COMP3211 Tutorial 8: Game Theory

Fengming ZHU

Apr. 22&25

Department of CSE HKUST

Outline

Game Formulation

Best Response and Nash Equilibria

Sealed-Bid Auctions

Game Formulation

Formulation

Normal-Form Games:

- A set of agents $\mathcal{N} = [1..n]$
- Each agent i holds an action set A_i
- Each agent i holds an utility function $u_i: A_1 \times \cdots \times A_n \to \mathbb{R}$
- A Nash equilibrium (s_1, \dots, s_n) , $s_i \in \Delta(A_i)$: $\begin{cases} s_i = (1, 0, 0, 0) \\ (a_i > 0, 0, 0) \end{cases}$ $s_i \in \Delta(A_i)$: $\begin{cases} s_i = (1, 0, 0, 0, 0) \\ (a_i > 0, 0, 0, 0) \end{cases}$ $s_i \in \Delta(A_i)$: $\begin{cases} s_i = (1, 0, 0, 0, 0, 0) \\ (a_i > 0, 0, 0, 0, 0, 0, 0) \end{cases}$

 Nash's existence theorem: Any game with a finite set of players and finite set of strategies has a Nash equilibrium of mixed strategies.

Maximizing Reward v.s. Minimizing Regret

		\downarrow		J	J			
		Reward		С	D 🗸		С	D
	Α	100	Α	100, 3	$1-\epsilon$, $\boxed{5}$	Α	100, a	$1-\epsilon$, b
	В	2	B	2, 3	1, 5	В	2, c	1, d
Re	Definition ¹ : $Reward(a_i, a_{-i}) \triangleq u_i(a_i, a_{-i})$ $Regret(a_i, a_{-1}) \triangleq \max_{a'_i} u_i(a'_i, a_{-i}) - u_i(a_i, a_{-i})$, ,	

¹Shoham, Yoav, and Kevin Leyton-Brown. Multiagent systems: Algorithmic, game-theoretic, and logical foundations. Cambridge University Press, 2008.

Best Response and Nash Equilibria

Example 1: Network Sharing

You and your friend share a network and both of you want to download a movie:

- If both of you do that, the network is jammed, and none of you is happy: say both of you value it 2.
- If only one of you do that, the network works perfectly: the one who did that is very happy (5), the other is very unhappy (0).
- If none of you do that, then none of you is very happy but then you can do something together. So let's assign it a value of 3.

	D	ND
D	(2, 2)	<u>5</u> , 0
ND	0, 5	3, 3

Example 2: Tragedy of The Commons

A generalized continuous version:

- n players. Each has the same strategy of downloading $x_i \in [0,1]$ units. But the total bandwidth is only 1.
- If $\sum_i x_i > 1$, every one gets zero utility.
- Else, player i gets a utility of $x_i (1 \sum_j x_j)$

Example 2: Tragedy of The Commons

A generalized continuous version:

- n players. Each has the same strategy of downloading $x_i \in [0,1]$ units. But the total bandwidth is only 1.
- If $\sum_{i} x_i > 1$, every one gets zero utility.
- Else, player i gets a utility of $x_i(1-\sum_j x_j)$

Solutoin:

- Let $t = \sum_{j \neq i} x_i$, then $u_i = x_i(1 t x_i)$, max at $x_i = \frac{1-t}{2}$.
- A unique solution for the equations $\forall i, x_i = \frac{1 \sum_{j \neq i} x_j}{2} \Rightarrow x_i = \frac{1}{n+1}$.
- Total usage $\sum_i x_i = \frac{n}{1+n}$. Social welfare $= n \cdot \frac{1}{n+1} \frac{1}{n+1} < \frac{1}{n}$.
- But if $\sum_i x_i = 1/2$, social welfare $= \sum_i x_i (1 \sum_j x_j) = \frac{1}{4}$
- Players are incentivized to overuse the resource.

Example 3: Soccer Penalty Kicks

Kicker/Goalie	Left	Right
Left	0, 1	1, 0
Right	0.75, 0.25	0, 1

 No pure Nash equilibrium, then try to find a mixed Nash equlibrium.

Example 3: Soccer Penalty Kicks

Kicker/Goalie	Left	Right
Left	0, 1	1, 0
Right	0.75, 0.25	0, 1

- No pure Nash equilibrium, then try to find a mixed Nash equlibrium.
- The goalie's strategy is to make the kicker indifferent between kicking left and right. Goalie guards left w.p. p, for the kicker,

$$(1-p)=0.75p \Rightarrow p=4/7$$

Example 3: Soccer Penalty Kicks

Kicker/Goalie	Left	Right
Left	0, 1	1, 0
Right	0.75, 0.25	0, 1

- No pure Nash equilibrium, then try to find a mixed Nash equlibrium.
- The goalie's strategy is to make the kicker indifferent between kicking left and right. Goalie guards left w.p. p, for the kicker,

$$(1-p)=0.75p \Rightarrow p=4/7$$

 The kicker's strategy is to make the goalie indifferent between guarding left and right. Kicker kicks left w.p. q, for the guard,

$$q + 0.25(1 - q) = (1 - q) \Rightarrow q = 3/7$$

Example 4: Battle of Sexes - Pure NE

Pure-strategy NE: 1. (sports, sports), 2. (movie, movie).

What about mixed-strategy NE?

Example 4 con't: Battle of Sexes - All NE

	G	1- 6
	Sports	Movie
Sports	1,0	-1) -1
Movie	-1) -1	0, 1

Best responses:

- Suppose the girl plays [q:S, (1-q):M], for the boy to prefer S

$$q-(1-q)\geq -q\Rightarrow q\geq rac{1}{3}$$

- Suppose the boy plays [p:S, (1-p):M], for the girl to prefer S

$$0-(1-p) \ge -p+(1-p) \Rightarrow p \ge \frac{2}{3}$$

Example 3 con't: Battle of Sexes - All NE

Figure 1: Best response curve.

Thus, mixed NE: [Boy(2/3:S, 1/3:M), Girl(1/3:S, 2/3:M)].

Sealed-Bid Auctions

Sealed-Bid Auctions

In the lecture, we have discussed two implementations of sealed bid actions: first price auction and second price auction.

- 1. First-price: the winner pays his own bid (the highest)
- 2. Second-price: the winner pays the second highest bid.

For simplicity, assume there are two bidders *Alice* and *Bob* bidding for one single item. Values that <u>Alice</u> and <u>Bob</u> hold towards the item are <u>and bidders</u> respectively. Those values are private information, i.e. <u>a</u> is unknow to Bob and <u>b</u> is unknown to Alice. Let <u>a denote</u> Alice' bid and <u>y denote</u> Bob's bid. Ties will always be broken in favor of Alice.

Sealed-Bid Auctions: First-Price

Consider first price auction (the highest bidder wins the item and pays the price as she bids).

Assume $\underline{a > b}$ and Alice somehow knows Bob's valuation b, but Bob still has no idea about Alice's valuation a. Find a pure Nash equilibrium.

$$(b.b)$$
 $b+\epsilon$ $a-b-\epsilon=a-b$ $b+\epsilon'$ $b-b-\epsilon'=0$

Sealed-Bid Auctions: First-Price

Consider first price auction (the highest bidder wins the item and pays the price as she bids).

Assume a > b and Alice somehow knows Bob's valuation b, but Bob still has no idea about Alice's valuation a. Find a pure Nash equilibrium.

(x=b, y=b) is the only pure NE, such that Alice can obtain a maximum utility of a-b>0, while Bob has no way to win the item thus no profitable deviation.

Sealed-Bid Auctions: First-Price con't

Assume a and b are independent random variables, both of which are distributed as $\underline{uniform}(0, 1)$, which is known as common knowledge. Each one's exact value is unknown to the other one, as the original assumption. Find a pure Nash equilibrium. (Hint: try to find the best response for Alice when Bob bids y = b/2.)

Sealed-Bid Auctions: First-Price con't

Assume a and b are independent random variables, both of which are distributed as $\mathtt{uniform}(0, 1)$, which is known as common knowledge. Each one's exact value is unknown to the other one, as the original assumption. Find a pure Nash equilibrium. (Hint: try to find the best response for Alice when Bob bids y = b/2.)

Let y = b/2, Alice's expected utility will be $Pr(Alice\ wins) > (a - x)$. Given $b \sim \text{uniform}[0, 1]$,

$$Pr(Alice wins) = Pr(x \ge b/2) = Pr(b \le 2x) = 2x.$$

Thus, Alice's expected return will be 2x(a-x) Take the first derivative and set to 0,

$$\frac{d}{dx}2x(a-x)=2a-4x=0\Rightarrow \underline{x=a/2}.$$

By symmetry, for Alice bidding a/2, Bob's best response is also to bid b/2. Hence, (x = a/2, y = b/2) is an NE.

Sealed-Bid Auctions: Revenue Equivalence

First-price auction:

One-shot income for the auctioneer: max(a/2, b/2)

Let
$$\alpha = \max(a/2, b/2)$$
,

$$Pr[\alpha \le t] = Pr[max(a/2, b/2) \le t]$$

$$= Pr[a/2 \le t] \times Pr[b/2 \le t]$$

$$= 4t^2$$

$$f(\alpha = t) = d/dt(4t^2) = 8t$$

$$E[\alpha] = \int_0^{1/2} t \cdot 8t \cdot dt = 1/3$$

Sealed-Bid Auctions: Revenue Equivalence

Second-price auction:

It is also proved that (x=a, y=b) is a Nash equilibrium for second price auctions.

One-shot income for the auctioneer: min(a, b)

Let
$$\beta = min(a, b)$$
,

$$Pr[\beta \le t] = Pr[min(a, b) \le t]$$

$$= 1 - Pr[a > t] \times Pr[b > t]$$

$$= 1 - (1 - t)^{2}$$

$$f(\beta = t) = d/dt[1 - (1 - t)^{2}] = 2 - 2t$$

$$E[\beta] = \int_{0}^{1} t \cdot (2 - 2t) \cdot dt = 1/3$$

Thanks!