

WatME: Towards Lossless Watermarking Through Lexical Redundancy

Liang Chen, Yayao Bian, Yang Deng, Deng Cai, Shuaiyi Li, Peilin Zhao, Kam-Fai Wong

The Chinese University of Hong Kong, National University of Singapore,

Tencent Al Lab

Ichen@se.cuhk.edu.hk

Research Background

> Watermarking is the most effective method for detecting machine-generated text.

> How does watermarking work?

- **Embed watermark:** At every step, subtly bias LLM logits by partitioning vocabulary into green and red sets. Increase sampling probability for green tokens.
- **Detect watermark:** Observe a high number of green tokens, indicating the presence of a watermark.

> Challenges of text watermarking

- Severely impairs response quality: Relies on arbitrary vocabulary partitioning during decoding, potentially leaving no suitable words available.
- Discrete nature of text data: Unlike images with redundant pixels for watermarking, text is discrete and concise, offering almost no redundant space.

Theoretical Justification

> We demonstrate the advantages of our method through two theories:

- Theory 1 (informal): Our method increases the likelihood of selecting suitable tokens at each decoding step.
- Theory 2 (informal): Our method more effectively preserves the language model's expressiveness.

Motivation & Method

> Motivation

 Inspired by image watermarking, we propose identifying redundancy within data to enable lossless watermarking.

> A related concept: lexical redundancy

- LLM vocabulary contains many tokens with similar semantic and syntactic functions. Some can be disabled while others substitute.
- This redundancy creates space to embed watermarks.

> Use lexical redundancy in Watermarking

- **Explore:** We constructed structured redundancy clusters using LLM-based and dictionary-based methods.
- **Exploit:** When embedding watermarks, we first partition the redundancy clusters, then divide the remaining vocabulary. Maximizing the partitioning of redundant elements minimizes the impact of watermarking.

Empirical Validation

> Our method beats baselines on 3 tasks.

Model	GSM8K		TruthfulQA				C4	
	Acc.	AUROC	True.	Info.	True.*Info.	AUROC	PPL	AUROC
LLAMA2-7B	11.22	-	95.10	92.78	88.23	-	4.77	-
+ KGW-MARK	5.61_50.0%	0.8886	57.16_39.9%	84.33_9.1%	$48.20_{-45.4\%}$	0.8416	7.00	0.9724
+ GUMBEL-MARK	$7.28_{-35.1\%}$	0.9121	$45.90_{-51.7\%}$	$92.78_{-0.0\%}$	$42.59_{-51.7\%}$	0.4931	39.93	0.9422
+ Unbiased-Mark	$10.24_{-8.7\%}$	0.5478	44.06_53.7%	$93.76_{+1.1\%}$	$41.43_{-53.0\%}$	0.5051	15.62	0.5451
+ Provable-Mark		0.9052	64.14_32.6%	$91.68_{-1.2\%}$	$58.80_{-33.4\%}$	0.9555	10.21	0.9623
+ WATME $_{dictionary}$	9.17_18.3%	0.8995	69.28_27.2%	$88.25_{-4.9\%}$	$61.14_{-30.7\%}$	0.8848	5.32	0.9804
+ WATME $_{prompting}$	5.84_48.0%	0.9128	55.83_41.3%	$95.10_{+2.5\%}$	$50.39_{-42.9\%}$	0.8659	6.89	0.9724
VICUNA-V1.5-7B	17.51	-	93.88	87.27	81.92	-	10.77	-
+ KGW-MARK	13.87_20.8%	0.7870	74.05_21.1%	$87.52_{\pm 0.3\%}$	$64.81_{-20.1\%}$	0.7417	11.62	0.9679
+ GUMBEL-MARK	$9.02_{-48.5\%}$	0.7077	$68.30_{-27.2\%}$	$87.27_{-0.0\%}$	$59.61_{-27.2\%}$	0.4647	48.93	0.8617
+ Unbiased-Mark	$17.89_{+2.2\%}$	0.5508	70.38_25.0%	$88.86_{\pm 1.8\%}$	$62.54_{-23.7\%}$	0.4855	19.93	0.5000
+ Provable-Mark		0.8020	$74.42_{-20.7\%}$	$96.70_{+10.8\%}$	$71.96_{-12.2\%}$	0.8796	10.21	0.9582
+ WATME $_{dictionary}$	14.78_15.6%	0.8044	78.95_15.9%	97.43 _{+11.6%}	$76.92_{-6.1\%}$	0.7897	10.96	0.9582
+ WATME $_{prompting}$	$16.22_{-7.4\%}$	0.7843	$69.65_{-25.8\%}$	$97.45_{-11.5\%}$	$67.87_{-17.2\%}$	0.7396	11.54	0.9519