Optimal Control and Estimation

Heng Yang

2023-06-07

Contents

Pı	reface	5
1	The Optimal Control Formulation 1.1 The Basic Problem	7 7
2	Literature	9
3	Methods 3.1 math example	11 11
4	Applications4.1 Example one4.2 Example two	
5	Final Words	15

4 CONTENTS

Preface

This is the textbook for Harvard ES/AM 158: Introduction to Optimal Control and Estimation. Information about the offerings of the class is listed below.

2023 Fall

 $\mathbf{Time} \colon \operatorname{Mon/Wed} \ 2{:}15 \ \text{-} \ 3{:}30\mathrm{pm}$

Location: Science and Engineering Complex, Room TBD

Instructor: Heng Yang

Teaching Fellow: Weiyu Li

Syllabus

 ${\bf Acknowledgment}$

6 CONTENTS

The Optimal Control Formulation

1.1 The Basic Problem

Consider a discrete-time dynamical system

$$x_{k+1} = f_k(x_k, u_k, w_k), \quad k = 0, 1, \dots, N-1 \tag{1.1} \label{eq:1.1}$$

where

- $x_k \in \mathbb{X} \subseteq \mathbb{R}^n$ is the state of the system,
- $u_k \in \mathbb{U} \subseteq \mathbb{R}^m$ is the *control* we wish to design,
- $w_k \in \mathbb{W} \subseteq \mathbb{R}^p$ a random disturbance or noise (e.g., due to unmodelled dynamics) which is described by a probability distribution $P_k(\cdot \mid x_k, u_k)$ that may depend on x_k and u_k but not on prior disturbances w_0, \dots, w_{k-1} .
- k indexes the discrete time,
- N denotes the horizon,
- f_k models the transition function of the system (typically $f_k \equiv f$ is time-invariant, especially for robotics systems; we use f_k here to keep full generality).

Remark (Deterministic v.s. Stochastic). When $w_k \equiv 0$ for all k, we say the system (1.1) is deterministic; otherwise we say the system is stochastic. In the following we will deal with the stochastic case, but most of the methodology should carry over to the deterministic setup.

We consider the class of controllers (also called policies) that consist of a sequence of functions

$$\pi=\{\mu_0,\dots,\mu_{N-1}\},$$

where $\mu_k(x_k) \in \mathbb{U}$ for all x_k , i.e., μ_k is a feedback controller that maps the state to an admissible control. Given an initial state x_0 and an admissible policy π , the state trajectory of the system is a sequence of random variables that evolve according to

$$x_{k+1} = f_k(x_k, \mu_k(x_k), w_k), \quad k = 0, \dots, N-1$$
 (1.2)

where the randomness comes from the disturbance w_k .

We assume the state-control trajectory $\{u_k\}_{k=0}^{N-1}$ and $\{x_k\}_{k=0}^{N}$ induce an additive cost

$$g_N(x_N) + \sum_{k=0}^{N-1} g_k(x_k, u_k)$$
 (1.3)

where $g_k, k=0,\dots,N$ are some user-designed functions.

With (1.2) and (1.3), for any admissible policy π , we denote its induced expected cost with initial state x_0 as

$$J_\pi(x_0) = \mathbb{E}\left\{g_N(x_N) + \sum_{k=0}^{N-1} g_k(x_k, \mu_k(x_k))\right\},$$

where the expectation is taken over the randomness of w_k .

Literature

Here is a review of existing methods.

Methods

We describe our methods in this chapter.

Math can be added in body using usual syntax like this

math example 3.1

p is unknown but expected to be around 1/3. Standard error will be approximated

$$SE = \sqrt(\frac{p(1-p)}{n}) \approx \sqrt{\frac{1/3(1-1/3)}{300}} = 0.027$$

You can also use math in footnotes like this¹.

We will approximate standard error to 0.027^2

$$SE = \sqrt(\frac{p(1-p)}{n}) \approx \sqrt{\frac{1/3(1-1/3)}{300}} = 0.027$$

 $^{^1}$ where we mention $p=\frac{a}{b}$ 2p is unknown but expected to be around 1/3. Standard error will be approximated

Applications

Some significant applications are demonstrated in this chapter.

- 4.1 Example one
- 4.2 Example two

Final Words

We have finished a nice book.