(19) World Intellectual Property Organization

International Bureau

(43) International Publication Date 5 August 2004 (05.08.2004)

(10) International Publication Number WO 2004/065472 A1

(51) International Patent Classification7: C08G 63/91, C08L 67/02, 69/00

C08K 5/52,

(74) Agent: BOSHEARS, Betty, J.; P.O. Box 511, Kingsport, TN 37662-5075 (US).

(21) International Application Number:

PCT/US2003/040536

(22) International Filing Date:

17 December 2003 (17.12.2003)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

60/439,681 10/379,649 13 January 2003 (13.01.2003) 5 March 2003 (05.03.2003)

US

- EASTMAN CHEMICAL COMPANY (71) Applicant: [US/US]; 100 North Eastman Road, Kingsport, TN 37660 (US).
- (72) Inventors: PEARSON, Jason, Clay; 116 Pickens Court, Kingsport, TN 37663 (US). MCWILLIAMS, Douglas, Stephens; 291 Grandview Court, Kingsport, TN 37664 (US). IRICK, Gether, Jr.; 113 South Patrick Drive, Gray, TN 37615 (US). WEAVER, Max, Allen; 125 Hill Road, Kingsport, TN 37664 (US).

- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR,
 - KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Designated States (regional): ARIPO patent (BW, GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

- with international search report
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: POLYESTER COMPOSITIONS

(57) Abstract: Disclosed are polymer compositions comprising: (A) at least one polyester prepared by the reaction of at least one diol with at least one dicarboxylic acid or dialkyl ester thereof in the presence of a metallic catalyst; and (B) at least one salt prepared from the reaction of one or more acidic phosphorus-containing compounds and one or more basic organic compounds which contain nitrogen. The polyester compositions exhibit improved color, especially when used as a component of a polyester/polycarbonate blend. Also disclosed are polymer compositions comprising a polycarbonate in combination with components (A) and (B).

-1-

POLYESTER COMPOSITIONS

FIELD OF THE INVENTION

[0001] This invention relates to a polymer composition comprising (A) at least one polyester prepared by the reaction of at least one diol with at least one dicarboxylic acid/or dialkyl ester thereof in the presence of a metallic catalyst; and (B) a salt composed of at least one suitable phosphorus-containing acid and at least one suitable basic organic compound, such as a hindered amine light stabilizer. A second embodiment of the present invention pertains to a blend of (A) at least one polyester prepared by the reaction of at least one diol with at least one dicarboxylic acid/or dialkyl ester thereof in the presence of a metallic catalyst; (B) a salt composed of at least one suitable phosphorus-containing acid and at least one suitable basic organic compound and (C) a polycarbonate.

BACKGROUND OF THE INVENTION

[0002] Methods for deactivating metallic catalyst residues in polyester and polyester-polycarbonate compositions are known in the art; however, it is desirable to find improved methods for deactivating such residues. It is also desirable to find methods for deactivating catalyst residues that provide compositions with greater hydrolytic stability, that are less detrimental to process equipment, provide better color, and less batch-to-batch variation in color.

[0003] It is known in the art that certain phosphorus-containing compounds are useful for deactivating metallic catalysts residues. Reference is made, for example, to U.S. Patents 3,218,372 (Okamura et al.), 4,532,290 (Jaquiss et al.), 4,088,709 (Seymour et al.), 4,401,804 (Wooten et al.), 5,922816 (Hamilton) and European Patents 0543125 (Van Helmond), 0294862 (Verhoeven), 0295730 (Verhoeven). Examples of such phosphorus-containing compounds include phosphoric acid, certain organic phosphorus compounds such as distearylpentaerythritol diphosphite, mono-, di-, and trihydrogen phosphate compounds, or di- and triester phosphate compounds, phosphite compounds, certain inorganic phosphorus compounds such as monosodium phosphate, zinc or calcium phosphates, poly(ethylene)hydrogen

phosphate, phosphites and phosphates used in combination with elementary sulfur, silyl phosphates, phosphorus compounds used in combinations with metal sulphides or metal sulphates. U.S. Patent 4,452,933 (Russell) discloses the use of hydroxy- or amino-substituted carboxylic acids such as methyl salicylate, maleic acid, glycine, or dibutyl tartrate to deactivate metal catalyst residues. U.S. Patent 4,452,932 (Brunelle) discloses the use of dehydroacetic acid and a hydroxy-aromatic compounds such as *o*-hydroxybenzophenone for inactivating metal catalyst residues. It also is known that certain polyols such as mannitol can be used to improve the color of polyester and polycarbonate blends as described in European Patent 0272417 (Nelson).

[0004] U.S. Patent 4,619,956 discloses the combination of 2,2,6,6-tetraalkylpiperidine hindered amine light stabilizers (HALS) and/or their addition salts with triazine ultraviolet absorbers for stabilizing thermoset acrylic and alkyd coatings. U.S. Patent 5,714,530 discloses the utility of combining non-polymeric 2,2,6,6,-tetraalkylpiperidine HALS salts and/or their acid additon salts with triazine ultraviolet light absorbers for stabilizing certain polymer compositions. U.S. Patent 6,051,164 discloses the use of a polymer stabilizing system comprising from about 50 to about 5,000 ppm of at least one ortho hydroxyl tris-aryl triazine light absorber and from about 500 ppm to about 1.25 percent of at least one oligomer, polymeric or high molecular weight HALS having a molecular weight of at least about 500, wherein the weight ratio of HALS to triazine light absorber is from about 3:1 to about 20:1. [0005] Certain of these phosphorus-containing compounds e.g., phosphoric acid, phosphorous acid, and polyphosphoric acid, can react with processing equipment to produce a dark colored polymer and can lead to the formation of black specks or particles. It is believed that the dark color is the due to corrosion of the process equipment. Addition of strong acids to the polymer compositions also reduces the hydrolytic stability as a result of acid catalyzed hydrolysis. Additionally, phosphite antioxidants can be hydrolyzed to acidic species thereby corroding process equipment or reducing the hydrolytic stability of the polymer composition. It is desirable to provide an additive or mixture of additives that can be used to deactivate

metal catalyst residues and other metal impurities and thereby improve the color of polyester-polycarbonate compositions, lead to less corrosion of process equipment, and suppress transesterification.

SUMMARY OF THE INVENTION

[0006] We have discovered that the presence of certain salts in polyesters and blends of polyester and polycarbonates result in polymer compositions that exhibit improved hydrolytic stability, that are less detrimental to process equipment, that provide better color, and that provide less batch-to-batch variation in color. The salts useful in the present invention are reaction products of a suitable inorganic acid, such as a phosphorous acid, with a suitable basic organic compound, such as hindered amine light stabilizers (HALS). The present invention provides improved methods for improving the color and avoiding the deleterious effects of transesterification in polyesters and/or polyester-polycarbonate blends.

[0007] Thus, the present invention provides a polymer composition comprising:

- (A) at least one polyester prepared by the reaction of at least one diol with at least one dicarboxylic acid or dialkyl ester thereof in the presence of a metallic catalyst; and
- (B) at least one salt prepared by the reaction of one or more acidic phosphoruscontaining compounds with one or more basic organic compounds which contain nitrogen.

A second embodiment of the present invention is a polymer composition comprising:

- (A) at least one polyester prepared by the reaction of at least one diol with at least one dicarboxylic acid or dialkyl ester thereof in the presence of a metallic catalyst;
- (B) at least one salt prepared from the reaction of one or more acidic phosphoruscontaining compounds and one or more basic organic compounds which contain nitrogen; and
- (C) at least one polycarbonate.

[0008] Another embodiment of the present invention is a polymer concentrate comprising:

- (A) at least one polyester prepared by the reaction of at least one diol with at least one dicarboxylic acid or dialkyl ester thereof in the presence of a metallic catalyst; and
- (B) up to about 10 weight percent, preferably about 5 to 10 weight percent based on the total weight of the polyester of at least one salt prepared by the reaction of one or more acidic phosphorus-containing compounds and one or more basic organic compounds which contain nitrogen.

DETAILED DESCRIPTION OF THE INVENTION

[0009] The present invention provides a polymer composition comprising:

- (A) at least one polyester prepared by the reaction of at least one diol with at least one dicarboxylic acid or dialkyl ester thereof in the presence of a metallic catalyst; and
- (B) a salt prepared by the reaction of one or more acidic phosphorus-containing compounds with one or more basic organic compounds preferably containing nitrogen, wherein the phosphorus-containing compounds are selected from compounds having the formula:

- 5 -

(2)
$$R_1 - O - P - H \longrightarrow R_1 - O - P$$
 R_2
 R_2
OH
 $R_1 - O - P$
 R_2
 R_2

(3)
$$R_1 - O - P - O \rightarrow H$$

 $O + O + O$
 $O + O$
 R_2

$$(4) \qquad \begin{array}{c} O \\ X \end{array} \qquad \begin{array}{c} O \\ O \end{array} \qquad \begin{array}{c} O \\ O \end{array} \qquad \begin{array}{c} O \\ X \end{array}$$

wherein

 R_1 and R_2 are independently selected from hydrogen, C_1 - C_{22} -alkyl, substituted C_1 - C_{22} -alkyl, C_3 - C_8 -cycloalkyl, substituted C_3 - C_8 -cycloalkyl, heteroaryl, and aryl;

n is 2 to 500; and

X is selected from hydrogen and hydroxy;

and wherein the basic organic compounds are selected from compounds having the formulas:

(1)
$$R_4$$
 R_5

(2)
$$R_7$$
 R_8 R_{11}

(3)
$$R_7$$
 R_{10} R_8 R_9 R_{11}

(7)
$$R_{10} N \longrightarrow Y_2 - L_1 - Y_2 \longrightarrow R_8 R_8$$
 $R_9 R_8$

(8)
$$R_{10}$$
 R_{9} R_{9} R_{9} R_{10} R_{10} R_{10} R_{10} R_{10} R_{10}

(9)
$$R_{10} = N_{10} = N_{10}$$

(10)
$$R_{13} L_2 N L_2 R_{14}$$

(11)
$$R_3 \stackrel{L_2}{\underset{R_4}{\bigvee}} L_2 \stackrel{R_3}{\underset{R_4}{\bigvee}}$$

(15)
$$R_{15} = (CH_2)_{n1} - N \xrightarrow{R_{16}} R_2$$

(18)
$$\begin{array}{c|ccccc}
R_{10} & R_{10} & R_{10} \\
R_{6} & N & R_{8} & R_{6} & N & R_{8} \\
R_{7} & N & R_{9} & R_{7} & R_{9} \\
\hline
R_{9} & N & R_{6} & R_{10}
\end{array}$$

(19)
$$\begin{array}{c|ccccc}
R_{10} & R_{10} & R_{10} \\
R_{6} & N & R_{8} & R_{6} & N & R_{8} \\
R_{7} & N & R_{9} & R_{7} & R_{9} \\
\hline
N & N & N & N
\end{array}$$

(20)
$$R_1 = 0$$
 $R_1 = 0$
 $R_2 = 0$
 $R_3 = 0$
 $R_4 = 0$
 $R_5 = 0$
 $R_7 = 0$

wherein

 R_1 and R_2 are independently selected from hydrogen, C_1 - C_{22} -alkyl, substituted C_1 - C_{22} -alkyl, C_3 - C_8 -cycloalkyl, substituted C_3 - C_8 -cycloalkyl, heteroaryl, and aryl;

 R_3 , R_4 , and R_5 are independently selected from hydrogen, C_1 - C_{22} -alkyl, substituted C_1 - C_{22} -alkyl, C_3 - C_8 -cycloalkyl, and substituted C_3 - C_8 -cycloalkyl wherein at least one of R_3 , R_4 , and R_5 is a substituent other than hydrogen; R_3 and R_4 or R_4 and R_5 collectively may represent a divalent group forming a ring with the nitrogen atom to which they are attached, e.g., morpholino, piperidino and the like;

 R_6 , R_7 , R_8 , and R_9 are independently selected from hydrogen, C_1 - C_{22} -alkyl, substituted C_1 - C_{22} -alkyl, C_3 - C_8 -cycloalkyl, substituted C_3 - C_8 -cycloalkyl, heteroaryl, aryl;

 R_{10} is selected from hydrogen, -OR₆, C₁-C₂₂-alkyl, substituted C₁-C₂₂-alkyl, C_3 -C₈-cycloalkyl, substituted C₃-C₈-cycloalkyl;

 R_{11} is selected from hydrogen; C_1 - C_{22} -alkyl, substituted C_1 - C_{22} -alkyl, C_3 - C_8 -cycloalkyl, substituted C_3 - C_8 -cycloalkyl, heteroaryl, aryl, - Y_1 - R_3 or a succinimido group having the formula

 R_{12} is selected from hydrogen, C_1 - C_{22} -alkyl, substituted C_1 - C_{22} -alkyl, C_3 - C_8 -cycloalkyl, substituted C_3 - C_8 -cycloalkyl, heteroaryl, aryl and may be located at the 2, 3 or 4 positions on the aromatic ring;

the $-N(R_3)(R_4)$ group may be located at the 2, 3 or 4 positions on the pyridine ring of nitrogen compound (5);

the $-CO_2R_3$ and R_1 groups may be located at any of the 2, 3, 4, 5, 6 positions of the pyridine ring of nitrogen compound (6);

 L_1 is a divalent linking group selected from C_2 - C_{22} -alkylene; -(CH_2CH_2 - Y_1)₁₋₃- CH_2CH_2 -; C_3 - C_8 -cycloalkylene; arylene; or -CO- L_2 -OC-;

 L_2 is selected from C_1 - C_{22} -alkylene, arylene, -(CH_2CH_2 - Y_1)₁₋₃- CH_2CH_2 - and C_3 - C_8 -cycloalkylene;

 Y_1 is selected from -OC(O)-, -NHC(O)-, -O-, -S-, -N(R₁)-;

 Y_2 is selected from -O- or -N(R₁)-;

 R_{13} and R_{14} are independently selected from -O-R₂, and -N(R₂)₂;

Z is a positive integer of up to about 20, preferably up to about 6;

m1, is selected from 0 to about 10;

n1 is a positive integer selected from 2 to about 12;

 R_{15} , and R_{16} are independently selected from hydrogen, C_1 - C_{22} -alkyl, substituted C_1 - C_{22} -alkyl, C_3 - C_8 -cycloalkyl, substituted C_3 - C_8 -cycloalkyl, heteroaryl, aryl, and radical A wherein radical A is selected from the following structures:

Radical A structures wherein * designates the position of attachment.

preferably at least one of R_{15} and R_{16} is an A radical; and wherein the ratio of the number of phosphorus atoms in the acidic phosphorus-containing compound to the number of basic nitrogen atoms in the basic organic compound is about 0.05 to about 2, preferably from about 0.25 to about 1.1.

[0010] The term " C_1 - C_{22} -alkyl" denotes a saturated hydrocarbon radical which contains one to twenty-two carbons and which may be straight or branched-chain. Such C_1 - C_{22} alkyl groups can be methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, isopropyl, isobutyl, tertbutyl, neopentyl, 2-ethylheptyl, 2-ethylhexyl, and the like. The term "substituted C_1 - C_{22} -alkyl" refers to C_1 - C_{22} -alkyl radicals as described above which may be substituted with one or more substituents selected from hydroxy, halogen, cyano, aryl, heteroaryl, C_3 - C_8 -cycloalkyl, substituted C_3 - C_8 -cycloalkyl, C_1 - C_6 -alkoxy, C_2 - C_6 alkanoyloxy and the like.

[0011] The term " C_3 - C_8 -cycloalkyl" is used to denote a cycloaliphatic hydrocarbon radical containing three to eight carbon atoms. The term "substituted C_3 - C_8 -

WO 2004/065472 PCT/US2003/040536

- 13 -

cycloalkyl" is used to describe a C_3 - C_8 -cycloalkyl radical as detailed above containing at least one group selected from C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy, hydroxy, halogen, and the like.

[0012] The term "aryl" is used to denote an aromatic radical containing 6,10 or 14 carbon atoms in the conjugated aromatic ring structure and these radicals substituted with one or more groups selected from C₁-C₆-alkyl; C₁-C₆-alkoxy; phenyl, and phenyl substituted with C₁-C₆-alkyl; C₁-C₆-alkoxy; halogen and the like; C₃-C₈-cycloalkyl; halogen; hydroxy, cyano, trifluoromethyl and the like. Typical aryl groups include phenyl, naphthyl, phenylnaphthyl, anthryl (anthracenyl) and the like. The term "heteroaryl" is used to describe conjugated cyclic radicals containing at least one hetero atom selected from sulfur, oxygen, nitrogen or a combination of these in combination with from two to about ten carbon atoms and these heteroaryl radicals substituted with the groups mentioned above as possible substituents on the aryl radical. Typical heteroaryl radicals include: 2-and 3-furyl, 2- and 3-thienyl, 2- and 3-pyrrolyl, 2-, 3-, and 4-pyridyl, benzothiophen-2-yl; benzothiazol-2-yl, benzoxazol-2-yl, benzimidazol-2-yl, 1, 3, 4-oxadiazol-2-yl, 1, 3, 4-thiadiazol-2-yl, 1,2,4-thiadiazol-5-yl, isothiazol-5-yl, imidazol-2-yl, quinolyl and the like.

[0013] The terms " C_1 - C_6 -alkoxy" and " C_2 - C_6 -alkanoyloxy" are used to represent the groups -O- C_1 - C_6 -alkyl and -OCO C_1 - C_6 -alkyl, respectively, wherein " C_1 - C_6 -alkyl" denotes a saturated hydrocarbon that contains 1-6 carbon atoms, which may be straight or branched-chain, and which may be further substituted with one or more groups selected from halogen, methoxy, ethoxy, phenyl, hydroxy, acetyloxy and propionyloxy. The term "halogen" is used to represent fluorine, chlorine, bromine, and iodine; however, chlorine and bromine are preferred.

[0014] The term " C_2 - C_{22} -alkylene" is used to denote a divalent hydrocarbon radical that contains from two to twenty-two carbons and which may be straight or branched chain and which may be substituted with one or more substituents selected from hydroxy, halogen, C_1 - C_6 -alkoxy, C_2 - C_6 -alkanolyloxy and aryl. The term " C_3 - C_8 -cycloalkylene" is used to denote divalent cycloaliphatic radicals containing three to eight carbon atoms and these are optionally substituted with one or more C_1 - C_6 -alkylene"

groups. The term "arylene" is used to denote 1,2-, 1,3-, and 1,4-phenylene radicals and these optionally substituted with C_1 - C_6 - alkyl, C_1 - C_6 -alkoxy and halogen. [0015] The salt of component (B) of the novel compositions provided by the present invention may be prepared by bringing together the acidic phosphorus-containing compound and the basic nitrogen-containing organic compound in a suitable manner. A suitable manner is any procedure that involves contacting the acidic phosphorus-containing acid with the basic organic compound. For example, the acidic phosphorus-containing compound and the basic nitrogen-containing organic compound may be dissolved in an appropriate solvents and the solutions mixed followed by precipitation of the reaction product; mixing the phosphorus-containing acid and the basic organic compound without solvent; and the like. [0016] The ratio of the number of phosphorus atoms in the acidic phosphorus-containing compound to the number of basic nitrogen atoms in the basic organic compound may be in the range of about 0.05 to about 2, preferably from about 0.25

compound may be in the range of about 0.05 to about 2, preferably from about 0.25 to about 1.1. Compositions that contain a large excess of unreacted phosphorus-containing acidic compounds may result in corrosion of process equipment during concentrate manufacture and have a negative effect on the hydrolytic stability of the polymer.

[0017] The salt or salts constituting component (B) of our novel compositions

typically is present in concentrations ranging from about 0.01 to about 0.25 weight percent based on the total weight of the composition, i.e., the total weight of the component (A) polyester, the salt and any additional components present such as a polycarbonate, stabilizers and pigments and colorants. Concentrations of salt (B) within this range typically are effective to improve the color of polyesters and polyester-polycarbonate compositions. Additionally, the color of polyesters that contain UV absorbers and or phenolic antioxidants and polyester-polycarbonate compositions that contain UV absorbers and or phenolic antioxidants is improved. The concentration of the salt(s) preferably is about 0.05 to 0.15 weight percent (same basis). The polyester of component (A) typically contains catalyst metal residues in concentrations of less than about 200 parts per million be weight (ppmw), e.g., about

10 to 200 ppmw. Metal catalyst residues concentrations of about 20 to 100 ppmw are more typical. Corrosion of metal process equipment is an additional source of metal contaminants in polyester component (A). For example, 304 and 316 stainless steels contain manganese, chromium and nickel.

[0018] The acidic phosphorus-containing compounds preferably are phosphorous acid, phosphoric acid and polyphosphoric acid, most preferably phosphorous acid. [0019] Examples of suitable basic organic compounds include alkyl amines such as triethylamine and 2,2,6,6-tetramethylpiperidine, pyridine and substituted pyridines, piperidine and substituted piperidines, morpholine and substituted morpholines and the like. The preferred basic organic compounds are hindered amine light stabilizers (HALS) such as: Cyasorb UV-3346 (Cytec Industries, CAS# 90751-07-8), Cyasorb UV-3529 (Cytec Industries, CAS# 193098-40-7), Cyasorb UV-3641 (Cytec Industries, CAS# 106917-30-0), Cyasorb UV-3581 (Cytec Industries, CAS# 79720-19-7), Cyasorb UV-3853 (Cytec Industries, CAS# 167078-06-0), Cyasorb UV-3853S (Cytec Industries, CAS# 24860-22-8), Tinuvin 622 (Ciba Specialty Chemicals, CAS# 65447-77-0), Tinuvin 770 (Ciba Specialty Chemicals, CAS# 52829-07-9), Tinuvin 144 (Ciba Specialty Chemicals, CAS# 63843-89-0), Tinuvin 123 (Ciba Specialty Chemicals, CAS# 129757-67-1), Chimassorb 944 (Ciba Specialty Chemicals, CAS# 71878-19-8), Chimassorb 119 (Ciba Specialty Chemicals, CAS# 106990-43-6), Chimassorb 2020 (Ciba Specialty Chemicals, CAS# 192268-64-7), Lowilite 76 (Great Lakes Chemical Corp., CAS# 41556-26-7), Lowilite 62 (Great Lakes Chemical Corp., CAS# 65447-77-0), Lowilite 94 (Great Lakes Chemical Corp., CAS# 71878-19-8), Uvasil 299LM (Great Lakes Chemical Corp., CAS# 182635-99-0), and Uvasil 299HM (Great Lakes Chemical Corp., CAS# 182635-99-0), Dastib 1082 (Vocht a.s., CAS# 131290-28-3), Uvinul 4049H (BASF Corp., CAS# 109423-00-9), Uvinul 4050H (BASF Corp., CAS# 124172-53-8), Uvinul 5050H (BASF Corp., CAS# 199237-39-3), Mark LA 57 (Asahi Denka Co., Ltd., CAS# 64022-61-3), Mark LA 52 (Asahi Denka Co., Ltd., CAS# 91788-83-9), Mark LA 62 (Asahi Denka Co., Ltd., CAS# 107119-91-5), Mark LA 67 (Asahi Denka Co., Ltd., CAS# 100631-43-4), Mark LA 63 (Asahi Denka Co., Ltd. Co., Ltd. Co., CAS# 115055-30-6), Mark LA 68 (Asahi Denka Co., Ltd.,

CAS# 100631-44-5), Hostavin N 20 (Clariant Corp., CAS# 95078-42-5), Hostavin N 24 (Clariant Corp., CAS# 85099-51-1, CAS# 85099-50-9), Hostavin N 30 (Clariant Corp., CAS# 78276-66-1), Diacetam-5 (GTPZAB Gigiena Truda, USSR, CAS# 76505-58-3), Uvasorb-HA 88 (3V Sigma, CAS# 136504-96-6), Goodrite UV-3034 (BF Goodrich Chemical Co., CAS# 71029-16-8), Goodrite UV-3150 (BF Goodrich Chemical Co., CAS# 96204-36-3), Goodrite UV-3159 (BF Goodrich Chemical Co., CAS# 130277-45-1), Sanduvor 3050 (Clariant Corp., CAS# 85099-51-0), Sanduvor PR-31 (Clariant Corp., CAS# 147783-69-5), UV Check AM806 (Ferro Corp., CAS# 154636-12-1), Sumisorb TM-061(Sumitomo Chemical Company, CAS# 84214-94-8), Sumisorb LS-060 (Sumitomo Chemical Company, CAS# 99473-08-2), Uvasil 299 LM (Great Lakes Chemical Corp., CAS# 164648-93-5), Uvasil 299 HM (Great Lakes Chemical Corp., CAS# 164648-93-5), Nylostab S-EED (Clariant Corp., CAS# 42774-15-2). Additional preferred hindered amine light stabilizer may be listed in the Plastic Additives Handbook 5th Edition (Hanser Gardner Publications, Inc., Cincinnati, OH, USA, 2001).

[0020] The hindered amine light stabilizers having above formulas (2), (3), (7), (8), (9), (12), (13), (14), (15), (16), (17), (18), (19) and (20) represent the preferred basic compounds. Chimassorb 944 (Ciba Specialty Chemicals, CAS# 71878-19-8), Cyasorb UV-3529 (Cytec Industries, CAS# 193098-40-7), Chimassorb 119 (Ciba Specialty Chemicals, CAS# 106990-43-6) and Tinuvin 770 (Ciba Specialty Chemicals, CAS# 52829-07-9) and any equivalents thereof are specific examples of the preferred basic compounds. A more preferred groups of the basic nitrogen compounds are the hindered amine light stabilizers having above formulas (2), (3), (7), (8), (9), (12), (13), (14), (15), (16), (17), (18) and (19) wherein radical R10 is hydrogen or C1 – C22 alkyl and formula (15) wherein at least one of R15 and R16 represents radical A wherein R10 is hydrogen or C1 – C22 alkyl. The most preferred are high molecular weight HALS wherein the molecular weight is greater than about 1000 such as Cyasorb UV-3529 (Cytec Industries, CAS# 193098-40-7). The most preferred HALS correspond to formula (12) set forth above wherein R6 = R7 = R8 = R9 = R10 = methyl, (R3)(R4)N- collectively represent morpholino, L1 is C1 to C6

alkylene, and Z is 1 to 6. Additionally, the hindered amine light stabilizers having above formulas (12), (13), (14), (15), (16), (17), (18) and (19) wherein radical R10 is hydrogen or C1 - C22 alkyl and formula (15) wherein at least one of R15 and R16 represents radical A wherein R10 is hydrogen or C1 - C22 alkyl are particularly preferred for improved hydrolytic stability of polyester, polycarbonate and polyester-polycarbonate composition.

[0021] The polyester of component (A) includes linear, thermoplastic, crystalline or amorphous polyesters produced by conventional polymerization techniques from one or more diols and one or more dicarboxylic acids or ester-forming equivalent thereof such as a dicarboxylate ester. The polyesters normally are molding or fiber grade and have an inherent viscosity (I.V.) of about 0.4 to about 1.2 dL/g measured at 25°C in a 60/40 ratio by weight of phenol/tetrachloroethane. Typical polyesters of component (A) comprise:

- diacid residues comprising at least 50 mole percent terephthalic acid residues,
 1,4-cyclohexanedicarboxylic acid residues or a mixture thereof; and
- (2) diol residues comprising at least 50 mole percent of ethylene glycol residues, cyclohexanedimethanol residues, or a mixture thereof;

wherein the total of the diacid residues is equal to 100 mole percent and the total of the diol residues also is equal to 100 mole percent. The polyesters of component (A) typically contain up to about 200 ppmw of metal impurity, e.g., 10 to 200 ppmw Ti, Co and/or Mn residues.

[0022] The diol residues of the component (A) polyesters may be derived from one or more of the following diols: 2,6-decahydronaphthalenedimethanol, ethylene glycol, 1,4-cyclohexanedimethanol, 1,2-propanediol, 1,3-propanediol, 1,4-butanediol, 2,2-dimethyl-1,3-propanediol, 1,6-hexanediol, 1,2-cyclohexanediol, 1,4-cyclohexanediol, 1,2-cyclohexanediol, 1,2-cyclohexanediol, 1,2-, 1,3- and 1,4-cyclohexanedimethanol, 2,2,4,4-tetramethyl-1,3-cyclobutanediol, bis[4-(2-hydroxyethoxy)phenyl] sulfone, 1,4:3,6-dianhydro-sorbitol, 4,4'-iso-propylidenedicyclohexanol, Z-8-bis(hydroxymethyl)-tricyclo-[5.2.1.0]-decane wherein Z represents 3, 4, or 5; and diols containing one or more oxygen atoms in the chain, e.g., diethylene glycol, triethylene glycol, dipropylene glycol, tripropylene glycol and

the like. In general, these diols contain 2 to 18, preferably 2 to 8 carbon atoms. Cycloaliphatic diols can be employed in their cis or trans configuration or as mixtures of both forms.

[0023] The diacid residues of the component (A) polyesters may be derived from a variety of aliphatic, alicyclic, and aromatic dicarboxylic acids. Examples of the dicarboxylic acids from which the diacid residues may be obtained include 2,6-decahydronaphthalenedicarboxylic acid, terephthalic acid, isophthalic acid, 1,4-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, succinic acid, glutaric acid, adipic acid, sebacic acid, 1,12-dodecanedioic acid, 2,6-naphthalenedicarboxylic acid and the like. The diacid residues may be obtained from the dicarboxylic acid or ester forming derivatives thereof such as esters of the dicarboxylic acid, e.g., dimethyl dicarboxylate esters, acid halides and, in some cases, anhydrides.

[0024] One or more branching agents also may be useful in making the polyesters formed within the context of the invention. Although not required, it is preferred that the optional branching agent is present in polyester component (A) in an amount of less than 5 mole percent wherein the total mole percent of the dicarboxylic acid component equals 100 mole percent and the total mole percent of the diol component equals 100 mole percent. The branching agent may provide branching in the acid unit portion of the polyester, or in the glycol unit portion, or it can be a hybrid. Some of these branching agents have already been described herein. However, illustrative of such branching agents are polyfunctional acids, polyfunctional glycols and acid/glycol hybrids. Examples include tri- or tetra-carboxylic acids, such as trimesic acid, pyromellitic acid and lower alkyl esters thereof and the like, and tetrols such as pentaerythritol. Also triols such as trimethylopropane or dihydroxy carboxylic acids and hydroxydicarboxylic acids and derivatives, such as dimethyl hydroxy terephthalate, and the like are useful within the context of this invention. Trimellitic anhydride is a preferred branching agent. The branching agents may be used either to branch the polyester itself or to branch the polyester/polycarbonate blend of the invention.

[0025] It is preferred that polyester component (A) comprise about 30 to 100 mole percent 1,4-cyclohexanedimethanol residues wherein the total mole percentages of diol residues of the polyester equals 100 mole percent. In this embodiment, it is also preferred that polyester component (A) comprises 0 to about 70 mole percent ethylene glycol residues. While the diacid residues present in this embodiment may be derived from any diacid, it is preferred that the diacid residues comprise terephthalic acid, isophthalic acid and/or 1,4-cyclohexanedicarboxylic acid residues. When terephthalic acid residues are present, polyester component (A) comprises about 65 to 100 mole percent terephthalic acid residues and about 0 to 35 mole percent isophthalic acid residues.

[0026] Thus, one group of preferred polyesters have an inherent viscosity of about 0.4 to 1.2, preferably 0.4 to 0.8, dL/g measured at 25°C in a 60/40 ratio by weight of phenol/tetrachloroethane and comprise:

- (1) diacid residues comprising about 80 to 100 mole percent terephthalic acid residues and about 0 to 20 mole percent isophthalic acid residues; and
- (2) diol residues comprising about 40 to 100 mole percent, preferably 55 to 80 mole percent, 1,4-cyclohexanedimethanol residues and 0 to about 60 mole percent, preferably about 20 to 45 mole percent, ethylene glycol residues;

wherein the total of the diacid residues is equal to 100 mole percent and the total of the diol residues also is equal to 100 mole percent.

[0027] Another group of preferred polyesters have an inherent viscosity of about 0.4 to 1.2, preferably about 0.4 to 0.8, dL/g measured at 25°C in a 60/40 ratio by weight of phenol/tetrachloroethane and comprise:

- (1) diacid residues comprising about 65 to 82 mole percent, preferably about 70 to 80 mole percent, terephthalic acid residues and about 35 to 18 mole percent, preferably 30 to 20 mole percent, isophthalic acid residues; and
- (2) diol residues comprising about 80 to 100 mole percent, preferably 90 to 100 mole percent, 1,4-cyclohexanedimethanol residues and about 0 to about 20 mole percent, preferably 0 to 10 mole percent, ethylene glycol residues;

wherein the total of the diacid residues is equal to 100 mole percent and the total of the diol residues also is equal to 100 mole percent.

[0028] Yet another group of preferred polyesters have an inherent viscosity of about 0.4 to 1.2, preferably about 0.4 to 0.8, dL/g measured at 25°C in a 60/40 ratio by weight of phenol/tetrachloroethane and comprise:

- (1) diacid residues comprising at least about 80 to 100 mole percent, preferably 90 to 100 mole percent, and more preferably 100 mole percent 1,4-cyclohexanedicarboxylic acid residues; and
- (2) diol residues comprising about 80 to 100 mole percent, preferably 90 to 100 mole percent, most preferably 100 mole percent, 1,4-cyclohexanedimethanol residues and about 0 to about 20 mole percent, preferably 0 to 10 mole percent, most preferably 0 ethylene glycol residues;

wherein the total of the diacid residues is equal to 100 mole percent and the total of the diol residues also is equal to 100 mole percent.

[0029] In yet another preferred embodiment, the polyesters have an inherent viscosity of about 0.4 to 1.2, preferably about 0.4 to 0.8, dL/g measured at 25°C in a 60/40 ratio by weight of phenol/tetrachloroethane and comprise:

- (1) diacid residues comprising about 80 to 100 mole percent, more preferably 90 to 100 mole percent terepthalic acid residues and about 0 to 20 mole percent, more preferably 0 to 10 mole percent isophthalic acid residues; and
- (2) diol residues comprising about 25 to 37 mole percent, preferably 28 to 34 mole percent, 1,4-cyclohexanedimethanol residues and about 75 to about 63 mole percent, preferably about 72 to 66 mole percent, ethylene glycol residues; wherein the total of the diacid residues is equal to 100 mole percent and the total of the diol residues also is equal to 100 mole percent.

[0030] Even further, another group of preferred polyesters have an inherent viscosity of about 0.4 to 1.2, preferably about 0..5 to 1.0 dL/g measured at 25°C in a 60/40 ratio by weight of phenol/tetrachloroethane and comprise:

WO 2004/065472 PCT/US2003/040536

- (1) diacid residues comprising terephthalic acid residues from 0.01 to 100 mole percent, preferably at least 40 mole percent; more preferably, 80 to 100 mole percent, and even more preferably from 90 to 100 mole percent, and
- (2) diol residues comprising about 52 to 75 mole percent, preferably 52 to 65 mole percent of, 1,4-cyclohexanedimethanol residues and about 25 to 48 mole percent, preferably 35 to 48 mole percent of ethylene glycol residues; wherein the total of the diacid residues is equal to 100 mole percent and the total of the diol residues also is equal to 100 mole percent. Branching agents are preferred in this embodiment more preferably in the amount of 0.05 to 1.0 mole percent of a trifunctional monomer.

[0031] The linear polyesters may be prepared according to polyester-forming procedures and conditions well known in the art. For example, a mixture of one or more dicarboxylic acids, preferably aromatic dicarboxylic acids, or ester forming derivatives thereof, and one or more diols may be heated in the presence of an esterification catalyst and/or polyesterification catalysts at temperatures in the range of about 150 to about 300°C and pressures in the range of from of atmospheric to about 0.2 Torr. Normally, the dicarboxylic acid or derivative thereof is esterified or transesterified with the diol(s) at atmospheric pressure and at a temperature at the lower end of the specified range. Polycondensation then is affected by increasing the temperature and lowering the pressure while excess diol is removed from the mixture. A preferred temperature range for a polyester condensation is about 260 to about 300°C.

[0032] Typical catalyst or catalyst systems for polyester condensation are well known in the art. For example, the catalysts disclosed in U.S. Patents 4,025,492; 4,136,089; 4,176,224; 4,238,593; and 4,208,527, incorporated herein by reference, are deemed suitable in this regard. Further, R. E. Wilfong, Journal of Polymer Science, 54 385 (1961) sets forth typical catalysts which are useful in polyester condensation reactions. The most preferred catalysts are complexes of titanium, manganese and cobalt. It is understood that phosphorus-containing compounds can be added in addition to metal catalysts. Polymer compositions that employ antimony

or its metal complexes as a catalyst may become unsuitably darkened by adding a phosphorus-containing molecule, such as phosphorous acid or salts of phosphorous acid, e.g., the salts of component (B) of the present invention, during melt blending and extruding.

[0033] A second embodiment of the present invention is a polymer composition comprising:

- (A) at least one polyester prepared by the reaction of at least one diol with at least one dicarboxylic acid or dialkyl ester thereof in the presence of a metallic catalyst;
- (B) at least one salt prepared from the reaction of one or more acidic phosphoruscontaining compounds and one or more basic organic compounds which contain nitrogen; and
- (C) at least one polycarbonate.

Components (A) and (B) of this embodiment, including the relative amounts thereof, are the same as are described above.

[0034] The term "polycarbonate" as used herein embraces those polycarbonates comprising repeating units or residues of the formula

wherein Y is a divalent aromatic or aliphatic radical derived from a dihydroxyaromatic compound or a dihydroxyaliphatic compound of the formula HO-Y-OH. Typical dihydroxyaromatic compounds are 2,2-bis-(4-hydroxyphenyl)propane, also known as bisphenol A; bis(4-hydroxyphenyl)methane; 2,2-bis(4-hydroxy-3-methylphenyl)propane; 4,4-bis(4-hydroxyphenyl)heptane; 2,2-(3,5,3',5'-tetrachloro-4,4'-dihydroxyphenyl)propane; 2,2-(3,5,3',5'-tetrabromo-4,4'-dihydroxyphenol)propane; 3,3'-dichloro-3,3'-dichloro-4,4'-dihydroxydiphenyl)methane; 2,2'-dihydroxyphenyl-sulfone, and 2,2'-dihydroxyl phenylsulfide. Most preferably, HO-Y-OH is 2,2-bis-(4-hydroxyphenyl)propyl, in which case, the polycarbonate is a "bisphenol A polycarbonate". Examples of dihydroxyaliphatic compounds include 1,4-cyclohexane-

dimethanol, 1,2-propanediol, 1,3-propanediol, 1,4-butanediol, 2,2-dimethyl-1,3-propanediol, 1,6-hexanediol, 2,6-decahydronaphthalenedimethanol, 1,2-cyclohexanediol, 1,4-cyclohexanediol, 1,2-cyclohexanedimethanol, 1,3-cyclohexanedimethanol, isosorbide, 4,4'-isopropylidenedicyclohexanol, 2,2,4,4-tetramethylcyclobutane-1,2-diol, Z,8-bis(hydroxymethyl)-tricyclo-[5.2.1.0]-decane wherein Z represents 3, 4, or 5; and diols containing one or more oxygen atoms in the chain, e.g., diethylene glycol, triethylene glycol, dipropylene glycol, tripropylene glycol and the like. In general, these diols contain 2 to 18, preferably 2 to 8 carbon atoms. Cycloaliphatic diols can be employed in their cis or trans configuration or as mixtures of both forms. Branched polycrbonates are also useful in the present invention.

[0035] The polycarbonates comprising component (C) of the above-described embodiment of the present invention may be prepared according to known procedures by reacting the dihydroxyaromatic compound with a carbonate precursor such as phosgene, a haloformate or a carbonate ester, a molecular weight regulator, an acid acceptor and a catalyst. Methods for preparing polycarbonates are known in the art and are described, for example, in U.S. Patent 4,452,933, which is hereby incorporated by reference herein.

[0036] Examples of suitable carbonate precursors include carbonyl bromide, carbonyl chloride, and mixtures thereof; diphenyl carbonate; a di(halophenyl)-carbonate, e.g., di(trichlorophenyl) carbonate, di(tribromophenyl) carbonate, and the like; di(alkylphenyl)carbonate, e.g., di(tolyl)carbonate; di(naphthyl)carbonate; di(chloronaphthyl)carbonate, or mixtures thereof; and bis-haloformates of dihydric phenols.

[0037] Examples of suitable molecular weight regulators include phenol, cyclohexanol, methanol, alkylated phenols, such as octylphenol, para-tertiary-butylphenol, and the like. The preferred molecular weight regulator is phenol or an alkylated phenol.

[0038] The acid acceptor may be either an organic or an inorganic acid acceptor. A suitable organic acid acceptor is a tertiary amine and includes such materials as pyridine, triethylamine, dimethylaniline, tributylamine, and the like. The inorganic acid

acceptor can be either a hydroxide, a carbonate, a bicarbonate, or a phosphate of an alkali or alkaline earth metal.

[0039] The catalysts that can be used are those that typically aid the polymerization of the monomer with phosgene. Suitable catalysts include tertiary amines such as triethylamine, tripropylamine, N,N-dimethylaniline, quanternary ammonium compounds such as, for example, tetraethylammonium bromide, cetyl triethyl ammonium bromide, tetra-n-heptylammonium iodide, tetra-n-propyl ammonium bromide, tetramethyl ammonium chloride, tetra-methyl ammonium hydroxide, tetra-n-butyl ammonium iodide, benzyltrimethyl ammonium chloride and quaternary phosphonium compounds such as, for example, n-butyltriphenyl phosphonium bromide and methyltriphenyl phosphonium bromide.

[0040] The polycarbonate of component (C) also may be a copolyestercarbonate such as those described in U.S. Patents 3,169,121; 3,207,814; 4,194,038; 4,156,069; 4,430,484, 4,465,820, and 4,981,898, all of which are incorporated by reference herein.

[0041] Copolyestercarbonates useful in this invention are available commercially. They are typically obtained by the reaction of at least one dihydroxyaromatic compound with a mixture of phosgene and at least one dicarboxylic acid chloride, especially isophthaloyl chloride, terephthaloyl chloride, or both.

[0042] The ratio of polyester component (A) to polycarbonate component (C) is not a critical feature of the present invention, and may be determined by the individual practitioner of this invention. Typically, the weight ratio of polyester (A) to polycarbonate (B) will range from about 99:1 to about 1:99, preferably from about 75:25 to about 25:75, and most preferably is about 75:25 to about 50:50.

[0043] The present invention provides polyesters and blends of polyesters and polycarbonates that exhibit improved color. Although not being bound by any particular theory, the improvement in color may be the result of deactivating the metal catalyst residues within the polyester. It is believed that metal catalyst residues, e.g., Ti, Mn and Co residues, may form colored complexes with phenolic moieties such as those found within polycarbonates, within the structure of many ultraviolet light

absorbers and all phenolic antioxidants. The acidic phosphorus-containing compound salts of suitable basic organic compounds [Component (B)] may deactivate metal catalyst residues thereby preventing the formation of colored metal-phenol complexes and inhibiting transesterification between the polyester and polycarbonate.

[0044] Another embodiment of the present invention is a polymer concentrate comprising:

- (A) at least one polyester prepared by the reaction of at least one diol with at least one dicarboxylic acid or dialkyl ester thereof in the presence of a metallic catalyst; and
- (B) up to about 10 weight percent, preferably about 5 to 10 weight percent, based on the total weight of the polyester of at least one salt prepared by the reaction of one or more acidic phosphorus-containing compounds and one or more basic organic compounds which contain nitrogen.

[0045] The compositions of the present invention also may contain one or more compounds selected from the group consisting of (D) phenolic antioxidants, (E) water, (F) colorants and pigments such as organic colorants, inorganic colorants and or white pigments such as TiO₂, ZnO and baryta, (G) other additives such as impact modifiers, plasticizers, halogenated flame-retardants, fillers, nonhalogenated flame-retardants, synergists, processing aids, phosphite stabilizers, phosphonite stabilizers and other stabilizers known to one skilled in the art; and (I) a recycled polymer.

[0046] The terms "phenolic antioxidants" and "hindered phenol" are primary antioxidants that are known to those skilled in the art and may be represented by the structures listed on pages 98-108 in the Plastic Additives Handbook 5th Edition (Hanser Gardner Publications, Inc., Cincinnati, OH, USA, 2001), incorporated herein by reference in its entirety. Some common phenolic antioxidants are as follows: Irganox 1010 (Ciba Specialty Chemicals, CAS# 6683-19-8), Irganox 1330 (Ciba Specialty Chemicals, CAS# 1709-70-2) and Irganox 3114 (Ciba Specialty Chemicals, CAS# 27676-62-6).

[0047] The terms "phosphite stabilizers" and "phosphonite stabilizers" refer to secondary antioxidants that are known to those skilled in the art and may be represented by the structures listed on pages 109-112 in the <u>Plastic Additives</u> <u>Handbook 5th Edition</u> (Hanser Gardner Publications, Inc., Cincinnati, OH, USA, 2001), incorporated herein by reference in its entirety. Some common phosphite stabilizers are as follows: Ultranox 626 (GE Specialty Chemicals, CAS# 26741-53-7), Irgafos 168 (Ciba Specialty Chemicals, CAS# 31570-04-4), Weston 619 (GE Specialty Chemicals, CAS# 3806-34-6) and Doverphos S-9228 (Dover Chemicals, CAS# 154862-43-8).

[0048] The term "halogenated flame-retardants" is defined as compounds that can contain one or more of the following: fluorine, chlorine, bromine, and iodine, which act in such a way as to decrease the flammability of the polymer composition. More preferred are compounds that contain bromine such as brominated polycarbonate, brominated polystyrene, and the like.

[0049] The salts of the phosphorus-containing acids and suitable basic organic compounds are believed to substantially deactivate the metallic catalyst residues present in polyester component (A) so that the residues lose their ability to form colored complexes with UV absorbers. Salts of phosphorus-containing acids and basic organic compounds, as defined herein, may reduce the amount of corrosion to process equipment as compared to some of the hydrolysis products of commercial phosphites, phosphorous acid, phosphoric acid, and polyphosphoric acid, thereby improving the color of the polymer composition and improving the lifetime of the process equipment.

[0050] The compositions provided by the present invention are useful for improving the properties of heavy-gauge sheet, cap layers for extruded sheet, cap layers for extruded films, thermoformable sheeting products, injection molded products, thin films, thick films, articles made using thin films, articles using from thick films, articles made using heavy gauge sheet, multilayer films, twin-wall sheet, triple-wall sheet and the like.

WO 2004/065472 PCT/US2003/040536

- 27 -

[0051] Sulfuric acid and sulfurous acid also will make salts with the nitrogencontaining compounds disclosed herein that are effective at improving the color of polyester and polyester-polycarbonate compositions that contain UV absorbers and/or phenolic antioxidants. Typically, the improvement in color is not as dramatic as that observed for the salts made using phosphorus-containing acids such as phosphoric acid or phosphorous acid according to the present invention. [0052] This invention is further illustrated by the following examples of preferred embodiments thereof, although it will be understood that these examples are included merely for purposes of illustration and are not intended to limit the scope of the invention unless otherwise specifically indicated. Unless otherwise indicated, all weight percentages are based on the total weight of the polymer composition and all molecular weights are weight average molecular weights. Also, all percentages are by weight unless otherwise indicated. Wherever an R group, L group, Y group, Z group, m group or n group is defined throughout this entire description, the definition for a particular group remains the same throughout this description regardless of whether it is used for multiple formulas or types of compounds unless otherwise specified.

EXAMPLES

[0053] Experimental Conditions: All polyester-polycarbonate compositions were made by extruding a 50/50 by weight blend of (1) a polyester comprised of 74 mole percent terephthalic acid residues, 26 mole percent isophthalic acid residues and 100 mole percent 1,4-cyclohexanedimethanol residues having an inherent viscosity of about 0.74 and containing approximately 100 ppmw titanium metal, (2) a bisphenol A polycarbonate supplied by Bayer as Makrolon 2608 polycarbonate and (3) the additive noted using an 18 mm twin-screw extruder (APV Chemical Machinery Inc., Saginaw, MI 48601) equipped with a medium mixing screw. All zone temperatures were set to 275°C except for Zone 1 that was set at 250°C. The inlet port was cooled by circulating water and the screw speed was set to 200 revolution per minute (rpm). An Accu-Rate (ACCU-RATE Inc. Whitewater, WI) dry material feeder was used to

feed the polymers and additives into the extruder at a set addition rate of 3.0. The extruded rods were cooled by passing through a 1.37 meter (4.5 feet) long ice-water bath then chopped using a Berlyn pelletizer (The Berlyn Corp., Worcester, MA) set at a speed of 5-8. All additives were mixed with the polyester and polycarbonate by "bag blending" (shaking the materials together in a bag) unless otherwise stated. The polyester was dried for approximately 24 hours in a vacuum oven (Model 5851, National Appliance Company, Portland, OR) at 70°C at 120 Torr pressure with a slight ingress of dry nitrogen. The polycarbonate was dried for approximately 24 hours in a vacuum oven (Model 5840, National Appliance Company, Portland, OR) at 100°C at 120 Torr with a slight ingress of dry nitrogen. Concentrates were prepared from the blend of polymers and the additives and then dried under the same and the conditions as the polyester was dried. All of the polymers were stored in a vacuum oven under nitrogen until about 5 minutes prior to use, then "bag blended" and added to the feeder. The first 5 minutes of extrudate was not collected in order to ensure the extruder had been adequately purged. When multiple concentrations of the same mixture of additives were extruded, the lower concentrations of additives always were extruded first. The extruder was purged with at least 300 g of a 1:1 mixture of the polyester/polycarbonate blend before the next additive was evaluated. When water was used as an additive, the water was added to the dried polymer pellets, along with any other additive(s), about 3 hours prior to extruding. [0054] The color of the polymer pellets is determined in a conventional manner using a HunterLab UltraScan Colorimeter manufactured by Hunter Associates Laboratory, Inc., Reston, Virginia. The instrument is operated using HunterLab Universal Software (version 3.8). Calibration and operation of the instrument is according to the HunterLab User Manual and is largely directed by the Universal Software. To reproduce the results on any colorimeter, run the instrument according to its instructions and use the following testing parameters: D65 Light Source (daylight, 6500°K color temperature), Reflectance Mode, Large Area View, Specular Included, CIE 10° Observer, Outputs are CIE L*, a*, b*. The pellets are placed in a holder that is 25 mm deep by 55 mm wide and high. The holder is black with a

WO 2004/065472 PCT/US2003/040536

- 29 -

window on one side. During testing, the clear side of the holder is held at the reflectance port of the colorimeter as is normally done when testing in reflectance mode. An increase in the positive b* value indicates yellowness, while a decrease in the numerical value of b* indicates a reduction in yellowness. Color measurement and practice are discussed in greater detail in Anni Berger-Schunn in *Practical Color Measurement*, Wiley, NY pages 39-56 and 91-98 (1994). Preferably, the b* value is less than +4, more preferably from about +1 to about +2.

[0055] The molecular weight of the polyester and polycarbonate fractions, in the polyester-polycarbonate compositions, was determined using gel permeation chromatography. The sample was analyzed separately for each component of the blend. Each sample was prepared and analyzed once using the polyester method and then prepared and analyzed using the polycarbonate method.

Polyester Method: Ten mg of sample was added to a 10 mL volumetric flask followed by 20 microliters of toluene (as a flow marker) then diluted to a volume of 10 mL with an azeotrope of methylene chloride and hexafluoroisopropanol. A stir bar was added and the mixture was stirred on a stir plate until completely dissolved. The sample was analyzed using a Perkin-Elmer series 200 LC binary pump at a flow rate of 1.0 mL/minute., with a Perkin-Elmer ISS 200 Autosampler using a 10 microliter injection loop. The detector was a Perkin-Elmer LC-95 UV/Vis detector set at 285 nm. The columns are Plgel 5 micron guard and a Mixed C from Polymer Laboratories. The polystyrene calibration consists of 15 narrow molecular weight polystyrene standards from Polymer Laboratories ranging from 162 to 3,220,000. The universal calibration parameters were: PS, K = 0.1278, a = 0.7089; PCT K = 0.2357, a = 0.8405. The universal calibration parameters were determined by linear regression to yield the correct weight average molecular weight for a set of five PCT samples previously characterized by light scattering.

<u>Polycarbonate Method:</u> The sample was pressed until it turned white to increase the surface area and then allowed to soak in tetrahydrofuran (THF) solvent to leach out the polycarbonate from the sample. Ten mg of sample was added to a 10 mL volumetric flask followed by 20 microliters of toluene (as a flow marker) then diluted

to a volume of 10 mL with unstabilized THF. A stir bar was added and the mixture was stirred on a stir plate overnight. The sample was analyzed using a Perkin-Elmer LC 250 binary pump at a flow rate of 1.0 mL/min., with a Perkin-Elmer LC 600 Autosampler using a 20 microliter injection loop. The detector was a Perkin-Elmer LC-235 photodiode array detector set at 265 nm. The columns are Plgel 5 micron guard, a Mixed C from Polymer Laboratories and an Oligopore column from Polymer Laboratories. The polystyrene calibration consists of 15 narrow molecular weight polystyrene standards from Polymer Laboratories ranging from 162 to 3,220,000. The universal calibration parameters were: PS, K = 14.000, a = 0.7000; PC K = 39.900, a = 0.7000. The universal calibration parameters for polycarbonate in THF were obtained from the literature.

EXAMPLES 1-12 AND COMPARATIVE EXAMPLES 1 AND 2

[0056] Chimassorb 944 hindered amine light stabilizer and phosphorous acid of Examples 1-12 of Table I were ground together using a mortar and pestle until a fine powder was obtained. Varying amounts of the resulting amine-phoshporous acid salt were blended with the polymers consisting of 350 g polyester and 350 g polycarbonate as described above. Chimassorb 944 is believed to be a polymeric, hindered amine conforming generally to amine formula (12) set forth above wherein $R_6 = R_7 = R_8 = R_9 = \text{methyl}$; R_{10} is hydrogen; L_1 is hexamethylene; R_3 is hydrogen; and R_4 is a branched octyl group. Table I shows the b* value as measured on pellets extruded from the 50/50 by weight blend of polyester and polycarbonate containing various concentrations of Chimassorb 944, phosphorous acid, and water. Salts made from Chimassorb 944 and phosphorous acid may have varying ratios of phosphorous acid to Chimassorb 944 to improve the catalyst deactivation ability and improve the color of polyester-polycarbonate compositions. In Table I the amounts of Chimassorb 944 and phosphorous acid are given in grams and the amount of water is given in milligrams.

WO 2004/065472 PCT/US2003/040536

- 31 -

TABLE I

Example	Chimassorb 944	Phosphorus Acid	Water	b*	Polycarbonate MW
C-1	0.7	-	-	22.37	13,347
1	0.7	0.096	-	10.42	12,236
2	0.7	0.192	-	5.11	19,026
3	0.7	0.288	-	3.69	21,648
4	0.7	0.383	-	3.29	19,747
C-2	3.5	•	-	22.43	16,643
5	3.5	0.479		3.62	15,776
6	3.5	0.958	-	3.39	15,623
7	3.5	1.438		3.0	15,800
8	3.5	1.916	-	2.96	16,611
9	0.7	0.096	21	5.24	21,879
10	3.5	0.192	42	2.31	20,001
11	0.7	0.288	63	2.0	19,466
12	0.7	0.383	84	1.87	19,795

As is shown by the data in Table I, high concentrations of Chimassorb 944 and phosphorous acid salt (Examples 5-8) significantly reduce the b* color but had a negative effect on the polycarbonate molecular weight (MW). Lesser amount of salt (Examples 1-4) allowed for an equivalent reduction in b* color without having a significant impact on the polycarbonate molecular weight. The addition of a small amount of water (Examples 9-12) greatly reduced the b* color with only a slight negative effect on polycarbonate molecular weight relative to the examples with equivalents amount of salt. A salt comprising about 0.02 to 0.3 weight percent phosphorous acid and 0.05 to about 0.5 weight percent Chimassorb 944 provided a suitable reduction in the pellet b* color without significantly reducing the polycarbonate molecular weight. Addition of low levels of water (Examples 9-12), from about 30 ppm to about 300 ppm, provided a further reduction in pellet b* color

without having a significant impact on the polycarbonate molecular weight. Maintenance of the polycarbonate molecular weight (Mw) demonstrates that catalyst residues have been sufficiently deactivated. Comparative Examples C-1 and C-2 show that Chimassorb 944 is not effective for either reducing pellet b* value or deactivating catalyst residues, as can be seen by the loss of polycarbonate molecular weight (Mw) and large pellet b* color values.

EXAMPLES 13-16 AND COMPARATIVE EXAMPLE 3

[0057] Chimassorb 944 hindered amine (7.0 g) and phosphorous acid (2.88 g) were ground together to give a fine powder and bag blended with 700 g of polyester and 700 g of polycarbonate. The mixture was melt processed to give a salt concentrate (Conc). Varying amounts of the salt concentrate were incorporated into a 50/50 weight percent blend of polyester and polycarbonate. The blends evaluated and the results of the evaluations are shown in Table II . In Comparative Example C-3 and Example 13 the polymer blend consisted of 300 g of polyester and 300 g of polycarbonate; in Examples 14 and 15, the polymer blend consisted of 250 g of polyester and 250 g of polycarbonate; and in Example 16 the polymer blend consisted of 250 g of polyester and 250 g of polycarbonate. In Table II, the amounts of concentrate (Conc) are given in grams and Salt values refer to the weight percent concentration of the salt in the polymer blend (based on the total weight of the polymer composition) provided by the concentrate.

TABLE II

Example	Conc	Salt Weight percent	b*	Polycarbonate MW
C-3	-	-	21.26	14,200
13	200	0.18	2.99	19,050
14	100	0.12	2.41	20,860
15	50	0.064	2.94	21,660
16	50	0.44	5.15	21,943

The data presented in Table II establish that the salt has a dramatic effect on pellet b* color along with polycarbonate MW (Comparative Example 3 vs Example 16). The data demonstrate that between 0.06 and 0.18 weight percent salt can be used to effectively reduce pellet b* color. The data also show that between 0.06 and 0.18 weight percent salt provides a good pellet b* value without significantly reducing the molecular weight of the polycarbonate.

EXAMPLES 17-25 AND COMPARATIVE EXAMPLE 4

[0058] Varying amounts of Tinuvin 770 hindered amine light stabilizer and phosphorous acid were ground together using a mortar and pestle to produce a phosphorous acid salt of Tinuvin 770 hindered amine as a fine white powder that was bag blended with polyester and polycarbonate. Tinuvin 770 is a hindered amine light stabilizer believed to conform generally to the compounds of amine formula (7) set forth above wherein $R_6 = R_7 = R_8 = R_9 = \text{methyl}$; R_{10} is hydrogen; Y_2 is -OCO-; and L_1 is octamethylene. The compositions were extruded and evaluated as described above. The results are shown in Table III. The polymer blend for the examples of Table III consisted of 175 g polyester and 175 g of polycarbonate. The values given for Tinuvin 770 and phosphorous acid (Phos Acid) are concentrations in mg and (weight percent) in the polymer blend.

BNSDOCID: <WO____2004065472A1_I_>

FABLE III

WO 2004/065472 PCT/US2003/040536

- 35 -

[0059] The data reported in Table III show that the phosphorous acid salts of Tinuvin 770 hindered amine were effective at suppressing transesterification and improving the pellet b* color. The weight percent phosphorous acid added was established by altering the mole ratio of phosphorous acid to the number of nitrogen atoms in Tinuvin 770. Data in Table III show a good balance of color of the composition and maintenance of polycarbonate molecular weight (Mw) can be obtained by using a 1:1 mole ratio of Tinuvin 770 and phosphorous acid using 0.1 weight percent salt. At a concentration of 0.05 weight percent loading, the mole ratio of phosphorous acid to Tinuvin 770 can be increased to 2.0. It is apparent from these data that the Tinuvin 770 salt is quite effective at improving the color of polyesters-polycarbonate blends. The Tinuvin 770 salt also is effective at reducing the amount of transesterification that occurs between the polyester and polycarbonate during melt processing.

EXAMPLES 26-45 AND COMPARATIVE EXAMPLES 5-8

[0060] The procedure of Examples 17-25 was repeated using varying amounts of Lowilite 62, Lowilite 76 and Chimassorb 119 hindered amine light stabilizer and phosphorous acid to produce a variety of phosphorous acid salts of the hindered amines. Lowilite 62 is a hindered amine light stabilizer believed to conform generally to the compounds of amine formula (20) set forth above wherein R_1 is hydrogen; R_2 = R_6 = R_7 = R_8 = R_9 = methyl; L_2 is ethylene; and Y_1 is –OCO-. Lowilite 76 is a hindered amine light stabilizer believed to conform generally to the compounds of amine formula (7) set forth above wherein R_6 = R_7 = R_8 = R_9 = R_{10} = methyl; Y_2 is –O-; and L_1 is –CO-(CH₂)₈-CO-. Chimassorb 119 is a hindered amine light stabilizer believed to conform generally to the compounds of amine formula (15) set forth above wherein R_1 = R_2 = hydrogen; R_{15} and R_{16} each is the first radical A structure set forth above wherein R_6 = R_7 = R_8 = R_9 = R_{10} = methyl; Y_2 is –N(C₄H₉-n)-; n1 is 3; and m1 is 3. The compositions were extruded and evaluated as described above. The results are shown in Table IV. The polymer blend for the examples of Table IV consisted of 175 g polyester and 175 g of polycarbonate. The values given for

- 36 -

Lowilite 62, Lowilite 76, Chimassorb 119 (Chimab 119) and phosphorous acid (Phos Acid) are concentrations in mg in the polymer blend.

- 37 -

1					T				\top	\neg		7		$\overline{}$							
Fraction	Mz	29.492	30 724	38 663	20.00	30,274	36,178	31,740	38 592	700'00	38,363	35,437	37 310	38 777	211,00	36,799	33.822	33 648	00,040	48,874	32,028
carbonate	Mw	17,005	18.015	22.634	22 800	67.003	21,541	18,645	22.607	22,602	22,003	22,912	19 111	22 895	11,000	71,700	20,145	19 541	10,01	400,71	18,841
Poly	Mn	5,768	6.195	7.167	7 462	30T, 1	7,409	6,502	7,234	7 399	000,	7071	6.694	7 454	7 22.4	4,55,7	7,072	6.522	6 407	0,121	6,551
	*_	60.74	61.54	69.23	70 27	1 0	60 60	60.34	69.88	70 71	7.5	70.37	70.25	69.63	60 77	77.60	70.41	69.88	60.67	00:00	62.91
	* q	19.75	20.54	8.87	5.84		0.32	21.44	7.15	7.	;	4.93	5.24	7.89	6.07	5	5.84	5.57	5 60		19.94
	"	6.26	6.48	90.0	-0.05	000	0.32	8.31	0.3	-0.06		-0.02	0.12	-0.01	0 12	1	0.13	0.24	0.32		4.23
	Phos Acid			51	102	153	3	•	42.5	56.5		7	140	28.3	56.5		82	113	142		•
	Chimab 119	1		5				•	,			1	•				•		1	010	ဂင္ဂ
	Lowilite 76	•	ı	,		,	0.00	350	175	175	175	6/1	175	350	350	010	320	350	350		•
	Lowilite 62	•	350	350	350	350			•	•			•		,			•		† -	
	схащые	C-5	9-O	56	27	28	7	5	29	30	34	5	32	33	34	35	3	9e	37	8-0	
		ble Lowilite Lowilite Chimab Phos a* b* L* N 62 76 119 Acid	Lowilite Chimab Phos a* b* L* Mn Mw 62 76 119 Acid Acid 6.26 19.75 60.74 5,768 17.005	Lowilite Chimab Phos a* b* L* Mn Mw 62 76 119 Acid a* b* L* Mn Mw - - - 6.26 19.75 60.74 5,768 17,005 350 - - 6.48 20.54 61.54 6.195 18.015	Lowilite Chimab Phos a* b* L* Mn Mw 62 76 119 Acid a* b* L* Mn Mw - - - 6.26 19.75 60.74 5,768 17,005 350 - - 6.48 20.54 61.54 6,195 18,015 350 - - 51 0.06 8.87 69.23 7,167 22.634	Lowilite Chimab Phos a* b* L* Mn Mw 62 76 119 Acid a* b* L* Mn Mw - - - - 6.26 19.75 60.74 5,768 17,005 350 - - 6.48 20.54 61.54 6,195 18,015 350 - 51 0.06 8.87 69.23 7,167 22,634 350 - - 102 -0.05 5.84 70.27 7.462 22,634	Lowilite Chimab Phos a* b* L* Mn Mw 62 76 119 Acid a* b* L* Mn Mw - - - - 6.26 19.75 60.74 5,768 17,005 350 - - 6.48 20.54 61.54 6,195 18,015 350 - - 51 0.06 8.87 69.23 7,167 22,634 350 - - 102 -0.05 5.84 70.27 7,462 22.609 350 - - - - 6.35 7,167 22.609	Lowilite Chimab Phos a* b* L* Mn Mw - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -	Lowilite Chimab Phos a* b* L* Mn Mw - - - - - - - - Mn Mw 350 - - - 6.48 20.54 61.54 6,195 18,015 350 - - 51 0.06 8.87 69.23 7,167 22,634 350 - - 102 -0.05 5.84 70.27 7,462 22.609 350 - - 153 0.32 6.32 69 7,409 21,541 - 350 - - 8.31 21.44 60.34 6,502 18,645	Lowilite Chimab Phos a* b* L* Mn Mw 62 76 119 Acid a* b* L* Mn Mw - - - - - 6.26 19.75 60.74 5.768 17,005 350 - - - 6.48 20.54 61.54 6,195 18,015 350 - - 102 -0.05 5.84 70.27 7,462 22.609 350 - 153 0.32 6.32 69 7,409 21,541 - 350 - 8.31 21.44 60.34 6,502 18,645 - 175 - 42.5 0.3 7.15 69.88 7,234 22.607	Lowilite Chimab Phos a* b* L* Mn Mw 62 76 119 Acid a* b* L* Mn Mw - - - - 6.26 19.75 60.74 5,768 17,005 350 - - 6.48 20.54 61.54 6,195 18,015 350 - - 51 0.06 8.87 69.23 7,167 22,634 350 - - 102 -0.05 5.84 70.27 7,462 22.609 350 - - 153 0.32 6.32 69 7,409 21,541 - - 42.5 0.3 7.15 69.88 7,234 22,607 - - 42.5 - 6.0 5.1 70.71 7.389 7.534	Lowilite Chimab Phos a* b* L* Mn Mw - 76 119 Acid a* b* L* Mn Mw - - - 6.26 19.75 60.74 5,768 17,005 350 - - 6.48 20.54 61.54 6,195 18,015 350 - - 102 -0.05 5.84 70.27 7,462 22.634 350 - 153 0.32 6.32 69 7,409 21,541 - 175 - 42.5 0.3 7.15 69.88 7,234 22,607 - 175 - 42.5 0.3 7.15 69.88 7,234 22,607 - 175 - 66.5 5.1 70.71 7,388 22,603	Lowilite Chimab Phos a* b* L* Mn Mw 62 76 119 Acid * b* L* Mn Mw 350 - - 6.48 20.54 61.54 6,195 18,015 350 - - 6.48 20.54 61.54 6,195 18,015 350 - - 102 -0.05 5.84 70.27 7,462 22.634 350 - - 153 0.32 6.32 69 7,409 21,541 - 175 - - 8.31 21.44 60.34 6,502 18,645 - 175 - 42.5 0.3 7.15 69.88 7,234 22,607 - 175 - 42.5 0.06 5.1 70.71 7,388 22,603 - 175 - 71 - 71 20.37 70.71 22,912 <td>Lowilite Chimab Lowilite Phos Acid a* b* L* Mn Mm Mw - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -</td> <td>Lowilite Chimab Phos a* b* L* Mn Mw 62 76 119 Acid b* L* Mn Mw - - - 6.26 19.75 60.74 5,768 17,005 350 - - 6.48 20.54 61.54 6,195 18,015 350 - - 102 -0.05 5.84 70.27 7,462 22,634 350 - - 153 0.32 6.32 69 7,409 21,541 - 350 - - 42.5 0.3 7.15 69.88 7,234 22,609 - 175 - 42.5 0.3 7.15 69.88 7,234 22,607 2 - 175 - 42.5 0.3 7.15 69.88 7,234 22,603 2 - 175 - 71 - 140 0.12 5.24<</td> <td>Lowilite Chimab Phos a* b* L* Mn Mw 62 76 119 Acid a* b* L* Mn Mw - 76 119 Acid b* L* Mn Mw - - - 6.26 19.75 60.74 5,768 17,005 350 - - 51 0.06 8.87 69.23 7,167 22,634 350 - - 153 0.32 6.32 69 7,409 21,541 - 175 - 153 0.32 6.32 69 7,409 21,541 - 175 - 175 - 42.5 0.3 7,15 69.88 7,234 22,603 - 175 - 42.5 0.3 7,15 69.88 7,234 22,603 - 175 - 140 0.12 5.24 70.37 70.1</td> <td>Lowilite Chimab Phos Acid a* b* L* Mn Mw 62 76 119 Acid a* b* L* Mn Mw 350 - - 6.26 19.75 60.74 5,768 17,005 350 - - 6.48 20.54 61.54 6,195 18,015 350 - - 102 -0.05 5.84 70.27 7,462 22.609 - 175 - 153 0.32 6.32 69 7,409 21,541 - 175 - 42.5 0.3 7.15 69.88 7,234 22,603 - 175 - 42.5 0.3 7.15 69.88 7,234 22,603 - 175 - 42.5 0.0 5.1 7.34 19,111 3 - 175 - 140 0.12 5.24 70.25 6,694 19,111</td> <td>Lowilite Chimab Phos a* b* L* Mn Mw 62 76 119 Acid 6.26 19.75 60.74 5,768 17,005 350 6.48 20.54 61.54 6,195 18,015 350 - 6.48 20.54 61.54 6,195 18,015 350 - 102 -0.05 5.84 70.27 7,462 22.609 350 - 153 0.32 6.32 69 7,409 21,541 - 175 - 42.5 0.3 7.15 69.88 7,234 22,607 - 175 - 56.5 -0.06 5.1 70.71 7,388 22,603 - 175 - 140 0.12 5.24 70.25 6,694 19,111 - 350 - 28.3 -0.01 7.89 69.63 7,454 22,895 - 350 - 88.3 -0.01 7.89 69.63 7,454 22,895 - 350 - 88.3 -0.01 7.89 69.63 7,454 22,895 - 350 - 88.3 -0.01 2.84 70.25 6,694 21,700 3</td> <td>Lowilite Chimab Phos a* b* L* Mn Mw Asid Acid Acid Acid Acid Belon Belon</td> <td>Lowilite Chimab Phos a* b* L* Mn Mw Ms</td> <td>Lowlite Chimab Phos a* b* L* Mn Mw 62 76 119 Acid a* b* L* Mn Mw - 19 Acid b.26 19.75 60.74 5,768 17,005 350 - - 6.48 20.54 61.54 6,195 18,015 350 - - 102 -0.05 5.84 70.27 7,462 22.609 - 175 - 163 6,32 6,92 7,402 22.609 - 175 - 163 0.32 6.32 69 7,402 22.609 - 175 - 175 - 174 60.34 6,502 18,441 6.504 19,111 3 - 175 - 175 - 140 0.12 5.24 70.37 7,344 17,100 3 - 175 - 140 0.</td>	Lowilite Chimab Lowilite Phos Acid a* b* L* Mn Mm Mw - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -	Lowilite Chimab Phos a* b* L* Mn Mw 62 76 119 Acid b* L* Mn Mw - - - 6.26 19.75 60.74 5,768 17,005 350 - - 6.48 20.54 61.54 6,195 18,015 350 - - 102 -0.05 5.84 70.27 7,462 22,634 350 - - 153 0.32 6.32 69 7,409 21,541 - 350 - - 42.5 0.3 7.15 69.88 7,234 22,609 - 175 - 42.5 0.3 7.15 69.88 7,234 22,607 2 - 175 - 42.5 0.3 7.15 69.88 7,234 22,603 2 - 175 - 71 - 140 0.12 5.24<	Lowilite Chimab Phos a* b* L* Mn Mw 62 76 119 Acid a* b* L* Mn Mw - 76 119 Acid b* L* Mn Mw - - - 6.26 19.75 60.74 5,768 17,005 350 - - 51 0.06 8.87 69.23 7,167 22,634 350 - - 153 0.32 6.32 69 7,409 21,541 - 175 - 153 0.32 6.32 69 7,409 21,541 - 175 - 175 - 42.5 0.3 7,15 69.88 7,234 22,603 - 175 - 42.5 0.3 7,15 69.88 7,234 22,603 - 175 - 140 0.12 5.24 70.37 70.1	Lowilite Chimab Phos Acid a* b* L* Mn Mw 62 76 119 Acid a* b* L* Mn Mw 350 - - 6.26 19.75 60.74 5,768 17,005 350 - - 6.48 20.54 61.54 6,195 18,015 350 - - 102 -0.05 5.84 70.27 7,462 22.609 - 175 - 153 0.32 6.32 69 7,409 21,541 - 175 - 42.5 0.3 7.15 69.88 7,234 22,603 - 175 - 42.5 0.3 7.15 69.88 7,234 22,603 - 175 - 42.5 0.0 5.1 7.34 19,111 3 - 175 - 140 0.12 5.24 70.25 6,694 19,111	Lowilite Chimab Phos a* b* L* Mn Mw 62 76 119 Acid 6.26 19.75 60.74 5,768 17,005 350 6.48 20.54 61.54 6,195 18,015 350 - 6.48 20.54 61.54 6,195 18,015 350 - 102 -0.05 5.84 70.27 7,462 22.609 350 - 153 0.32 6.32 69 7,409 21,541 - 175 - 42.5 0.3 7.15 69.88 7,234 22,607 - 175 - 56.5 -0.06 5.1 70.71 7,388 22,603 - 175 - 140 0.12 5.24 70.25 6,694 19,111 - 350 - 28.3 -0.01 7.89 69.63 7,454 22,895 - 350 - 88.3 -0.01 7.89 69.63 7,454 22,895 - 350 - 88.3 -0.01 7.89 69.63 7,454 22,895 - 350 - 88.3 -0.01 2.84 70.25 6,694 21,700 3	Lowilite Chimab Phos a* b* L* Mn Mw Asid Acid Acid Acid Acid Belon	Lowilite Chimab Phos a* b* L* Mn Mw Ms	Lowlite Chimab Phos a* b* L* Mn Mw 62 76 119 Acid a* b* L* Mn Mw - 19 Acid b.26 19.75 60.74 5,768 17,005 350 - - 6.48 20.54 61.54 6,195 18,015 350 - - 102 -0.05 5.84 70.27 7,462 22.609 - 175 - 163 6,32 6,92 7,402 22.609 - 175 - 163 0.32 6.32 69 7,402 22.609 - 175 - 175 - 174 60.34 6,502 18,441 6.504 19,111 3 - 175 - 175 - 140 0.12 5.24 70.37 7,344 17,100 3 - 175 - 140 0.

FABLE IV (cont)

Fraction	Mz	36,005	35,575	34,638	34,201	33,502	33,507	32,554	29,933
Polycarbonate Fraction	MW	21,368	21,113	20,707	20,279	19,861	19,824	19,249	17,534
Polyc	Min	7,325	7,337	7,148	7,065	6,867	7,009	6,799	6,136
	*	69.1	68,97	69.76	70.42	70.21	70.11	70.29	71.07
	*q	11.62	12.38	9.83	8.48	8.19	7.74	6.99	6.62
	"	-0.77	-0.82	-1.09	-1.01	-0.87	-0.74	-0.73	-0.79
	Phos Acid	37.5	20	63	75.5	88	101	113	140
	Chimab 119	350	350	350	350	350	350	350	350
	Lowilite 76	ı	1	1	•	ı	•	1	ı
	Lowilite 62	•	1	1	•	1	ı	1	
	Example	38	39	. 40	41	42	43	44	45

[0061] The data presented in Table IV show that the phosphorous acid salts of hindered amine light stabilizers are effective at improving the pellet b* color of polyester-polycarbonate blends relative to blends that do not contain the stabilizer. In Examples 26-45, several phosphorous acid salt compositions were evaluated at concentrations of 0.05 weight percent and/or 0.1 weight percent. It is clear that the pellet b* color is greatly affected by the salt composition that is selected and may be optimized for each hindered amine light stabilizer or other basic organic compound employed. In comparing the data of Table III with the data of Table IV, it is clear that the phosphorous acid salts of Tinuvin 770 are more effective at improving the pellet b* color. The phosphorous acid salts of Tinuvin 770, Lowilite 62, Lowilite 76 and Chimassorb 119 did not create haze in any of the polyester-polycarbonate alloys that were evaluated.

[0062] Generally, the amount of salt required to achieve acceptable color and molecular weight properties decreases as the ratio of the moles of phosphorous acid to the moles of basic nitrogen atoms in the hindered amine lights stabilizer approaches one. If more than one mole of phosphorous acid per mole of basic nitrogen atoms in the basic organic compound is used, some unsalted phosphorous acid will be present and may lead to corrosion of process equipment.

EXAMPLE 46 AND COMPARATIVE EXAMPLE C-9 — Preparation of Salt 1 [0063] To a clean, dry, 5-L, round-bottomed flask equipped with a mechanical stir bar, thermocouple, and a heating mantle was added 411.76 g of Cyasorb UV-3529 and 945 g of toluene. Cyasorb UV-3529 is a polymeric hindered amine light stabilizer believed to conform generally to the compounds of amine formula (12) set forth above $R_6 = R_7 = R_8 = R_9 = R_{10} = \text{methyl}$; L_1 is hexamethylene; and $(R_3)(R_4)N$ -collectively represent a morpholino group. The slurry was heated to 60°C and stirred until a homogeneous solution was obtained. Isopropyl alcohol (370 g) was added to the reaction vessel. A solution of 115.46 g (1.41 mol) of phosphorous acid dissolved into 370 g of isopropyl alcohol was added slowly over approximately 1 hour. A homogeneous solution was obtained. The reaction mixture was pumped into an 18 L

reaction vessel that contained rapidly stirred heptane (6840 g) over a period of approximately 1 hour. The resulting slurry was stirred for 30 minutes. The precipitate was collected by suction filtration. The filter cake was washed twice with 137 g of heptane then sucked dry on the filter paper overnight. The solid was placed in a 30.5 cm x 15.2 x 5.1 (12 inch x 6 inch x 2 inch) metal pan and dried in a vacuum oven at $50\text{-}60^{\circ}\text{C}$ with a slight ingress of dry nitrogen until a constant mass was obtained. The dry product (Salt 1) weighed approximately 525 g (100percent of theory).

[0064] The salt of Cyasorb UV-3529 (0.5013, 0.1 weight percent) and phosphorous acid thus prepared was incorporated into a polymer blend consisting of 249.5 g of each of polyester and polycarbonate. The polymer was converted to pellets as described above and and the pellets were compared to pellets prepared from a polymer blend consisting of 250 g of each of polyester and polycarbonate but no salt, Cyasorb UV-3529 or phosphorous acid. The results of the evaluation are shown in Table V.

TABLE V

Example	L*	a*	b*
C-9	56.38	8.17	18.76
46	69.65	-0.35	3.12

[0065] Cyasorb UV-3529 is a polymeric hindered amine light stabilizer that may exhibit superior performance than lower molecular weight hindered amine light stabilizers, such as Tinuvin 770. The phosphorous acid salts of Cyasorb UV-3529 also exhibit very low haze in polyester-polycarbonate alloys. At 0.1 wtpercent loading in a 50/50 weight percent blend of polyester and polycarbonate, the salt of Cyasorb UV-3529 provided a polymer alloy that had a pellet color that was as good as the phosphorous acid salts of Tinuvin 770 (Example 46 vs. Examples 17-25).

- 41 -

EXAMPLES 47-51 - Preparation of Salts 2-6

[0066] A 50percent phosphoric acid solution was prepared by adding 35.15 g of 85percent phosphoric acid to 24.87 g of deionized water. A sample of Chimassorb 944 was ground to a fine powder using a mortar and pestle. The ground Chimassorb 944 and 50percent phosphoric acid solution were mixed using a spatula in the ratios listed in Table VI to prepare each salt. The salts were dried overnight in a vacuum oven at 70°C at about 15 Torr and a slight ingress of dry nitrogen for 24 hours. Each sample was ground using a mortar and pestle and dried under the same conditions as before for 48 hours. Each sample was ground to a fine, free flowing powder using a mortar and pestle.

TABLE VI

	Chimassorb 944	50percent phosphoric
		acid _(aq)
Salt 2	10 g	6.54 g
Salt 3	10 g	8.18 g
Salt 4	10 g	9.82 g
Salt 5	10 g	11.45 g
Salt 6	10 g	13.05 g

[0067] Each salt (0.5 g, 0.1 wtpercent) was bag blended with 250 g of polyester and 250 g of polycarbonate. The mixture was extruded under standard conditions and the pellet color and polycarbonate molecular weight (Mw) were measured using standard conditions as described above. The results of the evaluation are shown in Table VII.

- 42 -

Table VII

					Polycarbonate		
Example	Salt	a*	b*	L*	Mn	Mw	Mz
47	2	-0.37	4.31	72.12	7,630	22,097	37,601
48	3	-0.31	4.29	72.25	7,234	21,573	36,379
49	4	-0.08	5.69	71.99	7,436	22,017	37,234
50	5	-0.37	4.9	72.25	7,444	22,612	38,410
51	6	-0.34	3.97	72.57	7,363	22,646	38,493

The data presented in Table VII show that the phosphoric acid salts of Chimassorb 944 are effective at improving the color and suppressing transesterification of a polyester-polycarbonate blend.

EXAMPLES 52 AND 53 - Preparation of Salt 7

[0068] To a 50 mL beaker was added 5.18 g of phosphorous acid and 5.0 g of pyridine. A solid material formed. The solid material (Salt 7) was triturated with a glass rod until a finely divided solid remained. In Example 52, Salt 7 (350 mg, 0.05 weight percent) was bag blended with 350 g of polyester and 350 g of polycarbonate. The mixture was extruded using the procedures described above and the pellet color and polycarbonate molecular weight (Mw) were measured using the above-desribed procedures. In Example 53, Salt 7 (700 mg, 0.1 weight percent) was bag blended with 350 g of polyester and 350 g of polycarbonate. The mixture was extruded and pelletized and the pellet color and polycarbonate molecular weight (Mw) were measured using the above-described procedures. The results of the evaluation are shown in Table VIII.

TABLE VIII

				Polycarbonate			
Example	a*	b*	L*	Mn	Mw	Mz	
52	-0.38	6.82	68.91	7,800	23,067	38,175	
53	-0.15	4.31	69.94	7,408	21,118	34,892	

- 43 -

The data reported in Table VIII demonstrates that the phosphorous acid salts of aromatic nitrogen-containing compounds are effective at improving the color and suppression of transesterification in polyester-polycarbonate blends (Comparative Example C-9 vs. Examples 52 and 53).

EXAMPLES 54 AND 57 - Preparation of Salt 8 and 9

[0069] To a 50 mL beaker was added 4.05 g of phosphorous acid and 5.0 g of triethylamine. A waxy material formed. The material was triturated with a glass rod until no triethylamine was visible to produce Salt 8. To a 50 mL beaker was added 4.05 g of phosphorous acid and 5.0 g of diisopropylamine. A waxy material formed. The material was triturated with a glass rod until no diisopropylamine was visible to provide Salt 9.

[0070] Example 54: Salt 8 (350 mg, 0.05 weight percent) was bag blended with 175 g of polyester and 175 g of polycarbonate. The mixture was extruded and pelletized and the pellet color and polycarbonate molecular weight (Mw) were measured using the above-described procedures. Example 55: Salt 8 (700 mg, 0.1 weight percent) was bag blended with 175 g of polyester and 175 g of polycarbonate. The mixture was extruded and pelletized and the pellet color and polycarbonate molecular weight (Mw) were measured using the above-described procedures. Example 56: Salt 9 (350 mg, 0.05 weight percent) was bag blended with 175 g of polyester and 175 g of polycarbonate. The mixture was extruded and pelletized and the pellet color and polycarbonate molecular weight (Mw) were measured using the above-described procedures. Example 57: Salt 9 (700 mg, 0.1 wtpercent) was bag blended with 175 g of polyester and 175 g of polycarbonate. The mixture was extruded and pelletized and the pellet color and polycarbonate molecular weight (Mw) were measured using the above-described procedures. The results of the evaluations of Salts 8 and 9 are set forth in Table IX.

- 44 -

TABLE IX

				Polycarbonate					
Example	Salt	a*	b*	L*	Mn	Mw	Mz		
54	8	-0.4	6.09	70.46	6432	18157	30712		
55	8	-0.18	5.69	69.18	5670	15619	26697		
56	9	-0.38	7.11	70.29	7148	20575	34652		
57	9	-0.52	5.74	71.46	6123	16827	28534		

[0071] The data in Table IX demonstrate that the phosphorous acid salts of aliphatic nitrogen-containing compounds are effective for improving the color and suppression of transesterification in polyester-polycarbonate blends (Example C-9 vs. Examples 54-57).

COMPARATIVE EXAMPLES 10-16

[0072] The additives listed below were blended in the amounts given (Amount, g) with individual polymer blends consisting of 350 g polyester and 350 g polycarbonate:

Additive No.	Additive	Amount
1	1 Calcium Dihydrogen Phosphate	
2	D-mannitol	1.05
3	Citric Acid	1.4
4	Zinc Sulfate Monohydrate	7.0
5	Irgafos PEPQ FD – Ciba-Geigy	7.0
6	45percent Aqueous Sulfuric Acid	0.77
7	3,9-Bis(octadecyloxy)-2,4,8,10-tetraoxa-3,9- diphosphaspiro[5.5]undecane	1.4
8	Phosphorous Acid	0.375

- 45 -

The blends were extruded and pelletized and the pellet color was measured using the above-described procedures. The results of the evaluations of Additives 1-8 are set forth in Table X.

TABLE X

Example	Additive No.	b*	L*
C-10	1	4.05	68.58
C-11	2	7.78	68.33
C-12	4	16.63	59.75
C-13	3 and5	8.29	70.83
C-14	6	8.42	67.08
C-15	7	6.02	71.35
C-16	8	6.68	67.4

[0073] The amounts of each additive that were used to prepare polyester-polycarbonate compositions are similar to the amounts disclosed in the prior art. The data presented in Table X establish that the phosphorous acid salts of some basic organic compounds, such as hindered amine light stabilizers, are more effective at improving the color of polyester-polycarbonate blends than are additives described in the prior art.

[0074] The invention has been described in detail with particular reference to preferred embodiments thereof, but it will be understood that variations and modifications can be effected within the spirit and scope of the invention.

- 46 -

CLAIMS

We claim:

1. A polymer composition comprising:

 (A) at least one polyester prepared by the reaction of at least one diol with at least one dicarboxylic acid or dialkyl ester thereof in the presence of a metallic catalyst; and

(B) at least one salt prepared by the reaction of one or more acidic phosphoruscontaining compounds with one or more basic organic compounds which contain nitrogen.

2. A polymer composition according to Claim 1 wherein the acidic phosphorus compounds are selected from the compounds having the formulas:

(2)
$$R_1 - O - P - H \longrightarrow R_1 - O - P$$
 R_2
 R_2
 R_3
 R_4
 R_2
 R_2

(3)
$$R_1 - O - P - O - H$$

 $O - P - O - H$
 $O - P$
 $O - P$
 $O - P$

$$(4) \qquad \begin{array}{c} O \\ X \\ O \end{array} \qquad \begin{array}{c} O \\ O \\ X \end{array} \qquad \begin{array}{c} O \\ Y \\ X \end{array}$$

wherein

 R_1 and R_2 are independently selected from hydrogen, C_1 - C_{22} -alkyl, substituted C_1 - C_{22} -alkyl, C_3 - C_8 -cycloalkyl, substituted C_3 - C_8 -cycloalkyl, heteroaryl, and aryl;

n is 2 to 500; and

X is selected from hydrogen and hydroxy;

and wherein the basic organic compounds are selected from compounds having the formulas:

$$(2) \qquad \begin{array}{c} R_{10} \\ R_{8} \\ R_{7} \end{array} \qquad \begin{array}{c} R_{10} \\ R_{8} \\ R_{11} \end{array}$$

(3)
$$R_7$$
 R_{11} R_{10} R_{8} R_{9} R_{11}

$$(4) \qquad R_1 \qquad N \qquad R_2$$

(6)
$$R_1$$
 CO_2R_3

(7)
$$R_{10} = R_{10} = R_{10}$$

- 49 -

(8)
$$R_{10} N Y_{2} - L_{1} - Y_{2}$$
 $R_{9} N - R_{10} R_{8}$

(9)
$$R_{10}$$
 R_{9} R_{9} R_{10} R_{10} R_{10} R_{10} R_{10} R_{10} R_{10} R_{10} R_{10} R_{10}

(10)
$$R_{13} L_2 N L_2 R_{14}$$

(11)
$$R_3 N L_2 N R_3$$
 $R_4 R_4$

(13)
$$\begin{array}{c|ccccc}
R_{10} & R_{10} & R_{10} \\
R_{6} & R_{8} & R_{6} & N & R_{8} \\
R_{7} & R_{9} & R_{7} & R_{9} \\
\hline
R_{3} & R_{4} & R_{4}
\end{array}$$

(15)
$$R_{15} = \begin{pmatrix} R_{16} \\ CH_{2} \end{pmatrix}_{n1} - N \frac{R_{16}}{\int_{m1}^{16} R_{2}} R_{2}$$

(16)
$$\begin{array}{c|ccccc}
R_{10} & R_{10} & R_{10} \\
R_{6} & N & R_{8} & R_{6} & N & R_{8} \\
R_{7} & N & R_{9} & R_{7} & R_{9} \\
\hline
R_{9} & N & R_{6} & R_{10} & R_{10} \\
R_{10} & R_{10} & R_{10} & R_{10} & R_{10} & R_{10} \\
\end{array}$$

(19)
$$\begin{array}{c|ccccc}
R_{10} & R_{10} & R_{10} \\
R_{6} & R_{8} & R_{6} & R_{7} & R_{8} \\
R_{7} & R_{9} & R_{7} & R_{9} & R_{7} & R_{9} \\
\hline
R_{9} & N & R_{6} & R_{10} &$$

(20)
$$R_1 = 0$$
 $R_2 = 0$ $R_3 = 0$ $R_8 = 0$ $R_7 = 0$ $R_2 = 0$ $R_2 = 0$ $R_3 = 0$ $R_4 = 0$ $R_5 = 0$ $R_6 = 0$ $R_7 = 0$

wherein

 R_3 , R_4 , and R_5 are independently selected from hydrogen, C_1 - C_{22} -alkyl, substituted C_1 - C_{22} -alkyl, C_3 - C_8 -cycloalkyl, and substituted C_3 - C_8 -cycloalkyl wherein at least one of R_3 , R_4 , and R_5 is a substituent other than hydrogen; R_3 and R_4 or R_4 and R_5 collectively represent a divalent group forming a ring with the nitrogen atom to which they are attached;

 R_6 , R_7 , R_8 , and R_9 are independently selected from hydrogen, C_1 - C_{22} -alkyl, substituted C_1 - C_{22} -alkyl, C_3 - C_8 -cycloalkyl, substituted C_3 - C_8 -cycloalkyl, heteroaryl, aryl;

 R_{10} is selected from hydrogen, -OR₆, C₁-C₂₂-alkyl, substituted C₁-C₂₂-alkyl, C₃-C₈-cycloalkyl, substituted C₃-C₈-cycloalkyl;

 R_{11} is selected from hydrogen; C_1 - C_{22} -alkyl, substituted C_1 - C_{22} -alkyl, C_3 - C_8 -cycloalkyl, substituted C_3 - C_8 -cycloalkyl, heteroaryl, aryl, $-Y_1$ - R_3 or a succinimido group having the formula

$$O \nearrow N \longrightarrow O$$
 R_2

 R_{12} is selected from hydrogen, C_1 - C_{22} -alkyl, substituted C_1 - C_{22} -alkyl, C_3 - C_8 -cycloalkyl, substituted C_3 - C_8 -cycloalkyl, heteroaryl, aryl and may be located at the 2, 3 or 4 positions on the aromatic ring;

the $-N(R_3)(R_4)$ group may be located at the 2, 3 or 4 positions on the pyridine ring of nitrogen compound (5);

the $-CO_2R_3$ and R_1 groups may be located at any of the 2, 3, 4, 5, 6 positions of the pyridine ring of nitrogen compound (6);

 L_1 is a divalent linking group selected from C_2 - C_{22} -alkylene; -(CH $_2$ CH $_2$ -Y $_1$) $_{1-3}$ -CH $_2$ CH $_2$ -; C $_3$ -C $_8$ -cycloalkylene; arylene; or -CO- L_2 -OC-;

 L_2 is selected from C_1 - C_{22} -alkylene, arylene, -(CH_2CH_2 - Y_1)₁₋₃- CH_2CH_2 - and C_3 - C_8 -cycloalkylene;

 Y_1 is selected from -OC(O)-, -NHC(O)-, -O-, -S-, -N(R₁)-;

 Y_2 is selected from -O- or -N(R_1)-;

 R_{13} and R_{14} are independently selected from -O- R_2 , and -N(R_2)₂;

Z is a positive integer of up to about 20;

m1 is selected from 0 to about 10;

n1 is a positive integer selected from 2 to about 12;

 R_{15} and R_{16} are independently selected from hydrogen, C_1 - C_{22} -alkyl, substituted C_1 - C_{22} -alkyl, C_3 - C_8 -cycloalkyl, substituted C_3 - C_8 -cycloalkyl, heteroaryl, aryl, and radical A wherein radical A is selected from the following structures:

Radical A structures wherein * designates the position of attachment.

and wherein the ratio of the number of phosphorus atoms in the acidic phosphoruscontaining compound to number of basic nitrogen atoms in the basic organic compound is about 0.05 to about 2.

- 3. A polymer composition according to Claim 2 wherein the polyester of component (A) comprises:
- (1) diacid residues comprising at least 50 mole percent terephthalic acid residues, 1,4-cyclohexanedicarboxylic acid residues or a mixture thereof; and
- (2) diol residues comprising at least 50 mole percent of ethylene glycol residues, cyclohexanedimethanol residues, or a mixture thereof; wherein the total of the diacid residues is equal to 100 mole percent and the total of the diol residues also is equal to 100 mole percent.
- 4. A polymer composition according to Claim 2 wherein the polyester of component (A) comprises:
- (1) diacid residues comprising at least 50 mole percent terephthalic acid residues, 1,4-cyclohexanedicarboxylic acid residues or a mixture thereof; and
- (2) diol residues comprising at least 50 mole percent of ethylene glycol residues, cyclohexanedimethanol residues, or a mixture thereof; and contains up to about 200 ppmw Ti, Co and/or Mn residues, wherein the total of the diacid residues is equal to 100 mole percent and the total of the diol residues also is equal to 100 mole percent.
- 5. A polymer composition comprising:
- (A) at least one polyester comprising:
 - (1) diacid residues comprising at least 50 mole percent terephthalic acid residues; and
 - (2) diol residues comprising at least 50 mole percent of ethylene glycol residues, cyclohexanedimethanol residues, or a mixture thereof;
 - and contains about 10 to 200 ppmw Ti, Co and/or Mn residues, wherein the total of the diacid residues is equal to 100 mole percent and the total of the diol residues also is equal to 100 mole percent; and
- (B) about 0.01 to about 0.25 weight percent based on the total weight of the composition of at least one salt prepared by the reaction of one or more acidic

phosphorus-containing compounds selected from phosphorous acid, phosphoric acid and polyphosphoric acid with one or more basic organic compounds which contain nitrogen and have the formulas:

(2)
$$R_7$$
 R_{10} R_8 R_{11}

(3)
$$R_7$$
 R_{10} R_8 R_9 R_{11}

(7)
$$R_{10}$$
 R_{9} R_{9} R_{10} R_{10} R_{10} R_{10} R_{10} R_{10} R_{10}

(8)
$$R_{10} = N$$
 $R_{10} = N$ $R_{10} = N$

(9)
$$R_{10} = N$$
 $R_{10} = N$ $R_{10} = N$

(13)
$$\begin{array}{c|ccccc}
R_{10} & R_{10} \\
R_{6} & R_{8} & R_{6} & N & R_{8} \\
R_{7} & R_{9} & R_{7} & R_{9} \\
\hline
N_{8} & N_{10} & R_{10} \\
R_{8} & R_{10} & R_{10} \\
R_{9} & R_{7} & R_{9} \\
\hline
R_{10} & R_{10} \\
R_{9} & R_{7} & R_{9} \\
\hline
R_{10} & R_{10} \\
R_{10} & R_{10} \\
R_{10} & R_{10} \\
R_{10} & R_{10} \\
R_{2} & R_{10} \\
R_{3} & R_{4} \\
\end{array}$$

(15)
$$R_{15} = \frac{R_{16}}{N - \left(CH_{2}\right)_{n1} - N - \frac{R_{16}}{J_{m1}}} R_{2}$$

BNSDOCID: <WO____2004065472A1_I_>

(19)
$$\begin{array}{c|ccccc}
R_{10} & R_{10} & R_{10} \\
R_{6} & R_{8} & R_{6} & N & R_{8} \\
R_{7} & R_{9} & R_{7} & R_{9} \\
\hline
N_{N} & N & R_{10} & N & I & I \\
R_{9} & R_{7} & R_{6} & R_{10}
\end{array}$$

(20)
$$R_1 = 0$$
 $R_9 = 0$ $R_8 = 0$ $R_9 = 0$

wherein

 R_1 and R_2 are independently is selected from hydrogen, C_1 - C_{22} -alkyl, substituted C_1 - C_{22} -alkyl, C_3 - C_8 -cycloalkyl, substituted C_3 - C_8 -cycloalkyl, heteroaryl, and aryl;

 R_3 and R_4 are independently selected from hydrogen, C_1 - C_{22} -alkyl, substituted C_1 - C_{22} -alkyl, C_3 - C_8 -cycloalkyl, and substituted C_3 - C_8 -cycloalkyl wherein at least one of R_3 and R_4 is a substituent other than hydrogen; R_3 and

R₄ collectively represent a divalent group forming a ring with the nitrogen atom to which they are attached;

 R_6 , R_7 , R_8 , and R_9 are independently selected from hydrogen, C_1 - C_{22} -alkyl, substituted C_1 - C_{22} -alkyl, C_3 - C_8 -cycloalkyl, substituted C_3 - C_8 -cycloalkyl, heteroaryl, aryl;

 R_{10} is selected from hydrogen, -OR₆, C_1 - C_{22} -alkyl, substituted C_1 - C_{22} -alkyl, C_3 - C_8 -cycloalkyl, substituted C_3 - C_8 -cycloalkyl;

 R_{11} is selected from hydrogen; C_1 - C_{22} -alkyl, substituted C_1 - C_{22} -alkyl, C_3 - C_8 -cycloalkyl, substituted C_3 - C_8 -cycloalkyl, heteroaryl, aryl, - Y_1 - R_3 or a succinimido group having the formula

 L_1 is a divalent linking group selected from C_2 - C_{22} -alkylene; -(CH_2CH_2 - Y_1)₁₋₃- CH_2CH_2 -; C_3 - C_8 -cycloalkylene; arylene; or -CO- L_2 -OC-;

 L_2 is selected from $C_1\text{-}C_{22}\text{-}alkylene, arylene, -(CH_2CH_2\text{-}Y_1)_{1-3}\text{-}CH_2CH_2\text{-}$ and $C_3\text{-}C_8\text{-}cycloalkylene;}$

 Y_1 is selected from -OC(O)-, -NHC(O)-, -O-, -S-, -N(R₁)-;

 Y_2 is selected from -O- or -N(R_1)-;

Z is a positive integer of up to about 20;

m1 is selected from 0 to about 10;

n1 is a positive integer selected from 2 to about 12;

 R_{15} and R_{16} are independently selected from hydrogen, C_1 - C_{22} -alkyl, substituted C_1 - C_{22} -alkyl, C_3 - C_8 -cycloalkyl, substituted C_3 - C_8 -cycloalkyl, heteroaryl, aryl, and radical A wherein radical A is selected from the following structures:

PCT/US2003/040536 WO 2004/065472

- 60 -

Radical A structures wherein * designates the position of attachment.

wherein at least one of R₁₅ and R₁₆ is an A radical; and the ratio of the number of phosphorus atoms in the acidic phosphorus-containing compound to number of basic nitrogen atoms in the basic organic compound is about 0.05 to about 2.

- A composition according to Claim 5 wherein the polyester of component (A) 6. has an inherent viscosity of about 0.4 to 1.2 dL/g measured at 25°C in a 60/40 ratio by weight of phenol/tetrachloroethane and comprises:
- (1) diacid residues comprising about 80 to 100 mole percent terephthalic acid residues and about 0 to 20 mole percent isophthalic acid residues; and
- (2) diol residues comprising about 40 to 100 mole percent 1,4-cyclohexanedimethanol residues and 0 to about 60 mole percent ethylene glycol residues; and component (B) comprises about 0.05 to about 0.15 weight percent based on the total weight of the composition of at least one salt defined in Claim 5 wherein R₁₀ is hydrogen or alkyl and the ratio of the number of phosphorus atoms in the acidic phosphorus-containing compound to number of basic nitrogen atoms in the basic organic compound is about 0.25 to about 1.1.
- 7. The composition of Claim 6 wherein the polyester of component (A) is has an inherent viscosity of about 0.4 to 0.8 dL/g measured at 25°C in a 60/40 ratio by weight of phenol/tetrachloroethane and comprises:

- diacid residues comprising about 80 to 100 mole percent terephthalic acid residues and about 0 to 20 mole percent isophthalic acid residues; and
- (2) diol residues comprising about 55 to 80 mole percent 1,4-cyclohexanedimethanol residues and 20 to about 45 mole percent ethylene glycol residues.
- 8. A composition according to Claim 5 wherein the polyester of component (A) has an inherent viscosity of about 0.4 to 1.2 dL/g measured at 25°C in a 60/40 ratio by weight of phenol/tetrachloroethane and comprises:
- diacid residues comprising about 65 to 83 mole percent terephthalic acid residues and about 35 to 17 mole percent isophthalic acid residues; and
- (2) diol residues comprising about 80 to 100 mole percent 1,4-cyclohexanedimethanol residues and about 0 to about 20 mole percent ethylene glycol residues;

and component (B) comprises about 0.05 to about 0.15 weight percent based on the total weight of the composition of at least one salt defined in Claim 5 wherein R_{10} is hydrogen or alkyl and the ratio of the number of phosphorus atoms in the acidic phosphorus-containing compound to number of basic nitrogen atoms in the basic organic compound is about 0.25 to about 1.1.

- 9. The composition of Claim 8 wherein the polyester of component (A) has an inherent viscosity of about 0.4 to 0.8 dL/g measured at 25°C in a 60/40 ratio by weight of phenol/tetrachloroethane and comprises:
- (1) diacid residues comprising about 70 to 80 mole percent terephthalic acid residues and about 30 to 20 mole percent isophthalic acid residues; and
- (2) diol residues comprising about 90 to 100 mole percent 1,4-cyclohexanedimethanol residues and 0 to about 10 mole percent ethylene glycol residues.
- 10. A composition according to Claim 5 wherein the polyester of component (A) has an inherent viscosity of about 0.4 to 1.2 dL/g measured at 25°C in a 60/40 ratio by weight of phenol/tetrachloroethane and comprises:

- diacid residues comprising at least about 80 mole percent 1,4-cyclohexanedicarboxylic acid residues; and
- (2) diol residues comprising at least about 80 mole percent1,4-cyclohexanedimethanol residues;

and component (B) comprises about 0.05 to about 0.15 weight percent based on the total weight of the composition of at least one salt defined in Claim 5 wherein R₁₀ is hydrogen or alkyl and the ratio of the number of phosphorus atoms in the acidic phosphorus-containing compound to number of basic nitrogen atoms in the basic organic compound is about 0.25 to about 1.1.

- 11. A composition according to Claim 10 wherein the polyester of component (A) has an inherent viscosity of about 0.4 to 0.8 dL/g measured at 25°C in a 60/40 ratio by weight of phenol/tetrachloroethane and comprises:
- (1) diacid residues comprising about 100 mole percent 1,4-cyclohexanedicarboxylic acid residues;
- (2) diol residues comprising about 100 mole percent1,4-cyclohexanedimethanol residues.
- 12. A polymer composition comprising:
- (A) at least one polyester having an inherent viscosity of about 0.4 to 1.2 dL/g measured at 25°C in a 60/40 ratio by weight of phenol/tetrachloroethane and comprises:
 - (1) diacid residues comprising at least 50 mole percent terephthalic acid residues; and

of the diacid residues is equal to 100 mole percent and the total of the diol

(2) diol residues comprising at least 50 mole percent of ethylene glycol residues, cyclohexanedimethanol residues, or a mixture thereof; and contains about 10 to 200 ppmw Ti, Co and/or Mn residues, wherein the total

residues also is equal to 100 mole percent; and

(B) about 0.01 to about 0.25 weight percent based on the total weight of the composition of at least one salt prepared by the reaction of phosphorous acid, with one or more basic organic compounds which contain nitrogen and have the formulas:

(15)
$$\begin{array}{c} R_1 \\ N + (CH_2)_{n1} - N + \frac{R_{16}}{m_1} R_2 \end{array}$$

(19)
$$\begin{array}{c|cccc}
R_{10} & R_{10} & R_{10} \\
R_{7} & R_{8} & R_{6} & N & R_{8} \\
R_{7} & R_{9} & R_{7} & R_{9} \\
\hline
R_{9} & R_{7} & R_{6} \\
R_{10} & R_{10} & R_{10}
\end{array}$$

(20)
$$R_1 = 0$$
 $R_9 = 0$ $R_8 = 0$ $R_9 = 0$ $R_8 = 0$ $R_9 = 0$

wherein

 R_1 and R_2 are independently is selected from hydrogen, C_1 - C_{22} -alkyl, substituted C_1 - C_{22} -alkyl, C_3 - C_8 -cycloalkyl, substituted C_3 - C_8 -cycloalkyl, heteroaryl, and aryl;

 R_3 and R_4 are independently selected from hydrogen, C_1 - C_{22} -alkyl, substituted C_1 - C_{22} -alkyl, C_3 - C_8 -cycloalkyl, and substituted C_3 - C_8 -cycloalkyl wherein at least one of R_3 and R_4 is a substituent other than hydrogen; R_3 and

R₄ collectively represent a divalent group forming a ring with the nitrogen atom to which they are attached;

 R_6 , R_7 , R_8 , and R_9 are independently selected from hydrogen, C_1 - C_{22} -alkyl, substituted C_1 - C_{22} -alkyl, C_3 - C_8 -cycloalkyl, substituted C_3 - C_8 -cycloalkyl, heteroaryl, aryl;

R₁₀ is selected from hydrogen and C₁-C₂₂-alkyl;

 L_1 is a divalent linking group selected from C_2 - C_{22} -alkylene; -(CH_2CH_2 - Y_1)₁- $_3$ - CH_2CH_2 -; C_3 - C_8 -cycloalkylene; arylene; or -CO- L_2 -OC-;

 L_2 is selected from C_1 - C_{22} -alkylene, arylene, -(CH_2CH_2 - Y_1)₁₋₃- CH_2CH_2 - and C_3 - C_8 -cycloalkylene;

 Y_1 is selected from -OC(O)-, -NHC(O)-, -O-, -S-, -N(R₁)-;

 Y_2 is selected from -O- or -N(R₁)-;

Z is a positive integer of up to about 6;

m1 is selected from 0 to about 10;

n1 is a positive integer selected from 2 to about 12;

 R_{15} and R_{16} are independently selected from hydrogen, C_1 - C_{22} -alkyl, substituted C_1 - C_{22} -alkyl, C_3 - C_8 -cycloalkyl, substituted C_3 - C_8 -cycloalkyl, heteroaryl, aryl, and radical A wherein radical A is selected from the following structures:

Radical A structures wherein * designates the position of attachment.

wherein at least one of R_{15} and R_{16} represents an A radical; and the ratio of the number of phosphorus atoms in the acidic phosphorus-containing compound to number of basic nitrogen atoms in the basic organic compound is about 0.05 to about 2.

- 13. A composition according to Claim 12 wherein the polyester of component (A) has an inherent viscosity of about 0.4 to 0.8 dL/g measured at 25°C in a 60/40 ratio by weight of phenol/tetrachloroethane and comprises:
- (1) diacid residues comprising about 80 to 100 mole percent terephthalic acid residues and about 0 to 20 mole percent isophthalic acid residues; and
- (2) diol residues comprising about 55 to 80 mole percent 1,4-cyclohexanedimethanol residues and 20 to about 45 mole percent ethylene glycol residues.
 and component (B) comprises about 0.05 to about 0.15 weight percent based on the total weight of the composition of at least one salt defined in Claim 12 wherein the ratio of the number of phosphorus atoms in the acidic phosphorus-containing compound to number of basic nitrogen atoms in the basic organic compound is about 0.25 to about 1.1.
- 14. A composition according to Claim 12 wherein the polyester of component (A) has an inherent viscosity of about 0.4 to 0.8 dL/g measured at 25°C in a 60/40 ratio by weight of phenol/tetrachloroethane and comprises:
- (1) diacid residues comprising about 70 to 80 mole percent terephthalic acid residues and about 30 to 20 mole percent isophthalic acid residues; and
- (2) diol residues comprising about 90 to 100 mole percent 1,4-cyclohexanedimeth-anol residues and 0 to about 10 mole percent ethylene glycol residues.
 and component (B) comprises about 0.05 to about 0.15 weight percent based on the total weight of the composition of at least one salt defined in Claim 12 wherein the ratio of the number of phosphorus atoms in the acidic phosphorus-containing compound to number of basic nitrogen atoms in the basic organic compound is about 0.25 to about 1.1.

- 15. A composition according to Claim 12 wherein the polyester of component (A) has an inherent viscosity of about 0.4 to 0.8 dL/g measured at 25°C in a 60/40 ratio by weight of phenol/tetrachloroethane and comprises:
- (1) diacid residues comprising at least about 90 mole percent 1,4-cyclohexanedicarboxylic acid residues; and
- (2) diol residues comprising at least about 90 mole percent 1,4-cyclohexanedimethanol residues;

and component (B) comprises about 0.05 to about 0.15 weight percent based on the total weight of the composition of at least one salt defined in Claim 12 wherein the ratio of the number of phosphorus atoms in the acidic phosphorus-containing compound to number of basic nitrogen atoms in the basic organic compound is about 0.25 to about 1.1.

- 16. A polymer composition comprising:
- (A) at least one polyester having an inherent viscosity of about 0.4 to 1.2 dL/g measured at 25°C in a 60/40 ratio by weight of phenol/tetrachloroethane and comprises:
 - (1) diacid residues comprising at least 50 mole percent terephthalic acid residues; and
 - (2) diol residues comprising at least 50 mole percent of ethylene glycol residues, cyclohexanedimethanol residues, or a mixture thereof; and contains about 10 to 200 ppmw Ti, Co and/or Mn residues, wherein the total of the diacid residues is equal to 100 mole percent and the total of the diol residues also is equal to 100 mole percent; and
- (B) about 0.01 to about 0.25 weight percent based on the total weight of the composition of at least one salt prepared by the reaction of phosphorous acid with a basic organic compound having the formula:

wherein

 R_3 and R_4 are independently selected from hydrogen, C_1 - C_{22} -alkyl, substituted C_1 - C_{22} -alkyl, C_3 - C_8 -cycloalkyl, and substituted C_3 - C_8 -cycloalkyl wherein at least one of R_3 and R_4 is a substituent other than hydrogen; R_3 and R_4 collectively represent a divalent group forming a ring with the nitrogen atom to which they are attached;

 R_6 , R_7 , R_8 , and R_9 are independently selected from hydrogen, C_1 - C_{22} -alkyl, substituted C_1 - C_{22} -alkyl, C_3 - C_8 -cycloalkyl, substituted C_3 - C_8 -cycloalkyl, heteroaryl, aryl;

R₁₀ is selected from hydrogen and C₁-C₂₂-alkyl;

 L_1 is a divalent linking group selected from C_2 - C_{22} -alkylene; -(CH $_2$ CH $_2$ -Y $_1$) $_{1-3}$ -CH $_2$ CH $_2$ -; C $_3$ -C $_8$ -cycloalkylene; arylene; or -CO- L_2 -OC-; and

 L_2 is selected from C_1 - C_{22} -alkylene, arylene, -(CH_2CH_2 - Y_1)₁₋₃- CH_2CH_2 - and C_3 - C_8 -cycloalkylene;

 Y_1 is selected from -OC(O)-, -NHC(O)-, -O-, -S-, -N(R₁)-;

Z is a positive integer of up to about 6.

- 17. A composition according to Claim 16 wherein the polyester of component (A) has an inherent viscosity of about 0.4 to 0.8 dL/g measured at 25°C in a 60/40 ratio by weight of phenol/tetrachloroethane and comprises:
- (1) diacid residues comprising about 80 to 100 mole percent terephthalic acid residues and about 0 to 20 mole percent isophthalic acid residues; and

- (2) diol residues comprising about 55 to 80 mole percent 1,4-cyclohexanedimethanol residues and 20 to about 45 mole percent ethylene glycol residues.

 and component (B) comprises about 0.05 to about 0.15 weight percent based on the total weight of the composition of the salt defined in Claim 16 wherein R₆ = R₇ = R₈ = R₉ = R₁₀ = methyl; L₁ is hexamethylene; and (R₃)(R₄)N- collectively represent a morpholino group and the ratio of the number of phosphorus atoms in the acidic phosphorus-containing compound to number of basic nitrogen atoms in the basic organic compound is about 0.25 to about 1.1.
- 18. A composition according to Claim 16 wherein the polyester of component (A) has an inherent viscosity of about 0.4 to 0.8 dL/g measured at 25°C in a 60/40 ratio by weight of phenol/tetrachloroethane and comprises:
- diacid residues comprising about 70 to 80 mole percent terephthalic acid residues and about 30 to 20 mole percent isophthalic acid residues; and
- (2) diol residues comprising about 90 to 100 mole percent 1,4-cyclohexanedimeth-anol residues and 0 to about 10 mole percent ethylene glycol residues. and component (B) comprises about 0.05 to about 0.15 weight percent based on the total weight of the composition of the salt defined in Claim 16 wherein R₆ = R₇ = R₈ = R₉ = R₁₀ = methyl; L₁ is hexamethylene; and (R₃)(R₄)N- collectively represent a morpholino group and the ratio of the number of phosphorus atoms in the acidic phosphorus-containing compound to number of basic nitrogen atoms in the basic organic compound is about 0.25 to about 1.1.
- 19. A composition according to Claim 16 wherein the polyester of component (A) has an inherent viscosity of about 0.4 to 0.8 dL/g measured at 25°C in a 60/40 ratio by weight of phenol/tetrachloroethane and comprises:
- diacid residues comprising at least about 90 mole percent 1,4-cyclohexanedicarboxylic acid residues; and
- (2) diol residues comprising at least about 90 mole percent1,4-cyclohexanedimethanol residues:

and component (B) comprises about 0.05 to about 0.15 weight percent based on the total weight of the composition of at least one salt defined in Claim 16 wherein the ratio of the number of phosphorus atoms in the acidic phosphorus-containing compound to number of basic nitrogen atoms in the basic organic compound is about 0.25 to about 1.1.

- 20. A polymer composition comprising:
- (A) at least one polyester prepared by the reaction of at least one diol with at least one dicarboxylic acid or dialkyl ester thereof in the presence of a metallic catalyst;
- (B) at least one salt prepared by the reaction of one or more acidic phosphoruscontaining compounds with one or more basic organic compounds which contain nitrogen; and
- (C) a polycarbonate.
- 21. A polymer composition according to Claim 20 wherein the acidic phosphorus compounds are selected from the compounds having the formulas:

(3)
$$R_1 - O - P - O - H$$

 $O - P - O - H$
 $O - P$
 $O - P$
 $O - P$

$$(4) \qquad \begin{array}{c} O \\ X \end{array} \qquad \begin{array}{c} O \\ O \end{array} \qquad \begin{array}{c} O \\ O \end{array} \qquad \begin{array}{c} O \\ X \end{array}$$

$$(5) \qquad HO-P \bigcirc O - O \bigcirc P - OH$$

 R_1 and R_2 are independently selected from hydrogen, C_1 - C_{22} -alkyl, substituted C_1 - C_{22} -alkyl, C_3 - C_8 -cycloalkyl, substituted C_3 - C_8 -cycloalkyl, heteroaryl, and aryl;

n is 2 to 500; and

X is selected from hydrogen and hydroxy;

and wherein the basic organic compounds are selected from compounds having the formulas:

$$(2) \qquad \begin{array}{c} R_6 \\ N \\ R_7 \end{array} \qquad \begin{array}{c} R_8 \\ R_{11} \end{array}$$

(3)
$$R_7$$
 R_8 R_9 R_{11}

BNSDOCID: <WO____2004065472A1_I_>

(7)
$$R_{10} = R_{10} = R_{10}$$

(8)
$$R_{10} N \longrightarrow Y_2 - L_1 - Y_2 \longrightarrow R_8$$
 $R_9 N - R_{10}$

(9)
$$R_{10}$$
 R_{9} R_{9} R_{10} R_{10}

(10)
$$R_{13} L_2 N L_2 R_{14}$$

(11)
$$R_3 N L_2 N R_3$$
 $R_4 R_4$

(13)
$$\begin{array}{c|c} R_{10} & R_{10} \\ R_{6} & N_{8} & R_{6} \\ R_{7} & N_{8} \\ R_{9} & R_{7} & R_{9} \\ \hline N_{8} & N_{10} \\ R_{9} & R_{7} & R_{9} \\ \hline R_{10} & R_{10} \\ R_{10} & R_{10}$$

(15)
$$R_{15} = \frac{R_1}{N - \left(CH_2 \right)_{n1} - N - \frac{R_{16}}{M_1} R_2}$$

(17)
$$\begin{array}{c|ccccc}
R_{10} & R_{8} & R_{6} & N & R_{8} \\
R_{7} & R_{9} & R_{7} & R_{9} \\
\hline
N_{N} & N & R_{10} & R_{10} & R_{10} \\
\hline
R_{10} & R_{10}$$

(18)
$$\begin{array}{c|ccccc}
R_{10} & R_$$

(19)
$$\begin{array}{c|ccccc}
R_{10} & R_{10} & R_{10} \\
R_{7} & R_{8} & R_{6} & N & R_{8} \\
R_{7} & R_{9} & R_{7} & R_{9} \\
\hline
N_{N} & N & R_{10} & N & R_{10} \\
\hline
R_{8} & R_{10} & R_{10} & R_{10} & R_{10} \\
\end{array}$$

(20)
$$R_1 = 0$$
 $R_9 = R_8$ $R_7 = 0$ $R_9 = R_8$ $R_8 = 0$ $R_9 =$

 R_3 , R_4 , and R_5 are independently selected from hydrogen, C_1 - C_{22} -alkyl, substituted C_1 - C_{22} -alkyl, C_3 - C_8 -cycloalkyl, and substituted C_3 - C_8 -cycloalkyl wherein at least one of R_3 , R_4 , and R_5 is a substituent other than hydrogen; R_3 and R_4 or R_4 and R_5 collectively represent a divalent group forming a ring with the nitrogen atom to which they are attached;

 R_6 , R_7 , R_8 , and R_9 are independently selected from hydrogen, C_1 - C_{22} -alkyl, substituted C_1 - C_{22} -alkyl, C_3 - C_8 -cycloalkyl, substituted C_3 - C_8 -cycloalkyl, heteroaryl, aryl;

 R_{10} is selected from hydrogen, -OR₆, C₁-C₂₂-alkyl, substituted C₁-C₂₂-alkyl, C₃-C₈-cycloalkyl, substituted C₃-C₈-cycloalkyl;

 R_{11} is selected from hydrogen; C_1 - C_{22} -alkyl, substituted C_1 - C_{22} -alkyl, C_3 - C_8 -cycloalkyl, substituted C_3 - C_8 -cycloalkyl, heteroaryl, aryl, - Y_1 - R_3 or a succinimido group having the formula

$$O \longrightarrow N \longrightarrow O$$

 R_{12} is selected from hydrogen, C_1 - C_{22} -alkyl, substituted C_1 - C_{22} -alkyl, C_3 - C_8 -cycloalkyl, substituted C_3 - C_8 -cycloalkyl, heteroaryl, aryl and may be located at the 2, 3 or 4 positions on the aromatic ring;

the $-N(R_3)(R_4)$ group may be located at the 2, 3 or 4 positions on the pyridine ring of nitrogen compound (5);

the -CO₂R₃ and R₁ groups may be located at any of the 2, 3, 4, 5, 6 positions of the pyridine ring of nitrogen compound (6);

 L_1 is a divalent linking group selected from C_2 - C_{22} -alkylene; -(CH_2CH_2 - Y_1)₁₋₃- CH_2CH_2 -; C_3 - C_8 -cycloalkylene; arylene; or -CO- L_2 -OC-;

 L_2 is selected from C_1 - C_{22} -alkylene, arylene, -(CH_2CH_2 - Y_1)₁₋₃- CH_2CH_2 - and C_3 - C_8 -cycloalkylene;

 Y_1 is selected from -OC(O)-, -NHC(O)-, -O-, -S-, -N(R₁)-;

 Y_2 is selected from -O- or -N(R₁)-;

 R_{13} and R_{14} are independently selected from -O- R_2 , and -N(R_2)₂;

Z is a positive integer of up to about 20;

m1 is selected from 0 to about 10;

n1 is a positive integer selected from 2 to about 12;

 R_{15} and R_{16} are independently selected from hydrogen, C_1 - C_{22} -alkyl, substituted C_1 - C_{22} -alkyl, C_3 - C_8 -cycloalkyl, substituted C_3 - C_8 -cycloalkyl, heteroaryl, aryl, and radical A wherein radical A is selected from the following structures:

Radical A structures wherein * designates the position of attachment.

and wherein the ratio of the number of phosphorus atoms in the acidic phosphoruscontaining compound to number of basic nitrogen atoms in the basic organic compound is about 0.05 to about 2.

- 22. A polymer composition according to Claim 21 wherein the polyester of component (A) comprises:
- (1) diacid residues comprising at least 50 mole percent terephthalic acid residues; and
- (2) diol residues comprising at least 50 mole percent of ethylene glycol residues, cyclohexanedimethanol residues, or a mixture thereof; wherein the total of the diacid residues is equal to 100 mole percent and the total of the diol residues also is equal to 100 mole percent.
- 23. A polymer composition according to Claim 21 wherein the polyester of component (A) comprises:

- diacid residues comprising at least 50 mole percent terephthalic acid residues;
 and
- (2) diol residues comprising at least 50 mole percent of ethylene glycol residues, cyclohexanedimethanol residues, or a mixture thereof; and contains up to about 200 ppmw Ti, Co and/or Mn residues, wherein the total of the diacid residues is equal to 100 mole percent and the total of the diol residues also is equal to 100 mole percent; and component (C) comprises a bisphenol A polycarbonate, wherein the weight ratio of polyester component (A) to polycarbonate component (C) is about 75:25 to about 25:75.
- 24. A polymer composition comprising:
- (A) at least one polyester comprising:
 - (1) diacid residues comprising at least 50 mole percent terephthalic acid residues; and
 - (2) diol residues comprising at least 50 mole percent of ethylene glycol residues, cyclohexanedimethanol residues, or a mixture thereof; and contains about 10 to 200 ppmw Ti, Co and/or Mn residues, wherein the total of the diacid residues is equal to 100 mole percent and the total of the diol residues also is equal to 100 mole percent; and
- (B) about 0.01 to about 0.25 weight percent based on the total weight of the composition of at least one salt prepared by the reaction of one or more acidic phosphorus-containing compounds selected from phosphorous acid, phosphoric acid and polyphosphoric acid with one or more basic organic compounds which contain nitrogen and have the formulas:

(2)
$$R_7$$
 R_{10} R_8 R_9

(3)
$$R_7$$
 R_8 R_9 R_{11}

(7)
$$R_{10} N - Y_2 - L_1 - Y_2 - R_8 R_8$$

(8)
$$R_{10} N Y_{2} - L_{1} - Y_{2}$$
 $R_{9} N - R_{10} R_{8}$

(9)
$$R_{10} N - Y_2 - L_1 - Y_2$$
 $R_8 R_9 R_8$

(15)
$$\begin{array}{c} R_{1} \\ N - \left\{ (CH_{2})_{n1} - N \right\}_{m1} \\ R_{15} \end{array}$$

•

(19)
$$\begin{array}{c|ccccc}
R_{10} & R_{10} & R_{10} \\
R_{6} & R_{8} & R_{6} & N & R_{8} \\
R_{7} & R_{9} & R_{7} & R_{9} \\
\hline
N_{N} & N & L_{1} & N & JZ
\end{array}$$

(20)
$$R_1 = 0$$
 $R_2 = 0$ $R_3 = 0$ $R_8 = 0$

 R_1 and R_2 are independently is selected from hydrogen, C_1 - C_{22} -alkyl, substituted C_1 - C_{22} -alkyl, C_3 - C_8 -cycloalkyl, substituted C_3 - C_8 -cycloalkyl, heteroaryl, and aryl;

 R_3 and R_4 are independently selected from hydrogen, C_1 - C_{22} -alkyl, substituted C_1 - C_{22} -alkyl, C_3 - C_8 -cycloalkyl, and substituted C_3 - C_8 -cycloalkyl wherein at least one of R_3 and R_4 is a substituent other than hydrogen; R_3 and R_4 collectively represent a divalent group forming a ring with the nitrogen atom to which they are attached;

 R_6 , R_7 , R_8 , and R_9 are independently selected from hydrogen, C_1 - C_{22} -alkyl, substituted C_1 - C_{22} -alkyl, C_3 - C_8 -cycloalkyl, substituted C_3 - C_8 -cycloalkyl, heteroaryl, aryl;

 R_{10} is selected from hydrogen, -OR₆, C_1 - C_{22} -alkyl, substituted C_1 - C_{22} -alkyl, C_3 - C_8 -cycloalkyl, substituted C_3 - C_8 -cycloalkyl;

 R_{11} is selected from hydrogen; C_1 - C_{22} -alkyl, substituted C_1 - C_{22} -alkyl, C_3 - C_8 -cycloalkyl, substituted C_3 - C_8 -cycloalkyl, heteroaryl, aryl, - Y_1 - R_3 or a succinimido group having the formula

$$O \longrightarrow \begin{matrix} I \\ N \\ R_2 \end{matrix}$$

 L_1 is a divalent linking group selected from C_2 - C_{22} -alkylene; -(CH₂CH₂-Y₁)₁₋₃-CH₂CH₂-; C_3 -C₈-cycloalkylene; arylene; or -CO-L₂-OC-;

 L_2 is selected from C_1 - C_{22} -alkylene, arylene, -(CH_2CH_2 - Y_1)₁₋₃- CH_2CH_2 - and C_3 - C_8 -cycloalkylene;

 Y_1 is selected from -OC(O)-, -NHC(O)-, -O-, -S-, -N(R₁)-;

 Y_2 is selected from -O- or -N(R₁)-;

Z is a positive integer of up to about 20;

m1 is selected from 0 to about 10;

n1 is a positive integer selected from 2 to about 12;

 R_{15} and R_{16} are independently selected from hydrogen, C_1 - C_{22} -alkyl, substituted C_1 - C_{22} -alkyl, C_3 - C_8 -cycloalkyl, substituted C_3 - C_8 -cycloalkyl, heteroaryl, aryl, and radical A wherein radical A is selected from the following structures:

PCT/US2003/040536

WO 2004/065472

- 86 -

Radical A structures wherein * designates the position of attachment

wherein at least one of R₁₅ and R₁₆ is an A radical; and the ratio of the number of phosphorus atoms in the acidic phosphorus-containing compound to number of basic nitrogen atoms in the basic organic compound is about 0.05 to about 2: and

- (C) a polycarbonate, wherein the weight ratio of polyester component (A) to polycarbonate component (C) is about 75:25 to about 25:75.
- 25. A composition according to Claim 24 wherein the polyester of component (A) has an inherent viscosity of about 0.4 to 1.2 dL/g measured at 25°C in a 60/40 ratio by weight of phenol/tetrachloroethane and comprises:
- (1) diacid residues comprising about 80 to 100 mole percent terephthalic acid residues and about 0 to 20 mole percent isophthalic acid residues; and
- (2) diol residues comprising about 40 to 100 mole percent 1,4-cyclohexanedimethanol residues and 0 to about 60 mole percent ethylene glycol residues; component (B) comprises about 0.05 to about 0.15 weight percent based on the total weight of the composition of at least one salt defined in Claim 24 wherein R₁₀ is hydrogen or alkyl and the ratio of the number of phosphorus atoms in the acidic phosphorus-containing compound to number of basic nitrogen atoms in the basic organic compound is about 0.25 to about 1.1; and component (C) comprises a bisphenol A polycarbonate.

- 26. The composition of Claim 25 wherein the polyester of component (A) is has an inherent viscosity of about 0.4 to 0.8 dL/g measured at 25°C in a 60/40 ratio by weight of phenol/tetrachloroethane and comprises:
- (1) diacid residues comprising about 80 to 100 mole percent terephthalic acid residues and about 0 to 20 mole percent isophthalic acid residues; and
- (2) diol residues comprising about 55 to 80 mole percent 1,4-cyclohexanedimethanol residues and 20 to about 45 mole percent ethylene glycol residues.
- 27. A composition according to Claim 24 wherein the polyester of component (A) has an inherent viscosity of about 0.4 to 1.2 dL/g measured at 25°C in a 60/40 ratio by weight of phenol/tetrachloroethane and comprises:
- (1) diacid residues comprising about 65 to 83 mole percent terephthalic acid residues and about 35 to 17 mole percent isophthalic acid residues; and
- (2) diol residues comprising about 80 to 100 mole percent 1,4-cyclohexanedimethanol residues and about 0 to about 20 mole percent ethylene glycol residues;

component (B) comprises about 0.05 to about 0.15 weight percent based on the total weight of the composition of at least one salt defined in Claim 24 wherein R₁₀ is hydrogen or alkyl and the ratio of the number of phosphorus atoms in the acidic phosphorus-containing compound to number of basic nitrogen atoms in the basic organic compound is about 0.25 to about 1.1; and component (C) comprises a bisphenol A polycarbonate.

- 28. The composition of Claim 27 wherein the polyester of component (A) has an inherent viscosity of about 0.4 to 0.8 dL/g measured at 25°C in a 60/40 ratio by weight of phenol/tetrachloroethane and comprises:
- (1) diacid residues comprising about 70 to 80 mole percent terephthalic acid residues and about 30 to 20 mole percent isophthalic acid residues; and

- (2) diol residues comprising about 90 to 100 mole percent 1,4-cyclohexanedimethanol residues and 0 to about 10 mole percent ethylene glycol residues.
- 29. A composition according to Claim 24 wherein the polyester of component (A) has an inherent viscosity of about 0.4 to 1.2 dL/g measured at 25°C in a 60/40 ratio by weight of phenol/tetrachloroethane and comprises:
- (1) diacid residues comprising at least about 80 mole percent 1,4-cyclohexanedicarboxylic acid residues; and
- (2) diol residues comprising at least about 80 mole percent1,4-cyclohexanedimethanol residues;

component (B) comprises about 0.05 to about 0.15 weight percent based on the total weight of the composition of at least one salt defined in Claim 24 wherein R₁₀ is hydrogen or alkyl and the ratio of the number of phosphorus atoms in the acidic phosphorus-containing compound to number of basic nitrogen atoms in the basic organic compound is about 0.25 to about 1.1; and component (C) comprises a bisphenol A polycarbonate.

- 30. A composition according to Claim 29 wherein the polyester of component (A) has an inherent viscosity of about 0.4 to 0.8 dL/g measured at 25°C in a 60/40 ratio by weight of phenol/tetrachloroethane and comprises:
- (1) diacid residues comprising 100 mole percent 1,4-cyclohexanedicarboxylic acid residues;
- (2) diol residues comprising 100 mole percent 1,4-cyclohexanedimethanol residues.
- 31. A polymer composition comprising:
- (A) at least one polyester having an inherent viscosity of about 0.4 to 1.2 dL/g measured at 25°C in a 60/40 ratio by weight of phenol/tetrachloroethane and comprises:
 - (1) diacid residues comprising at least 50 mole percent terephthalic acid residues; and

- (2) diol residues comprising at least 50 mole percent of ethylene glycol residues, cyclohexanedimethanol residues, or a mixture thereof; and contains about 10 to 200 ppmw Ti, Co and/or Mn residues, wherein the total of the diacid residues is equal to 100 mole percent and the total of the diol residues also is equal to 100 mole percent; and
- (B) about 0.01 to about 0.25 weight percent based on the total weight of the composition of at least one salt prepared by the reaction of phosphorous acid with one or more basic organic compounds which contain nitrogen and have the formulas:

(15)
$$\begin{array}{c} R_1 \\ N - \left\{ (CH_2)_{n1} - N \right\}_{m1} \\ R_{15} \end{array}$$

(17)
$$\begin{array}{c|ccccc}
R_{10} & R_{10} & R_{10} \\
R_{7} & R_{8} & R_{6} & N & R_{8} \\
R_{7} & R_{9} & R_{7} & R_{9} \\
\hline
R_{9} & R_{7} & R_{9} & R_{7} & R_{9} \\
R_{8} & R_{6} & R_{10} & R_{10}
\end{array}$$

(20)
$$R_1 = 0$$
 $R_6 = R_7$ $R_9 = R_8$ $R_8 = 0$ $R_2 = 0$ $R_2 = 0$ $R_3 = 0$ $R_8 =$

 R_1 and R_2 are independently is selected from hydrogen, C_1 - C_{22} -alkyl, substituted C_1 - C_{22} -alkyl, C_3 - C_8 -cycloalkyl, substituted C_3 - C_8 -cycloalkyl, heteroaryl, and aryl;

 R_3 and R_4 are independently selected from hydrogen, C_1 - C_{22} -alkyl, substituted C_1 - C_{22} -alkyl, C_3 - C_8 -cycloalkyl, and substituted C_3 - C_8 -cycloalkyl wherein at least one of R_3 and R_4 is a substituent other than hydrogen; R_3 and R_4 collectively represent a divalent group forming a ring with the nitrogen atom to which they are attached;

 R_6 , R_7 , R_8 , and R_9 are independently selected from hydrogen, C_1 - C_{22} -alkyl, substituted C_1 - C_{22} -alkyl, C_3 - C_8 -cycloalkyl, substituted C_3 - C_8 -cycloalkyl, heteroaryl, aryl;

R₁₀ is selected from hydrogen and C₁-C₂₂-alkyl;

 L_1 is a divalent linking group selected from C_2 - C_{22} -alkylene; -(CH_2CH_2 - Y_1)₁₋₃- CH_2CH_2 -; C_3 - C_8 -cycloalkylene; arylene; or -CO- L_2 -OC-;

 L_2 is selected from C_1 - C_{22} -alkylene, arylene, -(CH_2CH_2 - Y_1)₁₋₃- CH_2CH_2 - and C_3 - C_8 -cycloalkylene;

 Y_1 is selected from -OC(O)-, -NHC(O)-, -O-, -S-, -N(R₁)-;

 Y_2 is selected from -O- or -N(R₁)-;

Z is a positive integer of up to about 6;

m1 is selected from 0 to about 10;

n1 is a positive integer selected from 2 to about 12;

 R_{15} and R_{16} are independently selected from hydrogen, C_1 - C_{22} -alkyl, substituted C_1 - C_{22} -alkyl, C_3 - C_8 -cycloalkyl, substituted C_3 - C_8 -cycloalkyl, heteroaryl, aryl, and radical A wherein radical A is selected from the following structures:

Radical A structures wherein * designates the position of attachment.

wherein at least one of R_{15} and R_{16} represents an A radical and the ratio of the number of phosphorus atoms in the acidic phosphorus-containing compound to number of basic nitrogen atoms in the basic organic compound is about 0.05 to about 2; and

- (C) a polycarbonate, wherein the weight ratio of polyester component (A) to polycarbonate component (C) is about 75:25 to about 25:75.
- 32. A composition according to Claim 31 wherein the polyester of component (A) has an inherent viscosity of about 0.4 to 0.8 dL/g measured at 25°C in a 60/40 ratio by weight of phenol/tetrachloroethane and comprises:
- (1) diacid residues comprising about 80 to 100 mole percent terephthalic acid residues and about 0 to 20 mole percent isophthalic acid residues; and
- (2) diol residues comprising about 55 to 80 mole percent 1,4-cyclohexanedimethanol residues and 20 to about 45 mole percent ethylene glycol residues.

component (B) comprises about 0.05 to about 0.15 weight percent based on the total weight of the composition of at least one salt defined in Claim 31 wherein the ratio of the number of phosphorus atoms in the acidic phosphorus-containing compound to number of basic nitrogen atoms in the basic organic compound is about 0.25 to about 1.1; and component (C) comprises a bisphenol A polycarbonate.

- 33. A composition according to Claim 31 wherein the polyester of component (A) has an inherent viscosity of about 0.4 to 0.8 dL/g measured at 25°C in a 60/40 ratio by weight of phenol/tetrachloroethane and comprises:
- (1) diacid residues comprising about 70 to 80 mole percent terephthalic acid residues and about 30 to 20 mole percent isophthalic acid residues; and
- (2) diol residues comprising about 90 to 100 mole percent 1,4-cyclohexanedimeth-anol residues and 0 to about 10 mole percent ethylene glycol residues. component (B) comprises about 0.05 to about 0.15 weight percent based on the total weight of the composition of at least one salt defined in Claim 12 wherein the ratio of the number of phosphorus atoms in the acidic phosphorus-containing compound to number of basic nitrogen atoms in the basic organic compound is about 0.25 to about 1.1; and component (C) comprises a bisphenol A polycarbonate.
- 34. A composition according to Claim 31 wherein the polyester of component (A) has an inherent viscosity of about 0.4 to 0.8 dL/g measured at 25°C in a 60/40 ratio by weight of phenol/tetrachloroethane and comprises:
- (1) diacid residues comprising at least about 90 mole percent 1,4-cyclohexanedicarboxylic acid residues; and
- (2) diol residues comprising at least about 90 mole percent 1,4-cyclohexanedimethanol residues;

component (B) comprises about 0.05 to about 0.15 weight percent based on the total weight of the composition of at least one salt defined in Claim 31 wherein the ratio of the number of phosphorus atoms in the acidic phosphorus-containing compound to number of basic nitrogen atoms in the basic organic compound is about 0.25 to about 1.1; and component (C) comprises a bisphenol A polycarbonate.

- 35. A polymer composition comprising:
- (A) at least one polyester having an inherent viscosity of about 0.4 to 1.2 dL/g measured at 25°C in a 60/40 ratio by weight of phenol/tetrachloroethane and comprises:
 - (1) diacid residues comprising at least 50 mole percent terephthalic acid residues; and
 - (2) diol residues comprising at least 50 mole percent of ethylene glycol residues, cyclohexanedimethanol residues, or a mixture thereof; and contains about 10 to 200 ppmw Ti, Co and/or Mn residues, wherein the total of the diacid residues is equal to 100 mole percent and the total of the diol residues also is equal to 100 mole percent; and
- (B) about 0.01 to about 0.25 weight percent based on the total weight of the composition of at least one salt prepared by the reaction of phosphorous acid with a basic organic compound having the formula:

 R_3 and R_4 are independently selected from hydrogen, C_1 - C_{22} -alkyl, substituted C_1 - C_{22} -alkyl, C_3 - C_8 -cycloalkyl, and substituted C_3 - C_8 -cycloalkyl wherein at least one of R_3 and R_4 is a substituent other than hydrogen; R_3 and R_4 collectively represent a divalent group forming a ring with the nitrogen atom to which they are attached;

 R_6 , R_7 , R_8 , and R_9 are independently selected from hydrogen, C_1 - C_{22} -alkyl, substituted C_1 - C_{22} -alkyl, C_3 - C_8 -cycloalkyl, substituted C_3 - C_8 -cycloalkyl, heteroaryl, aryl;

R₁₀ is selected from hydrogen and alkyl;

L₁ is a divalent linking group selected from C₂-C₂₂-alkylene; -(CH₂CH₂-Y₁)₁₋₃-CH₂CH₂-; C₃-C₈-cycloalkylene; arylene; or -CO-L₂-OC-; and L₂ is selected from C₁-C₂₂-alkylene, arylene, -(CH₂CH₂-Y₁)₁₋₃-CH₂CH₂- and C₃-C₈-cycloalkylene;

 Y_1 is selected from -OC(O)-, -NHC(O)-, -O-, -S-, -N(R₁)-; Z is a positive integer of up to about 6; and

- (C) a bisphenol A polycarbonate, wherein the weight ratio of polyester component (A) to polycarbonate component (C) is about 75:25 to about 25:75.
- 36. A composition according to Claim 35 wherein the polyester of component (A) has an inherent viscosity of about 0.4 to 0.8 dL/g measured at 25°C in a 60/40 ratio by weight of phenol/tetrachloroethane and comprises:
- (1) diacid residues comprising about 80 to 100 mole percent terephthalic acid residues and about 0 to 20 mole percent isophthalic acid residues; and
- (2) diol residues comprising about 55 to 80 mole percent 1,4-cyclohexanedimethanol residues and 20 to about 45 mole percent ethylene glycol residues. and component (B) comprises about 0.05 to about 0.15 weight percent based on the total weight of the composition of the salt defined in Claim 35 wherein R₆ = R₇ = R₈ = R₉ = R₁₀ = methyl; L₁ is hexamethylene; and (R₃)(R₄)N- collectively represent a morpholino group and the ratio of the number of phosphorus atoms in the acidic phosphorus-containing compound to number of basic nitrogen atoms in the basic organic compound is about 0.25 to about 1.1.

WO 2004/065472 PCT/US2003/040536

- 37. A composition according to Claim 35 wherein the polyester of component (A) has an inherent viscosity of about 0.4 to 0.8 dL/g measured at 25°C in a 60/40 ratio by weight of phenol/tetrachloroethane and comprises:
- (1) diacid residues comprising about 70 to 80 mole percent terephthalic acid residues and about 30 to 20 mole percent isophthalic acid residues; and
- (2) diol residues comprising about 90 to 100 mole percent 1,4-cyclohexanedimeth-anol residues and 0 to about 10 mole percent ethylene glycol residues. and component (B) comprises about 0.05 to about 0.15 weight percent based on the total weight of the composition of the salt defined in Claim 16 wherein R₆ = R₇ = R₈ = R₉ = R₁₀ = methyl; L₁ is hexamethylene; and (R₃)(R₄)N- collectively represent a morpholino group and the ratio of the number of phosphorus atoms in the acidic phosphorus-containing compound to number of basic nitrogen atoms in the basic organic compound is about 0.25 to about 1.1.
- 38. A composition according to Claim 35 wherein the polyester of component (A) has an inherent viscosity of about 0.4 to 0.8 dL/g measured at 25°C in a 60/40 ratio by weight of phenol/tetrachloroethane and comprises:
- (1) diacid residues comprising at least about 90 mole percent 1,4-cyclohexanedicar-boxylic acid residues; and
- (2) diol residues comprising at least about 90 mole percent1,4-cyclohexanedimethanol residues;

and component (B) comprises about 0.05 to about 0.15 weight percent based on the total weight of the composition of at least one salt defined in Claim 35 wherein the ratio of the number of phosphorus atoms in the acidic phosphorus-containing compound to number of basic nitrogen atoms in the basic organic compound is about 0.25 to about 1.1.

A polymer concentrate comprising:

- (A) at least one polyester prepared by the reaction of at least one diol with at least one dicarboxylic acid or dialkyl ester thereof in the presence of a metallic catalyst; and
- (B) up to about 10 weight percent, based on the total weight of the polyester, of at least one salt prepared by the reaction of one or more acidic phosphoruscontaining compounds and one or more basic organic compounds which contain nitrogen.
- 40. A polymer concentrate according to Claim 39 comprising:
- (A) a polyester comprising:
 - diacid residues comprising at least 50 mole percent terephthalic acid residues, 1,4-cyclohexanedicarboxylic acid residues or a mixture thereof; and
 - (2) diol residues comprising at least 50 mole percent of ethylene glycol residues, cyclohexanedimethanol residues, or a mixture thereof; and up to about 200 ppmw Ti, Co and/or Mn residues; wherein the total of the diacid residues is equal to 100 mole percent and the total of the diol residues also is equal to 100 mole percent; and
- (B) about 5 to about 10 weight percent, based on the total weight of the polyester, of at least one salt prepared by the reaction of one or more acidic phosphoruscontaining compounds with one or more basic organic compounds which contain nitrogen;

the acidic phosphorus compounds are selected from the compounds having the formula:

(1)
$$R_{1}OPOHOH$$
 R_{2}

(2)
$$R_1 = 0 - P - H = R_1 = 0 - P - H = R_2 = R_2$$

(3)
$$R_1 - O - P - O - H$$

 $O - P - O - H$
 $O - P$
 $O - P$
 $O - P$

$$(4) \qquad \begin{array}{c} O \\ X \\ O \end{array} \qquad \begin{array}{c} O \\ O \\ \end{array} \qquad \begin{array}{c} O \\ Y \\ \end{array} \qquad \begin{array}{c} O \\ X \\ \end{array}$$

 R_1 and R_2 are independently selected from hydrogen, C_1 - C_{22} -alkyl, substituted C_1 - C_{22} -alkyl, C_3 - C_8 -cycloalkyl, substituted C_3 - C_8 -cycloalkyl, heteroaryl, and aryl;

n is 2 to 500; and

X is selected from hydrogen and hydroxy;

and wherein the basic organic compounds are selected from compounds having the formulas:

(1)
$$R_{3}$$
 N R_{4} R_{5}

$$(2) \qquad \begin{array}{c} R_{10} \\ R_{7} \\ R_{11} \end{array}$$

(3)
$$R_7$$
 R_{11} R_{10} R_{8} R_{9} R_{11}

$$(4) \qquad R_1 \qquad R_{12}$$

0

- 101 -

(7)
$$R_{10}$$
 R_{9} R_{10} R_{10}

(8)
$$R_{10} N Y_{2} L_{1} Y_{2} R_{8} R_{9}$$
 $R_{9} R_{9} R_{8} R_{9}$

(9)
$$R_{10} N Y_2 - L_1 - Y_2 N - R_{10} R_8 R_9$$

(10)
$$R_{13} L_2 N L_2 R_{14}$$

$$(11) \qquad \begin{array}{c} R_3 \\ N \\ R_4 \\ R_4 \end{array} \qquad \begin{array}{c} R_3 \\ R_4 \end{array}$$

BNSDOCID: <WO 2004065472A1 I >

(15)
$$\begin{array}{c} R_{1} \\ N + (CH_{2})_{n1} - N + \frac{R_{16}}{m_{1}} R_{2} \end{array}$$

(16)
$$\begin{array}{c|ccccc}
R_{9} & R_{7} & R_{8} & R_{6} & R_{8} & R_{8} & R_{8} & R_{9} & R_{7} & R_{9} & R_{7} & R_{9} & R_{7} & R_{9} & R_{7} & R_{8} & R_{10} &$$

BNSDOCID: <WO 2004065472A1 I >

(19)
$$\begin{array}{c|ccccc}
R_{10} & R_{10} & R_{10} \\
R_{6} & N & R_{8} & R_{6} & N & R_{8} \\
R_{7} & N & R_{9} & R_{7} & R_{9} \\
\hline
N & N & N & R_{10} & N & R_{10} \\
\hline
R_{9} & N & R_{6} & R_{10} & R_{10} & R_{10} & R_{10} & R_{10} \\
\hline
R_{10} & R$$

(20)
$$R_1 = 0$$
 $R_9 = 0$ $R_8 = 0$ $R_9 = 0$

 R_3 , R_4 , and R_5 are independently selected from hydrogen, C_1 - C_{22} -alkyl, substituted C_1 - C_{22} -alkyl, C_3 - C_8 -cycloalkyl, and substituted C_3 - C_8 -cycloalkyl wherein at least one of R_3 , R_4 , and R_5 is a substituent other than hydrogen; R_3 and R_4 or R_4 and R_5 collectively represent a divalent group forming a ring with the nitrogen atom to which they are attached;

 R_6 , R_7 , R_8 , and R_9 are independently selected from hydrogen, C_1 - C_{22} -alkyl, substituted C_1 - C_{22} -alkyl, C_3 - C_8 -cycloalkyl, substituted C_3 - C_8 -cycloalkyl, heteroaryl, aryl;

 R_{10} is selected from hydrogen, -OR₆, C₁-C₂₂-alkyl, substituted C₁-C₂₂-alkyl, C₃-C₈-cycloalkyl, substituted C₃-C₈-cycloalkyl;

 R_{11} is selected from hydrogen; C_1 - C_{22} -alkyl, substituted C_1 - C_{22} -alkyl, C_3 - C_8 -cycloalkyl, substituted C_3 - C_8 -cycloalkyl, heteroaryl, aryl, -Y₁- R_3 or a succinimido group having the formula

- 105 -

 R_{12} is selected from hydrogen, C_1 - C_{22} -alkyl, substituted C_1 - C_{22} -alkyl, C_3 - C_8 -cycloalkyl, substituted C_3 - C_8 -cycloalkyl, heteroaryl, aryl and may be located at the 2, 3 or 4 positions on the aromatic ring;

the $-N(R_3)(R_4)$ group may be located at the 2, 3 or 4 positions on the pyridine ring of nitrogen compound (5);

the $-CO_2R_3$ and R_1 groups may be located at any of the 2, 3, 4, 5, 6 positions of the pyridine ring of nitrogen compound (6);

 L_1 is a divalent linking group selected from C_2 - C_{22} -alkylene; -(CH_2CH_2 - Y_1)₁₋₃- CH_2CH_2 -; C_3 - C_8 -cycloalkylene; arylene; or -CO- L_2 -OC-;

 L_2 is selected from C_1 - C_{22} -alkylene, arylene, -(CH_2CH_2 - Y_1)₁₋₃- CH_2CH_2 - and C_3 - C_8 -cycloalkylene;

 Y_1 is selected from -OC(O)-, -NHC(O)-, -O-, -S-, -N(R₁)-;

 Y_2 is selected from -O- or -N(R₁)-;

 R_{13} and R_{14} are independently selected from -O-R₂, and -N(R₂)₂;

Z is a positive integer of up to about 20;

m1 is selected from 0 to about 10:

n1 is a positive integer selected from 2 to about 12;

 R_{15} and R_{16} are independently selected from hydrogen, C_1 - C_{22} -alkyl, substituted C_1 - C_{22} -alkyl, C_3 - C_8 -cycloalkyl, substituted C_3 - C_8 -cycloalkyl, heteroaryl, aryl, and radical A wherein radical A is selected from the following structures:

BNSDOCID: <WO 2004065472A1 I >

WO 2004/065472 PCT/US2003/040536

- 106 -

Radical A structures wherein * designates the position of attachment.

and wherein the ratio of the number of phosphorus atoms in the acidic phosphoruscontaining compound to number of basic nitrogen atoms in the basic organic compound is about 0.05 to about 2.

- 41. A polymer concentrate according to Claim 39 comprising:
- (A) a polyester comprising:
 - diacid residues comprising at least 50 mole percent terephthalic acid residues, 1,4-cyclohexanedicarboxylic acid residues or a mixture thereof; and
 - (2) diol residues comprising at least 50 mole percent of ethylene glycol residues, cyclohexanedimethanol residues, or a mixture thereof; and up to about 200 ppmw Ti, Co and/or Mn residues; wherein the total of the diacid residues is equal to 100 mole percent and the total of the diol residues also is equal to 100 mole percent; and
- (B) about 5 to about 10 weight percent, based on the total weight of the polyester, of at least one salt prepared by the reaction of one or more acidic phosphoruscontaining compounds with one or more basic organic compounds which contain nitrogen;

wherein

the acidic phosphorus compounds are selected from phosphorous acid, phosphoric acid and polyphosphoric acid; and

the basic organic compounds which contain nitrogen are selected from compounds having the formulas:

(2)
$$R_7$$
 R_8 R_9 R_{11}

(3)
$$R_7$$
 R_{11} R_{10} R_{8} R_{9} R_{11}

(7)
$$R_{10} N - Y_2 - L_1 - Y_2 - R_8 R_8$$

(8)
$$R_{10}$$
 R_{10} R_{10}

(9)
$$R_{10}$$
 R_{9} R_{10} R_{10} R_{10} R_{10} R_{10} R_{10} R_{10} R_{10} R_{10}

- 109 -

(15)
$$R_{15} = \frac{R_{16}}{N - \left[(CH_2)_{n1} - N - \right]_{m1}} R_2$$

(17)
$$R_{6} R_{7} R_{8} R_{6} R_{7} R_{8} R_{6} R_{7} R_{8} R_{6} R_{10}$$

BNSDOCID: <WO 200408547241 I >

(20)
$$R_1 = 0$$
 $R_9 = R_8$ $R_7 = 0$ $R_9 = R_8$ $R_8 = 0$ $R_9 =$

 R_1 and R_2 are independently is selected from hydrogen, C_1 - C_{22} -alkyl, substituted C_1 - C_{22} -alkyl, C_3 - C_8 -cycloalkyl, substituted C_3 - C_8 -cycloalkyl, heteroaryl, and aryl;

 R_3 and R_4 are independently selected from hydrogen, C_1 - C_{22} -alkyl, substituted C_1 - C_{22} -alkyl, C_3 - C_8 -cycloalkyl, and substituted C_3 - C_8 -cycloalkyl wherein at least one of R_3 and R_4 is a substituent other than hydrogen; R_3 and R_4 collectively represent a divalent group forming a ring with the nitrogen atom to which they are attached;

 R_6 , R_7 , R_8 , and R_9 are independently selected from hydrogen, C_1 - C_{22} -alkyl, substituted C_1 - C_{22} -alkyl, C_3 - C_8 -cycloalkyl, substituted C_3 - C_8 -cycloalkyl, heteroaryl, aryl;

 R_{10} is selected from hydrogen, -OR₆, C₁-C₂₂-alkyl, substituted C₁-C₂₂-alkyl, C₃-C₈-cycloalkyl, substituted C₃-C₈-cycloalkyl;

 R_{11} is selected from hydrogen; C_1 - C_{22} -alkyl, substituted C_1 - C_{22} -alkyl, C_3 - C_8 -cycloalkyl, substituted C_3 - C_8 -cycloalkyl, heteroaryl, aryl, - Y_1 - R_3 or a succinimido group having the formula

$$O \nearrow N \longrightarrow O$$
 R_2

 L_1 is a divalent linking group selected from C_2 - C_{22} -alkylene; -(CH₂CH₂-Y₁)₁₋₃-CH₂CH₂-; C_3 -C₈-cycloalkylene; arylene; or -CO-L₂-OC-;

 L_2 is selected from C_1 - C_{22} -alkylene, arylene, -(CH_2CH_2 - Y_1)₁₋₃- CH_2CH_2 - and C_3 - C_8 -cycloalkylene;

 Y_1 is selected from -OC(O)-, -NHC(O)-, -O-, -S-, -N(R₁)-;

Y₂ is selected from -O- or -N(R₁)-;

Z is a positive integer of up to about 20;

m1 is selected from 0 to about 10;

n1 is a positive integer selected from 2 to about 12;

 R_{15} and R_{16} are independently selected from hydrogen, C_1 - C_{22} -alkyl, substituted C_1 - C_{22} -alkyl, C_3 - C_8 -cycloalkyl, substituted C_3 - C_8 -cycloalkyl,

- 112 -

heteroaryl, aryl, and radical A wherein radical A is selected from the following structures:

Radical A structures wherein * designates the position of attachment.

wherein at least one of R₁₅ and R₁₆ is an A radical; and the ratio of the number of phosphorus atoms in the acidic phosphorus-containing compound to number of basic nitrogen atoms in the basic organic compound is about 0.05 to about 2.

- 42. A polymer concentrate according to Claim 39 comprising:
- (A) a polyester comprising:
 - (1) diacid residues comprising at least 50 mole percent terephthalic acid residues, 1,4-cyclohexanedicarboxylic acid residues or a mixture thereof; and
 - (2) diol residues comprising at least 50 mole percent of ethylene glycol residues, cyclohexanedimethanol residues, or a mixture thereof; and up to about 200 ppmw Ti, Co and/or Mn residues; wherein the total of the diacid residues is equal to 100 mole percent and the total of the diol residues also is equal to 100 mole percent; and
- (B) about 5 to about 10 weight percent, based on the total weight of the polyester, of at least one salt prepared by the reaction of one or more acidic phosphoruscontaining compounds with one or more basic organic compounds which contain nitrogen;

the acidic phosphorus compounds is phosphorous acid; and the basic organic compounds which contain nitrogen are selected from compounds having the formulas:

(15)
$$\begin{array}{c} R_1 & R_{16} \\ N - \left((CH_2)_{n1} - N - \right)_{m1} R_2 \\ R_{15} & \end{array}$$

(17)
$$\begin{array}{c|ccccc}
R_{10} & R_{10} & R_{10} \\
R_{7} & R_{8} & R_{6} & N & R_{8} \\
R_{7} & R_{9} & R_{7} & R_{9} \\
\hline
R_{9} & N & R_{6} & R_{10} \\
\hline
R_{10} & R_{10} & R_{10} & R_{10} \\
\end{array}$$

(20)
$$R_1 = 0$$
 $R_9 = 0$ $R_8 = 0$ $R_9 = 0$

 R_1 and R_2 are independently is selected from hydrogen, C_1 - C_{22} -alkyl, substituted C_1 - C_{22} -alkyl, C_3 - C_8 -cycloalkyl, substituted C_3 - C_8 -cycloalkyl, heteroaryl, and aryl;

 R_3 and R_4 are independently selected from hydrogen, C_1 - C_{22} -alkyl, substituted C_1 - C_{22} -alkyl, C_3 - C_8 -cycloalkyl, and substituted C_3 - C_8 -cycloalkyl wherein at least one of R_3 and R_4 is a substituent other than hydrogen; R_3 and R_4 collectively represent a divalent group forming a ring with the nitrogen atom to which they are attached;

 R_6 , R_7 , R_8 , and R_9 are independently selected from hydrogen, C_1 - C_{22} -alkyl, substituted C_1 - C_{22} -alkyl, C_3 - C_8 -cycloalkyl, substituted C_3 - C_8 -cycloalkyl, heteroaryl, aryl;

R₁₀ is selected from hydrogen and alkyl;

 L_1 is a divalent linking group selected from C_2 - C_{22} -alkylene; -(CH_2CH_2 - Y_1)₁₋₃- CH_2CH_2 -; C_3 - C_8 -cycloalkylene; arylene; or -CO- L_2 -OC-;

 L_2 is selected from C_1 - C_{22} -alkylene, arylene, -(CH_2CH_2 - Y_1)₁₋₃- CH_2CH_2 - and C_3 - C_8 -cycloalkylene;

 Y_1 is selected from -OC(O)-, -NHC(O)-, -O-, -S-, -N(R₁)-;

 Y_2 is selected from -O- or -N(R₁)-;

Z is a positive integer of up to about 6;

m1 is selected from 0 to about 10:

n1 is a positive integer selected from 2 to about 12;

 R_{15} and R_{16} are independently selected from hydrogen, C_1 - C_{22} -alkyl, substituted C_1 - C_{22} -alkyl, C_3 - C_8 -cycloalkyl, substituted C_3 - C_8 -cycloalkyl, heteroaryl, aryl, and radical A wherein radical A is selected from the following structures:

Radical A structures wherein * designates the position of attachment.

wherein at least one of R_{15} and R_{16} represents an A radical and the ratio of the number of phosphorus atoms in the acidic phosphorus-containing compound to number of basic nitrogen atoms in the basic organic compound is about 0.05 to about 2.

43. A polymer composition comprising:

- (A) at least one polyester comprising:
 - (1) diacid residues comprising at least 40 mole percent terephthalic acid residues; and
 - (2) diol residues comprising from 52 to 75 mole percent of 1,4cyclohexanedimethanol residues and 25 to 48 mole percent of ethylene glycol;

wherein the total mole percent of the diacid residues is equal to 100 mole percent and the total mole percent of the diol residues is also equal to 100 mole percent;

(B) at least one salt prepared by the reaction of one or more acidic phosphoruscontaining compounds selected from phosphorous acid, phosphoric acid and polyphosphoric acid with one or more basic organic compounds which contain nitrogen and have the formulas:

(2)
$$R_7$$
 R_8 R_9 R_{11}

(3)
$$R_7$$
 R_{10} R_8 R_9 R_{11}

(7)
$$R_{10}$$
 R_{9} R_{9} R_{10} R_{10} R_{10} R_{10} R_{10} R_{10} R_{10} R_{10} R_{10} R_{10}

(8)
$$R_{10}$$
 R_{9} R_{9} R_{10} R_{10} R_{10} R_{10} R_{10} R_{10} R_{10} R_{10} R_{10} R_{10}

(9)
$$R_{10}$$
 R_{9} R_{9} R_{10} R_{10}

(15)
$$\begin{array}{c} R_1 \\ N - \left\{ (CH_2)_{n1} - N - \right\}_{m1} \\ R_{15} \end{array}$$

(16)
$$R_{6} \rightarrow R_{7} \rightarrow R_{9} \rightarrow R_{7} \rightarrow$$

BNSDOCID: <WO 200408547941 I

(17)
$$\begin{array}{c|ccccc}
R_{10} & R_{10} & R_{10} \\
R_{6} & N & R_{8} & R_{6} & N & R_{8} \\
R_{7} & N & R_{9} & R_{7} & R_{9} \\
\hline
N_{8} & N & R_{6} & R_{10} & R_{10}
\end{array}$$

(18)
$$\begin{array}{c|ccccc}
R_{10} & R_{10} & R_{10} \\
R_{6} & N & R_{8} & R_{6} & N & R_{8} \\
R_{7} & N & N & N & N & N
\end{array}$$

 R_1 and R_2 are independently is selected from hydrogen, C_1 - C_{22} -alkyl, substituted C_1 - C_{22} -alkyl, C_3 - C_8 -cycloalkyl, substituted C_3 - C_8 -cycloalkyl, heteroaryl, and aryl;

 R_3 and R_4 are independently selected from hydrogen, C_1 - C_{22} -alkyl, substituted C_1 - C_{22} -alkyl, C_3 - C_8 -cycloalkyl, and substituted C_3 - C_8 -cycloalkyl wherein at least one of R_3 and R_4 is a substituent other than hydrogen; R_3 and R_4 collectively represent a divalent group forming a ring with the nitrogen atom to which they are attached;

 R_6 , R_7 , R_8 , and R_9 are independently selected from hydrogen, C_1 - C_{22} -alkyl, substituted C_1 - C_{22} -alkyl, C_3 - C_8 -cycloalkyl, substituted C_3 - C_8 -cycloalkyl, heteroaryl, aryl;

 R_{10} is selected from hydrogen, -OR₆, C₁-C₂₂-alkyl, substituted C₁-C₂₂-alkyl, C₃-C₈-cycloalkyl, substituted C₃-C₈-cycloalkyl;

 R_{11} is selected from hydrogen; C_1 - C_{22} -alkyl, substituted C_1 - C_{22} -alkyl, C_3 - C_8 -cycloalkyl, substituted C_3 - C_8 -cycloalkyl, heteroaryl, aryl, - Y_1 - R_3 or a succinimido group having the formula

$$O \nearrow N \nearrow O$$
 R_2

BNSDOCID: <WO 20040R5472A1 1 5

L₁ is a divalent linking group selected from C₂-C₂₂-alkylene; -(CH₂CH₂- $Y_1)_{1-3}$ -CH₂CH₂-; C₃-C₈-cycloalkylene; arylene; or -CO-L₂-OC-;

 L_2 is selected from C_1 - C_{22} -alkylene, arylene, -(CH_2CH_2 - Y_1)₁₋₃- CH_2CH_2 - and C₃-C₈-cycloalkylene;

 Y_1 is selected from -OC(O)-, -NHC(O)-, -O-, -S-, -N(R₁)-;

 Y_2 is selected from -O- or -N(R₁)-;

Z is a positive integer of up to about 20;

m1 is selected from 0 to about 10;

n1 is a positive integer selected from 2 to about 12:

 R_{15} and R_{16} are independently selected from hydrogen, C_1 - C_{22} -alkyl, substituted C₁-C₂₂-alkyl, C₃-C₈-cycloalkyl, substituted C₃-C₈-cycloalkyl, heteroaryl, aryl, and radical A wherein radical A is selected from the following structures:

Radical A structures wherein * designates the position of attachment

wherein at least one of R_{15} and R_{16} is an A radical; and the ratio of the number of phosphorus atoms in the acidic phosphorus-containing compound to number of basic nitrogen atoms in the basic organic compound is about 0.05 to about 2.

The polymer composition of Claim 43 further comprising a polycarbonate.

- 45. The polymer composition of Claim 44 wherein the weight ratio of polyester component (A) to the polycarbonate component is about 75:25 to about 25:75.
- 46. A polymer concentrate according to Claim 44 comprising:
- (A) a polyester comprising:
 - (1) diacid residues comprising from 80 to 100 mole percent terephthalic acid residues,; and
 - (2) diol residues comprising from 52 to 65 mole percent of 1,4cyclohexanedimethanol residues, and 35 to 48 mole percent of ethylene glycol;

wherein the total of the diacid residues is equal to 100 mole percent and the total of the diol residues also is equal to 100 mole percent; and

(B) about 5 to about 10 weight percent, based on the total weight of the polyester, of at least one salt prepared by the reaction of one or more acidic phosphoruscontaining compounds with one or more basic organic compounds which contain nitrogen;

wherein

the acidic phosphorus compounds is phosphorous acid; and the basic organic compounds which contain nitrogen are selected from compounds having the formulas:

(12)
$$\begin{array}{c|c} R_{10} & R_{10} \\ R_{6} & N & R_{8} \\ R_{7} & R_{9} & R_{7} & R_{9} \\ \hline N_{N} & N & L_{1} & N & Z \\ \hline R_{3} & R_{4} & R_{4} & R_{5} & R_{10} \\ \end{array}$$

(15)
$$\begin{array}{c} R_{1} \\ N + (CH_{2})_{n1} - N + \frac{R_{16}}{J_{m1}} R_{2} \\ R_{15} \end{array}$$

(16)
$$\begin{array}{c|ccccc}
R_{10} & R_{10} & R_{10} \\
R_{7} & R_{8} & R_{6} & N & R_{8} \\
R_{7} & R_{9} & R_{7} & R_{9} \\
\hline
R_{9} & R_{7} & R_{6} & R_{10}
\end{array}$$

(19)
$$\begin{array}{c|ccccc}
R_{10} & R_{10} & R_{10} \\
R_{6} & N & R_{8} & R_{6} & N & R_{8} \\
R_{7} & N & N & R_{9} & R_{7} & R_{9} \\
\hline
N & N & N & R_{10} & R_{10}$$

(20)
$$R_1 = 0$$
 $R_1 = 0$ $R_2 = 0$ $R_3 = 0$ $R_8 = 0$

- 126 -

wherein

 R_1 and R_2 are independently is selected from hydrogen, C_1 - C_{22} -alkyl, substituted C_1 - C_{22} -alkyl, C_3 - C_8 -cycloalkyl, substituted C_3 - C_8 -cycloalkyl, heteroaryl, and aryl;

 R_3 and R_4 are independently selected from hydrogen, C_1 - C_{22} -alkyl, substituted C_1 - C_{22} -alkyl, C_3 - C_8 -cycloalkyl, and substituted C_3 - C_8 -cycloalkyl wherein at least one of R_3 and R_4 is a substituent other than hydrogen; R_3 and R_4 collectively represent a divalent group forming a ring with the nitrogen atom to which they are attached;

 R_6 , R_7 , R_8 , and R_9 are independently selected from hydrogen, C_1 - C_{22} -alkyl, substituted C_1 - C_{22} -alkyl, C_3 - C_8 -cycloalkyl, substituted C_3 - C_8 -cycloalkyl, heteroaryl, aryl;

R₁₀ is selected from hydrogen and alkyl;

 L_1 is a divalent linking group selected from C_2 - C_{22} -alkylene; -(CH₂CH₂-Y₁)₁₋₃-CH₂CH₂-; C₃-C₈-cycloalkylene; arylene; or -CO-L₂-OC-;

 L_2 is selected from C_1 - C_{22} -alkylene, arylene, -(CH_2CH_2 - Y_1)₁₋₃- CH_2CH_2 - and C_3 - C_8 -cycloalkylene;

 Y_1 is selected from -OC(O)-, -NHC(O)-, -O-, -S-, -N(R₁)-;

 Y_2 is selected from -O- or -N(R₁)-;

Z is a positive integer of up to about 6;

m1 is selected from 0 to about 10;

n1 is a positive integer selected from 2 to about 12;

 R_{15} and R_{16} are independently selected from hydrogen, C_1 - C_{22} -alkyl, substituted C_1 - C_{22} -alkyl, C_3 - C_8 -cycloalkyl, substituted C_3 - C_8 -cycloalkyl, heteroaryl, aryl, and radical A wherein radical A is selected from the following structures:

WO 2004/065472 PCT/US2003/040536

- 127 -

Radical A structures wherein * designates the position of attachment.

wherein at least one of R_{15} and R_{16} represents an A radical and the ratio of the number of phosphorus atoms in the acidic phosphorus-containing compound to number of basic nitrogen atoms in the basic organic compound is about 0.05 to about 2.

BNSDOCID: <WO 2004065472A1 1 >

ional Application No PCT/US 03/40536

A. CLASSIFICATION OF SUBJECT MATTER IPC 7 COSK5/52 COSG C08L67/02 C08L69/00 CO8G63/91 According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) IPC 7 C08K C08G C08L Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) EPO-Internal, WPI Data, PAJ, CHEM ABS Data C. DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. Category ° EP 0 661 342 A (KANEGAFUCHI CHEMICAL IND) 1,20,39 X 5 July 1995 (1995-07-05) page 5, lines 5-35; examples 4,10page 6, lines 43-48 1,20,39 US 5 965 261 A (WEBSTER JOSEPH R) X 12 October 1999 (1999-10-12) claim 1 column 5, lines 29-65 column 9, lines 32-45 column 10, lines 13-20 column 12, lines 50-67; examples 11r,12r 1 - 46GB 1 466 154 A (TEIJIN LTD) Α 2 March 1977 (1977-03-02) page 3; claim 1 Patent family members are listed in annex. Further documents are listed in the continuation of box C. Special categories of cited documents: T later document published after the international filing date or priority date and not in conflict with the application but "A" document defining the general state of the art which is not considered to be of particular relevance cited to understand the principle or theory underlying the invention "E" earlier document but published on or after the international "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such docu- O document referring to an oral disclosure, use, exhibition or ments, such combination being obvious to a person skilled other means in the art. *P* document published prior to the international filing date but later than the priority date claimed '&' document member of the same patent family Date of mailing of the international search report Date of the actual completion of the international search 07/06/2004 28 May 2004 Authorized officer Name and malling address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL – 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016 Dury, 0

Form PCT/ISA/210 (second sheet) (January 2004)

1

ational Application No PCT/US 03/40536

	etion) DOCUMENTS CONSIDERED TO BE RELEVANT	
Category °	Citation of document, with Indication, where appropriate, of the relevant passages	Relevant to claim No.
A	US 5 744 554 A (HOFFMANN KURT ET AL) 28 April 1998 (1998-04-28) claim 1 column 20, lines 54,55 columns 21,22 column 23, lines 45-50	1-46
	column 23, lines 45-50 WO 02/053633 A (THIERRY JEAN-FRANCOIS; NYLSTAR S A (FR); CHARBONNEAUX THIERRY (IT)) 11 July 2002 (2002-07-11) claims 3,4; table 1 page 2, lines 14-21,33-35	1-46

L

Form PCT/ISA/210 (continuation of second sheet) (January 2004)

mational application No. PCT/US 03/40536

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)							
This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:							
1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:							
2. X Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful international Search can be carried out, specifically: see FURTHER INFORMATION sheet PCT/ISA/210							
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).							
Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)							
This International Searching Authority found muttiple inventions in this international application, as follows:							
As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.							
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.							
3. As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:							
4. No required additional search fees were timely paid by the applicant. Consequently, this international Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:							
Remark on Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.							

Form PCT/ISA/210 (continuation of first sheet (1)) (July 1998)

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

Continuation of Box I.2

Claims Nos.:

Following the formulation used, the claims cover any polymer compositions comprising e.g. polyester as a minor component. Support within the meaning of Article 6 PCT and/or disclosure within the meaning of Article 5 PCT is to be found, however, for only polyester compositions, i.e. comprising polyester as a minor component. In the present case, the claims so lack support, and the application so lacks disclosure, that a meaningful search over the whole of the claimed scope is impossible. Consequently, the search has been carried out for those parts of the claims which appear to be supported and disclosed, namely those parts relating to polyester compositions (claims 1-19; 24-43) and polyester/polycarbonate blends (claims 20-23;44-46).

The applicant's attention is drawn to the fact that claims relating to inventions in respect of which no international search report has been established need not be the subject of an international preliminary examination (Rule 66.1(e) PCT). The applicant is advised that the EPO policy when acting as an International Preliminary Examining Authority is normally not to carry out a preliminary examination on matter which has not been searched. This is the case irrespective of whether or not the claims are amended following receipt of the search report or during any Chapter II procedure. If the application proceeds into the regional phase before the EPO, the applicant is reminded that a search may be carried out during examination before the EPO (see EPO Guideline C-VI, 8.5), should the problems which led to the Article 17(2) declaration be overcome.

nformation on patent family members

lonal Application No PCT/US 03/40536

Patent document cited in search report	Publication date		Patent family member(s)	Publication date
EP 0661342 A	05-07-1995	JP JP CA DE DE EP US JP	3243359 B2 7196843 A 2139158 A1 69432398 D1 69432398 T2 0661342 A1 5684071 A 3115195 B2 7233311 A	07-01-2002 01-08-1995 29-06-1995 08-05-2003 27-11-2003 05-07-1995 04-11-1997 04-12-2000 05-09-1995
US 5965261 A	12-10-1999	AT CA DE EP JP KR TW	264883 T 2289881 A1 69916554 D1 1000967 A1 2000143955 A 2000035501 A 494122 B	15-05-2004 16-05-2000 27-05-2004 17-05-2000 26-05-2000 26-06-2000 11-07-2002
GB 1466154 A	02-03-1977	NONE		
US 5744554 A	28-04-1998	AT AU BR CA DE DE WO EP ES JP	185366 T 2613495 A 9507780 A 2188671 A1 69512655 D1 69512655 T2 9533003 A1 0760829 A1 2138209 T3 10503791 T 3398797 B2	15-10-1999 21-12-1995 19-08-1997 07-12-1995 11-11-1999 18-05-2000 07-12-1995 12-03-1997 01-01-2000 07-04-1998 21-04-2003
WO 02053633 A	11-07-2002	FR BR CA CN EP WO US	2818985 A1 0116754 A 2432957 A1 1484670 T 1358258 A2 02053633 A2 2004068089 A1	05-07-2002 25-02-2004 11-07-2002 24-03-2004 05-11-2003 11-07-2002 08-04-2004

Form PCT/ISA/210 (patent family ennex) (January 2004)