Descenso de Gradiente Estocástico

Motivación: Coste computacional de Descenso de Grad.

- Elementos
 - N ejemplos
 - P parámetros
 - I iteraciones
- En cada iteración
 - Cálculo de δE/δw_i, i=1,..,P
 - Asumo mejor caso
 - Lineal en N y P: **O(NP)**
 - Actualización de w_i, i=1,..,M
 - Lineal en la P: O(P)
- Coste total
 - O(INP)+O(IP)
 - O(INP)

Iteración 1

Iteración 2

Horas	Nota
2	1
5	3.2
7	4.5
9	6
10	4
11	4.5
13.4	5.5
14	3
15	5

Motivación: Coste computacional de Descenso de Grad.

- Elementos
 - N ejemplos
 - P parámetros
 - I iteraciones
- En cada iteración
 - Cálculo de δE/δw_i, i=1,..,P
 - Asumo mejor caso
 - Lineal en N y P: **O(NP)**
 - Actualización de w_i, i=1,..,M
 - Lineal en la P: **O(P)**
- Coste total
 - \circ O(INP)+O(IP)
 - O(INP)

```
def descenso_gradiente(E,w,x,y)
   P = len(w)
  converge=False
  while not converge:
     for i in range(P):
        \delta E \delta W[i] = derivada(E,i,x,y)
     for i in range(P):
        w[i] = w[i] - \delta E \delta W[i]
     converge = ... (depende)
   return w
```

Entrenamiento por lotes,

Lotes

 $W_1=W_1-\delta E/\delta W_1$

 $w_2 = w_2 - \delta E / \delta w_2$

 $W_p = W_p - \delta E / \delta W_p$

 $w_1 = w_1 - \delta E / \delta w_1$ $w_2 = w_2 - \delta E / \delta w_2$

- Coste total **O(INP)**
 - Cálculo de derivadas O(NP)
- Idea
 - Dividir datos en **lotes**
 - de **B << N** ejemplos
 - Calcular derivadas con lotes
 - Gradiente aproximado
 - Ruidoso
 - Pero funciona
 - Cálculo de derivadas
 - O(BP)
- Ejemplo con **B=3**
 - Épocas = recorridos del conjunto de datos
 - Iteraciones = act. de los w.

13.4

Época 1≺

Época 2

Iteración 1 (lote 1) Iteración 2

4.5	(lote 2)	11	4.5	$w_p = w_p - \delta E / \delta w_p$
5.5	Iteración 3	13.4	5.5	$w_1=w_1-\delta E/\delta w_1$ $w_2=w_2-\delta E/\delta w_2$
5	(lote 3)	14	3	$w_p = w_p - \delta E / \delta w_p$
Nota 1		2	1	$w_1=w_1-\delta E/\delta w_1$ $w_2=w_2-\delta E/\delta w_2$
	ltoración 1	_	22	•••

Descenso de gradiente Clásico vs Por lotes

- Asumimos
 - model.w = matriz con todos los parámetros de la red
 - δw = matriz con la derivada de respecto a model.w
 - Descenso de gradiente Clásico

Descenso de gradiente por lotes

```
x,y = load_data()
lr = 0.001 # learning rate
model = ....
epochs = 1000
n = x.shape[0]
batch size = 32
batches = n // batch_size
for i in range(epochs):
  for batch in range(batches):
    batch_x,batch_y = get_batch(x,y,batch)
    δw = model.derivatives(batch_x,batch_y)
    model.w = model.w - lr * \delta w
```

Descenso de gradiente por lotes

Coste computacional: Descenso de gradiente

- Descenso clásico
 - Coste de iteración
 - **■** O(NP)
- Descenso por lotes
 - Coste de iteración
 - **■** O(BP)
 - **B** es un hiperparámetro
- Si **B** = **N**
 - Igual que clásico
- Si **B = 1**
 - Gradientes demasiado ruidoso
- Si B = intermedio
 - Gradientes ruidosos
 - Pero buenos
 - Más pasos/iteraciones
 - Pero más rápidas

Por lotes = ruidoso = **estocástico**

Descenso de Gradiente Estocástico - Efecto

- Error (cost)
 - Cambia de forma "ruidosa"
 - Algunas
 iteraciones
 aumentan el
 error
 - Pero decrece en promedio
- (minibatch = estocástico)
- (batch = clásico)

¿Por qué funciona?

- Descenso de Gradiente Clásico
 - Utiliza todas las muestras
 - Gradiente es exacto
 - Respecto de las muestras
 - Siguen siendo muestras
 - No es exacto (es ruidoso)
 - Respecto de la distribución
- Descenso de Gradiente Estocástico
 - Utiliza una muestra de la muestra
 - Gradiente no es exacto
 - Significativo estadísticamente
 - Útil para entrenar

¿Por qué funciona?

- Distribuciones vs muestras
 - La distribución nunca se completamente
 - La estimamos a través de **muestras**

¿Por qué funciona?

- Función de error de la distribución
 - o Imposible de conocer
- Función de error de la muestra completa
 - Utilizada por Descenso Clásico
- Función de error de cada lote
 - Utilizada por Descenso Estocástico
 - Cada lote redefine la función de error
 - Se redefinen las derivadas
 - **■** Equivalente: ruidosas

- Función de error de la distribución
- Función de error, todas las muestras
 - Función de error, lote 1
 - Función de error, lote 2
 - o Función de error, lote 3

Parámetros

Épocas, tamaños de lote e iteraciones

- Épocas = epochs
 - Cantidad de iteraciones de entrenamiento
 - En relación al tamaño del dataset
- Ejemplo con N=8, batch_size=2, y epochs = 3
 - Iteraciones reales por epoch = 4
 - N/batch_size
 - Iteraciones reales totales = 12
 - N/batch_size*epochs

Épocas, tamaños de lote e iteraciones

- Épocas = epochs
 - Cantidad de iteraciones de entrenamiento
 - En relación al tamaño del dataset
- Ejemplo con N=8, batch_size=2, y epochs = 2
 - Iteraciones reales por epoch = 4
 - N/batch_size
 - Iteraciones reales totales = 8
 - N/batch_size*epochs

Épocas, tamaños de lote e iteraciones

- Épocas = epochs
 - Cantidad de iteraciones de entrenamiento
 - En relación al tamaño del dataset
- Ejemplo con N=8, batch_size=4, y epochs = 3
 - Iteraciones reales por epoch = 2
 - N/batch_size
 - Iteraciones reales totales = 6
 - N/batch_size*epochs

Desordenar lotes entre épocas

- Ayuda al entrenamiento
 - Genera ruido
 - Remueve efectos de orden

Desordenar ejemplos entre épocas

- Mismo objetivo que desordenar lotes
- Mismo efecto
 - Distinto orden de ejemplos
 - Distintos lotes
 - Aún más desorden

Paréntesis: nomenclatura

- Lote = Batch
 - Tamaño de lote = Batch Size = B
- Épocas = Epochs
 - Algunos las llaman iteraciones

- Descenso de Gradiente Tradicional
 - También conocido como
 - Descenso de Gradiente Batch
 - (Batch Gradient Descent)
 - Pero NO utiliza lotes
 - Proceso Batch vs Online (fábricas)

Paréntesis: nomenclatura

- Descenso de Gradiente Estocástico
 - Utiliza lotes/batchs
 - También conocido como
 - Descenso de Gradiente mini-batch

- Descenso de Gradiente Online
 - Utiliza lotes de tamaño 1
 - \blacksquare B = 1
 - Simula reentrenar el modelo con nuevos ejemplos continuamente
 - También conocido como
 - Descenso de Gradiente Estocástico

Tamaño de lote

- Predicción por lotes
 - Más eficiente
 - Multiplicaciones de matrices
 - pre-alocación de memoria
 - Con GPUs:
 - Maximiza el uso de la memoria
 - Minimiza overhead copias GPU ← → CPU

- Tamaño de lote
 - No se puede usar todo el dataset al mismo tiempo!
 - \blacksquare N = O(millones)
 - No entra en memoria
- Generalmente batch_size = potencia de 2
 - 0 8, 16, 32, 64, 128, 256, 512
 - Más de 512 es redundante para entrenar

Predicción por lotes

Predicción de a un ejemplo

- Multiplicación de matrices muy pequeñas
- Overhead de copias
- Mala localidad de memoria
- Con GPUs:
 - overhead copias GPU ← → CPU

Predicción por lotes

- Resuelve estos problemas
- Tamaño de lote
 - Tan grande como sea posible
 - Tamaño RAM

Resumen

Descenso de gradiente tradicional	Descenso de gradiente Estocástico
Gradiente con todos los ejemplos	Gradiente con lotes de ejemplos
Gradientes más exactos	Gradientes ruidosos
No puede escapar de mínimos locales	Puede que escape de mínimos locales
Si f convexa, garantiza mínimo global	Mínimo global no garantizado
Lento, poco escalable	Rápido, escalable