STA2001 Probability and Statistics (I)

Lecture 11

Tianshi Chen

The Chinese University of Hong Kong, Shenzhen

Review

Mathematical Expectations $E[g(X)] = \int_{\overline{S}} g(x)f(x)dx$

- 1. [g(X) = X]: Mean of X, $E[X] = \int_{\overline{S}} xf(x)dx$
- 2. $[g(X) = (X E[X])^2]$: Variance of X,

$$Var[X] = E[(X - E[X])^2] = \int_{\overline{S}} (x - E[X])^2 f(x) dx$$

3. $[g(X) = X^r]$, Moments of X:

$$E[X^r] = \int_{\overline{S}} x^r f(x) dx$$

4. $[g(X) = e^{tX}]$: mgf, if there exists h > 0, such that

$$M(t) = E[e^{tX}] = \int_{\overline{S}} e^{tx} f(x) dx, \quad -h < t < h \text{ for some } h > 0$$

$$M^{(r)}(0) = E[X^r], E[X] = M'(0), \quad Var[X] = M''(0) - (M'(0))^2$$

Review

Definition[(100p)th percentile]

It is a number π_p such that the area under f(x) to the left of π_p is p. That is

$$p = \int_{-\infty}^{\pi_p} f(x) dx = F(\pi_p)$$

The 50th percentile is called the median. The 25th and 75th percentiles are called the first and third quantiles, respectively. The median is also called the 2nd quantile

Review

Exponential distribution with parameter $\theta=\frac{1}{\lambda}$: X, the waiting time until the first occurrence in an approximate Poisson process with parameter $\lambda>0$ and its pdf takes the form of

$$f(x) = \frac{1}{\theta}e^{-\frac{x}{\theta}}, \quad x \ge 0, \theta > 0$$

Mean and Variance:

$$E[X] = \theta, Var[X] = \theta^2$$

Mgf:

$$M(t) = \frac{1}{1-t\theta}, \quad t < \frac{1}{\theta}$$

Poisson Distribution

Let *X* describe the number of occurrences of some events in a unit interval with

$$f(x) = \frac{\lambda^x e^{-\lambda}}{x!}, \quad x = 0, 1, \dots, \quad E[X] = Var[X] = \lambda$$

For an interval with length T, which should be treated as a

new "unit interval", the number of occurrences Y has

$$E[Y] = \lambda T$$
 and thus its pmf is

$$f(y) = \frac{(\lambda T)^y e^{-\lambda T}}{y!}, \quad y = 0, 1, \dots$$

Poisson Distribution

Let X describe the number of occurrences of some events in a unit interval with

$$f(x) = \frac{\lambda^x e^{-\lambda}}{x!}, \quad x = 0, 1, \dots, \quad E[X] = Var[X] = \lambda$$

For an interval with length T, which should be treated as a

new "unit interval", the number of occurrences Y has

 $E[Y] = \lambda T$ and thus its pmf is

$$f(y) = \frac{(\lambda T)^y e^{-\lambda T}}{y!}, \quad y = 0, 1, \cdots$$

Then for
$$\alpha = 1, 2, ...$$
,
$$P(Y < \alpha) = \sum_{k=0}^{\alpha-1} \frac{(\lambda T)^k e^{-\lambda T}}{k!}$$

 $= P(\{\text{the number of occurrence smaller than }\alpha)$ in the interval with length T)

Gamma distribution

- 1. Description: Consider an APP. We are interested in the waiting time until the α th occurrence, $\alpha = 1, 2, \ldots$
- 2. Define the waiting time by W. Then our goal is to derive the pdf of W.

Idea:
$$\begin{cases} 1. \text{derive cdf of W}, F(w) \\ 2. f(w) = F'(w) \end{cases}$$

$$F(w) = P(W \le w)$$

Assume that the waiting time is nonnegative. Then,

$$F(w) = 0, \quad \text{for } w < 0.$$

For $w \geq 0$,

$$F(w) = P(W \le w) = 1 - P(W > w)$$

 $P(W > w) = P(\{\text{number of occurrences in } [0, w] \text{ smaller than } \alpha\})$

Gamma distribution

$$\begin{split} P(W>w) &= P(\{\text{number of occurrences in } [0,w] \text{ smaller than } \alpha\}) \\ &= \sum_{k=0}^{\alpha-1} \frac{(\lambda w)^k e^{-\lambda w}}{k!} \\ f(w) &= F'(w) = \frac{\lambda^\alpha w^{\alpha-1}}{(\alpha-1)!} e^{-\lambda w}, w > 0. \end{split}$$

pdf of this form is said to be of the Gamma type and W is said to have Gamma distribution.

The waiting time until the α th occurrence in the APP, has a Gamma distribution with parameters α and λ .

Gamma Function

With the so-called Gamma function, we can obtain a more general definition of Gamma distribution with $\alpha > 0$.

Definition[Gamma function(generalized factorial)]

$$\Gamma(t) = \int_0^\infty y^{t-1} e^{-y} dy, \quad t > 0$$

$$\Gamma(t) = -y^{t-1} e^{-y} \Big|_0^\infty + \int_0^\infty (t-1) y^{t-2} e^{-y} dy = (t-1) \Gamma(t-1)$$

$$\Gamma(n) = (n-1) \Gamma(n-1) = (n-1)(n-2) \Gamma(n-2)$$

$$= \dots = (n-1) \dots 2\Gamma(1) = (n-1)! (\Gamma(1) = 1)$$

Gamma Function

With the so-called Gamma function, we can obtain a more general definition of Gamma distribution with $\alpha > 0$.

Gamma Distribution

Definition

A RV X has a Gamma distribution if its pdf is

$$f(x) = \frac{1}{\Gamma(\alpha)\theta^{\alpha}} x^{\alpha - 1} e^{-\frac{x}{\theta}}, \quad x \ge 0, \alpha > 0, \theta > 0,$$

where θ and α are the two parameters.

- ▶ Gamma pdf f(x) is well-defined pdf (by the definition of $\Gamma(\alpha)$)
- mgf (exercise 3.2-7)

$$M(t) = \frac{1}{(1 - \theta t)^{\alpha}}, \quad t < \frac{1}{\theta}$$
 $E[X] = \alpha \theta, \quad Var[X] = \alpha \theta^2$

A special case: when $\alpha = 1$, Gamma distribution reduces to exponential distribution.

Chi-square Distribution

Definition

Let X have a Gamma distribution with $\theta=2$, $\alpha=\frac{r}{2}$, r is an integer. The pdf of X is

$$f(x) = \frac{1}{\Gamma(\frac{r}{2})2^{\frac{r}{2}}} x^{\frac{r}{2}-1} e^{-\frac{x}{2}}, \quad x > 0$$

Then X has chi-square distribution with degrees of freedom r, and denoted by $X \sim \chi^2(r)$

$$E[X] = \alpha \theta = \frac{r}{2} \cdot 2 = r$$
 $Var[X] = \alpha \theta^2 = \frac{r}{2} \cdot 2^2 = 2r$

Mgf:
$$M(t) = (1-2t)^{-\frac{r}{2}}, \quad t < \frac{1}{2}$$

Note: The interpretation of Chi-square distribution is deferred.

Remark

Chi-square distribution plays an important role in statistics, the tables of cdf of chi-square distribution are given

$$F(x) = P(X \le x) = \int_0^x f(t)dt.$$

Example 2

Let X have a chi-square distribution with r=5 degrees of freedom. Then using table IV in Appendix B on page 501, we have

$$P(1.145 \le X \le 12.83) = F(12.83) - F(1.145)$$

Example 2

Let X have a chi-square distribution with r=5 degrees of freedom. Then using table IV in Appendix B on page 501, we have

$$P(1.145 \le X \le 12.83) = F(12.83) - F(1.145)$$

= 0.975 - 0.05 = 0.925.

3.3 Normal Distribution

Description

When observed over a large population, many things of interests have a "bell-shaped" relative frequency distribution.

- Weight of male students in CUHKsz
- ► Height
- ► TOFEL,IELTS test score

Normal Distribution

Definition

A continuous RV \boldsymbol{X} is said to be normal or Gaussian if it has a pdf of the form

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp(-\frac{1}{2} \cdot \frac{(x-\mu)^2}{\sigma^2}), \quad -\infty < x < \infty$$

where μ and σ^2 are two parameters characterizing the normal distribution. Briefly, $X \sim N(\mu, \sigma^2)$

pdf of Normal Distribution

f(x) is a well-defined pdf

- 1. f(x) > 0 for all x.
- $2. \int_{-\infty}^{\infty} f(x) dx = 1$

We will prove $\int_{-\infty}^{\infty} f(x) dx = 1$ shortly, if time permits.

Assume
$$X \sim N(\mu, \sigma^2)$$

$$M(t) = E[e^{tX}] = \int_{-\infty}^{\infty} e^{tx} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2}\frac{(x-\mu)^2}{\sigma^2}} dx$$

$$e^{tx} e^{-\frac{1}{2}\frac{(x-\mu)^2}{\sigma^2}} = \exp\left\{-\frac{1}{2\sigma^2}[x^2 - 2(\mu + \sigma^2 t)x + \mu^2]\right\}$$

Consider

$$x^{2} - 2(\mu + \sigma^{2}t)x + \mu^{2} = [x - (\mu + \sigma^{2}t)]^{2} - 2\mu\sigma^{2}t - \sigma^{4}t^{2}$$

$$M(t) = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi\sigma^{2}}} \exp\left(-\frac{1}{2\sigma^{2}} \left[x - (\mu + \sigma^{2}t)\right]^{2}\right) dx$$

$$\cdot \exp\left(\frac{-2\mu\sigma^{2}t - \sigma^{4}t^{2}}{-2\sigma^{2}}\right)$$

Recall that

$$I=\int_{-\infty}^{\infty}rac{1}{\sqrt{2\pi\sigma^2}}{
m exp}\left[-rac{(x-\mu)^2}{2\sigma^2}
ight]dx=1,$$
 independent of μ

Therefore,

$$\int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2\sigma^2}[x - (\mu + \sigma t)]^2\right) dx = 1$$
 $M(t) = \exp\left(\mu t + \frac{1}{2}\sigma^2 t^2\right)$

$$M(t) = \exp\left(\mu t + \frac{1}{2}\sigma^2 t^2\right) \implies M(0) = 1;$$

$$M'(t) = (\mu + \sigma^2 t) \exp\left(\mu t + \frac{1}{2}\sigma^2 t^2\right) \implies M'(0) = \mu$$

$$M''(t) = \sigma^2 \exp\left(\mu t + \frac{1}{2}\sigma^2 t^2\right) + (\mu + \sigma^2 t)^2 \exp\left(\mu t + \frac{1}{2}\sigma^2 t^2\right)$$

$$\implies M''(0) = \mu^2 + \sigma^2$$

Recall that

$$E[X] = M'(0) = \mu$$
 $Var[X] = E[X^2] - (E[X])^2$
 $= M''(0) - M'(0)^2 = \sigma^2$

For $X \sim N(\mu, \sigma^2)$,

$$E[X] = \mu, \quad Var[X] = \sigma^2$$

The two parameters μ, σ^2 are the mean and variance, respectively.