

Building System of Record Applications with Amazon Quantum Ledger Database (OLDB)

Philip Simko Product Manager AWS Michael Labib
Principal Solutions Architect
AWS

The Customer's Problem – Need for a Ledger

The Customer's Problem – Need for a Ledger

Ledgers have been around for a while

Banking & finance

Keeping track of transactions, trades, and accounts

Manufacturing

Recording components used in manufacturing

Ownership

Maintaining records of asset ownership

Introduction to Amazon QLDB

Fully managed ledger database with a central trusted authority

Purpose-built databases at AWS

Relational	Key-value	Document	In-memory	Graph	Time-series	Ledger
Referential integrity, ACID transactions, schema-on-write	High throughput, low-latency reads and writes, endless scale	Store documents and quickly access querying on any attribute	Query by key with microsecond latency	Quickly and easily create and navigate relationships between data	Collect, store, and process data sequenced by time	Complete, immutable, and verifiable history of all changes to application data
Lift and shift, ERP, CRM, finance	Real-time bidding, shopping cart, social, product catalog, customer preferences	Content management, personalization, mobile	Leaderboards, real-time analytics, caching	Fraud detection, social networking, recommendation engine	IoT applications, event tracking	Systems of record, supply chain, healthcare, registrations, financial

Amazon QLDB Features

Fully managed ledger database Track and verify history of all changes made to your application's data

Immutable

Maintains a sequenced record of all changes to your data, which cannot be deleted or modified; you have the ability to query and analyze the full history

Cryptographically verifiable

Uses cryptography to generate a secure output file of your data's history

Highly scalable

Executes 2–3X as many transactions as ledgers in common blockchain frameworks

Easy to use

Easy to use, letting you use familiar database capabilities like SQL APIs for querying the data

Immutability and Verifiability Matter

Many industries have auditory and compliance requirements that rely on immutability and verifiability

Reduce Risk

Safeguard critical system-of record applications

Improve Tracking

Accurately track data lineage

Provide Auditability

Reduce downtime cause by audits

How Amazon QLDB works

Amazon QLDB - Journal First Database

Ease of Use – Mapping to a Relational Database

Immutability

DMV Scenario

1

Tracy buys a car on Aug 3, 2013

Journal

Current

ID	Version	Manufacturer	Model	Year	VIN		Date of Purchase
1	0	Tesla	Model S	2012	123456789	Traci Russell	8/3/2013

History

ID	Version	Manufacturer	Model	Year	VIN		Date of Purchase
1	0	Tesla	Model S	2012	123456789	Traci Russell	8/3/2013

Immutability

DMV Scenario

Tracy buys a car on Aug 3, 2013

Journal

INSERT cars
ID:1
Manufacturer: Tesla
Model: Model S
Year: 2012
VIN: 123456789
Owner: Traci Russell
Metadata: {
Date:07/16/2012
}

Tracy sells car to
Ronnie on Sept 10, 2014

Current

ID	Version	Manufacturer	Model	Year	VIN		Date of Purchase
1	1	Tesla	Model S	2012	123456789	Ronnie Nash	9/10/2014

History

ID	Version	Manufacturer	Model	Year	VIN	Owner	Date of
							Purchase
1	0	Tesla	Model S	2012	123456789	Traci	8/3/2013
						Russell	
1	1	Tesla	Model S	2012	123456789	Ronnie	9/10/2014
						Nash	

Immutability

DMV Scenario

Tracy buys a car on Aug 3, 2013

Journal

INSERT cars
ID:1
Manufacturer: Tesla
Model: Model S
Year: 2012
VIN: 123456789
Owner: Traci Russell
Metadata: {
Date:07/16/2012

Ronnie's car gets in an accident and gets totaled

Current

ID	Version	Manufacturer	Model	Year	VIN	Date of Purchase

History

_				_				
	ID	Version	Manufacturer	Model	Year	VIN	Owner	Date of
								Purchase
	1	0	Tesla	Model S	2012	123456789	Traci	8/3/2013
							Russell	
	1	1	Tesla	Model S	2012	123456789	Ronnie	9/10/2014
							Nash	
Ī	1	2	Deleted					

Cryptographic Verifiability

Highly Scalable - Serverless

Multi-AZ for high availability

Multiple copies per AZ providing strong durability

Easy to use - Amazon Ion & SQL-like APIs

Amazon Ion

QLDB SQL

HIGHEST TO LOWEST

ACID Transactions

Isolation Level	Potential Issues
Serializable	_
Snapshot Isolation	Potential write skew
Repeatable read	Phantom reads
Read committed	Phantom reads/non-repeatable reads
Read uncommitted	Phantom reads/non-repeatable reads/dirty reads

Amazon QLDB Features

Immutable

Append-only

Cryptographically verifiable

Hash-chaining for data integrity

Highly scalable

Serverless

Easy to use

Flexible document model & familiar SQL operators

ACID Transactions

Fully serializable isolation

Journal-first

The journal is the database

Challenges with Current Ledger Approaches

Resource intensive

Traditional Database

Difficult to manage and scale

Error prone and incomplete

Impossible to verify

Blockchain

Designed for a different purpose

Adds unnecessary complexity

Common customer use cases

Banking & finance

Keeping track of transactions, trades and accounts

HR & payroll

Tracking changes to an individual's profile

E-Commerce

Where's my stuff?

Manufacturing

Recording components used in manufacturing

Transport & logistics

Tracking transportation of goods

Government

Tracking vehicle title history

aws Amazon QLDB Demo

Mike Labib Principal Solutions Architect – Amazon QLDB

Thank you!

Phil Simko Product Manager – Amazon QLDB

Mike Labib Principal Solutions Architect – Amazon QLDB

Deep Dive into Amazon QLDB

Traditional Database Architecture - The Log

- Typically an internal implementation
- Used for replicating data
- Difficult, or impossible, to directly access

Amazon QLDB - The Journal is the Database

- QLDB's journal has structural similarity to a database log
- All writes go to the journal—the journal determines state
- Journal handles concurrency, sequencing, cryptographic verifiability, and availability
- Accessible history of all transactions, document versions, document metadata

User #standard user data, the default

ID	Manufacturer	Model	Year	VIN	Owner
1	Tesla	Model S	2012	123456789	Robert Dennison

Committed #includes metadata

blockAddress	hash	data	metadata
{strandId:"JpbmngzFZ V7FHjEuuER1OI",seq uenceNo:78}	{{XKIKYIzWEyBPRgup 1Xfa/Qp4JE2PEbA8nc 0KxIVGm8c=}}	{FirstName:"Traci",LastNa me:"Russell",DOB:1963- 08- 19T00:00:00.000Z,Govld:" LEIS26LL",GovldType:"Dri ver License"}	{id:"5PLf8cOOFPolf7w 1NJzUXL",version:0,txT ime:2019-06-28, txld:"3mDCDwAbtYi6v GdPfUIDGf"}

history() #function to query document history

blockAdreess	hash	data	metadata
{strandId:"JpbmngzFZ V7FHjEuuER1OI",seq uenceNo:78}	, , ,	{Manufacturer:"Tesla",Mod el:"Model S",Year:"2012",VIN:"12345 6789",Owner:"Traci Russell"}	1NJzUXL",version:0,tx
{strandId:"60bpn7xLtB 48311uwkihe8",seque nceNo:11}	{{ii2h58whRCHk/1zRp 4RLglG9D2SINDa32rU WZtcS11E=}}	el:"Model S",Year:"2012",VIN:"12345 6789",Owner:"Traci	{id:"Kwo6aQwJ4Dz4D1 oyVqRgxY", version:1 ,t xTime:2019-07- 04T20:21:22.071Z,txId:" 6BFspx97Mtq4sEid33Y kMd"}
	{{UdPrq7OTHfiikK9rS8 YRBpjGl0c5Pfl3DreSm QaGrfc=}}	el:"Model S",Year:"2012",VIN:"12345 6789",Owner:"Traci	(id:"Kwo6aQwJ4Dz4D1 oyVqRgxY", version:2 ,t xTime:2019-07- 04T20:24:45.768Z,txId:" 23khn4h3uvH6i8dwKef LjS"}

The Journal and Immutability Records cannot be altered

- The journal is append only and sequenced
- There is no API or other method to alter committed data
- All operations, including deletes, are written to the journal

QLDB's Data Model - Amazon Ion

JSON Document

Ion Document

QLDB's Data Model – Query

QLDB SQL

SQLStatements

```
CREATE INDEX - CREATE TABLE - DELETE
DROP TABLE - FROM - INSERT - SELECT
UPDATE
```

SQL Functions

```
CAST - CHAR_LENGTH - CHARACTER_LENGTH
COALESCE - DATE_ADD - DATE_DIFF
EXISTS - EXTRACT - LOWER - SIZE - NULLIF
SUBSTRING - TO_STRING - TO_TIMESTAMP
TRIM - UPPER - UTCNOW
```


Assume 3 tables

CREATE TABLE Customers

CREATE TABLE Products

How best to model this?

Flexible document schema leveraging Amazon ION


```
INSERT INTO customers
{
    'customer-id': 1000,
    'first-name': 'John',
    'last-name': 'Doe',
    'membership': true,
    'address': '123 First Street'
    'city': 'Seattle',
    'state': 'WA'
}
```



```
INSERT INTO products
{
    'product-id': 346211,
    'product-description': 'socks',
    'product-color': 'blue',
    'price': 5.00,
    'active': true,
    'external-sku': 'Ak3234211'
}
```


Nested document structure enables optimal queries and data access


```
INSERT INTO orders
    'order-id' : 100056,
    'customer': {
           'customer-id': 1000,
            'first-name': 'John',
           'last-name' : 'Doe',
           'address' : '123 First Street',
Customers
           'city' : 'Seattle',
            'state'
    'order-date' : 2019-04-30T,
    'order-details' : {
         'item' : {
            'product-id' : 346211 ,
           'product-description' : '3 pair socks',
           'product-color' : 'blue',
           'price' : 15.00,
Products
            'quantity' : 2
    'total': 55.00
```


query

SELECT o.order-details from orders o WHERE o.customer.customer-id = 1000 AND o.order-id = 100056

Nested document query (customer within orders)

result

```
{ item:
    {'product-id': 346211,
    'product-description': '3 pair socks',
    'product-color': 'blue',
    'price': 15.00,
    'quantity': 2
        }
}
```


Cryptographic Verification

Cryptographic Verifiability

Four basic steps to seeing how QLDB's verifiability works

SHA256: Unique Signature of a document

Digest: Periodic hash covering all history

Merkle Trees: Chaining past hashes together

Proof: A chain of hashes linking a document to its digest

Cryptographic Verifiability – SHA-256

SHA-256

a4e31e36910d99bd19b7f 875f0a04597dc0ff52c2f16 4a16a9288aed9e710fdd

SHA-256

19318457408920af2d2cb eacd90c7afe0fbd7f6ff316 972c8f656c8bbc402dd1

Cryptographic Verifiability – SHA-256

SHA-256

a4e31e36910d99bd19b7f 875f0a04597dc0ff52c2f16 4a16a9288aed9e710fdd

19318457408920af2d2cb eacd90c7afe0fbd7f6ff316 972c8f656c8bbc402dd1

```
INSERT cars H(T<sub>1</sub>)
ID:1
Manufacturer: Tesla
Model: Model s
Year: 2012
VIN: 123456789
Owner: Traci Russell
Metadata: {
Date:07/16/2012
}
```

INSERT cars
ID:1
Manufacturer: Tesla
Model: Model S
Year: 2012
VIN: 123456789
Owner: Traci Russell
Metadata: {
Date:07/16/2012
}

 $H(T_1) = 2526f16306c819d651af075934170d2430d246d9ab98d975d28a83baded47ca7$

 $H(T_1) = 2526f16306c819d651af075934170d2430d246d9ab98d975d28a83baded47ca7$

```
H(T_1) \ + \ \begin{cases} & \text{UPDATE cars} \\ & \text{ID:1} \\ & \text{Owner: Ronnie Nash} \\ & \text{Metadata: } \{ \\ & \text{Date: } 08/03/2013 \\ \} \end{cases}   \text{SHA-256} \qquad H(T_2) \ = \ 86a90e4166453d9423b84d47dcbd97c0e3099b1a1f0d7cfca6c191d8fd8994ff}
```


 $H(T_2) = 86a90e4166453d9423b84d47dcbd97c0e3099b1a1f0d7cfca6c191d8fd8994ff$

Digests & Data Changes

Cryptographic Verifiability — The Digest Your ledger's Merkle tree root at a point in time

Cryptographic Verifiability - Recalculations

Linear

10,000,000 Transactions = 10,000,000 hashes

Merkle

10,000,000 Transactions = 24 hashes

Blockchain at AWS

Amazon Quantum Ledger Database

Amazon Managed Blockchain

Thank you!

Nate Welshons Global BDM - QLDB

