المندسة

مذكرة رقو11 : ملخص لحرس: الحسابالمثلثي 2 مع تمارين وأمثلة محلولة

الأهداف والقدرات المنتظرة من الدرس:

الجزء الثاني:

- التمثيل المبياني للدالتين sin و cos
- المعادلات والمتراجحات المثلثية الأساسية:
- $\tan x = a \quad \cdot \quad \cos x = a \quad \cdot \quad \sin x = a$
- $\tan x \ge a$ ' $\cos x \ge a$ ' $\sin x \ge a$ $\tan x \le a$ ' $\cos x \le a$ ' $\sin x \le a$
 - . الزوايا المحيطية الرباعيات الدائرية؛
 - $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R$ العلاقات:
 - $s = pr \cdot s = \frac{1}{2}ab\sin C$

- التمكن من رسم منحنى كل من الدالتين sin و cos و استثماره في إدراك وتثبيت مفاهيم الدورية والزوجية والرتابة ...
- التمكن من تمثيل وقراءة حلول معادلة أو متراجحة مثلثية على الدائرة المثلثية؛

- يمكن بمناسبة إنشاء التمثيل المبياني للدالتين cos وsin، التعرض إلى مفهوم الدالة الدورية (تعريفه وإعطاء بعض العلاقات المميزة له). - يعتبر حل المعادلات والمتراجحات المثلثية المحددة في البرنامج مناسبة لتعميق التعامل مع الدانرة المثلثية.

- تعتبر در اسة الزوايا المحيطية والرباعيات الدائرية مناسبة لتثبيت وتقوية مكتسبات التلاميذ في جل مفاهيم الهندسة المستوية وإثبات بعض العلاقات في المثلث.

I. التمثيل المبياني للدالتين cos و sin دراسة وتمثيل الدالة sin:

x	Ô	$\frac{\pi}{6}$	$\frac{\pi}{2}$	$\frac{5\pi}{6}$	π	$\frac{7\pi}{6}$	$\frac{3\pi}{2}$	$\frac{11\pi}{6}$	2π
y	0.	0.5	1	0.5	0	-0.5	-1	-0.5	0

 $y = \sin x$: رسم منحنى الجيب

كنشاط يقوم التلاميذ بملا الجدول التالي و رسم التمثيل المبياني على المجال [$0:2\pi$]

ماذا تلاحظ بالنسبة لمنحنى الدالة sin ؟ أصغير قيمة ؟ أكبر قيمة ؟

 \mathbb{R} : المجال على المبياني على المجال

 2π نلاحظ أن التمثيل المبياني يكرر نفسه على كل مجال سعته

 $T=2\pi$ لذلك نقول ان الدالة دورية ودورها

دراسة وتمثيل الدالة cos:

x	0	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	π	$\frac{4\pi}{3}$	$\frac{3\pi}{2}$	$\frac{5\pi}{3}$	2π
y	1	0.5	0	-0.5	-1	-0.5	0	0.5	1

رسم منحنى الجيب : $y = \cos x$ و كنشاط يقوم التلاميذ بملا الجدول

الأستاذ: عثماني نجيب

$[0;2\pi]$: التالي و رسم التمثيل المبياني على المجال

ماذا تلاحظ بالنسبة لمنحنى الدالة \cos ؟ أصغير قيمة ؟ أكبر قيمة ؟ بنفس الطريقة نرسم التمثيل المبياني على: $\mathbb R$

II. المعادلات المثلثية الأساسية:

(E): $\cos x = a$: فاصية $a \in \mathbb{R}$: فاصية

- اذا كان : $a \succ 1$ أو $a \leftarrow -1$ فان المعادلة : $a \succ 1$ ليس لها حلولاً في \mathbb{R} .
 - بحيث $x_0 \in \mathbb{R}$ بحيث اذا كان : $1 \le a \le 1$ بحيث •

 $\cos x = \cos x_0$

وحلول المعادلة x=a (E): $\cos x=a$ هي الأعداد الحقيقية :

 $k\in\mathbb{Z}$ أو $-x_0+2k\pi$ أو $x_0+2k\pi$

 $\cos x = \frac{1}{2}$: المعادلة (1 على المعادلة) المعادلة (1 على المعادلة)

 $\cos x = \frac{1}{2}$: المعادلة $\left[-\pi, \pi \right]$ كل في المجال (2

 $\cos x = \cos \frac{\pi}{3}$ الجواب:1) الجواب

 $x = -\frac{\pi}{3} + 2k \pi$ أو $x = \frac{\pi}{3} + 2k \pi$: وحلول المعادلة هي

 $S = \left\{ \frac{\pi}{3} + 2k \, \pi; k \in \mathbb{Z} \right\} \cup \left\{ -\frac{\pi}{3} + 2k \, \pi; k \in \mathbb{Z} \right\}$: ومنه

 $-1 < \frac{1}{3} + 2k \le 1$ يعني $-\pi < \frac{\pi}{3} + 2k \pi \le \pi$ (أ) يقوم بالتأطير (2)

 $-\frac{4}{3} < 2k \le \frac{2}{3}$ يعني $1 - \frac{1}{3} < \frac{1}{3} + 2k - \frac{1}{3} \le 1 - \frac{1}{3}$

ومنه :نعوض k ب 0 في $2k\pi$ فنجد $x_1 = \frac{2\pi}{3} + 2 \times 0 \times \pi$ $S = \left\{ \frac{\pi}{3}; \frac{2\pi}{3} \right\}$: وبالتالي $x_1 = \frac{2\pi}{3}$: (E): tan x = a : فاصية $a \in \mathbb{R}$. $a \in \mathbb{R}$ يوجد (E) نصادلة ; $\tan x = \tan x_0$ بحيث $x_0 \in \mathbb{R}$ بوجد $k\in\mathbb{Z}$ أو حيث $x_0+k\pi$: هي الأعداد الحقيقية . \mathbb{R} $k\in\mathbb{Z}$ حيث $x_0+k\pi$: هي الأعداد الحقيقية $\tan x = 1$: المعادلة المعادلة $k\in\mathbb{Z}$ يعني $x=\frac{\pi}{4}+k$ يعني $\tan x=\tan\frac{\pi}{4}$ يعني $\tan x=1$ $S = \left\{ \frac{\pi}{4} + k \, \pi; k \in \mathbb{Z} \right\} : \text{oth}$ x عددین حقیقین x و y عددین حقیقین x و x و x الخص عددین $x = y + 2k\pi$ الح $x = x + 2k\pi$ $k \in \mathbb{Z}$ $x = y + k\pi$ تکافئ $\tan x = \tan y$ $\cos x = \frac{\sqrt{3}}{2}$ المعادلة $\cos x = \frac{\sqrt{3}}{2}$ $\cos x = \cos \frac{\pi}{6}$ الجواب: 1) الجواب (1: الجواب) $x=-rac{\pi}{6}+2k\,\pi$ وحلول المعادلة هي : $x=rac{\pi}{6}+2k\,\pi$ أو $S = \left\{ \frac{\pi}{6} + 2k \, \pi; k \in \mathbb{Z} \right\} \cup \left\{ -\frac{\pi}{6} + 2k \, \pi; k \in \mathbb{Z} \right\} :$ $\cos x = -\frac{1}{2}$: المعادلة : 1) حل في $[0,2\pi]$ عمرين 2: 1 $\sin x = -\frac{\sqrt{2}}{2}$: المعادلة [0,2 π] حل في $\cos x = \cos \left(\pi - \frac{\pi}{3} \right)$ يعني $\cos x = -\cos \frac{\pi}{3}$ يعني $\cos x = -\frac{1}{2}$ (1:الجواب:1) $\cos(\pi - x) = -\cos x$: $\dot{\psi}$ يعني $\cos x = \cos \frac{2\pi}{3}$ يعني $\cos x = \cos \left(\pi - \frac{\pi}{3}\right)$ $x = -\frac{2\pi}{3} + 2k \pi$ $x = \frac{2\pi}{3} + 2k \pi$ $0 \le \frac{2}{3} + 2k < 2$ نقوم بالتأطير أ $1 \le \frac{2\pi}{3} + 2k \pi < 2\pi$ نقوم بالتأطير $-\frac{1}{3} \le k < \frac{2}{3}$ يعني $-\frac{2}{3} \le 2k < 2 - \frac{2}{3}$ k = 0 : اذن $-0.33 \simeq -\frac{1}{3} < k \le \frac{2}{3} \simeq 0.66$ يعني $x_1 = \frac{2\pi}{3} + 2 \times 0 \times \pi$: فنجد $\frac{2\pi}{3} + 2k\pi$ في 0 ب k فنجد ومنه: $x_1 = \frac{2\pi}{2} : \xi$ ب) نقوم بنفس عملية التأطير : $2\pi < 2\pi$ عملية التأطير) نقوم بنفس عملية التأطير $\frac{1}{3} \le k < \frac{4}{3}$ يعني $\frac{2}{3} \le 2k < 2 + \frac{2}{3}$ يعني $0 \le -\frac{2}{3} + 2k < 2$ k = 1 : اذن $0.33 \simeq \frac{1}{3} < k \le \frac{4}{3} \simeq 1.33$ يعني

يعني $-\frac{2}{3} < k \le \frac{1}{3}$ يعني $-\frac{4}{3} \times \frac{1}{2} < 2k \times \frac{1}{2} \le \frac{2}{3} \times \frac{1}{2}$ يعني k = 0 : $0.66 \approx -\frac{2}{3} < k \leq \frac{1}{3} \approx 0.33$ $x_1 = \frac{\pi}{3} + 2 \times 0 \times \pi$ فنجد $\frac{\pi}{3} + 2k\pi$ فنجد k ومنه نعوض k ومنه ومنه ب) نقوم بنفس عملية التأطير $\pi < -\frac{\pi}{3} + 2k\pi \le \pi$. يعني يعني $-1 + \frac{1}{3} < -\frac{1}{3} + 2k + \frac{1}{3} \le 1 + \frac{1}{3}$ يعني $-1 < -\frac{1}{3} + 2k \le 1$ $-\frac{2}{3} < 2k \le \frac{4}{3}$ يعني $-\frac{1}{3} < k \le \frac{2}{3}$ يعني $-\frac{2}{3} \times \frac{1}{2} < 2k \times \frac{1}{2} \le \frac{4}{3} \times \frac{1}{2}$ يعني k = 0 : $\dot{0}$ $\dot{0}$ $-0.33 \approx -\frac{1}{3} < k \le \frac{2}{3} \approx 0.66$: فنجد نعوض k ب 0 في $-\frac{\pi}{3} + 2k\pi$ فنجد $x_1 = -\frac{\pi}{3} + 2 \times 0 \times \pi$ $S = \left\{-\frac{\pi}{3}; \frac{\pi}{3}\right\}$: وبالتالي $x_1 = -\frac{\pi}{3}$: أي $\cos x = 2$: المعادلة طل على عثال عثال المعادلة $\cos x = 2$: فان المعادلة a = 2 > 1 الجواب: لدينا $S = \emptyset$: أي أي اليس لها حلو \mathbb{R} (E): $\sin x = a$: و نعتبر المعادلة $a \in \mathbb{R}$: $\frac{2}{1}$. \mathbb{R} اذا كان : $a \succ 1$ أو $a \leftarrow -1$ فان المعادلة : $a \succ 1$ $\sin x = \sin x_0$ بحیث $x_0 \in \mathbb{R}$ اذا کان : $1 \le a \le 1$ بحیث اذا کان وحلول المعادلة (E) في \mathbb{R} . هي الأعداد الحقيقية : $x_0 + 2k\pi$ أو $k \in \mathbb{Z} \stackrel{\text{cut}}{\hookrightarrow} \pi - x_0 + 2k\pi$ $\sin x = \frac{\sqrt{3}}{2}$: المعادلة المعادلة (1 مثال: 1) حل في $\sin x = \frac{\sqrt{2}}{2}$: المعادلة $\left[-\pi, \pi\right]$: 2 $\sin x = \sin \frac{\pi}{3}$ يعني $\sin x = \frac{\sqrt{3}}{2}$ (1:الجواب $x = \pi - \frac{\pi}{3} + 2k\pi = \frac{2\pi}{3} + 2k\pi$ وحلول المعادلة هي : $x = \frac{\pi}{3} + 2k\pi = \frac{\pi}{3} + 2k\pi$ $S = \left\{ \frac{\pi}{3} + 2k \, \pi; k \in \mathbb{Z} \right\} \cup \left\{ \frac{2\pi}{3} + 2k \, \pi; k \in \mathbb{Z} \right\} : \emptyset$ $-1 < \frac{1}{3} + 2k \le 1$ يعني $-\pi < \frac{\pi}{3} + 2k \pi \le \pi$ (أ) ينقوم بالتأطير) $-\frac{4}{3} < 2k \le \frac{2}{3}$ يعني $1 - \frac{1}{3} < \frac{1}{3} + 2k - \frac{1}{3} \le 1 - \frac{1}{3}$ يعني $-\frac{2}{3} < k \le \frac{1}{3}$ يعني $-\frac{4}{3} \times \frac{1}{2} < 2k \times \frac{1}{2} \le \frac{2}{3} \times \frac{1}{2}$ يعني k = 0 : $0.66 \approx -\frac{2}{3} < k \leq \frac{1}{3} \approx 0.33$ $x_1 = \frac{\pi}{3}$:ومنه :نعوض $x_1 = \frac{\pi}{3} + 2k\pi$ فنجد $x_1 = \frac{\pi}{3} + 2k\pi$ ومنه :نعوض ب) نقوم بنفس عملية التأطير $\pi < \frac{2\pi}{3} + 2k\pi \le \pi$. $-\frac{1}{3} < 2k \le \frac{5}{3}$ يعني $-1 + \frac{2}{3} < 2k \le 1 + \frac{2}{3}$ يعني $-1 < \frac{2}{3} + 2k \le 1$ k = 0 : اذن $-\frac{1}{6} < k \le \frac{5}{6}$ يعني $-\frac{1}{3} \times \frac{1}{2} < 2k \times \frac{1}{2} \le \frac{5}{3} \times \frac{1}{2}$ يعني

 $x_1 = \frac{2\pi}{3} + 2 \times 1 \times \pi$: فنجد فنجد عنوض $x_1 = \frac{2\pi}{3} + 2 \times \pi$ فنجد فنجد فنجد فنجد عنوض $S = \left\{ \frac{2\pi}{3}; \frac{4\pi}{3} \right\}$: وبالنالي $x_2 = \frac{4\pi}{3}$: $\sin x = \sin\left(\frac{\pi}{4}\right) \lim_{x \to \infty} \sin x = -\sin\frac{\pi}{4} \lim_{x \to \infty} \sin x = -\frac{\sqrt{2}}{2} (2)$ $\sin(-x) = -\sin x$: $\dot{\psi}$

 $x = \pi + \frac{\pi}{4} + 2k\pi = \frac{5\pi}{4} + 2k\pi$ أو $x = \frac{\pi}{4} + 2k\pi$ $\sin x = \sin\left(-\frac{\pi}{4}\right)$ $0 \le -\frac{1}{4} + 2k < 2$ نقوم بالناطير:أ) نقوم بالناطير أ $0 \le -\frac{\pi}{4} + 2k \pi < 2\pi$ k = 1 : اذن $\frac{1}{8} \le k < \frac{9}{8}$ يعني $\frac{1}{4} \le 2k < 2 + \frac{1}{4}$ اذن $x_1 = \frac{7\pi}{4}$: ومنه :نعوض $x_1 = -\frac{\pi}{4} + 2 \times 1 \times \pi$: فنجد ب) نقوم بنفس عملية التأطير : $2\pi \leq \frac{5\pi}{4} + 2k \pi < 2\pi$ يعني $-\frac{5}{8} \le k < \frac{3}{8}$ يعني $-\frac{5}{4} \le 2k < 2 - \frac{5}{4}$ يعني $0 \le \frac{5}{4} + 2k < 2$ $x_2 = \frac{5\pi}{4}$: فنجد à ب k ومنه :نعوض k=0 : اذن

 $S = \left\{ \frac{5\pi}{4}; \frac{7\pi}{4} \right\}$: وبالتالي

$x = 2k \pi$ تكافئ $\cos x = 1$
$k \in \mathbb{Z}$ $x = \frac{\pi}{2} + k \pi$ تکافئ $\cos x = 0$
$x = (2k+1)\pi$ تکافئ $\cos x = -1$
$x = \frac{\pi}{2} + 2k \pi$ تکافئ $\sin x = 1$
$(k \in \mathbb{Z})$ $x = k \pi$ تكافئ $\sin x = 0$

 $x = -\frac{\pi}{2} + 2k\pi$ تكافئ $\sin x = -1$ $\sin x = 0$: مثال: حل في $[0,3\pi]$ معادلة

 $k \in \mathbb{Z}$ عنى $x = k \pi$ يعنى $\sin x = 0$ $0 \le k \le 3$ نقوم بالتأطير: $\pi \le 3\pi \le 0$ يعني k = 3 أو k = 2 أو k = 0 : اذن ومنه: نعوض k بهذه القيم فنجد:

 $x_3 = 3 \times \pi$ by $x_2 = 2 \times \pi$ by $x_1 = 1 \times \pi$ by $x_0 = 0 \times \pi$ $x_3 = 3\pi$ أو $x_2 = 2\pi$ أو $x_1 = \pi$ أو $x_0 = 0$:

 $S = \{0; \pi; 2\pi; 3\pi\}$: entitle $S = \{0; \pi; 2\pi; 3\pi\}$

 $\cos x \left(\sqrt{2}\sin x - 1\right) = 0$: معادلة $\left[-\pi, 2\pi\right]$ معادلة : حل في ال ومثل الحلول على الدائرة المثلثية

 $\sqrt{2}\sin x - 1 = 0$ أو $\cos x = 0$ يعني $\cos x (\sqrt{2}\sin x - 1) = 0$

$$k \in \mathbb{Z}$$
 عني $\sin x = \frac{\sqrt{2}}{2}$ أو $\cos x = 0$

$$k \in \mathbb{Z}$$
 عني $\sin x = \sin \frac{\pi}{4}$ أو $x = \frac{\pi}{2} + k\pi$

$$x = \pi - \frac{\pi}{4} + 2k\pi = \frac{3\pi}{4} + 2k\pi$$
 أو $x = \frac{\pi}{4} + 2k\pi$ أو $x = \frac{\pi}{4} + 2k\pi$

$$-1 \le \frac{1}{2} + k < 2$$
 يعني $-\pi \le \frac{\pi}{2} + k \pi < 2\pi$ (أ) نقوم بالتأطير

$$-\frac{3}{2} \le k < \frac{3}{2}$$
 يعني $k < 2 - \frac{1}{2} \le k < 2 - \frac{1}{2}$ يعني $k = 0$ يعني $k = 0$ أو $k = 1$ أو $k = 0$ على **48**

ومنه: نعوض لا بهذه القيم فنجد:

$$x_3 = \frac{\pi}{2} - 1 \times \pi$$
 و $x_2 = \frac{\pi}{2} + 1 \times \pi$ و $x_1 = \frac{\pi}{2} + 0 \times \pi$
 $x_3 = -\frac{\pi}{2}$ و $x_2 = \frac{3\pi}{2}$ و $x_1 = \frac{\pi}{2}$

$$-1 \le \frac{1}{4} + 2k < 2$$
 يعني $-\pi \le \frac{\pi}{4} + 2k \pi < 2\pi$ (التأطير:ب)

$$-\frac{5}{8} \le k < \frac{7}{8}$$
 يعني $-\frac{5}{4} \le 2k < \frac{7}{4}$ يعني $-1 - \frac{1}{4} \le 2k < 2 - \frac{1}{4}$

$$x_4 = \frac{\pi}{4}$$
 : فنجد 0 فنجد $k = 0$ اذن 0 $k = 0$ اذن 0 ومنه : 0 ومنه : 0 انقوم بعملية التأطير 0 التأطير 0 بقوم بعملية التأطير 0

$$-\frac{7}{8} \le k < \frac{5}{8}$$
 يعني $-1 - \frac{3}{4} \le 2k < 2 - \frac{3}{4}$ يعني $-1 \le \frac{3}{4} + 2k < 2$

$$x_{5} = \frac{3\pi}{4}$$
 : فنجد 0 فنجد $k = 0$

$$S = \left\{ -\frac{\pi}{2}; \frac{\pi}{2}; \frac{3\pi}{2}; \frac{\pi}{4}; \frac{3\pi}{4} \right\}$$
 وبالنالي:

أنظر الدائرة المثلثية:

IV. متراجحات مثلثية:

حل هذه المتراجحات اعتمادا على الدائرة المثلثية و مثل على الدائرة المثلثية حلول المتراجحة:

 $\sin x \ge \frac{1}{2}$ المتراجحة: 0.2π [المجال على المجال المتراجحة المجال المجال المجال المجال المتراجحة المجال المتراجحة المجال المتراجحة المتراج المتراجحة المتراج المتراجحة المتراجحة المتراجحة المتراجحة المتراجحة المتراجحة الم

$$\sin x \ge \sin \frac{\pi}{6}$$
 يعني $\sin x \ge \frac{1}{2}$: الجواب

 $S = \left| \frac{\pi}{6}, \frac{5\pi}{6} \right|$

تمرين4: حل في المجال $[-\pi,\pi]$: المتراجحة:

 $\sin x \le -\frac{1}{2}$

 $S = \left[-\frac{5\pi}{6}, \frac{\pi}{6} \right] :$

المذ $]-\pi,\pi]$: حل في المجال الجواب:

$$BC = 4cm$$
 و $\hat{B} = \frac{\pi}{3}$ و $\hat{A} = \frac{\pi}{4}$ و ABC : 7 أحسب: \hat{A} و $AC = b$ و \hat{C} : أحسب: \hat{C} احسب: \hat{C} المينا: \hat{C}

$$\sin\frac{\pi}{4} + \sin\frac{\pi}{3}$$

$$\sin\frac{\pi}{4} + \sin\frac{\pi}{3}$$

$$AC = \frac{4 \times \sin\frac{\pi}{3}}{\sin\frac{\pi}{4}} = \frac{4 \times \sqrt{3}}{2} = \frac{4 \times \sqrt{3}}{\sqrt{2}} = 2\sqrt{6}$$

$$2 \sin 2x - 1 = 0 : \text{ as a cluster } -\pi, \pi]$$

$$\lim_{x \to \infty} 2x = \frac{1}{2} = 2\sin 2x - 1 = 0 : \text{ as a cluster } 2x = 2\sin 2x - 1 = 0 : \text{ as a cluster } 2x = \pi - \frac{\pi}{6} + 2k\pi$$

$$\lim_{x \to \infty} 2x = \frac{\pi}{6} + 2k\pi$$

$$\lim_{x \to \infty} 2x = \frac{\pi}{6} + 2k\pi$$

$$\lim_{x \to \infty} 2x = \sin\frac{\pi}{6}$$

$$(\sin x)^2 + \sin x - 2 = 0$$
: تمرین 9: حل في المجال \mathbb{R} معادلة : \mathbb{R} عادل \mathbb{R} الجواب: نضع: $X^2 + X - 2 = 0$: $X = \sin x$ والمعادلة تصبح: $X = \sin x$ نحسب المميز: $X = \sin x$ و $X = \sin x$ نحسب المميز: $X = \sin x$ و $X = -2$ و $X = 0$ و $X = -2$ و $X = 0$ فان هذه المعادلة لها حلين هما: $X_1 = \frac{-1+3}{2\times 1} = 1$ أو $X_2 = \frac{1-3}{2\times 1} = -2$ ومنه بالرجوع للمتغير الأصلي نجد: $X_2 = \frac{1-3}{2\times 1} = 1$ أو $X_1 = -2$ و $X_1 = -2$ و $X_2 = -2$ و $X_1 = -2$ المعادلة الثانية ليس لها حل في $X_2 = -2$ اندن فقط نحل المعادلة الثانية ليس لها حل في $X_2 = -2$ و المعادلة نا المعادلة : $X_1 = -2$

 $S = \left\{ \frac{\pi}{2} + 2k\pi, k \in \mathbb{Z} \right\}$: ومنه $x = \frac{\pi}{2} + 2k\pi$: يعني $\sin x = 1$

$$\cos x \leq \frac{1}{2}$$
 : المتراجحة: $\int -\frac{\pi}{2}, \pi$: المتراجحة: $S = \left[-\frac{\pi}{2}, -\frac{\pi}{3} \right] \cup \left[\frac{\pi}{3}, \pi \right]$: الجواب : $\pi/3$

$$\cos x \le 0$$
 (1: المتراجحات] $-\pi$, π] : عمرين 6: حل في المجال : $S = [0,\pi]$ ($2_S = \left[-\pi, \frac{\pi}{2} \right] \left[\frac{\pi}{2}, \pi \right]$ (1 : $\sin x \ge 0$ (2 tan $x \ge 1$: $S = \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$: $S = \left[\frac{\pi}{4}, \frac{\pi}{2} \right]$ المجواب : $S = \left[\frac{\pi}{4}, \frac{\pi}{2} \right]$

علاقات \sin فی مثلث: ∇

BC=a و AC=b و AB=cنفترض أن ABC قائم الزاوية في A اذن : $1=\sin A$ ومنه :

$$\frac{a}{\sin \hat{A}} = a$$

$$\sin \hat{B} = \frac{b}{a} \Leftrightarrow a = \frac{b}{\sin \hat{B}}$$
و لدينا كذاك :

$$\sin \hat{C} = \frac{c}{a} \Leftrightarrow a = \frac{c}{\sin \hat{C}}$$
 و لدينا كذلك :
$$a \qquad b \qquad c \qquad c$$

$$\dfrac{a}{\sin\hat{A}}=\dfrac{b}{\sin\hat{B}}=\dfrac{c}{\sin\hat{C}}$$
 و بالتالي نجد و $\sin\hat{B}$ و هذه النتيجة تبقى صحيحة بالنسبة لمثلث عادي :

$$BC=a$$
 و $AC=b$ و $AB=c$ علا مثلث بحيث ABC مثلث بحيث ABC ف ABC فان $\frac{a}{\sin \hat{A}} = \frac{b}{\sin \hat{C}} = \frac{c}{\sin \hat{C}}$