Is dependence logical?

Fredrik Engström Göteborg University LINT

2008-12-06

Dependence logic

Logical constants

My background

- ▶ Non-standard models of Peano Arithmetic, PA.
- Extending the notion of resplendent models to non-first-order languages (transplendent models).
- Scott set: A boolean algebra of sets of natural numbers closed under computability and weak Königs lemma.
- ▶ Standard system: $SSy(M) = \{ A \cap \mathbb{N} \mid A \in Def(M) \}.$
- ▶ Scott's problem: Are the standard systems exactly the Scott sets? (All standard systems are Scott sets and every Scott set of cardinality $\leq \aleph_1$ is a standard system.)
- Second-order arithmetic.

Recursive saturation

- ▶ A type over M is a set of formulas with finitely many parameters \bar{a} from M and finitely many free variables \bar{x} consistent with Th (M, \bar{a}) .
- ▶ *M* is recursively saturated if all recursive types over *M* are realized in *M*.
- PA: There is a Σ₁¹-sentence characterizing recursive saturation ("M-logic is consistent").
- Countable recursively saturated models of PA are nice: They are uniquely determined by its first-order theory and its standard system.

Resplendent models

- ▶ M is resplendent if for any recursive theory T in an expanded language $\mathcal{L} \supseteq \mathcal{L}_A \cup \{\bar{a}\}$ such that $T + \text{Th}(M, \bar{a})$ is consistent there is an expansion of M satisfying T.
- All resplendent models are recursively saturated.
- All countable recursively saturated models are resplendent.
- ▶ PA: There is a Δ_2^1 sentence Θ characterizing resplendency.
- lacktriangle Θ says that M-logic is consistent and that for every sentence φ consistent in M-logic there is a satisfaction class including φ .

Outline

- $ightharpoonup = (x_1, \ldots, x_k, y) \text{ means } \exists f(f(x_1, \ldots, x_k) = y)$
- ▶ Why not " $x_1, \ldots, x_k \mapsto y$ "?

- ► Thus, there is a *𝒯*-sentence characterizing recursive saturation.
- ▶ Also, truth is definable in \mathscr{D} , i.e., there is a formula $\operatorname{Tr}(x)$ such that $M \models \varphi$ iff $M \models \operatorname{Tr}(\varphi)$ for models $M \models \operatorname{PA}$.

Logical constants in FOL I

- ▶ The semantic value of a formula $\varphi(\bar{x})$ on a model M is $\varphi(M|\bar{x}) = \{ \bar{a} \in M \mid M \models \varphi[\bar{a}/\bar{x}] \}.$
- ▶ Let $S_k(M) = \{ X \subseteq M^k \}$ be the set of all (possible) semantic values (of arity k). $(S_0 = \{ t, f \})$
- ▶ A k-ary quantifier on M is a function $S_k \to \{ t, f \}$
- ▶ \exists_M as a unary quantifier: $S_1(M) \to S_0$, $\exists_M(X) = t$ iff $X \neq \emptyset$.
- ▶ A k-ary operator F on M is a set of functions $F^n: S_{n+k} \to S_n$.
- ▶ \exists_M as a unary operator: $\exists_M^n : S_{n+1}(M) \to S_n(M)$ (projection).
- ▶ A *k*-ary quantifier *Q* gives rise to a *k*-ary operator:

$$S_{n+k}(M)
i X \mapsto \left\{ \ ar{b} \in M^n \ \middle| \ Q(X_{ar{b}}) = \mathtt{t} \
ight\}$$

where $X_{\bar{b}} = \{ \bar{a} \in M^k \mid \langle \bar{a}, \bar{b} \rangle \in X \}$ is the \bar{b} -slice of X.

Logical constants FOL II

- ▶ Which quantifiers are logical constants?
- ▶ Given a relation \equiv on models, a quantifier Q respects \equiv if given $(M, A) \equiv (N, B)$ we have $Q_M(A) = Q_N(B)$.
- ▶ Different relations ≡ have been proposed for characterizing logical constants: Automorphic, isomorphic, homomorphic and back-and-forth equivalent.
- What if we shift view and work with operators instead of quantifiers? (Nothing happens in the isomorphism case.)

Logical constants in dependence logic I

- ▶ What is the semantic value of a formula in dependence logic?
- $ightharpoonup T_k(M) = P(M^k) \emptyset$
- $\blacktriangleright M \models_{T/\bar{x}} \varphi$
- \triangleright $[\varphi]$ can not be the semantic value of φ if we want the semantics to be compositional wrt negation.
- \blacktriangleright $[\bar{x}|\varphi]$ be the partial function $T_k(M) \to \{t, f\}$ such that

$$[\bar{x}|\varphi]_M(T) = egin{cases} \mathsf{t} & \text{if } M \models_{\bar{x}/T} \varphi \ \mathsf{f} & \text{if } M \models_{\bar{x}/T} \neg \varphi \ . \end{cases}$$
 undefined otherwise

▶ Let $S_k(M)$ be the set of partial functions $T_k(M) \to \{t, f\}$.

Logical constants in dependence logic II

▶ A k-ary \mathscr{D} -quantifier on M is a partial function

$$Q_M: S_k(M) \rightarrow \{\mathtt{t},\mathtt{f}\}.$$

- ▶ A team-structure is a set M together with $f \in S_k(M)$.
- ► Thus, a D-quantifier Q is a partial function from the class of team-structures to { t, f }.
- ▶ Given a relation \equiv on team structures a quantifier Q respects the relation if for any $(M, f) \equiv (N, g)$ we have $Q_M(f) = Q_N(g)$.
- ➤ To do: Characterize the quantifiers respecting certain (interesting) relations.

• Every quantifier Q gives, in a natural way, a \mathcal{D} -quantifier by

$$Q_M^{\mathscr{D}}(f) = egin{cases} \mathsf{t} & ext{if } \cup f^{-1}(\mathsf{t}) \in Q_M \ \mathsf{f} & ext{if } \cup f^{-1}(\mathsf{f})
otin Q_M \end{cases}$$
 undefined otherwise

- ▶ If $\varphi(\bar{x}) \in \mathsf{FOL}$ and Q is a quantifier then $M \models Q\bar{x}\varphi(\bar{x})$ iff $M \models Q^{\mathscr{D}}\bar{x}\varphi(\bar{x})$.
- ► Test: Does this transformation respect logicality?

Thanks