LECTURE_09

MODULE_30

Exercise 1.3

Q.3 Prove that the following are irrationals.

(ii) $7\sqrt{5}$

- ol: Let us assume that $7\sqrt{5}$ is rational.
 - \therefore There exist co-prime integers a and b (b \neq 0) such that,

Lets prove this by contradiction

$$7\sqrt{5} = \frac{a}{b}$$

$$\sqrt{5} = \frac{a}{7b}$$
Integer
Integer

It should be in form of a/b

Since a and b are integers, it implies that 7b is also integer

 $\frac{a}{7b}$ is rational it implies that $\sqrt{5}$ is also rational,

But this contradicts the fact that $\sqrt{5}$ is irrational.

- \therefore Our assumption that $7\sqrt{5}$ is rational is wrong.
- \therefore $7\sqrt{5}$ is irrational.

Exercise 1.3

Q.3 Prove that the following are irrationals.

(iii)
$$6 + \sqrt{2}$$

Let us assume that $6 + \sqrt{2}$ is rational.

 \therefore There exist co-prime integers a and b (b \neq 0) such that,

$$6 + \sqrt{2} = \frac{a}{b}$$

$$\therefore \qquad \sqrt{2} = \frac{a}{b} - 6$$

$$\sqrt{2} = \frac{a-6b}{b}$$

Integer Integer

Lets prove this by contradiction

It should be in form of a/b

Since a and b are integers, it implies that a – 6b is also integer

 $\frac{a-6b}{b}$ is rational which implies that $\sqrt{2}$ is also rational,

But this contradicts the fact that $\sqrt{2}$ is irrational.

- \therefore Our assumption that 6 + $\sqrt{2}$ is rational is wrong.
- \therefore 6 + $\sqrt{2}$ is irrational.

MODULE_31

• Prove that $\sqrt{2} + \sqrt{5}$ is an irrational number.

Sol. Let us assume that $\sqrt{2} + \sqrt{5}$ is a rational number.

So, there exist co-prime integers a and b such that

$$\sqrt{2} + \sqrt{5} = \frac{a}{b}$$
 (where $b \neq 0$)

Squaring both sides, we get

$$\therefore \qquad \left[\sqrt{2} + \sqrt{5}\right]^2 = \left[\frac{a}{b}\right]^2$$

$$\therefore \quad \underline{2+5} + 2\sqrt{10} \quad = \quad \frac{a^2}{b^2}$$

$$\therefore \quad \underline{2+5} + 2\sqrt{10} \quad = \quad \frac{a^2}{b^2}$$

$$\therefore \quad 7 + 2\sqrt{10} \quad = \quad \frac{a^2}{b^2}$$

$$\therefore \qquad 2\sqrt{10} = \frac{a^2}{b^2}$$

$$\therefore \qquad \qquad 2\sqrt{10} \quad = \quad \frac{a^2 - 7b^2}{b^2}$$

$$\therefore \qquad \sqrt{10} \quad = \quad \frac{a^2 - 7b^2}{2b^2}$$

We know,
$$(a + b)^2 = (a^2 + b^2 + 2ab)$$

Q. Prove that $\sqrt{2} + \sqrt{5}$ is an irrational number.

Sol. Let us assume that $\sqrt{2} + \sqrt{5}$ is a rational number.

So, there exist co-prime integers a and b such that

$$\sqrt{2} + \sqrt{5} = \frac{a}{b}$$
 (where $b \neq 0$)

$$\therefore \qquad \sqrt{10} = \frac{a^2 - 7b^2}{2b^2}$$

Here, $\frac{a^2-7b^2}{2b^2}$ is an rational number

This implies, $\sqrt{10}$ is also rational number.

But, we know that $\sqrt{10}$ is an irrational number

Therefore, there is a contradiction and our assumption is wrong

- \therefore $\sqrt{2} + \sqrt{5}$ is not a rational number.
- $\therefore \quad \sqrt{2} + \sqrt{5}$ is an irrational number.

Hence Proved.

MODULE_32

Q. Prove that $\sqrt[3]{5}$ is an irrational number.

Sol. Let us assume $\sqrt[3]{5}$ is a rational number So, there exist co-prime integers a and b where $b \neq 0$

such that
$$\sqrt[3]{5} = \frac{a}{b}$$

Cubing on both sides, we get

$$\therefore \qquad \boxed{\begin{bmatrix} \sqrt[3]{5} \ \end{bmatrix}^3} = \boxed{\left[\frac{a}{b}\right]^3}$$

$$5 = \frac{a^3}{b^3} \Rightarrow \boxed{b^3 = \frac{a^3}{b^3}} \quad \dots (1)$$

- \therefore 5 divides $a^3 \Rightarrow 5$ divides a
- $\therefore \quad 5 \text{ is a factor of } a \quad \dots (2)$ Let a = 5c

$$b^3 = \frac{(5c)^3}{5} \qquad ... \text{from (1)}$$

$$\therefore \qquad b^3 = \frac{5 \times 5 \times 5c^3}{5}$$

$$\therefore \qquad \frac{b^3}{5} = 5c^3$$

- $\therefore \quad 5 \text{ divides } b^3 \Rightarrow 5 \text{ divides } 5.$
- ∴ 5 is a factor of b ... (3)
 From (2) and (3)
 5 is a common factor of a and b
- \therefore a and b are not co-prime
- ∴ our assumption is wrong
- \therefore $\sqrt[3]{5}$ is an irrational number.