COM4511 Speech Technology: From Points to Sequences

Anton Ragni

- ► From Wikipedia:
 - A **sequence** is an enumerated collection of objects in which repetitions are allowed and **order** does matter.
 - may have fixed or variable length
- ▶ Many (natural) phenomena have sequential nature
 - text, prices, discrete signals (speech, video)
- ► The nature of "objects" is important
 - discrete and continuous variables, sequences, trees, graphs

Common Problems

▶ Problem #1: predict next item

$$\mathbf{x}_1,\ldots,\mathbf{x}_{k-1}\longmapsto\mathbf{x}_k$$

▶ Problem #2: predict another sequence

$$\mathbf{x}_1,\ldots,\mathbf{x}_K\longmapsto\mathbf{y}_1,\ldots,\mathbf{y}_L$$

- note that sequences may have different length
- ► (And related) problem #3: remove noise

$$\mathbf{x}_1,\ldots,\mathbf{x}_K\longmapsto \mathbf{x}_1',\ldots,\mathbf{x}_K'$$

► (And related) problem #4: infer latent variables

$$\mathbf{x}_1,\ldots,\mathbf{x}_K\longmapsto q_1,\ldots,q_K$$

Name at least one task posing each sequence modelling problem

Conditional Probabilities and Chain Rule

SPANDH

- ► Conditional probabilities are critical elements of sequence modelling
 - sampling next item

$$\mathbf{x}_k \sim p(\mathbf{x}|\mathbf{x}_{k-1},\ldots,\mathbf{x}_1)$$

predicting most likely next item

$$\hat{\boldsymbol{x}}_k = rg \max_{\boldsymbol{x}} \left\{ p(\boldsymbol{x}|\boldsymbol{x}_{k-1},\ldots,\boldsymbol{x}_1) \right\}$$

- ► Enable to compute sequence probabilities (joint probabilities) via chain rule
 - (unconditional) joint distribution

$$p(\boldsymbol{X}_{1:K}) = p(\boldsymbol{x}_1, \dots, \boldsymbol{x}_K) = \prod_{k=1}^K p(\boldsymbol{x}_k | \boldsymbol{x}_{k-1}, \dots, \boldsymbol{x}_1)$$

conditional (joint) distribution

$$p(\mathbf{Y}_{1:L}|\mathbf{X}_{1:K}) = p(\mathbf{y}_1,\ldots,\mathbf{y}_L|\mathbf{x}_1,\ldots,\mathbf{x}_K) = \prod_{l=1}^{L} p(\mathbf{y}_l|\mathbf{y}_{l-1},\ldots,\mathbf{y}_1,\mathbf{x}_1,\ldots,\mathbf{x}_K)$$

Name possible challenges modelling conditional probabilities

Dependency Modelling

- Sequences introduce a large number of new dependencies
 - unclear which dependencies are important and how to model (form, robustness)
- Options available:
 - constrain (Markov assumption), simplify (latent variables), try to learn

Ragni

(Pseudo) Dynamic Bayesian Networks (DBN)

Methodology for graphical representation of complex dependencies

Notation for DBNs:

continuous variables shaded observed variables circles discrete variables non-shaded unobserved variables squares general dependency lines probabilistic dependency

Pseudo DBNs use the same notation but more loose interpretation

arrows

Simple DBN examples

▶ Describe and write-down dependencies illustrated below

Notation for DBNs:

circles continuous variables shaded observed variables squares discrete variables non-shaded unobserved variables lines general dependency arrows probabilistic dependency

Markov Assumption

n-th order Markov assumption

$$p(\boldsymbol{X}_{1:K}) = \prod_{k=1}^{K} p(\boldsymbol{x}_k | \boldsymbol{x}_{k-1}, \dots, \boldsymbol{x}_1) \approx \prod_{k=1}^{K} p(\boldsymbol{x}_k | \boldsymbol{x}_{k-1}, \dots, \boldsymbol{x}_{k-n})$$

- current event does not depend on events further than *n* steps in the past
- \blacktriangleright which distributions can be used to model these probabilities? if $X_{1:K}$ are discrete?
- Zeroth order Markov assumption

$$p(\boldsymbol{X}_{1:K}) \approx \prod_{k=1}^{K} p(\boldsymbol{x}_k)$$

- events are independent too radical simplification
- ► First-order Markov assumption

$$p(\boldsymbol{X}_{1:K}) \approx \prod_{k=1}^{K} p(\boldsymbol{x}_k | \boldsymbol{x}_{k-1})$$

though dependencies restricted still need to know how to model — options?

Latent Variables

(a) Observed variables

the cat sat on the mat

- (b) Word representation $z_{1:M}$ the ca... mat
- (c) Graphemic representation $z_{1:L}$
- ightharpoonup Observed variables x_1, \ldots, x_K often hard to interpret and explain
 - physical realisations of natural phenomena (speech!)
- ▶ The underlying process often have lower dimensional, latent, representation
 - conceptual, syntactic, word, graphemic, phonetic
- ► Generally link between observed and latent representations unknown
 - introduce unobserved latent variables to link two representations

$$egin{array}{lll} m{x}_1,\ldots,m{x}_K & \longrightarrow & q_1,\ldots,q_K & ext{(same time scale)} \ m{x}_1,\ldots,m{x}_K & \longrightarrow & q_1,\ldots,q_L & ext{(different time scales)} \end{array}$$

BUT need to know how to model these variables

Markov Process

- Key elements
 - \triangleright states: S_1, \dots, S_N
 - ▶ initial state distribution: $\pi = P(S_1), \dots, P(S_N)$ ▶ transition probabilities: $\Pi = \{P(S_i|S_j)\}_{\substack{i=1...N,\\ j=1...N}}$
- ► Probability of state sequence

$$P(\boldsymbol{q}_{1:K}) pprox \prod_{k=1}^{K} P(q_k|q_{k-1})$$

ightharpoonup Example #1: compute probability of state sequence S_2 , S_1 , S_5 , S_4 , S_5 , S_3 , S_3

$$m{\pi} = egin{bmatrix} 0 \\ 1/3 \\ 2/3 \\ 0 \\ 0 \end{bmatrix}, \qquad m{\Pi} = egin{bmatrix} 1/5 & 2/5 & 0 & 1/5 & 1/5 \\ 3/5 & 1/5 & 1/5 & 0 & 0 \\ 0 & 1/5 & 3/5 & 0 & 1/5 \\ 1/5 & 0 & 1/5 & 1/5 & 2/5 \\ 0 & 0 & 2/5 & 2/5 & 1/5 \end{bmatrix}$$

► Example #2: implications of full, band-diagonal, upper/lower triangular matrices

Hidden Markov Model - Next lecture will explore this model in details

- dependencies: probabilistic
- Joint probability distribution of observed and hidden sequences

$$p(\boldsymbol{X}_{1:K},\boldsymbol{q}_{1:K}) = p(\boldsymbol{X}_{1:K}|\boldsymbol{q}_{1:K})P(\boldsymbol{q}_{1:K}) \approx \prod_{k=1}^{K} p(\boldsymbol{x}_{k}|q_{k})P(q_{k}|q_{k-1})$$

 \triangleright observations $X_{1\cdot K}$: discrete/continuous variables

- states are independent given past states limits possible dependencies
- observations are independent given current states limits possible dependencies
- Multiple options for modelling state emission probabilities $p(x_k|q_k)$
 - ► Gaussian mixture models, neural networks how?

Anton Ragni

Auto-Regressive HMM

Elements

- **>** states $q_{1:K}$: hidden discrete variables
- observations $X_{1:K}$: discrete/continuous variables
- dependencies: probabilistic
- Modified form of joint probability distribution

$$p(\boldsymbol{X}_{1:K}, \boldsymbol{q}_{1:K}) \approx \prod_{k=1}^{K} p(\boldsymbol{x}_k | \boldsymbol{x}_{k-1}, \dots, \boldsymbol{x}_{k-n+1}, q_k) P(q_k | q_{k-1})$$

- relaxes conditional independence assumptions of observations BUT not states
- State emission probabilities condition on fixed window of past observations
 - need simple and efficient form to model
- ▶ Discuss possible forms of state emission probabilities and associated issues

Maximum Entropy Markov Model

- Elements
 - ▶ states $q_{1:K}$: observed discrete variables
 - observations $X_{1:K}$: discrete/continuous variables
- Conditional (!) probability distribution of latent variables given observed variables

$$P(m{q}_{1:K}|m{X}_{1:K}) = \prod_{k=1}^K P(q_k|m{q}_{1:k-1},m{X}_{1:K}) pprox \prod_{k=1}^K P(q_k|q_{k-1},m{x}_k)$$

dependencies: probabilistic

- > states are independent given past states and current observations
- ► Maximum entropy model yields distribution over next states

$$P(q_k|q_{k-1}, \mathbf{x}_k) \triangleq \exp\left(\alpha^{\mathsf{T}}\phi(q_k, q_{k-1}, \mathbf{x}_k)\right)/Z(q_{k-1}, \mathbf{x}_k)$$

- effective approach for combining diverse features (discrete q_k and continuous x_k)
 BUT states with low number of transitions effectively ignore observations (label bias)
- Discuss which features can be used by maximum entropy models?

(Linear Chain) Conditional Random Fields

Elements

- states q_{1:K}: observed discrete variables
- observations $X_{1:K}$: discrete/continuous variables
- dependencies: general
- ► Alternative form for conditional probability

$$P(\boldsymbol{q}_{1:K}|\boldsymbol{X}_{1:K}) \triangleq \frac{1}{Z(\boldsymbol{X}_{1:K})} \prod_{k=1}^{K} \exp(\alpha^{\mathsf{T}} \phi(q_k, q_{k-1}, \boldsymbol{x}_k))$$

- employ the same assumption as MEMMs but do not need to be locally normalised
- ▶ normalisation term $Z(x_{1:K})$ can be efficiently computed why?
- ▶ Still makes use of crude conditional independence assumptions
 - Discuss possible options to overcome these assumptions

Semi-Markov Process

- Markov assumptions though highly efficient are very crude
 - ▶ limit the range of possible dependencies
 - impact the choice of latent variables
- Semi-Markov models enable to relax these assumptions
 - latent variables: Markovian dependencies
 - observed variables: non-Markovian dependencies
- Need to decide
 - what are latent variables?
 - how to link them with observed variables? (segmentation)
 - how to infer/marginalise segmentation?

Segmental Conditional Random Fields/Conditional Augmented Models

SPANDH

- Elements:
 - ightharpoonup states $Q_{1:L}$: hidden discrete variables
 - observations $X_{1:K}$: discrete/continuous variables
- Partition observed sequence into L segments

$$\left. oldsymbol{X}_{1:K}
ight|_{oldsymbol{Q}_{1:L}} = \underbrace{oldsymbol{x}_{1}, \ldots, oldsymbol{x}_{|oldsymbol{q}_{1}|}}_{oldsymbol{q}_{1}}, \ldots, \underbrace{oldsymbol{x}_{|oldsymbol{Q}_{1:l-1}|+1}, \ldots, oldsymbol{x}_{|oldsymbol{Q}_{1:l-1}|}}_{oldsymbol{q}_{l}}, \ldots, \underbrace{oldsymbol{x}_{|oldsymbol{Q}_{1:l-1}|+1}, \ldots, oldsymbol{x}_{|oldsymbol{Q}_{1:l-1}|+1}}_{oldsymbol{q}_{l}}, \ldots, \underbrace{oldsymbol{x}_{|oldsymbol{Q}_{1:l-1}|+1}, \ldots, oldsymbol{x}_{|oldsymbol{Q}_{1:l-1}|+1}, \dots, oldsymbol{x}_{|oldsymbol{Q}_{1:l-1}|+1}, \ldots, oldsymbol{x}_{|oldsymbol{Q}_{1:l-1}|+1}, \ldots, oldsymbol{x}_{|oldsymbol{Q}_{1:l-1}|+1}, \ldots, oldsymbol{x}_{|oldsymbol{Q}_{1:l-1}|+1}, \ldots, oldsymbol{x}_{|oldsymbol{Q}_{1:l-1}|+1}, \ldots, oldsymbol{x}_{|oldsymbol{Q}_{1:l-1}|+1}, \ldots, oldsymbol{x}_{|oldsymbol{Q}_{1:l-1}|+1},$$

dependencies: general

- discuss available options
- ▶ Use CRF-style formulation to yield probability of segmentation

$$P(\boldsymbol{q}_{1:L}|\boldsymbol{X}_{1:K}) = \frac{1}{Z(\boldsymbol{X}_{1:K})} \prod_{l=1}^{L} \exp(\alpha^{\mathsf{T}} \phi(q_{l-1}, q_{l}, \boldsymbol{X}_{\boldsymbol{q}_{l}}))$$

 \blacktriangleright though dependencies within X_{q_i} restricted, need to know how to extract — options?

History Modelling (Dependencies Revisited)

- Previous approaches attempt to constrain and simplify possible dependencies
 - independence assumptions known to be false for many problems (including speech!)
 modelling even simple dependencies challenging
- ▶ Alternatively, encode all dependencies into a compact representation

$$\mathbf{x}_1,\ldots,\mathbf{x}_{k-1}\longrightarrow\mathbf{h}_{k-1}$$

- need to handle variable length sequences and model long-span dependencies
- discuss possible issues
- ► Yields simple form of conditional probabilities

$$p(\mathbf{X}_{1:K}) = \prod_{k=1}^{K} p(\mathbf{x}_{k}|\mathbf{x}_{k-1},...,\mathbf{x}_{1}) \approx \prod_{k=1}^{K} p(\mathbf{x}_{k}|\mathbf{h}_{k-1})$$

- ► Multiple possibilities for learning optimal representations
 - recursion (recurrent neural network), attention (encoder-decoder neural network)

Recursion

▶ General form of recursion to map $x_1, ..., x_{k-1}$ to h_{k-1}

$$\boldsymbol{h}_{k-1} = \phi(\boldsymbol{x}_{k-1}, \boldsymbol{h}_{k-2})$$

- $ightharpoonup h_{k-1}$ is a function of all past observations!
- ightharpoonup discuss options for $extit{ extit{h}}_0$ and ϕ
- Examples
 - simple recurrent unit

$$extbf{ extit{h}}_{k-1} = \phi(extbf{ extit{W}} extbf{ extit{x}}_{k-1} + extbf{ extit{V}} extbf{ extit{h}}_{k-2} + extbf{ extit{b}})$$

gated recurrent unit

$$\mathbf{h}_{k-1} = \mathbf{u}_{k-1} \odot \mathbf{h}_{k-2} + (\mathbf{1} - \mathbf{u}_{k-1}) \odot \phi(\mathbf{W} \mathbf{x}_{k-1} + \mathbf{V}(\mathbf{r}_{k-1} \odot \mathbf{h}_{k-2}) + \mathbf{b})$$

• update gate (reset gate r_{k-1} has similar form)

$$oldsymbol{u}_{k-1} = oldsymbol{\sigma}(oldsymbol{W}^{(u)}oldsymbol{x}_{k-1} + oldsymbol{V}^{(u)}oldsymbol{h}_{k-2} + oldsymbol{b}^{(u)})$$

numerous other forms have been examined

Sequence Prediction

Use recursive history representation to simplify sequence prediction

$$p(\mathbf{Y}_{1:K}|\mathbf{X}_{1:K}) = \prod_{k=1}^{K} p(\mathbf{y}_{k}|\mathbf{Y}_{1:k-1},\mathbf{X}_{1:K}) \approx \prod_{k=1}^{K} p(\mathbf{y}_{k}|\mathbf{Y}_{1:k-1},\mathbf{X}_{1:k}) \approx \prod_{k=1}^{K} p(\mathbf{y}_{k}|\mathbf{h}_{k})$$

► time-synchronous prediction

(a) Instantaneous

► Alternatively, delay prediction till all observed variables have been seen

$$p(\mathbf{Y}_{1:L}|\mathbf{X}_{1:K}) = \prod_{k=1}^{L} p(\mathbf{y}_{l}|\mathbf{Y}_{1:l-1},\mathbf{X}_{1:K}) \approx \prod_{k=1}^{L} p(\mathbf{y}_{l}|\mathbf{Y}_{1:l-1},\mathbf{h}_{K}) \approx \prod_{k=1}^{L} p(\mathbf{y}_{l}|\widetilde{\mathbf{h}}_{l-1})$$

 \triangleright suitable for sequences with different time scales ($K \neq L$)

- Latent sequences $q_{1/I}$ provide one of many possible links between $X_{1/K}$ and $z_{1/M}$ ▶ though interesting, probabilities $p(\mathbf{X}_{1:K}, \mathbf{q}_{1:L})$ and $P(\mathbf{q}_{1:L}|\mathbf{X}_{1:K})$, are of limited use
 - Options available for dealing with latent variables
 - (a) marginalise over all sequences, (b) find most likely sequence
 - ► Each model classes requires different treatment
 - generative models (HMM,AR-HMM)

$$p(\pmb{X}_{1:K}|\pmb{z}_{1:M}) = \bigoplus_{\pmb{q}_{1:K}} p(\pmb{X}_{1:K}, \pmb{q}_{1:K}|\pmb{z}_{1:M}) = \bigoplus_{\pmb{q}_{1:K} \in \pmb{Q}_{1:K}} p(\pmb{X}_{1:K}|\pmb{q}_{1:K}, \pmb{z}_{1:M}) P(\pmb{q}_{1:K}|\pmb{z}_{1:M})$$

- \triangleright note that previously omitted conditioning on $z_{1:M}$ is made explicit here
- discriminative models (MEMM,CRF,SCRF/CAug)

$$P(\boldsymbol{z}_{1:M}|\boldsymbol{X}_{1:K}) = \bigoplus_{\boldsymbol{q}_{1:L} \in \boldsymbol{Q}_{1:L}} P(\boldsymbol{z}_{1:M}, \boldsymbol{q}_{1:L}|\boldsymbol{X}_{1:K}) \approx \bigoplus_{\boldsymbol{q}_{1:L} \in \boldsymbol{Q}_{1:L}} P(\boldsymbol{z}_{1:M}|\boldsymbol{q}_{1:L}) P(\boldsymbol{q}_{1:L}|\boldsymbol{X}_{1:K})$$

- \triangleright discriminative alignment model $P(\mathbf{z}_{1:M}|\mathbf{q}_{1:L})$
- Next lecture will examine latent variables in HMMs.

- Sequence data
 - highly ubiquitous (text, speech, market prices)
 - significant increase in the number and type of possible dependencies
 - cannot be handled using standard distance-based and probabilistic models
- Sequence models
 - attempt to constrain, simplify or model possible dependencies
 - ▶ Markov assumptions are key methodology for constraining the scope of dependencies
 - latent variables are key for interpreting complex types of observed variables
 - recursive, learnable, history representations provide an interesting alternative