OPTIMIZATION

Course Overview

You are here...

Term	CDF	GCD	GCDAI	PGPDSAI
Term 1	Data Analytics with Python	Data Analytics with Python	Data Analytics with Python	Data Analytics with Python
Term 2	Data Visualization Techniques	Data Visualization Techniques	Data Visualization Techniques	Data Visualization Techniques
Term 3	EDA & Data Storytelling	EDA & Data Storytelling	EDA & Data Storytelling	EDA & Data Storytelling
		Minor Project	Minor Project	Minor Project
Term 4		Machine Learning Foundation	Machine Learning Foundation	Machine Learning Foundation
Term 5		Machine Learning Intermediate	Machine Learning Intermediate	Machine Learning Intermediate
Term 6		Machine Learning Advanced (Mandatory)	Machine Learning Advanced (Mandatory)	Machine Learning Advanced (Mandatory)
		Data Visualization with Tableau (Elective - I)	Data Visualization with Tableau (Elective - I)	Data Visualization with Tableau (Elective - I)
		Data Analytics with R (Elective - II)	Data Analytics with R (Elective - II)	Data Analytics with R (Elective - II)
		Capstone Project	Capstone Project	Capstone Project
Term 7		Bonus: Industrial ML (ML – 4 & 5)	Basics of AI, TensorFlow, and Keras	Basics of Al, TensorFlow, and Keras
Term 8			Deep Learning Foundation	Deep Learning Foundation
Term 9			NPL – I/CV – I	CV – I
Term 10			NLP – II/CV – II	NLP – I
			Capstone Project	Capstone Project
Term 11				CV – II
Term 12				NLP – II
				NLP – III + CV – III
				AutoVision & AutoNLP
				Building Al product

Term Context

- K Nearest Neighbor
- K-means Clustering
- Ensemble Learning
- Optimization

You are here...

- 1. Optimization
- 2. Optimization Techniques
- 3. Cost Function
- 4. Working of Gradient Descent
- 5. Issues with Gradient Descent
- 6. Types of Gradient Descent

Optimization

• The process of **choosing** the **optimal** solution from all the **feasible** solutions.

Need Of Optimization

The goal is to create a model that gives accurate predictions in a particular set of cases in less time.

- 1. Optimization
- 2. Optimization Techniques
- 3. Cost Function
- 4. Working of Gradient Descent
- 5. Issues with Gradient Descent
- 6. Types of Gradient Descent

Optimization Techniques

Exhaustive Search

- The process of looking for the most optimal hyper parameters.
- It simply checks whether each candidate is a good match or not.
- But if there are thousands of options to consider, it becomes unbearably heavy and slow.

Genetic Algorithms

- A search heuristic that is inspired by Charles Darwin's theory of natural evolution (a process of natural selection).
- The **fittest** individuals are **selected** for reproduction in order to **produce** offspring of the next generation.
- It is an attempt to apply theory of natural evolution to the machine learning.

Gradient Descent

- The most common and widely used algorithm to optimize the model by minimizing the error/cost.
- It iterates over the training dataset while re-adjusting the model's parameters.

Gradient Descent

- It tweak parameters iteratively to minimize a cost function.
- Two things matters direction and step-size.

- 1. Optimization
- 2. Optimization Techniques
- 3. Cost Function
- 4. Working of Gradient Descent
- 5. Issues with Gradient Descent
- 6. Types of Gradient Descent

Cost Function

- It is the average of the loss function for all the training examples.
- There are several cost functions that are used to evaluate models.
- For example: Mean Squared Error, Mean Absolute Error, etc.

$$\mathsf{MSE} = \tfrac{1}{N} \sum_{i=1}^{N} (Y' - Y)^2 \qquad \qquad \mathsf{MAE} = \tfrac{1}{N} \sum_{i=1}^{N} |Y' - Y|$$

- Y' = Predicted values
- Y = Actual values
- N = No. of data points

- 1. Optimization
- 2. Optimization Techniques
- 3. Cost Function
- 4. Working of Gradient Descent
- 5. Issues with Gradient Descent
- 6. Types of Gradient Descent

Working of Gradient Descent

- You start by filling gradient (θ) with random values, also called random initialization.
- Let's say, $h_{\theta}(x)$ is hypothesis function,

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

- θ_0 = bias
- θ_1 = weight
- x = independent variable/feature

• Hence, we will initialize θ_0 , θ_1 with some random values.

Working of Gradient Descent

- Each step attempts to decrease the cost function until the algorithm converges to a minimum.
- Most common values of learning rate (α) are : 0.001, 0.003, 0.01, 0.03, 0.1, 0.3.

Working of Gradient Descent

Once the gradient is zero, you have reached a minimum!

- 1. Optimization
- 2. Optimization Techniques
- 3. Cost Function
- 4. Working of Gradient Descent
- 5. Issues with Gradient Descent
- 6. Types of Gradient Descent

Issues with Gradient Descent

• If the learning rate is too small, then it will iterate too many times to finally converge, which will take a long time.

Issues with Gradient Descent

• If the learning rate is too high, then we may overshoot the minima and possibly keep bouncing.

Issues with Gradient Descent

- Not all cost functions look like nice, regular bowls.
- There may be holes, ridges, plateaus, and all sorts of irregular terrains.

- 1. Optimization
- 2. Optimization Techniques
- 3. Cost Function
- 4. Working of Gradient Descent
- 5. Issues with Gradient Descent
- 6. Types of Gradient Descent

(A,-P,)+(A2-R)+(A3-P3)+(A4-P4) Total ho of **Types of Gradient Descent** 500 Lines XI ibout =500 **Gradient Descent Types** 500 Lines X100 50lines×1000 Stochastic Mini-Batch Batch =50000 Gradient Descent **Gradient Descent Gradient Descent** 5,00,000 i.e. So Thousand - . Batchin = 1 BatchSizi= 100 ir.5Lakh :. NI of Battley = 1000 We will take any 1 pmt 4 plot LOSF for HA Take any one of the batch instead of keep reporting this prices. ©INSAID All rights reserved. 1000 all 1000 points

Batch Gradient Descent

- Here calculations are involved over the full training set i.e. at each gradient descent step.
- We take the average of the gradients of all the training examples.
- Then use **mean** gradient to update our parameters.

Pros/Cons of Batch Gradient Descent

Pros

- It is computationally efficient.
- No updates are required after each sample.
- It produces a stable gradient descent convergence.
- It benefits from the **vectorization**, which increases the speed of processing.

Cons

- It's learning process is very slow.
- The entire training set can be too large to process in the memory.
- We may get stuck in a local minimum of the loss function and never reach the global optimum.

Stochastic Gradient Descent

- This variant picks a random instance in the training set at every step.
- Computes the gradient based only on a single instance.

Pros/Cons of Stochastic Gradient Descent

Pros

- It can easily fit the data into memory.
- It is faster on a large dataset and better than Batch Gradient Descent.
- It immediately gives us an insight into the performance of the model.

Cons

- More computationally intensive than the batch gradient descent
- Lose the benefits of vectorization since we process one observation per time
- Due to the noisiness, it is more difficult to find and stay at a global minimum.

Mini-Batch Gradient Descent

- Here gradients are computed on small random sets of instances called mini-batches.
- Finds a balance between the robustness of stochastic gradient descent and the efficiency of batch gradient descent.

Pros/Cons of Mini Batch Gradient Descent

Pros

- It is computationally efficient.
- It is a fast learner since we perform more updates.
- The has a more **stable convergence** than Stochastic Gradient Descent.

Cons

- It is more time consuming.
- It requires configuring of mini-batch size as hyperparameter.

