Minimum Spanning Trees

Heejin Park

Hanyang University

Weighted Undirected Graphs

- Weighted undirected graph G = (V, E)
 - For each edge $(u, v) \subseteq E$, we have a weight w(u, v).

Spanning Trees

• A spanning tree for G.

• A tree containing all of the vertices in *G* and edges of the tree are selected from the edges in *G*.

• There are many spanning trees.

Spanning Trees

Minimum Spanning Trees

• Cost of a spanning tree

$$w(T) = \sum_{(u,v)\subseteq T} w(u,v)$$

- Minimum-spanning-tree problem
 - Finding a spanning tree whose cost is the smallest.
 - T is acyclic and connects all of the vertices \rightarrow a tree

Minimum Spanning Trees

GENERIC-MST

```
GENERIC-MST(G, w)

1 A = \emptyset

2 while A does not form a spanning tree

3 do find an edge (u, v) that is safe for A

4 A = A \cup \{(u, v)\}

5 return A
```

- It grows the minimum spanning tree one edge at a time.
- It adds an edge (u, v) to A such that $A \cup \{(u, v)\}$ is also a subset of some minimum spanning tree.
 - Call such an edge a safe edge for A.

*	a	b	c	d	e	f	g	h	i
cost	0	8	8	∞	8	8	8	8	8
pre	a								

*	a	b	c	d	e	f	g	h	i
cost	0	4	∞	∞	∞	8	∞	8	8
pre	a	a						a	

*	a	b	c	d	e	f	g	h	i
cost	0	4	8	8	∞	∞	∞	8	∞
pre	a	a						a	

# 1	a	b	c	d	e	f	g	h	i
cost	0	4	8	∞	∞	∞	∞	8	8
pre	a	a	b					a	

# no # .	a	b	c	d	e	f	g	h	i
cost	0	4	8	∞	∞	∞	∞	8	8
pre	a	a	ь					a	

	a	b	c	d	e	f	g	h	i
cost	0	4	8	7	∞	4	∞	8	2
pre	a	a	ь	c		c		a	c

	a	b	c	d	e	f	g	h	i
cost	0	4	8	7	∞	4	∞	8	2
pre	a	a	b	c		c		a	c

	a	b	c	d	e	f	g	h	i
cost	0	4	8	7	∞	4	6	7	2
pre	a	a	b	c		c	i	i	c

# 1	a	b	c	d	e	f	g	h	i
cost	0	4	8	7	∞	4	6	7	2
pre	a	a	ь	c		c	i	i	c

	a	b	c	d	e	f	g	h	i
cost	0	4	8	7	10	4	2	7	2
pre	a	a	ь	c	f	С	f	i	c

	a	b	c	d	e	f	g	h	i
cost	0	4	8	7	10	4	2	7	2
pre	a	a	ь	c	f	С	f	i	С

	a	b	c	d	e	f	g	h	i
cost	0	4	8	7	10	4	2	1	2
pre	a	a	b	c	f	С	f	g	c

ed into	a	b	c	d	e	f	g	h	i
cost	0	4	8	7	10	4	2	1	2
pre	a	a	b	c	f	С	f	g	С

	a	b	c	d	e	f	go	h	i
cost	0	4	8	7	10	4	2	1	2
pre	a	a	b	С	f	С	f	g	c

ed into	a	b	c	d	e	f	go	h	i
cost	0	4	8	7	9	4	2	1	2
pre	a	a	b	c	d	С	f	g	c

ed into	a	b	c	d	e	f	g	h	i
cost	0	4	8	7	9	4	2	1	2
pre	a	a	b	С	d	c	f	g	c

e

a

a

C

a

a	b	c	d	e	f	g	h	i
	a						a	

a	b	c	d	e	f	g	h	i
	a	b					a	

a	b	c	d	e	f	g	h	i
	a	b					a	

a	b	c	d	e	f	g	h	i
	a	b					a	

a	b	c	d	e	f	g	h	i
	a	b					a	

a	b	c	d	e	f	g	h	i
	a	b					a	

a	b	c	d	e	f	g	h	i
	a	b					a	

a	b	c	d	e	f	g	h	i
	a	b	c				a	

a	b	c	d	e	f	g	h	i
	a	b	c				a	

a	b	c	d	e	f	g	h	i
	a	b	c				a	

a	b	c	d	e	f	g	h	i
	a	b	c		c		a	

a	b	c	d	e	f	g	h	i
	a	b	c		c		a	

a	b	c	d	e	f	g	h	i
	a	b	С		С		a	

a	b	c	d	e	f	g	h	i
	a	b	С		С		a	

a	b	c	d	e	f	g	h	i
	a	b	c		c		a	c

a	b	c	d	e	f	g	h	i
	a	b	c		c		a	c

a	b	c	d	e	f	g	h	i
	a	b	c		c		a	c

a	b	c	d	e	f	g	h	i
	a	b	c		С		a	c

a	b	c	d	e	f	g	h	i
	a	b	c		c		a	С

a	b	c	d	e	f	g	h	i
	a	b	c		c		a	c

a	b	c	d	e	f	g	h	i
	a	b	c		c		a	c

a	b	c	d	e	f	g	h	i
	a	b	c		c		a	С

a	b	c	d	e	f	g	h	i
	a	b	c		c	i	a	С

a	b	c	d	e	f	g	h	i
	a	b	c		c	i	a	С

a	b	c	d	e	f	g	h	i
	a	b	c		c	i	a	С

a	b	c	d	e	f	g	h	i
	a	b	c		c	i	i	С

a	b	c	d	e	f	g	h	i
	a	b	c		c	i	i	С

a	b	c	d	e	f	g	h	i
	a	b	c		С	i	i	c

a	b	c	d	e	f	g	h	i
	a	b	c		c	i	i	c

a	b	c	d	e	f	g	h	i
	a	b	c		С	i	i	c

a	b	c	d	e	f	g	h	i
	a	b	c		С	i	i	С

a	b	c	d	e	f	g	h	i
	a	b	c	f	С	i	i	С

a	b	c	d	e	f	g	h	i
	a	b	c	f	С	i	i	c

a	b	c	d	e	f	g	h	i
	a	b	c	f	c	f	i	С

a	b	c	d	e	f	g	h	i
	a	b	c	f	С	f	i	c

a	b	c	d	e	f	g	h	i
	a	ь	c	f	c	f	i	С

a	b	c	d	e	f	g	h	i
	a	b	С	f	c	f	i	С

a	b	c	d	e	f	g	h	i
	a	b	c	f	c	f	i	С

a	b	c	d	e	f	g	h	i
	a	b	С	f	С	f	g	С

a	b	c	d	e	f	g	h	i
	a	b	c	f	С	f	g	С

a	b	c	d	e	f	g	h	i
	a	b	c	f	c	f	g	С

a	b	c	d	e	f	g	h	i
	a	b	c	f	c	f	g	c

a	b	c	d	e	f	g	h	i
	a	b	c	f	c	f	g	С

a	b	c	d	e	f	g	h	i
	a	b	С	f	С	f	g	С

a	b	c	d	e	f	g	h	i
	a	b	С	f	c	f	g	c

 \mathbf{e}

C

g

c

g

c

b

c

a

a

a	b	c	d	e	f	g	h	i
	a	b	С	d	c	f	g	С

a	b	c	d	e	f	g	h	i
	a	b	c	d	c	f	g	С

a	b	c	d	e	f	g	h	i
	a	b	С	d	С	f	g	c

```
MST-PRIM(G, w, r)
      for each u \subseteq G.V
                u.key = \infty
                u.\pi = NIL
      r.key = 0
      Q = G.V
      while Q \neq \emptyset
6
            u = EXTRACT-MIN(Q)
           for each v \in G.Adj[u]
                if v \subseteq Q and w(u, v) < v.key
10
                     v.\pi = u
11
                     v.key = w(u, v)
```

- A cut (S, V S) of an undirected graph G = (V, E)
 - A partition of V
- An edge $(u, v) \subseteq E$ crosses the cut (S, V S)
 - if one of edge $(u, v) \subseteq E$ endpoints is in S and the other is in V S.

- A cut *respects* a set A of edges
 - if no edge in A crosses the cut.
- An edge is a light edge
 - if its weight is the minimum of any edge crossing the cut.

• Theorem 23.1

- Consider an edge subset *A* contained in some MST.
- Consider a cut respecting A.
- Then, a light edge crossing the cut is safe for *A*.

Outline of the proof

- Let *T* be a minimum spanning tree that includes *A*.
 - Assume that T does not contain the light edge (u, v).
- It constructs another minimum spanning tree T' that includes $A \cup \{(u, v)\}.$

- The edge (u, v) forms a cycle with the edges on the path p from u to v in T.
- Since u and v are on opposite sides of the cut (S, V S),
 - there is at least one edge in T on the path p that also crosses the cut.
 - Let (x, y) be any such edge.

- The edge (x, y) is not in A.
 - Because the cut respects *A*.
- Removing (x, y) breaks T into two components.
 - Because (x, y) is on the unique path from u to v in T.
- Adding (*u*, *v*) reconnects them to form a new spanning tree
 - $T' = T \{(x, y)\} \cup \{(u, v)\}.$

- We next show that T' is a minimum spanning tree.
 - Since (u, v) is a light edge crossing (S, V S) and (x, y) also crosses this cut, $w(u, v) \le w(x, y)$.

$$w(T') = w(T) - w(x, y) + w(u, v)$$

$$\leq w(T)$$

• But T is a minimum spanning tree, so that $w(T) \le w(T')$; thus, T' must be a minimum spanning tree, too.

- We show that (u, v) is actually a safe edge for A.
 - $A \subseteq T$ and $(x, y) \notin A \Rightarrow A \subseteq T'$
 - Thus $A \cup \{(u, v)\} \subseteq T'$.
 - Since T' is a minimum spanning tree, (u, v) is safe for A.

- Corollary 23.2
 - Let G = (V, E) be a graph.
 - Let A be a subset of E that is included in some minimum spanning tree for G.
 - Let $C = (V_C, E_C)$ be a connected component (tree) in the forest $G_A = (V, A)$.
 - If (u, v) is a light edge connecting C to some other component in G_A , then (u, v) is safe for A.

o Proof

- The cut $(V_C, V V_C)$ respects A, and (u, v) is a light edge for this cut.
- Therefore, (u, v) is safe for A.

- The edges in the set A always form a single tree.
- The tree starts from an arbitrary root vertex *r* and grows until the tree spans all the vertices in *V*.
- At each step, a light edge is added to the tree A that connects A to an isolated vertex of $G_A = (V, A)$.
- By Corollary 23.2, this rule adds only edges that are safe for A.
- Therefore, when the algorithm terminates, the edges in A form a minimum spanning tree.

- It finds a safe edge to add to the growing forest by finding, of all the edges that connect any two trees in the forest, an edge (u, v) of least weight.
- Let C_1 and C_2 denote the two trees that are connected by (u, v).
- Since (u, v) must be a light edge connecting C_1 to some other tree, Corollary 23.2 implies that (u, v) is a safe edge for C_1 .

Kruskal's algorithm


```
MST-KRUSKAL(G, w)
1 \quad A = \emptyset
  for each vertex v \in G.V
       MAKE-SET(v)
   sort the edges of G.E into nondecreasing order by weight w
   for each edge (u, v) \subseteq G.E, taken in nondecreasing order by weight
        if FIND-SET(u) \neq FIND-SET(v)
6
            A = A \cup \{(u, v)\}
             UNION(u, v)
   return A
```