CSC2125H Types and Programming Languages Simply Typed Lambda Calculus

Ningning Xie

Assistant Professor

Department of Computer Science
University of Toronto

Part I Simply typed lambda calculus

Types

- We will use types as a means to classify expressions.
- An important consequence is that we can recognize the representation of Booleans, natural numbers, and other data types and distinguish them from other forms of lambda expressions.
- We also explore how typing interacts with computation.

Simple types

• We need at least functions $\tau := \tau_1 \to \tau_2$; but this type might be considered "empty" since there is no base case, so we add variables α , β , γ , etc.

Type variables
$$\alpha$$
Types $\tau ::= \tau_1 \rightarrow \tau_2 \mid \alpha$

We follow the convention that -> is right-associative.

Typing

• For now, we write e : au if expression e has type au

For example:

 $\lambda x. x : \alpha \to \alpha$

 $\lambda x. x : (\alpha \to \beta) \to (\alpha \to \beta)$

Typing

For example:

true =
$$\lambda x. \lambda y. x$$
 : $\alpha \rightarrow (\alpha \rightarrow \alpha)$
false = $\lambda x. \lambda y. y$: $\alpha \rightarrow (\alpha \rightarrow \alpha)$

Informally (for now), we can reason

If $\cdot \vdash e : \alpha \to (\alpha \to \alpha)$ and e does not reduce, then $e = true = \lambda x. \lambda y. x$ or $e = false = \lambda x. \lambda y. y.$