## Overview

- Related Work
- Tensor Voting in 2-D
- Tensor Voting in 3-D
- Tensor Voting in N-D
- Application to Vision Problems
- Stereo
- Visual Motion

- Binary-Space-Partitioned Images
- 3-D Surface Extraction from Medical Data
- Epipolar Geometry Estimation for Non-static Scenes
- Image Repairing
- Range and 3-D Data Repairing
- Video Repairing
- Luminance Correction
- Conclusions

## Tensor Voting in 3-D

- Representation with tensors
- Tensor voting and voting fields
- First order voting
- Vote analysis and structure inference
- Examples
- Curvature

# 3-D Tensor Voting

• Representation: 3-D Tensors

• Constraints: 3-D Voting Fields

• Data communication: Voting

## 3-D Tensors

The input may consist of

point curvel surfel

## 3-D Tensor Decomposition



3 eigenvalues  $(\lambda_{max} \lambda_{mid} \lambda_{min})$ 

3 eigenvectors  $(\mathbf{V}_{\text{max}} \mathbf{V}_{\text{mid}} \mathbf{V}_{\text{min}})$ 

### 3-D second order Tensors

#### Equivalent to:

- Ellipsoid
  - Special cases: "stick", "plate" and "ball"
- 3x3 matrix

$$T = \lambda_1 \cdot e_1 e_1^T + \lambda_2 \cdot e_2 e_2^T + \lambda_3 \cdot e_3 e_3^T =$$

$$= (\lambda_1 - \lambda_2) e_1 e_1^T + (\lambda_2 - \lambda_3) (e_1 e_1^T + e_2 e_2^T) + \lambda_3 (e_1 e_1^T + e_2 e_2^T + e_3 e_3^T)$$

# Representation

| Input          | Second Order Tensor | Eigenvalues                                 | Quadratic Form                                                                                                                                                                                                                                                                        |  |
|----------------|---------------------|---------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                |                     | $\lambda_1=1$ $\lambda_2=\lambda_3=0$       | $\begin{bmatrix} n_{x}^{2} & n_{x}n_{y} & n_{x}n_{z} \\ n_{x}n_{y} & n_{y}^{2} & n_{y}n_{z} \\ n_{x}n_{z} & n_{y}n_{z} & n_{z}^{2} \end{bmatrix}$                                                                                                                                     |  |
| $\mathbf{n}_1$ |                     | $\lambda_1 = \lambda_2 = 1$ $\lambda_3 = 0$ | $\begin{bmatrix} n_{1x}^2 + n_{2x}^2 & n_{1x}n_{1y} + n_{2x}n_{2y} & n_{1x}n_{1z} + n_{2x}n_{2z} \\ n_{1x}n_{1y} + n_{2x}n_{2y} & n_{1y}^2 + n_{2y}^2 & n_{1y}n_{1z} + n_{2y}n_{2z} \\ n_{1x}n_{1z} + n_{2x}n_{2z} & n_{1y}n_{1z} + n_{2y}n_{2z} & n_{1z}^2 + n_{2z}^2 \end{bmatrix}$ |  |
|                |                     | $\lambda_1 = \lambda_2 = \lambda_3 = 1$     | $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$                                                                                                                                                                                                                   |  |

# 3-D Voting Fields

Derived from the Fundamental 2-D Stick Field



## Voting Fields in 3-D

- 2-D stick fields are cuts of the 3-D ones containing the voting stick
  - 3-D first and second order stick fields derived by rotating the fundamental 2-D stick field
- Plate and Ball fields derived by integrating contributions of rotating stick voter
  - Stick spans disk and sphere respectively

## Pre-computed Voting Fields

- All fields are computed at grid locations once
- When voting takes place
  - Fields aligned with voting tensors
  - Used as look-up tables
  - Votes at receivers not on grid computed by tri-linear interpolation
- Small trade-off in accuracy for considerable improvement in speed

## Tensor Voting in 3-D

- Input tensors are decomposed into:
  - Stick
  - Plate
  - Ball
- Each component casts first and second order votes
- Each token accumulates all votes cast by its neighbors

## Second Order Voting



- Tokens in the same structure reinforce each other
- Isolated tokens receive little or contradicting support

# Surface Normal Inference from Unoriented Tokens

- Three unoriented tokens define plane, but voting operates pairwise
- Two tokens define a straight line and the voter casts a *plate vote*



# Surface Normal Inference from Unoriented Tokens

- Three unoriented tokens define plane, but voting operates pairwise
- Two tokens define a straight line and the voter casts a *plate vote*



# Surface Normal Inference from Unoriented Tokens

- Three unoriented tokens define plane, but voting operates pairwise
- Two tokens define a straight line and the voter casts a *plate vote*
- Accumulation of plate votes with a common axis results in salient stick component



## First Order Voting



- Tokens in the interior of a structure receive first order votes from all directions
- Tokens at boundaries receive first order votes from one side of a half-space

# Interpretation of Resulting Tensors

| Structure Type   | Saliency                       | Tensor                        | Polarity    | Polarity orientation         |
|------------------|--------------------------------|-------------------------------|-------------|------------------------------|
|                  |                                | Orientation                   |             |                              |
| Surface inlier   | High $\lambda_1$ - $\lambda_2$ | Normal: e <sub>1</sub>        | Low         | -                            |
| Surface boundary | High $\lambda_1$ - $\lambda_2$ | Normal: <b>e</b> <sub>1</sub> | High        | Normal to e <sub>1</sub> and |
|                  |                                |                               |             | boundary                     |
| Curve inlier     | High $\lambda_2$ - $\lambda_3$ | Tangent: e <sub>3</sub>       | Low         | -                            |
| Curve endpoint   | High $\lambda_2$ - $\lambda_3$ | Tangent: e <sub>3</sub>       | High        | Parallel to e <sub>3</sub>   |
| Volume inlier    | High λ <sub>3</sub>            | -                             | Low         | -                            |
| Volume boundary  | High λ <sub>3</sub>            | -                             | High        | Normal to bounding           |
|                  |                                |                               |             | surface                      |
| Junction         | Distinct                       | -                             | Low         | -                            |
|                  | locally max $\lambda_3$        |                               |             |                              |
| Outlier          | Low                            | -                             | Indifferent | -                            |

### Structure Inference in 3-D

- Surfaces and curves extracted as local maxima of surface and curve saliency
- Perform **Dense Vote**, where votes are collected at all locations
- Detect *zero-crossings* of first derivative of saliency
- Extract surfaces using Marching Cubes
- Extract curves similarly

## Surface Extraction



Surface Patch



Surface Saliency along normal direction



First derivative of Surface Saliency



## Curve Extraction



# Graceful Degradation with Noise







Input



**Surface Intersections** 

Surfaces





Input

Surface Boundaries









Input

Volume Boundaries

### Curvature

- Useful shape descriptor
  - Viewpoint invariant
  - Can guide reconstruction
- Accurate quantitative estimation is difficult
  - Unavoidable outliers
  - Unstable second order properties

## Why Curvature?

voting with regular field



a circle will not be produced

# Our approach on Curvature Estimation

- No partial derivative computation
- No local surface fitting
- Zero curvature is handled uniformly
- Robust to outliers
- Sign and direction of principal curvatures are accurately estimated

### Two Estimations

Sign of principal curvature

• Principal direction

## Sign of Principal Curvature

- In 3-D each input site is labeled as locally
  - planar
  - elliptic
  - parabolic
  - hyperbolic, an outlier, or a discontinuity
- Then, we know which **side**, w.r.t. the estimated stick, the surface should **locally curve to**

Vote Representation



Smooth connection prescribed by the stick kernel

vote direction









vote **strength** 

inversely proportional to distance from O

## Vote collection at O

- compute mean  $\mu$ 
  - preferred side

- $M = \begin{bmatrix} M_x \\ M_y \end{bmatrix} = \frac{1}{n} \sum_{P \in nbhd} \vec{v}_P, \mu = \frac{M_x}{M_y}$
- compute total variance  $\Sigma$ 
  - deviation from "mean"

$$S = \frac{1}{n-1} BB^{-T}, \sum = trace \quad (S)$$

• together indicate which side w.r.t. the input stick the curve should curve to

## Geometric Interpretation

| $ \mu \approx$ | 0? |
|----------------|----|
|----------------|----|

$$\sum \approx 0$$
?





planar

X



elliptic





hyperbolic





parabolic

### Two Estimations

• Sign of principal curvature

• Principal direction

# Principal Direction



## Vote Collection & Interpretation



2D votes are collected as 2<sup>nd</sup> oreder symmetric tensors

 $\overline{V_{max}} = \mathbf{maximum}$  direction

 $\overline{V_{min}} = minimum$  direction

#### Curvature-Based Stick Kernel

- hyperbolic
  - original
- planar
  - very thin
  - more decay with high curvature
- parabolic or elliptic
  - one side of stick

# Accuracy of Labeling

Sphere (489 points)



# Accuracy of Labeling

Cylinder (3844 points)



# Accuracy of Labeling

Saddle (605 points)



# Grouping by Curvature











# Grouping by Curvature











# Robustness of Principal Curvature Estimation



Estimated principal direction does not adversely affected by noise

#### Overview

- Related Work
- Tensor Voting in 2-D
- Tensor Voting in 3-D
- Tensor Voting in N-D
- Application to Vision Problems
- Stereo
- Visual Motion

- Binary-Space-Partitioned Images
- 3-D Surface Extraction from Medical Data
- Epipolar Geometry Estimation for Non-static Scenes
- Image Repairing
- Range and 3-D Data Repairing
- Video Repairing
- Luminance Correction
- Conclusions

## Tensor Voting in N-D

#### Direct generalization from 2-D and 3-D cases

- Tensors become second order, N-dimensional,
   symmetric, non-negative definite
- Polarity vectors become N-D vectors
- There are N+1 structure types (0-D junction to N-D hyper-volume)
- N second order and N first order fields are required

# Voting Fields in N-D

- Vote generation from unit stick is the same
  - Voter, receiver and voting stick define a plane in any dimension
- Other fields can be derived as shown in previous sections

### Applications in N-D

- Motion segmentation in 4-D space  $(x, y, v_x, v_y)$
- Epipolar geometry estimation in 4-D Joint Image Space
- Affine motion parameter estimation in 4-D space
- Epipolar geometry estimation in 8-D space

## Applications in N-D

- Voting in intensity / color space:
  - Image repairing
  - 3-D data repairing
  - Video repairing
  - Luminance correction

#### Issues in N-D

- Space must be Euclidean
  - Distances in voting space must be meaningful
- Data structures
  - Efficient search for neighbors
- Voting fields
  - Pre-computation becomes inefficient when grid positions are comparable to number of tokens