

CD4008BMS

CMOS 4-Bit Full Adder With Parallel Carry Out

FN3292 Rev 0.00 November 1994

Features

- High-Voltage Type (20V Rating)
- 4 Sum Outputs Plus Parallel Look-ahead Carry-Output
- High-Speed Operation Sum In-To-Sum Out, 160ns Typ; Carry In-To-Carry Out, 5ns Typ. At VDD = 10V, CL=50pF
- Standardized Symmetrical Output Characteristics
- 100% Tested For Quiescent Current At 20V
- Maximum Input Current of 1μa at 18V Over Full Package-Temperature Range;
 - 100nA at 18V and 25°C
- Noise Margin (Over Full Package Temperature Range):
 - 1V at VDD = 5V
 - 2V at VDD = 10V
 - 2.5V at VDD = 15V
- · 5V, 10V and 15V Parametric Ratings
- Meets All Requirements of JEDEC Tentative Standard No. 13B, "Standard Specifications for Description of 'B' Series CMOS Devices"

Applications

· Binary Addition/Arithmetic Units

Description

CD4008BMS types consist of four full adder stages with fast look ahead carry provision from stage to stage. Circuitry is included to provide a fast "parallel-carry-out" but to permit high-speed operation in arithmetic sections using several CD4008BMS's.

CD4008BMS inputs include the four sets of bits to be added, A1 to A4 and B1 to B4, in addition to the "Carry In" bit from a previous section. CD4008BMS outputs include the four sum bits, S1 to S4. In addition to the high speed "parallel-carry-out" which may be utilized at a succeeding CD4008BMS section.

The CD4008BMS is supplied in these 16-lead outline packages:

Braze Seal DIP H4T Frit Seal DIP H1F Ceramic Flatpack H6W

Pinout

CD4008BMS TOP VIEW

Logic Diagram

TRUTH TABLE

A _i	B _i	C _i	c _o	SUM
0	0	0	0	0
1	0	0	0	1
0	1	0	0	1
1	1	0	1	0
0	0	1	0	1
1	0	1	1	0
0	1	1	1	0
1	1	1	1	1

Absolute Maximum Ratings

Reliability Information

Thermal Resistance	θ_{ia}	$\theta_{\sf jc}$
Ceramic DIP and FRIT Package	80°C/W	20°C/W
Flatpack Package	70°C/W	20°C/W
Maximum Package Power Dissipation (PD) at +125°C	;
For TA = -55°C to +100°C (Package Type		
For TA = +100°C to +125°C (Package T	ype D, F, K)	Derate
Lineari	ty at 12mW	OC to 200mW
Device Dissipation per Output Transistor .		100mW
For TA = Full Package Temperature Rar	nge (All Pac	kage Types)
Junction Temperature		+175°C

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS

				GROUP A		LIMITS		
PARAMETER	SYMBOL	CONDITIONS (NOTE 1)	SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS
Supply Current	IDD	VDD = 20V, VIN = VD	D or GND	1	+25°C	-	10	μΑ
					+125°C	-	1000	μΑ
		VDD = 18V, VIN = VD	D or GND	3	-55°C	-	10	μА
Input Leakage Current	IIL	VIN = VDD or GND	VDD = 20	1	+25°C	-100	-	nA
				2	+125°C	-1000	-	nA
			VDD = 18V	3	-55°C	-100	-	nA
Input Leakage Current	IIH	VIN = VDD or GND	VDD = 20	1	+25°C	-	100	nA
				2	+125°C	-	1000	nA
			VDD = 18V	3	-55°C	-	100	nA
Output Voltage	VOL15	VDD = 15V, No Load		1, 3	+25°C, +125°C, -55°C	-	50	mV
Output Voltage	VOH15	VDD = 15V, No Load	(Note 3)	1, 3	+25°C, +125°C, -55°C	14.95	-	V
Output Current (Sink)	IOL5	VDD = 5V, VOUT = 0	.4V	1	+25°C	0.53	-	mA
Output Current (Sink)	IOL10	VDD = 10V, VOUT =	0.5V	1	+25°C	1.4	-	mA
Output Current (Sink)	IOL15	VDD = 15V, VOUT =	1.5V	1	+25°C	3.5	-	mA
Output Current (Source)	IOH5A	VDD = 5V, VOUT = 4	.6V	1	+25°C	-	-0.53	mA
Output Current (Source)	IOH5B	VDD = 5V, VOUT = 2	.5V	1	+25°C	-	-1.8	mA
Output Current (Source)	IOH10	VDD = 10V, VOUT = 9	9.5V	1	+25°C	-	-1.4	mA
Output Current (Source)	IOH15	VDD = 15V, VOUT =	13.5V	1	+25°C	-	-3.5	mA
N Threshold Voltage	VNTH	VDD = 10V, ISS = -10)μΑ	1	+25°C	-2.8	-0.7	V
P Threshold Voltage	VPTH	VSS = 0V, IDD = 10μ	Ą	1	+25°C	0.7	2.8	V
Functional	F	VDD = 2.8V, VIN = VI	DD or GND	7	+25°C	VOH>	VOL <	V
		VDD = 20V, VIN = VD	D or GND	7	+25°C	VDD/2	VDD/2	
		VDD = 18V, VIN = VD	D or GND	8A	+125°C			
		VDD = 3V, VIN = VDE	or GND	8B	-55°C			
Input Voltage Low (Note 2)	VIL	VDD = 5V, VOH > 4.5	VDD = 5V, VOH > 4.5V, VOL < 0.5V		+25°C, +125°C, -55°C	-	1.5	V
Input Voltage High (Note 2)	VIH	VDD = 5V, VOH > 4.5V, VOL < 0.5V		1, 2, 3	+25°C, +125°C, -55°C	3.5	-	V
Input Voltage Low (Note 2)	VIL	VDD = 15V, VOH > 13 VOL < 1.5V	3.5V,	1, 2, 3	+25°C, +125°C, -55°C	-	4	V
Input Voltage High (Note 2)	VIH	VDD = 15V, VOH > 13 VOL < 1.5V	3.5V,	1, 2, 3	+25°C, +125°C, -55°C	11	-	V

NOTES: 1. All voltages referenced to device GND, 100% testing being implemented.

2. Go/No Go test with limits applied to inputs

^{3.} For accuracy, voltage is measured differentially to VDD. Limit is 0.050V max.

TABLE 2. AC ELECTRICAL PERFORMANCE CHARACTERISTICS

	GROUP A		LIM				
PARAMETER	SYMBOL	CONDITIONS (NOTE 1, 2)	SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS
Propagation Delay	TPHL1	VDD = 5V, VIN = VDD or GND	9	+25°C	-	800	ns
Sum In to Sum Out	TPLH1		10, 11	+125°C, -55°C	-	1080	ns
Propagation Delay	TPHL2	VDD = 5V, VIN = VDD or GND	9	+25°C	-	740	ns
Carry In To Cum Out TPL			10, 11	+125°C, -55°C	-	999	ns
Propagation Delay	TPHL3	VDD = 5V, VIN = VDD or GND	9	+25°C	-	400	ns
Sum In To Carry Out	TPLH3		10, 11	+125°C, -55°C	-	540	ns
Propagation Delay	TPHL4	VDD = 5V, VIN = VDD or GND	9	+25°C	-	200	ns
Carry In To TPLH4 Carry Out			10, 11	+125°C, -55°C	-	270	ns
Transition Time	TTHL	VDD = 5V, VIN = VDD or GND	9	+25°C	-	200	ns
	TTLH		10, 11	+125°C, -55°C	-	270	ns

NOTES:

- 1. CL = 50pF, RL = 200K, Input TR, TF < 20ns.
- 2. -55°C and +125°C limits guaranteed, 100% testing being implemented.

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS

					LIN	IITS	
PARAMETER	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
Supply Current	IDD	VDD = 5V, VIN = VDD or GND	1, 2	-55°C, +25°C	-	5	μΑ
				+125°C	-	150	μА
		VDD = 10V, VIN = VDD or GND	1, 2	-55°C, +25°C	-	10	μΑ
				+125°C	-	300	μΑ
		VDD = 15V, VIN = VDD or GND	1, 2	-55°C, +25°C	-	10	μΑ
				+125°C	-	600	μΑ
Output Voltage	VOL	VDD = 5V, No Load	1, 2	+25°C, +125°C, -55°C	-	50	mV
Output Voltage	VOL	VDD = 10V, No Load	1, 2	+25°C, +125°C, -55°C	-	50	mV
Output Voltage	VOH	VDD = 5V, No Load	1, 2	+25°C, +125°C, -55°C	4.95	-	V
Output Voltage	VOH	VDD = 10V, No Load	1, 2	+25°C, +125°C, -55°C	9.95	-	V
Output Current (Sink)	IOL5	VDD = 5V, VOUT = 0.4V	1, 2	+125°C	0.36	-	mA
				-55°C	0.64	-	mA
Output Current (Sink)	IOL10	VDD = 10V, VOUT = 0.5V	1, 2	+125°C	0.9	-	mA
				-55°C	1.6	-	mA
Output Current (Sink)	IOL15	VDD = 15V, VOUT = 1.5V	1, 2	+125°C	2.4	-	mA
				-55°C	4.2	-	mA
Output Current (Source)	IOH5A	VDD = 5V, VOUT = 4.6V	1, 2	+125°C	-	-0.36	mA
				-55°C	-	-0.64	mA
Output Current (Source)	IOH5B	VDD = 5V, VOUT = 2.5V	1, 2	+125°C	-	-1.15	mA
				-55°C	-	-2.0	mA
Output Current (Source)	IOH10	VDD = 10V, VOUT = 9.5V	1, 2	+125°C	-	-0.9	mA
				-55°C	-	-1.6	mA

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS (Continued)

					LIN	IITS	
PARAMETER	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
Output Current (Source)	IOH15	VDD =15V, VOUT = 13.5V	1, 2	+125°C	-	-2.4	mA
				-55°C	-	-4.2	mA
Input Voltage Low	VIL	VDD = 10V, VOH > 9V, VOL < 1V	1, 2	+25°C, +125°C, -55°C	-	3	V
Input Voltage High	VIH	VDD = 10V, VOH > 9V, VOL < 1V	1, 2	+25°C, +125°C, -55°C	+7	-	V
Propagation Delay Sum	TPHL1	VDD = 10V	1, 2, 3	+25°C	-	320	ns
In To Sum Out	TPLH1	VDD = 15V	1, 2, 3	+25°C	-	230	ns
Propagation Delay Carry TPI	TPHL2	VDD = 10V	1, 2, 3	+25°C	-	310	ns
In To Sum Out	TPLH2	VDD = 15V	1, 2, 3	+25°C	-	230	ns
Propagation Delay Sum	TPLH3	VDD = 10V	1, 2, 3	+25°C	-	180	ns
In To Carry Out	TPHL3	VDD = 15V	1, 2, 3	+25°C	-	130	ns
Propagation Delay Carry	TPHL4	VDD = 10V	1, 2, 3	+25°C	-	100	ns
In To Carry Out	TPLH4	VDD = 15V	1, 2, 3	+25°C	-	80	ns
Transition Time	TTHL	VDD = 10V	1, 2, 3	+25°C	-	100	ns
	TTLH	VDD = 15V	1, 2, 3	+25°C	-	80	ns
Input Capacitance	CIN	Any Input	1, 2	+25°C	-	7.5	pF

NOTES:

- 1. All voltages referenced to device GND.
- 2. The parameters listed on Table 3 are controlled via design or process and are not directly tested. These parameters are characterized on initial design release and upon design changes which would affect these characteristics.
- 3. CL = 50pF, RL = 200K, Input TR, TF < 20ns.

TABLE 4. POST IRRADIATION ELECTRICAL PERFORMANCE CHARACTERISTICS

				LIM	LIMITS		
PARAMETER	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
Supply Current	IDD	VDD = 20V, VIN = VDD or GND	1, 4	+25°C	-	25	μΑ
N Threshold Voltage	VNTH	VDD = 10V, ISS = -10μA	1, 4	+25°C	-2.8	-0.2	V
N Threshold Voltage Delta	ΔVNTH	VDD = 10V, ISS = -10μA	1, 4	+25°C	-	±1	V
P Threshold Voltage	VPTH	VSS = 0V, IDD = 10μA	1, 4	+25°C	0.2	2.8	V
P Threshold Voltage Delta	ΔVPTH	VSS = 0V, IDD = 10μA	1, 4	+25°C	-	±1	V
Functional	F	VDD = 18V, VIN = VDD or GND	1	+25°C	VOH >	VOL <	V
V		VDD = 3V, VIN = VDD or GND			VDD/2	VDD/2	
Propagation Delay Time	TPHL TPLH	VDD = 5V	1, 2, 3, 4	+25°C	-	1.35 x +25°C Limit	ns

NOTES: 1. All voltages referenced to device GND.

3. See Table 2 for +25°C limit.

2. CL = 50pF, RL = 200K, Input TR, TF < 20ns.

4. Read and Record

TABLE 5. BURN-IN AND LIFE TEST DELTA PARAMETERS +25°C

PARAMETER	TER SYMBOL DELTA LIMIT	
Supply Current - MSI-2	IDD	± 1.0μA
Output Current (Sink)	IOL5	± 20% x Pre-Test Reading
Output Current (Source)	IOH5A	± 20% x Pre-Test Reading

TABLE 6. APPLICABLE SUBGROUPS

CONFORMANCE GROUP		MIL-STD-883 METHOD	GROUP A SUBGROUPS	READ AND RECORD	
Initial Test (F	Pre Burn-In)	100% 5004	1, 7, 9	IDD, IOL5, IOH5A	
Interim Test	1 (Post Burn-In)	100% 5004	1, 7, 9	IDD, IOL5, IOH5A	
Interim Test	2 (Post Burn-In)	100% 5004	1, 7, 9	IDD, IOL5, IOH5A	
PDA (Note	e 1)	100% 5004	1, 7, 9, Deltas		
Interim Test 3 (Post Burn-In)		100% 5004	1, 7, 9	IDD, IOL5, IOH5A	
PDA (Note	e 1)	100% 5004	1, 7, 9, Deltas		
Final Test		100% 5004	2, 3, 8A, 8B, 10, 11		
Group A		Sample 5005	1, 2, 3, 7, 8A, 8B, 9, 10, 11		
Group B	Subgroup B-5	Sample 5005	1, 2, 3, 7, 8A, 8B, 9, 10, 11, Deltas	Subgroups 1, 2, 3, 9, 10, 11	
	Subgroup B-6	Sample 5005	1, 7, 9		
Group D	•	Sample 5005	1, 2, 3, 8A, 8B, 9	Subgroups 1, 2 3	

NOTE: 1.5% Parameteric, 3% Functional; Cumulative for Static 1 and 2.

TABLE 7. TOTAL DOSE IRRADIATION

	MIL-STD-883	TEST		READ AND	RECORD
CONFORMANCE GROUPS	METHOD	PRE-IRRAD	PRE-IRRAD POST-IRRAD		POST-IRRAD
Group E Subgroup 2	5005	1, 7, 9	Table 4	1, 9	Table 4

TABLE 8. BURN-IN AND IRRADIATION TEST CONNECTIONS

					OSCIL	LATOR
FUNCTION	OPEN	GROUND	VDD	9V ± -0.5V	50kHz	25kHz
Static Burn-In 1 Note 1	10 - 14	1 - 9, 15	16			
Static Burn-In 2 Note 1	10 - 14	8	1 - 7, 9, 15, 16			
Dynamic Burn- In Note 1	-	8	16	10 - 14	2, 4, 6, 15	1, 3, 5, 7, 9
Irradiation Note 2	10 - 14	8	1 - 7, 9, 15, 16			

NOTE:

- 1. Each pin except VDD and GND will have a series resistor of 10K \pm 5%, VDD = 18V \pm 0.5V
- 2. Each pin except VDD and GND will have a series resistor of $47K \pm 5\%$; Group E, Subgroup 2, sample size is 4 dice/wafer, 0 failures, VDD = $10V \pm 0.5V$

Typical Propagation Delay

FIGURE 1. PROPAGATION DELAY FOR A 16 BIT ADDER (10V OPERATION)

© Copyright Intersil Americas LLC 1999. All Rights Reserved.

All trademarks and registered trademarks are the property of their respective owners.

For additional products, see www.intersil.com/en/products.html

Intersil products are manufactured, assembled and tested utilizing ISO9001 quality systems as noted in the quality certifications found at www.intersil.com/en/support/qualandreliability.html

Intersil products are sold by description only. Intersil may modify the circuit design and/or specifications of products at any time without notice, provided that such modification does not, in Intersil's sole judgment, affect the form, fit or function of the product. Accordingly, the reader is cautioned to verify that datasheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see www.intersil.com

Typical Performance Characteristics

FIGURE 2. TYPICAL SUM-IN TO SUM-OUT PROPAGATION DELAY TIME vs LOAD CAPACITANCE

FIGURE 4. TYPICAL CARRY-IN TO SUM-OUT PROPAGATION DELAY TIME vs LOAD CAPACITANCE

FIGURE 6. TYPICAL OUTPUT HIGH (SOURCE) CURRENT CHARACTERISTICS

FIGURE 3. TYPICAL CARRY-IN TO CARRY-OUT PROPAGA-TION DELAY TIME vs LOAD CAPACITANCE

FIGURE 5. TYPICAL SUM-IN TO CARRY-OUT PROPAGATION DELAY TIME vs LOAD CAPACITANCE

FIGURE 7. MINIMUM OUTPUT HIGH (SOURCE) CURRENT CHARACTERISTICS

Typical Performance Characteristics (Continued)

FIGURE 8. TYPICAL OUTPUT LOW (SINK) CURRENT CHARACTERISTICS

DRAIN-TO-SOURCE VOLTAGE (VDS) (V)
FIGURE 9. MINIMUM OUTPUT LOW (SINK) CURRENT
CHARACTERISTICS

FIGURE 10. TYPICAL DISSIPATION CHARACTERISTICS

Chip Dimensions and Pad Layouts

Dimensions in parentheses are in millimeters and are derived from the basic inch dimensions as indicated. Grid graduations are in mils (10⁻³ inch)

METALLIZATION: Thickness: 11kÅ - 14kÅ, AL.

PASSIVATION: 10.4kÅ - 15.6kÅ, Silane

BOND PADS: 0.004 inches X 0.004 inches MIN **DIE THICKNESS:** 0.0198 inches - 0.0218 inches