

Trends in High Performance Computing and the Grid

Jack Dongarra
University of Tennessee
and
Oak Ridge National Laboratory

Technology Trends:

Microprocessor Capacity

Gordon Moore (co-founder of Intel) predicted in 1965 that the transistor density of semiconductor chips would double roughly every 18 months.

2X transistors/Chip Every 1.5 years Called "Moore's Law"

Microprocessors have become smaller, denser, and more powerful. Not just processors, bandwidth, storage, etc.

2X memory and processor speed and ½ size, cost, & power every 18 months.

A Tour de Force in Engineering

- Homogeneous, Centralized, Proprietary, Expensive!
- Target Application: CFD-Weather, Climate, Earthquakes
- 640 NEC SX/6 Nodes (mod)
 - > 5120 CPUs which have vector ops
 - > Each CPU 8 Gflop/s Peak
- 40 TFlop/s (peak)
- \$1/2 Billion for machine & building
- Footprint of 4 tennis courts
- 7 MWatts
 - Say 10 cent/KWhr \$16.8K/day = \$6M/year!
- Expect to be on top of Top500 until 60-100 TFlop ASCI machine arrives
- From the Top500 (June 2003)
 - Performance of ESC
 Σ Next Top 4 Computers
 - ~ 10% of performance of all the Top500 machines

June 2003

	Manufacturer	Computer	Rmax	Installation Site	Year	# Proc	Rpeak
1	NEC	Earth-Simulator	35860	<u>Earth Simulator Center</u> Yokohama	2002	5120	40960
2	Hewlett- Packard	ASCI Q - AlphaServer SC ES45/1.25 GHz	13880	Los Alamos National Laboratory Los Alamos	2002	8192	20480
3	Linux NetworX Quadrics	MCR Linux Cluster Xeon 2.4 GHz - Quadrics	7634	Lawrence Livermore National Laboratory Livermore	2002	2304	11060
4	IBM	ASCI White, SP Power3 375 MHz	7304	Lawrence Livermore National Laboratory Livermore	2000	8192	12288
5	IBM	SP Power3 375 MHz 16 way	7304	NERSC/LBNL Berkeley	2002	6656	9984
6	IBM/Quadrics	xSeries Cluster Xeon 2.4 GHz - Quadrics	6586	<u>Lawrence Livermore National Laboratory</u> Livermore	2003	1920	9216
7	Fujitsu	PRIMEPOWER HPC2500 (1.3 GHz)	5406	National Aerospace Lab Tokyo	2002	2304	11980
8	Hewlett- Packard	rx2600 Itanium2 1 GHz Cluster - Quadrics	4881	Pacific Northwest National Laboratory Richland	2003	1540	6160
9	Hewlett- Packard	AlphaServer SC ES45/1 GHz	4463	Pittsburgh Supercomputing Center Pittsburgh	2001	3016	6032
10	Hewlett- Packard	AlphaServer SC ES45/1 GHz	3980	Commissariat a l'Energie Atomique (CEA) Bruyeres-le-Chatel	2001	2560	5120
					•		6

Virginia Tech "Big Mac" G5 Cluster

- Apple G5 Cluster
 - > Dual 2.0 GHz IBM Power PC 970s
 - >16 Gflop/s per node
 - > 2 CPUs * 2 fma units/cpu * 2 GHz * 2(mul-add)/cycle
 - > 1100 Nodes or 2200 Processors
 - > Theoretical peak 17.6 Tflop/s
 - ➤ Infiniband 4X primary fabric
 - > Cisco Gigabit Ethernet secondary fabric
 - > Linpack Benchmark using 2112 processors
 - > Theoretical peak of 16.9 Tflop/s
 - > Achieved 9.555 Tflop/s
 - > Could be #3 on 11/03 Top500
 - Cost is \$5.2 million which includes the system itself, memory, storage, and communication fabrics

Detail on the Virginia Tech Machine

- Dual Power PC 970 2GHz
 - > 4 GB DRAM.
 - > 160 GB serial ATA mass storage.
 - > 4.4 TB total main memory.
 - > 176 TB total mass storage.
- Primary communications backplane based on infiniband technology.
 - Each node can communicate with the network at 20 Gb/s, full duplex, "ultra-low" latency.
 - > Switch consists of 24 96-port switches in fat-tree topology.
- Secondary Communications Network:
 - > Gigabit fast ethernet management backplane.
 - > Based on 5 Cisco 4500 switches, each with 240 ports.
- Software:
 - Mac OSX.
 - ➤ MPIch-2
 - > C, C++ compilers IBM xlc and gcc 3.3
 - > Fortran 95/90/77 Compilers IBM xlf and NAGWare

Top 5 Machines for the

Linpack Benchmark

	Computer (Full Precision)	Number of Procs	R _{max} GFlop/s	R _{Peak} GFlop/s
1	Earth Simulator	5120	35860	40960
2	ASCI Q AlphaServer EV-68 (1.25 GHz w/Quadrics)	8160	13880	20480
3	Apple G5 dual IBM Power PC (2 GHz, 970s, w/Infiniband 4X)	2112	9555	16896
4	HP RX2600 Itanium 2 (1.5GHz w/Quadrics)	1936	8633	11616
5	Linux NetworX (2.4 GHz Pentium 4 Xeon w/Quadrics)	2304	7634	11059

	Selecte				
		Earth Simulator	Cray X1	ASCI Q	MCR
		(NEC)	(Cray)	(HP ES45)	(Dual Xeon)
Year of Inti		2002	2003	2003	2002
Node Architecture		Vector	Vector	Alpha micro	Xeon micro
		SMP	SMP	SMP	SMP
System Topology		NEC single-stage	2D Torus	Quadrics QsNet	Quadrics QsNet
		Crossbar	Interconnect	Fat-tree	Fat-tree
Number of	Nodes	640	32	2048	1152
Processors	- per node	8	4	4] 2
	- system total	5120	128	8192	2304
Processor Speed		500 MHz	800 MHz	1.25 GHz	2.4 GHz
Peak Speed	- per processor	8 Gflops	12.8 Gflops	2.5 Gflops	4.8 Gflops
	- per node	64 Gflops	51.2 Gflops	10 Gflops	9.6 Gflops
	- system total	40 Tflops	1.6 Tflops	30 Tflops	10.8 Tflops
Memory	- per node	16 GB	8-64 GB	16 GB	16 GB
	- per processor	2 GB	2-16 GB	4 GB	2 GB
	- system total	10.24 TB		48 TB	4.6 TB
Memory Bandwidth (peak)					
	- L1 Cache	N/A	76.8 GB/s	20 GB/s	20 GB/s
	- L2 Cache	N/A		13 GB/s	1.5 GB/s
	Main (per proc)	32 GB/s	34.1 GB/s	2 GB/s	2 GB/s
Inter-node MPI					
	- Latency	8.6 µsec	8.6 µsec	5 μsec	4.75 µsec
	- Bandwidth	11.8 GB/s	11.9 GB/s	300 MB/s	315 MB/s

SETI@home: Global Distributed Computing

- Running on 500,000 PCs, ~1300 CPU Years per Day
 - > 1.3M CPU Years so far
- Sophisticated Data & Signal Processing Analysis
- Distributes Datasets from Arecibo Radio Telescope

17

SETI@home

- Use thousands of Internetconnected PCs to help in the search for extraterrestrial intelligence.
- When their computer is idle or being wasted this software will download
 half a MB chunk of data for analysis. Performs about 3 Tflops for each client in 15 hours.
- The results of this analysis are sent back to the SETI team, combined with thousands of other participants.

- Largest distributed computation project in existence
 - > Averaging 55 Tflop/s
 - > 1368 users

- Google query attributes
 - > 150M queries/day (2000/second)
 - > 100 countries
 - > 3B documents in the index
- Data centers
 - > 15,000 Linux systems in 6 data centers
 - > 15 TFlop/s and 1000 TB total capability
 - > 40-80 1U/2U servers/cabinet
 - > 100 MB Ethernet switches/cabinet with gigabit Ethernet uplink
 - growth from 4,000 systems (June 2000)
 - > 18M queries then
- Performance and operation
 - simple reissue of failed commands to new servers
 - > no performance debugging
 - > problems are not reproducible

Source: Monika Henzinger, Google & Cleve Mole 19

How Google Works; You have to think big

This is done "offline" ...

Number of inlinks to a web page is a sign of the importance of the web page

- Generate an incidence matrix of links to and from web pages
 - For each web page there's a row/column
 - Matrix of order 3x109
- Form a transition probability matrix of the Markov chain
 - Matrix is not sparse, but it is a rank one modification of a sparse matrix
- Compute the eigenvector corresponding to the largest eigenvalue, which is 1
 - Solve Ax = x.
 - ➤ Use the power method? (x=initial guess; iterate $x \leftarrow Ax$;)
 - > Each component of the vector x corresponds to a web page and represents the weight (importance) for that web page.
 - > This is the basis for the "Page rank"
- Create an inverted index of the web;
 - word : web pages that contain that word

When a query, set of words, comes in:

- Go to the inverted index and get the corresponding web pages for the query
- Rank the resulting web pages by the "Page rank" and return pointers to those page in that order.

Forward link are referred to in the rows Báck links are referred to in the columns

Eigenvalue problem n=3x10⁹

(see: MathWorks Cleve's Corner)

Source: Monika Henzinger, Google & Cleve Moler

Computational Science and the Grid

Today's computational and information infrastructure must address both science and technology trends

- Proliferation of resources
 - > Everyone has computers
 - > Multiple IP addresses per person
- Increased demand
 - > Immense amounts of data
 - > Applications increasingly
 - > Multi-scale
 - > Multi-disciplinary
 - > Information-driven
- Coordination/collaboration is a default mode of interaction
 - > The Internet
 - > Globalization, virtualization
 - > Open source movement

21

Grid Computing is About ...

Resource sharing & coordinated problem solving in dynamic, multi-institutional virtual organizations

"Telescience Grid", Courtesy of Mark Ellisman

"Benefits of the Grid"

- 1. Higher Utilization of Distributed Resources
 - > E.g., Supercomputing Center Grid, Nationwide Virtual Supercomputers
 - No increase in the overall "pie"
- Higher Reliability and Upgradability of compute resources
 - Same objective as the Internet (or, ARPANet)
- 3. "Collaboratory Science": tight collaboration of virtual organizations over the network
 - E.g., EU DataGrid w/3000 worldwide high-energy physicists
- 4. Tight Integration of Data, Sensors, Human Resources
 - > VLBI (Astronomy) Project
- Ultra-Scaling of Resources
 - Distributed placement of (otherwise oversized) resources
- Exploitation of Idle Cycles/Storage on non-dedicated, commodity resources
 - Peer-to-Peer(P2P), Voluntary Computing

P

Some Grid Requirements – User Perspective

- Single sign-on: authentication to any Grid resources authenticates for all others
- Single compute space: one scheduler for all Grid resources
- Single data space: can address files and data from any Grid resources
- Single development environment: Grid tools and libraries that work on all grid resources

NetSolve Grid Enabled Server

- NetSolve is an example of a Grid based hardware/software/data server.
- Based on a Remote Procedure Call model but with ...
 - resource discovery, dynamic problem solving capabilities, load balancing, fault tolerance asynchronicity, security, ...
- Easy-of-use paramount
- Its about providing transparent access to resources.

Hiding the Parallel Processing

 User maybe unaware of parallel processing

• NetSolve takes care of the starting the message passing system, data distribution, and returning the results. (Using LFC software)

Basic Usage Scenarios

- Grid based numerical library routines
 - User doesn't have to have software library on their machine, LAPACK, SuperLU, ScaLAPACK, PETSc, AZTEC, ARPACK
- Task farming applications
 - "Pleasantly parallel" execution eg Parameter studies
- Remote application execution
 - Complete applications with user specifying input parameters and receiving output

- "Blue Collar" Grid Based Computing
 - Does not require deep knowledge of network programming
 - Level of expressiveness right for many users
 - User can set things up, no "su" required
 - > In use today, up to 200 servers in 9 countries
- Can plug into Globus, Condor, NINF, ...

New Features for NetSolve 2.0

New version available!

- New easy to use Interface Definition Language > Simplified PDF
- Dynamic servers
 - Add/delete problems without restarting servers
- New bindings for
 - > GridRPC
 - > Octave
 - > Condor-G
- Separate hardware/software servers
- Support for Mac OS X & Windows 2K/XP
- Web based monitoring
- Allow user to specify server
- Allow user to abort execution

39

GridRPC - Introduction

- Attempting to provide:
 - > Simple API upon which higher-level services could be implemented
 - > Low burden on programmer attempting to transition code to
- Provide standardized, portable, and simple programming interface for Remote Procedure Call
- Attempt to unify client access to existing grid computing systems (such as NetSolve and Ninf-G)
- Working towards standardization through GGF WG
 - > Initially standardize API; later deal with protocol
 - Standardize only minimal set of features; higher-level features can be built on top
 - Provide several reference implementations
 - Not attempting to dictate any implementation details

GridRPC - Features

- Medium to coarsegrained calls (due to communication overhead)
- Asynchronous taskparallel programming
- Dynamic resource discovery and scheduling

- Jack Dongarra & Keith Seymour
 - > University of Tennessee
- Hidemoto Nakada
 - National Institute of Advanced Industrial Science and Technology (AIST)
 - > Tokyo Institute of Technology
- Satoshi Matsuoka
 - > Tokyo Institute of Technology
 - National Institute of Informatics
- Craig Lee
 - > The Aerospace Corporation
- Henri Casanova
 - San Diego Supercomputer Center
 - > UCSD

41

NetSolve- Things Not Touched On

- Integration with other NMI tools
 - > Globus, Condor, Network Weather Service
- Security
 - > Using Kerberos V5 for authentication.
- Separate Server Characteristics
 - > Hardware and Software servers
- Monitor NetSolve Network
 - > Track and monitor usage
- Fault Tolerance
- ◆ Local / Global Configurations
- Dynamic Nature of Servers
- Automated Adaptive Algorithm Selection
 - > Dynamic determine the best algorithm based on system status and nature of user problem
- NetSolve evolving into GridRPC
 - > Being worked on under GGF with joint with NINF

The Computing Continuum

- "SETI / Google"
- "Grids"
- Clusters
- Each strikes a different balance
 - > computation/communication coupling
- Implications for execution efficiency
- Applications for diverse needs
 - > computing is only one part of the story!

Grids vs. Capability vs. Cluster Computing

- Not an "either/or" question
 - > Each addresses different needs
 - > Each are part of an integrated solution
- Grid strengths
 - Coupling necessarily distributed resources
 - > instruments, software, hardware, archives, and people
 - Eliminating time and space barriers
 - > remote resource access and capacity computing
 - Grids are not a cheap substitute for capability HPC
- Capability computing strengths
 - > Supporting foundational computations
 - > terascale and petascale "nation scale" problems
 - Engaging tightly coupled computations and teams
- Clusters
 - > Low cost, group solution
 - > Potential hidden costs
- Key is easy access to resources in a transparent way

Collaborators / Support

◆ TOP500

- >H. Simon, NERSC
- >E. Strohmaier, NERSC

NetSolve

- >Sudesh Agrawal, UTK
- >Henri Casanova, UCSD
- ≻Kiran Sagi, UTK
- >Keith Seymour, UTK
- >Sathish Vadhiyar, UTK

Advertise with Us - Business Solutions - Services & Tools - Jobs, Press, & Help Make Google Your Homepage!

45

SciDAC