Sparse sufficient dimension reduction

Qing Mai and Xin Zhang

March 6, 2018

Many dimension reduction methods finds the r-dimensional, column space of $\hat{\mathbf{M}}^{-1}\hat{\mathbf{U}}$, where $\hat{\mathbf{M}} \in \mathbb{R}^{p \times p}, \hat{\mathbf{U}} \in \mathbb{R}^{p \times K}$, and $r \leq K$. Define $\mathbf{B} = (\boldsymbol{\beta}_1, \dots, \boldsymbol{\beta}_r)$ as a set of basis for this r-dimensional space. Note that \mathbf{B} is not identifiable itself, but its column space is. In high dimensions, we can solve the following problem to estimate \mathbf{B} :

$$\hat{\mathbf{B}} = \arg\min_{\mathbf{B} \in \mathbb{R}^{p \times K}} \sum_{k=1}^{K} \{ \boldsymbol{\beta}_k^{\mathrm{T}} \hat{\mathbf{M}} \boldsymbol{\beta}_k - 2 \boldsymbol{\beta}_k^{\mathrm{T}} \hat{\mathbf{u}}_k \} + \lambda_1 \sum_{j} \sqrt{\sum_{k=1}^{K} b_{kj}^2 + \lambda_2 \|\mathbf{B}\|_*}$$
(1)

where $\hat{\mathbf{u}}_k$ is the k'th column of $\hat{\mathbf{U}}$. The estimate $\hat{\mathbf{B}}$ is of a different dimension than \mathbf{B} , but its column space should be close to that of \mathbf{B} .

1 Algorithm

Because (1) is convex, we can use the ADMM algorithm to solve it. Consider the augmented problem:

$$(\hat{\mathbf{B}}, \hat{\mathbf{C}}) = \arg \min_{\mathbf{B} \in \mathbb{R}^{p \times K}, \mathbf{C} \in \mathbb{R}^{p \times K}, \gamma} \sum_{k=1}^{K} \{ \boldsymbol{\beta}_{k}^{\mathrm{T}} \hat{\mathbf{M}} \boldsymbol{\beta}_{k} - 2 \boldsymbol{\beta}_{k}^{\mathrm{T}} \hat{\mathbf{u}}_{k} \} + \lambda_{1} \sum_{j} \sqrt{\sum_{k=1}^{K} b_{kj}^{2}} + \lambda_{2} \|\mathbf{C}\|_{*}$$
(2)
s.t. $\mathbf{B} = \mathbf{C}$

Write the Lagrange:

$$L_{\gamma}(\mathbf{B}, \mathbf{C}, \boldsymbol{\mu}) = \sum_{k=1}^{K} \{\boldsymbol{\beta}_{k}^{\mathrm{T}} \hat{\mathbf{M}} \boldsymbol{\beta}_{k} - 2\boldsymbol{\beta}_{k}^{\mathrm{T}} \hat{\mathbf{u}}_{k}\} + \lambda_{1} \sum_{j} \sqrt{\sum_{k=1}^{K} b_{ij}^{2}} + \lambda_{2} \|\mathbf{C}\|_{*} + \langle \boldsymbol{\mu}, \mathbf{B} - \mathbf{C} \rangle + \frac{\gamma}{2} \|\mathbf{B} - \mathbf{C}\|_{F}^{2}$$
(4)

where $\boldsymbol{\mu} \in \mathbb{R}^{p \times K}$ and $\gamma > 0$ is a small constant.

Then we have that

$$(\hat{\mathbf{B}}, \hat{\mathbf{C}}) = \arg \min_{\mathbf{B} \in \mathbb{R}^{p \times K}, \mathbf{C} \in \mathbb{R}^{p \times K}, \boldsymbol{\mu}} L_{\gamma}(\mathbf{B}, \mathbf{C}, \boldsymbol{\mu})$$
 (5)

We can solve (5) by iteratively solving the following problems:

$$\mathbf{B}^{t+1} = \arg\min_{\mathbf{B}} L_{\gamma}(\mathbf{B}, \mathbf{C}^{t}, \boldsymbol{\mu}^{t})$$
 (6)

$$\mathbf{C}^{t+1} = \arg\min_{\mathbf{C}} L_{\gamma}(\mathbf{B}^{t+1}, \mathbf{C}, \boldsymbol{\mu}^{t})$$
 (7)

$$\boldsymbol{\mu}^{t+1} = \boldsymbol{\mu}^t + \gamma (\mathbf{B}^{t+1} - \mathbf{C}^{t+1}) \tag{8}$$

Now we discuss how to solve (6) & (7). For (6), note that, if we fix C^t , μ^t , we have

$$L_{\gamma}(\mathbf{B}, \mathbf{C}^{t}, \boldsymbol{\mu}^{t}) = \sum_{k=1}^{K} \{\boldsymbol{\beta}_{k}^{\mathrm{T}}(\hat{\mathbf{M}} + \gamma \mathbf{I})\boldsymbol{\beta}_{k} - 2\boldsymbol{\beta}_{k}^{\mathrm{T}}(\hat{\mathbf{u}}_{k} - \frac{1}{2}\boldsymbol{\mu}_{k}^{t} + \frac{\gamma}{2}\mathbf{c}_{k}^{t})\} + \lambda_{1} \sum_{i} \sqrt{\sum_{k=1}^{K} b_{ij}^{2} + Const}$$
(9)

where μ_k^t is the kth column of μ^t and c_k is the kth column of C^t .

Therefore, (6) reduces to

$$\arg\min_{\mathbf{B}} \sum_{k=1}^{K} \{ \boldsymbol{\beta}_{k}^{\mathrm{T}} (\hat{\mathbf{M}} + \gamma \mathbf{I}) \boldsymbol{\beta}_{k} - 2 \boldsymbol{\beta}_{k}^{\mathrm{T}} (\hat{\mathbf{u}}_{k} - \frac{1}{2} \boldsymbol{\mu}_{k}^{t} + \frac{\gamma}{2} \mathbf{c}_{k}^{t}) \} + \lambda_{1} \sum_{j} \sqrt{\sum_{k=1}^{K} b_{ij}^{2}}$$
(10)

which can be solved by msda.

For (7),

$$L_{\gamma}(\mathbf{B}^{t+1}, \mathbf{C}, \boldsymbol{\mu}^{t}) = \lambda_{2} \|\mathbf{C}\|_{*} + \langle \boldsymbol{\mu}^{t}, \mathbf{B}^{t+1} - \mathbf{C} \rangle + \frac{\gamma}{2} \|\mathbf{B}^{t+1} - \mathbf{C}\|_{F}^{2} + Const$$

$$= \lambda_{2} \|\mathbf{C}\|_{*} + \langle \boldsymbol{\mu}^{t}, \mathbf{B}^{t+1} - \mathbf{C} \rangle + \frac{\gamma}{2} Tr((\mathbf{B}^{t+1} - \mathbf{C})^{T}(\mathbf{B}^{t+1} - \mathbf{C})) + Const$$

$$= \lambda_{2} \|\mathbf{C}\|_{*} + Tr(\frac{\gamma}{2}(\mathbf{B}^{t+1})^{T}\mathbf{B}^{t+1} - \gamma(\mathbf{B}^{t+1})^{T}\mathbf{C} + \frac{\gamma}{2}\mathbf{C}^{T}\mathbf{C} + (\boldsymbol{\mu}^{t})^{T}\mathbf{B}^{t+1} - (\boldsymbol{\mu}^{t})^{T}\mathbf{B})$$

$$= \lambda_{2} \|\mathbf{C}\|_{*} + Tr(\frac{\gamma}{2}(\mathbf{C}^{T}\mathbf{C} - 2(\mathbf{B}^{t+1} + \gamma^{-1}\boldsymbol{\mu}^{t})^{T}\mathbf{C})) + Const$$

$$= \lambda_{2} \|\mathbf{C}\|_{*} + \frac{\gamma}{2} \|\mathbf{C} - (\mathbf{B}^{t+1} + \gamma^{-1}\boldsymbol{\mu}^{t})\|_{F}^{2} + Const$$

$$(15)$$

which is equivalent to soft-thresholding the singular values of $\mathbf{B}^{t+1} + \gamma^{-1} \boldsymbol{\mu}^t$ by $\frac{\lambda_2}{\gamma}$.

Conjecture: the one-step solution achieves both rank selection consistency and variable selection consistency.