

Data Structure and Algorithm Design

ME/MSc (Computer) – Pokhara University

Prepared by:

Assoc. Prof. Madan Kadariya (NCIT)

Contact: madan.kadariya@ncit.edu.np

Chapter 3: Cache Efficient Data Structure (10 hrs)

Outline

- 3.5.1. Cache-Conscious BTree
- 3.5.2. Cache-Conscious Merge Sort,

Cache-Conscious B-Tree

Cache-Conscious B-Tree

- A **cache-conscious B-tree** is specifically designed to optimize memory access patterns based on architectures.
- The goal is to minimize cache misses by aligning the B-tree nodes with cache line sizes ensuring when a no

Key Aspects:

1. Node Structure and Memory Layout:

• In a traditional B-tree, nodes optimize tree balancing and search efficiency, while in a cache-conscious B-tree, nodes are reorganized to fit into CPU cache lines(typically 64 bytes in modern CPUs), improving memory access efficiency.

2. Alignment and Packing:

• Keys are packed into nodes, ensuring that once a node is loaded into the cache, the keys that are likely to be accessed together are also brought into cache simultaneously, reducing cache misses.

3. Data Locality:

• The child pointers are also placed in the node layout to ensure that when a key is accessed, its corresponding child pointer (if necessary) is likely to be in the same cache line, improving locality.

Cache-Conscious B-Tree

- Example: In a traditional B-tree with a fanout of 4, each internal node holds 3 keys and 4 pointers, but nodes may not align with cache lines, causing inefficient cache usage. In a cacheconscious B-tree, nodes are packed and aligned to fit into the CPU's cache line, allowing all keys and pointers to be fetched in a single cache load, reducing cache misses and memory accesses.
- Complexity: Both B-trees and cache-conscious B-trees have the same **asymptotic time complexity** of $O(log_b\ N)$ for search, insert, and delete operations. However, cache-conscious B-trees improve **real-world performance** by reducing **cache misses** and optimizing memory access, resulting in better **amortized performance** compared to traditional B-trees.
- A Cache-Sensitive B+Tree (CSB+Tree) optimizes memory access by aligning nodes to cache lines, reducing cache misses and improving performance for large datasets. It preserves the B+ tree structure, supporting efficient search, insert, and delete operations with improved cache locality.

Sequential Merge Sort: In each step, it sorts a subarray, starting with the entire array and recursing down to smaller and smaller subarrays.

- Merge sort is a classical sorting algorithm using a divide-and-conquer approach. The initial unsorted list is first divided in half, each half sublist is then applied the same division method until individual elements are obtained. Pairs of adjacent elements/sublists are then merged into sorted sublists until the one fully merged and sorted list is obtained.
- It is a stable sorting algorithm.
- The best, average and waste case time complexity of merge sort is *O(nlogn)*

- Cache Oblivious Models are built in a way so they can be independent of constant factors, like the size of the cache memory.
- Cache-oblivious merge sort is a variant of merge sort that is designed to work efficiently across all levels of a multi-level memory hierarchy (such as CPU caches and RAM) without requiring explicit knowledge of cache sizes or block sizes. It is a **cache-oblivious algorithm**, meaning it optimizes cache performance without tuning for specific hardware parameters.

Key Concepts

- **Divide and Conquer**: Like traditional merge sort, cache-oblivious merge sort recursively divides the array into smaller subarrays until they become trivially small.
- **Recursive Merging**: Instead of a naive merge that accesses data in a non-optimal pattern, cacheoblivious merge sort ensures that subarrays fit in cache as much as possible.
- Implicit Cache Optimization: It leverages the structure of recursive calls to maximize cache efficiency, even without explicitly knowing the cache size.

Cache Efficiency

- The traditional merge sort incurs many **cache misses** because merging involves non-sequential memory access.
- Cache-oblivious merge sort **minimizes cache misses** by ensuring that most memory accesses are within **a single cache line** at each level of recursion.
- The algorithm works well on hierarchical memory systems (L1, L2, RAM, disk, etc.) without requiring tuning.

Time Complexity

- Worst-case time complexity: *O(nlogn)* (same as classic merge sort)
- Expected cache complexity: $O((n/B)\log_{M/B}(n/B))$ where:
 - M = size of cache, B = block size of cache, n = size of input

Given k sorted sequences, each containing n/k elements, the merge process follows a **divide-and-conquer** strategy:

- 1. Split the *k* sequences into two equal halves:
 - 1. Left group: k/2 sequences
 - 2. Right group: k/2 sequences
- 2. Recursively merge the two groups.
- 3. Finally, merge the two resulting sequences.
 - This recursive splitting forms a **binary merge tree** with depth O(logk)

Time Complexity Analysis

The total number of elements is n, and at each level of recursion, every element is merged exactly once. The merge process consists of O(logk) levels.

1. Number of Merge Operations per Level:

At each level, we perform O(k) merging steps, and each merge operation involves **linear** time complexity.

2. Total Work Done:

- Each level processes O(n) elements.
- Since we have O(logk) levels, the total time complexity is: T(n,k)=O(nlogk)
- Thus, the **final time complexity** for merging k sorted sequences is: O(nlogk)

Cache Complexity Analysis

To analyze the **cache complexity**, we use the Ideal Cache Model where:

- **M** is the cache size.
- **B** is the cache block size.
- Q(n,k) is the cache complexity (number of cache misses).

1. Cache Misses in a Single Merge Operation:

- A two-way merge scans two sequences sequentially, leading to $O(\frac{n}{B})$ cache misses.
- Since we use a recursive binary merge tree, the recursion depth is *O(logk)*

2. Total Cache Misses Over All Levels:

- At each level, merging is performed sequentially, leading to: $O((\frac{n}{B})logk)$
- However, considering multi-level memory hierarchy, the cache-oblivious model refines this to: $Q(n,k) = O((\frac{n}{R})log_{M/B}(n/B))$
- This represents the **optimal** number of cache misses for hierarchical memory.

Conclusion

- The recursive merging strategy ensures that elements fit within cache as early as possible.
- Time Complexity: *O(nlogk)*, which is optimal.
- Cache Complexity: $Q(n,k) = O((\frac{n}{B}) \log_{M/B}(n/B))$, significantly better than a naive merge.