## **Notes for Video "Outline of Stochastic Calculus"**

Video Link: https://www.youtube.com/watch?v=rvYfNz2H3Uk

Stochastic Calculus

Ordinary Calculus + Randomness

St = Soert,





B: is a constant

Bt: Brownian Motion

It's hard to differentiate this Brownian V Curvo

Stochastic Calculus

\_ Comes in

order at all! In fact, randomness could have some distribution.

In this case, for the right curve,

if we are going to calculate  $\frac{dS}{dt}$  using the previous ordinary calculus method, what do we get?  $\longrightarrow \frac{dS}{dt} = \left[ r + \beta \frac{d\beta_t}{dt} \right] S_0 e^{rt + \beta B_t}$  $= \left[\gamma + \beta \frac{d\beta_t}{dt}\right] S_t$ = YSt + B dBt St

Poes NOT Work here!

Thus, we need to introduce new method: Differential Form.

(1) Rewrite dSt = YSt into dSt = YSt dt.

for left figure  $\int dS_t = \int_{Y} S_t dt$ 

Sor the left figure Cordonary case.

No Brownian motion.

For the right figure ( with Brownian motion )

| 1) Rewrite $\frac{dS_b}{dt} = rS_t + \beta S_t \frac{d\beta_t}{dt}$ into          |                  |
|-----------------------------------------------------------------------------------|------------------|
| dSt = rSt dt + BSt dBt ->                                                         | No issues now!   |
| Notes: For ordinary function (no Brownic  Differentiation _ Inverse to each other | Integration      |
|                                                                                   | . /              |
| (2) Here, for our new case ( with                                                 | Brownian Motion) |
| We are ginna start with Integ                                                     | ration first     |
| Differentiation Integ                                                             | ration           |