Данные материалы были использованы для подготовки команды Казахстанского филиала МГУ на IMC-2018, где ребята выступили очень успешно: Бекмаганбетов Бекарыс (ММ-2) взял золото (6 задач из 10), Аскергалиев Ануар (ВМК-2) взял серебро (4 задачи из 10), а Журавская Александра (ВМК-4) получила бронзовую награду (2 задачи из 10).

В брошюре собраны 219 задач из различных источников: задачи IMC, задачи Putnam, Putnam And Beyond (Andreescu), Задачи студенческих олимпиад (Садовничий, Григорьян, Конягин) и другие.

Содержание

1	Telescope 1.1 Problems	3 3
	1.2 Hints	4
2	Recurrent 2.1 Problems	5 5 6
3	Linear algebra 3.1 Problems 3.2 Hints	7 7 8
4	Polynomial 4.1 Problems	9 9 10
5	Calculus 5.1 Problems 5.2 Hints	11 11 12
6	Series 6.1 Problems 6.2 Hints	13 13 15
7	Linear algebra 7.1 Problems	16 16 18
8	Calculus 8.1 Problems 8.2 Hints	
9	Sequences and series9.1 Problems9.2 Hints	23 23 26
10	Linear algebra 10.1 Problems	27 27 30
11	Number Theory 11.1 Problems	32 32

12 Train	:	34
12.1 Problems		3
12.2 Hints		36

1 Telescope

1.1 Problems

25.06.2018

1. (putnam-and-beyond-365) Find the sum $\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\cdots+\frac{1}{\sqrt{n}+\sqrt{n+1}}$.

2. (putnam-and-beyond-365) Let $a_0=1, a_1=3, a_{n+1}=\frac{a_n^2+1}{2}$, for $n\geqslant 1$. Prove that

$$\frac{1}{a_0+1} + \frac{1}{a_1+1} + \dots + \frac{1}{a_n+1} + \frac{1}{a_{n+1}-1} = 1,$$

for $n \geqslant 1$.

3. (putnam-and-beyond-368) Let

$$a_n = \frac{4n + \sqrt{4n^2 - 1}}{\sqrt{2n + 1} - \sqrt{2n - 1}}$$

for $n \ge 1$. Prove that $a_1 + a_2 + \cdots + a_{40}$ is a positive integer.

4. (putnam-and-beyond-366) Let λ be a root of unity. Prove that

$$\lambda^{-1} = \sum_{n=0}^{\infty} \lambda^{n} (1 - \lambda)(1 - \lambda^{2})(1 - \lambda^{3}) \cdots (1 - \lambda^{n})$$

with the convention that the 0th term of the series is 1.

5. (putnam-2016-B1) Let x_0, x_1, x_2, \ldots be the sequence such that $x_0 = 1$ and for $n \ge 0$,

$$x_{n+1} = \ln(e^{x_n} - x_n).$$

Show that the infinite series $x_0 + x_1 + x_2 + \dots$ converges and find its sum.

6. (putnam-2014-A3) Let $a_0 = \frac{5}{2}$ and $a_k = a_{k-1}^2 - 2$ for $k \geqslant 1$. Compute

$$\prod_{k=0}^{\infty} \left(1 - \frac{1}{a_k} \right)$$

in closed form.

$$\frac{1}{\sqrt{n}+\sqrt{n+1}}=\sqrt{n+1}-\sqrt{n}$$

$$2(a_{k+1} - 1) = (a_k - 1)(a_k + 1)$$

.

- 3. (putnam-and-beyond-368) $a = \sqrt{2n-1}$, $b = \sqrt{2n+1}$.
- 4. (putnam-and-beyond-369) Sum $a_{n+1} + a_n$.
- 5. (putnam-2016-B1) $e^x \ge x + 1$.
- 6. (putnam-2014-A3) $a_k + 1 = (a_{k-1} 1)(a_{k-1} + 1), a_k^2 4 = a_{k-1}^2(a_{k-1}^2 4).$

2 Recurrent

2.1 Problems

26.06.2018

1. (putnam-and-beyond-299) Define the sequence $(a_n)_{n\geqslant 0}$ by $a_0=0,\,a_1=1,\,a_2=2,\,a_3=6,$ and

$$a_{n+4} = 2a_{n+3} + a_{n+2} - 2a_{n+1} - a_n$$

for $n \ge 0$. Prove that n divides a_n for all $n \ge 1$.

2. (putnam-and-beyond-302) A sequence u_n is defined by $u_0 = 2$, $u_1 = \frac{5}{2}$, $u_{n+1} = u_n(u_{n-1}^2 - 2) - u_1$, for $n \ge 1$. Prove that for all positive integers n,

$$[u_n] = 2^{\frac{2^n - (-1)^n}{3}}.$$

3. (putnam-and-beyond-305) Find the general term of the sequence given by $x_0 = 3$, $x_1 = 4$, and

$$(n+1)(n+2)x_n = 4(n+1)(n+3)x_{n-1} - 4(n+2)(n+3)x_{n-2},$$

 $n \geqslant 2$.

4. (putnam-and-beyond-307) Define the sequence (a_n) recursively by $a_1 = 1$ and

$$a_{n+1} = \frac{1 + 4a_n + \sqrt{1 + 24a_n}}{16}$$

for all $n \ge 1$. Find an explicit formula for a_n in terms of n.

5. (putnam-2015-A2) Let $a_0 = 1$, $a_1 = 2$, and $a_n = 4a_n - 1 - a_{n-2}$ for $n \ge 2$. Find an odd prime factor of a_{2015} .

6. (putnam-and-beyond-306) Let (x_n) , $n \ge 0$ be defined by the recurrence relation $x_{n+1} = ax_n + bx_{n-1}$, with $x_0 = 0$.

• Show that the expression

$$x_n^2 - x_{n-1}x_{n+1}$$

depends only on b and x_1 , but not on a.

• Show that the expression

$$f_n^2 - f_{n-1} f_{n+1}$$

where $f_n = f_{n-1} + f_{n-2}$, $f_0 = 0$, $f_1 = 1$.

7. (putnam-2017-A2) Let $Q_0(x) = 1$, $Q_1(x) = x$, and $Q_n(x) = \frac{(Q_{n-1}(x))^2 - 1}{Q_{n-2}(x)}$ for all $n \ge 2$. Show that, whenever n is a positive integer, $Q_n(x)$ is equal to a polynomial with integer coefficients.

- 1. (putnam-and-beyond-299) $a_n = n * f_n$.
- 2. (putnam-and-beyond-302) $u_n = 2^{x_n} + 2^{-x_n}$.
- 3. (putnam-and-beyond-305) $y_n = \frac{x_n}{n+3}$.
- 4. (putnam-and-beyond-307) $b_n = \sqrt{1 + 24a_n}$.
- 5. (putnam-2015-A2) $(x^5 + y^5)|(x^{2015} + y^{2015})$.
- 6. (putnam-and-beyond-306) Induction.
- 7. (putnam-2017-A2) See putnam-and-beyond-306. Note that $Q_n(x)$ has linear recurrent realation by $Q_{n-1}(x)$ and $Q_{n-2}(x)$.

3 Linear algebra

3.1 Problems

27.06.2018

1. (putnam-and-beyond-215) Let A, B, C, D be $n \times n$ matrices such that AC = CA. Prove that

$$\det\begin{pmatrix} A & B \\ C & D \end{pmatrix} = \det(AD - CB).$$

- 2. (putnam-2015-A6) Let n be a positive integer. Suppose that A, B, and M are $n \times n$ matrices with real entries such that AM = MB, and such that A and B have the same characteristic polynomial. Prove that $\det(A MX) = \det(B XM)$ for every $n \times n$ matrix X with real entries.
- 3. (putnam-and-beyond-216) Let X, Y be $n \times n$ matrices. Prove that

$$\det(I_n - XY) = \det(I_n - YX).$$

4. (putnam-and-beyond) Let A be $n \times n$ matrices. Prove that

$$\det(I_n + A^2) \geqslant 0$$

- 5. (putnam-and-beyond-217) Let A and B be $n \times n$ matrices that commute. Prove that if $det(A + B) \ge 0$, then $det(A^k + B^k) \ge 0$ for all $k \ge 1$.
- 6. (putnam-and-beyond-226) Let A, B, C be $n \times n$ matrices, $n \ge 1$, satisfying

$$ABC + AB + BC + AC + A + B + C = O_n.$$

- 7. (putnam-and-beyond-230) Let A and B be $n \times n$ matrices, $n \ge 1$, satisfying $AB B^2A^2 = I_n$ and $A^3 + B^3 = O_n$. Prove that $BA A^2B^2 = I_n$.
- 8. A is orthogonal matrix and I + A is non singular. Prove that $(I + A)^{-1}(I A)$ is skew symmetric. (косо-симметрическая)
- 9. A is orthogonal matrix, where n is even. Suppose that $\det(A) = -1$. Show that $\det(I A) = 0$.
- 10. Let A, B is two invertable $n \times n$ real matrices. Assume that A + B is invertable. Then prove that $A^{-1} + B^{-1}$ is also invertable.
- 11. Let X be any arbitrary $n \times n$ square matrix, n is even. Prove that

$$tr(X^n) \geqslant ndet(X)$$
.

12. Matrix $A, B, C, D \in \mathbb{R}^{n \times n}$ such that

$$AC - BD = I_n, AD + BC = O_n$$

- Prove that $CA DB = I_n$, $DA + CB = O_n$
- $\det(AC) \geqslant 0, (-1)^n \det(BD) \geqslant 0.$

- 1. (putnam-and-beyond-215) If A is invertable, then use matrix row transformation. If A is not invertable, $A_t = A + tI_n$ is invertable for all $t \neq -\lambda_k$. Checking equation is polynomial equation.
- 2. (putnam-2015-A6) If A and B is invertable, then checked it. If A or B is not invertable, $A_t = A + tI_n$, $B_t = B + tI_n$ is invertable for all $t \neq -\lambda_k$.
- 3. (putnam-and-beyond-216) Use problem 215.
- 4. (putnam-and-beyond) $I_n + A^2 = (I_n + iA)(I_n iA)$, where $i = \sqrt{-1}$.
- 5. (putnam-and-beyond-217) Complex roots of $x^k = 1$ divides into complex conjugate pairs.
- 6. (putnam-and-beyond-226) If XY = I then X, Y commute.
- 7. (putnam-and-beyond-230) $(A + iB^2)(B + iA^2) = I_n$.
- 8. B is skew symmetric $\Leftrightarrow B^T = -B$.
- 9. det(AB) = det(A) det(B) = det(BA).
- 10. $\det(A^{-1} + B^{-1}) \neq 0$.
- 11. $det(X) = \lambda_1 \cdot \lambda_2 \cdots \lambda_n$, $tr(X^n) = \lambda_1^n + \lambda_2^n + \cdots + \lambda_n^n$.
- 12. $(A + iB)(C + iD) = I_n$.

4 Polynomial

4.1 Problems

28.06.2018

- 1. Про многочлен $f(x) = x^{10} + a_9x^9 + ... + a_0$ известно, что f(1) = f(-1), f(2) = f(-2), f(3) = f(-3), f(4) = f(-4), f(5) = f(-5). Докажите, что f(x) = f(-x) для любого действительного x.
- 2. Известно, что P(x) многочлен степени n такой, что для всех $t \in \{1, 2, 2^2, ..., 2^n\}$ верно соотношение $P(t) = \frac{1}{t}$. Найдите P(0).
- 3. Известно, что для многочлена степени n верно, что f(0)=1, f(1)=2, f(2)=4, ..., $f(n)=2^n$. Найдите f(n+1).
- 4. Пусть x, y натуральные числа такие, что:

$$A = \frac{x^2 + y^2}{xy + 1}$$

- целое. Найдите все возможные значения А.
- 5. Пусть x, y натуральные числа такие, что выражение $A = \frac{x^2 + y^2 + 1}{xy}$ целое. Найдите все возможные значения A.
- 6. Произведение квадратных трех членов $x^2 + a_1x + b_1$, $x^2 + a_2x + b_2$, ..., $x^2 + a_nx + b_n$ равно многочлену $P(x) = x^{2n} + c_1x^{2n-1} + c_2x^{2n-2} + \cdots + c_{2n-1}x + c_{2n}$, где коэффициенты c_1 , c_2 , ..., c_{2n} положительны. Докажите, что для некоторого k $(1 \le k \le n)$ коэффициенты a_k и b_k положительны.
- 7. (putnam-and-beyond-169) Let P(x) be a polynomial with all roots real and distinct and such that none of its zeros is equal to 0. Prove that the polynomial $x^2P''(x) + 3xP'(x) + P(x)$ also has all roots real and distinct.
- 8. (putnam-and-beyond-172) Let P(x) be a polynomial of degree n > 3 whose zeros $x_1 < x_2 < x_3 < \cdots < x_{n-1} < x_n$ are real. Prove that

$$P'\left(\frac{x_1+x_2}{2}\right)P'\left(\frac{x_{n-1}+x_n}{2}\right)\neq 0.$$

- 9. (putnam-and-beyond-173) Let a_1, a_2, \ldots, a_n be positive real numbers. Prove that the polynomial $P(x) = x_n a_1 x^{n-1} a_2 x^{n-2} \cdots a_n$ has a unique positive zero.
- 10. (putnam-and-beyond-174) Prove that the zeros of the polynomial

$$P(z) = z^7 + 7z^4 + 4z + 1$$

lie inside the disk of radius 2 centered at the origin.

11. (putnam-and-beyond-175) For $a \neq 0$ a real number and n > 2 an integer, prove that every nonreal root z of the polynomial equation $x^n + ax + 1 = 0$ satisfies the inequality

$$|z| \geqslant \sqrt[n]{\frac{1}{n-1}}.$$

12. Prove that for any distinct integers a_1, a_2, \ldots, a_n the polynomial $P(x) = (x - a_1)(x - a_2) \cdots (x - a_n) - 1$ cannot be written as a product of two nonconstant polynomials with integer coefficients.

- 1. Многочлен g(x) = f(x) f(-x).
- 2. Многочлен F(t) = P(t) * t 1.
- 3. Многочлен $f(x) = 1 + \frac{x}{1} + \frac{x(x-1)}{1 \cdot 2} + \frac{x(x-1)(x-2)}{1 \cdot 2 \cdot 3} + \dots + \frac{x(x-1)\cdots(x-n+1)}{1 \cdot 2 \cdot 3\cdots n}$.
- 4. Идея: прыжки Виета. Если x = y, то легко решить явно. Если существует решение (x, y), где x > y, то существует решение (y, z), где y > z (теорема Виета для квадратного уравнения).
- 5. Идея: прыжки Виета.
- 6. Теорема Виета для c_{2n} и c_{1} .
- 7. (putnam-and-beyond-169) Total differential. Rolle's theorem: If a real-valued function f is continuous on a proper closed interval [a, b], differentiable on the open interval (a, b), and f(a) = f(b), then there exists at least one c in the open interval (a, b) such that f'(c) = 0.
- 8. (putnam-and-beyond-172) $P'(x) = P(x) \left(\frac{1}{x-x_1} + \frac{1}{x-x_2} + \dots + \frac{1}{x-x_n} \right)$.
- 9. (putnam-and-beyond-173) $\frac{P(x)}{x^n}$.
- 10. (putnam-and-beyond-174) $\left| \frac{P(z)}{z^7} \right|$. Triangle inequality.
- 11. (putnam-and-beyond-175) $z = r(\cos t + i \sin t)$.
- 12. (putnam-and-beyond-185) P(x) = Q(x)R(x). What about Q(x) + R(x)?

5 Calculus

5.1 Problems

29.06.2018

1. (PUTNAM-1987-B1) Evaluate

$$\int_0^1 \frac{\sqrt{\ln(9-x)}dx}{\sqrt{\ln(9-x)} + \sqrt{\ln(x+3)}}$$

2. (PUTNAM-1989-A2) Evaluate

$$\int_{0}^{a} \int_{0}^{b} e^{\max\{b^{2}x^{2}, a^{2}y^{2}\}} dy dx,$$

where a and b are positive.

3. (PUTNAM-1990-B1) Find all real-valued continuously differentiable functions f on the real line such that for all x,

$$f(x)^{2} = \int_{0}^{x} (f(t)^{2} + f'(t)^{2}) dt + 1990.$$

4. (PUTNAM-1998-B1) Find the minimum value of

$$\frac{(x+\frac{1}{x})^6 - x^6 - \frac{1}{x^6} - 2}{(x+\frac{1}{x})^3 + (x^3 + \frac{1}{x^3})}$$

for x > 0.

5. (PUTNAM-1998-A3) Let f be a real function on the real line with continuous third derivative. Prove that there exists a point a such that

$$f(a)f'(a)f''(a)f'''(a) \geqslant 0.$$

6. (PUTNAM-2006-B5) For each continuous function $f:[0,1]\to\mathbb{R}$, let

$$I(f) = \int_0^1 x^2 f(x) dx$$

$$J(f) = \int_0^1 x(f(x))^2 dx.$$

Find the maximum value of I(f) - J(f) over all such functions f.

7. (PUTNAM-2005-B3) Find all differentiable functions $f: \mathbb{R}^+ \to \mathbb{R}^=$ for which there is a positive real number a such that

$$f'\left(\frac{a}{x}\right) = \frac{x}{f(x)}$$

for all x > 0.

8. Let function f(x) is continuous on \mathbb{R} and $f^3(x) + f(x) = x$. Calculate

$$I = \int_0^2 f(x)dx.$$

9. If f(x) is continuous and differentiable on [0;1] with f(0) = 0, f(1) = 1. Evaluate minimum value of

$$\int_0^1 \left(f'(x) \right)^2 dx.$$

- 1. (PUTNAM-1987-B1) Symmetric variable substitution 9 x = t + 3.
- 2. (PUTNAM-1987-B1) From double integral to repeated integral.
- 3. (PUTNAM-1990-B1) Differentiate the equation.
- 4. (PUTNAM-1998-B1) Simplify. $x + \frac{1}{x} \geqslant 2$ for x > 0.
- 5. (PUTNAM-1998-A3) Without lose of generalization f(x) > 0. Without lose of generalization f'(x) > 0. It f(x) > 0, f'(x) > 0 for all x, then f''(x) > 0.
- 6. (PUTNAM-2006-B5) Cauchy-Schwarz inequality for $(I(f))^2.$
- 7. (PUTNAM-2005-B3) Variable substitution $t = \frac{a}{x}$. Differentiate the equation.
- 8. Variable substitution f(x) = y.
- 9. Cauchy-Schwarz inequality.

6 Series

6.1 Problems

02.07.2018

1. (putnam-and-beyond-352) Show that the series

$$\frac{1}{1+x} + \frac{2}{1+x^2} + \frac{4}{1+x^4} + \dots + \frac{2^n}{1+x^{2^n}} + \dots$$

converges when |x| > 1, and in this case find its sum.

2. (putnam-and-beyond-355) Let $S = \{x_1, x_2, \dots, x_n, \dots\}$ be the set of all positive integers that do not contain the digit 9 in their decimal representation. Prove that

$$\sum_{n=1}^{\infty} \frac{1}{x_n} < 80$$

3. (putnam-and-beyond-357) Does the series

$$\sum_{n=1}^{\infty} \sin(\pi \sqrt{n^2 + 1})$$

converges?

4. (putnam-and-beyond-369) Prove that

$$\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{1^2 - 2^2 + 3^2 - \dots + (-1)^{k+1} k^2} = \frac{2n}{n+1}$$

5. (putnam-and-beyond-370) Prove that

$$\sum_{n=1}^{9999} \frac{1}{(\sqrt{n} + \sqrt{n+1})(\sqrt[4]{n} + \sqrt[4]{n+1})} = 9$$

6. (putnam-and-beyond-371) Let $a_n = \sqrt{1 + \left(1 + \frac{1}{n}\right)^2} + \sqrt{1 + \left(1 - \frac{1}{n}\right)^2}$, $n \ge 1$. Prove that

$$\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_{20}}$$

is a positive integer.

7. (putnam-and-beyond-373) Let $a_n = 3n + \sqrt{n^2 - 1}$ and $b_n = 2(\sqrt{n^2 - n} + \sqrt{n^2 + n}), n \ge 1$. Show that

$$\sqrt{a_1 - b_1} + \sqrt{a_2 - b_2} + \dots + \sqrt{a_{49} - b_{49}} = A + B\sqrt{2}$$

for some integer A and B.

8. Compute the product

$$\prod_{n=2}^{\infty} \left(1 + \frac{(-1)^n}{F_n^2} \right)$$

where F_n is the *n*-th Fibonacci number

9. (putnam-and-beyond-378) Let x be a positive number less than 1. Compute the product

$$\prod_{n=1}^{\infty} \left(1 + x^{2^n} \right)$$

10. (ВШЭ-2012) Сходится ли ряд

$$\sum_{n=1}^{\infty} \frac{1}{n^{\frac{1}{n}+1}}?$$

11. (Садовничий-7-1) Последовательность задается: $x_1=a>1, x_{n+1}=x_n^2-x_n+1$. Найдите

$$\sum_{n=1}^{\infty} \frac{1}{x_n}$$

12. (Садовничий-7-4) Вычислить:

$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)2^n}$$

13. (Садовничий-7-7) Вычислить:

$$\frac{1}{1 \cdot 2 \cdot 3} + \frac{1}{4 \cdot 5 \cdot 6} + \frac{1}{7 \cdot 8 \cdot 9} + \cdots$$

14. (putnam-2016-B6) Evaluate

$$\sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k} \sum_{n=0}^{\infty} \frac{1}{k2^n + 1}.$$

15. (putnam-2015-A3) Compute

$$\log_2\left(\prod_{a=1}^{2015}\prod_{b=1}^{2015}(1+e^{2\pi iab/2015})\right)$$

Here i is the imaginary unit (that is, $i^2 = -1$).

16. (putnam-2014-A3) Let $a_0 = \frac{5}{2}$ and $a_k = a_{k-1}^2 - 2$ for $k \ge 1$. Compute

$$\prod_{k=0}^{\infty} \left(1 - \frac{1}{a_k} \right)$$

in closed form.

17. (putnam-2011-A2) Let a_1, a_2, \ldots and b_1, b_2, \ldots be sequences of positive real numbers such that $a_1 = b_1 = 1$ and $b_n = b_{n-1}a_n - 2$ for $n = 2, 3, \ldots$ Assume that the sequence (b_j) is bounded. Prove that

$$S = \sum_{n=1}^{\infty} \frac{1}{a_1 \dots a_n}$$

converges, and evaluate S.

18. (putnam-2001-B3) For any positive integer n, let $\langle n \rangle$ denote the closest integer to \sqrt{n} . Evaluate

$$\sum_{n=1}^{\infty} \frac{2^{\langle n \rangle} + 2^{-\langle n \rangle}}{2^n}.$$

19. (putnam-1999-A4) Sum the series

$$\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{m^2 n}{3^m (n3^m + m3^n)}.$$

14

20. (Алфутова-устинов-11-65) Вычислите суммы:

- $C_n^1 + 2C_n^2 + 3C_n^3 + \dots + nC_n^n$. $C_n^1 + 2^2C_n^2 + 3^2C_n^3 + \dots + n^2C_n^n$.

- 1. (putnam-and-beyond-352) Add $\frac{1}{1-x}$.
- 2. (putnam-and-beyond-355) Double series $\sum_{x_j<10^n}\frac{1}{x_j}=\sum_{1\leqslant i\leqslant n}\sum_{10^{i-1}\leqslant j<10^i}\frac{1}{x_j}$
- 3. (putnam-and-beyond-357) $\sin(\pi\sqrt{n^2+1}) = (-1)^n \sin(\frac{\pi}{\sqrt{n^2+1}+n})$
- 4. (putnam-and-beyond-369) $1^2 2^2 + 3^2 \dots + (-1)^{k+1} k^2 = (-1)^{k+1} \frac{k(k+1)}{2}$
- 5. (putnam-and-beyond-370) $a_n = \sqrt[4]{n+1} \sqrt[4]{n}$
- 6. (putnam-and-beyond-371) $a_n = \frac{1}{4}(b_{n+1} b_n)$
- 7. (putnam-and-beyond-373) $a_k b_k = \frac{1}{2} \left((\sqrt{k} \sqrt{k+1}) (\sqrt{k-1} \sqrt{k}) \right)$
- 8. Let (x_n) , $n \ge 0$ be defined by the recurrence relation $x_{n+1} = ax_n + bx_{n-1}$, with $x_0 = 0$.
 - Show that the expression

$$x_n^2 - x_{n-1}x_{n+1}$$

depends only on b and x_1 , but not on a.

• Evaluate

$$f_n^2 - f_{n-1} f_{n+1}$$

where
$$f_n = f_{n-1} + f_{n-2}$$
, $f_0 = 0$, $f_1 = 1$.

- 9. (putnam-and-beyond-378) Multiply by (1+x).
- 10. (BIII9-2012) $n^{n+1} < 2n$
- 11. (Садовничий-7-1) $\frac{1}{x_n} = \frac{1}{x_{n+1}-1} \frac{1}{x_n-1}$
- 12. (Садовничий-7-4) Интегрируем дважды степенной ряд $\sum_{n=1}^{\infty} z^n$.
- 13. (Садовничий-7-7)
- 14. (putnam-2016-B6) $\frac{1}{k+1} = \int_0^1 x^k dx$
- 15. (putnam-2015-A3) $z^n 1 = (z \omega)(z \omega^2) \cdots (z \omega^{n-1})$. $(1 + \omega^b) = \frac{1 \omega^{2b}}{1 \omega^b}$.
- 16. (putnam-2014-A3) $a_k + 1 = (a_{k-1} 1)(a_{k-1} + 1), a_k^2 4 = a_{k-1}^2(a_{k-1}^2 4).$
- 17. (putnam-2011-A2) $S_m S_{m-1} = \frac{1}{a_1 a_2 \cdots a_m}$, where $S_m = \frac{b_1 b_2 \cdots b_n}{(b_1 + 2)(b_2 + 2) \cdots (b_n + 2)}$
- 18. (putnam-2001-B3) Since $(k-1/2)^2 = k^2 k + 1/4$ and $(k+1/2)^2 = k^2 + k + 1/4$, we have that $\langle n \rangle = k$ if and only if $k^2 k + 1 \le n \le k^2 + k$. Hence

$$\sum_{n=1}^{\infty} \frac{2^{\langle n \rangle} + 2^{-\langle n \rangle}}{2^n} = \sum_{k=1}^{\infty} \sum_{n, \langle n \rangle = k} \frac{2^{\langle n \rangle} + 2^{-\langle n \rangle}}{2^n} = \sum_{k=1}^{\infty} \sum_{n=k^2-k+1}^{k^2+k} \frac{2^k + 2^{-k}}{2^n} = \sum_{k=1}^{\infty} (2^k + 2^{-k})(2^{-k^2+k} - 2^{-k^2-k}) = 3.$$

19. (putnam-1999-A4) Denote the series by S, and let $a_n = 3^n/n$:

$$S = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{1}{a_m(a_m + a_n)} = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{1}{a_n(a_m + a_n)},$$

Thus

$$2S = \left(\sum_{n=1}^{\infty} \frac{n}{3^n}\right)^2.$$

$$S = 9/32$$
.

20. (Алфутова-устинов-11-65) $f(x) = (1+x)^n$, f'(x), f''(x).

7 Linear algebra

7.1 Problems

03.07.2018

- 1. (putnam-and-beyond-199) Let M be an $n \times n$ complex matrix. Prove that there exist Hermitian matrices A and B such that M = A + iB. (A matrix X is called Hermitian if $X^T = \overline{X}$).
- 2. (putnam-and-beyond-200) Do there exist $n \times n$ matrices A and B such that $AB BA = I_n$?
- 3. (putnam-and-beyond-201) Let A and B be 2×2 matrices with real entries satisfying $(AB BA)^n = I_2$ for some positive integer n. Prove that n is even and $(AB BA)^4 = I_2$.
- 4. (putnam-and-beyond-205) Let A and B be $n \times n$ matrices with real entries satisfying

$$tr(AA^T + BB^T) = tr(AB + A^TB^T).$$

Prove that $A = B^T$.

5. (putnam-and-beyond-206) Let x_1, x_2, \ldots, x_n be arbitrary numbers $(n \ge 1)$. Compute the determinant

$$\begin{vmatrix} 1 & 1 & \dots & 1 \\ x_1 & x_2 & \dots & x_n \\ x_1^2 & x_2^2 & \dots & x_n^2 \\ \vdots & \vdots & \ddots & \vdots \\ x_1^{n-1} & x_2^{n-1} & \dots & x_n^{n-1} \end{vmatrix}$$

- 6. (putnam-and-beyond-213) Let A and B be 3×3 matrices with real elements such that $\det A = \det B = \det(A+B) = \det(A-B) = 0$. Prove that $\det(xA+yB) = 0$ for any real numbers x and y.
- 7. (putnam-and-beyond-222) Let A and B be 2×2 matrices with integer entries such that A, A+B, A+2B, A+3B, and A+4B are all invertible matrices whose inverses have integer entries. Prove that A+5B is invertible and that its inverse has integer entries.
- 8. (putnam-and-beyond-243) Let A be the $n \times n$ matrix whose i, j entry is i + j for all $i, j = 1, 2, \ldots, n$. What is the rank of A?
- 9. (putnam-and-beyond-244) For integers $n \ge 2$ and $0 \le k \le n-2$, compute the determinant

$$\begin{vmatrix} 1^k & 2^k & 3^k & \dots & n^k \\ 2^k & 3^k & 4^k & \dots & (n+1)^k \\ 3^k & 4^k & 5^k & \dots & (n+2)^k \\ \dots & \dots & \dots & \dots & \dots \\ n^k & (n+1)^k & (n+2)^k & \dots & (2n-1)^k \end{vmatrix}$$

- 10. (putnam-and-beyond-248) Let $A:V\to W$ and $B:W\to V$ be linear maps between finite-dimensional vector spaces. Prove that the linear maps AB and BA have the same set of nonzero eigenvalues, counted with multiplicities.
- 11. (putnam-and-beyond-249) Let A, B be 2×2 matrices with integer entries, such that AB = BA and $\det B = 1$. Prove that if $\det(A^3 + B^3) = 1$, then $A^2 = O_2$.
- 12. (putnam-and-beyond-258) Let A and B be 2×2 matrices with determinant equal to 1. Prove that

$$tr(AB) - (trA)(trB) + tr(AB^{-1}) = 0.$$

13. (putnam-and-beyond-259) Find the 2×2 matrices with real entries that satisfy the equation

$$X^3 - 3X^2 = \begin{pmatrix} -2 & -2 \\ -2 & -2 \end{pmatrix}$$

14. (putnam-and-beyond-261) Let A and B be 3×3 matrices. Prove that

$$3\det(AB - BA) = tr((AB - BA)^3)$$

15. (putnam-2015-B3) Let S be the set of all 2×2 real matrices

$$M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

whose entries a, b, c, d (in that order) form an arithmetic progression. Find all matrices M in S for which there is some integer k > 1 such that M^k is also in S.

16. (putnam-2014-A2) Let A be the $n \times n$ matrix whose entry in the i-th row and j-th column is

$$\frac{1}{\min(i,j)}$$

for $1 \le i, j \le n$. Compute $\det(A)$.

- 17. (ncumc-2017-5) Find the maximal set of points in \mathbb{C} such that there are no complex Hermitian positively definite matrices of identical sizes A, B for which the point is an eigenvalue of matrix $(A+B)^{-1}(I+AB)$.
- 18. (Садовничий-2-1-11) Вычислить определитель

$$\begin{vmatrix} P(x) & P(x+1) & \dots & P(x+n) \\ P'(x) & P'(x+1) & \dots & P'(x+n) \\ \dots & \dots & \dots & \dots \\ P^{(n)}(x) & P^{(n)}(x+1) & \dots & P^{(n)}(x+n) \end{vmatrix}$$

где $P(x) = x(x+1)(x+2) \cdot (x+n)$.

- 19. (Садовничий-2-1-20) Пусть A, B квадратные матрицы порядка 2017. Доказать, что если AB=0, то хотя бы одна из матриц $A+A^T$ или $B+B^T$ вырождена.
- 20. (Садовничий-2-1-21) Пусть A, B, C квадратные матрицы порядка $n \times n$. Доказать, что

$$rq(AB) + rq(BC) \le rq(B) + rq(ABC)$$

21. (Садовничий-2-1-27) Пусть A, B — квадратные матрицы порядка $n \times n$. Верно ли, что матрицы AB и BA имеют одинаковый характеристический многочлен?

- 1. (putnam-and-beyond-199) $\overline{M^T} = \overline{A^T} i\overline{B^T} = A iB$.
- 2. (putnam-and-beyond-200) tr(AB) = tr(BA).
- 3. (putnam-and-beyond-201) $(AB B)^2 = \begin{pmatrix} a & b \\ c & -a \end{pmatrix}^2 = kI_2$, where k is a root of unity.
- 4. (putnam-and-beyond-205) $tr(XX^T)$ is the sum of the squares of the entries of X.

$$tr[(A - B^T)(A - B^T)^T] = 0$$

- 5. (putnam-and-beyond-206) The Vandermonde determinant is equal to $\prod_{i>j}(x_i-x_j)$.
- 6. (putnam-and-beyond-213) $\det(xA+yB) = a_0(x)y^3 + a_1(x)y^2 + a_2(x)y + a_3(x)$. Idea: $\det(xA+xB)$, $\det(xA-xB)$.
- 7. (putnam-and-beyond-222) det $C = \pm 1$, $P(x) = \det(A + xB)$.
- 8. (putnam-and-beyond-243) $n \ge 2$, rank = 2
- 9. (putnam-and-beyond-244) The polynomials $P_j(x) = (x+j)^k$, j = 0, 1, ..., n-1, lie in the (k+1)-dimensional real vector space of polynomials of degree at most k.
- 10. (putnam-and-beyond-248) Let A, B, C, D be $n \times n$ matrices such that AC = CA. Prove that

$$\begin{vmatrix} A & B \\ C & D \end{vmatrix} = det(AD - CB).$$

11. (putnam-and-beyond-249)

$$A^{3} + B^{3} = (C^{3} + I)B^{3}.$$

$$C^{3} + I = (C + I)(C + \varepsilon I)(C + \varepsilon^{2}I).$$

$$P(-1)P(-\varepsilon)P(-\varepsilon^{2}) = 1$$

where $P(x) = x^2 - mx + n$.

- 12. (putnam-and-beyond-258) $P_A(\lambda) = \det(\lambda I_n A), P_A(A) = 0_n.$
- 13. (putnam-and-beyond-259) Get $\det X = 0$, then $X^2 = (tr(X))X$ and tr(X) = 2 or tr(X) = -1.

If det(X-3I)=0, then 3 is eigenvalue. $det(X^3-3X+4I_2)=0$.

- 14. (putnam-and-beyond-261) $(AB BA)^3 c_1(AB BA)^2 + c_2(AB BA) c_3I_3 = O_3$ Take trace.
- 15. (putnam-2015-B3) If a, b, c, d are in arithmetic progression, then we may write

$$a = r - 3s$$
, $b = r - s$, $c = r + s$, $d = r + 3s$

for some r, s. If s = 0, then clearly all powers of M are in S. Also, if r = 0, then one easily checks that M^3 is in S.

We now assume $rs \neq 0$, and show that in that case M cannot be in S. First, note that the characteristic polynomial of M is $x^2 - 2rx - 8s^2$, and since M is nonsingular (as $s \neq 0$), this is also the minimal polynomial of M by the Cayley-Hamilton theorem. By repeatedly using the relation $M^2 = 2rM + 8s^2I$, we see that for each positive integer, we have $M^k = t_kM + u_kI$ for unique real constants t_k , u_k (uniqueness follows from the independence of M and I). Since M is in S, we see that M^k lies in S only if $u_k = 0$.

On the other hand, we claim that if k > 1, then $rt_k > 0$ and $u_k > 0$ if k is even, and $t_k > 0$ and $ru_k > 0$ if k is odd (in particular, u_k can never be zero). The claim is true for k = 2 by the relation $M^2 = 2rM + 8s^2I$. Assuming the claim for k, and multiplying both sides of the relation $M^k = t_kM + u_kI$ by M, yields

$$M^{k+1} = t_k(2rM + 8s^2I) + u_kM = (2rt_k + u_k)M + 8s^2t_kI,$$

implying the claim for k+1.

- 16. (putnam-2014-A2) Sub *n* from (n-1) row.
- 17. (ncumc-2017-5) Let c be an eigenvalue of the operator in question, i.e. $(A+B)^{-1}(I+AB)x = cx$ for some non-zero vector x and some complex number c. Then, x + ABx = c(Ax + Bx).

Mark Bx = y. Hence, (y, x) > 0, and it is the only condition for x, y. Equation rewritten in the form A(y - cx) = cy - x. Moreover, (cy - x, y - cx) > 0 due to the fact that A be positively definite. It is also possible that y = cx, cy = x. this takes place for x = y, c = 1. Let us introduce a notation c = a + bi. Then,

$$a((x,x) + (y,y)) + bB((y,y) - (x,x)) - (1 + a^2 + b^2)(x,y) > 0.$$

Consequently, a > 0, and for any a > 0 and any b, one can find matrices and almost orthogonal vectors x, y of identical lengths such that the inequality takes place.

- 18. (Садовничий-2-1-11) Умножим k-ю строку на $\frac{(x+n)^{k-1}}{(k-1)!}$. Ряд Тейлора.
- 19. (Садовничий-2-1-20)
- 20. (Садовничий-2-1-21) $rg(A+B) \leq rg(A) + rg(B), rg(A+B) \geq rg(AB) + n.$
- 21. (Садовничий-2-1-27)

8 Calculus

8.1 Problems

04.07.2018

1. (imc-1994-1-2) Let $f \in C^1(a,b)$, $\lim_{x\to a+} f(x) = +\infty$, $\lim_{x\to b-} f(x) = -\infty$ and

$$f'(x) + f^2(x) \geqslant -1$$

for $x \in (a, b)$. Prove that $b - a \ge \pi$ and give an example where $b - a = \pi$.

- 2. (imc-1994-2-1) Let $f \in C^1[a, b]$, f(a) = 0 and suppose that $\lambda \in \mathbb{R}$, $\lambda > 0$, is such that $|f'(x)| \leq \lambda |f(x)|$ for all $x \in [a, b]$. Is it true that f(x) = 0 for all $x \in [a, b]$?
- 3. (imc-1995-1-2) Let f be a continuous function on [0,1] such that for every $x \in [0,1]$ we have $\int_x^1 f(t)dt \ge \frac{1-x^2}{2}$. Show that $\int_0^1 f^2(t)dt \ge \frac{1}{3}$.
- 4. (imc-1996-1-2) Evaluate the definite integral

$$\int_{-\pi}^{\pi} \frac{\sin(nx)}{(1+2^x)\sin x} dx$$

where n is a natural number.

- 5. (imc-1998-1-3) Let $f(x) = 2x(1-x), x \in \mathbb{R}$. Define $f_n(x) = f(f(...f(x)...))$ (n times).
 - a Find $\lim_{n\to\infty} \int_0^1 f_n(x) dx$.
 - b Compute $\int_0^1 f_n(x)dx$ for $n=1,2,\ldots$
- 6. (imc-1998-1-4) The function $f: \mathbb{R} \to \mathbb{R}$ is twice differentiable and satisfies f(0) = 2, f'(0) = -2 and f(1) = 1. Prove that there exists a real number $\xi \in (0, 1)$ for which

$$f(\xi) f'(\xi) + f''(\xi) = 0.$$

7. (imc-1998-1-5) Let P be an algebraic polynomial of degree n having only real zeros and real coefficients. Prove that for every real x the following inequality holds:

$$(n-1)(P'(x))^2 \geqslant nP(x)P''(x)$$

8. (imc-1998-1-6) Let $f:[0,1]\to\mathbb{R}$ be a continuous function with the property that for any x and y in the interval, $xf(y)+yf(x)\leqslant 1$. Show that

$$\int_0^1 f(x)dx \leqslant \frac{\pi}{4}.$$

9. (imc-1999-1-3) Suppose that a function $f: \mathbb{R} \to \mathbb{R}$ satisfies the inequality

$$\left| \sum_{k=1}^{n} 3^k (f(x+ky) - f(x-ky)) \right| \leqslant 1.$$

for every positive integer n and for all $x, y \in \mathbb{R}$. Prove that f is a constant function.

- 10. (imc-2000-1-1) Is it true that if $f:[0,1] \to [0,1]$ is
 - a monotone increasing;
 - a monotone decreasing

then there exists an $x \in [0,1]$ for which f(x) = x?

- 11. (imc-2002-1-2) Does there exist a continuously differentiable function $f: \mathbb{R} \to \mathbb{R}$ such that for every $x \in \mathbb{R}$ we have f(x) > 0 and f'(x) = f(f(x))?
- 12. (imc-2003-1-2) Evaluate the limit

$$\lim_{x \to +0} \int_{x}^{2x} \frac{\sin^{m}(t)}{t^{n}} dt$$

 $m, n \in \mathbb{N}$

13. (imc-2004-2-2) Let $f, g : [a, b] \to [0, \infty)$ be continuous and nondecreasing functions such that for each $x \in [a, b]$ we have

$$\int_{a}^{x} \sqrt{f(t)} dt \leqslant \int_{a}^{x} \sqrt{g(t)} dt$$
$$\int_{a}^{b} \sqrt{f(t)} dt \leqslant \int_{a}^{b} \sqrt{g(t)} dt$$

Prove that

$$\int_{a}^{b} \sqrt{1 + f(t)} dt \leqslant \int_{a}^{b} \sqrt{1 + g(t)} dt$$

14. (imc-2005-1-3) Let $f: \mathbb{R} \to [0, \infty)$ be a continuously differentiable function. Prove that

$$\left| \int_0^1 f^3(x) dx - f^2(0) \int_0^1 f(x) dx \right| \le \max_{0 \le x \le 1} |f'(x)| \left(\int_0^1 f(x) dx \right)^2$$

15. (imc-2005-2-4) Prove that if $f: \mathbb{R} \to \mathbb{R}$ is three times differentiable, then there exists a real number $\xi \in (-1,1)$ such that

$$\frac{f'''(\xi)}{6} = \frac{f(1) - f(-1)}{2} - f'(0).$$

- 16. (imc-2006-2-3) Compare tan(sinx) and sin(tanx) for all $x \in (0, \frac{\pi}{2})$.
- 17. (imc-2007-2-3) Let C be a nonempty closed bounded subset of the real line and $f: C \to C$ be a nondecreasing continuous function. Show that there exists a point $p \in C$ such that f(p) = p.
- 18. (imc-2009-2-2) Suppose $f: \mathbb{R} \to \mathbb{R}$ is a two times differentiable function satisfying f(0) = 1, f'(0) = 0, and for all $x \in [0, \infty)$,

$$f''(x) - 5f'(x) + 6f(x) \ge 0.$$

Prove that for all $x \in [0, \infty)$,

$$f(x) \geqslant 3e^{2x} - 2e^{3x}.$$

19. (imc-2010-1-1) Let 0 < a < b. Prove that

$$\int_{a}^{b} (x^{2} + 1)e^{-x^{2}} dx \geqslant e^{-a^{2}} - e^{-b^{2}}$$

20. (imc-2013-1-2) Let $f: \mathbb{R} \to \mathbb{R}$ be a twice differentiable function. Suppose f(0) = 0. Prove that there exists $\xi \in (-\frac{-\pi}{2}, \frac{\pi}{2})$ such that

$$f''(\xi) = f(\xi)(1 + 2\tan^2(\xi)).$$

21. (imc-2014-2-3) Let $f(x) = \frac{\sin x}{x}$, for x > 0, and let n be a positive integer. Prove that

$$\left| f^{(n)}(x) \right| < \frac{1}{n+1},$$

where f(n) denotes the *n*-th derivative of f.

22. (imc-2016-2-2) Today, Ivan the Confessor prefers continuous functions $f:[0,1]\to\mathbb{R}$ satisfying

$$f(x) + f(y) \geqslant |x - y|$$

for all pairs $x, y \in [0, 1]$. Find the minimum of $\int_0^1 f(x) dx$ over all preferred functions.

- 1. (imc-1994-1-2) arctg(f(x)).
- 2. (imc-1994-2-1) $g(x) = \ln f(x) \lambda x$ is not increasing. $f(x) \ge e^{\lambda(x-y)} f(y)$.
- 3. (imc-1995-1-2) $\int_0^1 (f(t) t)^2 dt \ge 0$.
- 4. (imc-1996-1-2) $I_n = I_{n-2}$.
- 5. (imc-1998-1-3) $x_n = f_n(x_0)$ has 0 in limit. $f_n(x) = \frac{1}{2} 2^{2^n 1} \left(x \frac{1}{2} \right)^{2^n}$.
- 6. (imc-1998-1-4) $g(x) = \frac{1}{2}f(x)^2 + f'(x)$. $h(x) = \frac{x}{2} \frac{1}{f(x)}$.
- 7. (imc-1998-1-5) Find P'(x)/P(x) and P''(x)/P(x).
- 8. $(\text{imc-}1998\text{-}1\text{-}6) I + \int_0^{\frac{\pi}{2}} f(\sin\theta) \cos\theta d\theta = \int_0^{\frac{\pi}{2}} f(\cos\theta) \sin\theta d\theta$.
- 9. (imc-1999-1-3) $3^n (f(x+ny) f(x-ny) \le 2$.
- 10. (imc-2000-1-1) yes, no.
- 11. (imc-2002-1-2) $f(x) < f(0) + x \cdot f(0) = (1+x)f(0)$
- 12. (imc-2003-1-2) f(x)/x is decreasing.
- 13. (imc-2004-2-2) The length of the graph of F is \geqslant the length of the graph of G. This is clear since both functions are convex.
- 14. (imc-2005-1-3) Integrate $-Mf(x) \leq f(x)f'(x) \leq Mf(x)$
- 15. (imc-2005-2-4) $g(x) = -\frac{f(-1)}{2}x^2(x-1) f(0)(x^2-1) + \frac{f(1)}{2}x^2(x+1) f'(0)x(x-1)(x+1)$
- 16. (imc-2006-2-3) f(x) = tan(sinx) sin(tanx) increase.
- 17. (imc-2007-2-3) Suppose $f(x) \neq x$. Let [a, b] be the smallest closed interval that contains C.
- 18. (imc-2009-2-2) $g(x) = f'(x) 2f(x), f'(x) 2f(x) \ge -2e^{3x}$
- 19. (imc-2010-1-1) $f(x) = \int_0^x (t^2 + 1)e^{-t^2} dt$, $g(x) = -e^{-x^2}$.
- 20. (imc-2013-1-2) $g(x) = f(x)\cos x$
- 21. (imc-2014-2-3) $g(x) = x^{n+1} \left(f^n(x) \frac{1}{n+1} \right)$
- 22. (imc-2016-2-2) Triangle inequality.

9 Sequences and series

9.1 Problems

05.07.2018

1. (imc-1995-2-2) Let $\{b_n\}_{n=0}^{\infty}$ be a sequence of positive real numbers such that $b_0=1$,

$$b_n = 2 + \sqrt{b_{n-1}} - 2\sqrt{1 + \sqrt{b_{n-1}}}$$

Calculate

$$\sum_{n=1}^{\infty} b_n 2^n.$$

2. (imc-1996-2-5) Prove that

$$\lim_{x \to +\infty} \sum_{n=1}^{\infty} \frac{nx}{(n^2 + x)^2} = \frac{1}{2}.$$

3. (imc-1997-1-1) Let $\{\varepsilon_n\}_{n=0}^{\infty}$ be a sequence of positive real numbers, such that $\lim_{n\to\infty}\varepsilon_n=0$. Find

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} \ln \left(\frac{k}{n} + \varepsilon_n \right).$$

4. Дискретное преобразование Абеля

$$\sum_{k=m}^{n} a_k b_k = a_n B_n - a_m B_{m-1} - \sum_{k=m}^{n-1} (a_{k+1} - a_k) B_k$$

5. (imc-1999-1-2) Does there exist a bijective map $\pi: N \to N$ such that

$$\sum_{n=1}^{\infty} \frac{\pi(n)}{n^2} < \infty?$$

6. (imc-1999-2-3) Assume that $x_1, \ldots, x_n \geqslant -1$ and $\sum_{i=1}^n x_i^3 = 0$. Prove that $\sum_{i=1}^n x_i \leqslant \frac{n}{3}$.

7. (imc-2001-1-3) Find

$$\lim_{t \to 1-0} (1-t) \sum_{n=1}^{\infty} \frac{t^n}{1+t^n}.$$

8. (imc-2002-1-3) Let n be a positive integer and let $a_k = \frac{1}{C_n^k}$, $b_k = 2^{k-n}$ for $k = 1, \ldots, n$. Show that

$$\frac{a_1 - b_1}{1} + \frac{a_2 - b_2}{2} + \dots + \frac{a_n - b_n}{n} = 0.$$

9. (imc-2003-1-1) Let a_1, a_2, \ldots be a sequence of real numbers such that $a_1 = 1$ and $a_{n+1} > \frac{3}{2}a_n$ for all n. Prove that the sequence

$$\frac{a_n}{\left(\frac{3}{2}\right)^{n-1}}$$

has a finite limit or tends to infinity.

10. (imc-2003-2-6) Let $(a_n)_{n\in\mathbb{N}}$ be the sequence defined by $a_0=1$,

$$a_{n+1} = \frac{1}{n+1} \sum_{k=0}^{n} \frac{a_k}{n-k+2}$$

Find the limit

$$\lim_{n \to \infty} \sum_{k=0}^{n} \frac{a_k}{2^k}$$

11. (imc-2008-2-3) Let n be a positive integer. Prove that 2^{n-1} divides

$$\sum_{0 \leqslant k < n/2} C_n^{2k+1} 5^k$$

12. (imc-2010-1-2) Compute the sum of the series

$$\frac{1}{1\cdot 2\cdot 3\cdot 4} + \frac{1}{5\cdot 6\cdot 7\cdot 8} + \cdots$$

13. (imc-2010-1-3) Define the sequence x_1, x_2, \ldots inductively by $x_1 = \sqrt{5}, x_{n+1} = x_n^2 - 2$ for $n \ge 1$. Compute

$$\lim_{n \to \infty} \frac{x_1 \cdot x_2 \cdot x_3 \cdots x_n}{x_{n+1}}$$

14. (imc-2010-2-1) A sequence x_1, x_2, \ldots of real numbers satisfies $x_{n+1} = x_n \cos x_n$ for all $n \ge 1$. Does it follow that this sequence converges for all initial values x_1 ?

A sequence y_1, y_2, \ldots of real numbers satisfies $y_{n+1} = y_n \sin y_n$ for all $n \ge 1$. Does it follow that this sequence converges for all initial values y_1 ?

15. (imc-2010-2-2) Let a_0, a_1, \ldots, a_n be positive real numbers such that $a_{k+1} - a_k \ge 1$ for all $k = 0, 1, \ldots, n-1$. Prove that

$$1 + \frac{1}{a_0} \left(1 + \frac{1}{a_1 - a_0} \right) \cdots \left(1 + \frac{1}{a_n - a_0} \right) \leqslant \left(1 + \frac{1}{a_0} \right) \left(1 + \frac{1}{a_1} \right) \cdots \left(1 + \frac{1}{a_n} \right)$$

16. (imc-2011-2-1) Let $\{a_n\}_{n=0}^{\infty}$ be a sequence with $\frac{1}{2} < a_n < 1$ for all $n \ge 0$. Define the sequence $\{x_n\}_{n=0}^{\infty}$ by $x_0 = a_0$ and

$$x_{n+1} = \frac{a_{n+1} + x_n}{1 + a_{n+1}x_n}$$

What are the possible values of $\lim_{n\to\infty} x_n$? Can such a sequence diverge?

17. (imc-2012-2-2) Define the sequence a_0, a_1, \ldots inductively by $a_0 = 1, a_1 = \frac{1}{2}$,

$$a_{n+1} = \frac{na_n^2}{1 + (n+1)a_n}$$

for $n \ge 1$. Show that the series

$$\sum_{k=1}^{\infty} \frac{a_{k+1}}{a_k}$$

converges and determine its value.

18. (imc-2013-1-4) Let $n \ge 3$ and let x_1, \ldots, x_n be nonnegative real numbers. Define $A = \sum_{i=1}^n x_i$, $B = \sum_{i=1}^n x_i^2$, $C = \sum_{i=1}^n x_i^3$. Prove that

$$(n+1)A^2B + (n-2)B^2 \geqslant A^4 + (2n-2)AC$$

19. (imc-2014-1-2) Consider the following sequen

$$(a_n)_{n=1}^{\infty} = (1, 1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 2, 3, 4, 5, 1, \dots)$$

Find all pairs (α, β) of positive real numbers such that

$$\lim_{n \to \infty} \frac{\sum_{k=1}^{\infty} a_k}{n^{\alpha}} = \beta$$

20. (imc-2015-1-2) For a positive integer n, let f(n) be the number obtained by writing n in binary and replacing every 0 with 1 and vice versa. For example, n = 23 is 10111 in binary, so f(n) is 1000 in binary, therefore f(23) = 8. Prove that

$$\sum_{k=1}^{n} f(k) \leqslant \frac{n^2}{4}$$

When does equality hold?

21. (imc-2015-1-3) Let F(0) = 0, $F(1) = \frac{3}{2}$, and $F(n) = \frac{2}{5}F(n-1) - F(n-2)$ for $n \ge 2$. Determine whether or not

$$\sum_{n=0}^{\infty} \frac{1}{F(2^n)}$$

is a rational number.

22. (imc-2016-1-3) Let n be a positive integer. Also let a_1, a_2, \ldots, a_n and b_1, b_2, \ldots, b_n be real numbers such that $a_i + b_i > 0$ for $i = 1, 2, \ldots, n$. Prove that

$$\sum_{i=1}^{n} \frac{a_i b_i - b_i^2}{a_i + b_i} \leqslant \frac{\sum_{i=1}^{n} a_i \cdot \sum_{i=1}^{n} b_i - (\sum_{i=1}^{n} b_i)^2}{\sum_{i=1}^{n} (a_i + b_i)}$$

23. (imc-2016-2-1) Let $(x_1, x_2, ...)$ be a sequence of positive real numbers satisfying

$$\sum_{n=1}^{\infty} \frac{x_n}{2n-1} = 1$$

Prove that

$$\sum_{k=1}^{\infty} \sum_{n=1}^{k} \frac{x_n}{k^2} \leqslant 2$$

- 1. $a_n = 1 + \sqrt{b_n}$, telescope.
- 2. (imc-1996-2-5) Riemann sum for $f(t) = \frac{t}{(1+t^2)^2}$, where $h = \frac{1}{\sqrt{x}}$.
- 3. (imc-1997-1-1) Riemann sum for $f(x) = \ln(x)$.
- 4. Проверить
- 5. (imc-1999-1-2) Дискретное преобрзование Абеля. $\pi(1) + ... + \pi(n) \geqslant 1 + ... + n$.
- 6. (imc-1999-2-3) $(x+1)(x-1/2)^2 \ge 0$.
- 7. (imc-2001-1-3) $\int_0^\infty \frac{dx}{1+e^x}$.
- 8. (imc-2002-1-3)

$$\frac{2^n}{n} \left[\sum_{k=0}^{n-1} \frac{1}{C_{n-1}^k} \right] = \sum_{k=1}^n \frac{2^n}{n}$$

- 9. (imc-2003-1-1) $b_{n+1} > b_n$.
- 10. (imc-2003-2-6) $f(x) = \sum_{n=0}^{\infty} a_n x^n$. f'(x) = ?. $\ln(f(x)) = \int_0^x \frac{f'(t)}{f(t)} dt$
- 11. (imc-2008-2-3) Bine formula for Fibonacci.
- 12. (imc-2010-1-2) $\frac{x^{4k}}{4k}$
- 13. (imc-2010-1-3) $x_{n+1}^2 4 = x_n^2(x_n^2 4)$
- 14. (imc-2010-2-1) No, $x_n = (-1)^{n-1}\pi$. Yes, Since the function $t \to t \sin t$ is continuous, $y_{n+1} = |y_n| \sin |y_n| \to |a| \sin |a| = a$
- 15. (imc-2010-2-2) Apply induction on n.
- 16. (imc-2011-2-1) $u_n = arctanha_n$ (hyperbolic).
- 17. (imc-2012-2-2) $ka_k = \frac{a_{k+1}}{a_k} + (k+1)a_{k+1}$
- 18. (imc-2013-1-4) $p(x) = (x x_1)(x x_2) \cdots (x x_n)$. The (n 3)-th derivative of p has three nonnegative real roots $0 \le u \le v \le w$.
- 19. (imc-2014-1-2) Let see first n(n+1)/2 addend.
- 20. (imc-2015-1-2) $2^{s-1} 1 \le n \le 2^s 1$.
- 21. (imc-2015-1-3) $F(n) = 2^n 2^{-n}$
- 22. (imc-2016-1-3) $\frac{XY-Y^2}{X+Y} = Y \frac{2Y^2}{X+Y}$
- 23. (imc-2016-2-1) interchang the sum, $\sum_{k=m}^{\infty}\frac{1}{k^2}<\frac{1}{n-\frac{1}{2}}$.

10 Linear algebra

10.1 Problems

09.07.2018

- 1. (imc-1994-1-1) Let A be a $n \times n$, $n \ge 2$, symmetric, invertible matrix with real positive elements. Show that $z_n \le n^2 2n$, where z_n is the number of zero elements in A^{-1} .
- 2. (imc-1995-1-5) Let A and B be real $n \times n$ matrices. Assume that there exist n+1 different real numbers $t_1, t_2, \ldots, t_{n+1}$ such that the matrices $C_i = A + t_i B$, $i = 1, 2, \ldots, n+1$, are nilpotent (i.e. $C_i^n = 0$). Show that both A and B are nilpotent.
- 3. (imc-1995-2-1) Let A be 3×3 real matrix such that the vectors Au and u are orthogonal for each column vector $u \in \mathbb{R}^3$. Prove that:
 - $\bullet \ A^T = -A;$
 - there exists a vector $v \in \mathbb{R}^3$ such that $Au = v \times u$ for every $u \in \mathbb{R}^3$.
- 4. (imc-1996-1-1) Let for $j=0,\ldots,n,\,a_j=a_0+jd,$ where $a_0,\,d$ are fixed real numbers. Put

$$\begin{vmatrix} a_0 & a_1 & a_2 & \dots & a_n \\ a_1 & a_0 & a_1 & \dots & a_{n-1} \\ a_2 & a_1 & a_0 & \dots & a_{n-2} \\ \dots & \dots & \dots & \dots & \dots \\ a_n & a_{n-1} & a_{n-2} & \dots & a_0 \end{vmatrix}$$

Calculate det(A).

- 5. (imc-1996-1-3) The linear operator A on the vector space V is called an involution if $A^2 = E$ where E is the identity operator on V. Prove that for every involution A on V there exists a basis of V consisting of eigenvectors of A.
- 6. (imc-1997-1-3) Let A and B be real $n \times n$ matrices such that $A^2 + B^2 = AB$. Prove that if BA AB is an invertible matrix then n is divisible by 3.
- 7. (imc-1997-2-2) Let M be an invertible matrix of dimension $2n \times 2n$, represented in block form as

$$M = \begin{vmatrix} A & B \\ C & D \end{vmatrix}$$

$$M^{-1} = \begin{vmatrix} E & F \\ G & H \end{vmatrix}$$

Show that $\det M \cdot \det H = \det A$.

- 8. (imc-1999-1-1)
 - Show that for any $m \in N$ there exists a real $m \times m$ matrix A such that $A^3 = A + I$, where I is the $m \times m$ identity matrix.
 - Show that det A > 0 for every real $m \times m$ matrix satisfying $A^3 = A + I$.
- 9. (imc-2000-1-3) A and B are square complex matrices of the same size and rank(AB BA) = 1. Show that $(AB - BA)^2 = 0$.
- 10. (imc-2002-2-1) Compute the determinant of the $n \times n$ matrix $A = a_{ij}$:

$$a_{ij} = \begin{cases} (-1)^{|i-j|}, & i \neq j \\ 2, & i = j \end{cases}$$

- 11. (imc-2003-1-3) Let A be an $n \times n$ real matrix such that $3A^3 = A^2 + A + I$ (I is the identity matrix). Show that the sequence A^k converges to an idempotent matrix. (A matrix B is called idempotent if $B^2 = B$.)
- 12. (imc-2003-2-1) Let A and B be $n \times n$ real matrices such that AB + A + B = 0. Prove that AB = BA.
- 13. (imc-2004-2-1) Let A be a real 4×2 matrix and B be a real 2×4 matrix such that

$$AB = \begin{vmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 \\ -1 & 0 & 1 & 0 \\ 0 & -1 & 0 & 1 \end{vmatrix}$$

Find BA.

- 14. (imc-2005-1-1) Let A be the $n \times n$ matrix, whose (i, j)-th entry is i + j for all $i, j = 1, 2, \ldots, n$. What is the rank of A?
- 15. (imc-2007-2-4) Let n > 1 be an odd positive integer and $A = (a_{ij})$ be an $n \times n$ matrix with:

$$a_{ij} = \begin{cases} 2, & i = j \\ 1, & i - j = \pm 2 \pmod{n} \\ 0, & \text{otherwise} \end{cases}$$

Find det(A).

16. (imc-2008-2-5) Let n > 1 be an odd positive integer and $A = (a_{ij})$ be an $n \times n$ matrix with:

$$a_{ij} = \begin{cases} 1, & i+j \text{ is prime} \\ 0, & \text{otherwise} \end{cases}$$

Prove that $\det A = k^2$ for some integer k.

- 17. (imc-2008-2-2) Let A, B and C be real square matrices of the same size, and suppose that A is invertible. Prove that if $(A B)C = BA^{-1}$, then $C(A B) = A^{-1}B$.
- 18. (imc-2009-2-3) Let $A, B \in M_n(C)$ be two $n \times n$ matrices such that $A^2B + BA^2 = 2ABA$. Prove that there exists a positive integer k such that $(AB BA)^k = 0$.
- 19. (imc-2010-1-5) Suppose that a, b, c are real numbers in the interval [-1, 1] such that

$$1 + 2abc \geqslant a^2 + b^2 + c^2$$

Prove that

$$1 + 2(abc)^n \geqslant a^{2n} + b^{2n} + c^{2n}$$

for all positive integers n.

- 20. (imc-2013-1-1) Let A and B be real symmetric matrices with all eigenvalues strictly greater than 1. Let λ be a real eigenvalue of matrix AB. Prove that $|\lambda| > 1$.
- 21. (imc-2014-1-1) Determine all pairs (a, b) of real numbers for which there exists a unique symmetric 2×2 matrix M with real entries satisfying trace(M) = a and det(M) = b.
- 22. (imc-2014-2-2) Let $A = (a_{ij})$ be a symmetric $n \times n$ matrix with real entries, and let $\lambda_1, \lambda_2, \ldots, \lambda_n$ denote its eigenvalues. Show that

$$\sum_{1 \leqslant i < j \leqslant n} a_{ii} a_{jj} \geqslant \sum_{1 \leqslant i < j \leqslant n} \lambda_i \lambda_j$$

and determine all matrices for which equality holds.

23. (imc-2015-1-1) For any integer $n \ge 2$ and two $n \times n$ matrices with real entries A, B that satisfy the equation

$$A^{-1} + B^{-1} = (A+B)^{-1}$$

- prove that det(A) = det(B). Does the same conclusion follow for matrices with complex entries?
- 24. (imc-2017-1-1) Determine all complex numbers λ for which there exist a positive integer n and a real $n \times n$ matrix A such that $A^2 = A^T$ and λ is an eigenvalue of A.

- 1. (imc-1994-1-1) we have at least two non-zero elements in every column of A^{-1} .
- 2. (imc-1995-1-5) n^2 polynom for each matrix element
- 3. (imc-1995-2-1) Set $v_1 = -a_{23}$, $v_2 = a_{13}$, $v_3 = -a_{12}$.
- 4. $(imc-1996-1-1) (-1)^n a_0 + a_n 2^{n-1} d^n$
- 5. (imc-1996-1-3) The minimal polynomial of A is a divisor of $x^2 1$. Eigenvalue equal to ± 1 and its multiplicity is less or equal to 1. Matrix is diagonalizable.
- 6. (imc-1997-1-3) $S = A + e^{i\frac{2\pi}{3}}B$. Then $S\overline{S} = e^{i\frac{2\pi}{3}}(BA AB)$.
- 7. (imc-1997-2-2) The definition. If A or H invertable. det(XY) = det(YX).
- 8. (imc-1999-1-1) The minimal polynomial of A is a divisor of $p(x) = x^3 x 1$ has a positive real root and two conjugated complex roots. Matrix is diagonalizable, det A equal to product of eigenvalues.
- 9. (imc-2000-1-3) Jordan form.
- 10. (imc-2002-2-1) det(A) = n + 1
- 11. (imc-2003-1-3) The minimal polynomial of A is a divisor of $3x^3 x^2 x 1$. This polynomial has three different roots. This implies that A is diagonalizable. The eigenvalues of the matrices A and D are all roots of polynomial. One of the three roots is 1, the remaining two roots have smaller absolute value than 1. Hence, the diagonal elements of D^k , which are the k-th powers of the eigenvalues, tend to either 0 or 1 and the limit $M = \lim D^k$ is idempotent. Then $\lim A^k = C^{-1}MC$ is idempotent as well.

Минимальный многочлен делит характеристический многочлен матрицы. Любой аннулирующий многочлен делится на минимальный[1]. Минимальный многочлен единственен. Множество корней минимального многочлена совпадает с множеством корней характеристического многочлена матрицы.

- 12. (imc-2003-2-1)(A+I)(B+I) = I = (B+I)(A+I)
- 13. (imc-2004-2-1) $A = (A_1 A_2)^T$, $B = (B_1 B_2)$.
- 14. (imc-2005-1-1) rank = 2
- 15. (imc-2007-2-4) $A = B^2$.
- 16. (imc-2008-2-5) $|C00C| = k^2$ Now let X' be the matrix obtained from A by replacing the first row by (100...0, and let Y) be the matrix obtained from A by replacing the entry a_{11} by 0. By multilinearity of the determinant, det(A) = det(X') + det(Y). Note that X' can be written as |10vX| for some $(n-1) \times (n-1)$ -matrix X and some column vector v. Then det(A) = det(X) + det(Y). Now consider two cases. If n is odd, then X is of type(C), and Y is of type (B). Therefore, |det(A)| = |det(X)| is a perfect square. If n is even, then X is of type (B), and Y is of type (C); hence |det(A)| = |det(Y)| is a perfect square. The set of primes can be replaced by any subset of $\{2\} \cup \{3, 5, 7, 9, 11, \ldots\}$.
- 17. (imc-2008-2-2) XY = I = YX.
- 18. (imc-2009-2-3) $\delta^2 B = 0$. $\delta^k(B^k) = k!(\delta B)^k$. Cayley-Hamilton Theorem. Set X = AB - BA. The matrix X commutes with A. $X^{m+1} = AX^mB - BX^mA$. Take trace.
- 19. (imc-2010-1-5) $\begin{vmatrix} 1 & a & b \\ a & 1 & c \\ b & c & 1 \end{vmatrix}$

- 20. (imc-2013-1-1) The transforms given by A and B strictly increase the length of every nonzero vector, this can be seen easily in a basis where the matrix is diagonal with entries greater than 1 in the diagonal. Hence their product AB also strictly increases the length of any nonzero vector, and therefore its real eigenvalues are all greater than 1 or less than -1.
- 21. (imc-2014-1-1) Note that trace(M) = a and det(M) = b if and only if the two eigenvalues of M are solutions of $x^2 ax + b = 0$.
- 22. (imc-2014-2-2) Eigenvalues of a real symmetric matrix are real, hence the inequality makes sense. Similarly, for Hermitian matrices diagonal entries as well as eigenvalues have to be real.

$$\sum_{i} a_{ii}^2 \geqslant \sum_{i,j} a_{ij}^2 = \sum_{i} \lambda_i^2$$

- 23. (imc-2015-1-1) $X = AB^{-1}$, $X^3 = I$. In case of complex matrices the statement is false.
- 24. $(imc-2017-1-1)A^4 A = 0$. The matrix represents a rotation by $2\pi/3$.

11 Number Theory

11.1 Problems

10.07.2018

- 1. Докажите, что существует бесконечно много чисел, не представимых в виде суммы 3 точных квадратов.
- 2. Доказать, что существует бесконечно много чисел, не представимых в виде суммы трёх кубов.
- 3. Докажите, что уравнение не имеет решений в целых числах: $x^3 + 21y^2 + 5 = 0$.
- 4. Докажите, что $x^2 + xy y^2 = 3$ не имеет целых решений.
- 5. Существует ли такое натуральные n, что $n^2 + n + 1$ делится на 2015?
- 6. Решите в натуральных числах $x! 1 = y^2$.
- 7. Докажите, что если $a^2 + b^2 + ab$ делится на 11, то a и b делятся на 11.
- 8. Найдите все пятерки простых чисел, для которых число $q_1^4 + q_2^4 + q_3^4 + q_4^4 + q_5^4$ равно произведению двух последовательных четных натуральных чисел.
- 9. Докажите, что уравнение $x^3 + y^3 = 4(x^2y + xy^2 + 1)$ не имеет решений в целых числах.
- 10. Найдите все такие пары простых чисел p и q, что $p^3 q^5 = (p+q)^2$.
- 11. Дана последовательность $a_n = 1 + 2^n + 3^n + 4^n + 5^n + 6^n + 7^n$. Существуют ли a_n , делящиеся на 2016?
- 12. Докажите, что число $60^{2017} + 2017^{60}$ составное.
- 13. Пусть p простое число, p>2. Докажите, что любой простой делитель числа 2^p-1 имеет вид 2kp+1.
- 14. Докажите, что ни при каком целом k число $k^2 + k + 1$ не делится на 101.
- 15. Пусть (a, b) = 1.
 - Пусть a|bc. Докажите, что a|c.
 - Докажите, что (a, bc) = (a, c).
- 16. Докажите, что дробь несократима при всех натуральных n:
 - a) $\frac{21n+4}{14n+3}$; 6) $\frac{7n+16}{3n+7}$;
- 17. Докажите, что если a делится на b, то (a,b)=b. При каких целых n следующая дробь будет нелой:
 - a) $\frac{n^2+1}{n+1}$; 6) $\frac{n^3+n+1}{n^2-n+1}$; B) $\frac{n^4+1}{n^2+n+1}$.
- 18. Докажите, что при $m \neq n$ выполняется равенство: $(a^m 1, a^n 1) = a^{(m,n)} 1(a > 1)$.
- 19. Пусть $f_k = 2^{2^k} + 1$ числа Ферма.
 - Составьте рекуррентную формулу f_k и f_{k-1} .
 - Докажите, что $(f_n, f_m) = 1$, где $n \neq m$.
- 20. Пусть F_n числа Фибоначчи ($F_0=0,\,F_1=1,\,F_n=F_{n-1}+F_{n-2}.$
 - Докажите, что $F_n = F_k \cdot F_{n-k+1} + F_{k-1} \cdot F_{n-k}$.

- Докажите, что $(F_n, F_m) = F_{(n,m)}$.
- 21. Пусть $b \neq d$ и $\frac{a}{b}, \frac{c}{d}$ несократимые дроби. Докажите, что $\frac{a}{b} + \frac{c}{d}$ не целое число.
- 22. Докажите, что $\frac{[a,b,c]^2}{[a,b]*[b,c]*[a,c]}=\frac{(a,b,c)^2}{(a,b)*(b,c)*(c,a)}.$
- 23. При каком наибольшем n число $n^3 + 100$ делится на n + 10.
- 24. Найдите все такие натуральные n, что 80^n-1 делится на 8^n-1 без остатка.
- 25. Найти $(5^m + 7^m, 5^n + 7^n)$.
- 26. Докажите, что число (36a+b)(36b+a) не может быть точной степенью двойки.
- 27. Известно, что $\frac{1}{x} \frac{1}{y} = \frac{1}{z}$. Пусть h = (x, y, z). Докажите, что hxyz полный квадрат.

12 Train

12.1 Problems

15-20.07.2018

1. Доказать, что если матрицы A и B действительные положительно определенные симметричные порядка n, то

$$\det(A+B) \geqslant \det(A) + \det(B)$$

2. Пусть функция f(x) интегрируема по Риману на отрезке [0;1], причем $|f(x)|\leqslant 1$. Доказать неравенство

$$\int_{0}^{1} \sqrt{1 - f(x)^{2}} dx \leqslant \sqrt{1 - \left(\int_{0}^{1} f(x) dx\right)^{2}}$$

3. Функция f(x) дважды непрерывно дифференцируема на отрезке [a,b] и имеет на [a,b] не менее трех различных нулей. Доказать, что существует точка $\xi \in [a,b]$ такая, что

$$f(\xi) + f''(\xi) = 2f'(\xi)$$

4. Let $a_1 = a_2 = 97$ and

$$a_{n+1} = a_n a_{n-1} + \sqrt{(a_n^2 - 1)(a_{n-1}^2 - 1)}$$

Prove that

- $2 + 2a_n$ is a perfect square;
- $2 + \sqrt{2 + 2a_n}$ is a perfect square.
- 5. Evaluate

$$\lim_{n \to \infty} \sum_{k=0}^{n} \frac{k(n-k)! + (k+1)}{(k+1)!(n-k)!}$$

6. Determine whether or not there exist integers a, b, c > 2018 satisfying the equation

$$a^3 + 2b^3 + 4c^3 = 6abc + 1$$
.

7. Let $f:[0,1]\to\mathbb{R}$ be a differentiable function with continuous derivative such that

$$\int_0^1 (f'(x))^2 dx = 1$$

Prove that |f(1) - f(0)| < 1.

8. Let $A \in \mathbb{R}^{m,n}$, $B \in \mathbb{R}^{n,p}$, $C \in \mathbb{R}^{p,q}$, $D \in \mathbb{R}^{q,m}$ be such that

$$A^T = BCD, B^T = CDA, C^T = DAB, D^T = ABC$$

Prove that $(ABCD)^2 = ABCD$.

9. Let P(x) be a polynomial with real coefficients of degree at least 2. Prove that if there is a real number a such that

$$P(a)P''(a) > (P'(a))^2,$$

then P has at least tow nonreal zeros.

10. Let $A, B \in \mathbb{R}^{2018,2018}$ such that AB = BA, $A^{2018} = I$, $B^{2018} = I$ and tr(AB) = 2018. Prove that tr(A) = tr(B).

- 11. Let $f: \mathbb{C} \to \mathbb{C}$ be a function such that $f(z)f(\mathrm{i}z) = z^2$ for all $z \in \mathbb{C}$. Prove that f(-z) = -f(z) for all $z \in \mathbb{C}$.
- 12. a) k is even positive integer and A is a real symmetric $n \times n$ matrix such that

$$(tr(A^k))^{k+1} = (tr(A^{k+1}))^k.$$

Prove that $A^n = tr(A)A^{n-1}$.

b) Does the assertion from a) also hold for odd positive integers k.

- 1. (Садовничий, стр. 229, №23) Докажем при A=I. Докажем при $A=C^2$, где C симметрическая положительно определенная.
- 2. (Садовничий, стр. 120, №23) Неравенство Коши-Шварца.
- 3. (Садовничий, стр. 101, №5) Теорема Ролля для функции $g(x) = e^{-x} f(x)$.
- 4. (Titu 360, p.80, №55) The expression $a_1^2 1 = x^2$ and $2a_1 + 2 = y^2$ ask for substitution: $a_1 = \frac{1}{2}(b^2 + \frac{1}{b^2})$, hence $b + \frac{1}{b} = 14$. Setting $b = c^2$, and c = 2 + sqrt3. We will prove that $a_n = \frac{1}{2}(c^{4F_n} + c^{-4F_n})$.
- 5. (Titu 360, p.195, \mathbb{N}_{2} 13) Is equal to $1 \frac{1}{(n+1)!} + \frac{2^{n}}{n!}$.
- 6. (AOPS, USA December TST for IMO 2012, Problem 3)

$$x^{3} + y^{3} + z^{3} - 3xyz = \det \begin{pmatrix} x & y & z \\ z & x & y \\ y & z & x \end{pmatrix}$$

Let $w^3 = 2$. Then

$$x^{3} + 2y^{3} + 4z^{3} - 6xyz = \det \begin{pmatrix} x & y & z \\ z & x & y \\ y & z & x \end{pmatrix} \cdot \det \begin{pmatrix} 1 & w & w^{2} \\ w^{2} & 1 & w \\ w & w^{2} & 1 \end{pmatrix}$$

7. (Titu 360, p.218, №56)

$$\int_0^1 (f'(x) - 1)^2 dx \geqslant 0$$

8. (AOPS) X = ABCD.

$$A = D^T C^T B^T = ABCDABCDA = X^2 A \Leftrightarrow X = X^3$$

Минимальный аннулирующий многочлен матрицы X делит многочлен t^3-t , то есть имеет корни среди $\{-1,0,1\}$, причем все они имеют степень не выше 1. Значит, матрица диагонализируема.

$$AA^{T} = ABCD = X \Rightarrow (Xe, e) = (A^{T}e, A^{T}e) \geqslant 0 \Rightarrow$$

 $X \geqslant 0 \Rightarrow \lambda(X) \geqslant 0$

На диагонали стоят только 0 или 1, то есть $X^2 = X$.

9. (Titu 360, p.45, №57) Differentiate the equation:

$$\frac{P'(x)}{P(x)} = \sum_{i=1}^{n} \frac{1}{x - x_i}$$

- 10. (AOPS) $\lambda_1 + \lambda_2 + \cdots + \lambda_n = tr(AB)$.
- 11. (Titu 360, p.36, $N_{2}39$) Substitute z with zi.
- 12. (AOPS)

$$(\lambda_1^k + \lambda_2^k + \dots + \lambda_n^k)^{\frac{1}{k}} = (\lambda_1^{k+1} + \lambda_2^{k+1} + \dots + \lambda_n^{k+1})^{\frac{1}{k+1}}$$

.