

GEC

Attitude Control System

Jennifer Bracken
Josephine San
Dave Olney

Assessment

- * Requirements can be met for all considered scenarios:
 - Elimination of Fabry-Perot Interferometer
 - Elimination of UV Imager
 - □ 1.1m × 2.0m spacecraft
 - Elliptical spacecraft
 - \square 0.85 \times 2.6m spacecraft
- * Review component & design recommendations
- * Review ACS mode recommendations

Requirements/Assumptions

- * Attitude Control: ±5 Degrees
- * Knowledge: ±0.01 Degrees
- * 200x2000 Parking Orbit
- * 130x2000 Dipping Orbit
- * 6.669E-09 Kg-m⁻³
- * 78 Degree Inclination
- * 2cm CPCG Offset

Component Recommendations

Design Recommendations

- * A pitch momentum-biased system with the wheel(s) sized to insure that the effect of aerodynamic torques does not cause any pointing violations.
 - Single wheel with spin axis along pitch axis
 - Will need approximately 100 Nms momentum capability for the 1.1x2m configuration and 80 Nms for the .85x2.6m configuration
 - Two wheels with spin axis canted 30 degrees from the pitch axis in the pitch-yaw plane
 - □ Will need approximately 56 Nms momentum capability per wheel for the 1.1x2m configuration and 45 Nms for the .85x2.6m configuration

ACS Mode Recommendations

- * Acquisition: Acquire sun on the solar arrays & Null rates
- * Science: Track velocity vector & Maintain zenith pointing
- * Delta-V: Orbit adjust
- * Delta-H: Momentum unloading
- * Slew: 180° flip for retro burn
- * Safe Hold: Independent safe mode

5 August 1999 NASA/GSFC/IMDC 6

Bottom Line!

- * ACS is basically stable
- * A last minute note: With the perigee of the parking orbit changing from 350 to 200 Km, IPACS power has changed from 20W to approximately 54W

5 August 1999 NASA/GSFC/IMDC 7