Professor: Shabani

July 19, 2023

Analysis in \mathbb{R}^n Homework 5

Problem 1 Let X, Y be two sets, $f: X \to Y$ a function, and $A \subset X, B \subset Y$ two sets. Define the *image* of A under f as

$$f(A) := \{ y \in Y : y = f(x) \text{ for some } x \in A \} \subset Y,$$

and the preimage of B under f as

$$f^{-1}(B) := \{x \in X : f(x) \in B\} \subset X.$$

Determine if each of the followings is true for every $A, A' \subset X$ and $B, B' \subset Y$. If so, prove it; otherwise, provide a counterexample.

- (a) $f(A \cup A') = f(A) \cup f(A')$,
- (b) $f(A \cap A') = f(A) \cap f(A')$,
- (c) $f^{-1}(B \cup B') = f^{-1}(B) \cup f^{-1}(B')$,
- (d) $f^{-1}(B \cap B') = f^{-1}(B) \cap f^{-1}(B')$,
- (e) $f(A) \subset B$ if and only if $A \subset f^{-1}(B)$.

Solution.

(a) We claim this is true. We have

$$y \in f(A \cup A')$$

$$\iff y = f(x) \text{ for some } x \in A \cup A'$$

$$\iff y = f(x) \text{ for some } x \in A \text{ or } y = f(x) \text{ for some } x \in A'$$

$$\iff y \in \{y' \in Y : f(x) = y' \text{ for some } x \in A\} \text{ or } y \in \{y' \in Y : f(x) = y' \text{ for some } x \in A'\}$$

$$\iff y \in \{y' \in Y : f(x) = y' \text{ for some } x \in A\} \cup \{y' \in Y : f(x) = y' \text{ for some } x \in A'\}$$

$$\iff y \in \{y' \in Y : f(x) = y' \text{ for some } x \in A\} \cup \{y' \in Y : f(x) = y' \text{ for some } x \in A'\}$$

$$\iff y \in \{(A) \cup (A'), (A')\}$$

so
$$f(A \cup A') = f(A) \cup f(A')$$
.

(b) We claim this is false. For example, take

$$f = \{(a, 1), (b, 2), (c, 2), (d, 3)\}$$

with $A = \{a, b\}$ and $A' = \{c, d\}$. Then,

$$f(A \cap A') = f(\emptyset) = \emptyset \neq \{2\} = \{1, 2\} \cap \{2, 3\} = f(A) \cap f(B).$$

(c) We claim this is true. We have

$$x \in f^{-1}(B \cup B')$$

$$\iff f(x) \in B \cup B'$$

$$\iff f(x) \in B \text{ or } f(x) \in B'$$

$$\iff x \in f^{-1}(B) \text{ or } x \in f^{-1}(B')$$

$$\iff x \in f^{-1}(B) \cup f^{-1}(B'),$$

so
$$f^{-1}(B \cup B') = f^{-1}(B) \cup f^{-1}(B')$$
.

(d) We claim this is true. We have

$$x \in f^{-1}(B \cap B')$$

$$\iff f(x) \in B \cap B'$$

$$\iff f(x) \in B \text{ and } f(x) \in B'$$

$$\iff x \in f^{-1}(B) \text{ and } x \in f^{-1}(B')$$

$$\iff x \in f^{-1}(B) \cap f^{-1}(B'),$$

so
$$f^{-1}(B \cap B') = f^{-1}(B) \cap f^{-1}(B')$$
.

- (e) We claim this is true. We will prove the contrapositive for both directions.
 - (⇒) Suppose $a \in A$ but $a \notin f^{-1}(B)$. Then $f(a) \notin B$, so we cannot have $f(A) \subset B$.
 - (\Leftarrow) Suppose $y \in f(A)$ but $y \notin B$. So there exists some $a \in A$ such that y = f(a), but because $f(a) \notin B$, we have $a \notin f^{-1}(B)$. So we cannot have $A \subset f^{-1}(B)$.

Problem Rudin 1 Suppose f is a real function defined on \mathbb{R}^1 which satisfies

$$\lim_{h \to 0} [f(x+h) - f(x-h)] = 0$$

for every $x \in \mathbb{R}^1$. Does this imply that f is continuous?

Solution.

This is false. For example, consider the piecewise function

$$f(x) = \begin{cases} 1 & \text{if } x = 0 \\ x & \text{otherwise} \end{cases}.$$

Then, $\lim_{x\to 0} f(x) = 0 \neq 1 = f(0)$, so f is not continuous. However, since we have

$$\lim_{h \to 0} f(x+h) = 0$$
 and $\lim_{h \to 0} f(x-h) = 0$,

it is true that

$$\lim_{h \to 0} [f(x+h) - f(x-h)] = 0.$$

Problem Rudin 2 If f is a continuous mapping of a metric space X into a metric space Y, prove that

$$f(\overline{E}) \subset \overline{f(E)}$$

for every set $E \subset X$. (\overline{E} denotes the closure of E.) Show, by an example, that $f(\overline{E})$ can be a proper subset of $\overline{f(E)}$.

Solution.

Let $y \in f(\overline{E})$. Then, there exists some $x \in \overline{E}$ such that y = f(x). We have shown that this implies there exists some sequence $\{x_n\} \subset E$ that converges to x. Since we have that f is continuous at x, we also have that $f(\{x_n\})$ converges to f(x) = y from a result in class. Thus, since $f(\{x_n\})$ is a sequence in f(E) that converges to f(E) and f(E) and f(E) and f(E). Therefore, $f(E) \subset f(E)$.

Additionally, this inclusion can be strict. For example, consider the function $f(x) = e^x$. Then, since \mathbb{R} is closed, we have $f(\overline{\mathbb{R}}) = f(\mathbb{R}) = (0, \infty)$, but $\overline{f(\mathbb{R})} = [0, 1)$.

Problem Rudin 3 Let f be a continuous real function on a metric space X. Let Z(f) (the zero set of f) be the set of all $p \in X$ at which f(p) = 0. Prove that Z(f) is closed.

Solution.

Case 1: The codomain of f does not contain 0. Then $Z(p) = \emptyset$, so it is closed because it is finite.

Case 2: The codomain of f contains 0. We have shown in class that f is continuous if and only if $f^{-1}(F)$ is closed for every closed set F in the codomain. Since $\{0\}$ is a closed set in the codomain of f, and $f^{-1}(\{0\}) = Z(p)$, we must have that Z(p) is closed.

Problem Rudin 4 Let f and g be continuous mappings of a metric space X into a metric space Y, and let E be a dense subset of X (E is dense in X if $\overline{E} = X$). Prove that f(E) is dense in f(X). If g(p) = f(p) for all $p \in E$, prove that g(p) = f(p) for all $p \in X$. (In other words, a continuous mapping is determined by its values on a dense subset of its domain.)

Solution.

We will show a double-inclusion to prove $\overline{f(E)} = f(X)$.

- (\subset) By $\overline{f(E)}$ we mean the closure in f(X), so this is given.
- (\supset) From problem 2, we have $f(X)=f(\overline{E})\subset \overline{f(E)}.$

Next, let $p \in X$, and assume that f(e) = g(e) for all $e \in E$. Since $X = \overline{E}$, there exists some $\{p_n\} \in E$ such that $\{p_n\}$ converges to p. We have shown in class that since f and g are continuous, $f(\{p_n\})$ converges to f(p) and $g(\{p_n\})$ converges to g(p). Since $f(p_n) = g(p_n)$ for all $n \in \mathbb{N}$ (as $p_n \in E$ for all $n \in \mathbb{N}$), $f(\{p_n\})$ and $g(\{p_n\})$ must converge to the same point. Thus, f(p) = g(p).