Cuadripolos

Teoría de Circuitos III

Oscar Perpiñán Lamigueiro

- 1 Introducción
- 2 Parámetros de Cuadripolos
- **3** Relación entre parámetros
- 4 Cuadripolos entre Dipolos Terminales
- **5** Asociación de Cuadripolos

Cuadripolo

Cuadripolos Recíprocos y Simétricos

- Un cuadripolo es recíproco si, al intercambiar la posición de las excitaciones, la respuesta en el puerto correspondiente no sufre cambios (teorema de reciprocidad).
- Un cuadripolo lineal (RLC) y sin fuentes dependientes es recíproco.
- ► Un cuadripolo recíproco es simétrico si se puede intercambiar la entrada con la salida (simetría física).

- 1 Introducción
- 2 Parámetros de Cuadripolos
- **3** Relación entre parámetros
- 4 Cuadripolos entre Dipolos Terminales
- **5** Asociación de Cuadripolos

- Introducción
- 2 Parámetros de Cuadripolos Parámetros de Impedancia

Parámetros de Admitancia Parámetros Híbridos Parámetros Híbridos Inversos Parámetros de Transmisión Parámetros de Transmisión Inversa

- 3 Relación entre parámetros
- 4 Cuadripolos entre Dipolos Terminales
- 6 Asociación de Cuadripolos

Definición

Mediante teorema de superposición:

$$egin{aligned} \mathbf{V}_1 &= \mathbf{z}_{11} \mathbf{I}_1 + \mathbf{z}_{12} \mathbf{I}_2 \ \mathbf{V}_2 &= \mathbf{z}_{21} \mathbf{I}_1 + \mathbf{z}_{22} \mathbf{I}_2 \end{aligned}$$

Expresión Matricial

$$\left[egin{array}{c} \mathbf{V}_1 \ \mathbf{V}_2 \end{array}
ight] = \left[egin{array}{cc} \mathbf{z}_{11} & \mathbf{z}_{12} \ \mathbf{z}_{21} & \mathbf{z}_{22} \end{array}
ight] \cdot \left[egin{array}{c} \mathbf{I}_1 \ \mathbf{I}_2 \end{array}
ight]$$

Circuito Equivalente

Cálculo de parámetros

$$\left[egin{array}{c} \mathbf{V}_1 \\ \mathbf{V}_2 \end{array}
ight] = \left[egin{array}{cc} \mathbf{z}_{11} & \mathbf{z}_{12} \\ \mathbf{z}_{21} & \mathbf{z}_{22} \end{array}
ight] \cdot \left[egin{array}{c} \mathbf{I}_1 \\ \mathbf{I}_2 \end{array}
ight]$$

Cálculo de parámetros

$$\left[\begin{array}{c} \mathbf{V}_1 \\ \mathbf{V}_2 \end{array}\right] = \left[\begin{array}{cc} \mathbf{z}_{11} & \mathbf{z}_{12} \\ \mathbf{z}_{21} & \mathbf{z}_{22} \end{array}\right] \cdot \left[\begin{array}{c} \mathbf{I}_1 \\ \mathbf{I}_2 \end{array}\right]$$

Reciprocidad

$$\begin{array}{ccc} \mathbf{V_1}| & \mathbf{I_1} = \mathbf{0} & = \mathbf{V_2}| & \mathbf{I_2} = \mathbf{0} \\ & \mathbf{I_2} = \mathbf{I_x} & & \mathbf{I_1} = \mathbf{I_x} \end{array}$$

Relación entre parámetros

Las impedancias de transferencia son idénticas

$$\left. \begin{array}{l} \mathbf{V}_x = \mathbf{z}_{11} \mathbf{0} + \mathbf{z}_{12} \mathbf{I}_x \\ \mathbf{V}_x = \mathbf{z}_{21} \mathbf{I}_x + \mathbf{z}_{22} \mathbf{0} \end{array} \right\} \rightarrow \boxed{\mathbf{z}_{12} = \mathbf{z}_{21}}$$

Circuito Equivalente en T

$$egin{bmatrix} egin{bmatrix} egi$$

Ejercicio

Demostrar que un cuadripolo recíproco es equivalente al circuito en T de la figura.

Cuadripolo Simétrico

No siempre hay parámetros Z

¿Cuáles son los parámetros Z...

- de un transformador ideal?
- ▶ de una impedancia serie?

- 1 Introducción
- 2 Parámetros de Cuadripolos

Parámetros de Impedancia

Parámetros de Admitancia

Parámetros Híbridos

Parámetros Híbridos Inversos

Parámetros de Transmisión

Parámetros de Transmisión Inversa

- 3 Relación entre parámetros
- 4 Cuadripolos entre Dipolos Terminales
- 6 Asociación de Cuadripolos

Definición

Mediante teorema de superposición:

$$\begin{split} I_1 &= y_{11}V_1 + y_{12}V_2 \\ I_2 &= y_{21}V_1 + y_{22}V_2 \end{split}$$

Las variables independientes (generadores) son V1 e V2

Expresión Matricial

$$\left[\begin{array}{c}\mathbf{I}_1\\\mathbf{I}_2\end{array}\right] = \left[\begin{array}{cc}\mathbf{y}_{11} & \mathbf{y}_{12}\\\mathbf{y}_{21} & \mathbf{y}_{22}\end{array}\right] \cdot \left[\begin{array}{c}\mathbf{V}_1\\\mathbf{V}_2\end{array}\right]$$

Circuito Equivalente

Cálculo de parámetros

$$\left[\begin{array}{c}\mathbf{I}_1\\\mathbf{I}_2\end{array}\right] = \left[\begin{array}{cc}\mathbf{y}_{11} & \mathbf{y}_{12}\\\mathbf{y}_{21} & \mathbf{y}_{22}\end{array}\right] \cdot \left[\begin{array}{c}\mathbf{V}_1\\\mathbf{V}_2\end{array}\right]$$

Cálculo de parámetros

$$\left[\begin{array}{c}\mathbf{I}_1\\\mathbf{I}_2\end{array}\right] = \left[\begin{array}{cc}\mathbf{y}_{11} & \mathbf{y}_{12}\\\mathbf{y}_{21} & \mathbf{y}_{22}\end{array}\right] \cdot \left[\begin{array}{c}\mathbf{V}_1\\\mathbf{V}_2\end{array}\right]$$

Reciprocidad

$$\begin{array}{c|c} \mathbf{I_1} & \mathbf{V_1} = \mathbf{0} & = \mathbf{I_2} | & \mathbf{V_2} = \mathbf{0} \\ & \mathbf{V_2} = \mathbf{V_x} & & \mathbf{V_1} = \mathbf{V_x} \end{array}$$

Relación entre parámetros

Las admitancias de transferencia son idénticas

$$\begin{bmatrix} \mathbf{I}_x = \mathbf{y}_{11}0 + \mathbf{y}_{12}\mathbf{V}_x \\ \mathbf{I}_x = \mathbf{y}_{21}\mathbf{V}_x + \mathbf{y}_{22}0 \end{bmatrix} \rightarrow \begin{bmatrix} \mathbf{y}_{12} = \mathbf{y}_{21} \end{bmatrix}$$

Circuito Equivalente en π

$$\boxed{\mathbf{y_{12} = y_{21}}} \rightarrow \left[\begin{array}{c} \mathbf{I_1} \\ \mathbf{I_2} \end{array}\right] = \left[\begin{array}{cc} \mathbf{y_{11}} & \mathbf{y_{12}} \\ \mathbf{y_{12}} & \mathbf{y_{22}} \end{array}\right] \cdot \left[\begin{array}{c} \mathbf{V_1} \\ \mathbf{V_2} \end{array}\right]$$

Ejercicio

Demostrar que un cuadripolo recíproco es equivalente al circuito en π de la figura.

Cuadripolo Simétrico

No siempre hay parámetros Y

¿Cuáles son los parámetros Y ...

- de un transformador ideal?
- de una impedancia paralelo?

- 1 Introducción
- 2 Parámetros de Cuadripolos

Parámetros de Impedancia Parámetros de Admitancia

Parámetros Híbridos

Parámetros Híbridos Inversos Parámetros de Transmisión Parámetros de Transmisión Invers

- 3 Relación entre parámetros
- 4 Cuadripolos entre Dipolos Terminales
- **6** Asociación de Cuadripolos

Definición

Mediante teorema de superposición:

$$\mathbf{V}_1 = \mathbf{h}_{11}\mathbf{I}_1 + \mathbf{h}_{12}\mathbf{V}_2$$

 $\mathbf{I}_2 = \mathbf{h}_{21}\mathbf{I}_1 + \mathbf{h}_{22}\mathbf{V}_2$

T '11 '1 1' (/ 1) T T7

Expresión Matricial

$$\left[egin{array}{c} \mathbf{V}_1 \ \mathbf{I}_2 \end{array}
ight] = \left[egin{array}{c} \mathbf{h}_{11} & \mathbf{h}_{12} \ \mathbf{h}_{21} & \mathbf{h}_{22} \end{array}
ight] \cdot \left[egin{array}{c} \mathbf{I}_1 \ \mathbf{V}_2 \end{array}
ight]$$

Circuito Equivalente

Cálculo de parámetros

$$\left[\begin{array}{c} \mathbf{V}_1 \\ \mathbf{I}_2 \end{array}\right] = \left[\begin{array}{cc} \mathbf{h}_{11} & \mathbf{h}_{12} \\ \mathbf{h}_{21} & \mathbf{h}_{22} \end{array}\right] \cdot \left[\begin{array}{c} \mathbf{I}_1 \\ \mathbf{V}_2 \end{array}\right]$$

Cálculo de parámetros

$$\left[\begin{array}{c} \mathbf{V}_1 \\ \mathbf{I}_2 \end{array}\right] = \left[\begin{array}{cc} \mathbf{h}_{11} & \mathbf{h}_{12} \\ \mathbf{h}_{21} & \mathbf{h}_{22} \end{array}\right] \cdot \left[\begin{array}{c} \mathbf{I}_1 \\ \mathbf{V}_2 \end{array}\right]$$

- 1 Introducción
- 2 Parámetros de Cuadripolos

Parámetros de Impedancia Parámetros de Admitancia Parámetros Híbridos

Parámetros Híbridos Inversos

Parámetros de Transmisión Parámetros de Transmisión Inversa

- 3 Relación entre parámetros
- Cuadripolos entre Dipolos Terminales
- 6 Asociación de Cuadripolos

Definición

Mediante teorema de superposición:

$$egin{aligned} \mathbf{I}_1 &= \mathbf{g}_{11} \mathbf{V}_1 + \mathbf{g}_{12} \mathbf{I}_2 \ \mathbf{V}_2 &= \mathbf{g}_{21} \mathbf{V}_1 + \mathbf{g}_{22} \mathbf{I}_2 \end{aligned}$$

T ' 1 1 ' 1 1' (/ 1) T7 T

Expresión Matricial

$$\left[\begin{array}{c}\mathbf{I}_1\\\mathbf{V}_2\end{array}\right] = \left[\begin{array}{cc}\mathbf{g}_{11} & \mathbf{g}_{12}\\\mathbf{g}_{21} & \mathbf{g}_{22}\end{array}\right] \cdot \left[\begin{array}{c}\mathbf{V}_1\\\mathbf{I}_2\end{array}\right]$$

Circuito Equivalente

$$\begin{split} \textbf{I}_1 &= \textbf{g}_{11} \textbf{V}_1 + \textbf{g}_{12} \textbf{I}_2 \\ \textbf{V}_2 &= \textbf{g}_{21} \textbf{V}_1 + \textbf{g}_{22} \textbf{I}_2 \end{split}$$

Cálculo de parámetros

$$\left[\begin{array}{c}\mathbf{I}_1\\\mathbf{V}_2\end{array}\right] = \left[\begin{array}{cc}\mathbf{g}_{11} & \mathbf{g}_{12}\\\mathbf{g}_{21} & \mathbf{g}_{22}\end{array}\right] \cdot \left[\begin{array}{c}\mathbf{V}_1\\\mathbf{I}_2\end{array}\right]$$

Cálculo de parámetros

$$\left[\begin{array}{c}\mathbf{I}_1\\\mathbf{V}_2\end{array}\right] = \left[\begin{array}{cc}\mathbf{g}_{11} & \mathbf{g}_{12}\\\mathbf{g}_{21} & \mathbf{g}_{22}\end{array}\right] \cdot \left[\begin{array}{c}\mathbf{V}_1\\\mathbf{I}_2\end{array}\right]$$

- 1 Introducción
- 2 Parámetros de Cuadripolos

Parámetros de Impedancia Parámetros de Admitancia Parámetros Híbridos Parámetros Híbridos Inversos

Parámetros de Transmisión

Parámetros de Transmisión Inversa

- 3 Relación entre parámetros
- Cuadripolos entre Dipolos Terminales
- 6 Asociación de Cuadripolos

Definición

 ${f I}_1 = {f CV}_2 + {f DI'}_2$

 $\mathbf{V}_1 = \mathbf{A}\mathbf{V}_2 + \mathbf{B}\mathbf{I}'_2$

Expresión Matricial

Cálculo de parámetros

Se debe medir el inverso de cada parámetro, dado que la magnitud a medir y la excitación pertenecen al mismo puerto.

$$\begin{aligned} &\frac{1}{A} = \left. \frac{V_2}{V_1} \right|_{I_2 = 0} & \left. \frac{1}{B} = \left. \frac{I'_2}{V_1} \right|_{V_2 = 0} \\ \\ &\frac{1}{C} = \left. \frac{V_2}{I_1} \right|_{I_2 = 0} & \left. \frac{1}{D} = \left. \frac{I'_2}{I_1} \right|_{V_2 = 0} \end{aligned}$$

- 1 Introducción
- 2 Parámetros de Cuadripolos

Parámetros de Impedancia Parámetros de Admitancia Parámetros Híbridos Parámetros Híbridos Inversos Parámetros de Transmisión Parámetros de Transmisión Inversa

- 3 Relación entre parámetros
- 4 Cuadripolos entre Dipolos Terminales
- 6 Asociación de Cuadripolos

Definición

 $\mathbf{I}_2 = \mathbf{c}\mathbf{V}_1 + \mathbf{d}\mathbf{I}'_1$

 $\mathbf{V}_2 = \mathbf{a}\mathbf{V}_1 + \mathbf{b}\mathbf{I}'_1$

Expresión Matricial

Cálculo de parámetros

Se debe medir el inverso de cada parámetro, dado que la magnitud a medir y la excitación pertenecen al mismo puerto.

$$\begin{aligned} \frac{1}{a} &= \left. \frac{\mathbf{V}_1}{\mathbf{V}_2} \right|_{\mathbf{I}_1 = \mathbf{0}} \quad \frac{1}{\mathbf{b}} &= \left. \frac{\mathbf{I}'_1}{\mathbf{V}_2} \right|_{\mathbf{V}_1 = \mathbf{0}} \\ \\ \frac{1}{\mathbf{c}} &= \left. \frac{\mathbf{V}_1}{\mathbf{I}_2} \right|_{\mathbf{I}_1 = \mathbf{0}} \quad \frac{1}{\mathbf{d}} &= \left. \frac{\mathbf{I}'_1}{\mathbf{I}_2} \right|_{\mathbf{V}_1 = \mathbf{0}} \end{aligned}$$

$$\mathbf{V}_2 = \mathbf{a}\mathbf{V}_1 + \mathbf{b}\mathbf{I}'_1$$
$$\mathbf{I}_2 = \mathbf{c}\mathbf{V}_1 + \mathbf{d}\mathbf{I}'_1$$

- 1 Introducción
- 2 Parámetros de Cuadripolos
- **3** Relación entre parámetros
- 4 Cuadripolos entre Dipolos Terminales
- **5** Asociación de Cuadripolos

Impedancia y Admitancia

$$\begin{bmatrix} \mathbf{V}_1 \\ \mathbf{V}_2 \end{bmatrix} = \begin{bmatrix} \mathbf{z}_{11} & \mathbf{z}_{12} \\ \mathbf{z}_{21} & \mathbf{z}_{22} \end{bmatrix} \cdot \begin{bmatrix} \mathbf{I}_1 \\ \mathbf{I}_2 \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{I}_1 \\ \mathbf{I}_2 \end{bmatrix} = \begin{bmatrix} \mathbf{y}_{11} & \mathbf{y}_{12} \\ \mathbf{y}_{21} & \mathbf{y}_{22} \end{bmatrix} \cdot \begin{bmatrix} \mathbf{V}_1 \\ \mathbf{V}_2 \end{bmatrix}$$

Híbridos

$$\left[egin{array}{c} \mathbf{V}_1 \ \mathbf{I}_2 \end{array}
ight] = \left[egin{array}{c} \mathbf{h}_{11} & \mathbf{h}_{12} \ \mathbf{h}_{21} & \mathbf{h}_{22} \end{array}
ight] \cdot \left[egin{array}{c} \mathbf{I}_1 \ \mathbf{V}_2 \end{array}
ight] \ \left[egin{array}{c} \mathbf{I}_1 \ \mathbf{V}_2 \end{array}
ight] = \left[egin{array}{c} \mathbf{g}_{11} & \mathbf{g}_{12} \ \mathbf{g}_{21} & \mathbf{g}_{22} \end{array}
ight] \cdot \left[egin{array}{c} \mathbf{V}_1 \ \mathbf{I}_2 \end{array}
ight]
ight.$$

Transmisión

$$\begin{bmatrix} \mathbf{V}_1 \\ \mathbf{I}_1 \end{bmatrix} = \begin{bmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{C} & \mathbf{D} \end{bmatrix} \cdot \begin{bmatrix} \mathbf{V}_2 \\ \mathbf{I}'_2 \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{V}_2 \\ \mathbf{I}_2 \end{bmatrix} = \begin{bmatrix} \mathbf{a} & \mathbf{b} \\ \mathbf{c} & \mathbf{d} \end{bmatrix} \cdot \begin{bmatrix} \mathbf{V}_1 \\ \mathbf{I}'_1 \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{C} & \mathbf{D} \end{bmatrix} = \begin{bmatrix} \mathbf{a} & -\mathbf{b} \\ -\mathbf{c} & \mathbf{d} \end{bmatrix}^{-1}$$

	Z		y		h		g		T	
z	\mathbf{z}_{11}	\mathbf{z}_{12}	$rac{\mathbf{y}_{22}}{\Delta_y}$	$-rac{\mathbf{y}_{12}}{\Delta_y}$	$rac{\Delta_h}{\mathbf{h}_{22}}$	$\frac{\mathbf{h}_{12}}{\mathbf{h}_{22}}$	$\frac{1}{{\bf g}_{11}}$	$-\frac{{\bf g}_{12}}{{\bf g}_{11}}$	$\frac{\mathbf{A}}{\mathbf{C}}$	$rac{\Delta_T}{\mathbf{C}}$
	\mathbf{z}_{21}	z ₂₂	$-rac{\mathbf{y}_{21}}{\Delta_y}$	$\frac{\mathbf{y}_{11}}{\Delta_y}$	$-\frac{\mathbf{h}_{21}}{\mathbf{h}_{22}}$	$\frac{1}{\mathbf{h}_{22}}$	$\frac{\mathbf{g}_{21}}{\mathbf{g}_{11}}$	$rac{\Delta_g}{{f g}_{11}}$	$\frac{1}{\mathbf{C}}$	$\frac{\mathbf{D}}{\mathbf{C}}$
y	$rac{\mathbf{z}_{22}}{\Delta_z}$	$-\frac{\mathbf{z}_{12}}{\Delta_z}$	\mathbf{y}_{11}	\mathbf{y}_{12}	$\frac{1}{\mathbf{h}_{11}}$	$-\frac{\mathbf{h}_{12}}{\mathbf{h}_{11}}$	$\frac{\Delta_g}{\mathbf{g}_{22}}$	$\frac{\mathbf{g}_{12}}{\mathbf{g}_{22}}$	$\frac{\mathbf{D}}{\mathbf{B}}$	$-rac{\Delta_T}{\mathbf{B}}$
	$-\frac{\mathbf{z}_{21}}{\Delta_z}$	$rac{\mathbf{z}_{11}}{\Delta_z}$	\mathbf{y}_{21}	\mathbf{y}_{22}	$\frac{\mathbf{h}_{21}}{\mathbf{h}_{11}}$	$rac{\Delta_h}{\mathbf{h}_{11}}$	$-\frac{\mathbf{g}_{21}}{\mathbf{g}_{22}}$	$\frac{1}{\mathbf{g}_{22}}$	$-\frac{1}{\mathbf{B}}$	$\frac{\mathbf{A}}{\mathbf{B}}$
h	$egin{aligned} rac{\Delta_z}{\mathbf{z}_{22}} \ -rac{\mathbf{z}_{21}}{} \end{aligned}$	$\frac{\mathbf{z}_{12}}{\mathbf{z}_{22}}$	$\frac{1}{\mathbf{y}_{11}}$	$-\frac{\mathbf{y}_{12}}{\mathbf{y}_{11}}$	\mathbf{h}_{11}	\mathbf{h}_{12}	$rac{{f g}_{22}}{\Delta_g}$	$-\frac{{\bf g}_{12}}{\Delta_g}$	$\frac{\mathbf{B}}{\mathbf{D}}$	$rac{\Delta_T}{\mathbf{D}}$
	\mathbf{z}_{22}	$\frac{1}{\mathbf{z}_{22}}$	$\frac{\mathbf{y}_{21}}{\mathbf{y}_{11}}$	$rac{\Delta_y}{\mathbf{y}_{11}}$	\mathbf{h}_{21}	\mathbf{h}_{22}	$-\frac{{\bf g}_{21}}{\Delta_g}$	$rac{{f g}_{11}}{\Delta_g}$	$-\frac{1}{\mathbf{D}}$	$\frac{\mathbf{C}}{\mathbf{D}}$
g	$\frac{1}{\mathbf{z}_{11}}$	$-\frac{\mathbf{z}_{12}}{\mathbf{z}_{11}}$	$\frac{\Delta_y}{\mathbf{y}_{22}}$	$\frac{\mathbf{y}_{12}}{\mathbf{y}_{22}}$	$rac{\mathbf{h}_{22}}{\Delta_h}$	$-rac{\mathbf{h}_{12}}{\Delta_h}$	\mathbf{g}_{11}	\mathbf{g}_{12}	$\frac{\mathbf{C}}{\mathbf{A}}$	$-rac{\Delta_T}{\mathbf{A}}$
	$\frac{\mathbf{z}_{21}}{\mathbf{z}_{11}}$	$rac{\Delta_z}{\mathbf{z}_{11}}$	$-\frac{\mathbf{y}_{21}}{\mathbf{y}_{22}}$	$\frac{1}{\mathbf{y}_{22}}$	$-rac{\mathbf{h}_{21}}{\Delta_h}$	$\frac{\mathbf{h}_{11}}{\Delta_h}$	${\bf g}_{21}$	\mathbf{g}_{22}	$\frac{1}{\mathbf{A}}$	$\frac{\mathbf{B}}{\mathbf{A}}$
T	$\frac{\mathbf{z}_{11}}{\mathbf{z}_{21}}$	$rac{\Delta_z}{\mathbf{z}_{21}}$	$-\frac{\mathbf{y}_{22}}{\mathbf{y}_{21}}$	$-\frac{1}{\mathbf{y}_{21}}$	$-rac{\Delta_h}{\mathbf{h}_{21}}$	$-\frac{\mathbf{h}_{11}}{\mathbf{h}_{21}}$	$\frac{1}{\mathbf{g}_{21}}$	$\frac{\mathbf{g}_{22}}{\mathbf{g}_{21}}$	A	В
	$\frac{1}{\mathbf{z}_{21}}$	$\frac{\mathbf{z}_{22}}{\mathbf{z}_{21}}$	$-rac{\Delta_y}{\mathbf{y}_{21}}$	$-\frac{\mathbf{y}_{11}}{\mathbf{y}_{21}}$	$-\frac{\mathbf{h}_{22}}{\mathbf{h}_{21}}$	$-\frac{1}{\mathbf{h}_{21}}$	$\frac{\mathbf{g}_{11}}{\mathbf{g}_{21}}$	$rac{\Delta_g}{{f g}_{21}}$	C	D
t	$\frac{\mathbf{z}_{22}}{\mathbf{z}_{12}}$	$rac{\Delta_z}{\mathbf{z}_{12}}$	$-\frac{\mathbf{y}_{11}}{\mathbf{y}_{12}}$	$-\frac{1}{\mathbf{y}_{12}}$	$\frac{1}{\mathbf{h}_{12}}$	$\frac{\mathbf{h}_{11}}{\mathbf{h}_{12}}$	$-rac{\Delta_g}{{f g}_{12}}$	$-\frac{{f g}_{22}}{{f g}_{12}}$	$rac{\mathbf{D}}{\Delta_T}$	$rac{\mathbf{B}}{\Delta_T}$
	1	\mathbf{z}_{11}	Δ_y	\mathbf{y}_{22}	\mathbf{h}_{22}	Δ_h	\mathbf{g}_{11}	1	C	\mathbf{A}

Reciprocidad

A partir de las relaciones ya obtenidas para impedancia y admitancia, utilizando la tabla anterior obtenemos la relación para parámetros híbridos y de transmisión:

$$\begin{array}{c} z_{12} = z_{21} \\ y_{12} = y_{21} \end{array} \right\} \rightarrow \left\{ \begin{array}{c} h_{12} = -h_{21} \\ g_{12} = -g_{21} \\ AD - BC = 1 \\ ad - bc = 1 \end{array} \right.$$

Simetría

A partir de las relaciones ya obtenidas para impedancia y admitancia, utilizando la tabla anterior obtenemos la relación para parámetros híbridos y de transmisión:

$$\left. \begin{array}{l} \mathbf{z_{11}} = \mathbf{z_{22}} \\ \mathbf{y_{11}} = \mathbf{y_{22}} \end{array} \right\} \rightarrow \left\{ \begin{array}{l} \mathbf{h_{11}} \cdot \mathbf{h_{22}} - \mathbf{h_{12}}^2 = 1 \\ \mathbf{g_{11}} \cdot \mathbf{g_{22}} - \mathbf{g_{12}}^2 = 1 \\ \mathbf{A} = \mathbf{D} \\ \mathbf{a} = \mathbf{d} \end{array} \right.$$

Además:

$$[T] = [t]$$

- 1 Introducción
- 2 Parámetros de Cuadripolos
- **3** Relación entre parámetros
- **4** Cuadripolos entre Dipolos Terminales
- **5** Asociación de Cuadripolos

- 1 Introducción
- 2 Parámetros de Cuadripolos
- **3** Relación entre parámetros
- 4 Cuadripolos entre Dipolos Terminales Situación General Parámetros Imagen
- **5** Asociación de Cuadripolos

$$\mathbf{V}_1 = \mathbf{E}_g - \mathbf{Z}_g \cdot \mathbf{I}_1$$
$$\mathbf{V}_2 = -\mathbf{Z}_L \cdot \mathbf{I}_2$$

$$\mathbf{V}_1 = (\mathbf{I}_g - \mathbf{I}_1) \cdot \mathbf{Z}_g$$
$$\mathbf{V}_2 = -\mathbf{Z}_L \cdot \mathbf{I}_2$$

Ganancia

► Ganancia de Tensión

$$\mathbf{A}_V = \frac{\mathbf{V}_2}{\mathbf{E}_g}$$

► Ganancia de Corriente

$$\mathbf{A}_I = \frac{\mathbf{I}_2}{\mathbf{I}_g}$$

Impedancia

► Impedancia de Entrada

$$\mathbf{Z}_i = \frac{\mathbf{V}_1}{\mathbf{I}_1}$$

► Impedancia de Salida

$$\mathbf{Z}_o = \left. rac{\mathbf{V}_2}{\mathbf{I}_2}
ight|_{\mathbf{E}_g = 0}$$

Transferencia

► Transadmitancia directa

$$\mathbf{Y}_f = \frac{\mathbf{I}_2}{\mathbf{E}_g}$$

▶ Transimpedancia directa

$$\mathbf{Z}_f = \frac{\mathbf{V}_2}{\mathbf{I}_g}$$

Ejercicio de Cálculo (1)

Demuestra que la impedancia de entrada del circuito a la derecha de la fuente real expresada con parámetros de transmisión es:

Ejercicio de Cálculo (2)

¿Qué impedancia de carga \mathbf{Z}_L hay que conectar a la salida del cuadripolo para obtener la máxima transferencia de potencia?

- 1 Introducción
- 2 Parámetros de Cuadripolos
- **3** Relación entre parámetros
- Cuadripolos entre Dipolos Terminales Situación General Parámetros Imagen
- **5** Asociación de Cuadripolos

Impedancia Característica

Para un cuadripolo **recíproco** y **simétrico** se definen los parámetros imagen:

▶ Impedancia característica, Z_0 : impedancia que, conectada en una puerta, hace que desde la otra puerta se vea la misma impedancia.

$$\mathbf{Z}_o = \frac{\mathbf{U}_1}{\mathbf{I}_1}$$

Impedancia Característica

Atención

La ecuación proporciona dos soluciones, una de las cuáles implicará una impedancia no viable (*resistencia negativa*).

$$\mathbf{Z}_o = \pm \sqrt{\frac{\mathbf{B}}{\mathbf{C}}}$$

Función de Propagación

Para un cuadripolo **recíproco** y **simétrico** se definen los parámetros imagen:

▶ Función de propagación, γ : relacionada con el cociente de potencias en las puertas del cuadripolo cuando una de ellas está cargada con \mathbf{Z}_0

$$\exp(2\gamma) = \frac{\mathbf{U}_1 \mathbf{I}_1}{\mathbf{U}_2 \mathbf{I}_2'}$$

Relación entre \mathbf{Z}_o y γ

$$\exp(\gamma) = \frac{\mathbf{U}_1}{\mathbf{U}_2} =$$

$$= \frac{\mathbf{A}\mathbf{U}_2 + \mathbf{B}\mathbf{I}_2'}{\mathbf{U}_2} =$$

$$= \mathbf{A} + \mathbf{B}\frac{\mathbf{I}_2'}{\mathbf{U}_2}$$

$$\exp(\gamma) = \mathbf{A} + \frac{\mathbf{B}}{\mathbf{Z}_o}$$

Relación entre \mathbf{Z}_o y γ

Teniendo en cuenta la expresión de \mathbb{Z}_o :

$$\begin{array}{l} \mathbf{Z}_o = \pm \sqrt{\frac{\mathbf{B}}{\mathbf{C}}} \\ \exp(\gamma) = \mathbf{A} + \frac{\mathbf{B}}{\mathbf{Z}_o} \end{array} \right\} \rightarrow \boxed{\exp(\gamma) = \mathbf{A} \pm \sqrt{\mathbf{BC}}}$$

Además, teniendo en cuenta la relación de un cuadripolo recíproco y simétrico:

$$\mathbf{A}^2 - \mathbf{BC} = 1 \rightarrow \boxed{\exp(\gamma) = \mathbf{A} \pm \sqrt{\mathbf{A}^2 - 1}}$$

Atención al signo que acompaña a las raíces cuadradas. Se debe elegir de forma que la parte real de γ sea acorde al cuadripolo.

Transmisión a partir de Imagen

$$e^{\gamma} = \mathbf{A} + \sqrt{\mathbf{A}^2 - 1}$$
 $\cosh(\gamma) = \frac{e^{\gamma} + e^{-\gamma}}{2}$ $\sinh(\gamma) = \frac{e^{\gamma} - e^{-\gamma}}{2}$ $\cosh^2(\gamma) - \sinh^2(\gamma) = 1$

 $A^2 - BC = 1$

$$\mathbf{A} = \cosh(\gamma)$$
 $\mathbf{B} = \mathbf{Z}_o \sinh(\gamma)$
 $\mathbf{C} = \sinh(\gamma)/\mathbf{Z}_o$ $\mathbf{D} = \cosh(\gamma)$

Régimen Permanente Sinusoidal

Cuando el circuito funciona en régimen permanente sinusoidal:

La función de propagación es un número complejo denominado constante de propagación.

$$\overline{\gamma} = \alpha + j\beta$$

Las tensiones y corrientes son fasores

$$\exp(\overline{\gamma}) = \exp(\alpha) \cdot \exp(j\beta) = \frac{\overline{U}_1}{\overline{U}_2} = \frac{\overline{I}_1}{\overline{I}'_2}$$

Régimen Permanente Sinusoidal

Constante de Atenuación (cuando $\alpha > 1$ el cuadripolo atenúa la salida respecto de la entrada)

$$\exp(\alpha) = \frac{U_1}{U_2} = \frac{I_1}{I_2}$$

► Constante de Fase (desfase entre puertos)

$$\beta = \theta_{\overline{U}_1} - \theta_{\overline{U}_2} = \theta_{\overline{I}_1} - \theta_{\overline{I}_2'}$$

Atenuación de Potencia

Cuando está conectada la impedancia característica, las potencias activas en los puertos se expresan:

$$P_1 = U_1 I_1 \cos(\theta_o)$$

$$P_2 = U_2 I_2 \cos(\theta_o)$$

donde θ_0 es el ángulo de la impedancia \overline{Z}_0 . Por tanto, la relación de potencias activas es:

$$\frac{P_1}{P_2} = \frac{U_1 I_1}{U_2 I_2}$$

Teniendo en cuenta la expresión de la constante de atenuación, esta relación es:

$$\exp(\alpha) = \frac{U_1}{U_2} = \frac{I_1}{I_2} \rightarrow \left[\exp(2\alpha) = \frac{U_1 I_1}{U_2 I_1} = \frac{P_1}{P_2} \right]$$

- 1 Introducción
- 2 Parámetros de Cuadripolos
- **3** Relación entre parámetros
- 4 Cuadripolos entre Dipolos Terminales
- **5** Asociación de Cuadripolos

Conexiones

Definición

- **Serie**: misma corriente, suma de tensiones
- ▶ Paralelo: misma tensión, suma de corrientes

Catálogo

- Serie-Serie: parámetros impedancia
- ► Paralelo-Paralelo: parámetros admitancia
- Serie-Paralelo: parámetros híbridos
- Paralelo-Serie: parámetros híbridos inversos
- Cascada: parámetros transmisión/imagen

- Introducción
- 2 Parámetros de Cuadripolos
- **3** Relación entre parámetros
- 4 Cuadripolos entre Dipolos Terminales
- 6 Asociación de Cuadripolos Asociación Serie-Serie Asociación Paralelo-Paralelo Asociación Serie-Paralelo Asociación Paralelo-Serie Asociación Cascada

Conexión

Tensiones

$$\mathbf{V}_1 = \mathbf{V}_{1A} + \mathbf{V}_{1B}$$

 $\mathbf{V}_2 = \mathbf{V}_{2A} + \mathbf{V}_{2B}$

Condición de Puerto

$$\mathbf{I}_{1A} = \mathbf{I}_{1'A}$$

$$\mathbf{I}_{1B} = \mathbf{I}_{1'B}$$

$$\mathbf{I}_{2A} = \mathbf{I}_{2'A}$$

 $I_{2B} = I_{2'B}$

Cuadripolo Equivalente

Interacción

Entrad

 $\mathbf{I}_{1A} = \mathbf{I}_{5}$ $\mathbf{I}_{1'A} = \mathbf{I}_{5}$

Salida

 $\mathbf{I}_{2A} = \mathbf{I}_{8}$ $\mathbf{I}_{2'A} = \mathbf{I}_{8}$

► Condic

Puerto $I_h =$

Interacción

Si no hay interacción, al aplicar superposición la corriente de circulación debe ser nula **en ambos casos**.

Test de Brune

Aplicando superposición desconectamos los cuadripolos: si no hay interacción, no habrá cambio de tensión.

Métodos para evitar interacción

Métodos para evitar interacción

- Introducción
- 2 Parámetros de Cuadripolos
- **3** Relación entre parámetros
- 4 Cuadripolos entre Dipolos Terminales
- **5** Asociación de Cuadripolos

Asociación Serie-Serie

Asociación Paralelo-Paralelo

Asociación Serie-Paralelo

Asociación Paralelo-Serie

Asociación Cascada

Conexión

Corrientes

$$\mathbf{I}_1 = \mathbf{I}_{1A} + \mathbf{I}_{1B}$$
$$\mathbf{I}_2 = \mathbf{I}_{2A} + \mathbf{I}_{2B}$$

Condición de Puerto

$$I_{1A} = I_{1'A}$$
 $I_{1B} = I_{1'B}$
 $I_{2A} = I_{2'A}$

$$\mathbf{I}_{2B}=\mathbf{I}_{2'B}$$

Cuadripolo Equivalente

$$[\mathbf{I}_A] = [\mathbf{Y}_A] \cdot [\mathbf{V}_A]$$

 $[\mathbf{I}_B] = [\mathbf{Y}_B] \cdot [\mathbf{V}_B]$

Cuadripolo Equivalente

$$\boxed{[\mathbf{Y}] = [\mathbf{Y}_A] + [\mathbf{Y}_B]}$$

Interacción

Interacción

Si no hay interacción, al aplicar superposición la corriente de circulación debe ser nula **en ambos casos**.

Test de Brune

Aplicando superposición desconectamos los cuadripolos: si no hay interacción, no habrá cambio de tensión.

Test de Brune

Aplicando superposición desconectamos los cuadripolos: si no hay interacción, no habrá cambio de tensión.

Métodos para evitar interacción

Métodos para evitar interacción

- 1 Introducción
- Parámetros de Cuadripolos
- Relación entre parámetros
- 4 Cuadripolos entre Dipolos Terminales
- **5** Asociación de Cuadripolos

Asociación Paralelo-Paralelo

Asociación Serie-Paralelo

Asociación Paralelo-Serie

Asociación Cascada

Conexión

Relaciones

$$\mathbf{V}_1 = \mathbf{V}_{1A} + \mathbf{V}_{1B}$$
$$\mathbf{I}_2 = \mathbf{I}_{2A} + \mathbf{I}_{2B}$$

Cuadripolo Equivalente

$$\boxed{[\mathbf{H}] = [\mathbf{H}_A] + [\mathbf{H}_B]}$$

Test de Brune

Aplicando superposición desconectamos los cuadripolos: si no hay interacción, no habrá cambio de tensión.

- Introducción
- 2 Parámetros de Cuadripolos
- **3** Relación entre parámetros
- 4 Cuadripolos entre Dipolos Terminales
- **5** Asociación de Cuadripolos

Asociación Paralelo-Paralelo

Asociación Serie-Paralelo

Asociación Paralelo-Serie

Asociación Cascada

Conexión

Relaciones

$$\mathbf{I}_1 = \mathbf{I}_{1A} + \mathbf{I}_{1B}$$

 $\mathbf{V}_2 = \mathbf{V}_{2A} + \mathbf{V}_{2B}$

Cuadripolo Equivalente

$$\boxed{[\mathbf{G}] = [\mathbf{G}_A] + [\mathbf{G}_B]}$$

Test de Brune

Aplicando superposición desconectamos los cuadripolos: si no hay interacción, no habrá cambio de tensión.

- Introducción
- 2 Parámetros de Cuadripolos
- **3** Relación entre parámetros
- 4 Cuadripolos entre Dipolos Terminales
- **5** Asociación de Cuadripolos

Asociación Paralelo-Paralelo

Asociación Serie-Paralelo

Asociación Paralelo-Serie

Asociación Cascada

Conexión

$$\begin{aligned} \mathbf{V}_{2A} &= \mathbf{V}_{1B} \\ \mathbf{I}'_{2A} &= \mathbf{I}_{1B} \end{aligned}$$

$$\boxed{[\mathbf{T}] = [\mathbf{T}_A] \cdot [\mathbf{T}_B]}$$