Поиск подстрок

Гусев Илья

Московский физико-технический институт

Москва, 2017

Содержание

- 🚺 Функции
 - Префикс-функция
 - Z-функция
 - \bullet Z $\rightarrow \pi$

- 2 Алгоритмы
 - Алгоритм Кнута—Морриса—Пратта

Префикс-функция

Префикс-функция - массив чисел π , где $\pi[i]$ - такая наибольшая длина k наибольшего суффиксаз $s[i-k+1\dots i]$ подстроки $s[0\dots i]$, совпадающего с её префиксом $s[0\dots k]$, но не совпадающего со всей строкой s.

$$\pi[s,i] = \max_{k=0...i} \{k : (s[0...k] = s[i-k+1...i])\}$$

Пример: abcabcd

S	a	b	С	a	b	С	d
π	0	0	0	1	2	3	0

3 / 13

Вычисление префикс-функции

Утверждения:

- ② $\forall i : s[i+1] = s[\pi[i]] \rightarrow \pi[i+1] = \pi[i] + 1$
- ∀i : s[i+1] ≠ s[π[i]] → π[i+1] ≤ π[i]

Ha картинке $k=\pi[i]$

Для третьего случая итерируем $k=\pi[k]$, пока следующий символ не совпадёт.

Сложность вычисления префикс-функции

Утверждения:

- \bullet π по 1 разу за шаг вычисления, если выполняются условия 2 случая.

- π уменьшается не более, чем n-1 раз.

Задача

Найти **лексикографически-минимальную** строку, построенную по префикс-функции, в алфавите a-z. Примеры:

π	0	0	0	1	2	3	0
S	a	b	С	а	b	С	b

1	π	0	0	1	2	3	4	5	0
	S	a	b	a	b	a	b	a	С

Решение

- **1** $\pi[i] \neq 0 \implies s[i] = s[\pi[i] 1]$
- **3** $\pi[i] = 0 \implies s[i] = \max\{s[\pi[i-1]] + 1, s[\pi[\pi[i-1] 1]] + 1, \ldots\}$

Первое очевидно и следует напрямую из определения префикс-функции. Второе опирается на несколько фактов:

- Нельзя допустить, чтобы новый символ сделал суффикс, совпадающий с каким-либо префиксом по префиксам префиксов).
- +1 всегда достаточно из-за того, что префикс всегда минимален.
 Делая +1 (например, из а в b) гарантированно получаем 0 в префикс-функции.
- Из всех возможных вариантов продолжения выбираем минимальный.

Z-функция

Z-функция - массив чисел z, где z[i] - длина наибольшего префикса строки s, который равен префиксу i-ого суффикса $s[i \dots n-1]$.

$$z[s, i] = \max_{k=0...n-1-i} \{k : (s[0...k] = s[i...i+k])\}$$

Примеры:

S	а	а	а	а	а
Z	0	4	3	2	1

S	а	а	а	b	а	а	b
Z	0	2	1	0	2	1	0

Задача

Найти лексикографически-минимальную строку, построенную по z-функции, в алфавите а-z.

Z	5	3	2	1	0
S	а	a	a	а	b

Решение

Один из возможных подходов:

- 2 z-функция => префикс-функция
- 2 Решаем предыдущую задачу

Z-функция \implies префикс-функция

Утверждения:

- ullet $\forall i, orall i', orall j \in [0, z[i]), orall j' \in [0, z[i']): i < i', i+j=i'+j' o \pi[i+j] = \pi[i'+j'] \geq j+1 > j'+1$ на следующих итерациях значение префикс функции не увеличится
- lacktriangle Если наталкиваемся на уже заданное значение π , переходим к i+1

Сложность: O(n), так как каждый элемент меняется ровно один раз и останавливаемся на каждом не более 1 раза.

4 D > 4 個 > 4 章 > 4 章 > 三 章 = 900で

Алгоритм Кнута—Морриса—Пратта

Дано: есть шаблон T, строка S, len(T) < len(S).

Найти: все вхождения T в S.

Решение: concat(T, #, S), считаем префикс функцию. Где $\pi[i] = len(T)$, там и есть конец вхождения.

Сложность: O(len(T) + len(S))

Нюанс: при реализации запрещается хранить все значения

префикс-функции! Ограничьтесь только нужными.

Полезные ссылки І

- Видео про префикс-функцию на Курсере https://ru.coursera.org/learn/algorithms-on-strings/lecture/ 5lDsK/computing-prefix-function
- № E-maxx: префикс-функция http://e-maxx.ru/algo/prefix_function
- Викиконспекты: префикс-функция https://neerc.ifmo.ru/wiki/index.php?title=Префикс-функция
- E-maxx: z-функция http://e-maxx.ru/algo/z_function