

Instituto Tecnologico de Buenos Aires

Ingeniera Electronica

ELECTRONICA III

Implementación de circuitos logicos

Autores:
Martín Rodriguez Turco
Tobias Scala
Guido Panaggio
Juan Martin Laguinge

Profesores:
Kevin DEWALD
Pablo WUNDES
Sebastian FALCONARO

5 de noviembre de 2018

Índice general

1. Ejercicio 2 1.1. Máquina de Moore	3
Appendix	5
References	6

Capítulo 1

Ejercicio 2

Se desea diseñar una máquina de estados que, al recibir la siguiente secuencia de bits en forma sincrónica 1-1-0-1 encienda una salida y en caso contrario, la mantiene apagada. Se obtienen 5 estados para la misma, en los cuales va a haber un default que va a ser el estado al cual todos los demás estados van a volver en caso de no recibir los deseados además de ser el estado por el cual va a empezar la máquina de estados.

Podemos representar los mismos en el siguiente diagrama de estados:

En donde Z es la salida dada por la máquina de estados al encontrarse en el estado co-

Figura 1.1: Diagrama de estados

rrespondiente y W es la entrada necesaria para que traicione al siguiente estado y la flecha es la encargada de indicar el sentido de la transición.

Este mismo esquema también queda encapsulado en la siguiente tabla de estados:

Cuadro 1.1: Tabla de estados

Estado	Estado siguiente		Salida
actual	W=0	$\mathbf{W} = 1$	${f Z}$
Default	Default	A	0
A	Default	В	0
В	\mathbf{C}	Default	0
C	Default	D	0
D	Default	Default	1

Para la implementación de esté falta realizar la asignación de valores de estado, lo cual nos lleva cambiar la tabla anterior por la siguiente:

Cuadro 1.2: Tabla de estados asignados

Estado	Asignacion del	Estado siguiente		Salida
actual	Estado actual	W=0	W=1	\mathbf{Z}
Default	000	000	001	0
A	001	000	010	0
В	010	011	000	0
С	011	000	100	0
D	100	000	000	1

1.1. Máquina de Moore

Para nuestro caso tenemos el siguiente circuito secuencial genérico:

Figura 1.2: Circuito generico

Donde vamos a utilizar Flip-Flops D dado que la entrada D de estos va a corresponder

con el estado siguiente Y_i y van a estar seteados por el clock para que esta salida luego cambia la variable y_i a Y_i , dado que y_i son las variables de estado actual. De la tabla 1, obtenemos los siguientes mapas de Karnaugh:

Appendix

Bibliografía

[1] Stephen Brown and Zvonko Vranesic. "Fundamentals of Digital Logic with Verilog Design" third edition.