<u>Cpu – lab 3 – kobi eini 201553245</u>

.pipeline בארכיטקטורת MIPS במעבדה זו התבקשנו לייצר מעבד

: ראשית נראה את הארכיטקטורה

MIPS - איור 1 – שרטוט מעבד ה

: הארכיטקטורה נבנתה בהשראת השרטוט

<u>איור 2 – רעיון המימוש</u>

המעבד שלנו בנוי מיחידת FETCH, יחידת DECODE, יחידת CONTROL, יחידת WRITEBACK, יחידת MEMORY, יחידת ECXECUTE

:FETCH

RTL FETCH – 3 איור

. program.hex – יחידה זו מבצעת משיכה של הפקודות מן ה

היחידה מבצעת קידום של ה – PCהנוכחי בארבע, ובוררת את משיכת הכתובת הרחידה מבצעת קידום של ה – DECODE, ובורר בקיום קפיצות. הבאה לפי קו PCsrcD, המתקבל מיחידת ה – hazards – היחידה יכולה גם לעקב את משיכת הפקודה הבאה כטיפול ב

FETCH איור 4 - דיאגרמת בלוק עבור

פונקציה	כיוון	גודל	שם
ברירת כתובת הבאה	IN	1	PCsrcD
עיקוב משיכת כתובת הבאה	ZI	1	StallF
כתובת עבור קפיצה	IN	8	PCBranchD
הכתובת המועבדת ליחידת ה - DECODE	OUT	32	InstructionF
לחישוב כתובת הקפיצה	OUT	10	PCplus4OUTF
PC-מיקום ה	OUT	10	PCOutF

FETCH איור 5 – טבלת פינים עבור

:DECODE

יחידה זו מבצעת תרגום של הפקודה, מבצעת קריאה וכתיבה מ/לרגיסטרים, מחשבת כתובת מיועדת במקרה של לקיחת קפיצה והאם תנאי הקפיצה מתקיים, בנוסף, מסייעת בזיהוי האזרדים.

RTL DECODE – 6 איור

DECODE איור 7 - דיאגרמת בלוק עבור

כיוון	גודל	שם
IN	1	RegWriteW
IN	1	forwarfBA
IN	1	forwarfBA
IN	5	Write RegW
IN	32	ResultW
IN	10	PCplus4D
IN	32	ALUOUTM
OUT	1	EqualD
OUT	32	Read data 1
OUT	32	Read data 2
OUT	32	Signex
OUT	10	PCbranchD
OUT	5	RsD
OUT	5	RtD
OUT	5	RdD
	IN IN IN IN IN IN OUT OUT OUT OUT OUT OUT OUT	IN 1 IN 1 IN 1 IN 5 IN 32 IN 10 IN 32 OUT 1 OUT 32 OUT 32 OUT 32 OUT 32 OUT 32 OUT 5 OUT 5

איור 8 – טבלת פינים עבור DECODE

:CONTROL

יחידה זו מבצעת חישובים לוגיים, לקביעת קווים עבור סנכרון המערכת וביצוע הפקודות.

איור 9 – RTL CONTROL ודיאגרמת בלוק

פונקציה	כיוון	גודל	שם
לחישוב PCsrcD, לביצוע קפיצה או לא	IN	1	EqualD
סוג הפקודה לביצוע	IN	6	Opcode
עבור חשוב הקוד ליחידת ה- ALU	IN	6	Funct
לחישוב הפעולה לביצוע ביחידה ה- ALU	OUT	3	ALUsrc
לזיהוי האזרדים	OUT	1	BranchD
עבור פקודת טעינה ל – 16 הגבוהים	OUT	1	Lui
לביצוע כתיבה לזיכרון	OUT	1	MEMWriteD
לביצוע כתיבה מזיכרון לרגיסטר	OUT	1	MEMtoReg
1 – ביצוע קפיצה, 0 – לא	TUO	1	PCsrcD
EXECUTE - ברירת רגיסטרים לבצוע פקודות ב	OUT	1	RegDestD
לסינכרון כתיבה לרגיסטר	OUT	1	RegWriteD
הפעולה לביצוע ביחידה ה- ALU	OUT	3	ALUcontrol

איור 10 – טבלת פינים עבור CONTROL

:EXECUTE

יחידה לביצוע הפעולות המתמטיות והלוגיות. בארכיטקטורת ללא פייפליין, חידה זו גם לפעמים מבצעת את חישוב הכתובות לקפיצה. בעיצוב שלנו, יצרנו יחידה נפרדת לחיושב הכתוסות בשלב ה – ID. פעולה זו יצרה בעיית סינכרון עליה לא ניתן דגש, עב חוסר זמן, ולכן יש צורך הכנסת פקודת nope, טרם קפיצה. לבעיה זו ינתן פתרון מאוחר יותר. ביחידה זו הוספנו גם את הרכיבים לביצוע פעולות על יצוג IEEE.

RTL EXECUTE – 11 איור

EXECUTE איור 12 – דיאגרמת בלוק עבור

פונקציה	כיוון	גודל	שם
B ברירת מקור האופרנד עבור כניסה	IN	1	ALUsrc
עבור כתיבה לערך עליון של רגיסטר	IN	1	Lui
ברירת רגיסטר לכתיבה	IN	1	RegDest
אופרנד 1	IN	32	ReadData1
אופרנד 2	IN	32	ReadData2
immediate עבור פקדות	IN	32	SignEx
עבור זיהוי הזארדים	IN	5	RtE
עבור זיהוי הזארדים	IN	5	RdE
הפעולה לביצוע על ידי יחידה ה - ALU	IN	3	ALUcontrol
לקידום אופרנד עבור טיפול בהזארד	IN	2	ForwardA
לקידום אופרנד עבור טיפול בהזארד	IZ	2	ForwardB
לקידום אופרנד עבור טיפול בהזארד	IZ	32	ALUOUTM
לקידום אופרנד עבור טיפול בהזארד	IZ	32	ResultW
ALU - מוצא ה	OUT	32	ALU_Result
לכתיבה לזיכרון	OUT	32	WriteDataE
לזיהוי הזארדים	OUT	5	WriteRegE

איור 13 – טבלת פינים עבור EXECUTE

:MEMORY

יחידה זו מבצעת את הקריאה והמשיכה אל ומהזיכרון.

<u> RTL MEM – 14 איור</u>

MEM איור 15 – דיאגרמת בלוק עבור

פונקציה	כיוון	גודל	שם
לביצוע כתיבה לזיכרון	ZI	1	Memwrite
כתובת זיכרון לכתיבה	IN	8	Address
ערך לכתיבה לזיכרון	IN	32	Write_data
הערך הנקרא מהזיכרון	OUT	32	ReadData

MEM איור 16 – טבלת פינים עבור

:WRITEBACK

יחידה לביצוע ברירת הערך המוחזר לרגיסטרים של המעבד. יחידה זו היא למעשה רק MUX.

RTL WRITEBACK – 17 איור

פונקציה	כיוון	גודל	שם
מידע מהזיכרון	IN	32	ReadDataW
מידע מיחידת ה – ALU	IN	32	ALUOUTW
ברירה בין הקווים הנ"ל	IN	1	MEMtoReg
MUX - מוצא ה	OUT	32	ResultW

WRITEBACK איור 18 – טבלת פינים עבור

ניתוח מסלול מקסימאלי:

<u>איור 19 – מסלול קריטי</u>

כמו שניתן לראות, המסלול הקריטי נמצא בשלב ה – EXECUTE, במחבר ה - ובבב ה הקודמת, פעולה זו דורשת הכי הרבה זמן, עקב שילוב כל המחברים, ולכן תקבע את זמן המחזור הכולל של המערכת לתפקוד תקין.

על מנת לייעל את זמן המחזור, ניתן לחלק את הרכיבים המשתתפים בפעולת חיבור ה- IEEE, בין שלבי ה – pipeline, או להוסיף שלבים ל – pipeline.

להלן מספר היחידות הלוגיות שנדרשו לכל יחידה:

ty	Logic Cells	Dedicated Logic Registers	I/O Registers	
₩ MIPS ♣	3007 (33)	1282 (0)	0 (0)	1
in control:CTL	14 (14)	0 (0)	0 (0)	(
DFF_Register:DF1	41 (41)	40 (40)	0 (0)	-
abd DFF_Register:DF2	100 (100)	99 (99)	0 (0)	-
DFF_Register:DF3	235 (235)	72 (72)	0 (0)	-
DFF_Register:DF4	71 (71)	71 (71)	0 (0)	-
Execute:EXE	943 (322)	0 (0)	0 (0)	-
abd Hazard_Unit:HU	41 (41)	0 (0)	0 (0)	(
abd Idecode:ID	1528 (1528)	992 (992)	0 (0)	(
▷ abd Ifetch:IFE	17 (17)	8 (8)	0 (0)	8
b abd dmemory:MEM	0 (0)	0 (0)	0 (0)	8

Total logic elements	3,962
Total combinational functions	3,007
Dedicated logic registers	1,282

איור 20 - יחידות לוגיות

כמו שניתן לראות, סה"כ יחידות לוגיות למימוש המבנה הינו 3962.

	Fmax	Restricted Fmax	Clock Name	Note
1	18.38 MHz	18.38 MHz	clock	

<u>איור 21 – תדר מקס'</u>

כמו שניתן לראות התדר המקס' הינו 18.38 מגה הרץ.

<u>:tb – הסבר על ה</u>

הערכים המוכנסים בקובץ ה data הינם:

```
7 .data
8 ir.vord 0x80000001
9 jr.vord 0x10000002
10 gr.vord 0x00000005
11 hr.vord 0x00100004
12 fr.vord 0x00000005
13 kr.vord 0x80000005
14 lr.vord 0x00000005
15 mr.vord 0x00000007
15 mr.vord 0x00000002
16 # num in rising order : 0x80000005 0x00000005 0x00000007 0x00100004 0x10000002
```

<u>איור 22 - קלט המיון</u>

הערכים מיוצגים ב – IEEE וכוללים מספרים חיוביים ושליליים, בעלי מנטיסה ושבר דומים ושונים. זאת על מנת להריץ טסט כולל כניתן.

לאחר הרצת התוכנית, על מנת שנוכל לעקוב אחרי שינוי קובץ הדאטה, ביצעתי קריאה של קובץ הדאטה לרגיסטרים 9-17 :

... {80000005} {80000001} {00000005} {00000005} {00000005} {00000007} {00000007} {00100004} {10000002} ...

איור 23 - פלט המיון

כמו שניתן לראות, הערכים מוינו נכון לפי גודלם.