

Batch: A1 Roll No.: 16010123012

Experiment No. 2

Title: Linear Algebra - Solving System of Linear Equations using R

Aim: To explore methods for solving systems of linear equations using R, including visualization, and understanding their application in data science.

Course Outcome: CO2

Books/ Journals/ Websites referred:

- 1. The Comprehensive R Archive Network
- 2. Posit

Resources used:

https://www.rdocumentation.org/

https://www.w3schools.com/r/

https://www.geeksforgeeks.org/r-programming-language-introduction/

Theory:

Linear algebra is fundamental in data science for operations like feature transformations, dimensionality reduction (e.g., PCA), solving optimization problems (e.g., regression), and working with graph structures.

Procedure and Implementation in R:

A system of linear equations can be represented in matrix form as:

AX = B

Where:

- **A** is the coefficient matrix.
- X is the column vector of variables.
- **B** is the column vector of constants.

The solution to this system involves finding X such that the equation holds true. In R, we can solve such systems using the following methods:

1. **Solving Using Gauss-Jordan Elimination:** Perform row operations manually in R to transform A into its reduced row-echelon form.

- 2. **Direct Inversion:** Compute $X = A^{-1}B$, where A^{-1} is the inverse of matrix A.
- 3. **Built-in Functions:** R provides the solve() function to solve AX = B directly.

Part 1: A system of two linear equations

1. Define the System of Linear Equations:

Solve:

1.
$$2x + y = 5$$

2.
$$x - y = -1$$

2. Represent in Matrix Form:

Define A as the coefficient matrix and B as the constant matrix:

$$A = [2 \ 1 \ 1 \ -1]$$

 $B = [5 \ -1]$

Create augmented matrix:

$$[2151-1-1]$$

- > augmented_matrix <- cbind(A, B)</pre>
- 3. Check whether there is a unique solution


```
> determinant_A <- det(A)
> if (determinant_A == 0) {
+    cat("The system does not have a unique solution.\n")
+ } else {
+    cat("The system has a unique solution.\n")
+ }
The system has a unique solution.
```

4. Solve using Gauss Jordan elimination

```
> # Row operations for Gauss-Jordan elimination
  augmented_matrix[1, ] <- augmented_matrix[1, ] / augmented_matrix[1, 1] # Make pivot 1
  augmented_matrix[2, ] <- augmented_matrix[2, ] - augmented_matrix[2, 1] * augmented_matrix[1, ]
  augmented_matrix[2, ] <- augmented_matrix[2, ] / augmented_matrix[2, 2] # Make second pivot 1
  augmented_matrix[1, ] <- augmented_matrix[1, ] - augmented_matrix[1, 2] * augmented_matrix[2, ]
  # Solution
  solution_gauss <- augmented_matrix[, 3]
  print(solution_gauss)</pre>
```

[1] 1.333333 2.333333

5. Solve using inbuilt solve() method

```
> solution_solve <- solve(A, B)
> print(solution_solve)
[1] 1.333333 2.333333
```

6. Inversion $X = A^{-1}B$

7. Visualization

a. Define the system of equations

```
2x + y = 5; y = 5 - 2x
x - y = -1; y = x + 1
```

b. Generate x values

```
> # Define the functions for y
> f1 <- function(x) { 5 - 2 * x }
> f2 <- function(x) { x + 1 }
> # Generate x values for plotting
> x_vals <- seq(-10, 10, by = 0.1)</pre>
```

c. Plot the equations and solution

Visualization of the System of Linear Equations

Part 2: A system of three linear equations

1. Define the System of Linear Equations:

Solve:

$$x + y + z = 6$$
$$2x - y + z = 3$$
$$x - 2y + 3z = 14$$

2. Represent in Matrix Form:

Define A as the coefficient matrix and B as the constant matrix:

$$A = \begin{bmatrix} 1 & 1 & 1 & 2 & -1 & 1 & 1 & -2 & 3 \end{bmatrix} \quad B = \begin{bmatrix} 6 & 3 & 14 & 1 \end{bmatrix}$$

$$> A < - \text{matrix}(c(1, 1, 1, 2, -1, 1, 1, -2, 3), \text{nrow} = 3, \text{byrow} = \text{TRUE})$$

$$> B < - c(6, 3, 14)$$

[11162 - 1131 - 2314]

Create augmented matrix:

[3,] 1 -2 3 14

3. Check whether there is a unique solution

```
> determinant_A <- det(A)
> if (determinant_A == 0) {
+    cat("The system does not have a unique solution.\n")
+ } else {
+    cat("The system has a unique solution.\n")
+ }
The system has a unique solution.
```

4. Solve using Gauss Jordan elimination

```
> # Function for Gauss-Jordan Elimination
gauss_jordan_3d <- function(A, B) {
    # Combine the coefficient matrix A and the constant matrix B to form the augmented matrix
    augmented_matrix <- cbind(A, B)

# Number of rows
n <- nrow(A)

# Apply Gauss-Jordan elimination
for (i in 1:n) {
    # Make the pivot element 1 by dividing the row by the pivot value
    augmented_matrix[i, ] <- augmented_matrix[i, ] / augmented_matrix[i, i]

# Eliminate the variable from all rows except the pivot row
for (j in 1:n) {
    if (j != i) {
        augmented_matrix[j, ] <- augmented_matrix[j, ] - augmented_matrix[j, i] * augmented_matrix[i, ]
    }
}

# Extract the solution from the last column of the augmented matrix
solution <- augmented_matrix[, n+1]
return(solution)
}

> solution_gauss_3 <- gauss_jordan_3d(A, B)
> solution_gauss_3
[1] -0.7777778 1.1111111 5.6666667
```


5. Solve using inbuilt solve() method

```
> solution_solve_3 = solve(A,B)
    > solution_solve_3
    [1] -0.7777778 1.1111111 5.6666667
   6. Inversion
   > A_inverse <- solve(A)
> solution_alt <- A_inverse %*% B</pre>
   > print(solution_alt)
                [,1]
   [1,] -0.777778
[2,] 1.111111
[3,] 5.6666667
   7. Visualization
> library(rgl)
  # Define planes
  plane1 <- function(x, y) 6 - x - y
  plane2 <- function(x, y) 3 - 2 * x + y
  plane3 <- function(x, y) (14 - x + 2 * y) / 3
  # Generate grid for x and y values
  x_vals <- seq(-10, 10, length.out = 30)
  y_vals <- seq(-10, 10, length.out = 30)
  # Compute z values for the planes
  z1 <- outer(x_vals, y_vals, plane1)</pre>
  z2 <- outer(x_vals, y_vals, plane2)</pre>
  z3 <- outer(x_vals, y_vals, plane3)</pre>
  # Open a 3D plot
  open3d()
  # Plot planes
  surface3d(x_vals, y_vals, z1, color = "blue", alpha = 0.5)
surface3d(x_vals, y_vals, z2, color = "red", alpha = 0.5)
surface3d(x_vals, y_vals, z3, color = "green", alpha = 0.5)
  # Add the intersection point (solution)
  solution <- solve(A, B) # Calculate solution using R
```

points3d(solution[1], solution[2], solution[3], col = "black", size = 10)

rgl.texts(x = 0, y = 0, z = 0, text = "Origin", col = "black") legend3d("topright", legend = c("Plane 1", "Plane 2", "Plane 3", "Solution"),

col = c("blue", "red", "green", "black"), pch = c(NA, NA, NA, 19))

Labels and legend

Students have to generate a system of 2 linear equations and a system of 3 linear equations with random coefficients and then perform the above steps on them.

```
> # Generate coefficients and constants for the first equation
a1 <- sample(-10:10, 1)
b1 <- sample(-10:10, 1)
c1 <- sample(-10:10, 1)

# Generate coefficients and constants for the second equation
a2 <- sample(-10:10, 1)
b2 <- sample(-10:10, 1)
c2 <- sample(-10:10, 1)

# Form the coefficient matrix and constant vector
A <- matrix(c(a1, b1, a2, b2), nrow = 2, byrow = TRUE)
B <- c(c1, c2)</pre>
```



```
> # Generate coefficients and constants for the first equation
  a1 <- sample(-10:10, 1)
 b1 <- sample(-10:10, 1)
  c1 <- sample(-10:10, 1)</pre>
  d1 <- sample(-10:10, 1)</pre>
  # Generate coefficients and constants for the second equation
  a2 <- sample(-10:10, 1)
 b2 <- sample(-10:10, 1)
  c2 <- sample(-10:10, 1)
  d2 <- sample(-10:10, 1)</pre>
  # Generate coefficients and constants for the third equation
  a3 <- sample(-10:10, 1)
  b3 <- sample(-10:10, 1)
 c3 <- sample(-10:10, 1)
d3 <- sample(-10:10, 1)
  # Form the coefficient matrix and constant vector
  A \leftarrow matrix(c(a1, b1, c1, a2, b2, c2, a3, b3, c3), nrow = 3, byrow = TRUE)
  B < -c(d1, d2, d3)
```


TWO LINEAR EQUATION:

```
> A <- matrix(c(2, 1, 1, -1), nrow = 2, byrow = TRUE)
> B <- c(5, -1)
> print(A)
      [,1] [,2]
[1,] 2 1
[2,]
         1
               -1
> print(B)
[1] 5 -1
> augmented_matrix <- cbind(A, B)
> print(augmented_matrix)
             В
[1,] 2 1 5
[2,] 1 -1 -1
> determinant_A <- det(A)
> if(determinant_A == 0){
       cat("No unique solution\n")
       cat("Unique solution")
Unique solution
> augmented_matrix[1, ] <- augmented_matrix[1, ] / augmented_matrix[1, 1]
augmented_matrix[2, ] <- augmented_matrix[2, ] - augmented_matrix[2, 1] * augmented_matrix[1, 1]
> augmented_matrix[2, ] <- augmented_matrix[2, ] / augmented_matrix[2, 2]
> augmented_matrix[1, ] <- augmented_matrix[1, ] - augmented_matrix[1, 2] * augmented_matrix[2, ]</pre>
> solution_gauss <- augmented_matrix[, 3]
> print(solution_gauss)
[1] 1.333333 2.333333
> sol_solve <- solve(A, B)
> print(sol_solve)
[1] 1.333333 2.333333
> A_inverse <- solve(A)
> solution_alt <- A_inverse %*% B
> print(solution_alt)
           [,1]
[1,] 1.333333
[2,] 2.333333
>
```

R 🔻 📑 Global Environment 💌	Q,	
Data		
A	num [1:2, 1:2] 2 1 1 -1	
A_inverse	num [1:2, 1:2] 0.333 0.333 -0.667	
augmented_matrix	num [1:2, 1:3] 1 0 0 1 1.33	
solution_alt	num [1:2, 1] 1.33 2.33	
Values		
В	num [1:2] 5 -1	
determinant_A	-3	
sol_solve	num [1:2] 1.33 2.33	
solution_gauss	num [1:2] 1.33 2.33	
x_vals	num [1:201] -10 -9.9 -9.8 -9.7 -9.6 -9.5 -9.4 -9.3 -9.2 -9.1	
Functions		
f1	function (x)	E
f2	function (x)	187


```
> A <- matrix(c(1, 1, 1, 2, -1, 1, 1, -2, 3), nrow = 3, byrow = TRUE) > B <- c(6, 3, 14)
> print(A)

[,1] [,2] [,3]

[1,] 1 1 1

[2,] 2 -1 1

[3,] 1 -2 3
                  -2
                            3
[3,]
  print(B)
[1] 6 3 14
> augmented_matrix <- cbind(A, B)
> print(augmented_matrix)
B
[1,] 1 1 1 6
[2,] 2 -1 1 3
[3,] 1 -2 3 14
> determinant_A <- det(A)
> if(determinant_A == 0){
+ cat("No unique solution\n")
         cat("Unique solution")
binique solutions
> gauss_jordan <- function(A, B){
+ augmented_matrix <- cbind(A, B)
+ n <- nrow(A)
+ for(i in 1:n){</pre>
               augmented_matrix[i, ] <- augmented_matrix[i, ] / augmented_matrix[i, i]
for(j in 1:n){
   if(j != i){</pre>
                            augmented_matrix[j, ] <- augmented_matrix[j, ] - augmented_matrix[j, i] * augmented_matrix[i, ]
         solution <- augmented_matrix[, n + 1]
         return(solution)
> solution_gauss <- gauss_jordan(A, B)
> print(solution_gauss)
[1] -0.7777778 1.1111111 5.6666667
> sol_solve <- solve(A, B)
> print(sol_solve)
[1] -0.7777778 1.1111111 5.6666667
> A_inverse <- solve(A)
> solution_alt <- A_inverse %*% B
> print(solution_alt)
[,1]
[1,] -0.7777778
[2,] 1.1111111
```


Visualisation of the System of Linear Equations

THREE LINEAR EQUATION:

```
> A <- matrix(c(1, 1, 1, 2, -1, 1, 1, -2, 3), nrow = 3, byrow = TRUE)
> B < -c(6, 3, 14)
> print(A)
    [,1] [,2] [,3]
[1,]
      1
          1
                   1
[2,]
[3,]
            -1
                   1
            -2
        1
                   3
> print(B)
[1] 6 3 14
> augmented_matrix <- cbind(A, B)</pre>
> print(augmented_matrix)
             В
[1,] 1 1 1 6
[2,] 2 -1 1 3
[3,] 1 -2 3 14
> determinant_A <- det(A)</pre>
> if(determinant_A == 0){
      cat("No unique solution\n")
 }else{
      cat("Unique solution")
Unique solution>
> gauss_jordan <- function(A, B){</pre>
      augmented_matrix <- cbind(A, B)</pre>
      n \leftarrow nrow(A)
      for(i in 1:n){
          augmented_matrix[i, ] <- augmented_matrix[i, ] / augmented_matrix[i, i]</pre>
          for(j in 1:n){
               if(j != i){
                   augmented_matrix[j, ] <- augmented_matrix[j, ] - augmented_matrix[j, i] * augment</pre>
ed_matrix[i, ]
      solution <- augmented_matrix[, n + 1]</pre>
```



```
return(solution)
+ }
> solution_gauss <- gauss_jordan(A, B)</pre>
> print(solution_gauss)
[1] -0.7777778 1.1111111 5.6666667
> sol_solve <- solve(A, B)
> print(sol_solve)
[1] -0.7777778 1.1111111 5.6666667
> A_inverse <- solve(A)
> solution_alt <- A_inverse %*% B
> print(solution_alt)
                [,1]
[1,] -0.7777778
[2,] 1.1111111
[3,] 5.6666667
> plane1 <- function(x, y) 6 - x - y
> plane2 <- function(x, y) 3 - 2 * x + y
> plane3 <- function(x, y) (14 - x + 2 * y) / 3
> x_vals <- seq(-10, 10, length.out = 30)
> y_vals <- seq(-10, 10, length.out = 30)</pre>
> z1 <- outer(x_vals, y_vals, plane1)
> z2 <- outer(x_vals, y_vals, plane2)
> z3 <- outer(x_vals, y_vals, plane3)</pre>
> open3d()
wgl
> surface3d(x_vals, y_vals, z1, color = "blue", alpha = 0.5)
> surface3d(x_vals, y_vals, z2, color = "red", alpha = 0.5)
> surface3d(x_vals, y_vals, z3, color = "green", alpha = 0.5)
> solution <- solve(A, B)</pre>
> points3d(solution[1], solution[2], solution[3], col = "black", size = 10)
> texts3d(x = 0, y = 0, z = 0, text = "Origin", col = "black")
> legend3d("topright", legend = c("Plane 1", "Plane 2", "Plane 3", "Solution"),
+ col = c("blue", "red", "green", "black"), pch = c(NA, NA, NA, 19))
```


K. J. Somaiya College of Engineering, Mumbai-77 (A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

R 🕶 🧻 Global Environment 🕶	Q,	
Data		
A	num [1:3, 1:3] 1 2 1 1 -1 -2 1 1 3	
A_inverse	num [1:3, 1:3] 0.111 0.556 0.333 0.556 -0.222	
augmented_matrix	num [1:3, 1:4] 1 2 1 1 -1 -2 1 1 3 6	
solution_alt	num [1:3, 1] -0.778 1.111 5.667	
z1	num [1:30, 1:30] 26 25.3 24.6 23.9 23.2	
z2	num [1:30, 1:30] 13 11.62 10.24 8.86 7.48	
z3	num [1:30, 1:30] 1.333 1.103 0.874 0.644 0.414	
Values		
В	num [1:3] 6 3 14	
determinant_A	-9	
sol_solve	num [1:3] -0.778 1.111 5.667	
solution	num [1:3] -0.778 1.111 5.667	
solution_gauss	num [1:3] -0.778 1.111 5.667	
x_vals	num [1:30] -10 -9.31 -8.62 -7.93 -7.24	
y_vals	num [1:30] -10 -9.31 -8.62 -7.93 -7.24	
Functions		
gauss_jordan	function (A, B)	[88]
plane1	function (x, y)	_RE*
plane2	function (x, y)	RE"
plane3	function (x, y)	28

Conclusion:

I have successfully completed this experiment and learnt how to solve system of linear equations using R programming language.

Post-lab questions:

- 1. Why might certain systems of equations have no solution, a unique solution, or infinitely many solutions?
- 2. Describe atleast three real-world data science problems in detail where solving systems of linear equations is crucial.
- 3. Investigate what happens when you attempt to invert a singular matrix using solve(). How does R handle this scenario?
- 4. What are eigen values and eigen vectors? Describe atleast three real-world data science problems in detail where eigen values and eigen vectors can be applied.

	Aaryan Sharma 16010123012 Date Page
	IDS Exp2
1)	
ע	The number of solutions to a system of equations depends on
	between the ego.
	Nosolution: No intersection, they are inconsistent.
	Unique folution: Intersected at exectly one point
	Infinitely many solution: Egrs are dependent they overlap.
2)	1) Lineau Regression: One predicts a dependent voosietele based on Multiple
	independent variable. The passameters are estimated by linear egns.
	ii) Principal Component Analysis (PCA): It reduces the dimensionality of large
	dataseto by finding principal components. This involve solving a system of
	linear eqn Routed to corcollance matrix to identify direction of monvasione.
(ii) Hidden Markov Models (HMM): HMMs are used in speech recognition-Model
	inlues hidden states. Sowing Line equa gives the most probable sequence of
	hidden states.
7)	It will tail because a singular Matin does not have an invue.
9	R handles this by throwing an error indicating matrix is not
	invertible.
4)	Eigenvalue and eigenvectors are proporties of square matrice.
	They help under cover key pertaem in data.
	Part Hard Applications:
-	and decided to dead to dimposition of the court,
	- Par O A LOW SUPVIOUNT PAINT DUCK
(i	2) Chacker (Westering: Eigen vectors of a similaring graph of hadan
Cas	a Read of the systems. Eigen and the
1	fuctorisation to identify latent features.
	July 1.