UNIVERSIDAD DE CONCEPCION

FACULTAD DE CIENCIAS

FISICAS Y MATEMATICAS

DEPARTAMENTO DE INGENIERIA MATEMATICA

ALGEBRA Y ALGEBRA LINEAL 520142

Práctica 24: Aplicaciones lineales

Problema 1. Sean V y W dos espacios vectoriales sobre el cuerpo \mathbb{K} y sea $T:V\to W$ una aplicación lineal. Demuestre que:

(1.1)
$$T(\theta_V) = \theta_W$$
. (1.2) $T(\sum_{j=1}^n \alpha_j x_j) = \sum_{j=1}^n \alpha_j T(x_j)$.

Problema 2. Demuestre que las siguientes aplicaciones son lineales:

(2.1) La proyección ortogonal P definida entre un espacio vectorial V, con producto interior, y un subespacio S.

$$P: V \to S$$
 $P(v) = \sum_{j=1}^{p} \frac{\langle v, x_j \rangle}{\|x_j\|^2} x_j,$

donde $\{x_1, x_2, \dots, x_p\}$ es una base ortogonal de S. Como aplicación: defina la proyección ortogonal de \mathbb{R}^3 sobre el plano XY y encuentre P(1, 2, 3).

- (2.2) $T: \mathcal{M}_n(\mathbb{K}) \to \mathbb{K}, \qquad T(A) = tr(A)$.
- (2.3) $T: \mathbb{R}^2 \to \mathbb{R}^3$, T(x,y) = (x+y, x-y, 0).
- (2.4) La multiplicación por la matriz R_{α} donde $R_{\alpha} = \begin{pmatrix} \cos(\alpha) & -\sin(\alpha) \\ \sin(\alpha) & \cos(\alpha) \end{pmatrix}$ determina la rotación en un ángulo α . Es decir, $T: \mathbb{R}^2 \to \mathbb{R}^2, v \longmapsto T(v) = R_{\alpha} v$.

En práctica:
$$(2.1)$$
 y (2.2)

Problema 3. En el Problema 8 de la Práctica N^o 8 hemos definido la transformación lineal del Problema (2.4), luego recordando algunas identidades trigonométricas podemos establecer las afirmaciones siguientes:

- (3.1) Considere $T^n = T \circ \cdots \circ T$. Pruebe que para todo $v \in \mathbb{R}^2$: $T^n v = R_{n\alpha} v$. (Indicación: Primero pruebe que $R_{\alpha+\beta} = R_{\alpha} R_{\beta}$).
- (3.2) Considere la transformación lineal definida para todo $v \in \mathbb{R}^2$ por $Lv = R_{-\alpha}v$. Verifique que TL = LT = I, el operador identidad sobre \mathbb{R}^2 . Concluya que T es inversible.
- (3.3) Si $\alpha = 2\pi/3$ pruebe que $T^3 = I$ y $L = T^2$. (Indicación: La transformación inversa, si existe, es única (en el caso de las rotaciones se entiende módulo 2π)).

1

Problema 4. En cada caso determine si la aplicación es lineal:

(4.1) $T: \mathbb{R}^2 \to \mathbb{R}^2$, $T(u_1, u_2) = (u_1, -u_2)$ (reflexión sobre el eje X).

(4.2) $T: \mathbb{R}^2 \to \mathbb{R}^2$, $T(u_1, u_2) = (u_1, 0)$ (proyección ortogonal sobre el eje OX).

 $(4.3) T: \mathbb{R}^2 \to \mathbb{R}, T(x_1, x_2) = x_1 x_2.$

(4.4) $T: \mathbb{R}^2 \to \mathbb{R}^2$, $T(x_1, x_2) = (x_1 + 1, x_2 + 2)$.

 $(4.5) T: \mathbb{R}^2 \to \mathbb{R}^3, T(x_1, x_2) = (x_1, x_2, 0).$

Problema 5. Sea $T: \mathcal{M}_2(\mathbb{R}) \to \mathbb{R}^3$ definida por $T \begin{pmatrix} a & b \\ c & d \end{pmatrix} = (a+b,b+c,d)$. Determine la nulidad y el rango de T.

Problema 6. Sea $T:V\to W$ una transformación lineal. Demuestre que $\mathrm{Ker}(T)$ es un subespacio de V y que $\mathrm{Im}(T)$ es un subespacio de W.

Problema 7. Sea $T: \mathbb{R}^3 \to \mathbb{R}^3$ la transformación lineal definida por

$$T(x, y, z) = (x - 2y, y + z, x + y - z).$$

Usando el teorema de la dimensión demuestre que $\mathrm{Im}(T)=\mathbb{R}^3$.

En práctica

Problema 8. Si $T: \mathbb{R}^3 \to \mathbb{R}^2$ es la transformación lineal definida por

$$T(x, y, z) = (x - y, y + z).$$

Determine:

- (8.1) La nulidad de T.
- (8.2) El rango de T.
- (8.3) Encuentre la imagen por T de los subespacios $S_1 = \{(x, y, z) : x + y + z = 0\}$, $S_2 = \{(x, y, 0) : x, y \in \mathbb{R}\}$ y $S_3 = \{(x, y, z) : x = y = z\}$.
- (8.4) Considere el subespacio $S_4 = \{(x, y, 0) : x = -y\}$. Note que S_4 es subespacio de S_1 . \mathcal{E}_3 Se cumple que $T(S_4)$ es un subespacio de $T(S_1)$?.
- (8.5) Considere la pirámide de vértices A(1,0,0), B(0,1,0), C(0,0,1) y D(1,1,1). Calcule la imagen de dicha figura por la transformación T. Dibuje su resultado.

Problema 9. Considere $T: E \to V$ y $L: W \to E$ dos aplicaciones lineales. Demuestre que $T \circ L: W \to V$ es también lineal.