introduction to statistical learning

chapter iii summary - linear regression

simple linear regression

$$Ypprox eta_0+eta_1 X$$

$$\hat{y}_i = \hat{eta}_0 + \hat{eta}_1 x_i$$

$$egin{align} \hat{y}_i &= \hat{eta}_0 + \hat{eta}_1 x_i \ e_i &= y_i - \hat{y}_i \ \end{pmatrix}$$

$$egin{aligned} \hat{y}_i &= \hat{eta}_0 + \hat{eta}_1 x_i \ e_i &= y_i - \hat{y}_i \ RSS &= e_1^2 + e_2^2 + \cdots + e_n^2 \end{aligned}$$

coefficients value

$$\hat{eta}_1 = rac{\sum_{i=1}^n (x_i - ar{x})(y_i - ar{y})}{\sum_{i=1}^n (x_i - ar{x})^2}$$

$$\hat{eta}_0 = ar{y} - \hat{eta}_1 ar{x}$$

coefficients error

$$SE(\hat{eta}_0)^2 = \sigma^2 \left[rac{1}{n} + rac{ar{x}^2}{\sum_{i=1}^n (x_i - ar{x})^2}
ight]$$

$$SE(\hat{eta}_1)^2 = rac{\sigma^2}{\sum_{i=1}^n (x_i - ar{x})^2}$$

$$\hat{\sigma} = \sqrt{RSS/n-2}$$

assessing the coefficients

confidence interval beta

$$\hat{eta}_0 \pm 2 \cdot SE(\hat{eta}_0)$$

$$\hat{eta}_1 \pm 2 \cdot SE(\hat{eta}_1)$$

assessing the coefficients

hypothesis testing

$$egin{aligned} H_0: \hat{eta}_1 &= 0 \ H_1: \hat{eta}_1
eq 0 \end{aligned}$$

$$H_1:\hat{eta}_1
eq 0$$

$$t=rac{\hat{eta}_1-0}{SE(\hat{eta}_1)}$$

assessing the coefficients statsmodel

OLS Regression Results

Don Wariable.		Totto	D	anarod.			0.133
Dep. Variable:		Lottery		squared:			
Model:			-	j. R-squar			0.123
Method:		Least Square	es F-s	statistic:			12.89
Date:		Thu, 22 Aug 201	l9 Pro	b (F-stat	istic):		0.000555
Time:		21:40:0	01 Log	y-Likeliho	od:		-392.11
No. Observatio	ns:	8	36 AIC	: :			788.2
Df Residuals:		8	34 BIO	: :			793.1
Df Model:			1				
Covariance Typ	e:	nonrobus	st				
	coef	std err	 t	P>	t	[0.025	0.975]
Intercept	64.0896	6.265	10.230	0.0	000	51.631	76.548
Literacy	-0.5245	0.146	-3.590	0.0	01	-0.815	-0.234
Omnibus:		8.09	====== 96 Dui	bin-Watso	====== on :	======	 1.946
<pre>Prob(Omnibus):</pre>		0.03	l7 Jai	que-Bera	(JB):		3.090
Skew:		0.0	72 Pro	b(JB):			0.213
Kurtosis:		2.08	33 Cor	nd. No.			107.

assessing the model residual standard error

$$RSE = \sqrt{rac{1}{n-p-1}}RSS$$

assessing the model

$$R^2$$

$$R^2 = rac{TSS - RSS}{TSS} = 1 - rac{RSS}{TSS}$$

$$RSS = \sum_{i=1}^n \left(y_i - \hat{y}_i
ight)^2$$

$$TSS = \sum_{i=1}^n \left(y_i - ar{y}
ight)^2$$

multiple linear regression

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \cdots + \beta_p X_p + \epsilon$$

estimating the coefficients coefficients value

$$Y = egin{bmatrix} y_1 \ y_2 \ dots \ y_n \end{bmatrix} X = egin{bmatrix} 1 & x_{11} & x_{12} & \cdots & x_{1p} \ 1 & x_{21} & x_{22} & \cdots & x_{2p} \ 1 & x_{i1} & x_{i2} & \cdots & x_{ip} \ dots & dots & dots & dots \ 1 & x_{n1} & x_{n2} & \cdots & x_{np} \end{bmatrix}$$

$$\hat{eta} = egin{bmatrix} \hat{eta}_0 \ \hat{eta}_1 \ dots \ \hat{eta}_p \end{bmatrix} = (X'X)^{-1}X'Y$$

coefficients error

$$SE(\hat{eta})^2 = \sigma^2(X'X)^{-1}$$

$$\hat{\sigma}^2 = rac{e'e}{n-p}$$

assessing the coefficients and model statsmodel

OLS Regression Results

Dep. Variabl Model: Method: Date: Time: No. Observat Df Residuals Df Model: Covariance T	ions: :	Thu, 22	Lottery OLS Squares Aug 2019 21:41:13 86 82 3 onrobust	Adj. F-sta Prob Log-1 AIC:	uared: R-squared: atistic: (F-statistic) Likelihood:	:	0.223 0.195 7.861 0.000113 -387.38 782.8 792.6
	coef	std	====== err	====== t	P> t	======== [0.025	0.975
Intercept	37.6315					16.775	
Literacy					0.034		
Donations	0.0003	0.	000	0.695	0.489	-0.001	
Infants	0.0009	0.	000 	2.892 	0.005	0.000	0.001
Omnibus: Prob(Omnibus Skew: Kurtosis:):		15.000 0.001 0.190 1.944	Jarqı Prob	` '		1.891 4.516 0.105 9.61e+04

F-Test

$$F=rac{(TSS-RSS)/p}{RSS/(n-p-1)}$$

Model selection

forward selection

backward selection

mixed selection

model fit

 R^2

RSE

predictions

$$SE(\hat{y}_0) = \sqrt{\sigma^2 \left[1 + rac{1}{n} + rac{(x_0 - ar{x})^2}{\sum_{i=1}^n (x_i - ar{x})^2}
ight]}$$

$$\hat{y}_0 \pm t_{0.975,n-2} \cdot SE(\hat{y}_0)$$

other considerations

qualitative predictors

binary

$$x_{i2} = egin{cases} 1 ext{ has some characteristic} \ 0 ext{ doesn't have that characteristic} \end{cases}$$

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \epsilon_i$$

$$y_i = egin{cases} eta_0 + eta_1 x_{i1} + eta_2 + \epsilon & ext{if the ith sample is positive} \ eta_0 + eta_1 x_{i1} + \epsilon_i & ext{if the ith sample is not positive} \end{cases}$$

qualitative predictors

multiple

$$x_{i2} = egin{cases} 1 ext{ if A} \ 0 ext{ if not A} \end{cases}$$

$$x_{i3} = egin{cases} 1 ext{ if B} \ 0 ext{ if not B} \end{cases}$$

$$y_i = eta_0 + eta_1 x_{i1} + eta_2 x_{i2} + eta_3 x_{i3} + \epsilon_i$$

$$y_i = egin{cases} eta_0 + eta_1 x_{i1} + eta_2 + \epsilon & ext{if A} \ eta_0 + eta_1 x_{i1} + eta_3 + \epsilon_i & ext{if B} \ eta_0 + eta_1 x_{i1} + \epsilon_i & ext{if C} \end{cases}$$

extensions

removing additive assumption

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_1 X_2 + \epsilon$$

$$Y = eta_0 + (eta_1 + eta_3 X_2) X_1 + eta_2 X_2 + \epsilon$$

$$Y = eta_0 + eta_1 X_1 + (eta_2 + eta_3 X_1) X_2 + \epsilon$$

extensions

removing additive assumption

extensions

non-linear relationships

non-linearity of the response-predictor relationships

correlation of the error terms

non-constant variance of error terms

potential problems outliers

high-leverage points

collinearity

that's it