

Smart Parking Lot

Problem

Drivers spend too much time in parking lots trying to find an open space. Many parking lots only have per-floor capacity indicators, and existing solutions are prohibitively expensive.

What if we could utilize low-cost sensors and a companion application to navigate drivers to empty parking spots faster, at a low cost to facility owners?

Solution

- A small, inexpensive wireless device that will be placed on a parking spot
- Device can last five years on a single charge
- Device contains a **vehicle-detecting sensor** that can detect whether a car is parked in that particular spot
- Devices connected with low-power communication protocol to a central gateway device. Gateway device propagates sensor data to the Internet, which allows users to view parking spot availability through a mobile application or website.

Roles

Short-term Responsibilities:

- Finn L. and Luyao H. Vehicle detection sensor research
- Andrew L. and Jun C. Communication module research

Long-term Responsibilities:

- Andrew L. Parking Lot Terminal / Gateway
- Finn L. Wireless Communication / Power Management
- Luyao H. Sensor Firmware / PCB Design/ Wireless Charging
- Jun C. GUI / Path Finding Algorithm

STM32L053r8

Power consumption

- low power consumption
- 88 μA/MHz in Run mode
- 0.27 µA Standby mode

Peripherals

- SPI/I2C/USART
- EEPROM for storing device ID

Firmware Development

- Nucleo

Packaging

- QFP64

ST Ultra-low power product line

- 32-bit Arm® Cortex®-M33 + FPU at 110 MHz
- . From 256 to 512 Kbytes of Flash memory
- Lowest power mode + RAM + RTC: 0.35 μA

STM32L4+

- . 32-bit Arm® Cortex®-M4 + FPU at 120 MHz
- From 512 Kbytes up to 2 Mbytes of Flash memory
- Lowest power mode + RAM + RTC: 0.39µA

STM32L4

- 32-bit Arm® Cortex®-M4 + FPU at 80 MHz
- . From 64 Kbytes to 1 Mbyte of Flash memory
- Lowest power mode + RAM + RTC: 0.34 μA

STM32L1

- . 32-bit Arm® Cortex®-M3 at 32 MHz
- . From 32 to 512 Kbytes of Flash memory
- Lowest power mode + RAM + RTC: 1.2 μA

STM32L0

- . 32-bit Arm® Cortex®-M0+ at 32 MHz
- . From 8 to 192 Kbytes of Flash memory
- Lowest power mode + RAM + RTC: 0.67 μA

STM8L

- . 8-bit STM8 core at 16 MHz
- . From 2 to 64 Kbytes of Flash memory
- Lowest Halt mode: 0.3 μA

SPL

Vehicle Detection Sensors

- Main Factors to consider
 - Power Consumption
 - Installation
 - Lifespan of component
- Sensing Technologies
 - Magnetometer
 - Magnetoresistive (inductive)
 - Hall Effect
 - Differential Hall Effect
 - Ultrasonic
 - Infrared
 - Light Grid

Vehicle Detection Sensors - A Closer Look

1)	
-	1	
	100	
	9	9

	Max Sensing Range	Size of Target	Power consumption (average current)	Environment Noise	Lifespan
Wireless Magnetometer	Depends on the size of target	All sizes	< 1 mA	Ambient Magnetic Field	< 20 years
Wireless Ultrasonic Sensor	4 meters	All sizes	> 5 mA	Dust, Tangible Particles	< 20 years
Radar Sensor	<50 meters	Large, predictable targets (e.g. trains)	> 50 mA	Relatively stable	< 6 years
Optical Sensor (Infrared)	<100 meters	5 millimeters or greater	> 20 mA	Sensitive to ambient light, sunlight	2~8 years
Measuring Light Grid	<2 meters	All sizes	> 200 mA	Sensitive to ambient light, sunlight	unknown

Vehicle Detection Sensors - Experiment Setup

)	
-	"	

Sensor	Mechanism	Result
LM351LT	Hall Effect	Failure
TLE4921	Differential Hall Effect	Failure
RM3100	Magneto-Inductive	Success
HC-SR06	Ultrasonic Sensor	Success

UART

Wireless charging

Deployable Wireless Charger

Charging

- Domed shaped unit attached to top of sensor unit

Estimation

- 5 years ~= 45000 hours
- calculated power consumption 0.22 mA
- Charging 2.5 hour with 15W charger

Advantage

- Sensor still operable when charging
- Convenience for maintenance

Disadvantage

- Distortion to sensitivity of magnetic sensor
- Could be stolen

Communication

- Low Power Consumption
- Must support high number of concurrent devices
- Range from sensor to gateway
- Data rate negligible
- Robustness to interference
- Availability & cost

Communication Protocols / Modules

	Max Transmitting Range	Frequency (Potential Interference)	Data Transmission Rate	Power Consumption	Part(s) Used for Testing
Zigbee	10-100 meters	2.4 GHz	250kbps	2.96 J	STM32WB55 Nucleo Pack
LoRaWAN	2-15 kilometers	433 MHz, 868 MHz, 915 MHz	0.3-50 kbps	3.50 J	STM32 I-NUCLEO-LRWAN1 Expansion Board Heltec ESP32 LoRa 32 (V2) Development Board
WiFi	50 meters	2.4 GHz, 5 GHz	150-200 Mbps	5.00 J	N/A
Bluetooth Low Energy (BLE)	50-150 meters	2.4 GHz	1 Mbps	4.5 J	N/A

Due to concurrent device limitations, power consumption concerns, and transmission range, we are starting with the Zigbee and LoRaWAN communication standards.

Zigbee

STM32WB55 Nucleo Pack

- Nucleo68 uses STM32WB55RG
- USB Dongle uses STM32WB55CG
- Both support IEEE 802.15.4 / Zigbee 3.0

STM32WB55 Series MCUs

- Based on Arm Cortex M4
- Up to +6 dBm transmission power
- -100 dBm receiver sensitivity
- 1.7V to 3.6V input voltage range
- 600 nA in standby, 5.2 mA when transmitting

LoRa/LoRaWAN

STM32 I-NUCLEO-LRWAN1

- Semtech SX1272
- 860 MHz to 1020 MHz frequency range
- 14 dBm to 20 dBm transmission power
- -137 dBm receiver sensitivity
- 2.0V to 3.6V voltage range

Heltec ESP32 LoRa 32 (V2)

- Semtech SX1276
- 868 MHz to 915 MHz frequency range
- 15.5 dBm to 19.5 dBm transmission power
- -139 dBm receiver sensitivity
- 3.3V to 7V voltage range

Battery

- Battery needs a minimum of 5 year life
- Current power consumption ~150mA
- Maximum batter with suitable dimensions is 10Ah
- Must cut power consumption by a degree of 100
- Transmitter is the most costly hardware
- Sensor / processor power consumption are minimal (micro amps)
- Transmit every 30 seconds

Power Management IC (PMIC)

LP3905

- -.2V to 6V range
- o to 600 mA range
- Used typically for low power handheld devices
- 2 Buck Regulator (DC2DC step down voltage/Step up current)
- 2 LDO (Low Dropout Regulator)
- No Recharge
- Need a second PMIC specifically for charging

Schedule: Fall Quarter

Fall Quarter, Week 8

Finalize Initial Parts Testing

Fall Quarter, Week 9-10

Prototyping PCB for individual sensor units

- power management
- wireless communication units
- various sensor and test ports
- wireless charging receiver
- communication bus ports

Updating and development of firmware

Winter Break

Receiving manufactured PCB for assembly

Schedule: Winter Quarter

Winter Quarter, Week 1~2

Developing gateway data collection software Revision of sensor unit PCB, part selection

Winter Quarter Week 2-5

Prototyping wireless charging transmitter Developing Android app prototype

- displaying parking vacancy
- pathfinding algorithm

Winter Quarter Week 6-9

Deploying large amount of sensor units to Parking Lot 10 for field test

Schedule: Spring Quarter

Spring Quarter, Week 1~2

Mechanical case design

Spring Quarter, Week 3

Final Product

Spring Quarter, Week 3-8

Power consumption optimization
Firmware design optimization
Battery charging efficiency optimization
Android App User Experience Survey
Market Value Survey

Spring Quarter, Week 9 **Documentation**

Thank you!

Questions?

Acknowledgements:

Professor **Yogananda Isukapalli** Teaching Assistants **Boning Dong, Trenton Rochelle**

