### FFT IP의 데이터 폭 검토

### ■ FFT IP 성능 검토

| Name 1                | CLB LUTs<br>(341280) | CLB Registers<br>(682560) | CARRY8<br>(42660) | F7 Muxes<br>(170640) | F8 Muxes<br>(85320) | CLB<br>(42660) | LUT as Logic<br>(341280) | LUT as Memory<br>(184320) | Block RAM<br>Tile (744) | DSPs<br>(3528) | Bonded IOB<br>(328) | HPIOB_M<br>(96) | HPIOB_S<br>(96) | GLOBAL CLOCK<br>BUFFERs (404) |
|-----------------------|----------------------|---------------------------|-------------------|----------------------|---------------------|----------------|--------------------------|---------------------------|-------------------------|----------------|---------------------|-----------------|-----------------|-------------------------------|
| ∨ N FFT_eval          | 24641                | 39863                     | 1707              | 739                  | 275                 | 5115           | 18588                    | 6053                      | 560                     | 162            | 78                  | 39              | 39              | 1                             |
| > I uBFLP (XFFT_BFIP) | 8777                 | 13978                     | 593               | 371                  | 154                 | 1816           | 6607                     | 2170                      | 160                     | 60             | 0                   | 0               | 0               | 0                             |
| > I uFXPS (XFFT_FxPS) | 7528                 | 12160                     | 535               | 189                  | 63                  | 1460           | 5801                     | 1727                      | 128                     | 42             | 0                   | 0               | 0               | 0                             |
| > I uFXPU (XFFT_FxPU) | 8227                 | 13621                     | 577               | 179                  | 58                  | 1785           | 6071                     | 2156                      | 144                     | 60             | 0                   | 0               | 0               | 0                             |

#### 검토 사항 : 동일한 입력 신호를 기준으로 MATLAB FFT(ref.) 출력값과 IP 결과값 normalized 하여 i/q channel 평균 offset 연산



■ 2:1 Decimation(200Ksps → 100Ksps)

FIR LPF

• Coef: 55차, 16bit

• Pass band: 42KHz, ripple < 1dB

• Stop band: 50KHz, attenuation > 60dB



### **BPF & Decimation**

- 빔포머 출력 데이터(200kHz sps) BPF 처리하고, 100kHz(1/2) 샘플링률로 decimation 수행
- BPF는 127 tap size의 FIR filter 사용





### ❖ BPF 구조

• 127 tap size FIR 필터 구조(1-path / 36-path) → 127개의 shift 된 데이터 각각에 coefficient 를 곱하여 더하여 필터 출력





- ❖ BPF 구조
- 127 tap size FIR 필터 구조(1-path / 36-path) → 127개의 shift 된 데이터 각각에 coefficient 를 곱하여 더하여 필터 출력

$$F(k) = \sum_{k=0}^{126} coeff(k) \times shiftdata(k), \qquad k = filter\ tap\ index$$

- Coefficient 는 0 ~ 126 까지 좌우 대칭(symmetric) 구조를 사용  $\rightarrow coeff(0) = coeff(126), coeff(1) = coeff(125), ..., coeff(62) = coeff(64), coeff(63)$
- 총 64개의 multiplier 를 이용해 구현하는 방식 적용

$$F(k) = \sum_{k=0}^{62} coeff(k) \times (shiftdata(k) + shiftdata(127 - k)) + coeff(63) \times shiftdata(63)$$

• 필터에 입력된 데이터보다 빠른 클럭으로 연산하여 2개의 multiplier 만을 이용하여 filter 구현하는 방식 적용





#### ❖ Decimator 구조

- 1/2 Decimation을 위해 BPF 연산에서 소요되는 latency 만큼 DPRAM(Dula Port RAM) 을 이용하여 delay 를 주어 timing 제어
- 타이밍이 제어된 DPRAM에서 2 sample 당 1 sample 만을 취해 1/2 decimation 수행





# DDC(Mixer)용 Filter

■ DDC 및 5:1 Decimation(100Ksps → 20Ksps)

■ FIR LPF

• Coef: 75차, 20bit

• Pass band : 6KHz, ripple < 1dB

• Stop band: 10KHz, attenuation > 80dB



# DDC(Mixer)용 Filter

- DDC 및 5:1 Decimation(100Ksps → 20Ksps)
- FIR LPF
  - Coef: 75<sup></sup>

- ※ Mixer 적용 시 사용되는 LPF
- 바깥 대역 손실은 OK 등리플 적용





# DDC(Mixer)용 Filter

- DDC 및 5:1 Decimation(100Ksps → 20Ksps)
- FIR LPF
  - Coef: 75차, 등리플 LPF의 계수 소수점 자리수 별 주파수 응답 오차





|                | Ref. LPF –LPF[e-3] | Ref. LPF – LPF[e-4] | Ref. LPF – LPF[e-5] | Ref. LPF – LPF[e-6] |
|----------------|--------------------|---------------------|---------------------|---------------------|
| Average offset | 6.5165dB           | 0.7440dB            | 0.0974dB            | 0.0062dB            |

### 경어뢰-Ⅱ 운용 모드 별 동작

- 발사방식(직주 /비직주 방식), 호밍방식(능동/수동/혼합), 심도방식(천해/심해) 에 대하여 12가지 탐색 패턴 존재
- 직주 방식에서는 요격지점까지 직진하면서 빔조향탐색 수행
- 비직주 방식에서는 짧은 PRI를 이용하여 빠른 선회율로 1회 원형탐색 수행
- 천해에서는 설정심도에서 원형탐색만 수행
- 심해에서는 원형탐색 및 나선형 탐색 수행
- CW/FM 신호를 혼용하여 정지 표적에 대한 탐지 수행

#### Ex.) 직주/능동/천해 에서의 탐색 패턴

| 순번 | 이벤트      | 음향탐색          | 유도조종제어     | 기타 |  |  |  |
|----|----------|---------------|------------|----|--|--|--|
| 1  | 활성화      | 능동 빔조향탐색      | 항법유도 (직진)  |    |  |  |  |
| 2  | 요격거리     | CW, R0/C, 3.2 | +6도/초 원형탐색 |    |  |  |  |
| 3  |          | FM, L0/C, 3.2 | -6도/초 원형탐색 |    |  |  |  |
| 4  | 2와 3을 반복 |               |            |    |  |  |  |



Ex.) 심해 환경에서의 능동 나선형 탐색

요격거리 도달 (C-Range)

나선형 탐색 : +6°/sec

중앙(R0) 계속 회전방향으로 +10°송신, 0°수신 CW/FM 혼용 PRI 3.2s, PL 60ms

WinEntek

# 경어뢰-II 운용 모드 별 동작

■ 능수동 제어명령 및 탐지결과 연동 시퀀스



# 경어뢰-II 운용 모드 별 동작

■ 동작 타이밍 EΗ EH2AH AH2EH (50ms) (50ms) SPB GC2AH (50ms) SPB2SCB (50ms) AHLogic GC DSP AH2GC (50ms) **Detection result** (1ms) SCB TD data BF Data (LFM) (10us) PP FPGA #1 SP DSP #1 SPB2SCB FD data (5us) ΑН (CW/Passive **FPGA** PP FPGA #2 SP DSP #2



## 경어뢰-Ⅱ 운용 모드 별 동작

- 동작 타이밍
  - Mixer 대역폭 결정 필요 (20kHz or 5kHz)



