浙江理工大学 2017 —2018 学年第一学期

《 高等数学 B 》期末试卷(A)卷

本人郑重承诺:本人已阅读并且透彻地理解《浙江理工大学考场规则》,愿意在考试中自觉遵守这些规定,保证按规定的程序和要求参加考试,如有违反,自愿按《浙江理工大学学生违纪处分规定》有关条款接受处理。

承诺人签名:	学号:_		妊级:	座位号
一. 选择题: (3	分/题,共18分)		
$1. 极限 \lim_{x \to \infty} \frac{2x}{3x^2}$	$\frac{+1}{+3}(4-\cos x) = $).		
A.0	B. $\frac{2}{3}$	C. ∞ I).不存在也不	∞
2. 设函数 f(x)	在 x 处可导, a,b 为	常数,则 $\lim_{\Delta x \to 0} \frac{f(x)}{x}$	$\frac{(x+a\cdot\Delta x)-(x+a\cdot\Delta x)}{\Delta x}$	$\frac{f(x-b\cdot\Delta x)}{}=().$
A. f'(x)	B.(a-b)f(x)	C.(a+b)f'(x)	$\mathrm{D.}f'(a)$	-f'(b)
3. 函数 $f(x)$ 在.	点 $x = x_0$ 处取得极大	:值,则必有().	
$A. f'(x_0) = 0$	B. $f''(x_0) < 0$	C. $f'(x_0) = 0 \blacksquare.$	$f''(x_0) < 0$	D. $f'(x_0) = 0$ 或不存在
4. 设 $F'(x) = f$	f(x),即 $F(x)$ 是 $f(x)$:) 的原函数, 则∫ <u>-</u>	$\frac{f(-\sqrt{x})}{\sqrt{x}}dx =$	= ().
$AF(\sqrt{x})+$	$-C$ B. $-2F(-\sqrt{x})$	$+C$ C. $\frac{1}{2}F(-$	$-\sqrt{x}$) + C	$D\frac{1}{2}F(-\sqrt{x}) + C$
$5. \forall \alpha(x) = \int_0^{5x} \frac{1}{x^2} dx$	$\frac{\sin t}{t}dt, \beta(x) = \int_{0}^{\sin x} (1)^{-x} dt$	$(1+t)^{\frac{1}{t}}dt$,则当 x -	$\rightarrow 0$ 时, $\alpha(x)$)是 $\beta(x)$ 的().
A.高阶无穷	小 B.低阶无穷	小 C.同阶但2	不等价无穷小	D.等价无穷小
6. 下列反常积分	·发散的是() .		
$A. \int_{1}^{+\infty} \frac{1}{x^{p}} dx$	$(p > 1)$ B. $\int_{2}^{+\infty}$	$\frac{1}{x \ln^2 x} dx \text{C.} \int$	$\int_{0}^{1} \frac{dx}{x(x+1)} $ 1	$\int_{1}^{e} \frac{dx}{x\sqrt{1-(\ln x)^{2}}}$
	分/题 共18分)			
$1. \lim_{x\to 0} (x\sin\frac{3}{x})$	$+\frac{2}{x}\sin x$ =			
	$\arctan x$,则 $f'(x)$	=		-
3. 函数 $y = x \ln x$ 在区间 [1, e] 上,使拉格朗日定理成立的 $\xi =$				
4. 己知 $\arctan \sqrt{x}$ 是 $f(x)$ 的一个原函数,则 $\int xf'(x)dx =$				

5. 函数 $y = x + 2\cos x$ 在区间[0, $\frac{\pi}{2}$]上的最大值为______.

6. 定积分
$$\int_{-1}^{1} \left(x e^{x^4} + x^2 \right) dx =$$

- 三. 计算题: (6分/题 共30分)
- 1. 讨论 $\lim_{x\to 0} \frac{x}{1+e^{\frac{1}{x}}}$ 是否存在? 若存在求其值。

2. 若 $p(x) = \int_{x}^{3x} f(x-2t)dt$, 其中 f(x) 是一阶可导函数, 求 $\frac{dp}{dx}$, $\frac{d^{2}p}{dx^{2}}$.

4.
$$f(x) = \begin{cases} x^2 e^{\frac{-x^2}{2}}, x > 0, & \text{ if } df \mid_{x=0}. \\ x \sin x, x \le 0 \end{cases}$$

5. 计算
$$\int_0^{\frac{\pi}{4}} \frac{x}{1+\cos 2x} dx$$
.

四 .综合题:(每小题 10 分, 共 20 分)

- 1. 抛物线 $y = 4x x^2$
- (1) 抛物线上哪一点处切线平行于 x 轴? 写出切线方程。
- (2) 求抛物线与水平切线及 y 轴所围平面图形的面积。
- (3) 求该平面图形绕 x 轴旋转所成的旋转体的体积。

2. 已知函数 $f(x) = a \ln x + bx^2 + x$ 在 x = 1 与 x = 2 处有极值,试求 a,b 的值,并求 f(x) 的 拐点的横坐标。

五.证明题(6分+8分, 共14分)

1. 设 f(x) 在 $[0,+\infty)$ 内连续且 f(x) > 0. 证明函数 $F(x) = \frac{\int_0^x t f(t) dt}{\int_0^x f(t) dt}$ 在 $(0,+\infty)$ 内单调递增.

- - (2) 对任意实数 λ , 存在 $\xi \in (0, \eta)$, 使得 $f'(\xi) \lambda [f(\xi) \xi] = 1$.

浙江理工大学 20 17 — 2018 学年第 一 学期

《 高等数学 B 》期末试卷(A)卷标准答案和评分标准

一、选择题(本题共有6个小题,每小题3分,共18分)

1. A. 2. C. 3. D. 4. B. 5. C. 6. C.

.....6分

 $=6\sqrt[6]{x} - 6 \arctan \sqrt[6]{x} + C$

由于积分中0 < t < x,且f(x) > 0.所以,分子中

2.证明: (1) 令 $\Phi(x) = f(x) - x$,显然它在[0, 1]上连续,又 $\Phi(1) = -1 < 0$, $\Phi(\frac{1}{2}) = \frac{1}{2} > 0$,根据零点定理,存在 $\eta \in (\frac{1}{2}, 1)$ 使 $\Phi(\eta) = 0$ 即 $f(\eta) = \eta$4 分

(2) 令 $F(x) = e^{-\lambda x}\Phi(x) = e^{-\lambda x}[f(x)-x]$,它在 $[0,\eta]$ 上满足罗尔定理的条件,故存在 $\xi\in(0,\eta)$,使 $F'(\xi)=0$,即