- b) In a railway marshalling yard, goods trains arrive at a rate of 30 trains per day. Assuming that the inter-arrival time follows an exponential distribution and the service time distribution is also exponential with an average 36 minutes. Calculate the followings;
 - i) The mean queue size (line length) and
 - ii) The probability that the queue size exceeds 10. If the input of trains increases to an average 33 per day, what will be the change in (i) and (ii)?
- 8. a) Write a note on Reliability and its applications.
 - b) The mean time to failure of a particular type of component is 800 h. What is the probability that a similar component will fail in an operating time of
 - i) 200 h
 - ii) 400 h
 - iii) 800 h and
 - iv) 1000 h.

MEPE/MEDC/MEHP/MEMT/MEIC/ MEPS/MTPS/MEVD/MTPA-101

M.E./M.Tech. I Semester

Examination, June 2016

Advanced Mathematics

Time: Three Hours

Maximum Marks: 70

Note: Attempt any five questions. All questions carry equal marks.

- 1. a) Solve $\frac{\partial u}{\partial x} = 2\frac{\partial u}{\partial t} + u$ by the method of separation of variables, where u(x, 0) = 6. e^{-3x} .
 - b) Find the Fourier complex transform of

$$f(x) = \begin{cases} x^2, & |x| < a \\ 0, & |x| > a \end{cases}$$

2. a) Find the Fourier sine transform of $\frac{e^{-ax}}{x}$. Hence find

Fourier sine transform of $\frac{1}{x}$.

b) Calculate the inverse DFT of

$$X(K) = \begin{cases} 5, & K=0 \\ 3-i2, & K=1 \\ -3, & K=2 \\ 3+i2, & K=3 \end{cases}$$

3. Solve $u_{xx} + u_{yy} = 0$ for the domain of the given figure:

a) If A and B are two events, where $P(A) = \frac{1}{2}$, $P(B) = \frac{1}{3}$ and

 $P(A \cap B) = \frac{1}{4}$, then evaluate the following:

- i) P(A/B)
- ii) P(B/A)
- iii) $P(A \cup B)$
- Six dice are thrown 729 times. How many times do you expect, at least three dice to show a five or six?
- Find the mean and variance of the Binomial distribution.
 - In a book of 300 pages, a proof reader finds no error in 200 pages, in 75 pages one error on each page, in 20 pages two errors on each page and in 5 pages 3 errors on each page. Use Poisson's distribution to these data and calculate theoretical frequency. $[e^{-0.43} = 0.6505]$

http://www.rgpvonline.com

6. a) Let $X = \{47, 48, 49, 50, 51\}$ and A and B be two fuzzy set given by

$$A = \left\{ \frac{0.3}{47}, \frac{0.4}{48}, \frac{0.7}{49}, \frac{0.8}{50}, \frac{1}{51} \right\}$$
 and

$$B = \left\{ \frac{1}{47}, \frac{0}{48}, \frac{0.8}{49}, \frac{0.6}{50}, \frac{0.3}{51} \right\}$$

Find $A \cup B$ and $A \cap B$.

Consider the two matrices:

$$A = \begin{bmatrix} 1 & 0 & 1 \\ 2 & 3 & 4 \\ -1 & 6 & 7 \end{bmatrix} \text{ and } B = \begin{bmatrix} 7 & 4 & 2 \\ 3 & 5 & 6 \\ -1 & 2 & 1 \end{bmatrix}$$

Using MATLAB, determine the following

- i) A+B
- ii) AB
- iii) A²
- iv) A^T
- v) B^{-1} vi) $B^{T}A^{T}$
- vii) $A^2 + B^2 AB$
- 7. a) Write the stochastic matrix for the following transition //www.rgpvonline.com diagram:

