Electronic Circuits

Prof. Nizamettin AYDIN

naydin@yildiz.edu.tr

http://www.yildiz.edu.tr/~naydin

Dr. Gökhan Bilgin gokhanb@ce.yildiz.edu.tr

BJT Transistor Modeling

- A model is an equivalent circuit that represents the AC characteristics of the transistor.
- A model uses circuit elements that approximate the behavior of the transistor.
- · There are two models commonly used in small signal AC analysis of a transistor:

 - Hybrid equivalent model

The r_e Transistor Model

- * BJTs are basically current-controlled devices; therefore the $r_{\rm e}$ model uses a diode and a current source to duplicate the behavior of the transistor.
- One disadvantage to this model is its sensitivity to the DC level. This model is designed for specific circuit conditions.

The Hybrid π Model The hybrid π model is most useful for analysis of highfrequency transistor applications. At lower frequencies the hybrid π model closely approximate the r_e parameters, and can be replaced by them.

Common-Emitter Collector Feedback Configuration **Configuration **Configuration** **Configuration** **Configuration** **Property of the common-emitter fixed-bias configuration** **Input is applied to the base** **Output is taken from the collector** **There is a 180° phase shift between input and output

Effect of Source Impedance on Gain The fraction of applied signal that reaches the input of the amplifier is: $V_i = \frac{R_i V_s}{R_i + R_s}$ The internal resistance of the signal source reduces the overall gain: $A_{vs} = \frac{V_o}{V_s} = \frac{R_i}{R_i + R_s} A_{vNL}$

Cascaded Systems

- The output of one amplifier is the input to the next amplifier
 The overall voltage gain is determined by the product of gains of the individual stages
- The DC bias circuits are isolated from each other by the coupling The DC calculations are independent of the cascading
 The AC calculations for gain and impedance are interdependent

R-C Coupled BJT Amplifiers Input impedance, first stage: $Z_i = R_1 \parallel R_2 \parallel \beta r_e$ Output impedance, second stage: $\mathbf{Z_0} = \mathbf{R_C}$ Voltage gain: $\mathbf{A}_{v1} = \frac{\mathbf{R}_{C} \parallel \mathbf{R}_{1} \parallel \mathbf{R}_{2} \parallel \boldsymbol{\beta} \mathbf{r}_{e}}{\mathbf{R}_{v1} \parallel \mathbf{R}_{v2} \parallel \boldsymbol{\beta} \mathbf{r}_{e}}$ $A_{\rm V2} = \frac{R_{\rm C}}{r_{\rm e}}$ $\mathbf{A_v} = \mathbf{A_{v1}} \mathbf{A_{v2}}$

Cascode Connection This example is a CE-CB combination. This arrangement provides high input impedance but a low voltage gain. The low voltage gain of the input stage reduces the Miller input capacitance, making this combination suitable for highfrequency applications.

