Práctica No. 3 Diodo Zener y Reguladores de voltaje

Objetivos

Al término de la práctica, el alumno analizará el voltaje de ruptura de un diodo zener; probará los principales circuitos con diodos zener; y comprobará el funcionamiento de los diferentes circuitos integrados que se emplean como fuentes de voltaje reguladas, tanto fijas como variables.

Material

- Tablilla de experimentación. (Proto Board)
 Diodos zener a 3.3 V 1/2 W
 Diodos zener a 5.1 V 1/2 W
 Diodos zener a 9.0 V 1/2 W
 Resistencias de 27 Ω a 2 W
 Resistencias de 33 Ω a 2 W
 Resistencias de 49 Ω a 2 W
- Resistencia de 100 Ω a 10 W
 Resistencia de 120 Ω a ¼ W

Resistencias de 56 Ω a 2 W

Resistencias de 82Ω a 2 W

- 2 Resistencia de 220 Ω a ¹/₄ W
- 2 Potenciómetro de $10 \text{ k}\Omega$
- 4 Capacitor de 0.1 μF a 50 V
- 2 Capacitor electrolítico de 1 µF a 50 V
- 1 Regulador LM7805
- 1 Regulador LM7812
- 1 Regulador LM7905
- 1 Regulador LM7912
- 1 Regulador LM317
- 1 Regulador LM337

Equipo:

2

- 2 Multímetros digitales
- 2 Juegos de Puntas de multímetro
- 1 Fuente de alimentación

- 4 Puntas banana-caimán
- 4 Puntas caimán-caimán

Desarrollo

Circuitos de operación del zener

Armar el siguiente circuito para cada uno de los diodos.

Para el diodo zener de 3.3 V emplear una resistencia de 82 Ω en R_{Lim} y una resistencia de 33 Ω en R_L , varíe el voltaje de la fuente como se muestra en la tabla y mida el voltaje en la resistencia R_L y anótelo en la tabla.

Para el diodo zener de 5.1 V emplear una resistencia de 56 Ω en R_{Lim} y una resistencia de 49 Ω en R_L , varíe el voltaje de la fuente como se muestra en la tabla y mida el voltaje en la resistencia R_L y anótelo en la tabla.

Para el diodo zener de 9.0 V emplear una resistencia de 27 Ω en R_{Lim} y una resistencia de 82 Ω en R_L , varíe el voltaje de la fuente como se muestra en la tabla y mida el voltaje en la resistencia R_L y anótelo en la tabla.

Voltaje de la Fuente	Voltaje en la resistencia Ro		
V (V)	3.3 V	5.1 V	9.0 V
3.0			
4.0			
5.0			
6.0			
7.0			
8.0			
9.0			
10.0			
11.0			
12.0			
13.0			
14.0			
15.0			

Regulador de voltaje fijo positivo

Arma el siguiente circuito y varía el voltaje de la fuente de alimentación con cada uno de los reguladores de voltaje (LM7805 y LM7812).

Voltaje de la Fuente	Voltaje en la resistencia R_L		
V_{in} (V)	LM7805	LM7812	
3.0			
4.0			
5.0			
6.0			
7.0			
8.0			
9.0			
10.0			
11.0			
12.0			
13.0			
14.0			
15.0			
16.0			

Regulador de voltaje fijo negativo

Arma el siguiente circuito y varía el voltaje de la fuente de alimentación con cada uno de los reguladores de voltaje (LM7905 y LM7912).

Voltaje de la Fuente	Voltaje en la resistencia R_L		
V_{in} (V)	LM7905	LM7912	
3.0			
4.0			
5.0			
6.0			
7.0			
8.0			
9.0			
10.0			
11.0			
12.0			
13.0			
14.0			
15.0			
16.0			

Regulador de voltaje variable positivo

Armar el siguiente circuito

Variar el potenciómetro R_2 para obtener el voltaje de salida positivo mínimo y máximo de la fuente.

$$V_{0max} = \underline{\hspace{1cm}} y \ V_{0min} = \underline{\hspace{1cm}}$$

Regulador de voltaje variable negativo

Armar el siguiente circuito

Ahora variar el potenciómetro R₂ para obtener el voltaje de salida negativa mínimo y máximo de la fuente.

$$V_{0max} =$$
______ $y V_{0min} =$ _____

Cuestionario

- 1. Menciona cual es el principio de funcionamiento de un diodo zener.
- 2. ¿Que sucede con un zener si el voltaje de la fuente es menor a su voltaje?
- 3. ¿Cuál es la finalidad de un regulador de Voltaje?
- 4. ¿Qué voltaje de salida se tiene en un regulador de voltaje fijo de 5 volts si el voltaje de entrada es de 5 V?
- 5. ¿Por qué en los reguladores de voltaje variables el voltaje mínimo es de 1.2 V?

Simulaciones

Realice la simulación de todos los circuitos desarrollados en la práctica.

Conclusiones

Comparar los datos obtenidos en la simulación y en lo experimental, con el análisis teórico visto en Clases. (Conclusiones individuales).