CS 181 Spring 2018 Homework Week 2

Assigned 4/9; Due Mon 4/16 @ 3:00pm at Box A1 CS181 Room BH 2432

From last week:

Two: Let L_a and L_b be the same sets as in the previous homework (as clarified in the Course Announcements and slightly rephrased for clarity here). Let $\Sigma = \{0, 1\}$.

 L_a = All strings over Σ that change from one symbol to the other at most once as you read the string

 L_b = All strings over Σ that begin and end with the same symbol

d. Note that we can also view Σ as a language consisting of just the two strings 0 & 1. List the elements of the language concatenation:

$$\Sigma \bullet (\mathsf{L}_\mathsf{b} \cap \{\mathsf{strings} \ \mathsf{of} \ \mathsf{length} \leq 2\})$$

e. What is the language concatenation La • {}?

Six: Consider the two DFAs M_1 & M_2 (Fig. 1.6 on p. 36 & Fig. 1.8 on p. 37, respectively of Sipser) and reproduced here for convenience. What is the language concatenation $\mathcal{L}(M_1) \bullet \mathcal{L}(M_2)$? I.e., give a simple English description of this language.

0. Consider the following alternative definition of the transitive closure δ^* of the transition function δ for a DFA:

For a DFA M = (Q, Σ , δ , q₀, F), extend δ over symbols in Σ to δ^* over strings in Σ^* thusly: Define δ^* : (Q x Σ^*) \rightarrow Q:

$$\delta^*(q, \varepsilon) = q$$
, for all $q \in Q$
 $\delta^*(q, xb) = \delta(\delta^*(q, x), b)$, for all $q \in Q$, $b \in \Sigma$, & $x \in \Sigma^*$

- a. How would you interpret this version of the definition in English vs. the way we interpreted the usual definition?
- b. Prove this version is equivalent to the usual definition by showing that for any DFA, M, it gives the same resulting state for all q in Q and input string w in Σ^* . Since they are both recursive definitions, you'll want to use induction.

1

1. Let M = (Q, Σ , δ , q₀, F) be a DFA with Σ = {a, b}, Q = {(0,0), (0,1), (1,0), (1,1)}, q₀ = (0,0), F = {q₀}, and δ given by the formulas:

$$\delta((x, y), a) = ((x+1) \text{ MOD } 2, y)$$

 $\delta((x, y), b) = (x, (y+1) \text{ MOD } 2)$
where $x, y \in \{0, 1\}$.

- a. Give the state transition table for transition function δ .
- b. Draw the state diagram for DFA M. (Don't forget the initial state and final state(s).)
- c. Describe in English the language recognized by this DFA.
- d. How would you interpret the names of the states in Q in English in terms of how the DFA works?

Inspired by Sipser Exercises: pp. 83-86:

2. Show a DFA over the alphabet { a, b } for the following language (from Sipser Exercise 1.5.h) via the complement construction (as in Exercise 1.14.a):

$$\{ w \in \Sigma^{\uparrow} \mid w \text{ is not the string a nor the string b } \}$$

3. Show an NFA over Σ = {0, 1} for the language in Sipser 1.6l:

$$L_{three} = \{ w \in \Sigma \mid w \text{ contains an even number of 0's or it contains exactly two 1's} \}$$

Can you do it with 6 states?

4. For the following language over $\Sigma = \{a, b\}$ (from Sipser Exercise 1.20.h), give two strings which are in the language and two which are not (total of four strings).

5. Consider the following two languages over $\Sigma = \{ a, b, c \}$.

$$L_{five} = \{ xby \mid x, y \in \{ a, c \} \text{ and the number of a's in } x = the number of a's in } y \}$$

$$L_{NFS} = \{ a^nba^n \mid n \ge 0 \}$$

As discussed in class, languages like L_{NFS} are *not* finite state. Prove that L_{five} is not finite state using closure properties of finite state languages and the fact that L_{NFS} is not finite state.

eof