AlgèbreII

Nadia HMIDA

Avril 2021

Soit $p \in \mathcal{L}(\mathcal{E})$ p est une projection \Leftrightarrow p est diagonalisable et ses valeurs propres sont 0 ou 1

Soit $p \in \mathcal{L}(\mathcal{E})$ p est une projection \Leftrightarrow p est diagonalisable et ses valeurs propres sont 0 ou 1

Preuve:

" \Rightarrow " Soit M une matrice de p On a $pop=p\Rightarrow M^2=M\Rightarrow M(M-I)=0\Rightarrow X^2-X$ est le polynome minimal de M donc 0 et 1 sont des valeurs propres de M

Soit $p \in \mathcal{L}(\mathcal{E})$ p est une projection \Leftrightarrow p est diagonalisable et ses valeurs propres sont 0 ou 1

Preuve:

" \Rightarrow " Soit M une matrice de p On a $pop = p \Rightarrow M^2 = M \Rightarrow M(M-I) = 0 \Rightarrow X^2 - X$ est le polynome minimal de M donc 0 et 1 sont des valeurs propres de M($p \neq 0$ et $p \neq id$)

Soit $p \in \mathcal{L}(\mathcal{E})$ p est une projection \Leftrightarrow p est diagonalisable et ses valeurs propres sont 0 ou 1

Preuve:

" \Rightarrow " Soit M une matrice de p

On a $pop = p \Rightarrow M^2 = M \Rightarrow M(M - I) = 0 \Rightarrow X^2 - X$ est le polynome minimal de M donc 0 et 1 sont des valeurs propres de $M(p \neq 0)$ et $p \neq id$

Soient E_0 et E_1 leurs espaces propres associés. on a alors $E_0 \oplus E_1 = E$

Soit $p \in \mathcal{L}(\mathcal{E})$ p est une projection \Leftrightarrow p est diagonalisable et ses valeurs propres sont 0 ou 1

Preuve:

" \Rightarrow " Soit M une matrice de p

On a $pop = p \Rightarrow M^2 = M \Rightarrow M(M - I) = 0 \Rightarrow X^2 - X$ est le polynome minimal de M donc 0 et 1 sont des valeurs propres de $M(p \neq 0)$ et $p \neq id$

Soient E_0 et E_1 leurs espaces propres associés. on a alors $E_0 \oplus E_1 = E$ (lemme des Noyaux)

Soit $p \in \mathcal{L}(\mathcal{E})$ p est une projection \Leftrightarrow p est diagonalisable et ses valeurs propres sont 0 ou 1

Preuve:

" \Rightarrow " Soit M une matrice de p

On a $pop = p \Rightarrow M^2 = M \Rightarrow M(M-I) = 0 \Rightarrow X^2 - X$ est le polynome minimal de M donc 0 et 1 sont des valeurs propres de $M(p \neq 0)$ et $p \neq id$

Soient E_0 et E_1 leurs espaces propres associés. on a alors $E_0 \oplus E_1 = E(\text{lemme des Noyaux})$

 \Rightarrow p est diagonalisable

Soit p un endomorphisme diagonalisable de valeurs propres 0 et 1 donc $E_0 \oplus E_1 = E$

Soit p un endomorphisme diagonalisable de valeurs propres 0 et 1 donc $E_0 \oplus E_1 = E$ d'où pour tout $u \in E$ il existe $u_0 \in E_0$ et $u_1 \in E_1$ tel que $u = u_0 + u_1$ avec $p(u_1) = u_1$ et $p(u_0) = 0$

Soit p un endomorphisme diagonalisable de valeurs propres 0 et 1 donc $E_0 \oplus E_1 = E$ d'où pour tout $u \in E$ il existe $u_0 \in E_0$ et $u_1 \in E_1$ tel que $u = u_0 + u_1$ avec $p(u_1) = u_1$ et $p(u_0) = 0$ $p(u) = p(u_0) + p(u_1) = 0 + u_1$ et $p(p(u)) = p(u_1) = u_1 = p(u)$ donc p est une projection sur E_1 parallèlement à E_0

Soit $p \in \mathfrak{L}(E)$ une projection.

$$\begin{array}{ll} p \ est \ une \ projection \ orthogonale & \Leftrightarrow & p \ est \ symetrique \\ & (< p(x), y > = < x, p(y) >) \end{array}$$

Soit $p \in \mathfrak{L}(E)$ une projection.

$$\begin{array}{ll} p \ est \ une \ projection \ orthogonale & \Leftrightarrow & p \ est \ symetrique \\ & (< p(x), y > = < x, p(y) >) \end{array}$$

"
$$\Rightarrow$$
 " $< p(x), y > = < p(x), y - p(y) + p(y) >$ $= < p(x), y - p(y) > + < p(x), p(y) >$ $= < p(x), p(y) >$ car

Soit $p \in \mathfrak{L}(E)$ une projection.

$$p \ est \ une \ projection \ orthogonale \ \Leftrightarrow \ p \ est \ symetrique \\ (< p(x), y > = < x, p(y) >)$$

"
$$\Rightarrow$$
 "
 $< p(x), y > = < p(x), y - p(y) + p(y) >$
 $= < p(x), y - p(y) > + < p(x), p(y) >$
 $= < p(x), p(y) > \text{car} \quad p(x) \in F \text{ et } y - p(y) \in F^{\perp}$

Soit $p \in \mathfrak{L}(E)$ une projection.

$$p \ est \ une \ projection \ orthogonale \ \Leftrightarrow \ p \ est \ symetrique \\ (< p(x), y > = < x, p(y) >)$$

"
$$\Rightarrow$$
 " $< p(x), y > = < p(x), y - p(y) + p(y) >$ $= < p(x), y - p(y) > + < p(x), p(y) >$ $= < p(x), p(y) >$ car $p(x) \in F$ et $y - p(y) \in F^{\perp}$ de même $< x, p(y) > = < p(x), p(y) >$

Soit $p \in \mathfrak{L}(E)$ une projection.

$$p \ est \ une \ projection \ orthogonale \ \Leftrightarrow \ p \ est \ symetrique \\ (< p(x), y > = < x, p(y) >)$$

"
$$\Rightarrow$$
 " $< p(x), y > = < p(x), y - p(y) + p(y) >$ $= < p(x), y - p(y) > + < p(x), p(y) >$ $= < p(x), p(y) >$ car $p(x) \in F$ et $y - p(y) \in F^{\perp}$ de même $< x, p(y) > = < p(x), p(y) >$

" ⇐ "

Soit p est projection sur F parallèlement à G donc F=Imp et G=kerp. Donc il suffit de montrer que

Soit p est projection sur F parallèlement à G donc F = Imp et G = kerp. Donc il suffit de montrer que $Imp = Kerp^{\perp}$ Soient $x \in Kerp$ et $y = p(u) \in Imp$ < x, y > = < x, p(u) > = < p(x), u > car p est symétrique. Or p(x) = 0 donc < x, y > = 0 donc $y \in$

Soit p est projection sur F parallèlement à G donc F = Imp et G = kerp. Donc il suffit de montrer que $Imp = Kerp^{\perp}$ Soient $x \in Kerp$ et $y = p(u) \in Imp$ $\langle x, y \rangle = \langle x, p(u) \rangle = \langle p(x), u \rangle$ car p est symétrique. Or p(x) = 0 donc $\langle x, y \rangle = 0$ donc $y \in Kerp^{\perp} \Rightarrow$

Soit p est projection sur F parallèlement à G donc F = Imp et G = kerp. Donc il suffit de montrer que $Imp = Kerp^{\perp}$ Soient $x \in Kerp$ et $y = p(u) \in Imp$ < x, y > = < x, p(u) > = < p(x), u > car p est symétrique. Or p(x) = 0 donc < x, y > = 0 donc $y \in Kerp^{\perp} \Rightarrow Imp \subset Kerp^{\perp}$.

Soit p est projection sur F parallèlement à G donc F = Imp et G = kerp. Donc il suffit de montrer que $Imp = Kerp^{\perp}$ Soient $x \in Kerp$ et $y = p(u) \in Imp$ < x, y > = < x, p(u) > = < p(x), u > car p est symétrique. Or p(x) = 0 donc < x, y > = 0 donc $y \in Kerp^{\perp} \Rightarrow Imp \subset Kerp^{\perp}$. or $dimImp = dimE - dimKerp = dimKerp^{\perp}$ d'où l'égalité

Soit p une projection orthogonale sur F un sous-espace de E alors il existe une base $\mathfrak B$ orthonormée de E telle que

$$mat(p,\mathfrak{B}) = \left(\begin{array}{cc} I_r & 0\\ 0 & 0 \end{array}\right)$$

 $Avec\ r = dim F$

Soit p une projection orthogonale sur F un sous-espace de E alors il existe une base $\mathfrak B$ orthonormée de E telle que

$$mat(p, \mathfrak{B}) = \begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix}$$

 $Avec\ r = dim F$

Preuve:

Soient $\mathfrak{B}_1=(u_1,\cdots,u_r)$ une base orthonormée de F

Soit p une projection orthogonale sur F un sous-espace de E alors il existe une base $\mathfrak B$ orthonormée de E telle que

$$mat(p,\mathfrak{B}) = \left(\begin{array}{cc} I_r & 0\\ 0 & 0 \end{array}\right)$$

 $Avec\ r = dim F$

Preuve:

Soient $\mathfrak{B}_1=(u_1,\cdots,u_r)$ une base orthonormée de Fet $\mathfrak{B}_2=(u_{r+1},\cdots,u_n)$ une base orthonormée de F^\perp

Soit p une projection orthogonale sur F un sous-espace de E alors il existe une base $\mathfrak B$ orthonormée de E telle que

$$mat(p,\mathfrak{B}) = \left(\begin{array}{cc} I_r & 0\\ 0 & 0 \end{array}\right)$$

 $Avec\ r = dim F$

Preuve:

Soient $\mathfrak{B}_1 = (u_1, \cdots, u_r)$ une base orthonormée de Fet $\mathfrak{B}_2 = (u_{r+1}, \cdots, u_n)$ une base orthonormée de F^{\perp} alors $\mathfrak{B} = \mathfrak{B}_1 \cup \mathfrak{B}_2$ est une base de E car $E = F \oplus F^{\perp}$ De plus elle est orthonormée

Soit p une projection orthogonale sur F un sous-espace de E alors il existe une base $\mathfrak B$ orthonormée de E telle que

$$mat(p,\mathfrak{B}) = \left(\begin{array}{cc} I_r & 0 \\ 0 & 0 \end{array}\right)$$

 $Avec \ r = dim F$

Preuve:

Soient $\mathfrak{B}_1 = (u_1, \cdots, u_r)$ une base orthonormée de Fet

$$\mathfrak{B}_2 = (u_{r+1}, \cdots, u_n)$$
 une base orthonormée de F^{\perp} alors

$$\mathfrak{B}=\mathfrak{B}_1\cup\mathfrak{B}_2$$
 est une base de E car $E=F\oplus F^\perp$

De plus elle est orthonormée

Pour tout $1 \le i \le r$; $u_i \in F$ donc $p(u_i) = u_i$ et pour tout $r+1 \le i \le n$; $p(u_i) = 0$ car $u_i \in F^{\perp}$

$$(u = x + y \in F + G \Rightarrow p(u) = x)$$

Donc la matrice de p dans cette base est de la forme $\begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix}$

Conséquence 0.1

 $Si\ mat(p,\mathfrak{B}) = \begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix}$ diagonale donc p est diagonalisable et ses valeurs propres sont 0 et 1

Conséquence 0.1

$$Si\ mat(p,\mathfrak{B})=\left(egin{array}{cc} I_r & 0 \ 0 & 0 \end{array}
ight)\ diagonale\ donc\ p\ est\ diagonalisable\ et\ ses\ valeurs\ propres\ sont\ 0\ et\ 1\ De\ plus\ dim E_1=dim F\ et\ dim E_0=dim F^{\perp}$$

Soit s une symétrie orthogonale par rapportà F un sous-espace de E alors il existe une base $\mathfrak B$ orthonormée de E telle que

$$mat(s, \mathfrak{B}) = \begin{pmatrix} I_r & 0 \\ 0 & -I_{n-r} \end{pmatrix}$$

 $Avec\ r = dim F$

Soit s une symétrie orthogonale par rapportà F un sous-espace de E alors il existe une base $\mathfrak B$ orthonormée de E telle que

$$mat(s,\mathfrak{B}) = \left(\begin{array}{cc} I_r & 0 \\ 0 & -I_{n-r} \end{array} \right)$$

 $Avec\ r = dim F$

Preuve:

Soient $\mathfrak{B}_1 = (u_1, \cdots, u_r)$ une base orthonormée de F et

$$\mathfrak{B}_2 = (u_{r+1}, \cdots, u_n)$$
 une base orthonormée de F^{\perp} alors

$$\mathfrak{B} = \mathfrak{B}_1 \cup \mathfrak{B}_2$$
 est une base de E car $E = F \oplus F^{\perp}$

De plus elle est orthonormée

Pour tout $1 \le i \le r$; $u_i \in F$ donc $s(u_i) = u_i$ et pour tout $r + 1 \le i \le n$; $s(u_i) = -u_i$ car $u_i \in F^{\perp}$

Donc la matrice de s dans cette base est de la forme

$$\begin{pmatrix} I_r & 0 \\ 0 & -I_{n-r} \end{pmatrix}$$

Conséquence 0.2

$$Si\ mat(s,\mathfrak{B}) = \begin{pmatrix} I_r & 0 \\ 0 & -I_{n-r} \end{pmatrix}$$
 diagonale donc s est diagonalisable et ses valeurs propres sont -1 et 1

Conséquence 0.2

$$Si\ mat(s,\mathfrak{B})=\left(egin{array}{cc} I_r & 0 \\ 0 & -I_{n-r} \end{array}
ight)\ diagonale\ donc\ s\ est$$
 diagonalisable et ses valeurs propres sont -1 et 1 $De\ plus\ dimE_1=dimF\ et\ dimE_{-1}=dimF^{\perp}$

Soit (E, <, >) un espace Euclidien

Définition 0.1

On appelle isométrie sur E tout endomorphisme f de E qui conserve la distance

Soit (E, <, >) un espace Euclidien

Définition 0.1

On appelle isométrie sur E tout endomorphisme f de E qui conserve la distance

$$\forall \ u \in E; \ \|f(u)\| = \|u\|$$

Soit (E, <, >) un espace Euclidien

Définition 0.1

On appelle isométrie sur E tout endomorphisme f de E qui conserve la distance

$$\forall \ u \in E; \ \|f(u)\| = \|u\|$$

Remarque 0.1

Une isométrie est injective car

$$f(u) = 0 \Rightarrow ||f(u)|| = 0 \Rightarrow ||u|| = 0 \Rightarrow u = 0 \Rightarrow$$

Soit (E, <, >) un espace Euclidien

Définition 0.1

On appelle isométrie sur E tout endomorphisme f de E qui conserve la distance

$$\forall \ u \in E; \ \|f(u)\| = \|u\|$$

Remarque 0.1

Une isométrie est injective car

$$f(u)=0\Rightarrow \|f(u)\|=0\Rightarrow \|u\|=0 \Rightarrow u=0 \Rightarrow kerf=\{0\}$$

Soit (E, <, >) un espace Euclidien

Définition 0.1

On appelle isométrie sur E tout endomorphisme f de E qui conserve la distance

$$\forall \ u \in E; \ \|f(u)\| = \|u\|$$

Remarque 0.1

Une isométrie est injective car $f(u) = 0 \Rightarrow ||f(u)|| = 0 \Rightarrow ||u|| = 0 \Rightarrow u = 0 \Rightarrow kerf = \{0\}$ donc f est bijective sur un espace Euclidien car

2. Isométrie

Soit (E, <, >) un espace Euclidien

Définition 0.1

On appelle isométrie sur E tout endomorphisme f de E qui conserve la distance

$$\forall \ u \in E; \ \|f(u)\| = \|u\|$$

Remarque 0.1

Une isométrie est injective car $f(u) = 0 \Rightarrow ||f(u)|| = 0 \Rightarrow ||u|| = 0 \Rightarrow u = 0 \Rightarrow kerf = \{0\}$ donc f est bijective sur un espace Euclidien caren dimension finie

2. Isométrie

Soit (E, <, >) un espace Euclidien

Définition 0.1

On appelle isométrie sur E tout endomorphisme f de E qui conserve la distance

$$\forall \ u \in E; \ \|f(u)\| = \|u\|$$

Remarque 0.1

Une isométrie est injective car $f(u) = 0 \Rightarrow ||f(u)|| = 0 \Rightarrow ||u|| = 0 \Rightarrow u = 0 \Rightarrow kerf = \{0\}$ donc f est bijective sur un espace Euclidien caren dimension finieDe plus; $||f^{-1}(u)|| = ||f(f^{-1}(u))|| = ||u||$ donc f^{-1} est aussi une isométrie

Proposition 0.5

Soit f un endomorphisme de E. les propositions suivantes sont équivalentes :

- 1 f est une isométrie
- **2** Pour tout $(u, v) \in E^2$; $\langle u, v \rangle = \langle f(u), f(v) \rangle$
- **3** *f transforme une base orthonormée en une base orthonormée*
- 4 La matrice de f dans une base orthonormée est orthogonale

Proposition 0.5

Soit f un endomorphisme de E. les propositions suivantes sont équivalentes :

- 1 f est une isométrie
- **2** Pour tout $(u, v) \in E^2$; $\langle u, v \rangle = \langle f(u), f(v) \rangle$
- **3** *f transforme une base orthonormée en une base orthonormée*
- 4 La matrice de f dans une base orthonormée est orthogonale

Preuve:

Soit f un endomorphisme de E. les propositions suivantes sont équivalentes :

- 1 f est une isométrie
- 2 Pour tout $(u, v) \in E^2$; $\langle u, v \rangle = \langle f(u), f(v) \rangle$
- **3** *f transforme une base orthonormée en une base orthonormée*
- 4 La matrice de f dans une base orthonormée est orthogonale

Preuve:

"1 \(\Rightarrow 2" \)
$$< f(u), f(v) > =$$

$$\frac{1}{2} \left(\|f(u) + f(v)\|^2 - \|f(u)\|^2 - \|f(v)\|^2 \right) =$$

$$\frac{1}{2} \left(\|f(u+v)\|^2 - \|f(u)\|^2 - \|f(v)\|^2 \right) =$$

$$\frac{1}{2} \left(\|u+v\|^2 - \|u\|^2 - \|v\|^2 \right) = < u, v >$$
"2 \(\Rightarrow 3" \) Soit (u_1, \dots, u_n) une base orthonormée de E alors $< u_i, u_i > = 1$ et $< u_i, u_j > = 0$ pour $i \neq j$

Alors $\langle f(u_i), f(u_j) \rangle = \langle u_i, u_j \rangle = 0$ donc $(f(u_1), \dots, f(u_n))$ est libre donc base de E.

Alors $\langle f(u_i), f(u_j) \rangle = \langle u_i, u_j \rangle = 0$ donc $(f(u_1), \dots, f(u_n))$ est libre donc base de E.

De plus $\langle f(u_i), f(u_i) \rangle = \langle u_i, u_i \rangle = 1$ donc $(f(u_1), \dots, f(u_n))$ est une base orthonormée de E

vers $(f(u_1), \cdots, f(u_n))$.

Alors $\langle f(u_i), f(u_j) \rangle = \langle u_i, u_j \rangle = 0$ donc $(f(u_1), \dots, f(u_n))$ est libre donc base de E. De plus $\langle f(u_i), f(u_i) \rangle = \langle u_i, u_i \rangle = 1$ donc $(f(u_1), \dots, f(u_n))$ est une base orthonormée de E" $3 \Rightarrow 4$ " Soit $\mathfrak{B} = (u_1, \dots, u_n)$ une base orthonormée de E

alors $A = mat(f, \mathfrak{B})$ est la matrice de passage de (u_1, \dots, u_n)

Alors $\langle f(u_i), f(u_j) \rangle = \langle u_i, u_j \rangle = 0$ donc $(f(u_1), \dots, f(u_n))$ est libre donc base de E.

De plus $\langle f(u_i), f(u_i) \rangle = \langle u_i, u_i \rangle = 1$ donc $(f(u_1), \dots, f(u_n))$ est une base orthonormée de E

" $3 \Rightarrow 4$ " Soit $\mathfrak{B} = (u_1, \dots, u_n)$ une base orthonormée de E alors $A = mat(f, \mathfrak{B})$ est la matrice de passage de (u_1, \dots, u_n) vers $(f(u_1), \dots, f(u_n))$.

Donc A est orthogonale car matrice de passage entre deux bases orthonormées

Alors $\langle f(u_i), f(u_j) \rangle = \langle u_i, u_j \rangle = 0$ donc $(f(u_1), \dots, f(u_n))$ est libre donc base de E.

De plus $\langle f(u_i), f(u_i) \rangle = \langle u_i, u_i \rangle = 1$ donc $(f(u_1), \dots, f(u_n))$ est une base orthonormée de E

" $3 \Rightarrow 4$ " Soit $\mathfrak{B} = (u_1, \dots, u_n)$ une base orthonormée de E alors $A = mat(f, \mathfrak{B})$ est la matrice de passage de (u_1, \dots, u_n) vers $(f(u_1), \dots, f(u_n))$.

Donc A est orthogonale car matrice de passage entre deux bases orthonormées

" $4 \Rightarrow 1$ " Supposons que f admet une matrice orthogonale A par rapport à une base orthonormée (u_1, \dots, u_n) alors $||f(u)||^2 = \langle f(u) | f(u) \rangle = \langle Au | Au \rangle = {}^t(Au) mat_{\mathcal{C}}(\langle \cdot \cdot \rangle) Au =$

$$||f(u)||^2 = \langle f(u), f(u) \rangle = \langle Au, Au \rangle = {}^t(Au)mat_{\mathcal{B}}(\langle, \rangle)Au = {}^t(Au)I_nAu = {}^tu^tAAu = {}^tuu = \langle u, u \rangle = ||u||^2$$

Conséquence 0.3

1 Le déterminant d'une isométrie est égal à ± 1 . En effet, la matrice d'une isométrie par rapport à une base orthonormée étant orthogonale, on a $det({}^tAA) = det(I_n) = 1$ donc $det({}^tA)det(A) = det(A)^2 = 1$

Conséquence 0.3

- **1** Le déterminant d'une isométrie est égal à ± 1 . En effet, la matrice d'une isométrie par rapport à une base orthonormée étant orthogonale, on a $det({}^tAA) = det(I_n) = 1$ donc $det({}^tA)det(A) = det(A)^2 = 1$
- 2 Les valeurs propres d'une isométrie sont de module 1. En effet $f(u) = \lambda u$ alors

$$||u|| = ||f(u)|| = |\lambda|||u||$$

On se propose de déterminer toutes les isométries f de \mathbb{R}^2 . Soit A la matrice de f par rapport à la base canonique alors A est orthogonale car

On se propose de déterminer toutes les isométries f de \mathbb{R}^2 . Soit A la matrice de f par rapport à la base canonique alors A est orthogonale $\operatorname{car}\mathcal{B}_c$ est une b.o.n de \mathbb{R}^2 .

On se propose de déterminer toutes les isométries f de \mathbb{R}^2 . Soit A la matrice de f par rapport à la base canonique alors A est orthogonale $\operatorname{car}\mathcal{B}_c$ est une b.o.n de \mathbb{R}^2 .

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} avec {}^tAA = I_2 donc a^2 + c^2 = 1, b^2 + d^2 = 1 et$$

$$ab + cd = 0$$

On se propose de déterminer toutes les isométries f de \mathbb{R}^2 . Soit A la matrice de f par rapport à la base canonique alors A est orthogonale $car\mathcal{B}_c$ est une b.o.n de \mathbb{R}^2 .

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \text{ avec } {}^tAA = I_2 \text{ donc } a^2 + c^2 = 1, \ b^2 + d^2 = 1 \text{ et}$$

$$ab + cd = 0$$

I Si A admet une valeur propre double égale à 1 alors $P_A(X) = (X-1)^2$ donc tr(A) = a+d=2 or $|a| \le 1$ et $|d| \le 1$ donc a=d=1 d'où b=c=0. Donc $A=I_2$ et f=id

On se propose de déterminer toutes les isométries f de \mathbb{R}^2 . Soit A la matrice de f par rapport à la base canonique alors A est orthogonale $\operatorname{car}\mathcal{B}_c$ est une b.o.n de \mathbb{R}^2 .

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} avec {}^tAA = I_2 \ donc \ a^2 + c^2 = 1, \ b^2 + d^2 = 1 \ et$$

$$ab + cd = 0$$

- I Si A admet une valeur propre double égale à 1 alors $P_A(X) = (X-1)^2$ donc tr(A) = a+d=2 or $|a| \le 1$ et $|d| \le 1$ donc a=d=1 d'où b=c=0. Donc $A=I_2$ et f=id
- 2 Si A admet une valeur propre double égale à -1 alors $P_A(X) = (X+1)^2$ donc tr(A) = a+d=-2 donc a=d=-1 d'où b=c=0. Donc $A=-I_2$ et f=-id la symétrie par rapport à l'origine

On se propose de déterminer toutes les isométries f de \mathbb{R}^2 . Soit A la matrice de f par rapport à la base canonique alors A est orthogonale $\operatorname{car}\mathcal{B}_c$ est une b.o.n de \mathbb{R}^2 .

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} avec {}^tAA = I_2 \ donc \ a^2 + c^2 = 1, \ b^2 + d^2 = 1 \ et$$

$$ab + cd = 0$$

- I Si A admet une valeur propre double égale à 1 alors $P_A(X) = (X-1)^2$ donc tr(A) = a+d=2 or $|a| \le 1$ et $|d| \le 1$ donc a=d=1 d'où b=c=0. Donc $A=I_2$ et f=id
- 2 Si A admet une valeur propre double égale à -1 alors $P_A(X) = (X+1)^2$ donc tr(A) = a+d=-2 donc a=d=-1 d'où b=c=0. Donc $A=-I_2$ et f=-id la symétrie par rapport à l'origine

- 1
- 2
- 3 Si A admet deux valeurs propres 1 et -1 donc A est diagonalisable alors f est une symétrie par rapport à E_1 parallèlement à E_{-1} .

- 1
- 2
- 3 Si A admet deux valeurs propres 1 et -1 donc A est diagonalisable alors f est une symétrie par rapport à E_1 parallèlement à E_{-1} .

Soit u un vecteur propre associé à la valeur propre 1 et v un vecteur propre associé à la valeur propre -1 alors < u, v > = < f(u), f(v) > = < u, -v > = - < u, v > donc <math>< u, v > = 0. Donc f est la symétrie orthogonale par rapport à la droite $D = Vect(u) = E_1$

- 1
- 2
- 3 Si A admet deux valeurs propres 1 et -1 donc A est diagonalisable alors f est une symétrie par rapport à E_1 parallèlement à E_{-1} .

Soit u un vecteur propre associé à la valeur propre 1 et v un vecteur propre associé à la valeur propre -1 alors < u, v > = < f(u), f(v) > = < u, -v > = - < u, v > donc < u, v > = 0. Donc <math>f est la symétrie orthogonale par rapport à la droite $D = Vect(u) = E_1$

4 Si A admet deux valeurs propres complexes conjugués $\cos\theta \pm i \sin\theta$ alors $A = \begin{pmatrix} \cos\theta & -\sin\theta \end{pmatrix}$

$$A = \left(\begin{array}{cc} cos\theta & -sin\theta \\ sin\theta & cos\theta \end{array}\right)$$

Donc'f est la rotation de centre O et d'angle θ