

ADS AD VIDEO COSOUN

www.aduni.edu.pe

NOMENCLATURA INORGÁNICA I Semana 14

www.aduni.edu.pe

ADUNI

I. OBJETIVOS

Los estudiantes, al término de la sesión de clase serán capaces de:

- 1. Comprender la importancia de nombrar y formular a los compuestos químicos.
- 2. Diferenciar la valencia de estado de oxidación (EO) también llamado número de oxidación.
- 3. Conocer los diferentes sistemas de nomenclatura.
- 4. Nombrar y formular a los óxidos.

II. INTRODUCCIÓN

Los productos químicos tienen diversas aplicaciones, para su reconocimiento se establecen fórmulas y nombres que permitan diferenciarlos de otros.

El **CaO** (cal viva) es un sólido inodoro de blanco a gris. Se emplea en la obtención del cemeto, el procesamiento de metales, la agricultura y el tratamiento de aguas residuales.

¿Cuál es el nombre tradicional del CaO?

RESPUESTA: óxido cálcico

¿Cuál es el nombre sistemático del CO₂?

RESPUESTA: dióxido de carbono

III. CONCEPTO

Es el conjunto de reglas y convenciones que permiten nombrar y formular los compuestos químicos inorgánicos.

* Trióxido de dihierro * Óxido de hierro (III) CO₂ * Óxido férrico

* Dióxido de carbono

* Óxido de carbono (IV)

* Anhidrido carbónico

*Dihidróxido de plomo Pb(OH)₂

* Hidróxido de plomo (II)

* Hidróxido plumboso

El **Fe₂O₃** se usa como pigmento para pinturas y materiales de construcción.

Gas que produce calentamiento global, también se usa en la producción de cerveza y apagar incendios.

El Pb(OH)₂ sirve como electrolito en baterías selladas de níquel-cadmio.

IV. DEFINICIONES IMPORTANTES

1. VALENCIA

Representa la capacidad de combinación que poseen los átomos para formar compuestos, se representa por un número natural llamado **número de valencia**.

- En un **compuesto iónico** la valencia se determina por el número de electrones ganados o perdidos por cada átomo.
- En una **sustancia covalente**, la valencia se determina por el número total de electrones aportados por un átomo para formar enlace o enlaces.

Tipo de compuesto	Estructura del compuesto	Valencia
Covalente	O.	H= 1
(H ₂ O)	н н	O= 2
Iónico	[Ca] ²⁺ [:Ci:] ¹⁻	Cl= 1
(CaCl ₂)		Ca= 2

Tener en cuenta que la valencia de un átomo toma un valor natural.

Cloruro de calcio, (CaCl₂)

2. ESTADO DE OXIDACIÓN O NÚMERO DE OXIDACIÓN (EO)

Es la carga relativa (**real o aparente**) que tiene el átomo de un elemento químico en un determinado compuesto o especie química.

Tipo de compuesto	Estructura del compuesto	EO
Covalente	1- N 1-	H= +1
(NH ₃)	H H H	N= -3
lónico	[c,] ²⁺ [c,] ²⁻	Ca= +2
(CaO)	[Ca] [O]	O= -2

Tipo de compuesto	Estructura del compuesto	EO
Covalente	1+ 1 0 0 1- 1+ H • O • O • H	H= +1
(H ₂ O ₂)		O= -1

Tipo de compuesto	Estructura del compuesto	Valencia
Covalente	H•O•O•H	H= 1
(H ₂ O ₂)		O= 2

El **estado de oxidación** es un número que toma un valor que puede ser positivo, negativo, cero o fraccionario.

El estado de oxidación y la valencia no siempre son numéricamente iguales.

ANUAL SAN MARCOS 2021

Reglas prácticas para determinar los valores de estados de oxidación (EO)	ЕО
Para sustancias simples o elementos sin combinarse	0
Generalmente, para el oxígeno y el hidrógeno al formar parte de un	- 2
compuesto	+ 1
Excepción del oxígeno en peróxidos	- 1
Excepción del hidrógeno en hidruros metálicos	- 1
Los metales del grupo IA al formar parte de un compuesto	+ 1
Los metales del grupo IIA al formar parte de un compuesto	+ 2
∑ EO (compuesto)= cero	
∑ EO(ion)= carga del ion	

Aplicaciones:

$$H_2SO_4 \Rightarrow H_2SO_4$$

$$2(+1) + 1(x) + 4(-2) = 0 \Rightarrow x = +6$$

$$Ca(NO_3)_2 \Rightarrow Ca(NO_3)_2$$

$$1(+2) + 2(x) + 6(-2) = 0 \Rightarrow x = +5$$

En iones poliatómicos:

$$(Cr_2O_7)^{2-} \Rightarrow (Cr_2O_7)^{2-}$$

$$2(x) + 7(-2) = -2 \Rightarrow x = +6$$

$$(S_2O_3)^{2-} \Rightarrow (S_2O_3)^{2-}$$

$$2(x) + 3(-2) = -2 \Rightarrow x = +2$$

ANUAL SAN MARCOS 2021

FUNCIÓN QUÍMICA

Están constituidas por un conjunto de compuestos que tienen **propiedades químicas similares** por tener en común el **grupo funcional**.

GRUPO FUNCIONAL

Es el átomo o la agrupación de dos o más átomos comunes a todos los compuestos, que confiere a estos propiedades químicas similares.

Función química	Grupo funcional	Ejemplo
Óxido	02-	CaO; Li ₂ O; SO ₃
Hidróxido	OH-	NaOH; Ca(OH) ₂ ; Fe(OH) ₃
Hidruro	$ADUH^{-}$	NaH; CaH ₂ ; AlH ₃
Ácido	H ⁺	HCl; H ₂ S; HNO ₃

PRINCIPALES EO DE LOS ELEMENTOS FRENTE AL OXÍGENO

Elementos metálicos		Elementos no metálicos		
IA; Ag	A D+1	В	+3	
IIA; Zn; Cd	+2	Si	+4	
Hg; Cu	+1; +2	С	+2; +4	
Fe; Co; Ni	+2; +3	Р	+1; +3, +5	
Pb; Sn; Pt	+2; +4	N; As; Sb	+3; +5	
Au	+1; +3	F	- 1	
Al; Ga; Sc	+3	S, Se; Te	+2; +4, +6	
Ge	+4	Cl; Br; I	+1; +3, +5; +7	

Elementos	Forma óxido básico	Forma óxido ácido	
Bi	+ 3	+ 5	
V	+ 2; +3	+ 4; +5	
Cr	+ 2; +3	+ 3; +6	
Mn	+ 2; +3	+ 4; +6, +7	

V. SISTEMAS DE NOMENCLATURA

1) NOMENCLATURA TRADICIONAL O CLÁSICA

Función.....raíz de elemento..... química prefijo sufijo

SEGÚN EL NÚMERO DE VALORES DE EO				
Prefijosufijo	1 EO	2 EO	3 EO	4 EO
Hipooso			mínimo	mínimo
oso	EMIA	menor	menor	menor
ico	único	mayor	mayor	mayor
perico				máximo
es exclusivo de EO= +7				

anhídrido perclórico

2) NOMENCLATURA STOCK

nombre del EO en Función n° romano química elemento

$$Fe \Rightarrow EO = +2; +3$$

FeO: Óxido de hierro (II)

 $\overset{+3}{\text{Fe}_2}\text{O}_3$: Óxido de hierro (III)

$$Pb \Rightarrow EO = +2; +4$$

PbO: Óxido de plomo (II)

PbO₂: Óxido de plomo (IV)

$$AI \Rightarrow EO = +3$$

 Al_2O_3 : Óxido de aluminio

Para elementos que tienen un único valor de estado de oxidación, se omite expresarlo en números romanos.

3) NOMENCLATURA SISTEMÁTICA

CO₂: dióxido de carbono

Al₂O₃: trióxido de dialuminio

N₂O₅ :pentóxido de dinitrógeno

CO: monóxido de carbono

Fe(OH)₃:trihidróxido de hierro

VI. FUNCIÓN ÓXIDO

- Son compuestos binarios que contienen oxígeno.
- El oxígeno debe tener estado de oxidación -2.
- Grupo funcional: O²⁻: ion óxido
- Obtención general:

$$Elemento + oxígeno \rightarrow óxido$$

- Clasificación:
- * Óxido metálico (óxido básico)
- * Óxido no metálico (óxido ácido o anhídrido)
- Formulación:

$$E^{x} + Q^{2-} \Rightarrow E_{2}O_{x}$$

• Si x es par, se debe hacer la simplificación.

A) ÓXIDO BÁSICO U ÓXIDO METÁLICO

EJEMPLOS

El esmeril por su alta dureza se usa para afilar cuchillos.

 $Al_2O_{3(s)}$

La cal viva se emplea en pintura de fachadas.

 $CaO_{(s)}$

- Están formados por la combinación del oxígeno con metales.
- Poseen enlace iónico, es decir, a temperatura ambiente se hallan sólidos.
- Al combinarse con el agua dan origen a los hidróxidos, que poseen propiedades básicas.

EJEMPLOS

EO (Fe)= 2+,(3+)

- Clásico: óxido férrico
- Stock: óxido de hierro (III)
- Sistemático: trióxido de dihierro

EO (Ca)=
$$2+$$
Ca
 O
 Ca_2O_2
 CaO

- Clásico: óxido cálcico
- Stock: óxido de calcio
- Sistemático: monóxido de calcio

B) ÓXIDO ÁCIDO U ÓXIDO NO METÁLICO

Las procesos metalúrgicos arrojan al exterior gases ácidos como el anhidrido sulfuroso.

La alta dureza del cuarzo

La alta dureza del cuarzo le permite rayar al vidrio e incluso algunos aceros.

 $SO_{2(g)}$ $SiO_{2(s)}$

- Están formados por la combinación del oxígeno con no metales.
- Poseen enlace covalente, es decir, a temperatura ambiente se pueden hallar sólido, líquido y gaseoso.
- Al combinarse con el agua dan origen a los ácidos oxácidos, que poseen propiedades agrias.

EJEMPLOS

- Clásico: anhídrido carbónico
- Stock: óxido de carbono (IV)
- Sistemático: dióxido de carbono

- Clásico: anhídrido mangánico
- Stock: óxido de manganeso (VI)
- Sistemático: trióxido de manganeso

ANUAL SAN MARCOS 2021

- Clásico: Anhidrido manganoso
- Stock: Óxido de manganeso (IV)
- Sistemático: Dióxido de manganeso

- Clásico: Anhidrido sulfúrico
- Stock: Óxido de azufre (VI)
- Sistemático: Trióxido de azufre (VI)

- Clásico: Anhidrido bórico
- Stock: Óxido de boro
- Sistemático: Trióxido de diboro

- o Clásico: Anhidrido clórico
- Stock: Óxido de cloro (V)
- o Sistemático: Pentóxido de dicloro

VII. BIBLIOGRAFÍA

- Química, colección compendios académicos UNI; Lumbreras editores
- Química, fundamentos teóricos y aplicaciones; 2019 Lumbreras editores.
- Química, fundamentos teóricos y aplicaciones.
- Química esencial; Lumbreras editores.
- Fundamentos de química, Ralph A. Burns; 2003; PEARSON
- Química, segunda edición Timberlake; 2008, PEARSON
- Química un proyecto de la ACS; Editorial Reverte; 2005
- Química general, Mc Murry-Fay quinta edición

www.aduni.edu.pe

