LTE/NR Architecture & principles

www.huawei.com

Contents

LTE architecture LTE Physical Layer Structure 5G architecture **5G Physical Layer Structure**

LTE/GSM/UMTS architecture

- Most functions of the RNC/BSC are deployed on the eNodeB, and some functions are deployed on the MME. This feature reduces system latency and prevents single points of failure.
- The signaling plane is separated from the user plane, and the proper division of labor leads to higher work efficiency.
 - The CS domain of the traditional network is removed from the PS domain. The all-IP networking architecture is more flexible and simplified

Functions of LTE NEs

Functions of the e-NodeB []

- The radio resource management function ,implements radio bearer control, radio admission control, and connection mobility control, and implements dynamic resource allocation (scheduling) on the UE in the uplink and downlink []
- Compression and encryption of IP headers of user data streams []
- lacktriangle MME selection when the UE is attached lacktriangle
- Implements routing for S-GW user-plane data []
- performing scheduling and transmission of paging information and broadcast information initiated by the MME
- Performs measurement and measurement reports related to mobility configuration and scheduling []

Functions of the SGW

 Packet data routing and forwarding; Mobility and handover support; Lawful interception; charging.

Functions of the MME \square

- Encryption and integrity protection of non-access stratum (NAS) signaling;
- Access stratum (AS) access layer security control and mobility control in idle state;
- Supports paging, handover, roaming, and authentication □

Functions of the PGW

 Packet data filtering; IP address allocation for the UE; Uplink and downlink charging and rate limiting.

Contents

LTE architecture LTE Physical Layer Structure 5G architecture **5G Physical Layer Structure**

Duplex mode, frequency band, and bandwidth supported by LTE

- Three duplex modes are supported []
 - FDD,TDD &half-duplex FDD
- Supports multiple frequency bands
 - FDD system from 700 MHz to 2.6 GHz
 - TDD system ranges from 1900 MHz to 2620 MH.
- Supports multiple bandwidth configurations.
 - 1.4MHz, 3MHz, 5MHz, 10MHz, 15MHz, 20MHz

3GPP-band(nr<e

&umts&gsm)

E-UTRA Operating Band	BS UE t	rece	smit	Downlink (DL BS t UE	rans	smit eive	Duplex Mode
	F _{UL_low}	-	F _{UL_high}	F _{DL_low}	-	F _{DL_high}	
1	1920 MHz	· ·	1980 MHz	2110 MHz	_	2170 MHz	FDD
2	1850 MHz	<u> </u>	1910 MHz	1930 MHz	_	1990 MHz	FDD
3	1710 MHz	_	1785 MHz	1805 MHz	220	1880 MHz	FDD
4	1710 MHz	50. 	1755 MHz	2110 MHz	97.7	2155 MHz	FDD
5	824 MHz	· ·	849 MHz	869 MHz	_	894MHz	FDD
61	830 MHz	9940	840 MHz	875 MHz	_	885 MHz	FDD
7	2500 MHz		2570 MHz	2620 MHz	0	2690 MHz	FDD
8	880 MHz	8. 	915 MHz	925 MHz	-	960 MHz	FDD
9	1749.9 MHz	90 <u></u>	1784.9 MHz	1844.9 MHz	_	1879.9 MHz	FDD
10	1710 MHz	100	1770 MHz	2110 MHz	2000	2170 MHz	FDD
11	1427.9 MHz	(2) 	1447.9 MHz	1475.9 MHz	8778	1495.9 MHz	FDD
12	699 MHz	-	716 MHz	729 MHz	_	746 MHz	FDD
13	777 MHz	2322	787 MHz	746 MHz	_	756 MHz	FDD
14	788 MHz	_	798 MHz	758 MHz	202.00	768 MHz	FDD
15	Reserved			Reserved			FDD
16	Reserved		to the second second	Reserved			FDD
17	704 MHz	100	716 MHz	734 MHz	3223	746 MHz	FDD
18	815 MHz		830 MHz	860 MHz	0	875 MHz	FDD
19	830 MHz	80 -10	845 MHz	875 MHz	_	890 MHz	FDD
20	832 MHz		862 MHz	791 MHz	_	821 MHz	FDD
21	1447.9 MHz	183 <u>777</u>	1462.9 MHz	1495.9 MHz	<u></u>	1510.9 MHz	FDD
22	3410 MHz		3490 MHz	3510 MHz	0	3590 MHz	FDD
23	2000 MHz	3. 	2020 MHz	2180 MHz	-	2200 MHz	FDD
24	1626.5 MHz	· .	1660.5 MHz	1525 MHz	_	1559 MHz	FDD
25	1850 MHz	<u> </u>	1915 MHz	1930 MHz	<u> </u>	1995 MHz	FDD
33	1900 MHz	_	1920 MHz	1900 MHz	_	1920 MHz	TDD
34	2010 MHz	35 <u></u>	2025 MHz	2010 MHz	_	2025 MHz	TDD
35	1850 MHz	200	1910 MHz	1850 MHz	22.0	1910 MHz	TDD
36	1930 MHz	-	1990 MHz	1930 MHz	-	1990 MHz	TDD
37	1910 MHz	-	1930 MHz	1910 MHz	_	1930 MHz	TDD
38	2570 MHz	992	2620 MHz	2570 MHz	_	2620 MHz	TDD
39	1880 MHz		1920 MHz	1880 MHz	32.3	1920 MHz	TDD
40	2300 MHz	60 	2400 MHz	2300 MHz	5	2400 MHz	TDD
41	2496 MHz		2690 MHz	2496 MHz		2690 MHz	TDD
42	3400 MHz	93 <u>44</u>	3600 MHz	3400 MHz	_	3600 MHz	TDD
43	3600 MHz	1000	3800 MHz	3600 MHz	92.00	3800 MHz	TDD
Note 1: Ban	d 6 is not applica	able					

36.104 protocol

TD-LTE frame structure——frequceny resource

bandwi	dth [] MHz [] conventional	1.4	3	5	10	15	20
Number of subcarriers	carrier Multicast carrier	72	360	300 600	1200	1900	2400

LTE uses orthogonal subcarriers to distinguish resources in the frequency domain. The subcarrier spacing is 15 kHz or 7.5 kHz.

conventional

Carrier

Multicast carrier

Radio frame structure

- Both LTE FDD and LTE TDD use the OFDM technology.
- The subcarrier spacing is ∆f=15kHz
- LTE supports two radio frame structures
 - Type 1, applicable to frequency division duplex
 FDD
 - Type 2, applicable to time division duplex TDD
- 1 radio frame = 10ms
- 1 subframe= 1ms
- 1 slot = 0.5 ms
- 1 radio frame = 10 subframes = 20 slots

FDD radio frame structure

The number of OFDM symbols in each slot depends on the CP type.

CP(cyclic prefix): Background and Principles

Multipath latency extension

 The width extension of the received signal pulse caused by multipath is the difference between the maximum transmission latency and the minimum transmission latency. The latency extension varies with the environment, terrain, and clutter, and does not have an absolute mapping relationship with the cell radius.

Impact

- Inter-Symbol Interference (ISI) is generated, which severely affects the transmission quality of digital signals.
- Inter-Channel Interference (ICI) is generated. The orthogonality of the subcarriers in the OFDM system is damaged, which affects the demodulation on the receive side.

Solution: CP for reduced ISI and ICI

- Guard intervals reduce ISI. A guard interval is inserted between OFDM symbols, where the length (Tg) of the guard interval is generally greater than the maximum latency extension over the radio channel.
- CP is inserted in the guard interval to reduce ICI. Replicating a sampling point following each OFDM symbol to the front of the OFDM symbol. This ensures that the number of waveform periods included in a latency copy of the OFDM symbol is an integer in an FFT period, which guarantees subcarrier orthogonality.

TDD Uplink-downlink subframe configuration and special slot assignment

DL/ULSubframe Allocation Options

DL-UL				Sı	ubfi	ram	e nu	mb	er		
Configura tion	Switch-point periodicity	0	1	2	3	4	5	6	7	8	9
0	5 ms	D	S	U	U	U	D	S	U	U	U
1	5 ms	D	S	U	U	D	D	S	U	U	D
2	5 ms	D	S	U	D	D	D	S	U	D	D
3	10 ms	D	S	U	U	U	D	D	D	D	D
4	10 ms	D	S	U	U	D	D	D	D	D	D
5	10 ms	D	S	U	D	D	D	D	D	D	D
6	5 ms	D	S	U	U	U	D	S	U	U	D

D: Downlink subframe

U: Uplink subframe

S: Special subframe

- The LTE-TDD frame structure features uplink-downlink conversion.

 subframe for uplink-downlink conversion is called a special subframe
 - including DwPTS , GP, UpPTS

The uplink-downlink slot assignment and special subframe configuration need to be planned; UpPTS mainly bear RACH and Sounding RS

Special subframe allocation

	No	rmal (CP	Exte	ended	l CP
	DwPT S	GP	UpPT S	DwPT S	GP	UpPT S
0	3	10	1	3	8	<u> </u>
1	9	4	1	8	3	1
2	10	3	1	9	2	<u> </u>
3	11	2	1	10	1	1
4	12	1	1	3	7	2
5	3	9	2	8	2	2
6	9	3	2	9	1	2
7	10	2	2	_		
8	11	1	2	-		

图5 TDD 帧结构同步信号设计

Basic Concepts of LTE Resource Blocks

RE (Resource Element)

- Minimum granularity(element) of physical layer resources
- □ Time domain [] 1 OFDM symbol [] frequency domain [] 1 subcarrier

RB 🛮 Resource Block 🗓

- Minimum frequency domain unit of resource allocation for physical layer data transmission
- □ Time domain [] 1 slot [][[][] 12 consecutive Subcarriers

TTI

- Basic time-domain unit for data transmission scheduling at the physical layer1
- TTI = 1 subframe = 2 slots
- 1 TTI = 14 OFDM symbols (Normal CP)
- 1 TTI = 12 OFDMsymbols (Extended CP)

CCE

- Control Channel Element
- Resource unit of the control channel
- 1 CCE = 36 REs
- 1 CCE = 9 REGs (1 REG = 4 REs)

Carrier bandwidt h [MHz]	RE numbers (each OFDM)	RB numbers each slot
1.4	72	6
3	180	15
5	300	25
10	600	50
15	900	75
20	1200	100

Contents

LTE architecture LTE Physical Layer Structure **5G** architecture **5G Physical Layer Structure**

5G network architecture

3GPP R15 focuses on eMBB, and R16 meets multiple service scenarios

5G Networking Options

SA/NSA Definition (38.801)

Non-standalone NR: A deployment configuration where the gNB requires an LTE eNB as anchor for control plane connectivity to EPC, or an eLTE eNB as anchor for control plane connectivity to NGC.

Non-standalone E-UTRA: A deployment configuration where the eLTE eNB requires a gNB as anchor for control plane connectivity to NGC.

Signaling anchor	է Data sp	lit poin
	\	

	Option 3x	Option 7x	Option 4	Option 2
LTE&NR DC		•	•	
LTE Upgrade	•	•	•	
5G Core Deployment		•	•	•
Service Readiness (eMBB/uRLLC/mMTC)		•	•	•

Option3x Preferred in NSA [] Option 2 Preferred in SA

5G Networking Options

NSA Option3x Minimizes Impact on Existed LTE with Best Performance

5G Spectrum defined by 3GPP(38104)

Sub6G

Table 5.2-1: NR operating bands in FR1

NR operating band	Uplink (UL) operating band BS receive / UE transmit Ful_low - Ful_high	Downlink (DL) operating band BS transmit / UE receive FDL_low - FDL_high	Duplex Mode
n1	1920 MHz – 1980 MHz	2110 MHz – 2170 MHz	FDD
n2	1850 MHz – 1910 MHz	1930 MHz – 1990 MHz	FDD
n3	1710 MHz – 1785 MHz	1805 MHz – 1880 MHz	FDD
n5	824 MHz – 849 MHz	869 MHz – 894 MHz	FDD
n7	2500 MHz - 2570 MHz	2620 MHz - 2690 MHz	FDD
n8	880 MHz – 915 MHz	925 MHz – 960 MHz	FDD
n12	699 MHz – 716 MHz	729 MHz – 746 MHz	FDD
n20	832 MHz – 862 MHz	791 MHz – 821 MHz	FDD
n25	1850 MHz – 1915 MHz	1930 MHz – 1995 MHz	FDD
n28	703 MHz – 748 MHz	758 MHz – 803 MHz	FDD
n34	2010 MHz - 2025 MHz	2010 MHz - 2025 MHz	TDD
n38	2570 MHz – 2620 MHz	2570 MHz – 2620 MHz	TDD
n39	1880 MHz – 1920 MHz	1880 MHz – 1920 MHz	TDD
n40	2300 MHz - 2400 MHz	2300 MHz - 2400 MHz	TDD
n41	2496 MHz – 2690 MHz	2496 MHz – 2690 MHz	TDD
n50	1432 MHz – 1517 MHz	1432 MHz – 1517 MHz	TDD1
n51	1427 MHz – 1432 MHz	1427 MHz – 1432 MHz	TDD
n66	1710 MHz – 1780 MHz	2110 MHz – 2200 MHz	FDD
n70	1695 MHz – 1710 MHz	1995 MHz – 2020 MHz	FDD
n71	663 MHz – 698 MHz	617 MHz – 652 MHz	FDD
n74	1427 MHz – 1470 MHz	1475 MHz – 1518 MHz	FDD
n75	N/A	1432 MHz – 1517 MHz	SDL
n76	N/A	1427 MHz – 1432 MHz	SDL
n77	3300 MHz – 4200 MHz	3300 MHz – 4200 MHz	TDD
n78	3300 MHz – 3800 MHz	3300 MHz – 3800 MHz	TDD
n79	4400 MHz – 5000 MHz	4400 MHz – 5000 MHz	TDD
n80	1710 MHz – 1785 MHz	N/A	SUL
n81	880 MHz – 915 MHz	N/A	SUL
n82	832 MHz – 862 MHz	N/A	SUL
n83	703 MHz – 748 MHz	N/A	SUL
n84	1920 MHz – 1980 MHz	N/A	SUL
n86	1710 MHz – 1780 MHz	N/A	SUL

mmWave

Table 5.2-2: NR operating bands in FR2-

	NR operating band∂	Uplink (UL) and Downlink (DL) operating band↓ BS transmit/receive↓ UE transmit/receive↓	Duplex Mode∂
		Euclow - Euchigh ^a Epclow - Epchigh ^a	
•	n257₽	26500 MHz – 29500 MHz₽	TDD₽
▮	n258₽	24250 MHz – 27500 MHz₽	TDD₽
■	n260₽	37000 MHz – 40000 MHz₽	TDD₽
┍	n261₽	27500 MHz – 28350 MHz₽	TDD₽

NR Bandwidth Supported by 3GPP

Frequency range 1:

< 6 GHz

• 5, 10,15, 20, 25, 30, 40, 50, 60, 80, 100 MHz

Frequency range 2:

> 24.25 GHz

50, 100, 200, 400 MHz

SUL Supplementary Uplink Carrier, for UL&DL decoupling

Spectrum distribution of 5G networks

5G network will be multi-band network including Sub3G [] C-band and mmWave

Contents

LTE architecture LTE Physical Layer Structure 5G architecture **5G Physical Layer Structure**

Overview of NR Air Interface Resources (Time-, Frequency-, and Space-domain Resources)

Numerology (system parameter): refers to subcarrier spacing (SCS) in New Radio (NR) and related parameters, such as the symbol length and cyclic prefix (CP) length.

NR uses orthogonal frequency division multiple access (OFDMA), same as LTE does.

The main description dimensions of air interface resources are similar between LTE and NR except that BWP is added to NR in the frequency domain.

Time-domain Resources: Radio Frame, Subframe, Slot, Symbol

In the time domain, slot is a basic scheduling unit for data channels. The concepts of radio frames and subframes are the same as those in LTE.

Frame Structure: Architecture

Frame length: 10 ms

SFN range: 0 to 1023

Subframe length: 1 ms

Subframe index per system frame: 0 to

Slot length: 14 symbols

	Slot Configuration (NCP)						
SCS (kHz)	Number of Symbols/SI ot	Number of Slots/Subframe	Number of Slots /Frame				
15	14	1	10				
30	14	2	20				
60	14	4	40				
120	14	8	80				
240	14	16	160				
480	14	32	320				
	SI	ot Configuration (ECP)				
60	12	4	40				

Frame structure architecture:

Example: SCS = 30 kHz/120 kHz

The lengths of a radio frame and a subframe in NR are consistent with those in LTE. The number of slots in each subframe is determined by the subcarrier width.

SCS-Background and Protocol-provided Definition

- Background
 - Service types supported by NR: eMBB, URLLC, mMTC, etc.
 - Frequency bands supported by NR: C-band, mmWave, etc.
 - Moving speed supported by NR: up to 500 km/h
- Requirements for SCS vary with service types, frequency bands, and moving speeds.
 - URLLC service (short latency): large SCS
 - Low frequency band (wide coverage): small SCS
 - High frequency band (large bandwidth, phase noise):
 large SCS
 - Ultra high speed mobility: large SCS

Numerologies defined in 3GPP Release 15 (TS 38.211) with SCS identified by the parameter

Parameter	SCS	СР
μ	363	Ci
0	15 kHz	Normal
1	30 kHz	Normal
2	60 kHz	Normal,
2	OU KHZ	extended
3	120 kHz	Normal
4	240 kHz	Normal

*(LTE supports only 15 kHz SCS.)

KHZ

4

Available SCS for data channels and

Paramet er μ	scs	Supported for Data (PDSCH, PUSCH etc)	Supported for Sync (PSS, SSS, PBCH)
0	15 kHz	Yes	Yes
1	30 kHz	Yes	Yes
2	60 kHz	Yes	No
3	120	Yes	Yes
	are sur	ported to adapt to	different requirer

No

Huawei Confidentia

Based on E. E. St. Of E. Skillz, Particles of thumerologies (mainly different Schannel characters)

NR supports a series of SCS values

A series of

Scalable SCSs are obtained by extending the expansion

Symbol Length-Determined by SCS

- Symbol = CP + Data
- SCS vs CP length/symbol length/slot length
 - Length of OFDM symbols in data: T_data = 1/SCS
 - CP length: T_cp = 144/2048 x T_data
 - Symbol length (data+CP): T_symbol = T_data +T_cp
 - Slot length: $T_slot = 1 / 2^{(\mu)}$

Parameter/Numerology (μ)	0	1	2	3	4
SCS (kHz): SCS = 15 x 2^(μ)	15	30	60	120	240
OFDM Symbol Duration (μs): T_data = 1/SCS	66.67	33.33	16.67	8.33	4.17
CP Duration (μs): T_cp = 144/2048 x T_data	4.69	2.34	1.17	0.59	0.29
OFDM Symbol Including CP (μs): T_symbol = T_data + T_cp	71.35	35.68	17.84	8.92	4.46
Slot Length (ms): T_slot = 1/2^(μ)	1	0.5	0.25	0.125	0.0625

T symbol

SCS: Application Scenarios and Suggestions

- Impact of SCS on coverage, latency, mobility, and phase noise
 - Coverage: The smaller the SCS, the longer the symbol length/CP, and the better the coverage.
 - Mobility: The larger the SCS, the smaller the impact of Doppler shift, and the better the performance.
 - Latency: The larger the SCS, the shorter the symbol length/latency.
 - Phase noise: The larger the SCS, the smaller the impact of phase noise, and the better the performance.
- SCS app SCS (kHz) 240 uency **15** 30 60 120 bands (eMBB service data channel): bad Coverage goo bad 3.5 Mobility d goo bad GHz Latency bad goo Coverage good bad Mobility 28 good bad Phase Noise **GHz** good bad Latency

- Coexistence of different SCS values and FDM
 - The eMBB and URLLC data channels use different

The PBCH and PDSCH/PUSCH use different SCS values and coexist through FDM.

Slot Format and Type

- Slot structure (section 4.3.2 of 3GPP TS 38.211)
 - Downlink, denoted as D, for downlink transmission
 - Flexible, denoted as X, for uplink or downlink transmission, GP, or reserved.
 - Uplink, denoted as U, for uplink transmission

Main slot types

- Case 1: DL-only slot
- Case 2: UL-only slot
- Case 3: flexible-only slot

- Case 4-3
 Case 4-4
 Compared with LTE, NR has the following slot format features:
 - Flexibility: symbol-level uplink/downlink adaptation in NR and subframe-level in LTE
 - Diversity: More slots are supported in the NR system to cope with more scenarios and service types.

Examples of application scenarios of different slots:

	Slot Type	Application Scenario Example							
(Case 1	DL-heavy transmission							
	Case 2	UL-heavy transmission							
(Case 3	 Forward compatibility: Resources are reserved for future services. Adaptive adjustment of uplink and downlink resources: such as dynamic TDD 							
С	Case 4-	Forward compatibility: Resources are reserved for future services. Flexible data transmission start and end locations: such as unlicensed frequency bands and dynamic TDD							
C	Case 4- 2								
		Downlink self-contained transmission ne slot or subframe contains uplink part, downlink part, and GP.							
C	Case 4-D 4 co	ownlink self-contained slot or subframe: includes downlink data and Uplink self-contained transmission prresponding HARO feedback control or SRS							
С	Case 4- 5	Mini-slot (seven symbols) for URL C services							

- Uplink self-contained slot or subframe: includes uplink scheduling information and պրիդէ վգել

ACK/NACK

The number of uplink and downlink symbols in a slot can be flexibly configured. In Release 15, a mini-slot contains 2, 4, or 7 symbols for data scheduling in a short latency or a high frequency band scenario.

UL/DL Slot/Frame Configuration

Configuration: in line with section 11.1 of 3GPP TS 38.213

- Layer 1: semi-static configuration through cell-specific RRC signaling
 - SIB1: UL-DL-configuration-common and UL-DL-configurationcommon-Set2
 - Period: {0.5,0.625,1,1.25,2,2.5,5,10} ms, SCS dependent
- Layer 2: semi-static configuration through UE-specific RRC signaling
 - Higher layer signaling: UL-DL-configuration-dedicated
 - Period: {0.5,0.625,1,1.25,2,2.5,5,10} ms, SCS dependent
- Layer 3: dynamic configuration through UE-group SFI
 - DCI format 2_0
 - Period: {1,2,4,5,8,10,20} slots, SCS dependent
- Layer 4: dynamic configuration through UE-specific DCI
 - DCI format 0, 1
- Main characteristics: hierarchical configuration or separate configuration of each layer
 - Different from LTE, the NR system supports UE-specific configuration, which delivers high flexibility.
 - Support for symbol-level dynamic TDD

Hierarchical configuration

If X slots/symbols are configured at the upper layer, D or U slots/symbols are also configured at the lower layer.

Separate layer configuration

Cell-specific RRC configuration/SFI

Frame configuration supports hierarchical configuration through RRC signaling and DCI to deliver symbol-level dynamic TDD and high flexibility.

UL/DL Slot/Frame Configuration: Cell-specific Semi-static

ConfigurationCell-specific RRC signaling parameters

- Parameter: SIB1
 - UL-DL-configuration-common: {X, x1, x2, y1, y2}
 - UL-DL-configuration-common-Set2: {Y, x3, x4, y3, y4}
- X/Y: assignment period
 - $-\quad \{0.5,\, 0.625,\, 1,\, 1.25,\, 2,\, 2.5,\, 5,\, 10\} \; ms$
 - 0.625 ms is used only when the SCS is 120 kHz. 1.25 ms is used when the SCS is 60 kHz or larger. 2.5 ms is used when the SCS is 30 kHz or larger.
 - A single period or two periods can be configured.
- x1/x3: number of downlink-only slots
 - {0,1,..., number of slots in the assignment period}
- y1/y3: number of uplink-only slots
 - {0,1,..., number of slots in the assignment period}
- x2/x4: number of downlink symbols following downlinkonly slots
 - {0,1,...,13}
- y2/y4: number of uplink symbols followed by uplink-only slots

Single-period configuration: DDDSU

Dual-period configuration: DDDSU DDSUU

Cell-specific semi-persistent configuration supports limited configuration period options, and flexible static configuration of DL/UL resources are realized through RRC signaling.

Basic Concepts of Frequency-Domain

Resources

- Resource Grid (RG)
 - Physical-layer resource group, which is defined separately for the uplink and downlink (RGs are defined for each numerology).
 - Frequency domain: available RB resources within the transmission bandwidth
 - Time domain: 1 subframe
- Resource Block (RB)
 - Basic scheduling unit for data channel resource allocation in the frequency domain
 - Frequency domain: 12 consecutive subcarriers
- Resource Element (RE)
 - Minimum granularity of physical-layer resources
 - Frequency domain: 1 subcarrier
 - Time domain: 1 OFDM symbol

In NR, an RB corresponds to 12 subcarriers (same as LTE) in the frequency domain. The frequency-domain width is related to SCS and is calculated using 2 x 180 kHz.

Channel Bandwidth and Transmission Bandwidth

Channel bandwidth

- Channel bandwidth supported by the FR1 frequency band (450 MHz to 6000 MHz): 5 MHz (minimum), 100 MHz (maximum)
- Channel bandwidth supported by the FR2 frequency band (24 GHz to 52 GHz): 50 MHz (minimum), 400 MHz (maximum).

Maximum transmission bandwidth (maximum number of available RBs)

- Determined by the channel bandwidth and data channel SCS.
- Defined on the gNodeB side and UE side separately. For details about the protocolconfiguration of the UE side, see the figure on the right.

Guard bandwidth

 With F-OFDM, the guard bandwidth decreases to about 2% in NR (corresponding to 30 kHz

Minimum guard bandwidth in various system bandwidth configurations

SCS	5 MHz	10	15		25	30	40	50MH	60	80 MHz	100 MHz
(kHz)	J 1V11 12	MHz	MHz	MHz	MHz	MHz	MHz	Z	MHz	00 141112	100 101112
15	242.5	312.5	382.5	452.5	522.5	[592.5]	552.5	692.5	N/A	N/A	N/A
30	505	665	645	805	785	[945]	905	1045	825	925	845
60	N/A	1010	990	1330	1310	[1290]	1610	1570	1530	1450	1370

Compared with the guard bandwidth (10%) in LTE, NR uses F-OFDM to reduce the guard bandwidth to about 2%.

Maximum Number of Available RBs and Spectrum Utilization

- Spectrum utilization = Maximum transmission bandwidth/Channel bandwidth
 - Maximum transmission bandwidthon the gNodeB side: See Table 5.3.201 and 5.3.201 in 3GPP Ss 8. 1044z MHz MHz MHz MHz MHz MHz MHz MHz [kHz] N_{RB} and Spectrum Utilization (FR1:400 MHz to 6000 MHz) [160] 106 133 216 270 N/A N/A N/A N/A N/A 15 90% 93.6% 94.8% [96%] 95.4% 95.8% 97.2% 97.2% 11 24 38 [78] 51 65 106 133 162 [189] 217 [245] 273 30 79.2% 86.4% 91.2% 91.8% 93.6% 95.4% 95.8% 97.2% 97.7% 98.3% N/A 11 18 [38] 24 31 51 65 79 [93] 107 [121] 135 60 79.2% 86.4% 86.4% 893% 91.8% 93.6% 93.6% 97.2% 94.8%

SCS	50 MHz	100 MHz	200 MHz	400 MHz
[kHz]		Spectrum 24 GHz to		
60	66	132	264	N/A
6 U	95%	95%	95%	1
120	32	66	132	264
120	92.2%	95%	95%	95%

Question after course

- NR bandwidth 100Mhz, scs=60khz, how many RBS in the RG? how calculate?
- NR bandwidth 100Mhz, scs=30khz, NR radio frame is DDDSU with single period, slot structure is SS2, Number of scheduling times per second? And if the radio frame is double period with DDDSUDDSUU SS2, the result?
- NR bandwidth 100Mhz, scs=30khz, NR radio frame is single period DDDDDDDSUU, slot structure is SS2,
 Number of scheduling times per second? If the slot structure is SS56, what about the result □
- NR bandwidth 20Mhz, scs=15khz, NR radio frame is DDDSU with single period, slot structure is SS2, Number of scheduling times per second? And if the radio frame is double period with DDDSUDDSUU SS2, the result?
- THE reason for longer SCS is better for Urllc&high speed, shorter SCS for MMTC?

Extension Questions

 LTE TDD radio frame is DDDSU with single period, special subframe structure is 3:9:2, Number of scheduling times per second? If special subframe structure is 9:3:2, what about the result?

Thank You

www.huawei.com

Copyright © 2018 Huawei Technologies Co., Ltd. All Rights Reserved.

The information in this document may contain predictive statements including, without limitation, statements regarding the future financial and operating results, future product portfolio, new technology, etc. There are a number of factors that could cause actual results and developments to differ materially from those expressed or implied in the predictive statements. Therefore, such information is provided for reference purpose only and constitutes neither an offer nor an acceptance. Huawei may change the information at any time without notice.