

TU-A1300 28.9.2020

PRODUCTION PROCESSES AND PRODUCTION CONTROL

Paul Lillrank
Professor
Department of Industrial Engineering and Management

HOW TO CREATE KNOWLEDGE ABOUT PROCESSES

What is it? Ontology	What can be known? Epistemology	How does it work? Dynamics	What can be done? Technology
Conceptual model	Measures	Dynamic model	Interventions

Proces definition

Proces types

Key indicators

Process dynamics

Process planning, control, and improvement

Quality Assurance & Improvement

RESOURCE- AND FLOW EFFICIENCY

Management of production unit

Management of processes

3

PROCES IS A CONSEQUENCE OF SPECIALIZATION

Fragmentation

Integration of a multi-component product or service Product planning, Design

Coordination of a multi-step process Control, staffing, scheduling, quality

THE ELEMENTS OF PRODUCTION PROCESSES

ELEMENT	WHAT IS IT (ONTOLOGY)	WHAT CAN BE KNOWN? MEASUREMENT (EPISTEMOLOGY)
TASK PROCESSING f	Transformation, State change Requires technology and skill	Duration, Resource consumption (variable cost) Quality (conformance)
FLOW UNIT	Object to be processed (goods, person, property, case, data)	State (arriving, processed, waiting) Experience Throughput time
WORKSTATION	Resource unit / location doing processing Stationary or mobile	Capacity Fixed cost
SETUP	Prepare flow unit and workstation for processing	Duration, risk, format, Bargaining space Setup to repetition -ratio
STEP	A task connected to other tasks, In / out –interfaces	Step time, Takt time
HANDOVER	Moving a flow unit from one step to the next	Type, duration Accompanying information
FLOW	The route / journey of a flow unit Planned or explorative	Beginning, end, duration Alternative routes
WORK-IN-PROCESS INVENTORY (WIP)	Flow units processed or waiting to be processed	Inventory volume, Inventory turnover Queues
BATCH	A set of flow units moving together	Batch size
CYCLE TIME	The time for a flow unit to move through a certain number of steps	Time
THROUGHPUT () ()	Number of finished flow units per time-unit	Production volume per time unit Capacity

A PROCESS IS A COORDINATION DEVICE

- Sequential coordination of steps, that change the state of a flow-unit
- Division of labor: two or more distinct but complementary steps
- Specialization: workstations with dedicated resources for a specific output
- Handovers and inventory between tasks
- Identical or similar repetition: same process same output
- Subject to variability

^{*)} Throughput in industry is (strictly speaking) output that has been sold.

FLOW UNIT IN SERVICES

Patient as property:

Diseases
Organs and organ systems
Genome

Patient as person: Personal and medical history, Social relations, Preferences, values....

Patient as a

case:
Clinical
information
Applicable rules
and legislation

The entity that is processed / undergoes state changes in production.

PRODUCTION SYSTEMS ARE ASSEMBLED FROM PROCESSES

Process

Direct, hands-on management

Multi-functional process

Management through administrative fiat

Production system
Supply chain

Management through legally binding contracts

BOTH REPETITION AND FLOW

Handovers

Throughput time
Work-in-Process
inventory
Flow / layout

The journey of a flow unit from order to delivery Supply chain

9

KEY INDICATORS

PARALLEL FLOWS

Parts manufacturing

11

PRODUCTION LAYOUT

Functional layout

Process layout

Similar work stations grouped together → Specialization, Capacity Utilization

Flow organized by product / flow unit

→ Throughput time, Inventory turns

PROCESS TYPES (1) by movements of the flow unit

JOB SHOP Jumbled flow Flow unit

DISCONNECTED FLOW

CONNECTED FLOW

CONTINUOUS FLOW

Hopp, W.J. & Spearman, M.L. 2011. Factory physics. 3rd ed. Long Grove, IL: Waveland Press.

THE ANATOMY OF A PRODUCTION STEP

Processing builds on technologies (production function).

Processing changes the state of a flow unit

Improvements in processing require investments in technology

Setup and preparations can be done in many ways ← management

PROCES TYPES (2) Setup-to-processing ratio

PROCESS DYNAMICS

SETUP AND PROCESSING - COST AND VOLUME

VOLUME

Economies of scale

- repeat with same setup
- the cost of setup is divided on a growing volume of throughput
 → unit cost (variable +

fixed) decreases

SYNERGY

Economies of scope

- different processes use same infrastructure
- infrastructure can exploit economies of scale

LEARNING

The experience curve The learning curve

- unit cost falls predictably (%) by doubling of cumulative volume
- individual learning effect

LOT SIZE IS DETERMINED BY THE COST OF SETUP, TRANSPORT, AND INVENTORY

Setup cost

- Time
- Labor, supplies
- Risks

WIP inventory Work-in-Process

- Storage cost
- Cost of capital
- Spoilage

When lot size grows

- + capacity utilization improves
- WIP grows
- Longer throughput time

Leverage from improving setups!

LITTLE'S LAW

%10 = 10/1

10 = 20/2

Same output can be accomplished

- Fast wit small WIP
- Slow with large WIP

This is management!

INVENTORY AS BUFFER

Disconnected flow

A BOTTLENECK DETEMINES OUTPUT

^{*)} Flow-units per time-unit

WAITING TIME AND UTILIZATION

WT = VUT

WT= waiting time
V = variability component
(arrival and process variability)
U = utilization rate
T = average effective proces
time for one flow unit.

High variability is most damaging in situations with high utilization.

THE MANAGEMENT OF CAPACITY

PRODUCTION PLANNING AND CONTROL

PUSH AND PULL

Push

Pull

HOW CUSTOMER ORDER AND PRODUCTION MEET

= Order Penetration Point (OPP) the point in time when a specific customer order is attached to a specific flow unit – product.

- - ► = Activity based on demand estimate

THE FRONT OFFICE AND THE BACK OFFICE

1rank 2020

VARIABILITY HAMPERS PROCESSES

THE PROCESS IS PROTECTED FROM EXTERNAL DISTURBANCES

...REMAINS INTERNAL SOURCES OF VARIABILITY

VARIABILITY: SPREAD / CLUSTERING OF DATA

Variance: deviation

Variation: the spread in relation to a target...

... and tolerances.

Variety: different types

CAUSES OF VARIATION

Specific causes

- external source of variation
- uncontrolled
- time-location specific (ask why'?)
- can be found from time series analysis.

Common causes

- internal sources of variation
- capability under normal conditions
- random, probability distribution
- endemic to system architecture.

31

QUALITY IS RELATIONS

