

بسمه تعالی معماری کامپیوتر نیمسال دوم ۹۸–۹۷

تمرین (۵)

مهلت تحویل: ۱۳۹۸/۰۳/۱۰

دانشگاه صنعتی امیرکبیر

شماره دانشجویی: ۹۶۳۱۰۰۱

نام و نام خانوادگی: محمدرضا اخگری

١.

فرض کنیم ماتریس A به فرم زیر باشد:

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}$$

که در آن مجموع درایههای هر سطر برابر با s است. میدانیم که:

 $Ax = \lambda x$ and $x \neq 0 \rightarrow$

$$\det(A - \lambda I)$$

$$= \begin{vmatrix} a_{11} - \lambda & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} - \lambda & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} - \lambda \end{vmatrix} = \begin{vmatrix} a_{11} + a_{12} + \cdots + a_{1n} - \lambda & a_{12} & \cdots & a_{1n} \\ a_{21} + a_{22} + \cdots + a_{2n} - \lambda & a_{22} - \lambda & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} + a_{n2} + \cdots + a_{nn} - \lambda & a_{n2} & \cdots & a_{nn} - \lambda \end{vmatrix}$$

$$= \begin{vmatrix} s - \lambda & a_{12} & \cdots & a_{1n} \\ s - \lambda & a_{22} - \lambda & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ s - \lambda & a_{n2} & \cdots & a_{nn} - \lambda \end{vmatrix} = (s - \lambda) \begin{vmatrix} 1 & a_{12} & \cdots & a_{1n} \\ 1 & a_{22} - \lambda & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & a_{n2} & \cdots & a_{nn} - \lambda \end{vmatrix} = 0 \rightarrow s = \lambda$$

برای قسمت دوم هم میدانیم مقادیر ویژه یک ماتریس با مقادیر ویژه ماتریس ترانهادهاش برابر است. پس برای حالتی که جمع درایههای هر ستون هم برابر است رابطه برقرار است.

 \odot

بسمه تعالی معماری کامپیوتر نیمسال دوم ۹۸–۹۷ تمرین (۵)

مهلت تحویل: ۱۳۹۸/۰۳/۱۰

دانشگاه صنعتی امیرکبیر

شماره دانشجویی: ۹۶۳۱۰۰۱

نام و نام خانوادگی: محمدرضا اخگری

۲.

می توان چندجملهای مشخصه را به فرم زیر نوشت:

$$0=f(\lambda)=\prod_{i=1}^n(\lambda-\lambda_i)=\lambda^n-\lambda^{n-1}\sum_{i=1}^n\lambda_i+\cdots+(-1)^n\prod_{i=1}^n\lambda_i.$$

ضرب یک ستون در منفی یک علامت دترمینان را عوض می کند.

$$\det A = (-1)^n \det(-A)$$

و همچنین:

$$f(0) = \det(-A) = (-1)^n \prod_{i=1}^n \lambda_i \to \det A = \prod_{i=1}^n \lambda_i$$

برای قسمت دوم:

طبق تعریف دترمینان می دانیم که n عبارت دارای عبارت λ^{n-1} در دترمینان هستند.

$$\Pi_{i=1}^n(\lambda-A_{ii})$$

با توجه به این شرایط میفهمیم که ضریب مربوط به λ^{n-1} مشخص است.

$$-trace(A) = \sum_{i=1}^{n} A_{ii}$$

با توجه به ضریب λ^{n-1} در $f(\lambda)$ نتیجه میشود که:

$$trace(A) = \Sigma_{i=1}^n(\lambda_i)$$

بسمه تعالى

معماری کامپیوتر نیمسال دوم ۹۸–۹۷

تمرین (۵)

مهلت تحویل: ۱۳۹۸/۰۳/۱۰

انشگاه صنعتی امیر کبیر

ىدرضا اخگرى شماره دانشجويى: ٩٤٣١٠٠١

نام و نام خانوادگی: محمدرضا اخگری

۳. آ)

$$Ax = ax \to A^{-1}Ax = A^{-1}ax \to x = aA^{-1}x \to \frac{1}{a}x = A^{-1}x$$

ب)

$$A^2x = A(Ax) = A(\lambda x) = \lambda^2 x = 0 \xrightarrow{x \neq 0} \lambda = 0$$

ج)

مىدانيم كه:

 $\det A = \det A^T$

و مقدار ویژه با حل معادله زیر بدست میآید.

$$\det(A - \lambda I) = 0$$

همچنین:

$$(A - \lambda I)^t = A^t - \lambda I^t = A^t - \lambda I$$

 $\to \det(A - \lambda I) = \det(A^t - \lambda I)$

(১

در قسمت قبلی نشان داده شده است.

دانشكده مهندسي كامپيوتر

بسمه تعالی معماری کامپیوتر نیمسال دوم ۹۸–۹۷ تمرین (۵)

مهلت تحویل: ۱۳۹۸/۰۳/۱۰

دانشگاه صنعتی امیرکبیر

شماره دانشجویی: ۹۶۳۱۰۰۱

نام و نام خانوادگی: محمدرضا اخگری

4. 1)

$$B = P^{-1}AP \text{ and } AA^{-1} = A^{-1}A = I.$$

$$\det B = \det P^{-1}AP = \det A \neq 0 \to B \text{ is invertible.}$$

$$\to B(P^{-1}A^{-1}P) = (P^{-1}AP)(P^{-1}A^{-1}P) = I$$

$$\to (P^{-1}A^{-1}P)B = (P^{-1}A^{-1}P)(P^{-1}AP) = I$$

$$\Rightarrow B^{-1} = P^{-1}A^{-1}P.$$

(ب

$$A = PBP^{-1} \to A^2 = AA = (PBP^{-1})(PBP^{-1}) = PB(P^{-1}P)BP^{-1} = PB^2P^{-1} \to A^2 \sim B^2$$

ج)

$$A \sim B \to B = P^{-1}AP$$

$$A \sim C \to A = Q^{-1}CQ$$

$$B = P^{-1}Q^{-1}CQP = (QP)^{-1}C(QP) \to B \sim C$$

(১

قطری شدنی بودن یک ماتریس به معنای تشابه با یک ماتریس قطری است.

طبق قسمت ج، A با ماتریس قطری C مشابه است و B نیز با A مشابه است؛ پس B با C مشابه است و یعنی قطری شدنی است.

ه)

Let $A = PBP^{-1}$ then $Rank(A) = Rank(PBP^{-1}) \le Rank(PB) \le Rank(B) = Rank(P^{-1}AP)$ $\le Rank(A) \to Rank(A) = Rank(B)$

دانشكده مهندسي كامپيوتر

بسمه تعالی معماری کامپیوتر نیمسال دوم ۹۸–۹۷ تمرین (۵)

دانشگاه صنعتی امیر کیبر

مهلت تحویل: ۱۳۹۸/۰۳/۱۰

شماره دانشجویی: ۹۶۳۱۰۰۱

نام و نام خانوادگی: محمدرضا اخگری

(Ĩ.۵

$$Av = ev = (a - bi)(Re(v) + iIm(v)) = (aRe(v) + bIm(v)) + i(aIm(v) - bRe(v))$$

$$\rightarrow Re(Av) = A(Re(v)) = aRe(v) + bIm(v)$$

$$\rightarrow Im(Av) = A(Im(v)) = aIm(v) - bRe(v)$$

ب)

$$A(Re(v)) = aRe(v) + bIm(v) = [Re(v)Im(v)] \begin{bmatrix} a \\ b \end{bmatrix} = P \begin{bmatrix} a \\ b \end{bmatrix}$$

$$A(Im(v)) = aIm(v) - bRe(v) = [Re(v)Im(v)] \begin{bmatrix} -b \\ a \end{bmatrix} = P \begin{bmatrix} -b \\ a \end{bmatrix}$$

$$AP = A[Re(v) \ Im(v)] = [ARe(v) \ AIm(v)] = [P \begin{bmatrix} a \\ b \end{bmatrix} \ P \begin{bmatrix} -b \\ a \end{bmatrix}] = P \begin{bmatrix} a \ -b \\ b \ a \end{bmatrix} = PC$$

۶

اگر λ یک مقدار ویژه برای ماتریس A باشد، داریم:

$$Ax = \lambda x \to A^2 x = A(\lambda x) = \lambda(Ax) = \lambda^2 x = Ax$$

$$\lambda^2 x = \lambda x \to \lambda = 0 \text{ or } 1$$

بسمه تعالى

معماری کامپیوتر نیمسال دوم ۹۸–۹۷

تمرین (۵)

مهلت تحویل: ۱۳۹۸/۰۳/۱۰

انشگاه صنعتی امیر کبیر

شماره دانشجویی: ۹۶۳۱۰۰۱

نام و نام خانوادگی: محمدرضا اخگری

۸.

$$A = \begin{bmatrix} 1 & -2 & 5 \\ 1 & -2 & 5 \\ 1 & -2 & 5 \end{bmatrix}$$
 and
$$b = \begin{bmatrix} a \\ b \\ c \end{bmatrix}$$

$$\begin{split} A^t A \hat{x} &= A^t b \to \begin{bmatrix} 1 & 1 & 1 \\ -2 & -2 & -2 \\ 5 & 5 & 5 \end{bmatrix} \begin{bmatrix} 1 & -2 & 5 \\ 1 & -2 & 5 \\ 1 & -2 & 5 \end{bmatrix} \begin{bmatrix} \hat{x} \\ \hat{y} \\ \hat{z} \end{bmatrix} = \begin{bmatrix} 3 & -6 & 15 \\ -6 & 12 & -30 \\ 15 & -3 & 75 \end{bmatrix} \begin{bmatrix} \hat{x} \\ \hat{y} \\ \hat{z} \end{bmatrix} \\ &= \begin{bmatrix} 1 & 1 & 1 \\ -2 & -2 & -2 \\ 5 & 5 & 5 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} \end{split}$$

$$\begin{bmatrix} 3 & -6 & 15 & a+b+c \\ -6 & 12 & -30 & -2(a+b+c) \\ 15 & -3 & 75 & 5(a+b+c) \end{bmatrix} \sim \begin{bmatrix} 3 & -6 & 15 & a+b+c \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$3\hat{x} - 6\hat{y} + 15\hat{z} = a + b + c \rightarrow \hat{x} - 2\hat{y} + 5\hat{z} = \frac{a + b + c}{3}$$

٨. آ)

$$A = \begin{bmatrix} a \\ c \end{bmatrix}$$
 and $b = \begin{bmatrix} b \\ d \end{bmatrix} \rightarrow A^t A = a^2 + c^2$

$$(a^2 + c^2)\hat{x} = ab + cd \rightarrow \hat{x} = \frac{ab + cd}{a^2 + c^2}$$

ب)

$$\begin{bmatrix} a_1 & a_2 & \cdots & a_n \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix} \hat{x} = \begin{bmatrix} a_1 & a_2 & \cdots & a_n \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix} \rightarrow \hat{x} = \frac{\sum_{i=1}^n a_i b_i}{\sum_{i=1}^n a_i^2}$$

دانشكده مهندسي كامپيوتر

بسمه تعالی معماری کامپیوتر نیمسال دوم ۹۸–۹۷ تمرین (۵)

تمرین (۵) مهلت تحویل: ۱۳۹۸/۰۳/۱۰

انشگاه صنعتی امیر کبیر

شماره دانشجویی: ۹۶۳۱۰۰۱

نام و نام خانوادگی: محمدرضا اخگری

٩.

فرض می کنیم نقاط روی خط باشند، در این صورت مسئله کمترین مربعات نزدیکترین خط را به این نقاط می-دهد.

$$A = \begin{bmatrix} x_1 & 1 \\ x_2 & 1 \\ \vdots & \vdots \\ x_n & 1 \end{bmatrix} \text{ and } d = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} \rightarrow A^t A \begin{bmatrix} \widehat{m} \\ \widehat{b} \end{bmatrix} = A^t d \rightarrow \begin{bmatrix} \sum_{i=1}^n x_i^2 & \sum_{i=1}^n x_i \\ \sum_{i=1}^n x_i & n \end{bmatrix} \begin{bmatrix} \widehat{m} \\ \widehat{b} \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^n x_i y_i \\ \sum_{i=1}^n y_i \end{bmatrix}$$

$$\Rightarrow px = q \Rightarrow x = p^{-1}q \Rightarrow \left[\widehat{h} \right] = \frac{1}{n \times \sum_{i=1}^{n} x_i^2 - (\sum_{i=1}^{n} x_i)^2} \begin{bmatrix} n & -\sum_{i=1}^{n} x_i \\ -\sum_{i=1}^{n} x_i & \sum_{i=1}^{n} x_i^2 \end{bmatrix} \begin{bmatrix} \sum_{i=1}^{n} x_i y_i \\ \sum_{i=1}^{n} y_i \end{bmatrix}$$

(1.1.

$$\forall w \in W; w = au_1 + bu_2 \to < z, w > = a(z, u_1) + b(z, u_2) = a \times 0 + b \times 0 = 0 \to z \in W^{\perp}$$

ب) ©

ج) پایههای متعامد $\{w_1, w_2, ..., w_n\}$ در نظر می گیریم؛

$$y \in w \to y = c_1 w_1 + c_2 w_2 + \dots + c_n w_n \to proj_w y = \sum_{i=1}^n \left(\frac{y \cdot w_i}{w_i \cdot w_i} w_i \right)$$

$$= \sum_{i=1}^n \left(\frac{c_1 w_1 + \dots + c_n w_n}{w_i \cdot w_i} w_i \right) \xrightarrow{\text{orthogonal}} proj_w y = \sum_{i=1}^n \left(\frac{c_i (w_i \cdot w_i)}{w_i \cdot w_i} w_i \right)$$

$$= \sum_{i=1}^n c_i w_i = y$$

بسمه تعالی معماری کامپیوتر نیمسال دوم ۹۸–۹۷

تمرین (۵)

دانشگاه صنعتی امیرکبیر

شماره دانشجویی: ۹۶۳۱۰۰۱

نام و نام خانوادگی: محمدرضا اخگری

مهلت تحویل: ۱۳۹۸/۰۳/۱۰

(1.11

$$U = (u_1 \quad u_2) \to U^T = \begin{pmatrix} u_1^T \\ u_2^T \end{pmatrix}$$

$$UU^T = u_1 u_1^T + u_2 u_2^T = \begin{pmatrix} \frac{4}{9} & \frac{2}{9} & \frac{4}{9} \\ \frac{2}{9} & \frac{1}{9} & \frac{2}{9} \\ \frac{4}{9} & \frac{2}{9} & \frac{4}{9} \end{pmatrix} + \begin{pmatrix} \frac{4}{9} & -\frac{4}{9} & -\frac{2}{9} \\ -\frac{4}{9} & \frac{4}{9} & \frac{2}{9} \\ -\frac{2}{9} & \frac{2}{9} & \frac{1}{9} \end{pmatrix} = \begin{pmatrix} \frac{8}{9} & -\frac{2}{9} & \frac{2}{9} \\ -\frac{2}{9} & \frac{5}{9} & \frac{4}{9} \\ \frac{2}{9} & \frac{4}{9} & \frac{5}{9} \end{pmatrix}$$

$$U^T U = \begin{pmatrix} u_1^T u_1 & u_1^T u_2 \\ u_2^T u_1 & u_2^T u_2 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I$$

ب)

$$proj_w y = UU^T y = \begin{bmatrix} 2\\4\\5 \end{bmatrix}$$
 and $UU^T y = \text{invalid}$

.17

برای تبدیل خطی بودن کافیست نشان دهیم که:

$$proj_{L}y(ax + by) = \frac{(ax + by).u}{u.u} = \frac{(ax).u}{u.u} + \frac{(by).u}{u.u} = a \times \frac{x.u}{u.u} + b \times \frac{y.u}{u.u}$$
$$= a(proj_{L}x) + b(proj_{L}y)$$

 $proj_L y(ax + by) = a(proj_L x) + b(proj_L y)$

$$proj_L 0 = \frac{0.u}{u.u} = 0$$

پس خطی است.

بسمه تعالی معماری کامپیوتر نیمسال دوم ۹۸–۹۷ تمرین (۵)

تمرین (۵) مهلت تحویل: ۱۳۹۸/۰۳/۱۰

دانشگاه صنعتی امیر کبیر

شماره دانشجویی: ۹۶۳۱۰۰۱

نام و نام خانوادگی: محمدرضا اخگری

₾.1٣

۱۴. اعضای B مستقل خطیاند، طبق گرام اشمیت، پایه ای مانند B' میتوان ساخت و بدین معناست که برای $b'_i, b'_i \in B'$ هر

$$b_i''. \ b_j' = b_i^T b_j = 0$$