[211112] SPARK LAB MEETING

Variational Inference

김정훈

MAP(Maximum A Posteriori estimation)

Bayes' theorem

$$P(\theta|X) = \frac{P(X|\theta)P(\theta)}{P(X)} = \frac{P(X|\theta)P(\theta)}{\int P(X|\theta)P(\theta)d\theta} \quad \longleftarrow \text{ marginalize}$$

• MAP: parameter θ that maximize posterior

$$\hat{\theta}_{MAP} = argmax_{\theta} p(\theta | x_n)$$

- MAP: observations, likelihood probability, prior distribution, random variable θ
- MLE: observations, likelihood probability(θ)
- Estimate deterministic parameter ⊕ and frizzing parameter in new data
- Posterior Predictive Distribution (parametric model)
 - Consider all cases

Spark-lab youtube, [SCS4049] Inclass 18 | Maximum A Posteriori Estimate, Posterior Predictive Distribution

Approximate Inference

- There are two ways to approximate inference
 - Stochastic method
 - Markov chain Monte Carlo
 - Deterministic method
 - Variational Inference(Variational Bayes): Approximate the posterior distribution
- Variational Inference: Set the parameter so that Q equals P
 - Define $q(\theta|w)$ to similar with $P(\theta|D)$
 - KL divergence

$$D_{KL}(Q||P) = \sum_{x \in X} Q(x) \log_b \left(\frac{Q(x)}{P(x)} \right) = \int q(\theta|w) \log \frac{q(\theta|w)}{p(\theta|D)} d\theta$$

$$= D_{KL} \left[q(\theta|w) || p(\theta) \right] + E_q \left[\log p(X) \right] - E_q \left[\log p(X|\theta) \right]$$

- $= D_{KL} [q(\theta|w)||p(\theta)] E_q[\log p(X|\theta)]$
- $\neg argmin_w(D_{KL}[q(\theta|w)||p(\theta)] E_q[\log p(X|\theta)])$
- $[q(\theta|w)||p(\theta)]$ is possible calculating
- $E_q[\log p(X|\overline{\theta})]$ is MLE
- If we find w, we could assume that $q(\theta|w)$ is θ of posterior
- Learning parameter w

Variational Inference

- Processing θ_i using variational inference
- 1. Initialize μ_i , σ_i
- 2. Parameterize $\theta_i = \mu_i + \sigma_i \times \epsilon_i$
- 3. Input x, output \hat{y}
- 4. Loss, $L_2 = (y \hat{y})^2$
- 5. Backpropagation through $Loss = -\sum_{i=1}^{N} [(1 + \log(\sigma_i^2)) \mu_i^2 \sigma_i^2] + (y \hat{y})^2$
- 6. Repeat 2~5

https://hyeongminlee.github.io/post/bnn003_vi/ https://github.com/cangermueller/varinf/blob/master/doc/uninorm.ipynb

