Q: Is the following example a random experiment? A manufacturing unit has a lathe machine that is operating in poor condition. The mechanic has informed the owners of the machine that the Yes because neither the owner machine might stop working after 5 hours of continuous operation.

Q: What's the sample space of the above experiment?

nor the mechanic is certain about the exact time, when the machine is going to stop.

Send your answer privately to me on the chat section. We will discuss at 07:05 AM

Random Experiment outcome

Sample & puce

Events

mutually exclusive collectively exhaustive

Q: Toss of two coing

$$\Delta = \frac{2}{2}HH, HT, TH, TT$$

A: Both coin loads with some outcome

B: Both win loads with different ou trome

Conditional Probability

What's the probability that it will rain today?

- when no info. is provided, we focus on the entire sample space
- · with the additional info, the somple space will get reduced to Matinfo.

 (Atual)

Among those who use Swiggy, what fraction also use Zomato?

$$P(Swiggy) = \frac{60}{100} = 0.6$$

$$P(zomalo) = \frac{50}{100} = 0.5$$

$$P(Swiggy ord Zomale) = \frac{20}{lus} = 0.2$$

$$P(Ahud ix using | Ahud ix already) = \frac{20}{60}$$
 $= \frac{1}{3}$

$$P(z|s) = P(z|s) = \frac{0.2 - 2}{60}$$

$$P(z|s) = \frac{0.2 - 2}{60}$$

It is known that -

80% people like cappuccino, 40% people like espresso, and 30% like both.

$$P(manjot - Capp) = \frac{80}{100}$$

$$P(manjot - espresso) = \frac{40}{100}$$

$$(manjot - cop and esp) = \frac{30}{100}$$

$$b(\omega o)_{2} + \cosh \cos \phi = \frac{100}{30}$$

Among the people who like cappuccino, what fraction of people like espresso?

$$P(E|c) = \frac{P(Enc)}{P(c)} = \frac{0.3}{0.8} = \frac{3}{8}$$

Conditional Probability

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

$$P(B|A) = \frac{P(B \cap A)}{P(A)}$$

$$P(B \cap A) = \frac{P(B|A) \cdot P(A)}{P(B \cap A)}$$

It is known that-

30% of emails are spam, and 70% are not spam.

The word "purchase" occurs in 80% of spam emails.

It also occurs in 10% of non-spam emails.

Tree dig.

Overall, in what percentage of emails would we see the word "purchase"? p(purchase) no + spon) = 0 1

It is known that-

30% of emails are spam, and 70% are not spam.

The word "purchase" occurs in 80% of spam emails.

It also occurs in 10% of non-spam emails.

Overall, in what percentage of emails would we see the word "purchase"?

7	Span
	purchase

		Span			P(Spon purchase) =	
	-	S	S ^c	1	p (Sporn n Porchase)	
prichase	P	240	70	310	p (prochase) = 240 310	
	PC	60	630	690		
		300	700	1000	p(sc pc) = 630 690	

 $P(\text{not purpose}) = \frac{300}{1000}$ $P(\text{not span}) = \frac{300}{1000}$ $P(\text{scn p}) = \frac{300}{1000}$ $P(\text{scn p}) = \frac{300}{1000}$ $P(\text{scn p}) = \frac{60}{1000}$ $P(\text{scn p}) = \frac{60}{1000}$ $P(\text{scn pc}) = \frac{630}{1000}$

Quiz-1

Premium $\exists b \quad (\exists nP) \quad \exists (\exists nP) + (\exists nP^c) \\
P(\exists) = P(\exists nP) + P(\exists nP^c) \\
= P(\exists P) \cdot P(P) + P(\exists P^c) \cdot P(P^c)$

5% of all LinkedIn users are premium users 10% of premium users are actively seeking new job opportunities.

Only 2% of non-premium users are actively seeking new job opportunities. Overall, what percentage of people are actively seeking new job opportunities

A disease affects 10% of the population. Among those who have the disease, 80% get "positive" test result Among those who don't have the disease, 5% get "positive" test result. What is P(+ve |

Quiz-3:

A disease affects 10% of the population. Among those who have the disease, 80% get "positive" test result. Among those who don't have the disease, 5% get "positive" test result. What is P(+ve ∩ Disease)?

A disease affects 10% of the population. Among those who have the disease, 80% get "positive" test result. Among those who don't have the disease, 5% get "positive" test result.

Now, if a person tests +ve, what is the prob that they actually have the disease?

Q: A ecommerce rebsite shows two type of Ad B 60% of visitor see type-A 40% of visitor see type-B

5% of mose whoosee type-A click on the Ad - P(click | A)
3% of those who see type-B click on the Ad - P(click | B)

Bayes theorm

$$P(AB) = P(AB)$$
.

Bays theorm

Connects AlB with BIA