ZNOTES // IGCSE SERIES

visit www.znotes.org

Updated to 2019 Syllabus

CIE IGCSE CHEMISTRY 0610

ALTERNATIVE TO PRACTICAL NOTES (PAPER 6)

APPARATUS

EXPERIMENTS

Reducing Copper(III) Oxide to Copper

EXPERIMENTS

Showing that oxygen and water is needed for rusting iron

RATES OF REACTION

Testing factors affecting rate of reaction

RATES OF REACTION

acid

hydrochloric acid

ENERGY IN ALCOHOL

- Find the amount of energy given when an alcohol is burnt:
- · You need to know:
 - · Mass of water
 - Change in mass of burner containing alcohol
 - · Specific heat capacity of water
 - Temperature change of water
 - The molecular mass of the alcohol
- $\frac{Change\ in\ mass}{Molecular\ mass} = Number\ of\ moles\ burnt$
- Change in temperature \times mass of water \times SHC of water = Energy
- $\frac{Energy}{Moles\ burnt} = amount\ of\ energy\ per\ mole\ (J/mol)$

FINDING CONCENTRATION

- Acid and base titration to find the concentration of a solution:
- Measure volume of acid then pour into conical flask
- · Record initial volume of base in burette
- Slowly add base from burette, stirring each time
- · When indicator neutral, record final volume of base
- Find amount of bas used: Final Initial
- Find moles of base used by volume×concentration
- Use balanced equation to find how many moles of acid are
 - needed to neutralize the base

 $\frac{Number of moles of Acid Needed}{Volume of Acid Used} = Concentration of Acid$

FLAME TESTS

- Lithium = Red
- Sodium = Yellow
- Potassium = Lilac
- Iron = Gold
- Magnesium = Bright White
- Source of errors for flame tests:
 - The test cannot detect low concentrations of most ions.
 - · Brightness of the flames varies from one sample to another.
 - Impurities or contaminants affect the test results.
 - The test cannot differentiate between all elements or compounds

CHROMATOGRAPHY

- Principle: Difference in solubility separates different pigments
 - Drop substance to center of filter paper and allow it to dry
 - Drop water on substance, one drop at a time
 - Paper + rings = chromatogram.
- Stationary phase: material on which the separation takes place
- Mobile phase: mixture you want to separate, dissolved in a solvent.
- Interpreting simple chromatograms:
 - Number of rings/dots = number of substances
 - If two dots travel the same distance up the paper they are the same substance.

CHROMATOGRAPHY

• You can calculate the Rf value to identify a substance, given by the formula:

$$Rf\ Value = \frac{Distance\ moved\ by\ solute}{Distance\ moved\ by\ solvent}$$

To make colorless substances visible

Original Mixture

SEPARATION METHODS

Filtration

- Mixture goes in a funnel with filter paper, into a flask.
- · Residue is insoluble and filtrate goes through

Crystallization

- Some water in the solution is evaporated so solution becomes more concentrated.
- Solution is left to cool and crystallise.
- Crystals are filtered to remove solvent.

Test Tube

Residue

Filter paper

Funnel

Test-

SEPARATION METHODS

Simple distillation:

- · Impure liquid is heated
- It boils, and steam rises into the condenser
- · Impurities are left behind
- Condenser is cold so steam condenses to the pure liquid and it drops into the beaker

SEPARATION METHODS

Fractional distillation:

 Removes a liquid from a mixture of liquids, because liquids have different b.p.s

Mixture is heated to evaporate substance with lowest b.p.

• some of the other liquid(s) will evaporate too.

Beads are heated to boiling point of lowest substance, so (
 that substance being removed cannot condense on beads.

• Other substances continue to condense and will drip back

Bunsen burner
into the flask

The beaker can be changed after every fraction.

SEPARATION METHODS

- Separating mixture of two solids:
 - · Can be done by dissolving one in an appropriate solvent
 - Then filter one and extract other from solution by evaporation

If one solid is magnetic, can use a magnet e.g. sand and iron

Solvent	It dissolves		
Water	Some salts, sugar		
White spirit	Gloss paint		
Propanone	Grease, nail polish		
Ethanol	Glues, printing inks, scented substances, chlorophyll		

· Choosing a suitable method:

Method of separation	Used to separate	
Filtration	A solid from a liquid	
Evaporation	A solid from a solution	
Crystallization	A solid from a solution	
Simple Distillation	A solvent from a solution	
Fractional Distillation	Liquids from each other	
Chromatography	Different substances from a solution	

- · When bubbling (hydrogen) stops the reaction is done
- Filter off excess metal
- Starting with an insoluble base:
 - · Add insoluble base to acid and heat gently, it will dissolve
 - Keep adding until no more dissolves (reaction is done)
 - Filter out the insoluble (excess) base

MAKING SALTS

Titration:

- · Put a certain amount alkali in a flask and add phenolphthalein
- · Add acid from a burette, stirring, until it goes colorless
- Find out how much acid you used and repeat, to be more accurate
- Evaporate water from neutral solution

• Precipitation:

- Mix the two soluble salts, so they react together
- Filter the mixture to separate the products produced (soluble and insoluble salt produced)
- · Wash the insoluble salt on the filter paper
- Dry the insoluble salt in a warm oven

SALTS AND INDICATORS

Solubility of salts:

	Soluble Salts	Insoluble Salts
	All sodium, potassium and	The rest
N	ammonium salts	The rest
	All nitrates	N/A
	Chlorides	Except silver and lead
	Sulphates	Except barium, lead and calcium
	Potassium, sodium and	All other carbonates
L	ammonium carbonates	All other carbonates

Indicators:

Indicator	Color in acid	Color in alkaline	
Phenolphthalein	Colorless	Pink	
Methyl orange	Pink	Yellow	
Methyl red	Red	Yellow	
Red litmus	Red	Blue	
Blue litmus	Red	Blue	

pH Scale:

TEST FOR ANIONS AND CATIONS

Cation	Sodium Hydroxide	Ammonia	
Aluminum (Al³+)	Soluble white ppt.	White ppt.	
Ammonium (NH ₄ ⁺)	Ammonium gas - damp red litmus turns blue	N/A	
Calcium (Ca ²⁺)	White ppt.	No ppt.	
Copper (Cu ²⁺)	Light blue ppt.	Light blue soluble ppt.	
Iron(II) (Fe ²⁺)	Iron(II) (Fe ²⁺) Green ppt.		
Iron(III) (Fe ³⁺)	Red-brown ppt.	Red-brown ppt.	
Zinc (Zn²+)	White soluble ppt.	White soluble ppt.	

Anion	Test	Test result	
Carbonate	Add dilute nitric	Limewater goes	
(CO ₃ ²⁻)	acid	cloudy	
Chloride (Cl ⁻)	Add nitric acid,	White ppt.	
Bromide (Br ⁻)	then aqueous	Cream ppt.	
Iodide (I ⁻)	silver nitrate	Yellow ppt.	
	Add aqueous	Gas produced	
Nitrate (NO ₃ -)	sodium hydroxide	turns damp red	
INITIALE (NO ₃)	then add	litmus paper	
	aluminum	blue	
Culmhata	Add nitric acid,		
Sulphate (SO ₄ 2-)	then add aqueous	White ppt.	
(30 ₄ -)	barium nitrate		

OTHER TESTS

_		
Gas	Test and test result	
Ammonia (NH ₃)	Damp red litmus	
Allillollia (N13)	paper turns blue	
	Bubble gas through	
Carbon dioxide (CO ₂)	limewater - from	
	colorless to cloudy	
Chloring (CL)	Bleaches red/blue	
Chlorine (Cl ₂)	litmus paper	
Hudrogen (III.)	Place lighted splint,	
Hydrogen (H₂)	squeaky pop	
Owigon (O.)	Place glowing splint,	
Oxygen (O ₂)	splint relights	

	Substance	Test and test result	
	Water	White anhydrous copper (II)	
		sulphate crystals turns blue	
		Blue cobalt chloride paper	
		turns pink	
	Alkene	Add to bromine water; from	
		orange to colourless	
	Alkane	Add to bromine water;	
		remains orange	
	Acid	Blue litmus paper turns red	
		Add a metal carbonate;	
		bubbles of CO ₂	
	Base	Red litmus paper turns blue	

PREPARING GASES IN THE LAB

To make	Place in flask:	Add	Reaction
CO ₂	CaCO ₃ (marble chips)	Dilute HCl	$CaCO_3(s) + HCI(aq) \rightarrow CaCI_2(aq) + H_2O(I) + CO_2(g)$
Cl ₂	Manganese (IV) oxide (as an oxidising agent)	Conc. HCl	$2HCL(aq) + [O] \to H_2O(I) + Cl_2(g)$
H ₂	Pieces of zinc	Dilute HCl	$Zn(s) + HCL(aq) \rightarrow ZnCl_2(aq) + H_2(g)$
02	Manganese (IV) oxide (as a catalyst)	Hydrogen peroxide	$2H_2O_2(aq) \rightarrow 2H_2O(I) + O_2(g)$

ZNOTESZ

COLLECTING GASES

Method	Downward displacement of air	Upward displacement of air	Over water	Gas syringe
Use when	Gas more dense than air	Gas less dense than air	Gas is sparingly soluble in water	To measure the volume
Apparatus			gas of low water solubility	20
Examples	Carbon dioxide, chlorine, sulphur dioxide, hydrogen chloride	Ammonia, hydrogen	Carbon dioxide, hydrogen, oxygen	Any gas