# Introduction into Three-Dimensional Numbers

Adding a Third Perplex Identity to Complex Numbers to extend the Complex Numbers into a Field of Percomplex Numbers.

## Scientific Work for Fun

Mathis Lövenich

Düren, November 9, 2021

## Contents

| 1 | Abstract     | 3 |
|---|--------------|---|
| 2 | Introduction | 4 |
| 3 | Exploration  | 5 |
| 4 | Literature   | 7 |

### 1 Abstract

This work aims to find a way of exploring a well known problem:

The idea of having three-dimensional numbers.

Till this day only two-dimensional (complex), four-dimensional (quaternions) and eight-dimensional (octonion) numbers have been introduced to have the property to be invertible (division) [1].

#### 2 Introduction

Everyone that is familiar with complex numbers and likes them might encounter the question if it's possible to add more dimensions.

In this case the set of complex numbers ( $\mathbb{C}$ ) is defined by:

A complex number 
$$z$$
  $z=a+bi$  with  $i^2=-1$  where the real part  $Re(z)=a$  and the imaginary part  $Im(z)=b$ 

A complex number is also called a two-dimensional number because it has two parts:

the real part Re(z)=a, and the imaginary part Re(z)=b, that can be plotted to a two-dimensional field (see Figure 1). In this work I will not explain the properties of complex numbers and we will therefore move on with studying three-dimensional numbers.



Figure 1: Complex Plane

There might be many ways of how to define three-dimensional numbers, but in this case we will focus the most on the property to invert the multiplication of two three-dimensional numbers.

## 3 Exploration

To explore which properties are needed to have the most satisfying algebraic group of three-dimensional numbers, let's define a three-dimensional number as followed:

#### Percomplex Numbers

$$\mathfrak{p}=a+bi+cp \hspace{1cm} a,b,c\in\mathbb{R} \text{ and } i,p \text{ are undefined for now ...}$$
 
$$\mathfrak{p}\in\mathfrak{P}$$

The strucure  $(\mathfrak{P},+)$  is an infinate abelian group. I will leave the proof open as it's trivial. I will focus more on the strucuture  $(\mathfrak{P},\cdot)$  in the following.

Percomplex Multiplication is not necessarily closed.

$$\mathfrak{p}_{1} \cdot \mathfrak{p}_{2} = (x_{1} + x_{2}i + x_{3}p) \cdot (y_{1} + y_{2}i + y_{3}p) \qquad x_{1}, x_{2}, x_{3}, y_{1}, y_{2}, y_{3} \in \mathbb{R}$$

$$= (x_{1} \cdot y_{1} + x_{1} \cdot y_{2}i + x_{1} \cdot y_{3}p) \qquad + 
(x_{2}i \cdot y_{1} + x_{2}i \cdot y_{2}i + x_{2}i \cdot y_{3}p) \qquad + 
(x_{3}p \cdot y_{1} + x_{3}p \cdot y_{2}i + x_{3}p \cdot x_{3}p)$$

It depends on how we define the multiplication of i and p.

There are a few options that need to be viewed to keep any percomplex number  $\mathfrak p$  three-dimensional

$$\begin{aligned} i \cdot p &= i \\ 2) & i \cdot p &= p \\ 3) & i \cdot p &= n, & n \in \mathbb{R} \\ 4) & i \cdot p \neq p \cdot i \end{aligned}$$

An important property for such a group is to be invertible, which means that each element  $\mathfrak{p} \neq 0$  has an inverse  $\frac{1}{\mathfrak{p}}$ .

With complex number this can be solved by the *complex conjugate*  $\overline{z} = a - bi$ , as this can be used to create an inverse.

$$\begin{split} \frac{1}{z} &= \frac{1}{a+bi} \\ &= \frac{1}{a+bi} \cdot \frac{\overline{z}}{\overline{z}} \\ &= \frac{1}{a+bi} \cdot \frac{a-bi}{a-bi} \\ &= \frac{a-bi}{(a+bi) \cdot (a-bi)} \\ &= \frac{a-bi}{a^2+b^2} \\ &= \frac{a}{a^2+b^2} - \frac{b}{a^2+b^2} \cdot i \end{split}$$

In other words this property depends on the crucial fact that  $z \cdot \overline{z} = a^2 + b^2$  which is a real number. Therefore I will spend my effort on finding a way to multiply two percomplex numbers to get a real number as well.

$$\mathfrak{p}_{1} \cdot \mathfrak{p}_{2} = (x_{1} + x_{2}i + x_{3}p) \cdot (y_{1} + y_{2}i + y_{3}p) \qquad x_{1}, x_{2}, x_{3}, y_{1}, y_{2}, y_{3} \in \mathbb{R}$$

$$= x_{1} \cdot y_{1} + x_{1} \cdot y_{2}i + \dots + x_{3}p \cdot y_{2}i + x_{3}p \cdot x_{3}p$$

$$\stackrel{!}{=} n \qquad n \in \mathbb{R}$$

It makes sense to try the same approach as with complex numbers.

$$\mathfrak{p} \cdot \overline{\mathfrak{p}} = (x_1 + x_2i + x_3p) \cdot (x_1 - x_2i - x_3p) \qquad x_1, x_2, x_3 \in \mathbb{R}$$

$$= (x_1 \cdot x_1 + x_1 \cdot x_2i + x_1 \cdot x_3p) \qquad + \\
(x_2i \cdot x_1 + x_2i \cdot x_2i + x_2i \cdot x_3p) \qquad + \\
(x_3p \cdot x_1 + x_3p \cdot x_2i + x_3p \cdot x_3p)$$

Obviously if we multiply two percomplex numbers, we will get the quantity  $i \cdot p$  or  $p \cdot i$ , which is outside of the set if we don't apply a rule for that to be inside the set as well.

However if we apply rules to make  $i \cdot p$  or  $p \cdot i$  a part of the set again

# 4 Literature