Analiza 2a

 $11.\ november\ 2024$

Kazalo

Fur	nkcije več spremenljivk	3
1.1	Prostor \mathbb{R}^n	3
	1.1.1 Prostor \mathbb{R}^n	3
	1.1.2 Zaporedja v \mathbb{R}^n	3
1.2	Zveznost preslikav iz \mathbb{R}^n v \mathbb{R}^m	4
	1.2.1 Zveznost preslikav iz \mathbb{R}^n v \mathbb{R}	4
	1.2.2 Zveznost preslikav iz \mathbb{R}^n v \mathbb{R}^m	5
1.3	Parcialni odvodi in diferenciabilnost	6
	1.3.1 Parcialni odvod	6
	1.3.2 Diferenciabilnost	6
	1.3.3 Višji parcialni odvodi	7
	1.3.4 Diferenciabilnost preslikav	7
1.4	Izrek o implicitni preslikavi	9
	1.4.1 Osnovna verzija izreka o implicitni preslikavi	9
	1.4.2 Izrek o inverzni preslikavi	9
	1.4.3 Izrek o implicitni preslikavi	11
1.5	Podmnogoterosti v \mathbb{R}^n	12

1 Funkcije več spremenljivk

1.1 Prostor \mathbb{R}^n

1.1.1 Prostor \mathbb{R}^n

Definicija 1.1.1. Prostor \mathbb{R}^n je kartezični produkt $\underbrace{\mathbb{R} \times \cdots \times \mathbb{R}}_n$. Na njem definiramo seštevanje in množenje s skalarjem po komponentah. S tema operacijama je $(\mathbb{R},+,\cdot)$ vektorski prostor nad \mathbb{R} . Posebej definiramo še skalarni produkt

$$x \cdot y = \sum_{i=1}^{n} x_i y_i,$$

ki nam da normo $||x||=\sqrt{x\cdot x}$ in metriko d(x,y)=||x-y||. (\mathbb{R}^n,d) je tako metrični prostor.

Definicija 1.1.2. Naj bosta $a, b \in \mathbb{R}^n$ vektorja, za katera je $a_i \leq b_i$ za vse $i \in \{1, \dots, n\}$. Zaprt kvader, ki ga določata a in b, je množica

$$[a,b] = \{x \in \mathbb{R}^n \mid \forall i \in \{1,\ldots,n\} : a_i \le x_i \le b_i\}.$$

Podobno definiramo odprt kvader kot

$$(a,b) = \{x \in \mathbb{R}^n \mid \forall i \in \{1,\ldots,n\} : a_i < x_i < b_i\}.$$

Opomba. Odprte množice v normah $||x||_{\infty}$ in $||x||_2$ so iste.

Izrek 1.1.3. Množica $K \subseteq \mathbb{R}^n$ je kompaktna natanko tedaj, ko je zaprta in omejena.

1.1.2 Zaporedja v \mathbb{R}^n

Definicija 1.1.4. Zaporedje $v \mathbb{R}^n$ je preslikava $a : \mathbb{N} \to \mathbb{R}^n$. Namesto a(m) pišemo a_m , kjer $a_m = (a_1^m, \dots, a_n^m)$.

Opomba. Zaporedje v \mathbb{R}^n porodi n zaporedij v \mathbb{R} .

Trditev 1.1.5. Naj bo $(a_m)_m$ zaporedje v \mathbb{R}^n , $a_m = (a_1^m, \dots, a_n^m)$. Velja:

Zaporedje $(a_m)_m$ konvergia \Leftrightarrow konvergira zaporedja $(a_1^m)_m, \ldots, (a_n^m)_m$.

V primeru konvergence velja:

$$\lim_{m \to \infty} a_m = (\lim_{m \to \infty} a_1^m, \dots, \lim_{m \to \infty} a_n^m).$$

Dokaz. Definicija limite.

1.2 Zveznost preslikav iz \mathbb{R}^n v \mathbb{R}^m

1.2.1 Zveznost preslikav iz \mathbb{R}^n v \mathbb{R}

Opomba. Če je m=1, potem preslikave rečemo funkcija.

Definicija 1.2.1. Naj bo $f:D\subseteq\mathbb{R}^n\to\mathbb{R}^m$ preslikava. Naj bo $a\in D$. Preslikava f je zvezna v točki a, če

$$\forall \epsilon > 0 . \exists \delta > 0 . \forall x \in D . ||x - a|| \Rightarrow ||f(x) - f(a)||.$$

Preslikava f je zvezna na D, če je zvezna v vsaki točki $a \in D$.

Trditev 1.2.2. Naj bo $f: D \subseteq \mathbb{R}^n \to \mathbb{R}^m$ preslikava. Naj bo $a \in D$. Preslikava f je zvezna v točki a natanko tedaj, ko za vsako zaporedje $(x_n)_n, \ x_n \in D$, ki konvergira proti a, zaporedje $(f(x_n))_n, \ f(x_n) \in \mathbb{R}^m$ konvergira proti f(a).

Definicija 1.2.3. Naj bo $f:D\subseteq\mathbb{R}^n\to\mathbb{R}^m$ preslikava. Preslikava f je enakomerno zvezna na D, če

$$\forall \epsilon > 0. \exists \delta > 0. \forall x, x' \in D. ||x - x'|| < \delta \Rightarrow ||f(x) - f(x')|| < \epsilon.$$

Trditev 1.2.4. Zvezna preslikava na kompaktne množice je enakomerno zvezna.

Trditev 1.2.5. Naj bo $f: K^{\text{komp}} \subseteq \mathbb{R}^n \to \mathbb{R}^m$ zvezna preslikava. Potem je $f_*(K)$ kompaktna.

Definicija 1.2.6. Preslikava $f:D\subseteq\mathbb{R}^n\to\mathbb{R}^m$ je C-lipschitzova, če

$$\exists C \in \mathbb{R} . \forall x, x' \in D . ||f(x) - f(x')|| \le C||x - x'||.$$

Trditev 1.2.7. Za preslikavo $f: D \to X'$ velja:

f je C-lipschitzova $\Rightarrow f$ je enakomerno zvezna $\Rightarrow f$ je zvezna.

Trditev 1.2.8. Naj bosta $f, g: D \subset \mathbb{R}^n \to \mathbb{R}$ zvezni funkciji v $a \in D$. Naj bo $\lambda \in \mathbb{R}$. Tedaj so v a zvezni tudi funkcije:

$$f + g$$
, $f - g$, λf , fg .

Če za vsak $x \in D$, $g(x) \neq 0$, tedaj so v a zvezna tudi funkcija:

$$\frac{f}{g}$$
.

Trditev 1.2.9. Kompozitum zveznih preslikav je zvezna preslikava.

Dokaz. Z zaporedji kot pri analizi 1.

Zgled. Nekaj primerov zveznih preslikav.

- Preslikava $\Pi_j(x_1,\ldots,x_n)=x_j$ je zvezna na \mathbb{R}^n za vsak $j=1,\ldots,n$.
- Vse polinomi v *n*-spremenljivkah so zvezne funkcije na \mathbb{R}^n .
- Vse racionalne funkcije so zvezne povsod, razen tam, kjer je imenovalec enak 0.

Definicija 1.2.10. Preslikava $f:D\subset\mathbb{R}^n\to\mathbb{R}$ je funkcija n-spremenljivk.

Opomba. Naj bo (M,d) metrični prostor in $N \subset M$. Naj bo $f: M \to \mathbb{R}$ zvezna funkcija na M. Potem $f|_N$ je tudi zvezna funkcija na N.

Trditev 1.2.11. Naj bosta $D \subseteq \mathbb{R}^n$ in $D_j = \Pi_j(D)$. Naj bo $a \in D$, $a = (a_1, \dots, a_n)$ in $f : D \to \mathbb{R}$ zvezna v a. Tedaj za vsak $j = 1, \dots, n$ funkcija $\varphi_j : D_j \to \mathbb{R}$, $\varphi_j(t) = f(a_1, \dots, a_{j-1}, t, a_{j+1}, \dots, a_n)$ zvezna v a_j .

Dokaz. Definicija zveznosti v točki.

Opomba. Če je funkcija več spremenljivk zvezna v neki točki $a \in \mathbb{R}^n$, je zvezna tudi kot funkcija posameznih spremenljivk.

Zgled. Naj bo $f(x,y) = \begin{cases} \frac{2xy}{x^2+y^2}; & (x,y) \neq (0,0) \\ 0; & (x,y) = (0,0) \end{cases}$. Ali je f zvezna kot funkcija vsake spremenljivke posebej? Ali je f zvezna na \mathbb{R}^2 ?

Zgled. Naj bo $f(x,y) = \begin{cases} \frac{2x^2y}{x^4+y^2}; & (x,y) \neq (0,0) \\ 0; & (x,y) = (0,0) \end{cases}$. Ali je f zvezna kot funkcija vsake spremenljivke posebej? Ali je zvezna na vsaki premici? Ali je f zvezna na \mathbb{R}^2 ?

Opomba. Zgleda pokažeta, da obrat v prejšnji trditvi ne velja.

1.2.2 Zveznost preslikav iz \mathbb{R}^n v \mathbb{R}^m

Naj bo $D \subseteq \mathbb{R}^n$ in $F: D \to \mathbb{R}^m$ preslikava. Naj bo $x \in D$, potem $F(x) \in \mathbb{R}^m$, $F(x) = y = (y_1, \dots, y_m)$. Lahko pišemo $F(x) = (f_1(x), \dots, f_m(x))$. Torej F določa m funkcij n-spremenljivk.

Trditev 1.2.12. Naj bo $a \in D \subseteq \mathbb{R}^n$. Naj bo $F = (f_1, \dots, f_m) : D \to \mathbb{R}^m$ preslikava. Velja:

Preslikava F je zvezna v $a \Leftrightarrow f_1, \ldots, f_m$ so zvezne v a.

Dokaz. Definicija zveznosti v točki.

Zgled (Omejenost linearnih preslikav). Naj bo $\mathcal{A}: \mathbb{R}^n \to \mathbb{R}^m$ linearna preslikava, potem

$$\exists M \in \mathbb{R} . M \ge 0 . \forall x \in \mathbb{R}^n . x \ne 0 . \frac{||\mathcal{A}x||}{||x||} \le M \text{ (oz. } ||\mathcal{A}x|| \le M||x||).$$

Trditev 1.2.13. Linearne preslikave so zvezne

Dokaz. Vse koordinatne funkcije linearne (polinomi 1. stopnje).

Trditev 1.2.14. Naj bo $\mathcal{A}: \mathbb{R}^n \to \mathbb{R}^m$ linearna preslikava. Velja:

Preslikava \mathcal{A} je zvezna \Leftrightarrow Preslikava \mathcal{A} je zvezna v točki $0 \Leftrightarrow$ Preslikava \mathcal{A} je omejena.

Dokaz. Definicija zveznosti in omejenosti.

Definicija 1.2.15. Naj bo $\mathcal{A}: \mathbb{R}^n \to \mathbb{R}^m$ linearna preslikava. Preslikava $\mathcal{A}: \mathbb{R}^n \to \mathbb{R}^m$, $x \mapsto \mathcal{A}x + b$, $b \in \mathbb{R}^m$ imenujemo afina preslikava.

Parcialni odvodi in diferenciabilnost

1.3.1 Parcialni odvod

Definicija 1.3.1. Naj bo $f:D\subset\mathbb{R}^n\to\mathbb{R}$ funkcija. Naj bo $a=(a_1,\ldots,a_n)\in D$ notranja točka. Funkcija f je parcialno odvedljiva po spremenljivki x_j v točki a, če obstaja limita

$$\lim_{h\to 0} \frac{f(a_1,\ldots,a_{j-1},a_j+h,a_{j+1},\ldots,a_n)-f(a_1,\ldots,a_n)}{h},$$

oz. če je funkcija

$$x_i \mapsto f(a_1, \dots, a_{i-1}, x_i, a_{i+1}, \dots, a_n)$$

odvedliva v točki a_i .

Če je ta limita obstaja, je to parcialni odvod funkcije f po spremenljivki x_j v točki a. Oznaki: $\frac{\partial f}{\partial x_j}(a)$, $f_{x_j}(a)$

Opomba. Vse elementarne funkcije so parcialno odvedljive po vseh spremenljivkah tam, kjer so definirane.

Zgled. Naj bo $f(x,y,z) = e^{x+2y} + \cos(xz^2)$. Izračunaj $f_x(x,y,z)$, $f_y(x,y,z)$, $f_z(x,y,z)$.

1.3.2Diferenciabilnost

Definicija 1.3.2. Naj bo $f:D\subset\mathbb{R}^n\to\mathbb{R}$ funkcija. Naj bo $a=(a_1,\ldots,a_n)\in D$ notranja točka. Funkcija f je diferenciabilna v točki a, če obstaja tak linearen funkcional $\mathcal{L}: \mathbb{R}^n \to \mathbb{R}$, da velja:

$$f(a+h) = f(a) + \mathcal{L}(h) + o(h),$$

kjer $\lim_{h\to 0} \frac{||o(h)||}{||h||} = 0.$

Opomba. Če je tak \mathcal{L} obstaja, je enolično določen.

Dokaz. Pokažemo, da iz $\mathcal{L}(h) = (\mathcal{L}_1 - \mathcal{L}_2)(h) = (o_2 - o_1)(h) = o(h)$ sledi, da je L = 0.

Definicija 1.3.3. Če je f diferenciabilna v a je \mathcal{L} natanko določen in ga imenujemo diferencial funkcije f v točki a. Oznaka: $\mathcal{L} = df_a$. Linearen funkcional \mathcal{L} imenujemo tudi odvod funkcije f v točki a. Oznaka: (Df)(a).

Opomba. Recimo, da je funkcija f diferenciabilna v točki a. Preslikava $h \mapsto f(a) + (df_a)(h)$ je najboljša afina aproksimacija funkcije $h \to f(a+h)$.

Trditev 1.3.4. Naj bo $f:D\subset\mathbb{R}^n\to\mathbb{R}$ diferenciabilna v notranji točki $a\in D$. Tedaj je f v točki a parcialno odvedljiva po vseh spremenljivkah. Poleg tega je zvezna v točki a. Pri tem za $h=(h_1,\ldots,h_n)$ velja:

$$(df_a)(h) = \frac{\partial f}{\partial x_1}(a) \cdot h_1 + \ldots + \frac{\partial f}{\partial x_n}(a) \cdot h_n = f_{x_1}(a) \cdot h_1 + \ldots + f_{x_n}(a) \cdot h_n$$

Opomba. Naj bo $\mathcal{L}: \mathbb{R}^n \to \mathbb{R}$ linearen funkcional, $x \in \mathbb{R}^n$, potem $\mathcal{L}(x) = l_1 x_1 + \ldots + l_n x_n = \begin{bmatrix} l_1 & \ldots & l_n \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$,

kjer $|l_1 \ldots l_n|$ matrika linearnega funkcionala glede na standardne baze.

Dokaz. Zveznost pokažemo z limito. Za parcialno odvedljivost poglejmo kaj se dogaja za $h=(h_1,0,\ldots,0)$.

Opomba. Trditev pove, da je $df_a = \left[\frac{\partial f}{\partial x_1}(a) \dots \frac{\partial f}{\partial x_n}(a)\right] = \left(\frac{\partial f}{\partial x_1}(a), \dots, \frac{\partial f}{\partial x_n}(a)\right).$ Zapis: $(\vec{\nabla}f)(a) = (\operatorname{grad} f)(a) = \left(\frac{\partial f}{\partial x_1}(a), \dots, \frac{\partial f}{\partial x_n}(a)\right).$

Vektor (grad f)(a) imenujemo gradient funkcije f v točki a. Operator $\vec{\nabla} = (\frac{\partial}{\partial x_1}, \dots, \frac{\partial}{\partial x_n})$ je operator Nabla.

Zgled. Naj bo $f(x,y) = \begin{cases} \frac{2xy}{x^2+y^2}; & (x,y) \neq (0,0) \\ 0; & (x,y) = (0,0) \end{cases}$. Ali je f diferenciabilna?

Zgled. Naj bo $f(x,y) = \begin{cases} \frac{2x^2y}{x^2+y^2}; & (x,y) \neq (0,0) \\ 0; & (x,y) = (0,0) \end{cases}$. Ali je f zvezna? Ali je f parcialno odvedljiva? Ali je f diferenciabilna?

Opomba. Zgleda pokažeta, da obrat v prejšnji trditvi ne velja

Izrek 1.3.5. Naj bo $f:D\subseteq\mathbb{R}^n\to\mathbb{R}$ funkcija in naj bo $a\in D$ notranja točka. Denimo, da je f parcialno odvedljiva po vseh spremenljivkah v točki a in so parcialni odvodi zvezni v točki a. Tedaj je f diferenciabilna v točki a.

Dokaz. Za n=2. Definicija diferenciabilnosti + 2-krat Lagrangeev izrek.

1.3.3 Višji parcialni odvodi

Naj bo $f: D^{\text{odp}} \subseteq \mathbb{R}^n \to \mathbb{R}$ funkcija. Denimo, da je f parcialno odvedljiva po vseh spremenljivkah na $D: f_{x_1}, \ldots, f_{x_n}$. To so tudi funkcije n-spremenljivk in morda so tudi te parcialno odvedljive po vseh oz. nekatareih spremenljivkah.

Trditev 1.3.6. Naj bo funkcija f definirana v okolici $a \in \mathbb{R}^n$. Naj bosta $i, j \in \{1, 2, ..., n\}$. Denimo, da na tej okolici obstajata $\frac{\partial f}{\partial x_i}$, $\frac{\partial f}{\partial x_j}$ in tudi druga odvoda $\frac{\partial}{\partial x_j}(\frac{\partial f}{\partial x_i})$, $\frac{\partial}{\partial x_i}(\frac{\partial f}{\partial x_j})$. Če sta $\frac{\partial}{\partial x_j}(\frac{\partial f}{\partial x_i})$, $\frac{\partial}{\partial x_i}(\frac{\partial f}{\partial x_j})$ zvezna v a, potem sta enaka v točki a:

$$\frac{\partial}{\partial x_j} \left(\frac{\partial f}{\partial x_i} \right) (a) = \frac{\partial}{\partial x_i} \left(\frac{\partial f}{\partial x_j} \right) (a).$$

Dokaz. Dovolj za n = 2.

Definiramo J = f(a+h,b+k) - f(a+h,b) - f(a,b+k) + f(a,b) in $\varphi(x) = f(x,b+k) - f(x,b)$, $\psi(y) = f(a+h,y) - f(a,y)$. Zapišemo J s pomočjo funkcij φ , ψ ter uporabimo 2-krat Lagrangeev izrek in upoštevamo zveznost.

Opomba. Pravimo, da parcialni odvodi komutirajo in pišemo $\frac{\partial^2 f}{\partial x_i \partial x_i}$.

Definicija 1.3.7. Naj bo $D^{\text{odp}} \subseteq \mathbb{R}^n$. Množico vseh k-krat zvezno parcialno odvedljivih funkcij označimo z $C^k(D)$. Množica gladkih funkcij je $C^{\infty}(D) = \bigcap_{k=1}^{\infty} C^k(D)$. Množica zveznih funkcij na D je C(D).

Opomba. Funkcija $f \in C^k(D)$, če obstajajo vse parcialni odvodi funkcije f do reda k in so vse ti parcialni odvodi zvezni na D.

Opomba. Množica $C^k(D)$ z operacijama seštevanja, množenja s skalarji in komponiranja preslikav je algebra nad \mathbb{R} .

1.3.4 Diferenciabilnost preslikav

Definicija 1.3.8. Naj bo $F:D\subseteq\mathbb{R}^n\to\mathbb{R}^m$ preslikava, $a\in D$ notranja točka. Preslikava F je diferenciabilna v točki a, če obstaja taka linearna preslikava $\mathcal{L}:\mathbb{R}^n\to\mathbb{R}^m$, da velja:

$$F(a+h) = F(a) + \mathcal{L}(h) + o(h),$$

kjer je $\lim_{h\to 0} \frac{|o(h)|_m}{|h|_n}$.

Preslikavo \mathcal{L} imenujemo diferencial F v točki a. Oznaka: dF_a . Imenujemo ga tudi odvod F v točki a. Oznaka: (DF)(a).

Opomba. Kot pri funkcijah, če je tak \mathcal{L} obstaja, je enolično določen.

Zgled. Obravnavaj diferenciabilnost preslikav:

- $\mathcal{A}: \mathbb{R}^n \to \mathbb{R}^m$ linearna, $F(x) = \mathcal{A}x$.
- $F: \mathbb{R}^{n \times n} \to \mathbb{R}^{n \times n}$, $F(X) = X^2$. Namig: S pomočjo neenakosti CSB pokažimo, da $|H^2| \leq |H|^2$.

Izrek 1.3.9. Naj bo $a \in D$ notranja točka. Naj bo $F = (f_1, \dots, f_m) : D \to \mathbb{R}^m$ preslikava. Velja:

Preslikava F je diferenciabilna v $a \in D \Leftrightarrow \text{so } f_1, \dots, f_m$ diferenciabilne v a.

Tedaj

$$(DF)(a) = \begin{bmatrix} \frac{\partial f_1}{\partial x_1}(a) & \dots & \frac{\partial f_1}{\partial x_n}(a) \\ \vdots & & \vdots \\ \frac{\partial f_m}{\partial x_1}(a) & \dots & \frac{\partial f_m}{\partial x_n}(a) \end{bmatrix}$$

Matrika linearne preslikave (DF)(a), ki je zapisana v standardnih bazah, se imenuje $Jacobijeva\ matrika$.

Dokaz. (⇒) Zapišemo enakost $F(a+h) = F(a) + dF_a(h) + o(h)$ po komponentah. (⇐) Definicija diferenciabilnosti.

Posledica 1.3.9.1. Naj bo $a \in D$ notranja točka. Naj bo $F = (f_1, \ldots, f_m) : D \to \mathbb{R}^m$ preslikava. Velja: Če so vse funkcije f_1, \ldots, f_m v točki a parcialno odvedlivi po vseh spremenljivkah in so ti vse odvodi zvezni v točki a, potem je F diferenciabilna v točki a.

Zgled. Naj bo $F(x,y,z)=(x^2+2y+e^z,xy+z^2),\ f:\mathbb{R}^3\to\mathbb{R}^2.$ Določi(DF)(1,0,1).

Definicija 1.3.10. Preslikava $F: D^{\text{odp}} \subseteq \mathbb{R}^n \to \mathbb{R}^m$ je razreda $C^k(D)$, če so $f_1, \ldots, f_m \in C^k(D)$.

Izrek 1.3.11 (Verižno pravilo). Naj bo $a \in D \subseteq \mathbb{R}^n$ notranja točka. Naj bo $b \in \Omega \subseteq \mathbb{R}^m$ notranja točka. Naj bo $F: D \to \Omega$ diferenciabilna v točki a in velja F(a) = b. Naj bo $G: \Omega \to \mathbb{R}^k$ diferenciabilna v točki a in velja:

$$D(G \circ F)(a) = (DG)(b) \cdot (DF)(a) = (DG)(F(a)) \cdot (DF)(a).$$

Označimo $F(x_1, ..., x_n) = (f_1(x_1, ..., x_n), ..., f_m(x_1, ..., x_n))$ in $G(y_1, ..., y_m) = (g_1(y_1, ..., y_m), ..., g_k(y_1, ..., y_m))$. Potem

$$D(G \circ F)(a) = \begin{bmatrix} \frac{\partial g_1}{\partial y_1} & \cdots & \frac{\partial g_1}{\partial y_m} \\ \vdots & & \vdots \\ \frac{\partial g_k}{\partial y_1} & \cdots & \frac{\partial g_k}{\partial y_m} \end{bmatrix} (b) \cdot \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \vdots & & \vdots \\ \frac{\partial f_m}{\partial x_1} & \cdots & \frac{\partial f_m}{\partial x_n} \end{bmatrix} (a)$$

Dokaz. Definicija diferenciabilnosti.

Posledica 1.3.11.1 (k = 1, G = g funkcija). Naj bo $\Phi(x_1, ..., x_n) = g(f_1(x_1, ..., x_n), ..., f_m(x_1, ..., x_n))$. Potem

$$\frac{\partial \Phi}{\partial x_j}(a) = \frac{\partial g}{\partial y_1}(b) \cdot \frac{\partial f_1}{\partial x_j}(a) + \frac{\partial g}{\partial y_2}(b) \cdot \frac{\partial f_2}{\partial x_j}(a) + \ldots + \frac{\partial g}{\partial y_m}(b) \cdot \frac{\partial f_m}{\partial x_j}(a)$$

Zgled. Naj bo $F(x,y)=(x^2+y,xy),\ g(u,v)=uv+v^2.$ Naj bo $\Phi=g\circ F.$ Izračunaj $(D\Phi)(x,y)$ na dva načina.

Izrek o implicitni preslikavi

Osnovna verzija izreka o implicitni preslikavi

Radi bi poiskali zadostni pogoji na funkcijo f(x,y), da bi enačba f(x,y)=0 lokalno v okolici točki (a,b), za katero velja f(a,b) = 0, predstavljala graf funkcije $y = \varphi(x)$.

Izrek 1.4.1 (Osnovna verzija izreka o implicitni preslikavi). Naj bo $D \subseteq \mathbb{R}^2$ odprta, $(a,b) \in D$, $f: D^{\text{odp}} \to \mathbb{R}$ funkcija razreda $C^1(D)$ in naj velja:

- 1. f(a,b) = 0.
- 2. $f_u(a,b) \neq 0$.

Potem obstajata $\delta > 0$ in $\epsilon > 0$, da velja: $I \times J \subseteq D$, kjer je $I = (a - \delta, a + \delta)$, $J = (b - \epsilon, b + \epsilon)$ in enolično določena funkcija $\varphi: I \to J$ razreda C^1 , za katero velja:

- 1. $\varphi(a) = b$.
- 2. $\forall (x,y) \in I \times J$. $f(x,y) = 0 \Leftrightarrow y = \varphi(x)$ (rešitve enačbe f(x,y) = 0 so natanko graf funkcije φ).
- 3. $\varphi'(x) = -\frac{f_x(x,\varphi(x))}{f_y(x,\varphi(x))}$ za vsak $x \in I$.

Dokaz. Funkcijo φ konstruiramo s pomočjo izreka o bisekciji z upoštevanjem stroge monotonosti funkciji $y \mapsto f(x,y)$. Zveznost $(\overline{I} \times \overline{J})$ je kompaktna), odvedljivost in zveznost odvoda pokažemo z pomočjo izraza $f(x+\Delta x,y+\Delta y)-f(x,y)=0$ in Lagrangeeva izreka, kjer $x + \Delta x \in (a - \delta, a + \delta), y = \varphi(x), y + \Delta y = \varphi(x + \Delta x).$

Posledica 1.4.1.1. Če je funkcija f razreda C^k , potem je tudi funkcija φ razreda C^k .

Zgled. Kaj če pogoji niso izpolnjeni?

- 1. $f(x,y) = (x-y)^2$, f(x,y) = 0 v okolici točke (0,0) (pogoji ni potrebni).
- 2. $f(x,y) = y^3 x$, f(x,y) = 0 v okolici točke (0,0) (odvedljivost φ).
- 3. $f(x,y) = y^2 x^2 x^4$, f(x,y) = 0 v okolici točke (0,0) (enoličnost φ). 4. $f(x,y) = y^2 + x^2 + x^4$, f(x,y) = 0 v okolici točke (0,0) (množica rešitev).

1.4.2 Izrek o inverzni preslikavi

Naj bo $\Phi: D^{\text{odp}} \subseteq \mathbb{R}^m \to \mathbb{R}^m$ preslikava, $\Phi \in C^1(D)$. Kakšne so zadostni pogoji za (lokalno) obrnljivost preslikave Φ ?

Definicija 1.4.2. Naj bosta $D, \Omega \subseteq \mathbb{R}^m$ odprti. Preslikava $\Phi: D \to \Omega$ je C^1 -difeomorfizem, če

- 1. Φ je bijekcija,
- 2. $\Phi \in C^1(D)$,
- $3. \ \Phi^{-1} \in C^1(\Omega).$

Podobno definiramo C^k -difeomorfizem za $k \in \mathbb{N} \cup \{\infty\}$.

Zgled. Ali je $f(x) = x^3$, $f: \mathbb{R} \to \mathbb{R}$ difeomorfizem?

Trditev 1.4.3. Naj bosta $D, \Omega \subseteq \mathbb{R}^m$ odprti. Naj bo $\Phi : D \to \Omega$ C^1 -difeomorfizem. Tedaj je $\det(D\Phi) \neq 0$ na D.

Dokaz. Pogledamo $\Phi^{-1} \circ \Phi = id_D$ (verižno pravilo).

Posledica 1.4.3.1. $(D\Phi^{-1})(y) = (D\Phi)^{-1}(x)$, kier $y = \Phi(x)$.

Zgled. Ali velja obrat trditve? Naj bo $\Phi(x,y) = (e^x \cos y, e^x \sin y), \ \Phi : \mathbb{R}^2 \to \mathbb{R}^2$. Ali je Φ difeomorfizem?

Lema 1.4.4 (Lagrangeev izrek za funkcijo več spremenljivk). Naj bo $D \subseteq \mathbb{R}^n$ odprta množica, točki $a, b \in D$ taki, da za vsak $t \in [0,1]$ daljica $(1-t)a+tb \in D$, $f:D \to \mathbb{R}$ funkcija razreda C^1 . Tedaj obstaja taka točka ξ iz daljice med a in b, da je $f(b) - f(a) = (Df)(\xi)(b - a)$.

Dokaz. Lagrangeev izrek za funkcijo $\varphi(t) = f((1-t)a + tb)$.

Lema 1.4.5. Predpostavki kot prej. Naj obstaja tak $M \in \mathbb{R}$, da za vsak $j = 1, \ldots, n$ in vsak $x \in D$ velja: $\left| \frac{\partial f}{\partial x_i}(x) \right| \leq M$. Tedaj $|f(b) - f(a)| \leq M\sqrt{n}|b - a|$.

Dokaz. Uporabimo prejšnjo trditev.

Lema 1.4.6. Naj bo $D \subseteq \mathbb{R}^n$, $a, b \in D$ kot prej. Naj bo $F : D \subseteq \mathbb{R}^n \to \mathbb{R}^m$, $F = (f_1, \dots, f_m)$ preslikava razreda C^1 . Naj obstaja tak $M \in \mathbb{R}$, da za vsak $j = 1, \ldots, n$, vsak $i = 1, \ldots, m$ in vsak $x \in D$ velja: $\left| \frac{\partial f_i}{\partial x_i}(x) \right| \leq M$. Tedaj $||F(b) - F(a)|| \leq M \sqrt{mn} ||b - a||$.

Izrek 1.4.7 (Izrek o inverzni preslikavi). Naj bo $D \subseteq \mathbb{R}^m$ odprta, $F: D \to \mathbb{R}^m$ preslikava razreda C^1 , $a \in D$ in b = F(a). Če je $\det(DF)(a) \neq 0$, potem obstajata okolici $a \in U \subseteq \mathbb{R}^m$ in $b \in V \subseteq \mathbb{R}^m$, da je $F: U \to V$ C^1 -difeomorfizem.

Definicija 1.4.8. Če je $F:D\to \Omega$ preslikava med odprtimi množicami v \mathbb{R}^m in je $\det(DF)(x)\neq 0$ za vse $x\in D$, pravimo, da je F lokalni difeomorfizem.

Dokaz. Dovolj, da izrek dokažemo za primer, ko $a=b=0,\ (DF)(0)=I.$ TODO.

Posledica 1.4.8.1. Če je Φ razreda C^k za $k \in \mathbb{N} \cup \{\infty\}$, je Φ lokalni C^k difeomorfizem.

Opomba. Če je m=1, potem $f:I\subseteq\mathbb{R}\to\mathbb{R}$. Naj bo $a\in I,\ f\in C^1(I),\ f'(a)\neq 0$. Potem $f'(x)\neq 0$ v okolici a, torej f ima lokalni C^1 inverz.

Zgled. Naj bo $F: \mathbb{R}^{n \times n} \to \mathbb{R}^{n \times n}, \ F(X) = X^2$. Ali je F v okolici točke $I \in \mathbb{R}^{n \times n}$ lokalni difeomorfizem? Kaj to pomeni?

Izrek o implicitni preslikavi

Imamo n+m spremenljivk: (x,y), kjer $x=(x_1,\ldots,x_n),\ y=(y_1,\ldots,y_m)$ in m enačb. Pričakujemo, da bomo lahko m spremenljivk izrazili kot funkcijo ostalih, tj. najdemo preslikavo $\Phi:D\subseteq\mathbb{R}^n\to\mathbb{R}^m$, da velja $y=\Phi(x)$.

Primer (Linearen primer). Naj bosta $\mathcal{A}: \mathbb{R}^n \to \mathbb{R}^m$, $\mathcal{B}: \mathbb{R}^m \to \mathbb{R}^m$ linearni, $b \in \mathbb{R}^m$. Naj rešujemo enačbo Ax + By = b. Kdaj lahko za vsak $b \in \mathbb{R}^m$ iz te enačbe y razrišemo kot funkcijo x?

Če je n=0, potem rešujemo enačbo By=b. Kdaj lahko to enačbo enolično rešimo za vsak $b\in\mathbb{R}^m$?

Naj bo $F: D^{\text{odp}} \subseteq \mathbb{R}^n_x \times \mathbb{R}^m_y \to \mathbb{R}^m, \ F = (f_1, \dots, f_m)$ preslikava razreda C_1 .

Naj bo
$$F:D^{-1}\subseteq\mathbb{K}_x\times\mathbb{K}_y\to\mathbb{K}$$
, $F=(f_1,\ldots,f_m)$ přeslikava řažředa C_1 .

Za vsak $y\in\mathbb{R}^m$ naj bo $\frac{\partial F}{\partial x}$ diferencial preslikave $x\mapsto F(x,y)$. Imenujemo ga parcialni diferenical na prvo spremenljivko.

Za vsak $x\in\mathbb{R}^n$ naj bo $\frac{\partial F}{\partial y}$ diferencial preslikave $y\mapsto F(x,y)$. Imenujemo ga parcialni diferenical na drugo spremenljivko.

Velja: $\frac{\partial F}{\partial x}(x,y)=\begin{bmatrix} \frac{\partial f_1}{\partial x_1}(x,y)&\ldots&\frac{\partial f_1}{\partial x_n}(x,y)\\ \vdots&\vdots&\vdots\\ \frac{\partial f_m}{\partial x_1}(x,y)&\ldots&\frac{\partial f_m}{\partial x_n}(x,y) \end{bmatrix}$ in $\frac{\partial F}{\partial y}(x,y)=\begin{bmatrix} \frac{\partial F}{\partial y}(x,y)&\ldots&\frac{\partial F}{\partial y}(x,y)\\ \vdots&\vdots&\vdots\\ \frac{\partial f_m}{\partial x_1}(x,y)&\ldots&\frac{\partial f_m}{\partial y_m}(x,y) \end{bmatrix}$.

Diferencial preslikave F je potem enak $(DF)(x,y)=\begin{bmatrix} \frac{\partial F}{\partial x}(x,y)&\frac{\partial F}{\partial y}(x,y)\end{bmatrix}$ (bločni zapis).

Opomba. Za vektor
$$\begin{bmatrix} h \\ k \end{bmatrix}$$
, kjer je $h \in \mathbb{R}^n, \ k \in \mathbb{R}^m$ velja: $(DF)(x,y) \begin{bmatrix} h \\ k \end{bmatrix} = \frac{\partial F}{\partial x}(x,y)h + \frac{\partial F}{\partial y}(x,y)k \in \mathbb{R}^m.$

Izrek 1.4.9 (Izrek o implicitni preslikavi). Naj bo $D \subseteq \mathbb{R}^n_x \times \mathbb{R}^m_y$ odprta množica, $(a,b) \in D, F:D \to \mathbb{R}^m$ preslikava razreda C^1 . Naj velja:

- 1. F(a,b) = 0,
- 2. $\det(\frac{\partial \dot{F}}{\partial y}(a,b)) \neq 0$.

Tedaj obstaja okolica $U \subseteq \mathbb{R}^n$ točke a in okolica $V \subseteq \mathbb{R}^m$ točke b in taka enolično določena preslikava $\varphi: U \to V$ razreda C^1 , da velja:

- 1. $\phi(a) = b$.
- 2. $\forall (x,y) \in U \times V$. $F(x,y) = 0 \Leftrightarrow y = \varphi(x)$ (rešitve te enačbe je isto kot graf φ znotraj $U \times V$). 3. $(D\varphi)(x) = -\left(\frac{\partial F}{\partial y}(x,y)\right)^{-1} \frac{\partial F}{\partial x}(x,y), \ y = \varphi(x)$ za vsak $x \in U$.

Dokaz. Uporabimo izrek o inverzni preslikavi.

Definiramo preslikavo $\Phi: D \subseteq \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^n \times \mathbb{R}^m$, $\Phi(x,y) = (x,F(x,y))$. Kandidata za preslikavo φ najdemo v oblike inverza Φ^{-1} , nato enostavno preverimo lastnosti.

Posledica 1.4.9.1. Če je preslikava F razreda C^k , je tudi preslikava φ razreda C^k .

Zgled. Naj bo $x, y \in \mathbb{R}$, $F(x, y) = x^2 + y^2 - 1$. S pomočjo izreka o implicitni preslikavi pokaži, da v okolici točke (0, 1)rešitve enačbe F(x,y)=0 graf neke preslikave φ . Določi tudi preslikavo φ .

Zgled. Naj bo $F(x, y, z) = (y + xy + xz^2, z + zy + x^2)$, F = (f, g) in naj rešujemo enačbo F(x, y, z) = 0. Preveri zahteve izreka v okolici točke (0,0,0) in zapiši spremenljivki y in z kot funkciji spremenljivke x. Določi tudi prvi in drugi odvod funkcij f in g po spremenljivke x. Kaj je rezultat?

Zgled. Naj bo $F: \mathbb{R}^3 \to \mathbb{R}$ in naj rešuejmo enačbo F(x,y,z) = 0. Recimo, da F(a,b,c) = 0. Kakšna povezava med zadostnimi pogajami in rangom (DF)(a,b,c)? Kaj če gledamo preslikavo $F:\mathbb{R}^3\to\mathbb{R}^2$?

Definicija 1.4.10. Naj bo $D^{\text{odp}} \in \mathbb{R}^n$ in $F: D \to \mathbb{R}^m$ preslikava razreda C^1 , $a \in D$.

- 1. Rang preslikave F v točki a je rang_a F := rang(DF)(a).
- 2. Če je rang $_a F$ konstanten na D, je F tega ranga na D, tj. rang $F = \operatorname{rang}_a F$.
- 3. Preslikava F je maksimalnega ranga v točki a, če je ranga $F = \min\{m, n\}$.

Opomba. Ta pogoj je lokalno stabilen, tj. če je rang $_a F = \min\{n, m\}$, potem obstaja okolica od a, kjer rang F maksimalen.

Posledica 1.4.10.1. Naj bo $F: D^{\text{odp}} \subseteq \mathbb{R}^n \to \mathbb{R}^m$ preslikava razreda C^k , $k \in \mathbb{N}$ in naj velja m < n. Naj bo $a \in D$, F(a) = 0 in F maksimalnega ranga v točki a. Tedaj obstajajo indeksi $i_1 < i_2 < \ldots < i_{n-m}, j_1 < j_2 < \ldots < j_m,$ $i_k \neq j_l$ za vse k in l in take funkcije $\varphi_1, \ldots, \varphi_m$ razreda C^k definirane v okolici točke $(a_{i_1}, \ldots, a_{i_{n-m}})$, da je v neki okolici U točke a enačba F(x) = 0 ekvivalentna sistemu enačb:

$$x_{j_1} = \varphi_1(x_{i_1}, \dots, x_{i_{n-m}})$$

$$\vdots$$

$$x_{j_m} = \varphi_m(x_{i_1}, \dots, x_{i_{n-m}})$$

Ekvivalentno: Obstaja permutacija $\sigma \in S_n$, da v okolici točke a velja:

$$F(x) = 0 \Leftrightarrow (x_{\sigma(1)}, \dots, x_{\sigma(n)}) = (x_{\sigma(1)}, \dots, x_{\sigma(n-m)}, \varphi(x'_{\sigma})), \text{ kjer } \varphi = (\varphi_1, \dots, \varphi_m).$$

Dokaz. TODO.

Primer. Naj bo $\mathcal{A}: \mathbb{R}^n \to \mathbb{R}^m$ linearna, $m \leq n$, rang $\mathcal{A} = m$ (\mathcal{A} je surjektivna). Rešujemo enačno $\mathcal{A}x = b$. Prostor rešitev je n - m dimenzialen.

Posledica 1.4.10.2. Naj bo $F: D^{\text{odp}} \subseteq \mathbb{R}^n \to \mathbb{R}^m$ preslikava razreda $C^1, m \leq n, a \in D$ in naj velja rang $_a F = m$. Tedaj obstaja okolica V točke F(a) = b in okolica U točke a, da je $F: U \to V$ surjektivna.

Dokaz. TODO.

1.5 Podmnogoterosti v \mathbb{R}^n

Podmnogoterost je posplošitev pojmov "krivulja" in "ploskev".

Definicija 1.5.1. Naj bo $M \subseteq \mathbb{R}^{n+m}$, $M \neq \emptyset$. Množica M je gladka (vsaj razreda C^1) podmnogoterost dimenzije n in kodimenzije m prostora \mathbb{R}^{n+m} , če za vsako točko $a \in M$ obstaja okolica U v \mathbb{R}^{n+m} in take C^1 funkcije $F_1, \ldots, F_m : U \to \mathbb{R}$, da velja:

- 1. $M \cap U = \{x \in U \mid F_1(x) = \ldots = F_m(x) = 0\} = F^*(\{0\}).$
- 2. $rang(F_1, ..., F_m) = m \text{ na } U.$

Opomba. Funkcije F_1, \ldots, F_m se imenujejo lokalne definicijske funkcije za $M \cap U$.

Opomba. Če m = 0: M odprta množica.