Function

Functions

<u>Definition</u>: Let A and B be two sets. A function from A to B, denoted f: A → B, is an assignment of exactly one element of B to each element of A. We write f(a) = b to denote the assignment of b to an element a of A by the function f.

Representing functions

Example1:

- Let $A = \{1,2,3\}$ and $B = \{a,b,c\}$
- Assume f is defined as:
 - $1 \rightarrow c$
 - $2 \rightarrow a$
 - $3 \rightarrow c$
- Is f a function?
- Yes. since f(1)=c, f(2)=a, f(3)=c. each element of A is assigned an element from B

Example 2:

- Let $A = \{1,2,3\}$ and $B = \{a,b,c\}$
- · Assume g is defined as
 - $1 \rightarrow c$
 - $1 \rightarrow b$
 - $2 \rightarrow a$
 - $3 \rightarrow c$
- Is g a function?
- No. g(1) = is assigned both c and b.

Important sets

<u>Definitions</u>: Let f be a function from A to B.

- We say that A is the domain of f and B is the codomain of f.
- If f(a) = b, b is the image of a and a is a pre-image of b.
- The range of f is the set of all images of elements of A. Also, if f is a function from A to B, we say f maps A to B.

Example: Let $A = \{1,2,3\}$ and $B = \{a,b,c\}$

- Assume f is defined as: $1 \rightarrow c$, $2 \rightarrow a$, $3 \rightarrow c$
- What is the image of 1?
- $1 \rightarrow c$ c is the image of 1
- What is the pre-image of a?
- $2 \rightarrow a$ 2 is <u>a</u> pre-image of a.
- Domain of f ? {1,2,3}
- Codomain of f? {a,b,c}
- Range of f? {a,c}

Image of a subset

Definition: Let f be a function from set A to set B and let S be a subset of A. The image of S is a subset of B that consists of the images of the elements of S. We denote the image of S by f(S), so that $f(S) = \{ f(s) \mid s \in S \}$.

Example:

- Let $A = \{1,2,3\}$ and $B = \{a,b,c\}$ and $f: 1 \rightarrow c, 2 \rightarrow a, 3 \rightarrow c$
- Let $S = \{1,3\}$ then image $f(S) = \{c\}$.

Injective function

<u>Definition</u>: A function f is said to be **one-to-one**, **or injective**, if and only if f(x) = f(y) implies x = y for all x, y in the domain of f. A function is said to be an **injection if it is one-to-one**.

Alternate: A function is one-to-one if and only if $f(x) \neq f(y)$, whenever $x \neq y$. This is the contrapositive of the definition.

Not injective

Injective function

Injective functions

Example 1: Let $A = \{1,2,3\}$ and $B = \{a,b,c\}$

- · Define f as
 - $-1 \rightarrow c$
 - $-2 \rightarrow a$
 - $-3 \rightarrow c$
- Is f one to one? No, it is not one-to-one since f(1) = f(3) = c, and 1 ≠ 3.

Example 2: Let $g: Z \to Z$, where g(x) = 2x - 1.

- Is g is one-to-one (why?)
- Yes.
- Suppose g(a) = g(b), i.e., 2a 1 = 2b 1 => 2a = 2b
 => a = b.

Surjective function

<u>Definition</u>: A function f from A to B is called **onto**, or **surjective**, if and only if for every $b \in B$ there is an element $a \in A$ such that f(a) = b.

Alternative: all co-domain elements are covered

Surjective functions

Example 1: Let $A = \{1,2,3\}$ and $B = \{a,b,c\}$

- Define f as
 - $1 \rightarrow c$
 - $2 \rightarrow a$
 - $3 \rightarrow c$
- Is f an onto?
- No. f is not onto, since b ∈ B has no pre-image.

Example 2: $A = \{0,1,2,3,4,5,6,7,8,9\}, B = \{0,1,2\}$

- Define h: A \rightarrow B as h(x) = x mod 3.
- Is h an onto function?
- Yes. h is onto since a pre-image of 0 is 6, a pre-image of 1 is 4, a pre-image of 2 is 8.

Bijective functions

<u>Definition</u>: A function f is called a <u>bijection</u> if it is **both one-to-one** (injection) and onto (surjection).

Example 1:

- Let $A = \{1,2,3\}$ and $B = \{a,b,c\}$
 - Define f as
 - $1 \rightarrow c$
 - $2 \rightarrow a$
 - $3 \rightarrow b$
- Is f a bijection?
- Yes. It is both one-to-one and onto.

Identity function

<u>Definition</u>: Let A be a set. The <u>identity function</u> on A is the function $i_A: A \rightarrow A$ where $i_A(x) = x$.

Example:

• Let $A = \{1,2,3\}$

Then:

- $i_A(1) = 1$
- $i_A(2) = 2$
- $i_A(3) = 3$.

<u>Definition</u>: Let f be a **bijection** from set A to set B. The **inverse** function of f is the function that assigns to an element b from B the unique element a in A such that f(a) = b. The inverse function of f is denoted by f^{-1} . Hence, $f^{-1}(b) = a$, when f(a) = b. If the inverse function of f exists, f is called **invertible**.

Note: if f is not a bijection then it is not possible to define the inverse function of f. Why?

Assume f is not one-to-one:

Inverse is not a function. One element of B is mapped to two different elements.

Note: if f is not a bijection then it is not possible to define the inverse function of f. Why?

Assume f is not onto:

Inverse is not a function. One element of B is not assigned any value in B.

Example 1:

- Let $A = \{1,2,3\}$ and i_A be the identity function
- $i_{\Delta}(1) = 1$
 - $i_{\Delta}(2)=2$
- $i_A(3) = 3$

- $i_A^{-1}(1) = 1$
- $i_A^{-1}(2) = 2$
- $i_A^{-1}(3) = 3$
- Therefore, the inverse function of i_A is i_A.

Example 2:

- Let $g : \mathbf{R} \to \mathbf{R}$, where g(x) = 2x 1.
- What is the inverse function g⁻¹?

Approach to determine the inverse:

$$y = 2x - 1 => y + 1 = 2x$$

=> $(y+1)/2 = x$

• Define $g^{-1}(y) = x = (y+1)/2$

Test the correctness of inverse:

- g(3) = 2*3 1 = 5
- $g^{-1}(5) = (5+1)/2 = 3$
- g(10) = 2*10 1 = 19
- $g^{-1}(19) = (19+1)/2 = 10$.

Composition of functions

<u>Definition</u>: Let f be a function from set A to set B and let g be a function from set B to set C. The <u>composition of the functions</u> g and f, denoted by g O f is defined by

• $(g \circ f)(a) = g(f(a))$.

Example 1:

• Let $A = \{1,2,3\}$ and $B = \{a,b,c,d\}$

$$\begin{array}{ll} g:A\rightarrow A, & f:A\rightarrow B \\ 1\rightarrow 3 & 1\rightarrow b \\ 2\rightarrow 1 & 2\rightarrow a \\ 3\rightarrow 2 & 3\rightarrow d \end{array}$$

 $f \circ g : A \rightarrow B$:

- $1 \rightarrow d$
- $2 \rightarrow b$
- $3 \rightarrow a$

Example 2:

- Let f and g be two functions from Z to Z, where
- f(x) = 2x and $g(x) = x^2$.
- $f \circ g : Z \rightarrow Z$
- $(f \circ g)(x) =$ f(g(x))= f(x²) $2(x^2)$
- $g \circ f: Z \to Z$

•
$$(g \circ f)(x) = g(f(x))$$

= $g(2x)$
= $(2x)^2$
= $(2x)^2$
= $4x^2$
Note that the order of the function composition matters

Example 3:

- $(f \circ f^{-1})(x) = x$ and $(f^{-1} \circ f)(x) = x$, for all x.
- Let $f : \mathbf{R} \to \mathbf{R}$, where f(x) = 2x 1 and $f^{-1}(x) = (x+1)/2$.

•
$$(f \circ f^{-1})(x) = f(f^{-1}(x))$$

= $f((x+1)/2)$
= $2((x+1)/2) - 1$
= $(x+1) - 1$
= x
• $(f^{-1} \circ f)(x) = f^{-1}(f(x))$
= $f^{-1}(2x - 1)$

$$(f^{-1} \circ f)(x) = f^{-1}(f(x))$$

= $f^{-1}(2x - 1)$
= $(2x)/2$
= x