Differential- und Integralrechnung, Wintersemester 2024-2025

5. Vorlesung

Eine notwendige Konvergenzbedingung

- Ist $\sum x_n$ konvergent, dann gilt $\lim_{n\to\infty} x_n = 0$.
- Falls $\nexists \lim_{n \to \infty} x_n$ oder $\lim_{n \to \infty} x_n \neq 0$, dann ist $\sum x_n$ divergent.

Definition

Seien $\sum x_n$ und $\sum y_n$ Reihen mit nichtnegativen Gliedern, so dass

$$\exists c > 0, \exists n_0 \in \mathbb{N} \text{ mit } x_n \leq cy_n \text{ für alle } n \geq n_0.$$

Dann nennt man die Reihe $\sum x_n$ eine Minorante der Reihe $\sum y_n$ (und die Reihe $\sum y_n$ eine Majorante der Reihe $\sum x_n$). Bezeichnung:

$$\underbrace{\sum x_n}_{\text{Minorante}} \ll \underbrace{\sum y_n}_{\text{Majorante}}.$$

Definition

Seien $\sum x_n$ und $\sum y_n$ Reihen mit nichtnegativen Gliedern, so dass gleichzeitig

$$\sum x_n \ll \sum y_n \text{ und } \sum y_n \ll \sum x_n$$

gelten. Dann nennt man $\sum x_n$ und $\sum y_n$ äquivalente Reihen. Bezeichnung:

$$\sum x_n \sim \sum y_n.$$

Th4 (Das erste Vergleichskriterium für Reihen)

Seien $\sum x_n$ und $\sum y_n$ Reihen mit nichtnegativen Gliedern, so dass $\sum x_n \ll \sum y_n$. Dann gelten:

- 1° Ist $\sum y_n$ konvergent, dann ist auch $\sum x_n$ konvergent.
- 2° Ist $\sum x_n$ divergent, dann ist auch $\sum y_n$ divergent.

F₅

Sind $\sum x_n$ und $\sum y_n$ äquivalente Reihen mit nichtnegativen Gliedern, dann haben $\sum x_n$ und $\sum y_n$ das gleiche Konvergenzverhalten.

Th6 (Das zweite Vergleichskriterium für Reihen)

Seien $\sum x_n$ und $\sum y_n$ Reihen mit positiven Gliedern, so dass

$$\ell := \lim_{n \to \infty} \frac{x_n}{y_n} \in \overline{\mathbb{R}}$$
 existiert. Dann gelten:

- 1° Ist $\ell < \infty$, dann ist $\sum x_n \ll \sum y_n$.
- 2° Ist $\ell > 0$, dann ist $\sum y_n \ll \sum x_n$.
- 3° Ist $\ell \in (0, \infty)$, dann ist $\sum x_n \sim \sum y_n$.

Th7 (Das Wurzelkriterium) (Cauchy)

Sei $\sum x_n$ eine Reihe mit nichtnegativen Gliedern, so dass $\ell:=\lim_{n\to\infty}\sqrt[n]{x_n}\in\overline{\mathbb{R}}$ existiert. Dann gelten:

- 1° Ist ℓ < 1, dann ist $\sum x_n$ konvergent.
- 2° Ist $\ell > 1$, dann ist $\sum x_n$ divergent.
- 3° Ist $\ell=1$, dann ist mit dem Wurzelkriterium keine Entscheidung möglich.

Th8 (Das Quotientenkriterium) (D'Alembert)

Sei $\sum x_n$ eine Reihe mit positiven Gliedern, so dass

$$D:=\lim_{n\to\infty}\frac{x_{n+1}}{x_n}\in\overline{\mathbb{R}}$$
 existiert. Dann gelten:

- 1° Ist D < 1 dann ist $\sum x_n$ konvergent.
- 2° Ist D > 1 dann ist $\sum x_n$ divergent.
- 3° Ist D=1, dann ist mit dem Quotientenkriterium keine Entscheidung möglich.

Th9 (Das Kriterium von Raabe)

Sei $\sum x_n$ eine Reihe mit positiven Gliedern, so dass

$$R:=\lim_{n\to\infty} n\left(\frac{x_n}{x_{n+1}}-1\right)\in\overline{\mathbb{R}}$$
 existiert. Dann gelten:

- 1° Ist R > 1 dann ist $\sum x_n$ konvergent.
- 2° Ist R < 1 dann ist $\sum x_n$ divergent.
- 3° Ist R = 1, dann ist mit dem Kriterium von Raabe keine Entscheidung möglich.

Definition

Die Reihe $\sum_{n\geq k} x_n$ heißt absolut konvergent, falls die Reihe $\sum_{n\geq k} |x_n|$ konvergent ist.

S10

Jede absolut konvergente Reihe ist konvergent.

Th11(Das Kriterium von Leibniz für alternierende Reihen)

Sei (x_n) eine monoton fallende Folge mit $\lim_{n\to\infty}x_n=0$. Dann sind die alternierenden Reihen $\sum (-1)^n x_n$ und $\sum (-1)^{n+1} x_n$ konvergent.

Zur Summe/Differenz von zwei Reihen

Es seien
$$\sum_{n=1}^{\infty} a_n = a$$
 und $\sum_{n=1}^{\infty} b_n = b$. Dann gilt

$$\sum_{n=1}^{\infty} (a_n - b_n) = a - b \text{ nur, falls } a - b \text{ definiert ist. Sind } a = b = \infty$$
oder $a = b = -\infty$, dann ist $a - b$ nicht definiert.

Bsp.

$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = \sum_{n=1}^{\infty} \left(\frac{1}{n} - \frac{1}{n+1} \right) = 1 \text{ (Teleskopreihe)}.$$

So nicht:

$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = \sum_{n=1}^{\infty} \left(\frac{1}{n} - \frac{1}{n+1} \right) = \sum_{n=1}^{\infty} \frac{1}{n} - \sum_{n=1}^{\infty} \frac{1}{n+1} = \infty - \infty.$$

Zum Produkt von zwei Reihen

$$\sum_{n=0}^{\infty} (a_n \cdot b_n) \neq \left(\sum_{n=0}^{\infty} a_n\right) \cdot \left(\sum_{n=0}^{\infty} b_n\right).$$

Bsp.

$$\sum_{n=0}^{\infty} \left(\frac{1}{2^n} \cdot \frac{1}{3^n} \right) = \sum_{n=0}^{\infty} \frac{1}{6^n} = \frac{1}{1 - \frac{1}{6}} = \frac{6}{5},$$

$$\sum_{n=0}^{\infty} \frac{1}{2^n} = \frac{1}{1 - \frac{1}{2}} = 2, \quad \sum_{n=0}^{\infty} \frac{1}{3^n} = \frac{1}{1 - \frac{1}{3}} = \frac{3}{2},$$

also

$$\left(\sum_{n=0}^{\infty} \frac{1}{2^n}\right) \cdot \left(\sum_{n=0}^{\infty} \frac{1}{3^n}\right) = 3 \neq \sum_{n=0}^{\infty} \left(\frac{1}{2^n} \cdot \frac{1}{3^n}\right).$$