IRCopilot: Automated Incident Response with Large Language Models (arxiv)

Key Highlights

問題

• 這篇論文旨在解決什麼問題?

- 。該論文解決了傳統威脅檢測和事件響應方法在複雜網絡環境中的不足,因為全 球網絡威脅的強度和複雜性不斷增加
- 。當前的事件響應(IR)實踐嚴重依賴於手工分析和專業知識,使其無法應對當今 複雜且頻繁的網絡威脅
- 。儘管大型語言模型(LLMs)在早期威脅檢測中顯示出潛力,但其在入侵後自動 化事件響應方面的能力仍然有限

• 現有方法是什麼,有什麼局限性?

- 。傳統的基於規則和機器學習的方法在實時檢測中表現出色,但在事件後的法醫 分析和適應性緩解方面表現不佳
- 這些方法依賴於固定規則和預訓練模型,難以適應不斷演變的威脅環境
- 。手動IR過程越來越不夠用,需要及時決策和跨功能協作,無法滿足現代威脅的 複雜性

解決方案

• 論文提出了什麼解決方案?

- 。IRCopilot:一種由LLMs驅動的新型自動化事件響應框架,具有四個協作組件(計劃器、生成器、反思器、分析師)
- 。 該系統通過清晰的責任分工模擬現實世界事件響應團隊的三個動態階段
- 。引入事故響應樹(IRT)進行任務分解和追蹤,以維持上下文連貫性

• 這個想法有什麼靈感來源? 受其他論文影響嗎?

- 受現實世界事件響應團隊運營框架的啟發,尤其是藍隊操作
- 借鑑了滲透測試任務樹(Penetration Testing Task Tree)的方法論
- 。結合了各種提示方法,包括Chain-of-Thought (CoT)、Tree-of-Thought (ToT)、少樣本提示(Few-Shot Prompt)和負樣本提示(Negative Prompt)

• 什麼理論基礎支持這個方法?

。基於NIST SP 800-61 Rev. 3的事件響應生命周期指南(檢測、響應、恢 復)

- ∘ 使用Tree-of-Thought (ToT)推理技術進行全面決策
- 。 採用戰略責任分工以減少幻覺和上下文丟失

實驗

• 實驗表現如何?

- 。IRCopilot 在子任務完成率上相較基線LLMs(GPT-4、DeepSeek-V3、GPT-4o、Claude-3.5-Sonnet、GPT-o1分別達到150%、138%、136%、119%和114%)
- 。成功完成大多數公開平台(TryHackMe、XuanJi、ZGSF)上的事件響應任 務
- 在不同操作系統上的現實世界攻擊場景中展示了有效性

• 此方法有什麼限制或假設?

- 由於固有的LLM限制,在高複雜度任務上的性能下降
- 相較於直接應用LLM,由於多步推理,需要更多時間
- 。 仍面臨複雜動態分析和逆向工程任務的困難
- 。 假設有人參與以確保安全性和倫理考量

創新

• 此論文提出了哪些重要或新穎的發現?

- 首個在事件響應中評估LLMs的綜合基準,有130個子任務遍及12個案例
- 新穎的四組件架構,解決了LLM在事件響應情境中的特定局限性
- 。引入IRT(事故響應樹)以維持任務連續性和減少上下文丟失
- 系統性識別阻礙LLM在事件響應中應用的五大挑戰:策略制定、指導不準確、忽略細節、記憶有限和隱私風險

評論/批評

• 此論文本身有哪些局限性?

- 基準中的高難度任務數量有限,受到平台限制
- 可能存在數據污染問題,儘管作者實施了緩解措施
- 相比直接應用LLM存在成本和時間的負擔
- 。性能仍與底層LLM能力相關,限制了在複雜場景中的改進

• 論文是否有效地證明了其主張?

- 是的,通過多平台和現實世界場景的綜合評估
- 。 包括嚴格的消融研究,展示了每個組件的貢獻
- 。 提供了詳細的失敗分析和案例研究
- 提供了廣泛的實驗驗證,方法學在不同LLMs上保持一致

Comprehensive Analysis

ABSTRACT

這篇論文探討了大型語言模型(LLMs)在自動化網絡安全事故響應中的局限性。 - 雖然 大型語言模型在威脅檢測方面展現了潛力,但在入侵後的響應中,由於面臨諸如上下文丟 失、幻覺、隱私問題和無法提供準確的上下文建議等挑戰,而難以發揮作用。

主要貢獻:- 創建了一個真實的基準來評估大型語言模型在事故響應任務中的表現。 - 識別了當前大型語言模型在網絡安全應用中的關鍵局限性。 - 提出了一個名為IRCopilot的創新框架,該框架使用四個協作的大型語言模型組件來模擬現實世界中事故響應團隊的三個階段。 - 實施了戰略責任分配以最小化幻覺和上下文丟失。

結果:-IRCopilot顯著超越了基線的大型語言模型,在各種事故響應子任務中達到了 114-150%的完成率,並在公開平台和真實場景中展示了強勁的表現。-該框架通過改進 的系統設計和Prompt Engineering,解決了大型語言模型能力與實際網絡安全需求之 間的差距。

1 INTRODUCTION

• 這段介紹文章說明了在網路安全中應用大型語言模型(LLMs)於事件響應(IR) 的動機和貢獻。

• 背景問題:

- 事件響應涉及三個關鍵階段:檢測、響應和恢復。
- 。當前的IR實踐嚴重依賴手動過程和專業知識,這使其無法應對當今複雜的網絡 威脅。
- 。一項初步調查揭示了日益增長的挑戰:擴大的攻擊面、多樣化的漏洞、行業特 定需求以及不斷增加的經濟/倫理影響。

研究空白:

- 。雖然LLM在網路安全領域顯示出潛力,但現有應用主要集中在早期威脅檢測,而非全面的響應和恢復。
- 。缺乏系統的評估框架來評估LLM在IR任務中的能力。

• 貢獻:

- · 基準開發: 使用三個平台(XuanJi, ZGSF, TryHackMe)創建了一個全面的IR基準,包含12個案例機和130個子任務,涵蓋所有NIST 3.0 IR生命周期階段。
- **評估研究:** 測試了五個LLM(GPT-4, GPT-4o, Claude-3.5-Sonnet, GPT-o1, DeepSeek-V3),並確定了主要的限制,包括策略制定差、命令不準確、忽略細節、記憶問題和隱私風險。
- 解決方案提案:引入了IRCopilot,一個由LLM驅動的互動式自動IR系統, 以增強自動化並減少響應時間。
- 這項工作解決了自動化事件響應的關鍵需求,同時提供了當前LLM在此領域中限制的經驗證據。

"Traditional security operations and response models, which depend heavily on manual efforts, are no longer sufficient to address these realities. Consequently, enhancing automation in IR has become a critical research objective."

傳統的安全操作和應對模型過度依賴手動努力,已經不再足以應對這些現實。因此,增強 在事件響應(IR)中的自動化已成為一個關鍵的研究目標。

"Fully leveraging the language understanding and multitask inference capabilities of LLMs for automated IR remains an area that has not been thoroughly explored."

充分利用大型語言模型(LLMs)的語言理解和多任務推理能力進行自動化事件響應(IR),仍然是一個尚未得到充分研究的領域。

"To bridge these gaps, we develop an IR benchmark encompassing three mainstream platforms (i.e., XuanJi [21], ZGSF [22], and TryHackMe [19]), comprising a total of 12 case machines and 130 subtasks."

為了縮短這些差距,我們開發了一個事件響應(IR)基準,包含三個主流平台(即 XuanJi [21]、ZGSF [22]和TryHackMe [19]),包括總計12台案例機器和130個子 任務。

2 BACKGROUND & RELATED WORK

以下是翻譯成繁體中文的筆記:

本節建立了該論文主要針對網絡安全中基於大型語言模型 (LLM) 的自動化事件回應的基礎背景。本內容分為三個主要部分:

○ 2.1 全球網絡安全格局

- 作者通過分析超過 200 份網絡安全報告,提出了四個關鍵觀察:
 - **擴大的攻撃面**:CVE 數量從約 7,928(2014年)到 40,287 (2024年)呈指數增長,累積漏洞數量從小於 70,000 增加到超 過 262,000
 - **漏洞多樣化**:攻擊類型多樣性增加,尤其是遠程代碼執行和特權提 升漏洞
 - **行業特定目標**:針對關鍵行業(金融、政府、醫療、教育)的複雜、定制化攻擊
 - 不斷演變的威脅複雜性:動態攻擊策略,包括勒索軟體、商業電子 郵件詐騙 (BEC) 和網絡入侵,增加了事件回應 (IR) 團隊的工作量 和錯誤風險

○ 2.2 事件回應

- 將 IR 定義為組織在安全事件後採取的有系統的行動,分為檢測、回應和 恢復三個階段。該部分強調了當前方法的關鍵限制:
 - 傳統的基於規則和機器學習的方法在檢測方面表現優異,但在事後 分析和適應性回應方面存在困難
 - 嚴重依賴手動過程,這無法跟上複雜威脅的步伐
 - 需要更具適應性、與 AI 結合的解決方案,使 LLM 成為有前途的 候選人

○ 2.3 大型語言模型在網絡安全中的應用

- 回顧 LLM 的能力和應用:
 - 在各個領域(文本生成、編程、摘要)中建立的性能
 - 先進的提示工程技術(CoT、ToT、RAG、ReAct、Reflexion) 提升了推理能力
 - 現有的網絡安全應用主要集中在早期威脅(檢測、情報收集)
 - **研究缺口**:在自動化入侵後事件回應方面的工作有限
- 本節最後定位了本文的貢獻:開發基於 LLM 的自動 IR 框架,並為這個尚未 深入探索的領域建立評估基準。
- 沒有提供圖像摘要。

"The number of published CVEs (Common Vulnerabilities and Exposures) has surged dramatically from approximately 7,928 in 2014 to 40,287 in 2024, exhibiting an exponential upward trend."

已發佈的 CVE(常見漏洞和暴露)數量已經從2014年的大約7928個劇增至2024年的40287個,顯示出指數式的上升趨勢。

"Conventional rule-based and machine learning methodologies excel in a priori tasks, such as real-time intrusion detection and threat analysis, due to their low latency and precision. However, these approaches stumble when it comes to incident response, particularly in postincident forensic analysis and adaptive mitigation."

由於低延遲和高精度,傳統的基於規則和機器學習的方法在實時入侵檢測和威脅分析等先驗任務中表現出色。然而,這些方法在事件響應方面會遇到困難,尤其是在事後法醫分析和自適應緩解方面。

"With the escalating severity of cyber threats, the domain of automated IR post-intrusion remains relatively underdeveloped. To address this gap, we propose an LLM-based automated incident response framework."

隨著網絡威脅嚴重程度不斷升級,自動化事件響應領域在入侵後仍然相對欠發達。為了解 決這一問題,我們提出了一個基於LLM的自動化事件響應框架。

3 THREAT MODEL

摘要

- 此部分建立了一個涉及受害組織、攻擊者和第三方事件響應(IR)服務提供商的三方網絡安全威脅模型。
- 關鍵利益相關者及其特征:
 - 。**受害者**:具備對自身系統的白盒(完全了解)知識,使用入侵檢測系統 (IDS)監控威脅,目標是盡量減少攻擊損害,同時維持業務運營。
 - 攻擊者:擁有灰盒(部分了解)知識(對受害者的防禦措施有部分了解),擁有大量資源和精通高級攻擊技術,能避開一些安全措施,但不可避免地會留下法證痕跡。
 - 。**IR 回應者**:同樣具有灰盒知識,只能訪問受害者數據中的必要部分(僅限於 事件響應所需),必須在有效處理威脅和最小化業務中斷之間取得平衡。
- 該模型反映了一個現實的網絡安全場景,其中每個參與方擁有不同層級的系統知識、能力和目標,並由回應者作為中間人幫助受害者應對攻擊者的威脅。
- 圖片摘要:未提供圖片。

"We consider a practical scenario with three parties: a victim, an attacker, and a third-party IR service provider (responder)."

我們考慮一個實際的場景,有三方參與者:受害者、攻擊者和第三方事件響應(IR)服務 提供者(應答者)。

"From a gray-box perspective, the attacker seeks to steal sensitive data, extort profit, or disrupt operations by gaining unauthorized access. Their capabilities include: (1) adequate resources (e.g., computing power, libraries) and experience in multi-stage attacks and evasion techniques. (2) partial knowledge of the victim's security defenses, allowing bypass of specific protections."

從灰盒的角度來看,攻擊者試圖通過獲取未經授權的訪問來竊取敏感數據、勒索利益或破壞運營。他們的能力包括:(1)足夠的資源(例如計算能力、庫)和多階段攻擊及規避技術的經驗。(2)對受害者安全防禦的部分了解,允許繞過特定的防護措施。

"The responder operates from a gray-box perspective, possessing: (1) limited privileges to access victim data, restricted to information necessary for IR. (2) partial knowledge of attacker traces and compromised assets."

應答者從灰盒的角度進行操作,擁有: (1) 有限的特權訪問受害者數據,限制在事件響應所需的信息範圍內。(2) 對攻擊者痕跡和受損資產有部分了解。

4 A BENCHMARK FOR INCIDENT RESPONSE

• 本節描述了用於評估大型語言模型(LLMs)在網絡安全事故響應(IR)中的全面 基準的開發和評估。

動機與設計標準: - 作者識別到現有的IR基準僅關注最終結果,而未對詳細的子任務進行評估的局限性。他們提出了三個為其基準的關鍵標準: - 基於實際網絡安全事件的全面且現實的任務 - 難度梯度設計(簡單、中等、困難級別) - 涵蓋整個IR過程的階段性評估

基準開發: - 與三位經驗豐富的網絡安全專家(有五年以上經驗,持有CISSP認證)合作,他們: - 從主流網絡安全平台(玄機、ZGSF、TryHackMe)選取任務 - 按照 NIST SP 800-61指導方針將任務分解為子任務 - 建立了包含12個IR目標和130個子任務,跨越27個類別的基準 - 優先選擇在LLM訓練數據中不太可能出現的任務以避免數據 洩漏

LLM評估結果: - 使用人工介入的方法對五個LLMs(GPT-4, GPT-4o, Claude-3.5-Sonnet, DeepSeek-V3, GPT-o1)進行測試: - Claude-3.5-Sonnet表現最佳(完成5/12的任務,子任務完成率83.08%) - 所有模型在簡單/中等任務上表現出色,但在複雜情境下表現不佳 - 表現嚴重依賴於個別子任務的完成情況

識別的主要限制:-難以制定有效的IR策略-指導不準確或指令不兼容-長任務中的關鍵細節遺漏-任務連續性的長期記憶有限-敏感信息暴露帶來的隱私和安全風險

- 該基準提供了一個系統框架,以評估LLMs在網絡安全事故響應場景中的能力。
- [注意:未提供圖片或其摘要是空的。]

"Existing benchmarks in this domain [1, 2, 33], while valuable, exhibit significant limitations when applied to LLM assessment. These benchmarks primarily emphasize the completion of overarching task workflows, often neglecting the detailed evaluation of specific subtasks and intermediate steps within the IR process."

現有的基準在此領域中[1,2,33],儘管價值頗高,但在應用於大型語言模型 (LLM) 評估時卻顯示出顯著的限制。這些基準主要強調完成整體任務工作流程,往往忽略了對信息檢索 (IR) 過程中具體子任務和中間步驟的詳細評估。

"Among the models, Claude-3.5-Sonnet achieves the highest overall performance, successfully completing 5 out of 12 tasks, with a sub-task completion rate of 83.08%. In contrast, GPT-40, DeepSeek-V3, and GPT-4 achieve lower rates of 72.31%, 65.38%, and 58.46%, respectively."

在各模型中,Claude-3.5-Sonnet 獲得了最高的總體性能表現,成功完成了 12 項任務中的 5 項,子任務完成率為 83.08%。相比之下,GPT-4o、DeepSeek-V3 和 GPT-4 的完成率分別是 72.31%、65.38% 和 58.46%。

"Common failure modes include the inability to devise effective IR strategies and to deliver accurate guidance, etc... LLMs frequently struggle to develop effective strategies for IR tasks, particularly in integrating appropriate task prioritization. This limitation stems from their difficulty in synthesizing and organizing the provided information into coherent and actionable plans."

常見的失敗模式包括無法制定有效的信息檢索 (IR) 策略以及提供準確的指導等... 大型語言模型 (LLM) 往往在為信息檢索 (IR) 任務制定有效策略方面掙扎,尤其是在整合適當的任務優先排序方面。此限制源於它們在將提供的信息合成並組織成為連貫且可操作的計劃時的困難。

5 IRCOPILOT

- 這一部分介紹 **IRCopilot**,這是一個新型的人工智慧系統,專為事故响应 (IR) 設計,模仿現實世界的藍隊操作。
- 系統通過將工作結構化為三個动态阶段來应对IR中的挑战:**推理、行动和反思**。

关键架构:- **四个LLM组件**: 计划者(战略规划)、生成器(命令创建)、反思者(优化建议)、分析师(结果分析) - 每个组件独立运行,并采用单独的LLM会话以保持上下文并防止干扰

核心创新: - 增强推理: 使用多种提示技术(Chain-of-Thought、Tree-of-Thought、Few-Shot、Negative Prompting) - 精细责任分配: 明确分工以提高精确度并减少疏漏 - IR树结构: 将任务目标表与详细的IR步骤结合 - 多来源反思: 反思者组件从四个不同的信息来源进行分析,以实现自适应优化

- 其设计模仿了人类IR团队的工作流程,领导者进行战略规划并分配任务,执行者提供反馈。
- 这样创建一个迭代改进过程,旨在克服LLM的局限性,并在事故响应任务中达到更高的准确性。
- 没有提供图像摘要。

"Our approach is inspired by the operational framework of real-world IR teams, specifically the Blue Team [18]. In these teams, leaders leverage a comprehensive understanding of the infrastructure to formulate strategies, decompose them into manageable sub-tasks, and delegate these to individual executors, orchestrating the entire IR effort."

"Based on this workflow, we design IRCopilot with three dynamic phases—Reasoning, Action, and Reflection—and coordinate its operation through four LLM session components: Planner, Generator, Reflector, and Analyst, as illustrated in Figure 2."

"Each phase maintains an independent LLM session to preserve its specific session history and contextual information. Each component performs its designated role without interfering with others, thereby enhancing the efficiency and generalization capabilities of IRCopilot."

我們的方法是受現實世界中的 IR 團隊運作框架啟發,特別是藍隊 [18]。在這些團隊中,領導者利用對基礎設施的全面了解來制定策略,將策略分解成可管理的子任務,並將這些任務分配給個別執行者,協調整個 IR 工作。

基於這一工作流程,我們設計了 IRCopilot 並將其分為三個動態階段——推理、行動和反思,通過四個 LLM 會話組成部分來協調其運作:規劃師、生成器、反思器和分析師,如圖 2 所示。

每個階段都維持獨立的 LLM 會話,以保留其特定的會話歷史和上下文信息。每個組件執行其指定角色而不干擾其他組件,從而提高 IRCopilot 的效率和泛化能力。

6 EVALUATION ON IRCOPILOT

摘要

• 本節通過三個主要研究問題,評估一個稱為 IRCopilot 的事件響應 (IR) AI 系統的性能、組件貢獻和現實應用性。

主要發現:

• 實驗設置: IRCopilot 使用約 2,800 行 Python 代碼實現,並在四種 LLM 變體上進行測試: GPT-4、GPT-4o、Claude-3.5-Sonnet 和 DeepSeek-V3。

• 性能結果 (RQ1):

- 所有 IRCopilot 變體均顯著超越其基礎 LLM。
- 性能改進範圍從基礎模型性能的 114% 到 150% 不等。
- 。IRCopilot-GPT-4o、IRCopilot-Claude-3.5-Sonnet 和 IRCopilot-GPT-01 顯示出最強的性能。
- 。系統在解決簡單至中等複雜度任務時表現出色。
- IRCopilot 的性能隨著底層 LLM 的能力提升而增長。
- **主要優勢:** 該系統有效解決了 LLM 在 IR 工作流程中的常見缺陷,包括幻覺、上下 文丟失和處理複雜的連續性問題。
- 限制: 儘管有改進,但由於 LLM 內在的限制以及在網絡安全領域(例如攻擊分析和 事件響應程序)的特定領域擴展訓練數據不足,系統對於高度複雜的任務仍然表現 不佳。
- 評估表明,相較於獨立的 LLM,IRCopilot 在事件響應任務上提供了顯著的改進, 但在最複雜的情景中仍存在挑戰。

"IRCopilot-GPT-4, IRCopilot-DeepSeek-V3, IRCopilot-GPT-40, IRCopilot-Claude-3.5-Sonnet, and IRCopilot-GPT-01 each outperform their respective base LLMs, achieving 150%, 138%, 136%, 119%, and 114% of the base-model performance, respectively."

IRCopilot-GPT-4, IRCopilot-DeepSeek-V3, IRCopilot-GPT-4o, IRCopilot-Claude-3.5-Sonnet,和 IRCopilot-GPT-01 各自超越了它們的基礎大型語言模型 (LLM),分別達到了基礎模型性能的150%、138%、136%、119%和114%。

"This outcome confirms that our approach effectively alleviates critical bottlenecks of hallucination, context loss, and difficulties in handling progressively complex questions encountered by LLMs in IR workflows."

這一結果證實了我們的方法有效緩解了在信息檢索(IR)流程中,大型語言模型 (LLM)常遇到的幻覺、上下文丟失以及處理漸進複雜問題的困難。

"Our approach does not expand the training knowledge base in domains such as attacks, investigations, analysis, or response, which limits improvements in more complex scenarios."

我們的方法並未在攻擊、調查、分析或響應等領域擴展訓練知識基礎,這限制了在更複雜 情境中的改進。

References

No references found.