COMP547

DEEP UNSUPERVISED LEARNING

Lecture #2 – Neural Networks Basics and Spatial Processing with CNNs

Aykut Erdem // Koç University // Spring 2024

Previously on COMP547

- course logistics
- course topics
- what is deep unsupervised learning

Lecture overview

- deep learning
- computation in a neural net
- optimization
- backpropagation
- training tricks
- convolutional neural networks

Disclaimer: Much of the material and slides for this lecture were borrowed from

- —Costis Daskalakis and Aleksander Madry's MIT 6.883 class
- —Bill Freeman, Antonio Torralba and Phillip Isola's MIT 6.869 class

Humble beginnings

• Perceptron [Rosenblatt '58]

- Criticism of Perceptrons (XOR affair) [Minsky Papert '69]
 - Effectively causes a "deep learning winter"

(Early) Spring

Back-propagation [Rumelhart et al. '86, LeCun '85, Parker '85]

• Convolutional layers [LeCun et al. '90]

Summer

• 2006: First big success: speech recognition

• 2012: Breakthrough in computer vision: AlexNet [Krizhevsky et al. '12]

• 2015: Deep learning-based vision models outperform humans

What enabled this success?

 Better architectures (e.g., ReLUs) and regularization techniques (e.g. Dropout)

Sufficiently large datasets

Enough computational power

Deep learning

- Modeling the world is incredibly complicated. We need high capacity models.
- In the past, we didn't have enough data to fit these models. But now we do!
- We want a class of high capacity models that are easy to optimize.

Deep neural networks!

Neural net

Deep neural net

Deep learning

Gradient descent

$$heta^* = rg \min_{ heta} \sum_{i=1}^N \mathcal{L}(f_{ heta}(\mathbf{x}_i), \mathbf{y}_i)$$
 $J(heta)$

Gradient descent

Gradient descent

$$heta^* = \arg\min_{ heta} \sum_{i=1}^N \mathcal{L}(f_{ heta}(\mathbf{x}_i), \mathbf{y}_i)$$
 $J(heta)$

One iteration of gradient descent:

$$\theta^{t+1} = \theta^t - \eta_t \frac{\partial J(\theta)}{\partial \theta} \bigg|_{\theta = \theta^t}$$
 learning rate

$$y_j = \sum_i w_{ij} x_i$$

Example: linear regression with a neural net

$$f_{\mathbf{w},b}(\mathbf{x}) = \mathbf{x}^T \mathbf{w} + b$$

"Perceptron"

$$y = \mathbf{x}^T \mathbf{w} + b$$

$$y = \mathbf{x}^T \mathbf{w} + b$$

$$g(y) = \begin{cases} 1, & \text{if } y > 0 \\ 0, & \text{otherwise} \end{cases}$$

$$y = \mathbf{x}^T \mathbf{w} + b$$

$$g(y) = \begin{cases} 1, & \text{if } y > 0 \\ 0, & \text{otherwise} \end{cases}$$

$$y = \mathbf{x}^T \mathbf{w} + b$$

$$g(y) = \begin{cases} 1, & \text{if } y > 0 \\ 0, & \text{otherwise} \end{cases}$$

$$\hat{y} = \mathbf{x}^T \mathbf{w} + b$$

$$g(\hat{y}) = \begin{cases} 1, & \text{if } \hat{y} > 0\\ 0, & \text{otherwise} \end{cases}$$

$$\mathbf{w}^*, b^* = \underset{\mathbf{w}, b}{\operatorname{arg min}} \mathcal{L}(g(\hat{y}), y_i)$$

$$\hat{y} = \mathbf{x}^T \mathbf{w} + b$$

$$g(\hat{y}) = \begin{cases} 1, & \text{if } \hat{y} > 0\\ 0, & \text{otherwise} \end{cases}$$

$$\mathbf{w}^*, b^* = \underset{\mathbf{w}, b}{\operatorname{arg min}} \mathcal{L}(g(\hat{y}), y_i)$$

$$g(y) = \begin{cases} 1, & \text{if } y > 0 \\ 0, & \text{otherwise} \end{cases}$$

Sigmoid

$$g(y) = \frac{1}{1 + e^{-y}}$$

- Interpretation as firing rate of neuron
- Bounded between [0,1]
- Saturation for large +/- inputs
- Gradients go to zero
- Outputs centered at 0.5 (poor conditioning)
- Not used in practice

Sigmoid

$$g(y) = \frac{1}{1 + e^{-y}}$$

- Bounded between [-1,+1]
- Saturation for large +/- inputs
- Gradients go to zero
- Outputs centered at 0
- Preferable to sigmoid

tanh(x) = 2 sigmoid(2x) -1

g(y)

- Unbounded output (on positive side)
- Efficient to implement: $\frac{\partial g}{\partial y} = \begin{cases} 0, & \text{if } y < 0 \\ 1, & \text{if } y \ge 0 \end{cases}$
- Also seems to help convergence (see 6x speedup vs tanh in [Krizhevsky et al.])
- Drawback: if strongly in negative region, unit is dead forever (no gradient).
- Default choice: widely used in current models.

Rectified linear unit (ReLU)

$$g(y) = \max(0, y)$$

Computation in a neural net – nonlinearity

- where α is small (e.g. 0.02)
- Efficient to implement: $\frac{\partial g}{\partial y} = \begin{cases} -a, & \text{if } y < 0 \\ 1, & \text{if } y \ge 0 \end{cases}$
- Also known as probabilistic ReLU (PReLU)
- Has non-zero gradients everywhere (unlike ReLU)
- α can also be learned (see Kaiming He et al. 2015).

Leaky ReLU

$$g(y) = \begin{cases} \max(0, y), & \text{if } y \ge 0 \\ a \min(0, y), & \text{if } y < 0 \end{cases}$$

Stacking layers

$$\theta = \{ \mathbf{W}^{(1)}, \dots, \mathbf{W}^{(L)}, \mathbf{b}^{(1)}, \dots, \mathbf{b}^{(L)} \}$$

Representational power

- 1 layer? Linear decision surface.
- 2+ layers? In theory, can represent any function. Assuming non-trivial non-linearity.
 - Bengio 2009,
 http://www.iro.umontreal.ca/~bengioy/papers/ftml.pdf
 - Bengio, Courville, Goodfellow book
 http://www.deeplearningbook.org/contents/mlp.html
 - Simple proof by M. Neilsen
 http://neuralnetworksanddeeplearning.com/chap4.html
 - D. Mackay book
 http://www.inference.phy.cam.ac.uk/mackay/itprnn/ps/482.491.pdf
- But issue is efficiency: very wide two layers vs narrow deep model? In practice, more layers helps.

Deep supervised nets

$$f(\mathbf{x}) = f_L(\dots(f_2(f_1(\mathbf{x})))$$

Classifier layer

Loss function

Loss function

Loss function

Network output Ground truth label

Probability of the observed data under the model

$$H(\mathbf{y}, \hat{\mathbf{y}}) = -\sum_{k=1}^{K} y_k \log \hat{y}_k$$

Deep learning

Learned

"clown fish"

$$\theta^* = \arg\min_{\theta} \sum_{i=1}^{N} \mathcal{L}(f_{\theta}(\mathbf{x}_i), \mathbf{y}_i)$$

Deep learning

Learned

$$\theta^* = \arg\min_{\theta} \sum_{i=1}^{N} \mathcal{L}(f_{\theta}(\mathbf{x}_i), \mathbf{y}_i)$$

Deep learning

Learned

"chameleon"

$$\theta^* = \arg\min_{\theta} \sum_{i=1}^{N} \mathcal{L}(f_{\theta}(\mathbf{x}_i), \mathbf{y}_i)$$

Batch (parallel) processing

Tensors

$$\mathbf{h}^{(1)} \in \mathbb{R}^{N_{\mathtt{batch}} imes C^{(1)}}$$

"Tensor flow"

Regularizing deep nets

- Deep nets have millions of parameters!
- On many datasets, it is easy to overfit we may have more free parameters than data points to constrain them.
- How can we regularize to prevent the network from overfitting?
 - 1. Fewer neurons, fewer layers
 - 2. Weight decay
 - 3. Dropout
 - 4. Normalization layers
 - 5. ...

Recall: regularized least squares

$$f_{\theta}(x) = \sum_{k=0}^{K} \theta_k x^k$$

$$R(\theta) = \lambda \|\theta\|_2^2$$
 — Only use polynomial terms if you really need them! Most terms should be zero

ridge regression, a.k.a., Tikhonov regularization

Probabilistic interpretation: R is a Gaussian **prior** over values of the parameters.

Recall: regularized least squares

$$\theta^* = \operatorname*{arg\,min}_{\theta} \sum_{i=1}^{N} \mathcal{L}(f_{\theta}(\mathbf{x}_i), \mathbf{y}_i) + R(\theta)$$

$$R(\mathbf{W}) = \lambda \|\mathbf{W}\|_2^2$$
 weight decay

"We prefer to keep weights small."

$$\theta = \{ \mathbf{W}^{(1)}, \dots, \mathbf{W}^{(L)}, \mathbf{b}^{(1)}, \dots, \mathbf{b}^{(L)} \}$$

Randomly zero out hidden units.

$$\theta = \{ \mathbf{W}^{(1)}, \dots, \mathbf{W}^{(L)}, \mathbf{b}^{(1)}, \dots, \mathbf{b}^{(L)} \}$$

$$\theta = \{ \mathbf{W}^{(1)}, \dots, \mathbf{W}^{(L)}, \mathbf{b}^{(1)}, \dots, \mathbf{b}^{(L)} \}$$

$$\theta = \{ \mathbf{W}^{(1)}, \dots, \mathbf{W}^{(L)}, \mathbf{b}^{(1)}, \dots, \mathbf{b}^{(L)} \}$$

Prevents network from relying too much on spurious correlations between different hidden units.

Can be understood as averaging over an exponential ensemble of subnetworks. This averaging smooths the function, thereby reducing the effective capacity of the network.

Gradient descent

$$heta^* = rg \min_{ heta} \sum_{i=1}^N \mathcal{L}(f_{ heta}(\mathbf{x}_i), \mathbf{y}_i)$$
 $J(heta)$

One iteration of gradient descent:

$$\theta^{t+1} = \theta^t - \eta_t \frac{\partial J(\theta)}{\partial \theta} \Big|_{\theta = \theta^t}$$
 learning rate

Optimization

Params
$$\theta \longrightarrow J(\theta) \\ \nabla_{\theta}J(\theta) \\ H_{\theta}(J(\theta))$$

$$\theta^* = \operatorname*{arg\,min}_{\theta} J(\theta)$$

- What's the knowledge we have about J?
 - We can evaluate $J(\theta)$

—Gradient

← Black box optimization

- We can evaluate $J(\theta)$ and $\dot{\nabla}_{\theta}J(\theta)$

- First order optimization
- We can evaluate $J(\theta)$, $\nabla_{\theta}J(\theta)$, and $H_{\theta}(J(\theta))$
- Second order optimization

Batch (parallel) processing

Stochastic gradient descent (SGD)

- Want to minimize overall loss function J, which is sum of individual losses over each example.
- In Stochastic gradient descent, compute gradient on sub-set (batch) of data.
 - If batchsize=1 then θ is updated after each example.
 - If batchsize=N (full set) then this is standard gradient descent.
- Gradient direction is noisy, relative to average over all examples (standard gradient descent).
- Advantages
 - Faster: approximate total gradient with small sample
 - Implicit regularizer
- Disadvantages
 - High variance, unstable updates

Momentum

- Basic idea: like a ball rolling down a hill, we should build up speed so as to make faster progress when "on a roll"
- Can dampen oscillations in SGD updates
- Common in popular variants of SGD
 - Nesterov's method
 - RMSProp
 - Adam

Why Momentum Really Works

[https://distill.pub/2017/momentum/]

Comparison of gradient descent variants

[http://ruder.io/optimizing-gradient-descent/]

Forward pass

- Consider model with L layers. Layer l has vector of weights $\mathbf{W}^{(l)}$
- Forward pass: takes input $\mathbf{x}^{(l-1)}$ and passes it through each layer $f^{(l)}$:

$$\mathbf{x}^{(l)} = f^{(l)}(\mathbf{x}^{(l-1)}, \mathbf{W}^{(l)})$$

- Output of layer l is $\mathbf{x}^{(l)}$.
- Network output (top layer) is $\mathbf{x}^{(L)}$.

Forward pass

- Consider model with L layers. Layer l has vector of weights $\mathbf{W}^{(l)}$
- Forward pass: takes input $\mathbf{x}^{(l-1)}$ and passes it through each layer $f^{(l)}$:

$$\mathbf{x}^{(l)} = f^{(l)}(\mathbf{x}^{(l-1)}, \mathbf{W}^{(l)})$$

- Output of layer l is $\mathbf{x}^{(l)}$.
- Network output (top layer) is $\mathbf{x}^{(L)}$.
- Loss function \mathcal{L} compares $\mathbf{x}^{(L)}$ to \mathbf{y} .
- Overall energy is the sum of the cost over all training examples:

$$J = \sum_{i=1}^{N} \mathcal{L}(\mathbf{x}_i^{(L)}, \mathbf{y}_i)$$

Gradient descent

• We need to compute gradients of the cost with respect to model parameters $\mathbf{W}^{(l)}$.

• By design, each layer is differentiable with respect to its parameters and input.

Computing gradients

 To compute the gradients, we could start by writing the full energy J as a function of the network parameters.

$$J(\mathbf{W}) = \sum_{i=1}^{L} \mathcal{L}(f^{(L)}(\dots f^{(2)}(f^{(1)}(\mathbf{x}_i^{(0)}, \mathbf{W}^{(1)}), \mathbf{W}^{(2)}), \dots \mathbf{W}^{(L)}), \mathbf{y}_i)$$

And then compute the partial derivatives... instead, we can use the chain rule to derive a compact algorithm: backpropagation

Backpropagation

 Forward pass: for each training example, compute the outputs for all layers:

$$\mathbf{x}^{(l)} = f^{(l)}(\mathbf{x}^{(l-1)}, \mathbf{W}^{(l)})$$

 Backwards pass: compute loss derivatives iteratively from top to bottom:

$$\frac{\partial \mathcal{L}}{\partial \mathbf{x}^{(l-1)}} = \frac{\partial \mathcal{L}}{\partial \mathbf{x}^{(l)}} \cdot \frac{\partial f^{(l)}(\mathbf{x}^{(l-1)}, \mathbf{W}^{(l)})}{\partial \mathbf{x}^{(l-1)}}$$

 Compute gradients w.r.t. weights, and update weights:

$$\frac{\partial \mathcal{L}}{\partial \mathbf{W}^{(l)}} = \frac{\partial \mathcal{L}}{\partial \mathbf{x}^{(l)}} \cdot \frac{\partial f^{(l)}(\mathbf{x}^{(l-1)}, \mathbf{W}^{(l)})}{\partial \mathbf{W}^{(l)}}$$

Convolutional Neural Networks

Convolutional Neural Networks

LeCun et al. 1989

Neural network with specialized connectivity

Tailored to processing natural signals with a grid topology (e.g., images).

Image classification

image x label y

	Sky	Sky	Sky	Sky	Sky	Sky	Sky	Bird
,	Sky	Sky	Sky	Sky	Sky	Sky	Sky	Sky
,	Sky	Sky	Sky	Sky	Sky	Sky	Sky	Sky
1	Bird	Bird	Bird	Sky	Bird	Sky	Sky	Sky
	Sky	Sky	Sky	Bird	Sky	Sky	Sky	Sky

This problem is called **semantic segmentation** in computer vision

An equivariant mapping:

f(translate(x)) = translate(f(x))

Translation invariance: process each patch in the same way.

W computes a weighted sum of all pixels in the patch

W is a convolutional kernel applied to the full image!

Convolution

Fully-connected network

Fully-connected (fc) layer

Locally connected network

Often, we assume output is a **local** function of input.

If we use the same weights (weight sharing) to compute each local function, we get a convolutional neural network.

Convolutional neural network

Conv layer

Often, we assume output is a **local** function of input.

If we use the same weights (weight sharing) to compute each local function, we get a convolutional neural network.

Weight sharing

Conv layer

Often, we assume output is a **local** function of input.

If we use the same weights (weight sharing) to compute each local function, we get a convolutional neural network.

Toeplitz matrix

$$egin{pmatrix} a & b & c & d & e \ f & a & b & c & d \ g & f & a & b & c \ h & g & f & a & b \ i & h & g & f & a \end{pmatrix}$$

e.g., pixel image

- Constrained linear layer (infinitely strong regularization)
- Fewer parameters —> easier to learn, less overfitting

Conv layers can be applied to arbitrarily-sized inputs

Five views on convolutional layers

1. Equivariant with translation (stationarity) f(translate(x)) = translate(f(x))

2. Patch processing (Markov assumption)

3. Image filter

4. Parameter sharing

5. A way to process variable-sized tensors

Multiple channels

Conv layer

$$\mathbb{R}^{N\times C}\to\mathbb{R}^{N\times 1}$$

Multiple channels

Conv layer

$$\mathbb{R}^{N \times C^{(0)}} \to \mathbb{R}^{N \times C^{(1)}}$$

Multiple channels

Conv layer

$$\mathbb{R}^{N \times C^{(l)}} \to \mathbb{R}^{N \times C^{(l+1)}}$$

$$\mathbb{R}^{H \times W \times C^{(l)}} \to \mathbb{R}^{H \times W \times C^{(l+1)}}$$

[Figure from Andrea Vedaldi]

"Tensor flow"

$$\mathbf{x}^{(l)} \in \mathbb{R}^{N_{\text{batch}} \times H^{(l)} \times W^{(l)} \times C^{(l)}} \qquad \mathbf{x}^{(l+1)} \in \mathbb{R}^{N_{\text{batch}} \times H^{(l+1)} \times W^{(l+1)} \times C^{(l+1)}}$$

Pooling

Max pooling

$$z_k = \max_{j \in \mathcal{N}(j)} g(y_j)$$

Pooling

Max pooling

$$z_k = \max_{j \in \mathcal{N}(j)} g(y_j)$$

Mean pooling

$$z_k = \frac{1}{|\mathcal{N}|} \sum_{j \in \mathcal{N}(j)} g(y_j)$$

Pooling – Why?

Pooling across spatial locations achieves stability w.r.t. small translations:

Pooling – Why?

Pooling across spatial locations achieves stability w.r.t. small translations:

Pooling – Why?

Pooling across spatial locations achieves stability w.r.t. small translations:

CNNs are stable w.r.t. diffeomorphisms

["Unreasonable effectiveness of Deep Features as a Perceptual Metric", Zhang et al. 2018]

Pooling – Why?

Pooling across feature channels (filter outputs) can achieve other kinds of invariances:

Computation in a neural net

$$f(\mathbf{x}) = f_L(\dots(f_2(f_1(\mathbf{x})))$$

Downsampling

Downsampling

$$\mathbb{R}^{H^{(l)} \times W^{(l)} \times C^{(l)}} \to \mathbb{R}^{H^{(l+1)} \times W^{(l+1)} \times C^{(l+1)}}$$

Strided convolution

Conv layer

Strided convolutions combine convolution and downsampling into a single operation.

Computation in a neural net

$$f(\mathbf{x}) = f_L(\dots(f_2(f_1(\mathbf{x})))$$

Receptive fields

Receptive fields

Effective Receptive Field

Contributing input units to a convolutional filter.

@jimmfleming // fomoro.com

Why CNNs?

Fig. 1. (a) Scatterplots of pairs of pixels at three different spatial displacements, averaged over five examples images. (b) Autocorrelation function. Photographs are of New York City street scenes, taken with a Canon 10D digital camera, and processed in RAW linear sensor mode (producing pixel intensities are in roughly proportional to light intensity). Correlations were computed on the logs of these sensor intensity values [41].

Why CNNs?

Statistical dependences between pixels decay as a power law of distance between the pixels.

It is therefore often sufficient to model local dependences only. \rightarrow Convolution

More generally, we should allocate parameters that model dependences in proportion to the strength of those dependences. → Multiscale, hierarchical representations

[For more discussion, see "Why does Deep and Cheap Learning Work So Well?", Lin et al. 2017]

Why CNNs?

Capturing long-range dependences:

Deep Neural Networks for Visual Recognition

Error: 8.5%

Error: 7.8%

2016: ResNet >100 conv. layers

Error: 4.4%

2012: AlexNet5 conv. layers

Error: 15.3%

2014: VGG 16 conv. layers

VERY DEEP CONVOLUTIONAL NETWORKS FOR LARGE-SCALE IMAGE RECOGNITION

https://arxiv.org/pdf/1409.1556.pdf

Small convolutional kernels: 3x3 ReLu non-linearities >100 million parameters.

Error: 8.5%

Chaining convolutions

25 coefficients, but only 18 degrees of freedom

9 coefficients, but only

6 degrees of freedom.

Only separable filters... would this be enough?

Dilated convolutions

(b) Dilation 2

(a) Input

(c) Output

[https://arxiv.org/pdf/1511.07122.pdf]

Figure 1: Systematic dilation supports exponential expansion of the receptive field without loss of resolution or coverage. (a) F_1 is produced from F_0 by a 1-dilated convolution; each element in F_1 has a receptive field of 3×3 . (b) F_2 is produced from F_1 by a 2-dilated convolution; each element in F_2 has a receptive field of 7×7 . (c) F_3 is produced from F_2 by a 4-dilated convolution; each element in F_3 has a receptive field of 15×15 . The number of parameters associated with each layer is identical. The receptive field grows exponentially while the number of parameters grows linearly.

2016: ResNet >100 conv. layers

Deep Residual Learning for Image Recognition

Figure 2. Residual learning: a building block.

Error: 4.4%

If output has same size as input:

If output has a different size:

Residual Learning

• The loss surface of a 56-layer net using the CIFAR-10 dataset, both without (left) and with (right) residual connections.

$$\hat{h}_k = rac{h_k - \mathbb{E}[h_k]}{\sqrt{ extsf{Var}[h_k]}}$$

Keep track of mean and variance of a unit (or a population of units) over time.

Standardize unit activations by subtracting mean and dividing by variance.

Squashes units into a **standard** range, avoiding overflow.

Also achieves **invariance** to mean and variance of the training signal.

Both these properties reduce the effective capacity of the model, i.e. regularize the model.

Normalize w.r.t. a single hidden unit's pattern of activation over training examples (a batch of examples).

[Figure from Wu & He, arXiv 2018]

Normalize w.r.t. the mean and variance of the activations of all the hidden units (neurons) on this layer (c).

[Figure from Wu & He, arXiv 2018]

Normalize w.r.t. the mean and variance of the activations of all the hidden units (neurons) on this layer (c) that process this particular location (h,w) in the image.

[Figure from Wu & He, arXiv 2018]

Might as well...

[https://theaisummer.com/normalization]

Next Lecture: Sequential Processing with RNNs