清华大学本科生考试试题专用纸

考试课程	微积分 A	(卷 A))
------	-------	-------	---

- 一. 填空题 (每空 3 分,共 15 题) (请将答案直接填写在横线上!)
- 1. 判断级数 $\sum_{n=1}^{+\infty} \frac{1}{1000n+1}$ 的敛散性(收敛或发散)______。
- 2. 幂级数 $\sum_{n=1}^{+\infty} \frac{3^n + (-2)^n}{n} (x+1)^n$ 的收敛域为________。
- 3. 设 $D = \{(x, y), 0 \le x, y \le 1\}$, 函数 f(x, y) 在 D 上有一阶连续的偏导数, f(x, 1) = 0,

$$\forall x \in [0,1], \ \coprod \iint_D f(x,y) dx dy = 2, \ \coprod \iint_D y \frac{\partial f(x,y)}{\partial y} dx dy = \underline{\qquad}.$$

4. 设函数|x|在闭区间 $[-\pi,\pi]$ 上的 Fourier 级数为 $\frac{a_0}{2}+\sum_{n=1}^{+\infty}a_n\cos nx$, 其和函数记作 S(x),

则 S(x) 在点 $x = 3\pi$ 处的值为 $S(3\pi) =$ ______。

- 5. 级数 $\sum_{n=1}^{+\infty} \frac{(-1)^n}{(n+x)^p}$ $(x \ge 0)$ 为条件收敛的充分必要条件是 p 的取值范围为______。
- 6. 函数 $\sin^2 x$ 以 2π 为周期的 Fourier 级数为______。
- 7. 对积分 $\int_{0}^{2} dx \int_{0}^{x} f(\sqrt{x^2 + y^2}) dy$ 作极坐标变换,所得的累次积分为______。
- 8. 设平面闭域 $D = \{(x, y), |x| + |y| \le 1\}$, 则积分 $\iint_D x^{2015} \sin(x^4 y^2) dx dy = _______$ 。
- 9. 设曲线 L 为函数 $y=e^{x^2}$ 在闭区间 [0,1] 上的图像,起点为 (0,1) ,终点为 (1,e) ,则第二型曲 线积分 $\int_{t^+} x dx + y dy = _______$ 。
- 10. 设S为 R^3 中的闭圆盘: $x^2+y^2 \le 1$,z=0。规定S的正法向向下,则第二型曲面积分 $\iint_{S^+} (x^2+y^2) dx \wedge dy = \underline{\hspace{1cm}}$ 。

- 12. 设 S 为单位球面: $(x-a)^2 + (y-b)^2 + (z-c)^2 = 1$, 外法向为正, 则第二型曲面积分 $\iint_{S^+} x dy \wedge dz + y dz \wedge dx + z dx \wedge dy = \underline{\hspace{1cm}}_{s^+}$
- 13. 函数 $\frac{1}{4-x}$ 在点 x = 2 处的 Taylor 级数展开式为______。
- 14. 设幂级数 $\sum_{n=0}^{+\infty} a_n (x-2)^n$ 在 x=0 处收敛,而在 x=4 处发散,则该幂级数的收敛域为
- 15. 交换累次积分 $\int_{1}^{e} dx \int_{0}^{\ln x} f(x,y) dy$ 次序后,所得的积分为_____。
- 二. 计算题 (每题 10 分,共 4 题) (请写出详细的计算过程和必要的根据!)
- 1. 设 S 为空间立体 $\sqrt{x^2+y^2} \le z \le 1$ 的边界曲面,求第一类曲面积分 $\iint_{S} (x^2+y^2) dS$ 。
- 2. 求幂级数 $\sum_{n=1}^{+\infty} n^2 x^{n-1}$ 的和函数.
- 3. 求第二型曲线积分 $I=\int_{\Gamma^+}xdy-ydx$, 其中定向曲线 Γ^+ 为球面 $x^2+y^2+z^2=1$ 和柱面 $x^2+y^2=x$ 的交线,逆着正 z 轴朝下看, Γ^+ 的正向是逆时针方向。
- 4. 计算第二型曲面积分 $I=\iint_{S^+} x^2ydy \wedge dz xy^2dz \wedge dx + 3zdx \wedge dy$,其中定向曲面 S^+ 为球面 $x^2+y^2+z^2=2z$ 在平面 z=1下方的部分,正法向向下。

三. 证明题(请写出详细的证明过程!)

- 1. $(8\, \oplus)$ 设数列 $\{a_n\}$ 满足条件 $a_n>0$, $\forall n\geq 1$,且 a_n 单调下降。证明,若级数 $\sum_{n=1}^{+\infty}\frac{a_n-a_{n+1}}{a_n}$ 发散,则 $\lim_{n\to\infty}a_n=0$ 。
- 2. $(7\,
 ho)$ 设 S 为单位球面 $x_1^2 + x_2^2 + x_3^2 = 1$, $A = (a_{ij})$ 为 3×3 的实对称矩阵, ${\rm tr}(A)$ 代表矩阵 A 的迹,即 A 的对角元素之和。分两个步骤: (i) A 为对角阵; (ii) A 为一般对称阵,证明第一型曲面积分 $\oint (x^TAx)dS = \frac{4\pi}{3} {\rm tr}(A)$, 这里 $x^TAx = \sum_{i=1}^3 a_{ij} x_i x_j$ 。