МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ

Садовская О.В.

Вопросы к минисессии

- 1. Построение стационарной модели по дискретному набору данных. Связь задачи идентификации параметров стационарной модели типа "черный ящик" с задачей интерполяции и задачей наилучшего приближения функции.
- 2. Системы Чебышева. Определение системы Чебышева. Критерий (эквивалентное определение). Два классических примера чебышевских систем пространство многочленов и пространство тригонометрических многочленов. Общий вид интерполирующей функции.
- 3. Линейная интерполяция. Практический способ интерполяции. Прямое построение интерполяционного многочлена Лагранжа и тригонометрического интерполяционного многочлена
- 4. Разделенные разности. Интерполяционный многочлен в форме Ньютона. Интерполяция с кратными узлами. Многочлены Эрмита. Задачи на построение эрмитовых сплайнов.
- 5. Метод наименьших квадратов. Идея метода. Общая постановка задачи наилучшего приближения в гильбертовом пространстве. Матрица Грама. Процесс ортогонализании Шмилта.
- 7. Равномерное приближение. Постановка задачи равномерного приближения. Существование решения. Единственность (теорема Хаара). Теорема Чебышева об альтернансе. Восстановление элемента наилучшего равномерного приближения по заданному альтернансу. Алгоритм построения альтернанса.
- 8. Интегральные преобразования. Ортонормированная система тригонометрических функций. Вычисление коэффициентов ряда Фурье. Преобразование Фурье и обратное преобразование. Понятие оконного преобразования. Примеры.
- 9. Обобщенные функции медленного роста. Обобщенные производные. Преобразование Фурье обобщенных функций. Вычисление прямого и обратного преобразований для дельта-функции Дирака и ее производной. Преобразование Фурье тригонометрических функций.

Типовые задачи

- 1. Каким условиям должна удовлетворять функция f(x), определенная на отрезке [a,b], чтобы система функций f(x), $f^2(x)$, ..., $f^n(x)$ образовывала систему Чебышева на этом отрезке? (функция f(x) и отрезок [a,b] могут быть конкретно заданными).
- 2. Построить интерполяционный многочлен в форме Лагранжа или Ньютона по таблине:

X	У	
1	0	
2	1	
0	-1	

3. Построить многочлен Эрмита по таблице:

х	у	у'	y''
1	0	-	-
0	1	2	3
2	-1	-	-

4. Выписать аналитическое выражение кусочно-линейного сплайна, график которого изображен на рисунке:

5. Найти преобразование Фурье от функции, график которой изображен на рисунке.

6. Вычислить преобразование Фурье от периодического сигнала $x(t) = \sin kt$ (или $x(t) = \cos kt$).

7. Вычислить преобразование Фурье от обобщенной функции $\delta(t-\tau)$ (или от обобщенной производной $\dot{\delta}(t-\tau)$).

8. Вычислить обратное преобразование Фурье от периодического сигнала $\hat{x}(\omega) = \sin \omega \tau$ (или $\hat{x}(\omega) = \cos \omega \tau$).

9. Вычислить обратное преобразование Фурье от обобщенной функции $\delta(\omega - k)$ (или от обобщенной производной $\delta'(\omega - k)$).