ADVANCED REGRESSION

Probabilistic interpretation of LR. Classification algorithms for regression

CONTENTS

- 1. Bayesian explanation of regularized regression
- 2. Classification algorithms for regression

I DON'T TRUST LINEAR REGRESSIONS WHEN IT'S HARDER TO GUESS THE DIRECTION OF THE CORRELATION FROM THE SCATTER PLOT THAN TO FIND NEW CONSTELLATIONS ON IT.

BAYESIAN REGRESSION

CLASSICAL PROBABILISTIC VIEW ON LINEAR REGRESSION

Consider we have n points Y drawn i.i.d. from the normal distribution. The probability of those points being drawn defines the likelihood function which is just a multiplication of their densities in every points.

$$\mathcal{L}(\mu|y) = \prod_{i=1}^n P_Y(y_i|\mu,\sigma^2) = \prod_{i=1}^n rac{1}{\sigma\sqrt{2\pi}} e^{-rac{(y_i-\mu)^2}{2\sigma^2}} \ egin{pmatrix} egin{pmatrix}$$

A good estimate of mean maximizes that likelihood

$$\begin{split} \hat{\mu} &= \arg\max_{\mu} \mathcal{L}(\mu|y) = \arg\max_{\mu} \prod_{i=1}^{n} \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(y_{i}-\mu)^{2}}{2\sigma^{2}}} \\ &= \arg\max_{\mu} \log \Big(\prod_{i=1}^{n} \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(y_{i}-\mu)^{2}}{2\sigma^{2}}} \Big) \\ &= \arg\max_{\mu} \sum_{i=1}^{n} \log \Big(\frac{1}{\sigma\sqrt{2\pi}} \Big) + \log \Big(e^{-\frac{(y_{i}-\mu)^{2}}{2\sigma^{2}}} \Big) \\ &= \arg\max_{\mu} \sum_{i=1}^{n} \log \Big(e^{-\frac{(y_{i}-\mu)^{2}}{2\sigma^{2}}} \Big) \\ &= \arg\max_{\mu} \sum_{i=1}^{n} -\frac{(y_{i}-\mu)^{2}}{2\sigma^{2}} \\ &= \arg\min_{\mu} \sum_{i=1}^{n} (y_{i}-\mu)^{2} \qquad \Big(\ 2 \ \Big) \end{split}$$

CLASSICAL PROBABILISTIC VIEW ON LINEAR REGRESSION

• Assume our mean is a function of predictors X

$$E(y|\mathbf{x}) = \beta_0 + \beta_1 x_1 + \ldots + \beta_p x_p$$

• Thus our target is distributed according to

$$y \sim N(\beta_0 + \beta_1 x_1 + \ldots + \beta_p x_p, \sigma^2)$$

• Estimating regression parameters given (2)

$$eta = rg \min_eta \sum_{i=1}^n (y_i - (eta_0 + eta_1 x_1 + \ldots + eta_p x_p))^2$$
 $= rg \min_eta \sum_{i=1}^n (y_i - \hat{y_i})^2$

A PROBABILISTIC INTERPRETATION OF REGULARIZATION

ullet Using a Bayes theorem we can estimate the **probability distribution** of the parameters ullet given the data we observe ullet

$$P(\theta|y) = \frac{P(y|\theta)P(\theta)}{P(y)}$$

$$posterior = \frac{likelihood \cdot prior}{evidence}$$

- That gives us an opportunity to set the a prior distribution of model parameters
- Compare that with the classical method where we instead try to find the best parameters to maximize the **likelihood of parameters** given the data

A PROBABILISTIC INTERPRETATION OF REGULARIZATION

 We maximize the posterior probability estimate using Bayes theorem (Maximum A Posteriori estimation)

$$\begin{split} \hat{\theta}_{\mathbf{MAP}} &= \arg\max_{\theta} P(\theta|y) \\ &= \arg\max_{\theta} \frac{P(y|\theta)P(\theta)}{P(y)} \\ &= \arg\max_{\theta} P(y|\theta)P(\theta) \\ &= \arg\max_{\theta} \log(P(y|\theta)P(\theta)) \\ &= \arg\max_{\theta} \log P(y|\theta) + \log P(\theta) \end{split}$$

Compare that to MLE estimate

$$\hat{ heta}_{\mathbf{MLE}} = rg \max_{ heta} \log P(y| heta)$$

A PROBABILISTIC INTERPRETATION OF L2 REGULARIZATION

 Assume our model parameters zero-mean normally distributed with t^2 variance (prior knowledge)

$$\arg \max_{\beta} \left[\log \prod_{i=1}^{n} \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(y_{i} - (\beta_{0} + \beta_{1} x_{i,1} + \dots + \beta_{p} x_{i,p}))^{2}}{2\sigma^{2}}} + \log \prod_{j=0}^{p} \frac{1}{\tau \sqrt{2\pi}} e^{-\frac{\beta_{j}^{2}}{2\tau^{2}}} \right]$$

$$= \arg \max_{\beta} \left[-\sum_{i=1}^{n} \frac{(y_{i} - (\beta_{0} + \beta_{1} x_{i,1} + \dots + \beta_{p} x_{i,p}))^{2}}{2\sigma^{2}} - \sum_{j=0}^{p} \frac{\beta_{j}^{2}}{2\tau^{2}} \right]$$

$$= \arg \min_{\beta} \frac{1}{2\sigma^{2}} \left[\sum_{i=1}^{n} (y_{i} - (\beta_{0} + \beta_{1} x_{i,1} + \dots + \beta_{p} x_{i,p}))^{2} + \frac{\sigma^{2}}{\tau^{2}} \sum_{j=0}^{p} \beta_{j}^{2} \right]$$

$$= \arg \min_{\beta} \left[\sum_{i=1}^{n} (y_{i} - (\beta_{0} + \beta_{1} x_{i,1} + \dots + \beta_{p} x_{i,p}))^{2} + \lambda \sum_{j=0}^{p} \beta_{j}^{2} \right]$$

• Small variance t^2 (large λ) leads to reduction of coefficients. If we have a large variance (small λ) the coefficients are not affected much.

A PROBABILISTIC INTERPRETATION OF L1 REGULARIZATION

• Laplace distribution with mean $\pmb{\mu}$ and diversity \pmb{b} defined by a probability density function $Laplace(\mu,b)=rac{1}{2b}e^{-rac{|x-\mu|}{b}}$

A PROBABILISTIC INTERPRETATION OF L1 REGULARIZATION

• Assume our model parameters zero-mean Laplace-distributed with diversity **b**

$$\arg \max_{\beta} \left[\log \prod_{i=1}^{n} \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(y_{i} - (\beta_{0} + \beta_{1} x_{i,1} + \dots + \beta_{p} x_{i,p}))^{2}}{2\sigma^{2}}} + \log \prod_{j=0}^{p} \frac{1}{2b} e^{-\frac{|\beta_{j}|}{b}} \right] \\
= \arg \max_{\beta} \left[-\sum_{i=1}^{n} \frac{(y_{i} - (\beta_{0} + \beta_{1} x_{i,1} + \dots + \beta_{p} x_{i,p}))^{2}}{2\sigma^{2}} - \sum_{j=0}^{p} \frac{|\beta_{j}|}{b} \right] \\
= \arg \min_{\beta} \frac{1}{2\sigma^{2}} \left[\sum_{i=1}^{n} (y_{i} - (\beta_{0} + \beta_{1} x_{i,1} + \dots + \beta_{p} x_{i,p}))^{2} + \frac{2\sigma^{2}}{b} \sum_{j=0}^{p} |\beta_{j}| \right] \\
= \arg \min_{\beta} \left[\sum_{i=1}^{n} (y_{i} - (\beta_{0} + \beta_{1} x_{i,1} + \dots + \beta_{p} x_{i,p}))^{2} + \lambda \sum_{j=0}^{p} |\beta_{j}| \right]$$

• L1 regularization promotes sparsity in comparison with "just reducing the coefficients" in L2. That makes sense if you look at Laplacean density where there is a sharp increase in x=mean.

WHY L1 ZERO OUT COEFFICIENTS WHEREAS L2 DOES NOT?

WHY L1 ZERO OUT COEFFICIENTS WHEREAS L2 DOES NOT?

- Laplace distribution (sharp in x=mean) vs Normal distribution (smooth)
- Intuitive understanding through Gradient Descent <u>https://developers.google.com/machine-learning/crash-course/regularization-for-sparsity/l1-regularization</u>
- Intuitive understanding through visualization in 2d case <u>https://explained.ai/regularization/L1vsL2.html</u>

GENERALIZED LINEAR MODELS

ullet What if we change the hypothesis $y \sim N(eta_0 + eta_1 x_1 + \ldots + eta_p x_p, \sigma^2)$

https://scikit-learn.org/stable/modules/linear model.html#generalized-line ar-regression

REAL WORLD EXAMPLES

CLASSIFICATION ALGORITHMS FOR REGRESSION

KNN regressor

How to calculate continuous variable for KNN?

KNN REGRESSOR

How to calculate continuous variable for KNN?

- Intuitive each object in training has known target value
- We have k neighbors for prediction let's average their target value!
- We can use distancing

Pros:

 Simple, not many changes from Classifier

Cons:

All the cons of KNN

DECISION TREE REGRESSOR

How we can change decision tree to solve regression tasks?

DECISION TREE REGRESSOR

How we can change decision tree to solve regression tasks?

- Every leaf now contains the set of objects. Their average is the prediction we are looking for.
- We have to use other, continuous measures of information gain:
 - Variance (standard deviation)

Pros:

Simplicity and interpretability of DT

Cons:

Limited set of predicted values

RANDOM FOREST REGRESSOR

How we can change random forest to solve regression task?

RANDOM FOREST REGRESSOR

How we can change random forest to solve regression task?

• Nothing has changed, just take decision tree regressor as basic learner and average the result across estimators

Pros & cons:

Everything is the same as in random forest classifier

SUPPORT VECTOR MACHINE

How this is going to work?

SUPPORT VECTOR MACHINE

How this is going to work?

 Reversing the SVM task: we create the plane, as narrow as possible, which includes as many points as it can inside:

Minimize
$$\frac{1}{2}||w||^2 + C\sum_{i=1}^n |\xi_i|$$

Constrain $|y_i - w_i x_i| \le \varepsilon + |\xi_i|^{\frac{3}{2}}$

GRADIENT BOOSTING

How do we use GB for regression tasks?

GRADIENT BOOSTING

How do we use GB for regression tasks?

- Every new learner is fitted on error gradient with respect to ensemble of previous learners
- That means we fit every new tree on residuals from previous step

$$egin{aligned} L_{ ext{MSE}} &= rac{1}{2}(y - F(x))^2 \ h_m(x) &= -rac{\partial L_{ ext{MSE}}}{\partial F} = y - F(x). \end{aligned}$$

Which technics do you already know?

Which technics do you already know?

- Blind pick
- Grid Search
- Random Search

HyperOpt http://hyperopt.github.io/hyperopt/. The idea behind can be explained through bayesian optimization

