LINEAR INDEPENDENCE IN R² AND R³

Set with two vectors

For two vectors in \mathbb{R}^2 or \mathbb{R}^3 , recall the following:

 $S = \{u, v\}$ is a linearly dependent set if and only if u and v are scalar multiples of each other (they lie on the same line).

For three vectors in \mathbb{R}^3 :

 $S = \{u, v, w\}$ is a linearly dependent set if and only if they lie on the same line or the same plane (when their initial points are placed at the origin).

For three vectors in \mathbb{R}^3 :

 $S = \{u, v, w\}$ is a linearly dependent set if and only if they lie on the same line or the same plane (when their initial points are placed at the origin).

For three vectors in \mathbb{R}^3 :

 $S = \{u, v, w\}$ is a linearly dependent set if and only if they lie on the same line or the same plane (when their initial points are placed at the origin).

For three vectors in \mathbb{R}^3 :

 $S = \{u, v, w\}$ is a linearly dependent set if and only if they lie on the same line or the same plane (when their initial points are placed at the origin). $w \notin \text{span}\{u, v\}$

Let $u_1, u_2, ..., u_k$ be linearly independent vectors in \mathbb{R}^n .

Suppose $u_{k+1} \in \mathbb{R}^n$ is NOT a linear combination of $u_1, u_2, ..., u_k$, then $u_1, u_2, ..., u_k, u_{k+1}$ are linearly independent.

Proof: Suppose (for a contradiction) that $u_1, u_2, ..., u_k, u_{k+1}$ are linearly dependent.

 $\Rightarrow c_1 \boldsymbol{u}_1 + c_2 \boldsymbol{u}_2 + \ldots + c_k \boldsymbol{u}_k + c_{k+1} \boldsymbol{u}_{k+1} = \boldsymbol{0} \text{ has non trivial solutions}$ Let $d_1, d_2, \ldots, d_k, d_{k+1}$ be a non trivial solution to the vector equation. Note that $d_1, d_2, \ldots, d_k, d_{k+1}$ are not all zero.

$$\Rightarrow d_1 \mathbf{u}_1 + d_2 \mathbf{u}_2 + ... + d_k \mathbf{u}_k + d_{k+1} \mathbf{u}_{k+1} = \mathbf{0}$$

Proof: Suppose (for a contradiction) that $u_1, u_2, ..., u_k, u_{k+1}$ are linearly dependent.

 $\Rightarrow c_1 u_1 + c_2 u_2 + ... + c_k u_k + c_{k+1} u_{k+1} = 0$ has non trivial solutions Let $d_1, d_2, ..., d_k, d_{k+1}$ be a non trivial solution to the vector equation. Note that $d_1, d_2, ..., d_k, d_{k+1}$ are not all zero.

$$d_1 \mathbf{u}_1 + d_2 \mathbf{u}_2 + \dots + d_k \mathbf{u}_k + d_{k+1} \mathbf{u}_{k+1} = \mathbf{0}$$

Case 1: $d_{k+1} = 0$. This means that not all $d_1, ..., d_k$ are zero.

$$d_1 \mathbf{u}_1 + d_2 \mathbf{u}_2 + \dots + d_k \mathbf{u}_k + d_{k+1} \mathbf{u}_{k+1} = \mathbf{0}$$
$$\Rightarrow d_1 \mathbf{u}_1 + d_2 \mathbf{u}_2 + \dots + d_k \mathbf{u}_k = \mathbf{0}$$

 \Rightarrow Contradiction, since $u_1, u_2, ..., u_k$ are linearly independent.

Proof: Suppose (for a contradiction) that $u_1, u_2, ..., u_k, u_{k+1}$ are linearly dependent.

 $\Rightarrow c_1 u_1 + c_2 u_2 + ... + c_k u_k + c_{k+1} u_{k+1} = \mathbf{0}$ has non trivial solutions Let $d_1, d_2, ..., d_k, d_{k+1}$ be a non trivial solution to the vector equation. Note that $d_1, d_2, ..., d_k, d_{k+1}$ are not all zero.

$$d_{1}u_{1} + d_{2}u_{2} + \dots + d_{k}u_{k} + d_{k+1}u_{k+1} = \mathbf{0}$$
Case 2: $d_{k+1} \neq 0$. $d_{1}u_{1} + d_{2}u_{2} + \dots + d_{k}u_{k} + d_{k+1}u_{k+1} = \mathbf{0}$

$$\Rightarrow u_{k+1} = -(\frac{d_{1}}{d_{k+1}})u_{1} - (\frac{d_{2}}{d_{k+1}})u_{2} + \dots - (\frac{d_{k}}{d_{k+1}})u_{k}$$

 \Rightarrow Contradiction, since u_{k+1} is not a linear combination of $u_1, u_2, ..., u_k$.

Let $u_1, u_2, ..., u_k$ be linearly independent vectors in \mathbb{R}^n . Suppose $u_{k+1} \in \mathbb{R}^n$ is NOT a linear combination of $u_1, u_2, ..., u_k$,

then $u_1, u_2, ..., u_k, u_{k+1}$ are linearly independent.

Question: What do you think is the largest value for k for this statement to be true?

In other words, when will we no longer be able to find a vector u_{k+1} that is NOT a linear combination of $u_1, u_2, ..., u_k$?

Summary

- 1) Linear independence for two or three vectors in \mathbb{R}^2 and \mathbb{R}^3 .
- 2) When can we add vectors into a linearly independent set and preserve the linear independence property?