int_deepmreye

By: Sina KLING

Project : int_deepmreye

With: Matthias NAU, Martin SZINTE

Version: 0.1

nature neuroscience

Magnetic resonance-based eye tracking using deep neural networks

Markus Frey

Matthias Nau

& Christian F. Doeller

DeepMReye

[1]

Training process

Trained initially on 3T data from 268 participants. Includes guided fixation, pursuit and visual search tasks

Fine-Tuning Data & Task-Specific Adaptation

Dataset: Dataset of 15 subjects collected at CERIMED (MB4, 2mm isotropic, 1.2 sec TR, whole head 60 slices, AP)

Preprocessing mri data: fmri prep standard pipeline

Labels: Gaze positions were recorded with an Eyelink 1000 eye-tracker. Only TRs with more than 50% still remaining data after blink removal were downsampled (median of 10 bins) to subTR resolution (10 per TR)

Performance

Performance

Results

Guided Fixation

Pursuit

Results

Guided Fixation

Pursuit

Implementation Guide

https://github.com/sinaklg/int_deepmreye/blob/main/int_deepmreye.py

What is needed for decoding gaze with int_deepmreye?

- 1. BOLD timeseries (4D nii.gz) preprocessed and registered to individual Tlw structural scans using fmriprep. Need to be head motion corrected. Need to have eyeballs fully scanned.
- 2. Downloaded weights (int_deepmreye_weights.h5)

Troubleshooting & Limitations

Troubleshooting

Check registrations to eye voxel masks (reports)

Model limitations

- Best performance for guided fixation and pursuit tasks.
 For steady fixation and freeviewing consider additional fine-tuning
- Output resolution is maximum 10*TR. To get highest accuracy it is recommended to use 1*TR predictions