Inference and interaction effects

Felipe Balcazar

NYU

October, 2022

Modernization hypothesis

• Does economic prosperity lead to democratization?

$$Dem_{it} = \alpha + \beta GDP_{it} + \delta X_{it} + \mu_i + \varepsilon_{it}.$$

- Is the the effect of the treatment (main independent variable) different from zero?
 - Null hypothesis (H_0): $\beta = 0$.
 - The alternative (H_a) : $\beta \neq 0$.

 Is the the effect of the treatment (main independent variable) different from zero?

• Null hypothesis (H_0): $\beta = 0$.

• The alternative (H_a) : $\beta \neq 0$.

		Null hypothesis		
		TRUE	FALSE	
Findings	Reject null	Type I error (α)	Correct decision	
	Accept null	Correct decision	Type II error (β)	

- ullet α is what is called "significance." Probability of type I error.
- ullet eta is what is called "power." Probability of type II error.

- Is the the effect of the treatment (main independent variable) different from zero?
 - Null hypothesis (H_0): $\beta = 0$.
 - The alternative (H_a) : $\beta \neq 0$.

		Null hypothesis		
		TRUE	FALSE	
Findings	Reject null	False positive (α)	Correct decision	
	Accept null	Correct decision	False negative (β)	

- ullet α is what is called "significance." Probability of false positive.
- ullet eta is what is called "power." Probability of false negative.

- We do not want to reject the null when it is true: type I error
 i.e., we do not want false positives.
- The probability for this must be small, less than α .
 - α is the statistical significance (usually 0.05 or 5%).
- We do not want to accept the null when it is false: type II
 error i.e., we do not want false negatives.
 - If the number of unit of observations you have is too small (below 42) you will be underpowered.
 - Important: I talk about the number of unit of observations, not the number of observations!

$$\hat{t} = \frac{\widehat{\beta} - H_0}{SE}.$$

$$\hat{t} = \frac{\widehat{\beta} - 0}{SE}.$$

$$\hat{t} = \frac{\widehat{\beta} - 0}{SE}.$$

- Then we ask $Pr(|t| \ge |\hat{t}|) \equiv \text{p-value}$.
 - p-value is the probability of type I error.
- If p-value $< \alpha$, we reject the null hypothesis.
 - Don't worry, the computer does all of this for you.
 - You probably have seen stars in papers.

$$\hat{t} = \frac{\widehat{\beta} - 0}{SE}.$$

- Then we ask $Pr(|t| \ge |\hat{t}|) \equiv \text{p-value}$.
 - p-value is the probability of type I error.
- If p-value $< \alpha$, we reject the null hypothesis.
 - Don't worry, the computer does all of this for you.
 - You probably have seen stars in papers.

Eyeballing the answer to the same question

- Use a confidence interval!
- Focus on the statistical significance (α) ,
- So $(1 \alpha) \times 100$ is the confidence that H_0 is true.
 - 90% confidence when $\alpha = 0.1$.

$$H_0 \in [\widehat{\beta} - 1.65SE; \widehat{\beta} + 1.65SE]$$

• 95% confidence when $\alpha = 0.05$.

$$H_0 \in [\widehat{\beta} - 1.96SE; \widehat{\beta} + 1.96SE]$$

• 99% confidence when $\alpha = 0.01$.

$$H_0 \in [\widehat{\beta} - 2.56SE; \widehat{\beta} + 2.56SE]$$

Statistical significance

- Null hypothesis (H_0): $\beta = 0.0$.
- The alternative (H_a) : $\beta \neq 0.0$.
- If we reject the null hypothesis then $\widehat{\beta}$ is statistically significant that is statistically different from zero.
 - 90% confident that is not zero if

$$0 \notin [\widehat{\beta} - 1.65SE; \widehat{\beta} + 1.65SE]$$

• 95% confident that is not zero if

$$0 \notin [\widehat{\beta} - 1.96SE; \widehat{\beta} + 1.96SE]$$

• 99% confident that is not zero if

$$0 \notin [\widehat{\beta} - 2.56SE; \widehat{\beta} + 2.56SE]$$

Statistical significance (II)

- Null hypothesis (H_0): $\beta = 0.0$.
- The alternative (H_a) : $\beta \neq 0.0$.
- Only for this type of hypothesis we can also check the absolute value of the $\widehat{\beta}$ against the SE:
 - 90% confident that is not zero if

$$\frac{|\widehat{\beta}|}{1.65} > SE$$

• 95% confident that is not zero if

$$\frac{|\widehat{eta}|}{1.96} > SE$$

• 99% confident that is not zero if

$$\frac{|\widehat{\beta}|}{2.56} > SE$$

Robust statistical inference

- Gauss-Markov assumptions: $Var(\varepsilon_{it}) = \sigma^2$.
 - Homoscedasticity necessary assumption for BLUE.
 - Unbiased estimator for standard error.
- Not satisfied when Var(e) = g(X), where $g(\cdot)$ is some function. This happens almost always!
 - Heteroscedasticity.
 - Standard error is biased! (Usually deflated.)
- Solutions:
 - Robust standard errors.
 - Clustered robust standard errors
 - Some treated units may react similarly (groups).

Robust statistical inference

- Gauss-Markov assumptions: $Var(\varepsilon_{it}) = \sigma^2$.
 - Homoscedasticity necessary assumption for BLUE.
 - Unbiased estimator for standard error.
- Not satisfied when Var(e) = g(X), where $g(\cdot)$ is some function. This happens almost always!
 - Heteroscedasticity.
 - Standard error is biased! (Usually deflated.)
- Solutions:
 - Robust standard errors.
 - Clustered robust standard errors
 - Some treated units may react similarly (groups).

Robust statistical inference

- Gauss-Markov assumptions: $Var(\varepsilon_{it}) = \sigma^2$.
 - Homoscedasticity necessary assumption for BLUE.
 - Unbiased estimator for standard error.
- Not satisfied when Var(e) = g(X), where $g(\cdot)$ is some function. This happens almost always!
 - Heteroscedasticity.
 - Standard error is biased! (Usually deflated.)
- Solutions:
 - Robust standard errors.
 - Clustered robust standard errors
 - Some treated units may react similarly (groups).

Modernization hypothesis

Conflict, Natural resources

Democracy

• Does economic prosperity lead to democratization?

 The treatment may affect some units but not other! Or it may affect them differently!

- The treatment may affect some units but not other! Or it may affect them differently!
- Countries rich in natural resources may experience a resource curse.

- The treatment may affect some units but not other! Or it may affect them differently!
- Countries rich in natural resources may experience a resource curse.
 - Oil can increase incentives to capture the state.
 - Absence of natural resources may create incentives to increase productivity.

- The treatment may affect some units but not other! Or it may affect them differently!
- Countries rich in natural resources may experience a resource curse.
 - Oil can increase incentives to capture the state.
 - Absence of natural resources may create incentives to increase productivity.
- Therefore the treatment can have heterogenous effects!

Interaction effects: in theory

Consider

$$D_{it} = egin{cases} 1 & ext{if country } i ext{ has high GDP,} \\ 0 & ext{otherwise.} \end{cases}$$

and

$$X_{it} = \begin{cases} 1 & \text{if country } i \text{ big oil producer,} \\ 0 & \text{otherwise.} \end{cases}$$

Interaction effects: in theory

Consider

$$D_{it} = \begin{cases} 1 & \text{if country } i \text{ has high GDP,} \\ 0 & \text{otherwise.} \end{cases}$$

and

$$X_{it} = \begin{cases} 1 & \text{if country } i \text{ big oil producer,} \\ 0 & \text{otherwise.} \end{cases}$$

 The effect of having high GDP for countries with natural resources:

$$E(Y_i|D_i = 1, X_i = 1) - E(Y_i|D_i = 0, X_i = 1)$$

 The effect of having high GDP for countries without natural resources:

$$E(Y_i|D_i = 1, X_i = 0) - E(Y_i|D_i = 0, X_i = 0)$$

Interaction effects: in theory

Consider

$$D_{it} = \begin{cases} 1 & \text{if country } i \text{ has high GDP,} \\ 0 & \text{otherwise.} \end{cases}$$

and

$$X_{it} = \begin{cases} 1 & \text{if country } i \text{ big oil producer,} \\ 0 & \text{otherwise.} \end{cases}$$

 The effect of having high GDP for countries with natural resources:

$$E(Y_i|D_i = 1, X_i = 1) - E(Y_i|D_i = 0, X_i = 1)$$

• The effect of having high GDP for countries without natural resources:

$$E(Y_i|D_i = 1, X_i = 0) - E(Y_i|D_i = 0, X_i = 0)$$

We say that X moderates the effect of the treatment.

Interaction effects: controls and confounders

• When there is a variable *X* that moderates the effect of the treatment, we call this element a *moderator*.

Interaction effects: controls and confounders

• When there is a variable *X* that moderates the effect of the treatment, we call this element a *moderator*.

Interaction effects: controls and confounders

• When there is a variable *X* that moderates the effect of the treatment, we call this element a *moderator*.

$$Y_{it} = \alpha + \beta_1 D_{it} + \beta_2 X_{it} + \beta_3 D \times X_{it} + \mu_i + \gamma_t + \varepsilon_{it}.$$

• β_1 is the effect of the treatment conditional on X=0:

$$E(Y_{it}|D_{it} = 1, X_{it} = 0) - E(Y_{it}|D_{it} = 0, X_{it} = 0)$$

• $\beta_1 + \beta_3$ is the effect of the treatment conditional on X = 1:

$$E(Y_{it}|D_{it} = 1, X_{it} = 1) - E(Y_{it}|D_{it} = 0, X_{it} = 1)$$

$$Y_{it} = \alpha + \beta_1 D_{it} + \beta_2 X_{it} + \beta_3 D \times X_{it} + \mu_i + \gamma_t + \varepsilon_{it}.$$

• β_1 is the effect of the treatment conditional on X=0:

$$E(Y_{it}|D_{it} = 1, X_{it} = 0) - E(Y_{it}|D_{it} = 0, X_{it} = 0)$$

• $\beta_1 + \beta_3$ is the effect of the treatment conditional on X = 1:

$$E(Y_{it}|D_{it} = 1, X_{it} = 1) - E(Y_{it}|D_{it} = 0, X_{it} = 1)$$

$$Y_{it} = \alpha + \frac{\beta_1}{\beta_1} D_{it} + \beta_2 X_{it} + \frac{\beta_3}{\beta_2} D \times X_{it} + \mu_i + \gamma_t + \varepsilon_{it}.$$

• β_1 is the effect of the treatment conditional on X=0:

$$E(Y_{it}|D_{it} = 1, X_{it} = 0) - E(Y_{it}|D_{it} = 0, X_{it} = 0)$$

• $\beta_1 + \beta_3$ is the effect of the treatment conditional on X = 1:

$$E(Y_{it}|D_{it} = 1, X_{it} = 1) - E(Y_{it}|D_{it} = 0, X_{it} = 1)$$

$$Y_{it} = \alpha + \beta_1 D_{it} + \beta_2 X_{it} + \beta_3 D \times X_{it} + \mu_i + \gamma_t + \varepsilon_{it}.$$

• β_1 is the effect of the treatment conditional on X=0:

$$E(Y_{it}|D_{it} = 1, X_{it} = 0) - E(Y_{it}|D_{it} = 0, X_{it} = 0)$$

• $\beta_1 + \beta_3$ is the effect of the treatment conditional on X = 1:

$$E(Y_{it}|D_{it} = 1, X_{it} = 1) - E(Y_{it}|D_{it} = 0, X_{it} = 1)$$

$$Y_{it} = \alpha + \beta_1 D_{it} + \beta_2 X_{it} + \beta_3 D \times X_{it} + \mu_i + \gamma_t + \varepsilon_{it}.$$

- X need not to be binary!
- The key to interpret an interaction effect:
 - Interpret $\widehat{\beta}_1$ directly, thus we hold X at zero (X=0).
 - Hold X constant then add up: $\widehat{\beta}_1 + \widehat{\beta}_3 X$.

$$Y_{it} = \alpha + \beta_1 D_{it} + \beta_2 X_{it} + \beta_3 D \times X_{it} + \mu_i + \gamma_t + \varepsilon_{it}.$$

- X need not to be binary!
- The key to interpret an interaction effect:
 - Interpret $\widehat{\beta}_1$ directly, thus we hold X at zero (X=0).
 - Hold X constant then add up: $\widehat{\beta}_1 + \widehat{\beta}_3 X$.

$$Y_{it} = \alpha + \beta_1 D_{it} + \beta_2 X_{it} + \beta_3 D \times X_{it} + \mu_i + \gamma_t + \varepsilon_{it}.$$

- X need not to be binary!
- The key to interpret an interaction effect:
 - Interpret $\widehat{\beta}_1$ directly, thus we hold X at zero (X=0).
 - Hold X constant then add up: $\widehat{\beta}_1 + \widehat{\beta}_3 X$.

$$Y_{it} = \alpha + \beta_1 D_{it} + \beta_2 X_{it} + \beta_3 D \times X_{it} + \mu_i + \gamma_t + \varepsilon_{it}.$$

- X need not to be binary!
- The key to interpret an interaction effect:
 - Interpret $\widehat{\beta}_1$ directly, thus we hold X at zero (X=0).
 - Hold X constant then add up: $\widehat{\beta}_1 + \widehat{\beta}_3 X$.

$$Dem_{it} = \alpha + \beta_1 GDP_{it} + \beta_3 GDP_{it} \times Oil_{it} + \beta_2 Oil_{it} + \delta Conflict_{it} + \varepsilon_{it}.$$

- β_1 is the effect of GDP conditional on Oil = 0:
- $\beta_1 + \beta_3$ is the effect of the treatment conditional on Oil = 1:
- β_3 is the additional effect of GDP for a country with oil.

Interaction effects: why?

- We can use an interaction to test for robustness.
 - That is one relevant use for interaction effects.

Interaction effects: why?

- We can use an interaction to test for robustness.
 - That is one relevant use for interaction effects.
- For our purposes also:
 - X does not need to be all else equal to interpret β_1 and β_3 as long as D is "all es equal."
 - If assignment of D is all else equal this opens many potential questions.
 - Does the the moderator, moderates the effect of my treatment?
 - These questions require theoretical knowledge and of the case being studied.

Interaction effects: why?

- We can use an interaction to test for robustness.
 - That is one relevant use for interaction effects.
- For our purposes also:
 - X does not need to be all else equal to interpret β_1 and β_3 as long as D is "all es equal."
 - If assignment of D is all else equal this opens many potential questions.
 - Does the the moderator, moderates the effect of my treatment?
 - These questions require theoretical knowledge and of the case being studied.

The blessing of bad geography? (Nunn and Puga, 2012)

- Rugged terrain can be a curse:
 - Hard to develop agriculture.
 - Higher costs of transportation.
 - Costlier to tax and to provide public goods.
 - Breeding ground for militias.
- But it can also be a "blessing":
 - It can reduce expropriation by despotic ruler.
 - In the past, it protected people from being enslaved.
- For African people fleeing the slave trade, rugged terrain was a positive advantage.

Ruggedness was a blessing... or was it?

TABLE 1.— THE DIFFERENTIAL EFFECT OF RUGGEDNESS IN AFRICA

	TABLE 1.— THE DIFFERENTIAL EFFECT OF RUGGEDNESS IN AFRICA							
	Dependent Variable: Log Real GDP per Person, 2000							
	(1)	(2)	(3)	(4)	(5)	(6)		
Ruggedness	-0.203	-0.196	-0.203	-0.243	-0.193	-0.231		
-	(0.093)**	(0.094)**	(0.094)**	(0.092)***	(0.081)**	(0.077)***		
Ruggedness × I ^{Africa}	0.393	0.404	0,406	0.414	0.302	0.321		
66	(0.144)***	(0.146)***	(0.138)***	(0.157)***	(0.130)**	(0.127)**		
/Africa	-1.948	-2.014	-1.707	-2.066	-1.615	-1.562		
•	(0.220)***	(0.222)***	(0.325)***	(0.324)***	(0.295)***	(0.415)***		
Diamonds	(0.220)	0.017	(oleme)	(01021)	(01250)	0.028		
Diamonds		(0.012)				(0,010)***		
Diamonds $\times I^{Africa}$		-0.014				-0.026		
Diamonds × 1		(0.012)				(0.011)**		
% Fertile soil		(0.012)	0.000			-0.002		
% rettile soil			(0.003)			(0.003)		
or E								
% Fertile soil × I ^{Africa}			-0.008			-0.009		
			(0.006)			(0.007)		
% Tropical climate				-0.007		-0.009		
				(0.002)***		(0.002)***		
% Tropical climate × I ^{Africa}				0.004		0.006		
				(0.004)		(0.004)		
Distance to coast					-0.657	-1.039		
					(0.177)***	(0.193)***		
Distance to coast $\times I^{Africa}$					-0.291	-0.194		
					(0.360)	(0.386)		
Constant	9.223	9.204	9.221	9.514	9.388	9.959		
	(0.143)***	(0.148)***	(0.200)***	(0.164)***	(0.134)***	(0.195)***		
Observations	170	170	170	170	170	170		
R ²	0.357	0.367	0.363	0.405	0.421	0.537		

Coefficients are reported with robust standard errors in brackets. ***, ***, and * indicate significance at the 1%, 5%, and 10% levels.

- An interaction variable *X* must be pretreatment.
- It does not matter if X suffers from omitted variables bias.
 - If D is as good as random the variation we exploit comes from D, what X does is to condition your treatment effect on a value of X.
- This means that you can only interpret $\widehat{\beta}_1$, $\widehat{\beta}_3 \times X$ and $\widehat{\beta}_1 + \widehat{\beta}_3 \times X$ causally.
- If D suffers from selection/omitted variable bias, then $\widehat{\beta}_1$, $\widehat{\beta}_3 \times X$ and $\widehat{\beta}_1 + \widehat{\beta}_3 \times X$ are also biased.
- If X is as good as random, but not D, then only $\widehat{\beta}_3 \times X$ can be interpreted causally.

- An interaction variable X must be pretreatment.
- It does not matter if X suffers from omitted variables bias.
 - If D is as good as random the variation we exploit comes from D, what X does is to condition your treatment effect on a value of X.
- This means that you can only interpret $\widehat{\beta}_1$, $\widehat{\beta}_3 \times X$ and $\widehat{\beta}_1 + \widehat{\beta}_3 \times X$ causally.
- If D suffers from selection/omitted variable bias, then $\widehat{\beta}_1$, $\widehat{\beta}_3 \times X$ and $\widehat{\beta}_1 + \widehat{\beta}_3 \times X$ are also biased.
- If X is as good as random, but not D, then only $\widehat{\beta}_3 \times X$ can be interpreted causally.

- An interaction variable X must be pretreatment.
- It does not matter if X suffers from omitted variables bias.
 - If D is as good as random the variation we exploit comes from D, what X does is to condition your treatment effect on a value of X.
- This means that you can only interpret $\widehat{\beta}_1$, $\widehat{\beta}_3 \times X$ and $\widehat{\beta}_1 + \widehat{\beta}_3 \times X$ causally.
- If D suffers from selection/omitted variable bias, then $\widehat{\beta}_1$, $\widehat{\beta}_3 \times X$ and $\widehat{\beta}_1 + \widehat{\beta}_3 \times X$ are also biased.
- If X is as good as random, but not D, then only $\widehat{\beta}_3 \times X$ can be interpreted causally.

- An interaction variable X must be pretreatment.
- It does not matter if X suffers from omitted variables bias.
 - If D is as good as random the variation we exploit comes from D, what X does is to condition your treatment effect on a value of X.
- This means that you can only interpret $\widehat{\beta}_1$, $\widehat{\beta}_3 \times X$ and $\widehat{\beta}_1 + \widehat{\beta}_3 \times X$ causally.
- If D suffers from selection/omitted variable bias, then $\widehat{\beta}_1$, $\widehat{\beta}_3 \times X$ and $\widehat{\beta}_1 + \widehat{\beta}_3 \times X$ are also biased.
- If X is as good as random, but not D, then only $\widehat{\beta}_3 \times X$ can be interpreted causally.

- An interaction variable X must be pretreatment.
- It does not matter if X suffers from omitted variables bias.
 - If D is as good as random the variation we exploit comes from D, what X does is to condition your treatment effect on a value of X.
- This means that you can only interpret $\widehat{\beta}_1$, $\widehat{\beta}_3 \times X$ and $\widehat{\beta}_1 + \widehat{\beta}_3 \times X$ causally.
- If D suffers from selection/omitted variable bias, then $\widehat{\beta}_1$, $\widehat{\beta}_3 \times X$ and $\widehat{\beta}_1 + \widehat{\beta}_3 \times X$ are also biased.
- If X is as good as random, but not D, then only $\widehat{\beta}_3 \times X$ can be interpreted causally.

- An interaction variable X must be pretreatment.
- It does not matter if X suffers from omitted variables bias.
 - If D is as good as random the variation we exploit comes from D, what X does is to condition your treatment effect on a value of X.
- This means that you can only interpret $\widehat{\beta}_1$, $\widehat{\beta}_3 \times X$ and $\widehat{\beta}_1 + \widehat{\beta}_3 \times X$ causally.
- If D suffers from selection/omitted variable bias, then $\widehat{\beta}_1$, $\widehat{\beta}_3 \times X$ and $\widehat{\beta}_1 + \widehat{\beta}_3 \times X$ are also biased.
- If X is as good as random, but not D, then only $\widehat{\beta}_3 \times X$ can be interpreted causally.

