1 Use a weather forecast website and utilize the psychrometric chart and the formula to determine the absolute humidity, the wet-bulb temperature and the mass of water vapor in the air in Classroom A of Piacenza campus in the moment that you are solving this exercise (provide the inputs that you utilized).

Il tempo oggi in Piacenza Domenica, 01 Dicembre 2019 19:00 19:00 Temperatura effettiva 7°C Temperatura percepita 7°C Precipitazioni 3 mm Umidità 90 % Pressione atmosferica

dimensions classroom A: lenght 20 m width 6 m weight 6 m

ABSOLUTE HUMIDITY

$$\omega = 0.0056 \frac{kg_{vapour}}{kg_{dryair}}$$

WET-BULB TEMPERATURE

$$T_{wb} = 6.24 \, ^{\circ}C$$

MASS OF WATER VAPOR

Assuming that at the moment that I am solving the exercise the internal temperature and the relative humidity of classroom A are the same as the external ones because on Sunday the campus is closed we have:

$$m_v = \frac{P_v \times V}{R_v \times T} = \frac{0.90 * 720}{0.4615 * (273 + 7)} = 5.01 \, Kg$$

$$P_v = \emptyset P_g = \emptyset P_{sat} @7^{\circ}C = 0.90 * 1 = 0.90 KPa$$

$$V = 20 m * 6m * 6m = 720 m^3$$

2 Utilize the same methodology we went through in the class and determine the sensible and latent load corresponding to internal gains, the ventilation, and the infiltration in a house with a **good** construction quality and with the same geometry as that of the example which is located in Brindisi, Italy.

building height: 2.5m conditioned floor area: 200 m²

wall area: 144 m² number of occupants: 2 number of bedrooms: 2 out temperature: 31.1 °C in temperature: 24 relative humidity: 50%

	BRINDISI, Italy														WMO#:	163200	
	Lat	40.65N	Long:	17.95E	Elev	10	StdP:	101.2		Time Zone:	1.00 (EU	W)	Period:	86-10	WBAN:	99999	
	Annual He	ating and h	lumidificat	ion Design C	onditions												
	Coldest	Heatir	oo DB	Humidification DP/MCDB and HR						Coldest month WS/MCDB N					MCWS/PCWD		
	Month			99.6%			99%		0.4%		1%		to 99.6% DB				
	moriui	99.6%	99%	DP	HR	MCDB	DP	HR	MCDB	WS	MCDB	WS	MCDB	MCWS	PCWD		
	(0)	(b)	(c)	(d)	(0)	(f)	(9)	(h)	(1)	(i)	(k)	(1)	(m)	(n)	(0)		
(1)	2	2.9	4.1	-5.1	2.5	7.2	-3.0	3.0	7.4	13.4	10.2	12.4	10.6	3.4	250		(1)
	Annual Co	ooling, Deh	umidificatio	on, and Enth	alpy Design	Condition	1										
	Hottest	Hottest Hottest Cooling DB/MCWB									Evaporation					ICWS/PCWD	
	Month	Month		.4%		1%	2%			1%	190		2		to 0.4		
		DB Range		MCWB	DB	MCWB	DB	MCWB	WB	MCDB	WB	MCDB	WB	MCDB	MCWS	PCWD	
	(a)	(b)	(c)	(d)	(0)	(1)	(g)	(h)	(i)	(j)	(k)	(1)	(m)	(n)	(0)	(P)	
(2)	8	7.1	32.8	23.6	31.1	24.3	29.9	24.3	27.2	29.7	26.3	29.0	25.6	28.3	4.2	180	(2)
		Dehumidification DP/MCDB and HR									Enthalpy/MCDB					Hours	
	0.4%			1%			2%			4%		%		%	8 to 4 &		
	DP	HR	MCDB	DP	HR	MCDB	DP	HR	MCDB	Enth	MCDB	Enth	MCDB	Enth	MCDB	12.8/20.6	
	(a)	(b)	(c)	(d)	(0)	(1)	(9)	(h)	(i)	(j)	(k)	(1)	(m)	(n)	(0)	(P)	
(3)	26.3	21.8	29.2	25.4	20.7	28.5	24.7	19.7	27.9	86.0	30.1	82.2	29.1	78.5	28.3	1236	(3)
	Extreme A	innual Desi	gn Conditi	ons													
				Extreme													
	Extr	Extreme Annual WS			L	ean	Annual DB Standard deviation		n=5 years		n-Year Return Period n=10 years		n=20 years				
	1% 2.5% 5%		Max WB	Min	Max	Min	Max	Min	Max	Min	years Max	Min	Max	n=50 Min	Max		
	(a)	(b)	(c)	(d)	(0)	(f)	(9)	(h)	(i)	(j)	(k)	(1)	(m)	(n)	(0)	(p)	
(4)	11.3	9.9	8.7	31.4	0.4	37.3	1.4	3.0	-0.6	39.4	-1.4	41.1	-2.2	42.8	-3.2	44.9	(4)

INTERNAL GAINS

$$\dot{Q}_{ig_{sensible}} = 136 + 2.2 * A_{cf} + 22 N_{oc} = 136 + 2.2 * 200 + 22 * 2 = 620 W$$

$$\dot{Q}_{ig_{latent}} = 20 + 0.22 * A_{cf} + 12 N_{oc} = 20 + 0.22 * 200 + 12 * 2 = 88 W$$

INFILTRATION

$$A_{ul} = 1.4 \frac{cm^2}{m^2}$$
 (good quality)

$$A_{es} = 200 + 144 = 344 \, m^2$$

$$A_L = A_{es} \times A_{ul} = 344 \times 1.4 = 481.6 \; cm^2$$

$$IDF_{heating} = 0.065 \; \frac{L}{s.\,cm^2}$$

$$IDF_{cooling} = 0.032 \frac{L}{s.cm^2}$$

$$\dot{V}_{infiltration_{heating}} = A_L \times IDF_{heating} = 481.6 * 0.065 = 31.30 \frac{L}{s}$$

$$\dot{V}_{infiltration_{cooling}} = A_L \times IDF_{cooling} = 481.6 * 0.032 = 15.41 \frac{L}{s}$$

VENTILATION

$$\dot{V}_{ventilation} = 0.05 A_{cf} + 3.5 (N_{br} + 1) = 0.05 * 200 + 3.5 * 2 = 17 \frac{L}{s}$$

$$\dot{V}_{infiltration-ventilation_{heating}} = \dot{V}_{infiltration_{heating}} + \dot{V}_{ventilation} = 31.30 + 17 = 48.30 \frac{L}{s}$$

$$\dot{V}_{infiltration-ventilation_{cooling}} = \dot{V}_{infiltration_{cooling}} + \dot{V}_{ventilation} = 15.41 + 17 = 32.41 \frac{L}{s}$$

$$C_{sensible} = 1.23$$

$$C_{latent} = 3010$$

$$\Delta T_{cooling} = 31.1 - 24 = 7.1 \,^{\circ}C$$

$$\Delta T_{heating} = 20 - (4.1) = 15.9 \,^{\circ}C$$

$$\dot{Q}_{inf-vent_{cooling}} = C_{sensible} \times \dot{V}_{inf-vent_{cooling}} \times \Delta T_{Cooling} = 1.23 * 32.41 * 7.1 = 283.04 \, W$$

$$\dot{Q}_{inf-vent_{heating}} = C_{sensible} \times \dot{V}_{inf-vent_{heating}} \times \Delta T_{heating} = 1.23 * 48.30 * 15.9 = 944.6 \, W$$

$$\omega_{out} = 0.0143 \frac{kg_{water}}{kg_{dryAir}}$$

$$\omega_{in} = 0.0093 \; \frac{kg_{water}}{kg_{dryAir}}$$

$$\Delta\omega_{Cooling} = \omega_{out} - \omega_{in} = 0.0143 - 0.0093 = 0.005 \frac{kg_{water}}{kg_{DryAir}}$$

$$\dot{Q}_{inf-vent_{cooling}} = C_{latent} \times \dot{V}_{inf-vent_{cooling}} \times \Delta\omega_{Cooling} = 3010 * 32.41 * 0.005 = 487.77 \, W$$