The Discrete Fourier Transform

MATH 420 & CYBR 304 Spring 2024

"The profound study of nature is the most fertile source of mathematical discovery."

JOSEPH FOURIER

A trigonometric basis

Let $n \in \mathbf{Z}_{\geq 0}$ and let a_0, \ldots, a_n and b_1, \ldots, b_n be real numbers. Define a function F by

$$F(x) = a_0 + \sum_{k=1}^n a_k \cos(kx) + b_k \sin(kx).$$

Expressing cos and sin in exponential form, the formula is

$$\begin{split} F(x) &= a_0 + \sum_{k=1}^n a_k \frac{\operatorname{cis}(kx) + \overline{\operatorname{cis}(kx)}}{2} + b_k \frac{\operatorname{cis}(kx) - \overline{\operatorname{cis}(kx)}}{2\mathrm{i}}, \\ &= a_0 + \sum_{k=1}^n \frac{1}{2} (a_k - \mathrm{i}b_k) \operatorname{cis}(kx) + \frac{1}{2} (a_k + \mathrm{i}b_k) \overline{\operatorname{cis}(kx)}. \end{split}$$

An exponential basis

So

$$F(x) = a_0 + \sum_{k=1}^n \frac{1}{2} (a_k - \mathrm{i}b_k) \mathrm{cis}(kx) + \frac{1}{2} (a_k + \mathrm{i}b_k) \overline{\mathrm{cis}(kx)}$$
$$= a_0 + \mathrm{Re}\left(\sum_{k=1}^n (a_k - \mathrm{i}b_k) \mathrm{cis}(kx)\right)$$

Defining complex numbers c_0, c_1, \ldots, c_n as

$$c_k = \begin{cases} a_0 & k = 0 \\ a_k - ib_k & k \neq 0 \end{cases}$$

we have

$$F(x) = \operatorname{Re}\left(\sum_{k=0}^{n} c_k \operatorname{cis}(kx)\right).$$

Unreal functions

If we drop the condition that F is real-valued and use the fact that $\overline{\operatorname{cis}(kx)} = \operatorname{cis}(-kx)$ we have

$$F(x) = a_0 + \sum_{k=1}^{n} \frac{1}{2} (a_k - ib_k) \operatorname{cis}(kx) + \frac{1}{2} (a_k + ib_k) \operatorname{cis}(-kx),$$

$$= \sum_{k=-n}^{n} c_k \operatorname{cis}(kx).$$

where

$$c_k = egin{cases} rac{1}{2}(a_k + \mathrm{i}b_k) & k < 0 \ a_0 & k = 0 \ rac{1}{2}(a_k - \mathrm{i}b_k) & k > 0 \end{cases}$$

Unreal and orthogonal

For any $n \in \mathbf{Z}_{>0}$, the set of functions

$$\{x \in [0, 2\pi] \mapsto \operatorname{cis}(kx) \mid k \in -n \dots n\}$$

is orthogonal with respect to the inner product

$$\langle f, g \rangle = \int_0^{2\pi} \overline{f(x)} g(x) dx.$$

In particular for $k, \ell \in \mathbf{Z}$, we have

$$\int_0^{2\pi} \overline{\operatorname{cis}(kx)} \operatorname{cis}(\ell x) dx = \begin{cases} 0 & k \neq \ell \\ 2\pi & k = \ell \end{cases} = 2\pi \delta_{k,\ell}$$

5

The Kronecker delta function

We define the Kronecker delta function δ as

$$\delta_{k,\ell} = \begin{cases} 0 & k \neq \ell \\ 1 & k = \ell \end{cases}.$$

- The arguments to the Kronecker delta are almost always subscripts.
- **•** Example $\delta_{\pi,3}=0$ and $\delta_{\pi,\pi}=1$.
- We have $\sum_{k=0}^{n} f_k \delta_{k\ell} = \begin{cases} f_{\ell} & \ell \in 0 \dots n \\ 0 & \ell \notin 0 \dots n \end{cases}$.

A trigonometric puzzle

Problem Let $n \in \mathbf{Z}_{\geq 0}$ and let $c_{-n}, \ldots, c_n \in \mathbf{C}$. Define a function F whose formula is

$$F(x) = \sum_{k=-n}^{n} c_k e^{ikx}$$

For a given function F, we would like to find a way to find the complex numbers c_{-n}, \ldots, c_n .

7

Step #1

Step #1 Multiply $F(x) = \sum_{k=-n}^{n} c_k e^{ikx}$ by $e^{-i\ell x}$. This gives

$$e^{-i\ell x}F(x) = \sum_{k=-n}^{n} c_k e^{-i\ell x} e^{ikx}$$
(1)

Using a rule of exponents, we have

$$e^{-i\ell x}F(x) = \sum_{k=-n}^{n} c_k e^{-i(k-\ell)x}.$$
 (2)

Step #2

Step #2 Integrate with respect to x over the interval $[0, 2\pi]$

$$\int_0^{2\pi} e^{-i\ell x} F(x) dx = \int_0^{2\pi} \sum_{k=-n}^n c_k e^{-i(k-\ell)x} dx.$$
 (3)

Swap the integration and the finite sum:

$$\int_0^{2\pi} e^{-i\ell x} F(x) dx = \sum_{k=-n}^n c_k \int_0^{2\pi} e^{-i(k-\ell)x} dx.$$
 (4)

Step #3

Step #3 Integrate the orthogonal functions:

$$\int_0^{2\pi} e^{-i\ell x} F(x) dx = \sum_{k=-n}^n c_k 2\pi \delta_{k,\ell}.$$
 (5)

Simplify the sum

$$\int_0^{2\pi} e^{-i\ell x} F(x) dx = 2\pi c_{\ell}. \tag{6}$$

What did we just do?

We've shown that if

$$F(x) = \sum_{k=-n}^{n} c_k e^{ikx}, \tag{7}$$

then for all $\ell \in -n \dots n$, we have

$$c_{\ell} = \frac{1}{2\pi} \int_0^{2\pi} e^{-i\ell x} F(x) dx \tag{8}$$

Given the function F, the complex numbers c_{-n} through c_n are uniquely determined.

The Fourier coefficients

For any function F that is integrable on the interval $[0, 2\pi]$ the numbers c_k defined as

$$c_k = \frac{1}{2\pi} \int_0^{2\pi} \operatorname{cis}(kx) F(x) \, \mathrm{d}x$$

are the *Fourier coefficients* of the function F. Generally, $k \in \mathbf{Z}$.

I know what you are thinking

Unless F is fairly simple, we have no chance at finding a formula for the numbers c_{-n} through c_n .

Have no fear: we have a tool for that. Let's use the right-point rule integration to find approximate values for the Fourier coefficients. Using n equal length subintervals of $[0,2\pi]$, we have

$$c_{\ell} \approx \frac{1}{2\pi} \frac{2\pi}{n} \sum_{k=0}^{n-1} e^{-i\frac{2\pi}{n}\ell k} F(x_k)$$
$$= \frac{1}{n} \sum_{k=0}^{n-1} e^{-i\frac{2\pi}{n}\ell k} F\left(\frac{2\pi}{n}k\right)$$

Caveat

For large values of the integer ℓ , the integrand of

$$c_{\ell} = \frac{1}{2\pi} \int_0^{2\pi} e^{-i\ell x} F(x) dx$$

becomes more and more "wiggly." So we should expect that our right point rule quadrature rule will give less and less accurate results for larger and larger ℓ .

Nice coincidence

You might be thinking "Why the low accuracy right point rule?" Why not something like the trapezoidal rule? Ha!

For a function F with period 2π , the right-point, left-point, and trapezoidal rule all give the same value for

$$\int_0^{2\pi} \operatorname{cis}(kx) F(x) \, \mathrm{d}x \tag{9}$$

where $k \in \mathbf{Z}$.

DFT defined

Definition Let $a_0, a_1, \ldots a_{n-1}$ be numbers (either real or complex). For every $\ell \in 0 \ldots, n-1$, define

$$\widehat{a}_{\ell} = \sum_{k=0}^{n-1} e^{-i\frac{2\pi}{n}\ell k} a_k$$

The list of numbers \widehat{a}_0 , \widehat{a}_1 , ..., \widehat{a}_{n-1} is the discrete Fourier transform (DFT) of a_0 , a_1 , ..., a_{n-1} .

Doubly indexed things are matrices

For any $n \in \mathbf{Z}_{>0}$, define $\mathcal{F}_{\ell,k} = e^{-i\frac{2\pi}{n}\ell k}$. We have

$$\widehat{a}_\ell = \sum_{k=0}^{n-1} \mathcal{F}_{\ell,k} a_k$$

we see that the DFT is matrix multiplication. Arranging $\widehat{a}_0,\ldots,\widehat{a}_{n-1}$ and $a_0,\ldots,\widehat{a}_{n-1}$ as column vectors \mathbf{a} and $\widehat{\mathbf{a}}$, respectively, we have

$$\widehat{\mathbf{a}} = \mathcal{F} \, \mathbf{a}$$

Magic properties

- When the size of a matrix \mathcal{F} is $n \times n$, ordinarily the effort required to do the matrix product \mathcal{F} **a** is proportional to n^2 .
- But the matrix \mathcal{F} has some special (almost magic) properties that makes the effort only proportional to $n \log_{10}(n)$.
- The algorithm that utilizes these properties to perform the multiplication quickly is the *Fast Fourier Transform* (FFT).
- The FFT isn't really a transform, but an algorithm that computes a transform.
- **★** When *n* is large, $n^2 \gg n \log_{10}(n)$.

What does chatGPT have to say?

Question Would this document make for a good lecture for 3rd year computer science students?

Answer Yes, this document could serve as a good lecture for 3rd year computer science students, particularly those interested in topics related to mathematics, signal processing, or algorithms. (Specifics deleted).