DIFFERENCIÁLSZÁMÍTÁS

Definíció $Az f: \mathcal{I} \to \mathbb{R}$ függvény az \mathcal{I} intervallum x_0 belső pontjában differenciálható, ha létezik

 $\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = f'(x_0) \tag{1}$

véges határérték.

 $f'(x_0)$ érték az f függvény x_0 pontbeli differerenciálhányadosa.

Ha az (1) határérték létezik, de nem véges $(+\infty \text{ vagy } -\infty)$, akkor azt mondjuk, hogy az f függvény az x_0 pontban deriválható.

 $Az\ f\ f\ddot{u}ggv\acute{e}ny\ differenci\'{a}lhat\'{o}\ az\ \mathcal{I}\ intervallumon,\ ha\ az\ f\ f\ddot{u}ggv\acute{e}ny\ az\ \mathcal{I}\ minden\ pontj\'{a}ban\ differerenci\'{a}lhat\'{o}.$

Az f függvény deriváltjának vagy differenciálhányados függvényének nevezzük és f'-el jelöljük azt a függvényt, mely értelmezve van mindazon x helyeken, ahol f differenciálható és értéke itt f'(x).

Használatos a $h = x - x_0$ jelölés, ekkor $f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$.

Tétel Ha az f és g függvények differenciálhatók az x_0 pontban akkor a cf, f+g függvények

is differenciálhatók az x_0 -ban és

- $(cf)'(x_0) = cf'(x_0)$
- $(f+g)'(x_0) = f'(x_0) + g'(x_0)$

A konstans függvény deriváltja 0.

Ha
$$f(x) = x^a$$
, akkor $f'(x) = ax^{a-1}$ $(a \neq 0)$.

Tétel. Ha az f és g függvények differenciálhatók az x_0 pontban akkor az f.g valamint $g(a) \neq 0$ esetén $\frac{f}{g}$ függvények is differenciálhatók az x_0 -ban és

- $(f \cdot g)'(x_0) = f'(x_0)g(x_0) + f(x_0)g'(x_0)$
- $\left(\frac{f}{g}\right)'(x_0) = \frac{f'(x_0)g(x_0) f(x_0)g'(x_0)}{g^2(x_0)}$.

Differenciálhatóság és lineáris polinommal való közelítés

Tétel Az f függvény akkor és csak akkor differenciálható az a helyen, ha a-ban lokálisan "jól közelíthető"lineáris polinommal az alábbi értelemben:

Van olyan (x-től független) α szám, amellyel

$$f(x) = \alpha(x-a) + f(a) + \omega(x)(x-a).$$

 $ahol \lim_{x \to a} \omega(x) = 0.$ α az f függvénya-beli differenciálhányadosa.

Bizonyítás \rightarrow

Ha f differenciálható az a-ban, $f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$. Legyen

$$\omega(x) = \frac{f(x) - f(a)}{x - a} - f'(a) \ \text{ mely tart a 0-hoz, ha } x \to a.$$

Ebből kapjuk, hogy

$$f(x) = f(a) + f'(a)(x - a) + \omega(x)(x - a),$$

 $ahol \lim_{x \to a} \omega(x) = 0.$

 \leftarrow

На

$$f(x) = f(a) + \alpha(x - a) + \omega(x)(x - a), \text{ ahol } \lim_{x \to a} \omega(x) = 0,$$

akkor átrendezve

$$\frac{f(x) - f(a)}{x - a} = \alpha + \omega(x).$$

Ez azt jelenti, hogy $\lim_{x\to a} \frac{f(x)-f(a)}{x-a} = \alpha$, vagyis az f differenciálható az a-ban és $f'(a) = \alpha$.

A t(x) = f'(a)(x-a) + f(a) a "legjobban" közelítő lineáris függvény, azt fejezi ki pontosan a következő

Tétel Ha az f differenciálható az a-ban, akkor minden $c \neq f'(a)$ esetén

$$\lim_{x \to a} \frac{f(x) - [f'(a)(x - a) + f(a)]}{f(x) - [c(x - a) + f(a)]} = 0.$$

Bizonyítás

$$\frac{f(x) - [f'(a)(x - a) + f(a)]}{f(x) - [c(x - a) + f(a)]} = \frac{\frac{f(x) - f(a)}{x - a} - f'(a)}{\frac{f(x) - f(a)}{x - a} - c}$$

mely kifejezés tart a 0-hoz ha $x \to a$, mert a nevező $f'(a) - c \ (\neq 0)$ számhoz, a számláló pedig a 0-hoz tart.

Az $y = x^2$ görbe és (1,1) pontbeli y = 2x-1 érintője.

A görbe és érintője (1,1) közelében.

A görbe és érintője az intervallum egészén nagyon közel van egymáshoz.

A görbe és érintője egyre közelebb van egymáshoz. Ebben az intervallumban a számítógép képernyője már nem képes különbséget tenni közöttük.

Bonyolult függvényeket olykor approximálni tudunk olyan egyszerűbb függvényekkel, amelyek speciális alkalmazások céljára megfelelő pontossággal közelítik az eredeti függvényt és könnyebb dolgozni velük.

Definíció. Ha f(x) differenciálható az x_0 pontban, akkor az

$$f(x_0) + f'(x_0).(x - x_0)$$

közelítő függvényt az f(x) függvény x_0 -beli lineáris approximációjának vagy lineáris közelítésének nevezzük.

Local Linear Approximation

The equation of the tangent line to the graph of the function f(x) at the point x_0 is $y - f(x_0) = f'(x_0)(x - x_0)$

Tétel. (Az összetett függvény deriválása) Ha a g(x) függvény differenciálható az a-ban és f(x) differenciálható a g(a)-ban, akkor az f(g(x)) összetett függvény is differenciálható az a pontban és f(g)'(a) = f'(g(a).g'(a).

Bizonyítás Tudjuk, hogy valamely h függvény egy a pontban akkor differenciálható, ha $h(x) - h(a) = h'(a)(x - a) + \omega \cdot (x - a)$, ahol $\omega \to 0$, ha $x \to a$. Ezt kihasználva, írhatjuk, hogy

$$f(g(x)) - f(g(a)) = f'(g(a)).(g(x) - g(a)) + \omega.(g(x) - g(a)),$$

ahol $\omega \to 0$, ha $g(x) \to g(a)$. Kihasználva, hogy a differenciálhatóságból következik a folyto-

nosság, így ha $x \to a$, akkor $g(x) \to g(a)$, tehát az előzőekből következik, hogy

$$\frac{f(g(x)) - f(g(a))}{x - a} = f'(g(a)) \cdot \frac{g(x) - g(a)}{x - a} + \omega \cdot \frac{g(x) - g(a)}{x - a} \to f'(g(a)) \cdot g'(a).$$

Ha
$$f(x) = g(x)^a$$
, akkor $f'(x) = ag(x)^{a-1}.g'(x)$

Példák

$$[(x+3)^5]' = 5.(x+3)^4.(x+3)' = 5.(x+3)^4$$

$$[(2x+3)^5]' = 5.(2x+3)^4.(2x+3)' = 5.(x+3)^4.2$$

$$[(x^2+4)^3]' = 3.(x^2+4)^2.(x^2+4)' = 5.(x^2+4)^2.2x$$

$$(\sqrt{1-x})' = [(1-x)^{\frac{1}{2}}]' = \frac{1}{2} \cdot (1-x)^{\frac{1}{2}-1} \cdot (1-x)' = \frac{1}{2} \cdot (1-x)^{-\frac{1}{2}} \cdot (-1) = -\frac{1}{2\sqrt{1-x}}$$

$$(\sqrt{1+2x})' = [(1+2x)^{\frac{1}{2}}]' = \frac{1}{2}.(1+2x)^{\frac{1}{2}-1}.(1+2x)' = \frac{1}{2}.(1+2x)^{-\frac{1}{2}}.(2) = \frac{1}{\sqrt{1+2x}}$$

$$[(3x^2 - 8x + 9)^{50}]' = 50.(3x^2 - 8x + 9)^{49}.(3x^2 - 8x + 9)' = 50.(3x^2 - 8x + 9)^{49}.(3.2x - 8.1)$$

Ha $f(x) = \sqrt{9-x}$ akkor az f(x) deriváltja az 0 pontban

Adjunk lineáris közelítést a 0 környezetében.

A lineáris közelítés $f(x) \approx mx + b$ alakban írható, ahol

$$m =$$
 és $b =$

Mivel

$$(\sqrt{9-x})' = [(9-x)^{\frac{1}{2}}]' = \frac{1}{2} \cdot (9-x)^{\frac{1}{2}-1} \cdot (9-x)' = \frac{1}{2} \cdot (9-x)^{-\frac{1}{2}} \cdot (-1) = -\frac{1}{2\sqrt{9-x}}$$

ezért

$$f'(0) = -\frac{1}{2\sqrt{9-0}} = -\frac{1}{6}$$

A lineáris közelítés

$$f(x) \approx f(x_0) + f'(x_0).(x - x_0)$$

esetünkben $x_0 = 0$, ezért

$$f(x) \approx f(0) + f'(0).(x - 0)$$

Az $f(0) = \sqrt{9-0} = 3$, tehát

$$f(x) \approx f(0) + f'(0).(x - 0) = 3 + (-\frac{1}{6})x,$$

vagyis $m = -\frac{1}{6}, b = 3.$

Ha $f(x) = 3x + 2\sqrt{x}$ akkor az f(x) deriváltja az 4 pontban

Adjunk lineáris közelítést a 4 környezetében.

A lineáris közelítés $f(x) \approx mx + b$ alakban írható, ahol

$$m =$$
 és $b =$

Mivel

$$f'(x) = (3x + 2\sqrt{x})' = 3.1 + 2\frac{1}{2\sqrt{x}} = 3 + \frac{1}{\sqrt{x}}$$

ezért

$$f'(4) = 3 + \frac{1}{\sqrt{4}} = 3 + \frac{1}{2} = \frac{7}{2}$$

A lineáris közelítés

$$f(x) \approx f(x_0) + f'(x_0).(x - x_0)$$

esetünkben $x_0 = 4$, ezért

$$f(x) \approx f(4) + f'(4).(x-4)$$

Az $f(4) = 3.4 + 2\sqrt{4} = 12 + 2.2 = 16$, tehát

$$f(x) \approx f(4) + f'(4) \cdot (x - 4) = 16 + \frac{7}{2}(x - 4) = 16 + \frac{7}{2}x - \frac{7}{2} \cdot 4 = \frac{7}{2}x + 2,$$

vagyis $m = \frac{7}{2}$, b = 2.

Ha
$$f(x) = 2x^2 - 3x + 5$$
, akkor $f'(-5) = \boxed{}$

Írjuk fel az érintő egyenes egyenletét az f(x) görbéjéhez az (-5,70) pontban.

Az érintő egyenes egyenlete y = mx + b, ahol m = 6 és b = 6

Az érintő egyenes egyenlete az $(x_0, f(x_0))$ pontban

$$y = f(x_0) + f'(x_0).(x - x_0)$$

esetünkben (mivel $x_0 = -5$)

$$y = f(-5) + f'(-5).(x - (-5)) = f(-5) + f'(-5).(x + 5)$$

Amire szükségünk van, azok az f(-5) és f'(-5) értékek. Behelyettesítve a függvénybe

$$f(-5) = 2.(-5)^2 - 3.(-5) + 5 = 2.25 + 15 + 5 = 70$$

(ez az érték már a feladatban is adott volt).

$$f'(x) = 2.2x - 3 = 4.x - 3$$

ezért

$$f'(-5) = 4.(-5) - 3 = -23.$$

Tehát

$$y = f(-5) + f'(-5) \cdot (x+5) = 70 + (-23) \cdot (x+5) = 70 - 23 \cdot x - 23 \cdot 5 = -23 \cdot x + 70 - 115 = -23 \cdot x - 45$$

vagyis $m = -23$, $b = -45$.

Középértéktételek

This function has two places in the interval where the derivative is zero. Rolle's Theorem guarantees the existence of at least one such point.

Rolle-tétel. Ha az f függvény

- $folytonos \ az \ [a,b]-n$
- differenciálható az (a, b)-n
- f(a) = f(b),

akkor létezik olyan $\xi \in (a,b)$, amelyre $f'(\xi) = 0$.

Bizonyítás. Véges zárt intervallumon a függvény felveszi a minimumát és a maximumát is; jelöljük ezeket m, ill. M-mel. Ha m=M, akkor f(x) konstans, tehát differenciálhányadosa mindenütt 0, így bármely belső pontban is.

Ha M>m, akkor az M,m egyike különbözik az f(a)=f(b) értéktől. tegyük fel, hogy $M\neq f(a)$, azaz ekkor függvényünk a maximumát belső pontban veszi fel, legyen ez $\xi\in(a,b)$; azaz $f(\xi)=M$. Ekkor

$$\frac{f(x) - f(\xi)}{x - \xi} \begin{cases} \ge 0, & \text{ha } x < \xi \\ \le 0, & \text{ha } x > \xi \end{cases}$$

Mivel tudjuk, hogy f(x) az $x = \xi$ pontban differenciálható, ezért $f'(\xi)$ szükségképpen 0.

A tétel szemléletes jelentése az, hogy ha teljesülnek a feltételek, akkor a függvény görbéjének van olyan pontja, amelyben az érintő párhuzamos az x tengellyel.

Következmény 1. Ha egy függvény olyan belső pontban veszi fel a szélsőértékét, ahol differenciálható, akkor a differenciálhányadosa e pontban zérus.

2. Ha az f folytonos az [a,b] zárt intervallumon és az (a,b) összes pontjában nullától különböző derivációja van, akkor $f(a) \neq f(b)$.

Ha $f'(x_0) = 0$, akkor ebből még nem következik, hogy az f függvénynek az x_0 pontban szélsőértéke van (pl. $f(x) = x^3$). A függvénynek lehet szélső értéke olyan pontban is, ahol nem differenciálható, pl f(x) = |x|.

Lagrange-középértéktétel. Ha az f függvény

- folytonos a véges zárt [a, b]-n
- differenciálható a nyitott (a, b)-n,

akkor létezik olyan $\xi \in (a,b)$, amelyre

$$f'(\xi) = \frac{f(b) - f(a)}{b - a}.$$

8

(a görbének létezik olyan pontja, amelyben az érintő párhuzamos az [a, f(a)] és [b, f(b)] pontokon áthaladó húrral.

Bizonyítás Olyan F(x) = f(x) - kx függvényt szerkesztünk, mely teljesíti a Rolle-tétel feltételeit. Az F(a) = f(a) - ka = f(b) - kb = F(b) követelményből adódik, hogy

$$k = \frac{f(b) - f(a)}{b - a}.$$

Tehát az

$$F(x) = f(x) - \frac{f(b) - f(a)}{b - a}x$$

függvényre teljesülnek a Rolle-tétel feltételei, így létezik olyan $\xi \in (a,b)$, ahol $F'(\xi) = 0$, azaz

$$f'(\xi) = \frac{f(b) - f(a)}{b - a}.$$

Következmény. Ha f(x) folytonos az [a, b]-n és differenciálható az (a, b)-n és a deriváltja mindenütt 0, akkor az f(x) konstans függvény az [a, b]-n.

Bizonyítás. A Lagrange-tétel feltételei bármely [a,x] intervallumon teljesülnek, ha $x \in (a,b]$. Í gy létezik olyan $\xi \in (a,x)$ melyre $\frac{f(x)-f(a)}{x-a} = f'(\xi) = 0$ azaz f(x) = f(a) bármely $x \in (a,b]$ -re.

A következménye Ha f(x) és g(x) folytonosak az [a, b]-n, differenciálhatók az (a, b)-n valamint f'(x) = g'(x) minden $x \in (a, b)$ esetben, akkor f(x) = g(x) + c.

Az állítás következik az előző következményből az f(x) - g(x) függvényre.