ABSTRACT

A partial carry-save format is employed for a finite impulse response filter output representation, thereby reducing a number of flip-flops and hence power. By replacing the least significant bit processing section on the output side of the finite impulse response filter with a combined carry-save adder and carry-propagate adder followed by a register rather than two flip-flops, the present invention reduces the load on the clock and achieves reduced propagation delay. To further improve the performance of the finite impulse response filter, a simpler carry-save adder is employed in the least significant bit section, which is possible due to the use of a single register at an input to each of the carry-save adders rather than two flip-flops, one for a carry output and one for a sum output from the adder. The combination of a reduction of half of the flip-flops and a replacement of a simpler carry-save adder for each of the carry-save adders results in a significant improvement in the overall filter performance and power and space consumption.