11th i-CoMSE Workshop: Mesoscale Particle-Based Modeling

Mississippi State University July 21–25, 2025

Session 9: Walls

PBCs

- Periodic boundary conditions (PBCs) allow for simulation of "infinite systems" using a finite number of particles
- $r^{cutoff} \leq \frac{1}{2}L_x$ to be consistent with minimum image convention

PBCs

Caution:

- Correlations between particles can still exits beyond r^{cutoff}
- Finite size effects can thus still be significant \rightarrow processes where correlations occur on length scales $\gtrsim L_{\chi}$ (e.g., transport properties and phase transitions)

Confined systems

- Many cases where we want to simulate systems with reduced dimensionality that are confined in one or more directions
- Ubiquitous in technological applications where systems interact with solid surfaces

We can model these types of systems using walls to create solid boundaries

Particle vs. smooth walls

- Particle walls: e.g., planar wall that spans *x-y* dimensions of cell
 - n^{wall} particles arranged in a regular geometry (e.g., cubic lattice)
 - Particle-wall interaction: $u_i^{p,wall} = \sum_{i}^{n^{wall}} u(r_{ij})$
 - Requires n^{wall} energy/force calculations

Particle wall

- $u_i^{p,wall}$ varies in x, y, and z directions viz r_{ii}

Particle vs. smooth walls

- Smooth walls: e.g., planar wall that spans x-y dimensions of cell
 - Featureless wall modeled as an infinite plane
 - Particle-wall interaction: $u_i^{s,wall}(r_z)$

Particle wall

- Requires 1 energy/force calculations
- $u_i^{s,wall}(r_z)$ varies only in the z direction viz r_z
- Smooth walls can be thought of effective potentials obtained by integrating over interactions with particles in the wall

Smooth wall

Particle vs. smooth walls

HOOMD-blue

- Particle walls can be implemented by placing the particles manually; wall particles are typically fixed in space and thus their positions are not updated via MD integration
- Smooth walls are easily defined by specifying
 - (i) geometry (hoomd.wall)

Particle wall

- (ii) potential $u_i^{s,wall}$ (md.external.wall for MD)

Smooth wall

Quasi-2D geometries

- Quasi-2D geometries can be created by using two parallel planar walls (also called a parallel plate or "slit pore" geometry)
- Particles can move in the plane parallel to the walls but are confined in the direction normal to the walls

Quasi-2D geometries

- Quasi-2D geometries can be created by using two parallel planar walls (also called a parallel plate or "slit pore" geometry)
- hoomd.wall.plane(origin,normal,open)
 - origin: (x,y,z) position of a point that lies in the plane
 - normal: (x,y,z) components of vector normal to the plane
 - open: include (true) or exclude (false) the plane in the space
- $u_i^{s,wall}$ for each wall only depends the normal distance

Quasi-1D geometries

- Quasi-1D geometries can be created by using a cylindrical wall
- Particles can move along the major axis of the cylinder but are confined in the radial direction

Side view

Front view

Quasi-1D geometries

- Quasi-1D geometries can be created by using a cylindrical wall
- hoomd.wall.cylinder(radius, axis, origin, inside, open)
 - radius: radius r of the cylinder's circular faces
 - axis: (x,y,z) components of vector normal to the cylinder's circular faces
 - origin: (x,y,z) origin of the cylinder defined as the center of the circle along the cylinder's axis
 - inside: whether positive signed distances are inside or outside the cylinder.
 - open: include (true) or exclude (false) the surface of the cylinder in the space

Side view

Front view

Quasi-1D geometries

- Quasi-1D geometries can be created by using a cylindrical wall
- hoomd.wall.cylinder(radius, axis, origin, inside, open)
- $u_i^{s,wall}$ only depends the distance from the cylinder's surface
- inside: positive signed distances are inside or outside the cylinder? Cases of positive distances are shown below.

Side view

Quasi-0D geometries

- Quasi-0D geometries can be created by using a spherical wall
- Particles are confined in the radial direction

Quasi-0D geometries

- Quasi-0D geometries can be created by using a spherical wall
- hoomd.wall.sphere(radius, axis, origin, inside, open)
 - radius: radius r of the sphere
 - origin: (x,y,z) origin of the sphere
 - inside: whether positive signed distances are inside or outside the sphere.
 - open: include (true) or exclude (false) the surface of the sphere in the space

Quasi-0D geometries

- Quasi-0D geometries can be created by using a spherical wall
- hoomd.wall.sphere(radius, axis, origin, inside, open)
- $u_i^{s,wall}$ only depends the distance from the sphere's surface
- inside: positive signed distances are inside or outside the cylinder? Cases of positive distances are shown below.

Exercise

- Langevin dynamics simulations of a 30-mer FENE polymer chain between repulsive parallel walls (WCA potential for monomer-wall interactions)
- Wall surface normal is oriented along the y-direction of the simulation cell

- Compute histograms for the monomer positions and polymer center of mass position ($H(y_m)$ and $H(y_{COM})$)
- Can also see how these distributions change upon varying wall spacing and the interaction potential (LJ vs WCA)