Homework11

Qi'ao Chen 21210160025

December 13, 2021

Exercise 1. Show that the field \mathbb{C} is strongly $|\mathbb{C}|$ -homogeneous

Proof. For any partial elementary map $f:A\to B$ where $A,B\subseteq\mathbb{C}$ and $|A|<\mathfrak{c}$, we can enumerate \mathbb{C} as $(c_\alpha:\alpha<\mathfrak{c})$. We build a sequence of $(f_\alpha:\alpha<\mathfrak{c})$

$$f = f_0 \subset f_1 \subset f_2 \subset \cdots$$

s.t. $|\mathrm{dom}(f_\alpha)| < \mathfrak{c}$ and each f_α is partial elementary for each $\alpha < \mathfrak{c}$. If $\alpha = \beta \cdot \omega + 2n + 1$ where $n \in \omega$, since $\mathrm{dom}(f_{\beta+2n}) < \mathfrak{c}$, there is $b \in \mathbb{C}$ s.t. $f_{\beta+2n} \cup \{(c_{\beta+n},b)\}$ is partial elementary. Let $f_\alpha = f_{\beta+2n} \cup \{(c_{\beta+1},b)\}$. If $\alpha = \beta \cdot \omega + 2n + 2$, there is $b' \in \mathbb{C}$ s.t. $f_{\beta+2n+1}^{-1} \cup \{(b',c_{\beta+1})\}$ is partial elementary. Let $f_\alpha = f_{\beta+2n+1} \cup \{(c_{\beta+1},b')\}$. If α is a limit ordinal, let $f_\alpha = \bigcup_{\beta<\alpha} f_\beta$. Then $|\mathrm{dom}(f_\alpha)| \leq |A| + |\alpha| < \mathfrak{c}$.

Let $g=\bigcup_{\alpha<\mathfrak{c}}f_{\alpha}$. Then g is partial elementary with $\mathrm{dom}(g)=\mathrm{im}(g)=\mathfrak{c}$. Thus $g\in\mathrm{Aut}(\mathbb{C})$

Exercise 2. Show that the field $\mathbb R$ is strongly κ -homogeneous for any cardinal κ

Proof. Suppose a partial elementary map $f:A\to B$ where $A,B\subseteq\mathbb{R}.$ Since we are working in a field, $\mathbb{R}=(\mathbb{R},+,\cdot,0,1).$

Given $a \in A$, first we show that f(a) = a.

First note that for any integers $n \in \mathbb{N}$,

$$n := \underbrace{1 + \dots + 1}_{n \text{ times}}$$

Then integers are definable via 1 since $\mathbb R$ is an abelian group and has a unique additive inverse. Then since $\mathbb R$ has unique multiplicative inverse, each $q\in\mathbb Q$ is expressble via 1.

Also, we can define $a \leq b$ by $\exists z(a+z \cdot z=b)$. Thus for all $q \in \mathbb{Q}$, if q < a, then $q < x \in \operatorname{tp}(a)$ and if q > a, then $q > x \in \operatorname{tp}(a)$. Thus f(a) = a as $\operatorname{tp}(a) = \operatorname{tp}(f(a))$.

Thus we can extend f to the identity function of \mathbb{R} .

Exercise 3. Let $S = \{0,1\} \times \mathbb{Z}$ and let \leq be the lexicographic order on S:

$$(0,x) < (1,y)$$
$$(0,x) \le (0,y) \Leftrightarrow x \le y$$
$$(1,x) \le (1,y) \Leftrightarrow x \le y$$

Show that (S,\leq) is not strongly ω -homogeneous, but some expansion of (S,\leq) is strongly ω -homogeneous

Proof. Consider the map $f = \{((0,0),(1,0))\}$. f is a partial elementary if and only if $(S,(0,0)) \equiv (S,(1,0))$, which is true by Theorem 1.8 on book. If there is $f \subset \sigma \in \operatorname{Aut}(S)$, then $d((0,0),(1,0)) = \infty$ but $d(\sigma(0,0),\sigma(1,0))$ is finite, a contradiction. Thus (S,\leq) is not strongly ω -homogeneous.

We claim that for any $a,b\in\mathbb{Z}$, $(S,\leq,(0,a),(1,b))$ is strongly ω -homogeneous. Note that identity function is the only automorphism since automorphism needs to respect the distance function and \leq relation, which will uniquely determine an element given (0,a) and (1,b). Thus any finite elementary map is a subset of the identity function and we can extend it. \square

$$T = \text{Th}(\mathbb{R}, +, \cdot, 0)$$

Exercise 4. Suppose $M \models T$. Show that there is at most one linear order \leq on M s.t. the following hold

- If $x \le y$, then $x + z \le y + z$
- If $x \le y$ and $0 \le z$, then $xz \le yz$

Proof. Suppose there is a linear order R on M s.t.

- $\forall z (xRy \rightarrow (x+z)R(y+z))$
- $xRy \wedge 0Rz \rightarrow xzRyz$

Fist note that $0Ra \leftrightarrow (-a)R0$. If 0Ra, then (-a)R0 and so $(-a^2)R0$. If aR0, then 0R(-a) and so $(-a^2)R0$. Therefore for all a, $(-a^2)R0$ and so $0Ra^2$. Hence for all a, $0 \le a \Leftrightarrow a = b^2 \Leftrightarrow 0Ra$. Then $a \le b \Leftrightarrow (a-b) \le 0 \Leftrightarrow (a-b)R0 \Leftrightarrow aRb$.

Proof. Write down an explicit definition of \leq in $(\mathbb{R}, +, \cdot)$

Proof. Let $\phi(x,y) := \exists z(x+z \cdot z = y)$.

- If $\phi(x,y)$, then let $z\in\mathbb{R}$ s.t. $x+z\cdot z=y$, for any $c\in\mathbb{R}$, $x+c+z\cdot z=y+c$, hence $\phi(x+c,y+c)$
- If $\phi(x,y)$ and $\phi(0,z)$, then there is $a,b \in \mathbb{R}$ s.t. $x+a\cdot a=y$ and $0+b\cdot b=z$, thus $yz=(x+a\cdot a)z=xz+a\cdot a\cdot b\cdot b=xz+(a\cdot b)\cdot (a\cdot b)$, hence $\phi(xz,yz)$
- If $x \le y$, $\phi(x, y)$ is clear