

Simulado 2 – Intensivão para a OBA Gabarito

Material elaborado por Giulia Nóbrega e Iago Mendes.

Observação:

• As alternativas das perguntas deste gabarito não estão na mesma ordem do simulado.

Questões de Astronomia

• Questão 1) (1 ponto) A imagem abaixo traz 2 constelações muito famosas. A partir da imagem, responda o que se pede:

 Pergunta 1a) (1 ponto) (0,5 ponto cada acerto) Identifique quais são as constelações na imagem.

	Centauro	Cruzeiro do Sul	Cisne	Ursa Maior
Constelação da esquerda		X		
Constelação da direita				X

- Questão 2) (1 ponto) Abaixo temos descrições de diversos corpos celestes. Identifique-os:
 - Pergunta 2a) (0,25 ponto) Este corpo constantemente se afasta da Terra.
 Possui sempre a mesma face voltada para a Terra, ou seja, é bloqueado por marés.
 (X) Lua

() Sol		
() Vênus		

- Pergunta 2b) (0,25 ponto) Orbita um planeta que possui apenas dois satélites naturais, sendo sua órbita a de menor raio. Com o passar do tempo se aproxima cada vez mais de seu planeta, o que indica que futuramente será despedaçado devido à força gravitacional exercida pelo corpo maior.
 - (X) Fobos
 () Deimos
 () Ceres
 () Lua

() Marte

- Pergunta 3c) (0,5 ponto) É azulado e possui anéis. Demora aproximadamente 84 anos para completar sua translação. Possui 27 satélites naturais, sendo os principais Miranda, Ariel, Umbriel, Titânia e Oberon. É o menos massivo dos planetas gigantes.
 - (X) Urano() Júpiter() Saturno() Netuno
- Questão 3) (1 ponto) Na astronomia muitas vezes é útil estimar a altura de um objeto celeste. Como trabalhamos com corpos muito distantes de nós, a altura que medimos não é um comprimento, e sim um ângulo. Um dos objetos mais famosos utilizados para auxiliar esse cálculo é o sextante, que inclusive dá nome a uma constelação do hemisfério sul. Um aluno da OBA decide tentar fazer o mesmo, porém como não tem um sextante resolve improvisar. Ele finca uma vara de madeira de 1 m no chão e percebe que a sombra do objeto possui 1, 2 m.

Dados: $\tan(30^\circ) \approx 0.58$ $\tan(60^\circ) \approx 1.73$

Dica:

Lembre-se que para x entre 0° e 90° a função $\tan(x)$ é estritamente crescente.

- Pergunta 3) (1 ponto) Qual é aproximadamente a altura do Sol?
 - * Chamando a altura de Sol de h e usando o cenário descrito, podemos calcular o $\tan h$:

$$\tan h = \frac{1}{1,2} \approx 0,83$$

- * Usando os valores das tangentes de 30° e 60° e lembrando que $\tan(40^\circ)=1$ –, deduzimos que 30° $\leq h \leq 45^\circ$. Portanto, a única alternativa válida é 40°
- () 10°
- $(X) 40^{\circ}$
- $(60^{\circ}$
- $() 80^{\circ}$

- Questão 4) (1 ponto) Uma das missões da astronomia é determinar a distância de corpos luminosos até nós. Para isso, é muito comum estudar como a luz destes objetos se comporta. A prática mais comum é medir o fluxo de energia de tal corpo na Terra e assim, sabendo sua luminosidade, estimar sua distância. O espaço, no entanto, não é vazio, e a poeira interestelar nele presente absorve parte da radiação emitida, diminuindo a intensidade luminosa que captamos na Terra. Uma das equações mais utilizadas por nós para analisar esse efeito é a seguinte: $F' = Fe^{-nVA}$ onde F' é o fluxo captado na Terra, F é o fluxo que seria captado se não houvesse extinção, e é o número de Euler, V é o volume da nuvem de poeira e A é a área de seção transversal de um grão de poeira. Utilizando seus conhecimentos sobre análise dimensional, responda:
 - Pergunta 4a) (0,5 ponto) O que n pode representar?
 - * Considere $\alpha = -nVA$ como sendo o expoente da equação passada. Para que α seja adimensional, temos a seguinte unidade para n:

$$.[n] \cdot [V] \cdot [A] = 1 \qquad \therefore \qquad [n] = \frac{1}{[V] \cdot [A]} = \frac{1}{m^3 \cdot m^2}$$
$$\therefore \qquad [n] = \frac{1}{m^5} = m^{-5}$$

- * Como a unidade de n envolve somente comprimento, podemos eliminar as 2 últimas alternativas (considerando a ordem neste gabarito). Para que a resposta fosse a primeira alternativa, [n] deveria ser m. Portanto, ficamos com a segunda alternativa.
- * Uma maneira mais fácil de entender o que n representa seria dizer o número de partículas por volume de poeira interestelar por área de um grão de poeira, ou seja, uma densidade numérica.
- () A distância percorrida pela luz dentro da nuvem de poeira
- (X) A densidade numérica de partículas na nuvem
- () O tempo que a luz demora para percorrer a nuvem de poeira
- () A massa da nuvem de poeira
- Pergunta 4b) (0,5 ponto) O que aconteceria com F' se subitamente todos os grãos de poeira da nuvem dobrassem de tamanho?
 - * Se os grãos de poeira aumentarem de tamanho, A aumentará. Como $\alpha \propto -A$, o expoente de e vai diminuir.
 - * Além disso, pela equação dada, temos a seguinte proporção:

$$F' \propto e^{\alpha}$$

- * Portanto, F' diminuirá.
- () O expoente de e vai aumentar e consequentemente F^\prime aumentará
- () O expoente de e vai aumentar e consequentemente F' diminuirá
- () O expoente de e vai diminuir e consequentemente F' aumentará
- (X) O expoente de e vai diminuir e consequentemente F' diminuirá
- Questão 5) (1 ponto) Imagine que descobrimos um novo sistema planetário orbitando uma estrela muito distante. Essa estrela tem uma característica muito curiosa: sua densidade é igual a do Sol! A partir de diversas observações, astrônomos também descobriram que essa estrela é muito massiva, tendo uma massa de aproximadamente

1.000vezes a massa do Sol (isso não seria possível na vida real, mas para o exercício vamos considerar que é!).

Dados:

Massa do Sol $\approx 2 \cdot 10^{30} \, kg$ Raio do Sol $\approx 7 \cdot 10^8 \, m$ $1 \, UA \approx 1, 5 \cdot 10^{11} \, m$ $\pi \approx 3$

- Pergunta 5a) (0,5 ponto) Qual o volume dessa estrela?
 - * Primeiramente, vamos relembrar da equação da densidade para esferas:

$$\rho = \frac{M}{V} = \frac{3M}{4\pi R^3}$$

* Como a densidade das estrelas mencionadas no enunciado são iguais, temos:

$$\rho = \rho_{Sol} \quad \therefore \quad \frac{M}{V} = \frac{3M_{Sol}}{4\pi R_{Sol}^3}$$

$$\therefore \quad V = \frac{4\pi M R_{Sol}^3}{3M_{Sol}} = \frac{4\pi 10^3 M_{Sol} R_{Sol}^3}{M_{Sol}} = \frac{4 \cdot 3 \cdot 10^3 \cdot (7 \cdot 10^8)^3}{3} \approx 1, 4 \cdot 10^{30} \, m^3$$

- $() \approx 5, 2 \cdot 10^{25} \, m^3$
- $(X) \approx 1, 4 \cdot 10^{30} \, m^3$
- $() \approx 8.2 \cdot 10^{35} \, m^3$
- $() \approx 3, 4 \cdot 10^{40} \, m^3$
- Pergunta 5b) (0,5 ponto) Se medirmos o raio desta estrela usando a distância da Terra ao Sol como unidade, qual será aproximadamente o resultado obtido?
 - * Usando a mesma estratégia da pergunta anterior, temos:

$$V = 10^{3} \cdot V_{Sol} \quad \therefore \quad \frac{4\pi R^{3}}{3} = 10^{3} \cdot \frac{4\pi R_{Sol}^{3}}{3}$$
$$\therefore \quad R = 10 \cdot R_{Sol} = 10 \cdot 7 \cdot 10^{8} = 7 \cdot 10^{9} \, m$$

* Colocando em unidades astronômicas, temos:

$$V = \frac{7 \cdot 10^9}{1, 5 \cdot 10^{11}} \approx 0,05 \, UA$$

- $(X) \approx 0.05 UA$
- $() \approx 0.5 UA$
- $() \approx 5 UA$
- () $\approx 50 UA$

Questões de Astronáutica

Questões avançadas

