Community detection in attributed graphs

CHRISTINE LARGERON

Laboratoire Hubert Curien, Université de Saint-Étienne

Journée Graphes et Systèmes sociaux (JGSS) - Avignon

18 Mars 2016

Plan

- 1 Contexte
- 2 Formalisation du problème
- 3 Crière de modularité
- 4 La méthode 2Mod-Louvain
- 5 Expérimentations
- 6 Conclusion

Plan

- 1 Contexte
- 2 Formalisation du problème
- 3 Crière de modularité
- 4 La méthode 2Mod-Louvain
- **5** Expérimentations
- 6 Conclusion

Réseau social

- Definition [Wasserman1994]
 "Social network: finite set or sets of actors and the relation or relations defined on them"
 - ► Actors : entités, individus, organisations, etc.
 - ▶ Relations: amicales, professionnelles, etc.
- Exemples de réseaux
 - ► Sciences sociales : collaborations, économiques, échanges, etc.
 - ▶ Biologie : réseaux de neurones, gènes, protéines,
 - ► Linguistique : synonymie, co-occurrences, etc

Réseau social

Représentation du réseau social par un graphe G = (V, E)

- Chaque entité est un sommet du graphe *V* : l'ensemble fini des sommets de *G*
- Il existe un lien (arc ou arête) entre deux sommets s'il y a une relation entre les entités correspondantes
 E ⊂ V × V : l'ensemble des arêtes de G
- \blacksquare A : matrice d'adjacence de G

$$G = (E,V) \text{ with } E = \{1,2,3,4,5,6\}$$
and
$$V = \{(1,2), (1,5), (2,3), (2,4), (3,4), (3,5), (3,6)\}$$

$$A = \begin{pmatrix} 0 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \end{pmatrix}$$

Information network

- Definition [Sun2009]
 - "A network where each node represents an entity (e.g. actor in a social network) and each link (e.g. tie) a relationship between entities"
 - ► Each node may have attributes, labels and weights.
 - ▶ Link may carry rich semantic information.
- Réseau homogène vs. hétérogène
 - Réseau homogène
 - Un seul type d'entités et un seul type de relation
 - Modèle simple de réseau : WWW
 - Réseau multi-types, hétérogènes
 - Plusieurs types d'entités et / ou de relations
 - Réseau médical : patients, médecins, maladies, traitements
- Tâches
 - Détection de communautés

Détection de communautés

Qu'est ce que c'est une communauté?

@D.J. Wilson (UNC Chapel III)

Détection de communautés

Qu'est ce que c'est une communauté?

Plan

- 1 Contexte
- 2 Formalisation du problème
- 3 Crière de modularité
- 4 La méthode 2Mod-Louvain
- 5 Expérimentations
- 6 Conclusion

Cas simple

- Etant donné un réseau social représenté par un graphe G = (V, E) il s'agit de définir une partition $\mathscr{P} = \{C_1, \dots, C_r\}$ de V en r classes :
 - $\blacktriangleright \bigcup_{k \in \{1, \dots, r\}} C_k = V$
 - $ightharpoonup C_k \cap C_l = \emptyset, \forall \ 1 \le k < l \le r$
 - $ightharpoonup C_k \neq \emptyset, \forall k \in \{1, \ldots, r\}$

telle que

- les sommets dans une même comunauté soient fortement connectés
- les sommets de communautés différentes soient peu connectés

Définition courante basée sur les liens mais qui reste ambigüe et qui n'est pas universelle

Cas complexes

Autres types de structures communautaires

■ Communautés recouvrantes [Palla,2005]

- \blacksquare Non recouvrement de V
- Partition floue
- Ensemble de partitions, éventuellement hiérarchisé

Cas complexes

Autres définitions

Basée sur l'équivalence structurelle [Wasserman1994]
 Deux sommets appartiennent à la même communauté s'ils ont les mêmes voisins.

v et v' sont dans la même communauté

 Basée sur le leadership [Shah2010]
 Deux sommets appartiennent à la même communauté s'ils suivent le même leader.

Méthodes

- Min-cut [Goldberg and Tarjan 1988]
- Spectral clustering [Ng2002]
- Modularité [Newman2004]
- Conductance [Leskovec2009]
- Stochastic Block model [Holland1983]
- Mixed Membership block model [Airoldi2008]
- etc.

Méthodes

Community detection in graphs, Santo Fortunato, Physics Reports 486, 75-174 (2010)

Cas du graphe attribué [Zhou2009, Yin2010, Gong2011]

Réseau d'information représenté par un graphe attribué G = (V,E) où un vecteur d'attributs est associé à chaque sommet

Détection de communautés dans un graphe attribué

Etant donné un graphe attribué G = (V,E), il s'agit de définir une partition $\mathscr{P} = \{C_1, \dots, C_r\}$ de V en r classes telle que :

- les sommets à l'intérieur d'une même communauté soient fortement connectés et soient proches en termes d'attributs
- les sommets de communautés différentes soient peu connectés et soient différents en termes d'attributs

Attributs

Relations

Approches méthodologiques

Clustering attributed graphs: models, measures and methods. C. Bothorel et al. (2015)

- Exploitation des attributs puis des relations : enrichissement du graphe
 - ▶ Valuation des arêtes à l'aide des attributs [K. Steinhaeuser et al.,2008, Yang,2013 : Codicil]
 - ► Ajout de sommets et d'arêtes basés sur les attributs [Y.H. Zhou et al., 2009, Li et al. 2011]
- Exploitation des relations puis des attributs
 - ▶ Regroupement des communautés en fonction des attributs [Li et al., 2008]

Approches méthodologiques

- Exploitation conjointe des relations et des attributs
 - ► NetScan, JointClust: K-means avec des contraintes de connexion des classes [M. Ester et al.,2006, F. Moser et al. 2007]
 - ▶ Modèles génératifs probabilistes [Phits-Plsa2001, Pcl-dc2009, ppl-dc2013, ppsb-dc2013, CohsMix2010, Bagc2012, Dbagc2014, Cesna2013]
 - Extension de Louvain [V.D. Blondel, J.L. Guillaume, R. Lambiotte, E. Lefevre, 2008]
 - J.D. Cruz Gomez, C. Bothorel, F. Poulet 2011
 - T.A. Dang et E. Viennet,2012
 - ToTeM, 2Mod Louvain, Combe, 2013-2014

Plan

- 1 Contexte
- 2 Formalisation du problème
- 3 Crière de modularité
- 4 La méthode 2Mod-Louvain
- **5** Expérimentations
- 6 Conclusion

Définition de la modularité pour données relationnelles [Newman et Girwan, 2004]

Mesure de qualité du partitionnement par rapport aux relations

■ Etant donné un graphe G = (V, E) et \mathscr{P} une partition de V

$$Q_{NG}(\mathscr{P}) = \frac{1}{2m} \Sigma_{ii'} \left[(A_{ii'} - \frac{k_i \cdot k_{i'}}{2m}) \delta(c_i, c_{i'}) \right]$$
(1)

où

- \blacksquare A est la matrice d'adjacence de G
- k_i est le degré du sommt $i \in V$
- \bullet δ est la fonction de Kronecker.
- = m = Card(V)

Définition de l'inertie

Mesure de qualité d'un partitionnement par rapport aux attributs réels

■ Inertie inter-classe (ou intra-classe)

$$I_{inter}(\mathscr{P}) = \sum_{l=1,r} m_l \|g_l - g\|^2$$

où g est le centre de gravité de V, g_l est le centre de gravité de la classe l et m_l le poids de la classe C_l .

Adaptée pour la comparaison de partitions de même taille

Modularité pour données vectorielles [Combe2013]

- Mesure de qualité du partitionnement basée sur l'inertie
- Etant donné V un ensemble d'éléments représentés dans \mathbb{R}^p et \mathscr{P} une partition de V

$$Q_{inertie}(\mathscr{P}) = \sum_{(i,i')\in V\times V} \left[\left(\frac{I(V,i)\cdot I(V,i')}{(2N\cdot I(V))^2} - \frac{\|i-i'\|^2}{2N\cdot I(V)} \right) \cdot \delta\left(c_i,c_{i'}\right) \right]$$
(2)

où I(V) est l'inertie totale, et I(V, i) est l'inertie de V par rapport à un élément $i \in V$.

Modularité pour données vectorielles : propriétés

- Varie entre -1 et 1, comme la modularité,
- Insensible à une transformation linéaire appliquée à l'ensemble des vecteurs,
- Insensible au nombre de classes de la partition.
- Calcul de la variation de $Q_{inertie}$ induit par le déplacement d'un élément d'une classe vers une autre ne dépend que de l'information locale.

Plan

- 1 Contexte
- 2 Formalisation du problème
- 3 Crière de modularité
- 4 La méthode 2Mod-Louvain
- **5** Expérimentations
- 6 Conclusion

2Mod-Louvain

- Détection de communautés dans un graphe à attributs
- Extension de la méthode de Louvain [Blondel et al.,2008]
- **b** basée sur l'optimisation du critère global $Q_{NG} + Q_{inertie}$
- Calcul incrémental du gain de modularité à partir de l'information locale
- Répétition d'une phase itérative et d'une phase de fusion

Algorithme 2Mod-Louvain

■ Initialisation : chaque sommet constitue une communauté

Figure: Initialisation

Algorithme 2Mod-Louvain

- Phase itérative : Répéter
 - Pour tout sommet v, insérer v dans la communauté voisine qui maximise le critère global

jusqu'à ce qu'un maximum local soit atteint

Figure: Fin de phase 1

Algorithme 2Mod-Louvain

- Phase de fusion Construction d'un nouveau graphe G' = (V', E') à partir de la partition P'
 - ► Chaque sommet v de G' correspond à une classe C de P'
 - La valuation entre deux sommets v et v' de G' est la somme des valuations entre les sommets des classes correspondantes
 - Le vecteur d'attributs associé à v est le centre de gravité de C
 - Le poids du sommet est celui de la classe

Figure: Fin de phase 2

Plan

- 1 Contexte
- 2 Formalisation du problème
- 3 Crière de modularité
- 4 La méthode 2Mod-Louvain
- 5 Expérimentations
- 6 Conclusion

Résultats sur données réelles de copublications entre auteurs

$$G = (V, E)$$
 où :

- |V| = 2515
- |E| = 5313 et il existe un lien entre deux auteurs s'ils ont copubliés au moins un article en informatique dans DBLP (06/18/2014) identifié aussi dans MAS Microsoft Academic Search (02/03/2014).
- 23 attributs correspondant aux nombres de publications par domaine défini Microsoft Academic Search (02/03/2014)
- Communauté réelle : domaine majeur de publication

Table: Evaluation according to the normalized mutual information (NMI)

	Louvain	K-means	ToTeM	I-Louvain
NMI	0.69	0.58	0.69	0.72

Résultats sur des données artificielles

Génération à l'aide d'un modèle de graphe à attributs [Dang et al. 2012]

$$|C1| = |C2| = |C3| = 33 N_{C1}(10,7) N_{C2}(40,7) N_{C3}(70,7)$$

Mesure des conséquences de différentes évolutions du réseau

Dégradation de l'information relationnelle

 $degr_{rel} \in (0; 0, 25; 0, 50)$

Dégradation des attributs

 $\sigma \in (7; 10; 12)$

Augmentation de la taille du réseau

 $|V| \in (99; 999; 5001)$

Augmentation du nombre d'arêtes

 $|E| \in (168; 315; 508)$

Résultats : taux de bien classés

TBC	Louv	ain	K-means	To7	ГеМ	2Mod-I	Louvain	
	TBC	#cl.	TBC	TBC	#cl.	TBC	#cl.	
Graphe de référence								
R	84%	4	96%	97%	3	98%	3	
Dégradation de l'information relationnelle								
$degr_{rel} = 0,25$	33%	8	N/A*	18%	30	78%	5	
$degr_{rel} = 0,5$		9	N/A*	14%	36	63%	6	
Étalement des distributions								
$\sigma = 10$	N/A*		90%	95%	3	96%	3	
$\sigma = 12$	N/A*		87%	20%	26	98%	3	
Augmentation de la taille du réseau								
V = 999	50%	11	97%	97%	3	84%	4	
V = 5001	40%	12	98%	0,5%	1 518	85%	4	
Augmentation du nombre d'arêtes								
E = 315	96%	3	N/A*	95%	3	94%	3	
E = 508	97%	3	N/A*	98%	3	98%	3	
'	'			'				

Résultats: NMI

NMI	Louvain	K-means	ToTeM	2mod-Louvain				
Graphe de référence								
R	0,784	0,883	0,861	0,930				
Dégradation de l'information relationnelle								
$degr_{rel} = 0,25$	0,220	N/A*	0,489	0,603				
$degr_{rel} = 0,5$	0,118	N/A*	0,377	0,353				
Dégradation des attributs								
$\sigma = 10$	N/A*	0,721	0,819	0,885				
$\sigma = 12$	N/A*	0,637	0,567	0,930				
Augmentation de la taille du réseau								
V = 999	0,597	0,880	0,854	0,800				
V = 5001	0,586	0,892	0,376	0,774				
Augmentation du nombre d'arêtes								
E = 315	0,848	N/A*	0,807	0,816				
E = 508	0,876	N/A*	0,917	0,917				

Résultats: temps d'éxécution

Figure: Run-time of **I-Louvain** on different networks G = (V, E) with $|E| = 3 \times |V|$

Plan

- 1 Contexte
- 2 Formalisation du problème
- 3 Crière de modularité
- 4 La méthode 2Mod-Louvain
- **5** Expérimentations
- 6 Conclusion

Conclusion

- Détection de communautés dans un graphe à attributs
- Mesure de modularité pour des données vectorielles réelles basée sur l'inertie permettant de comparer des partitions de taille différente
- Méthode 2Mod-Louvain basée sur l'optimisation d'un critère global de modularité
- Résultats encourageants sur jeux de données
- Générateur de réseaux attribués DANC (Largeron, PlosOne2015)
- Intérêt pour traiter d'autres jeux réels

Merci pour votre attention.... des questions ?