

Outline

- Introduction to Deep Learning (DL)
- The History of DL
- Programming Tools
- Artificial Neural Networks (ANNs)
- Optimization in DL
- Convolutional Neural networks (CNNs)
- Unsupervised Pre-trained Networks (UPNs)

ARCHITECTURE OF DEEP LEARNING

DL Architectures

- Higher-level Architecture
 - Convolutional Neural Networks (CNNs)
 - Unsupervised Pre-trained Networks (UPNs)
 - Deep belief networks (DBNs)
 - Autoencoders
 - Generative adversarial networks (GANs)
 - Recurrent Neural Networks (RNNs)
 - Bidirectional recurrent neural networks (BRNN)
 - LSTM
 - Recursive Neural Networks

Unsupervised Learning

Motivation and Strengths:

- Unsupervised learning is **not expensive** and **time consuming** like supervised learning.
- Unsupervised learning requires **no human intervention**.
- Unlabeled data is **easy** to **find** with large quantities, unlike labeled data which is scarce.

Weaknesses

• More difficult than supervised learning because there is NO Single objective (like test set accuracy)

Unsupervised Feature Learning

- Train representations with unlabeled data.
 - Minimize an unsupervised training loss.
 - Often based on generic priors about characteristics of good features
 - Usually train 1 layer of features at a time.

UPNs

- Unsupervised pre-trained networks (UPNs)
 - Motivation: representation leaning and transfer learning
 - Deep belief networks (DBNs)
 - Autoencoders
 - Generative adversarial networks (GANs)

- DBN's prerequisite
 - MRF
 - Sampling
 - RBMs
 - DBNs
 - Reconstruction
 - Classification

Restricted Boltzmann Machine (RBM)

- RBMs are building blocks for the multi-layer leaning architectures, e.g. DBNs.
- RBMs are a special case of general **Boltzmann Machines** (BMs).
- BMs are a particular form of Markov Random Field (MRF), a.k.a. Markov networks or undirected graph models.

DBNs

... topic covered so far

- BMs
- RMBs
- Joint distribution
- Potential functions
- Cliques
- Maximal cliques
- Energy function

- Energy function.
- Conditional independent
- Ascending gradient
- Transformation method
- Rejection sampling
- Gibbs sampling

... topic covered so far

- RBMs Training
- RBMs applications
 - Feature extraction

Deep Belief Network

- A generative graphical model
- A class of deep neural networks
- Composed of latent variables, e.g. hidden units
- No intra-layer connects
- With inter-layer connections
- Unsupervised learning for feature detector
- Able to reconstruct its inputs
- Supervised learning for classification

Geoffrey E. Hinton

- DBNs are used to solve two problems
 - The inference problem:
 - Infer the states of the unobserved variables.
 - The learning problem:
 - Adjust the interactions between variables to make the network more likely to generate the observed data.
 - Greedy layer by layer RBM training (optimize lower bound) and fine tuning
 - Contrastive divergence for RBM training

Procedure

- First, train a layer of features based on the training data.
- Then, treat the activations of the trained features as if they were pixels and learn features of features in a second hidden layer.
- Each time we add another layer of features we improve a lower bound on the log probability of the training data.

Applications

• Reconstruction

Classification

DBNs

• Components:

- Pre-train phase: using RBM layers.
 - As a general search of the parameter space in an unsupervised fashion based on training data.
- Fine-tune phase: using forward Propagation.

• Specializing the network and its features for the desired task., e.g. classification

Reconstruction

- Data dimensionality reduction
- MNST dataset
 - Handwritten digits
 - Size: 28×28
 - 60,000 training images
 - 10,000 test images

Reconstruction

- Data dimensionality reduction
 - Autoencoder
 - Network is trained to output the input (learn identify function)

$$h_{\theta}(x) \approx x$$

- It is difficult to optimize the weights in nonlinear autoencoders that have multiple hidden layer (2-4)
- Autoencoders typically find poor local minima

Layer #1

Layer #3

Reconstruction

- Data dimensionality reduction
- DBN is used to provide suitable initial weights to improve the performance of the gradient.

 \mathbf{DBN} 30 500 I RBM 500 1000 **I RBM** 1000 2000 I RBM 2000 **RBM**

Reconstruction

• Data dimensionality reduction, [784-1000-500-250-30]

Operation	Output	Error		
A random test image from each class	0/23456789	0		
Reconstruction by a 30-dimensional DBN	0/23456789	3.00		
Reconstruction by a 30-dimensional logistic PCA	11/23456769	8.01		
Reconstruction by a 30-dimensional standard PCA	0123456769	13.87		

Reconstruction

• Data dimensionality reduction,

Operation	Output												
A random test image	2		8	3	8		1	6	07	4	q	8	
Reconstruction	2		8	3	8		1	Ø	07	4	q	8	
Reconstruction after tuning	2		8	3	8		7	6	07	4	9	8	

Reconstruction

• Data dimensionality reduction, [625-2000-1000-500-30]

Operation	Output	Error
Random samples from the test data set	TO SUNDANCE OF THE	0
Reconstruction by a 30-dimensional DBN	医多种性 医皮肤	126
Reconstruction by a 30-dimensional PCA		135

Classification

- Classification in an RBM
 - Generative:

$$\mathcal{L}_{gen} = -\sum_{i=1}^{N_{\Gamma}} \log P(v^{(i)}, y^{(i)})$$

• Discriminative:

$$\mathcal{L}_{disc} = -\sum_{i=1}^{N_{\Gamma}} \log P(y^{(i)} | v^{(i)})$$

• Hybrid:

$$\mathcal{L}_{hybrid}(\Gamma) = \mathcal{L}_{disc}(\Gamma) + \alpha \mathcal{L}_{gen}(\Gamma)$$

Resources

- Geoffrey E. Hinton's readings (with source code available for DBN)
 http://www.cs.toronto.edu/~hinton/csc2515/deeprefs.html
- Notes on Deep Belief Networks http://www.quantumg.net/dbns.php
- Hinton's Tutorial, http://videolectures.net/mlss09uk_hinton_dbn/
- Geoffrey E. Hinton's http://www.cs.toronto.edu/~hinton
- Ruslan Salakhutdinov http://www.utstat.toronto.edu/~rsalakhu/
- Yee-Whye Teh http://www.gatsby.ucl.ac.uk/~ywteh/
- Yoshua Bengio <u>www.iro.umontreal.ca/~bengioy</u>
- Marcus Frean http://ecs.victoria.ac.nz/Main/MarcusFrean
- Rob Fergus http://cs.nyu.edu/~fergus/pmwiki/pmwiki.php
- Deng, Li, and Dong Yu. "Deep learning: methods and applications.", 2014
- Bishop, Christopher M. "Pattern recognition and machine learning", 2006.

