Write your name here		
Surname	Other nar	mes
Pearson Edexcel International Advanced Level	Centre Number	Candidate Number
Chemistry Advanced Subsidial Unit 3: Chemistry Lal	ry	
Wednesday 7 May 2014 – N Time: 1 hour 15 minutes	Morning	Paper Reference WCH03/01
Candidates may use a calcula	tor.	Total Marks

Instructions

- Use **black** ink or ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Answer the questions in the spaces provided
 there may be more space than you need.

InformationThe total mark for this paper is 50.

- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.
- You will be assessed on your ability to organise and present information, ideas, descriptions and arguments clearly and logically, including your use of grammar, punctuation and spelling.
- A Periodic Table is printed on the back cover of this paper.

Advice

- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over ▶

PEARSON

Answer ALL the questions. Write your answers in the spaces provided.

1 A series of tests was carried out on **A**, a white powder. **A** is known to contain one cation and one anion. Complete the table below. You may use names or formulae in your answers.

	Test	Observation	Inference	
(a)	Carry out a flame test on A .		Cation is calcium.	
(b)	Add a few drops of dilute nitric acid to an aqueous solution of A , followed by aqueous silver nitrate.		Anion is probably iodide.	
	Then add concentrated aqueous ammonia solution.		This confirms the anion is iodide.	
(c)	Add an aqueous solution of chlorine to an aqueous solution of A .	The colour of the resulting solution is	The colour is due to the formation of	
(d)	Add an aqueous solution of starch to the mixture formed in (c).	The colour of the resulting mixture is	This confirms the inference made in (c).	
(e)	Add a solution of sodium carbonate to an aqueous solution of A .	A white precipitate forms.	The precipitate is	
	When there is no further change, add dilute hydrochloric acid to the mixture.	The precipitate dissolves in the acid and bubbles of gas are seen.	The gas is	

(f) When concentrated sulfuric acid is added to a solid sample of A, there is a vigorous redox reaction.(i) Identify, by name or formula, the product formed by the oxidation of the	
iodide ion in this reaction. Describe the appearance of this product.	(2)
Product	
Appearance	
(ii) Identify, by name or formula, one product formed when the concentrated sulfuric acid is reduced. Describe an observation you could make that shows this product has formed.	(2)
Product	
Observation	
(Total for Question 1 = 12 ma	arks)

(ii) The general formula of an alcohol can be written ROH, where R is an alkyl group. The relative molecular mass of an alcohol Q is 88. The formula of the alkyl group may be represented as C _x H _y . State the values of x and y. X	(1)
group. The relative molecular mass of an alcohol Q is 88. The formula of the alkyl group may be represented as C _x H _y . State the values of x and y. X	
The relative molecular mass of an alcohol Q is 88. The formula of the alkyl group may be represented as C _x H _y . State the values of x and y.	
x	
When Q was warmed with a mixture of sulfuric acid and aqueous potassium dichromate(VI), there was no colour change.	
When Q was warmed with a mixture of sulfuric acid and aqueous potassium dichromate(VI), there was no colour change.	(1)
Deduce the displayed formula of alcohol Q .	(1)
	(1)

(1)	Identify these steamy fumes by name or formula.	
	identify these steamy furnes by fiame of formula.	(1)
(ii)	The steamy fumes were tested by reacting them with ammonia gas. A white smoke was seen.	
	Write an equation, including state symbols, for the reaction in which the white smoke was formed.	(2)
		(2)
	e of the isomers of the alcohol ${\bf Q}$ is an ether. Ethers contain two alkyl groups and sed by an oxygen atom and can be represented as R-O-R.	
who	plain how the information in an infrared spectrum would be used to decide ether the spectrum is produced by an alcohol or an ether. Wavenumber data	
are	not required.	(1)
	(Total for Question 2 = 7 ma	rks)
	(Total for Question 2 = 7 mai	rks)
	(Total for Question 2 = 7 mai	rks)
	(Total for Question 2 = 7 mar	rks)
	(Total for Question 2 = 7 mai	rks)
	(Total for Question 2 = 7 mai	rks)

3	(a) The concentrations of acids and alkalis can be found by titration using a suitable
	indicator.

Give the colours which are seen if the indicator phenolphthalein is used.

(2)

Colour in acid

Colour in alkali

(b) Another type of titration is a **thermometric** titration.

In a thermometric titration, 20.0 cm³ of 1.50 mol dm⁻³ hydrochloric acid was placed in a well-insulated cup, and its temperature was measured. Portions of sodium hydroxide solution were added from a burette. The mixture was stirred continuously and the temperature measured after each addition.

Total volume of sodium hydroxide added /cm³	0.00	5.00	10.00	15.00	20.00	25.00	30.00
Temperature / °C	20.4	22.8	25.5	28.0	27.2	24.1	20.8

On the axes opposite, plot a graph of temperature against the total volume of sodium hydroxide added. Draw two straight lines on your graph and extrapolate the lines until they intersect. Hence find the maximum temperature of the reaction mixture and the total volume of sodium hydroxide which just neutralized the hydrochloric acid.

(4)

Maximum temperature.....

Total volume of sodium hydroxide that just neutralized the hydrochloric acid.

- (c) In an experiment using a **different** sample of sodium hydroxide solution, 20.0 cm³ of 1.50 mol dm⁻³ hydrochloric acid was neutralized by 15.50 cm³ of sodium hydroxide solution. The starting temperature was 20.4°C and the temperature at neutralization was 30.6°C.
 - (i) Calculate the energy, in joules, transferred when the acid is just neutralized.

Energy transferred (J) = total mass of solution (g) $\times \frac{4.18}{(J g^{-1} {}^{\circ}C^{-1})} \times \frac{\text{temperature rise}}{({}^{\circ}C)}$

Assume that the density of the solution is 1 g cm⁻³.

(1)

(ii) The number of moles of hydrochloric acid used was 3.00×10^{-2} .

Calculate the enthalpy change of the reaction, in kJ mol⁻¹, for the neutralization of one mole of hydrochloric acid. Give your answer to **three** significant figures and include a sign.

(2)

 $\Delta H =$ kJ mol⁻¹

8

(iv) Thermometric titrations can also be carried out using an electronic probe connected to a computer, instead of a thermometer. The sodium hydroxide is run into the acid from the burette at a steady rate. The acid is in an insulated beaker with a magnetic stirrer. The computer then produces a plot of the results. Explain why this modified method can give improved results, other than because of any increase in accuracy of the temperature readings by the electronic probe. (2) (d) (i) Calculate the concentration, in mol dm ⁻³ , of the sodium hydroxide used when 20.0 cm³ of 1.50 mol dm ⁻³ hydrochloric acid is neutralized by 15.50 cm³ of sodium hydroxide.	(iii)	Why is it important that the temperature readings are taken as quickly as possible?	(1)
connected to a computer, instead of a thermometer. The sodium hydroxide is run into the acid from the burette at a steady rate. The acid is in an insulated beaker with a magnetic stirrer. The computer then produces a plot of the results. Explain why this modified method can give improved results, other than because of any increase in accuracy of the temperature readings by the electronic probe. (2) (d) (i) Calculate the concentration, in mol dm ⁻³ , of the sodium hydroxide used when 20.0 cm ³ of 1.50 mol dm ⁻³ hydrochloric acid is neutralized by 15.50 cm ³ of sodium hydroxide.			
The acid is in an insulated beaker with a magnetic stirrer. The computer then produces a plot of the results. Explain why this modified method can give improved results, other than because of any increase in accuracy of the temperature readings by the electronic probe. (2) (d) (i) Calculate the concentration, in mol dm ⁻³ , of the sodium hydroxide used when 20.0 cm ³ of 1.50 mol dm ⁻³ hydrochloric acid is neutralized by 15.50 cm ³ of sodium hydroxide.	(iv)		
because of any increase in accuracy of the temperature readings by the electronic probe. (2) (d) (i) Calculate the concentration, in mol dm ⁻³ , of the sodium hydroxide used when 20.0 cm ³ of 1.50 mol dm ⁻³ hydrochloric acid is neutralized by 15.50 cm ³ of sodium hydroxide.		The acid is in an insulated beaker with a magnetic stirrer. The computer then	
(d) (i) Calculate the concentration, in mol dm ⁻³ , of the sodium hydroxide used when 20.0 cm ³ of 1.50 mol dm ⁻³ hydrochloric acid is neutralized by 15.50 cm ³ of sodium hydroxide.		because of any increase in accuracy of the temperature readings by the	
20.0 cm ³ of 1.50 mol dm ⁻³ hydrochloric acid is neutralized by 15.50 cm ³ of sodium hydroxide.		ciectionic probe.	(2)
20.0 cm ³ of 1.50 mol dm ⁻³ hydrochloric acid is neutralized by 15.50 cm ³ of sodium hydroxide.			
20.0 cm ³ of 1.50 mol dm ⁻³ hydrochloric acid is neutralized by 15.50 cm ³ of sodium hydroxide.			
20.0 cm ³ of 1.50 mol dm ⁻³ hydrochloric acid is neutralized by 15.50 cm ³ of sodium hydroxide.			
20.0 cm ³ of 1.50 mol dm ⁻³ hydrochloric acid is neutralized by 15.50 cm ³ of sodium hydroxide.			
	(d) (i)	20.0 cm ³ of 1.50 mol dm ⁻³ hydrochloric acid is neutralized by 15.50 cm ³ of	
			(2)

	(ii)	Each time a burette is read, the error is ± 0.05 cm ³ .	
		Calculate the percentage error in using a burette to measure a volume of 5.00 cm ³ of sodium hydroxide.	
			(1)
(e)	(i)	When a titration is carried out using an indicator, the concentrations of acid and alkali are usually between 0.05 and 0.20 mol dm ⁻³ .	
		Explain why more concentrated solutions are used in thermometric titrations.	
			(1)
		Sodium bydrovido is described as an irritant at concentrations less than	
	(11)	Sodium hydroxide is described as an irritant at concentrations less than 0.50 mol dm ⁻³ .	
		In what way is more concentrated sodium hydroxide hazardous?	
			(1)
		(Total for Question 3 = 17 ma	rke)
		(Total for Question 3 – 17 ma	iks)

(1)

4 Butanone, CH₃COCH₂CH₃, can be prepared from butan-2-ol, CH₃CH(OH)CH₂CH₃, using the procedure below.

An organic solvent suitable for this procedure has a low boiling temperature and is extremely flammable, so adequate safety precautions must be taken.

Procedure

- 1. Place about 10 g of sodium dichromate(VI) and 20 cm³ of distilled water in a conical flask. Shake the flask to dissolve the solid. Then slowly add about 8 cm³ of concentrated sulfuric acid.
- 2. Dissolve 5.00 g of butan-2-ol in the organic solvent in a round-bottom flask. Stand the flask in a large beaker containing ice and water. Slowly add the acidified sodium dichromate(VI) solution through a funnel to the butan-2-ol solution in the flask.
- 3. When the addition is finished, leave the mixture to cool and separate the organic layer, which contains the butanone, from the aqueous layer.
- 4. Wash the organic layer with sodium hydrogencarbonate solution, and then with water. Discard the aqueous layer.
- 5. Add some sodium sulfate, Na₂SO₄, to the organic layer and wait until this solution is clear.
- 6. Decant the solution into a flask, and add a few anti-bumping granules. Use distillation to remove the solvent, which has a **lower** boiling temperature than butanone. The solvent boils between 32°C and 36°C.

(a)	Vhat colour change will be seen when the acidified sodium dichromate(VI) reacts
	vith the butan-2-ol?

From	to

(b) The reaction is exothermic. Other than the risk of explosion, why is it important to cool the flask in a beaker of ice and water in step 2 ?	(1)
(c) State the purpose of washing the crude butanone in step 4 with sodium hydrogencarbonate solution. Describe the method used to carry out this process, naming the piece of apparatus used.	(3)
urposelethod	
emod	
(d) What is the purpose of adding sodium sulfate in step 5 ?	(1)

(e)	Draw a labelled diagram of the apparatus used in step 6 to distil off the solvent
	from the organic layer. The diagram should show at least one precaution which
	must be taken when distilling an extremely flammable liquid.

(4)

(f) (i) Calculate the volume, in cm^3 , of 5.00 g of butan-2-ol.

The density of butan-2-ol is $0.805 \ g \ cm^{-3}$.

(1)

(ii) Each mole of butan-2-ol can produce a maximum yield of one mole of butanone.

Calculate the mass of butan-2-ol that would be required to make 3.00 g of butanone if the yield is 64%.

Relative molecular masses:

butan-2-ol	74.1
butanone	72.1

(3)

(Total for Question 4 = 14 marks)

TOTAL FOR PAPER = 50 MARKS

÷	w	6.9 Li lithium be	23.0 Na sodium ma	39.1	K potassium c 19		+	(32.9 Cs caesium to 55	[223] Fr francium 1	* Lanthanide ser	
7	(2)	9.0 Be beryllium 4	Mg magnesium 12		Ca Scar calcium scar 20	E	+	137.3 13 Ba L barium (anti	[226] [2 Ra A radium acti 88	* Lanthanide series	
			(3)	ů.	Sc scandium tite 21	~ 8	-	138.9 17 La* Anthanum har 57	Ac* [227] [2 Ac* [2 actinium nuthe 89 1	95	, , , <u>,</u>
		relative atom atomic (p	(4)	47.9	Ti titanium va 22	- E	+	178.5 Hf hafnium ta 72	Rf nutherfordium d	Ce Cerium pra	232 Th
	Key	relative atomic mass atomic symbol name atomic (proton) number	(5)	50.9	Vanadium 23	_ E	41	180.9 Ta tantalum 73	[262] Db dubnium s 105	141 Pr seodymium 1 59	[231] Pa
		mass ool umber	(9)	52.0	Cr chromium 24	95.9 Mo molybdenum	74	183.8 W tungsten 74	Sg seaborgium 106	144 Nd neodymium 60	238 U
			0	54.9	Cr Mn chromium manganese 24 25	[98] Tc technetium	43	186.2 Re rhenium 75	[264] Bh bohrium 107	141 144 [147] Pr Nd Pm prescodymium neodymium promethium 59 60 61	[237] Np
	1.0 H hydrogen 1		(8)	55.8	Fe iron 26	95.9 [98] 101.1 Mo Tc Ru molybdenum technierium ruthenium ruthenium	4	190.2 Os osmíum 76	[277] Hs hassium 108	150 Sm samaríum 62	238 [237] [242] [243] U Np Pu Am
	-		(6)	58.9	Co cobalt 27	- €	42	192.2 Ir iridium 77	[268] Mt metherium 109	152 Eu europium 63	[243] Am
			(01)	58.7	N ickel 28	Pd Pd palladium	40	195.1 Pt platinum 78	[268] [271]	157 Gd gadolinium 64	[247] Cm
			(11)	63.5	Cu copper 29		4/	197.0 Au gold 79	Rg roentgenium 111	Tb terbium 65	[245] BK
			(12)	65.4	Zinc 30	Cd cadmium	48	200.6 Hg mercuny 80	lr.	163 Dy dysprosium 66	
m	(13)	10.8 B boron 5	27.0 Al aluminium 13	2.69	Ga gallium 31	114.8 Indium	44	204.4 TI thallium 81	Elements with atomic numbers 112-116 have been reported but not fully authenticated	165 Ho holmium 67	[251] [254] Cf Es
4	(14)	12.0 C carbon 6	Siticon 14	72.6	Ge germanium 32	118.7 Sn tho	20	207.2 P b lead 82	atomic nu but not i	167 Er erbium 68	[253] Fm
2	(15)	14.0 N nitrogen 7	31.0 P phosphorus 15	74.9	AS arsenic 33	121.8 Sb antimony	6	209.0 Bi bismuth 83	tomic numbers 112-116 hav but not fully authenticated	169 Tm thullum 69	[256] Md
9	(91)	16.0 0 oxygen 8	32.1 S sulfur 16	79.0	Se selenium 34	127.6 Te tellurium	75	Po potentum 84	-116 have nticated	173 Yb ytterbium 70	[254] No
7	(17)	19.0 F fluorine	35.5 Cl chlorine 17	79.9	Br bromine 35	126.9 	23	[210] At astatine 85	рееп герог	175 Lu lutetium 71	[257] Lr
0 (8)	4.0 He helium	Ne neon	39.9 Ar argon 18	83.8	Krypton 36	131.3 Xe xenon	96	Rn radon 86	ted		

