Sentiment Analysis of Movie Reviews

G1: Riki Saito, Sijie He, Weiwen Leung

Motivation

Sentiment Analysis is a hugely popular field

We are interested in applying sentiment analysis to movie reviews.

Datasets

Cornell Movie Reviews (tagged as negative or positive)

IMDB (tagged with one of 8 emotions: Anger, Fear, Interest, Joy, Love, None, Sadness, Surprise)

Sample Movie Review.

... terrific no-holds-barred performances from the diverse cast .

see it , see it again and when the dvd comes out , buy it , because a movie this hilarious will surely have outtakes to die for

Each word forms a feature

Research Questions

- Which classifiers work best for movie reviews?
- → What is the best set of features (Single Words, N-gram, TF-IDF)?
- Can dimension reduction improve the performance of classifiers?

Experimental Design

- → Feature Engineering
 n-gram, TF-IDF (more on this later)
- → Dimensionality Reduction
 None, PCA, Kernel PCA
- → Classifiers

 Regularized Logistic Regression (L1, L2, Elastic Net), Naive Bayes, SVM

Results

Sentiment Analysis			Training Error	Testing Error	Precision	Recall	F1
	Original		0.030	0.337	0.655	0.690	0.672
	2-gram		0.001	0.267	0.695	0.832	0.757
Naïve		IDF	0.008	0.351	0.638	0.690	0.663
Bayes	KPCA	Original	0.067	0.082	0.920	0.916	0.918
		2-gram	0.121	0.187	0.785	0.862	0.822
		TFIDF	0.254	0.361	0.731	0.442	0.551
	Original		0.000	0.160	0.843	0.835	0.839
L2	2-gram		0.000	0.148	0.855	0.848	0.851
Regularized	TFIDF		0.028	0.160	0.831	0.853	0.842
Logistic Regression	KPCA	Original	0.000	0.499	0.501	0.800	0.616
		2-gram	0.000	0.499	0.501	0.800	0.616
		TFIDF	0.000	0.486	0.517	0.432	0.471
	Original		0.000	0.186	0.816	0.812	0.814
L1	2-gram		0.000	0.174	0.824	0.829	0.827
Regularized	larized TFIDF		0.209	0.247	0.726	0.812	0.767
Logistic		Original	0.005	0.007	0.987	1.000	0.994
Regression	KPCA	2-gram	0.041	0.041	0.987	0.930	0.958
		TFIDF	0.333	0.428	0.571	0.577	0.574
Elastic Net	KPCA	Original	0.000	0.044	0.946	0.968	0.957

Emotion (multi-label)

		Training error	Test error	Precision	Recall	F1	
L2	Original		0.0369	0.171	0.400	0.220	0.284
Regularized Logistic Regression	2-gram		0.0174	0.176	0.365	0.197	0.256
	TFIDF		0.1155	0.157	0.433	0.075	0.128
	Original		0.1043	0.219	0.321	0.380	0.348
	2-gram		0.0582	0.197	0.342	0.304	0.322
	TFIDF		0.1009	0.217	0.319	0.366	0.341
Naive Bayes		Original	0.1788	0.197	0.351	0.330	0.340
	PCA	2 gram	0.1765	0.196	0.340	0.292	0.314
		TFIDF	0.1524	0.175	0.314	0.119	0.173
Elastic Net	Original		0.0702	0.211	0.308	0.296	0.302
	2-gram		0.2047	0.234	0.255	0.270	0.262
	TFIDF		0.186	0.177	0.375	0.232	0.286

Best Results

Problem	Classifier	Dimension Reduction	Feature Engineering	Training Error	Testing Error	Precision	Recall	F1
	Naïve Bayes	KPCA	Original	0.067	0.082	0.920	0.916	0.918
	L1 Logistic Regression	KPCA	Original	0.005	0.007	0.987	1.000	0.994
	Elastic Net	KPCA	Original	0.000	0.044	0.946	0.968	0.957
Emotion	Naïve Bayes	None	Original	0.104	0.219	0.321	0.38	0.348
	Naïve Bayes	PCA	Original	0.179	0.197	0.351	0.33	0.34
	Elastic Net	None	TF-IDF	0.186	0.177	0.375	0.232	0.286

__

Sentiment vs Emotion Classification

- Why was Emotion Classification much more difficult than Sentiment Analysis?

Sentiment Analysis	Emotion Classification
2 classes, 2000 reviews X 13290 word features	8 classes, 629 sentences X 728 word features
Words generally describe only one of two sentiment: positive or negative	Words can describe multiple emotions = emotions highly correlated

Next Steps:

Wish List

I want:

- ..
- ..
- ...

Domain Similarity Measure

Horror Movies

"It was a **shocking** and **great** movie."

Comedy Movies

"It was **great**, but **shocking** that the actor said vulgarities."

History Movies

"A **shocking** depiction of the war."

Calculating domain similarity

$$R_{i,j} \equiv \frac{n_{i,j}^{S} - n_{i,j}^{O}}{n_{i,j}^{S} + n_{i,j}^{O}}$$

 $n_{i,j}^S$, $n_{i,j}^O$ = frequency of words i and j sharing the same and opposite sentiment

$$DomainSimilarity_{m,n} = \frac{\sum_{w=1}^{D} \sum_{v \neq w} |R_{w,v}^{m} + R_{w,v}^{n}| \cdot \min\{N_{w,v}^{m}, N_{w,v}^{n}\}}{\sum_{w=1}^{D} \sum_{v \neq w} (|R_{w,v}^{m}| \cdot N_{w,v}^{m} + |R_{w,v}^{n}| \cdot N_{w,v}^{n})}$$

(adapted from Wu and Huang, 2016)

Domain Adaptation

With our existing movie review classifier, what can we do if we had an unlabelled dataset of documentary reviews?

Answer:

Adapt the classifier to make better predictions by using domain adaptation.

Steps

Calculate domain similarity Build a global classifier across all movie reviews between each movie genre and documentaries Build a classifier which combines the global and Build a local classifier for local classifiers, but weighs each movie genre movie genres that are similar more heavily