

INF1600 Travail pratique 1 Architecture du processeur

Trimestre: automne 2018

Équipier1 : Serge GNAVO (1869985)

Équipier2 : Fabrice NDUI (1914377)

Polytechnique Montréal Date de remise (07-10-2018)

Exercice 1

1. Le Tableau 1.1 donne une représentation de la conversion des valeurs Fournis à la fois en binaire, complément à deux et décimale.

Table 1.1.1 Conversion

ID	Numéros	Binaire	Complément à deux	Valeur décimale
а	11001101	1100 1101	0011 0011	205
b	01101011	0110 1011	1001 0101	107
С	5726	0101 0111 0010 0110	1010 1000 1101 1010	22310
d	FADE	1111 1010 1011 1110	0000 0101 0100 0010	64222
е	10000000	10000000	10000000	128

2. Le tableau 1.2 montre les différentes bases possibles qui pourrais représenter le numéro proposé

ID	Numéro	BIN	ОСТ	DEC	HEX
а	2586			Χ	Χ
b	00000000	Х	Х	Х	Х
С	11111	Х	Χ	Χ	Χ
d	514		Χ	Χ	Χ
е	A626				Х

3. Explication de y = x & (5 << 4)

Table 1.2 Bases possibles pour les numéros proposés

En c "<<" est utilisé pour décaler les bits vers la gauche, ce qui correspond à une multiplication par 2 autant de fois que la valeur à droite de l'expression.

Exemple: (5<<4) 0101<<0000 =0101 0000 (sur 8bits)

La fonction retourne les bits à la position (5 et 7) d'un vecteur x, c'est un masque.

4. Le tableau 1.3 affiche la conversion des nombres entiers en base décimale vers la base Hexadécimale est en complément à 2

Table 1.3 Conversion de base décimale vers hexadécimal et binaire à 16bits

ID	Numéros	Complément à deux	Hexadécimal
а	9876	0010 0110 1001 0100	2694
b	64	0000 0000 0100 0000	40
С	12345	0011 0000 0011 1001	3039

- 5. Opérations arithmétiques
- a. 8B+6A =1000 1101 + 0110 1010 = 1111 0110 = F 6 Il n'y a pas de débordement.
- 52 + 49 = 0101 0010 + 0100 1001 = 1001 1011 = 9B

 Il y a un débordement car la somme de 2 nombres positifs donne un nombre négatif
- 6. Little Endian, big Endian

a-big endian

Le MSB est a la plus petite adresse soit oc2

0*16^15+8*16^14+6*16^13+1*16^12+12*16^11+2*16^10+11*16^9+11*16^8+3*16^7+8*16^6+10* 16^5+0*16^4+9*16^3+14*16^2+14*16^1+12*16^0

b-little endian

0*16^0+8*16^1+6*16^2+1*16^3+12*16^4+2*16^5+11*16^6+11*16^7+3*16^8+8*16^9+10*16^10+ 0*16^11+9*16^12+14*16^13+14*16^14+12*16^15

Exercice 2

a) Calculez l'espace total sur le disque dur (512 B par secteur)

Espace total = (792*624+780*1424+760*1680+720*1815) *512 =

b) Calculez le taux de lecture moyenne.

Taux de lecture moyen = 5400 *(792*624+780*1424*2+760*1680*3+720*1815*4) * 512/60

c) Calculez le taux de lecture moyenne effective si le disque dur est connecté avec un bus PCIe de vitesse 4000 Mb/s.

Taux de lecture effective =(Taux de lecture moyenne/5400) *4000=

d) Changeriez-vous les résultats précédents si l'information sur le nombre de surfaces était disponible ?

Non,

Exercice 3

```
1) SUBMUL Ra, Rb, k
```

op := 5:

R[k]<-8;

SUBMUL (:=op = 5) -> R[a] <- R[b] - R[a];

R[a] < -R[a] * R[k];

2) DECREM Ra, Rb

DECREM(:=op = 7) -> R[a] <- R[b] - 1: R[b] <- R[b] - 1;

Exercice 4

a) Écrivez un encodage possible (en hexadécimal) de l'instruction Ajoutregistre3(:=op=4a)->R[1]<-Mem2[R[3]]+R[3];

IR<31..24>=4A: le circuit de control effectue une addition

IR<23..21>=1 : ce bus envoie le signal 1 pour écrire dans le registre 1 IR<20..18>=3 : ce bus envoie le signal 3 pour lire dans le registre 3

IR<17..15>=0 : inutilise IR<14..13>=0 : inutilise IR<12..0>=0 : inutilise

Nous obtenons alors: 4A 19 00 00 (encodage en little-endian)

b) RTN concret des macro-instructions

-Recherche d'instructions (pas nécessaire de faire comme demandé)

-Exécution de l'instruction

T <- R[IR<20..18>]; // sauvegarde de la valeur du registre dans T

Y <- Mem2[T]; // lecture de la valeur de la memoire2 à l'adresse T, assignation à Y

R[1] <- Y + T; // addition faite par UAL et écriture dans le registre à l'adresse r1 du registre

c) Liste de valeurs des signaux de contrôle

T<-R[IR<2018>]		
Nom des signaux	Valeurs	
A	0	
В	1	
С	0	
D	0	
Е	1	
F	0	
G	0	
UAL	0a	
ecrireEIP	0	
ecrireT	1	
ecrireRegistre	0	

Y<-Mem2[T]		
Nom des signaux	Valeurs	
J 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
Δ	0	
, , , , , , , , , , , , , , , , , , ,	1	
B	1	

С	0
D	0
E	1
F	1
G	0
UAL	0a
ecrireEIP	0
ecrireT	0
ecrireRegistre	0

R[1]<-Y+T	
Nom des signaux	Valeurs
Α	0
В	0
С	0
D	0
Е	1
F	1
G	0
UAL	4a
ecrireEIP	0
ecrireT	0
ecrireRegistre	1

2)

a-

IR<31..24>=4A//le circuit de controle effectue une addition

IR<23..21>=1//ce bus envoie le signal 1 pour ecrire dans le registre 1

IR<20..18>=3//ce bus envoie le signal 3 pour lire dans le registre 3

IR<17..15>=0//inutilise

IR<14..13>=0//inutilise

IR<12..0>=0//inutilise