57         2.10         27.1         993         20.1         77           441         4.12         2.54         78.1         993         20.1         77           454         4.12         2.54         78.1         993         20.0         27           454         4.12         2.54         78.1         99.1         20.7         107           454         4.12         2.54         78.2         10.2         993         20.7         107           655         6.3         3.1         110.8         95.0         20.5         4.2           653         6.3         11.0         95.0         20.7         107.8         20.7           653         6.7         11.0         95.0         20.0         20.6         4.2           662         1.0         10.0         20.0         20.7         107         107           77         0.221         11.4         2.1         10.4         21.1         107         20.7           17.7         0.0221         11.4         2.1         10.4         21.1         10.4         20.4           17.7         0.0221         11.2         21.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 904         | 3.65       | *           | 3.09        | 21.8       |             | 922     | 10.8                   | 20.4   | 0.00238 |          |          |
| Color                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 193   185   244   75.1   939   20.2   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   19                                                                                      | ş           | 8.4        | 367         | 3.57        | 23.0       | 72.1        | 933     | 20.1                   | 11     | 0.221   | DATA SE  | ET 127   |
| 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 424         4.12         25.4         78.3         949         20.6         273           445         4.12         25.4         78.3         949         20.6         273           456         4.3         27.8         68.7         944         20.7         4.2           655         6.7         27.2         102.6         95.0         20.7         4.2           655         6.7         10.6         20.7         20.7         20.4           655         6.7         110.8         950         20.7         20.4           627         7.3         113.8         996         20.0         105           100         2.1         100         21.0         105           17         0.221         144.2         x 10 <sup>-4</sup> 1004         21.1         105           273         2.425         1004         21.1         1004         21.1         1004         21.1           273         2.425         1004         21.2         20.4         20.4         20.4         20.4           15.1         0.00343         13.3         23.5         1044         21.7         1076         21.1         20.4 <tr< th=""><th>9</th><th>6.05</th><th>397</th><th>3.85</th><th>24.4</th><th>75.1</th><th>936</th><th>20.3</th><th>195</th><th>1.44</th><th></th><th></th></tr<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9           | 6.05       | 397         | 3.85        | 24.4       | 75.1        | 936     | 20.3                   | 195    | 1.44    |          |          |
| 1, 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 444         4.32         28.4         82.3         944         20.7         DATA SET           456         4.54         4.54         4.52         68.7         94.2         20.4         DATA SET           655         6.24         28.9         95.0         94.2         20.5         4.2           655         6.79         30.2         102.6         94.2         20.5         4.2           655         6.79         31.2         118.1         95.0         20.7         17.7           655         7.33         21.2         118.1         96.2         20.7         20.4           77         0.221         34.7         144.2         1001         21.1         DATA SET           77         0.221         34.7         144.2         1004         21.1         A.2           77         0.221         34.7         144.2         1004         21.1         A.2           77         0.0251         11.4         24.5         1044         21.7         4.2           15.1         0.0251         11.4         24.5         1044         21.7         4.2           15.1         0.0251         11.4         21.7         21.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <u>8</u>    | 7.15       | 424         | 4.12        | 25.4       | 78.3        | 939     | 20.6                   | 273    | 2.46    | 313      | 2.86     |
| 1, 10, 10, 10, 10, 10, 10, 10, 10, 10,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | MATA SET 112**   10.00   94.0   20.4   DATA SET 112**   10.00   94.0   20.5   4.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8           | <b>8.3</b> | 141         | 4.32        | 26.4       | 82.3        | 943     | 20.7                   |        |         | 373      | 3.56     |
| Colony                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 655 6.74 28.9 95.0 947 20.5 4.2 6.2 6.2 6.2 95.0 95.0 947 20.5 6.2 6.2 6.2 95.0 95.0 95.0 95.0 95.0 95.0 95.0 95.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8           | <b>9.</b>  | 964         | 4.94        | 27.8       | 88.7        | 776     | 20.4                   | DATA S | ET 122* | 473      | 4.73     |
| Column                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 653 6.79 10.2 102.6 960 20.6 4.2 653 7.33 1.18.1 110.8 960 20.7 20.4 693 7.33 118.1 110.8 964 20.7 77 20.4 693 7.33 118.1 116.8 10.0 121.0 125.  13.2 1.18.1 15.8 10.0 121.0 125.0 125.1 121.0 125.1 121.0 125.1 121.0 125.1 121.0 125.1 121.0 125.1 121.0 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 125.1 1                                                                                    |             |            | <b>6</b> 03 | 6.24        | 28.9       | 95.0        | 947     | 20.5                   |        |         | 573      | 5.90     |
| Colony                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 642         6,72         31.4         110.8         96.5         20.7         7.0           693         7,33         31.4         110.8         96.5         20.7         7.0           MATA SET 110         34.1         146.8         1001         21.0         13.0         13.1           DATA SET 116.8         1001         21.1         DATA SET 117         1006         21.1         DATA SET 117         4.2           77         0.221         DATA SET 114         1006         21.1         DATA SET 114         4.2         20.4         4.2           77         0.221         DATA SET 114         4.7         1006         21.1         1006         21.1         4.2         20.4         4.2         20.4         4.2         20.4         4.2         20.4         4.2         20.4         4.2         20.4         4.2         20.4         4.2         20.4         4.2         20.4         4.2         20.4         4.2         20.4         4.2         20.4         4.2         20.4         4.2         20.4         4.2         20.4         4.2         20.4         4.2         20.4         4.2         20.4         4.2         20.4         4.2         20.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | DATA        | SET 105    | 655         | 6.79        | 30.2       | 102.6       | 960     | 20.6                   | 4.2    | 0.00575 | 673      | 7.12     |
| 0.00033 693 7.33 1314.1 994 20.7 77 0.224 DATA SET 10.000332 0.000332 DATA SET 110 33.2 136.8 994 21.0 1955 1.50 1.50 1.50 1.50 0.000332 0.000332 DATA SET 110 33.2 136.8 1.0 1001 21.0 0.001490 77 0.221 34.1 136.8 1.0 1004 21.1 0.0 1.50 1.50 1.50 1.50 1.50 1.50 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | MATA SET 110   31.2   118.1   974   20.7   77   77   77   77   77   77   77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |            | 662         | 6.92        | 31.4       | 110.8       | 963     | 20.7                   | 20.4   | 0.00766 |          |          |
| 0.00143         DATA SET 110         33.2         13.6.4         994         21.0         135         1.50         33.7           0.00187         77         0.221         34.7         146.2         x 10.0         21.1         DATA SET 123         4.7         146.2         x 10.0         21.1         DATA SET 123         4.7         147.3         100.0         21.1         DATA SET 123         4.7         147.3         10.0         21.1         DATA SET 123         4.7         147.3         10.0         21.1         DATA SET 123         4.7         0.0439         15.3         0.0439         17.2         0.0439         17.3         0.0439         17.3         0.0439         17.3         0.0439         17.3         0.0439         17.3         0.0439         17.3         0.0439         17.3         0.0439         17.3         0.0449         17.3         0.0449         17.3         0.0449         17.3         0.0449         17.3         0.0449         17.3         0.0449         17.3         0.0449         17.3         0.0449         17.3         0.0449         17.3         0.0449         17.3         0.0449         17.3         0.0449         17.3         0.0449         17.3         0.0449         17.3         0.0449                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | DATA SET 110   34.1   136.8   999   21.0   195                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9           | 0.00075    | 693         | 7.33        | 32.3       | 118.1       | 974     | 20.7                   | 77     | 0.224   | DATA SE  | ET 128   |
| 0.00532         DATA SET 110         34.7         156.6         11.0         21.0         DATA SET 122         373           0.004607         77         0.221         34.7         156.6         21.1         DATA SET 122         473         20.04           0.004407         77         0.221         DATA SET 111         6.7         22.7 x 10°         1006         21.1         DATA SET 122         473         973           0.04450         1.2         0.00450         1.1         2.1.7         1004         21.2         4.2         0.0459         973         973           0.2450         1.5         0.0054         1.1         2.1.7         1004         21.2         20.4         0.0459         973           0.4450         1.5         0.0054         1.1         2.1.7         1004         21.7         10.0         0.0459         10.1           1.124         1.1         2.1         1.1         2.1         1.1         2.1         1.1         2.1         1.1         2.1         1.1         2.1         1.1         2.1         1.1         2.1         1.1         2.1         1.1         2.1         1.1         2.1         1.1         2.1         1.1         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NATA SET 110   34.1   156.8   1001   21.0   273                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2           | 0.00143    |             |             | 33.2       | 126.8       | 866     | 21.0                   | 195    | 1.50    |          | ١.       |
| 0.04867         77         0.221         MATA SET 114         1006         21.1         DATA SET 122         473           0.04869         77         0.221         MATA SET 114         1006         21.2         4.2         0.0459         773           0.1453         DATA SET 1114         6.7         22.7 x 10°         1014         21.2         4.2         0.0459         773           0.1453         1.4         0.00361         11.4         24.7         22.7 x 10.0         0.0469         773         0.0469         773           0.4450         1.5         1.0         2.2         1.0         2.1         0.0469         773         0.0469         773         0.0469         773         0.0         773         0.0         773         0.0         773         0.0         773         0.0         773         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | The color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the                                                                                      | 2           | 0.00532    | DATA        | SET 110     | ¥.1        | 136.8       | 1001    | 21.0                   | 273    | 2.30    | 323      | 2.98     |
| 0.000400         77         0.221         MATA SET 114         1006         21.1         DATA SET 123         473           0.000400         773         2.422         MATA SET 114         1006         21.1         4.2         0.0439         573           0.4450         4.6         0.00243         1.2.7         1.025         1.1.4         20.4         0.0439         773           0.4450         4.6         0.00241         11.3         22.7         1.025         1.1.4         20.4         0.0439         15.3         22.5         1.050         21.3         0.0439         15.3         22.5         1.050         21.2         0.045         22.1         1.050         22.1         0.045         22.2         0.045         22.2         0.0039         1.1.3         22.5         1.050         22.1         0.045         22.2         0.0045         22.2         1.050         22.2         0.0045         22.3         1.050         22.2         0.0045         22.3         1.1.7         0.045         22.2         0.0045         22.2         0.0045         22.2         0.0045         22.2         0.0045         22.2         0.0045         22.2         0.0045         22.2         0.0045         22.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 77         0.221         DATA SET 114         1006         21.1         DATA SET 114         1006         21.1         DATA SET 114         1006         21.1         4.2         4.2         4.2         4.2         4.2         4.2         4.2         4.2         4.2         4.2         4.2         4.2         4.2         4.2         4.2         4.2         4.2         4.2         4.2         4.2         4.2         4.2         4.2         4.2         4.2         4.2         4.2         4.2         4.2         4.2         4.2         4.2         4.2         4.2         4.2         4.2         4.2         4.2         4.2         4.2         4.2         4.2         4.2         4.2         4.2         4.2         4.2         4.2         4.2         4.2         4.2         4.2         4.2         4.2         4.2         4.2         4.2         4.2         4.2         4.2         4.2         4.2         4.2         4.2         4.2         4.2         4.2         4.2         4.2         4.2         4.2         4.2         4.2         4.2         4.2         4.2         4.2         4.2         4.2         4.2         4.2         4.2         4.2         4.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3           | 0.01867    |             |             | 34.7       | 144.2 × 10  | 1004    | 21.1                   |        |         | 373      | 3.56     |
| 0.05640         273         2.443         MATA SET 114         1004         21.2         4.2         0.0459         273           0.1653         0.05450         1.04         21.2         1.014         21.2         1.014         21.2         0.0459         773           0.2453         4.6         0.00361         11.4         24.5         1.044         21.7         0.0459         173           0.4451         15.1         0.00383         11.3         25.6         1.044         21.7         1.95         1.62         0.04         77.3           0.4451         17.0         0.00383         11.3         25.6         1.044         21.7         1.95         1.62         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | DATA SET 1114   1006   21.2   4.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2           | 0.04807    | 77          | 0.221       |            |             | 1006    | 21.1                   | DATA S | SET 123 | 473      | 4.73     |
| 0.1652         DATA SET 111s         6.7         22.7 x 10°         1014         21.2         4.2         0.0459         673           0.3400         4.6         0.0455         1.1         22.7 x 10°         1034         21.3         77.4         0.0469         673           0.3400         4.6         0.0425         11.4         24.5         1004         21.7         1.06         27.7         1.07         0.0463         1.1         24.5         1.04         21.7         1.07         0.0463         1.1         24.5         1.04         21.7         1.07         2.42         0.0463         1.2         1.04         21.7         1.07         2.42         0.0463         1.2         1.0         2.1         1.1         1.0         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DATA SET 111*         6.7         22.7         x 10^4         21.2         4.2           4.6         0.00261         11.4         24.5         1034         21.3         77           4.6         0.00261         11.4         24.5         1034         21.7         195           15.1         0.00363         11.4         24.5         1064         21.7         195           17.7         0.00363         16.1         27.7         1078         22.1         177           24.9         0.00365         20.1         37.7         1080         22.2         DATA SET 117         27.3           24.9         0.00365         20.1         37.7         41.2         0.00725         77           41.9         0.00156         22.7         41.1         4.2         0.00725         77           41.9         0.0156         24.7         41.1         4.2         0.00725         77           41.9         0.0356         22.9         48.1         47.3         47.1         100           41.9         0.0404         27.9         48.1         47.3         47.1         100           41.9         0.0547         27.9         57.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3           | 0.09640    | 273         | 2.425       | DATA       | SET 114     | 1008    | 21.2                   |        |         | 573      | 5.90     |
| 0.2455 DATA SET 1114 6.7 21.7 x 10° 1045 21.4 5.0 4 0.0463 773 0.3400 0.3400 0.3400 0.3400 0.3400 0.3400 0.3400 0.3400 0.3400 0.3400 0.3400 0.3400 0.3400 0.3400 0.3400 0.3400 0.3400 0.3400 0.3400 0.3400 0.3400 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0.3401 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Accordance   Accordance   Accordance   Accordance   Accordance   Accordance   Accordance   Accordance   Accordance   Accordance   Accordance   Accordance   Accordance   Accordance   Accordance   Accordance   Accordance   Accordance   Accordance   Accordance   Accordance   Accordance   Accordance   Accordance   Accordance   Accordance   Accordance   Accordance   Accordance   Accordance   Accordance   Accordance   Accordance   Accordance   Accordance   Accordance   Accordance   Accordance   Accordance   Accordance   Accordance   Accordance   Accordance   Accordance   Accordance   Accordance   Accordance   Accordance   Accordance   Accordance   Accordance   Accordance   Accordance   Accordance   Accordance   Accordance   Accordance   Accordance   Accordance   Accordance   Accordance   Accordance   Accordance   Accordance   Accordance   Accordance   Accordance   Accordance   Accordance   Accordance   Accordance   Accordance   Accordance   Accordance   Accordance   Accordance   Accordance   Accordance   Accordance   Accordance   Accordance   Accordance   Accordance   Accordance   Accordance   Accordance   Accordance   Accordance   Accordance   Accordance   Accordance   Accordance   Accordance   Accordance   Accordance   Accordance   Accordance   Accordance   Accordance   Accordance   Accordance   Accordance   Accordance   Accordance   Accordance   Accordance   Accordance   Accordance   Accordance   Accordance   Accordance   Accordance   Accordance   Accordance   Accordance   Accordance   Accordance   Accordance   Accordance   Accordance   Accordance   Accordance   Accordance   Accordance   Accordance   Accordance   Accordance   Accordance   Accordance   Accordance   Accordance   Accordance   Accordance   Accordance   Accordance   Accordance   Accordance   Accordance   Accordance   Accordance   Accordance   Accordance   Accordance   Accordance   Accordance   Accordance   Accordance   Accordance   Accordance   Accordance   Accordance   Accordance   Accordance   Accordance   Accordance   Accordance   Accordance   Acc                                                                                      | 2           | 0.1632     |             |             |            |             | 1014    | 21.2                   | 4.2    | 0.0439  | 673      | 7.12     |
| 0.4430 0.4410 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.4411 0.44111 0.44111 0.44111 0.44111 0.44111 0.4411 0.4411 0.4411 0.4411 0.44111 0.44111 0.44111 0.44111 0.44111 0.44111 0.44111 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.6         0.00261         11.4         23.5         1034         21.3         77           15.1         0.00383         11.4         24.5         1044         21.7         195           15.1         0.00383         13.3         27.7         1078         22.1         DATA SET         27.5           24.9         0.00305         20.1         37.2         1080         22.2         DATA SET         17           27.8         0.00565         21.8         34.7         1080         22.2         DATA SET         11         4.2         0.00725         20.4         20.4         20.4         20.4         4.2         0.00725         77         4.1         4.2         0.00725         77         4.2         0.00725         77         4.2         0.00725         77         4.2         0.00725         77         4.2         0.00725         77         4.2         0.00725         77         4.2         0.00725         77         4.2         0.00725         77         4.2         0.00725         77         4.2         0.00725         77         4.2         0.00725         77         4.2         0.00725         77         4.2         0.00726         77         77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2           | 0.2455     | DATA        | SE          | 6.7        | M           | 1025    | 21.4                   | 20.4   | 0.0463  | 173      | 8.51     |
| 0.6431         4.4         0.00361         11.4         24.5         1044         21.7         159         1.62         DATA SET 124         15.2         1.62         DATA SET 124         15.3         2.4.5         1004         21.7         1008         22.1         22.2         12.3         1.62         12.1         12.3         1.2         1.62         10.00390         16.1         21.7         1008         22.1         10.0039         16.1         21.7         10.0039         16.1         22.7         10.0039         22.2         10.00         22.2         10.003         22.2         10.003         22.2         10.003         22.2         10.003         22.2         10.003         22.2         10.003         22.2         10.003         22.2         11.3         4.2         0.0075         20.4         0.004         22.3         4.1         4.2         0.0075         20.4         0.004         22.3         22.4         0.004         22.3         22.4         0.004         22.3         22.4         0.004         22.3         22.4         0.004         22.3         22.4         0.004         22.3         22.4         0.004         22.3         22.4         0.004         22.3         22.4         0.004 </th <th>  1.4   0.00261   11.4   24.5   1044   21.7   195     15.1</th> <th>2</th> <th>0.3400</th> <th></th> <th></th> <th>4.6</th> <th>23.5</th> <th>1034</th> <th>21.3</th> <th>11</th> <th>0.270</th> <th>873</th> <th>9.92</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.4   0.00261   11.4   24.5   1044   21.7   195     15.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2           | 0.3400     |             |             | 4.6        | 23.5        | 1034    | 21.3                   | 11     | 0.270   | 873      | 9.92     |
| 0.6651         15.1         0.00383         15.2         25.6         1050         21.6         27.3         2.42         DMTA SET 124         123           1.251         21.0         0.00363         16.1         22.7         1008         22.1         DMTA SET 124         123           1.251         21.0         0.00105         18.5         34.7         1008         22.2         DMTA SET 124         123           1.254         22.0         0.00705         21.8         34.7         4.2         0.007         27.3         17.3           2.053         35.4         0.0156         22.3         41.9         4.2         0.00723         17         0.341         323           2.053         41.9         0.0156         22.9         42.1         4.2         0.0047         27.3         27.4         4.2         0.044         27.3         27.4         20.4         0.044         27.3         27.4         4.2         0.007         27.3         27.4         4.2         0.044         27.3         27.4         4.2         0.044         27.3         27.4         0.044         27.3         27.4         0.044         27.3         27.4         0.044         27.3         27.4 <th>  15.1   0.00343   13.3   25.6   1050   21.6   273     17.7   0.00340   16.1   27.7   1078   22.1     24.9   0.00109   16.1   37.2   1080   22.2   DATA SET 117     24.9   0.00565   20.1   32.2   1080   22.2     25.8   0.00768   21.8   34.7   DATA SET 117     25.4   0.0103   23.3   37.8   4.2   0.00725   77     25.4   0.0103   23.3   37.8   4.2   0.00725   77     25.4   0.0103   22.8   43.9   DATA SET 118   273     25.6   0.0647   22.9   61.9   373   3.57   DATA SET 118     25.6   0.169   22.9   61.9   373   3.57   DATA SET 112     25.6   0.360   30.6   64.4   473   5.86   120     25.7   0.00428   33.4   68.6   773   8.30   160     25.7   25.7   25.7   25.7   DATA SET 112     25.7   27.7   27.1   27.2   27.4     25.7   27.7   27.2   27.4     25.8   27.7   27.2   27.4     25.9   27.7   27.2   27.4     25.9   27.7   27.2   27.4     25.9   27.7   27.4     25.9   27.7   27.4     25.9   27.7   27.4     25.9   27.7   27.4     25.9   27.7   27.4     25.9   27.7   27.4     25.9   27.7   27.4     25.9   27.7   27.4     25.9   27.7   27.4     25.9   27.7   27.4     25.9   27.7   27.4     25.9   27.7   27.4     25.9   27.7   27.4     25.9   27.7   27.4     25.9   27.7   27.4     25.9   27.7   27.4     25.9   27.7     25.9   27.7     25.9   27.7     25.9   27.7     25.9   27.7     25.9   27.7     25.9   27.7     25.9   27.7     25.9   27.7     25.9   27.7     25.9   27.7     25.9   27.7     25.9   27.7     25.9   27.7     25.9   27.7     25.9   27.7     25.9   27.7     25.9   27.7     25.9   27.7     25.9   27.7     25.9   27.7     25.9   27.7     25.9   27.7     25.9   27.7     25.9   27.7     25.9   27.7     25.9   27.7     25.9   27.7     25.9   27.7     25.9   27.7     25.9   27.7     25.9   27.7     25.9   27.7     25.9   27.7     25.9   27.7     25.9   27.7     25.9   27.7     25.9   27.7     25.9   27.7     25.9   27.7     25.9   27.7     25.0   27.7     25.0   27.7     25.0   27.7     25.0   27.7     25.0   27.7     25.0   27.7     25.0   27.7     25.0   27.7     25.0   27.7     25.0   27.7     25.0   27.7     25.0</th> <th>100</th> <th>0.4425</th> <th>4.6</th> <th>0.00261</th> <th>11.4</th> <th>24.5</th> <th>1044</th> <th>21.7</th> <th>195</th> <th>1.62</th> <th></th> <th></th> | 15.1   0.00343   13.3   25.6   1050   21.6   273     17.7   0.00340   16.1   27.7   1078   22.1     24.9   0.00109   16.1   37.2   1080   22.2   DATA SET 117     24.9   0.00565   20.1   32.2   1080   22.2     25.8   0.00768   21.8   34.7   DATA SET 117     25.4   0.0103   23.3   37.8   4.2   0.00725   77     25.4   0.0103   23.3   37.8   4.2   0.00725   77     25.4   0.0103   22.8   43.9   DATA SET 118   273     25.6   0.0647   22.9   61.9   373   3.57   DATA SET 118     25.6   0.169   22.9   61.9   373   3.57   DATA SET 112     25.6   0.360   30.6   64.4   473   5.86   120     25.7   0.00428   33.4   68.6   773   8.30   160     25.7   25.7   25.7   25.7   DATA SET 112     25.7   27.7   27.1   27.2   27.4     25.7   27.7   27.2   27.4     25.8   27.7   27.2   27.4     25.9   27.7   27.2   27.4     25.9   27.7   27.2   27.4     25.9   27.7   27.4     25.9   27.7   27.4     25.9   27.7   27.4     25.9   27.7   27.4     25.9   27.7   27.4     25.9   27.7   27.4     25.9   27.7   27.4     25.9   27.7   27.4     25.9   27.7   27.4     25.9   27.7   27.4     25.9   27.7   27.4     25.9   27.7   27.4     25.9   27.7   27.4     25.9   27.7   27.4     25.9   27.7   27.4     25.9   27.7   27.4     25.9   27.7     25.9   27.7     25.9   27.7     25.9   27.7     25.9   27.7     25.9   27.7     25.9   27.7     25.9   27.7     25.9   27.7     25.9   27.7     25.9   27.7     25.9   27.7     25.9   27.7     25.9   27.7     25.9   27.7     25.9   27.7     25.9   27.7     25.9   27.7     25.9   27.7     25.9   27.7     25.9   27.7     25.9   27.7     25.9   27.7     25.9   27.7     25.9   27.7     25.9   27.7     25.9   27.7     25.9   27.7     25.9   27.7     25.9   27.7     25.9   27.7     25.9   27.7     25.9   27.7     25.9   27.7     25.9   27.7     25.9   27.7     25.9   27.7     25.9   27.7     25.9   27.7     25.9   27.7     25.9   27.7     25.0   27.7     25.0   27.7     25.0   27.7     25.0   27.7     25.0   27.7     25.0   27.7     25.0   27.7     25.0   27.7     25.0   27.7     25.0   27.7     25.0   27.7     25.0                                                                                       | 100         | 0.4425     | 4.6         | 0.00261     | 11.4       | 24.5        | 1044    | 21.7                   | 195    | 1.62    |          |          |
| 0.0934 11.7 0.00360 16.5 3 0.2 1080 22.1 BATA SET 124 123 123 123 123 123 123 123 124 125 124 0.00360 16.5 3 0.2 1080 22.2 BATA SET 124 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 17.7   0.00360   16.1   27.7   1078   22.1   DATA SET   12.2   DATA SET   12.2   DATA SET   12.2     24.9   0.005053   20.1   34.7   1080   22.2   20.4     25.8   0.00568   21.8   34.7   DATA SET   117   4.2     35.4   0.0156   22.3   43.7   41.1   4.2   0.00725   77     44.9   0.0302   22.8   43.9   DATA SET   118   273     46.1   0.0461   25.9   48.1   DATA SET   118   273     46.1   0.0461   22.9   48.1   DATA SET   118   273     46.1   0.0467   22.9   61.9   373   3.57   100     54.0   0.0647   22.9   61.9   373   3.57   100     56.0   0.260   30.6   66.4   473   4.71   100     56.1   0.035   33.4   88.6   773   8.30   160     1.5   0.00428   34.0   95.3   100.6   x   10^4   DATA SET   120^4     57.7   x   10^4   DATA SET   115   20.4   40.9   x   10^4     57.7   27.2   2.450   20.4   69.7   x   10^4     57.8   61.7   298.5   2.724   20.4   69.7   x   10^4     57.8   61.7   298.5   2.724   20.4   69.7   x   10^4     57.8   61.7   298.5   2.724   20.0     57.9   20.0   20.0     57.0   20.0   20.0     57.0   20.0   20.0     57.0   20.0   20.0     57.0   20.0   20.0     57.0   20.0   20.0     57.0   20.0   20.0     57.0   20.0     57.0   20.0   20.0     57.0   20.0   20.0     57.0   20.0     57.0   20.0     57.0   20.0     57.0   20.0     57.0   20.0     57.0   20.0     57.0   20.0     57.0   20.0     57.0   20.0     57.0   20.0     57.0   20.0     57.0   20.0     57.0   20.0     57.0   20.0     57.0   20.0     57.0   20.0     57.0   20.0     57.0   20.0     57.0   20.0     57.0   20.0     57.0   20.0     57.0   20.0     57.0   20.0     57.0   20.0     57.0   20.0     57.0   20.0     57.0   20.0     57.0   20.0     57.0   20.0     57.0   20.0     57.0   20.0     57.0   20.0     57.0   20.0     57.0   20.0     57.0   20.0     57.0   20.0     57.0   20.0     57.0   20.0     57.0   20.0     57.0   20.0     57.0   20.0     57.0   20.0     57.0   20.0     57.0   20.0     57.0   20.0     57.0   20.0     57.0   20.0     57.0   20.0     57.0   20.0     57.0   20.0     57.0   20.0     57.0   20.0     57.0   20.0                                                                                           | 130         | 0.6631     | 13.1        | 0.00383     | 13.3       | 25.6        | 1050    | 21.6                   | 273    | 2.42    | DATA SE  | ET 129   |
| 1,517   21,0 0,000109   18,5 3 0,2   1080   22.2   DATA SET 124   123     1,551   24,9 0,000505   20,0 1 32.2   DATA SET 117   4,2 0,007   223     1,551   27,8 0,00768   21,8 34,7 4,2   0,00755   77   0,041   323     2,220   41,9 0,0036   25,8 4,9 4,1   4,2 0,00755   77   0,141   323     2,430   41,9 0,0036   25,8 4,9 4,1   4,2 0,00755   77   0,141   323     2,430   41,9 0,0036   25,8 4,9   40,9   27,4   27,6   16,9   16,3     2,430   41,9 0,0044   25,9 4,1   4,2 0,00755   195   1,63     2,430   41,9 0,0064   25,9 4,1   4,2   0,00755   195   1,63     2,430   41,9 0,0064   25,9 4,1   20,4 4,7   100   0,441   1073   2     2,445   90,3 0,169   29,9 61,9 4,7   4,7   100   0,441   1073   2     2,445   90,3 0,169   29,9 61,9 4,7   4,7   100   0,441   1073   2     2,445   90,3 0,189   29,9 61,9 4,7   4,7   100   0,441   1073   2     2,445   90,3 0,189   29,9 61,9 4,7   4,7   100   0,441   1073   2     3,445   30,3 0,375   31,4   81,0   100   1,13   1223   3     4,0   90,3   0,00428   34,1   100,6 x 10^*   0,47 x 10^*   2     4,0   8,7   57,7 x 10^*   144,6   1,554   2     4,0   11,2   58,6   27,2 x 10^*   3     4,0   11,2   58,6   27,2 x 10^*   3     4,0   11,1   2   59,7 x 10^*   3     4,0   11,1   2   59,7 x 10^*   3     4,0   11,1   2   59,7 x 10^*   3     4,0   11,1   2   59,7 x 10^*   3     4,0   11,1   2   59,7 x 10^*   3     4,0   1,0   3   3     4,0   3,0   3,14   3     4,0   4,0   3,10   3,11   4,1     4,0   4,0   4,0   7 x 10^*   3     4,0   3,0   3,14   4,1     4,0   4,0   3,11   4,1     4,0   4,0   3,11   4,1     4,0   4,0   3,11   4,1     4,0   4,0   3,11   4,1     4,0   4,0   3,11   4,1     4,0   4,0   3,11   4,1     4,0   4,0   3,11   4,1     4,0   4,0   3,11   4,1     4,0   4,0   3,11   4,1     4,0   4,0   3,11   4,1     4,0   4,0   3,11   4,1     4,0   4,0   3,11   4,1     4,0   4,0   3,11   4,1     4,0   4,0   3,11   4,1     4,0   4,0   3,11   4,1     4,0   4,0   3,11   4,1     4,0   4,0   3,11   4,1     4,0   4,0   3,11   4,1     4,0   4,0   3,11   4,1     4,0   4,0   4,0   4,0   4,0   4,0     4,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 24.9 0.00565 18.5 30.2 1080 22.2 DATA SET 117 4.2 27.8 30.1 32.2 24.9 0.00565 21.8 34.7 DATA SET 117 4.2 20.4 35.4 0.0156 22.8 34.7 DATA SET 117 4.2 20.4 4.2 35.4 41.1 4.2 0.00725 777 12.9 52.4 43.9 DATA SET 118 27.3 25.4 47.3 4.71 100 20.6 0.0647 22.9 61.9 37.3 3.57 100 20.6 0.260 30.6 66.4 47.3 4.71 100 20.0 0.260 30.6 66.4 47.3 4.71 100 20.0 0.260 30.6 66.4 47.3 4.71 100 120 20.3 0.375 31.6 81.6 67.3 5.86 12.0 120 20.0 2.2 2.3 2.8 4 2.3 100.6 x 10^4 67.3 5.8 2.0 120 20.0 2.2 2.3 2.8 4 2.3 100.6 x 10^4 67.3 2.3 2.8 4 2.3 2.8 4 2.3 2.8 4 2.3 2.8 4 2.3 2.8 4 2.3 2.8 4 2.3 2.4 4 2.3 2.3 2.4 4 2.3 2.3 2.4 4 2.3 2.3 2.4 4 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 140         | 0.8934     | 17.7        | 0.00380     | 16.1       | 27.7        | 1078    | 22.1                   |        |         |          |          |
| 1.34    24.9   0.00563   20.11   34.7   DATA SET 117   4.2   0.007   273     1.824   30.1   0.00768   21.8   34.7   DATA SET 117   20.4   0.0942   273     2.003   41.9   0.00768   21.8   34.7   41.1   4.2   0.00725   77   0.341   323     2.003   41.9   0.0136   24.7   41.1   4.2   0.00725   77   0.341   323     2.450   46.1   0.0461   26.9   46.1   DATA SET 118   273   2.46   DATA SET 126     2.450   46.1   0.0461   27.9   27.4   DATA SET 118   273   2.46   DATA SET 125     2.450   6.0   6.0   2.0   6.1   2.2   2.0   2.74   DATA SET 125   1023   2.2     2.451   6.0   0.0647   2.7   2.2   2.2   2.7   DATA SET 125   1023   2.2     2.452   6.0   0.0647   2.7   2.2   2.2   2.4   2.7   DATA SET 125   2.2   2.4   2.7   DATA SET 125   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2   2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 24.9 0.00563 20.1 32.2 27.8 0.00564 21.8 34.7 DATA SET 1117 20.4 35.4 0.0156 22.3 37.8 20.4 44.9 0.0302 23.8 43.9 DATA SET 1117 44.9 0.0302 23.8 43.9 DATA SET 118 54.0 0.0647 22.9 46.1 54.0 0.0647 22.9 52.4 54.0 0.0647 22.9 61.9 J73 2.74 50.0 0.260 30.6 66.4 50.0 0.260 30.6 66.4 50.0 0.260 30.6 66.4 50.0 0.260 30.6 66.4 50.0 0.260 30.6 66.4 50.0 0.260 30.6 66.4 50.0 0.260 30.6 66.4 50.0 0.260 30.6 66.4 50.0 0.260 30.6 66.4 50.0 0.260 30.6 66.4 50.0 0.260 30.6 66.4 50.0 0.260 30.6 66.4 50.0 0.260 30.6 66.4 50.0 0.260 30.6 66.4 50.0 0.260 30.6 66.4 50.0 0.260 30.6 66.4 50.0 0.260 30.6 66.4 50.0 0.260 30.6 66.4 50.0 0.260 30.6 66.4 50.0 0.220 30.6 5.0 5.0 5.0 5.0 50.0 0.220 5.0 5.0 5.0 5.0 5.0 50.0 0.220 5.0 5.0 5.0 5.0 5.0 5.0 50.0 0.220 5.0 5.0 5.0 5.0 5.0 5.0 5.0 50.0 0.220 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 50.0 0.220 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 50.0 0.220 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3           | 1.127      | 21.0        | 0.00109     | 18.5       | 30.2        | 1080    | 22.2                   | DATA S | SET 124 | 123      | 0.74     |
| 1.553   27.8   0.00768   21.8   34.7   DATA SET 117   4.2   0.0097   223   233   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.8   23.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 27.8         0.00768         21.8         34.7         DATA SET 117         4.2           39.1         0.0156         23.3         37.8         4.2         0.00725         77           41.9         0.0302         23.3         37.8         4.2         0.00725         77           41.9         0.0302         25.8         43.9         4.2         0.00725         77           46.1         0.0461         25.9         48.1         DATA SET 118         273           54.0         0.0647         22.9         52.4         298         2.74         DATA SET 118         273           69.6         0.169         22.9         61.9         373         3.57         DATA SET 118         273           80.0         0.260         30.6         66.4         473         4.71         100           90.3         0.375         31.6         81.6         673         7.06         140           90.3         2.0         35.3         4.71         100         150         150           1.5         0.00428         34.0         95.3         1.06         140.9         100           293         2.64         DATA SET 112         DATA SET 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8           | 1.361      | 24.9        | 0.00202     | 20.1       | 32.2        |         |                        |        |         | 173      | 1.31     |
| 1.824   30.1   0.0103   23.3   37.8   4.2   0.00725   77   0.0442   223   22.40   41.9   4.2   0.00725   77   0.0441   323   22.40   41.9   0.0061   25.8   48.1   DATA SET 118   273   2.46   DATA SET 125   195   1.63   DATA SET 125   195   1.63   DATA SET 125   195   10.03   2.46   DATA SET 125   DATA SET 126   DATA SET 120   DATA S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 30.1     0.0103     22.3     37.8     4.2     0.00725     77       41.9     0.0302     22.8     43.1     4.2     0.00725     77       41.9     0.0302     22.9     48.1     DATA SET 118     273       54.0     0.0647     22.9     48.1     DATA SET 118     273       54.0     0.0647     22.9     61.9     48.1     DATA SET 118     273       61.3     0.169     22.9     61.9     373     3.57     100       80.0     0.260     30.6     66.4     473     4.71     100       90.3     0.375     31.6     73.4     57.3     5.86     120       90.3     0.375     31.6     66.4     47.3     4.71     100       90.3     0.375     31.6     66.4     47.3     4.71     100       1.5     0.00426     33.4     88.6     77.3     8.30     160       293     2.84     DATA SET 112     20.4     40.9 x 10^*     240       MATA SET 113**     10.6     x 10.5     240     240       BATA SET 113**     10.6     x 10.0     x 10.0     x 10.0     240       BATA SET 113**     10.5     27.4     69.7     x 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8           | 1.593      | 27.8        | 0.00768     | 21.8       | 34.7        | DATA    | SET 117                | 4.2    | 0.087   | 223      | 1.89     |
| 2.280         35.4         0.0156         24.7         41.1         4.2         0.00725         77         0.341         323           2.280         45.9         45.9         45.9         45.9         45.9         52.4         0.00725         77         0.341         323           2.678         46.1         27.9         52.4         borra Set 118         27.4         borra Set 125         0.046           2.678         66.1         27.9         52.4         27.4         borra Set 125         973         2.4           66.1         66.1         27.9         61.9         37.3         4.71         100         0.441         1073         2           2.485         90.3         0.375         31.6         66.4         473         4.71         100         0.441         1073         2           2.485         90.3         0.375         31.6         66.4         473         4.71         100         0.441         1073         2           2.485         90.3         0.375         31.6         81.6         67.3         4.71         100         0.441         1073         2           2.152         1.5         0.375         31.006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 13.4   0.0156   24.7   41.1   4.2   0.00725   77     41.9   0.0302   25.8   43.9   DATA SET 118   273     48.1   0.0461   26.9   48.1   DATA SET 118   273     54.0   0.0647   27.9   52.4   DATA SET 118   273     54.0   0.0647   27.9   52.4   DATA SET 118   273     54.0   0.0647   27.9   52.4   DATA SET 118   273     50.0   0.260   30.6   66.4   473   4.71   100     50.1   0.375   31.6   73.4   573   5.86   120     1.5   0.0428   34.3   100.6 x 10^2   DATA SET 119     50.0   DATA SET 112*   DATA SET 115   20.4   40.9 x 10^2     50.0   11.2   58.6   273.2   2.450   20.4   69.7 x 10^2     50.0   15.8   61.7   298.5   2.724   20.4   69.7 x 10^2     50.0   25.0   25.0   20.4   69.7 x 10^2     50.0   25.0   2.724   2.724   2.724     50.0   2.724   2.724   2.724     50.0   2.724   2.724   2.724     50.0   2.724   2.724     50.0   2.725   DATA SET 120*                                                                                      | 22          | 1.824      | 30.1        | 0.0103      | 23.3       | 37.8        |         |                        | 20.4   | 0.0942  | 273      | 2.46     |
| 2.200         41.9         0.0302         25.8         43.9         DATA SET 118         195         1.63         DATA SET 128         17.3         2.46         DATA SET 128         17.3         2.46         DATA SET 125         97.3         2.46         DATA SET 125         97.3         2.46         DATA SET 125         97.3         2.46         10.23         2.2         97.3         2.74         DATA SET 125         97.3         2.46         10.23         2.46         10.23         2.46         10.23         2.74         10.23         2.46         10.23         2.74         10.23         2.46         10.23         2.74         10.23         2.74         10.23         2.74         10.23         2.74         10.23         2.74         10.23         2.74         10.23         2.74         10.23         2.74         10.23         2.74         10.23         2.74         10.23         2.74         10.23         2.74         10.23         2.74         10.23         2.74         10.23         2.74         10.23         2.74         2.74         2.74         2.74         2.74         2.74         2.74         2.74         2.74         2.74         2.74         2.74         2.74         2.74         2.74         2.74 <th>41.9 0.0302 25.8 45.9 DATA SET 118 173  46.1 0.0461 26.9 46.1 DATA SET 118 273  54.0 0.0667 27.9 57.4 DATA SET 118 273  56.8 0.169 22.9 61.9 373 3.57 DATA SET 118  69.8 0.169 22.9 61.9 373 3.57 DATA SET 119  90.3 0.375 31.6 61.4 473 4.71 100  11.5 0.00428 34.0 95.3 7.06 140  11.5 0.00428 34.1 100.6 x 10<sup>-3</sup> DATA SET 119 200  293 2.84 DATA SET 113* 2.450 20.4 69.7 x 10<sup>-3</sup> 340  11.2 58.6 273.2 2.450 20.4 69.7 x 10<sup>-3</sup> 340  11.3 59.7 298.5 2.724 30.4 69.7 x 10<sup>-3</sup> 340  11.5 65.0</th> <th><b>3</b>40</th> <th>2.033</th> <th>35.4</th> <th>0.0156</th> <th>24.7</th> <th>41.1</th> <th>4.2</th> <th>0.00725</th> <th>11</th> <th>0.341</th> <th>323</th> <th>3.02</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 41.9 0.0302 25.8 45.9 DATA SET 118 173  46.1 0.0461 26.9 46.1 DATA SET 118 273  54.0 0.0667 27.9 57.4 DATA SET 118 273  56.8 0.169 22.9 61.9 373 3.57 DATA SET 118  69.8 0.169 22.9 61.9 373 3.57 DATA SET 119  90.3 0.375 31.6 61.4 473 4.71 100  11.5 0.00428 34.0 95.3 7.06 140  11.5 0.00428 34.1 100.6 x 10 <sup>-3</sup> DATA SET 119 200  293 2.84 DATA SET 113* 2.450 20.4 69.7 x 10 <sup>-3</sup> 340  11.2 58.6 273.2 2.450 20.4 69.7 x 10 <sup>-3</sup> 340  11.3 59.7 298.5 2.724 30.4 69.7 x 10 <sup>-3</sup> 340  11.5 65.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>3</b> 40 | 2.033      | 35.4        | 0.0156      | 24.7       | 41.1        | 4.2     | 0.00725                | 11     | 0.341   | 323      | 3.02     |
| 2.430         46.1         0.0461         26.9         48.1         DATA SET 116         27.4         DATA SET 125         27.4         DATA SET 125         DATA SET 125         97.3         2.46         97.3         2.46         97.3         2.77         DATA SET 1125         97.3         2.46         97.3         2.77         DATA SET 1126         97.3         2.47         DATA SET 1126         97.3         2.47         100         0.441         1073         2.27         107.3         2.27         107.3         2.27         107.3         2.27         107.3         2.27         107.3         1.27         107.3         1.27         107.3         1.27         107.3         1.27         107.3         1.27         107.3         1.27         107.3         1.27         107.3         1.27         107.3         1.27         107.3         2.27         1.12         2.27         1.12         2.27         1.12         2.27         1.12         2.27         1.27         2.27         1.27         2.27         1.27         2.27         1.27         2.27         1.27         2.27         2.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Mail                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3           | 2.280      | 41.9        | 0.0302      | 25.8       | 43.9        |         |                        | 195    | 1.63    |          |          |
| 2.678         34.0         0.0647         22.9         52.4         286         2.74         DATA SET 125         973         2.75           4.18         69.6         0.0647         22.9         65.2         4.71         100         0.441         1073         2           2.485         90.0         0.260         22.9         65.4         4.71         100         0.441         1073         2           2.485         90.0         0.260         30.6         66.4         4.71         100         0.441         1073         2           2.485         90.3         0.375         31.6         81.6         65.3         7.06         140         0.901         1173         1273         2           2.15         1.5         0.00428         34.3         100.6 x 10 <sup>-8</sup> 57.0         140         0.931         1173         1273         1273         1273         1273         1273         1273         1273         1273         1273         1273         1273         1273         1273         1273         1273         1273         1273         1273         1273         1273         1273         1274         1273         1274         1273         1273         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 84.0         0.0647         22.9         52.4         DATA SET           64.3         0.103         29.0         57.2         298         2.74         DATA SET           69.8         0.169         29.0         61.9         37.3         3.57         100           80.0         0.260         30.6         66.4         473         4.71         100           90.3         0.375         31.6         66.4         473         4.71         100           13.6         0.35         31.6         66.4         473         4.71         100           13.6         13.4         81.6         673         5.86         140           14.0         95.3         100         95.3         160         160           293         2.84         100.6         10.6         10.0         20.0         40.9         20.0           15.2         13.4         0.2257         10.4         40.9         10.0         20.0         20.0         40.9         20.0           11.2         58.6         1.554         2.724         20.4         69.7         10.0         20.0         20.0         20.0         20.0         20.0         20.0         20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 273.2       | 2.430      | 48.1        | 0.0461      | 26.9       | 48.1        | DATA S  | ET 118                 | 273    | 2.46    | DATA SE  | ET 130   |
| SET 106*   65.3   0.103   29.0   57.2   296   2.74   DATA SET 125   973   2   2   2   2   2   2   2   2   2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 61.3 0.103 22.0 57.2 296 2.74 DATA SET 100 69.6 0.169 29.9 2.77 DATA SET 100 0.260 30.6 64.9 373 3.57 0.00 0.260 30.6 64.9 473 4.71 100 100 0.375 31.6 73.4 473 5.96 120 120 120 0.375 31.6 73.4 573 5.96 120 120 120 0.375 31.6 73.4 81.6 673 7.06 140 140 120 120 120 120 120 120 120 120 120 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | £           | 2.678      | ×.0         | 0.0647      | 27.9       | 52.4        |         |                        |        |         |          |          |
| SET 106*   69.8   0.169   29.9   61.9   373   3.57   1002   22   23.4   27.3   24.71   100   0.441   1073   22   23.45   27.3   2.66   120   0.648   1173   23   23.4   23.4   23.3   2.66   140   0.901   1173   23   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23.4   23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 69.8 0.169 22.9 61.9 373 3.57 100  80.0 0.260 30.6 66.4 473 4.71 100  90.3 0.375 31.6 73.4 573 5.86 120  13.6 81.6 673 7.06 140  15.5 0.00428 34.0 95.3 7.06 180  293 2.84 DATA SET 112 20.0 40.9 × 10 <sup>-1</sup> 240  11.2 58.6 273.2 2.450 20.4 69.7 × 10 <sup>-1</sup> 300  11.2 58.6 273.2 2.450 20.4 69.7 × 10 <sup>-1</sup> 340  11.2 58.6 273.2 2.450 20.4 69.7 × 10 <sup>-1</sup> 340  11.8 61.7 37.1 10 <sup>-1</sup> 1298.5 2.724 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |            | 61.3        | 0.103       | 23.0       | 57.2        | 298     | 2.74                   | DATA S | ET 125  | 973      | 26.3     |
| 2.465   90.0   0.260   30.6   66.4   473   4.71   100   0.441   1073   2     2.465   90.3   0.375   31.6   81.6   673   5.86   120   0.668   1123   2     2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 90.0 0.260 30.6 66.4 473 4.71 100 90.3 0.375 31.6 573.4 573 5.86 120 31.6 81.6 673 7.36 120 1.5 0.00428 34.3 100.6 x 10 <sup>-8</sup> DATA SET 119 200 293 2.84 DATA SET 115 20.4 40.9 x 10 <sup>-8</sup> 240  MATA SET 113* 77.78 0.2257 DATA SET 120* 300 11.2 58.6 273.2 2.450 20.4 69.7 x 10 <sup>-8</sup> 340 11.8 61.7 57.7 x 10 <sup>-8</sup> 273.2 2.450 20.4 69.7 x 10 <sup>-8</sup> 340 11.8 61.7 37.8 0.2057 2.450 2.04 69.7 x 10 <sup>-8</sup> 340 11.8 61.7 37.8 0.2057 2.450 2.450 2.450 3.40 11.9 65.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DATA        | ET 106*    | 69.8        | 0.169       | 29.9       | 61.9        | 373     | 3.57                   |        |         | 1023     | 27.1     |
| 2.485         90.3         0.375         31.6         73.4         573         5.86         120         0.668         1123         2           SET 107         DATA SET 112*         33.4         81.6         673         7.06         140         0.901         1173         2           1.52         1.5         0.00428         34.0         95.3         7.06         140         0.901         1173         2           2.14         293         2.84         34.3         100.6 x 10*         DATA SET 119         200         1.539         DATA SET 120*         1273         3           2.13         3.34         36.0         1.554         20.4         40.9 x 10*         2.00         1.539         DATA SET 120*         100.2         2.05         1.539         DATA SET 120*         2.06         2.522         4.2           4.03         11.2         59.6         2.73         2.450         2.04         69.7 x 10*         300         2.751         DATA SET 120*           2.9         11.2         59.7         2.724         2.450         2.04         69.7 x 10*         3.00         2.751         DATA SET 120*           2.9         15.8         61.7         3.04         3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 90.3 0.375 31.6 73.4 553 5.66 120  22.6 81.6 673 7.06 140  22.7 6.00428 34.3 100.6 x 10 <sup>-1</sup> DATA SET 112  22.8 2.84 DATA SET 113 20.4 40.9 x 10 <sup>-1</sup> 240  22.8 2.84 DATA SET 115 20.4 40.9 x 10 <sup>-1</sup> 240  22.8 2.84 DATA SET 120 200  23.8 2.84 DATA SET 120 200  24.1 12.5 57.7 x 10 <sup>-1</sup> 194.6 1.554 DATA SET 120 <sup>-1</sup> 300  25.1 2.5 58.6 273.2 2.450 20.4 69.7 x 10 <sup>-1</sup> 340  25.1 2.9 65.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |            | 80.0        | 0.260       | 30.6       | 66.4        | 473     | 4.71                   | 100    | 0.641   | 1073     | 27.8     |
| 1.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.5   0.00428   34.0   95.3   7.06   140     1.5   0.00428   34.1   100.6 x 10 <sup>-1</sup>   104     293   2.84   100.6 x 10 <sup>-1</sup>   104   112     1.5   0.00428   34.3   100.6 x 10 <sup>-1</sup>   104     1.5   0.00428   34.3   34.3     1.5   0.00428   34.3   34.3     1.5   0.00428   34.4   34.3     1.5   0.00428   34.4     1.5   0.00428   34.4     1.5   0.00428   34.4     1.5   0.00428   34.4     1.5   0.00428   34.4     1.5   0.00428   34.4     1.5   0.00428   34.4     1.5   0.00428   34.4     1.5   0.00428   34.4     1.5   0.00428   34.4     1.5   0.00428   34.4     1.5   0.00428   34.4     1.5   0.00428   34.4     1.5   0.00428   34.4     1.5   0.00428   34.4     1.5   0.00428   34.4     1.5   0.00428   34.4     1.5   0.00428   34.4     1.5   0.00428   34.4     1.5   0.00428   34.4     1.5   0.00428   34.4     1.5   0.00428   34.4     1.5   0.00428   34.4     1.5   0.00428   34.4     1.5   0.00428   34.4     1.5   0.00428   34.4     1.5   0.00428   34.4     1.5   0.00428   34.4     1.5   0.00428   34.4     1.5   0.00428   34.4     1.5   0.00428   34.4     1.5   0.00428   34.4     1.5   0.00428   34.4     1.5   0.00428   34.4     1.5   0.00428   34.4     1.5   0.00428   34.4     1.5   0.00428   34.4     1.5   0.00428   34.4     1.5   0.00428   34.4     1.5   0.00428   34.4     1.5   0.00428   34.4     1.5   0.00428   34.4     1.5   0.00428   34.4     1.5   0.00428   34.4     1.5   0.00428   34.4     1.5   0.00428   34.4     1.5   0.00428   34.4     1.5   0.00428   34.4     1.5   0.00428   34.4     1.5   0.00428   34.4     1.5   0.00428   34.4     1.5   0.00428   34.4     1.5   0.00428   34.4     1.5   0.00428   34.4     1.5   0.00428   34.4     1.5   0.00428   34.4     1.5   0.00428   34.4     1.5   0.00428   34.4     1.5   0.00428   34.4 | 273.2       | 2.485      | 80.3        | 0.375       | 31.6       | 73.4        | 573     | 5.86                   | 120    | 0.668   | 1123     | 28.6     |
| SET 107   DATA SET 112**   33.4   88.6   773   8.30   160   1.133   1223   3   123   3   123   3   123   3   123   3   123   3   123   3   123   3   123   3   123   3   123   3   123   3   123   3   123   3   123   3   123   3   123   3   123   3   123   3   123   3   123   3   123   3   123   3   123   3   123   3   123   3   123   3   123   3   123   3   123   3   123   3   123   3   123   3   123   3   123   3   123   3   123   3   123   3   123   3   123   3   123   3   123   3   123   3   123   3   123   3   123   3   123   3   123   3   123   3   123   3   123   3   123   3   123   3   123   3   123   3   123   3   123   3   123   3   123   3   123   3   123   3   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123   123                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | DATA SET 112*         33.4         88.6         773         8.30         160           1.5         0.00428         34.0         95.3         180         180           293         2.84         DATA SET 115         20.4         40.9 x 10 <sup>-</sup> 200           293         2.84         DATA SET 112         20.0         240           20.7         30.0         240         240         240           20.7         30.0         240         240         240           20.1         30.0         240         240         240           20.2         27.7         27.5         27.5         280         280           20.2         27.7         27.4         300         300         300           13.2         39.7         298.5         2.724         69.7         20.4         69.7         20.0           18.9         65.0         360         360         360         360                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |            |             |             | 32.6       | 81.6        | 673     | 7.06                   | 140    | 0.901   | 1173     | 29.3     |
| 1.52   1.5   0.00428   34.0   95.3   180   1.367   1273   3   3   3   3   3   3   3   3   3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.5 0.00428 34.0 95.3 100.6 x 10 <sup>-1</sup> DATA SET 119 180  293 2.84 DATA SET 115 20.4 40.9 x 10 <sup>-1</sup> 240  DATA SET 113* 77.78 0.2257 DATA SET 120* 280  8.7 57.7 x 10 <sup>-1</sup> 194.6 1.254 20.4 69.7 x 10 <sup>-1</sup> 320  11.2 58.6 273.2 2.450 20.4 69.7 x 10 <sup>-1</sup> 320  11.8 61.7 3.0 2.724 3.724 3.0 340  18.9 65.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PATA S      | FT 107     | DATA        | SET 112*    | 33.4       | 88.6        | 773     | 30                     | 160    | 1.133   | 1223     | 30.1     |
| 1.52 1.5 0.00428 34.3 100.6 x 10 <sup>-1</sup> DATA SET 119 200 1.599  2.14 293 2.84 DATA SET 115 20.4 40.9 x 10 <sup>-1</sup> 220 1.830 DATA SE 1.33  3.33 DATA SET 113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.5 0.00426 34.3 100.6 x 10 <sup>-1</sup> DATA SET 119 200  293 2.84 DATA SET 115 20.4 40.9 x 10 <sup>-1</sup> 220  BATA SET 113 <sup>-1</sup> 77.76 0.2257 DATA SET 120 <sup>-1</sup> 240  8.7 57.7 x 10 <sup>-1</sup> 194.6 1.554 DATA SET 120 <sup>-1</sup> 300  11.2 59.6 273.2 2.450 20.4 69.7 x 10 <sup>-1</sup> 320  15.8 61.7 298.5 2.724 20.4 69.7 x 10 <sup>-1</sup> 340  18.9 65.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |            |             |             | 34.0       | 95.3        | 1       |                        | 180    | 1.367   | 1273     | 30.9     |
| 2.14 293 2.84 DATA SET 115 20.4 40.9 x 10 <sup>-1</sup> 220 1.830 DATA SET 125 2.72 2.052 4.2 2.333 DATA SET 120 <sup>-1</sup> 2.05 2.062 4.2 4.2 4.05 8.7 57.7 x 10 <sup>-1</sup> 194.6 1.554 DATA SET 120 <sup>-1</sup> 300 2.752 DATA SET 120 <sup>-1</sup> 300 2.751 DATA SET 20.4 69.7 x 10 <sup>-1</sup> 340 3.211 4.2 2.9 2 2.724 6.7 x 10 <sup>-1</sup> 340 3.211 4.2 2.9 2 2.724 6.7 x 10 <sup>-1</sup> 340 3.211 4.2 2.9 3.2 3.443                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 293 2.84 DATA SET 115 20.4 40.9 x 10 <sup>-1</sup> 220  DATA SET 113* 77.78 0.2257 DATA SET 120* 260  8.7 57.7 x 10 <sup>-1</sup> 194.6 1.554 DATA SET 120* 300  11.2 58.6 273.2 2.450 20.4 69.7 x 10 <sup>-1</sup> 340  13.2 59.7 298.5 2.724 20.4 69.7 x 10 <sup>-1</sup> 340  18.9 65.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 193.7       | 1.52       | 1.5         | 0.00428     | 34.3       | 100.6 x 10- | DATA S  | ET 119                 | 200    | 1.599   |          |          |
| 2.72 3.33 MATA SET 113* 4.05 6.7 5.77 x 10* 11.2 5.8.6 5.7 x 10* 2.8.7 5.8.7 5.8.7 5.8.8 5.8.7 5.8.8 5.8.8 5.8.8 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.8.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | DATA SET 113*         DATA SET 113*         20.4         40.9 x 10^*         240           8.7         57.7 x 10^*         194.6         1.554         DATA SET 120*         280           11.2         58.6         273.2         2.450         20.4         69.7 x 10^*         320           13.2         59.7         298.5         2.724         69.7 x 10^*         340           18.9         65.0         360         360                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 248.2       | 2.14       | 293         | 2.84        |            |             |         |                        | 220    | 1.830   | DATA     | SET 131  |
| 3.33         DATA SET 113*         77.76         0.2257         DATA SET 120*         260         2.292         4.2           4.05         6.7         57.7 x 10*         194.6         1.554         DATA SET 120*         280         2.522         DATA SE           SET 106*         11.2         58.6         273.2         2.450         20.4         69.7 x 10*         320         2.751         DATA SE           2.9         13.2         59.7         298.5         2.724         20.4         69.7 x 10*         340         3.211         4.2           2.9         15.8         61.7         360         3.443         3.443         4.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | DATA SET 113*     77.76     0.2257     DATA SET 120*     260       8.7     57.7 x 10^*     194.6     1.554     DATA SET 120*     280       11.2     59.6     273.2     2.450     20.4     69.7 x 10^*     300       13.2     59.7     298.5     2.724     20.4     69.7 x 10^*     340       15.8     61.7       18.9     65.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 238.2       | 2.72       |             |             | DATA       | SET 115     | 20.4    | 40.9 x 10-             | 240    | 2.062   |          |          |
| 4.05 8.7 77.76 0.2257 DATA SET 120* 280 2.522 DATA SET 120* 300 2.751 DATA SE 220 2.751 DATA SE 220 2.751 DATA SE 227 2.751 DATA SE 227 2.754 69.7 x 10* 340 3.211 4.2 2.9 65.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8.7 57.7 x 10 <sup>-3</sup> 194.6 1.554 DATA SET 120* 280<br>11.2 58.6 273.2 2.450 20.4 69.7 x 10 <sup>-3</sup> 320<br>13.2 59.7 298.5 2.724 20.4 69.7 x 10 <sup>-3</sup> 340<br>15.8 61.7 360                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 351.2       | 3.33       | DATA S      |             |            |             |         |                        | 260    | 2.292   | 4.2      | 0.0586   |
| No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8.7 57.7 x 10 <sup>-8</sup> 194.6 1.554 300<br>11.2 58.6 273.2 2.450 20.4 69.7 x 10 <sup>-8</sup> 320<br>13.2 59.7 298.5 2.724 30.4 69.7 x 10 <sup>-8</sup> 340<br>15.8 61.7 340                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 408.4       | 4.03       |             |             | 77.78      | 0.2257      | DATA S  | ET 120*                | 280    | 2.522   |          |          |
| A SET 106* 11.2 59.6 273.2 2.450 20.4 69.7 x 10** 320 2.982 2.724 2.9 15.8 61.7 340 3.211 4.2 3.0 15.8 65.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11.2 58.6 273.2 2.450 20.4 69.7 x 10 <sup>-3</sup> 320<br>13.2 59.7 298.5 2.724 20.4 69.7 x 10 <sup>-3</sup> 340<br>15.8 61.7 340<br>18.9 65.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |            | 8.7         | 7.7 x       | 194.6      | 1.554       |         |                        | 300    | 2.751   | DATA     | SET 132* |
| 2.9 15.8 61.7 298.5 2.724 340 3.211 4.2 3.59 15.8 65.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 13.2 59.7 298.5 2.724 340<br>15.8 61.7 298.5 2.724 340<br>18.9 65.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | DATA S      |            | 11.2        | <b>38.6</b> | 273.2      | 2.450       | 20.4    | 69.7 × 10 <sup>-</sup> | 320    | 2.982   |          |          |
| 2.9 13.8 61.7 360<br>18.9 65.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 15.8 61.7<br>18.9 65.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |            | 13.2        | 59.7        | 298.5      | 2.724       |         |                        | 340    | 3.211   | 4.2      | 0.0166   |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 18.9 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 293         | 2.9        | 13.8        | 61.7        |            |             |         |                        | 360    | 3.443   |          |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | dict above is finns.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |            | 18.9        | 65.0        |            |             |         |                        |        |         |          |          |

TABLE 3. EXPERIMENTAL DATA ON THE ELECTRICAL RESISTIVITY OF ALUMINUM AL (continued)

| DATA SET 133* |             |             |                |               |                | •            | 1                    | •        |                      | •                                     |                      |
|---------------|-------------|-------------|----------------|---------------|----------------|--------------|----------------------|----------|----------------------|---------------------------------------|----------------------|
| 4 2           | II 133*     | DATA        | DATA SET 1394  | DATA          | DATA SET 142 * | DATA SET     | DATA SET 148 (cont.) | DATA SET | DATA SET 150 (cont.) | DATA SET                              | DATA SET 154 (cont.) |
|               | 0.698       | 273         | 2.417          | 1.8           | 37.6 × 10-4    | 47.00        | 0.08630              | 895.0    | 10.117               | 17.9                                  | 106.3                |
| DATA SE       | SET 134*    | <b>1</b> 23 | 4.619          | DATA          | SET 143*       | į            |                      | 915.9    | 10.449               | 19.7                                  | 111.4 x 10"          |
| 20.4          | 0.624       | 573<br>673  | 5.801<br>7.046 | 1.8           | 20.0 × 10-4    | ALM          | 251 149              | 8.776    | 10.644               | DATA S                                | DATA SET 155         |
|               | 1           | 173         | 8.346          |               |                | 2.1          | 80.6 x 10-1          | DATA     | SET 151              |                                       |                      |
| DATA SET 135  | H 135       | 823         | 9.170          | DATA          | DATA SET 144 * | 4.1          | 90.6                 |          | 4-01 - 00            | 339                                   | 3.26                 |
| 2.24          | 9.0 x 10-6  | 873<br>808  | 9.755          | 8.            | 17.5 - 10-4    | 7 ×          | 80.9                 | 2.3      | 29.2 X 10            | * 0 <b>*</b>                          | 4.11                 |
| 9             | 9.1         | 939         | 10.139         | :             |                |              | 82.0                 | 0.6      | 29.2                 | 552                                   | 40.4                 |
| 6.40          | 4.6         | 3           |                | DATA          | DATA SET 145*  | 6.7          | 82.0                 | 4        | 29.4                 | 634                                   | 7.01                 |
| 6.40          | 9.5         |             |                |               |                | 7.2          | 87.8                 | 14.1     | 34.9                 | 728                                   | 8.36                 |
| 6.55          | 10.0        |             |                | 1.8           | 14.9 x 10"     | 7.8          | 83.9                 | 16.0     | 37.3                 | 795                                   | 9.34                 |
| 9.35          | 10.2        |             |                |               |                | 8.7          | 82.3                 | 18.0     |                      |                                       |                      |
| 10.2          | 10.4        | DATA        | DATA SET 140"  | DATA SET 1464 | T 1464         |              | 81.7                 | 20.0     | 44.1 × 10            | DATA SET                              | ET 156               |
| 16.31         |             | 14.9        | 631000         | 700           | •              | 2:           |                      |          | 16.0                 | 900                                   | ;                    |
| 10.6          | 22.5        | 15.5        | 0.00033        | ,             | 0.7            | 11.0         |                      | DAIA     | DAIA SEI 136         | 338.0                                 | 3.15                 |
| 27.6          | 7.97        | 16.2        | 0.000266       | 707           | 9.4            | 12.6         | 2 48                 | -        | 33.6 - 10-6          | 457.3                                 | 3.97                 |
| 28.0          | 96.3 x 10-  | 17.0        | 0.000334       | 618           | 6.7            | 13.4         | 87.5                 | 2.3      | 33.6                 | 553.0                                 | 28.5                 |
|               |             | 18.6        | 0.000383       | 721           | 7.5            | 14.5         | 87.5                 | 3.0      | 33.7                 | 631.0                                 | 6.82                 |
| DATA SE       | SET 136     | 20.3        | 0.000482       | 822           | 9.5            | 16.1         | 91.4                 | 0.4      | 33.7                 | 730.2                                 | 8.20                 |
|               |             | 21.2        | 0.000607       | 914           | 9.7            | 19.1         | ₹.66                 | 14.2     | 39.8                 | 796.6                                 | 9.14                 |
| 2.19          | 5.70 × 10   | 59.5        | 0.0825         | 942           | 25.5           | 21.9         |                      | 16.0     | 41.9                 |                                       |                      |
| 2.56          | 5.70        | . 89<br>    | 0.119          | 916           | 25.9           | 26.1         | 126.0 × 10 °         | 18.0     | 45.2                 | DATA S                                | SET 157              |
| 8 5           | 2;          | 5.5         | 0.22/          | 1024          | 26.1           | i            |                      | 20.0     | 49.1 x 10            |                                       | ;                    |
| 2             | 7.7         |             | 0.528          | 10/3          | 21.1           | DATA SET 150 | NCT 13               |          |                      | 933.4                                 | 24.25                |
| 7.7           | ? ?         | 128.3       | 0.00           |               | :              | , , , ,      |                      | DATA     | SET 153              | 973                                   | 24.83                |
| 1.3           | 7.          | 4.067       | 97.7           | DATA S        | DATA SET 147"  | 4.182        | 7.386                | ٠        | 4-0.                 | 1073                                  | 26.30                |
| <b>3</b> :    | R :         | į           |                |               |                | 289.4        | 2.609                | 1.5      | 35.4 × 10            | 1173                                  | 27.77                |
| 2             | ) ·         | MIN         | 107 190        | 20.08         | 0.00           | 293.0        | 2.633                | 2.3      | 4.00                 | 12/3                                  | 29.24                |
| 13.60         | 7.07        |             | 831000         |               | 0.422          | 1.067        | 7.097                | 0.0      | 9.00                 | 13/3                                  | 30.71                |
| 12.10         | 17.7        | 7.51        | 0.000130       | 180.0         | 1.252          | 5//.4        | 3.605                | 9.5      | 23.5                 | 14/3                                  | 32.1/                |
| 21.12         | 26 5 - 10-6 | 76.3        | 0.00010        | 277.0         | 796.7          | 0.700        | 30.4                 | 7.51     | 65.0                 | 2 1416                                | 100+                 |
|               |             | 17.8        | 0.000343       | 211           |                | 202          | 5.061                | 0.81     |                      | S S S S S S S S S S S S S S S S S S S | 170                  |
| DATA 8        | SET 137     | 17.8        | 0.000376       | DATA          | SET 148        | 583.6        | 6.006                | 19.9     | 73.5 x 10-           | 90.2                                  | 0.352                |
|               |             | 19.5        | 0.000494       |               |                | 688.3        | 7.286                |          |                      | 194.7                                 | 1.55                 |
| •             | 20.0 x 10-  | <b>70.</b>  | 0.000649       | ₩.00          | 0.02488        | 728.8        | 7.802                | DATA     | DATA SET 154         | 273.2                                 | 2.44                 |
| 20            | 28.2        | 58.0        | 0.000809       | 7.33          | 0.02489        | 764.4        | 8.264                |          | <u> </u>             | 373.2                                 | 3.59                 |
| 2             | 69.9 x 10-  | 60.7        | 0.116          | 13.40         | 0.02606        | 770.9        | 8.355                | 2.0      | 91.6 x 10-           |                                       |                      |
|               |             | 19.8        | 0.230          | 16.60         | 0.02642        | 794.1        | 8.663                | 3.0      |                      | DATA                                  | DATA SET 159*        |
| DATA 8        | SET 136     | 87.4        | 0.347          | 19.77         | 0.02805        | 831.3        | 9.185                | 4.2      | 91.9                 |                                       |                      |
| •             |             | 115         | 0.627          | 21.98         | 0.02992        | 843.3        | 9.345                | 13.9     | 98.6                 | 4.2                                   | 0.00304              |
| • ;           | 0.00106     | 197         | <b>67.7</b>    | 25.01         | 0.03404        | 854.3        | 9.516                | 6.4.     | 0.001                | 273.2                                 | 2.554                |
| <b>3</b> 5    | 0.00201     |             |                | 28.91         | 0.04018        | 8/4.5        | 4//·6                | 15.9     | 102.0                |                                       |                      |
| ₹             |             |             |                | 8             | 20000          | •            |                      | ì        | · · · · · ·          |                                       |                      |

TABLE 3. EXPERIMENTAL DATA ON THE ELECTRICAL RESISTIVITY OF ALUMINUM AL (continued)

| A.2 0.00365<br>273.2 2.603 |               |              |              |               |                  |               |            |                      |  |
|----------------------------|---------------|--------------|--------------|---------------|------------------|---------------|------------|----------------------|--|
|                            | DATA SET 1704 | * <u>07.</u> | DATA S       | DATA SET 180* | DATA             | DATA SET 187* | DATA SET 1 | DATA SET 191 (cont.) |  |
|                            | 273.2 2.      | 2.695        | 21.2         | 0.340         | 273              | 2.53          | 979        | 7.638                |  |
| 111111                     | DATA SET 1714 | ·17•         | 273.2        | 2.84          |                  | 100           | 3          | 166.                 |  |
| DATA SET 161"              | .0            | 0.318        | DATA SET 181 | T 181         | VIVA             | 190           |            |                      |  |
| 4.2 0.00551                |               | į            |              | ;<br>         | 28               | 0.108         |            |                      |  |
|                            | DATA SET 1/2" | []           | 959.15       | 26.4<br>26.4  | 81.1             | 0.380         |            |                      |  |
| DATA SET 162*              | <b>88</b>     | 0.394        | 1018.15      | 26.8          | 194.7            | 1.64          |            |                      |  |
| 20 0.0241                  | DATA SET 1734 | 734          | 1069.15      | 27.6          | DATA             | SET 189       |            |                      |  |
| 297 2.7414                 | .0            | 0.382        | 1130.13      | 7.67          | 973              | 27.80         |            |                      |  |
| į                          |               | •            | DATA S       | SET 182*      | 1073             | 29.28         |            |                      |  |
| DATA SET 163"              | DATA SEI 1/4" | <u>.</u>     | 296.2        | 2.96          | 1273             | 32.22         |            |                      |  |
| 20 0.0293                  | .0            | 0.342        |              | :             | 1373             | 33.68         |            |                      |  |
|                            |               |              | DATA S       | DATA SET 183  | 1473             | 35.17         |            |                      |  |
|                            | DATA SET 1754 | 2.5<br>2.5   |              |               | 1573             | 36.60         |            |                      |  |
| 9771 223 7474              | •             | 725          | 289.4        | 2.83          | DATA             | DATA SET 190* |            |                      |  |
| DALA OB! LOW               |               | 2.70         | 290.0        | 2.81          |                  |               |            |                      |  |
|                            |               | 3.92         | 346.2        | 3.45          | 293              | 2.828         |            |                      |  |
| 90 0.381                   | 476 5.        | 5.16         | 350.2        | 3.53          | 4                |               |            |                      |  |
|                            | DATA SET 1764 | 1764         | 433.2        | 3.33          | MAIN             | DAIA DEL 171  |            |                      |  |
| DATA SET 165*              |               | <b>:</b>     | 434.2        | 4.48          | 3                | 0.641         |            |                      |  |
|                            |               | 0.0188       | 575.9        | 6.15          | 8                | 0.795         |            |                      |  |
|                            |               | 3065         | 577.6        | 6.23          | 123              | 1.038         |            |                      |  |
| 90 0.377                   | 273.2 2.      | S,           | 579.4        | 6.24          | 148              | 1.282         |            |                      |  |
| 297 2.7359                 | DATA SET 1770 | 1734         | 777.2        | 7.39<br>B.77  | 198              | 1.782         |            |                      |  |
| DATA SET 166#              |               | :            | 775.6        | 8.79          | 223              | 2.067         |            |                      |  |
|                            |               | .0351        | 613.9        | 9.31          | 248              | 2.321         |            |                      |  |
| 20 0.0261                  |               | 0.319        |              |               | 273              | 2.618         |            |                      |  |
|                            |               | 2.52         | DATA         | DATA SET 184* | 298              | 2.928         |            |                      |  |
|                            | 4861 780 4740 | 700          | 233          | 72.6          | 323              | 3.237         |            |                      |  |
| 1634                       | THE WIND      | <u>.</u>     | 200          |               | 171              | 3.858         |            |                      |  |
| 101 190 VIV                | 21.2 0.       | .0157        | 3            | :             | 398              | 4.192         |            |                      |  |
| 27.3 2.50                  |               | 0.458        | DATA 8       | DATA SET 185* | 423              | 4.498         |            |                      |  |
|                            | 273.2 2.      | .65          |              |               | 877              | 4.827         |            |                      |  |
| DATA SET 168*              | DATA SEP 1704 | 1204         | 273          |               | 7 / <del>4</del> | 5.518         |            |                      |  |
| 27.5                       | Total william | :            | 3            | 70.7          | 523              | 5.850         |            |                      |  |
|                            |               | 0.219        | DATA S       | DATA SET 186* | 248              | 6.204         |            |                      |  |
| DATA SET 1694              | 63.2 0.       | 0.525        |              |               | 573              | 6.559         |            |                      |  |
|                            |               | .72          | 273          | 2.61          | 298              | 6.917         |            |                      |  |
| 293 2.65                   |               |              | 293          | 2.84          | 623              | 7.274         |            |                      |  |

# 3.2. Manganese

There are 16 references available reporting temperature dependence of the electrical resistivity from 1 to 1873 K. However, the data are highly contradictory, and in several cases disagree both qualitatively and quantitatively. Further careful measurements on purer samples covering the entire temperature range, especially above 300 K and below 20 K, are required and strongly recommended. The information on specimen characterization and on measurement condition for each of the data sets is given in Table 5. The data sets are tabulated in Table 6 and partially shown in Figs. 4 and 5.

Electrical resistivity data on polycrystalline manganese reported earlier are much higher than those reported recently. These differences may be possibly due to the low purity and insufficient heat treatment of the manganese samples studied earlier. Meaden and Pelloux-Gervais  $^{302}$  demonstrated that the room-temperature electrical resistivity dropped from 205 x  $10^{-8}$   $\Omega$  m to 144.2 x  $10^{-8}$   $\Omega$  m after annealing the specimen at 898 K.

Meaden  $^{303}$  (data set 10), Bellou and Coles  $^{306}$  (data set 14), and White and Woods  $^{307}$  (data set 15), have reported  $T^2$  dependence of the temperature-dependent resistivity ( $\rho_i$ ) below 17 K. This was confirmed by Nagasawa and Senba  $^{300}$  (data set 4) and by Murayama and Nagasawa  $^{310}$  (data set 19). The recommended values from 20-325 K are based on the generally agreed upon data of Nagasawa and Senba  $^{300}$  (data set 4), Meaden and Pelloux-Gervais  $^{302}$ , (data set 12), Bellou and Coles  $^{306}$  (data set 14), and of White and Woods  $^{307}$  (data set 16). The recommended values below 20 K for  $\rho_0$  = 6.9 x  $10^{-8}$   $\Omega$  m are based on the data of Headen  $^{303}$  (data set 10) and Meaden and Pelloux-Gervais  $^{304}$  (data set 12).

An appreciable spin-disorder contribution is indicated by large resistivity values. It appears that the spin-disorder contribution generally present at higher temperatures still remains at liquid helium temperatures. The temperature dependent resistivity  $(\rho_i)$  falls linearly and slowly with temperature below 325 K. It goes through a minimum at about 94 K, and then remains practically constant for 4 to 5 degrees before increasing to a weak maximum at 70 K. Below this temperature,  $\rho_i$  drops very rapidly, finally becoming proportional to  $T^2$  below 17 K.

Alpha-Mn is a stable phase below 980 K and has a complex cubic (A12) crystal structure with 58 atoms in the unit cell. At 980 K, a-Mn transforms to  $\beta$ -Mn which has a complex cubic structure (A13) with 20 atoms in the unit cell. It is possible to retain the  $\beta$  phase at room temperature by rapid quenching from 980-1300 K. Brunke obtained a value of 91 x 10<sup>-8</sup>  $\Omega$  m for the electrical resistivity of  $\beta$ -Mn. Potter et al. 312 and Erfling 313 have reported about 40 x 10<sup>-8</sup>  $\Omega$  m for the room-temperature electrical resistivity of fct  $\gamma$ -Mn. High-temperature  $\delta$ -Mn with a bcc structure is stable between 1411 and 1519 K.

There are only two data sources available in the temperature range 325-1519 K. Grube and Speidel  $^{308}$  (data set 17) reported that the resistivity of manganese increases slowly with increasing temperature from 325 to 980 K and then decreases sharply from 980 to 1519 K. However, Akshentsev et al.  $^{301}$  (data sets 5,6) reported that the electrical resistivity rises sharply between 800-980 K, then slowly from 980 to 1300 K followed by a slow decrease from 1300 to 1400 K and then further increases. The reliability of these results is questionable. Room-temperature electrical resistivity of Grube and Speidel  $^{308}$  (data set 17) is twice as much as the recommended value, and indicates a high impurity in their sample. The value of  $38 \times 10^{-8} \Omega$  m at 800 K for the electrical resistivity reported by Akshentsev et al.  $^{301}$  (data set 5) is far lower than the recommended room-temperature value of  $144 \times 10^{-8} \Omega$  m. Therefore, these data are rejected. The recommended values from 325 to 700 K are obtained by extrapolating the low-temperature data.

The published work on the electrical resistivity of molten manganese is equally contradictory. For instance, Akshentsev et al.  $^{301}$  (data set 6) reported an increase in the resistivity with temperature, contrary to the results of Levin et al.  $^{298}$  (data set 2) and of Vostryakov et al.  $^{305}$  (data set 13) who reported a decrease in the resistivity with temperature. On the other hand, Grube and Speidel  $^{308}$  (data set 17) reported a constant value of 40 x  $10^{-8}$   $\Omega$  m from 1523 to 1543 K. Summarizing this, the electrical resistivity at the melting point varies from 40 to 190 x  $10^{-8}$   $\Omega$  m. Therefore, the available data and information at and above melting point cannot be used for meaningful data analysis. Consequently, no recommendations were made for the electrical resistivity of manganese in the melting region.

The recommended values of the electrical resistivity given in Table 3 and shown in Figs. 4 and 5 along with the experimental data are for manganese of

purity 99.99% or higher, but those below room temperature are applicable specifically to manganese with  $\rho_0=6.90 \text{ x } 10^{-8} \Omega$  m. The table gives both values uncorrected and corrected for thermal expansion, while the figure shows only the uncorrected values. The thermal expansion values needed for such correction are taken from ref. 314. The uncertainty in the recommended values is estimated to be within  $\pm 10\%$  from 7 to 100 K and above 300 K, and  $\pm 5\%$  below 7 K and from 100 to 300 K.

The effect of a magnetic field on the resistivity of manganese at low temperature is relatively small compared with that for pure copper. Meaden  $^{303}$  found that a magnetic field of 18.5 kOe increases the resistivity by 10.5% at 4.2 K, 9% at 5.4 K, 8% at 5.9 K, and 0.2% at 77 K. Murayama and Nagasawa  $^{310}$  (data set 19) studied temperature and magnetic field dependence of the resistivity of polycrystalline  $\alpha$ -Mn and observed that the anomalously large coefficient of  $T^2$  term in the low temperature resistivity decreased appreciably for an increase in the applied field, suggesting the suppression of spin fluctuations in the antiferromagnetic  $\alpha$ -Mn by the high applied field. Those readers seeking additional information on the effect of magnetic field on the electrical resistivity of manganese are directed to refs. 315-341.

Adams and Grassie 297 (data set 1) studied the temperature dependence of the electrical resistivity of a thin manganese film. For a film of thickness 4000 A formed on a thin glass substrate, they found that the resistivity decreased linearly as the temperature was reduced from room-temperature, then passed through a minimum at ~120 K and a maximum at ~70 K, followed by a sharp drop before going through another minimum at 22 K. These features of the resistivity of thin films, with the exception of the minimum at ~22 K, are qualitatively similar to those reported for bulk specimens reported by Meaden and Pelloux-Gervais 302 (data set 12) and by White and Woods 307 (data sets 15,16). Additional information/data on films are reported in refs. 342-350. The pressure dependence of the electrical resistivity is reported in refs. 352-355.

TABLE 4. RECOMMENDED VALUES FOR THE ELECTRICAL RESISTIVITY OF MANGANESE<sup>8</sup> [Temperature, T, K; Electrical Resistivity,  $\rho$ ,  $10^{-8}~\Omega$  m]

| T  | ρ           |           | т   | ρ           |           |
|----|-------------|-----------|-----|-------------|-----------|
|    | uncorrected | corrected |     | uncorrected | corrected |
| 0  | 6.90        | 6.88      | 94  | 131.9       | 131.4     |
| 1  | 7.02        | 7.00      | 100 | 132.5       | 132.1     |
| 4  | 8.82        | 8.79      | 150 | 136.3       | 135.9     |
| 7  | 12.78       | 12.74     | 200 | 139.4       | 139.1     |
| 10 | 18.90       | 18.84     | 250 | 142.0       | 141.9     |
| 15 | 33.9        | 33.8      | 273 | 143.1       | 143.0     |
| 20 | 53.8        | 53.6      | 293 | 144.0       | 144.0     |
| 25 | 75.8        | 75.6      | 300 | 144.2       | 144.2     |
| 30 | 93.7        | 93.4      | 350 | 145.9       | 146.1     |
| 40 | 116.0       | 115.6     | 400 | 147.3       | 147.7     |
| 50 | 126.5       | 126.1     | 500 | 149.4       | 150.1     |
| 60 | 131.2       | 130.7     | 600 | 150.9       | 152.1     |
| 70 | 133.0       | 132.5     | 700 | 151.9       | 153.6     |
| 80 | 132.5       | 132.0     |     |             |           |
| 90 | 132         | 131.5     |     |             |           |

The values are for well-annealed manganese of purity 99.99% or higher, but those below room temperature are applicable specifically to manganese having a residual resistivity of 6.90 x  $10^{-8}$   $\Omega$  m. The columns headed uncorrected and corrected refer to values uncorrected and corrected for thermal expansion, respectively.





TABLE 5. MEASUREMENT INFORMATION ON THE ELECTRICAL RESISTIVITY OF MANGANESE MA

| Composition (weight percent), Specifications and Remerks | 99.98 Mm; electrolytic flakes from Koch Light Laboratories; cleaned in 5% MC1 in methanol to remove surface oxidation and costaniation; dried and ground immediately before being loaded into a previously cleaned and ground immediately before being loaded into a previously cleaned molybdenum boat; films were prepared by thermal evaporation of Mm powder onto thin glass substrates, cut to size and cleaned; substrates heated to 473 K during evacuation of chamber then cooled to 33 K, temperature at which evaporation was carried out; conting pressure was about 10 <sup>-6</sup> torn; films were allowed to cool to room temperature before removing from vacuum chamber; thickness of film is 4000 Å; data read from figure; very large value of about 120 x 10 <sup>-8</sup> in is attributed to several atoms driven into spin fluctuations. | Liquid manganess; remelted electrolytic distilled in a vacuum; average of heating and cooling experiments; manurements with contact-less method in a revolving magnetic field; torsional oecillating method; manaurements error did not enceed 7%. | 99.9 Mn; data extracted from figure; two coordinate potentiometer. | 99.99 Mn; flakes were atched in MNO, to remove surface oxidation; accuracy of resistance measurements is about 0.05%; uncertainty of about 10% assigned to resistivity values because of the uncertainty in determining cross-sectional area of easily current reversed to eliminate thermal emi; data extracted from graph.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 99.99 Mn; triple vacuum melted; measurements in helium using aluminum oxide crucibles with closely fitted lide of the same material; resistivity of Mn increased by 5% during melting; data entracted from figure for heating experiment. | Same as above except data for cooling experiment. | 99.995 Whi electrolytic Mn from Koch Light Leboratories; 20 ppm Mg, 2 ppm S1, <1 ppm Cu; irregularly shaped flakes of uniform thickness of about 1 mm; platelet samples were shaped by spark erceion into rectangular parallelopipeds $5-6$ am x $20-90$ mm; the values in the perenthesis are for specimen after being etched in dilute HCl and annealed in vacuum $1-8$ x $10^{-6}$ torr for 7 hr at 896 K. | Similar to the above except electrolytic manganese supplied by Pechinsty of unknown purity; the values given in parenthesis are for specimens after being etched in dilute HCl and annealed in vacuum 1-8 x 10 <sup>-6</sup> torr for 7 hr at 898 K. | Stailar to the above except electrolytic manganese supplied by Johnson-Matthey of unknown purity; the values given in parenthesis are for specimen after being etched in dilute HCl and annealed in | 1-6 x 10 'torr for / nr at eye x. |
|----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|
| Mane and<br>Specimen<br>Designation                      | Sxxii(a) 99.98 hh; in 57 RC1 dried and cleaned and cleaned and of hn power to 383 K, preserve w preserve w temperatur is 4000 Å; in 4000 Å;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Liquid<br>average<br>less as<br>sethod                                                                                                                                                                                                             | G-Ma 99.9 No                                                       | G-Ma 99.99 P accuracy about 1 th determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of the determination of t | 99.99 Portion oxide caletivi                                                                                                                                                                                                              | 8                                                 | 99.995 Was<br>2 ppm 81,<br>0f about 1<br>rectangula<br>parenthad<br>annealed 1                                                                                                                                                                                                                                                                                                                                | Similar to<br>Pechinary<br>specimens<br>1-8 x 10                                                                                                                                                                                                     | Similar<br>Johnson                                                                                                                                                                                  |                                   |
| Temp.<br>Range, K De                                     | 10-267                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1523-1873                                                                                                                                                                                                                                          | 75-301                                                             | 3-282                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 797-1793                                                                                                                                                                                                                                  | 921-1775                                          | 1.87-300                                                                                                                                                                                                                                                                                                                                                                                                      | 300                                                                                                                                                                                                                                                  | 4.2,300                                                                                                                                                                                             |                                   |
| Method<br>Used                                           | O.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>†</b>                                                                                                                                                                                                                                           | <                                                                  | >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>*</b>                                                                                                                                                                                                                                  | <b>=</b>                                          | <                                                                                                                                                                                                                                                                                                                                                                                                             | < <                                                                                                                                                                                                                                                  | ⋖                                                                                                                                                                                                   |                                   |
| Year                                                     | 1978                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1976                                                                                                                                                                                                                                               | 1976                                                               | 1975                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1969                                                                                                                                                                                                                                      | 1969                                              | 1967                                                                                                                                                                                                                                                                                                                                                                                                          | 1967                                                                                                                                                                                                                                                 | 1967                                                                                                                                                                                                |                                   |
| Author (s)                                               | Adabu, K.G. and<br>Grassie, A.D.C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Levin, E.S.,<br>Zamrayev, V.H., and<br>Gel'd, P.V.                                                                                                                                                                                                 | Butylenko, A.K. and<br>Kobaenko, M.S.                              | Regeseve, N. and<br>Sembe, M.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Akshentsev, Yu.M.,<br>Baum, B.A., and<br>Gel'd, P.V.                                                                                                                                                                                      | Aksbentsev, Tu.H., et al.                         | Meaden, G.T. and<br>Pelloux-Gervais, P.                                                                                                                                                                                                                                                                                                                                                                       | Meaden, G.T. and<br>Palloux-Gervais, P.                                                                                                                                                                                                              | Meaden, G.T. and<br>Pelloux-Gervais, P.                                                                                                                                                             | Mot shown in figure.              |
|                                                          | <b>5</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 238                                                                                                                                                                                                                                                | 299                                                                | 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 100                                                                                                                                                                                                                                       | 301                                               | 302                                                                                                                                                                                                                                                                                                                                                                                                           | 305                                                                                                                                                                                                                                                  | 305                                                                                                                                                                                                 | thown to                          |
| Data<br>Set<br>No.                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ~                                                                                                                                                                                                                                                  | n                                                                  | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •                                                                                                                                                                                                                                         | • .                                               | *                                                                                                                                                                                                                                                                                                                                                                                                             | •                                                                                                                                                                                                                                                    | *                                                                                                                                                                                                   | *Hot                              |

TABLE 5. MEASUREMENT INFORMATION ON THE ELECTRICAL RESISTIVITY OF MANCANESE. Ma (continued)

| Composition (weight percent), Specifications and Remarks | 99.993 Am supplied by Koch Light Laboratories Ltd.; impurities such as 20 ppm Mg, 2 ppm S1, 1 ppm Cu; surface contemination was removed by reduction in dilute MCI; annealed in $10^{-5}$ forr vacuum for 7 hr at 898 K; extrapolated $\rho_0$ from 2 K is 6.87 x $10^{-8}$ G m; values read from figure which do not agree with some values given in taxt. | cted from table (text).                                | 99.995 Hn; 20 ppm Hg, 2 ppm Si, <1 ppm Cu; the electrolytically under specimen was supplied by Roch Light Laboratories Ltd.; the upecimen disentation 0.965 x 4.92 x 24.95 mm; the specimens were annualed under a vacuum of 10 <sup>-6</sup> to 8 x 10 <sup>-6</sup> form for 7 hr at 998 K, the resistivity at 0 K was obtained by extrapolating from 2 K; error associated with resistivity data did not exceed 1k; above 80 K average of heating and cooling experiments. | ,                                                     | Two specimens 99.95 Mn taken from different batches of Johnson Matthey electrolytic manganess; vacuum annealed near 673 K after cutting into sultable shapes ("A cm x 1 mm x 1 mm) with an ultransonic cutter; measured resistance was converted to resistivity by assuming \$0.50-62,12-130 x 10 <sup>-8</sup> 0 m for pure manganess; observed Méel temperature is 97 ± 2 K data extracted from the graphically smooth values of the authors. | Specimen from Ms. Johnson Matthey and Mallory Ltd. (JM 19792); high purity specimen with 10 ppm of Mg as major solid impurity; smesled specimen; data calculated from Dj values represented graphically using $\rho_0=11.3 \ {\rm M}^{-3}\Omega$ m reported by authors. | Specimen cut from material supplied by A. D. MacKay Inc.; snnealed in vacuum at 873 K for some hours to remove adsorbed hydrogen; spectrographic smalysis showed that this material was of comparable high burity to that of Mn3; date extracted from figure; data exhibits a shallow shimum bear 100 K and falls rapidly below 50 K; residual resistivity $p_0{\rm -}16.9{\rm x10^{-3}}$ m. | Vacuum distilled Mn; 0.01-0.001% Fe and Si, <0.001% of Cu, Ca, and Al; cylindrical specimen 9 mm dism. and 15 mm length. | No details given except sample wie um long and we dismeter and |
|----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|
| Composition (weight perce                                | 99.995 Am supplied by Koch Light Laboratories Ltd.; impuras 20 ppm Mg. 2 ppm Si, 1 ppm Cu; surface contamination we by reduction in dilute MCI; annealed in $10^{-6}$ four vecuum 899 K; extrapolated $\rho_0$ from 2 K is 6.87 x $10^{-6}$ f m; value figure which do not agree with some values given in tent.                                            | Same as above except data extracted from table (text). | 99.995 Mn; 20 ppm Mg, 2 ppm Si, <1 ppm made specimen was supplied by Roch Light upecimen dimension 0.965 x 4.92 x 24.95 the angled under a vacuum of 10° to 8 x 10° the resistivity at 0 K was obtained by associated with resistivity data did not age of heating and cooling experiments.                                                                                                                                                                                   | Electrolytic mangahese.                               | Two specimens 99.95 Mn taken f<br>Matthey electrolytic manganess;<br>cutting into suitable shapes ("<br>sonic cutter; measured resistan<br>sesualog \$0:4-\$0.1*130 x 10"8<br>temperature is 95 t Z K data ex<br>values of the authors.                                                                                                                                                                                                         | Specimen from Ms. Johnson Matthey and Mallon purity specimen with 10 ppm of Mg as major sepecimen; data calculated from pl values rejusing po-11.3 x 10 <sup>-6</sup> Ω m reported by authors.                                                                          | Speciaen cut from material supp<br>in vacuum at 873 K for some bou<br>trographic analysis showed that<br>purity to that of Manj data ext<br>shallow unisham near 100 K and<br>resistivity powie.8 x 10 <sup>-3</sup> R m.                                                                                                                                                                    | Vacuum distilled Mn; 0.01-0.001% Fe and Si, <0.001% o<br>Al; cylindrical specimen 9 um dism. and 15 am length.           | No details given except sample                                 |
| Name and<br>Specimen<br>Designation                      |                                                                                                                                                                                                                                                                                                                                                             |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                 | £                                                                                                                                                                                                                                                                       | £                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                          | <b>6</b>                                                       |
| Temp.<br>Range, K                                        | 1.9-348                                                                                                                                                                                                                                                                                                                                                     | 16-70                                                  | 0-325                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1673-1873                                             | 2-293                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2-288                                                                                                                                                                                                                                                                   | 6-295                                                                                                                                                                                                                                                                                                                                                                                        | 293-1543                                                                                                                 | 78-273                                                         |
| Method<br>Used                                           | 4                                                                                                                                                                                                                                                                                                                                                           | <                                                      | <                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | •                                                     | <                                                                                                                                                                                                                                                                                                                                                                                                                                               | < '                                                                                                                                                                                                                                                                     | <                                                                                                                                                                                                                                                                                                                                                                                            | ~                                                                                                                        | ,                                                              |
| Year                                                     | 1966                                                                                                                                                                                                                                                                                                                                                        | 1966                                                   | 1965                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1964                                                  | 1963                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1957                                                                                                                                                                                                                                                                    | 1957                                                                                                                                                                                                                                                                                                                                                                                         | 1940                                                                                                                     | 1935                                                           |
| Author (s)                                               | Headen, G.T.                                                                                                                                                                                                                                                                                                                                                | Manden, G.T.                                           | Meaden, G.T. and<br>Pelloux-Gereals, P.                                                                                                                                                                                                                                                                                                                                                                                                                                       | Vostryskov, A.A.,<br>Vatolim, H.A., and<br>Esim, O.A. | Bellau, R.V. and<br>Coles, B.R.                                                                                                                                                                                                                                                                                                                                                                                                                 | White, G.K. and<br>Woods, S.B.                                                                                                                                                                                                                                          | White, G.K. and<br>Woods, S.B.                                                                                                                                                                                                                                                                                                                                                               | Grube, G. and<br>Speidel, N.                                                                                             | Reddemann, H.                                                  |
| ig ig                                                    | S.                                                                                                                                                                                                                                                                                                                                                          | Š                                                      | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 305                                                   | 8                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20,                                                                                                                                                                                                                                                                     | 90                                                                                                                                                                                                                                                                                                                                                                                           | 8                                                                                                                        | 303                                                            |
| 2 % e                                                    | 2                                                                                                                                                                                                                                                                                                                                                           | =                                                      | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ដ                                                     | *                                                                                                                                                                                                                                                                                                                                                                                                                                               | 21                                                                                                                                                                                                                                                                      | #                                                                                                                                                                                                                                                                                                                                                                                            | 11                                                                                                                       | 2                                                              |

TABLE 5. MEASUREMENT INFORMATION ON THE ELECTRICAL RESISTIVITY OF MANGANESE Mn (continued)

| Composition (weight percent), Specifications and Remarks | Pure Mn; specimen same as the one reported in data set 4; ammealed at 625°C for 48 h to obtain pure G-Mn and at 600°C for 24 h to remove strain during sample; measurements in 0 h0e; longitudinal and transverse membershared |
|----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Name and<br>Specimen                                     | <b>4</b>                                                                                                                                                                                                                       |
| Temp. Name and<br>Range, K Darlemen                      | 1.17-4.15                                                                                                                                                                                                                      |
| Method<br>Used                                           | <                                                                                                                                                                                                                              |
| Year                                                     | 1977                                                                                                                                                                                                                           |
| Author(s)                                                | Murayama, S. and<br>Repasson, N.                                                                                                                                                                                               |
| Rof.                                                     | 310                                                                                                                                                                                                                            |
| Set .                                                    | \$                                                                                                                                                                                                                             |

Not shown in fleure.

TABLE 6. EXPERIMENTAL DATA ON THE ELECTRICAL RESISTIVITY OF MANCANESE MA

[Temperature, T, K; Electrical Resistivity, p, 10 0 m]

| Mark Mark   Mark Mark   Genet.   Mark Mark   Gene | A SET 1   DATA SET 3   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5                                                                                                                                                                                                                                                                                                                              | ~ |                                  |       | (cont.) | DATA S |            | DATA SET     | ET 7 (cont.) |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|----------------------------------|-------|---------|--------|------------|--------------|--------------|
| 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.6 1122 96.7 1.6 1139 102.6 1.7 1189 1199.4 1.7 143 123.0 1.7 143 123.0 1.7 143 123.0 1.7 143 123.0 1.7 144 125 123.0 1.8 156 1287.1 1.9 147 1287.1 1.9 148 8.6 1.9 148 8.6 1.9 148 8.7 1.9 148 8.7 1.9 149 113.9 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4 1.0 4                                                                                                                                                                                                                                                                                                                          |   | 138.0<br>139.7<br>140.5<br>140.5 |       |         |        |            |              |              |
| 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 102.6 118 120 118 120 120 130 121 120 131 132 130 131 132 133 133 134 136 136 136 136 136 136 136 137 137 147 138 139 148 149 149 149 149 149 149 149 149 149 149                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   | 139.7<br>140.5<br>140.5          | 1063  | 139.1   | 921    | 76         | 4.2          | (13.7)       |
| 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.2 118 1198.4 1.0 118 1198.4 1.1 152 130 131.0 1.1 152 230.0 1.2 136 231.1 1.2 156 287.1 1.3 147 3.5 1.4 156 8.6 1.4 156 8.6 1.5 147 8.6 1.5 148 8.6 1.5 148 8.6 1.5 148 8.6 1.5 148 8.6 1.5 148 8.6 1.5 148 8.6 1.5 148 8.6 1.5 148 8.6 1.5 148 8.6 1.5 148 8.6 1.5 148 8.6 1.5 148 8.6 1.5 148 8.6 1.5 148 8.6 1.5 148 8.6 1.5 148 8.6 1.5 148 8.6 1.5 148 8.6 1.5 148 8.6 1.5 148 8.6 1.5 148 8.6 1.5 148 8.6 1.5 148 8.6 1.5 148 8.6 1.5 148 8.6 1.5 148 8.6 1.5 148 8.6 1.5 148 8.6 1.5 148 8.6 1.5 148 8.6 1.5 148 8.6 1.5 148 8.6 1.5 148 8.6 1.5 148 8.6 1.5 148 8.6 1.5 148 8.6 1.5 148 8.6 1.5 148 8.6 1.5 148 8.6 1.5 148 8.6 1.5 148 8.6 1.5 148 8.6 1.5 148 8.6 1.5 148 8.6 1.5 148 8.6 1.5 148 8.6 1.5 148 8.6 1.5 148 8.6 1.5 148 8.6 1.5 148 8.6 1.5 148 8.6 1.5 148 8.6 1.5 148 8.6 1.5 148 8.6 1.5 148 8.6 1.5 148 8.6 1.5 148 8.6 1.5 148 8.6 1.5 148 8.6 1.5 148 8.6 1.5 148 8.6 1.5 148 8.6 1.5 148 8.6 1.5 148 8.6 1.5 148 8.6 1.5 148 8.6 1.5 148 8.6 1.5 148 8.6 1.5 148 8.6 1.5 148 8.6 1.5 148 8.6 1.5 148 8.6 1.5 148 8.6 1.5 148 8.6 1.5 148 8.6 1.5 148 8.6 1.5 148 8.6 1.5 148 8.6 1.5 148 8.6 1.5 148 8.6 1.5 148 8.6 1.5 148 8.6 1.5 148 8.6 1.5 148 8.6 1.5 148 8.6 1.5 148 8.6 1.5 148 8.6 1.5 148 8.6 1.5 148 8.6 1.5 148 8.6 1.5 148 8.6 1.5 148 8.6 1.5 148 8.6 1.5 148 8.6 1.5 148 8.6 1.5 148 8.6 1.5 148 8.6 1.5 148 8.6 1.5 148 8.6 1.5 148 8.6 1.5 148 8.6 1.5 148 8.6 1.5 148 8.6 1.5 148 8.6 1.5 148 8.6 1.5 148 8.6 1.5 148 8.6 1.5 148 8.6 1.5 148 8.6 1.5 148 8.6 1.5 148 8.6 1.5 148 8.6 1.5 148 8.6 1.5 148 8.6 1.5 148 8.6 1.5 148 8.6 1.5 148 8.6 1.5 148 8.6 1.5 148 8.6 1.5 148 8.6 1.5 148 8.6 1.5 148 8.6 1.5 148 8.6 1.5 148 8.6 1.5 148 8.6 1.5 148 8.6 1.5 148 8.6 1.5 148 8.6 1.5 148 8.6 1.5 148 8.6 1.5 148 8.6 1.5 148 8.6 1.5 148 8.6 1.5 148 8.6 1.5 148 8.6 1.5 148 8.6 1.5 148 8.6 1.5 148 8.6 1.5 148 8.6 1.5 148 8.6 1.5 148 8.6 1.5 148 8.6 1.5 148 8.6 1.5 148 8.6 1.5 148 8.6 1.5 148 8.6 1.5 148 8.6 1.5 148 8.6 1.5 148 8.6 1.5 148 8.6 1.5 148 8.6 1.5 148 8.6 1.5 148 8.6 1.5 148 8.6 1.5 148 8.6 1.5 148 8.6 1.5 148 8.6 1.5 148 8.6 1.5 148 8.6                                                                                                                                                                                                                                                                                                                           |   | 140.5<br>140.5<br>142.1          | 1080  | 137.9   | 928    | 122        | 4.2          | (11.2)       |
| 1,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 129.4  1.8  1.8  1.9  1.1  1.9  1.1  1.9  1.0  1.0  1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   | 140.5                            | 1086  | 139.7   | 978    | 132        | 4.2          | (9.1)        |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 111.6 120 131 152 130 230.0 1.1 152 153 154 156 156 157 157 157 157 157 157 157 157 157 157                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   | 142.1                            | 1109  | 142.1   | 1010   | 134        | 1.87         | (7.3)        |
| 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1. 130 203.0 1. 143 231.0 1. 155 231.0 1. 155 231.0 1. 156 301.1 1. 156 301.1 1. 156 301.1 1. 156 301.1 1. 156 301.1 1. 156 301.1 1. 156 301.1 1. 156 301.1 1. 156 301.1 1. 156 301.1 1. 156 301.1 1. 156 301.1 1. 156 301.1 1. 156 301.1 1. 156 301.1 1. 156 301.1 1. 156 301.1 1. 156 301.1 1. 156 301.1 1. 156 301.1 1. 156 301.1 1. 156 301.1 1. 156 301.1 1. 156 301.1 1. 156 301.1 1. 156 301.1 1. 156 301.1 1. 156 301.1 1. 156 301.1 1. 156 301.1 1. 156 301.1 1. 156 301.1 1. 156 301.1 1. 156 301.1 1. 156 301.1 1. 156 301.1 1. 156 301.1 1. 156 301.1 1. 156 301.1 1. 156 301.1 1. 156 301.1 1. 156 301.1 1. 156 301.1 1. 156 301.1 1. 156 301.1 1. 156 301.1 1. 156 301.1 1. 156 301.1 1. 156 301.1 1. 156 301.1 1. 156 301.1 1. 156 301.1 1. 156 301.1 1. 156 301.1 1. 156 301.1 1. 156 301.1 1. 156 301.1 1. 156 301.1 1. 156 301.1 1. 156 301.1 1. 156 301.1 1. 156 301.1 1. 156 301.1 1. 156 301.1 1. 156 301.1 1. 156 301.1 1. 156 301.1 1. 156 301.1 1. 156 301.1 1. 156 301.1 1. 156 301.1 1. 156 301.1 1. 156 301.1 1. 156 301.1 1. 156 301.1 1. 156 301.1 1. 156 301.1 1. 156 301.1 1. 156 301.1 1. 156 301.1 1. 156 301.1 1. 156 301.1 1. 156 301.1 1. 156 301.1 1. 156 301.1 1. 156 301.1 1. 156 301.1 1. 156 301.1 1. 156 301.1 1. 156 301.1 1. 156 301.1 1. 156 301.1 1. 156 301.1 1. 156 301.1 1. 156 301.1 1. 156 301.1 1. 156 301.1 1. 156 301.1 1. 156 301.1 1. 156 301.1 1. 156 301.1 1. 156 301.1 1. 156 301.1 1. 156 301.1 1. 156 301.1 1. 156 301.1 1. 156 301.1 1. 156 301.1 1. 156 301.1 1. 156 301.1 1. 156 301.1 1. 156 301.1 1. 156 301.1 1. 156 301.1 1. 156 301.1 1. 156 301.1 1. 156 301.1 1. 156 301.1 1. 156 301.1 1. 156 301.1 1. 156 301.1 1. 156 301.1 1. 156 301.1 1. 156 301.1 1. 156 301.1 1. 156 301.1 1. 156 301.1 1. 156 301.1 1. 156 301.1 1. 156 301.1 1. 156 301.1 1. 156 301.1 1. 156 301.1 1. 156 301.1 1. 156 301.1 1. 156 301.1 1. 156 301.1 1. 156 301.1 1. 156 301.1 1. 156 301.1 1. 156 301.1 1. 156 301.1 1. 156 301.1 1. 156 301.1 1. 156 301.1 1. 156 301.1 1. 156 301.1 1. 156 301.1 1. 156 301.1 1. 156 301.1 1. 156 301.1 1. 156 301.1 1. 156 301.1 1. 15                                                                                                                                                                                                                                                                                                                          |   |                                  | 1127  | 143.3   | 1028   | 135        |              |              |
| 113   114   115   115   116   116   116   116   116   116   116   116   116   116   116   116   116   116   116   116   116   116   117   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115  | 211.0 211.0 212.0 213.0 22.0 23.0 23.0 23.0 23.0 23.0 23.0 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   | 142.1                            | 1153  | 145.1   | 1086   | 136        | DATA SET     | SET 8*       |
| 1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.   1.1.    | 1. 152 250.9  1. 155 268.4  1. 156 281.1  1. 156 281.1  1. 156 281.1  1. 157 201.1  1. 147 3.5  1. 147 6.9  1. 148 8.6  1. 150 8.7  1. 151 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1. 10.4  1.                                                                                                                                                                                                                                                                                                                          |   | 143.0                            | 1165  | 148.6   | 1111   | *1         |              |              |
| 7, 155         2564 a         22.0         142.8         145.5         1200         150.4         1181         146           2, 156         156, 17.1         122.0         140.1         1220         150.4         1181         146           2, 156         156         147.1         1220         150.0         146.0         122.0         146.0           2, 156         156         167.0         146.0         146.0         122.0         150.0         146.0           2, 156         167         222.6         146.7         146.7         122.0         150.0         146.0           2, 147         5.2         147         222.6         146.7         122.0         146.0         147.1         150.0         146.0         147.1         150.0         146.0         147.1         150.0         146.0         147.1         150.0         146.0         146.0         147.1         146.0         147.1         146.0         147.1         146.0         147.1         146.0         147.1         146.0         147.1         146.0         146.0         147.1         146.0         147.1         146.0         147.1         146.0         147.1         146.0         147.1         146.0         147.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 155 268.4  16 156 301.1  17 156 301.1  18 156 301.1  19 147 88.1  19 150 8.7  10 49 17.3  49 17.3  40 40 20.8  41 42 20.8  42 45 46 46  43 13.0  44 43 33.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   | 143.8                            | 1194  | 150.4   | 1139   | 145        | 30           | 345(185)     |
| 156   287-1   222-6   169-6   147-1   1220   151-9   1209   146                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.4 156 287.1 1.2 156 301.1 1.3 147 3.5 1.4 147 3.5 1.6 147 6.9 1.8 150 8.6 1.9 151 10.4 1.9 17.9 1.9 17.9 1.0 49 17.9 17.9 1.0 49 17.9 17.9 17.9 17.9 17.9 17.9 17.9 17.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   | 145.5                            | 1209  | 150.4   | 1183   | 146        | 30           | 320(175)     |
| 156   156   157.6   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5   157.5    | 1.2 156 301.1 1.8 150 DATA 51 1.9 147 3.5 1.9 148 8.6 1.9 150 8.7 1.9 151 10.4 1.0 49 17.3 47 20.7 48 20.7 49 17.3 49 17.3 49 17.3 40 40 40 40 40 40 40 40 40 40 40 40 40 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   | 147.1                            | 1220  | 153.9   | 1209   | 146        |              |              |
| 150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150  | 1.6 156 156 157 157 157 157 157 157 157 157 157 157                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   | 147.1                            | 1235  | 151.0   | 1232   | 152        | DATA         | DATA SET 9*  |
| 150   MATA SET 4   205.2   146.7   126.1   132.0   134.1   139.0   144.1   130.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   134.1   1 | A SET 2 13.0 10.4 13.9 13.9 13.9 13.9 13.9 13.9 13.9 13.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   | 148.0                            | 1244  | 149.3   | 1288   | 147        |              | 1            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.3 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 147 3.5 14                                                                                                                                                                                                                                                                                                                          |   | 148.7                            | 1261  | 152.8   | 1300   | 166        | 300          | 290(160)     |
| 147   3.5   16.8   228.8   149.5   129.1   144.7   134.   138.     148   6.9   2.0   244.0   134.2   139.1   144.7   134.2   139.1     149   6.9   210   244.0   134.2   139.3   144.7   134.2   139.1     150   8.7   31.2   254.2   152.3   139.9   134.4   139.9   145.4     151   10.4   31.2   257.5   130.3   130.9   134.4   139.1   141.1     151   10.4   31.2   257.5   130.3   130.9   134.4   139.1     49   17.3   14.4   13.2   257.5   130.3   130.9   134.4   139.1     40   17.3   14.4   13.2   13.2   14.2   130.9   134.4   139.1     41   20.8   70.7   60.6   797   35.9   142.5   157.0   139.9   139.4     42   20.8   70.7   60.6   797   35.9   142.5   157.0   139.9     43   24.4   89.2   89.2   69.2   142.5   157.0   139.9     44   31.0   109.5   99.8   130.3   144.7   139.6   139.1     45   24.4   89.2   99.8   130.3   144.7   139.6   139.0     45   24.4   89.2   99.8   130.3   144.7   139.6   139.0     45   24.4   89.2   99.8   120.3   144.7   139.0   139.0     47   20.8   70.7   89.8   120.3   144.7   139.0   139.0     48   31.2   31.2   39.8   120.3   144.7   139.0   139.0     49   39.8   120.3   39.8   120.3   149.0   170.1     40   39.8   120.3   39.8   120.3   149.0   130.0     41   44   44   44   44   44   44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.3 147 3.5<br>1.4 147 5.2<br>1.6 147 6.9<br>1.8 150 6.9<br>1.8 151 10.4<br>1.9 10.4<br>1.0 47 10.4<br>1.0 47 20.8<br>1.0 47 20.8<br>1.0 40 11.9<br>1.0 40 |   | 148.7                            | 1256  | 148.1   | 1323   | 9          | 9            | 251(155)     |
| 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | A SET 2  49  49  40  47  47  48  48  48  48  48  48  48  48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   | 1.69.5                           | 1270  | 3.44.6  | 1361   | 5          | 4.2          | 15.0         |
| 1.6         14.7         6.9         21.0         244.0         131.2         130.3         144.7         1376           1.9         148         8.6         28.1         250.7         150.3         130.9         144.4         1379           1.8         1.50         1.50         1.50         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 16 147 6.9<br>18 150 8.6<br>18 150 8.7<br>10.4<br>10.4<br>49 113.9<br>47 20.7<br>48 20.7<br>48 20.7<br>49 20.7<br>40 40 20.7<br>40 40 20.7<br>41 30.8<br>42 20.7<br>43 20.8<br>44 30.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   | 149 5                            | 120.  | 144.7   | 1364   | 245        | •            | (2.52)       |
| 150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150  | 45 150 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   | 151.3                            | יינון | 777     | 1376   | 271        | DATA         | 201          |
| 150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150  | 45 26.4 44 33.0 45.4 45.4 45.5 45.3 46.4 45.5 45.3 45.4 45.5 45.5 45.5 45.5 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   | 150.3                            | 1300  | 7 6 7 6 | 1370   | 757        | T T          | 196          |
| 130   131   132   132   132   132   132   132   132   132   132   132   132   132   132   132   132   132   132   132   132   132   132   132   132   143   143   143   143   143   143   143   143   143   143   143   143   143   143   143   143   143   143   143   143   143   143   143   143   143   143   143   143   143   143   143   143   143   143   143   143   143   143   143   143   143   143   143   143   143   143   143   143   143   143   143   143   143   143   143   143   143   144   153   144   153   144   153   144   153   144   153   144   153   144   153   153   144   153   144   153   144   153   144   153   144   153   144   153   144   153   144   153   144   153   144   153   154   144   153   144   153   144   153   144   153   144   153   144   153   144   153   144   153   144   153   144   153   144   153   144   153   144   153   144   153   144   153   144   153   144   153   144   153   144   153   144   153   144   153   144   153   144   153   144   153   144   153   144   153   144   153   144   153   144   153   144   153   144   153   144   153   144   153   144   153   144   153   144   153   144   153   144   153   144   153   144   153   144   153   144   153   144   153   144   153   144   153   144   153   144   153   144   153   144   153   144   153   144   153   144   153   144   153   153   153   153   153   153   153   153   153   153   153   153   153   153   153   153   153   153   153   153   153   153   153   153   153   153   153   153   153   153   153   153   153   153   153   153   153   153   153   153   153   153   153   153   153   153   153   153   153   153   153   153   153   153   153   153   153   153   153   153   153   153   153   153   153   153   153   153   153   153   153   153   153   153   153   153   153   153   153   153   153   153   153   153   153   153   153   153   153   153   153   153   153   153   153   153   153   153   153   153   153   153   153   153   153   153   153   153   153   153   153   153   153   153   153   153   153   153  | 15.0 15.0 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   | 170.3                            | 600   | 7.7     | 200    |            |              |              |
| 131         10.4         32.8         269.2         132.0         143.4         143.4           14         10.4         35.8         269.2         152.0         143.2         143.4           4         13.9         44.6         DATA SET 5         1405         151.3         143.4           49         17.3         51.4         DATA SET 5         1405         151.3         143.4           47         20.7         60.6         797         35.9         1425         160.0         150.4           48         20.7         60.6         797         35.9         1425         160.0         150.0           48         20.9         70.7         66.5         193.9         1425         160.0         150.0           48         20.9         70.7         66.5         193.9         142.5         160.0         150.0           49         20.9         70.7         66.6         797         35.9         144.5         160.0         150.0           40         20.0         70.7         66.6         190.3         144.5         165.9         150.0         150.0           41         30.0         10.5         96.4         10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 45 15.0 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   | 150.3                            | 1309  | 136.0   | 1 566  | <b>:</b>   | S :          | 17.7         |
| No.   19.2   19.2   19.2   19.2   19.2   19.3   1434     19.4   19.5   19.2   19.2   19.2   19.3   1434     49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10.4 SET 2 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 1                                                                                                                                                                                                                                                                                                                          |   | 152.0                            | 1332  | 192.4   |        | ) T        | 70.7         | 7: 7         |
| 19.5   19.5   44.5   19.5   145.5   145.5   145.5   145.5   145.5   145.5   145.5   145.5   145.5   145.5   145.5   145.5   145.5   145.5   145.5   145.5   145.5   150.0   150.7   145.5   145.5   145.5   145.5   150.0   150.7   145.5   145.5   145.5   150.0   150.7   145.5   145.5   145.5   150.0   150.7   145.5   150.0   150.7   145.5   150.0   150.7   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5   150.5    | A SET 2 49 47 47 47 48 48 48 48 48 48 48 49 20.7 20.8 48 48 49 20.7 20.8 20.8 20.8 20.8 20.8 20.8 20.8 20.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   | 152.8                            | 1370  | 138.9   | 1434   | 151        | <b>R</b> :   | 5.0          |
| 49         17.3         44.6         DATA SET 5         1405         151.3         1454           49         17.3         51.4         797         35.9         1420         151.3         1454           47         20.6         70.7         66.3         65.2         1425         160.0         1504           48         20.9         77.5         935         88.9         1425         165.0         1506           46         24.4         89.3         936         103.3         1475         166.0         1506           45         24.4         89.3         936         103.3         1475         166.3         1536           43         35.6         109.5         964         106.8         168.3         1550         1550           43         36.4         109.5         964         116.4         156.3         1550         1550           43         36.4         117.1         952         118.1         144         17.2         1550           43         36.4         117.1         952         118.1         157.3         175.9         1644           42         49.9         125.5         956         120.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 49<br>47<br>47<br>48<br>48<br>45<br>45<br>43<br>43<br>43<br>43<br>43<br>43<br>43<br>43<br>43<br>43<br>43<br>43<br>43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |                                  | 1405  | 145.3   | 14.34  | 169        | 3.65         | 8.37         |
| 49         17.3         51.4         79         35.9         1420         154.8         1504           47         20.7         60.6         79         35.9         1425         16.0         1507           48         20.9         77.5         935         65.2         1425         16.0         1507           48         20.9         77.5         935         65.2         1425         16.0         1507           45         24.3         64.2         938         93.9         1469         165.0         1516           45         27.6         92.6         964         106.8         1469         167.7         1530           44         33.0         109.5         964         106.8         1467         166.3         1550           45         36.4         117.1         952         118.4         171.2         1550           45         39.9         125.0         963         120.3         1498         177.3         1550           47         39.9         128.0         975         122.0         1549         177.9         1644           43         44.9         137.2         966         120.9         15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 49<br>47<br>48<br>48<br>48<br>48<br>49<br>49<br>49<br>49<br>49<br>49<br>49<br>49<br>49<br>49<br>49<br>49<br>49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   | SET 5                            | 1405  | 151.3   | 1454   | 170        | 4.46         | 9.05         |
| 47         20.7         60.6         797         35.9         1425         160.0         1507           48         20.8         70.7         66.3         65.2         1425         160.0         1507           46         20.9         77.5         938         93.9         1425         160.0         1530           46         24.3         84.2         938         100.3         1469         160.4         1530           43         27.6         99.6         100.6         1469         160.7         1530           43         27.6         99.6         100.6         1469         167.7         1530           44         33.0         109.5         964         100.6         164.7         165.0         1530           42         30.4         117.1         95.2         118.5         171.6         1550         1550           42         39.9         128.0         97.5         112.1         156.9         157.9         1644           42         46.3         133.2         97.6         120.3         157.9         1644           42         46.9         137.2         97.7         120.9         157.1         176. <td>47<br/>48<br/>46<br/>45<br/>45<br/>43<br/>44<br/>43<br/>44<br/>43<br/>44<br/>43<br/>43<br/>43<br/>43<br/>43<br/>43<br/>43</td> <td></td> <td></td> <td>1420</td> <td>154.8</td> <td>1504</td> <td>166</td> <td>5.19</td> <td>9.73</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 47<br>48<br>46<br>45<br>45<br>43<br>44<br>43<br>44<br>43<br>44<br>43<br>43<br>43<br>43<br>43<br>43<br>43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |                                  | 1420  | 154.8   | 1504   | 166        | 5.19         | 9.73         |
| 47         20.8         70.7         863         65.2         1425         167.0         1499           48         20.9         77.5         935         98.9         1452         167.0         1516           46         24.4         89.3         936         100.3         1475         167.7         1536           43         27.8         92.6         936         100.3         1445         167.7         1536           44         33.0         109.5         964         106.8         166.3         1550         1550           43         36.4         117.1         952         118.4         150.4         177.2         1550           43         36.4         117.1         952         118.4         153.7         177.8         1550           42         39.9         128.0         975         112.1         158.7         190.6         150.6           42         46.3         133.2         976         127.4         156.3         190.6         170.5           42         46.3         137.2         976         127.6         190.6         170.6         180.6           42         46.3         137.2         976 <td>47<br/>46<br/>45<br/>45<br/>43<br/>43<br/>43<br/>43<br/>43<br/>43<br/>43<br/>43<br/>43<br/>43<br/>43<br/>43<br/>43</td> <td></td> <td>35.9</td> <td>1425</td> <td>160.0</td> <td>150</td> <td>169</td> <td>5.7</td> <td>10.33</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 47<br>46<br>45<br>45<br>43<br>43<br>43<br>43<br>43<br>43<br>43<br>43<br>43<br>43<br>43<br>43<br>43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   | 35.9                             | 1425  | 160.0   | 150    | 169        | 5.7          | 10.33        |
| 48 20.9 77.5 935 93.9 1452 165.9 1516 45 24.3 64.2 938 93.9 1452 165.9 1516 45 24.4 89.2 938 103.3 1459 169.4 1530 46 33.0 109.5 964 106.8 1467 166.3 1550 44 33.0 109.5 964 110.6 150.4 171.2 1550 43 36.4 117.1 952 118.5 159.6 177.2 1550 42 39.9 128.0 975 119.1 152.7 175.9 1644 42 42 48.3 133.2 967 122.0 1547 190.6 176.6 42 42 48.3 133.2 996 120.9 1591 194.7 176 42 56.8 137.2 996 120.9 1652 193.6 176.1 43 44.4 173.2 996 133.2 1655 196.6 176.1 44.5 173.7 138.0 1019 120.7 1675 198.9 1773 206.8 196.9 45 214.6 83.8 137.2 1053 132.6 172.3 206.8 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 48<br>45<br>45<br>43<br>43<br>43<br>43<br>43<br>43<br>43<br>43<br>43<br>43<br>43<br>43<br>43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | _ | 65.2                             | 1425  | 167.0   | 1489   | 172        | 6.03         | 10.68        |
| 46         24.3         64.2         936         93.9         1469         160.4         1530           45         24.4         89.3         938         103.3         1475         166.7         1524           43         27.6         96.4         103.3         1475         166.3         1530           44         33.0         109.5         96.4         114.4         1504         171.2         1550           43         36.4         117.1         95.2         118.5         131.9         171.6         1550           42         39.9         125.5         95.8         120.3         149.8         171.3         1584           42         39.9         122.0         97.5         122.0         1547         190.6         1664           42         44.9         132.2         967         122.0         1547         190.6         1702           42         46.9         132.2         97.6         121.4         155.1         190.6         1702           42         46.9         137.2         97.6         122.0         159.7         177.6           42         56.8         137.2         97.7         122.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 46<br>43<br>43<br>43<br>43<br>43<br>43<br>43<br>43<br>43<br>43<br>43<br>43<br>43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   | 89.9                             | 1452  | 165.9   | 1516   | 176        | 6.50         | 11.22        |
| 45         24.4         89.3         936         100.3         1475         167.7         1534           43         27.8         92.6         964         106.8         168.7         168.7         1536           44         33.0         109.5         964         106.8         159         171.2         1550           43         36.4         117.1         952         118.5         159         171.6         1570           42         39.9         125.5         956         120.3         1499         175.9         1644           42         48.3         133.9         975         119.1         1547         190.6         1654           42         48.3         133.9         976         120.4         1565         190.6         1702           42         48.3         137.2         976         120.9         159.1         194.7         1776           42         48.3         137.2         976         120.5         1635         197.7         1775           42         48.3         137.2         996         120.5         1635         197.7         1775           43         70.3         138.0         996                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 45<br>43<br>24.4<br>44<br>43<br>43<br>43<br>43<br>43<br>43<br>43<br>43<br>43<br>43<br>43<br>43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   | 93.9                             | 1469  | 169.4   | 1530   | 178        | 6.84<br>6.84 | 11.94        |
| 43         27.8         92.6         964         106.8         1467         166.3         1550           43         33.0         109.5         961         114.4         1504         171.2         1550           43         36.4         117.1         952         118.4         1504         171.2         1550           42         39.9         125.5         958         120.3         1496         175.3         1594           43         49.9         125.0         975         112.0         1547         190.6         1664           42         48.3         137.2         967         122.0         1547         190.6         1756           42         48.3         137.2         967         122.0         1551         190.6         1756           42         50.0         137.2         975         125.5         1652         190.6         1761           A5         50.0         137.2         996         120.9         1652         193.6         1761           A6         137.2         126.0         130.9         120.9         120.9         198.9         1761           A7         10.3         138.0         996 </td <td>43<br/>43<br/>43<br/>43<br/>43<br/>53<br/>43<br/>53<br/>54<br/>53</td> <td></td> <td>103.3</td> <td>1475</td> <td>167.7</td> <td>1524</td> <td>182</td> <td>7.56</td> <td>12.55</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 43<br>43<br>43<br>43<br>43<br>53<br>43<br>53<br>54<br>53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   | 103.3                            | 1475  | 167.7   | 1524   | 182        | 7.56         | 12.55        |
| 44         33.0         109.5         961         114.4         1504         171.2         1550           43         36.4         117.1         952         118.5         1519         171.8         1516           43         39.9         125.0         978         120.3         1498         175.9         1685           42         44.9         132.2         967         122.0         1547         190.6         1685           42         46.9         132.2         967         122.0         1557         190.6         1685           42         46.9         137.2         976         120.9         1591         190.6         1702           42         56.0         137.2         976         120.9         1591         190.6         1702           ATA SET 3         63.5         137.2         996         120.9         1635         197.7         1775           ATA SET 3         70.3         138.0         1019         129.7         1675         197.9         1775           ATA SET 3         70.3         138.0         1019         129.7         1676         197.4         1775           ATA SET 3         10.0         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 44<br>43<br>43<br>43<br>43<br>43<br>43<br>43<br>43<br>43<br>43<br>43<br>43<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   | 106.8                            | 1487  | 166.3   | 1550   | 188        | 9.25         | 15.83        |
| 43         36.4         117.1         952         118.5         1519         171.8         1516           43         39.8         125.5         958         120.3         1498         175.3         1534           42         39.9         123.2         967         120.0         1547         175.9         1644           42         46.9         132.2         967         122.0         1547         190.6         1664           42         46.3         137.2         976         121.4         1551         190.6         1702           42         50.0         135.6         976         120.9         1591         1776         1776           AAA         50.1         137.2         976         120.7         1655         190.6         1776           AAA         50.3         137.2         976         120.7         1655         197.7         1776           AAA         50.3         136.0         996         120.7         1655         197.7         1775           AA         70.3         136.0         996         120.7         1655         199.9         1775           AA         130.0         130.0         132.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 43 36.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   | 114.4                            | 1504  | 171.2   | 1550   | 192        | 10.2         | 17.31        |
| 43         39.8         125.5         958         120.3         1498         175.3         1584           42         39.9         122.0         975         119.1         153.7         175.9         1644           43         44.9         122.2         967         121.4         1565         190.6         1605         1605         1605         1605         1605         1702         1702         1702         1702         1702         1702         1702         1702         1702         1702         1702         1702         1702         1702         1702         1702         1702         1702         1702         1702         1702         1702         1702         1702         1702         1702         1702         1702         1702         1702         1702         1702         1702         1702         1702         1702         1702         1702         1702         1702         1702         1702         1702         1702         1702         1702         1702         1702         1702         1702         1702         1702         1702         1702         1702         1702         1702         1702         1702         1702         1702         1702         1702                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 43 39.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   | 118.5                            | 1519  | 171.8   | 1576   | 195        | 11.6         | 20.23        |
| 42         39.9         128.0         975         119.1         1527         175.9         1644           43         44.9         132.2         967         122.0         1547         190.6         1685           42         48.3         137.2         976         122.0         1547         190.6         100.6         1726           42         56.8         137.2         976         120.9         1591         194.7         1726         1726           56.8         137.2         976         120.9         1591         194.7         1726         1726           6         137.2         996         129.7         1655         193.6         1761         1776           7         218.6         996         139.7         1655         196.9         177         1715           3         218.6         996         139.7         165         196.9         177         1775           4         218.6         996         137.2         101         1723         206.8         177.3         206.8         177.3         206.8         177.3         206.8         177.3         206.4         300         200.8         200.8         200.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   | 120.3                            | 1498  | 175.3   | 1594   | 192        | 12.2         | 22.23        |
| 43         44.9         132.2         967         122.0         1547         190.6         1685           42         48.3         133.9         978         121.4         1565         190.6         1702           42         56.8         133.5         976         120.9         1591         190.6         1702           56.8         137.2         975         125.5         162.5         193.6         1726           ATA SET 3         63.5         137.2         976         129.7         1635         197.7         1775           6         218.8         73.7         138.0         1019         129.7         1676         195.4         DATA SI           6         218.6         83.8         137.2         1013         129.7         1676         195.4         DATA SI           7         209.1         87.1         136.3         136.1         1752         208.4         300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   | 119.1                            | 1527  | 175.9   | 1644   | 197        | 12.5         | 24.31        |
| 42         48.3         133.9         978         121.4         1565         190.6         1702           42         90.0         135.6         996         120.9         1591         194.7         1736           ATA SET 3         50.0         137.2         996         120.7         1635         197.7         1756           .6         210.8         73.7         136.0         996         133.2         1655         197.7         1775           .3         210.0         136.0         996         133.2         1655         198.9         177         177           .3         210.0         80.4         137.2         1013         129.7         1655         198.9         198.8         197.4         1773         206.8         198.4         1047         177         206.8         198.4         198.7         1047         136.1         137         206.4         300           7         209.1         10.5         136.5         139.3         208.4         300         300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 43 44.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   | 122.0                            | 1547  | 190.6   | 1685   | 200        | 13.6         | 26.79        |
| 42         50.0         135.6         996         120.9         1591         194.7         1726           56.8         137.2         975         125.5         165.2         193.6         1761           6.6         218.8         70.3         138.0         996         129.7         1655         197.7         1775           .3         218.0         996         133.2         1655         198.9         1775         1775         1775         1775         1775         1775         1775         1775         1775         1775         1775         1775         1775         1775         1775         1775         1775         1775         1775         1775         1775         1775         1775         1775         1775         1775         1775         1775         1775         1775         1775         1775         1775         1775         1775         1775         1775         1775         1775         1775         1775         1775         1775         1775         1775         1775         1775         1775         1775         1775         1775         1775         1775         1775         1775         1775         1775         1775         1775         177                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 42 48.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   | 121.4                            | 1565  | 190.6   | 1702   | 200        | 14.5         | 28.37        |
| ATA SET 3         56.0         137.2         975         125.5         1612         193.6         1761           ATA SET 3         63.5         137.2         996         129.7         1655         197.7         1775           .6         210.6         73.7         138.0         996         133.2         1655         198.9         1775           .6         210.6         73.1         136.0         1019         129.7         165         195.4         DATA SI           .3         217.0         80.4         137.2         1013         132.6         173         204.8         DATA SI           .6         214.6         83.8         137.2         1045         136.1         1752         206.4         300           .7         209.1         87.1         136.3         1051         138.5         1793         208.4         300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 42 50.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   | 120.9                            | 1591  | 194.7   | 1726   | 203        | 15.3         | 30.51        |
| IA SET 3         63.5         137.2         996         129.7         1635         197.7         1775           5         218.8         73.7         138.0         996         133.2         1655         198.9         187.9           5         218.8         73.7         138.0         1019         129.7         1676         199.4         DATA SI           5         217.0         80.4         137.2         1013         136.5         1723         206.8         300           209.1         87.1         136.3         1051         138.5         1793         208.4         300           209.1         87.1         136.3         1051         138.5         1793         208.4         300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   | 125.5                            | 1612  | 193.6   | 1761   | 707        | 16.1         | 32.87        |
| 70.3         138.0         996         133.2         1655         198.9         DATA SI           5 210.8         73.7         138.0         1019         129.7         1676         195.4         DATA SI           1 217.0         80.4         137.2         1013         132.6         137.3         204.8         300           2 20.1         87.1         136.3         1051         138.5         1793         206.4         300           2 09.1         136.3         1051         138.5         1793         206.4         300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 63.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   | 129.7                            | 1635  | 197.7   | 1775   | 207        | 17.3         | 36.57        |
| 5         218.8         73.7         138.0         1019         129.7         1676         195.4         DATA SI           9         4         137.2         1013         132.6         1723         204.8         204.8           214.6         83.8         137.2         1045         136.1         1752         206.4         300           209.1         87.1         136.3         1051         138.5         1793         208.4         300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 70.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   | 133.2                            | 1655  | 198.9   |        |            | 18.2         | 41.45        |
| 217.0     80.4     137.2     1013     132.6     1723     204.8       214.6     83.8     137.2     1045     136.1     1752     208.4     300       209.1     87.1     136.3     1051     138.5     1793     208.4     300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 218.8 73.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _ | 129.7                            | 1676  | 195.4   | DATA   | SET 7*     | 20.2         | 46.38        |
| 214.6 83.8 137.2 1045 136.1 1752 208.4 300 209.1 87.1 136.3 1051 138.5 1793 208.4 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3 217.0 80.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   | 132.6                            | 1723  | 204.8   |        |            | 22.4         | 53.75        |
| 209,1 87,1 136,3 1051 138,5 1793 208,4 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 214.6 83.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   | 136.1                            | 1752  | 206.4   | 300    | 210(149)   | 22.9         | 56.50        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 209.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   | 138.5                            | 1793  | 208.4   | 36     | 205(148)   | 26.6         | 71.64        |
| 207.3 92.2 137.2 1063 136.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 207.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   | 136.2                            |       |         | 900    | 205(144.2) | 31.9         | 82.29        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | *Not shown in figure.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 |                                  |       |         |        |            |              |              |

TABLE 6. EXPERIMENTAL DATA ON THE ELECTRICAL RESISTIVITY OF MANCANESE Hn (Continued)

| DATA SET 10 (cont.)  33.4 91.41  35.9 103.4  45.1 113.1  47.5 121.5  58.1 128.3  66.2 130.6  66.9 130.6 |             |             |             |        |             |              |          |             |
|---------------------------------------------------------------------------------------------------------|-------------|-------------|-------------|--------|-------------|--------------|----------|-------------|
|                                                                                                         | DATA SET 13 | 113         | DATA SET 16 | ET 16  | DATA SET 17 | 1 17         | DATA SET | 19 (cont.)* |
|                                                                                                         | 1673        | 120         | 4.0         | 19.2   | 293         | 260          | 1.66     | 28.30       |
|                                                                                                         | 1873        | 144         | •           | 20.3   | 353         | 266          | 1.75     | 28.30       |
|                                                                                                         |             | :           | •           | 22.6   | 423         | 274          | 1.80     | 28.36       |
|                                                                                                         | DATA        | DATA SET IN | 7           | 24.9   | 483         | 282          | 1.93     | 28.42       |
|                                                                                                         | •           | ;           | 1           | 27.1   | 553         | 286          | 1.97     | 28.49       |
|                                                                                                         | 2.3         | 23.0        | •           | 29.4   | 653         | 294          | 2.07     | 28.48       |
|                                                                                                         | 4.6         | 24.7        | 2           | 32.2   | 723         | 298          | 2.11     | 28.52       |
|                                                                                                         | 13.7        | 40.2        | 11          | 35.0   | Ş           | 200          | 2.22     | 28.58       |
|                                                                                                         | 16.0        | 50.6        | 12          | 17.3   | 600         | 20.0         | 2 28     | 28 61       |
|                                                                                                         | 27.5        | 83.9        | : =         | £ 1.3  |             | 2            |          |             |
| 3 001 3 101                                                                                             | 7           | 61.7        | 3 5         | 77.7   | 873         | 906          | 6.3      | 70.07       |
|                                                                                                         | ¥ 1. 4      | \$ III      | 7 :         | 9.5    | 9/3         | 2            | 6.43     | 26.73       |
|                                                                                                         |             |             | 9 ;         | 22.0   | 1003        | 302          | 7.48     | 28.70       |
|                                                                                                         | 7.6         | 7.011       | 11          | 62.2   | 1013(a)     | 303          | 2.53     | 28.76       |
|                                                                                                         | 23.0        | 7.071       | 19          | 71.8   | 1018(8)     | 164          | 2.59     | 28.79       |
|                                                                                                         | 63.0        | 123.0       | 23          | 83.6   | 1028        | 158          | 2.65     | 28.82       |
| 133.2                                                                                                   | 72.1        | 124.7       | 76          | 93.8   | 1068        | 5            | 2.71     | 28.88       |
|                                                                                                         | 87.0        | 125.3       | 28          | 105.1  | 1133        | 35           | 2.80     | 28.88       |
| DATA SET 11                                                                                             | 100.8       | 127.0       | 2           | 114.2  | 1330        |              | . 83     | 20.07       |
|                                                                                                         | 128.2       | 132.8       | ; ;         |        | 9771        | 771          |          | 6.07        |
| 3 00                                                                                                    | 148 0       | 136.        | <b>8</b>    | 1.771  | 1308        | )            | 60.7     | 29.67       |
|                                                                                                         |             |             | £ :         | 124.3  | 1333        | 104          | 76.7     | 29.00       |
| 9.50                                                                                                    | 9           | 7.0.7       |             | 136.7  | 1343(8)     | 103          | 3.8      | 29.06       |
|                                                                                                         |             | 1.67.       | 23          | 139.0  | 1353(Y)     | <b>&amp;</b> | 3.06     | 29.09       |
| 40 117.0                                                                                                | 7.74.4      | 140.0       | 29          | 140.6  | 1363        | 78           | 3.11     | 29.12       |
|                                                                                                         | 240.5       | 148.9       | 69          | 139.4  | 1403        | 92           | 3.20     | 29.21       |
|                                                                                                         | 271.4       | 150.6       | 72          | 141.1  | 1423(Y)     | 75           | 3.27     | 29.21       |
|                                                                                                         | 293.1       | 152.3       | 75          | 138.3  | 1423(8)     | 69           | 3.36     | 29.27       |
| •                                                                                                       |             |             | 82          | 139.9  | 1453        | 9            | 3, 39    | 29.33       |
| DATA SET 12                                                                                             | DATA        | DATA SET 15 | \$6         | 140.5  | 17.83       | , 4          | 74.F     | 20.70       |
|                                                                                                         |             | İ           | ***         | 1.78 2 | 1.000       | 8 3          |          | 90.00       |
| 0.4                                                                                                     | 2.0         | 12.0        | 3 2         | 133 6  | (8) 5751    | 8 :          |          | 20.23       |
|                                                                                                         |             | 2           | 7 3         | 13/.0  | 1523(1)     | 04           | 20.5     | 29.49       |
| 6 7.5                                                                                                   | ? :         | 7.71        | 56          | 135.4  | 1543        | 04           | 3.67     | 29.55       |
| 61 0                                                                                                    | 7.7         | 17.6        | 3           | 137.6  |             |              | 3.76     | 29.64       |
| <b>%</b>                                                                                                | 3.3         | 13.2        | <b>9</b> 6  | 138.7  | DATA SET 18 | P.T 18       | 3.83     | 29.67       |
| 92                                                                                                      | <b>†</b> .1 | 14.4        | 103         | 138.1  |             |              | 2.03     | 20 73       |
| 118                                                                                                     | 5.5         | 16.9        | 5           | 130 3  | •           | •            | 3 -      | 20.00       |
|                                                                                                         | 7.3         | 30.6        |             | 770.5  | 1.8/        | 0 <b>0</b>   | 50.4     | 69.67       |
|                                                                                                         |             |             | *11         | 139.6  | 90.1        | 68.3         | 4.15     | 79.94       |
|                                                                                                         | :           |             | 911         | 142.6  | 194.7       | 81.1         |          |             |
|                                                                                                         | 9 6         | · ·         | 118         | 140.5  | 273         | 91.0         |          |             |
|                                                                                                         |             | 1.12        | 123         | 142.0  |             |              |          |             |
|                                                                                                         | 6.7         | 28.4        | 129         | 244.8  | 4444        | DATA 687 104 |          |             |
|                                                                                                         | 12          | 37.27       | 168         | 147.4  | 4144        | 100          |          |             |
|                                                                                                         | 27          | 50.71       | 187         | 2 871  | :           | :            |          |             |
|                                                                                                         | 2           | 73.8        | 7 .         |        | 1.17        | 28.12        |          |             |
| 3 0 7 1                                                                                                 | 20          | 110 6       | 111         | T40.7  | 1.27        | 28.18        |          |             |
| 200 140.5                                                                                               | , <u>;</u>  | 16.3        | 239         | 150.4  | 1.30        | 28.12        |          |             |
|                                                                                                         | 7           | 7.807       | 992         | 155.4  | 1.39        | 28.24        |          |             |
|                                                                                                         | 29          | 171.6       | 286         | 155.8  | 1.42        | 28.24        |          |             |
|                                                                                                         | <b>8</b> 2  | 161.3       | 289         | 153.5  | , -         | 78 24        |          |             |
| 325 145.2                                                                                               | 286         | 167.4       |             |        | 2           | 7.07         |          |             |

### 4. ACKNOWLEDGMENTS

This work was supported by the Office of Standard Reference Data (OSRD) of the National Bureau of Standards (NBS), U.S. Department of Commerce. The extensive documentary activity essential to this work was supported by the Defense Logistics Agency (DLA) of the U.S. Department of Defense.

The authors wish to express their appreciation and gratitude to Dr. H. J. White, Jr. of the NBS Office of Standard Reference Data for his guidance, cooperation, and sympathetic understanding during the course of this work.

PRECEDENC PAGE MARK-MOT FILMED

#### 5. APPENDICES

### 5.1. Methods for the Measurement of Electrical Resistivity

At the Center for Information and Numerical Data Analysis and Synthesis (CINDAS) of Purdue University, the experimental methods for the measurement of electrical resistivity have been classified into various categories according to a similar scheme used by CINDAS for the classification of methods for the measurement of thermal conductivity [356, pp. 13a-25a]. This classification scheme of CINDAS is presented below. Note that the letters in parentheses following the respective methods are the code letter used in the 'Method Used' column of the Table of Measurement Information for indicating the experimental methods used by the various authors.

# Methods for the Measurement of Electrical Resistivity

- A. Steady-State Nethods
  - 1. Voltmeter and ammeter direct reading method (V) [357, p. 159; 358, pp. 244-5]
  - 2. Direct-current potentiometer method (A) [359, pp. 151-8]
    - a. 4-probe potentiometer method
  - 3. Direct-current bridge methods (B) [359, pp. 144-51]
    - a. Kelvin double bridge method
    - b. Mueller bridge method
    - c. Wheatstone bridge method
  - 4. Van der Pauw method (P) [360,361]
  - 5. Direct heating method (K) [362,363]
- B. Non-Steady-State Methods
  - 1. Periodic current method
    - a. Direct connection to sample
      - (1) Alternating-current potentiometer method (C) [359, pp. 161-2]
      - (2) Alternating-current bridge method (D), [359, p. 162]
    - b. No connection to sample
      - (1) Rotating magnetic field method (R) [364]

# 5.2. Conversion Factors for the Units of Electrical Resistivity

The recommended values and experimental data for the electrical resistivity tabulated in this work are in the units:  $10^{-8} \Omega$  m. Conversion factors for the units of electrical resistivity, which may be used to convert the values given in  $(10^{-8} \Omega \text{ m})$  to values in other units, are given below.

# Conversion Factors for the Units of Electrical Resistivity

| Multiply the Value Given in $(10^{-8} \Omega m)$ by |
|-----------------------------------------------------|
| 1 x 10 <sup>-8</sup>                                |
| 1 x 10 <sup>-6</sup>                                |
| $3.937 \times 10^{-7}$                              |
| $3.281 \times 10^{-8}$                              |
| 1                                                   |
| 1 x 10 <sup>3</sup>                                 |
| 1.113 x 10 <sup>-18</sup>                           |
| 1 x 10 <sup>3</sup>                                 |
| 1.113 x 10 <sup>-18</sup>                           |
| 6.015                                               |
|                                                     |

Example:  $1.000 \times 10^{-8} \Omega m = 3.937 \times 10^{-7} \Omega in.$ 

### 6. REFERENCES

- <sup>1</sup>Chi, T.t., 'Electrical Resistivity of Alkali Elements,' J. Phys. Chem. Ref. Data, 8(2), 339-438 (1979).
- <sup>2</sup>Chi, T.C., 'Electrical Resistivity of Alkaline Earth Elements,' J. Phys. Chem. Ref. Data, 8(2), 439-97 (1979).
- <sup>3</sup>Matula, R.A., 'Electrical Resistivity of Copper, Gold, Palladium, and Silver,' J. Phys. Chem. Ref. Data, 8(4), 1147-298 (1979).
- <sup>4</sup>Ho, C.Y., Powell, R.W., and Liley, P.E., 'Thermal Conductivity of the Elements: A Comprehensive Review,' J. Phys. Chem. Ref. Data, Vol. 3, Suppl. 1, 796 pp. (1974).
- <sup>5</sup>Matthiessen, A., 'Electrical Resistivity of Alloys,' Ann. Physik, <u>110</u>, 190-221 (1860).
- Matthiessen, A. and Vogt, C., 'The Influence of Temperature on the Electrical Conductivity of Alloys,' Ann. Physik, 122, 19-78 (1864).
- <sup>7</sup>Bloch, F., 'On the Quantum Mechanics of Electrons in a Crystalline Lattice,' Z. Phys., <u>52</u>, 555-600 (1928).
- <sup>8</sup>Bloch, F., 'The Electrical Resistance Law at Low Temperatures,' Z. Phys., 59, 208-14 (1930).
- <sup>9</sup>Ribot, J.H.J.M., Bass, J., Van Kempen, H., Van Vucht, R.J.M., and Wyder, P., 'Electrical Resistivity of Aluminum Below 4.2 K,' Phys. Rev. B, <u>23</u>(2), 532-51 (1981).
- Nakamichi, I. and Kino, T., 'Deviations from Matthiessen's Rule on the Surface Scattering in Aluminum,' J. Phys. Soc. Jpn., 49(4), 1350-7 (1980).
- 11 Kim, S.H. and Wang, S.T., 'Measurements of Mechanical and Electrical Properties of High-Purity Aluminum,' Advan. Cryog. Eng., 24, 485-90 (1978).
- 12 Rowlands, J.A. and Woods, S.B., 'Anisotropic Electron Scattering in the Resistivity of Strained Aluminum, Palladium and Silver,' J. Phys. F., 8(9), 1929-39 (1978).
- 13 Garland, J.C. and Van Harlingen, D.J., 'Low-Temperature Electrical and Thermal Transport Properties of Pure Aluminum,' J. Phys. F, 8(1), 117-24 (1978).

- <sup>14</sup>Masovic, D.R. and Zekovic, S., 'Model Pseudopotential for Aluminium,' Phys. Status Solidi B, <u>89</u>(1), K57-60 (1978).
- 15 Klopkin, M.N., Panova, G.Kh., and Samoilov, B.M., 'Resistance of Pure Aluminum and of Weak Solutions of Magnesium, Zinc, and Gallium in Aluminum in the Region 2-40°K,' Zh. Eksp. Teor. Fiz., 72(2), 550-6 (1977); Engl. transl.: Sov. Phys.-JETP, 45(2), 287-90 (1977).
- <sup>16</sup>Fujita, T. and Ohtsuka, T., 'Transport Properties of Cold-Worked Aluminum at Low Temperatures,' J. Low Temp. Phys., 29(3-4), 333-44 (1977).
- <sup>17</sup>Keita, M., Steinemann, S., Kuenzi, H.U., and Guentherodt, H.J., 'Determination of the Diffusion Coefficient in Liquid Metal Alloys from Measurements of the Electrical Resistivity,' Inst. Phys. Conf. Ser., <u>30</u>, 655-62 (1976).
- Babic, E., Krsnik, R., and Ocko, M., 'The Low-Temperature Resistivity of Aluminum-Rich Aluminum-Vanadium and Aluminum-Titanium Alloys,' J. Phys. F, 6(1), 73-83 (1976).
- 19 Kawata, S., 'Deviation from Matthiessen's Rule for Several Kinds of Defects in Pure and Alloyed Aluminum, J. Sci. Hiroshima Univ., 40A(1), 43-67 (1976).
- Krevet, B. and Schauer, W., 'Transverse Magnetoresistance and Its Temperature Dependence for High-Purity Polycrystalline Aluminum,' J. Appl. Phys., 47(8), 3656-69 (1976).
- Hartwig, K.T. and Worzala, F.J., 'Dilute Aluminum Alloys: Their Potential in Superconducting Devices,' Proc. Int. Cryog. Eng. Conf., 6, 406-10 (1976).
- <sup>22</sup>Cook, J.G., Moore, J.P., Matsumura, T., and Van der Meer, M.P., 'Thermal and Electrical Conductivity of Aluminum,' Oak Ridge National Lab. Rept. ORNL-5079, 23 pp. (1975).
- Rapp, O. and Fogelholm, R., 'Gap Anisotropy and Electron-Phonon Interaction in Dilute Alumir m-Magnesium Alloys,' J. Phys. F, 5(9), 1694-705 (1975).
- Rowlands, J.A. and Woods, S.B., 'Deviations from Natthiessen's Rule in Cold-Worked Aluminium,' J. Phys. F, 5(6), L100-3 (1975).
- 25 Kawata, S. and Kino, T., 'Deviations from Matthiessen's Rule in Dilute Aluminum Alloys,' J. Phys. Soc. Jpn., 39(3), 684-91 (1975).

- 26 Srivastava, S.K., 'Model Pseudopotentials and Electronic Properties of Non-transition Metals,' J. Phys. Chem. Solids, 36(9), 993-1004 (1975).
- <sup>27</sup>Bradley, J.M. and Stringer, J., 'Hall Effect Measurements in Aluminum Alloys,' J. Phys. F, 4(6), 839-47 (1974).
- <sup>28</sup>Kedves, F.J., Gergely, L., and Hordos, M., 'Temperature Dependence of the Electric Resistivity of Aluminum, Aluminum-Manganese, Iron, and Nickel,' Acta Phys. Chim. Debrecina, <u>18</u>, 67-72 (1973).
- <sup>29</sup>Osamura, K., Hiraoka, Y., and Murakami, Y., 'Hall Coefficients of Aluminum-Zinc Solid Solution Alloys,' Philos. Mag., <u>28</u>(2), 321-34 (1973).
- 30 Stallard, J.M. and Davis, C.M., Jr., 'Liquid-Aluminum Structure Factor by Neutron Diffraction (Ziman Formulation for Resistivity),' Phys. Rev. A, 8(1), 368-76 (1973).
- Thompson, G.E. and Noble, B., 'Resistivity of Al-Cu-Li Alloys During T<sub>1</sub> (Al<sub>2</sub>CuLi) Precipitation,' Metal Sci. J., 7(1), 32-5 (1973).
- 32 Senoussi, S. and Campbell, I.A., 'Low-Temperature Electrical Resistivity of Aluminum,' J. Phys. F, 3(1), L19-21 (1973).
- Korochkina, L.N., Kazimirov, V.P., and Batalin, G.I., 'Partial Structure Factors and Resistivity of Liquid Alloys of Aluminium-Tin and Aluminium-Gallium,' Fiz. Met. Metalloyed., 36(1), 39-43 (1973); Engl. transl.: Phys. Met. Metallogr., 36(1), 32-6 (1973).
- <sup>34</sup>Enderby, J.E. and Howe, R.A., 'Thermoelectric Power of Liquid Metals and Alloys,' in <u>Proceedings of the 2nd International Conference on the Properties of Liquid Metals</u> (Takeuchi, S., Ed.), Taylor and Francis, London, 283-7 (1973).
- Romanov, A.V. and Persion, Z.A., 'Effect of Some Alloying Elements on Aluminum Electric Conductivity,' Ukr. Fiz. Zh. (Ukr. Ed.), 18(6), 1033-5 (1973).
- <sup>36</sup>Sirota, N.N., Gostishchev, V.I., and Drozd, A.A., 'Thermal Conductivity of Aluminum in Strong Magnetic Fields at Low Temperatures,' Pis'ma Zh. Eksp. Teor. Fiz., <u>16</u>(4), 242-5 (1972); Engl. transl.: JETP Lett., <u>16</u>(4), 170-2 (1972).
- <sup>37</sup>Horak, J.A. and Blewitt, T.H., 'Fast Neutron-Irradiation-Induced Resistivity in Metals,' Phys. Status Solidi A, 9(2), 721-30 (1972).

- 38Callarotti, R.C. and Alfonzo, M., 'Measurement of the Conductivity of Metallic Cylinders by Means of an Inductive Method,' J. Appl. Phys., 43(7), 3040-7 (1972).
- <sup>39</sup>Levin, E.S., Ayushina, G.D., and Gel'd, P.V., 'Isothermals (1650 C) of the Specific Electrical Resistance of Aluminum Melts With Iron, Cobalt, and Chromium,' Izv. Vyssh. Uchebn. Zaved., Fiz., 15(4), 139-41 (1972); Engl. transl.: Sov. Phys. J., 15(4), 585-7 (1972).
- 40 Levin, E.S., Gel'd, P.B., and Ayushina, G.D., 'Resistivity of Liquid Iron-Aluminum Alloys,' Izv. Vyssh. Uchebn. Zaved., Fiz., <u>15</u>(10), 135-8 (1972); Engl. transl.: Sov. Phys. J., <u>15</u>(10), 1505-7 (1972).
- 41 Levin, E.S. and Ayushina, G.D., 'Electrical Conductivity of Nickel-Aluminum Alloys,' Izv. Akad. Nauk SSSR, Met., 5, 143-6 (1972); Engl. transl.: Russ. Metall., 5. 103-5 (1972).
- <sup>42</sup>DiMelfi, R.J. and Siegel, R.W., 'Effect of Impurities Upon the Nucleation of Dislocation Loops in Quenched Aluminium,' Philos. Mag., <u>24</u>(188), 279-94 (1971).
- <sup>43</sup>Alp, T., Brough, I., Sanderson, S.J., and Entwistle, K.M., 'A Study of the Stability of Intermediate Precipitates in an Al-4.07 Wt.-% Cu Alloy Using Electrical-Resistivity Measurements,' Met. Sci., 9(8), 353-9 (1975).
- A4 Radenac, A., LaCoste, M., and Roux, C., 'Apparatus Designed to Measure the Electrical Resistivity of Metals and Alloys by the Rotating Field Method Up to About 2000 K,' Rev. Int. Hautes Temp. Refract., 7(4), 389-96 (1970).
- 45 Seth, R.S. and Woods, S.B., 'Electrical Resistivity and Deviations from Matthiessen's Rule in Dilute Alloys of Aluminum, Cadmium, Silver, and Magnesium,' Phys. Rev. B, 3, 2(8), 2961-72 (1970).
- <sup>46</sup>Boehm, R. and Wachtel, E., 'Description of a Method for Measuring the Transport Coefficients of Metals and Alloys as a Function of Temperature According to the Kohlrausch Method,' Z. Metallkd., <u>60</u>(5), 505-12 (1969).
- 47 Rubanenko, I.R. and Grossman, M.I., 'Thermal Conductivity of Brushes for Electrical Machines,' Elektrotekhnika, 40(5), 38-9 (1969).

- <sup>48</sup>Logunov, A.V. and Zverev, A.F., 'Investigating the Thermal Conductivity and Electrical Resistance of Aluminum and of a Group of Aluminum Alloys,' Inzh. Fiz. Zh., <u>15</u>(6), 1114-9 (1968); Engl. transl.: J. Eng. Phys., <u>15</u>(6), 1256-60 (1968).
- <sup>49</sup>Wilkes, K.E. and Powell, R.W., 'Thermal Conductivity of Aluminum Between About 78 and 373 K,' in <u>Thermal Conductivity Proceedings of the Seventh Conference</u> (Flynn, D.R. and Peavy, B.A., Jr., Eds.), National Bureau of Standards Special Publ., NBS-SP-302, 293-6 (1968).
- Von Bassewitz, A. and Mitchell, E.N., 'Resistivity Studies of Single-Crystal and Polycrystal Films of Aluminum,' Phys. Rev., 182(3), 712-6 (1969).
- 51 Sharma, J.K.N., 'Heat Conductivities Below 1 K,' Cryogenics, 7(3), 141-56 (1967).
- 52 Stevenson, R., 'Resistance and Transverse Magnetoresistance of High Purity Aluminum,' Can. J. Phys., 45(12), 4115-9 (1967).
- <sup>53</sup>Wilkes, K.E., 'Thermal Conductivity Measurements Between 77 K and 373 K on Iron, Cobalt, Aluminum and Zinc,' Purdue Univ., M.S. Thesis, 93 pp. (1968).
- Busch, G. and Guentherodt, H.J., 'Hall Coefficient and Specific Electrical Resistivity of Liquid Metal Alloys,' Phys. Kondens. Mater., 6(6), 325-62 (1967).
- Boato, G., Bugo, M., and Rizzuto, C., 'The Effect of Transition-Metal Impurities on the Residual Resistivity of Aluminum, Zinc, Indium and Tin,' Nuovo Cimento, 45(2), 226-40 (1966).
- <sup>56</sup>Nobili, D. and DeBacci, M.A., 'Experimental Investigation on the Thermal and Electrical Conductivity of SAP,' J. Nucl. Mater., <u>18</u>(2), 187-96 (1966).
- Neely, H.H. and Sosin, A., 'Electron Irradiation of Copper and Aluminum Above Stage I,' Phys. Rev., <u>152(2)</u>, 623-8 (1966).
- Pawlek, F. and Rogalla, D., 'The Electrical Resistivity of Silver, Copper, Aluminum, and Zinc as a Function of Purity in the Range 4-298 K,' Cryogenics, 6(1), 14-20 (1966).
- Pawlek, F. and Rogalla, D., 'The Electrical Resistance of Silver, Copper, Aluminum, Zinc and Sodium Between 4 and 298 K in Dependence from the Impurities,' Metallwirt.-Wiss. Tech., 20(9), 949-56 (1966).

- Moore, J.P., McElroy, D.L., and Barisoni, M., 'Thermal Conductivity Measurements Between 78 and 340 K on Aluminum, Iron, Platinum, and Tungsten,' in Proceedings of the Sixth Conference on Thermal Conductivity. Dayton. Ohio. Oct. 19-21, 1966, 737-78 (1966).
- 61Wiser, N., 'Electrical Resistivity of the Simple Metals,' Phys. Rev., 143(2), 393-8 (1966).
- 62 Powell, R.W., Tye, R.P., and Woodman, M.J., 'The Thermal Conductivity of Pure and Alloyed Aluminum. I. Solid Aluminum as a Reference Material,' in 3rd Symposium on Thermophysical Properties (Gratch, S., Editor), ASME, New York, NY, 277-88 (1965).
- <sup>63</sup>Powell, R.W., Tye, R.P., and Netcalf, S.C., 'Molten Aluminum and an Aluminum Alloy,' in <u>3rd Symposium on Thermophysical Properties</u> (Gratch, S., Editor), ASME, New York, NY, 289-95 (1965).
- Forsvoll, K. and Holwech, I., 'Sondheimer Oscillations in the Hall Effect of Aluminium,' Philos. Mag., 10, 921-30 (1964).
- Frois, C. and Dimitrov, O., 'Concerning the Restoration of the Electrical Resistivity of Strongly Cold Hardened Aluminum from 60 to 200 K, in Liquid Hydrogen,' C. R. Hebd. Seances Acad. Sci., 258(2), 574-7 (1964).
- Fenton, E.W., Rogers, J.S., and Woods, S.B., 'Lorenz Numbers of Pure Aluminum, Silver, and Gold at Low Temperatures,' Can. J. Phys., 41(12), 2026-33 (1963).
- Purcell, J. and Jacobs, R., 'Transverse Magnetoresistance of High Purity Aluminum from 4 to 30 Degrees K,' Cryogenics, 3(2), 109-10 (1963).
- Aleksandrov, B.N. and D'Yakov, I.G., 'Variation of the Electrical Resistance of Pure Metals With Decrease of Temperature,' J. Exp. Theor. Phys., USSR, 43, 852-9 (1962); Engl. transl.: Sov. Phys.-JETP, 16(3), 603-8 (1963).
- Swanson, M.L., Piercy, C.R., and MacKinnon, D.J., 'Effect of Plastic Deformation on Neutron Irradiation Damage in Copper and Aluminum at 1.8 Degree K,' Phys. Rev. Lett., 9(10), 418-21 (1962).
- 70 Korol'kov, A.M. and Shashkov, D.P., 'Electrical Resistivity of Some Alloys in the Liquid State,' Russ. Met. Fuels, 1, 49-54 (1962).

- 71 Sirota, N.N., 'The Temperature Dependence of Electrical Conductivity in Solids,' Dokl. Akad. Nauk SSSR, 143(3), 567-9 (1962); Engl. transl.: Sov. Phys. Dokl., 7(3), 217-9 (1962).
- Powell, R.L., Hall, W.J., and Roder, H.M., 'Low-Temperature Transport Properties of Commercial Metals and Alloys. II. Aluminums,' J. Appl. Phys., 31(3), 496-503 (1960).
- 73 Hedgoock, F.T., Muir, W.B., and Wallingford, E., 'The Electrical Resistance of Dilute Magnesium and Aluminum Alloys at Low Temperatures,' Can. J. Phys., 38(3), 376-84 (1960).
- 74 Simmons, R.O. and Balluffi, R.W., 'Measurements of the High-Temperature Electrical Resistance of Aluminum. Resistivity of Lattice Vacancies,' Phys. Rev., 117(1), 62-8 (1960).
- 75 DeSorbo, W., 'Quenched Imperfections and the Electrical Resistivity of Aluminum at Low Temperatures,' Phys. Rev., 111(3), 810-2 (1958).
- Nikryukov, V.E., 'Thermal and Electrical Properties of Copper, Silver, Gold, Aluminum, and Alloys With a Copper Base,' Issled. Zharaprochn. Splavam, Akad. Nauk SSSR, Inst. Met., 3, 420-8 (1958); Engl. transl.: FTS-9848/1+2+4, 707-21 (1963). [AD 418 153]
- 77
  Mikryukov, V.E., 'Thermal and Electrical Properties of Copper, Silver, Gold, Aluminum, and Copper-Beryllium Alloys,' Vestn. Mosk. Univ., Ser. Mat., Mekh., Astron., Fiz. Khim., 12(6), 57-67 (1957); Engl. transl.: SLA-TT-65-63678, JPRS-R-5463-D, 16 pp. (1965).
- 78 Roll, A. and Motz, H., 'The Electrical Resistivity of Molten Metals. Measuring Method and Electrical Resistivity of Pure Molten Metals,' Z. Metallkd., 48(5), 272-80 (1957).
- <sup>79</sup>Broom, T., 'The Effect of Temperature of Deformation on the Electrical Resistivity Cold-Worked Metals and Alloys,' Proc. Phys. Soc. London, <u>65B</u>, 871-81 (1952).
- Andrews, F.A., Weber, R.T., and Spohr, D.A., 'Thermal Conductivities of Pure Metals at Low Temperatures. I. Aluminum,' Phys. Rev., 84(5), 994-6 (1951).
- Rutter, J.W. and Reekie, J., 'The Effect of Cold Working on the Electrical Resistivity of Copper and Aluminum,' Phys. Rev., 78(1), 70-1 (1950).

- 82 Powell, H. and Evans, E.J., 'The Hall Effect and Some Other Physical Constants of Alloys. Pt. VII. The Aluminum-Silver Series of Alloys,' Philos. Mag., 34(230), 145-61 (1943).
- Taylor, C.S., Willey, L.A., Smith, D.W., and Edwards, J.D., 'The Properties of High Purity Aluminum,' Metals Alloys, 9(8), 189-92 (1938).
- 84 Eucken, A. and Warrentrup, H., 'An Apparatus for the Determination of the Thermal Conductivity of Metal Plates,' Z. Tech. Phys., 16(4), 99-104 (1935).
- 85 Kapitza, P., 'The Change of Electrical Conductivity in Strong Magnetic Fields. Pt. I. Experimental Results,' Proc. R. Soc. London, <u>A123</u>, 292-372 (1929).
- 86 Staebler, J., 'Electrical and Thermal Conductivity and the Number of Wiedemann Franz of Light Metals and Magnesium Alloys,' Tech. Hochschule (of Breslau), Wroclaw, Poland, Ph.D. Thesis, 35 pp. (1929).
- 87 Gruneisen, E. and Goens, E., 'Investigations on Metallic Crystal. V. Electrical and Thermal Conduction of Single and Poly Crystalline Metals of the Regular System,' Z. Phys., 44, 615-42 (1927).
- 88
  Matuyama, Y., 'On the Electrical Resistance of Molten Metals and Alloys,'
  Sci. Rep. Tohoku Imp. Univ., 16, 447-74 (1927).
- 89 Smith, A.W., 'The Thermal Conductivities of Alloys,' Ohio State Univ. Studies, Eng. Exp. Sta. Bull. 31 (1925).
- Schofield, F.H., 'The Thermal and Electrical Conductivities of Some Pure Metals,' Proc. R. Soc. London, 107, 206-27 (1925).
- 91 Holborn, L., 'The Dependence of the Resistance of Pure Metals from the Temperature (II Part),' Z. Phys., 8, 58-62 (1921).
- 92 Holborn, L., 'The Dependence of the Resistance of Pure Metals from the Temperature,' Ann. Physik, 59, 145-69 (1919).
- Bornemann, K. and Wagenmann, K., 'The Electrical Conductivity of Alloys in the Liquid State,' Ferrum, 11(10), 289-314 (1914).
- Wolff, F.A. and Dellinger, J.H., 'The Electrical Conductivity of Commercial Copper,' Natl. Bur. Standards Bull., 7(1), 103-26 (1911).

- 95 Niccolai, G., 'Electrical Resistivity of Metals Between Very High and Very Low Temperatures,' Phys. Z., 9(11), 367-72 (1908).
- Pochapsky, T.E., 'Heat-Capacity and Resistance Measurements for Aluminium and Lead Wires,' Acta Metall., 1(6), 747-51 (1953).
- van der Mass, J., Huguenin, R., and Rizzuto, C., 'Deviations from Matthiessen's Rule Due to Surface Scattering: Aluminum,' in Recent Developments in Condensed Matter Physics (Devreese, J.T., Ed.), Plenum Publishing Corp., New York, 63-71 (1981).
- 98 Sambles, J.R., Elsom, K.C., and Sharp-Dent, G., 'The Effect of Sample Thickness on the Resistivity of Aluminum,' J. Phys. F, 11(5), 1075-92 (1981).
- <sup>99</sup>Van Kempen, H., Ribot, J.H.J.M., and Wyder, P., 'The Electrical Resistivity of Ultra Pure Aluminum at Low Temperature,' J. Phys. Colloq., <u>39</u>(8), C6-1048-C6-1049 (1978).
- Boysel, R.M., Newrock, R.S., and Garland, J.C., 'Remanent Superconductivity in Pure Bulk Aluminum,' J. Phys. F, 9(10), L191-7 (1979).
- 101 MacDonald, A.H., 'Electron-Phonon Enhancement of Electron-Electron Scattering in Al,' Phys. Rev. Lett., 44(7), 489-931 (1980).
- 102 Zair, E., Sinvani, M., Levy, B., and Greenfield, A.J., 'Experimental Evidence for the Existence of Remanent Superconductivity in Aluminum and Its Effect on the Temperature Dependence of the Normal Phase Resistivity,' J. Phys. (Paris), 39(8), C6496-7 (1978).
- Zair, E., Sinvani, M., and Greenfield, A.J., 'New Electrical Resistivity Measurements on Large-Diameter Samples of Aluminum at Low Temperatures,' Proc. Int. Conf. Low Temp. Phys., 14th, 3, 98-101 (1975).
- Garland, J.C. and Bowers, R., 'Observations of Quadratic Temperature Dependence in the Low Temperature Resistivity of Simple Metals,' Phys. Kondens. Mater., 2(1/2), 36-44 (1969).
- 105 Van Zytveld, J.B. and Bass, J., 'Size-Dependent Deviations from Matthiessen's Rule in Aluminum,' Phys. Rev., 177(3), 1072-82 (1969).
- Willott, W.B., 'The Wiedemann-Franz Ratio and Anomalous Lattice Conductivity of Pure Aluminum,' Philos. Mag., 8, 16(142), 691-702 (1967).

- Caplin, A.D. and Rizzuto, C., 'Breakdown of Matthiessen's Rule in Aluminum Alloys,' J. Phys. C, 3(6), L117-20 (1970).
- Caplin, A.D. and Rizzuto, C., 'Systematics of Matthiessen's Rule Breakdown at Low Temperature,' Aust. J. Phys., 24(3), 309-16 (1971).
- Touloukian, Y.S., Kirby, R.K., Taylor, R.E., and Desai, P.D., <u>Thermal Expansion-Metallic Elements</u>, Vol. 12 of <u>Thermophysical Properties of Matter-The TPRC Data Series</u>, 1348 pp. (1975).
- Bergmann, A., Kaveh, M., and Wiser, N., 'Electron-Dislocation Scattering and Negative Deviations from Matthiessen's Rule,' Solid State Commun., 34(5), 369-73 (1980).
- 111 McRae, E.J., Mareche, J.F., and Herold, A., 'Contactless Resistivity Measurements: A Technique Adapted to Graphite Intercalation Compounds,' J. Phys. E, 13(2), 241-5 (1980).
- 112 Kaveh, M. and Wiser, N., 'Deviations from Matthiessen's Rule for Dilute Alloys of Polyvalent and Noble Metals,' Phys. Rev. B, 21(6), 2278-30 (1980).
- Kumar, M. and Hemkar, M.P., 'The Electron Transport Properties of Simple Metals,' Acta Phys. Pol. A, 54(5), 573-9 (1978).
- 114 Sato, H., Babauchi, T., and Yonemitsu, K., 'Hall Coefficient of Dilute Aluminum Alloys,' Phys. Status Solidi B, 89(2), 571-6 (1978).
- 115 Arp. V., 'Properties and Preparation of High-Purity Aluminum,' in Proceedings of the 1968 Summer Study on Superconducting Devices and Accelerators.

  Part III, Brookhaven National Lab. Rept. BNL 50155 (C-55) (1969).
- Pavars, I.A., Levin, E.S., and Gel'd, P.V., 'Calculation of the Potentials of Ion-Ion Interaction and the Physical Properties of Liquid Aluminum and Germanium,' Izv. Vyssh. Uchebn. Zaved., Fiz., 18(11), 126-8 (1975); Engl. transl.: Sov. Phys. J., 11, 1604-6 (1975).
- Leung, H.K., Kus, F.W., McKay, N., and Carbotte, J.P., 'Band-Structure Effects on Transport in Aluminum,' Phys. Rev. B, 16(10), 4358-64 (1977).
- Sermyagin, V.N., Pastukhov, E.A., and Vatolin, N.A., 'Structure and Electrical Resistivity of Liquid Aluminum-Magnesium Alloys,' Izv. Akad. Nauk SSSR, Met., 4, 44-8 (1976); Engl. transl.: Russ. Metall., 4, 40-4 (1976).

- Vukajlovic, F.R., Zekovic, S., and Veljkovic, V., 'Resistivity Calculations for Liquid Metals,' Physica, 92B(1), 66-72 (1977).
- 120 Coresara, S.. Giarda, A., and Sanchez, A., 'Annealing of Vacancies and Aging in Aluminum-Lithium Alloys,' Philos. Mag., 35(1), 97-110 (1977).
- 121 Devlin, J.F. and Rasolt, M., 'Velocity Dependent Screening for Non-Local Potentials: Application to Transport Properties,' J. Phys. C, 9(19), 3633-8 (1976).
- 122 Kachhava, C.M. and Parihar, D., 'Residual Resistivity of Dilute Binary Alloys,' Phys. Status Solidi B, 77(2), K135-7 (1976).
- 123 Morgun, V.N., Khotkevich, V.I., Zaytsev, G.A., and Sidorkina, L.V., 'Influence of Lattice Defects on the Magnetoresistance of High Purity Polycrystalline Aluminium,' Fiz. Met. Metalloved., 39(3), 655-8 (1975); Engl. transl.: Phys. Met. Metallogr., 39(3), 195-8 (1975).
- 124 Wilson, R.W. and Terry, L.E., 'Application of High-Rate E by B or Magnetron Sputtering in the Metallization of Semiconductor Devices,' J. Vac. Sci. Technol., 13(1), 157-64 (1976).
- 125 Awasthi, O.N., 'Electron-Electron Umklapp Scattering Processes in the Low-Temperature Electrical Resistivity of Aluminum,' Lett. Nuovo Cimento Soc. Ital. Fis., 15(13), 483-5 (1976).
- Brailey, R.H.E., 'A Rapid Approximate Method for Computing the Thermal Conductivity of Crystals from Their Atomic Structure,' in <u>Thermal Conductivity Conference</u>, 3rd, 1, 57-75 (1963).
- 127 Dewar, J. and Fleming, J.A., 'On the Electrical Resistance of Pure Metals, Alloys, and Non-Metals at the Boiling-Point of Oxygen,' Philos. Mag., 33, 326-37 (1892).
- Farag, M.M. and Arif, S., 'Some Physical and Mechanical Properties of Iron Calcium Borate-Aluminum Composites,' Recent Adv. Sci. Technol. Mater. (Proc. Cairo Solid State Conf.), 2nd, 2, 229-34 (1974).
- 129 Martynyuk, M.M. and Gerrero, G.E., 'Behaviour of Some Groups IB-IVB Metals Under Pulsed Heating Conditions,' Izv. Akad. Nauk SSSR, Met., 3, 73-9 (1973); Engl. transl.: Russ. Metall., 3, 62-9 (1973).

- <sup>130</sup>Baikov, A.P., Gerasimov, L.S., and Iskoi'dskii, A.M., 'Electrical Conductivity of an Aluminum Foil in an Electrical Explosion,' Zh. Tekh. Fiz., 45(1), 49-55 (1975); Engl. transl.: Sov. Phys. Tech. Phys., 20(1), 29-32 (1975).
- 131 Lorenz, L., 'The Conductivity of Metals for Heat and Electricity,' Ann. Phys. (Leipzig), 13(3), 422-47 (1881).
- 132 Kaveh, M. and Wiser, N., 'Evidence for the Electron-Electron Scattering Contribution to the Electrical Resistivity of Aluminum,' Phys. Lett. A, <u>51</u>(2), 89-90 (1975).
- Farag, M.M., Zahar, J., and Bishay, A., 'Some Physical and Mechanical Properties of Glass Aluminium Metal Composites,' in <u>Proceedings on Scientific</u> and <u>Technical Communications</u>, 9th <u>International Congress on Glass</u>, U.S. Air Force Rept. AFOSR-TR-72-0505, 1251-70 (1971). [AD 738 663]
- Gorham-Bergeron, E. and Dworin, L., 'Solution to the Boltzmann Equation for a Model Polyvalent Metal and Resistivity Calculations,' Phys. Rev. B, 11(12), 4859-71 (1975).
- Brown, C. and Jarzynski, J., 'Modified Perturbation Theory and the Electrical Resistivity of Simple Liquid Metals,' Philos. Mag., 30(1), 21-32 (1974).
- Martin, J.W., 'Electrical Resistivity of Some Lattice Defects in fcc Metals Observed in Radiation Damage Experiments,' J. Phys. F, 2(5), 842-53 (1972).
- 21atic, V. and Rivier, N., 'Low Temperature Thermoelectric Power of Dilute Aluminum Based Transition Netal Alloys,' J. Phys. F, 4(5), 732-8 (1974).
- Paasch, G. and Trepte, P., 'Resistivity of Liquid Metals: Calculation With the Shaw Model Potential,' Phys. Status Solidi B, 44(1), K37-40 (1971).
- 139 Kunzler, J.E. and Wernick, J.H., 'Low Temperature Resistance Measurements as a Means of Studying Impurity Distributions in Zone Refined Ingots of Metals,' Met. Trans., 212, 856-60 (1958).
- Reed, R.P. and Arp, V.D., 'Techniques for Measuring Stress, Strain, and Resistivity at 4 K for Very Soft Materials,' Cryogenics, 9(5), 362-4 (1969). [PB-195253]
- Nachtigall, E., 'The Electrical Conductivity of Very Pure Aluminum,' Aluminium, 31(7-8), 341-2 (1955).

- Eversheim, P., 'Investigatons About the Electrical Conductivity of Aluminum,' Aluminium, 31(7-8), 338-41 (1955).
- 143 Papastaikoudis, C., Kontoleon, N., Papathanassopoulos, K., and Andronikos, R., 'Phonon Resistivity in Aluminum-Gallium Alloys,' Phys. Rev. B, 2077-81 (1975).
- Rapp, O. and Fogelholm, R., 'Resistivity of Dilute Magnesium and Manganese Alloys of Aluminum Between O and 100 C in a Generalized Approach,' Solid State Commun., 15(8), 1291-4 (1974).
- 145 Hayman, B. and Carbotte, J.P., 'A Model for the Electron-Phonon Interaction in Polyvalent Metals: Al,' Phys. Status Solidi B, 65(2), 439-48 (1974).
- 146 Semenenko, V.E., Somov, A.I., and Tutov, V.I., 'Electrical Conductivity of the Directionally Crystallized Composition Aluminum-Aluminum Nickel,' Fiz. Met. Metalloved., 34(6), 1317-19 (1972); Engl. transl.: Phys. Met. Metallogr., 34(6), 196-9 (1972).
- Behari, J., 'Pseudopotential Calculation in Aluminum,' Proc. Nucl. Phys. Solid State Phys. Symp., C, 311-18 (1972).
- Takai, O., Fukusako, T., Yamamoto, R., and Doyama, M., 'Electrical Resistivity of Interstitials in Aluminum,' J. Phys. F, 2(4), L80-2 (1972).
- Sharp, A.E. and Smith, P.V., 'The Electrical Resistivity of Liquid Zinc, Aluminium and Lead,' Solid State Commun., 15(2), 383-6 (1974).
- Batalin, G.I., Kazimirov, V.P., and Dmitruk, B.F., 'Structure and Electrical Resistivity of Liquid Aluminium,' Izv. Akad. Nauk SSSR, Met., 1, 88-94 (1972); Engl. transl.: Russ. Metall., 1, 64-8 (1972).
- 151 Kanno, H., 'Change of Electrical Conductivity of Metal on Melting,' Bull. Chem. Soc. Jpn., 45(9), 2692-4 (1972).
- 152 Pytte, E., 'Contribution of the Electron-Phonon Interaction to the Effective Mass, Superconducting Transition Temperature, and the Resistivity in Aluminium,' J. Phys. Chem. Solids, 28, 93-103 (1967).
- Behroozi, F., Garfunkel, M.P., Rogan, F.H., and Wilkinson, G.A., 'Temperature and Magnetic Field Dependence of the Superconducting Penetration Depth in Pure and Impure Aluminum Single Crystals,' Phys. Rev. B, 10(7), 2756-63 (1974).

- 154 Mott, N.F., 'The Resistance of Liquid Netals,' Proc. R. Soc., London, 146A, 465-72 (1934).
- 155 Golovashkin, A.I., Kopeliovich, A.I., and Motulevich, G.P., 'Determination of the Pseudopotential Fourier Components on the Basis of Interband Transitions in the Optical Range,' Zh. Eksp. Teor. Fiz., 53, 2053-62 (1967); Engl. transl.: Sov. Phys.-JETP, 26(6), 1161-6 (1968).
- Ashcroft, N.W. and Guild, L.J., 'The Resistivity of Liquid Aluminium,' Phys. Lett., 14(1), 23-4 (1965).
- Animalu, A.O.E., 'Non-Local Dielectric Screening in Metals,' Philos. Mag., 11, 379-88 (1965).
- Matsuo, S., Miyata, H., and Noguchi, S., 'Particle Size and Superconducting Transition Temperature of Aluminum Fine Particles,' Jpn. J. Appl. Phys., 13(2), 351-4 (1974).
- Rao, P.V.S., 'Phonon Dispersion Relations, Effective Interionic Potential, and Liquid Resistivity of Aluminum,' J. Phys. Chem. Solids, 35(6), 669-84 (1974).
- Chaudron, G., 'Preparation of Aluminium Extreme Purity by the Zone Fusion Process,' Nature, <u>174</u>(4437), 923 (1954).
- 161
  Hettwer, P.F., Uy, J.C., and McCann, D.R., 'Aluminum Wire by Cold Hydrostatic Extrusion,' Trans. ASME, 91(4), 822-9 (1969).
- 162 Ch'iang, Yu.N. and Eremenko, V.V., 'Singularities of the Temperature Dependence of Electric Conductivity of Aluminum at Helium Temperatures,' Pis'ma Zh. Eksp. Teor. Fiz., 3(11), 447-52 (1966); Engl. transl.: JETP Lett., 3(11), 293-6 (1966).
- 163 Sundstrom, L.J., 'A Theory of the Electrical Properties of Liquid Metals.
  IV. Quantitative Calculations of Resistivity and Thermoelectric Power,'
  Philos. Mag., 11, 657-65 (1965).
- Chambers, R.G., 'The Anomalous Skin Effect,' Proc. R. Soc., London, 215A, 481-97 (1952).
- Reuter, G.E.H. and Sondheimer, E.H., 'The Theory of the Anomalous Skin Effect in Metals,' Proc. R. Soc., London, 195A, 336-64 (1948).

- Barabanoy, A.F. and Maksimov, L.A., 'Calculating the Resistivity of Aluminium,' Fiz. Met. Metalloved., 22(1), 7-17 (1966); Engl. transl.: Phys. Met. Metallogr., 22(1), 5-14 (1966).
- Ashcroft, N.W. and Schaich, W., 'Electronic Properties of Liquid Metals,' Phys. Rev., 1(4), 1370-9 (1970).
- Young, C.Y. and Sham, L.J., 'Relation Between Landau Fermi-Liquid Parameters and High-Temperature Resistivity in Simple Metals,' Phys. Rev., <u>188</u>(3), 1108-10 (1969).
- Bergman, Y., Kaveh, M., and Wiser, N., 'Explanation for the Deviations from Matthiessen's Rule for the Low-Temperature Electrical Resistivity of the Simple Metals,' Phys. Rev. Lett., 32(11), 606-9 (1974).
- 170 Black, J. and Mills, D.L., 'Theoretical Study of the Ideal Electrical Resistivity of Simple Face-Centered-Cubic Metals,' Phys. Rev. B, 9(4), 1458-78 (1974). [AD 782 786]
- <sup>171</sup>Chung, M.S. and Everhart, T.E., 'Simple Calculation of Energy Distribution of Low-Energy Secondary Electrons Emitted from Metals Under Electron Bombardment,' J. Appl. Phys., <u>45</u>(2), 707-9 (1974). [AD 780 404]
- Ross, M., 'Electrical Conductivity of Liquid Aluminum,' Lawrence Livermore Lab. Rept. UCRL-51322, 7 pp. (1973). [N73-25605]
- 173 Greenfield, A.J. and Wiser, N., 'Correlation Between the Strength of the Scattering Potential and the Calculated Electrical Resistivity of Liquid Metals,' J. Phys. F, 3(7), 1397-402 (1973).
- 174 Kirkpatrick, E.S. and Mayadas, A.F., 'Theory of the Resistivity of Inhomogeneous Conducting (Fine Lines),' J. Appl. Phys., 44(10), 4370-7 (1973).
- 175 Behari, J., 'Effect of the Dielectric Function on the Pseudopotential Calculations of Some Electronic Properties. Application to Aluminum,' J. Phys. F, 3(5), 959-66 (1973).
- Barnard, B.R., Bass, J., Caplin, A.D., and Dalimin, M.N.B., 'Concerning Proposed Superconducting Fluctuations in the Electrical Resistivity of Bulk Aluminum,' Phys. Rev. Lett., 44(10), 680-3 (1980).
- 177 Garland, J.C. and Bowers, R., 'Evidence for Electron-Electron Scattering in the Low-Temperature Resistivity of Simple Metals,' Phys. Rev. Lett., 21(14), 1007-9 (1968).

- 178
  Fuschillo, N. and Lindberg, R.A., 'Electrical Conductors at Elevated Temperatures,' U.S. Air Force Rept. ASD-TRD-62-481 (1962). [AD 299 020]
- 179 Montariol, F., 'The Application of Electrical Resistivity Measurements at Very Low Temperatures to the Study of Metal Purification by the Pfann Method, Known as the Zone Refining Method,' in New Physical and Chemical Properties of Metals of Very High Purity, Gordon and Breach, New York, 53-104 (1965).
- Alley, P. and Serin, B., 'Deviations from Matthiessen's Rule in Aluminum, Tin, and Copper Alloys,' Phys. Rev., <u>116</u>(2), 334-8 (1959).
- 181 Kovack-Csetenyi, E., Vassel, C.R., and Kovacs, I., 'The Effect of Impurity Content and Heat Treatment on the Resistivity Ratio of Aluminium and Copper,' Acta Phys. Acad. Sci. Hung., 21(2), 195-8 (1966).
- 182 Haga, E. and Aisaka, T., 'Quantum-Mechanical Calculation for Drudes Absorption in Simple Metals,' J. Phys. Soc. Jpn., 22(4), 987-96 (1967).
- Barabanov, A.F., 'Calculating the Resistivity of Aluminium,' Phys. Met. Metallogr., 23(5), 158-9 (1967).
- 184 Sinvani, M., Greenfield, A.J., Bergmann, A., Kaveh, M., and Wiser, N., 'Effect of Annealing on the Temperature Dependence of the Electrical Resistivity of Aluminum,' J. Phys. F, 11(1), 149-63 (1981).
- 185 Schneider, T. and Stoll, E., 'Lattice Dynamics, Electronic Structure and Electrical Properties of Simple Metals. I. Sodium, Potassium, and Aluminum,' Phys. Kondens. Mater., 5(4), 331-40 (1966).
- 186 Caplin, A.D. and Rizzuto, C., 'Anomalies in the Electrical Resistance of Manganese Doped Aluminum and Chromium Doped Aluminum Alloys,' Phys. Rev. Lett., 21(11), 746-8 (1968).
- 187 Strongin, M., Kammerer, O.F., Crow, J., Thompson, R.S., and Fine, H.L., 'Curie-Weiss Behavior and Fluctuation Phenomena in the Resistive Transitions of Dirty Superconductors,' Phys. Rev. Lett., 20(17), 922-5 (1968).
- Barriac, C., Pinnard, P., Davoine, F., and Neel, L., 'Electrical Conductivity of Thin Aluminum Films,' C. R. Hebd. Seances Acad. Sci., Ser. B. 26(7), 423-6 (1968).

- Bandyopadhyay, S.K. and Pal, A.K., 'The Effect of Grain Boundary Scattering on the Electron Transport of Aluminum Films,' J. Phys. D, <u>12</u>(6), 953-9 (1979).
- Andrews, P.V., West, M.B., and Robeson, C.R., 'The Effect of Grain Boundary on the Electrical Resistivity of Polycrystalline Copper and Aluminum,' Philos. Mag., 19(161), 887-98 (1969).
- Amundsen, T., Berbom, B., and Bratsberg, H.G., 'A Note on the Sondheimer Size Effect in Aluminium,' J. Phys. F, 5(5), L43-8 (1975).
- 192 Valiukenas, V., Petretis, B., and Bogomolov, V., 'Influence of Intensity and Frequency of an Electric Field on the Structure and Resistivity of Aluminium Thin Films,' Thin Solid Films, 24(2), 333-40 (1974).
- Kesternich, W., Ullmaier, H., and Schilling, W., 'High-Field Magnetoresistance and Hall Effect in Aluminium Single Crystals. Influence of Fermi Surface and Defect Structure,' Philos. Mag., 31(3), 471-88 (1975).
- Fridrich, J. and Kohout, J., 'Influence of Thickness and Condensation Rate on the Resistivity of Evaporated Aluminum Films,' Thin Solid Films, 7(6), R49-51 (1971).
- Van der Voort, E. and Guyot, P., 'Electrical Resistivity by Scattering on Metallic Grain Boundaries,' Phys. Status Solidi B, 47(2), 465-73 (1971).
- Murthy, K.B.S., Sunta, C.M., and Jain, V.K., 'Counter for Thermally Stimu-lated Exo-Electron Studies,' Indian J. Pure Appl. Phys., 12(10), 685-8 (1974).
- 197
  Kasen, M.B., 'Grain Boundary Resistivity of Aluminium,' Philos. Mag., 21, 599-610 (1970).
- 198 Risnes, R. and Sollien, V., 'Anisotropy in the Resistivity of Thin Auminium Films,' Philos. Mag., 20(167), 895-905 (1969).
- Jayadevaiah, T.S. and Kirby, R.E., 'Electrical Conduction in Single-Crystal Aluminum Thin Films,' Appl. Phys. Lett., 15(5), 150-2 (1969).
- Foersvoll, K. and Holwech, I., 'Electrical Size Effect in Aluminum,' J. Appl. Phys., 34(8), 2230-2 (1963).
- Mayadas, A.F., Tsui, R.T.C., and Rosenberg, R., 'Resistivity of rf Sputter-Thinned Aluminum Films,' Appl. Phys. Lett., 14(2), 74-6 (1969).

- De Aiello, R.V., 'Microwave Conductivity of Superconducting Thin Films,' RCA Labs. Final Rept., June 1, 1967 May 31, 1968, on Contract N00014-66~C-0311, 24 pp. (1968). [AD 673 101]
- Holwech, I., 'Size-Dependence of the Hall Effect in Aluminum Films,' Philos. Mag., 12(115), 117-24 (1965).
- Amundsen, T. and Olsen, T., 'Size-Dependent Thermal Conductivity in Aluminum Films,' Philos. Mag., 11(111), 561-74 (1965).
- Foersvoll, K. and Holwech, I., 'Galvanomagnetic Size Effects in Aluminum Films,' Philos. Mag., 9(99), 435-50 (1964).
- 206 Beiser, R.B. and Hicklin, W.H., 'Temperature Coefficients of Resistance of Metallic Films in the Temperature Range 25 to 600 Degrees C,' J. Appl. Phys., 30(3), 313-22 (1959).
- Holwooh, I. and Jeppesen, J., 'Temperature Dependence of the Electrical Resistivity of Aluminum Films,' Philos. Mag., 8, 15(134), 217-28 (1967).
- Holwech, I. and Risnes, R., 'Fermi Surface Dimensions from Measurements on Direct Current Size Effect in Aluminum Single Crystals,' Philos. Mag., 17(148), 757-67 (1968).
- Mayadas, A.F., 'Intrinsic Resistivity and Electron Mean Free Path in Aluminum Films,' J. Appl. Phys., 39(9), 4241-5 (1968).
- Cohen, R.W. and Abeles, B., 'Superconductivity in Granular Aluminum Films,' Phys. Rev., 168(2), 444-50 (1968).
- DeHeurle, F., Berenbaum, L., and Rosenberg, R., 'On the Structure of Aluminum Films,' Trans. Metall. Soc. AIME, 242(3), 502-11 (1968).
- Nechaev, Yu.S., 'Method for Study of Vacancies and Lattice Electrical Conductivity in Metals and Alloys at High Temperatures,' Zavod. Lab., 43(10), 1242-6 (1977); Engl. transl.: Ind. Lab., 43(10), 1410-6 (1977).
- 213
  Khanns, K.N., 'Pseudopotential Calculations for Simple Metals,' Indian J.
  Phys., <u>52A</u>(6), 552-6 (1978).
- 214 Celasco, M., Fiorillo, F., and Mazzetti, P., 'Therms1-Equilibrium Properties of Vacancies in Metals Through Current-Noise Measurements,' Phys. Rev. Lett., 36(1), 38-42 (1976).

- Babic, E., Girt, E., Krsnik, R., Leontic, B., and Zoric, I., 'Vacancy Induced Residual Resistance in Ultrarapidly Quenched Pure Aluminum,' Phys. Lett. A, 33(6), 368-9 (1970).
- Yamamoto, T., 'Calculation of Formation Energy and Electrical Resistivity of a Point Defect in Simple Metals,' J. Phys. Soc. Jpn., 29(5), 1129-37 (1970).
- Takai, O., Yamamoto, R., and Doyama, M., 'The Influence of Atomic Displacements on the Electrical Resistivity Due to Vacancies in Simple Metals,' J. Phys. Chem. Solids, 35(9), 1257-61 (1974).
- Fukai, Y., 'Electrical Resistivity Due to Vacancies and Impurities in Aluminum: Band Structure Effects in the Defect Scattering in Polyvalent Metals,' Phys. Lett., 27(7), 416-7 (1968).
- Bass, J., 'The Formation and Motion Energies of Vacancies in Aluminium,' Philos. Mag., 15, 717-30 (1967).
- Cotterill, R.M.J., 'An Experimental Determination of the Electrical Resistivity of Dislocations in Aluminium,' Philos. Mag., 8, 1937-44 (1963).
- Benedek, R. and Baratoff, A., 'Influence of Lattice Strain on the Electrical Resistivity of Vacancies in Simple Metals,' J. Phys. Chem. Solids, 32(5), 1015-24 (1971).
- Martin, J.W. and Ziman, J.M., 'Dislocation Resistivity of Aluminium,' J. Phys. C, 3(4), L75-7 (1970).
- Bradshaw, F.J. and Pearson, S., 'Quenching Vacancies in Aluminium,' Philos. Mag., 2, 570-1 (1957).
- Fukai, Y., 'Electrical Resistivity Due to Vacancies in Aluminium,' Philos. Mag., 20(168), 1277-80 (1969).
- 225 Kulesko, G.I., 'Inelastic Scattering of Electrons by Dislocations in Aluminum,' Zh. Eksp. Teor. Fiz., 72(6), 2167-71 (1977); Engl. transl.: Sov. Phys.-JETP, 45(6), 1138-40 (1977).
- Maeta, H., 'Temperature Dependence of Electrical Resistivity of Dislocation in Aluminum,' J. Phys. Soc. Jpn., 24(4), 757-62 (1968).
- DeSorbo, W. and Turnbull, D., 'Kinetics of Vacancy Motion in High-Purity Aluminum,' Phys. Rev., 115(3), 560-3 (1959).

- <sup>228</sup>Kono, T., Kabemoto, S., and Yoshida, S., 'An Experimental Study on Vacancy-Impurity Interaction in Aluminum,' J. Phys. Soc. Jpn., <u>18</u> (Suppl. III), 85-90 (1963).
- Stangler, F., 'The Influence of Point Defects on the Electrical Properties of Aluminum, Copper, and Gold at Liquid Nitrogen Temperatures,' Appl. Mater. Res., 5(1), 53-5 (1966).
- Basinski, Z.S., Dougdale, J.S., and Howie, A., 'The Electrical Resistivity of Dislocations,' Philos. Mag., 8(96), 1989-97 (1963).
- Dimitrov, O., Dimitrov, C., Rosner, P., and Boening, K., 'Defect Production Rate, in Aluminum and Some Dilute Aluminum Alloys, During Neutron Irradiation at 4.6 K,' Fundam. Aspects Radiat. Damage Met., Proc. Int. Conf., 1, 80-7 (1975).
- 232
  Rizk, R., Loreaux, Y., Vajda, P., Maury, F., Lucasson, A., Lucasson, P.,
  Dimitrov, C., and Dimitrov, O., 'Stage-I Recovery of Prequenched and
  Electron-Irradiated Pure Aluminium and of the Alloy Aluminum-15 Parts Per
  Million Silver,' J. Appl. Phys., 47(3), 809-16 (1976).
- Kontoleon, N., Papathanassopoulos, K., and Chountas, K., 'The Influence of Irradiation Temperature (4.2 and 77 K) on the Resistivity Recovery of Pure and Germanium Alloyed Aluminum,' Phys. Lett. A, 53(5), 413-4 (1975).
- 234 Sosin, A. and Koehler, J.S., 'Electrical Resistivity Tensor for Aluminum Single Crystals Deformed at Helium Temperature,' Phys. Rev., <u>101(3)</u>, 972-7 (1956).
- 235 Seitz, F., 'The Effects of Irradiation on Metals,' Rev. Mod. Phys., <u>34</u>(4), 656-66 (1962).
- Coltman, R.R., Jr., Klabunde, C.E., and Weber, W.J., 'Irradiation Damage by Beta-Particles,' Rev. Sci. Instrum., 42(2), 279-80 (1971).
- 237 Mayer, H., Boening, K., Dimitrov, C., and Dimitrov, O., 'Dose Behavior of Dilute Aluminum-Magnesium Alloys Neutron-Irradiated at 4.6 K,' Phys. Status Solidi A, 15(2), K91-4 (1973).
- Papathanassopoulos, K., Olympios, E., Rocofyllou, E., Andronikos, P., and Boening, K., 'Facility for Reactor Irradiations of Metals at 78 K. Dose and Recovery Curves of Electrical Resistivity,' Radiat. Eff., 16(1-2), 33-43 (1972).

- 239 Isebeck, K., Muller, R., Schilling, W., and Wenzl, H., 'Reaction Kinetics of Stage III Recovery in Auminium After Neutron Irradiation,' Phys. Status Solidi, 18(1), 427-39 (1966).
- Herschbach, K. and Jackson, J.J., 'Recovery of Deuteron-Irradiated Gold, Aluminum, and Platinum,' Phys. Rev., 153(3), 694-700 (1967).
- 241 Herschbach, K. and Jackson, J.J., 'Radiation Annealing in Deuteron-Irradiated Gold, Aluminum, and Platinum,' Phys. Rev., 153(3), 689-93 (1967).
- 242 Sosin, A. and Garr, K.R., 'Recovery of Electron-Irradiated Aluminum and Aluminum Alloys. I. Stage I,' Phys. Rev., 161(3), 664-72 (1967).
- 243 Isebeck, K., Rau, F., Schilling, W., Sonnenberg, K., Tischer, P., and Wenzl, H., 'Stored Energy, Voume, and Resistivity Change in Neutron Irradiated Aluminium,' Phys. Status Solidi, 17(1), 259-68 (1966).
- 244 Peters, P.B. and Shearin, P.E., 'Electron Irradiation of Pure and Alloyed Aluminum Above Stage I,' Phys. Lett. A, 25(3), 267-8 (1967).
- Swanson, M.L., 'The Effects of Doping on Low Temperature Neutron-Irradiation Damage and Recovery in Aluminum and Platinum,' Phys. Status Solidi, 23(2), 649-61 (1967).
- 246 Lwin, Y.N., Doyama, M., and Koehler, J.S., 'Stage III Annealing Study of Electron-Irradiated Pure Aluminum,' Phys. Rev., 165(3), 787-99 (1968).
- Oworschak, F., Schuster, H., Wollenberger, H., and Wurm, J., 'The Influence of the Size Effect on Electrical Resistivity Measurements in Irradiated Metals,' Phys. Status Solidi, 21(2), 741-5 (1967).
- 248 Horak, J.A., Blewitt, T.H., and Fine, M.E., 'Effect of Neutron Irradiation at 4.5 K on Guinier-Preston Zone Formation in Aluminum Zinc Alloys,' J. Appl. Phys., 39(1), 326-35 (1968).
- Brugiere, R. and Lacasson, P., 'On the Stage III Recovery of Electron Irradiated Aluminum,' Phys. Status Solidi, 24(1), K77-81 (1967).
- 250 Peters, P.B. and Shearin, P.E., 'Recovery of Resistivity in Pure and Alloyed Aluminum in Stages II and III After 2-MeV Irradiation,' Phys. Rev., <u>174</u>(3), 691-700 (1968).
- 251 Schrank, J., Zehetbauer, M., Pfeiler, W., and Trieb, L., 'Effect of High Deformation on Electrical Resistivity in Pure Aluminum,' Scr. Met., 14(10). 1125-8 (1980).

- 252 Hassan, G.A. and Hammad, F.H., 'A Resistivity Decrement in Deformed Aluminum,' Phys. Status Solidi A, 37(2), K209-11 (1976).
- 253 Soliman, M.R., Hammad, F.H., and Hassan, G.A., 'Effect of Constant Load on Resistivity-Strain Relation of Pure Aluminum,' Phys. Status Solidi A, 4(2), E151-5 (1971).
- Hammad, F.H., Hassan, G.A., and Soliman, M.R., 'Effect of Combined Torsional and Tensile Stresses in Producing Large Strains and Electrical Resistivity Changes in High Purity Aluminum,' Aluminium, 49(4), 275-8 (1973).
- Bridgman, P.W., 'The Effect of Tension on the Transverse and Longitudinal Resistance of Metals,' Proc. Amer. Acad. Arts Sci., 60, 423-4 (1925).
- Martin, J.W., 'Electrical Resistivity Due to Structural Defects,' Philos. Mag., 24(189), 555-66 (1971).
- 257 Soliman, M.R., Hassan, G.A., and Hammad, F.H., 'Effects of Combined Torsional and Tensile Stress in Producing Large Strains and Electrical-Resistivity Changes in Aluminum of 99.7 Purity,' J. Inst. Metals, 99, 134-6 (1971).
- Martin, M.C. and Welton, K.F., 'The Change in Electrical Resistivity With Plastic Deformation of Aluminum and Nickel,' Acta Metall., 15, 571-3 (1967).
- Vol'skii, E.P., Levchenkova, L.G., and Petrashov, V.P., 'The DeHaas-Van Alphen Effect and Damping of Helicons During Plastic Deformation in Aluminum,' Zh. Eksp. Teor. Fiz., 65(1), 319-23 (1973); Sov. Phys.-JETP, 38(1), 156-7 (1974).
- Kino, T. and Maeta, H., 'Deformation and Electrical Resistivity Change of Aluminum Single Crystals,' J. Jpn. Inst. Metals, 850-6 (1968).
- Soliman, M.R., Hammad, F.H., and Hassan, G.A., 'Effect of Constant Load on Resistivity-Strain Relation of Pure Aluminum,' Phys. Status Solidi A, 4(2), K151-5 (1971).
- Dawson, H.I., 'Point Defects in Cyclicly Deformed Metals,' University of Washington Final Rept., Sept. 1, 1968 Dec. 31, 1971, on U.S. Army Contract No. DA-ARO-D-31-124-G1039, 24 pp. (1972). [AD 738 598]
- Takamura, M., Nakagawa, Y., and Yamada, T., 'Resistivity Change of Deformed Aluminum in the Vicinity of Grain Boundary,' Technol. Rep. Osaka Univ., 22(1027-52), 127-34 (1972).

- Sosin, A., 'The Electrical Resistivity of Cold-Worked Aluminum Single Crystals,' Illinois University Technical Rept. No. 3, February 1, 1953 May 1, 1954, on Contracts Nonr-1770 and DA 11-022-ORD-1212, 62 pp. (1954).

  [AD 33 016]
- <sup>265</sup>Clarebrough, L.M., Hargreaves, M.E., and Loretto, M.H., 'Stored Energy and Electrical Resistivity in Deformed Metals,' Philos. Mag., <u>6</u>(66), 807-10 (1961).
- Rider, J.G. and Foxon, C.T.B., 'An Experimental Determination of Electrical Resistivity of Dislocations in Aluminium,' Philos. Mag., 13(122), 289-303 (1966).
- Swanson, M.L., 'Low-Temperature Recovery of Deformed Aluminum,' Can. J. Phys., 42(10), 1890-901 (1964).
- 268 Holzhaeuser, W., 'Influence of Plastic Deformation on the Ideal Electrical and Thermal Resistances of Copper and Aluminum,' Cryogenics, 7(1), 18-20 (1967).
- Martin, M.C. and Welton, K.F., 'The Change in Electrical Resistivity With Plastic Deformation of Aluminum and Nickel,' Acta Metall., 15(3), 571-3 (1967).
- Chui, T., Lindenfeld, P., McLean, W.L., and Mui, K., 'Localization and Electron-Interaction Effects in the Magnetoresistance of Granular Aluminum,' Phys. Rev. Lett., 47(22), 1617-20 (1981).
- 271 Ueda, Y. and Kino, T., 'Anisotropy of the Apparent Resistivity in High-Purity Aluminum Single Crystals in Longitudinal Magnetic Fields,' J. Phys. Soc. Jpn., 48(5), 1601-6 (1980).
- Young, M., Gregory, E., Adam, E., and Marancik, W., 'Fabrication and Properties of an Aluminum-Stabilized Niobium Titanium Multifilament Superconductor,' Advan. Cryog. Eng., 24, 383-8 (1978).
- 273
  Sato, H., Yonemitsu, K., and Sakamoto, I., 'Magnetomorphic Oscillations in Aluminum Single Crystals,' J. Phys. Soc. Jpn., 42(2), 513-7 (1977).
- Delaney, J.A., 'Magnetoresistance of Aluminum Using Electrodeless Methods,' J. Phys. F, 4(2), 247-55 (1974).

- 275 Lutes, O.S. and Clayton, D.A., 'Longitudinal Magnetoresistance of Pure Aluminum Wires,' Phys. Rev., 138(5A), 1448-52 (1965).
- Purcell, J.R. and Payne, E.G., 'High-Field Liquid Hydrogen Cooled Aluminum-Wound Magnet,' Rev. Sci. Instrum., 34(8), 893-7 (1963).
- 277
  Brechna, H., 'Materials in Electromagnets and Their Properties,' Stanford
  Univ. Rept. Slac-Pub-320, 45 pp. (1967).
- 278 Ohta, M., Kanadani, T., and Sakakibara, A., 'Fluctuation of the Solute Concentration in Aluminum-Base Aluminum-Zinc Alloys,' Mem. Sch. Eng., Okayama Univ., 12, 59-75 (1978).
- DeSorbo, W., 'Quenched Imperfections and the Electrical Resistivity of Aluminum at Low Temperatures,' Phys. Rev., <u>111</u>(3), 810-2 (1957).
- Drapier, C., 'Some Metallurgical Aspects of Static and Continuous Heat

  Treatment of Aluminum and Aluminum Alloy Wire,' in <u>Proceedings of the 16th</u>

  <u>International Heat Treatment Conference</u>, The Metals Society, London, 123-7

  (1976).
- Murakami, H. and Yoshida, S., 'Annihilation Mechanism of Dislocations in Deformed Aluminium,' Cryst. Lattice Defects, 6(1-2), 89-94 (1975).
- Anand, M.S., Pande, B.M., and Agarwala, R.P., 'Binding Energy Measurements in the Aluminum-Cobalt System,' Indian J. Pure Appl. Phys., 12(10), 689-91 (1974).
- Weyerer, H., 'The Change of the Electrical Resistance by Cold Working,' Z. Metallkd., 44, 51-8 (1953).
- 284
  Kabemoto, S., 'Automatic Record of Small Amount of Electrical Resistance Change of Material,' Jpn. J. Appl. Phys., 10(9), 1251-5 (1971).
- Peiffer, H.R. and Stevenson, F., 'Cold Work and Subsequent Electrical Resistivity Increases in Pure Aluminum,' Acta Metall., 8, 494-5 (1960).
- Panseri, C., Gatto, F., and Federighi, T., 'The Quenching of Vacancies in Aluminum,' Acta Metall., 5, 50-2 (1957).
- DeSorbo, W. and Turnbull, D., 'Quenching of Imperfections in Aluminum,' Acta Metall., 7, 83-5 (1959).

- <sup>288</sup>Kiritani, M., Murakami, H., Yoshinaka, A., Sato, A., and Yoshida, S.,

  'Second Order Electrical Resistivity Decay in Quenched Aluminum,' J. Phys.

  Soc. Jpn., <u>29</u>(6), 1494-9 (1970).
- Panseri, C. and Federighi, T., 'Isochronal Annealing of Vacancies in Aluminium,' Philos. Mag., 3, 1223-40 (1958).
- Kirichenko, V.V. and Chernikov, V.N., 'Changes in the Electrical Resistivity of Quenched Aluminum During Annealing,' Fiz. Tverd. Tela (Leningrad), 15(9), 2792-4 (1973); Engl. transl.: Sov. Phys.-Solid State, 15(9), 1859-60 (1974).
- Cheung, J. and Ashcroft, N.W., 'Aluminum Under High Pressure. II. Resistivity,' Phys. Rev. B, 20(8), 2991-8 (1979).
- 292 Cheung, J. and Ashcroft, N.W., 'Resistivity of Liquid Metals Under Elevated Pressure,' Phys. Rev. B, 18(2), 559-68 (1978).
- Classon, A. and Larsson, R., 'On the Pressure Dependence of the Electrical Conductivity of Aluminium,' Phys. Status Solidi B, 69(1), 285-9 (1975).
- Bridgman, P.W., 'The Pressure Coefficient of Resistance of Fifteen Metals

  Down to Liquid Oxygen Temperatures,' Proc. Amer. Acad. Arts Sci., 67, 305-44

  (1932).
- Bridgman, P.W., 'The Effect of Pressure on the Electrical Resistance of Cobalt, Aluminum, Nickel, Uranium, and Cesium,' Proc. Amer. Acad. Arts Sci., 58, 151-61 (1923).
- Bridgman, P.W., 'The Electrical Resistance of Metals Under Pressure,' Proc. Amer. Acad. Arts Sci., <u>52</u>, 573-646 (1917).
- Adamu, K.G. and Grassie, A.D.C., 'The Anomalous Low-Temperature Resistivity of Thin Films of Manganese,' Inst. Phys. Conf. Ser. No. 39, Chap. 3, 200-4 (1978).
- Levin, E.S., Zamarayev, V.N., and Gel'd, P.V., 'Coefficients of Viscosity, Self-Diffusion and Specific Electrical Resistivity of Liquid Manganese,' Izv. Akad. Nauk SSSR, Met., 2, 113-6 (1976); Engl. tansl.: Russ. Metall., 2, 86-9 (1976).
- Butylenko, A.K. and Kobzenko, N.S., 'Effect of Chromium and Iron on the Neel Temperature of Alpha-Manganese,' Metallofizika, 66, 76-8 (1976).

- Nagasawa, H. and Senba, M., 'T2-Dependence in Resistivity of Alpha-Manganese Alloys Below Neel Temperature,' J. Phys. Soc. Jpn., 3(1), 70-5 (1975).
- Akshentsev, Yu.N., Baum, B.A., and Gel'd, P.V., 'Electrical Resistivity of Manganese and Its Alloys With Iron in the Solid and Liquid States,' Izv. Akad. Nauk SSSR, Met., 4, 177 (1969); Engl. transl.: Russ. Metall., 4, 114-8 (1969).
- 302 Meaden, G.T. and Pelloux-Gervais, P., 'The Hall Effect, Magnetoresistivity, and Magnetic Susceptibility of Alpha-Manganese at Low Temperatures,' Cryogenics, 7(3), 161-6 (1967).
- Meaden, G.T., 'An Alpha-Manganese Resistance Thermometer for the Measurement of Low Temperatures,' Cryogenics, 6(15), 275-8 (1966).
- Meaden, G.T. and Pelloux-Gervais, P., 'The Electrical Resistivity of Alpha-Manganese Between 2 and 325 K,' Cryogenics, 5(4), 227-8 (1965).
- 305 Vostryakov, A.A., Vatolin, N.A., and Esin, O.A., 'Viscosity and Electrical Resistivity of Melts of Manganese With Silicon, Iron, and Carbon,' Zh. Neorg. Khim., 2(8), 1911-4 (1964); Engl. transl.: Russ. J. Inorg. Chem., 2(8), 1034-6 (1964).
- 306
  Bellau, R.V. and Coles, B.R., 'Magnetic Brillouin Zone Effects in the Electrical Resistivity of Manganese and Some Manganese Alloys,' Proc. Phys. Soc., London, 82(525), 121-6 (1963).
- White, G.K. and Woods, S.B., 'Conductivity of Alpha-Manganese,' Can. J. Phys., 35(3), 346-8 (1957).
- 308 Grube, G. and Speidel, H., 'The Electrodeless Measurement of the Electrical Resistivity of Metals and Alloys at High Temperature. The Electrical Resistivity of Manganese,' Z. Elektrochem., 46(3), 233-42 (1940).
- Kearsey, H.A., 'Preliminary Experiments on the Rheology of Thoria Slurries,'
  Atomic Energy Research Establishment, Chemical Engineering Div. Memo,
  AERE CE/M 186, 7 pp. (1956). [AD 113 720]
- Murayama, S. and Nagasawa, H., 'Magnetoresistance in Antiferromagnetic Alpha-Manganese Metal,' J. Phys. Soc. Jpn., 43(4), 1216-23 (1977).
- Brunke, F., 'Investigations on Pure Alpha, Beta- and Gamma Manganese,' Ann. Phys. (Leipzig), 21(5), 139-68 (1934).

- Potter, H.H., Lukens, H.C., and Guber, R.H., 'Transformation of Gamma to Alpha Manganese,' Trans. Met. Soc. AIME, <u>185</u>, 399-404 (1949).
- 313 Erfling, H.D., 'Change in Thermal Expansion and The Electric Resistance of Gamma-Manganese With the Transition to Alpha-Phase,' Ann. Phys. (Leipzig), 37(5), 162-8 (1940).
- Touloukian, Y.S. and Ho, C.Y., Editors, <u>Properties of Selected Ferrous</u>

  Alloving Elements, Vol. III-1 of <u>McGraw-Hill/CINDAS Data Series on Material</u>

  Properties, McGraw-Hill Book Co., New York, NY, Chap. 5, 149-81 (1981).
- 315 Stewart, R.B. and Johnson, V.J., 'A Compendium of the Properties of Materials at Low Temperature (Phase),' U.S. Air Force Rept. WADD-TR-60-56, Pt. IV, 501 pp. (1961).
- 316 Coles, B.R., 'Spin-Disorder Effects in the Electrical Resistivities of Metals and Alloys,' Adv. Phys., 1, 40-71 (1958).
- 317 Mekata, M., Nakahashi, Y., and Yamaoka, T., 'Magnetic Properties of Alpha and Beta Manganese Containing 1 Atomic Transition Metals,' J. Phys. Soc. Jpn., 37(6), 1509-11 (1974).
- 318 Mindyuk, A.K., 'Dependence of Electrical Resistance and Nature of Conduction of Metals on Their Electronic Structure and Deformation,' Fiz.-Khim. Mekh. Mater., 10(2), 38-43 (1974); Engl. transl.: Sov. Mater. Sci., 10(2), 148-52 (1974).
- Dubinin, E.L., Esin, O.A., and Vatolin, N.A., 'Electrical Resistivity of Liquid Palladium-Nickel, Palladium-Cobalt, Palladium-Copper, Palladium-Iron, Palladium-Manganese, and Palladium-Aluminum Alloys,' Russ. J. Phys. Chem., 43(10), 1463-5 (1969).
- Touloukian, Y.S., Editor, <u>Thermophysical Properties of High Temperature</u>

  <u>Solid Materials. Volume 1: Elements</u>, MacMillan Co., New York, NY, 1152 pp. (1967).
- Wright, J.G., 'Amorphous Transition Metal Films,' IEEE Trans. Magn., MAG-12(2), 95-102 (1976).
- 322 Hirata, K., Waseda, Y., Jain, A., and Srivastava, R., 'Resistivity of Liquid Transition Metals and Their Alloys Using the T Matrix,' J. Phys. F, 7(3), 419-25 (1977).

- Dunleavy, H.N. and Jones, W., 'Multiple Scattering Calculations of the Resistivity of Liquid Transition Metals,' J. Phys. F, 8(7), 1477-82 (1978).
- 324 Bacon, F.E., 'Manganese and Manganese Alloys,' Encycl. Chem. Technol., 12, 887-905 (1967).
- 325 Busch, G., Guentherodt, H.J., Kuenzi, H.U., and Meier, H.A., 'Electronic Structure of Liquid Transition and Rare Earth Metals and Their Alloys,' in Proceedings of the 2nd International Conference on the Properties of Liquid Metals (Takeuchi, S., Editor), Taylor and Francis, London, England, 2630-76 (1973).
- 326 Hust, J.G. and Sparks, L.L., 'Lorenz Ratios of Technically Important Metals and Alloys,' NBS Rept. NBS-TN-634, 133 pp. (1973). [N73-21451]
- 327 Leung, P.K., Slechta, J., and Wright, J.G., 'Kondo Effect in Structurally Disordered Single Element Magnetic Materials,' J. Phys. F, 4(2), L21-3 (1974).
- 328 Wigley, D.A., 'Low Temperature Properties of Transuranic and Other Heavy Metals,' University of Oxford, Ph.D. Thesis, 162 pp. (1964). [AERE-X-PR-2596-9]
- Meissner, W. and Voigt, B., 'Measurements With the Aid of Liquid Helium.

  XI. Resistance of Pure Metals at Low Temperatures,' Ann. Phys. (Leipzig),

  7(7), Pt. 5, 761-97, 892-936 (1930).
- Hall, L.A. and Germann, F.E.E., 'Survey of Electrical Resistivity Measurements on 8 Additional Pure Metals in the Temperature Range 0 to 273 K,' Natl. Bur. Stand., Tech. Note 365-1, 85 pp. (1970).
- Potter, E.V., Lukens, H.C., and Huber, R.W., 'Transformation of Gamma to Alpha Manganese,' Trans. Metall. Soc. AIME, 185, 399-404 (1949).
- Nagasawa, H. and Senba, M., 'Resistance Anomalies of Alpha-Manganese Alloys Below Neel Temperature,' Proc. Int. Conf. Low Temp. Phys., 14th, 3, 394-7 (1975).
- Morkorvsky, H.P. and Regel, A.R., 'Electrical Resistivity of Liquid Metals,' Zh. Tekh. Fiz., 23(12), 2121-5 (1953).
- Williams, W., Jr. and Stanford, J.L., 'Antiferromagnetism of the Alpha-Manganese System,' J. Magn. Magn. Mater., 1(4), 271-85 (1976).

- 335Guntherodt, H.J., Kunzi, H.U., Liard, M., Muller, R., Oberle, R., and Rudin, H., 'Electrical Transport in Amorphous and Liquid Transition Metal Alloys,' Inst. Phys. Conf. Ser., 30, 342-51 (1976).
- Waseda, Y. and Wright, J.G., 'Resistivity of Amorphous Transition Elements,'
  Phys. Status Solidi B, 81(1), K37-40 (1977).
- Rare Earth Metals, J. Phys. Lett. (Orsay, Fr.), 40(3), L45-8 (1979).
- Fischer, G. and Pearson, W.B., 'The Electrical Conductivity of Manganese Arsenide and Antimonide,' Can. J. Phys., 36(8), 1010-6 (1958).
- Sato, H. and Arrott, A., 'Magnetic Interactions Between Manganese Atoms in Metals,' J. Phys. Soc. Jpn., 17, Suppl. B-I, 147-51 (1962).
- 340 Stewart, R.B. and Johnson, V.J., 'A Compendium of the Properties of Materials at Low Temperature Phase II,' U.S. Air Force Rept. WADD-TR-60-56 (1961). [AD 272 769]
- 341 Mendelssohn, K. and Wigley, D.A., 'The Effect of Proton Irradiation at Low Temperatures on the Resistance of Alpha-Manganese,' Phys. Lett., 20(5), 483-5 (1966).
- 342 Beynon, J. and Olumekor, L., 'Variation of the Resistivity of Evaporated Manganese and Manganese/Magnesium Fluoride Thin Films With the Ratio Deposition Rate: Residual Gas Pressure,' Thin Solid Films, 41(1), L1-2 (1977).
- 343 Grassie, A.D.C. and Boakye, F., 'The Low Temperature Resistivity of Alpha-Manganese Films and Its Relationship to Deposition Conditions,' Thin Solid Films, 57(1), 169-72 (1979).
- 344 Castro, E.M. and Beynon, J., 'Annealing Behavior of Manganese and Manganese-Silicon Monoxide Thin Films,' Thin Solid Films, 66(2), L19-20 (1980).
- 345 Shivaprasad, S.M., Ashrit, P.V., and Angadi, M.A., 'Electrical Properties of Vacuum Evaporated Thin Manganese Films,' Phys. Status Solidi A, 60(2), K159-61 (1980).
- 346 Grassie, A.D.C. and Adam, K.G., 'The Anomalous Low-Temperature Resistivity of Mn Films,' Solid State Commun., 24(4), 345-7 (1977).
- 347 Olumekor, L. and Beynon, J., 'On the Resistivity-Temperature Variation of Manganese and Manganese-Magnesium Fluoride Thin Films,' Thin Solid Films, 53(2), L9-11 (1978).

- 348 Shivaprasad, S.M., Angadi, N.A., and Udachan, L.A., 'Temperature Coefficient of Resistance of Thin Manganese Films,' Thin Solid Films, 71(1), L1-4 (1980).
- 349 Shivaprasad, S.M. and Angadi, M.A., 'The Effect of Deposition Rate on the Electrical Resistivity of Thin Manganese Films,' J. Phys. D, 13(8), L157-9 (1980).
- 350 Beynon, J. and Olumekor, L., 'Variation of Resistivity With Deposition Rate for Pure Manganese and Manganese/Magnesium Fluoride Cermet Films,' Thin Solid Films, 41(1), 29-33 (1977).
- 351 Beynon, J. and Olumekor, L., 'Variation of the Resistivity of Evaporated Manganese and Manganese/Magnesium Fluoride Thin Films With the Ratio Deposition Rate: Residual Gas Pressure,' Thin Solid Films, 41(1), L1-2 (1977).
- 352Bridgman, P.W., 'The Resistance of 72 Elements, Alloys and Compounds to 100,000 kg/cm,' Proc. Amer. Acad. Arts Sci., 81(4), 165-251 (1952).
- <sup>353</sup>Bridgman, P.W., 'The Compressibility and Pressure Coefficient of Resistance of Several Elements and Single Crystals,' Proc. Amer. Acad. Arts Sci., <u>64</u>, 51-73 (1929).
- 354 Mori, N. and Mitsui, T., 'Effect of Hydrostatic Pressure on the Neel Temperature and the Electrical Residual Resistivity of Alpha-Manganese,' Phys. Lett. A, 39(5), 413-4 (1972).
- 355 Mori, N., 'Effect of Pressure on the Neel Temperature and the Electrical Resistivity of α-Mn and α-Mn<sub>0.92</sub>Fe<sub>0.08</sub> Alloy,' J. Phys. Soc. Jpn., <u>37</u>(5), 1285-90 (1974).
- 356 Touloukian, Y.S., Powell, R.W., Ho, C.Y., and Klemens, P.G., Thermal Conductivity Metallic Elements and Alloys, Vol. 1 of Thermophysical Properties of Matter The TPRC Data Series, IFI/Plenum Data Corp., New York, 1595 pp. (1970).
- Laws, F.A., <u>Electrical Measurements</u>, 2nd Edition, McGraw-Hill Book Co., Inc., New York, 739 pp. (1938).
- 358 Harris, F.K., <u>Electrical Measurements</u>, John Wiley and Sons, Inc., New York, 784 pp. (1952).

- Meaden, G.T., <u>Electrical Resistance of Metals</u>, Plenum Press, New York, 218 pp. (1965).
- Van der Pauw L.J., 'A Method of Measuring Specific Resistivity and Hall Effect of Discs of Arbitrary Shape,' Philips Res. Rep., 13, 1-9 (1958).
- <sup>361</sup>Van der Pauw, L.J., 'A Method of Measuring the Resistivity and Hall Coefficient on Lamellae of Arbitrary Shape,' Philips Tech. Rev., <u>20</u>(8), 220-4 (1958-9).
- Taylor, R.E. and Groot, H., 'Operating Manual for Kohlrausch Apparatus,'
  Thermophysical Properties Research Laboratory Rept. TPRL 291, 11 pp., 1978.
- 363 Taylor, R.E., 'A Description of the Thermophysical Properties Research Laboratory,' Thermophysical Properties Research Laboratory Rept. TPRL 181 (Revised), 72 pp., 1982.
- 364 Radenac, A., Lacoste, M., and Roux, C., 'Apparatus Meant for the Measurement of the Electrical Resistivity of Metals and Alloys by the Method of the Rotating Field Up to About 2000 K,' Rev. Int. Hautes Temp. Refract., 7(4), 389-96 (1970).

