

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н. Э. Баумана)

ФАКУЛЬТЕТ	Фундаментальные науки		
КАФЕДРА	Прикладная математика		

РАСЧЕТНО-ПОЯСНИТЕЛЬНАЯ ЗАПИСКА К КУРСОВОЙ РАБОТЕ HA TEMY:

Анализ численных методов решения стохастических обыкновенных дифференциальных уравнений

Студент ФН2-52Б		А.В. Попов		
	(Группа)	(Подпись, дата)	(И.О. Фамилия)	
Руководитель курсовой работы			И.В. Деревич	
		(Подпись, дата)	(И.О. Фамилия)	

Оглавление 2

Оглавление

Вв	ведение	3
1.	Постановка задачи	3
2.	Теоретические сведения	4
3.	Метод Эйлера — Маруямы	5
4.	Метод Рунге — Кутты	6
	4.1. Одномерный случай	7
	4.2. Двухмерный случай	7
5.	Анализ результатов	11
6.	Заключение	16
Ст	тисок использованных источников	18

Введение 3

Введение

Проблемы и методы теории вероятностей и математической статистики нашли свое отражение в огромном количестве прикладных задач, так как большинство процессов в нашей жизни в той или иной степени имеют случайную природу. Стохастические дифференциальные уравнения — раздел современной математики, который позволяет описать данные процессы. Они позволяют решить ряд проблем в таких областях как механика, финансовая математика, экономика, передача информации и др. В различных системах из приведенных выше областей, как правило, «случайность» процесса выражена цветным шумом, однако для решения задач можно использовать моделирование упрощенного варианта, а именно — белого шума.

В работе представлена программная реализация алгоритмов численного интегрирования систем СОДУ. Представлено сопоставление численных случайных траекторий с траекториями, найденными в результате точного решения СОДУ из литературы. Описана процедура оценки скорости слабой и сильной сходимости метода численного интегрирования СОДУ.

1. Постановка задачи

Рассмотрим задачу Коши для стохастического обыкновенного дифференциального уравнения (СОДУ) общего вида [1]:

$$\begin{cases} \frac{dX(t)}{dt} = A(X(t), t) + B(X(t), t) \cdot \xi(t), \\ X(0) = X_0, \end{cases}$$

$$(1.1)$$

где A(X(t),t), B(X(t),t) – некоторые детерминированные функции (в общем случае матричные), а $\xi(t)$ – одномерный случайный процесс Гаусса (белый шум). В данном уравнении предполагается, что для любого значения функции $\xi(t)$ соответствующая задача Коши удовлетворяет условиям теоремы существования и единственности решения. Также, так как правая часть уравнения носит случайный характер, то неизвестная нам функция X(t) является скалярным случайным процессом.

Представим (1.1) в интегральном виде:

$$X(t) = X_0 + \int_0^t A(X(s), s) \, ds + \int_0^t B(X(s), s) \, dW(s). \tag{1.2}$$

Здесь первый интеграл в правой части представляет собой обыкновенный интеграл от непрерывной функции по времени, а второй – интеграл от непрерывной функции

по винеровскому процессу W(s), называемый также интегралом Ито от функции B(X(s),s).

Аналитическое нахождение функции X(t) в (1.2) не всегда представляется возможным, поэтому почти всегда прибегают к численному моделированию решения. Более того, задача (1.1) может быть обобщена на многомерный случай, тогда функция A(X(t), t) и B(X(t), t) будут являться матричными, а решение будет получено в виде набора функций. На концепцию получения численного решения это влиять не будет, единственная разница будет связана лишь с техническими трудностями.

Таким образом, основной задачей будет являться поиск численного решения для конкретных стохастических дифференциальных уравнений, обработка полученного результата и его анализ. Для этого в работе будут использованы два широко известных метода решения СОДУ: метод Эйлера — Маруямы и метод Рунге — Кутты. Для реализации задачи был выбран язык программирования общего назначения С++ и математический пакет Wolfram Mathematica.

2. Теоретические сведения

Прежде чем приступать непосредственно к решению (1.1) дадим общую характеристику интегралу Ито. По аналогии с интегралом Римана — Стилтьеса, стохастический интеграл Ито можно определить как предел по мере в вероятностном пространстве (предел по вероятности) римановых сумм. Пусть W(t) — винеровский процесс и пусть G(t) — непрерывный, локально ограниченный случайный процесс (в нашей задаче G(t) рассматривается не как случайная функция, а как детерминированная). Если диаметр разбиения τ_n выбранного из последовательности разбиений $\{\tau_n\}_{n\in\mathbb{N}}$ интервала от 0 до t стремится к 0, при росте n, то то интеграл Ито от G(t) относительно B(t) до времени t есть случайная величина, равная

$$\int_0^t G(t)dW(t) = \lim_{n \to \infty} \sum_{t_{i-1}, t_i \in \tau_n} G(t_{i-1}) \cdot (W(t) - W(t_{i-1})),$$

где предел берется по вероятностям [2].

Основное отличие от стандартных методов определения интеграла заключается в том, что из-за появления в подынтегральном выражении или под знаком дифференциала случайных функций, мы не можем знать точное поведение функции. Как результат — мы имеем интеграл по функции, которая не дифференцируема ни в одной точке и имеет случайное изменение в течение каждого временного интервала. Идея вычисления же заключается в том, что мы оперируем только той информацией, которая доступна в текущий момент времени, т.е. при построении Римановых

сумм используются значения

$$W(t_i) - W(t_{i-1}) = dW(t) \sim N(0, 1) \cdot \sqrt{(t_i - t_{i-1})},$$

которые независимы для каждого временного интервала [3].

3. Метод Эйлера — Маруямы

В теории численного решения задач Коши для ОДУ метод Эйлера явлется простейшим одношаговым методом первого порядка точности. Его расширением на случай стохастических дифференциальных уравнений является метод Эйлера — Маруямы [4].

Запишем (1.2) в дифференциальной форме:

$$dX(t) = A(X(t), t)dt + B(X(t), t)dW(t), X(0) = X_0,$$
(3.1)

где dW(t) — приращение процесса Винера. Согласно теории стохастического счисления Ито $dW(t) \sim \sqrt{dt}N(0,1)$, что позволяет генерировать данную величину с помощью компьютера. Для этого были использованы инструменты стандартной библиотеки std:: языка C++. Подключив заголовочный файл random.h мы использовали объекты классов std::default_random_engine и std::normal_distribution<double>. Для того чтобы при повторном запуске программы генерировались новые случайные числа, был использован класс std::random_device.

При (1.2) численный метод примет вид:

$$X_{j} = X_{j-1} + A(X_{j-1}, t_{j-1})dt + B(X_{j-1}, t_{j-1})dW,$$
(3.2)

где $X_j = X(t_j)$, а dt – шаг по заданной сетке.

Рассмотрим поиск решения на примере геометрического броуновского движения (экспоненциального броуновского движения), описываемое линейным стохастическим дифференциальным уравнением вида

$$dX(t) = kX(t)dt + mX(t)dW(t), k, m \in \mathbb{R}. (3.3)$$

Известно точное решение (3.3):

$$X(t) = X(0)\exp((k - \frac{m^2}{2})t + m \cdot W(t)).$$

Положив m=1, k=2, начальное значение X(0)=1 и сетку [0,1] с шагом $dt=2^{-8}$, построим аналитическое и численное решения (3.3). Данные параметры представят нам броуновский путь с дискретным временем. Анализ полученных результатов будет приведен в разделе 5.

Рис. 1. Численное и аналитическое решения СОДУ методом Эйлера — Маруямы

4. Метод Рунге — Кутты

Среди численных методов решения задач Коши для дифференциальных уравнений особое место занимает семейство методов Рунге — Кутты. Основное отличие от метода Эйлера состоит в том, что используется информация не только в узлах размеченной сетки, но и в расчитанных промежуточных точках, что позволяет иногда существенным образом менять точность вычислений.

Для решения СОДУ вида (3.1) будем использовать двушаговый s-стадийный метод Рунге—Кутты

$$x_i = X_n + dt \sum_{1}^{s} R_{ij} A(x_j, t) + q \sum_{1}^{s} \tilde{R}_{ij} B(x_j, t),$$

$$X_{n+1} = X_n + dt \sum_{i=1}^{s} r_{ij} A(x_j, t) + p \sum_{i=1}^{s} \tilde{r}_{ij} B(x_j, t), \quad i, j = 1...s,$$

где $p,q \sim \sqrt{dt} \cdot N(0,1)$ — случайной число (генерация компьютера). Коэффициенты R_{ij} и \tilde{R}_{ij} даны в специальных таблицах Бутчера. Данная реализация алгоритма является не каноническим методом Рунге — Кутты, а модифицированным, здесь используется так называемый метод «предиктора-корректора», что и делает алгоритм двухшаговым.

4.1. Одномерный случай

Рассмотрим стохастическое дифференциальное уравнение

$$\frac{dX(t)}{dt} = -(\alpha + \beta^2 X(t))(1 - X^2(t)) + \beta(1 - X^2(t))\xi(t),$$

где $\xi(t)$ – белый шум, α и β – некоторые действительные коэффициенты. Запишем его в дифференциальной форме :

$$dX(t) = -(\alpha + \beta^2 X(t))(1 - X^2(t))dt + \beta(1 - X^2(t))dW(t), \tag{4.1}$$

dW(t) – дифференциал процесса Винера. Точное решение 3.1 имеет следующий вид:

$$X(t) = \frac{(1+X_0)\exp(-2\alpha t + 2\beta W(t)) + X_0 - 1}{(1+X_0)\exp(-2\alpha t + 2\beta W(t)) + 1 - X_0}.$$

Приняв параметры задачи $X(0) = X_0 = 0.5$, $\alpha = -1$ и $\beta = 1$ и предварительно построив сетку на [0,1] с шагом $dt = 2^{-8}$ применим применим к (4.1) трехстадийный метод Рунге — Кутты, используя при этом таблицу коэффициентов Бутчера [5].

R_{ij}			$ ilde{R}_{ij}$		
0	0	0	0	0	0
2/3	0	0	2/3	0	0
-1	1	0	-1	1	0
r_{j}			$ ilde{r}_j$		
0	3/4	1/4	0	3/4	1/4

Таблица 1. Таблица коэффициентов Бутчера

Как мы видим на рис. 2, численное решение достаточно хорошо согласует с точным. Также видно, что с течением времени решение стохастического уравнения уходит на асимптоту, как решение без шума. Однако, чтобы использовать данный метод, необходимо провести анализ сильной и слабой сходимости, что будет сделано в разделе 5.

4.2. Двухмерный случай

Как говорилось ранее, численные методы решения СОДУ можно применять не только к уравнениям но и к их системам. Рассмотрим использование метода Рунге — Кутты на примере системы стохастических дифференциальных уравнений второго порядка.

Рис. 2. Численное и аналитическое решения СОДУ методом Рунге — Кутты

Модель Лотки— Вольтерры (модель взаимодействия типа «хищник-жертва») имеет следующий вид

$$\begin{cases} \frac{dx}{dt} = (\alpha - \beta y)x, \\ \frac{dy}{dt} = (-\gamma + \delta x)y, \end{cases}$$
(4.2)

где x — количество жертв, y — количество хищников, t — время, α , β , γ , δ — коэффициенты, отражающие взаимодействие между видами. Для того чтобы построить. Построим численное решение детерминированной системы (4.2) с помощью встроенной функции NDSolve пакета Wolfram Mathematica (рис. 3), приняв параметры $\alpha = \beta = 1, \ \gamma = \delta = 3$. Результат показывает прямую зависимость численности «жертв» от численности «хищников».

Теперь добавим в первое уравнение, которое описывает изменение численности «жертв» случайную функцию, реализующуюся посредством нормальной случайной функции. Будем предполагать, что постоянно во времени, основываясь на нормальном распределении, с некоторым коэффициентом 0,5 исчезает или появляется какое то количество «жертв».

$$\begin{cases} \frac{dx}{dt} = (\alpha - \beta y)x + 0.5x \cdot \xi(t), \\ \frac{dy}{dt} = (-\gamma + \delta x)y, \end{cases}$$

Перенеся это на, например, биологическую модель выживания в среде, можно сказать что данная случайная величина представляет вирус (упрощенный вариант),

Рис. 3. Численное решение детерминированной системы уравнений модели Лотки — Вольтерры

который распространяется только на «жертв». Смоделируем данную ситуацию и построим решение с помощью метода Рунге — Кутты рис. 4, реализованного на языке C++, выбрав сетку [0,20] с количеством узлов N=500 и коэффициентами $r_i,\,R_{ij},$ взятыми из таблицы Бутчера для одномерного случая (таб. 1).

Зрительный анализ решения показывает, что хоть график «жертв» ведет себя стохастически, график функции «хищников» остается гладким, хотя, конечно, и отличается от детерминированного решения. Это позволяет сделать вывод о том, что если одно из уравнений в системе содержит случайный процесс (в нашем случае процесс Винера), то вовсе не обязательно, что каждая функция из столбца решений будет иметь стохастическую природу.

Наконец продемонстрируем случай, когда и «жертва» и «хищник» подвержены влиянию простой модели вируса.

$$\begin{cases} \frac{dx}{dt} = (\alpha - \beta y)x + 0.5x \cdot \xi(t), \\ \frac{dy}{dt} = (-\gamma + \delta x)y + 0.5y \cdot \xi(t). \end{cases}$$

Взяв все параметры из предыдущего примера построим численное решение системы стохастических дифференциальных уравнений (рис. 5).

Исходя из вида решения можно наблюдать следующее: теперь обе функции решения являются случайными процессами, тенденция отношений «хищников» и «жертв»

Рис. 4. Численное решение системы дифференциальных уравнений модели Лотки — Вольтерры с одним стохастическим уравнением

Рис. 5. Численное решение системы стохастических дифференциальных уравнений модели Лотки — Вольтерры

сохраняется. Однако, варируя вид случайной функции, можно произвести такие изменения, что они преобладающим образом изменят структуру решения модели.

5. Анализ результатов

Так как и численное, и аналитическое решение (1.1) является случайным процессом, для того, чтобы оценить сходимость методов, мы должны решить как измерять ошибку. Говорят, что метод имеет сильную сходимость порядка g, если существует константа C такая, что

$$\langle |X(t) - X_n| \rangle \leqslant C \cdot dt^g, \tag{5.1}$$

где t = ndt [4].

Для расчета ошибки в работе была выбрана точка t = [N/2]dt, где N – количество узлов в точке, ведь если порядок сходимости выполняется для всех точек отрезка, то при достаточно малом диаметре разбиении он выполнится и для заданной конкретной точки. Другой подход – выбирать точку как максимум ошибки по всем узлам, однако это требует большую вычислительную мощность.

Покажем на примере СОДУ

$$dX(t) = kX(t)dt + mX(t)dW(t), \qquad k, m \in \mathbb{R}.$$

из раздела 3, что для метода Эйлера — Маруямы g=1/2. Построим 1000 решений по отрезку [0,1] с шагом $Dt=2^{-10}$ для аналитического решения, и с шагами $dt=2^{m-10}, 1\leqslant m\leqslant 5$ для численного, каждый раз находя при этом ошибку в выбранной точке. Результаты приведем на графике (рис. 6) в логарифмическом масштабе. По оси абсцисс отложен шаг, по оси ординат — ошибка. Рядом для наглядности изображена прямая с наклоном 1/2.

Сильный порядок сходимости (5.1) измеряет скорость, с которой убывает «среднее ошибки» убывает при $dt \to 0$. Но также же можно измерить «ошибку средних». Говорят, что метод имеет слабую сходимость порядка p, если существует константа C, такая что для всех функций f в некотором классе

$$|\langle f(X(t))\rangle - \langle f(X_n)\rangle| \leqslant C \cdot dt^p, \tag{5.2}$$

при любом фиксированном t = ndt из отрезка поиска решения [4]. Пусть f – тождественная функция, тогда можно показать, что метод Эйлера-Маруямы имеет имеет порядок слабой сходимости f = 1.

Для той же самой задачи, которая использовалась для проверки сильной сходимости, построим 5000 решений для разных шагов сетки и найдем ошибку средних

Рис. 6. Сильная сходимость метода Эйлера-Маруямы в логарифмическом масштабе

значений в той же самой точки. На графике (рис. 7) изображена синими точками зависимость ошибки от шага в логарифмическом масштабе. Для наглядности также была добавлена пунктирная прямая с наклоном 1. Как можно увидеть, полученные

Рис. 7. Слабая сходимость метода Эйлера — Маруямы в логарифмическом масштабе

результаты согласуются с теоретическими данными. То есть метод Эйлера — Маруямы имеет слабый порядок сходимости p=1.

Перейдем к рассмотрению сильной и слабой сходимости метода Рунге — Кутты. Для сравнения результатов будем использовать тот же самый пример и тот же самый набор параметров, что и для метода Эйлера — Маруямы. Осреднения проводились с различными коэффициентами $m=1,\ 0.01,\ 0$ (последний случай характеризует детерминированную функцию).

Рис. 8. Сильная сходимость метода Рунге — Кутты в логарифмическом масштабе при m=1

Результаты исследования метода Рунге — Кутты на сильную сходимость приведены на графиках (рис. 8, рис. 9, рис. 10). Для наглядности рядом также приведены пунктирные прямые с соответствующим наклоном на рис. 8 это 1/2, на рис. 9 это 1, на рис. 10 это 3. На основе полученных результатов можно сделать вывод, что сильный порядок метода Рунге — Кутты g=0.5. Но также можно заметить интересный факт. При уменьшении вклада стохастической части СОДУ увеличивается порядок сходимости метода. Так, при m=0.01 порядок сходимости примерно равен 1. При дальнейшем уменьшении m порядок сходимости будет расти до значения 3, равного порядку сходимости метода в детерминированном случае.

Проведем анализ слабой сходимости метода. На этот раз будем рассматривать реализацию с 5 различными шагами $dt = 2^{p-6}, 0 \leqslant p \leqslant 4$. Остальные же параметры изменять не будем, в том числе и вариацию параметра m, отвечающего за «количественную характеристику» стохастической добавки. Результаты приведены на графиках (рис. 11, рис. 12, рис. 13). Рядом приведены пунктирные прямые с соответствующим наклоном на рис. 11 это 1/2, на рис. 12 это 1, на рис. 13 это 3.

На основе полученных результатов можно сделать вывод, что порядок слабой сходимости метода Рунге — Кутты p=1. Но также, как и в случае анализа сильной сходимости метода, можно заметить увеличение порядка сходимости с уменьшение вклада стохастической части в СОДУ. Так, при m=0.01 метод сходится к точному решению с порядком 2. При отсутствии стохастической компоненты в СОДУ мы аткже, как и случае сильной сходимости наблюдаем порядок 3. Это связано с тем, что

Рис. 9. Сильная сходимость метода Рунге — Кутты в логарифмическом масштабе при m=0.01

Рис. 10. Сильная сходимость метода Рунге — Кутты в логарифмическом масштабе при m=0

Рис. 11. Слабая сходимость метода Рунге — Кутты в логарифмическом масштабе при m=1

Рис. 12. Слабая сходимость метода Рунге — Кутты в логарифмическом масштабе при m=0.01

Рис. 13. Слабая сходимость метода Рунге — Кутты в логарифмическом масштабе при m=0

дифференциальное уравнение перестает быть стохастическим, а значит мы решаем ОДУ, и сильная и слабая сходимости становятся сходимостью метода решения ОДУ Рунге—Кутты. Теоретически же доказано, что данный метод имеет 3-ий порядок сходимости.

6. Заключение

В работе реализованы численные алгоритмы интегрирования систем СОДУ. Простейший алгоритм основан на обобщении явного метода Эйлера на стохастическое обыкновенное дифференциальное уравнение. При интегрировании используется аппроксимация перехода с предыдущего шага по времени на последующий в смысле интеграла Ито.

Второй алгоритм построен на основе модификации современной матричной интерпретации метода Рунге — Кутты, предложенной в работах Бутчера. Метод интегрирования является двухвременным многостадийным типа предиктор-корректор. Матричная схема записи алгоритма позволяет гибко реализовывать различные схемы интегрирования систем СОДУ.

Проиллюстрировано удовлетворительное согласие между случайными траекториями, найденными в виде аналитических решений СОДУ и путем численного интегрирования.

В работе исследовались сильная и слабая сходимость метода интегрирования стохастического дифференциального уравнения. На основе численного интегрирования систем СОДУ и путем осреднения по набору случайных траекторий исследованы критерии сходимости для алгоритмов Эйлера — Маруямы и модифицированных алгоритмов Рунге — Кутты. Из анализа скорости сходимости можно сделать вывод, что скорости сходимости модифицированных алгоритмов Рунге — Кутты выше, чем в случае простого метода интегрирования Эйлера — Маруямы.

Список использованных источников

- 1. Б. Оксендаль. Стохастические дифференциальные уравнения. Ведение в теорию и приложения. М.: Издательство «Мир», 2003.
- 2. Ito calculus // Wikipedia. [2022]. Дата обновления: 15.11.2022. URL: https://en.wikipedia.org/wiki/Itocalculus (дата обращения: 15.11.2022).
- 3. K. Debrabant, A. Robler. Classiffication of Stochastic Runge–Kutta Methods for the Weak Approximation of Stochastic Differential Equations. Mathematics and Computers in Simulation 77 (2008) no. 4, pp. 408–420.
- 4. Higham D. J. An algorithmic introduction to numerical simulation of stochastic differential equations // SIAM Review. 2001. Vol. 43, no. 3. P. 525–546.
- 5. J. C. Butcher. Numerical Methods for Ordinary Differential Equations Second Edition. The University of Auckland, New Zealand, John Wiley & Sons Ltd, 2008.