STAT 346/446 Lecture 6

Principles of Data Reduction

CB Sections 6.1, 6.2, and DS Section 7.7

- Sufficient Statistic
- Minimal Sufficient Statistic
- Ancillary Statistic
- Complete Statistic

Lecture 6

Finding the "best" point estimator

- We have seen that the MLE of σ^2 in $N(\mu, \sigma^2)$ has a smaller MSE than the sample variance S^2 .
- Could we find an estimator of σ^2 that has the smallest possible MSE?
- Hard to answer in general, but if we restrict the space of estimators to e.g.
 - all unbiased estimators, or
 - all linear estimators, or
 - all linear and unbiased estimators

we can sometimes find the estimator with the smallest possible MSE in that space.

- UMVUE = Minimum Variance
- BLUE = Best Linear Unbiased Estimator

Data reduction

- Want to use a sample X_1, X_2, \dots, X_n to infer about an unknown parameter θ
 - In practice: have data points x_1, x_2, \dots, x_n
- A statistic $T(X_1, X_2, ..., X_n)$ is a method of summarizing the sample data
 - In practice: $T(x_1, x_2, \ldots, x_n)$
- Is there a statistic $T(\cdot)$ (or statistics $T_1(\cdot), \ldots, T_k(\cdot)$) that gives the same amount of information about θ as the sample X_1, X_2, \ldots, X_n does?
 - Then we could store observed statistics only, instead of the whole dataset, i.e. get data reduction.
- Main use for STAT 346: Add tools to find UMVUEs (Section 7.3.3)

Statistic as a partition of sample space

• A statistic $T(X_1, X_2, ..., X_n)$ can be thought of as a *partition* of the sample space \mathcal{X} of all possible outcomes for $\mathbf{X} = (X_1, X_2, ..., X_n)$

P_x∈L eg l= TPⁿ

• Let

$$\mathcal{T} = \{t : t = T(x_1, x_2, \dots, x_n) \text{ for some } \mathbf{x} \in \mathcal{X}\}$$

- \mathcal{T} contains all possible outcomes of $T(X_1, X_2, \dots, X_n)$
- ullet Often has lower dimension than ${\mathcal X}$
 - E.g. if $T(X_1, X_2, \dots, X_n) = \overline{X}$ then $\mathcal{X} = \mathbb{R}^n$ and $\mathcal{T} = \mathbb{R}$
- Partition of X:

 $A_t = \{\mathbf{x}: T(\mathbf{x}) = t\}$ $t \in \mathcal{T}$

note: can have an uncountable index

all vector = ti 1 (e.g TR") 90m gun, le 05 T mean e.g. if $T(X) = X \Rightarrow f = \mathbb{R}$ $Y = \{t : T(\underline{x}) = t \text{ for some } \underline{x} \in \mathcal{X}\}$

Sufficient data reduction

• A sufficient statistic $T(\mathbf{X})$ for θ (for a given distribution of \mathbf{X}) is a statistic that contains (in some way) *all* the information about θ in our sample X_1, X_2, \ldots, X_n

Sufficiency Principle

If $T(\mathbf{X})$ is a sufficient statistic for θ , then any inference about θ should depend on the sample \mathbf{X} *only* through the value $T(\mathbf{X})$.

- I.e. if \mathbf{x}_1 and \mathbf{x}_2 are two sample outcomes such that $T(\mathbf{x}_1) = T(\mathbf{x}_2)$ then the inference about θ should be the same whether $\mathbf{X} = \mathbf{x}_1$ or $\mathbf{X} = \mathbf{x}_2$ was observed.
- Can have more than one sufficient statistic for the same parameter

Sufficient statistic

Def: Sufficient Statistic

A statistic T(X) is a sufficient statistic for θ if

$$f(\mathbf{x} \mid T(\mathbf{X}) = t)$$
 does not depend on θ

i.e. the conditional distribution of the sample X given the value of T(X) does not depend on θ .

- Conditional probability = change of sample space
 - $f(\mathbf{x} \mid T(\mathbf{X}) = t)$ has support inside A_t
- A sufficient statistic does not have to be one dimensional

Making sense of the definition of a Sufficient Statistic

Example: X_1, X_2, X_3 i.i.d. Bernoulli(θ) and $T(\mathbf{X}) = X_1 + X_2 + X_3$

• The joint pdf: $f(\mathbf{x}) = \underbrace{f(x_1)}_{f(\mathbf{x}_1)} \underbrace{f(x_2)}_{f(x_2)} \underbrace{f(x_2)}_{f(x_2)} \underbrace{f(x_3)}_{f(x_1, x_2, x_3 \in \{0, 1\} \times \{0, 1\} \times \{0, 1\}}_{f(x_1, x_2, x_3 \in \{0, 1\} \times \{0, 1\} \times \{0, 1\}} \underbrace{f(x_2)}_{f(x_2)} \underbrace{f(x_2)}_{f(x_2)} \underbrace{f(x_2)}_{f(x_3)} \underbrace{f(x_2)}_{f(x_3)} \underbrace{f(x_3)}_{f(x_3)} \underbrace{f(x_2)}_{f(x_3)} \underbrace{f(x_2)}_{f(x_3)} \underbrace{f(x_2)}_{f(x_3)} \underbrace{f(x_3)}_{f(x_3)} \underbrace{f(x_3)}_{f(x$

• What is the distribution of (X_1, X_2, X_3) given that $T(\mathbf{X}) = 2$?

i.e. what is f(X|T(X)=2)? f(X|T(X)=2) = P(X=X,T(X)=2) P(X=X|T(X)=2) P(T(X)=2)Given that T(X)=2 we know that the new sample 47ace is $A_2 = \{(1,1,0), (1,0,1), (0,1,1)\}$

In general: The outcomes in At (the part of the sample space we are conditioning on) will not always be equally likely for a sufficient statistic Point is: We can find the conditional probability of all outcomes in At without knowing the value of Q f(xIT(x)=t) does not

depend on 8.

Identifying a Sufficient statistic - Discrete case

• Let's take a closer look at $f(\mathbf{x} \mid T(\mathbf{X}) = t)$ for discrete random samples:

$$f(\mathbf{x} \mid T(\mathbf{X}) = t) = P(\underline{X} = \underline{\times} \mid T(\underline{X}) = t)$$

$$= \frac{P(\underline{X} = \underline{x}, T(\underline{X}) = t)}{P(T(\underline{X}) = t)}$$

$$= \frac{P(\underline{X} = \underline{x}, \underline{X} \in A_{t})}{P(T(\underline{X}) = t)}$$

$$= \begin{cases} \frac{P(\underline{X} = \underline{x})}{P(T(\underline{X}) = t)} = \frac{f(\underline{x})}{f_{T}(t)} & \text{if } \underline{X} \in A_{t} \\ \vdots & \text{if } \underline{X} \notin A_{t} \end{cases}$$

Identifying a Sufficient statistic

Theorem: Identifying a sufficient statistic

- Let $p(\mathbf{x} \mid \theta)$ be the joint pmf or pdf of $\mathbf{X} = (X_1, \dots, X_n)$ and
- Let $q(t \mid \theta)$ be the pmf or pdf of a statistic $T(\mathbf{X})$.

If for every $\mathbf{x} \in \mathcal{X}$ the ratio

i.e. closes not depend
$$\frac{p(\mathbf{x}\mid\theta)}{q(T(\mathbf{x})\mid\theta)}$$

is a constant as a function of θ , then $T(\mathbf{X})$ is a sufficient statistic for θ

 Need to find the pmf/pdf of T(X) (the sampling distribution) to use this result

STAT 346/446

Example: Poisson

• Let X_1, X_2, \ldots, X_n be a random sample from Poisson(λ). Show that $T(\mathbf{X}) = \sum_{i=1}^{n} X_{i} \text{ is a sufficient statistic for } \lambda_{x_{i}}$ $p(\mathbf{X} \mid \mathbf{X}) = \prod_{i=1}^{n} f(\mathbf{x}_{i} \mid \mathbf{X}) = \prod_{i=1}^{n} \frac{e^{-\lambda} L^{x_{i}}}{|\mathbf{x}_{i}|^{2}} = e^{-\lambda} L^{\frac{2}{2}} \prod_{i=1}^{n} \frac{1}{|\mathbf{x}_{i}|^{2}}$

Also need the push of
$$T(X) = X_1 + X_2 + \dots + X_n$$

Know that $T(X) \sim Poisson(nL)$
 $= 2 \quad q(t \mid L) = \frac{e^{-nL}(nL)^t}{t!}$ where $t = \frac{Z}{2}X$.

$$= \frac{P(X|X)}{q(t|X)} = \frac{e^{-nX} \int_{x_i}^{t} \frac{1}{x_i!} dx_i!}{e^{-nX} \int_{x_i}^{t} \frac{1}{x_i!}} = \frac{t! \int_{z_i}^{n} \frac{1}{x_i!}}{n^{t} \int_{z_i}^{z_i!} \frac{1}{x_i!}} = \frac{t! \int_{z_i}^{n} \frac{1}{x_i!}}{n^{t} \int_{z_i}^{n} \frac{1}{x_i!}}$$

$$= \sum_{z_i}^{n} \frac{1}{x_i!} \int_{z_i}^{n} \frac{1}{x_i!} \int_{$$

Example: Gamma¹

Exp(0)

• Let $X_1, X_2, ..., X_n$ be a random sample from $Gamma(1, \theta)$. Show that $T(\mathbf{X}) = \sum_{i=1}^n X_i$ is a sufficient statistic for θ . $\mathbb{P}(X_i \mid \mathcal{P}) = \mathbb{P}(X_i \mid \mathcal{P}) = \mathbb{P}(X$

$$T = X_1 + X_2 + \dots + X_n \qquad Gamma(n, \theta)$$

$$q(x|\theta) = \frac{1}{T(n)\theta^n} t^{n-1} e^{-t/\theta} \quad \text{where } t = \frac{2}{12}x_i$$

¹See book for Binomial and Normal

More about sufficient statistics

The original sample is it self a sufficient statistic

• The vector of the *n* order statistics

$$T(\mathbf{X}) = (X_{(1)}, X_{(2)}, \dots, X_{(n)})$$

is always a sufficient statistic for a random sample:

• Joint pdf/pmf of $(X_{(1)}, X_{(2)}, \dots, X_{(n)})$ is

$$n! f(x_1) f(x_2) \cdots f(x_n)$$
 for $-\infty < x_1 < \cdots < x_n < \infty$

SO

$$\frac{p(\mathbf{x}\mid\theta)}{q(T(\mathbf{x})\mid\theta)} = \frac{f(x_1)f(x_2)\cdots f(x_n)}{n!f(x_1)f(x_2)\cdots f(x_n)} = \frac{1}{n!}$$

 For some distributions the order statistics is as far as we can go with data reduction.

Finding a sufficient statistic

• Finding $q(T(\mathbf{x}) \mid \theta)$ can be difficult. There are ways around it!

Factorization Theorem

Let $f(\mathbf{x} \mid \theta)$ be the joint pmf or pdf of $\mathbf{X} = (X_1, \dots, X_n)$. A statistic $T(\mathbf{X})$ is a *sufficient statistic for* θ if and only if $f(\mathbf{x} \mid \theta)$ can be written as

$$f(\mathbf{x} \mid \theta) = g(T(\mathbf{x}) \mid \theta) h(\mathbf{x}),$$
Function of x and function of x only, of x only through $T(x)$
i.e. could evaluate $g(T(x) \mid \theta)$ only knowing $T(x)$

Poisson example:

f(x 11) = end (xxi) set h(x) = 1 1 1: and $g(T(X)(X) = e^{-nX} X^{T(X)}$ => By the factorization theorem T(K) is a sufficient statistic

Example: Normal distribution

• Let X_1, X_2, \ldots, X_n be a random sample from $N(\mu, \sigma^2)$. Use the factorization theorem to show that the sample mean and sample variance are a sufficient statistic for (μ, σ^2) (both unknown)

$$f(x \mid \mu, \Gamma^{2}) = \prod_{i=1}^{n} \prod_{\overline{z} | \overline{r}|} exp\left(-\frac{(x_{i} - \mu)^{2}}{z_{\Gamma^{2}}}\right)$$

$$= (z\pi)^{-n/2} e^{-n} exp\left(-\frac{1}{z_{\Gamma^{2}}} \sum_{i=1}^{n} (x_{i} - \mu)^{2}\right)$$

$$= (2\pi)^{-n/2} e^{-n} exp\left(-\frac{1}{z_{\Gamma^{2}}} \sum_{i=1}^{n} (x_{i} - \mu)^{2}\right)$$

$$= (2\pi)^$$

Example: Uniform distribution

• Let X_1, X_2, \ldots, X_n be a random sample from Uniform $(0, \theta)$. Use the factorization theorem to show that the *n*th order statistic $X_{(n)}$ is a sufficient statistic for θ

$$f(x_{i}) = \frac{1}{2} I_{(0,0)}(x_{i})$$

$$f(\underline{x}|0) = \frac{\pi}{i^{2}} I_{(0,0)}(x_{i})$$

$$= \theta^{-n} I_{(0,0)}(x_{in}) I_{(0,0)}(x_{in})$$

$$g(x_{in}, x_{in}, |0) = f(x_{in})$$

$$g(x_{in}, x_{in}, |0) = f(x_{in}, |0)$$

$$g(x_{in}, x_{in}, |0) =$$

Sufficient statistics for exponential families

• Let X_1, X_2, \dots, X_n be a random sample from pdf or pmf of the form

$$f(x \mid \theta) = h(x)c(\theta) \exp \left(\sum_{j=1}^{k} w_j(\theta)t_j(x)\right)$$

The statistic

$$T(\mathbf{X}) = \left(\sum_{i=1}^{n} t_1(X_i), \sum_{i=1}^{n} t_2(X_i), \dots, \sum_{i=1}^{n} t_k(X_i)\right)$$

is a sufficient statistic for θ

$$f(x \mid \theta) = h(x)c(\theta) \exp\left(\sum_{j=1}^{k} w_{j}(\theta)t_{j}(x)\right)$$

$$\begin{cases} cr \ \text{each } i \\ i = l_{1}, ..., n \end{cases}$$

$$f(x_{i} \mid \underline{\theta}) = h(x_{i}) c(\underline{\theta}) \exp\left(t_{i}(x_{i}) w_{i}(\underline{\theta}) + ... + t_{\underline{k}}(x_{i}) w_{\underline{k}}(\underline{\theta})\right)$$

$$5oint \ pdf /puf:$$

$$f(\underline{x}; \underline{\theta}) = \lim_{i = 1}^{n} h(x_{i})c(\underline{\theta}) \exp\left(t_{i}(x_{i}) w_{i}(\underline{\theta}) + ... + t_{\underline{k}}(x_{i}) w_{\underline{k}}(\underline{\theta})\right)$$

$$f(\underline{x}; \underline{\theta}) = \lim_{i = 1}^{n} h(x_{i}) c(\underline{\theta}) \exp\left(t_{i}(x_{i}) w_{i}(\underline{\theta}) + ... + t_{\underline{k}}(x_{i}) w_{\underline{k}}(\underline{\theta})\right)$$

$$h(\underline{x}) = \lim_{i = 1}^{n} h(x_{i}) + \lim_{i = 1}^{n} h(x_{i}) + \lim_{i = 1}^{n} h(x_{i}) + \dots + \lim_{i = 1}^{n} h(x_{i})$$

= g(2, t, (xi), ..., 2, tk(xi) (8)

Many sufficient statistics

- For many distributions there are many different sufficient statistics
- The whole sample $T(\mathbf{X}) = (X_1, X_2, \dots, X_n)$ is a sufficient statistic
- The set of all order statistics $T(\mathbf{X}) = (X_{(1)}, X_{(2)}, \dots, X_{(n)})$ is a sufficient statistic
- Any one-to-one function of a sufficient statistic is a sufficient statistic is a sufficient statistic 5 aug, T is sufficient, let C(T) = (W) = (W) C = (W) = (W)

Can we find a sufficient statistics that gives us most "data reduction" possible?

STAT 346/446 Theoretical Statistics II Lecture 6

Minimal Sufficient Statistic

Def: Minimal sufficient statistic

A sufficient statistic $T(\mathbf{X})$ is called a **minimal sufficient statistic** if for any other sufficient statistic $T^*(\mathbf{X})$, $T(\mathbf{X})$ is a function of $T^*(\mathbf{X})$.

• Obtains the *coarsest* partition of the sample space as possible, without loosing any information about the parameter θ

Can still have many different minimal statistics

Finding a Minimal Sufficient Statistic

Theorem

Let $f(\mathbf{x} \mid \theta)$ be the pmf or pdf of a sample **X**. Suppose there exists a function $T(\mathbf{X})$ such that:

• For every two outcomes **x** and **y** the ratio

$$\frac{f(\mathbf{x} \mid \theta)}{f(\mathbf{y} \mid \theta)}$$

is a constant as a function of θ if and only if $T(\mathbf{x}) = T(\mathbf{y})$ then $T(\mathbf{X})$ is a minimal sufficient statistic

$$0 \text{ If } T(\underline{x}) = T(\underline{x}) + \text{then } + \text{ is a const. as a funct.}$$

Example:
$$\chi_{i,m}$$
, χ_{in} are ital Poisson (L)

$$f(x|L) = \frac{\pi}{i=1} \frac{e^{-L} \chi^{x_{i}}}{x_{i}!} = e^{-nL} \chi^{nx} \frac{\pi}{i=1} \frac{1}{x_{i}!}$$

$$x = \frac{f(x|L)}{f(y|L)} = \frac{e^{-nL} \chi^{nx}}{e^{-nL} \chi^{ny}} \frac{1}{i=1} \frac{1}{x_{i}!}$$

$$= \chi^{n}(x-y) \frac{\pi}{i=1} \frac{1}{x_{i}!} \frac{1}{x_{i}!} = const. as a$$

$$= \chi^{n}(x-y) \frac{\pi}{i=1} \frac{1}{x_{i}!} \frac{1}{x_{i}!} = const. as a$$

$$= \chi^{n}(x-y) \frac{\pi}{i=1} \frac{1}{x_{i}!} \frac{1}{x_{i}!} = const. as a$$

$$= \chi^{n}(x-y) \frac{\pi}{i=1} \frac{1}{x_{i}!} \frac{1}{x_{i}!} = const. as a$$

$$= \chi^{n}(x-y) \frac{\pi}{i=1} \frac{1}{x_{i}!} \frac{1}{x_{i}!} = const. as a$$

$$= \chi^{n}(x-y) \frac{\pi}{i=1} \frac{1}{x_{i}!} \frac{1}{x_{i}!} = const. as a$$

$$= \chi^{n}(x-y) \frac{\pi}{i=1} \frac{1}{x_{i}!} \frac{1}{x_{i}!} = const. as a$$

$$= \chi^{n}(x-y) \frac{\pi}{i=1} \frac{1}{x_{i}!} \frac{1}{x_{i}!} = const. as a$$

$$= \chi^{n}(x-y) \frac{\pi}{i=1} \frac{1}{x_{i}!} \frac{1}{x_{i}!} = const. as a$$

$$= \chi^{n}(x-y) \frac{\pi}{i=1} \frac{1}{x_{i}!} \frac{1}{x_{i}!} = const. as a$$

$$= \chi^{n}(x-y) \frac{\pi}{i=1} \frac{1}{x_{i}!} \frac{1}{x_{i}!} = const. as a$$

$$= \chi^{n}(x-y) \frac{\pi}{i=1} \frac{1}{x_{i}!} \frac{1}{x_{i}!} = const. as a$$

$$= \chi^{n}(x-y) \frac{\pi}{i=1} \frac{1}{x_{i}!} \frac{1}{x_{i}!} = const. as a$$

$$= \chi^{n}(x-y) \frac{\pi}{i=1} \frac{1}{x_{i}!} \frac{1}{x_{i}!} = const. as a$$

$$= \chi^{n}(x-y) \frac{\pi}{i=1} \frac{1}{x_{i}!} \frac{1}{x_{i}!} = const. as a$$

$$= \chi^{n}(x-y) \frac{\pi}{i=1} \frac{1}{x_{i}!} \frac{1}{x_{i}!} = const. as a$$

2) If $x \neq g$ the * does depend on i. => T(X) = X is a minimal suff. statistic.

Example: Normal distribution

$$n \times ^{2} - 2n \times \mu + n \mu^{2}$$
 $n \cdot \hat{g}^{2} - 2n \cdot \hat{g} \mu + n \mu^{2}$

• Let X_1, X_2, \ldots, X_n be a random sample from $N(\mu, \sigma^2)$, both μ and σ^2 are unknown. Find a minimal sufficient statistic for (μ, σ^2) .

Peall:
$$f(x|\mu, r^2) = (2\pi r^2)^{n/2} \exp(-\frac{1}{2r^2}[(n-1)s^2 + n(x-\mu)^2])$$

$$\frac{f(x|\mu, r^2)}{f(y|\mu, r^2)} = \frac{(2\pi r^2)^{n/2} \exp(-\frac{1}{2r^2}[(n-1)s^2 + n(x-\mu)^2])}{(2\pi r^2)^{-n/2} \exp(-\frac{1}{2r^2}[(n-1)s^2 + n(y-\mu)^2])}$$
where $s_x^2 = \frac{1}{n^2} \frac{Z(x_1 - x)^2}{x_1 - x_2} = \exp(-\frac{1}{2r^2}[(n-1)s^2 + n(y-\mu)^2])$

$$= \exp(-\frac{1}{2r^2}[(n-1)(s^2 - s^2) + n(x^2 - g^2) - 2n\mu(x-g)])$$

$$= \exp(-\frac{1}{2r^2}[(n-1)(s^2 - s^2) + n(x^2 - g^2) - 2n\mu(x-g)])$$

$$= \cosh \tan t \cos \alpha \sin t \sin \alpha s \cos \alpha \sin t \cos \alpha s \cos \alpha s$$

Ancillary statistic

Def: Ancillary statistic

A statistic $S(\mathbf{X})$ is called an **ancillary statistic** if its distribution does not depend on the parameter θ . \Rightarrow Le. \bowtie in S(\underline{K})

- Kind of an opposite to a sufficient statistic
- There are a few examples of ancillary statistics actually providing information about a parameter when combined with a sufficient statistic.
 - See examples in the textbook
- But often sufficient and ancillary statistics are statistically independent
 - At least if the sufficient statistic is complete

Examples of Ancillary Statistics

- Say $X_1, X_2, ..., X_n$ is a random sample from $N(\mu, \sigma^2)$ where σ^2 is known.
- We have seen that

$$\frac{(n-1)S^2}{\sigma^2} \sim \chi_{n-1}^2$$

$$OP: S^2 = \frac{\sigma^2}{n^{-1}} W \quad \text{where} \quad \text{who terms}$$

$$distr. \text{ of } S^2 \text{ does not depend}$$

$$distr. \text{ of } S^2 \text{ is an ancillary}$$

$$on \quad \mu = S^2 \text{ is an ancillary}$$

$$statistic \text{ for } \mu.$$

Complete statistic

* g(T) is an untiased estimator of zero.

Def: Complete statistic

Let $f(t \mid \theta)$ be a family of pdfs or pmfs for a statistic $T(\mathbf{X})$. The family is called **complete** if the following holds : any function \mathfrak{SCK} :

• If
$$E(g(T)) = 0$$
 for all θ then $P(g(T) = 0) = 1$ for all θ

Also, the statistic T(X) is called a **complete statistic**

- distro of the

- Property of the family of distributions $f(t \mid \theta)$ belongs to. statistic
- Can be hard to verify sometimes
 - See examples 6.2.22 and 6.2.23 in the textbook

Completeness of exponential families

Theorem 6.2.25

Let X_1, X_2, \dots, X_n be a random sample from pdf or pmf of the form

$$f(x \mid \theta) = h(x)c(\theta) \exp \left(\sum_{j=1}^{k} w_j(\theta)t_j(x)\right)$$

The statistic

$$T(\mathbf{X}) = \left(\sum_{i=1}^{n} t_1(X_i), \sum_{i=1}^{n} t_2(X_i), \dots, \sum_{i=1}^{n} t_k(X_i)\right)$$

is complete if $\{(w_1(\theta), \dots, w_k(\theta)) : \theta \in \Theta\}$ contains an open set in \mathbb{R}^k

• The condition means: the theorem does not hold for *curved* exponential families like $N(\theta, \theta^2)$

Example

• Let X_1, \ldots, X_n be a random sample from $\operatorname{Poisson}(\lambda)$. Use theorem 6.2.25 to find a complete statistic.

6.2.25 to find a complete statistic.

Punf:
$$f(x \mid k) = \frac{e^{-\lambda} k^{2}}{x!} = \frac{1}{x!} = \frac{1}{x!} = \sum_{i=1}^{n} \frac{e^{-\lambda} k^{2}}{x!} = \sum_{i=1}$$

Theorem regarding complete statistics

redundant condition

Basu's Theorem

If $T(\mathbf{X})$ is a complete and minimal sufficient statistic, then $T(\mathbf{X})$ is independent of every ancillary statistic.

Eq. X is a complete and minimal sufficient statistic for M. (Given a random sample from N(M, F?))

for M. (Given a random sample from N(M, F?))

for M. (Given a random sample from N(M, F?))

for M. (Given a random sample from N(M, F?))

for M. (Given a random sample from N(M, F?))

Theorem 6.2.28

If a minimal sufficient statistic exists, then any complete statistic is also a minimal sufficient statistic

Let X,,..., Xu be a random sample from f(xtx) Let T=T(X) How to show that T is: loes not lon * Sufficient? (1): Des: f(X|T(X)=t) is a constant as a func of θ f(×18) 9(t10) & Pdf/put (x) : Factorization Theorem: F(x10) = g(T(x)(0) h(x)

* Minimal Sufficient?

 $\frac{f(\underline{x}|B)}{f(g|B)} = a \text{ constant as a function of } B$ $f(\underline{x}|B) = T(\underline{x}) = T(\underline{y})$

* Complete? Exponential family.