Corrigé du Test blanc

Sections MT et SV

28 avril 2016

Exercice 1.

(a) Le graphe de la fonction f est représenté dans la Figure 1. Nous voyons immédiatement que la fonction est paire, et donc les coefficients b_n de sa série de Fourier seront tous nuls. De plus, nous constatons que $f(x) = \sin(2x)$ sur l'intervalle $[0, \frac{\pi}{2}]$.

FIGURE 1 – Graphe de la fonction f.

Calculons les coefficients a_n . Nous avons

$$a_n = \frac{4}{\pi} \int_0^{\frac{\pi}{2}} f(x) \cos(4nx) \, dx = \frac{4}{\pi} \int_0^{\frac{\pi}{2}} \sin(2x) \cos(4nx) \, dx$$

$$= \frac{4}{\pi} \int_0^{\frac{\pi}{2}} \frac{1}{2} \left(\sin(2x + 4nx) + \sin(2x - 4nx) \right) \, dx$$

$$= \frac{2}{\pi} \left(-\frac{\cos((2 + 4n)x)}{2 + 4n} - \frac{\cos((2 - 4n)x)}{2 - 4n} \Big|_{x=0}^{x = \frac{\pi}{2}} \right)$$

$$= \frac{2}{\pi} \left(-\frac{\cos(\pi + 2n\pi)}{2 + 4n} - \frac{\cos(\pi - 2n\pi)}{2 - 4n} + \frac{1}{2 + 4n} + \frac{1}{2 - 4n} \right)$$

$$= \frac{2}{\pi} \left(\frac{2}{2 + 4n} + \frac{2}{2 - 4n} \right) = \frac{2}{\pi} \left(\frac{8}{4 - 16n^2} \right) = \frac{4}{\pi(1 - 4n^2)},$$

et nous pouvons constater que ce calcul est valable pour tout $n \in \mathbb{N}$. En particulier, $a_0 = \frac{4}{\pi}$. La série de Fourier de f est alors définie par

$$Ff(x) = \frac{2}{\pi} + \frac{4}{\pi} \sum_{n=1}^{+\infty} \frac{1}{1 - 4n^2} \cos(4nx). \tag{1}$$

(b) La figure 1 nous montre que f est continue. Sa dérivée f' est représentée dans la figure 2 et nous pouvons voir qu'elle est continue par morceaux. Ainsi f est régulière par morceaux, et par le théorème de Dirichlet, nous avons

$$Ff(x) = f(x), \quad \text{pour tout } x \in \left[-\frac{\pi}{4}, \frac{\pi}{4} \right].$$
 (2)

FIGURE 2 – Graphe de la dérivée de la fonction f.

(c) Posons $x = \frac{\pi}{4}$ dans l'équation (2). D'après (1), nous obtenons

$$f\left(\frac{\pi}{4}\right) = 1 = Ff\left(\frac{\pi}{4}\right) = \frac{2}{\pi} + \frac{4}{\pi} \sum_{n=1}^{+\infty} \frac{(-1)^n}{1 - 4n^2}.$$

En multipliant par π et en changeant de signe dans la somme, nous avons bien

$$\pi = 2 - 4 \sum_{n=1}^{+\infty} \frac{(-1)^n}{4n^2 - 1}.$$

Exercice 2.

(a)

(i) Soit $f(t) = t\cos(t)$. Par linéarité, $\mathcal{L}(g)(z) = -\mathcal{L}(f)(z)$. On utilise ensuite la table, ligne 14 pour obtenir

$$\mathcal{L}(g)(z) = \frac{1 - z^2}{(z^2 + 1)^2}, \quad \text{Re}(z) > 0.$$

D'après la table, tout $\gamma_0 > 0$ est une abscisse de convergence de g.

(ii) Soit $k_1(t) = \cos(t)$ et $k_2(t) = \sinh(t)$. Alors $k(t) = (k_1 * k_2)(t)$. D'après le cours (Théorème 16.2.(vi)) et les lignes 7 et 10 de la Table, nous avons

$$\mathcal{L}(k)(z) = \mathcal{L}(k_1)(z) \cdot \mathcal{L}(k_2)(z) = \frac{z}{z^2 + 1} \cdot \frac{1}{z^2 - 1} = \frac{z}{z^4 - 1}.$$

Tout $\gamma_0 > 0$ est une abscisse de convergence de k_1 , et tout $\gamma_0 > 1$ est une abscisse de convergence de k_2 . Ainsi, tout $\gamma_0 > 1$ est une abscisse de convergence de k.

(b) Comme mentionné dans l'énoncé, nous commençons par le cas n=2. Dans ce cas, pour tout $t \ge 0$, nous avons

$$g_2(t) = (f * f)(t) = \int_{-\infty}^{+\infty} f(s)f(t-s) ds = \int_0^t e^s e^{t-s} ds = \int_0^t e^t ds = t e^t,$$

ce qui correspond au résultat désiré. Supposons ensuite le résultat vrai pour un $n \in \mathbb{N}$. Alors pour tout $t \ge 0$,

$$g_{n+1}(t) = (g_n * f)(t) = \int_{-\infty}^{+\infty} g_n(s) f(t-s) \, ds = \int_0^t \frac{s^{n-1}}{(n-1)!} \, e^s e^{t-s} ds$$
$$= \frac{e^t}{(n-1)!} \int_0^t s^{n-1} \, ds = \frac{e^t}{(n-1)!} \left(\frac{s^n}{n} \Big|_{s=0}^{s=t} \right) = \frac{t^n}{n!} \, e^t.$$

Le résultat est donc vrai pour n+1. Par récurrence, le résultat est démontré pour tout $n \ge 2$.

Exercice 3.

(a) Nous allons utiliser la décomposition en éléments simples. Remarquons tout d'abord que $z^3 + z^2 + 3z + 3 = (z + 1)(z^2 + 3)$. Nous avons donc

$$F(z) = \frac{1}{(z+1)(z^2+3)} = \frac{A}{z+1} + \frac{Bz+C}{z^2+3},$$

avec des coefficients A, B et $C \in \mathbb{R}$ qui satisfont

$$A(z^{2}+3) + (Bz+C)(z+1) = 1,$$
(3)

pour tout z. En considérant z=-1, l'équation (3) devient 4A=1, et donc $A=\frac{1}{4}$. Ensuite, avec z=0 nous trouvons 3A+C=1, et donc $C=\frac{1}{4}$. Enfin, avec z=1 nous obtenons 4A+2B+2C=1, et donc $1+2B+\frac{1}{2}=1$ et par conséquent $B=-\frac{1}{4}$. Ainsi, en utilisant les lignes 3, 6 et 7 de la Table, nous trouvons

$$f(t) = \mathcal{L}^{-1}(F)(t) = \mathcal{L}^{-1}\left(\frac{1}{4}\frac{1}{z+1} - \frac{1}{4}\frac{z}{z^2+3} + \frac{1}{4}\frac{1}{z^2+3}\right)(t)$$

$$= \frac{1}{4}\mathcal{L}^{-1}\left(\frac{1}{z+1}\right)(t) - \frac{1}{4}\mathcal{L}^{-1}\left(\frac{z}{z^2+3}\right)(t) + \frac{1}{4\sqrt{3}}\mathcal{L}^{-1}\left(\frac{\sqrt{3}}{z^2+3}\right)(t)$$

$$= \frac{1}{4}e^{-t} - \frac{1}{4}\cos\left(\sqrt{3}t\right) + \frac{\sqrt{3}}{12}\sin\left(\sqrt{3}t\right), \tag{4}$$

pour tout $t \geqslant 0$.

(b) Reprenons chacun des trois termes présents dans (4). D'après la Table, la transformée de Laplace du premier est définie pour tout $z \in \mathbb{C}$ tel que Re(z) > -1. Pour le

deuxième et le troisième, il faut que Re(z) > 0. Par conséquent, tout $\gamma_0 > 0$ est abscisse de convergence de f.

Exercice 4.

Nous devons calculer

$$\hat{f}(\alpha) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} f(x)e^{-i\alpha x} dx = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \frac{e^{-i\alpha x}}{x^2 - 4x + 5} dx$$

pour tout $\alpha \in \mathbb{R}$. Commençons par traiter le cas où $\alpha \leq 0$. Nous avons alors

$$\hat{f}(\alpha) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \frac{P(x)}{Q(x)} e^{i|\alpha|x} dx,$$

avec P(x) = 1 et $Q(x) = x^2 - 4x + 5$. Observons que $Q(x) \neq 0$ pour tout $x \in \mathbb{R}$, que $\deg(Q) - \deg(P) \geqslant 2$, et que $|\alpha| \geqslant 0$. La méthode présentée dans l'Application 12.7 est donc utilisable. Nous remarquons tout d'abord que la fonction $\frac{P(z)}{Q(z)}e^{i|\alpha|z}$ possède deux singularités, à savoir $z_1 = 2 + i$ et $z_2 = 2 - i$. Seul z_1 est dans le demi-plan supérieur, et il s'agit d'un pôle d'ordre 1 car $Q(z) = (z - z_1)(z - z_2)$ et $P(z_1) = 1 \neq 0$. Nous avons donc

$$\hat{f}(\alpha) = \frac{1}{\sqrt{2\pi}} 2\pi i \cdot \text{R\'es}_{z_1} \left(\frac{e^{i|\alpha|z}}{z^2 - 4z + 5} \right) = \sqrt{2\pi} i \cdot \lim_{z \to z_1} \left((z - z_1) \frac{e^{i|\alpha|z}}{(z - z_1)(z - z_2)} \right)$$

$$= \sqrt{2\pi} i \frac{e^{i|\alpha|z_1}}{z_1 - z_2} = \sqrt{2\pi} i \frac{e^{i|\alpha|(2+i)}}{2 + i - (2-i)} = \sqrt{2\pi} i \frac{e^{2|\alpha|i - |\alpha|}}{2i} = \sqrt{\frac{\pi}{2}} e^{2|\alpha|i - |\alpha|}$$
(5)

pour tout $\alpha \leq 0$.

Lorsque $\alpha > 0$, nous utilisons le changement de variable y = -x pour écrire

$$\hat{f}(\alpha) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \frac{e^{i\alpha y}}{y^2 + 4y + 5} dy = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \frac{\tilde{P}(y)}{\tilde{Q}(y)} e^{i\alpha y} dy,$$

avec $\tilde{P}(y)=1$ et $\tilde{Q}(y)=y^2+4y+5$. A nouveau, nous avons $\tilde{Q}(y)\neq 0$ pour tout $y\in\mathbb{R}$ et $\deg(\tilde{Q})-\deg(\tilde{P})\geqslant 2$. Puisque $\alpha>0$, l'Application 12.7 est utilisable. Nous remarquons tout d'abord que la fonction $\frac{\tilde{P}(z)}{\tilde{Q}(z)}e^{i\alpha z}$ possède deux singularités, à savoir $\tilde{z}_1=-2+i$ et $\tilde{z}_2=-2-i$. Seul \tilde{z}_1 est dans le demi-plan supérieur, et il s'agit d'un pôle d'ordre 1 car $\tilde{Q}(z)=(z-\tilde{z}_1)(z-\tilde{z}_2)$ et $\tilde{P}(\tilde{z}_1)=1\neq 0$. Nous avons donc

$$\hat{f}(\alpha) = \frac{1}{\sqrt{2\pi}} 2\pi i \cdot \text{R\'es}_{\tilde{z}_1} \left(\frac{e^{i\alpha z}}{z^2 + 4z + 5} \right) = \sqrt{2\pi} i \cdot \lim_{z \to \tilde{z}_1} \left((z - \tilde{z}_1) \frac{e^{i\alpha z}}{(z - \tilde{z}_1)(z - \tilde{z}_2)} \right)$$

$$= \sqrt{2\pi} i \frac{e^{i\alpha \tilde{z}_1}}{\tilde{z}_1 - \tilde{z}_2} = \sqrt{2\pi} i \frac{e^{i\alpha(-2+i)}}{-2 + i - (-2-i)} = \sqrt{2\pi} i \frac{e^{-2\alpha i - \alpha}}{2i} = \sqrt{\frac{\pi}{2}} e^{-2\alpha i - \alpha}$$
 (6)

pour tout $\alpha > 0$.

Les équations (5) et (6) peuvent finalement être regroupées sous la même écriture, en posant

$$\hat{f}(\alpha) = \sqrt{\frac{\pi}{2}} e^{-|\alpha| - 2\alpha i}$$
 pour tout $\alpha \in \mathbb{R}$.