Chapter 11 Output Analysis for a Single Model

Banks, Carson, Nelson & Nicol Discrete-Event System Simulation

Purpose

- Objective: Estimate system performance via simulation
- If θ is the system performance, the precision of the estimator $\hat{\theta}$ can be measured by:
 - \square The standard error of $\hat{ heta}$.
 - \square The width of a confidence interval (CI) for θ .
- Purpose of statistical analysis:
 - To estimate the standard error or CI.
 - To figure out the number of observations required to achieve desired error/CI.
- Potential issues to overcome:
 - Autocorrelation, e.g. inventory cost for subsequent weeks lack statistical independence.
 - Initial conditions, e.g. inventory on hand and # of backorders at time 0 would most likely influence the performance of week 1.

Outline

- Distinguish the two types of simulation: transient vs. steady state.
- Illustrate the inherent variability in a stochastic discreteevent simulation.
- Cover the statistical estimation of performance measures.
- Discusses the analysis of transient simulations.
- Discusses the analysis of steady-state simulations.

Type of Simulations

- N
- Terminating verses non-terminating simulations
- Terminating simulation:
 - \square Runs for some duration of time T_E , where E is a specified event that stops the simulation.
 - □ Starts at time 0 under well-specified initial conditions.
 - \square Ends at the stopping time T_E .
 - □ Bank example: Opens at 8:30 am (time θ) with no customers present and θ of the 11 teller working (initial conditions), and closes at 4:30 pm (Time $T_F = 480$ minutes).
 - □ The simulation analyst chooses to consider it a terminating system because the object of interest is one day's operation.

Type of Simulations

- Ŋ
- Non-terminating simulation:
 - □ Runs continuously, or at least over a very long period of time.
 - □ Examples: assembly lines that shut down infrequently, telephone systems, hospital emergency rooms.
 - Initial conditions defined by the analyst.
 - □ Runs for some analyst-specified period of time T_F.
 - Study the steady-state (long-run) properties of the system, properties that are not influenced by the initial conditions of the model.
- Whether a simulation is considered to be terminating or non-terminating depends on both
 - The objectives of the simulation study and
 - The nature of the system.

Stochastic Nature of Output Data

- Model output consist of one or more random variables (r. v.) because the model is an input-output transformation and the input variables are r.v.'s.
- M/G/1 queueing example:
 - □ Poisson arrival rate = 0.1 per minute; service time ~ $N(\mu = 9.5, \sigma = 1.75)$.
 - □ System performance: long-run mean queue length, $L_Q(t)$.
 - □ Suppose we run a single simulation for a total of 5,000 minutes
 - Divide the time interval [0, 5000) into 5 equal subintervals of 1000 minutes.
 - Average number of customers in queue from time (j-1)1000 to j(1000) is Y_j .

Stochastic Nature of Output Data

- M/G/1 queueing example (cont.):
 - □ Batched average queue length for 3 independent replications:

Batching Interval			Replication		
(minutes)	Batch, j	1, Y _{1j}	2, Y _{2j}	3, Y _{3j}	
[0, 1000)	1	3.61	2.91	7.67	
[1000, 2000)	2	3.21	9.00	19.53	
[2000, 3000)	3	2.18	16.15	20.36	
[3000, 4000)	4	6.92	24.53	8.11	
[4000, 5000)	5	2.82	25.19	12.62	
[0, 5000)		3.75	15.56	13.66	

- Inherent variability in stochastic simulation both within a single replication and across different replications.
- □ The average across 3 replications, Y_1, Y_2, Y_3 can be regarded as independent observations, but averages within a replication, Y_{11}, \dots, Y_{15} , are not.

Measures of performance

- Consider the estimation of a performance parameter, θ (or ϕ), of a simulated system.
 - \square Discrete time data: $[Y_1, Y_2, ..., Y_n]$, with ordinary mean: θ
 - □ Continuous-time data: $\{Y(t), 0 \le t \le T_E\}$ with time-weighted mean: ϕ
- Point estimation for discrete time data.
 - □ The point estimator:

$$\hat{\theta} = \frac{1}{n} \sum_{i=1}^{n} Y_i$$

$$E(\hat{\theta}) = \theta$$
 Desired

- Is unbiased if \(\hat{R}(\hat{\hat{\hat}})\) peotent ted value is θ, that is if:
- Is biased if:

Point Estimator

- Point estimation for continuous-time data.
 - □ The point estimator:

$$\hat{\phi} = \frac{1}{T_E} \int_0^{T_E} Y(t) dt$$

- Is biased in general where: $E(\hat{\phi}) \neq \phi$.
- An unbiased or low-bias estimator is desired.
- Usually, system performance measures can be put into the common framework of θ or ϕ :
 - e.g., the proportion of days on which sales are lost through an out-of-stock situation, let: $Y(t) = \begin{cases} 1, & \text{if out of stock on day } i \\ 0, & \text{otherwise} \end{cases}$

Point Estimator

- Performance measure that does not fit: quantile or percentile: $Pr\{Y \le \theta\} = p$
 - □ Estimating quantiles: the inverse of the problem of estimating a proportion or probability.
 - □ Consider a histogram of the observed values Y:
 - Find $\hat{\theta}$ such that 100p% of the histogram is to the left of (smaller than) $\hat{\theta}$.

Confidence-Interval Estimation

- To understand confidence intervals fully, it is important to distinguish between measures of error, and measures of risk, e.g., confidence interval versus prediction interval.
- Suppose the model is the normal distribution with mean θ , variance σ^2 (both unknown).
 - □ Let Y_i be the average cycle time for parts produced on the i^{th} replication of the simulation (its mathematical expectation is θ).
 - \square Average cycle time will vary from day to day, but over the long-run the average of the averages will be close to θ .
 - □ Sample variance across *R* replications: $S^2 = \frac{1}{R-1} \sum_{i=1}^{R} (Y_{i.} Y_{..})^2$

Confidence-Interval Estimation

- Confidence Interval (CI):
 - A measure of error.
 - \square Where Y_{i} are normally distributed.

$$Y_{..} \pm t_{\alpha/2,R-1} \frac{S}{\sqrt{R}}$$

- □ We cannot know for certain how far \overline{Y} is from θ but CI attempts to bound that error.
- \square A CI, such as 95%, tells us how much we can trust the interval to actually bound the error between \overline{Y} and θ .
- □ The more replications we make, the less error there is in \overline{Y} (converging to 0 as R goes to infinity).

Confidence-Interval Estimation

- □ A measure of risk.
- □ A good guess for the average cycle time on a particular day is our estimator but it is unlikely to be exactly right.
- □ PI is designed to be wide enough to contain the *actual* average cycle time on any particular day with high probability.
- □ Normal-theory prediction interval:

$$Y_{..} \pm t_{\alpha/2,R-1} S \sqrt{1 + \frac{1}{R}}$$

- □ The length of PI will not go to 0 as R increases because we can never simulate away risk.
- \square Pl's limit is: $\theta \pm z_{\alpha/2}\sigma$

Output Analysis for Terminating Simulations

A common goal is to estimate:

$$\theta = E\left(\frac{1}{n}\sum_{i=1}^{n}Y_{i}\right), \quad \text{for discrete output}$$

$$\phi = E\left(\frac{1}{T_{E}}\int_{0}^{T_{E}}Y(t)dt\right), \quad \text{for continuous output } Y(t), 0 \le t \le T_{E}$$

In general, independent replications are used, each run using a different random number stream and independently chosen initial conditions.

Statistical Background

[Terminating Simulations]

- Important to distinguish within-replication data from across-replication data.
- For example, simulation of a manufacturing system
 - □ Two performance measures of that system: cycle time for parts and work in process (WIP).
 - □ Let Y_{ij} be the cycle time for the j^{th} part produced in the i^{th} replication.
 - $\hfill \Box$ Across-replication data are formed by summarizing within-replication data \overline{Y}_i .

Statistical Background

[Terminating Simulations]

- ☐ For example: the daily cycle time averages (discrete time data)
 - The average: $\overline{Y}_{i} = \frac{1}{R} \sum_{i=1}^{R} Y_{i}$.
 - The sample variance: $S^2 = \frac{1}{R-1} \sum_{i=1}^{R} (Y_{i.} \overline{Y}_{..})^2$
 - The confidence-interval half-width: $H = t_{\alpha/2,R-1} \frac{S}{\sqrt{R}}$

Within replication:

- □ For example: the WIP (a continuous time data)
 - The average: $\overline{Y}_{i.} = \frac{1}{T_{Ei}} \int_{0}^{T_{Ei}} Y_{i}(t) dt$
 - The sample variance: $S_i^2 = \frac{1}{T_{Ei}} \int_0^{T_{Ei}} \left(Y_i(t) \overline{Y}_{i.} \right)^2 dt$

Statistical Background

[Terminating Simulations]

- Overall sample average, \overline{Y} , and the interval replication sample averages, \overline{Y}_i , are always unbiased estimators of the expected daily average cycle time or daily average WIP.
- Across-replication data are independent (different random numbers) and identically distributed (same model), but within-replication data do not have these properties.

C.I. with Specified Precision

[Terminating Simulations]

■ The half-length H of a $100(1 - \alpha)\%$ confidence interval for a mean θ , based on the t distribution, is given by:

Suppose that an error criterion ε is specified with probability $1 - \alpha$, a sufficiently large sample size should satisfy: $P(\overline{Y} - \theta | < \varepsilon) \ge 1 - \alpha$

C.I. with Specified Precision

[Terminating Simulations]

- Assume that an initial sample of size R_o (independent) replications has been observed.
- Obtain an initial estimate S_0^2 of the population variance σ^2 .
- Then, choose sample size R such that $R \ge R_0$:
 - □ Since $t_{\alpha/2, R-1} \ge z_{\alpha/2}$, an initial estimate of R:

$$R \ge \left(\frac{z_{\alpha/2}S_0}{\varepsilon}\right)^2$$
, $z_{\alpha/2}$ is the standard normal distribution.

- Collect $R R_0$ additional observations.
- The $100(1-\alpha)\%$ C.I. for θ :

$$\overline{Y}_{..} \pm t_{\alpha/2,R-1} \frac{S}{\sqrt{R}}$$

C.I. with Specified Precision

[Terminating Simulations]

- Call Center Example: estimate the agent's utilization ρ over the first 2 hours of the workday.
 - □ Initial sample of size $R_0 = 4$ is taken and an initial estimate of the population variance is $S_0^2 = (0.072)^2 = 0.00518$.
 - □ The error criterion is $\varepsilon = 0.04$ and confidence coefficient is $1-\alpha = 0.95$, hence, the final sample size must be at least:

$$\left(\frac{z_{0.025}S_0}{\varepsilon}\right)^2 = \frac{1.96^2 * 0.00518}{0.04^2} = 12.14$$

□ For the final sample size:

R	13	14	15
t _{0.025, R-1}	2.18	2.16	2.14
$(t_{\alpha/2,R-1}S_0/\varepsilon)^{k}$	15.39	15.1	14.83

- \square R = 15 is the smallest integer satisfying the error criterion, so $R R_0 = 11$ additional replications are needed.
- After obtaining additional outputs, half-width should be checked.

[Terminating Simulations]

- In this book, a proportion or probability is treated as a special case of a mean.
- When the number of independent replications $Y_1, ..., Y_R$ is large enough that $t_{\alpha/2,n-1} = z_{\alpha/2}$, the confidence interval for a probability p is often written as:

$$\hat{p} \pm z_{\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{R-1}}$$
 The sample proportion

A quantile is the inverse of the probability to the probability estimation problem:
p is given

Find θ such that $Pr(Y \le \theta) = p$

[Terminating Simulations]

■ The best way is to sort the outputs and use the $(R^*p)^{th}$ smallest value, i.e., find θ such that 100p% of the data in a histogram of Y is to the left of θ .

□ Example: If we have R=10 replications and we want the p=0.8 quantile, first sort, then estimate θ by the $(10)(0.8) = 8^{th}$ smallest

value (round if necessary).

```
5.6 ← sorted data
7.1
8.8
8.9
9.5
9.7
10.1
12.2 ← this is our point estimate
12.5
12.9
```

[Terminating Simulations]

- Confidence Interval of Quantiles: An approximate $(1-\alpha)100\%$ confidence interval for θ can be obtained by finding two values θ_l and θ_u .
 - \square θ_l cuts off $100p_l$ % of the histogram (the Rp_l smallest value of the sorted data).
 - \Box θ_u cuts off $100p_u\%$ of the histogram (the Rp_u smallest value of the sorted data).

where
$$p_{\ell} = p - z_{\alpha/2} \sqrt{\frac{p(1-p)}{R-1}}$$

$$p_u = p + z_{\alpha/2} \sqrt{\frac{p(1-p)}{R-1}}$$

[Terminating Simulations]

- ☐ First, sort the data from smallest to largest.
- □ Then estimate of θ by the (1000)(0.8) = 800th smallest value, and the point estimate is 212.03.
- And find the confidence interval:

 $p_{\ell} = 0.8 - 1.96 \sqrt{\frac{.8(1 - .8)}{1000 - 1}} = 0.78$

$$p_u = 0.8 + 1.96\sqrt{\frac{.8(1 - .8)}{1000 - 1}} = 0.82$$

The c.i. is the 780th and 820th smallest values

A portion of the 1000 sorted values:

Output	Rank
180.92	779
188.96	780
190.55	781
208.58	799
212.03	800 <
216.99	801
250.32	819
256.79	820
256.99	821

□ The point estimate is The 95% c.i. is [188.96, 256.79]

Output Analysis for Steady-State Simulation

- \square The single run produces observations $Y_1, Y_2, ...$ (generally the samples of an autocorrelated time series).
- □ Performance measure:

$$\theta = \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} Y_i,$$
 for discrete measure (with probability 1)
$$\phi = \lim_{T_E \to \infty} \frac{1}{T_E} \int_0^{T_E} Y(t) dt,$$
 for continuous measure (with probability 1)

Independent of the initial conditions.

Output Analysis for Steady-State Simulation

- Any bias in the point estimator that is due to artificial or arbitrary initial conditions (bias can be severe if run length is too short).
- Desired precision of the point estimator.
- □ Budget constraints on computer resources.
- Notation: the estimation of θ from a discrete-time output process.
 - \square One replication (or run), the output data: $Y_1, Y_2, Y_3, ...$
 - □ With several replications, the output data for replication r: Y_{r1} , Y_{r2} , Y_{r3} , ...

[Steady-State Simulations]

- Methods to reduce the point-estimator bias caused by using artificial and unrealistic initial conditions:
 - Intelligent initialization.
 - Divide simulation into an initialization phase and data-collection phase.
- Intelligent initialization
 - Initialize the simulation in a state that is more representative of long-run conditions.
 - ☐ If the system exists, collect data on it and use these data to specify more nearly typical initial conditions.
 - If the system can be simplified enough to make it mathematically solvable, e.g. queueing models, solve the simplified model to find long-run expected or most likely conditions, use that to initialize the simulation.

[Steady-State Simulations]

- Divide each simulation into two phases:
 - \square An initialization phase, from time 0 to time T_0 .
 - \square A data-collection phase, from T_o to the stopping time $T_o + T_E$.
 - \Box The choice of T_o is important:
 - After T_0 , system should be more nearly representative of steady-state behavior.
 - System has reached steady state: the probability distribution of the system state is close to the steady-state probability distribution (bias of response variable is negligible).

[Steady-State Simulations]

- M/G/1 queueing example: A total of 10 independent replications were made.
 - □ Each replication beginning in the empty and idle state.
 - □ Simulation run length on each replication was T_0 + T_E = 15,000 minutes.
 - □ Response variable: queue length, $L_Q(t,r)$ (at time t of the rth replication).
 - □ Batching intervals of 1,000 minutes, batch means
- Ensemble averages:
 - □ To identify trend in the data due to initialization bias
 - \square The average corresponding batch means *across* replications:

$$\overline{Y}_{.j} = \frac{1}{R} \sum_{r=1}^{R} \overline{Y_{rj}}$$
 R replications

□ The preferred method to determine deletion point.

[Steady-State Simulations]

A plot of the ensemble averages, $\overline{Y}..(n,d)$, versus 1000j, for j = 1.2

1,2, ...,15.

□ Illustrates the downward bias of the initial observations.

[Steady-State Simulations]

□ Not recommended to determine the initialization phase.

□ It is apparent that downward bias is present and this bias can be reduced by deletion of one or more observations.

- No widely accepted, objective and proven technique to guide how much data to delete to reduce initialization bias to a negligible level.
- Plots can, at times, be misleading but they are still recommended.
 - □ Ensemble averages reveal a smoother and more precise trend as the # of replications, R, increases.
 - Ensemble averages can be smoothed further by plotting a moving average.
 - Cumulative average becomes less variable as more data are averaged.
 - \Box The more correlation present, the longer it takes for $\overline{Y}_{.j}$ to approach steady state.
 - □ Different performance measures could approach steady state at different rates.

- If {Y₁, ..., Y_n} are not statistically independent, then S²/n is a biased estimator of the true variance.
 - Almost always the case when {Y₁, ..., Y_n} is a sequence of output observations from within a single replication (autocorrelated sequence, time-series).
- Suppose the point estimator θ is the sample mean

$$\overline{Y} = \sum_{i=1}^{n} Y_i / n$$

- \square Variance of \overline{Y} is almost impossible to estimate.
- □ For system with steady state, produce an output process that is approximately covariance stationary (after passing the transient phase).
 - The covariance between two random variables in the time series depends only on the lag (the # of observations between them).

Error Estimation

[Steady-State Simulations]

- For a covariance stationary time series, {Y₁, ..., Y_n}:
 - □ Lag-k autocovariance is: $\delta_k = \text{cov}(Y_1, Y_{1+k}) = \text{cov}(Y_i, Y_{i+k})$
 - □ Lag-k autocorrelation is: $\rho_k = \frac{\gamma_k}{\sigma^2}$

is:

$$V(Y) = \frac{\sigma^2}{n} \left[1 + 2 \sum_{k=1}^{n-1} \left(1 - \frac{k}{n} \right) \rho_k \right]$$

■ The expected value of the variance estimator is:

$$E\left(\frac{S^2}{n}\right) = BV(\overline{Y}), \quad \text{where } B = \frac{n/c-1}{n-1}$$

Error Estimation

[Steady-State Simulations]

- Stationary time series Y_i exhibiting positive autocorrelation.
- \mathfrak{O} Stationary time series Y_i exhibiting negative autocorrelation.
- Nonstationary time series with an upward trend

Error Estimation

[Steady-State Simulations]

The expected value of the variance estimator is:

$$E\left(\frac{S^2}{n}\right) = BV(\overline{Y}), \quad \text{where } B = \frac{n/c-1}{n-1} \text{ and } V(\overline{Y}) \text{ is the variance of } \overline{Y}$$

- \square If Y_i are independent, then S²/n is an unbiased estimator of $V(\overline{Y})$
- $\hfill\Box$ If the autocorrelation ρ_k are primarily positive, then S^2/n is biased low as an estimator of $V(\overline{Y})$.
- □ If the autocorrelation ρ_k are primarily negative, then S^2/n is biased high as an estimator of .

Replication Method

[Steady-State Simulations]

- Use to estimate point-estimator variability and to construct a confidence interval.
- Approach: make R replications, initializing and deleting from each one the same way.
- Important to do a thorough job of investigating the initial-condition bias:
 - Bias is not affected by the number of replications, instead, it is affected only by deleting more data (i.e., increasing T₀) or extending the length of each run (i.e. increasing T_F).
- Basic raw output data $\{Y_{ri}, r = 1, ..., R; j = 1, ..., n\}$ is derived by:
 - \square Individual observation from within replication r.
 - □ Batch mean from within replication *r* of some number of discrete-time observations.
 - \square Batch mean of a continuous-time process over time interval *j*.

Replication Method

[Steady-State Simulations]

- Each replication is regarded as a single sample for estimating *θ*. For replication r: $\overline{Y}_{r}(n,d) = \frac{1}{n-d} \sum_{j=1}^{n} Y_{rj}$
- The overall point estimator:

$$\overline{Y}_{..}(n,d) = \frac{1}{R} \sum_{r=1}^{R} \overline{Y}_{r.}(n,d)$$
 and $E[\overline{Y}_{..}(n,d)] = \theta_{n,d}$

- If d and n are chosen sufficiently large:
 - $\Box \theta_{n,d} \sim \theta$.
 - $\square \overline{Y}(n,d)$ is an approximately unbiased estimator of θ .
- \blacksquare To estimate standard error of \overline{Y} , the sample variance and standard error:

$$S^{2} = \frac{1}{R-1} \sum_{r=1}^{R} (\overline{Y}_{r.} - \overline{Y}_{..})^{2} = \frac{1}{R-1} \left(\sum_{r=1}^{R} \overline{Y}_{r.}^{2} - R \overline{Y}_{..}^{2} \right) \quad \text{and} \quad s.e.(\overline{Y}_{..}) = \frac{S}{\sqrt{R}}$$

Replication Method

[Steady-State Simulations]

Length of each replication (n) beyond deletion point (d):

$$(n - d) > 10d$$

- Number of replications (R) should be as many as time permits, up to about 25 replications.
- For a fixed total sample size (n), as fewer data are deleted (d):
 - ☐ C.I. shifts: greater bias.
 - \square Standard error of $\overline{Y}(n,d)$ decreases: decrease variance.

- M/G/1 queueing example:
 - □ Suppose R = 10, each of length $T_E = 15,000$ minutes, starting at time θ in the empty and idle state, initialized for $T_0 = 2,000$ minutes before data collection begins.
 - □ Each batch means is the average number of customers in queue for a 1,000-minute interval.
 - \square The 1st two batch means are deleted (d = 2).
 - ☐ The point estimator and standard error are:

$$\overline{Y}_{...}(15,2) = 8.43$$
 and s.e. $(\overline{Y}_{...}(15,2)) = 1.59$

□ The 95% C.I. for long-run mean queue length is:

$$\begin{split} \overline{Y}_{..} - t_{\alpha/2, R-1} S / \sqrt{R} &\leq \theta \leq \overline{Y}_{..} + t_{\alpha/2, R-1} S / \sqrt{R} \\ 8.43 - 2.26(1.59) &\leq L_O \leq 8.42 + 2.26(1.59) \end{split}$$

□ A high degree of confidence that the long-run mean queue length is between 4.84 and 12.02 (if d and n are "large" enough).

Sample Size

[Steady-State Simulations]

- To estimate a long-run performance measure, θ , within $\pm \varepsilon$ with confidence $100(1-\alpha)\%$.
- M/G/1 queueing example (cont.):
 - □ We know: $R_0 = 10$, d = 2 and $S_0^2 = 25.30$.
 - □ To estimate the long-run mean queue length, L_Q , within $\varepsilon = 2$ customers with 90% confidence ($\alpha = 10\%$).
 - Initial estimate:

$$R \ge \left(\frac{z_{0.05}S_0}{\varepsilon}\right)^2 = \frac{1.645^2(25.30)}{2^2} = 17.1$$

□ Hence, at least 18 replications are needed, next try $R = 18,19, \dots$ using $R \ge (t_{0.05,R-1}S_0/\varepsilon)$. We found that:

$$R = 19 \ge (t_{0.05,19-1}S_0 / \varepsilon)^2 = (1.74 * 25.3 / 2)^2 = 18.93$$

□ Additional replications needed is $R - R_0 = 19-10 = 9$.

Sample Size

[Steady-State Simulations]

- An alternative to increasing R is to increase total run length T_0 + T_E within each replication.
 - Approach:
 - Increase run length from (T_0+T_E) to $(R/R_0)(T_0+T_E)$, and
 - Delete additional amount of data, from time 0 to time $(R/R_0)T_0$.
 - Advantage: any residual bias in the point estimator should be further reduced.
 - □ However, it is necessary to have saved the state of the model at time T_0 + T_F and to be able to restart the model.

Batch Means for Interval Estimation

[Steady-State Simulations]

- Using a single, long replication:
 - Problem: data are dependent so the usual estimator is biased.
 - Solution: batch means.
- Batch means: divide the output data from 1 replication (after appropriate deletion) into a few large batches and then treat the means of these batches as if they were independent.
- A continuous-time process, $\{Y(t), T_0 \le t \le T_0 + T_F\}$:
 - k batches of size $m = T_F/k$, batch means:

$$\overline{Y}_{j} = \frac{1}{m} \int_{(j-1)m}^{jm} Y(t+T_0) dt$$

- A discrete-time process, $\{Y_i, i = d+1, d+2, ..., n\}$:
 - $\square \text{ k batches of size } m = (n-d)/k, \text{ batch means: } \overline{Y}_j = \frac{1}{m} \sum_{i=1}^{jm} Y_{i+d}$

Batch Means for Interval Estimation

[Steady-State Simulations]

$$\underbrace{Y_1,...,Y_d}_{\text{deleted}},\underbrace{Y_{d+1},...,Y_{d+m}}_{\overline{Y_1}},\underbrace{Y_{d+m+1},...,Y_{d+2m}}_{\overline{Y_2}}, \ldots ,\underbrace{Y_{d+(k-1)m+1},...,Y_{d+km}}_{\overline{Y_k}}$$

Starting either with continuous-time or discrete-time data, the variance of the sample mean is estimated by:

$$\frac{S^{2}}{k} = \frac{1}{k} \sum_{j=1}^{k} \frac{(\overline{Y}_{j} - \overline{Y})^{2}}{k-1} = \sum_{j=1}^{k} \frac{\overline{Y}_{j}^{2} - k\overline{Y}^{2}}{k(k-1)}$$

- If the batch size is sufficiently large, successive batch means will be approximately independent, and the variance estimator will be approximately unbiased.
- No widely accepted and relatively simple method for choosing an acceptable batch size m (see text for a suggested approach). Some simulation software does it automatically.

Summary

- Purpose of statistical experiment: obtain estimates of the performance measures of the system.
- Purpose of statistical analysis: acquire some assurance that these estimates are sufficiently precise.
- Distinguish: terminating simulations and steady-state simulations.
- Steady-state output data are more difficult to analyze
 - Decisions: initial conditions and run length
 - □ Possible solutions to bias: deletion of data and increasing run length
- Statistical precision of point estimators are estimated by standarderror or confidence interval
- Method of independent replications was emphasized.