Ψηφιακή Επεξεργασία Σημάτων

Συστήματα Διακριτού Χρόνου (Discrete-Time Systems)

> Κυριακίδης Ιωάννης 2011

> > Τελευταία ενημέρωση: 11/11/2011

Πράξεις διακριτών σημάτων (υπενθύμιση)

Πρόσθεση	x(n) + y(n)
Αφαίρεση	x(n) – y(n)
Πολλαπλασιασμός	x(n) * y(n)
Διαίρεση	x(n) / y(n) με y(n)≠0

 Οι πράξεις εκτελούνται ανά στοιχείο και για την ίδια τιμή της ανεξάρτητης μεταβλητής

Παράδειγμα πράξης

• Έστω ότι θέλουμε να προσθέσουμε τα δύο παρακάτω σήματα x1(n) και x2(n):

- Χρησιμοποιώντας της διακριτή ακολουθία δέλτα δ(n), μπορούμε να αναλύσουμε ένα τυχαίο σήμα x(n).
- Αυτό πραγματοποιείται με το άθροισμα των κατάλληλα μετατοπισμένων δ(n) τα οποία έχουν πολλαπλασιαστεί με έναν συντελεστή βάρους.
- Ο συντελεστής βάρους αντιστοιχεί στην εκάστοτε τιμή του σήματος x(n), όπως φαίνεται στην παρακάτω παράδειγμα:

$$x(n) = \cdots + x(-1)\delta(n+1) + x(0)\delta(n) + x(1)\delta(n-1) + x(2)\delta(n-2) + \cdots$$

$$x(n) = \cdots + x(-1)\delta(n+1) + x(0)\delta(n) + x(1)\delta(n-1) + x(2)\delta(n-2) + \cdots$$

Αυτό το άθροισμα μπορεί να γραφτεί περιληπτικά:

$$x(n) = \sum_{k=-\infty}^{\infty} x(k)\delta(n-k)$$

όπου κάθε όρος x(k) δ(n-k), είναι ένα σήμα με πλάτος x(k) τη χρονική στιγμή n=k, ενώ μηδενίζεται για οποιαδήποτε άλλη τιμή του n.

 Χρησιμοποιώντας την έκφραση ανάλυσης σημάτων που είδαμε, γράψτε στο χαρτί σε μορφή αθροισμάτων διακριτών συναρτήσεων δέλτα το παρακάτω σήμα:

$$x(n) = \sum_{k=-\infty}^{\infty} x(k)\delta(n-k)$$

 Το παραπάνω σήμα μπορεί να γραφεί σε μορφή αθροισμάτων διακριτών συναρτήσεων δέλτα ως:

$$x(n) = 0.5*\delta(n+1) + 0.9*\delta(n) + 0.75*\delta(n-2) + \delta(n-3)$$

Συστήματα Διακριτού Χρόνου

- Ένα σύστημα διακριτού χρόνου δέχεται μια είσοδο διακριτού χρόνου x(n) και παράγει μια έξοδο διακριτού χρόνου y(n), μετασχηματίζοντας το x(n).
- Το σήμα εισόδου μπορεί να ονομαστεί ως διέγερση ενώ το σήμα εξόδου ως απόκριση.

Αυτή η διαδικασία συμβολίζεται ως εξής:

$$y(n) = T[x(n)]$$

Αιτιατά Συστήματα

- Αιτιατό είναι το σύστημα στο οποίο η έξοδος για κάθε χρονική στιγμή n₀ εξαρτάται από την είσοδο τη χρονική στιγμή n₀ και παρελθοντικές χρονικές στιγμές (όχι μελλοντικές).
- Για παράδειγμα το παρακάτω σύστημα είναι αιτιατό:
 y(n) = αx(n) βx(n-1)
- Μη αιτιατό είναι το σύστημα στο οποίο η έξοδος τη χρονική στιγμή n₀ εξαρτάται από μελλοντικές χρονικές στιγμές στην είσοδο.

Αρχή της Υπέρθεσης ή Επαλληλίας

Η αρχή της Υπέρθεσης ή Επαλληλίας: ορίζεται εάν το άθροισμα των εξόδων πολλαπλών συστημάτων είναι ίσο με την έξοδο του συστήματος όπου ως είσοδο έχει το άθροισμα των εισόδων αυτών των συστημάτων.

$$x_1(t)$$
 \longrightarrow Σύστημα \longrightarrow $y_1(t)$ \longrightarrow $x_2(t)$ \longrightarrow Σύστημα \longrightarrow $y_2(t)$ \longrightarrow $x_2(t)$ \longrightarrow $x_2($

 Η αρχή της υπέρθεσης ορίζεται όταν σε ένα σύστημα ισχύει:

$$T[x_1(n) + x_2(n)] = T[x_1(n)] + T[x_2(n)]$$

Ομογένεια

 Ένα σύστημα ονομάζεται Ομογενές εάν ο πολλαπλασιασμός της εισόδου με μία σταθερά οδηγεί τον πολλαπλασιασμό της εξόδου με την ίδια ακριβώς σταθερά.

$$ax(t) \longrightarrow \boxed{Σύστημα \longrightarrow ay(t)}$$

Ένα σύστημα καλείται Ομογενές όταν:

$$T[\alpha x(n)] = \alpha T[x(n)]$$

όπου α μια σταθερά

Γραμμικά Συστήματα

- Ένα σύστημα είναι γραμμικό εάν είναι ομογενές και για το οποίο ισχύει η αρχή της υπέρθεσης.
- Άρα για να είναι γραμμικό ένα σύστημα θα πρέπει να ισχύει η σχέση:

$$T[\alpha_1x_1(n) + \alpha_2x_2(n)] = \alpha_1T[x_1(n)] + \alpha_2T[x_2(n)]$$

 Στις σημειώσεις τις θεωρίας μπορείτε να βρείτε διάφορα παραδείγματα με γραμμικά και μη γραμμικά συστήματα.

Χρονικά Αμετάβλητα Συστήματα

Αν σε ένα σύστημα υπάρχει μια μετατόπιση (καθυστέρηση) στην είσοδο κατά n0 και παράγει μια έξοδο με την ίδια μετατόπιση n0, τότε το σύστημα ονομάζεται Χρονικά Αμετάβλητο ή Αμετάβλητο στην μετατόπιση.

$$x[n-n_0] \longrightarrow$$
 Σύστημα $\longrightarrow y[n-n_0]$

 Εάν ένα σύστημα είναι και Γραμμικό και Χρονικά αμετάβλητο θα το γράφουμε για συντομία ως: ΓΧΑ ή LSI, από τις λέξεις Linear Shift Invariant.

Κρουστική απόκριση (Impulse Response)

Εάν σε ένα γραμμικό και χρονικά αμετάβλητο (ΓΧΑ) σύστημα η είσοδος είναι η μοναδιαία κρουστική ακολουθία δ(n), τότε το σήμα εξόδου(απόκριση) ονομάζεται Κρουστική απόκριση h(n).

$$\delta(n) \longrightarrow T \longrightarrow h(n)$$

Η κρουστική απόκριση h(n) θα είναι αιτιατή αν και μόνο
 αν είναι ίση με το μηδέν για κάθε n<0.

Βηματική απόκριση (Step Response)

Εάν σε ένα γραμμικό και χρονικά αμετάβλητο (ΓΧΑ) σύστημα η είσοδος είναι η μοναδιαία βηματική ακολουθία u(n), τότε το σήμα εξόδου(απόκριση) ονομάζεται Βηματική απόκριση s(n).

Εξισώσεις Διαφορών

 Η γενική μορφή μιας γραμμικής εξίσωσης διαφορών με σταθερούς συντελεστές είναι:

$$y(n) = \sum_{k=0}^{q} b(k)x(n-k) - \sum_{k=1}^{p} a(k)y(n-k)$$

Όπου a(k) και b(k) είναι σταθερές οι οποίες καθορίζουν το σύστημα

- Οι εξισώσεις διαφορών παρέχουν μια μέθοδο υπολογισμού της απόκρισης ενός συστήματος για μια τυχαία είσοδο x(n).
- Για την λύση τέτοιων εξισώσεων είναι συχνά απαραίτητο να υπολογιστεί ένα σύνολο Αρχικών Συνθηκών.
- Για ένα ΓΧΑ σύστημα το οποίο περιγράφεται από μια εξίσωση διαφορών, η κρουστική του απόκριση h(n), υπολογίζεται λύνοντας την αντίστοιχη εξίσωση διαφορών για x(n)=δ(n) και y(n)=h(n).

Εξισώσεις Διαφορών

 Η συνάρτηση filter στο Matlab μας βοηθά να επιλύσουμε εξισώσεις διαφορών με στόχο να βρούμε την απόκριση του συστήματος:

y=filter(b, α , x);

όπου:

b=[b0, b1,..., bm] και α=[α0, α1,..., αm] είναι οι συντελεστές της εξίσωσης διαφορών, ενώ το διάνυσμα x είναι ο πίνακας με τις τιμές του σήματος εισόδου του συστήματος.

- Το διάνυσμα y έχει ίδιο μήκος με το x.
- Επίσης πρέπει οπωσδήποτε α0 ≠ 0.

Η Εντολή "inline" του Matlab

- Με την εντολή "inline" μπορούμε να ορίσουμε μια συνάρτηση δυναμικά, με την εξής σύνταξη:
 όνομα_συνάρτησης = inline('εκφραση');
- Για παράδειγμα, για να ορίσουμε μια συνάρτηση υπολογισμού τετραγώνου:
 - >> mySqrt = inline('x^2')
- Για να την χρησιμοποιήσουμε:
 - >> mySqrt(2)
 - Το αποτέλεσμα θα είναι ans = 4.
- Η συνάρτηση αυτή μπορεί να χρησιμοποιηθεί προσωρινά. Αυτό σημαίνει πως όταν κλείσουμε το Matlab η συνάρτηση δεν θα υπάρχει.
- Πρέπει να αναφέρουμε ότι αντί του x θα μπορούσαμε να είχαμε γράψει οποιοδήποτε έγκυρο όνομα μεταβλητής.

Εξάσκηση

 Να γράψετε στο χαρτί σε μορφή αθροισμάτων διακριτών συναρτήσεων δέλτα δ(n), και στην συνέχεια να παρασταθεί γραφικά (στο Matlab) το σήμα:

$$x(n) = \left\{ -2,1,-\frac{1}{3},\frac{1}{2},2,1,0,1,0,0,3 \right\}$$
 Το βελάκι δείχνει την τιμή για την χρονική στιγμή n=0

• Λύση:

$$x(n) = -2\delta(n+3) + \delta(n+2) - 1/3\delta(n+1) + 1/2\delta(n) + 2\delta(n-1) + \delta(n-2) + \delta(n-4) + 3\delta(n-7)$$

Εξάσκηση

Για να υπολογιστεί και παρασταθεί γραφικά στο Matlab:

```
 n=-3:7; \\ x=zeros(1,length(n)); \\ d=inline('n==0'); %Synartisi delta   for i=1:length(n) \\ x(i) = -2*d(n(i)+3) + d(n(i)+2) - 1/3*d(n(i)+1) \\ + 1/2*d(n(i)) + 2*d(n(i)-1) + d(n(i)-2) \\ + d(n(i)-4) + 3*d(n(i)-7); \\ end   stem(n,x);
```


 Να υπολογίσετε και να παραστήσετε γραφικά την κρουστική απόκριση του παρακάτω αιτιατού σήματος:

$$y(n) = -0.9y(n-1) + x(n)$$

• 1^{ος} Τρόπος Λύσης:

Λύνουμε την εξίσωση διαφορών για x(n)=δ(n) και y(n)=h(n)

Άρα:
$$h(n) = -0.9h(n-1) + \delta(n)$$

Υπολογισμός αρχικών συνθηκών:

$$h(0) = -0.9 * 0 + 1 = 1$$

$$h(1) = -0.9 * h(0) + \delta(1) = -0.9 * 1 + 0 = -0.9$$

$$h(2) = -0.9 * h(1) + \delta(2) = -0.9 * -0.9 + 0 = 0.81$$

$$h(3) = -0.9 * h(2) + \delta(3) = -0.9 * 0.81 + 0 = -0.729$$

• 1^{ος} Τρόπος Λύσης (κώδικας Matlab), μια πιθανή λύση:

```
n=0:100;
h=zeros(1,length(n));
d=inline('n==0');
h(1)=1;
for i=2:length(n)
    h(i) = -0.9 * h(i-1) + d(n(i));
end
stem(n,h);
```


• 1^{ος} Τρόπος Λύσης (κώδικας Matlab), μια άλλη πιθανή λύση:

```
d=inline('n==0');
h(1)=1;
for n=2:101
    h(n)= -0.9 * h(n-1) + d(n);
end
stem(0:100,h);
```


- Ο 2^{ος} Τρόπος Λύσης είναι να χρησιμοποιήσουμε την συνάρτηση filter του Matlab.
- Αρχικά θα πρέπει να "βρούμε" τα a και b (συντελεστές της εξίσωσης διαφορών).
- Έχοντας υπόψη την γενική μορφή μιας γραμμικής εξίσωσης
 διαφορών με σταθερούς συντελεστές, χωρίζουμε τα y από τα x.
- Έτσι μπορούμε να βρούμε τους συντελεστές a και b.
- Όπου οι συντελεστές a αντιστοιχούν στους συντελεστές βάρους των y, ενώ οι συντελεστές b αντιστοιχούν στους συντελεστές βάρους των x.

- y(n) = -0.9y(n-1) + x(n) =>
 y(n) + 0.9y(n-1) = x(n) χωρίζουμε τα y από τα x
- Άρα:
 a=[1, 0.9] και b=[1, 0]

```
n=0:100;
d=inline('n==0');
a=[1 0.9];
b=[1 0];
y=filter(b, a, d(n));
stem(n, y);
```

βρίσκουμε τα a και b

Υπολογισμός Βηματικής απόκρισης

 Να υπολογίσετε και να παραστήσετε γραφικά την βηματική απόκριση του παρακάτω αιτιατού σήματος:

$$y(n) = y(n-1) + x(n) - x(n-8)$$

• 1^{ος} Τρόπος Λύσης:

Λύνουμε την εξίσωση διαφορών για x(n)=u(n) και y(n)=s(n)

$$Aρα: s(n) = s(n-1) + u(n) - u(n-8)$$

Υπολογισμός αρχικών συνθηκών:

$$s(0) = s(-1) + u(0) - u(-8) = 0 + 1 - 0 = 1$$

$$s(1) = s(0) + u(1) - u(-7) = 1 + 1 - 0 = 2$$

$$s(2) = s(1) + u(2) - u(-6) = 2 + 1 - 0 = 3$$

••••

$$s(7) = s(6) + u(7) - u(-1) = 7 + 1 - 0 = 8$$

$$s(8) = s(7) + u(8) - u(0) = 8 + 1 - 1 = 8$$

$$s(9) = s(8) + u(9) - u(1) = 8 + 1 - 1 = 8$$

$$u(n) = \begin{cases} 1 & n \ge 0 \\ 0 & n < 0 \end{cases}$$

Υπολογισμός Βηματικής απόκρισης

• 1^{ος} Τρόπος Λύσης (κώδικας Matlab), μια πιθανή λύση:

```
n=0:100;
s=zeros(1,length(n));
u=inline('n>=0');
s(1)=1;
for i=2:length(n)
  s(i)=s(i-1) + u(n(i)) - u(n(i)-8);
end
stem(n,s);
axis([0 25 0 9]);
```


Υπολογισμός Βηματικής απόκρισης

- Ο 2^{ος} Τρόπος Λύσης χρησιμοποιώντας την συνάρτηση filter του Matlab.
- y(n) = y(n-1) + x(n) x(n-8) =>y(n) - y(n-1) = x(n) - x(n-8)

χωρίζουμε τα y από τα x

```
n=0:100;

u=inline('n>=0');

a=[1-1000000]; %apo to y

b=[10000000-1]; %apo to x

y=filter(b, a, u(n));

stem(n, y);

axis([0 25 0 9]);
```


Εξάσκηση

- Σχεδιάστε την απόκριση του προηγούμενου συστήματος για είσοδο x(n) = aⁿ u(n), για a=-1 και a=1.
- y(n) = y(n-1) + x(n) x(n-8)
- Αντικαθιστώντας έχουμε: y(n) = y(n-1) + aⁿ u(n) aⁿ⁻⁸ u(n-8)

Εξάσκηση

 Για a=1, η υλοποίηση μας, μας επιτρέπει να αλλάξουμε απλά την τιμή της μεταβλητής.

Εξάσκηση (με συνάρτηση filter)

- Για να λύσουμε την άσκηση με την εντολή filter:
- y(n) = y(n-1) + aⁿ u(n) aⁿ⁻⁸ u(n-8) =>
 y(n) y(n-1) = aⁿ u(n) aⁿ⁻⁸ u(n-8)
 χωρίζουμε τα y από τα u

```
n=0:100;
u=inline('n>=0');
a=-1; <
```

ac=[1-10000000]; bc=[10000000-1]; x=u(n).*(a.^n);

y=filter(bc, ac, x); stem(n, y); Για a=1 απλά
 αλλάζουμε την τιμή
 της μεταβλητής

Απορίες - Ερωτήσεις;