EGMO TST Day 1

Date: 29 December 2023

Instructions:

- i) You have 4 hours and 30 minutes for three problems.
- ii) Each problem is worth 10 points. Attempt all three.
- iii) Any claim you make must be accompanied by a proper justification.

Rubric P2 Problem and Solution

Problem 2.

Given that a_1, a_2, \ldots, a_{10} are positive real numbers, determine the smallest possible value of

$$\sum_{i=1}^{10} \left\lfloor \frac{7a_i}{a_i + a_{i+1}} \right\rfloor$$

where we define $a_{11} = a_1$.

Sutanay Bhattacharya

Solution 1. We claim the minimum is 6. This is attained when $a_i = 7^i$ for $i \in \{1, ..., 10\}$.

Now to prove this is the minimum, make the substitution $a_{i+1}/a_i = x_i$. The problem becomes: for positive reals x_1, \ldots, x_{10} with $x_1x_2 \cdots x_{10} = 1$. Prove that

$$\sum_{i=0}^{10} \left\lfloor \frac{7}{1+x_i} \right\rfloor \ge 6.$$

Let $z_i = \left\lfloor \frac{7}{1+x_i} \right\rfloor$. If at most 4 of the z_i 's are zero, then at least 6 of them are ≥ 1 , and thus the sum is at least 6.

If not, then at least five of them are 0. Suppose $z_1 = \cdots = z_5 = 0$ without loss of generality. Note that $z_i = 0$ implies

$$\frac{7}{1+x_i} < 1 \implies x_i > 6,$$

so that $x_1, \dots, x_5 > 6$. Thus $x_1 x_2 x_3 x_4 x_5 > 6^5$, which means $x_6 x_7 x_8 x_9 x_{10} < 1/6^5$. Assuming WLOG $x_6 = \min\{x_6, x_7, x_8, x_9, x_{10}\}$, this implies $x_6 < 1/6$. However, then we have

$$z_6 \ge \left\lfloor \frac{7}{1 + \frac{1}{6}} \right\rfloor = 6,$$

and the conclusion follows.

Solution 2. We claim the minimum is 6. This is attained when $a_i = 7^i$ for $i \in \{1, ..., 10\}$.

We first observe that if $a_i \ge a_{i+1}$, then

$$\left\lfloor \frac{7a_i}{a_i + a_{i+1}} \right\rfloor \ge \left\lfloor \frac{7a_i}{2a_i} \right\rfloor \ge 3.$$

Thus the sequence (taken cyclically) decreases at most once. WLOG $a_1 < a_2 < \cdots < a_{10}$.

Make the substitution $a_{i+1}/a_i=x_i$. We have $x_i>1$ for $1\leq i\leq 9$, and $x_{10}=1/x_1x_2\dots x_9$. The expression becomes

$$\sum_{i=1}^{9} \left\lfloor \frac{7}{1+x_i} \right\rfloor + \left\lfloor \frac{7x_1x_2\dots x_9}{x_1x_2\dots x_9+1} \right\rfloor.$$

If we have $x_i \ge 6$ for any $1 \le i \le 9$, then we get

$$x_{1}x_{2} \dots x_{9} \ge 6$$

$$7x_{1}x_{2} \dots x_{9} \ge 6x_{1}x_{2} \dots x_{9} + 6$$

$$\left\lfloor \frac{7x_{1}x_{2} \dots x_{9}}{x_{1}x_{2} \dots x_{9} + 1} \right\rfloor \ge 6,$$

and we are done.

If not, $x_i < 6$ for all $1 \le i \le 9$. But then, for $1 \le i \le 9$,

$$\left\lfloor \frac{7}{1+x_i} \right\rfloor \ge 1,$$

which means the expression is at least 9, which is greater than our bound!

Solution 3. This is a third approach for showing the lower bound. Let a_{10} be the maximum across all a_i . Then, we have that $\left|\frac{7a_1}{a_1+a_2}\right| \geq \left|\frac{a_1}{a_1+a_{10}}\right|$. Thus,

$$\left\lfloor \frac{7a_1}{a_1 + a_2} \right\rfloor + \left\lfloor \frac{7a_{10}}{a_{10} + a_1} \right\rfloor \ge \left\lfloor \frac{7a_1}{a_1 + a_{10}} \right\rfloor + \left\lfloor \frac{7a_{10}}{a_{10} + a_1} \right\rfloor \ge \left\lfloor \frac{7(a_1 + a_{10})}{a_1 + a_{10}} \right\rfloor - 1 \ge 6$$

Rubric

Solution 1.

0+

Upper Bound. (3)

- (A) **+1:** Guessing the answer is 6
 - The conjecture should be explicitly stated. Something like being boxed as a number is rough work is not considered sufficient.
- (B) +2: Correct construction achieving 6
 - +1: If construction is not explicitly written saying that it achieves 6 but the sequence $1, 7, 7^2, \cdots$ is mentioned upto at least the square.

Lower Bound. (7)

- (A) **+2:** Shifting to working with $\frac{a_{i+1}}{a_i}$ or x_i
 - The full two points can be awarded if only the expression is rewritten as $\sum_{i=0}^{10} \left\lfloor \frac{7}{1+x_i} \right\rfloor$ or it is clear that only the x_i are being considered.
 - 1 point can still be awarded if things like $\frac{a_{i+1}}{a_i} > 6 \implies z_i = 0$ and equivalent things are written. It is not considered to be the same as writing $a_{i+1} > 6a_i$. It should be clear that the ratio is being considered.
- (B) **+1:** Concluding if at most $4 z_i$ are 0
- (C) **+1:** Showing that $z_i = 0 \iff x_i > 6$
- (D) **+1:** Showing that at least 1 x_i is less than $\frac{1}{6}$ if 5 z_i s are 0
- (E) +2: Concluding that the total sum is atleast 6 then

All points are considered additive.

10-

A solution with both the upper and lower bound is considered complete. 1 mark can be deducted for minor errors which are easily fixable. Typos and such should not lead to deductions.

Solution 2.

0+

Upper Bound. (3)

- (A) +1: Guessing the answer is 6
 - The conjecture should be explicitly stated. Something like being boxed as a number is rough work is not considered sufficient.
- (B) +2: Correct construction achieving 6
 - +1: If construction is not explicitly written saying that it achieves 6 but the sequence $1, 7, 7^2, \cdots$ is mentioned upto at least the square.

Lower Bound. (7)

- (A) **+2:** Shifting to working with $\frac{a_{i+1}}{a_i}$ or x_i
 - The full two points can be awarded if only the expression is rewritten as $\sum_{i=0}^{10} \left\lfloor \frac{7}{1+x_i} \right\rfloor$ or it is clear that only the x_i are being considered.
 - 1 point can still be awarded if things like $\frac{a_{i+1}}{a_i} > 6 \implies z_i = 0$ and equivalent things are written. It is not considered to be the same as writing $a_{i+1} > 6a_i$. It should be clear that the ratio is being considered.
- (B) **+2:** Concluding that in the sequence if $a_i > a_{i+1}$ for more than 1 *i*'s ($1 \le i \le 10$) then sum will be greater than 6. In other words, sequence is atmost once decreasing.
 - This is also equivalent to concluding 9 of the x_i 's are > 1, and the product $x_1x_2...x_{10} = 1$.
- (C) **+2:** Showing that if $\left\lfloor \frac{7}{1+x_{10}} \right\rfloor < 6$ then all the x_i 's for $1 \le i \le 9$ are < 6 and hence the sum is at least 9
- (D) **+2:** Showing that if $\left\lfloor \frac{7}{1+x_{10}} \right\rfloor > 6$, then also we are done

Getting A and B both results gets 3 marks. Incomplete solution gets atmost 7 marks. Rest points are additive.

10-

A solution with both the upper and lower bound is considered complete. 1 mark can be deducted for minor errors which are easily fixable. Typos and such should not lead to deductions.