Дисциплина Дифференциальные и разностные уравнения

Kypc 2

Семестр 4

2006/2007 уч.г.

Фамилия студента.

Nº	группы	
• 1	1 12 17 17 17 17 17 17 17 17 17 17 17 17 17	_

Сумма баллов	
Фамилия	
проверяющего	

Оценка	
Фамилия	
экзаменатора	

Найти решения уравнений, а также решения задачи Коши там, где это требуется

a) ①
$$\left(1 + \frac{y}{x^2}\right) dx + \left(\frac{1}{x} + \frac{2y}{x^2}\right) dy = 0;$$

б) ②
$$2xy dy = (y^2 + x^2) dx$$
, $y(1) = 1$;
в) ② $xy' + y = x^2y^2$, $y(1) = -1$;

B) ②
$$xy' + y = x^2y^2$$
, $y(1) = -1$;

$$\Gamma$$
) ② $xy'' = y' \ln y', y(1) = e, y'(1) = e;$

г) ②
$$xy'' = y' \ln y', \ y(1) = e, \ y'(1) = e;$$

д) ③ $(y^2 + y)y'' - (2y + 1)y'^2 = 0, \ y(0) = 1, \ y'(0) = 2;$
е) ⑤ $x^2yy'' = (y - xy')^2, \ y(1) = e, \ y'(1) = e.$

e) (5)
$$x^2yy'' = (y - xy')^2$$
, $y(1) = e$, $y'(1) = e$.

Найти общее решение уравнения и систем уравнений, а также решение задачи Коши там, где это требуется

a)
$$(4) y'' + 9y = 18e^{-3x} - 3\cos 3x, y(0) = 1, y'(0) = 9;$$

a) (4)
$$y'' + 9y = 18e^{-3x} - 3\cos 3x$$
, $y(0) = 1$, $y'(0) = 6$) (4)
$$\begin{cases} \dot{x} = y + x + \frac{e^{2t}}{\cos t}, \\ \dot{y} = -2x + 3y; \\ \dot{y} = 6x + y + 2z, \\ \dot{y} = 2x + 2y + z, \\ \dot{z} = -8x - 2y - 2z; \end{cases}$$
 ($\lambda_1 = \lambda_2 = \lambda_3 = 2$).

3.(5)Найти общее решение уравнения, исследовать его особые решения и изобразить качественное поведение интегральных кривых

$$27y' = x(xy' - 2y)^3;$$

Найти общее решение уравнения

$$xy' + (2 - 2x)y' + (x - 2)y = e^{2x}.$$

Решить разностное уравнение

$$y(\tau + 1) = \left(\frac{\tau + 2}{\tau + 1}\right)^2 y(\tau) + \frac{2(\tau + 2)}{\tau + 4}.$$

6.(5) Решить задачу Коши для разностного уравнения

$$y(\tau+3) + y(\tau+2) + 4y(\tau+1) + 4y(\tau) = 52(-3)^{\tau} + 6(\tau+2)(-1)^{\tau}$$
$$y(0) = -5, \quad y(1) = 17, \quad y(2) = 59.$$

Дисциплина Дифференциальные и разностные уравнения

Kypc 2

Cemecrp |4|

2006/2007 уч.г.

Фамилия студента

No	группы	

Сумма баллов	
Фамилия	
проверяющего	

Оценка	
Фамилия	
экзаменатора	

Найти решения уравнений, а также решения задачи Коши там, где это требуется

a) ①
$$y(x - 3y) dx + \left(\frac{1}{y} - 3xy\right) dy = 0;$$

6) ②
$$(2y - 3x) dy + (3y - 2x) dx = 0, y(1) = 1;$$

B) ②
$$y' = \frac{y}{x} + y^2$$
, $y(2) = -1$;

r) ②
$$y'' = \frac{2xy'}{1+x^2}$$
, $y(0) = 1$, $y(0) = 3$;

д)
$$3 2yy'' + y'^2 + y'^4 = 0, y(0) = 2, y'(0) = 1;$$

д) ③
$$2yy'' + y'^2 + y'^4 = 0$$
, $y(0) = 2$, $y'(0) = 1$;
e) ⑤ $yy'' + yy' \operatorname{tg} x + 2y'^2 = 0$, $y(0) = y'(0) = -1$.

Найти общее решение уравнения и систем уравнений, а также решение задачи Коши там, где это требуется

a)
$$(4) y'' + 4y' + 4y = 2e^{-2x} + \sin x, y(0) = 0, y'(0) = 0;$$

6)
$$\textcircled{4}$$

$$\begin{cases} \dot{x} = 2x + y + t\sqrt{t}e^{3t} \\ \dot{y} = -x + 4y; \end{cases}$$

a) (4)
$$y' + 4y' + 4y' = 2e' + \sin x$$
, $y(0) = 0$, $y'(0) = 0$
6) (4)
$$\begin{cases} \dot{x} = 2x + y + t\sqrt{t}e^{3t}, \\ \dot{y} = -x + 4y; \end{cases}$$
B) (4)
$$\begin{cases} \dot{x} = x + z, \\ \dot{y} = -2x + 2y + 2z, \quad (\lambda_{1,2} = 1 \pm i, \lambda_3 = 2). \\ \dot{z} = 3x - 2y + z; \end{cases}$$

3.(5)Найти общее решение уравнения, исследовать его особые решения и изобразить качественное поведение интегральных кривых

$$x(y')^3 + 108x^4 = 3y(y')^2;$$

Найти общее решение уравнения

$$x^{2}y'' - x(x+2)y' + (x+2)y = x^{3}\cos x.$$

Решить разностное уравнение

$$y(\tau+1) = \frac{\tau+2}{\tau+1}y(\tau) + \frac{2}{\tau+4}.$$

6.5 Решить задачу Коши для разностного уравнения

$$y(\tau + 3) - 3y(\tau + 2) + 4y(\tau + 1) - 2y(\tau) = 50 \cdot 3^{\tau} + 6\tau + 11$$

 $y(0) = 5, \quad y(1) = 29, \quad y(2) = 75.$

Дисциплина Дифференциальные и разностные уравнения

Kypc 2

Cemecrp 4

2006/2007 уч.г.

Фамилия студента

No	группы	
• .	- F J	

Сумма баллов	
Фамилия	
проверяющего	

Оценка Фамилия экзаменатора

Найти решения уравнений, а также решения задачи Коши там, где это требуется

a) ①
$$\left(1 - \frac{x}{y}\right) dx + \left(2xy + \frac{x}{y} + \frac{x^2}{y^2}\right) dy = 0;$$

- б) ② (x+y) dx (x-y) dy = 0, $y(1) = 1 + \sqrt{2}$; в) ② $y' + 2y = y^2 e^x$, y(0) = 1; г) ② $yy'' = x y'^2$, y(0) = 1, y'(0) = -1;

- д) ③ $y'' = \frac{1}{4.\sqrt{n}}, y(0) = 1, y'(0) = -1;$
- e) (5) $4y(xy'' y') + y'^2 = 0$, y(-1) = 1, y'(-1) = -4.
- Найти общее решение уравнения и систем уравнений, а также решение задачи Коши там, где это требуется

a)
$$(4) y'' - y' = 2xe^x - 2\cos x, y(0) = 1, y'(0) = -1;$$

3.(5)Найти общее решение уравнения, исследовать его особые решения и изобразить качественное поведение интегральных кривых

$$y' = \left(\frac{1+y'}{y-x}\right)^2;$$

Найти общее решение уравнения

$$(x^2 - 3x)y'' + (6 - x^2)y' + (3x - 6)y = (x - 3)^3.$$

5.(3) Решить разностное уравнение

$$y(\tau + 1) = \left(\frac{\tau + 3}{\tau + 2}\right)^2 y(\tau) + 2\frac{\tau + 3}{\tau + 5}.$$

6.5 Решить задачу Коши для разностного уравнения

$$y(\tau + 3) - y(\tau + 2) + 2y(\tau) = 50 \cdot 4^{\tau} + (20\tau + 1)(-1)^{\tau}$$

 $y(0) = 2, \quad y(1) = 0, \quad y(2) = 19.$

Дисциплина Дифференциальные и разностные уравнения

Kypc 2

Семестр 4

2006/2007 уч.г.

Фамилия студента

No	группы	

Сумма баллов	
Фамилия	
проверяющего	

Оценка	
Фамилия	
экзаменатора	

1. Найти решения уравнений, а также решения задачи Коши там, где это требуется

a) ①
$$(y^2 + \sin^2 x) dy + y \sin 2x dx = 0;$$

6) ②
$$2x^2 dy = (y^2 + x^2) dx$$
, $y(1) = 0$;

B) ②
$$y' = y + xy^2$$
, $y(0) = 1$;

б) ②
$$2x^2 dy = (y^2 + x^2) dx$$
, $y(1) = 0$;
в) ② $y' = y + xy^2$, $y(0) = 1$;
г) ② $y' - xy'' + y'^2 = 0$, $y(2) = -2$, $y'(2) = -2$;

д)
$$(3)$$
 $yy'' = 5y'^2 + 3y^2y', y(1) = 1, y'(1) = -1;$

д) ③
$$yy'' = 5y'^2 + 3y^2y'$$
, $y(1) = 1$, $y'(1) = -1$;
e) ⑤ $(x+1)(yy'' - 2y'^2) = yy'$, $y(0) = y'(0) = 1$.

2. Найти общее решение уравнения и систем уравнений, а также решение задачи Коши там, где это требуется

a)
$$\textcircled{4}$$
 $y'' + y = -2\sin x + 3xe^x$, $y(0) = -1$, $y'(0) = 1$;

6)
$$\bigoplus$$

$$\begin{cases} \dot{x} = 3x - 2y, \\ \dot{y} = 2x - y + 15\sqrt{t}e^t; \end{cases}$$

6) ①
$$\begin{cases} \dot{x} = 3x - 2y, \\ \dot{y} = 2x - y + 15\sqrt{t}e^t; \\ \dot{y} = -5x + y - 2z, \\ \dot{y} = -x - y, \\ \dot{z} = 6x - 2y + 2z; \end{cases} (\lambda_{1,2} = -1 \pm i, \lambda_3 = -2).$$

3.(5) Найти общее решение уравнения, исследовать его особые решения и изобразить качественное поведение интегральных кривых

$$y'^3 - 12x^4y' + 24x^3y = 0;$$

Найти общее решение уравнения

$$x^{2}y'' + x(x-2)y' + (2-x)y = x^{4}e^{-x}$$
.

5.3 Решить разностное уравнение

$$y(\tau+1) = \frac{\tau+3}{\tau+2}y(\tau) + \frac{2}{\tau+5}.$$

6.(5) Решить задачу Коши для разностного уравнения

$$y(\tau+3) - y(\tau+2) + y(\tau+1) - y(\tau) = 10 \cdot 2^{\tau} + 2(2\tau+1)$$
$$y(0) = 3, \quad y(1) = 4, \quad y(2) = 9.$$