

# **CD40107BMS**

December 1992

# **CMOS Dual 2 Input NAND Buffer/Driver**

CD40107BF

#### **Features**

- High Voltage Type (20V Rating)
- 32 Times Standard B Series Output Current Drive Sinking Capability
  - 136mA Typ. at VDD = 10V
  - VDS = 1V
- 100% Tested for Quiescent Current at 20V
- 5V, 10V and 15V Parametric Ratings
- Maximum Input Current of 1μA at 18V Over Full Package Temperature Range; 100nA at 18V and +25°C
- Noise Margin (Over Full Package/Temperature Range) RL to VDD = 10k $\Omega$ 
  - 1V at VDD = 5V
  - 2V at VDD = 10V
  - 2.5V at VDD = 15V
- Meets All Requirements of JEDEC Tentative Standard No. 13B, "Standard Specifications for Description of 'B' Series CMOS Devices"

# **Applications**

- . Driving Relays, Lamps, LEDs
- Line Driver
- · Level Shifter (Up or Down)

## Description

CD40107BMS is a dual 2 input NAND buffer/driver containing two independent 2 input NAND buffers with open drain single n-channel transistor outputs. This device features a wired OR capability and high output sink current capability (136mA typ. at VDD = 10V, VDS = 1V).

The CD40107BMS is supplied in these 14 lead outline packages:

Braze Seal DIP H4H
Frit Seal DIP H1B
Ceramic Flatpack H3W

#### **Pinouts**



NC = NO CONNECTION

# Functional Diagram

$$\stackrel{A}{=} 
 \xrightarrow{C} = \overline{A \cdot B}$$

$$\text{VSS}$$

#### **Absolute Maximum Ratings Reliability Information** DC Supply Voltage Range, (VDD) . . . . . . . -0.5V to +20V Thermal Resistance ..... 20°C/W (Voltage Referenced to VSS Terminals) 20°C/W Input Voltage Range, All Inputs . . . . . . . . -0.5V to VDD +0.5V 70°C/W DC Input Current, Any One Input ......±10mA Maximum Package Power Dissipation (PD) at +125°C Operating Temperature Range . . . . . . . . -55°C to +125°C For $T_A = -55^{\circ}C$ to $+100^{\circ}C$ (Package Type D, F, K) . . . . . . 500mW Package Types D, F, K, H For $T_A = +100^{\circ}$ C to $+125^{\circ}$ C (Package Type D, F, K).....Derate Storage Temperature Range (TSTG).....-65°C to +150°C Linearity at 12mW/°C to 200mW Device Dissipation per Output Transistor . . . . . . . . . . . . . . . . 100mW Lead Temperature (During Soldering) . . . . . . . . . +265°C At Distance 1/16 $\pm$ 1/32 Inch (1.59mm $\pm$ 0.79mm) from case for For T<sub>A</sub> = Full Package Temperature Range (All Package Types) 10s Maximum

#### TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS

|                                  |        | l l                                   |               | GROUP A         |                      | LIMITS |       |       |
|----------------------------------|--------|---------------------------------------|---------------|-----------------|----------------------|--------|-------|-------|
| PARAMETER                        | SYMBOL |                                       |               | SUBGROUPS       | TEMPERATURE          | MIN    | MAX   | UNITS |
| Supply Current                   | IDD    | VDD = 20V, VIN = VDD or GND           |               | 1               | +25°C                | -      | 2     | μА    |
|                                  |        |                                       |               | 2               | +125°C               | -      | 200   | μА    |
|                                  |        | VDD = 18V, VIN = VD                   | D or GND      | 3               | -55°C                | -      | 2     | μА    |
| Input Leakage Current            | IIL    | VIN = VDD or GND                      | VDD = 20      | 1               | +25°C                | -100   | -     | nA    |
|                                  |        |                                       |               | 2               | +125°C               | -1000  | -     | nA    |
|                                  |        |                                       | VDD = 18V     | 3               | -55°C                | -100   | -     | nA    |
| Input Leakage Current            | IIH    | VIN = VDD or GND                      | VDD = 20      | 1               | +25°C                | -      | 100   | nA    |
|                                  |        |                                       |               | 2               | +125°C               | -      | 1000  | nA    |
|                                  |        |                                       | VDD = 18V     | 3               | -55°C                | -      | 100   | nA    |
| Output Drive Voltage             | VOL5A  | VDD = 5V, IOL = 16m                   | nA            | 1               | +25°C                | -      | 0.4   | V     |
| Output Drive Voltage             | VOL5B  | VDD = 5V, IOL = 34m                   | nA            | 1               | +25°C                | -      | 1.0   | V     |
|                                  | VOL10A | VDD = 10V, IOL = 37                   | mA            | 1               | +25°C                | -      | 0.5   | V     |
| Output Drive Voltage             | VOL10B | VDD = 10V, IOL = 68i                  | mA            | 1               | +25°C                | -      | 1.0   | V     |
|                                  | VOL15  | VDD = 15V, IOL = 50i                  | mA            | 1               | +25°C                | -      | 0.5   | V     |
| Output Current (Source)          | IOH5A  |                                       | <u> </u>      |                 |                      |        |       |       |
| Output Current (Source)          | IOH5B  | 1                                     |               | No letered Del  | III. Dada            |        |       |       |
| Output Current (Source)          | IOH10  | 1                                     |               | No Internal Pul | I-Up Device          |        |       |       |
| Output Current (Source)          | IOH15  | 1                                     |               |                 |                      |        |       |       |
| N Threshold Voltage              | VNTH   | VDD = 10V, ISS = -10                  | )μΑ           | 1               | +25°C                | -2.8   | -0.7  | V     |
| P Threshold Voltage              | VPTH   | VSS = 0V, IDD = 10μ                   | A             | 1               | +25°C                | 0.7    | 2.8   | V     |
| Functional (Note 3)              | F      | VDD = 2.8V, VIN = VI                  | DD or GND     | 7               | +25°C                | VOH>   | VOL < | V     |
|                                  |        | VDD = 20V, VIN = VD                   | D or GND      | 7               | +25°C                | VDD/2  | VDD/2 |       |
|                                  |        | VDD = 18V, VIN = VD                   | D or GND      | 8A              | +125°C               |        |       |       |
|                                  |        | VDD = 3V, VIN = VDD                   | O or GND      | 8B              | -55°C                |        |       |       |
| Input Voltage Low<br>(Note 2, 3) | VIL    | VDD = 5V, VOH > 4.5                   | V, VOL < 0.5V | 1, 2, 3         | +25°C, +125°C, -55°C | -      | 1.5   | V     |
| Input Voltage High (Note 2, 3)   | VIH    | VDD = 5V, VOH > 4.5V, VOL < 0.5V      |               | 1, 2, 3         | +25°C, +125°C, -55°C | 3.5    | -     | V     |
| Input Voltage Low<br>(Note 2, 3) | VIL    | VDD = 15V, VOH > 13.5V,<br>VOL < 1.5V |               | 1, 2, 3         | +25°C, +125°C, -55°C | -      | 4     | V     |
| Input Voltage High (Note 2, 3)   | VIH    | VDD = 15V, VOH > 13<br>VOL < 1.5V     | 3.5V,         | 1, 2, 3         | +25°C, +125°C, -55°C | 11     | -     | V     |
| Tri-State Output                 | IOZ    | VIN = VDD or GND                      | VDD = 20V     | 1               | +25°C                | -      | 2     | μА    |
|                                  |        |                                       |               |                 |                      |        |       |       |
| Leakage High                     |        | VOUT = VDD                            |               | 2               | +125°C               | -      | 20    | μΑ    |

NOTES: 1. All voltages referenced to device GND, 100% testing being 3. For accuracy, voltage is measured differentially to VDD. Limit implemented.

is 0.050V max.

2. Go/No Go test with limits applied to inputs.

TABLE 2. AC ELECTRICAL PERFORMANCE CHARACTERISTICS

|                   |                                |                            | GROUP A   |               | LIM | IITS |       |
|-------------------|--------------------------------|----------------------------|-----------|---------------|-----|------|-------|
| PARAMETER         | SYMBOL                         | CONDITIONS (NOTE 1, 2)     | SUBGROUPS | TEMPERATURE   | MIN | MAX  | UNITS |
| Propagation Delay | TPHL                           | VDD = 5V, VIN = VDD or GND | 9         | +25°C         | -   | 200  | ns    |
| TPLH              |                                |                            | 10, 11    | +125°C, -55°C | -   | 270  | ns    |
| Transition Time   | TTHL VDD = 5V, VIN = VDD or GN |                            | 9         | +25°C         | -   | 100  | ns    |
| TTLH              |                                |                            | 10, 11    | +125°C, -55°C | -   | 135  | ns    |

## NOTES:

- 1. CL = 50pF,  $RL = 120\Omega$ , Input TR, TF < 20ns.
- 2. -55°C and +125°C limits guaranteed, 100% testing being implemented.

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS

|                         |        |                               |         |                         | LIN  |     |       |
|-------------------------|--------|-------------------------------|---------|-------------------------|------|-----|-------|
| PARAMETER               | SYMBOL | CONDITIONS                    | NOTES   | TEMPERATURE             | MIN  | MAX | UNITS |
| Supply Current          | IDD    | DD VDD = 5V, VIN = VDD or GND |         | -55°C, +25°C            | -    | 1   | μА    |
|                         |        |                               |         | +125°C                  | -    | 30  | μА    |
|                         |        | VDD = 10V, VIN = VDD or GND   | 1, 2    | -55°C, +25°C            | -    | 2   | μА    |
|                         |        |                               |         | +125°C                  | -    | 60  | μА    |
|                         |        | VDD = 15V, VIN = VDD or GND   | 1, 2    | -55°C, +25°C            | -    | 2   | μΑ    |
|                         |        |                               |         | +125°C                  | -    | 120 | μΑ    |
| Output Voltage          | VOL    | VDD = 5V, No Load             | 1, 2    | +25°C, +125°C,<br>-55°C | -    | 50  | mV    |
| Output Voltage          | VOL    | VDD = 10V, No Load            | 1, 2    | +25°C, +125°C,<br>-55°C | -    | 50  | mV    |
| Output Voltage (Note 5) | VOH    | VDD = 5V, No Load             | 1, 2    | +25°C, +125°C,<br>-55°C | 4.95 | -   | V     |
| Output Voltage (Note 5) | VOH    | VDD = 10V, No Load            | 1, 2    | +25°C, +125°C,<br>-55°C | 9.95 | -   | V     |
| Output Current (Sink)   | IOL5A  | VDD = 5.0V, VOUT = 0.4V       | 1, 2    | +125°C                  | 12   | -   | mA    |
|                         |        |                               |         | -55°C                   | 21   | -   | mA    |
| Output Current (Sink)   | IOL5B  | VDD = 5V, VOUT = 1.0V         | 1, 2, 4 | +125°C                  | 25   | -   | mA    |
|                         |        |                               |         | -55°C                   | 44   | -   | mA    |
| Output Current (Sink)   | IOL10A | VDD = 10V, VOUT = 0.5V        | 1, 2, 4 | +125°C                  | 28   | -   | mA    |
|                         |        |                               |         | -55°C                   | 49   | -   | mA    |
| Output Current (Sink)   | IOL10B | VDD = 10V, VOUT = 1V          | 1, 2, 4 | +125°C                  | 51   | -   | mA    |
|                         |        |                               |         | -55°C                   | 89   | -   | mA    |
| Output Current (Sink)   | IOL15  | VDD = 15V, VOUT = 0.5V        | 1, 2    | +125°C                  | 38   | -   | mA    |
|                         |        |                               |         | -55°C                   | 66   | -   | mA    |
| Input Voltage Low       | VIL    | VDD = 10V, VOH > 9V, VOL < 1V | 1, 2, 4 | +25°C, +125°C,<br>-55°C | -    | 3   | V     |
| Input Voltage High      | VIH    | VDD = 10V, VOH > 9V, VOL < 1V | 1, 2, 4 | +25°C, +125°C,<br>-55°C | +7   | -   | V     |

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS (Continued)

|                   |        |            |         |             | LIM | IITS |       |
|-------------------|--------|------------|---------|-------------|-----|------|-------|
| PARAMETER         | SYMBOL | CONDITIONS | NOTES   | TEMPERATURE | MIN | MAX  | UNITS |
| Propagation Delay | TPHL   | VDD = 10V  | 1, 2, 3 | +25°C       | -   | 90   | ns    |
|                   |        | VDD = 15V  | 1, 2, 3 | +25°C       | -   | 60   | ns    |
| Propagation Delay | TPLH   | VDD = 10V  | 1, 2, 3 | +25°C       | -   | 120  | ns    |
|                   |        | VDD = 15V  | 1, 2, 3 | +25°C       | -   | 100  | ns    |
| Transition Time   | TTHL   | VDD = 10V  | 1, 2, 3 | +25°C       | -   | 40   | ns    |
|                   |        | VDD = 15V  | 1, 2, 3 | +25°C       | -   | 20   | ns    |
| Transition Time   | TTLH   | VDD = 10V  | 1, 2, 3 | +25°C       | -   | 70   | ns    |
|                   |        | VDD = 15V  | 1, 2, 3 | +25°C       | -   | 50   | ns    |
| Input Capacitance | CIN    | Any Input  | 1, 2    | +25°C       | i   | 7.5  | pF    |

#### NOTES:

- 1. All voltages referenced to device GND.
- 2. The parameters listed on Table 3 are controlled via design or process and are not directly tested. These parameters are characterized on initial design release and upon design changes which would affect these characteristics.
- 3. CL = 50pF,  $RL = 120\Omega$ , pull up resistor to VDD, Input TR, TF < 20ns.
- 4. Measured with external pull-up resistor RL = 10K to VDD

TABLE 4. POST IRRADIATION ELECTRICAL PERFORMANCE CHARACTERISTICS

|                              |              |                             |            |             | LIM   | IITS                     |       |
|------------------------------|--------------|-----------------------------|------------|-------------|-------|--------------------------|-------|
| PARAMETER                    | SYMBOL       | CONDITIONS                  | NOTES      | TEMPERATURE | MIN   | MAX                      | UNITS |
| Supply Current               | IDD          | VDD = 20V, VIN = VDD or GND | 1, 4       | +25°C       | -     | 7.5                      | μА    |
| N Threshold Voltage          | VNTH         | VDD = 10V, ISS = -10μA      | 1, 4       | +25°C       | -2.8  | -0.2                     | V     |
| N Threshold Voltage<br>Delta | ΔVTN         | VDD = 10V, ISS = -10μA      | 1, 4       | +25°C       | -     | ±1                       | V     |
| P Threshold Voltage          | VTP          | VSS = 0V, IDD = 10μA        | 1, 4       | +25°C       | 0.2   | 2.8                      | V     |
| P Threshold Voltage<br>Delta | ΔVΤΡ         | VSS = 0V, IDD = 10μA        | 1, 4       | +25°C       | -     | ±1                       | V     |
| Functional                   | F            | VDD = 18V, VIN = VDD or GND | 1, 5       | +25°C       | VOH > | VOL <                    | V     |
|                              |              | VDD = 3V, VIN = VDD or GND  |            |             | VDD/2 | VDD/2                    |       |
| Propagation Delay Time       | TPHL<br>TPLH | VDD = 5V                    | 1, 2, 3, 4 | +25°C       | -     | 1.35 x<br>+25°C<br>Limit | ns    |

### NOTES:

- 1. All voltages referenced to device GND.
- 2. CL = 50pF,  $RL = 120\Omega$ , pull up resistor to VDD, Input TR, TF < 20ns.
- 3. See Table 2 for +25°C limit.
- 4. Read and Record
- 5. Measured with external pull-up resistor RL = 10K to VDD

TABLE 5. BURN-IN AND LIFE TEST DELTA PARAMETERS +25°C

| PARAMETER              | SYMBOL | DELTA LIMIT |
|------------------------|--------|-------------|
| Supply Current - MSI-1 | IDD    | ± 0.2μA     |

TABLE 5. BURN-IN AND LIFE TEST DELTA PARAMETERS +25°C

| PARAMETER               | SYMBOL | DELTA LIMIT              |  |  |
|-------------------------|--------|--------------------------|--|--|
| Output Current (Sink)   | IOL5   | ± 20% x Pre-Test Reading |  |  |
| Output Current (Source) | IOH5A  | ± 20% x Pre-Test Reading |  |  |

TABLE 6. APPLICABLE SUBGROUPS

| CONFORMANCE GROUP |                               | MIL-STD-883<br>METHOD | GROUP A SUBGROUPS                     | READ AND RECORD              |
|-------------------|-------------------------------|-----------------------|---------------------------------------|------------------------------|
| Initial Test (P   | re Burn-In)                   | 100% 5004             | 1, 7, 9                               | IDD, IOL5, IOH5A             |
| Interim Test 1    | (Post Burn-In)                | 100% 5004             | 1, 7, 9                               | IDD, IOL5, IOH5A             |
| Interim Test 2    | (Post Burn-In)                | 100% 5004             | 1, 7, 9                               | IDD, IOL5, IOH5A             |
| PDA (Note         | PDA (Note 1)                  |                       | 1, 7, 9, Deltas                       |                              |
| Interim Test 3    | Interim Test 3 (Post Burn-In) |                       | 1, 7, 9                               | IDD, IOL5, IOH5A             |
| PDA (Note         | 1)                            | 100% 5004             | 1, 7, 9, Deltas                       |                              |
| Final Test        |                               | 100% 5004             | 2, 3, 8A, 8B, 10, 11                  |                              |
| Group A           |                               | Sample 5005           | 1, 2, 3, 7, 8A, 8B, 9, 10, 11         |                              |
| Group B           | Subgroup B-5                  | Sample 5005           | 1, 2, 3, 7, 8A, 8B, 9, 10, 11, Deltas | Subgroups 1, 2, 3, 9, 10, 11 |
|                   | Subgroup B-6                  | Sample 5005           | 1, 7, 9                               |                              |
| Group D           | Group D                       |                       | 1, 2, 3, 8A, 8B, 9                    | Subgroups 1, 2 3             |

NOTE: 1.5% Parameteric, 3% Functional; Cumulative for Static 1 and 2.

**TABLE 7. TOTAL DOSE IRRADIATION** 

|                    | MIL-STD-883 | TEST      |            | READ AND  | RECORD     |
|--------------------|-------------|-----------|------------|-----------|------------|
| CONFORMANCE GROUPS | METHOD      | PRE-IRRAD | POST-IRRAD | PRE-IRRAD | POST-IRRAD |
| Group E Subgroup 2 | 5005        | 1, 7, 9   | Table 4    | 1, 9      | Table 4    |

TABLE 8. BURN-IN AND IRRADIATION TEST CONNECTIONS

|                              |                             |                 |                  |                | OSCILLATOR |              |
|------------------------------|-----------------------------|-----------------|------------------|----------------|------------|--------------|
| FUNCTION                     | OPEN                        | GROUND          | VDD              | 9V $\pm$ -0.5V | 50kHz      | 25kHz        |
| Static Burn-In 1<br>(Note 1) | 1, 2, 5, 6, 8, 9,<br>12, 13 | 3, 4, 7, 10, 11 | 14               |                |            |              |
| Static Burn-In 2<br>(Note 1) | 1, 2, 5, 6, 8, 9,<br>12, 13 | 7               | 3, 4, 10, 11, 14 |                |            |              |
| Dynamic Burn-In<br>(Note 3)  | 1, 2, 6, 8, 12, 13          | 7               | 14               | 5, 9           | -          | 3, 4, 10, 11 |
| Irradiation (Note 2)         | 1, 2, 5, 6, 8, 9,<br>12, 13 | 7               | 3, 4, 10, 11, 14 |                |            |              |

#### NOTE:

- 1. Each pin except VDD and GND will have a series resistor of 10K  $\pm$  5%, VDD = 18V  $\pm$  0.5V
- 2. Each pin except VDD and GND will have a series resistor of 47K  $\pm$  5%; Group E, Subgroup 2, sample size is 4 dice/wafer, 0 failures, VDD =  $10V \pm 0.5V$
- 3. Each pin except VDD and GND will have a series resistor of 4.75K  $\pm$ 5%, VDD = 18V  $\pm$ .5.

## Schematic



\* ALL INPUTS ARE PROTECTED BY CMOS PROTECTION NETWORK

**TRUTH TABLE** 

| Α | В | С  |     |  |
|---|---|----|-----|--|
| 0 | 0 | 1* | Z** |  |
| 1 | 0 | 1* | Z** |  |
| 0 | 1 | 1* | Z** |  |
| 1 | 1 | 0  |     |  |

- \* Requires external pull-up resistor (RL) to VDD.
- \*\* Without pull-up resistor (3-state).

FIGURE 1. 1 OF 2 GATES

# Typical Performance Characteristics



FIGURE 2. TYPICAL OUTPUT LOW (SINK) CURRENT CHARACTERISTICS



FIGURE 4. TYPICAL TRANSITION TIME AS A FUNCTION OF LOAD CAPACITANCE



FIGURE 3. MINIMUM OUTPUT LOW (SINK) CURRENT CHARACTERISTICS



FIGURE 5. TYPICAL PROPAGATION DELAY TIME AS A FUNCTION OF LOAD CAPACITANCE

## Typical Performance Characteristics (Continued)



FIGURE 6. TYPICAL POWER DISSIPATION AS A FUNCTION OF INPUT FREQUENCY

# Chip Dimensions and Pad Layout



#### NOTE:

Numbers inside pads for CD40107BE not offered as standard part.

Numbers outside chip are for CD40107BF

Dimensions in parenthesis are in millimeters and are derived from the basic inch dimensions as indicated. Grid graduations are in mils (10<sup>-3</sup> inch).

METALLIZATION: Thickness: 11kÅ – 14kÅ, AL.

PASSIVATION: 10.4kÅ - 15.6kÅ, Silane

**BOND PADS:** 0.004 inches X 0.004 inches MIN **DIE THICKNESS:** 0.0198 inches - 0.0218 inches

## Special Considerations

#### Limiting Capacitive Currents for CL > 500pF, VDD > 15V

For VDD > 15V, and load capacitance (CL) from output to ground > 500pF, an external  $25\Omega$  series limiting resistor should be inserted between the output terminal and CL. No external resistor is necessary if CL < 500pF or VDD < 15V.

#### **Driving Inductive Loads**

When using the CD40107BMS to drive inductive loads, the load should be shunted with a diode to prevent high voltages from developing across the CD40107BMS output.

All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.

Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see web site http://www.intersil.com