

T Las matemáticas son un lenguaje

π Pasar de esto...

TA esto

Las funciones nos permiten modelar nuestra realidad

¿Qué es una función?

π¿De qué depende el precio?

- El precio puede depender del trayecto recorrido.
- El precio puede depender del modelo del auto.
- El precio puede depender del número de personas.

π¿De qué depende el precio?

- El precio puede depender del <u>trayecto</u> <u>recorrido.</u>
- El precio puede depender del <u>modelo</u> <u>del auto.</u>
- El precio puede depender del <u>número</u> <u>de personas.</u>

Una función es como una máquina

Entra un elemento **x** y sale un elemento **y**. En el caso de una variable.

$$y = f(x)$$

π_{Función}

Es una regla donde a cada elemento de un conjunto **A** se le asigna un elemento de un conjunto **B**.

π_{Función}

Es una <u>regla</u> donde a cada elemento de un conjunto A se le <u>asigna</u> un elemento de un conjunto B.

Letras Números

 \mathcal{X}

y

TFormas de representar una función

- Verbalmente
- Numéricamente
- Visualmente
- Algebraicamente

π Verbalmente

- "A cada letra del abecedario se le asigna un número entero diferente".
- "El precio aumenta en 2 dólares por cada kilómetro recorrido".

T Numéricamente

х	f(x)
- 14	4
-6	2
-2.5	0
-1	-4
0	-10
3	-11
π	-17
7	-20
12	-25

TVisualmente

T Algebraicamente

$$y = f(x) = x^2$$

Tipos de variables

 π

Variables cualitativas

兀

T Nominales

Son a las que les asignamos una cualidad. Por ejemplo; los colores de un LED pueden ser rojo, verde o azul.

π Ordinales

Como su nombre lo dice, representan un orden. La altura de un objeto se puede clasificar como alto, medio o bajo.

TBinarias

Solo toman dos valores, usualmente usadas para representar estados. Existe o no existe, está frío o caliente, uno o cero, son algunos ejemplos.

Variables cuantitativas

兀

π Discretas

Son finitas y toman ciertos valores, como los números en una tabla por ejemplo. Pueden verse como variables separadas por un "paso".

Por ejemplo, una persona puede tener 0, 1, 2 o 3 amigos pero nunca 3.5.

π Continuas

Sus valores pueden verse como infinitos al tomar cualquier valor dentro de los números reales en un rango establecido.

Por ejemplo: Medir la estatura de una persona.

Dominio y rango de una función

 π

¿Qué valores pueden tener las funciones?

π Dominio de una función

Los valores que toma x y que están definidos en la función f(x).

Rango de una función

Todos los resultados que nos puede dar una función.

π Relacionando...

- El dominio son los granos de café.
- La función es nuestra cafetera.
- El rango son todas las clases de café que podemos preparar.

Cómo leer matemáticas: Símbolos generales

 π

Cómo leer matemáticas: Conjuntos

 π

 $f: X \to Y$

$$f(x) = \frac{1}{x}$$

$$D = \{x \in \mathbb{R} : x \neq 0\}$$

Funciones algebraicas lineales

Funciones algebraicas polinómicas

Funciones trascendentes

Funciones seccionadas

Funciones compuestas

π_iHagamos un pastel!

T Primero hagamos la base

T Después le ponemos la cobertura

TEl proceso para nuestro pastel es:

Creamos la base

Añadimos la cobertura

Ti ¡Acabas de entender la composición de funciones!

π Definición

Conocidas las funciones **f** y **g**, la composición de **f** y **g** está dada por:

$$f \circ g = (f \circ g)(x) = f(g(x))$$

¿Cómo manipular funciones?

Toma un respiro

π Σ

Conoce al perceptrón

T_{La neurona}

兀

TRed neuronal artificial

TRed neuronal artificial

Funciones de activación

Entendiendo la regresión lineal simple

¿Cómo se calcula un error?

Te has iniciado detrás del secreto de la ciencia de datos

TiFelicidades!

T Cualquier duda

@codevars

github.com/edevars

platzi.com/@codevars/