Common Land Model

Part 1: Introduction

ParFlow Short Course

Reed Maxwell Jennifer Jefferson

General Information

Evaluate sensitivity of latent heat estimates using PF-CLM

Common Land Model (CLM)
Surface

Subsurface ParFlow (PF)

Where did CLM originate?

(Common Land Model)

- Community effort to combine best pieces of existing modular land surface models
- 3 models
 - 1. Land Surface Model (LSM) Bonan (1996)
 - Biosphere Atmosphere Transfer Scheme (BATS)
 Dickinson (1993)
 - 3. Chinese Academy of Sciences Institute of Atmospheric Physics LSM 1994 version (IAP94)

 Dai and Zeng (1997)
- Initial documentation in Dai et al. (2003)

Who maintains CLM today?

(Community Land Model)

- Name change from "Common" to "Community" occurred around 2002 with the release of CLMv2
- National Center for Atmospheric Research (NCAR)
- CLM is now the land surface component of the Community Earth System Model (CESM)
- CLM is housed within the Land Model working group led by Keith Oleson
- Current CLM version is 4.5
 - Technical Description of v4.5 contains a nice overview of the history of each CLM version
- http://www.cesm.ucar.edu/models/clm/

When was CLM first coupled to PF?

- Maxwell and Miller (2005) Development of a Coupled Land Surface and Groundwater Model
 - PF replaced CLM soil moisture formulation
 - Surface (CLM) formulations remained the same
- ≈CLMv3
- PF and CLM communicate over 10 soil layers
- Fluxes and variables passed between models at every ROOT ZONE

SOIL

DEEPER VADOSE

time step

For more applications/papers see Table 1.1 in ParFlow Manual

What are *some* differences between PF-CLM and CLMv4.5?

Soil resistance

- PF-CLM incorporates soil moisture computed using 3D Richards equation
- Choose between linear and cosine soil resistance factors to limit bare soil evaporation in PF-CLM
- CLMv4.5 has vertical soil moisture transport (i.e, no lateral flow)

Fractional vegetation coverage

- PF-CLM is not setup to handle fractional vegetation (even if you put it in drv_vegm.dat this way)
- CLMv4.5 tiles can have several land uses

- Leaf area index (LAI)
 - PF-CLM computes LAI at each time step using an empirical equation that depends on soil temperature
 - CLMv4.5 updates LAI daily based on interpolation of monthly MODIS LAI values

- ET adjustment factors
 - PF-CLM assumes C3 plants (unless manually changed)
 - CLMv4.5 includes additional factors to adjust photosynthesis rates/stomatal resistance (canopy scaling, nitrogen, day length)
- Irrigation through Water Allocation Model (WAM)

Where does PF call CLM?

from solver_richards.c

```
CALL CLM LSM pp, sp, et, ms, po dat, dz dat, istep, cdt, t, start time,
                             dx,dy,dz,ix,iy,nx,ny,nz,nx f,ny f,nz f,nz rz,ip,p,q,r,gnx, gny,rank,
                             sw data, lw data, prcp data, tas data, u data, v data, patm data, qatm data,
                                eflx lh,eflx lwrad,eflx sh,eflx grnd,qflx tot,qflx grnd,
                             qflx soi,qflx eveq,qflx tveq,qflx in,swe,t q,t soi,
                                public xtra -> clm dump interval,
                                public xtra -> clm 1d out,
                                public xtra -> clm file dir,
                                clm file dir length,
                                public xtra -> clm bin out dir,
                                public_xtra -> write CLM binary,
                                public xtra -> clm beta function,
                                public xtra -> clm veg function,
                                public xtra -> clm veg wilting,
                                public xtra -> clm veg fieldc,
                                public xtra -> clm res sat,
                                public xtra -> clm irr type,
                                public xtra -> clm irr cycle,
                                public xtra -> clm irr rate,
                                public xtra -> clm irr start,
                                public xtra -> clm irr stop,
                                public xtra -> clm irr threshold,
                                girr, girr inst, iflag,
                                public xtra -> clm irr thresholdtype,
                                soi z,clm next,clm write logs,clm last rst,clm daily rst);
```

all of these variables get passed from PF to CLM

What happens in CLM?

A lot of calculations!

http://parflow.blogspot.com/2015/10/clm-modules.html

Variables in CLM

- Global variables
 - clm%zlnd
 - See clmtype.F90
- Local variables
 - efpot
 - See individual modules
- Constant values
 - Gravity = 9.8616
 - See clm_varcon.F90

How is this information output from CLM?

- Binary format
 - convert from .pfb to .silo to view
 - convert from .pfb to .si to read in tabular format
 - use pfb reader to read into R/Matlab
- Single file output = 1 file for each time step that contains all variables on previous slide

```
pfset Solver.CLM.SingleFile True
```

```
Output files would be titled as follows:
runnamethatyoupick.out.clm_output.00001.C.pfb
runnamethatyoupick.out.clm_output.00002.C.pfb
```

 Non-single file output = 1 file for each time step for each variable

Evaluating Sensitivity in CLM

Input parameters used to compute stomatal resistance

Parameter Description	Name	Distribution (Range)	Default value	Units
maximum rate of carboxylation at 25°C	vcmx25	U(20, 65)	33	µmol CO ₂ m ⁻² s ⁻¹
q10 for vcmx25	avcmx	U(2.2, 2.6)	2.4	-
deactivation energy constant	hv	U(218,000, 242,000)	220,000	J mol ⁻¹
entropy constant	SV	U(640, 730)	710	J mol ⁻¹ K ⁻¹
CO ₂ Michaelis-Menten constant at 25°C	kc25	U(25, 50)	30	Pa
q10 for kc25	akc	U(1.9, 2.3)	2.1	-
O ₂ Michaelis-Menten constant at 25°C	ko25	U(30,000, 45,000)	30,000	Pa
q10 for ko25	ako	U(1.1, 1.3)	1.2	-
maximum ratio of oxygenation to carboxylation	ocr	U(0.18, 0.77)	0.21	-
ci mulitplier in denominator of wj	wj1	1, 4, 4.5	1	-
cp mulitplier in denominator of wj	wj2	2, 8, 10.5	2	-
energy content of photons	еср	U(3.3, 5.8)	4.6	µmol J ⁻¹
quantum efficiency at 25°C	qe25	U(0.04, 0.08)	0.06	µmol CO2 µmol photon ⁻¹
multiplier in we	we1	U(0.45, 0.55)	0.5	-
partial pressure of CO2 in the atmosphere	ppcd	U(355, 400)	355	ppm
ratio of diffusivity of CO2 to H2O in boundary				
layer	drb	U(1.3, 1.4)	1.37	-
ratio of diffusivity of CO2 to H2O through				
stomata	drs	U(1.6, 1.7)	1.65	-
minimum leaf conductance	bp	U(1,000, 10,000)	2,000	µmol m ⁻² s ⁻¹
slope for conductance-to-photosynthesis relationship	mp	U(4, 12)	9	-
maximum stomatal resistance	rsmax0	U(10,000, 40,000)	20,000	s m ⁻¹

stomatal resistance

photo-

synthesis

Weights and sufficient summary plots for monthly-averaged transpiration vary seasonally

Source: Jefferson et al. (in preparation)

Setting up a ParFlow-CLM model: Little Washita Example

ParFlow Short Course

Workflow Outline

- 1. Evaluate available model inputs
- 2. Determine your domain configuration
- 3. Process topography
- 4. Setup the subsurface
- 5. Initialize the model (i.e. spinup)
- 6. Additional setup for PF-CLM

This is also outlined in section 3.1.2 of the manual

Additional setup for PF-CLM

- Additional files inputs the model will need
 - 1. drv_vegm.dat
 - drv_vegp.dat
 - drv_clmin.dat
 - 4. Meteorological forcing file(s) 1D or 3D
- Before you start you will need to have IGBP land cover classifications determined for every grid cell in your domain

drv_vegm.dat

(includes information for each tile in domain)

```
x, y coordinate for each tile in domain; coordinates for single column (1, 1) are shown
                cosine of the zenith angle (light for photosynthesis/transpiration)
                convert from GMT to local time
                                 soil thermal properties
                                              soil albedo calculation; scale of 1 (light) to 8 (dark)
                           sand clay
       lat
                lon
                                          color
       (Deg)
                (Deg)
                            (%/100)
                                          index
       38.4316 -120.9660
                           0.16 0.265
fractional coverage of grid by vegetation class (Must/Should Add to 1.0)
                                                           12
                                                10
                                                     11
                                                                13
                                                                      14
                                                                                           18
0.0 0.0 0.0 1.0 0.0
                        0.0 0.0 0.0 0.0 0.0
                                                    0.0
                                                          0.0 0.0
                                                                    0.0
                                                                          0.0
                                                                               0.0
                                                                                          0.0
```

Remember, PF-CLM does not have fractional coverage!

Land Cover Types

(i.e., vegetation class in drv_vegp.dat)

(IGBP = International Geosphere-Biosphere Programme)

```
!IGBP Land Cover Types (other classes can be used by changing this file)
   1 evergreen needleleaf forests
  2 evergreen broadleaf forests
  3 deciduous needleleaf forests
  4 deciduous broadleaf forests
  5 mixed forests
 6 closed shrublands
  7 open shrublands
  8 woody savannas
  9 svannas
! 10 grasslands
! 11 permanent wetlands
! 12 croplands
! 13 urban and built-up lands
! 14 cropland / natural vegetation mosaics
! 15 snow and ice
! 16 barren or sparsely vegetated
! 17 water bodies
! 18 bare soil
```

drv_vegp.dat

(specifies vegetation parameter values)

lai properties that correspond to 10. grasslands

- (maximum) leaf area index (-)
- (minimum) leaf area index (-)
- stem area index (-)
- aerodynamic roughness length (m)
- displacement height (m)
- leaf dimension (m)
- fitted numerical index of rooting distribution (-)
- fitted numerical index of rooting distribution (-)

- leaf reflectance visible light (-)
- leaf reflectance near infrared light (-)
- stem reflectance visible light (-)
- stem reflectance near infrared light (-)
- leaf transmittance visible light (-)
- leaf transmittance near infrared light (-)
- stem transmittance visible light (-)
- stem transmittance near infrared light (-)
- leaf/stem orientation index (-)
- btran exponent (-)

drv_clmin.dat

(includes timing information and additional parameters)

- Make sure times are entered in GMT <u>and</u> correspond to times in the forcing file
- Change name of output file prefixes, if desired

```
outfldstomataSA.output.txtCLM output filepoutfldstomataSA.para.out.datCLM 1D Parameter Output FilerstfstomataSA.rst.CLM active restart file
```

Update lines in this file if restarting simulation (from 2 to 1)

```
startcode 2 1=restart file,2=defined clm_ic 2 1=restart file,2=defined
```

- Includes several other specified parameter values
 - Meteorological station heights
 - Roughness lengths
 - Finite difference parameters

Meteorological Forcing File (Pg. 140 ParFlow Manual)

DSWR: Downward Visible or Short-Wave radiation $[W/m^2]$.

DLWR: Downward Infa-Red or Long-Wave radiation $[W/m^2]$

APCP: Precipitation rate [mm/s]

Temp: Air temperature [K]

UGRD: West-to-East or U-component of wind [m/s]

VGRD: South-to-North or V-component of wind [m/s]

Press: Atmospheric Pressure [pa]

SPFH: Water-vapor specific humidity [kg/kg]

- Columns must be in this order and have these units
- 1D .txt file with single column for each variable and each row is one timestep
- 3D .pfb files, one for each variable and multiple time steps

3D Forcing Files PF-CLM

- Separate files for every forcing variable
- You can put multiple hours in every forcing file. Time is the z dimension
- Tell CLM how many hours are in each forcing files using CLM.MetFileNT

Additional setup for PF-CLM

- Distribute your forcing files before you run and remember that the nz is the number of time steps per file for 3D forcing inputs
- See Dist_Forcings.tcl script in the Washita test case folder for an example
- Remember that if you change your processor topology you <u>must</u> redistribute your forcings

How do I "turn-on" CLM in PF?

pfset Solver.LSM

CLM

 Optional CLM Flags are listed in the ParFlow Manual 6.1.35

Adding CLM settings to your tcl script:

```
pfset Solver.LSM
                                                   CLM
pfset Solver.CLM.CLMFileDir
                                                   "clm output/"
pfset Solver.CLM.Print1dOut
                                                   False
pfset Solver.BinaryOutDir
                                                   False
pfset Solver.PrintCLM
                                                    True
                                                False
pfset Solver.CLM.WriteLogs
pfset Solver.CLM.WriteLastRST
                                                 False
pfset Solver.CLM.DailyRST
                                            True
pfset Solver.CLM.SingleFile
                                                 True
pfset Solver.CLM.CLMDumpInterval
                                                        1
pfset Solver.CLM.MetForcing
                                                        3D
pfset Solver.CLM.MetFileName
                                                        "NLDAS"
pfset Solver.CLM.MetFilePath
                                                        "../../NLDAS/"
pfset Solver.CLM.MetFileNT
                                                        24
pfset Solver.CLM.IstepStart
pfset Solver.CLM.EvapBeta
                                                        Linear
pfset Solver.CLM.VegWaterStress
                                                        Saturation
pfset Solver.CLM.ResSat
                                                        0.1
pfset Solver.CLM.WiltingPoint
                                                        0.12
pfset Solver.CLM.FieldCapacity
                                                        0.98
pfset Solver.CLM.IrrigationType
                                                        none
```

What information is output from CLM?

(Order of information obtained from solver_richards.c)

```
single file output layer
```

```
! latent heat flux from canopy height to atmosphere [W/2]
1. eflx lh tot
2. eflx lwrad out
                              ! outgoing long-wave radiation from ground+canopy
3. eflx sh tot
                              ! sensible heat from canopy height to atmosphere [W/m2]
4. eflx soil grnd
                              ! ground heat flux [W/m2]
5. qflx evap tot
                              ! evapotranspiration from canopy height to atmosphere [mm/s]
6. qflx evap qrnd
                              ! ground surface evaporation rate (mm h2o/s)
7. qflx evap soi
                              ! evaporation heat flux from ground [mm/s]
8. qflx evap veg
                              ! evaporation+transpiration from leaves [mm/s]
9. qflx tran veg
                              ! transpiration rate [mm/s]
10. qflx infl
                              ! infiltration (mm H2O /s)
                              ! snow water equivalent
11. swe out
12. t grnd
                              ! ground temperature (K)
                              ! qflx surf directed to irrig (mm H2O/s); irrigation applied at
13. qflx qirr
                         surface [mm/s](added to rain or throughfall, depending)
OR
                              !irrigation applied by 'instant' method [mm/s] (added to pf flux)
13. qflx qirr inst(nlevsoi)
14-23. tsoil
                              ! soil temperature for each soil layer; assuming 10 soil layers
```

How is this information output from CLM?

- Binary format
 - convert from .pfb to .silo to view
 - convert from .pfb to .si to read in tabular format
 - use pfb reader to read into R/Matlab
- Single file output = 1 file for each time step that contains all variables on previous slide

```
pfset Solver.CLM.SingleFile True
```

```
Output files would be titled as follows:
runnamethatyoupick.out.clm_output.00001.C.pfb
runnamethatyoupick.out.clm_output.00002.C.pfb
...
```

 Non-single file output = 1 file for each time step for each variable

Common Pitfalls

- Remember that CLM will assume you have 10 soil layers. If this is not true refer to the CLM notes on how to adjust this
- All timing info in CLM should be in <u>GMT</u> not local time
- If you want to run with timesteps that don't match the forcing timestep you need to use the Solver.CLM.ReuseCount key. Changing the timestep in ParFlow does not automatically change the forcings

Starting a New Run

1. Set your initial pressure from the final pressure from your spinup

```
pfset ICPressure.Type
pfset ICPressure.GeomNames
domain
pfset Geom.domain.ICPressure.FileName
press.in.pfb
```

2. Setup your timing in ParFlow

<pre>pfset TimingInfo.BaseUnit pfset TimingInfo.StartCount</pre>	1.0 0.0	Note ParFlow starts at 0, which
pfset TimingInfo.StartTime pfset TimingInfo.StopTime	0.0 8760	is the initial
pfset TimingInfo.DumpInterval	24.0	condition, and the CLM.IstepStart is
pfset TimeStep.Type pfset TimeStep.Value	Constant 1.0	1 which is the first
pfset Solver.CLM.IstepStart	1.0	point an output will be written for

Starting a New Run

3. Tell CLM to start from scratch and define the starting time in drv_clmin.dat

```
startcode
                                        1=restart file,2=defined
clm ic
                                        1=restart file,2=defined
                                        Starting Second
                0.0
SSS
                                        Starting Minute
                00
smn
                                        Starting Hour
shr
                0.0
sda
                01
                                        Starting Day
                                        Starting Month
                10
smo
                                        Starting Year
                1998
syr
```

** Remember that all times in the drv_clmin.dat file are in GMT

Starting a New Run

4. Set your processor topology and make sure you are distributing all of your input files

pfset Process.Topology.P pfset Process.Topology.Q pfset Process.Topology.R	2 2 1
pfset ComputationalGrid.NX pfset ComputationalGrid.NY pfset ComputationalGrid.NZ pfdist LW.slopex.pfb pfdist LW.slopey.pfb	41 41 1
pfset ComputationalGrid.NX pfset ComputationalGrid.NY pfset ComputationalGrid.NZ pfdist IndicatorFile.pfb pfdist press.init.pfb	41 41 50

- Every pfb input file must be distributed
- Remember that slope files are 2D so NZ must be set to 1 before distributing
- Don't forget to distribute your forcings separately
- You can't redistribute clm restart files in the middle of a run so the topology you pick you should stick with

Restarting

- Determine the last timestep that a CLM restart file was written for this is where you should restart from
- Update the timing in ParFlow to reflect your new start point which should be equal to the time of the last restart file

```
pfset TimingInfo.StartCount 19
pfset TimingInfo.StartTime 19
pfset TimingInfo.StopTime 60
pfset Solver.CLM.IstepStart 1.0
```

Again note that the CLM counter should start at 1 + startcount

Restarting

3. Overwrite your initial pressure file with the last pressure file output

```
cp pfclm.out.press.00018.pfb press.in.pfb
```

4. Change the restart settings in drv_clmin.dat

```
startcode 1 1=restart file,2=defined clm_ic 1=restart file,2=defined
```

Note: when you restart a simulation (i.e., startcode = 1 and clm_ic = 1 in drv_clmin.dat), the timing information is read from the restart file not from drv_clmin.dat. However, if startcode = 2 and clm_ic = 1 the timing information will be read from drv_clmin.dat and initial condition information will still come from the restart file.

Restarting

5. If you have set CLM to overwrite the restart files as it goes (i.e. if CLM.WriteLastRST = TRUE), then copy restart files before you start

```
#CLM RESTART INFO
if { $startcount > 1 } then {

for { set i 0 } { $i < $nproc } { incr i 1 } {
        set fname_rst [format "clm.rst.%05d.$i" [expr $startcount]]
        exec cp clm.rst.00000.$i $fname_rst
}
}</pre>
```