Problem 1.2 - Uncertainty Analysis (Case A)

Get["UCAnalysis.m", Path → {NotebookDirectory[]}]

$$\frac{\ell_{v}}{c_{p}} \ \text{Log} \Big[1 + \frac{\Delta m}{\rho \ V} \Big] \quad \mapsto \quad \begin{pmatrix} \ell_{v} & 2.260 \times 10^{3} \pm 0.005 \times 10^{3} & \text{Uniform} \mathcal{D} \\ c_{p} & 4.19 \pm 0.005 & \text{Uniform} \mathcal{D} \\ \Delta m & -500 \times 10^{-6} \pm 0.5 \times 10^{-6} & \text{Uniform} \mathcal{D} \\ \rho & 998 \pm 0.5 & \text{Uniform} \mathcal{D} \\ V & 200 \times 10^{-6} \pm 0.5 \times 10^{-6} & \text{Uniform} \mathcal{D} \end{pmatrix}$$

Evaluated Functional Relationship

QAnalysisEnvironment

$$y = \frac{\text{Log}\left[1 + \frac{\mathbf{x}_3}{\mathbf{x}_4 \, \mathbf{x}_5}\right] \, \mathbf{x}_1}{\mathbf{x}_2}$$

Vari	able	Uncertainty Interval	Distribution	∂f/∂x _i
x ₁	ℓ _v	$(2.260 \pm 0.005) \times 10^{3}$ $(4.190 \pm 0.005) \times 10^{0}$	Uniform	5.98604×10^{-4} 3.22875×10^{-1}
x ₂ x ₃	C _p Δm	$(4.190 \pm 0.005) \times 10^{-4}$	Uniform Uniform	2.70909×10^3
x ₄ x ₅	ρ V	$(9.980 \pm 0.005) \times 10^{2}$ $(2.000 \pm 0.005) \times 10^{-4}$	Uniform Uniform	1.35726×10^{-3} 6.77272×10^{3}

У	-1.35284614422463	
Ymin Ymax	-1.36291174114087 -1.34285918927409	= y - 0.0100656 = y + 0.00998695
ε_{max} y ± ε_{max}	0.0100269311192552 (-1.35 ± 0.01) × 10°	= -0.741 % = -1.35(1)
u _c y ± u _c	$\begin{array}{c} 0.00290557817012747 \\ \left(-1.353 \pm 0.003\right) \times 10^{0} \end{array}$	= -0.215 % = -1.353(3)

Absolute Maximum Uncertainty

$$\varepsilon_{\text{max}} = \sum_{i=1}^{n} |\partial_{x_i} f[x]| \varepsilon_i; f[x] \pm \varepsilon_{\text{max}} // \text{QUCE}$$

```
-1.35284614422463 \pm 0.0100269
\in [-1.36287; -1.34282]
\approx (-1.35 \pm 0.01) \times 10^{0} = -1.35(1)
```

Combined Standard Uncertainty

$$u_c = \left(\sum_{i=1}^{n} (\partial_{x_i} f[x])^2 u_i^2\right)^{1/2}; f[x] \pm u_c // QUCA$$

```
-1.35284614422463 \pm 0.00290558
\in [-1.355752; -1.349941]
\simeq (-1.353 \pm 0.003) \times 10^{0} = -1.353(3)
```

Monte Carlo Simulation

```
Block \left\{ data, trials = 10^6 \right\},
  data = f@@ Table[RandomReal[fDist[i], {trials}], {i, 1, n}];
  Mean[data] ± StandardDeviation[data] ] // QUCA
   -1.35284843192771 ± 0.00290781
    ∈ [-1.355756; -1.349941]
   \simeq (-1.353 \pm 0.003) \times 10^{0} = -1.353(3)
```