O Santo Graal da Matemática *não* trará o desastre para a Internet

Paula Cristina Valença

14 de Março de 2007

• mas o π é transcendente. . .

- mas o π é transcendente...
- π ? probabilidade de dois números aleatórios serem co-primos: $6/\pi^2$...

- mas o π é transcendente...
- π ? probabilidade de dois números aleatórios serem co-primos: $6/\pi^2...$
- π ? probabilidade de um número ser "square-free": $6/\pi^2$...

- mas o π é transcendente...
- π ? probabilidade de dois números aleatórios serem co-primos: $6/\pi^2...$
- π ? probabilidade de um número ser "square-free": $6/\pi^2$...
- ou podia falar da hipótese de Riemann e da distribuição dos números primos. A função chama-se $\pi(x)$...

Os primos: de Eratosthenes a Gauss Os primos, a tabela periódica

Primos...? sim, números divisivéis só por 1 e eles próprios. Ok, e depois?

Theorem

Teorema Fundamental da Aritmética Todo o número inteiro positivo pode ser escrito de uma forma única como o produto de primos.

Ah, alicerces!

```
1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60
61 62 63 64 65 66 67 68 69 70
71 72 73 74 75 76 77 78 79 80
81 82 83 84 85 86 87 88 89 90
```


91 92 93 94 95 96 97

1	2	3	4	5	6	7	8	9	10	
11	12	13	14	15	16	17	18	19	20	
21	22	23	24	25	26	27	28	29	30	
31	32	33	34	35	36	37	38	39	40	
41	42	43	44	45	46	47	48	49	50	
51	52	53	54	55	56	57	58	59	60	
61	62	63	64	65	66	67	68	69	70	
71	72	73	74	75	76	77	78	79	80	
81	82	83	84	85	86	87	88	89	90	
91	92	93	94	95		97				

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95		97			


```
1 2 3 4 5 6 7 8
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60
61 62 63 64 65 66 67 68 69 70
71 72 73 74 75 76 77 78 79 80
     83 84 85 86 87 88 89 90
     93 94 95 96 97
```



```
1 2 3 4 5 6 7 8
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60
61 62 63 64 65 66 67 68 69 70
71 72 73 74 75 76 77 78 79 80
  82 83 84 85 86 87 88 89 90
91 92 93 94 95 96 97
```



```
3 4 5 6 7 8
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60
  62 63 64 65 66 67 68 69 70
71 72 73 74 75 76 77 78 79 80
     83 84 85 86 87
91 92 93 94 95 96 97
```


Os primos: de Eratosthenes a Gauss A fórmula mágica

• há padrões?

Os primos: de Eratosthenes a Gauss A fórmula mágica

- há padrões?
- há alguma fórmula mágica que me dê todos os primos?

Os primos: de Eratosthenes a Gauss A fórmula mágica

- há padrões?
- há alguma fórmula mágica que me dê todos os primos?
- ...e só alguns? Eu ouvi falar dos primos de Fermat $(2^{2^n} + 1)$ e de Mersenne...

• Gauss e as suas tabelas de logaritmos e primos

- Gauss e as suas tabelas de logaritmos e primos
- e se eu contar o número de primos até x?

- Gauss e as suas tabelas de logaritmos e primos
- e se eu contar o número de primos até x?
- vou chamar "o número de primos até x" de $\pi(x)$!

- Gauss e as suas tabelas de logaritmos e primos
- e se eu contar o número de primos até x?
- vou chamar "o número de primos até x" de $\pi(x)$!

• ...
$$\sim \frac{x}{\log x}$$
?

- Gauss e as suas tabelas de logaritmos e primos
- e se eu contar o número de primos até x?
- vou chamar "o número de primos até x" de $\pi(x)$!
- ... $\sim \frac{x}{\log x}$?
- $\frac{\pi(x)}{x/\log x} \to 1$!

- Gauss e as suas tabelas de logaritmos e primos
- e se eu contar o número de primos até x?
- vou chamar "o número de primos até x" de $\pi(x)$!
- ... $\sim \frac{x}{\log x}$?
- $\frac{\pi(x)}{x/\log x} \to 1!$
- ... mas o erro ainda é grande...

- Gauss e as suas tabelas de logaritmos e primos
- e se eu contar o número de primos até x?
- vou chamar "o número de primos até x" de $\pi(x)$!

• ...
$$\sim \frac{x}{\log x}$$
?

•
$$\frac{\pi(x)}{x/\log x} \to 1!$$

• ... mas o erro ainda é grande...

• ...
$$\sim Li(x) = \int_2^x \frac{dt}{\log t}$$
?

Os primos: de Eratosthenes a Gauss testemos...

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}, \quad Re(s) > 1 \tag{1}$$

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}, \quad Re(s) > 1 \tag{1}$$

• $\zeta(1) = \sum_{n=1}^{\infty} - \text{séries harmonianas}, \to \infty$

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}, \quad Re(s) > 1 \tag{1}$$

- $\zeta(1) = \sum \frac{1}{n}$ séries harmonianas, $\to \infty$
- $\zeta(2) = \sum \frac{1}{n^2}$ série de Basel , converge. . . para $\pi^2/6$ (disse o Euler!)

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}, \quad Re(s) > 1 \tag{1}$$

- $\zeta(1) = \sum \frac{1}{n}$ séries harmonianas, $\to \infty$
- $\zeta(2) = \sum \frac{1}{n^2}$ série de Basel , converge. . . para $\pi^2/6$ (disse o Euler!)
- $\zeta(s)$ converge!

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}, \quad Re(s) > 1 \tag{1}$$

- $\zeta(1) = \sum_{n=1}^{\infty} \frac{1}{n}$ séries harmonianas, $\to \infty$
- $\zeta(2) = \sum \frac{1}{n^2}$ série de Basel , converge. . . para $\pi^2/6$ (disse o Euler!)
- $\zeta(s)$ converge!
- ...e é igual a $\prod_{p} \frac{1}{(1-p^{-s})}$

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}, \quad Re(s) > 1 \tag{1}$$

- $\zeta(1) = \sum_{n=1}^{\infty} \frac{1}{n}$ séries harmonianas, $\to \infty$
- $\zeta(2) = \sum \frac{1}{n^2}$ série de Basel , converge. . . para $\pi^2/6$ (disse o Euler!)
- $\zeta(s)$ converge!
- ...e é igual a $\prod_{p} \frac{1}{(1-p^{-s})}$
- ...e depois?

Riemann, o aluno de Gauss $Olha o \pi !$

• Probabilidade de dois números aleatórios serem co-primos? $1/\zeta(2)$

Riemann, o aluno de Gauss $Olha o \pi !$

- Probabilidade de dois números aleatórios serem co-primos? $1/\zeta(2)$
- Probabilidade de um número aleatório ser square-free? $1/\zeta(2)$

Riemann, o aluno de Gauss $Olha o \pi !$

- Probabilidade de dois números aleatórios serem co-primos? $1/\zeta(2)$
- Probabilidade de um número aleatório ser square-free? $1/\zeta(2)$
- ... mas que tem isto a ver com o outro π , o $\pi(x)$?

...se o gráfico diz uma coisa, e a equação diz outra, em quem acreditar?

ullet extender a definição para Re(s) < 1

• extender a definição para Re(s) < 1

$$\zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s) \sin(\pi s/2) \tag{2}$$

• extender a definição para Re(s) < 1

•

$$\zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s) \sin(\pi s/2) \tag{2}$$

• zeros triviais quando $sin(\pi s/2) = 0$: -2, -4, -6, ...

• extender a definição para Re(s) < 1

$$\zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s) \sin(\pi s/2) \tag{2}$$

- zeros triviais quando $sin(\pi s/2) = 0$: $-2, -4, -6, \dots$
- Re(s) < 0? simples!

• extender a definição para Re(s) < 1

$$\zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s) \sin(\pi s/2) \tag{2}$$

- zeros triviais quando $sin(\pi s/2) = 0$: $-2, -4, -6, \dots$
- Re(s) < 0? simples!
- $0 \le Re(s) \le 1$? a tira crítica... onde todos os zeros não triviais estão

• extender a definição para Re(s) < 1

$$\zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s) \sin(\pi s/2)$$
 (2)

- zeros triviais quando $sin(\pi s/2) = 0$: -2, -4, -6, ...
- Re(s) < 0? simples!
- $0 \le Re(s) \le 1$? a tira crítica... onde todos os zeros não triviais estão
- **Desafio para a audiência**: prove que todos os zeros tem Re(s) = 1/2, isto é, são da forma s = 1/2 + it, para um t qualquer...

• Riemann mostra que há uma expressão que relaciona $\pi(x)$ e $\zeta(s)$ precisamente!

- Riemann mostra que há uma expressão que relaciona $\pi(x)$ e $\zeta(s)$ precisamente!
- daí, definiu 2 funções, R(x) e $R'_{\omega}(x)$...

- Riemann mostra que há uma expressão que relaciona $\pi(x)$ e $\zeta(s)$ precisamente!
- daí, definiu 2 funções, R(x) e $R'_{\omega}(x)$...
- R(x) é parecida com Li(x)...

- Riemann mostra que há uma expressão que relaciona $\pi(x)$ e $\zeta(s)$ precisamente!
- daí, definiu 2 funções, R(x) e $R'_{\omega}(x)$...
- R(x) é parecida com Li(x)...
- $R'_{\omega}(x)$ é o erro, calculado com base nos zeros ω de $\zeta(s)$

Riemann, o aluno de Gauss uma melhor aproximação do erro

• sem a hipótese de Riemann? $\sim O(x \exp(-A \log(x)^{3/5}/(\log \log(x)^{1/5})))$

Riemann, o aluno de Gauss uma melhor aproximação do erro

- sem a hipótese de Riemann? $\sim O(x \exp(-A \log(x)^{3/5}/(\log \log(x)^{1/5})))$
- com a hipótese de Riemann? $\leq C\sqrt{x}\log x$

• RSA e a dificuldade de factorizar n = pq, p, q primos de 512 bits. . .

- RSA e a dificuldade de factorizar n = pq, p, q primos de 512 bits. . .
- testar se um número é primo?

- RSA e a dificuldade de factorizar n = pq, p, q primos de 512 bits...
- testar se um número é primo?
- a hipótese generalisada...a diferença entre procurar ao calha e procurar por ordem...um número gerador

- RSA e a dificuldade de factorizar n = pq, p, q primos de 512 bits...
- testar se um número é primo?
- a hipótese generalisada...a diferença entre procurar ao calha e procurar por ordem...um número gerador
- matrizes aleatórias e o GUE...mas não me perguntem...

Perguntas

E uma boa noite de sono...