

Quantum Information with Trapped Ions

Nikolaos Daniilidis, Sönke Möller, Thaned Pruttivarasin, Michael Ramm, S Sankaranarayanan, Boyan Tabakov, Hartmut Häffner University of California at Berkeley, and Materials Sciences Division, Lawrence Berkeley National Laboratory, CA, USA

Quantum Information

Bits can be in superpositions

Why Quantum information?

- do fancy computation
- "understand" quantum mechanics
- apply quantum mechanics
- where does quantum mechanics fail?

Quantum Computing

Classical

1-bit operations

Initialization

(NOT)

2-bit gates

space:

Read out

(e.g. NAND)

Computational

Landmarks with trapped ions:

- Deutsch-Josza
- Teleportation
- Quantum error correction

(CNOT gate) 🔷 entanglement Computational

space: 2ⁿ dimensional

Read out of qubits gain classical information

Ion Trapping

Our planar RF traps are mounted on CPGAs. For operation they reside in a vacuum vessel at approx. 10⁻¹¹ mbar

The level structure of ⁴⁰Ca⁺. Only the 397 nm and 866 nm lasers are 397 nm needed for detection of ions.

Scalable QIP

Evaporation

2. Lithography

3. Electroplating

4. Cleaning / Etching

5 nm Ti adhesion layer

~5 µm thick photoresist

4-5 µm thick Au plated layer

Resist removal / Au&Ti etch

ii. 100 nm Au seed layer

Scaling of trapped ion quantum computing:

- Segmented trap architecture has been proposed [1]
- Planar traps are relatively easy to produce.

 Al_2O_3

 Al_2O_3

 Al_2O_3

 Al_2O_3

Quantum Simulations

Frenkel-Kontorova Model:

Many solid-state physics applications: dry friction, crystal dislocations, epitaxial growth.

$$\mathcal{H} = \sum_{i=1}^{N} \left(\frac{P_i^2}{2} + \frac{\omega^2}{2} x_i^2 - K \cos x_i \right) + \sum_{i>j} \frac{1}{|x_i - x_j|}$$

K is the strength of the optical lattice. ω is the frequency of the ion trap potential.

Both parameters can be tuned experimentally to observe different phases of the ion string. Quantum phase transition happens at a specific value of K [2].

Weak lattice Confinement

"Wiring up" lons

The motion of a trapped ion induces an image current in the wire, which influences the motion of a second trapped ion. This interaction extends over a distance greater than that of pure Coulomb

coupling [3].

Possible applications:

- Quantum information processing
- Sympathetic cooling of ion species inaccessible by laser cooling
- Coupling ions to superconducting qubits / mesoscopic resonators
- Coulomb force electrometer

Setup Parameters:

- $f_{ion} = 1Mhz$
- $f_{lattice} = 1Mhz$
- $\lambda_{lattice} = 405nm$
- waist = $10 \ \mu m$
- trap height = 350 μm

Goal

To observe quantum phase transition by varying the value of K and measure the phonon excitation frequency by shaking the ion chain.

[2] Garcia-Mata et al., Eur.Phys. J. D 41, 325-330 (2007).

Current status:

- •lons have been observed, trap model tested, and the first signals of ion-wire interaction observed
- Move on to cryogenic temperatures

[3] D.J. Heinzen and D.J. Wineland, PRA 42, 2977 (1990).

Trap fabrication

Electrode spacing: 10 µm

Surface RMS roughness: 20 nm

Crystallite size: 20 nm

[1] D. Kielpinski, C. Monroe, and D. J. Wineland, Nature **417**, 709–711 (2002).