I. Ако функцията f(x, y) е непрекъсната в измеримото и затворено равнинно множество R, а C е константа, то

(1)
$$\iint_{R} Cf(x, y) dx dy = C \iint_{R} f(x, y) dx dy.$$

П. Ако функциите f(x, y) и g(x, y) са непрекъснати в измеримото и затворено множество R, то

(II)
$$\int_{R} \int [f(x, y) + g(x, y)] dx dy$$

$$= \int_{R} \int f(x, y) dx dy + \int_{R} \int g(x, y) dx dy.$$

III. Ако функциите f(x,y) и g(x,y) са непрекъснати в измеримото и затворено равниино множество R и ако те удовлетворяват за всички точки от R неравенството

$$f(x, y) \leq g(x, y),$$

то

(III)
$$\int_{\mathcal{D}} \int f(x, y) \, dx \, dy \le \int_{\mathcal{D}} \int g(x, y) \, dx \, dy.$$

1V. Ако функцията f(x, y) е непрекъсната в измеримото и затворено равнинно множество R, то

(IV)
$$\left| \int_{R} \int f(x, y) \, dx \, dy \right| \leq \int_{R} \int |f(x, y)| \, dx \, dy.$$

V. Ако R_1 и R_2 са две измерими и затворени равнинии множества, които нямат общи точки или имат само контурни общи точки, и ако функцията $f\left(x,\;y\right)$ е испрекъсната както в R_1 , така и в R_2 , то

(V)
$$\int \int_{R_1 \cup R_2} f(x, y) \, dx \, dy = \int \int_{R_1} f(x, y) \, dx \, dy + \int \int_{R_2} f(x, y) \, dx \, dy.$$

Разбира се, последното равенство посредством математическа индукция се обобщава за случая на произволен краен брой множества $R_1,\ R_2,\ldots,R_n,$ образуващи правилно разделяне на измеримото и

затворено множество $R = \bigcup_{i=1}^{n} R_{i}$. В този случай имаме

$$\iint_{R} f(x, y) \, dx \, dy = \sum_{t=1}^{n} \iint_{R_{t}} f(x, y) \, dx \, dy.$$

VI. Ако функцията f(x, y) е непрекъсната в измеримото и затворено равнинно множество R и ако за всички точки от R тя удовлетворява неравенствата

$$m \le f(x, y) \le M$$
,

то (VI)

$$m \mu(R) \le \int_{\mathcal{L}} \int f(x, y) dx dy \le M \mu(R),$$

Нека подчертаем, че изложените току-що свойства на двойните интеграли в същност са валидни не само за непрекъснати, но изобщо за интегрусми функции. Впрочем доказателството на свойство VI даже в този най-общ случай се извършва съвсем просто с разсъждения, подобни на онези, посредством които установихме в края на § 51 аналогичните неравенства за простия интеграл.

§ 93. Пресмятане на двойните интеграли

Да се пресметне стойността на даден двоен интеграл, като се изхожда от самата дефиниция на това понятие, в общия случай е практически безнадеждна за решаване задача поради нейната сложност. Ето
защо е извъиредно важно да се запознаем с други методи, които биха ни
довели по-просто до желания резултат. За съжаление ние не познаваме
такива прости методи дори в случая на непрекъсната функция f(x, y),
ако не сме направили допълнителни предположения за вида на интеграционната област R. В този параграф ще педим обаче, че такъв метод съществува за една специална категория интеграциони области — все пак
достатъчно широка за практическите нужди на математиката и нейните
приложения. Чрез този метод пресмятането на даден двоен интеграл се
свежда към последователното пресмятане на два прости интеграла.

Черт. 72

Нека са дадени две функции $\phi(x)$ и $\psi(x)$, дефинирани и непрекъснати в един краен и затворен интервал [a, b], които удовлетворяват в този интервал неравенството

$$\varphi(x) \leq \psi(x)$$
.

От това неравенство следва, че графиката на функцията $\psi(x)$ ще лежи изцяло над графиката на функцията $\phi(x)$ (макар някъде тези две

графики и да могат да се допират). Да разгледаме областта R, която се огражда отдолу от графиката на функцията $\phi(x)$, отгоре от графиката на функцията $\psi(x)$, а отстрани — от правите с уравнения x=a и x=b(черт. 72). Тя се състои от точките (х, у), чинто координати удовлетворяват неравенствата

(1)
$$a \le x \le b$$
, $\varphi(x) \le y \le \psi(x)$.

Област от такъв вид ще наричаме криволинеен трапец.

Поради непрекъснатостта на функциите $\varphi(x)$ и $\psi(x)$ криволинейният трапец R ще представлява, както знаем, измеримо множество в равнината. Лесно се вижда също, че то е и затворено. Нека отбележим освен това, че мярката $\mu(R)$ на криволинейния трапец R, определен чрез неравенствата (1), се дава с равенството

(2)
$$\mu(R) = \int_{a}^{b} \left[\psi(x) - \phi(x) \right] dx.$$

Това се вижда веднага въз основа на равенството (4), дадено в края на § 86 и на адитивността на пеано-жордановата мярка,*

Именно в случая, когато интеграционната област е криволинеен трапец, ще се запознаем с межод за пресмятане на двойните интеграли. Предварително обаче ще установим следната

Помощиа теорема. Ако функцията f(x, y) е непрекъсната в криволинейния трапец R, зададен с неравенствата (1), то интегральт

(3)
$$\int_{d(t)}^{\psi(x)} f(x, y) dy$$

368

съществува за всяко фиксирано x от интервала [a, b] и представлява непрекъсната функция на х в този интервал.

Доказателство. При всяко фиксирано х от интервала [a, b] функцията f(x, y), разглеждана като функция само на y, е непрекъсната в интервала $[\phi(x), \psi(x)]$. Ето защо тя ще бъде интегруема в този интервал и ще можем да образуваме интеграла (3). (Тази бележка, казано по-

* По-точно казано, равенството (2) се получава веднага от равенството (4) в § 86, в случая, когато функцията $\phi(x)$ (а следователно и $\psi(x)$) е неотрицателна. Когато условнето за неотрицателност не е изпълнено, ще вземем такова число m, че да имаме $\phi(x) \ge m$ за $x \in [a, b]$ и ще разгледеме криволинейния трепен R_1 , определен от

$$a \le x \le b$$
, $\varphi(x) - m \le y \le \psi(x) - m$.

Тъй като множеството R_1 е получено чрез едно вертикално преместване на множеството R, тези две множества имат еднакви мерки. А мярката на R_1 поради неотрицателността на функциите $\phi(x)$ —m и $\psi(x)$ —m ше се дава с интеграла

$$\int_{a}^{b} \left[\left(\psi\left(x \right) - m \right) - \left(\phi\left(x \right) - m \right) \right] dx = \int_{a}^{b} \left[\psi\left(x \right) - \phi\left(x \right) \right] dx.$$

точно, се отнася за случая, когато $\phi(x) < \psi(x)$, но ако $\phi(x) = \psi(x)$; интегралът (3) очевидно също съществува и е равен на нула,)

Нека нокажем сега, че функцията

(4)
$$F(x) = \int_{a(x)}^{\phi(x)} f(x, y) dy$$

е непрекъсната в интервала [а, b]. За целта ще отбележим най-напред, че функциите $\phi(x)$, $\psi(x)$ и f(x,y) са ограничени. Ето защо можем да намерим такава константа K, че да имаме $|\phi(x)| \le K$ и $|\psi(x)| \le K$ за $x \in [a, b]$ н $|f(x, y)| \le K$ за $(x, y) \in R$. Да вземем една точка x_0 от интервала [a, b] и едно произволно поло-

жително число ε . Поради непрекъснатостта на функциите $\phi(x)$ и $\psi(x)$ в точката x_0 и равномерната мепрекъснатост на функцията f(x, y) в R ще съществува такова $\delta > 0$, че от неравенството $|x-x_0| < \delta$ да следват неравенствата

$$|\varphi(x) - \varphi(x_0)| < \frac{\varepsilon}{4K}, \ |\psi(x) - \psi(x_0)| < \frac{\varepsilon}{4K}$$

H

$$|f(x, y) - f(x_0, y)| < \frac{\varepsilon}{4K}$$

(стига точката x да принадлежи на [a, b], а точките (x_0, y) и (x, y) на R).

Нека сега x е точка от интервала [a,b], за която имаме $|x-x_o|<\delta$. Ще разгледаме два случая. Първо ще се спрем на случая, когато $\phi(x_o)=$ $=\psi(x_0)$. Тогава $F(x_0)=0$, поради което ще имаме

$$|F(x) - F(x_0)| = |F(x)| = \left| \int_{\varphi(x)}^{\varphi(x)} f(x, y) \, dy \right| \le K(\psi(x) - \varphi(x))$$

$$= K[(\psi(x) - \psi(x_0)) + (\varphi(x_0) - \varphi(x))] < K \cdot 2 \frac{\varepsilon}{4K} < \varepsilon.$$

С това непрекъснатостта на F(x) в точката x_0 е установена в разглежда ния случай.

Остава да разгледаме случая, когато $\phi(x_0) < \psi(x_0)$. Сега можем да считаме, че числото б сме взели по такъв начин, че от неравенствоте $|x-x_6| < \delta$ да следват освен неравенствата (5) и (6) още и неравенствата

(7)
$$\varphi(x) < \psi(x_0)$$
 μ $\psi(x) > \varphi(x_0)$.

Налага се по-нататък да се разгледат поотделно следните четири възможни подслучая:

1)
$$\varphi(x) \ge \varphi(x_0)$$
, $\psi(x) \ge \psi(x_0)$;

2)
$$\varphi(x) \ge \varphi(x_0)$$
, $\psi(x) < \psi(x_0)$;

3) $\varphi(x) < \varphi(x_0)$, $\psi(x) \ge \psi(x_0)$;

4) $\varphi(x) < \varphi(x_0)$. $\psi(x) < \psi(x_0)$.

Ние ще разгледаме първия от тях. Останалите се третират по подобен начин. И така ще приемем, че са изпълнени неравенствата

(8)
$$\varphi(x) \ge \varphi(x_0)$$
 $H \quad \psi(x) \ge \psi(x_0)$.

Като вземем пред вид, че поради неравенствата (7) и (8) всички написани по-нататък интеграли имат смисъл, ще имаме

$$\begin{split} |F\left(x\right) - F\left(x_{0}\right)| &= \left| \bigvee_{q\left(x\right)}^{q\left(x\right)} f\left(x, \ y\right) \, dy - \int_{q\left(x_{0}\right)}^{q\left(x_{0}\right)} f\left(x_{0}, \ y\right) \, dy \right| \\ &= \left| \int_{q\left(x\right)}^{q\left(x_{0}\right)} f\left(x, \ y\right) \, dy + \int_{q\left(x_{0}\right)}^{q\left(x\right)} f\left(x, \ y\right) \, dy - \int_{q\left(x_{0}\right)}^{q\left(x\right)} f\left(x_{0}, \ y\right) \, dy - \int_{q\left(x\right)}^{q\left(x_{0}\right)} f\left(x_{0}, \ y\right) \, dy \right| \\ &\leq \int_{q\left(x\right)}^{q\left(x\right)} |f\left(x, \ y\right) - f\left(x_{0}, \ y\right)| \, dy + \int_{q\left(x_{0}\right)}^{q\left(x\right)} |f\left(x, \ y\right)| \, dy + \int_{q\left(x_{0}\right)}^{q\left(x\right)} |f\left(x_{0}, \ y\right)| \, dy \\ &\leq \frac{\varepsilon}{4K} \left(\psi\left(x_{0}\right) - \phi\left(x\right)\right) + K|\psi\left(x\right) - \psi\left(x_{0}\right)| + K|\phi\left(x\right) - \phi\left(x_{0}\right)| \\ &< \frac{\varepsilon}{4K} \cdot 2K + K \cdot \frac{\varepsilon}{4K} + K \cdot \frac{\varepsilon}{4K} = \varepsilon. \end{split}$$

По този начин се убеждаваме в непрекъснатостта на функцията F(x) в произволно взетата точка x_0 от интервала [a, b]. С това теоремата е доказана

Сега вече да преминем към главната теорема на настоящия параграф, посочваща начин за пресмятане на двойни интеграли в криволинейни трапепи.

Теорема. Нека $\varphi(x)$ и $\psi(x)$ са две функции, дефинирани и непрекъснати в интервала [a,b] и удоблетворяващи в този интервал неравенството $\varphi(x) \leq \psi(x)$. Ако функцията f(x,y) е непрекъсната в криволинейния f(x,y) прапец f(x,y) в непрекъсната в криволинейния f(x,y) е непрекъсната в криволине f(x,y) е непрекъсната

(1)
$$a \le x \le b$$
, $\varphi(x) \le y \le \psi(x)$,

mo

(9)
$$\iint_{R} f(x, y) dx dy = \iint_{a}^{b} \left[\int_{a(x)}^{b(x)} f(x, y) dy \right] dx.$$

Доказателство. Нека ε е произволно положително число Тъй като функцията f(x,y) е непрекъсната в ограниченото и затворено множество R, ще можем да намерим съгласно теоремата за равномерната непрекъснатост такова положително число δ , че във всяко подмножество на R с диаметър, по-малък от δ , осцилацията на f(x,y) да бъде по-малка от $\frac{\varepsilon}{\mu(R)}$. След това нека вземем едно естествено число n. Да разгледаме функциите

$$\lambda_k(x) = \varphi(x) + \frac{k}{n} [\psi(x) - \varphi(x)], k = 0, 1, ..., n.$$

Черт. 73

Очевидно $\lambda_0(x) = \varphi(x)$ и $\lambda_s(x) = \psi(x)$. Освен това поради неравенството $\varphi(x) \le \psi(x)$ е ясно, че за всяко x от интервала [a,b] ще имаме

$$\lambda_{k-1}(x) \leq \lambda_k(x)$$
, $k=0, 1, \ldots, n$,

косто показва, че при всяко k графиката на функцията $\lambda_k(x)$ ще се намира над графиката на $\lambda_{k-1}(x)$. Да разделим по-нататък интервала $[a,\ b]$ на n равни части посредством точките

$$a=x_0, x_1, ..., x_s=b$$

и да прекараме през тези точки вертикални прави. Тези прави заедно с графиките на функциите $\lambda_k(x)$ ще разделят (при това правилно) областта R на n^2 подобласти (черт. 73), всяка от които представлява един по-малък криволинеен трапец. Ще означим с R_{ik} криволинейния трапец, определен чрез неравенствата

$$x_{i-1} \le x \le x_i$$
, $\lambda_{k-1}(x) \le y \le \lambda_k(x)$.

Ако вземем числото п достатьчно голямо, можем да направим днамет-

рите на всички R_{ik} не-малки от избраното по-горе число δ . Тогава, означавайки с M_{ik} и m_{ik} точната горна и точната долна граница на f(x,y) в множеството R_{ik} , ще имаме

$$M_{ik}-m_{ik}<\frac{\varepsilon}{\mu(R)}$$

Да разглодаме сега функцията

$$F(x) = \int_{\psi(x)}^{\psi(x)} f(x, y) \, dy.$$

Както видяхме в помощната теорема, тя е непрекъсната, а следователно и витегруема в интервала [a,b]. Ще излезем от равенството

$$\int_{a}^{b} F(x) dx = \sum_{i=1}^{b} \int_{x_{i-1}}^{x_i} F(x) dx.$$

* По-подробно в това можем да се убедим по следния начин. Нека р е такова положително число, че от неравенството $|x'-x''|<\rho$ да следват веравенствата

$$| \varphi(x') - \varphi(x'') | < \frac{\delta}{8} \operatorname{H} | \psi(x') - \psi(x'') | < \frac{\delta}{8}$$

Да означим освен това с K иякаква константа, такава, че да вмаме $|\phi(x)| \le K$ в $|\psi(x)| \le K$ в $x \in [a, b]$. Ще вземем естественото число n толкова голямо, че да са изпълненв неравенствата

$$\frac{b-a}{n} < \frac{\delta}{2}$$
, $\frac{b-a}{n} < \rho$, $\frac{2K}{n} < \frac{\delta}{8}$.

Ако сега $(x',\ y')$ и $(x'',\ y'')$ са две точки, принадлежащи на криволинейния трапец $R_{ik},$ то

$$\begin{split} &|y'-y''| \leq |y'-\lambda_k(x')| + |\lambda_k(x') - \lambda_k(x'')| + |\lambda_k(x'') - y''| \\ &\leq \lambda_k(x') - \lambda_{k-1}(x') + |\lambda_k(x') - \lambda_k(x'')| + \lambda_k(x'') - \lambda_{k-1}(x''). \end{split}$$

При това

$$\lambda_{k}\left(x'\right)-\lambda_{k-1}\left(x'\right)=\frac{1}{n}\left[\psi\left(x'\right)-\phi\left(x'\right)\right]\leq\frac{2K}{n}<\frac{\delta}{8}\cdot$$

Аналогично

$$\lambda_k(x^{\prime\prime}) - \lambda_{k-1}(x^{\prime\prime}) < \frac{\delta}{8}$$

От друга страна, $|x'-x''| < \frac{b-a}{n} < \rho$, поради което

$$\begin{split} \left| \lambda_{\underline{k}} \left(x' \right) - \lambda_{\underline{k}} \left(x'' \right) \right| &= \left| \left(1 - \frac{k}{n} \right) \left(\varphi \left(x' \right) - \varphi \left(x'' \right) \right) + \frac{k}{n} \left(\psi \left(x' \right) - \psi \left(x'' \right) \right) \right| \\ &\leq \left| \varphi \left(x' \right) - \varphi \left(x'' \right) \right| + \left| \psi \left(x' \right) - \psi \left(x'' \right) \right| < \frac{\delta}{8} + \frac{\delta}{8} = \frac{\delta}{4} \cdot \end{split}$$

От друга страна, имаме

$$F(x) = \sum_{k=1}^{n} \int_{\lambda_{k}(x)}^{\lambda_{k}(x)} f(x, y) dy,$$

откълето

$$\int_{a}^{b} F(x) dx = \sum_{i=1}^{n} \int_{x_{i-1}}^{x_{i}} \left[\sum_{k=1}^{n} \int_{x_{k-1}(x)}^{\lambda_{k}(x)} f(x, y) dy \right] dx.$$

Като вземем пред вид, че в множеството R_{ik} е изпълнено неравенството $f(x, y) \le M_{ik}$, ще получим

$$\int_{a}^{b} F(x) dx = \sum_{i=1}^{n} \int_{x_{i-1}}^{x_{i}} \left[\sum_{k=1}^{n} \int_{\lambda_{k-1}(x)}^{\lambda_{k}(x)} f(x, y) dy \right] dx$$

$$\leq \sum_{i=1}^{n} \int_{x_{i-1}}^{x_{i}} \left[\sum_{k=1}^{n} M_{ik} (\lambda_{k}(x) - \lambda_{k-1}(x)) \right] dx$$

$$= \sum_{i=1}^{n} \sum_{k=1}^{n} M_{ik} \int_{x_{i-1}}^{x_{i}} [\lambda_{k}(x) - \lambda_{k-1}(x)] dx.$$

Съгласно формулата (2), приложена за криволинейния трапец R_{ik} , имаме

$$\mu(R_{ik}) = \int_{x_{i-1}}^{x_i} [\lambda_k(x) - \lambda_{k-1}(x)] dx.$$

Следователно

$$\int_{-\infty}^{b} F(x) dx \leq \sum_{i=1}^{n} \sum_{k=1}^{n} M_{ik} \mu(R_{ik}) = S,$$

Ето защо ще имаме

$$|y'-y''|<\frac{\delta}{8}+\frac{\delta}{4}+\frac{\delta}{8}=\frac{\delta}{2}$$

Като вземем пред вид, че $|x'-x''|<\frac{b-a}{n}<\frac{\delta}{2},$ най-сегие за разстоявието между точките (x',y') и (x'',y') ще получим

$$\sqrt{(x'-x'')^2+(y'-y'')^2} < \sqrt{\frac{\delta^2}{4}+\frac{\delta^2}{4}} = -\frac{\delta}{\sqrt{2}}$$

 $O_{113} \kappa$ таключаваме, че диаметърът на множеството R_{ik} е по-малък от δ_i

където S е голямата сума за Дарбу, отговаряща на разглежданото разделяне на областта R на подобласти. Аналогично се получава

$$\int_{a}^{b} F(x) dx \ge \sum_{i=a}^{n} \sum_{k=1}^{n} m_{ik} \mu(R_{ik}) = s,$$

където s е мадката сума на Дарбу за същото разделяне. И така изпълнени са неравенствата

$$s \leqq \int_{S} F(x) dx \leqq S.$$

Но в сила са също тъй и перавенствата

$$s \le \int \int f(x, y) dx dy \le S$$
.

Следователно ще вмаме

$$\left| \int_{R} \int f(x, y) \, dx \, dy - \int_{a}^{b} F(x) \, dx \right| \leq S - s$$

$$= \sum_{i=1}^{n} \sum_{k=1}^{n} \left(M_{ik} - m_{ik} \right) \mu(R_{ik})$$

$$<\frac{\varepsilon}{\mu(R)}\cdot\sum_{i=1}^{n}\sum_{k=1}^{n}\mu(R_{ik})=\frac{\varepsilon}{\mu(R)}\cdot\mu(R)=\varepsilon.$$

Поради произволния избор на числото ϵ заключаваме, че е в сила равенството

$$\iint\limits_{B} f(x, y) dx dy = \int\limits_{a}^{b} F(x) dx,$$

което не е нищо друго освен равенството (9).

Пример 1. Да пресметнем двойния интеграл

$$\iint_{\mathbb{R}} \frac{xy}{\sqrt{x^2 + y^2}} dx dy,$$

където R е правоъгълынкът (черт. 74), даден с неравенствата

$$0 \le x \le 4$$
, $1 \le y \le 3$.

Съгласно формулата (9) ще имаме

$$\int_{R} \int \frac{xy}{\sqrt{x^{2} + y^{2}}} dx dy = \int_{0}^{4} \left[\int_{1}^{3} \frac{xy}{\sqrt{x^{2} + y^{2}}} dy \right] dx$$
$$= \frac{1}{2} \int_{0}^{4} x \left[\int_{1}^{3} \frac{dy^{2}}{\sqrt{x^{2} + y^{2}}} \right] dx = \frac{1}{2} \int_{0}^{4} x \left[2\sqrt{x^{2} + y^{2}} \right]_{1}^{3} dx$$

Черт. 7

$$= \int_{0}^{4} x \left(\sqrt{x^{2} + 9} - \sqrt{x^{2} + 1} \right) dx = \frac{1}{2} \int_{0}^{4} \sqrt{x^{2} + 9} dx^{2} - \frac{1}{2} \int_{0}^{4} \sqrt{x^{2} + 1} dx^{2}$$

$$= \frac{1}{3} \left| (x^{2} + 9)^{\frac{3}{2}} \right|_{0}^{4} - \frac{1}{3} \left| (x^{2} + 1)^{\frac{3}{2}} \right|_{0}^{4} = \frac{1}{3} \left(25^{\frac{3}{2}} - 9^{\frac{3}{2}} \right) - \frac{1}{3} \left(17^{\frac{3}{2}} - 1 \right)$$

$$= \frac{1}{3} \left(125 - 27 \right) - \frac{1}{3} \left(17\sqrt{17} - 1 \right) = 33 - \frac{17}{3} \sqrt{17}.$$

Пример 2. Да пресметнем двойния интеграл

$$\iint_{\mathbb{R}} xy^2 \, dx \, dy,$$

където R е триъгълникът (черт. 75), образуван от пресичането на правите с уравнения

$$y=0, x=1, y=x.$$

Тук областта R е криволинеен трапсц, който се определя от неравенствата

$$0 \le x \le 1$$
, $0 \le y \le x$.

Тогава формулата (9) ще ни даде