Práctico Especial I: Simulación Mediante Eventos Discretos

Santiago Videla - Francisco Javier Herrero 20 de mayo de 2010

ÍNDICE	2
Índice	
1. Introducción	3
2. Resultados de las simulaciones	3

3. Conclusiones

7

3

1. Introducción

El enfoque propuesto para realizar la simulación consiste en la abstracción del concepto de eventos con el fin de unificar su tratamiento y conseguir asi, una implementación mas simple y compacta.

El sistema mantiene actualizada una *unica* lista de eventos por ocurrir. Esta lista de eventos garantiza que cada evento se agrega a la lista de manera ordenada por los tiempos de ocurrencia y que cuando un evento se extrae de la lista, dicho evento es el mas próximo a ocurrir. Al extraerse el próximo evento, los subsiguientes eventos en la lista disminuyen su tiempo de ocurrencia, de manera que representen el tiempo desde la ocurrencia extraída hasta la próxima.

A su vez se implementó una abstracción del lavadero, con una lista de eventos, tiempo principal del sistema, los parámetros N (lavarropas), O (operarios) y S (repuestos) y los tiempos medios de fallo y reparación. Los detalles del algoritmo pueden observarse en los comentarios de la fuente.

2. Resultados de las simulaciones

Cuadro 1: 5 lavarropas, 2 repuestos, 1 operario

	F)	- F
Iteraciones	Promedio(meses)	Desviación Estandar(meses)
1	2.008329	0.000000
10	2.187058	2.169712
100	1.882441	1.622037
1000	1.717552	1.667455
10000	1.761247	1.624259

Cuadro 2: 5 lavarropas, 3 repuestos, 1 operario

_	Caadro 2. o lavarropas, o repaissos, r operario		
_	Iteraciones	Promedio(meses)	Desviación Estandar(meses)
	1	3.816586	0.000000
	10	3.072992	1.610918
	100	3.689234	3.551355
	1000	3.429950	3.160441
	10000	3.601015	3.381243

Cuadro 3: 5 lavarropas, 2 repuestos, 2 operarios

	· · · · · · · · · · · · · · · ·	P
Iteraciones	Promedio(meses)	Desviación Estandar(meses)
1	4.127406	0.000000
10	2.370329	1.860703
100	2.841226	2.991606
1000	2.555216	2.388780
10000	2.561495	2.436244

Figura 1: 5 lavarropas, 2 repuestos, 1 operario

Figura 2: 5 lavarropas, 3 repuestos, 1 operario

Figura 3: 5 lavarropas, 2 repuestos, 2 operarios

3. Conclusiones

Observamos por un lado que tanto agregar una maquina de repuesto como agregar un operario, mejoran significativamente el tiempo medio que transcurre hasta que el lavadero deja de ser operativo.

7

Pero entre estas dos mejoras, se puede ver que el hecho de agregar una maquina de repuesto, conduce a mejores resultados en promedio. Esto de desprende claramente de los resultados obtenidos en cada una de las simulaciones como así también, de la observación de los histogramas realizados para cada caso.

Observando los histogramas, se puede ver que agregar un operario (figura 3) mejora el tiempo promedio, pero mantiene un numero alto de fallas para tiempos entre 0 y 1. En cambio, al agregar una maquina de repuesto (figura 2), vemos que el numero de fallas entre 0 y 1, bajan considerablemente.