Лекция 2. Комбинаторика. Свойства биномиальных коэффициентов. Подсчет сумм и метод производящих функций. Полиномиальные коэффициенты. Оценки биномиальных и полиномиальных коэффициентов. Асимптотические оценки биномиальных коэффициентов и их сумм.

Лектор - доцент Селезнева Светлана Николаевна

Лекции по "Дискретным моделям". Магистратура, 1-й курс, факультет ВМК МГУ имени М.В. Ломоносова

Лекции на сайте http://mathcyb.cs.msu.su

Биномиальные коэффициенты

Напомним, что **биномиальный коэффициент** C_n^k равен числу сочетаний из n по k. Другое обозначение: $\binom{n}{k}$.

По теореме 1.4 верно $C_n^k = \frac{(n)_k}{k!}$. Откуда получаем

$$\frac{(n)_k}{k!} = \frac{(n)_k \cdot (n-k)!}{k! \cdot (n-k)!} = \frac{n!}{k!(n-k)!}.$$

Следовательно,

Свойство 2.1. Для всех $0 \le k \le n$ верно $C_n^k = C_n^{n-k}$.

Последовательности биномиальных коэффициентов

Теорема 2.2. При каждом $n \ge 1$ (конечная) последовательность биномиальных коэффициентов

$$C_n^0, C_n^1, \ldots, C_n^r, \ldots, C_n^{n-1}, C_n^n$$

возрастает, если $r < \frac{n-1}{2}$, и убывает, если $r > \frac{n-1}{2}$.

Доказательство. Рассмотрим отношение $\frac{C_n^{r+1}}{C_n^r}$, $0 \le r \le n-1$:

$$\frac{C_n^{r+1}}{C_n^r} = \frac{n!}{(r+1)!(n-r-1)!} : \frac{n!}{r!(n-r)!} = \frac{n-r}{r+1}.$$

Определим, когда это отношение больше единицы:

$$\frac{n-r}{r+1} > 1$$
, если $r < \frac{n-1}{2}$.

Последовательности биномиальных коэффициентов

Доказательство (продолжение). Получаем, что при $r<\frac{n-1}{2}$ последовательность возрастает, при $r>\frac{n-1}{2}$ последовательность убывает.

Пример 2.1.

Пусть n=3. Тогда последовательность такова: 1, 3, 3, 1. Пусть n=4. Тогда последовательность такова: 1, 4, 6, 4, 1.

Максимальные значения

Следствие 2.2.1. При четных значениях n максимальное значение среди биномиальных коэффициентов C_n^r , $r=0,1,\ldots,n$, достигается только при $r=\frac{n}{2}$;

при нечетных значениях n максимальное значение среди биномиальных коэффициентов C_n^r , $r=0,1,\ldots,n$, достигается при $r=\frac{n-1}{2}$ и при $r=\frac{n+1}{2}$.

Доказательство. По теореме 2.2 если $n \geq 1$, то при $r < \frac{n-1}{2}$ последовательность C_n^r , $r = 0, 1, \ldots, n$, возрастает и при $r > \frac{n-1}{2}$ последовательность C_n^r , $r = 0, 1, \ldots, n$, убывает.

Максимальные значения

Доказательство. Если значение n четно, то число $\frac{n-1}{2}$ нецелое; поэтому максимальное значение достигается при $r=\lfloor \frac{n-1}{2} \rfloor +1=\frac{n}{2};$

если значение n нечетно, то число $\frac{n-1}{2}$ целое; следовательно, $C_n^{\frac{n-1}{2}}=C_n^{\frac{n+1}{2}}$, и максимальное значение достигается при $r=\frac{n-1}{2}$ и при $r=\frac{n+1}{2}$.

Следствие 2.2.2. Для всех $n \ge 1$ и $0 \le r \le n$ верно $C_n^r \le C_n^{\lfloor \frac{n}{2} \rfloor}$.

Суммы биномиальных коэффициентов

Напомним формулу бинома Ньютона (теорема 1.5):

При
$$n \ge 1$$
 верно $(x + y)^n = \sum_{k=0}^n C_n^k x^{n-k} y^k$.

Из нее следуют два свойства сумм биномиальных коэффициентов:

Теорема 2.3. Для всех $n \ge 1$ верно

1.
$$\sum_{k=0}^{n} C_n^k = 2^n$$
.

$$2. \sum_{k=0}^{\infty} (-1)^k C_n^k = 0.$$

Доказательство.

1.
$$(1+1)^n = \sum_{k=0}^n C_n^k = 2^n$$
.

2.
$$(1+(-1))^n = \sum_{k=0}^n C_n^k (-1)^k = 0.$$

Подсчет сумм биномиальных коэффициентов

Можно находить значения других сумм биномиальных коэффициентов, сводя их к суммам теорем 1.5 и 2.3.

Пример 2.2. Найти значение суммы $\sum\limits_{k=0}^{n} C_{n}^{k} \cdot a^{k}$, где $a \in \mathbb{R}$.

Например, если n=2, a=2, то надо найти значениие суммы $C_2^0 \cdot 2^0 + C_2^1 \cdot 2^1 + C_2^2 \cdot 2^2 = 1 + 4 + 4 = 9$.

Решение. Несложно заметить, что указанная сумма непосредственно сворачивается по теореме 1.5:

$$\sum_{k=0}^n C_n^k \cdot a^k \cdot \mathbf{1}^{n-k} = (a+1)^n.$$

Подсчет сумм биномиальных коэффициентов

Пример 2.3. Найти значение суммы $\sum_{k=0}^{n} k \cdot C_{n}^{k}$.

Например, если n=3, то надо найти значениие суммы $0 \cdot C_3^0 + 1 \cdot C_3^1 + 2 \cdot C_3^2 + 3 \cdot C_3^3 = 0 + 3 + 6 + 3 = 12$.

Решение. Заметим, что при $k \ge 1$ верно

$$k \cdot C_n^k = k \cdot \frac{n!}{k!(n-k)!} = \frac{n!}{(k-1)!(n-k)!} =$$

$$= n \cdot \frac{(n-1)!}{(k-1)!((n-1)-(k-1))!} = n \cdot C_{n-1}^{k-1}.$$

Слагаемое при k=0 обнуляется. Поэтому, получаем

$$\sum_{k=0}^{n} k \cdot C_{n}^{k} = \sum_{k=1}^{n} k \cdot C_{n}^{k} = \sum_{k=1}^{n} n \cdot C_{n-1}^{k-1} = n \cdot \sum_{l=0}^{n-1} C_{n-1}^{l} = n \cdot 2^{n-1}.$$

Пример 2.4. Найти значение суммы $\sum_{n=1}^{\lfloor \frac{n}{2} \rfloor} C_n^{2k}$.

Например, если n=4, то надо найти значениие суммы $C_{4}^{0} + C_{4}^{2} + C_{4}^{4} = 1 + 6 + 1 = 8.$

Если n = 5, то надо найти значение суммы $C_{\rm F}^0 + C_{\rm F}^2 + C_{\rm F}^4 = 1 + 10 + 5 = 16.$

Решение. По теореме 2.3 (п. 2) верно $\sum_{n=0}^{\infty} (-1)^k C_n^k = 0$.

Поэтому $\sum_{k=0}^{\lfloor \frac{n}{2} \rfloor} C_n^{2k} = \sum_{k=0}^{\lfloor \frac{n}{2} \rfloor} C_n^{2k+1}$.

Следовательно.

$$\sum_{k=0}^{\lfloor \frac{n}{2} \rfloor} C_n^{2k} = \frac{1}{2} \sum_{k=0}^{n} C_n^k = \frac{1}{2} \cdot 2^n = 2^{n-1}.$$

Производящие функции

Одним из методов получения значения комбинаторных сумм и тождеств является метод производящих функций.

Для последовательности чисел $\{a_n\}$ (конечной или бесконечной) рассмотрим формальную сумму (конечную или бесконечную) $\sum a_n x^n$, где $x \in \mathbb{R}$.

Если последовательность $\{a_n\}$ конечна, то эта сумма всегда определяет функцию

$$F(x) = \sum a_n x^n,$$

которая называется **производящей функцией** для последовательности $\{a_n\}$.

Рассмотрим пример подсчета комбинаторной суммы при помощи производящей функции.

Применение производящих функций

Вернемся к **примеру 2.3**: нам надо найти значение суммы $\sum_{k=0}^{n} k \cdot C_{n}^{k}$.

Решение. Рассмотрим конечную последовательность биномиальных коэффициентов $C_n^0, C_n^1, \ldots, C_n^n$ и ее производящую функцию $F(x) = \sum\limits_{k=0}^n C_n^k x^k$. Из примера 2.2 следует, что $F(x) = (x+1)^n$.

Функция F(x) дифференцируема в \mathbb{R} . Найдем ее производную.

C одной стороны,
$$F'(x) = ((x+1)^n)' = n(x+1)^{n-1}$$
.

С другой стороны,
$$F'(x) = \left(\sum_{k=0}^{n} C_n^k x^k\right)' = \sum_{k=0}^{n} C_n^k k x^{k-1}$$
.

Подставляя в оба полученные выражения для производной

$$F'(x)$$
 значение $x = 1$, получаем $\sum_{k=0}^{n} k \cdot C_{n}^{k} = n \cdot 2^{n-1}$.

А можно ли найти формулу для степени суммы вида $(x_1 + \cdots + x_m)^n$, аналогичную формуле бинома Ньютона?

Интуитивно кажется, что можно. И в самом деле это так.

Теорема 2.4'. Для всех $n \ge 1$, $m \ge 2$ верно $(x_1 + \cdots + x_m)^n =$

$$\sum_{k_1=0}^n\sum_{k_2=0}^{n-k_1}\cdots\sum_{k_{m-1}=0}^{n-k_1-\cdots-k_{m-2}}C_n^{k_1}C_{n-k_1}^{k_2}\ldots C_{n-k_1-\cdots-k_{m-2}}^{k_{m-1}}x_1^{k_1}\ldots x_{m-1}^{k_{m-1}}x_m^{k_m},$$
 где $k_m=n-k_1-\cdots-k_{m-2}-k_{m-1}.$

Доказательство можно провести индукцией по m, применяя формулу бинома Ньютона (теорему 1.5).

Преобразование коэффициентов

Рассмотрим подробнее коэффициент при степенях переменных. Воспользуемся формулой $C_n^k = \frac{n!}{k!(n-k)!}$ и проведем цепочку рассуждений:

$$C_n^{k_1}C_{n-k_1}^{k_2}\dots C_{n-k_1-\dots-k_{m-2}}^{k_{m-1}}=\frac{n!}{k_1!(n-k_1)!}\cdot\frac{(n-k_1)!}{k_2!(n-k_1-k_2)!}\dots$$

$$\dots\frac{(n-k_1-\dots-k_{m-2})!}{k_{m-1}!(n-k_1-\dots-k_{m-2}-k_{m-1})!}=\frac{n!}{k_1!k_2!\dots k_{m-1}!k_m!},$$

$$\text{где }k_m=n-k_1-\dots-k_{m-2}-k_{m-1}.$$

T.e.

$$C_n^{k_1}C_{n-k_1}^{k_2}\ldots C_{n-k_1-\cdots-k_{m-2}}^{k_{m-1}}=\frac{n!}{k_1!k_2!\ldots k_{m-1}!k_m!}.$$

Полученное равенство можно строго доказать индукцией по m.

Полиномиальные коэффициенты

Комбинаторное число $\frac{n!}{k_1!k_2!...k_{m-1}!k_m!},$ где $n\geq 1$,

 $0 \le k_1, \dots, k_m \le n$ и $\sum_{i=1}^m k_i = n$, называется полиномиальным коэффициентом и обозначается $C(k_1, \dots, k_m)$.

T.e.

$$C(k_1,\ldots,k_m) = \frac{(k_1+\cdots+k_m)!}{k_1!k_2!\ldots k_{m-1}!k_m!}.$$

Через полиномиальные коэффициенты формулу из теоремы 2.4' можно переписать в следующем виде.

Теорема 2.4. Для всех $n \ge 1$, $m \ge 2$ верно

$$(x_1 + \dots + x_m)^n = \sum_{\substack{k_1, \dots, k_m \ge 0, \\ k_1 + \dots + k_m = n}} C(k_1, \dots, k_m) x_1^{k_1} \dots x_m^{k_m}.$$

Формула квадрата суммы трех переменных

Пример 2.5. Найдем формулу для выражения $(x + y + z)^2$.

Решение. В соответствии с теоремой 2.4 сначала нам нужно найти всевозможные разбиения числа n=2 на *упорядоченные* суммы трех (m=3) неотрицательных чисел.

Таких разбиений шесть:

$$2 = 0 + 0 + 2 = 0 + 1 + 1 = 0 + 2 + 0 = 1 + 0 + 1 = 1 + 1 + 0 = 2 + 0 + 0.$$

Теперь для каждой суммы надо найти соответствующий полиномиальный коэффициент:

$$C(0,0,2) = C(0,2,0) = C(2,0,0) = \frac{2!}{0!0!2!} = 1;$$

 $C(0,1,1) = C(1,0,1) = C(1,1,0) = \frac{2!}{0!1!1!} = 2.$

Следовательно, получаем формулу

$$(x + y + z)^2 = z^2 + 2yz + y^2 + 2xz + 2xy + x^2$$
.

Аналогично теореме 2.3 можно получить значение суммы полиномиальных коэффициентов.

Теорема 2.5. Для всех $n \ge 1$, $m \ge 2$ верно

$$\sum_{\substack{k_1,\ldots,k_m\geq 0,\\k_1+\cdots+k_m=n}} C(k_1,\ldots,k_m) = m^n.$$

Доказательство. Подставим в формулу из теоремы 2.4 значения $x_1 = \cdots = x_n = 1$.

Число полиномиальных коэффициентов

Несложно увидеть, что в сумме $\sum\limits_{k=0}^{n} C_{n}^{k}$ слагаемых в точности n+1.

А сколько слагаемых в сумме $\sum\limits_{\substack{k_1,\ldots,\,k_m\geq 0,\k_1+\cdots+k_m=n}} C(k_1,\ldots,k_m)$?

Понятно, что их столько же, сколько разбиений числа n на упорядоченные суммы m неотрицательных чисел.

А их столько же, сколько сочетаний с повторениями из m элементов по n (Почему?). Следовательно, верно следующее

Свойство 2.6. При каждых $n \geq 1$, $m \geq 2$ число полиномиальных коэффициентов $C(k_1,\ldots,k_m)$ при $k_1+\cdots+k_m=n,\;k_1,\ldots,k_m\geq 0$, равно \bar{C}_m^n .

Число полиномиальных коэффициентов

Пример 2.6. При помощи теоремы 1.7 и свойства 2.6 найдем число полиномиальных коэффициентов при некоторых n и m.

1. Для n=2 и m=3 (пример 2.5) получаем:

$$\bar{C}_3^2 = C_{3+2-1}^2 = C_4^2 = 6.$$

2. Для n=3 и m=3 получаем: $\bar{C}_3^3=C_{3+3-1}^3=C_5^3=rac{5\cdot 4}{2!}=10.$

Изучение комбинаторных чисел

Точные формулы для нахождения биномиальных или полиномиальных коэффициентов, других комбинаторных чисел не всегда позволяют **качественно** оценить их значения.

Иногда важно знать верхнюю или нижнюю оценки комбинаторных чисел, а иногда необходимы их **порядок** или **асимптотика**.

Оценки биномиальных коэффициентов

Теорема 2.7. Для всех $n \ge 1$, $0 \le k \le n$ C_n^k верно $C_n^k \le \frac{n^n}{k^k(n-k)^{n-k}}$ (по определению полагаем, что $0^0 = 1$).

Доказательство. Сначала заметим, что для всех $n \geq 1$ верно $C_n^0 = 1 \leq \frac{n^n}{n^{n} \cdot 1^1} = 1$, т.е. при k = 0 утверждение теоремы 2.4 верно.

Доказательство для $n \geq 1$ при всех k, $1 \leq k \leq n$ проведем индукцией по значению n.

Базис индукции. Если n=1, то $C_n^1=1\leq \frac{1^1}{0^0\cdot 1^1}=1$.

Индуктивный переход. Предположим, что для некоторого $n \ge 1$ при всех k, $1 \le k \le n$, утверждение теоремы 2.1 верно. Рассмотрим n+1. Тогда

$$C_{n+1}^{k} = \frac{(n+1)!}{k!(n-k+1)!} = \frac{n+1}{k} \cdot \frac{n!}{(k-1)!(n-k+1)!} = \frac{n+1}{k} \cdot C_{n}^{k-1}.$$

Оценки биномиальных коэффициентов

Доказательство (продолжение). Воспользуемся предположением индукции, что $C_n^{k-1} \leq \frac{n^n}{(k-1)^{k-1}(n-k+1)^{n-k+1}}$, и проведем рассуждения:

$$\frac{n+1}{k} \cdot C_n^{k-1} \le \frac{n+1}{k} \cdot \frac{n^n}{(k-1)^{k-1}(n-k+1)^{n-k+1}} \cdot \frac{(n+1)^n}{(n+1)^n} \cdot \frac{k^k}{k^k} =$$

$$= \frac{(n+1)^{n+1}}{k^k(n-k+1)^{n-k+1}} \cdot \frac{n^n}{(n+1)^{n+1}} \cdot \frac{k^{k-1}}{(k-1)^{k-1}} =$$

$$= \frac{(n+1)^{n+1}}{k^k(n-k+1)^{n-k+1}} \cdot \frac{\left(1 + \frac{1}{k-1}\right)^{k-1}}{\left(1 + \frac{1}{n}\right)^n} \le \frac{(n+1)^{n+1}}{k^k(n-k+1)^{n-k+1}}.$$

В завершающем переходе мы воспользовались тем, что последовательность $a_n = \left(1 + \frac{1}{n}\right)^n$ возрастает.

Оценки полиномиальных коэффициентов

Следствие 2.7.1. Для всех $m \ge 2$ и $k_1, \ldots, k_m \ge 0$ верно

$$C(k_1,\ldots,k_m) \leq \frac{(k_1+\cdots+k_m)^{k_1+\cdots+k_m}}{k_1^{k_1}\ldots k_m^{k_m}}$$

(по определению полагаем, что $0^0 = 1$).

Доказательство можно провести индукцией по т.

Базис индукции: m=2 составляет теорема 2.7.

Исследование полученных оценок

Сложно понять, насколько верхние оценки, полученные в теореме 2.7 и следствии 2.7.1 точны.

Например, если n — четное число, и $k=\frac{n}{2}$, по теореме 2.7 находим

$$C_n^{\frac{n}{2}} \leq \frac{n^n}{\left(\frac{n}{2}\right)^{\frac{n}{2}} \cdot \left(\frac{n}{2}\right)^{\frac{n}{2}}} = 2^n.$$

Т.е. оценка достаточно "груба", т.к. мы знаем, что

$$\sum_{k=0}^n C_n^k \le 2^n.$$

Иногда требуются более "тонкие" оценки. Они, как правило, асимптотические.

О-символика

Напомним некоторые определения из математического анализа. Мы будем изучать поведение функций натурального аргумента n при $n \to \infty$.

Пишут $\varphi(n)=O(\psi(n))$, если существует такая положительная константа C, что $\varphi(n)\leq C\cdot \psi(n)$.

Если одновременно выполняются условия $\varphi(n) = O(\psi(n))$ и $\psi(n) = O(\varphi(n))$, то говорят, что функции $\varphi(n)$ и $\psi(n)$ имеют одинаковый порядок (равны по порядку), и пишут $\varphi(n) \asymp \psi(n)$.

Пишут $\varphi(n)=o(\psi(n))$, если существует такая функция $\chi(n)$, $\chi(n)\to 0$ при $n\to \infty$, что $\varphi(n)=\chi(n)\cdot \psi(n)$.

Говорят, что функции $\varphi(n)$ и $\psi(n)$ эквивалентны (асимптотически равны), и пишут $\varphi(n) \sim \psi(n)$, если $\varphi(n) = \psi(n) + o(\psi(n))$.

Асимптотика биномиальных коэффициентов

Находят **асимтотику** или хотя бы **порядок** комбинаторных чисел.

Например, для биномиальных коэффициентов выполняются

Теорема 2.8. При $k \to \infty$ и $n-k \to \infty$ верно

$$C_n^k \sim \frac{\sqrt{n}}{\sqrt{2\pi k(n-k)}} \cdot \frac{n^n}{k^k(n-k)^{n-k}}.$$

Следствие 2.8.1. При $n o \infty$ для четных значений n верно

$$C_n^{\frac{n}{2}} \sim \frac{2^n}{\sqrt{\pi \frac{n}{2}}}.$$

Асимптотика сумм биномиальных коэффициентов

Теорема 2.9. Если $\varphi(n)$ – произвольная сколь угодно медленно растущая функция натурального аргумента, то

$$\sum_{k=\lfloor \frac{n}{2}\rfloor-\varphi(n)\sqrt{n}}^{\lfloor \frac{n}{2}\rfloor+\varphi(n)\sqrt{n}}C_n^k\sim 2^n.$$

Доказательство. Пусть $K < \lfloor \frac{n}{2} \rfloor$. Рассмотрим сумму $\sum_{n=0}^{K} C_n^k$.

Сначала заметим, что для произвольного k, $0 \le k < K$, верно

$$\frac{C_n^k}{C_n^K} = \frac{n!}{k!(n-k)!} \cdot \frac{K!(n-K)!}{n!} =$$

$$=\frac{(k+1)(k+2)\ldots K}{(n-K+1)(n-K+2)\ldots (n-k)}\leq \left(\frac{K}{n-K}\right)^{K-k}.$$

Асимптотика сумм биномиальных коэффициентов

Доказательство (продолжение). Т.к. $K<\lfloor\frac{n}{2}\rfloor$, верно $\frac{K}{n-K}<1$. Тогда

$$\sum_{k=0}^K C_n^k = C_n^K + C_n^{K-1} + \cdots \le C_n^K \left(1 + \left(\frac{K}{n-K} \right) + \left(\frac{K}{n-K} \right)^2 \cdots \right).$$

В больших скобках стоит сумма бесконечно убывающей геометрической прогрессии со знаменателем $\frac{K}{n-K} < 1$. Найдем ее:

$$\frac{1}{1-\frac{K}{n-K}}=\frac{n-K}{n-2K}.$$

Откуда получаем оценку:

$$\sum_{k=0}^K C_n^k \le C_n^K \cdot \frac{n-K}{n-2K}.$$

Асимптотика сумм биномиальных коэффициентов

Доказательство (продолжение). С другой стороны, пользуясь свойством 2.1 и следствием 2.2.1, получаем $C_n^K \cdot (n-2K) = \underbrace{C_n^K + \dots + C_n^K}_{n-2K} \leq C_n^K + C_n^{K+1} + \dots + C_n^{\lfloor \frac{n}{2} \rfloor} + \dots + C_n^{n-K} \leq 2^n$

Получили оценку:

$$\sum_{k=0}^K C_n^k \le 2^n \cdot \frac{n-K}{(n-2K)^2}.$$

Теперь, если $K = \lfloor \frac{n}{2} \rfloor - \varphi(n)\sqrt{n} - 1$, то при $n \to \infty$ верно $\sum_{k=0}^K C_n^k = o(2^n)$. А по свойству 2.1 верно $\sum_{k=n-K}^n C_n^k = o(2^n)$.

Этим завершается доказательство теоремы 2.9 (Почему?).

Как распределяются значения биномиальных коэффициентов?

Теорема 2.9 имеет простой содержательный смысл: в значение суммы всех биномиальных коэффициентов при достаточно больших n основной вклад вносят коэффициенты с большим значением k (примерно половина n плюс-минус корень из n).

И наоборот, коэффициенты с малым значением k никакого существенного вклада в значение суммы не вносят (они все есть всего лишь o-маленькое от 2^n).

Задачи для самостоятельного решения

- **1**. Найти значение суммы $\sum_{k=0}^{n} k(k-1)C_{n}^{k}$.
- **2**. Найти значение суммы $\sum_{k=0}^{n} k2^{k}$.

Литература к лекции 2

- 1. Яблонский С.В. Введение в дискретную математику. М.: Высшая школа, 2001. Ч. II, с. 197-200, 202-214.
- 2. Гаврилов Г.П., Сапоженко А.А. Задачи и упражнения по дискретной математике. М.: Физматлит, 2004. Гл. VIII 1.13, 1.18, 3.10.
- 3. Селезнева С.Н. Основы дискретной математики. М.: MAKC Пресс, 2010 (http://mathcyb.cs.msu.su/paper/selezn/selezn-odm.pdf). Ч. 2.3, с. 28-31.

Конец лекции 2