ВАРИАНТЫ ЗАДАНИЙ

1. Лабораторная работа №1. Простейшие нейронные сети

Общая часть: обучить нейронную сеть для вычисления значения булевской функции согласно варианта (таблица 1.1 и таблица 1.2), используя заданный метод обучения. Результаты обучения представить в виде таблицы с отражением значений весов на каждой эпохе обучения. Сравнить найденные значения весов, со значениями, вычисленными при прямой минимизации функции потери с использованием метода градиентного спуска. Оценить качество обучения сети. Сделать выводы.

Таблица 1.1

Схема сети	Вид					
A	x y					
В	x y					

№	Функция	ИНС (метод обучения)			
ва- риан- та		І подгруппа	II подгруппа	III подгруппа	IV подгруппа
1	X and Y or X	Сеть А (правила обучения Розенблатта)	Сеть В (правила Хебба)	Сеть С (алгоритм Уидроу-Хоффа)	Сеть D (метод коррекции ошибок без квантования)
2	X and Y or Y	Сеть В (правила Хебба)	Сеть С (алгоритм Уидроу-Хоффа)	Сеть D (правила обучения Розенблатта)	Сеть Е (правила Хебба)
3	X or Y and X	Сеть С (правила обучения Розенблатта)	Сеть D (правила Хебба)	Сеть Е (правила обучения Розенблатта)	однослойный персептрон (алгоритм Уидроу-Хоффа)
4	X or Y and Y	Сеть D (дельта- правила)	Сеть Е (метод коррекции ошибок с квантованием)	Сеть А (метод коррекции ошибок со случайным знаком подкрепления)	Сеть В (алгоритм Уидроу-Хоффа)
5	X xor Y or X	Сеть Е (метод коррекции ошибок без квантования)	Сеть А (правила Хебба)	Сеть В (алгоритм Уидроу-Хоффа)	Сеть С (метод коррекции ошибок со случайными возмущениями)
6	X xor Y or Y	Сеть А (метод коррекции ошибок со случайными возмущениями)	Сеть В (алгоритм Уидроу-Хоффа)	Сеть С (правила Хебба)	Сеть D (дельта- правила)
7	X xor Y and X	Сеть В (алгоритм Уидроу-Хоффа)	Сеть С (метод коррекции ошибок со случайным знаком подкрепления)	Сеть D (дельта- правила)	Сеть Е (метод коррекции ошибок со случайными возмущениями)

8	X xor Y and Y	Сеть С (метод коррекции ошибок со случайным знаком подкрепления)	Сеть D (правила Хебба)	Сеть Е (алгоритм Уидроу-Хоффа)	Сеть А (алгоритм Уидроу-Хоффа)
9	not X and Y or X	Сеть D (правила Розенблатта)	Сеть Е (алгоритм Уидроу-Хоффа)	Сеть А (правила Хебба)	Сеть В (метод коррекции ошибок со случайными возмущениями)
10	not X and Y or Y	Сеть Е (метод коррекции ошибок с квантованием)	Сеть А (правила Розенблатта)	Сеть В (алгоритм Уидроу-Хоффа)	Сеть С (правила Хебба)
11	X or Y and not X	Сеть А (правила Розенблатта)	Сеть В (алгоритм Уидроу-Хоффа)	Сеть С (метод коррекции ошибок со случайными возмущениями)	Сеть D (метод коррекции ошибок без квантования)
12	X or Y and not Y	Сеть В (правила Хебба)	Сеть С (правила Хебба)	Сеть D (алгоритм Уидроу-Хоффа)	Сеть Е (метод коррекции ошибок с квантованием)
13	X and not Y or X	Сеть С (алгоритм Уидроу-Хоффа)	Сеть D (правила Хебба)	Сеть Е (правила Розенблатта)	Сеть А (метод коррекции ошибок без квантования)
14	X and not Y or Y	Сеть D (правила Хебба)	Сеть Е (алгоритм Уидроу-Хоффа)	Сеть А (правила обучения Розенблатта)	Сеть В (метод коррекции ошибок без квантования)
15	X or not Y and X	Сеть Е (алгоритм Уидроу-Хоффа)	Сеть А (алгоритм Уидроу-Хоффа)	Сеть В (метод коррекции ошибок без квантования)	Сеть С (правила Хебба)