

Dosen Pengampu: Retno Damayanti, S.Pd., M.T.

Program Studi: Teknik Informatika 2024/2025

1. Metode Selisih Maju

Differensial → Perbandingan perubahan tinggi (selisih tinggi) dan perubahan jarak.

$$\frac{dy}{dx} = \lim_{ax \to 0} \frac{\Delta y}{\Delta x}$$

Hubungan antara nilai fungsi dan perubahan fungsi dan perubahan fungsi untuk

setiap titiknya didefinisikan:

$$f'(x) =_{h \to 0}^{\lim} \frac{f(x+h) - f(x)}{h}$$

Algoritma Metode Selisih Maju

- 1. Definisikan fungsi f(x) yang akan dicari nilai turunannya
- 2. Definisikan fungsi turunan f'(x) eksak sebenarnya
- 3. Masukkan nilai pendekatan awal: batas bawah a dan batas atas b
- 4. Tentukan jumlah N yaitu area
- 5. Mencari nilai h = (b-a)/N
- 6. Untuk x = a sampai dengan b, hitung: $f'^{(x)} = \frac{f(x+h)-f(x)}{h}$
- 7. Tampilkan nilai x, f(x), f'(x), dan f'(x) eksak
- 8. Hitung error dan nilai rata-rata error

Implementasi Metode Selisih Maju

Untuk menyelesaikan differensial Metode selisih maju dapat mengambil secara adalah metode yang mengadopsi secara langsung definisi differensial, dan dituliskan:

$$f'^{(x)} = \frac{f(x+h) - f(x)}{h}$$

Contoh 1:

Hitung nilai differensial dari $f(x) = 2x^3$ dengan metode selisih maju pada selang x=[1,2] dan h=0,1!

$$f'^{(x)} = \frac{f(x+h) - f(x)}{h}$$

$$f(x) = 2x^3$$

 $x = [1,2]$; $h = 0,1$
 $f'(x)$ eksak = $6x^2$

	i	X	x+h	f(x)	f(x+h)	f'(x)	f'(x)eksak	error
	0	1	1,1	2	2,662	6,62	6	0,619
	1	1,1	1,2	2,662	3,456	7,94	7,26	0,679
awaban	2	1,2	1,3	3,456	4,394	9,38	8,64	0,739
	3	1,3	1,4	4,394	5,488	10,94	10,14	0,799
contoh 1	4	1,4	1,5	5,488	6,75	12,62	11,76	0,859
	5	1,5	1,6	6,75	8,192	14,42	13,5	0,92
	6	1,6	1,7	8,192	9,826	16,34	15,36	0,979
	7	1,7	1,8	9,826	11,664	18,38	17,34	1,04
	8	1,8	1,9	11,664	13,718	20,54	19,44	1,1
	9	1,9	2	13,718	16	22,82	21,66	1,159
	10	2	2,1	16	18,522	25,22	24	1,22

Rata-rata error: 0,919

2. Metode Selisih Mundur

Untuk menyelesaikan differensial Metode selisih mundur bisa dilakukan dengan memodifikasi differensial metode selisih maju yaitu: $\underline{f(x) - f(x-h)}_h$

Contoh 2:

Hitung nilai differensial dari $f(x) = 2x^3$ dengan metode selisih mundur pada selang x=[1,2] dan h=0,1

Algoritma Metode Selisih Mundur

- 1. Definisikan fungsi f(x) yang akan dicari nilai turunannya
- 2. Definisikan fungsi turunan f'(x) eksak sebenarnya
- 3. Masukkan nilai pendekatan awal: batas bawah a dan batas atas b
- 4. Tentukan jumlah N yaitu area
- 5. Mencari nilai h = (b-a)/N
- 6. Untuk x = a sampai dengan b, hitung: $f'^{(x)} = \underline{f(x) f(x-h)}$
- 7. Tampilkan nilai x, f(x), f'(x), dan f'(x) eksak
- 8. Hitung galat dan nilai rata-rata galat

Jawaban Contoh 2

X

10

2

1,9

x-h

f(x) –	f(x-h)
	h
	h

f'(x) eksak

24

error

	0	1	0,9	2	1,458	5,42	6	0,58
	1	1,1	1,0	2,662	2	6,62	7,26	0,639
	2	1,2	1,1	3,456	2,662	7,94	8,64	0,699
$f(x) = 2x^3$ x = [1,2] h = 0,1	3	1,3	1,2	4,394	3,456	9,38	10,14	0,759
	4	1,4	1,3	5,488	4,394	10,94	11,76	0,82
	5	1,5	1,4	6,75	5,488	12,62	13,5	0,879
	6	1,6	1,5	8,192	6,75	14,42	15,36	0,939
	7	1,7	1,6	9,826	8,192	16,34	17,34	0,999
	8	1,8	1,7	11,664	9,826	18,38	19,44	1,06
	9	1,9	1,8	13,718	11,664	20,54	21,66	1,12

13,718

f(x-h)

f'(x)

22,82

f(x)

16

Rata-rata error: 0,879

1,18

3. Metode Selisih Tengah

Metode selisih tengah adalah metode pengambilan perubahan dari dua titik sekitar dari titik yang diukur, yaitu dengan memadukan selisih mundur dan selisih maju.

Rumusnya adalah:

$$\frac{f(x+h)-f(x-h)}{2h}$$

Algoritma Metode Selisih Tengah

- 1. Definisikan fungsi f(x) yang akan dicari nilai turunannya
- 2. Definisikan fungsi turunan f'(x) eksak sebenarnya
- 3. Masukkan nilai pendekatan awal: batas bawah **a**, batas atas **b**, nilai **h**
- 4. Untuk x = a sampai dengan b, hitung: $f'^{(x)} = \frac{f(x+h) f(x-h)}{2h}$
- 5. Tampilkan nilai x, f(x), f'(x), dan f'(x) eksak
- 6. Hitung galat dan nilai rata-rata galat

Contoh 3 (Excel):

Hitung nilai differensial dari $f(x) = x^2-3.3x+2.3$ dari range x=[0,1] dengan h=0.05

4. Differensial Tingkat Tinggi

Untuk menghitung differensial tingkat tinggi digunakan metode differensiasi dengan mengembangkan metode selisih tengahan atau Turunan Kedua Selisih Tengahan yaitu: $f''(x) = \frac{f(x-h) - 2f(x) + f(x+h)}{h^2}$

Contoh 4 (Excel):

Hitung differensial kedua dari

 $f(x)=2x^3 + 4x + 5$ dari range x=[3,4] dengan h=0.05

Studi Kasus Differensial

Salah satu studi kasus dalam penggunaan differensial yang paling banyak dibicarakan adalah **penentuan titik puncak kurva**, dimana titik puncak (tertinggi atau terendah) diperoleh dengan memanfaatkan nilai differensial dari kurva pada setiap titik yang ditinjau.

Definisi 1

Suatu titik a pada kurva y = f(x) dinamakan titik puncak bila dan hanya bila : $f^1(a) = 0$.

Definisi 2

Sebuah titik puncak a dikatakan titik maksimum pada kurva y = f(x) bila : f''(a) < 0.

Definisi 3

Sebuah titik puncak a dikatakan titik minimum pada kurva y = F(x) bila : f''(a) > 0.

Latihan Soal Differensiasi

- 1. $f(x) = 3 x^3$ dengan metode selisih mundur dari range x=[-1,1] dengan h=0.01 dan bandingkan dengan h=0.1, beri komentarmu!
- 2. $f(x) = 4x^3$ dengan metode selisih maju dari range x=[0,2] dengan h=0.5 dan h=0.05, beri komentarmu!
- 3. $f(x) = x^3$ dengan metode selisih Tengah dari range x=[2,10] dengan h=0.08 dan h=0.8, beri komentarmu!
- 4. Tentukan titik titik puncak dari kurva $y = x^3 2x^2 x$ dengan mengambil range [-1,1] dengan h = 0.05!
- 5. Tentukan titik dari kurva $y = 3x^3 4x^2 x$ dari range x = [0,1] dengan h = 0.05 !

^{*}Catatan: Selesaikan Latihan soal diatas menggunakan Excel