Replies to Leo's notes

Patrick de Kok

April 20, 2012

1 2-blades

Theorem 1. Show that any 2-blade of $\mathbb{R}^{3,3}$ contains at least two Lines

Lemma 1. A 2-blade of two intersecting Lines $\ell_1 \wedge \ell_2$ contains at least two Lines.

See Leo's notes, 2.2, April 19. Also: per definition.

Lemma 2. A 2-blade of two skew Lines $\ell_1 \wedge \ell_2$ contains at least two Lines.

See Leo's notes, 2.2, April 19. Also: per definition.

Lemma 3. A 2-blade of two non-Lines $k_1 \wedge k_2$ contains at least two Lines.

We are looking for Lines. As every null vector is a Line, we have the constraint $x^2=0$.

$$x \wedge (k_1 \wedge k_2) = 0$$
 and $x^2 = 0$
 $\Leftrightarrow x = \alpha k_1 + \beta k_2$ and $2\alpha \beta k_1 \cdot k_2 = 0$

For $2\alpha\beta k_1 \cdot k_2 = 0$ to hold, α or β should be 0. $k_1 \cdot k_2 \neq 0$, as that would mean k_1 and k_2 would be intersecting lines, which they are not by definition.

This would mean that $x = \alpha k_1$ or $x = \beta k_2$. As the representation is homgeneous, $\alpha k_1 = k_1$, and thus x will not be a Line.

Lemma 4. A 2-blade of one Line and a non-Line $\ell \wedge k$ contains at least two Lines.

This will be similar to the previous lemma:

$$x \wedge (\ell \wedge k) = 0$$
 and $x^2 = 0$
 $\Leftrightarrow x = \alpha \ell + \beta k$ and $2\alpha \beta \ell \cdot k = 0$
 $\Leftrightarrow x = \alpha \ell \text{ or } x = \beta k$
 $\Leftrightarrow x = \ell \text{ or } x = k$

This blade seems to contain just one line, being ℓ .