Impact of Car Features on Price and Profitability

Link for Excel sheet:

https://docs.google.com/spreadsheets/d/10QceKTy49wcBmaG8W8Pht OBoad8L1MI_/edit?usp=sharing&ouid=107365393175079460343&rt pof=true&sd=true

Project Description:

This project aims to analyze a dataset containing information about various Car Brands, Car models they make and their respective car features along with their prices. The goal is to gain insights about impact of car features on price and profitability, performing various analysis tasks and also build a dashboard to better visualize the insights. The data provided has various missing or null Data, our task is to handle those missing values appropriately, by either deleting or imputing these data. There are various outliers in data, we have to find these outliers. We utilize various excel features such as pivot tables and charts to better represent data. We find trends in car features and their popularities by implementing various methodologies and data analysis techniques such as regression. Thus, by employing statistics and Excel formulas, we will extract meaningful conclusions to help understand the factors that contribute to popularity and profitability of particular cars.

Approach:

As an individual working on this project, I followed a structured approach to analyze data about Car Brands, models and features. I began by carefully examining the provided database and familiarizing myself with its structure and columns. I tried to find columns which had the most significance in the dataset. I handled missing values by eliminating columns which had most empty cells, and were not significant. And imputed data into cells that were necessary for analysis. Then, I utilized Excel fundamentals to retrieve the necessary information for each task, employing appropriate functions and statistical methods. I focused on data accuracy and quality throughout the project, ensuring reliable results. By leveraging my Excel skills and maintaining a systematic workflow, I successfully executed the project and created a comprehensive report that fulfilled the objectives of providing marketing insights and investor metrics.

Tech-Stack Used:

For this project, I utilized Microsoft Excel as the primary software tool.

Data Cleaning:

Given Data had various missing and duplicate values. For accurate analysis we need to handle this missing data, and eliminate the duplicate data as it is redundant and might skew the results. For Removing the duplicate data we used excel's Remove Duplicates feature in the Data Tools Tab. We had 715 duplicate rows, which were removed completely.

To find missing values we used the COUNTBLANK formula in excel. =COUNTBLANK(A\$2:A\$11160)

Columns	No. of Null values	Count N/A or Unknown
Make	0	0
Model	0	0
Year	0	0
Engine Fuel Type	3	0
Engine HP	69	0
Engine Cylinders	30	0
Transmission Type	0	0
Driven_Wheels	0	0
Number of Doors	6	0
Market Category	0	3376
Vehicle Size	0	0
Vehicle Style	0	0
highway MPG	0	0
city mpg	0	0
Popularity	0	0
MSRP	0	0

We removed rows which had less no. of nulls and imputed values in columns such as Engine HP and Engine Cylinders according to the given data.

Data also had some outliers or false values, which needed to be handled. We plotted these outliers using BOX and Whisker chart type.

As seen in the The chart below the features have outliers, some of which are justified but, feature Highway MPG has value which is a bit out of range. So we check with the data of similar Cars and adjust it accordingly.

Insights:

Analysis:

Task 1:

Insight Required: How does the popularity of a car model vary across different market categories?

To perform this task we utilized a pivot table in excel that shows the number of car models in each market category and their corresponding popularity scores.

4	*	U	
1	Market Category	Count of Market Category	Average of Popularity
2	Flex Fuel,Diesel	16	5657
3	Hatchback,Flex Fuel	7	5657
4	Crossover, Flex Fuel, Performance	6	5657
5	Crossover,Luxury,Performance,Hybrid	2	3916
6	Crossover, Factory Tuner, Luxury, Performance	5	2607.4
7	Crossover, Performance	69	2585.956522
8	Crossover,Hybrid	42	2563.380952
9	Diesel,Luxury	47	2416.106383
10	Luxury,Performance,Hybrid	11	2333.181818
11	Hatchback, Factory Tuner, Performance	20	2271.9
12	Flex Fuel	855	2225.71345
13	Crossover,Luxury,Diesel	33	2195.848485
14	Factory Tuner,Luxury,High-Performance	215	2133.367442
15	Hybrid	121	2116.586777
16	Hatchback, Hybrid	64	2111.15625
17	Crossover,Flex Fuel	64	2073.75
18	Crossover Hatchback Factory Tuner Performance	6	2009

This pivot table shows Market Category with its count and average popularity for each. From the above pivot table we plot a combo chart of column-line charts. We select a secondary axis for count to better visualize the chart.

Task 2:

Insight Required: What is the relationship between a car's engine power and its price? To find the relationship between a car's engine power that is Engine HP and its MSRP, we utilize power pivot to find average MSRP for each Engine HP. We then copy this data into a new table and then create a scatter plot of Engine HP vs average MSRP.

Δ	A	R	C	ט	E	F
1	Engine HP	Average of MSRP		Engine HP 🔻	Average of MSRP 🔻	
2	163	2000		163	2000	
3	114	2000		114	2000	
4	102	2000		102	2000	
5	105	2000		105	2000	
6	63	2000		63	2000	
7	113	2000		113	2000	
8	73	2000		73	2000	
9	62	2000		62	2000	
10	96	2000		96	2000	
11	97	2000		97	2000	
12	82	2000		82	2000	
13	81	2000		81	2000	
4	90	2000		90	2000	
15	118	2000		118	2000	
16	92	2000		92	2000	
7	55	2000		55	2000	
18	214	2000		214	2000	
	1	2222			2000	

We now Create a scatter plot for the above table.

We have also added trendlines to understand how MSRP is changing according to the change in Engine HP. Trend seems to increase exponentially rather than linearly, but to predict more accurately we need to have more data available.

Task 3:

Insight Required: Which car features are most important in determining a car's price? To perform this analysis, we need to consider every feature which is correlated with the price of a car. For this we need to perform regression analysis and then plot coefficients of each feature to check which have most impact on MSRP. But for regression analysis we need to have numerical data, so we first convert the data into numerical data by converting categorical data into encoded data.

I		
2	Vehicle Size	Encoding
3	Compact	1
4	Large	3
5	Midsize	2
6		
7	Vehicle Style	Encoding
8	Coupe	1
9	Sedan	2
0	Convertible	3
1	4dr SUV	4
2	Wagon	5
3	Crew Cab Pickup	6
4	Extended Cab Pickup	7
5	4dr Hatchback	8
6	Regular Cab Pickup	9

We use this type of conversion to encode data into numerical values.

D	F	Н		J		K	L	N	P	Q
	Make (Encoded) ▼	Year	-	Engine Fuel Type (Encoded)	Engir	ne HP →	Engine Cylinders	Transmission Type (Encoded)	Driven Wheels (Encoded 🔻	Number of Doors ▼ Vehic
	1	. 20	800	1		1001	16	3	3	2
	1	20	009	1		1001	16	3	3	2
	1	. 20	800	1		1001	16	3	3	2
	2	20	16	2		1000	0	1	3	4
	2	20	016	2		1000	0	1	3	4
	2	20	15	2		1000	0	1	3	4
	2	20)14	2		1000	0	1	3	4
	2	20	14	2		1000	0	1	1	4
	2	20	016	2		1000	0	1	3	4
	2	20	15	2		1000	0	1	3	4
	2	20	015	2		1000	0	1	1	4

We get this type of data. But we have to normalize it first. As the parameters have very large differences in their ranges.

To normalize we find maximum and minimum values in each column and then, normalize them using the following formula.

=(Analysis_Task3!\$F2-Analysis_Task3!F\$11199)/Analysis_Task3!F\$11201

Here we subtract minimum values from each value and then divide with the difference between maximum and minimum values, to get normalized values between 0 and 1.

Thus all of the values will get converted into range from 0 to 1.

- 51	M	0	U	L .	1	U	- 11		,	N.	L	IVI	
	Make (Encoded) ▼ E	ngine Fuel Type (Encoded) 💌 Engine HP 🔻	Engine Cylinders 💌	Transmission Type (Encoded) 🔻	Driven Wheels (Encoded) 💌	Number of Doors 💌	Vehicle Size (Encoded) 🔻	Vehicle Style (Encoded) 🔻	highway MPG 🔻	city mpg 🔻	Popularity 🔻	MSRP 💌	
	0	01	1	0.666666667	0.666666667	0	0	0	0.005847953	0.0076923	0.144650752	1	
	0	0 1	1	0.66666667	0.66666667	0	0	0	0.005847953	0.0076923	0.144650752	0.825509	
	0	01	. 1	0.666666667	0.666666667	0	0	0	0.005847953	0.0076923	0.144650752	0.72581	
	0.021276596	0.2 0.998942918	0	0	0.666666667	1	1	0.066666667	0.271929825	0.6538462	0.245623342	0.064199	
	0.021276596	0.2 0.998942918	0	0	0.666666667	1	1	0.066666667	0.257309942	0.6461538	0.245623342	0.053297	
	0.021276596	0.2 0.998942918	0	0	0.66666667	1	1	0.066666667	0.251461988	0.6307692	0.245623342	0.049905	
	0.021276596	0.2 0.998942918	0	0	0.66666667	1	1	0.066666667	0.239766082	0.6076923	0.245623342	0.049663	
1	0.021276596	0.2 0.998942918	0	0	0	1	1	0.066666667	0.228070175	0.6230769	0.245623342	0.044285	
)	0.021276596	0.2 0.998942918	0	0	0.666666667	1	1	0.066666667	0.277777778	0.7230769	0.245623342	0.042395	
1	0.021276596	0.2 0.998942918	0	0	0.666666667	1	1	0.066666667	0.274853801	0.6769231	0.245623342	0.040215	
2	0.021276596	0.2 0.998942918	0	0	0	1	1	0.066666667	0.228070175	0.6230769	0.245623342	0.037792	
3	0.021276596	0.2 0.998942918	0	0	0	1	1	0.066666667	0.228070175	0.6230769	0.245623342	0.037744	
4	0.021276596	0.2 0.998942918	0	0	0.66666667	1	1	0.066666667	0.271929825	0.7307692	0.245623342	0.03755	
5	0.021276596	0.2 0.998942918	0	0	0.66666667	1	1	0.066666667	0.263157895	0.7230769	0.245623342	0.03537	
5	0.021276596	0.2 0.998942918	0	0	0.666666667	1	1	0.066666667	0.263157895	0.7230769	0.245623342	0.03537	
7	0.021276596	0.2 0.998942918	0	0	0	1	1	0.066666667	0.257309942	0.6923077	0.245623342	0.035128	
3	0.021276596	0.2 0.998942918	0	0	0.666666667	1	1	0.066666667	0.27777778	0.7230769	0.245623342	0.033432	
9	0.021276596	0.2 0.998942918	0	0	0	1	1	0.066666667	0.228070175	0.6230769	0.245623342	0.032947	
)	0.021276596	0.2 0.998942918	0	0	0	1	1	0.066666667	0.248538012	0.6692308	0.245623342	0.032899	
1	0.021276596	0.2 0.998942918	0	0	0	1	1	0.066666667	0.248538012	0.6692308	0.245623342	0.032899	
2	0.021276596	0.2 0.998942918	0	0	0.666666667	1	1	0.066666667	0.260233918	0.7	0.245623342	0.031009	
3	0.042553191	0 0.734672304	0.75	0.666666667	0.666666667	0	0.5	0.133333333	0.01754386	0.0307692	0.204420866	0.258491	
4	0.042553191	0 0.734672304	0.75	0.666666667	0.666666667	0	0.5	0	0.01754386	0.0307692	0.204420866	0.236784	
5	0.063829787	0 0.714587738	0.75	0.666666667	0	0	0.5	0	0.011695906	0.0307692	0.490185676	0.154075	
5	0.063829787	0 0.714587738	0.75	0.666666667	0	0	0.5	0	0.011695906	0.0307692	0.490185676	0.152085	
7	0.063829787	0 0.714587738	0.75	0.666666667	0	0	0.5	0	0.011695906	0.0307692	0.490185676	0.152085	
3	0.042553191	0 0.702959831	0.75	0.666666667	0.66666667	0	0.5	0.133333333	0.011695906	0.0230769	0.204420866	0.264935	
9	0.042553191	0 0.702959831	0.75	0.666666667	0.666666667	0	0.5	0.133333333	0.011695906	0.0230769	0.204420866	0.264935	
)	0.042553191	0 0.702959831	0.75	0.666666667	0.666666667	0	0.5	0	0.01754386	0.0307692	0.204420866	0.240152	
1	0.042553191	0 0.702959831	0.75	0.666666667	0.66666667	0	0.5	0	0.01754386	0.0307692	0.204420866	0.240152	
2	0.085106383	0 0.689217759	0.5	0.333333333	0	0	1	0	0.026315789	0.0461538	0.326967286	0.030983	
3	0.085106383	0 0.689217759	0.5	0.333333333	0	1	1	0.066666667	0.029239766	0.0461538	0.326967286	0.030983	
4	0.085106383	0 0.689217759	0.5	0.333333333	0	1	1	0.066666667	0.029239766	0.0461538	0.326967286	0.030983	
5	0.085106383	0 0.689217759	0.5	1	0	0	1	0	0.026315789	0.0461538	0.326967286	0.029311	
_													

We now use this data to perform regression analysis by using the Data Analysis feature in the Data menu. We get following output:

SUMMARY OUTPUT								
Regression Statisti	ics							
Multiple R	0.693768659							
R Square	0.481314952							
Adjusted R Square	0.480758373							
Standard Error	0.021486617							
Observations	11196							
ANOVA								
	df	SS	MS	F	Significance F			
Regression	12	4.790932299	0.399244358	864.7741572	0			
Residual	11183	5.162908281	0.000461675					
Total	11195	9.95384058						
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	-0.031589947	0.001778814	-17.75899174	1.32073E-69	-0.035076737	-0.028103158	-0.035076737	-0.02810315
Make (Encoded)	-0.000126829	0.000898814	-0.141107322	0.887787701	-0.001888663	0.001635004	-0.001888663	0.00163500
Engine Fuel Type (Encoded)	-0.008170822	0.000930401	-8.782046676	1.83872E-18	-0.009994572	-0.006347073	-0.009994572	-0.00634707
Engine HP	0.109738052	0.003028023	36.24082452	5.1054E-272	0.103802594	0.115673511	0.103802594	0.11567351
Engine Cylinders	0.099772838	0.003461532	28.82331736	2.7635E-176	0.092987626	0.106558051	0.092987626	0.10655805
Transmission Type (Encoded)	-0.002025972	0.00084897	-2.386386485	0.017031389	-0.003690103	-0.00036184	-0.003690103	-0.0003618
Driven Wheels (Encoded)	0.001653045	0.000658457	2.510481034	0.012070678	0.000362352	0.002943737	0.000362352	0.00294373
Number of Doors	-0.000224093	0.000559842	-0.400279344	0.688958426	-0.001321482	0.000873295	-0.001321482	0.00087329
Vehicle Size (Encoded)	-0.016006733	0.000670551	-23.87101698	7.0368E-123	-0.017321131	-0.014692335	-0.017321131	-0.01469233
Vehicle Style (Encoded)	-0.006067337	0.001019628	-5.950541158	2.75268E-09	-0.008065987	-0.004068687	-0.008065987	-0.00406868
highway MPG	0.065650438	0.017952962	3.65680265	0.000256553	0.030459471	0.100841405	0.030459471	0.10084140
city mpg	0.035422796	0.006433244	5.506210878	3.74738E-08	0.022812505	0.048033086	0.022812505	0.04803308

By using this we can plot a bar graph to see which features are affecting the MSRP most.

We select coefficients of each features and create a bar graph as below:

As we can see from above graph that Engine HP, Cylinders and MPG are some of the deciding factors for the MSRP of a car.

Task 4: Insight Required: How does the average price of a car vary across different manufacturers? For doing this task we utilized pivot tables and found the average price of a car for each car manufacturer.

	A		ט	
	Car Manufactures	Ψļ	Average of MSRP	
!	Bugatti		1757223.667	
	Maybach		546221.875	
Ļ	Rolls-Royce		351130.6452	
,	Lamborghini		331567.3077	
į	Bentley		247169.3243	
•	McLaren		239805	
	Ferrari		238218.8406	
•	Spyker		214990	
0	Aston Martin		198123.4615	
1	Maserati		113684.4909	
2	Porsche		101622.3971	
3	Tesla		85255.55556	
4	Mercedes-Benz		72135.02647	
5	Lotus		68377.14286	
6	Land Rover		68067.08633	

By using this we can plot a column chart to visualize this data.

We can see here that brands such as Bugatti have very high average MSRP as they are into high end cars and don't have any cars in lower price segments.

Task 5:

Insight Required: What is the relationship between fuel efficiency and the number of cylinders in a car's engine?

To find relationships between fuel efficiency and number of cylinders in a car's engine we have to create a scatter plot of number of cylinders vs its MPG and see if there exists any trend by plotting a trendline.

We select two columns Engine Cylinders and Highway MPG and create a scatter plot.

We also create a correlation matrix to check if there exist any correlation between them. We create a pivot table of no. of Cylinders and Highway MPG and City MPG. We create a correlation matrix by using the CORREL function in excel and conditional formatting.

Α	В	С	D	E	F		G		H
No. of Cylinders 🔻 Avera	age of highway MPG	Average of city mpg		N	No. of Cylinde	rs 🔻	Average of highway MI	PG	Average of city mpg
0	81.6627907	90.1744186		O)		81.662	27907	90.174418
3	38.66666667	32.03333333		3	}		38.6666	66667	32.0333333
1	31.50057484	23.9029662		4	l		31.5005	7484	23.902966
i	26.06508876	18.77514793		5	j		26.0650	08876	18.7751479
i	24.00679634	17.13452074		6	j		24.0067	79634	17.1345207
}	20.17278287	14.18399592		8	3		20.1727	78287	14.1839959
0	20	12.56923077		1	.0			20	12.5692307
.2	17.73684211	11.25		1	.2		17.7368	34211	11.2
.6	14	8		1	.6			14	
Grand Total	26.61403352	19.73214446							
J		K					L		М
_	Correlati	on Between Cylin		d Highway	MPG				
	No. of Cy	linders			Ave	erag	e of highway MPG	Ave	rage of city mpg
No. of Cylinders					1				
Average of highwa	ay MPG			-0.777	7122379		1		
Average of city mp	og			-0.729	775621		0.996412646		1

As we can see there is less correlation between MPG and no. cylinders. But there is high correlation between highway MPG and city MPG.

Dashboard:

Task 1: How does the distribution of car prices vary by brand and body style?

We created a stacked column chart of car price for each brand and each body style in that column. To create this chart, we first need to create a pivot table consisting of Sum of MSRP for each category. These categories being, brand of car in row and body style in columns and we get an interactive table consisting of total MSRP for each body style that each car brand makes. Table looks like below:

A	В	С	D	E	F	G	Н	1	J	K		L	М		N		0	Р	Q	R
1 Sum of MSRP	Body Style 🔻																			
2 Car Brand	→ 2dr Hatchback 2	2dr SUV 4	dr Hatchback	4dr SUV	Cargo Minivan	Cargo Van	Convertible	Convertible SUV	Coupe	Crew Cab Pickup	Extended	d Cab Pickup	Passenger Mi	inivan	Passenger Van	Regular	Cab Pickup	Sedan	Wagon	Grand Total
3 Genesis																		139850		139850
4 Plymouth	40000		14000				85631		8000)				31688				38759	16000	234078
5 Alfa Romeo							129800		178200)										308000
6 Spyker							219990		209990)										429980
7 HUMMER				377490						242405										619895
8 Scion	366325		282470						330210)								32500	184445	1195950
9 McLaren							280225		918800)										1199025
10 FIAT	420715			369305			327965												287570	1405555
11 Tesla																		1534600		1534600
12 Oldsmobile				238150			2000		274015	5			4	492055				665161	20000	1691381
13 Lotus							413260		1501300)										1914560
14 Saab	12000		34586	541905			632628											1066500	751280	3038899
15 Pontiac	148782		162975	401550			463914		663715	5			5	541192				1156535	20855	3559518
16 Mitsubishi	370169		403835	2009807	2000		209893			240210		134360)	2000			8000	1058563		4438837
17 Chrysler	98805			250545			628105		112510)				922295				2479859	501075	4993194
18 Bugatti									527167											5271671
19 Buick				2141770			179325		18534	1				330065				2838590	8212	5516496
20 Subaru	12000		678060	2539900					354470									1833110	10000	5793521
21 Kia			406960	2049645					142630				4	494650				1976360	772405	5842650
22 Suzuki	44496	12000	584387	2303493				12019		304131		259659						1797070	683707	6109137
23 Maserati				155000			2342963		1972284									1782400		6252647
24 Hyundai	789650		528880	1994390			20 .2500		685920					133075				2323987		6455902
25 Lincoln	703000		020000	3422570					17342					200010				2458245	269705	6621122
26 Volvo	157550			3131700			121600		6000									2072945		7906766
27 Mazda	18000	12000	853180	3175515			870505		541879			580033	. 4	443130			265486		33350	8411649
28 Acura	480917	12000	357440	2663505			0,0000		793748			50005.					200-101	4134552	201360	8631522
29 Maybach	400317		337440	2005505			2762750		755740	•								5976800	201300	8739550
30 Land Rover		476394		8839200			2.02.00	14573	ı									0570000		9461325
31 Lexus			94700				472065		101647	,								4837596	31105	9604912
32 Rolls-Royce			3.700	-102574			2141365		2204675									6539010	52205	10885050
33 Honda	413200		1919260	3800589			252135		1588705					553185				2264390		11541679
34 Dodge	38000	12000			60520	338497	6000		2973842			684682		557425	7070	8	651408		793055	13147377
35 Porsche	28827	12000	10000	1815200	55520	550-57	4504586		4758533			00-1002			,070	-	001400	2713500	, 55055	13820646
36 Infiniti	20027			4340200			980050		2175750									6490009		13986009
37 GMC		118835		6633919	142750	460085	200030		21/3/30	4062482		2175866		150630	59967	n	1284328			15628565
38 Nissan	14683	110000	1347320		128620	400083	1406552	12107	2937632			1026379		413320	33907	•	19914		175000	15935555
	14083		134/320	4149030	128020		4723811		11713289			1020375	, '	+15320			19914	1/03130	1/3000	16437100
39 Ferrari							4/23811		11/13289	7										10437100

We can plot a stacked column chart from this table where each column in the chart for a particular brand would have the total sum of MSRP of all body styles and sections would have different colors to identify each body style. Chart looks like below:

We can also change chart features by changing the filter in the pivot table.

Task 2: Which car brands have the highest and lowest average MSRPs, and how does this vary by body style?

We created a clustered column chart of average car price for each brand and each body style in that column. To create this chart, we first need to create a pivot table consisting of the average of MSRP for each category. These categories being, brand of car in row and body style in columns and we get an interactive table consisting of average MSRP for each body style that each car brand makes.

Pivot table looks like below:

Average of MSI	RP Body Style 💌															
Car Brands	→ 2dr Hatchback	2dr SUV	4dr Hatchback 4	4dr SUV	Cargo Minivan Cargo Van	Convertible	Convertible SUV	Coupe	Crew Cab Pickup	Extended Cab Pickup	Passenger Minivan	Passenger Van	Regular Cab Pickup	Sedan	Wagon	Grand Total
Bugatti								1757223.667								1757223.66
Maybach						1381375								426914.2857		546221.87
Rolls-Royce						428273		367445.8333						326950.5		351130.645
Lamborghini						336402.381		328291.9355								331567.307
Bentley						250536.25		254270.4						236836		247169.324
McLaren						280225		229700								23980
Ferrari						214718.6818		249218.9149								238218.840
Spyker						219990		209990								21499
Aston Martin						203379.3056		192892.6042						206962.1429		198123.461
Maserati				77500		130164.6111		116016.7059						99022.22222		113684.490
Porsche	5765.4			82509.09091		115502.2051		99136.10417						123340.9091		101622.397
Tesla														85255.55556		85255.55556
Mercedes-Benz	2		40933.33333	68400.13889	28950	104617.5273		109713.678			32500			48833.90299	43069	72135.02647
Lotus						51657.5		75065								68377.1428
Land Rover		39699.5		71283.87097			48577									68067.0863
BMW	26699		55155	58536.11111		63814.07246		52445.25397						71832.11009	43266.66667	62162.5586
Alfa Romeo						64900		59400								6160
Cadillac				72551.06061		70400.5		45439.6	66572.22222					51178.5163	47364	56368.2651
Audi	2000			48634.54545		70029.89362		93586.57895						46391.87013	33894	54574.121
Lexus			31566.66667	45042.48571		52451.66667		50823.6						48864.60606	31105	47549.0693
Genesis														46616.66667		46616.6666
Lincoln				50331.91176				2167.75	41205.45455					41665.16949	44950.83333	43560.0131
Infiniti				45686.31579		46669.04762		40291.66667						41076.00633		42640.2713
HUMMER				37749					34629.28571							36464.4117
Acura	17175.60714		51062.85714	42959.75806				39687.4						33614.2439	33560	35087.487
GMC		8488.214286		37479.76836	23791.66667 21908.80952				39062.32692	27895.7179	5 25105	28555.71429	25182.90196			32695.7426
Volvo	26258.33333			45386.95652		40533.33333		2000						22289.73118	26271.42391	29724.6842
Buick				33996.34921		25617.85714		2059.333333			30005.90909			29568.64583	2053	29034.1894
Chevrolet	2000	13807.85714	18930.29412	33553.95876	20007.14286 8298.666667	62835	17716.66667	38939.16667	39255.74172	24170.1627	9 24934.28571	28555.71429	19824.84211	19882.64865	15825	29018.3500
Volkswagen	24134.62963		28416.21053	41699.1		27673.68675		2000			29239.67742			30795.79861	26385.64815	28978.5228
Nissan	2097.571429		24059.28571	34294.46281	21436.66667	39070.88889	43691.66667	35393.15663	32733.78378	20527.5	8 22962.22222		2212.666667	22604.23077	17500	28921.1524
Toyota	18950		22186.50794	40851.6		25777.86667		15615.28846	36845.82353	26251.3082	7 30038.73846		17592.66667	24800.27083	31742.4359	28846.560
Ford	2000	16133.55172	19572.93103	42027.60577	19700 20605.59259	34762.2381		34101.07317	41566.13187	23808.1666	7 22587.17391	32836.45946	17797.80822	23258.65306	30066.01852	28525.1828
Saab	2000		2034.470588	41685		28755.81818								36775.86207	34149.09091	27879.8073
Chrysler	32935			35792.14286		25124.2		22502			29751.45161			26103.77895	26372.36842	26990.2378
Honda	17216.66667		26656.38889	28575.85714		36019.28571		21763.08219	34100.68182		36879			26027.47126		26655.1478
Kia			19379.04762	31533				20375.71429			32976.66667			23811.56627	20326.44737	25513.7554

We can plot a clustered column chart from this table where each cluster in the chart for a particular brand would have the column of average MSRP of all body styles and sections would have different colors to identify each body style. Chart looks like below:

Task 3: How do the different features such as transmission type affect the MSRP, and how does this vary by body style?

To find the effect of transmission type on MSRP we have to create a pivot table and add body style as column and transmission type as row. We consider the average of MSRP to better visualize the data. We get the following pivot table.

-		J**							
4	Α	В	С	D	Е	F	G	Н	
	Average of MSRP	Body Style 🔻							
2	Transmission Type	2dr Hatchback	2dr SUV	4dr Hatchback	4dr SUV	Cargo Minivan	Cargo Van	Convertible	Conve
3	AUTOMATED_MANUAL	27470.41667		29347.04545	40451.15385			129082.2339	
Į.	AUTOMATIC	20784.09901	24153.60606	23888.73529	41658.40017	20292.93103	17019.29762	95153.3131	
5	DIRECT_DRIVE	31800		32799.72973	49800				
5	MANUAL	12840.65556	9173.018519	17500.36364	17422.08791			64794.34437	1
7	Grand Total	16220.74634	14855.31034	22416.46757	40747.54467	20292.93103	17019.29762	88439.88633	
3									
)									

We copy down the contents of the pivot table to create a scatter plot. Scatter plot look like below:

Task 4: How does the fuel efficiency of cars vary across different body styles and model years? To find how fuel efficiency of a car varies across different body styles across different years we create a pivot table consisting of average highway MPG and City MPG across body styles as columns and years as rows. We get following table:

,		11	Ü	•	-				_
								Body Style 🔻	
Cargo Minivan		4dr SUV		4dr Hatchback		2dr SUV		2dr Hatchback	
Average of city m	Average of highway MPG	Average of city mpg	Average of highway MPG	Average of city mpg	Average of highway MPG	Average of city mpg	Average of highway MPG	Average of city mpg	Year
			31	22	20	15.25	30.4	23.6	1990
	20	14.5			16.25	12.5	29.83333333	22.16666667	1991
	21	15.5	28.16666667	21.33333333	18.28571429	13.85714286	29.39285714	22.39285714	1992
	21	15.5	28.125	22.25	18.85714286	14	28.25925926	21.48148148	1993
	20	15	27.14285714	21.28571429	17.625	13.25	27.05263158	20.42105263	1994
1			27.66666667	22	16	12	28.6	21.6	1995
1	21.25	18.5	26.125	18.625	20	16.2	28.8	21.2	1996
	19.7	16	26.66666667	18.88888889	22	18.66666667	26.25	19.5	1997
	22.11111111	18.22222222	24.5	18	26	22	23.2	17.2	1998
	18.3	13.3			18.5	14	30.33333333	24	1999
	17.73333333	13.6			18.5	14	31.22222222	24	2000
	18.72727273	14.45454545			18.66666667	14.33333333	29	22.28571429	2001
	19.79411765	15.73529412			19	14.25	25.25	17	2002
15.166666	19.22857143	14.97142857			18.75	14.08333333	29.75	22	2003
1	19.04081633	14.65306122	34	27	18.75	14.25	29.71428571	22.28571429	2004
15.333333	19.33333333	14.19047619	30.6	22.8	18.66666667	14.33333333	30.33333333	22.55555556	2005
16.333333	20.19444444	15.58333333	28.75	20.58333333			27.25	19.66666667	2006
,	20.46296296	15.38888889	27.45454545	18.54545455			25.09090909	17.72727273	2007
	20.765625	15.78125	28.33333333	20.16666667			26.42857143	18.85714286	2008
	22.59139785	17.39784946	31	24			29	20.25	2009
	23.25454545	18.21818182	29.5	21.8125			27.125	19	2010
	23.58333333	18.68055556	28.93103448	21.44827586			27.83333333	19.83333333	2011
	23.8444444	19.15555556	31.76190476	24.78571429			30.21428571	21.35714286	2012
	24.47368421	19.12280702	32.8627451	26.11764706			31.90909091	23.45454545	2013
	24.2231405	18.15702479	45.46808511	43.82978723			34.75	28.25	2014
2	25.76350093	19.04283054	41.57638889	35.95138889	30	21	36.10294118	28.41176471	2015
22.333333	26.1965812	19.61025641	42.28	37.456	30	21	36.26530612	28.85714286	2016
,	25.70974576	19.36016949	40.29411765	34.75630252	29	21	37.4375	31.75	2017
18.517241	24.508028	18.48456155	37.81146305	32.08898944	19.55172414	14.85057471	31.37804878	otal 24.0804878	Grand T

We use this table to create a line plot with markers to visualize the data as a timeline and across different body types.

Task 5: How does the car's horsepower, MPG, and price vary across different Brands? To find relationships between a car's horsepower and MPG and price across different brands we can create a bubble plot to better visualize, for this we find average MPG, price and horsepower across each brand and create a pivot table. This pivot table looks like below:

4	Α		В	С	D	E	
	Row Labels	▼ /	Average of Engine HP	Average of city mpg	Average of highway MPG	Average of MSRP	
	Acura		244.9634146	20.00406504	28.2195122	35087.4878	
	Alfa Romeo		237	24	34	61600	
	Aston Martin		483.7582418	12.56043956	18.93406593	198123.4615	
	Audi		280	19.63551402	28.92834891	54574.1215	
	Bentley		533.8513514	11.55405405	18.90540541	247169.3243	
	BMW		329.6203704	20.70061728	29.12654321	62162.55864	
	Bugatti		1001	8	14	1757223.667	
	Buick		220.0105263	18.78421053	27.01052632	29034.18947	
0	Cadillac		332.7954545	17.36111111	25.24494949	56368.26515	
1	Chevrolet		249.4837512	19.12070566	25.93221913	29018.35005	
2	Chrysler		230.5351351	17.74054054	26.38378378	26990.23784	
3	Dodge		254.5984848	16.45643939	22.99810606	24900.33523	
4	Ferrari		511.9565217	10.56521739	15.72463768	238218.8406	
5	FIAT		136.6129032	30.64516129	37.33870968	22670.24194	
5	Ford		248.7730061	17.89815951	23.87730061	28525.18282	
7	Genesis		347.3333333	16.33333333	25.33333333	46616.66667	
3	GMC		268.2949791	15.79916318	21.47698745	32695.74268	
9	Honda		195.8637413	25.2147806	32.39953811	26655.14781	
)	HUMMER		261.2352941	13.52941176	17.29411765	36464.41176	

We copy this contents to create a table to create a bubble plot.

On the X axis there would be average horsepower and on the Y axis average MPG. Each bubble would represent each car brand and would be labeled to better identify the brands

Making Dashboard:

We have created each chart to visualize different parameters and relationships and trends, we can now create a dashboard by combining all these charts into one single worksheet to have a better understanding of the data. We copy all these charts into one worksheet and add slicers to change parameters which are shown the data point for. We add two slicers in the worksheet, make, and vehicle style, which represent car brand and body style. We then make connections with these slicers with all the charts to make the dashboard functional. Now we can easily find different trends and relationships between price and parameters.

Dashboard looks like below:

Results:

While working on this project, I have gained a better understanding of Impact of Car Features on Price and Profitability as well as popularity of the Car. I have improved my understanding of Advanced Excel methodologies. By analyzing Car features Data, I was able to provide insights on various aspects such as Features most affecting MSRP, Outliers in the Data, relation between Engine HP and MSRP, Regression Analysis, average MSRP across different brands and relation between no. of cylinders and fuel efficiency. I was also able to create different visualizations to improve data understanding and create a dashboard for ease of understanding between various parameters in Car Features.

This project has helped me enhance my Excel skills, particularly in data visualization and creating pivot tables and charts to derive meaningful insights. It has also improved my ability to interpret data and provide actionable recommendations based on the analysis.