Lecture 08: Finite Sample PCA I

Nikola Zlatanov

Innopolis University

Advanced Statistics

27-th of March to 3-th of April, 2023

Motivation

- To do PCA of data vectors $x_1, x_2, ..., x_N \in \mathbb{R}^d$, coming from some distribution $f_{\mathbf{X}}(\mathbf{x})$, we needed to have the covariance matrix Σ .
- But what happens in cases when we do not know the covariance matrix Σ . Can we still do PCA then as well?
- Specifically, assume we have data vectors $x_1, x_2, ..., x_N$, coming from some unknown distribution $f_{\mathbf{X}}(\mathbf{x})$ and unknown covariance matrix Σ .
- How to do PCA then? And what will be the error we make compared to the case when we knew the covariance matrix?

Finite Sample PCA

- Let us have a sample of N i.i.d. data vectors $X_1, X_2, ..., X_N \in \mathbb{R}^d$, coming from some unknown distribution $f_X(x)$ and unknown covariance matrix Σ .
- Let us estimate the unknown covariance matrix Σ as $\hat{\Sigma}_N$ using the N samples as

$$\hat{\boldsymbol{\Sigma}}_N = \frac{1}{N} \sum_{i=1}^N \boldsymbol{X}_i \boldsymbol{X}_i^T, \tag{1}$$

- Then, let's do PCA, using the estimated covariance matrix $\hat{\Sigma}_N$, on the data vectors $X_1, X_2, ..., X_N$.
- Hopefully, the results using the estimated covariance matrix $\hat{\Sigma}_N$ will be close to doing the PCA, using the actual covariance matrix Σ , on the data vectors $X_1, X_2, ..., X_N$.

Finite Sample PCA

- An immediate question in when using the estimated covariance matrix $\hat{\Sigma}_N$ to do PCA is the following.
- How large should the sample size N be in order for the two PCA results to be close?
- Since each of the samples $X_1, X_2, ..., X_N$ is of dimension d, Σ is a $d \times d$ matrix.
- Then, for sure, the accuracy of the PCA using the estimated covariance matrix $\hat{\Sigma}_N$ will depend on how N depends on d.
- How will N depend on d? Maybe for a good accuracy we need N = O(d), or maybe $N = O(d^2)$ or maybe $N = O(e^d)$

Finite Sample PCA

- We know that the PCA result using the covariance matrix Σ is a function of its eigenvalues, $\lambda_i(\Sigma)$, and eigenvectors, $v_i(\Sigma)$.
- Hence, if $\lambda_i(\hat{\Sigma}_N)$ and $v_i(\hat{\Sigma}_N)$ are the eigenvalues and eigenvectors of the estimated covariance matrix, $\hat{\Sigma}_N$, then for the two PCA results to be close, the following has to hold

$$\lambda_i(\mathbf{\Sigma}) \approx \lambda_i(\hat{\mathbf{\Sigma}}_N)$$
AND
 $\mathbf{v}_i(\mathbf{\Sigma}) \approx \mathbf{v}_i(\hat{\mathbf{\Sigma}}_N),$ (2)

i.e., the eigenvalues and eigenvectors of Σ and $\hat{\Sigma}_N$ are very close to each other.

• How large should the sample size N be in order for the eigenvalues and eigenvectors of Σ and $\hat{\Sigma}_N$ to be very close to each other?

Covariance Estimation Problem

Step 1:

- Let us measure how far Σ and $\hat{\Sigma}_N$ are from each other using some measurement/metric.
- For matrices, so far, we learned that we can use the Frobenius norm or the operator norm.
- Let's try the operator norm:

$$||\hat{\Sigma}_N - \Sigma||_{\text{op}} = \sigma_1(\hat{\Sigma}_N - \Sigma),$$
 (3)

where $\sigma_1 \left(\hat{\Sigma}_N - \Sigma \right)$ is the largest singular value of the matrix $\hat{\Sigma}_N - \Sigma$

• Now, we have

$$\sigma_{1}(\hat{\boldsymbol{\Sigma}}_{N} - \boldsymbol{\Sigma}) = \left| \lambda_{1}(\hat{\boldsymbol{\Sigma}}_{N} - \boldsymbol{\Sigma}) \right| = \max_{\boldsymbol{v}, ||\boldsymbol{v}||_{2} = 1} \left| \boldsymbol{v}^{T} (\hat{\boldsymbol{\Sigma}}_{N} - \boldsymbol{\Sigma}) \boldsymbol{v} \right|$$
$$= \max_{\boldsymbol{v}, ||\boldsymbol{v}||_{2} = 1} \left| \boldsymbol{v}^{T} \hat{\boldsymbol{\Sigma}}_{N} \boldsymbol{v} - \boldsymbol{v}^{T} \boldsymbol{\Sigma} \boldsymbol{v} \right|$$
(4)

Distance Between True and Sampled Covariance Matrice

• The first element in (4) is

$$\boldsymbol{v}^{T} \hat{\boldsymbol{\Sigma}}_{N} \boldsymbol{v} = \frac{1}{N} \sum_{i=1}^{N} \boldsymbol{v}^{T} \boldsymbol{X}_{i} \boldsymbol{X}_{i}^{T} \boldsymbol{v} = \frac{1}{N} \sum_{i=1}^{N} Y_{i} Y_{i} = \frac{1}{N} \sum_{i=1}^{N} Y_{i}^{2}$$
$$= \frac{1}{N} \sum_{i=1}^{N} \langle \boldsymbol{v}, \boldsymbol{X}_{i} \rangle^{2}, \tag{5}$$

where $Y_i = \mathbf{v}^T \mathbf{X}_i = \mathbf{X}_i^T \mathbf{v} = \langle \mathbf{v}, \mathbf{X}_i \rangle$.

• The second element in (4) is

$$\mathbf{v}^{T} \mathbf{\Sigma} \mathbf{v} = \mathbf{v}^{T} E[\mathbf{X} \mathbf{X}^{T}] \mathbf{v} = E[\mathbf{v}^{T} \mathbf{X} \mathbf{X}^{T} \mathbf{v}] = E[YY] = E[Y^{2}]$$

$$= E[\langle \mathbf{v}, \mathbf{X} \rangle^{2}]$$
(6)

where $Y = \mathbf{v}^T \mathbf{X} = \mathbf{X}^T \mathbf{v} = \langle \mathbf{v}, \mathbf{X} \rangle$.

Distance Between True and Sampled Covariance Matrice

Inserting (5) and (6) into (4), and then (4) into (3), we obtain

$$||\hat{\boldsymbol{\Sigma}}_N - \boldsymbol{\Sigma}||_{\text{op}} = \max_{\boldsymbol{v}, ||\boldsymbol{v}||_2 = 1} \left| \frac{1}{N} \sum_{i=1}^N \langle \boldsymbol{v}, \boldsymbol{X}_i \rangle^2 - E\left[\langle \boldsymbol{v}, \boldsymbol{X} \rangle^2 \right] \right|, \quad (7)$$

which is a random variable (RV).

Covariance Estimation Theorem

• Thm (Covariance Estimation Theorem): Let $X_i \in \mathbb{R}^d$ be N sample vectors independently and identically drawn from the Gaussian distribution $\mathcal{N}(0, \Sigma)$. Let each element of X_i be with variance σ^2 . Let $\delta \geq 0$. Then, the following holds

$$\Pr\left\{||\hat{\mathbf{\Sigma}}_{N} - \mathbf{\Sigma}||_{\text{op}} \leq \delta\right\}$$

$$\geq 1 - 2\exp\left(d\sqrt{\frac{2}{\epsilon}}\right)\exp\left(-N\frac{(1-\epsilon)\delta}{2\sigma^{2}}\min\left\{\frac{(1-\epsilon)\delta}{2\sigma^{2}}.1\right\}\right) \quad (8)$$

• What this Thm says is that the distance between $\hat{\Sigma}_N$ and Σ can be made smaller than δ , with probability that goes to one as N increases, as long as N satisfies

$$N\frac{(1-\epsilon)\delta}{2\sigma^2}\min\left\{\frac{(1-\epsilon)\delta}{2\sigma^2},1\right\} > d\sqrt{\frac{2}{\epsilon}}$$
 (9)

Covariance Estimation Theorem

- What the Covariance Estimation Theorem tells us is that N = o(d).
- In other words, the number of vector samples N we need to accurately estimate the covariance matrix Σ using

$$\hat{\boldsymbol{\Sigma}}_N = \frac{1}{N} \sum_{i=1}^N \boldsymbol{X}_i \boldsymbol{X}_i^T \tag{10}$$

depends linearly on the vectors X_i length d.

- This is very good news since there is no curse-of-dimensionality in this problem.
- Imagine if it was $N = o(e^d)$. Then, it would have been impossible to estimate $\hat{\Sigma}_N$ using (10) since for d = 100 we would need at least e^{100} samples, which is more than the number of atoms in the observable universe.

Distance Between Finite Sample PCA and True PCA

- So far we only proved that we can make $||\hat{\Sigma}_N \Sigma||_{\text{op}}$ vary small by increasing N, given that condition (9) holds.
- But PCA does not depend on $||\hat{\Sigma}_N \Sigma||_{\text{op}}$ explicitly, and instead depends on the distances between the eigenvalues and eigenvectors of Σ and $\hat{\Sigma}_N$.
- In fact, for the PCA results using $\hat{\Sigma}_N$ to be very close to the PCA results using Σ , we needed the following to hold for all dimensions i over which we do the PCA (what happens in the other dimensions is irrelevant)

$$\lambda_i(\Sigma) \approx \lambda_i(\hat{\Sigma}_N)$$
 AND $v_i(\Sigma) \approx v_i(\hat{\Sigma}_N)$, (11)

i.e., the eigenvalues and eigenvectors of Σ and $\hat{\Sigma}_N$ are very close to each other in all dimensions i over which we do the PCA.

• In the following, we will show that by making $||\hat{\Sigma}_N - \Sigma||_{\text{op}}$ vary small, we will implicitly achieve (11).

Distance Between Eigenvalues

• Thm (Weyl's Inequality): $\forall d \times d$ symmetric matrices \boldsymbol{A} and \boldsymbol{B} , the following holds

$$\max_{i} |\lambda_{i}(\boldsymbol{A}) - \lambda_{i}(\boldsymbol{B})| \le ||\boldsymbol{A} - \boldsymbol{B}||_{\text{op}}$$
(12)

- We will not prove it!
- What this theorem says is that the largest distance between the eigenvalues of any two symmetric matrices A and B is upper bounded by the operator norm of A B
- Hence, if we make $||\hat{\Sigma}_N \Sigma||_{\text{op}}$ vary small, we implicitly make the distance between the eigenvalues of Σ and $\hat{\Sigma}_N$ also very small. i.e., the following holds

$$\lambda_i(\mathbf{\Sigma}) \approx \lambda_i(\hat{\mathbf{\Sigma}}_N) \tag{13}$$

• How about the eigenvectors. Now, they are more tricky, but we can still do it as shown in the following.

Distance Between Eigenvectors

• Thm (Davis-Kahan Inequality): For any symmetric matrices Σ and $\hat{\Sigma}_N$ with eigenvectors $v_1(\Sigma), v_2(\Sigma), ..., v_k(\Sigma)$ and $v_1(\hat{\Sigma}_N), v_2(\hat{\Sigma}_N), ..., v_k(\hat{\Sigma}_N)$, respectively, let P_{Σ} and $P_{\hat{\Sigma}_N}$ be defined as

$$P_{\Sigma} = \sum_{i=1}^{k} v_i(\Sigma) v_i^T(\Sigma)$$
 (14)

$$\boldsymbol{P}_{\hat{\boldsymbol{\Sigma}}_N} = \sum_{i=1}^k \boldsymbol{v}_i(\hat{\boldsymbol{\Sigma}}_N) \boldsymbol{v}_i^T(\hat{\boldsymbol{\Sigma}}_N). \tag{15}$$

Then, the following holds

$$||P_{\hat{\Sigma}_N} - P_{\Sigma}||_{\text{op}} \le \frac{||\hat{\Sigma}_N - \Sigma||_{\text{op}}}{\lambda_k(\hat{\Sigma}_N) - \lambda_{k+1}(\hat{\Sigma}_N)}$$
(16)

• We will not prove it!

Distance Between Eigenvectors

- What the Davis-Kahan Inequality Thm says is that by making $||\hat{\Sigma}_N \Sigma||_{\text{op}}$ vary small, we implicitly make the first k eigenvectors of $\hat{\Sigma}_N$ to be very close to the first k eigenvectors of Σ_N , as long as there is a 'spectral gap' between the k-th and the (k+1)-th eigenvalue of $\hat{\Sigma}_N$.
- 'Spectral gap' between the k-th and the (k+1)-th eigenvalue of $\hat{\Sigma}_N$, means that they are as far away as possible. See this Figure:

- This Thm also gives us a rule of thumb used in the current PCA algos: Do PCA dimension reduction up to the point when we observe a spectral gap in the eigenvalues of $\hat{\Sigma}_N$. Anything beyond the spectral gap consider as noise and throw it away.
- In the next lecture, we will arrive at the same concept, noise that needs to be thrown away, via a different method which will reveal us even more insights into random matrices.