Fundamentos de los Lenguajes Informáticos

Grado en Ingeniería Informática

	EXAMEN	PARCIAL.	DE ABRIL	DE	2019	9
--	--------	----------	----------	----	------	---

MODELO A

APELLIDOS, NOMBRI

DNI/NIE:

GRUPO:

Para cada pregunta hay una única respuesta correcta.

Si conoces la respuesta correcta, escríbela en el cuadrado correspondiente.

Cada respuesta **correcta** vale **0,1 puntos**.

1. ¿En cuál de los siguientes casos se tiene que $L^* \neq L$?

(a)
$$L = \emptyset$$

(b)
$$L = \{\epsilon\}$$

(c)
$$L = \{a, b, c\}^*$$

2. El siguiente autómata finito determinista reconoce el lenguaje

(a) $(\{0\}\{01\}^*\{1\})^*$.

(b) $\{0\}\{01\}^*\{1\}$.

(c) $(\{1\}\{10\}^*\{0\})^*$.

3. ¿Cuál de las siguientes expresiones regulares no es equivalente a $(a+b)^*$?

(a)
$$a^* + b^*$$

(b)
$$(a^*b^*)^*$$

(c)
$$(a^*b)^*a^*$$

4. ¿Cuál de las siguientes expresiones regulares genera el lenguaje de las cadenas de ceros y unos que no tienen dos unos consecutivos?

(a)
$$(0+01)^*$$

(b)
$$(1+10)^*$$

(c)
$$(0+10)^*(\epsilon+1)$$

- 5. ¿Cuál de los siguientes lenguajes sobre $\{0,1\}$ genera la expresión regular 1(00+01+10+11)*1?
 - (a) El conjunto de palabras que acaban y empiezan en uno
 - (b) El conjunto de palabras de longitud par que acaban y empiezan en uno
 - (c) El conjunto de palabras de longitud impar que acaban y empiezan en uno
- 6. ¿Cuál de los siguientes lenguajes es regular?

(a)
$$\{w \in \Sigma^* \mid |w| \text{ es un cubo perfecto}\}$$

(b)
$$\{w \in \Sigma^* \mid |w| \text{ es potencia de } 3\}$$

- (c) $\{w \in \Sigma^* \mid |w| \text{ es múltiplo de } 3\}$
- 7. ¿Cuál de los siguientes lenguajes sobre el alfabeto $\{a,b\}$ no es regular?

(a)
$$\{a^n b^m \mid n = m \ge 3\}$$
 (b) $\{a^n b^m \mid n + m \ge 3\}$ (c) $\{a^n b^m \mid n, m \ge 3\}$

(b)
$$\{a^n b^m \mid n+m > 3\}$$

(c)
$$\{a^n b^m \mid n \mid m > 3\}$$

8	:Cuál	de	las	sign	ijentes	afirma	ciones	es	falsa?
ο.	Louar	ue	ias	SIEU	nemes	amma	iciones.	$C_{\mathcal{D}}$	iaisa:

- (a) Para cualquier expresión regular E, $L(E^*)$ no es vacío.
- (b) Para cualquier expresión regular $E, L(E^*)$ es infinito.
- (c) Para cualquier expresión regular E, si $L(E^*)$ es finito, entonces L(E) también es finito.

9. ¿Cuál de las siguientes afirmaciones es verdadera?

- (a) Si L_1 es regular y L_2 no es regular, entonces $L_1 \cup L_2$ no es regular.
- (b) Si L_1 no es regular y L_2 no es regular, entonces $L_1 \cup L_2$ no es regular.
- (c) Si L_1 es regular y L_2 es regular, entonces $L_1 \cup L_2$ es regular.

10. Sea M el resultado de minimizar el siguiente autómata; entonces,

- (a) M tiene 3 estados.
- (b) M tiene 2 estados.
- (c) M tiene más de 3 estados.

11. Sean M_1 un AFD, M_2 un AFN y M_3 un ϵ -AFN, tales que su alfabeto es Σ y tales que todos sus estados son de aceptación; entonces,

(a)
$$L(M_1) = L(M_2) = L(M_3) = \Sigma^*$$
.

(b)
$$L(M_1) = L(M_2) = \Sigma^*$$
 pero puede ser $L(M_3) \neq \Sigma^*$.

(c)
$$L(M_1) = \Sigma^*$$
 pero puede ser $L(M_2) \neq \Sigma^* \neq L(M_3)$.

12. Dados lenguajes regulares
$$L_1$$
 y L_2 sobre Σ y $a \in \Sigma$, sea $L = \{w \in \Sigma^* \mid w = aw', \text{ para alguna } w' \in L_1 \cap L_2\}$; entonces,

- (a) L es un lenguaje regular.
- (b) $L \neq \emptyset$.
- (c) ninguna de las anteriores afirmaciones tiene por qué ser cierta.

13. Dada la gramática independiente del contexto G con el siguiente conjunto de producciones y w = ab, se tiene que

- $S \longrightarrow AB$
- (a) $w \in L(G)$ y $w^2 \in L(G)$.
- $A \longrightarrow aA \mid \epsilon$
- (b) $w \notin L(G)$ y $w^2 \notin L(G)$.
- $B \longrightarrow b \mid \epsilon$
- (c) las dos afirmaciones anteriores son falsas.

14. Sean $\alpha = ab^*ab^*$ y M el autómata finito de la figura siguiente; entonces,

- (a) $L(\alpha) \subsetneq L(M)$.
- (b) $L(M) \subsetneq L(\alpha)$.
- (c) $L(M) = L(\alpha)$.

15. Para las expresiones regulares
$$\alpha_1 = (ab)^*a$$
, $\alpha_2 = a(ba)^*$, $\alpha_3 = (\epsilon + a)(ba)^*$ se tiene

- (a) $\alpha_1 = \alpha_2 = \alpha_3$
- (b) $\alpha_1 = \alpha_2 \neq \alpha_3$
- (c) $\alpha_1 \neq \alpha_2 = \alpha_3$

16. Si M_1 y M_2 son los autómatas finitos siguientes,

17.	∵Cuál de i	los siguientes	lenguaies es	s igual a	$L((ab+b)^*$	$(a) \cap L((ba +$	$(a)^*$?

- (a) $L((ab)^*a)$
- (b) $L(b(ab)^*a)$
- (c) $L((b+\epsilon)(ab)^*a)$

18. Si
$$L = \{ba^{3i} \mid i \in \mathbb{N}\},\$$

- (a) el AFD mínimo que reconoce L tiene 3 estados.
- (b) el AFD mínimo que reconoce L tiene 4 estados.
- (c) el AFD mínimo que reconoce L tiene 5 estados.

19. Dada la gramática independiente del contexto
$$G$$
 definida por el siguiente conjunto de producciones,

- $S \longrightarrow ABS \mid AB$
- (a) $aabaab \in L(G)$, $aaaaba \notin L(G)$, $aabbaa \notin L(G)$

 $A \longrightarrow aA \mid a$

(b) $aabaab \in L(G)$, $aaaaba \in L(G)$, $aabbaa \notin L(G)$

 $B \longrightarrow bA$

(c) $aabaab \notin L(G)$, $aaaaba \in L(G)$, $aabbaa \notin L(G)$

$$20$$
. Dada la gramática independiente del contexto G definida por el siguiente conjunto de producciones,

 $S \longrightarrow bA \mid aB \mid \epsilon$

(a) $L(G) = L((ab + ba)^*).$

 $A \longrightarrow abaS$

(b) $L(G) = L((abab)^* + (baba)^*).$

 $B \longrightarrow babS$

(c) $L(G) = L((abab + baba)^*).$