

The Sinking of the Titanic

- RMS Titanic was a British passenger liner
 - Largest ship of its time
- The ship struck an iceberg during its maiden voyage from Southampton to NYC
- Eventually splitting in half and sinking to the ocean floor
 - early morning hours of April 15, 1912 in the North Atlantic Ocean
- ~2,224 passengers and crew were onboard
 - ~1,500 passengers died
 - Marks one of modern history's deadliest commercial disasters
- The shipwreck was discovered in 1985 during a US military mission

About the Data

- Dataset was obtained from Kaggle (link)
 - Provides training and test data
- Variables can be defined as follows:
 - PassengerId: unique id for each passenger
 - Survived: 1= survived, 0 = did not survive
 - Pclass: passenger class
 - Name: the name of the passenger
 - Sex: the sex of the passenger
 - Age: passenger age
 - SibSp: number of siblings and spouses
 - ParCh: number of parents and children
 - Ticket: ticket number
 - Fare: price paid for ticket
 - Cabin: the cabin number of the passenger
 - *Embarked*: where the passenger boarded from (S = Southampton; England; C = Cherbourg, France; Q = Queenstown, Ireland)

Goal

- Our goal: build a classifier model, using supervised learning
 - Build multiple models
 - Decision Tree
 - Random Forest Classifier
 - KNN Classifier
 - Support Vector Machine
 - Gradient Boosting Classifier
 - Select the model with the best results
- Predict whether or not a passenger
 on the Titanic, using the training data

Data Cleaning

```
percent miss = 100*titanic df.isnull().sum()/len(titanic df)
  print(percent miss)
  passengerid
                   0.000000
  survived
                  0.000000
  pclass
                  0.000000
                  0.000000
  name
                  0.000000
  sex
                 19.865320
  age
                  0.000000
  sibsp
                  0.000000
  parch
  ticket
                  0.000000
  fare
                  0.000000
  cabin
                 77.104377
  embarked
                  0.224467
  dtype: float64
```

```
#Dealing with missing values
  #Drop cabin, interpolate age, fill embarked with mode
  for dataset in datasets:
      dataset.drop(columns = 'cabin', inplace=True)
      dataset.interpolate(inplace=True)
      dataset.fillna(dataset.mode().iloc[0], inplace=True)
  print(titanic_df.isnull().sum())
  passengerid
  survived
  pclass
  name
   sex
  age
  sibsp
  parch
  ticket
   fare
   embarked
  dtype: int64
```

- 'Cabin' variable was missing 77% of data → dropped
- 'Age' variable was missing 19.9% of data → filled using interpolation
- 'Embarked' variable was only missing two data points → filled using mode

EDA and Feature Engineering (pt. 1)

- Correlations do not appear to be particularly high for this dataset
- 'Fare' and 'pclass' have some negative correlation (-0.55)
- 'Sibsp' and 'parch' have a somewhat positive correlation (0.41)
 - Combine the 'parch' and 'sibsp' features into a feature family_size
 - Remember: 'parch' is the number of parents/children, and 'sibsp' is the number of siblings/spouses

EDA and Feature Engineering (pt. 2)

```
#Create a new feature that combines parch and sibsp
for dataset in datasets:
    dataset['family_size'] = dataset.sibsp + dataset.parch
```


- Family size appears to have an impact
- Smaller families have a higher survival rate than larger ones
- Family_size will be used as a feature

EDA and Feature Engineering (pt. 3)

- 74.2% of females survived, compared to 18.9% of males
- 'sex' will be a selected feature
- Interaction between 'sex' and 'pclass' appears to be significant
 - Create new interaction variable 'sex_pclass'


```
#Create interaction feature
for dataset in datasets:
    dataset['sex_pclass']= dataset['sex']* dataset['pclass']
```

EDA and Feature Engineering (pt. 4)

517 Miss 182 125 Mrs 40 Master Rev Col Major Mlle Don Mme Sir Jonkheer Lady Capt Countess

- Every passenger in the dataset has a unique name (not useful)
 - Titles for each name can be extracted (useful)
 - Mr, Miss, and Mrs titles are expectedly high (Master is also frequent)
 - The rest of the titles fall into a 'unique' category

```
titles = {"Mr": 1, "Miss": 2, "Mrs": 3, "Master": 4, "unique": 5}
```

The embarked variable appears to have some useful information, and will be kept as a feature

EDA and Feature Engineering (pt. 5)

```
for dataset in datasets:
    dataset['age'] = dataset['age'].astype(int)
    #child
    dataset.loc[ dataset['age'] <= 12, 'age'] = 0
    #teenager
    dataset.loc[(dataset['age'] > 12) & (dataset['age'] <= 19), 'age'] = 1
    #young adult
    dataset.loc[(dataset['age'] > 19) & (dataset['age'] <= 24), 'age'] = 2
    #young adult 2
    dataset.loc[(dataset['age'] > 24) & (dataset['age'] <= 29), 'age'] = 3
    #30s
    dataset.loc[(dataset['age'] > 29) & (dataset['age'] <= 39), 'age'] = 4
    #40s
    dataset.loc[(dataset['age'] > 39) & (dataset['age'] <= 49), 'age'] = 5
    #50-60s
    dataset.loc[(dataset['age'] > 49) & (dataset['age'] <= 69), 'age'] = 6
    #elderly
    dataset.loc[ dataset['age'] > 69, 'age'] = 6
```


- There are many unique values for age, making it difficult to draw conclusions on a binary result (0-died, 1-survived)
 - Solution: assign age ranges, and then evaluate data
- There is a clear relationship between survival and age ranges
 - Children were the most likely to survive (age 12 and under)

EDA and Feature Engineering (pt. 6)

- Winsorization was used on fare to account for outliers
- Some potenital outliers remain
 - Valuable info → keep
- Higher fare = higher chance of survival
- Select winsorized_fare as a feature

M	<pre>titanic_df.winsorized_fare.describe()</pre>				
	count	891.000000			
	mean	27.780882			
	std	29.400264		١	
	min	0.000000			
	25%	7.910400		ı	
	50%	14.454200		ľ	
	75%	31.000000			
	max	113.275000			
	Name:	winsorized_fare,	dtype: float64	ı	

H	<pre>titanic_df.fare.describe()</pre>			
	count	891.000000		
	mean	32.204208		
	std	49.693429		
	min	0.000000		
	25%	7.910400		
	50%	14.454200		
	75%	31.000000		
	max 512.329200			
	Name:	fare, dtype: float64		
		, ,,		

Features for building a model

- The interaction of 'sex' and 'pclass' has a very high correlation with sex
 - Therefore, the interaction is dropped
- List of selected features:
 - sex
 - pclass
 - title
 - embarked
 - age
 - winsorized fare
 - family_size

Building Supervised Learning Models (pt. 1)

Decision Tree

```
#Decision Tree
decision_tree = tree.DecisionTreeRegressor()

decision_tree = tree.DecisionTreeClassifier(
    criterion='entropy',
    max_features=1,
    max_depth=5)

decision_tree.fit(X_train, Y_train)
```

Random Forest

Building Supervised Learning Models (pt. 2)

- Support vector machine
- Gradient booster
- KNN Classifier

```
#SVC
from sklearn.svm import SVC, LinearSVC
linear_svc = LinearSVC()
linear_svc.fit(X_train, Y_train)
linear_svc.fit(X_train, Y_train)
```

```
#KNN
from sklearn import neighbors
knn = neighbors.KNeighborsClassifier(n_neighbors=5)
knn.fit(X_train, Y_train)
```

Comparing Models and Feature Importance

	Score (training set)	Cross validation score (training set)	Score (test set)
Model			
Random Forest	0.851852	0.830470	0.935407
Support Vector Machines	0.793490	0.767672	0.925837
KNN Classifier	0.842873	0.766750	0.787081
Gradient Boosting Classifier	0.842873	0.766750	0.787081
Decision Tree	0.814815	0.761143	0.866029

- According to the chart (left) the Random Forest model appears to be the best choice
 - highest cross validation scores (no overfitting)
 - best performance for the test set
- Sex, title, and winsorized_fare are the top three features for importance (Random Forest model)

Tuning Hyperparameters

- Now that the Random Forest Classifier has been selected, we can try out different parameters to improve the model
 - Create a function adjust_parameters
- Chosen parameters:
 - N_estimators = 300
 - Criterion = 'gini'
 - Max_depth = 6
 - Remaining set to default
- Accuracy/time tradeoff of n_estimators

```
▶ def adjust parameters(X, Y, n estimators, criterion, max features, max depth):
       parameters = {
           'n estimators': n estimators,
           'criterion': criterion,
           'max features': max features,
           'max depth': max depth
       random_forest = ensemble.RandomForestClassifier(**parameters)
       random forest.fit(X, Y)
       rfc score = random forest.score(X, Y)
       print('Score:', rfc score)
      rfc cvs = cross val score(random forest, X, Y, cv=10)
       print('Cross validation score', rfc cvs.mean())
     from datetime import datetime
        start_time = datetime.now()
        #Oriainal
        adjust_parameters(X_train, Y_train, 100, 'entropy', 1, 5)
       end_time = datetime.now()
        print('Duration: {}'.format(end_time - start time))
        Score: 0.8451178451178452
        Cross validation score 0.83165645216207
        Duration: 0:00:00.790937
     start time = datetime.now()
         #Tuned hyperparameters
         adjust parameters(X train, Y train, 300, 'gini', None, 6)
        end time = datetime.now()
        print('Duration: {}'.format(end time - start time))
        Score: 0.8866442199775533
        Cross validation score 0.8439779820678697
        Duration: 0:00:03.401806
```

Making Predictions

Would I survive the Titanic?

```
#Predictions for fun
#sex,pclass,title,embarked,age,fare,family_size
#Assuming I'm traveling with my dad and brother, second class
Jacob_survival = [[0, 2, 1, 1, 26, 20, 2]]
Jacob_pred = random_forest.predict_proba(Jacob_survival)
print(Jacob_pred)

[[0.82387264 0.17612736]]
```


• How about Jack and Rose from *Titanic (1997)*?

```
#Titanic characters

#Jack= male, third class, mr, Southhampton England, 20, cheap, alone
Jack_Dawson_survival = [[0, 3, 1, 0, 20, 10, 0]]
Jack_Dawson_pred = random_forest.predict_proba(Jack_Dawson_survival)
print('Jack Dawson:', Jack_Dawson_pred)

#Rose= female, first class, miss, Southhampton, 17, expensive, parents plus fiance(3)
Rose_DeWitt_Bukater_survival = [[1, 1, 2, 0, 17, 150, 3]]
Rose_DeWitt_Bukater_pred = random_forest.predict_proba(Rose_DeWitt_Bukater_survival)
print('Rose_DeWitt_Bukater:', Rose_DeWitt_Bukater_pred)

Jack_Dawson: [[0.89705125_0.10294875]]
Rose_DeWitt_Bukater: [[0.14758536_0.85241464]]
```

Results:

Jacob survival rate: 17.6%

• Jack survival rate: 10.3%

Rose survival rate: 85%

Any room for Jack and I on that door, Rose?

