Ch 21 Electric Charge & Electric Field

Season 2 Episode 4 - LEVEL UP

In this episode of LARC Physics 3B, we're going to . . .

■ Level up our vector game by solving "Electric Field" problems in 2 dimensions!

Guided Practice

Find the magnitude and electric field at points A and B due to the two positive point charges with charge $Q = +5.7 \,\mu\text{C}$.

Answer:

$$\vec{E}_A = (5.30 \times 10^6 \,\text{N/C})\,\hat{i} + (7.89 \times 10^6 \,\text{N/C})\,\hat{j}, \qquad \left|\vec{E}_A\right| = 9.51 \times 10^6 \,\text{N/C}$$

$$\vec{E}_B = (3.7 \times 10^6 \,\text{N/C})\,\hat{j}, \qquad \left|\vec{E}_B\right| = 3.7 \times 10^6 \,\text{N/C}$$

Breakout-Room Activity

Two charges are arranged as shown in the figure. In terms of the given variables Q, ℓ , and fundamental constants, determine the following:

- (a) the magnitude of the electric field \vec{E} at the origin O
- (b) write \vec{E} in \hat{i}, \hat{j} notation
- (c) give the direction of \vec{E} as an angle from +x axis

Answer: (a)
$$E = k \frac{Q\sqrt{3}}{\ell^2}$$
 (b) $\vec{E} = k \frac{Q}{\ell^2} \left[-\frac{\sqrt{3}}{2} \hat{i} - \frac{3}{2} \hat{j} \right]$ (c) 240° from $+x$ axis

Challenge Problem

Calculate the electric field \vec{E} at the center of a square with sidelength 52.5 cm if one corner is occupied by a $-38.6\,\mu\text{C}$ charge and the other three are occupied by $-27.0\,\mu\text{C}$ charges.

Answer: $7.57 \times 10^6 \,\mathrm{N/C}$, towards the $-38.6 \,\mu\mathrm{C}$ charge.

