IN THE CLAIMS

Claim 1.

consumable material selected from the group consisting of perfume compositions, perfumed articles, colognes and perfume polymers, comprising the step of intimately admixing with a consumable material base an aroma augmenting, enhancing or imparting quantity and the following a structure selected from the group consisting of:

10
$$\mathbb{R}_6$$
 \mathbb{R}_4 \mathbb{R}_3 \mathbb{R}_5 and \mathbb{R}_5 $\mathbb{R$

wherein Z is a moiety selected from the group consisting of:

and

25

and wherein one of R_1 or R_3 is methyl and the other is hydrogen; wherein R_4 , R_5 , R_6 , R_7 , R_8 and R_9 are hydrogen or nonadjacent C_1 - C_3 alkylip wherein Y is C_2 - C_{12} substituted or unsubstituted alkylidenyl, alkenylidenyl or alkadienylidenyl having the structure:

5 R₂₈

and completes a C₅ C₁₅ cycloalkyl, cycloalkadienyl or cycloalkenyl ring moiety; wherein R₁₂, R₁₃, R₁₄, R₁₅, R₁₆, R₁₇, R₂₈, R₂₉, R₃₀ and R₃₁ each represents hydrogen or C₁-C₃ nonadjacent alkyl; wherein the dashed line represents a carbon carbon single bond or a carbon earbon double bond; wherein s is an integer of from 0 up to 10; t is an integer of from 0 up to 10; wherein the sum of s and t is an integer of from 0 up to 10 defined according to the inequalities: 0 ≤ s + t ≤ 10; 0 ≤ s ≤ 10; and 0 ≤ t ≤ 10; and

Claim 2.

previously presented The process of Claim 1 wherein the bicyclic lactone has a structure selected from the group consisting of:

wherein v 1 or 2.

Claim 3. (canceled)

5

(currently amended) A perfumed article comprising a perfumed article base and an aroma augmenting, enhancing or imparting quantity and concentration of a bicyclic lactone having the following a structure selected from the group consisting of:

$$R_{6} \xrightarrow{\overline{Z}} O \xrightarrow{O} R_{1}$$

R₁₃

wherein Z is a moiety selected from the group consisting of:

25

and

and wherein one of R₁ or R₃ is methyl and the other is hydrogen; wherein R₄, R₅, R₆, R₇, R₈ and R₉ are hydrogen or nonadjacent C₁-C₃ alkyl, wherein Y is C₂-C₁₂ substituted or unsubstituted alkylidenyl, alkenylidenyl or alkadienylidenyl having the structure:

and completes a C₃-C₁₃ sycloalkyl, cycloalkadienyl or cycloalkenyl ring moiety; wherein R_{12} , R_{13} , R_{14} , R_{16} , R_{17} , R_{26} , R_{25} , R_{36} and R_{31} each represents hydrogen or C_1 -C₃ nonadjacent alkyl; wherein the dashed line represents a carbon carbon single bond or a carbon carbon double bond; wherein s is an integer of from 0 up to 10; t is an integer of from 0 up to 10; wherein the sum of s and t is an integer of from 0 up to 10 defined according to the inequalities: $0 \le s + t \le 10$; $0 \le s \le 10$; and $0 \le t \le 10$; and wherein $v \mid or 2$.

(currently amended) A perfumed polymer comprising a microporous polymer and contained in the interstices thereof an aroma augmenting, enhancing or imparting quantity and concentration of a bicyclic lactone having a structure selected from the group consisting of:

20

$$R_6$$
 R_4
 R_5
 R_7
 R_8
 R_8
 R_8
 R_8
 R_8
 R_8
 R_8
 R_8

wherein Z is a moiety selected from the group consisting of:

5

10

20

and wherein one of R_1 or R_3 is methyl and the other is hydrogen; wherein R_4 , R_5 , R_6 , R_7 , R_8 and R_9 are hydrogen or nonadjacent C_1 - C_3 alkyli-wherein Y is C_2 - C_{12} substituted or unsubstituted alkylidenyl, alkenylidenyl or alkadienylidenyl having the structure:

and completes a C₃-C₁₅ cycloalkyl, cycloalkadienyl or cycloalkenyl ring moiety; wherein R₁₂, R₁₃, R₁₄, R₁₆, R₁₇, R₂₈, R₂₉, R₃₀ and R₃₁ each represents hydrogen or C₁-C₃ nonadjacent alkyl; wherein the dashed line represents a carbon carbon single bond or a carbon carbon double bond; wherein s is an integer of from 0 up to 10; t is an integer of from 0 up to 10; wherein the sum of s and t is an integer of from 0 up to 10 defined according to the inequalities: 0 ≤ s + t ≤ 10; 0 ≤ s ≤ 10, and 0 ≤ t ≤ 10; and wherein v 1 or 2.

(currently amended) A perfume composition comprising a perfume base and intimately admixed

therewith an aroma augmenting, enhancing or imparting quantity of a bicyclic lactone

herewith an aroma augmenting, enhancing or imparting quantity of a bicyclic lactone

having structure selected from the group consisting of:

$$R_{6} \longrightarrow R_{4} \longrightarrow R_{5} \longrightarrow R_{1} \longrightarrow R_{1} \longrightarrow R_{1} \longrightarrow R_{2} \longrightarrow R_{2} \longrightarrow R_{2} \longrightarrow R_{3} \longrightarrow R_{4} \longrightarrow R_{5} \longrightarrow R_{5$$

wherein Z is a moiety selected from the group consisting of:

5

10

20

and wherein one of R_1 or R_3 is methyl and the other is hydrogen; wherein R_4 , R_5 , R_6 , R_7 , R_8 and R_9 are hydrogen or nonadjacent C_1 - C_3 alky $\overline{k_7}$ wherein Y is C_2 C_{12} substituted or unsubstituted alkylidenyl, alkenylidenyl or alkadienylidenyl having the structure.

5

10

and completes a C₅-C₁₅ cycloalkyl, cycloalkadienyl or cycloalkenyl ring moiety; wherein R₁₂, R₁₃, R₁₄, R₁₆, R₁₇, R₂₈, R₂₉, R₃₀ and R₃₁ each represents hydrogen or C₁-C₃ nonadjacent alkyl; wherein the dashed line represents a carbon carbon single bond or a carbon carbon double bond; wherein s is an integer of from 0 up to 10; t is an integer of from 0 up to 10; wherein the sum of s and t is an integer of from 0 up to 10 defined according to the inequalities: 0 ≤ s + t ≤ 10; 0 ≤ s ≤ 10; and 0 ≤ t ≤ 10; and wherein v 1 or 2.

reviously presented) The process of Claim 1 wherein the consumable material is a detergent composition or a fabric softener composition.

composition or a fabric softener composition.

Claim 9, (canceled).

Claim 10.

(currently amended) A bicyclic lactone having a structure selected from the group consisting of:

10

15

Claim II. (canceled),

20

Claim 12. (canceled).

25

Claim 13.

(previously presented) A process for the preparation of a bicyclic lactone comprising the steps of carrying out the reaction sequence in order:

(ii)
$$R_1$$
 R_2 R_3 R_4 R_5 R_6 R_8 R_8

$$\frac{1}{2} \left[\frac{1}{R_{3}} \right] \left[$$

10

5

$$R_{5}$$
 R_{7}
 R_{5}
 R_{7}

20

$$\frac{1}{2} R_{s} R_{s} + H_{2} \rightarrow R_{s} R_{s}$$

$$R_{s} R_{s} R_{s}$$

$$R_{s} R_{s} R_{s}$$

; and

$$Z$$
 R_{s}
 R_{s}
 R_{s}
 R_{s}
 R_{s}
 R_{s}
 R_{s}

and isolating the resulting bicyclic lactone wherein Z is a moiety selected from the group consisting of:

and wherein one of R_1 or R_3 is methyl and the other is hydrogen; wherein R_4 , R_5 , R_6 , R_7 , R_8 and R_9 are hydrogen or nonadjacent C_1 - C_3 alkyl; and wherein R_2 represents C_1 - C_4 alkyl.

Claim 14.

20

5

10