#### Protokol č.4

Vypracovala: Katarína Nalevanková

Odbor: 3BCHb2

Dátum: 06.11.2022

Téma: Štúdium absorpčných spektier

# Úlohy:

- 1. Zostrojenie absorpčnej krivky  $A = f(\lambda)$  daného roztoku na základe merania absorbancie
- 2. Overenie platnosti Lambertovho a Beerovho zákona:
  - a) Vynesením funkčnej závislosti A = f(c)
  - b) Vynesením funkčnej závislosti A = f(I)
- 3. Stanovenie absorpčného koeficientu &

## Teoretický úvod:

Vzťah medzi absorpciou žiarenia, koncentráciou absorbujúcej látky *c* a hrúbkou vrstvy absorbujúceho prostredia *l* je vyjadrený Lambertovým a Beerovým zákonom:

$$I = I_0 10^{-\varepsilon cl}$$

Podiel  $I/I_0$  sa nazýva transmitancia T a je daná vzťahom:

$$T = \frac{I}{I_0} = 10^{-\varepsilon cl}$$

Môže nadobúdať hodnoty 0 – 1, pričom z pravidla sa udáva v percentách. Dekadický logaritmus prevrátenej hodnoty transmitancie je absorbancia A:

$$A = \log \frac{1}{T} = -\log T = \varepsilon cl$$

Absorbancia nadobúda hodnoty od 0 - ∞. Je to aditívna funkcia.

Lambertov a Beerov zákon platí pre zriedené roztoky, ltorých koncentrácia je menšia ako 10<sup>-2</sup> M. Pri vyšších koncentráciách je závislosť ovplyvnená aj zmenami indexu lomu meraného roztoku. Pri meraní sa používa svetlo takej vlnovej dĺžky, ktoré je skúmaným farebným roztokom najviac absorbované.

## Pomôcky:

Spektrofotometer, digitálny UV-VIS spektrofotometer, zásobné roztoky KMnO<sub>4</sub> (CuSO<sub>4</sub>, K<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub>) o vhodných koncentráciách, odmerné banky, pipety, meracie kyvety a iné

## Postup práce:

- 1. Postupným zrieďovaním zásobného roztoku o koncentrácii c si pripravíme roztoky o koncentráciách podľa nasledujúcich pomerov  $(\frac{c}{2}, \frac{c}{4}, \frac{c}{6}, \frac{c}{8}, \frac{c}{10})$
- 2. Destilovanou vodou prepláchneme kyvety a následne pripraveným roztokom so strednou hodnotou koncentrácie
- 3. Merania vykonávame so spektrofotometrom
- 4. Nastavíme počiatočnú hodnotu 400 *nm* a do nosníka vložíme kyvetu s vodou a stlačíme tlačidlo R
- 5. Hodnota sa vynuluje
- 6. Zasunieme nosník so vzorkou a odčítame hodnotu
- 7. Merania opakujeme do 600 nm po desiatkach
- 8. Určíme vlnovú dĺžku pri ktorej je svetlo najviac absorbované
- 9. Pri danej vlnovej dĺžke zmeriame ostatné roztoky
- 10. Závislosť A = f(I) meriame s piatimi s rôznou hrúbkou

#### Koncentrácia roztokov:

- c(1)=0,0003 mol.dm<sup>-3</sup>
- c(2)=0,00015 mol.dm<sup>-3</sup>
- c(3)=0,0001 mol.dm<sup>-3</sup>
- c(4)=0,000075 mol.dm<sup>-3</sup>
- c(5)=0,00006 mol.dm<sup>-3</sup>

Tabuľka č.1: Namerané hodnoty absorbancie pri danej vlnovej dĺžky

| λ [nm] | Α     |
|--------|-------|
| 360    | 0,262 |
| 370    | 0,232 |
| 380    | 0,202 |
| 390    | 0,169 |
| 400    | 0,143 |
| 410    | 0,127 |
| 420    | 0,116 |
| 430    | 0,112 |
| 440    | 0,108 |
| 450    | 0,107 |
| 460    | 0,105 |
| 470    | 0,116 |
| 480    | 0,134 |
| 490    | 0,15  |
| 500    | 0,184 |
| 510    | 0,203 |
| 520    | 0,229 |
| 530    | 0,228 |
| 540    | 0,221 |

| 550 | 0,204 |
|-----|-------|
| 560 | 0,148 |
| 570 | 0,127 |
| 580 | 0,076 |
| 590 | 0,049 |
| 600 | 0,038 |

 $\lambda_{\text{Max}} = 520 \ nm$ 

Graf č.1: Závislosť absorbancie od vlnovej dĺžky



Tabuľka č.2: Vplyv koncentrácie na absorbanciu

| P.č. | Zriedenie | Koncentrácia [M] | А     |
|------|-----------|------------------|-------|
| 1    | 1:02      | 0,0003           | 0,661 |
| 2    | 1:04      | 0,00015          | 0,346 |
| 3    | 1:06      | 0,0001           | 0,229 |
| 4    | 1:08      | 0,000075         | 0,182 |
| 5    | 1:10      | 0,00006          | 0,143 |

Graf č.2: Závislosť absorbancie od koncentrácie



Tabuľka č.3: Vplyv hrúbky kyvety na absorbanciu

| P.č. | I [cm] | Α     |
|------|--------|-------|
| 1    | 0,498  | 0,101 |
| 2    | 0,999  | 0,229 |
| 3    | 1,994  | 0,415 |
| 4    | 2,995  | 0,62  |
| 5    | 5      | 1,028 |

Graf č.3: Závislosť absorbancie od hrúbky kyvety



## Výpočty:

Z kalibračného grafu A = f(c) nám vyšla nasledujúca rovnica priamky,

$$y = 2150,8x + 0,0175$$

z ktorej sme stanovili mólový absorpčný koeficient.

$$\varepsilon = \frac{A}{l}$$

$$\varepsilon = \frac{2150,8}{0.999} = 2152,95 \text{ dm}^2/\text{mol}$$

Následne sme zhotovili kalibračný graf A = f(I) a opäť sme z rovnice priamky určili mólový absorpčný koeficient.

$$y = 0.2035x + 0.0111$$

$$\varepsilon = \frac{A}{c} = \frac{0,2035}{0,0001} = 2035 \ dm^3/mol \ . \ cm$$

#### Záver:

Cieľom tohto praktického cvičenia bolo zostrojenie absorpčnej krivky roztoku na základe skúmania absorbancie a overenie Lambertovho a Beerovho zákona. Z meraní nám vyšlo, že maximálna hodnota  $\lambda_{\text{Max}}$  bola pri vlnovej dĺžke 520 nm. Následne sme zistili, že

závislosť absorbancie od koncentrácie aj od dĺžky kyvety je lineárna. A mólový absorpčný koeficient je rovný 2152,95  $dm^2/mol$ .