

HOME

ENGINEERING STATISTICS HANDBOOK BACK NEXT TOOLS & AIDS SEARCH

5. Process Improvement

5.3. Choosing an experimental design 5.3.3. How do you select an experimental design?

**5.3.3.5.** Plackett-Burman designs

Plackett-Burman designs

In 1946, R.L. Plackett and J.P. Burman published their now famous paper "The Design of Optimal Multifactorial Experiments" in *Biometrika* (vol. 33). This paper described the construction of very economical designs with the run number a multiple of four (rather than a power of 2). Plackett-Burman designs are very efficient screening designs when only main effects are of interest.

These designs have run numbers that are a multiple of

Plackett-Burman (PB) designs are used for screening experiments because, in a PB design, main effects are, in general, heavily confounded with two-factor interactions. The PB design in 12 runs, for example, may be used for an experiment containing up to 11 factors.

12-Run Plackett-

Burnam

design

**TABLE 3.18: Plackett-Burman Design in 12 Runs for up to 11 Factors** 

|    | ractors    |       |       |       |       |       |       |       |       |       |          |          |  |  |
|----|------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|----------|----------|--|--|
|    | Pattern    | $X_1$ | $X_2$ | $X_3$ | $X_4$ | $X_5$ | $X_6$ | $X_7$ | $X_8$ | $X_9$ | $X_{10}$ | $X_{11}$ |  |  |
| 1  | ++++++++++ | +1    | +1    | +1    | +1    | +1    | +1    | +1    | +1    | +1    | +1       | +1       |  |  |
| 2  | -+-++++-   | -1    | +1    | -1    | +1    | +1    | +1    | -1    | -1    | -1    | +1       | -1       |  |  |
| 3  | +-++++     | -1    | -1    | +1    | -1    | +1    | +1    | +1    | -1    | -1    | -1       | +1       |  |  |
| 4  | ++-++      | +1    | -1    | -1    | +1    | -1    | +1    | +1    | +1    | -1    | -1       | -1       |  |  |
| 5  | -++-++     | -1    | +1    | -1    | -1    | +1    | -1    | +1    | +1    | +1    | -1       | -1       |  |  |
| 6  | ++-+       | -1    | -1    | +1    | -1    | -1    | +1    | -1    | +1    | +1    | +1       | -1       |  |  |
| 7  | ++++       | -1    | -1    | -1    | +1    | -1    | -1    | +1    | -1    | +1    | +1       | +1       |  |  |
| 8  | ++-++      | +1    | -1    | -1    | -1    | +1    | -1    | -1    | +1    | -1    | +1       | +1       |  |  |
| 9  | +++-+      | +1    | +1    | -1    | -1    | -1    | +1    | -1    | -1    | +1    | -1       | +1       |  |  |
| 10 | ++++-      | +1    | +1    | +1    | -1    | -1    | -1    | +1    | -1    | -1    | +1       | -1       |  |  |
| 11 | -++++      | -1    | +1    | +1    | +1    | -1    | -1    | -1    | +1    | -1    | -1       | +1       |  |  |
| 12 | +-++++     | +1    | -1    | +1    | +1    | +1    | -1    | -1    | -1    | +1    | -1       | -1       |  |  |

Saturated Main Effect designs

PB designs also exist for 20-run, 24-run, and 28-run (and higher) designs. With a 20-run design you can run a screening experiment for up to 19 factors, up to 23 factors in a 24-run design, and up to 27 factors in a 28-run design. These Resolution III designs are known as Saturated Main Effect designs because all degrees of freedom are utilized to estimate main effects. The designs for 20 and 24 runs are shown below.

20-Run Plackett-Burnam design

TABLE 3.19: A 20-Run Plackett-Burman Design

|    | 1       |       |       |       |         | 7 77 77 77 |       |       |       |          | <b>T</b> Z <b>T</b> Z |          | TZ TZ    |          | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ |          | T/ T/                  |          | <b>T7</b>              |
|----|---------|-------|-------|-------|---------|------------|-------|-------|-------|----------|-----------------------|----------|----------|----------|----------------------------------------|----------|------------------------|----------|------------------------|
|    | $ X_1 $ | $X_2$ | $X_3$ | $X_4$ | $X_{5}$ | $X_6$      | $X_7$ | $X_8$ | $X_9$ | $X_{10}$ | $X_{11}$              | $X_{12}$ | $X_{13}$ | $X_{14}$ | $X_{15}$                               | $X_{16}$ | <i>X</i> <sub>17</sub> | $X_{18}$ | <i>X</i> <sub>19</sub> |
| 1  | +1      | +1    | +1    | +1    | +1      | +1         | +1    | +1    | +1    | +1       | +1                    | +1       | +1       | +1       | +1                                     | +1       | +1                     | +1       | +1                     |
| 2  | -1      | +1    | -1    | -1    | +1      | +1         | +1    | +1    | -1    | +1       | -1                    | +1       | -1       | -1       | -1                                     | -1       | +1                     | +1       | -1                     |
| 3  | -1      | -1    | +1    | -1    | -1      | +1         | +1    | +1    | +1    | -1       | +1                    | -1       | +1       | -1       | -1                                     | -1       | -1                     | +1       | +1                     |
| 4  | +1      | -1    | -1    | +1    | -1      | -1         | +1    | +1    | +1    | +1       | -1                    | +1       | -1       | +1       | -1                                     | -1       | -1                     | -1       | +1                     |
| 5  | +1      | +1    | -1    | -1    | +1      | -1         | -1    | +1    | +1    | +1       | +1                    | -1       | +1       | -1       | +1                                     | -1       | -1                     | -1       | -1                     |
| 6  | -1      | +1    | +1    | -1    | -1      | +1         | -1    | -1    | +1    | +1       | +1                    | +1       | -1       | +1       | -1                                     | +1       | -1                     | -1       | -1                     |
| 7  | -1      | -1    | +1    | +1    | -1      | -1         | +1    | -1    | -1    | +1       | +1                    | +1       | +1       | -1       | +1                                     | -1       | +1                     | -1       | -1                     |
| 8  | -1      | -1    | -1    | +1    | +1      | -1         | -1    | +1    | -1    | -1       | +1                    | +1       | +1       | +1       | -1                                     | +1       | -1                     | +1       | -1                     |
| 9  | -1      | -1    | -1    | -1    | +1      | +1         | -1    | -1    | +1    | -1       | -1                    | +1       | +1       | +1       | +1                                     | -1       | +1                     | -1       | +1                     |
| 10 | +1      | -1    | -1    | -1    | -1      | +1         | +1    | -1    | -1    | +1       | -1                    | -1       | +1       | +1       | +1                                     | +1       | -1                     | +1       | -1                     |
| 11 | -1      | +1    | -1    | -1    | -1      | -1         | +1    | +1    | -1    | -1       | +1                    | -1       | -1       | +1       | +1                                     | +1       | +1                     | -1       | +1                     |
| 12 | +1      | -1    | +1    | -1    | -1      | -1         | -1    | +1    | +1    | -1       | -1                    | +1       | -1       | -1       | +1                                     | +1       | +1                     | +1       | -1                     |
| 13 | -1      | +1    | -1    | +1    | -1      | -1         | -1    | -1    | +1    | +1       | -1                    | -1       | +1       | -1       | -1                                     | +1       | +1                     | +1       | +1                     |
| 14 | +1      | -1    | +1    | -1    | +1      | -1         | -1    | -1    | -1    | +1       | +1                    | -1       | -1       | +1       | -1                                     | -1       | +1                     | +1       | +1                     |
| 15 | +1      | +1    | -1    | +1    | -1      | +1         | -1    | -1    | -1    | -1       | +1                    | +1       | -1       | -1       | +1                                     | -1       | -1                     | +1       | +1                     |
| 16 | +1      | +1    | +1    | -1    | +1      | -1         | +1    | -1    | -1    | -1       | -1                    | +1       | +1       | -1       | -1                                     | +1       | -1                     | -1       | +1                     |
| 17 | +1      | +1    | +1    | +1    | -1      | +1         | -1    | +1    | -1    | -1       | -1                    | -1       | +1       | +1       | -1                                     | -1       | +1                     | -1       | -1                     |
| 18 | -1      | +1    | +1    | +1    | +1      | -1         | +1    | -1    | +1    | -1       | -1                    | -1       | -1       | +1       | +1                                     | -1       | -1                     | +1       | -1                     |
| 19 | -1      | -1    | +1    | +1    | +1      | +1         | -1    | +1    | -1    | +1       | -1                    | -1       | -1       | -1       | +1                                     | +1       | -1                     | -1       | +1                     |
| 20 | +1      | -1    | -1    | +1    | +1      | +1         | +1    | -1    | +1    | -1       | +1                    | -1       | -1       | -1       | -1                                     | +1       | +1                     | -1       | -1                     |

24-Run Plackett-Burnam design

TABLE 3.20: A 24-Run Plackett-Burman Design

|    | $X_1$ | $X_2$ | $X_3$ | $X_4$ | X <sub>5</sub> | $X_6$ | $X_7$ | <b>X</b> <sub>8</sub> | <b>X</b> <sub>9</sub> | X <sub>10</sub> | X <sub>11</sub> | X <sub>12</sub> | X <sub>13</sub> | X <sub>14</sub> | X <sub>15</sub> | X <sub>16</sub> | X <sub>17</sub> | X <sub>18</sub> | X <sub>19</sub> | X <sub>20</sub> | X <sub>21</sub> | X <sub>22</sub> | X <sub>23</sub> |
|----|-------|-------|-------|-------|----------------|-------|-------|-----------------------|-----------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| 1  | 1     | 1     | 1     | 1     | 1              | 1     | 1     | 1                     | 1                     | 1               | 1               | 1               | 1               | 1               | 1               | 1               | 1               | 1               | 1               | 1               | 1               | 1               | 1               |
| 2  | -1    | 1     | 1     | 1     | 1              | -1    | 1     | -1                    | 1                     | 1               | -1              | -1              | 1               | 1               | -1              | -1              | 1               | -1              | 1               | -1              | -1              | -1              | -1              |
| 3  | -1    | -1    | 1     | 1     | 1              | 1     | -1    | 1                     | -1                    | 1               | 1               | -1              | -1              | 1               | 1               | -1              | -1              | 1               | -1              | 1               | -1              | -1              | -1              |
| 4  | -1    | -1    | -1    | 1     | 1              | 1     | 1     | -1                    | 1                     | -1              | 1               | 1               | -1              | -1              | 1               | 1               | -1              | -1              | 1               | -1              | 1               | -1              | -1              |
| 5  | -1    | -1    | -1    | -1    | 1              | 1     | 1     | 1                     | -1                    | 1               | -1              | 1               | 1               | -1              | -1              | 1               | 1               | -1              | -1              | 1               | -1              | 1               | -1              |
| 6  | -1    | -1    | -1    | -1    | -1             | 1     | 1     | 1                     | 1                     | -1              | 1               | -1              | 1               | 1               | -1              | -1              | 1               | 1               | -1              | -1              | 1               | -1              | 1               |
| 7  | 1     | -1    | -1    | -1    | -1             | -1    | 1     | 1                     | 1                     | 1               | -1              | 1               | -1              | 1               | 1               | -1              | -1              | 1               | 1               | -1              | -1              | 1               | -1              |
| 8  | -1    | 1     | -1    | -1    | -1             | -1    | -1    | 1                     | 1                     | 1               | 1               | -1              | 1               | -1              | 1               | 1               | -1              | -1              | 1               | 1               | -1              | -1              | 1               |
| 9  | 1     | -1    | 1     | -1    | -1             | -1    | -1    | -1                    | 1                     | 1               | 1               | 1               | -1              | 1               | -1              | 1               | 1               | -1              | -1              | 1               | 1               | -1              | -1              |
| 10 | -1    | 1     | -1    | 1     | -1             | -1    | -1    | -1                    | -1                    | 1               | 1               | 1               | 1               | -1              | 1               | -1              | 1               | 1               | -1              | -1              | 1               | 1               | -1              |
| 11 | -1    | -1    | 1     | -1    | 1              | -1    | -1    | -1                    | -1                    | -1              | 1               | 1               | 1               | 1               | -1              | 1               | -1              | 1               | 1               | -1              | -1              | 1               | 1               |
| 12 | 1     | -1    | -1    | 1     | -1             | 1     | -1    | -1                    | -1                    | -1              | -1              | 1               | 1               | 1               | 1               | -1              | 1               | -1              | 1               | 1               | -1              | -1              | 1               |
| 13 | 1     | 1     | -1    | -1    | 1              | -1    | 1     | -1                    | -1                    | -1              | -1              | -1              | 1               | 1               | 1               | 1               | -1              | 1               | -1              | 1               | 1               | -1              | -1              |
| 14 | -1    | 1     | 1     | -1    | -1             | 1     | -1    | 1                     | -1                    | -1              | -1              | -1              | -1              | 1               | 1               | 1               | 1               | -1              | 1               | -1              | 1               | 1               | -1              |
| 15 | -1    | -1    | 1     | 1     | -1             | -1    | 1     | -1                    | 1                     | -1              | -1              | -1              | -1              | -1              | 1               | 1               | 1               | 1               | -1              | 1               | -1              | 1               | 1               |
| 16 | 1     | -1    | -1    | 1     | 1              | -1    | -1    | 1                     | -1                    | 1               | -1              | -1              | -1              | -1              | -1              | 1               | 1               | 1               | 1               | -1              | 1               | -1              | 1               |
| 17 | 1     | 1     | -1    | -1    | 1              | 1     | -1    | -1                    | 1                     | -1              | 1               | -1              | -1              | -1              | -1              | -1              | 1               | 1               | 1               | 1               | -1              | 1               | -1              |
| 18 | -1    | 1     | 1     | -1    | -1             | 1     | 1     | -1                    | -1                    | 1               | -1              | 1               | -1              | -1              | -1              | -1              | -1              | 1               | 1               | 1               | 1               | -1              | 1               |
| 19 | 1     | -1    | 1     | 1     | -1             | -1    | 1     | 1                     | -1                    | -1              | 1               | -1              | 1               | -1              | -1              | -1              | -1              | -1              | 1               | 1               | 1               | 1               | -1              |
| 20 | -1    | 1     | -1    | 1     | 1              | -1    | -1    | 1                     | 1                     | -1              | -1              | 1               | -1              | 1               | -1              | -1              | -1              | -1              | -1              | 1               | 1               | 1               | 1               |
| 21 | 1     | -1    | 1     | -1    | 1              | 1     | -1    | -1                    | 1                     | 1               | -1              | -1              | 1               | -1              | 1               | -1              | -1              | -1              | -1              | -1              | 1               | 1               | 1               |
| 22 | 1     | 1     | -1    | 1     | -1             | 1     | 1     | -1                    | -1                    | 1               | 1               | -1              | -1              | 1               | -1              | 1               | -1              | -1              | -1              | -1              | -1              | 1               | 1               |
| 23 | 1     | 1     | 1     | -1    | 1              | -1    | 1     | 1                     | -1                    | -1              | 1               | 1               | -1              | -1              | 1               | -1              | 1               | -1              | -1              | -1              | -1              | -1              | 1               |
| 24 | 1     | 1     | 1     | 1     | -1             | 1     | -1    | 1                     | 1                     | -1              | -1              | 1               | 1               | -1              | -1              | 1               | -1              | 1               | -1              | -1              | -1              | -1              | -1              |

No defining

relation

These designs do not have a defining relation since interactions are not identically equal to main effects. With the  $2_{III}^{k=p}$  designs, a main effect column  $X_i$  is either orthogonal to  $X_iX_j$  or identical to plus or minus  $X_iX_j$ . For Plackett-Burman designs, the two-factor interaction column  $X_iX_j$  is correlated with every  $X_k$  (for knot equal to i or j).

**Economical** for detecting large main effects

However, these designs are very useful for economically detecting large main effects, assuming all interactions are negligible when compared with the few important main effects.

HOME

TOOLS & AIDS

SEARCH

BACK NEXT