transformer, how many position embedding methods? please use detailed example and python code to explain

Great question! 🚀

In Transformers, **positional information** is essential because self-attention is **permutation-invariant** — it doesn't know the order of tokens unless we explicitly encode it.

There are several positional embedding methods used in practice. Let's go step by step.

Main Types of Position Embeddings

1. Absolute Position Embeddings

Attach position information directly to each token embedding.

(a) Learned Absolute Position Embedding

- Treat each position as an embedding (just like words).
- Example: BERT uses this.

Python code example:

```
python

☐ Copy ≥ Edit

import torch
import torch.nn as nn

class LearnedPositionalEncoding(nn.Module) ↓

def __init__(self, max_len: int, d_model: int):
```

Python code example: ○ Copy ② Edit python import torch import torch.nn as nn class LearnedPositionalEncoding(nn.Module): def __init__(self, max_len: int, d_model: int): super().__init__() self.pos_embedding = nn.Embedding(max_len, d_model) def forward(self, x): x: shape [batch, seq_len, d_model] batch_size, seq_len, d_model = x.shape positions = torch.arange(seq_len, device=x.device).unsqueeze(0) # [1, seq_len] pos_embed = self.pos_embedding(positions) # [1, seq_len, d_model] return x + pos_embed # Example x = torch.randn(2, 5, 16) # [batch=2, seq_len=5, d_model=16] pe = LearnedPositionalEncoding(max_len=50, d_model=16) print(pe(x).shape) # [2, 5, 16]

(b) Sinusoidal Absolute Position Embedding

- Fixed, not learned.
- Encodes position using sine and cosine functio ↓ It different frequencies.
- Original Transformer (Vaswani et al. 2017) used this.

(b) Sinusoidal Absolute Position Embedding

- Fixed, not learned.
- Encodes position using sine and cosine functions at different frequencies.
- · Original Transformer (Vaswani et al. 2017) used this.

Formula:

$$PE_{(pos,2i)} = \sin \Big(rac{pos}{10000^{2i/d}}\Big), \quad PE_{(pos,2i+1)} = \cos \Big(rac{pos}{10000^{2i/d}}\Big)$$

Python code example:

2. Relative Position Embeddings

Instead of absolute positions, encode the relative distance between tokens.

- Used in Transformer-XL, T5, DeBERTa.
- · Better for generalizing to longer sequences.

Example: relative attention bias (T5 style)

$$\operatorname{Attention}(Q,K) = rac{QK^ op}{\sqrt{d_k}} + b_{rel}(i-j)$$

where b_{rel} depends on the distance between positions i and j.

Python code example:

```
python
                                                                            class RelativePositionalBias(nn.Module):
    def __init__(self, num_heads, max_distance=128):
        super().__init__()
        self.num_heads = num_heads
        self.max_distance = max_distance
        self.relative_bias = nn.Embedding(2 * max_distance + 1, num_heads)
    def forward(self, seq_len):
       # distances matrix
        pos = torch.arange(seq_len)
        rel_dist = pos[None, :] - pos[:, None] # [seq_len, seq_len]
        rel_dist = rel_dist.clamp(-self.max_distance, self.max_distance)
        rel_dist += self.max_distance # shift to [0, 2*max_distance]
        # lookup bias
        bias = self.relative_bias(rel_dist \( \psi \) * [seq_len, seq_len, num_heads]
        return bias.permute(2, 0, 1) # [num_heads, seq_len, seq_len]
```

```
# Example
bias_layer = RelativePositionalBias(num_heads=4, max_distance=10)
bias = bias_layer(seq_len=6)
print(bias.shape) # [4, 6, 6]
```

3. Rotary Position Embeddings (RoPE)

- · Popular in GPT-NeoX, LLaMA, ChatGLM.
- Instead of adding embeddings, it rotates query & key vectors in complex plane according to position.
- · Supports extrapolation beyond training length.

Idea:

For each 2D pair (x_{2i}, x_{2i+1}) , apply a rotation:

```
\label{eq:loss} $$ \operatorname{Cos}(x, pos) = \Big[x_{2i}\cos(\theta_{pos}) - x_{2i+1}\sin(\theta_{pos}), x_{2i}\sin(\theta_{pos}) + x_{2i+1}\cos(\theta_{pos})\Big] $$
```

Python code example (simplified):

```
python

def rotary_embedding(x, seq_len, base=10000):

x: [batch, seq_len, d_model]

munu

d_model = x.shape[-1]

pos = torch.arange(seq_len, device=x.device).float()

i = torch.arange(d_model//2, device=x.device).float()

theta = pos[:, None] / (base ** (2 * i / d_model)) # [seq_len, d_model/2]

cos = torch.cos(theta).repeat_interlea** (2, dim=1) # [seq_len, d_model]

sin = torch.sin(theta).repeat_interleave(2, dim=1)
```

Summary Table

Method	Used in	Idea	Generalizes to longer seq?
Learned Absolute	BERT	Learn pos embedding table	X Limited to max length
Sinusoidal Absolute	Transformer (2017)	Fixed sin/cos function	▼ Yes
Relative Position Bias	T5, Transformer-XL, DeBERTa	Encode distance in attention	▼ Yes
Rotary Positional Embedding	GPT-NeoX, LLaMA	Rotate Q,K vectors by position	▼ Yes (good extrapolation)

 $\label{eq:cos} $$ \operatorname{Cos}(x, pos) = \bigg[x_{2i}\cos(\theta_{pos}) - x_{2i+1}\sin(\theta_{pos}), x_{2i}\sin(\theta_{pos}) + x_{2i+1}\cos(\theta_{pos})\bigg], 请用readable formulas to express it$

99 Ask ChatGPT

好的 bullet,你给的公式是 Rotary Position Embedding (RoPE) 的核心。它的本质是: 把每一对相邻的维度 (x_{2i},x_{2i+1}) 当作平面坐标,然后根据位置 pos 旋转一个角度 $heta_{pos,i}$ 。

1. 原始写法(你提供的)

$$ext{RoPE}(x,pos) = \left[x_{2i}\cos(heta_{pos,i}) - x_{2i+1}\sin(heta_{pos,i}), \hspace{0.2cm} x_{2i}\sin(heta_{pos,i}) + x_{2i+1}\cos(heta_{pos,i})
ight]$$

2. 更易读的矩阵形式

每个 2D 子向量 $\left(x_{2i},x_{2i+1}
ight)$ 经过一个旋转矩阵:

$$\begin{bmatrix} x_{2i}' \\ x_{2i+1}' \end{bmatrix} = \begin{bmatrix} \cos(\theta_{pos,i}) & -\sin(\theta_{pos,i}) \\ \sin(\theta_{pos,i}) & \cos(\theta_{pos,i}) \end{bmatrix} \begin{bmatrix} x_{2i} \\ x_{2i+1} \end{bmatrix}$$

3. 用复数形式表达(最简洁)

把 (x_{2i}, x_{2i+1}) 组合成一个复数:

$$z_i=x_{2i}+j\cdot x_{2i+1},\quad j=\sqrt{-1}$$

那么旋转就是复数乘法:

 \bigcirc

3. 用复数形式表达(最简洁)

把 (x_{2i}, x_{2i+1}) 组合成一个复数:

$$z_i=x_{2i}+j\cdot x_{2i+1},\quad j=\sqrt{-1}$$

那么旋转就是复数乘法:

$$z_i' = z_i \cdot e^{j heta_{pos,i}}$$

最后再把实部、虚部分别拆开,得到 $(x_{2i}^{\prime},x_{2i+1}^{\prime})$ 。

4. 角度 $heta_{pos,i}$ 的定义

角度和位置、维度相关:

$$heta_{pos,i} = rac{pos}{10000^{2i/d}}$$

其中 d 是 embedding 维度。

▼ 总结

RoPE 其实就是:

- 把每对坐标 (x_{2i}, x_{2i+1}) 当作平面向量
- 根据位置 pos 旋转一个角度 $heta_{pos,i}$
- 数学上等价于:
 - 旋转矩阵形式 (线性代数)
 - 复数乘法形式 (更简洁)

Here's the visualization of:

Each arrow is the same base vector rotated by RoPE at different positions pos.

- Black = pos=0 (no rotation)
- Red/Blue/Green = larger positions \rightarrow larger rotation angles θ .

This shows how RoPE encodes position as a rotation in the embedding space.

Want me to extend this to show how multiple frequencies (different i) rotate at different speeds — i.e., why RoPE can capture both short- and long-range dependencies? ω