Q 输入搜索文本...

如何安装 MegEngine

用户迁移指南

常见问题汇总

模型开发 (基础篇)

深入理解 Tensor 数据结构

Rank, Axes 与 Shape 属性

Tensor 元素索引

Tensor 数据类型

Tensor 所在设备

Tensor 具象化举例

Tensor 内存布局

使用 Functional 操作与计算

使用 Data 构建输入 Pipeline

使用 Module 定义模型结构

Autodiff 基本原理与使用

使用 Optimizer 优化参数

保存与加载模型 (S&L)

使用 Hub 发布和加载预训练模型

模型开发 (进阶篇)

通过重计算节省显存 (Recomputation)

分布式训练(Distributed Training)

量化 (Quantization)

自动混合精度 (AMP)

模型性能数据生成与分析 (Profiler)

使用 TracedModule 发版

即时编译 (JIT)

推理部署篇

模型部署总览与流程建议

使用 MegEngine Lite 部署模型

MegEngine Lite 使用接口

使用 MegEngine Lite 部署模型进阶

使用 Load and run 测试与验证模型

工具与插件篇

参数和计算量统计与可视化

MegEngine 模型可视化

RuntimeOpr 使用说明

自定义算子 (Custom Op)

Tensor 元素索引

🚹 参见

阅读这部分内容前,你需要知道如何 访问 Tensor 中某个元素 以及 使用切片获取部分元素。

1 注解

以下是本小节提到的相关内容速记:

- MegEngine 中切片将返回新的对象(而不是共用同一片内存),切片操作不会降低 Tensor 维度;
- 多维 Tensor 的索引语法形如 a[i, j], 也支持切片语法形如 a[i:j, p:q];
- 可以使用省略符 ... 来自动填充完整切片到剩余维度, 比如 a[i, ...] 等同于 a[i, :, :].

和 NumPy 索引对比

🛕 NumPy 用户请注意!

不能将 NumPy 中存在的一些概念和设计直接应用于 MegEngine.

6 参见

在 MegEngine 中,想要 <u>访问 Tensor 中某个元素</u> ,可以使用标准的 x[obj] 语法。 看上去一切都和 NumPy 很相似,后者的 官方文档中也对 <u>ndarray</u> 的各种索引方式都 <u>进行了解释</u> 。 但 MegEngine 的 Tensor 实现和 NumPy 还是略有不同,如果不清 楚某些细节,可能无法对一些现象做出解释。

索引得到的对象不同

```
MegEngine
 >>> x = Tensor([[1., 2.], [3., 4.]])
 \Rightarrow\Rightarrow y = x[0]
 >>> y[1] = 6
 >>> x
 Tensor([[1. 2.]
  [3. 4.]], device=xpux:0)
```

```
NumPy
 >>> x = array([[1., 2.], [3., 4.]])
 \Rightarrow\Rightarrow y = x[0]
 >>> y[1] = 6
 >>> x
 array([[1., 6.],
          [3., 4.]])
```

出现这种情况的原因是,在 NumPy 中使用索引时,得到的是原数组的 视图(View)。 改变视图中的元素,原始数组中的元素也会发 生变化 —— 这是很多 NumPy 用户初学时容易困扰的地方。 而在 MegEngine 中没有视图 view 这一属性, 通过索引或切片得到的元素 或子 Tensor 和原 Tensor 占用的是不同的内存区域。

在其它地方的一些设计,二者还是一致的,接下来我们将进行介绍。

切片索引不会降低维度

MegEngine 和 NumPy 在进行切片时,都不会改变对象 维度的个数:

```
>>> M = Tensor([[1, 2, 3],
               [4, 5, 6],
                [7, 8, 9]])
>>> M[1:2][0:1]
Tensor([[4 5 6]], dtype=int32, device=cpux:0)
>>> M[1:2][0:1].ndim
```

整个过程中,切片得到的都是一个 ndim=2 的 Tensor.

- 执行 M[1:2] 得到的结果是 [[4,5,6]] 而不是 [4,5,6].
- 对 [[4, 5, 6]] 进行 [0:1] 切片,得到的还是 [[4, 5, 6]].

错误的理解思路可能是这样的:

- 执行 M[1:2] 得到的结果是 [4, 5, 6]. —— 错! 切片不会降维!
- 对 [4, 5, 6] 进行 [0:1] 切片,得到的是 4. —— 降维了,因此也不对!

- 切片的作用是从整体中取出一部分,因此不会产生降低维度的行为。
- 如果你希望切片操作后能去冗余的维度,可以使用 squeeze.

都可以使用数组索引

实际上除了切片索引,我们还可以使用整数数组进行索引得到特定位置的元素,以一维情况为例:

```
MegEngine

>>> x = Tensor([1., 2., 3.])
>>> y = x[[0, 2]]
>>> y
Tensor([1. 3.], device=xpux:0)
```

```
NumPy

>>> x = array([1., 2., 3.])
>>> y = x[[0, 2]]
>>> y
array([1., 3.])
```

索引数组的长度对应了被索引的元素的个数,在一些情况下这种机制十分有帮助。

此时 NumPy 将不会生成原始数组的视图,与 MegEngine 的逻辑一致。

🛕 警告

注意语法细节,一些用户容易将整数数组索引写成如下形式:

```
>>> x = Tensor([1., 2., 3.])
>>> y = x[0, 1, 2]
IndexError: too many indices for tensor: tensor is 1-dimensional, but 3 were indexed
```

实际上这是对 Tensor 的 n 个维度分别进行索引的语法。引出了下一小节的解释 ——

在多个维度进行索引

以下面这个由矩阵 (2 维数组) M 表示的 Tensor 为例:

$$M = egin{bmatrix} 1 & 2 & 3 \ 4 & 5 & 6 \ 7 & 8 & 9 \end{bmatrix} \quad M_{(1,2)} = 6$$

虽然我们可以使用 M[1][2] 这样的语法得到 6 这个值,但效率并不高(参考 <u>访问 Tensor 中某个元素</u> 的解释)。

① 注解

- Python 的内置序列类型都是一维的,因此只支持单向索引,但对于具备多维属性的 Tensor, 可以在多个维度直接进行索引(或者是 在多个维度进行切片,后面会进行举例),使用,作为维度之间的分隔,上面的例子则可用 M[1, 2] 访问元素,而没有必要使用多个方括号 M[1][2].
- 感兴趣的用户可以了解试着背后的细节:在 Python 中要正确处理这种形式的 [] 运算符,对象的特殊方法 __getitem_ 和 __setitem_ 需要以元组的形式来接受传入的索引。 也即是说如果要得到 M[i,j] 的值,Python 实际上会调用 M.__getitem__((i,j)).

```
>>> M = Tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
>>> M[1,2]
Tensor(6, dtype=int32, device=xpux:0)
```

可以理解成,在第0轴索引值为1,第1轴索引值为2的位置去直接访问元素。

推广到一般情况,在访问 n 维 Tensor (假定为 T)的特定某个元素时,可以使用如下语法:

$$T_{[i1,i2,\ldots in]}$$

即我们要提供 i_1, i_2, \ldots, i_n n 个索引值,此时不需要层层降维索引,而是直接得到对应元素。

如果提供的索引数组个数不足 n,则需要了解 <u>多维索引的缺省情况</u>。

在多个维度进行切片

① 注解

在某个维度上进行索引,除了索引特定元素以外,还可以进行切片操作,来获取特定部分元素。

- 既然我们可以在多个维度进行索引, 自然地, 我们可以从多个维度进行切片;
- 问题在于,用户容易忽视 切片索引不会降低维度 这一特点,尤其是和多个 [] 使用时。

现在需要从下面这个 2 维 Tensor 中切出蓝色部分的元素:

$$M = egin{bmatrix} 1 & 2 & 3 \ 4 & 5 & 6 \ 7 & 8 & 9 \end{bmatrix}$$

一些人会写成 M[1:3][0:2], 此时将得到非预期结果:

```
>>> M[1:3][0:2]
Tensor([[4 5 6]
[7 8 9]], dtype=int32, device=xpux:0)
```

这是因为[]操作是顺序进行解释的,它背后的逻辑顺序是:

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}_{\downarrow 1:3} = \begin{bmatrix} 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} \quad \begin{bmatrix} 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}_{\downarrow 0:2} = \begin{bmatrix} 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$

```
>>> T = M[1:3]

>>> T

Tensor([[4 5 6]

[7 8 9]], dtype=int32, device=xpux:0)

>>> T[0:2]

Tensor([[4 5 6]

[7 8 9]], dtype=int32, device=xpux:0)
```

▲ 警告

由于切片操作并不会降低维度,所以上面的写法等于每次都在 axis=0 进行切片。

🚯 参见

如果你不清楚 axis 的概念,可以参考 Tensor 的轴。

正确的做法是像 在多个维度进行索引 一样,使用,对维度进行区分:

```
>>> M[1:3, 0:2]
Tensor([[4 5]
[7 8]], dtype=int32, device=xpux:0)
```

可以理解成在第0轴使用1:3切片,在第1轴使用0:2切片,求它们的交集:

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}_{\downarrow 1:3} \cap \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}_{\stackrel{02}{\rightarrow}} = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$

推广到一般情况,在访问 n 维 Tensor (假定为 T)的特定部分的元素时,要求使用如下语法:

$$T_{[s_1,s_2\dots s_n]}$$

即我们要提供 s_1, s_2, \ldots, s_n 共 n 个切片,每个切片针对特定第维度。

如果提供的切片个数不足 n,则需要了解 多维索引的缺省情况。

① 注解

多维切片时, x[obj]内部的obj由给定的不同维度的切片组成。

🚹 参见

- 对于 ndim 特别大的 Tensor(假设超过 1000 维),有些时候我们只想对某一个轴进行索引,或进行特定操作,此时我们可以使用 gather 或 scatter
- 这两个方法分别对应于 <u>numpy.take_along_axis</u> 和 <u>numpy.put_along_axis</u>

多维切片时使用省略符号

在对 Tensor 进行多维切片时,允许对部分不做切片的维度进行省略(Ellipsis)表示。 它的正确写法是三个英语句号 ... 而不是 Unicode 码位 U+2026 表示的半个省略号 Python 解析器会将 看作是一个符号,就像 start:end:step 符号可以表示切片对象一样,省略符号其实是 Ellipsis 对象的别名,用于尽可能地在该位置插入尽可能多的完整切片:以将切片语法拓展到所有维度。

举个例子, 如果 T 是一个 4 维 Tensor, 那么则有:

- T[i, ...] 是 T[i, :, :, :] 的缩写;
- T[..., i] 是 T[:, :, :, i] 的缩写;
- T[i, ..., j] 是 T[i, :, :, j] 的缩写。

多维索引的缺省情况

如果索引一个多维 Tensor 时给定的索引数少于实际的维数 ndim, 将得到一个子 Tensor:

```
>>> M[2]
Tensor([7 8 9], dtype=int32, device=xpux:0)
>>> M[2,:]
Tensor([7 8 9], dtype=int32, device=xpux:0)
>>> M[:,2]
Tensor([3 6 9], dtype=int32, device=xpux:0)
```

- 此时其它维度的元素将被完整地保留,等同于使用:作为缺省维度的默认索引;
- 根据给定的明确索引数,得到的子 Tensor 维度个数将对应地减少。

高级索引方式

🕕 参见

参考 <u>NumPy Advanced Indexing</u>.

上一页 Rank, Axes 与 Shape 属性

下一页 Tensor **数据类型**