Test results

Total number of test results: 208

Average score: 87.19 %

Score distribution:

Preliminary results. Dynamics

Taking the currently maximum scores, we have the following results:

```
"5" (from 80%): 159 76%

"4" (between 60 and 80%): 37 18%
```

"3" (between 40 and 60%): 6 3%

"failed" (less 40%): 6 3%

Some common mistakes

В двухступенчатом MDL (а именно, L(D, H) = L(D|H) + L(H)) отсутствует компонент, учитывающий сложность модели H

Some common mistakes

Примените backdoor критерий для оценки влияния X на Y. Выберите наименьшее по размеру множество вершин, необходимых для блокирования всех backdoor-путей

- A) {B}
- Б) {A, C}
- B) {B, C}
- Γ) {A, B, C}
- Д) {D}
- E) {B, D}

Правильные ответы: А

Some common mistakes

Примените backdoor критерий для оценки влияния X на Y. Выберите наименьшие по размеру множество вершин, необходимых для блокирования всех backdoor-путей

- A) {B}
- Б) {D}
- B) {B, D}
- Γ) {C, D}
- Д) {A, C}
- E) {E}
- Ж) {A, E}

Правильные ответы: В, Г

Lecture 7. Layer-wise Relevance Propagation and Deep Taylor Decomposition

Part 1. Layer-wise Relevance Propagation

First order Taylor approximation

The first order Taylor approximation $f(x) pprox f(x_0) + \sum_{d=1}^V f'(x_0)(x_{(d)} - x_{0(d)})$

Saliency (sensitivity) maps: an image x is explained by f(x)

The **blue** dots are labeled **negatively**, the **green** dots are labeled **positively**

Local gradient of the classification function at the prediction point

The closest neighbors of the other class can be found at a very different angle. Thus, the local gradient at the prediction point x may not be a good explanation for the contributions of single dimensions to the function value f(x)

First order Taylor approximation

The first order Taylor approximation $f(x) pprox f(x_0) + \sum_{d=1}^V f'(x_0)(x_{(d)} - x_{0(d)})$

We are interested to find out the contribution of each pixel relative to the state of maximal uncertainty of the prediction, i.e., $f(x_0) = 0$, i.e., $f(x) \approx \sum_{d=1}^{V} f'(x_0)(x_{(d)} - x_{0(d)})$

 Δ the nearest root point x_0 on the decision boundary

$$\longrightarrow f(x_0)$$

$$x - x_0$$

the approximation of f(x) by Taylor expansion around x_0 (equivalent to the diagonal of the outer product between $f'(x_0)$ and $x - x_0$)

Layer-wise relevance propagation

Goal: to find out the contribution of each input pixel to a particular prediction

Idea: In case of classification, to find out the contribution of each pixel relative to the state of maximal uncertainty of the prediction which is given by the set of points $f(x_0) = 0$, since f(x) > 0 denotes presence and f(x) < 0 absence of the learned structure, x_0 is called a reference point

Remark: f(x) < 0 is less desirable values, since it is difficult to interpret negative evidence for a class

Basic hypothesis (the conservation property): relevance is constant throughout the layers, i.e.,

$$f(x) = \dots = \sum_{d \in l+1} R_d^{(l+1)} = \sum_{d \in l} R_d^{(l)} = \dots = \sum_{d \in 1} R_d^{(1)}$$

where $R_d^{\left(l
ight)}$ a relevance score for each dimension d at the lavel l

Remark: the decomposition satisfying the conservation property is not unique and there is not guarantee that it yields a meaningful interpretation

Relevance propagation: global conservation

$$f(x) = R_7^{(3)} = R_4^{(2)} + R_5^{(2)} + R_6^{(2)} = R_1^{(1)} + R_2^{(1)} + R_3^{(1)}$$

Relevance propagation: local conservation

Connection between global and local relevance:

$$\textstyle\sum_{k} R_{k}^{(l+1)} = \sum_{k} \sum_{i:i \text{ is input for neuron } k} R_{i \leftarrow k}^{(l,l+1)} = \sum_{i} \sum_{k:i \text{ is input for neuron } k} R_{i \leftarrow k}^{(l,l+1)} = \sum_{i} R_{i}^{(l)}$$

Bach, Sebastian, et al. "On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation." PloS one 10.7 (2015): e0130140.

Relevance propagation. main properties

Global conservation:

$$f(x) = \dots = \sum_{d \in l+1} R_d^{(l+1)} = \sum_{d \in l} R_d^{(l)} = \dots = \sum_{d \in 1} R_d^{(1)}$$

Local conservation:

$$R_k^{(l+1)} = \sum_{i \ : \ i \ ext{is input for neuron}} {R_{i \leftarrow k}^{(l,l+1)}} \qquad \qquad R_i^{(l)} = \sum_{k:i \ ext{is input for neuron}} {k \ R_{i \leftarrow k}^{(l,l+1)}}$$

Example of relevance propagation

Let a_j be an activation of the j-th neuron

Then the relevance can be distributed as follows: $R_j = \sum_k rac{a_j w_{jk}}{\sum_j a_j w_{jk}} R_k$

$$R_{j\leftarrow k}^{(l,l+1)}=rac{a_jw_{jk}}{\sum_j a_jw_{jk}}$$

LRP for Deep Rectifier Networks

DRN is composed of neurons $a_j = \max(0, \sum_i a_i w_{ij} + b_i)$

	propagation property	approximation of the conservation property
LRP-0	$R_j = \sum_k rac{a_j w_{jk}}{\sum_j a_j w_{jk} + b_j} R_k$	$\sum_{j} R_{j \leftarrow k}^{(l,l+1)} = R_{k}^{(l+1)} \left(1 - rac{b_k}{\sum_{j} a_j w_{jk} + b_k} ight)$
LRP-ε		$\sum_{j} R_{j \leftarrow k}^{(l,l+1)} = R_{k}^{(l+1)} \left(1 - rac{b_k + arepsilon}{\sum_{j} a_j w_{jk} + b_k + arepsilon} ight)$
LRP-γ	$R_j = \sum_k rac{a_j(w_{jk} + \gamma w_{jk}^+)}{\sum_j arepsilon + a_j(w_{jk} + \gamma w_{jk}^+) + b_j} R_k$	$\sum_{j} R_{j \leftarrow k}^{(l,l+1)} = R_{k}^{(l+1)} \left(1 - \gamma rac{b_k + b_k^+}{\sum_{j} a_j w_{jk} + b_k + \sum_{j} (a_j w_{jk})^+ + b_k^+} ight)$
LRP-αβ	$R_j = \sum_k \Big(lpha rac{\left(a_j w_{jk} ight)^+}{\sum_j \left(a_j w_{jk}^+ ight) + b_j} + eta rac{\left(a_j w_{jk} ight)^-}{\sum_j \left(a_j w_{jk}^- ight) + b_j} \Big) R_k$	$\sum_{j} R_{j \leftarrow k}^{(l,l+1)} = R_{k}^{(l+1)} \Big(1 - lpha rac{(a_{j}w_{jk})^{+}}{\sum_{j} (a_{j}w_{jk})^{+} + b_{k}^{+}}$
	lpha + eta = 1	$igg -etarac{\left(a_jw_{jk} ight)^+}{\sum_j\left(a_jw_{jk} ight)^-+b_k^-}igg)$

An example of a combination of rules

Input image and pixel-wise explanations of the output neuron 'castle' obtained with various LRP procedures.

Parameters are $\varepsilon = 0.25$ std and $\gamma = 0.25$.

When and which rules should be used?

LRP-0 picks many local artifacts of the function. Thus, the explanation is **overly complex** and **does not focus sufficiently** on the "actual explanation", the explanation is neither faithful nor understandable

LRP- ε removes **noise elements** in the explanation to keep only a limited number features for the explanation. It provides a **faithful** explanation, but **too sparse to be easily understandable**

LRP-γ is easier for a human to understand because **features are more densely highlighted**, but it also picks unrelated concepts for the explanation, thus it is rather unfaithful

Composite LRP overcomes the disadvantages of the approaches above

Deep Taylor Decomposition. Motivation

How to justify LRP rules theoretically?

In LRP we express relevance of a neuron k using the relevance of the neurons from the upper layer

How to interpret negative values of relevance?

Classifying a ball, a dark ball on a bright background would have negative gradient, while white ball on darker background would have a positive gradient*.

Montavon, G., Lapuschkin, S., Binder, A., Samek, W., Mu'ller, K.R.: Explaining nonlinear classification decisions with deep Taylor decomposition. Pattern Recogn. 65, 211–222 (2017)

^{*} Smilkov, Daniel, et al. "SmoothGrad: removing noise by adding noise." arXiv preprint arXiv:1706.03825 (2017).

Part 2. Deep Taylor Decomposition

Positive relevance propagation

Let a_j be a **non-negative** activation of the j-th neuron

We do not use negative values since it is difficult to interpret negative evidence for a class

Then the relevance can be distributed as follows:

$$egin{align} R_j &= \sum_k rac{a_j w_{jk}}{\sum_j a_j w_{jk}} R_k & R_j &= \sum_k rac{a_j w_{jk}^+}{\sum_j a_j w_{jk}^+} R_k \ R_{i \leftarrow j} &= rac{a_i w_{ij}}{\sum_i a_i w_{ij}} & R_{j \leftarrow k}^{(l,l+1)} &= rac{a_j w_{jk}^+}{\sum_i a_i w_{ij}^+} R_k \ \end{array}$$

Positive relevance propagation

$$R_j = \sum_k rac{a_j w_{jk}^+}{\sum_j a_j w_{jk}^+} R_k$$
 assume $R_k = a_k c_k$ where c_k is a positive constant

$$R_j = a_j \sum_k w_{jk}^+ rac{max(0,\sum_j a_j w_{jk})}{\sum_j a_j w_{jk}^+} c_k$$

 $R_j = a_j c_j$ where c_j is positive and approximately constant

Deep Taylor Decomposition

In DTD we suppose that the relevance of the current neuron k is a function of the lower-level neuron activations $\{a_i\}$, i.e., $R_i(\{a_i\})$, where $\{\}$ denotes a vector.

$$egin{aligned} R_j &= a_j c_j \ R_j(\{a_i\}) = a_j(\{a_i\}) \cdot c_j &= max(0, \sum_i a_i w_{ij} + b_j) \cdot c_j \ &= max(0, \sum_i a_i w_{ij} c_j + b_j c_j) \ &= max(0, \sum_i a_i w'_{ij} + b'_j) \end{aligned}$$

Montavon, G., Lapuschkin, S., Binder, A., Samek, W., Mu'ller, K.R.: Explaining nonlinear classification decisions with deep Taylor decomposition. Pattern Recogn. 65, 211–222 (2017)

Deep Taylor Decomposition

$$R_j(\{a_i\}) = max(0,\sum_i a_i w'_{ij} + b'_j)$$

First-order Taylor expansion $R_j(\{a_i\}) = R_j(\{ ilde{a}_i^{(j)}\}) + \sum_i rac{\partial R_j}{\partial a_i}\Big|_{ ilde{a}_i^{(j)}} \cdot (a_i - ilde{a}_i^{(j)}) + arepsilon$

Conservation property:

$$\sum_{j} R_{j} = \left(\frac{\partial \left(\sum_{j} R_{j}\right)}{\partial \{x_{i}\}}\Big|_{\{\widetilde{x}_{i}\}}\right)^{\top} \cdot \left(\{x_{i}\} - \{\widetilde{x}_{i}\}\right) + \varepsilon$$

$$= \sum_{i} \underbrace{\sum_{j} \frac{\partial R_{j}}{\partial x_{i}}\Big|_{\{\widetilde{x}_{i}\}} \cdot \left(x_{i} - \widetilde{x}_{i}\right) + \varepsilon,}_{R_{i}}$$

Remark: due to the potentially complex relation between a_j and R_k , finding an appropriate reference point and computing the gradient locally is difficult

Montavon, G., Lapuschkin, S., Binder, A., Samek, W., Mu'ller, K.R.: Explaining nonlinear classification decisions with deep Taylor decomposition. Pattern Recogn. 65, 211–222 (2017)

Deep Taylor Decomposition

First-order Taylor expansion $R_j(\{a_i\}) = R_j(\{ ilde{a}_i^{(j)}\}) + \sum_i rac{\partial R_j}{\partial a_i} \Big|_{ ilde{a}_i^{(j)}} \cdot (a_i - ilde{a}_i^{(j)}) + arepsilon$

We search for a root point such that $R_j(\{a_i\}) = 0 + \sum_i \left| \frac{\partial R_j}{\partial a_i} \right|_{\tilde{a}_i^{(j)}} \cdot (a_i - \tilde{a}_i^{(j)}) + 0$ $\sum_i \tilde{a}_i^{(j)} w_{ij} + b_j = 0$

Closed form solution: $R_{i\leftarrow j}=rac{v_{ij}w_{ij}}{\sum_i v_{ij}w_{ij}}R_j$ where $v_{ij}\propto a_i- ilde{a}_i^{(j)}$ is the root search direction

Choosing search directions for a root point

root point	search direction	
nearest root	$v_{ij}=w_{ij}$	
origin	$v_{ij}=a_i$	
LRP equivalent	$v_{ij}=a_i 1_{w_{ij}^{\prime}>0}$	

Remark: Only the last one guarantees that the root point 1) belongs to the input domain, 2) has non-negative relevance scores

Commonly used LRP rules

Name	Formula	Usage	DTD
LRP-0 [7]	$R_j = \sum_k \frac{a_j w_{jk}}{\sum_{0,j} a_j w_{jk}} R_k$	Upper layers	\checkmark
LRP- ϵ [7]	$R_j = \sum_k \frac{a_j w_{jk}}{\epsilon + \sum_{0,j} a_j w_{jk}} R_k$	Middle layers	\checkmark
$\overline{\text{LRP-}\gamma}$	$R_{j} = \sum_{k} \frac{a_{j}(w_{jk} + \gamma w_{jk}^{+})}{\sum_{0,j} a_{j}(w_{jk} + \gamma w_{jk}^{+})} R_{k}$	Lower layers	✓
LRP- $\alpha\beta$ [7]	$R_{j} = \sum_{k} \left(\alpha \frac{(a_{j}w_{jk})^{+}}{\sum_{0,j} (a_{j}w_{jk})^{+}} - \beta \frac{(a_{j}w_{jk})^{-}}{\sum_{0,j} (a_{j}w_{jk})^{-}} \right) R_{k}$	Lower layers	\times^a
flat [30]	$R_j = \sum_k \frac{1}{\sum_j 1} R_k$	Lower layers	×
w^2 -rule [36]	$R_{j} = \sum_{k} \frac{1}{\sum_{j} 1} R_{k}$ $R_{i} = \sum_{j} \frac{w_{ij}^{2}}{\sum_{i} w_{ij}^{2}} R_{j}$	First layer (\mathbb{R}^d)	✓
$z^{\mathcal{B}}$ -rule [36]	$R_{i} = \sum_{j} \frac{x_{i}w_{ij}^{+} - l_{i}w_{ij}^{+} - h_{i}w_{ij}^{-}}{\sum_{i} x_{i}w_{ij} - l_{i}w_{ij}^{+} - h_{i}w_{ij}^{-}} R_{j}$	First layer (pixels)	✓

(aDTD interpretation only for the case $\alpha = 1, \beta = 0$.)

Montavon, Grégoire, et al. "Layer-wise relevance propagation: an overview." Explainable AI: interpreting, explaining and visualizing deep learning (2019): 193-209.

Further reading: Layer-Wise Relevance Propagation

Site with plenty of sources: http://heatmapping.org/

Tutorial on implementation: https://git.tu-berlin.de/gmontavon/lrp-tutorial

Example of implementation:

https://github.com/atulshanbhag/Layerwise-Relevance-Propagation/blob/master/vgg/lrp.py

Part 3. PatternNet and PatternAttribution

PatternNet and PatternAttribution

Reasoning line

- the linear model is the simplest neural network
- the explanation methods should work correctly in the limit of simplicity
- data contain the signal and some distortion
- the explanation method should work well at least for the simplest cases

Understanding a linear model. Example

The weight vector is not aligned with the signal, its primary is to **cancel the distractor**The weight vercor is able to filter out the distractor, that is why it is called a filter

Understanding a linear model

For a given data

$$egin{align} oldsymbol{x} &= oldsymbol{y} oldsymbol{a}_s + oldsymbol{arepsilon} oldsymbol{a}_d &= oldsymbol{s} + oldsymbol{d} \ oldsymbol{w}^T oldsymbol{x} &= oldsymbol{y} oldsymbol{w}^T oldsymbol{a}_s + oldsymbol{arepsilon} oldsymbol{w}^T oldsymbol{a}_d &= oldsymbol{y} \ oldsymbol{w}^T oldsymbol{a}_s &= oldsymbol{y} oldsymbol{w}^T oldsymbol{a}_d &= oldsymbol{y} \ oldsymbol{w}^T oldsymbol{a}_s &= oldsymbol{y} oldsymbol{w}^T oldsymbol{a}_d &= oldsymbol{y} \ oldsymbol{w}^T oldsymbol{w}^T oldsymbol{w}^T oldsymbol{w}^T oldsymbol{a}_d &= oldsymbol{y} \ oldsymbol{w}^T oldsymbol{w}^T oldsymbol{a}_d &= oldsymbol{y} \ oldsymbol{w}^T oldsymbol{w}^T$$

The filter w tells us how to extract y optimally from data x. The pattern as is the direction in the data along which the desired output y varies

Going back to the studied models

- **Functions** (gradients, saliency maps): $\partial y/\partial x = w$
- **Signals** (DeconvNet, Guided Backpropagaton): propagating back an "assumed signal" $s = a_s y$ toward the signal direction of each neuron
- Attribution (LRP, DeepTaylor): assessing how much the signal dimensions contribute the the output through the layers

$$m{r}_i^{l-1} = rac{m{w}\odot(m{x}-m{x}_0)}{m{w}^Tm{x}}m{r}_i^l ~~~~ m{r}_i^{output} = y$$

Remark: selecting a root point for the DeepTaylorDecomposition corresponds to estimating the distractor $d = x_0$ and, by that, the signal $s^* = x - x_0$

Training a model

Goal: to train the filter w to extract y such that $w^Tx = y$, $w^Ts = y$, $w^Td = 0$

It is an **ill-posed problem**. We could limit ourselves to the linear estimators if the **following form**: $\hat{\mathbf{s}} = u(w^T u)^{-1} y$ with a random vector u such that $w^T u \neq 0$

For such an estimator $\hat{\mathbf{s}}$ it is always true that $\mathbf{w}^{\mathsf{T}}\hat{\mathbf{s}} = \mathbf{y}$

There exist **infinitely many solutions** (as many as the propagation rules for the previously considered methods)

Quality measure for signal estimates

Let the signal estimator be $S(x) = \hat{\mathbf{s}}$, the distractor be $\hat{\mathbf{d}} = \mathbf{x} - S(\mathbf{x})$ and $\mathbf{w}^{\mathsf{T}}\mathbf{x} = \mathbf{y}$:

$$\rho(S) = 1 - \max_{\boldsymbol{v}} corr\left(\boldsymbol{w}^T \boldsymbol{x}, \boldsymbol{v}^T \left(\boldsymbol{x} - S(\boldsymbol{x})\right)\right)$$

This criterion introduces an additional constraint by measuring how much information about y can be reconstructed from the residuals x - S(x) using a linear projection

The best signal estimators remove most of the information in the residuals and thus yield large ϱ

Thus, we want that the distractor correlate a lot with the weight vector w (filter) (since the primary objective of the filter is to cancel the distortion)

Quality measure for signal estimates

Let the signal estimator be $S(x) = \hat{s}$ is optimal w.r.t. the following equation

$$\rho(S) = 1 - \max_{\boldsymbol{v}} corr\left(\boldsymbol{w}^T \boldsymbol{x}, \boldsymbol{v}^T \left(\boldsymbol{x} - S(\boldsymbol{x})\right)\right) = 1 - \max_{\boldsymbol{v}} \frac{\boldsymbol{v}^T \text{cov}[\hat{\boldsymbol{d}}, y]}{\sqrt{\sigma_{\boldsymbol{v}^T \hat{\boldsymbol{d}}}^2 \sigma_y^2}}$$

if the correlation is 0 for all possible v, i.e., $\forall v$, $cov[y, \hat{d}]v = 0$

From the linearity of the covariance and $\hat{m{d}} = m{x} - S(m{x})$ it follows

$$cov[y, \hat{\boldsymbol{d}}] = \boldsymbol{0} \Rightarrow cov[\boldsymbol{x}, y] = cov[S(\boldsymbol{x}), y]$$

Signal estimates for the linear neurons

A linear neuron can extract only a linear signal from x, thus we may assume the following dependency:

$$S_{\boldsymbol{a}}(\boldsymbol{x}) = \boldsymbol{a} \boldsymbol{w}^T \boldsymbol{x}$$

Plugging this into cov[x, y] = cov[S(x), y] we get

$$\operatorname{cov}[\boldsymbol{x},y] = \operatorname{cov}[\boldsymbol{a}\boldsymbol{w}^T\boldsymbol{x},y] = \boldsymbol{a}\operatorname{cov}[y,y] \Rightarrow \boldsymbol{a} = \frac{\operatorname{cov}[\boldsymbol{x},y]}{\sigma_v^2}$$

Since the correlation is invariant to scaling, we constrain $\mathbf{v}^T \hat{\mathbf{d}}$ to have $\sigma_{\mathbf{v}^T \hat{\mathbf{d}}}^2 = \sigma_y^2$

Signal estimates for the ReLU neurons

ReLU does not propagate the negative activations, thus we distinguish the following regimes:

$$x = \begin{cases} s_+ + d_+ & \text{if } y > 0 \\ s_- + d_- & \text{otherwise} \end{cases}$$

The signal can be estimated as follows:

$$S_{\boldsymbol{a}+-}(\boldsymbol{x}) = \begin{cases} \boldsymbol{a}_{+} \boldsymbol{w}^{T} \boldsymbol{x}, & \text{if } \boldsymbol{w}^{T} \boldsymbol{x} > 0 \\ \boldsymbol{a}_{-} \boldsymbol{w}^{T} \boldsymbol{x}, & \text{otherwise} \end{cases}$$

Signal estimates for the ReLU neurons

Let $\mathbb{E}[x]_+$ and $\mathbb{E}[x]_-$ be expectations over x within positive and negative regimes, respectively, and π_+ be the expected ratio of input x with w^Tx then

$$egin{aligned} \operatorname{cov}[oldsymbol{x},y] &= & \pi_+\left(\mathbb{E}_+\left[oldsymbol{x}y
ight] - \mathbb{E}_+\left[oldsymbol{x}
ight]\mathbb{E}\left[y
ight]
ight) \; + & \left(1-\pi_+
ight)\left(\mathbb{E}_-\left[oldsymbol{x}y
ight] - \mathbb{E}_-\left[oldsymbol{x}
ight]\mathbb{E}\left[y
ight]
ight) \ & \operatorname{cov}[oldsymbol{s},y] &= & \pi_+\left(\mathbb{E}_+\left[oldsymbol{s}y
ight] - \mathbb{E}_+\left[oldsymbol{s}
ight]\mathbb{E}\left[y
ight]
ight) \; + & \left(1-\pi_+
ight)\left(\mathbb{E}_-\left[oldsymbol{s}y
ight] - \mathbb{E}_-\left[oldsymbol{s}
ight]\mathbb{E}\left[y
ight]
ight) \end{aligned}$$

Plugging it into cov[x, y] = cov[S(x), y]

$$\mathbb{E}_{+}\left[oldsymbol{x}y
ight] - \mathbb{E}_{+}\left[oldsymbol{x}
ight]\mathbb{E}\left[y
ight] \hspace{1.5cm} = \hspace{1.5cm} \mathbb{E}_{+}\left[oldsymbol{s}y
ight] - \mathbb{E}_{+}\left[oldsymbol{s}
ight]\mathbb{E}\left[y
ight]$$

Since
$$S_{a+-}(x) = \begin{cases} a_+ w^T x, & \text{if } w^T x > 0 \\ a_- w^T x, & \text{otherwise} \end{cases}$$
 $a_+ = \frac{\mathbb{E}_+ [xy] - \mathbb{E}_+ [x] \mathbb{E}[y]}{w^T \mathbb{E}_+ [xy] - w^T \mathbb{E}_+ [x] \mathbb{E}[y]}$

PatternNet

It is a layer-wise back-projection of the estimated signal to input space

The signal estimator is approximated as a superposition of neuron-wise, non-linear signal estimator S_{a+} at each layer

It is equal to the **gradient** where during the backward pass the **weights** of the network are **replaced** by **the informative directions**

Initialization: $s_i^{output} = y$

Linear or convolutional layers: $oldsymbol{s}^{l-1,i} = oldsymbol{a}_+ s_i^l$

Conservation property: $s_i^{l-1} = \sum_j s_i^{l-1,j}$

ReLU: $s_i^{l-1} = \left\{ egin{array}{l} s_i^l, \; x_i^l > 0 \ 0, \; ext{otherwise} \end{array}
ight.$

PatternAttribution

It exposes the attribution $w \circ a_+$ It can be considered as a root point for DeepTaylorDecomposition

Let $r^{l-1,i}$ be the relevance of the *l*-th layer. The distribution has the following form

$$oldsymbol{r}^{l-1,i} = rac{oldsymbol{w}\odot(oldsymbol{x}-oldsymbol{x}_0)}{oldsymbol{w}^Toldsymbol{x}} r_i^l$$

For the original LRP $x_0 = 0$ For PatternAttribution $x_0 = x - a_+ w^T x$, that gives $r^{l-1,i} = w \odot a_+ r^l_{,i}$

Method comparison

