André Gustavo dos Santos¹

Departamento de Informática Universidade Federal de Viçosa

INF230 - 2021/1

André Gustavo UFV Teoria dos números INF230 - 2021/1 1 / 14

Conteúdo

- 1 Teste de primalidade de Fermat
- 2 Raiz primitiva e logaritmo discreto
- 3 Função hash
- Números pseudoaleatórios
- Dígito verificador

2/14

André Gustavo UFV Teoria dos números INF230 - 2021/1

Teste de primalidade de Fermat

ROSEN, Kenneth H. Discrete mathematics and its applications. McGraw-Hill Education, 8th edition, 2018

3/14

André Gustavo UFV Teoria dos números INF230 - 2021/1

Pequeno teorema de Fermat

Pequeno teorema de Fermat

Se p é primo e a é um inteiro não divisível por p, então $a^{p-1} \equiv 1 \mod p$.

Além disso, para todo inteiro a, $a^p \equiv a \mod p$.

Calcule 7²²² mod 11

Usando o pequeno teorema de Fermat em vez do alg. de potenciação modular rápida:

- Pelo pequeno teorema de Fermat $7^{10} \equiv 1 \mod 11$
- Então $(7^{10})^k \equiv 1 \mod 11$ para todo inteiro positivo k
- Para aproveitar esta última congruência, dividimos o expoente 222 por 10
- $7^{222} = 7^{22 \cdot 10 + 2} = (7^{10})^{22} 7^2 \equiv 1^{22} \cdot 49 \equiv 5 \mod 11$
- Então, $7^{222} \mod 11 = 5$.

André Gustavo UFV Teoria dos números INF230 - 2021/1

Pequeno teorema de Fermat

- De uma forma geral, podemos calcular $a^n \mod p$ quando $p \notin \text{primo e } p \nmid a$
- Usar o algoritmo da divisão para o resto de n por p-1: n=q(p-1)+r
- $a^n = a^{q(p-1)+r} = (a^{p-1})^q a^r \equiv 1^q a^r \equiv a^r \mod p$, pois $r \not | p$ já que $0 \le r < p-1$
- Então, para calcular aⁿ mod p, basta calcular a^r mod p

André Gustavo UFV Teoria dos números INF230 - 2021/1 5 / 14

Pseudoprimos

Teste de primalidade de Fermat

- Vimos que n é primo se não tem um divisor primo p com $p \le \sqrt{n}$
- Usar este critério requer a lista de primos até \sqrt{n} e uma divisão por cada um
- Há uma forma mais eficiente de determinar se um número inteiro é primo?
- De acordo com algumas fontes, matemáticos chineses acreditavam que n ímpar é primo se e somente se

$$2^{n-1} \equiv 1 \bmod n$$

- Se isto fosse verdade, teríamos um teste de primalidade muito eficiente!
- Por que eles acreditavam nisso?
 - \blacksquare Por que valia para primos ímpares. Por exemplo, $2^{5-1}=2^4=16\equiv 1\ \text{mod}\ 5.$
 - Por que n\u00e3o acharam um n\u00eamero composto que valia.
- Hoje sabemos que estavam parcialmente corretos
 - Realmente vale para primos ímpares (prova: pequeno teorema de Fermat)
 - lacktriangle Mas pode valer para números compostos (contra-exemplo: $2^{340} \equiv 1 \mod 341$)

Dígito verificador

André Gustavo UFV Teoria dos números INF230 - 2021/1

Pseudoprimos

Teste de primalidade de Fermat

- Como 341 satisfaz mas não é primo, ele é chamado pseudoprimo na base 2
- Dado n, testar a validade de $2^{n-1} \equiv 1 \mod n$ fornece alguma evidência sobre sua primalidade. Em particular, se não vale, certamente é um número composto.
- Os que passam no teste são primos ou pseudoprimos na base 2
- Existem relativamente poucos pseudoprimos. Por exemplo, entre os inteiros até 10¹⁰ existem 455.052.512 primos, mas apenas 14.884 pseudoprimos na base 2
- Podemos usar outras bases em vez de 2 para definir os pseudoprimos

Definição

Se n é inteiro positivo composto e b é inteiro positivo com $b^{n-1} \equiv 1 \mod n$, então n é chamado de pseudoprimo na base b.

- Se *n* passa no teste para base 2, podemos testar outras bases
- Infelizmente há números compostos n que passam em todas as bases b coprimo

Dígito verificador

André Gustavo UFV Teoria dos números INF230 - 2021/1

Números de Carmichael

Definição

Um número composto n que satisfaz a congruência $b^{n-1} \equiv 1 \mod n$ para todo inteiro positivo b com mdc(n, b) = 1 é chamado número de Carmichael.

André Gustavo UFV Teoria dos números INF230 - 2021/1 8/14

Números de Carmichael

Definição

Teste de primalidade de Fermat

00000

Um número composto n que satisfaz a congruência $b^{n-1} \equiv 1 \mod n$ para todo inteiro positivo b com mdc(n,b)=1 é chamado número de Carmichael.

Exemplo: 561 é um número de Carmichael

Dígito verificador

André Gustavo UFV Teoria dos números INF230 - 2021/1 8 / 14

Raiz primitiva e logaritmo discreto

- No conjunto dos reais, se b > 1 e $x = b^y$, dizemos que y é o logaritmo de x na base b, denotado por $y = \log_b x$
- Este conceito pode ser estendido para números inteiros módulo p, onde p é primo

Definição

Teste de primalidade de Fermat

Uma raiz primitiva módulo um primo p é um inteiro r em \mathbb{Z}_p tal que todo elemento $\neq 0$ de \mathbb{Z}_p é potência de r.

2 e 3 são raízes primitivas módulo 11?

- Potências de 2 em Z₁₁:
 - $2^1 = 2, 2^2 = 4, 2^3 = 8, 2^4 = 5, 2^5 = 10, 2^6 = 9, 2^7 = 7, 2^8 = 3, 2^9 = 6, 2^{10} = 1$
 - Todo elemento não nulo de Z₁₁ é potência de 2, logo 2 é uma raiz primitiva módulo 11
- Potências de 3 em Z₁₁:
 - $3^1 = 3$, $3^2 = 9$, $3^3 = 5$, $3^4 = 4$, $3^5 = 1$, e então o padrão se repete
 - \blacksquare Nem todo elemento não nulo de \mathbb{Z}_{11} é potência de 3, logo 3 não é raiz primitiva módulo 11

André Gustavo UFV Teoria dos números INF230 - 2021/1

Raiz primitiva e logaritmo discreto

- Um fato importante em teoria dos números é que existe raiz primitiva módulo p para todo primo p
- Seja p um primo e r uma raiz primitiva de p
 - Se a é um inteiro entre 1 e p-1, ou seja, um inteiro não nulo de \mathbb{Z}_p , então existe um único expoente e tal que $r^e = a$ em \mathbb{Z}_p , ou seja $r^e \mod p = a$

Definição

Se p é primo, r uma raiz primitiva de p, a um inteiro entre 1 e p-1 inclusive, e $r^e \mod p = a$, com 0 < e < p - 1, dizemos que e é o logaritmo discreto de a módulo p na base r, denotado por $\log_r a = e$ (com o primo p subentendido).

Calcule o logaritmo discreto de 3 e 5 módulo 11 na base 2

- Como $2^8 = 3$ e $2^4 = 5$ em \mathbb{Z}_{11} , temos que $\log_2 3 = 8$ e $\log_2 5 = 4$ (Obs.: o módulo 11 fica subentendido e não é escrito na notação)
- Apesar do problema não parecer complicado, não existe algoritmo eficiente para cálculo de logaritmo discreto, e essa dificuldade é importante para a criptografia

André Gustavo UFV Teoria dos números INF230 - 2021/1 10 / 14

Hashing

- Tabela hash é usada para armazenar e recuperar informação de forma eficiente
- A localização de um item é obtida aplicando-se uma função hash à chave

$h(k) = k \mod 111$

- $h(064212848) = 064212848 \mod 111 = 14$
- $h(037149212) = 037149212 \mod 111 = 65$
- $h(107405723) = 107405723 \mod 111 = 14$
- Corre-se o risco de duas chaves gerarem a mesma posição, então deve haver um método para tratar este problema, chamado colisão

André Gustavo UFV Teoria dos números INF230 - 2021/1 11 / 14

- Números aleatórios são necessários em muitos processos de simulação por computador
- Diferentes métodos foram criados para gerar números com propriedades de números escolhidos aleatoriamente
- Como números gerados de forma sistemática não são realmente aleatórios, são chamados pseudoaleatórios
- A forma mais comum de geração de números pseudoaleatórios é pelo método de congruência linear
 - Escolhemos um módulo m, um multiplicador a, um acréscimo c e uma semente x₀ com 2 < a < m. 0 < c < m. 0 < x₀ < m</p>
 - Uma sequência de números pseudoaleatórios $x_0, x_1, \dots x_n, 0 \le x_i < m$, é gerada por:

$$x_{n+1} = (ax_n + c) \mod m$$

Para gerar números entre 0 e 1, basta dividir a lista pelo módulo, x_i/m

André Gustavo UFV Teoria dos números INF230 - 2021/1 12 / 14

Números pseudoaleatórios

Escreva a lista dos números gerados com m = 9, a = 7, c = 4 e $x_0 = 3$.

■
$$x_0 = 3$$

■ $x_1 = (7x_0 + 4) \mod 9 = (21 + 4) \mod 9 = 7$
■ $x_2 = (7x_1 + 4) \mod 9 = (49 + 4) \mod 9 = 8$
■ $x_3 = (7x_2 + 4) \mod 9 = (56 + 4) \mod 9 = 6$
■ $x_4 = (7x_3 + 4) \mod 9 = (42 + 4) \mod 9 = 1$
■ $x_5 = (7x_4 + 4) \mod 9 = (7 + 4) \mod 9 = 2$
■ $x_6 = (7x_5 + 4) \mod 9 = (14 + 4) \mod 9 = 0$
■ $x_7 = (7x_6 + 4) \mod 9 = (0 + 4) \mod 9 = 4$
■ $x_8 = (7x_7 + 4) \mod 9 = (28 + 4) \mod 9 = 5$
■ $x_9 = (7x_8 + 4) \mod 9 = (35 + 4) \mod 9 = 3$
■ como $x_9 = x_0$, a sequência se repete

- Muitos computadores usam este método para gerar números pseudoaleatórios
- \blacksquare São frequentes os geradores puramente multiplicativos, com c=0
- O gerador com módulo $2^{31} 1$ e multiplicador $7^5 = 16807$, por exemplo, gera $2^{31} 2$ números antes de começar a repetir

André Gustavo UFV Teoria dos números INF230 - 2021/1 13 / 14

Dígito verificador

- Congruências são usadas para verificar erros em strings de dígitos
- Uma técnica comum é adicionar um dígito extra no final, o dígito verificador
- Este dígito é calculado por uma função com os demais dígitos
- Para verificar se um string está correto, verifica-se se o dígito verificador é coerente
- Uma ideia semelhante é o uso de bit de paridade no envio e armazenamento de informação

UPC - Universal Product Codes

$$3x_1 + x_2 + 3x_3 + x_4 + 3x_5 + x_6 + 3x_7 + x_8 + 3x_9 + x_{10} + 3x_{11} + x_{12} \equiv 0 \mod 10$$

ISBN-10 - International Standard Book Number

$$x_{10} \equiv \sum_{i=1}^{9} ix_i \pmod{11}$$
, ou, de forma equivalente, $\sum_{i=1}^{10} ix_i \equiv 0 \pmod{11}$

