

Choose certainty.
Add value.

Report On

Radio Testing of the Omnicell Inc.
VBM 200 FLEX

FCC Part 15 Subpart C §15.225

Report No. TP72123652.101

March 2019

REPORT ON EMC Evaluation of the

Omnicell Inc.

Model No. VBM 200 FLEX

TEST REPORT NUMBER TP72123652.101

REPORT DATE 24. April 2017

PREPARED FOR Omnicell Inc.

590 E. Middlefield Road

Mountain View, CA 94043-4008

Stan & Hohe

CONTACT PERSON Karl Liang

Sr. Manager, Regulatory Compliance

karl.liang@omnicell.com

PREPARED BY

Steve Hoke

Authorized Signatory
Title: Senior EMC Engineer

Bely Walch

APPROVED BY

Peter Walsh

Authorized Signatory

Title: Tampa Service Line Manager

DATED 24. April 2017

Revision History

TP72123652.101 Omnicell Inc. Model VBM 200 FLEX RFID Reader Module							
DATE	OLD REVISION	NEW REVISION	REASON	PAGES AFFECTED	APPROVED BY		
24. April 2017	Initial Release				P. Walsh		
19.March 2019	TP72123652.100	TP72123652.101	Removed product photos	8 & 9	S. Hoke		

TABLE OF CONTENTS

Section		Page No
1	REPORT SUMMARY	5
1.1	Introduction	
1.2	Brief Summary of Results	
1.3	Product Information	
1.4	EUT Test configuration	
1.5	Deviations from the Standard	
1.6	Modification Record	
1.7	Test Methodology	
2	TEST DETAILS	14
2.1	Frequency Stability	15
2.2	20 dB Bandwidth	
2.3	Emission Mask	
2.4	Spurious Radiated Emissions	
2.5	Conducted Emissions	30
3	TEST EQUIPMENT USED	36
3.2	Measurement Uncertainty	38
4	DIAGRAM OF TEST SETUP	40
4.1	Test Setup Diagram (Emission Mask and Below 30 MHz)	41
4.2	Test Setup Diagram (30 MHz to 1 GHz)	
4.3	Test Setup Diagram Above 1 GHz)	43
4.4	Test Setup Diagram (Conducted Emissions)	44
5	ACCREDITATION, DISCLAIMERS AND COPYRIGHT	45

SECTION 1

REPORT SUMMARY

Radio Testing of the Omnicell Inc. Model VBM 200 FLEX

1.1 INTRODUCTION

The information contained in this report is intended to show verification of the Omnicell Inc. VBM 200 FLEX to the requirements of FCC Part 15 Subpart C.

Objective To perform Radio Testing to determine the Equipment Under

Test's (EUT's) compliance with the Test Specification, for the

series of tests carried out.

Manufacturer Omnicell Inc.

Model Name VBM 200 FLEX

Model Number(s)

FCC ID Number 2ALLNVBM200F

IC Number

Serial Number(s) 42680222

Number of Samples Tested 1

Test Specification/Issue/Date FCC Part 15 Subpart C

Start of Test 23. February 2017

Finish of Test 27. February 2017

Name of Engineer(s) David Foerstner, Steve Hoke

Related Document(s) Supporting documents for EUT certification are separate

exhibits.

1.2 BRIEF SUMMARY OF RESULTS

A brief summary of the tests carried out in accordance with Part 15 is shown below.

Section	FCC Part 15	§15.225 Spec Clause	Test Description	Result	Comments/Base Standard
	§15.31(e)		Voltage Requirement	Compliant	§15.225(e)
	§15.203 and 204		Antenna Requirements	Compliant	See Test Note ¹
2.1		§15.225(e)	Frequency Tolerance	Compliant	
2.2	§15.215(c)		20dB Bandwidth	Compliant	
2.3			Occupied Bandwidth	Compliant	
2.4		§15.225(a)(b)(c)	Emission Mask	Compliant	
2.5	§15.209 and 109	§15.225(d)	Spurious Radiated Emissions	Compliant	
2.6	15.107	§15.207(a)	Conducted Emissions	Compliant	

Test Note¹: The internal antenna used is permanently attached. This is considered sufficient evidence to comply with the provisions of this requirement.

1.3 PRODUCT INFORMATION

1.3.1 Technical Description

The Equipment Under Test (EUT) was an Omnicell Inc. Model VBM 200 FLEX as shown in the photographs below. The EUT has (2) models of an RFID Reader Module housed inside the host system under test. The EUT is used to produce blister packs of prescription drugs.

Photo 1.3.1-1 - Host Equipment Under Test

RFID PWB'S

Photo 1.3.1-2 - PWB GFT13-52256 - Cassette reader board

Photo 1.3.1-3 - PWB GFT14-72642 - MDA reader board

1.3.2 EUT General Description

EUT Description Prescription Drug Kiosk incorporating RFID

Model Name

Model Number(s) VBM 200 FLEX

EUT Measured Field Strength 73.1 dBμV/m @ 3 meters

Frequency Range 13.56 MHz in the 13.110 to 14.0101 MHz band

Number of Operating Frequencies 1

Antenna Type PCBA

1.4 EUT TEST CONFIGURATION

1.4.1 Test Configuration Description

Test Configuration	Description
А	Radiated Transmit Mode.
В	EUT RFID PWB's placed in temperature chamber with small loop antenna.

1.4.2 EUT Exercise Software

The EUT was exercised using proprietary software which set the RFID output power to (100%).

1.4.3 Support Equipment and I/O cables

Manufacturer	Equipment/Cable	Description
		Server
N/A	Ethernet cable	Unshielded

1.5 DEVIATIONS FROM THE STANDARD

No deviations from the standard were exercised.

1.6 MODIFICATION RECORD

Description of Modification	Modification Fitted By	Date Modification Fitted
Serial Number		
None required.		

The table above details modifications made to the EUT during the test programme. The modifications incorporated during each test (if relevant) are recorded on the appropriate test pages.

1.7 TEST METHODOLOGY

All measurements contained in this report were conducted with ANSI C63.10-2013. American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

For conducted and radiated emissions the equipment under test (EUT) was configured to measure its highest possible emission level. This level was based on the maximized cable configuration from exploratory testing per ANSI C63.10-2013. The test modes were adapted according to the Operating Instructions provided by the manufacturer/client.

1.8 TEST FACILITY LOCATION

1.8.1 TÜV SÜD America Inc. (Tampa)

5610 W. Sligh Ave, Suite 100, Tampa, FL 33634

1.9 TEST FACILITY REGISTRATION

1.9.1 FCC – Site Registration: US1063

The TUV SUD America Inc. (Tampa), test facility has been registered with the Federal Communication Commission as an ISO/IEC 17025 accredited test laboratory and assigned the designation number US1063.

1.9.2 Innovation, Science and Economic Development Canada (IC) Registration No.: 2087A-2

The TUV SUD America Inc. (Tampa), test facility has been registered with Innovation, Science and Economic Development Canada and assigned the site number 2087A-2.

1.9.3 VCCI – Registration No. A-0256

The TUV SUD America Inc. (Tampa), test facility has been registered with the VCCI and assigned the registration number A-0256.

SECTION 2

TEST DETAILS

Radio Testing of the Omnicell Inc. Model VBM 200 FLEX

2.1 FREQUENCY STABILITY

2.1.1 Specification Reference

Part 15 Subpart C §15.225(e)

2.1.2 Standard Applicable

(e) The frequency tolerance of the carrier signal shall be maintained within $\pm 0.01\%$ of the operating frequency over a temperature variation of -20 degrees to +50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C. For battery operated equipment, the equipment tests shall be performed using a new battery.

2.1.3 Equipment Under Test and Modification State

Serial No: 42680222 / Test Configuration B

2.1.4 Date of Test/Initial of test personnel who performed the test

23. February 2017 /SH

2.1.5 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

2.1.6 Environmental Conditions/ Test Location

Test performed at TÜV SÜD America Inc. Tampa facility.

Ambient Temperature 24 °C Relative Humidity 44 %

2.1.7 Additional Observations

- This is a radiated test. The test antenna output is directly connected to the spectrum analyzer input via a suitable external attenuator.
- Measurement was done using the spectrum analyser to measure the frequency variation of the EUT's RFID system.
- The RBW was set to 1 kHz for better resolution.
- The temperature was varied from -10°C to +55°C as requested by the manufacturer in 10 degree increments with voltage variation of 85% and 115% output @ 20°C.
- The EUT was powered off, then powered on once the temperature stabilized and the frequency was then measured.

2.1.8 Test Results

Table 2.1.8-1 - MDA Reader Board Frequency Stability

	RFID @ 13.56MHz - GFT14-72642 – MDA Reader Board							
Voltage (%)	Power (VDC)	Temp (°C)	Frequency (Hz)	Frequency Deviation (Hz)	Deviation (%)			
		-20	13.561750	+70	0.000516			
		-10	13.561750	+70	0.000516			
		0	13.561715	+35	0.000258			
100	12.0	+10	13.561680	0	0.000258			
100	12.0	+30	13.561645	-35				
		+40	13.561645	-35	0.000258			
		+50	13.561610	-70 0.00052				
		+55	13.561610	-70	0.000516			
Voltage Variation	10.2	+20	13.561680	0	0			
(85% and 115%)	13.8	+20	13.561680	0	0			

Maximum Deviation

= 0.000516%

= 0.000516% < 0.01% Limit (Complies)

Table 2.1.8-2 – Cassette Reader Board Frequency Stability

RFID @ 13.56MHz - GFT13-52256 – Cassette Reader Board							
Voltage (%)	Power (VDC)	Temp (°C)	Frequency (Hz)	Frequency Deviation (Hz)	Deviation (%)		
		-20	13.562,520	+35	0.000258		
		-10	13.562,520	+35	0.000258		
		0	13.562,485	0	0		
100	12.0	+10 13.562,485 0	0	0			
100	12.0	+30	13.562,450	-35	0.000258 0.000516 0.000516		
		+40	13.562,415	-70			
		+50	13.562,415	-70			
		+55	13.562,415	-70	0.000516		
Voltage Variation	10.2	+20	13.562,485	0	0		
(85% and 115%)	13.8	+20	13.562,485	0	0		

Maximum Deviation

= 0.000516%

= 0.000516% < 0.01% Limit (Complies)

2.2 20 dB BANDWIDTH

2.2.1 Specification Reference

Part 15 Subpart C §15.215(c)

2.2.2 Standard Applicable

(c) Intentional radiators operating under the alternative provisions to the general emission limits, as contained in §15.217 through §15.257 and in Subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated. The requirement to contain the designated bandwidth of the emission within the specified frequency band includes the effects from frequency sweeping, frequency hopping and other modulation techniques that may be employed as well as the frequency stability of the transmitter over expected variations in temperature and supply voltage. If a frequency stability is not specified in the regulations, it is recommended that the fundamental emission be kept within at least the central 80% of the permitted band in order to minimize the possibility of out-of-band operation.

2.2.3 Equipment Under Test and Modification State

Serial No: 42680222 / Test Configuration A

2.2.4 Date of Test/Initial of test personnel who performed the test

23. February 2017/DF

2.2.5 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

2.2.6 Environmental Conditions/ Test Location

Test performed at TÜV SÜD America Inc. Tampa facility.

Ambient Temperature 23 °C Relative Humidity 44 %

2.2.7 Additional Observations

- This is a radiated test.
- Span is wide enough to capture the channel transmission.
- Since RBW wasn't specified, RBW was set to 1 kHz
- Sweep is auto.
- Detector is peak.
- The display line is set to -20 dBc. The spectrum analyser was used for this test.

2.2.8 Test Results

Figure 2.2.8-1 - Bandwidth Plot

Notes:

Measured 20dB Bandwidth: 3.98 kHz

Frequency Band: 13.110 to 14.010 MHz

Table 2.2.8-1 - Bandwidth Data

Frequency	20dB bandwidth
13.56 MHz	3.98 kHz

2.3 EMISSION MASK

2.3.1 Specification Reference

Part 15 Subpart C §15.225(a)(b)(c)

2.3.2 Standard Applicable

- (a) The field strength of any emissions within the band 13.553–13.567 MHz shall not exceed 15,848 microvolts/meter at 30 meters.
- (b) Within the bands 13.410–13.553 MHz and 13.567–13.710 MHz, the field strength of any emissions shall not exceed 334 microvolts/meter at 30 meters.
- (c) Within the bands 13.110–13.410 MHz and 13.710–14.010 MHz the field strength of any emissions shall not exceed 106 microvolts/meter at 30 meters.

2.3.3 Equipment Under Test and Modification State

Serial No: 42680222 / Test Configuration A

2.3.4 Date of Test/Initial of test personnel who performed the test

23. February 2017 /DF

2.3.5 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

2.3.6 Environmental Conditions/ Test Location

Test performed at TÜV SÜD America Inc. Tampa facility.

Ambient Temperature 22.5 °C Relative Humidity 38.6 %

2.3.7 Additional Observations

- This is a radiated test. The spectrum was searched from 13.110 MHz to 14.010 MHz.
- Limits were converted from 30 meters to 3 meters using 40 dB/decade extrapolation rules.
- Measurement was done using EMC32 V8.54automated software. Reported level is the actual level
 with all the correction factors factored in. Correction Factor column is for informational purposes
 only. See Section 2.4.8 for sample computation.

2.3.8 Sample Computation (Radiated Emission)

Measuring equipment raw measurement (dBμV) @ 30 MHz			
	Cable 2	0.24	
Correction Factor (dB)	TEMC00011 (antenna)	18.70	18.94
Reported QuasiPeak Final Mea	38.94		

2.3.9 Sample Computation (Limits)

Limit @ 13.553–13.567 MHz: = 15,848 μ V/m @30 meters

= 20 $\log(15,848 \mu V/m)$ = 84 dB $\mu V/m$ @30 meters

Using 20dB/decade extrapolation rule: = 20 log (30m/3m)

Measuring distance correction factor: = 20 dB

Calculated limit @ 3 meters: = 84 dB μ V/m + 40 dB

= 104 dB μ V/m

2.3.10 Test Results

Complies. See attached plots.

2.3.11 Test Results

Figure 2.3.11-1 – Field Strength Plot of the Fundamental Emission

Table 2.3.11-1 – Field Strength Data of the Fundamental Emission

Frequency (MHz)	Peak (dBμV/m)	Bandwidth (kHz)	Height (cm)	Polarization	Azimuth (deg)	Margin (dB)	Limit (dBμV/m)
13.563	73.1	9.000	100.0	Н	57.0	30.9	104.0

Figure 2.3.11-2 – Emissions within the 13.1 MHz to 14.01 MHz Band

Notes:

The tightest extrapolated limit is (60.5) dB μ V/m at 3 meters for any spurious emission within 13.10 – 14.01 MHz.

2.4 SPURIOUS RADIATED EMISSIONS

2.4.1 Specification Reference

Part 15 Subpart C §15.225(d)

2.4.2 Standard Applicable

(d) The field strength of any emissions appearing outside of the 13.110–14.010 MHz band shall not exceed the general radiated emission limits in §15.209.

2.4.3 Equipment Under Test and Modification State

Serial No: 42680222 / Test Configuration A

2.4.4 Date of Test/Initial of test personnel who performed the test

23. February 2017 /DF

2.4.5 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

2.4.6 Environmental Conditions/ Test Location

Test performed at TÜV SÜD America Inc. Tampa facility.

Ambient Temperature 25 °C Relative Humidity 48 %

2.4.7 Additional Observations

- This is a radiated test. The spectrum was searched from 9kHz to 15GHz
- There were no emissions found that do not comply with the restricted bands defined in FCC Part 15 Subpart C, 15.205.
- Measurement was done using EMC32 V8.54 automated software. Reported level is the actual level
 with all the correction factors factored in. Correction Factor column is for informational purposes
 only. See Section 2.5.8 for sample computation.

2.4.8 Sample Computation (Radiated Emission)

Measuring equipment raw measur	20.0		
	Cable 2	0.24	
	TEMC00011 (antenna)	18.70	
Correction Factor (dB)			18.94
Reported QuasiPeak Final Measur	38.94		

2.4.9 Test Results

See attached plots.

2.4.10 Test Results Below 30MHz

Figure 2.4.10-1 – Radiated Emissions Data 150 kHz – 30 MHz

Table 2.4.10-1 - Quasi Peak Data 150 kHz - 30 MHz

Frequency (MHz)	QuasiPeak (dBμV/m)	Height (cm)	Polarization	Azimuth (deg)	Corr. (dB)	Margin (dB)	Limit (dBμV/m)
13.563000	71.2	100.0	V	164.0	14.5	32.8	104.0
27.120000	38.5	100.0	V	45.0	14.6	31.0	69.5

2.4.11 Test Results 30 MHz to 1 GHz

FCC Part 15 & ICES-003 Class B Radiated 3 m Limit [..\EMI radiated\]
Preview Result 1V-PK+ [Preview Result 1V.Result:1]
Preview Result 1H-PK+ [Preview Result 1H.Result:1]
Final Result 1-QPK [Final Result 1.Result:1]

Figure 2.4.11-1 – Radiated Emissions 30 MHz to 1 GHz Plot

Table 2.4.11-1 - Quasi Peak Data (§15.209 Limits)

Frequency (MHz)	QuasiPeak (dBμV/m)	Height (cm)	Polarization	Azimuth (deg)	Corr. (dB)	Margin (dB)	Limit (dBμV/m)
40.671000	39.1	130.0	V	45.0	19.0	0.9	40.0
137.520000	36.4	155.0	V	3.0	18.4	7.1	43.5
346.840000	41.0	167.0	V	58.0	22.4	5.0	46.0
357.640000	40.0	149.0	V	237.0	22.7	6.0	46.0
361.640000	43.7	149.0	V	45.0	22.6	2.3	46.0
472.160000	39.7	205.0	Н	358.0	25.0	6.3	46.0
472.560000	37.8	199.0	Н	356.0	25.1	8.2	46.0
484.320000	40.4	100.0	Н	0.0	25.9	5.6	46.0
484.920000	39.6	100.0	Н	355.0	25.9	6.4	46.0
759.480000	42.3	185.0	V	45.0	29.5	3.7	46.0
840.880000	39.4	199.0	V	179.0	29.6	6.6	46.0

2.4.12 Test Results 1 GHz to 15 GHz

FCC Part 15 & ICES-003 Class B Radiated 3 m Peak Limit [..\EMI radiated\]
FCC Part 15 & ICES-003 Class B Radiated 3 m Average Limit [..\]
Preview Result 1V-PK+ [Preview Result 1V.Result:1]
Preview Result 1H-PK+ [Preview Result 1H.Result:1]
Final Result 1-PK+ [Final Result 1.Result:1]
Final Result 2-CAV [Final Result 2.Result:1]

Figure 2.4.12-1 – Radiated Emissions 1 to 15 GHz Plot

Table 2.4.12-1 -- Peak Detector Data 1 - 15 GHz

Frequency (MHz)	Peak (dBμV/m)	Height (cm)	Polarization	Azimuth (deg)	Corr. (dB)	Margin (dB)	Limit (dBµV/m)
2123.400000	59.9	160.0	V	138.0	1.1	14.1	74.0
2125.400000	60.5	143.0	Н	60.0	1.1	13.5	74.0
3994.200000	56.1	166.0	Н	329.0	5.1	17.9	74.0
6977.400000	53.3	137.0	V	348.0	10.3	20.7	74.0
10520.20000	54.3	148.0	Н	283.0	15.3	19.7	74.0
10772.20000	54.9	216.0	V	330.0	16.2	19.1	74.0
11998.20000	64.1	100.0	Н	4.0	17.0	9.9	74.0
11998.60000	64.0	100.0	Н	2.0	17.0	10.0	74.0
14904.60000	59.9	300.0	Н	90.0	17.7	14.1	74.0
15048.60000	59.5	299.0	Н	5.0	17.9	14.5	74.0
17535.80000	63.1	136.0	Н	286.0	23.8	10.9	74.0
17857.00000	62.9	400.0	V	152.0	24.9	11.1	74.0

Table 2.4.12-2 -- Average Detector Data 1 - 15 GHz

Frequency (MHz)	Average (dBμV/m)	Height (cm)	Polarization	Azimuth (deg)	Corr. (dB)	Margin (dB)	Limit (dBµV/m)
2123.400000	31.7	160.0	V	138.0	1.1	22.3	54.0
2125.400000	33.7	143.0	Н	60.0	1.1	20.3	54.0
3994.200000	42.0	166.0	Н	329.0	5.1	12.0	54.0
6977.400000	41.0	137.0	V	348.0	10.3	13.0	54.0
10520.20000	41.7	148.0	Н	283.0	15.3	12.3	54.0
10772.20000	42.7	216.0	V	330.0	16.2	11.3	54.0
11998.20000	49.9	100.0	Н	4.0	17.0	4.1	54.0
11998.60000	50.5	100.0	Н	2.0	17.0	3.5	54.0
14904.60000	48.2	300.0	Н	90.0	17.7	5.8	54.0
15048.60000	47.1	299.0	Н	5.0	17.9	6.96	54.0
17535.80000	52.1	136.0	Н	286.0	23.8	1.9	54.0
17857.00000	51.2	400.0	V	152.0	24.9	2.8	54.0

2.5 CONDUCTED EMISSIONS

2.5.1 Specification Reference

Part 15 Subpart C §15.207(a)

2.5.2 Standard Applicable

An intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN).

	Conducted	limit (dBμV)
Frequency of emission (MHz)	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5–5	56	46
5–30	60	50

^{*}Decreases with the logarithm of the frequency.

2.5.3 Equipment Under Test and Modification State

Serial No: 42680222 /Test Configuration A

2.5.4 Date of Test/Initial of test personnel who performed the test

27. February 2017/DF

2.5.5 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

2.5.6 Environmental Conditions/ Test Location

Test performed at TÜV SÜD America Inc. Tampa facility.

Ambient Temperature 22 °C Relative Humidity 40 %

2.5.7 Additional Observations

- The EUT contains two different RFID readers and this test is to show compliance to the general limits of §15.207(a).
- Measurement was done using the spectrum analyzer.

2.5.8 Sample Computation (Conducted Emission – Quasi Peak)

Measuring equipment raw me	asurement (dBμV) @ 150kHz		30.0
Correction Factor (dB)	TEMC00002 – LISN	0.03	
	Cable 1	0.08	0.11
Correction Factor (dB)			0.11
Reported QuasiPeak Final Me	30.11		

2.5.9 Test Results

Compliant. See attached plots and tables.

2.5.10 120VAC 60Hz (Line)

Figure 2.5.10-1 - Conducted Emissions Plot

Table 2.5.10-1 - Peak Data

Frequency (MHz)	Peak (dBμV)	Line	Corr. (dB)	Margin - Peak (dB)	Limit - QP (dBμV)
0.162500	53.8	L	0.07	11.4	65.2
0.171300	48.4	L	0.09	15.7	64.1
0.368500	42.4	L	0.09	17.3	59.7
0.955800	42.0	L	0.15	14.0	56.0
9.110000	34.1	L	0.33	25.9	60.0

Notes:

All measurements with the peak detector were below the quasipeak and only one emisson exceeded the average limit. This was measured with an average detector with the result shown in Table 2.5.10-2.

Figure 2.5.10-2 - Conducted Emissions Plot - Average Detector

Table 2.5.10-2 – Average Detector Data

Frequency (MHz)	Average (dBμV)	Line	Corr. (dB)	Margin - Peak (dB)	Limit - QP (dBμV)
13.560000	47.7	L	0.4	2.3	50.0

2.5.11 120VAC 60Hz (Neutral)

Figure 2.5.11-1 - Conducted Emissions Plot

Table 2.5.11-1 - Peak Data

Frequency (MHz)	Peak (dBμV)	Line	Corr. (dB)	Margin - Peak (dB)	Limit - QP (dBμV)
0.163300	54.0	N	0.06	11.2	65.2
0.176900	53.3	N	0.09	10.8	64.1
0.369600	42.0	N	0.09	17.7	59.7
0.962000	42.8	N	0.15	13.2	56.0
9.110000	35.5	N	0.33	24.5	60.0

Notes:

All measurements with the peak detector were below the quasipeak and only one emisson exceeded the average limit. This was measured with an average detector with the result shown in Table 2.5.11-2.

Figure 2.5.11-2 - Conducted Emissions Plot - Average Detector

Table 2.5.11-2 – Average Detector Data

Frequency (MHz)	Average (dBμV)	Line	Corr. (dB)	Margin - AVG (dB)	Limit - AVG (dBμV)
13.560000	47.6	N	0.4	2.4	50.0

SECTION 3

TEST EQUIPMENT USED

3.1 TEST EQUIPMENT USED

List of absolute measuring and other principal items of test equipment.

ID Number	Test Equipment	Туре	Serial Number	Manufacturer	SW/FW Rev	Cal Due Date
Conducted Emis	sions					
TEMC00002	LISN	ESH3-Z5	840730/005	Rhode & Schwarz	N/A	8/9/2017
TEMC00012	Spectrum Analyzer	E7405A	MY42000055	Agilent	A.09.02	3/31/2018
Radiated Emissi	on					
TEMC00025	Loop Antenna	AL-130	121033	Com-Power	N/A	11/30/2017
TEMC00005	Bilog Antenna	6112B	2579	Chase EMC	N/A	12/17/2017
TEMC00061	Double-ridged waveguide horn antenna	3117	00109296	ETS Lindgren	N/A	2/3/2018
TEMC00128	EMI Test Receiver	ESIB 40	100255/040	Rhode & Schwarz	4.35	11/7/2017
TEMC00013	Pre-amplifier	PA-122	181925	Compower	N/A	10/3/2017
TEMC00012	Spectrum Analyzer	E7405A	MY42000055	Agilent	A.09.02	3/31/2018
	Test Software	EMC32	854-01100119	Rhode & Schwarz	V8.54	N/A
Temperature						
TAME01005	Thermometer	552	4475338	Fluke	N/A	1/11/2018
TEMC00093	DVM	87	5920853	Fluke	N/A	12/29/2017
TAME01064	DC Power Supply	HPD 60-5	NA	XANTREX	NO	CR
TEMC00091	Spectrum Analyzer	E7402A	US39150137	Agilent	N/A	2/4/2018
NA	Temperature Chamber	EC127	EC0152	Sun Electronics	NO	CR

3.2 MEASUREMENT UNCERTAINTY

For a 95% confidence level, the measurement uncertainties for defined systems are:

3.2.1 Radiated Measurements (Below 30MHz)

	Contribution	Probability Distribution Type	Probability Distribution Xi	Standard Uncertainty u(x _i)	[u(x _i)] ²
1	Receiver/Spectrum Analyzer	Rectangular	0.45	0.26	0.07
2	Cables	Rectangular	0.50	0.29	0.08
4	Loop Antenna	Rectangular	0.75	0.44	0.19
5	Site	Rectangular	2.70	1.56	2.43
6	EUT Setup	Rectangular	1.00	0.58	0.33
			Combined	d Uncertainty (u₅):	1.76
			Co	verage Factor (k):	2
			Expar	nded Uncertainty:	3.53

3.2.2 MU for Radiated Emission Measurements (Below 1GHz)

Radiated Measurement 30 - 1000 MHz at a distance of 3 m

	Input Quantity (Contribution) X _i Value		Prob. Dist.	Divisor	u _i (x)	u _i (x)²
	input Quantity (Contribution) X	10.00	FTOD. DISC.	DIVISOI	u _l (x)	
1	Receiver reading	0.10 dB	Normal, k=1	1.000	0.10	0.01
2	Attenuation: antenna-receiver	0.20 dB	Normal, k=2	2.000	0.10	0.01
3	Antenna factor AF	0.58 dB	Normal, k=2	2.000	0.29	0.08
4	Receiver sinewave accuracy	0.40 dB	Normal, k=2	2.000	0.20	0.04
5	Receiver pulse amplitude	1.50 dB	Rectangular	1.732	0.87	0.75
6	Receiver pulse repetition rate	1.50 dB	Rectangular	1.732	0.87	0.75
7	Noise floor proximity	0.50 dB	Rectangular	1.732	0.29	0.08
8	Mismatch: antenna-receiver	0.95 dB	U-shaped	1.414	0.67	0.45
9	AF frequency interpolation	0.30 dB	Rectangular	1.732	0.17	0.03
10	AF height deviations	0.10 dB	Rectangular	1.732	0.06	0.00
11	Directivity difference at 3 m	3.12 dB	Rectangular	1.732	1.80	3.24
12	Phase center location at 3 m	1.00 dB	Rectangular	1.732	0.58	0.33
13	Cross-polarisation	0.90 dB	Rectangular	1.732	0.52	0.27
14	Balance	0.00 dB	Rectangular	1.732	0.00	0.00
15	Site imperfections	3.85 dB	Triangular	2.449	1.57	2.47
16	Separation distance at 3 m	0.30 dB	Rectangular	1.732	0.17	0.03
17	Effect of setup table material	0.77 dB	Rectangular	1.732	0.44	0.20
18	Table height at 3 m	0.10 dB	Normal, k=2	2.000	0.05	0.00
19	Near-field effects	0.00 dB	Triangular	2.449	0.00	0.00
20	Effect of ambient noise on OATS	0.00 dB				0.00
	Combined standard uncertainty	2.96	dB			
	Expanded uncertainty	5.92	dB			

3.2.3 MU for Radiated Emission Measurements (Above 1GHz)

	Input Quantity (Contribution) X _i	Value		Prob. Dist.	Divisor	u _i (x)	u _i (x) ²
1	Receiver reading	0.10	dB	Normal, k=1	1.000	0.10	0.01
2	Attenuation: antenna-receiver	0.30	dB	Normal, k=2	2.000	0.15	0.02
3	Preamplifier Gain	0.20	dB	Normal, k=2	2.000	0.10	0.01
4	Antenna factor AF	0.75	dB	Normal, k=2	2.000	0.38	0.14
5	Sinewave accuracy	0.20	dB	Normal, k=2	2.000	0.10	0.01
6	Instability of preamp gain	1.21	dB	Rectangular	1.732	0.70	0.49
7	Noise floor proximity	0.70	dB	Rectangular	1.732	0.40	0.16
8	Mismatch: antenna-preamplifier	1.41	dB	U-shaped	1.414	1.00	0.99
9	Mismatch: preamplifier-receiver	1.30	dB	U-shaped	1.414	0.92	0.85
10	AF frequency interpolation	0.30	dB	Rectangular	1.732	0.17	0.03
11	Directivity difference at 3 m	1.50	dB	Rectangular	1.732	0.87	0.75
12	Phase center location at 3 m	0.30	dB	Rectangular	1.732	0.17	0.03
13	Cross-polarisation	0.90	dB	Rectangular	1.732	0.52	0.27
14	Site imperfections VSWR (Method 2)	2.25	dB	Triangular	2.449	0.92	0.84
15	Effect of setup table material	2.90	dB	Rectangular	1.732	1.67	2.80
16	Separation distance at 3 m	0.30	dB	Rectangular	1.732	0.17	0.03
17	Table height at 3 m	0.00	dB	Normal, k=2	2.000	0.00	0.00
							-

Normal, k=2

5.46 dB

3.2.4 MU for Conducted Emissions Measurement

Expanded uncertainty

Conducted Measurement 150 kHz - 30 MHz, 50 ohm / 50 uH LISN

	Input Quantity (Contribution) X _i	Value		Prob. Dist.	Divisor	u _i (x)	u _i (x) ²	
1	Receiver reading	0.10	dB	Normal, k=1	1.000	0.10	0.01	
2	LISN-receiver attenuation	0.10	dB	Normal, k=2	2.000	0.05	0.00	
3	LISN voltage division factor	0.10	dB	Normal, k=2	2.000	0.05	0.00	
4	Receiver sinewave accuracy	0.40	dB	Normal, k=2	2.000	0.20	0.04	
5	Receiver pulse amplitude	1.50	dB	Rectangular	1.732	0.87	0.75	
6	Receiver pulse repetition rate	1.50	dB	Rectangular	1.732	0.87	0.75	
7	Noise floor proximity	0.00	dB	Rectangular	1.732	0.00	0.00	
8	AMN VDF frequency interpolation	0.10	dB	Rectangular	1.732	0.06	0.00	
9	Mismatch	0.07	dB	U-shaped	1.414	0.05	0.00	
10	LISN impedance	2.65	dB	Triangular	2.449	1.08	1.17	
11	Effect of mains disturbance	0.00	dB			0.00	0.00	
12	Effect of the environment							
_								
	Combined standard uncertainty Normal					dB		
	Expanded uncertainty Normal, k=2				3.31	dB		

SECTION 4

DIAGRAM OF TEST SETUP

4.1 TEST SETUP DIAGRAM (EMISSION MASK AND BELOW 30 MHZ)

4.2 TEST SETUP DIAGRAM (30 MHZ TO 1 GHZ)

Radiated Emission Test Setup (Below 1GHz)

4.3 TEST SETUP DIAGRAM ABOVE 1 GHZ)

Radiated Emission Test Setup (Above 1GHz)

4.4 TEST SETUP DIAGRAM (CONDUCTED EMISSIONS)

Conducted Emission Test Setup

SECTION 5

ACCREDITATION, DISCLAIMERS AND COPYRIGHT

5.1 ACCREDITATION, DISCLAIMERS AND COPYRIGHT

TÜV SÜD America Inc.'s reports apply only to the specific sample tested under stated test conditions. It is the manufacturer's responsibility to assure the continued compliance of production units of this model. TÜV SÜD America, Inc. shall have no liability for any deductions, inferences or generalizations drawn by the client or others from TÜV SÜD America, Inc.'s issued reports.

This report is the confidential property of the client. As a mutual protection to our clients, the public and TÜV SÜD America, Inc., extracts from the test report shall not be reproduced, except in full without TÜV SÜD America, Inc.'s written approval.

This report must not be used to claim product certification, approval, or endorsement by A2LA, NIST, or any agency of the federal government.

TÜV SÜD America, Inc. and its professional staff hold government and professional organization certifications for A2LA, AAMI, ACIL, AEA, ANSI, IEEE, and iNARTE.

