IL·LUMINACIÓ GLOBAL

amb materials de Carlos Andújar i Mario Costa Sousa

Color bleeding

UNITATS RADIOMETRIA

Flux radiant Φ

Irradiància E i Llei de Lambert

Radiància L(p,ω)

Resum fotometria

Sím.	Radiomet.	Fotometria	Definició	Ús
Φ	Fluxe (W)	Fluxe (lm)	Energia que travessa una superficie per unitat de temps	Energia total que emet una font de llum
Е	Irradiancia (W/m²)	Iluminància (lux=lm/m²)	Fluxe per unitat d'àrea	Llum que incideix en un punt, des de qualsevol direcció
I	Intensitat (W/sr)	Intensitat (cd=lm/sr)	Fluxe per unitat d'angle sòlid	Distribució direccional d'una llum puntual
L	Radiància W/(sr·m²)	Luminància (cd/m²)	Fluxe per unitat d'àrea i unitat d'angle sòlid	Energia que travessa un punt en una determinada direcció

BRDF

BRDF $f(p, \omega_o, \omega_i)$

BRDF

MERL BRDF database

www.merl.com/brdf/

BRDF de pinturas

Phong vs BRDF mesurat

$$L_{out}(x, \omega_{out}) = L_{in}(x, \omega_{in}) * f(\omega_{in}, \omega_{out}) * (\omega_{in}.n)$$

$$L(x \to \Theta) = L_e(x \to \Theta) + \int_{\Omega_x} L(x \leftarrow \Psi) f_r(x, \Psi \leftrightarrow \Theta) \cos(n_x, \Psi) d\omega \Psi$$

Reciprocitat

$$- f(x,\omega_{in}, \omega_{out}) = f(x, \omega_{out}, \omega_{in})$$

Conservació de l'energia

$$-\int f(\omega_{in}, \omega_{out})^*(\omega_{in}.n) d\omega_{in} \leq 1$$

BRDFs Analitiques

Lambert: $f(\omega_{out}, \omega_{in}) = k_d$

Blinn: $f(\omega_{out}, \omega_{in}) = k_d + k_s (n. \omega_{half})^n$

Phong $f(\omega_{out}, \omega_{in}) = k_d + k_s (\omega_{out}, \omega_{spec})^n$

Hi ha moltes altres BRDFs analítiques que hom ha proposat, com Cook Torance-BRDF, Ward-BRDF,...

Radiosity

$$L(x \to \Theta) = L_{e}(x \to \Theta) + \int_{\Omega_{x}} L(x \leftarrow \Psi) f_{r}(x, \Psi \leftrightarrow \Theta) \cos(n_{x}, \Psi) d\omega \Psi$$

Suposem que totes les superfícies i fonts de llum són difuses, i tenen Un comportament uniforme sobre tota la superfície.

Subdividim en pedaços per a mantenir l'uniformitat

Obtenim una versió disretitzada de l'equació de rendering

$$B_i = E_i + \rho_i \sum B_j F_{ij}$$

Energy reflected by surface i

Surface i

percentage of light energy which strikes the surface

surfaces

Càlcul dels factors de forma

Classic Radiosity Algorithm

Mesh Surfaces into Elements

Compute Form Factors Between Elements

Solve Linear System for Radiosities

Reconstruct and Display Solution

Radiosity com a sistema d'equacions

$$\begin{bmatrix} 1 - \rho_{1}F_{11} & -\rho_{1}F_{12} & \cdots & -\rho_{1}F_{1n} \\ -\rho_{2}F_{21} & 1 - \rho_{2}F_{22} & \cdots & -\rho_{2}F_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ -\rho_{n}F_{n1} & -\rho_{n}F_{n2} & \cdots & 1 - \rho_{n}F_{nn} \end{bmatrix} \begin{bmatrix} B_{1} \\ B_{2} \\ \vdots \\ B_{n} \end{bmatrix} = \begin{bmatrix} E_{1} \\ E_{2} \\ \vdots \\ E_{n} \end{bmatrix}$$

Resultats

