Metagenomics:

Contig Binning, Taxonomic Assignment & Validation

STAMPS – Day 7 July 25, 2024

Michael Nute & Todd Treangen

mike.nute@gmail.com mn56@rice.edu

Approximate Agenda

```
(15 min.)
 9:00 to 9:15
                             Intro/kickoff (Todd)
                 (10 min.)
                            Advertisement: Emu (Mike, 6 slides)
 9:15 to 9:25
                 (25 min.)
                             Binning lecture (Mike, 17 slides)
 9:25 to 9:50
                (20 min.)
                             Binning tutorial (using contigs from monday)
 9:50 to 10:10
                 (25 min.)
                             Break - Group Photo (by Lillie?)
10:10 to 10:35
10:35 to 10:45
                 (10 min.)
                             Phylogenetics + MSA lecture (Mike)
                             Parsnp/strain analysis lecture (Mike)
10:45 to 11:25
                (40 min.)
11:25 to 11:45
                 (20 min.)
                            Parsnp tutorial (Todd)
                 (15 min.)
                             Parsnp tutorial discussion (Todd)
11:45 to 12:00
```

Metagenomic Contig Binning

You have completed a de novo metagenomic assembly...

...we're sorry, but the insights are in another castle.

Review: Metagenome Assembly

- Metagenome assembly produces contigs.
- Example (right):
 - SRA Run ID: SRR27117388
 - Human Stool Sample
 - 49,897,298 paired-end reads
 - 300bp per read (NovaSeq 6000)

Decent depth & length

- Assembly Results (MEGAHIT):
 - 179,415 contigs
 - (96k at right \rightarrow min-length=500)

A LOT of contigs!

For contigs>500bp: Mean-length=2,758

Now What?

Combined reference 32 364 850	bp 10 references 55 fragment	S
Genome statistics	final.contigs	
Genome fraction (%)	60.665	
Duplication ratio 🖃	1.201	
Largest alignment 🖃	73 347	
Total aligned length 🖃	19 479 654	
NGA50 ⊯	***	
LGA50	•••	
Misassemblies		
# misassemblies ⊯	933	
Misassembled contigs length 🖃	4 463 218	
Mismatches		
# mismatches per 100 kbp 🖃	1998.16	
# indels per 100 kbp ⊭	53.58	
# N's per 100 kbp ⊯	0	
Statistics without reference		
# contigs ⊯	96 118	
Largest contig	609 215	
Total length	265 146 582	
Total length (>= 1000 bp)	228 488 467	
Total length (>= 10000 bp)	135 933 934	
Total length (>= 50000 bp)	62 609 535	
Extended report		

Next Step: Contig Binning

...frankly a decent description of it.

Things we want to know...

• Which of these contigs are part of the same genome?

 What organism does each of those genomes belong to?

(other things)

Which contigs go together

How do we know?

• Clues:

- Read coverage
- K-mer composition
- Alignment to reference genomes
- Paired-end read linkage
- Assembly graph properties
- ...among others

Brief Communication | Published: 14 September 2014

Binning metagenomic contigs by coverage and composition

Johannes Alneberg, Brynjar Smári Bjarnason, Ino de Bruijn, Melanie Schirmer, Joshua Quick, Umer Z Ijaz, Leo Lahti, Nicholas J Loman, Anders F Andersson

⊗ Christopher Quince

⇔

Nature Methods 11, 1144–1146 (2014) Cite this article

26k Accesses | 1045 Citations | 97 Altmetric | Metrics

JOURNAL ARTICLE

COCACOLA: binning metagenomic contigs using sequence COmposition, read CoverAge, CO-alignment and paired-end read LinkAge •

Yang Young Lu, Ting Chen, Jed A Fuhrman, Fengzhu Sun 🗷

Bioinformatics, Volume 33, Issue 6, March 2017, Pages 791–798, https://doi.org/10.1093/bioinformatics/btw290

Published: 02 June 2016 Article history ▼

Binning Clues: Coverage & Composition

- Example (below):
 - C. Difficile clinical isolate
 - WGS de-novo assembly.
 - Comparison to CD630 reference

Read coverage is approximately constant over the length of the genome...

 Except for ±5% variation in sinusoidal pattern (WHY?) GC % in reference is consistent EXCEPT for regions where clinical coverage is zero.

 Possible contamination or misassembly in reference?

Blue = Read Coverage

Binning Clues: Reference Co-Alignment & Pair-End Linkage

Reference co-alignment:

- Contigs align to the same reference genome
- Pretty good sign, especially if they don't overlap
- Note:
 - This means that really, any taxonomic classifier can be a "contig binning" algorithm if you use it that way, but that doesn't mean it's a very good one...

Paired-End Linkage:

- Read pair-mates map to two different contigs
- More = more likely the same genome

Should be self-explanatory why these would indicate contigs come from same organism...

Binning Clues: Assembly Graph

Example: Bubble

What does this tell us?

Should Contigs 1, 2 & 3 be in the same bin? Two different bins?

Contig Binning & Validation

Brass Tacks

Contig Binning Software List (Partial)

Algorithms [edit]

Binning algorithms can employ previous information, and thus act as super those act as unsupervised classifiers. Many, of course, do both. The classifiers performing alignments against databases, and try to separate sequence bas DNA, [9] like GC-content

Some prominent binning algorithms for metagenomic datasets obtained thro Phylopythia, SOrt-ITEMS, and DiScRIP among others [10]

TETRA [edit]

TETRA is a statistical classifier that nucleotides in DNA, therefore there called tetramers. TETRA works by ta scores are then calculated, which ind expected by looking to individual nud vectors corresponding to different se from the sample are. It is expected the

MEGAN [edit]

In the DIAMOND[12]+MEGAN[13] app and then the resulting alignments are node in the NCBI taxonomy that lies deemed "significant", if its bit score li say, of the best score seen for that re sequences, is that current DNA refer environment.

this is a goofy list. The only methods here I'd heard of here are MEGAN and Phylopythia which are really just taxonomic classifiers. Nearly all of these are quite old.

Remark on this Wikipedia list:

SOrt-ITEMS [edit]

Phylopythia [edit]

Phylopythia is one supervised class

trained with DNA k-mers from know

SOrt-ITEMS^[14] is an alignment-based binning algorithm developed by Innovations Labs of Ta Ltd., India, Users need to perform a similarity search of the input metagenomic sequences (re database using BLASTx search. The generated BLASTx output is then taken as input by the

uses a range of BLAST align can be assigned. An ortholog alignment-based binning alg DiScRIBinATE.[15] ProViDE

DiScRIBinATE [edit]

DiScRIBinATE [15] is an align (TCS) Ltd., India. DiScRIBinA Incorporating this alternate s and specificity of assignmen overall misclassification rate

ProViDE [edit]

ProViDE [16] is an alignment-Ltd. for the estimation of viral to SOrt-ITEMS for the taxono of BLAST parameter thresho sequence divergence and the

PCAHIER [edit]

PCAHIER,^[18] another binning algorithm developed by the Georgia Institute of Technology., employs i frequencies as the features and adopts a hierarchical classifier (PCAHIER) for binning short metagen principal component analysis was used to reduce the high dimensionality of the feature space. The ef PCAHIER was demonstrated through comparisons against a non-hierarchical classifier, and two exist (TETRA and Phylopythia)

SPHINX [edit]

SPHINX,[17] another binning algorithm developed by the Innovation Labs of Tata Consultancy Service hybrid strategy that achieves high binning efficiency by utilizing the principles of both 'composition'- a binning algorithms. The approach was designed with the objective of analyzing metagenomic dataset composition-based approaches, but nevertheless with the accuracy and specificity of alignment-base observed to classify metagenomic sequences as rapidly as composition-based algorithms. In addition terms of accuracy and specificity of assignments) of SPHINX was observed to be comparable with re alignment-based algorithms.

INDUS and TWARIT [edit]

Represent other composition-based binning algorithms developed by the Innovation Labs of Tata Cor Ltd. These algorithms utilize a range of oligonucleotide compositional (as well as statistical) paramete while maintaining the accuracy and specificity of taxonomic assignments. [19][20]

References [edit]

1. A Maguire, Finlay: Jia, Baofeng: Gray, Kristen L.: Lau, Wing

12. A Buchfink, Benjamin; Xie, Chao

More modern list:

- MetaBAT2 (2019)
- CONCOCT (2014)
- COCACOLA (2017)
- VAMB (2022)
- MyCC (2016)
- MaxBin 2.0 (2015)
- MetaWatt-3.5 (2012)
- MetaWRAP (2018)
- Autometa (2019)
- MetaBinner (2023)
- UltraBinner (2023)

...and probably a dozen more since 2020

Remarks on More Modern Binners

CAMI 1 (2017)^a

<u>CAMI</u>: <u>C</u>ritical

<u>A</u>ssessment of

<u>M</u>etagenome

<u>I</u>ntepretation

(Sczyrba, et al., 2017)

ARI = adjusted Rand Index. (% of contig pairs correctly co-assigned).

...hard not to conclude that MaxBin was the winner here, with honorable mention to MetaWatt for best sensitivity...

Fastest: MetaBAT

CAMI 2 (2022)

CAMI-2

- 3 different datasets reflecting "modern" challenges
 - novel microbes (Plant)
 - strain diversity
 - high synteny (i.e. short contigs)(Marine)
- 2 Types of contigs
 - "gold-standard"
 - short+long read assembly
 - "megahit"
 - short reads only

CAMI 2 (2022)

- Far less clear which method is optimal overall
- MetaBinner/UltraBinner seem to do reliably well ("ensemble" methods)
 - CONCOCT also quite well.
- VAMB is an outlier:
 - Very high purity, Very low completeness
 - "Partial" binning
 - Recall the bubble example
- MetaBAT:
 - Does reasonably well, not best
 - By far lowest compute cost (time/RAM)
- Several methods unable to run on larger datasets

CAMI 2 (2022): Runtime & Memory Usage

Contig Binning Software: MetaBAT2

- Inputs:
 - Contig file
 - Coverage file
- Parameters (default value):

PeerJ. 2015; 3: e1165.

Default

Published online 2015 Aug 27. doi: 10.7717/peerj.1165

PMCID: PMC4556158 PMID: 26336640

MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities

<u>Dongwan D. Kang</u>,^{1,2} <u>Jeff Froula</u>,^{1,2} <u>Rob Egan</u>,^{1,2} and <u>Zhong Wang</u>^{№1,2,3}

PeerJ. 2019; 7: e7359.

Published online 2019 Jul 26. doi: 10.7717/peerj.7359

PMCID: PMC6662567 PMID: 31388474

MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies

Dongwan D. Kang,¹ Feng Li,² Edward Kirton,¹ Ashleigh Thomas,¹ Rob Egan,¹ Hong An,² and Zhong Wang^{⊠1,3,4}

		Delault			
Argument	Definition	Value	Notes		
-m	Minimum size of a contig for binning (must be ≥1500)	2500	CAMI-2 ran both 1500, 2500 and found little difference		
maxP	% of 'good' contigs considered for binning	95%	Greater ⇒ more sensitivity		
minS	Minimum score of a edge for binning (from 1 to 99)	60	Greater ⇒ more specificity		
maxEdges	Maximum number of edges per node	200	Greater ⇒ more sensitivity		
pTNF	4-mer probability cutoff for building 4-mer graph	0	Used to skip a preparation step, for speed.		
-xminCV	Minimum mean coverage of a contig in each library for binning.	1	Could be adjusted based on expectations/needs vis-à-vis depth		
-sminClsSize	Minimum size of a bin as the output	200kbp			

Contig Bin Validation: CheckM2

- Original Idea (CheckM, i.e. version 1):
 - Use <u>lineage-specific</u>, <u>single-copy marker genes</u> (à la MetaPhlAn) to estimate how complete the bin is.
 - Issue: only well-studied lineages have good database of markers
- New Idea (CheckM2):
 - Use a fancier machine learning algorithm to predict bin quality

Output:

									Total		
В	in	Completen	Contaminati	Coding	Contig	Average Gene	Genome	GC	Coding	Total	Max Contig
	#	ess (%)	on (%)	Density	N50	Length	Size	Content	Sequences	Contigs	Length
	1	45.5	0.0	0.885	609,215	336.2	896,313	53%	788	3	609,215
	2	10.7	0.0	0.859	34,272	324.0	273,576	60%	242	13	56,825
	3	75.6	21.3	0.878	13,874	296.7	2,692,053	58%	2,660	247	100,008
	4	73.0	0.0	0.907	123,875	351.4	2,083,794	38%	1,796	31	196,080
	5	92.2	3.6	0.886	182,793	363.5	2,626,142	60%	2,136	32	355,138
	6	24.2	0.0	0.865	4,241	272.0	475,717	64%	506	113	14,380
	7	10.5	0.0	0.903	8,236	302.3	247,455	61%	247	34	17,322
	8	58.6	0.8	0.907	4,656	268.2	1,372,490	64%	1,550	302	13,961
	9	88.0	5.5	0.883	28,581	311.1	3,020,618	58%	2,861	146	107,535
1	LO	38.7	0.2	0.889	81,426	327.6	885,202	63%	802	16	111,004
1	L1	61.0	0.0	0.899	162,638	331.1	1,125,146	54%	1,020	8	265,330

Taxonomic Assignment

- Note that neither MetaBAT nor CheckM2 assign taxonomy to each of our bins.
- Taxon assignment is pretty simple, many ways to do it:
 - BLAST
 - Sourmash
 - Kraken2
 - ...any of the other tools evaluated in CAMI-2:
 - MEGAN
 - DIAMOND
 - Ganon
 - PhyloPythiaS+
 - *NBC*++

Nota Bene: This step has not been included in the tutorial because most of these programs require a large database to be downloaded or built in advance. It should be simple to do this using Sourmash, however, based on that material from earlier in the course...

Any Questions?

Things to think about:

- What is contig binning and what is the goal?
- What information can we use to bin contigs together?
- How many contig binning methods are there?
- What is the best contig binner?
- Is VAMB any good?
- What does CheckM2 produce?
- Why didn't I add taxon assignment to the tutorial?7

Binning & Validation Tutorial

Tasks:

- 1. Find the outputs from the QC/Assembly tutorial:
 - a) MEGAHIT Contigs
 - b) Coverage information (.bam file)
 - c) MetaBAT bins
- 2. Run CheckM2 on the bins from (c)
- 3. Run MetaBAT2 on the contigs/coverage, see if you get the same # of bins
- 4. Run CheckM2 on the new bins & compare to (4)
- 5. Run CheckM2 on some bins from a Human stool sample (provided)
- Left as an exercise:
 - 6. Assign taxonomy to one of these bins using Sourmash
- Other bash-scripting concepts:
 - Setting & using bash variables
 - Absolute vs. Relative paths

Thank You

Please don't hesitate to follow up with me after STAMPS if I can help or go through any of this material again.