Partition of Unity, Diffeomorphism and Change of Variables

(2019.05.09)

Lemma 1.

A 가 \mathbb{R}^n 에서의 열린집합이면 다음 성질을 만족하는 compact rectifiable subsets of A의 sequence $\{C_1, C_2, \cdots\}$ 가 존재한다.

- $1. \bigcup C_i = A$
- 2. $C_i \subset \operatorname{int}(C_{i+1})$

(proof) Let $B=\mathbb{R}^n-A$ and $D_N=\{x\in\mathbb{R}^n:d(x,B)\geq 1/N \text{ and } d(x,0)\leq N\}$. Then D_N is a compact set in \mathbb{R}^n , $D_N\subset D_{N+1}$, and $\bigcup D_N$ covers A. 그런데 D_N 이 rectifiable이라는 보장이 없다.

각각의 $x \in D_N$ 에 대해 x를 center에 두고 $\operatorname{int}(D_{N+1})$ 에 포함되는 open cube $C_{N,x}$ 를 모으자. D_N 은 compact set 이므로 finitely many $C_{N,x}$'s cover D_N . 이 finitely many $C_{N,x}$ 의 union을 C_N 이라 하면, $C_N \subset \operatorname{Int}(D_{N+1})$ 이며 각각의 C_N 은 finite union of cubes 이므로 rectifiable 이다.

 $D_N \subset \operatorname{Int}(C_N) \subset C_N \subset \operatorname{Int}(D_{N+1})$ for all $N \in \mathbb{Z}_+$ 이므로 $\bigcup C_N = A$. \Box .

Lemma 2.

A rectangle Q in \mathbb{R}^n 에 대해 $\mathrm{Int}(Q)$ 에서 positive 이고 \mathbb{R}^n-Q 에서 0인 함수 $\phi:\mathbb{R}^n\to\mathbb{R}$ 이 존재한다.

Hint of proof

Define
$$f:\mathbb{R} o\mathbb{R}$$
 as $f(x)=egin{cases} e^{1/x} & ext{ if } x>0, \ 0 & ext{ otherwise.} \end{cases}$

Lemma 3.

 \mathcal{A} 가 \mathbb{R}^n 에서의 open sets의 collection 이며 $A=\bigcup \mathcal{A}$ 이면 다음 성질을 만족하는 countable collection $\{Q_1,\,Q_2,\ldots\}$ of (closed) rectangles contained in A 가 존재한다.

- 1. $\{\operatorname{Int}(Q_1), \operatorname{Int}(Q_2), \ldots\}$ covers A.
- 2. Each Q_i is contained in an element of \mathcal{A} .
- 3. Each point of A has a neighborhood that intersects only finitely many of the sets Q_i .

마지막 조건을 local finiteness condition 이라 한다.

(proof) Lemma 1에서 보았듯이 collection of compact subsets of A, $\{D_1, D_2, \ldots\}$ such that $D_i \subset \operatorname{Int}(D_{i+1})$ 가 존재한다.

Let $B_i=D_i-\operatorname{Int}(D_{i-1})$. B_i 는 compact set in \mathbb{R}^n 이며, $B_i\cap D_{i-2}=\emptyset$ 이다. 또한 $\bigcup B_i=A$ 이다.

 $x\in B_i$ 이면 x 를 중심으로 A에 포함되며 D_{i-2} 와 disjoint한 closed cubes 가 존재한다. 각각의 x에 대해 이런 closed cubes를 모은 collection을 생각하자. 이 cubes는 임의로 작게 할 수 있으므로 $\mathcal A$ 의 한 elements에 포함되도록 작게 잡자. B_i 는 compact set 이므로 finite subcollections of interior of the collections로 B_i 를 cover 할 수 있다. 이 closed cubes의 collection을 $\mathcal C_i$ 라 하자. 즉 $\mathcal C_i=\{Q_1^i,\,Q_2^i,\dots,\,Q_k^i\}$ 이며 $B_i\subset\bigcup_k\mathrm{Int}(Q_k^i)\subset A$ 이다. $\mathcal C=\mathcal C_1\cup\mathcal C_2\cup\cdots$ 라 하면 $\mathcal C$ 는 countable collection of cubes which covers A 이다. 이 $\mathcal C$ 가 우리가 구하고자 하는 $\{Q_1,Q_2,\dots\}$ 이다.

 \mathcal{C} 가 조건 1, 2를 만족하는 것은 쉽게 보일 수 있다. 앞서 \mathcal{C}_i 를 구성할 때 \mathcal{C}_i 에 포함되는 각각의 cube가 \mathcal{A} 의 어떤 element의 subset이 되도록 했다(조건 2). $x\in A$ 이면 $x\in \mathrm{Int}(D_i)$ 인 가장 작은 i값이 존재한다. 그렇다면 $x\in B_i=D_i-\mathrm{int}(D_{i-1})$ 이므로 x는 D_i 의 open cover인 \mathcal{C}_i 의 어떤 원소인 cube의 interior에 포함된다. 따라서 $A\subset\bigcup_i\mathrm{Int}(Q_i)$ 이다. (조건 1).

이제 local finiteness condition을 만족함을 보이자. $x \in A$ 이면 어떤 $x \in D_i$ for some i. 이다. \mathcal{C}_i 를 구성할때를 생각해 보면 \mathcal{C}_j for $j \geq i+2$ 에 포함되는 cube는 D_i 와 disjoint 하다. 따라서 $\mathrm{Int}(D_i)$ 는 기껏해야 $\mathcal{C}_1,\ldots,\mathcal{C}_{i+1}$ 과만 intersect 할 수 있다(조건 3). \square .

Definition: Support of a function

 $\phi: \mathbb{R}^n \to \mathbb{R}$ 일 때 $\{x \in \mathbb{R}^n : \phi(x) \neq 0\}$ 의 closure를 **support** of ϕ 라 하고 $\operatorname{Supp}(\phi)$ 라 쓴다. $x \notin \operatorname{Supp}(\phi)$ 이면 x의 어떤 neighborhood X 에서 $\phi(X) = \{0\}$ 이다.

Theorem 4. (Existence of a partition of unity)

 \mathcal{A} 가 \mathbb{R}^n 에서의 열린 집합의 collection이고 $A=\bigcup \mathcal{A}$ 일 때 다음 1 ~ 7을 만족하는 sequence $\phi_1,\,\phi_2,\ldots$ of continuous functions $\phi_i:\mathbb{R}^n\to\mathbb{R}$ 이 존재한다. $S_i=\operatorname{Supp}(\phi_i)$ 라 하자.

- 1. $\phi_i(x) > 0$ for $\forall x \in A$.
- 2. Each $S_i \subset A$.
- 3. $x \in A$ 이면 finitely many S_i 와 intersect 하는 x의 neighborhood가 존재한다.
- 4. $\sum_{i=1}^{\infty} \phi_i(x) = 1$ for each $x \in A$.
- 5. Each ϕ_i is C^{∞} class function.
- 6. Each S_i is compact.
- 7. Each S_i is contained in an element of A.

1.-4. 조건을 만족하는 $\{\phi_i\}$ 를 partition of unity on A 라 한다. 5.의 조건도 만족하면 partition of unity on A of class \mathbf{C}^{∞} 라 한다. 6.의 조건을 만족하면 have compact support 라 한다. 7.의 조건을 만족하면 dominated by the collection \mathcal{A} 라 한다.

(proof) A와 A에 대해 Lemma 3의 $\{Q_1,\,Q_2,\ldots\}$ 를 생각하자. 각각의 Q_i 는 A의 어떤 elements의 compact subset 이다. Lemma 2.로부터 각각의 Q_i 에 대해 $\mathrm{Int}(Q_i)$ 에서는 positive 이고 밖에서는 0인 C^∞ class 함수 $\psi_i:\mathbb{R}^n\to\mathbb{R}$ 이 존재함을 알고 있다. 따라서 $\psi_i(x)\geq 0$ for $\forall x\in A$ 이며(조건 1) $\mathrm{Supp}(\psi_i)=Q_i$ 이다(조건 2). 모든 $x\in A$ 는 finitely many Q_i 와 intersect 하는 neighborhood를 가진다(조건 3).

 $\phi_i(x)=\psi_i(x)/\sum_{i=1}^\infty \psi_i(x)$ 로 정의하면 $\{\phi_1,\phi_2,\ldots\}$ 는 조건 1, 4, 5를 만족한다. 조건 6, 7은 Lemma 3.로부터 쉽게 알 수 있다.

Lemma 5.

A 가 open in \mathbb{R}^n 이고 $f:A\to\mathbb{R}$ 이 연속이라 하자. f가 A의 compact subset C 밖에서 0이면 $\int_A f$ 와 $\int_C f$ 는 존재 하며 서로 같다.

proof

C가 bounded이고 f가 연속이므로 $\int_C f$ 는 존재한다. $f_C: \mathbb{R}^n \to \mathbb{R}$ 을 $f_C = f$ if $x \in A$ and $f_C = 0$ otherwise 로 정의하자. Sequence of compact subset of A, $\{C_i\}$ 가 $\bigcup C_i = A$ and $C_i \subset \operatorname{int}(C_{i+1})$ 을 만족한다고 하자. 이런 sequence가 항상 존재함은 Lemma 1에서 보였다.

C는 compact set이며 $\{\operatorname{Int}(C_i)\}$ 는 C의 open cover 이므로 finitely many $\{\operatorname{Int}(C_i)\}$ 가 C를 cover 한다. 따라서 $C\subset\operatorname{Int}(C_M)$ 인 $C_M\in\{C_i\}$ 가 존재하며 $\int_C f=\int_{C_N} f$ for all $N\geq M$. 따라서 $\int_A f=\int_C f$.

Lemma 6.

A가 \mathbb{R}^n 의 open set이고 $\{\phi_i\}$ 가 partition of unity on A라 하자. D가 compact rectifiable subset of A 이면 유한개의 ϕ_i 만이 D 에서 nonzero 이다.

 $(\mathit{Proof})\ x \in D\ \mathsf{OPE}\ x \in A\ \mathsf{OPE}\ \mathsf{finitely}\ \mathsf{many}\ \mathsf{Supp}(\phi_i)$ 와 intersect 하는 neighborhood of x가 존재한다. 이런 neighborhood를 모으면 D를 cover 한다. D가 compact 하므로 finitly many neighborhood of로 cover 할 수 있다. 이 Neighborhood를 $\{N_1,\,N_2,\ldots,\,N_k\}$ 라 하면 각각의 N_i 가 finitly many support of ϕ_i 와 intersect 하며 이 ϕ_i 만 이 D에서 nonzero 이다.

Theorem 7.

A 는 open in \mathbb{R}^n , $f:A o\mathbb{R}$ 는 연속함수, $\{\phi_i\}$ 는 partition of unity on A having compact support 라 하자. 그렇다면 $\int_A f$ exists iff $\sum_{i=1}^\infty \left[\int_A \phi_i |f|\right]$ converges 이며 $\int_A f = \sum_{i=1}^\infty \left[\int_A \phi_i f\right]$ 이다.

 (Proof) 우선 f is non-negative on A일 때 성립함을 보이자. Lemma 6.에 의해 D가 compact rectifiable subsets of A 이면, 어떤 $M \in \mathbb{Z}_+$ s. t. $\phi_i(x) = 0$ for all $x \in D$ and $i \geq M$. 그렇다면

$$f(x) = \sum_{i=1}^M \phi_i(x) f(x)$$

for all $x \in D$.

$$\int_D f = \sum_{i=1}^M \left[\int_D \phi_i f
ight] \leq \sum_{i=1}^M \left[\int_{D \cup S_i} \phi_i f
ight] = \sum_{i=1}^M \int_A \left[\phi_i f
ight] \leq \sum_{i=1}^M \left[\int_A \phi_i f
ight].$$

따라서 $\sum_{i=1}^{M} \phi_i f$ 가 integrable over A 이면 Lemma 5.에 의해 f도 integrable over A 이다.

f가 integrable over A라 가정하자. Given N에 대해 $D=S_1\cup S_2\cup\cdots\cup S_N$ 은 compact set 이다. 또한 $1\leq i\leq N$ 에 대해 $\phi_i(x)f(x)=0$ for all $x\in D$ 이다. 따라서 $\int_A\phi_if=\int_D\phi_if$ 이다. 이를 이용하면,

$$\sum_{i=1}^N \left[\int_A \phi_i f
ight] = \sum_{i=1}^N \left[\int_D \phi_i f
ight] = \int_D \left[\sum_{i=1}^N \phi_i f
ight] \leq \int_D f \leq \int_A f.$$

 $\int_D f \le \sum \left[\int_A \phi_i f\right] \le \int_D f$ 이므로 f가 integrable over A 이면 $\sum \left[\int_A \phi_i f\right]$ 가 수렴하며, $\sum \left[\int_A \phi_i f\right]$ 가 수렴하면 f는 integrable over D 이고, 임의의 partial sum 에 대해 수렴하므로 f is integrable over A 이다.

이제 f가 임의의 연속 함수일 때를 생각하자. 우리는 $\int_A f$ exists iff $\int_A |f|$ exists 임을 알 고 있다. 따라서 f가 integrable over A iff $\sum \left[\int_A \phi_i |f|\right]$ converges.

이제 $\int_A f = \sum \left[\int_A \phi_i f \right]$ 임을 보이자.

$$\int_A f = \int_A f_+ + \int_A f_- = \sum_{i=1}^\infty \left[\int_A \phi_i f_+
ight] - \sum_{i=1}^\infty \left[\int_A \phi_i f_-
ight] = \sum_{i=1}^\infty \left[\int_A \phi_i f
ight].$$

Definition: Diffeomorphism

A, B 가 \mathbb{R}^n 의 open set 이고 $g: A \to B$ 가 bijection 이며 g, g^{-1} 이 C^r class 함수 일 때 g를 **diffeomorphism** (of class C^r) 이라 한다.

Lemma 8.

Let A be open in \mathbb{R}^n and $g:A\to\mathbb{R}^n$ be a C^1 class function. 만약 $E\subset A$ 가 measure 0 이면 g(E) 도 measure zero 이다.

 $\mathit{Proof}\ S \subset \mathbb{R}^n$ 이 measure 0 이면 전체 volume이 ε 보다 작고 개개의 width가 δ 보다 작은 closed cubes 로 cover 됨은 쉽게 보일 수 있다.

 $C \subset A$ 가 \mathbf{a} 를 중심으로 하는 width w 의 cube라 하자. $g \in C^1$ 이므로 $\exists M > 0$ s. t. $|Dg(\mathbf{x})| \leq M$ for all $\mathbf{x} \in C$ 이다. $|\mathbf{x} - \mathbf{a}| < w/2$ 고 \mathbf{x} 와 \mathbf{a} 를 잇는 line segments가 C 안에 존재하므로 mean value theorem을 쓰면 $g_j(\mathbf{x}) - g_j(\mathbf{a}) = Dg_j(\mathbf{c_j}) \cdot (\mathbf{x} - \mathbf{a})$ 를 만족하는 $\mathbf{c_j} \in C$ 이다. 따라서

$$|g_j(\mathbf{x}) - g_j(\mathbf{a})| \leq n|Dg_j(\mathbf{c}_j)||\mathbf{x} - \mathbf{a}| \leq nM\left(rac{w}{2}
ight) \;.$$

for all $j \in \{1, 2, ..., n\}$ and $\mathbf{x} \in C$ 이며 따라서 모든 $\mathbf{x} \in C$ 에 대해 다음이 성립한다.

$$|g(\mathbf{x}) - g(\mathbf{a})| \leq nM(w/2)$$
 .

 $(|\mathbf{a}|=\sup\{|a_1|,\,|a_2|,\ldots,\,|a_n|\}$ 이며 $|\mathbf{A}|=\sup\{|A_{ij}|\}$ 임에 유의하라.)

이제 g(E)가 measure 0임을 보이자. $\{C_i\}$ 가 $C_i\subset \mathrm{Int}(C_{i+1})$ 를 만족하며 $\bigcup_i\{C_i\}=A$ 를 만족하는 compact subset의 sequence라 하자(우리는 이런 sequence가 항상 존재함을 안다.). $E_k=C_k\cap E$ 라 하자. C_k 가 compact set 이므로 C_k 의 δ -neighborhood가 $\mathrm{int}(C_{k+1})$ 에 포함되도록 하는 $\delta>0$ 을 선택 할 수 있다. $g\in C^1$ 이므로 $|Dg(\mathbf{x})|\leq M$ for $\mathbf{x}\in C_{k+1}$ 이 되는 M을 선택 할 수 있다.

 $E_k \subset E$ 이므로 E_k 는 measure 0 이고 따라서, E_k 를 그 폭이 δ 보다 작고 총 부피가 $\varepsilon' = \varepsilon/(nM)^n$ 보다 작은 cube 로 cover 할 수 있음을 알고 있다. D_1, D_2, \ldots 를 E_k 와 intersect 하는 이 cubes라 하자. D_i 의 width는 δ 보다 작고 $D_i \subset \operatorname{Int}(C_{k+1})$ 이므로 $|Dg(\mathbf{x})| \leq M$ for $\mathbf{x} \in D_i$ 이다. 따라서 $g(D_i)$ 는 width가 $nM \cdot (\operatorname{width} D_i)$ 인 cube D_i' 에 포함된다. D_i' 의 부피는 다음과 같다.

$$v(D'_i) = (nM)^n (\text{width } D_i)^n = (nM)^n v(D_i)$$
.

Cubes $\{D_i'\}$ 가 $g(E_k)$ 를 cover 하므로 total volume of g(E) 는 $\varepsilon = \varepsilon'(nM)^n$ 보다 작다고 할 수 있다. \square .

Theorem 9.

 \mathbb{R}^n 에서의 open set A,B에 대해 $g:A\to B$ 가 diffeomorphism of class C^r 이라 하자. D가 compact subset of A 이고 E=g(D) 일 때 다음이 성립한다.

- 1. $g(\operatorname{Int}(D)) = \operatorname{Int}(E)$ and $g(\operatorname{Bd}(D)) = \operatorname{Bd}(E)$.
- 2. D가 rectifiable 이면 E도 rectifiable이다.

 $Proof\ g^{-1}$ 이 연속이므로 $g(\operatorname{Int}(D))$ 는 open subset of E, i.e., $g(\operatorname{Int}(D)) \subset \operatorname{Int}(E)$. 마찬가지로 $g(\operatorname{Ext}(D) \cap A)$ 는 open in B and disjoint with E = g(D), i.e., $g(\operatorname{Ext}(D) \cap A) \subset \operatorname{Ext}(D)$. g가 bijection 이므로 $\operatorname{Bd}(E) \subset g(\operatorname{Bd}(D))$ 이다.

더 자세히 말하면, Let $\mathbf{y} \in \mathrm{Bd}(E)$ 라 하자. E = g(D), g is continuous and D is compact 이므로 E는 compact. 따라서 E is closed 이므로 $\mathbf{y} \in E$. Let $\mathbf{x} \in A$ s. t. $\mathbf{y} = g(\mathbf{x})$. $\mathbf{x} \in \mathrm{Int}(D)$ 이면 $\mathbf{y} \in \mathrm{Int}(E)$ 이고 $\mathbf{x} \in \mathrm{Ext}(D)$ 이면 $\mathbf{y} \in \mathrm{Ext}(E)$ 이어야 하므로 모순. 따라서 $\mathbf{x} \in \mathrm{Bd}(D)$ 이며 $\mathrm{Bd}(E) \subset g(\mathrm{Bd}(D))$ 이다.

위와 같은 이유료 g가 연속이므로 $g^{-1}(\operatorname{Int}(E)) \subset \operatorname{Int}(D)$ 이고 $\operatorname{Bd}(D) \subset g^{-1}(\operatorname{Bd}(E))$ 이다.

 $\operatorname{Int}(E) = g \circ g^{-1}(\operatorname{Int}(E)) \subset g(\operatorname{Int}(D)) \subset \operatorname{Int}(E)$ 이므로 $g(\operatorname{Int}(D)) = \operatorname{Int}(E)$ 이다. (1. 증명)

 $g(\mathrm{Bd}(D))\subset g\circ g^{-1}(\mathrm{Bd}(E))\subset \mathrm{Bd}(E)\subset g(\mathrm{Bd}(D))$ 이므로 $\mathrm{Bd}(E)=g(\mathrm{Bd}(D))$ 이다. (2. 증명)

D가 rectifiable 이면 E도 rectifiable 임은 Lemma 1.에 의해 자명하다. \Box .

Definition: Primitive Diffeomorphism

Diffeomorphism $h:A\subset\mathbb{R}^n\to B\subset\mathbb{R}^n$ 가 $h(\mathbf{x})=(h_1(\mathbf{x}),\dots,h_n(\mathbf{x}))$ 로 주어졌고 하자. 어떤 i 에서 $h_i(\mathbf{x})=x_i$ 일 때 h는 i-th coordinate를 보존한다고 한다. h가 어떤 i-th coordinate를 보존한다면 h를 **primitive diffeomorphism** 이라 한다.

Theorem 10.

g:A o B가 diffeomorphism of open sets in \mathbb{R}^n 이라 하자. $\mathbf{a}\in A$ 이면 어떤 neighborhood of \mathbf{a} , $U_{\mathbf{a}}$ 가 존재하여 $g|_{U_{\mathbf{a}}}$ 가 composite of primitive diffeomorphism $h_k\circ h_{k-1}\circ\cdots\circ h_1$ 과 같다.

Proof (Step 1) Linear algebra로 부터 다음 두 사실을 알고 있다.

1. Non-singular linear transformation $T:\mathbb{R}^n \to \mathbb{R}^n$, $T(\mathbf{x}) = C \cdot \mathbf{x}$ 일 경우 행렬 C는 elementary row operation matrix의 product 이므로 C는 primitive diffeomorphism 의 composite 이다.

2. $t: \mathbb{R}^n \to \mathbb{R}^n$ 이 translation $t(\mathbf{x}) = \mathbf{x} + \mathbf{c}$ 일 경우 $t_1(\mathbf{x}) = (x_1 + c_1, x_2, \dots, x_n)$, $t_2 = (x_1, x_2 + c_2, \dots, x_n + c_n)$ 으로 정의하면 t_1, t_2 는 primitive diffeomorphism 이며 $t = t_1 \circ t_2$.

 $\underline{(\text{Step 2})}$ $\mathbf{a}=0$, g(0)=0, $Dg(0)=I_n$ 인 경우 g 가 locally composite of two primitive diffeomorphism 임을 보이자. $g(\mathbf{x})=\sum_{i=1}^n g_i(\mathbf{x})\hat{e}_i$ 이며 $h(\mathbf{x})=\sum_{i=1}^{n-1} g_i(\mathbf{x})\hat{e}_i+x_n\hat{e}_n$ 이라 하자. h(0)=0 이며 $Dh(0)=I_n$ 임을 알 수 있다. Inverse function theorem에 의해 h는 0의 neighborhood V_0 , V_1 사이의 diffeomorphism임을 알 수 있다.

이제 $k(\mathbf{y}) = (y_1, \ldots, y_{n-1}, g_n(h^{-1}(\mathbf{y})))$ 라 정의하자. k(0) = 0 이며

$$Dk(\mathbf{y}) = egin{bmatrix} I_{n-1} & 0 \ D(g_n \circ h^{-1})(\mathbf{y}) \end{bmatrix}$$

이다. Chain rule에 의해 $D(g_n\circ h^{-1})(\mathbf{y})=Dg_n(0)\cdot Dh^{-1}(0)=[0,\dots,0,1]\cdot I_n=[0,\dots,0,1]$. 따라서 $Dk(0)=I_n$ 이며 k는 0 의 neighborhood $W_1,\ W_2$ 사이의 diffeomorphism이다. $k(W_1)=W_2$, $W_0=h^{-1}(W_1)$ 이라 하면 $k,\ h$ 는 primitive diffeomorphism 이며 $k\circ h=g|_{W_0}$ 임을 알 수 있다.

$$W_0 \stackrel{h}{\longrightarrow} W_1 \stackrel{k}{\longrightarrow} W_2$$

 $(\underline{\mathsf{Step 3}})$ 이제 일반적인 경우에 대해 생각해보자. 주어진 $g:A\to B$ 에 대해 $\mathbf{a}\in A$ 이고 $C=Dg(\mathbf{a})$ 라 하자. Diffeomorphism $t_1,\,t_2,T:\mathbb{R}^n\to\mathbb{R}^n$ 을 다음과 같이 정의한다.

$$egin{aligned} t_1({f x}) &= {f x} + {f a} \; , \ t_2({f x}) &= {f x} - g({f a}) \; , \ T({f x}) &= C^{-1} \cdot {f x} \; . \end{aligned}$$

 $ilde{g}=T\circ t_2\circ g\circ t_1$ 이라 하면 $ilde{g}$ 는 open sets $t_1^{-1}(A),\,T(t_2(B))$ 사이의 diffeomorphism 이다. 여기서 $ilde{g}(0)=0,\,D ilde{g}(0)=I_n$ 임은 쉽게 보일 수 있다. Step 2에서 보았듯이 0의 어떤 neighborhood $W_0\subset t_1^{-1}(A)$ 에 대해 $g|_{W_0}$ 는 two primitive diffeomorphism의 composite 이다. $W_2= ilde{g}(W_0),\,A_0=t_1(W_0),\,B_0=t_2^{-1}T^{-1}(W_2)$ 라 하면,

$$A_0 \xrightarrow{t_1^{-1}} W_0 \xrightarrow{\tilde{g}} W_2 \xrightarrow{T^{-1}} T^{-1}(W_2) \xrightarrow{t_2^{-1}} B_0$$
.

각각의 $t_1^{-1},\,t_2^{-1},\,T^{-1}$ 이 primitive transformation 이거나 primitive transformation으로 factorize 될 수 있으므로 증명 끝. \square

Definition

An open $A \subset \mathbb{R}^n$ 에 대해 C^r class injective function $g: A \to \mathbb{R}^n$ 이 $\det Dg \neq 0$ for all $\mathbf{x} \in A$ 이면 $g \in \mathbf{change}$ of variables in \mathbb{R}^n 이라 한다.

Theorem 11. (Change of Variables Theorem)

g:A o B는 \mathbb{R}^n 에서의 open sets에서의 diffeomorphism 이고 $f:B o \mathbf{R}$ 은 연속함수라 하자. 이 때 f가 integrable over B iff $(f\circ g)|\det Dg|$ is integrable 이며 이 경우

$$\int_{B}f=\int_{A}(f\circ g)|\det Dg|$$

이다.

(*Proof*) 우선 f is integrable $\implies (f \circ g) |\det Dg|$ is integrable을 보인다(Lemma 6). 이후 $(f \circ g) |\det Dg|$ is integrable $\implies f$ is integrable 을 보인다(Lemma 13).

Lemma 12.

 $g:A\subset\mathbb{R}^n o B$, $h:B\subset\mathbb{R}^n o\mathbb{R}^n$ 이 differentiable 일 때 $\det(D(h\circ g))(\mathbf{x})=\det(Dh(g(\mathbf{x})))\cdot\det(Dg)(\mathbf{x})$ 이다. 따라서 $|\det(D(h\circ g))|=|\det(Dh)\circ g|\cdot|\det(Dg)|$ 이다.

Proof is trivial

Lemma 13.

 $g:A\to B$ 가 open sets A,B in \mathbb{R}^n 에 대한 diffeomorphism 이라 하자. B에서 integrable한 연속 함수 $f:B\to\mathbb{R}$ 에 대해 $(f\circ g)|\det Dg|$ 는 integrable 하며,

$$\int_{B}f=\int_{A}(f\circ g)|\det Dg|$$

이다.

Proof (Step 1) 임의의 $\mathbf{x} \in A$ 에 대해 위의 Lemma가 성립하는 \mathbf{x} 의 neighborhood $U \subset A$ 가 존재함을 가정하자. 즉일단 locally 성립하면 globally 성립함을 보인다. 그리고 난 후 이러한 U가 항상 존재함을 induction을 통해 보이기로 하자.

 $(\underline{\text{Step 2}})$ Collection of open sets $\{U_{\alpha}\}$ s. t. $\bigcup_{\alpha}U_{\alpha}=A$ 이고, $V_{\alpha}=g(U_{\alpha})$ 이면 $B=\bigcup_{\alpha}V_{\alpha}$ 이다. B에 대한 partition of unity $\{\phi_i\}$ having compact support, that is dominated by $\{V_{\alpha}\}$ 를 생각하자. 우리는 $\{\phi_i\circ g\}$ 가 partition of unity on A having comact support 임을 보일것이다.

- 1. $\phi_i(g(\mathbf{x})) \geq 0$ for all $\mathbf{x} \in A$ 이다.
- 2. $T_i = \operatorname{Supp}(\phi_i)$ 라 하자. $g(T_i) \succeq \operatorname{compact}$ 이며 $\phi_i \circ g(\mathbf{x}) = 0$ if $\mathbf{x} \notin g^{-1}(T_i)$ 이다. 따라서 $S_i = \operatorname{Supp}(\phi_i \circ g) \subset g^{-1}(T_i)$ 이며 $S_i \succeq \operatorname{compact}$ set 이다.
- 3. $\mathbf{x} \in A$, $\mathbf{y} = g(\mathbf{x})$ 라 하자. \mathbf{y} 는 finitly many T_i 와 intersect 하는 neighborhood $N_{\mathbf{y}}$ 를 가지며 $g^{-1}(N_{\mathbf{y}})$ 는 \mathbf{x} 의 neighborhood로 이 T_i 에 상응하는 S_i 와만 intersect 한다.
- 4. $\sum \phi_i(g(\mathbf{x})) = \sum \phi_i(\mathbf{y}) = 1$.

따라서 $\{\phi_i \circ g\}$ 는 partition of unity on A 이다.

이제 $f:B\to\mathbb{R}$ 이 연속함수이고 f가 B에서 integrable 이라 하자. 우리는 $\int_B f=\sum_{i=1}^\infty \left[\int_B \phi_i f\right]$ 임을 알고 있다. Given i에 대해 $T_i\subset V_\alpha$ 가 되도록 α 를 선택하자. $\phi_i f$ 는 B에서 연속이므로

$$\int_{B}\phi_{i}f=\int_{T_{i}}\phi_{i}f=\int_{V_{lpha}}\phi_{i}f\;,$$

이다. $g:U_{lpha}
ightarrow V_{lpha}$ 를 생각하면 다음이 성립한다.

$$\int_{V_lpha} \phi_i f = \int_{U_lpha} (\phi_i \circ g) (f \circ g) |\det Dg| \;\; .$$

우변의 적분은 S_i 밖에서 0 이므로 다음이 성립한다.

$$\int_B \phi_i f = \int_A (\phi_i \circ g)(f \circ g) |\det Dg| \;, \; ext{and} \ \int_B f = \sum_{i=1}^\infty \left[\int_B \phi_i f
ight] = \sum_{i=1}^\infty \left[\int_A (\phi_i \circ g)(f \circ g) |\det Dg|
ight] \;.$$

 $\phi_i \circ g$ 가 A의 partition of unity 이고 |f|가 integrable 이므로 $(f \circ g)$ $| \det Dg |$ 도 integrable 하다. 따라서

$$\int_B f = \int_A (f\circ g) |\det Dg|$$

이다.

 $(\underline{Step~3})$ 임의의 $\mathbf{x}\in A$ 에 대해 위의 Lemma가 성립하는 \mathbf{x} 의 neighborhood $U\subset A$ 가 존재함을 induction을 통해 보인다. 일단 n=1 일 때 즉 \mathbb{R}^1 에서 보이자. $A,\ B$ 가 open in \mathbb{R} 이라 하자. $x\in A$ 에 대해 $I\vdash x\in \mathrm{int}(I)$ 인 closed interval 이며 J=q(I) 라 하자. q가 diffeomorphism 이므로 $q(x)\in\mathrm{Int}(J)$ 이다.

이제 $\mathrm{int}(J)$ 에서 정의된 연속함수 f에 대해 $\int_{\mathrm{Int}(J)} f = \int_{\mathrm{Int}(I)} (f\circ g)|g'|$ 임을 보이면 되는데 $I,\ J$ 가 closed interval 이므로 자명하다.

 $(\underline{Step~4})$ 이제 n-1일때 성립함을 가정하고 n에서 성립함을 보이자. Lemma 4를 생각하면 우리는 primitive diffeomorphism에서 성립함을 보이면 된다. $h:U\to V$ 를 \mathbb{R}^n 의 open set U,V에서 정의된 primitive diffeomorphism 이라 하자. 편의를 위해 h를 마지막 components를 보존하는 primitive diffeomorphism 이라고 가정한다.

 $\mathbf{p}\in U,\ \mathbf{q}=h(\mathbf{p})$ 이며 Q는 \mathbf{q} 를 내부에 포함하는 V의 subset 이라 하고 $S=h^{-1}(Q)$ 라 하자. h는 $\mathrm{Int}(S)$ 와 $\mathrm{Int}(Q)$ 사이의 diffeomorphism이다. 이제 h와 임의의 연속함수 $f:\mathrm{Int}(Q)\to\mathbb{R}$ whose support is compact subset of $\mathrm{Int}(Q)$ 에 대해 lemma가 성립함을 보이자.

 $(f \circ h) | \det Dh |$ 가 compact subset of $\operatorname{Int}(S)$ 이므로 $(f \circ h) | \det Dh |$ 는 integrable over $\operatorname{Int}(S)$ 이다. 이제 우리는 다음을 보여야 한다.

$$\int_{{
m Int}(Q)} f = \int_{{
m Int}(S)} (f\circ h) |\det Dh| \ .$$

이제 f를 확장시킨 $f_e:\mathbb{R}^n o\mathbb{R}$, $F:\mathbb{R}^n o\mathbb{R}$ 을 다음과 같이 정의하면 f_e 와 F는 \mathbb{R}^n 에서 연속이다.

$$f_e(\mathbf{x}) = \left\{ egin{aligned} f(\mathbf{x}) & ext{if } \mathbf{x} \in ext{Int}(Q) \;, \ 0 & ext{otherwise.} \end{aligned}
ight.$$

$$F(\mathbf{x}) = \left\{ egin{aligned} (f_e \circ h) |\det Dh| & ext{if } \mathbf{x} \in ext{Int}(Q) \;, \ 0 & ext{oterwise} \;. \end{aligned}
ight.$$

Q는 closed rectangle in \mathbb{R}^n 이므로 \mathbb{R}^{n-1} 에서의 closed rectangle D와 closed interval I 에 대해 $Q=D\times I$ 로 쓸수 있다. S가 compact 이므로 $\mathbb{R}^{n-1}\times 0$ 으로의 projection S_0 도 compact 하며 어떤 \mathbb{R}^{n-1} 의 rectangle E 에 대해 $S_0\subset E\times 0$ 이다. h가 last coordinate를 preserve 하는 primitive diffeomorphism 이므로 $S_0\subset E\times I$ 이다.

 $F(\mathbf{x})=0$ when $\mathbf{x}
ot\in S$ 이므로 $\int_{O}f=\int_{E imes I}F$ 이다. Fubini's theorem 에 의해 다음과 같다.

$$\int_{t \in I} \int_{\mathbf{y} \in D} f(\mathbf{y}, \, t) = \int_{t \in I} \int_{\mathbf{x} \in E} F(\mathbf{x}, \, t) \; .$$

이제 $Int(D \times I)$ 와 $Int(E \times I)$ 에 대해 위의 등식이성립함을 보이면 된다.

앞의 \mathbb{R}^n 에서의 open U, V와 $\mathbb{R}^{n-1} \times t$ 와의 각각의 intersections는 \mathbb{R}^{n-1} 에서의 open U_t, V_t 에 대해 $U_t \times t, V_t \times t$ 로 쓸 수 있다. 비슷하게 S 와 $\mathbb{R}^{n-1} \times t$ 와의 intersection도 $S_t \times t$ for some compact set S_t in \mathbb{R}^{n-1} 로 쓸 수 있다. F가 S 밖에서 0 이므로 $\int_{\mathbf{y} \in D} f(\mathbf{y}, t) = \int_{\mathbf{x} \in S_t} F(\mathbf{x}, t)$ 이며 이는 아래와 같다.

$$\int_{\mathbf{y} \in V_t} f(\mathbf{y},\,t) = \int_{\mathbf{x} \in U_t} F(\mathbf{x},\,t) \;.$$

앞서 가정한 diffeomorphism $h:U\to V = h(\mathbf{x},\,t) = (k(\mathbf{x},\,t),\,t)$ for some $k:U\to\mathbb{R}^{n-1}$ of C^1 class function 이다. $\det Dh = \det \partial k/\partial \mathbf{x}$ 이며 non zero for $\mathbf{x}\in U$ 이므로 map $\sigma:\mathbf{x}\to k(\mathbf{x},\,t)$ for fixed $t \in U_t$ 와 V_t 사이의 diffeomorphism이다.

Induction의 가정을 fixed t 에 대해 적용하면

$$\int_{\mathbf{y} \in V_t} f(\mathbf{y},\,t) = \int_{\mathbf{x} \in U_t} f(k(\mathbf{x},\,t),\,t) |\det \partial k / \partial \mathbf{x}\,|$$

이다. □