

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н. Э. Баумана)

ФАКУЛЬТЕТ	Фундаментальные науки	
КАФЕДРА	Прикладная математика	

РАСЧЕТНО-ПОЯСНИТЕЛЬНАЯ ЗАПИСКА *К КУРСОВОЙ РАБОТЕ НА ТЕМУ:*

Поиск потенциала электрического поля в периодической структуре

Студент	ФН2-62Б		А.Д. Егоров
	(Группа)	(Подпись, дата)	(И.О. Фамилия)
Davidono arrino	TI TURGODON DOGOTI I		К.Е. Казаков
Руководитель курсовой работы		(Подпись, дата)	(И.О. Фамилия)

Оглавление

В	Введение				3
1.	. Постановка задачи				3
2.	. Обзор задачи				3
	2.1. Физическая составляющая задачи				3
	2.2. Математическая постановка задачи				3
3.	. Решение двумерного уравнения Лапласа				4
	3.1. Аппроксимация уравнения Лапласа методом конечных элеме	нтс	В		4
	3.2. Метод конечных элементов на треугольной сетке				6
	3.2.1. Триангуляция области				6
	3.2.2. Сборка глобальной матрицы жесткости				7
4.	. Программная реализация алгоритма	•			9
За	Ваключение				9
C.	THRON MOTOR PORTING IN MOTOR HAVE				10

Введение 3

Введение

1. Постановка задачи

Найти потенциал электрического поля между двумя бесконечными пластинами, профиль одной из которых плоский, а профиль другой описывается некоторой периодической функцией. Значения потенциала на пластинах заданы и константны.

2. Обзор задачи

2.1. Физическая составляющая задачи

Для постоянного электрического (электростатического) поля уравнения Максвелла имеют вид

$$\operatorname{div}\mathbf{E} = 4\pi\rho,\tag{1}$$

$$rot \mathbf{E} = 0, \tag{2}$$

где ρ — объемная плотность внешних зарядов. Электрическое поле **E** выражается через только скалярный потенциал соотношением

$$\mathbf{E} = -\mathrm{grad}\varphi,\tag{3}$$

подставляя (3) в (1), получим уравнение, которому удовлетворяет потенциал постоянного электрического поля:

$$\Delta \varphi = -4\pi \rho. \tag{4}$$

Уравнение (4) есть уравнение Пуассона. При $\rho=0$, т.е. при отсутствии внешних сил, потенциал удовлетворяет уравнению Лапласа

$$\Delta \varphi = 0. \tag{5}$$

2.2. Математическая постановка задачи

Из условия поставленной задачи известно, что внешних сил нет, следовательно, потенциал электростатического поля должен удовлетворять уравнению (5). Через функцию w(x) зададим профиль искривленной пластины, w(x) — некоторая периодическая функция с периодом T, т.е. w(x) = w(x+T). Пусть плоская пластина находится над искривленной на уровне y_a . Значение потенциала на пластинах заданы и константны, обозначим значение на верхней (плоской) пластине как φ_a , на нижней (искривленной) — φ_w . Так как профиль профиль задан периодической функцией,

следовательно необходимо использовать условие равенства потенциалов в точках x и x+T, т.е. $\varphi(x,y)=\varphi(x+T,y)$.

Из этих условий составим систему, которую требуется решить:

$$\begin{cases}
\Delta\varphi(x,y) = 0, \\
\varphi(x,y_a) = \varphi_a, \\
\varphi(x,w(x)) = \varphi_w, \\
\varphi(x,y) = \varphi(x+T,y),
\end{cases}$$
(6)

Рис. 1. Иллюстрация области, в которой будет решаться задача

3. Решение двумерного уравнения Лапласа

3.1. Аппроксимация уравнения Лапласа методом конечных элементов

Рассмотрим уравнение Лапласа в двумерной области $\Omega \subset \mathbb{R}^2$

$$\begin{cases} -\Delta u = 0 & \text{в } \Omega, \\ u = g & \text{на } \Gamma_D, \end{cases}$$

где Γ_D — часть границы области, на которой заданы граничные условия первого рода, $\Gamma_D = \partial \Omega, \, \Gamma_D \neq \varnothing.$

Опираясь на сведения из источника [1], представим решение задачи в виде $u=u_0+u_g$, где функция u_0 обращается в ноль на границе Γ_D б а u_g — некоторая, произвольная, но наперед заданная функция, значения которой совпадают с g на границе области, $u_g|_{\Gamma_D}=g$.

И переходим к следующей задаче с однородными граничными условиями первого рода на Γ_D относительно функции u_0 :

$$\begin{cases} -\Delta u = \Delta u_g & \text{в} & \Omega, \\ u_0 = 0 & \text{на} & \Gamma_D. \end{cases}$$

Запишем слабую постановку задачи для определения u_0 , способом описанным в разделе **16.3.1** источника [1]: необходимо определить $u_o \in V_D$, такое, что

$$\int_{\Omega} \nabla u_0 \cdot \nabla v \, d\Omega = -\int_{\Omega} \nabla u_g \cdot \nabla v \, d\Omega, \quad v \in V_D,$$

где пространство V_D состоит из функций, имеющих суммируемые с квадратом первые производные и обращающихся в ноль на части Γ_D границы расчетной области:

$$V_D = \{ v \in V : v |_{\Gamma_D} = 0 \},$$

а пространство V состоит из произвольных заданных в Ω функций, имеющих суммируемые с квадратом первые производные.

Для аппроксимации задачи с помощью МКЭ рассмотрим конечномерное пространство V_h , аппроксимирующее пространство V и пространство $V_{D,h} = V_h \cap V_D(\Omega)$, элементы которого приближают элементы пространства V_D .

Пусть функция $u_{g,h} \in V_h$ представляет собой аппроксимацию функции u_g , задающей граничное условие первого рода. В качестве функции $u_{g,h}$.

Тогда конечномерная задача примет вид:

$$\int_{\Omega} \nabla u_{0,h} \cdot \nabla v_h \, d\Omega = -\int_{\Omega} \nabla u_{g,h} \cdot \nabla v_h \, d\Omega, \quad v_h \in V_D,$$

Пусть φ_i , $\mathbf{i} = \overline{1,N}$, — базис в пространстве V_h , причем часть функций φ_i с номерами $i \in I$ образуют базис в пространстве $V_{D,h}$, т.е. обращаются в ноль на границе Γ_D . Количество таких индексов будем считать равным $M = |I| < N, \ |I| > 1$.

Тогда последнее уравнение будет эквивалентно

$$\int_{\Omega} \nabla u_{0,h} \cdot \nabla \varphi_i \, d\Omega = -\int_{\Omega} \nabla u_{g,h} \cdot \nabla \varphi_i \, d\Omega, \quad i \in I.$$

Представляя неизвестное решение в виде линейной комбинации базисных функций:

$$u_{0,h} = \sum_{i \in I} u_{0,h,i} \varphi_i, \quad u_{g,h} = \sum_{i=1}^{N} u_{g,h,i} \varphi_i,$$

окончательно получим СЛАУ для определения неизвестных коэффициентов $U_h = \{u_{0,h,i}\}$:

$$Au_{0,h} = b,$$

где $A = A_{M \times M}$ — матрица жесткости, $b = b_{M \times 1}$,

$$A_{ij} = \int_{\Omega} \nabla \varphi_i \cdot \nabla \varphi_j \, d\Omega, \quad i, j \in I, \tag{7}$$

$$b_{i} = -\sum_{j=1}^{N} u_{g,h,j} \int_{\Omega} \nabla \varphi_{i} \cdot \nabla \varphi_{j} \, d\Omega, \quad i \in I.$$
 (8)

3.2. Метод конечных элементов на треугольной сетке

3.2.1. Триангуляция области

Зададим в нашей области Ω правильную триангуляцию \mathcal{T} , т. е. такое разбиение области Ω на треугольные ячейки, что любые два треугольника имеют либо общее ребро, либо общую вершину, либо пустое пересечение. Таким образом,

$$\Omega = \bigcup_{T \in \mathcal{T}} T$$

Каждый треугольник T при этом задается набором трех своих узлов P_k с координатами $P_k = (x_k, y_k)$. Будем считать, что узлы треугольника обходятся в положительном направлении (против хода часовой стрелки).

Рассмотрим простейший случай: выберем базисные функции φ_k такие, что φ_k — кусочно-линейная функция, принимающая значение единица в узле P_k и ноль во всех остальных узлах. В пределах одного треугольника она продолжена линейно.

В силу аддитивности интеграла относительно области интегрирования формулы (7) и (8) могут быть записаны в виде

$$A_{ij} = \sum_{T \in \mathcal{T}} \int_{T} \nabla \varphi_{i} \cdot \nabla \varphi_{j} \, d\Omega, \quad i, j \in I,$$

$$\tag{9}$$

$$b_i = -\sum_{j=1}^{N} u_{g,h,j} \sum_{T \in \mathcal{T}} \int_{T} \nabla \varphi_i \cdot \nabla \varphi_j \, d\Omega, \quad i \in I.$$
 (10)

Таким образом, задача вычисления интегралов для коэффициентов матрицы жесткости задачи и ее правой части сводится к задаче вычисления тех же интегралов по отдельным треугольникам.

Рассмотрим один из треугольников T триангуляции \mathcal{T} . Будем считать, что его вершины имеют координаты $P_i = (x_i, y_i), \ i = \overline{1,3}$. Пусть $\varphi_i, \ i = \overline{1,3}$, — базисные функции соответствующие этим вершинам и данному треугольнику. Таким образом

$$\varphi_i(x_i, y_i) = \delta_{ii}, i, k = 1, 2, 3.$$

Функции φ_i являются линейными в пределах T и имеют следующий вид

$$\varphi_{i}(x,y) = \frac{\det \begin{pmatrix} 1 & x & y \\ 1 & x_{i+1} & y_{i+1} \\ 1 & x_{i+2} & y_{i+2} \end{pmatrix}}{\det \begin{pmatrix} 1 & x_{i} & y_{i} \\ 1 & x_{i+1} & y_{i+1} \\ 1 & x_{i+2} & y_{i+2} \end{pmatrix}}, \quad i = 1, 2, 3, \tag{11}$$

где для удобства обозначения считается, что $P_4=P_1,\ x_4=x_1,\ y_4=y_1,$ аналогично индекс 5 идентичен индексу 2.

Из формулы (11) получаем следующие соотношения:

$$\nabla \varphi_i(x, y) = \frac{1}{2|T|} \begin{pmatrix} y_{i+1} - y_{i+2} \\ y_{i+2} - y_{i+1} \end{pmatrix},$$

где |T| — площадь треугольника T, такая, что

$$|T| = \frac{1}{2} det \begin{pmatrix} x_2 - x_1 & x_3 - x_1 \\ y_2 - y_1 & y_3 - y_1 \end{pmatrix}.$$

В результату получаем следующее выражение для матрицы жесткости конечного элемента T:

$$A_{T,ij} = \int_{T} \nabla \varphi_{i} \cdot \nabla \varphi_{j} \, d\Omega = \frac{|T|}{(2|T|)^{2}} \begin{pmatrix} y_{i+1} - y_{i+2} \\ x_{i+2} - x_{i+1} \end{pmatrix}^{T} \begin{pmatrix} y_{j+1} - y_{j+2} \\ x_{j+2} - x_{j+1} \end{pmatrix}, \quad i, j = 1, 2, 3. \tag{12}$$

3.2.2. Сборка глобальной матрицы жесткости

В предыдущем пункте было рассмотрено, как составляется матрица жесткости для одного элемента T триангуляции \mathcal{T} . Основываясь на формулах (9, 10, 12) имеем:

Для каждого элемента T триангуляции $\mathcal T$		
A_T симметричная матрица размером 3×3 ,		
$oldsymbol{b}_T$	$m{b}_T$ вектор правой части, состоящий из 3, компонен	
$oldsymbol{u}_T$	вектор неизвестных, состоящий из 3 компонент.	

Для решения задачи необходимо составить полную систему Au = b, где A — матрица жесткости размером $N \times N$, b — вектор правой части длины N, u — вектор неизвестных длины N, N — количество узлов триангуляции T, для этого нужно собрать все локальные матрицы жесткости A_T , т. е. учесть вклад каждого конечного элемента.

Проиллюстрируем эту процедуру на примере. У нас есть треугольник T, составленный из узлов $P_1=(x_1,y_1),\ P_3=(x_3,y_3),\ P_5=(x_5,y_5)$ (номера узлов взяты из глобальной нумерации), для него были получены следующая матрица жесткости A_T и вектор правой части b_T

$$A_T = \begin{pmatrix} 1.3 & -0.5 & 7 \\ -0.5 & -0.45 & 0.3 \\ 7 & 0.3 & 2.1 \end{pmatrix}, \quad \boldsymbol{b}_T = \begin{pmatrix} 2 \\ 2.1 \\ 1 \end{pmatrix}.$$

Допустим, что полная система состоит из 7 узлов. Тогда мы расширяем матрицу A_T до размера 7×7 , добавляя нулевые строки и столбцы на место отсутствующих узлов, аналогично для вектора \boldsymbol{b}_T . Таким образом получаем следующие матрицу и вектор правой части

$$\widehat{A}_{T} = \begin{pmatrix} 1.3 & 0 & -0.5 & 0 & 7 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ -0.5 & 0 & -0.45 & 0 & 0.3 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 7 & 0 & 0.3 & 0 & 2.1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}, \quad \widehat{\boldsymbol{b}}_{T} = \begin{pmatrix} 2 \\ 0 \\ 2.1 \\ 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}.$$

Тогда для полной системы матрица A и вектор правой правой части b имеют следующий вид

$$A = \sum_{T \in \mathcal{T}} \widehat{A}_T, \quad \boldsymbol{b} = \sum_{T \in \mathcal{T}} \widehat{\boldsymbol{b}}_T \tag{13}$$

4. Программная реализация алгоритма

Построение сеток — Wolfram Mathematica, алгоритм метода конечных элементов реализован на языке $\mathrm{C}++$

Заключение

Список использованных источников

1. Методы численного анализа математических моделей / М. П. Галанин, Е. Б. Савенков. — 2-е изд., испр. — Москва : Издательство МГТУ им. Н. Э. Баумана, $2018.-591~[1]~\mathrm{c.:}$ ил.