# DS5 - Thermodynamique, RSF et filtrage

## Correction

### Exercice 1 – Calorimétrie adiabatique

1. Le premier principe s'écrit alors

$$\Delta U = W + Q.$$

Un transfert thermique est un transfert d'énergie qui se fait sans l'action d'une force macroscopique, contrairement au travail.

2. Pour une transformation quasi-statique isobare, le travail des forces de pression s'écrit

$$W = -P\Delta V = -\Delta(PV).$$

Le premier principe s'écrit alors

$$\Delta U = -\Delta(PV) + Q, \quad \text{d'où} \quad \Delta(\underbrace{U + PV}_H) = Q.$$

On retrouve donc l'expression du premier principe sur l'enthalpie

$$\Delta H = Q.$$

3. Avec la relation de Mayer, on retrouve

$$C_{\rm v,m} = \frac{R}{\gamma - 1}$$
 et  $C_{\rm p,m} = \frac{\gamma R}{\gamma - 1}$ .

4. On considère le système {gaz + cuivre} qui subit la transformation

avec  $V_1 = 0.95V_0$ .

Puisque les pressions initiales et finales sont égales, on a en appliquant la loi des GP au gaz

$$\frac{T_1}{V_1} = \frac{T_0}{V_0}$$
, d'où  $T_1 = \frac{V_1}{V_0}T_0 = 0.95T_0$ .

A.N. :  $T_1 = 12 \,^{\circ}$ C.

Rq : l'hypothèse monoP suffit pour la suite de l'exercice, mais on peut raisonnablement supposer que la transformation est QS et isoP.

5. Par additivité de l'enthalpie, on a

$$\Delta H = \left(\frac{n\gamma R}{\gamma - 1} + mc\right)(T_1 - T_0) = C'\Delta T, \quad \text{avec} \quad C' = \frac{n\gamma R}{\gamma - 1} + mc.$$

6. La transformation est au moins monoP avec équilibre mécanique à l'E.I. et l'E.F., d'où, en appliquant le premier principe sur l'enthalpie

$$\Delta H = Q.$$

A.N. :  $Q=-1,99\,\mathrm{kJ}<0$  : le système a cédé de l'éenergie sous la forme d'un transfert thermique à l'extérieur.

**7.** On a

$$\Delta U = C\Delta T$$
 avec  $C = \frac{nR}{\gamma - 1} + mc$ .

A.N. :  $\Delta U = -1.87 \,\text{kJ}$ .

Avec le premier principe, on a

$$\Delta U - \Delta H = W,$$

où W est le travail des forces de pression.

D'après ce qui précède,

$$\delta U - \Delta H = -nR\Delta T.$$

D'autre part, pour une transformation monoP

$$W = -P_0(V_1 - V_0) = -nR(T_1 - T_0).$$

On retrouve bien

$$\Delta U - \Delta H = W.$$

## Exercice 2 - Résonance du circuit RLC parallèle

1. On a

$$\underline{Z}_R = R, \quad \underline{Z}_C = \frac{1}{jC\omega} \quad \text{et} \quad \underline{Z}_L = jL\omega.$$

- **2.** En BF:
  - la bobine est équivalente à un fil;
  - le condensateur est équivalent à un interrupteur ouvert.

En HF:

- le condensateur est équivalent à un fil;
- la bobine est équivalente à un interrupteur ouvert.
- 3. Le circuit devient





On a donc

$$u(t) \underset{\text{BF}}{\rightarrow} 0$$
,  $i_C(t) \underset{\text{BF}}{\rightarrow} 0$ ,  $u(t) \underset{\text{HF}}{\rightarrow} 0$  et  $i_C(t) \underset{\text{HF}}{\rightarrow} i(t)$ .

**4.** On a (...)

$$\boxed{\underline{Z_{\text{\'eq}}} = \frac{jL\omega}{1 + j\frac{L}{R}\omega - LC\omega^2}.}$$

**5.** Par définition

$$\underline{u}(t) = \underline{Z}_{\text{\'eq}}\underline{i}(t), \quad \text{d'où} \quad \boxed{\underline{u}(t) = \frac{jL\omega}{1 + j\frac{L}{R}\omega - LC\omega^2}\underline{i}(t).}$$

6. En divisant au numérateur et au dénominateur par  $j\frac{L}{R}\omega,$  on obtient

$$\underline{u}(t) = \frac{R\underline{i}(t)}{1 - j\frac{R}{L\omega} + jRC\omega} = \frac{R\underline{i}(t)}{1 + jR\sqrt{\frac{C}{L}}\left(\sqrt{LC}\omega - \frac{1}{\sqrt{LC}\omega}\right)} = \frac{A\underline{i}(t)}{1 + jQ\left(x - \frac{1}{x}\right)},$$

avec  $x = \omega/\omega_0$ . On identifie:

$$A = R$$
,  $Q = R\sqrt{\frac{C}{L}}$  et  $\omega_0 = \frac{1}{\sqrt{LC}}$ .

7. On en déduit

$$U_m = \frac{RI_0}{\sqrt{1 + Q^2 \left(x - \frac{1}{x}\right)^2}}.$$

- 8. Cf. Fig. 1.
- 9. L'amplitude  $U_m$  est maximale si x=1, soit pour  $\omega=\omega_0$ . Il s'agit de la pulsation de résonance

$$\omega_r = \omega_0$$
.

10. Les pulsations de coupure sont les valeurs  $\omega_c$  de  $\omega$  pour lesquelles

$$U_m(\omega_c) = \frac{RI_0}{\sqrt{2}}.$$

La bande passante est la plage de fréquence sur laquelle

$$U_m(\omega) \geqslant \frac{RI_0}{\sqrt{2}}.$$

11. Cf. TD E4 Ex. 9.

$$\omega_{c1} = \omega_0 \left( \sqrt{1 + \frac{1}{4Q^2}} - \frac{1}{2Q} \right)$$
 et  $\omega_{c2} = \omega_0 \left( \sqrt{1 + \frac{1}{4Q^2}} + \frac{1}{2Q} \right)$ .

12. On en déduit

$$\Delta\omega = \omega_{c2} - \omega_{c1} = \frac{\omega_0}{Q}.$$

13. Cf. Fig. 1.



FIGURE 1 – Amplitude et phase de la tension u(t) au voisinage de la résonance.

#### Exercice 3 – Pickup de guitare électrique

- 1. Il s'agit d'un filtre passe-bas d'ordre 2.
- 2. La pente de l'asymptote haute-fréquence est de -40 dB/décade. On en déduit

$$G_{\rm dB}(f) \underset{\rm BF}{\sim} 0 \, {\rm dB} \quad {\rm et} \quad G_{\rm dB}(f) \underset{\rm HF}{\sim} -40 \log \left(\frac{f}{f_0}\right).$$

**3.** On a

$$\underline{H}(j\omega) \underset{\text{BF}}{\sim} H_0 \quad \text{et} \quad \underline{H}(j\omega) \underset{\text{HF}}{\sim} -H_0 \left(\frac{\omega_0}{\omega}\right)^2.$$

On en déduit

$$G(\omega) \underset{\text{RF}}{\to} H_0 \quad \text{et} \quad G(\omega) \underset{\text{HF}}{\to} 0.$$

Il s'agit donc bien d'un filtre passe-bas. De plus il est du deuxième ordre car le dénominateur de la fonction de transfert est un polynôme de degré 2 en  $j\omega$ , tandis que le numérateur est d'ordre 0.

4. Avec les équivalents BF et HF déterminés précédemment, on obtient

$$G_{\rm dB}(\omega) \underset{\rm BF}{\sim} 20 \log H_0 \quad {\rm et} \quad G_{\rm dB}(\omega) \underset{\rm HF}{\sim} 20 \log H_0 - 40 \log \left(\frac{\omega}{\omega_0}\right).$$

De plus, en  $\omega_0$ 

$$H(j\omega_0) = -jQH_0$$
, d'où  $G_{dB}(\omega_0) = 20\log(QH_0)$ .

La résonance est plutôt étroite sur la figure 1 : on en déduit

$$f_0 \approx 3 \, \text{kHz}.$$

On remarque de plus que le gain BF vaut  $0 \, dB$ , d'où  $H_0 = 1$ , et que le gain à résonance vaut  $14 \, dB$ . On en déduit

$$Q = 10^{\frac{14}{20}} \approx 5.$$

Le facteur de qualité est relativement grand, de sorte que la fréquence de résonance est bien proche de  $f_0$ .

**5.** On a

Fréquence
 
$$f_1$$
 $f_2$ 
 $f_3$ 
 $G_{dB}$  (dB)
 0
 14
 -15

  $G$ 
 1
 5
 0,2

  $U_s$  (V)
 1
 5
 0,2

6. Les harmoniques sont toutes espacées de la fréquence  $f_e$  du mode fondamental. On mesure  $12f_e\approx 4\,\mathrm{kHz},\,\mathrm{d'où}$ 

$$f_0 \approx 333 \,\mathrm{Hz}.$$

7. Les harmoniques de fréquence inférieure à 2 kHz sont peu ou pas modifiées par le filtre. Celles autour de 3 kHz sont amplifiées et celles de fréquence supérieure à 4 kHz sont de plus en plus atténuées.

L'amplitude du fondamental reste inchangée soit 41 dB. Celle de l'harmonique à  $3 \, \text{kHz}$  est amplifiée de  $14 \, \text{dB}$  et atteint donc un amplitude de  $16 \, \text{dB}$ . Enfin, l'harmonique à  $8 \, \text{kHz}$  est atténuée de  $15 \, \text{dB}$  et son amplitude atteint  $-34 \, \text{dB}$ .

8. On représente les circuits équivalents basse et haute fréquence :



Les circuits équivalents montrent que

$$u_s(t) \xrightarrow{\text{BF}} \frac{R_a}{R + R_a} e(t) \quad \text{et} \quad u_s(t) \xrightarrow{\text{HF}} 0.$$

Il s'agit donc bien d'une filtre passe-bas.

De plus la présence d'une bobine et d'un condensateur dans le même circuit incite à penser qu'il s'agit d'un filtre d'ordre 2.

Rq : Le gain basse fréquence est inférieur à 1, contrairement au filtre de la figure 1.

9. Le diagramme de Bode du filtre réalisé avec  $R_a=10\,\mathrm{M}\Omega$  et un rapport  $C_c/C=8$  fait apparaître une fréquence de résonance proche de 2,2 kHz, alors qu'avec un rapport  $C_c/C=5$ , la fréquence de résonance approche de 2,8 kHz. Choisir  $C_c/C\approx 6$  semble un bon compromis.

Par ailleurs, on a  $20 \log 5 \approx 14$ . Le diagramme de Bode du filtre réalisé avec  $C_c = 470 \,\mu\text{F}$  et un rapport  $R/R_a = 5 \times 10^{-3}$  présence le gain à résonance de  $17 \,\text{dB}$ . On remarque aussi que le gain à résonance diminue quand  $R/R_a$  augmente : on peut choisir  $R/R_a \approx 6 \times 10^{-3}$ . On retient donc

$$C_c \approx 6C = 600 \,\mathrm{pF}$$
 et  $R_a \approx \frac{R}{6 \times 10^{-3}} = 1 \,\mathrm{M}\Omega.$ 

10. On simplifie le circuit en faisant apparaître les impédances équivalentes  $\underline{Z}_1$  et  $\underline{Z}_2$  à l'association série de L et R d'une part et l'association parallèle de C,  $C_c$  et  $R_a$  d'autre part, avec

$$\underline{Z}_1 = R + jL\omega$$
 et  $\underline{Z}_2 = \frac{R_a}{1 + jR_aC_{\rm tot}\omega}$ , où  $C_{\rm tot} = C + C_c$ .



On reconnait alors un pont diviseur de tension, d'où

$$\underline{H}(j\omega) = \frac{\underline{Z}_2}{\underline{Z}_1 + \underline{Z}_2} = \dots = \frac{\frac{R_a}{R_a + R}}{1 + j\frac{L + RR_aC_{\text{tot}}}{R_a + R}\omega - \frac{R_aLC_{\text{tot}}}{R_a + R}\omega^2}.$$

On identifie

$$H_0 = \frac{R_a}{R_a + R}, \quad \frac{1}{Q\omega_0} = \frac{L + RR_aC_{\text{tot}}}{R_a + R} \quad \text{et} \quad \frac{1}{\omega_0^2} = \frac{R_aLC_{\text{tot}}}{R_a + R},$$

d'où (...)

$$\boxed{\omega_0 = \sqrt{\frac{R_a + R}{R_a L C_{\text{tot}}}}} \quad \text{et} \quad \boxed{Q = \frac{\sqrt{R_a (R_a + R) L C_{\text{tot}}}}{L + R R_a C_{\text{tot}}}.}$$

11. Avec  $R/R_a \ll 1$ , on a  $R+R_a \approx R_a$ , d'où

$$H_0 \approx 1$$
,  $\omega_0 \approx \frac{1}{\sqrt{LC_{\rm tot}}}$  et  $Q \approx \frac{\sqrt{LC_{\rm tot}}}{\frac{L}{R_a} + RC_{\rm tot}}$ .

A.N. :  $f_0 = \frac{\omega_0}{2\pi} \approx 3.0 \,\text{kHz}$  et  $Q \approx 14$  d'où  $20 \log Q \approx 23$  avec  $C_c = 470 \,\text{pF}$  et  $R_a = 10 \,\text{M}\Omega$ . On retrouve bien les ordres de grandeur des valeurs relevés sur les courbes (fréquence de résonance et gain à résonance).

- 12. On remarque que, toujours dans la limite où  $R/R_a \ll 1$ ,  $\omega_0$  diminue quand  $C_{\rm tot}$  augmente, donc quand  $C_c$  augmente. C(est bien ce que l'on observe sur le diagramme de Bode à droite de la figure 4.
- 13. L'amplitude du signal de sortie dépend, à résonance, du facteur de qualité. Plus il est grand, plus le signal de sortie sera amplifié. Or, toujours dans la limite  $R/R_a \ll 1$ , Q augmente si  $R_a$  augmente.

On peut donc ajouter entre le câble et l'amplificateur un potentiomètre de résistance  $R_p$  variable. Celle-ci s'ajoute alors à  $R_a$  et permet d'augmenter la gain à résonance.

Rq : En réalité, on intercale un potentiomètre en parallèle de C sur la sortie duquel est branchée l'association série de  $C_c$  et  $R_a$ . Le comportement fréquentiel est alors légèrement modifié quand on règle l'amplitude de sortie à l'aide du potentiomètre. Le réglage de la fréquence n'est pas effectué en changeant une capacité mais en changeant (avec un potentiomètre) la résistance d'une association série résistance variable/condensateur fixé. L'étude est de nouveau plus compliquée mais les principes généraux restent valables.

## Exercice 4 - Filtre passe-haut du premier ordre

1. Le circuit ci-dessous convient.



**2.** On a

$$\underline{\underline{H}(j\omega)} = \frac{j\frac{\omega}{\omega_0}}{1 + j\frac{\omega}{\omega_0}}, \quad \text{avec} \quad \omega_0 = \frac{R}{L}.$$

- 3. Cf. cours.
- **4.** On a

| Pulsation | 0               | $\omega_0$           | $10\omega_0$                  |
|-----------|-----------------|----------------------|-------------------------------|
| <u>H</u>  | 0               | $\frac{j}{1+j}$      | $\frac{10j}{1+10j} \approx 1$ |
| G         | 0               | $\frac{1}{\sqrt{2}}$ | $\approx 1$                   |
| arphi     | $\frac{\pi}{2}$ | $\frac{\pi}{4}$      | $\approx 0$                   |

d'où

$$s1(t) \approx \frac{E_0}{\sqrt{2}} \cos\left(\omega_0 t + \frac{\pi}{4}\right) + E_0 \cos(10\omega_0 t).$$

5. Ici, il faut commencer par linéariser l'expression :

$$e_2(t) = \frac{E_0}{2} (1 + \cos(\omega_0 t)).$$

On en déduit

$$s_2(t) = \frac{E_0}{2\sqrt{2}}\cos\left(\omega_0 t + \frac{\pi}{4}\right).$$