Convex cocompact subgroups of the Goeritz group

Bena Tshishiku
AMS Sectional, GaTech
3/18/2023

I. The Goeritz group

Definition

$$S^3 = V \cup_{S_g} W$$
genus-
g Heegaard splitting

Definition

 $S^3 = V \cup_{S_g} W$ genus-g Heegaard splitting

 $\operatorname{Homeo}^+(S^3, V \cup_{S_g} W) := \operatorname{homeos} \text{ of } S^3 \text{ that preserve } V$

Definition

 $S^3 = V \cup_{S_g} W$ genus-g Heegaard splitting

 $\operatorname{Homeo}^+(S^3, V \cup_{S_g} W) := \operatorname{homeos} \text{ of } S^3 \text{ that preserve } V$

$$\mathbb{G}_g := \pi_0 \big(\mathrm{Homeo}^+(S^3, V \cup_{S_g} W) \big)$$

Definition

 $S^3 = V \cup_{S_g} W$ genus-g Heegaard splitting

 $\operatorname{Homeo}^+(S^3, V \cup_{S_g} W) := \operatorname{homeos} \text{ of } S^3 \text{ that preserve } V$

 $\mathbb{G}_g := \pi_0 \big(\mathrm{Homeo}^+(S^3, V \cup_{S_g} W) \big)$

Perspectives (braid theory, subgroup of $Mod(S_g)$)

Definition

 $S^3 = V \cup_{S_g} W$ genus-g Heegaard splitting Homeo⁺ $(S^3, V \cup_{S_g} W) := \text{homeos of } S^3 \text{ that preserve } V$ $\mathbb{G}_g := \pi_0 \big(\text{Homeo}^+(S^3, V \cup_{S_g} W) \big)$

Perspectives (braid theory, subgroup of $Mod(S_g)$)

 $\bullet \ \operatorname{Homeo}^+(S^3, V \cup_{S_g} W) \to \operatorname{Homeo}^+(S^3) \to \operatorname{Conf}_0(V, S^3)$

Definition

 $S^3 = V \cup_{S_g} W$ genus-g Heegaard splitting Homeo⁺ $(S^3, V \cup_{S_g} W) := \text{homeos of } S^3 \text{ that preserve } V$ $\mathbb{G}_g := \pi_0 \big(\text{Homeo}^+(S^3, V \cup_{S_g} W) \big)$

Perspectives (braid theory, subgroup of $Mod(S_g)$)

• Homeo⁺($S^3, V \cup_{S_g} W$) \to Homeo⁺(S^3) \to Conf₀(V, S^3) \to 1 $\to \mathbb{Z}/2\mathbb{Z} \to \pi_1 \left(\operatorname{Conf}_0(V, S^3) \right) \to \mathbb{G}_{\varrho} \to 1$

Definition

 $S^3 = V \cup_{S_g} W$ genus-g Heegaard splitting Homeo⁺ $(S^3, V \cup_{S_g} W) := \text{homeos of } S^3 \text{ that preserve } V$ $\mathbb{G}_{\varrho} := \pi_0 \big(\text{Homeo}^+(S^3, V \cup_{S_g} W) \big)$

Perspectives (braid theory, subgroup of $Mod(S_g)$)

- Homeo⁺ $(S^3, V \cup_{S_g} W) \to \text{Homeo}^+(S^3) \to \text{Conf}_0(V, S^3)$ $\longrightarrow 1 \to \mathbb{Z}/2\mathbb{Z} \to \pi_1\left(\text{Conf}_0(V, S^3)\right) \to \mathbb{G}_g \to 1$
- Homeo $(V, \partial V)^2 \to \operatorname{Homeo}^+(S^3, V \cup_{S_g} W) \to \operatorname{Homeo}^+(S_g)$

Definition

 $S^3 = V \cup_{S_g} W$ genus-g Heegaard splitting Homeo⁺ $(S^3, V \cup_{S_g} W) := \text{homeos of } S^3 \text{ that preserve } V$ $\mathbb{G}_g := \pi_0 \big(\text{Homeo}^+(S^3, V \cup_{S_g} W) \big)$

Perspectives (braid theory, subgroup of $Mod(S_g)$)

- Homeo⁺(S^3 , $V \cup_{S_g} W$) \rightarrow Homeo⁺(S^3) \rightarrow Conf₀(V, S^3) •• 1 $\rightarrow \mathbb{Z}/2\mathbb{Z} \rightarrow \pi_1 \left(\operatorname{Conf}_0(V, S^3) \right) \rightarrow \mathbb{G}_{\varrho} \rightarrow 1$
- Homeo $(V, \partial V)^2 \to \operatorname{Homeo}^+(S^3, V \cup_{S_g} W) \to \operatorname{Homeo}^+(S_g)$
 - $\twoheadrightarrow \mathbb{G}_g \hookrightarrow \mathrm{Mod}(S_g)$ intersection of handlebody groups

 $S^3 = V \cup_{S_g} W$ genus-g Heegaard splitting

 $\mathbb{G}_{g} < \operatorname{Mod}(S_{g})$ mapping classes that extend to V and W

 $S^3 = V \cup_{S_g} W$ genus-g Heegaard splitting

 $\mathbb{G}_{g} < \operatorname{Mod}(S_{g})$ mapping classes that extend to V and W

<u>Dehn twists</u> T_c when $c \subset S_g$ bounds disk in V and W

 $S^3 = V \cup_{S_g} W$ genus-g Heegaard splitting

 $\mathbb{G}_g < \operatorname{Mod}(S_g)$ mapping classes that extend to V and W

<u>Dehn twists</u> T_c when $c \subset S_g$ bounds disk in V and W

Braid moves: rotation, handle half-twist, handle swap, handle slide, handle threading

 $S^3 = V \cup_{S_g} W$ genus-g Heegaard splitting

 $\mathbb{G}_g < \operatorname{Mod}(S_g)$ mapping classes that extend to V and W

<u>Dehn twists</u> T_c when $c \subset S_g$ bounds disk in V and W

Braid moves: rotation, handle half-twist, handle swap, handle slide, handle threading

Conjecture (Powell 1977) \mathbb{G}_g finitely generated by braid moves.

True for g = 2,3 (Goeritz 1933, Scharlemann-Freedman 2018)

Theorem (Goeritz 1933, Scharlemann 2004)

 \mathbb{G}_2 is generated by

Theorem (Goeritz 1933, Scharlemann 2004)

 \mathbb{G}_2 is generated by

Theorem (Akbas, Cho 2008) \mathbb{G}_2 is finitely presented.

Theorem (Goeritz 1933, Scharlemann 2004)

 \mathbb{G}_2 is generated by

Theorem (Akbas, Cho 2008) \mathbb{G}_2 is finitely presented.

$$\mathbb{G}_{2} \cong \begin{bmatrix} (\mathbb{Z}_{2} \times \mathbb{Z}) \rtimes \mathbb{Z}_{2} \end{bmatrix} *_{\mathbb{Z}_{2} \times \mathbb{Z}_{2}} (S_{3} \times \mathbb{Z}_{2})$$

$$\alpha \quad \beta \quad \gamma \quad \alpha \quad \beta \quad \gamma, \delta \quad \alpha$$

The story doesn't end with a finite presentation...

The story doesn't end with a finite presentation...

Focus of this talk: Geometry and topology of \mathbb{G}_2

The story doesn't end with a finite presentation...

Focus of this talk: Geometry and topology of \mathbb{G}_2

1. Nielsen-Thurston classification for \mathbb{G}_2

The story doesn't end with a finite presentation...

Focus of this talk: Geometry and topology of \mathbb{G}_2

- 1. Nielsen-Thurston classification for \mathbb{G}_2
- 2. Purely pseudo-Anosov subgroups of \mathbb{G}_2

The story doesn't end with a finite presentation...

Focus of this talk: Geometry and topology of G₂

- Nielsen-Thurston classification for G₂
 Purely pseudo-Anosov subgroups of G₂

Yes, $\phi \in \mathbb{G}_2$ is a product of $\alpha, \beta, \gamma, \delta$, but how does ϕ act on S_g (or S^3)?

II. Nielsen-Thurston classification for \mathbb{G}_2

 $S^3 = V \cup_{S_g} W$ genus-2 Heegaard splitting

 $\mathbb{G}_{\varrho}<\operatorname{Mod}(S_{\varrho})$ mapping classes that extend to V and W

 $S^3 = V \cup_{S_g} W$ genus-2 Heegaard splitting

 $\mathbb{G}_g < \operatorname{Mod}(S_g)$ mapping classes that extend to V and W

Theorem (Nielsen-Thurston)

 $S^3 = V \cup_{S_g} W$ genus-2 Heegaard splitting

 $\mathbb{G}_{g} < \operatorname{Mod}(S_{g})$ mapping classes that extend to V and W

Theorem (Nielsen-Thurston)

 $\phi \in \operatorname{Mod}(S_g)$ is either finite order, reducible, or pseudo-Anosov.

 $S^3 = V \cup_{S_g} W$ genus-2 Heegaard splitting

 $\mathbb{G}_g < \operatorname{Mod}(S_g)$ mapping classes that extend to V and W

Theorem (Nielsen-Thurston)

 $\phi \in \operatorname{Mod}(S_g)$ is either finite order, reducible, or pseudo-Anosov.

Question (Reducible in \mathbb{G}_g) Which multicurves are canonical reduction systems for reducible $\phi \in \mathbb{G}_g$? (CRS = intersection of maximal RS.) Which subsurfaces support pseudo-Anosovs?

 $S^3 = V \cup_{S_2} W$ genus-2 Heegaard splitting

 $\mathbb{G}_2 < \operatorname{Mod}(S_2)$ mapping classes that extend to V and W

 $S^3 = V \cup_{S_2} W$ genus-2 Heegaard splitting

 $\mathbb{G}_2 < \operatorname{Mod}(S_2)$ mapping classes that extend to V and W

<u>Definition</u> Say $c \subset S_2$ is

 $S^3 = V \cup_{S_2} W$ genus-2 Heegaard splitting $\mathbb{G}_2 < \operatorname{Mod}(S_2)$ mapping classes that extend to V and W

<u>Definition</u> Say $c \subset S_2$ is

• reducing if bounds disk in both V and W

 $S^3 = V \cup_{S_2} W$ genus-2 Heegaard splitting $\mathbb{G}_2 < \operatorname{Mod}(S_2)$ mapping classes that extend to V and W

<u>Definition</u> Say $c \subset S_2$ is

- reducing if bounds disk in both V and W
- primitive if bounds $D^2 \subset V$, part of basis for $\pi_1(W) \cong F_2$.

 $S^3 = V \cup_{S_2} W$ genus-2 Heegaard splitting

 $\mathbb{G}_2 < \operatorname{Mod}(S_2)$ mapping classes that extend to V and W

<u>Definition</u> Say $c \subset S_2$ is

- reducing if bounds disk in both V and W
- primitive if bounds $D^2 \subset V$, part of basis for $\pi_1(W) \cong F_2$.

Thurston pseudo-Anosov test

Question (pA in \mathbb{G}_g) How to tell if $\phi \in \mathbb{G}_g$ is pseudo-Anosov?

Question (pA in \mathbb{G}_g) How to tell if $\phi \in \mathbb{G}_g$ is pseudo-Anosov?

Theorem (Thurston, pseudo-Anosov test)

Question (pA in \mathbb{G}_g) How to tell if $\phi \in \mathbb{G}_g$ is pseudo-Anosov?

Theorem (Thurston, pseudo-Anosov test) $a, b \subset S_{\varrho}$ filling pair, $\phi \in \langle T_a, T_b \rangle \subset \operatorname{Mod}(S_{\varrho})$

Question (pA in \mathbb{G}_g) How to tell if $\phi \in \mathbb{G}_g$ is pseudo-Anosov?

Theorem (Thurston, pseudo-Anosov test)

 $a,b\subset S_g$ filling pair, $\phi\in\langle T_a,T_b\rangle\subset\operatorname{Mod}(S_g)$

Define $\rho: F_2 \cong \langle T_a, T_b \rangle \to \mathrm{PSL}_2(\mathbb{R})$ by

Question (pA in \mathbb{G}_g) How to tell if $\phi \in \mathbb{G}_g$ is pseudo-Anosov?

Theorem (Thurston, pseudo-Anosov test)

$$a,b\subset S_g \text{ filling pair, } \phi\in\langle T_a,T_b\rangle\subset\operatorname{Mod}(S_g)$$

Define
$$\rho: F_2 \cong \langle T_a, T_b \rangle \to \mathrm{PSL}_2(\mathbb{R})$$
 by

$$\rho(T_a) = \begin{pmatrix} 1 & i \\ 0 & 1 \end{pmatrix}, \ \rho(T_b) = \begin{pmatrix} 1 & 0 \\ -i & 1 \end{pmatrix}, \text{ where } i = i(a, b).$$

Question (pA in \mathbb{G}_g) How to tell if $\phi \in \mathbb{G}_g$ is pseudo-Anosov?

Theorem (Thurston, pseudo-Anosov test)

 $a,b\subset S_g \text{ filling pair, } \phi\in\langle T_a,T_b\rangle\subset\operatorname{Mod}(S_g)$

Define $\rho: F_2 \cong \langle T_a, T_b \rangle \to \mathrm{PSL}_2(\mathbb{R})$ by

$$\rho(T_a) = \begin{pmatrix} 1 & i \\ 0 & 1 \end{pmatrix}, \ \rho(T_b) = \begin{pmatrix} 1 & 0 \\ -i & 1 \end{pmatrix}, \text{ where } i = i(a, b).$$

 ϕ is pseudo-Anosov $\Leftrightarrow \rho(\phi)$ hyperbolic.

 $S^3 = V \cup_{S_2} W$ genus-2 Heegaard splitting

 $\mathbb{G}_2 < \operatorname{Mod}(S_2)$ mapping classes that extend to V and W

 $S^3 = V \cup_{S_2} W$ genus-2 Heegaard splitting $\mathbb{G}_2 < \operatorname{Mod}(S_2)$ mapping classes that extend to V and W

Theorem (T) $\phi \in \mathbb{G}_2 < Mod(S_2)$ is pseudo-Anosov \iff

 $S^3 = V \cup_{S_2} W$ genus-2 Heegaard splitting $\mathbb{G}_2 < \operatorname{Mod}(S_2)$ mapping classes that extend to V and W

Theorem (T) $\phi \in \mathbb{G}_2 < Mod(S_2)$ is pseudo-Anosov \iff ϕ is not conjugate into any of the following subgroups

 $S^3 = V \cup_{S_2} W$ genus-2 Heegaard splitting

 $\mathbb{G}_2 < \operatorname{Mod}(S_2)$ mapping classes that extend to V and W

Theorem (T) $\phi \in \mathbb{G}_2 < Mod(S_2)$ is pseudo-Anosov \iff ϕ is not conjugate into any of the following subgroups

 $\langle \alpha, \beta, \gamma \delta \rangle = \text{Stab}(\text{primitive})$

 $S^3 = V \cup_{S_2} W$ genus-2 Heegaard splitting

 $\mathbb{G}_2 < \operatorname{Mod}(S_2)$ mapping classes that extend to V and W

Theorem (T) $\phi \in \mathbb{G}_2 < Mod(S_2)$ is pseudo-Anosov \iff ϕ is not conjugate into any of the following subgroups

 $\langle \alpha, \beta, \gamma \rangle = \text{Stab}(\text{reducing})$

 $S^3 = V \cup_{S_2} W$ genus-2 Heegaard splitting

 $\mathbb{G}_2 < \operatorname{Mod}(S_2)$ mapping classes that extend to V and W

Theorem (T) $\phi \in \mathbb{G}_2 < Mod(S_2)$ is pseudo-Anosov \iff

 ϕ is not conjugate into any of the following subgroups

$$\langle \alpha, \beta, \gamma \rangle = \text{Stab}(\text{reducing})$$

 $\langle \alpha, \gamma, \delta \rangle = \text{Stab}(\text{primitive-pant})$

pseudo-Anosov test for G₂

 $S^3 = V \cup_{S_2} W$ genus-2 Heegaard splitting

 $\mathbb{G}_2 < \operatorname{Mod}(S_2)$ mapping classes that extend to V and W

Theorem (T) $\phi \in \mathbb{G}_2 < Mod(S_2)$ is pseudo-Anosov \iff

 ϕ is not conjugate into any of the following subgroups

 $\langle \alpha, \beta, \gamma \delta \rangle = \text{Stab}(\text{primitive})$

 $\langle \alpha, \beta, \gamma \rangle = \text{Stab}(\text{reducing})$

$$\langle \alpha, \gamma, \delta \rangle = \text{Stab}(\text{primitive-pant}) \quad \langle \alpha, \beta \delta \beta^{-1} \delta, \gamma \delta \rangle = \text{Stab}(K)$$

$$\langle \alpha, \beta \delta \beta^{-1} \delta, \gamma \delta \rangle = \operatorname{Stab}(K)$$

 $S^3 = V \cup_{S_2} W$ genus-2 Heegaard splitting

 $\mathbb{G}_2 < \operatorname{Mod}(S_2)$ mapping classes that extend to V and W

Theorem (T) $\phi \in \mathbb{G}_2 < Mod(S_2)$ is pseudo-Anosov \iff

 ϕ is not conjugate into any of the following subgroups

 $\langle \alpha, \beta, \gamma \rangle = \text{Stab}(\text{reducing})$

$$\langle \alpha, \gamma, \delta \rangle = \text{Stab}(\text{primitive-pant}) \quad \langle \alpha, \beta \delta \beta^{-1} \delta, \gamma \delta \rangle = \text{Stab}(K)$$

Meaning of $K \subset S_2 \subset S^3$:

 $S^3 = V \cup_{S_2} W$ genus-2 Heegaard splitting

 $\mathbb{G}_2 < \operatorname{Mod}(S_2)$ mapping classes that extend to V and W

Theorem (T) $\phi \in \mathbb{G}_2 < Mod(S_2)$ is pseudo-Anosov \iff

 ϕ is not conjugate into any of the following subgroups

 $\langle \alpha, \beta, \gamma \delta \rangle = \text{Stab}(\text{primitive})$

 $\langle \alpha, \beta, \gamma \rangle = \text{Stab}(\text{reducing})$

$$\langle \alpha, \gamma, \delta \rangle = \text{Stab}(\text{primitive-pant}) \quad \langle \alpha, \beta \delta \beta^{-1} \delta, \gamma \delta \rangle = \text{Stab}(K)$$

$$K = \text{figure-8 knot}$$

 $S^3 = V \cup_{S_2} W$ genus-2 Heegaard splitting

 $\mathbb{G}_2 < \operatorname{Mod}(S_2)$ mapping classes that extend to V and W

Theorem (T) $\phi \in \mathbb{G}_2 < Mod(S_2)$ is pseudo-Anosov \iff

 ϕ is not conjugate into any of the following subgroups

 $\langle \alpha, \beta, \gamma \delta \rangle = \text{Stab}(\text{primitive})$

 $\langle \alpha, \beta, \gamma \rangle = \text{Stab}(\text{reducing})$

$$\langle \alpha, \gamma, \delta \rangle = \text{Stab}(\text{primitive-pant}) \quad \langle \alpha, \beta \delta \beta^{-1} \delta, \gamma \delta \rangle = \text{Stab}(K)$$

Meaning of $K \subset S_2 \subset S^3$:

$$K = \text{figure-8 knot}$$

 $(T^2 \backslash \text{pt}) \to S^3 \backslash K \xrightarrow{\pi} S^1$

 $S^3 = V \cup_{S_2} W$ genus-2 Heegaard splitting

 $\mathbb{G}_2 < \operatorname{Mod}(S_2)$ mapping classes that extend to V and W

Theorem (T) $\phi \in \mathbb{G}_2 < Mod(S_2)$ is pseudo-Anosov \iff

 ϕ is not conjugate into any of the following subgroups

 $\langle \alpha, \beta, \gamma \delta \rangle = \text{Stab}(\text{primitive})$

 $\langle \alpha, \beta, \gamma \rangle = \text{Stab}(\text{reducing})$

$$\langle \alpha, \gamma, \delta \rangle = \text{Stab}(\text{primitive-pant}) \quad \langle \alpha, \beta \delta \beta^{-1} \delta, \gamma \delta \rangle = \text{Stab}(K)$$

Meaning of $K \subset S_2 \subset S^3$:

K = figure-8 knot

$$(T^2 \backslash \mathrm{pt}) \to S^3 \backslash K \xrightarrow{\pi} S^1$$

 S_2 = union of two fibers

 $S^3 = V \cup_{S_2} W$ genus-2 Heegaard splitting

 $\mathbb{G}_2 < \operatorname{Mod}(S_2)$ mapping classes that extend to V and W

Theorem (T) $\phi \in \mathbb{G}_2 < Mod(S_2)$ is pseudo-Anosov \iff

 ϕ is not conjugate into any of the following subgroups

 $\langle \alpha, \beta, \gamma \delta \rangle = \text{Stab}(\text{primitive})$

 $\langle \alpha, \beta, \gamma \rangle = \text{Stab}(\text{reducing})$

$$\langle \alpha, \gamma, \delta \rangle = \text{Stab}(\text{primitive-pant}) \quad \langle \alpha, \beta \delta \beta^{-1} \delta, \gamma \delta \rangle = \text{Stab}(K)$$

Meaning of $K \subset S_2 \subset S^3$:

K = figure-8 knot

$$(T^2 \backslash \mathrm{pt}) \to S^3 \backslash K \xrightarrow{\pi} S^1$$

 S_2 = union of two fibers

monodromy of
$$\pi = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$$

pseudo-Anosov test for G₂

 $S^3 = V \cup_{S_2} W$ genus-2 Heegaard splitting

 $\mathbb{G}_2 < \operatorname{Mod}(S_2)$ mapping classes that extend to V and W

Theorem (T) $\phi \in \mathbb{G}_2 < Mod(S_2)$ is pseudo-Anosov \iff

 ϕ is not conjugate into any of the following subgroups

 $\langle \alpha, \beta, \gamma \delta \rangle = \text{Stab}(\text{primitive})$

 $\langle \alpha, \gamma, \delta \rangle = \text{Stab}(\text{primitive-pant}) \quad \langle \alpha, \beta \delta \beta^{-1} \delta, \gamma \delta \rangle = \text{Stab}(K)$

 $\langle \alpha, \beta, \gamma \rangle = \text{Stab}(\text{reducing})$

$$\langle \alpha, \beta \delta \beta^{-1} \delta, \gamma \delta \rangle = \operatorname{Stab}(K)$$

Meaning of $K \subset S_2 \subset S^3$:

K = figure-8 knot

$$(T^2 \backslash \mathrm{pt}) \to S^3 \backslash K \xrightarrow{\pi} S^1$$

 S_2 = union of two fibers

monodromy of
$$\pi = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$$

→ infinite order reducible element of \mathbb{G}_2

 $S^3 = V \cup_{S_2} W$ genus-2 Heegaard splitting

 $\mathbb{G}_2 < \operatorname{Mod}(S_2)$ mapping classes that extend to V and W

 $S^3 = V \cup_{S_2} W$ genus-2 Heegaard splitting $\mathbb{G}_2 < \operatorname{Mod}(S_2)$ mapping classes that extend to V and W

Theorem (T) $\phi \in \mathbb{G}_2 < Mod(S_2)$ is reducible.

 $S^3 = V \cup_{S_2} W$ genus-2 Heegaard splitting

 $\mathbb{G}_2 < \operatorname{Mod}(S_2)$ mapping classes that extend to V and W

Theorem (T) $\phi \in \mathbb{G}_2 < Mod(S_2)$ is reducible.

Then $CRS(\phi)$ one of the following:

 $S^3 = V \cup_{S_2} W$ genus-2 Heegaard splitting

 $\mathbb{G}_2 < \operatorname{Mod}(S_2)$ mapping classes that extend to V and W

Theorem (T) $\phi \in \mathbb{G}_2 < Mod(S_2)$ is reducible.

Then $CRS(\phi)$ one of the following:

• (weakly reducing pair) c, d, where c primitive in V, and d primitive W

 $S^3 = V \cup_{S_2} W$ genus-2 Heegaard splitting

 $\mathbb{G}_2 < \operatorname{Mod}(S_2)$ mapping classes that extend to V and W

Theorem (T) $\phi \in \mathbb{G}_2 < Mod(S_2)$ is reducible.

Then $CRS(\phi)$ one of the following:

- (weakly reducing pair) c, d, where c primitive in V, and d primitive W
- (reducing curve) c bounds disks in both V and W

 $S^3 = V \cup_{S_2} W$ genus-2 Heegaard splitting

 $\mathbb{G}_2 < \operatorname{Mod}(S_2)$ mapping classes that extend to V and W

Theorem (T) $\phi \in \mathbb{G}_2 < Mod(S_2)$ is reducible.

Then $CRS(\phi)$ one of the following:

- (weakly reducing pair) c, d, where c primitive in V, and d primitive W
- (reducing curve) c bounds disks in both V and W
- (figure-8) the embedding of c in S^3 is the figure-8 knot

III. Purely pseudo-Anosov subgroups of \mathbb{G}_2

 $S = S_g$ closed oriented surface, genus $g \ge 2$.

 $S = S_g$ closed oriented surface, genus $g \ge 2$.

Surface group extension $1 \to \pi_1(S) \to \Gamma_G \to G \to 1$

 $S=S_g$ closed oriented surface, genus $g\geq 2$.

Surface group extension $1 \to \pi_1(S) \to \Gamma_G \to G \to 1$

 $S = S_g$ closed oriented surface, genus $g \ge 2$.

Surface group extension $1 \to \pi_1(S) \to \Gamma_G \to G \to 1$

$$\operatorname{Mod}(S)$$

$$1 \to \pi_1(S) \to \operatorname{Aut}(\pi_1(S)) \to \operatorname{Out}(\pi_1(S)) \to 1$$

$$\parallel \qquad \uparrow \qquad \uparrow$$

$$1 \to \pi_1(S) \longrightarrow \Gamma_G \longrightarrow G \longrightarrow 1$$

 $S = S_g$ closed oriented surface, genus $g \ge 2$.

Surface group extension $1 \to \pi_1(S) \to \Gamma_G \to G \to 1$

$$\operatorname{Mod}(S)$$

$$1 \to \pi_1(S) \to \operatorname{Aut}(\pi_1(S)) \to \operatorname{Out}(\pi_1(S)) \to 1$$

$$\parallel \qquad \uparrow \qquad \qquad \uparrow$$

$$1 \to \pi_1(S) \longrightarrow \Gamma_G \longrightarrow G \longrightarrow 1$$

Question Is Γ_G a hyperbolic group?

For G < Mod(S), when is Γ_G a hyperbolic group?

$$G < \operatorname{Mod}(S) \implies 1 \to \pi_1(S) \to \Gamma_G \to G \to 1$$

$$G < \operatorname{Mod}(S) \implies 1 \to \pi_1(S) \to \Gamma_G \to G \to 1$$

Example
$$G = \langle \phi \rangle \cong \mathbb{Z}$$
. Then $\Gamma_G \cong \pi_1(M_{\phi})$.

$$G < \operatorname{Mod}(S) \implies 1 \to \pi_1(S) \to \Gamma_G \to G \to 1$$

Example
$$G = \langle \phi \rangle \cong \mathbb{Z}$$
. Then $\Gamma_G \cong \pi_1(M_{\phi})$.

$$G < \operatorname{Mod}(S) \implies 1 \to \pi_1(S) \to \Gamma_G \to G \to 1$$

Question Is Γ_G a hyperbolic group?

Example
$$G = \langle \phi \rangle \cong \mathbb{Z}$$
. Then $\Gamma_G \cong \pi_1(M_{\phi})$.

Theorem (Thurston). $\phi \in \text{Mod}(S)$. TFAE

$$G < \operatorname{Mod}(S) \implies 1 \to \pi_1(S) \to \Gamma_G \to G \to 1$$

Question Is Γ_G a hyperbolic group?

Example $G = \langle \phi \rangle \cong \mathbb{Z}$. Then $\Gamma_G \cong \pi_1(M_{\phi})$.

Theorem (Thurston). $\phi \in \text{Mod}(S)$. TFAE

(i) M_{ϕ} hyperbolic 3-manifold

Hyperbolic surface-group extensions

$$G < \operatorname{Mod}(S) \implies 1 \to \pi_1(S) \to \Gamma_G \to G \to 1$$

Question Is Γ_G a hyperbolic group?

Example
$$G = \langle \phi \rangle \cong \mathbb{Z}$$
. Then $\Gamma_G \cong \pi_1(M_{\phi})$.

Theorem (Thurston). $\phi \in \text{Mod}(S)$. TFAE

- (i) M_{ϕ} hyperbolic 3-manifold
- (ii) $\pi_1(M_{\phi})$ hyperbolic group

Hyperbolic surface-group extensions

$$G < \operatorname{Mod}(S) \implies 1 \to \pi_1(S) \to \Gamma_G \to G \to 1$$

Question Is Γ_G a hyperbolic group?

Example $G = \langle \phi \rangle \cong \mathbb{Z}$. Then $\Gamma_G \cong \pi_1(M_{\phi})$.

Theorem (Thurston). $\phi \in \text{Mod}(S)$. TFAE

- (i) M_{ϕ} hyperbolic 3-manifold
- (ii) $\pi_1(M_{\phi})$ hyperbolic group
- (iii) ϕ pseudo-Anosov

Hyperbolic surface-group extensions

$$G < \operatorname{Mod}(S) \implies 1 \to \pi_1(S) \to \Gamma_G \to G \to 1$$

Question Is Γ_G a hyperbolic group?

Example
$$G = \langle \phi \rangle \cong \mathbb{Z}$$
. Then $\Gamma_G \cong \pi_1(M_{\phi})$.

Theorem (Thurston). $\phi \in \text{Mod}(S)$. TFAE

- (i) M_{ϕ} hyperbolic 3-manifold
- (ii) $\pi_1(M_{\phi})$ hyperbolic group
- (iii) ϕ pseudo-Anosov

Example
$$G = \langle \beta^2 \delta, \delta \beta^2 \rangle < \text{Mod}(S_2) \text{ (purely pA)}$$

Is Γ_G hyperbolic?

$$G < \operatorname{Mod}(S) \implies 1 \to \pi_1(S) \to \Gamma_G \to G \to 1$$

$$G < \operatorname{Mod}(S) \implies 1 \to \pi_1(S) \to \Gamma_G \to G \to 1$$

Theorem Γ_G hyperbolic

$$G < \operatorname{Mod}(S) \implies 1 \to \pi_1(S) \to \Gamma_G \to G \to 1$$

Theorem Γ_G hyperbolic

 $\iff G < \operatorname{Mod}(S)$ is "convex cocompact" (Farb-Mosher 02, Hamenstadt 05)

$$G < \operatorname{Mod}(S) \implies 1 \to \pi_1(S) \to \Gamma_G \to G \to 1$$

Theorem Γ_G hyperbolic

$$\iff G < \operatorname{Mod}(S)$$
 is "convex cocompact" (Farb-Mosher 02, Hamenstadt 05)

$$\iff G \xrightarrow{orbit} \mathscr{C}(S)$$
 (curve complex) is q.i. embedding

(Kent-Leininger, 07)

$$G < \operatorname{Mod}(S) \implies 1 \to \pi_1(S) \to \Gamma_G \to G \to 1$$

Theorem Γ_G hyperbolic

$$\iff G < \operatorname{Mod}(S)$$
 is "convex cocompact" (Farb-Mosher 02, Hamenstadt 05)

$$\iff G \xrightarrow{orbit} \mathscr{C}(S)$$
 (curve complex) is q.i. embedding

(Kent-Leininger, 07)

 $\iff G$ purely pA, $G \hookrightarrow \text{Mod}(S)$ is q.i. embedding

(Bestvina-Bromberg-KL, 20)

$$G < \operatorname{Mod}(S) \implies 1 \to \pi_1(S) \to \Gamma_G \to G \to 1$$

Theorem Γ_G hyperbolic

$$\iff G < \operatorname{Mod}(S)$$
 is "convex cocompact" (Farb-Mosher 02, Hamenstadt 05)

$$\iff G \xrightarrow{orbit} \mathscr{C}(S)$$
 (curve complex) is q.i. embedding

(Kent-Leininger, 07)

$$\iff$$
 G purely pA, $G \hookrightarrow \text{Mod}(S)$ is q.i. embedding

(Bestvina-Bromberg-KL, 20)

Question/conjecture (Farb-Mosher) Every f.g. purely pA

G < Mod(S) is convex cocompact.

$$G < \operatorname{Mod}(S) \implies 1 \to \pi_1(S) \to \Gamma_G \to G \to 1$$

Theorem Γ_G hyperbolic

$$\iff G < \operatorname{Mod}(S)$$
 is "convex cocompact" (Farb-Mosher 02, Hamenstadt 05)

$$\iff G \xrightarrow{orbit} \mathscr{C}(S)$$
 (curve complex) is q.i. embedding

(Kent-Leininger, 07)

$$\iff$$
 G purely pA, $G \hookrightarrow \text{Mod}(S)$ is q.i. embedding

(Bestvina-Bromberg-KL, 20)

Question/conjecture (Farb-Mosher) Every f.g. purely pA G < Mod(S) is convex cocompact.

Remark Special case of conjecture of Gromov:

If Γ contains no Baumslag-Solitar subgroup, then Γ is hyperbolic.

$$G < \operatorname{Mod}(S) \implies 1 \to \pi_1(S) \to \Gamma_G \to G \to 1$$

Theorem Γ_G hyperbolic

$$\iff G < \operatorname{Mod}(S)$$
 is "convex cocompact" (Farb-Mosher 02, Hamenstadt 05)

$$\iff G \xrightarrow{orbit} \mathscr{C}(S)$$
 (curve complex) is q.i. embedding

(Kent-Leininger, 07)

 $\iff G$ purely pA, $G \hookrightarrow \text{Mod}(S)$ is q.i. embedding

(Bestvina-Bromberg-KL, 20)

Question/conjecture (Farb-Mosher) Every f.g. purely pA G < Mod(S) is convex cocompact.

Remark Special case of conjecture of Gromov: If Γ contains no Baumslag-Solitar subgroup, then Γ is hyperbolic. Disproved by Italiano-Martelli-Migliorini (2021)

$$G < \operatorname{Mod}(S) \implies 1 \to \pi_1(S) \to \Gamma_G \to G \to 1$$

Theorem $\Gamma_G \iff G < \text{Mod}(S) \text{ convex cocompact}$

Conjecture (Farb-Mosher)

 $G < \operatorname{Mod}(S)$ purely pA $\Longrightarrow G < \operatorname{Mod}(S)$ convex cocompact.

$$G < \operatorname{Mod}(S) \implies 1 \to \pi_1(S) \to \Gamma_G \to G \to 1$$

Theorem $\Gamma_G \iff G < \text{Mod}(S) \text{ convex cocompact}$

Conjecture (Farb-Mosher)

 $G < \operatorname{Mod}(S)$ purely pA $\Longrightarrow G < \operatorname{Mod}(S)$ convex cocompact.

$$G < \operatorname{Mod}(S) \implies 1 \to \pi_1(S) \to \Gamma_G \to G \to 1$$

Theorem $\Gamma_G \iff G < \text{Mod}(S) \text{ convex cocompact}$

Conjecture (Farb-Mosher)

 $G < \operatorname{Mod}(S)$ purely pA $\Longrightarrow G < \operatorname{Mod}(S)$ convex cocompact.

Known cases This is true if G is contained in...

• a Veech group $Aff(X, \omega)$

$$G < \operatorname{Mod}(S) \implies 1 \to \pi_1(S) \to \Gamma_G \to G \to 1$$

Theorem $\Gamma_G \iff G < \text{Mod}(S) \text{ convex cocompact}$

Conjecture (Farb-Mosher)

 $G < \operatorname{Mod}(S)$ purely pA $\Longrightarrow G < \operatorname{Mod}(S)$ convex cocompact.

- a Veech group $\mathrm{Aff}(X,\omega)$
- $\pi_1(M_\phi) < \text{Mod}(S, x)$ (Dowdall-Kent-Leininger-Russell-Schleimer)

$$G < \operatorname{Mod}(S) \implies 1 \to \pi_1(S) \to \Gamma_G \to G \to 1$$

Theorem $\Gamma_G \iff G < \text{Mod}(S) \text{ convex cocompact}$

Conjecture (Farb-Mosher)

 $G < \operatorname{Mod}(S)$ purely pA $\Longrightarrow G < \operatorname{Mod}(S)$ convex cocompact.

- a Veech group $Aff(X, \omega)$
- $\pi_1(M_\phi) < \text{Mod}(S, x)$ (Dowdall-Kent-Leininger-Russell-Schleimer)
- certain RAAGs (Koberda-Mangahas-Taylor)

$$G < \operatorname{Mod}(S) \implies 1 \to \pi_1(S) \to \Gamma_G \to G \to 1$$

Theorem $\Gamma_G \iff G < \text{Mod}(S) \text{ convex cocompact}$

Conjecture (Farb-Mosher)

 $G < \operatorname{Mod}(S)$ purely pA $\Longrightarrow G < \operatorname{Mod}(S)$ convex cocompact.

- a Veech group $Aff(X, \omega)$
- $\pi_1(M_\phi) < \text{Mod}(S, x)$ (Dowdall-Kent-Leininger-Russell-Schleimer)
- certain RAAGs (Koberda-Mangahas-Taylor)
- genus-2 Goeritz group \mathbb{G}_2 (T)

IV. Proof techniques of main results

 $\mathbb{G}_2 < \text{Mod}(S_2)$ Goeritz group

Main results

Theorem 1 $\phi \in \mathbb{G}_2 < Mod(S_2)$ is pseudo-Anosov \iff

 ϕ is not conjugate into any of the following subgroups

- $\langle \alpha, \beta, \gamma \delta \rangle$ (primitive curve stabilizer)
- $\langle \alpha, \beta, \gamma \rangle$ (reducing curve stabilizer)
- $\langle \alpha, \gamma, \delta \rangle$ (primitive pant stabilizer)
- $\langle \alpha, \beta \delta \beta^{-1} \delta, \gamma \delta \rangle$ (figure-8 stabilizer)

Theorem 2

 $G < \mathbb{G}_2$ f.g. purely pA $\Longrightarrow G < \text{Mod}(S_2)$ convex cocompact.

Corollary (explicit examples) For $n \ge 2$

 $G_n = \langle \beta^n \delta, \delta \beta^n \rangle$ is purely pseudo-Anosov (by Thm1) \Longrightarrow

convex cocompact (by Thm2) $\Longrightarrow \Gamma_{G_n}$ hyperbolic.

 $G < \mathbb{G}_2$ purely pA. WTS $G \xrightarrow{orbit} \mathscr{C}(S)$ is q.i. embedding.

 $G < \mathbb{G}_2$ purely pA. WTS $G \xrightarrow{orbit} \mathscr{C}(S)$ is q.i. embedding.

Orbit map requires choice of basepoint. Good choice:

 $G < \mathbb{G}_2$ purely pA. WTS $G \xrightarrow{orbit} \mathscr{C}(S)$ is q.i. embedding.

Orbit map requires choice of basepoint. Good choice:

 $G < \mathbb{G}_2$ purely pA. WTS $G \xrightarrow{orbit} \mathscr{C}(S)$ is q.i. embedding.

Orbit map requires choice of basepoint. Good choice:

Primitive curve complex

 $G < \mathbb{G}_2$ purely pA. WTS $G \xrightarrow{orbit} \mathscr{C}(S)$ is q.i. embedding.

Orbit map requires choice of basepoint. Good choice:

Primitive curve complex

 $\mathscr{P} \subset \mathscr{C}(S)$ spanned by primitive curves $a \in \mathscr{C}(S)$, i.e.

 $G < \mathbb{G}_2$ purely pA. WTS $G \xrightarrow{orbit} \mathscr{C}(S)$ is q.i. embedding.

Orbit map requires choice of basepoint. Good choice:

Primitive curve complex

 $\mathcal{P} \subset \mathcal{C}(S)$ spanned by primitive curves $a \in \mathcal{C}(S)$, i.e.

• $a = \partial D$ for some disk $D \subset V$

 $G < \mathbb{G}_2$ purely pA. WTS $G \xrightarrow{orbit} \mathscr{C}(S)$ is q.i. embedding.

Orbit map requires choice of basepoint. Good choice:

Primitive curve complex

 $\mathcal{P} \subset \mathcal{C}(S)$ spanned by primitive curves $a \in \mathcal{C}(S)$, i.e.

- $a = \partial D$ for some disk $D \subset V$
- $i(a, \partial E) = 1$ for some disk $E \subset W$

 $G < \mathbb{G}_2$ purely pA. WTS $G \xrightarrow{orbit} \mathscr{C}(S)$ is q.i. embedding.

Orbit map requires choice of basepoint. Good choice:

Primitive curve complex

 $\mathcal{P} \subset \mathcal{C}(S)$ spanned by primitive curves $a \in \mathcal{C}(S)$, i.e.

- $a = \partial D$ for some disk $D \subset V$
- $i(a, \partial E) = 1$ for some disk $E \subset W$

 $G < \mathbb{G}_2$ purely pA. WTS $G \xrightarrow{orbit} \mathscr{C}(S)$ is q.i. embedding.

Orbit map requires choice of basepoint. Good choice:

Primitive curve complex

 $\mathscr{P} \subset \mathscr{C}(S)$ spanned by *primitive curves* $a \in \mathscr{C}(S)$, i.e.

- $a = \partial D$ for some disk $D \subset V$
- $i(a, \partial E) = 1$ for some disk $E \subset W$

(Cho) \mathscr{P} is connected (surgery paths), and \mathscr{P} is q.i. to a tree.

 $G < \mathbb{G}_2$ purely pA. WTS $G \xrightarrow{orbit} \mathscr{C}(S)$ is q.i. embedding.

Orbit map requires choice of basepoint. Good choice:

Primitive curve complex

 $\mathscr{P} \subset \mathscr{C}(S)$ spanned by *primitive curves* $a \in \mathscr{C}(S)$, i.e.

- $a = \partial D$ for some disk $D \subset V$
- $i(a, \partial E) = 1$ for some disk $E \subset W$

(Cho) \mathscr{P} is connected (surgery paths), and \mathscr{P} is q.i. to a tree.

 $G < \mathbb{G}_2$ purely pA. WTS $G \xrightarrow{orbit} \mathscr{C}(S)$ is q.i. embedding.

Orbit map requires choice of basepoint. Good choice:

Primitive curve complex

 $\mathcal{P} \subset \mathcal{C}(S)$ spanned by primitive curves $a \in \mathcal{C}(S)$, i.e.

- $a = \partial D$ for some disk $D \subset V$
- $i(a, \partial E) = 1$ for some disk $E \subset W$

(Cho) \mathscr{P} is connected (surgery paths), and \mathscr{P} is q.i. to a tree.

Furthermore, \mathcal{P} is q.i. to a coned-off Cayley graph for \mathbb{G}_2 :

 $G < \mathbb{G}_2$ purely pA. WTS $G \xrightarrow{orbit} \mathscr{C}(S)$ is q.i. embedding.

Orbit map requires choice of basepoint. Good choice:

Primitive curve complex

 $\mathcal{P} \subset \mathcal{C}(S)$ spanned by *primitive curves* $a \in \mathcal{C}(S)$, i.e.

- $a = \partial D$ for some disk $D \subset V$
- $i(a, \partial E) = 1$ for some disk $E \subset W$

(Cho) \mathcal{P} is connected (surgery paths), and \mathcal{P} is q.i. to a tree.

Furthermore, \mathscr{P} is q.i. to a coned-off Cayley graph for \mathbb{G}_2 : $\mathscr{P} \sim \operatorname{Cone}(\mathbb{G}_2, H)$, where $H < \mathbb{G}_2$ is stabilizer of $a \in \mathscr{P}$.

Unfortunately, $\mathcal{P} \hookrightarrow \mathcal{C}(S)$ is not a q.i. embedding...

Unfortunately, $\mathcal{P} \hookrightarrow \mathcal{C}(S)$ is not a q.i. embedding...

Theorem (T).
$$d_{\mathcal{P}}(a,b) \asymp \sum_{X} \{d_{X}(a,b)\}_{\mu}$$
 (a la Masur-Minsky)

Unfortunately, $\mathcal{P} \hookrightarrow \mathcal{C}(S)$ is not a q.i. embedding...

Theorem (T).
$$d_{\mathcal{P}}(a,b) \asymp \sum_{X} \left\{ d_{X}(a,b) \right\}_{\mu}$$
 (a la Masur-Minsky)

• The sum ranges over subsurfaces $X \subset S$ s.t. $S \setminus X$ has no primitive curve. "holes/witnesses"

Ingredient: distance formula

Unfortunately, $\mathcal{P} \hookrightarrow \mathcal{C}(S)$ is not a q.i. embedding...

Theorem (T).
$$d_{\mathcal{P}}(a,b) \asymp \sum_{X} \left\{ d_{X}(a,b) \right\}_{\mu}$$
 (a la Masur-Minsky)

- The sum ranges over subsurfaces $X \subset S$ s.t. $S \setminus X$ has no primitive curve. "holes/witnesses"
- $d_X(a,b) = diam_{\mathcal{C}(X)}(\pi_X(a) \cup \pi_X(b))$, where $\pi_X : \mathcal{C}(S) \to 2^{\mathcal{C}(X)}$ is the subsurface projection.

Ingredient: distance formula

Unfortunately, $\mathcal{P} \hookrightarrow \mathcal{C}(S)$ is not a q.i. embedding...

Theorem (T).
$$d_{\mathcal{P}}(a,b) \asymp \sum_{X} \left\{ d_{X}(a,b) \right\}_{\mu}$$
 (a la Masur-Minsky)

- The sum ranges over subsurfaces $X \subset S$ s.t. $S \setminus X$ has no primitive curve. "holes/witnesses"
- $d_X(a,b) = diam_{\mathcal{C}(X)}(\pi_X(a) \cup \pi_X(b))$, where $\pi_X : \mathcal{C}(S) \to 2^{\mathcal{C}(X)}$ is the subsurface projection.

•
$$\{d\}_{\mu} = \begin{cases} d & \text{if } d \geq \mu \\ 0 & \text{if } d < \mu \end{cases}$$
 "cutoff function"

Ingredient: distance formula

Unfortunately, $\mathcal{P} \hookrightarrow \mathcal{C}(S)$ is not a q.i. embedding...

Theorem (T).
$$d_{\mathcal{P}}(a,b) \asymp \sum_{X} \{d_{X}(a,b)\}_{\mu}$$
 (a la Masur-Minsky)

- The sum ranges over subsurfaces $X \subset S$ s.t. $S \setminus X$ has no primitive curve. "holes/witnesses"
- $d_X(a,b) = diam_{\mathcal{C}(X)}(\pi_X(a) \cup \pi_X(b))$, where $\pi_X : \mathcal{C}(S) \to 2^{\mathcal{C}(X)}$ is the subsurface projection.

•
$$\{d\}_{\mu} = \begin{cases} d & \text{if } d \geq \mu \\ 0 & \text{if } d < \mu \end{cases}$$
 "cutoff function"

Theorem (T). The only (∞ -diameter) witnesses are X = S and X = genus-1 subsurface bounding a fig-8 knot $K \subset S \subset S^3$.

<u>WTS</u> $G < \mathbb{G}_2$ f.g. purely p.A. \Longrightarrow are convex cocompact.

<u>WTS</u> $G < \mathbb{G}_2$ f.g. purely p.A. \Longrightarrow are convex cocompact.

<u>WTS</u> $G < \mathbb{G}_2$ f.g. purely p.A. \Longrightarrow are convex cocompact.

<u>WTS</u> $G < \mathbb{G}_2$ f.g. purely p.A. \Longrightarrow are convex cocompact.

<u>WTS</u> $G < \mathbb{G}_2$ f.g. purely p.A. \Longrightarrow are convex cocompact.

<u>WTS</u> $G < \mathbb{G}_2$ f.g. purely p.A. \Longrightarrow are convex cocompact.

<u>WTS</u> $G < \mathbb{G}_2$ f.g. purely p.A. \Longrightarrow are convex cocompact.

<u>WTS</u> $G < \mathbb{G}_2$ f.g. purely p.A. \Longrightarrow are convex cocompact.

<u>WTS</u> $G < \mathbb{G}_2$ f.g. purely p.A. \Longrightarrow are convex cocompact.

<u>WTS</u> $G < \mathbb{G}_2$ f.g. purely p.A. \Longrightarrow are convex cocompact.

<u>WTS</u> $G < \mathbb{G}_2$ f.g. purely p.A. \Longrightarrow are convex cocompact.

<u>WTS</u> $G < \mathbb{G}_2$ f.g. purely p.A. \Longrightarrow are convex cocompact.

<u>WTS</u> $G < \mathbb{G}_2$ f.g. purely p.A. \Longrightarrow are convex cocompact.

<u>WTS</u> $G < \mathbb{G}_2$ f.g. purely p.A. \Longrightarrow are convex cocompact.

