Cheat Sheet: Convergence of Random Vectors

(Based on Chapter 12 of Probability Theory Notes)

Key Definitions

2. Modes of Convergence (strongest to weakest)

Let $(X_n)_{n\in\mathbb{N}}$ be random vectors on (Ω, \mathcal{F}, P) , and X a random vector.

Almost Sure (a.s.) Convergence

Definition 12.1:

$$P\left(\lim_{n\to\infty}X_n=X
ight)=1.$$

Notation: $X_n \xrightarrow{\text{a.s.}} X$.

L_p Convergence

Definition 12.1:

For p=1,2, assume $E[\|X_n\|^p], E[\|X\|^p]<\infty$. Then,

$$\lim_{n o \infty} E\left[\|X_n - X\|^p
ight] = 0.$$

Notation: $X_n \stackrel{L_p}{\longrightarrow} X$.

Convergence in Probability

Definition 12.1:

For every arepsilon>0 ,

$$\lim_{n o\infty}P\left(\|X_n-X\|>arepsilon
ight)=0.$$

Notation: $X_n \stackrel{P}{\longrightarrow} X$.

3. Borel-Cantelli Lemma

Proposition 12.1:

For events $\{A_n\}_{n\in\mathbb{N}}$:

- Part (i): If $\sum_{n=1}^{\infty} P(A_n) < \infty$, then $P\left(\limsup A_n\right) = 0$.
- Part (ii): If $\{A_n\}$ is independent and $\sum_{n=1}^{\infty} P(A_n) = \infty$, then $P(\limsup A_n) = 1$.

Intuition:

- $\limsup A_n$ = "infinitely many A_n occur."
- Finite sum ⇒ finitely many events occur almost surely.
- Infinite sum + independence ⇒ infinitely many events occur almost surely.

4. Hierarchy of Convergence

- 1. Strongest → Weakest:
 - $X_n \xrightarrow{\mathrm{a.s.}} X \Rightarrow X_n \xrightarrow{P} X$ (Prop 12.3).
 - $\bullet \ \ X_n \xrightarrow{L_p} X \Rightarrow X_n \xrightarrow{P} X \text{ (Prop 12.2)}.$
 - $X_n \xrightarrow{P} X \Rightarrow X_n \xrightarrow{d} X$
 - No reverse implications hold (see Remark 12.3).
- 2. Uniqueness of Limits (Prop 12.4):

If
$$X_n \stackrel{P}{\longrightarrow} X$$
 and $X_n \stackrel{P}{\longrightarrow} Y$, then $X=Y$ almost surely.

5. Key Results

Subsequence Extraction (Prop 12.5)

If $X_n \stackrel{P}{\longrightarrow} X$, there exists a subsequence $(X_{s(n)})$ such that $X_{s(n)} \stackrel{\mathrm{a.s.}}{\longrightarrow} X$.

Dominated Convergence for L_1 (Prop 12.6)

If
$$X_n \stackrel{P}{\longrightarrow} X$$
 and $|X_n| \leq Y$ (with $E[|Y|] < \infty$), then $X_n \stackrel{L_1}{\longrightarrow} X$.

Scheffé's Lemma (Prop 12.8)

If
$$X_n \stackrel{P}{\longrightarrow} X$$
, $E[|X_n|] \to E[|X|]$, and $E[|X|] < \infty$, then $X_n \stackrel{L_1}{\longrightarrow} X$.

6. Law of Large Numbers (LLN)

Strong LLN (Prop 12.9):

For i.i.d. $(X_n)_{n\in\mathbb{N}}$ with $E[|X_1|]<\infty$:

$$\frac{1}{n} \sum_{i=1}^{n} X_i \xrightarrow{\text{a.s.}} E[X_1].$$

Example 12.4:

For i.i.d. X_n with mean μ and variance σ^2 :

$$\frac{1}{n}\sum_{i=1}^n (X_i - \bar{X}_n)^2 \xrightarrow{\text{a.s.}} \sigma^2.$$

7. Convergence in Distribution

Definition 12.2:

 $X_n \stackrel{d}{\longrightarrow} X$ if for every continuous bounded φ :

$$E[\varphi(X_n)] \to E[\varphi(X)].$$

Properties (Remark 12.7):

- 1. Weakest form of convergence: $X_n \stackrel{P}{\longrightarrow} X \Rightarrow X_n \stackrel{d}{\longrightarrow} X$ (Prop 12.10).
- 2. Lévy's Theorem: $X_n \stackrel{d}{\longrightarrow} X$ iff $\Phi_{X_n}(v) o \Phi_X(v)$ for all $v \in \mathbb{R}^k$.
- 3. Central Limit Theorem (CLT):

For i.i.d. X_n with finite variance:

$$rac{S_n-n\mu}{\sqrt{n}}\stackrel{d}{\longrightarrow} \mathcal{N}(0,\sigma^2).$$

Additional Notes

- Continuous Mapping Theorem: If $X_n \xrightarrow{\text{a.s.}/P/d} X$ and g is continuous, then $g(X_n) \xrightarrow{\text{a.s.}/P/d} g(X)$ (Prop 12.7, 12.10).
- Edge Cases: See Examples