A. AMENDMENTS TO THE CLAIMS:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1. (Currently amended) A compound comprising the formula:

(I)

wherein:

R₁ is a polymeric residue;

Y₁ is O, S or NR₄;

M is O, S or NR₅;

E₁ is

 $-\left(\begin{array}{c} R_7 \\ \\ \\ C \\ \\ R_6 \end{array}\right) \prod_{n=0}^{\infty} C - D_1$

 E_{2-4} are independently H, E_1 or

- (a) is zero or one;
- (m) is zero or a positive integer;
- (n) and (p) are independently 0 or a positive integer;

 Y_{2-3} are independently O, S or NR_{10} ;

 R_{2-10} are independently selected from the group consisting of hydrogen, C_{1-6} alkyls, C_{3-12} branched alkyls, C_{3-8} cycloalkyls, C_{1-6} substituted alkyls, C_{3-8} substituted cycloalkyls, aryls, substituted aryls, aralkyls, C_{1-6} heteroalkyls, substituted C_{1-6} heteroalkyls, C_{1-6} alkoxy, phenoxy and C_{1-6} heteroalkoxy;

D₁ and D₂ are independently OH,

or a terminal branching group;

wherein (v) and (t) are independently 0 or a positive integer up to about 6;

J is
$$NR_{12}$$
 or

L₁ and L₂ are independently selected bifunctional linkers;

Y₄₋₇ are independently selected from the group consisting of O, S and NR₁₄;

R₁₁₋₁₄ are independently selected from the group consisting of hydrogen, C₁₋₆ alkyls,

 C_{3-12} branched alkyls, C_{3-8} cycloalkyls, C_{1-6} substituted alkyls, C_{3-8} substituted cycloalkyls, aryls, substituted aryls, aralkyls, C_{1-6} heteroalkyls, substituted C_{1-6} heteroalkyls, C_{1-6} alkoxy, phenoxy and C_{1-6} heteroakoxy;

Ar is a moiety which when included in Formula (I) forms a multi-substituted aromatic hydrocarbon or a multi-substituted heterocyclic group;

B₁ and B₂ are independently selected from the group consisting of leaving groups, OH, residues of hydroxyl-containing moieties or amine-containing moieties;

provided that E₂₄ are not all H.

2. (Original) The compound of claim 1, wherein R₁ further comprises a capping group A, selected from the group consisting of hydrogen, NH₂, OH, CO₂H, C₁₋₆ moieties and

$$E_{2} \xrightarrow{E_{1}} \begin{pmatrix} C & Y_{1} & Y_{1} & R_{2} \\ & & & \\ & & C \end{pmatrix} \xrightarrow{R_{2}} \xrightarrow{C} \xrightarrow{C} \xrightarrow{R_{3}} \xrightarrow{m}$$

3. (Original) A compound of claim 2, comprising the formula:

$$E_{2} = \begin{bmatrix} E_{1} & Y_{1} & E_{1} & E_{1} & E_{2} \\ C & N & C & M \\ E_{3} & E_{4} & C & R_{3} \end{bmatrix}_{m} = \begin{bmatrix} R_{2} & Y_{1} & E_{1} & E_{1} \\ C & N & C & R_{2} \\ R_{3} & M & R_{4} & R_{5} \end{bmatrix}_{m} = \begin{bmatrix} R_{2} & Y_{1} & E_{1} & E_{2} \\ C & N & C & R_{2} \\ R_{3} & M & E_{4} & E_{3} \end{bmatrix}$$

4. (Original) The compound of claim 1, wherein said terminal branching group comprises the formula:

$$E_{35}$$
 $C - E_{36}$
 E_{38}
 E_{37}

wherein

 E_{35} is

$$\begin{array}{c|c}
 & Y_2 \\
 & \downarrow \\
 & C \\
 & R_6
\end{array}$$

E₃₆₋₃₈ are independently H, E₃₅ or

$$\begin{array}{c|c}
 & & Y_3 \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\$$

(n) and (p) are independently 0 or a positive integer;

Y₂₋₃ are independently O, S or NR₁₀;

 R_{6-10} are independently selected from the group consisting of hydrogen, C_{1-6} alkyls, C_{3-12} branched alkyls, C_{3-8} cycloalkyls, C_{1-6} substituted alkyls, C_{3-8} substituted cycloalkyls, aryls, substituted aryls, aralkyls, C_{1-6} heteroalkyls, substituted C_{1-6} heteroalkyls, C_{1-6} alkoxy, phenoxy and C_{1-6} heteroalkoxy;

D'1 and D'2 are independently OH,

or

$$\begin{array}{c|c}
(VII) & E_{45} \\
\hline
-N & C & E_{46} \\
\hline
E_{48} & E_{47}
\end{array}$$

wherein (v) and (t) are independently 0 or a positive integer up to about 6;

L₁ and L₂ are independently selected bifunctional linkers;

 Y_{4-7} are independently selected from the group consisting of O, S and NR₁₄;

R₁₁₋₁₄ are independently selected from the group consisting of hydrogen,

 C_{1-6} alkyls, C_{3-12} branched alkyls, C_{3-8} cycloalkyls, C_{1-6} substituted alkyls, C_{3-8} substituted cycloalkyls, aryls, substituted aryls, aralkyls, C_{1-6} heteroalkyls, substituted C_{1-6} heteroalkyls, C_{1-6} alkoxy, phenoxy and C_{1-6} heteroakoxy;

Ar is a moiety which when included in Formula (I) forms a multi-substituted aromatic hydrocarbon or a multi-substituted heterocyclic group;

B₁ and B₂ are independently selected from the group consisting of leaving groups, OH, residues of hydroxyl-containing moieties or amine-containing moieties;

$$E_{45}$$
 is

$$\begin{array}{c|c}
 & Y_2 \\
 & \parallel^2 \\
 & C \\
 & C \\
 & R_6
\end{array}$$

 E_{46-48} are independently H, E_{45} or

wherein

D'', and D''2 are independently OH,

or

- 5. (Currently amended) The compound of claim 3, wherein Y_1 is O.
- 6. (Original) The compound of claim 1, wherein R₁ comprises a polyalkylene oxide residue.

- 7. (Original) The compound of claim 6, wherein R₁ comprises a polyethylene glycol residue.
- 8. (Original) The compound of claim 3, wherein R₁ comprises a polyethylene glycol residue.
- 9. (Original) The compound of claim 6, wherein R₁ is selected from the group consisting of

 $-C(=Y_6)-(CH_2)_{1}-O-(CH_2CH_2O)_{x}-A$,

 $-C(=Y_6)-Y_7-(CH_2)_7-O-(CH_2CH_2O)_x-A$,

-C(=Y₆)-NR₂₃-(CH₂)_f-O-(CH₂CH₂O)_x-A,

-(CR₂₄R₂₅)_e-O-(CH₂)₁-O-(CH₂CH₂O)_x-A,

 $-NR_{23}-(CH_2)_{r}-O-(CH_2CH_2O)_{x}-A$,

 $-C(=Y_6)-(CH_2)_{f'}O-(CH_2CH_2O)_{x}-(CH_2)_{f'}C(=Y_6)-$

 $-C(=Y_6)-Y_7-(CH_2)_f-O-(CH_2CH_2O)_x-(CH_2)_f-Y_7-C(=Y_6)-$

 $-C(=Y_6)-NR_{23}-(CH_2)_f-O-(CH_2CH_2O)_x-(CH_2)_f-NR_{23}-C(=Y_6)-$

 $-(CR_{24}R_{25})_e$ -O- $(CH_2)_f$ -O- $(CH_2CH_2O)_x$ - $(CH_2)_f$ -O- $(CR_{24}R_{25})_e$ -, and

 $-NR_{23}-(CH_2)_{\Gamma}O-(CH_2CH_2O)_{x}-(CH_2)_{\Gamma}NR_{23}-$

wherein: Y₆ and Y₇ are independently O, S or NR₂₃;

x is the degree of polymerization;

 R_{23} , R_{24} and R_{25} are independently selected from among H, C_{1-6} alkyls, C_{3-12} branched alkyls, C_{3-8} cycloalkyls, C_{1-6} substituted alkyls, C_{3-8} substituted cycloalkyls, aryls, substituted aryls, aralkyls, C_{1-6} heteroalkyls, substituted C_{1-6} heteroalkyls, C_{1-6} alkoxy, phenoxy and C_{1-6} heteroalkoxy;

e and f are independently zero, one or two; and

A is a capping group.

- 10. (Original) The compound of claim 9, wherein R_1 comprises $-O-(CH_2CH_2O)_x$ and x is a positive integer so that the weight average molecular weight is at least about 20,000.
- 11. (Original) The compound of claim 3, wherein R₁ has a weight average molecular weight of from about 20,000 to about 100,000.

- 12. (Original) The compound of claim 3, wherein R₁ has a weight average molecular weight of from about 25,000 to about 60,000.
- 13. (Original) A compound of claim 3, comprising the formula

14. (Original) The compound of claim 13, wherein D_1 is

15. (Original) The compound of claim 13, wherein D_1 is $\begin{array}{c}
E_{35} \\
N - C - E_{36} \\
E_{38} E_{37}
\end{array}$

16. (Original) The compound of claim 1, wherein L₁ is (CH₂CH₂O)₂.

17. (Original) The compound of claim 1, wherein L₂ is selected from the group consisting of -CH₂-, -CH_{(CH₃)-, -CH₂C(O)NHCH_{(CH₃)-, -(CH₂)₂-, -CH₂C(O)NHCH₂-, -(CH₂)₂-NH-, -(CH₂)₂-NH-C(O)(CH₂)₂NH- and -CH₂C(O)NHCH(CH₂CH(CH₃)₂)-.}}

18. (Original) A compound of claim 1, selected from the group consisting of:

wherein R₁ is a PEG residue and D is selected from the group consisting of:

where B is a residue of an amine or a hydroxyl-containing drug.

19. (Original) A compound of claim 18, wherein B is a residue of a member of the group consisting of: daunorubicin, doxorubicin; p-aminoaniline mustard, melphalan, Ara-C (cytosine arabinoside), leucine-Ara-C, and gemcitabine

20. (Original) A method of treatment, comprising administering to a mammal in need of such treatment an effective amount of a compound of claim 1, wherein D₁ is a residue of a biologically active moiety.

- 21. (Original) A method of treatment, comprising administering to a mammal in need of such treatment an effective amount of a compound of claim 18.
- 22. (Original) The compound of claim 1, wherein Ar comprises the formula:

wherein R_{11} and R_{18-20} are individually selected from the group consisting of hydrogen, C_{1-6} alkyls, C_{3-12} branched alkyls, C_{3-8} cycloalkyls, C_{1-6} substituted alkyls, C_{3-8} substituted cycloalkyls, aryls, substituted aryls, aralkyls, C_{1-6} heteroalkyls, substituted C_{1-6} heteroalkyls, C_{1-6} alkoxy, phenoxy and C_{1-6} heteroakoxy.

- 23. (Original) The compound of claim 22, wherein R_{11} and R_{18-20} are each H or CH₃.
- 24. (Currently amended) A method of preparing a polymer conjugate, comprising: reacting a compound of the formula (VIII):

wherein

(v) and (t) are independently 0 or a positive integer up to about 6;

J is NR₁₂ or

L₁ and L₂ are independently selected bifunctional linkers;

Y₄₋₅ are independently selected from the group consisting of O, S and NR₁₇;

 R_{11-17} are independently selected from the group consisting of hydrogen, C_{1-6} alkyls, C_{3-12} branched alkyls, C_{3-8} cycloalkyls, C_{1-6} substituted alkyls, C_{3-8} substituted cycloalkyls, aryls, substituted aryls, aralkyls, C_{1-6} heteroalkyls, substituted C_{1-6} heteroalkyls, C_{1-6} alkoxy, phenoxy and C_{1-6} heteroalkoxy;

Ar is a moiety which when included in Formula (I) forms a multi-substituted aromatic hydrocarbon or a multi-substituted heterocyclic group; and

B', is a residue of a hydroxyl- or an amine-containing moiety; with a compound of the formula (IX):

$$R_{1} = \left\{ \begin{array}{c} R_{2} \\ C \\ R_{3} \end{array} \right\}_{m}^{Y_{1}} = \left\{ \begin{array}{c} E_{5} \\ C \\ E_{8} \end{array} \right\}_{E_{7}}^{E_{5}} = \left\{ \begin{array}{c} E_{5} \\ C \\ E_{6} \end{array} \right\}_{E_{7}}^{E_{5}}$$

wherein

$$E_{5} \text{ is } - \left(\begin{array}{c} R_{7} \\ C \\ R_{6} \end{array} \right) \begin{array}{c} Y_{2} \\ C \\ R_{6} \end{array} \right)$$

E₆₋₈ are independently H, E₅ or

D₃ and D₄ are independently OH, a leaving group which is capable of reacting with an unprotected amine or hydroxyl or a terminal branching group;

R₁ is a polymeric residue;

Y₁ is O, S or NR₄;

M is O, S or NR₅;

- (a) is zero or one;
- (m) is 0 or a positive integer;
- (n) and (p) are independently 0 or a positive integer;

 Y_{2-3} are independently O, S or NR_{10} ; and

 R_{2-10} are independently selected from the group consisting of hydrogen, C_{1-6} alkyls, C_{3-12} branched alkyls, C_{3-8} cycloalkyls, C_{1-6} substituted alkyls, C_{3-8} substituted cycloalkyls, aryls, substituted aryls, aralkyls, C_{1-6} heteroalkyls, substituted C_{1-6} heteroalkyls, C_{1-6} alkoxy, phenoxy and C_{1-6} heteroalkoxy;

provided that E₆₋₈ are not all H;

under conditions sufficient to cause a polymeric conjugate to be formed.