## Insper

## SuperComputação

Aula 9 - Branch and Bound

2020 – Engenharia

Luciano Soares <a href="mailto:sper.edu.br">sper.edu.br</a>
Igor Montagner <a href="mailto:sper.edu.br">igorsm1@insper.edu.br</a>

## Hoje

Branch and Bound

Relaxando restrições

## Revisão







#### Quais escolhas podem ser feitas?

Quais produtos pegar?

#### Qual é a função objetivo?

Maximizar valor dos objetos guardados



#### Quais são as restrições?

Peso dos objetos n\u00e3o pode exceder capacidade da mochila



#### Heurística

# "truque" usado para resolver um problema rapidamente

Ainda assim, uma boa heurística é suficiente para obter resultados aproximados ou ganhos de curto prazo.

- Mais leve/caro primeiro
- Não garante resultados bons em todas situações

#### **Busca local**

- 1. Repetir N vezes:
  - 1. Cria uma solução
  - 2. Aplicar, sucessivamente, uma operação que melhora esta solução.
  - 3. Parar quando não for mais possível
- 2. Retorne a melhor solução

## Solução ótima global

Para todo objeto só tenho duas possibilidades:

- Incluir na mochila
  - Resolva a mochila com os outros objetos e capacidade diminuída do valor do objeto incluído.
- Não incluir na mochila
  - Resolva problema da mochila com os outros objetos

#### Problemas de decisão

#### Tem uma solução com valor maior que 13?

- P = existe algoritmo determinístico que leva tempo polinomial para responder a pergunta
- NP = caso a resposta seja SIM, existe um algoritmo polinomial que verifica se a resposta está correta.
- co-NP = caso a resposta seja NÃO, existe um algoritmo polinomial que verifica se a resposta está correta.

## **Busca exaustiva**



Melhor até agora: \$12











Solução atual: \$4 (i=2)







Melhor até agora: \$12











Solução atual: \$4 (i=2)





Existe alguma chance dessa solução parcial ser ótima?

## Formalizando nosso problema

Até agora descrevemos nosso problema em termos simples.

- Escolhas
- Descrição informal da função objetivo
- Descrição informal das restrições

### Formalizando nosso problema

Até agora descrevemos nosso problema em termos simples.

- Escolhas
- Descrição informal da função objetivo
- Descrição informal das restrições

Precisamos ser mais precisos se quisermos avançar

#### Quais escolhas podem ser feitas?

Quais produtos pegar?

#### Qual é a função objetivo?

Maximizar valor dos objetos guardados



#### Quais são as restrições?

Peso dos objetos n\u00e3o pode exceder capacidade da mochila



## Formalizando nosso problema



#### Ideia

Será que conseguimos "economizar" trabalho inútil?

Evitar terminar uma solução parcial que não tem chance alguma de ser ótimas

#### Ideia - Bound

Será que conseguimos "economizar" trabalho inútil?

Evitar terminar uma solução parcial que não tem chance alguma de ser ótimas

#### **Bound:**

- estimativa otimista da qualidade de uma solução parcial
- não precisa ser o valor de uma mochila válida



Melhor até agora: \$12











Solução atual: \$4 (i=2)







Melhor até agora: \$12











Solução atual: \$4 (i=2)











Inclua TODOS os objetos faltantes

- valor \$9
- peso 17kg

4 K9



## Relaxando nosso problema

Nossa ideia de otimismo inclui "ignorar" alguma restrição!

- Restrição implica em diminuir função objetivo
- Não restringir sempre aumenta (ou fica igual)
- Ser otimista = relaxar alguma restrição

## Relaxando nosso problema



## Branch and Bound - ignorar peso



## Atividade prática

#### Implementar o branch and bound - ignorar peso (30 minutos)

- 1. Praticar implementação de algoritmos a partir de pseudo-código
- 2. Comparar soluções com outras abordagens

# Discussão: resultados obtidos por um bound

#### Como descobrir se um bound é bom?



#### Como descobrir se um bound é bom?

1. Quantas vezes ele é ativado?

2. Em qual altura ele é ativado?

3. O quão bem ele estima a qualidade da solução parcial?

## Nosso bound é justo?

Melhor caso

• Pior caso

## Nosso bound é justo?

- Melhor caso
  - Cabe todo mundo e ele acerta
  - Pouco frequente
- Pior caso

## Nosso bound é justo?

- Melhor caso
  - Cabe todo mundo e ele acerta
  - Raro

#### Pior caso

- Não cabe ninguém
- Mais frequente que o anterior

## Atividade prática

O bound ignorar peso é bom? (30 minutos)

1. Medir indicadores de desempenho de um algoritmo

## Discussão: o bound é bom?

## Insper

www.insper.edu.br

#### Um bound melhor: a mochila fracionária

Podemos relaxar a outra restrição e pegar **frações de um objeto.** 

Este problema é mais fácil ou mais difícil?



## A mochila fracionária: algoritmo

- 1. Ordene os objetos por valor / peso
- 2. Nesta ordem, inclua o objeto todo se possível.
- 3. Se não inclua a maior fração que puder.

## A mochila fracionária: algoritmo

- 1. Ordene os objetos por valor / peso
- 2. Nesta ordem, inclua o objeto todo se possível.
- 3. Se não inclua a maior fração que puder.

A solução final é ótima