Partie 1 : Calcul de l'indice de masse corporelle IMC

On souhaite définir une fonction permettant de calculer l'IMC d'une personne à partir de son poids et de sa taille.

Cet IMC est donné par la formule $\frac{\text{Poids}}{\text{Taille}^2}$ où le poids est exprimé en kg et la taille en mètres.

Pour cela on utilise les instructions suivantes :

```
1 from lycee import *
2 def IMC(p,t):
3    return p/t**2
```

- 1) Définir la fonction ci-dessus et la tester dans la console avec différentes valeurs de p et t.
- 2) Les médecins considèrent qu'une personne est en surpoids lorsque son IMC dépasse 25.

Utiliser cette fonction afin de créer un programme permettant de déterminer si une personne est en surpoids.

Partie 2 : Tableau de valeur d'une fonction

On considère la fonction f définie sur [-3; 5] par $f(x) = x^2 - 3x + 1$.

On souhaite compléter le tableau de valeurs suivant :

x	- 3	- 2	- 1	0	1	2	3	4	5		
f(x)											

Pour cela on utilise les instructions suivantes :

```
1 from lycee import *
2 def f(x):
3    return x**2-3*x+1
4
5 for i in range(-3,6):
6    print(f(i))
```

- 1) Ecrire le programme ci-dessus et compléter le tableau
- 2) Ecrire un programme permettant de compléter le tableau ci-dessous où g est la fonction définie sur [-1 ; 3] par $g(x) = x^3 2x^2 4x 5$

X	- 1	- 0,5	0	0,5	1	1,5	2	2,5	3
g(x)									

Programme Partie 1

```
from lycee import *
def IMC(p,t):
    return p/t**2

5 poids = eval(input("Entrer le poids de la personne"))
    taille = eval(input("Entrer la taille de la personne"))
    print("L'IMC est égal à ", IMC(poids,taille))
    if IMC(poids,taille)>25 :
        print("La personne est en surpoids")

else :
    print("La personne n'est pas en surpoids")
```