Exponentialfunktioner och deras derivator

Wanmin Liu 2025-10-02 MAT3cTE24DC

Lektion 1

- Vad betyder talet *e*, som är ungefär 2,7.
- Derivatan av e^x .
- Derivatan av a^x för ett positivt tal a.

Potenslagar

Basen a ska vara **positiv** i funktion $y = a^x$.

•
$$a^{x+y} = a^x \cdot a^y$$
 $(a^x)^y = a^{x \cdot y}$ $a^{-x} = \frac{1}{a^x}$

$$\bullet (ab)^x = a^x b^x \qquad a^0 = 1$$

Derivatan av exponentialfunktion

Låt a vara ett positivt tal och $y = f(x) = a^x$.

•
$$\Delta x = h$$

•
$$\Delta y = f(x+h) - f(x) = a^{x+h} - a^x = a^x \cdot a^h - a^x = a^x (a^h - 1)$$
.

$$f'(x) = \lim_{h \to 0} \frac{\Delta y}{\Delta x} = \lim_{h \to 0} \frac{a^x (a^h - 1)}{h} = a^x \lim_{h \to 0} \frac{a^h - 1}{h}.$$

Om
$$x = 0$$
, så är $f'(0) = a^0 \lim_{h \to 0} \frac{a^h - 1}{h} = \lim_{h \to 0} \frac{a^h - 1}{h}$.

Definition av talet e.

Vi definierar talet e så att gränsvärdet är $\lim_{h\to 0}\frac{e^h-1}{h}=1$. Detta är en indirekt definition. $e=\lim_{n\to\infty}(1+\frac{1}{n})^n\approx 2.7$

Med definitionen av talet e har vi $D(e^x) = e^x$.

Uppgifter

S.98 - 99 3202, 3204, 3207, 3209, 3213 Hög nivå: 3216

Lektion 2

- Derivatan av e^{kx} för en konstant k: $D(e^{kx}) = ke^{kx}$
- Naturlig logaritm $y = \ln x$ för x > 0.
- Derivatan av a^x (för ett positivt tal a).
- Derivatan av a^{kx} för en konstant k och a > 0.

Om $x=e^y$, så är naturlig logaritm $y=\ln x$, dvs $\ln x$ är talet så att $e^{\ln x}=x$. Definitionsmängd av funktion $y=\ln x$ är alla positiva tal $\{x|x>0\}$.

Till exempel:

- $\ln 1 = 0$ eftersom $e^0 = 1$.
- Om a > 0, då är $a = e^{\ln a}$.

Varje exponentialfunktion $y=a^x \pmod{a>0}$ kan skrivas på formen $y=e^{kx}$.

Hur? Vi skriver om $a = e^{\ln(a)}$.

Då är
$$y = a^x = (e^{\ln a})^x = e^{\ln(a)x} \mod k = \ln(a)$$
.

$$D(a^x) = D(e^{kx}) = ke^{kx} = ka^x = a^x \cdot \ln a.$$

På samma sätt har vi $D(a^{kx}) = a^{kx} \cdot \ln(a) \cdot k$.

Uppgifter

S 102 - 103. 3218 a), c). 3221, 3224. Hög nivå: 3227

Exit-tickets

- 1. $D(e^x) = e^x$ eftersom ______.
- 2. $D(e^{3x}) =$ ______.
- 3. Vi skriver om en positiv tal a som $a=e^\square$ genom definition av naturlig logaritm $e^{\ln x}=x$.
- 4. $\ln 1 = \text{eftersom } e^{\square} = 1$.
- 5. Låt a>0. Med hjälp av formel $D(a^x)=a^x\cdot \ln a$ och $D(x^a)=a\cdot x^{a-1}$ har vi $D(\pi^x+x^\pi)=$ ______.