Analisi di Immagini e Video (Computer Vision)

Giuseppe Manco, Francesco S. Pisani

Outline

- Reti Neurali
- CNN
- Architetture di rete

Crediti

- Slides adattate da vari corsi e libri
 - Computer Vision (I. Gkioulekas) CS CMU Edu
 - Cmputational Visual Recognition (V. Ordonez), CS Virgina Edu
 - Mohamed Elgendy [Elg20]

Architetture di rete

Elementi a confronto

- Nuove features
 - Cosa distingue una rete dalle altre?
 - Qual è il problema che cercano di risolvere?
- Architettura
 - Le componenti che la strutturano
- Implementazione
 - Pytorch code
- Setup
 - C'è qualche aspetto particolare che caratterizza il learning?
- Performance
 - Qual è il guadagno?

CNN design patterns

• Pattern 1

CNN design patterns

• Pattern 2

LeNet-5

• Quanti pesi?

AlexNet

- Vincitore ImageNet Large Scale Visual Recognition Challenge (ILSVRC) del 2012
 - ImageNet dataset
 - 1.2M high-res images
 - 1,000 classi.
- Alex Krizhevsky, Geoffrey Hinton and Ilya Sutskever

AlexNet

- Convolutional layers: 11x11, 5x5, and 3x3
- Max pooling layers
- Dropout layers
- ReLU activation functions
- Quanti parametri?

AlexNet: features

- ReLU
- Dropout
 - p = 0.5 nei due layers FC
- Data augmentation
 - image rotation, flipping, scaling, ...
- Local response normalization
 - Previene la crescita non limitata dovuta alle attivazioni ReLU
- Weight regularization
 - L2 con peso 0.0005

AlexNet

Alexnet in Pytorch

https://github.com/pytorch/vision/blob/master/torchvision/models/alexnet.py
NOTA: Implementazione differente!

```
class AlexNet(nn.Module):
   def __init__(self, num_classes = 1000):
        super().__init__()
       self.layer1 = nn.Sequential(
            nn.Conv2d(in channels=3, out channels=96, kernel size=11, stride=4),
           nn.ReLU(inplace=True).
           nn.MaxPool2d(kernel_size=3, stride=2),
           LRN(local_size=5, alpha=1e-4, beta=0.75, ACROSS_CHANNELS=True)
        self.layer2 = nn.Sequential(
            nn.Conv2d(in channels=96, out channels=256, kernel size=5, groups=2, padding=2),
           nn.ReLU(inplace=True).
           nn.MaxPool2d(kernel_size=3, stride=2),
            LRN(local_size=5, alpha=1e-4, beta=0.75, ACROSS_CHANNELS=True)
       self.layer3 = nn.Sequential(
            nn.Conv2d(in_channels=256, out_channels=384, padding=1, kernel_size=3),
           nn.ReLU(inplace=True)
       self.layer4 = nn.Sequential(
           nn.Conv2d(in_channels=384, out_channels=384, kernel_size=3, padding=1),
           nn.ReLU(inplace=True)
       self.layer5 = nn.Sequential(
           nn.Conv2d(in_channels=384, out_channels=256, kernel_size=3, padding=1),
           nn.ReLU(inplace=True).
            nn.MaxPool2d(kernel_size=3, stride=2)
       self.layer6 = nn.Sequential(
           nn.Linear(in_features=6*6*256, out_features=4096),
           nn.ReLU(inplace=True),
           nn.Dropout()
        self.layer7 = nn.Sequential(
           nn.Linear(in_features=4096, out_features=4096),
           nn.ReLU(inplace=True),
           nn.Dropout()
       self.layer8 = nn.Linear(in_features=4096, out_features=num_classes)
   def forward(self, x):
       x = self.layer5(self.layer4(self.layer3(self.layer2(self.layer1(x)))))
       x = x.view(-1, 6*6*256)
       x = self.layer8(self.layer7(self.layer6(x)))
        return x
```

Data Augmentation

Data Augmentation

Preprocessing and Data Augmentation

224x224

Preprocessing and Data Augmentation

224x224

VGG Network

- Visual Geometry Group at Oxford University, 2014
 - Karen Simonyan, Andrew Zisserman
- VGG-16
 - 16 weight layers
 - 13 convolutional layers
 - 3 fully-connected layers
- Semplifica il setup degli iperparametri (kernel size, padding, strides, etc.)
 - Contiene componenti uniformi (CONV/POOL)
 - Rimpiazza i filtri di grandi dimensioni con cascate di filtri
 - Tutti i layer convoluzionali sono 3x3 con stride = 1 e padding same
 - Tutti i layer di pooling sono 2x2 pool-size con stride = 2

Perché cascate di filtri piccoli?

- Layer non lineari multipli apprendono features più complesse con un numero minimo di parametri
 - 3 layer di 3x3 CONV con C channels -> $27C^2$ pesi, un layer 7x7 ne richiede $49C^2$
- Uno stack di due 3x3 CONV ha lo stesso effetto di un 5x5
 - tre 3x3 CONV hanno lo stesso effetto di un 7x7

VGG Network

VGG16 in Pytorch

A	A-LRN	В	С	D	E	
11 weight	11 weight	13 weight	16 weight	16 weight	19 weight	
layers	layers	layers	layers	layers	layers	
	i)				
conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	
	LRN	conv3-64	conv3-64	conv3-64	conv3-64	
conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	
		conv3-128	conv3-128	conv3-128	conv3-128	
			pool			
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	
			conv1-256	conv3-256	conv3-256	
					conv3-256	
			pool			
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	
			conv1-512	conv3-512	conv3-512	
					conv3-512	
			pool			
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	
			conv1-512	conv3-512	conv3-512	
			pool		conv3-512	

```
class VGG(nn.Module):
    def __init__(self, features, num_classes=1000):
         super(VGG, self).__init__()
         self.features = features
         self.classifier = nn.Sequential(
             nn Linear(512 * 7 * 7, 4096),
             nn.ReLU(True),
             nn.Dropout(),
             nn.Linear(4096, 4096),
             nn.ReLU(True),
             nn.Dropout(),
             nn.Linear(4096, num_classes),
    def forward(self, x):
         x = self.features(x)
         x = x.view(x.size(0), -1)
        x = self.classifier(x)
         return x
def make_layers(cfg, batch_norm=False):
    layers = []
    in channels = 3
    for v in cfg:
         if v == 'M':
             layers += [nn.MaxPool2d(kernel size=2, stride=2)]
             conv2d = nn.Conv2d(in_channels, v, kernel_size=3, padding=1)
                  layers += [conv2d, nn.BatchNorm2d(v), nn.ReLU(inplace=True)]
             else:
                  layers += [conv2d, nn.ReLU(inplace=True)]
             in channels = v
    return nn.Sequential(*layers)
    'A: [64, 'M', 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'], 'B': [64, 64, 'M', 128, 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'],
    'D': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'],
'E': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 256, 'M', 512, 512, 512, 'M', 512, 512, 512, 'M'],
```

GoogLeNet

- Proposta da Google nel 2014
 - ILSVRC14
 - Inception network
 - 22 layers: più grande di VGGNet con meno parametri (da ~138M a ~13M)
 - Inception Module
 - Che size per i filtri?
 - Quando usare il pooling?
 - Idea: combiniamoli!

Inception Network

- Stacking di moduli inception
- Per limitare il numero di calcoli adotta un approccio di dimensionality reduction prima di ogni kernel

Inception Network - Module

- Quattro layer concatenati
 - 1x1 CONV
 - 3x3 CONV
 - 5x5 CONV
 - 3x3 MaxPOOL
- Quante operazioni?

Inception Network – Module

Ogni modulo contiene i filtri 1x1, 3x3, 5x5

L'output è composto dalla concatenazione dei risultati dei kernel

Un blocco MaxPool 3x3 è presente nel modulo

I blocchi in giallo (1x1) sono i blocchi di dimensionality reduction

Inception Network – Complessità

~16M vs ~163M di operazioni

GoogLeNet in Pytorch

	type	patch size/ stride	output size	depth	#1×1	#3×3 reduce	#3×3	#5×5 reduce	#5×5	pool proj	params	ops
Part A	convolution	7×7/2	112×112×64	1							2.7K	34M
	max pool	3×3/2	56×56×64	0								
	convolution	3×3/1	56×56×192	2		64	192				112K	360M
	max pool	3×3/2	28×28×192	0								
	inception (3a)		28×28×256	2	64	96	128	16	32	32	159K	128M
	inception (3b)		28×28×480	2	128	128	192	32	96	64	380K	304M
Part B	max pool	3×3/2	14×14×480	0								
	inception (4a)		14×14×512	2	192	96	208	16	48	64	364K	73M
	inception (4b)		14×14×512	2	160	112	224	24	64	64	437K	88M
	inception (4c)		14×14×512	2	128	128	256	24	64	64	463K	100M
	inception (4d)		14×14×528	2	112	144	288	32	64	64	580K	119M
	inception (4e)		14×14×832	2	256	160	320	32	128	128	840K	170M
	max pool	3×3/2	7×7×832	0								
	inception (5a)		7×7×832	2	256	160	320	32	128	128	1072K	54M
	inception (5b)		7×7×1024	2	384	192	384	48	128	128	1388K	71M
Part D	avg pool	7×7/1	1×1×1024	0								
	dropout (40%)		1×1×1024	0								
	linear		1×1×1000	1							1000K	1M
	softmax		1×1×1000	0								

GoogLeNet in Pytorch

```
class Inception(nn.Module):
   def init (self, in planes, n1x1, n3x3red, n3x3, n5x5red, n5x5, pool planes):
        super(Inception, self).__init__()
       # 1x1 conv branch
        self.b1 = nn.Sequential(
           nn.Conv2d(in_planes, n1x1, kernel_size=1),
           nn.ReLU(True),
        # 1x1 conv -> 3x3 conv branch
       self.b2 = nn.Sequential(
           nn.Conv2d(in planes, n3x3red, kernel size=1),
           nn.ReLU(True).
           nn.Conv2d(n3x3red, n3x3, kernel_size=3, padding=1),
           nn.ReLU(True),
        # 1x1 conv -> 5x5 conv branch
        self.b3 = nn.Sequential(
           nn.Conv2d(in planes, n5x5red, kernel size=1),
           nn.ReLU(True),
           nn.Conv2d(n5x5red, n5x5, kernel size=3, padding=1),
           nn.ReLU(True),
        # 3x3 pool -> 1x1 conv branch
       self.b4 = nn.Sequential(
           nn.MaxPool2d(3, stride=1, padding=1),
           nn.Conv2d(in_planes, pool_planes, kernel_size=1),
           nn.ReLU(True),
   def forward(self, x):
        v1 = self.b1(x)
       v2 = self.b2(x)
       y3 = self.b3(x)
       v4 = self.b4(x)
        return torch.cat([y1,y2,y3,y4], 1)
```

```
class GoogLeNet(nn.Module):
   def __init__(self):
       super(GoogLeNet, self).__init__()
       self.pre_layers = nn.Sequential(
            nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3),
            nn.ReLU(True),
            nn.MaxPool2d(3, stride=2, padding=1),
            nn.Conv2d(64, 192, kernel size=1, stride=1),
            nn.ReLU(True),
           nn.Conv2d(192, 192, kernel_size=3, stride=1, padding=1),
            nn.ReLU(True).
            nn.MaxPool2d(3,stride=2, padding=1)
       self.a3 = Inception(192, 64, 96, 128, 16, 32, 32)
       self.b3 = Inception(256, 128, 128, 192, 32, 96, 64)
       self.maxpool = nn.MaxPool2d(3, stride=2, padding=1)
       self.a4 = Inception(480, 192, 96, 208, 16, 48, 64)
       self.b4 = Inception(512, 160, 112, 224, 24, 64, 64)
       self.c4 = Inception(512, 128, 128, 256, 24, 64, 64)
       self.d4 = Inception(512, 112, 144, 288, 32, 64, 64)
       self.e4 = Inception(528, 256, 160, 320, 32, 128, 128)
       self.a5 = Inception(832, 256, 160, 320, 32, 128, 128)
       self.b5 = Inception(832, 384, 192, 384, 48, 128, 128)
       self.avgpool = nn.AvgPool2d(7, stride=1)
       self.linear = nn.Linear(1024, 10)
       self.dropout = nn.Dropout(0.4)
   def forward(self, x):
       out = self.pre_layers(x)
       out = self.a3(out)
       out = self.b3(out)
       out = self.maxpool(out)
       out = self.a4(out)
       out = self.b4(out)
       out = self.c4(out)
       out = self.d4(out)
       out = self.e4(out)
       out = self.maxpool(out)
       out = self.a5(out)
       out = self.b5(out)
       out = self.avgpool(out)
       out = self.dropout(out)
       out = out.view(out.size(0), -1)
       out = self.linear(out)
       return out
```

ResNet

- Introdotta nel 2015 da Kaiming He et al (Microsoft Research)
- Utilizza Skip connections chiamate residual module
- Batch normalization
 - 50, 101, and 152 weight layers
 - Complessità minore di reti più piccole come VGGNet
- Vincitore ILSVRC15
- Possiamo costruire very deep layers?
 - Vanishing gradient

Local Response Normalization, Batch Normalization

•
$$b_{x,y}^{i} = \frac{a_{x,y}^{i}}{\left(k + \alpha \sum_{i-\frac{n}{2}}^{i+\frac{n}{2}} (a_{x,y}^{j})^{2}\right)}$$
• $b_{x,y}^{i} = \frac{a_{x,y}^{i}}{\left(k + \alpha \sum_{x-\frac{n}{2}}^{x+\frac{n}{2}} \sum_{y-\frac{n}{2}}^{y+\frac{n}{2}} (a_{u,v}^{i})^{2}\right)}$

BatchNormalization Layer

- Ogni layer è un input per i layer successivi
- Problema
 - Ogni passo di backprop cambia i pesi
 - Risultato:
 - la distribuzione dei layer può cambiare durante la fase di training
 - Covariance-shift!
- Rimedio:
 - Normalizzazione, scala e shift

```
Input: Values of x over a mini-batch: \mathcal{B} = \{x_{1...m}\};

Parameters to be learned: \gamma, \beta

Output: \{y_i = \mathrm{BN}_{\gamma,\beta}(x_i)\}

\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^m x_i \qquad \text{// mini-batch mean}
\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2 \qquad \text{// mini-batch variance}
\widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}} \qquad \text{// normalize}
y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv \mathrm{BN}_{\gamma,\beta}(x_i) \qquad \text{// scale and shift}
```

Skip Connections

- Uno shortcut che permette al gradiente di propagarsi ai layers iniziali
- Identity function
 - Ogni layer include le performance del layer precedente

Residual blocks

Bottleneck residual block with reduce shortcut

ResNet in Pytorch

layer name	output size	18-layer	34-layer	50-layer	101-layer	152-layer			
convl	112×112	7×7, 64, stride 2							
		3×3 max pool, stride 2							
conv2_x	56×56	$\left[\begin{array}{c}3\times3,64\\3\times3,64\end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3,64\\ 3\times3,64 \end{array}\right]\times3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$			
conv3_x	28×28	$\left[\begin{array}{c} 3\times3, 128\\ 3\times3, 128 \end{array}\right] \times 2$	$\left[\begin{array}{c} 3\times3, 128\\ 3\times3, 128 \end{array}\right] \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 8$			
conv4_x	14×14	$\left[\begin{array}{c} 3\times3,256\\ 3\times3,256 \end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3,256\\ 3\times3,256 \end{array}\right]\times6$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 6$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 23$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 36$			
conv5_x	7×7	$\left[\begin{array}{c} 3\times3,512\\ 3\times3,512 \end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3,512\\ 3\times3,512 \end{array}\right]\times3$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$			
	1×1	average pool, 1000-d fc, softmax							
FL	OPs	1.8×10 ⁹	3.6×10 ⁹	3.8×10 ⁹ 7.6×10 ⁹		11.3×10 ⁹			

ResNet in Pytorch

```
class ResidualBlock(nn.Module):
   def __init__(self, in_channels, bn_channels, stride=1, bottleneck=False):
       super(ResidualBlock, self).__init__()
       if bottleneck:
           self.expansion = 4
       else:
           self.expansion = 1
       out_channels = bn_channels * self.expansion
       if bottleneck:
               self.block = nn.Sequential(
               nn.Conv2d(in channels, bn channels, kernel size=1, padding=0, bias=False).
               nn.BatchNorm2d(bn_channels),
               nn.ReLU(True),
               nn.Conv2d(bn channels, bn channels, kernel size=3, stride=stride, padding=1, bias=False).
               nn.BatchNorm2d(bn channels),
               nn.ReLU(True),
               nn.Conv2d(bn_channels, out_channels, kernel_size=1, padding=0, bias=False),
               nn.BatchNorm2d(out channels),
       else:
           self.block = nn.Sequential(
               nn.Conv2d(in_channels, bn_channels, kernel_size=3, stride=stride, padding=1, bias=False),
               nn.BatchNorm2d(bn channels),
               nn.ReLU(True).
               nn.Conv2d(bn_channels, out_channels, kernel_size=3, padding=1, bias=False),
               nn.BatchNorm2d(out channels),
       if in_channels != out_channels:
           self.shortcut = nn.Sequential(
               nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=stride, bias=False),
               nn.BatchNorm2d(out_channels)
       else:
           self.shortcut = nn.Sequential()
   def forward(self. x):
       out = self.block(x)
        out += self.shortcut(x)
       out = F.relu(out)
       return out
```

```
class ResNet(nn.Module):
   def init (self, layers, bottleneck=False):
       super(ResNet, self).__init__()
        self.in channels = 64
        self.bottleneck = bottleneck
        self.conv1 = nn.Sequential(
           nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3),
           nn.BatchNorm2d(64),
           nn.ReLU(True).
           nn.MaxPool2d(3, stride=2, padding=1)
        self.conv2_x = self._make_layer(64, layers[0])
        self.conv3 x = self. make layer(128, layers[1], stride=2)
        self.conv4_x = self._make_layer(256, layers[2], stride=2)
        self.conv5 x = self. make layer(512, layers[3], stride=2)
        self.avgpool = nn.AvgPool2d((1, 1))
        self.fc = nn.Linear(self.in channels*7*7, 10)
    def _make_layer(self, out_channels, blocks, stride=1):
        lavers = []
        for index in range(blocks):
           if index == 0:
                block = ResidualBlock(self.in channels, out channels, stride, bottleneck=self.bottleneck)
                block = ResidualBlock(self.in_channels, out_channels, stride=1, bottleneck=self.bottleneck)
            lavers.append(block)
           self.in_channels = out_channels*block.expansion
        return nn.Sequential(*layers)
    def forward(self, x):
        x = self.conv1(x)
        x = self.conv2_x(x)
        x = self.conv3_x(x)
        x = self.conv4 x(x)
       x = self.conv5_x(x)
       x = self.avgpool(x)
       x = torch.flatten(x, 1)
        x = self.fc(x)
        return x
```

Quali sono le performance?

Tecniche di data augmentation

- Position augmentation
 - Scaling
 - Cropping
 - Flipping
 - Padding
 - Rotation
 - Translation
 - Affine Transformation
- Color augmentation
 - Brightness
 - Contrast
 - Saturation
 - Hue

Pytorch

datasets.ImageFolder(root=traindir, transform=loader transform)

Transfer Learning

Motivazioni:

- Large dataset, tempo di computazione, risorse HW, fine tuning.
- ex. ImageNet è costituito da milioni di immagini
- CPU vs Single GPU vs Multiple GPU

Transfer Learning (2)

Transfer Learning (3)

- Generalizzazione dei modelli
- Complessità dei modelli
- Complessità computazionale
- Sorgenti dati (dati etichettati vs non etichettati)