41071102H 徐敏皓 HW7

Code:

https://colab.research.google.com/drive/11QgE0Ma3WojrJOGUkvJZHs M_Mf_MvNfJ?usp=sharing

K-Neighbors classification

From sklearn.neighbors import KNeighborsClassifier
5. 建立 KNeighborsClassifier 模型
kmn = KNeighborsClassifier(n_neighbors=4, weights='uniform', metric='minkowski')
6. 訓練模型
kmn.fit(X_train_scaled, y_train)

From sklearn.neighbors import KNeighborsRegressor
6. 建立 KNeighborsRegressor 模型
kmn = KNeighborsRegressor (n_neighbors=4, weights='uniform', metric='minkowski')
7. 訓練模型
kmn.fit(X_train_scaled, y_train)

•n_neighbors: 鄰居數 (預設為 5)

•weights: 距離權重 (可選 'uniform' 或 'distance')

•metric: 距離計算方法 (預設 'minkowski')

此分類器必須將特徵標準化,因為如果data的不同特徵有不同的量級(例如一個特徵範圍是[0,1],另一個是[0,1000]),則特徵範圍大的變量會主導距離計算,導致模型偏向該特徵。 此外 Classifier 的 class label 必須為 discrete,而 Regressor 的 class label 必須為 continuous。

Naïve Bayes Classifiers

呼叫方式 Gaussian Naive Bayes

from sklearn.naive_bayes import GaussianNB # 4. 初始化 GaussianNB 分類器 gnb = GaussianNB() # 5. 訓練模型 gnb.fit(X_train, y_train)

MultinomialNB

```
from sklearn.naive_bayes import Multinomia1NB
# 初始化 Multinomia1NB
model = Multinomia1NB(alpha=1.0, fit_prior=True)
# 訓練模型
model.fit(X_train, y_train)
```

•alpha: 拉普拉斯平滑參數 •fit_prior: 是否學習先驗分佈

使用 MultinomialNB 時,特徵必須為非負整數,因為 MultinomialNB 假設特徵是計數資料,通常表示為非負整數(例如,單詞的出現次數或其他計數型資料)。

Decision Trees Classification

呼叫方式 DecisionTreeClassifier

```
from sklearn.tree import DecisionTreeClassifier

# 建立 DecisionTreeClassifier 模型

model = DecisionTreeClassifier(criterion='gini', max_depth=5)

# 訓練模型

model.fit(X_train, y_train)
```

Decision Tree Regressor

```
from sklearn.tree import DecisionTreeRegressor
# 5. 初始化 DecisionTreeRegressor
regressor = DecisionTreeRegressor(criterion='squared_error', max_depth=5)
# 6. 訓練模型
regressor.fit(X train, y train)
```

•criterion: 分割標準

•max_depth: 樹的最大深度

Classifier 的 class label 必須為 discrete,而 Regressor的 class label 必須為 continuous。

SVM Classification

呼叫方式

LinearSVC

```
from sklearn.svm import LinearSVC
# 5. 建立 LinearSVC 模型
model = LinearSVC(C=1.0, max_iter=1000)
# 6. 訓練模型
model.fit(X_train_scaled, y_train)
```

SVC

```
from sklearn.svm import SVC
# 5. 初始化並訓練 SVC 模型
svc_model = SVC(kernel='rbf', C=10, gamma='scale')
svc_model.fit(X_train_scaled, y_train)
```

•C: 正則化參數

•max_iter: 最大迭代次數

•kernal: 核函數 •gamma: 核係數

此分類器必須將特徵標準化,因為如果data的不同特徵有不同的量級(例如一個特徵範圍是[0,1],另一個是[0,1000]),則特徵範圍大的變量會主導距離計算,導致模型偏向該特徵。

ANN Classification

呼叫方式 MLP

MLPClassifier

```
from sklearn.neural_network import MLPClassifier

# 建立 MLP 模型
mlp = MLPClassifier(hidden_layer_sizes=(100, 50), activation='relu', solver='adam', max_iter=400)

# 訓練模型
mlp.fit(X_train_scaled, y_train)
```

MLPRegressor

```
from sklearn.neural_network import MLPRegressor
# 6. 初始化並訓練 MLPRegressor
mlp = MLPRegressor(hidden_layer_sizes=(100,50), activation='relu', solver='adam', max_iter=600)
mlp.fit(X_train_scaled, y_train)
```

•hidden_layer_sizes: 隱藏層神經元的數量

•activation: 激活函數
•solver: 權重優化算法
•max_iter: 最大迭代次數

此分類器必須將特徵標準化,因為如果data的不同特徵有不同的量級(例如一個特徵範圍是 [0,1],另一個是 [0,1000]),則特徵範圍大的變量會主導距離計算,導致模型偏向該特徵。 此外 Classifier 的 class label 必須為 discrete,而 Regressor 的 class label 必須為 continuous。

Ensemble classifier

呼叫方式

RandomForestClassifier

```
from sklearn.ensemble import RandomForestClassifier
# 4. 初始化並訓練 RandomForestClassifier
model = RandomForestClassifier(n_estimators=100, criterion='gini', max_depth=None)
model.fit(X_train, y_train)
```

•n_estimators: 隨機森林中樹的數量

•criterion: 分割標準

•max_depth: 樹的最大深度

Ensemble classifier (cont.)

from sklearn.ensemble import GradientBoostingClassifier

呼叫方式 GradientBoostingClassifier #型
clf = GradientBoostingClassifier (n_estimators=100, learning_rate=0.1, max_depth=3)

訓練模型
clf. fit(X_train, y_train)

GradientBoostingRegressor

建立 GradientBoostingRegressor 模型
model = GradientBoostingRegressor (n_estimators=100, learning_rate=0.1, max_depth=3)

訓練模型
model. fit(X_train, y_train)

•n_estimators: 弱學習器(決策樹)的數量

•learning_rate: 用於控制每棵樹對最終預測的貢獻

•max_depth: 樹的最大深度

Classifier 的 class label 必須為 discrete,而 Regressor的 class label 必須為 continuous。

執行結果

Evaluation

呼叫方式 KFold

from sklearn.model selection import KFold # 初始化 KFold kf = KFold(n_splits=5, shuffle=True)

ShuffleSplit

from sklearn.model_selection import ShuffleSplit # 創建 ShuffleSplit 交叉驗證物件 ss = ShuffleSplit(n_splits=5, test_size=0.2)

•n_splits: 訓練/測試分割的次數

•shuffle: 是否在分割前隨機打亂數據

•test_size: 測試集的比例

F	o	1	d	1

Accuracy: 54.00%

Fold 2

Accuracy: 64.50%

Fold 3

Accuracy: 60.50%

Fold 4

Accuracy: 61.50%

Fold 5

Accuracy: 60.50%

Average Accuracy: 60.20%

Accuracy of round 1: 60.00% Accuracy of round 2: 60.50% Accuracy of round 3: 60.50% Accuracy of round 4: 60.50% Accuracy of round 5: 64.50%

Average Accuracy: 61.20%

	KFold	ShuffleSplit
每次分割data時是否重疊(同一筆data被當作測試集兩次以上)	不會重疊	可能重疊
是否按比例分割	不按比例,但根據K分成K 折	按比例分割

執行結果

呼叫方式 confusion_matrix

```
from sklearn.metrics import confusion_matrix
  計算混淆矩陣
  = confusion_matrix(y_true = y_test, y_pred = y_pred)
```

•y_true: 真實label

•y_pred: 預測label

```
Confusion Matrix:
```

Confusion matrix對角線代表正確分類的數量,例如cm[0][0] = 14, 代表實際是類別0且預測為類別0有14個。

非對角線代表錯誤分類的情況,例如cm[0][2] = 1,代表實際類別 是0,但預測為類別2的數量有1個。

呼叫方式 classification_report

```
from sklearn.metrics import classification_report
report_dict = classification_report(y_true = y_test, y_pred = y_pred, output_dict=True)
```

•y_true: 實際的label •y_pred: 預測的label

•output_dict: 輸出是否為字典格式

```
執行結果
```

前10項代表每個label各自的"precision", "recall", "fl-score", "support", 其中support代表label的樣本數。 "macro avg"是對所有label的 precision, recall, f1-score 計算算術平均數。

"weighted avg"是根據每個label的support對 precision, recall, f1-score 加權後的平均值。

呼叫方式

f1_score

```
from sklearn.metrics import fl_score
fl_macro = fl_score(y_true = y_test, y_pred = y_pred, average='weighted')
```

•y_true: 真實label

•y_pred: 預測label

•average: 計算方式

執行結果

F1 Score (macro): 0.58

average 設為 macro 是針對所有 label 計算 F1 分數的簡單平均值, 無論每個類別中樣本數量的比例如何。

呼叫方式 precision_recall_curve

```
from sklearn.metrics import precision_recall_curve

# 將每個類別的 precision-recall 曲線計算出來

precision, recall, thresholds = {}, {}, {}

for i, class_label in enumerate(label_encoder.classes_):

    precision[class_label], recall[class_label], thresholds[class_label] = precision_recall_curve(v_test == i, y_scores[:, i])
```

- •y_true(y_test == i): 真實label
- •probas_pred(y_scores[:, i]): 預測的分數或機率

•横軸 (Recall):

表示召回率,代表模型能正確預測出所有實際正樣本的比例。召回率越高,代表模型能抓住更多的正樣本。

•縱軸 (Precision):

表示精確率,代表模型預測為正樣本的結果中,實際正樣本的比例。精確率越高,代表模型的預測結果越準確。

•每條曲線:

每條曲線對應一個類別,展示了模型在針對該類別進行分類時的精確率與召回率的權衡。隨著閾值的改變,精確率和召回率會產生變化。

•解讀曲線形狀:

- ·如果某條曲線在高召回率下仍然保持較高的精確率,代表模型對該類別的分類能力較好。
- •如果曲線趨於平坦或靠近隨機水平,說明模型對該類別的區分能力較差。

分類器分類效果比較(Classification model)

Classification model 使用 "Accuracy", "Precision", "Recall", "F1-score" 做評估。

```
accuracy: 0.585
KNeighborsClassifier
                               macro avg: {'precision': 0.5930350029904142, 'recall': 0.6027255546385981, 'f1-score': 0.5812870989538227, 'support': 200.0}
                               weighted avg: { precision': 0.59963381362657,  recall': 0.585,  f1-score': 0.575488034682332,  'support': 200.0}
                               accuracy: 0.35
Gaussian Naive Bayes
                                macro avg: {'precision': 0.3048167061696474, 'recall': 0.37152296495774756, 'f1-score': 0.3048111363957416, 'support': 200.0}
                                weighted avg: { precision': 0.3048779178338002. 'recall': 0.35, 'f1-score': 0.2978031144711699 'support': 200.0}
                               accuracy: 0.315
    MultinomialNB
                               macro avg: {'precision': 0.2889806903622693, 'recall': 0.3451937096719705, 'f1-score': 0.27446685205901794, 'support': 200.0}
                                                                               recall': 0.315
                                                                                               f1-score': 0.2680486257214368
                               weighted avg: { precision': 0.2979920967190704.
                                                                                                                              'support': 200.0}
                               accuracy: 0.42
DecisionTreeClassifier
                               macro avg: {'precision': 0.43304933532881956, 'recall': 0.46359948746905266, 'f1-score': 0.4101790669209341, 'support': 200.0}
                                                                               recall': 0.42, 'f1-score': 0.3772463382269081,
                               weighted avg: { precision': 0.40856048559445635.
                                                                                                                              support': 200.0}
                               accuracy: 0.61
      LinearSVC
                               macro avg: {'precision': 0.6037224454999393, 'recall': 0.6333539294843643, 'f1-score': 0.6069840395672843, 'support': 200.0}
```

weighted avg: { precision : 0.6043844537815126, recall : 0.61, f1-score : 0.5970933494204583

'support': 200.0}

分類器分類效果比較(Classification model) (cont.)

Classification model 使用 "Accuracy", "Precision", "Recall", "F1-score" 做評估。

'support': 200.0}

分類器分類效果比較(Classification model) (cont.)

Classification model 使用 "Accuracy", "Precision", "Recall", "F1-score" 做評估。

- 1. Accuracy SVC (0.675) 和 MLPClassifier (0.66) 的 Accuracy 最高,說明它們在總體分類上性能最好。 MultinomialNB 的 Accuracy 最低 (0.315),說明該模型對這個資料集不太適合。
- Precision 高的模型(如 SVC: 0.666、MLPClassifier: 0.667)更能準確區分正類別。
 MultinomialNB Precision 最低 (0.298),說明該模型誤報較多。
- Recall 高的模型(如 SVC: 0.684、MLPClassifier: 0.676)更能識別正樣本。
 MultinomialNB 的 Recall 最低 (0.345),說明漏報較多。
- 4. F1-score 綜合了 Precision 和 Recall, SVC (0.675)、MLPClassifier (0.665)的 F1-score 最高, 代表它們在精確性和召回率間取得平衡。

MultinomialNB 的 F1-score 最低 (0.274),表明該模型在精確性和召回率上都表現較差。

分類器分類效果比較(Regression model)

Regression model使用 "Mean Squared Error(MSE)" 做評估。

KNeighborsRegressor Mean Squared Error: 5.79

DecisionTreeRegressor Mean Squared Error: 7.27

MLPRegressor Mean Squared Error: 8.43

GradientBoostingRegressor Mean Squared Error: 5.48

MSE 越低代表模型預測的誤差越小、越準確。因此從上面的結果可知 GradientBoostingRegressor 和 KNeighborsRegressor 在此資料集表現最佳,預測最準。而 MLPRegressor 對資料集的擬合效果較差,預測誤差較大。

分類器分類效果比較 (分類器的優缺)

分類器	優點	缺點	適用情境
KNeighborsClassifier	實現簡單,對非線性問題 效果好	計算效率低,對高維 數據效果差	小規模數據,低維度,分佈有 區域性模式
Gaussian Naive Bayes	訓練速度快,對高維數據 有優勢	假設特徵獨立,對複 雜關係的數據效果差	標籤有強先驗分佈,特徵是連續數據
MultinomialNB	高效處理離散數據,特別 適合文本分類	對於特徵值為連續數 據時表現不佳	文本分類(如垃圾郵件檢測)
DecisionTreeClassifier	可解釋性高,對異質數據 有良好效果	容易過擬合,需要剪 枝或正則化	需要可視化或解釋的分類問題
LinearSVC / SVC	高效處理線性與非線性分 類,對小樣本數據表現優 異	計算成本高,對噪聲 敏感	高維數據,分類邊界清晰或可 調的核函數情境
MLPClassifier	強大的非線性建模能力, 可解決複雜問題	訓練時間長,對超參 數敏感	大量數據,特徵與標籤關係複雜
RandomForestClassifier	高效,對異常值和多維數 據適應性強	模型複雜,難以解釋	需要高準確度,對解釋性要求 不高的場景
GradientBoostingClassifier	高效,對不平衡數據和異 常值敏感,適合應對精細 的分類問題	訓練時間長,對參數 敏感	對性能要求高,數據分布異常, 且特徵間關係複雜的情境