BÀI TẬP TRẮC NGHIỆM GIẢI TÍCH (KHỐI KINH TÉ)	
Chương 1	Hàm một biến
	Câu 1: Giới hạn $\lim_{x \to 0} \frac{\tan x}{4x}$ bằng
	A. 1/3
	B1/3
	C. 1/8
	D. 1/4
	E. 2/3
	F1 Cây 2. Ciới hạn lim x hằng
	Cau 2: Giot hạn $\lim_{x\to 0} \frac{1}{\ln(2x+1)}$ bang
	A. 2
	B. 1/2
	C1/2 D. 1/4
	E4
	F1/4
	Câu 3: Hàm số $f(x) = \begin{cases} x - a & v \circ i \ x \le 1 \\ 3x^2 + 1 & v \circ i \ x > 1 \end{cases}$ liên tục tại $x = 1$ khi
	$\begin{vmatrix} 3x^2 + 1 & voi & x > 1 \\ A. & a = -3 \end{vmatrix}$
	B. a = 2
	C. a = -2
	D. a = 4
	E. $a = -4$
	F. $a = 7$
	Câu 4: Giới hạn $\lim_{x \to 1} \frac{\sin(\pi x^3)}{\sin(\pi x^4)}$ bằng
	A. 1/2
	B. 2/3
	C. 3/4 D. 4/3
	E. 3/2
F. Không tồn tại	
	Câu 5: Giới hạn $\lim_{x\to 0} \frac{\ln(x+1)-x}{1-\cos x}$ bằng
	A. 1
	B2
	C. 2
	D. 1/2
	E1
	$F1/2$ $(x + a n \acute{\alpha} i \ x < \pi$
	Câu 6: Hàm số $f(x) = \begin{cases} x + a & v \text{\'ot } x \le \pi \\ \frac{\cos(x/2)}{x^2 - \pi^2} & v \text{\'ot } x > \pi \end{cases}$ liên tục tại $x = \pi$ khi
	A. $a = -1/8$
	B. $a = \pi + 1/2$
	C. a = 8
	D. $a = 4$

$E. a = -\pi - 1/4\pi$	
F. $a = \pi + 4$	
Câu 7: Tích phân $\int_0^1 (4x^3 + 2x + 5) dx$ bằng	
A. 4	
B. 5	
C. 6	
D. 7	
E. 8	
F. 9	
Câu 8: Tích phân bất định $\int \frac{dx}{x^2+4x+5}$ bằng	
A. $\tan \frac{x-1}{2} + C$	
B. $\arctan(x+2)+C$	
C. $arctan(x-2) + C$	
D. $\ln \left \frac{x-1}{x+1} \right + C$	
$ E. \ln x + 2 + C$	
$ F. \ln \left \frac{x+1}{x-1} \right + C$	
Câu 9: Tích phân $\int_1^e (3x^2 + 1) \ln x dx$ bằng	
A. $e^3 + 1$	
B. $4e - 1$	
$C.e^2 + 2$	
D. $\ln 3 + 2$	
$E. \frac{2}{3}e^3 + \frac{4}{3}$	
$F.\frac{e}{3}+3$	
Câu 10: Tích phân $\int_0^{\pi/2} (1 + \sin x) \cos^3 x dx$ bằng	
A. 7/8	
B. 2/3	
C. 11/12	
D. 4/13	
E. 9/16	
F. 9/8	
Câu 11: Tích phân $\int_0^{\ln 6} \frac{e^x}{\sqrt{e^x+3}} dx$ bằng	
A. 2	
B. 23/6	
C. 13/12	
D. 24/5	
E. 16/9	
F. 5/2	

Câu 12: Đạo hàm riêng theo biến y của hàm số $f(x,y) = e^x(-x+3y)$ là $Ae^x(-x+3y)$ $B. 3e^x(-x+3y)$ Ce^x $D. 0$ $E. e^x(-x+3y-1)$ $F. 3e^x$ $Câu 13: Vi phân toàn phần của hàm số f(x,y) = x^2 + x\cos y tại diễm (1.0) là A. 2dx - dy B. 2xdx - xsinydy C.2 D. 3dx E. (2x + \cos y)dx F. 2dx + x\cos ydx Câu 14: Câc diễm dừng của hàm số f(x,y) = x^3 + 6xy + y^3 là A. (0,0) và (-1,2) B. (0,0) và (-2,-2) C. (1,1) và (2,2) D. (1,-1) và (-1,2) E. (-1,-1) và (2,2) E. (-1,-1) v$	Chương 2	Hàm nhiều biến
B. $3e^{x}(-x+3y)$ C. $-e^{x}$ D. 0 E. $e^{x}(-x+3y-1)$ F. $3e^{x}$ Câu 13: Vị phân toàn phần của hàm số $f(x,y) = x^{2} + x\cos y$ tại điểm (1,0) là A. $2dx - dy$ B. $2xdx - xsinydy$ C. 2 D. $3dx$ E. $(2x + \cos y)dx$ F. $2dx + x\cos ydx$ Câu 14: Các điểm dững của hàm số $f(x,y) = x^{3} + 6xy + y^{3}$ là A. $(0,0)$ và $(-1,2)$ B. $(0,0)$ và $(-1,2)$ B. $(0,0)$ và $(-1,2)$ B. $(0,0)$ và $(-1,2)$ E. $(-1,-1)$ và $(2,2)$ D. $(1,-1)$ và $(2,2)$ E. $(-1,-1)$ và $(2,2)$ F. $(0,0)$ và $(2,2)$ Câu 15: Dạo hàm riêng theo biến z của hàm số $f(x,y,z) = \arctan \frac{y}{xx^{2}}$ bằng A. $\frac{-2xyz}{y^{2}+x^{2}z^{3}}$ B. $\frac{xy}{z^{2}+x^{2}z^{3}}$ C. $\frac{2xyz}{x^{2}+x^{2}z^{3}}$ C. $\frac{2xyz}{x^{2}+x^{2}z^{3}}$ F. Các đáp án trên đều sai. Câu 16: Cho $f(x,y) = \ln \sqrt{x^{2}+y^{2}}$. Thì $f'''_{xx}(1,2)$ bằng A. $8/9$ B. $-7/6$ C. $9/8$ D. $-4/5$ E. $2/3$ F. 2 Câu 17: Cho hàm ẩn hai biến $z(x,y)$ xác định bởi $z - ye^{x/x} = 0$. Đạo hàm riêng của $z(x,y)$ theo biến x bằng A. $\frac{xye^{x/x}}{x^{2}+xye^{x/x}}$		Câu 12: Đạo hàm riêng theo biến y của hàm số $f(x,y) = e^x(-x + 3y)$ là
C. $-e^x$ D. 0 E. $e^x(-x+3y-1)$ F. $3e^x$ Câu 13: Vi phân toàn phần của hàm số $f(x,y) = x^2 + x\cos y$ tại điểm (1,0) là A. $2dx - dy$ B. $2xdx - x\sin ydy$ C.2 D. $3dx$ E. $(2x + \cos y)dx$ F. $2dx + x\cos ydy$ Câu 14: Các điểm dừng của hàm số $f(x,y) = x^3 + 6xy + y^3$ là A. $(0,0)$ và $(-1,2)$ B. $(0,0)$ và $(-2,-2)$ C. $(1,1)$ và $(2,2)$ D. $(1,-1)$ và $(2,2)$ E. $(-1,-1)$ và $(2,2)$ E. $(-1,-1)$ và $(2,2)$ Câu 15: Đạo hàm riêng theo biến z của hàm số $f(x,y,z) = \arctan \frac{y}{xz^2}$ bằng A. $\frac{-2xyz}{y^2+x^2z^4}$ B. $\frac{z}{z^2+x^2z^4}$ C. $\frac{-2xyz}{x^2+z^2y^4}$ D. $\frac{-2xy}{x^2+z^2y^4}$ E. $\frac{-2xy}{y^2+x^2z^4}$ F. Các đáp án trên đều sai. Câu 16: Cho $f(x,y) = \ln \sqrt{x^2+y^2}$. Thì $f'''_{xx}(1,2)$ bằng A. $8/9$ B. $-7/6$ C. $9/8$ D. $-4/5$ E. $2/3$ F. 2 Câu 17: Cho hàm ẩn hai biến $z(x,y)$ xác định bởi $z - ye^{z/x} = 0$. Đạo hàm riêng của $z(x,y)$ theo biến x bằng A. $\frac{xye^{x/x}}{x^2+xye^{x/x}}$		$Ae^x(-x+3y)$
D. 0 E. $e^x(-x + 3y - 1)$ F. $3e^x$ Câu 13: Vị phân toàn phần của hàm số $f(x, y) = x^2 + x\cos y$ tại điểm (1,0) là A. $2dx - dy$ B. $2xdx - x\sin ydy$ C. 2 D. $3dx$ E. $(2x + \cos y)dx$ F. $2dx + x\cos ydy$ Câu 14: Các điểm dừng của hàm số $f(x, y) = x^3 + 6xy + y^3$ là A. $(0,0)$ và $(-1,2)$ B. $(0,0)$ và $(-1,2)$ B. $(0,0)$ và $(-2,-2)$ C. $(1,1)$ và $(2,2)$ D. $(1,-1)$ và $(2,2)$ E. $(-1,-1)$ và $(2,2)$ F. $(0,0)$ và $(2,2)$ Câu 15: Đạo hàm riêng theo biến z của hàm số $f(x,y,z) = \arctan \frac{y}{xz^2}$ bằng A. $\frac{-2xyz}{y^2 + x^2 z^3}$ B. $\frac{zy}{z^2 + x^2 z^3}$ C. $\frac{2xyz}{z^2 + x^2 z^3}$ E. $\frac{-2xyz}{y^2 + x^2 z^3}$ F. Các đáp án trên đều sai. Câu 16: Cho $f(x,y) = \ln \sqrt{x^2 + y^2}$. Thì $f'''_{xx}(1,2)$ bằng A. $8/9$ B. $-7/6$ C. $9/8$ D. $-4/5$ E. $2/3$ F. 2 Câu 17: Cho hàm ẩn hai biến $z(x,y)$ xác định bởi $z - ye^{z/x} = 0$. Đạo hàm riêng của $z(x,y)$ theo biến x bằng A. $\frac{xye^{z/x}}{x^2 + xy + xy + xy}$		
E. $e^x(-x + 3y - 1)$ F. $3e^x$ Câu 13: Vi phân toàn phần của hàm số $f(x,y) = x^2 + x\cos y$ tại điểm (1,0) là A. $2dx - dy$ B. $2xdx - x\sin ydy$ C.2 D. $3dx$ E. $(2x + \cos y)dx$ F. $2dx + x\cos ydy$ Câu 14: Các điểm dừng của hàm số $f(x,y) = x^3 + 6xy + y^3$ là A. $(0,0)$ và $(-1,2)$ B. $(0,0)$ và $(-2,-2)$ C. $(1,1)$ và $(2,2)$ D. $(1,-1)$ và $(2,2)$ E. $(-1,-1)$ và $(2,2)$ F. $(0,0)$ và $(2,2)$ Câu 15: Dạo hàm riêng theo biển z của hàm số $f(x,y,z) = \arctan \frac{y}{xz^2}$ bằng A. $\frac{-2xyz}{y^2+x^2z^4}$ B. $\frac{xy}{y^2+x^2z^4}$ C. $\frac{2xyz}{x^2+x^2y^4}$ E. $\frac{4xyz^2}{y^2+x^2z^4}$ F. Các đáp án trên đều sai. Câu 16: Cho $f(x,y) = \ln \sqrt{x^2+y^2}$. Thì $f'''_{xx}(1,2)$ bằng A.8/9 B. $-7/6$ C. $9/8$ D. $-4/5$ E. $2/3$ F. 2 Câu 17: Cho hàm ẩn hai biến $z(x,y)$ xác định bởi $z - ye^{z/x} = 0$. Đạo hàm riêng của $z(x,y)$ theo biến x bằng A. $\frac{xye^{z/x}}{x^2+xye^{z/x}}$		
F. $3e^{\frac{x}{x}}$ Câu 13: Vi phân toàn phần của hàm số $f(x,y) = x^2 + x\cos y$ tại điểm (1,0) là A. $2dx - dy$ B. $2xdx - x\sin ydy$ C.2 D. $3dx$ E. $(2x + \cos y)dx$ F. $2dx + x\cos ydx$ Câu 14: Các điểm dừng của hàm số $f(x,y) = x^3 + 6xy + y^3$ là A. $(0,0)$ và $(-1,2)$ B. $(0,0)$ và $(-2,-2)$ C. $(1,1)$ và $(2,2)$ D. $(1,-1)$ và $(2,2)$ E. $(-1,-1)$ và $(2,2)$ F. $(0,0)$ và $(2,2)$ Câu 15: Đạo hàm riêng theo biến z của hàm số $f(x,y,z) = \arctan \frac{y}{xz^2}$ bằng A. $\frac{-2xyz}{y^2+x^2z^4}$ B. $\frac{xy}{z^2+x^2z^4}$ B. $\frac{xy}{z^2+x^2z^4}$ C. $\frac{-2xyz}{x^2+z^2y^4}$ E. $\frac{4xyz^2}{y^2+x^2z^4}$ F. Các đáp án trên đều sai. Câu 16: Cho $f(x,y) = \ln \sqrt{x^2+y^2}$. Thì $f'''_{xx}(1,2)$ bằng A. $8/9$ B. $-7/6$ C. $9/8$ D. $-4/5$ E. $2/3$ F. 2 Câu 17: Cho hàm ẩn hai biến $z(x,y)$ xác định bởi $z - ye^{z/x} = 0$. Đạo hàm riêng của $z(x,y)$ theo biến x bằng A. $\frac{xye^{y/x}}{x^2+xye^{y/x}}$		
Câu 13: Vi phân toàn phần của hàm số $f(x,y) = x^2 + x\cos y$ tại điểm (1,0) là A. $2dx - dy$ B. $2xdx - x\sin ydy$ C.2 D. $3dx$ E. $(2x + \cos y)dx$ F. $2dx + x\cos ydy$ Câu 14: Các điểm dùng của hàm số $f(x,y) = x^3 + 6xy + y^3$ là A. $(0,0)$ và $(-1,2)$ B. $(0,0)$ và $(-2,-2)$ C. $(1,1)$ và $(2,2)$ D. $(1,-1)$ và $(-1,2)$ E. $(-1,-1)$ và $(2,2)$ F. $(0,0)$ và $(2,2)$ Câu 15: Đạo hàm riêng theo biến z của hàm số $f(x,y,z) = \arctan \frac{y}{xz^2}$ bằng A. $\frac{-2xyz}{y^2 + x^2z^4}$ B. $\frac{-2xyz}{z^2 + x^2z^4}$ C. $\frac{-2xyz}{x^2 + x^2y^2}$ C. $\frac{-2xyz}{x^2 + x^2y^4}$ F. Các đáp án trên đều sai. Câu 16: Cho $f(x,y) = \ln \sqrt{x^2 + y^2}$. Thì $f'''_{xx}(1,2)$ bằng A. $8/9$ B. $-7/6$ C. $9/8$ D. $-4/5$ E. $2/3$ F. 2 Câu 17: Cho hàm ẩn hai biến $z(x,y)$ xác định bởi $z - ye^{z/x} = 0$. Đạo hàm riêng của $z(x,y)$ theo biến x bằng A. $\frac{xye^{x/x}}{x^2 + xye^{x/x}}$		
A. $2dx - dy$ B. $2xdx - xsinydy$ C.2 D. $3dx$ E. $(2x + \cos y)dx$ F. $2dx + x\cos ydy$ Câu 14: Các điểm dùng của hàm số $f(x, y) = x^3 + 6xy + y^3$ là A. $(0,0)$ và $(-1,2)$ B. $(0,0)$ và $(-2,-2)$ C. $(1,1)$ và $(2,2)$ D. $(1,-1)$ và $(-1,2)$ E. $(-1,-1)$ và $(2,2)$ F. $(0,0)$ và $(2,2)$ Câu 15: Đạo hàm riêng theo biến z của hàm số $f(x,y,z) = \arctan \frac{y}{xz^2}$ bằng A. $\frac{-2xyz}{y^2+x^2z^4}$ B. $\frac{xy}{z^2+x^2z^4}$ C. $\frac{-2xyz}{x^2+z^2y^2}$ C. $\frac{-2xyz}{x^2+z^2y^2}$ E. $\frac{4xyz}{y^2+x^2z^4}$ F. Các đáp án trên đều sai. Câu 16: Cho $f(x,y) = \ln \sqrt{x^2 + y^2}$. Thì $f'''_{xx}(1,2)$ bằng A. $8/9$ B. $-7/6$ C. $9/8$ D. $-4/5$ E. $2/3$ F. 2 Câu 17: Cho hàm ẩn hai biến $z(x,y)$ xác định bởi $z - ye^{z/x} = 0$. Đạo hàm riêng của $z(x,y)$ theo biến x bằng A. $\frac{xye^{x/x}}{x^2+xye^{x/x}}$		
C.2 D. $3dx$ E. $(2x + \cos y)dx$ F. $2dx + x\cos ydy$ Câu 14 : Các điểm dừng của hàm số $f(x,y) = x^3 + 6xy + y^3$ là A. $(0,0)$ và $(-1,2)$ B. $(0,0)$ và $(-2,-2)$ C. $(1,1)$ và $(2,2)$ D. $(1,-1)$ và $(2,2)$ E. $(-1,-1)$ và $(2,2)$ F. $(0,0)$ và $(2,2)$ Câu 15 : Dạo hàm riêng theo biến z của hàm số $f(x,y,z) = \arctan \frac{y}{xz^2}$ bằng A. $\frac{-2xyz}{y^2 + x^2z^4}$ B. $\frac{xy}{z^2 + x^2z^4}$ C. $\frac{-2xyz}{x^2 + x^2y^4}$ D. $\frac{-2xy^2}{x^2 + x^2y^4}$ E. $\frac{4xyz^2}{y^2 + x^2z^4}$ F. Các đáp án trên đều sai. Câu 16 : Cho $f(x,y) = \ln \sqrt{x^2 + y^2}$. Thì $f''_{xx}(1,2)$ bằng A. $8/9$ B. $-7/6$ C. $9/8$ D. $-4/5$ E. $2/3$ F. 2 Câu 17 : Cho hàm ẩn hai biến $z(x,y)$ xác định bởi $z - ye^{z/x} = 0$. Đạo hàm riêng của $z(x,y)$ theo biến x bằng A. $\frac{xye^{z/x}}{x^2 + xye^{z/x}}$		
D. $3dx$ E. $(2x + \cos y)dx$ F. $2dx + x\cos ydy$ Câu 14: Các điểm dừng của hàm số $f(x,y) = x^3 + 6xy + y^3$ là A. $(0,0)$ và $(-1,2)$ B. $(0,0)$ và $(-2,-2)$ C. $(1,1)$ và $(2,2)$ D. $(1,-1)$ và $(-1,2)$ E. $(-1,-1)$ và $(2,2)$ F. $(0,0)$ và $(2,2)$ Câu 15: Đạo hàm riêng theo biến z của hàm số $f(x,y,z) = \arctan \frac{y}{xx^2}$ bằng A. $\frac{-2xyz}{y^2 + x^2z^4}$ B. $\frac{xy}{y^2 + x^2z^4}$ C. $\frac{-2xyz}{x^2 + x^2z^4}$ D. $\frac{-2xy^2}{x^2 + x^2z^4}$ E. $\frac{-4xyz^2}{y^2 + x^2z^4}$ F. Các đáp án trên đều sai. Câu 16: Cho $f(x,y) = \ln \sqrt{x^2 + y^2}$. Thì $f''_{xx}(1,2)$ bằng A. $8/9$ B. $-7/6$ C. $9/8$ D. $-4/5$ E. $2/3$ F. 2 Câu 17: Cho hàm ẩn hai biến $z(x,y)$ xác định bởi $z - ye^{z/x} = 0$. Đạo hàm riêng của $z(x,y)$ theo biến x bằng A. $\frac{xye^{x/x}}{x^2 + xye^{z/x}}$		
E. $(2x + \cos y)dx$ F. $2dx + x\cos ydy$ Câu 14: Các điểm dừng của hàm số $f(x,y) = x^3 + 6xy + y^3$ là A. $(0,0)$ và $(-1,2)$ B. $(0,0)$ và $(-2,-2)$ C. $(1,1)$ và $(2,2)$ D. $(1,-1)$ và $(-1,2)$ E. $(-1,-1)$ và $(2,2)$ F. $(0,0)$ và $(2,2)$ Câu 15: Đạo hàm riêng theo biến z của hàm số $f(x,y,z) = \arctan \frac{y}{xz^2}$ bằng A. $\frac{-2xyz}{y^2 + x^2z^4}$ B. $\frac{xy}{y^2 + x^2z^4}$ C. $\frac{-2xyz}{x^2 + x^2z^4}$ C. $\frac{-2xyz}{x^2 + x^2z^4}$ E. $\frac{4xyz^2}{y^2 + x^2z^4}$ F. Các đáp án trên đều sai. Câu 16: Cho $f(x,y) = \ln \sqrt{x^2 + y^2}$. Thì $f''_{xx}(1,2)$ bằng A.8/9 B. $-7/6$ C. $9/8$ D. $-4/5$ E. $2/3$ F. 2 Câu 17: Cho hàm ẩn hai biến $z(x,y)$ xác định bởi $z - ye^{z/x} = 0$. Đạo hàm riêng của $z(x,y)$ theo biến x bằng A. $\frac{xye^{z/x}}{x^2 + xye^{z/x}}$		C.2
F. $2dx + xcosydy$ Câu 14: Các điểm dừng của hàm số $f(x,y) = x^3 + 6xy + y^3$ là A. $(0,0)$ và $(-1,2)$ B. $(0,0)$ và $(-2,-2)$ C. $(1,1)$ và $(2,2)$ D. $(1,-1)$ và $(-1,2)$ E. $(-1,-1)$ và $(2,2)$ F. $(0,0)$ và $(2,2)$ Câu 15: Đạo hàm riêng theo biến z của hàm số $f(x,y,z) = \arctan \frac{y}{xz^2}$ bằng A. $\frac{-2xyz}{y^2+x^2z^4}$ B. $\frac{xy}{z^2+x^2z^4}$ C. $\frac{xy}{x^2+x^2z^4}$ D. $\frac{-2xy^2}{x^2+z^2y^4}$ E. $\frac{4xyz^2}{y^2+x^2z^4}$ F. Các đáp án trên đều sai. Câu 16: Cho $f(x,y) = \ln \sqrt{x^2 + y^2}$. Thì $f''_{xx}(1,2)$ bằng A. $8/9$ B. $-7/6$ C. $9/8$ D. $-4/5$ E. $2/3$ F. 2 Câu 17: Cho hàm ẩn hai biến $z(x,y)$ xác định bởi $z - ye^{z/x} = 0$. Đạo hàm riêng của $z(x,y)$ theo biến x bằng A. $\frac{xye^{x/x}}{x^2+xye^{x/x}}$		D. 3 <i>dx</i>
Câu 14: Các điểm dừng của hàm số $f(x,y) = x^3 + 6xy + y^3$ là A. $(0,0)$ và $(-1,2)$ B. $(0,0)$ và $(-2,-2)$ C. $(1,1)$ và $(2,2)$ D. $(1,-1)$ và $(-1,2)$ E. $(-1,-1)$ và $(2,2)$ F. $(0,0)$ và $(2,2)$ Câu 15: Đạo hàm riêng theo biến z của hàm số $f(x,y,z) = \arctan \frac{y}{xz^2}$ bằng A. $\frac{-2xyz}{y^2+x^2z^4}$ B. $\frac{xy}{z^2+x^2z^4}$ C. $\frac{-2xyz}{x^2+z^2y^4}$ D. $\frac{-2xy^2}{x^2+z^2y^4}$ D. $\frac{-2xy^2}{x^2+z^2y^4}$ F. Các đáp án trên đều sai. Câu 16: Cho $f(x,y) = \ln \sqrt{x^2+y^2}$. Thì $f''_{xx}(1,2)$ bằng A.8/9 B. $-7/6$ C. $9/8$ D. $-4/5$ E. $2/3$ F. 2 Câu 17: Cho hàm ẩn hai biến $z(x,y)$ xác định bởi $z-ye^{z/x}=0$. Đạo hàm riêng của $z(x,y)$ theo biến x bằng A. $\frac{xye^{z/x}}{x^2+xye^{z/x}}$		
A. $(0,0)$ và $(-1,2)$ B. $(0,0)$ và $(-2,-2)$ C. $(1,1)$ và $(2,2)$ D. $(1,-1)$ và $(-1,2)$ E. $(-1,-1)$ và $(2,2)$ F. $(0,0)$ và $(2,2)$ Câu 15: Đạo hàm riêng theo biến z của hàm số $f(x,y,z) = \arctan \frac{y}{xz^2}$ bằng A. $\frac{-2xyz}{y^2+x^2z^4}$ B. $\frac{xy}{z^2+x^2z^4}$ C. $\frac{-2xyz}{x^2+z^2y^4}$ D. $\frac{-2xy^2}{x^2+z^2y^4}$ E. $\frac{4xyz^2}{y^2+x^2z^4}$ F. Các đáp án trên đều sai. Câu 16: Cho $f(x,y) = \ln \sqrt{x^2+y^2}$. Thì $f_{xx}''(1,2)$ bằng A.8/9 B. $-7/6$ C. $9/8$ D. $-4/5$ E. $2/3$ F. 2 Câu 17: Cho hàm ẫn hai biến $z(x,y)$ xác định bởi $z-ye^{z/x}=0$. Đạo hàm riêng của $z(x,y)$ theo biến x bằng A. $\frac{xye^{z/x}}{x^2+xye^{z/x}}$		
B. $(0,0)$ và $(-2,-2)$ C. $(1,1)$ và $(2,2)$ D. $(1,-1)$ và $(-1,2)$ E. $(-1,-1)$ và $(2,2)$ F. $(0,0)$ và $(2,2)$ Câu 15: Đạo hàm riêng theo biến z của hàm số $f(x,y,z) = \arctan \frac{y}{xz^2}$ bằng A. $\frac{-2xyz}{y^2+x^2z^4}$ B. $\frac{xy}{z^2+x^2z^4}$ C. $\frac{-2xyz}{x^2+z^2y^4}$ D. $\frac{-2xy^2}{x^2+z^2y^4}$ E. $\frac{4xyz^2}{y^2+x^2z^4}$ F. Các đáp án trên đều sai. Câu 16: Cho $f(x,y) = \ln \sqrt{x^2+y^2}$. Thì $f''_{xx}(1,2)$ bằng A. $8/9$ B. $-7/6$ C. $9/8$ D. $-4/5$ E. $2/3$ F. 2 Câu 17: Cho hàm ẩn hai biến $z(x,y)$ xác định bởi $z-ye^{z/x}=0$. Đạo hàm riêng của $z(x,y)$ theo biến x bằng A. $\frac{xye^{z/x}}{x^2+xye^{z/x}}$		
C. $(1,1)$ và $(2,2)$ D. $(1,-1)$ và $(-1,2)$ E. $(-1,-1)$ và $(2,2)$ F. $(0,0)$ và $(2,2)$ Câu 15: Đạo hàm riêng theo biến z của hàm số $f(x,y,z) = \arctan \frac{y}{xz^2}$ bằng $A. \frac{-2xyz}{y^2+x^2z^4}$ B. $\frac{xy}{z^2+x^2z^4}$ C. $\frac{2xyz}{x^2+x^2z^4}$ D. $\frac{-2xy^2}{x^2+x^2y^4}$ E. $\frac{4xyz^2}{y^2+x^2z^4}$ F. Các đáp án trên đều sai. Câu 16: Cho $f(x,y) = \ln \sqrt{x^2+y^2}$. Thì $f'''_{xx}(1,2)$ bằng $A.8/9$ B. $-7/6$ C. $9/8$ D. $-4/5$ E. $2/3$ F. 2 Câu 17: Cho hàm ẩn hai biến $z(x,y)$ xác định bởi $z-ye^{z/x}=0$. Đạo hàm riêng của $z(x,y)$ theo biến x bằng $A. \frac{xye^{x/x}}{x^2+xye^{x/x}}$		
D. $(1,-1)$ và $(-1,2)$ E. $(-1,-1)$ và $(2,2)$ F. $(0,0)$ và $(2,2)$ Câu 15: Đạo hàm riêng theo biến z của hàm số $f(x,y,z) = \arctan \frac{y}{xz^2}$ bằng A. $\frac{-2xyz}{y^2+x^2z^4}$ B. $\frac{xy}{z^2+x^2z^4}$ C. $\frac{-2xyz}{x^2+x^2z^4}$ D. $\frac{-2xy^2}{x^2+x^2z^4}$ E. $\frac{4xyz^2}{y^2+x^2z^4}$ F. Các đáp án trên đều sai. Câu 16: Cho $f(x,y) = \ln \sqrt{x^2+y^2}$. Thì $f'''_{xx}(1,2)$ bằng A. $8/9$ B. $-7/6$ C. $9/8$ D. $-4/5$ E. $2/3$ F. 2 Câu 17: Cho hàm ẩn hai biến $z(x,y)$ xác định bởi $z-ye^{z/x}=0$. Đạo hàm riêng của $z(x,y)$ theo biến x bằng A. $\frac{xye^{z/x}}{x^2+xye^{z/x}}$		· · · · · · · · · · · · · · · · · · ·
E. $(-1,-1)$ và $(2,2)$ F. $(0,0)$ và $(2,2)$ Câu 15: Đạo hàm riêng theo biến z của hàm số $f(x,y,z)=\arctan\frac{y}{xz^2}$ bằng A. $\frac{-2xyz}{y^2+x^2z^4}$ B. $\frac{xy}{z^2+x^2z^4}$ C. $\frac{-2xyz}{x^2+z^2y^4}$ D. $\frac{-2xy^2}{x^2+z^2y^4}$ E. $\frac{4xyz^2}{y^2+x^2z^4}$ F. Các đáp án trên đều sai. Câu 16: Cho $f(x,y)=\ln\sqrt{x^2+y^2}$. Thì $f''_{xx}(1,2)$ bằng A. $8/9$ B. $-7/6$ C. $9/8$ D. $-4/5$ E. $2/3$ F. 2 Câu 17: Cho hàm ẩn hai biến $z(x,y)$ xác định bởi $z-ye^{z/x}=0$. Đạo hàm riêng của $z(x,y)$ theo biến x bằng A. $\frac{xye^{z/x}}{x^2+xye^{z/x}}$		
F. $(0,0)$ và $(2,2)$ Câu 15: Đạo hàm riêng theo biến z của hàm số $f(x,y,z) = \arctan \frac{y}{xz^2}$ bằng A. $\frac{-2xyz}{y^2+x^2z^4}$ B. $\frac{-2xyz}{z^2+x^2z^4}$ C. $\frac{2xyz}{x^2+z^2y^4}$ D. $\frac{-2xy^2}{x^2+z^2y^4}$ E. $\frac{4xyz^2}{y^2+x^2z^4}$ F. Các đáp án trên đều sai. Câu 16: Cho $f(x,y) = \ln \sqrt{x^2+y^2}$. Thì $f''_{xx}(1,2)$ bằng A. $8/9$ B. $-7/6$ C. $9/8$ D. $-4/5$ E. $2/3$ F. 2 Câu 17: Cho hàm ẩn hai biến $z(x,y)$ xác định bởi $z-ye^{z/x}=0$. Đạo hàm riêng của $z(x,y)$ theo biến x bằng A. $\frac{xye^{z/x}}{x^2+xye^{z/x}}$		
Câu 15: Đạo hàm riêng theo biến z của hàm số $f(x,y,z) = \arctan \frac{y}{xz^2}$ bằng $A. \frac{-2xyz}{y^2+x^2z^4}$ $B. \frac{z}{xy}$ $C. \frac{2xyz}{x^2+x^2z^4}$ $D. \frac{-2xy^2}{x^2+z^2y^4}$ $E. \frac{4xyz^2}{y^2+x^2z^4}$ $F. Các đáp án trên đều sai.$ Câu 16: Cho $f(x,y) = \ln \sqrt{x^2 + y^2}$. Thì $f''_{xx}(1,2)$ bằng $A.8/9$ $B7/6$ $C. 9/8$ $D4/5$ $E. 2/3$ $F. 2$ Câu 17: Cho hàm ẩn hai biến $z(x,y)$ xác định bởi $z - ye^{z/x} = 0$. Đạo hàm riêng của $z(x,y)$ theo biến x bằng $A. \frac{xye^{x/x}}{x^2+xye^{z/x}}$		
A. $\frac{-2xyz}{y^2+x^2z^4}$ B. $\frac{z^2+x^2z^4}{x^2y^2}$ C. $\frac{2xyz}{x^2+z^2y^4}$ D. $\frac{-2xy^2}{x^2+z^2y^4}$ E. $\frac{4xyz^2}{y^2+x^2z^4}$ F. Các đáp án trên đều sai. Câu 16: Cho $f(x,y) = \ln \sqrt{x^2 + y^2}$. Thì $f''_{xx}(1,2)$ bằng A.8/9 B. $-7/6$ C. 9/8 D. $-4/5$ E. 2/3 F. 2 Câu 17: Cho hàm ẩn hai biến $z(x,y)$ xác định bởi $z - ye^{z/x} = 0$. Đạo hàm riêng của $z(x,y)$ theo biến x bằng A. $\frac{xye^{z/x}}{x^2+xye^{z/x}}$		
B. $\frac{xy}{z^2+x^2z^4}$ C. $\frac{2xyz}{x^2+z^2y^4}$ D. $\frac{-2xy^2}{x^2+z^2y^4}$ E. $\frac{4xyz^2}{y^2+x^2z^4}$ F. Các đáp án trên đều sai. Câu 16: Cho $f(x,y) = \ln \sqrt{x^2 + y^2}$. Thì $f''_{xx}(1,2)$ bằng A.8/9 B. $-7/6$ C. 9/8 D. $-4/5$ E. 2/3 F. 2 Câu 17: Cho hàm ẩn hai biến $z(x,y)$ xác định bởi $z - ye^{z/x} = 0$. Đạo hàm riêng của $z(x,y)$ theo biến x bằng A. $\frac{xye^{x/x}}{x^2+xye^{x/x}}$		WZ
C. $\frac{2xyz}{x^2+z^2y^4}$ D. $\frac{-2xy^2}{x^2+z^2y^4}$ E. $\frac{4xyz^2}{y^2+x^2z^4}$ F. Các đáp án trên đều sai. Câu 16: Cho $f(x,y) = \ln \sqrt{x^2+y^2}$. Thì $f''_{xx}(1,2)$ bằng A.8/9 B. $-7/6$ C. 9/8 D. $-4/5$ E. $2/3$ F. 2 Câu 17: Cho hàm ẩn hai biến $z(x,y)$ xác định bởi $z-ye^{z/x}=0$. Đạo hàm riêng của $z(x,y)$ theo biến x bằng A. $\frac{xye^{z/x}}{x^2+xye^{z/x}}$		A. $\frac{1}{y^2 + x^2 z^4}$
C. $\frac{2xyz}{x^2+z^2y^4}$ D. $\frac{-2xy^2}{x^2+z^2y^4}$ E. $\frac{4xyz^2}{y^2+x^2z^4}$ F. Các đáp án trên đều sai. Câu 16: Cho $f(x,y) = \ln \sqrt{x^2+y^2}$. Thì $f''_{xx}(1,2)$ bằng A.8/9 B. $-7/6$ C. 9/8 D. $-4/5$ E. $2/3$ F. 2 Câu 17: Cho hàm ẩn hai biến $z(x,y)$ xác định bởi $z-ye^{z/x}=0$. Đạo hàm riêng của $z(x,y)$ theo biến x bằng A. $\frac{xye^{z/x}}{x^2+xye^{z/x}}$		$B.\frac{xy}{z^2+x^2z^4}$
D. $\frac{-2xy^2}{x^2+x^2y^4}$ E. $\frac{4xyz^2}{y^2+x^2z^4}$ F. Các đáp án trên đều sai. Câu 16: Cho $f(x,y) = \ln \sqrt{x^2+y^2}$. Thì $f'''_{xx}(1,2)$ bằng A.8/9 B. $-7/6$ C. $9/8$ D. $-4/5$ E. $2/3$ F. 2 Câu 17: Cho hàm ẩn hai biến $z(x,y)$ xác định bởi $z-ye^{z/x}=0$. Đạo hàm riêng của $z(x,y)$ theo biến x bằng A. $\frac{xye^{z/x}}{x^2+xye^{z/x}}$		
E. $\frac{4xyz^2}{y^2+x^2z^4}$ F. Các đáp án trên đều sai. Câu 16: Cho $f(x,y) = \ln \sqrt{x^2 + y^2}$. Thì $f''_{xx}(1,2)$ bằng A.8/9 B. $-7/6$ C. $9/8$ D. $-4/5$ E. $2/3$ F. 2 Câu 17: Cho hàm ẩn hai biến $z(x,y)$ xác định bởi $z - ye^{z/x} = 0$. Đạo hàm riêng của $z(x,y)$ theo biến x bằng A. $\frac{xye^{z/x}}{x^2+xye^{z/x}}$. * 3
E. $\frac{4xyz^2}{y^2+x^2z^4}$ F. Các đáp án trên đều sai. Câu 16: Cho $f(x,y) = \ln \sqrt{x^2 + y^2}$. Thì $f''_{xx}(1,2)$ bằng A.8/9 B. $-7/6$ C. $9/8$ D. $-4/5$ E. $2/3$ F. 2 Câu 17: Cho hàm ẩn hai biến $z(x,y)$ xác định bởi $z - ye^{z/x} = 0$. Đạo hàm riêng của $z(x,y)$ theo biến x bằng A. $\frac{xye^{z/x}}{x^2+xye^{z/x}}$		$\int_{1}^{1} D. \frac{2xy}{x^2 + z^2 y^4}$
F. Các đáp án trên đều sai. Câu 16: Cho $f(x,y) = \ln \sqrt{x^2 + y^2}$. Thì $f''_{xx}(1,2)$ bằng A.8/9 B. $-7/6$ C. $9/8$ D. $-4/5$ E. $2/3$ F. 2 Câu 17: Cho hàm ẩn hai biến $z(x,y)$ xác định bởi $z - ye^{z/x} = 0$. Đạo hàm riêng của $z(x,y)$ theo biến x bằng A. $\frac{xye^{z/x}}{x^2 + xye^{z/x}}$		$\frac{1}{E} \frac{4xyz^2}{}$
Câu 16: Cho $f(x,y) = \ln \sqrt{x^2 + y^2}$. Thì $f_{xx}''(1,2)$ bằng A.8/9 B. $-7/6$ C. $9/8$ D. $-4/5$ E. $2/3$ F. 2 Câu 17: Cho hàm ẩn hai biến $z(x,y)$ xác định bởi $z - ye^{z/x} = 0$. Đạo hàm riêng của $z(x,y)$ theo biến x bằng A. $\frac{xye^{z/x}}{x^2 + xye^{z/x}}$		
A.8/9 B. $-7/6$ C. $9/8$ D. $-4/5$ E. $2/3$ F. 2 Câu 17: Cho hàm ản hai biến $z(x, y)$ xác định bởi $z - ye^{z/x} = 0$. Đạo hàm riêng của $z(x, y)$ theo biến x bằng $A.\frac{xye^{z/x}}{x^2 + xye^{z/x}}$		•
B. $-7/6$ C. $9/8$ D. $-4/5$ E. $2/3$ F. 2 Câu 17: Cho hàm ẩn hai biến $z(x, y)$ xác định bởi $z - ye^{z/x} = 0$. Đạo hàm riêng của $z(x, y)$ theo biến x bằng $A. \frac{xye^{z/x}}{x^2 + xye^{z/x}}$		·
C. 9/8 D. $-4/5$ E. $2/3$ F. 2 Câu 17: Cho hàm ẩn hai biến $z(x, y)$ xác định bởi $z - ye^{z/x} = 0$. Đạo hàm riêng của $z(x, y)$ theo biến x bằng $A. \frac{xye^{z/x}}{x^2 + xye^{z/x}}$		•
D. $-4/5$ E. $2/3$ F. 2 Câu 17: Cho hàm ản hai biến $z(x, y)$ xác định bởi $z - ye^{z/x} = 0$. Đạo hàm riêng của $z(x, y)$ theo biến x bằng $A. \frac{xye^{z/x}}{x^2 + xye^{z/x}}$		
E. 2/3 F. 2 Câu 17: Cho hàm ẩn hai biến $z(x, y)$ xác định bởi $z - ye^{z/x} = 0$. Đạo hàm riêng của $z(x, y)$ theo biến x bằng $A. \frac{xye^{z/x}}{x^2 + xye^{z/x}}$		·
Câu 17: Cho hàm ẩn hai biến $z(x,y)$ xác định bởi $z - ye^{z/x} = 0$. Đạo hàm riêng của $z(x,y)$ theo biến x bằng $A.\frac{xye^{z/x}}{x^2 + xye^{z/x}}$		E. 2/3
của $z(x, y)$ theo biến x bằng $A.\frac{xye^{z/x}}{x^2+xye^{z/x}}$		F. 2
$A.\frac{xye^{z/x}}{x^2+xye^{z/x}}$		
$A.\frac{xye^{z/x}}{x^2+xye^{z/x}}$		của $z(x,y)$ theo biến x bằng
$x^2 + xye^{z/x}$		$A = \frac{xye^{z/x}}{1-x^{2}}$
$ ho^{Z/X}$		$x^2+xye^{z/x}$ $e^{z/x}$
$B. \frac{e^{z/x}}{x^2 - xye^{z/x}}$		$B.\frac{c}{x^2-xye^{z/x}}$

$C = ye^{z/x}$
$C. \frac{ye^{z/x}}{xye^{z/x}-x^2}$
D. $\frac{1}{x^2 + xve^{z/x}}$
$E. \frac{y}{x^2 - yz}$
$F. \frac{ze^{z/x}}{xye^{z/x}-z^2}$
Câu 18: Cho hàm số $f(x, y) = x^3 + 3xy^2 - 30x - 18y$ ($x, y \ge 0$). Điểm cực tiểu
$M(x_0, y_0)$ của hàm số có $x_0 - y_0$ bằng
A1
B. 1
C3
D. 3
E2
F. 2

Chương	Phương trình vi phân
3	· ·
	Câu 19: Phương trình $y'' - 5y' + 4y = 0$ có nghiệm
	$A. y = C_1 e^x + C_2 e^{3x}$
	B. $y = C_1 e^x + C_2 e^{-4x}$
	C. $y = C_1 e^{-x} + C_2 e^{-5x}$
	D. $y = C_1 e^{-x} + C_2 e^{-3x}$
	$E. y = C_1 e^{2x} + x C_2 e^{2x}$
	F. Các đáp án trên đều sai.
	Câu 20: Phương trình vi phân tách biến $\cos x dx + y dy = 0$ có tích phân tổng quát
	$A. \sin x - y = C$
	$B. \sin x + \frac{y^2}{2} = C$
	$C. \cos x + \frac{\overline{y^2}}{2} = C$
	D. $2 \sin x - \frac{y^3}{3} = C$
	E. $\arcsin x - \sin y = C$
	$F. \cos x + 3y = C$
	Câu 21: Phương trình $(x^2 + y^2)dx + (mxy - 7y)dy = 0$ (m là tham số) là phương
	trình vi phân toàn phần khi
	A. $m = -1$
	B. $m = 1$
	C. m = 2
	D. $m = -2$
	E. $m = 3$
	F. $m = -3$

2
Câu 22: Giải phương trình vi phân $y' + \frac{2}{x}y = 4x$ ta được
A. $(4e^{4x} + C)x^2$
$B. e^{4x} + Cx^2$
$C. xe^{4x} + C \cdot \frac{x^2}{4}$
D. $(2xe^{4x}+C)\frac{1}{x^2}$
E. $y = (x^4 + C)\frac{1}{x^2}$
$F. \left(4e^{4x} + C \cdot \frac{1}{x}\right)^{\frac{1}{x^2}}$
Câu 23: Nghiệm riêng của phương trình vi phân $y'' - 2y' + 2y = 0$ thoả mãn
y(0) = 2, y'(0) = -1 là
A. $y = e^{-x}(2\cos x - 3\sin x)$
B. $y = e^{2x}(3\cos x + 2\sin x)$
C. $y = e^x (2\cos x - 3\sin x)$
D. $y = e^{-2x} (4\cos x + 3\sin x)$
$E. y = e^x(\cos x - 3\sin x)$
$F. y = e^{-x} (3\cos x - 2\sin x)$ $G_{x}^{2} = 24. \text{ Nahisan } f_{x}^{2} = 2$
Câu 24: Nghiệm tổng quát của phương trình vi phân $y'' - 2y' - 3y = 3x - 4$ là A. $y = C_1 e^{-x} + C_2 e^{3x} + x - 4$
B. $y = C_1 e^{-x} + C_2 e^{-3x} + 3x - 2$
C. $y = C_1 e^x + C_2 e^{3x} + x - 2$
D. $y = C_1 e^{-x} + C_2 e^{-x} + x - 2$
E. $y = C_1 e^{-x} + C_2 e^{-3x} - 3x + 2$
F. $y = C_1 e^x + C_2 e^{-3x} + 2x - 1$
Câu 25: Nghiệm riêng của phương trình vi phân đẳng cấp $y' = \frac{y}{x} + \left(\frac{y}{x}\right)^3$ thoả mãn
y(1) = 2 la
A. $\ln x + \frac{x^2}{2v^2} - \frac{1}{8} = 0$
B. $e^x + \frac{x}{v^2} - \frac{1}{9} = 0$
$C. \frac{x}{y} + \frac{x^2}{y^2} - \frac{1}{9} = 0$
D. $\ln y + 2\frac{x^2}{y^2} + \frac{1}{4} = 0$
E. $e^y + \frac{x^2}{y^2} - \frac{1}{9} = 0$
F. Tất cả các đáp án trên đều sai

Chương 4	Phương trình sai phân	
	Câu 26: Phương trình đặc trưng của phương trình sai phân $y_{n+2} - 4y_{n+1} + 4y_n = 0$	
	A. có hai nghiệm thực phân biệt	
	B. không có nghiệm thực	
	C. có ba nghiệm thực phân biệt	
	D. có nghiệm kép	
	E. các phương án A,B,C,D đều đúng	

F. các phương án A	B,C,D đều sai
Câu 27: Phương trìn	nh sai phân $y_{n+2} - y_{n+1} + 12y_n = 0$ có nghiệm
A. $y_n = C_1(-3)^n +$	C_24^n
B. $y_n = C_1 3^n + C_2$	
C. $y_n = C_1(-3)^n +$	= · · · ·
D. $y_n = C_1 3^n + C_2 4^n$	
E. $y_n = C_1 3^n + C_2$	
$F. y_n = C_1 2^n + C_2 ($	
	ng của phương trình sai phân $y_{n+2} + y_{n+1} - 6y_n = 0$ thoả mãn
$y_0 = 1, y_1 = -3 \text{ là}$	
A. $y_n = 2^n - 4.3^n$	
B. $y_n = 2^n - 2.3^n$	
C. $y_n = 5.2^n + 3^n$ D. $y_n = 3.2^n$	
E. $y_n = (-3)^n$	
F. $y_n = (-3)^n$	1
	nh sai phân $y_{n+2} - y_{n+1} + y_n = 0$ có nghiệm
A. $y_n = C_1 \cos \frac{n\pi}{2} +$	m
2	L
$B. y_n = C_1 \cos \frac{n\pi}{3} +$	3
C. $y_n = C_1 \cos \frac{2n\pi}{5}$	$-C_2 \sin \frac{2n\pi}{r}$
$D. y_n = C_1 \cos \frac{3n\pi}{4}$	
$E. y_n = C_1 \cos \frac{n\pi}{4} +$	$C_2 \sin \frac{\omega}{4}$
$F. y_n = C_1 n 2^n + C$	
	'ới đây là một nghiệm riêng của phương trình sai phân y_{n+2} –
$3y_{n+1} + 2y_n = 4^n$	
A. $y_n^* = 3^n (2n + 5)$	
B. $y_n^* = 4^n(n+8)$	4.
C. $y_n^* = 4^n (n^2 - 2^n)$	·
D. $y_n^* = 2^n (3n - 2)$	
E. $y_n^* = 4^n (2n + 7)$	
F. $y_n^* = 4^n n$	