Informe de la pràctica

Cai Selvas Sala

27 de desembre de 2023

Universitat Politècnica de Catalunya Grau en Intel·ligència Artificial Introducció a l'Aprenentatge Automàtic

Resum

Aquest és l'informe corresponent a la pràctica individual de l'assignatura d'Introducció a l'Aprenentatge Automàtic del Grau en Intel·ligència Artificial de la Universitat Politècnica de Catalunya (UPC).

En el document s'explicarà com s'ha realitzat el projecte, quines dificultats s'hi han trobat, quins anàlisis s'han realitzat, quins resultats s'han obtingut i quines conclusions se'n poden extreure. A més, s'explica el codi en Python utilitzat durant la pràctica, així com els detalls del model creat (model card).

Índex

1	Intr	troducció 6								
	1.1	Base de dades	6							
	1.2	Descripció del projecte	6							
2	Doo	cuments i estructura general de l'entrega 7								
3	Anà	àlisis i preprocessat de dades								
	3.1	Preprocessat inicial	8							
	3.2	Anàlisis estadístic de les variables i estudi de balanceig de classes	9							
		3.2.1 Variables numèriques	9							
		3.2.2 Variables categòriques	12							
	3.3	Missings	14							
	3.4	Outliers	14							
	3.5	Recodificació de variables	14							
	3.6	Particionat del dataset	14							
4	Pre	paració de variables	15							
	4.1	Normalització de variables	15							
	4.2	Anàlisi de correlacions entre variables numèriques	15							
	4.3	Anàlisi de variables categòriques i variable objectiu	15							
	4.4	Eliminació de variables	15							
	4.5	Estudi de dimensionalitat (PCA)	15							
5	Def	inició de models	17							
	5.1	K-Nearest Neighbors (KNN)	17							

Grau en Intel·ligència Artificial IAA - Informe Pràctica

8	Bon	us 1:]	Model EBM i comparació amb els models anteriors	20				
7	Model card							
	6.3 Resultats							
	6.2	2 Anàlisi de les limitacions i capacitats del model						
	6.1	Descripció del model triat						
6	Sele	elecció del model 1						
		5.3.5	Resultats	17				
		5.3.4	Entrenament	17				
		5.3.3	Hiperparàmetres	17				
		5.3.2	Mètriques	17				
		5.3.1	Motivació	17				
	5.3	Suppo	rt Vector Machine (SVM)	17				
		5.2.5	Resultats	17				
		5.2.4	Entrenament					
		5.2.3	Hiperparàmetres					
		5.2.2	Mètriques					
	0.2	5.2.1	Motivació					
	5.2	5.1.5	Resultats					
		5.1.4	Entrenament					
		5.1.3	Hiperparàmetres					
		5.1.2	Mètriques	17				
		5.1.1	Motivació	17				

Grau en Intel·ligència Artificial IAA - Informe Pràctica

9	Bonus 2: Anàlisi no supervisat de les dades	21
10	Conclusions	22
	10.1 Valoració de l'aprenentatge adquirit	22
11	Referències	23

1 Introducció

1.1 Base de dades

[1]

1.2 Descripció del projecte

2 Documents i estructura general de l'entrega

3 Anàlisis i preprocessat de dades

3.1 Preprocessat inicial

Una vegada importem el dataset, es pot veure que hi ha bastantes cel·les buides i altres amb el string 'NaNN'. Per solucionar aquesta inconsistència, s'han reemplaçat tots aquests valors per pd.NA.

Per altra banda, s'ha declarat el tipus de cada variable correctament (com a numèriques o com a categòriques) seguint la informació que es proporciona en el metadata file (que es pot trobar en [1]).

A més, com que la variable ID no és res més que l'identificador dels pacients, i no serà necessari pel nostre estudi, s'ha decidit eliminar del dataset per no haver d'eliminar-la manualment a cada procés. És a dir, entrenar un model de predicció tenint en compte l'ID del pacient no té cap sentit i només pot portar a overfitting (si troba patrons entre la variable objectiu i la variable ID). A més, a l'hora de fer gràfics no és una variable que aporti cap informació, ja que és categòrica i amb tantes classes úniques com files hi ha al dataset, de manera no es podrien interpretar els plots de cap manera.

Addicionalment, per una millor comprensió de certes variables, s'ha decidit reanomenar els seus valors, tenint en compte el metadata file, de la següent manera:

• Variable Status:

- 'C' \rightarrow 'Alive'.
- 'CL' \rightarrow 'Liver Transplant'.
- 'D' \rightarrow 'Dead'.

• Variable Edema:

- 'N' \rightarrow 'NoEdema'.
- 'S' \rightarrow 'EdemaResolved'.
- 'Y' \rightarrow 'EdemaPersistent'.

• Variable Drug:

- 'D-penicillamine' $\rightarrow 1$.
- 'Placebo' $\rightarrow 0$.

• Variables Ascites, Hepatomegaly i Spiders:

- 'Y' $\rightarrow 1$.
- 'N' $\rightarrow 0$.

Una vegada realitzats aquests canvis, es pot començar a treballar amb el dataset correctament.

3.2 Anàlisis estadístic de les variables i estudi de balanceig de classes

El primer que s'ha fet per entendre el dataset i poder treballar amb ell és realitzar un anàlisis estadístic de cada una de les variables que el formen. A més, per les variables numèriques podem analitzar la distribució que segueixen mitjançant un histograma, mentre que per les categòriques podem realitzar countplots per veure la distribució entre les seves classes i com de balancejades estan.

3.2.1 Variables numèriques

En les taules 1 i 2 es poden veure estadístiques sobre totes les variables numèriques del dataset (obtingudes mitjançant la comanda data.describe() de la llibreria pandas).

Statistic	N_Days	Age	Bilirubin	Cholesterol	Albumin	Copper
count	418.0	418.0	418.000000	284.0	418.000000	310.0
mean	1917.782297	18533.351675	3.220813	369.510563	3.497440	97.648387
std	1104.672992	3815.845055	4.407506	231.944545	0.424972	85.61392
\min	41.0	9598.0	0.300000	120.0	1.960000	4.0
25%	1092.75	15644.5	0.800000	249.5	3.242500	41.25
50%	1730.0	18628.0	1.400000	309.5	3.530000	73.0
75%	2613.5	21272.5	3.400000	400.0	3.770000	123.0
max	4795.0	28650.0	28.000000	1775.0	4.640000	588.0

Taula 1: Estadístiques de les variables numèriques.

Statistic	AlkPhos	\mathbf{SGOT}	Tryglicerides	Platelets	Prothrombin
count	312.000000	312.000000	282.0	407.0	416.000000
mean	1982.655769	122.556346	124.702128	257.02457	10.731731
std	2140.388824	56.699525	65.148639	98.325585	1.022000
\min	289.000000	26.350000	33.0	62.0	9.000000
25%	871.500000	80.600000	84.25	188.5	10.000000
50%	1259.000000	114.700000	108.0	251.0	10.600000
75%	1980.000000	151.900000	151.0	318.0	11.100000
max	13862.400000	457.250000	598.0	721.0	18.000000

Taula 2: Estadístiques de les variables numèriques.

Addicionalment, en les figures 1 i 2 es poden veure les histogrames de cada una de les variables numèriques, on es veu la distribució de les seves dades ignorant els valors faltants (missings).

Figura 1: Histogrames de variables numèriques del datset.

Figura 2: Histogrames de variables numèriques del datset.

3.2.2 Variables categòriques

En la taula 3 podem veure altres estadístiques per les variables categòriques del dataset (obtingudes mitjançant la mateixa comanda, però amb el paràmetre include='category').

	Status	Drug	Sex	Ascites	Hepatomegaly	Spiders	Edema	Stage
count	418	312	418	312	312	312	418	412.0
unique	3	2	2	2	2	2	3	4.0
top	Alive	1	\mathbf{F}	0	1	0	NoEdema	3.0
freq	232	158	374	288	160	222	354	155.0

Taula 3: Categorical data summary of the study.

A més, en les figures 3 i 4 es poden veure els countplots de cada una de les variables categòriques, on es veu la quantitat de mostres que hi ha per cada classe de la variable, evitant els valors faltants (missings).

Figura 3: Countplots de variables categòriques del datset.

Figura 4: Countplots de variables categòriques del datset.

Es pot veure que les variables *Status* (la variable que determinarem com a *target* més endavant), *Sex, Ascites, Spiders, Edema* i *Stage* pateixen un clar desbalanceig de classes. Això s'haurà de tenir molt en compte a l'hora de

3.3 Missings

3.4 Outliers

3.5 Recodificació de variables

3.6 Particionat del dataset

4 Preparació de variables

- 4.1 Normalització de variables
- 4.2 Anàlisi de correlacions entre variables numèriques
- 4.3 Anàlisi de variables categòriques i variable objectiu
- 4.4 Eliminació de variables
- 4.5 Estudi de dimensionalitat (PCA)

Grau en Intel·ligència Artificial IAA - Informe Pràctica

5 Definició de models

5.1	K-Nearest Neighbors (KNN)
5.1.1	Motivació
5.1.2	Mètriques
5.1.3	Hiperparàmetres
5.1.4	Entrenament
5.1.5	Resultats
5.2	Arbre de decisió
5.2.1	Motivació
5.2.2	Mètriques
5.2.3	Hiperparàmetres
5.2.4	Entrenament
5.2.5	Resultats
5.3	Support Vector Machine (SVM)
5.3.1	Motivació
5.3.2	Mètriques
5.3.3	Hiperparàmetres
5.3.4	Entrenament

5.3.5 Resultats

- 6 Selecció del model
- 6.1 Descripció del model triat
- 6.2 Anàlisi de les limitacions i capacitats del model
- 6.3 Resultats

7 Model card

8 Bonus 1: Model EBM i comparació amb els models anteriors

9 Bonus 2: Anàlisi no supervisat de les dades

10 Conclusions

10.1 Valoració de l'aprenentatge adquirit

11 Referències

[1] E. Dickson; P. Grambsch; T. Fleming; L. Fisher; A. Langworthy. Cirrhosis Patient Survival Prediction. UCI Machine Learning Repository, 2023. DOI: https://doi.org/10.24432/C5R02G.