PATENT ABSTRACTS OF JAPAN

(11)Publication number:

11-181012

(43) Date of publication of application: 06.07.1999

(51)Int.CI.

CO8F 4/52

CO8F 36/04

(21)Application number: 09-354472

(71)Applicant: UBE IND LTD

(22)Date of filing:

24.12.1997

(72)Inventor: TSUJIMOTO NOBUHIRO

AKIGAWA KAZUHIRO

(54) PRODUCTION OF CONJUGATED DIENE POLYMER

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a method for highly actively producing a conjugated diene polymer controlled with a new catalyst system.

SOLUTION: This method for producing a conjugated diene polymer comprises polymerizing a conjugated diene compound in the presence of a catalyst obtained from (A) the compound of a metal belonging to the group 3 in the periodic table, (B) an ionic compound comprising a non-coordinating anion and a cation, (C) an organic aluminum compound and (D) water [wherein (C):(D)=1:(0.01-2)(molar ratio)].

LEGAL STATUS

[Date of request for examination]

28.02.2003

[Date of sending the examiner's decision of rejection]

17.08.2005

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of

rejection]

[Date of requesting appeal against examiner's decision

of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平11-181012

(43)公開日 平成11年(1999)7月6日

(51) Int.Cl.⁶ C 0 8 F 識別記号

FΙ

C 0 8 F 4/52 36/04

4/52 36/04

審査請求 未請求 請求項の数2 OL (全 6 頁)

(21)出願番号

(22)出願日

特願平9-354472

平成9年(1997)12月24日

(71)出願人 000000206

宇部興産株式会社

山口県宇部市西本町1丁目12番32号

(72)発明者 辻本 信弘

千葉県市原市五井南海岸8番の1 宇部興

産株式会社高分子研究所内

(72)発明者 秋川 和宏

千葉県市原市五井南海岸8番の1 宇部興

産株式会社高分子研究所内

(54) 【発明の名称】 共役ジエン重合体の製造方法

(57)【要約】

【課題】 新規な触媒系による制御された共役ジエン重 合体を高活性で製造する方法を提供する。

【解決手段】 (A)周期律表3族金属の化合物、

(B) 非配位性アニオンとカチオンとのイオン性化合物、(C) 有機アルミニウム化合物、及び、(D) 水(但し、(C):(D)=1:0.01~2(モル比)である。)から得られる触媒を用いて、共役ジエン化合物を重合させることを特徴とする共役ジエン重合体の製造方法。

【特許請求の範囲】

【請求項1】 (A) 周期律表3族金属の化合物、

(B) 非配位性アニオンとカチオンとのイオン性化合物、(C) 有機アルミニウム化合物、及び(D) 水(但し、(C):(D)=1:0.01~2(モル比)である。)から得られる触媒を用いて、共役ジエン化合物を重合させることを特徴とする共役ジエン重合体の製造方法。

【請求項2】 (A) 周期律表3族金属の化合物、

(B) 非配位性アニオンとカチオンとのイオン性化合物、(C) 有機アルミニウム化合物、及び(D) 水(但し、(C):(D)=1:0.01~2(モル比)である。)からなる触媒を用いて、共役ジエン化合物を重合させることを特徴とする共役ジエン重合体の製造方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、周期律表3族金属の化合物からなる重合触媒を用いた共役ジエン類の重合体の製造方法に関するものである。

[0002]

【従来の技術】ブタジエン、イソプレンなどの共役ジエンの重合触媒に関しては、従来より数多くの提案がなされており、種々のミクロ構造の重合体が可能となり、その幾つかは工業化されている。

【0003】高シス-1,4構造のポリブタジエン等の 共役ジオレフィン重合体を得る方法として、遷移金属化 合物と有機金属を組み合わせた触媒が知られており、例 えばチタン化合物と有機アルミニウムの組合せ、コバル ト化合物と有機アルミニウムの組合せ、ニッケル化合 物、3フッ化ホウ素及び有機アルミニウム化合物の組合 30 せからなる触媒がよく用いられる。

【0004】一方、周期律表3族の金属化合物を用いた重合触媒としては、特公昭47-14729号公報には、①セリウムオクタノエート等の周期律表3族の金属の化合物と②ジイソブチルアルミニウムハイドライド等のアルキルアルミニウムハイドライドやトリアルキルアルミニウムと③エチルアルミニウムジクロライド等のアルミニウムハライドからなる触媒系が示されており、特に触媒をブタジエンの存在下で熟成することにより触媒活性が増加することが示されている。

【0005】また、特公昭63-64444号公報には希土類元素のカルボキシレート、有機アルミニウム及びルイス酸からなる触媒系、特公平4-2601号公報には希土類元素のカルボキシレート、有機アルミニウム及び有機ハロゲン誘導体からなる触媒系、特開平7-268013号公報には希土類の塩、周期律表第1~III族の金属化合物及び3価のホウ素の有機金属誘導体からなる触媒系、特公平3-22887号公報にはネオジウム化合物、有機アルミニウム化合物及び水からなる触媒系が開示されている。しかしながら、これらの触媒系は重

合活性が充分でない。

[0006]

【発明が解決しようとする課題】新規な周期律表3族金属化合物系の重合触媒を用いて、制御された共役ジエン重合体を高活性で製造する方法を提供することを目的とする。

[0007]

【課題を解決するための手段】本発明は、(A)周期律表3族金属の化合物、(B)非配位性アニオンとカチオルとのイオン性化合物、(C)有機アルミニウム化合物、及び(D)水(但し、(C):(D)=1:0.01~2(モル比)である。)から得られる触媒を用いて、共役ジエン化合物を重合させることを特徴とする共役ジエン重合体の製造方法に関する。

【0008】又、本発明は、(A)周期律表3族金属の化合物、(B)非配位性アニオンとカチオンとのイオン性化合物、(C)有機アルミニウム化合物、及び(D)水(但し、(C):(D)=1:0.01~2(モル比)である。)からなる触媒を用いて、共役ジエン化合物を重合させることを特徴とする共役ジエン重合体の製造方法に関する。

【0009】本発明の触媒系の(A)成分である周期律表3族金属の化合物を構成する金属は、周期律表3族に属する原子であり、ランタン系列元素、アクチニウム系列元素などが挙げれる。好ましくは、希土類元素が挙げられる。具体的には、ネオジウム、プラセオジウム、セリウム、ランタン、ガドリニウム又はこれらの混合物である。特に、好ましくは、ネオジウムが挙げられる。

【0010】本発明の触媒系の(A)成分である周期律表3族金属の化合物としては、周期律表3族金属のカルボン酸塩、アルコキサイド、βージケトン錯体、リン酸塩また亜リン酸塩などであり、中でもカルボン酸塩、リン酸塩が好ましく、特にカルボン酸塩が好ましい。

【0011】本発明の触媒系の(A)成分である周期律表3族金属のカルボン酸塩は、一般式(RCO2)3M(式中、Mは周期律表3族金属であり、Rは炭素数1~20の炭化水素基である。)で表される化合物である。【0012】Rは、飽和又は不飽和のアルキル基であり、かつ直鎖状、分岐状又は環状であり、カルボキシル基CO2は1級、2級又は3級の炭素原子に結合している。具体的には、オクタン酸、2ーエチルーへキサン酸、オレイン酸、ステアリン酸、安息香酸、ナフテン酸及びバーサチック酸(シェル化学の商品名であって、カルボキシル基が3級炭素原子に結合しているカルボン酸である)などの塩が挙げられる。中でも、2ーエチルーへキサン酸及びバーサチック酸が好ましい。

の金属化合物及び3価のホウ素の有機金属誘導体からな 【0013】周期律表3族金属のアルコキサイドは、一る触媒系、特公平3-22887号公報にはネオジウム 般式(RO)3 M(式中、MおよびRは前記と同じであ 化合物、有機アルミニウム化合物及び水からなる触媒系 る。)で表される化合物である。ROで表されるアルコ が開示されている。しかしながら、これらの触媒系は重 50 キシ基の例として、2-エチルーへキシルアルコキシ、

オレイルアルコキシ、ステアリルアルコキシ、フェノキ シ及びベンジルアルコキシ基が挙げられる。中でも、2 -エチルーヘキシルアルコキシ及びベンジルアルコキシ 基が好ましい。

【0014】周期律表3族金属のβージケトン錯体とし ては、周期律表3族金属のアセチルアセトン、ベンゾイ ルアセトン、プロピオニトリルアセトン、バレリルアセ トン及びエチルアセチルアセトン錯体などが挙げられ る。中でもアセチルアセトン及びエチルアセチルアセト ン錯体が好ましい。

【0015】周期律表3族金属のリン酸塩又は亜リン酸 塩としては、周期律表3族金属のリン酸ビス(2-エチ ルヘキシル)、リン酸ビス(1-メチルヘプチル)、リ ン酸ビス (p-/ニルフェニル)、リン酸ビス (ポリエ チレングリコール-p- ノニルフェニル)、リン酸 (1-メチルヘプチル)(2-エチルヘキシル)、リン 酸(2-エチルヘキシル)(p-ノニルフェニル)、2 ーエチルヘキシルホスホン酸モノー2ー エチルヘキシ ル、2-エチルヘキシルホスホン酸モノ-2- ノニル フェニル、ビス(2-エチルヘキシル)ホスフィン酸、 ビス(1-メチルヘプチル)ホスフィン酸、ビス(p-ノニルフェニル) ホスフィン酸、(1-メチルヘプチ ル) (2-エチルヘキシル) ホスフィン酸、(2-エチ ルヘキシル) (p-/ニルフェニル) ホスフィン酸など の塩が挙げられる。中でも、リン酸ビス(2-エチルへ キシル)、リン酸ビス(1-メチルヘプチル)、2-エ チルヘキシルホスホン酸モノ-2- エチルヘキシル、 ビス(2-エチルヘキシル)ホスフィン酸などの塩が好 ましい。

ネオジウムのリン酸塩又はネオジウムのカルボン酸塩で あり、さらにネオジウムの2-エチルー ヘキサン塩及 びネオジウムのバーサチック酸塩などのカルボン酸塩が 最も好ましい。

【0017】本発明の触媒系の(B)成分の非配位性ア ニオンとカチオンとのイオン性化合物を構成する非配位 性アニオンとしては、例えば、テトラ(フェニル)ボレ ート、テトラ (フルオロフェニル) ボレート、テトラキ ス(ジフルオロフェニル)ボレート、テトラキス(トリ フルオロフェニル) ボレート、テトラキス (テトラフル オロフェニル) ボレート、テトラキス (ペンタフルオロ フェニル) ボレート、テトラキス (テトラフルオロメチ ルフェニル)ボレート、テトラ(トルイル)ボレート、 テトラ(キシリル)ボレート、(トリフェニル,ペンタ フルオロフェニル) ボレート、[トリス(ペンタフルオ ロフェニル), フェニル] ボレート、トリデカハイドラ イドー7.8-ジカルバウンデカボレートなどが挙げら

【0018】一方、カチオンとしては、カルベニウムカ チオン、オキソニウムカチオン、アンモニウムカチオ

ン、ホスホニウムカチオン、シクロヘプチルトリエニル カチオン、遷移金属を有するフェロセニウムカチオンな どを挙げることができる。

【0019】カルベニウムカチオンの具体例としては、 トリフェニルカルベニウムカチオン、トリ置換フェニル カルベニウムカチオンなどの三置換カルベニウムカチオ ンを挙げることができる。トリ置換フェニルカルベニウ ムカチオンの具体例としては、トリ(メチルフェニル) カルベニウムカチオン、トリ(ジメチルフェニル)カル ベニウムカチオンを挙げることができる。

【0020】アンモニウムカチオンの具体例としては、 トリメチルアンモニウムカチオン、トリエチルアンモニ ウムカチオン、トリプロピルアンモニウムカチオン、ト リブチルアンモニウムカチオン、トリ(n-ブチル)ア ンモニウムカチオンなどのトリアルキルアンモニウムカ チオン、N, Nージメチルアニリニウムカチオン、N. N- ジエチルアニリニウムカチオン、N, N-2, 4, 6-ペンタメチルアニリニウムカチオンなどのN, N-ジアルキルアニリニウムカチオン、ジ(i-プロピル) アンモニウムカチオン、ジシクロヘキシルアンモニウム カチオンなどのジアルキルアンモニウムカチオンを挙げ ることができる。

【0021】ホスホニウムカチオンの具体例としては、 トリフェニルホスホニウムカチオン、トリ(メチルフェ ニル)ホスホニウムカチオン、トリ(ジメチルフェニ ル) ホスホニウムカチオンなどのトリアリールホスホニ ウムカチオンを挙げることができる。

【0022】該イオン性化合物は、上記で例示した非配 位性アニオン及びカチオンの中から、それぞれ任意に選 【0016】以上の例示した中でも、特に好ましいのは 30 択して組み合わせたものを好ましく用いることができる 【0023】中でもイオン性化合物としては、トリフェ ニルカルベニウムテトラキス(ペンタフルオロフェニ ル) ボレート、N, N-ジメチルアニリニウムテトラキ ス(ペンタフルオロフェニル)ボレート、1,1'ージメ チルフェロセニウムテトラキス (ペンタフルオロフェニ ル) ボレートなどが好ましい。イオン性化合物を単独で 用いてもよく、また、二種以上を組み合わせて用いても よい。

> 【0024】本発明の触媒系の(C)成分の有機アルミ 40 ニウム化合物の具体的な化合物としては、トリメチルア ルミニウム、トリエチルアルミニウム、トリイソブチル アルミニウム、トリヘキシルアルミニウム、トリオクチ ルアルミニウム、トリデシルアルミニウムなどのトリア ルキルアルミニウムを挙げることができる。

> 【0025】さらに、ジメチルアルミニウムクロライ ド、ジエチルアルミニウムクロライドなどのジアルキル アルミニウムクロライド、セスキエチルアルミニウムク ロライド、エチルアルミニウムジクロライドなどのよう な有機アルミニウムハロゲン化合物、ジエチルアルミニ 50 ウムハイドライド、ジイソブチルアルミニウムハイドラ

5

イド、セスキエチルアルミニウムハイドライドのような 水素化有機アルミニウム化合物も含まれる。これらの有 機アルミニウム化合物は、二種類以上併用することがで きる。

【0026】各触媒成分の配合割合は、各種条件により 異なるが、(A)成分と(B)成分とのモル比は、好ま しくは $1:0.1\sim10$ 、より好ましくは $1:0.2\sim5$ である。

【0027】(A)成分と(C)成分とのモル比は、好ましくは1:0.1~1000、より好ましくは1:1 ~500である。

【0028】(C)成分と(D)成分とのモル比は、 1:0.01~2であり、好ましくは1:0.01~ 1.5であり、特に好ましくは1:0.1~1.5である。

【0029】触媒成分の添加順序は、特に、制限はないが、例えば次の順序で行うことができる。

①重合すべき共役ジエン化合物モノマー又はモノマーと 溶媒の混合物に(D)成分を添加し、(C)成分を添加 した後、(A)成分と(B)成分を任意の順序で添加す 20

②重合すべき共役ジエン化合物モノマー又はモノマーと 溶媒の混合物に(D)成分と(C)成分を添加した後、 (A)成分と(B)成分を任意の順序で添加する。

【0030】また、各成分をあらかじめ熟成して用いてもよい。中でも、(A)成分と(C)成分とを熟成することが好ましい。

【0031】熟成条件としては、不活性溶媒中、共役ジェンの存在下、(A)成分と(C)成分を混合する。熟成温度は $0\sim100$ ℃、好ましくは $10\sim60$ ℃であり、熟成時間は特に制限はないが、通常は0.5分以上であれば充分であり、数日間は安定である。

【0032】本発明においては、各触媒成分を無機化合物、又は有機高分子化合物に担持して用いることができる。

【0033】本発明における触媒を用いて重合できるモノマーとしては、 α ーオレフィン、環状オレフィン、共役ジエンなど特に限定されないが、共役ジエン化合物モノマーが特に好適である。

【0034】共役ジエン化合物モノマーとしては、1、3ーブタジエン、イソプレン、1、3ーペンタジエン、2ーエチルー1、3ーブタジエン、2、3ージメチルブタジエン、2ーメチルペンタジエン、4ーメチルペンタジエン、2、4ーヘキサジエンなどが挙げられる。中でも、1、3ーブタジエンを主成分とする共役ジエン化合物モノマーが好ましい。これらのモノマー成分は、一種用いてもよく、二種以上を組み合わせて用いてもよい。【0035】ここで重合すべき共役ジエン化合物モノマーとは、モノマーの全量であっても一部であってもよい、エノマーの一部の場合は、上記の接触混合物を残部

のモノマーあるいは残部のモノマー溶液と混合することができる。共役ジエンの他に、エチレン、プロピレン、ブテンー 1、ブテンー 2、イソブテン、ペンテンー 1、4 ーメチルペンテンー 1、ヘキセンー 1、オクテンー 1等の非環状モノオレフィン、シクロペンテン、シクロヘキセン、ノルボルネン等の環状モノオレフィン、及び/又はスチレンや α ーメチルスチレン等の芳香族ビニル化合物、ジシクロペンタジエン、5 ーエチリデンー 2 ーノルボルネン、1, 5 ーヘキサジエン等の非共役ジオレフィン等を少量含んでいてもよい。

【0036】重合方法は、特に制限はなく、1,3一ブタジエンそのものを重合溶媒とする塊状重合(バルク重合)、又は溶液重合などを適用できる。溶液重合での溶媒としては、トルエン、ベンゼン、キシレン等の芳香族系炭化水素、nーヘキサン、ブタン、ヘプタン、ペンタン等の脂肪族炭化水素、シクロペンタン、シクロヘキサン等の脂環式炭化水素、1ーブテン、シスー2ーブテン、トランスー2ーブテン等のオレフィン系炭化水素、ミネラルスピリット、ソルベントナフサ、ケロシン等の炭化水素系溶媒、塩化メチレン等のハロゲン化炭化水素系溶媒等が挙げられる。

【0037】中でも、トルエン、シクロヘキサン、あるいは、シスー2ーブテンとトランス-2ーブテンとの混合物などが好適に用いられる。

【0038】重合温度は-100~100℃の範囲が好ましく、-50~60℃の範囲が特に好ましい。重合時間は10分~12時間の範囲が好ましく、30分~6時間が特に好ましい。

【0039】所定時間重合を行った後、重合槽内部を必要に応じて放圧し、洗浄、乾燥工程等の後処理を行う。 【0040】本発明の触媒を用いて共役ジエンを重合した場合には、得られたポリマーのミクロ構造は触媒や重合条件によって異なるが、特に(C)成分の種類や量を変えることによりシス構造の含有量が40~98重量%、好ましくは50~95重量%、より好ましくは65~90%であり、トランス構造の含有量が1~60重量%、好ましくは1~50重量%、より好ましくは10~35%であり、ビニル構造の含有量が0.5~3重量%である共役ジエン重合体が得られる。

40 [0041]

【実施例】実施例において「重合活性」とは、重合反応に使用したネオジウム化合物のネオジウム金属1mmol当たり、重合時間1時間当たりの重合体収量(g)である。分子量分布は、ポリスチレンを標準物質として用いたGPCから求めた重量平均分子量Mw及び数平均分子量Mnの比Mw/Mnによって評価した。ミクロ構造は赤外吸収スペクトル分析によって行った。シス740cm⁻¹、トランス967cm⁻¹、1,2-910cm⁻¹の吸収強度比からミクロ構造を算出した。

い。モノマーの一部の場合は、上記の接触混合物を残部 50 【0042】 (実施例1~14) 内容量1.51のオー

7

トクレーブの内部を窒素置換し、脱水ブタジエン3.8 mol(205g)を仕込んで攪拌した。表1に示す水 (H2O)を添加し、30分間攪拌溶解した。次いで、

(C) 成分としてトリエチルアルミニウム(TEA)を表1に示す量添加し、(A) 成分としてネオジウムバーサテート(NdV3)0.025mmol、及び(B) 成分としてトリフェニルカルベニウムテトラ(ペンタフルオロフェニル)ボレート(PhaCB(C6F5)4)0.05mmolをそれぞれトルエン溶液として添加して、重合温度50℃で1時間重合を行った。重合後、老化防止剤を10添加して未反応の1、3ーブタジエンの一部をオートクレーブから放出した。重合液をエタノールに投入し、ポリマーを沈澱、洗浄、口過、乾燥した。表1、表2及び表3に、重合条件及び重合結果を示した。

[0043]

【表1】

	(A)	(B)	(C)	(D)
実施例	NdV3	Ph3CB(C6F5)4 TEA		H2O
No.	mmol	mmol	mmol	mmol
1	0.025	0.05	1.25	0.15
2	0.025	0.05 2.5		0.15
3	0.025	0.05	0.05 5.0	
4	0.025	25 0.05		0.6
5	0.025	0.05	3	0.6
6	0.025	0.05	5	0.6
7	0.025	0.05	2.5	1.25
8	0.025	0.05	5	1.25
9	0.025	0.05	2.5	2.5
10	0.025	0.05	5	2.5
11	0.025	0.05	4	0.1
12	0.025	0.05	4	1
13	0.025	0.05	4	2
14	0.025	0.05	4	4

【0044】 【表2】

実施例	収量	重合活性	
No.	g	g/mmol.Nd.h	
1	90	3600	
2	91.5	3660	
3	75	3000	
4	100	4000	
5	112	4480	
6	90	3600	
7	120	4800	
8	116	4640	
9	137	5480	
10	141	5640	
11	83	3320	
12	110	4400	
13	138	5520	
14	142	6240	

20 【0045】 【表3】

30

実施例	ミクロ構造(%)			Mw	Mn	Mn/Mm
No.	シス	トランス	1,2-	万	万	
1	83.9	14.1	2	112	23	4.9
2	74.3	23.8	1.9	107	18	5.9
3	70.2	28	1.8	76	16	4.7
4	74.8	23.3	1.9	115	24	4.8
5	74.2	24	1.8	110	21	5.3
6	70.5	27.8	1.7	90	20	4.5
7	83	15.2	1.8	151	46	3.3
8	83	15.5	1.5	132	34	3.9
9	87.6	11	1.4	202	70	2.9
10	84.5	14	1.5	159	48	3.9
11	72.5	25.6	1.9	80	18	4.5
12	74.3	24	1.7	157	41	3,8
13	85.6	13	1.4	170	53	3.2
14	87.4	11.3	1.3	210	70	3

9

[0046]

【発明の効果】新規な周期律表3族金属化合物系の重合

10 触媒を用いて、制御された共役ジエン重合体を高活性で 製造できる。 【公報種別】特許法第17条の2の規定による補正の掲載 【部門区分】第3部門第3区分 【発行日】平成15年6月10日(2003.6.10)

【公開番号】特開平11-181012 【公開日】平成11年7月6日(1999.7.6) 【年通号数】公開特許公報11-1811 【出願番号】特願平9-354472 【国際特許分類第7版】

CO8F 4/52 36/04

[FI]

CO8F 4/52 36/04

【手続補正書】

【提出日】平成15年2月28日(2003.2.28)

【手続補正1】

【補正対象書類名】明細書

【補正対象項目名】特許請求の範囲

【補正方法】変更

【補正内容】

【特許請求の範囲】

【請求項1】(A)周期律表3族金属の化合物、(B) 非配位性アニオンとカチオンとのイオン性化合物、

(C) 有機アルミニウム化合物、及び(D)水(但し、(C): (D) = 1:0.01~2(モル比)であ

る。)から得られる触媒を用いて、共役ジエン化合物を 重合させることを特徴とする共役ジエン重合体の製造方 法。

【請求項2】 (A) 周期律表3族金属の化合物、

(B) 非配位性アニオンとカチオンとのイオン性化合物、(C) 有機アルミニウム化合物、及び(D) 水(但し、(C):(D)=1:0.01~2(モル比)である。)からなる触媒を用いて、共役ジエン化合物を重合させることを特徴とする共役ジエン重合体の製造方法。【請求項3】該触媒において、(C):(D)=1:

 $0.1 \sim 1.5$ (モル比) であることを特徴とする請求項 $1 \sim 2$ に記載の共役ジエン重合体の製造方法。

【請求項4】(A)周期律表3族金属の化合物が、周期律表3族金属のカルボン酸塩であることを特徴とする請求項1~3に記載の共役ジエン重合体の製造方法。 【請求項5】該(A)周期律表3族金属の化合物が、ネ

オジウムバーサテート (N d V3) であることを特徴と する請求項 1 ~ 4 に記載の共役ジエン重合体の製造方 法。

【請求項6】該(B) 非配位性アニオンとカチオンとの イオン性化合物が、トリフェニルカルベニウムテトラ (ペンタフルオロフェニル) ボレート (Pha CB (Ce Fs)4) であることを特徴とする請求項1~5 に記載の共役ジエン重合体の製造方法。

【請求項7】該(C)有機アルミニウム化合物が、トリエチルアルミニウム(TEA)であることを特徴とする請求項1~6に記載の共役ジエン重合体の製造方法。 【請求項8】得られた共役ジエン重合体のミクロ構造のシス構造の含有量が40~98%であり、トランス構造の含有量が1~50%であり、ビニル構造の含有量が0.5~3重量%であることを特徴とする請求項1~7に記載の共役ジエン重合体の製造方法。