

Mutant Subsumption in First- and Second-Order Mutation Testing

João Paulo Diniz

LabSoft Seminar. Mar 28th, 2025

Introduction

Mutation Testing

- Introducing artificial syntactic changes (mutations) into original source code
 - Intending to represent real common programming bugs
 - Changed programs are called mutants
- Running the test suite on mutants
 - Result different from original: mutant killed
 - Otherwise: alive

Example of a mutant

Mutation place:

```
public class Taxes {
     double simpleTax(double amount) {
        return amount * 0.2;
     }
}
```

Example of a mutant

```
Mutation: * \rightarrow +
public class Taxes {
     double simpleTax(double amount) {
           return amount + 0.2;
```

Mutation testing process

http://labsoft.dcc.ufmq.br/

Mutation testing process

http://labsoft.dcc.ufmq.br/

Mutation testing process

Mutation testing drawbacks

Software Engineering Lab (LabSoft)
http://labsoft.dcc.ufmg.br/

Mutation testing drawbacks

Cost reduction techniques

- Number of test cases
- Test case prioritization
- Number of mutants
 - subsumption

Mutants subsumption

```
def greaterThan(a, b):
    return a > b # original
def greaterThan(a, b):
    return a \geq= b # mutant 1
def greaterThan(a, b):
    return a <= b # mutant 2
```

```
def greaterThan(a, b):
    return a > b # original
```

	Test	orig
t1	assertTrue(greaterThan(6, 5))	
t2	assertFalse(greaterThan(5, 5))	~
t3	assertFalse(greaterThan(5, 6))	

```
def greaterThan(a, b):
    return a > b # original
    return a >= b # mutant 1
    return a <= b # mutant 2</pre>
```

	Test	orig	m1	m2
t1	assertTrue(greaterThan(6, 5))	~		X
t2	assertFalse(greaterThan(5, 5))	~	X	X
t3	assertFalse(greaterThan(5, 6))		~	X

Killing tests

□ All test sets that kill m1 also kill m2

Definition

□ m1 subsumes m2

In summary

- If we know beforehand that
 - m1 subsumes m2
- □ Therefore,
 - m2 should not have been generated

Cost reduction: fewer mutants to run the test suite against

Dynamic mutant subsumption graphs

Example

test	m1	m2	m3	m4	m5
t1	X	X		X	X
t2	X		X	×	
t3				X	
t4		×		×	×

Subsumption relationships

test	m1	m2	m3	m4	m5
t1	X	X		X	X
t2	X		X	×	
t3				X	
t4		×		×	X

$$m1 \rightarrow m4$$

$$m2 \rightarrow m4$$

$$m3 \rightarrow m1$$

$$m3 \rightarrow m4$$

$$m5 \rightarrow m4$$

Subsumption graph

Test	m1	m2	m3	m4	m5
t1	X	X		X	X
t2	X		X	X	
t3				X	
t4		X		×	X

Conclusion

- Root nodes are kept
 - 2 minimal
 - 3 mutants
- Remaining nodes
 - are disregarded
 - (redundants)

Second-order mutants subsumption

A 20M subsumption example

Software Engineering Lab (LabSoft)
http://labsoft.dcc.ufmq.br/

A 20M subsumption example

Strongly subsuming second-order mutant (SS2OM)

An SS2OM can replace their constituent FOMs without loss of effectiveness

Mutants reduction via subsumption

From FOMs

Remove all FOMs in subsumed nodes

Randomly pick one FOM in each minimal node

2 out of 5 FOMs \rightarrow 60%

FOMs

m1

m2

m3

m4

m5

m6

m7

m8

FOMs	SS2OMs
I' V JIVIN	17174171915

m1 [m1,m2]

m2 [m3,m4]

m3 [m5,m6]

m4

m5

m6

m7

m8

FOMs	SS2OMs	Resulting mutants
m1	[m1,m2]	[m1,m2]
m2	[m3,m4]	[m3,m4]
m3	[m5,m6]	[m5,m6]
m4		m7
m5		m8
m6	non-subsumed FO	
m7	non	
m8		

FOMs	SS2OMs	Resulting mutants	Reduction
m1	[m1,m2]	[m1,m2]	3 out of 8 mutants
m2	[m3,m4]	[m3,m4]	(37.5%)
m3	[m5,m6]	[m5,m6]	
m4		m7	
m5	TVIS	m8	
m6	non-subsumed FOMs		
m7	non-se		
m8			

Study design

RQ1

- Which subsumption can reduce more mutants?
 - From FOMs
 - From SS2OMs

RQ2

What is the distribution of the SS2OMs constituent FOMs in the subsumption graphs?

RQ2 – example of SS2OMs

- \square [m₁,m₃]: same minimal node
- □ [m₁,m₄]: ≠ minimal nodes
- □ [m₄,m₇]: 1 minimal, 1 subsumed
- \square [m₁₀,m₁₁]: same subsumed nodes
- $[m_{10}, m_{13}]$: \neq subsumed nodes

Dataset: 9 Java systems

System	LOC	# Tests	#FOMs	#SS2OMs
Vending Machine	~100	35	57	25
Triangle	34	12	138	393
Monopoly	1,181	124	866	3,324
Commons CSV	~2k	325	925	4,430
Commons CLI	2,699	318	1,082	1,852
ECal	3,626	224	1,207	1,421
Commons Validator	7,409	536	3,197	17,546
Gson	> 10k	1,089	3,712	6,970
Chess	4,924	930	5,287	8,959
Overall			16,471	44,960

Study steps

Results

Reduction comparison (RQ1)

RQ1 answer

Overall	#FOMs	#minimal nodes	#remaining FOMs
9 systems	16,471	1,115	3,376

Highlight on Triangle

```
{91}
{65, 67, 68, 70, 75, 77, 80, 52, 85, 56, 57, 58, 59, 63}
{35, 37, 38, 39, 108, 112, 114, 115, 116, 118, 119}
{129, 130, 131, 46, 122, 123, 124, 127}
{11}
{62}
                                   #FOMs
                                                 #minimal nodes
                                                                          #remaining FOMs
{79}
                                      138
                                                          12
                                                                                   59
{5}
{96, 132, 136, 121, 106, 111}
{69}
{97, 99, 100, 101, 103, 104, 23, 24, 25, 26, 27, 28, 93}
{0}
```

RQ1 answer

Overall	FOMs	Via subsumption graph	Via SS2OMs
9 systems	16,471	77.35%	22.37%

SS20Ms distribution (RQ2)

RQ2 answer

44,960 SS2OMs & their constituent FOMs distribution over the subsumption graphs

Overall	Same minimal	1 minimal 1 subsumed	Same subsumed	≠ subsumed
9 systems	20,368	1,968	18,298	4,286
	45.3%	4.4%	40.7%	9.6%

A previous result

RQ2 answer

44,960 SS2OMs & their constituent FOMs distribution over the subsumption graphs

Overall	Same minimal	≠ minimal	1 minimal 1 subsumed	Same subsumed	≠ subsumed
9 systems	20,368	0	1,968	18,298	4,286
	45.3%	0%	4.4%	40.7%	9.6%

Threats to validity

Threats to validity

- External
 - Results may not generalize
- Internal
 - Possible incorrect data from dataset
- Construction
 - Subsumption graphs correct?

Related work

Kurtz et al. 2014

Mutant Subsumption Graphs

Guimarães et al. 2020

Optimizing **Mutation Testing** by Discovering **Dynamic Mutant** Subsumption Relations

Minimal Set

Target

Reduction

ODL lexp, VDL lexp

COR ==

COR true

Conclusion

Main finding

SS2OMs do not seem to contribute to any further reduction than the one achieved by the subsuming FOMs.

Future work

- Analyze SS3OMs
- Formal proof
 - SS2OMs constituent FOMs cannot belong to same minimal node

Software Engineering Lab (LabSoft)

http://labsoft.dcc.ufmq.br/