Cours chapitre 1

Règles de calcul

3 Résolution d'équations et d'inéquations

Propriété: Résolution d'équations

Si on effectue une *même opération de base* (addition, soustraction, multiplication, division), en excluant la division par 0, des **deux côtés de l'équation**, on obtient une équation équivalente (les solutions restent les mêmes).

Exemple

$$3x + 7 = x + 15$$

 $3x = x + 8$ (on soustrait 7)
 $2x = 8$ (on soustrait x)
 $x = 4$ (on divise par 2)

Propriété: Résolution d'inéquations

Les mêmes règles que pour la résolution d'équation s'appliquent, SAUF :

Si on effectue une multiplication ou une division par un nombre **strictement négatif** des deux côtés de l'inéquation, on obtient une inéquation équivalente (qui a les mêmes solutions) à **condition de changer le signe de l'inéquation** (inférieur devient supérieur ou inversement).

Exemple

$$-x+2 \le x+6$$

 $-x \le x+4$ (on soustrait 2)
 $-2x \le 4$ (on soustrait x)
 $x \ge -2$ (on divise par -2 : le signe de l'inéquation change!)

4 Valeur absolue et distance

Définition: Valeur absolue

Si x est un nombre négatif, on note |x| et on appelle **valeur absolue** de x la distance à zéro de x.

C'est-à-dire:

- Si $x \ge 0$, |x| = x.
- Si x < 0, |x| = -x.

Exemple

$$|2| = 2$$

$$|5,3| = 5,3$$

$$|-9|=9$$

$$|-7,1|=7,1$$

Définition : distance sur une droite graduée

Soient A un point d'abscisse a, et B un point d'abscisse b, positionés sur une droite graduée. Alors la distance entre A et B est : |a - b|.

Propriété : Équation avec une valeur absolue

Soit A un point de la droite graduée d'abscisse a, et d un nombre positif. Résoudre l'équation |x-a|=d revient à trouver tous les points de la droite à distance d du point A.

Exemple

Sur la droite ci-dessus, le point A a pour abscisse 1.

Les points X et X^{\prime} sont les deux points à distance 3 du point A.

Ainsi les solutions de l'équation |x-1|=3 sont |x=-2| et |x=4|.