ADZD - lista1

Testowanie wielokrotne

Wstęp

Rozważamy dane wygenerowane w oparciu o teoretyczny model liniowy $Y = X\beta + \epsilon$ z macierzą planu $X_{n \times p}$ z rozkładu $N(0_n, \Sigma = \frac{1}{1000}I_{n \times n}), \ \beta = (3, 3, 3, 3, 3, 0, ...)^T$ i $\epsilon \in R^n \sim N(0_n, \sigma^2 I_n)$. Gdy traktujemy X jako deterministyczną macierz, Y jako przekształcenie afiniczne wektora ϵ ma rozkład $N(X\beta, \sigma^2 I_n)$. Ustalamy n = 1000, p = 950 i $\sigma^2 = 1$.

Dysponując X i Y możemy szacować parametry modelu. Estymator uzyskany metodą najmniejszych kwadratów ma postać

$$\hat{\beta} = (X^T X)^{-1} X^T Y$$

i jest wektorem losowym z rozkładu $N(\beta, \sigma^2(X^TX)^{-1})$. Przedział ufności wyznaczony doświadczalnie dla i-tego elementu jest postaci

$$\hat{\beta}_i \pm t_c s(\beta_i),$$

gdzie $s^2(\hat{\beta}_i) = s^2(X^TX)_{i,i}^{-1}$ oraz s^2 jest nieobciążonym estymatorem wariancji błędów losowych i wyraża się jako suma kwadratów residuów w utworzonym modelu z p parametrami podzielona przez n-p, a t_c to kwantyl rzędu $1-\frac{\alpha}{2}$ rozkładu Studenta z n-p stopniami swobody. W przypadku, gdy znana jest wariancja błędów losowych, możemy obliczyć **teoretyczny przedział ufności** zamieniając: s^2 na σ^2 ; $X^TX_{1,1}^{-1}$ na wartość oczekiwaną tego wyrazu. Macierz kowariancji próbkowej $S:=X^TX$ (nie mylić z Σ - teoretyczną kowariancją X) jest rozmiaru $p\times p$ i gdy n>p-1, możemy ją odwrócić. S ma rozkład Wisharta $W_p(\Sigma,n)$ (uogólnienie rozkładu chi-kwadrat na zmienne wielowymiarowe), a S^{-1} odwrotny rozkład Wisharta $W_p^{-1}(\Sigma^{-1},n)$. Wtedy:

$$ES^{-1} = \frac{\Sigma^{-1}}{n - p - 1}$$

Przez testowanie istotności poszczególnych elementów wektora β będziemy rozumieli testowanie hipotez postaci $H_{0,i}: \beta_i = 0$ przeciw $H_{1,i}: \beta_i \neq 0$. Odrzucenie pojedynczej hipotezy zerowej nazwiemy **odkryciem**. W problemie wielokrotnego testowania chcemy kontrolować "sumaryczny" błąd I rodzaju dla hipotez $H_{0,1}, ... H_{0,p}$.

FWER (Familywise Error Rate) definiujemy jako prawdopodobieństwo, że zrobimy conajmniej 1 fałszywe odkrycie. Używamy go jako kryterium w przypadku, gdy badanych hipotez jest mało (np. mniej niż 30) i zależy nam na tym, żeby nie robić żadnych fałszywych odkryć. W przypadku większej liczby hipotez próba kontroli FWER może skutkować brakiem jakichkolwiek odkryć. Zamiast tego możemy badać wartość FDR (False Discovery Rate), czyli wartość oczekiwana wyrażenia $FDP = \frac{FD}{\max(1,TD+FD)}$. Gdy wszystkie hipotezy zerowe są prawdziwe, FDP = FWER. Ponadto zawsze $FDR \le FWER$, więc kontrolując FWER kontrolujemy zawsze FDR. Podstawową procedurą badania hipotezy na poziomie istotności α jest odrzucenie $H_{0,i}$ jeśli stowarzyszona z nią p-wartość jest mniejsza niż ten poziom - nie gwarantuje ona jednak odpowiedniego ograniczenia FWER i FDR. Popełniamy wówczas średnio $n \cdot \alpha$ błędów I rodzaju. Zakładając, że znamy liczbę prawdziwych hipotez oraz że są one niezależne (w praktyce łamiemy to założenie, ale dla dużych p przybliżenie będzie dobre) możemy obliczyć teoretyczną wartość FWER:

$$FWER = P(FD \ge 1) = 1 - P(FD = 0) = 1 - \prod_{i=1}^{k} (\neg R_i) = 1 - (1 - \alpha)^k,$$

gdzie R_i - odrzucenie $H_{0,i}$ oraz hipotezy $H_{0,1},...H_{0,k}$ są prawdziwe. W tym przypadku $\max_{k \in \{1,...p\}} FWER = 1 - (1 - \alpha)^p$, dla p > 1 mamy $FWER > \alpha$. Istnieją sposoby na ograniczenie błędu, m.in.:

- korekta Bonferroniego: p-wartości dzielimy przez liczbę hipotez. Wtedy $FWER = 1 (1 \frac{\alpha}{p})^p \le \alpha$.
- korekta Benjaminiego-Hochberga: sortujemy p-wartości rosnąco w ciąg $v_{(1)},...v_{(p)}$ i znajdujemy $i_0 := \max\{i : v_{(i)} \leq \frac{i}{p}\alpha\}$. Odrzucamy hipotezy $H_1,...H_{i_0}$ taka procedura gwarantuje $FDR \leq \alpha$ (zazwyczaj nie kontroluje FWER).
- Uwaga: za obiema korektami stoi teoretyczne założenie o niezależności p-wartości i w sytuacji gdy nie jest ono spełnione wyniki mogą odbiegać od teoretycznych ograniczeń. Istnieje twierdzenie mówiące o tym, że w rzeczywistości procedura B-H kontroluje FDR na poziomie $\alpha S(n)$ dla pewnej funkcji S(n).

Zadanie 1

W oparciu o wygenerowane wcześniej dane tworzymy modele uwzględniające pierwsze p kolumn macierzy planu z użyciem funkcji 1m. Przyjmujemy oznaczenia zmiennych:

- b1: estymator $\hat{\beta}_1$
- s_b1: empiryczne $s^2(\hat{\beta}_1)$
- s2: empiryczne s^2
- conf_w: szerokość empirycznego przedziału ufności $\hat{\beta}_1$
- TD / FD prawdziwe / fałszywe odkrycia (_{rodzaj_korekty})

Table 1: Zadanie 1 - wyniki liczbowe

p	b1	s_b1	s2	conf_w	TD	FD	TD_Bon	FD_Bon	TD_BH	FD_BH
5	3.08	1.03	1.05	4.03	2	0	2	0	2	0
10	3.10	1.03	1.05	4.04	2	0	2	0	2	0
20	3.37	1.04	1.05	4.06	2	1	2	0	2	0
100	3.55	1.09	1.05	4.28	2	3	0	0	0	0
250	3.38	1.20	1.04	4.69	3	10	0	0	0	0
500	4.56	1.49	1.05	5.87	3	22	0	0	0	0
750	4.81	2.13	1.01	8.40	3	45	0	0	0	0
950	4.00	3.82	0.58	15.34	0	141	0	1	0	1

Wykresy: wnioskowanie statystyczne

Empiryczne odchylenie standardowe estymatora β1 vs liczba parametrów modelu

Komentarz: Widać, że wraz ze wzrostem liczby parametrów $s(\hat{\beta}_1)$ rośnie. Przypomnijmy, że liczymy je ze wzoru

$$s^2(\hat{\beta}_i) = s^2(X^T X)_{i,i}^{-1},$$

stąd mamy dwie potencjalne przyczyny takiego zachowania:

- a. wraz ze wzrostem liczby parametrów rośnie wartość $s^2 = \frac{1}{n-p} \sum_{i=1}^n (Y_i \hat{Y}_i)^2$, gdzie $\hat{Y} = X\hat{\beta}$ lub
- b. wyrazy na przekątnej $(X^TX)^{-1}$ są większe dla szerszych macierzy planu

Zależność s^2 od p obrazuje poniższy wykres.

Zależność s^2 od liczby parametrów modelu

Jak widać, dla $p \leq 750$ estymator jest dobry - wartości utrzymują się na bardzo podobnym poziomie zbliżonym do prawdziwej wartości σ^2 . Można domyślać się, że dla kolejnej wartości p=950 równej liczbie kolumn macierzy X dochodzi do zjawiska overfittingu i błąd staje się bardzo mały. Dodatkowo można zauważyć, że skoro $s^2 \sim 1$ to β_1 jest w przybliżeniu proporcjonalne do wyrazu $X^T X_{1,1}$ dla $p \leq 750$ i to właśnie jego wzrost będzie odpowiadać za wzrost $s^2(\hat{\beta}_1)$.

Zależność (X^TX)^{-1}_{1,1} od liczby parametrów modelu

Można uzasadnić to patrząc na wzór wartości oczekiwanej ES^{-1} - jeśli zwiększamy p, to mianownik maleje, a więc wyrazy macierzy S^{-1} są coraz większe.

Szerokość przedziału ufności (95%) dla $\beta1$ vs liczba parametrów modelu

Komentarz: Szerokość przedziału ufności jest równa $2t_c\sigma(\hat{\beta}_1)$, a więc proporcjonalna do odchylenia standardowego estymatora. Z tego powodu wykresy ich zależności od p mają dokładnie ten sam kształt (zmienia się tylko zakres wartości na osi Y).

Wykresy: liczba odkryć

Komentarz: W przypadku pojedynczego eksperymentu nie możemy mówić o FDR ani FWER, dlatego porównujemy tylko liczby odkryć i False Discovery Proportion. Widać, że zastosowanie korekt poskutkowało zmniejszeniem liczby zarówno prawdziwych jaki falszywych odkryć (w zasadzie nie dochodzi do praktycznie żadnych odkryć). Na trzecim wykresie widać że przy p=950 dla wszystkich procedur wszystkie odkrycia są falszywe. W przypadku korekt liczba tych odkryć to 1.

Zadanie 2

W tym zadaniu powtarzamy 1000-krotnie eksperyment z zadania 1 w celu uzyskania uśrednionych na dużej próbie wyników.

Table 2: Zadanie 2 - wyniki liczbowe uśrednione dla 1000 iteracji

p	b1	s_b1	s2	conf_w	TD	FD	FWER	FDP	TD_Bon	FD_Bon	FWER_Bon	FDP_Bon	TD_BH	FD_BH	FWER_BH	FDP_BH
5	2.98	1.00	1.00	3.94	4.27	0.00	0.00	0.00	3.35	0.00	0.00	0.00	4.17	0.00	0.00	0.00
10	2.98	1.01	1.00	3.95	4.25	0.26	0.24	0.05	2.87	0.02	0.02	0.01	3.79	0.13	0.12	0.03
20	2.97	1.01	1.00	3.97	4.22	0.75	0.54	0.13	2.42	0.03	0.03	0.01	3.24	0.16	0.14	0.03
100	2.96	1.05	1.00	4.14	4.10	4.67	0.99	0.51	1.30	0.05	0.05	0.03	1.73	0.17	0.14	0.05
250	2.97	1.16	1.00	4.54	3.72	12.02	1.00	0.75	0.65	0.05	0.05	0.04	0.81	0.12	0.10	0.05
500	2.99	1.42	1.00	5.56	2.79	24.72	1.00	0.89	0.20	0.06	0.05	0.05	0.24	0.08	0.07	0.05
750	2.97	2.00	1.00	7.88	1.63	37.57	1.00	0.96	0.03	0.06	0.05	0.05	0.03	0.07	0.05	0.05
950	3.06	4.47	0.99	17.94	0.50	46.52	1.00	0.99	0.00	0.04	0.03	0.03	0.00	0.14	0.03	0.03

Wykresy: wnioskowanie statystyczne

Empiryczne odchylenie standardowe estymatora $\beta 1$ vs liczba parametrów modelu

Szerokość przedziału ufności (95%) dla β1 vs liczba parametrów modelu

Nie ma znaczących różnic względem zadania 1.

Wartości teoretyczne

Porównamy wartości empiryczne $s(\hat{\beta}_1)$, szerokości przedziału ufności $X^TX_{1,1}$ z teoretycznymi oszacowaniami. Dla 1000 replikacji eksperymentu wyniki są prawie równe.

Standard deviation of b1 estimate

90% confidence interval of b1 estimate

X^TX_inv_{1,1} vs number of parameters

Wykresy: liczba odkryć

FWER

Liczba parametrów

Komentarz: Najwięcej prawdziwych odkryć mamy dla procedury bez korekty - zgodnie z oczekiwaniami. Można zauważyć że średnia liczba prawdziwych odkryć dla metody B-H jest większa niż dla metody Bonferroniego, bo również zgadza się z teorią - B-H jest mniej rygorystyczna, co tłumaczy również dlaczego na wykresach widać że FWR i FWER są mniejsze dla metody Bonferroni'ego. Wartości dla obu metod trzymają się założonych ograniczeń (w przypadku metody B-H widać lekkie wyjście wykresu poza linię poziomu istotności, ale należy to zignorować, gdyż tak małą różnicę można tłumaczyć błędem losowym eksperymentu i spodziewamy się, że zniknęłaby ona dla większej liczby iteracji). Na wykresach można zauważyć również, że rzeczywiście $FDR \leq FWER$. Wyniki potwierdziły teoretyczne oszacowania.