Álgebra 1 - Lista de Resultados 1 - 2009

- (1) Propriedades básicas: o elemento neutro de um anel é único; o inverso (aditivo) de um elemento a em um anel A é único; a unidade de um anel (quando existe) é única.
- (2) Se I é ideal de \mathbb{Z} então $I = m\mathbb{Z}$, para algum $m \in \mathbb{Z}$.
- (3) Os elementos invertíveis de \mathbb{Z}_m são { $\bar{a} \in \mathbb{Z}_m \mid mdc(a, m) = 1$ }.
- (4) \mathbb{Z}_p é corpo se, e somente se, p é primo.
- (5) Um subconjunto $S \neq \emptyset$ de um anel A é um subanel de A se, e somente se, $a b \in S$ e $ab \in S$ para todos $a, b \in S$.
- (6) Um subconjunto $I \neq \emptyset$ de um anel A é um ideal de A se, e somente se, para todos $a, b \in I$ temos $a b \in I$ e para todo $x \in I$ temos $ax \in I$ e $xa \in I$.
- (7) Se D é domínio de integridade com unidade 1_D e B é um subanel com unidade 1_B então $1_B=1_D$.
- (8) Os únicos ideais de um corpo F são $\{0\}$ e F.
- (9) Os únicos ideais de $M_2(\mathbb{R})$ são $\{0\}$ e $M_2(\mathbb{R})$.
- (10) Se I é um ideal de um anel R então $R/I = \{a + I \mid a \in R\}$ é um anel.
- (11) Se I e J são ideais de um anel A então são ideais de A:

$$I \cap J$$
, $I + J = \{ x + y \mid x \in I, y \in J \}$ e $IJ = \{ \sum x_i y_i \mid x_i \in I, y_i \in J \}$.

- (12) Se $I = n\mathbb{Z}$ e $J = m\mathbb{Z}$ são ideais de \mathbb{Z} então $I \cap J = d\mathbb{Z}$, $I + J = k\mathbb{Z}$ e $IJ = nm\mathbb{Z}$, onde d = mdc(n, m) e k = mmc(n, m).
- (13) Se $\psi: A \to B$ é um homomorfismo de anéis então:
 - (a) O conjunto $Ker \psi = \{a \in A \mid \psi(a) = 0\}$ é um ideal de A
 - (b) O conjunto $Im \ \psi = \{\psi(a) \mid a \in A\}$ é um subanel de B.
 - (c) ψ é injetiva se, e somente se, $Ker \psi = \{0\}$.
 - (d) Se J é um ideal de B então $\tilde{J} = \{ a \in A \mid \psi(a) \in J \}$ é um ideal de A.
 - (e) Se ψ é sobrejetiva e I é ideal de A então $\psi(I)$ é ideal de B.
- (14) Sejam A e B anéis com unidades 1_A e 1_B , respectivamente. Se $\varphi: A \to B$ é um homomorfismo sobrejetor então $\varphi(1_A) = 1_B$.
- (15) Seja A um anel com unidade 1_A e D é um domínio de integridade. Se $\varphi: A \to D$ é um homomorfismo de anéis e $\varphi(1_A) \neq 0$ então $\varphi(1_A) = 1_D$.
- (16) Um ideal I de um anel R é maximal se $I \neq R$ e se houver um ideal J tal que $I \subset J \subset R$ então J = I ou J = R.
 - (a) Os únicos ideais maximais de \mathbb{Z} são $p\mathbb{Z}$, onde p é primo.
- (b) Seja A anel comutativo com identidade. Um ideal I de A é maximal se, e somente se, A/I é um corpo.