Sequence-to-Sequence Problems without known Alignment

- fixed character rate too restrictive
- hand alignment very expensive
- · alternative: special loss function

CTC: Connectionist Temporal Classification

- · alignment-free
- sums over probability of all possible alignments of X and Y
- approximate solution for inference (less expensive)

Supervised Learning Objective

- map from input sequence X to output sequence Y
 - X and Y can vary in length.
 - ratio of the lengths of X and Y can vary
 - no accurate alignment (correspondence of the elements) of X and Y available
- reformulated: for a given X, return an output distribution over all possible Ys

CTC: Introducing ϵ (Blank) Token

 does not correspond to anything and is simply removed from the output

CTC Alignments Properties

- monotonic (left-to-right model) no reordering (unlike neural machine translation)
- many-to-one many inputs can map to the same output (however many outputs cannot map to a single input)
- $len(Y) \leq len(X)$

Recall: CTC does not find a single alignment, sums over all possible alignments

Allowed Transitions

- no skip transition allowed for
 - non-blank symbols
 - blanks between same symbol

- · skip transition allowed
 - previous token is blank between different symbols

Example

output Y = [c,a,t] input length len(X) = 6

Valid Alignments

ca
$$\epsilon$$
 ϵ ϵ t

Invalid Alignments

$$C \in \epsilon \in t t$$

corresponds to Y = [c, c, a, t]

has length 5

missing the 'a'

CTC Loss Function

 ϵ e ϵ | | ϵ ϵ | 0 0

We start with an input sequence, like a spectrogram of audio.

The input is fed into an RNN, for example.

The network gives p_t ($a \mid X$), a distribution over the outputs {h, e, l, o, ϵ } for each input step.

With the per time-step output distribution, we compute the probability of different sequences

h e I I o e I I o

helo

By marginalizing over alignments, we get a distribution over outputs.

- List all valid alignments of length 6 for the target sequence "door"!
 - basis: do ϵ or (double o requires ϵ)
 - only possible to $\,$ (a) add an ϵ somewhere or
 - (b) double a normal char
 - a) ϵ do ϵ or d ϵ o ϵ or do ϵ o ϵ r do ϵ or ϵ
 - b) $ddo\epsilon or doo\epsilon or do\epsilon orr$

2

CTC Loss (work together!)

Consider a sequence aab which is used to train a model with CTC loss. Draw all connections in the following CTC graph structure which correspond to valid sequences for the 6 time steps below. Use the empty rectangles on the left to write the respective character. $x_1 \quad x_2 \quad x_3 \quad x_4 \quad x_5 \quad x_6 \quad x_$

23

