Automatic Control

Hak-Tae Lee

Dynamics

Spring, Mass, and Damper

Cruise-control Model

Friction

- Reaction force can be divided into normal and tangential component
- Tangential component
 - If relative motion exist \rightarrow friction
- Friction
 - Magnitude: proportional to the relative speed
 - Direction: oppose the direction of motion

Damper

- Provide damping force
 - Proportional to the relative speed
- In terms of modeling, it is equivalent to friction

Equation of Motion

$$\sum \mathbf{F} = u - b\dot{x} = m\ddot{x}$$

$$m\ddot{x} + b\dot{x} = u$$

Example

$$m = 1 \text{ kg}$$

 $b = 1 \text{ kg/s}$

Numerical Simulation Tool

Matlab

- Industry standard
- Too expensive?
- License for Inha students

Octave

Open source, free

Mass – Spring System

Mass – Spring System with Friction

$$\sum \mathbf{F} = u - b\dot{x} - kx = m\ddot{x}$$

$$m\ddot{x} + b\dot{x} + kx = u$$

Example

$$m = 1 \text{ kg}$$

 $b = 1 \text{ kg/s}$
 $k = 1 \text{ N/m}$

A Two-Mass System

A Two-Mass System

$$-k_1(x_1-r)-k_2(x_1-x_2)-b_2(\dot{x}_1-\dot{x}_2)=m_1\ddot{x}_1$$
$$m_1\ddot{x}_1+b_2(\dot{x}_1-\dot{x}_2)+k_2(x_1-x_2)+k_1x_1=k_1r$$

A Two-Mass System

$$\begin{array}{c|c}
x_1 \\
-k_2(x_2 - x_1) \\
-b_2(\dot{x}_2 - \dot{x}_1) \\
\end{array}$$

$$m_2$$

$$-k_2(x_x - x_1) - b_2(\dot{x}_2 - \dot{x}_1) = m_2 \ddot{x}_2$$

$$m_2\ddot{x}_2 + b_2(\dot{x}_2 - \dot{x}_1) + k_2(x_2 - x_1) = 0$$

Observations

- Forces acting on me are functions of
 - My position and velocity
 - Positions and velocities of objects connected to me
- Spring forces and damping forces act in directions
 - Opposite: my movement
 - Same: movements of others

$$m(\ddot{x}_1) + b_2(\dot{x}_1) - \dot{x}_2) + k_2(x_1) - x_2) + k(x_1) = k_1 r$$

Same sign!

Step Response 1

$$m_1 = 1$$

 $k_1 = 2$
 $m_2 = 1$
 $b_2 = 1$
 $k_2 = 0.2$

- Noticeable relative movement between two bodies
- Higher damping effect

Step Response 2

$$m_1 = 1$$

 $k_1 = 2$
 $m_2 = 1$
 $b_2 = 1$
 $k_2 = 2$

- Movement more in phase
- Lower damping

Step Response 3

$$m_1 = 1$$

 $k_1 = 2$
 $m_2 = 1$
 $b_2 = 1$
 $k_2 = 100$

- Moves like one body
- No damping

State-Space Form

$$m_1 \ddot{x}_1 + b_2 (\dot{x}_1 - \dot{x}_2) + k_2 (x_1 - x_2) + k_1 x_1 = k_1 r$$

$$m_2 \ddot{x}_2 + b_2 (\dot{x}_2 - \dot{x}_1) + k_2 (x_2 - x_1) = 0$$

Equation of motion gets complicated.

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u}$$

State-space form

State-Space Form – Single Mass

$$m\ddot{x} + b\dot{x} + kx = u$$
 $\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u}$

$$\mathbf{x} = \begin{bmatrix} \dot{x} \\ x \end{bmatrix}, \, \dot{\mathbf{x}} = \begin{bmatrix} \ddot{x} \\ \dot{x} \end{bmatrix} \qquad \begin{aligned} \ddot{x} &= -\frac{b}{m} \dot{x} - \frac{k}{m} x + \frac{1}{m} u \\ \dot{x} &= 1 \dot{x} + 0 x + 0 u \end{aligned}$$

$$\begin{bmatrix} \ddot{x} \\ \dot{x} \end{bmatrix} = \begin{bmatrix} -\frac{b}{m} & -\frac{k}{m} \\ 1 & 0 \end{bmatrix} \begin{bmatrix} \dot{x} \\ x \end{bmatrix} + \begin{bmatrix} \frac{1}{m} \\ 0 \end{bmatrix} u$$

State-Space Form

- 1. Set up the state vector
 - State vector consists of
 - All the variables
 - First derivatives of the variables
 - Fix the order
- 2. Express the derivative of the state vector
 - With a linear combination of the state vector

- Set up state vector
 - Variables x_1, x_2
 - Derivatives of the variables \dot{x}_1, \dot{x}_2
 - Fix order

Ordering is arbitrary

 Express the derivative of each element of the state vector using the state vector

1st element: \dot{X}_1

Derivative of the 1st element: \ddot{x}_1

Express \ddot{x}_1 using

$$egin{array}{c} x_1 \\ x_1 \\ \dot{x}_2 \\ x_2 \end{bmatrix}$$

How??

- 1. See if it is already in the state vector
- 2. If you can't find it, you have to use the equation of motion

Applicable equation of motion

$$m_1\ddot{x}_1 + b_2(\dot{x}_1 - \dot{x}_2) + k_2(x_1 - x_2) + k_1x_1 = k_1r$$

$$\ddot{x}_{1} = -\frac{b_{2}}{m_{1}} \dot{x}_{1} - \left(\frac{k_{2}}{m_{1}} + \frac{k_{1}}{m_{1}}\right) x_{1} + \frac{b_{2}}{m_{1}} \dot{x}_{2} + \frac{k_{2}}{m_{1}} x_{2} + \frac{k_{1}}{m_{1}} r$$

 Express the derivative of each element of the state vector using the state vector

 2^{nd} element: X_1

Derivative of the 1st element: $\dot{\mathcal{X}}_1$

Express $\dot{\mathcal{X}}_1$ using

How??

- 1. See if it is already in the state vector
- 2. If you can't find it, you have to use the equation of motion

State-Space Form – Two Mass System

$$m_1\ddot{x}_1 + b_2(\dot{x}_1 - \dot{x}_2) + k_2(x_1 - x_2) + k_1x_1 = k_1r$$

$$m_2\ddot{x}_2 + b_2(\dot{x}_2 - \dot{x}_1) + k_2(x_2 - x_1) = 0$$

$$\ddot{x}_1 = -\frac{b_2}{m_1} \dot{x}_1 - \left(\frac{k_2}{m_1} + \frac{k_1}{m_1}\right) x_1 + \frac{b_2}{m_1} \dot{x}_2 + \frac{k_2}{m_1} x_2 + \frac{k_1}{m_1} r$$

$$\dot{x}_1 = 1\dot{x}_1 + 0x_1 + 0\dot{x}_2 + 0x_2 + 0r$$

$$\ddot{x}_2 = \frac{b_2}{m_2} \dot{x}_1 + \frac{k_2}{m_2} x_1 - \frac{b_2}{m_2} \dot{x}_2 - \frac{k_2}{m_2} x_2$$

$$\dot{x}_2 = 0\dot{x}_1 + 0x_1 + 1\dot{x}_2 + 0x_2 + 0r$$

In many cases, you will have lots of Os.

State-Space Form

$$\begin{bmatrix} \ddot{x}_1 \\ \dot{x}_1 \\ \ddot{x}_2 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} -\frac{b_2}{m_1} & -\left(\frac{k_2}{m_1} + \frac{k_1}{m_1}\right) & \frac{b_2}{m_1} & \frac{k_2}{m_1} \\ 1 & 0 & 0 & 0 \\ \frac{b_2}{m_2} & \frac{k_2}{m_2} & -\frac{b_2}{m_2} & -\frac{k_2}{m_2} \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} \dot{x}_1 \\ \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_2 \end{bmatrix} + \begin{bmatrix} \frac{k_1}{m_1} \\ 0 \\ 0 \\ 0 \end{bmatrix} r$$

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u}$$

Control Example

$$\sum \mathbf{F} = u - b\dot{x} - kx = m\ddot{x}$$

$$m\ddot{x} + b\dot{x} + kx = u$$

What I want?

- The mass to be at 1

What I can do?

- Adjust the force, u

What am I going to do?
- Apply force, u,
proportional to the
position error

Set Up a Feedback Loop

$$m = 1 \text{ kg}$$

 $b = 1 \text{ kg/s}$
 $k = 0.2 \text{ N/m}$

Effect of Feedback Control

