Module 2 Practice Quiz

Due No due date Points 10 Questions 10

Available after Jan 22 at 12am Time Limit None

Allowed Attempts Unlimited

Take the Quiz Again

Attempt History

	Attempt	Time	Score
LATEST	Attempt 1	11 minutes	10 out of 10

Submitted Feb 5 at 11:54am

Question 2 1 / 1 pts

Assume that the signature consists of the object constant Me, the unary predicate constant Male, and the binary predicate constant Parent, and nothing else. Which of the following first-order logic formulas express the following English sentence?

"I have a brother"

Choose all that apply.

Correct!

 $\exists x \exists y \ (Male(x) \land Parent(y, x) \land Parent(y, Me) \land x \neq Me)$

This is correct since x cannot be Me, but x is a male, and x and Me have the same parent y.

- $\exists x \exists y \; (Male(y) \land (Parent(x, y) = Parent(x, Me)) \land \neg (x = Me))$
- $\exists x \exists y \ (Male(y) \land Parent(x, y) \land Parent(x, Me))$

Correct!

∃x∃y (Male(y) ∧ Parent(x, y) ∧ Parent(x, Me) ∧ y ≠ Me)

This is correct since y cannot be Me, but y is a male, and y and Me have the same parent x.

Question 3 1 / 1 pts

Let P be the only predicate constant that is unary, and I an interpretation such that the universe is the set of all ASU students. For any $\xi \in |I|$,

P^{I}

 (ξ) = t iff ξ has taken CSE 579. Which of the following first-order logic formulas express the following English sentence?

"There exists exactly two students who took CSE 579."

Choose all that apply.

Correct!

 $\exists x \exists y (P(x) \land P(y) \land x \neq y \land \forall z (P(z) -> (z=x \lor z=y)))$

This is correct since x and y are different persons and every student must be either x or y.

Correct!

 $\exists x \exists y \forall z [P(x) \land P(y) \land x \neq y \land ((x \neq z \land y \neq z) -> \neg P(z))]$

This is correct since x and y are different persons and for any other person z, z does not take CSE579.

- $\exists x \exists y [P(x) \land P(y)]$
- $\neg (\exists x \exists y \exists z (P(x) \land P(y) \land P(z))) \land \exists x \exists y (P(x) \land P(y))$

Question 4

1 / 1 pts

Let the underlying signature be {a, P, Q}, where a is an object constant, P is a unary predicate constant, and Q is a binary predicate constant. Assume object variables range over the set N of nonnegative integers, and the signature is interpreted as follows:

- a represents the number 10,
- P(x) represents the condition "x is a prime number,"
- Q(x, y) represents the condition "x is less than y."

Which of the following first-order logic formulas express the following English sentence?

"There are infinitely many prime numbers."

 $\bigvee \forall x \exists y [P(x) \land Q(x, y) \land P(y)]$

Correct!

 \bigcirc $\exists x P(x) \land \forall x[P(x) \rightarrow \exists y (P(y) \land Q(x, y)]$

This is correct since we first say there exist at least one prime number x, then we say "we can always find a bigger prime number y given x", indicating that the number of prime numbers is infinite.

 $\exists xP(y)$

 $\forall x P(x)$

Question 5 1 / 1 pts

Let the underlying signature be {a, P, Q}, where a is an object constant, P is a unary predicate constant, and Q is a binary predicate constant. Assume object variables range over the set N of nonnegative integers, and the signature is interpreted as follows:

- a represents the number 10,
- P(x) represents the condition "x is a prime number,"
- Q(x, y) represents the condition "x is less than y."

Which of the following first-order logic formulas express the following English sentence?

"x equals 8."

Choose all that apply.

 $\forall y \ [P(y) \ \land \ Q(y,a) \rightarrow Q(y,x)] \ \land \ \neg \exists y,z \ [Q(x,y) \land Q(y,a) \land Q(x,z) \land Q(z,a) \land y \neq z]$

Correct!

 $\forall y [P(y) \land Q(y,a) \rightarrow Q(y,x)] \land \exists y [Q(x,y) \land Q(y,a)]$

 $\exists y [Q(x,y) \land Q(y,a)]$ means that there is a number y between x and a, thus x can only be $\{0,1,2,...,7,8\}$.

 $\forall y \ [P(y) \land Q(y,a) \rightarrow Q(y,x)]$ means that for all prime number y that is smaller than 10, y must be smaller than x. The possible values of y are $\{2,3,5,7\}$, and since they are all smaller than x, x can only be 8.

Correct!

 $\exists y \left[\mathsf{Q}(\mathsf{x},\mathsf{y}) \land \mathsf{Q}(\mathsf{y},\mathsf{a}) \right] \land \neg \exists \mathsf{y}, \mathsf{z} \left[\mathsf{Q}(\mathsf{x},\mathsf{y}) \land \mathsf{Q}(\mathsf{y},\mathsf{a}) \land \mathsf{Q}(\mathsf{x},\mathsf{z}) \land \mathsf{Q}(\mathsf{z},\mathsf{a}) \land \mathsf{y} \neq \mathsf{z} \right]$

 $\exists y [Q(x,y) \land Q(y,a)]$ means that there is a number y between x and a, thus x can only be $\{0,1,2,...,7,8\}$.

¬ \exists y,z [Q(x,y) \land Q(y,a) \land Q(x,z) \land Q(z,a) \land y \neq z] means that we cannot find 2 different numbers y and z between x and a. Thus x now can only be 8.

$\square \neg P(x) \land Q(x,a) \land \exists y [Q(x,y) \land Q(y,a)]$

• We are asked to select the formula(s) that state "x equals 8"

Considering the formula:

$$\forall y [P(y) \land Q(y,a) \rightarrow Q(y,x)] \land \exists y [Q(x,y) \land Q(y,a)]$$

This formula is stating:

So, we can reduce this to the following two statements:

- 1) when y is prime and y < a, then y < x
- 2) x < y < a

Using our requirement of x=8 (and assumption of a=10), we see that to satisfy the second statement, y must be equal to nine (because 8 < y < 10). So, if y=9, this means that P(y) is FALSE (because nine is not prime) making our first statement TRUE. Checking the first statement for all valid (y<a) values of y, we find:

y=0:
$$F \land T \rightarrow T == T$$

y=1: $F \land T \rightarrow T == T$
y=2: $T \land T \rightarrow T == T$
y=3: $T \land T \rightarrow T == T$
y=4: $F \land T \rightarrow T == T$
y=5: $T \land T \rightarrow T == T$
y=6: $F \land T \rightarrow T == T$
y=7: $T \land T \rightarrow F == T$
y=9: $F \land T \rightarrow F == T$

We see that the statement is satisfied and thus, for x=8, this option is valid. But what about for x>8 or x<8? Well, we can observe that x cannot be greater than eight because it would not satisfy the second statement. Therefore, we just need to check that this formula is FALSE for every (valid) x less than eight.

Let us examine the first statement for the case where x=7:

y=0:
$$F \land T \rightarrow T == T$$

y=1: $F \land T \rightarrow T == T$
y=2: $T \land T \rightarrow T == T$
y=3: $T \land T \rightarrow T == T$
y=4: $F \land T \rightarrow T == T$
y=5: $T \land T \rightarrow T == T$

 $y=6: \vdash \land I \rightarrow I == I$

Question 6

1 / 1 pts

Is the following first-order formula satisfiable?

$$a = b$$

Unsatisfiable

Correct!

Satisfiable

We can find an interpretation I below that satisfies a=b.

First, the universe of I, denoted by |I|, is {apple}.

Second,
$$a^I = apple$$
, $b^I = apple$

Question 7

1 / 1 pts

Is the following first-order formula satisfiable?

 $\forall xy(x \neq y)$

Satisfiable

Correct!

Unsatisfiable

No matter what interpretation I we define, its universe must be non-empty, let's say the universe is

Then the formula $\forall xy(x \neq y)$ is true indicates that at least the following formula

apple ≠ apple

is true, while it's not.

Question 8 1 / 1 pts

Let σ be the signature {a, b, P, Q} where a, b are object constants and P, Q are unary predicate constants. Choose all Herbrand interpretations of σ that satisfy the formula $\exists x (P(x) \rightarrow Q(x))$.

Correct!

{P(a), P(b), Q(a), Q(b)}

The formula $\exists x(P(x) \rightarrow Q(x))$ can be seen as

$$(P(a) \rightarrow Q(a)) \lor (P(b) \rightarrow Q(b))$$

whose left-hand side and right-hand side are true under the given Herbrand interpretation.

Correct!

{P(a), P(b), Q(a)}

The formula $\exists x(P(x) \rightarrow Q(x))$ can be seen as

$$(P(a) \rightarrow Q(a)) \lor (P(b) \rightarrow Q(b))$$

whose left-hand side is true under the given Herbrand interpretation.

Correct!

{P(a), Q(b)}

The formula $\exists x (P(x) \rightarrow Q(x))$ can be seen as

$$(P(a) \rightarrow Q(a)) \lor (P(b) \rightarrow Q(b))$$

whose right-hand side is true under the given Herbrand interpretation.

P(a), P(b)

Correct!

{P(a)}

The formula $\exists x (P(x) \rightarrow Q(x))$ can be seen as

$$(P(a) \rightarrow Q(a)) \lor (P(b) \rightarrow Q(b))$$

whose right-hand side is true under the given Herbrand interpretation.

Ø (empty set)

The formula $\exists x (P(x) \rightarrow Q(x))$ can be seen as

$$(P(a) \to Q(a)) \ V \ (P(b) \to Q(b))$$

whose left-hand side and right-hand side are true under the given Herbrand interpretation.

Question 9

1 / 1 pts

Suppose p and q are atoms, is the following formula a tautology?

$$((p -> q) -> p) -> q$$

Yes

Correct!

No

This is not a tautology and we can give a counter-example: an interpretation I that does not satisfy this formula.

$$I = \{p\}$$

Question 10

1 / 1 pts

What are the free variables in the following formula?

$$\exists x (P(x,y)
ightarrow orall y P(y,x))$$

- Both x and y
- No free variable
- _ x

Correct!

y

An **occurrence** of a variable v in a formula F is **free** if v is not bounded by any quantifier. A variable v is a **free variable** of F if v has at least 1 free occurrence in F.

In this formula, both x are bounded by $\exists x$ and only the y in P(x,y) is a free occurrence, thus only y is a free variable.