影像演算法介紹

Lecture Notes: Introduction and Overview

Kai-Lung Hua (花凱龍) Dept. of Computer Science and Information Engineering National Taiwan University of Science and Technology

Introduction and Overview

This presentation is an overview of some of the ideas and techniques to be covered during the course.

Topics

- 1. image formation
- 2. point processing and equalization
- 3. color perception and transformation
- 4. Fourier transform
- 5. convolution and image filtering
- 6. frequency filtering
- 7. noise reduction
- 8. recent advances in image processing and computer vision

Sampling and Quantization

real image

sampled

quantized

sampled & quantized

11

9 April 2018

Digital Image

Color images have 3 values per pixel; monochrome images have 1 value per pixel.

a grid of squares, each of which contains a single color

each square is called a pixel (for picture element)

Color Images

- Are constructed from three intensity maps.
- Each intensity map is projected through a color filter (e.g., red, green, or blue, or cyan, magenta, or yellow) to create a monochrome image.
- The intensity maps are overlaid to create a color image.
- Each pixel in a color image is a three element vector.

9 April 2018 13

Point Processing

- gamma

- brightness

original

+ brightness

ntness + gamma

histogram mod

- contrast

original

+ contrast

histogram EQ

9 April 2018

15

Color Processing

requires some knowledge of how we see colors

Fig. 1.1. A drawing of a section through the human eye with a schematic enlargement of the retina.

Color Perception 16x pixelization of:

luminance and chrominance (hue+saturation) are perceived with different resolutions, as are red, green and blue.

9 April 2018

Color Perception 16x pixelization of:

Color Balance and Saturation

Uniform changes in color components result in change of tint.

E.g., if all G pixel values are multiplied by $\alpha > 1$ then the image takes a green cast.

9 April 2018 23

Color Transformations

Image aging: a transformation, Φ , that mapped:

[17] ([17])	$\begin{bmatrix} 222 \\ 222 \\ 185 \end{bmatrix} = \Phi \left\{ \begin{bmatrix} 222 \\ 222 \\ 218 \end{bmatrix} \right\}$	[240] [[240]]	[236] [[240]]
$ 122 = \Phi\{ 121 \}$	$ 222 = \Phi{ 222 }$	$\begin{bmatrix} 240 \\ 171 \\ 103 \end{bmatrix} = \Phi \left\{ \begin{bmatrix} 240 \\ 171 \\ 160 \end{bmatrix} \right\}$	$ 227 = \Phi{ 230 }$
$\begin{bmatrix} 17\\122\\114 \end{bmatrix} = \Phi \left\{ \begin{bmatrix} 17\\121\\171 \end{bmatrix} \right\}$	[185] [[218]]	[103] [[160]]	$\begin{bmatrix} 236 \\ 227 \\ 106 \end{bmatrix} = \Phi \left\{ \begin{bmatrix} 240 \\ 230 \\ 166 \end{bmatrix} \right\}$

The 2D Fourier Transform of a Digital Image

Let I(r,c) be a single-band (intensity) digital image with R rows and C columns. Then, I(r,c) has Fourier representation

$$I(r,c) = \sum_{u=0}^{R-1} \sum_{v=0}^{C-1} I(u,v) e^{+i2\pi \left(\frac{ur}{R} + \frac{vc}{C}\right)},$$

where

these complex exponentials are 2D sinusoids.

$$I(u,v) = \frac{1}{RC} \sum_{r=0}^{R-1} \sum_{c=0}^{C-1} I(r,c) e^{-i2\pi \left(\frac{ur}{R} + \frac{vc}{C}\right)}$$

are the R x C Fourier coefficients.

9 April 2018 25

2D Sinusoids:

$$I(r,c) = \frac{A}{2} \left\{ \cos \left[\frac{2\pi}{\lambda} \left(\frac{c}{C} \cos \theta - \frac{r}{R} \sin \theta \right) + \phi \right] + 1 \right\}$$

... are plane waves with grayscale amplitudes, periods in terms of lengths, ...

 ϕ = phase shift

Convolution

Sums of shifted and weighted copies of images or Fourier transforms.

9 April 2018 31

Convolution Property of the Fourier Transform

Let functions f(r,c) and g(r,c) have Fourier Transforms F(u,v) and G(u,v). Then,

$$\mathbf{F}\left\{ f\ast g\right\} =F\cdot G.$$

Moreover,

$$\mathbf{F}\{f\cdot g\}=F\ast G.$$

- * represents convolutio n
- · represents pointwise multiplication

Then, a spatial convolution can be computed by

$$f * g = \mathbf{F}^{-1} \{ F \cdot G \}.$$

The Fourier Transform of a product equals the convolution of the Fourier Transforms. Similarly, the Fourier Transform of a convolution is the product of the Fourier Transforms

Sampling, Aliasing, & Frequency Convolution

 $\mathsf{samp}_{I/N}(u,v) = \sum_{j=-\infty}^{m} \sum_{k=-\infty}^{m} \delta(u - \frac{j}{N}) \, \delta(v - \frac{k}{N})$

aliasing (the jaggies)

no aliasing (smooth lines)

9 April 2018

Sampling, Aliasing, & Frequency Convolution

- (a) aliased
- (b) power spectrum
- (c) unaliased
- (d) power spectrum

9 April 2018

34

33

Spatial Filtering

blurred

original

sharpened

41

9 April 2018

Spatial Filtering

bandpass filter

original

unsharp masking

Spatial Filtering

signed image with O at middle gray

bandpass filter

original

unsharp masking

original

frequency tuned filter

9 April 2018 47

Shot Noise or Salt & Pepper Noise

+ shot noise

s&p noise

- shot noise

Nonlinear Filters: the Median

original

s&p noise

median filter

9 April 2018 49

Nonlinear Filters: Min and Maxmin

+ shot noise

min filter

maxmin filter

Nonlinear Filters: Max and Minmax

- shot noise

max filter

minmax

51

9 April 2018

Image Compression

Original image is 5244w x 4716h @ 1200 ppi: 127MBytes

Yoyogi Park, Tokyo, October 1999. Photo by Alan Peters.

Image Compression: JPEG

JPEG quality level

File size in bytes

9 April 2018

53

Image Compression: JPEG

JPEG quality level

9 April 2018

JPGEQ: 0 JPEGQ: 6 21kB

File size in bytes