TOSHIBA

TOSHIBA BIPOLAR LINEAR INTEGRATED CIRCUIT SILICON MONOLITHIC

TA75558P, TA75558S, TA75558F

DUAL OPERATIONAL AMPLIFIER

The TA75558P, TA75558S and TA75558F are Low-Noise Operational Amplifiers with High Speed and Wide Bandwidth.

FEATURES

- Internal Frequency Compensation Type
- Pin Compatible with TA75458P, TA75458S and TA75458F
- Possible to Exchange the Position of 9 Pin for 1 Pin Because of Pin Connection Being Symmetric. (TA75558S Device Only)
- Wide Band Range : $f_T = 3MHz$ (Typ.)
- Suitable Application for Active Filter Equalizer Amplifier and Headphone Amplifier.

Weight

DIP8-P-300-2.54A: 0.5g (Typ.) SIP9-P-2.54A : 0.9g (Typ.) SOP8-P-225-1.27 : 0.1g (Typ.)

- TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to observe standards of safety, and to avoid situations in which a malfunction or failure of a TOSHIBA product could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent products specifications. Also, please keep in mind the precautions
- operating ranges as set forth in the most recent products specifications. Also, please keep in mind the precautions and conditions set forth in the TOSHIBA Semiconductor Reliability Handbook.

 The products described in this document are subject to foreign exchange and foreign trade control laws.

 The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.

The information contained herein is subject to change without notice.

PIN CONNECTION (TOP VIEW)

TA75558F

TA75558P

TA75558S

EQUIVALENT CIRCUIT

MAXIMUM RATINGS (Ta = 25°C)

CHARACTERISTIC	SYMBOL	TA75558P TA75558S	TA75558F	UNIT	
Supply Voltage	V _{CC}	+ 18	+ 18	V	
	V _{EE}	– 18	– 18		
Differential Input Voltage	DVIN	± 30	± 30	٧	
Input Voltage	VIN	V _{CC} ~V _{EE}	V _{CC} ~V _{EE}	٧	
Power Dissipation	PD	500	240	mW	
Operating Temperature	T _{opr}	- 40∼85	− 30~70	°C	
Storage Temperature	T _{stg}	- 55∼125	- 55∼125	°C	

ELECTRICAL CHARACTERISTICS ($V_{CC} = 15V$, $V_{EE} = -15V$, $T_{a} = 25$ °C)

==== 150° 12 = 1										
CHARACTERISTIC	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN.	TYP.	MAX.	UNIT			
Input Offset Voltage	V _{IO}	1	$R_g \le 10k\Omega$	_	0.5	6	mV			
Input Offset Current	ΙΟ	2		_	5	200	nA			
Input Bias Current	4	2	_	_	60	500	nA			
Common Mode Input Voltage	CMVIN	3	_	± 12	± 14	_	V			
Maximum Output	Vом	6	$R_L = 10k\Omega$	± 12	± 14	_	V			
Voltage	VOMR		$R_L = 2k\Omega$	± 10	± 13	_				
Source Current	I _{source}	8	_	_	40	_	mA			
Sink Current	l _{sink}	7	_	_	40	_	mA			
Voltage Gain (Open Loop)	GV	5	$V_{OUT} = \pm 10V$, $R_L = 2k\Omega$	86	100		dB			
Common Mode Input Signal Rejection Ratio	CMRR	3	$R_g \le 10 k\Omega$	70	90	_	dB			
Supply Voltage Rejection Ratio	SVRR	1	$R_g \le 10k\Omega$	_	30	150	μ V / V			
Slew Rate	SR	9	$G_V = 1$, $R_L = 2k\Omega$	_	1.0	_	V / μ s			
Unity Gain Cross Frequency	fT	5	Open Loop	_	3.0	_	MHz			
Supply Current	ICC, IEE	4	_	_	4.0	6.0	mA			
Equivalent Input Noise Voltage	V _{NI}	_	$R_S = 1k\Omega$, $f = 30Hz \sim 30kHz$	_	2.5	_	μ V $_{rms}$			

TEST CIRCUIT

(1) V_{IO}, S_{VRR}

- $V_{IO} = V_{OUT} / 100$
- SVRR = 20log E (dB)

$$E = \left| \frac{V_{OUT1} - V_{OUT2}}{(V_{CC1} - V_{EE1}) - (V_{CC2} - V_{EE2})} \right| \times \frac{1}{100}$$

 V_{OUT1} : V_{OUT} (V_{CC} , $V_{EE} = \pm 8V$) V_{OUT2} : V_{OUT} (V_{CC} , $V_{EE} = \pm 18V$)

 V_{CC1} : $V_{CC} = -8V$ V_{EE1} : $V_{EE} = -8V$ V_{CC2} : V_{CC} = + 18V V_{EE2} : $V_{EE} = -18V$

(2) ||, ||O

$$|IO = |II (-) - II (+)|$$

(3) CMV_{IN}, CMRR

• CMRR = $20log G_D/G_C(dB)$

GD: DIFFERENTIAL VOLTAGE GAIN GC: COMMON MODE VOLTAGE GAIN

• $CMV_{IN} : V_{IN} = -12V$, 12V SUPPLIES

(4) I_CC

• I_{CC} : V_{CC}, V_{EE} = ± 15V

(5) G_V, f_T

• $G_V = 20log e_O / e_i (dB)$

R ≥ 1 / W_{C1}

C1: COUPLING CONDENSER

C2: HIGH FREQUENCY BYPASS CONDENSER

• f_T : INPUT FREQUENCY AT e_i = e_o

(6) V_{OM}, V_{OMR}

• V_{OM} : (+): SW1 IS SIDE A, SW2 IS SIDE A

(-): SW1 IS SIDE B, SW2 IS SIDE A

• VOMR: (+): SW1 IS SIDE A, SW2 IS SIDE B

(-): SW1 IS SIDE B, SW2 IS SIDE B

(7) I_{sink}

(8) I_{source}

(9) SR

CHARACTERISTIC

OUTLINE DRAWING DIP8-P-300-2.54A Unit : mm 10.1MAX 9.6±0.2 0.99TYP 2.54 1.2±0.1

Weight: 0.5g (Typ.)

OUTLINE DRAWING

SIP9-P-2.54A Unit: mm

Weight: 0.9g (Typ.)

OUTLINE DRAWING SOP8-P-225-1.27 Unit : mm 0.595TYP 1.27 0.4±0.1 0.4±0.1 0.595TYP 1.27 0.50±0.2 0.525±0.2

Weight: 0.1g (Typ.)