2. Vorlesung - Zahlen

Analysis I und Lineare Algebra für Ingenieurwissenschaften

20.10.2025

Natürliche Zahlen: $\mathbb{N} := \{0, 1, 2, 3, \dots\}$

Ganze Zahlen:
$$\mathbb{Z}:=\{0,-1,1,-2,2,-3,3,\dots\}=\mathbb{N}\cup\{-\textit{n}|\textit{n}\in\mathbb{N}\}$$

Rationale Zahlen:
$$\mathbb{Q} := \{ \frac{m}{n} | m \in \mathbb{Z}, n \in \mathbb{N}, n \geq 1 \}$$

2.1 Zahlen und Zahlendarstellungen II

Reelle Zahlen: $\mathbb{R} := \{x | x \text{ ist eine reelle Zahl}\}$

Komplexe Zahlen: $\mathbb{C} \rightsquigarrow VL$ 3

Zusammenfassend:

2.2 Ungleichungen

4/14

Ordnungsrelation auf \mathbb{R} :

x kleiner y, x kleiner gleich y,

x größer y, x größer gleich y

Axiome für Ungleichungen

(A1) Für $x, y \in \mathbb{R}$ gilt genau einer der Fälle x < y, x > y, oder x = y

(A2) Aus x < y und y < z folgt x < z

(A3) Aus x < y und $a \le b$ folgt x + a < y + b

(A4) Aus x < y und a > 0 folgt ax < ay

Weitere Eigenschaften

2.3 Reelle Wurzeln

Definition: Sei $a \ge 0$. Dann ist die Quadratwurzel \sqrt{a} die nichtnegative Lösung der Gleichung $x^2 = a$.

Allgemein: $\sqrt[n]{a}$ ist eine Lösung der Gleichung $x^n = a$.

n gerade:

n ungerade:

Beispiel:

2.4 Absolutbetrag

Definition: Der Absolutbetrag einer reellen Zahl ist

$$|x| := egin{cases} x, & \mathsf{falls}\ x \ge 0 \ -x, & \mathsf{falls}\ x < 0. \end{cases}$$

Beispiel:

Eigenschaften:

Pingo Umfrage

Finde alle $x \in \mathbb{R}$, die folgende Ungleichung erfüllen:

$$\frac{2}{x} \leq 1$$

- $x \in [2, \infty[$
- $x \in]-\infty,0[\cup [2,\infty[$
- $x \in]-\infty,0] \cup [2,\infty[$
- $x \in \mathbb{R} \setminus]0,2[$

2.5 Lösen von Ungleichungen

Beispiel: Finde $x \in \mathbb{R}$ mit $\frac{2x}{x+2} > 1$

Beispiel: Finde $x \in \mathbb{R}$ mit $|x-2| \le 2x + 5$

2.6 Summenzeichen

Definition: Seien $m, n \in \mathbb{N}$ und $x_0, x_1, \dots, x_n \in \mathbb{R}$.

■ Für
$$m \le n$$
 ist $\sum_{k=m}^{n} x_k := x_m + x_{m+1} + \cdots + x_n$.

Für
$$m > n$$
 ist $\sum_{k=m}^{n} x_k := 0$.

Beispiele:

2.6 Summenzeichen - Rechenregeln

$$\sum_{k=m}^{n} x_k + \sum_{k=m}^{n} y_k = \sum_{k=m}^{n} (x_k + y_k).$$

$$\sum_{k=m}^{n} x_k \sum_{l=p}^{q} y_l = \sum_{k=m, l=p}^{n, q} (x_k y_l).$$

Geometrische Summe: Sei $n \in \mathbb{N}$ und $q \in \mathbb{R}$:

$$\sum_{k=0}^{n} q^{k} = q^{0} + q^{1} + q^{2} + \dots + q^{n} = \begin{cases} \frac{1 - q^{n+1}}{1 - q} & \text{für } q \neq 1 \\ n + 1 & \text{für } q = 1 \end{cases}$$

Beweis:

Pingo Umfrage

Es gilt $2^6 = 64$. Berechne $\sum_{k=0}^{5} \left(\frac{1}{2}\right)^k$.

- $\frac{63}{128}$
- $=\frac{63}{64}$
- $=\frac{63}{32}$
- **64**

2.7 Produktzeichen

Definition: Seien $m, n \in \mathbb{N}$ und $x_0, x_1, \dots, x_n \in \mathbb{R}$.

- Für $m \le n$ ist $\prod_{k=m}^{n} x_k := x_m \cdot x_{m+1} \dots x_n$.
- Für m > n ist $\prod_{k=m}^{n} x_k := 1$.

Beispiel: