

Curso de Tecnologia em Sistemas de Computação Disciplina Fundamentos de Algoritmos para Computação Professoras: Susana Makler e Sulamita Klein Gabarito da AP1 - Primeiro Semestre de 2017

Questões:

- 1. (1.5) Verifique se cada uma das afirmações abaixo é falsa ou verdadeira. Se for verdadeira, prove, se for falsa justifique.
 - (a) $\{\emptyset\} \nsubseteq \{a, \sqrt{3}, 0\}$ Resposta: A afirmação é verdadeira, pois \emptyset não é um elemento do conjunto $\{a, \sqrt{3}, 0\}$, logo o conjunto $\{\emptyset\}$ não está contido no conjunto $\{a, \sqrt{3}, 0\}$.
 - (b) $C \cup [(A-B) \cap (B-A)] = (A \cap C) \cup (B \cap C)$ Resposta: A afirmação é falsa. Observe os Diagramas de Venn das Figuras 1 e 1.
 - (c) $n(A) \leq n(A \cup B) n(B)$ Resposta: A afirmação é falsa. Contra-exemplo: Sejam $A = \{1, 2, 3\}, B = \{3, 4, 5, 6, 7\}$. Temos que $n(A) = 3, n(B) = 5, n(A \cup B) = 7$ e $n(A \cap B) = 1$. Podemos ver que $n(A) = 3, \max n(A \cup B) - n(B) = 7 - 5 = 2$.
- 2. (1.5) Mostre por Indução Matemática que:

$$4 + 10 + 16 + \dots + (6n - 2) = n(3n + 1)$$

para todo número natural maior ou igual a 1.

Resposta: Seja $P(n): 4+10+16+\cdots+(6n-2)=n(3n+1), (n \ge 1).$

Figura 1: Diagrama de Venn que representa $C \cup [(A-B) \cap (B-A)]$

Figura 2: Diagrama de Venn que representa $(A\cap C)\cup (B\cap C)$

BASE DA INDUÇÃO: Fazendo n=1 temos:

$$6 \times 1 - 2 = 4 = 1 \times 4 = 1 \times (3+1)$$

Logo, P(1) é verdadeira.

HIPÓTESE DE INDUÇÃO: Suponha $P(k): 4+10+16+\cdots+(6k-2)=k(3k+1)$ verdadeira.

PASSO INDUTIVO: Vamos mostrar que se P(k) é verdadeira, então $P(k+1): 4+10+16+\cdots+\underbrace{(6k+4)}_{6(k+1)-2}=\underbrace{(k+1)(3k+4)}_{(k+1)[3(k+1)+1]}$ também é

verdadeira. De fato,

$$\underbrace{4+10+16+\dots+(6k-2)}_{H.I.} + (6k+4) =$$

$$k(3k+1) + (6k+4) =$$

$$3k^2 + k + 6k + 4 =$$

$$3k^2 + 7k + 4 =$$

$$(k+1)(3k+4)$$

Observação: $(k+1)(3k+4) = 3k^2 + 4k + 3k + 4 = 3k^2 + 7k + 4$ Logo, pelo Princípio de Indução Matemática temos que $P(n): 4+10+16+\cdots+(6n-2)=n(3n+1)$ é verdadeira para todo $n \in \mathbb{N}$.

- 3. (2.0) Uma turma está formada por 8 rapazes, sendo João um deles, e 6 moças sendo Maria, uma delas. Determine justificando o número de maneiras diferentes que um professor pode selecionar grupos de 4 alunos de forma tal que:
 - (a) João e Maria não podem estar no mesmo grupo.

Resposta: Vamos dividir em 2 casos:

CASO 1: João participará do grupo.

Se João participar do grupo, temos que escolher outros 3 alunos para formarem o grupo dentre os 12 restantes (lembrando que estamos excluindo desta lista o próprio João e a Maria). Como a ordem de nossas escolhas não importa, temos $C_{12}^3 = \frac{12!}{9!3!}$ formas de escolher um grupo com 4 alunos, sabendo que o João participa do mesmo.

O caso em que Maria participa do grupo é análogo a este.

CASO 2: João e Maria não participarão do grupo.

Neste caso vamos escolher os 4 alunos num total de 12 alunos. Como a ordem de nossas escolhas não importa, temos $C_{12}^4 = \frac{12!}{8!4!}$ formas de escolher um grupo com 4 alunos, sabendo que ambos João e Maria não participarão.

Assim, pelo Princípio Aditivo, temos que o número de maneiras distintas que pode ser formado este grupo se os alunos João e Maria não estão no mesmo grupo é de: $C_{12}^3+C_{12}^3+C_{12}^4=\frac{12!}{9!3!}+\frac{12!}{9!3!}+\frac{12!}{8!4!}=220+220+495=935.$

Outro raciocínio: Poderíamos também contar todas as escolhas de 4 alunos (C_{14}^4) e retirar as escolhas em que João e Maria participam do grupo juntos (C_{12}^2) :

$$C_{14}^4 - C_{12}^2 = \frac{14!}{10!4!} - \frac{12!}{10!2!} = 1001 - 66 = 935.$$

(b) os grupos devem ter pelo menos 2 mulheres, sendo que João e Maria podem estar no mesmo grupo.

Resposta: Temos três possibilidades a serem analisadas, que são:

2 rapazes e 2 moças; OU 1 rapaz e 3 moças; OU 4 moças;

Para a primeira possibilidade temos que o número de escolhas de 2 moças dentre 6 corresponde a C_6^2 . Por outro lado, fixada 2 moças, os 2 rapazes devem ser escolhidos entre 8, dando lugar a C_8^2 possibilidades. Logo, pelo princípio multiplicativo, o número de possibilidades de formar um grupo com 2 rapazes e 2 moças é $C_6^2.C_8^2 = \frac{6!}{4!2!}.\frac{8!}{6!2!} = 420$. Para a segunda possibilidade, temos de considerar os modos de escolher 3 moças dentre 6, ou seja, C_6^3 . Fixado as 3 moças, o rapaz deve ser escolhido entre 8, dando lugar a C_8^1 possibilidades. Logo, pelo princípio multiplicativo, o número de possibilidades de formar um grupo com 1 rapaz e 3 moças é $C_6^3.C_8^1 = \frac{6!}{3!3!}.\frac{8!}{7!1!} = 160$. Para a terceira possibilidade,

temos de considerar os modos de escolher 4 moças dentre 6, ou seja, $C_6^4 = \frac{6!}{2!4!} = 15$. Portanto, pelo princípio aditivo, a resposta é 420 + 160 + 15 = 595.

Outro raciocínio: Poderíamos também contar todas as escolhas de 4 alunos (C_{14}^4) e retirar as escolhas sem moças $(C_8^4.C_6^0)$ e com apenas uma moça $(C_6^1.C_8^3)$:

$$C_{14}^4 - (C_8^4 \cdot C_6^0 + C_6^1 \cdot C_8^3) = \frac{14!}{10!4!} - \frac{8!}{4!4!} \cdot \frac{6!}{0!6!} - \frac{6!}{5!1!} \cdot \frac{8!}{5!3!} = 1001 - 70 - 336 = 595.$$

- 4. (2.0) Cada usuário em um dado sistema tem uma senha com 8 caracteres. Sabendo que cada caracter é uma letra qualquer (em um alfabeto de 26 letras) ou um digito qualquer (entre 10 digitos), determine o número de possibilidades de senhas se cada uma delas deve conter pelo menos uma letra, nos seguintes casos:
 - (a) todos os caracteres devem ser diferentes. Justifique.

Resposta: Esta questão será feita pelo complemento. Vamos encontrar o número de possibilidades de senhas com 8 caracteres entre os 36 símbolos possíveis (letras e dígitos) e depois retiraremos o número de possibilidades de senhas com 8 caracteres entre os 10 dígitos.

- Número de possibilidades de senhas com 8 caracteres entre os 36 possíveis (letras e dígito): como devemos escolher 8 caracteres diferentes entre 26 letras e 10 dígitos, e importa a ordem, então temos $A(36,8) = \frac{36!}{(36-8)!} = \frac{36!}{28!}$.
- Número de possibilidades de senhas com 8 caracteres entre os 10 dígitos: como devemos escolher 8 caracteres diferentes entre 10 dígitos, e importa a ordem, então temos $A(10,8) = \frac{10!}{(10-8)!} = \frac{10!}{2!}$.

Logo, pelo complemento, temos $A(36,8)-A(10,8)=\frac{36!}{(36-8)!}-\frac{10!}{(10-8)!}=\frac{36!}{28!}-\frac{10!}{2!}$ número de possibilidades de senhas com 8 caracteres sendo que contém pelo menos uma letra e todos os caracetres são diferentes.

(b) os caracteres podem estar repetidos. Justifique.

Resposta: Esta questão é análoga a anterior, e também será feita pelo complemento. Vamos encontrar o número de possibilidades de senhas com 8 caracteres entre os 36 possíveis (letras e dígito) e depois retiraremos o número de possibilidades de senhas com 8 caracteres entre os 10 dígitos, sabendo que os caracteres podem ser repetidos.

- Número de possibilidades de senhas com 8 caracteres entre os 36 possíveis (letras e dígitos) podendo repetir os caracteres: como devemos escolher 8 caracteres diferentes entre 26 letras e 10 dígitos, e importa a ordem e podem ser repetidos, então temos $AR(36,8) = 36^8$.
- Número de possibilidades de senhas com 8 caracteres entre os 10 dígitos podendo repetir os caracteres: como devemos escolher 8 caracteres diferentes entre 10 dígitos, e importa a ordem e podendo se repetir, então temos $A(10,8) = 10^8$.

Logo, pelo complemento, temos $AR(36,8) - AR(10,8) = 36^8 - 10^8$ número de possibilidades de senhas com 8 caracteres sendo que contém pelo menos uma letra e os caracteres podem ser repetidos.

5. (1.5) Considere a palavra **PARALELEPIPEDO**. Quantos anagramas podem ser formados com as letras dessa palavra começando por **P** e terminando por vogal? Justifique.

Resposta: Vamos resolver esta questão separando os seguintes casos:

- Os anagramas da palavra PARALELEPIPEDO tais que começam com P e terminam com a vogal A são $P_{12}^{3,2,2} = \frac{12!}{3!2!2!}$, pois correspondem a permutações com repetição, sendo repetidos as letras P (2 vezes), L (2 vezes) e E (3 vezes).
- Os anagramas da palavra PARALELEPIPEDO tais que começam com P e terminam com a vogal E são $P_{12}^{2,2,2,2} = \frac{12!}{2!2!2!2!}$, pois correspondem a permutações com repetição, sendo repetidos as letras P (2 vezes), A (2 vezes), L (2 vezes) e E (2) vezes.
- Os anagramas da palavra PARALELEPIPEDO tais que começam com P e terminam com a vogal I são $P_{12}^{3,2,2,2}=\frac{12!}{3!2!2!2!}$, pois corres-

pondem a permutações com repetição, sendo repetidos as letras P (2 vezes), A (2 vezes), L (2 vezes) e E (3 vezes).

• Os anagramas da palavra PARALELEPIPEDO tais que começam com P e terminam com a vogal O são $P_{12}^{3,2,2,2} = \frac{12!}{3!2!2!2!}$, pois correspondem a permutações com repetição, sendo repetidos as letras P (2 vezes), A (2 vezes), L (2 vezes) e E (3 vezes).

Pelo princípio aditivo, temos que o número de anagramas que podem ser formados com as letras da palavra PARALELEPIPEDO começando por **P** e terminando por vogal é $P_{12}^{3,2,2} + P_{12}^{2,2,2,2} + P_{12}^{3,2,2,2} + P_{12}^{3,2,2,2} = \frac{12!}{3!2!2!} + \frac{12!}{3!2!2!2!} + \frac{12!}{3!2!2!2!} + \frac{12!}{3!2!2!2!}$.

6. (1.5) Quantas são as soluções inteiras não negativas da desigualdade $x_1 + x_2 + x_3 + x_4 < 25$ que verificam $x_2 \ge 3$? Justifique.

Resposta: Como a variável x_2 é maior ou igual a 3, precisamos reescrevêla em função de uma variável não negativa. Seja $x_2 = x' + 3$. Note que, como $x_2 \ge 3$, $x' \ge 0$. Fazendo a substituição na inequação de x_2 por x' + 3 temos:

$$x_1 + x' + 3 + x_3 + x_4 < 25 \Leftrightarrow$$

 $\Leftrightarrow x_1 + x' + 3 + x_3 + x_4 \le 24 \Leftrightarrow$
 $\Leftrightarrow x_1 + x' + x_3 + x_4 \le 21$

Para transformar esta inequação em uma equação, vamos acrescentar uma variável f de folga. Esta variável tem o papel de completar o valor que a expressão à esquerda assume de modo a igualá-lo ao resultado da direita da inequação. Então, se, por exemplo, $x_1 + x' + x_3 + x_4 = 21$, f assume o valor 0. Se $x_1 + x' + x_3 + x_4 = 20$, então f assume o valor 1 e assim sucessivamente. Note que o maior valor que f pode assumir é 21. Assim, estamos acrescentando à inequação a variável $f \ge 0$ de modo a obter a seguinte equação com variáveis inteiras e não-negativas:

$$x_1 + x' + x_3 + x_4 + f = 21 \tag{1}$$

Logo, o número de soluções inteiras não negativas de $x_1+x_2+x_3+x_4\leq 21$ com $x_2\geq 3$ corresponde ao número de soluções inteiras não

negativas da equação descrita em (1), que podemos obter utilizando o conceito de Combinação com repetição. Portanto, temos $CR_5^{21}=C_{25}^{21}=\frac{25!}{21!4!}=12650$ soluções inteiras e não-negativas para a inequação $x_1+x_2+x_3+x_4<25$, sendo $x_2\geq 3$.