Rad s objektima i podacima u R-u

Lucija Kanjer, e-mail: <u>lucija.kanjer@biol.pmf.hr</u> 2024-10-28

Sadržaj praktikuma

- Uvod u rad u programskom okruženju R i osnovne funkcije, instaliranje programskih paketa
- · Unos podataka u programsko okruženje R, struktura objekata
- · Rad s objektima i podacima te definiranje bioloških varijabli u R-u
- · Grafički prikaz bioloških podataka i testiranje razdiobe podataka u R-u
- Primjeri osnovnih statističkih analiza kategoričkih i numeričkih varijabli u biološkim istraživanjima u R-u
- · Regresije i korelacije, linearni modeli bioloških podataka primjeri u R-u
- Primjena parametrijskih statističkih testova bioloških podataka u R-u
- · Primjena neparametrijskih statističkih testova bioloških podataka u R-u
- Primjeri multivarijatnih analize bioloških podataka u R-u linearni modeli, klaster analize i ordinacijske analize

Sadržaj današnje vježbe

Excel

· pretvaranje neuredne u (*untidy*) u urednu (*tidy*) tablicu

R

- odabir samo određenih varijabli iz seta podataka naredba select()
- filtriranje uzoraka oadranih karakteristika naredba filter()
- kreiranje nove varijable naredba mutate()
- grupiranje rezultata po varijablama naredba group_by()
- prikaz rezultata prosjeka varijabli po grupama naredba summarize()
- uklanjanje nedostajućih vrijednosti naredba na.omit()
- pisanje koda s pipe opetatorom (%>%)

Tipovi tablica u analizi podataka

Tablice za vizualizaciju podataka - koriste se u radovima, izvještajima itd.

- · Lako su čitljive ljudima, ne sadrže mnogo podataka, ne više od jedne stranice.
- · Poruka tablice jasno je vidljiva, npr. prosjek jedne grupe je veći od ostalih.
- · Sve vrijednosti jedne varijable su prikazane u istim mjernim jedinicama i s istim brojem decimalnih mjesta.

Tablice za analizu podataka

- · Nazivaju se još *raw table*, *dataset*.
- · Služe kao **uredno** spremište svih podataka na jednom mjestu.
- Koriste se kao input za računalne analize pa moraju biti napravljenje da ih programi koje korisrimo mogu čitati.
- · U analizi podataka ovakve tablice se slažu u tzv. *tidy* tj. urednom formatu

Untidy tablica

Otvorite datoteku "kornjace_untidy.xlsx"

SampleID	Turtle_ID	TurtleName	Age	length_cm	width(cm)	SamplingDate	rescue_centre		Location	DNA concentration
S1	TB175	Maksimus	Juvenile	45.2	44.2	28.7.2020.	Aquarium Pula	Porer island	44.113065, 15.232353	31,46 good
S2	TB181	CC_VIS_2001		42	37	29.6.2020.	-	Vis island	42.777562, 16.901862	27,11 good
S3	TB183	CC_VIS_2002		31	29	11.8.2020.		Vis island	42.959317, 17.141558	20,73 good
S4	TB185	CC_VIS_2003		31	28	20.8.2020.		Vis island	44.758325, 13.890561	100,06 good
S5	TB189	Valbiska		30	27.5	5.11.2020.	Blue World Institute	Krk island	44.983781, 13.754311	87,61 good
S6	TB195	FS35		45	41	10.12.2020.		Susak island	lat: 42.90401 lon: 16.03579	19,58 poor
S7	TB201	Apox		36	34	14.1.2021.		Mali Lošinj	lat: 42.9546 lon: 15.85258	27,26 good
S8	TB203	CC_LOŠINJ_2102		55	53.5	25.1.2021.		Lošinj island	lat: 42.9536, lon: 16.09005	15,76 poor
S9	TB205	Zlata		35.5	33	3.2.2021.		Mali Lošinj	45.023144, 14.578583	15,35 poor
S10	TB207	Noemi		40.5	38	16.2.2021.		Veli Lošinj	44.506341, 14.285180	26,74 good
S11	TB209	Sanjin		32	29	16.2.2021.		Mali Lošinj	44.506341, 14.285180	26,66 good
S12	TB211	CC_LOŠINJ_2106		40	38	8.3.2021.		Lošinj island	44.506341, 14.285180	36,07 good
S13	TB217	Oliver Raul		26	24.2	23.4.2021.	Aquarium Pula Blue World Institute	Medulin	44.506341, 14.285180	19,57 good
S14	TB219	Martin		37.8	34.8	23.4.2021.		Mali Lošinj	44.546785, 14.447440	22,06 good
S15	TB221	CC_LOŠINJ_2112		31	28	25.5.2021.		Mali Lošinj	44.572978, 14.408607	21,01 good
S16	TB227	Calimero		52	52	6.4.2021.		Susak island	44.542943, 14.441804	22,37 good
S17	TB229	Marijana		26	23	6.4.2021.		Trstenika island	44.522182, 14.508105	25,94 good
S18	TB231	CC_LOSINJ_2111		27	25.5	21.04.2021.		Mali Lošinj	44.546785, 14.447440	31,05 good
S19	TB159	Ella		62	58	30.6.2020.	- Aquarium Pula	Zadar	N 44.61342, E 14.40082	34,99 good
S20	TB163	Huanita	Sub-adult	68	66	20.3.2020.		Lastovo island	43.886247, 15.193743	72,93 good
S21	TB167	Maro		67	63.2	21.7.2020.		Korčula island	44.807439, 13.937336	31,41 good
S22	TB177	Špela		68	67	3.8.2020.		Barbariga	44.534310, 14.478769	32,43 good
S23	TB191	FS94		67.5	66	30.11.2020.	Blue World Institute	Susak island	N 44.56873, E 14.42382	24,68 good
S24	TB197	FS25	Adult	70	67	19.12.2020.		Susak island	N 42.991, E 16.051	21,64 good
S25	TB199	FS60		73	68	19.12.2020.		Susak island	44.519761, 14.181472	25,69 good
S26	TB215	Karlo Albano		73	73	25.3.2021.	Aquarium Pula	Dugi island	44.671560, 14.580641	16,83 poor
S27	TB223	Bova		70	64	8.6.2021.	Blue World Institute	Vis island	N 44.54774. E 14.43973	19,08 poor

Sredite tablicu u tidy format!

- 1 varijabla = 1 stupac tablice
- 1 uzorak (opažanje) = 1 redak tablice
- 1 vrijednost = 1 kućica tablice

Pazite! U biologiji je često 1 uzorak = 1 jedinka, ali i ne mora biti tako! Ako np. uzorkujemo jedinku više puta, onda svako uzorkovanje = 1 opažanje i predstavlja 1 redak u tablici.

Najčešće greške

- · Imena stupaca nisu varijable, nego vrijednosti.
- spajanje dvije varijable u isti stupac.
- · spajanje ćelija istih vrijednosti u tablici.
- · spajanje naziva stupaca/redova.
- · puštanje praznih redova i stupaca.
- · kreiranje više tablica u istom dokumentu.

Preporuke

- · maknuti sve boje
- · maknuti svo formatiranje (podebljani font, kurziv, crte između tablica)
- · ne pisati razmak u imenima stupaca (varijabli)
- · pisati imena varijabli istim stilom
- · uobičajeni stilovi pisanja varijabli u R-u: ime_varijable i ImeVarijable
- pišite puna imena varijabli, a ne skraćenice (npr. M i F može značite male i female, a može značiti i mother i father)

Rezultat - tidy tablica kornjača!

												М
sample_ID	turtle_ID	turtle_name	age	length_cm	width_cm	sampling_date	rescue_centre	location	latitude	longitude	DNA_concentration	DNA_quality
S1	TB175	Maksimus	Juvenile	45.2	44.2	28.7.2020.	Aquarium Pula	Porer island	15.23235	44.11306	31,46	good
S2	TB181	CC_VIS_2001	Juvenile	42	37	29.6.2020.	Blue World Institute	Vis island	16.90186	42.77756	27,11	good
S3	TB183	CC_VIS_2002	Juvenile	31	29	11.8.2020.	Blue World Institute	Vis island	17.14156	42.95932	20,73	good
S4	TB185	CC_VIS_2003	Juvenile	31	28	20.8.2020.	Blue World Institute	Vis island	13.89056	44.75832	100,06	good
S5	TB189	Valbiska	Juvenile	30	27.5	5.11.2020.	Blue World Institute	Krk island	13.75431	44.98378	87,61	good
S6	TB195	FS35	Juvenile	45	41	10.12.2020.	Blue World Institute	Susak island	16.03579	42.90401	19,58	poor
S7	TB201	Apox	Juvenile	36	34	14.1.2021.	Blue World Institute	Mali Lošinj	15.85258	42.9546	27,26	good
S8	TB203	CC_LOŠINJ_2102	Juvenile	55	53.5	25.1.2021.	Blue World Institute	Lošinj island	16.09005	42.9536	15,76	poor
S9	TB205	Zlata	Juvenile	35.5	33	3.2.2021.	Blue World Institute	Mali Lošinj	14.57858	45.02314	15,35	poor
S10	TB207	Noemi	Juvenile	40.5	38	16.2.2021.	Blue World Institute	Veli Lošinj	14.28518	44.50634	26,74	good
S11	TB209	Sanjin	Juvenile	32	29	16.2.2021.	Blue World Institute	Mali Lošinj	14.28518	44.50634	26,66	good
S12	TB211	CC_LOŠINJ_2106	Juvenile	40	38	8.3.2021.	Blue World Institute	Lošinj island	14.28518	44.50634	36,07	good
S13	TB217	Oliver Raul	Juvenile	26	24.2	23.4.2021.	Aquarium Pula	Medulin	14.28518	44.50634	19,57	good
S14	TB219	Martin	Juvenile	37.8	34.8	23.4.2021.	Aquarium Pula	Mali Lošinj	14.44744	44.54678	22,06	good
S15	TB221	CC_LOŠINJ_2112	Juvenile	31	28	25.5.2021.	Blue World Institute	Mali Lošinj	14.40861	44.57298	21,01	good
S16	TB227	Calimero	Juvenile	52	52	6.4.2021.	Blue World Institute	Susak island	14.4418	44.54294	22,37	good
S17	TB229	Marijana	Juvenile	26	23	6.4.2021.	Blue World Institute	Trstenika island	14.50811	44.52218	25,94	good
S18	TB231	CC_LOSINJ_2111	Juvenile	27	25.5	21.04.2021.	Blue World Institute	Mali Lošinj	14.44744	44.54678	31,05	good
S19	TB159	Ella	Sub-adult	62	58	30.6.2020.	Aquarium Pula	Zadar	14.40082	44.61342	34,99	good
S20	TB163	Huanita	Sub-adult	68	66	20.3.2020.	Aquarium Pula	Lastovo island	15.19374	43.88625	72,93	good
S21	TB167	Maro	Sub-adult	67	63.2	21.7.2020.	Aquarium Pula	Korčula island	13.93734	44.80744	31,41	good
S22	TB177	Špela	Sub-adult	68	67	3.8.2020.	Aquarium Pula	Barbariga	14.47877	44.53431	32,43	good
S23	TB191	FS94	Sub-adult	67.5	66	30.11.2020.	Blue World Institute	Susak island	14.42382	44.56873	24,68	good
S24	TB197	FS25	Adult	70	67	19.12.2020.	Blue World Institute	Susak island	16.051	42.991	21,64	good
S25	TB199	FS60	Adult	73	68	19.12.2020.	Blue World Institute	Susak island	14.18147	44.51976	25,69	good
S26	TB215	Karlo Albano	Adult	73	73	25.3.2021.	Aquarium Pula	Dugi island	14.58064	44.67156	16,83	poor
S27	TB223	Bova	Adult	70	64	8.6.2021.	Blue World Institute	Vis island	14.43973	44.54774	19,08	poor

Uvod u Tidyverse

- · Tidyverse je skup međusobno povezanih R paketa osmišljenih za olakšavanje rada s podacima.
- · Osnovna filozofija Tidyverse-a je "tidy" (uredan) oblik podataka, gdje su podaci organizirani u tabličnom formatu (redovi predstavljaju opažanja, a stupci varijable).
- · Omogućava intuitivno i efikasno manipuliranje, analiziranje i vizualiziranje podataka.
- · Istovjetne naredbe ponekad su dostupne i u base R-u, ali tidyverse je češće korišten u praksi i pruža puno više mogućnosti za rad s podacima.

Osnovni paketi u Tidyverse-u

- · ggplot2 Napredna i fleksibilna vizualizacija podataka.
- · dplyr Efikasna manipulacija podacima (filtriranje, sortiranje, agregacija).
- · tidyr Transformacija podataka u "tidy" format.
- · readr Učitavanje podataka iz tekstualnih datoteka (CSV, TSV).
- · tibble Poboljšani rad s tablicama, alternativa data.frame-u.

Učitajmo tidyverse u R radno okruženje!

```
# Paketi iz tidyverse-a se mogu učitati svi skupa
library(tidyverse)
## — Attaching core tidyverse packages -
                                                                tidyverse 2.0.0 —
## ✓ dplyr 1.1.4 ✓ readr
                                     2.1.5
## √ forcats 1.0.0 √ stringr 1.5.1
## √ ggplot2 3.5.1 √ tibble 3.2.1
## ✓ lubridate 1.9.3 ✓ tidyr 1.3.1
## √ purrr 1.0.2
## — Conflicts —
                                                          tidvverse conflicts() —
## X dplyr::filter() masks stats::filter()
## X dplyr::lag() masks stats::lag()
## i Use the conflicted package (<a href="http://conflicted.r-lib.org/">http://conflicted.r-lib.org/</a>) to force all conflicts to become errors
# Paketi Tidyverse-a se mogu i zasebno učitavati, npr. ggplot2
library(ggplot2)
```

Set podataka o Palmer pingvinima

- · Za ovu vježbu koristit ćemo set proširenu verziju podataka Palmer pengiuns.
- · Podaci o pingvinima arhipelaga Palmer sadrže mjerenja veličine za **tri vrste pingvina** (Adelie, Chinstrap i Gentoo) promatrane na **tri otoka** (Torgersen, Dream, Biscoe) u arhipelagu Palmer na Antarktici.
- · Ove je podatke prikupila dr. Kristen Gorman u sklopu dugoročnih američkih ekoloških istraživanja stanice Palmer. Podaci su uvezeni izravno s podatkovnog portala Inicijative za podatke o okolišu (Environmental Data Initiative EDI) i dostupni su za korištenje uz CC0 licencu ("Bez pridržanih prava") u skladu s Politikom podataka Palmer Station.
- prošireni set podataka sadrži dodatne varijable i dostupan je na https://www.kaggle.com/datasets/samybaladram/palmers-penguin-dataset-extended/data

Tablica s podacima o pingvinima

Otvorite tablicu palmerpenguins_extended.xlsx u Excelu.

Rad s podacima u R-u

Podsjetimo se: pregled trenutnog i postavljanje novog radnog direktorija.

```
# predled trenutnog radnog direktorija
getwd()

## [1] "C:/Users/Hrvoje/Documents/APUBI/03_Rad_s_podacima"

# postavljanje novog radnog direktorija
setwd("C:/Users/Hrvoje/Documents/APUBI/03_Rad_s_podacima")
```

Učitavanje podataka iz Excel tablice

```
# Učitavanje potrebnog paketa
library(readxl)
# Učitavanje podataka iz Excel tablice u objekt
penguins <- read_excel("palmerpenguins_original.xlsx")</pre>
```

View(penguins) # ili klik na objekt u environmentu

Provjera strukture tablice i tipa podataka.

```
# Provjera tipa i strukture objekta
str(penguins)
```

```
## tibble [344 \times 9] (S3: tbl df/tbl/data.frame)
   $ sample
             : num [1:344] 1 2 3 4 5 6 7 8 9 10 ...
   $ species
                    : chr [1:344] "Adelie" "Adelie" "Adelie" "Adelie" ...
   $ island : chr [1:344] "Torgersen" "Torgersen" "Torgersen" "Torgersen" ...
##
   $ bill length mm : num [1:344] 39.1 39.5 40.3 NA 36.7 39.3 38.9 39.2 34.1 42 ...
##
   $ bill depth mm : num [1:344] 18.7 17.4 18 NA 19.3 20.6 17.8 19.6 18.1 20.2 ...
##
   $ flipper length mm: num [1:344] 181 186 195 NA 193 190 181 195 193 190 ...
   $ body mass g : num [1:344] 3750 3800 3250 NA 3450 ...
##
   $ sex
             : chr [1:344] "male" "female" "female" NA ...
##
##
   $ year
                    : num [1:344] 2007 2007 2007 2007 2007 ...
```

Pitanje na koje želimo odgovor je:

"Koja je prosječna masa pingvina vrste Adelie u kilogramima na svakom od otoka?"

Naredba select()

- Kako bi odgovorili na to pitanje, najlakše je stvroriti novi tablicu u kojoj ćemo odabrati samo one varijable koje su nam potrebne za izračun: species, island i body_mass_g.
- · Naredba **select()** je funkcija iz dplyr paketa koja služi za odabir (selektiranje) specifičnih stupaca iz data frame-a. Pomaže u fokusiranju samo na one varijable (stupce) koje su potrebne za analizu, a ignorira ostatak podataka.
- Primjer: select(podaci, varijabla1, varijabla2, ...)

Naredba select()

i 334 more rows

Korak 1: Odabir relevantnih varijabli (stupaca)

```
select(penguins, # podaci
       species, # varijabla 1
       island, # varijabla 2
       body mass g)# varijabla 3
## # A tibble: 344 x 3
     species island
                       body mass g
##
     <chr> <chr>
                             <dbl>
##
   1 Adelie Torgersen
                              3750
   2 Adelie Torgersen
                              3800
   3 Adelie Torgersen
                              3250
   4 Adelie Torgersen
                                NΑ
##
   5 Adelie Torgersen
                              3450
   6 Adelie Torgersen
                              3650
   7 Adelie Torgersen
                              3625
##
   8 Adelie Torgersen
                              4675
   9 Adelie Torgersen
                              3475
## 10 Adelie Torgersen
                              4250
```

Gdje je objekt? Zašto nije u environmentu?

- Jer ga nismo spremili kao novi objekt!
- · Kreirajmo novi objekt naziva "penguins_selected" u koji će se spremiti izabrane varijable.

Ponovimo korak 1, ali kreirajmo novi objekt u koji će se spremiti
penguins_selected <- select(penguins, species, island, body_mass_g)</pre>

View(penguins_selected) ili klik na objekt u environmentu za vizualizaciju nove tablice.

Funkcija filter()

- · filter() je funkcija iz dplyr paketa koja služi za filtriranje redova u data frame-u.
- · Zadržava samo one redove koji zadovoljavaju specificirane uvjete.
- · Čitljivost Jasno izražava uvjete u kodu.
- Fleksibilnost Moguće kombinirati više uvjeta korištenjem logičkih operatora (&, |). Primjer:

Naredbom **filter()** želimo od svih redova s vrstama pingvina zadržati samo pripadnike vrste Adelie.

```
# Korak 2: Filtriranje uzoraka (redaka) vrste "Adelie"

penguins_adelie <- filter(penguins_selected, # podaci

species == "Adelie") # uvjet filtriranja
```

View(penguins_adelie) ili klik na objekt u environmentu za vizualizaciju nove tablice.

Funkcija mutate()

- mutate() je funkcija iz dplyr paketa koja služi za kreiranje novih stupaca (varijabli) ili modifikaciju postojećih unutar data frame-a.
- Pomaže u dodavanju izmjenjenih varijabli bez potrebe za kreiranjem novog data frame-a.
- · koristit ćemo funkciju mutate() kako bi kreirali novu varijablu koja prikazuje masu pingvina u kilogramima umjesto u gramima.

```
# Korak 3: Kreiranje nove varijable koja sadrži masu izraženu u kilogramima
penguins_mass_kg <- mutate(penguins_adelie, # podaci
body_mass_kg = body_mass_g / 1000) # kreiranje nove varijable
```

View(penguins_mass_kg) ili klik na objekt u environmentu za vizualizaciju nove tablice.

Funkcija group_by() u R-u (dplyr)

- group_by() je funkcija iz dplyr paketa koja omogućava grupiranje podataka prema jednoj ili više varijabli.
- Koristi se često u kombinaciji s funkcijama poput summarise() za izvođenje agregatnih operacija unutar svake grupe.

```
# Korak 4: Zadavanje grupiranja i prikaza rezultata po otocima penguins_grouped <- group_by(penguins_mass_kg, # podaci island) # varijabla po pokoj želimo grupirati
```

Funkcija summarise()

- **summarise()** ili **summarize()** je funkcija iz dplyr paketa koja se koristi za sažimanje podataka na temelju agregatnih operacija.
- Najčešće se koristi u kombinaciji s group_by() kako bi se izračunale sumarizirane statistike unutar grupa.

Zašto nam se ne prikazuju podaci za Torgersen otok?

- Jer nismo uklonili nedostajuće vrijednosti!
- Koristiti funkciju na.omit().

Funkcija na.omit()

- na.omit() funkcija iz base R-a koja se koristi za uklanjanje redaka s nedostajućim vrijednostima (NA) iz data frame-a ili vektora.
- · Vraća filtrirani data frame bez redaka s NA vrijednostima.

```
# Kako bi mogli izračunati rezultat za otok Torgersen moramo ukloniti nedostajuće podatke
# Uklanjanje uzoraka s nedostajućim podacima
penguins_cleaned <- na.omit(penguins_mass_kg)

# Ponovimo korake 4 i 5 s novom tablicom
# Korak 4: Zadavanje grupiranja i prikaza rezultata po otocima
penguins_grouped <- group_by(penguins_cleaned, island)
```

```
# Korak 5: Kreiranje finalne sumariziranje tablice rezultata
penguins_result <- summarise(penguins_grouped, average_mass = mean(body_mass_kg))
# Ispis konačnog rezultata
print(penguins_result)</pre>
```

Odgovor na postavljeno pitanje pitanje s početka:

"Prosječna masa pingvina vrste Adelie na otoku Biscoe i Torgersen iznosila je 3.71 kg, a na otoku Dream 3.69 kg."

Zadatak

· Koristeći gore naučene funkcije za manipulaciju podacima, kreirajte data frame koji će dati odgovor na pitanje:

"Koja je posječna masa u kilogramima pingvina vrste Gentoo mužjaka, a koja ženki?

Rješenje

```
# Korak 1: Selektiranje relevantnih varijabli
penguins selected 2 <- select(penguins, species, sex, body mass g)</pre>
# # Korak 2: Filtriranje uzoraka (redaka) vrste "Gentoo"
penguins gentoo <- filter(penguins selected 2, species == "Gentoo")</pre>
# Korak 3: Kreiranje nove varijable koja sadrži masu izraženu u kilogramima
gentoo mass kg <- mutate(penguins gentoo, body mass kg = body mass g / 1000)
# Korak 4: Uklananje nedostajućih vrijednosti
gentoo cleaned <- na.omit(gentoo mass kg)</pre>
# Korak 4: Zadavanje grupiranja i prikaza rezultata po spolu
gentoo grouped <- group by(gentoo cleaned, sex)</pre>
# Korak 5: Kreiranje finalne sumariziranje tablice rezultata
gentoo result <- summarise(gentoo grouped, average mass = mean(body mass kg))</pre>
```

```
# Ispis konačnog rezultata
print(gentoo_result)
```

Odgovor: "Prosječna masa pingvina vrste Gentoo ženki iznosila je 4.68 kg, a mužjaka 5.48 kg."

Kako smanjiti količinu napisanog koda?

Pipe operator (%>%)

- Pipe operator (%>%) dolazi iz magrittr paketa (dio Tidyverse-a) i koristi se za povezivanje više funkcija na čitljiviji način.
- Omogućuje prosljeđivanje rezultata iz jedne funkcije kao ulaz u sljedeću funkciju bez potrebe za ugnježđivanjem.

Prednosti:

- · Čitljivost Kod je linearan i lakši za razumijevanje.
- Modularnost Lako povezivanje različitih operacija bez pretrpavanja.
- Fleksibilnost Može se koristiti s većinom funkcija.

Primjer pisanja koda pomoći pipe operatora

```
# Korištenje pipe operatora za smanenje količine koda
adelie_result <- penguins %>% #podaci
  select(species, island, body_mass_g) %>% #odabir relevantnih varijabli
  filter(species == "Adelie") %>% #filtriranje samo pingvina vrste Adelie
  mutate(body_mass_kg = body_mass_g/1000) %>% #kreiranje nove varijable
  na.omit() %>% #uklanjanje nedostajućih vrijednosti
  group_by(island) %>% #grupiranje po otocima
  summarise(average_mass = mean(body_mass_kg)) #sumariziraj kao prosjek
print(adelie_result)
```

Rješenje zadatka pomoći pipe opetatora

2 male

5.48

```
gentoo result <- penguins %>%
  select(species, sex, body mass g) %>%
 filter(species == "Gentoo") %>%
 mutate(body mass kg = body mass g/1000) %>%
 na.omit() %>%
 group by(sex) %>%
  summarise(average mass = mean(body mass kg))
print(gentoo result)
## # A tibble: 2 × 2
##
    sex
           average mass
##
   <chr>
                  <dbl>
## 1 female
              4.68
```