Poštovanje,

Nadam se da ste dobro! Šaljem Vam Python notebook u kojem sam riješavao zadatak. Mislim da sam pokrio sve zadatke I napisao sam koju rečenicu o rezultatima I stvarima koje sam našao na internetu.

Sateliti

U ovom zadatku je bilo potrebno izračuanti NVDI, NDMI indekse koji su računaju iz hiperspektralnih snimki sa Sentinel-2 L2A satelita. Kao što sam već reako radi se o hiperspektralnom satelitu, tj. Satelitu koji prikuplja snimke sa različitih valnih područja. Ovdje sam našao specifikacije:

Property	Info			
Spatial resolution	10 m, 20 m, and 60 m depending on wavelength			
Sensor	MultiSpectral Instrument (MSI), 13 bands: 4 visible bands, 6 Near-Infrared bands, and 3 Short-Wave Infrared bands			
Revisit time	5 days			
Spatial coverage	Land and coastal areas between latitudes 56°S and 83°N			
Data availability	Since October 2016 Global Since January 2017			
Measurement	Bottom of the atmosphere (BOA) reflectance, processed from L1C with Sen2Cor			
Common usage/ purpose	Land-cover maps, land-change detection maps, vegetation monitoring, monitoring of burned areas			

Vjerojatno najvažniji parametar je spektralna rezolucija tj. Fizička veličina pdoručja koja je predstavljena jednim pikselom. Na desnoj slici se nalaze 13 valnih pojasa I njihove korespodentne valne dužine I rezolucije.

Band	Name	Wavelength (nm)	Spatial Resolution (m)	
B01	Aerosols	443	60	
B02	Blue	490	10	
B03	Green	560	10	
B04	Red	665	10	
B05	Vegetation Red Edge 1	705	20	
B06	Vegetation Red Edge 2	740	20	
B07	Vegetation Red Edge 3	783	20	
B08	Near Infrared 1	842	10	
B8A	Near Infrared 2	865	20	
B11	Short-Wave Infrared	1610	20	
B12	Short-Wave Infrared 2	2190	20	
B09	Water Vapour	940	60	
B10	Cirrus	1375	60	

Iz te tablice trebalo je izračunati **Normalized Difference Vegetation Index i Normalized Difference Moisture Index.** Prvi služi za detekciju, a drugi služi za detekciju zdravlja vegetacije, a drugi za detekciju vlažnosti vegetacije.

U Machine learning zadatku bilo je potrebno odrediti nepoznatu klasu na temelju sljedećih značajki:

- X,Y,Z: pixels
- NIR (near-infra red):
- ndvi (normalized differnece vegetation index)
- ndwi (normalized difference water index)
- masvi2 (Modified Atmospherically Resistant Vegetation Index 2)
- mtvi2 (Modified Atmospherically Resistant Vegetation Index 2)
- vari (Visible Atmospherically Resistant Index) (VARI)
- tgi (Triangular greenness index)

U prvom koraku vizualizirao sam distribucije značajki i dobio sljedeće histograme:

Kako bi značajke bile usporedive, trebalo je normalizirati distribucije i svesti ih pod "zajednički nazivnik". Normalizacije je obavljena s formulom $\{x-mean(x)\}/std(x)$.

U sljedećem koraku napravio sam xy dijagrame gdje sam htio provjeriti jesu li varijable kolinearne. Kolinearnost varijabli je indikacija da jedna varijabla objašnjava drugu varijablu i da je u krajenjem slučaju moguće izabaciti jednu od varijabli. Na sljedećoj slici moguće je vidjeti kako izgledaju uparene značajke i kako izgledaju ovisnosti. U idealnom slučaju značajke su u potpunosti nezavisne, tj. ~R =0

Strojno Učenje

Testirao sam 4 modela:

- KNN
- Nasumično stablo odluka
- Stablo odluka
- Neuralna mreža

KNN. Model koji pridjeljuje klasu podatkovnoj točki na temelju k najblžih susjednih točki.

Stablo odluka. Stablo odluka s dubinom 2 koje koristi Gini index kao kriterijsku funkciju. Kriterijska funkcija služi za određivanje granice parametara.

Random Forest.

```
Slučajna šuma

1: forest \leftarrow \emptyset

2: Za \ j = 1 \dots \widehat{L}

3: \mathcal{D}_j \leftarrow \text{bootstrap uzorak}

4: \mathcal{F}_j \leftarrow \text{odabir } n' \text{ značajki}

5: h_j \leftarrow \text{treniraj stablo odluke na } \mathcal{D}_j \text{ sa značajkama } \mathcal{F}_j

6: forest \rightarrow forest \cup \{h_j\}
```

Neuralna mreža. Jednostavna parametrizirana neuralna mreža sa sljedećom strukturom:

```
self.linear_relu_stack = nn.Sequential(
    nn.Linear(10, 512),
    nn.ReLU(),
    nn.Linear(512, 200),
    nn.ReLU(),
    nn.Linear(200, 3),
)
```

U svakom modelu rezulati su bili približno jednaki:

	KNN	NN	DI	RDT
F	0.999	0.97	0.98	0.99
ACC	99.00%	97.00%	0.993	0.998

Stojim na raspolaganju,