

Setup for top quark analysis exercise

Andrey Pozdnyakov

January 26, 2021

Overview

- The datasets
- The code
 - The Analyzer
 - The Plotter
 - How to run it

Datasets

- ROOT files are located in **files** directory
 - Each file contains a ROOT tree called events
- The file called data.root is real CMS data
 - Other files are MC simulation of various processes

filename	type	#events	x-section
data.root	data	469384	
ttbar.root	sim. $t\bar{t}$ signal	36941	165 pb
wjets.root	sim. W plus jets background	109737	31300 pb
dy.root	sim. Drell-Yan background	77729	15800 pb
ww.root	sim. WW background	4580	43 pb
wz.root	sim. WZ background	3367	18 pb
zz.root	sim. ZZ background	2421	6 pb
single_top.root	sim. single top background	5684	85 pb
qcd.root	sim. QCD multijet backgr.	142	$10^{8} \; {\rm pb}$

Analyzer

- Analysis code consists of MyAnalysis.C and .h files
 - This is the main code to be edited in the exercise
 - A loop over events and an event selection (aka "cuts") are implemented in .C
 - Histograms are declared in .h and initialized in .C
 - Then these histograms are filled in event loop
 - You need to do the same for new histograms you want to create
 - Classes are used for particles: MyMuon, MyJet, etc.
 - They are inherited from TlorentzVector ROOT class, which simplifies certain calculations (Pt, sum of two particles, dR, etc)
 - Supposed to help write easier code for physics

Plotting

- Plotter.C and .h
 - Scripts to make nice plots out of histograms produced in analysis step
 - You do not need to change this code. It will automatically pick up new histograms you create, following the example of existing ones

Running

- Script: example.C
 - It runs the analysis over each input file
 - Then it runs plotting script to display produced histograms
 - You do not need to modify it
- The script is compiled with make
 - Executable example.x is produced.
 - This is what we run
 - Must re-compile every time you change the code

What to do?

- 1. Run the cells in the tutorial a) Does it all work for you?
- 2. Read full manual in **TutorialDocu.pdf** file (uploaded to Jupyter)
- 3. Investigate the root files
 - a)Open events tree and look which variables are present
 - b) Make a few histograms
- 4. Go back to the tutorial code and **study** MyAnalysis.C file
 - a)Do you understand where the **loop** over events is done
 - b)Do you understand how event **selection** is applied
 - c) Do you understand how the two **histograms** in the example are filled
- 5. Now create your own histogram of some new variable
- 6. If no problems with the above you are ready to do the tasks of the exercise
 - a) If you have problems ask questions!

Hints and tricks

- Use counters to count events after each selection to keep track of your cuts
- Printout useful information with cout statements
- Think of physics:
 - Say, you want to plot a variable. How would you expect it to look like. This could be different depending on the process. Does you plot agree with the expectation?