Unpacking Aggregate Welfare in a Spatial Economy

Eric Donald

Masao Fukui

Yuhei Miyauchi

Midwest Macro May 2024

Motivation

- How do spatially disaggregated shocks affect aggregate welfare?
- Recent developments in quantitative spatial equilibrium models
 - Highly complex and parameterized
 - Obscuring sources of welfare gains/losses
- Alternative: first-order approximation (Hulten, 1978; Fogel, 1964)
 - Frictionless representative agent economy \Rightarrow revenue is a sufficient stat
- Unclear whether or how this approach extends to spatial economy

- Starting point: spatial equilibrium does not maximize aggregate welfare
 - Not just due to externalities, but also spatial dispersion of MU (Mirleese, 1972)

- Starting point: spatial equilibrium does not maximize aggregate welfare
 - Not just due to externalities, but also spatial dispersion of MU (Mirleese, 1972)
- Provide exact decompositions of first-order aggregate welfare changes into:
 - (i) Technology (Hulten, 1978)
 - (ii) MU dispersion
 - (iii) Fiscal externality
 - (iv) Technological externality
 - (v) Redistribution

- Starting point: spatial equilibrium does not maximize aggregate welfare
 - Not just due to externalities, but also spatial dispersion of MU (Mirleese, 1972)
- Provide exact decompositions of first-order aggregate welfare changes into:
 - (i) Technology (Hulten, 1978)
 - (ii) MU dispersion
 - (iii) Fiscal externality
 - (iv) Technological externality
 - (v) Redistribution
- Build on this result to show
 - 1. Non-parametric optimal spatial transfer formula
 - 2. Hulten in the presence of optimal spatial transfers

- Starting point: spatial equilibrium does not maximize aggregate welfare
 - Not just due to externalities, but also spatial dispersion of MU (Mirleese, 1972)
- Provide exact decompositions of first-order aggregate welfare changes into:
 - (i) Technology (Hulten, 1978)
 - (ii) MU dispersion
 - (iii) Fiscal externality
 - (iv) Technological externality
 - (v) Redistribution
- Build on this result to show
 - 1. Non-parametric optimal spatial transfer formula
 - 2. Hulten in the presence of optimal spatial transfers
- Conclude with application(s) to the US economy

Model

Environment

- \blacksquare Many locations indexed by i, j
- lacksquare Many households types indexed by heta with mass $\ell^{ heta}$
 - endowed with a unit of labor
 - decides where to live
 - endowed with shares on fixed factors $\{h_j\}$
- lacksquare Many tradable intermediate goods indexed by k

Households

Utility from living in location j:

$$u_j^{\theta}(C_j^{\theta}) + \epsilon_j^{\theta}$$

- Preference shocks are additively separable (come back later)
- The case with $\epsilon_{i}^{\theta}=0$ corresponds to Rosen-Roback
- Budget constraint:

$$P_j^{\theta} C_j^{\theta} = w_j^{\theta} + T_j^{\theta} + \Pi^{\theta}$$

- Households choose living locations j that maximize utility
- Let μ_j^{θ} be choice probability and $l_j^{\theta}=\mathscr{E}^{\theta}\mu_j^{\theta}$ be population size of type θ
- Transfers satisfy government budget, $\sum_{\theta} \sum_{i} T_{j}^{\theta} l_{j}^{\theta} = 0$

Firms

Intermediate goods k produced in i and sold in j:

$$y_{ij,k} = \mathcal{A}_{ij,k} f_{ij,k} \left(\{l_{ij,k}^{\theta}\}_{\theta}, h_{ij,k}, \{x_{ij,k}^{l,m}\}_{l,m} \right)$$

- $\mathcal{A}_{ij,k}$: TFP (includes trade costs)
- Final goods in location j: $\mathscr{C}^{\theta}_{j}(\{c_{ij,k}^{\theta}\}_{i,k})$
- TFP is subject to agglomeration externality: $\mathcal{A}_{ij,k} = A_{ij,k} g_{ij,k} (\{l_i^{\theta}\}_{\theta})$

$$\gamma_{ij,k}^{\theta} \equiv \frac{\partial \ln g_{ij,k}(\{l_i^{\theta}\}_i)}{\partial \ln l_i^{\theta}}$$

Non-labor income is $\Pi^{\theta} = \alpha^{\theta} \sum_{i} r_{j} \bar{h}_{j}$

Aggregate Welfare

Competitive equilibrium: households and firms optimize and markets clear

Define aggregate welfare as

$$W = \mathcal{W}(\{W^{\theta}\}_{\theta}), \qquad W^{\theta} = \mathbb{E}\left[\max_{j} \{u_{j}(C_{j}^{\theta}) + \epsilon_{j}\}\right]$$

Local welfare weights attached to θ :

$$\Lambda^{\theta} \equiv \frac{\partial \mathcal{W}(\{W^{\theta}\}_{\theta})}{\partial W^{\theta}} \frac{1}{l^{\theta}}$$

Suboptimality of Spatial Equilibria

- First best: max W subject to resource constraints
- Spatial equilibrium does not solve first-best
 - 1. Agglomeration externality (well understood)
 - 2. Spatial dispersion in marginal utility of income (Mirleese, 1972)
 - Incomplete market to insure against uncertainty in location choice
 - Lack of redistribution for households with differing location choices
- Suboptimality arises even without preference shocks or externality
- Implication: Hulten's theorem does not apply

Experiment

lacksquare Cross-sectional moments across j conditional on heta

$$\mathbb{E}_{j|\theta}[X_j^{\theta}] \equiv \sum_j \mu_j^{\theta} X_j^{\theta}, \qquad \mathbf{Cov}_{j|\theta} \left(X_j^{\theta}, Y_j^{\theta} \right) \equiv \mathbb{E}_{j|\theta}[X_j^{\theta} Y_j^{\theta}] - \mathbb{E}_{j|\theta}[X_j^{\theta}] \mathbb{E}_{j|\theta}[Y_j^{\theta}]$$

 \blacksquare Cross-sectional moments across θ

$$\mathbb{E}_{\theta}[X^{\theta}] \equiv \sum_{\theta} \mathscr{C}^{\theta} X^{\theta}, \qquad \mathsf{Cov}_{\theta} \left(X^{\theta}, Y^{\theta} \right) \equiv \mathbb{E}_{\theta}[X^{\theta} Y^{\theta}] - \mathbb{E}_{\theta}[X^{\theta}] \mathbb{E}_{\theta}[Y^{\theta}]$$

- Consider arbitrary shocks to $\{d \ln A_{ij,k}\}$ and/or $\{dT_j^{\theta}\}$
- lacksquare How does aggregate welfare W respond?

$$dW = \sum_{i,j,k} p_{ij,k} y_{ij,k} d \ln A_{ij,k} + \mathbb{E}_{\theta} \left[\mathsf{Cov}_{j|\theta} \left(-\frac{P_j^{\theta}}{u_j^{\theta'}(C_j^{\theta})}, u_j^{\theta'}(C_j^{\theta}) \right) dC_j^{\theta} \right]$$

(i) Technology (Ω_T)

(ii) MU dispersion (Ω_{MU})

$$+ \quad \mathbb{E}_{\theta} \left[\mathsf{Cov}_{j|\theta} \left(-T_{j}^{\theta}, d \ln l_{j}^{\theta} \right) \right] \quad + \quad \mathbb{E}_{\theta} \left[\mathsf{Cov}_{j|\theta} \left(\frac{1}{l_{j}^{\theta}} \sum_{l,k} p_{jl,k} y_{jl,k} \times \gamma_{jl,k}^{\theta}, d \ln l_{j}^{\theta} \right) \right]$$

(iii) Fiscal externality (Ω_{FE})

(iv) Technological externality (Ω_{TE})

$$+ \quad \mathsf{Cov}_{\theta} \left(\Lambda^{\theta} - \mathbb{E}_{j|\theta} \left[\frac{P_{j}^{\theta}}{u_{j}^{\theta'}(C_{j}^{\theta})} \right], \mathbb{E}_{j|\theta} \left[u_{j}^{\theta'}(C_{j}^{\theta}) dC_{j}^{\theta} \right] \right)$$

$$dW = \sum_{i,j,k} p_{ij,k} y_{ij,k} d \ln A_{ij,k}$$

(i) Technology (ar)

Direct impact absent reallocation (Hulten)

neestanistani visimeneissättentenaminin eestanista ja sattavalenaminin ja sattavaitanaminin meesta ja sattavaita j

$$+ \mathbb{E}_{\theta} \left[\mathsf{Cov}_{j|\theta} \left(-T_j^{\theta}, d \ln l_j^{\theta} \right) \right]$$

 $+ \quad \mathbb{E}_{\theta} \left[\mathsf{Cov}_{j|\theta} \left(-T_{j}^{\theta}, d \ln l_{j}^{\theta} \right) \right] \quad + \quad \mathbb{E}_{\theta} \left[\mathsf{Cov}_{j|\theta} \left[\frac{1}{l_{j}^{\theta}} \sum_{l,k} p_{jl,k} y_{jl,k} \times \gamma_{jl,k}^{\theta}, d \ln l_{j}^{\theta} \right] \right]$

(iii) Fiscal externality (Ω_{FE})

(iv) Technological externality (Ω_{TE})

$$+ \quad \mathsf{Cov}_{\theta} \left(\Lambda^{\theta} - \mathbb{E}_{j|\theta} \left[\frac{P_{j}^{\theta}}{u_{j}^{\theta'}(C_{j}^{\theta})} \right], \mathbb{E}_{j|\theta} \left[u_{j}^{\theta'}(C_{j}^{\theta}) dC_{j}^{\theta} \right] \right)$$

$$dW = \sum_{i,j,k} p_{ij,k} y_{ij,k} d \ln A_{ij,k} + \mathbb{E}_{\theta} \left[\mathsf{Cov}_{j|\theta} \left(-\frac{P_j^{\theta}}{u_j^{\theta'}(C_j^{\theta})}, u_j^{\theta'}(C_j^{\theta}) \right) dC_j^{\theta} \right]$$

(i) Technology (Ω_T)

(ii) MU dispersion (Ω_{MU})

$$+ \quad \mathbb{E}_{\theta} \left[\mathsf{Cov}_{j|\theta} \left(-T_{j}^{\theta}, d \ln l_{j}^{\theta} \right) \right] \quad + \quad \mathbb{E}_{\theta} \left[\mathsf{Cov}_{j|\theta} \left(\frac{1}{l_{j}^{\theta}} \sum_{l,k} p_{jl,k} y_{jl,k} \times \gamma_{jl,k}^{\theta}, d \ln l_{j}^{\theta} \right) \right]$$

(iii) Fiscal externality (Ω_{FE})

(iv) Technological externality (Ω_{TE})

$$+ \quad \mathsf{Cov}_{\theta} \left(\Lambda^{\theta} - \mathbb{E}_{j|\theta} \left[\frac{P_{j}^{\theta}}{u_{j}^{\theta'}(C_{j}^{\theta})} \right], \mathbb{E}_{j|\theta} \left[u_{j}^{\theta'}(C_{j}^{\theta}) dC_{j}^{\theta} \right] \right)$$

Van Result

$$dW = \sum_{i,j,k} p_{ij,k} y_{ij,k} d \ln A_{ij,k}$$

$$dW = \sum_{i,j,k} p_{ij,k} y_{ij,k} d \ln A_{ij,k} + \mathbb{E}_{\theta} \left[\mathsf{Cov}_{j|\theta} \left(-\frac{P_j^{\theta}}{u_j^{\theta'}(C_j^{\theta})}, u_j^{\theta'}(C_j^{\theta}) \right) dC_j^{\theta} \right]$$

(i) Technology (Ω_T)

(ii) MU dispersion (Ω)

Changes in MU dispersion

- Positive if $dC_i \uparrow$ in places with high $u_i^{\theta'}(C_i^{\theta})/P_i^{\theta}$
- Absent if

1.
$$u_j^{\theta}(C) = C \text{ and } P_j^{\theta} = P^{\theta}$$

2.
$$u_j^{\theta}(C) = \log C$$
 and $w_j^{\theta} + T_j^{\theta} = I^{\theta}$

3. No preference shocks

 (Ω_{TE})

$$dW = \sum_{i,j,k} p_{ij,k} y_{ij,k} d \ln A_{ij,k} + \mathbb{E}_{\theta} \left[\mathsf{Cov}_{j|\theta} \left(-\frac{P_j^{\theta}}{u_j^{\theta'}(C_j^{\theta})}, u_j^{\theta'}(C_j^{\theta}) \right) dC_j^{\theta} \right]$$

(i) Technology (Ω_T)

(ii) MU dispersion (Ω_{MU})

$$+ \quad \mathbb{E}_{\theta} \left[\mathsf{Cov}_{j|\theta} \left(-T_{j}^{\theta}, d \ln l_{j}^{\theta} \right) \right] \quad + \quad \mathbb{E}_{\theta} \left[\mathsf{Cov}_{j|\theta} \left(\frac{1}{l_{j}^{\theta}} \sum_{l,k} p_{jl,k} y_{jl,k} \times \gamma_{jl,k}^{\theta}, d \ln l_{j}^{\theta} \right) \right]$$

(iii) Fiscal externality (Ω_{FE})

(iv) Technological externality (Ω_{TE})

$$+ \quad \mathsf{Cov}_{\theta} \left(\Lambda^{\theta} - \mathbb{E}_{j|\theta} \left[\frac{P_{j}^{\theta}}{u_{j}^{\theta'}(C_{j}^{\theta})} \right], \mathbb{E}_{j|\theta} \left[u_{j}^{\theta'}(C_{j}^{\theta}) dC_{j}^{\theta} \right] \right)$$

$$dW = \sum_{i,j,k} p_{ij,k} y_{ij,k} d \ln A_{ij,k} + \mathbb{E}_{\theta} \left[\mathsf{Cov}_{j|\theta} \left(-\frac{P_j^{\theta}}{u_j^{\theta'}(C_j^{\theta})}, u_j^{\theta'}(C_j^{\theta}) \right) dC_j^{\theta} \right]$$

(i) Technology (2)

(ii) MU dispersion (Ω_{MU})

$$+ \left[\mathbb{E}_{\theta} \left[\mathsf{Cov}_{j|\theta} \left(-T_{j}^{\theta}, d \ln l_{j}^{\theta} \right) \right] \right] + \mathbb{E}_{\theta} \left[\mathsf{Cov}_{j|\theta} \left(\frac{1}{l_{j}^{\theta}} \sum_{l,k} p_{jl,k} y_{jl,k} \times \gamma_{jl,k}^{\theta}, d \ln l_{j}^{\theta} \right) \right]$$

(iii) Fiscal externality (Ω_{FE})

(iv) Technological externality (Ω_{TE})

Changes in government budget Positive if $d \ln l_i^{\theta} \uparrow$ in places with low T_i^{θ}

$$dW = \sum_{i,j,k} p_{ij,k} y_{ij,k} d \ln A_{ij,k} + \mathbb{E}_{\theta} \left[\mathsf{Cov}_{j|\theta} \left(-\frac{P_j^{\theta}}{u_j^{\theta'}(C_j^{\theta})}, u_j^{\theta'}(C_j^{\theta}) \right) dC_j^{\theta} \right]$$

(i) Technology (Ω_T)

(ii) MU dispersion (Ω_{MU})

$$+ \quad \mathbb{E}_{\theta} \left[\mathsf{Cov}_{j|\theta} \left(-T_{j}^{\theta}, d \ln l_{j}^{\theta} \right) \right] \quad + \quad \mathbb{E}_{\theta} \left[\mathsf{Cov}_{j|\theta} \left(\frac{1}{l_{j}^{\theta}} \sum_{l,k} p_{jl,k} y_{jl,k} \times \gamma_{jl,k}^{\theta}, d \ln l_{j}^{\theta} \right) \right]$$

(iii) Fiscal externality (Ω_{FE})

(iv) Technological externality (Ω_{TE})

$$+ \quad \mathsf{Cov}_{\theta} \left(\Lambda^{\theta} - \mathbb{E}_{j|\theta} \left[\frac{P_{j}^{\theta}}{u_{j}^{\theta'}(C_{j}^{\theta})} \right], \mathbb{E}_{j|\theta} \left[u_{j}^{\theta'}(C_{j}^{\theta}) dC_{j}^{\theta} \right] \right)$$

Positive if $d \ln l_j^{\theta} \uparrow$ in places with high $\gamma_{jl,k}^{\theta}$ $\gamma_{jl,k}^{\theta}$ Constant elasticity γ does not imply $\Omega_{TE} = 0$

$$dC_j^{\theta}$$

$$+ \quad \mathbb{E}_{\theta} \left[\mathsf{Cov}_{j|\theta} \left(-T_{j}^{\theta}, d \ln l_{j}^{\theta} \right) \right] \quad + \quad \mathbb{E}_{\theta} \left[\mathsf{Cov}_{j|\theta} \left(\frac{1}{l_{j}^{\theta}} \sum_{l,k} p_{jl,k} y_{jl,k} \times \gamma_{jl,k}^{\theta}, d \ln l_{j}^{\theta} \right) \right]$$
(iii) Fiscal externality (Ω_{FE})

(iv) Technological externality (a)

$$+ \quad \mathsf{Cov}_{\theta} \left(\Lambda^{\theta} - \mathbb{E}_{j|\theta} \left[\frac{P_{j}^{\theta}}{u_{j}^{\theta'}(C_{j}^{\theta})} \right], \mathbb{E}_{j|\theta} \left[u_{j}^{\theta'}(C_{j}^{\theta}) dC_{j}^{\theta} \right] \right)$$

$$dW = \sum_{i,j,k} p_{ij,k} y_{ij,k} d \ln A_{ij,k} + \mathbb{E}_{\theta} \left[\mathsf{Cov}_{j|\theta} \left(-\frac{P_j^{\theta}}{u_j^{\theta'}(C_j^{\theta})}, u_j^{\theta'}(C_j^{\theta}) \right) dC_j^{\theta} \right]$$

(i) Technology (Ω_T)

(ii) MU dispersion (Ω_{MU})

$$+ \quad \mathbb{E}_{\theta} \left[\mathsf{Cov}_{j|\theta} \left(-T_{j}^{\theta}, d \ln l_{j}^{\theta} \right) \right] \quad + \quad \mathbb{E}_{\theta} \left[\mathsf{Cov}_{j|\theta} \left(\frac{1}{l_{j}^{\theta}} \sum_{l,k} p_{jl,k} y_{jl,k} \times \gamma_{jl,k}^{\theta}, d \ln l_{j}^{\theta} \right) \right]$$

(iii) Fiscal externality (Ω_{FE})

(iv) Technological externality (Ω_{TE})

$$+ \quad \mathsf{Cov}_{\theta} \left(\Lambda^{\theta} - \mathbb{E}_{j|\theta} \left[\frac{P_{j}^{\theta}}{u_{j}^{\theta'}(C_{j}^{\theta})} \right], \mathbb{E}_{j|\theta} \left[u_{j}^{\theta'}(C_{j}^{\theta}) dC_{j}^{\theta} \right] \right)$$

$$dW = \sum_{i,j,k} p_{ij,k} y_{ij,k} d \ln A_{ij,k} + \mathbb{E}_{\theta} \left[\mathsf{Cov}_{j|\theta} \left(-\frac{P_j^{\theta}}{u_j^{\theta'}(C_j^{\theta})}, u_j^{\theta'}(C_j^{\theta}) \right) dC_j^{\theta} \right]$$

Redistribution

Positive if $dC_j^{\theta} \uparrow$ for types with high Λ^{θ}

(iii) Fiscal externality (Ω_{FE})

$$\sum_{l\theta} p_{jl,k} y_{jl,k} \times \gamma_{jl,k}^{\theta}, d \ln l_j^{\theta}$$

(iv) Technological externality (Ω_{TE})

$$+ \left(\operatorname{Cov}_{\theta}\left(\Lambda^{\theta} - \mathbb{E}_{j|\theta}\left[\frac{P_{j}^{\theta}}{u_{j}^{\theta'}(C_{j}^{\theta})}\right], \mathbb{E}_{j|\theta}\left[u_{j}^{\theta'}(C_{j}^{\theta})dC_{j}^{\theta}\right]\right)$$

Second-Best Spatial Transfer Formula

- Optimal $T_j \Rightarrow dW = 0$ with respect to perturbations $\{dT_j\}$
- Rearranging, we obtain non-parametric second-best spatial transfer formula:

$$\mu_{j}^{\theta} \left[\Lambda^{\theta} u_{j}^{\theta'}(C_{j}^{\theta}) - P_{j}^{\theta} \right] = \sum_{i} \frac{\partial \mu_{i}^{\theta}}{\partial C_{j}^{\theta}} \left[T_{i}^{\theta} - \frac{1}{l_{i}^{\theta}} \sum_{l,k} p_{il,k} y_{il,k} \gamma_{il,k}^{\theta} \right]$$

- LHS: marginal benefit of transferring to location j
 - equalize MU
- **RHS**: marginal cost of transferring to location *j*
 - fiscal and technological externalities
- Strict generalization of Fajgelbaum-Gaubert (2020)
- Tight link to Bailey-Chetty optimal UI formula

Hulten in a Spatial Economy

Suppose optimal spatial transfers are implemented, then

$$dW = \sum_{i,j,k} p_{ij,k} y_{ij,k} d \ln A_{ij,k}$$

$$i,j,k$$
(i) Technology (Ω_T)

- Hulten's characterization holds despite the economy being second-best
- \blacksquare This is precisely because transfers are set so that $\Omega_{MU}+\Omega_{FE}+\Omega_{TE}+\Omega_{R}=0$

Identification of Marginal Utility

- lacksquare Marginal utility across space, $u_j^{\theta'}(C_j^{\theta})$, is a key statistic in welfare evaluation
- Can it be non-parametrically identified from the location choice data?
 - \Rightarrow Yes, as long as ϵ_j^{θ} is additive separable (Allen-Rehbeck, 2019)
- What if ϵ_j^{θ} is not additive?
- **Result:** If utility is $\tilde{e}_j^{\theta} \tilde{u}_j^{\theta}(C_j^{\theta})$ and $\{\tilde{e}_j^{\theta}\}$ follows Frechet with arbitrary correlation (GEV) \Rightarrow positive and normative predictions isomorphic to $\log \tilde{u}_j^{\theta}(C_j^{\theta}) + \log \tilde{e}_j^{\theta}$
- Without multiplicative Frechet, identification is not possible...
 ... but GEV approximates arbitrary discrete choice system
- Welfare changes can be non-parametrically identified in a broad class of models

Application: "Ex-post" Welfare Evaluation

"Ex-Post" Welfare Evaluation

- Study welfare changes in the US 2010-2019
 - 214 MSAs
 - Two skill types (college, non-college)
- Obtain l_j^{θ} and $C_j^{\theta} \equiv (w_j^{\theta} + T_j^{\theta})/P_j^{\theta}$ from the data
- Take values of $\{\gamma_{ij,k}^{\theta}\}$ from Fajgelbaum-Gaubert (2020)
- Estimate utility function, $u(C) = \frac{C^{1-\rho_{\theta}}}{1-\rho_{\theta}}$ using shift-share IV and GMM
 - Our estimates: $\rho_{\theta} = 1.52$ for low-skill and $\rho_{\theta} = 1.29$ for high-skill
- Obtain $\Omega_T = \sum_{i,j,k} p_{ij,k} y_{ij,k} d \ln A_{ij,k}$ as Solow residual (adjusted for agglomeration)
- Assume utilitarian $\Lambda^{\theta} = 1$

Ex-Post Evaluation in the US

	dW	Ω_T	Ω_{MU}	Ω_{FE}	Ω_{TE}	Ω_R
2010-2015	2.247%	2.043%	0.136%	0.022%	0.014%	0.033%
2015-2019	1.843%	1.354%	-0.003%	0.009%	-0.073%	0.556%

Ex-Post Evaluation in the US

	dW	Ω_T	Ω_{MU}	Ω_{FE}	Ω_{TE}	Ω_R
2010-2015	2.247%	2.043%	0.136%	0.022%	0.014%	0.033%
2015-2019	1.843%	1.354%	-0.003%	0.009%	-0.073%	0.556%

Summary

Theory to unpack source of welfare gains/losses in a spatial economy

- Exact decomposition of welfare changes into five terms
- Non-parametric optimal spatial transfer formula
- Hulten is recovered when optimal spatial transfer policy is in place
- Non-parametric identification of welfare changes

Application: "Ex-ante" Welfare Evaluation

"Ex-Ante" Welfare Evaluation

- Study welfare changes in response to shocks using Allen-Arkoakis (2022) model
 - One-type
 - log-utility and Armington
 - Route choice and congestion in shipments
 - No spatial transfers
- 228 MSAs and 704 links in the U.S.
- Two experiments:
 - 1. reduce exogenous component of trade cost by 1%
 - 2. reduce productivity by 1%

Ex-Ante Welfare Evaluation

	Dependent Variable:							
	Ω_T	Ω_{MU}	$\Omega_{TE,S}$	$\Omega_{TE,A}$	Ω_{Resid}			
Panel A. Transportation Infrastructure Improvements								
ΔW	2.04	-0.03	-1.03	0.01	0.02			
R-squared	0.767	0.004	0.479	0.004	0.657			
Panel B. Productivity Shocks								
ΔW	1.08	-0.30	0.10	0.10	0.02			
R-squared	0.990	0.653	0.773	0.653	0.998			