Introduction to Machine Learning Covariance Functions for GPs

Learning goals

- Covariance functions encode key assumptions about the GP
- Know common covariance functions like squared exponential and Matérn

COVARIANCE FUNCTION OF A GP

The marginalization property of the Gaussian process implies that for any finite set of input values, the corresponding vector of function values is Gaussian:

$$\textbf{\textit{f}} = \left[f\left(\textbf{\textit{x}}^{(1)}\right),...,f\left(\textbf{\textit{x}}^{(n)}\right) \right] \sim \mathcal{N}\left(\textbf{\textit{m}},\textbf{\textit{K}}\right),$$

- The covariance matrix K is constructed based on the chosen inputs {x⁽¹⁾, ..., x⁽ⁿ⁾}.
- Entry K_{ii} is computed by k (x⁽ⁱ⁾, x^(j)).
- Technically, for every choice of inputs {x⁽¹⁾, ..., x⁽ⁿ⁾}, K needs to be positive semi-definite in order to be a valid covariance matrix.
- A function k(.,.) satisfying this property is called positive definite.

COVARIANCE FUNCTION OF A GP /2

 Recall, the purpose of the covariance function is to control to which degree the following is fulfilled:

If two points $\mathbf{x}^{(i)}$, $\mathbf{x}^{(j)}$ are close in \mathcal{X} -space, their function values $f(\mathbf{x}^{(i)})$, $f(\mathbf{x}^{(j)})$ should be close (**correlated**!) in \mathcal{Y} -space.

• Closeness of two points $\mathbf{x}^{(i)}$, $\mathbf{x}^{(j)}$ in input space \mathcal{X} is measured in terms of $\mathbf{d} = \mathbf{x}^{(i)} - \mathbf{x}^{(j)}$:

$$k(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}) = k(\mathbf{d})$$

COMMONLY USED COVARIANCE FUNCTIONS /2

- Random functions drawn from Gaussian processes with a Squared Exponential Kernel (left), Polynomial Kernel (middle), and a Matérn Kernel (right, ℓ = 1).
- The length-scale hyperparameter determines the "wiggliness" of the function.
- For Matérn, the ν parameter determines how differentiable the process is.

CHARACTERISTIC LENGTH-SCALE / 2

For $p \ge 2$ dimensions, the squared exponential can be parameterized:

$$k(\mathbf{x}, \mathbf{x}') = \exp\left(-\frac{1}{2} (\mathbf{x} - \mathbf{x}')^{\top} \mathbf{M} (\mathbf{x} - \mathbf{x}')\right)$$

Possible choices for the matrix **M** include

$$\mathbf{M}_1 = \ell^{-2}\mathbf{I}$$
 $\mathbf{M}_2 = \operatorname{diag}(\ell)^{-2}$ $\mathbf{M}_3 = \Gamma\Gamma^\top + \operatorname{diag}(\ell)^{-2}$

where ℓ is a p-vector of positive values and Γ is a $p \times k$ matrix.

The 2nd (and most important) case can also be written as

$$k(\mathbf{d}) = \exp\left(-\frac{1}{2}\sum_{i=1}^{p} \frac{d_j^2}{l_j^2}\right)$$

CHARACTERISTIC LENGTH-SCALE / 3

What is the benefit of having an individual hyperparameter ℓ_i for each dimension?

- The ℓ₁,..., ℓ_p hyperparameters play the role of characteristic length-scales.
- Loosely speaking, \(\ell_i \) describes how far you need to move along axis \(i \) in input space for the function values to be uncorrelated.
- Such a covariance function implements automatic relevance determination (ARD), since the inverse of the length-scale \(\ell_i \) determines the relevancy of input feature \(i \) to the regression.
- If \(\ell_i \) is very large, the covariance will become almost independent
 of that input, effectively removing it from inference.
- If the features are on different scales, the data can be automatically rescaled by estimating ℓ₁,...,ℓ_p

CHARACTERISTIC LENGTH-SCALE / 4

For the first plot, we have chosen M = I: the function varies the same in all directions. The second plot is for $M = \operatorname{diag}(\ell)^{-2}$ and $\ell = (1,3)$: The function varies less rapidly as a function of x_2 than x_1 as the length-scale for x_1 is less. In the third plot $M = \Gamma\Gamma^T + \operatorname{diag}(\ell)^{-2}$ for $\Gamma = (1,-1)^T$ and $\ell = (6,6)^T$. Here Γ gives the direction of the most rapid variation. (Image from Rasmussen & Williams, 2006)