Fundamentals of Information & Network Security ECE 471/571

Lecture #25: Digital Signature and Applications

Instructor: Ming Li

Dept of Electrical and Computer Engineering
University of Arizona

Digital Signature Schemes

- Definition of digital signatures
- RSA signatures
 - Construction
 - Correct usage
- Security of signature schemes
- Applications
 - How to combine encryption with signatures
 - Some example application scenarios

The RSA Signature Scheme

- Signing is equivalent to RSA decryption
- Verification is equivalent to RSA encryption

- Question: is the original RSA signature scheme secure?
 - Solutions?

Hash then sign!

Security of Signatures

Attack goals

- Total break--recovery of the private key.
- Selective forgery: The adversary is given a message m and is able to find a signature σ such that ver_k(m, σ)=true.
- Existential forgery: the adversary is able to find at least one valid (m, σ) pair.

Attacker knowledge

- Key-only attack--only public key is known.
- Known message attack--think of known plaintext.
- Chosen message attack--think of chosen plaintext

Question: can a signature scheme be unconditionally secure?

Security Analysis of RSA Signature

- Existential forgery with key only attack
 - Yes
- Existential forgery with known message attack
 - Yes
- Selective forgery with chosen message attack
 - Yes

Combination with Hashes

- Existential forgery with known message attack
 - No
- Existential forgery with chosen message attack
 - No
- Existential forgery with key-only attack
 - No

PKCS—Public Key Cryptography Standard: Signature

PKCS #1 for formatting a message to be signed:

	0	1	at least eight octets of ff ₁₆	0	ASN.1-encoded digest type and digest
--	---	---	---	---	--------------------------------------

- The encoding addresses several RSA threats: padding avoids smooth numbers w.h.p.
 - avoids cube root problem
 - including digest type avoids an obscure threat: MD4(m')=MD5(m) (why?)

Applications of Signatures

- Authentication (digital signature)
- Non-repudiation: Alice send a message to Bob. Later, Alice cannot deny having sent this message.
 - Sign M with Alice's private key : $C = d_K(A_s, M)$
 - Verify C with Alice's public key : $D = e_K(A_p,C)$
 - * Only Alice can generate C, but anybody can verify C.

Combining Encryption with Signature

Send an encrypted and authenticated message x from Alice to Bob

Describe how Bob recovers and verifies x

Send an encrypted and authenticated message x from Alice to Bob

Bob decrypts the ciphertext using sk_B

Bob verifies the validity of Alice's signature by running $ver_{pkA}(sig_{skA}(x), x) = true$

Surreptitious Forwarding

Sign Bob's ID, then Encrypt

Alice can also sign/encrypt/sign

Encrypt-then-Sign

Encrypt Alice's Name – then Sign

Alice can also encrypt/sign/encrypt

Application Example

Country A

Country B

A wants to make sure that the data is not changed by B B wants to make sure that the data does not contain anything else.

