Random Graph Models

Bartosz Pankratz

Introduction

- Random graphs theory is one of the most interesting research areas on the intersection of network science and probability.
- It provides a better understanding of underlying mechanisms that create networks.
- Random graphs are used to benchmark the network's algorithms (e.g. clustering algorithms)
- They are also building blocks of synthetic networks that closely resemble real-world networks.

Introduction

- Before we proceed with random models, let us briefly introduce some useful notation.
- While discussing random graphs, we mostly focus on their asymptotical behavior, namely what happens when the number of nodes $n \to \infty$.
- We say that an event in a given probability space holds asymptotically almost surely (a.a.s.), if its probability tends to one as n → ∞.

Introduction

- For describing the properties of random graphs, we will use asymptotic notation. Given two functions f = f(n) and g = g(n):
 - f(n) = O(g(n)) if there exists an absolute constant c such that $f(n) \le c g(n)$ for all n.
 - $f(n) = \Omega(g(n))$ if g(n) = O(f(n)).
 - $f(n) = \Theta(g(n))$ if f(n) = O(g(n)) and $f(n) = \Omega(g(n))$.
 - f(n) = o(g(n)) or $f(n) \ll g(n)$ if the limit $\lim_{n\to\infty} f(n)/g(n) = 0$.
 - $f(n) = \omega(g(n))$ or $f(n) \gg g(n)$ if g(n) = o(f(n)).
 - $f(n) \sim g(n)$ if f(n) = (1 + o(1))g(n).

Binomial Random Graphs

Binomial Random Graphs

- There are three commonly used random graph models:
 - Binomial random graphs
 - Uniform random graphs
 - Erdős-Rényi random graphs
- They are in many cases asymptotically equivalent, thus selection of a specific model depends on its theoretical and computational properties.

Binomial random graphs

The binomial random graph G(n,p) can be generated by starting with the empty graph on the set of nodes $[n] = \{1,2,\ldots,n\}$. For each pair of nodes i,j such that $1 \leq i < j \leq n$, we independently introduce an edge i j in G with probability p.

Binomial random graphs

The binomial random graph G(n,p) can be generated by starting with the empty graph on the set of nodes $[n] = \{1,2,\ldots,n\}$. For each pair of nodes i,j such that $1 \leq i < j \leq n$, we independently introduce an edge i j in G with probability p.

- G(n, p) is defined as the probability distribution over a family of labeled graphs on n nodes.
- There are $\binom{N}{m}$ labeled graphs on n nodes and m edges, where $N=\binom{n}{2}$ is the number of pairs of nodes.
- For a given labeled graph G on n nodes and m edges:

$$\mathbb{P}(G) = p^m (1 - p)^{N - m}$$

Uniform Random Graph

Let Ω be the family of all labeled graphs on the set of nodes [n] and exactly m edges, where $0 \le m \le N$, $N = \binom{n}{2}$. The uniform random graph G(n,m) assigns to every graph $G \in \Omega$ the same probability, that is,

$$\mathbb{P}(G) = \frac{1}{|\Omega|} = \binom{N}{m}^{-1}$$

Uniform Random Graph

Let Ω be the family of all labeled graphs on the set of nodes [n] and exactly m edges, where $0 \le m \le N$, $N = \binom{n}{2}$. The uniform random graph G(n,m) assigns to every graph $G \in \Omega$ the same probability, that is,

$$\mathbb{P}(G) = \frac{1}{|\Omega|} = \binom{N}{m}^{-1}$$

• $G(n,p) \approx G(n,m)$, provided $m \approx \binom{n}{2}p$.

Erdős-Rényi Random Graph

The Erdős-Rényi random graph process is a stochastic process that starts with n labeled nodes and no edges, and at each step adds one new edge chosen uniformly at random from the set of missing edges. Formally, let $N=\binom{n}{2}$ and let e_1,e_2,\ldots,e_N be a random permutation of the edges of the complete graph K_n . The graph process consists of the sequence of random graphs $(\mathcal{G}(n,m))_{m=0}^N$, where $\mathcal{G}(n,m)=([n],E_m)$ and $Em=\{e_1,e_2,\ldots,e_m\}$. It is clear that $\mathcal{G}(n,m)$ is a graph taken uniformly at random from the set of all graphs on n nodes and m edges.

Emergence of the giant component

Subcritical phase:

$$\langle k \rangle < 1 - \epsilon$$
 for some $\epsilon > 0$.

A.a.s. G(n, p) consists of small trees and unicyclic components; the size of the largest component is $O(\ln n) = o(n)$.

G(1000, 0.95/1000)

Emergence of the giant component

Critical phase: $\langle k \rangle \sim 1$

The giant component is formed. During that phase, the size of the largest component keeps growing reaching $\Theta(n^{2/3})$ nodes at precisely $\langle k \rangle = 1$ a.a.s.

Emergence of the giant component

Supercritical phase:

$$\langle k \rangle > 1 + \epsilon$$
 for some $\epsilon > 0$.

A.a.s. the size of the giant component is $(1 + o(1))\beta n$, where $\beta + e - \beta \cdot \langle k \rangle = 1$.

The giant component is unique and the second-largest component is acyclic or unicyclic and has size $O(\ln n)$.

Binomial Random Graphs

The order of the giant component: theoretical predictions and empirical results based on 1,000 independent runs for small graphs on (a) n = 100 nodes and larger graphs on (b) n = 10,000 nodes.

Connectivity of Binomial Random Graphs

Assume that

$$p = p(n) = \frac{\ln n + c}{n} \sim \frac{\ln n}{n}$$
 for some $c \in \mathbb{R}$

 then the expected number of isolated nodes is approximately equal to:

$$e^{-c}$$

- Clearly:
 - If $c \to -\infty$, then expect isolated nodes.
 - $c \to +\infty$, then expect the opposite.

Connectivity of Binomial Random Graphs

• Once isolated nodes disappear, G(n, p) is connected a.a.s.

$$\mathbb{P}(\mathcal{G}(n,p) \text{ is connected}) \sim \begin{cases} 0 \text{ if } c \to -\infty \\ e^{-c} \text{ if } c \in \mathbb{R} \\ 1 \text{ if } c \to +\infty \end{cases}$$

- For $any \epsilon > 0$ we have that:
 - If $pn < (1 \epsilon) \ln n$, then a.a.s. $\mathcal{G}(n, p)$ is disconnected.
 - If $pn > (1 + \epsilon) \ln n$, then a.a.s. $\mathcal{G}(n, p)$ is **connected**.

Connectivity of Binomial Random Graphs

he probability that G(n,p) with $np = \ln n + c$ is connected: theoretical predictions and empirical estimations based on 1,000 independent runs for small graphs on (a) n = 100 nodes and larger graphs on (b) n = 10,000 nodes.

Degree Distribution of Binomial Random Graphs

• Consider G(n, p) with p = p(n) = c/n for some constant $c \in \mathbb{R}$ + and large n. For any node $v \in [n]$,

$$\mathbb{E}[deg(v)] = p \cdot (n-1) \sim c$$

- But G(n, p) is not a c-regular graph!
- For any $\ell \in \mathbb{N} \cup \{0\}$:

$$\mathbb{P}(\deg(v) = \ell) \sim \frac{c^{\ell}}{\ell!} e^{-c}$$

Degree Distribution of Binomial Random Graphs

• In the limit, the degree distribution of sparse G(n, p) can be approximated by the Poisson distribution, that is,

$$d_{\ell} \sim \frac{c^{\ell}}{\ell!} e^{-c}$$

where c is the asymptotic expected average degree.

• In particular, a.a.s. the maximum degree is $O(\ln n/\ln \ln n)$.

Degree Distribution of Binomial Random Graphs

• In the limit, the degree distribution of sparse G(n, p) can be approximated by the Poisson distribution, that is,

$$d_{\ell} \sim \frac{c^{\ell}}{\ell!} e^{-c}$$

where c is the asymptotic expected average degree.

• In particular, a.a.s. the maximum degree is $O(\ln n/\ln \ln n)$.

Power-law distribution

- Real-world networks typically do not have the Poisson distribution.
- Typically, degree distribution follows power law:

$$d_{\ell} \approx c * \ell^{\gamma}$$

where $\gamma > 0$ is a **degree exponent** and c > 0 is some normalizing constant.

Degree distribution can be easily rewritten as:

$$\ln d_{\ell} \approx -\gamma \ln \ell + \ln c$$

(straight line with the slope $-\gamma$ on a log-log plot).

Power-law distribution

• To generate a power-law degree distribution with a given degree exponent γ and minimum degree $\delta \geq 1$ we assume:

$$d_{\ell} \approx c \int_{\ell}^{\ell+1} x^{-\gamma} dx \approx c * \ell^{\gamma}$$

Note that:

$$1 = \sum_{l=\delta}^{\infty} d_{\ell} = c \int_{\delta}^{\infty} x^{-\gamma} dx = \frac{c(-\delta^{1-\gamma})}{1-\gamma}$$

Finally:

$$d_{\ell} \approx (\gamma - 1)\delta^{\gamma - 1}\ell^{-\gamma}$$

Power-law distribution

Average degree:

$$\langle k \rangle = \frac{\gamma - 1}{\gamma - 2} \delta$$

provided that $\gamma > 2$.

- Maximum degree:
 - Assuming that the number of nodes of degree at least Δ is close to 1 we get that:

$$\Delta = \delta n^{1/(\gamma - 1)}$$

which is often referred to as the **natural cut-off** of the graph.

Let $\mathbf{w} = (w_1, w_2, ..., w_n)$ be any vector of n positive real numbers and let $W = \sum_{i=1}^{n} w_i$. Random graph $G(\mathbf{w})$ is generated as follows:

1. Each pair of nodes i, j such that $1 \le i \le j \le n$ is independently sampled as an edge (or loop if i = j) with probability given by:

$$p_{i,j} \begin{cases} \frac{w_i w_j}{W} & \text{for } i \neq j \\ \frac{w_i^2}{W} & \text{for } i = j \end{cases}$$

• For any any $i \in [n]$:

$$\mathbb{E}[\deg(i)] = w_i$$

- The model is also well-studied but the behavior and results are more complex; for example, for any $\epsilon > 0$:
 - if $\langle k \rangle \leq \langle k^2 \rangle / \langle k \rangle < 1 \epsilon$, then a.a.s. G(w) has no giant,
 - if $\langle k^2 \rangle / \langle k \rangle \ge \langle k \rangle > 1 + \epsilon$, then a.a.s. there is one.

Generating power-law graphs with degree exponent γ:

$$w_i = c \cdot (i + i_0 - 1)^{-1/(\gamma - 1)}$$

c=c(n) depends on the minimum (or average) degree $\delta \geq 1$ and $i_0=i_0(n)$ depends on the maximum degree Δ .

It follows that
$$c = \delta n^{1/(\gamma-1)}$$
 and $i_0 = n/\left(\frac{\Delta}{\delta}\right)^{\gamma-1}$ so

$$w_i = \delta \left(\frac{n}{i - 1 + n/(\Delta/\delta)^{\gamma - 1}} \right)^{1/(\gamma - 1)}$$

• It is possible to show that the expected number of nodes of degree k is proportional to $\Gamma(k-\gamma+1)/\Gamma(k+1)\approx k^{-\gamma}$, where $\Gamma(z)=\int_0^\infty x^{z-1}e^{-x}dx$ is the gamma function.

 $\mathcal{G}(w)$ generated on $n=10{,}000$ nodes using the set of weights with $\gamma=2.5, \delta=1$, and $\Delta=\sqrt{n}=100$. We got $\delta'=0$ and $\Delta'=113$, respectively. But did we preserve the degree exponent?

Kolmogorov–Smirnov statistic: focus only on the large degrees.
For a given cutoff for small degrees ℓ ∈ [max{δ, 1}, Δ],

$$\gamma^{\ell} = 1 + \frac{|\{j: \deg(j) \ge \ell|}{\sum_{j: \deg(j) \ge \ell} \ln\left(\frac{\deg(j)}{\ell - 1/2}\right)}$$

 The divergence of the experimental distribution from the theoretical one is defined as:

$$D_{\ell} = \max_{k \in [\ell, \Delta]} \left| \frac{|\{j: \deg(j) \ge k|}{|\{j: \deg(j) \ge \ell|} - \frac{\int_{k}^{\infty} x^{-\gamma \ell} dx}{\int_{\ell}^{\infty} x^{-\gamma \ell} dx} \right|$$

• The value of γ_{ℓ} that minimizes D_{ℓ} (over all $\ell \in [\max{\delta, 1}, \Delta]$) is used as an estimate γ' of the power-law exponent.

G(w) generated on $n=10{,}000$ nodes using the set of weights with $\gamma=2.5, \delta=1$, and $\Delta=\sqrt{n}=100$. We got $\delta'=0$ and $\Delta'=113$, respectively. The fitted line has slope of -1.89 ($\gamma'=2.89$), which was obtained with the procedure we described, with $\ell'=7$.

- Chung-Lu model returns a Graph with a degree sequence approximately close to the sequence w.
- Configuration model $\mathcal{P}_{n,d}$ generates a random graph that strictly follows a given, graphic degree sequence $d = (\deg(1), \deg(2), ..., \deg(n))$

Random d-regular graphs

Fix $d \in \mathbb{N} \cup \{0\}$. Let Ω be the family of all labelled graphs on the set of nodes [n] that are d-regular. The random d-regular graph, denoted by $\mathcal{G}_{n,d}$, assigns to every graph $G \in \Omega$ the same probability, that is,

$$\mathbb{P}(G) = \frac{1}{|\Omega|}$$

- Since the total volume of any graph is even, n has to be even if d is odd.
- Different mathematical tools are required when d=d(n) grows together with n.
- Generating all d-regular graphs on n nodes is impossible.

Configuration/pairing model

Consider dn points partitioned into n labelled buckets v_1, v_2, \ldots, v_n of d points each.

A **pairing** of these points is a perfect matching into dn/2 pairs. Given a random pairing P, we may construct a multigraph $\mathcal{P}_{n,d}=\mathcal{P}(P)$, with loops and parallel edges allowed, after contracting buckets into nodes.

- The restriction of $\mathcal{P}_{n,d}$ to simple graphs is precisely $\mathcal{G}_{n,d}$.
- Practical implication: keep generating $\mathcal{P}_{n,d}$ (independently) and stop when you get a simple graph; you get $\mathcal{G}_{n,d}$.
- Random pairing generates a simple graph with probability asymptotic to $e^{-(d^2-1)/4}$ depending on d but not on n.
- Practical implication: the expected number of attempts is $e^{(d^2-1)/4}$ (large for large d but reasonable for small values).
- Theoretical implication: any event holding a.a.s. in $\mathcal{P}_{n,d}$ also holds a.a.s. in $\mathcal{G}_{n,d}$.

 $\mathcal{P}_{n,d}$ is simple with probability $\sim e^{-(a^2-1)/4}$ Theoretical predictions and empirical results for n=100 and n=10,000.

- Generating $\mathcal{P}_{n,d}$ is fast but the graph might not be simple!
- Depending on our application, we may:
 - stay with multigraphs;
 - remove all potential loops and parallel edges (erased configuration model); the graph might not match exactly the given sequence d.
 - resample until we get $\mathcal{G}_{n,d}$ or avoid creating loops/parallel edges and re-start if we get stuck; slow.
 - do **switching**; preserves distribution, typically fast, asymptotically equivalent to $\mathcal{G}_{n,d}$.

• do **switching**; preserves distribution, typically fast, asymptotically equivalent to $\mathcal{G}_{n,d}$.

- Often nodes are described by some properties they might impact the existence/strength of an edge.
- While generating a random graph that tries to mimic the real world network, we want to utilize this fact.
- Random Geometric Graphs are a category of models that uses the properties (metadata) to generate a network.

Let $r \in \mathbb{R} + \cup \{0\}$. The random geometric graph $\mathcal{R}\mathcal{G}\mathcal{G}(n,r)$ can be generated by starting with the empty graph on n nodes, v_1, v_2, \ldots, v_n , that are randomly sampled from the uniform distribution of the underlying space $[0,1]^d$. Each pair of nodes v_i, v_j such that $1 \le i < j \le n$ is connected by an edge if and only if $d(v_i, v_j) \le r$.

- The choice of metric space is important (especially, if d is large)
- For continuous (especially spatial) data one might use the Euclidean distance:

$$d(x,y) = \sqrt{\sum_{i=1}^{d} (x_i - y_i)^2}$$

Instances of RGG(100,r) for $r \in \{0.1, 0.15, 0.2\}$ on the unit square (d = 2).

Threshold for connectivity is well understood but, for example, the appearance of the giant component is not!