Neural network training

Gal Lindič, Ožbej Golob, Žan Jonke

Neural network training

- Forward pass algorithm
- Loss calculation
- Backward pass algorithm
- The network has 1 hidden of variable size layer
- Train set size is 24421 and test set size is 8140 with 14 features
- We experimented with varying batch size and hidden layer size

OpenMP implementation

- Parallelization done row-wise ie. one thread per row
 - In matrix multiplication one thread per dot product
 - In layer activation one thread per row
 - In loss calculation one thread per sample
 - In hadamard product one thread per row

OpenMP benchmarking

- Increasing the number of threads pays off for larger hidden size
- For small batch sizes computing on large
- number of cores does not pay of

OpenMP benchmarking

- Noticeable increase in speedup for larger hidden size
- Efficiency deteriorates

CUDA implementation

- Multiple kernels that handle different calculation tasks
- Dataset and MLP matrices stored in global GPU memory
- Number of threads in a kernel equals batch size
- Parallelization done row-wise
 - Each thread handles one row from batch data
 - Cases when there are matrices with more rows than threads, we divide the rows equally among threads

CUDA benchmarking

- Increase in batch size greatly improves execution time
- Having higher grid sizes (more blocks in kernel) slightly improves execution time

OpenMPI implementation

- Parallelization done by splitting into smaller problems
 - MPI_Scattery to distribute the uneven load (matrix A)
 - MPI Bcast to broadcast the matrix B
 - MPI Gather to consolidate the results into matrix C
 - Other computations follow the same pattern (adding bias, hadamard product ...)

OpenMPI benchmarking

- 1 node works faster than 2 nodes
- Increased batch size yields lower execution times

QA