類神經網路訓練不起來怎麼辦 (三):自動調整學習速率 (Learning Rate)

Create at 2022/06/08

- 類神經網路訓練不起來怎麼辦 (三):自動調整學習速率 (Learning Rate)
 - Create at 2022/06/08
 - o Adaptive Learning Rate 技術
 - o <u>客製化的 learning rate</u>
 - 不同的參數需要什麼樣的 learning rate
 - o Parameter dependent 的 learning rate 有甚麼常見的計算方式?
 - Root Mean Square
 - RMSProp
 - <u>最常用的 optimization 策略 : RMS Prop + Momentum</u>
 - <u>Learning Rate Scheduling 可以解決這個問題</u>
 - 課程網頁
- 上課資源:
 - 1. <u>類神經網路訓練不起來怎麼辦 (三):自動調整學習速率 (Learning Rate)</u> ((https://www.youtube.com/watch?v=HYUXEeh3kwY)

Adaptive Learning Rate 技術

要給每一個參數不同的 learning rate

Training stuck ≠ Small Gradient

 People believe training stuck because the parameters are around a critical point ...

- critical point 不一定是在訓練的時候會遇到的最大障礙
- 在訓練 network 時往往會把 loss 記錄下來
- 隨著參數不斷地 update ,loss 會越來越小,最後 loss 不再下降
- 當走到 critical point 時,代表 gradient 非常小,但有確認過當 loss 不再下降時, gradient 真的很小嗎?
- 下圖是 gradient 向量的長度,隨著參數更新的時候的變化
- 在這個例子裡面,當 loss 不再下降時, gradient 沒有真的變很小
- 左圖是 error surface · 現在的 gradient 在 error surface 山谷的兩個谷壁之間不斷的來回震盪,此時 loss 不再下降,但並不是真的卡到 critical point、saddle point、local minima · 它的 gradient 仍然很大,只是 loss 不見得再減小

- learning rate 決定了 update 參數時步伐有多大,設太大會造成沒辦法慢慢地滑到山谷
- 就算是一個 convex 的 error surface,用 gradient descend 也很難 train 好
- 之前我們的 gradient descend 裡面,所有的參數都是設同樣的 learning rate,但
 learning rate 應該要為每一個參數客製化

客製化的 learning rate

不同的參數需要什麼樣的 learning rate

Different parameters needs different learning rate

Formulation for one parameter:

- 如果在某一個方向上 gradient 值很小 (很平坦),那會希望 learning rate 調大一點
- 如果在某一個方向上非常陡峭,會希望 learning rate 調小一點

learning rate 如何自動的根據 gradient 的大小做調整?

- 要改 gradient descent 原來的式子
- η : learning rate
- θ_i^t : θ_i 在第 t 個 iteration 的值
- g_i^t : 在第 t 個 iteration,參數 i 算出來的 gradient,(在 $heta= heta^t$ 時, $heta_i$ 對 Loss 的微分)
- $heta_i^t \eta g_i^t$ 會更新 learning rate 到 $heta_i^{t+1}$

需要會客製化的 learning rate

- 不同的參數 i、不同的 t、給不同的 σ
- 把 η 改寫成 η/σ_i^t · 就有 parameter dependent 的 learning rate

Parameter dependent 的 learning rate 有甚麼常見的計算方式?

Root Mean Square

Root Mean Square
$$\theta_i^{t+1} \leftarrow \theta_i^t - \frac{\eta}{\sigma_i^t} g_i^t$$

$$\theta_i^1 \leftarrow \theta_i^0 - \frac{\eta}{\sigma_i^0} g_i^0 \qquad \sigma_i^0 = \sqrt{\left(g_i^0\right)^2} = |g_i^0|$$

$$\theta_i^2 \leftarrow \theta_i^1 - \frac{\eta}{\sigma_i^1} g_i^1 \qquad \sigma_i^1 = \sqrt{\frac{1}{2} \left[\left(g_i^0\right)^2 + \left(g_i^1\right)^2\right]}$$

$$\theta_i^3 \leftarrow \theta_i^2 - \frac{\eta}{\sigma_i^2} g_i^2 \qquad \sigma_i^2 = \sqrt{\frac{1}{3} \left[\left(g_i^0\right)^2 + \left(g_i^1\right)^2 + \left(g_i^2\right)^2\right]}$$

$$\vdots$$

$$\theta_i^{t+1} \leftarrow \theta_i^t - \frac{\eta}{\sigma_i^t} g_i^t \qquad \sigma_i^t = \sqrt{\frac{1}{t+1} \sum_{i=0}^t \left(g_i^t\right)^2}$$

 σ 是算出來的 g 平方和平均再開根號

Root Mean Square

上面的方式被用在 Adagrade 的方法裡面

為甚麼這個方法可以做到 gradient 大時·learning rate 減小·gradient 小時·learning rate 放大呢?

- 上圖 $heta_i^1$ 因為坡度小的關係,所以算出來的 gradient 值都比較小,所以算出來的 σ 就比較小,所以 η 就比較大
- 下圖 θ_i^2 因為坡度大的關係,Loss 變化比較大,所以算出來的 gradient 值都比較大,所以算出來的 σ 就比較大,所以 η 就比較小

Learning rate adapts dynamically

• 就算是同一個參數,需要的 learning rate 也會隨時間改變

RMSProp

$$\begin{aligned} & \text{RMSProp} & \boldsymbol{\theta}_i^{t+1} \leftarrow \boldsymbol{\theta}_i^t - \frac{\eta}{\sigma_i^t} \boldsymbol{g}_i^t \\ & \boldsymbol{\theta}_i^1 \leftarrow \boldsymbol{\theta}_i^0 - \frac{\eta}{\sigma_i^0} \boldsymbol{g}_i^0 & \sigma_i^0 = \sqrt{\left(\boldsymbol{g}_i^0\right)^2} \\ & \boldsymbol{\theta}_i^2 \leftarrow \boldsymbol{\theta}_i^1 - \frac{\eta}{\sigma_i^1} \boldsymbol{g}_i^1 & \sigma_i^1 = \sqrt{\alpha \left(\sigma_i^0\right)^2 + (1-\alpha) \left(\boldsymbol{g}_i^1\right)^2} \\ & \boldsymbol{\theta}_i^3 \leftarrow \boldsymbol{\theta}_i^2 - \frac{\eta}{\sigma_i^2} \boldsymbol{g}_i^2 & \sigma_i^2 = \sqrt{\alpha \left(\sigma_i^1\right)^2 + (1-\alpha) \left(\boldsymbol{g}_i^2\right)^2} \\ & \vdots & & \vdots & & \vdots \\ & \boldsymbol{\theta}_i^{t+1} \leftarrow \boldsymbol{\theta}_i^t - \frac{\eta}{\sigma_i^t} \boldsymbol{g}_i^t & \sigma_i^t = \sqrt{\alpha \left(\sigma_i^{t-1}\right)^2 + (1-\alpha) \left(\boldsymbol{g}_i^t\right)^2} \end{aligned}$$

可以自己調整現在的 gradient 認為它有多重要

decrease σ_i^t larger step

透過 lpha,可以動態決定 g_i^t 相較於之前存在 σ_i^{t-1} 裡面的 g_i^1 到 g_i^{t-1} 而言,重要性有多大

最常用的 optimization 策略: RMS Prop + Momentum

Adam: RMSProp + Momentum

```
Algorithm 1: Adam, our proposed algorithm for stochastic optimization. See section 2 for details,
and for a slightly more efficient (but less clear) order of computation. g_t^2 indicates the elementwise
square g_t \odot g_t. Good default settings for the tested machine learning problems are \alpha = 0.001,
\beta_1 = 0.9, \, \beta_2 = 0.999 and \epsilon = 10^{-8}. All operations on vectors are element-wise. With \beta_1^t and \beta_2^t
we denote \beta_1 and \beta_2 to the power t.
Require: \alpha: Stepsize
Require: \beta_1, \beta_2 \in [0, 1): Exponential decay rates for the moment estimates
Require: f(\theta): Stochastic objective function with parameters \theta
Require: \theta_0: Initial parameter vector
  m_0 \leftarrow 0 (Initialize 1st moment vector) \rightarrow for momentum
   m_0 \leftarrow 0 (Initialize 1 moment vector) v_0 \leftarrow 0 (Initialize 2nd moment vector) for RMSprop
   while \theta_t not converged do
      t \leftarrow t + 1
      g_t \leftarrow \nabla_{\theta} f_t(\theta_{t-1}) (Get gradients w.r.t. stochastic objective at timestep t)
      m_t \leftarrow \beta_1 \cdot m_{t-1} + (1 - \beta_1) \cdot g_t (Update biased first moment estimate) v_t \leftarrow \beta_2 \cdot v_{t-1} + (1 - \beta_2) \cdot g_t^2 (Update biased second raw moment estimate) \widehat{m}_t \leftarrow m_t/(1 - \beta_1^t) (Compute bias-corrected first moment estimate)
      \widehat{v}_t \leftarrow v_t/(1-\beta_2^t) (Compute bias-corrected second raw moment estimate)
      \theta_t \leftarrow \theta_{t-1} - \alpha \cdot \widehat{m}_t / (\sqrt{\widehat{v}_t} + \epsilon) (Update parameters)
   end while
   return \theta_t (Resulting parameters)
```

Without Adaptive Learning Rate

- 現在有 Adagrade 之後可以繼續走下去,走道非常接近終點的位置
- 左右方向的 gradient 很小,所以 learning rate 會自動調整變大,為甚麼後來會突然爆炸呢?
 - 。 累積了很多很小的 σ ,累積到一個地步之後 step 就變很大,然後就爆走了,爆走之後走到 gradient 大的地方 σ 又慢慢變大,參數 update 的步伐又慢慢變小

Learning Rate Scheduling 可以解決這個問題

Learning Rate Scheduling

$$\boldsymbol{\theta}_i^{t+1} \leftarrow \boldsymbol{\theta}_i^t - \frac{\boldsymbol{\eta}^t}{\sigma_i^t} \boldsymbol{g}_i^t$$

Learning Rate Decay

As the training goes, we are closer to the destination, so we reduce the learning rate.

- η要是跟時間有關的·不要把它當一個常數
- 常見的策略稱為 Learning Rate Decay
 - o 隨著時間不斷地前進、隨著參數不斷的 update
 - o 讓 η 越來越小
 - o 因為隨著參數不斷的 update, 距離終點越來越近, 所以把 learning rate 減小
 - o 如果加上 learning rate decay,就可以順利地走到終點

Learning Rate Scheduling

$$\boldsymbol{\theta}_i^{t+1} \leftarrow \boldsymbol{\theta}_i^t - \frac{\boldsymbol{\eta}^t}{\sigma_i^t} \boldsymbol{g}_i^t$$

Learning Rate Decay

After the training goes, we are close to the destination, so we reduce the learning rate.

Warm Up

Increase and then decrease?

At the beginning, the estimate of σ_i^t has large variance.

Please refer to RAdam

https://arxiv.org/abs/1908.03265

- 另外一個常用的方式是 Warm Up
 - o learning rate 要先變大再變小
 - o 在訓練 BERT 的時候,會需要用到 Warm Up
- 為甚麼需要 Warm Up
 - o 在用 Adam RMS Prop 或 Adagrad 的時候,會需要計算 σ
 - o 先收集有關 σ 的統計數據,等統計比較精準之後,再讓 learning rate 慢慢提升

Summary of Optimization

(Vanilla) Gradient Descent

$$\boldsymbol{\theta}_{i}^{t+1} \leftarrow \boldsymbol{\theta}_{i}^{t} - \eta \boldsymbol{g}_{i}^{t}$$

Various Improvements

總結

- 補充教材:
 - 1. Optimization for Deep Learning (1/2) (https://www.youtube.com/watch?v=4pUmZ8hXIHM)
 - 2. Optimization for Deep Learning (2/2) (https://www.youtube.com/watch?v=e03YKGHXnL8)

<u>課程網頁 (https://speech.ee.ntu.edu.tw/~hylee/ml/2022-spring.php)</u>

tags: 2022 李宏毅 機器學習