

SECURE SYSTEM DESIGN PROJECT

A. DI MARTINO M63/654 – P. LIGUORI M63/556– S. BARONE M63/610

PUF - PHYSICAL UNCLONABLE FUNCTION

- A PUF is a physical entity that is embodied in a physical structure and is easy to evaluate but hard to predict.
- Must be easy to make but practically impossible to duplicate, even given the exact manufacturing process that produced it.
 - depends on physical factors introduced during manufacture which are unpredictable

PUF: CHALLENGE RESPONSE AUTHENTICATION

- PUFs implement challenge-response authentication to evaluate this microstructure:
 - When a physical stimulus is applied to the structure, it reacts in an unpredictable (but repeatable) way due to the complex interaction of the stimulus with the physical microstructure of the device.
 - The applied stimulus is called the challenge, and the reaction of the PUF is called the response.

PUF-BASED AUTHENTICATION PROTOCOL

- It consists of two phases:
- 1. enrollment: a third trusted party applies a significant number of randomly selected challenge to the PUF and stores the corresponding responses;
- 2. verification: the trusted third party selects a challenge and gets the response from the PUF. If the answer matches the one previously stored, the device is authentic.
- It's vulnerable to man-in-the-middle attacks

ANDERSON PUF

- Designed for the Xilinx Virtex V
- It bases its operation on the imperceptible differences in terms of delay, exhibited by its components when synthesized on FPGAs.
- It can be used to generate fingerprint (image above) or in challange-response protocols (below image).

ANDERSON PUF (2)

- If shift-register A and multiplexer A are faster in terms of propagation delay than shift-registers B and multiplexers B, a spike "1" will appear on "preset" input of the flip-flop.
- If the duration of that spike is greater than the flip-flop setup time, then the output of flip-flop will assume '1' and it will keep it permanently.

ANDERSON PUF (3)

• If shift-register B and multiplexer B are faster, in terms of propagation delay, than the shift-registers A and multiplexers A, the "preset" input of the flip-flop will always be '0', so the flip-flop will assume a constant '0' value.

FUZZY EXTRACTOR: ENROLLMENT PHASE

- Puf is disturbed by the noise introduced by the sensitivity to variations in ambient conditions.
- We need a fuzzy-extractor.
- During the enrollment phase, a random number cs is encoded with an error-correction technique, generating Cs. That number should be kept secret.
- PUF response R is placed in XOR with Cs to obtain helperdata W.
- The PUF response R is also used to generate the cryptographic key K (using the cryptographic-hash-function).

FUZZY EXTRACTOR: VERIFICATION PHASE

- After the device has been placed in its operating environment, only a noisy version of the PUF response R', disturbed by the variation in environmental conditions, is available for use.
- The non-noisy version can be obtained from the noise using the helper-data W: by placing W in XOR with R', we will get a noisy version of Cs, C's.

FUZZY EXTRACTOR: VERIFICATION PHASE (2)

- Decrypting C's by using a error correction code, we will get the original cs with no noise.
- Therefore, by coding cs, we get the nonnoisy version Cs.
- Cs is placed in XOR with W to obtain the non-noisy version of the PUF response, that is used to generate the encryption key K.

REED MULLER CODE: DEFINITION

- The error correction code used to get the original cs with no noise is the REED-MULLER code.
- For each positive integer m and each integer r with $0 \le r \le m$, there is an r-th order Reed-Muller Code R(r,m).
- We consider the 1st order case (r = 1), because it maximize the Hamming distance between the codes.
- Definition: The (first order) Reed-Muller codes R(1,m) are binary codes defined for all integers $m \ge 1$, recursively by:
 - (i) $R(1,1) = \{00,01,10,11\}$
 - (ii) for m > 1, $R(1,m) = \{(u, u), (u, u+1) : u \in R(1, m-1) \text{ and } 1 = \text{all } 1 \text{ vector}\}$

F

REED-MULLER CODE: DEFINITION (2)

- Thus:
- $R(1,2) = \{0000, 0101, 1010, 1111, 0011, 0110, 1001, 1100\}$

GENERATOR MATRIX

• A generator matrix of R(1,1) is:

1	1
0	1

• If Gm is a generator matrix for R(1,m), then a generator matrix for R(1,m+1) is:

Gm	Gm
00	11

REED DECODING

- One reason that Reed-Muller codes are useful is that there is a simple decoding algorithm for them. We illustrate the method known as Reed Decoding with an example.
- Consider the code R(1,3) with generator matrix:

v0=	1	1	1	1	1	1	1	1
v1=	0	1	0	1	0	1	0	1
v2=	0	0	1	1	0	0	1	1
v3=	0	0	0	0	1	1	1	1

REED DECODING (2)

- The rows of the previous matrix are basis vectors for the code:
 - label them v0, v1, v2 and v3.
- Any vector v of the code is a linear combination of these:
 - i.e., v = a0 v0 + a1 v1 + a2 v2 + a3 v3.
- Written as a vector, we have:
 - v = (a0, a0 + a1, a0 + a2, a0 + a1 + a2, a0 + a3, a0 + a1 + a3, a0 + a2 + a3, a0 + a1 + a2 + a3).

REED DECODING (3)

- If no errors occur, a received vector r = (y0, y1, y2, y3, y4, y5, y6, y7) can be used to solve for the ai other than a0 in several ways (4 ways for each) namely:
 - a 1 = y 0 \oplus y 1 = y 2 \oplus y 3 = y 4 \oplus y 5 = y 6 \oplus y 7
 - $a 2 = y 0 \oplus y 2 = y 1 \oplus y 3 = y 4 \oplus y 6 = y 5 \oplus y 7$
 - a 3 = y 0 \oplus y 4 = y 1 \oplus y 5 = y 2 \oplus y 6 = y 3 \oplus y 7 (Symbol \oplus is a bitwise XOR)
- If one error has occurred in r, then when all the calculations above are made, 3 of the 4 values will agree for each ai, so the correct value will be obtained by majority decoding.
- Finally, a0 can be determined as the majority of the components of:

$$r \oplus a1 \cdot v1 \oplus a2 \cdot v2 \oplus a3 \cdot v3$$

REED DECODING: EXAMPLE

- Suppose that v = 10100101 is received as 10101101.
- Using the previous formulas, we calculate:

•
$$a1 = 1 = 1 = 0 = 1$$

so
$$a1 = 1$$

•
$$a2 = 0 = 0 = 1 = 0$$
 so $a2 = 0$

so
$$a^2 = 0$$

•
$$a3 = 0 = 1 = 1 = 1$$
 so $a3 = 1$

so
$$a3 = 1$$

REED DECODING: EXAMPLE (2)

- Let's calculate a0:
- a0=received vector ⊕ a1 v1 ⊕ a2 v2 ⊕ a3 v3

r =	1	0	1	0	1	1	0	1
a1·v1=	0	1	0	1	0	1	0	1
a2·v2=	0	0	0	0	0	0	0	0
a3·v3=	0	0	0	0	1	1	1	1

• By performing a bitwise xor along the columns, we get a0:

a0=	1	1	1	1	0	1	1	1
	I		•	•)	•	ı	ı

• Applying a majority function, we calculate a0=1

REED DECODING: EXAMPLE (3)

• $v = a0 \cdot v0 \oplus a1 \cdot v1 \oplus a2 \cdot v2 \oplus a3 \cdot v3$

α0·v0=	1	1	1	1	1	1	1	1
a1·v1=	0	1	0	1	0	1	0	1
a2·v2=	0	0	0	0	0	0	0	0
a3·v3=	0	0	0	0	1	1	1	1

• By performing a xor bitwise along the columns, we get v:

v =	1	0	1	0	0	1	0	1
------------	---	---	---	---	---	---	---	---

• So, we have corrected the wrong bit: 10100101

REED-MULLER DECODER IN VHDL

- The component is generic.
 - Only order r was fixed, equal to 1, so maximizing Hamming distance between the codes:
 - Mariner probes (1963-1973) fly-by of Venus, Mercury, Mars used RM (1.5) for encoding images sent to Earth.
 - The value of m, representing the length of the block $(N=2^m)$, can be changed at each use.
- The intention was to make the component as fast and as small as possible.
- The implementation is predominantly combinatory with pipelining (using buffers).
- The circuit can also be used in other areas, not specifically for this project:
 - e.g. remote control and receiving data from a video camera mounted on a toy tank.

REED-MULLER DECODER IN VHDL (2)

REED-MULLER DECODER IN VHDL (3)

- The decoder uses the majority-voter method.
- In input there is a signal of 2^m bits. It passes through the "butterfly_cell" block, which creates the swapped copy appropriately, in a pattern similar to that used for Benes networks.
- Each swapped copy forms the swapped_data matrix, consisting of m lines and 2^m columns.
- Each row passes through the "coupled_xor" block that performs the xor of adjacent columns, paired, producing the "coupled_xor" array, consisting of m rows and 2^{m-1} columns.

© REED-MULLER DECODER IN VHDL (4)

- Each row of the array constitutes the input of one of the m-1 majority-voters used to compute the least significant bits of the decoded code.
- These bits will be used for calculating the most significant bit: each of them determines one of the rows of the am_matrix array:
 - The first line is the signal "data_in"
 - The other lines are:
 - G (m-i) if majority (i) = '1';
 - zero otherwise.

REED-MULLER DECODER IN VHDL (5)

 The lines of the am_matriz matrix are placed in xor between them to determine the input of the last majority-voter whose output is the most significant bit of the decoded code.

REED-MULLER DECODER IN VHDL: VOTER

REED-MULLER DECODER IN VHDL: VOTER (2)

- The implemented voter evaluates the majority of bits equal to 1 in the input string. The value of majority is 1 in case the number of bits equal to 1 is greater than width/2.
- The component is structured in three modules in sequence:
- Module 1: "parallel_counter_block":
 - In input there is a string of $n \ge 4$ bit, with n power of 2. The string is partitioned into 4-bit blocks.
 - The module consists of width/4 counters working in parallel, where each parallel counter encodes the bit number = 1 contained in the assigned nibble.

REED-MULLER DECODER IN VHDL: VOTER (3)

- Module 2: generic_adder_pipelined "
 - It inputs a bit string that is the concatenation of addendums. It outputs the total sum of the addendums.
 - Each adder takes the two addendums from the output string of the previous layer and the sum is delivered to the next level.
- Module 3: "generic_comparator"
 - Inputs:
 - A. the bit string to compare data_compare_in (in our case is the total sum of bit = 1 of the initial string);
 - B. the bit string with which I want to compare data_compare_cmp (in our case is the width/2 binary encoding)
 - It returns output "1" if data_compare_in > data_compare_cmp, "0" otherwise.

REED-MULLER PARAMETERS

ECC	M (ordine)	Lunghezza word (bit)	Lunghezza codeword (bit)	Distanza di Hamming (bit)	Errori/codewor d (bit)	Decoder pipe stages (2m-4)
RM(1,5)	5	6	32	16	7	6
RM(1,6)	6	7	64	32	15	8
RM(1,7)	7	8	128	64	31	10
RM(1,8)	8	9	256	128	63	12

TIMING AND AREA

ECC	Component	Slice LUTs (17600)	Slice Luts %	Slice Registers (35200)	Slice Registers %	Slice (4400)	Slice %	LUT as Logic (17600)	LUT as Logic %	LUT as Memory (6000)	LUT as Memory %	LUT Flip Flop Pairs (17600)	LUT Flip Flop Pairs %
RM(1,5)	RMDecode r	221	1,26	175	0,50	69	1,57	216	1,23	5	0,08	108	0,61
T(W(1,0)	RMEncode r	16	0,09	0	0,00	5	0,11	16	0,09	0	0,00	0	0,00
RM(1,6)	RMDecode r	514	2,92	472	1,34	157	3,57	508	2,89	6	0,10	262	1,49
Kivi(1,0)	RMEncode r	62	0,35	0	0,00	23	0,52	62	0,35	0	0,00	0	0,00
RM(1,7)	RMDecode r	1351	7,68	923	2,62	388	8,82	1216	6,91	135	2,25	715	4,06
KIVI(1,7)	RMEncode r	127	0,72	0	0,00	48	1,09	127	0,72	0	0,00	0	0,00
DM/4 0\	RMDecode r	3094	17,58	2045	5,81	886	20,14	2830	16,08	264	4,40	1575	8,95
RM(1,8)	RMEncode r	257	1,46	0	0,00	141	3,20	257	1,46	0	0,00	0	0,00

REFERENCES

- 1. Jiliang Zhang, Yaping Lin, Yongqiang Lyu, and Gang Qu A PUF-FSM Binding Scheme for FPGA IP Protection and Pay-Per-Device Licensing
- 2. Mario Barbareschi, Pierpaolo Bagnasco, Antonino Mazzeo Authenticating IoT Devices With Physically Unclonable Functions Models
- 3. Mario Barbareschi, Pierpaolo Bagnasco, Antonino Mazzeo Supply Voltage Variation Impact on Anderson PUF Quality
- 4. Mario Barbareschi, Pierpaolo Bagnasco, Domenico Amelino and Antonino Mazzeo Designing an SRAM PUF-based Secret Extractor for Resource-Constrained Devices
- 5. Design and improvements of Anderson PUF for Xilinx Spartan-3 FPGA
- 6. Massoud Malek Coding Theory
- 7. http://www-math.ucdenver.edu/~wcherowi/courses/m7823/reedmuller.pdf
- 8. https://en.wikipedia.org/wiki/Physical unclonable function