Probleme date la examenul de logică matematică și computațională. Partea a V-a

Claudia MUREŞAN

Universitatea din București
Facultatea de Matematică și Informatică
Academiei 14, RO 010014, București, România
Emailuri: c.muresan@yahoo.com, cmuresan11@gmail.com

Abstract

Textul de față conține probleme date de autoare la examenul aferent cursului de logică matematică și computațională din anul I de studiu al Facultății de Matematică și Informatică a Universității din București.

În cele ce urmează vom folosi notația "ddacă" drept prescurtare pentru sintagma "dacă și numai dacă".

1 Mic mnemonic de definiții și rezultate din curs

Fie A o mulțime oarecare. Amintim că o relație binară pe A este o submulțime a produsului cartezian $A \times A$, produs notat și A^2 . Deci relațiile binare sunt mulțimi, așadar li se pot aplica operațiile de reuniune și intersecție, precum și relația de incluziune, cu aceleași semnificații ca pentru orice mulțimi. Desigur, A^2 este o relație binară pe A, anume cea mai mare relație binară pe A, în sensul incluziunii. De acum încolo, prin notația $(a,b) \in A^2$ vom înțelege: $a \in A$ și $b \in A$.

Dacă R și S sunt două relații binare pe A, atunci, prin definiție, compunerea lor este următoarea relație binară pe A: $R \circ S = \{(a,c) \in A^2 \mid (\exists b \in A) (a,b) \in S$ și $(b,c) \in R\}$. De asemenea, pentru orice n natural, R^n este o relație binară pe A, definită prin: $R^0 = \Delta_A = \{(a,a) \mid a \in A\}$ (diagonala lui A) și, pentru orice n natural, $R^{n+1} = R^n \circ R$. Este evident că Δ_A este element neutru la compunerea de relații binare pe A (atât la stânga, cât și la dreapta), și deci $R^1 = R$.

O relație binară R pe A este tranzitivă ddacă, pentru orice elemente $a,b,c\in A$, dacă $(a,b)\in R$ și $(b,c)\in R$, atunci $(a,c)\in R$. Este imediat că orice intersecție nevidă de relații binare tranzitive pe A este o relație binară tranzitivă pe A și că A^2 este o relație binară tranzitivă pe A (care include orice altă relație binară pe A), iar de aici deducem că, pentru orice relație binară S pe A, există o cea mai mică relație binară tranzitivă pe A care include pe S (cea mai mică în sensul incluziunii), și anume intersecția tuturor relațiilor binare tranzitive pe A care include pe S. Această cea mai mică relație binară tranzitivă pe A care include pe S se notează cu T(S) și se numește \hat{i} nchiderea tranzitivă a relației S. Se demonstrează că $\sum_{i=1}^{\infty}$

 $T(S) = \bigcup_{k=1}^{\infty} S^k.$ În cazul particular în care A este o mulțime finită cu n

elemente, se arată că $T(S) = \bigcup_{k=1}^{n} S^{k}$.

2 Lista de subiecte

Exercițiul 2.1. Considerăm sistemul formal al calculului cu predicate. Fie signatura $\tau = (1; 2; \emptyset)$ și structura de ordinul I de această signatură $\mathcal{A} = (A; f^{\mathcal{A}}; R^{\mathcal{A}}; \emptyset)$, unde $A = \{a, b, c, d\}$ este o mulțime cu 4 elemente, iar funcția $f^{\mathcal{A}} : A \to A$ și relația binară $R^{\mathcal{A}}$ pe A vor fi notate respectiv cu f și R, și sunt definite prin: f(a) = b, f(b) = c, f(c) = d, f(d) = a (vezi tabelul de mai jos) și $R = \{(a,b),(b,c),(c,b),(c,d)\} \subset A^2$ (vezi reprezentarea grafică de mai jos). Să se calculeze valorile de adevăr ale enunțurilor: $\exists x (R(x, f(x)) \land R(f(x), x))$ și $\exists x \forall y (R(y, f(f(x))) \lor R(f(x), y))$.

$$R: \qquad \stackrel{a \quad b \quad c \quad d}{\longleftarrow}$$

Rezolvare: Amintim că, pentru orice $t, u \in A$:

$$||R(t,u)|| = \begin{cases} 1, & \text{dacă } (t,u) \in R, \\ 0, & \text{dacă } (t,u) \notin R. \end{cases}$$

Valoarea de adevăr a primului enunț este:

$$||\exists x (R(x, f(x)) \land R(f(x), x))|| = \bigvee_{t \in A} (||R(t, f(t))|| \land ||R(f(t), t)||) = 1,$$

pentru că:

$$||R(b, f(b))|| \wedge ||R(f(b), b)|| = ||R(b, c)|| \wedge ||R(c, b)|| = 1 \wedge 1 = 1.$$

Al doilea enunţ are valoarea de adevăr:

$$\begin{aligned} ||\exists x \,\forall y \, (R(y, f(f(x))) \,\vee R(f(x), y))|| &= \\ \bigvee_{t \in A} \bigwedge_{u \in A} (||R(u, f(f(t)))|| \,\vee ||R(f(t), u)||) &= \\ \left(\bigwedge_{u \in A} (||R(u, f(f(a)))|| \,\vee ||R(f(a), u)||) \right) \,\vee \\ \left(\bigwedge_{u \in A} (||R(u, f(f(b)))|| \,\vee ||R(f(b), u)||) \right) \,\vee \\ \left(\bigwedge_{u \in A} (||R(u, f(f(c)))|| \,\vee ||R(f(c), u)||) \right) \,\vee \\ \left(\bigwedge_{u \in A} (||R(u, f(f(d)))|| \,\vee ||R(f(d), u)||) \right) &= \\ 0 \,\vee 0 \,\vee 0 \,\vee 0 \,\vee 0 = 0. \end{aligned}$$

pentru că:

$$\begin{split} ||R(a,f(f(a)))|| &\vee ||R(f(a),a)|| = ||R(a,c)|| \vee ||R(b,a)|| = 0 \vee 0 = 0, \\ \det & \bigwedge_{u \in A} (||R(u,f(f(a)))|| \vee ||R(f(a),u)||) = 0; \\ & ||R(a,f(f(b)))|| \vee ||R(f(b),a)|| = ||R(a,d)|| \vee ||R(c,a)|| = 0 \vee 0 = 0, \\ \det & \bigwedge_{u \in A} (||R(u,f(f(b)))|| \vee ||R(f(b),u)||) = 0; \\ & ||R(a,f(f(c)))|| \vee ||R(f(c),a)|| = ||R(a,a)|| \vee ||R(d,a)|| = 0 \vee 0 = 0, \end{split}$$

deci
$$\bigwedge_{u \in A} (||R(u, f(f(c)))|| \vee ||R(f(c), u)||) = 0;$$

$$||R(d,f(f(d)))|| \vee ||R(f(d),d)|| = ||R(d,b)|| \vee ||R(a,d)|| = 0 \vee 0 = 0,$$

$$\operatorname{deci} \ \bigwedge_{u \in A} (||R(u, f(f(d)))|| \lor ||R(f(d), u)||) = 0.$$

Exercițiul 2.2. Să se calculeze închiderea tranzitivă a relației R din enunțul Exercițiului 2.1.

Rezolvare: Cum mulţimea A are 4 elemente, rezultă că închiderea tranzitivă a lui R este: $T(R)=\bigcup^4 R^k=R\cup R^2\cup R^3\cup R^4.$

Să ne amintim că $R = \{(a,b),(b,c),(c,b),(c,d)\}$:

$$R:$$
 a b c d

 $R^2 = R \circ R = \{(x,z) \in A^2 | (\exists y \in A) \, (x,y) \in R \, \text{si} \, (y,z) \in R \} = \{(a,c),(b,b),(b,d),(c,c)\}$:

 $R^3 = R^2 \circ R = \{(x,z) \in A^2 | (\exists y \in A) (x,y) \in R \text{ si } (y,z) \in R^2 \} = \{(a,b),(a,d),(b,c),(c,b) \}$:

$$R^3: a \xrightarrow{b \quad c} d$$

 $R^4 = R^3 \circ R = \{(x,z) \in A^2 | (\exists \, y \in A) \, (x,y) \in R \, \text{si} \, (y,z) \in R^3 \} = \{(a,c),(b,b),(c,c)\}$:

Prin urmare, $T(R) = R \cup R^2 \cup R^3 \cup R^4 = \{(a,b), (a,c), (a,d), (b,b), (b,c), (b,d), (c,b), (c,c), (c,d)\}$:

