STUDY TIPS

CHEM 2 ELECTRON CONFIGURATION

Relationship to position on the Periodic Table; formation of cations and anions.

Bohr planetary (particle) model

Energy of electron in orbit $E_n = -R / n^2$ n = principal quantum numberMaximum number of electrons per shell = 2.n², so for n=1, 2e⁻ n=2, 8e⁻ n=3, 18 e⁻ etc.

Schrodinger's wave mechanical model

Electron behaving as a wave. (wave functions, Ψ) -such that a stable energy state is only established when an <u>integral number of wavelengths</u> are "quantized" into the orbital to produce a "stationary state", <u>a confined e- wave</u>.

Schrodinger **e**- as a wave

The four quantum numbers:

n = principal quantum number, n = 1, 2, 3;

Gives the ENERGY of the electron shell via, $E_n = -R/n^2$

ℓ = orbital quantum number, ℓ = 0, 1, 2... (n-1);

Gives the SHAPE of the sub-shell electron cloud (orbital shape)

 $\ell = 0 = s$ -orbital, spherical; $\ell = 1 = p$ -orbital, dumbbell shape, $\ell = 2 = d$ -orbital

See next page for the shapes of s-p- and d-atomic orbitals.

$m_{\ell} = \text{magnetic quantum number, } m_{\ell} = 0, \pm 1, \pm 2... \pm \ell$;

Gives the **NUMBER OF ORBITALS** in the sub-shell and their orientation in space

 $m_{\ell}=0$, ONE s-orbital, $m_{\ell}=0, \pm 1$, THREE p-orbitals $m_{\ell}=0, \pm 1, \pm 2$, FIVE d-orbitals

Eg. If $\mathbf{n}=\mathbf{2}$, then $\boldsymbol{\ell}=\mathbf{0}$ or 1, and for $\boldsymbol{\ell}=\mathbf{0}$, $\mathbf{m}_{\boldsymbol{\ell}}=\mathbf{0}$; and for $\boldsymbol{\ell}=\mathbf{1}$, $\mathbf{m}_{\boldsymbol{\ell}}=\mathbf{0}+\mathbf{1}$ -1,

For $\ell = 0$, $\mathbf{m}_{\ell} = 0$ only : this defines **one** orbital – in this case the **2s-orbital**.

For $\ell = 1$, $\mathbf{m}_{\ell} = 0$, +1 or -1 only; this defines **3 separate** orbitals – in this case the three **2p-orbitals**.

 $m_s = \underline{SPIN}$ quantum number, $m_s = +\frac{1}{2}$ or $-\frac{1}{2}$, often represented as \uparrow or \downarrow , to indicate spin up or down.

Electrons are often designated as arrows in orbital "boxes", eg

or

↑↓

SHAPES OF ATOMIC ORBITALS

FOR A MULTI-ELECTRON ATOM, we can plot this as shown below:

Note how the filling of the orbitals gives rise to the layout of the Periodic Table shown on the next page.

•							SES ofe	acit.	\sim
1 2 2	Hellum He 4.00	Ne Ne 20.18	Ar 39.95	83.80 3.80	Xeron 54 Xe 131.29 2.6 Radon	86 Rn (222) 2.4	T GASES Stable	electron configuration m cuter	shell (8e-) (2e- for He)
#	1	F 19.00	17 17 35.45 3.0	Br 35 Br 79.90 2.8		85 At (210) 2.2	LNER T Very	electory is	shell (8 (2e fr)
- Number of outer shell electrons The Modern Periodic Table of the Elements	1210	0039en 16.00 3.5	32.07	Selection 34 Se 78.96 2.4	752 76 127.60 2.1	Po (209) 2.0	116 Uuh (292)	Yariblem 70 Yb 173.04 1.1	102 No (259) 1.3
	1>15	Niregan 7 14.01 3.0	Phosphorus 15 P 30.97 2.1	Arsonic 33 A.S 74.92 2.0	Sb 121.76 121.76 1.9	83 Bi 208.98 1.9	115 Uup (288)	Thullow 69 Tm 168.93	101 Md (258) 1.3
	> 4	Gerten G C 12.01 2.5			So Sn 118.71 1.8	82 Pb 207.20 1.8	114 Uuq (289)	Erakım 68 Er 167.26 1.2	100 Fm (257) 1.3
	(≡ ₽		All 26.98	Gathun 31 Ga 69.72 1.6	410	204.38	113 C284)		ES (252)
	Atomic #	Mass	12	Zn 20 Zn 65.39	Cedmium 48 Cd 112.41 1.7		112 Uub (285)	-	Cf (251)
		- Avg. Mass	=	Cu 63.55 63.55	F 0:		111 Rg (272)		97 BK (247)
	→ Mercury	* Hg 200.59 ↓ (£)	o. 10	Neteri 28 28 58.69 1.8	1		110 DS (271)	:	Cm 96 (247)
				Cebalt 27 Co 58.93	0	2.2	109 109 Mt (266)		Am (243) (1.3
out	<u>a</u>	ltivity.	,	25.85 55.85 1.8	1 1 1 1 1 1	Osmutum 76 OS 190.23	Hasslim 108 HS (265)		Plulonium 94 Pu (244) 1.3
n Pe	Element name –	Symbol	-	Mangarese 25 Mn 54.94 1.5	1	_ ~ თ	Bh (262)	1	Np (237)
oder	Elen) .	Cr Cr 52.00 52.00			Sg (263)		92 U 238.03 1.4
N FE		to (rens.	23 Vanadum 50.94		T3 73 T80.95 1.5	Db (262)	Prasaodymium	Prelacificium 91 Pa 231.04 1.5
		The power to	lect 1	§ 88 F		72 72 Hf 178.49	Rulharfordum 104 Rf (261)	Cerbin Pre 58 Ce 140.12 1.1	Therium 90 Th 232.04 1.3
Number		2	tt.	5 0 8 F		Lusetham 7-1 Lu 174.97 1	Lewendum Rull Lr (262)	E7 Ea 138.91	89 80 AC (227) 2
d dy		H H	attract electrons)	8		67-70	89-102 **		
# GROUP	1=1~	g 47 7 5	Mg 24.31	Cathum 20 Ca 40.08	Strendlum 38 Sr 87.62 1.0	Ba 51 Ba 137.33	Radhum 88 89 89 (226) 0.9	*lanthanides	**actinides
;;	1.01 T - 1.01			1.1			1	*	
#	\$ T. 5	3 8.94 6.94	Sectum 11 Na 22.99	7 X 39.10	Robishum 3.7 Rb 85.47	Castum 55 CS (32.9°	8 T (22		