

Corso di Laurea Triennale in Informatica

Accuratezza vs Consumo Energetico: Confronto tra Classical Machine Learning e Tiny Machine Learning

Prof. Fabio Palomba

Dott. Vincenzo De Martino

Marta Napolillo

Mat.: 0512109836

Introduzione e Background

Green Al

Introduzione e Background

Il Tiny ML è l'intersezione tra Machine Learning e dispositivi IoT, in assenza di un sistema operativo ricco di risorse e con un costo energetico inferiore a 1 mW.

Vantaggi del Tiny ML

Miglioramento della velocità di risposta e riduzione delle comunicazioni sulla rete

Vantaggi del Tiny ML

Miglioramento della velocità di risposta e riduzione delle comunicazioni sulla rete

Riduzione dell'impatto ambientale causato dal Machine Learning

Vantaggi del Tiny ML

Miglioramento della velocità di risposta e riduzione delle comunicazioni sulla rete

Riduzione dell'impatto ambientale causato dal Machine Learning

Riduzione dei costi di produzione

V. Rajapakse, I. Karunanayake, and N. Ahmed, "Intelligence at the extreme edge: A survey on reformable tinyml," ACM Computing Surveys, vol. 55, no. 13s, pp. 1–30, 2023.

V. Rajapakse, I. Karunanayake, and N. Ahmed, "Intelligence at the extreme edge: A survey on reformable tinyml," ACM Computing Surveys, vol. 55, no. 13s, pp. 1–30, 2023.

Marta Napolillo

Università degli Studi di Salerno

TensorFlowLite

VS

PyTorch Mobile

RQ1

Quale dei due framework è più costoso dal punto di vista ambientale ed energetico in fase di training ed evaluation?

RQ2

Quale modello di Machine Learning ha caratteristiche di qualità migliori?

Quale tecnica effettua un'ottimizzazione migliore dei modelli? RQ3

Quale dei due framework è più costoso dal punto di vista ambientale ed energetico in fase di training ed evaluation?

CIFAR-10

Framework	Fase	Durata	Emissioni di CO ₂	Consumo energetico
PyTorch	Training	28.69 min	24.85 g	54.91 Wh
	Evaluation	0.138 min	0.0312 g	0.19 Wh
TensorFlow	Training	22.63 min	15.28 g	43.75 Wh
	Evaluation	0.019 min	0.0107 g	0.0306 Wh

Quale dei due framework è più costoso dal punto di vista ambientale ed energetico in fase di training ed evaluation?

SVHN

Framework	Fase	Durata	Emissioni di CO ₂	Consumo energetico	
PyTorch	Training	187.190 min	72.29 g	253.19 Wh	
	Evaluation	0.138 min	0.0542 g	0.19 Wh	
TensorFlow	Training	91.654 min	57.62 g	127.31 Wh	
	Evaluation	0.053 min	0.0353 g	0.0781 Wh	

Quale dei due framework è più costoso dal punto di vista ambientale ed energetico in fase di training ed evaluation?

Sia in fase di training sia in fase di evaluation, il framework più costoso è PyTorch.

Quale modello di Machine Learning ha caratteristiche di qualità migliori?

Architettura	Framework	Accuracy	Precision	Recall	F1-score	Dimensione
CIFAR-10	PyTorch	84.29%	84.56%	84.29%	84.24%	23.41 MB
	TensorFlow	80.89%	81.32%	80.89%	80.79%	70.29 MB
SVHN	PyTorch	87.03%	85.45%	84.08%	83.04%	2.21 MB
	TensorFlow	95.97%	95.49%	95.68%	95.57%	6.72 MB

Quale modello di Machine Learning ha caratteristiche di qualità migliori?

Anche se tutti i modelli hanno buone caratteristiche di qualità, considerando l'impatto ambientale si ritiene preferibile utilizzare il framework TensorFlow.

Quale tecnica effettua un'ottimizzazione migliore dei modelli?

CIFAR-10 – PyTorch Mobile

Quantizzazione	Accuracy	Precision	Recall	F1-score	Dimensione
Modello iniziale	84.29%	84.56%	84.29%	84.24%	23.41 MB
Statica	26.03%	32.49%	26.03%	25.33%	5.87 MB
Dinamica	84.25%	84.54%	84.25%	84.21%	9.24 MB

Quale tecnica effettua un'ottimizzazione migliore dei modelli?

CIFAR-10 – TensorFlow Lite

Quantizzazione	Accuracy	Precision	Recall	F1-score	Dimensione
Modello iniziale	80.89%	81.32%	80.89%	80.79%	70.29 MB
Dynamic Range	80.41%	80.82%	80.41%	80.39%	5.88 MB
Full Integer	48.58%	56.52%	48.58%	48.17%	5.89 MB
Float16	80.48%	80.84%	80.48%	80.45%	11.71 MB

Quale tecnica effettua un'ottimizzazione migliore dei modelli?

SVHN – PyTorch Mobile

Quantizzazione	Accuracy	Precision	Recall	F1-score	Dimensione
Modello iniziale	87.03%	85.45%	84.08%	83.04%	2.21 MB
Statica	14.83%	58.59%	16.98%	14.02%	0.58 MB
Dinamica	87.03%	85.45%	84.08%	83.04%	1.43 MB

Quale tecnica effettua un'ottimizzazione migliore dei modelli?

SVHN – TensorFlow Lite

Quantizzazione	Accuracy	Precision	Recall	F1-score	Dimensione
Modello iniziale	95.97%	95.49%	95.68%	95.57%	6.72 MB
Dynamic Range	95.93%	95.47%	95.63%	95.53%	0.57 MB
Full Integer	6.7%	0.67%	10%	1.26%	0.57 MB
Float16	95.97%	95.49%	95.68%	95.57%	1.11 MB

Quale tecnica effettua un'ottimizzazione migliore dei modelli?

La Float16 Quantization di TensorFlow è la migliore per ridurre le dimensioni dei modelli, poiché consente di mantenere un buon livello di accuracy.

Conclusioni

Utilizzare altre tecniche per riduzione della dimensione dei modelli

Misurare direttamente il consumo energetico sui microcontrollori.

Utilizzare altre metriche per sottolineare il vantaggio computazionale prodotto dai modelli di Tiny ML.

Confrontare i risultati prodotti in ambiti differenti dalla classificazione di immagini.

Accuratezza vs Consumo Energetico: Confronto tra Classical Machine Learning e Tiny Machine Learning

Grazie!

m.napolillo1@studenti.unisa.it

