36-755 - Advanced Statistical Theory I

Fall 2017

Lecture 1: August 28

Lecturer: Alessandro Rinaldo Scribes: Minshi Peng

Note: LaTeX template courtesy of UC Berkeley EECS dept.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

1.1 Low-dim and high-dim model

1.1.1 Low-dim model

 $X = (X_1, \dots, X_n) \stackrel{i.i.d}{\sim} P_{\theta}$. Parametric model $\mathcal{P} = \{P_{\theta}, \theta \in \Theta\}, \Theta \subseteq \mathbb{R}^d$. We have

- WLLN: $\tilde{\theta}_n \stackrel{P}{\to} \theta_0$
- CLT: $\sqrt{n}A_n(\tilde{\theta}_n b_n) \Rightarrow N(0, I_d)$

1.1.2 High-dim model

 $\{\mathcal{P}_n\}, n=1,2\cdots$, sequence of parametric models, where $d=d(n)\nearrow\infty$ as $n\to\infty$. WLLN and CLT require fixed d.

1.1.3 How is HD difference from LD

Geometry of HD spaces is different! Concentration of measure phenomenon.[Ball97]

Example 1 Let $B_d(r) = \{x \in \mathbb{R}^d, ||x||_2 \le r\}$. The volume of the ball is

$$\operatorname{Vol}(B_d(r)) = \frac{\pi^{d/2} r^d}{\Gamma(d/2 + 1)} \sim \left(\frac{2\pi e r^2}{d}\right)^{d/2} (d\pi)^{-1/2}$$

where $\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} dt$, x > 0. Thus $\operatorname{Vol}(B_d(r)) \to 0$, as $d \to \infty$. Consider now the unit ball for norm $||x||_\infty = \max_i |x_i|$, the volume is $\operatorname{Vol}([0,1]^d) = 1$.

Example 2 Let $C_d(\epsilon r) = \{x \in B_d(r), ||x|| > \epsilon r\}, \epsilon \in (0,1), \epsilon = 0.99$ for example.

$$\frac{\operatorname{Vol}(C_d(\epsilon r))}{\operatorname{Vol}(B_d(r))} = 1 - \epsilon^d \to 1 \text{ fast}$$

Example 3 $X \sim N(0, I_d)$, with high probability ||X|| tightly concentrates around \sqrt{d} .

1-2 Lecture 1: August 28

1.1.4 Statistical examples

1) Covariance matrix estimation. $X_1, \ldots, X_n \sim (0, \Sigma)$ in \mathbb{R}^d , $\hat{\Sigma} = \frac{1}{n} \sum_{i=1}^n X_i X_i^T$. For $A = (A_{ij}), i, j = 1, \cdots, d$, $\|A\|_{\max} = \max |A_{i,j}|$. We want to know $\|\Sigma - \hat{\Sigma}\|_{\max}$.

In low-dim(fixed d), $\hat{\Sigma}_{ij} = \frac{1}{n} \sum_{k=1}^{n} Z_k^{(i,j)}$, $Z_k^{(i,j)} = X_{k,i} X_{k,j}$, where $X_{k,i}$ is the i-th element of X_k . $Z_k^{(i,j)}$ are i.i.d. By WLLN $\hat{\Sigma}_{ij} \stackrel{P}{\to} \Sigma_{ij}$. So

$$\|\hat{\Sigma} - \Sigma\|_{\max} \le \sum_{i,j} |\hat{\Sigma}_{ij} - \Sigma_{ij}| = \frac{d(d+1)}{2} o_P(1) = o_P(1)$$

In high-dim, we will see that, under some mild assumptions,

$$\|\hat{\Sigma} - \Sigma\|_{\max} \le C\sqrt{\frac{\log d + \log n}{n}}$$

with high probability, where C is a universal constant. For different norm, we will get different dependence in d.

1.2 Concentration inequalities

References:

- Chapter 2
- Boucheron , Lugosi & Massart: Concentration Inequalities: A Nonasymptotic Theory of Independence
- Concentration of measure for the analysis of randomized algorithm

1.2.1 Motivation

 $X_1,\ldots,X_n \overset{i.i.d}{\sim} (\mu,\sigma^2), \ \bar{X}_n := \frac{1}{n} \sum_i X_i \overset{P}{\to} \mu$, we want to know $\mathbb{P}(|\bar{X}_n - \mu| \ge t) \le ?$ when t > 0. By CLT

$$\frac{\sqrt{n}}{\sigma}(\bar{X}_n - \mu) \Rightarrow N(0, 1)$$

So \bar{X}_n is a \sqrt{n} -consistent estimator of μ $\bar{X}_n = \mu + O_P(\frac{\sigma}{\sqrt{n}})$

$$\mathbb{P}(\frac{\sqrt{n}}{\sigma}(\bar{X}_n - \mu) \ge t) \to \mathbb{P}(Z \ge t) \le \frac{1}{2}e^{-t^2/2}$$

where $Z \sim N(0,1)$. So that

$$\mathbb{P}(\bar{X}_n - \mu \ge t) \le e^{-nt^2/2\sigma^2}$$
 approximately

Our goal is to establish such result

- a) For all n (finite sample)
- b) Far all distribution in a large class "Distribution Free".
- \bullet c) Dependence on d is explicit.

Lecture 1: August 28

1.2.2 Markov Inequality

If $X \geq 0$ and $\mathbb{E}[X] < \infty$

$$\mathbb{P}(X \ge t) \le \frac{\mathbb{E}[X]}{t}, \forall t > 0$$

$$\mathbb{P}(|X - \mu| \ge t) \le \frac{\sigma^2}{t^2}, \ \sigma^2 = \mathbb{V}[X]$$

If we want to upper bound $\mathbb{P}(|X - \mu| \ge t)$, we could observe

$$\mathbb{P}(|X - \mu| \ge t) \le \frac{\mathbb{E}[|X - \mu|^k]}{t^k}, \quad k = 1, 2, \dots$$

$$\Longrightarrow \mathbb{P}(|X - \mu| \ge t) \le \min_{k = 1, 2, \dots} \frac{\mathbb{E}[|X - \mu|^k]}{t^k}$$

This is a good bound but we need to know all moments of X which requires strong and unrealistic assumptions on X.

1.2.3 Chernoff Bound

Let, for $\lambda \in \mathbb{R}$, $\psi_X(\lambda) = \log \mathbb{E}[e^{\lambda(X-\mu)}]$ and assume it exists $\forall |\lambda| < b \leq \infty$.

$$\mathbb{P}(X - \mu \ge t) = \mathbb{P}(e^{X - \mu} \ge e^t)$$

$$= \mathbb{P}(e^{\lambda(X - \mu)} \ge e^{\lambda t}), \ \lambda > 0$$

$$\le \mathbb{E}[e^{\lambda(X - \mu)}]e^{-\lambda t} \text{ by Markov iequality}$$

$$= \exp\{\psi_X(\lambda) - \lambda t\}$$

Which implies $\mathbb{P}(X_{\mu}) \geq t \leq \exp(-\psi_{\lambda}^*(t))$ where $\psi_{\lambda}^*(t) = \sup_{\lambda \in (0,b)} \{\lambda t - \psi_X(\lambda)\}.$

Example Let $X \sim N(\mu, \sigma^2)$ We know $\mathbb{E}[e^{\lambda X}] = \exp(\mu \lambda + \sigma^2 \lambda^2/2), \forall \lambda \in \mathbb{R}$. So

$$\sup_{\lambda>0} \left\{\lambda t - \log \mathbb{E} \big[e^{\lambda(X-\mu)} \big] \right\} = \sup_{\lambda>0} \left\{\lambda t - \frac{\sigma^2 \lambda^2}{2} \right\} = \frac{t^2}{2\sigma^2}$$

By using Chernoff, t > 0,

$$\mathbb{P}(X - \mu \ge t) \le \exp\left\{-\frac{t^2}{2\sigma^2}\right\}, \ t \ge 0$$

By symmetry

$$\mathbb{P}(|X - \mu| \ge t) \le 2 \exp\left\{-\frac{t^2}{2\sigma^2}\right\}, \ \forall t \ge 0$$

This is not a bad bound, since

$$\sup_{t>0} \mathbb{P}(Z \ge t) \exp\left\{t^2/2\right\} = \frac{1}{2}$$

We want bounds of the form

$$\mathbb{P}(|X - \mu| \ge t) \le C_1 \exp\left\{-C_2 t^2\right\}, \ C_1, C_2 > 0$$

1-4 Lecture 1: August 28

1.2.4 Sub-Gaussian Random Variable

Definition 1.1 A random variable X with finite $\mu = \mathbb{E}[X]$ is said to be sub-gaussian with parameter σ^2 , $X \in SG(\sigma^2)$, if

$$\mathbb{E}\left[e^{\lambda(X-\mu)}\right] \le \exp\left\{\frac{\lambda^2 \sigma^2}{2}\right\}, \ \forall \lambda \in \mathbb{R}$$

Remark Always center X! If $X \in SG(\sigma^2)$

$$\mathbb{P}(X - \mu \ge t) \le \exp\left\{-\frac{t^2}{2\sigma^2}\right\}, \ \forall t > 0$$

Since $X \in SG(\sigma^2)$, if $-X \in SG(\sigma^2)$, we get

$$\mathbb{P}(|X - \mu| \ge t) \le 2\exp\left\{-\frac{t^2}{2\sigma^2}\right\}, \ \forall t > 0$$

Properties. Assume $X \in SG(\sigma^2)$

• p1) $\mathbb{V}[X] \leq \sigma^2$

Proof: By Taylor expansion

$$1 + \lambda \mathbb{E}[X - \mu] + \lambda^2 \mathbb{E}[(X - \mu)^2] + o(\lambda^2) \le 1 + \frac{\lambda^2 \sigma^2}{2} + o(\lambda^2)$$

Divide by λ^2 , let $\lambda \to 0$ and we get $\mathbb{E}[(X - \mu)^2] \le \sigma^2$.

• p2) If $-\infty < a \le X - \mu \le b < \infty$ a.s., then $X \in SG\left((\frac{b-a}{2})^2\right)$ **Proof:** Notice that $\mathbb{V}[X] \le (\frac{b-a}{2})^2$, because $|X - \frac{b+a}{2}| \le \frac{b-a}{2}$. For any λ , let Z_{λ} be a random variable whose distribution $P_{Z_{\lambda}}$ is s.t. $\frac{dP_{Z_{\lambda}}}{dP_X}(z) = e^{\lambda z}e^{-\psi_X(\lambda)}$. Then $a \le Z_{\lambda} \le b$ a.e. and $\mathbb{V}[Z_{\lambda}] = \psi_X''(\lambda)$. So $\psi_X''(\lambda) \le (\frac{b-a}{2})^2$. Since $\psi_X(0) = \log 1 = 0$ and $\psi_X'(0) = \mathbb{E}[X] = 0$,

$$\psi_X(\lambda) = \int_0^{\lambda} \psi_X'(\lambda') d\lambda' = \int_0^{\lambda} \int_0^{\lambda'} \psi_X''(\lambda'') d\lambda'' d\lambda'$$
$$\leq \frac{\lambda^2}{2} \frac{(b-a)^2}{4} = \frac{\lambda^2 (b-a)^2}{8}$$

References

[Ball97] Ball, Keith, "An elementary introduction to modern convex geometry," Flavors of geometry 31 (1997): 1-58.