

CRYPTOGRAPHY (CTG)

Diploma in Cybersecurity and Digital Forensics (Dip in CSF)
Academic Year (AY) `21/`22 – Semester 2

WEEK 4.1

ASYMMETRIC KEY CRYPTOSYSTEM

Last Updated: 15/10/2021

Contents

Recap – Symmetric Key Cryptosystem

Why Asymmetric Key Cryptosystem?

Asymmetric Key Cryptosystem

Kid-RSA

Symmetric Vs. Asymmetric

Recap – Week 3

- Symmetric Key Cryptosystem
- Advantages and Disadvantages of Symmetric Key Cryptosystem
- Symmetric Key Cryptosystem and Goals of Cryptography

Symmetric Key Cryptosystem

4

Same shared key used to encrypt and decrypt data

(Source: SECURITY+ GUIDE TO NETWORK SECURITY FUNDAMENTALS

4th Edition – Mark Ciampa - Cengage Learning)

Knowledge Component

Advantages and Disadvantages of Symmetric Key Cryptosystem

- Advantages
 - Extremely secure
 - Relatively fast
 - Due to simple substitution, permutation (transposition), and modular arithmetic operations
- Disadvantages
 - Key distribution
 - Requires a secure communication channel to share key between parties
 - Key management
 - Each party have to maintain a unique shared key with every other communicating party
 - If "n" is the number of parties in a group, who want to use symmetric key cryptosystem
 - Then the total number of keys required for the group would be: $n \times (n-1) / 2$

Symmetric Key Cryptosystem and Goals of Cryptography

□ Discuss why Symmetric Key Cryptosystem does/doesn't satisfy the following goals of cryptography?

Goals of Cryptography	Symmetric Key Cryptosystems (Yes/No)
Confidentiality	??
Integrity	??
Availability	??
Authentication	??
Non-Repudiation	??

Why Asymmetric Key Cryptosystem?

- Due to disadvantages of symmetric key cryptosystem and in order to satisfy other goals of cryptography
- □ In 1976 an asymmetric-key cryptosystem was published
 - Whitfield Diffie, Martin Hellman, and Ralph Merkle
 - Diffie-Hellman-Merkle key exchange
- □ In 1977 another asymmetric-key cryptosystem was independently invented
 - Ron Rivest, Adi Shamir and Leonard Adleman
 - RSA Cryptosystem (from their initials)

Asymmetric Key Cryptosystem

Concept of Asymmetric Key Cryptosystem

Discuss how Alice and Bob can securely send each other letters?

Knowledge Component

Asymmetric Key Cryptosystem

11

Public-key to encrypt and Private-key to decrypt data

(Source: SECURITY+ GUIDE TO NETWORK SECURITY FUNDAMENTALS School of ICT - CSF - CTG - Asymmetric Key Cryptosystem 4th Edition – Mark Ciampa - Cengage Learning)

Other Names

- Symmetric Key Cryptosystem also known as
 - Private/Secret-key cryptosystem
 - Private/Secret-key cryptography
- Asymmetric Key Cryptosystem also known as
 - Public-key cryptosystem
 - Public-key cryptography

Popular Asymmetric Key Cryptosystems

- RSA
 - Published in 1977 and patented by MIT in 1983
 - Most common asymmetric cryptography algorithm
 - Uses two large prime numbers
- Elliptic curve cryptography (ECC)
 - Users share one elliptic curve and one point on the curve
 - Uses less computing power than prime numberbased asymmetric cryptography
 - Key sizes are smaller

Kid RSA

School of ICT - CSF - CTG - Asymmetric Key Cryptosystem

Asymmetric Key Cryptosystem – Kid-RSA

- □ Kid-RSA is an asymmetric cryptosystem similar to RSA, but is simpler than RSA.
- proposed by Neal Koblitz for teaching
 cryptography without using advanced mathematics
- □ Kid-RSA uses public-private key pair for encryption and decryption

Asymmetric Key Cryptosystem – Kid-RSA

- □ Alice chooses 4 random integers
 - **a**, b, a1, b1
- □ Then, Alice computes the following: M, e, d, n
 - \square M = a * b -1
 - e = a1 * M + a
 - d = b1 * M + b
 - n = ((e * d) 1) / M
- \square Alice's public-key = (n, e)
- □ Alice's Private-key = d

Skill Component

Asymmetric Key Cryptosystem – Kid-RSA

- \Box Let: a = 9, b = 11, a1 = 5, b1 = 8;
- □ Therefore:

M	(a*b)-1	(9 * 11) -1	98
e	(a1 * M) + a	(5*98)+9	499
d	(b1*M)+b	(8 * 98) + 11	795
n	((e * d) - 1)/M	((499 * 795) -1) / 98	4048

- \Box The plaint text has to be a number in the range of 0 to n-1.
- \Box Let the message be PT = 538.
- Encryption

$$CT = PT * e \pmod{n} = 499 * 538 \pmod{4048} = 268462 \pmod{4048} = 1294$$

Decryption

$$PT = CT * d (mod n) = 1294 * 795 (mod 4048) = 1028730 (mod 4048) = 538$$

Source: http://www.cs.uri.edu/cryptography/publickeykidkrypto.htm

Kid-RSA Exercise

- Exercise
 - Let: a = 3, b = 4, a1 = 5, b1 = 6;
 - \Box CT = 161
 - □ PT = ???

Asymmetric Key Cryptosystem and Goals of Cryptography

Thinking & Activity Component

Asymmetric Key Cryptosystem and Goals of Cryptography

□ Discuss why Asymmetric Key Cryptosystem does/doesn't satisfy the following goals of cryptography?

Goals of Cryptography	Asymmetric Key Cryptosystems
Confidentiality	??
Integrity	??
Availability	??
Authentication	??
Non-Repudiation	??

Feedback & Thinking Component

Asymmetric Key Cryptosystem – Satisfies Confidentiality

- □ Alice's public-private key pair
 - Public-key and Private-key are two mathematically related keys
 - Public-key is shared publicly
 - Alice makes her public-key, publicly available to all.
 - Whoever, wants to send Alice a secure message, would have to encrypt the message using her public key.
 - Private-key is kept secret/private with Alice at all times
 - Alice is the only one who can decrypt the cipher messages sent to her using her private-key.
- Charlie may capture the cipher messages for Alice, but he cannot decrypt them as he does not have Alice's private-key.
- □ It is impossible for Charlie to generate Alice's private-key based on (the publicly available) Alice's public-key.

Feedback & Thinking Component

Asymmetric Key Cryptosystem – Satisfies Authenticity and Non-Repudiation

- Alice's public-private key pair are two mathematically related keys
 - Authenticity and Non-Repudiation
 - When Alice wants to prove that a message is from her.
 - Alice encrypts that message with her private-key.
 - Whoever wants to verify the message, would be able to decrypt the message ONLY with Alice's public-key.
 - Since the message could ONLY be decrypted by Alice's public-key, and also Alice ALONE holds the private-key, it proves that the message came from Alice.

□ Discuss:

- □ Charlie can also decrypt the cipher message in this case, because he too know Alice's public Key.
- So how to keep this cipher message secure from Charlie?

Thinking & Activity Component

Asymmetric Key Cryptosystem – Combining Confidentiality, Authentication, and Non-Repudiation

- □ Alice wants to achieve both the following requirements in one go:
 - Confidentiality
 - Alice wants to send a secure message to Bob
 - Authentication and Non-Repudiation
 - Alice wants to prove to Bob that she indeed sent the message
- Discuss how Alice can do the above using Asymmetric Key Cryptosystem

Thinking & Activity Component

Asymmetric Key Cryptosystem – Combining Confidentiality, Authentication, and Non-Repudiation

□ Type your answer here Alice encrypts the Mcg with her private key then by As it agun W Bol's public key So even if Charlegers the mog he does not have Bobs privace key to decry pt the 2nd School of ICT - CSF - CTG - Asymmetric Key Cryptosystem Encryption Which is the public key.

Symmetric vs. Asymmetric

Knowledge Component

Symmetric vs. Asymmetric

Uses a secret key to encrypt and to decrypt	Uses two keys, one by the sender and one by
messages.	the receiver to encrypt and to decrypt messages
	respectively. The two keys are mathematically
	related.
The secret key cannot be made public and	One of the keys, i.e. the public key can be
known only to the sender and receiver.	made known to all parties concerned. While the
	sender keeps the other key, i.e. private key.
Need a secure channel to distribute the key.	Allows public keys to be exchanged out in the
	open over insecure communication channels.
Perform faster than most public key	Perform slower than most symmetric
cryptographic algorithms.	cryptographic algorithms.
Number of symmetric keys = $N(N-1)/2$,	Number of Asymmetric Keys = 2N,
where N is the number of users in the group	where N is the number of users in the group
Satisfies only Confidentiality, Availability	Satisfies Confidentiality, Availability,
School of ICT - CSF - CTG - Asymmet	Authentication, Non-Repudiation

Summary

Component	You learnt
Knowledge	Why Asymmetric Key Cryptosystem? Asymmetric Key Cryptosystem Other names of asymmetric key crypto Kid-RSA Popular Asymmetric Key Cryptosystems: RSA, ECC Symmetric vs. Asymmetric
Thinking	Symmetric Key Cryptosystem and Goals of Cryptography Concept of Asymmetric Key Cryptosystem Asymmetric Key Cryptosystem and Goals of Cryptography
Skill	Kid-RSA
Activity	Kid-RSA Symmetric Key Cryptosystem and Goals of Cryptography Concept of Asymmetric Key Cryptosystem Asymmetric Key Cryptosystem and Goals of Cryptography
Feedback	Symmetric Key Cryptosystem and Goals of Cryptography Concept of Asymmetric Key Cryptosystem Asymmetric Key Cryptosystem and Goals of Cryptography