§17 2<sup>nd</sup> Order ODEs with Constant Coefficients

(1) 
$$y'' + py' + qy = 0$$
  $p, q \in \mathbb{R}$ 

Note (1) is linear: if y., y. solve (1), then a.y.+b.y. also solves (1).

Reminder complex numbers

imaginary part: Im z=y



Euler's formula:

$$e^{i\theta} = \cos\theta + i\sin\theta$$

(1) 
$$y''+py'+qy=0$$
 p, qeR  
consider  $y(x)=e^{mx}$ , meR

= 
$$(m^2 + pm + q)e^{mx} = 0$$
  
 $m^2 + pm + q = 0$  for all  $x$   
 $\Rightarrow m_{1,2} = \frac{-p \pm \sqrt{p^2 - 4q}}{2}$   
=  $\frac{1}{2}(-p \pm \sqrt{p^2 - 4q})$ 

Cases: 1 p2-49>0 -> m, mz ER

 $\rightarrow$   $y(x) = c_1 e^{m_1 x} + c_2 e^{m_2 x}$  is the general solution to (1).

Rmk. The general solution of (1) always consists of two real-valued, linearly independent solutions, here:  $e^{m_1x}$ ,  $e^{m_2x}$ 

②  $p^2$ -4q<0  $\Rightarrow$   $m_1 \neq m_2$  are complex numbers Let  $m_1 = a + ib$ ,  $m_2 = a - ib$ 

Both e<sup>m,x</sup>, e<sup>m2x</sup> are complex-valued solutions to (1).

$$e^{m_1x} = e^{(a+bi)x} = e^{ax} e^{bix}$$

 $=e^{ax}(\cos bx+(\sin bx)$ 

 $=e^{ax}(\cos bx - (\sin bx)$ 

By linearity,  $y=e^{ax}(c_1\cdot sinbx+c_2\cdot cosbx)$  is the general, real-valued solution.

③  $p^2-4q=0$  →  $m_1=m_2=\frac{-p}{2} \in \mathbb{R}$ general solution is  $y=c_1e^{\frac{p}{2}x}+c_2xe^{\frac{-p}{2}x}$ 

Idea If y is a solution, find  $v(x) \neq constant$  such that  $v(x) \cdot y(x)$  is a solution of (1). Here this leads to v''(x) = 0, so v(x) = a + bx.

\$18. Method of Undetermined Coefficients

(IH) y"(x)+py'(x)+qy(x)= R(x)

corresponding homogeneous eqn:

(H) y''(x) + py'(x) + qy(x) = 0

Recall: (H) is linear; there are 2 L.I. real-valued solutions.

Thm. If  $y_p$  is a particular solution of (IH), and  $y_g$  is the general solution of (H), then  $y_p+y_g$  is the general solution of (IH).

Rmk. Suppose  $y_1$  solves  $y'' + py' + qy = R_1(x)$   $y_2 \text{ solves } y'' + py' + qy = R_2(x)$ then  $y_1 + y_2$  solves  $y'' + py' + qy = R_1(x) + R_2(x)$ 

Rmk. Note that the difference of two solutions of (IH) solves (H). [Take  $R_1 = R_2 = R$  in the remark, then  $y_1 - y_2$  solves (H). Thus  $y_1 - y_2 = y_0$ .]