Семинар 2. Множества в \mathbb{R}^n

Скубачевский Антон

24 февраля 2022 г.

Определение Пусть $n \in N$. n-мерным действительным числовым пространством называется множество всевозможных упорядоченных наборов $(x_1,...,x_n)$ из n действительных чисел: $R^n = \{(x_1,...,x_n) : x_k \in \mathbb{R}, k = 1,...,n\}$.

Элемент этого пространства (то есть вектор с n координатами) будем называть точкой и сокращенно обозначать $x = (x_1, ..., x_n)$.

Введем расстояние между двумя элементами в R^n :

$$\rho(x,y) = \sqrt{(x_1 - y_1)^2 + \dots + (x_n - y_n)^2} = |x - y|$$

n-мерное действительное числовое пространство с введенным таким образом расстоянием называют евклидовым пространством.

Приведем свойства расстояния, которые нам в дальнейших курсах еще очень понадобятся:

- 1. $\rho \ge 0$; $\rho = 0 \Leftrightarrow x = y$, то есть расстояние (как и всякий уважающий себя квадратный корень) неотрицательно, и =0, только если мы считаем расстояние от точки до самой себя.
- $2. \ \rho(x,y) = \rho(y,x)$
- 3. $\rho(x,z) \le \rho(x,y) + \rho(y,z)$

Неравенство Коши-Буняковского

$$|(x,y)| \le |x||y|$$

Это, в принципе, очевидно следует из определения скалярного произведения. Распишем это неравенство покоординатно в n-мере:

$$\left|\sum_{i=1}^{n} x_i y_i\right| \le \sqrt{\sum_{i=1}^{n} x_i^2} \sqrt{\sum_{i=1}^{n} y_i^2}$$

Неравенство Минковского $|x+y| \le |x| + |y|$

Ниже введем определение предела последовательности. На этот раз номер члена последовательности будем обозначать вверху в скобочках: $x^{(m)}$, потому что x_k , то есть индекс внизу, обозначает k-ю координату вектора $x \in \mathbb{R}^n$.

Определение (Предел последовательности в \mathbb{R}^n) Точка $a \in \mathbb{R}^n$ называется пределом последовательности $x^{(m)}$, если $\forall \varepsilon > 0 \exists m_{\varepsilon} \in \mathbb{N} : \forall m \in \mathbb{N} : m \geq m_{\varepsilon} \Rightarrow |x^{(m)} - a| < \varepsilon$

Теорема. Последовательность $x^{(m)}$ сходится к $a \Leftrightarrow \lim_{m \to \infty} x_k^{(m)} = a_k$ $\forall k = 1, ..., n$. То есть последовательность точек из \mathbb{R}^n сходится тогда и только тогда, когда последовательность по каждой из координат сходится к координате предельной точки.

Для последовательностей в \mathbb{R}^n выполняются большинство свойств последовательностей из \mathbb{R} , в т.ч. Теорема Больцано-Вейерштрасса и Критерий Коши.

Определение (ε -окрестность точки в \mathbb{R}^n) $U_{\varepsilon}(a) = \{x \in \mathbb{R}^n : |x - a| < \varepsilon\}$, то есть множество всех точек пространства, расстояние между которыми и точкой a меньше, чем ε

Определение. Точка a называется внутренней точкой множества E, если $\exists U_{\varepsilon}(a):U_{\varepsilon}(a)\subset E$, то есть если она лежит во множестве вместе с некоторой своей окрестностью.

Примером внутренней точки может быть любая точка интервала (0;1).

Определение. Открытое множество это множество, все точки которого внутренние.

Интервал (0;1) является открытым множеством. Отрезок же [0;1] не является открытым множеством, т.к. его точки 0 и 1 не являются внутренними.

Определение. Внутренность множества E - множество всех его внутренних точек. Обозначается внутренность E как intE

Кроме того, $U_{\varepsilon}(a)$ является открытым множеством. Докажем это.

Доказательство, что $U_{\varepsilon}(a)$ - открытое множество:

То есть надо доказать, что произвольная точка х из $U_{\varepsilon}(a)$ -внутренняя.

Рис. 1: Доказательство, что окрестность точки-открытое множество.

- 1. Итак, пусть $x \in U_{\varepsilon}(a)$. Обозначим $r := |x-a| < \varepsilon$ расстояние от точки x до центра нашей окрестности, то есть до точки a. Обозначим $\delta = \varepsilon r > 0$, то есть расстояние от x до края окрестности. См. рис.1.
- 2. Мы покажем, что точка x внутренняя для $U_{\varepsilon}(a)$, если предъявим ее окрестность, полностью лежащую в $U_{\varepsilon}(a)$. Давайте покажем, что $U_{\delta}(x) \subset U_{\varepsilon}(a)$, где δ было введено выше. Чтобы это показать, нужно доказать, что $\forall y \in U_{\delta}(x) \Rightarrow y \in U_{\varepsilon}(a)$, то есть что $|y a| < \varepsilon$
- 3. $|y-a|=|(y-x)+(x-a)|\leq |y-x|+|x-a|<\delta+r=\varepsilon$. Значит, $\exists U_\delta(x): U_\delta(x)\subset U_\varepsilon(a)$, значит точка x-внутренняя для $U_\varepsilon(a)$. В качестве x мы брали произвольную точку из $U_\varepsilon(a)$. Значит, $U_\varepsilon(a)$ открыто, т.к. все его точки внутренние. Ч.т.д.

Определение 1. Точка a называется предельной точкой множества E, если $\forall \overset{\circ}{U}_{\varepsilon}(a) \Rightarrow \overset{\circ}{U}_{\varepsilon}(a) \cap E \neq \varnothing,$ то есть если в любой проколотой окрестности этой точки есть точки нашего множества.

Определение 2. Точка a называется точкой прикосновения множества E, если $\forall U_{\varepsilon}(a) \Rightarrow U_{\varepsilon}(a) \cap E \neq \emptyset$, то есть если в любой окрестности этой точки есть точки нашего множества.

Всякая предельная точка является, очевидно, точкой прикосновения. Обратное неверно.

Пример 1. У множества $E = (0;1) \cup \{2\}$ предельные точки: [0;1], а точки прикосновения: $[0;1] \cup \{2\}$.

Всякая внутренняя точка, очевидно, является предельной (подумайте, почему очевидно =)). Но не всякая предельная является внутренней. Например, у множества E=[0;1], или E=(0;1) точки 0 и 1 являются предельными, но не внутренними.

Всякая точка множества является его точкой прикосновения (в любой ее окрестности лежит точка множества, то есть она сама).

Введем эквивалентные определения предельных точек и точек прикосновения.

Определение 1'. Точка a называется предельной точкой множества E, если $\exists \{x^{(m)}\}: a \neq x^{(m)} \in E(\forall m \in \mathbb{N}), \quad \lim_{m \to \infty} x^{(m)} = a.$

Определение 2'. Точка a называется точкой прикосновения множества E, если $\exists \{x^{(m)}\}: x^{(m)} \in E(\forall m \in \mathbb{N}), \lim_{m \to \infty} x^{(m)} = a.$

Эквивалентность, в общем-то, довольно очевидна. Попробуйте ее доказать.

Определение. Точка $a \in E$ называется изолированной точкой множества E, если $\exists \overset{\circ}{U}_{\varepsilon}(a):\overset{\circ}{U}_{\varepsilon}(a)\cap E=\varnothing$, то есть если в некоторой ее окрестности нет точек множества.

Определение. Множество называется замкнутым, если оно содержит все свои предельные точки.

В этом определении предельные точки можно заменить на точки прикосновения. При этом определение не изменится, т.к. всякая точка прикосновения является либо предельной, либо изолированной, а изолированные точки итак принадлежат множеству.

Определение. Замыкание множества E обозначается \bar{E} и равно $E \cup \{$ все его предельные точки $\}$

 $ar{E}$ является само по себе замкнутым множеством.

Пример 2. Всегда ли замкнутое множество является замыканием своих внутренних точек? Ответ: нет, пример: $E = [0;1] \cup \{2\}$. Оно очевидно замкнуто. При этом его внутренние точки: (0;1). А их замыкание: [0;1].

Определение. Линейно связное множество - множество, любые 2 точки которого можно соединить кривой (непрерывной вектор-функцией), полностью лежащей в этом множестве.

Не линейно связным является, например, $E=(0,1)\cup(1,2)$. Или, например, 2 непересекающихся круга в \mathbb{R}^2

Определение. E - ограниченное множество, если $\exists U_{\varepsilon}(0): E \subset U_{\varepsilon}(0)$

Определение. Компакт - ограниченное замкнутое множество.

Пример замкнутого неограниченного множества: множество всех действительных чисел.

Определение. Область - открытое линейно связное множество.

Определение. Точка a называется граничной точкой множества E, если в любой ее окрестности есть точки как принадлежащие E, так и не принадлежащие.

Определение.Граница множества - множество всех его граничных точек. Обозначается ∂E

Например, граничными точками множества $E = [0; 2) \cup \{3\}$ являются 0, 2, 3.

Пример 3. Любая точка множества является либо внутренней, либо граничной.

Доказательство:

Пусть точка $a \in E$ - граничная точка множества E. Значит в любой ее окрестности есть точки не из E. Но тогда она не может быть внутренней (т.к. у внутренней точки есть окрестность, в которой все точки из E).

Пусть теперь $a \in E$ - не граничная. Взяв отрицание от определения граничной точки получим, что это значит, что найдется ее окрестность, в которой либо все точки принадлежат E, либо все не принадлежат E. Но сама точка принадлежит E, значит, остается только вариант, в котором найдется окрестность: все точки $\in E$. Но это совпадает с определением внутренней точки.

Значит, если точка граничная то она не внутренняя. А если не граничная, то внутренняя. Значит чтд.

Из этого примера можно сделать несколько выводов:

- 1) Множество E открыто $\Leftrightarrow E \cap \partial E = \emptyset$
- 2) Множество решений неравенства f(x) > y открытое множество, т.к. оно не содержит свою границу (множество точек, в которых f(x) = y).
 - 3) $intE = E \setminus \partial E$

Пример 4. Доказать, что граница множества является замкнутым множеством, т.е. что ∂E - замкнуто.

1. Чтобы доказать, что множество замкнуто, нужно доказать, что оно

содержит все свои предельные точки. Т.е. возьмем произвольную предельную точку x множества ∂E и покажем, что $x \in \partial E$.

- 2. По определению предельной точки x множества ∂E : $\forall \overset{\circ}{U}_{\varepsilon}(x) \exists y \in \partial E$
- 3. Этот y граничная точка множества E, значит, в любой $U_{\delta}(y)$ существует как точка из E, так и не из E. В частности, в достаточно малой $U_{\delta}(y)$, настолько малой, что она влезет в $U_{\varepsilon}(x)$. Такая окрестность существует, т.к. окрестность сама по себе-открытое множество, т.е. все его точки внутренние.
- 4. Но это значит, что $\forall \overset{\circ}{U}_{\varepsilon}(x)$ существует как точка из E, так и не из E. Значит, x граничная по определению граничной точки.

Пример 5.
$$E = [0;1] \cup \{2\} \cup (3;4] \cup \{5\} \cup \{[8;11] \cap \mathbb{Q}\}$$

1. Найти граничные точки.

Очевидно, что точки 0, 1, 2, 3, 4, 5 будут граничными. А вот найти граничные точки $E_1 = \{[8;11] \cap \mathbb{Q}\}$ будет чуть сложнее. Вспомним про плотность рациональных и иррациональных чисел во множестве действительных чисел (в любой окрестности любого действительного числа найдется как рациональное, так и иррациональное). Проверим для начала, будут ли рациональные точки отрезка [8; 11] граничными для множества E_1 . В окрестности любой рациональной точки этого отрезка есть точка из E_1 (она сама: ведь все рациональной точки этого отрезка это и есть E_1). Кроме того, т.к. в окрестности любого действительного числа найдется иррациональное число, получаем, что в любой окрестности рациональной точки есть иррациональная (то есть точка не из E). Значит, все рациональные точки отрезка [8; 11] граничные для E_1 . Аналогично убеждаемся, что все иррациональные точки этого отрезка тоже граничные для E_1 . Таким образом, все точки [8; 11] являются граничными для E. Окончательный ответ про граничные точки множества E: 0,1,2,3,4,5,[8;11].

2. Найти предельные точки.

 $[0;1] \cup [3;4]$. Все точки отрезка [8;11] также являются предельными для E: в любой проколотой окрестности любой действительной

точки отрезка [8; 11] найдется рациональное число, то есть точка из Е.

3. Найти все точки прикосновения. Чтобы их найти, добавим к предельным изолированные.

$$[0;1] \cup \{2\} \cup [3;4] \cup \{5\} \cup [8;11]$$

4. Найти все внутренние точки.

По доказанному чуть выше утверждению $intE = E \setminus \partial E$. То есть все внутренние точки: $(0;1) \cup (3;4)$.

Пример 6. Доказать, что множество $E = \{e^{x_1^2 + x_2^2 + x_3^2} < 1 + x_4^2\}$ не является линейно связным.

Доказательство:

Предположим, что оно линейно связное, то есть любые 2 точки можно соединить кривой, лежащей в множестве. Рассмотрим тогда точки A(0,0,0,-1) и B(0,0,0,1). Соединим их кривой $\gamma(t)$. Параметр t положим, что лежит на отрезке [0,1] – в целом пофиг, на каком, это чисто для формальности. Эта кривая $\gamma(t)$ – 4-мерная вектор-функция с координатами $(x_1(t),x_2(t),x_3(t),x_4(t))$. Причем в начальной точке A, при t=0, эти координаты $(x_1(0),x_2(0),x_3(0),x_4(0))=(0,0,0,-1)$, а в конечной точке B, при t=1: $(x_1(1),x_2(1),x_3(1),x_4(1))=(0,0,0,1)$. Рассмотрим функцию $x_4(t)$, четвертую координату кривой. Она по предположению является непрерывной функцией (на то она и кривая). Причем $x_4(0)=-1$, а $x_4(1)=1$. Значит, по теореме о промежуточном значении непрерывной функции, существует точка $\tau \in [0,1]: x_4(\tau)=0$. Подставим $t=\tau$ в неравенство, задающее наше множество:

$$e^{x_1^2(\tau)+x_2^2(\tau)+x_3^2(\tau)} < 1+x_4^2(\tau)=1+0=1$$

Но e в положительной степени не может быть < 1, значит, мы нашли точку на кривой, не принадлежащую нашему множеству. Значит, предположение, что наше множество линейно связно, неверно. Ч.т.д.