Development of District Energy Supply Business by Introducing Co-generation

(FY2015 JCM Feasibility Study, Ministry of Environment, Japan)

February, 2016

- a. Project Location
- Central Jakarta
- b. Description of the technology

Gas Engine 2,000 kW x 2 unit

Abs. Chiller 1,884 kW x 2 unit

Gas fired chiller 3,869 kW x 1 unit

c. Indonesia Partner

Local Real Estate Developer (A Company)

2

d. Project Detail

d. Project Detail

Electricity Demand

Heat Demand

Building/Facil ity	Floor Area [m²]	Annual Demand [TJ/year]
Office	26,464	33
Sky Bridge	7,110	16
Hotel	11,880	11
Apartment	37,584	37
Total	83,038	98

Input / output condition

	Item	Value
INPUT	Electricity Consumption	6.5 [GWh/year]
	Gas Consumption	$6.9 \times 10^{6} [\text{m}^{3}/\text{year}] (73 [\text{GWh/year}])$
	Water Consumption	1.4×10 ⁵ [m³/year]
ОИТРИТ	Electricity Sale	35 [GWh/year]
	Cold Heat Sale	98 [TJ/year] (27 [GWh])

d. Project Detail

Current Situation of Electricity and Gas Supply in Jakarta

	Office Building A	Office Building B	Hotel	Commercial Building
Frequency of Blackout	Once/Month	3 to 4 times/year	Once/Month	_
	(Max two hours)	(2 hours/time)	(Mainly voltage drop)	(N.A.)
Frequency of Gas Supply Stop	Twice/year	(N.A.)	Once	Once/5 years

Gas Engine Example in Jakarta

- Plaza Indonesia is a large shopping mall in Jakarta (Started since 2009, net floor area: aprox 62,747 m2).
- Electricity from gas engine make up 75% of total demand (as long as we know). No use for wasted heat.
- Co-generation system is still unpopular in Jakarta especially commercial market.
- Spread of energy saving system also contributes to sustainable society in addition to power plant expansion.

d. Project Detail

Perspective of Government and State-owned Companies

ESDM	 ESDM anticipates private sector's investment on electricity business as the electricity generation capacity is not sufficient in Indonesia. Basically one electricity company shall be in one business area for public electricity supply under the current electricity regulation. If current electricity company's supply is not enough, other company is able to obtain business area.
PLN	 PLN supposes the electricity capacity is sufficient in Jakarta. Business area may be given to private company where it is difficult for PLN to supply.
PGN	 PGN is supportive for installing cogeneration system.

• If the business area license were open to private company, more business opportunity born and energy efficient technology could be adopted.

d. Project Detail

Considerable Business Scheme

2. Reference Scenario

Characteristics of the Project

- Produce electricity by gas engine, which is operated by natural gas, to supply electricity to the complex buildings
- Produce cold-heat by absorption chiller, which is operated by waste heat out of the gas engine, to supply air-conditioning service to the complex facility

Reference Scenario

- Electricity from the national power grid
- Cold-heat from electric chiller operated by electricity from the national power grid

3. Monitoring Methods

Double Check / Feasibility Check / Monitor Accuracy Check

Category	Check Item	Technical manager · Staff	Financial manager	Calibration Staff	Reference
Natural Gas	Supply status / Amount	0	-	(International standards)	Gas meter Invoices
	Price / Amount	-	0	-	Invoices
Electricity	Supply status / Amount	0	-	(International standards)	Electricity meter
	Price/ Amount	-	0	-	Invoices
CO2 Emissions		0	0	-	MRV report
Maintenance Cost		Operation cost)	(maintenance cost)	-	Invoices Working records
Feasibility check		-	0	-	Reference electricity price check

4. Quantification of GHG Emissions and their reductions

Condition

- Electricity demand of the complex facility: 35 GWh/year
- Cold-heat demand of the complex facility: 98 TJ/year
- Natural gas consumption for gas engine: 243 TJ/year
- Natural gas consumption for gas-fired absorption chiller: 21 TJ/year
- Electricity received from power grid: 6.5 GWh/year

Reference Emission

33,313 tCO₂/year

CO₂ emission factor of the grid: 0.843 tCO₂/MWh (Latest Emission Factor, JAMALI, Ex-ante)
COP of centrifugal chiller: 5.94 (ID_AM002 "Energy Saving by Introduction of High Efficiency Centrifugal Chiller")

Project Emission

20,321 tCO₂/year

CO₂ emission factor of the grid: 0.843 tCO₂/MWh (Latest Emission Factor, JAMALI, Ex-ante)

 CO_2 emission factor of natural gas: 56.1 t CO_2 /TJ(2006 IPCC Guidelines for National Greenhouse Gas Inventories Volume 2 Energy)

GHG Emission Reductions

- GHG Emission Reductions = Reference Emission Project Emission
- = 33,313 tCO₂/year 20,321 tCO₂/year = 12,992 tCO₂/year

5. MRV Methods

6. Capacity Building Plan / 7. Others

6. Capacity Building Plan

Co-generation system design and Operation knowhow will transferred.

7. Others

Investment

Category	Cost
Equipment [billion Rp]	64
Building [billion Rp]	5
Total [billion Rp]	69

Condition

Corporate Income Tax: 25%

Depreciation Period (20 yrs for building, 16 yrs for facilities)

Exchange Rate: Rp. 13,333/US\$, Rp. 110/JPY

Operation Period: 17 years (2 yrs for construction, 15 yrs for operation)

Pay Back periods

11 years

If are there any opportunity adopting co-generation system in Indonesia, please contact to JGC!