

⊢⊓⊋⊄₽&∢⊢⊃K⊓

ENTROPY (b)

Fig. 5

Fig. 14

Fig. 15

Fig. 17

Input power = 12705 [kM] LHV Electrical power generated = 5531 [kM] Parastic power = 2074 [kM] Net electical power = 3458 [kM]

LHV thermal efficiency = 0.2721 Power Plant Operating on Syngas and with One Reheater.

Upper Number - Pressure in lb/in2, Middle Number - Temperature in °F, Bottom Number - Flow Rate in lb/sec

LHV thermal efficiency = 0.4497 Power Plant Operating on Syngas and with Two Reheaters.

Upper Number - Pressure in lb/in2, Middle Number - Temperature in °F, Bottom Number - Flow Rate in lb/sec

				Vet Basis	Compos	ition, Flow I	Wet Basis Composition, Flow Rates, and Heating Values ^[1]	ng Values ^[1]			
		Flow Rate		Concer	Concentration	Heal	Heat of Combustion (LHV)	LHV)	Heat	Heat of Combustion (HHV)	(HIHV)
Component	$\mathrm{m}^3/\mathrm{hr}^{[2]}$	kg·mol/hr	kg/hr	lov %	% wt	kJ/kg·mol	kJ/hr	kJ/m³(NTP)	kJ/kg·mol	kJ/hr	kJ/m³(NTP)
H2	3463.6	141.567	285.38	57.338	7.657	-241,826	-34,234,736		-285,840	-40,465,625	
CO ₂	1067.4	43.628	1920.05	1920.05 17.670	51.516	0	0		0	0	
93	995.2	40.677	1139.37	16.475	30.570	9.37 16.475 30.570 -282,989	-11,511,081		-282,989	-11,511,081	
H ₂ O	444.1	18.152	327.01	7.352	8.774	0	0		-44,014	-798,920	
CH4	21.7	2.113	33.90	0.856	0.910	-802,320	-1,695,405		-890,347	-1,881,418	
N_2	18.3	0.748	20.95	0.303	0.562	0	0		0	0	
C_2H_4	0.4	0.016	0.46	0.007	0.012	0.012 -1,322,960	-21,629		-1,410,987	-23,068	
Total	6040.7	246.901	3727.12	7.12 100.00 100.00	100.00		-47,462,852	-7,857.2		-54,680,113	-9051.9
							13184.1 kW			15188.9 kW	

_	,	_						,	_	!
	HHV)	kJ/m³(NTP)							-9627.5	
	Heat of Combustion (HHV)	kJ/hr	-40,465,625	0	-11,511,081	-1,881,418	0	-23,068	-53881192.92	14967.0 kW
	Heat	kJ/kg·mol	-285,840	0	-282,989	-890,347	0	-1,410,987		
Dry Basis Composition, Flow Rates, and Heating Values ^[1]	HV)	kJ/m³(NTP)							-8480.7	
	Heat of Combustion (LHV)	kJ/hr	-34,234,736	0	-11,511,081	-1,695,405	0	-21,629	-47462851.82	13184.1 kW
ition, Flow B		kJ/kg·mol	-241,826	0	-282,989	-802,320	0	0.013 -1,322,960		
Composi	Concentration	% wt	8.393	56.470	33.510	0.997	0.616	0.013	100.00	
ry Basis	Concer	% vol	61.888	19.072	17.782 33.510	0.924	0.327	0.007	100.00 100.001	
A	Flow Rate	kg/hr	285.38 61.888	1920.05 19.072 56.470	1139.37	33.90	20.95	0.46	3400.11	
		kg.mol/hr	141.567	43.628	40.677	2.113	0.748	0.016	228.749	
		$\mathrm{m}^3/\mathrm{hr}^{[2]}$	3463.6	1067.4	995.2	51.7	18.3	0.4	9:9655	
		Component	H_2	CO ₂	00	CH4	N_2	C_2H_4	Total	

[1] Heating values based upon assumption that all reactants and products enter and leave at 25 °C and 1 atmosphere [2] Normal temperature and pressure assumed to be 25 °C and 1 atmosphere

Fig. 21