

Introduction to Watermarking and steganography

Outline

- Watermarking
 - Definition and basics
 - Main applications
 - Attack mechanisms
 - Examples of some specific attacks
- Steganography & Steganalysis
 - What are they and How they work
 - Problem Model
 - Steganalysis category

What is a Watermark?

- A watermark is a "secret message" that is embedded into a "cover (original or host) message".
- Only the knowledge of a secret key allows us to extract the watermark from the cover message.
- Effectiveness of a watermarking algorithm is a function of its
 - Resilience to attacks.
 - Capacity.
 - Stealth.

Media elements

- Multimedia data.
 - Video.
 - Audio.
 - Still Images.
 - Documents.
- Software.
- Hardware designs.

Multimedia Watermarks

- A digital watermark is a "secret key dependent" signal "inserted" into digital multimedia data.
- Watermark can be later detected/extracted in order to make an assertion about the data.
- A digital watermark can be.
 - Visible (perceptible).
 - Invisible (imperceptible).

Watermarking encoding process

Watermarking decoding process

Watermarking applications

- Authentication.
 - Detect if image/video has been altered.
 - Digital cameras.
- Media Bridging.
 - Bridge media such as magazines and the Internet.
 - Digimarc.
- Broadcast Monitoring.
 - Keep track of when and where an advertisement is played.
 - ConfirMedia from Verance.

Watermarking applications

- Fingerprinting.
 - Identify the source of an illegal copy.
 - Unique watermark embedded in each copy.
 - DiVX, a modified version of DVD.
- Secret Communications.
 - Hide information such that general public do not know its presence.

Ownership assertion

Fingerprinting for copy deterrence

Fingerprinting for digital cinema

March 15, 1998

Compression Standards - Majid Rabbani

Watermarking requirement

- Requirements vary with application. For example:
 - Perceptually transparent must not perceptually degrade original content.
 - Robust survive accidental or malicious attempts at removal.
 - Oblivious or Non-oblivious Recoverable with or without access to original.
 - Capacity Number of watermark bits embedded.
 - Efficient encoding and/or decoding.

Contradicting Requirements

Example: Additive Watermarks

W(x,y): Pseudo Random Pattern $\{-1,0,1\}$

Additive watermarks

Watermark Attacks

- Active Attacks.
 - Hacker attempts to remove or destroy the watermark.
 - Watermark detector unable to detect watermark.
 - Key issue in proof of ownership, fingerprinting, copy control.
 - Not serious for authentication or covert communication.

Watermark Attacks

- Passive Attacks.
 - Hacker tries to find if a watermark is present.
 - Removal of watermark is not an aim.
 - Serious for covert communications.
- Collusion Attacks.
 - Hacker uses several copies of watermarked data (images, video etc.) to construct a copy with no watermark.
 - Uses several copies to find the watermark.
 - Serious for fingerprinting applications.

Watermark Attacks

- Forgery Attacks.
 - Hacker tries to embed a valid watermark.
 - Serious in authentication.
 - If hacker embeds a valid authentication watermark, watermark detector can accept bogus or modified media.

Content-based Watermarking

Original image

Watermark

JPEG Compression Attack

Watermarking as a communication system

Steganography and steganalysis

- Steganography:
 - the practice of hiding private or sensitive information within something that appears to be nothing out of the usual
- Steganalysis:
 - detect and/or estimate potentially hidden information from observed data with little or no knowledge about the steganography algorithm and/or its parameters

Steganography Terms

- Carrier File: a file which has hidden information inside of it.
- Stego-Medium: the medium in which the information is hidden.
- Redundant Bits: pieces of information inside a file which can be overwritten or altered without damaging the file.
- Payload: the information which is the be concealed.

Steganography Methods

- BMP image based methods:
 - LSB

 - Spread spectrum
- JPEG image based methods:
 - Outguess
 - Steghide
 - F5
 - JP hide & seek
 - Perturbed quantization

Example: LSB Encoding

Original image

Stego image

Steganography vs. cryptography

Steganography

Unknown message passing

Once detected if message is known

Cryptography

Known message passing

Strong algorithm is resistance to the brute force attack

Framework for Secret Key Passive Warden Steganoraphy

Steganographic Security

- A steganographic system is considered to be insecure if the warden Wendy is able to prove the existence of a secret message.
- Cachin's security criteron: let P_C denote the probability distribution of cover-objects and P_S denote the probability distribution of stegoobjects.

$$D(P_C||P_S) = \int P_C \cdot log \frac{P_C}{P_S} \le \epsilon$$

Steganalysis classification based on the outcome

- Passive steganalysis: Detect the presence or absence of a secret message in an observed message.
- Active steganalysis: Extract a (possibly approximate) version of the secret message from a stego message.

Steganalysis classification based on information types

- Spatial diversity information based steganalysis:
 - Steganography methods could spread informationin the spatial domain and this information repeats itself in various forms in different spatial locations
- Temporal diversity information based steganalysis:
 - Steganography information that appears repeatedly over time can also aid steganalysis.

Steganalysis classification based on techniques

- Supervised learning based steganalysis
- Blind identification based steganalysis
- Parametric statistical steganalysis
- Hybrid techniques

Supervised learning based steganalysis

- Supervised learning methods construct a classifier to differentiate between stego and non-stego images using training examples.
- Some image features are first extracted and given as training inputs to a learning machine. These examples include both stego as well as non-stego messages
- The learning classifier iteratively updates its classification rule based on its prediction and the ground truth. Upon convergence the final stego classifier is obtained.

Blind identification based steganalysis

■ Let **z**(**k**) denote a random stego message vector observed by the steganalyst, **A** be a representation of the embedding algorithm in matrix form, and **r** is the vector with the cover message and the secret message as its components. The steganalyst is now faced with the problem of inferring **A**-1 from **z**(**k**).

Parametric statistical steganalysis

Completely known statistics

Partially known statistics

Completely unknown statistics

Steganalysis measurement

- Accuracy
- Consistency
- Minimize false-positives