

COGS 108 Data Science in Practice

More Geospatial: Practice and Stats

Geocoding

Jupyter demo!

Geocoding statistics

Geo-resampling demo!

Non-parametric statistics

Central Limit reminder demo!

Good news and bad news

Bad news: Many of the standard techniques and methods documented in standard statistics textbooks have significant problems when we try to apply them to the analysis of the spatial distributions.

Good news: Geospatial referencing provides us with a number of new ways of looking at data and the relations among them. (e.g. distance, adjacency, interaction, and neighbor)

What if your population is distributed like this?

Or like this?

Or like this?

Parameters (like mean and variance) cannot fully and accurately capture this distribution!

Hence, we require nonparametric statistics.

Resampling statistics

- What & When?
- Kolmogorov-Smirnoff Test
- Rank Statistics
- · Jackknife & Bootstrap
- Non-parametric prediction models

Non-parametric statistics - when to use?

• When underlying distributions are non-normal, skewed, or cannot be

parametrized simply.

• When you have ranked (ordinal) data, e.g., preferences.

Like	Like Somewhat	Neutral	Dislike Somewhat	Dislike
1	2	3	4	5

• When you need to build an empirical "null" distribution.

 $MMM \sim MMMM UCS an Diego$

Non-parametric statistics

- Myth: Non-parametric statistics does not use parameters.
- **Fact:** Non-parametric statistics does not make assumptions about I parametrize the underlying distribution generating the data.
- "Distribution-Free" statistics
 - Meaning, it does no assume data-generating process (like heights) result in, e.g., normally-distributed data

Question:

• Given (limited) samples from two populations, how do we quantify whether they come from the same distribution?

Question:

• Given (limited) samples from two populations, how do we quantify whether they come from the same distribution?

Comparing cumulative distributions empirically

Find the maximum difference between the CDFs.

Very sensitive!


```
gamma vs. normal1: p = 0.0106803628411 normal1 vs. normal2: p = 0.550735998243
```

Rank correlation

Spearman Correlation - Non-linear but monotonic relationships

Dampens effect of outliers!

Bootstrapping (resampling)

Question:

 How can we build a more realistic "null distribution" for the sample estimate without knowing the population it's drawn from?

Bootstrapping (resampling)

Example Question:

Are San Diego's pot holes closer to bus stops than not?

Bootstrapping (resampling)

Monte Carlo (also resampling) - π

MMM <u>UCSan Diego</u>

