CS150: Database & Datamining Lecture 18: Analytics & Machine Learning

Xuming He Spring 2019

Acknowledgement: Slides are adopted from the Berkeley course CS186 by Joey Gonzalez and Joe Hellerstein, Stanford CS145 by Peter Bailis.

Transaction Processing vs Analytics

Online Transaction Processing (OLTP)

- ➤ Many small queries:
 - Freq. use of indexes
 - Many writes
 - Concurrency and Logging
- ➤ Managing the "Now"
 - Source of truth
- Fairly simple queries with few predicates and relations

Online Analytics Processing (OLAP) & Data Mining/ML

- ➤ Exploratory Full Table Queries
 - e.g., Agg. Sales Per Market
 - Infrequent (but bulk) writes
 - Limited transaction processing
- Recording the history
 - What was our inventory at the end of last two quarters
- Complex queries with many predicates and many relations

Analytics & ML queries:

- What was our total sales by market last quarter?
 - Summarization
- ➤ What is our predicted sales for next quarter?
 - Forecasting
- ➤ Which users will likely leave our service?
 - Churn prediction
- ➤ If a user buys X what else are they likely to buy?
 - Collaborative filtering & Recommender Systems

Inventory

Data Everywhere

- ➤ Stored Across Multiple
 Operational OLTP Systems
 - Different formats (e.g., currency)
 - Different schemas (acquisitions ...)
 - Mission critical
 - Serving live sales traffic
 - Managing inventory
 - ... Be careful!
- ➤ Often limited historical data

We would like a consolidated, cleaned, historical snapshot of the data.

Data Warehouse

Collects and organizes historical data from multiple sources

Data is *periodically* **ETL**ed into the data warehouse:

- Extracted from remote sources
- Transformed to standard schemas
- Loaded into the (typically) relational system

Extracting Data from Sources

- ➤ Need to collect data from multiples sources
 - Various RDBMS vendors
 - Structured files JSON, XML

- ➤ Often done using SQL interfaces
- Validate extracted data
 - Flag corrupted records ...

Transforming "Cleaning" Data

>Additional data validation and filtering

- ➤ Schema manipulation
 - Extract key fields
 - Encoding text
 - Verifying and enforcing constraints

➤ Data normalization (time zones, currency)

Loading Data

- ➤ Data is bulk loaded into large relations
 - Fact tables ... (more on this later)
- **≻**Update:
 - Indexes
 - Metadata tables: Data about the data
 - When and how was it collected
 - Meaning of fields
 - Updating materialized views ... (more on this later)
- ➤ Occasionally move older data to archival storage
 - Data aging

Example Sales Data:

pname	category	price	qty	date	day	city	state	country
Corn	Food	25	25	3/30/16	Wed.	Omaha	NE	USA
Corn	Food	25	8	3/31/16	Thu.	Omaha	NE	USA
Corn	Food	25	15	4/1/16	Fri.	Omaha	NE	USA
Galaxy 1	Phones	18	30	1/30/16	Wed.	Omaha	NE	USA
Galaxy 1	Phones	18	20	3/31/16	Thu.	Omaha	NE	USA
Galaxy 1	Phones	18	50	4/1/16	Fri.	Omaha	NE	USA
Galaxy 1	Phones	18	8	1/30/16	Wed.	Omaha	NE	USA
Peanuts	Food	2	45	3/31/16	Thu.	Seoul		Korea
Galaxy 1	Phones	18	100	4/1/16	Fri.	Seoul /		Korea

- **▶ Big** table: many *columns* and *rows*
 - Substantial redundancy -> expensive to store and access
- ➤ Could we organize the data a little better?

Multidimensional Data Model

Sales Fact Table

pid	timeid	locid	sales
11	1	1	25
11	2	1	8
11	3	1	15
12	1	1	30
12	2	1	20
12	3	1	50
12	1	1	8
13	2	1	10
13	3	1	10
11	1	2	35
11	2	2	22
11	3	2	10
12	1	2	26

Locations

locid	city	state	country
1	Omaha	Nebraska	USA
2	Seoul		Korea
5	Richmond	Virginia	USA

Dimension Tables

Products

pid	pname	category	price
11	Corn	Food	25
12	Galaxy 1	Phones	18
13	Peanuts	Food	2

Multidimensional "Cube" of data

timeia	Date	Day
1	3/30/16	Wed.
2	3/31/16	Thu.
3	4/1/16	Fri.

Multidimensional Data Model

Sales Fact Table

pid	timeid	locid	sales
11	1	1	25
11	2	1	8
11	3	1	15
12	1	1	30
12	2	1	20
12	3	1	50
12	1	1	8
13	2	1	10
13	3	1	10
11	1	2	35
11	2	2	22
11	3	2	10
12	1	2	26

Locations

locid	city	state	country
1	Omaha	Nebraska	USA
2	Seoul		Korea
5	Richmond	Virginia	USA

Dimension Tables

Products

pid	pname	category	price
11	Corn	Food	25
12	Galaxy 1	Phones	18
13	Peanuts	Food	2

timeid	Date	Day
1	3/30/16	Wed.
2	3/31/16	Thu.
3	4/1/16	Fri.

Time

- ➤ Sales Fact Table
 - Contains only foreign keys → Efficient
- Easy to manage Dimensions
 - Galaxy1 → Phablet: no need to update
 Fact Table
- **➤** Normalization
 - Minimizing redundancy
 - More on this later ...

Multidimensional Data: Star Schema

How do we deal with semi-structured and unstructured data?

Do we really want to force a schema on load?

Data Warehouse

How do we **clean** and **organize** this data?

Depends on use ...

How do we **load** and **process** this data in a relation system?

Depends on use ...
Can be difficult ...
Requires thought ...

*Still being defined...

[Buzzword Disclaimer]

Text/Log Data Big Idea:

It is Terrible!

Photos & Videos

Maintain a copy of all the data in one place and *free** data consumers to choose how to transform and use it.

*free to solve all the problems themselves

Data Lake

- >Store unstructured data in raw form
 - Schema-on-Read: determine the best organization when data is used
 - Contrast: Data Warehouses are Schema-on-Load (ET<u>L</u>)
 - Plan ahead (Fact tables and Dimensions)
- ➤Often much larger than data warehouses
- ➤ Technologies
 - Storage: Large distributed file systems (e.g., HDFS)
 - Semi-structured formats (JSON, Parquet)
 - Computation: Map-Reduce
 - Recent trend to add SQL (or SQL like) functionality
- ➤ More Agile (?):
 - Don't worry about schema & verification when loading
 - Disaggregated compute and storage → BYOF
 - bring your own compute frameworks ...
- ➤ What could go wrong?

Data Lake -> Data Swamp

- ➤ Cultural shift: Curate → Save Everything!
 - Signal to Noise ratio drops ...
- ➤ Limited data governance → more agile → hdfs://important/joey_big_file3.csv_with_json
 - What does it contain? What are all the "fields"
 - When and how and from where was it created
- ➤ Without cleaning and verification we begin to collect a rich history of **dirty data**
- ➤ Limited compatible with traditional tools

Data Lakes Appear to be Maturing

- ➤ Relational data-models + SQL:
 - Hive: SQL on top of Hadoop Map-Reduce
 - SparkSQL: SQL on top of Spark
- ➤ Tools are Improving:
 - Better data cleaning
 - Catalog Managers
 - Improved semi-structured "raw" data formats
- >Improved data governance
 - Organization are recognizing the issues

Data Mining

It isTerrible!

Machine Learning

Online Analytics Processing (OLAP)

Users interact with multidimensional data:

Constructing ad-hoc and often complex SQL queries

➤ Using graphical tools that to construct queries

➤ Sharing views that summarize data across important dimensions

Cross Tabulation (Pivot Tables)

Item	Color	Quantity				Item	
Desk	Blue	2			Desk	Sofa	Sum
Desk	Red	3		Blue	2	4	6
Sofa	Blue	4	Color	Red	3	5	8
Sofa	Red	5	0	Sum	5	9	14

- > Aggregate data across pairs of dimensions
 - **Pivot Tables:** *graphical interface* to select dimensions and aggregation function (e.g., SUM, MAX, MEAN)
 - GROUP BY queries
- > Related to contingency tables and marginalization in stats.
- ➤ What about many dimensions?

Cube Operator

➤ Generalizes crosstabulation to higher dimensions.

➤In SQL:

SELECT Item, Color, **SUM**(Quantity) **AS** QtySum **FROM** Furniture **GROUP BY** <u>CUBE</u> (Item, Color);

Item	Color	Quantity
Desk	Blue	2
Desk	Red	3
Sofa	Blue	4
Sofa	Red	5

Item	Color	QtySum
Desk	Blue	2
Desk	Red	3
Desk	*	5
Sofa	Blue	4
Sofa	Red	5
Sofa	*	9
*	*	14
*	Blue	6
*	Red	8

OLAP Queries

>Slicing: selecting a value for a dimension

> Dicing: selecting a range of values in multiple dimension

OLAP Queries

➤ Rollup: Aggregating along a dimension

➤ Drill-Down: de-aggregating along a dimension

Reporting and Business Intelligence (BI)

- ➤ Use high-level tools to interact with their data:
 - Automatically generate SQL queries
 - Queries can get big!
- **≻**Common!

OLAP Analysis & Reporting

Machine Learning

It is Terrible!

Data Mining

Machine Learning

Knowledge Discovery in Databases (KDD)

- Process of extracting knowledge from a data
 - What does this mean?

Descriptive vs. Inferential Statistics

- > Descriptive Statistics: describe the sample data
 - Example: Average sales last quarter
 - Can be measured directly from the database
- ➤ Inferential Statistics: estimate the population
 - Example: Expected sales next quarter
 - May be estimated using descriptive statistics

The Basic KDD Process

- ➤ Data Selection: What data do I need for a given task?
 - If data was already collected, how was the data collected?
- **▶ Data Cleaning:** Preparing the data for a given task
 - Typically most challenging (time consuming) part.
 - Why might ETL not be enough?
- **▶ Data Mining & ML:** Running algorithms to infer patterns
 - The fun part! Many tools, many options, complex tradeoffs.
- **Evaluation:** Verifying that patterns are significant
 - Algorithms will typically find patterns especially when none exist.

Machine Learning

What is Machine Learning?

Study of algorithms that:

- >That improve their performance
 - Ability to understand what you are saying
- >at some task
 - Voice recognition
- >through experience
 - Transcribed speech data

-- Prof. Tom Mitchell*, CMU*

"Machine Learning is the **second best** solution to any problem. The **first best** is of course to **solve the problem** directly."

-- Prof. Yaser S. Abu-Mostafa, Caltech

How would you write a program to recognize human speech?

You use ML every day!

What machine learning do you use every day?

- ➤ Spam detection
- ➤ Voice recognition
- ➤ Face tagging on Facebook
- >Ad Targeting
- Credit card fraud detection
- ➤Others? ...

Machine Learning Lifecycle

- Typically a time consuming iterative batch process
 - Feature engineering
 - Validation

- Focus is on making fast robust predictions
 - Monitoring and tracking feedback
 - Materialization + fast model inference

Learning: Fitting the Model

>Training Data

• X: Features

• Y: Label/Obs.

Learn a function that **generalizes** the relationship between X and Y

Function class /
$$f_{\theta}(X) \rightarrow Y$$
 Labels / Observations Model Parameters

Finding the Best Parameters

$$f_{\theta}(X) \to Y$$

- ➤ Define some **objective** (e.g., prediction error)
- \triangleright Search for best θ with respect to the objective

Generalization ...

Inference: Rendering Predictions

> Evaluating the model on input queries:

$$f_{\hat{\theta}}(X) \to Y$$

- ➤Online vs Offline:
 - Pre-computed **offline**: movie rankings
 - Computed online with each query: speech recognition
- ➤ May want to track confidence in prediction
- ➤ May require additional pre and post-processing
 - Feature lookup, content ranking, etc...

Feedback: Incorporating New Data

- ➤ After rendering a prediction we may get feedback on the results of the prediction:
 - Explicit: the correct value was "cat"
 - Implicit: the predicted animal was incorrect
 - Can be noisy ...

- ➤ Watch out for sample bias:
 - Model affects the data is uses for training in the future
 - Example: only play top40 songs ...

Learning

& Bandit Learning

Unsupervised Learning

Regression

Classification

Dimensionality Reduction

Clustering

➤ Given a collection of images cluster them into meaningful groups.

Given a collection of images cluster them into meaningful groups.

➤ Given a collection of images cluster them into meaningful groups.

- ➤ Unsupervised: The labels of the groups are not given in the training data
- > Exploratory: overlaps with data mining

➤ Given a collection of images cluster them into

meaningful groups.

Simplified Illustration

Image Id	Average Red	Average Green
1	123	200
2	212	103
3	55	35

- How many clusters?
- Where are the clusters?

➤ Given a collection of images cluster them into

meaningful groups.

 Image Id
 Average Red
 Average Green

 1
 123
 200

 2
 212
 103

 3
 55
 35

- Where are the clusters?
- How many clusters?

➤ Given a collection of images cluster them into

meaningful groups.

Average Red		2 3
	Average Green	

 Red
 Green

 1
 123
 200

 2
 212
 103

 3
 55
 35

Average

Image Id

What makes a good clustering?

Average

- All points are near the cluster center
- Spread between clusters > spread within clusters

➤ Given a collection of images cluster them into

meaningful groups.

mea	aningtui groups.	Image Id	Average Red	Average Green
Average Red	1	123	200	
	2	212	103	
		3	55	35
			What hap when a n arrives?	pens ew point
•	' Average Green			

➤ Given a collection of images cluster them into

meaningful groups.

Average Red		2 3
	Average Green	

 Image Id
 Average Red
 Average Green

 1
 123
 200

 2
 212
 103

 3
 55
 35

What happens
when a new point arrives?

Predict "label" based on existing clusters (Yellow)

➤ Given a collection of images cluster them into

meaningful groups.

		1 2 3
Average Red I		
	Average Green	-

How do we automatically cluster data?

Average

Red

123

212

55

Average

Green

200

103

35

Image Id

How do we Compute a Clustering?

Many different clustering models and algorithms:

- Feature Based Clustering: Points in Rd
 - K-Means: EM on Symmetric Gaussians ← We will learn this one
 - Mixture Models: Generalized k-means
 - ...
- ➤ <u>Spectral Methods:</u> Similarity Function Between Items
 - Similarity based clustering: A and B are co-purchased
 - Graph clustering: Cities based on road network
 - ...
- ➤ Hierarchical Clustering: clustering nested items
 - Latent Dirichlet Allocation: Documents based on words
 - Developed at Berkeley and widely used!
 - ...

- ➤ Input K: The number of clusters to find
- ➤ Pick an initial set of points as cluster centers

For each data point find the cluster nearest center

For each data point find the cluster nearest center

➤ Compute mean of points in each "cluster"

>Adjust cluster centers to be the mean of the cluster

- ➤Improved?
- **≻**Repeat

>Assign Points

≻Assign Points

➤ Compute cluster means

➤ Update cluster centers

- ➤ Repeat?
 - Yes to check that nothing changes → Converged!

centers ← pick k initial Centers

```
while (centers are changing) {
   // Compute the assignments (E-Step)
   asg ← [(x, nearest(centers, x)) for x in data]
```

What do we mean by "nearest":

A: Euclidean Distance

$$\arg\min_{c \in \text{centers}} ||c - x||_2^2 = \sum_{i=1}^d (c_i - x_i)^2$$

```
centers ← pick k initial Centers
                                              Compute the
                                           "Expected" Assignment
while (centers are changing) {
   // Compute the assignments (E-Step)
   asg \leftarrow [(x, nearest(centers, x)) for x in data]
   // Compute the new centers (M-Step)
   for i in range(k):
                            Find centers that maximize the
      centers[i] =
                                data "likelihood"
         mean([x for (x, c) in asg if c == i])
```

```
centers ← pick k initial Centers
```

```
while (centers are changing) {
   // Compute the assignments (E-Step)
   asg \leftarrow [(x, nearest(centers, x)) for x in data]
   // Compute the new centers (M-Step)
   for i in range(k):
      centers[i] =
         mean([x for (x, c) in asg if c == i])
                                   To a local
                                                Depends on
     Guaranteed to
                    ... to what?
                                  optimum. 🕾
                                               Initial Centers
       converge!
```

```
centers ← pick k initial Centers
   How do we pick initial centers?
while (centers are changing) {
   asg \leftarrow [(x, nearest(centers, x)) for x in data]
   for i in range(k):
      centers[i] =
         mean([x for (x, c) in asg if c == i])
                    ... to what?
```

Picking the Initial Centers

- >Simple Strategy: select k points at random
 - What could go wrong?

Picking the Initial Centers

- > Better Strategy: kmeans++
 - Randomized approx. algorithm
 - Intuition select points that are not near existing centers

K-Means++ Algorithm

```
centers ← set(randomly select a single point)
while len(centers) < k:</pre>
  # Compute the distance of each point
  # to its nearest center dSq = d^2
  dSq \leftarrow [(x, dist_to_nearest(centers, x)^2)  for x in data]
  # Sample a new point with probability
  # proportional to dSq
  c ← sample_one(data, prob = dSq / sum(dSq))
  # Update the clusters
  centers.add(c)
```

How do we choose K?

- ➤ Basic Elbow Method (Easy and what you do in HW)
 - Try range of K-values and plot average distance to centers
- Cross-Validation (Better)
 - Repeatedly split the data into training and validation datasets
 - Cluster the training dataset
 - Measure Avg. Dist. To Centers on validation data

