What is claimed is:

1. A compound represented by the following Formula (I):

 R^{2} R^{3} $(CH_{2})_{m}$ R^{15} $(CH_{2})_{m}$ $(CH_{2})_{m}$ $(CH_{2})_{m}$ $(CH_{2})_{m}$ $(CH_{2})_{m}$ $(CH_{2})_{m}$ $(CH_{2})_{m}$

wherein:

10 R, R¹, R² and R³ are each independently selected from hydrogen, C₁₋₆alkyl,
-(CH₂)_pOR⁴, -C(O)OR⁴, formyl, nitro, cyano, halogen, aryl, substituted aryl,
substituted alkyl, -S(O)_nR⁴, cycloalkyl, -NR⁵R⁶, protected -OH, -CONR⁵R⁶,
phosphonic acid, sulfonic acid, phosphinic acid, -SO₂NR⁵R⁶, a heterocyclic
methylene substituent as represented by Formula (III),

15

5

and

a substituent as represented by Formula (VII),

where,

p is 0-6,

n is 0-2.

5

15

25

30

W and Z are each independently selected from C, O, S and NR¹⁶, where R¹⁶ is selected from: hydrogen, alkyl, cycloalkyl, C₁-C₁₂aryl, substituted alkyl, substituted cycloalkyl and substituted C₁-C₁₂aryl,

V and X are each independently selected from O, S and NR¹⁶, where R¹⁶ is

V and X are each independently selected from O, S and NR^{16} , where R^{16} is selected from: hydrogen, alkyl, cycloalkyl, C_1 - C_{12} aryl, substituted alkyl, substituted cycloalkyl and substituted C_1 - C_{12} aryl,

10 R⁴ is selected from: hydrogen, alkyl, cycloalkyl, C₁-C₁₂aryl, substituted alkyl, substituted cycloalkyl and substituted C₁-C₁₂aryl,

 R^5 and R^6 are each independently selected from hydrogen, alkyl, substituted alkyl, C_{3-6} cycloalkyl, and aryl,

or R⁵ and R⁶ taken together with the nitrogen to which they are attached represent a 5 to 6 member saturated ring containing up to one other heteroatom selected from oxygen and nitrogen,

T is absent or selected from O, S and NR¹⁶, where R¹⁶ is selected from: hydrogen, alkyl, cycloalkyl, C_1 - C_{12} aryl, substituted alkyl, substituted cycloalkyl and substituted C_1 - C_{12} aryl,

P is selected from OR⁴, SR⁴, NR⁵R⁶, and R⁴, where R⁴ is selected from: hydrogen, alkyl, cycloalkyl, C₁-C₁₂aryl, substituted alkyl, substituted cycloalkyl and substituted C₁-C₁₂aryl,

 R^{25} is selected from: hydrogen, alkyl, cycloalkyl, C_1 - C_{12} aryl, substituted alkyl, substituted cycloalkyl and substituted C_1 - C_{12} aryl, and

R³⁰ is selected from: hydrogen, alkyl, cycloalkyl, C₁-C₁₂aryl, substituted alkyl, substituted cycloalkyl and substituted C₁-C₁₂aryl;

R¹⁵ is selected from the group consisting of alkyl, C₁-C₁₂aryl, hydroxy, alkoxy, substituted alkyl, substituted C₁-C₁₂aryl and halogen;

m is 0-6; and

Y is a cyclic or polycyclic, unsaturated or saturated, non-aromatic ring containing from 3 to 16 carbon atoms and optionally substituted with one or more

substituents selected from the group consisting of: alkyl, substituted alkyl, aryl, substituted cycloalkyl, substituted aryl, aryloxy, oxo, hydroxy, alkoxy, cycloalkyl, acyloxy, amino, N-acylamino, nitro, cyano, halogen, -C(O)OR⁴, -C(O)NR¹⁰R¹¹, -S(O)₂NR¹⁰R¹¹, -S(O)_nR⁴ and protected -OH, where n is 0-2,

 R^4 is hydrogen, alkyl, cycloalkyl, C_1 - C_{12} aryl, substituted alkyl, substituted cycloalkyl and substituted C_1 - C_{12} aryl, and

 R^{10} and R^{11} are independently hydrogen, cycloalkyl, C_1 - C_{12} aryl, substituted cycloalkyl, substituted C_1 - C_{12} aryl, alkyl or alkyl substituted with one or more substituents selected from the group consisting of: alkoxy, acyloxy, aryloxy, amino, N-acylamino, oxo, hydroxy, - $C(O)OR^4$, - $S(O)_nR^4$, - $C(O)NR^4R^4$, oxo, cycloalkyl, substituted cycloalkyl, halogen, aryl, substituted aryl and protected -OH,

or R^{10} and R^{11} taken together with the nitrogen to which they are attached represent a 5 to 6 member saturated ring containing up to one other heteroatom selected from oxygen and nitrogen,

where R⁴ is as described above and n is 0-2;

and pharmaceutically acceptable salts, hydrates, solvates and esters thereof;

20 provided that at least one of R, R¹, R² and R³ is a substituted aryl group or a heterocyclic methylene substituent as represented in Formula (III) or a substituent as represented in Formula (VII).

2. A compound of claim 1 represented by the following Formula (II):

25

5

10

15

$$R^{2}$$
 R^{3}
 R^{3}
 R^{15}
 R^{1

wherein:

R, R¹, R² and R³ are each independently selected from hydrogen, C₁₋₆alkyl,
-(CH₂)_pOR⁴, -C(O)OR⁴, formyl, nitro, cyano, halogen, aryl, substituted aryl,
substituted alkyl, -S(O)_nR⁴, cycloalkyl, -NR⁵R⁶, protected -OH, -CONR⁵R⁶,
phosphonic acid, sulfonic acid, phosphinic acid, -SO₂NR⁵R⁶, a heterocyclic
methylene substituent as represented by Formula (III),

10 and

5

a substituent as represented by Formula (VII),

15 where,

20

25

p is 0-6,

n is 0-2,

W and Z are each independently selected from C, O, S and NR¹⁶, where R¹⁶ is selected from: hydrogen, alkyl, cycloalkyl, C_1 - C_{12} aryl, substituted alkyl, substituted cycloalkyl and substituted C_1 - C_{12} aryl,

V and X are each independently selected from O, S and NR¹⁶, where R¹⁶ is selected from: hydrogen, alkyl, cycloalkyl, C₁-C₁₂aryl, substituted alkyl,

substituted cycloalkyl and substituted C1-C12aryl,

 R^4 is selected from: hydrogen, alkyl, cycloalkyl, C_1 - C_{12} aryl, substituted alkyl, substituted cycloalkyl and substituted C_1 - C_{12} aryl,

R⁵ and R⁶ are each independently selected from hydrogen, alkyl, substituted alkyl, C₃₋₆cycloalkyl, and aryl,

or R⁵ and R⁶ taken together with the nitrogen to which they are attached represent a 5 to 6 member saturated ring containing up to one other heteroatom selected from oxygen and nitrogen,

T is absent or selected from O, S and NR^{16} , where R^{16} is selected from: hydrogen, alkyl, cycloalkyl, C_1 - C_{12} aryl, substituted alkyl, substituted cycloalkyl and substituted C_1 - C_{12} aryl,

P is selected from OR^4 , SR^4 , NR^5R^6 , and R^4 , where R^4 is selected from: hydrogen, alkyl, cycloalkyl, C_1 - C_{12} aryl, substituted alkyl, substituted cycloalkyl and substituted C_1 - C_{12} aryl,

R²⁵ is selected from: hydrogen, alkyl, cycloalkyl, C₁-C₁₂aryl, substituted alkyl, substituted cycloalkyl and substituted C₁-C₁₂aryl, and R³⁰ is selected from: hydrogen, alkyl, cycloalkyl, C₁-C₁₂aryl, substituted alkyl, substituted cycloalkyl and substituted C₁-C₁₂aryl;

R¹⁵ is selected from the group consisting of alkyl, C₁-C₁₂aryl, hydroxy, alkoxy, substituted alkyl, substituted C₁-C₁₂aryl and halogen;

m is 0-6; and

5

10

15

30

Y is a cyclic or polycyclic, unsaturated or saturated, non-aromatic ring containing from 5 to 14 carbon atoms and optionally substituted with one or more substituents selected from the group consisting of: alkyl, substituted alkyl, aryl, substituted cycloalkyl, substituted aryl, aryloxy, oxo, hydroxy, alkoxy, cycloalkyl, acyloxy, amino, N-acylamino, nitro, cyano, halogen, -C(O)OR⁴, -C(O)NR¹⁰R¹¹, -S(O)₂NR¹⁰R¹¹, -S(O)_nR⁴ and protected -OH, where n is 0-2,

cycloalkyl and substituted C_1 - C_{12} aryl, and R^{10} and R^{11} are independently hydrogen, cycloalkyl, C_1 - C_{12} aryl, substituted cycloalkyl, substituted C_1 - C_{12} aryl, alkyl or alkyl substituted with one or more substituents selected from the group consisting of: alkoxy, acyloxy, aryloxy, amino, N-acylamino, oxo, hydroxy, - $C(O)OR^4$, - $S(O)_nR^4$, - $C(O)NR^4R^4$, - $S(O)_2NR^4R^4$, nitro, cyano, cycloalkyl, substituted cycloalkyl, halogen, aryl, substituted aryl and protected –OH,

R4 is hydrogen, alkyl, cycloalkyl, C1-C12aryl, substituted alkyl, substituted

or R^{10} and R^{11} taken together with the nitrogen to which they are attached represent a 5 to 6 member saturated ring containing up to one other heteroatom selected from oxygen and nitrogen,

where R⁴ is as described above and n is 0-2;

5 and pharmaceutically acceptable salts, hydrates, solvates and esters thereof;

provided that at least one of R, R¹, R² and R³ is a substituted aryl group or a heterocyclic methylene substituent as represented in Formula (III) or a substituent as represented in Formula (VII).

10

15

20

3. A compound represented by Formula (II), as defined in claim 2, wherein:

R is a substituted aryl; and R¹ is hydrogen;

R is hydrogen; and R¹ is a substituted aryl;

R is a hydrogen; and R¹ is a substituent as represented in Formula (III); or

R is a hydrogen; and R¹ is a substituent as represented in Formula (VII);

and in each of the above cases:

R² and R³ are each independently selected from hydrogen, C₁₋₆alkyl, C₁₋₆alkoxy, nitro, cyano, halogen, aryl, substituted aryl, substituted alkyl, cycloalkyl, phosphonic acid, phosphinic acid and sulfonic acid;

 R^{15} is selected from the group consisting of alkyl, substituted alkyl, C_1 - C_{12} aryl, alkoxy and halogen;

m is 0-4; and

Y is selected from,

cyclohexyl, cyclopentyl and cycloheptyl, where the cyclohexyl, cyclopentyl and cycloheptyl are optionally substituted with from one to three substituents selected from the group consisting of: alkyl, substituted alkyl, C₁-C₁₂aryl, substituted C₁-C₁₂aryl, alkoxy and halogen;

and pharmaceutically acceptable salts, hydrates, solvates and esters thereof.

30

4. A compound represented by Formula (II), as defined in claim 2, wherein:

R is a substituted C_1 - C_{12} aryl; and R^1 is hydrogen;

R is a hydrogen; and R^1 is a substituent as represented in Formula (III); or

R is a hydrogen; and R¹ is a substituent as represented in Formula (VII);

35

and in each of the above cases:

R² and R³ are each independently selected from hydrogen, C₁₋₆alkyl, C₁₋₆alkoxy, nitro, cyano, halogen, substituted alkyl and cycloalkyl;

R¹⁵ is selected from the group consisting of alkyl, substituted alkyl, C₁-C₁₂aryl, alkoxy and halogen;

5 m is 0-2; and

15

20

25

30

35

Y is selected from,

cyclohexyl, cyclopentyl and cycloheptyl, where the cyclohexyl, cyclopentyl and cycloheptyl are optionally substituted with from one to three substituents selected from the group consisting of: alkyl, substituted alkyl, C₁-C₁₂aryl, substituted

10 C₁-C₁₂aryl, alkoxy and halogen;

and additionally, when R is a hydrogen; and R^1 is a substituent as represented in Formula (VII);

 R^{25} and R^{30} are each selected from: hydrogen, C_{1-6} alkyl, C_{1-6} alkoxy, substituted C_{1-6} alkyl and cycloalkyl;

and additionally, when R is a hydrogen; and R^1 is a substituent as represented in Formula (VII); and when R is a hydrogen; and R^1 is a substituent as represented in Formula (III);

 R^4 is selected from: hydrogen, C_{1-6} alkyl, C_{1-6} alkoxy, substituted C_{1-6} alkyl and cycloalkyl;

and pharmaceutically acceptable salts, hydrates, solvates and esters thereof.

5. A compound represented by Formula (II), as defined in claim 2, wherein:

R is a substituted phenyl ring and R¹ is hydrogen; or

R is a hydrogen; and R^1 is a substituent as represented in Formula (III); and in either of the above cases:

R² and R³ are each independently selected from hydrogen, C₁₋₆alkyl, substituted alkyl and halogen;

R¹⁵ is selected from the group consisting of C₁₋₄alkyl, C₁₋₄alkoxy, C₁-C₁₂aryl and halogen;

m is 0; and

Y is selected from,

cyclohexyl, cyclopentyl and cycloheptyl, where cyclohexyl, cyclopentyl and cycloheptyl are optionally substituted with from one to three substituents selected from the group consisting of: alkyl, substituted alkyl, C_1 - C_{12} aryl, substituted C_1 - C_{12} aryl, alkoxy and halogen;

and additionally, when R is a hydrogen; and R¹ is a substituent as represented in Formula (III);

R⁴ is selected from: hydrogen, C₁₋₆alkyl, C₁₋₆alkoxy, substituted C₁₋₆alkyl and cycloalkyl;

and pharmaceutically acceptable salts, hydrates, solvates and esters thereof.

- 6. A compound of claim 1 selected from:
- 3'-(1-Cyclohexyl-5-hydroxy-3-methyl-1H-pyrazol-4-ylazo)-2'-hydroxy-biphenyl-3carboxylic acid;
 - 3'-[1-(4-tert-Butyl-cyclohexyl)-5-hydroxy-3-methyl-1H-pyrazol-4-ylazo]-2'-hydroxy-biphenyl-3-carboxylic acid;
 - 3'-[1-(3,4-Dimethyl-cyclohexyl)-5-hydroxy-3-methyl-1H-pyrazol-4-ylazo]-2'-hydroxy-
- 15 biphenyl-3-carboxylic acid;

- 3'-[1-(3,4-Dichloro-cyclohexyl)-5-hydroxy-3-methyl-1H-pyrazol-4-ylazo]-2'-hydroxy-biphenyl-3-carboxylic acid;
- 5-[4-(1-Cyclohexyl-5-hydroxy-3-methyl-1H-pyrazol-4-ylazo)-3-hydroxy-benzylidene]-thiazolidine-2,4-dione;
- 5-{4-[1-(4-tert-Butyl-cyclohexyl)-5-hydroxy-3-methyl-1H-pyrazol-4-ylazo]-3-hydroxy-benzylidene}-thiazolidine-2,4-dione;
 - 5-{4-[1-(3,4-Dimethyl-cyclohexyl)-5-hydroxy-3-methyl-1H-pyrazol-4-ylazo]-3-hydroxy-benzylidene}-thiazolidine-2,4-dione;
 - 5-{4-[1-(3,4-Dichloro-cyclohexyl)-5-hydroxy-3-methyl-1H-pyrazol-4-ylazo]-3-hydroxy-
- 25 benzylidene}-thiazolidine-2,4-dione;
 - (E)-3-{4-[1-(4-tert-butylcyclohexyl)-3-methyl-5-oxo-4,5-dihydro-1H-pyrazol-4-ylazo]-3-hydroxyphenyl}-2-methylacrylic acid;
 - (E)-3-(4-{N'-3-Ethylcyclopentyl)-3-methyl-5-oxo-1,5-dihydropyrazol-4-ylidene]-hydrazino}-3-hydrophenyl-2-methylacrylic acid; and
- 30 (E)-3-[4-(N'-{1-[3-(1,1-Dimethylpropyl)-cyclopentyl]-3-methyl-5-oxo-1,5-dihydropyrazol-4-ylidene}-hydrazino)-3-hydroxyphenyl]-2-methylacrylic acid; and pharmaceutically acceptable salts, hydrates, solvates and esters thereof.
 - 7. A compound of claim 1 which is
- 35 3'-[N'-(1-cyclohexyl-3-methyl-5-oxo-1,5-dihydro-pyrazol-4-ylidene)-hydrazino]-2'hydroxy-biphenyl-3-carboxylic acid; or pharmaceutically acceptable salt, hydrate, solvate and ester thereof.

8. A method of treating of thrombocytopenia in a mammal, including a human, in need thereof which comprises administering to such mammal a therapeutically effective amount of a compound of Formula (I), as described in claim 1.

5

- 9. A method as claimed in claim 8, wherein the mammal is a human.
- The method of claim 9 wherein the compound is selected from the compounds listed in Claim 6.

10

- 11. A method of enhancing platelet production in a mammal, including a human, in need thereof which comprises administering to such mammal a therapeutically effective amount of a compound of Claim 1.
- 15 12. A method as claimed in claim 11, wherein the mammal is a human.
 - 13. The method of claim 11 wherein the compound is selected from the compounds listed in Claim 6.
- 20 14. A pharmaceutical composition for use in enhancing platelet production which comprises a compound of Claim 1 and a pharmaceutically acceptable carrier.
 - 15. Use of a compound of Formula (I), as described in claim 1, in the manufacture of a medicament for use in treating of thrombocytopenia.

- 16. The method of claim 8 wherein the compound is administered orally.
- 17. The method of claim 8 wherein the compound is administered parenterally.
- 30 18. A method of agonizing the TPO receptor in a subject which comprises administering an effective amount of a compound of Formula (I), as described in claim 1.
- 19. A process for preparing a pharmaceutical composition containing a
 35 pharmaceutically acceptable carrier or diluent and an effective amount of a compound

of the Formula (I) as described in claim 1 and pharmaceutically acceptable salts, hydrates, solvates and esters thereof which process comprises bringing the compound of the Formula (I) into association with the pharmaceutically acceptable carrier or diluent.

5

 A process for preparing a compound of Formula (II) by reaction of a compound of Formula (XX)

or a protected form thereof with a compound of Formula (XXI) or tautomeric equivalent (XXII)

$$R^{15}$$
 O R^{15} OH $N-N$ (XXII)

wherein

15

R is a substituted aryl; and R¹ is hydrogen;

R is hydrogen; and R¹ is a substituted aryl;

R is a hydrogen; and R¹ is a substituent as represented in Formula (III); or

R is a hydrogen; and R¹ is a substituent as represented in Formula (VII);

and in each of the above cases:

R² and R³ are each independently selected from hydrogen, C₁₋₆alkyl, C₁₋₆alkoxy, nitro, cyano, halogen, aryl, substituted aryl, substituted alkyl, cycloalkyl, phosphonic acid, phosphinic acid and sulfonic acid;

 R^{15} is selected from the group consisting of alkyl, substituted alkyl, $C_1\text{-}C_{12}\text{aryl},$

25 alkoxy and halogen;

m is 0-4; and

Y is selected from,

cyclohexyl, cyclopentyl and cycloheptyl, where the cyclohexyl, cyclopentyl and cycloheptyl are optionally substituted with from one to three substituents selected from the group consisting of: alkyl, substituted alkyl, C_1 - C_{12} aryl, substituted C_1 - C_{12} aryl, alkoxy and halogen;

followed if necessary or desired by salt formation.

5

30

35

21. A method of Claim 8 further comprising co-administering a therapeutically effective amount of an agent selected from the group consisting of: a colony stimulating factor, cytokine, chemokine, interleukin or cytokine receptor agonist or antagonists, soluble receptors, receptor agonists or antagonist antibodies, or small molecules or peptides that act by the same mechanisms one or more of said agents.

- The method of Claim 21 wherein the agent is selected from the group consisting of:
 G-CSF, GM-CSF, TPO, M-CSF, EPO, Gro-beta, IL-11, SCF, FLT3 ligand, LIF, IL-3,
 IL-6, IL-1, Progenipoietin, NESP, SD-01, IL-8, or IL-5 or a biologically active derivative of any of said agents.
- 23. A pharmaceutical composition of Claim 14 further comprising co-administering a therapeutically effective amount of an agent selected from the group consisting of: a colony stimulating factor, cytokine, chemokine, interleukin or cytokine receptor agonist.
- The composition of Claim 23 wherein the agent is selected from the group
 consisting of: G-CSF, GM-CSF, TPO, M-CSF, EPO, Gro-beta, IL-11, SCF, FLT3
 Ligand, LIF, IL-3, IL-6, IL-1, or IL-5 or a biologically active derivative of any of said agents.
- 25. A method for enhancing platelet production obtained from a donor which
 25 comprises administering to such donor a therapeutically effective amount of a
 compound of Claim 1 prior to platelet pheresis, blood donation or platelet donation.
 - 26. A method for enhancing the number of peripheral blood stem cells obtained from a donor which comprises administering to such donor a therapeutically effective amount of a compound of Claim 1 prior to leukapheresis.
 - 27. A method of Claim 26 further comprising co-administering a therapeutically effective amount of a hematopoietic-cell mobilizing agent selected from the group consisting of: a colony stimulating factor, cytokine, chemokine, interleukin or cytokine receptor agonist, adhesion molecule anatgonists or antibodies.

28. The method of Claim 27 wherein the mobilizing agent is selected from the group consisting of: G-CSF, GM-CSF, TPO, EPO, Gro-beta, IL-8, cytoxan, VLA-4 inibitors, SCF, FLT3 ligand or a biologically active derivative of G-CSF, GM-CSF, TPO, EPO, Gro-beta or IL-8.

5

15

- 29. An in vitro or ex vivo method for enhancing stimulation of megakaryocyte maturation and/or platelet production which comprises adding an effective amount of a compound of Claim 1 to the culture medium of cells that express the TPO receptor.
- 30. An in vitro or ex vivo method for enhancing stimulation of megakaryocyte maturation and/or platelet production which comprises adding an effective amount of a compound of Claim 1 to the culture medium of stem cells, bone marrow cells, cord-blood cells or peripheral blood cells.
 - 31. A method of claim 30, wherein the megakaryocytes or platelets are returned to the mammal following chemotherapy or radiation therapy.
- 32. An in vitro or ex vivo method for enhancing the survival and/or proliferation of stem cells, bone marrow cells, cord-blood cells, peripheral blood cells or other types of cells expressing the TPO receptor in culture which comprises culturing said cell in a medium containing an effective amount of a compound of Claim 1.
- 33. A method of claim 32 further comprising co-administration of a therapeutically
 effective amount of a colony stimulating factor, cytokine, chemokine, interleukin or cytokine receptor agonist.
 - 34. A method of claim 32 wherein the stem cells are returned to the mammal following chemotherapy or radiation therapy.
 - 35. A method of treating of neutropenia in a mammal, including a human, in need thereof which comprises administering to such mammal a therapeutically effective amount of a compound of Formula (I), as described in claim 1.
- 35 36. An in vitro or ex vivo method for enhancing stimulation of neutrophil production which comprises adding an effective amount of a compound of Claim 1 to the culture

medium of stem cells, bone marrow cells, cord-blood cells, peripheral blood cells or other types of cells expressing the TPO receptor.

- 37. A method of claim 36, wherein the neutrophils are returned to the mammal following5 chemotherapy or radiation therapy.
 - 38. A method of claim 8 wherein said thrombocytopenia is due to myelosuppression caused by chemotherapy or radiation therapy.
- 10 39. A method of claim 8 wherein said thrombocytopenia is due to an organ transplant.
 - 40. A method of claim 8 wherein said thrombocytopenia is due to bone marrow, stem cell, or liver transplant.
- 15 41. A method of claim 8 wherein said thrombocytopenia is due to idiopathic thrombocytopenia purpura (ITP).
 - 42. A method of claim 8 wherein said thrombocytopenia is due to myelodysplastic syndromes (MDS), aplastic anemia or leukemia.
 - 43. A method of claim 8 wherein said thrombocytopenia is due to viral, fungal, microbial or parasitic infection.
 - 44. A method of claim 8 wherein said thrombocytopenia is due to liver dysfunction.
 - 45. A method of claim 8 wherein said thrombocytopenia is due to surgical procedures.
 - 46. A method of claim 8 wherein said thrombocytopenia is due to treatment with antiviral or antibiotic agents.
 - 47. Use of a compound of Claim 1 as an immunological adjuvant.
 - 48. A use according to claim 42 where the immunological adjuvant is administered with a vaccine and/or immunomodulator.
 - 49. A compound of Claim 6 selected from:

20

25

30

3'-[N'-(1-cyclohexyl-3-methyl-5-oxo-1,5-dihydro-pyrazol-4-ylidene)-hydrazino]-2'-hydroxy-biphenyl-3-carboxylic acid; or pharmaceutically acceptable salt, hydrate, solvate and ester thereof.

- 5 50. An intermediate used in the preparation of compounds of Claim 1 selected from:
 - 2-Cyclohexyl-5-methyl-2,4-dihydro-pyrazol-3-one;
 - 2-(4-tert-Butyl-cyclohexyl)-5-methyl-2,4-dihydro-pyrazol-3-one;
 - 5-(3-Hydroxy-4-nitro-benzylidene)-thiazolidine-2,4-dione;
 - 5-(4-Amino-3-hydroxy-benzylidene)-thiazolidine-2,4-dione;
- 10 (E)-3-(4-amino-3-hydroxy-phenyl)-2-methyl-acrylic acid ethyl ester hydrochoride;
 - 2-(3-ethylcyclopentyl)-5-methyl-2,4-dihydroxyprazol-3-one;
 - $\hbox{$2$-[3-(1,1-dimethylpropyl)-cyclopentyl]-5-methyl-$2,4$-dihydroxypyrazol-3-one;}$
 - (E)-3-(3-Hydroxy-4-nitrophenyl)-2-methylacrylic acid ethyl ester;
 - (E)-3-(4-Amino-3-hydroxy-phenyl)-2-methyl-acrylic acid ethyl ester hydrochloride;
- 15 3-Ethylcyclopentylhydrazine trifluoroacetate; and
 - 3-(1,1-Dimethylpropyl)-cyclopentylhydrazine trifluoroacetate.
 - 51. A compound of claim 1 selected from:
 - 3'-(1-Cyclohexyl-5-hydroxy-3-methyl-1H-pyrazol-4-ylazo)-2'-hydroxy-biphenyl-3-
- 20 carboxylic acid;
 - 5-{4-[1-(4-tert-Butyl-cyclohexyl)-5-hydroxy-3-methyl-1H-pyrazol-4-ylazo]-3-hydroxy-benzylidene}-thiazolidine-2,4-dione;
 - (E)-3-{4-[1-(4-tert-butylcyclohexyl)-3-methyl-5-oxo-4,5-dihydro-1H-pyrazol-4-ylazo]-3-hydroxyphenyl}-2-methylacrylic acid;
- 25 (E)-3-(4-{N'-3-Ethylcyclopentyl)-3-methyl-5-oxo-1,5-dihydropyrazol-4-ylidene]-hydrazino}-3-hydrophenyl-2-methylacrylic acid; and
 - (E)-3-[4-(N'-{1-[3-(1,1-Dimethylpropyl)-cyclopentyl]-3-methyl-5-oxo-1,5-dihydropyrazol-4-ylidene}-hydrazino)-3-hydroxyphenyl]-2-methylacrylic acid;
 - and pharmaceutically acceptable salts, hydrates, solvates and esters thereof.