Steady-state heat transfer with advection

Data

Let's consider four rooms: 1, 2, 3 and 4. The temperatures of rooms 1 and 3 are controlled and mantained at set-point temperature T_{1c} = 20.0 °C et T_{3c} = 22.0 °C.

The outdoor temperature is $T_o = 0.0$ °C.

The dimensions are L = 6.00 m and l = 3.00 m. The height is H = 3.00 m. The widths of the walls are w = 0.20 m.

The thermal conductivity of the walls is $\lambda = 1.70$ W/mK.

The short-wave (i.e., solar) radiation absorbed by each exterior wall is $E = 200 \text{ W/m}^2$.

The heat convection coefficients are $h_o = 25 \text{ W/m}^2 \text{K}$ for outdoor air and $h_i = 8 \text{ W/m}^2 \text{K}$ for indoor air.

The heat exchanges with the floor and the ceiling are neglected.

Questions

1. Considering that all rooms are controlled with the set-point temperatures $T_{1,c}=20.0$ °C, $T_{2,c}=20.0$ °C, $T_{3,c}=22.0$ °C et $T_{4,c}=18.0$ °C, find the thermal loads of the rooms $q_1=2008$ W, $q_2=2320$ W, $q_3=2346$ W, $q_4=2340$ W.

Note: the loads are positive if the thermal flow is added to the space and negative if the thermal flow is retrieved from the space.

- 2. In what follows, the rooms 2 and 4 are not controlled (they are in "free running") and the rooms 1 and 3 are controlled (with the set-point temperatures mentioned above). Find the temperatures $\theta_2=13,1$ °C and $\theta_4=11,8$ °C of rooms 2 and 4 and the thermal loads $q_1=1718$ W and $q_3=2056$ W of rooms 1 and 3.
- 3. Room 2 is ventilated with the air-flow rate $\dot{V}=$ 1.0 vol/h ($\rho_{air}=1.2~{\rm kg/m^3}$, $c_{p,air}=1000~{\rm J/kg~K}$). The air enters from outdoors in room 2, then it goes in room 4, from which it gets out. Find the temperatures $\theta_2=11.8$ °C and $\theta_4=11.6$ °C of rooms 2 and 4 and the thermal loads $q_1=1759$ W and $q_3=2097$ W of rooms 1 and 3.
- 4. The air-flow in room 2 changes its direction: from outdoors it enters in room 4, then passes in room 2 and, finally, it gets out. The air-flow rate remains the same. Find the temperatures $\theta_2=11.8$ °C and $\theta_4=11.6$ °C of rooms 2 and 4 and the loads $q_1=1759$ W and $q_3=2097$ W of rooms 1 and 3.