Université de Tours-L2-Géométrie 2020-2021

Feuille 2

Exercice 1

1. Démontrer que pour toute matrice S orthogonale indirecte, il existe un unique réel $\theta \in [0,2\pi[$ de sorte que

$$S = S_{\theta} = \begin{pmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{pmatrix} \tag{1}$$

- 2. En déduire que $S_{\theta}u_{\theta/2} = u_{\theta/2}$ et $S_{\theta}u_{\theta/2+\pi/2} = -u_{\theta/2}$. S_{θ} est une symétrie orthogonale d'axe $\mathbb{R}u_{\theta/2}$
- 3. Déterminer la matrice de la rotation qui envoie le vecteur (2,4) sur le vecteur $(1-\sqrt{3},\sqrt{3}-2)$
- 4. Déterminer la matrice de la symetrie orthogonale qui envoie le vecteur (1,0) sur le vecteur $\frac{1}{\sqrt{2}}(1,1)$
- 5. Déterminer la matrice de la projection orthogonale d'image $D := \{(x, y) : y = 0\}$

Exercice 2

- 1. Etant données deux droites vectorielles de vecteur directeur respectif \vec{u} et \vec{v} . On supposera que $\{\vec{u}, \vec{v}\}$ est une famille libre.
 - 1. Donner l'expression vectorielle de la projection sur $Vect(\vec{u})$ parallélement à $Vect(\vec{v})$ quand \vec{u}, \vec{v} sont respectivement les vecteurs de la base canonique $\vec{e_1}, \vec{e_2}$
 - 2. Donner l'expression vectorielle de la projection sur $Vect(\vec{u})$ parallélement à $Vect(\vec{v})$ dans le cas général.
 - 3. Représenter graphiquement \vec{u} , \vec{v} et construire géométriquement $p(\vec{w})$ pour un vecteur \vec{w} . Vérifier géométriquement que p est bien linéaire.
 - 4. On pose $\vec{u} = \vec{e_1} + \vec{e_2}$, $\vec{u} = \vec{e_1}$. Donner la matrice de p dans la base canonique.
 - 5. Montrer qu'il existe exactement deux symétries orthogonales S_1 et S_2 qui envoient $Vect(\vec{u})$ sur $Vect(\vec{v})$.
 - 6. **2.** Soit Δ_1 (resp. Δ_2) la droite invariante par S_1 (resp. S_2). Montrer que Δ_1 et Δ_2 sont orthogonales.

Exercice 3

On utilisera les notations de l'exercice 1 et on notera

$$R = R_{\theta} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \tag{2}$$

1. Calculer l'inverse de S_{θ} puis calculer $S_{\phi}^{-1}R_{\theta}S_{\phi}$.

- 2. Calculer l'inverse de R_{θ} puis calculer $R_{\phi}^{-1}S_{\theta}R_{\phi}$.
- 3. En vous inspirant de la preuve vue en cours pour établir que $\langle Ru, Rv \rangle = \langle u, v \rangle$, en déduire que $\langle Su, Sv \rangle = \langle u, v \rangle$.
- 4. Montrer que pour tout $n \in \mathbb{N}$ * il existe sous-groupe de $O^+(2)$ qui soit de cardinal n.
- 5. Trouver un sous-groupe de cardinal deux inclus dans O(2) mais pas dans $O^+(2)$
- 6. Montrer que O(2) n' est pas commutatif.
- 7. Montrer que pour tout $n \in \mathbb{N}^*$ il existe sous-groupe de G de O(2) qui soit de cardinal 2n et tel que $G \not\subset O^+(2)$

Exercice 4

- a) Dans la base orthonormale canonique trouver l'expression de la matrice de la projection orthogonale S_1 autour de la droite vectorielle d'équation $\sqrt{3}x y = 0$.
- **b)** Dans la base orthonormale canonique trouver l'expression de la matrice de la symétrie orthogonale S_1 autour de la droite vectorielle d'équation $\sqrt{3}x y = 0$.
- b) On compose avec la symétrie orthogonale S_2 autour de la droite d'équation $x + \sqrt{3}y = 0$. Décrire l'isométrie $S_2 \circ S_1$ et calculer la matrice qui la représente dans la base canonique.
- c) Soit J l'application linéaire définie par J(x,y)=(-y,x). Quelle application est représentée par la matrice $J \circ R_{\pi/3}$?
- d) Déterminer la matrice de la projection orthogonale sur la droite d'équation x y = 0.

Exercice 5

On considère les applications de \mathbb{R}^2 dans \mathbb{R}^2 suivantes :

$$F\left(\left(\begin{array}{c}x\\y\end{array}\right)\right) = \left(\begin{array}{c}\frac{4x+2y}{5}\\\frac{2x+y}{5}\end{array}\right), \quad G\left(\left(\begin{array}{c}x\\y\end{array}\right)\right) = \frac{1}{5}\left(\begin{array}{c}3x+4y\\4x-3y\end{array}\right) \qquad H\left(\left(\begin{array}{c}x\\y\end{array}\right)\right) = \left(\begin{array}{c}3x+4y\\4x-3y\end{array}\right) \tag{3}$$

$$I\left(\left(\begin{array}{c} x \\ y \end{array}\right)\right) = \left(\begin{array}{c} x+1 \\ y+2 \end{array}\right), \quad J\left(\left(\begin{array}{c} x \\ y \end{array}\right)\right) = \frac{1}{\sqrt{2}} \left(\begin{array}{c} x-y \\ y+y \end{array}\right) \tag{4}$$

Pour chacune de ces applications préciser lesquelles sont linéaires, lesquelles sont des isométries, et tentez de les reconnaitre si possible (projections, symmétries, rotations, translations, autres...)

Exercice 6

On considère

$$\mathcal{N} = \left\{ \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix}, \quad a \in \mathbb{R} \right\} \tag{5}$$

- 1 Montrer que \mathcal{N} est un sous-groupe des matrices inversibles $GL(2,\mathbb{R})$ pour le produit de matrices.
- 2 Montrer que $\mathcal N$ est isomorphe au groupe additif des réels

(on rappelle qu'un isomorphisme $f: G \longrightarrow H$ d'un groupe (G, .) dans un groupe (H, .) est une bijection telle que $f(g, g') = f(g) . f(g'), \forall g, g' \in G$).

- 3 Soit $v \in \mathbb{R}^2$; décrire $\mathcal{N}.v := \{N.v : N \in \mathcal{N}\}$ en fonction de v.
- 4 Montrer que les éléments de \mathcal{N} conservent la forme bilinéaire $\langle \cdot, \cdot \rangle$ définie par

$$\langle \begin{pmatrix} x \\ y \end{pmatrix}, \begin{pmatrix} x' \\ y' \end{pmatrix} \rangle = yy' \tag{6}$$

On considère

$$\mathcal{A} = \left\{ \begin{pmatrix} \lambda & 0 \\ 0 & \frac{1}{\lambda} \end{pmatrix}, \quad \lambda \in \mathbb{R}^* \right\} \tag{7}$$

- 4 Montrer que \mathscr{A} est un sous-groupe des matrices inversibles $GL(2,\mathbb{R})$ pour le produit de matrices.
- 5 Montrer que A est isomorphe au groupe multiplicatif des réels non nuls.
- **6** Soit $v \in \mathbb{R}^2$; décrire $\mathscr{A}.v := \{A.v : A \in \mathscr{A}\}$ en fonction de v.
- 7 Montrer que O⁺(2) est isomorphe au groupe multiplicatif des complexes de module un.
- 8 Soit $v \in \mathbb{R}^2$; décrire $O^+(2).v := \{R.v : R \in O^+(2)\}$ en fonction de v.

Exercice 7

- 1. Etant données trois droites vectorielles de vecteur directeur respectif \vec{u} , \vec{v} et \vec{w} . On supposera que $\{\vec{u}, \vec{v}, \vec{w}, \}$ est une famille libre.
 - 1. donner l'expression vectorielle de la projection sur $Vect(\vec{u})$ parallélement à $Vect(\vec{v}, \vec{w})$ quand $\vec{u}, \vec{v}, \vec{w}$ sont respectivement les vecteurs de la base canonique $\vec{e_1} + \vec{e_2}, \vec{e_1}, \vec{e_3}$
 - 2. donner l'expression vectorielle de la projection sur $Vect(\vec{v}, \vec{w})$ parallélement à $Vect(\vec{u})$ quand $\vec{u}, \vec{v}, \vec{w}$ sont respectivement les vecteurs de la base canonique $\vec{e_1} + \vec{e_2}, \vec{e_1}, \vec{e_3}$
 - 3. donner l'expression vectorielle de la projection p_1 sur $Vect(\vec{u})$ parallélement à $Vect(\vec{v}, \vec{w})$ dans le cas général.
 - 4. donner l'expression vectorielle de la projection p_2 sur $Vect(\vec{u}, \vec{v})$ parallélement à $Vect(\vec{w})$ dans le cas général.
 - 5. On pose $\vec{u} = \vec{e_1} + \vec{e_2} + \vec{e_2}$, $\vec{v} = \vec{e_1} + \vec{e_2}$, $\vec{w} = \vec{e_1}$. Donner les matrices de p_1 et p_2 dans la base canonique.