

# Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

# «Московский государственный технический университет имени Н. Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н. Э. Баумана)

| ФАКУЛЬТЕТ «Информатика и системы управления»                      |  |
|-------------------------------------------------------------------|--|
| КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии» |  |

#### ОТЧЕТ

по Лабораторной работе №6 по курсу «Моделирование»

на тему: «Моделирование работы системы массового обслуживания (GPSS)»

| Студент группы ИУ7И-74Б |                 | Динь Вьет Ань  |  |  |
|-------------------------|-----------------|----------------|--|--|
|                         | (Подпись, дата) | (Фамилия И.О.) |  |  |
| Преподаватель           |                 | Рудаков И. В.  |  |  |
|                         | (Подпись, дата) | (Фамилия И.О.) |  |  |

# Содержание

| 1        |                               |  | 3 |   |
|----------|-------------------------------|--|---|---|
| <b>2</b> | 2 Теоретическая часть         |  |   | 4 |
|          | 2.1 Равномерное распределение |  |   | 4 |
|          | 2.2 Распределение Эрланга     |  |   | 4 |
| 3        | 3 Результаты работы           |  |   | 5 |
|          | 3.1 Листинги программы        |  |   | 5 |

#### 1 Задание

Для выполнения лабораторной необходимо смоделировать работу системы массового обслуживания, состоящую из генератора и обслуживающего аппарата. Генератор работает по равномерному закону распределения, а обслуживающий аппарат — по закону распределения Эрланга (в соответствии с вариантом из лабораторной работы №1). Необходимо определить максимальную длину очереди без потерь. Предусмотреть возможность возврата обработанной заявки обратно на вход обслуживающего аппарата (задается вероятностью). Реализовать на языке имитационного моделирования GPSS.

### 2 Теоретическая часть

#### 2.1 Равномерное распределение

Функция равномерного распределения:

$$F(x) = \begin{cases} 0, x < a, \\ \frac{x - a}{b - a}, x \in [a, b], \\ 0, x > b. \end{cases}$$
 (2.1)

Функция плотности равномерного распределения:

$$f(x) = \begin{cases} \frac{1}{b-a}, & x \in [a,b], \\ 0, & else. \end{cases}$$
 (2.2)

#### 2.2 Распределение Эрланга

Функция распределения Эрланга:

$$F_k(x) = 1 - e^{-\lambda \cdot x} \cdot \sum_{i=1}^{k-1} \frac{(\lambda \cdot x)^i}{i!}.$$
 (2.3)

Функция плотности распределения Эрланга:

$$f_k(x) = \frac{\lambda \cdot (\lambda \cdot x)^{k-1}}{(k-1)!} \cdot e^{-\lambda \cdot x}.$$
 (2.4)

В данных формулах  $\lambda$  и k — положительные параметры распределения ( $\lambda \geq 0; k=1,2,...$ );  $x \geq 0$ .

## 3 Результаты работы

#### 3.1 Листинги программы

Специальный эрланговский закон можно ввести частным случаем гамма-распределения с помощью функции (GAMMA (A,B,C,D)). В аргументе A записывается номер генератора равномерно распределенных случайных чисел в диапазоне от 0 до 1, который рекомендуется выбирать из диапазона от 1 до 7. Для специального эрланговского закона аргумент В принимается равным 0, в аргумент С записывается среднее значение, а в аргумент D записывается количество фаз.

В листинге 3.1 представлен код программы.

Листинг 3.1 – Код программы

```
GENERATE (UNIFORM(1,1,5)),0,1000

MoveTo QUEUE Queue_

SEIZE Operator_
DEPART Queue_

ADVANCE (GAMMA(1,0,2,2))

RELEASE Operator_

TRANSFER 0.1, Finish, MoveTo
Finish TERMINATE 1

START 1000
```

В листинге 3.2 представлен результат работы программы.

Листинг 3.2 – Результат работы программы

```
1
              GPSS World Simulation Report — lab 06.3.1
2
                  Monday, December 25, 2023 23:30:20
          START TIME
                                      BLOCKS FACILITIES
3
                            END TIME
                                                            STORAGES
              0.000
                                         8
                                                   1
4
                           5468.555
                                                              0
5
6
              NAME
                                  VALUE
7
          FINISH
                                    8.000
8
          MOVETO
                                    2.000
```

| 9  | 9 OPERATOR_ |        |             | 10001.000        |              |          |
|----|-------------|--------|-------------|------------------|--------------|----------|
| 10 | QUEUE       |        |             | 10000.000        |              |          |
| 11 |             |        |             |                  |              |          |
| 12 |             |        |             |                  |              |          |
| 13 | LABEL       | LOC    | BLOCK TYPE  | ENTRY COUNT      | CURRENT COUN | IT RETRY |
| 14 |             | 1      | GENERATE    | 1500             | 0            | 0        |
| 15 | MOVETO      | 2      | QUEUE       | 1623             | 499          | 0        |
| 16 |             | 3      | SEIZE       | 1124             | 1            | 0        |
| 17 |             | 4      | DEPART      | 1123             | 0            | 0        |
| 18 |             | 5      | ADVANCE     | 1123             | 0            | 0        |
| 19 |             | 6      | RELEASE     | 1123             | 0            | 0        |
| 20 |             | 7      | TRANSFER    | 1123             | 0            | 0        |
| 21 | FINISH      | 8      | TERMINATE   | 1000             | 0            | 0        |
| 22 |             |        |             |                  |              |          |
| 23 | FACILITY E  | ENTRIE | S UTIL. AV  | E. TIME AVAIL. ( | WNER PEND IN | TER      |
|    | RETRY DEL   | .AY    |             |                  |              |          |
| 24 | OPERATOR_   | 1124   | 0.817       | 3.976 1          | 1036 0       | 0 0      |
|    | 499         |        |             |                  |              |          |
| 25 |             |        |             |                  |              |          |
| 26 | QUEUE MAX C | CONT.  | ENTRY ENTRY | (0) AVE.CONT. AV | /E.TIME AVE. | (-0)     |
|    | RETRY       |        |             |                  |              |          |
| 27 | QUEUE_ 502  | 500    | 1623        | 1 199.140        | 670.986 671  | 399 0    |
| 28 |             |        |             |                  |              |          |
| 29 | CEC XN PR   | l N    | И1 ASSE     | M CURRENT NEXT   | F PARAMETER  | VALUE    |
| 30 | 1036 0      | 4089   | 9.879 1036  | 3 4              |              |          |
| 31 |             |        |             |                  |              |          |
| 32 | FEC XN PRI  | BE     | OT ASSEM    | CURRENT NEXT     | PARAMETER    | VALUE    |
| 33 | 1501 0      | 5468   | 3.874 1501  | 0 1              |              |          |

Из полученного результата видно, что при вероятности возврата 0.1 максимальная длина очереди равна 502.