Álgebra – operadores básicos

Carlos A. Heuser 2006

Álgebra

- □ Na matemática, uma **álgebra** é:
 - oum conjunto de objetos e
 - oum conjunto de operações sobre estes objetos

Exemplo:

O Aritmética:

conjunto de números e de operações sobre **números** (soma, subtração, ...)

04/1

Álgebra relacional

- ☐ Álgebra desenvolvida para descrever operações sobre uma base de dados relacional
- ☐ Os objetos sobre os quais a álgebra opera são tabelas
- ☐ Uma operação possui como **operandos** e como **resultado tabelas**
- □ Porque aprender:
 - OCompreendendo álgebra relacional é mais fácil apreender SQL
 - Não há SGBD que implementa álgebra diretamente como DML, mas SQL incorpora cada vez mais conceitos de álgebra
 - O Algoritmos de otimização de consulta definidos sobre álgebra
 - Literatura referencia frequentemente os operadores de álgebra relacional

Operadores da álgebra relacional

- □ Operadores originários da **teoria de conjuntos** (uma tabela é um conjunto de linhas):
 - **O União**
 - **O Interseção**
 - Diferença
 - Produto Cartesiano
- ☐ Operadores **específicos** da álgebra relacional:
 - Seleção
 - Projeção
 - Junção
 - Divisão
 - **Renomeação**

BD exemplo

Peça

CodPeça	NomePeça	CorPeça	PesoPeça	CidadePeça
P1	Eixo	Cinza	10	PoA
P2	Rolamento	Preto	16	Rio
P3	Mancal	Verde	30	SãoPaulo

Embarq

CodPeça	CodFornec	QtdeEmbarc	
P1	F1	300	
P1	F2	400	
P1	F3	200	
P2	F1	300	
P2	F4	350	

Fornec

CodFornec	NomeFornec	StatusFornec	CidadeFornec	
F1 Silva 5		5	SãoPaulo	
F2	Souza	10	Rio	
F3	Álvares	5	SãoPaulo	
F4	Tavares	8	Rio	

04/5

Operação de Seleção

- ☐ A **seleção** tem como operando **uma** tabela.
- O resultado é uma tabela que contém as linhas que obedecem a um determinado critério.
- □ Sintaxe:

σ <critério de seleção> (<tabela>)

onde <tabela> é o nome de uma tabela ou uma expressão de álgebra relacional que resulta em uma tabela e <critério de seleção> é uma expressão booleana que envolve literais e valores de atributos da tabela

 O resultado da seleção tem colunas com os mesmos nomes e domínios da tabela de entrada.

04/6

Exemplo de Seleção (BD de peças e fornecedores)

 σ CodPeça = 'P1' (Peça)

□ Resulta em uma tabela que contém todos os dados da peça de código P1.

CodPeça	NomePeça	CorPeça	PesoPeça	CidadePeça	
P1	Eixo	Cinza	10	PoA	

Exemplo de Seleção

 $\sigma \; (\texttt{StatusFornec} \; > \; 5 \; \; \texttt{and} \; \; \texttt{CidadeFornec} \; = \; \; \texttt{'Rio'}) \; \\ (\, \texttt{Fornec} \,)$

□ Resulta em uma tabela com os dados de todas os fornecedores que tenham status maior que 5 e sejam do Rio.

CodFornec	NomeFornec	StatusFornec	CidadeFornec	
F2	Souza	10	Rio	
F4	Tavares	8	Rio	

Seleção é comutativa

- σ (StatusFornec > 5) (σ (CidadeFornec = 'Rio') (Fornec))
- O mesmo que o anterior, mas usando duas expressões de seleção aninhadas
- O critério de seleção envolve somente valores de atributos de uma linha.
- □ Não é possível especificar critérios que envolvam múltiplas linhas nem critérios que envolvem diferentes tabelas.

Operação de Projeção

- ☐ A **projeção** tem como operando uma tabela.
- O resultado é uma tabela que contém apenas as colunas selecionadas.
- ☐ Sintaxe:

 π ta de colunas> (<tabela>)

onde:

<tabela> é o nome de uma tabela ou uma expressão de álgebra relacional que resulta em uma tabela e lista de colunas> é uma lista que contém nomes de colunas da tabela operando.

04/9

Exemplo de Projeção (BD de peças e fornecedores)

 π CodPeça, NomePeça (Peça)

□ Resulta em uma tabela que contém os códigos e os nomes de todas as peças.

CodPeça	NomePeça	
P1	Eixo	
P2	Rolamento	
P3	Mancal	

Exemplo de Projeção

- □ A Projeção pode resultar também na *eliminação de linhas*, caso colunas que são parte da chave forem eliminadas.
 - Uma tabela é um conjunto de linhas:

Se uma coluna cujos valores distinguem diferentes linhas é eliminada, surgem linhas duplicadas na tabela, que devem ser eliminadas.

☐ Exemplo:

 π CidadeFornec (Fornec)

Resulta em uma tabela que contém todas as cidades em que há fornecedores. Note-se que se houver múltiplos fornecedores na mesma cidade, as diferentes linhas são eliminadas.

CidadeFornec SãoPaulo Rio

Projeção generalizada

□ De forma geral, expressões aritméticas podem ser usadas na lista de projeção:

```
\pi CodPeça, NomePeça, PesoPeca * 1.1322 (Peça)
```

- □ Problema:
 - o qual é o nome da terceira coluna?
 - o ver operador de renomeação adiante

Aninhamento de operadores

□ Operadores diferentes podem ser aninhados

```
\pi CodFornec, QtdeEmbarc (\sigma CodPeça = 'P1' (Embarq) )
```

Resulta em tabela com código de fornecedor e quantidade embarcada para cada embarque da peça de código P1.

CodFornec	QtdeEmbarc		
F1	300		
F2	400		
F3	200		

04/13

Operações da teoria de conjuntos

- □ A álgebra relacional empresta da teoria de conjuntos quatro operadores: União, Intersecção, Diferença e Produto Cartesiano
- ☐ Sintaxe da operação União:

```
<tabela>1 U <tabela>2
```

☐ Sintaxe da operação **Intersecção**:

```
<tabela><sub>1</sub> \capela <tabela><sub>2</sub>
```

☐ Sintaxe da operação **Diferença**:

```
<tabela>1 - <tabela>2
```

Operações da teoria de conjuntos

- □ Nos três casos, a operação possui duas tabelas como operando.
- ☐ As tabelas devem ser **compatíveis para união**:
 - 1. Possuir o mesmo número de colunas
 - O domínio da i-ésima coluna de uma tabela deve ser idêntico ao domínio da i-ésima coluna da outra.
- Quando os nomes das colunas forem diferentes, adota-se a convenção de usar os nomes das colunas da primeira tabela.

Exemplo de Interseção

```
\pi CodFornec (Embarq)  \cap \\ \pi \text{ CodFornec}  ( \sigma StatusFornec > 5 (Fornec) )
```

□ Obtém os códigos de todos os fornecedores que tem embarques e que tem status maior que 5

Operadores derivados

- Observar que há operadores de álgebra que são deriváveis de outros.
- Exemplo:
 - Operação de intereseção é derivável de união e diferença

$$A \cap B = A - (A - B)$$

04/17

Operação Produto Cartesiano

☐ Sintaxe da operação **Produto Cartesiano**:

<tabela>1 X <tabela>2

- O produto cartesiano possui como operandos duas tabelas.
- \square O resultado é uma tabela cujas linhas são a combinação das linhas das tabelas <tabela> $_1$ e <tabela> $_2$, tomando-se uma linha da <tabela> $_2$.

Total de colunas do produto cartesiano =

Número de colunas da primeira tabela +

Número de colunas da segunda tabela

Número de linhas do produto cartesiano =

Número de linhas da primeira tabela x

Número de linhas da segunda tabela.

Exemplo de Produto Cartesiano

□ Embarq X Peça

	Embarq				Peça		
CodPeça	CodFornec	QtdeEmbarc	CodPeça	NomePeça	CorPeça	PesoPeça	CidadePeça
P1	F1	300	P1	Eixo	Cinza	10	PoA
P1	F2	400	P1	Eixo	Cinza	10	PoA
P1	F3	200	P1	Eixo	Cinza	10	PoA
P2	F1	300	P1	Eixo	Cinza	10	PoA
P2	F4	350	P1	Eixo	Cinza	10	PoA
P1	F1	300	P2	Rolamento	Preto	16	Rio
P1	F2	400	P2	Rolamento	Preto	16	Rio
P1	F3	200	P2	Rolamento	Preto	16	Rio
P2	F1	300	P2	Rolamento	Preto	16	Rio
P2	F4	350	P2	Rolamento	Preto	16	Rio
P1	F1	300	P3	Mancal	Verde	30	SãoPaulo
P1	F2	400	P3	Mancal	Verde	30	SãoPaulo
P1	F3	200	P3	Mancal	Verde	30	SãoPaulo
P2	F1	300	P3	Mancal	Verde	30	SãoPaulo
P2	F4	350	P3	Mancal	Verde	30	SãoPaulo

□ A operação tem Produto Cartesiano não é usada isoladamente. Normalmente, ela é combinada com uma seleção que envolve as diversas tabelas multiplicadas.

Seleção combinada com Produto Cartesiano

- π NomePeça $(\sigma \text{ Embarq.CodPeça=Peça.CodPeça} \\ (\text{Embarq } \text{X Peça}))$
- Obtém os nomes de todas as peças para as quais há embarques

NomePeça Eixo Rolamento

Exemplo produto cartesiano

□ Obter no nome dos fornecedores de status maior que 10, cuja cidade é uma cidade em que há pelo menos uma peça de cor Cinza.

04/22

Renomeação

- Operador para atribuir (dentro de uma consulta) um novo nome a uma tabela
- ☐ Sintaxe
 - ρ <novo nome> (<nome de tabela>)
- □ A tabela denominada <nome de tabela> recebe, apenas dentro da consulta, a denominação <novo nome>
- □ Necessário quando, em uma consulta, é necessário acessar mais de uma linha da mesma tabela

Renomeação

□ Tabela

EMP(CodEmp, NomeEmp, CodEmpGer)
CodEmpGer referencia EMP

□ Obter o nome de cada empregado, que tem gerente, seguido do nome de seu gerente

Renomeação

□ Tabela

Obter o nome de cada empregado, que tem gerente, seguido do nome de seu gerente

```
\pi EMP.NomeEmp, EMPGER. NomeEmp  (\sigma \, \text{EMP.CodEmpGer} \, = \, \text{EMPGER.CodEmp} \\ (\, \text{EMP} \, \times \, \rho \, \, \text{EMPGER} \, \, (\, \text{EMP}) \, ) \, )
```

Renomeação (2)

□ Obter o nome de cada empregado, seguido do nome do gerente de seu gerente, caso o empregado o tenha

04/25

04/26

Renomeação(2)

Tabela

```
EMP(CodEmp, NomeEmp, CodEmpGer)
CodEmpGer referencia EMP
```

 $\hfill \Box$ Obter o nome de cada empregado seguido do nome do gerente de seu gerente , caso ele o possua

```
\pi EMP.NomeEmp, EMPGERGER. NomeEmp  (\sigma \text{ EMP.CodEmpGer} = \text{EMPGER.CodEmp AND} \\ \text{EMPGER.CodEmpGer} = \text{EMPGERGER.CodEmp} \\ \text{(EMP } x \\ \rho \text{ EMPGER (EMP) } x \\ \rho \text{ EMPGERGER (EMP))} )
```

Renomeação(2)

Renomeação de colunas

- □ Colunas também podem ser renomeadas.
- Exemplo: