

双输入通道高精度 24 位模/数 (A/D) 转换器芯片

简介

HX717 采用了海芯科技集成电路专利技术,是一款专为高精度电子秤而设计的 24 位 A/D 转换器芯片。与同类型其它芯片相比,该芯片集成了包括稳压电源、片内时钟振荡器等其它同类型芯片所需要的外围电路,具有集成度高、响应速度快、抗干扰性强等优点。降低了电子秤的整机成本,提高了整机的性能和可靠性。

该芯片与后端 MCU 芯片的接口和编程非常简单,所有控制信号由管脚驱动,无需对芯片内部的寄存器编程。输入选择开关可任意选取通道 A 或通道 B,与其内部的低噪声可编程放大器相连。通道 A 的可编程增益为 128 或 64,通道 B 的可编程增益为 64 或 8。芯片内提供的稳压电源可以直接向外部传感器提供电源,系统板上无需另外的模拟电源。芯片内的时钟振荡器不需要任何外接器件。

特点

- 两路可选择差分输入
- 片内低噪声可编程放大器,可选增益为8,64和128
- 片内稳压电路可直接向外部传感器提供电源
- 片內时钟振荡器无需任何外接器件,必要时 也可使用外接时钟
- 简单的数字控制和串口通讯: 所有控制由管脚输入, 芯片内寄存器无需编程
- 可选择 10, 20, 80 或 320Hz 的输出数据速率
- 同步抑制 50Hz 和 60Hz 的电源干扰
- 耗电量(含稳压电源电路):
 典型工作电流: 1.5mA, 断电电流: < 1uA
- 工作电压范围: 2.7~5.5V
- 工作温度范围: -40~+85℃
- 16 管脚的 SOP-16 封装

Information contained in this document is for design reference only and not a guarantee. Avia Semiconductor reserves the right to modify it without notice.

Tel: (592) 252-9530 (China) Email: <u>sales@aviaic.com</u>

管脚说明

SOP-16L

管脚号	名称	性能	描述
1	AVDD	电源	模拟电源输入: 2.7~5.5V
2	AGND	地	模拟地输入
3	VRO/VREF	电源	稳压管输出和 A/D 转换参考输入端: 1.8V~AVDD
4	VFB	模拟输入	稳压电路控制输入
5	AGND	地	模拟地输入
6	S0	数字输入	输出数据速率控制 0
7	INNA	模拟输入	A 通道差分信号负输入端
8	INPA	模拟输入	A 通道差分信号正输入端
9	INNB	模拟输入	B通道差分信号负输入端
10	INPB	模拟输入	B 通道差分信号正输入端
11	PD_SCK	数字输入	断电控制(高电平有效)和串口时钟输入
12	DOUT	数字输出	串口数据输出
13	S1	数字输入	输出数据速率控制 1: S1S0=00:10Hz, 01:20Hz, 10:80Hz, 11:320Hz
14	XI	数字输入	外部时钟输入,0:使用片内振荡器
15	DGND	地	数字地输入
16	DVDD	电源	数字电源输入: 2.7~5.5V, DVDD≤AVDD

表一 管脚说明

AVIA SEMICONDUCTOR v1.3 2

主要电气参数

(无特殊说明时: AVDD=DVDD=5.0V, VREF=5.0V, GAIN=128, A/D 转换速率=10Hz)

参数	条件及说明	最小值	典型值	最大值	单位
满量程差分输入范围(FSR)	V(INP) - V(INN)		\pm 0.5 (VREF/GAIN)		V
输入共模电压范围	V(INP),V(INN)对GND电压	0.9		AVDD-1.5	V
VREF 输入电压范围	VREF = RP - RN	1.8		AVDD	V
	$f_o = 10Hz$, VREF = 5.0V		18. 2		Bits
工思去 <i>臣***</i> (N: P P: (1)	$f_o = 20$ Hz, VREF = 5.0V		17. 7		Bits
无噪声位数(Noise-Free Bits) ⁽¹⁾	$f_o = 80$ Hz, VREF = 5.0V	16. 7		Bits	
	$f_o = 320 Hz$, VREF = 5.0V		15.8		Bits
A/D 转换速率 (f _o)		10/20/80/320		Hz	
分辨率	无失码		24		Bits
输出数据编码	二进制补码, MSB 为符号位	800000		7FFFFF	HEX
输出稳定时间 ^②			$4/\mathrm{f}_{\mathrm{o}}$		mS
非线性误差(INL)	相比满量程增益	±0.001		%of FS	
输入零点漂移(Input Offset)			0. 01		mV
输入噪声	在 0. 1Hz 处	14			nV/√Hz
阳序乏粉(Tamanadana Dai Ca)	零点漂移(offset drift)	±15		nV/℃	
温度系数(Temperature Drift)	增益漂移(gain drift)	±3		ppm/℃	
电源信号抑制比		100		dB	
共模信号抑制比	At DC, VIN=10mV	100		dB	
电源电压 (VDD)		2.7	5. 0	5. 5	V
山 海山坎	工作状态, VDD = 5.0V		1.5		mA
电源电流	断电状态		1		uA

- (1) 无噪声位数 (Noise-Free Bits) = ln(VREF/GAIN/Peak-to-Peak Noise)/ln(2)。
- (2)输出稳定时间指从上电、断电或 A/D 转换速率改变到输出有效数据的时间。

表二 主要电气参数表

AVIA SEMICONDUCTOR v1.3 3

模拟信号输入

模拟差分输入可直接与桥式传感器的差分输出相接。当前置放大器的增益为 128,参考电压 VREF 为 5.0V 时,所对应的满量程差分输入电压范围为±19.5mV。

供电电源和 AD 转换参考电压

AVDD 和 DVDD 为 $2.7\sim5.5V$,DVDD 需小于等于 AVDD。A/D 转换参考电压输入 VREF 在芯片内与 VRO 管脚直接相连接,外部应与传感器的供电电源直接相连。

可使用 HX717 芯片内的稳压电路向外部传感器提供模拟电源。稳压电路的供电电压为AVDD,输出 VRO 由外部分压电阻 R1、R2 决定(图三), VRO=1.11*(R1+R2)/R2。VRO 应设置比 AVDD 低至少 200mV。

如果不使用芯片内的稳压电路,管脚 VRO/VREF 应连接 AVDD, 管脚 VFB 应连接 AVDD。

串口通讯

串行通讯线由串行时钟输入口 PD_SCK 和串行数据输出口 DOUT 组成。

当 DOUT 为高电平时,表明 A/D 转换器还未准备好输出数据,此时 PD_SCK 应为低电平。 当 DOUT 从高电平变为低电平后,PD SCK 应输 入 25 或 28 个时钟脉冲,参见图二。其中第 1 至第 24 个时钟脉冲的上升沿送出 24 位 ADC 数据;第 25 至第 28 个时钟脉冲用来选择下一次 A/D 转换的输入通道和增益,参见表三。

PD_SCK 脉冲数	输入通道	增益
25	A	128
26	В	64
27	A	64
28	В	8

表三 输入通道和增益选择

断电

PD_SCK 脚可以用于控制芯片的断电。当DOUT 脚由高变低后,发送 30 个 PD_SCK 时钟脉冲,且在第 30 个时钟脉冲的上升沿保持在高电平超过 80uS,芯片进入断电状态。

当 PD_SCK 重新回到低电平,芯片进入工作状态,保持断电前的 A/D 转换速率。

芯片从上电、断电状态进入工作状态或改变 A/D 转换速率, A/D 转换器需要 4 个数据输出周期才能稳定,即 DOUT 在 4 个数据输出周期后才会从高电平变低电平,输出有效数据。

AVIA SEMICONDUCTOR v1.3 4

符号	说明	最小值	典型值	最大值	单位
T_1	DOUT 下降沿到 PD_SCK 上升沿	1			μs
T_2	PD_SCK 上升沿到 DOUT 数据有效			0. 1	μs
T_3	PD_SCK 高电平时间	0.2		50	μs
T_4	PD_SCK 低电平时间	0.2	1		μs

参考设计

VDD=5.0V, OWR=10Hz (S1=0, S0=0), VRO=4.44V=(1.11*(30K+10K)/10K)

图三 HX717 参考 PCB 设计原理图

参考驱动程序(C)

```
ulong HX717_Read(void)
{
      uchar i;
      ulong bcd=0;
                         // 24位内码
      PD_SCK = 0;
      while (DOUT==1);
                         // 延时大于1uS
      _nop_();
      _nop_();
      _nop_();
      for (i=0; i<24; i++)
             PD_SCK = 1; // 高电平时间需小于50uS
             PD SCK = 0;
             bcd = bcd << 1;
            if (DOUT==1) bcd++;
      }
      PD_SCK = 1;
      PD_SCK = 0;
      bcd = bcd 0x800000; // 有符号数变成无符号数:
```



```
// 0x800000(-max) \sim 0xffffff(-0) \sim 0x000000(+0) \sim 0x7fffff(+max) 转换成 return bcd; // 0x000000(-max) \sim 0x7fffff(-0) \sim 0x800000(+0) \sim 0xffffff(+max) }
```

封装尺寸

SOP-16L Package

注意事项

- 1. 单片机上电初始化 ADC 芯片: 拉高 PD_SCK 超过 100us 再拉低。
- 2. PD_SCK 可设置成推挽输出模式,读 ADC 数据时 PD_SCK 高电平和低电平时间为 1us 左右,降低 PD_SCK 时钟速度,增加抗电磁干扰能力。
- 3. 正常工作时,单片机通过检测 DOUT 脚处于高的时间来判断 DOUT 脚是否不会变低;如果超过限定时间没有变低,则拉高 PD SCK 超过 100us 再拉低,即重新复位 ADC 芯片。
- 4. 关于限定时间:如果单片机不能保证每个数据周期都来读取ADC数据,则应根据实际应用情况增加限定时间;比如有1个数据周期不会读,则限定时间为250ms;有2个数据周期不会读,则限定时间为350ms。这里需要注意,重新复位ADC芯片后,第1个数据输出需要4个数据输出周期。

AVIA SEMICONDUCTOR v1.3 6