

DC/DC CONVERTER CONTROL IC

■ GENERAL DESCRIPTION

The NJM2360 is a DC to DC converter control IC. Due to the internalization of a high current output switch, 1.5A switching operations are available. The NJM2360 is designed to be incorporated in step-up, step-down and inverting applications with a minimum number of external components. Output current is limited by an external resistor.

■ PACKAGE OUTLINE

NJM2360D

NJM2360M

■ FEATURES

- Output Switch Current 1.5A(MAX)
- Operating Voltage 2.5V* to 40V
- Internal Over Current Limit Circuit
- V^{\dagger} 2.5V* to 40V Supply Voltage Output Voltage V_{OR} 1.25V to 40V Oscillator Frequency 100Hz to 100kHz f_{OSC} Package Outline DIP8, DMP8

■ PIN CONFIGURATION

PIN FUNCTION

- 1. Cs
- 3. C_T
- 4. GND $5.\ INV_{\rm IN}$
- 6. V+
- 7. Sı
- 8. CD

■ BLOCK DIAGRAM

^{*}Ta =25°C. At low temperature, the minimum voltage is 3.0V.

■ ABSOLUTE MAXIMUM RATINGS

 $(T_a = 25^{\circ}C)$

PARAMETER	SYMBOL	RATINGS	UNIT	
Supply Voltage	V ⁺	40	V	
Comparator Input Voltage Range	V _{IR}	-0.3 to V ⁺	V	
Power Dissipation	P _D	(DIP8) 700 (DMP8) 600 (note1)	mW mW	
Switch Current	I _{SW}	1.5	А	
Operating Temperature Range	T _{opr}	-40 to +85	℃	
Storage Temperature Range	T _{stg}	-40 to +125	°C	

(note 1) At on PC board

■ ELECTRICAL CHARACTERISTICS

• DC Characteristics (V⁺ = 5V, T_a = 25°C)

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Operating Current	Icc	$5V \le V^{+} \le 40V$, $C_{T} = 0.001 \mu F$ $S_{I} = V^{+}$, $INV_{IN} > V_{th}$, $E_{S} = GND$	-	2.4	3.5	mA
Oscillator						
Charge Current	I _{chg}	5V ≤ V ⁺ ≤ 40V	20	35	50	μA
Discharge Current	I _{dischg}	5V ≤ V ⁺ ≤ 40V	150	200	250	μA
Voltage Swing	Vosc		-	0.5	_	V_{P-P}
Discharge to Charge Current Ratio	I _{dischg} /I _{chg}	$S_1 = V^+$	-	6	_	-
Peak Current Sense Voltage	V _{IPK(sense)}	I _{chg} = I _{dischg}	250	300	350	mV
Output Switch (Note 2) Saturation Voltage 1	V _{CE(sat)} 1	Darlington Connection ($C_S = C_D$) $I_{SW} = 1.0A$	-	1.0	1.3	V
Saturation Voltage 2	V _{CE(sat)} 2	I _{SW} = 1.0A, IC(driver) = 50mA (Forced β = 20)	-	0.5	0.7	V
DC Current Gain	h _{FE}	I _{SW} = 1.0A, V _{CE} = 5.0V	35	120	-	-
Collector Off-State Current	$I_{C(off)}$	V _{CE} = 40V	-	10	_	nA
Comparator						
Threshold Voltage	V_{th}		1.18	1.25	1.32	V
Input Bias Current	I _{IB}	$V_{IN} = 0V$	-	40	400	nA

Note 2: Output switch tests are performed under pulsed conditions to minimize power dissipation.

■ TYPICAL APPLICATION

1. Step-Up Converter

*D1: SBD (EK14)

2. Step-Down Converter

*D1: SBD (EK14)

■ TYPICAL APPLICATIONS

3. Step-Up Converter (High Current)

4. Step-Down Converter (High Current)

5. Inverting Converter

*D1: SBD (EK14)

Fig. 1 Block Diagram

Fig. 2 Timing Chart

■ POWER DISSIPATION VS. TEMPERATURE

■ TYPICAL CHARACTERISTICS

Oscillator Frequency vs. Timing Capacitor

Operating Current vs. Operating Voltage

Switch Saturation Voltage 1 vs. Collector Current (Darlington)

Switching Time vs. Timing Capacitor

Switch Saturatin Voltage 2 vs. Collector Current (β≒20)

Saturation Voltage 1 vs. Temperature

■ TYPICAL CHARACTERISTICS

Saturation Voltage 2 vs. Temperature

Operating Current vs. Temperature

Discharge to Charge Current Ratio vs. Temperature

Threshold Voltage vs. Temperature

■ TYPICAL CHARACTERISTICS (Application)

1. Step-Up Converter

Output Voltage vs. Input Voltage

Output Voltage vs. Output Current

2. Step-Down Converter

Output Voltage vs. Input Voltage

Output Voltage vs. Output Current

[CAUTION]
The specifications on this databook are only given for information, without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.