Lecture 9

Further hierarchical models

Outline

There is huge scope for elaborating the basic hierarchical models discussed in the previous lecture to reflect additional structure and complexity in the data, e.g.

- Adding covariates at different levels of the hierarchy
- Adding further levels to the hierarchy (patients within wards within hospitals, pupils within schools within local authorities, ...)
- Adding non-nested (cross-classified) levels (patients within GPs crossed with hospitals, . . .)
- Repeated observations on some/all units (longitudinal data)
- Modelling temporal or spatial structure in data, ...

In this lecture, we will discuss:

- Hierarchical models for count data and including covariates
- Hierarchical models for longitudinal data
- Cross-classified models

Hierarchical models for count data: Disease mapping

- In disease mapping, we are interested in modelling counts of disease cases collected on each of a number of geographical areas within a study region
- Here we consider data on the observed number of cases of childhood leukaemia, y_i, diagnosed in a 10 year period in each of i = 1,...,879 areas (electoral wards) in London (data from Thames Cancer Registry)
- Using national age/sex-standardised reference rates for leukaemia and Census population counts, we can also calculate the expected number of cases, E_i, in each area
- Assume a Poisson likelihood for the disease count in each area:

$$y_i \sim \mathsf{Poisson}(\mu_i); \quad \mu_i = \lambda_i E_i; \quad i = 1, \dots, 879$$

- We have 879 *distinct* relative risk parameters λ_i
- What prior should we specify for each λ_i ?

Different modelling assumptions

Identical parameters

Assume $\lambda_i = \lambda$ for all *i* and assign a prior

$$\lambda \sim \mathsf{Gamma}(a, b)$$

with specified values of a and b, e.g.

$$\lambda \sim \text{Gamma}(1,1)$$

→ conjugate Poisson-gamma model

Independent parameters

Assume independent vague priors for each relative risk, e.g.

$$\lambda_i \sim \text{Gamma}(0.1, 0.1), \quad i = 1, \dots, 879$$

 \rightarrow This will give estimates of the posterior mean for $\lambda_i \approx y_i/E_i$, which is the MLE (also termed standardised morbidity ratio, SMR)

Different modelling assumptions (continued)

Similar (exchangeable) parameters

Specify a hierarchical random effects prior:

$$\lambda_i \sim \text{Gamma}(a, b), \quad i = 1, \dots, 879$$

where a and b are unknown parameters to also be estimated

- \rightarrow assign hyperprior distributions to a and b
- → what is a suitable hyperprior for these parameters?

A more flexible hierarchical prior for the relative risks

- A gamma random effects prior for the λ_i is mathematically convenient, but may be restrictive:
 - covariate adjustment (regression) is difficult
 - no possibility for allowing spatial correlation between risks in nearby areas
- A normal random effects prior for $\log \lambda_i$ is more flexible:

$$y_i \sim \operatorname{Poisson}(\mu_i = \lambda_i E_i)$$

 $\log \lambda_i = \alpha + \theta_i$
 $\theta_i \sim \operatorname{Normal}(0, \sigma^2)$

Need to specify hyperprior distributions for

```
\sigma^2 (between-area variance), e.g. \sigma^{-2} \sim \text{Gamma}(0.001, 0.001) \alpha (mean log relative risk), e.g. \alpha \sim \text{Normal}(0, 10000)
```


Parameter Interpretation

- θ_i are the random effects
- $\lambda_i = \exp(\alpha + \theta_i) = \text{relative risk in area } i \text{ compared to expected risk based on age and sex of population}$
- θ_i can also be thought of as a latent variable which captures the effects of unknown or unmeasured area level covariates
- If these area level covariates are spatially structured (e.g. environmental effects), our model for θ_i should allow for this (i.e. replace normal random effects distribution by spatial distribution not covered in this course)
- The variance of the random effects (σ^2) reflects the amount of extra-Poisson variation in the data

Ranking in hierarchical models

- Recent trend in UK towards ranking 'institutional' performance e.g. schools, hospitals or areas
- Rank of a point estimate is a highly unreliable summary statistic
 would like measure of uncertainty about rank
- Bayesian methods provide posterior interval estimates for ranks
- For the leukemia example, at each MCMC iteration, ranking sampled values of $\lambda_1, \ldots, \lambda_{879}$ gives sample from posterior distribution of ranks for each area
- See Goldstein and Spiegelhalter (1996) for further discussion on ranking

BUGS contains 'built-in' options for ranks:

- Rank option of Inference menu monitors the rank of the elements of a specified vector
- rank (x[],i) returns the rank of the ith element of x
- ranked (x[],i) returns the value of the ith-ranked element of x

Quantile ratios to summarise level 2 variability

- Unclear how to define or calculate the VPC for generalised linear hierarchical models
- Alternative summary of variability between units in a hierarchical model is to rank the random effects and calculate the difference or ratio between two units at opposite extremes
- For the leukemia example, suppose we consider the 5th and 95th percentiles of the area relative risk distribution
 - let $\lambda_{5\%}$ denote the relative risk of leukemia for the area ranked at the 5th percentile
 - let $\lambda_{95\%}$ denote the relative risk of leukemia for the area ranked at the 95^{th} percentile
 - ▶ then $QR_{90} = \frac{\lambda_{95\%}}{\lambda_{5\%}} =$ ratio of relative risks of leukemia between the top and bottom 5% of areas
- Using MCMC, we can calculate the ranks, and hence the QR_{90} , at each iteration, and hence obtain a posterior distribution for QR_{90}

BUGS code

```
model {
 for(i in 1 : N) {
  Y[i] ~ dpois(mu[i])
  log(mu[i]) \leftarrow log(E[i]) + alpha + theta[i]
  theta[i] ~ dnorm(0, tau) # area random effects
  lambda[i] <- exp(alpha + theta[i]) # area relative risk</pre>
 # Priors:
 alpha ~ dnorm(0, 0.0001) # vague prior on overall intercept
 tau \sim dgamma(0.5, 0.0005) # precision of area random effects
 sigma <- 1/sqrt(tau) # between-area sd of random effects
 # 90% quantile ratio for area relative risks
 QR90 <- ranked(lambda[],835)/ranked(lambda[],44)
 #rank
 for(i in 1 : N) {
  rank.lambda[i] <- rank(lambda[], i) # rank of area i</pre>
```

Results for childhood leukaemia example

Parameters of interest:

- $e^{\alpha+\theta_i}$ (lambda[i]) = relative risk of leukaemia in area i relative to expected (see map)
- σ (sigma) = between-area standard deviation of log relative risk of leukaemia
 - posterior mean and 95% interval = 0.46 (0.34, 0.62)
- QR₉₀ (QR90) = 4.7 (95% interval 2.9 to 7.5)
 - so 4.7-fold variation in relative risk of leukemia between top and bottom 5% of areas

Maps of estimated area-specific RR of leukaemia

SMR versus posterior mean RR for selected areas

Point estimate and 95% interval for relative risk in selected areas

Posterior distribution of area ranks

Map of mean benzene levels per ward (tonnes per annum on cube root scale)

 Can we explain some of the variation in risk of leukaemia by environmental exposure to benzene?

Including covariates in hierarchical models

- Let X_i = average benzene emissions (tonnes per annum) in ward
 i (following cube-root transformation to reduce skew)
- Include X as a covariate in the hierarchical model:

$$y_i \sim \text{Poisson}(E_i\lambda_i); \quad i = 1, \dots, 873$$
 $\log \lambda_i = \alpha + \beta X_i + \theta_i$
 $\theta_i \sim \text{Normal}(0, \sigma^2)$
 $\alpha, \beta, \sigma^2 \sim \text{vague priors}$

Extract from BUGS code

```
for(i in 1 : N) {
Y[i] ~ dpois(mu[i])
 log(mu[i]) \leftarrow log(E[i]) + alpha + beta*X[i] + theta[i]
theta[i] ~ dnorm(0, tau) # area random effects
lambda[i] <- exp(alpha + beta*X[i] + theta[i]) # area RR</pre>
 residRR[i] <- exp(theta[i]) # unexplained area residual RR
# Priors:
alpha ~ dnorm(0, 0.0001) # vague prior on overall intercept
beta ~ dnorm(0, 0.0001) # vague prior on regression coefficient
RR.benz <- exp(beta) # RR per unit increase in X (benzene)
tau \sim dgamma(0.5, 0.0005) # precision of area random effects
sigma <- 1/sqrt(tau) # between-area sd of random effects
# 90% quantile ratio for area relative risks
QR90 <- ranked(lambda[],835)/ranked(lambda[],44)
# 90% quantile ratio for area residual relative risks
residQR90 <- ranked(residRR[],835)/ranked(residRR[],44)</pre>
```

Results

- e^{β} (RR.benz) = RR of leukaemia associated with unit increase in cube root benzene emissions in area of residence = 2.23 (1.64, 2.96)
- Residual 90% quantile ratio (residQR90) indicates that there is a 3.9-fold (95% CI 1.8 to 5.0-fold) variation in residual relative risk between the top and bottom 5% of areas after adjusting for effects of benzene
 - Compare with estimate of QR₉₀ = 4.7 from model without benzene
- λ_i (lambda) = RR of leukaemia in area i relative to London average (see map)
- e^{θ_i} (residRR) = residual relative risk of leukaemia in area i relative to London average after adjusting for effects of benzene (see map)

Maps of area-specific RR of leukaemia

Longitudinal data

- Arise in studies where individual (or units) are measured repeatedly over time
- For a given individual, observations over time will be typically dependent
- Longitudinal data can arise in various forms:
 - continuous or discrete response
 - discrete response can be binary/binomial, categorical or counts
 - equally spaced or irregularly spaced
 - same or different time points for each individual
 - with or without missing data
 - many or few time points, T
 - many or few individuals or units, n

Analysing longitudinal data

- There are many different ways to analyse longitudinal data
- The key feature of longitudinal data is the need to account for the dependence structure of the data
- Two common methods:
 - random effects (hierarchical) models
 - autoregressive models
- Here, we will focus on random effects models

HAMD Example: antidepressant clinical trial

- 6 centre clinical trial, comparing 3 treatments of depression
- 367 subjects randomised to one of 3 treatments
- Subjects rated on Hamilton depression score (HAMD) on 5 weekly visits
 - week 0 before treatment
 - weeks 1-4 during treatment
- HAMD score takes values 0-50
 - the higher the score, the more severe the depression
- Subjects drop out from week 2 onwards, but for now we
 - ignore the subjects who dropped out
 - analyse the 246 complete cases
- Data was previously analysed by Diggle and Kenward (1994)

HAMD Example: data

HAMD Example: objective

- Study objective: are there any differences in the effects of the 3 treatments on the change in HAMD score over time?
- The variables we will use are:
 - y: Hamilton depression (HAMD) score
 - t: treatment
 - w: week
- For simplicity we will
 - ignore any centre effects
 - assume linear relationships
- The models we will consider are:
 - a non-hierarchical model (standard linear regression)
 - a hierarchical model with random intercepts
 - a hierarchical model with random intercepts and random slopes

HAMD Example: a Bayesian (non-hierarchical) linear model (LM)

- Specification:
 - probability distribution for responses:

$$y_{iw} \sim \text{Normal}(\mu_{iw}, \sigma^2)$$

 y_{iw} = the HAMD score for individual *i* in week *w* (weeks 0,...,4)

- linear predictor: $\mu_{iw} = \alpha + \beta_{treat(i)} w$
- treat(i) = the treatment indicator of individual i, so it can take values 1, 2 or 3
 - w = the week of the visit, takes value 0 for visit before treatment and values 1-4 for follow-up visits
- In this model no account is taken of the repeated structure (observations are nested within individuals)
- Assume vague priors for all parameters:

$$\alpha, \beta_1, \beta_2, \beta_3 \sim \text{Normal}(0, 10000)$$

$$\frac{1}{\sigma^2} \sim \text{Gamma}(0.001, 0.001)$$

HAMD Example: a Bayesian hierarchical linear model

Modify LM to allow a separate intercept for each individual:

$$y_{iw} \sim \text{Normal}(\mu_{iw}, \sigma^2)$$

 $\mu_{iw} = \alpha_i + \beta_{treat(i)} w$

We are assuming that *conditionally* on α_i , $\{y_{iw}, w = 0, ..., 4\}$ are independent

• Assume that all the $\{\alpha_i\}$ follow a *common* prior distribution, e.g.

$$\alpha_i \sim \mathsf{Normal}(\mu_\alpha, \sigma_\alpha^2) \quad i = 1, \dots, 246$$

Here we are assuming exchangeability between all the individuals

 We may then assume vague priors for the hyperparameters of the population distribution:

$$\mu_{\alpha} \sim \text{Normal}(0, 10000)$$

 $\sigma_{\alpha} \sim \text{Uniform}(0, 100)$

 This is an example of a Hierarchical LM or Linear Mixed Model (LMM) or Random Intercepts model

HAMD Example: DAGs for LM and LMM

non-hierarchical model (LM)

hierarchical model (LMM)

 t_i represents the treatment indicator of individual i

HAMD Example: WinBUGS code for LM and LMM

Part of WinBUGS code for non-hierarchical model:

```
for (i in 1:N) { # N individuals
  for (w in 1:W) { # W weeks
    hamd[i,w]~dnorm(mu[i,w],tau)
    mu[i,w]<-alpha+beta[treat[i]]*(w-1)
  }
}
# specification of priors ....</pre>
```

Part of WinBUGS code for hierarchical model:

```
for (i in 1:N) { # N individuals
  for (w in 1:W) { # W weeks
    hamd[i,w]~dnorm(mu[i,w],tau)
    mu[i,w]<-alpha[i]+beta[treat[i]]*(w-1)
  }
  alpha[i]~dnorm(alpha.mu,alpha.tau) # random intercepts
}
# specification of priors ....</pre>
```

HAMD Example: WinBUGS code for priors

Prior specification for non-hierarchical model:

```
alpha~dnorm(0,0.00001)
for (t in 1:T){  # T treatments
  beta[t]~dnorm(0,0.00001)
  }
tau~dgamma(0.001,0.001)
sigma.sq<-1/tau  # Normal errors</pre>
```

Prior specification for hierarchical model:

```
alpha.mu~dnorm(0,0.00001)
alpha.sigma~dunif(0,100)
alpha.sigma.sq<-pow(alpha.sigma,2)
alpha.tau<-1/alpha.sigma.sq
for (t in 1:T) { # T treatments
  beta[t]~dnorm(0,0.00001)
  }
tau~dgamma(0.001,0.001)
sigma.sq<-1/tau # Normal errors</pre>
```

HAMD Example: LM and LMM fitted lines

circles and triangles represent scores for 6 individuals (2 for each treatment)

- LM:
 - 3 regressions lines fitted, 1 for each treatment
 - each treatment has the same intercept, but a different slope
- LMM:
 - each individual has a different regression line
 - but for each treatment, individuals have the same slope

HAMD Example: results for LM and LMM

Table: posterior mean (95% credible interval) for the non-hierarchical and hierarchical models fitted to the HAMD data

	non-hi	erarchical model	hierarchical model		
α	19.8	(19.2,20.4)	μ_{α}	19.8	(19.1,20.5)
			σ_{α}^{2}	17.6	(14.0,21.9)
eta_{1}	-2.1	(-2.4,-1.8)	eta_{1}	-2.3	(-2.6,-2.0)
β_2	-2.9	(-3.2,-2.6)	β_2	-2.8	(-3.0,-2.5)
β_3	-1.8	(-2.1,-1.5)	β_3	-1.7	(-2.0,-1.5)
σ^2	35.4	(32.6,38.5)	σ^2	18.2	(16.6,19.8)

Note

- the variability in the intercept in the hierarchical model
- how the residual variance (σ^2) is reduced when random effects are incorporated

HAMD Example: revisiting the data

The plot of the raw data

- indicates that separate intercepts are appropriate
- also suggests including separate slopes

So we add random slopes to the hierarchical model

HAMD Example: adding random slopes

• Modify LMM to allow a separate slope for each individual:

$$y_{iw} \sim \text{Normal}(\mu_{iw}, \sigma^2)$$

 $\mu_{iw} = \alpha_i + \beta_{(treat(i),i)} w$

• As for the $\{\alpha_i\}$, assume that the $\{\beta_{(1,i)}\}, \{\beta_{(2,i)}\}$ & $\{\beta_{(3,i)}\}$ follow *common* prior distributions with vague priors on their *hyperparameters*

```
for (i in 1:N) { # N individuals
  for (w in 1:W) { # W weeks
    hamd[i,w]~dnorm(mu[i,w],tau)
    mu[i,w] < -alpha[i] + beta[treat[i],i] * (w-1)
  alpha[i]~dnorm(alpha.mu,alpha.tau)
  for (t in 1:T) {beta[t,i]~dnorm(beta.mu[t],beta.tau[t])}
# Priors
for (t in 1:T) { # T treatments
 beta.mu[t]~dnorm(0,0.00001)
 beta.sigma[t]~dunif(0,100)
 beta.sigma.sg[t] <-pow(beta.sigma[t],2)
 beta.tau[t] <-1/beta.sigma.sq[t]</pre>
         # specification of other priors as before ....
```

HAMD Example: random intercepts and slopes

circles and triangles represent scores for 6 individuals (2 for each treatment)

- LMM with random intercepts only:
 - each individual has a different regression line
 - but for each treatment, only intercept varies by individual
- LMM with random intercepts and random slopes:
 - now intercepts and slopes both vary
 - better fit for each individual

HAMD Example: results comparison

Table: posterior mean (95% credible interval) for the non-hierarchical and hierarchical models fitted to the HAMD data

	line	ear model	hierarchical model 1*			hierarchical model 2 [†]		
α	19.8	(19.2,20.4)	μ_{α}	19.8	(19.1,20.5)	μ_{α}	19.8	(19.2,20.4)
			σ_{α}^{2}	17.6	(14.0,21.9)	σ_{α}^{2}	11.1	(8.4, 14.4)
eta_{1}	-2.1	(-2.4,-1.8)	eta_{1}	-2.3	(-2.6,-2.0)	μ_{eta_1}	-2.3	(-2.7,-1.9)
						$\sigma_{eta_1}^{2}$	2.0	(1.2,3.0)
eta_{2}	-2.9	(-3.2, -2.6)	β_2	-2.8	(-3.0, -2.5)	μ_{eta_2}	-2.8	(-3.2, -2.4)
						$\sigma_{\beta_2}^2$	1.2	(0.5,2.0)
eta_{3}	-1.8	(-2.1,-1.5)	β_3	-1.7		. , .		(-2.1,-1.4)
						$\sigma_{eta_3}^{2}$	1.9	(1.1,2.9) (13.0,15.9)
σ^2	35.4	(32.6, 38.5)	σ^2	18.2	(16.6, 19.8)	σ^2	14.4	(13.0,15.9)
p_D	5		p_D	207		p_D	314	
DIC	7882		DIC	7263		DIC	7082	

^{*} random intercepts only

[†] random intercepts and random slopes

HAMD Example: interpretation of results

- Study objective: are there any differences in the effects of the 3 treatments on the change in HAMD score over time?
- So we are particularly interested in the differences in the slope parameters, i.e.
 - \triangleright $\beta_1 \beta_2$, $\beta_1 \beta_3$ and $\beta_2 \beta_3$ or
 - $\mu_{\beta_1} \mu_{\beta_2}$, $\mu_{\beta_1} \mu_{\beta_3}$ and $\mu_{\beta_2} \mu_{\beta_3}$ for models with random slopes
- To monitor these contrasts, add the following lines of BUGS code

```
# Calculate contrasts
contrasts[1]<-beta[1]-beta[2]
contrasts[2]<-beta[1]-beta[3]
contrasts[3]<-beta[2]-beta[3]</pre>
```

or

```
contrasts[1]<-beta.mu[1]-beta.mu[2] ...</pre>
```

HAMD Example: contrasts

Table: posterior mean (95% credible interval) for the contrasts (treatment comparisons) from models fitted to the HAMD data

treatments	linear model		hiera	archical 1*	hierarchical 2 [†]	
1 v 2	0.8	(0.4,1.1)	0.5	(0.1,0.8)	0.5	(0.0,1.0)
1 v 3	-0.3	(-0.7,0.0)	-0.6	(-0.9,-0.2)	-0.6	(-1.1,0.0)
2 v 3	-1.1	(-1.4,-0.8)	-1.0	(-1.4,-0.7)	-1.1	(-1.6,-0.6)

^{*} random intercepts only

Density plots for hierarchical 2

[†] random intercepts and random slopes

Cross-classified random effects models

- Straightforward to extend basic hierarchical model to include non-nested random effects structures, e.g.
 - ▶ THM measurements cross-classified within zones and years
 - pupils cross-classified within primary and secondary schools
- Easiest to formulate cross-classified models in BUGS using nested index notation (see example)

Example: Schools – exam scores cross-classified by primary and secondary school

- These data were obtained from the MLwiN website www.mlwin.com/softrev/2lev-xc.html
- We use a random sample of 800 children who attended 132 primary schools and 19 secondary schools in Scotland
- The following variables were used
 - Y exam attainment score of pupils at age 16
 - VRQ verbal reasoning score taken on secondary school entry
 - SEX pupil's gender (0 = boy, 1 = girl)
 - PID primary school identifying code
 - SID secondary school identifying code
- Model 1: Normal hierarchical model with independent random effects for primary school and secondary school
- Model 2: Verbal reasoning score + gender included as 'fixed' covariate effects (but note that in Bayesian framework, 'fixed' effect coefficients are still assigned prior distributions)

BUGS model code (Model 2)

```
for(i in 1:Nobs) {
Y[i] ~ dnorm(mu[i], tau.e)
mu[i] \leftarrow alpha + beta[1]*SEX[i] + beta[2]*VRQ[i] +
               theta.ps[PID[i]] + theta.ss[SID[i]]
### random effects distributions
for(j in 1:Nprim) { theta.ps[j] ~ dnorm(0, tau.ps) } # primary
for(k in 1:Nsec) { theta.ss[k] ~ dnorm(0, tau.ss) } # secondary
### priors on regression coefficients and variances
tau.e \sim dgamma(0.001, 0.001)
sigma2.e <- 1/tau.e  # residual error variance
tau.ps \sim dgamma(0.001, 0.001)
sigma2.ps <- 1/tau.ps # between primary school var.
tau.ss ~ dgamma(0.001, 0.001)
sigma2.ss <- 1/tau.ss  # between secondary school var.
alpha ~ dnorm(0, 0.000001) # intercept
for (q in 1:2) {beta[q] ~ dnorm(0, 0.000001)} # regression coeff.
### percentage of total variance explained
VPC.ps <- sigma2.ps/(sigma2.e+sigma2.ps+sigma2.ss) # primary</pre>
VPC.ss <- sigma2.ss/(sigma2.e+sigma2.ps+sigma2.ss) # secondary</pre>
```

Results

Parameters		Model 1	Model 2		
α	5.53	(5.17, 5.88)	5.85	(5.59, 6.10)	
β_1 (sex)	_	_	0.23	(-0.08, 0.53)	
β_2 (VRQ)	_	_	0.16	(0.15, 0.17)	
$\sigma^2_{[e]}$	8.18	(7.35, 9.10)	4.49	(4.03, 5.00)	
$\sigma_{[ps]}^2$	1.12	(0.43, 1.98)	0.36	(0.08, 0.70)	
$\sigma_{[ss]}^2$	0.19	(0.10, 0.82)	0.02	(0.0007, 0.12)	
VPC _{ps}	11.8%	(4.7%, 19.8%)	7.4%	(1.5%, 13.8%)	
VPC_{ss}	2.0%	(0.1%, 8.3%)	0.4%	(0.01%, 2.4%)	
DIC	4008		3514		
p_D	58.0		43.8		

