

NASIONALE SENIOR SERTIFIKAAT

GRAAD 12

WISKUNDE V2

FEBRUARIE/MAART 2012

MEMORANDUM

PUNTE: 150

Hierdie memorandum bestaan uit 18 bladsye.

1.1	Gemiddeld $\sum_{1}^{n} x_{1} = 102100$	✓ 102100
	$\frac{1}{n} = \frac{1}{9}$	✓ antwoord (2)
	= R11 344, 44	(=)
1.2	Standaardafwyking	✓✓ antwoord
	$\sum_{n=0}^{\infty} (x_1 - \overline{x})^2$	
	$\sqrt{\frac{1}{n}} = R4 460,97$	(2)
1.3	Waarde van een standaardafwyking bo gemiddeld	✓ tel gemiddeld
	= R11 344,44 + R4 460,97	en std. af. by
	= R15 805,41	
	Slegs een persoon het kommisie bo R 15 805,41 verdien.	✓ afleiding
	Dus het slegs 1 persoon 'n gradering van 'goed' ontvang.	(2)
		[6]

VRAAG 2

Wiskunde/V2 NSS – Memorandum

2.3	JAAR	1995	1996	1997	1998	1999	2000	2001
	N (Getal in miljoene)	8	17	34	67	135	281	552
	Log N (korrek tot EEN desimale plek)	6,9	7,2	7,5	7,8	8,1	8,4	8,7

✓ ten minste 4 punte korrek ✓alle punte korrek (2)

OF (indien slegs logwaardes in table in berekening gebring is)

JAAR	1995	1996	1997	1998	1999	2000	2001
N (Getal in miljoene)	8	17	34	67	135	281	552
Log N (korrek tot EEN desimale plek)	0,9	1,2	1,5	1,8	2,1	2,4	2,7

✓ ten minste 4 punte korrek ✓alle punte korrek

(2)

- ✓ ten minste 4 punte korrek gestip
- ✓ alle punte korrek

(2)

Blaai om asseblief

3.1	40	√ 40 (1)
3.2	Tyd, t, in minute Frekwensie $0 \le t < 5$ 3 $5 \le t < 10$ 5 $10 \le t < 15$ 10 $15 \le t < 20$ 15 $20 \le t < 25$ 7	✓ vir intervalle in tabel ✓ vir eerste drie korrekte frekwensies ✓ vir laaste twee korrekte frekwensies (3)
3.3	15 10 15 20 25 Tydintervalle	✓korrekte frekwensies ✓middelpunt- waardes ✓geen spasies tussen stawe (3) [7]

VRAAG 4

a = 7	b = 15	c = 17	d = 23	e = 34	f=37	g = 42	✓ elke korrekt antwoord	te (7)
			OF					
g = 42; $a42 + 7 + 23$	= 7 ; d = 23 3 + 37 + 15 + 7 3c c e	$3; f = 37; \frac{3c}{3c} = 25$ $= 51$ $= 17$ $= 34$	<i>b</i> = 15				✓ g ✓ a ✓ d ✓ f ✓ b ✓ c ✓ e	(7) [7]

<i>7</i> 1		T
5.1	$m_{\rm AD} = \frac{y_2 - y_1}{x_2 - x_1}$	
	$=\frac{-2-4}{5-1}$	✓ vir substitusie
		✓ vir antwoord
	$= -\frac{6}{4} = -\frac{3}{2}$	(2)
5.2	AD = $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$	
	$= \sqrt{(5-1)^2 + (-2-4)^2}$	✓ vir substitusie
	$=\sqrt{16+36}$	$\sqrt{52}$
	$=\sqrt{52}$	(2)
5.3	,	(2)
0.5	$M = \left(\frac{x_1 + x_2}{2}; \frac{y_1 + y_2}{2}\right)$	
		✓ <i>x</i> -waarde
	$M = \left(\frac{1+5}{2}; \frac{4-2}{2}\right)$	✓ <i>y</i> -waarde
	M = (3;1)	(2)
5.4	$m_{\rm BC} = m_{\rm AD}$ lyne is parallel	
	$=-\frac{3}{2}$	\checkmark waarde $m_{\rm BC}$
	$y - y_1 = m (x - x_1)$	
	$y-1 = -\frac{3}{2}(x+3)$	✓ subst (-3; 1)
	2y-2=-3x-9	
	3x + 2y + 7 = 0	✓ vergelyking (3)
		(3)
	OF	
	$y = -\frac{3}{2}x + c$	\checkmark waarde $m_{\rm BC}$
		✓ subst (-3; 1)
	$1 = -\frac{3}{2}(-3) + c$	
	$c = -\frac{7}{2}$	✓ vergelyking
	$y = -\frac{3}{2}x - \frac{7}{2}$	
	3x + 2y + 7 = 0	(3)

Wiskunde/V2 NSS - Memorandum 5.5.1 $m_{AD} = -\frac{3}{2}$ A(1;4) $\checkmark \tan \beta = m_{AD}$ $\tan \beta = -\frac{3}{2}$ B(-3;1)✓ 123,69° $\beta = 180^{\circ} - 56{,}31^{\circ}$ $\beta = 123,69$ D(5; -2)(2)

5.5.2	$m_{BD} = \frac{-2 - 1}{5 - (-3)} = \frac{-3}{8}$ $\tan \alpha = -\frac{3}{8}$	$\checkmark m_{BD} = \frac{-3}{8}$
	$\alpha = 180^{\circ} - 20,56^{\circ}$ $\alpha = 159,44^{\circ}$	√159,44°
	$F\hat{E}D = 180^{\circ} - 159,44^{\circ} = 20,56^{\circ}$ $E\hat{F}D = 123,69^{\circ}$	✓20,56° ✓123,69° ✓35,75°
	$F\hat{D}E = 180^{\circ} - (20,56^{\circ} + 123,69^{\circ}) = 35,75^{\circ}$	(5)

Koördinate van middelpunt M (3; 1) 5.6 Radius van sirkel: ✓ waarde van radius $\frac{1}{2}$ of AD = $\frac{1}{2}$ (2 $\sqrt{13}$) = $\sqrt{13}$ = $\frac{1}{2}\sqrt{52}$ ✓ substitusie in vergelyking vir Vergelyking van die sirkel is: $(x-3)^2 + (y-1)^2 = 13$ sirkelmiddelpuntvorm (2) OF ✓ waarde van r^2 $r^2 = (3-1)^2 + (1-4)^2 = 13$ ✓ substitusie in Vergelyking van die sirkel is: vergelyking in $(x-3)^2 + (y-1)^2 = 13$ sirkelmiddelpunt vorm (2)

M(3;1) B(-3;1)5.7 $MB = \sqrt{(3+3)^2 + (1-1)^2}$ ✓ substitusie ✓ buite **(2)** Punt B lê buite die sirkel want MB > radius OF M(3;1) B(-3;1)✓substitusie MB = 3 + 3 = 6Radius van die sirkel = $\sqrt{13}$ < 6 ✓ buite (2) Punt B lê buite die sirkel want MB > radius [20]

Wiskunde/V2

DBE/Feb.-Mrt. 2012

VRAAG 6

6.1	Koördinate van middelpunt M (-2; 1) $(1+2)^2 + (-2-1)^2 = 18 = r^2$ Radius = $\sqrt{18}$ of $3\sqrt{2}$	✓✓ koördinate van middelpunt ✓ berekening ✓ waarde (4)
6.2	$m_{MS} = \frac{-3}{3} = -1$ $m_{MS} x m_{RS} = -1$ $m_{RS} = 1$ $y - y_1 = m (x - x_1)$ $y + 2 = 1(x - 1)$ $y = x - 3$ or raaklyn \perp radius	✓ gradiënt MS ✓ gradiënt RS ✓ subst (1; -2) ✓ vergelyking (4)
	OF	
	-3	✓ gradiënt MS
	$m_{MS} = \frac{-3}{3} = -1$	✓ gradiënt RS
	$m_{MS}xm_{RS} = -1$	
	$m_{RS} = 1$ $y = x + c$	✓ subst (1; –2)
	-2 = 1 + c	✓ vergelyking
	c = -3 $y = x - 3$	(4)
6.3	$\frac{MS}{MP} = \frac{1}{3}$ $\therefore MP = 3MS$	\checkmark MP = 3MS
	$MP^{2} = 9MS^{2}$ $(a+2)^{2} + (b-1)^{2} = 9(3^{2} + 3^{2}) = 162$ (1)	✓ vergelyking
	$MS \perp SR \ en \ PS \perp SR \qquad \therefore m_{PS} = m_{MS}$ $b+2 3 \qquad 1$	✓ dieselfde gradiënte
	$\frac{b+2}{a-1} = \frac{3}{-3} = -1$ $b+2 = -a+1$ (2)	✓ gradiënt
	b = -a - 1 (2) Vervang (2) in (1)	$\checkmark b = -a - 1$

NSS – Memorandum

$$(a+2)^{2} + (-a-1-1)^{2} = 162$$

$$(a+2)^{2} + (a+2)^{2} = 162$$

$$2(a+2)^{2} = 162$$

$$(a+2)^{2} = 81$$

$$a+2=9 \text{ of } -9$$

$$a=7 \text{ of } -11$$

$$b=-a-1=-8$$

$$P(7;-8)$$

$$(8)$$

OF

$$\frac{MS}{MP} = \frac{1}{3}$$

$$\therefore MP = 3MS$$

$$MP^{2} = 9MS^{2}$$

$$(a+2)^{2} + (b-1)^{2} = 9(3^{2} + 3^{2}) = 162$$
(1)

 $MS \perp SR \ en \ PS \perp SR$ $\therefore m_{PS} = m_{MS}$

$$\frac{b+2}{a-1} = \frac{3}{-3} = -1$$

$$b+2 = -a+1$$

$$b = -a-1$$
 (2)

Vervangt (2) in (1)

$$a^{2} + 4a + 4 + a^{2} + 4a + 4 = 162$$

$$2a^{2} + 8a - 154 = 0$$

$$a^{2} + 4a - 77 = 0$$

$$(a+11)(a-7) = 0$$

$$a = 7 \text{ of } -11$$
Maar $a > 0$

$$\therefore a = 7$$

$$b = -a - 1 = -8$$

P(7; -8)

OF

$$\checkmark$$
 MP = 3MS

✓ vergelyking

✓ dieselfde gradiënte

✓ gradiënt

$$\checkmark b = -a - 1$$

✓ substitusie

$$\checkmark a = 7$$

$$\checkmark b = -8$$
(8)

 $(MS \perp SR)$

OF

DBE/Feb.-Mrt. 2012

✓ MSP is 'n

 $2(a-1)^2 = 72$

 $(a-1)^2 = 36$

a - 1 = 6 of -6

a = 7 of -5

a = 7

b = -8

P(7; -8)

$$\checkmark m_{PM} = -1$$

$$\sqrt{\frac{b-1}{a+2}}$$

vergelyking 2

✓✓ koördinate

reguitlyn

$$\sqrt{b-1}$$

✓ vergelyking 1

✓ vergelyking 2

✓ substitusie van vergelyking 1 in

(8)

OF

P(a; b)

 $m_{PM} = -1$

 $\frac{b-1}{a+2} = -1$

b-1 = -a-2

MSP is 'n reguitlyn

 $b = -a - 1 \dots (1)$

 $PS^2 = 4(18) = 72$

 $2a^2 - 4a - 70 = 0$

 $a^2 - 2a - 35 = 0$

(a-7)(a+5) = 0

a = 7 of $a \neq -5$

b = -7 - 1 = -8

P(7;-8)

 $PS = 2MS = 2\sqrt{9+9} = 2\sqrt{18}$

 $(a-1)^2 + (b+2)^2 = 72.....(2)$

 $(a-1)^2 + (-a-1+2)^2 = 72$

✓✓ diagram

(8)

NSS – Memorandum

NSS – Wemorandum	
P(a; b) $ \frac{x_S - x_M}{x_P - x_M} = \frac{y_S - y_M}{y_P - y_M} = \frac{1}{3} $ $ \frac{-3}{b-1} = \frac{3}{a+2} = \frac{1}{3} $ $ -9 = b-1 $ $ b = -8 $	✓✓ verdeling van 'n lynstuk in 'n gegewe verhouding ✓✓ substitusie ✓ vergelyking
9 = a + 2 a = 7 P(7; -8)	✓ vergelyking✓ koördinate(8)[16]

VRAAG 7

7.1	K 3	Vir korrekte koördinate en benoeming van elke beeld: ✓ K' ✓ L' ✓ M' ✓ N'
7.2.1	Transformasie is nie rigied (star) nie, want die area het verander as	(4) ✓ nie rigied nie
7.2.1	gevolg van die vergroting.	✓ grootte nie behou nie (2)
7.2.2	N''(-2;-2)	\checkmark koördinate van N'' (2)
7.3	$(x;y) \to (-y;x) \to (-2y;2x)$	$\begin{array}{c} \checkmark -y \\ \checkmark x \\ \checkmark -2y \\ \checkmark 2x \end{array} $ (4)
7.4	Area van KLMN : area van $K''L''M''N'' = 1 : 4$	✓✓ antwoord (2)
7.5	Indien die verste punt vanaf die oorsprong in die sirkel gedruk/gestuur word, dan sal die hele vierhoek in die sirkel gedruk wees. K is die verste weg. $KO = \sqrt{3^2 + 3^2} = \sqrt{18}$	✓ K – verste ✓ KO = $\sqrt{18}$ ✓ antwoord
	ua anh ah au	(3)

12 DBE/Feb.–Mrt. 2012

$p.KO = 1, p = \frac{1}{m}$	[17]
$\sqrt{18}$	

VRAAG 8

 $x_0 = x \cos \theta + y \sin \overline{\theta}$ 8. ✓ subst -2 en -3 in korrekte formule $x_0 = -2\cos 135^{\circ} + (-3)\sin 135^{\circ}$ $vir x_0$ $x_Q = \frac{2}{\sqrt{2}} - \frac{3}{\sqrt{2}} = \frac{-1}{\sqrt{2}}$ of $\frac{-\sqrt{2}}{2}$ or -0.71 ✓ gebruik 135° ✓ x-koördinate (in enige formaat) $y_0 = y \cos \theta - x \sin \theta$ $y_O = -3\cos 135^\circ - (-2)\sin 135^\circ$ \checkmark subst −2 en −3 in korrekte formule $y_Q = \frac{3}{\sqrt{2}} + \frac{2}{\sqrt{2}} = \frac{5}{\sqrt{2}} = \frac{5\sqrt{2}}{2} = 3,54$ $vir v_0$ ✓ vir y-koördinate (in $Q\left(\frac{-1}{\sqrt{2}}; \frac{5}{\sqrt{2}}\right)$ enige formaat) (5)OF ✓ subst -2 en -3 in $x_0 = x \cos \theta - y \sin \theta$ korrekte formule $x_0 = -2\cos(-135^\circ) - (-3)\sin(-135^\circ)$ $vir x_Q$ ✓ gebruik –135° $x_Q = \frac{2}{\sqrt{2}} - \frac{3}{\sqrt{2}} = \frac{-1}{\sqrt{2}}$ of $\frac{-\sqrt{2}}{2}$ or -0.71 ✓ x-koördinate (in enige formaat) $y_0 = y\cos\theta + x\sin\theta$ $y_O = -3\cos(-135^\circ) + (-2)\sin(-135^\circ)$ \checkmark subst −2 en −3 in korrekte formule $y_Q = \frac{3}{\sqrt{2}} + \frac{2}{\sqrt{2}} = \frac{5}{\sqrt{2}} = \frac{5\sqrt{2}}{2} = 3,54$ $vir y_Q$ ✓ vir *y*-koördinate (in $Q\left(\frac{-1}{\sqrt{2}}; \frac{5}{\sqrt{2}}\right)$ enige formaat) (5)**OF** \checkmark subst −2 en 135° in $x' = x \cos \theta - v \sin \theta$ korrekte formule $-2 = x\cos 135^{\circ} - y\sin 135^{\circ}$ vir x' $-2 = \frac{-x}{\sqrt{2}} - \frac{y}{\sqrt{2}}$ ✓ vereenvoudiging $-2\sqrt{2}=-x-y$ (1) $y' = y\cos\theta + x\sin\theta$ ✓ subst -2 en 135° in korrekte formule $-3 = y \cos 135^{\circ} + x \sin 135^{\circ}$ vir v' $-3 = \frac{-y}{\sqrt{2}} + \frac{x}{\sqrt{2}}$ $-3\sqrt{2}=x-y$ ✓ y-koördinaat (2) ✓ *x*-koördinaat Los (1) en (2) gelyktydig op: (5)

 $-5\sqrt{2} = -2y$

$$y = \frac{5}{\sqrt{2}}$$

$$y = \frac{5}{\sqrt{2}} \qquad \text{en} \qquad x = \frac{-1}{\sqrt{2}}$$

OF

Gebruik eerste beginsels: $Q = (-r \cos \alpha; r \sin \alpha)$

$$Q^{/} = (-2; -3)$$

$$\tan\theta = \frac{3}{2}$$

$$r = \sqrt{3^2 + 2^2} = \sqrt{13}$$

$$\theta = 56.31^{\circ}$$

$$\alpha = 135^{\circ} - 56,31^{\circ} = 78,69^{\circ}$$

$$Q = (-r\cos\alpha; r\sin\alpha)$$

$$=(-0,71;3,54)$$

$$\sqrt{\tan \theta} = \frac{3}{2}$$

$$\sqrt{r} = \sqrt{13}$$

$$\sqrt{\theta} = 56.31^{\circ}$$

$$\checkmark r = \sqrt{13}$$

$$\checkmark \theta = 56,31^{\circ}$$

 $Q = (-r\cos\alpha; r\sin\alpha)$

✓ antwoord

(5) [5]

9.1.1	r = 13	√ 13
	$\cos\alpha = \frac{12}{13}$	$\sqrt{\frac{12}{13}}$
		(2)
9.1.2	$\hat{QOR} = 180^{\circ} - (90^{\circ} + \alpha)$	$\begin{array}{c} \checkmark 180^{\circ} - (90^{\circ} + \alpha) \\ \checkmark 90^{\circ} - \alpha \end{array}$
	$=90^{\circ}-\alpha$	√90°-α
	<i>y</i> • • • • • • • • • • • • • • • • • • •	(2)

0.1.2	On	
9.1.3	$\cos Q\hat{O}R = \frac{QR}{OQ}$	✓
	$\cos(90^{\circ} - \alpha) = \frac{7.5}{OQ}$	$\cos(90^\circ - \alpha) = \frac{7.5}{OQ}$
	$OQ = \frac{7.5}{\cos(90^\circ - \alpha)}$	$\cos(90^{\circ} - \alpha) = \frac{7.5}{OQ}$ $\checkmark \frac{7.5}{\sin \alpha}$
	$OQ = \frac{7.5}{\sin \alpha}$ $OQ = \frac{7.5}{5}$	$\begin{array}{c} \checkmark \frac{5}{13} \\ \checkmark 19,5 \end{array}$
	13	(4)
	OQ = 19,5	
	\mathbf{OF}	✓
	$\sin(R\hat{Q}O) = \frac{7.5}{OQ}$	$\sin(R\hat{Q}O) = \frac{7.5}{OQ}$ $\checkmark \frac{7.5}{\sin \alpha}$
		$\sqrt{\frac{7.5}{\sin \alpha}}$ $\sqrt{\frac{5}{13}}$
	$OQ = \frac{7,5}{\frac{5}{13}}$	13 √19,5
	OQ = 19,5	(4)
9.2	$LK = \frac{\cos x \cdot \cos x(-\tan x)}{-\cos x}$	$\sqrt{\cos x}$
		$\sqrt{-\tan x}$
	$=\cos x.\frac{\sin x}{\cos x}$	$\sqrt{\frac{\sin x}{\sin x}}$
	COS X	$\frac{\sqrt{\cos x}}{\cos x}$
	$= \sin x$	✓ antwoord
	=RK	(4) [12]

10.1	Periode = 120°	✓ 120° (1)
10.2	$\sin 3x = -1$ $x = -30^{\circ} \text{ of } x = 90^{\circ}$	✓ -30° ✓ 90° (2)
10.3	Maksimum waarde van $f(x)$ is 1 \therefore Maksimum waarde van $h(x)$ is 0	✓ maks van $f(x)$ ✓ antwoord (2)
10.4	-90 -60 -30 30 60 90 20 150 180	✓ -90°; 90° ✓ (0°;3) ✓ (180°;-3)
10.5	$\frac{\sin 3x}{3} - \cos x = 0$ $\sin 3x - 3\cos x = 0$ $\therefore \sin 3x = 3\cos x$	$\sin 3x = 3 \cos x$ $\checkmark \text{ antwoord}$
	Daar is 2 oplossings waar die grafieke van f en g gelyk is	(2)
10.6	f(x).g(x) < 0 $x \in (-60^{\circ}; 0^{\circ}) \text{ of } (60^{\circ}; 90^{\circ}) \text{ of } (120^{\circ}; 180^{\circ})$ OF	✓✓ vir elke interval ✓ korrekte hakies of korrekte
	$-60^{\circ} < x < 0^{\circ} \text{ of } 60^{\circ} < x < 90^{\circ} \text{ of } 120^{\circ} < x < 180^{\circ}$	simbole (4) [14]

11.1.1	: (10	
11.1.1	$\sin 61^\circ = \sqrt{p}$	
	$\sin 241^\circ = \sin (180^\circ + 61^\circ)$	✓ - sin 61°
	$=-\sin 61^{\circ}$ \sqrt{p}	
	$=-\sqrt{p}$ 61°	√antwoord
	$\sqrt{1-p}$	
		(2)
11.1.2	$\cos 61^\circ = \sqrt{1 - \sin^2 61^\circ}$	✓ identiteit
	$=\sqrt{1-p}$	✓ antwoord
	$-\sqrt{1}$ P	(2)
11.1.3	$\cos 122^\circ = \cos 2(61^\circ)$	√ dubbelhoek
	$= 2\cos^2 61^\circ - 1$	√ uitbreiding
	$=2\left(\sqrt{1-p}\right)^2-1$	
	=2(1-p)-1	✓ antwoord
	=2-2p-1	v antwoord
	=1-2p	(3)
11.1.4	cos 73°cos15° + sin 73°.sin15°	
	$=\cos(73^{\circ}-15^{\circ})$	✓ cos(73°-15°)
	$= \cos 58^{\circ} = (\cos 180^{\circ} - 122^{\circ})$, ,
	$= -(\cos 122^\circ)$	√ – (cos 122°)
	=-(1-2p)	✓ antwoord
	=2p-1	(3)
11.2.1	$LK = \frac{(\cos x + \sin x)^2 - (\cos x - \sin x)^2}{(\cos x - \sin x)(\cos x + \sin x)}$	
	$(\cos x - \sin x)(\cos x + \sin x)$	2 2
	$-\frac{\cos^2 x + 2\cos x \sin x + \sin^2 x - (\cos^2 x - 2\sin x \cos x + \sin^2 x)}{\sin^2 x + \sin^2 x + \sin^2 x + \sin^2 x + \sin^2 x}$	$\frac{\left(\cos x + \sin x\right)^2 - \left(\cos x - \sin x\right)^2}{\left(\cos x + \sin x\right)^2}$
	$= \frac{(\cos x - \sin x)(\cos x + \sin x)}{(\cos x - \sin x)(\cos x + \sin x)}$	$(\cos x - \sin x)(\cos x + \sin x)$
	$4\cos x \sin x$	✓ teller $✓$ 4 cos x sin x
	$=\frac{1}{\cos^2 x - \sin^2 x}$	$\sqrt{\cos^2 x - \sin^2 x}$
	$2\sin 2x$	$\sqrt{2} \sin 2x$
	$=\frac{2\sin 2x}{\cos 2x}$	$\sqrt{\cos 2x}$
	$= 2 \tan x$	
	= RK	(6)
11.2.2	$x = 45^{\circ};135^{\circ}$	√45°
	, -	√135° (2)
11.3.1	$\sin x = \cos 2x - 1$	
	$\sin x = 1 - 2\sin^2 x - 1$	$\sqrt{1-2\sin^2 x}$
	$\sin x = -2\sin^2 x$	
	$2\sin^2 x + \sin x = 0$	(1)

12	By Δ CBG en ΔCDH:	
	$CG^2 = x^2 + y^2$ Pythagoras	✓ CG ²
	$CH^2 = x^2 + y^2$ Pythagoras	✓ CH²
	Βy ΔFΑΕ	
	$AE^2 = x^2 + x^2$	
	$=2\chi^2$	✓ AE ²
	$= GH^2$	$\checkmark AE^2 = GH^2$
	By Δ CGH	
	$GH^2 = CG^2 + CH^2 - 2 CG.CH. \cos GCH$	
	$G_{\text{out}} = CG^2 + CH^2 - GH^2$	✓ gebruik van cos-reël
	$\cos G\hat{C}H = \frac{CG^2 + CH^2 - GH^2}{2CG.CH}$	
		✓ manipulasie van
	$\cos G\hat{C}H = \frac{x^2 + y^2 + x^2 + y^2 - 2x^2}{2\sqrt{x^2 + y^2} \cdot \sqrt{x^2 + y^2}}$	formule
	$2\sqrt{x^2 + y^2} \cdot \sqrt{x^2 + y^2}$	✓ substitusie
	$\cos \hat{G} + \frac{2y^2}{y^2}$	$2v^2$
	$\cos G\hat{C}H = \frac{2y^2}{2(x^2 + y^2)}$	$\checkmark \cos G\hat{C}H = \frac{2y^2}{2(x^2 + y^2)}$
	$\cos G\hat{C}H = \frac{y^2}{x^2 + y^2}$	2(0 1 9)
	$\cos GCH = \frac{1}{x^2 + v^2}$	(8)
	,	[8]

TOTAAL: 150