



#### CARSTEN EIE FRIGAARD

SPRING 2021





# Agenda

#### **End-to-end Machine Learning**

- Spørge-minutter
- 2. Admin
  - Afleveringer, grupper, etc.,
  - O1 Feedback Gruppe
    - f.eks. Grp01 + 02 + 03
    - Grp01 sender deres O1 til det to andre i gruppen!
- 3. General repetition af § 2,
  - kort intro til Stochastic Gradient Descent (SGD)
- 4. Algorithm and Model Selection,
  - model hyperparameters
  - k-fold cross validation.
- 5. Pipelines
  - Opgave: L03/pipelines.ipynb

#### **CHAPTER 2**

# **End-to-End Machine Learning Project**





# MACHINE LEARNING ALGORITHM SELECTION AND MODEL SELECTION

# ML Algorithm Selection and Model Selection

Manually Choosing an Algorithm and Tuning a Model..

- algorithm selection (choose a h()).
- model selection (set hyperparameters on h()),
- model evaluation (train, test),
- re-iteration and re-selection!





"Model Evaluation, Model Selection, and Algorithm Selection in Machine Learning",

Sebastian Raschka, 2018.



#### **Model Evaluation**

Simple Holdout Method (Train-Test Split)..



#### Model Evaluation and Selection

Three-way Holdout for Hyperparameter Tuning (Train-Validate-Test Split)...



### Scikit-learn K-fold Demo..



Please cite us if you use the software.

sklearn.model selection.K

Fold
Examples using

sklearn.model\_selection.KF

#### ${\tt sklearn.model\_selection.} KFold$

class sklearn.model\_selection.KFold(n\_splits=5, \*, shuffle=False,
random state=None)

K-Folds cross-validator

Provides train/test indices to split data in train/test sets. Split dataset into k consecutive folds (without shuffling by default).

Each fold is then used once as a validation while the k - 1 remaining folds form the training set

Read more in the User Guide.

Parameters:

n splits : int, default=5

Number of folds. Must be at least 2.

#### Opgave:

- i) forklar Scikit's K-fold doc
- ii) <del>forklar koden L03/</del>

Extra/k-fold\_demo.ipynb

shuffle : bool, default=False

Whether to shuffle the data before splitting into batches. Note that the samples within each split will not be shuffled.

Changed in version 0.22: n splits default value changed from 3 to

random state : int or RandomState instance, default=None

Go

[source]

#### **Model Evaluation**

k-fold Cross-Validation Procedure, for k=5..



#### Model Evaluation and Selection

*k*-fold Cross-Validation for Hyperparameter Tuning (Somewhat Similar to Treeway Holdout...)





# **PIPELINES**

Putting it all together in Python code...

# Pipelines and Preprocessing of Data

Normalization via Scaling or Standardization

Why the need for preprocessing?

Standardization of datasets is a common requirement for many machine learning estimators [...]; they might behave badly if the individual features do not more or less look like standard normally distributed data. [..] [https://scikit-learn.org/stable/modules/preprocessing.html]

Standardization of a feature vector  $\mathbf{x}$ , giving  $\mathbf{x}'$  mean zero, and standard deviation one

$$\mathbf{x}' = \frac{\mathbf{x} - \mu_{\mathbf{x}}}{\sigma_{\mathbf{x}}}$$

What kind of estimators needs preprocessing?

→ Neural networks (NNs) in particular!

What is the difference between Standardization and Scaling?

16

18

19

Exercise: pipelines.ipynb: Revisit the OECD data in O1s for MLPs

Feature: GDP per capita feature in range 10K to 50K \$. But MLP expects input in the range [0;1] or perhaps [-1;1].

```
# Manual scaling..
    X_{\min} = np.\min(X)
    X_{max} = np.max(X)
    s = X_max - X_min
    print(f"X_min={X_min:.0f}, X_max={X_max:.0f},
                                                        s={s:.0f}")
    X_scaled = (X_xmin)/s
                                                      Prints:
    print(f"X_scaled.shape={X_scaled.shape}")
                                                      X min=9055.
                                                      X_max=55805, s=46750
    print(f"np.min(X_scaled)={np.min(X_scaled)}")
    print(f"np.max(X_scaled)={np.max(X_scaled)}")
                                                      X_scaled.shape=(29, 1)
                                                      np.min(X_scaled)=0.0
12
                                                      np.max(X_scaled)=1.0
    mlp.fit(X_scaled ,v.ravel())
13
    y_pred_mlp = mlp.predict((M—X_min)/s)
                                                      mpl.score=0.70
14
15
```

plt.plot(m, y\_pred\_lin, "r")

plt.plot(m, y\_pred\_mlp, "k")

OECD Data and MLPs: introducing a MinMaxScaler

```
# Now, do the same but via a pipeline..
from sklearn.preprocessing import MinMaxScaler

scaler = MinMaxScaler()
scaler.fit(X)
X_scaled = scaler.transform(X)
M_scaled = scaler.transform(M)

mlp.fit(X_scaled, y)
y_pred_mlp = mlp.predict(M_scaled)

print(f"mpl.score={mlp.score(X_scaled, y):0.2f}")
# PRINTS: mpl.score=0.71
```

OECD Data and MLPs: putting everything in a Full Pipeline

```
# Or even better, in a full pipeline...
2
    from sklearn.pipeline import Pipeline
3
    pipe = Pipeline( # indent pipeline as VHDL port mappings!
4
         ('scaler', MinMaxScaler()),
        ('mlp', mlp)
8
9
    pipe.fit(X, y)
12
    print(f"pipe.score(..)={pipe.score(X, y):0.2f}"
14
15
    # PRINTS: pipe.score(..)=0.68
```

Python code from Opgave: L07/capacity\_under\_overfitting.ipynb

```
from sklearn.pipeline import Pipeline
    from sklearn.preprocessing import PolynomialFeatures
    from sklearn.linear_model import LinearRegression
    from sklearn.model_selection import cross_val_score
5
    polynomial_features = PolynomialFeatures(degree=degrees[i], ...
    linear_regression = LinearRegression()
8
    pipeline = Pipeline(
9
        ("polynomial_features", polynomial_features),
        ("linear_regression", linear_regression)
14
15
    pipeline.fit(X[:, np.newaxis], y)
16
    scores = cross val score(
18
        pipeline, X[:, np.newaxis], y,
19
        scoring="neg_mean_squared_error", cv=10
20
21
    score_mean = -scores.mean()
22
```