Grand graph challenge

Consider an **Erdős–Rényi random graph** with n nodes and $\frac{n \ln n}{8}$ links. What can you say about the expected fraction of nodes in the **largest connected component** S? Implement an **efficient algorithm** that constructs such a random graph and computes the fraction S. The algorithm can use any graph representation and any method for computing connected components. It should merely **output** S **for a given** n. What is the size of the **largest random graph** in terms of n you are able to analyse on your computer within about **one minute**?

Nodes n	Links $\frac{n \ln n}{8}$	Giant S	Graph T_G	Search T_S	Time T_{G+S}
1000	863	?	0.00 sec	0.00 sec	0.00 sec
10000	11 513	?	0.00 sec	0.00 sec	0.01 sec
100 000	143 912	?	0.03 sec	0.03 sec	0.06 sec
1 000 000	1 726 939	?	0.63 sec	0.53 sec	1.16 sec
5 000 000	9 640 593	?	10.18 sec	3.70 sec	13.88 sec
10 000 000	20 147 620	?	15.19 sec	10.43 sec	25.62 sec
15 000 000	30 981 676	?	21.79 sec	13.59 sec	35.38 sec
20 000 000	42 028 107	?	31.37 sec	19.94 sec	51.31 sec
25 000 000	53 232 457	?	42.00 sec	30.32 sec	72.32 sec
30 000 000	64 562 655	?	66.23 sec	44.30 sec	110.53 sec
50 000 000	110 797 085	?	232.47 sec	113.79 sec	346.26 sec

Table shows the performance of a Java implementation run on 2.3 GHz Intel Core i7 with 16 GB memory.