Übungsblatt 13 zur Algebra I

Abgabe bis 15. Juli 2013, 17:00 Uhr

Aufgabe 1. Konstruierbare n-Ecke

- a) Für welche $n \in \{1, \dots, 100\}$ ist ein regelmäßiges n-Eck mit Zirkel und Lineal konstruierbar?
- b) Gib eine Konstruktionsvorschrift für das regelmäßige 15-Eck an.

Lösung.

a) Satz 4.30 gibt die Antwort vor: Es sind genau die n-Ecke konstruierbar, für die n von der Form $2^r p_1 \cdots p_s$, $r, s \ge 0$ sind, wobei die p_i paarweise verschiedene Fermatsche Primzahlen sind – das sind Primzahlen, die von der Form $F_k = 2^{2^k} + 1$, $k \ge 0$, sind. Die ersten vier Fermatschen Primzahlen sind

$$F_0 = 3$$
, $F_1 = 5$, $F_2 = 17$, $F_3 = 257$.

(Es sind aber nicht alle F_k Primzahlen, etwa ist F_5 durch 631 teilbar.)

Für $n \le 100$ sind nur die ersten drei Fermatschen Primzahlen relevant; es ergibt sich, dass genau folgende n-Ecke mit $n \ge 100$ konstruierbar sind:

Das sind insgesamt 26 Stück.

b) Ich bin gerade zu faul zum Zeichnen und binde auf der nächsten Seite eine detaillierte Konstruktionsbeschreibung von http://www.walser-h-m.ch/hans/Miniaturen/1/15-Eck/15-Eck.pdf ein.

Hans Walser, [20090616a]

Konstruktion des regelmäßigen 15-Eckes

Anregung: Anton Weininger

Die Zahl 15 ist das kleinste gemeinsame Vielfache von 3 und 5. Also probieren wir es mit dem regelmäßigen Dreieck und dem regelmäßigen Fünfeck. Wir zeichnen diese in denselben Umkreis mit der gemeinsamen Ecke A.

Dreieck und Fünfeck

Das regelmäßige Dreieck hat den Zentriwinkel $\angle BMA = 120^{\circ}$, das regelmäßige Fünfeck den Zentriwinkel $\angle CMA = 72^{\circ}$. Daraus ergibt sich der Differenzwinkel $\angle BMC = 48^{\circ}$.

Denkpause: Für das 15-Eck brauchen wir einen Zentriwinkel von 24°. Wir können also den Winkel $\angle BMC = 48^{\circ}$ halbieren und sind über dem Berg.

Eleganter geht es so: Wir spiegeln B an MC, den Spiegelpunkt nennen wir D. Dann ist $\angle DMA = 72^{\circ} - 48^{\circ} = 24^{\circ}$. Daher ist die Strecke AD die Seitenlänge des 15-Eckes.

Durch fortlaufendes Halbieren des 24°-Winkels erhalten wir das 30-Eck, 60-Eck, 120-Eck und so weiter.

Aufgabe 2. Fermatsche und Mersennesche Primzahlen

- a) Zeige für alle natürlichen Zahlen $n \geq 0$: $F_{n+1} = 2 + F_n F_{n-1} \cdots F_0$.
- b) Zeige, dass F_m und F_n für $m \neq n$ teilerfremd sind. Folgere daraus, dass es unendlich viele Primzahlen gibt.
- c) Eine Mersennesche Zahl ist eine Zahl der Form $M_n = 2^n 1$. Zeige, dass M_n höchstens dann eine Primzahl ist, wenn n eine Primzahl ist.
- d) Zeige allgemeiner, dass M_n von M_d geteilt wird, wenn d ein positiver Teiler von n ist.

Lösung.

a) Per Definition ist $F_k = 2^{2^k} + 1$. Die Konvention ist so, dass $2^{(2^k)}$ und nicht $(2^2)^k = 4^k$ gemeint ist. Die Behauptung zeigen wir durch einen Induktionsbeweis. Für n = 0 ist die Aussage klar:

$$F_{0+1} = 5 = 2 + 3 = 2 + F_0.$$

Für den Schritt $n \to n+1$ rechnen wir:

$$2 + F_{n+1}F_nF_{n-1} \cdots F_0 = 2 + F_{n+1} \cdot (F_nF_{n-1} \cdots F_0 + 2 - 2)$$

$$\stackrel{\text{IV}}{=} 2 + F_{n+1} \cdot (F_{n+1} - 2) = (F_{n+1} - 1)^2 + 1$$

$$= (2^{2^{n+1}})^2 + 1 = 2^{2^{n+2}} + 1 = F_{n+2}.$$

b) Ohne Einschränkung sei m > n. Sei d ein gemeinsamer Faktor von F_m und F_n . Aus Teilaufgabe a) kennen wir die Beziehung

$$F_m = F_{(m-1)+1} = 2 + F_{m-1} \cdots F_0.$$

Der hintere Summand ist ein Vielfaches von d, da einer der Faktoren F_n ist. Daher folgt, dass auch 2 ein Vielfaches von d ist; der Teiler d ist also ± 1 oder ± 2 . Letzteres kann aber nicht eintreten: Direkt an der Form der fermatschen Zahlen erkennt man, dass ± 2 kein Teiler von ihnen ist. Also ist $d=\pm 1$. Das war zu zeigen.

Eine unendliche Folge paarweise verschiedener Primzahlen können wir mit dieser Erkenntnis wie folgt konstruieren: Wir zerlegen sukzessive die Zahlen F_0, F_1, \ldots in Primfaktoren. Diese Primfaktoren werden wegen der Teilerfremdheit alle unterschiedlich sein. Somit erhalten wir also beliebig viele paarweise verschiedene Primzahlen.

Bemerkung: Der Beweis stammt von Goldbach. In der Praxis ist er allerdings ein recht umständliches Verfahren zur Primzahlgenerierung, da die F_n rasant groß werden:

$$F_0 = 3$$

 $F_1 = 5$
 $F_2 = 17$
 $F_3 = 257$
 $F_4 = 65537$
 $F_5 = 4294967297 = 641 \cdot 6700417$
 $F_6 = 18446744073709551617 = 274177 \cdot 67280421310721$

Es ist ein offenes Forschungsproblem, ob F_{33} eine Primzahl ist.

c) Wir zeigen: Ist n eine zusammengesetzte Zahl, so auch M_n . Sei dazu $n=a\cdot b$ eine Zerlegung mit $a,b\geq 2$. Dann folgt

$$M_n = 2^n - 1 = 2^{ab} - 1 = (2^a)^b - 1$$

= $(2^a - 1) \cdot (1 + 2^a + (2^a)^2 + \dots + (2^a)^{b-1}).$

Da $a, b \ge 2$, folgt $2^a - 1 \ge 2^2 - 1 = 3$ und (hinterer Faktor) $\ge 1 + 2^a \ge 1 + 2^2 = 5$, also ist diese Zerlegung von M_n eine echte und M_n somit zusammengesetzt.

Bemerkung: Man hatte eine Zahl lang vermutet, dass alle Mersenneschen Zahlen Primzahlen sind. Das stimmt aber nicht, etwa ist $M_{11} = 2047 = 23 \cdot 89$ keine Primzahl. Tatsächlich sind die Primzahlen unter den Mersenneschen Zahlen recht dünn gesäht.

d) Gelte $n = d \cdot \ell$. Dann folgt völlig analog (sogar identisch!)

$$M_n = 2^n - 1 = 2^{d\ell} - 1 = (2^d)^{\ell} - 1$$

= $(2^d - 1) \cdot (1 + 2^d + (2^d)^2 + \dots + (2^d)^{\ell-1}),$

also ist $M_d = 2^d - 1$ ein Teiler von M_n .

Aufgabe 3. Hauptsatz der Galoistheorie

Bestimme alle Untergruppen der galoisschen Gruppe der Nullstellen des Polynoms X^4+1 und die zugehörigen Zwischenerweiterungen.

Lösung. In Aufgabe 3 von Blatt 10 haben wir die Galoisgruppe bereits berechnet: Es gilt $\mathbb{Q}(x_1, x_2, x_3, x_4) = \mathbb{Q}(t)$ mit $t = \xi := \exp(2\pi i/8)$ und

$$Gal_{\mathbb{O}}(x_1, x_2, x_3, x_4) = \{id, \sigma, \tau, \mu\}$$

mit

$$\sigma = (1, 2) \circ (3, 4),$$

$$\tau = (1, 3) \circ (2, 4),$$

$$\mu = (1, 4) \circ (2, 3).$$

- Untergruppen der Ordnung 1: $U_1 = \{id\}$.
- Untergruppen der Ordnung 2: $U_2 = \{id, \sigma\}, U_3 = \{id, \tau\}, U_4 = \{id, \mu\}.$
- Untergruppen der Ordnung 3: Kann es keine geben (Lagrange!).
- Untergruppen der Ordnung 4: $U_5 = \{id, \sigma, \tau, \mu\}$.

Die zugehörigen Zwischenerweiterungen sind laut der expliziten Formel aus Proposition 5.9:

$$\mathbb{Q}(t)^{U_1} = \mathbb{Q}(t)
\mathbb{Q}(t)^{U_2} = \mathbb{Q}(t + \sigma(t), t \cdot \sigma(t)) = \mathbb{Q}(\xi + \xi^3, \xi \cdot \xi^3) = \mathbb{Q}(\sqrt{2}i, -1) = \mathbb{Q}(\sqrt{2}i)
\mathbb{Q}(t)^{U_3} = \mathbb{Q}(t + \tau(t), t \cdot \tau(t)) = \mathbb{Q}(\xi + \xi^5, \xi \cdot \xi^5) = \mathbb{Q}(0, -i) = \mathbb{Q}(i)
\mathbb{Q}(t)^{U_4} = \mathbb{Q}(t + \mu(t), t \cdot \mu(t)) = \mathbb{Q}(\xi + \xi^7, \xi \cdot \xi^7) = \mathbb{Q}(\sqrt{2}, 1) = \mathbb{Q}(\sqrt{2})
\mathbb{Q}(t)^{U_5} = \mathbb{Q}$$

Die Zwischenerweiterungs- und Untergruppendiagramme sehen also wie folgt aus:

Links markiert man üblicherweise die Striche mit den zugehörigen Graden, rechts mit den zugehörigen Indizes. Diese sind hier alle jeweils 2.

Aufgabe 4. Relative galoissch Konjugierte

- a) Finde zwei algebraische Zahlen, die über \mathbb{Q} galoissch konjugiert sind, über $\mathbb{Q}(\sqrt{3})$ aber nicht.
- b) Seien K und L Koeffizientenbereiche mit $L \supseteq K \supseteq \mathbb{Q}$ und x eine algebraische Zahl. Zeige, dass ein galoissch Konjugiertes von x über L auch ein galoissch Konjugiertes von x über K ist.

Lösung.

- a) Ein Beispiel bilden die Zahlen $\pm \sqrt{3}$. Diese sind über \mathbb{Q} sicherlich zueinander galoissch konjugiert (ihr gemeinsames Minimalpolynom ist $X^2 3$), aber über $\mathbb{Q}(\sqrt{3})$ haben sie verschiedene Minimalpolynome (nämlich $X \mp \sqrt{3}$).
- b) Seien m_K und m_L die Minimalpolynome von x über K bzw. L. Wenn wir m_K als Polynom über L auffassen, sagt uns der abelsche Irreduzibilitätssatz, dass m_L ein Teiler von m_K sein muss (über L) denn m_K und m_L haben die gemeinsame Nullstelle x und m_L ist irreduzibel über L. Folglich ist jede Nullstelle von m_L , also jedes galoissch Konjugierte von x über L, auch eine Nullstelle von m_K , also ein galoissch Konjugiertes von x über K.

Aufgabe 5. Relative Galoisgruppen

- a) Finde ein normiertes separables Polynom mit rationalen Koeffizienten, sodass die galoissche Gruppe seiner Nullstellen über \mathbb{Q} gleich der über $\mathbb{Q}(\sqrt[3]{5})$ ist.
- b) Sei $f \in K[X]$ ein normiertes separables Polynom und x_1, \ldots, x_n seine Nullstellen. Sei $y \in K(x_1, \ldots, x_n)$. Zeige:

$$\operatorname{Gal}_{K(y)}(x_1,\ldots,x_n) = \{ \sigma \in \operatorname{Gal}_K(x_1,\ldots,x_n) \mid \sigma \cdot y = y \}.$$

Lösung.

- a) Ein Beispiel ist das Polynom X-1.
- b) "⊆": Sei $\sigma \in \operatorname{Gal}_{K(y)}$ beliebig. Dann erhält σ also alle algebraischen Relationen zwischen den Nullstellen mit Koeffizienten aus K(y); insbesondere erhält σ also alle algebraischen Relationen mit Koeffizienten aus K, daher liegt σ auch in Gal_K .
 - Ferner muss σ das Element y festlassen: Vielleicht findet man das offensichtlich (da die Galoisgruppe über K(y) nach Vorlesung trivial auf K(y) operiert), eine explizite Begründung kann

man aber auch formulieren: Da $y \in K(x_1, ..., x_n)$, gibt es ein Polynom $H \in K[X_1, ..., X_n]$ mit $H(x_1, ..., x_n) = y$. Das Polynom $H(X_1, ..., X_n) - y \in K(y)[X_1, ..., X_n]$ ist eine algebraische Relation der Nullstellen über K(y) und wird daher von σ erhalten – es gilt also

$$0 = H(x_{\sigma(1)}, \dots, x_{\sigma(n)}) - y = \sigma \cdot y - y.$$

" \supseteq ": Sei $\sigma \in \operatorname{Gal}_K$ mit $\sigma \cdot y = y$ beliebig. Um $\sigma \in \operatorname{Gal}_{K(y)}$ nachzuweisen, müssen wir zeigen, dass jede algebraische Relation $H \in K(y)[X_1, \ldots, X_n]$ der Nullstellen über K(y) unter σ erhalten bleibt. Dazu rechnen wir:

$$H(x_{\sigma(1)}, \dots, x_{\sigma(n)}) = H(\sigma \cdot x_1, \dots, \sigma \cdot x_n) = (\sigma \cdot H)(\sigma \cdot x_1, \dots, \sigma \cdot x_n)$$
$$= \sigma \cdot H(x_1, \dots, x_n) = \sigma \cdot 0 = 0.$$

Dabei ging beim zweiten Gleichheitszeichen die Voraussetzung $\sigma \cdot y = y$ ein. Beim dritten Gleichheitszeichen haben wir die Additivität und Multiplikativität der Wirkung von σ verwendet: Ausgeschrieben steht ein langer Ausdruck da, dessen Teile alle von σ umklammert werden. Dieses kann man vor den gesamten Term ziehen.

Aufgabe 6. Zentrum einer Galoisgruppe

Sei p eine Primzahl und x eine algebraische Zahl vom Grad p^n . Seien alle galoissch Konjugierten $x_1 = x, x_2, \ldots, x_{p^n}$ von x in x rational.

- a) Zeige, dass das Zentrum der galoisschen Gruppe der x_1, \ldots, x_{p^n} ein Element σ der Ordnung p enthält.
- b) Sei σ eine Permutation wie in a) und y ein primitives Element zu den Zahlen $e_i(x_1, \sigma \cdot x_1, \dots, \sigma^{p-1} \cdot x_1), i = 1, \dots, p$. Zeige, dass y vom Grad p^{n-1} ist.

Lösung.

a) Die Anzahl der Elemente der Galoisgruppe ist eine p-Potenz:

$$|\operatorname{Gal}_{\mathbb{Q}}(x_1,\ldots,x_{p^n})| = [\mathbb{Q}(x_1,\ldots,x_{p^n}):\mathbb{Q}] = [\mathbb{Q}(x):\mathbb{Q}] = p^n.$$

Nach Proposition 4.24 gibt es daher ein Element der Ordnung p im Zentrum.

b) Schritt 1: Wir sollten uns zunächst ein wenig Übersicht verschaffen. Da die Ordnung der Permutation σ die Primzahl p ist, zerfällt σ in lauter disjunkte p-Zykel. Da σ keine Nullstelle x_i festhalten darf (denn x_i ist nach Proposition 4.4 wie x_1 ein primitives Element – würde σ daher x_i festhalten, so würde σ alle Nullstellen festhalten und wäre somit die Identitätspermutation), kommt sogar jede Zahl aus $\{1, \ldots, p^n\}$ in einem dieser Zykel vor.

Die Nullstellen x_1, \ldots, x_{p^n} zerfallen also in p^{n-1} Blöcke von je p Zahlen, die von σ jeweils nur unter sich abgebildet werden. Einer dieser Blöcke ist

$$x_1, \sigma \cdot x_1, \dots, \sigma^{p-1} \cdot x_1.$$
 (\star)

Die anderen Blöcke erhält man, wenn man statt mit x_1 mit einer anderen Nullstelle x_i beginnt (einer, die nicht in diesem Block auftritt).

Wir wollen noch kurz untersuchen, was mit einem solchen Block passiert, wenn man eine beliebige Symmetrie τ der Galoisgruppe auf ihn anwendet: Da σ (und somit auch σ^j) im Zentrum liegt (hier geht diese Eigenschaft das erste Mal ein), gilt

$$\tau \cdot (\sigma^j \cdot x_i) = \sigma^j \cdot (\tau \cdot x_i).$$

Die Wirkung von τ vertauscht also die Blöcke untereinander.

Schritt 2: Da y ein primitives Element von $\mathbb{Q}(e_1(\star),\ldots,e_p(\star))$ ist, gibt es ein Polynom $r \in \mathbb{Q}[E_1,\ldots,E_p]$ mit $y=r(e_1(\star),\ldots,e_p(\star))$. Ferner können wir ein symmetrisches Polynom $s \in \mathbb{Q}[Y_1,\ldots,Y_p]$ mit $y=s(x_1,\sigma\cdot x_1,\ldots,\sigma^{p-1}\cdot x_1)$ finden. Da s symmetrisch ist, ergibt es Sinn, das Polynom

$$g(X) := \prod (X - s(b_1, \dots, b_p))$$

zu definieren, wobei das Produkt über jeden Block (b_1, \ldots, b_p) genau einmal gehen soll. Dieses Polynom ist normiert, hat y als Nullstelle und hat rationale Koeffizienten – denn diese sind unter der Wirkung der Galoisgruppe invariant: Sei $\tau \in \operatorname{Gal}_{\mathbb{Q}}(x_1, \ldots, x_{p^n})$ beliebig. Dann gilt

$$\tau \cdot g(X) = \prod (X - s(\tau \cdot b_1, \dots, \tau \cdot b_p)) = \prod (X - s(b_1, \dots, b_p)) = g(X),$$

denn wie wir oben schon gesehen haben, führt τ nur zu einer Vertauschung der Blöcke. Der Grad von y über \mathbb{Q} ist also höchstens gleich dem Grad von g, und dieser ist p^{n-1} .

Schritt 3: Das Polynom

$$h(X) := \prod_{j=0}^{p-1} (X - \sigma^j \cdot x_1)$$

ist normiert, hat x_1 als Nullstelle und hat Koeffizienten aus $\mathbb{Q}(y)$: Denn diese sind bis auf Vorzeichen durch die elementarsymmetrischen Funktionen in den $\sigma^j \cdot x_1, j = 0, \dots, p-1$ gegeben – und diese sind nach Voraussetzung rational in y. Folglich ist der Grad von x_1 über y höchstens p. Somit folgt

$$[\mathbb{Q}(y):\mathbb{Q}] = \frac{[\mathbb{Q}(x_1):\mathbb{Q}]}{[\mathbb{Q}(x_1):\mathbb{Q}(y)]} \ge \frac{p^n}{p} = p^{n-1}.$$

Das zeigt die Behauptung.

Bemerkung: Mit dem Hauptsatz der Galoistheorie kann man einen drastisch kürzeren Beweis angeben. Dabei muss man nicht mal die Voraussetzung, dass σ im Zentrum liegt, verwenden: Nach Proposition 5.9 ist $\mathbb{Q}(y)$ gerade der Fixkörper der Untergruppe $U := \{\sigma^0, \dots, \sigma^{p-1}\} \subseteq Gal =: G$. Daher folgt

$$[\mathbb{Q}(y) : \mathbb{Q}] = [G : U] = p^n/p = p^{n-1}.$$