

SÍLABO INTELIGENCIA ARTIFICIAL Y ROBÓTICA

ÁREA CURRICULAR: CIENCIAS DE LA COMPUTACIÓN

CICLO: VII SEMESTRE ACADÉMICO: 2017-I

I. CÓDIGO DEL CURSO : 09067106050

II. CRÉDITOS : 04

III.REQUISITOS : 09008905050 Programación I

IV.CONDICIÓN DEL CURSO : Obligatorio

V. SUMILLA

El curso es de naturaleza formación especializada; dirigido a que el estudiante adquiera los conceptos relacionados con la Inteligencia Artificial, sus técnicas y los procedimientos usados para resolver problemas de Ingeniería mediante agentes inteligentes de búsqueda; conocer fundamentos de Robótica.

Contenidos: Inteligencia artificial (Redes Neuronales, Lógica Difusa) – Robótica – Teoría de los Autómatas.

VI. FUENTES DE CONSULTA

Bibliográficas

- García Serrano, A. (2012) Inteligencia Artificial. Fundamentos, práctica y aplicaciones. RC libros
- · Valera Valera A. (2012) Tecnologías de Inteligencia Artificial. EAE
- Russell, S. & Norving, P. (2006) Inteligencia Artificial un enfoque Moderno. 2 Ed. Edit. Prentice Hall.
- J.Palma y R. Marín Inteligencia Artificial, Técnicas, métodos y Aplicaciones. McGraw Hill 2008.
- Freeman, J. Skapura, D. (2005). Redes Neuronales. Algoritmos, Aplicaciones y Técnicas de Programación. Addison-Wesley Publishing.
- · Barrientos, A. (2007) Fundamentos de Robótica. 2 Ed. Edit. Mc Graw Hill.

VII. UNIDADES DE APRENDIZAJE

UNIDAD I. INTELIGENCIA ARTIFICIAL

OBJETIVOS DE APRENDIZAJE:

- Entender los conceptos básicos de Inteligencia Artificial.
- Entender el concepto de Agente Inteligente y conocer sus ventajas y limitaciones.
- Resolver diversos problemas de computación utilizando redes neuronales y lógica difusa

PRIMERA SEMANA

Primera sesión

Introducción al curso

Segunda sesión

Definiciones de IA. Inteligencia Natural e Inteligencia Artificial.

Técnicas de IA.

SEGUNDA SEMANA

Primera sesión

Agentes Inteligentes. Racionalidad - Entorno

Estructura de Agentes Inteligentes

Segunda sesión

Introducción a los sistemas de búsqueda para varios entornos

Resolución de problemas mediante búsqueda

TERCERA SEMANA

Primera sesión

Búsqueda en espacio de estados

Ejercicios de aplicación

Programas de juegos

Segunda sesión

Representación del conocimiento en la Inteligencia Artificial

Representaciones basadas en lógica

CUARTA SEMANA

Primera sesión

Lógica de primer orden

Interferencias en lógica de primer orden

Segunda sesión

Planificación en el mundo real

Ejemplos de aplicación

QUINTA SEMANA

Primera sesión

Evaluación

Segunda sesión

Introducción al aprendizaje automático

Modelos lineales

K vecinos cercanos

SEXTA SEMANA

Primera sesión

Regresión logística

Segunda sesión

Redes neuronales

SÉPTIMA SEMANA

Primera sesión

Reglas de Bayes

Segunda sesión

Aprendizaje no supervisado

Procesos de decisión de Markov

Aprendizaje por esfuerzo

OCTAVA SEMANA

Examen Parcial.

NOVENA SEMANA

Primera sesión

Lógica difusa. Definiciones

¿Qué es un conjunto difuso?

Reglas difusas

Segunda sesión

Operaciones con conjuntos difusos

DECIMA SEMANA

Primera sesión

El control difuso

Segunda sesión

Aplicaciones de la lógica difusa

UNDECIMA SEMANA

Primera sesión

Evaluación integradora

Segunda sesión

Práctica Calificada

UNIDAD II. ROBÓTICA OBJETIVOS DE APRENDIZAJE:

- Saber elegir entre las diferentes técnicas para diferentes problemas y entornos
- Analizar diversas aplicaciones de la robótica.

DUODÉCIMA SEMANA

Primera sesión

Conceptos y definiciones de robótica

Segunda sesión

Aplicaciones

DECIMOTERCERA SEMANA

Primera sesión

Percepción

Detección de imágenes

Segunda sesión

Arquitecturas (software) Robóticas

UNIDAD III. TEORÍA DE LOS AUTÓMATAS OBJETIVOS DE APRENDIZAJE:

- Entender los conceptos básicos de la teoría de los autómatas
- Resolver diversos problemas de computación

DÉCIMOCUARTA SEMANA

Primera sesión

Introducción a la teoría de los autómatas. Definiciones

Modelo matemático

Segunda sesión

Autómatas discretos, continuos e híbridos

DECIMOQUINTA SEMANA

Primera sesión

Autómatas finitos

Definiciones y representaciones de Autómatas Finitos Deterministas

Minimización de AFD y teoremas

Segunda sesión

Definiciones de Autómatas Finitos no Deterministas

Equivalencias entre AFD y AFND

DECIMOSEXTA SEMANA

Examen Final.

DECIMOSÉPTIMA SEMANA

Entrega de promedios finales y acta del curso.

VIII. CONTRIBUCIÓN DEL CURSO AL COMPONENTE PROFESIONAL

a. Matemática y Ciencias Básicas 0

b. Tópicos de Ingeniería4

c. Educación General 0

IX.PROCEDIMIENTOS DIDÁCTICOS

- **Método Expositivo Interactivo.** Comprende la exposición del docente y la interacción con el estudiante.
- Método de Discusión Guiada. Conducción del grupo para abordar situaciones y llegar a conclusiones y recomendaciones.
- Método de Demostración Ejecución. Se utiliza para ejecutar, demostrar, practicar y retroalimentar lo expuesto.

X. MEDIOS Y MATERIALES

Equipos: Computadora, ecran y proyector multimedia.

• **Materiales**: Manual Universitario, material docente, prácticas dirigidas de laboratorio y textos bases (ver fuentes de consultas).

• Software: Matlab

XI. EVALUACIÓN

El promedio final de la asignatura se obtiene mediante la fórmula siguiente:

 $PF = 0.30^{\circ}PE + 0.30^{\circ}EP + 0.40^{\circ}EF$ PE = (P1 + P2 + P3 + P4) / 4

Donde: Donde:

PF = Promedio final **P1...P4** = Práctica Calificada

EP = Examen parcial **EF** = Examen final

PE = Promedio de evaluaciones

XII. APORTE DEL CURSO AL LOGRO DE RESULTADOS

El aporte del curso al logro de los resultados (Outcomes), para la Escuela Profesional de Ingeniería de Computación y Sistemas, se establece en la tabla siguiente:

K = clave R = relacionado Recuadro vacío = no aplica

a.	Habilidad para aplicar conocimientos de computación y matemáticas apropiadas para los resultados del estudiante y las disciplinas enseñadas.	R		
b.	Habilidad para analizar un problema e identificar y definir los requerimientos apropiados para su solución.			
C.	Habilidad para diseñar, implementar y evaluar un sistema basado en computadoras, procesos, componentes o programa que satisfagan las necesidades requeridas.			
d.	Habilidad para trabajar con efectividad en equipos para lograr una meta común.	R		
e.	e. Comprensión de los aspectos y las responsabilidades profesional, ética, legal, de seguridad y social.			
f.	Habilidad para comunicarse con efectividad con un rango de audiencias.			
g.	Habilidad para analizar el impacto local y global de la computación en los individuos, organizaciones y la sociedad.			
h.	Reconocer la necesidad y tener la habilidad para comprometerse a un continuo desarrollo profesional.			
i.	Habilidad para usar técnicas, destrezas, y herramientas modernas necesarias para la práctica de la computación.	К		
j	Comprensión de los procesos que soportan la entrega y la administración de los sistemas de información dentro de un entorno específico de aplicación.			

XIII. HORAS, SESIONES, DURACIÓN

Teoría	Práctica	Laboratorio
4	0	0

- a) Horas de clase:
- b) Sesiones por semana: Dos sesiones.
- c) **Duración**: 4 horas académicas de 45 minutos

XIV. PROFESORES DEL CURSO

Ing. Jiménez Motte, Fernando Ing. Cárdenas Zavala, Germaín

XV. FECHA

La Molina, marzo de 2017.