A Spatial Point Process Model for Viral Infections

Murali Haran

Department of Statistics, Pennsylvania State University

March 5, 2014

(joint work with Josh Goldstein, Ivan Simeonov, John Fricks, and Francesca Chiaromonte)

Spatial point process modeling of virus infections

- Biologists are often interested in investigating the progression of viral infections
- Our goal: use data from imaging of cell cultures to study the spatial structure of an infection
- An in vitro cell culture study identifies and locates cells infected with two strains of the human respiratory syncytial virus (RSV-A and RSV-B)

Question:

How does the presence of an infected cell impact infections in neighboring cells?

Points represent locations of cells infected with RSV.

Outline

- Spatial point processes in the plane provide a natural framework here
- Each point represents the 2D coordinates of an infected cell
- Goal: Infer spatial interaction among cells

Contributions of this work:

- A new spatial point process model for the RSV data
- Inferential methods for this computationally challenging problem
- Draw scientific conclusions from fitted model

Spatial point processes

A spatial point process is a stochastic process, a realization of which consists of a set of points $X = (x_1, ..., x_n)$ in a bounded region $W \subseteq \mathbb{R}^d$.

Some SPPs can be used to model interactions:

$$f(X|\Theta) = \lambda^n \prod_{i \neq j} \phi(x_i, x_j)$$

where $\phi(x_i, x_j)$ is the *interaction function* between points i and j. In the homogeneous case, $\phi(x_i, x_j) = \phi(\|x_i - x_j\|) = \phi(r)$

The Strauss process is a simple example,

$$\phi(r) = \begin{cases} \gamma, & 0 < r \le R \\ 1, & r > R \end{cases}$$

for $0 \le \gamma \le 1$. Since $\phi(r) \le 1$ this is a repulsion point process.

Poisson process vs. Strauss process

Realization of Poisson Process

Realization of Strauss Process

Exploratory analysis of RSV data: Need for a new model

The pair correlation function (PCF) g(r) is an exploratory summary statistic that tells us the attraction-repulsion behavior of points separated by distance r in a spatial point process.

• A value of g(r) > 1 indicates attraction, a tendency for points to cluster at distance r. Similarly, g(r) < 1 indicates repulsion at distance r. For our data:

Observed attraction-repulsion in RSV data varies smoothly in r.

New attraction-repulsion model: Interaction function

Goal: Allow attraction-repulsion to vary smoothly with distance to model observed RSV behavior.

The interaction function $\phi(r)$ is defined piecewise,

$$\phi(r) = \begin{cases} 0, & 0 \le r \le R \\ \theta_1 - \left(\frac{\sqrt{\theta_1}}{\theta_2 - R}(r - \theta_2)\right)^2, & R < r \le r_1 \\ 1 + \frac{1}{(\theta_3(r - r_2))^2}, & r > r_1 \end{cases}$$

where

- θ_1 : value of $\phi(\cdot)$ at the peak
- θ_2 : the value of r at the peak
- θ_3 : rate of descent after the peak
- R: minimum allowable distance between points
- r_1 , r_2 : chosen to ensure $\phi(\cdot)$ is continuously differentiable.

New attraction-repulsion model: Interaction function

- $\phi(r) > 1$: attraction, points tend to cluster at distance r
- $\phi(r) < 1$: repulsion

Attraction-repulsion model

The likelihood can be written as

$$\mathcal{L}(X|\Theta) = \frac{f(X|\Theta)}{c(\Theta)}, f(X|\Theta) = \lambda^n \Big[\prod_{i=1}^n e^{\min \Big[\sum_{i \neq j} log(\phi(x_i, x_j)), k \Big]} \Big]$$

Model parameters:

- ullet λ is the intensity of the process
- $\theta_1, \theta_2, \theta_3$ control the shape of $\phi(r)$.
- R is the minimum distance allowed between points
- k is a truncation constant necessary to prevent "clumping" behavior

Important: $c(\Theta)$ is intractable. This makes computing very challenging.

Inference

- Let $\Theta = (\lambda, k, \theta_1, \theta_2, \theta_3)$. Likelihood $\mathcal{L}(X|\Theta)$.
- ullet Bayesian inference for Θ is based on the posterior distribution

$$\pi(\Theta|X) \propto \mathcal{L}(X|\Theta)p(\Theta) = \frac{f(X|\Theta)p(\Theta)}{c(\Theta)}$$

- Markov chain Monte Carlo (MCMC) is a convenient approach to learning about $\pi(\Theta|X)$.
- Choose a gamma prior on k, prior for remaining parameters are uniform over a plausible range

MCMC

- Construct a Markov chain with stationary distribution $\pi(\Theta|X)$.
- In MCMC, propose Θ' from $q(\Theta, \Theta')$ and calculate the following acceptance probablity:

$$\alpha = \min\left(1, \frac{p(\Theta')q(\Theta', \Theta)f(X|\Theta')}{p(\Theta)q(\Theta, \Theta')f(X|\Theta)} \frac{c(\Theta)}{c(\Theta')}\right)$$

• The intractable normalizing constant $c(\Theta)$ does not cancel. Traditional MCMC methods cannot be applied.

Solution: Introduce an auxiliary variable.

- Double Metropolis-Hastings algorithm of Liang (2010).
- Two nested MCMC samplers; the "inner sampler" generates an auxiliary point pattern at each step of the "outer" sampler.

Exchange algorithm

The exchange algorithm (Møller et al, 2006; Murray et al, 2006):

- 1. If we are currently in state Θ , propose a transition to Θ' from proposal $q(\Theta, \Theta')$.
- 2. Generate auxiliary point pattern $Y \sim \frac{1}{c(\Theta')} f(\cdot|\Theta')$ (perfect sampling)
- 3. Accept Θ' with probability

$$\alpha = \min \left(1, \frac{p(\Theta')q(\Theta', \Theta)f(X|\Theta')f(Y|\Theta)}{p(\Theta)q(\Theta, \Theta')f(Y|\Theta')f(X|\Theta)} \times \frac{c(\Theta)c(\Theta')}{c(\Theta)c(\Theta')} \right)$$

The normalizing constants cancel.

Double Metropolis-Hastings algorithm

Problem: Exchange algorithm does not apply here; we do not have a perfect sample for this complex model.

- Approximate the perfect sample Y by the last value from a long MCMC sampler.
- This is known as Double Metropolis-Hastings due to Liang (2010). It is an approximate version of the exchange algorithm.
- Double MH uses two nested MCMC samplers; the "inner" sampler generates an auxiliary point pattern at each step of the "outer" sampler.
- Asymptotically equivalent to exchange algorithm.

Computational challenges

The largest datasets consist of 13,000-14,000 spatial locations. For data this large, the nested samplers are expensive; the inner sampler must be run for thousands of iterations at each step of the outer sampler.

- Inner sampler updates fast in practice since we only propose to add or remove a single point (birth-death sampler)
- R too slow, code in C and optimize.
- Greatly reduce computing by truncating the interaction function for large values of r (evaluate $\phi(r)$ to 1 when $r > R_{max}$).
- Inference for three replicates of the largest dataset takes a few days on the Lion-X cluster.

Conclusions

Can make meaningful scientific conclusions as a result of inference on model parameters across multiple RSV experiments (e.g. RSV-B infected cells have a higher propensity to lump together than RSV-A; suggests RSV-B induces stronger increase in susceptibility to infection).

Advantages of our method:

- Our model captures the complex scale-varying attraction and repulsion behavior observed in the RSV dataset; this flexibility is not available in existing models
- Parametric specification of the interaction function lets us draw meaningful conclusions based on parameter inference
- Inference works well for simulated examples we can recover the truth. We also have a method using PCFs to verify the goodness of fit for our model.