Divide y Vencerás: Cuatro Problemas Clásicos

Moda de un vector, Multiplicación de enteros grandes, Multiplicación de matrices, y Subsecuencia de suma máxima

Preparado por ChatGPT

7 de septiembre de 2025

Dado un vector A de n elementos (no necesariamente ordenado), hallar la **moda**: el valor con mayor frecuencia.

Restricción: Usar el paradigma divide y vencerás.

Idea Divide y Vencerás

- Dividir A en dos mitades A_L y A_R .
- Resolver recursivamente obteniendo mapas de frecuencias F_L y F_R .
- Combinar: fusionar los mapas sumando frecuencias clave a clave.
- La moda global se obtiene como arg $máx_x F[x]$ del mapa fusionado.

Nota: La moda global *no* siempre es la moda de una mitad; por ello se fusionan frecuencias completas.

Algorithm 1 $Moda_DyV(A)$

1: if $|A| \leq k$ then

- 2: **return** mapa de frecuencias directo
- 3: dividir A en A_L , A_R
- 4: $F_L \leftarrow \text{Moda_DyV}(A_L)$; $F_R \leftarrow \text{Moda_DyV}(A_R)$
- 5: $F \leftarrow \text{mapa vac}(o)$
- 6: **for all** x en claves (F_L) **do** $F[x] \leftarrow F[x] + F_L[x]$
- 7: **for all** x en claves (F_R) **do** $F[x] \leftarrow F[x] + F_R[x]$
- 8: **return** *F*

 ${\scriptstyle \rhd} \ {\rm el} \ {\rm cliente} \ {\rm toma} \ {\rm arg} \ {\rm m\'ax}_x \ F[x]$

Sea T(n) el costo al procesar n elementos. La fusión es lineal.

Recurrencia:

$$T(n) = 2 T(n/2) + c n, \quad T(k) = \Theta(k)$$

Por el Teorema Maestro (caso 2): $a=2, b=2, f(n)=\Theta(n)$.

 $n^{\log_b a} = n$. Entonces $T(n) = \Theta(n \log n)$.

Espacio: profundidad log n, más mapas parciales $\Rightarrow \mathcal{O}(n)$ adicional.

Multiplicar dos enteros no negativos X y Y de n dígitos (en base 10) usando un algoritmo de divide y vencerás.

Idea (Karatsuba)

Escribir $X = x_1 \cdot 10^m + x_0$, $Y = y_1 \cdot 10^m + y_0$ con $m \approx n/2$.

Producto clásico requiere 4 productos de tamaño m. Karatsuba reduce a 3:

$$z_0 = x_0 y_0$$

 $z_2 = x_1 y_1$
 $z_1 = (x_1 + x_0)(y_1 + y_0) - z_2 - z_0$
 $XY = z_2 \cdot 10^{2m} + z_1 \cdot 10^m + z_0$

Algorithm 2 Karatsuba(X, Y)

- 1: **if** X < 10 **or** Y < 10 **then**
- 2: **return** $X \cdot Y$
- 3: $m \leftarrow |\max(\text{dígitos}(X), \text{dígitos}(Y))/2|$
- 4: dividir X en (x_1, x_0) y Y en (y_1, y_0) por 10^m
- 5: $z_0 \leftarrow \mathsf{Karatsuba}(x_0, y_0)$
- 6: $z_2 \leftarrow \mathsf{Karatsuba}(x_1, y_1)$
- 7: $z_1 \leftarrow \text{Karatsuba}(x_1 + x_0, y_1 + y_0) z_2 z_0$
- 8: **return** $z_2 \cdot 10^{2m} + z_1 \cdot 10^m + z_0$

Recurrencia:

$$T(n) = 3 T(n/2) + c n$$

- Árbol de recursión: niveles 0.. $\log_2 n$; en nivel i hay 3^i subproblemas de tamaño $n/2^i$ con costo lineal de combinación $\Theta(n/2^i)$ cada uno \Rightarrow costo por nivel $\Theta(3^i \cdot n/2^i) = \Theta(n(3/2)^i)$.
- El último nivel domina: $i = \log_2 n \Rightarrow \Theta(n^{\log_2 3})$.

Por Teorema Maestro (caso 1.5): $T(n) = \Theta\left(n^{\log_2 3}\right) \approx \Theta(n^{1,585})$.

Multiplicar dos matrices cuadradas A y B de tamaño $n \times n$ con n potencia de 2, usando *divide* v vencerás.

Idea (Strassen)

Dividir cada matriz en 4 subbloques $n/2 \times n/2$ y combinar con 7 productos en lugar de 8:

$$M_1 = (A_{11} + A_{22})(B_{11} + B_{22})$$
 $M_2 = (A_{21} + A_{22})B_{11}$
 $M_3 = A_{11}(B_{12} - B_{22})$ $M_4 = A_{22}(B_{21} - B_{11})$
 $M_5 = (A_{11} + A_{12})B_{22}$ $M_6 = (A_{21} - A_{11})(B_{11} + B_{12})$
 $M_7 = (A_{12} - A_{22})(B_{21} + B_{22})$

y luego

$$C_{11} = M_1 + M_4 - M_5 + M_7$$
 $C_{12} = M_3 + M_5$
 $C_{21} = M_2 + M_4$
 $C_{22} = M_1 - M_2 + M_3 + M_6$

Algorithm 3 Strassen(A, B)

- 1: if $n \leq n_0$ then
- 2: return multiplicación clásica
- 3: Particionar A, B en subbloques $n/2 \times n/2$
- 4: Calcular M_1, \ldots, M_7 recursivamente
- 5: Combinar en $C_{11}, C_{12}, C_{21}, C_{22}$
- 6: **return** C

Recurrencia:

$$T(n) = 7 T(n/2) + c n^2$$

Por Teorema Maestro: a=7, b=2, $n^{\log_b a}=n^{\log_2 7}\approx n^{2,807}$. Como $f(n)=\Theta(n^2)=o(n^{\log_2 7})$, domina la parte recursiva.

Resultado: $T(n) = \Theta(n^{\log_2 7}) \approx \Theta(n^{2,807})$.

En la práctica se usa umbral n_0 para cambiar a multiplicación clásica por constantes.

Dado un arreglo A de enteros (positivos y negativos), hallar la **subsecuencia contigua** de suma máxima.

Idea Divide y Vencerás

- Dividir en mitades A_L y A_R .
- La mejor subarreglo es el máximo de:
 - mejor en A_L ,
 - mejor en A_R ,
 - mejor que *cruza* el centro (máx. sufijo en A_L + máx. prefijo en A_R).

Algorithm 4 MaxSubarray(*A*)

- 1: **if** |A| = 1 **then**
- 2: **return** *A*[0]
- 3: dividir A en A_L, A_R
- 4: $bestL \leftarrow MaxSubarray(A_L)$; $bestR \leftarrow MaxSubarray(A_R)$
- 5: $cross \leftarrow mejor_sufijo(A_L) + mejor_prefijo(A_R)$
- 6: **return** máx(bestL, bestR, cross)

La búsqueda de prefijo/sufijo es lineal. Recurrencia:

$$T(n) = 2 T(n/2) + c n \Rightarrow T(n) = \Theta(n \log n).$$

Nota: Existe una solución lineal (Kadane) $\Theta(n)$, pero aquí se usa DyV.

Cierre

El paradigma divide y vencerás permite diseñar soluciones modulares y analizables:

Problema	Complejidad
Moda (fusión de frecuencias)	$\Theta(n \log n)$
Karatsuba (enteros grandes)	$\Theta(n^{\log_2 3})$
Strassen (matrices)	$\Theta(n^{\log_2 7})$
Subsecuencia de suma máxima	$\Theta(n \log n)$