4/9+4/9+1/9=1

5. For each of the statements given below decide if it is true or false. If it is true explain why. If it is false give a counterexample.

a) If A is a 2 \times 2 matrix and v is an eigenvector of A corresponding to an eigenvalue λ then 2v is an eigenvector of A corresponding to the eigenvalue 2λ . b) If V is a subspace of \mathbb{R}^2 and w is a vector such that proj_v w = -w then w must be the zero vector. True, it is impossible for the projection to return zwc) If A is a square matrix which is both symmetric and orthogonal then A2 is the identity at matrix. True, properties of ofthonormal vectors vious = { | if i = i | ?. d) If A and B are 2×2 matrices which are both orthogonally diagonalizable, then the matrix A + B is also orthogonally diagonalizable. A and B are orthography diagonalizable then they have to be symmetric Matrices A+B will still be symmetric as adding is top of diagonal will cancel out with 105 bottom of diagonal. Since (A+B) is symetric it is orthogonally diagognillable a) dex [[3-2] $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} V \frac{1/q + 4/q + 4/q = 1}{4/q + 4/q = 1} \frac{2/q + \frac{2}{q} + \frac{2}{q} + \frac{4}{q} = 0}{2/q + \frac{2}{q} - \frac{4}{q} = 0}$ $= \frac{2/q + \frac{2}{q} - \frac{4}{q} = 0}{4/q - \frac{2}{q} - \frac{2}{q} = 0} \frac{4/q - \frac{2}{q} - \frac{2}{q} = 0}{4/q - \frac{2}{q} = 0}$ $= \frac{4/q - \frac{4}{q} + \frac{4}{q} = 0}{4/q - \frac{4}{q} = 0} \frac{4/q - \frac{2}{q} - \frac{2}{q} = 0}{4/q - \frac{2}{q} - \frac{2}{q} = 0}$