FMI, Info, Anul I Logică matematică și computațională

Seminar 5

(S5.1) Să se demonstreze că, pentru orice formule φ, ψ ,

- (i) $\psi \vDash \varphi$ dacă și numai dacă $\vDash \psi \to \varphi$.
- (ii) $\psi \sim \varphi$ dacă și numai dacă $\vDash \psi \leftrightarrow \varphi$.

Demonstrație:

(i) Avem:

$$\psi \vDash \varphi \iff \text{ orice model al lui } \psi \text{ este } \emptyset \text{ model pentru } \varphi$$

$$\iff \text{ pentru orice } e: V \to \{0,1\}, \text{ dacă } e^+(\psi) = 1, \text{ atunci } e^+(\varphi) = 1$$

$$\iff \text{ pentru orice } e: V \to \{0,1\}, e^+(\psi) \le e^+(\varphi)$$

$$\iff \text{ pentru orice } e: V \to \{0,1\}, e^+(\psi) \to e^+(\varphi) = 1$$

$$\iff \text{ pentru orice } e: V \to \{0,1\}, e^+(\psi \to \varphi) = 1$$

$$\iff \vDash \psi \to \varphi.$$

(ii) Avem:

$$\psi \sim \varphi \iff Mod(\psi) = Mod(\varphi)$$

$$\iff Mod(\psi) \subseteq Mod(\varphi) \text{ si } Mod(\varphi) \subseteq Mod(\psi)$$

$$\iff \psi \vDash \varphi \text{ si } \varphi \vDash \psi$$

$$\iff \text{pentru orice } e : V \to \{0,1\}, e^+(\varphi \to \psi) = 1 \text{ si } e^+(\psi \to \varphi) = 1$$

$$\iff \text{pentru orice } e : V \to \{0,1\}, e^+(\varphi \to \psi) \land e^+(\psi \to \varphi) = 1$$

$$\iff \text{pentru orice } e : V \to \{0,1\}, e^+(\varphi \to \psi) \land (\psi \to \varphi)) = 1$$

$$\iff \text{pentru orice } e : V \to \{0,1\}, e^+(\varphi \to \psi) \land (\psi \to \varphi)) = 1$$

$$\iff \text{pentru orice } e : V \to \{0,1\}, e^+(\varphi \leftrightarrow \psi) = 1$$

$$\iff \vdash \psi \leftrightarrow \varphi.$$

(S5.2) Confirmați sau infirmați:

- (i) pentru orice $\varphi, \psi \in Form, \models \varphi \land \psi$ dacă şi numai dacă $\models \varphi$ şi $\models \psi$;
- (ii) pentru orice $\varphi, \psi \in Form, \vDash \varphi \lor \psi$ dacă și numai dacă $\vDash \varphi$ sau $\vDash \psi$.

Demonstraţie:

(i) Este adevărat. Avem:

(ii) Nu este adevărat! Dacă luăm $e_1: V \to \{0,1\}, \ e_1(x) = 1$, pentru orice $x \in V$, şi $e_2: V \to \{0,1\}, \ e_2(x) = 0$, pentru orice $x \in V$, avem că $e_1 \not\models \neg v_0$ și $e_2 \not\models v_0$, deci v_0 și $\neg v_0$ nu sunt tautologii, pe când $v_0 \vee \neg v_0$ este tautologie.

(S5.3) Arătați că pentru orice φ , ψ , $\chi \in Form$, avem:

- (i) $\psi \vDash \varphi \rightarrow \psi$;
- (ii) $(\varphi \to \psi) \land (\psi \to \chi) \vDash \varphi \to \chi$;
- (iii) $\varphi \to (\psi \to \chi) \sim (\varphi \land \psi) \to \chi$;
- (iv) $\varphi \lor (\varphi \land \psi) \sim \varphi$;
- (v) $\varphi \wedge \psi \rightarrow \chi \sim (\varphi \rightarrow \chi) \vee (\psi \rightarrow \chi);$
- (vi) $\vDash \neg \varphi \rightarrow (\neg \psi \leftrightarrow (\psi \rightarrow \varphi)).$

Demonstrație: Vom folosi în demonstrații următoarele: pentru orice $a, b \in \{0, 1\}$,

$$\begin{aligned} a &\rightarrow b = 1 &\iff a \leq b, \\ 1 &\rightarrow a = a, & a &\rightarrow 1 = 1 \\ 0 &\rightarrow a = 1, & a &\rightarrow 0 = \neg a \\ 1 &\land a = a, & 0 &\land a = 0, \\ 1 &\lor a = 1, & 0 &\lor a = a. \end{aligned}$$

- (i) Fie $e: V \to \{0,1\}$ cu $e^+(\psi) = 1$. Vrem să arătăm că $e^+(\varphi \to \psi) = 1$. Dar: $e^+(\varphi \to \psi) = e^+(\varphi) \to e^+(\psi) = e^+(\varphi) \to 1 = 1$.
- (ii) Fie $e:V\to\{0,1\}$ cu $e^+((\varphi\to\psi)\wedge(\psi\to\chi))=1$. Vrem să arătăm că $e^+(\varphi\to\chi)=1$. Avem că

$$1 = e^+((\varphi \to \psi) \land (\psi \to \chi)) = (e^+(\varphi) \to e^+(\psi)) \land (e^+(\psi) \to e^+(\chi)),$$

de unde tragem concluzia că $e^+(\varphi) \to e^+(\psi) = 1$ şi $e^+(\psi) \to e^+(\chi) = 1$. Prin urmare, $e^+(\varphi) \le e^+(\psi)$ şi $e^+(\psi) \le e^+(\chi)$. Obţinem atunci, din tranzitivitatea lui \le , că $e^+(\varphi) \le e^+(\chi)$. Aşadar,

$$e^+(\varphi \to \chi) = e^+(\varphi) \to e^+(\chi) = 1.$$

(iii) Fie $e:V \to \{0,1\}$ o evaluare arbitrară. Trebuie să demonstrăm că

$$e^+(\varphi \to (\psi \to \chi) = 1$$
dacă și numai dacă $e^+(\varphi \land \psi \to \chi) = 1,$

ceea ce este echivalent cu a arăta că $e^+(\varphi \to (\psi \to \chi)) = e^+(\varphi \land \psi \to \chi).$

Metoda 1: Ne folosim de următorul tabel:

$e^+(\varphi)$	$e^+(\psi)$	$e^+(\chi)$	$e^+(\psi \to \chi)$	$e^+(\varphi \to (\psi \to \chi))$	$e^+(\varphi \wedge \psi)$	$e^+(\varphi \wedge \psi \to \chi)$
1	1	1	1	1	1	1
1	1	0	0	0	1	0
1	0	1	1	1	0	1
1	0	0	1	1	0	1
0	1	1	1	1	0	1
0	1	0	0	1	0	1
0	0	1	1	1	0	1
0	0	0	1	1	0	1

Metoda 2: Raţionăm direct. Observăm că

$$e^+(\varphi \to (\psi \to \chi)) = e^+(\varphi) \to (e^+(\psi) \to e^+(\chi)),$$

 $e^+(\varphi \land \psi \to \chi) = e^+(\varphi) \land e^+(\psi) \to e^+(\chi).$

Avem cazurile:

(a)
$$e^+(\varphi) = 0$$
. Atunci

$$e^{+}(\varphi) \rightarrow (e^{+}(\psi) \rightarrow e^{+}(\chi)) = 0 \rightarrow (e^{+}(\psi) \rightarrow e^{+}(\chi)) = 1,$$

$$e^{+}(\varphi) \wedge e^{+}(\psi) \rightarrow e^{+}(\chi) = 0 \wedge e^{+}(\psi) \rightarrow e^{+}(\chi) = 0 \rightarrow e^{+}(\chi) = 1.$$

(b)
$$e^+(\varphi) = 1$$
. Atunci

$$e^{+}(\varphi) \to (e^{+}(\psi) \to e^{+}(\chi)) = 1 \to (e^{+}(\psi) \to e^{+}(\chi)) = e^{+}(\psi) \to e^{+}(\chi),$$

$$e^{+}(\varphi) \wedge e^{+}(\psi) \to e^{+}(\chi) = 1 \wedge e^{+}(\psi) \to e^{+}(\chi) = e^{+}(\psi) \to e^{+}(\chi).$$

(iv) Fie $e: V \to \{0, 1\}$ o evaluare arbitrară. Trebuie să demonstrăm că $e^+(\varphi \lor (\varphi \land \psi)) = e^+(\varphi), \quad \text{deci că} \quad e^+(\varphi) \lor (e^+(\varphi) \land e^+(\psi)) = e^+(\varphi).$

Avem cazurile:

(a)
$$e^+(\varphi) = 1$$
. Atunci

$$e^{+}(\varphi) \vee (e^{+}(\varphi) \wedge e^{+}(\psi)) = 1 \vee (1 \wedge e^{+}(\psi)) = 1 \vee e^{+}(\psi) = 1.$$

(b)
$$e^+(\varphi) = 0$$
. Atunci

$$e^{+}(\varphi) \vee (e^{+}(\varphi) \wedge e^{+}(\psi)) = 0 \vee (0 \wedge e^{+}(\psi)) = 0 \vee 0 = 0.$$

(v) Fie $e:V \to \{0,1\}$ o evaluare arbitrară. Trebuie să demonstrăm că

$$e^+(\varphi \wedge \psi \to \chi) = e^+((\varphi \to \chi) \vee (\psi \to \chi)),$$

deci că

$$(e^+(\varphi) \land e^+(\psi)) \rightarrow e^+(\chi) = (e^+(\varphi) \rightarrow e^+(\chi)) \lor (e^+(\psi) \rightarrow e^+(\chi)).$$

Avem cazurile:

(a)
$$e^+(\varphi) = e^+(\psi) = 1$$
. Atunci

(b)
$$e^+(\varphi) = 0$$
. Atunci

$$\begin{split} (e^{+}(\varphi) \wedge e^{+}(\psi)) &\to e^{+}(\chi) &= (0 \wedge e^{+}(\psi)) \to e^{+}(\chi) \\ &= 0 \to e^{+}(\chi) = 1, \\ (e^{+}(\varphi) \to e^{+}(\chi)) \vee (e^{+}(\psi) \to e^{+}(\chi)) &= (0 \to e^{+}(\chi)) \vee (e^{+}(\psi) \to e^{+}(\chi)) \\ &= 1 \vee (e^{+}(\psi) \to e^{+}(\chi)) = 1. \end{split}$$

- (c) $e^+(\psi) = 0$. Similar cu cazul precedent.
- (vi) Fie $e:V \to \{0,1\}$ o evaluare arbitrară.

$$e^{+}(\neg\varphi\to(\neg\psi\leftrightarrow(\psi\to\varphi)))=\neg e^{+}(\varphi)\to(\neg e^{+}(\psi)\leftrightarrow(e^{+}(\psi)\to e^{+}(\varphi))).$$

Avem cazurile:

(a) $e^+(\varphi) = 1$. Atunci $\neg e^+(\varphi) = 0$ şi, prin urmare,

$$\neg e^{+}(\varphi) \to (\neg e^{+}(\psi) \leftrightarrow (e^{+}(\psi) \to e^{+}(\varphi))) = 0 \to (\neg e^{+}(\psi) \leftrightarrow (e^{+}(\psi) \to e^{+}(\varphi)))$$

$$= 1$$

(b) $e^+(\varphi) = 0$. Atunci

$$\neg e^{+}(\varphi) \to (\neg e^{+}(\psi) \leftrightarrow (e^{+}(\psi) \to e^{+}(\varphi))) = \neg 0 \to (\neg e^{+}(\psi) \leftrightarrow (e^{+}(\psi) \to 0))
= 1 \to (\neg e^{+}(\psi) \leftrightarrow (e^{+}(\psi) \to 0))
= \neg e^{+}(\psi) \leftrightarrow (e^{+}(\psi) \to 0)
= \neg e^{+}(\psi) \leftrightarrow \neg e^{+}(\psi)
= 1.$$

(S5.4) Să se arate că

$$\{v_0, \neg v_0 \lor v_1 \lor v_2\} \vDash (v_3 \to v_2) \lor (\neg v_1 \to v_2)$$

Demonstrație: Fie $e: V \to \{0,1\}$ cu $e \models \{v_0, \neg v_0 \lor v_1 \lor v_2\}$. Atunci $e^+(v_0) = 1$ (deci $e(v_0) = 1$) și $e^+(\neg v_0 \lor v_1 \lor v_2) = 1$. Așadar,

$$1 \ = \ \neg e(v_0) \ \mathsf{V} \ e(v_1) \ \mathsf{V} \ e(v_2) = \neg 1 \ \mathsf{V} \ e(v_1) \ \mathsf{V} \ e(v_2) = 0 \ \mathsf{V} \ e(v_1) \ \mathsf{V} \ e(v_2) = e(v_1) \ \mathsf{V} \ e(v_2).$$

Conform definiției lui \vee , avem că $v_1 \vee v_2 = \neg v_1 \rightarrow v_2$, deci

$$e^+(\neg v_1 \to v_2) = e^+(v_1 \lor v_2) = e(v_1) \lor e(v_2) = 1.$$

Prin urmare,

$$e^{+}((v_3 \to v_2) \lor (\neg v_1 \to v_2)) = e^{+}(v_3 \to v_2) \lor e^{+}(\neg v_1 \to v_2) = e^{+}(v_3 \to v_2) \lor 1 = 1,$$

adică $e \vDash (v_3 \to v_2) \lor (\neg v_1 \to v_2).$

(S5.5) Să se găsească toate modelele fiecăreia din mulțimile de formule:

- (i) $\Gamma = \{v_n \to v_{n+1} \mid n \in \mathbb{N}\};$
- (ii) $\Gamma = \{v_0\} \cup \{v_n \to v_{n+1} \mid 0 \le n \le 7\}.$

Demonstrație:

(i) Fie $e: V \to \{0,1\}$ şi $n \in \mathbb{N}$. Atunci $e \models v_n \to v_{n+1}$ dacă şi numai dacă $e^+(v_n \to v_{n+1}) = 1$ dacă şi numai dacă $e^+(v_n) \to e^+(v_{n+1}) = 1$ dacă şi numai dacă $e(v_n) \to e(v_{n+1}) = 1$ dacă şi numai dacă $e(v_n) \le e(v_{n+1})$. Prin urmare,

$$e \models \Gamma$$
 dacă şi numai dacă pentru orice $n \in \mathbb{N}$, $e(v_n) \le e(v_{n+1})$ dacă şi numai dacă $e(v_0) \le e(v_1) \le \ldots \le e(v_n) \le e(v_{n+1}) \le \ldots$ dacă şi numai dacă $(e(v) = 0 \text{ pentru orice } v \in V)$ sau $(e(v) = 1 \text{ pentru orice } v \in V)$ sau $(există k \ge 1 \text{ a.î. } e(v_i) = 0 \text{ pentru orice } i < k \text{ și } e(v_i) = 1 \text{ pentru orice } i > k).$

Definim $e^0: V \to \{0,1\}, \ e^0(v) = 0, \ e^1: V \to \{0,1\}, \ e^1(v) = 1$ şi, pentru orice $k \ge 1$,

$$e_k: V \to \{0,1\}, \quad e_k(v_n) = \begin{cases} 0 & \operatorname{dacă} n < k \\ 1 & \operatorname{dacă} n \ge k. \end{cases}$$

Atunci

$$Mod(\Gamma) = \{e_k \mid k \ge 1\} \cup \{e^0, e^1\}.$$

(ii) Fie $e: V \to \{0, 1\}$. Atunci

$$e \models \Gamma$$
 dacă şi numai dacă $e \models v_0$ şi $e \models v_n \rightarrow v_{n+1}$ pentru orice $0 \le n \le 7$ dacă şi numai dacă $e(v_0) = 1$ şi $e(v_0) \le e(v_1) \le \ldots \le e(v_7) \le e(v_8)$ dacă şi numai dacă $e(v_n) = 1$ pentru orice $n \in \{0, 1, \ldots, 8\}$.

Aşadar,

$$Mod(\Gamma) = \{e : V \to \{0,1\} \mid e(v_n) = 1 \text{ pentru orice } 0 \le n \le 8\}.$$