班级 学号 姓名

10-1、求如图所示各均质物体的动量。设各物体质量皆为m。

10-2、设 A、B 两物块由一绕过滑轮 O 的绳相连。设绳的质量、变形不计,绳与滑轮间无相对滑动。已知滑轮 O 是一个质量为 2Kg,半径为 1m 的均质圆盘。 A 块质量为 1Kg,B 块质量为 2Kg,两物块的速度均为 v=2m/s。且 A、B 物块均作直线平动,都可视为质点。试求该系统的动量。

第十章 动量定理

班级	学号	姓名
·/—-//	, , <u> </u>	/B

10-3, 图示椭圆规尺 AB 的质量为 $2m_1$,曲柄 OC 的质量为 m_1 ,而滑块 A A B 的质量均为 m_2 。已知: OC=AC=CB=l; 曲柄和尺的质心分别在其中点上; 曲柄绕 O 轴转动的角速度 ω 为常量。 OC 与水平线的夹角 $\varphi=\omega t$,求此时质点系的动量。

10-4、如图所示,均质杆 AB,长 l,直立在光滑的水平面上。求它从铅直位置无初速度地倒下时,端点 A 相对图示坐标系的轨迹。

学号

姓名

10-5、板 AB 质量为 m,放在光滑水平面上,其上用铰链连接四连杆机构 $OCDO_1$ (如图)。已知 $OC=O_1D=b$, $CD=OO_1$,均质杆 OC、 O_1D 质量皆为 m_1 ,均质杆 CD 质量为 m_2 ,当杆 OC 从铅垂线夹角为 θ 位置由静止开始转到水平位置时,求杆 AB 的位移。

10-6、 质量为 m_1 的平台 AB,放于水平面上,平台与水平面间的动滑动摩擦因数为 f。质量为 m_2 的小车 D,由绞车拖动,相对于平台的运动规律为 $s=bt^2/2$,其中 b 为已知常数。不计绞车的质量,求平台的加速度。

第十章 动量定理

10-7、质量为图示水平面上放一均质三棱柱 A,在其斜面上又放一均质三棱柱 B。两三棱柱的横截面均为直角三角形。三棱柱 A 的质量 m_A 为三棱柱 B 质量 m_B 的三倍,其尺寸如图所示。设各处摩擦不计,初始时系统静止。求当三棱柱 B 沿三棱柱 A 滑下接触到水平面时,三棱柱 A 移动的距离?

10-8 均质杆 AG 与 BG 由相同材料制成,在 G 点铰接,二杆位于同一铅垂面内,各处摩擦不计,如图所示。 AG=250mm, BG=400mm。若 GG_1 =240mm 时,系统由静止释放,求当 A, B, G 在同一直线上时,A 与 B 两端点各自移动的距离。

