登录 | 注册

wutong_login的专栏

:■ 目录视图

늘 摘要视图

RSS 订阅

个人资料

访问: 398802次

积分: 4603

等级: **BLOC** 5

排名: 第3069名

原创: 73篇 转载: 73篇 译文: 1篇 评论: 117条

文章搜索

文章分类

视频编解码 (50)

乐在其中 (5)

人生旅途 (16)

数字电视 (19)

网络传输 (12) 软件开发 (34)

文章存档

2015年04月 (1)

2015年03月 (1)

2015年02月 (1)

2015年01月 (2)

2014年12月 (2)

阅读排行

一种简单易用的台球瞄准

crtmpserver流媒体服务器

HLS协议实现

(25317)

展开

写博客,送money、送书、送C币啦 7-8月博乐推荐文章 砸BUG 得大奖 100%中奖率 微信开发学习路线高级篇上线 喜博主周兆熊新书发售

H.264-AVC视频编码原理及实现(二)

分类: 视频编解码

2012-02-22 16:23 11244人阅读

评论(2) 收藏 举报

h.264 算法

[+] 目录(?)

二视频编码基本原理

2.1 原理图

目前常用的视频编码算法基本上都是以运动估计和以块为单位的时-频变换为基础。

运动估计,处理了相邻视频帧中的相同部分。

时-频变换,使得数据块的能量更加集中地分布。常用的时-频变换是DCT变换。

2.2 运动估计

运动估计(Motion Estimation),相邻视频帧之间的内容存在一定的相关性。把图像分成若干块,通过一定的搜 索算法,在邻近帧中找到和该块最相似的块,这个过程称为运动估计,二者之间的相对偏移量称为运动矢量。 在编码的过程中,对运动矢量和预测的参差进行编码。通过运动估计减少了帧间的时间冗余。

常用的运动估计的匹配算法有:

常用运动估计的搜索算法有:

a) 均方误差 (MSE) 最小准则:

$$MSE(i, j) = \frac{1}{MN} \sum_{x=1}^{M} \sum_{y=1}^{N} \left[f_t(x, y) - f_{t-1}(x+i, y+j) \right]^2$$

b) 绝对误差均值 (MAD) 最小准则:

$$MAD(i, j) = \frac{1}{MN} \sum_{x=1}^{M} \sum_{y=1}^{N} |f_t(x, y) - f_{t-1}(x+i, y+j)|$$

1 全匹配法

光栅方式扫描所有像素,找到最匹配的块位置。

H.264-AVC视频编码原理
(11238)
P2P中的NAT穿越方案
(10829)
H.264-AVC视频编码原理
(10582)
H.264学习笔记之一(层)
(10040)
msvc compile vlc forums (9689)
H.264-AVC视频编码原理 (9543)
msvc 编译 VLC (9467)

评论排行

基于IP播放TS流的码率招	(23)
crtmpserver流媒体服务器	(11)
单节目变码率TS流复用算	(10)
HLS协议实现	(5)
msvc 编译 VLC	(5)
H.264学习笔记之一(层)	(4)
Linux中配置samba服务器	(4)
一种基于TS包比例占用的	(3)
windows平台下vlc编译之	(3)
ffmpeg的编译大全【转载	(3)

推荐文章

最新评论

crtmpserver流媒体服务器的介绍。 莴笋Ho: 不错,谢谢分享~

HLS协议实现 usbfans2013: 谢谢分享

msvc 编译 VLC

fengbingchun: 你好

http://www.megaupload.com/? d=EYG5IAE6 你上面给的这个网 址...

H.264-AVC视频编码原理及实现 ooXingKong123456789: 很好的 文章,收藏了

Apple , HLS , NAL_AUD , ——1 chinapacs: 高手!!

单节目变码率TS流复用算法的研 武爱敏: @yyd01245:你好,如果 编出来的数据是固定码率的话, pts-pcr应该在一个比较稳定的范 周

单节目变码率TS流复用算法的研yyd01245: 楼主你好,我目前也是用音频生成pcr,用检测工具pcr间隔是保持24ms,但是pts-pcr 这个值波...

crtmpserver流媒体服务器的介绍。 Jason_Plus: @wutong_login:恩. 想用他来代替FMS

VirtualBox修改虚拟机磁盘VDI的; 武爱敏: virtualbox可以用这个命 令修改GUID: VBoxManage internalcommand...

crtmpserver流媒体服务器的介绍 武爱敏: @jingjing123123jing:你 好,我没有使用过P2P的功能。 我理解P2P应该是播放器端来...

2 二维对数法

又称五点搜索,边缘点以原步长继续搜索,中心点或边界点步长减半。

3 三步搜索

又称8点搜索,每次确定下一步的搜索点,并将步长减半。

4 领域搜索

根据邻近已编码MB的位置,确定中心的,如果原点最匹配,停止搜索,如果最匹配点是搜索框边缘,继续以该点为中心进行搜索。

5 其它

菱形搜索

钻石搜索

2.3 DCT

对数据块进行空域到时域的变换,能量更加集中。

转换公式:

$$F(u,v) = \frac{1}{4}C(u)C(v) \left[\sum_{i=0}^{7} \sum_{j=0}^{7} f(i,j) \cos \frac{(2i+1)u\pi}{16} \cos \frac{(2j+1)v\pi}{16} \right]$$

$$f(i,j) = \frac{1}{4}C(u)C(v) \left[\sum_{i=0}^{7} \sum_{j=0}^{7} F(u,v) \cos \frac{(2i+1)u\pi}{16} \cos \frac{(2j+1)v\pi}{16} \right]$$

$$C(u), C(v) = 1/\sqrt{2}$$
 ($u, v = 0$)

对于一个8x8的数据块(表1)经过DCT后转换成表2:

162	162	161	-	162	-	-	-
161	161	161	161	160	157	157	157
159	160	161	162	163	155	155	155
159	161	162	160	160	159	159	159
150	155	160	163	155	156	156	156
144	151	153	156	159	156	156	156
139	144	149	153	155	155	155	155

			- 18				
0.65	0.39	-0.94	-0.46	0.47	0.30	-0.14	-0.11
-0.32	-0.09	-0.08	-0.37	-0.42	0.43	0.27	-0.19
0.44	-0.05	0.41	-0.09	-0.14	0.37	0.28	-0.25
-0.16	-0.21	0.37	0.39	-0.03	-0.17	0.15	0.32
-1.77	-0.48	0.06	0.36	0.22	-0.02	-0.01	0.08
-2.74	-2.32	-0.39	-0.38	0.05	-0.24	-0.14	-0.02
-5.65	-4.37	-1.56	-0.79	-0.71	-9.02	0.11	-0.30
315	-0.26	-3.02	-1.30	0.53	-0.42	-0.68	0.33

在DCT的转换过程中,当u=0,v=0时,F(0,0)代表了整个8*8图像块的均值,F(0,0)称为直流系数(DC),其余变 换后的63个数,称为交流系数(AC)。交流系数距离直流系数越远,交流系数的频率越高。

量化:目的是使保存数据的比特数降低,手段是把一批输入值对应到一个输出级上,结果降低了数据的精度。

量化示例:

0.03	0.59	-0,54	-0.40	0.47	0.50	-0.14	-0.11
0.65	0.39	-0.94	-0.46	0.47	0.30	-0.14	-0.11
-0.32	-0.09	-0.08	-0.37	-0.42	0.43	0.27	-0.19
0.44	-0.05	0.41	-0.09	-0.14	0.37	0.28	-0.25
-0.16	-0.21	0.37	0.39	-0.03	-0.17	0.15	0.32
-1.77	-0.48	0.06	0.36	0.22	-0.02	-0.01	0.08
-2.74	-2.32	-0.39	-0.38	0.05	-0.24	-0.14	-0.02
-5.65	4.37	-1.56	-0.79	-0.71	-9.02	0.11	-0.30
315	-0.26	-3.02	-1.30	0.53	-0.42	-0.68	0.33

315	0	-3	1	1	0	-1	0
-6	-4	-2	-1	-1	-9	0	0
-3	-2	0	0	0	0	0	0
-2	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
1	0	-1	0	0	0	0	0

结论:经过量化后的数据,在进行解码还原时势必导致图像的失真。量化的精度,决定了图像还原时的失真程 度,精度越高,失真越小,反映在码率上,就是量化精度越高,码率越大。

帧内编码和帧间编码采用的不同量化方式 编码时对量化值进行编码传输。

量化公式:

$$F^{Q}(u,v) = IntergerRound \left(\frac{F(u,v)}{Q(u,v)*q} \right)$$

2.5 Z-Scan

DCT加量化后的数据,能量都集中在左上角,在进行数据保存时采用Z扫描的顺序进行保存。

8		15	A	4	4	4	47
6	14	6	4	×	*	4	91
K	14	4	×	4	3/	2	4/
*	6	×	4	14/	3/	*/	3/
*	1	4	*	*	3/	*	3/
6	4	*	*	*	9	4	*1
5/	*	4	3	4	14	19/	9/
4/	4	4	4	4/	9/	*/	×.

315	0	-3	1	1	0	-1	0
-6	-4	-2	-1	-1	-9	0	0
-3	-2	0	0	0	0	0	0
-2	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
1	0	-1	0	0	0	0	0

表 3

经过Z扫描后,直流系数和交流系数的低频部分,会排在新数组的前面,而交流系数的高频部分排到后面,而高频中大部分数的值大多都是0,这样我们就把可以得到一长串的"0"的序列,为下一步的编码做好准备。

2.6 熵编码

原理:信息冗余 常用的熵编码有:

RLE:行程长度编码,是针对交流系数进行编码的,它的编码原理是,使用一个字节的高4位表示连续的0的个数,使用它的低4位表示编码下一个非0系数所需要的位数,跟在后面的是非0系数的值。

Huffman:在变长编码中,对出现概率大的符号赋予短码字,对出现概率小的符号赋予长码字。

其它: CAVLC, CABAC

2.7 重构

模拟解码器对已经编码的数据进行解码,解码后的视频数据作为其后编码的视频的参考帧数据。

版权声明:本文为博主原创文章,未经博主允许不得转载。

上一篇 H.264-AVC视频编码原理及实现(一)

下一篇 H.264-AVC视频编码原理及实现(三)

主题推荐 h.264 视频 编码

猜你在找

有趣的算法 (数据结构)

数据结构和算法

Java经典算法讲解

零基础开发、部署OpenStack入门视频

大数据编程语言:Java基础

BLOC

Know how to code yet?

GET STARTED ▶

查看评论

1楼 星夜落尘 2014-02-27 15:37发表