Linear Regression

Dr. Víctor Uc Cetina

Universität Hamburg

Content

- Problem 1 Housing Data
- Least Mean Square
- 3 The Normal Equations
- 4 A Probabilistic Interpretation
- 5 Locally Weighted Linear Regression

Housing Data

Suppose we have the following housing data:

Living area (feet square)	Price (USD)
560	37
1012	79
893	76
2196	130
:	:
936	72

3/34

Housing Data

One Dimensional Regression Problem

Living area (x_1)	Price (y)
560	37
1012	79
893	76
2196	130
:	:
936	72

We are looking for something like: $h_{\theta}(\mathbf{x}) = \theta_0 + \theta_1 x_1$

Dr. Víctor Uc Cetina Linear Regression Universität Hamburg 5/34

Two Dimensional Regression Problem

Living area (x_1)	Bedrooms (x_2)	Price (y)
560	2	37
1012	3	79
893	3	76
2196	4	130
÷	i i	:
936	3	72

Now, we are looking for something like: $h_{\theta}(\mathbf{x}) = \theta_0 + \theta_1 x_1 + \theta_2 x_2$

Letting $x_0 = 1$ we have: $h(\mathbf{x}) = \sum_{j=0}^n \theta_j x_j$

This is the dot product: $\theta^{\top} \mathbf{x}$

Dr. Víctor Uc Cetina Linear Regression Universität Hamburg 6/34

$$y = 1$$
$$y = \theta_0$$

Dr. Víctor Uc Cetina

$$y = 2x$$
$$y = \theta_1 x$$

$$y = 1 + 2x$$
$$y = \theta_0 + \theta_1 x$$

$$y = 1 + 2x + 2x^2$$
$$y = \theta_0 + \theta_1 x + \theta_2 x^2$$

Dr. Víctor Uc Cetina Universität Hamburg

10/34

$$y = 1 + 2x + 2x^{2} + 2x^{3}$$
$$y = \theta_{0} + \theta_{1}x + \theta_{2}x^{2} + \theta_{3}x^{3}$$

Dr. Víctor Uc Cetina Universität Hamburg

11/34

$$y = 0.1 - 0.2x + 0.2x^{2} - 0.156x^{3}$$
$$y = \theta_{0} + \theta_{1}x + \theta_{2}x^{2} + \theta_{3}x^{3}$$

Dr. Víctor Uc Cetina

How do we pick θ ?

- One reasonable method is to pick θ such that h(x) is close to y, at least for our m training examples.
- We define the cost function $J(\theta) = \frac{1}{2} \sum_{i=1}^{m} [h_{\theta}(x_i) y_i]^2$.
- We can initialize randomly θ and use the gradient descent algorithm to find the θ that minimizes $J(\theta)$.
- $\theta_j := \theta_j \alpha \frac{\partial}{\partial \theta_j} J(\theta)$.

Estimating parameters

In blue, the initial $h_{\theta}(x)$ function, with randomly generated θ 's. In black, the final $h_{\theta}(x)$ function.

Graph of the error

Plot of the error $J(\theta) = \frac{1}{2} \sum_{i=1}^{m} [h_{\theta}(x_i) - y_i]^2$, after each iteration of stochastic gradient descent.

Gradient Descent

Deriving the LMS Learning Rule

$$\frac{\partial}{\partial \theta_{j}} J(\theta) = \frac{\partial}{\partial \theta_{j}} \frac{1}{2} (h_{\theta}(x) - y)^{2}$$

$$= 2 \cdot \frac{1}{2} (h_{\theta}(x) - y) \cdot \frac{\partial}{\partial \theta_{j}} (h_{\theta}(x) - y)$$

$$= (h_{\theta}(x) - y) \cdot \frac{\partial}{\partial \theta_{j}} \left(\sum_{k=0}^{K} \theta_{k} x_{k} - y \right)$$

$$= (h_{\theta}(x) - y) x_{j}$$

For a single example i, the rule is:

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta)$$

$$\theta_j := \theta_j + \alpha [y_i - h_{\theta}(x_i)](x_i)_j$$

Applying the update rule

The rule is:

$$\theta_j := \theta_j + \alpha [y_i - h_\theta(x_i)](x_i)_j$$

Consider that your third example is $x_3 = 2$, $y_3 = 20$ and your learning rate is $\alpha = 0.1$.

Consider also that you are using a polynomial of degree 3:

$$h_{\theta}(x) = \theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3.$$

The update rule is applied as follows:

$$\begin{split} \theta_0 &:= \theta_0 + 0.1 \big[20 - h_{\theta}(2) \big] 2^0. \\ \theta_1 &:= \theta_1 + 0.1 \big[20 - h_{\theta}(2) \big] 2^1. \\ \theta_2 &:= \theta_2 + 0.1 \big[20 - h_{\theta}(2) \big] 2^2. \\ \theta_3 &:= \theta_3 + 0.1 \big[20 - h_{\theta}(2) \big] 2^3. \end{split}$$

LMS Algorithms

Batch Gradient Descent

```
Repeat until convergence {
     \theta_i := \theta_i + \alpha \sum_{i=1}^m [y_i - h_\theta(x_i)](x_i)_i
                                                            (for every i).
Stochastic Gradient Descent
```

```
Loop {
      for i = 1 to m {
           \theta_i := \theta_i + \alpha [y_i - h_{\theta}(x_i)](x_i)_i
                                                              (for every i).
```

LMS Algorithms

Mini-Batch Gradient Descent

```
Repeat until convergence { \theta_j := \theta_j + \alpha \sum_{i=1}^k \left[ y_i - h_\theta(x_i) \right] (x_i)_j \qquad \text{(for every $j$)}. }
```

Here we use mini-batches containing 10 to 1000 examples. This is $k \in [10, 1000]$.

20 / 34

Matrix of Training Examples

Given a training set of m examples, with each example consisting of n variables, then we can construct a $m \times (n+1)$ matrix:

$$\mathbf{X} = \begin{bmatrix} x_{1,0} & x_{1,1} & \cdots & x_{1,n} \\ x_{2,0} & x_{2,1} & \cdots & x_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ x_{m,0} & x_{m,1} & \cdots & x_{m,n} \end{bmatrix} = \begin{bmatrix} \begin{bmatrix} \mathbf{x}_1 \end{bmatrix}^\top \\ \begin{bmatrix} \mathbf{x}_2 \end{bmatrix}^\top \\ \vdots \\ \begin{bmatrix} \mathbf{x}_m \end{bmatrix}^\top \end{bmatrix}$$

Vector of Training Target Values

Let **y** be the *m*-dimensional vector containing the target values from the training set:

$$\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{bmatrix}$$

Cost Function $J(\theta)$

We can write the $J(\theta)$ cost function as follows:

$$J(\theta) = \frac{1}{2} \sum_{i=1}^{m} \left[h_{\theta}(x_i) - y_i \right]^2$$
$$\frac{1}{2} (\mathbf{X}\theta - \mathbf{y})^{\top} (\mathbf{X}\theta - \mathbf{y})$$

and the $\nabla_{\theta} J(\theta)$ can be written as:

$$\nabla_{\theta} J(\theta) = \nabla_{\theta} \frac{1}{2} (\mathbf{X} \theta - \mathbf{y})^{\top} (\mathbf{X} \theta - \mathbf{y})$$

$$\nabla_{\theta} J(\theta) = \mathbf{X}^{\top} \mathbf{X} \theta - \mathbf{X}^{\top} \mathbf{y}$$

$$0 = \mathbf{X}^{\top} \mathbf{X} \theta - \mathbf{X}^{\top} \mathbf{y}$$

$$\mathbf{X}^{\top} \mathbf{X} \theta = \mathbf{X}^{\top} \mathbf{y}$$

$$\theta = (\mathbf{X}^{\top} \mathbf{X})^{-1} \mathbf{X}^{\top} \mathbf{y}.$$

For an n by n square matrix A, the trace of A is defined to be the sum of its diagonal entries

$$\operatorname{tr} A = \sum_{i=1}^n A_{ii}$$

If a is a real number, then

$$tr a = a$$

For matrices A, B, C and D, we have that

$$tr AB = tr BA$$

$$tr ABC = tr CAB = tr BCA$$

$$tr ABCD = tr DABC = tr CDAB = tr BCDA$$

For matrices A and B, and real number a, we have that

$$\operatorname{tr} A = \operatorname{tr} A^{\top}$$

$$\operatorname{tr} A + B = \operatorname{tr} A + \operatorname{tr} B$$

$$tr aA = a tr A$$

$$\nabla_A \operatorname{tr} AB = B^{\top}$$

$$\nabla_{A^{\top}} f(A) = (\nabla_{A} f(A))^{\top}$$

$$\nabla_{A^{\top}} \operatorname{tr} ABA^{\top} C = B^{\top} A^{\top} C^{\top} + BA^{\top} C$$

$$\begin{split} \nabla_{\theta} J(\theta) &= \nabla_{\theta} \frac{1}{2} (\mathbf{X} \theta - \mathbf{y})^{\top} (\mathbf{X} \theta - \mathbf{y}). \\ &= \nabla_{\theta} \frac{1}{2} (\theta^{\top} \mathbf{X}^{\top} - \mathbf{y}^{\top}) (\mathbf{X} \theta - \mathbf{y}). \\ &= \frac{1}{2} \nabla_{\theta} (\theta^{\top} \mathbf{X}^{\top} \mathbf{X} \theta - \theta^{\top} \mathbf{X}^{\top} \mathbf{y} - \mathbf{y}^{\top} \mathbf{X} \theta + \mathbf{y}^{\top} \mathbf{y}). \\ &= \frac{1}{2} \nabla_{\theta} \operatorname{tr} (\theta^{\top} \mathbf{X}^{\top} \mathbf{X} \theta - \theta^{\top} \mathbf{X}^{\top} \mathbf{y} - \mathbf{y}^{\top} \mathbf{X} \theta + \mathbf{y}^{\top} \mathbf{y}). \\ &= \frac{1}{2} \nabla_{\theta} \operatorname{tr} \theta^{\top} \mathbf{X}^{\top} \mathbf{X} \theta - \operatorname{tr} \theta^{\top} \mathbf{X}^{\top} \mathbf{y} - \operatorname{tr} \mathbf{y}^{\top} \mathbf{X} \theta + \operatorname{tr} \mathbf{y}^{\top} \mathbf{y}. \\ &= \operatorname{Using} \operatorname{tr} A = \operatorname{tr} A^{\top} \operatorname{and} (ABC)^{\top} = C^{\top} B^{\top} A^{\top}, \\ \operatorname{we} \operatorname{have} \operatorname{tr} \theta^{\top} \mathbf{X}^{\top} \mathbf{y} = \operatorname{tr} (\theta^{\top} \mathbf{X}^{\top} \mathbf{y})^{\top} = \operatorname{tr} \mathbf{y}^{\top} \mathbf{X} \theta. \\ &= \frac{1}{2} \nabla_{\theta} \operatorname{tr} \theta^{\top} \mathbf{X}^{\top} \mathbf{X} \theta - 2 \operatorname{tr} \mathbf{y}^{\top} \mathbf{X} \theta. \end{split}$$

$$\nabla_{\theta} J(\theta) = \frac{1}{2} \nabla_{\theta} \operatorname{tr} \theta^{\top} \mathbf{X}^{\top} \mathbf{X} \theta - 2 \operatorname{tr} \mathbf{y}^{\top} \mathbf{X} \theta.$$

$$\frac{1}{2} \nabla_{\theta} \operatorname{tr} \theta^{\top} \mathbf{X}^{\top} \mathbf{X} \theta - 2 \nabla_{\theta} \operatorname{tr} \mathbf{y}^{\top} \mathbf{X} \theta.$$
Using $\operatorname{tr} AB = \operatorname{tr} BA$, with $A = \mathbf{y}^{\top} \mathbf{X}$, $B = \theta$.
$$\frac{1}{2} \nabla_{\theta} \operatorname{tr} \theta^{\top} \mathbf{X}^{\top} \mathbf{X} \theta - 2 \nabla_{\theta} \operatorname{tr} \theta \mathbf{y}^{\top} \mathbf{X}.$$
Using $\nabla_{A^{\top}} \operatorname{tr} ABA^{\top} C = B^{\top} A^{\top} C^{\top} + BA^{\top} C$, with $A^{\top} = \theta$, $B = \mathbf{X}^{\top} \mathbf{X}$, $C = I$, and using $\nabla_{A} \operatorname{tr} AB = B^{\top}$, with $A = \theta$, $B = \mathbf{y}^{\top} \mathbf{X}$.
$$= \frac{1}{2} (\mathbf{X}^{\top} \mathbf{X} \theta + \mathbf{X}^{\top} \mathbf{X} \theta - 2 \mathbf{X}^{\top} \mathbf{y}).$$

$$= \mathbf{X}^{\top} \mathbf{X} \theta - \mathbf{X}^{\top} \mathbf{y}.$$

Why the Cost Function J is Reasonable?

Given a training example i, we may write

$$y_i = \theta^\top \mathbf{x}_i + \epsilon_i,$$

with the assumption

$$\epsilon_i \sim \mathcal{N}(0, \sigma^2).$$

Therefore, the density of ϵ_i is given by

$$p(\epsilon_i) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(\epsilon_i)^2}{2\sigma^2}\right).$$

This implies

$$p(y_i|\mathbf{x}_i;\theta) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(y_i - \theta^\top \mathbf{x}_i)^2}{2\sigma^2}\right).$$

Likelihood of θ

The likelihood of θ is:

$$L(\theta) = L(\theta; \mathbf{X}; \mathbf{y}) = p(\mathbf{y}|\mathbf{X}; \theta).$$

Given the independence assumption on the ϵ_i 's, we can also write:

$$L(\theta) = \prod_{i=1}^{m} p(y_i | \mathbf{x}_i; \theta)$$
$$= \prod_{i=1}^{m} \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(y_i - \theta^{\top} \mathbf{x}_i)^2}{2\sigma^2}\right).$$

Maximum Likelihood of θ

$$\ell = \log L(\theta)$$

$$= \log \prod_{i=1}^{m} \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(y_i - \theta^{\top} \mathbf{x}_i)^2}{2\sigma^2}\right)$$

$$= \sum_{i=1}^{m} \log \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(y_i - \theta^{\top} \mathbf{x}_i)^2}{2\sigma^2}\right)$$

$$= m \log \frac{1}{\sqrt{2\pi}\sigma} - \frac{1}{\sigma^2} \cdot \frac{1}{2} \sum_{i=1}^{m} (y_i - \theta^{\top} \mathbf{x}_i)^2$$

Hence, maximizing $\ell(\theta)$ gives the same answer as minimizing

$$\frac{1}{2}\sum_{i=1}^m (y_i - \theta^\top \mathbf{x}_i)^2.$$

Locally Adjusting the Model

The algorithm works as follows:

- Fit θ to minimize $\sum_i w_i (y_i \theta^\top x_i)^2$.
- **2** Output $\theta^{\top} x$.

Where w_i 's are non-negative valued weights.

A good choice for the weights is:

$$w_i = \exp\left(-\frac{(x_i - x)^2}{2\tau^2}\right)$$

Locally Adjusting the Model

Thank you!

Dr. Víctor Uc Cetina cetina@informatik.uni-hamburg.de