OSII - IGENIERÍA

ANÁLISIS DIMENSIONAL

Magnitud: Es todo aquello que es susceptible a ser medido. **Medir:** Consiste en comparar dos magnitudes de una misma magnitud; donde una de ellas es la unidad patrón.

Cantidad: Es aquella "porción" limitada de una magnitud. Tiene medida o tamaño definido.

Medición: Es aquella operación realizada por el hombre directa o indirectamente, para averiguar las veces y una cantidad contiene a su unidad correspondiente.

CLASIFICACIÓN DE LAS MAGNITUDES FÍSICAS

- a) Por su origen, pueden ser
 - Magnitudes fundamentales
 - Magnitudes auxiliares
 - Magnitudes derivadas
- b) Por su naturaleza, pueden ser
 - Magnitudes escalares
 - Magnitudes vectoriales
 - Magnitudes tensoriales

MAGNITUDES FUNDAMENTALES

Nro	Magnitudes	Unidad	Símbolo
1	Longitud	metro	m
2	Masa	kilogramo	kg
3	Tiempo	segundo	S
4	Temperatura termodinámica	kelvin	k
5	intensidad de corriente eléctrica	ampere	А
6	Intensidad Iuminosa	candela	cd
7	Cantidad de sustancia	mol	mol

MANGNITUDES AUXILIARES				
1	ángulo plano	radian	rad	
2	ángulo solido	estereorradián	sr	

MAGNITUDES DERIVADAS

Son aquellas que están expresadas en función de las magnitudes fundamentales. Veamos algunos de ellos como la velocidad, fuerza, área, etc.

1	velocidad	metro/segundo	m/s
2	fuerza	Newton	Ν

ECUACION DIMENCIONAL

Son aquellas relaciones de igualdad en donde cantidades de magnitudes conocidas y algunas no, pero también donde las cantidades desconocidas pueden ubicarse en los exponentes.

NOTACION

[A]: Ecuación dimensional de A

FORMULAS DIMENSIONALES

Se designa con este nombre a aquellas relaciones de igualdad, mediante los cuales una magnitud derivada queda

expresada en las bases, a las magnitudes fundamentales de un modo general.

Así, si x es una magnitud derivada

$[x]=L^a M^b T^c I^e J^f N^g$

(formula dimensional de x)

A continuación, damos un resumen de fórmulas dimensionales para algunas magnitudes derivadas del uso común según el sistema internacional (S.I.)

a) MAGNITUDES FUNDAMENTALES

<u> </u>			
Nro.	Magnitudes	Símbolo	E.D.
1	Longitud	I,L,d	L
2	Masa	m	М
3	Tiempo	t	Т
7	Temperatura termodinámica	Т	θ
5	interisidad de corriente electrica	i,I	I
6	Intensidad Juminosa	I	J
7	Cantidad de sustancia	n	N

b) MAGNITUDES DERIVADAS

D) WAGWITODES DERIVADAS				
Nro	Magnitudes	Símbolo	E.D.	
1	área	Α	L ²	
2	volumen	V	L ³	
3	velocidad lineal	V	LT ⁻¹	
4	aceleración lineal	а	LT ⁻²	
5	velocidad angular	ω	T ⁻¹	
6	aceleración angular	α	T ⁻²	
7	fuerza	F	MLT ⁻²	
8	trabajo	W	ML ² T ⁻²	
9	energía	E	ML ² T ⁻²	
10	peso	W	MLT ⁻²	
11	impulsión	ı	MLT ⁻¹	
12	presión	Р	ML ⁻¹ T ⁻²	
13	densidad	ρ	ML ⁻³	
14	peso especifico	γ	ML ⁻² T ⁻²	
15	capacidad calorífica	Cc	$ML^{\text{-2}}T^{\text{-2}}\theta^{\text{-1}}$	
16	Calor especifico	Ce	IT	
17	carga eléctrica	Q	MLT ⁻³ I ⁻¹	
18	intensidad de campo eléctrico	E	MLT ⁻³ I ⁻¹	
19	potencial eléctrico	V	ML ² T ⁻³ I ⁻¹	
20	resistencia eléctrica	R	ML ² T ⁻³ I ⁻²	

REGLAS BASICAS:

1.- Las magnitudes físicas no cumplen con las leyes de la suma ni la resta

$$L+L+L=L$$
 ; $LT^{-1}-LT^{-1}=LT^{-1}$

2.- Todos los numero reales en sus diferentes formas, son cantidades adimensionales, y su fórmula dimensional es la unidad

$$[5/2]=1$$
; $[\pi \text{ rad}]=1$; $[\cos(60)]=1$; $[\log 20]=1$;

[exponente y argumento de identidades trigonométricas y logaritmos]=1

PRINCIPIO DE HOMOGENEIDAD (PRINCIPIO DE FOURIER)

Toda la ecuación será dimensionalmente correcta si los términos que componen una suma o una diferencia son de igual dimensiones, y de en ambos miembros de la igualdad aparecen las mismas magnitudes afectadas de los mismos exponentes

DEDUCIR UNA FÓRMULA EMPÍRICA A TRAVÉS DE DATOS EXPERIMENTALES.

Si una magnitud física "E" depende de las magnitudes "A", 'B" y "C", entonces

E=f(A,B,C)

O sea E=kAaBbCc (Formula empírica)

- k : constante numérica(ADIMENSIONAL)
- a,b,c son números reales.

NOTACION CIENTÍFICA

Múltiplos

Prefijo	Símbolo	Factor de multiplicación		
Deca	D	10^{1}	10	
Hecto	Н	10^{2}	100	
Kilo	k	10^{3}	1000	
Mega	M	10^{6}	1000000	
Giga	G	10 ⁹	100000000	
Tera	Т	10^{12}	100000000000	
Peta	Р	10^{15}	100000000000000	
Exa	Е	10^{18}	100000000000000000	
Zetta	Z	10 ²¹	1000000000000000000000	
Yotta	У	10^{24}	100000000000000000000000000000000000000	

Submúltiplos

Prefijo	Símbolo	Factor de multiplicación	
deci	d	10-1	0,1
centi	С	10^{-2}	0,01
mili	m	10^{-3}	0,001
micro	μ	10^{-6}	0,000001
nano	n	10^{-9}	0,00000001
pico	р	10^{-12}	0,00000000001
femto	f	10^{-15}	0,00000000000001
atto	α	10-18	0,00000000000000001
zepto	/ Z	10-21	0,0000000000000000000000000000000000000
yocto	X	10^{-24}	0,0000000000000000000000000000000000000

Redondeo

Caso 1

Si las cifras no significativas son menores a cinco, estas se eliminan

2 cifras significativas

Valor original	Valor redondeado
3,33	3,3
0,564	0,56
1040	1,0*10^3

Caso 2

Si las cifras no significativas son mayores a cinco, estas se eliminan y se añade una unidad a la anterior

3 cifras significativas

Valor original	Valor redondeado
3,006	3,01
4,679	4,68
0,006238	6,21*10^-3

Caso 3

Si las cifras no significativas son mayores a cinco, estas se eliminan y se añade una unidad a la anterior

2 cifras significativas

Valor original	Valor redondeado
3,25	3,2
6,95	7,0
41,5	41

Caso 3

Si las cifras no significativas son mayores a cinco, estas se eliminan y se añade una unidad a la anterior

3 cifras significativa

Valor original	Valor redondeado
5,335	5,34
0,7775	0,778
62350	6,24*10^4

