浙江大学实验报告

专业: 电子信息工程

姓名: 邢毅诚

学号: <u>3190105197</u>

日期: 2021-10-22

地点: 教二-116

课程名称: 电机与拖动 指导老师: 史婷娜 成绩:

实验名称: 单相变压器和三相变压器 实验类型: 验证实验 同组学生姓名: 无

一、 实验目的

1. 通过空载和短路实验测定变压器的变比和参数。

2. 通过负载实验测取变压器的运行特性。

二、 实验设备

- 1. 三相芯式和组式变压器 (DT41 和 DT40)
- 2. 单项变压器 (DT41)

$$P_N = 76W$$
, $U_{1N}/U_{2N} = 220V/55V$, $I_{1N}/I_{2N} = 0.345A/1.38A$

- 3. 负载电阻 (DT21) 限流 1.5A 阻值 0-90Ω
- 4. 三相交流可调电源
- 5. 交流表

三、 实验项目

- 1. 空载实验: 测取空载特性 $U_o = f(I_0), P_0 = f(U_0)$
- 2. 短路实验: 测取短路特性 $U_K = f(I_K), P_K = f(U_K)$
- 3. 负载实验 (纯电阻负载): 测取 $U_2 = f(I_2)$

四、 实验内容

1. 空载实验

按照下图连接电路图:

图 1: 空载实验接线图

被试变压器选用 DT40 三相组式变压器,实验用其中的一相,其额定容量 PN=76W,U1N/U2N=220/55V,I1N/I2N=0.345/1.38A。变压器的低压线圈接电源,高压线圈开路。接通电源前,将交流电源调压旋钮调到输出电压为零的位置,然后合上空气开关,按下面板上绿色的"ON"按钮,此时变压器接入交流电源,调节交流电源调压旋钮,使变压器空载电压 U0=1.2 UN,然后,逐次降低电源电压,在1.2~0.5 UN 的范围内,测取变压器的 U_0 、 I_0 、 P_0 共取 67组数据,其中 $U=U_N$ 的点必测,并在该点附近测的点应密些。为了计算变压器的变比,在 U2N 以下测取原边电压的同时,测出副边电压,并计算出功率,如下表所示:

序号	实验数据				计算数据	
	低压侧电压/V	高压侧电压/	空载电流/A	空载功率/W	角度 $cos\phi$	变压器变比 K
1	66.10	263.8	0.140	3.814	0.412	3.991
2	60.46	242.2	0.115	3.181	0.458	4.006
3	55.12	219.8	0.095	2.615	0.499	3.988
4	47.43	189.3	0.076	1.967	0.546	3.991
5	40.43	161.3	0.063	1.482	0.582	3.990
6	32.36	129.4	0.051	0.994	0.602	3.999
7	23.10	91.89	0.041	0.537	0.567	3.978
8	10.96	43.98	0.026	0.133	0.467	4.013

表 1: 实验一实验数据

计算得变压器变比的平均值为 3.996。 绘制空载特性曲线 $U_o = f(I_0)$:

图 2: $U_o = f(I_0)$ 曲线

绘制空载特性曲线 $P_0 = f(U_o)$:

绘制空载特性曲线 $cos\phi_k = f(I_k)$

图 4: $cos\phi_k = f(I_k)$ 曲线

根据空载特性曲线可以得出,当 $U_0=U_N$ 时,有 $I_o=0.14A, P_0=3.814W$,由于之前已经计算得 K = 3.996。计算得:

$$|Z_0| = \left| \frac{U_0}{I_0} \right| = |Z_{2m}| = 471.43\Omega \tag{1}$$

$$R_{2m} = \frac{p_0}{I_0^2} = 194.59\Omega \tag{2}$$

$$X_{2m} = \sqrt{|Z_{2m}|^2 - R_{2m}^2} = 429.40\Omega \tag{3}$$

$$Z_{2m} = R_{2m} + jX_{2m} = 194.59 + j471.43 (4)$$

由公式:

$$Z_{2m} = \frac{Z_m}{k^2} \tag{5}$$

可得: $Z_m = Z_{2m}k^2 = 3107.22 + 7527.80j(\Omega)$

2. 短路实验

短路电路图如下图所示:

图 5: 短路实验接线图

变压器的高压线圈接电源,低压线圈直接短路。接通电源前,先将交流调压旋钮调到输出电压为零的位置,选好所有电表量程,按上述方法接通交流电源,逐次增加输入电压,直至短路电流等于 $1.1~I_N$ 为止,在 $0.5I_N\sim 1.1I_N$ 范围内测取变压器的 U_k 、 I_k 、 P_k 。并记下实验时周围环境温度 $\theta(^{o}C)=22.5^{o}$,测得数据如下表所示:

序号		计算数据		
	短路电压/V	短路电流/A	短路功率/W	角度 cosφ
1	28.77	0.379	4.679	0.429
2	26.20	0.345	3.891	0.430
3	21.73	0.286	2.690	0.433
4	17.47	0.230	1.755	0.437
5	12.84	0.169	0.946	0.436
6	7.62	0.103	0.335	0.427

表 2: 实验二实验数据

绘制短路特性曲线 $U_o = f(I_0)$:

图 6: $U_k = f(I_k)$ 曲线

绘制短路特性曲线 $P_k = f(I_k)$:

图 7: $P_k = f(I_k)$ 曲线

绘制短路特性曲线 $cos\phi_k = f(I_k)$

图 8: $cos\phi_k = f(I_k)$ 曲线

根据短路特性曲线可知, 当 $I_k = I_N$ 时, $U_k = 26.2V, P_k = 3.891W$ 可以计算出短路参数:

$$R_k = \frac{p_k}{I_k^2} = 32.69\Omega \tag{6}$$

$$|Z_k| = \frac{U_k}{I_k} = \frac{U_k}{I_{1N}} = 74.94\Omega \tag{7}$$

$$X_k = \sqrt{|Z_k|^2 - R_k^2} = 67.43\Omega \tag{8}$$

$$Z_K = 32.69 + 67.43j(\Omega) \tag{9}$$

假设为铝线,可计算得:

$$R_{k75^{\circ}C} = \frac{R_{k\theta}(\alpha + 75)}{\alpha + \theta} = 39.37\Omega$$
 (10)

根据空载实验和短路实验结果绘制得到的参数,可以分别画出高压边和低压边的 τ 型的等效电路:

$$Z_{k75^{\circ}C} = 39.37 + 67.43j(\Omega) \tag{11}$$

3. 负载实验

负载实验的电路图如下图所示:

图 9: 低压边向高压边折算

图 10: 高压边向低压边折算

图 11: 纯电阻负载实验接线图

变压器高压线圈接电源,低压线圈经过开关 S1,接到负载电阻 RL。RL 选用 DT21,开关 S1 选用 DT26。

接通电源前,将交流电源调节旋钮调到输出电压为零的位置,负载电阻调至最大,然后合上 S1,按下接通交流电源的按钮,逐渐升高电源电压,使变压器输出电压 $U_1=U_N=220V$,在保持 $U_1=U_N=220V$ 的条件下,逐渐增加负载电流,即减少负载电阻 RL 的阻值,从空载到额定负载的范围内,测取变压器的输出电压 U2 和电流 I2,测量得到数据如下表所示:

序号	输入电压 U_1/V	输入电流 I_1/A	输出电压 $U_2/{ m V}$	输出电流 I_2/A
1	220	0.074	54.4	0.238
2	220	0.122	53.89	0.437
3	220	0.173	53.53	0.639
4	220	0.221	52.85	0.833
5	220	0.272	52.34	1.035
6	220	0.36	51.48	1.387
7	220	0.023	54.89	0

表 3: 实验 3 实验数据

此时 $cos\phi_2 = 1$ 。

绘制 $cos\phi_2 = 1$ 的外特性曲线 $U_2 = f(I_2)$, 如下图所示:

使用最小二乘法对曲线进行线性拟合,可以得到其表达式为:

$$U_2 = -2.502I_2 + 54.97 \tag{12}$$

将 $I_2 = I_{2N} = 1.38$ 代入,可以得到 $U_2 = 51.52V$,进而可以计算得到电压变化率:

$$\Delta u = \frac{U_{20} - U_2}{U_{20}} \times 100\% = 6.28\% \tag{13}$$

另外,当 $I_2=I_{2N}, cos\phi_2=1$ 时,可以计算得到电压变化率 Δu :

$$R_k^* = \frac{R_k}{Z_{1N}} = 0.0513 \tag{14}$$

$$X_k^* = \frac{X_k}{Z_{1N}} = 0.106 \tag{15}$$

故:

$$\Delta u = (R_k^* \cos \phi_2 + X_k^* \sin \phi_2) \times 100\% = 5.13\% \tag{16}$$

可以看出,二者计算出的结果相差不大,但在使用第二种方法进行计算的时候,由于对 U_{1N} 进行了近似,因此结果并不是十分准确,会比第一种方式计算出的结果略小。根据电压变化率的表达式: $\Delta u = (R_k^* cos\phi_2 + X_k^* sin\phi_2)$ 可以得知:当负载为感性负载亦或是阻性负载时,特性曲线的斜率为负,而当负载为容性负载时,如 $|R_k^* cos\phi_2| > |X_k^* sin\phi_2|$,则负载曲线的斜率为负,反之为正。

使用间接法,可以测得 $cos\phi_2=0.8$ 不同负载电流时的变压器效率,可以得到: $cos\phi_2=0.8, P_0=2.615, P_{KN}=3.891W$,根据公式 $P_2=I_2^*cos\phi_2, \eta=(1-\frac{P_0+I_2^{*2}P_k}{I_2^*S_Ncos\phi_2+p_0+I_2^{*2}P_k})\times 100\%$ 可以得到下列数据:

I*2 (A)	P2 (W)	
0.00	0.00	0.00%
0.05	3.04	53.67%
0.10	6.08	69.61%
0.20	12.16	81.44%
0.40	24.32	88.25%
0.60	36.48	90.08%
0.80	48.64	90.50%
1.00	60.80	90.33%
1.20	72.96	89.88%

表 4: 不同负载电流时的变压器效率

可以绘制处变压器的效率曲线 $\eta = f(I_2^*)$, 如下图所示:

图 13: $\eta = f(I_2^*)$

使用 cftools 对其进行拟合,如下图所示:

图 14: $\eta = f(I_2^*)$ 拟合曲线

当
$$\eta=\eta_{max}$$
 时,有:
$$\frac{d\eta}{dI_2^*}=0 \eqno (17)$$
 即 $I_2^*=0.8,\,\eta_{max}=90.8\%$,可以计算得到 $\beta_m=I_2^*=0.8$

五、 心得与体会

在进行短路实验的时候,需要尽快进行实验,否则可能造成线圈发热进而影响电阻的变化。