```
1 import numpy as np
2 import pandas as pd
3
```

1 !unzip /content/drive/MyDrive/Colab_data/MMO/archive.zip

Archive: /content/drive/MyDrive/Colab_data/MMO/archive.zip
inflating: autoru_total.csv

1 data = pd.read_csv('/content/autoru_total.csv', sep=',')

1 data.shape

(36906, 17)

1 data.head()

₽		Model	Year	Mileage	V_engine	EngineType	HorsePower	Tax	State	
	0	Subaru Forester IV	2013	83800.0	2.5	Бензин	171.0	8379.0	Не требует ремонта	вла,
	1	Opel Zafira В Рестайлинг	2014	97265.0	1.8	Бензин	140.0	4900.0	Не требует ремонта	вла
	2	Kia Rio IV	2017	48000.0	1.6	Бензин	123.0	3075.0	Не требует ремонта	вла,
	3	Skoda Octavia II (A5) Рестайлинг	2011	292000.0	1.4	Бензин	122.0	4148.0	Не требует ремонта	вла,
	4	Audi A6 IV (С7) Рестайлинг	2015	106205.0	1.8	Бензин	190.0	9500.0	Не требует ремонта	вла,

1 hcols_with_na = [c for c in data.columns if data[c].isnull().sum() > 0]

2 hcols_with_na

['Tax', 'State', 'Owners', 'Customs', 'Accidents']

1 [(c, data[c].isnull().sum()) for c in hcols_with_na]
 [('Tax', 476),

Удаление пропущенных значений

Заполнение показателями центра распределения

```
1 import matplotlib.pyplot as plt
2 %matplotlib inline
3
4 fig = plt.figure()
5 ax = fig.add_subplot(111)
6 data['Tax'].hist(bins=50, ax=ax, color='blue', density=True, alpha=0.5)
7 plt.show()
```



```
1 from sklearn.impute import SimpleImputer
2 from sklearn.impute import MissingIndicator
3
4 indicator = MissingIndicator()
```

Заполнение наиболее распространенным значением категории

```
1 indicator = MissingIndicator()
2 mask_missing_values_only = indicator.fit_transform(data[['State']].values)
4 imputer = SimpleImputer(strategy='most_frequent')
5 all_data = imputer.fit_transform(data[['State']].values)
6 filled_data = all_data[mask_missing_values_only]
7
8 print(filled_data)
9 all_data
    ['Не требует ремонта' 'Не требует ремонта' 'Не требует ремонта'
     'Не требует ремонта']
    array([['Не требует ремонта'],
           ['Не требует ремонта'],
           ['Не требует ремонта'],
           ['Не требует ремонта'],
           ['Не требует ремонта'],
           ['He требует ремонта']], dtype=object)
```

введение отдельного значения категории для пропущенных значений

```
1 hdata_mis = data[['Tax']].copy()
2 indicator = MissingIndicator()
3 Tax_missing = indicator.fit_transform(hdata_mis[['Tax']])
4 Tax_missing
    array([[False],
           [False],
           [False],
           . . . ,
           [False],
           [False],
           [False]])
1 hdata_mis['flag'] = Tax_missing
2 hdata_mis.head()
                       1
          Tax flag
    0 8379.0 False
    1 4900.0 False
    2 3075.0 False
    3 4148.0 False
    4 9500.0 False
```

▼ Кодирование категориальных признаков

```
1 from sklearn.preprocessing import LabelEncoder
2
3 le = LabelEncoder()
4 cat_enc_le = le.fit_transform(data['Model'])
1 data['Model'].unique()
    array(['Subaru Forester IV', 'Opel Zafira B Рестайлинг', 'Kia Rio IV', ..., 'Mitsubishi Chariot II', 'Porsche 911 Carrera VI (997)', 'BMW 3 cepuu Gran Turismo 335i VI (F3x)'], dtype=object)
1 np.unique(cat_enc_le)
    array([ 0,  1,  2, ..., 3160, 3161, 3162])
1 le.inverse_transform(np.unique(cat_enc_le))
    array(['Audi 100 III (C3)', 'Audi 100 III (C3) Рестайлинг',
```

```
'Audi 100 IV (C4)', ..., 'Volkswagen Type 1',
'Volkswagen Type 2 T2', 'Volkswagen Vento'], dtype=object)
```

Кодирование категорий наборами бинарных значений - one-hot encoding

```
1 from sklearn.preprocessing import OneHotEncoder
2
3 ohe = OneHotEncoder()
4 cat enc ohe = ohe.fit transform(data[['Model']])
5 cat enc ohe
    <36906x3163 sparse matrix of type '<class 'numpy.float64'>'
            with 36906 stored elements in Compressed Sparse Row format>
1 cat_enc_ohe.todense()[0:10]
    matrix([[0., 0., 0., ..., 0., 0., 0.],
            [0., 0., 0., \ldots, 0., 0., 0.]
            [0., 0., 0., \ldots, 0., 0., 0.]
            [0., 0., 0., ..., 0., 0., 0.]
            [0., 0., 0., \ldots, 0., 0., 0.]
            [0., 0., 0., \ldots, 0., 0., 0.]
1 !pip install category_encoders
    Collecting category_encoders
      Downloading category encoders-2.4.0-py2.py3-none-any.whl (86 kB)
                   86 kB 3.5 MB/s
    Requirement already satisfied: statsmodels>=0.9.0 in /usr/local/lib/python3.7/dist-p
    Requirement already satisfied: pandas>=0.21.1 in /usr/local/lib/python3.7/dist-packa
    Requirement already satisfied: patsy>=0.5.1 in /usr/local/lib/python3.7/dist-package
    Requirement already satisfied: numpy>=1.14.0 in /usr/local/lib/python3.7/dist-packag
    Requirement already satisfied: scipy>=1.0.0 in /usr/local/lib/python3.7/dist-package
    Requirement already satisfied: scikit-learn>=0.20.0 in /usr/local/lib/python3.7/dist
    Requirement already satisfied: pytz>=2017.3 in /usr/local/lib/python3.7/dist-package
    Requirement already satisfied: python-dateutil>=2.7.3 in /usr/local/lib/python3.7/di
    Requirement already satisfied: six in /usr/local/lib/python3.7/dist-packages (from p
    Requirement already satisfied: threadpoolctl>=2.0.0 in /usr/local/lib/python3.7/dist
    Requirement already satisfied: joblib>=0.11 in /usr/local/lib/python3.7/dist-package
    Installing collected packages: category-encoders
    Successfully installed category-encoders-2.4.0
Count (frequency) encoding
```

```
1 from category encoders.count import CountEncoder as ce CountEncoder
3 ce CountEncoder1 = ce CountEncoder()
4 data COUNT ENC = ce CountEncoder1.fit transform(data[data.columns.difference(['Model'])
6 data_COUNT_ENC
```

	Accidents	CarBodyType	Color	Customs	Drive	EngineType	HorsePower	Milea
0	8379	13303	3941	36905	14584	30981	171.0	83800
1	28527	946	9789	36905	20236	30981	140.0	97265
2	28527	11985	3594	36905	20236	30981	123.0	48000
3	28527	1870	3941	36905	20236	30981	122.0	292000
4	28527	11985	9789	36905	20236	30981	190.0	106205
36901	28527	11985	7264	36905	20236	30981	102.0	133789
36902	28527	13303	9789	36905	14584	5138	249.0	103965
36903	28527	11985	7264	36905	2086	30981	136.0	108000
36904	28527	11985	9789	36905	20236	30981	98.0	259000
36905	8379	11985	5173	36905	20236	30981	190.0	265000

36906 rows × 16 columns

Target (Mean) encoding

```
1 from category_encoders.target_encoder import TargetEncoder as ce_TargetEncoder
```

³ ce_TargetEncoder1 = ce_TargetEncoder()

⁴ data_MEAN_ENC = ce_TargetEncoder1.fit_transform(data[data.columns.difference(['Tax'])],

⁵ data_MEAN_ENC

in	Eng	Drive	Customs	Color	CarBodyType	Accidents	
3.5	1208	22441.953945	12357.519229	7368.860160	17928.761822	12194.545894	0
6.5	1208	4326.840010	12357.519229	18208.519405	3726.181818	12405.048242	1
2 5	1200	1226 010010	10057 510000	11007 700506	0045 025446	10105 010010	2

Нормализация числовых признаков

```
12-00.070272 0070.000770 10200.010700 12001.010220 7020.070010 12000.007
1 import scipy.stats as stats
 3 def diagnostic_plots(df, variable):
      plt.figure(figsize=(15,6))
4
5
      # гистограмма
 6
      plt.subplot(1, 2, 1)
 7
      df[variable].hist(bins=30)
      ## Q-Q plot
8
9
      plt.subplot(1, 2, 2)
      stats.probplot(df[variable], dist="norm", plot=plt)
10
      plt.show()
11
1 norm_data = data[['Tax']].dropna()
 2 norm_data
                Tax
       0
             8379.0
       1
             4900.0
       2
              3075.0
```

```
3
         4148.0
   4
         9500.0
 36901
         2550.0
 36902 18675.0
 36903
         4760.0
 36904
         1176.0
 36905
         9500.0
36430 rows × 1 columns
```

1 diagnostic_plots(norm_data, 'Tax')

```
Probability Plot
                                                        300000
     25000
                                                        250000
                                                        200000
     20000
                                                        150000
     15000
                                                        100000
     10000
                                                         50000
      5000
1 norm_data = norm_data.loc[norm_data['Tax'] != 0]
                50000
                     100000 150000 200000 250000
1 norm_data['Tax_log'] = np.log(norm_data['Tax'])
2
3
4 norm_data['Tax_log'].min()
5 diagnostic_plots(norm_data, 'Tax_log')
```



```
1 norm_data['reciprocal'] = 1 / (norm_data['Tax'])
2 diagnostic_plots(norm_data, 'reciprocal')
```


1 norm_data['sqr'] = norm_data['Tax']**(1/2)
2 diagnostic_plots(norm_data, 'sqr')

- 1 norm_data['boxcox'], param = stats.boxcox(norm_data['Tax'])
- 2 print('Оптимальное значение $\lambda = \{\}$ '.format(param))
- 3 diagnostic_plots(norm_data, 'boxcox')

Оптимальное значение λ = -0.11353789281093771

- 1 norm_data['Tax'] = norm_data['Tax'].astype('float')
- 2 norm_data['yeojohnson'], param = stats.yeojohnson(norm_data['Tax'])
- 3 diagnostic_plots(norm_data, 'yeojohnson')

✓ 1 сек. выполнено в 23:31

×