

PROGRAMA DA DISCIPLINA

Introdução (4h)

- Modelagem de Dados Modelo Entidade-Relacionamento: (8h)
- Modelo de Dados Relacional: (8h)
- Mapeamento do Modelo E-R para o Relacional (2h).
- Outros Modelos de Dados (2h)

Linguagens Formais de Consulta: A linguagem SQL: (20h)

- Álgebra Relacional: (6h)
- Cálculo Relacional: (6h)

Dependências Funcionais e normalização (10h):

Tendências (2h)

Carga horária: 68h

BIBLIOGRAFIA

 ELMASRI, R E NAVATHE, S. B. "Sistemas de Banco de Dados", 4a.ed, Addison Wesley – Person Education do Brasil, 2005

- SILBERSCHATZ, A.; KORTH, H.F. E SUDARSHAN, S. Sistemas de Banco de Dados 3a.Ed. Makron Books, 1999
- GARCIA-MOLINA H.; ULLMAN J. D. e WIDOM, J. D.
 "Database system implementation", Prentice Hall, 2000
- ** ELMASRI, R.; NAVATHE, S. B. Fundamentals of database systems. 5. ed. Boston: Addison-Wesley, 2006
- ** SILBERSCHATZ, A.; KORTH, H. F.; SUDARSHA, S. Sistema de banco de dados. 5. ed. Rio de Janeiro: Campus, 2006
- ** SILBERSCHATZ, A.; KORTH, H. F.; SUDARSHA, S. Sistema de banco de dados. 6. ed. Rio de Janeiro: Campus, 2010
- ** GARCIA-MOLINA H.; ULLMAN J. D. e WIDOM, J. D.
 "Database Systems: The Complete Book", Prentice Hall, 2002

DATAS IMPORTANTES

- Conceitos: dados, banco de dados, SGBD
- Sistemas de arquvos X Banco de dados
- Características SGBD

INTRODUÇÃO

Os Banco de Dados:

- São utilizados em muitos ramos de negócio
- Registrar fatos que serão posteriormente disponibilizados a consumidores de informação na Web
- Parte central de investigações científicas (genoma, bioquímica, astronomia)

Uso de Banco de Dados surgiu do aperfeiçoamento de um software especializado o SGBD ou Sistema de Banco de Dados

CONCEITOS

Dados:

- Fatos que podem ser gravados e que possuem um significado implícito
 - Ex.: Nome, telefone, e-mail, ...

Banco de dados:

- Coleção de dados relacionados
 - Representa algum aspecto do mundo real
 - É uma coleção de dados logicamente coerente que possui algum significado inerente
 - É projetado, construído e instanciado para uma aplicação específica.

Sistema gerenciador de banco de dados (SGBD):

- Coleção de programas que permite aos usuários criar e manter um banco de dados
 - Armazenamento persistente fornece estruturas de dados para viabilizar um acesso eficiente
 - Interface de Programação permite um usuário ou aplicação modificar dados através de um linguagem de consulta
 - Gerenciamento de transação acesso concorrente ao dados (diferentes processos ou transações sendo executados simultaneamente e a durabilidade dos dados)

SGBD

EXEMPLOS

Dados bancários

clientes, contas, saldos, pagamentos, transferências, ...

Dados de uma universidade

Alunos, funcionários, disciplinas, cursos, notas, ...

Biblioteca

Livros, exemplares, empréstimos, devoluções, multas, ...

Supermercados

Controle de estoque, preços, promoções, ...

Imposto de renda

Pessoas físicas, pessoas jurídicas, rendimento lucro, despesas, ...

Empresa aérea

Aviões, malhas, horários, funcionários, passageiros, voos, compras, vendas, ...

EXEMPLO

STUDENT	Name	ame StudentNumbe		Class	Major				DEPARTMENT	DeptCode	e DeptNa	me
	Smith	17		1	CS					CS	Comp. Scie	ence
	Brown 8		_	2	CS					MATH	Mathemati	ics
											•	
COURSE	CourseName			CourseNumber		Credit	Hours I	Department				
	Intro to Computer Science			CS1310		4	1	CS				
	Data Structures			CS3320		-		CS				
	Discrete Mathematics			MATH2410		3		MATH				
L	Database		CS3380			3	CS					
					K							
SECTION	Section	on Identifier	Cou	ırseNumb	er Se	emester	Year	Instructor				
		85		MATH2410		₹all	98	King				
		92	С	CS1310		Fall						
		102		CS3320 S		GRADE REPO		E REPOR	T StudentNum	ber Sec	tionIdentifier	Grad
						Fall			17		112	В
						Fall			17	8	119	С
		135 (CS3380		Fall			8		85	Α
									8		92	Α
									8		102	В
									8		135	Α
							PREREQUISITE		CourseNumb	er Prere	PrerequisiteNumber	
									CS3380	100	CS3320	
									CS3380		MATH2410	- 1
									000000		WATT12410	

OUTRAS INFORMAÇÕES ...

Sistemas de banco de dados pode ser programados por frameworks (hibernate, django, etc)

Não é toda a aplicação que envolve dados que necessariamente utilizam SGBD

- Planilha excel não pode ser manipulada por query language
- O hadoop é um framework que pode manipular dados que são armazenados em arquivos.

Sistema de arquivos

- Inconsistência e redundância
- Dificuldade no acesso aos dados
- Problema de restrições de integridade
- 4. Problema de atomicidade
- 5. Problema no controle de acesso
- 6. Problema de escalabilidade
- 7. Problema de segurança

Sistema de arquivos

- 1. Inconsistência e redundância
- Dificuldade no acesso aos dados
- Isolamento de dados
- Problema de restrições de integridade
- 5. Problema de atomicidade
- 6. Problema no controle de acesso
- 7. Problema de escalabilidades
- 8. Problema de segurança

Def. Consistência: o dado armazenado deve representar um fato ou atributo da realidade modelada pelo sistema.

Def. Redundância: o mesmo dado é armazenado em mais de um arquivo.

 Problemas em arquivos criados por vários programadores.

Exemplo de redundância/inconsistência:

Alteração do número de telefone do funcionário em um arquivo, sem alterá-lo em outro(s)

Sistema de arquivos

- 1. Inconsistência e redundância
- 2. Dificuldade no acesso aos dados
- 3. Isolamento de dados
- Problema de restrições de integridade
- 5. Problema de atomicidade
- 6. Problema no controle de acesso
- 7. Problema de escalabilidade
- 8. Problema de segurança

O acesso é exclusivo por programas específicos.

Nova funcionalidade => escrever novo programa.

Exemplo: uma consulta aos dados de clientes de um determinado CEP

Sistema de arquivos

- 1. Inconsistência e redundância
- Dificuldade no acesso aos dados
- 3. Isolamento de dados
- Problema de restrições de integridade
- 5. Problema de atomicidade
- 6. Problema no controle de acesso
- 7. Problema de escalabilidade
- 8. Problema de segurança

Os formato dos dados depende de programas específicos.

Não há isolamento de dados e programas.

Sistema de arquivos

- 1. Inconsistência e redundância
- Dificuldade no acesso aos dados
- 3. Isolamento de dados
- 4. Problemas de restrições de integridade
- 5. Problema de atomicidade
- 6. Problema no controle de acesso
- 7. Problema de escalabilidade
- 8. Problema de segurança

As restrições são totalmente implementadas por códigos próprios.

Difícil implementação das restrições, pois, muitas vezes a manutenção da consistência exige acesso a vários arquivos, inclusive gerados por programas escritos em diferentes linguagens.

Sistema de arquivos

- 1. Inconsistência e redundância
- Dificuldade no acesso aos dados
- 3. Isolamento de dados
- Problema de restrições de integridade
- 5. Problema de atomicidade
- 6. Problema no controle de acesso
- 7. Problema de escalabilidade
- 8. Problema de segurança

Atomicidade significa que um conjunto de operações devem ser executado por completo ou nenhuma operação do conjunto deve ser executada.

Em caso de falha durante a execução do conjunto de operações deve-se garantir a atomicidade

Exemplo: Transferir o valor X da conta A para a conta B.

É difícil garantir a atomicidade em caso de falhas após a execução da operação.

- 1) Debito e antes da execução da operação
- 2) Crédito

Sistema de arquivos

- 1. Inconsistência e redundância
- Dificuldade no acesso aos dados
- Isolamento de dados
- Problemas de restrições de integridade
- 5. Problema de atomicidade
- 6. Problema no controle de acesso
- 7. Problema de escalabilidade
- 8. Problema de segurança

Acesso concorrente aos dados:

Vários sistema exigem o acesso simultâneo, ou seja, concorrente, aos dados.

Ex: duas pessoas tentando sacar dinheiro em uma mesma conta corrente.

Sistema de arquivos

- 1. Inconsistência e redundância
- Dificuldade no acesso aos dados
- 3. Isolamento de dados
- Problemas de restrições de integridade
- 5. Problema de atomicidade
- 6. Problema no controle de acesso
- 7. Problema de escalabilidade
- 8. Problema de segurança

Acesso aos dados pode se tornar ineficiente com o crescimento do volume de dados.

Crescimento de funcionalidades pode ser de difícil implementação.

Sistema de arquivos

- 1. Inconsistência e redundância
- Dificuldade no acesso aos dados
- 3. Isolamento de dados
- Problemas de restrições de integridade
- 5. Problema de atomicidade
- 6. Problema no controle de acesso
- 7. Problema de escalabilidade
- 8. Problema de segurança

Grandes sistemas têm vários usuários

O acesso deve ser restrito às função do usuário.

É difícil controlar o acesso em Arquivos Convencionais.

Sistema de arquivos

- Inconsistência e redundância
- Dificuldade no acesso aos dados
- 3. Problema de restrições de integridade
- 4. Problema de atomicidade
- Problema no controle de acesso
- Problema de escalabilidade
- 7. Problema de segurança

Como o SGBD lida com esses problemas?

- Independência entre dados e programa
- Linguagem declarativa de consulta e acesso aos dados
- 3. Várias restrições implementadas pelo SGBD
- 4. Controle de transações
- 5. Controle de concorrência
- Algoritmos sofisticados de otimização de consultas
- 7. Controle de acesso pelo SGBD

SGBD - CARACTERÍSTICAS

Natureza auto descritiva dos dados

 Definição de estrutura e restrições — importante para ser utilizado por qualquer estrutura de banco de dados

Nome Ana Luiza Texto de 50 caracteres

Idade 20 Número inteiro de 0 a 100

RG 123456 Número inteiro de 20 dígitos

Logradouro Rua Ibituruna Texto de 80 caracteres

Bairro Tijuca Texto de 50 caracteres

SGBD - CARACTERÍSTICA

Isolamento entre Programa e Dados (abstração de dados)

- Ex: adicionar uma nova coluna
 - Arquivo: pode ser que pare de funcionar devido a estrutura modificada
 - SGBD: altera-se apenas o catálogo

Suporte a múltiplas visões

- Subconjunto de dados
- Dados virtuais

Compartilhamento de dados

- Acesso de múltiplos usuários
- Controle de concorrência (atualização do mesmo dado simultaneamente)

EFICIÊNCIA DAS CONSULTAS

Backup e recuperação

Falha de software ou hardware

Múltiplas interfaces do usuário

Representação de relacionamentos complexos

Restrições de integridade

Chaves, relacionamentos, tipos de dados

Permitir ações utilizando regras

- Store procedures
- triggers

VANTAGENS ADICIONAIS

Garantir padrões

Reduzir tempo de desenvolvimento

Flexibilidade

 Ex: podem surgir novos grupos de usuários que precisam de dados ainda não disponíveis

Disponibilidade de informações atualizadas

Economia de escala

 Ex: todos os departamentos de uma mesma empresa podem armazenar e compartilhar seus dados em uma mesma infraestrutura (servidor, etc)

PESSOAS ENVOLVIDAS

Administrador de banco de dados (DBA)

- Autorização de acessos
- Coordenação e monitorização do uso

Projetista do banco de dados (Administrador de Dados - AD)

- Identificação de dados, estruturas apropriadas
- Comunicação com usuários do banco, para conhecer necessidades e requisitos

Analista de sistemas, programadores, engenheiros de software

Usuário final

SGBD - CONSIDERAR SITUAÇÕES NÃO FAVORÁVEIS

A base de dados e as aplicações são simples, bem definidas e sem perspectivas de mudanças.

Requisitos de tempo real.

Não necessita acesso concorrente aos dados.

PRINCIPAIS SGBDS DA ATUALIDADE

```
Postgresql - http://www.postgresql.org/
Mysql - http://www.mysql.org/
SqlServer - http://www.microsoft.com/brasil/sql/default.mspx
FireBird/Interbase - http://www.firebirdsql.org/
Oracle - http://www.oracle.com/
```

