No. date / / title

혼공 용어 노트

혼자 공부하는 머신러닝+딥러닝

혼자 공부하며 함께 만드는

혼공 용어 노트

목차

가나다 순

기중치(또는 계수) weight(또는 coefficient)	11
강인공지능 vs 약인공지능	06
검증 세트 validation set	16
결정 트리 Decision Tree	16
결정계수 coefficient of determination	10
과대적합 vs 과소적합 overfitting vs underfitting	10
교차 검증 cross validation	16
군집 clustering	19
그레이디언트부스팅 gradient boosting	18
그리드 서치 Grid Search	17
넘파이 numpy	09
다중 분류 multi-class classification	13
다중 회귀 multiple regression	11
다항 회귀 polynomial regression	11
단어 임베딩 word embedding	27
데이터 전처리 data preprocessing	09
드롭이웃 dropout	22
딥러닝 deep learning	20
라쏘 회귀 lasso regression	12
랜덤 서치 Random Search	17
랜덤 포레스트 Random Forest	17
렐루 함수 ReLU Function	21
로지스틱 손실 함수 logistic loss function	15

로지스틱 회귀 logistic regression	13
릿지 회귀 ridge regression	12
말뭉치 corpus	26
맷플롯립 matplotlib	07
머신러닝과 딥러닝 machine learning과 deap learning	06
미니배치 경사 하강법 minibatch gradient descent	14
배열 인덱싱 array indexing	09
배치 경사 하강법 batch gradient descent	15
밸리드 패딩 valid padding	23
변환기 transformer	12
부 <u>트스트</u> 랩 샘플 bootstrap sample	17
불리언 인덱싱 boolean indexing	13
브로드캐스팅 broadcasting	09
비지도 학습 unsupervised learning	08
샘플링 편향 sampling bias	09
선형 회귀 linear regression	11
셀 cell	26
셀 상태 cell state	27
소프트맥스 함수 softmax function	14
손실 함수 loss function	15
순차 데이터 sequential data	25
순환 신경망 recurrent neural network, RNN	26
스트라이드 stride	24

시계열 데이터 time series data	25
시그모이드 함수 sigmoid function	13
심층 신경망 deep neural network, DNN	21
앙상블 학습 ensemble learning	17
에포크 epoch	14
엑스트라 트리 extra trees	18
옵티마이저 optimizer	22
원-핫 인코딩 one-hot encoding	20
은닉 상태 hidden state	26
은닉층 hidden layer	21
이너셔 inertia	19
이진 분류 binary classification	06
인공신경망 artificial neural network, ANN	20
인공지능 artificial intelligence	06
적응적 학습률 adaptive learning	22
정형 데이터 vs 비정형 데이터	
structured data vs unstructured data	17
주성분 분석 principal component analysis, PCA	19
지도 학습 supervised learning	08
차원 축소 dimensionality reduction	19
최대 풀링과 평균 풀링 max pooling과 average pooling	24
코랩과 노트북 Colab과 Notebook	06
코배 callback	22

크로스엔트로피 손실 함수 cross-entropy loss function	15
텐서플로 TensorFlow	20
토큰 token	27
특성 feature	07
특성 맵 feature map	23
패딩과 세임 패딩 padding과 same padding	23
풀링 pooling	24
피드포워드 신경망 feedforward neural network, FFNN	25
필터 filter	23
하이퍼파라미터 hyperparameter	12
합성곱 convolution	23
확률적 경사 하강법 Stochastic Gradient Descent	14
활성화 함수 activation function	20
회귀 regression	10
훈련 training	07
훈련 데이터 training data	08
훈련 세트와 테스트 세트 train set와 test set	09
히스토그램 histogram	19
히스토그램 기반 그레이디언트 부스팅	
Histogram-based Gradient Boosting	18
힌지 손실 hinge loss	15

ABC 순

activation function 활성화 함수	20
adaptive learning বঙ্ব ক্ৰি	22
ANN artificial neural network 인공신경망	20
array indexing 배열 인덱싱	09
artificial intelligence 인공지능	06
batch gradient descent 배치 경사 하강법	15
binary classification 이진 분류	06
boolean indexing 불리언 인덱싱	13
bootstrap sample 부트스트랩 샘플	17
broadcasting 브로드캐스팅	09
callback 콜백	22
cell 셀	26
cell state 셀 상태	27
clustering 군집	19
coefficient of determination 결정계수	10
Colab과 Notebook 코랩과 노트북	06
convolution 합성곱	23
corpus 말뭉치	26
cross validation 교차 검증	16
cross-entropy loss function 크로스엔트로피 손실 함수	15
data preprocessing 데이터 전처리	09
Decision Tree 결정 트리	16
deep learning 딥러닝	20

dimensionality reduction 차원 축소	19
DNN, deep neural network 심층 신경망	21
dropout 드롭이웃	22
ensemble learning 앙상블 학습	17
epoch 에포크	14
extra trees 엑스트라 트리	18
feature 특성	07
feature map 특성 맵	23
FFNN feedforward neural network 피드포워드 신경망	25
filter 필터	23
gradient boosting 그레이디언트부스팅	18
Grid Search 그리드 서치	17
GRU Gated Recurrent Unit	28
hidden layer 은닉층	21
hidden state 은닉 상태	26
hinge loss 힌지 손실	15
histogram 히스토그램	19
Histogram-based Gradient Boosting	18
hyperparameter 하이퍼파라미터	12
inertia 이너서	19
k-최근접 이웃 분류 vs k-최근접 이웃 회귀	10
k-최근접 이웃 알고리즘	07
k-means algorithm k-평균 알고리즘	19

lasso regression 라쏘 회귀	12
linear regression 선형 회귀	11
logistic loss function 로지스틱 손실 함수	15
logistic regression 로지스틱 회귀	13
loss function 손실 함수	15
LSTM Long Short-Term Memory	27
machine learning과 deap learning 머신러닝과 딥러닝	06
matplotlib एम्ड्री	07
max pooling과 average pooling 최대 풀링과 평균 풀링	24
minibatch gradient descent 미니배치 경사 하강법	14
multi-class classification 다중 분류	13
multiple regression 다중 회귀	11
numpy 넘파이	09
one-hot encoding 원-핫 인코딩	20
optimizer 옵티마이저	22
overfitting vs underfitting মণেব্র vs মুধ্বর্ত্ত	10
padding과 same padding 패딩과 세임 패딩	23
PCA. principal component analysis 주성분 분석	19
polynomial regression 다항 회귀	11
pooling 풀링	24
Random Forest 랜덤 포레스트	17
Random Search 랜덤 서치	17
regression 회귀	10

ReLU Function 렐루 함수	21
ridge regression ਦੁਸ ਕੇਸ	12
RNN recurrent neural network 순환 신경망	26
sampling bias 샘플링 편향	09
sequential data 순차데이터	25
sigmoid function 시그모이드 함수	13
softmax function 소프트맥스 함수	14
Stochastic Gradient Descent 확률적 경사 하강법	14
stride 스트라이드	24
structured data vs unstructured data	17
supervised learning 지도 학습	80
TensorFlow 텐서플로	20
time series data 시계열 데이터	25
token 토큰	27
train set와 test set 훈련 세트와 테스트 세트	09
training ^{훈련}	07
training data 훈련 데이터	80
transformer 변환기	12
unsupervised learning 비지도 학습	80
valid padding 밸리드 패딩	23
validation set 검증 세트	16
weight 가중치 (또는 계수)	11
word embedding 단어 일베팅	27

	_	
	N 1	
	U I 장 ♡	
□인공지능	artificial intelligence	[01장 027쪽]
	학습하고 추론할 수 있는 지능을 가진 컴퓨터 시스템을	을 만드는 기술
□ 강인공지능 vs		[01장 027쪽, 028쪽]
약인공지능	강인공지능은 인공일반지능이라고도 하고 사람의 지능	5과 유사(영화 속 전지전능한
	AI)함. 약인공지능은 특정 분야에서 사람을 돕는 보조	조 AI(음성 비서나 자율 주행
	도 여기 포함)	
□ 머신러닝과	machine learning과 deap learning	[01장 028쪽, 029쪽]
딥러닝	머신러닝은 데이터에서 규칙을 학습하는 알고리즘을 역	연구하는 분야(대표 라이브리
	리는 사이킷런). 딥러닝은 인공신경망을 기반으로 한	머신러닝 분야를 일컬음(대
	표 라이브러리는 텐서플로)	
□코랩과 노트북	Colab과 Notebook	[01장 033쪽, 037쪽]
	코랩은 웹 브라우저에서 텍스트와 프로그램 코드를 자	유롭게 작성 할 수 있는 온라
	인 에디터로 이를 코랩 노트북 또는 노트북이라 부름.	최소 단위는 셀이며 코드 셀
	과 텍스트 셀이 있음	
□ 이진 분류	binary classification	[01장 046쪽]
	머신러닝에서 여러 개의 종류(혹은 클래스) 중 ㅎ	나나를 구별해 내는 문제를
	분류classification라고 부르며 2개의 종류(클래스) 중 하나	를 고르는 문제를 이진 분류
	라 함	

□특성	feature [01장 04	7쪽]
	데이터를 표현하는 특징으로 여기서는 생선의 특징인 길이와 무게를 특성이라	함-
	첫 번째특성 : 길이 두 번째특성 :무게 () () 첫 번째 돗 먼	
□ 맷플롯립	matplotlib [01장 048	8쪽]
	파이썬에서 과학계산용 그래프를 그리는 대표 패키지	
□ k-최근접 이웃	k-Nearest Neighbors Algorithm, KNN [01장 050	0쪽]
알고리즘	가장 간단한 머신러닝 알고리즘 중 하나로 어떤 규칙을 찾기보다는 인접한 샘플	<u> </u>
	기반으로 예측을 수행함	
□ 훈련	training [01장 05	3쪽]
	머신러닝 알고리즘이 데이터에서 규칙을 찾는 과정 또는 모델에 데이터를 전달	
	여 규칙을 학습하는 과정	
		5

	02장
□지도 학습	supervised learning [02장 067쪽]
	지도 학습은 입력(데이터)과 타깃(정답)으로 이뤄진 훈련 데이터가 필요하며 새로
	운 데이터를 예측하는 데 활용함. 1장에서 사용한 k-최근접 이웃이 지도 학습 알
	고리즘임
□ 비지도 학습	unsupervised learning [02장 067쪽]
	타깃 데이터 없이 입력 데이터만 있을 때 사용. 이런 종류의 알고리즘은 정답을 사
	용하지 않으므로 무언가를 맞힐 수가 없는 대신 데이터를 잘 파악하거나 변형하는
	데 도움을 줌
	k-첫2점 이것
	राप्ट की विभाग्य की
	ખ્યત્વે
	沙村台
□훈련 데이터	training data [02장 067쪽]
	지도 학습의 경우 필요한 입력(데이터)과 타깃(정답)을 합쳐 놓은 것
	2개의 특석
	4974 \ [25.4, 242.0], \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
	([[25.4, 242.0], 497H (26.3, 290.0], 사람들 : : : [15.0, 19.9]]

□훈련 세트와	train set와 test set [02	장 068쪽]
테스트 세트	모델을 훈련할 때는 훈련 세트를 사용하고 평가는 테스트 세트로 함. 테스	트 세트
	는 전체 데이터에서 20~30%	
□샘플링 편향	sampling bias [029	장 073쪽]
	훈련 세트와 테스트 세트에 샘플이 고르게 섞여 있지 않을 때 나타나며 샘	플링 편
	향이 있음. 제대로 된 지도 학습 모델을 만들 수 없음	
	(Jun 은 설 전 GIO) E1	
	호면 ME 전 전 전 전 전 전 전 전 전 전 전 전 전 전 전 전 전 전	
□넘파이	numpy [02:	장 073쪽]
	파이썬의 대표적인 배열array 라이브러리로 고차원의 배열을 손쉽게 만들고	조작할
	수 있는 간편한 도구를 많이 제공함. 공식 명칭은 NumPy	
□배열 인덱싱	array indexing [029	장 077쪽]
	넘파이 기능으로 여러 개의 인덱스로 한 번에 여러 개의 원소를 선택할 수 9	있음
□데이터 전처리	data preprocessing [023	장 099쪽]
	머신러닝 모델에 훈련 데이터를 주입하기 전 가공하는 단계로 특성값을 일	정한 기
	준으로 맞추어 주는 작업. 데이터를 표현하는 기준이 다르면 알고리즘을 올	살바르게
	예측할 수 없음	
□브로드캐스팅	broadcasting [029	장 100쪽]
	조건을 만족하면 모양이 다른 배열 간의 연산을 가능하게 해 주는 기능	

	03장 [♡]	
□회귀	regression	[03장 115쪽]
	클래스 중 하나로 분류하는 것이 아니라 역	임의의 어떤 숫자를 예측하는 문제
□ k-최근접 이웃	참고용어) k-최근접 이웃 알고리즘	[03장 115쪽, 116쪽]
분류 vs k-최근	k–최근접 이웃 알고리 즘 을 사용해 각각 {	분류 문제와 회귀 문제를 해결하는 방법
접 이웃 회귀	k- 힘근접 이웃 블류	k-힘근접 이웃 회귀
		(00
□ 결정계수(R²)	지 지 지 지 지 지 지 지 지 지 지 지 지 지 지 지 지 지 지	(0°, 5°, 6° 다내서 X = 10° + 8° +6° = 8° (03장 120쪽) 이의 값으로 계산한 것으로 1에 가까울수
	록 완벽함 R = (= (EFT) - 떠(속) * (EFT) - 평균 **	
□과대적합 vs	overfitting vs underfitting	[03장 122쪽]
과소적합	과대적합은 모델의 훈련 세트 점수가 테스	느트 세트 점수보다 훨씬 높을 경우를 의미
	함. 과소적합은 이와 반대로 모델의 훈련	세트와 테스트 세트 점수가 모두 동일하
	게 낮거나 테스트 세트 성능이 오히려 더	높을 경우를 의미함

□선형 회귀	linear regression	[03장 135쪽
	널리 사용되는 대표적인 회귀 알고리즘으로	특성이 하나인 경우 어떤 직선을 학
	하는 알고리즘(농어 무게 학습 그래프)	
	दल दिया	
	놓여즉N(= Δ×놓여길이 +	Ь
	전달(b) 기 <u>년</u> 11 (a)	
	±0	
□가중치	weight (또는 coefficient)	[03장 137즉
(또는 계수)	선형 회귀가 학습한 직선의 기울기를 종종 기	중치 또는 계수라 함
	्रभ उध्ध	서 기울기(a)
□다항 회귀	polynomial regression	[03장 139즉
	다항식을 사용하여 특성과 타킷 사이의 관계	를 나타낸 선형 회귀
	709 gm	
	우게= (x 길이² + b x 길이 + C	/
	#o	_ गृ!०
□다중 회귀	multiple regression	[03장 151 1
	여러 개의 특성을 사용한 선형 회귀	Et Z
		7
		等付 1

□변환기	transformer [038 1542	<u>[</u>]
	특성을 만들거나 전처리하는 사이킷런의 클래스로 타깃 데이터 없이 입력 데이터	=
	를 변환함	
□릿지 회귀	ridge regression [03장 160절	[]
	규제가 있는 선형 회귀 모델 중 하나로 모델 객체를 만들 때 alpha 매개변수로 구	7
	제의 강도를 조절함. alpha 값이 크면 규제 강도가 세지므로 계수 값을 더 줄이그	그
	조금 더 과소적합되도록 유도하여 과대적합을 완화시킴	
□하이퍼파라미터	hyperparameter [03장 161절	÷]
	머신러닝 모델이 학습할 수 없고 사람이 지정하는 파라미터	
□ 라쏘 회귀	lasso regression [038 1634	<u></u>
	또 다른 규제가 있는 선형 회귀 모델로 alpha 매개변수로 규제의 강도를 조절힘	r.
	릿지와 달리 계수 값을 아예 0으로 만들 수도 있음	
		2
		\

	04장 [♡]	
□ 다중 분류	multi-class classification	[04장 181쪽]
	타깃 데이터에 2개 이상의 클래스가 포함된 문제	
□로지스틱 회귀	logistic regression	[04장 183쪽]
	선형 방정식을 사용한 분류 알고리즘으로 선형 회귀와 달리 시그	'모이드 함수나 소
	프트맥스 함수를 사용하여 클래스 확률을 출력	
□시그모이드 함수	sigmoid function	[04장 183쪽]
	시그모이드 함수 또는 로지스틱 함수라고 부르며 선형 방정식의	출력을 0과 1 사
	이의 값으로 압축하며 이진 분류를 위해 사용. 이진 분류일 경우	- 시그모이드 함수
	의 출력이 0.5보다 크면 양성 클래스, 0.5보다 작으면 음성 클래	스로 판단
	$\emptyset = \frac{1}{1 + e^{-z}}$ $z = 0$ $+\infty$	
□불리언 인덱싱	boolean indexing	[04장 185쪽]
	넘파이 배열은 True, False 값을 전달하여 행을 선택할 수 있으	며 이를 불리언 인
	덱싱이라고 함	

□ 소프트맥스 함수	softmax function [04	4장 190쪽]
	여러 개의 선형 방정식의 출력값을 0~1 사이로 압축하고 전체 합이 10	되도록
	만들며 이를 위해 지수 함수를 사용하기 때문에 정규화된 지수 함수라고도	: 함·
	$S1 = \frac{e^{z1}}{e_{-sum}}, S2 = \frac{e^{z2}}{e_{-sum}}, \dots, S7 = \frac{e^{z7}}{e_{-sum}}$	
□확률적 경사	Stochastic Gradient Descent [04	4장 200쪽]
하강법	훈련 세트에서 랜덤하게 하나의 샘플을 선택하여 손실 함수의 경사를 따근	! 최적의
	모델을 찾는 알고리즘	
□에포크	epoch [04	4장 202쪽]
	확률적 경사 하강법에서 훈련 세트를 한 번 모두 사용하는 과정	
	호전대로 사용 3는개의 muni (학국적 기사가 기사 화상명) 기	
□미니배치 경사	minibatch gradient descent [04	4장 202쪽]
하강법	1개가 아닌 여러 개의 샘플을 사용해 경사 하강법을 수행하는 방법으로 문이 사용	실전에서

□배치 경사 하강법	batch gradient descent	[04장 202쪽]
	한 번에 전체 샘플을 사용하는 방법으로 전체 데이터를 사용하므.	로 가장 안정적인
	방법이지만 그만큼 컴퓨터 자원을 많이 사용함. 또한 어떤 경우는	는 데이터가 너무
	많아 한 번에 전체 데이터를 모두 처리할 수 없을지도 모름	
□손실 함수	loss function	[04장 203쪽]
	어떤 문제에서 머신러닝 알고리즘이 얼마나 엉터리인지를 측정하	는 기준.
	£7 .	
□로지스틱 손실	logistic loss function 손실 한수라고도 한	[04장 206쪽]
함수	양성 클래스(타깃 = 1)일 때 손실은 $-\log(예측 확률)$ 로 계산하다	ri, 1 확률이 1에
	서 멀어질수록 손실은 아주 큰 양수가 됨. 음성 클래스(타깃 =	0)일 때 손실은
	-log(1-예측 확률)로 계산함. 이 예측 확률이 0에서 멀어질수록	🕴 손실은 아주 큰
	양수가 됨	
	log Et 7 = 1 9 04	
	2 1 → - lna (जाई	好え)
	61(국 한국 전 E+7} = 0 일때	
	- log (1-	明辛\$元)
□크로스엔트로피	cross-entropy loss function	[04장 206쪽]
손실 함수	다중 분류에서 사용하는 손실 함수	
□ 힌지 손실	hinge loss	[04장 212쪽]
	서포트 벡터 머신support vector machine이라 불리는 또 다른 머신러닝	성 알고리즘을 위
	한 손실 함수로 널리 사용하는 머신러닝 알고리즘 중 하나. SGE	OClassifier가 여
	러 종류의 손실 함수를 loss 매개변수에 지정하여 다양한 머신러	닝 알고리즘을 지
	원함	
		(i)

□그리드 서치	Grid Search [05	장 248쪽]
	하이퍼파라미터 탐색을 자동화해 주는 도구	
□랜덤 서치	Random Search [05	장 252쪽]
	랜덤 서치는 연속적인 매개변수 값을 탐색할 때 유용	
□정형 데이터 vs	structured data vs unstructured data [05]	장 264쪽]
비정형 데이터	특정 구조로 이루어진 데이터를 정형 데이터라 하고, 반면 정형화되기 어리	부운 사진
	이나 음악 등을 비정형 데이터라 함 CSV나 데이터베이스 등	
□ 앙상블 학습	ensemble learning [05	장 264쪽]
	여러 알고리즘(예, 결정 트리)을 합쳐서 성능을 높이는 머신러닝 기법	
□랜덤 포레스트	Random Forest [05	장 265쪽]
	대표적인 결정 트리 기반의 앙상블 학습 방법. 안정적인 성능 덕분에 널리	사용됨.
	부트스트랩 샘플을 사용하고 건터 된레스트	
	랜덤하게 일부 특성을 선택하	정 트리
	여 트리를 만드는 것이 특징	
□ 부트스트랩 샘플	bootstrap sample [05	장 265쪽]
	데이터 세트에서 중복을 허용하여 데이터를 샘플링하는 방식	
	FEVESA MÁ	
	□ △ स्मुह्य कृष्ट	
	ु ति शा <u>त</u> रतिल शिक्षेत्र	
	०० → तृम्ह्य देख	
	<u>;</u>	

엑스트라 트리	extra trees (참고용어) 랜덤 포레스, 앙상블 학습 [05장 269절
	랜덤 포레스트와 비슷하게 동작하며 결정 트리를 사용하여 앙상블 모델을 만들기
	만 부트스트랩 샘플을 사용하지 않는 대신 랜덤하게 노드를 분할하여 과대적합
	감소시킴
그레이디언트	gradient boosting [05장 271절
부스팅	고이가 얕은 결정 트리를 사용하여 이전 트리의 오차를 보완하는 방식으로 앙상 <mark>¦</mark>
	하는 방법. 깊이가 얕은 결정 트리를 사용하기 때문에 과대적합에 강하고 일반적
	으로 높은 일반화 성능을 기대할 수 있음
	Histogram-based Gradient Boosting [05장 273至
히스토그램 기반	
그레이디언트	그레이디언트 부스팅의 속도를 개선한 것으로 과대적합을 잘 억제하며 그레이디오
부스팅	트 부스팅보다 조금 더 높은 성능을 제공. 안정적인 결과와 높은 성능으로 매우 역
	기가 높음
	~()

	NC ~	
	Ub장♡	
□히스토그램	histogram [06장 294년	즉]
	값이 발생한 빈도를 그래프로 표시한 것으로 보통 x축이 값의 구간(계급)이고, y-	축
	은 발생 빈도(도수)임	
□군집	clustering [06장 298략	즉]
	비슷한 샘플끼리 그룹으로 모으는 작업으로 대표적인 비지도 학습 작업 중 하나	
□ k−평균	k-means algorithm [06장 304환	즉]
알고리즘	처음에 랜덤하게 클러스터 중심을 정하여 클러스터를 만들고 그다음 클러스터!	의
	중심을 이동하여 다시 클러스터를 결정하는 식으로 반복해서 최적의 클러스터	를
	구성하는 알고리즘	
□이너셔	inertia [06장 311학	즉]
	k-평균 알고리즘은 클러스터 중심과 클러스터에 속한 샘플 사이의 거리를 잴 :	수
	있는데 이 거리의 제곱 합을 이너셔라고 함. 즉 클러스터의 샘플이 얼마나 가깝	ᆀ
	있는지를 나타내는 값임	
□ 치원 축소	dimensionality reduction [06장 319환	즉]
	데이터를 가장 잘 나타내는 일부 특성을 선택하여 데이터 크기를 줄이고 지도 학	습
	모델의 성능을 향상시킬 수 있는 방법	
□주성분 분석	principal component analysis, PCA [06장 319략	즉]
	차원 축소 알고리즘의 하나로 데이터에서 가장 분산이 큰 방향을 찾는 방법이며 이	컨
	방향을 주성분이라 함. 원본 데이터를 주성분에 투영하여 새로운 특성을 만들 수 있는	<u> </u>

	117	
	U/장 [®]	
□ 인공신경망	artificial neural network, ANN	[07장 347쪽]
	생물학적 뉴런에서 영감을 받아 만든 머신러닝 알고리즘. 신경망	는 기존의 머신러
	닝 알고리즘으로 다루기 어려웠던 이미지, 음성, 텍스트 분야에	서 뛰어난 성능을
	발휘하면서 크게 주목을 받고 있으며 종종 딥러닝이라고도 부름	
□딥러닝	deep learning	[07장 350쪽]
	딥러닝은 인공신경망과 거의 동의어로 사용되는 경우가 많으며	벼 혹은 심층 신경
	망deep neural network, DNN을 딥러닝이라고 부름. 심층 신경망은 여러	러 개의 층을 가진
	인공신경망임	
□텐서플로	TensorFlow	[07장 350쪽]
	구글이 만든 딥러닝 라이브러리로 CPU와 GPU를 사용해 인공	신경망 모델을 효
	율적으로 훈련하며 모델 구축과 서비스에 필요한 다양한 도구를	제공함. 텐서플로
	2.0부터는 신경망 모델을 빠르게 구성할 수 있는 케라스를 핵심	API로 채택. 케라
	스를 사용하면 간단한 모델에서 아주 복잡한 모델까지 손쉽게 만	들 수 있음
□활성화 함수	activation function 참고용어 소프트맥스 함수	[07장 355쪽]
□활성화 함수	activation function 참고용에 소프트맥스 함수 소프트맥스와 같이 뉴런의 선형 방정식 계산 결과에 적용되는 함	
□활성화 함수		
□활성화 함수 □원-핫 인코딩		
	소프트맥스와 같이 뉴런의 선형 방정식 계산 결과에 적용되는 함	수 [07장 357쪽]
	소프트맥스와 같이 뉴런의 선형 방정식 계산 결과에 적용되는 함 one-hot encoding	수 [07장 357쪽] 는 것, 다중 분류에
	소프트맥스와 같이 뉴런의 선형 방정식 계산 결과에 적용되는 함 one-hot encoding 타깃값을 해당 클래스만 1이고 나머지는 모두 0인 배열로 만드는	수 [07장 357쪽] 는 것, 다중 분류에

□옵티마이저	optimizer	[07장 381측
	신경망의 가중치와 절편을 학습하기 위한 알고리즘 또는 방법.	케라스에는 다양
	경사 하강법 알고리즘이 구현되어 있으며 대표적으로 SGD,	네스테로프 모멘팀
	RMSprop, Adam 등이 있음	
□ 적응적 학 습률	adaptive learning rate	[07장 383략
707762	모델이 최적점에 가까이 갈수록 안정적으로 수렴하도록 학습률	
	는 방법. 이런 방식들은 학습률 매개변수를 튜닝하는 수고를 덜 =	
그룹이웃	dropout	[07장 401측
	훈련 과정에서 층에 있는 일부 뉴런을 랜덤하게 꺼서(즉 뉴런의	출력을 ()으로 만
	어) 과대적합을 막음	
콜백	callback	[07장 408
	케라스에서 훈련 과정 중간에 어떤 작업을 수행할 수 있게 혀	는 객체로 kera
	callbacks 패키지 아래에 있는 클래스로 fit() 메서드의 callba	ıcks 매개변수에
	스트로 전달하여 사용	
		Ŷ

□합성곱	### ### #############################	[08장 423쪽] 을 더하는 선형 계산이
	지만 밀집층과 달리 합성곱은 입력 데이터 전체에 가중치를	적용하는 것이 아니라
	일부에 가중치를 곱함	
□필터	filter	[08장 425쪽]
	밀집층의 뉴런에 해당. 뉴런 = 필터 = 커널 모두 같은 말이리	가 생각해도 좋음
	<u></u> ^Ξ ^l ^l ε1	
	3 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 /	
	위 2월 창2	
□특성 맵	feature map	[08장 427쪽]
	합성곱 계산을 통해 얻은 출력을 특별히 특성 맵이라 부름	
□패딩과	padding과 same padding	[08장 431쪽]
세임 패딩	입력 배열의 주위를 가상의 원소(보통 0)로 채우는 것을 피	당이라고 하고 합성곱
	신경망에서는 세임 패딩을 많이 사용함	
□ 밸리드 패딩	valid padding	[08장 431쪽]
	패딩 없이 순수한 입력 배열에서만 합성곱을 하여 특성 맵을	만드는 경우이며 특성
	맵의 크기가 줄어들 수밖에 없음	

□스트라이드	stride [08장 434쪽]
	합성곱 층에서 필터가 입력 위를 이동하는 크기로 기본으로 스트라이드는 1픽셀.
	즉 한 칸씩 이동함.
□풀링	pooling [08장 434쪽]
	합성곱 층에서 만든 특성 맵의 가로세로 크기를 줄이는 역할을 수행하지만 특성 맵
	의 개수는 줄이지 않음. 또한 가중치가 없는 대신 특성 맵에서 최댓값이나 평균값
	을 선택함
□ 최대 풀링과	max pooling과 average pooling [08장 435쪽]
평균 풀링	풀링을 수행할 때 가장 큰 값을 고르거나 평균값을 계산하는데 이를 각각 최대 풀
	링과 평균 풀링이라고 부름
	AIO

	09&*
□순차 데이터	sequential data [098 487쪽]
	텍스트나 시계열 데이터와 같이 순서에 의미가 있는 데이터를 말함. 예를 들어 "I
	am a boy"는 쉽게 이해할 수 있지만 "boy am a I"는 말이 되지 않음
	주는데이터 (17리여, 이지) 1일 15°C, 2일 17°C, 3'분 16°C,
□시계열 데이터	time series data [09장 487쪽]
	일정한 시간 간격으로 기록된 데이터
	C, 주어, 일자별 날씨 등등
□ 피드포워드	feedforward neural network, FFNN [09장 488쪽]
신경망	입력 데이터의 흐름이 앞으로만 전달되는 신경망, 완전 연결 신경망과 합성곱 신
	경망이 모두 피드포워드 신경망에 속함
	VITO D
	파트 독립트 - 순한 · · · · · · · · · · · · · · · · · ·
	GAN, RBF,
	ी पुरु पुरुष् श्रेष्ट्र श

□순환 신경망	recurrent neural network, RNN [09장 489)쪽]
	완전 연결 신경망과 거의 비슷함. 순차 데이터에 잘 맞는 인공신경망의 한 종류	로
	순차 데이터를 처리하기 위해 고안된 순환 층을 1개 이상 사용한 신경망	
	$\begin{array}{c} C \\ C \\ B \\ A \end{array}$	
	cell [09장 490)쪽]
	순환 신경망에서는 특별히 충을 셀이라 부르며 한 셀에는 여러 개의 뉴런이 있지	l만
	완전 연결 신경망과 달리 뉴런을 모두 표시하지 않고 하나의 셀로 층을 표현함	
□은닉 상태	hidden state [09장 490)쪽]
		11
	순환 신경망에서는 셀의 출력을 은닉 상태라 부름. 은닉 상태는 다음 층으로 전	1날
	순환 신경방에서는 셀의 출력을 은닉 상태라 무름, 은닉 상태는 다음 증으로 선물 분만 아니라 셀이 다음 타임스텝의 데이터를 처리할 때 재사용됨	1날
		1년
□말뭉치	될 뿐만 아니라 셀이 다음 타임스텝의 데이터를 처리할 때 재사용됨 h h (는너 사) * *********************************	
□말뭉치	될 뿐만 아니라 셀이 다음 타임스텝의 데이터를 처리할 때 재사용됨 (· · · · · · · · · · · · · · · · · · ·
□말뭉치	될 뿐만 아니라 셀이 다음 타임스텝의 데이터를 처리할 때 재사용됨 (는너 사당대) 한너날 등 구(tanh) 근한 등 Corpus	· · · · · · · · · · · · · · · · · · ·

□토큰	token	[09장 501쪽]
	일반적으로 영어 문장은 모두 소문자로 바꾸고 구둣	점을 삭제한 다음 공백을 기준
	으로 분리하는데 이렇게 텍스트에서 공백으로 구분	되는 문자열 또는 단어를 토큰
	이라고 부름 및 I am 발달하	a boy는 4개의 토콘. 한글은 조사가 H 형태소 분석을 해야 함
□단어 임베딩	word embedding	[09장 514쪽]
	순환 신경망에서 텍스트를 처리할 때 즐겨 사용하는	- 방법으로 입력으로 정수 데이
	터를 받아 메모리를 훨씬 효율적으로 사용할 수 있은	<u>)</u>
□LSTM	Long Short-Term Memory	[09장 527쪽]
	단기 기억을 오래 기억하기 위해 고안된 순환층. 입]력 게이트, 삭제 게이트, 출력
	게이트 역할을 하는 작은 셀이 포함	
	X	
□셀 상태	cell state	[09장 527쪽]
	LSTM 셀은 은닉 상태 외에 셀 상태를 출력. 셀 상터	내는 다음 층으로 전달되지 않으
	며 현재 셀에만 순환됨	
	l	

□GRU	Gated Recurrent Unit	[09장 538쪽]
	LSTM 셀의 간소화 버전으로 생각할 수 있지만 LSTM처럼 셀 4	상태를 계산하지
	않고 은닉 상태 하나만 포함. LSTM보다 가중치가 적기 때문에 7	계산량이 적지만
	LSTM 못지않은 좋은 성능을 내는 것으로 알려져 있음	
	ol od Wa	
	6	

MEMO	

MEMO	

MEMO	

MEMO	

혼자 공부하는 사람들을 위한 용어 노트

