ОГЛАВЛЕНИЕ

1	Введ	цение	4
2	Исхо	одные изображения	5
3	Зако	н Вебера	6
4	Mop	фологические преобразования над изображениями	7
	4.1	Дилатация	7
	4.2	Эрозия	7
	4.3	Геодезическая дилатация	8
	4.4	Открытие через реконструкцию	8
5	Pacc	матриваемый метод	9
	5.1	Метод открытия через реконструкцию	9
6	Числ	пенные оценки1	0
	6.1	SSIM	0
	6.2	PSNR1	1
7	Резу	льтаты1	1
	7.1	Изображения до преобразования	1
	7.2	Изображения после преобразования	3

8	Выводы	18
9	Вложение	19
10	Ссылки	20

1 ВВЕДЕНИЕ

Изображения, снятые в условиях плохой освещенности, часто демонстрируют такие характеристики, как низкая яркость, низкий контраст, искажение цвета, а также значительный шум. Такие изображения могут являться малоинформативными с точки зрения субъективного восприятия человека и малопригодными для прикладных задач в области компьютерного зрения.

В данной курсовой работе рассматривается метод улучшения одноканальных изображений с плохой освещенностью на основе закона Вебера, дается теоретическое определение метода, показываются результаты применения метода на исходных изображениях, замеряется качество улучшенных методом изображений с помощью предложенных функций оценки, делается вывод о проделанной работе.

2 ИСХОДНЫЕ ИЗОБРАЖЕНИЯ

В качестве исходных изображений были выбраны открытые датасеты Dark Face [1] и LOL (Low Light paired dataset) [2], которые содержат набор изображений, снятых в домашних условиях, учебных зданиях, улицах, парках, при слабом/нормальном уровне света.

Рисунок 1 — Примеры исходных изображений (конвертированные в одноканальные)

3 ЗАКОН ВЕБЕРА

Контраст объекта на изображении по закону Вебера формально определяется:

$$C = \frac{(L_{max} - L_{min})}{L_{min}},\tag{1}$$

C – контраст объекта, L_{max} – яркость объекта и L_{min} – яркость окружения.

В предлагаемом методе будет использовано его приближение [3]:

$$C = k * log^{1}(L+1) + b, (2)$$

k, b – вычисляемые параметры.

 $^{^{1}\}log(x) = \log_{10}(x)$

4 МОРФОЛОГИЧЕСКИЕ ПРЕОБРАЗОВАНИЯ НАД ИЗОБРАЖЕНИЯМИ

Изображение представим, как функцию интенсивности F определенную на множестве $size\ F$:

$$F: size \ F \rightarrow [0, 255], \quad size \ F \subset \mathbb{Z}_+^2$$

Дополнительно, определим структурный элемент B с параметром μ как квадратную матрицу размера $(2\mu+1)*(2\mu+1), \mu\geq 1.$

4.1 Дилатация

Дилатация изображения F со структурным элементом B — это присвоение каждому пикселю выходного изображения максимального значения интенсивности, найденного в окрестности пикселей, которая определяется структурным элементом B:

$$\delta_B(F_{i,j}) = \max_{\beta \in sizeB} F_{(i,j)+\beta}, \ (i,j) \in size \ F.$$
 (3)

4.2 Эрозия

Эрозия изображения F со структурным элементом B — это присвоение каждому пикселю выходного изображения минимального значения интенсивности, найденного в окрестности пикселей, которая определяется структурным элементом B:

$$\varepsilon_B(F_{i,j}) = \min_{\beta \in sizeB} F_{(i,j)+\beta}, \ (i,j) \in size F. \tag{4}$$

4.3 Геодезическая дилатация

Геодезическая дилатация — это дилатация, которая протекает в строго обозначенных областях изображения. В этом преобразовании используется дополнительное изображение маски G в качестве ограничения для распространения дилатации:

$$\delta_{G,B}(F_{i,j}) = \max_{\beta \in sizeB} F_{(i,j)+\beta} \cap G_{i,j},$$

$$F_{i,j} \cap G_{i,j} = \min\{F(i,j), G(i,j)\},$$

$$|size G| = |size F|.$$
(5)

4.4 Открытие через реконструкцию

Открытие через реконструкцию — это составная морфологическая операция, которая описывается следующим образом:

- Ко входному изображению F применяется эрозия ε_B .
- К результату эрозии применятся геодезическая дилатация $\delta_{F',B}$ с маской входного изображения F' до состояния идемпотентности(т.е. до тех пор, пока результирующее изображение на итерации i+1 не станет равным результирующему изображению на итерации i).

Формальное определение дается формулой [4]:

$$\hat{\gamma}_B(F_{i,j}) = \lim_{n \to \infty} \delta^n_{F',B}(\varepsilon_B(F_{i,j})), \tag{6}$$

$$F' = \begin{cases} 255, F_{i,j} > 0 \\ 0, F_{i,j} = 0 \end{cases}.$$

5 РАССМАТРИВАЕМЫЙ МЕТОД

На основе приближения закона Вебера каждое изображение будет преобразовано следующим оператором:

$$K(i,j) = k * log(I(i,j) + 1) + b$$
(7)

I — исходное изображение (в градациях серого)

K — новое изображение

I(i,j) — значение интенсивности в (i,j) пикселе $\in [0,255]$

Вычисление параметров k, b описаны ниже.

5.1 Метод открытия через реконструкцию

Определим вспомогательное изображение фона τ такого же размера, как исходное изображение F следующим образом:

$$\tau_{\mu}(i,j) = \hat{\gamma}_{B_{\mu}}(F(i,j)) \tag{8}$$

Параметр $b_{\mu}(i,j)$ вычисляется путем эрозии со структурным элементом $B_{\mu=1}$ полученного выше изображения фона $\tau_{i,j}[3]$:

$$b_{\mu}(i,j) = \varepsilon_1 \big(\tau_{\mu}(i,j) \big) \tag{9}$$

Параметр $k_{i,j}$ вычисляется по формуле [3]:

$$k_{\mu}(i,j) = \frac{255 - b_{\mu}(i,j)}{\log(256)} \tag{10}$$

Итоговый оператор преобразования выглядит следующим образом:

$$\theta_{\mu}(F(i,j)) = k_{\mu}(i,j) * \log(F(i,j) + 1) + b_{\mu}(i,j). \tag{11}$$

6 ЧИСЛЕННЫЕ ОЦЕНКИ

6.1 SSIM

SSIM (Structural Similarity Index) — метод измерения сходства между двумя изображениями. Данная оценка основана на эталонном изображении, другими словами, измерение качества изображения на основе исходного несжатого или без искажений изображения. Формальное определение:

$$SSIM(I_r, I_e) = \frac{(2\mu_{I_r}\mu_{I_e} + c_1)(2\sigma_{I_rI_e} + c_2)}{(\mu_{I_r}^2 + \mu_{I_e}^2 + c_1)(\sigma_{I_r}^2 + \sigma_{I_e}^2 + c_2)}$$
(12)

где I_r — эталонное изображение, I_e — оцениваемое изображение, μ_{I_r} — среднее значение интенсивности для первой картинки, μ_{I_e} — среднее значение интенсивности для второй картинки, σ_{I_r} — среднеквадратичное отклонение для первой картинки, σ_{I_e} — среднеквадратичное отклонение для второй картинки, $\sigma_{I_r I_e}$ — ковариация ($\sigma_{I_r I_e} = \mu_{I_r I_e} - \mu_{I_r} \mu_{I_e}$), c1, c2 — поправочные коэффициенты, необходимые из-за маленького знаменателя. Они равны квадрату количества цветов на изображении, умноженному на 0.01 и 0.03. *SSIM* индекс лежит в диапазоне [-1, 1], где 1 — показывает одинаковые изображения.

6.2 PSNR

PSNR (*Peak Signal-to-Noise Ratio*) — пиковое отношение сигнала к шуму, наиболее часто используется для измерения уровня искажений при сжатии изображений. Данный индекс определяется через MSE (*Mean Square Error*):

$$MSE(I_r, I_e) = \frac{1}{mn} \sum_{i=0}^{m-1} \sum_{j=0}^{n-1} (I_r(i, j) - I_e(i, j))^2,$$
(13)

где mn — размер изображения, I_r — эталонное изображение, I_e — оцениваемое изображение.

$$PSNR(I_r, I_e) = 10 \log_{10}(\frac{MAX_I^2}{MSE(I_r, I_e)})$$
 (14)

где MAX_I — это максимальное допустимое значение для пикселя (например, 255 для 1 байтового изображения на пиксель). Если два изображения одинаковы, MSE даст ноль, что приведет к недопустимой операции деления на ноль в формуле PSNR, в этом случае PSNR не определен, и нужно обрабатывать этот случай отдельно. Также, чем выше значение функции PSNR, тем ближе входное изображение к эталону.

7 РЕЗУЛЬТАТЫ

7.1 Изображения до преобразования

Все снимки из датасетов представляются как изображения в градациях серого.

Рисунок 2 — Эталонные изображения $E_1, E_2 \ (\hbox{датасет } \textit{DARK FACE}), E_3, E_4, E_5 (\hbox{датасет } \textit{LOL})$

Ниже приведены изображения I_1 , I_2 для которых искусственно понижена яркость, контраст. Изображения I_3 , I_4 , I_5 взяты напрямую из датасета LOL и представляют собой фотографии с такими же сценами, как и в E_3 , E_4 , E_5 , но снятые с изменением времени экспозиции и ISO [5].

Рисунок 3 — Исходные изображения I_1 , I_2 , I_3 , I_4 , I_5 для обработки

7.2 Изображения после преобразования

Для каждого изображения I_1 , I_2 , I_3 , I_4 , I_5 бы применен оператор (11) с параметром $\mu=50$., таким образом получается набор преобразованных изображений K_1 , K_2 , K_3 , K_4 , K_5 .

Рисунок 4 — Изображения I_1 , K_1 , E_1 (слева направо) с соответствующими гистограммами распределения пикселей; $SSIM(E_1,I_1)=0.149$, $PSNR(E_1,I_1)=4.42336$; $SSIM(E_1,K_1)=0.905$, $PSNR(E_1,K_1)=16.1225$

Рисунок 5 — Изображения I_2 , K_2 , E_2 (слева направо) с соответствующими гистограммами распределения пикселей; $SSIM(E_2,I_2)=0.123$, $PSNR(E_2,I_2)=6.42793$; $SSIM(E_2,K_2)=0.748$, $PSNR(E_2,K_2)=20.0665$

Рисунок 6 — Изображения I_3 , K_3 , E_3 (слева направо) с соответствующими гистограммами распределения пикселей; $SSIM(E_3,I_3)=0.099$, $PSNR(E_3,I_3)=8.892$; $SSIM(E_3,K_3)=0.614$, $PSNR(E_3,K_3)=24.573$

Рисунок 7 — Изображения I_4 , K_4 , E_4 (слева направо) с соответствующими гистограммами распределения пикселей; $SSIM(E_4,I_4)=0.084$, $PSNR(E_4,I_4)=9.134$; $SSIM(E_4,K_4)=0.639$, $PSNR(E_4,K_4)=23.286$.

Рисунок 8 — Изображения I_5 , K_5 , E_5 (слева направо) с соответствующими гистограммами распределения пикселей; $SSIM(E_5,I_5)=0.224$, $PSNR(E_5,I_5)=13.015$; $SSIM(E_5,K_5)=0.577$, $PSNR(E_5,K_5)=16.369$

Ниже приведена таблица с изменением параметра μ для $SSIM(E_i,K_i)$, $PSNR(E_i,K_i)$ оценок.

Изображение	$\mu=10$	$\mu=20$	$\mu=40$	$\mu = 60$	μ =80	$\mu = 100$
K_1	0.888	0.888	0.894	0.907	0.906	0.902
K_2	0.732	0.746	0.747	0.748	0.749	0.749
<i>K</i> ₃	0.634	0.625	0.621	0.614	0.614	0.613
K_4	0.637	0.638	0.639	0.638	0.637	0.637
K_5	0.557	0.568	0.577	0.577	0.578	0.578

Таблица 1-3начения SSIM при разных значениях параметра μ . Жирным цветом выделен максимальный показатель для изображения.

Изображение	$\mu=10$	$\mu=20$	$\mu=40$	μ =60	μ =80	$\mu = 100$
K_1	18.7326	18.7326	18.4311	16.1817	15.3145	15.0414
K ₂	20.8524	20.2577	19.9983	19.9013	19.2332	18.9722
K ₃	25.4905	25.9585	25.3314	24.5734	24.5734	24.2297
K_4	23.2442	23.3143	23.2863	23.2115	22.9273	22.9273
K_5	14.24	15.3609	16.3693	16.3693	16.8302	16.8302

Таблица 2 — Значения PSNR при разных значениях параметра μ . Жирным цветом выделен максимальный показатель для изображения.

К явным особенностям метода стоит отнести чувствительность к шуму и невосприимчивость к черным пикселям с минимальными значениями интенсивности, что может приводить к нежелательным результатам. За исключением этих недостатков метод демонстрирует хорошие показатели по заданным функциям оценки.

Рисунок 9 — Зашумленное изображение K_3 и эталонное изображение E_3

Рисунок 10 — Фрагмент изображения K_1 , черные пиксели никак не были преобразованы методом

8 ВЫВОДЫ

В данной работе был представлен метод Открытия через реконструкцию на основе закона Вебера. Метод позволяет улучшать качество изображений для фотографий, снятых в условиях плохой освещенности. Были продемонстрированы результаты для исходных изображений из открытых датасетов *Dark Faces* и *LOL*, вычислены функции оценки *SSIM*, *PSNR* при разных значениях параметра, а также продемонстрированы некоторые недостатки метода.

10 ССЫЛКИ

- [1] **DARK FACE**: Face Detection in Low Light Condition, URL: https://flyywh.github.io/CVPRW2019LowLight/
- [2] **Deep Retinex Decomposition for Low-Light Enhancement**, URL: https://daooshee.github.io/BMVC2018website/
- [3] Angélica R. Jiménez-Sánchez, Jorge D. Mendiola-Santibañez, Iván R. Terol-Villalobos, Gilberto Herrera-Ruíz, Damián Vargas-Vázquez, Juan J. García-Escalante, and Alberto Lara-Guevara "Morphological Background Detection and Enhancement of Images With Poor Lighting", vol. 18, no. 3, March 2009.
- [4] **Fundamentals of Digital Image Processing** by A. K. Jain, Englewood Cliffs, NJ: Prentice-Hall, 1989.
- [5] Wei, C., Wang, W., Yang, W., Liu, J. "Deep retinex de-composition for low-light enhancement", British Machine Vision Conference (BMVC) (2018)