Say you need to store or transmit many 2-megapixel images:

How do we represent the image compactly?

- ► *Obvious method:* 2 million pixels ⇒ 2 million numbers
- ► Strategy 1: Use sparsity! Find the "nearest" k-sparse vector. Later we'll see this consists of suppressing all but the largest k entries.
- More sophisticated strategy?

Strategy 2: Represent image vector by its coordinate representation:

- ▶ Before compressing any images, select vectors $\mathbf{v}_1, \dots, \mathbf{v}_n$.
- ▶ Replace each image vector with its coordinate representation in terms of $\mathbf{v}_1, \dots, \mathbf{v}_n$.

For this strategy to work, we need to ensure that *every* image vector can be represented as a linear combination of $\mathbf{v}_1, \dots, \mathbf{v}_n$.

Given some D-vectors $\mathbf{v}_1, \dots, \mathbf{v}_n$ over \mathbb{F} , how can we tell whether *every* vector in \mathbb{F}^D can be written as a linear combination of $\mathbf{v}_1, \dots, \mathbf{v}_n$?

We also need the number of vectors $\mathbf{v}_1, \dots, \mathbf{v}_n$ to be much smaller than the number of pixels.

Given D, what is minimum number of vectors $\mathbf{v}_1, \dots, \mathbf{v}_n$ such that every vector in \mathbb{F}^D can be written as a linear combination?

Strategy 3: A hybrid approach

Step 1: Select vectors $\mathbf{v}_1, \ldots, \mathbf{v}_n$.

Step 2: For each image to compress, find its coordinate representation \mathbf{u} in terms of $\mathbf{v}_1, \dots, \mathbf{v}_n$

Step 3: Replace \mathbf{u} with the closest k-sparse vector $\tilde{\mathbf{u}}$, and store $\tilde{\mathbf{u}}$.

Step 4: To recover an image from $\tilde{\mathbf{u}}$, calculate the corresponding linear combination of $\mathbf{v}_1, \dots \mathbf{v}_n$.

- Strategy 3: A hybrid approach
- *Step 1:* Select vectors $\mathbf{v}_1, \ldots, \mathbf{v}_n$.
- Step 2: For each image to compress, find its coordinate representation \mathbf{u} in terms of $\mathbf{v}_1, \dots, \mathbf{v}_n$
- Step 3: Replace \mathbf{u} with the closest k-sparse vector $\tilde{\mathbf{u}}$, and store $\tilde{\mathbf{u}}$.
- Step 4: To recover an image from $\tilde{\mathbf{u}}$, calculate the corresponding linear combination of $\mathbf{v}_1, \dots \mathbf{v}_n$.

