

FAKULTÄT FÜR PHYSIK

R: RECHENMETHODEN FÜR PHYSIKER, WISE 2024/25

DOZENT: JAN VON DELFT

ÜBUNGEN: MARKUS FRANKENBACH

https://moodle.lmu.de → Kurse suchen: 'Rechenmethoden'

Blatt 03 Optionale Aufgaben

(b)[2](E/M/A) bedeutet: Aufgabe (b) zählt 2 Punkte und ist einfach/mittelschwer/anspruchsvoll Vorschläge für Zentralübung: Beispielaufgaben 3, 6, 7, 4. Videos existieren für Beispielaufgaben 4 (L4.3.1), 8 (V1.4.1).

Optionale Aufgabe 1: Natürliche Parametrisierung einer Kurve [2]

Punkte: (a)[1](E); (b)[0.5](M); (c)[0.5](E).

Gegeben ist die Raumkurve $\mathbf{r}(t) = (t - \sin t, 1 - \cos t)^T \in \mathbb{R}^2$ für $t \in (0, 2\pi)$.

- (a) Skizzieren Sie die Raumkurve qualitativ.
- (b) Bestimmen Sie ihre Bogenlänge, s(t), im Zeitinterval (0,t). [Kontrollergebnis: $s(2\pi)=8$.]
- (c) Geben Sie die natürliche Parametrisierung, $\mathbf{r}_L(s)$, an. [Kontrollergebnis: $\mathbf{r}_L(4) = (\pi, 2)^T$.]

Optionale Aufgabe 2: Natürliche Parametrisierung einer Kurve [4]

Punkte: (a)[1](M); (b)[0.5](E); (c)[0.5](E); (d)[1](E); (e)[1](E)

Gegeben sei die Raumkurve $\gamma = \{\mathbf{r}(t) \mid t \in (0,\tau)\}, \ \mathbf{r}(t) = e^{ct}(\cos \omega t, \sin \omega t)^T \in \mathbb{R}^2, \ \text{mit } c \in \mathbb{R}.$

- (a) Skizzieren Sie die Raumkurve für den Fall $\tau=8\pi/\omega$ und $c=1/\tau$. [Diese Angaben gelten nur für Teilaufgabe (a), nicht für (b-e).]
- (b) Berechnen Sie den Betrag der Kurvengeschwindigkeit, $\|\dot{\mathbf{r}}(t)\|$.
- (c) Berechnen Sie die im Zeitintervall (0,t) durchstrichene Bogenlänge, s(t).
- (d) Bestimmen Sie die natürliche Parametrisierung $\mathbf{r}_L(s)$.
- (e) Überprüfen Sie explizit, dass $\left\| \frac{d\mathbf{r}_L}{ds} \right\| = 1$ gilt.

[Kontrollergebnisse für $c=\omega=\tau=1$: (b) $\sqrt{2}{\rm e}^t$, (c) $\sqrt{2}({\rm e}^t-1)$, (d) ${\bf r}_L(s)=[s/\sqrt{2}+1]\left(\cos[\ln(s/\sqrt{2}+1)],\sin[\ln(s/\sqrt{2}+1)]\right)^T$.]

[Gesamtpunktzahl Optionale Aufgaben: 6]