

10/777185

(12) UK Patent Application (19) GB (11) 2 281 477 (13) A

(43) Date of A Publication 01.03.1995

(21) Application No 9317330.0

(22) Date of Filing 20.08.1993

(71) Applicant(s)
AT&T Corp.

(Incorporated in USA - New York)

32 Avenue Of The Americas, New York,
New York 10013-2412, United States of America

(72) Inventor(s)
Charlotte Catherine Elizabeth Baden
Anthony Martin

(74) Agent and/or Address for Service

C M K Watts
AT&T (UK) Ltd, 5 Mornington Road,
WOODFORD GREEN, Essex, IG8 0TU,
United Kingdom

(51) INT CL⁶
H04B 7/005

(52) UK CL (Edition N)
H4L L1H10 L41X

(56) Documents Cited
GB 2264027 A

(58) Field of Search
UK CL (Edition L) H4B BK12C , H4L LDSF
INT CL⁵ H04B 7/005 10/12
ONLINE : WPI

(54) Operation of a CDMA net

(57) A code-division multiple-access (CDMA) net can be used for efficiently carrying various types of traffic having different requirements, such as voice traffic and ISDN traffic. When a station requests a channel, the controller determines the quality level required by that station and calculates the appropriate power level for that station on the basis of the required quality level. At the same time it recalculates the power levels for the stations already having operative channels and adjusts them accordingly.

GB 2 281 477 A

OPERATION OF A CDMA NET

Technical Field

This invention relates to code-division multiple access (CDMA) nets, and more particularly to methods of operation of and controllers for such nets.

5 Background of the Invention

The use of code division is well known as a means of managing multiple access to a medium such as a radio band or optical fibre. For example, see Klein S. Gilhousen, *On the Capacity of a Cellular CDMA System* — IEEE Trans. on Vehicular Technology, vol. 40, no. 2, May 1991, pages 303-312. In such a system 10 each subscriber is allocated a code which is used to encode the signal prior to transmission. The technique which will be particularly discussed in this specification is known as 'direct-sequence code-division multiple access' (DS-CDMA). In this technique the traffic bearer is multiplied by a serial code at a rate known as the 'chip rate' (W) which is greater than the bit rate (R) by some factor 15 (W/R) known as the 'spreading gain'. The resulting signal is recovered, in the presence of other co-frequency signals, by correlation with the spreading code. The codes allocated to different subscribers are chosen for their orthogonal properties to minimise cross-talk. In practice, however, non-ideal implementation, for example the difficulty or impossibility of maintaining exact synchronisation between the 20 codes, makes true orthogonality impossible to achieve, and unwanted co-frequency channels manifest themselves as noise power in the wanted channel.

When a station requests a channel, the controller sets up the channel, which includes synchronising the code at the controller and the station and then, while the channel remains in operation, controlling the power level of the station so 25 that the received power levels from all the stations with operative channels are the same.

Summary of the Invention

According to a first aspect of the present invention there is provided a method of operating a code-division multiple-access (CDMA) net comprising 30 receiving a channel request from a station and in response to said channel request: (a) setting up a CDMA channel for said station and (b) while said channel remains in operation, controlling the power level at which said station transmits into said channel; CHARACTERISED BY in step (a) determining a quality level required by said station, and determining power levels for said station and any other stations 35 already having channels in operation to provide the respective required quality levels and in step (b) initially setting the power level of said station and adjusting the

power levels of said other stations in accordance with said determined power levels.

- According to a second aspect of the invention there is provided a controller for a code-division multiple-access (CDMA) net comprising means for receiving a channel request from a station; means for setting up a CDMA channel for said station in response to said request; and means for controlling the power level at which said station transmits into said channel while said channel remains in operation, CHARACTERISED IN THAT said means for setting up includes means for determining a quality level required by said station, and determining power levels for said station and any other stations already having channels in operation to provide the respective required quality levels and said means for controlling includes means for initially setting the power level of said station and adjusting the power levels of said other stations in accordance with said determined power levels.

We have found that a CDMA net can be efficiently used to carry a variety of different types of traffic, such as voice and ISDN data services which have widely differing bit rates and/or error rate requirements. One application of such a net would be as a radio local loop for a telecommunications network.

Brief Description of the Drawing

An embodiment of the invention will now be described by way of example with reference to the accompanying drawing which shows the relevant parts 20 of a controller embodying the invention.

Detailed Description

The basic capacity equation for DS-CDMA is given in equation 1.

where

- 25 W is the spread bandwidth,
 R is the symbol rate,
 S is the received signal power,
 N is the number of station having operative channels,
 η is the background noise and
30 α is the activity factor, which accounts for the intermittent nature of the transmission when bursty data such as speech data are carried. For voice transmission $\alpha = 0.5$, whereas for ISDN data services $\alpha = 1$, since the data are not bursty.

Equation 1 refers to a CDMA net of conventional type, in which all of the stations are of the same type — all voice stations in the case of a telephone net, for example. We envisage the use of CDMA in a net in which stations are of different types, such as voice and ISDN data services. The stations will thus have 5 different characteristics and requirements. For example, a voice station may have a data bit rate of 32kb/s, depending on the type of coding used, an activity factor of 0.5 and a maximum bit error rate of 10^{-3} , whereas an ISDN data station may have a data bit rate of 144kb/s, an activity factor of 1.0 and require a maximum error rate of 10^{-6} .

- When the stations have various characteristics and requirements equation 1 has to be generalised to

$$\left[\frac{E_b}{N_0} \right]_x = \frac{W S_x / R_x}{\sum_{i \neq x} S_i \alpha_i + \eta} \quad \dots \dots \dots \quad (2)$$

Defining Q_x as a measure of the quality of service required by station x ,

$$Q_x \equiv \left[\frac{E_b}{N_0} \right]_x$$

15. equation 2 can be arranged to give

$$S_x = \left(\sum_{i \neq x} S_i \alpha_i + \eta \right) \frac{Q_x R_x}{W} \quad \dots \quad (3)$$

which can be solved to give all of the S_x

where

$$20 \quad \sigma_x = \frac{Q_x}{\frac{W}{R_x} + \alpha_x Q_x}$$

If we divide the stations into classes c of stations having the same requirements, equation 4 becomes

where n_c is the number of active stations in class c .

Therefore, given the requirements of the stations, appropriate power levels S_x can be derived. When a station requests a channel, this affects the appropriate power levels of all of the stations having currently operative channels, so new power levels have to be calculated for all of the currently active stations.

The actual values of S_x can be calculated from measurable properties of received signals as follows. The power C_x of the despread signal for channel x is given by

$$C_x = \frac{W}{R_x} S_x \alpha_x + \sum_{i \neq x} S_i \alpha_i + \eta$$

10 and the total received power P_r is given by

$$P_t = \sum_i S_i \alpha_i + \eta$$

Solving for S_x and η yields:

$$S_x = \frac{C_x - P_t}{\alpha_x \left[\frac{W}{R_x} - 1 \right]} \dots \dots \dots \quad (6)$$

15 The accompanying drawing shows the relevant parts of a controller embodying the invention. Those parts which are common to known controllers and are not relevant to the present invention are not shown, for the sake of clarity.

A radio receiver 1 is arranged to receive a radio signal from an antenna 2. The receiver 1 is connected to provide a signal indicative of the total received power P_t to a quality of service control processor 3 and to deliver a spread-spectrum received signal to despread circuits 4.1, 4.2 ... 4.n. Each of the despread circuits 4.1, 4.2 ... 4.n is arranged to apply the code assigned to a respective channel so as to produce a signal in which the respective channel constitutes a narrow-band despread signal and the other channels appear as a broad-band background noise.

These despread signals are applied to respective demodulator and decoder circuits 5.1, 5.2 ... 5.n which derive the output signals for the respective channels. The despread circuits 4.1, 4.2 ... 4.n also provide signals representing the powers of the respective despread signals $C_1, C_2 \dots C_n$ to the quality of service control

processor 3. A memory device 6 is arranged to provide signals representing the quality factor, data rate and activity factor Q_i , R_i and α_i to the quality of service control processor 3.

- The quality of service control processor is a computer programmed to
- 5 calculate the background noise level η and the actual values of the received signal power for the respective channels according to equations 6 and 7, to calculate the required values of the received signal power S_x for the respective channels according to equation 4 or 5 and to derive power control signals $P_1, P_2 \dots P_n$, representing the differences between the actual and required values of S_x . The power control signals
 - 10 $P_1, P_2 \dots P_n$ are then applied to spreader circuits 7.1, 7.2 ... 7.n. The spreader circuits apply the codes assigned to control signals of the respective channels to provide spread-spectrum signals, which are then mixed with one another and with spread-spectrum data input signals for the channels from respective spreader circuits (not shown) and applied to a radio transmitter 8 which produces a radio-frequency
 - 15 output signal which is applied to the antenna 2.

The values of Q_i , R_i and α_i provided by the memory device 6 may be extracted from a table held in a data-base forming part of the controller or they may be provided by the stations during the channel set-up procedure.

- Further modifications of the controller specifically described will be
- 20 apparent to persons skilled in the art to which the invention relates. For example, the power control signals $P_1, P_2 \dots P_n$ may be sent as narrow-band signals instead of using spreader circuits 7.1, 7.2 ... 7.n.

Claims:

1. A method of operating a code-division multiple-access (CDMA) net comprising receiving a channel request from a station and in response to said channel request:
 - 5 (a) setting up a CDMA channel for said station and
 - (b) while said channel remains in operation, controlling the power level at which said station transmits into said channel;
- CHARACTERISED BY
in step (a) determining a quality level (Q_x) required by said station, and
10 determining power levels (S_x) for said station and any other stations already having channels in operation to provide the respective required quality levels and
 in step (b) initially setting the power level of said station and adjusting the power levels of said other stations in accordance with said determined power levels.
- 15 2. A method as claimed in claim 1 wherein said determining of a quality level comprises retrieving a predetermined quality level associated with said station from a table.
3. A method as claimed in claim 1 wherein said determining of a quality level comprises receiving an indication of said quality from said station.
- 20 4. A method as claimed in any of the preceding claims wherein said power levels are determined in accordance with the relation:
$$S_x = \left[\sum_{i \neq x} S_i \alpha_i + \eta \right] \frac{Q_x R_x}{W}$$
where:
25 S_x is the received power level from station x ,
 α_i is the activity factor of station i ,
 η is the background noise level,
 W/R_x is the spreading gain for station x and
 Q_x is a measure of the quality level required by station x , being the ratio E_b/N_0 where E_b is the received energy per bit and N_0 is the received noise spectral density.

5. A method as claimed in any of the preceding claims wherein said CDMA net is a radio local loop of a telecommunications network.

6. A controller for a code-division multiple-access (CDMA) net comprising means for receiving a channel request from a station;

5 means for setting up a CDMA channel for said station in response to said request; and

means for controlling the power level at which said station transmits into said channel while said channel remains in operation,

CHARACTERISED IN THAT

10 said means for setting up includes means (3, 6) for determining a quality level required by said station, and determining power levels for said station and any other stations already having channels in operation to provide the respective required quality levels and

15 said means for controlling includes means (1, 3, 4.1, 4.2, 4.n) for initially setting the power level of said station and adjusting the power levels of said other stations in accordance with said determined power levels.

7. A controller as claimed in claim 6 wherein said means for determining a quality level is arranged to retrieve a predetermined quality level associated with said station from a table.

20 8. A controller as claimed in claim 6 wherein said means for determining a quality level is arranged to receive an indication of said quality from said station.

9. A controller as claimed in any of claims 6 to 8 wherein said means for controlling is arranged to set and adjust said power levels in accordance with the relation:

$$25 S_x = \left[\sum_{i \neq x} S_i \alpha_i + \eta \right] \frac{Q_x R_x}{W}$$

where:

S_x is the received power level from station x ,

α_i is the activity factor of station i ,

η is the background noise level,
 W/R_x is the spreading gain for station x and
 Q_x is a measure of the quality level required by station x , being the ratio
 E_b/N_0 where E_b is the received energy per bit and N_0 is the received noise spectral
5 density.

10. A telecommunications network having one or more radio local loops
each comprising a CDMA net having a controller as claimed in any of claims 6 to 9.

Application number
GB 9317330.0

Relevant Technical Fields

- (i) UK Cl (Ed.L) H4L (LDSF) H4B (BK12C)
 (ii) Int Cl (Ed.5) H04B 7/005, 10/12

Databases (see below)

- (i) UK Patent Office collections of GB, EP, WO and US patent specifications.
 (ii) ONLINE : WPI

Search Examiner
N W HALLDate of completion of Search
10 NOVEMBER 1993Documents considered relevant
following a search in respect of
Claims :-
1-10

Categories of documents

- | | | | |
|----|---|----|---|
| X: | Document indicating lack of novelty or of inventive step. | P: | Document published on or after the declared priority date but before the filing date of the present application. |
| Y: | Document indicating lack of inventive step if combined with one or more other documents of the same category. | E: | Patent document published on or after, but with priority date earlier than, the filing date of the present application. |
| A: | Document indicating technological background and/or state of the art. | &: | Member of the same patent family; corresponding document. |

Category	Identity of document and relevant passages	Relevant to claim(s)
	GB 2264027 A whole document	1,6

Databases: The UK Patent Office database comprises classified collections of GB, EP, WO and US patent specifications as outlined periodically in the Official Journal (Patents). The on-line databases considered for search are also listed periodically in the Official Journal (Patents).

THIS PAGE BLANK (USPTO)