Laboratorio de Repaso de Álgebra Lineal

Cálculo de Determinantes mediante Diferentes Métodos

1. Método de Pivote (Expansión de Laplace)

Se tiene la matriz general:

$$A = \begin{bmatrix} a & b & c \\ d & e & f \\ q & h & i \end{bmatrix}$$

El método de pivote (expansión de Laplace) consiste en descomponer el determinante en términos de determinantes menores:

$$\det(A) = a \begin{vmatrix} e & f \\ h & i \end{vmatrix} - b \begin{vmatrix} d & f \\ g & i \end{vmatrix} + c \begin{vmatrix} d & e \\ g & h \end{vmatrix}$$
$$= a(ei - fh) - b(di - fg) + c(dh - eg)$$
$$= (aei + bfg + cdh) - (ceg + bdi + afh)$$

Este método se generaliza a matrices de cualquier tamaño.

2. Método de la Lluvia y método de la Estrella (La regla de Sarrus)

El método de la lluvia (La regla de Sarrus) se basa en expandir la matriz copiando las dos primeras columnas a la derecha:

$$\begin{bmatrix} a & b & c \mid a & b \\ d & e & f \mid d & e \\ q & h & i \mid q & h \end{bmatrix}$$

Luego, se suman los productos de las diagonales descendentes y se restan los productos de las diagonales Ascendentes

$$det(A) = (aei + bfg + cdh) - (ceg + bdi + afh)$$

El método de la estrella es idéntico al método de la lluvia, pero sin copiar las primeras dos columnas. Se observa que estos métodos son equivalentes al método de pivote.

3. Problema a Resolver

Aplique el método de la lluvia a la siguiente matriz 4×4 :

$$B = \begin{bmatrix} a & b & c & d \\ e & f & g & h \\ i & j & k & l \\ m & n & o & p \end{bmatrix}$$

De forma análoga que con una matriz de 3x3, se aumentaran las dimensiones de la matriz, de forma que se tengan 4 términos en cada una de las diagonales formadas por la matriz original.

$$\begin{bmatrix} a & b & c & d & a & b & c \\ e & f & g & h & e & f & g \\ i & j & k & l & i & j & k \\ m & n & o & p & m & n & o \end{bmatrix}$$

A continuación, se desarrollará cada uno de los términos siguiendo el mismo procedimiento que con una matriz de 3x3:

$$\begin{bmatrix} a & b & c & d & a & b & c \\ e & f & g & h & e & f & g \\ i & j & k & l & i & j & k \\ m & n & o & p & m & n & o \end{bmatrix}$$

Por lo tanto, la expresión del determinante de una matriz de 4x4 usando el método de Sarrus queda de la siguiente forma:

$$det_S(B) = (afkp + bglm + chin + dejo) - (mjgh + nkha + oleb + pifc)$$

¿Pero, realmente es correcta está expresión?

Para ello, se va a calcular la expresión del determinante para un matriz de 4x4 por medio del método de la expansión de Laplace

$$\det(B) = a \begin{vmatrix} f & g & h \\ j & k & l \\ n & o & p \end{vmatrix} - b \begin{vmatrix} e & g & h \\ i & k & l \\ m & o & p \end{vmatrix} + c \begin{vmatrix} e & f & h \\ i & j & l \\ m & n & p \end{vmatrix} - d \begin{vmatrix} e & f & g \\ i & j & k \\ m & n & o \end{vmatrix}$$

Ahora, se calcularán los 4 determinantes de 3x3 usando el método de la lluvia para determinantes de 3x3, ya que como se demostró previamente, si es válido para matrices de orden 3

$$\det(B) = a[(fkp + gln + hjo) - (nkh + olf + pnk)]$$

$$-b[(ekp + glm + hio) - (mkh + ole + pig)]$$

$$+c[(ejp + flm + hin) - (mjh + nle + pif)]$$

$$-d[(ejo + fkm + gin) - (mjg + nke + oif)]$$

Desarrollamos

$$\det (B) = afkp + agln + ahjo - ankh - aolf - apnk$$

$$-bekp - bglm - bhio + bmkh + bole + bpig$$

$$+cejp + cflm + chin - cmjh - cnle - cpif$$

$$-dejo - dfkm - dgin + dmjg + dnke + doif$$

Se puede apreciar que:

$$\det(B) \neq det_S(B)$$

Por lo tanto, no es posible usar el método de la lluvia para una matriz de orden 4

Se recomendaría para calcular este tipo de determinantes hacer uso de operaciones y propiedades de matrices, ya que, podemos simplificar mucho el calculo del determinante si tenemos una mayor cantidad de 0s en una sola columna o fila, esto se puede lograr por medio de las operaciones elementales de una matriz, y posteriormente hace uso del método de expansión de Laplace