Линейные отображения векторных пространств. Матричные разложения.

Детерминант матрицы

Определение. Детерминантом или определителем квадратной матрицы A размера n называется число $\det A = \sum_{j=1}^n a_{ij} (-1)^{i+j} d_{ij}$, где d_{ij} — детерминант матрицы, полученной вычеркиванием из матрицы A i-й строки и j-го столбца.

Утверждение 1. (a) $\det A = \det A^T$.

- (б) Если столбцы матрицы линейно зависимы, то детерминант матрицы равен θ .
- (в) Если переставить местами два столбца, то детерминант умножится на (-1).
- (г) Если прибавить к одному столбцу другой, умноженный на некоторое число, то детерминант не изменится.
 - (∂) det $AB = \det A \det B$.

Задача 1

Выразите $\det \alpha A$ через $\det A$.

Задача 2

Вычислите
$$\begin{vmatrix} 1 & 0 & 8 & 1 \\ 1 & 4 & 0 & 3 \\ 2 & 0 & 9 & 3 \\ 1 & 5 & 4 & 1 \end{vmatrix}$$

Связь с системой линейных уравнений

Систему линейных уравнений

$$a_1^1 x_1 + \dots + a_n^1 x_n = b_1$$

$$a_1^2 x_1 + \dots + a_n^2 x_n = b_2$$

$$\dots$$

$$a_1^m x_1 + \dots + a_n^m x_n = b_m$$

можно переписать в виде Ax = b, где A — матрица из коэффициентов при неизвестных, x — столбец из неизвестных, а b — столбец из чисел в правых частях уравнений.

Линейные отображения

Определение. Отвображением A линейного пространства L в линейное пространство \overline{L} называется закон, по которому каждому вектору из L сопоставлен ровно один вектор из \overline{L} . Будем писать $A \colon L \to \overline{L}$.

Определение. Отображение $A\colon L\to \overline{L}$ называется линейным, если для любых векторов x,y из L и любого числа α выполнены равенства A(x)+A(y)=A(x+y) и $A(\alpha x)=\alpha A(x)$.

Определение. Если пространства L и \overline{L} совпадают, то линейное отображение называется линейным преобразованием.

Утверждение 2. При линейном отображении

- (а) линейная комбинация векторов переходит в такую же линейную комбинацию своих образов;
 - (б) нулевой вектор переходит в нулевой;
 - (в) линейно зависимые векторы переходят в в линейно зависимые;
- (г) линейное подпространство переходит в линейное подпространство, не большей размерности.

Определение. Множество образов всех векторов из L является линейным подпространством A(L) в \overline{L} и называется множеством значений отображения A. Оно обозначается ${\rm Im} A$.

Определение. Размерность множества значений отображения называется *рангом* отображения.

Определение. Множество векторов, отображающихся в нулевой вектор называется $\mathit{ядром}$ отображения и обозначается $\mathrm{Ker}A$.

Матрица линейного отображения

Определение. Матрицей линейного отображения $A \colon L \to \overline{L}$ в паре базисов e и f называется матрица, столбцы которой — координатные столбцы векторов $A(e_1), \ldots, A(e_n)$ в базисе f.

Утверждение 3. Верны следующие утверждения

- (а) Ранг матрицы линейного отображения равен рангу этого отображения.
- (б) Сумма ранга отображения и размерности его ядра равна размерности отображаемого пространства.

Определение. Матрицей линейного преобразования A в базисе e называется матрица, столбцы которой — координатные столбцы векторов $A(e_1), \ldots, A(e_n)$ в базисе e.

Задача 3

Найдите матрицу линейного преобразования, соответствующего повороту плоскости на угол α против часовой стрелки вокруг точки (0,0).

Собственные подпространства

Определение. Если для числа λ подпространство $\mathrm{Ker}(A-\lambda E)$ ненулевое, то λ называется собственным значением преобразования A, а подпространство — собственным подпространством, соответствующим собственному значению λ .

Утверждение 4. Ограничение преобразования на собственном подпространстве является или нулевым преобразованием, или гомотетией: оно умножает каждый вектор этого подпространства на собственное значение.

Определение. Ненулевой вектор x называется co6cm6enhым 6ekmo-pom преобразования A, соответствующим собственному значению λ , если $A(x) = \lambda x$.

Определение. Равенство $\det(A - \lambda E) = 0$ называется xарактеристическим уравнением матрицы <math>A. Его корни называются xарактеристическими числами матрицы <math>A.

Теорема 1. Все корни характеристического уравнения и только они являются собственными значениями.

Теорема 2. Пусть собственное значение λ_0 преобразования $A-\kappa_0$ рень характеристического уравнения кратности s. Тогда размерность соответствующего собственного подпространства не превосходит s.

Задача 4

Докажите, что ненулевое линейное преобразование, для которого все ненулевые векторы собственные, является гомотетией.

Задача 5

Найдите собственные значения матрицы
$$\begin{pmatrix} 3 & -2 & 6 \\ -2 & 6 & 3 \\ 6 & 3 & -2 \end{pmatrix}$$

Разложение по сингулярному значению (SVD-разложение)

Определение. Матрица A называется *ортогональной*, если $AA^T = E$.

Теорема 3. Для любой матрицы A существуют две ортогональные матрицы U и V такие, что U^TAV — диагональная матрица Σ .

Матрицы U и V можно выбрать так, чтобы диагональные элементы матрицы σ удовлетворяли условию $\sigma_1 \geq \sigma_2 \geq \ldots \geq \sigma_r > \sigma_{r+1} = \ldots = \sigma_n = 0$, где r — ранг матрицы A.

Определение. Столбцы матриц U и V называются *левыми* и *правыми* сингулярными векторами, а числа $\sigma_1, \ldots, \sigma_n$ — сингулярными числами матрицы A.

Определение. Запись из теоремы можно переписать в виде $A = U \Sigma V^T$. Такое разложение матрицы A называют разложением по сингулярному значению или SVD-разложением.

Сингулярные числа связаны с собственными числами. С одной стороны,

$$AA^T = U\Sigma V^T V\Sigma U^T = U\Sigma^2 U^T$$

С другой стороны,

$$A^T A = V \Sigma U^T U \Sigma V^T = V \Sigma^2 V^T$$

Тогда столбцы матрицы U — собственные векторы матрицы AA^T , матрицы V — матрицы A^TA , а квадраты сингулярных чисел — собственными числами этих матриц.

Рекомендательные системы

У нас есть матрица, состоящая из рейтингов (лайков, фактов покупки и т.п.), которые пользователи (строки матрицы) присвоили продуктам (столбцы матрицы). Как правило, такие матрицы разрежены, потому что лишь незначительная доля продуктов оценена большим количеством пользователей.

Тогда можно представить каждого пользователя вектором из r факторов u_i . Точно также каждый продукт будет представлен вектором из r факторов v_j . Тогда, чтобы рассчитать рейтинг пользователя для некоторого продукта достаточно взять скалярное произведение векторов $(u_i, v_j) = u_i^T v_j$.

Метод главных компонент (РСА)

Пусть у нас есть матрица «объект-признак» $X \in \mathbb{R}^{n \times k}$, то есть есть n объектов и значения их k признаков. Наша цель — уменьшить размерность пространства до d. Считаем, что данные центрированы, то есть среднее в каждом столбце равно 0.

Будем искать главные компоненты $u_1, \ldots, u_d \in \mathbb{R}^k$, которые удовлетворяют следующим свойствам:

- ullet Они ортогональны, то есть $(u_i,u_j)=0$ для любых $i\neq j$
- Они нормированы, то есть $|u_i|=1$
- При проецировании выборки на компоненты u_1, \ldots, u_d получается максимальная дисперсия среди всех возможных способов выбрать d компонент.

Утверждение 5. Главная компонента u_i равна собственному вектору, который соответствует i-му по величине собственному значению.