MS 221 — Homework Set (2)

(The Inner Product and The Cross Product)

QUESTION 1

In the case of the vectors $\mathbf{v}_1 = \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix}$ and $\mathbf{v}_2 = \begin{bmatrix} -1 \\ 3 \\ 1 \end{bmatrix} \in \mathbf{R}^3$ calculate $\|\mathbf{v}_1\|$, $\|\mathbf{v}_2\|$, $\langle \mathbf{v}_1, \mathbf{v}_2 \rangle$ and hence determine the angle between \mathbf{v}_1 and \mathbf{v}_2 .

QUESTION 2

In the case of the vectors $\mathbf{x} = \begin{bmatrix} 2 \\ 2 \\ 3 \end{bmatrix}$ and $\mathbf{u} = \frac{1}{\sqrt{2}} \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix} \in \mathbf{R}^3$ find the constant $\alpha \in \mathbf{R}$ and the vector $\mathbf{x}^{\perp} \in \mathbf{R}^3$ which is **perpendicular** to the (unit) vector \mathbf{u} such that

$$\boldsymbol{x} = \alpha \, \boldsymbol{u} + \boldsymbol{x}^{\perp}$$

QUESTION 3

Consider the following vectors in \mathbf{R}^3 :

$$m{u}_1 = rac{1}{\sqrt{2}} \left[egin{array}{c} 1 \ 0 \ 1 \end{array}
ight], \quad m{u}_2 = rac{1}{\sqrt{3}} \left[egin{array}{c} -1 \ -1 \ 1 \end{array}
ight], \quad m{u}_3 = rac{1}{\sqrt{6}} \left[egin{array}{c} 1 \ -2 \ -1 \end{array}
ight] \quad ext{and} \quad m{v} = \left[egin{array}{c} 1 \ 2 \ 3 \end{array}
ight].$$

Now show that u_1 , u_2 , u_3 are **orthonormal** (with respect to the usual inner product in \mathbb{R}^3) and hence express the vector \mathbf{v} as a linear combination of them.

QUESTION 4

Find an equation of the plane in \mathbb{R}^3 which passes through the point $\mathbf{p} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$ and

is perpendicular to the vector $\boldsymbol{n} = \begin{bmatrix} -3 \\ 2 \\ 1 \end{bmatrix}$.

QUESTION 5

Find the perpendicular distance from the plane 2x - y + z = 12 to the origin.

QUESTION 6

Find the cross product of the vectors in \mathbb{R}^3

$$m{v}_1 = \left[egin{array}{c} 2 \\ 1 \\ 0 \end{array}
ight], \quad m{v}_2 = \left[egin{array}{c} 1 \\ 3 \\ -1 \end{array}
ight]$$

and hence determine the equation of the plane in \mathbb{R}^3 which passes through the origin, \mathbf{v}_1 and \mathbf{v}_2 .

QUESTION 7

Find the equation of the plane in \mathbb{R}^3 which passes through the points

$$\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} \text{ and } \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

QUESTION 8

Find the area of the parallelogram which is spanned by the vectors

$$m{x} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
 and $m{u} = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix} \in m{R}^3$

QUESTION 9

Let \mathcal{P} be the plane through the origin which is perpendicular to the (unit) vector $\boldsymbol{\xi} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$. When light from infinity, shining parallel to $\boldsymbol{\xi}$, falls on the parallelogram described in question 8 it casts a shadow on the plane \mathcal{P} . Find the area of this shadow.

2