Consider a string of n characters, s, of where each character is indexed from n-1.

You are given q queries in the form of two integer indices: left and right. For each query, count and print the number of different substrings of s in the inclusive range between left and right.

Note: Two substrings are *different* if their sequence of characters differs by at least one. For example, given the string s = aab, substrings $s_{[0,0]} = a$ and $s_{[1,1]} = a$ are the same but substrings $s_{[0,1]} = aa$ and $s_{[1,2]} = ab$ are different.

Input Format

The first line contains two space-separated integers describing the respective values of n and q. The second line contains a single string denoting s.

Each of the q subsequent lines contains two space-separated integers describing the respective values of left and right for a query.

Constraints

- $0 \le left \le right \le n-1$
- String **s** consists of lowercase English alphabetic letters (i.e., a to z) only.

Subtasks

- For 30% of the test cases, $1 \le n, q \le 100$
- For 50% of the test cases, $1 \le n, q \le 3000$
- For 100% of the test cases, $1 \le n, q \le 10^5$

Output Format

For each query, print the number of different substrings in the inclusive range between index left and index right on a new line.

Sample Input 0

Sample Output 0

Explanation 0

Given s = aabaa, we perform the following q = 5 queries:

- 1. 1 1: The only substring of a is itself, so we print $\mathbf{1}$ on a new line.
- 2. 1 4: The substrings of abaa are a, b, ab, ba, aa, aba, baa, and abaa, so we print 8 on a new line.
- 3. 1 1: The only substring of a is itself, so we print $\mathbf{1}$ on a new line.
- 4. 1 4: The substrings of abaa are a, b, ab, ba, aa, aba, baa, and abaa, so we print 8 on a new line.
- 5. 0 2: The substrings of aab are a, b, aa, ab, and aab, so we print $\bf 5$ on a new line.