Real Analysis (MA101), Tutorial Sheet-II (Sequence)

- 1. Let $\{u_n\}$ be a convergent sequence of real numbers converging to u. Then the sequence $\{|u_n|\}$ converges to |u|.
- 2. Let $\{u_n\}$ be a convergent sequence of real numbers and there exists a natural number m such that $u_n > 0$ for all $n \ge m$. Then $\lim u_n \ge 0$.
- 3. Let $\{u_n\}$ and $\{v_n\}$ be two convergent sequences that converge to u and v, respectively. Then
 - (i) $\lim(u_n + v_n) = u + v;$
 - (ii) If $c \in \mathbb{R}$ then $\lim(cu_n) = cu$;
 - (iii) $\lim(u_n v_n) = uv;$
 - (iv) $\lim \frac{u_n}{v_n} = \frac{u}{v}$, provided $\{v_n\}$ is a sequence of nonzero real numbers and $v \neq 0$.
- 4. Prove that $0 < \alpha < 1$, $\lim_{n \to \infty} \alpha^n = 0$
- 5. Use the definition of limit of a sequence to establish the following limits:
 - (i) $\lim_{n \to 1} (\ln (\frac{n}{n+1})) = 0$
 - (ii) $\lim(\frac{3n+1}{2n+5}) = \frac{3}{2}$
 - (iii) $\lim \left(\frac{n^2-1}{3n^2+5}\right) = \frac{1}{3}$
 - (iv) If c > 0, then $\lim_{n \to \infty} c^{\frac{1}{n}} = 1$.
- 6. A sequence $\{x_n\}$ is defined by $x_n = \frac{1}{2}(x_{n-1} + x_{n-2})$ for $n \ge 1$ and $x_1 = 0$ and $x_2 = 1$. Prove that the sequence $\{x_n\}$ converges and prove that the limit is $\frac{2}{3}$.
- 7. Let $x_n = (a^n + b^n)^{\frac{1}{n}}$ for all $n \in \mathbb{N}$ and 0 < a < b, show that $\lim x_n = b$.
- 8. Prove that a monotone decreasing sequence, if bounded below, is convergent and it converges to the greatest lower bound.
- 9. Use Sandwich theorem to prove that
 - (i) $\lim (2^n + 3^n)^{\frac{1}{n}} = 3$;

 - $\begin{array}{l} \text{(ii)} \ \lim \frac{1.3.5...(2n-1)}{2.4.6...2n} = 0; \\ \text{(iii)} \ \lim (\frac{1}{1+n^2} + \frac{2}{2+n^2} + ... + \frac{n}{n+n^2}) = \frac{1}{2}; \end{array}$
 - (iv) $\lim((\sqrt{2}-2^{\frac{1}{3}})(\sqrt{2}-2^{\frac{1}{5}})...(\sqrt{2}-2^{\frac{1}{2n+1}}))=0.$
- 10. Show that the following sequence x_n is bounded and monotone for $n \in \mathbb{N}$. Also, find the limit.
 - (i) $x_1 = 2$ and $x_{n+1} = 2 \frac{1}{x_n}$
 - (ii) $x_1 = 1 \text{ and } x_{n+1} = \sqrt{2 + x_n}$
 - (iii) $x_1 \ge 2$ and $x_{n+1} = 1 + \sqrt{x_n 1}$
 - (iv) $x_n = 1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{n!}$
 - (iv) $x_n = \frac{3n-1}{n+2}$
- 11. Let A be a nonempty bounded subset of \mathbb{R} and $\alpha = infA$. Show that there exists a sequence (a_n) such that $a_n \in A$ for all $n \in \mathbb{N}$ and $a_n \to \alpha$.
- 12. Let $\{x_n\}$ be a sequence in \mathbb{R} . Prove or disprove the following statements:
 - (i) Let $x_n = (-1)^n \ \forall n \in \mathbb{N}$. The sequence (x_n) does not converge.
 - (ii) If $x_n \to l(l \neq 0)$ and $\{y_n\}$ is a bounded sequence, then $(x_n y_n)$ converges.
 - (iii) If the sequence $(x_n^2 + \frac{1}{n}x_n)$ converges then (x_n) converges.
- 13. Let (x_n) be a sequence defined by

$$x_n = (1+\alpha)^{-n} n^{\beta} \cos n.$$

for all $n \in \mathbb{N}$ where α and β are fixed positive real numbers. Show that (x_n) converges.

- 14. Show directly from definition that if $\{x_n\}$ and $\{y_n\}$ are Cauchy sequences, then $\{x_n+y_n\}$ and $\{x_ny_n\}$ are Cauchy sequences.
- 15. If $x_n = \sqrt{n}$, show that $\{x_n\}$ satisfies $\lim |x_{n+1} x_n| = 0$, but that is not a Cauchy Sequence.
- 16. If 0 < r < 1 and $|x_{n+1} x_n| < r^n$ for all $n \in \mathbb{N}$, show that $\{x_n\}$ is a Cauchy Sequence.
- 17. If $x_1 = 2$ and $x_{n+1} = 2 + \frac{1}{x_n}$ for $n \ge 1$. Show that $\{x_n\}$ is a contractive sequence. Find the limit.
- 18. The polynomial equation $x^3 5x + 1 = 0$ has root r with 0 < r < 1. Use an appropriate contractive sequence to calculate r with in 10^{-4} .

1