CORRIGE juin 2016

I 3)
$$\sin 2\alpha = \frac{g \cdot x_p}{V_0^2} \Rightarrow 2$$
 solutions reliées par $2\alpha_2 = \pi - 2\alpha_1$

ou : $\alpha_2 = \frac{\pi}{2} - \alpha_1$ (angles complémentaires)

A.N.: $\alpha_1 = 18^{\circ}$ et $\alpha_2 = 72^{\circ}$ (0,315 rad et 1,26 rad)

$$t_{p} = \frac{x_{p}}{v_{0} \cos \alpha}$$

pour α_1 : t_p =3,15 s et pour α_2 : t_p =9,69 s Conservation de l'énergie : Comme $y_P = y_0$: $v_P = v_0 = 50$ m/s

II 1)
$$U_{acc} = 1126 \text{ kV}$$

2) référentiel du laboratoire :
$$\Delta t_{impropre} = \frac{L_{repos}}{v} = 1,05 \mu s$$
 référentiel de l'électron: $\Delta t_{propre} = \Delta t_{impropre} \cdot \sqrt{1 - \frac{v^2}{c^2}} = 0,328 \mu s$

3) référentiel de l'électron:
$$L_{\text{mouvement}} = L_{\text{repos}} \cdot \sqrt{1 - \frac{v^2}{c^2}} = 93,7 \text{ m}$$

III 2) vitesse de révolution
$$v = 3 076 \text{ m/s}$$
; altitude $z = 3,58 \cdot 10^7 \text{ m}$;

- 4) Un satellite géostationnaire a une orbite circulaire équatoriale dont le centre est le celui de la Terre.
- IV 3) éq. horaire de la source S : $y_S(t) = 0.003 \cdot \sin(50\pi t + \pi)$ (en m si t en s)
 - 5) éq. horaire de M: $y_M(t;0,12m) = 0,003 \cdot \sin(50\pi t 29\pi)$ (en m si t en s)
 - longueur d'onde λ = 0,008 m;
 SM = 0,12 m = 15 λ = nombre entier de longueurs d'onde;
 => M vibre en phase avec S.
 N se situe donc à une demi-longueur d'onde de M,
 c-à-d: MN = 0,004 m.

V 1) réaction de fusion :
$${}_{1}^{3}H + {}_{1}^{2}H \rightarrow {}_{2}^{4}He + {}_{0}^{1}n$$

X = neutron

3) énergie libérée E = 0,019 343 u c2 = 2,89
$$\cdot 10^{-12}$$
 J = 18,0 MeV