Google File System (GFS)

- 1. Why does Google need it?
 - a. Handle huge amount of data and failures
 - b. GFS \rightarrow one of first design to exchange performance and consistency

2. MapReduce

- a. Storage is provided by inexpensive IDE disks attached directly to individual machines. A distributed file system developed in-house is used to manage the data stored on these disks. The file system uses replication to provide availability and reliability on top of unreliable hardware
- b. The more web page point to other webpages, the more popular (collect link among webpages to create a graph where nodes are webpages)
- 3. Topic: scalability, fault-tolerance, and data consistency
- 4. Consistency
 - a. A correctness condition
 - b. Inconsistent \rightarrow read/write the data at the same time
 - c. Important when data is replicated and concurrently accessed by applications
 - i. If a write is performed, what value then will later read observe?
 - ii. What if two writes are performed concurrently?
 - iii. What if the reader is different from the writers?
 - d. Data's consistency model defines what is correct

e.

f. Reason why you store multiple replication of same data → data management (split the work), ensure that server is available even after one replication is down (fault tolerance)

- g. Strong consistency
 - i. Read always returns the value of the most recent write
- h. Weak consistency
 - i. Reads may return "stale" data (not the value of the most recent write)
 - ii. Implement weak consistency due to performance
 - iii. The benefits we get from using weak consistency is great
- i. In a weak consistency model, inconsistency is ... OK!
- 5. Long History of Consistency
 - a. Decades of development from architecture, operating systems, database, and distributed communities:
 - i. Concurrent processors with private caches accessing a shared memory
 - ii. Concurrent clients accessing a file system
 - iii. Concurrent transactions on distributed database
- 6. Consistency Today?
 - a. Important data maybe replicated to prevent it from being lost due to a failure (durability)
 - b. Important services maybe replicated to handle increasing demand, or guarantee availability in the case of a failure
 - c. Any mutations of a replicated value has the potential to introducing inconsistencies
- 7. Sources of inconsistency
 - a. Multiple threads, multiple clients

b.

c. Concurrency!

d.

e. Network failure or machine failure occurs

8. "Ideal" correctness guarantees

a. In ideal world, replicated system behaves like a non-replicated system

- b.
- i. "Single copy" serialized access
- ii. After a write, all reads will always see update value
- iii. Concurrent writes to same file independently done in a well defined order