Universidade Federal Rural do Rio de Janeiro - UFRRJ

Professor: Montauban Oliveira

Monitor: Matheus dos Santos Martins

Disciplina: Cálculo II

DOMÍNIOS, GRÁFICOS E LIMITES DE FUNÇÕES DE VÁRIAS VARIÁVEIS

Questão 1 -

· le análise de dominio de codo função de duos ou mais variareis é teito utilizando os mesmos princípios de Lunçãos de uma variarel.

a)
$$y = \sqrt{x+y-4} = f(x,y)$$

$$D(f) = \{(x,y) \in \mathbb{R}^2/y^2 - x+4\}$$

$$x+y-4 \ge 0 \Rightarrow y \ge -x+4$$

b)
$$\beta = \sqrt{y-1-x^2}$$

$$D(f) = \{(x,y) \in \mathbb{R}^2/y \ge x^2+1\}$$

$$y-1-x^2 \ge 0 \quad \text{if } y \ge x^2+1$$

Questos 2 -

$$S_{1} = \left((x, y, 3) \in \mathbb{R}^{3} / x^{2} + y^{2} = 4, 0 \le 3 \le 2 \right)$$

Observe que a equeçõe $x^2+y^2=4$, em \mathbb{R}^3 , é um cilindre de bose circular de raio 2.

Mote que
$$3 = \sqrt{x^2 + y^2}$$
, represente a porte superior de um come.

Questão 3

•
$$f(x,y) = \frac{1}{x^2 + y^2} = 3$$

a). Para
$$3 = \frac{1}{4}$$
, Temos: $\frac{1}{\chi^2 + y^2} = \frac{1}{4}$ de rais 2 e centro (00)

Conometrização:
$$f_1(t) = (2con(t), 2non(t)), t \in [0,2\pi)$$

· Para
$$y = 4$$
 : $\frac{1}{x^2 + y^2} = 4$ $\frac{1}{x^2 + y^2} = \frac{1}{4}$ (Circumférêncie de rois $1/2$ e centro $(0,0)$)

Parametrização:
$$\int_{2}^{\infty} (t) = \left(\frac{\cos(t)}{2}, \frac{\sin(t)}{2}\right), t \in [0, 2\pi]$$

Cara 3=9: $\frac{1}{x^2+y^2}=9$ $x^2+y^2=\frac{1}{9}$ (Circumferències de raix $\frac{1}{3}$ e centro (0,0)).

Coronetrizações: $f_3(t) = \left(\frac{\cos(t)}{3}, \frac{\sin(t)}{3}\right), t \in [0,2\pi]$

b) lors esbogar o gráfico de f, ramos utilizar algumas curvos de nível:

• $f(x,y) = \frac{1}{x^2+y^2} = 3$. Egendir $g = C, C \in \mathbb{R}$:

 $x^2+y^2=\frac{1}{3}$ $x^2+y^2=\frac{1}{6}$

Para c=0, Teremos es conjuntos vogos, ou reja, o gráfico de finas Tangencia (encosta) ou intercepta (etravena) os einos x e J. Mais ainda, Tal informações pos dá a entender que lá um comportamento assintáticos de fi com j=0 (plano xy).

· lara c<0, Tombrén Teremos o conjunto vogio, pois a equação $x^2 + y^2 = \frac{1}{c}$, não admitirá solução, (Reflita!)

Tolinformações implica que Todo o gráfico de forta acima des plano xy (3 >0).

· lara c>0, coiros interesentes comezon a acontecer na equesto $x^2+y^2=1/c$. Observe que:

Le c Lor um número muito grande então 1/c rerá um númeno definitivamente mento pequeno e coro e reje um número mui-To request, charmente 1/c reso um número muito grande. (I) * Dembre que CSO * Le lequesor x²+y² = 1 representa uma tomilie de circunferêncies con centre no origen (0,0) e rois (I) Conslire agora es observações I e II e como elas re relacionam. · Relaçõe 1 - Como o rais de cada circunferência de equeção é dado por \1,000, entre quente mais diministras o valor de c, maisos serve es circunferêncies, analignmenta, quento mais cumentarmo, menores serão os circunferências. · Relação 2 (gráfico) - Observe elguns exemplos do comportemento grafier des curros de nivel por plano ny: -101 10 C=0,1 -1 C=1 c=10 C=100

Question 4

$$f(x,y) = \begin{cases} 7 - \sqrt{x^2 + y^2}, 0 \le x^2 + y^2 \le 16 \\ \sqrt{25 - x^2 - y^2}, 16 \le x^2 + y^2 \le 25 \end{cases}$$

Then $f(x,y) = 7 - \sqrt{x^2 + y^2}, \text{ podernos togen:}$

$$3-7=-\sqrt{x^2+y^2}$$
 $(7-3)=\sqrt{x^2+y^2}$, que represente a equeção de como com centro em $(0,0,7)$.

Como 0 < 22+ y 2 < 16, enter:

Como 16 = x + y = = 25, Logomo:

$$-25 \le -x^2 - y^2 \le -16 \implies -25 + 25 \le 25 - x^2 - y^2 \le -16 + 25$$

$$0 \le 25 - \chi^2 - y^2 \le 9$$
 $0 \le \sqrt{25 - \chi^2 - y^2} \le 3$

$$\begin{array}{ll} \begin{array}{ll} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} = \begin{cases} \begin{array}{ll} \begin{array}{ll} \begin{array}{ll} \begin{array}{ll} \end{array} \end{array} \end{array} \end{array} \end{array} \begin{array}{ll} \begin{array}{ll} \begin{array}{ll} \begin{array}{ll} \end{array} \end{array} \end{array} \end{array} = \begin{cases} \begin{array}{ll} \begin{array}{ll} \begin{array}{ll} \end{array} \end{array} \end{array} \end{array} \begin{array}{ll} \begin{array}{ll} \begin{array}{ll} \end{array} \end{array} \end{array} \end{array} \begin{array}{ll} \begin{array}{ll} \begin{array}{ll} \begin{array}{ll} \end{array} \end{array} \end{array} \end{array} \begin{array}{ll} \begin{array}{ll} \begin{array}{ll} \end{array} \end{array} \end{array} \begin{array}{ll} \begin{array}{ll} \begin{array}{ll} \end{array} \end{array} \end{array} \begin{array}{ll} \begin{array}{ll} \end{array} \end{array} \end{array} \begin{array}{ll} \begin{array}{ll} \end{array} \end{array} \begin{array}{ll} \end{array} \end{array} \begin{array}{ll} \begin{array}{ll} \end{array} \end{array} \begin{array}{ll} \end{array} \end{array} \begin{array}{ll} \begin{array}{ll} \end{array} \end{array} \begin{array}{ll} \end{array} \end{array} \begin{array}{ll} \end{array} \end{array} \begin{array}{ll} \end{array} \end{array} \begin{array}{ll} \begin{array}{ll} \end{array} \end{array} \end{array} \begin{array}{ll} \end{array} \end{array} \begin{array}{ll} \begin{array}{ll} \end{array} \end{array} \begin{array}{ll} \end{array} \begin{array}{ll} \end{array} \begin{array}{ll} \end{array} \\ \end{array} \begin{array}{ll} \end{array} \end{array} \begin{array}{ll} \\ \end{array} \end{array} \begin{array}{ll} \\ \end{array} \end{array} \begin{array}{ll} \end{array} \\ \\ \end{array} \begin{array}{ll} \\ \end{array} \begin{array}{ll} \\ \\ \\ \end{array} \begin{array}{ll} \\ \\ \end{array} \begin{array}{ll} \\ \\ \\ \\ \\ \end{array} \begin{array}{ll} \\ \\ \\ \\ \\ \end{array} \begin{array}{ll} \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{ll} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{ll} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{ll} \\ \\$$

• Em $f(x,y) = 7 - x^2 - y^2$, Eogomos: $3 = 7 - x^2 - y^2$, Como exercício, Loça es curros de mirel de f(x,y) e mostre que retreto de um paraboloide elíptico. (Dice: Conolise es intersegões com es planos xy(3=0), xy(y=0) e yy(x=0)).

Observando mono dománio x2+y2 < 4, Teremos:

• Em f(x,y) = 4, poolemos notar que se trata de um plano paralelo ao plano xy.

Considerando o domínio x2+y2 > 4. Tenos:

Com in prolemen esbegar:

· Centes de iniciormos, alguns comentários:

- I) le Regne de l'Hospital pare à célcula de limites nous é véliste quanda extomos Tratando de Lunções de vários variáreis, a memo é restringido para Lunções de uma variárel.
 - II) Pare rerificar a existência dos limites a reguir, seguiremos 3 parsos.
- P1 Cylicamos o porto a Lunção, caso gere um valor real,

 Tol valor revé o limite que procuramos, caso gere uma indeterminação,

 sequiremos ao próximo passo.
- no qual gerem limites alidintes, abfinitivamente, o limite não existirá, cara exallemos vários cominhos no qual gerem o memos limite, entos nada poderá re confirmar ainala mas proderemos estilizar o recunro a requir.
 - $\circ P_3 (\text{Tenema})$ Se $\lim_{(x,y) \to (x_0 | y_0)} = 0$ e re $|g(x,y)| \le K$ pare $(x,y) \to (x_0 | y_0)$

$$0 \leq \sqrt{(\chi - \chi_0)^2 + (\chi - \chi_0)^2} \leq \delta$$
, and $K, \delta \in \mathbb{R}$, entro :

Limitada

$$f(x,y) = 0$$
 $f(x,y) = 0$

Limitada

* Como podemos notar, é lem mais Éail motrar que o limite nos enite (pois boste utilizar Pa) a mostrar que ele existe.

Mena lite, nos abordaremos a definição de limite em R' para a resolução dos itens a reguir, no entento, recomendo ma leitura para proticar os motoções e aprimorar os conceitos vistos em Cálculo I. *

a)
$$\lim_{(x,y)\to(0,0)} \frac{e^x + e^y}{\cos(x) + nen(y)} = \frac{e^x + e^y}{1 + o} = 2$$

b) lim
$$\frac{y^3 + x \cdot y^2}{(x,y,y) \rightarrow (0,-1,0)} = \frac{(-1)^3 + 0}{x^2 + y^2 + y^2} = \frac{(-1)^3 + 0}{(-1)^2} = \frac{(-1)^3}{(-1)^2}$$

c) lim $\frac{x^2+y^2}{(x,y)-o(o_1o)} = \frac{o}{x^2+y^2}$ indetermineção! Utilizando cominho:

o lim
$$\frac{\chi^2 + 0}{(\chi, \eta) \to (\chi, 0)} = 1$$
, onim $\lim_{(\chi, \eta) \to (\chi, 0)} \frac{1}{\chi^2 + 0} = 1$

Tendendo a (0,0) pela reta (0,4)

· lim
$$\frac{0+y}{0+y^2} = \frac{y}{y^2} = \frac{1}{y}$$
 anim $\lim_{(0,y)\to(0,0)} \frac{1}{y} = \frac{1}{y}$ indetermi-

Como encentramos dois caminhos gerandos limites diferentes, então,

lim
$$\frac{x^2+y}{(x,y)-x(0,0)}$$
 x^2+y^2 not existe.

d) lim $\frac{x^2 + 3y^2 + 7z^2}{(x,y,z)} = \frac{0}{0}$, indetermination!

Tendendo a (0,0,0) pelo cominho (x,0,0):

$$\lim_{(x,2,3) \to (x,0,0)} \frac{x^2 + 0 + 0}{9x^2 + 0 + 0} = \frac{x^2}{9x^2} = \left(\frac{1}{9}\right), \text{ enim } \lim_{(x,0,0) \to (0,0,0)} \frac{1}{9} = \left(\frac{1}{9}\right)$$

$$\lim_{(x,0,0)\to(0,0,0)}\frac{1}{9}=\left(\frac{1}{9}\right)$$

Tendendo a (0,010) pela cominho (0,3,0):

lim
$$\frac{0+3y^2+0}{0+3y^2+2z^2} = \frac{3y^2}{5y^2} = \frac{3}{5}$$
, omin $\lim_{(0,3,0)\to(0,0,0)} \frac{3}{5} = \frac{3}{5}$

(12) $\frac{3}{5} = \frac{3}{5}$

$$\lim_{(0,3,0)\to(0,0,0)} \frac{3}{5} = \frac{3}{5}$$

Com lin $\frac{x+3y^2+7y^2}{(x,y,y)-(0,0)} = \frac{x+3y^2+7y^2}{(x+3y^2+2y^2)}$ now existence $\frac{x+3y^2+7y^2}{(x+3y+2y^2)}$

2) lim $\frac{7x^{2}y^{2}y^{2}}{(x_{1}y_{1}y_{2})-(0,0,0)} = \frac{0}{15x^{6}+2y^{6}-6y^{6}} = \frac{0}{0}$, indeterminação !

Tendendo a (0,0,0) pela cominha (0,0,2):

$$\lim_{(x,y,z) \to (0,0,z)} \frac{0}{0+0+6z^6} = 0 \Rightarrow \lim_{(0,0,z) \to (0,0,0)} 0 = 0$$

Tendendo a (0,0,0) pelo cominho (t,t,t):

lendendt a
$$(0,0,0)$$
 pels comunits $(t,0,0)$.

Lim $\frac{7t^2t^2t^2}{150^6+2t^6-6t^6} = \frac{7}{110^6} = \frac{7}{11}$ $\frac{7}{(\tau,\tau,\tau)} \rightarrow (0,0,0)$ $\frac{7}{11} = \frac{7}{11}$ $(\tau,\tau,\tau) \rightarrow (0,0,0)$

. Nos ilens f, g, h, i a regair, serà utilizado de torme direta o Tevemo descrito em Po, no entanto, taga, como exercicio, a rerificação de P2 e la em Lois ilen pora prolieor. f) $\lim_{(x,y)\to(0,0)} \frac{15x^{\frac{7}{9}}}{2x^{2}+2y^{2}} \rightarrow \frac{15}{2}$. $\lim_{(x,y)\to(0,0)} \frac{x^{\frac{7}{9}}}{x^{2}+y^{2}}$ $\frac{15}{2} \lim_{(x,y) \to (0,0)} (x,y) \to (0,0) \frac{x^2}{x^2 + y^2} . Observe que:$ · lim 25 y = 0 (x,y) - (0,0) · x²+y² é limitada. lois: $|x^2| \le |x^2| \le |x^2| = 1$ (Reflila), onin $|x^2| \le 1$, o que montre à limitaçõe limitaçõe limilação. Days, lin (x,y) = (0,0) $(x,y) = (0,0) (x^2 + y^2) = 0$ 3) lim $\frac{xy}{(x,y) - (0,0)} \sqrt{\frac{x^2+y^2}{x^2+y^2}}$ lim $(x,y) - (0,0) \sqrt{\frac{x^2+y^2}{x^2+y^2}}$ lim x2y2 (Leembre des propriedades de limites!) = Vo = 0 lim x^2 . lim $(x,y) \rightarrow (0,0)$ (x^2+y^2) Limitad (x,y)

