Experimentelle Übungen I

Versuchsprotokoll S2

Experimentieren, und dann?

Hauke Hawighorst, Jörn Sievneck Gruppe 9Mi

h.hawighorst@uni-muenster.de

j_siev11@uni-muenster.de

25. Oktober 2017

Inhaltsverzeichnis

1.	Kurzfassung	1
2.	Einführung	1
3.	Theoretische Grundlagen	1
4.	Methoden	1
5.	Ergebnisse und Diskussion 5.1. Pendel mit konstanter Länge	2
6.	Schlussfolgerung	2
Α.	Anhang A.1. Verwendete Gleichungen und Definition der Variablen	3 3

1. Kurzfassung

2. Einführung

Anlass dieses Experimentes, waren Messungen der Universität Münster welche die lokalen Fallbeschleunigung g, nach wiederholten Messungen, auf $(10,75\pm0,25)\,\mathrm{m/s^2}$ beziffern. Dies widerspricht den Angaben der Physikalisch-Technischen Bundesanstalt Braunschweig welche die Fallbeschleunigung für Münster mit $g=9,813\,\mathrm{m/s^2}$ angibt. Um diese Unterschiede besser beurteilen zu können, sollte die Fallbeschleunigung mit Hilfe eines weiteren Experimentes bestimmt werden. Wie in Abschnitt 3 erläutert, eignet sich hierfür das Fadenpendel, da die Periodendauer nur von der Fallbeschleunigung g und dem Abstand des Schwerpunktes von der Aufhängung l abhängen.

3. Theoretische Grundlagen

Hier die Theorie zum Fadenpendel

4. Methoden

5. Ergebnisse und Diskussion

5.1. Pendel mit konstanter Länge

Messung Nr.	Anzahl der Schwingungen	Gesamtdauer [s]	Dauer einer Schwingung T [s]
1	20	42,94	2,147
2	20	42,94	2,147
3	20	42,91	2,1455
4	20	42,91	2,1455
5	20	42,97	2,1485
Durchschnitt		42,934	2,1467

Abbildung 1: Die Tabelle gibt die Anzahl der Pendelschwingungen sowie die zugehörige Dauer an. Die Länge des Pendels betrug $(1,1450\pm0,0012)\,\mathrm{m}$

Berechnung Unsicherheit Länge Berchnung Unsicherheit Zeit Typ A, B

6. Schlussfolgerung

A. Anhang

- A.1. Verwendete Gleichungen und Definition der Variablen
- A.2. Quellen