Example 10

(2002 China Middle School Math Contest) In the diagram, AB = a cm is the diameter of circle O. Circle O_1 has the diameter of AO and is congruent to circle O_2 , and both are tangent to circle O and to each other. Circle O_3 and circle O_4 are congruent and are tangent to circle O_5 , to circle O_4 and to circle O_2 . Find the area of quadrilateral $O_1O_2O_3O_4$.

Solution: 1: 9.

Let the radius of the circle Q be R, the radius of the circle Q be r_1 , and the

radius of the circle
$$S$$
 be R , the radius of the circle S be R . We know that $r_1 = \frac{R}{2}$.

By the Pythagorean Theorem,
$$(R - r_2)^2 = r_1^2 + (r_1 + r_2)^2 \Rightarrow R^2 - 2Rr_2 = 2r_1r_2 \Rightarrow R^2 - 2Rr_2 = 2r_1r_2 \Rightarrow r_2 = \frac{R}{3}.$$

The ratio of the areas of the smallest circle and largest circle is $\frac{\pi r_2{}^2}{\pi R^2} = \frac{r_2{}^2}{R^2} = \frac{\left(\frac{R}{3}\right)^2}{R^2} = \frac{1}{9}.$