# Endoscope Semantic Segmentation

# Project Scope and Overview

**Scope:** advancing semantic segmentation in medical imaging, particularly for computer-assisted surgery.

The **main objective** is to develop neural network models that can accurately segment surgical images into distinct classes, such as:

- various tissues
- surgical instruments
- blood vessels
- other critical anatomical structures.

By improving segmentation accuracy, the project aims to enhance real-time surgical navigation and safety, providing essential support for clinical decision-making during operations

### **Dataset Overview**

The CholecSeg8K dataset is organized in a hierarchical structure that simplifies access and usage. Here's how the dataset is structured:

#### I. Top-Level Directories:

Each folder is named video01, video02, etc., and represents an entire surgical video clip.

#### II. Segment Directories:

Within each video folder, the video is split into multiple segments.

Each segment is named with the video ID and the starting frame number (e.g., video01\_00080 starts at frame 80).

#### III. Frame and Image Files:

Each segment contains 80 consecutive frames, and for each frame, there are 4 image files:

- The raw image frame
- The annotation tool mask (hand-drawn by experts)
- The color mask (for visualization, with distinct class colors)
- The watershed mask (used for training, with class IDs encoded as grayscale values)
  - → This totals **320 images per segment**.

**Annotations**: Every frame is annotated at the pixel level for **13 distinct classes**, including tissues, instruments, and blood vessels. Both the color and watershed masks include these annotations for visual and computational purposes.

## Mask Overview

Each image frame in the dataset is accompanied by three types of masks, each serving a distinct purpose in the segmentation pipeline:

#### 1. Original Image Frame

The raw endoscopic image captured during surgery. Serves as the input for the segmentation model. (Image: frame\_100\_endo.png)

#### 2. Annotation Tool Mask

Hand-drawn mask created by medical experts. Provides detailed pixel-level annotations. Serves as the foundation for generating both the color and watershed masks. (Image: frame\_100\_endo\_mask.png)

#### 3. Color Mask

Derived from the annotation tool mask. Assigns a unique RGB color to each class (e.g., tissue, instrument, blood). Designed for easy visual inspection and interpretation. (Image: frame\_100\_endo\_color\_mask.png)

#### 4. Watershed Mask

Also generated from the annotation tool mask. Encodes each class using a unique grayscale value (R=G=B). Suitable for training and automated processing as it maps directly to class IDs. (Image: frame\_100\_endo\_watershed\_mask.png)









# Dataset Examples of Labeling





| Class Number | Class Name             | RGB Hexcode |
|--------------|------------------------|-------------|
| Class 0      | Black Background       | #505050     |
| Class 1      | Abdominal Wall         | #111111     |
| Class 2      | Liver                  | #212121     |
| Class 3      | Gastrointestinal Tract | #131313     |
| Class 4      | Fat                    | #121212     |
| Class 5      | Grasper                | #313131     |
| Class 6      | Connective Tissue      | #232323     |
| Class 7      | Blood                  | #242424     |
| Class 8      | Cystic Duct            | #252525     |
| Class 9      | L-hook Electrocautery  | #323232     |
| Class 10     | Gallbladder            | #222222     |
| Class 11     | Hepatic Vein           | #333333     |
| Class 12     | Liver Ligament         | #050505     |

# Class Information Table

# Solution Methodology

#### Methodology

#### **DATA ENGINEERING**

- a. Dataset Loading and Preprocessing
- b. Data Splitting

### MODEL ARCHITECTURE: U-NET FOR SEMANTIC SEGMENTATION

- a. Architecture Overview
- b. Model Compilation and Training Setup
- c. Model Training
- d. Final Evaluation on the Test Set

#### **EVALUATION METRICS**

- a. Pixel Accuracy
- b. Intersection over Union (IoU)
- c. Dice Coefficient

#### RESULTS VISUALIZATION

DEPLOY

## Data splitting

To evaluate our model's performance effectively, we divide the dataset into three parts:

- Training set (60%)
   Used to train the neural network and update weights during learning.
- Validation set (20%)
   Used during training to monitor model performance, tune hyperparameters, and apply early stopping.
- Test set (20%)
  Set aside until the very end. Used to evaluate the model's true generalization performance on completely unseen data.



# Model Architecture: U-Net for Semantic Segmentation

- For this project, we use a **U-Net architecture** a popular encoder—decoder convolutional neural network designed for semantic segmentation tasks in biomedical imaging.
- U-Net is built to capture both global context and fine-grained local details, thanks to its **skip connections** that link the encoder and decoder paths.
- 1. Encoder (Contracting Path):
- 2. Decoder (Expanding Path):
- 3. Output Layer:
- This architecture enables the model to segment objects at different scales and accurately preserve spatial information.





## U-Net Architecture

## **Model Compilation and Training Setup**

#### **Loss Function:**

-> SparseCategoricalCrossentropy is used since the target masks contain integer class labels (not one-hot encoded).

#### **Optimizer:**

-> Adam — a robust and widely used optimizer for deep learning, with a default learning rate.

#### **Metrics:**

- -> We track pixel-wise accuracy during training.
- -> More detailed metrics like IoU and Dice coefficient will be computed separately after training.

#### **Early Stopping:**

- -> To prevent overfitting, we use early stopping with patience = 5.
- -> This means training will stop if the validation loss does not improve for 5 consecutive epochs. The best-performing model weights are automatically restored.

## **Evaluation Metrics**

| <b>Evaluation Metric</b>      | Result |
|-------------------------------|--------|
| Accuracy on the Test Set      | 0.9899 |
| Loss on the Test Set          | 0.0414 |
| Pixel Accuracy                | 98.94% |
| Intersection over Union (IoU) | 50.19% |
| Dice Coefficient              | 51.67% |

# Thank you!

Author: Mariana-Ionela Muntian

Technical University of Cluj-Napoca

Bachelor of Computer Science, 3rd year

Module: Image Processing