DEEP LEARNING FOR SPECTRUM SENSING

Jiabao Gao, Xuemei Yi, Caijun Zhong, Xiaoming Chen, and Zhaoyang Zhang

Aluno: Wesley Reis da Silva.

Matrícula: 803

Introdução

Inatel

- Escassez do espectro de frequências;
- Alocação estática;
- Faixas de frequências ociosas;
- Utilização oportunista (Rádio Cognitivo CR);

Sensoriamento Espectral

Inatel

- Verificar a presença do usuário primário;
- Coleta de amostras e tomada de decisão;

$$y(n) = \begin{cases} w(n) & H_0 \\ hs(n) + w(n) & H_1 \end{cases}$$

Figura 2

Detecção por Energia

- Baixa complexidade;
- A priori não necessita conhecimento do sinal primário;
- Compara a energia das amostras com um limiar;
- Bom detector Pf < 10% e Pd > 90%;
- Detector apresenta falhas quando o SNR cai abaixo de um limiar (SNR-wall);

$$\Lambda = \frac{1}{2\sigma_w^2 N} * \sum_{n=1}^{N} |y(n)|^2$$

Se
$$\Lambda < \gamma$$
 então H_0
Se $\Lambda > \gamma$ então H_1

$$P_f = P(\Lambda > \gamma \mid H_0)$$

$$P_d = P(\Lambda > \gamma \mid H_1)$$

$$SNR_{min} = \frac{1 - Q^{-1}(P_d) * \sqrt{\frac{1}{N}}}{1 - Q^{-1}(P_f) * \sqrt{\frac{1}{N}}} - 1$$

Proposta

- Problema classificação binária;
- Avaliar a utilização de um rede CLDNN (convolutional long short-term deep neural networks) para tomada de decisão de um CR;
- Comparar os resultados com outros modelos de DL (CNN, DNN e LSTM);
- Modelos implementado em python utilizando o Tensorflow;

Dataset

- Dataset gerado utilizando software GNU Radio baseado no RadioML2016.10a;
- Gerados 1000 amostras para cada valor SNR para cada modulação;
 - 40000 amostras contendo sinal + ruído;
 - 40000 amostras contendo apenas ruído;
- Particionado em 3 (treinamento, validação e teste);

Modulation scheme	BPSK,QPSK,8PSK,CPFSK QAM16,QAM64,GFSK,PAM4		
Samples per symbol	8		
Sample length	64, 128, 256, 512, 1024		
SNR range	-20~20dB in 1-dB increments		
Training samples	48000		
Validation samples	16000		
Testing samples	16000		

Treinamento

- Treinamento em 2 etapas;
- Primeira etapa: minimizar o erro com Earling Stop com 6 épocas de paciência;
- Segunda etapa: estabilizar a probabilidade de falso alarme (pf) para uma faixa permitida;

Simulação

- Foram treinados e avaliados 160 modelos;
- DNN (deep neural network), CNN (Convolutional Neural Network), LSTM (Long Short –term Memory) e DetectNet (CLDNN);
- Tamanho de amostras: 64,128,256,512 e 1024;
- Modulações: BPSK,QPSK,8PSK,CPFSK,QAM16,QAM64,GFSK,PAM4;
- Foi utilizado um servidor do Laboratório CDG:
 - 32 GB memória RAM;
 - Processador Intel i7;
 - Placa de vídeo GeForce RTX 2060 com 6 GB de memória e 1920 CUDA cores.

Comparação de modelos

Comparação de modulação

Comparação do tam. da amostra Inatel

Comparação do tam. da amostra *natel*

• Modulação GFSK;

Pf(%)	Tamanho amostra	EDW(db)	DLW(db)	Melhoria(db)
6.61	64	-3.6743	-8.0183	4.344
7.41	128	-5.5845	-9.3231	3.7386
5.89	256	-7.0540	-10.2315	3.1775
6.32	512	-8.7568	-10.6611	1.9043
7.33	1024	-10.4841	-11.3839	0.8998

Sensoriamento Espectral Cooperativo

- A decisão sobre utilizar ou não o espectro pose ser tomada em conjunto;
- Cada nó colhe amostras toma a decisão e a envia para o cetro de fusão;

Figura 4

Sensoriamento Espectral Cooperativo

Trabalhos Futuros

- Realizar a comparação dos modelos de DL com outras técnicas de sensoriamento do espectro;
- Avaliar o comportamento dos modelos de DL ao adicionar desvanecimento e sombreamento ao canal.

OBRIGADO!

Referências

- Figura[1] www.encurtador.com.br/dotBN
- Figura[4] <u>www.encurtador.com.br/epFGV</u>
- Figura[2] Aluno
- Figura[3,5] Artigo