Introduction to Relational Databases

- Bachelor CS, Lille 1 University
- Oct. 5th, 2011 (lecture 6/12)
- Today's lecturer: A. Bonifati
- Topic: Introduction to Database Modeling (aka Logical Modeling, transformation from Conceptual Modeling to Logical Modeling)

Prologue: Logical Model

- Today's lecture: where are we?
 - -we have now the conceptual model; we need to enforce a transformation from the conceptual model to a logical model
- Goals of the logical model
 - -allows to get closer to the implementation of the database
 - -starting from a more abstract (conceptual) model that was conceived before

2

Summary

- Introduction
- -The design process of a database
- An Algorithm for Logical Modeling
- -Translation of the classes
- -Translation of m-m associations
- -Translation of 1-m associations
- -Translation of 1-1 associations
- The resulting database

Introduction

- We are designing a database
- -we have already completed (at least one iteration of) the analysis phase
- Activities to carry out
- -define the architecture of the application
- -define the structure and the attributes of the classes
- -define the structure of the database
- Next phase: development

The design process of a database

- Starting point
- -the conceptual modeling for the data
- Logical design
- -derive the logical schema from the conceptual model and, eventually, external schemas (views on the database)
- Physical design
- -verify and, possibly, optimize the logical schema

5

The design process of a database

- Logical design
- -it relies on a standard algorithm
- Physical design
- -mixed mode activity: design and "tuning"
- -too difficult to standardize
- In this lecture
- -we focus on the logical design

6

Translation Algorithm

- For now
- -we will study a simplified version
- Steps of the algorithm
- -initial translation of the classes
- -translation of m-m associations
- -translation of 1-m associations
- -translation of 1-1 associations

Course Exam < corresponds to <<id>>> cid advisor only if degree enrolled at 3rd Y 0..* teaches 1..1 has passed > Student Internship <<id>>> sid lastname advisor > place lastname startingDate 0..1 0..* faculty status academicYear Conceptual Schema

Translation Algorithm

- Graphical notations for the relations
- -we still use a suitable stereotype of UML
- -that lets encode a table
- -its attributes
- -the primary keys
- -the possible foreign keys

9

Translation Algorithm

• Example:

CREATE TABLE Student (
 sid integer PRIMARY KEY,
 lastname char(20),
 name char(20),
 year integer,
 degree char(20),
 advisor char(4) REFERENCES Lecturer(pid));

Student	Т
sid INTEGER	PK
lastname CHAR(20)	
name CHAR(20)	
year INTEGER	
degree CHAR(20)	
advisor CHAR(4)	FK

Lecturer T
pid CHAR(4) PK
...

10

Translation of classes

- Idea
- -each class is converted into a table
- -initially, the same set of attributes
- -other attributes can be added afterwards
- It is mandatory
- -identify the type of attributes
- -identify the primary key
- -identify possible foreign keys

Translation of classes

- Primary key
- -it has to be easy to use and concise
- -it typically corresponds to an explicit identifier (e.g.: sid for Student, cid for Course)
- -otherwise, it is a synthetic identifier

12

Translation of m-m associations

- Each m-m association is converted into
 - −a new table
- with foreign keys to the classes connected by the association
- -with the attributes of the association, if any
- the primary key of the association is composed of both foreign keys of the connecting classes (each instance of the association is identified by a pair of elements)

Translation of m-m associations Course cid CHAR(3) PK Course title CHAR(20) <<id>>> cid degree CHAR(20) 0..* title Teaching degree cid CHAR(3) PK. FK teaches pid CHAR(4) PK, FK Lecturer lastname Lecturer name PK pid CHAR(4) faculty lastname CHAR(20) status name CHAR(20)

<u>cid</u>	title	degree
PR1	Programming I	Licence
ASD	Algorithms and DS	Licence
INFT	Theoretical CS	Master

lecturer	course
FT	PR1
CV	ASD
FT	ASD

pid	lastname	name	
FT	Totti	Francesco	
CV	Vieri	Christian	
ADP	Del Piero	Alessandro	

Translation of the 1-m associations

- In principle
- -could introduce new tables (as for m-m case)
- it would be inefficient: we would need to join the obtained tables
- They generate foreign keys
- each instance of the association is identified by the object on the side of the association with cardinality
- -it enforces a foreign key corresponding to the side of the association with cardinality 1 into the table with cardinality m

Translation of the 1-m associations

pid	lastname	name	
FT	Totti	Francesco	
CV	Vieri	Christian	
ADP	Del Piero	Alessandro	

sid	lastname	name	 advisor
111	Rossi	Mario	 null
222	Neri	Paolo	 null
333	Rossi	Maria	 null
444	Pinco	Palla	 FT
77777	Bruno	Pasquale	 FT
88888	Pinco	Pietro	 CV

21

Translation of the 1-1 associations

- Similar discussion as previously
- −I can choose where to put the foreign key
- -it is preferable to use as foreign key the primary key of the class which is on the side of the association with minimum cardinality equal to 1
- Example
- -Student has done an Internship

The final database schema in SQL

```
CREATE TABLE Lecturer (
   pid char(4) PRIMARY KEY,
   lastname varchar(20) NOT NULL,
   name varchar(20) NOT NULL,
   status char(15),
   faculty char(10),
   type char(10) NOT NULL
);

CREATE TABLE Student (
   sid integer PRIMARY KEY,
   lastname varchar(20) NOT NULL,
   name varchar(20) NOT NULL,
   degree char(20),
   year integer,
   advisor char(4) REFERENCES Lecturer(pid)
);
```

The final database schema in SQL

```
CREATE TABLE Course (
    cid char(3) PRIMARY KEY,
    title varchar(20) NOT NULL,
    degree char(20)
);

CREATE TABLE Exam (
    eid char(5) PRIMARY KEY,
    student integer NOT NULL REFERENCES Student(sid)
    ON DELETE cascade ON UPDATE cascade,
    course char(3) NOT NULL REFERENCES Course(cid),
    grade integer,
    plus bool,
    date date,
    UNIQUE (studente, corso)
);
```

26

The final database schema in SQL

```
CREATE TABLE Internship (
   id INTEGER PRIMARY KEY,
   student integer REFERENCES Student(sid),
   place char(20) NOT NULL,
   startingDate date,
   duration integer
);

CREATE TABLE Teaching (
   lecturer char(4) REFERENCES Lecturer(pid),
   course char(3) REFERENCES Course(cid),
   PRIMARY KEY (lecturer, course)
);
```

A Possible Instance

Lecturer

pic	l	lastname	name	status	faculty	type
FT	,	Totti	Francesco	full	Engineering	staff
CV	7	Vieri	Christian	associate	Sciences	staff
AD	P	Del Piero	Alessandro	null	null	external

Student

sid	lastname	name	degree	year	advisor
111	Rossi	Mario	Licence	1	null
222	Neri	Paolo	Licence	2	null
333	Rossi	Maria	Licence	1	null
444	Pinco	Palla	Licence	3	FT
77777	Bruno	Pasquale	Master	1	FT
88888	Pinco	Pietro	Master	1	CV

28

27

Course

cid	title	degree
PR1	Programmazione I	Licence
ASD	Algoritmi e Str. Dati	Licence
INFT	Informatica Teorica	Master

Exam

<u>eid</u>	student	course	grade	plus	date
pr101	111	PR1	С	false	2002-06-12
asd01	222	ASD	A	true	2001-12-03
inft1	111	INFT	С	false	2001-09-30
pr102	77777	PR1	D	false	2002-06-12
asd02	77777	ASD	С	false	2001-12-03
asd03	88888	ASD	В	false	2002-06-13
pr103	88888	PR1	A	false	2002-07-01
inft2	88888	INFT	A	true	2001-09-30

29

Internship

<u>id</u>	student	place	startingDate	duration
1	444	Microsoft	2002-05-15	3
2	77777	Microsoft	2002-05-15	3
3	88888	SOGEI	2002-09-01	3

Teaching

<u>lecturer</u>	course
FT	PR1
CV	ASD
ADP	INFT
ADP	PR1
FT	ASD

30

The complete Algorithm

- Up to now
- -we may want to add more details
- In particular
- -translation of multi-valued attributes
- -translation of the minimum cardinalities

The Complete Algorithm

- I step
- -initial translation of classes
- II step
- -translation of hierarchies (omitted in our course)
- III step
- -translation of multi-valued attributes
- IV step
- -translation of m-m associations

33

The Complete Algorithm

- V step
- -translation of 1-m associations
- VI step
- -translation of 1-1 associations
- VII step
- -introduction of further constraints (omitted)
- VIII step
- -design of external schemas (omitted)

34

III Step: Multi-valued attributes

- Multi-valued attributes
- -do not have 'atomic' values
- -require extra tables
- A table for a multi-valued attribute
- -has an attribute that represents the values
- a foreign key to the class to which the attribute belongs to

III Step: Multi-valued Attributes Lecturer Lecturer pid CHAR(4) PK Number lastname lastname CHAR(20) number CHAR(15) PK name CHAR(20) lecturer CHAR(4) FK status faculty CHAR(10) telNumber [0..*] status CHAR(15) type CHAR(10)

Summary of today's lecture

- Introduction
- -The design process of a database
- An algorithm for the design of the logical model

- -Translation of classes
- -Translation of multi-valued attributes
- -Translation of m-m associations
- -Translation of 1-m associations
- -Translation of 1-1 associations
- The resulting database