Follow the programming?

- Open the VM
- ./login
- cd rfun/
- git pull
- make

I made the repository public, just for you.

Janus meets Backstroke

Michael Kirkedal Thomsen

Department of Computer Science, University of Copenhagen

Partly joint work with Holger Bock Axelsen, Tetsuo Yokoyama, Robert $Gl\tilde{A}^{1}\!\!/\!\!ck$

COST Training School Torun
Nicolaus Copernicus University, Aug 28-31 2017

Overview

- Development of reversible programs
 - Embedding a function
- Introduction to RFun
- Development in RFun
 - Arithmetic
 - List functions
 - Equality / duplication

Tutorial can be found at:

http://topps.diku.dk/pirc/rfundocs/

Embeddings

$$2 + 3 = 5$$

$$2 + 3 = 5$$

$$5 = A + B$$

$$2 + 3 = 5$$

$$5 = A + B$$

Reversible embeddings:

$$+(2,3) = ([(2,3),(3,2),(4,1),(5,0)],5)$$

$$2 + 3 = 5$$

$$5 = A + B$$

Reversible embeddings:

$$+(2,3) = ([(2,3),(3,2),(4,1),(5,0)],5)$$

$$+(2,3) = ((2,3),5)$$

$$2 + 3 = 5$$

$$5 = A + B$$

Reversible embeddings:

$$+(2,3) = ([(2,3),(3,2),(4,1),(5,0)],5)$$

$$+(2,3) = ((2,3),5)$$

Embedded addition

$$+(x,y) = (x,y+x)$$

Reversible embeddings

- How to get a reversible program from a known irreversible program?
- Can we do it automatically?
 - I.e. using program transformation

Embeddings

- Landauer embedding
- Bennett embedding
- (Incremental check-pointing)

Landauer embedding

$$egin{aligned} +(x,y) &= ([...trace...], x+y) \ +(2,3) &= ([(2,3),(3,2),(4,1),(5,0)],5) \end{aligned}$$

- Also called trace embedding
 - First (indirectly) prosed by Landauer
- Store a needed amount of information every time you make a irreversible choice
- Will have size equivalent to run-time

Bennett embedding

$$+(x,y)=((x,y),x+y)$$

$$+(2,3) = ((2,3),5)$$

- Input-output embedding
- First proposed by Bennett
- Can be implemented by Bennett's compute-copyuncompute method
- Size is limited by input/output
 - but computational space is at the size of Landauer embedding
- Cannot be cascaded

Reversible implementation

$$+(x,y) = (x,x+y)$$

If function injective

- Know reversible implementation exist
 - McCarthy's generate-and-test approach
- Can still be hard to find

If function non-injective

We have to redefine out problem

Considering your semantics

$$egin{aligned} +(x,y) &= ([...trace...], x+y) \ +(x,y) &= ((x,y), x+y) \ +(x,y) &= (x,x+y) \end{aligned}$$

Garbage

Semantically undesired values

Ancillae

Values that are guaranteed unchanged over a computation

RFun

Fibonacci

```
procedure fib(int x1, int x2, int n)
   if n = 0 then
       x1 += 1
       x2 += 1

else
       n -= 1
       call fib(x1, x2, n)
       x1 += x2
       x1 <=> x2
   fi x1 = x2
```

Fibonacci

```
procedure fib(int x1, int x2, int n)
  if n = 0 then
     x1 += 1
     x2 += 1
  else
     n -= 1
     call fib(x1, x2, n)
     x1 += x2
     x1 <=> x2
  fi x1 = x2
```

Comparison from Janus

```
fib :: Nat <-> (Nat, Nat)
fib Z = ((S Z),(S Z))
fib (S m) =
  let (x,y) = fib m
    y' = plus x y
  in (y',x)
```

RFun

- A history-free functional reversible language
- Implements (often) injective partial functions
 - I.e. we are usually not implementing in bijections

Background

- First formalised in 2012 by Tetsuo Yokoyama, Robert Glück, and Holger Bock Axelsen [1]
 - Untyped, first-order language based on constructor terms
- Implemented and explored by Michael Kirkedal Thomsen and Holger Bock Axelsen [2]
 - Extension to (somewhat) second-order language with syntactical support for tuples, lists, and natural numbers
- New version designed for this training school by Michael Kirkedal Thomsen
 - Updated syntax and extended with type system

Important concepts

- Linearity
- Ancillae
- First-match policy

Important concepts - Linear typing

- Stems from linear logic
- We must use a resource exactly once

Examples of usage

- Handling of memory resources
- Seen in many modern language
 - most recently Rust

Linearity - explained

```
fib :: Nat <-> (Nat, Nat)
fib Z = ((S Z),(S Z))
fib (S m) =
  let (x,y) = fib m
     y' = plus x y
  in (y',x)
```

- Variable m
 - introduced on the left-hand-side
 - used exactly in the recursive call to fib.
- Similarly for y and y'
 - also consider the return of y' as a usage.

Important concepts - Ancillae type

- Variables for which we can guarantee that the value is unchanged over a function call.
- The *guarantee* is important
 - using a conservative approach.

Also seen in

- Reversible logic
- Restore model

Ancillae - explained

```
fib :: Nat <-> (Nat, Nat)
fib Z = ((S Z),(S Z))
fib (S m) =
  let (x,y) = fib m
     y' = plus x y
  in (y',x)
```

- Variable x
 - introduced by recursive call to fib
 - used by the plus function
 - returned by the fib function.
- Here plus is using x as an ancillae

Important concepts - First-match policy

- important to guarantee injectivity of the functions
- conceptually, function must not return value that can be the result of any previous branches
 - knowing nothing about the possible content of variables.

Two sides to the coin

- Pattern matching for clauses in inverse interpretation
- Alternative to Janus assertions

First-match policy - detailed

case
$$l$$
 of
$$l_1 \to \cdots \text{ in } l'_1$$

$$\vdots$$

$$l_i \to \cdots \text{ in } l'_i$$

$$\vdots$$

$$l_n \to \cdots \text{ in } l'_n$$

- The value v of l is matched against the left-hand side of each branch $(l_1, l_2, ...)$ until the first successful match l_i .
- The right-hand side of the i-th branch is then evaluated in σ_i and a value v' is returned by l_i' .
- \bullet Now, for symmetry, v' must not match any of the preceding $l_1',...,l_{i-1}'$
- Otherwise, the case-expression is undefined.

First-match policy - explained

```
procedure fib(int x1, int x2, int n)
  if n = 0 then
     x1 += 1
     x2 += 1
  else
     n -= 1
     call fib(x1, x2, n)
     x1 += x2
     x1 <=> x2
  fi x1 = x2
```

Base-clause matches the non-recursive branch

First-match policy - explained

```
fib :: Nat <-> (Nat, Nat)
fib Z = ((S Z),(S Z))
fib (S m) =
  let (x,y) = fib m
     y' = plus x y
  in (y',x)
```

- FMP can often be check statically
 - based on the type definitions
 - This is not yet implemented in RFun
- FMP is in general impossible to check statically.
- E.g. fib cannot be statically checked

Implementation in RFun

Define Peano numbers

```
data Nat = Z | (S Nat)
```

Read: a natural number (Nat) is either zero (Z) or the successor of a natural number (S Nat).

Type for simple incremental function

```
inc :: Nat <-> Nat
```

 Read: increment (inc) is a (reversible) function that transforms a Nat to a Nat

```
data Nat = Z | (S Nat)
inc :: Nat <-> Nat
```

Implementation if inc

```
data Nat = Z | (S Nat)
inc :: Nat <-> Nat
```

Implementation if inc

```
inc n = (S n)
```

• Read: inc given a natural number n returns the successor of n.

```
data Nat = Z | (S Nat)
inc :: Nat <-> Nat
inc n = (S n)
```

Decremental can be implemented as

```
dec :: Nat <-> Nat
```

```
data Nat = Z | (S Nat)
inc :: Nat <-> Nat
inc n = (S n)
```

Decremental can be implemented as

```
dec :: Nat <-> Nat
dec (S n) = n
```

```
data Nat = Z | (S Nat)
inc :: Nat <-> Nat
inc n = (S n)
```

Decremental can be implemented as

```
dec :: Nat <-> Nat
dec (S n) = n
```

or even better

```
dec :: Nat <-> Nat
dec n = inc! n
```

• I at the end of the function specifies reverse execution.

Reversible Addition

$$+(x,y) = (x,y+x)$$

Type for addition?

$$+(x,y) = (x,y+x)$$

Type for addition

```
plus' :: (Nat, Nat) <-> (Nat, Nat)
```

$$+(x,y)=(x,y+x)$$

Type for addition

```
plus' :: (Nat, Nat) <-> (Nat, Nat)
```

Considering that x is an ancilla value

```
plus :: Nat -> Nat <-> Nat
```

Read: plus is a function that given a natural number (Nat), will transform one natural number (Nat) to another natural number (Nat).

Implementation

Implementation

- Why is the first argument guaranteed to be unchanged?
- Why is the second argument linear?
- Why is the first-match policy upheld?

- Why is the first argument guaranteed to be unchanged?
 - y is only used as an ancilla in the recursive call
- Why is the second argument linear?
 - Both x and x' is first introduced then used
- Why is the first-match policy upheld?
 - First (ancilla) argument of two clauses are disjoint.

Addition - FMP explained

We transform plus into

 Here is it clear that the first element of the branch tuples are disjoint, making the entire tuple disjoint.

Addition transformation explained

How do we generate plusp?

- wrap our input into a tuple,
- add the ancillae arguments to all output leaves,
- wrap all function calls into tuples,
- add the ancillae inputs to function calls to the output.

Transformation of ancilla functions

With the above method, we can always transform

```
f :: a -> b <-> c
```

into

```
f :: (a, b) <-> (a, c)
```

• This does not (in general) work in the opposite direction.

List functions

- List is a predefined type in RFun
- Use standard notation
 - [and] for list specification
 - (1 : 1s) for list construction

Examples

- List of 5 elements and empty list
 - [1,2,3,4,5] and []
- A list construction
 - 0 (1:2:[3,4,5])

The lenght of a list

The type of this is

```
length :: [a] <-> Nat
```

The lenght of a list

The type of this is

```
length_wrong :: [a] <-> Nat
```

- Length should be treated as a property of a list
 - I.e. given a list we need to extract the information

```
length :: [a] -> () <-> Nat
```

- Read: length is a function that given a list, transforms nothing to a natural number.
 - Empty tuple does not contain any information
- I.e. we are making a Bennett embedding of the normal length function.

Implementation of length

We can then implement length as the standard

- Why is the input list guaranteed to be ancillae?
- How is linear typing upheld?
- How is FMP upheld?

Implementation of length

We can then implement length as the standard

- Why is the input list guaranteed to be ancillae?
 - xs is only used for ancilla to length
- How is linear typing upheld?
 - The introduced variable n is used again
- How is FMP upheld?
 - Z is disjoint from (S Nat)

Mapping function over list

```
map :: (a <-> b) -> [a] <-> [b]
```

- Read: given a function that transforms a 's to b 's, map will transform a list of a 's to a list of b 's.
 - This is exactly how we consider the normal mapfunction.

Mapping function over list

Implementation

```
map :: (a <-> b) -> [a] <-> [b]
map fun     [] = []
map fun (x : xs) =
    let x' = fun x
    xs' = map fun xs
    in (x' : xs')
```

- Ancilla of the mapped function?
- Linearity of the lists?
- Is FMP upheld?

```
reverse :: [a] <-> [a]
```

Two different approaches

- Appending a first element of a list to the end of a reversed list
 - Squared to the length of the list run-time
- Using an accumulator
 - Linear to the length of the list run-time
 - Helper function moves elements from one list to the other

We will go for the fast version.

Function from Haskell

```
reverse_haskell l = rev l []
    where
    rev []    a = a
    rev (x:xs) a = rev xs (x:a)
```

Function from Haskell

```
reverse_haskell l = rev l []
    where
    rev []    a = a
    rev (x:xs) a = rev xs (x:a)
```

Reversible implementation of rev

```
rev :: ([a], [a]) <-> ([a], [a])
rev ( [] , l) = ([], l)
rev ((x:xs), l) = move (xs, (x:l))
```

- Is linearity guarenteed?
- Is FMP upheld?

Moving elements

Instead lets make a function that moves some elements

- Is Ancilla types guaranteed?
- Is linearity guaranteed?
- Is FMP upheld?

Final reversal of list

```
reverse :: [a] <-> [a]
reverse xs =
  let xs_s = length xs ()
       ([], ys) = move xs_s (xs, [])
       () = length! ys xs_s
  in ys
```

- How is Ancilla types guaranteed?
- Is linearity guaranteed?
- Is FMP upheld?
- Is this linear run-time to the size of the list?

Equality and Duplication

Equality (and duplication) have a special place in FRun.

Predefined type

```
data EQ = Eq | Neq a
```

- This is equivalent to the definition of Maybe monad from Haskell
 - We will not use it as a monad...

Predefine function of type

```
eq :: a -> a <-> EQ
```

Equality and Duplication

```
data EQ = Eq | Neq a eq :: a -> a <-> EQ
```

Given eq x y,

- first argument (x) is ancillae
- second argument (y), will be transformed into a EQ type, where the result is
 - Eq if x is equal to y
 - \circ Neq y if x is different from y.

Note, equality can remove one copy of the two values.

• No implementation of eq is possible in RFun.

Equality and Duplication

```
data EQ = Eq | Neq a
eq :: a -> a <-> EQ
```

Based on eq we can then make a duplication function by inverse execution

```
dup :: a -> () <-> a
dup x () = eq! x Eq
```

Run-length encoding

```
pack :: [a] <-> [(a, Nat)]
pack [] = []
pack (c1 : r) =
    case (pack r) of
    [] -> [(c1, 1)]
    ((c2, n) : t) ->
        case (eq c1 c2) of
        (Neq c2p) -> ((c1, 1) : (c2p, n) : t)
        (Eq) -> ((c1, (S n)) : t)
```

Notice usage of eq

Example of Running it

```
pack [1,1,3,2,2,2] = [(1,2),(3,1),(2,3)]
```

• Why is FMP upheld? Can we statically check it?

Summing of RFun

RFun

- A history-free functional reversible language
- Implements (often) injective partial functions
 - I.e. we are usually not implementing in bijections
- Looks like a functional language
- First steps toward higher-order language
- Type system with linear and ancilla types
- Support for tuples and lists

Future work and extensions

- Int type
- Guards
- Static check of FMP
- Support for kinds; especially with usage for eq
- Partial applications and higher-order functions

Arithmetic Exercises

- Implement a minus function
- Implement a function that multiplies by 2
- Implement a multiplication function (hard)
 - What embedding makes sense?
- Implement a function even, that checks if a natural number is even
 - What embedding of even makes sense?

Arithmetic List

- Implement a function that checks if all elements of a list is even
- Implement splitAt that splits a list in two after a given lenght
 - What is a good embedding?
 - You can find the Haskell definition here <u>http://hackage.haskell.org/package/base-</u> <u>4.10.0.0/docs/Prelude.html#v:splitAt</u>
- Implement an append function
 - Again, the embedding is not clear?

Arithmetic List - continued

- o Implement scan1 and scanr (hard)
 - You can find the Haskell definition here <u>http://hackage.haskell.org/package/base-</u> <u>4.10.0.0/docs/Prelude.html#v:scanl</u>
- Implement fold1 and foldr (even hard)
 - What is a resonable embedding?
 - How does this differ from the scan's
- Continue with interleave, intercalate, permutations, group, subsequences, transpose, ...

References

[1] T. Yokoyama and H. B. Axelsen and R. Gluck, Towards a reversible functional language, Reversible Computation, RC '11, 7165 14--29 (2012)

[2] M. K. Thomsen and H. B. Axelsen, Interpretation and Programming of the Reversible Functional Language, Proceedings of the 27th Symposium on the Implementation and Application of Functional Programming Languages, 8:1--8:13 (2016)

[3] M. K. Thomsen, RFun tutorial, http://topps.diku.dk/pirc/rfundocs/

Thank you!