Конечные автоматы

Аналитическое представление

- Существуют различные варианты задания конечного автомата.
- A) Конечный автомат (КА) можно определить как объект состоящий из пяти параметров $KA = (\mathcal{E} \ , Q, q_o, F, \delta)$, где:
- Σ допустимый входной алфавит автомата конечное множество
- $Q = \{q_0, q_1, ..., q_n\}$ используется для обозначения множества состояний автомата. Это тоже конечное множество.
- $q_0 \in Q$ начальное состояние автомата. В любом конечном автомате существует только одно начальное состояние.
- F∈Q используется для обозначения множества конечных или финальных состояний автомата.
- $\hat{\mathbf{\delta}}: Q \times \Sigma \to p(Q)$ функция, определяющая переходы автомата (p(Q) подмножества Q).

Конечные автоматы

Конструкция $\delta(q,a)=\{q_1,q_2,...q_n\}$ означает что автомат находящийся в состоянии ${m q}$, через символ ${m a}$ может перейти в любое из состояний ${m q}_1-{m q}_n$.

Конечные автоматы

Действия автомата просты: принять символы со входной ленты, передвигая устройство чтения из определённой позиции q_i в состояние q_i .

Цель - принять слово, написанное на входной ленте.

Работа начинается с состояния $oldsymbol{q}_o$, считывая по одному символу входной строки.

Считанный символ переводит автомат в новое состояние из $oldsymbol{Q}$ в соответствии с функцией переходов $oldsymbol{\delta}$.

Если по завершении считывания входного слова, автомат оказывается в одном из допускающих состояний из \boldsymbol{F} , то слово принимается. В этом случае говорят, что данное слово принадлежит языку данного автомата. В противном случае, слово «отвергается» автоматом.

Конечные автоматы

Аналитическое представление

Fie $AF = (\Sigma, Q, q_0, \delta, F), \Sigma = \{0,1\}, Q = \{q_0, q_1, q_2\}, F = \{q_2\}$

$$\begin{split} \delta\colon \delta(q_o,o) = & \{q_o\}, \, \delta(q_o,1) = \{q_o,\,q_{\imath}\}, \, \delta(q_{\imath},\,1) = \{q_{\imath}\}, \\ \delta(q_{\imath},\,1) = & \{q_{\imath}\}, \, \delta(q_{\imath},\,0) = \{q_{\imath}\}. \end{split}$$

Конечные автоматы

Графическое представление

Диаграмма состояний (или иногда граф переходов) - графическое представление множества состояний автомата и функции его переходов. Представляет собой нагруженный однонаправленный граф, вершины которого это состояния КА, ребра - переходы из одного состояния в другое, а нагрузка это символы, при которых осуществляется данный переход.

В графе переходов, все финальные состояния обозначаются двойными окружностями. Промежуточные - просто окружностью.

Конечные автоматы <u>Графическое представление</u>

Конечные автоматы **Табличное представление**

Таблица переходов — табличное представление функции δ. В этой таблице каждой строке соответствует одно состояние, а столбцу один допустимый входной символ. В ячейке на пересечении строки и столбца записывается действие, которое должен выполнить автомат, если в ситуации, когда он находился в данном состоянии на входе он получил данный символ алфавита.

	0	1
$\mathbf{q_0}$	q_0	q_0, q_1
\mathbf{q}_1	err	q_2
\mathbf{q}_2	q_2	q_2

Конечные автоматы

Для автомата можно определить язык (множество слов) в алфавите Σ , который он **представляет**/распознает.

Язык, распознаваемый конечным автоматом, обозначают L(KA).

Данный язык состоит только из успешных путей, т. е. их распознание начинается из ${\bf q}_{\rm o}$ и завершают распознание в одном состоянии из ${\bf F}.$

В данном случае говорится что конечный автомат KA распознаёт язык L(KA).

Язык $m{L}$ называется $m{a}$ втоматным если существует конечный автомат, распознающий этот язык.

Конечные автоматы

Конфигурацией конечного автомата называется дюбая уторядоченная пара $\{\mathbf{q},\mathbf{x}\},\,\mathbf{q}\in\mathbb{Q},\,\mathbf{x}\in\Sigma^{\mathbf{x}},\,\mathbf{x}$ - слово.

Конфигурация представляет собой «игнованное отможние». Если представить что исходное слово, принадлежность которого расснатриваемому языку надо проверить, дано в «жекотором входном потоке», то в конфигурации (q, x) слово x это та часть исходного слова, которая пока осталась во входном потоке, а q текущее состояния автомата.

Начальная конфигурация КА это пара (qs, x).

Конечные автоматы

Конечный автонат переходит из конфитурации (q_1, x_1) в конфитурацию (q_0, x_4) , если существуют $q_0, q_0, ..., q_{n-1}$ и $x_2, ..., x_{n-1}$, тек же существуют переходы: $(q_0, x_1) \vdash (q_{0+1}, x_{n-1})$, гре i=2, i=1.

Данный переход обозначается $(\mathbf{q}_1,\mathbf{x}_1)^{|\mathbf{x}_1|}(\mathbf{q}_n,\mathbf{x}_n)$.

Слово и принадлежит L(KA) только тогда когда существует перенад, $(\mathbf{q}_0,\mathbf{x})^{\pm 0} - (\mathbf{q}_0,\mathbf{x})$, где \mathbf{q}_0 это одно из конечных состоямий. То есть, иножество всех допустимых слов КА составляет L(KA). Или,

 $L(KA){=}\langle x\mid x\in \Sigma^{\alpha},\, (q_{n}x)\rangle^{\underline{n}}\cdot (q_{n}x)\rangle$

Задания:

Отобразить следующий КА в виде таблицы переходов (в матрице) и графически, в виде графа. Для каждого КА проверить на проходимость по 3 слова

- $$\begin{split} \bullet \quad & KA = (\Sigma, Q, q_0, \delta, F), \Sigma = \{o, 1\}, Q = \{q_0, q_1, q_2\}, F = \{q_2\}, \\ \delta : \delta(q_0, o) = \{q_0, q_2\}, \delta(q_0, 1) = \{q_1, q_2\}, \delta(q_1, o) = \{q_0, q_2\}. \end{split}$$
- $\begin{array}{l} \bullet \quad KA = (\Sigma,Q,q_o,\delta,F), \Sigma = \{a,b\}, \, Q = \{q_o,q_i,q_2,q_3\}, \, F = \{q_3\}, \\ \delta : \delta(q_o,a) = \{q_1\}, \delta(q_1,a) = \{q_1\}, \, \delta(q_1,b) = \{q_2\}, \delta(q_2,b) = \{q_2,q_3\}. \end{array}$
- $$\begin{split} \bullet \quad & \text{KA} = (\Sigma, Q, q_o, \delta, F), \Sigma = \{o, 1\}, Q = \{q_o, q_1, q_2, q_3, q_4\}, F = \{q_4\}, \\ & \delta : \delta(q_o, o) = \{q_1, q_2\}, \delta(q_0, 1) = \{q_2\}, \delta(q_1, 1) = \{q_2\}, \delta(q_2, o) = \{q_1\}, \\ & \delta(q_2, 1) = \{q_2\}, \delta(q_3, o) = \{q_2, q_3\}, \delta(q_3, 1) = \{q_4\}. \end{split}$$
- Проверить следующие слова 00011101, 1000001, 1111000110001111, если они проходят через данный KA=(Σ , Q, q₀, δ , F), Σ ={0,1},Q={q₀, q₁, q₂}, F={q₂}, δ : δ (q₀,0)={q₀}, δ (q₀,1)={q₀,q₁}, δ (q₁,1)={q₂}, δ (q₂,1)={q₂}, δ (q₂,0)={q₂}.