17. Reduced Gradient

· Newton's method for linear constraint.

Previous lecture

Sufficient condition for optimality of x" for

min f(z) st Az=b. $x \in \mathbb{R}^n$ f-smooth, $A \in \mathbb{R}^{m \times n}$, $m \leq n$

Equality constrained with quadratic min.

min $\int_{2}^{1} x^{T} P_{x} + q^{T} x + r$ s.t. Ax = b, $x \in \mathbb{R}^{n}$

Equalty constrained with quadratic min. (contd.)

Now ton's method for equal of constraint.

Consider min f(x) set Ax = b. $x \in \mathbb{R}^n$

We con sobe:

Newton direction:

Quadratic approximation at =:

Algorithm

Example

min f(z) subject to Az=b. — 0
zeRn

- An approach to solving 1) is to solve the system of equations corresponding to extendity condition (KKT system)

- Algor thm approach:

7.

Bosis of Null (A)

O Using BR- decomposition:

Bosse of Null (A)

