

Théorie des modèles I

Cahier rose

Question 1. Donner une axiomatisation de la théorie des groupes abéliens sans torsion, divisibles dans le langage $\{+,-,0\}$. Cette théorie est-elle \aleph_0 -catégorique?

Question 2. Soient \mathcal{M} , \mathcal{N} deux \mathcal{L} -structures, $\bar{a} \in M^n$ et $\bar{b} \in N^n$.

Montrer que $\operatorname{tp}^{\mathcal{M}}(\bar{a}) = \operatorname{tp}^{\mathcal{N}}(\bar{b})$ est équivalent à $f: M \to N: \bar{a} \mapsto \bar{b}$ est une application partielle élémentaire.

Question 3. Soit \mathcal{L} un langage et \mathcal{M} une \mathcal{L} -structure.

- (a) Définir l'expression « \mathcal{M} est κ -saturée », où κ est un cardinal.
- (b) Existe-t-il une \mathscr{L} -structure infinie $\mathscr{N}|N|^+$ -saturée (où si κ est un cardinal, κ^+ désigne le successeur de κ)?

Devoir 4. Soit $\mathscr{L} = \{+, -, 0, \cdot q, q \in \mathbb{Q}\}$ où $\cdot q$ est un symbole de fonction unaire. Soit $T_{\mathbb{Q}}$ la \mathscr{L} -théorie des \mathbb{Q} -espaces vectoriels non triviaux.

- (a) Donner une axiomatisation de $T_{\mathbb{Q}}$.
- (b) Montrer que $T_{\mathbb{Q}}$ admet l'élimination des quantificateurs (dans le langage \mathscr{L}).
 - (1) Montrer que dans $T_{\mathbb{Q}}$, toute formule existentielle est équivalente à une formule sans quantificateur.
 - (2) En déduire que $T_{\mathbb{Q}}$ a l'éliminatation des quantificateurs.
- (c) Montrer que \mathbb{R} vu comme \mathbb{Q} -espace vectoriel est l'union d'une chaîne élémentaire de \mathbb{Q} sous-espaces vectoriels propres.

Question 5. Soit $\mathcal{L} = \{+, -, \cdot, 0, 1\}$. Soit K un corps commutatif vu comme \mathcal{L} -structure. Soit $M_2(K)$ l'anneau des matrices 2×2 à coefficients dans K.

Montrer que le groupe des matrices inversibles de $M_2(K)$ est un sous-ensemble définissable de K^4 , modulo l'identification suivante :

$$\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \in M_2(K) \to (a_{11}, a_{12}, a_{21}, a_{22}) \in K^4$$

Question 6. Énoncer le théorème de Lowenheim-Skolem descendant.

Devoir 7. Soit E un symbole de relation binaire $\mathcal{L} = \{E\}$. Écrire une \mathcal{L} -théorie qui exprime que E est une relation d'équivalence avec pour chaque naturel $n \ge 1$ une seule classe d'équivalence contenant exactement n éléments.

- (a) T est-elle \aleph_0 catégorique?
- (b) Montrer que $|S_1(T)| \geq \aleph_0$.
- (c) Comme \mathcal{L} ne contient pas de constante, on dira que T a l'élimination des quantificateurs si pour tout \mathcal{L} -formule $\varphi(x_1, \dots, x_n)$, il existe une formule sans quantificateur $\psi(x_1, \dots, x_{n+1})$ telle que

$$T \models \forall x_1 \dots \forall x_{n+1} (\varphi \leftrightarrow \psi).$$

Est-ce que *T* a l'élimination des quantificateurs ? Justifiez votre réponse.

Question 8. Énoncer le théorème de Vaught.

Devoir 9. Soit $\mathcal{L} = \{+, -, \cdot, 0, 1\}$ et $\mathcal{L}_{<} = \mathcal{L} \cup \{<\}$.

(a) Montrer que dans la théorie des anneaux ordonnés, toute formule sans quantificateur $\psi(x_1, \dots, x_n)$ peut se mettre sous la forme

$$\bigvee_{i} \left(\bigwedge_{j} p_{j}(\bar{x}) > 0 \land \bigwedge_{k} q_{k}(\bar{x}) = 0 \right) \tag{1}$$

avec
$$p_j(x_1,...,x_n), q_k(x_1,...,x_n) \in \mathbb{Z}[x_1,...,x_n]$$

(b) Montrer que $(\mathbb{R},+,-,\cdot,0,1,<)$ n'a pas l'élimination des quantificateurs dans le langage \mathscr{S}

Théorème 1 (Tarski). $(\mathbb{R},+,-,\cdot,0,1,<)$ a l'élimination des quantificateurs. dans le langage $\mathscr{L}_{<}$.

2/2