TP3 Numerical Differentiations and Integrations

1 Use the forward-difference formulas and backward-difference formulas to determine each missing entry in the following tables.

	X	0.5	0.6	0.	7		
а	f(x)	0.4794	0.5646	0.	6442		
	f'(x)						
	X	0.0	0.2		0.4		
b	f(x)	0.00000	0.7414	10	1.3718		
	f'(y)						

2 Use the most accurate three-point formula to determine each missing entry in the following tables.

	X	1.1	1.2	1.3	1.4
а	f(x)	9.025013	11.02318	13.46374	16.44465
	f'(x)				
		0.4	0.0	0.5	0.7
	X	8.1	8.3	8.5	8.7
b	f(x)	16.94410	17.56492	18.19056	18.82091
	f'(x)				

3 The following data can be used to approximate the integral $I^* = \int_0^{3\pi/2} \cos x \, dx$.

$$A_0(h) = 2.356194$$
, $A_0(h/2) = -0.4879837$, $A_0(h/4) = -0.8815732$, $A_0(h/4) = -0.9709157$.

Assuming $I^* = A_0(h) + a_0h^2 + a_1h^4 + a_2h^6 + a_3h^8 + O(h^{10})$, construct an extrapolation table todetermine $A_3(h)$.

4 Suppose that A(h) is an approximation to A^* for every h > 0 and that

$$A^* = A(h) + a_0h^2 + a_1h^4 + a_2h^6 + \cdots,$$

for some constants a_0, a_1, a_2, \dots Use the values A(h), A(h/3), and A(h/9) to produce an $O(h^6)$ approximation to A^* .

5 Approximate the following integrals using the Trapezoidal rule, Simpson's rule and Midpoint rule.

a
$$\int_{1}^{1.5} x^{2} \ln x \, dx$$

b $\int_{0}^{\pi/4} e^{3x} \sin 2x \, dx$

6 Find the degree of precision of the quadrature formula

$$\int_{-1}^{1} f(x) \ dx = f\left(-\frac{\sqrt{3}}{3}\right) + f\left(\frac{\sqrt{3}}{3}\right).$$

7 Let h = (b - a)/3, $x_0 = a$, $x_1 = a + h$, and $x_2 = b$. Find the degree of precision of the quadrature formula

$$\int_{a}^{b} f(x) \ dx = \frac{9}{4} h f(x_1) + \frac{3}{4} h f(x_2).$$

8 Given the function f at the following values,

X	1.8	2.0	2.2	2.4	2.6	
f(x)	3.12014	4.42569	6.04241	8.03014	10.46675	

approximate $\int_{1.8}^{2.6} f(x) dx$ using all appropriate quadrature formulas of this chapter.

- 9 Write a general purpose algorithm for Composite Trapezoidal rule.
 - a Describe your algorithm objective?
 - **b** Describe required input parameter(s)?
 - c Describe output value(s)?
 - d Write your algorithm body here.
 - e Implement your developed algorithm with Python, or any other programming language.
- 10 Use the Composite Trapezoidal rule with the indicated values of n to approximate the following integrals.

b
$$\int_{1}^{3} \frac{x}{x^2 + 4} dx$$
, $n = 8$

- 11 Write a general purpose algorithm for Composite Simpson's rule.
 - a Describe your algorithm objective?
 - **b** Describe required input parameter(s)?
 - c Describe output value(s)?
 - **d** Write your algorithm body here.
 - e Implement your developed algorithm with Python, or any other programming language.
- 12 Use the Composite Simpson's rule with the indicated values of n to approximate the following integrals.

a
$$\int_{-2}^{2} x^3 e^x dx$$
, $n = 4$

$$\boxed{\mathbf{b}} \int_{1}^{3} x^{2} \cos x \, dx, \quad n = 6$$

- 13 Write a general purpose algorithm for Composite Midpoint rule.
 - a Describe your algorithm objective?
 - **b** Describe required input parameter(s)?
 - c Describe output value(s)?
 - d Write your algorithm body here.
 - E Implement your developed algorithm with Python, or any other programming language.
- Use the Composite Midpoint rule with n + 2 subintervals to approximate the following integrals.

a
$$\int_0^2 \frac{2}{x^2 + 4} dx$$
, $n = 6$

b
$$\int_0^2 e^{2x} \sin 3x \ dx$$
, $n = 8$

- 15 Approximate $\int_0^2 x^2 e^{-x^2} dx$. Use
 - a Composite Trapezoidal rule.
 - **b** Composite Simpson's rule.
 - c Composite Midpoint rule.
- **16** Determine the values of n and h required to approximate

$$\int_0^2 \frac{1}{x+4} \ dx$$

to within 10^{-5} and compute the approximation. Use

- a Composite Trapezoidal rule.
- **b** Composite Simpson's rule.
- c Composite Midpoint rule.
- 17 Let f be defined by

$$f(x) = \begin{cases} 1 + x^3, & 0.0 \le x \le 0.1 \\ 1.001 + 0.03(x - 0.1) + 0.3(x - 0.1)^2 + 2(x - 0.1)^3, & 0.1 \le x \le 0.2 \\ 1.009 + 0.15(x - 0.2) + 0.9(x - 0.2)^2 + 2(x - 0.2)^3, & 0.2 \le x \le 0.3. \end{cases}$$

- a Investigate the continuity of the derivatives of f.
- b Use the Composite Trapezoidal rule with n=6 to approximate $\int_0^{0.3} f(x) dx$, and estimate the error using the error bound.
- C Use the Composite Simpson's rule with n = 6 to approximate $\int_0^{0.3} f(x) dx$. Are the results more accurate than in part (b)?

A car laps a race track in 84 seconds. The speed of the car at each 6-second interval is determined by using a radar gun and is given from the beginning of the lap, in feet/second, by the entries in the following table.

						24										
ſ	v(t)	124	134	148	156	147	133	121	109	99	85	78	89	104	116	123

How long is the track?

- 19 Write a general purpose algorithm for Romberg integration.
 - a Describe your algorithm objective?
 - **b** Describe required input parameter(s)?
 - c Describe output value(s)?
 - d Write your algorithm body here.
 - E Implement your developed algorithm with Python, or any other programming language.
- **20** Use Romberg integration to compute $R_{3,3}$ for the following integrals.

 - $\boxed{\mathbf{b}} \int_{e}^{2e} \frac{1}{x \ln x} dx$
- 21 Use Romberg integration to approximate the integral $erf(1) = \frac{2}{\sqrt{\pi}} \int_0^1 e^{-x^2} dx$ to within 10^{-7} . Compute the Romberg table until either $|R_{n,n} R_{n-1,n-1}| < 10^{-7}$, or n = 12.
- **22** Write a general purpose algorithm for Adaptive Simpson's quadrature.
 - a Describe your algorithm objective?
 - **b** Describe required input parameter(s)?
 - c Describe output value(s)?
 - d Write your algorithm body here.
 - e Implement your developed algorithm with Python, or any other programming language.
- Use Adaptive Simpson's quadrature to approximate the following integrals to within 10^{-5} .

 - $\boxed{\mathbf{b}} \int_{1}^{3} e^{2x} \sin(3x) \ dx$
- Sketch the graphs of $\sin(1/x)$ and $\cos(1/x)$ on [0.1, 2]. Use adaptive quadrature to approximate the following integrals to within 10^{-3} .

$$a \int_{0.1}^{2} \sin \frac{1}{x} dx$$

25 The differential equation

$$mu''(t) + ku(t) = F_0 \cos(\omega t)$$

describes a spring-mass system with mass m, spring constant k, and no applied damping. The term $F_0cos(\omega t)$ describes a periodic external force applied to the system. The solution to the equation when the system is initially at rest (u'(0) = u(0) = 0) is

$$u(t) = \frac{F_0}{m(\omega_0^2 - \omega^2)}(\cos(\omega t) - \cos(\omega_0 t)), \quad \omega_0 = \sqrt{\frac{k}{m}} \neq \omega.$$

Sketch the graph of u when $m=1, k=9, F_0=1, \omega=2$, and $t\in[0,2\pi]$. Approximate $\int_0^{2\pi}u(t)\ dt$ to within 10^{-4} .

The period of a simple pendulum of length L is $\tau = 4\sqrt{L/g} \ h(\theta_0)$, where g is the gravitational acceleration, θ_0 represents the angular amplitude, and

$$h(\theta_0) = \int_0^{\pi/2} \frac{d\theta}{\sqrt{1 - \sin^2(\theta_0/2)\sin^2\theta}}$$

Compute $h(15^{\circ})$, $h(30^{\circ})$, and $h(45^{\circ})$, and compare these values with $h(0) = \pi/2$ to within 10^{-4} .

- Approximate $\int_a^b f(x)dx$ using Gaussian quadrature with n=1 assuming that f is defined and continuous on the closed interval [a,b].
- Approximate the following integrals using Gaussian quadrature with n=2, and compare your results to the exact values of the integrals.

b
$$\int_{1}^{0} \frac{1}{1+x^2} dx$$

$$\boxed{\mathbf{c}} \int_0^1 \frac{x}{1+x^2} dx$$

$$\boxed{\mathbf{d}} \int_0^{\ln 2} \frac{1}{1 + \exp(x)} \, dx$$

- Write a general purpose algorithm for Gaussian quadrature that work for n = 1, 2, 3, 4, 5 with the weights and abscissa provided in the course.
 - a Describe your algorithm objective?
 - **b** Describe required input parameter(s)?

- c Describe output value(s)?
- d Write your algorithm body here.
- e Implement your developed algorithm with Python, or any other programming language.
- Composite Gaussian Quadrature routine to approximate $\int_{-1}^{1} x^2 e^x dx$ in the following manner.
 - a Use Gaussian Quadrature with n = 4 on the interval [-1, 0] and [0, 1].
 - **b** Use Gaussian Quadrature with n = 2 on the interval [-1, -0.5], [-0.5, 0], [0, 0.5] and [0.5, 1].
- **31** Legendre's polynomials of degree n = 6, 7, 8, 9, 10 are listed below

$$\begin{split} p_6(x) &= -\frac{5}{231} + \frac{5}{11}x^2 - \frac{15}{11}x^4 + x^6, \\ p_7(x) &= -\frac{35}{429}x + \frac{105}{143}x^3 - \frac{21}{13}x^5 + x^7, \\ p_8(x) &= \frac{7}{1287} - \frac{28}{143}x^2 + \frac{14}{13}x^4 - \frac{28}{15}x^6 + x^8, \\ p_9(x) &= \frac{63}{2431}x - \frac{84}{221}x^3 + \frac{126}{85}x^5 - \frac{36}{17}x^7 + x^9, \\ p_{10}(x) &= -\frac{63}{46189} + \frac{315}{4199}x^2 - \frac{210}{323}x^4 + \frac{630}{323}x^6 - \frac{45}{19}x^8 + x^{10}, \end{split}$$

- a Use Müller's Method and Horn's Method to find all roots of each of the polynomials with 10^{-10} .
- **b** Use Adaptive Simpson's Quadrature to find the corresponding weights for use in the Gaussian Quadrature.
- **c** Extend the program in exercise **29** to n = 1, 2, ..., 10.
- d Use Gaussian Quadrature with n = 8 on the single interval [-1, 1] to approximate $\int_{-1}^{1} x^2 e^x dx.$