Analysis of Variance Single Factor

Dr. Supaporn Erjongmanee

Department of Computer Engineering Kasetsart University fengspe@ku.ac.th

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Applications

1

Outline

- Introduction
- Equal sample size
 - F-test
 - Multiple comparison
- Unequal sample size
 - F-test
 - Multiple comparison
- Multiple comparison discussion
- Random effects model

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Applications Slide 2

Analysis of quantitative responses In short, ANOVA Simplest ANOVA Single-factor or One-way Factorial or Multiple-way Examples Study of five brands of gasoline on car efficiency Study of four types of sugar on bacteria growth

Statistics in Computer Engineering Applications

Slide 4

4

Supaporn Erjongmanee

fengspe@ku.ac.th

Introduction: Analysis of Variance

Department of Computer Engineering

Kasetsart University

Outline

- Introduction
- Equal sample size
 - F-test
 - Multiple comparison
- Unequal sample size
 - F-test
 - Multiple comparison
- Multiple comparison discussion
- Random effects model

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Applications
Slide 5

5

Single-Factor ANOVA: Equal Sample Size

- Compare two or more populations on one factor
- Let
 - μ_1 = mean of treatment (population) 1
 - μ_2 = mean of treatment (population) 2
 - ...
 - μ_I = mean of treatment (population) I

I = number of compared treatments

- Hypothesis
 - H_0 : $\mu_1 = \mu_2 = ... = \mu_I$
 - H_a : Not all μ_i 's are equal (at least two of the μ_i 's are different)

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Applications
Slide 6

Notation

- Let
 - X_{ii} = Random variable for measurement j of treatment i
 - x_{ii} = Sample value for measurement j of treatment i
 - J = Number of samples in one treatment
 - I = Number of treatments
- (Treatment) sample mean: $\bar{X}_i = \frac{\sum_{j=1}^J X_{ij}}{J}$

Divided by number of samples in one treatment

• Grand mean: $\bar{X} = \frac{\sum_{i=1}^I \bar{X}_i}{I} = \frac{\sum_{i=1}^I \sum_{j=1}^J X_{ij}}{IJ}$

Divided by number of samples from treatments

• (Treatment) sample variance: $S_i^2 = \frac{\sum_{j=1}^J (X_{ij} - \bar{X}_i)^2}{J-1}$

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Applications

7

Example

Experiment testing strength of 4 shipping boxes

Туре		Со		Sample Mean	Sample SD				
1	655.5	788.3	734.3	721.4	679.1	699.4		713.00	46.55
2	789.2	772.5	786.9	686.1	732.1	774.8		756.93	40.34
3	737.1	639.0	696.3	671.7	717.2	727.1	V	698.07	37.20
4	535.1	628.7	542.4	559.0	586.9	520.0		562.02	39.87

Grand Mean = (713.00+756.93+698.07+563.02) / 4 = 682.50

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Applications
Slide 8

Department of Computer Engineering
Kasetsart University

Review: Sample Variance Distribution

- Let X_1 , X_2 , ..., X_n be random sample from a <u>normal</u> distribution with mean value = μ and standard deviation = σ .
- Then, sample variance has distribution to be a <u>chi-square distribution</u> with <u>degree of freedom = n-1</u>

$$S^2 \approx \sigma^2 \frac{\chi_{n-1}^2}{(n-1)}$$
 \Longrightarrow $\frac{(n-1)S^2}{\sigma^2} \approx \chi_{(n-1)}^2$

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Applications

10

Basic Assumption

- Assume
 - Distribution of each population is <u>normal</u> with the <u>same variance</u> = σ^2
- Therefore, each sample X_{ij} comes from normal distribution with
 - $E(X_{ij}) = \mu_i$
 - $V(X_{ij}) = \sigma^2$
 - Hypothesis
 - H_0 : $\mu_1 = \mu_2 = ... = \mu_I$
 - H_a : Not all μ_i 's are equal (at least two of the μ_i 's are different)

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Applications
Slide 11

Sum of Squares

- When H_0 is true, all sample means $(\bar{x}_1, \bar{x}_2, ..., \bar{x}_I)$ should be the same
- Therefore, test statistics will measured from differences of sample means
- Treatment sum of squares (SST_r): Difference between different treatments
 - Sum of difference between each sample mean and grand mean

•
$$SST_r = J(\bar{X}_1 - \bar{X})^2 + J(\bar{X}_2 - \bar{X})^2 + \dots + J(\bar{X}_I - \bar{X})^2$$

= $J \sum_i (\bar{X}_i - \bar{X})^2$

- Difference within the same treatment Error sum of squares (SSE):
 - Sum of differences between <u>samples</u> and <u>sample mean</u>

•
$$SSE = \sum_{i} \sum_{j} (X_{ij} - \bar{X}_{i})^{2}$$

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Applications

12

Sum of Squares (cont.)

Treatment sum of squares (SST_r):

• $SST_r = I \sum_i (\overline{X}_i - \overline{X})^2$ $= I \sum_{i} (\underline{Y}_{i} - \overline{Y})^{2}$ $= J (I - 1) \frac{\sum_{i} (Y_i - \bar{Y})^2}{(I - 1)}$ $= (I - 1)I S_v^2$

$$\frac{SST_r}{\sigma^2} = \frac{(I-1)S_r^2}{\sigma^2/J}$$

$$= \frac{(I-1)}{(\sigma^2/J)} \cdot \frac{\sigma_r^2}{I-1}$$

$$= \frac{(I-1)(\sigma^2/J)\chi_{I-1}^2}{\sigma^2/J}$$

Supaporn Erjongmanee fengspe@ku.ac.th

Difference between means of each treatment and grand mean

 $X_i \sim N(\mu, \sigma^2) \rightarrow Y_i = \bar{X}_i \sim N(\mu, \sigma^2)$

$$s^{2} = \frac{\sum_{i=1}^{n} (x - \bar{x})^{2}}{n - 1}$$

$$S_X^2 \approx \sigma_X^2 \frac{\chi_{n-1}^2}{(n-1)}$$

Department of Computer Engineering Kasetsart University

Engineering Applications

Sum of Squares (cont.)

Difference between each sample and means of each treatment

$$|S|^{2} = \frac{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}{n-1}$$

Error sum of squares (SSE)

•
$$SSE = \sum_{i} \sum_{j} (X_{ij} - \bar{X}_{i})^{2}$$

$$X_i \sim N(\mu, s^2)$$

$$= \sum_{j} (X_{1j} - \bar{X}_{1})^{2} + \sum_{j} (X_{2j} - \bar{X}_{2})^{2} + \dots + \sum_{j} (X_{lj} - \bar{X}_{l})^{2}$$

$$= (J-1)S_1^2 + (J-1)S_2^2 + \dots + (J-1)S_I^2$$

$$\frac{(n-1)S^2}{\sigma^2} \approx \chi^2_{(n-1)}$$

$$= (J-1)[S_1^2 + S_2^2 + \dots + S_I^2]$$
 Each X_i has the same variance

$$=I(J-1)S^2$$

$$\frac{SSE}{\sigma^2} = \frac{I(J-1)S^2}{\sigma^2} \approx \chi^2_{I(J-1)}$$

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Applications

14

F distribution

• Let X_1 and X_2 be independent chi-squared random variables with v_1 and v_2 degrees of freedom

$$F_{v1, v2} = \frac{X_1/v_1}{X_2/v_2}$$

 Generally, sample variance has sampling distribution in term of chi-squared distribution with degree of freedom = n -1

$$S^2 \approx \sigma^2 \frac{\chi_{n-1}^2}{(n-1)}$$

• Let S_1^2 and S_2^2 be sample variances with chi-squared distribution

$$\frac{(m-1)S_1^2}{\sigma_1^2} \approx \chi_{(m-1)}^2 \text{ and } \frac{(n-1)S_2^2}{\sigma_2^2} \approx \chi_{(n-1)}^2$$

$$F_{m-1,n-1} = \frac{\frac{(m-1)S_1^2/\sigma_1^2}{m-1}}{\frac{(n-1)S_2^2/\sigma_2^2}{\sigma_2^2}} = \frac{S_1^2/\sigma_1^2}{S_2^2/\sigma_2^2}$$

Supaporn Erjongmanee fengspe@ku.ac.th

F distribution (cont.)

 Let X₁ and X₂ be independent chi-squared random variables with v₁ and v₂ degrees of freedom

$$F_{v1, v2} = \frac{X_1/v_1}{X_2/v_2}$$

Image source: http://en.wikipedia.org/wiki/F-distribution

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Applications
Slide 16

16

Sum of Squares (cont.)

Treatment sum of squares (SST_r):

$$\frac{(SST_r)}{\sigma^2} = \frac{(I-1)S_Y^2}{\sigma^2/J} = \frac{(I-1)(\sigma^2/J)\chi_{I-1}^2}{(\sigma^2/J)(I-1)} \notin \chi_{I-1}^2$$

Error sum of squares (SSE)

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Application
Slide 17

Department of Computer Engineering
Kasetsart University

To Perform F-Test

Mean of chi-square distribution = degree of freedom

Test statistic:

$$f = F_{I-1,I(J-1)} = \frac{SSTr/(I-1)}{SSE/(I(J-1))}$$

$$Mean = \frac{Sum}{n-1}$$

$$E(\frac{SST_r}{\sigma^2}) = I - 1$$

$$E(\frac{SSE}{\sigma^2}) = I(J-1)$$

$$E\left(\frac{SSTr}{I-1}\right) = E(MST_r) = \sigma^2$$

- If H_o is true (X̄_i's are about the same),
 MSTr and MSE are unbiased estimates of σ². f ~ 1
- If H_o is false $(\bar{X}'_i s)$ are not the same), E(MSTr) > σ^2 . f is large.
- $E(\frac{SSE}{I(J-1)}) = E(MSE) = \sigma^2$

Rejection region for large f?

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Applications
Slide 18

18

F-Test

Test statistic:

$$F_{I-1,I(J-1)} = \frac{\frac{SSTr}{\sigma^2}/(I-1)}{\frac{SSE}{\sigma^2}/(I(J-1))} = \frac{SSTr/(I-1)}{SSE/(I(J-1))} = \frac{MSTr}{MSE}$$

F distribution

If test statistic > $F_{\alpha, v1, v2}$, reject H_0

Image source: http://www.unc.edu/~nielsen/soci708/m16/m2009.gif

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Applications
Slide 19

Department of Computer Engineering
Kasetsart University

Summary: ANOVA (cont.)

$$\sum_{i} \sum_{j} (x_{ij} - \bar{x})^2 = \sum_{i} \sum_{j} (x_{ij} - \bar{x}_i + \bar{x}_i - \bar{x})^2$$

$$= \sum_{i} \sum_{j} (x_{ij} - \bar{x}_{i})^{2} + \sum_{i} \sum_{j} (\bar{x}_{i} - \bar{x})^{2} - 2 \sum_{i} \sum_{j} (x_{ij} - \bar{x}_{i}) (\bar{x}_{i} - \bar{x})$$

= SSE + SSTr
$$-2\sum_{i}\sum_{j}(x_{ij} - \bar{x}_i)(\bar{x}_i - \bar{x})$$
 0

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Applications

20

Summary: ANOVA (cont.)

$$\sum_{i} \sum_{j} (x_{ij} - \bar{x})^2 = \sum_{i} \sum_{j} (x_{ij} - \bar{x}_i + \bar{x}_i - \bar{x})^2$$

Test statistic:

$$F_{I-1,I(J-1)} = \frac{\frac{SSTr}{\sigma^2}/(I-1)}{\frac{SSE}{\sigma^2}/(I(J-1))} = \frac{SSTr/(I-1)}{SSE/(I(J-1))} = \frac{MSTr}{MSE}$$

	df	Sum of Squares	Mean	f
		(SS)	Square	
			(MS)	
Treatment	I-1	$\int \sum_i (\overline{x_i} - \overline{x})^2$	SSTr/(I-1)	MSTr / MSE
Error	I(J-1)	$\sum_{i} \sum_{j} (x_{ij} - \overline{x_i})^2 = SST - SSTr$	SSE/(I(J-1)	
Total	IJ-1	$\sum_{i}\sum_{j}(x_{ij}-\bar{x})^{2}$		

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Applications
Slide 21

Test statistic:

$$F_{I-1,I(J-1)} = \frac{\frac{SSTr}{\sigma^2}/(I-1)}{\frac{SSE}{\sigma^2}/(I(J-1))} = \frac{SSTr/(I-1)}{SSE/(I(J-1))} = \frac{MSTr}{MSE}$$

Another option: Sample-based computation

	df	Sum of Squares (SS)	Mea Scuare (MS)	f
Treatment	I-1	$\frac{1}{J} \sum_{i=1}^{I} (\sum_{j=1}^{J} x_{ij})^2 - \frac{1}{IJ} (\sum_{i=1}^{I} \sum_{j=1}^{J} x_{ij})^2$	SSTr/(I-1)	MSTr / MSE
Error	I(J-1)	SST - SSTr	SSE/(I(J- 1)	
Total	IJ-1	$\sum_{i=1}^{I} \sum_{j=1}^{J} x_{ij}^2 - \frac{1}{IJ} \left(\sum_{i=1}^{I} \sum_{j=1}^{J} x_{ij} \right)^2$		

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Applications

Example 1

- Experiment degree of soiling on 3 mixtures of fabric and polymer
- Prove whether 3 mixture means are the same at α = 0.01

Mixture		Degree of soiling					
1:	0.56	1.12	0.90	1.07	0.94		
2:	0.72	0.69	0.87	0.78	0.91		
3:	0.62	1.08	1.07	0.99	0.93		

- Let
 - μ_1 = mean of mixture 1
 - μ_2 = mean of mixture 2
 - μ_3 = mean of mixture 3
 - I = 3, J = 5
- Hypothesis
 - H_0 : $\mu_1 = \mu_2 = \mu_3$
 - H_a : Not all μ_i 's are equal (at least two of the μ_i 's are different)

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Applications
Slide 23

 Experi 	ment de	egree of so	iling on 3	mixtures				
Mixture			Degree of s		\bar{x}_i			
1:	0.56	1.12	1.12 0.90 1.07			0.9	18	
2:	0.72	0.69	0.87	0.78	0.91	0.7	94	
3:	0.62	1.08	1.07	0.99	0.93	0.9	38	
• Fill AN	OVA tal	ole				$\bar{x} = 0$	0.883	_
	df	Sum c	Sum of Squares				f	
		(SS)			Square (MS)			
Treatmer	nt 2	0.0608	0.0608		0.0304		0.99	
Error 12		0.370	0.3701 = 0.4309 - 0.0608		0.0308			
Total 14		0.4309	9					

	df	Sum of Squares (SS)	Mean Square (MS)	f	
Treatment	2	0.0608	0.0304	0.99	
Error	12	0.3701 = 0.4309 - 0.0608	0.0308		
Total	14	0.4309			
• F _{0.01, 2}	, ₁₂ = 6.9 ejected	d.			
 All mixtur 	e mear	ns are equals.			

Example 2

Experiment consistency lab measurements from 7 labs

Lab 1	Lab 2	Lab 3	Lab 4	Lab 5	Lab 6	Lab 7
4.13	3.86	4.00	3.88	4.02	4.02	4.00
4.07	3.85	4.02	3.88	3.95	3.86	4.02
4.04	4.08	4.01	3.91	4.02	3.96	4.03
4.07	4.11	4.01	3.95	3.89	3.97	4.04
4.05	4.08	4.04	3.92	3.91	4.00	4.10
4.04	4.01	3.99	3.97	4.01	3.82	3.81
4.02	4.02	4.03	3.92	3.89	3.98	3.91
4.06	4.04	3.97	3.90	3.89	3.99	3.96
4.10	3.97	3.98	3.97	3.99	4.02	4.05
4.04	3.95	3.98	3.90	4.00	3.93	4.06

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Applications Slide 26

Example 2

- Experiment consistency lab measurements from 7 labs
- Let
 - μ_1 = mean of measurements from lab 1
 - μ_2 = mean of measurements from lab 2
 - ...
 - μ_7 = mean of measurements from lab 7
 - I = 7, J = 10
- Hypothesis
 - H_0 : $\mu_1 = \mu_2 = ... = \mu_7$
 - H_a : Not all μ_i 's are equal (at least two of the μ_i 's are different)

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Applications
Slide 27

Example 2

Experiment consistency lab measurements from 7 labs

Lab 1	Lab 2	Lab 3	Lab 4	Lab 5	Lab 6	Lab 7
4.13	3.86	4.00	3.88	4.02	4.02	4.00
4.07	3.85	4.02	3.88	3.95	3.86	4.02
4.04	4.08	4.01	3.91	4.02	3.96	4.03
4.07	4.11	4.01	3.95	3.89	3.97	4.04
4.05	4.08	4.04	3.92	3.91	4.00	4.10
4.04	4.01	3.99	3.97	4.01	3.82	3.81
4.02	4.02	4.03	3.92	3.89	3.98	3.91
4.06	4.04	3.97	3.90	3.89	3.99	3.96
4.10	3.97	3.98	3.97	3.99	4.02	4.05
4.04	3.95	3.98	3.90	4.00	3.93	4.06
\bar{x}_1	\bar{x}_2	\bar{x}_3	\bar{x}_4	\bar{x}_5	\bar{x}_6	\bar{x}_7
4.062	3.997	4.003	3.92	3.957	3.955	3.998

 \bar{x} =3.985

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Applications Slide 28

28

Example 2 (cont.) 7 labs. Each lab collects 10 samples.

	df	Sum of Squares (SS)	Mean Square (MS)	f
Treatment	6	0.125	0.0208	5.66
Error	63	0.356-0.125 = 0.231	0.0037	
Total	69	0.356		

- There is no F $_{\alpha, 6, 63}$ in the f-table
- Examine closest F critical values: 60 vs. 70
 - $F_{0.1, 6, 60} = 1.8747$, $F_{0.05, 6, 60} = 2.2541$, $F_{0.01, 6, 60} = 3.1187$
 - $F_{0.1, 6, 70} = 1.8600$, $F_{0.05, 6, 70} = 2.2312$, $F_{0.01, 6, 70} = 3.0712$
 - For common values of α , $F_{\alpha, 6, 63} < f$
- H₀ is rejected.
- There are differences in 7 means.

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Applications
Slide 29

Multiple Comparisons

- When H₀ for ANOVA is rejected, how many means are different from each other?
- Procedures:
 - Find confidence interval of pairwise difference $\mu_i \mu_i$
 - If confidence interval for any pairwise difference $\mu_i \mu_j$ does <u>not include</u> <u>zero</u>, we determine that μ_i, μ_j are significantly different from each other

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Applications

32

Studentized Range Distribution

- Let Z_1 , Z_2 , ..., Z_m be m independent standard normal random variables
- Let W be a chi-squared random variable with degree of freedom = v, and independent of the Z_i's
- Then, Q distribution, called studentized range distribution is

$$Q = \frac{\max |Z_i - Z_j|}{\sqrt{\frac{W}{v}}}$$
 where $W = \frac{SSE}{\sigma^2} = \frac{I(J-1)MSE}{\sigma^2}$

- This Q distribution has 2 parameters: m and v
 - Hence, it is denoted by $Q_{lpha,m,v}$

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Applications Slide 33

Studentized Range Distribution (cont.)

From

$$Z_i = \frac{\overline{X}_i - \mu_i}{\sigma / \sqrt{J}}, \qquad W = \frac{SSE}{\sigma^2} = \frac{I(J-1)MSE}{\sigma^2}, \qquad m = I, \qquad v = I(J-1)$$

$$Q = \frac{\max |Z_i - Z_j|}{\sqrt{\frac{W}{v}}} = \frac{\max |\frac{\bar{X}_i - \mu_i}{\sigma/\sqrt{J}} - \frac{\bar{X}_j - \mu_j}{\sigma/\sqrt{J}}|}{\sqrt{\frac{I(J-1)MSE}{I(J-1)}}} = \frac{\max |\bar{X}_i - \bar{X}_j| - (\mu_i - \mu_j)|}{\sqrt{MSE/J}}$$

$$1 - \alpha = P\left(\frac{\max|\bar{X}_i - \bar{X}_j - (\mu_i - \mu_j)|}{\sqrt{MSE/J}} \le Q_{\alpha,l,I(J-1)}\right)$$

$$= P\left(\frac{|\bar{X}_i - \bar{X}_j - (\mu_i - \mu_j)|}{\sqrt{MSE/J}} \le Q_{\alpha,l,I(J-1)} \text{ for all } i,j\right)$$

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Applications
Slide 34

34

Studentized Range Distribution (cont.)

$$1 - \alpha = P\left(\frac{\left|\bar{X}_{i} - \bar{X}_{j} - (\mu_{i} - \mu_{j})\right|}{\sqrt{MSE/J}} \le Q_{\alpha,I,I(J-1)} \text{ for all } i,j\right)$$

$$= P\left(-Q_{\alpha,I,I(J-1)} \sqrt{\frac{MSE}{J}} \le \bar{X}_{i} - \bar{X}_{j} - (\mu_{i} - \mu_{j}) \le Q_{\alpha,I,I(J-1)} \sqrt{\frac{MSE}{J}} \text{ for all } i,j\right)$$

$$= P\left(\bar{X}_{i} - \bar{X}_{j} - Q_{\alpha,I,I(J-1)} \sqrt{\frac{MSE}{J}} \right) \le \mu_{i} - \mu_{j} \le \bar{X}_{i} - \bar{X}_{j} + Q_{\alpha,I,I(J-1)} \sqrt{\frac{MSE}{J}} \text{ for all } i,j\right)$$

Confidence intervals between one pair of $\mu_i - \mu_j$

• There are $\binom{I}{2} = \frac{I(I-1)}{2}$ confidence intervals

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Application Slide 35

Studentized Range Distribution (cont.)

$$1 - \alpha = P\left(\bar{X}_i - \bar{X}_j - Q_{\alpha,I,I(J-1)}\sqrt{\frac{MSE}{J}}\right) \leq \mu_i - \mu_j \leq \bar{X}_i - \bar{X}_j + Q_{\alpha,I,I(J-1)}\sqrt{\frac{MSE}{J}}f \text{ or all } i,j\right)$$

Expect difference of two means is not more than this value $Q_{\alpha,I,I(J-1)}\sqrt{\frac{\mathit{MSE}}{J}}$

• The value $w = Q_{\alpha,I,I(J-1)} \sqrt{\frac{MSE}{J}}$ is called Tukey's honestly significantly difference (HSD)

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Applications
Slide 36

36

Multiple Comparisons: Equal Sample Size

- When some means are not all equal, how to specify which mean is different from others
- Procedure
 - 1. Find Tukey's Honestly Significant Difference (HSD)

$$HSD_{\alpha} = q_{\alpha,I,I(J-1)} \sqrt{\frac{MSE}{J}}$$

- $q_{\alpha, l, l(J-1)} = q$ -value from studentized range distribution with 2 degrees of freedom l, l(J-1)
- Sort sample means in increasing order
- 3. Underline pairs that differ less than \mbox{HSD}_{α}
- 4. Any pair without underline are considered as significantly different.

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Applications
Slide 37

E	xampl	le 1					df	Sum of Squares (SS)	Mean Square (MS)	f
						Treatment	2	0.0608	0.0304	0.99
	 Experim 	ent degre	e of soiling	on 3 mixt	ures	Error	12	0.3701 = 0.4309 - 0.0608	0.0308	
	 Group m 	nixture me	eans at $lpha$ =	0.01		Total	14	0.4309		
	Mixture			egree of soili	ng			\bar{x}_i		
	1:	0.56	1.12	0.90	1.07	0.94		0.918		
	2:	0.72	0.69	0.87	0.78	0.91		0.794		
	3:	0.62	1.08	1.07	0.99	0.93		0.938		
	$HSD_{\alpha} = q_{\alpha,I,I(J-1)} \sqrt{\frac{MSE}{J}} = q_{0.01,3,12} \sqrt{\frac{0.0308}{5}} = 5.05 \sqrt{\frac{0.0308}{5}} = 0.396$ • Sort sample means: 0.794, 0.918, 0.938 0.124 0.020									
	• One gro	oup of mix	xture mea	ins 🛑	Note that	at H _o is n	ot re	ejected.		
	porn Erjongmane pe@ku.ac.th	ee	Statistics	in Computer Engine Slide 38	eering Applications	(Department of Computer Engi Kasetsart University	neering	

Example 2

38

- Test on 5 brands of automobile oil filters
 - Use 9 samples for each brands
- \bar{x}_1 = 14.5, \bar{x}_2 = 13.8, \bar{x}_3 = 13.3, \bar{x}_4 = 14.3, \bar{x}_5 = 13.1

	df	Sum of Squares (SS)	Mean Square (MS)	f
Treatment	4	13.32	3.33	37.84
Error	40	3.53	0.088	
Total	44	16.85		

- Rejection region:
 - F _{0.05, 4, 40} = 2.61
- H₀ is rejected
- Find Tukey's HSD to see mean differences

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Applications

Example 2 (cont.)

•	\bar{x}_1	= 14.	5, \bar{x}	$_{2}$ = 13.8,	$\bar{x}_3 =$	13.3,	$\bar{\chi}_4$ =	14.3,	$\bar{x}_{5} = 13$	3.1
---	-------------	-------	--------------	----------------	---------------	-------	------------------	-------	--------------------	-----

	df	Sum of Squares (SS)	Mean Square (MS)	f
Treatment	4	13.32	3.33	37.84
Error	40	3.53	0.088	
Total	44	16.85		

$$HSD_{\alpha} = q_{\alpha,I,I(J-1)} \sqrt{\frac{MSE}{J}} = q_{0.05,5,40} \sqrt{\frac{0.088}{9}} = 4.04 \sqrt{\frac{0.088}{9}} = 0.399$$

$$\bar{X}_{5} \qquad \bar{X}_{3} \qquad \bar{X}_{2} \qquad \bar{X}_{4} \qquad \bar{X}_{1}$$

- Sort sample means: 13.1, 13.3, 13.8, 14.3, 14.5
- 3 groups of means:
 - \bar{x}_5, \bar{x}_3 are not significantly different from each other
 - \bar{x}_4 , \bar{x}_1 are not significantly different from each other
 - ullet $ar{x}_2$ is significantly different from $ar{x}_5, ar{x}_3$ and $ar{x}_4, ar{x}_1$

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Applications
Slide 40

40

Example 2 (cont.)

• If use another value for sample mean and same HSD_{α} :

•
$$\bar{x}_1$$
= 14.5, \bar{x}_2 = 14.15, \bar{x}_3 = 13.3, \bar{x}_4 = 14.3, \bar{x}_5 = 13.1

$$HSD_{\alpha} = q_{0.05,5,40} \sqrt{\frac{0.088}{9}} = 4.04 \sqrt{\frac{0.088}{9}} = 0.399$$

$$\bar{x}_5 \qquad \bar{x}_3 \qquad \bar{x}_2 \qquad \bar{x}_4 \qquad \bar{x}_1$$

- Sort sample means: 13.1, 13.3, 14.15, 14.3, 14.5
- 2 groups of means
 - \bar{x}_5 , \bar{x}_3 are not significantly different from each other
 - \bar{x}_2 , \bar{x}_4 , \bar{x}_1 are not significantly different from each other

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Applications
Slide 41

Example 3		df	Sum of Squares (SS)	Mean Square (MS)	f
• For another data set:	Treatment	3	5882.3575	1960.7858	21.09
• \bar{x}_1 = 79.28, \bar{x}_2 = 61.54,	Error	16	1487.4000	92.9625	
\bar{x}_1 = 47.92, \bar{x}_4 = 32.76	Total	19	7369.7575		

• I = 4, J = 5

$$HSD_{\alpha} = q_{\alpha,I,I(J-1)} \sqrt{\frac{MSE}{J}} = q_{0.05,4,16} \sqrt{\frac{92.9625}{5}} = 4.05 \sqrt{\frac{92.9625}{5}} = 17.47$$

- \bar{x}_4 \bar{x}_3 \bar{x}_2 \bar{x}_1 Sort sample means: 32.76, 47.92, 61.54, 79.28
- 2 groups of means

they are not different from \bar{x}_3 • \bar{x}_4 , \bar{x}_3 , \bar{x}_2 are not significantly different from each other

• \bar{x}_1 is significantly different from each other

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Applications Slide 42

Although \bar{x}_4 , \bar{x}_2 are different from each other,

42

Outline

- Introduction
- Equal sample size
 - F-test
 - Multiple comparison
- Unequal sample size
 - F-test
 - Multiple comparison
- Multiple comparison discussion
- Random effects model

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Applications Slide 43

Single ANOVA with Unequal Size

- ANOVA table:
 - N = Number of all samples = $\sum_{i=1}^{I} J_i$
 - *I* = Number of treatments
 - J_i = Number of samples for treatment i, i = 1, 2, ..., I

$$SST_r = \sum_{i=1}^{I} \sum_{j=1}^{J_i} (\bar{x}_{ij} - \bar{x})^2 = \sum_{i=1}^{I} \frac{1}{J_i} (\sum_{j=1}^{J_i} X_{ij})^2 - \frac{1}{n} (\sum_{i=1}^{I} \sum_{j=1}^{J_i} X_{ij})^2 \quad \text{df = I-1}$$

$$SST = \sum_{i=1}^{I} \sum_{j=1}^{J_i} (x_{ij} - \bar{x})^2 = \sum_{i=1}^{I} \sum_{j=1}^{J_i} X_{ij}^2 - \frac{1}{n} (\sum_{i=1}^{I} \sum_{j=1}^{J_i} X_{ij})^2$$
 df = N-1

$$SSE = \sum_{i=1}^{I} \sum_{j=1}^{J_i} (x_{ij} - \bar{x}_i)^2 = SST - SSTr$$
 df = N-I

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Applications
Slide 44

44

Single ANOVA with Unequal Size

- ANOVA table:
 - N = Number of all samples = $\sum_{i=1}^{I} J_i$
 - I = Number of treatments
 - J_i = Number of samples for treatment i, i = 1, 2, ..., I

	df	Sum of Squares (SS)	Mean Square (MS)	f
Treatment	<i>I</i> - 1	$\sum_{i=1}^{I} \sum_{j=1}^{J_i} (\bar{x}_{ij} - \bar{x})^2$	SSTr/(I -1)	MSTr / MSE
Error	N - I	SSE = $\sum_{i=1}^{I} \sum_{j=1}^{J_i} (x_{ij} - \bar{x}_i)^2$ = SST - SSTr	SSE/(N - <i>I</i>)	
Total	N - 1	$\sum_{i=1}^{I} \sum_{j=1}^{J_i} (x_{ij} - \bar{x})^2$		

of Computer Engineering

• ANOVA table:

• N = Number of all samples = $\sum_{i=1}^{I} J_i$

• I = Number of treatments

J_i = Number of samples for treatment i, , , 2, ..., I

Another option: Sample-based computation

	•					
		df	Sum of Squares	Mean	f	
			(SS)	Square		
				(MS)		
	Treatment	<i>I</i> - 1	$\sum_{i=1}^{I} \frac{1}{J_i} (\sum_{j=1}^{J_i} X_{ij})^2 - \frac{1}{n} (\sum_{i=1}^{I} \sum_{j=1}^{J_i} X_{ij})^2$	SSTr/(I -1)	MSTr / MSE	
	Error	N - I	$\begin{aligned} \text{SSE} &= \sum_{i=1}^{I} \sum_{j=1}^{J_i} (X_{ij} - \overline{X}_i)^2 \\ &= \text{SST} - \text{SSTr} \end{aligned}$	SSE/(N - <i>I</i>)		
	Total	N - 1	$\sum_{i=1}^{I} \frac{J_i}{J_i}$ and $\sum_{i=1}^{I} \frac{J_i}{J_i}$			
upa			$\sum \sum X_{ij}^2 - \frac{1}{n} (\sum \sum X_{ij})^2$			mputer Engineering

46

Example 1

- Measure strength of Mg-based alloys from 3 processes
- Show that alloys from 3 processes are the same are the same at α = 0.001

Process	Observations							
Permanent Molding (1)	45.5	45.3	45.4	44.4	44.6	43.9	44.6	44.0
Die casting (2)	44.2	43.9	44.7	44.2	44.0	43.8	44.6	43.1
Plaster molding (3)	46.0	45.9	44.8	46.2	45.1	45.5		

Let

- μ_1 = mean of alloy 1, μ_2 = mean of alloy 2
- μ_3 = mean of alloy 3, I = 3, J_1 = J_2 =8, J_3 = 6, N = 22
- Hypothesis
 - H_0 : $\mu_1 = \mu_2 = \mu_3$
 - H_a : Not all μ_i 's are equal (at least two of the μ_i 's are different)

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Applications

Process	Observations							$\sum_{j=1}^{J_i} x_{ij}$			
Permanent Molding (1)	45.5	45.3	3 45.4	44.4	44.6	43.9	44.6	44.0	357.7		
Die casting (2)	44.2	43.9	9 44.7	44.2	44.0	43.8	44.6	43.1	352.5		
Plaster molding (3)	46.0	45.9	9 44.8	46.2	45.1	45.5			273.5		
• Fill ANO	VA ta	ble								1	
	df		Sum of S (SS)	quares				Mean Squar	re(MS)	f	
Treatment	2		7.93					3.97		12.56	
Error	19		13.93 - = 6.00	7.93				0.32			
											- /////

	df	Sum of Squares (SS)	Mean Square(MS)	f
Treatment	2	7.93	3.97	12.56
Error	19	13.93 - 7.93 = 6.00	0.32	
Total	21	13.93		
• Rejectior		n: given α = 0.001		
• H _o is reje	, ,	10.10		
•		ocesses are not the same.		
paporn Erjongman gspe@ku.ac.th	ee	Statistics in Computer Engineering Applications Slide 49	- 2020	Department of Computer Engineering Kasetsart University

Outline

- Introduction
- Equal sample size
 - F-test
 - Multiple comparison
- Unequal sample size
 - F-test
 - Multiple comparison
- Multiple comparison discussion
- Random effects model

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Applications
Slide 50

50

Multiple Comparisons: Unequal Sample Size

- When some means are not all equal, how to specify which mean is different from others
- Procedure
 - 1. Find Tukey's Honestly Significant Difference (HSD)

$$HSD_{\alpha} = q_{\alpha,I,N-I} \sqrt{\frac{MSE}{2}} \left(\frac{1}{J_i} + \frac{1}{J_j}\right)$$

- $q_{\alpha, I, N-I} = q$ -value from studentized range distribution with 2 degrees of freedom I, N-I
- 2. Sort sample means in increasing order
- 3. Underline pairs that differ less than \mbox{HSD}_{α}
- 4. Any pair without underline are considered as significantly different.

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Applications
Slide 51

Example 1: Mg-based Alloy (cont.)

$$HSD_{\alpha,ij} = q_{\alpha,I,N-I} \sqrt{\frac{MSE}{2} (\frac{1}{J_i} + \frac{1}{J_j})}$$

• \bar{x}_1 = 44.71, \bar{x}_2 = 44.06, \bar{x}_3 = 45.58

$$w_{12} = HSD_{\alpha} = q_{\alpha, I, N-I} \sqrt{\frac{MSE}{2} (\frac{1}{J_i} + \frac{1}{J_j})} = q_{0.05, 3, 19} \sqrt{\frac{0.32}{2} (\frac{1}{8} + \frac{1}{8})} = 3.59 \sqrt{\frac{0.32}{2} (\frac{1}{8} + \frac{1}{8})} = 0.718$$

$$w_{13} = w_{23} = HSD_{\alpha} = q_{\alpha,I,N-I} \sqrt{\frac{MSE}{2}(\frac{1}{J_i} + \frac{1}{J_j})} = q_{0.05,3,19} \sqrt{\frac{0.32}{2}(\frac{1}{8} + \frac{1}{6})} = 3.59 \sqrt{\frac{0.32}{2}(\frac{1}{8} + \frac{1}{6})} = 0.775$$

 \bar{x}_2 \bar{x}_1 \bar{x}_3

• Sort sample means: 44.06, 44.71, 45.58

0.65 0.87

2 groups of means

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Applications
Slide 52

52

Outline

- Introduction
- Equal sample size
 - F-test
 - Multiple comparison
- Unequal sample size
 - F-test
 - Multiple comparison
- Multiple comparison discussion
- Random effects model

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Applications Slide 53

More on Multiple Comparison

- Is it possible that H_{OA} (or H_{OB}) is not rejected but result to multiple group of means?
- Is it also possible that H_{0A} (or H_{0B}) is rejected but have one group of means?

 Measured by MSE

ANOVA tests on ALL means whether they are identical Multiple comparison tests on PAIRWISE means

Not measured by MSE

ANOVA detects variability among all means

ANOVA test is more sensitive than Multiple comparison

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Applications
Slide 54

54

More on Multiple Comparison (cont.)

ANOVA tests on ALL means whether they are identical Multiple comparison tests on PAIRWISE means

ANOVA detects lower variability among all means
ANOVA test is more sensitive than Multiple comparison

Image source: http://blog.minitab.com/blog/adventures-in-statistics-2/understanding-analysis-of-variance-anova-and-the-f-test

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Applications
Slide 55

Outline

- Introduction
- Equal sample size
 - F-test
 - Multiple comparison
- Unequal sample size
 - F-test
 - Multiple comparison
- Multiple comparison discussion
- Random effects model

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Applications
Slide 56

56

Random Effects Model

- Single factor can be considered as fixed-effects ANOVA model
- The single-factor fixed-effects model is defined as

$$X_{ij} = \mu + \alpha_i + \varepsilon_{ij} \qquad \sum \alpha_i = 0$$

- X_{ii} = random sample j of treatment i
- μ = overall mean of all treatment i's
- α_i = effect of treatment i
- $arepsilon_{ij}=$ random error in sample j of treatment i
 - Assumed to be independent and normally distributed with mean = 0, variance = σ^2

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Applications
Slide 57

Random Effects Model (cont.)

$$X_{ij} = \mu + \alpha_i + \varepsilon_{ij} \qquad \boxed{\sum \alpha_i = 0}$$

- Explanations of the single-factor fixed-effects model:
 - Sample is corrupted by random errors
 - Error in one sample is independent from error of other samples
 - Expected response of treatment i

$$E(X_{ij}) = \mu + \alpha_i$$

• If $\alpha_i=0$, then all treatment i's have the same response

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Applications
Slide 58

58

Null Hypothesis: Single-Factor ANOVA

$$E(X_{ij}) = \mu + \alpha_i$$

- Besides the prior null hypothesis in single-factor ANOVA
 - H_0 : $\mu_1 = \mu_2 = ... = \mu_I$
- Sometimes, the following null hypothesis is also used instead:
 - H_0 : $\alpha_1 = \alpha_2 = ... = \alpha_I = 0$

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Applications Slide 59

References

- 1. J.L. Devore and K.N.Berk, Modern Mathematical Statistics with Applications, Springer, 2012.
- 2. S. Few, Now You See It: Simple Visualization Techniques for Quantitative Analysis, Analytics Press, 2009

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Applications
Slide 60

