CSE 4125: Distributed Database Systems Chapter – 3

Levels of Distributed Transparency.

(part – C)

Outline

- Distribution transparency for read-only application.
- Distribution transparency for update application.

Distribution transparency for read-only application

Objective

- We analyze with an example the different levels of distribution transparency:
 - Level 1: Fragmentation transparency.
 - Level 2: Location transparency.
 - Level 3: Local mapping transparency.
- For a read-only application.

Scenario

Global schema:

```
SUPPLIER (SNUM, NAME, CITY)
```

Fragmentation schema:

```
SUPPLIER_1 = SL_{CITY = DHK} (SUPPLIER)

SUPPLIER_2 = SL_{CITY = CTG} (SUPPLIER)
```

Allocation schema:

```
SUPPLIER<sub>1</sub> @ site 1.
SUPPLIER<sub>2</sub> @ site 2, 3.
```

Scenario

Assume, a SUPINQUIRY application -

 Reading a value from terminal and assigning it to a variable:

```
read(terminal, v SNUM);
```

• Query: Get NAME for a given SNUM. Example –

```
select NAME into v_NAME
from SUPPLIER[@siteNumber]
where SNUM = v SNUM;
```

Writing a value of a variable to terminal:

```
write(terminal, v_NAME);
```

Analyzing Level – 1 transparency

SUPINQUIRY

Hint:

Use global relation only.
 Because fragmentation information is hidden.

Analyzing Level – 2 transparency

Analyzing Level – 3 transparency

Distribution transparency for update application

Update Sub-tree

Example:

```
EMP_1 = SL_{DEPTNUM \le 10} PJ_{EMPNUM, NAME, MGRNUM, DEPTNUM} (EMP)

EMP_2 = SL_{DEPTNUM > 10} PJ_{EMPNUM, NAME, MGRNUM, DEPTNUM} (EMP)

EMP_3 = PJ_{EMPNUM, NAME, SAL, TAX} (EMP)
```

Which part of the tree will be effected if *DEPTNUM* is updated?

Objective

- We analyze with an example the different levels of distribution transparency:
 - Level 1: Fragmentation transparency.
 - Level 2: Location transparency.
 - Level 3: Local mapping transparency.
- For an *update* application.

Scenario

Global schema:

EMP (EMPNUM, NAME, SAL, TAX, MGRNUM, DEPTNUM)

Fragmentation schema:

```
EMP_1 = PJ_{EMPNUM, NAME, SAL, TAX} SL_{DEPTNUM \le 10} (EMP)
EMP_2 = PJ_{EMPNUM, MGRNUM, DEPTNUM} SL_{DEPTNUM \le 10} (EMP)
EMP_3 = PJ_{EMPNUM, NAME, DEPTNUM} SL_{DEPTNUM > 10} (EMP)
EMP_4 = PJ_{EMPNUM, SAL, TAX, MGRNUM} SL_{DEPTNUM > 10} (EMP)
```

Allocation schema:

```
EMP_1 @ site 1, 5; EMP_2 @ site 2, 6
EMP_3 @ site 3, 7; EMP_4 @ site 4, 8
```

Scenario

Assume, a UPDTEMP application – Updating *DEPTNUM* to 15 where *EMPNUM* is 100. Example –

```
update EMP [@siteNumber]
set DEPTNUM = 15
where EMPNUM = 100;
```

Analyzing Level – 1 transparency

Hint: Use global relation. No concept of fragments.

Analyzing Level – 2 transparency

Hints: Use fragments.

- Use the concept of update sub-tree.
- Follow the effect of update.

Effect of Update

```
EMP_1 = PJ_{\underbrace{EMPNUM}, NAME, SAL, TAX} SL_{DEPTNUM \leq 10} (EMP)
EMP_2 = PJ_{\underbrace{EMPNUM}, MGRNUM, DEPTNUM} SL_{DEPTNUM \leq 10} (EMP)
EMP_3 = PJ_{EMPNUM, NAME, DEPTNUM} SL_{DEPTNUM > 10} (EMP)
EMP_4 = PJ_{EMPNUM, SAL, TAX, MGRNUM} SL_{DEPTNUM > 10} (EMP)
```

EMP₁

EMPNUM	NAME	SAL	TAX
100	Smith	10000	1000

EMP_2

EMPNUM	MGRNUM	DEPTNUM	
100	20	3	

```
EMP_1 = PJ_{EMPNUM, NAME, SAL, TAX} SL_{DEPTNUM \le 10} (EMP)
EMP_2 = PJ_{EMPNUM, MGRNUM, DEPTNUM} SL_{DEPTNUM \le 10} (EMP)
EMP_3 = PJ_{EMPNUM, NAME, DEPTNUM} SL_{DEPTNUM > 10} (EMP)
EMP_4 = PJ_{EMPNUM, SAL, TAX, MGRNUM} SL_{DEPTNUM > 10} (EMP)
```

EMP₁

EMPNUM	NAME	SAL	TAX
100	Smith	10000	1000

EMPNUM	MGRNUM	DEPTNUM
100	20	, > 3

EMP,

-15 ?

 $EMP_1 = PJ_{EMPNUM, NAME, SAL, TAX} SL_{DEPTNUM \le 10} (EMP)$ $EMP_2 = PJ_{EMPNUM, MGRNUM, DEPTNUM} SL_{DEPTNUM \le 10} (EMP)$ $EMP_3 = PJ_{EMPNUM, NAME, DEPTNUM} SL_{DEPTNUM > 10} (EMP)$ $EMP_4 = PJ_{EMPNUM, SAL, TAX, MGRNUM} SL_{DEPTNUM > 10} (EMP)$

 EMP_1

E SAL TAX

EMPNUM	NAME	SAL	TAX
100	Smith	10000	1000

 EMP_2

EMPNUM	MGRNUM	DEPTNUM
100	20	3

EMP₃

EMPNUM	NAME	DEPTNUM
		15

 EMP_4

EMPNUM	SAL	TAX	MGRNUM

 $EMP_1 = PJ_{EMPNUM, NAME, SAL, TAX} SL_{DEPTNUM \le 10} (EMP)$ $EMP_2 = PJ_{EMPNUM, MGRNUM, DEPTNUM} SL_{DEPTNUM \le 10} (EMP)$ $EMP_3 = PJ_{EMPNUM, NAME, DEPTNUM} SL_{DEPTNUM > 10} (EMP)$ $EMP_4 = PJ_{EMPNUM, SAL, TAX, MGRNUM} SL_{DEPTNUM > 10} (EMP)$

 $EMP_1 = PJ_{EMPNUM, NAME, SAL, TAX} SL_{DEPTNUM \le 10} (EMP)$ $EMP_2 = PJ_{EMPNUM, MGRNUM, DEPTNUM} SL_{DEPTNUM \le 10} (EMP)$ $EMP_3 = PJ_{EMPNUM, NAME, DEPTNUM} SL_{DEPTNUM > 10} (EMP)$ $EMP_4 = PJ_{EMPNUM, SAL, TAX, MGRNUM} SL_{DEPTNUM > 10} (EMP)$

EMP_1

EMPNUM	NAME	SAL	TAX
100	Smith	10000	1000

EMP_2

EMPNUM	MGRNUM	DEPTNUM
100	20	3

EMP_3

EMPNUM	NAME	DEPTNUM
100	Smith	15

EMP_4

EMPNUM	SAL	TAX	MGRNUM
100	10000	1000	20

Analyzing Level – 2 transparency (cont.)

Hints: Use fragments. Use the *update sub-tree*. Follow the *effect of update*.

- Store the necessary record from EMP₁ and EMP₂ to temporary variables.
- <u>Insert</u> the records into *EMP*₃ and *EMP*₄ from the temporary variables.
- Delete the records from EMP₁ and EMP₂.

Analyzing Level – 3 transparency

Hints: Use fragments + locations. Follow the *effect of update* (like previous level), but this time locations will be considered.

- Store the necessary record from EMP₁ and EMP₂ from any of the corresponding sites to temporary variables.
- Insert the records into EMP_3 and EMP_4 at corresponding sites from the temporary variables.
- <u>Delete</u> the records from EMP₁ and EMP₂ at corresponding sites.

Additional Reading

- Level 4 transparency.
- Distribution transparency for a *more complex* readonly application.
 - Text book section 3.3.2 (page-51)

Practice Problems/ Questions

a) For the example provided in the lecture slides, determine the effect of updating DEPTNUM = 5 where EMPNUM = 100 (assume, the record is initially found in EMP_3 and EMP_4 with DEPTNUM = 19).

b) Text book:

- Exercise: 3.2 (a, b, c) and 3.3
- c) Create your own scenario and analyze the different levels of distribution transparency for read-only and update application.