Complexity of solving puzzles

Barbora Klembarová

RNDr. Michal Forišek, PhD.

10. mája 2017

Doterajšie práce

- Solving combinatorial problems: The 15-puzzle [Pizlo and Li, 2005]
- Difficulty Rating of Sokoban Puzzle [Jarušek and Pelánek, 2010]
- What Determines Difficulty of Transport Puzzles?
 [Jarušek and Pelánek, 2011]

Obtiažnosť "posuvných" hier

- What Determines Difficulty of Transport Puzzles? [Jarušek and Pelánek, 2011]
- študovali tri hry:
 - Sokoban
 - Rušná hodinka
 - Replacement puzzle

Rules: $0 \rightarrow 0 \bullet 0$ Start sequence:

00000

Goal sequence:

Obtiažnosť "posuvných" hier

- data veľké rozdiely v obtiažnosti medzi inštanciami
- tvrdia, že sú spôsobené štruktúrou stavového priestoru
- vytvorili výpočtový model ľudského správania v stavovom priestore (kombinácia náhodného a optimálneho správania)
- má iba jeden parameter jeho optimálna hodnota je takmer rovnaká pre všetky tri problémy

$$score(s') = \begin{cases} d(s) & d(s') \ge d(s) \\ d(s) + B & d(s') < d(s) \end{cases}$$

Obtiažnosť "posuvných" hier

problem	metric	ρ
Rush hour	SP	0.9
	B = 25	0.9
Sokoban	SP	0.41
	B = 25	0.61
Replacement	SP	0.21
puzzle	B = 25	0.49

- model porovnávali aj s inými metrikami
- výsledky sa líšia pre tri problémy
- výsledky prinášajú nové otázky (napr. akú rolu hrá orientácia grafu stavov)

Pravidlá

- hracia plocha 2D mriežka
- medzi každými dvoma štvorčekmi môže byť stena
- po okraji sú všade steny
- k modrých štvorčekov a jedna červená gulička
- gulička sa hýbe v štyroch smeroch hore, doprava, doľava a dole
- pri pohybe sa gulička zastaví až keď narazí na stenu
- gulička vezme modrý štvorček ak ním prejde, nemusí sa na ňom zastaviť
- cieľ je pozbierať všetky modré štvorčeky

Doterajší výskum Gulička a strojové učenie Koniec

Gulička Učenie s učiteľom Syntaktické vlastnosti Časové dáta Experimentálne vyhodnotenie

Tilt Maze (Gulička), podobné Quell-u Quell je v P, dokázal Tejada [Tejada, 2014]. Doterajší výskum Gulička a strojové učenie Koniec

Gulička Učenie s učiteľom Syntaktické vlastnosti Časové dáta Experimentálne vyhodnotenie

Cieľ

- zistiť ako ťažký je level pre človeka
- ako závísi jeho obtiažnosť od jeho atribútov
- resp. zistiť ktoré atribúty sú dôležité

Učenie s učiteľom

Dáta

Množina *n* dvojíc *x* - vstup, *y* - očakávaný výstup.

Cieľ

Predikovať výstup pre nové x.

Poznámka

Vo väčšine prípadov je \vec{x} je vektor s m hodnotami (atribútmi) a y skalár.

Čo nás zaujíma

- schopnosť modelu sa zovšeobecniť na nové dáta generalizácia
- generalizácia sa dá merať chybou na nových dátach testovacia chyba
- preto si delíme dáta na trénovaciu a testovaciu množinu
- testovacia chyba sa od trénovacej môže líšiť (niekedy málo, niekedy veľmi)

Atribúty

- checkpoint_count
- tile count
- width
- reachable_tile_count
- reachable_states_count
- shortest_path
- scc_count
- scc_checkpoint_count
- reachable_states_log
- d'alšie atribúty: počet slepých ciest, minimálny rez stavovým priestorom . . .

reachable_states_log

(a) Počet dosiahnuteľných stavov

(b) Logaritmus počtu dosiahnuteľných stavov

Časové dáta

Login	221	223	225	227	228	229	230	231	232	233	234	235
U1	11	12			64							
U2	2	28	45	59	41			27	100		107	
U4	25			205	12	29		32	116	55	89	
U5		5	9		45	160		53	41			
U6	10	11										
U7	5	11	10	41	16	49	204	28	39	89	85	283
U8	5	11		43	54							
U9	8	11	18	45	20	82		53				
U10	44	15			26							
U13	9	12	19	37	49	28	128	42	66	50	37	273
U14		65	33	86	65	135						
U15		18	38		32	96						
U17	4											
U20	22	28	35	48	31	141	270	124	163	41	176	179
U21	35	42	129		63			37				
U22	11	29	32		31			51				
U24	10	20	19		194							
U25	26	16	23	96	23	57	514	15	99	120	268	
U26	23			86	22	58	306	37	80	51	144	184

Výsledky

- využili sme niekoľko bežných metód strojového učenia
- GridSearch natrénovanie metód
- skóre pre trénovaciu aj pre testovaciu množinu
- skóre Coefficient of determination
 - ak je 1.0, tak parametre modelu sú najlepšie odhadnuté
 - ullet ak je 0.0 model je rovnako dobrý ako random
 - môže byť aj záporné, ak sa to naozaj zle natrénuje

$$R^2 = 1 - \frac{SS_{res}}{SS_{tot}}$$
 $SS_{res} = \sum_i e_i^2$ $SS_{tot} = \sum_i y_i - \bar{y}^2$

Výsledky

V tabuľke vidíme najlepšie parametre, trénovacie a testovacie skóre.

Method	Best params	Train score	test score
LinearRegression	_	0.60	0.54
Ridge	'alpha': 100.0	0.55	0.48
Lasso	'alpha': 0.10000000000000001	0.57	0.51
ElasticNet	'alpha': 0.17782794100389229	0.57	0.50
SGDRegressor	'alpha': 1.7782794100389228	0.52	0.44
SVR	'kernel': 'rbf', 'gamma': 0.001, 'C': 1.0	0.35	0.29
RandomForestRegressor	'n_estimators': 15	0.76	0.48
KNeighborsRegressor	'n_neighbors': 15, 'algorithm': 'auto'	0.53	0.49

Metóda ostraňovania parametrov

- každý jeden atribút sme skúsili odstrániť
- potom sme každú metódu natrénovali znova
- v nasledujúcich tabuľkách uvidíme trénovacie a testovacie skóre jednotlivých metód

Metóda ostraňovania parametrov - trénovacie skóre

Feature	LR	Ridge	Lasso	EN	SGDR	SVR	RFR	KNR
checkpoint_count	0.60	0.56	0.57	0.57	0.53	0.52	0.74	0.53
tile_count	0.59	0.56	0.57	0.57	0.53	0.52	0.78	0.53
width	0.58	0.55	0.57	0.55	0.52	0.50	0.77	0.55
reachable_tile_count	0.50	0.45	0.49	0.44	0.42	0.44	0.74	0.52
scc_count	0.47	0.36	0.00	0.00	0.35	0.39	0.77	0.47
scc_checkpoint_count	0.37	0.14	0.00	0.00	0.10	0.36	0.71	0.47
shortest_path	0.37	0.15	0.00	0.00	0.11	0.17	0.64	0.42
reachable_states_count	0.36	0.23	0.00	0.00	0.18	0.19	0.47	0.42
reachable_states_log	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-0.13

Metóda ostraňovania parametrov – testovacie skóre

Feature	LR	Ridge	Lasso	EN	SGDR	SVR	RFR	KNR
checkpoint_count	0.57	0.45	0.51	0.50	0.42	0.43	0.51	0.47
tile_count	0.53	0.46	0.51	0.50	0.43	0.44	0.52	0.48
width	0.53	0.47	0.52	0.50	0.44	0.43	0.46	0.47
reachable_tile_count	0.45	0.41	0.47	0.43	0.37	0.41	0.40	0.34
scc_count	0.44	0.34	-0.04	-0.04	0.32	0.39	0.31	0.36
scc_checkpoint_count	0.51	0.12	-0.04	-0.04	0.07	0.31	0.37	0.40
shortest_path	0.50	0.13	-0.04	-0.04	80.0	0.22	0.38	0.39
reachable_states_count	0.49	0.24	-0.04	-0.04	0.18	0.23	0.09	0.40
reachable_states_log	-0.04	-0.04	-0.04	-0.04	-0.04	-0.02	-0.06	-0.31

Záver

- môžeme predpokladať, že obtiažnosť levelu aspoň mierne závisí od daných syntaktických vlastností
- zároveň logaritmus počtu dosiahnuteľných stavov ovplyvňuje obtiažnosť najviac (z daných parametrov)
- do budúcnosti získať viac dát, nájsť dáta pre problémy, ktoré majú rovnaké alebo podobné parametre

Čo ďalej?

- využiť iné metódy (neurónové siete ...)
- skúsiť iné prístupy (štatistické testy . . .)
- využiť dáta o jednotlivých užívateľoch (collaborative filtering)
- hľadať ďalšie vlastnosti (minimálny rez ...)
- vyskúšať iné Puzzle (Rush Hour . . .)

Zdroje I

[Culberson, 1997] Culberson, J. (1997).

Sokoban is PSPACE-Complete.

International Conference on Fun with Algorithms, (April):65–76.

[Ferguson, 2014] Ferguson, T. S. (2014).

Impartial Combinatorial Games.

In Game theory, chapter I, pages I-1 to I-46. Mathematics Department, UCLA, second edition.

http://www.math.ucla.edu/~tom/Game_Theory/comb.pdf.

[Flake and Baum, 2002] Flake, G. W. and Baum, E. B. (2002).

Rush hour is pspace-complete, or "why you should generously tip parking lot attendants".

Theor. Comput. Sci., 270(1-2):895-911.

Zdroje II

```
[Jarušek and Pelánek, 2010] Jarušek, P. and Pelánek, R. (2010).
```

Difficulty Rating of Sokoban Puzzle.

Proceedings of the 2010 conference on STAIRS 2010: Proceedings of the Fifth Starting AI Researchers' Symposium, pages 140–150.

[Jarušek and Pelánek, 2011] Jarušek, P. and Pelánek, R. (2011).

What Determines Difficulty of Transport Puzzles?

Artificial Intelligence, pages 428-433.

[Kotovsky et al., 1985] Kotovsky, K., Hayes, J., and Simon, H. (1985).

Why are some problems hard? Evidence from Tower of Hanoi.

Cognitive psychology, 17(2):248–294.

[Pelánek, 2010] Pelánek, R. (2010).

Human Problem Solving: Sokoban Case Study.

Zdroje III

[Pizlo and Li, 2005] Pizlo, Z. and Li, Z. (2005).

Solving combinatorial problems: The 15-puzzle.

Memory & Cognition, 33(6):1069-1084.

[Tejada, 2014] Tejada, P. J. (2014).

On the complexity of collecting items with a maximal sliding agent.

[YATO, 2003] YATO, T. (2003).

Complexity and completeness of finding another solution and its application to puzzles.

Master thesis, The University of Tokyo.

[Yato and SETA, 2002] Yato, T. and SETA, T. (2002).

Complexity and completeness of finding another solution and its application to puzzles, ipsg sig notes 2002-al-87-2.

Ďakujem za pozornosť

- LinearRegression obyčajná lineárna regresia, nemá parametre
- Ridge linear least squares a L2 regularizácia tá je kontrolovaná parametrom alpha ktorý GridSearch skúša od 10^{-3} po 10^3 .
- Lasso L1 regularizácia kontrolovaná alpha podobne ako pri Ridge
- ElasticNet L1 + L2 regularizácia tiež kontrolovaná alpha
- SGDRegressor stochastický gradient descent tiež skúšam meniť alphu
- SVR je vlaste SVMko pre regresiu, skúšam dva rôzne kernely linear a rbf, pre oba skúšam rôzne Cčka a pre rbf aj gammy.
- RandomForestRegressor les stromov pre regresiu, hlavným parametrom je počet stromov v lese
- KNeighborsRegressor určuje na základe niekoľkých najbližších susedov, počet susedov si určím GridSearchom