On the competitiveness of memoryless strategies for the Canadian Traveller Problem

Pierre Bergé^{a,*}, Julien Hemery^b, Arpad Rimmel^b, Joanna Tomasik^b

^aLRI, Université Paris-Sud, Université Paris-Saclay, 91405 Orsay Cedex, France
^bLRI, CentraleSupélec, Université Paris-Saclay, 91405 Orsay Cedex, France

Abstract

The k-Canadian Traveller Problem, defined and proven PSPACE-complete by Papadimitriou and Yannakakis, is a generalization of the Shortest Path Problem which admits blocked edges. Its objective is to determine the strategy that makes the traveller traverse graph G between two given nodes s and t with the minimal distance, knowing that at most k edges are blocked. The traveller discovers that an edge is blocked when arriving at its endpoint.

We study the competitiveness of randomized memoryless strategies for the k-CTP. In this context, a decision taken by the traveler in node v of G does not depend on its anterior moves. We establish that the competitive ratio of any randomized memoryless strategy cannot be better than 2k + O(1). The primordial consequence of this result is that randomized memoryless strategies are asymptotically as competitive as deterministic strategies which achieve a ratio 2k + 1 at best. In future research, if we aim at designing a strategy with competitive ratio $\alpha k + O(1)$, $\alpha < 2$, we shall focus on strategies which not only are randomized but also use memory.

1. Introduction

The Canadian Traveller Problem (CTP), a generalization of the Shortest Path Problem, was introduced in [?]. Given an undirected weighted graph $G=(V,E,\omega)$ and two nodes $s,t\in V$, the objective is to design a strategy to make a traveller walk from s to t through G on the shortest path possible. Its particularity is that some edges of G are potentially blocked. The traveller does not know, however, which edges are blocked. This implies that we solve the CTP with online algorithms, called strategies. He discovers blocked edges, also called blockages, when arriving to its endpoints. The k-Canadian Traveller Problem (k-CTP) is the parameterized variant of CTP, where an upper bound k for the number of blocked edges is given. Both CTP and k-CTP are PSPACE-complete [??]

 $Email\ address:\ {\tt Pierre.Berge@lri.fr}\ ({\tt Pierre}\ {\tt Berg\'e}\)$

^{*}Corresponding author

State-of-the-art. Strategies for the k-CTP are studied through the competitive analysis, which evaluates their quality [?]. The competitive ratio of a strategy is the maximum, over every satisfiable instance, of the ratio of the distance traversed by the traveller following the strategy and the optimal offline cost, which is the distance he traverses if he knows blocked edges from the beginning.

There are two classes of strategies: deterministic and randomized. Westphal [?] proved that there is no deterministic strategy that achieves a competitive ratio better than 2k+1. This ratio is reached by REPOSITION and COMPARISON strategies [??] The REPOSITION strategy consists in traversing the shortest (s,t)-path on the current graph. If the traveller discovers that an edge e^* of this path is blocked, he goes back to node s and restarts the process on graph G deprived of the edge e^* . This algorithm is executed in polynomial time. However, considering specific practical cases such as urban networks, returning to node s every time the traveller is blocked does not seem realistic. This is why Xu et al. [?] introduced the GREEDY algorithm. For grids, it achieves an $\mathcal{O}(1)$ ratio, regardless of k. However, for any graph, this ratio is $\mathcal{O}(2^k)$.

We evaluate the competitiveness of the randomized strategies by calculating the maximal ratio of the mean distance traversed by the traveller following the strategy by the optimal offline cost. Westphal [?] proved that there is no randomized algorithm that can attain a ratio smaller than k+1. However, unlike the deterministic case, no $(\alpha k+1)$ -competitive randomized strategy, $\alpha<2$, was identified, excepted for very particular cases. Two randomized strategies have been proposed. Demaine $et\ al.$ [?] designed a strategy with a ratio $\left(1+\frac{\sqrt{2}}{2}\right)k+1$, executed in time of $\mathcal{O}\left(k\mu^2|E|^2\right)$ where parameter μ may be exponential. It is dedicated to graphs that can be transformed into apex trees. Bender $et\ al.$ studied in [?] a restriction of k-CTP for graphs composed of node-disjoint (s,t)-paths and proposed a polynomial-time strategy with ratio (k+1).

Contributions and paper plan. We study the competitiveness of memoryless strategies [? ?]. The choice the traveller makes at node v (to decide where to go next) is independent of his travel before reaching node v. Given that deterministic memoryless strategies cannot achieve a ratio better than 2k+1, our goal is to prove that randomized memoryless strategies are not more competitive asymptotically. To do this, we identify a lower bound $c_k = 2k + O(1)$ of the competitiveness of randomized memoryless strategies for the k-CTP.

We remind, in Section 2, the definitions of k-CTP, memoryless strategies and the competitive ratio. In Section 3, we present a set \mathcal{R} (called a road atlas) of road maps, i.e. pairs (G, E_*) with graph G and blocked edges E_* , on which we study the competitiveness of memoryless strategies. We associate, to any of these road maps, a binary tree representation which allows to understand the behavior of memoryless strategies on these road maps more comfortably. We prove in Section 4 that randomized memoryless strategies cannot drop below a ratio $c_k = 2k + O(1)$ on road maps in \mathcal{R} . We also clarify expression O(1) in

order to specify the asymptotic behavior of sequence c_k . Eventually, we draw conclusions and highlight the future work in Section 5.

2. Definitions

We start by introducing the notation. For any graph $G = (V, E, \omega)$, let $G \setminus E'$ denotes its subgraph $(V, E \setminus E', \omega)$.

2.1. Memoryless Strategies for the k-CTP

We remind the definition of CTP. Let $G = (V, E, \omega)$ be an undirected graph with positive weights. The objective is to make a traveller traverse the graph from a source node s to a target one t, with $s, t \in V$. There is a set $E_* \subsetneq E$ of blocked edges. The traveller does not know a priori which edges are blocked. He discovers a blocked edge only when arriving to one of its endpoints. For example, if (v, w) is a blockage he will discover it when arriving to v (or w). The goal is to design the strategy A with the minimal competitive ratio.

We focus on memoryless strategies (MS). Concretely, we suppose that the traveller remembers the blocked edges he has discovered but forgets the nodes which he has already visited. In other words, a decision of an MS is independent of the nodes already visited. In the literature, the term memoryless was used in the context of online algorithms (e.g. PAGING PROBLEM [?], LIST UPDATE PROBLEM [?]) which take decisions according to the current state, ignoring past events. An MS can be either deterministic or randomized.

Definition 1 (Memoryless Strategies for the k**-CTP).** A deterministic strategy A is an MS if and only if (iff) the next node w the traveller visits depends on graph G deprived of blocked edges already discovered E'_* and the current traveller position $v: w = A(G \setminus E'_*, v)$. Similarly, a randomized strategy A is an MS iff node w is the realization of a discrete random variable $X = A(G \setminus E'_*, v)$.

MSes are easy to be implemented because they do not use past moves to take a decision. For example, the GREEDY strategy [?] is a deterministic MS. It consists in choosing at each step the first edge of the shortest path between the current node v and the target t. In contrast, the REPOSITION strategy [?] is not an MS as any decision refers to the past moves of the traveller. The polynomial-time strategies proposed in the literature do not use much memory information in the decision-taking process. Either they are memoryless or they use a weak quantity of memory. For example, REPOSITION (deterministic [?] or randomized [?]) can be implemented with a one bit memory given that the only information to retain is whether the traveller tries to reach t or to return to s.

The following process allows to identify whether a strategy A is a deterministic MS. Let us suppose that a traveller T_1 executes strategy A: he has already visited certain nodes of the graph, he is currently at node v but he has not reached target t yet. Let us imagine a second traveller T_2 who is airdropped on node v and starts applying strategy A. If the traveller T_2 always follows the

same path as T_1 until reaching t, A is a deterministic MS. If T_1 and T_2 may follow different paths, then A is not an MS. Formally, prooving that a strategy is a MS consists in finding the function which transforms the pair $(G \setminus E_*, v)$ into node $w = A(G \setminus E_*', v)$.

2.2. Competitive ratio

Let (G, E_*) be a road map, i.e. a pair with graph $G = (V, E, \omega)$ and blocked edges $E_* \subsetneq E$, such that there is an (s,t)-path in graph $G \setminus E_*$ (nodes s and t remain in the same connected component when all blocked edges are discovered). We note $\omega_A(G, E_*)$ the distance traversed by the traveller reaching t with strategy A on graph G with blocked edges E_* and $\omega_{\min}(G, E_*)$ the cost of the shortest (s,t)-path in graph $G \setminus E_*$.

The ratio $\omega_A(G, E_*)/\omega_{\min}(G, E_*)$ is abbreviated as $c_A(G, E_*)$. A strategy A is c_A -competitive [? ?] iff for any $(G, E_*), \omega_A(G, E_*) \leq c_A\omega_{\min}(G, E_*)$. Otherwise stated, for any $(G, E_*), c_A(G, E_*) \leq c_A$. If strategy A is randomized, $\omega_A(G, E_*)$ is replaced by $\mathbb{E}(\omega_A(G, E_*))$ which is the expected distance traversed by the traveller to reach t with strategy A. The competitive ratio can also be evaluated on a family \mathcal{R} of road maps, put formally,

$$c_{A,\mathcal{R}} = \max_{(G,E_*)\in\mathcal{R}} c_A(G,E_*) \tag{1}$$

This "local" competitive ratio fulfils $c_{A,\mathcal{R}} \leq c_A$. The definition of the competitive ratio can also be extended to families of strategies. We note c_{MS} the competitive ratio of MSes, which is the minimum over competitive ratios of any MSes: $c_{\text{MS}} = \min_{A \text{ MS}} c_A$. In the remainder, we identify a set of road maps \mathcal{R} such that the competitive ratio of MSes on it is 2k + O(1).

3. Road atlas used to study randomized MSes

We specify a road atlas \mathcal{R} , i.e. a set of road maps, which will be used to evaluate the competitiveness of randomized MSes. We introduce a family of graphs G_i such that graphs composing this road atlas are subgraphs of G_i .

3.1. Graphs composing the road atlas \mathcal{R}

We define recursively a sequence of graphs G_i for $i \geq 1$ with weights from $\{1, \varepsilon\}$, $0 < \varepsilon \ll 1$. Graphs G_1 and G_{i+1} are represented in Figures 1a and 1b, respectively. Graphs G_2 and G_3 are shown in Figure 1c and 1d. Edges with weight 1 are thicker than edges with weight ε . On any graph G_i , axis Δ_{vert} is the vertical axis of symmetry (see Figures 1c and 1d).

We focus on the behavior of a traveller traversing road maps (G_k, E_*) composed of graph G_k and at most k blocked edges E_* at the right of axis Δ_{vert} in graph G_k . Indeed, blocking edges left to Δ_{vert} affects negligibly the total distance traversed by a traveller. Let us suppose that the traveller traverses graph G_k and has already discovered some blocked edges $E' \subseteq E_*$. He tries now to reach t on graph $G_k \setminus E'$, ignoring that the undiscovered blocked

edges are $E'_* = E_* \backslash E'$. We note $\mathcal G$ the set of all these subgraphs. Formally, $\mathcal G = \bigcup_{k=1}^{+\infty} \mathcal G_k$ with $\mathcal G_k = \{G_k \backslash E' : |E'| \le k\}$. Road maps (G, E_*) in $\mathcal R$ are composed of graphs in $\mathcal G$. For any graph $G \in \mathcal G$, we partition its edges, noted E_G , in two sets $E_{G,\mathrm{left}}$ (left to axis Δ_{vert}) and $E_{G,\mathrm{right}}$ (right to axis Δ_{vert}).

Figure 1: Recursive construction of graphs G_i . Weights ε are not indicated in Figures 1c and 1d to keep them readable.

3.2. Equivalent binary trees

For any graph G of \mathcal{G} , we define an equivalent binary tree (EBT) noted T_G which represents all *separations* (notion defined below) from t in graph G. We note T_{\varnothing} the empty tree. Any nonempty tree is a triplet (v, T_a, T_b) with a root $v \in V$ and two subtrees T_a and T_b .

Figure 2: An example of graph $G \in \mathcal{G}_3$ and its EBT T_G .

The EBT is obtained thanks to a breadth-first search (BFS) from t in direction of nodes on axis Δ_{vert} . Node t is the root of the EBT. Graphically, each node from which there is a *separation*, *i.e.* there are two possible directions for the next move of the BFS, provides two extra branches in the tree (see nodes t, v_1 , v_2 and v_3 in Figure 2b). Figures 2a, 2b and 2c illustrate the construction of the EBT. To put the definition of EBTs formally, let BFS (v) denote the set of nodes visited just after node v in the BFS starting from t. For example, $v_1 \in \text{BFS}(t)$ and $v_3 \in \text{BFS}(v_1)$. We force this BFS to stop on axis Δ_{vert} such that $v \in \Delta_{\text{vert}} \Rightarrow \text{BFS}(v) = \emptyset$. We define below function BIN-TREE which gives the construction of tree T_G fulfilling BIN-TREE $(t) = T_G$.

$$\text{BIN-TREE}\left(v\right) = \left\{ \begin{array}{l} T_{\varnothing} \text{ if BFS}(v) = \emptyset \\ \text{BIN-TREE}\left(v_{\text{next}}\right) \text{ if BFS}(v) = \left\{v_{\text{next}}\right\} \\ \left(v, \text{BIN-TREE}(v_{\text{up}}), \text{BIN-TREE}(v_{\text{down}})\right) \text{ if BFS}(v) = \left\{v_{\text{up}}, v_{\text{down}}\right\} \end{array} \right.$$

We introduce notations which characterize some elements in an EBT. For any edge e in EBT T, we note P(e) the parent edge of e. Let U(e) denote the "uncle" of edge e, which has the same parent than P(e). Put formally, $U(e) = \{e' \in T : P(e') = P(P(e)) = P^2(e)\}$. For any EBT T, we define recursively a set of edges $E_T(k)$ which is the set of edges with depth k. Set $E_T(0)$ represents the edges connected to the root t and $E_T(k) = \{e : P(e) \in E_T(k-1)\}$. We note $D_{\min}(T)$ the minimum depth among the leaves of T. For example, for EBT T_G of Figure 2c, $D_{\min}(T_G) = 2$. We set road atlas $\mathcal R$ with road maps (G, E_*) where $|E_*| = k$ and $G \in \mathcal G$ with an EBT fulfulling $D_{\min}(T_G) \ge k$. Formally, we define set $\mathcal D_k = \{G \in \mathcal G : D_{\min}(T_G) \ge k\}$ and road atlas $\mathcal R$ on which we study the competitiveness of MSes,

$$\mathcal{R} = \bigcup_{k=1}^{+\infty} \mathcal{R}_k \text{ with } \mathcal{R}_k = \{ (G, E_*) : G \in \mathcal{D}_k, |E_*| = k \}$$

4. Competitiveness of randomized MSes

We study the competitiveness of a randomized MS for each road atlas \mathcal{R}_k . We establish properties on EBTs T_G to understand the behavior of MSes on graphs $G \in \mathcal{G}$. Theorem 1 states that cutting one edge from $G \in \mathcal{D}_k$ results on a graph in $G \in \mathcal{D}_{k-1}$.

Theorem 1. For any graph $G \in \mathcal{D}_k$ and edge $e \in E_{G,right}$, $G \setminus \{e\} \in \mathcal{D}_{k-1}$.

Proof. Let $G \in \mathcal{D}_k$ and e be an edge of this graph. Removing e from $E_{G,\text{right}}$ makes at least one edge of the EBT T_G disappear and we note e^* the edge among them which is the nearest of t (said differently the edge with lowest depth). Let v be the "root" of edge e^* , *i.e.* node v such that $e^* = (u, v)$ and v = P(u). We distinguish two cases:

• The depth of node u is greater or equal to $D_{\min}(T_G)$. If u is the unique leaf of depth $D_{\min}(T_G)$, the depth of leaves of the EBT $T_{G\setminus\{e\}}$ is

 $D_{\min}(T_G) - 1 \ge k - 1$. Otherwise, in EBT $T_{G \setminus \{e\}}$, the depth of leaves at still equal to $D_{\min}(T_G) \ge k$. In summary, $G \setminus \{e\} \in \mathcal{D}_{k-1}$.

• The depth of node u is strictly inferior to $D_{\min}(T_G)$. Let T_v be the subtree of T_G with root v and w be the "sibling" of u (said differently the other son of node v). These notations are illustrated in Figure 3a and 3b. When edge e is removed from G, edge e^* and its descendants are withdrawn in the EBT, so T_v becomes T_w , the subtree of root w. All the leaves of T_w have initially a depth greater than k so by removing e from G, all the leaves of T_w have a depth greater than k-1. All the other leaves, which do not belong to T_v , keep the same depth which is greater than k. So all leaves of $T_{G\setminus\{e\}}$ have a depth greater than k-1.

In these two cases, we conclude that $G \setminus \{e\}$ belongs to \mathcal{D}_{k-1} .

graph.

Figure 3: Illustrating the proof of Theorem 1 on a graph of \mathcal{G}_3 .

are at depth 2.

For any graph $G \in \mathcal{G}$, we note $c_{MS}(G)$ the maximum over values $c_{MS}(G, E_*)$ where $(G, E_*) \in \mathcal{R}$. This value represents the competitive ratio of MSes on road maps containing graph G. Formally,

$$c_{\text{MS}}(G) = \min_{A \text{ MS}} \max_{(G, E_*) \in \mathcal{R}} c_A(G, E_*)$$
(2)

belongs to \mathcal{D}_1 .

Theorem 2 states that value $c_{MS}(G)$ is the same for any graph of \mathcal{D}_k . In other words, graphs in \mathcal{D}_k are all similar regarding the competitiveness of MSes over them. Let c_k denotes the competitive ratio of MSes over atlas \mathcal{R}_k . The proof gives us a recursive formula of ratio c_k .

Theorem 2. For any graph $G, G' \in \mathcal{D}_k$, $c_{MS}(G) = c_{MS}(G') = c_k$.

Proof. If k=0, then for every graph of \mathcal{D}_0 , $c_{\mathrm{MS}}(G)=c_0=1$ because any path the traveler takes is open. We assume the theorem holds for k-1. Let $G \in \mathcal{D}_k$. Every leaves of T_G are at depth greater than k, so the EBT is complete until depth $k:T_G$ have 2^k nodes at depth k. For a MS, we define $(p_i)_{i<2^k}$ by the probability that the traveler travel by the i^{th} node at depth k.

Given a set of E_* of blocked edges, we associate $J(E_*)$ being the set of node at depth k where each (s,t)-paththat travel through this node is not blocked. For any node v of depth k, we can construct a set of blocked edges such that $|J(E_*)| = 1$. Indeed, given a node v of depth k, let e be the edge of the sibling of v. By blocking e, U(e), U(U(e)) ... $U^{k-1}(e)$, we block respectively 1, 2, 4, ..., 2^{k-1} nodes. Every edges being the uncle of another, the blocked nodes are disjoint. So finally, only v is not blocked.

For a given set of blocked edges E_* , if v is in $J(E_*)$, then by traveling by v, the cost will be 1. If v is not in $J(E_*)$, the traveler have to turned back and choose another path with a road map with k-1 blocked edges. Theorem 1 we saw that G without the cut edge is in \mathcal{D}_{k-1} , so the cost will be at most $2+c_{k-1}$ by hypothesis. Formally,

$$c_A(G, E_*) \le \left(\sum_{j \in J(E_*)} p_j\right) \times 1 + \left(\sum_{j \notin J(E_*)} p_j\right) \times (2 + c_{k-1})$$

We remark that $1 < 2 + c_{k-1}$ so the greater $J(E_*)$ is, the lower $c_A(G, E_*)$ will be. Thus, we remark that for E_* in \mathcal{F}' , the inequality above is an equality. So for each E_* , it exists $E' \in_m calf$ such that $c_A(G, E_*) \leq c_A(G, E')$. Finally:

$$c_A(G, \mathcal{R}_k) = \max_{j < 2^k} p_j + (1 - p_j)(2 + c_{k-1}) = p_{min} + (1 - p_{min})(2 + c_{k-1})$$

with p_{min} the lowest probability. However, $p_{min} \leq \frac{1}{2^k}$ and $c_A(G, \mathcal{R}_k)$ minimum for p_{min} maximum, so $p_{min} = \frac{1}{2^k}$. The result is that $c_{MS}(G)$ only depend on k

and
$$c_k = \frac{1}{2^k} + \left(1 - \frac{1}{2^k}\right)(2 + c_{k-1})$$

Theorem 2 give us that for each k, the competitive ratio of a MScan not be lower than c_k . The competitiveness of MSare given by the study of c. To study c, first we remark that :

$$c_k - c_{k-1} = 2 - \frac{1}{2^k} - \frac{c_{k-1}}{2^k}$$

By summing this expression from j = 1 to k we obtain :

$$c_k = 2k + \frac{1}{2^k} - \sum_{j=0}^{k-1} \frac{c_j}{2^{j+1}}$$

It came that $c_k \leq 2k+1$ and so the serie is convergent. So finally, $c_k = 2k+O(1)$

5. Conclusion and further work

We studied the competitiveness of the MSes for the k-CTP. In this context, an MS is a strategy which does not make decisions referring to the anterior moves of the traveller, in other words, the nodes the traveller visited until his current position.

References