Induktionsversuche

Julina Salome Alex Tanel Ben

7. Februar 2024

Inhaltsverzeichnis

1	Versuch: langes Rohr	2
2	Versuch: Schwingspule	3
3	Versuch: Doppelspule	4
4	Versuch: Waltenhofen-Pendel	5
5	Theorie: 2. Aufgabe	6

1. Versuch: langes Rohr

Beobachtungen: Bei dem Versuch ist aufgefallen, dass die Spannung Wellenförmig verläuft. Hierbei ist die Fläche unterhalb der x-Achse exakt so groß, wie die Fläche überhalb der x-Achse. Hierdurch sind die Integrale im Bereich der unterschiedlichen Spulen 0.

Änderungen bei Umdrehung des Magnets: Wenn man den Magneten umdreht, so sind die Wellen exakt umgedreht.

Erkennung der Lenz'schen Regel:

Berechnung der magnetischen Stärke:

2. Versuch: Schwingspule

Beobachtungen: Die Spannung verläuft wellenförmig sowohl über der *x*-Achse, als auch darunter.

Änderungen beim Austausch: Der Ausschlag ist bei der dünneren Spule deutlich höher, als bei der breiten Spule.

Änderung des Startpunktes: Desto höher der Startpunkt der Spule liegt, desto dünner sind die Ausschläge, desto niedriger der Startpunkt der Spule liegt, desto breiter sind die Ausschläge.

3. Versuch: Doppelspule

Beobachtung: Die Spannung schwankt zwischen einer negativen und einer positven Volt-Anzahl. Desto höher die Frequenz ist, desto schneller kleiner werden die Wellen. Die Veränderung der Stromstärke der äußeren Spule hat sich auf die Spannung der inneren Spule ausgewirkt.

Variation der Probespule: Bei der Spule, die die größere Fläche besitzt, ist die Voltanzahl größer.

4. Versuch: Waltenhofen-Pendel

Beobachtungen: Je höher die Spannung ist, desto schneller wird das Pendel ausgebremst.

Pendel	Spannung	Zeit bis ausgebremst
Kammförmig	0 V	18.71 <i>s</i>
Kammförmig	5 V	11.56s
Kammförmig	10 V	7.16s
Kammförmig	15 V	4.93s
Kreis	0 V	15.82s
Kreis	5 V	5.13s
Kreis	10 V	1.68s
Kreis	15 V	1.35s
Platte	0 V	20.42
Platte	5 V	3.63s
Platte	10 V	1.33s
Platte	15 V	0.98s

5. Theorie: 2. Aufgabe

Windungen: 200 Fläche:
$$0.1m^2$$
 Zeit: $2s$ B: $1.2 T$ $U_{ind} = -n \times \dot{\phi}(t)$ $U_{ind} = -200 \times A(t) \times \dot{B}(t)$ $U_{ind} = -200 \times 0.1m^2 \times \dot{B}(t)$ $U_{ind} = -20m^2 \times \dot{B}(t)$ $U_{ind} = -20m^2 \times 0.6 \frac{T}{s}$ $U_{ind} = -12 \frac{m^2 \times T}{s}$ $U_{ind} = -12 \frac{Wb}{s}$ $U_{ind} = -12 \frac{V \times s}{s}$

Die Induktionsspannung nach 2 Sekunden beträgt -12 Volt

Windungen: 200 Fläche: $0.1m^2$ Zeit: 4s

 $U_{ind} = -12 V$

 $U_{ind} = -n \times \dot{\phi}(t)$

B: 1.2*T*

 $U_{ind} = -200 \times A(t) \times \dot{B}(t)$

 $U_{ind} = -200 \times 0.1 m^2 \times (-0.3 \frac{T}{s})$

 $U_{ind} = -20m^2 \times (-0.3 \frac{T}{s})$

 $U_{ind} = 6 \frac{m^2 \times T}{s}$

 $U_{ind} = 6 \frac{Wb}{s}$

 $U_{ind} = 6 \frac{V \times s}{s}$

 $U_{ind} = 6V$

Die Induktionsspannung beim Abschalten beträgt nach 4 Sekunden 6 V