PREMIERE COMPOSITION DE MATHEMATIQUES

Durée: 4 heures

Dans tout le problème, on désigne par V un espace vectoriel sur le corps commutatif \mathbb{K} (qui sera toujours \mathbb{R} ou \mathbb{C}), de dimension finie n. Une partie \mathcal{F} de l'ensemble $\mathfrak{Z}(V)$ des endomorphismes de V sera dite *trigonalisable* s'il existe une base de V dans laquelle la matrice de *tout* élément de \mathcal{F} est *triangulaire supérieure*. On rappelle qu'un sous-espace W de V est dit *stable* par \mathcal{F} si, pour tout $u \in \mathcal{F}$, W est *stable* par u, i.e. $u(x) \in W$ pour tout $x \in W$.

Le thème général du problème est la recherche de vecteurs propres communs aux éléments d'une partie \mathcal{F} de $\mathcal{Z}(V)$ 'possédant des propriétés convenables, avec, comme principale application, l'obtention de conditions suffisantes de trigonalisabilité.

PARTIE I

Dans les cinq premières questions de cette partie, $\mathbb{K} = \mathbb{C}$.

1°) Montrer que, pour qu'une partie $\mathcal F$ de $\mathcal Z(V)$ soit trigonalisable, il est nécessaire que les éléments de $\mathcal F$ aient un vecteur propre commun.

On suppose, dans toute la suite de cette partie, que \mathcal{F} est un sous-ensemble de $\mathcal{Z}(V)$ tel que, quels que soient $u \in \mathcal{F}$ et $v \in \mathcal{F}$, on ait $u \circ v = v \circ u$. On se propose de prouver que \mathcal{F} est trigonalisable.

- 2°) Soient $u \in \mathcal{F}$, λ une valeur propre de u et $V_u(\lambda)$ le sous-espace propre correspondant. Montrer que $V_u(\lambda)$ est stable par \mathcal{F} .
- $3^{\circ})$ Montrer que les éléments de $\, \Im \,$ ont un vecteur propre commun.
- 4°) Montrer que F est trigonalisable.
- 5°) On suppose, de plus, que tout élément de ${\mathfrak F}$ est diagonalisable. Peut-on trouver une base de V dans laquelle la matrice de tout élément de ${\mathfrak F}$ est diagonale?
- 6°) Reprendre le problème posé à la question 5°, en remplaçant C par R.

PARTIE II

Dans toute cette partie, $\mathbb{K} = \mathbb{C}$.

Etant donné $u \in \mathcal{Z}(V)$ et $v \in \mathcal{Z}(V)$, on pose $[u,v] = u \circ v \cdot v \circ u$. On dit qu'un sousensemble \mathcal{F} de $\mathcal{Z}(V)$ est une algèbre de Lie (d'endomorphismes de V) si les conditions suivantes sont remplies :

- (i) \mathfrak{F} est un sous-espace vectoriel de $\mathfrak{Z}(V)$;
- (ii) quels que soient $u \in \mathcal{F}$ et $v \in \mathcal{F}$, $[u,v] \in \mathcal{F}$.

On appelle dimension d'une algèbre de Lie \mathcal{F} , et on note $\dim(\mathcal{F})$, sa dimension en tant qu'espace vectoriel sur \mathbb{K} .

Etant donné une algèbre de Lie \mathcal{F} , on appelle *idéal* de \mathcal{F} tout sous-espace vectoriel \mathcal{F} de \mathcal{F} tel que $[u,v] \in \mathcal{F}$ quels que soient $u \in \mathcal{F}$ et $v \in \mathcal{F}$.

1°) Soit $\mathcal F$ une algèbre de Lie de dimension 2, telle qu'il existe $u_0 \in \mathcal F$ et $v_0 \in \mathcal F$ vérifiant $[u_0,v_0] \neq 0$; soit d'autre part $\mathcal F$ ' une seconde algèbre de Lie de dimension 2, possédant la même propriété. Démontrer qu'il existe un isomorphisme (d'espaces vectoriels) φ de $\mathcal F$ sur $\mathcal F$ ' tel que $\varphi([u,v]) = [\varphi(u),\varphi(v)]$ quels que soient $u \in \mathcal F$ et $v \in \mathcal F$.

Soient \mathcal{F} une algèbre de Lie et \mathfrak{I} un idéal de \mathcal{F} . Etant donné une forme linéaire \mathcal{L} sur \mathfrak{I} , on désigne par W le sous-espace de V formé des vecteurs x tels que $v(x) = \mathcal{L}(v)x$ pour tout $v \in \mathfrak{I}$. Le but des questions 2° à 5° est de montrer que W est stable par \mathcal{F} .

Soit $u \in \mathcal{F}$, et soit x un élément non nul de W; on définit par récurrence une suite (x_k) en posant $x_0 = x$ et $x_k = u(x_{k-1})$ pour tout entier $k \ge 1$.

- 2°) Démontrer que, pour tout $k \in \mathbb{N}$ et tout $v \in \mathbb{J}$, $v(x_k) \mathcal{L}(v)x_k$ appartient au sous-espace engendré par $\{x_0, x_1, ..., x_{k-1}\}$.
- 3°) Soit U le sous-espace de V engendré par les vecteurs x_k , où k décrit N. Montrer que U est stable par $\mathfrak{I} \cup \{u\}$.
- 4°) Etablir une relation entre $\mathcal{L}([u,v])$ et la trace (i.e. la somme des valeurs propres) de la restriction à U de l'endomorphisme [u,v].

5°) Montrer que W est stable par F.

On dit qu'une algèbre de Lie \mathcal{F} est résoluble s'il existe une suite croissante $\{0\} = \mathcal{F}_0 \subset \mathcal{F}_1 \subset ... \subset \mathcal{F}_n = \mathcal{F}$

de sous-espaces de $\mathcal F$ tels que, pour tout entier k vérifiant $1 \le k \le p$, on ait : $[u,v] \in \mathcal F_{k-1}$ quels que soient $u \in \mathcal F_k$ et $v \in \mathcal F_k$.

6°) Montrer que toute algèbre de Lie de dimension ≤2 est résoluble.

Le but des questions suivantes est de prouver le "théorème de Lie", qui affirme que toute algèbre de Lie résoluble est trigonalisable. Soit donc F une algèbre de Lie résoluble.

- 7°) Soit d=dim(F). Montrer qu'il existe un idéal d de F, de dimension d-1. Montrer que d est aussi une algèbre de Lie résoluble.
- 8°) Montrer que les éléments de 3 ont un vecteur propre commun.
- 9°) Montrer que F est trigonalisable.
- 10°) Montrer que, réciproquement, toute algèbre de Lie trigonalisable est résoluble.
- 11°) Montrer que le résultat de I.4° est un corollaire du théorème de Lie.

PARTIE III

Dans cette partie, le corps de base K est indifféremment R ou C.

Pour tout $u \in \mathcal{Z}(V)$, on notera ad_u l'élément de $\mathcal{Z}(\mathcal{Z}(V))$ défini par $ad_u(v) = [u,v]$ pour tout $v \in \mathcal{Z}(V)$.

- 1°) Vérifier que, pour $u \in \mathcal{Z}(V)$ et $v \in \mathcal{Z}(V)$, on a $ad_{[u,v]} = [ad_u, ad_v]$.
- 2°) Montrer que, si u est un élément nilpotent de $\mathfrak{T}(V)$, alors ad_u est un élément nilpotent de $\mathfrak{T}(\mathfrak{T}(V))$.

3°) Soient $\mathcal F$ et $\mathcal G$ deux algèbres de Lie (d'endomorphismes de $\mathcal G$) telles que $\mathcal G \subset \mathcal F$. Soit $\mathcal H$ un supplémentaire de $\mathcal G$ dans $\mathcal F$, et soit $\mathcal G$ l'unique $\mathcal G$ l'unique $\mathcal G$ tel que $\mathcal G$. Montrer qu'il existe une et une seule application linéaire

$$\pi: \mathfrak{G} \to \mathfrak{X}(\mathfrak{K})$$

telle que, pour tout $g \in \mathcal{G}$ et tout $u \in \mathcal{F}$,

$$\pi(g)(q(u)) = q([g,u]).$$

On désigne désormais par $\mathcal F$ une algèbre de Lie (d'endomorphismes de V), telle que tout élément de $\mathcal F$ soit un endomorphisme nilpotent de V. On se propose de démontrer le "théorème d'Engel", qui affirme qu'il existe un vecteur non nul $x \in V$ tel que u(x) = 0 pour tout $u \in \mathcal F$.

- 4°) Soit 9 une seconde algèbre de Lie d'endomorphismes de V, telle que $9 \nsubseteq \mathcal{F}$. On reprend les notations introduites dans la question précédente et on pose $\mathcal{F}'=\pi(9)$, $V'=\mathcal{K}$. Montrer que \mathcal{F}' est une algèbre de Lie d'endomorphismes de V', que $\dim(\mathcal{F}') < \dim(\mathcal{F})$ et que tout élément de \mathcal{F}' est nilpotent.
- 5°) Soit $d=\dim(\mathfrak{F})$. On suppose que, pour tout espace vectoriel W de dimension finie sur K, et toute algèbre de Lie \mathfrak{B} d'endomorphismes de W, formée d'éléments nilpotents et vérifiant $\dim(\mathfrak{B}) \le d-1$, il existe un vecteur non nul $x \in W$ tel que u(x)=0 pour tout $u \in \mathfrak{B}$. Par ailleurs, on reprend les hypothèses et notations de la question 4°. Montrer qu'il existe une algèbre de Lie \mathfrak{G}_1 d'endomorphismes de V, vérifiant les propriétés suivantes :

$$9 \subset 9_1 \subset \mathcal{F}$$

$$\dim(\mathfrak{G}_1) = \dim(\mathfrak{G}) + 1$$

9₁ est un idéal de 9.

En déduire qu'il existe un idéal \mathcal{F}_1 de \mathcal{F} , tel que dim $(\mathcal{F}_1)=d-1$.

- 6°) Démontrer le théorème d'Engel.
- 7°) Montrer que toute algèbre de Lie constituée d'endomorphismes nilpotents de l'espace vectoriel V est trigonalisable.

page 77 1990 2/2