CSE 417T Introduction to Machine Learning

Lecture 4

Instructor: Chien-Ju (CJ) Ho

Logistics: Homework 1

- Due: September 23 (Friday), 2022
 - http://chienjuho.com/courses/cse417t/hw1.pdf
 - Two submission links: Report and Code (The links will be up over the weekend)
 - Report: Answer all questions, including the implementation question
 - Grades are based on the report
 - Code: Complete and submit hw1.py for Problem 2
 - The code will only be used for correctness checking (when in doubts) and plagiarism checking
 - Reserve time if you never used Gradescope.
 - Make sure to specify the pages for each problem. You won't get points otherwise

Logistics: Office Hours

Tentative schedule of TA office hours (starting next Monday)

Monday	9:30am Asher Baraban	3pm Qihang Zhao	
Tuesday	10am Di Huang	1pm Andrew Ruttenberg	4pm Quinn Wai Wong
Wednesday	1pm Wenxuan Zhu	3pm William Sepesi	4:30pm Sylvia Tang
Thursday	11:30am Yuan Liu	4pm Elyse Tang	7pm Fankun Zen
Friday	11am Riggie Kong	3pm Nan Huang	5:30pm Weiwei Ma
Sunday	Noon Jonathan Ma	1:30pm Kenneth Li	

- 60 minutes per session; In-person office hours are highlighted in orange
- Please follow Piazza for additional information (location, zoom link, etc)
- Recommendation: Try to utilize the office hour early (way ahead of deadlines), you are likely to get more of TAs' time this way

Recap

Hoeffding's Inequality

$$\Pr[|\mu - \nu| > \epsilon] \le 2e^{-2\epsilon^2 N}$$

Define $\delta = \Pr[|\mu - \nu| > \epsilon]$

- Fix δ , ϵ decreases as N increases
- Fix ϵ , δ decreases as N increases
- Fix N, δ decreases as ϵ increases

Informal intuitions of notations

N: # sample

 δ : probability of "bad" event

 ϵ : error of estimation

Connection to Learning

- Given dataset $D = \{(\vec{x}_1, y_1), ..., (\vec{x}_N, y_N)\}.$
- Fix a hypothesis h
 - $E_{in}(h) \stackrel{\text{def}}{=} \frac{1}{N} \sum_{n=1}^{N} \mathbb{I}[h(\vec{x}_n) \neq f(\vec{x}_n)]$ [In-sample error, analogy to ν]
 - $E_{out}(h) \stackrel{\text{def}}{=} \Pr_{\vec{x} \sim P(\vec{x})}[h(\vec{x}) \neq f(\vec{x})]$ [Out-of-sample error, analogy to μ]
- Apply Hoeffding's inequality

$$Pr[|E_{out}(h) - E_{in}(h)| > \epsilon] \leq 2e^{-2\epsilon^2 N}$$

• This is *verification*, not *learning*

Connection to "Real" Learning

- Given a finite hypothesis set $H = \{h_1, ..., h_M\}$
- Apply some learning algorithm on D, output a $g \in H$
- What can we say about $E_{out}(g)$ from $E_{in}(g)$?

$$Pr[|E_{out}(g) - E_{in}(g)| > \epsilon] \le 2Me^{-2\epsilon^2N}$$
 for any $\epsilon > 0$

Intuitions:

- 1. Bad event $B(g) \subseteq B(h_1) \cup B(h_2) \dots \cup B(h_M)$ g is selected within $\{h_1, \dots, h_M\}$ => bad event of g is within the union of the bad events of h_1, \dots, h_M
- 2. $\Pr[B(g)] \leq \Pr[B(h_1)] + \dots + \Pr[B(h_M)]$ each of the $\Pr[B(h_m)]$ follows Hoeffding's inequality

Today's Lecture

The notes are not intended to be comprehensive. They should be accompanied by lectures and/or textbook. Let me know if you spot errors.

Revisit the learning problem

Goal: $g \approx f$

- A general approach:
 - Define an error function E(h, f) that quantify how far away h is to f
 - choose $g = \underset{h \in \mathcal{H}}{\operatorname{argmin}} E(h, f)$
- A major component of ML is optimization
- E is usually defined in terms of a pointwise error function $e(h(\vec{x}), f(\vec{x}))$
 - Binary error (classification): $e(h(\vec{x}), f(\vec{x})) = \mathbb{I}[h(\vec{x}_n) \neq f(\vec{x}_n)]$
 - Squared error (regression): $e(h(\vec{x}), f(\vec{x})) = (f(\vec{x}) h(\vec{x}))^2$

$$E_{in}(h) = \frac{1}{N} \sum_{n=1}^{N} e(h(\vec{x}_n), f(\vec{x}_n))$$

$$E_{out}(h) = \mathbb{E}_{\vec{x}}[e(h(\vec{x}), f(\vec{x}))]$$

The discussion on the Hoeffding's inequality applies for general (bounded) error functions.

How to choose the error function?

- Consideration 1: Properties of domain applications
- Example: Fingerprint recognition
 - Input: fingerprints
 - Outputs: whether the person is authorized

		$f(\vec{x})$		
		+1	-1	
$h(\vec{x})$	+1	No error	False positive	
	-1	False negative	No error	

Cupakk	markat	$f(\vec{x})$	
Supermarket		+1	-1
$h(\vec{x})$	+1	0	Small
	-1	Large	0

-	.	$f(\vec{x})$	
FBI		+1	-1
b(♂)	+1	0	Large
$h(\vec{x})$	-1	Small	0

How to choose the error function?

Consideration 1: Properties of application problems

- Consideration 2: Computation
 - ML algorithms are essentially performing optimization (finding g with smallest error)

$$g = \operatorname*{argmin}_{h \in \mathcal{H}} E(h, f)$$

- Choose the error that is "easier" to optimize
 - e.g., if the error function is continuous, differentiable, and convex, we usually have efficient algorithms

How to choose the error function?

Consideration 1: Properties of application problems

Consideration 2: Computation

- Specifying the error function is part of setting up the learning problem
 - It impacts what you eventually learn

Noisy Target

- What if there doesn't exist f such that $y = f(\vec{x})$?
 - *f* is stochastic instead of deterministic
 - (even if two customers have exactly the same attributes, one might be a good customer for bank, and the other might not be)
- Common approach
 - Instead of a target function, define a target distribution
 - Instead of $y = f(\vec{x})$, y is drawn from a conditional distribution $P(y|\vec{x})$
 - $y = f(\vec{x}) + \epsilon$
 - $f(\vec{x})$ is the mean of the distribution $\mathbb{E}[y|\vec{x}]$
 - ϵ is zero-mean noise $y \mathbb{E}[y|\vec{x}]$

The discussion on the Hoeffding's inequality applies for noisy targets.

General Setup of (Supervised) Learning

Theory of Generalization

Revisit the "Multi-Hypothesis" Bound

- Given a finite hypothesis set $H = \{h_1, ..., h_M\}$
- Apply some learning algorithm on D, output a $g \in H$
- What can we say about $E_{out}(g)$ from $E_{in}(g)$?

$$Pr[|E_{out}(g) - E_{in}(g)| > \epsilon] \le 2Me^{-2\epsilon^2N}$$
 for any $\epsilon > 0$

What if *M* is infinite?

 $Pr[|E_{out}(g) - E_{in}(g)| > \epsilon] \le 2Me^{-2\epsilon^2N}$ don't seem to carry any meanings

Key Intuitions in the Multi-Hypothesis Analysis

- Define "bad event of h" B(h) as $|E_{out}(h) E_{in}(h)| > \epsilon$
- If g is selected from $\{h_1, h_2\}$
 - $B(g) \subseteq B(h_1) \cup B(h_2)$
 - $\Pr[B(g)] \le \Pr[B(h_1) \text{ or } B(h_2)]$ $\le \Pr[B(h_1)] + \Pr[B(h_2)]$ (Union Bound)

 $B(h_1)$ $B(h_2)$

Union bound considers the worst case: Bad events don't overlap

Do Bad Events Overlap?

Oftentimes, they overlap a lot!

The two linear separators on the left make the same predictions for most points.

If it's a bad event for one, it's likely to be a bad event for the other.

"bad event of h" B(h): $|E_{out}(h) - E_{in}(h)| > \epsilon$

Recall: Informally, you can interpret "bad event of h" as the event that we draw a "unrepresentative dataset D" that makes the in-sample errors of h to be far away from out-of-sample error of h

What Can We Do?

For this dataset, any difference between A and B?

For this dataset, probably no difference.

They make the same prediction for every data point in this dataset.

What Can We Do?

• Let's define "data-dependent" hypothesis, call it dichotomy.

- A hypothesis $h: X \to \{-1, +1\}$
- A dichotomy for a set of data points $(\vec{x}_1, ..., \vec{x}_N)$:
 - Assign either +1 or -1 for each of the data points (divide the data points into two groups)
- Why dichotomies?
 - It helps us count "effective number of hypothesis" (to replace M)

More Formal Definitions

Dichotomies

- Informally, consider a dichotomy as a "data-dependent" hypothesis
- Characterized by both hypothesis set H and N data points $(\vec{x}_1, ..., \vec{x}_N)$

$$H(\vec{x}_1, ... \vec{x}_N) = \{(h(\vec{x}_1), ..., h(\vec{x}_N)) | h \in H\}$$

• The set of possible prediction combinations $h \in H$ can induce on $\vec{x}_1, \dots, \vec{x}_N$

Growth function

• Largest number of dichotomies H can induce across all possible data sets of size N

$$m_H(N) = \max_{(\vec{x}_1, ..., \vec{x}_N)} |H(\vec{x}_1, ..., \vec{x}_N)|$$

Example: H = Positive Rays

- Data points are in one-dimensional space
- Positive rays: h(x) = sign(x a)

• What is $H(\vec{x}_1, ..., \vec{x}_N)$?

- <u>Dichotomies</u>
 - Informally, consider a dichotomy as a "data-dependent" hypothesis
 - Characterized by both hypothesis set H and N data points $(\vec{x}_1, ..., \vec{x}_N)$

$$H(\vec{x}_1, ... \vec{x}_N) = \{(h(\vec{x}_1), ..., h(\vec{x}_N)) | h \in H\}$$

- The set of possible prediction combinations $h \in H$ can induce on $\vec{x}_1, ..., \vec{x}_N$
- Growth function
- Largest number of dichotomies H can induce across all possible data sets of size N

$$m_H(N) = \max_{(\vec{x}_1,...,\vec{x}_N)} |H(\vec{x}_1,...,\vec{x}_N)|$$

• What is $m_H(N)$?

Example: H = Positive Rays

- Data points are in one-dimensional space
- Positive rays: h(x) = sign(x a)

• What is $H(\vec{x}_1, ..., \vec{x}_N)$?

$$H(\vec{x}_1, ..., \vec{x}_N) = \{(+1, +1, ..., +1), (-1, +1, ..., +1), ... (-1, -1, ..., -1)\}$$

<u>Dichotomies</u>

- Informally, consider a dichotomy as a "data-dependent" hypothesis
- Characterized by both hypothesis set H and N data points $(\vec{x}_1, ..., \vec{x}_N)$

$$H(\vec{x}_1, ... \vec{x}_N) = \{(h(\vec{x}_1), ..., h(\vec{x}_N)) | h \in H\}$$

- The set of possible prediction combinations $h \in H$ can induce on $\vec{x}_1, ..., \vec{x}_N$
- Growth function
 - Largest number of dichotomies H can induce across all possible data sets of size N

$$m_H(N) = \max_{(\vec{x}_1,...,\vec{x}_N)} |H(\vec{x}_1,...,\vec{x}_N)|$$

• What is $m_H(N)$?

$$m_H(N) = N + 1$$

What is $m_H(N)$?

- *H* = Positive Intervals
 - Data points are in one-dimensional space
 - Choose two thresholds. Predict +1 within the interval, -1 outside

- H = Convex Sets
 - Data points are in 2-dimensional space
 - Hypothesis is represented by a convex set

- Informally, consider a dichotomy as a "data-dependent" hypothesis
- Characterized by both hypothesis set H and N data points $(\vec{x}_1, ..., \vec{x}_N)$

$$H(\vec{x}_1, ... \vec{x}_N) = \{(h(\vec{x}_1), ..., h(\vec{x}_N)) | h \in H\}$$

• The set of possible prediction combinations $h \in H$ can induce on $\vec{x}_1, ..., \vec{x}_N$

Growth function

• Largest number of dichotomies H can induce across all possible data sets of size N

$$m_H(N) = \max_{(\vec{x}_1, ..., \vec{x}_N)} |H(\vec{x}_1, ..., \vec{x}_N)|$$

Example: H = Positive Intervals

- What is $m_H(N)$?
 - $m_H(N) = {N+1 \choose 2} + 1 = \frac{N^2}{2} + \frac{N}{2} + 1$

Example: H = Convex Sets

- What is $m_H(N)$?
 - $m_H(N) = 2^N$

Note: $m_H(N) \le 2^N$ for all H and all N (There are only 2^N possible label combinations for N points)

Why Growth Function?

- Growth function $m_H(N)$
 - Largest number of "effective" hypothesis H can induce on N data points
 - A more precise "complexity" measure for H
 - Goal: Replace M in finite-hypothesis analysis with $m_H(N)$

• With prob
$$1 - \delta$$
, $E_{out}(g) \le E_{in}(g) + \sqrt{\frac{1}{2N} ln \frac{2M}{\delta}}$

• Theorem: VC Inequality (1971)

With prob $1 - \delta$

$$E_{out}(g) \le E_{in}(g) + \sqrt{\frac{8}{N} ln \frac{4m_H(2N)}{\delta}}$$

Growth Functions for Other *H*

- H = 2-D Perceptron
 - What is $m_H(3)$
 - What is $m_H(4)$

• Dichotomies

- Informally, consider a dichotomy as a "data-dependent" hypothesis
- Characterized by both hypothesis set H and N data points $(\vec{x}_1, ..., \vec{x}_N)$

$$H(\vec{x}_1, ... \vec{x}_N) = \{(h(\vec{x}_1), ..., h(\vec{x}_N)) | h \in H\}$$

- The set of possible prediction combinations $h \in H$ can induce on $\vec{x}_1, \dots, \vec{x}_N$
- Growth function
 - Largest number of dichotomies H can induce across all possible data sets of size N

$$m_H(N) = \max_{(\vec{x}_1,...,\vec{x}_N)} |H(\vec{x}_1,...,\vec{x}_N)|$$

Growth Functions for Other *H*

- H = 2-D Perceptron
 - What is $m_H(3)$
 - What is $m_H(4)$

Dichotomies

- Informally, consider a dichotomy as a "data-dependent" hypothesis
- Characterized by both hypothesis set H and N data points $(\vec{x}_1, ..., \vec{x}_N)$

$$H(\vec{x}_1, \dots \vec{x}_N) = \{(h(\vec{x}_1), \dots, h(\vec{x}_N)) | h \in H\}$$

- The set of possible prediction combinations $h \in H$ can induce on $\vec{x}_1, \dots, \vec{x}_N$
- Growth function
 - Largest number of dichotomies H can induce across all possible data sets of size N

$$m_H(N) = \max_{(\vec{x}_1, ..., \vec{x}_N)} |H(\vec{x}_1, ..., \vec{x}_N)|$$

- Exactly calculating the growth function is generally hard!
- Goal: "bound" the growth function using some proxy

Bounding Growth Function

- More definitions....
 - Shatter:
 - *H* shatters $(\vec{x}_1, ..., \vec{x}_N)$ if $|H(\vec{x}_1, ..., \vec{x}_N)| = 2^N$
 - *H* can induce all label combinations for $(\vec{x}_1, ..., \vec{x}_N)$
 - Break point
 - k is a break point for H if no data set of size k can be shattered by H
- A peek at the key result (take this as a fact for now)
 - If there are no break points for H, $m_H(N) = 2^N$
 - If k is a break point for H, $m_H(N)$ is polynomial in N.

 In particular, $m_H(N) = O(N^{k-1})$

A bit more accurately:

- $m_H(N) \leq \sum_{i=1}^{k-1} {N \choose i}$, or
- $m_H(N) \leq N^{k-1} + 1$