Universidad del Valle Facultad de Ingeniería Escuela de Ingeniería en Sistemas y Computación

Refinamiento de la planificación eco-eficiente de estiba en grandes buques portacontenedores.

Trabajo de grado presentado por Adolfo León Canizales Murcia

Santiago de Cali Abril 2013

Universidad del Valle Facultad de Ingeniería Escuela de Ingeniería en Sistemas y Computación

Refinamiento de la planificación eco-eficiente de estiba en grandes buques portacontenedores.

Estudiante: Adolfo León Canizales Murcia leon99adolfo@gmail.com

Director: Alberto Delgado, Ph.D.

Codirector: Juan Francisco Díaz Frías, Ph.D.
Profesor Titular
Universidad del Valle

Santiago de Cali Abril 2013

Índice general

ĺn	dice g	general	ı
1	Con	texto y objetivos	3
	1.1.	Desarrollo e investigación	3
		1.1.1. Planteamiento del problema	3
	1.2.	Objetivos	5
		1.2.1. Objetivo general	5
		1.2.2. Objetivos específicos	5
		1.2.3. Productos esperados	5
	1.3.	Justificación	5
		1.3.1. Justificación económica	6
		1.3.2. Justificación social	6
		1.3.3. Justificación académica	6
2	Mar	co Teórico	9
	2.1.	Contenedores	9
	2.2.	Buques porta-contenedores	0
	2.3.	Terminales de contenedores marítimos	1
	2.4.	Proceso de estiba y trincaje	1
		2.4.1. Estiba de contenedores	1
		2.4.2. Trincaje de contenedores	13
		2.4.3. Objectivos del proceso de estiba y trincaje	13
		2.4.4. Planes de estiba	13
	2.5.	CP - Programación por restricciones	14
	2.6.	C++	15
	2.7.	Gecode	16
3	Esta	ndo de Arte 1	7
	3.1.	Métodos basados en modelos únicos	17

II ÍNDICE GENERAL

	3.2.	Métodos basados en la descomposición del problema en varios mo-			
		delos de optimización	18		
	3.3.	Descripción del modelo en restricciones de Delgado et al (2012)[8].	19		
4	Des	cripción del problema	25		
	4.1.	Reglas y limites del problema de estiba	25		
	4.2.	Proceso de estiba y trincaje en la computación	26		
5	Intro	oducción a Modelos	27		
	5.1.	Abstracciones de restricciones	28		
	5.2.	Conjunto de constantes	31		
6	Mod	delo con contenedor virtual	35		
	6.1.	Variables de decisión	35		
	6.2.	Restricciones del modelo	35		
	6.3.	Estrategia de distribución	43		
		6.3.1. Estrategia de distribución por pila	43		
		6.3.2. Estrategia de distribución por niveles de cada pila	44		
7	Mod	lelo con espacios y contenedor virtuales	47		
	7.1.	Conjunto de constantes adicionales	47		
	7.2.	Variables de decisión	47		
		7.2.1. Restricciones del modelo	48		
	7.3.	Estrategia de distribución	52		
		7.3.1. Estrategia de distribución por pila	52		
		7.3.2. Estrategia de distribución por niveles de cada pila	52		
8	Resi	ultados de los modelos	55		
Lis	sta de	e Símbolos y Abreviaciones	57		
ĺno	ndice de figuras 58				
ĺno	dice de cuadros 59				
Bi	bliogi	rafía	61		

Agradecimientos

Capítulo 1

Contexto y objetivos

1.1. Desarrollo e investigación

1.1.1. Planteamiento del problema

A lo largo de los últimos tiempos, en la sociedad, el transporte masivo de productos por vía marítima es de gran importancia, debido a que la movilización de objetos entre diferentes regiones cumple un factor de progreso, mejoramiento y bienestar. La industria del transporte marítimo de mercancías posee un gran impacto en la economía mundial. Acto que es reflejado en el incremento considerable y evolución de la flota mundial de buques mercantes y puertos, al pasar de los años.

El transporte por mar de los diferentes tipos de mercancía es realizada por diversos tipos de buques, en función de cómo es presentada esta mercancía para su embarque. Debido a notables ventajas con relación a la rapidez, eficacia y disminución de pérdidas por avería, uno de los más importantes embarques para carga seca son los buques portacontenedores. Estos buques están diseñados para estibar y transportar muchos tipos de mercancía, inclusive mercancía refrigerada.

Actualmente, los buques portacontenedores son el medio utilizado para las tareas de transporte de productos entre las diferentes regiones. Estos buques satisfacen un gran porcentaje, el $90\,\%$, de la movilización de objetos en todo el mundo y es difícil imaginarse otro tipo de transporte que satisfaga dicha necesidad.

Por lo anterior, es de gran importancia que el proceso de transporte de productos en los buques portacontenedores sea rápido y efectivo. Por tal motivo, el proceso de transporte genera el problema de como transportar las mercancías cumpliendo determinadas características. Es decir, que la construcción de herramientas que implementen modelos de optimización podrían mejorar el proceso de embarque y desembarque de contenedores en un barco de una forma refinada y eficaz.

La optimización de procesos de estiba en los puertos costeros es un proceso

complejo que implica encontrar una buena forma de organizar un conjunto de cajas metálicas, contenedores, en un buque. Este ordenamiento debe estar enfocado a la busqueda de objetivos como la seguridad del barco, para que el barco pueda soportar los viajes en alta mar sin que este sufra daños o se hunda, y la rapidez para carga y descarga de contenedores del buque en el menor tiempo posible en cada uno de los puertos que atraca.

De esta manera, uno de los más fuertes fundamentos del sector portuario es una buena planeación de estiba, la cual se ha estado produciendo por coordinadores que utilizan herramientas gráficas que les permite generar un plan para la embarcación, pero debido a la complejidad del problema se ha aumentado un creciente interés por la ampliación de estas herramientas fusionadas con algoritmos veloces de optimización que ayuden en la planeación de estiba.

En la actualidad, existen diversas maneras de planear la estiba de contenedores en estos tipos de buques. Estos planes están dados por herramientas gráficas y recientemente, algoritmos de optimización que pretenden encontrar la mejor manera de organizar los contenedores en los buques, teniendo en cuenta factores como espacio, tiempo y seguridad en su transporte.

En este proyecto, se pretende ampliar la planeación de estiba por medio de modelos de algoritmos de optimización a la carga localizada sobre la cubierta de los buques portacontenedores. Lo anterior, con el fin de mejorar el modelo presentado por Delgado et al(2012) [8] que hace parte de la segunda fase de un planteamiento propuesto para estibar contenedores en un buque.

Es decir, el enfoque utilizado para resolver el problema de estiba consta de dos partes. La primera parte es un modelo de programación entera para la asignación de grupos de contenedores en las áreas de almacenamiento de la embarcación a través de múltiples puertos [14] y la segunda parte se enfoca en un modelo de restricciones para estibar contenedores de forma individual en las locaciones de un buque y asi poder estibar el buque en su totalidad [8], esto es posible gracias a que la primera parte ya ha descompuesto el problema (Ver Figura 1.1).

Figura 1.1: Modelo total de planaeación de estiba. [14][8]

1.2. OBJETIVOS 5

1.2. Objetivos

1.2.1. Objetivo general

Extender y refinar el modelo computacional presentado por Delgado et al (2012) [8].

1.2.2. Objetivos específicos

- Extender el modelo computacional de estibación teniendo en cuenta los siguientes aspectos:
 - 1. No provocar la desestabilización del buque.
 - 2. Contemplar las características principales del trincaje que se realiza en los contenedores.
 - 3. Minimización del número de contenedores que no se cargan en el buque.
- Implementación del modelo en GECODE.[10]
- Ejecución y documentación de un plan de pruebas del nuevo modelo computacional para estibación de contenedores.

1.2.3. Productos esperados

Objetivos Específicos	Producto(s) Esperados
Extender modelo computacional.	Modelo extendido que permita nue-
	vas formas de estibación, intentando
	implementar características deseables,
	teniendo en cuenta el trincaje y la no
	desestabilización del buque.
Implementar modelo en GECODE.	Código que permita mostrar y corro-
	borar el funcionamiento del modelo
	realizado.
Plan de pruebas.	Desarrollo y documentación de las
	pruebas a realizar del nuevo modelo
	con datos reales.

1.3. Justificación

El refinamiento y optimización de modelos encierra varios aspectos interesantes, la idea de representar de manera computacional una buena manera de estibar en los barcos portacontenedores es una buena perspectiva desde varios puntos de vista. El poder modelar una herramienta capaz de ordenar contenedores con ciertas reglas o restricciones, hace posible que los partícipes encargados del proceso tengan una visión

más amplia de conocimiento, que les puede otorgar una gran ayuda, al momento incurrir en la acción de estibar contenedores.

1.3.1. Justificación económica

La industria del transporte marítimo de mercancías posee un gran impacto en la economía mundial, ya que la mayoría de las mercancías es transportada en barcos portacontenedores. Por lo anterior, se puede afirmar que aunque las mejoras en la optimización del proceso de estiba sean pequeñas éstas representan un gran impacto a nivel económico; la generación de planes óptimos de estiba representa grandes ganancias económicas tanto para los barcos como para los puertos.

Por una parte, tenemos que la generación de un buen plan de estiba permite a los buques una menor estadía en el puerto en el cual se encuentre anclado, debido a que el tiempo de estadía de un barco en el puerto es un cargo económico que el barco debe pagar; la minimización de este tiempo reduce los costos de cargar y descargar contenedores en el puerto. Adicionalmente, la reducción del tiempo en el puerto se puede utilizar en la disminución de la velocidad del barco para navegar en alta mar de un puerto a otro, lo que rebaja considerablemente la cantidad de combustible que éste debe utilizar.

Por otra parte, los buenos planes de estiba permiten a los puertos atender una mayor cantidad de buques en determinados periodos de tiempo y atender varios buques es más satisfactorio económicamente que cobrar la estadía de unos cuantos buques.

1.3.2. Justificación social

El impacto social estaría enfocado hacia la comunidad que se desempeña o estudia en el área relacionada con las actividades de estibación en los puertos costeros. Las personas en éste mercado obtendrían la posibilidad de encontrarse con un modelo y una herramienta que los ayudará a generar una idea más general al problema de ordenar contenedores tanto en el buque como en el puerto. Además, el proyecto también posee impactos ecológicos, ya que la posibilidad de que los barcos naveguen más lentamente en alta mar permite un consumo menor de combustible y por ende, una menor producción de CO_2 .

1.3.3. Justificación académica

Se pretende con este proyecto la extensión y el refinamiento de un modelo de estibación, lo que permitirá a personas que se desenvuelvan en estos ámbitos, estudiar y analizar los procesos de ordenamiento de contenedores en los buques y en los puertos. Como consecuencia, estas personas podrán entender y responder a las exigencias que esta área impone a la hora de incursionar en este mercado. El nuevo

7

modelo estará en la capacidad de proporcionar los conocimientos claves del mercado costero.

Capítulo 2

Marco Teórico

2.1. Contenedores

Los contenedores son cajas de metal donde se puede almacenar muchos tipos de bienes. Los contenedores fueron diseñados para facilitar su movilidad sobre diferentes tipos de transportes como son los trenes, buques, camiones, entre otros. En promedio, los contenedores poseen un tiempo de vida cercano a los 15 años, esto es debido a que su estructura les permite ser reutilizado un gran número de veces. Existen diferentes tipos de contenedores y éstos son utilizados dependiendo de los requisitos específicos de la carga. Normalmente, los contenedor tiene un ancho de 8 pies, un alto de 8.6 (altura estándar) o 9.6 (cubico) pies y un largo de 20 o 40 pies, los contenedores con éstas características representan en promedio el 90 % del inventario de contenedores que se encuentran en circulación por el mundo (Ver figura 2.1). [7]

Figura 2.1: Dimensiones comunes de un contenedor.

También se encuentran diferentes tipos de contenedores, como son los contenedo-

res estándar de 10, 45, 48 y 53 pies de largo. Existen otros tipos de contenedores que son utilizados para transportar carga que necesitan una ambientación especial. Por ejemplo, existen cargas que necesitan una constante ventilación, productos orgánicos, que es proveída por contenedores ventilados que poseen pequeñas aberturas las cuales permiten la constante circulación del aire. Por otro lado, están las carga que son sensitivas a la temperatura y necesitan mantener un punto de congelación para prevenir daños en la carga, comida congelada, para éste tipo de carga se utilizan los contenedores refrigerados. Los contenedores refrigerados poseen un motor de enfriamiento eléctrico, y necesitan ser almacenados y conectados a una fuente de poder eléctrica. Por otro lado, existen otros tipos de contenedores como son los que transportan mercancías peligrosa y que necesitan un grupo especifico de reglas para ser transportados.

2.2. Buques porta-contenedores

Los buques portacontenedores son barcos celulares diseñados y construidos con el solo propósito de transportar contenedores a través del mar. La estructura de un buque portacontenedores esta dividida longitudinalmente por secciones llamadas bahías en las que se almacenan los contenedores. Las bahías se encuentran distribuidas en todo el barco, sobre y bajo cubierta separadas por tapas de escotilla a lo largo del buque. Éstas bahías se separan transversalmente en pilas que tienen el ancho de 8 pies, el largo de una 20 (TEU - veinte pies unidad equivalente), 40 (FEU - cuarenta pies unidad equivalente) o 45 pies en algunos casos. Un grupo de pilas sobre o debajo de cubierta que comparta la misma puerta de escotilla es llamada una localidad. Adicionalmente, cada pila se encuentra dividida en celdas las cuales se encuentran organizadas verticalmente e indexadas por niveles. Cada celda se divide en 2 ranuras que separan la celda en popa y proa. Adicionalmente, algunas ranuras de las celdas posee un enchufe que proporciona energía eléctrica a contenedores que necesitan refrigeración (ver Figura 2.2 y 2.3). [8]

Figura 2.2: Imagen de un buque portacontenedores.

Figura 2.3: (a) Vista frontal de una bahía. (b) Vista lateral de una pila con carga parcial. Cada enchufe de poder indica si puede ir contenedor refrigerado.

2.3. Terminales de contenedores marítimos

las terminales de contenedores marítimos son secciones del puerto donde los contenedores son cargados desde un vehículo terrestre a un buque portacontenedores o viceversa. Estas terminales se encuentran divididas en partes principales, estas son:

- El muelle. Esta es la sección donde los buques atracan y donde los contenedores son cargados y descargados.
- El patio. Esta sección tiene como objetivo almacenar temporalmente los contenedores en tierra.
- La playa de contenedores. En ésta sección es donde los contenedores son recogidos o dejados por trenes o camiones.

2.4. Proceso de estiba y trincaje

El proceso de estiba y trincaje se fundamenta en el hecho de que los buques portacontenedores viajan por el mundo de puerto en puerto cargando y descargando contenedores en cada puerto costero en el que atracan. A continuación, se presenta una breve explicación de éstos dos proceso:

2.4.1. Estiba de contenedores

Se define como estiba a la técnica de colocar la carga a bordo para ser transportada con un máximo de seguridad para el buque y su tripulación, ocupando el mínimo espacio posible, evitando averías en la misma y reduciendo al mínimo las demoras en el puerto de descarga[18]. La estiba de contenedores no es un proceso trivial debido a

que los contenedores no se pueden almacenar libremente en el barco. Lo anterior, se debe a que el almacenamiento de contenedores debe cumplir con un grupo de reglas obligatorias que previenen futuros daños o desastres.

tipos de estibación en buques portacontenedores

Existen dos procedimientos bien diferenciados en la estiba de contenedores en los buques portacontenedores, la información sobre éstos tipos de procedimiento fue obtenida de un documento en la Web [6]:

- Mediante guías celulares en el buque. Las guías son un conjunto de raíles metálicos que se ubican de manera vertical y que forman celdas del tamaño en planta del contenedor, 20 x 8 pies o de 40 x 8 pies, estas guías permiten apilar en cada celda, sin necesidad de realizar un trincado sobre los contenedores (Ver 2.4.2). Adicionalmente, La limitación en altura la establece la resistencia del contenedor más bajo, a la carga de todos los contenedores apilados sobre él. Este es el procedimiento de estiba en bodegas de los buques dedicados exclusivamente al transporte de contenedores; para la estiba sobre cubierta y sobre tapas de escotilla se han buscado soluciones similares, e incluso se han construido buques con bodegas abiertas, "hatchless", para obviar el problema. Este tipo de estiba no es muy utilizado debido a que las guías celulares implican un gran costo para el buque.
- Sin guías celulares en el buque. En este caso los contenedores se colocan agrupados en bloques, trincados para garantizar la resistencia de cada bloque a los movimientos del buque. Este procedimiento de estiba es mucho más laborioso que el de las guías celulares, y es típico de los buques polivalentes que transportan contenedores, éste procedimiento se ha usado frecuentemente sobre las escotillas en los porta-contenedores celulares.

En la estiba sin guías celulares se utiliza con mucha frecuencia el trincaje para el aseguramiento de los contenedores. El proceso de trincaje de contenedores tiene como objetivo evitar el daño de los contenedores cuando estos se encuentra expuestos a movimientos bruscos que el buque experimenta. Estos moviementos se deben a la inestabilidad de la superficie del mar, al viento y a la estabilidad del buque. Los barcos se balancean, cabecean, suben y bajan bruscamente, realizan pantocazos (golpes del casco contra las olas) y guiñadas (rotación del buque alrededor de sus ejes verticales) y estos movimientos hacen que los contenedores cargados sean sometidos a fuerzas principalmente en dirección oblicua y vertical.

2.4.2. Trincaje de contenedores

El proceso de trincaje se encuentra estrechamente ligado con el proceso de estiba de contenedores debido a que el trincaje es utilizado para asegurar los contenedores al buque una vez los contenedores han sido estibados. Normalmente, el proceso de trincaje se aplica sobre los contenedores que se encuentran por encima de la cubierta del barco, debido a que éstos contenedores se encuentran expuestos a una mayor cantidad de fuerzas externas.

Las trincas que sujetan los contenedores al barco pueden ser de barras, cables o cadenas. Las pilas de los contenedores estibados se amarran con éstas trincas que van desde la cubierta hasta las cantoneras inferiores de los contenedores que se estiban encima de otro, éstas trincas tienen comúnmente como máximo las cantoneras inferiores del tercer contenedor que se encuentre apilado. Por lo cual, las cargas estibadas por encima de éstos contenedores debe ser más liviana.

Una característica que es utilizada para facilitar el proceso de trincaje es el cálculo del centro de gravedad de las pilas estibadas en el barco. El proceso de trincaje se facilita cuando el centro de gravedad en el eje Y se encuentra a un tercio de la altura de la pila.

2.4.3. Objectivos del proceso de estiba y trincaje

En el proceso de estiba y trincaje se debe tener en cuenta las siguientes metas u objetivos.

- La seguridad del buque y sus tripulantes.
- La minimización en el tiempo de carga y descarga de contenedores en el buque.
- Cargar la mayor cantidad de contenedores al buque.
- La estabilidad del buque.
- La integridad de la carga transportada.
- El menor impacto ecológico.
- la minimización del uso de trincas.

2.4.4. Planes de estiba

Los planes de estiba son los que definen como se procederá y como se asignarán los contenedores en el buque. Los planes de estiba son creados por coordinadores encargados de cumplir con la tarea de cargar los contenedores en el buque antes de que éste atraque en el puerto. Para la generación de planes de estiba los coordinadores tienen la lista de contenedores a cargar en el buque. Ésta información incluye a detalles las características de los contenedores tales como el peso, el alto, el largo, el tipo

de contenedor y el puerto de descarga que tiene como destino. Los coordinadores también tienen información acerca de la estructura del buque, del combustible y de los contenedores ya cargados. Adicionalmente, el coordinador posee información del puerto actual y de los puertos que le prosiguen. Ésta información incluye la profundidad del muelle y la cantidad de grúas habilitados para cargar los contenedores. El plan de estiba debe cumplir con todas las reglas y limites de estiba (Sección 4). El plan debe tener como prioridad reducir el costo total, sin afectar la seguridad en todo el proceso. Existen dos motivos que impactan circunstancialmente el tiempo que un buque permanece en el puerto. El primero, radica en la cantidad de movimientos que tiene que hacer la grúa para ordenar de manera adecuada los contenedores que ya están en el buque. El segundo, se presenta por la cantidad de movimientos innecesarios que se hacen para descargar contenedores del buque. (Ver figura 2.4)

Figura 2.4: Los contenedores de color verde se descargarán antes que los rojos. (a) Pila sobre-estibada . (b) Escotilla sobre-estibada.

Al final, el plan debe contener la lista de contenedores con la posición exacta donde cada uno de los contenedores será estibado.

2.5. CP - Programación por restricciones

La programación por restricciones consiste de un conjunto de técnicas para resolver problemas de satisfacción de restricciones. Un problema de satisfacción de restricciones (CSP), consiste de un conjunto de restricciones sobre un conjunto de variables. Una restricción, en este contexto, es simplemente una relación lógica, por ejemplo, tenemos un par de enteros X y Y y decimos que "X es menor que Y". En la programación por restricciones se busca resolver dos problemas. El primero es

2.6. C++

decidir si existe una solución, sin tener que construirla obligatoriamente y el segundo problema es encontrar una o más soluciones.

Ideas básicas de la programación por restricciones

La programación por restricciones esta básicamente separada en dos pasos la propagación y la busqueda. Estos dos pasos se enfocan en tres ideas importantes, que son las siguientes:

- 1. Guardar información parcial de la solución. Durante el calculo, se puede tener información parcial de las variables que conforma una solución. por ejemplo, en cualquier solución al problema sabemos que "X es mayor 100".
- 2. Usar deducción local. La deducción local se puede dar cuando combinamos diferentes restricciones o cruzamos la información parcial que tenemos. Por ejemplo, si combinamos "X es menor que Yçon "X es mayor X00" podríamos deducir que "X10" es mayor X20".
- 3. Se realiza búsqueda controlada. Cuando con la información parcial no se pueden hacer mas deducciones locales. Se pasa a realizar la denominada búsqueda. La idea es buscar la solución o las soluciones lo menos posible. Se realiza una etapa de búsqueda y se deduce nuevamente. Una etapa de búsqueda lo que se hace es dividir el problema P en 2 partes $(P \land C)$ y $(P \land \neg C)$ donde C es una nueva restricción y a partir de allí se realizan nuevas deducciones y así se continua hasta encontrar todas las soluciones. La escogencia de C es muy importante, debido a que una restricción C bien escogida llevará a las soluciones en pocas etapas de búsqueda.

2.6. C++

Es un lenguaje de programación que se cataloga como una evolución del lenguaje C. El lenguaje fue creado en el año 1980 por Bjarne Stroustrup y están son algunas de las características [15]:

- Lenguaje compilado: El lenguaje C++ compila directamente el código nativo sobre la maquina. Lo anterior, permite que sea uno de los lenguajes mas rápidos del mundo.
- Lenguaje abierto estandarizado por la ISO: Desde el año 1998 el lenguaje C++ fue estandarizado por un comité de la ISO.
- Lenguaje inseguro inflexible de tipos: Se espera que la persona que maneje el lenguaje sepa lo que esta haciendo. Por lo anterior, el lenguaje brinda una gran cantidad de controles como resultado.

- Varios paradigmas: El lenguaje permite trabajar con diferentes tipos de paradigmas tales como el procedimental, el genérico y el orientado a objetos.
- Portabilidad: Éste lenguaje tiene un amplio rango de compiladores que pueden corren sobre diferentes tipos de plataformas computacionales.
- Soporte a tipo de datos estáticos y dinámicos: Permite el control de tipos de datos ya sea en tiempo de compilación o en tiempo de ejecución.

2.7. Gecode

Gecode es un conjunto de herramientas para el desarrollo de sistemas y aplicaciones basados en restricciones. Gecode proporciona un solucionador de restricciones con el más moderno desempeño, mientras es ser modular y extensible. El lenguaje de programación goza de las siguientes características [10]:

- Abierto: Gecode es totalmente abierto para programadores. Es fácil de acoplar con otros sistemas. Éste permite crear nuevas restricciones, nuevas estrategias de distribución y nuevos motores de búsqueda.
- Exhaustivo: Comprende un grupo de herramientas exhaustivas como restricciones sobre enteros, booleanos, conjuntos y flotantes; Modelamiento de capas por medio de C++; Implementación de avanzadas heurísticas; entre otras.
- Eficiencia: Gecode ofrece un excelente rendimiento con respecto al tiempo de ejecución y el uso de memoria.
- Libre: Es un software libre con licencia del <Instituto Tecnológico de Massachusetts (MIT)>.
- Documentado: Contiene una documentación completa en su sitio web. [10]
- paralelo: Tiene la capacidad de explotar múltiples núcleos.

Capítulo 3

Estado de Arte

Los trabajos académicos previamente realizados en el campo de planeación de estiba de contenedores, se centran en algoritmos de optimización acerca de la planificación de ranuras en los buques portacontenedores. Sin embargo, la inaccesibilidad a la información del problema de estibación ha desafiado los diferentes enfoques de solución, hasta ahora propuestos. Estos trabajos pueden ser divididos en dos grupos principales: métodos basados en un único modelo del problema y métodos basados en la descomposición del problema en varios modelos de optimización. Entre estos dos enfoques, el segundo ha sido más exitoso, aunque la mayoría de la literatura se centra en métodos heurísticos, usando un único modelo.

3.1. Métodos basados en modelos únicos

Dentro de los métodos basados en un único modelo, Avriel et al (1998)[4] presentan un modelo 0-1 IP (Integer Programming) y un procedimiento de heurística suspensiva para la estiba de buques, la cual se restringe a una sola bahía del buque y resuelve el problema de estiba de contenedores de un solo tamaño, sin tomar en cuenta la estabilidad del buque. Esta heurística apunta a minimizar la sobre estiba en un problema multi-puerto, donde solo la carga de contenedores es permitida.

Dubrosky & Penn (2002)[9] presentaron un algoritmo genético bajo los mismos supuestos de Avriel et al. Sin embargo, su propuesta fue suficientemente flexible para incluir nuevas restricciones y como resultado, instancias aleatorias de problemas con buques de 500 y 1000 TEUs, fueron resueltos para 10 puertos, en 30 minutos.

Ambrosio & Sciomanchen (1998) [2] presentaron un modelo de programación por restricciones optimizado con una estructura de ramificación y poda (branch & bound). Aunque este modelo tuvo por objetivo estibar un buque completo, restricciones de estabilidad entre bahías pudieron ser obviadas con el fin de asemejarse al problema de planeación de ranuras. Este método considera contenedores de 20 y 40

pulgadas, pero no tiene en cuenta los contenedores refrigerados, ni los tipo cúbicos. Su principal objetivo es minimizar la sobre estiba y el consumo, maximizando el número de contenedores cargados.

Otros trabajos sobre métodos basados en un único modelo, fueron propuestos por Aslidis (1984) [3], Botter & Brinati (1992)[5], Sciomachen & Tanfani (2003)[16] y Li et al (2008)[12], en donde se presentan modelos complejos que incluyen varias restricciones propuestas en el problema maestro de planeación. Aslidis introdujo heurísticas de apilamiento para minimizar sobre estiba, mientras Botter, Brinati y Li et al presentaron modelos 0-1 IP de programación entera. Adicionalmente, Botter y Brinati presentaron dos nuevas heurísticas para estibar contenedores debido a que su modelo IP no era escalable en instancias de la vida real. Sciomachen y Tanfani introdujeron un enfoque heurístico basado en problemas 3D de embalaje, en donde a diferencia de los demás métodos mencionados, se tuvo en cuenta los contenedores tipo cúbicos y no sólo los contenedores de 20 y 40 pulgadas.

3.2. Métodos basados en la descomposición del problema en varios modelos de optimización

Por otra parte, dentro de los métodos basados en la descomposición del problema en varios modelos de optimización para la planeación de estiba de buques portacontenedores, Wilson & Roach (2000) [19], introdujeron la descomposición basada en bloques. Estos autores dividieron cada bahía de los buques en bloques, los que estaban distribuidos sobre y debajo de la cubierta y a menudo seguían el patrón de las tapas de escotilla. En resumen, Wilson y Roach propusieron un algoritmo tabú de búsqueda para solucionar una versión de la planeación de estiba, que incluía ranuras de refrigeración, restricciones de tamaño de los contenedores, minimización de sobre estiba y restricciones de pilas con el mismo puerto de descarga. Sin ninguna evidencia de peso, aparte de resultados experimentales, los autores afirmaron encontrar soluciones óptimas cercanas y de rápida computación a instancias de problemas para buques de 688 TEUs. Kang & King (2002)[11] también adoptaron el concepto de descomposición en bloques y describieron un método de enumeración para resolver una versión simple de planeación de ranuras, donde sólo es tenido en cuenta la minimización de sobre estiba, la violación de estabilidad y el ordenamiento de contenedores de 40 pulgadas después que los pesos son considerados. Tal como Wilson y Roach, ninguna evaluación experimental independiente del algoritmo fue proporcionada.

Ambrosino et al (2006)[1] describen un modelo 0-1 IP para estibar óptimamente subconjuntos de bahías de contenedores, en buques con el mismo puerto de descarga. Este modelo minimiza el tiempo de estiba de contenedores de 20 y 40 pulgadas, y éstos son ordenados de acuerdo a su peso en cada pila. En la sección experimental, planes completos de estiba para buques de 198 a 2124 TEUs fueron generados, en donde los tamaños máximos de las bahías fueron de 20 y 120 TEUs, respectivamente. No

fue dado tiempo computacional para la solución de estos sub problemas. En trabajos posteriores, Ambrosino et al, presentan una heurística constructiva para solucionar los mismos sub problemas como uno único. Usando esta heurística, son capaces de estibar un buque de 5632 TEUs, en donde se usan 11.8 segundos en promedio para estibar todas las bahías, pero la disposición física del buque no es descrita en detalle.

Otros autores como Zhang et al (2005)[17] y Yoke et al (2009)[13] presentaron enfoques multi-fases donde los problemas resueltos durante la fase de planeación de ranuras, no son independientes unos de las otros.

Por último, Pacino et al(2011)[14] presentan un modelo de programación entera para la estiba de contenedores en áreas de estibación de barco teniendo en cuenta múltiples puertos y Delgado et al (2012)[8] presentan un modelo de programación por restricciones para una óptima y veloz estiba de bahías en barcos contenedores. Este modelo se centra en el problema de estiba de contenedores ubicados por debajo de la cubierta.

3.3. Descripción del modelo en restricciones de Delgado et al (2012)[8].

Anteriormente, se menciono que el modelo presentado por Delgado et al (2012) hace parte de una de las descomposiciones del problema total de estibación en buques portacontenedores. Por lo tanto, se explica brevemente cada una de las descomposiciones del problema de estiba. (Ver figura 1.1)

La primera fase del modelamiento general al problema de estiba de contenedores se denomina *Planeación Maestra* y tiene como responsabilidad distribuir los contenedores a cargar en secciones de bahías de la embarcación. Es decir, ésta fase se encarga principalmente de separar conjuntos de contenedores y asignar esos conjuntos a determinadas secciones de barco teniendo en cuenta que los contenedores de dichos conjuntos se cargan y se descargan en diferentes puertos [14].

La segunda fase del modelamiento general se denomina *Planeación de ranuras* y tiene como responsabilidad asignar los contenedores a cargar en las sección de bahía, seleccionadas en la primera fase, en ranuras especificas. Es decir, ésta fase procesa cada uno de los conjuntos de contenedores asignados a determinadas secciones de bahía y asigna cada contenedor del conjunto en una ranura de la bahía. Debido a las diferentes condiciones a las que se enfrentan los contenedores a estibar sobre y debajo de cubierta [8]. El modelo utilizado para estibar contenedores por debajo de cubierta no puede ser el mismo para estibar por encima.

En este proyecto la idea es mejorar lo propuesto por Delgado et al (2012)[8] que solo se centra en la estiba de contenedores por debajo de cubierta. Es decir, el proyecto a presentar en éste documento se centra en estibar contenedores por encima de cubierta ya que el modelo a extender solo estiba por debajo de cubierta.

Índices y constantes	Descripción
Stack	Conjunto de índices de pilas.
Slots	Conjunto de índices de bahías para los contenedores.
Cont	Conjunto de índices de contenedores.
$Slot^{\{A,F\}}$	Conjunto de espacios de popa y proa.
$Slot_k$	Conjunto de espacios por pila k.
$Slot_{k}^{\{A,F\}} \ Slot^{\{R,\neg R\}}$	Conjunto de espacios de popa y proa por pila k.
$Slot^{\{\!\!\!\ R,\neg R\}}$	Conjunto de espacios refrigerados y no refrigerados.
$Slot^{\neg RC}$	Conjunto de celdas no refrigeradas.
$Slot^{\{20,40\}}$	Conjunto de espacios para contenedores de 20 y 40
	pies.
$Cont^{\{V,L\}}$	Contenedores virtuales (V) y cargados (L).
$Cont^{\{20,40\}}$	
	Índice del contenedor de 20 y 40 pies.
$Cont^{40\{A,F\}}$	Contenedor de 40 pies separados por proa y popa.
$Cont^{R\{20,40\}}$	4
n. D	Indice del contenedor refrigerados de 20 y 40 pies.
$Cont^{\neg R}$	Conjunto de contenedores no refrigerados.
$Weight_i$	Peso del contenedor i.
POD_i	Puerto de descarga del contenedor i.
$Length_i$	Largo del contenedor i.
$Height_i$	Altura del contenedor i.
$Cont^{P=p}$	Número de contenedores con puerto de descarga p .
$Cont^{\{W=w,H=h\}}$	Número de contenedores con peso w y alto h .
$Cont^{\{NC,HC\}}$	Número de contenedores normales (NC) y número de
	contenedores cubicos (HC).
$Stack_{i}^{\{W,h\}}$	Peso y altura limite de la pila i.
Classes	Conjunto de clases de pila.
$Class^i$	Conjunto de pilas de clase i.

Cuadro 3.1: Tabla de constantes.

Por lo tanto, se presentará una breve descripción del modelo general de restricciones presentado por Delgado et al (2012)[8].

El modelo de restricciones cuenta con un conjunto de índices y de constantes utilizadas para la resolución del problema (Ver Cuadro 3.1).

Para facilitar el modelamiento de restricciones y objetivos del problema se adicionan unas variables auxiliares (Ver tabla 3.2).

Adicionalmente, se tienen un conjunto de variables de decisión que representan un plan de estibación para un conjunto de contenedores que puede estibarse. Las variables se separan en dos subconjuntos. El primer subconjunto indica por cada variable de decisión un contenedor que se puede estibar, donde el dominio de éstas variables es definido por las ranuras o espacios. El segundo subconjunto indica por cada variable de decisión una ranura, donde el dominio de éstas variables es definido

Variables de decisión	Descripción
$C = \{C_1,, C Cont \}$	$C_i \in \text{Slots}$, índice de la espacios en el $Cont_i$.
$S = \{S_1,, S Slots \}$	$S_i \in \text{Cont}$, índice del contenedor en el $Slot_i$.
$L = \{L_1,, L Slots \}$	$L_i \in \text{Length}$, largo del contenedor estibado en el $Slot_i$.
$H = \{H_1,, H Slots \}$	$H_i \in \text{Height}$, alto del contenedor estibado en el $Slot_i$.
$W = \{W_1,, W Slots \}$	$W_i \in \text{Weight}$, peso del contenedor estibado en el $Slot_i$.
$P = \{P_1,, P Slots \}$	$P_i \in \text{POD}$, puerto de descarga del contenedor estibado en el $Slot_i$.
$HS = \{HS_1,, HS Stack \}$	$HS_i \in \text{Stack}$, Limite de altura por pila.
$O^V \in \{0,, Cont \}$	Número de contenedores sobre-estibados.
$O^U \in \{0,, Stack \}$	Número de pilas usadas.
$O^P \in \{0,, Stack POD \}$	Número de contenedores diferentes por cada pi- la.
$O^R \in \{0,, Slot^R \}$	Número de contenedores no refrigerados estibados en espacios refrigerados.
$O \in \mathbb{N}$	Variable utilizada como costo total de estiba.
$C^V \subset C$	Contenedores virtuales.
$S_l^E \subset S$	espacios con las mismas características en la pila
	l.

Cuadro 3.2: Tabla de variables de decisión.

por los contenedores a estibar. Para utilizar el esquema de dos subconjuntos es necesario que los contenedores sean iguales a las ranuras, por lo cual, se utilizan unos contenedores virtuales para llenar las ranuras faltantes.

Las restricciones desde (3.1) hasta (3.14) son reglas que se deben cumplir en el proceso de estiba.

$$channeling(C,S) (3.1)$$

$$c_{fore(i)} = c_i + 1 \qquad \forall i \in \{1, ..., |Cont^{40A}|\}$$
 (3.2)

$$element(S_i, L_i, Length) \quad \forall i \in Slots$$
 (3.3)

$$element(S_i, H_i, Height) \quad \forall i \in Slots$$
 (3.4)

$$element(S_i, W_i, Weight) \quad \forall i \in Slots$$
 (3.5)

$$element(S_i, P_i, POD) \quad \forall i \in Slots$$
 (3.6)

$$S_{pos(j)} = i \qquad \forall i \in Cont^L$$
 (3.7)

$$regular(Length_i^{\pi}R) \qquad \forall \pi \in \{A, F\}, i \in Stacks$$
 (3.8)

$$S_i \notin Cont^{20R} \quad \forall i \in Slots \ ^R$$
 (3.9)

$$S_i \notin Cont^{40R} \qquad \forall i \in Slots \ ^{RC}$$
 (3.10)

$$S_i \epsilon Cont^{20} \qquad \forall i \in Slots^{20}$$
 (3.11)

$$S_i \epsilon Cont^{40} \qquad \forall i \in Slots^{40}$$
 (3.12)

$$\sum_{j \in Slots_i} h_j \le hs_i \qquad \forall \pi \in \{A, F\}, i \in Stacks \tag{3.13}$$

$$\sum_{j \in Slots_i} w_j \le Stack_i^j \qquad \forall i \in Stacks \tag{3.14}$$

la restricción 3.1 canaliza dos subconjuntos de variables de decisión. La (3.2) garantiza para un contenedor de 40 pies que la parte popa y proa se encuentren en la misma celda. Las restricciones (3.3), (3.4), (3.5) y (3.6) tienen como objetivo enlazar las variables de ranura con las variables auxiliares de longitud, altura, peso y el puerto de descarga del contenedor estibado para una determinada ranura. La restricción (3.7) es para asignar contenedores cargados en su ranura predefinida. La (3.8) es una restricción regular para la popa y proa de cada pila. La restricción (3.9)

y (3.10) modela la estiba de contenedores refrigerados. La (3.11) y (3.12) restringe los dominios de ranuras que sólo tienen capacidad de contenedores de 20 o 40 pies. La (3.13) limita la altura de cada pila en la ubicación es delimitada. Por último, la restricción (3.14) restringe el peso de todos los contenedores estibados en una pila para que estén dentro de los límites.

En el modelo de restricciones se calculan un conjunto de valores, con el fin de representar unos objetivos, estos son:

1. Calcular la cantidad total de re-manipulaciones (movimientos realizados para estibar un contenedor en la carga o descarga del mismo).

$$O^{v} = \sum_{i \in Slots^{A}} OV(i) \tag{3.15}$$

2. Encontrar la sumatoria de ranuras utilizadas en una pila y calcular la suma de los resultados obtenidos por cada pila.

$$O^{u} = \sum_{k \in Stacks} \left(\sum_{j \in Slots_{k}} P_{j} > 0 \right)$$

$$(3.16)$$

3. Calcular el número de contenedores estibados que se descargan en diferentes puertos en cada pila.

$$p = \sum_{k \in Stacks} \left(\sum_{\rho \in POD} \sum_{j \in Slots_k} P_j = \rho \right) > 0$$
 (3.17)

4. Contar el número de contenedores no refrigerados en ranuras refrigeradas.

$$O^{r} = \sum_{i \in Slots^{R}} \left(S_{i} \in Cont^{R} \right) \tag{3.18}$$

En el modelo se pretende minimizar una función de costo. La función de costo es la suma de los valores que representan los objetivos multiplicados con un respectivo peso de costo.

$$O = 100 * O^{v} + 20 * O^{p} + 10 * O^{u} + 5 * O^{r}$$
(3.19)

Capítulo 4

Descripción del problema

El problema que se intenta resolver con éste proyecto tiene como objetivo final obtener una plan de estiba que ayude a los coordinadores de estiba a realizar mejor su trabajo. Éste proyecto empieza al igual que el de Delgado et al (2012)[8], en la segunda fase del modelo general planeación de ranuras (Ver figura 1.1) que hace parte de una de las descomposición heurísticas que se hace para poder tratar mejor el problema de estibar contenedores (Ver sección 3.3). El enfoque en éste proyecto es solo para asignar contenedores en las locaciones que se encuentran sobre la cubierta del buque.

4.1. Reglas y limites del problema de estiba

Un buque portacontenedores contiene cerca de 100 locaciones. Lo anterior, implica que la fase de *planeación de ranuras* tiene que resolver 100 instancias independientes. Por otro lado, solo se tiene 10 minutos para generar completamente un plan de estiba. Es decir, en 10 minutos se deben ejecutar tanto la primera fase *Planeación Maestra* como la segunda fase *planeación de ranuras* de la descomposición heurística. La idea con éste proyecto, es que se puedan resolver las instancias de la segunda fase en menos de 1 segundo.

En éste proyecto se hace una abstracción de las restricciones y los objetivos reales del problema de estibación de contenedores. Éste trabajo se limita a utilizar solo contenedores de 20 y 40 pies de largo, de 8.6 y 9.6 pies de alto y refrigerados y no refrigerados. Además, en el proceso de estiba de contenedores es obligatorio cumplir con determinadas reglas de estibación, éstas son:

1. Las celdas asignadas deben formar pilas. (Los contenedores deben estar soportados sobre otro contenedor o por el piso del buque, no deben estar en el aire).

- 2. Un contenedor de 20 pies no debe apilarse sobre uno de 40 pies.
- 3. Un contenedor de 20 pies refrigerado debe ser asignado en una ranura o espacio refrigerado. Un contenedor de 40 pies debe ser asignado a una celda que posea por lo menos una ranura refrigerada.
- 4. Algunas celdas del barco solo permiten estibar contenedores de 20 pies y pueden existir celdas donde solo se pueden estibar contenedores de 40 pies.
- 5. La suma de las alturas y los pesos de cada contenedor estibado en una pila debe cumplir con los limites de peso y altura de la pila.
- 6. Los contenedores ya estibados en el buque no pueden ser estibados en otras ranuras.

Adicionalmente, es necesario que el plan de estiba evite costos innecesarios. Por lo cual, se plantean unos objetivos a minimizar, éstos son:

- 1. El número de contenedores que no se estiban en el barco.
- 2. El número de contenedores sobre-estibados.
- 3. La sumatoria del número de contenedores diferentes por cada pila.
- 4. El número de pilas usadas.
- 5. La sumatoria del número de contenedores no refrigerados estibados en ranuras refrigerados.
- 6. La sumatoria de los pesos otorgados por la distancia desde el centro de gravedad ideal hasta al centro de gravedad real de cada pila.

4.2. Proceso de estiba y trincaje en la computación

(ALEONCM - definir por que es un problema NP-HARD)

Capítulo 5

Introducción a Modelos

En ésta sección se pretende dar una introducción al modelo creado en ésta investigación. En el modelo para gestionar con más facilidad los contenedores de 40 pies; se han dividido en 2 contenedores de 20 pies, que irán ubicados en la proa y la popa de la misma celda. Adicionalmente, las bahías en el buque son indexadas de popa a proa y de abajo hacia arriba en la pila y continúan en las demás pilas de izquierda a derecha en una locación del barco (Figura 5.1 y 5.2).

Figura 5.1: Indices de espacios (Slots)

Para obtener resultados factibles al problema de estibar contenedores se utiliza en el modelo restricciones que permiten imponer reglas al proceso de estiba. Este modelamiento por restricciones requiere básicamente de 3 pasos que son la definición de las variables de decisión y sus respectivos dominios, restricciones pertinentes y la estrategia de distribución.

Figura 5.2: Indexación de espacios en el buque

5.1. Abstracciones de restricciones

A continuación, se muestran unas abstracciones de restricciones que serán utilizadas en el modelo.

Restricciones elementales

Estas restricciones tienen las siguiente forma:

$$element(X, Y, C) = \{(e, f) | e \in D(X), f \in D(Y), f = C_e\}$$

Donde X es una variable entera, Y es una variable con dominio finito y $C=\{C_1,...,C_n\}$ un conjunto de constantes. La restricción implica que Y es igual a la X-esima constante de C.

Restricciones regulares

Éstas facilitan el uso de expresiones regulares:

$$regular(X, M) = \{(d_1, ..., d_n) | \forall i.d_i \in D(X_i), d_1...d_n \in L(M) \}$$

Donde X es un conjunto de variables con dominio $D(X_i)$ tal que 1 < i < n y M es una expresión regular que reconoce L(M).

Restricciones Max

Este tipo de restricción tiene la siguiente forma:

$$\begin{aligned} \max(H,I,J) = & \{(e,f,g) \mid \\ & e \in D(H), f \in D(I), g \in D(J), \\ & e > f \Rightarrow g = e, f \geq e \Rightarrow g = f \} \end{aligned}$$

Donde la restricción implica que la variable J sera el valor más grande entre H e I.

Restricciones Channel

Este tipo de restricción se puede expresar de las dos maneras:

lacktriangle La primera abstracción es cuando H es una variable no escalar e I es una variable escalar. Esta abstracción tiene la siguiente forma:

$$channel(H,I) = \{(e,f)|e \in D(H), f \in D(I), e = f\}$$

Esta restricción se utiliza para realizar un cambio de una variable escalar a una variable no escalar.

lacktriangle La segunda abstracción es cuando X y Y son conjuntos de variables. Esta abstracción se presenta formalmente de la siguiente forma:

channel(X,Y) = {
$$(e_1, ..., e_n, f_1, ..., f_n)$$
 |
 $\forall i, j.e_i \in D(X_i), f_i \in D(Y_i), e_i = j \Leftrightarrow f_i = i$ }

Esta restricción enlaza consistentemente dos conjuntos de variables del mismo tamaño.

Restricciones Expr

Este tipo de restricción tiene la siguiente forma:

$$R = expr(Expres) = \{h | h \in D(R)\}$$

Donde la restricción ejecuta la expresión Expres y el resultado lo guarda en R.

Restricciones Ite

Este tipo de restricción se expresa formalmente así:

$$Ite(H, I, J, K) = \{(b, x, y, z) \mid b \in D(H), i \in D(I), j \in D(J), z \in D(K), z = b?x : y\}$$

En ésta restricción se asigna z=x si b es verdadero y se asigna z=y si b es falso.

Restricciones Count

Este tipo de restricción tiene la siguiente forma:

$$Count(X, Y, R, Z) = \#(i \in \{0, ..., |X| - 1\} | X_i \in Y) \sim_R Z$$

Donde ésta restricción cuenta la cantidad de elementos X que concuerden con los elementos de Y y ejecuta una relación R, que puede ser (<,>,=,!=,otras), con respecto a la variable Z.

Restricciones atmost

Este tipo de restricción tiene la siguiente forma:

$$atmost(X, Y, Z) = \#(i \in \{0, ..., |X| - 1\} | X_i = Y) \le Z$$

Donde ésta restricción cuenta la cantidad de elementos X que concuerden con el valor Y y ejecuta una relación \leq con respecto al valor Z.

Restricciones exactly

Este tipo de restricción tiene la siguiente forma:

$$exactly(X, Y, Z) = \#(i \in \{0, ..., |X| - 1\} | X_i = Y) = Z$$

Donde ésta restricción cuenta la cantidad de elementos X que concuerden con el valor Y y ejecuta una relación = con respecto al valor Z.

Restricciones lex_{less}

Este tipo de restricción tiene la siguiente forma:

$$lex_{less}(X,Y)$$

Donde X y Y son conjuntos de n componenetes $< X_0,...,X_{n-1} >$ y $< Y_0,...,Y_{n-1} >$. X es lexicograficamente menor a Y cuando $X_0 < Y_0$ o $X_0 = Y_0 \land < X_1,...,X_{n-1} >$ es lexicograficamente menor a $< Y_1,...,Y_{n-1} >$.

5.2. Conjunto de constantes

Para facilitar la construcción de las restricciones y de los objetivos a alcanzar en el modelo se plantean un conjunto de índices y constantes. Todos los conjuntos de índices que se presentarán son un subconjunto de enteros a excepción de la constante GCSY que puede ser un dato no escalar. Cada conjunto representa características ya sea de secciones del barco o de los contenedores (Ver cuadro 5.1).

Sobre el modelo se busca encontrar el centro de gravedad por cada una de las pilas estibadas en el barco y se debe obtener la diferencia entre el centro de gravedad encontrado con respecto al centro de gravedad ideal de cada pila. El centro de gravedad ideal de una pila en el eje Y se encuentra dado por la formula $(Stack_i^H/3)/(Stack_i^H/maxLevel(i))$ donde maxLevel(i) es el nivel máximo de la pila i. En el calculo del centro de gravedad solo se busca la coordenada Y debido a que la coordenada sobre el eje X no brinda información relevante para la estiba y trincaje de contenedores.

Para calcular el centro de gravedad de un conjunto de contenedores agrupados en una pila es necesario proponer un sistema de coordenadas sobre cada pila. El sistema de coordenadas para cada pila empezará con el punto (0,0) sobre el centro del contenedor ubicado en la parte inferior de la pila en la sección de la popa. La coordenada aumentará en el eje X de la popa a la proa en la pila y en el eje Y de la parte inferior a la parte superior de la pila. (Ver figura 5.3)

Anteriormente, se comento que los contenedores de 40 pies estarían representados por medio de dos contenedores de 20 pies. Para evitar problemas al calcular datos que requieran el peso de los contenedores de 40 pies que ya estén estibados, la constante $Weight_i$ de contenedores de 40 pies deberá ser divida entre los dos contenedores de 20 pies. El contenedor de 20 pies que representan la división de la popa tendrá un peso de igual a $Ceil(Weight_i/2)$ y el contenedor de 20 pies que representa la proa será igual a $Weight_i - Ceil(Weight_i/2)$

Los capítulos 6 y 7 tienen como objetivo explicar a detalle el modelos realizado y una extensión del modelo investigado. Para el modelo y su extensión se explicarán las variables de decisión utilizadas y sus respectivos dominios, se explicarán las restricciones que se aplican sobre estas variables de decisión y las estrategias de distribución

Indices y constan-	Descripción
tes	1
Slots	Conjunto de índices de espacios para los contenedores.
Cont	Conjunto de índices de contenedores.
Stack	Conjunto de índices de pilas.
$Slot_k$	Conjunto de espacios por pila k.
	Conjunto de espacios de popa y proa por pila k.
$Slot_{k}^{A,F} \ Slot^{R}$	Conjunto de espacios refrigerados.
$Slot^{NR}$	Conjunto de espacios no refrigerados.
$Slot^{NRC}$	Conjunto de celdas no refrigeradas.
$Cont^L$	Conjunto de contenedores cargados.
$Cont_K$	Conjunto de contenedores en la pila k.
$Cont^{\{20,40\}}$,
- 40	Índice del contenedor de 20 y 40 pies.
$Cont_{A,F}^{40}$	Índice del contenedor de 40 pies separados por proa y
$Cont_{R}^{\{20,40\}}$	popa.
$Cont_R$	Índice del contenedor refrigerados de 20 y 40 pies.
$Length_i$	Largo del contenedor i.
$Weight_i$	Peso del contenedor i.
$Height_i$	Altura del contenedor i.
POD_i	Puerto de descarga del contenedor i.
	Peso limite de la pila i.
$Stack_{i}^{W} \ Stack_{i}^{H} \ $	Altura limite de la pila i.
$Cont^{\mathring{V}}$	
	Índice del contenedor virtual.
$Cont^{Load}$	Conjunto de contenedores a cargar.
GCSY	Centro de gravedad ideal en el eje Y.
ContNonReefer	Conjunto de variables booleanas del tamaño
	Cont , donde cada elemento representa la rela-
	$ción \ ContNonReefer_i = Cont_i \in Cont_NR$
$ContEW_i$	Número de contenedores con igual peso i.
$ContEP_i$	Número de contenedores con igual puerto de descarga
A	i.
$ContEH_i$	Número de contenedores con igual altura i.
$ContEL_i$	Número de contenedores con igual largo i.
CountStacks	Número total de pilas del buque.

Cuadro 5.1: Tabla de constantes.

Figura 5.3: Coordenadas para cálculo de centro de gravedad

utilizadas. El capitulo 8 mostrará los resultados obtenidos por el modelo propuesto y por la extensión del mismo modelo. Éstos resultados son evaluados y comparados, y adicionalmente se obtienen a partir de instancias reales utilizadas en la estiba de contenedores en los puertos costeros.

Capítulo 6

Modelo con contenedor virtual

En éste modelo se propone la idea de utilizar un contenedor virtual que tiene como objetivo representar que no se cargará un contenedor en el espacio que lo contenga. Las características como el largo, ancho, alto y puerto de descarga serán iguales a 0. Además, el índice del contenedor virtual es igual a 0 ($Cont^V = 0$).

6.1. Variables de decisión

Sobre la variables de decisión actuarán las restricciones que se propondrán mas adelante. Adicionalmente, estas variables modelarán los posibles resultados obtenidos al final de proceso (Ver cuadro 6.1).

Las variables de decisión utilizadas para calcular el costo de las soluciones encontradas son utilizadas sobre el proceso de propagación. (Ver cuadro 6.2)

6.2. Restricciones del modelo

Para el modelo se plantean un conjunto de restricciones que tienen como objetivo disminuir el espació de búsqueda de posibles soluciones. En ésta sección se presentan y se detallan el conjunto de restricciones modeladas.

$$atmost(S, i, 1) \quad \forall i \in Cont | i \neq 0$$
 (6.1)

$$element(S_i, L_i, Length) \quad \forall i \in Slots$$
 (6.2)

$$element(S_i, H_i, Height) \quad \forall i \in Slots$$
 (6.3)

Variables de decisión	Descripción
$S = \{S_1, \dots, S Slots \}$	$S_i \in \text{Cont}$, índice del contenedor en el
(-1)	$Slot_i$.
$L = \{L_1,, L Slots \}$	$L_i \in \text{Length}$, largo del contenedor estiba-
	do en el $Slot_i$.
$H = \{H_1,, H Slots \}$	$H_i \in \text{Height}$, alto del contenedor estibado
	en el $Slot_i$.
$W = \{W_1,, W Slots \}$	$W_i \in \text{Weight}$, peso del contenedor estiba-
- 7 7 1 13	do en el $Slot_i$.
$WD = \{WD_1,, WD Slots \}$	$WD_i \in \text{Weight}$, peso del contenedor esti-
	bado en el $Slot_i$. (Arreglo de variables no
	escalares).
$P = \{P_1,, P Slots \}$	$P_i \in \text{POD}$, puerto de descarga del conte-
	nedor estibado en el $Slot_i$.
NRSR =	$NRSR_i \in \{0,1\}$, Indica si se carga un
$\{NRSR_1,,NRSR Slots^R \}$	contenedor no refrigerado en un ranura re-
	frigerada.
$HS = \{HS_1,, HS Stack \}$	$HS_i \in Stack$, limite de altura por pila.
CFEUA =	$CFEUA_i \in \{0,1\}$, contenedor de 40 pies
$\{CFEUA_1,, CFEUA Slots/2 \}$	estibado en la popa.
CFEUF =	$CFEUF_i \in \{0,1\}$, contenedor de 40 pies
$\{CFEUF_1,, CFEUF Slots/2 \}$	estibado en la proa.
$OVT = \{OVT_1,, OVT Slots $	$OVT_i \in \{0,1\}$, contenedor sobre-estibado
	en el $Slot_i$.
$OPT = \{OPT_1,, OPT Stack \}$	$OPT_i \in Cont_K$, número de contenedores
	diferentes en la pila i.
$NVC = \{NVC_1,, NVC Slots \}$	$NVC_i \in \{0,1\}$, Ranuras o espacios asig-
THE CHIEF THE C. I.	nados a contenedores no virtuales.
$WT = \{WT_1,, WT Stack \}$	$WT_i \in \{0, Stack_i^W\}$, peso total de los con-
	tenedores estibados en la pila i.
GCenY = GG - Y GG	$GCenY_{i,s} \in \{0, maxLevel(i)\}, \text{ centro de}$
	gravedad en eje Y para la pila i y el slot s.
$GCY = \{GCY_1,, GCY Stack \}$	$GCY_i \in \{0, maxLevel(i)\}, \text{ centro de gra-}$
	vedad en el eje Y.
$GCD = \{GCD_1,, GCD Stack \}$	$GCD_i \in \{0, maxLevel(i)\}, \text{ distancia al}$
	centro de gravedad ideal por pila.
$OUT = \{OUT_1,, OUT Stack \}$	$OUT_i \in Cont^{\{20,40\}}$, número de contene-
OUTE	dores i de 20 y 40 pies en la pila k .
OUTE	0 <= OUTE <= Stack , número de pilas
CS	vacías.
OB	$0 \le CS \le Cont $, número de contenedores estibados.
C40F	dores estidados. $0 <= C40F <= CFEUF $, número de
O 401.	$0 \le 0.40F \le CFECF $, numero de contenedores de 40 pies estibados en la
	proa.

Cuadro 6.1: Tabla de variables de decisión.

Variables de decisión	Descripción
OCNS	Variable con el número de contenedores
	no estibados en el barco (Objetivo 1 de la
	sección 4.1).
OV	Variable con el número de contenedores
	sobre-estibados (Objetivo 2 de la sección
	4.1).
OP	Variable con la sumatoria del número de
	contenedores diferentes por cada pila (Ob-
	jetivo 3 de la sección 4.1).
OU	Variable con el número de pilas usadas
	(Objetivo 4 de la sección 4.1).
OR	Variable con el número de contenedores
	no refrigerados estibados en ranuras refri-
	geradas (Objetivo 5 de la sección 4.1).
OGCTD	Variable con la sumatoria de los pesos
	otorgados por la distancia al centro de gra-
	vedad ideal por cada pila (Objetivo 6 de
	la sección 4.1).
O_{old}	Es un arreglo que contiene a las variables
	OCNS, OV, OP, OU, OR y OGCTD
	las cuales están ordenadas por prioridad.
	Donde $OCNS$ es el objetivo mas priorita-
	rio y $OGCTD$ es el menos prioritario. Este
	arreglo de variables contiene la mejor solu-
	ción encontrada en búsquedas anteriores.
O_{new}	Es un arreglo muy parecido a O_old se dife-
	rencia en que es la mejor solución encon-
	trada en la búsqueda actual.

Cuadro 6.2: Tabla de variables de decisión utilizadas para calcular el costo de la solución.

$$element(S_i, W_i, Weight) \quad \forall i \in Slots$$
 (6.4)

$$element(S_i, P_i, POD) \quad \forall i \in Slots$$
 (6.5)

$$element(S_{Slots_i^R}, NRSR_i, ContNonReefer) \quad \forall i \in Slot^R$$
 (6.6)

$$channel(WD_i, W_i) \quad \forall i \in Slots$$
 (6.7)

$$S_{pos(i)} = i \qquad \forall i \in Cont^L \tag{6.8}$$

$$S_i \notin Cont_A^{40} \qquad \forall i \in Slot_k^F \land \forall k \in Stacks$$
 (6.9)

$$S_i \notin Cont_F^{40} \quad \forall i \in Slot_k^A \land \forall k \in Stacks$$
 (6.10)

$$CFEUA_{getCell(i)} = expr(L_i == 40) \qquad \forall i \in Slot_k^A$$
 (6.11)

$$CFEUA_{getCell(i)} = 1 \Rightarrow S_{i+1} = S_i + 1 \forall i \in Slot_k^A$$
 (6.12)

$$CFEUF_{getCell(i)} = expr(L_i == 40) \qquad \forall i \in Slot_k^F$$
 (6.13)

$$CFEUF_{getCell(i)} = 1 \Rightarrow S_{i-1} = S_i - 1 \forall i \in Slot_k^F$$
 (6.14)

$$Ite(CFEUA_{getCell(i)} \land \\ overStowed40(i), 1, 0, OVT_i) \qquad \forall i \in Slot_k^A$$

$$(6.15)$$

$$Ite(CFEUA_{getCell(i)} \land overStowed40(i), 1, 0, OVT_{(i+1)}) \qquad \forall i \in Slot_k^A$$

$$(6.16)$$

$$Ite(!CFEUA_{getCell(i)} \land overStowed20A(i), 1, 0, OVT_i) \qquad \forall i \in Slot_k^A$$

$$(6.17)$$

$$Ite(!CFEUA_{getCell(i)} \land overStowed20F(i), 1, 0, OVT_{(i+1)}) \qquad \forall i \in Slot_k^A$$

$$(6.18)$$

$$WT_i = \sum_{j \in Slots_i} WD_j \qquad \forall i \in Stacks$$
 (6.19)

$$GCenY_{i,s} = WD_s * getPosY(s)$$
 $\forall i \in Stacks \land s \in Slots_i$ (6.20)

$$GCY_i = (\sum GCenY_{i,s})/(WT_i + 0{,}001)$$
 $\forall i \in Stacks \land s \in Slots_i$ (6.21)

$$PenY_i = GCY_i - GCSY \qquad \forall i \in Stacks$$
 (6.22)

$$Max(PenY_i, 0, GCD_i) \quad \forall i \in Stacks$$
 (6.23)

$$regular(Length_i^{\alpha}, R) \quad \forall \alpha \in \{A, F\} \land i \in Stack$$
 (6.24)

$$\sum_{j \in Slots_i^{\alpha}} H_j \le HS_i \qquad \forall \alpha \in \{A, F\} \land i \in Stacks$$
(6.25)

$$\sum_{j \in Slots_i} W_j \le Stack_i^W \qquad \forall i \in Stacks \tag{6.26}$$

$$W_{i} + W_{i+1} \ge W_{i+2} + W_{i+3} \ge \dots \ge W_{i+n} + W_{i+n+1}$$

 $\forall k \in Stack | i = Min(Slot_{k}^{A}), n = Max(Slot_{k}^{A})$

$$(6.27)$$

$$OPT_k = distinctPOD(Slot_k) \quad \forall k \in Stacks$$
 (6.28)

$$S_i \notin Cont_R^{20} \qquad \forall i \in Slot^{NR}$$
 (6.29)

$$S_i \notin Cont_R^{40} \quad \forall i \in Slot^{NRC}$$
 (6.30)

$$S_i \in Cont^{20} \qquad \forall i \in Slot^{20} \tag{6.31}$$

$$S_i \in Cont^{40} \qquad \forall i \in Slot^{40} \tag{6.32}$$

$$NVC_i = expr(S_i! = 0) \qquad \forall i \in Slots$$
 (6.33)

$$CS = \sum_{i \in Slots} NVC_i \tag{6.34}$$

$$C40F = \sum_{i \in Slot_k^F} CFEUF_{getCell(i)}$$

$$\tag{6.35}$$

$$Count(L_i, \{20, 40\}, =, OUT_k) \qquad \forall i \in Slot_K^{40}$$

$$\tag{6.36}$$

$$Count(OUT_k, \{0\}, =, OUTE) \quad \forall k \in Stack$$
 (6.37)

$$atmost(W, i, ContEW_i) \quad \forall i \in ContEW | i \neq 0$$
 (6.38)

$$atmost(P, i, ContEP_i) \quad \forall i \in ContEP | i \neq 0$$
 (6.39)

$$atmost(H, i, ContEH_i) \quad \forall i \in ContEH | i \neq 0$$
 (6.40)

$$atmost(L, i, ContEL_i) \quad \forall i \in ContEL | i \neq 0$$
 (6.41)

$$OV = 0 (6.42)$$

La restricción (6.1) implica el hecho de que un contenedor no puede estar en diferentes slots a excepción del contenedor virtual. Las restricciones <elementales> que se encuentran referenciadas del (6.2) al (6.5) son para generar una asociación entre las ranuras y las características de longitud, altura, peso y puerto de descarga

de los contenedores que se estibarán en dichas ranuras. La restricción (6.6) que también es <elemental> se utiliza para identificar cuando un contenedor no refrigerado se estiba en un espacio refrigerado. Para poder realizar el cambio de una variable escalar, donde se guarda el peso del contenedor, a una variable no escalar se utiliza la restricción (6.7). Se presenta la restricción (6.8) para cargar los contenedores abordo del barco, ésta restricción hace cumplir la regla 6. Las restricciones (6.9) y (6.10) son para que la separación de los contenedores de 40 pies en uno de proa y otro de popa se estiben respectivamente en slots de proa y popa respectivamente. Se modelan las restricciones del (6.11) al (6.14) que tienen como función que los dos contenedores de 20 pies que representan a uno 40 pies queden estibados en la proa y popa de la misma celda, donde getCell(i) tiene como tarea obtener la celda del slot i. Las restricciones del (6.15) al (6.18) tienen como objetivo identificar cuando un contenedor ésta sobre-estibado. Para una mejor entendimiento sobre las restricciones de sobre-estiba, se detallará cada una de las restricción. Las restricciones (6.15) y (6.16)solo aplicará para los contenedores 40 pies y para los contenedores que se encuentre cumplan con la restricción overStowed40(i) que indica si existe $P_i > MinP(x)$, donde MinP(x) es el mínimo puerto de descarga de un conjunto x que contienen los puertos de descarga de los contenedores estibados en slots inferiores a i y que pertenecen a la misma pila. La restricciones (6.17) y (6.18) solo aplican para contenedores de 20 pies, éstas utilizan las restricciones overStowed20A(i) y overStowed20F(i) las cuales funcionan de la misma forma que overStowed40(i). La diferencia es que overStowed20A(i) actúa solo sobre los contenedores estibados en la popa de una misma pila y overStowed20F(i) actúa solo sobre los contenedores estibados en la proa de una misma pila. La restricción (6.19) se utiliza para obtener el peso total de los contenedores estibados por pila. Para calcular el centro de gravedad de los slots de una pila en el eje Y se utiliza la restricción (6.20); no se calcula el centro de gravedad en eje x debido a que brinda no brinda información relevante. El calculo del centro de gravedad de la pila en eje Y se realiza por medio de la restricción (f 6.21). La restricción (6.22) se utiliza para calcular la penalización que corresponde a la distancia entre el centro de gravedad calculado para la pila en el eje Y y el centro de gravedad ideal de la pila el cual es representado por medio de GCSY. La distancia del centro de gravedad para cada pila se obtiene del máximo valor entre la penalización por pila y la constante 0, ésta distancia se obtiene por medio de la restricción (6.23). La restricción (6.24) plantea que las variables de longitud que pertenecen a una misma pila deben cumplir con la expresión regular $R=20^*40^*0^*$, ésta restricción hace cumplir las reglas de estibación 1 y 2. La restricción (6.25) especifica el limite de altura para cada pila. El limite de peso para pila es especificado por medio de la restricción (6.26). Las restricciones (6.25) y (6.26) hacen cumplir la regla 5 de estibación. Se modela la restricción (6.27) la cual implica que los contenedores de una pila deben estar ordenados de abajo hacia arriba y de mayor a menor peso, donde Min(x) y Max(x) especifica el mínimo y máximo índice de conjunto de slot que pertenecen

a una pila y que aún no se han cargado. La restricción (6.28) tiene como objetivo contar por cada pila la cantidad de puertos de descarga diferentes. La restricción (6.29) y (6.30) implican que no es posible estibar contenedores refrigerados en slot no refrigerados, éstas restricciones hacen cumplir la regla 3. La restricción (6.31) y (6.32) restringen el dominio de los slot de 20 y 40 pies indicando que solo se pueden cargar contenedores de 20 y 40 pies respectivamente, éstas restricciones hacen cumplir la regla 4. La restricción (6.33) es para representar los espacios o ranuras que no han sido estibados con el contenedor virtual. La restricción (6.34) cuenta la cantidad de contenedores no virtuales estibados. La restricción (6.35) cuenta la cantidad de contenedores que hacen parte de la proa de los contenedores de 40 pies y que han sido estibados. La restricción (6.36) cuenta la cantidad de contenedores de 20 y 40 pies estibados por pila. La restricción (6.37) se encarga de obtener la cantidad de pilas vacías. Las restricciones (6.38), (6.39), (6.40) y (6.41) tienen como objetivo limitar el número de contenedores a estibar de acuerdo a características como al peso, el puerto de descarga, la altura y el largo de los contenedores. La restricción (6.42) tiene como objetivo que no quede ningun contenedor sobre-estibado.

$$OV = \sum_{i \in Slots} OVT_i \tag{6.43}$$

$$OCNS = |Cont^{L}| + |Cont^{Load}| - (CS - C40F)$$

$$(6.44)$$

$$OU = CountStacks - OUTE - getMinUseStack()$$
 (6.45)

$$OP = \sum_{i \in Stacks} OPT_i \tag{6.46}$$

$$OR = \sum_{i \in Slots^{R}} NRSR_{i} - getMinSlotsR()$$
(6.47)

$$OGCTD = (\sum_{i \in Stacks} GCD_i) * 100$$
(6.48)

$$lex_{less}(O_{old}, O_{new})$$
 (6.49)

Las restricciones utilizadas para calcular el costo de la soluciones se encuentran referenciadas del (6.43) al (6.49). Se debe tener en cuenta que para éste modelo las

restricciones de costo para los contenedores de 40 pies es el doble de uno de 20 pies. A continuación, se detalla cada unas de las restricciones de costo.

La restricción (6.43) tiene como objetivo calcular el costo de los contenedores sobre-estibados. Un contenedor se considera sobre-estibado en una pila cuando este contiene un puerto de descarga mayor a cualquiera de los puertos de descarga de los contenedores que se encuentren por debajo del mismo. La restricción (6.44) cuenta el costo de contenedores no estibados en el buque. El costo de contenedores no estibados se obtiene del total de contenedores menos la diferencia entre la cantidad de contenedores no virtuales estibados y los contenedores que hacen parte de la proa de los contenedores de 40 pies. Para obtener la cantidad de pilas utilizadas se usa la restricción (6.45) que obtiene la cantidad de pilas menos la cantidad de pilas no usadas y adicionalmente resta getMinUseStack() que es el mínimo número de pilas a utilizar dependiendo de la cantidad de contenedores estibados obtenidos de la variable CS. La restricción (6.46) suma la cantidad de contenedores con puerto de descarga diferente en una misma pila. La restricción (6.47) suma la cantidad de contenedores no refrigerados estibados en espacios refrigerados y resta getMinSlotsR() que es el mínimo número de ranuras refrigerados posible en los cuales se pueden estibar contenedores no refrigerados. El valor de getMinSlotsR() se obtiene con base en el mínimo número de pilas a utilizar getMinUseStack(). La restricción (6.48) se encarga de obtener el peso del centro de gravedad, éste calculo consiste en la suma de los centros de gravedad de cada pila multiplicado por la constante 100. Por último, la restricción (6.49) verifica que se encuentren mejores soluciones teniendo en cuenta la prioridad de los objetivos.

6.3. Estrategia de distribución

Para éste modelo se utilizan dos estrategias de distribución. En ambas estrategias se hace uso de las variables auxiliares P, L, WyH y por último se usa la variable S. Adicionalmente, sobre la variable S en las dos estrategias de distribución se aplica un rompimiento simétrico de valores, que se debe al intentar estibar en una ranura con contenedores que tienen las mismas características.

6.3.1. Estrategia de distribución por pila

La estrategia de distribución por pila consiste en agrupar conjuntos de valores donde cada conjunto representa una pila y los valores representan los índice de unos espacios en el buque portacontenedores. Los índices son utilizados para poder asignar el puerto de descarga, el largo, el peso, la altura y el contenedor en un espacio en el buque. (Ver figura 6.1)

La estrategia de distribución de agrupar por pilas permite fácilmente asignar valores de contenedores a una pila y la estrategia no continua con la siguiente pila hasta que la primera pila, en la que se están asignando contenedores, cumpla con

Figura 6.1: Índices por pila

todas las restricciones del modelo. Para intentar utilizar la menor cantidad de pilas se realiza la distribución primero sobre los pilas a las cuales ya se le han cargado contenedores y posteriormente, busca las pilas con menor cantidad de espacios o ranuras refrigeradas.

Sobre cada pila, la estrategia de distribución escoge los índices i del espacio o ranura a estibar, ésta selección toma primero los índices del nivel inferior al nivel superior de la pila y en cada nivel de la pila avanza de popa a proa. Como se menciono anteriormente, se hace uso de las variables auxiliares P, L, WyH para disminuir el espacio de búsqueda. Primero, se asignan P_i de la pila, asignando al principio el máximo valor de P para el espacio i. Segundo, se asignan las variables L_i , intentado cumplir con la restricción (6.24), escogiendo primero los de largo i0, luego los de i1 y por último los de largo i2. Tercero, se asignan la variables i3, intentando cumplir con la restricción (6.27), dando al principio el máximo valor de i3 y para el espacio i4. Cuarto, se asignan las variables i5 huscando el máximo valor de i6 para el espacio i7. Por último, se intenta asignar la variable i7 buscando así obtener resultado factibles para la pila.

6.3.2. Estrategia de distribución por niveles de cada pila

La estrategia de distribución por niveles consiste en ordenar los índices de las ranuras pertenecientes a los niveles, del nivel inferior al nivel superior, de cada una de las pilas (Ver figura 6.2)

Después de ordenado por niveles se asignan las variables P,L,W,HyS de la misma forma en que se asignan para la estrategia de distribución por pila.

Figura 6.2: Índices por niveles

Capítulo 7

Modelo con espacios y contenedor virtuales

Éste modelo se presenta como una extensión al modelo presentado en el capitulo 6. Se extiende el modelo proponiendo la idea de utilizar ranuras y contenedores virtuales. Las ranuras virtuales se utilizan para que los contenedores reales puedan ser siempre estibados y los contenedores virtuales se utilizan para indicar cuando una ranura no fue estibado por un contenedor real. La cantidad de contenedores y ranuras, virtuales y no virtuales, deben tener la misma cardinalidad. Adicionalmente, los contenedores virtuales tienen características como el largo, ancho, alto y puerto de descarga iguales a 0.

7.1. Conjunto de constantes adicionales

A continuación, se presenta un conjunto de constantes adicionales que solo son utilizadas en éste modelo (Ver cuadro 7.1).

Adicionalmente, para éste modelo no utiliza la constante $Cont^V$

7.2. Variables de decisión

Debido a la utilización de contenedores y ranuras virtuales es necesario crear, eliminar y modificar algunas variables de decisión. (Ver cuadro 7.2).

Las variables de decisión utilizadas para calcular el costo de las soluciones encontradas son iguales a las del modelo sin extender. La única diferencia con respecto a éstas variables es que no es necesario calcular la variable de decisión OV debido a que se utiliza una restricción para que el costo que implica ésta variable sea 0.

Indices y constan-	Descripción		
tes			
SlotsV	Subconjunto de Slots que indica los espacios virtuales,		
	éste conjunto tiene el tamaño de $Cont^{Load}$.		
SlotsR	Subconjunto de Slots que indica los espacios reales.		
ContV	Subconjuntos de Cont que indica los contenedores vir-		
	tuales, éste conjunto tiene el tamaño de $SlotsR$.		
ContR	Subconjuntos de Cont que indica los contenedores		
	reales, cargados y no cargados.		
OverCont	Conjunto de variables booleanas del tamaño		
	Slots , donde cada elemento representa la rela-		
	$ción \ OverCont_i = (i >= SlotsR)$		
CT	Conjunto de tipos de contenedores.		
SCT^i	Conjunto de contenedores de tipo i.		

Cuadro 7.1: Tabla de constantes adicionales.

7.2.1. Restricciones del modelo

Para un correcto funcionamiento del modelo extendido es necesario replantear el modelo de restricciones.

Restricciones no modificadas

Debido a que es una extensión del anterior modelo existen varias restricciones que satisfacen los nuevos conceptos del modelo, estas son:

- De la restricción 6.2 a la 6.10.
- De la restricción 6.19 a la 6.32.
- De la restricción 6.36 a la 6.37.

Estas restricciones se aplican en éste modelo extendido de la misma forma en que se aplican para el modelo original.

Eliminación de restricciones

Para poder dar soporte al modelo extendido se eliminan las siguientes restricciones:

- La restricción 6.1.
- De la restricción 6.11 a la 6.18.
- De la restricción 6.33 a la 6.35.

77 * 11 1 1 * * * /	D
Variables de decisión	Descripción
$RC = \{RC_1,, RC_{ Cont^{Load} }\}$	$RC_i \in Slots$, índice del espacio o ranura
$G = \{G, G, G, B\}$	de un contenedor real estibado.
$C = \{C_1,, C_{ Slots }\}$	$C_i \in Slots$, índice del espacio o ranura en
	el que el contenedor sea estibado.
$S = \{S_1,, S_{ Slots }\}$	$S_i \in Cont$, índice del contenedor, real o
T (T T)	virtual, estibado.
$L = \{L_1,, L_{ Slots }\}$	$L_i \in \text{Length}$, largo del contenedor estiba-
11 (11 11)	do en $Slots_i$.
$H = \{H_1,, H_{ Slots }\}$	$H_i \in \text{Height}$, alto del contenedor estibado
II. (II. II.)	en $Slots_i$.
$W = \{W_1,, W_{ Slots }\}$	$W_i \in \text{Weight}$, peso del contenedor estiba-
	do en $Slots_i$.
$WD = \{WD_1,, WD_{ Slots }\}$	$WD_i \in \text{Weight}$, peso del contenedor esti-
	bado en $Slots_i$. (Arreglo de variables no
D (D D)	escalares).
$P = \{P_1,, P_{ Slots + Cont^{Load} }\}$	$P_i \in \text{POD}$, puerto de descarga del conte-
MDCD	nedor estibado en $Slots_i$.
NRSR = NRSP (SLA, R)	$NRSR_i \in \{0,1\}$, indica si se carga un
$\{NRSR_1,, NRSR Slots^R \}$	contenedor no refrigerado en una ranura o
	espacio refrigerado.
$HS = \{HS_1,, HS Stack \}$	$HS_i \in \text{Stack}$, limite de altura por pila.
$OPT = \{OPT_1,, OPT Stack \}$	$OPT_i \in Cont_K$, número de contenedores
$WT = \{WT_1,, WT Stack \}$	diferentes en la pila i.
$VVI = \{VVI_1,, VVI Stack \}$	$WT_i \in \{0, Stack_i^W\}$, peso total de los contenedores estibados en la pila i.
GCenY =	GCen $Y_{i,s} \in \{0, maxLevel(i)\}$, centro de
$\{GCenY_{1,1},,GCenY Stack Slots \}$	
$GCY = \{GCY_1,, GCY Stack \}$	$GCY_i \in \{0, maxLevel(i)\}, \text{ centro de gra-}$
$GCT = \{GCT_1,, GCT \mid Dtuck \mid \}$	vedad en el eje Y .
$GCD = \{GCD_1,, GCD Stack \}$	$GCD_i \in \{0, maxLevel(i)\}, \text{ distancia al}$
$\mathcal{L} \mathcal{L} = \{\mathcal{L} \mathcal{L}_1,, \mathcal{L} \mathcal{L}_p \mathcal{L}_p \mathcal{L}_p \mathcal{L}_p \}$	centro de gravedad ideal por pila.
$OUT = \{OUT_1,, OUT Stack \}$	$OUT_i \in Cont^{\{20,40\}}$, número de contene-
	dores i de 20 y 40 pies en la pila k .
OUTE	$0 \le OUTE \le Stack $, número de pilas
	vacías.
$VSC = \{VSC_1,, VSC_{ SlotsV }\}$	$VSC_i \in \{0,1\}$, indica verdadero si se ha
$V \cup C = \{V \cup C_1,, V \cup C_{ SlotsV }\}$	estibado un contenedor no virtual en un
	espacio virtual, de lo contrario indica fal-
	so.
$VC = \{VC_1,, VC_{ ContV }\}$	$VC_i \in ContV$, contenedores virtuales.
CS	$0 \le CS \le Slots $, número de contene-
~	dores estibados.
	actos obilibuados.

Cuadro 7.2: Tabla de variables de decisión.

Las restricciones se eliminan por provocarían resultados indeseados en el modelo extendido.

Nuevas restricciones implementadas

$$channel(S,C) (7.1)$$

$$element(C_i, VSC_i, OverCont) \quad \forall i \in ContR \land i \notin Cont_F^{40}$$
 (7.2)

$$VSC_i = 0 \forall i \in Cont_F^{40} (7.3)$$

$$C_{i+1} = C_i + 1 \qquad \forall i \in Cont_A^{40} \tag{7.4}$$

$$P_{i} \ge P_{i+2} \ge \dots \ge P_{i+n}$$

$$\forall k \in Stack | i = Min(Slot_{k}^{A}), n = Max(Slot_{k}^{A})$$

$$(7.5)$$

$$P_{i} \ge P_{i+2} \ge \dots \ge P_{i+n}$$

$$\forall k \in Stack | i = Min(Slot_{k}^{F}), n = Max(Slot_{k}^{F})$$

$$(7.6)$$

$$VC_i = C_{qetVC(i)} \qquad \forall i \in ContV$$
 (7.7)

$$VC_i \ge VC_{i+1} \ge \dots \ge VC_{i+n} \qquad i = 0, n = |ContV| \tag{7.8}$$

$$exactly(W, 0, |VC|)$$
 (7.9)

$$exactly(P, 0, |VC|)$$
 (7.10)

$$exactly(H, 0, |VC|)$$
 (7.11)

$$exactly(L, 0, |VC|)$$
 (7.12)

$$exactly(W, i, ContEW_i) \quad \forall i \in ContEW$$
 (7.13)

$$exactly(P, i, ContEP_i) \quad \forall i \in ContEP$$
 (7.14)

$$exactly(H, i, ContEH_i) \quad \forall i \in ContEH$$
 (7.15)

$$exactly(L, i, ContEL_i) \quad \forall i \in ContEL$$
 (7.16)

$$SCT_j^i \ge SCT_{j+1}^i \ge \dots \ge SCT_{j+n}^i \qquad \forall i \in CT | j = 0, n = |SCT^i|$$
 (7.17)

$$CS = ContR - OCNS \tag{7.18}$$

La restricción (7.1) implica el enlace de los contenedores con los espacios o ranuras. La restricción (7.2) y (7.3) se utilizan para identificar la cantidad de contenedores estibados en espacios virtuales. La restricción (7.4) es para asegurar que los dos contenedores de 20 pies utilizados para representar uno de 40 pies queden estibados de forma continua. Las restricciones (7.5) y (7.6) tienen como objetivo evitar contenedor sobre-estibados, un contenedor se considera sobre-estibado en una pila cuando este contiene un puerto de descarga mayor a cualquiera de los puertos de descarga de los contenedores que se encuentren por debajo del mismo. La restricción (7.7) tiene como objetivo agrupar en la variable VC los contenedores virtuales y la restricción (7.8) es utilizada para romper la simetria que existe entre los contenedores virtuales, ya que estibar un contenedore virtual u otro contenedor virtual en un espacio o ranura i no deberia afectar el resultado. La restricciones (7.9), (7.10), (7.11) y (7.12) son usadas para especificar en las variables W, P, H y L la cantidad de contenedores virtuales que deben de existir. Las restricciones (7.13), (7.14), (7.15) y (7.16) tienen como objetivo limitar el número de contenedores reales a estibar de acuerdo a características como al peso, el puerto de descarga, la altura y el largo de los contenedores. La restricción (7.17) es para romper la simetria que existe entre los contenedores que son del mismo tipo. La restricción (7.18) es utilizada para obtener la cantidad de contenedores reales estibados.

En el calculo de las variables que representan el costo de la soluciones, el único cambio que se efectuó entre el modelo original y el modelo extendido fue el calculo de la variable OCNS. Por lo anterior, se remplaza la restricción (6.44) por la restricción (7.19) que sirve para contar el costo de contenedores no estibados en el buque.

$$OCNS = \sum_{i \in Stacks} VSC_i \tag{7.19}$$

7.3. Estrategia de distribución

Para éste modelo se utilizan dos estrategias de distribución. En ambas estrategias se hace uso de las variables auxiliares P, L, WyH. Las estrategias de distribución son similares a las del anterior modelo.

7.3.1. Estrategia de distribución por pila

Ésta estrategia funciona agrupando las pilas de la misma forma en la que se hace para el modelo original. La única diferencia radica en que para éste modelo no se tiene en cuenta los espacios o ranuras virtuales para hacer la distribución. (Ver figura 6.1)

Figura 7.1: Índices por pila

7.3.2. Estrategia de distribución por niveles de cada pila

La estrategia de distribución por niveles consiste en ordenar los índices de las ranuras pertenecientes a los niveles, del nivel inferior al nivel superior, de cada una de las pilas de la misma forma en la que se hace para el modelo original (Ver figura 6.2). A diferencia del modelo original no setiene en cuenta los espacios o ranuras virtuales para hacer la distribución

Las variables P, L, WyH se distribuyen después de que se han ordenado. Adicionalmente, al terminar de distribuir P, L, WyH se distribuye sobre RC

Figura 7.2: Índices por niveles

Capítulo 8

Resultados de los modelos

En éste capitulo se muestran los resultados obtenidos por cada una de las estrategias de distribución de los dos modelos propuesto en éste documento. Las pruebas realizadas sobre cada una de las estrategias de distribución se hacen sobre datos reales.

Lista de símbolos y abreviaciones

Abreviaciones	Descripciones	Definición
TEU	veinte pies de unidades equivalentes	page 10
FEU	cuarentea pies de unidades equivalentes	page 10
MIT	Instituto Teconologico de Massachusetts	page 16
ISO	Organización Internacional de Normalización	page 15

Índice de figuras

1.1.	Modelo total de planaeación de estiba. [14][8]	4
2.1.	Dimensiones comunes de un contenedor	9
2.2.	Imagen de un buque portacontenedores	10
2.3.	(a) Vista frontal de una bahía. (b) Vista lateral de una pila con carga	
	parcial. Cada enchufe de poder indica si puede ir contenedor refrigerado.	11
2.4.	Los contenedores de color verde se descargarán antes que los rojos. (a)	
	Pila sobre-estibada . (b) Escotilla sobre-estibada	14
5.1.	Indices de espacios (Slots)	27
5.2.	Indexación de espacios en el buque	28
5.3.	Coordenadas para cálculo de centro de gravedad	33
6.1.	Índices por pila	44
6.2.	Índices por niveles	45
7.1.	Índices por pila	52
7.2.	Índices por niveles	53

Índice de cuadros

3.1.	Tabla de constantes	20
3.2.	Tabla de variables de decisión	21
5.1.	Tabla de constantes	32
6.1.	Tabla de variables de decisión	36
6.2.	Tabla de variables de decisión utilizadas para calcular el costo de la	
	solución	37
7.1.	Tabla de constantes adicionales	48
7 2	Tabla de variables de decisión	49

Bibliografía

- [1] Daniela Ambrosino, Davide Anghinolfi, Massimo Paolucci, and Anna Sciomachen. A new three-step heuristic for the master bay plan problem. *Maritime Economics & Logistics*, 11(1):98–120, 2009.
- [2] Daniela Ambrosino and Anna Sciomachen. A constraint satisfaction approach for master bay plans. Water studies series, pages 175–184, 1998.
- [3] Anastasios Haralampos Aslidis. *Optimal container loading*. PhD thesis, Massachusetts Institute of Technology, 1984.
- [4] Mordecai Avriel, Michal Penn, Naomi Shpirer, and Smadar Witteboon. Stowage planning for container ships to reduce the number of shifts. *Annals of Operations Research*, 76:55–71, 1998.
- [5] RC Botter and MA Brinati. Stowage container planning: A model for getting an optimal solution. 1991.
- [6] Lucas Antón De Luca, Nicolas German & Neller. Introducción a la ingenieria naval - buques portacontenedores.
- [7] Alberto Delgado. Models and algorithms for container vessel stowage optimization. 2013.
- [8] Alberto Delgado, Rune Møller Jensen, Kira Janstrup, Trine Høyer Rose, and Kent Høj Andersen. A constraint programming model for fast optimal stowage of container vessel bays. *European Journal of Operational Research*, 220(1):251–261, 2012.
- [9] Opher Dubrovsky, Gregory Levitin, and Michal Penn. A genetic algorithm with a compact solution encoding for the container ship stowage problem. *Journal of Heuristics*, 8(6):585–599, 2002.
- [10] efficient constraint solving toolkit GECODE An open, free. Definición del lenguaje gecode.
- [11] Jun-Gyu Kang and Yeong-Dae Kim. Stowage planning in maritime container transportation. *Journal of the Operational Research Society*, 53(4):415–426, 2002.

62 BIBLIOGRAFÍA

[12] Feng Li, Chunhua Tian, Rongzeng Cao, and Wei Ding. An integer linear programming for container stowage problem. In *Computational Science-ICCS 2008*, pages 853–862. Springer, 2008.

- [13] Malcolm Yoke Hean Low, Xiantao Xiao, Fan Liu, Shell Ying Huang, Wen Jing Hsu, and Zhengping Li. An automated stowage planning system for large containerships.
- [14] Dario Pacino, Alberto Delgado, Rune Møller Jensen, and Tom Bebbington. Fast generation of near-optimal plans for eco-efficient stowage of large container vessels. In *Computational Logistics*, pages 286–301. Springer, 2011.
- [15] Amaya S. Definición del lenguaje c++.
- [16] Anna Sciomachen and Elena Tanfani. The master bay plan problem: a solution method based on its connection to the three-dimensional bin packing problem. *IMA Journal of Management Mathematics*, 14(3):251–269, 2003.
- [17] Zhang Wei-Ying, Lin Yan, and Ji Zhuo-Shang. Model and algorithm for container ship stowage planning based on bin-packing problem. *Journal of Marine Science and Application*, 4(3):30–36, 2005.
- [18] enciclopedia informatica Wikipedia. Definición de estiba.
- [19] ID Wilson and PA Roach. Container stowage planning: a methodology for generating computerised solutions. *Journal of the Operational Research Society*, pages 1248–1255, 2000.