國際船用天然氣燃料情勢與國內發展作法

議題緣由

國際海事組織(IMO)依據「防止船舶汙染國際公約」(MARPOL) 於 2018 年規定船舶燃料含硫量從含硫量 3.5%開始逐年減少,至今 (2020)年限縮至含硫量低於 0.5%,排放管制區域(ECA)甚至規定含硫量 0.1%以下之限制,由於此規範大幅增加船用燃油成本,國際上已有眾多航運業者將考量船舶改用 LNG 燃料之選擇,預期日漸成為船舶的主要燃料,因此財團法人中國驗船中心(CR)於今年 8 月正式發布「船舶液化天然氣(LNG)燃料就緒準則」,此準則提供國內船東欲使用 LNG 作為燃料船舶之設計及佈置之依據,以跟隨國際規範腳步。

一、LNG 船用燃料情勢

(一) IMO 船舶硫排放限制之應措施

海運係國際貨物運輸之重要方式,惟大型船舶採用重油為燃料,燃燒生成之氮氧化物(NOx)與硫氧化物(SOx)對環境造成之嚴重汙染,因此國際海事組織(International Maritime Organization,IMO)依據「防止船舶汙染國際公約」(MARPOL)於 2020 年規範國際航行之船舶強制實施全球船舶燃料含硫量應低於 0.5%,排放管制區域(ECA)甚至規定含硫量 0.1%以下之限制,另外,國內為降低商港區域空污影響及跟上國際規範之腳步,國內交通部航港局亦於 2019 年率先啟動港內 0.5%低含硫燃油之政策。

全球船舶每年約消耗 3.3 億公噸之燃油量,其中有 80%~85%燃油屬高硫含量,為滿足嚴峻之國際航運燃料限硫規範,目前較可行之方法有主要有以下三種方式:

1. 加裝船舶洗滌器:此系統可在使用便宜之重質燃料油下,降低 硫氧化物排放量以符合標準(排放量仍高於其它替代燃料), 因此不會增加燃料成本,且不需要對鍋爐及供油系統進行改裝,惟需要足夠空間加裝及首次改裝成本較高。

- 2. 低硫燃油:能減少硫污染物排放問題,最主要係不會直接增加 船舶改造成本,惟目前低硫油價格昂貴、營運費用高,如今 年雖因疫情衝擊,國際油價直落,國內油價甚至創 17 年來新 低,惟船舶、工業用之低硫燃料油卻逆勢高漲,1 月至 4 月 份每公秉漲幅就達 14.58%1
- 3. LNG船用燃料:因LNG不含硫及其他殘留物,應用於船舶 上幾乎可減排百分之硫氧化物(SOx)和近九成之氮氧化物 (NOx)排放量,且無顆粒懸浮物(PM)之產生,由於近年來LNG 逐漸展現其價格優勢,為最佳可行的替代方案。

另外還有改用 LPG、氫能或電能等,挪威船級社(DNV GL)對於各替代作法簡易等級評估,加裝洗滌器與低硫燃油雖然在成本投入上都較低,故仍係國際上主流作法²,惟溫室氣體排放量僅能達到符合現行法規要求,若未來國際航運燃料規範日益嚴峻,如德國和丹麥已禁止於該國 12 海里內之排放洗滌器除硫後之廢水,較長遠之作法還是要採用 LNG、氫能或電能等更潔淨之燃料,各燃料比較如下表:

加裝洗 燃料 低硫燃油 LNG LPG 氫能 電能 滌器 燃料之能量密度 技術成熟度 局部排放量 溫室氣體排放量 燃料成本 轉換設備成本 儲存設備成本 燃料補充可行性

表 1 IMO 船舶硫排放限制之應措施比較

¹ 燃料油逆風高漲 14% 中油補貼每月 3 成油資-蘋果日報(2020. 04. 07)

² 瑞士銀行(UBS)調查 68%船東支持選擇低硫油方案,21%船東選擇洗滌器方案

資料來源:DNV GL (2019), "Comparison of Alternative Marine Fuels",本研究整 理。

(二) LNG 燃料航運發展潛力

根據挪威船級社(DNV GL)研究報告調查 2000 年起全球第一艘 LNG 燃料船正式啟用,之後未有明顯之增長,直到近年來為因應船 運燃料含硫限制規範後,LNG 燃料船開始受航運業之重視,並於 2014 年後開始快速增加, 截至 2020 年 5 月營運 LNG 燃料船有 182 艘,至 2025 年預計將達到 349 艘,其中,船型以載客之渡輪為最多 之船舶以渡輪為主,其次為 PSV (平台供應船負責運輸人員及物資至 海外鑽油平台),因其航行目的地為外海油氣平台,便於當地補給 LNG 燃料,故這類型船隻廣泛使用 LNG 燃料。

規劃中之船型主要在為油輪及貨櫃船,若完成後將成為 LNG 燃 料船之船型,主要原因除了許多地區都開始受到燃料硫含量限制之 規範,及國際上排放管制區域(ECA)不斷範圍擴大,貨櫃航運業者 為求符合法規,必須改用 LNG 為燃料以免流失貿易市場,此外,航 運業者改用 LNG 燃料船對於企業形象和社會回饋也有相關,如 IKEA 與 Volkswagen 等國際知名企業表示未來其貨物運輸方式將改 為使用 LNG 燃料之貨車和船³。

³ https://sea-lng.org/why-lng/consumer-pressure/

資料來源: DNV GL (2020),「LNGi status update」;本研究繪製。

圖 1 各類型 LNG 燃料船型數量

根據日本石油天然氣金屬礦物資源機構(JOGMEC)研究報告, 目前全球 LNG 船用燃料市場主要在於歐洲至北美地區,係因排放管 制區域(ECA)和石油鑽井平台多位於大西洋航線上,具備 LNG 加液 站之港口亦多集中於歐美地區,造成多 LNG 燃料船航線也僅限歐美 兩地間,不過未來亞洲國家和其它海域對於船舶汙染排放規範越加 嚴格,LNG 船用燃料市場將不再受地域性限制,需求快速增加,預 計到 2024 年全球需求將達到 500 萬公噸/年,其中約八成係能往返國 際間之貨櫃船和遊輪。

資料來源:新たな LNG 需要:船舶燃料としての LNG;本研究繪製。

圖 2 全球 LNG 船用燃料需求預測

(三) LNG 船用燃料加液方式

LNG 船用燃料加液方式主要有四種方式,其中最為廣泛使用之加液方式為「岸上設施對船」,且多集中於歐洲挪威,已建造約 40 小型 LNG 加液站及小型接收站⁴,由於近年亞洲許多國家也將積極參與使用 LNG 燃料船之行列,如日本與韓國為了快速投入,初期多「車對船」之加液方式,已開始被廣泛使用於日本各商港中。

表 2 LNG船用燃料加液方式比較

方式	作法	優點	缺點	案例
車 對 船 (Truck to Ship)	由槽車裝載 LNG 後,以低溫軟管聯 接LNG燃料船進行 加液。	期初投入成本 最低且具移動 性。	燃料補給速度與量較低。	廣泛使用 於日本與 歐洲
船 對 船 (Ship to Ship)	於一般駁船上安裝 C型儲罐作為加液 船 (LNG bunker vessel)。	LNG 加液船能 於外海進行補 給燃料,且同 時能作為拖船 使用。	加液船建造成本較高	荷蘭阿姆 斯特丹港
岸上設施 對船 (Shore to Ship)	可分為直接由接收 站碼頭裝卸臂供應 (Reloading) 以及於 港口岸邊設置 LNG 加液站。		用要興建特定港口	挪 威 Skangas 公司使用

⁴ 新たな LNG 需要 - 船舶燃料としての LNG-日本石油天然ガス・金属鉱物資源機構 (JOGMEC)研究報告

其它(ISO container in Ship)	ISO Tank 以罐裝式 (Portable Tank)提供 LNG 燃料。		須經過特殊設 計與檢驗	法 國 Brittany Ferry 港
---------------------------------	---	--	----------------	----------------------------

資料來源:LNG バンカリング等に関 する調査・分析,本研究整理。

二、國際 LNG 船用燃料發展案例

(一) 日本

日本為即早因應國際上嚴格限制船舶排放硫廢氣,2015 年 8 月 於橫濱及川崎港首次引進 LNG 燃料之拖船,並以槽車作為 LNG 加 液方式,之後各地區瓦斯公司亦成功效法其作法,另外,為加速 LNG 船用燃料之發展,2018 年日本國土交通省規劃於國內東京灣及 伊勢三河灣兩地,建立 LNG 船用燃料補給據點,並給予興建補給據 點之業者補助其三分之一之投資費用,除對設備之補助外,日本政 府亦效法歐美國家給予關稅補助,當以天然氣為燃料之船隻進入日 本港口時,能減少或免除進口關稅,以增加船商改用天然氣為燃料 以及國外 LNG 燃料船航線移至日本之意願,提高市場需求量,目前 日本投入 LNG 船用燃料業務的有:東京瓦斯公司(橫濱港)、大阪瓦斯 公司(堺泉北港及神戶港)、東邦瓦斯公司(名古屋港)以及西部瓦斯公司(北九州港)。

■横浜港 LNGバンカリング

出典:東京ガス ホームページ

■堺泉北港 LNGバンカリング

資料來源:一般社団法人日本ガス協会。

圖 3日本各港口提供 LNG 加液業務

(=)新加坡

新加坡 LNG 接收站設備與碼頭營運皆由新加坡液化天然氣公司 (Singapore LNG Corporation, SLNG)營運,不過新加坡能源管理局 (EMA)已頒給 Shell 和 Pavilion 兩家公司 LNG 進口許可證,因此 2017 年起這兩家公司向 SLNG 租借設備已開始進行「車對船」之加液業 務,對於「船對船」之加液業務因為投資門檻較高,尚未進行投資。

對於港口的環保政策,新加坡對加裝船舶洗滌器、低硫燃油和 LNG 等只要符合 IMO 2020 規範皆免收港口費的 25%, 並在關稅部 份未優惠於 LNG 船用燃料,惟考慮 IMO 航運燃料規範日益嚴峻, 新加坡內船運公司選擇使用洗滌塔之數量較少,另外,新加坡目前 低硫燃油生產能力有限,恐供不應求,新加坡政府認為有必要強化 發展 LNG 燃料,截至目前已提供將近 200 萬新元給予新加坡四家造 船公司作為興建 LNG 燃料船之補助。

(三) 韓國

為因應國際船舶排放規範,韓國政府由海洋漁業部門與工業部門聯合制定「促進 LNG 的船舶相關產業發展計畫」,規劃於短期內利用現有接收站設備提供加液業務,於中長期以釜山及蔚山港口優先示範設置專用加液設施,後續拓展至韓國其它主要商港口內皆具備加液設施。2015 年 7 月海洋漁業部宣布於釜山港建立综合業務專區促進民間企業投入 LNG 加液業務,於 2016 年 10 月於荷蘭、新加坡與日本等國家簽署了國際合作備忘錄(MOU),以確保與國際主要港口間之 LNG 燃料船往來。

韓國現有之 LNG 燃料船係觀光遊輪-「Eco-Nuri」,該船自 2013年7月啟用,截至 2016年底已運行超過 300次,船商表示因改用 LNG燃料每年燃料成本能降低一億韓元,能作為韓國改用 LNG船用燃料之參考案例。

(四) 荷蘭

荷蘭於 2013 年指定阿姆斯特丹港口內,規劃一座專門 LNG 加液之碼頭,並從比利時 Zeebrugge 接收站或鹿特丹 Gate LNG 接收站以槽車載運 LNG 至當地,進行「車對船」之加液業務,由於近年來供應增加,荷蘭政府於 2018 年將「車對船」方式更改為「船對船」,並浚深碼頭至 15 公尺作為 LNG 加液船駁船專用碼頭,並提供民間企業建造 LNG 加液船駁船之補助。

三、國內發展作法

(一) 技術可行性

我國交通部於 108 年 1 月 1 日起規範外籍船舶及航駛國際航線 之國籍船舶,進入我國國際商港區域,應採用硫含量以重量計 0.5% 以下之低硫燃油或具有同等減排效應之裝置或替代燃料,惟低硫燃料油煉製困難,目前產量較少且成本較高,對航運業者營運造成明顯影響,且國內四個國際商港均尚未具備 LNG 加液站設施或Reloading 設施提供業者選擇 LNG 作為替代燃料,未能銜接國際趨勢,甚至未來恐影響國際船商至台停靠之意願。

隨著全球海運貿易的發展及對環境保護之要求日增漲,LNG 船 用燃料勢必成為未來國際發展趨勢,為取得亞洲 LNG 燃料船航線, 日本、韓國與新加坡都積極發展國內港口之加液設施,台灣位於亞 太經貿運輸重要樞紐,地理位置上具有船用天然氣燃料發展之優勢, 應參考亞鄰國家積極發展 LNG 船用燃料,建議可行之作法為待中油 公司於台中接收站內完成灌裝場後,能以槽車裝載 LNG 至國內各口 港,作為 LNG 加液設施,此方式能降低初期投資成本,較能吸引民 間企業投入,進而提升國內航運燃料市場之競爭力。

由於 LNG 加液與燃油補給在港區分類屬一般危險區位,因此港區需先規劃專屬泊位,並需確認 LNG 槽車進出路線和警戒範圍,加液時之安全措施能參考日本針對「車對船」加液作業訂定相關員工操作規範、流程以及災害應對方式⁵。

(二) 相關配套作法

各國為增加民間企業投入船用天然氣燃料發展,除對 LNG 加液設備之補助外,歐洲、日本或韓國等國家也有給予關稅減少,當船隻以天然氣為燃料進入港口時,能減少或免除進口關稅,增加船商改用 LNG 船用燃料之意願,並提高市場需求量,或投資加液站設備之補助等配套作法,詳如下表 3 所示。

_

⁵ Truck to Ship 方式 LNG 移送の オペレーションガイドライ ン

表 3 各國 LNG 船用燃料發展配套措施

表 3 各國 LNG 船用燃料领展配套措施					
國家	放寬/強化規範	配套規範	成效		
歐盟	● 加強硫化物排放規	● 根據《歐盟替代燃料	LNG 補給設		
	範等。	指令》,2025 年歐盟	施已在歐洲		
	● 加強洗滌水(除酸作	139 個主要港口內應	港口實施。		
	業後)排放規範。德	具備 LNG 加液設施。			
	國和丹麥禁止於該	● 高速高路上應每 400			
	國 12 海里內之洗滌	公里間隔內具一座加			
	塔排水。	氣站。			
欧血	● 根據《2025 年港口	● 全歐交通網絡(TEN-			
	設施指令》,要求主	T)提供 LNG 設施之研			
	要港口建設污泥處	究、維護 10%~85%之			
	理設施。	補助計劃。			
		● 船舶符合船舶環境指			
		數(ESI)規定,給予 5%			
		~15%關稅減免。			
	● 境外空氣污染條約	● 企業團體具備 NOx 基	由渡輪開始		
	NOx 減排規範	金。	逐步改用		
挪威	● 徵 NOx 稅收	● 國家公路對策促進政	LNG 動力船		
74/75X		策: LNG 動力船投資	隻,並支持		
		補助(最高達 80%)。	LNG 補給設		
			施建設。		
	已引入港口廢氣規範		尚未引入		
	(IMO Tier3): SOx 不得		LNG 補給設		
美國	高於 0.1%規範。		施,改使用		
			低硫燃油和		
			蓄電池。		
	國家標準委員會制訂	● LNG 燃料船、洗滌器	2017 年 LNG		
新加坡	LNG加液之規範和操作	或其它低排放方式均	加液設施已		
	要求	享25%關稅減免。	在新加坡實		
		● 政府將提供 200 萬星	施		
		元之補助,以提供造			
		船業者燃料轉化。			

韓國	國內船舶依據《海洋管 理法》限制的硫含量不 得高於 1%。	•	若船舶符合船舶環境 指數(ESI)規範,能減 免 10%出入境費。 政策方案以 1.專案計 畫特定港口發展 LNG 加液 2.優惠 LNG燃料 船關稅減免 3.增加國 內 LNG燃料船造船能 力。	預估 2025 年 韓國 LNG 加 滚 超 值 6.5 加 產 值 章 元, 並 能創 業 他 能創業機會
----	-------------------------------------	---	--	--

資料來源: LNG バンカリング等に関する調查・分析,本研究整理。

四、結論

雖然現階段 LNG 船用燃料占船運替代燃料中比例並不高,但因 其價格相對低硫燃油較便宜,逐漸受到航運業者之青睞,全球主力 航運業者已宣布將逐步改用 LNG 燃料貨櫃船,因此日本和新加坡 亦正積極發展港口之 LNG 加液設施,並規劃發展成為亞洲 LNG 樞 紐港為目標,台灣具有發展 LNG 船用燃料之潛力,應參考亞鄰國家 相關經驗作為後續天然氣發展方向。