Семинарское занятие №10

Воробьёв Сергей

Декабрь 2019

Задание 1. Листок 10

Найдите математическое ожидание и дисперсию случайной величины ξ , имеющей равномерное распределение на отрезке [a,b]

Решение:

Плотность случайной величины, имеющей равномерное распределение на отрезке [a,b] выглядит следующим образом:

$$\rho_{\xi}(x) = \begin{cases} \frac{1}{b-a} & x \in [a,b] \\ 0 & x \notin [a,b] \end{cases}$$

$$E[\xi] = \int_{R} \frac{x}{b-a} dx = \int_{a}^{b} \frac{x}{b-a} dx = \frac{x^{2}}{2(b-a)} \Big|_{a}^{b} = \frac{a+b}{2}$$

$$E[\xi^{2}] = \int_{R} \frac{x^{2}}{b-a} dx = \int_{a}^{b} \frac{x^{2}}{b-a} dx = \frac{x^{3}}{3(b-a)} \Big|_{a}^{b} = \frac{a^{2}+ab+b^{2}}{3}$$

$$D[\xi] = E[\xi^{2}] - (E[\xi])^{2} = \frac{4a^{2}+4ab+4b^{2}-3a^{2}-6ab-3b^{2}}{12} = \frac{(a-b)^{2}}{12}$$
 Other: $\frac{a+b}{2}$, $\frac{(a-b)^{2}}{12}$

Задание 2. Листок 10

Найдите математическое ожидание и дисперсию случайной величины $\xi,$ имеющей экспоненциальное распределение с параметром λ

Решение:

Плотность случайной величины, имеющей экспоненциальное распределение с параметром λ , выглядит следующим образом:

$$\rho_{\xi}(x) = \begin{cases} \lambda e^{-\lambda x} & x > 0\\ 0 & x \le 0 \end{cases}$$

$$E[\xi] = \int_{R} x \lambda e^{-\lambda x} dx = \lambda \int_{0}^{\infty} x e^{-\lambda x} dx = -\int_{0}^{\infty} x d\left(e^{-\lambda x}\right) = 0$$

$$= -(xe^{-\lambda x}\Big|_0^{\infty} - \int_0^{\infty} e^{-\lambda x} dx) = -\frac{e^{-\lambda x}}{\lambda}\Big|_0^{\infty} = \frac{1}{\lambda}$$

$$E[\xi^2] = \int_R x^2 \lambda e^{-\lambda x} dx = \lambda \int_0^{\infty} x^2 e^{-\lambda x} dx = -\int_0^{\infty} x^2 d\left(e^{-\lambda x}\right) =$$

$$= -(x^2 e^{-\lambda x}\Big|_0^{\infty} - \int_0^{\infty} 2x e^{-\lambda x} dx) = \int_0^{\infty} 2x e^{-\lambda x} dx$$

Заметим, что "похожий"интеграл мы уже считали выше.

$$\int_0^\infty \lambda x e^{-\lambda x} dx = \frac{1}{\lambda} \Rightarrow \int_0^\infty 2x e^{-\lambda x} dx = \frac{2}{\lambda^2}$$

$$D[\xi] = E[\xi^2] - (E[\xi])^2 = \frac{2}{\lambda^2} - \frac{1}{\lambda^2} = \frac{1}{\lambda^2}$$

Otbet: $\frac{1}{\lambda}, \frac{1}{\lambda^2}$

Задание 3. Листок 10

Найдите математическое ожидание и дисперсию случайной величины ξ , имеющей нормальное распределение с параметрами μ, σ^2

Решение:

Пусть η случайная величина такая, что: $\eta = \frac{\xi - \mu}{\sigma}$. Тогда η распределена нормально как N(0,1). Найдём математическое ожидание и дисперсию случайной величины η :

$$E[\eta] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} x e^{-\frac{x^2}{2}} dx = 0$$

Интеграл выше равен нулю, так как мы интегрируем нечётную функцию по симметричной области. Найдём дисперсию:

$$E[\eta^{2}] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} x^{2} e^{-\frac{x^{2}}{2}} dx = \frac{2}{\sqrt{2\pi}} \int_{0}^{+\infty} x^{2} e^{-\frac{x^{2}}{2}} dx =$$

$$= -\frac{2}{\sqrt{2\pi}} \int_{0}^{+\infty} x d\left(e^{-\frac{x^{2}}{2}}\right) = -\frac{2}{\sqrt{2\pi}} (xe^{-\frac{x^{2}}{2}} \Big|_{0}^{\infty} - \int_{0}^{\infty} e^{-\frac{x^{2}}{2}} dx) =$$

$$= \frac{2}{\sqrt{2\pi}} * \frac{\sqrt{2\pi}}{2} = 1$$

$$D[\eta] = 1 - 0 = 1$$

$$E[\xi] = \sigma E[\eta] + E[\mu] = \mu$$

$$D[\xi] = \sigma^{2} D[\eta] + D[\mu] = \sigma^{2}$$

Ответ: μ, σ^2

Задание 4. Листок 10

Пусть случайная величина ξ имеет распределение Пуассона с параметром λ_1 , а η имеет показательное распределение с параметром λ_2 . Также известно, что случайные величины ξ и η независимы. Найдите математическое ожидание случайных величин: $\xi + \eta, \xi \eta$

Решение:

$$E[\xi + \eta] = E[\xi] + E[\eta] = \lambda_1 + \frac{1}{\lambda_2}$$

$$E[\xi\eta] = E[\xi]E[\eta] = \frac{\lambda_1}{\lambda_2}$$

Ответ: $\lambda_1 + \frac{1}{\lambda_2}, \frac{\lambda_1}{\lambda_2}$