CS621/CSL611 Quantum Computing For Computer Scientists

Quantum Circuits and Protocols

Dhiman Saha Winter 2024

IIT Bhilai

Superdense Coding Protocol

Superdense Coding

Problem Definition

- Alice and Bob are in different parts of the world.
- **Need**: Alice wants to communicate two bits a and b to Bob
- Constraint: Alice can send just a single qubit.
- Fact: Alice cannot encode two classical bits into a single qubit in any way that would give Bob more than just one bit of information about the pair (a, b).
- **Verdict:** There is no way they can accomplish this task without *additional resources*

This protocol was first proposed by Bennett and Wiesner in 1970 and experimentally actualized in 1996 by Mattle, Weinfurter, Kwiat and Zeilinger using **entangled photon pairs**.

Pre-shared Entangled Resource

Share an e-bit

- Additional Resource: One pre-shared unit of entanglement
- Alice and Bob prepare two qubits A and B in the superposition:

$$\frac{1}{\sqrt{2}}\ket{00}+\frac{1}{\sqrt{2}}\ket{11}$$

Alice takes qubit A and Bob takes the qubit B.¹

• Implication: Given the additional resource of a shared e—bit of entanglement, Alice will be able to transmit both a and b to Bob by sending just one qubit.

¹This is independent of the knowledge of (a, b)

Quantum Circuit Diagram

Superdense Coding Protocol

Note that the first two gates are acting on **one classical bit** and **one qubit**. Generally, this applies *only* when the *classical bit is a control bit* for some operation.

• Alice applies controlled $-\sigma_z$ gate² to qubit A with the **control** bit as a.

controlled-
$$\sigma_z \to \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}$$

• Evolution of state of A, B

$$\begin{array}{c|c} ab & \text{After Step-1} \\ \hline 00 & \frac{1}{\sqrt{2}} |00\rangle + \frac{1}{\sqrt{2}} |11\rangle \\ 01 & \frac{1}{\sqrt{2}} |00\rangle + \frac{1}{\sqrt{2}} |11\rangle \\ 10 & \frac{1}{\sqrt{2}} |00\rangle - \frac{1}{\sqrt{2}} |11\rangle \\ 11 & \frac{1}{\sqrt{2}} |00\rangle - \frac{1}{\sqrt{2}} |11\rangle \\ \end{array}$$

²Recall the Pauli matrices

• Alice applies controlled $-\sigma_x$ gate³ to qubit A with the **control** bit as b.

controlled-
$$\sigma_{\mathsf{x}}
ightarrow egin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

• Evolution of state of A, B

ab	After Step-1	After Step-2	
00	$\frac{1}{\sqrt{2}} 00\rangle + \frac{1}{\sqrt{2}} 11\rangle$	$\frac{1}{\sqrt{2}} 00\rangle + \frac{1}{\sqrt{2}} 11\rangle$	
01	$\left \frac{1}{\sqrt{2}} 00\rangle + \frac{1}{\sqrt{2}} 11\rangle \right $	$\frac{1}{\sqrt{2}} 10\rangle + \frac{1}{\sqrt{2}} 01\rangle$	
10	$\frac{1}{\sqrt{2}} 00\rangle - \frac{1}{\sqrt{2}} 11\rangle$	$\frac{1}{\sqrt{2}} 00\rangle - \frac{1}{\sqrt{2}} 11\rangle$	
11	$\left \begin{array}{c} \frac{1}{\sqrt{2}} \ket{00} - \frac{1}{\sqrt{2}} \ket{11} \right $	$\left \begin{array}{c} \frac{1}{\sqrt{2}} \left 10\right\rangle - \frac{1}{\sqrt{2}} \left 01\right\rangle \right $	

³Recall $\sigma_x = NOT$

- Alice sends the qubit A to Bob
- This is the **only** qubit that is sent during the protocol
- Recall, this was the constraint given in the problem definition

• Bob applies a controlled-NOT operation to the pair (A, B), where A is the control and B is the target

ab	After Step-2	After Step-4
00	$\left \frac{1}{\sqrt{2}} \left 00 \right\rangle + \frac{1}{\sqrt{2}} \left 11 \right\rangle \right $	$\left rac{1}{\sqrt{2}} \ket{00} + rac{1}{\sqrt{2}} \ket{10} = \left(rac{1}{\sqrt{2}} \ket{0} + rac{1}{\sqrt{2}} \ket{1} ight) \ket{0} ight $
01	$\left \frac{1}{\sqrt{2}} \left 10 \right\rangle + \frac{1}{\sqrt{2}} \left 01 \right\rangle \right $	$\left \begin{array}{c} rac{1}{\sqrt{2}} \ket{11} + rac{1}{\sqrt{2}} \ket{01} = \left(rac{1}{\sqrt{2}} \ket{1} + rac{1}{\sqrt{2}} \ket{0} ight) \ket{1}$
10	$\left rac{1}{\sqrt{2}} \left 00 ight angle - rac{1}{\sqrt{2}} \left 11 ight angle ight.$	$\left \begin{array}{c} rac{1}{\sqrt{2}} \ket{00} - rac{1}{\sqrt{2}} \ket{10} = \left(rac{1}{\sqrt{2}} \ket{0} - rac{1}{\sqrt{2}} \ket{1} ight) \ket{0} \end{array} ight.$
11	$\left \begin{array}{c} \frac{1}{\sqrt{2}} \left 10 \right\rangle - \frac{1}{\sqrt{2}} \left 01 \right\rangle \end{array} \right $	$\left \frac{1}{\sqrt{2}} \left 11 \right\rangle - \frac{1}{\sqrt{2}} \left 01 \right\rangle = \left(\frac{1}{\sqrt{2}} \left 1 \right\rangle - \frac{1}{\sqrt{2}} \left 0 \right\rangle \right) \left 1 \right\rangle$

• Bob applies a Hadamard transform to A

ab		After Step-5
00	$\left(rac{1}{\sqrt{2}}\ket{0}+rac{1}{\sqrt{2}}\ket{1} ight)\ket{0}=H\ket{0}\ket{0}$	00⟩
01	$\left(rac{1}{\sqrt{2}}\ket{1}+rac{1}{\sqrt{2}}\ket{0} ight)\ket{1}=H\ket{0}\ket{1}$	$ 01\rangle$
10	$\left(rac{1}{\sqrt{2}}\ket{0}-rac{1}{\sqrt{2}}\ket{1} ight)\ket{0}=H\ket{1}\ket{0}$	10 angle
11		$-\ket{11}$

- Bob measures both qubits A and B.
- The output will be (a, b) with certainty.

Superdense Coding Protocol

Note that the first two gates are acting on **one classical bit** and **one qubit**. Generally, this applies *only* when the *classical bit is a control bit* for some operation.

References

- Quantum Computing for Computer Scientists, by Noson S. Yanofsky, Mirco A. Mannucci
- Quantum Computing Explained, David Mcmahon. John Wiley & Sons
- Lecture Notes on Quantum Computation, John Watrous, University of Calgary
 - https://cs.uwaterloo.ca/~watrous/QC-notes/