Data Distribution Shape

The shape of a data distribution provides insight into how data values are spread and whether they deviate from the normal distribution.

Two important measures used to describe the distribution shape are:

- Skewness (asymmetry of the distribution)
- Kurtosis (peakedness or flatness of the distribution)

Understanding these concepts helps analysts decide on appropriate statistical models and detect outliers.

1. Skewness

Skewness measures the asymmetry of a data distribution.

- Symmetrical distribution: Mean ≈ Median ≈ Mode
- Positively skewed (right-skewed): Tail on the right is longer; Mean > Median > Mode
- Negatively skewed (left-skewed): Tail on the left is longer; Mean < Median < Mode
- Formula

Skewness = 3(Mean-Median) / SD

SD --> Standard Deviation

Where,

$$SD = \sqrt{\frac{\sum |x - \overline{x}|^2}{n}}$$

x = random variable

 \overline{x} = mean of the data

n = total no. of data

- Example
- Income distribution in most countries is positively skewed (A few very high incomes pull the mean to the right.)
- Exam scores with many high achievers but few low scores may be negatively skewed.
 - Interpretation

Skewness $\approx 0 \rightarrow$ symmetric distribution.

Skewness $> 0 \rightarrow$ positively skewed.

Skewness $< 0 \rightarrow$ negatively skewed.

Visual Examples

2. Kurtosis

Kurtosis measures the "tailedness" or peakedness of a distribution, compared to a normal distribution.

It helps to identify how prone the data is to outliers.

Types:

- 1. Mesokurtic (Normal distribution)
 - o Kurtosis ≈ 3 (Excess Kurtosis = 0).
 - Standard bell curve shape.
- 2. Leptokurtic (Heavy tails, peaked)
 - Kurtosis > 3 (Excess Kurtosis > 0).
 - o More values in the tails; higher chance of outliers.
- 3. Platykurtic (Flat distribution)
 - Kurtosis < 3 (Excess Kurtosis < 0).
 - o Flatter than normal, fewer extreme values.

• Formula

skewness =
$$\frac{\sum_{i=1}^{N} (x_i - \overline{x})^3}{(N-1)s^3}$$

where:

- s is the standard deviation
- $\bullet \overline{x}$ is the mean of the distribution
- N is the number of observations of the sample

- Example
- Stock market returns often show leptokurtic behavior (heavy tails, extreme values more likely).
- Uniform-like data may be platykurtic.

Visual Examples

The Market Control of the Control of

3. Comparison

Property	Skewness	Kurtosis
Measures	Asymmetry of distribution	Tailedness / peakedness
Ideal value	0	3
Indicates	Direction of tail	Outlier likelihood
Example	Income distribution (positive skew)	Stock returns (leptokurtic)