Numerical PDE's final Project

Peter Solfest Code available at https://github.com/solter/python-FEM

1 Problem 1

The equation $u_t + \left(\frac{u^2}{2}\right)_x = \varepsilon u_{xx}$ was solved on the interval $x \in [-1, 1], \ \varepsilon = 0.01$ until T = 0.1.

With the boundary conditions u(-1) = 1 and u(1) = 0, and initial conditions u(x,0) = -.5x + .5 and $u(x,0) = 1 - x^2$.

[-1,1] was meshed into N equi-length intervals with N=40,80.

Both a standard FEM method and a streamline diffusion method were used to solve the system, using forward euler for the time integration, with 1 and 3 point quadrature schemes used for the nonlinear term.

The figures in appendix ?? display the solutions.

2 Problem 2

The equation $u_t + \left(\frac{u^2}{2}\right)_x = 0$ was solved on the interval $x \in [-1, 1]$, until T = 0.05, 0.1 and 0.2.

A periodic boundary condition was imposed, with the initial condition $u(x,0) = 0.5(1 + \sin(\pi t))$.

[-1,1] was meshed into 160 equi-length intervals.

Finite volume methods were used to solve this. An ENO scheme (both 3^{rd} and 1^{st} order) were used for the interface value reconstructions. Both forward euler and a TVD RK3 solver were used for the time integration, and the numerical fluxes were reconstructed using Godunov and Global Lax-Friedrichs schemes.

The figures in appendix ?? display the solutions.

A Problem 1 Figures

Note that above each figure represents different times during the solution. The figures are labelled via the number of intervals (N), whether a standard or streamline method was used, and the initial condition.

Figure 1: N = 40 via standard with u(x, 0) = -.5x + .5

Figure 2: N = 40 via streamline with u(x, 0) = -.5x + .5

Figure 3: N = 80 via standard with u(x, 0) = -.5x + .5

Figure 4: N = 80 via standard with u(x, 0) = -.5x + .5

Figure 5: N = 80 via standard with $u(x, 0) = 1 - x^2$

Figure 6: N = 80 via standard with $u(x, 0) = 1 - x^2$

B Problem 2 Figures

Note that above each figure represents different times during the solution. Beneath each group of 4 figures the following code is used

- RO: The ENO reconstruction accuracy used
- OT: The order of accuracy for the time integration method (1 is forward euler, 3 is TVD RK3)
- flx: Whether a Godunov or GLF flux was used

Figure 7:
$$RO = 1$$
, $OT = 1$, Godunov

Figure 8:
$$RO = 1$$
, $OT = 1$, GLF

Figure 9:
$$RO = 3$$
, $OT = 3$, Godunov

Figure 10:
$$RO = 3$$
, $OT = 3$, GLF

Figure 11:
$$RO = 3$$
, $OT = 1$, Godunov

Figure 12:
$$RO = 1$$
, $OT = 3$, Godunov

Figure 13:
$$RO = 1$$
, $OT = 1$, Godunov

Figure 14:
$$RO = 1$$
, $OT = 1$, GLF