Size dependence and allocation aspects of validation

Péter Király 1st year PhD report Supervisor: Gergely Tóth

May 31, 2019

Outline

- Sample size dependence of validation parameters (VPs)
 - compared on models with weak and good linear fit
 - \bullet remarks on R^2 and CCC
 - \bullet correction of degrees of freedom: Q_{F3}^2
 - visualization of Roy-Ojha parameters
 - correlation of VPs
 - 66 VPs calculated
- Predictor allocation aspects of validation parameters
- Summary

Validation schemes

Internal validation

External validation

goodness of fit, robustness

$$\hat{r}_i = (y_i - \hat{y}_i)$$

predictability $\hat{r}_i = (y_{i,\text{test}} - \hat{y}_{i,\text{test}}(\hat{\beta}_{\text{train}}))$

Validation parameters (VPs) - Rácz, SAR QSAR Environ. Res. 26, 683 (2015)

internal VPs

$$R^{2} = 1 - \frac{\sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}} = 1 - \frac{RSS}{TSS} \qquad Q_{F1}^{2} = 1 - \frac{\sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}}{n_{i} test} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}} = 1 - \frac{PRESS}{TSS} \qquad Q_{F2}^{2} = 1 - \frac{\sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}}{n_{i} test} \sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}}{(y_{i} - \hat{y}_{i})^{2}}$$

$$CCC = \frac{2 \sum_{i=1}^{n} (y_{i} - \hat{y}_{i}) (\hat{y}_{i} - \hat{y}_{i})}{\sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2} + n (\hat{y} - \hat{y}_{i})^{2}} \qquad Q_{F3}^{2} = 1 - \frac{\sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2} / n_{test}}{\sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2} / n_{test}}$$

$$RMSE = \sqrt{\frac{\sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}}{n}} \dots \qquad \vdots$$

external VPs

$$\begin{split} Q_{F1}^2 &= 1 - \frac{\sum\limits_{i=1}^{n,\text{test}} (y_i - \hat{y}_i)^2}{\sum\limits_{i=1}^{n,\text{test}} (y_i - \bar{y}_{\text{train}})^2} \\ Q_{F2}^2 &= 1 - \frac{\sum\limits_{i=1}^{n,\text{test}} (y_i - \hat{y}_i)^2}{\sum\limits_{i=1}^{n,\text{test}} (y_i - \hat{y}_i)^2} \\ Q_{F3}^2 &= 1 - \frac{\sum\limits_{i=1}^{n,\text{test}} (y_i - \bar{y}_{\text{test}})^2}{\sum\limits_{i=1}^{n,\text{train}} (y_i - \hat{y}_{\text{train}})^2/n_{\text{train}}} \end{split}$$

Size dependence of VPs - Valinear(R)

Datasets

Concrete Compressive Strength set Combined Cycle Power Plant set

• sets are modeled with *multivariate linear regression* (MLR)

dataset	Concrete	Powerplant
# response variables	1	1
# explanatory variables	8	4
# objects	1030	9658
adequacy for MLR?	weak	good

Tasks for size dependence study

- random sampling from population
- training/test split of sample for external validation (80/20 for training)
- linear modeling and computation of validation parameters (VPs)
- \bullet tasks above for sample sizes, $n_{\rm sample} = (30, 50, 75, 100, 250, 500),$ then repeated $1000\times$, VPs averaged

Internal VPs

Is the smaller model the better one?

Internal VPs

Is the smaller model the better one?

External VPs

 ${\cal Q}^2_{F2}$ is the most sensitive

Allocation aspects \sim Design of experiment

Rank correlation with var_p

significant matching only for cases where we know \boldsymbol{y} values

Summary

- model validation: goodness of fit, robustness & predictivity
- sample size dependence of R^2 , CCC, RMSE show anomaly
- \bullet Q_{F1-3}^2 for external validation show different sensitivity for different sample size
- nonlinear modeling, PLS

Co-workers: Dániel Kovács, Gergely Tóth