Competitiveness of 2022 League of Legends World Championship Matches

Name(s): Brighten Hayama

Website Link: https://brighyama.github.io/LoL-data-analysis/

Code

```
In [1]: import pandas as pd
import numpy as np
import os

import plotly.express as px
import plotly.graph_objects as go
pd.options.plotting.backend = 'plotly'
```

Introduction

Question: Are 2022 League of Legends World Championship Games More Competitive Than Regular Season Games?

Cleaning and EDA

```
In [2]: # Importing raw League data
league_path = os.path.join('data', '2022_LoL_esports_match_data_from_OraclesElixir.csv')
league = pd.read_csv(league_path)
league
```

C:\Users\brigh\anaconda3\envs\dsc80\lib\site-packages\IPython\core\interactiveshell.py:3505: DtypeWarning: Column
s (2) have mixed types.Specify dtype option on import or set low_memory=False.
 exec(code_obj, self.user_global_ns, self.user_ns)

Out[2]:		gameid	datacompleteness	url	league	year	split	playoffs	dat
	0	ESPORTSTMNT01_2690210	complete	NaN	LCK CL	2022	Spring	0	202; 01-1 07:44:0
	1	ESPORTSTMNT01_2690210	complete	NaN	LCK CL	2022	Spring	0	2027 01-1 07:44:0
	2	ESPORTSTMNT01_2690210	complete	NaN	LCK CL	2022	Spring	0	202; 01-1 07:44:0
	3	ESPORTSTMNT01_2690210	complete	NaN	LCK CL	2022	Spring	0	2027 01-1 07:44:0
	4	ESPORTSTMNT01_2690210	complete	NaN	LCK CL	2022	Spring	0	202; 01-1 07:44:(
	•••								
	149395	9687-9687_game_5	partial	https://lpl.qq.com/es/stats.shtml? bmid=9687	DC	2022	NaN	0	2027 12-2 12:43:4
	149396	9687-9687_game_5	partial	https://lpl.qq.com/es/stats.shtml? bmid=9687	DC	2022	NaN	0	2027 12-2 12:43:4
	149397	9687-9687_game_5	partial	https://lpl.qq.com/es/stats.shtml? bmid=9687	DC	2022	NaN	0	2027 12-2 12:43:4
	149398	9687-9687_game_5	partial	https://lpl.qq.com/es/stats.shtml? bmid=9687	DC	2022	NaN	0	2027 12-2 12:43:4
	149399	9687-9687_game_5	partial	https://lpl.qq.com/es/stats.shtml? bmid=9687	DC	2022	NaN	0	202; 12-2 12:43:4

149400 rows × 123 columns

Data Cleaning

```
In [3]: # Choosing relevant columns from the raw dataset
        columns = ['gameid','league','patch','teamname','result','gamelength','golddiffat15']
        # Subsetting league data to entire team stats with relevant columns
        df = league[league['position']=='team'][columns].copy()
        df['abs_golddiffat15'] = df['golddiffat15'].abs()
        df['is_wcs'] = df['league']=='WCS'
        df[df['golddiffat15'].notna()]
```

Out[3]:		gameid	league	patch	teamname	result	gamelength	golddiffat15	abs_golddiffat15	is_wcs
	10	ESPORTSTMNT01_2690210	LCK CL	12.01	Fredit BRION Challengers	0	1713	107.0	107.0	False
	11	ESPORTSTMNT01_2690210	LCK CL	12.01	Nongshim RedForce Challengers	1	1713	-107.0	107.0	False
	22	ESPORTSTMNT01_2690219	LCK CL	12.01	T1 Challengers	0	2114	-1763.0	1763.0	False
	23	ESPORTSTMNT01_2690219	LCK CL	12.01	Liiv SANDBOX Challengers	1	2114	1763.0	1763.0	False
	46	ESPORTSTMNT01_2690227	LCK CL	12.01	KT Rolster Challengers	1	1972	1191.0	1191.0	False
	•••									
	149111	ESPORTSTMNT01_3268686	NEXO	12.23	unknown team	1	2325	-853.0	853.0	False
	149122	ESPORTSTMNT01_3269631	NEXO	12.23	unknown team	1	2076	2063.0	2063.0	False
	149123	ESPORTSTMNT01_3269631	NEXO	12.23	Córdoba Patrimonio eSports	0	2076	-2063.0	2063.0	False
	149134	ESPORTSTMNT01_3268705	NEXO	12.23	unknown team	1	1680	2213.0	2213.0	False
					Córdoba					

21262 rows × 9 columns

149135 ESPORTSTMNT01_3268705 NEXO 12.23 Patrimonio

In [4]: wcs = df.loc[(df['patch']==12.18) & (df['league']=='WCS')]
wcs

eSports

0

1680

-2213.0

2213.0 False

Out[4]:		gameid	league	patch	teamname	result	gamelength	golddiffat15	abs_golddiffat15	is_wcs
	136342	ESPORTSTMNT02_3041846	WCS	12.18	Isurus	0	2278	-2243.0	2243.0	True
	136343	ESPORTSTMNT02_3041846	WCS	12.18	MAD Lions	1	2278	2243.0	2243.0	True
	136354	ESPORTSTMNT02_3041862	WCS	12.18	Fnatic	1	1767	2961.0	2961.0	True
	136355	ESPORTSTMNT02_3041862	WCS	12.18	Evil Geniuses	0	1767	-2961.0	2961.0	True
	136366	ESPORTSTMNT02_3041903	WCS	12.18	LOUD	0	1723	-1680.0	1680.0	True
	•••									
	146219	ESPORTSTMNT02_3080871	WCS	12.18	DRX	0	1931	-796.0	796.0	True
	146230	ESPORTSTMNT02_3080872	WCS	12.18	DRX	1	1724	1289.0	1289.0	True
	146231	ESPORTSTMNT02_3080872	WCS	12.18	T1	0	1724	-1289.0	1289.0	True
	146242	ESPORTSTMNT02_3080905	WCS	12.18	T1	0	2529	433.0	433.0	True
	146243	ESPORTSTMNT02_3080905	WCS	12.18	DRX	1	2529	-433.0	433.0	True

254 rows × 9 columns

Univariate Analysis (plot 1)

Distribution of Gold Difference at 15min

Univariate Analysis (plot 2)

Distribution of Game Lengths

Bivariate Analysis (plot 1)

Aggregation

In [34]: # Pivoting on each team in WCS and observing their gold differences at 15min
wcs_piv = pd.pivot_table(wcs,values='golddiffat15',columns='teamname',index='gameid')
wcs_piv

\cap		4	г	7	Л	٦	
U	u	L	L	J	4	J	۰

teamname	100 Thieves	Beyond Gaming	CTBC Flying Oyster	Chiefs Esports Club	Cloud9	DRX	DWG KIA	DetonatioN FocusMe	EDward Gaming	Evil Geniuses	•••
gameid											
ESPORTSTMNT02_3041846	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
ESPORTSTMNT02_3041862	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	-2961.0	
ESPORTSTMNT02_3041903	NaN	1680.0	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
ESPORTSTMNT02_3041937	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
ESPORTSTMNT02_3041983	NaN	NaN	NaN	-573.0	NaN	NaN	NaN	NaN	NaN	NaN	
ESPORTSTMNT02_3080864	NaN	NaN	NaN	NaN	NaN	-1475.0	NaN	NaN	NaN	NaN	
ESPORTSTMNT02_3080870	NaN	NaN	NaN	NaN	NaN	-2626.0	NaN	NaN	NaN	NaN	
ESPORTSTMNT02_3080871	NaN	NaN	NaN	NaN	NaN	-796.0	NaN	NaN	NaN	NaN	
ESPORTSTMNT02_3080872	NaN	NaN	NaN	NaN	NaN	1289.0	NaN	NaN	NaN	NaN	
ESPORTSTMNT02_3080905	NaN	NaN	NaN	NaN	NaN	-433.0	NaN	NaN	NaN	NaN	

127 rows × 24 columns

```
wcs_group
Out[35]:
                                 golddiffat15
                    teamname
                   100 Thieves
                                 -731.833333
               Beyond Gaming
                                 -274.800000
            CTBC Flying Oyster
                                -1299.666667
            Chiefs Esports Club
                                -2973.400000
                       Cloud9
                                -1957.166667
                          DRX
                                 1006.846154
                     DWG KIA
                                 2261.666667
          DetonatioN FocusMe
                                   -9.000000
                                  672.909091
               EDward Gaming
                  Evil Geniuses
                                  364.125000
                                 -555.090909
                         Fnatic
                    G2 Esports
                                -1714.166667
                  GAM Esports
                                -2728.833333
                        Gen.G
                                  116.437500
                                -3520.200000
                        Isurus
                    JD Gaming
                                  484.785714
                         LOUD
                                 -151.200000
                    MAD Lions
                                  154.833333
                                -1452.400000
                        Rogue
           Royal Never Give Up
                                 1279.473684
                Saigon Buffalo
                                 -538.55556
                                 1030.000000
                   Top Esports
                                 1175.500000
```

In [35]: wcs_group = wcs.groupby('teamname')[['golddiffat15']].agg(np.mean)

Bivariate Analysis (plot 2)

-3082.000000

İstanbul Wildcats

Assessment of Missingness

```
In [10]: # Observing missingness in golddiffat15 column, compared to patch and gamelength
    columns_missingness = ['patch','result','golddiffat15']
    missingness = df[columns_missingness].copy()
    missingness['golddiffat15_missing'] = missingness['golddiffat15'].isna()

missingness
```

\cap	 - Г	1	2	7	4

	patch	result	golddiffat15	golddiffat15_missing
10	12.01	0	107.0	False
11	12.01	1	-107.0	False
22	12.01	0	-1763.0	False
23	12.01	1	1763.0	False
34	12.01	1	NaN	True
149375	12.23	0	NaN	True
149386	12.23	1	NaN	True
149387	12.23	0	NaN	True
149398	12.23	0	NaN	True
149399	12.23	1	NaN	True

24900 rows × 4 columns

```
In [11]: # Observing proportion of missing data from wins/losses
         result_dist = (
             missingness
              .assign(golddiffat15_missing=missingness['golddiffat15'].isna())
             .pivot_table(index='result', columns='golddiffat15_missing', aggfunc='size')
         result_dist = result_dist / result_dist.sum()
         result_dist
Out[11]: golddiffat15_missing
                                False True
                       result
                           0 0.500094
                                        0.5
                           1 0.499906
                                        0.5
In [12]:
         # Permutation test on the gamelength column
         n_repetitions = 500
         shuffled = missingness.copy()
         tvds = []
         for _ in range(n_repetitions):
             shuffled['result'] = np.random.permutation(shuffled['result'])
             # Computing and storing the TVD.
             pivoted = (
                 shuffled
                 .pivot_table(index='result', columns='golddiffat15_missing', aggfunc='size')
                 .apply(lambda x: x / x.sum())
             )
             tvd = pivoted.diff(axis=1).iloc[:, -1].abs().sum() / 2
             tvds.append(tvd)
In [13]: observed tvd = result_dist.diff(axis=1).iloc[:, -1].abs().sum() / 2
         observed_tvd
Out[13]: 9.406452826640765e-05
In [14]: fig = px.histogram(pd.DataFrame(tvds), x=0, nbins=50, historm='probability',
                            title='Empirical Distribution of the TVD')
         fig.add_vline(x=observed_tvd, line_color='red')
         fig.add_annotation(text=f'<span style="color:red">Observed TVD = {round(observed_tvd, 2)}</span>',
                            x=observed_tvd, showarrow=False, y=0.08)
```

Empirical Distribution of the TVD


```
In [15]: p_value = np.mean(np.array(tvds) >= observed_tvd)
    p_value
```

Out[15]: 1.0

- We fail to reject the null with significance level 0.01.
- Recall, the null stated that the distribution of 'result' when 'golddiffat15' is missing is the same as the distribution of 'result' when 'golddiffat15' is not missing.
- Hence, we conclude that the missingness in the 'golddiffat15' column **is not dependent** on 'result'. So the missingness can be classified as **MCAR**.

Dependent Missingness (MAR)

```
In [16]: # Observing proportion of missing data from each patch
    result_dist = (
        missingness
        .assign(golddiffat15_missing=missingness['golddiffat15'].isna())
        .pivot_table(index='patch', columns='golddiffat15_missing', aggfunc='size')
)

result_dist = result_dist / result_dist.sum()
    result_dist
```

Out[16]:	golddiffat15_missing	False	True
	patch		
	12.01	0.065563	0.061326
	12.02	0.067632	0.137569
	12.03	0.082495	NaN
	12.04	0.085034	0.232044
	12.05	0.106199	0.064088
	12.06	0.017590	NaN
	12.07	0.007713	NaN
	12.08	0.017026	NaN
	12.09	0.033111	NaN
	12.10	0.057473	0.031492
	12.11	0.072430	0.096133
	12.12	0.109679	0.102210
	12.13	0.069420	0.141436
	12.14	0.046468	0.055249
	12.15	0.037155	0.035912
	12.16	0.026808	NaN
	12.17	0.002258	NaN
	12.18	0.049666	NaN
	12.19	0.018813	NaN
	12.20	0.017214	NaN
	12.21	0.009406	NaN
	12.23	0.000847	0.042541


```
In [18]: # Permutation test on the patch column
         n_repetitions = 500
          shuffled = missingness.copy()
         tvds = []
         for _ in range(n_repetitions):
             # Randomly permuting the patch column
             shuffled['patch'] = np.random.permutation(shuffled['patch'])
             # Computing and storing the TVD.
             pivoted = (
                 shuffled
                 .pivot_table(index='patch', columns='golddiffat15_missing', aggfunc='size')
                 .apply(lambda x: x / x.sum())
             tvd = pivoted.diff(axis=1).iloc[:, -1].abs().sum() / 2
             tvds.append(tvd)
In [19]: observed_tvd = result_dist.diff(axis=1).iloc[:, -1].abs().sum() / 2
         observed_tvd
```

```
Out[19]: 0.22209211983509086
```



```
In [21]: p_value = np.mean(np.array(tvds) >= observed_tvd)
p_value
```

Out[21]: 0.0

- We reject the null with significance level 0.01.
- The null stated that the distribution of 'league' when 'golddiffat15' is missing is the same as the distribution of 'league' when 'golddiffat15' is not missing.
- Hence, we conclude with 99% confidence that the missingness in the 'golddiffat15' column does depend on 'patch'. So the missingness can be classified as MAR.

Hypothesis Testing

- **Null Hypothesis:** The mean absolute gold difference at 15min during WCS games is **the same** as the mean absolute gold difference at 15min during any competitive League game.
- Alternative Hypothesis: The mean absolute gold difference at 15min during WCS games is less than the mean absolute gold difference at 15min during any competitive League game.

```
In [22]: # Observing only wins and non-null data for WCS and all of 2022
    wcs_wins = wcs[wcs['result']==1 & (wcs['abs_golddiffat15'].notna())]
    df_wins = df[(df['golddiffat15'].notna()) & (df['result']==1)]

In [37]: # Hypothesis test
    num_reps = 100_000
    size = wcs_wins.shape[0]
    averages = np.random.choice(df_wins['abs_golddiffat15'], size=(num_reps, size)).mean(axis=1)
    observed = wcs_wins['abs_golddiffat15'].mean()
    observed
```

Empirical Distribution of the Average Gold Diff at 15min in Samples of Size 127

The p-value of our hypothesis test is 0.22147

- We fail to reject the null with significance level 0.01.
- We conclude with 99% confidence that the mean absolute gold difference at 15min during WCS games is **the same** as the mean absolute gold difference at 15min during any competitive League game.