Semi-supervised Classification with Graph Convolutional Networks

Выполнил: Наумов Антон, БПМИ162

Постановка задачи

- Данные в графе (e.g. граф цитирований)
- Требуется каждой вершине сопоставить класс
- Малое подмножество вершин размечено

(semi-supervised graph-based multi-labeled classification)

Постановка задачи (чуть формальнее)

- G = (V, E) граф с N вершин (ненаправленный)
- $v_i \in V$ вершины, $(v_i, v_j) \in E$ рёбра
- $X \in \mathbb{R}^{N*D}$ матрица объект-признак для вершин
- $A \in \mathbb{R}^{N*N}$ матрица смежности графа (бинарная/взвешенная)
- $D_{ii} = \sum_{j} A_{ij}$ степень вершины i
- $\Delta = D A$ Laplacian matrix of G

Классификация (как делалось до)

- Обучаем нейросеть f (X) (дифференцируемая функция)
- $\mathcal{L} = \mathcal{L}_0 + \lambda \mathcal{L}_{reg}$ loss
- \mathcal{L}_0 loss на размеченных вершинах
- $\lambda \mathcal{L}_{reg}$ компонента в loss, отвечающая за неразмеченные вершины

•
$$\mathcal{L}_{reg} = \sum_{i,j} A_{ij} \| f(X_i) - f(X_j) \|^2 = f(X)^T \Delta f(X)$$
 (Минусы)

Основывается на предположении, что вершины, соединённые ребром, принадлежат одному классу

Предположение очень сильное и ограничивает модель

Как исправить? (идейно)

- Будем обучать нейросеть f(X,A) на \mathcal{L}_0
- За счёт занесения А на вход нейросети можно использовать структуру графа при распространении градиентов через нейросеть

1. Propagation rule

Graph Convolutional Network (GCN) – layer-wise rule:

$$H^{(l+1)} = \sigma(\widetilde{D}^{-\frac{1}{2}}\widetilde{A}\widetilde{D}^{-\frac{1}{2}}H^{(l)}W^{(l)}) = \sigma(\widehat{A}H^{(l)}W^{(l)})$$

- $ilde{A} = A + I_N$ матрица смежности с петлями на всех вершинах
- $\widetilde{D_{ii}} = \sum_{j} \widetilde{A_{ij}}$ степень вершины i
- $\bullet \ \hat{A} = \widetilde{D}^{-\frac{1}{2}} \widetilde{A} \widetilde{D}^{-\frac{1}{2}}$
- $\sigma(\cdot)$ нелинейность (ReLU, softmax)
- $H^{(l)} \in \mathbb{R}^{N*D^{(l)}}$ активации на слое l; ($H^{(0)} = X$)
- $W^{(l)} \in \mathbb{R}^{D^{(l)}*D^{(l+1)}}$ веса на слое l

(мотивацию попробуем разобрать в конце, если будет время)

2. Semi-supervised node classification (example)

Рассмотрим 2-слойную GCN:

- Preprocessing: $\hat{A} = \tilde{D}^{-\frac{1}{2}} \tilde{A} \tilde{D}^{-\frac{1}{2}}$
- Forward:

$$Z = f(X, A) = softmax(\hat{A} ReLU(\hat{A}XW^{(0)}) W^{(1)})$$

, где $X \in \mathbb{R}^{N*C}$, $W^{(0)} \in \mathbb{R}^{C*H}$, $W^{(1)} \in \mathbb{R}^{H*F}$, F - количество классов

• Cross-entropy:

$$\mathcal{L} = -\sum_{l \in \mathfrak{I}_{Labeled}} \sum_{f=1}^{F} Y_{lf} \ln Z_{lf}$$

• Обучаем градиентным спуском (батчи, dropout)

(a) Graph Convolutional Network

Эксперименты (данные)

Dataset	Type	Nodes	Edges	Classes	Features	Label rate
Citeseer	Citation network	3,327	4,732	6	3,703	0.036
Cora	Citation network	2,708	5,429	7	1,433	0.052
Pubmed	Citation network	19,717	44,338	3	500	0.003
NELL	Knowledge graph	65,755	266,144	210	5,414	0.001

• Citiation networks:

Разряженные матрицы BoW как фичи документов Цитирование — бинарная ненаправленная связь между документами У каждого документа есть класс, для обучения только 20 примеров из каждого класса

• NELL (Never-ending language learning): Граф сущностей, соединённый направленными именованными связями Сущности е_i

Связи $(e_1, r, e_2) \rightarrow (e_1, r_1), (e_2, r_2)$

• Random graphs (|V| = N, |E| = 2N)

Результаты

Table 2: Summary of results in terms of classification accuracy (in percent).

Method	Citeseer	Cora	Pubmed	NELL
ManiReg [3]	60.1	59.5	70.7	21.8
SemiEmb [28]	59.6	59.0	71.1	26.7
LP [32]	45.3	68.0	63.0	26.5
DeepWalk [22]	43.2	67.2	65.3	58.1
ICA [18]	69.1	75.1	73.9	23.1
Planetoid* [29]	64.7 (26s)	75.7 (13s)	77.2 (25s)	61.9 (185s)
GCN (this paper)	70.3 (7s)	81.5 (4s)	79.0 (38s)	66.0 (48s)
GCN (rand. splits)	67.9 ± 0.5	80.1 ± 0.5	78.9 ± 0.7	58.4 ± 1.7

- 2-слойная GCN
- Тестировали на 1000 размеченных примерах
- Максимум 200 эпох
- Гиперпараметры настроили на Cora и использовали во всех остальных
- Adam, Ir=0.01, early stopping (window=10)
- Init весов по статье + Row-normalization признаков
- Dropout на всех слоях, L2-рег на первом слое, разбиение из статьи

Ограничения

- Через приближение в propagation rule (не разбирали) неявно предполагается зависимость от окрестности k-го порядка для GCN с k слоями
- Ограничены ненаправленными графами, но, как видно из NELL, можно использовать трюк для перехода к ненаправленным
- Ha random graphs установили, что GPU может не тянуть по памяти без стохастических мини-батчей для больших графов

Figure 2: Wall-clock time per epoch for random graphs. (*) indicates out-of-memory error.

Бонус (эмбеддинги)

Бонус (глубина сети)

Residual connections in GCN:

$$H^{(l+1)} = \sigma(\widetilde{D}^{-\frac{1}{2}}\widetilde{A}\widetilde{D}^{-\frac{1}{2}}H^{(l)}W^{(l)}) + H^{(l)}$$

Ссылка на статью: https://arxiv.org/pdf/1609.02907.pdf