PB9.1 Considere a base ordenada $\mathcal{B} = (\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3)$ de \mathbb{R}^3 formada pelos vectores

$$\mathbf{v}_1 = (1,0,0)$$
, $\mathbf{v}_2 = (2,1,0)$ e $\mathbf{v}_3 = (5,0,1)$.

Seja $T:\mathbb{R}^3 \to \mathbb{R}^3$ a transformação linear que é representada na base \mathcal{B} pela matriz

$$[T]_{\mathcal{B}} = \left[\begin{array}{ccc} 8 & 3 & 2 \\ 8 & 3 & 4 \\ 8 & 3 & 4 \end{array} \right] .$$

- 1. Indique uma base para cada um dos seguintes subespaços:
 - a) espaço das colunas da matriz $[T]_{\mathcal{B}}$.
 - b) espaço nulo da matriz $[T]_{\mathcal{B}}$.
 - c) núcleo da transformação T .

Indique também o valor da dimensão do contradomínio de T.

- **2.** Considere o vector \mathbf{w} de \mathbb{R}^3 com coordenadas na base \mathcal{B} dadas por $[\mathbf{w}]_{\mathcal{B}} = \begin{bmatrix} 3 \\ 3 \\ 3 \end{bmatrix}$.
 - a) Determine w.
 - b) Indique o conjunto de soluções S da equação linear $T(\mathbf{u}) = \mathbf{w}$.
 - c) Indique a solução ${\bf u}$ da equação linear $T\left({\bf u}\right)={\bf w}$ que tem a primeira componente nula.
- **3.** Além da base \mathcal{B} de \mathbb{R}^3 definida acima, considere a base ordenada $\mathcal{D} = (\mathbf{u}_1, \mathbf{u}_2)$ de \mathbb{R}^2 formada pelos vectores

$$\mathbf{u}_1 = (1,0)$$
 e $\mathbf{u}_2 = (5,1)$.

e seja $S:\mathbb{R}^2 \to \mathbb{R}^3$ a única transformação linear tal que

$$S(\mathbf{u}_1) = \mathbf{v}_2 + \mathbf{v}_3$$
, e $S(\mathbf{u}_2) = \mathbf{v}_2$.

- a) Indique uma base para a imagem de S.
- b) Indique a matriz $[S]_{\mathcal{BD}}$ que representa S nas bases \mathcal{D} e \mathcal{B} .
- c) Para as aplicações T e S acima definidas considere a aplicação composta $T \circ S$ e determine a matriz $[T \circ S]_{\mathcal{BD}}$ que a representa nas bases \mathcal{D} e \mathcal{B} .
- **PB9.2** Considere, no espaço vectorial \mathbb{P}_1 dos polinómios reais de grau menor ou igual a um, o produto interno definido pela expressão:

$$\langle p\left(t\right),q\left(t\right)\rangle = 2\,p\left(0\right)\,q\left(0\right) + 2\,p\left(0\right)\,q\left(1\right) + \alpha\,p\left(1\right)\,q\left(0\right) + 5\,p\left(1\right)\,q\left(1\right)$$
 para certo valor de $\alpha\in\mathbb{R}$.

- a) Determine o valor de α .
- **b**) Mostre que a expressão acima define de facto um produto interno em \mathbb{P}_1 .
- c) Para o produto interno considerado calcule a norma de p(t) = 3t 3.