1 1

1.
$$R_{\mathbf{x}}(\theta) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta \\ 0 & \sin\theta & \cos\theta \end{bmatrix} R_{\mathbf{y}}(\delta) = \begin{bmatrix} \cos\delta & 0 & \sin\delta \\ 0 & 1 & 0 \\ -\sin\delta & 0 & \cos\delta \end{bmatrix} R_{\mathbf{z}}(\phi) = \begin{bmatrix} \cos\phi & -\sin\phi & 0 \\ \sin\phi & \cos\phi & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$R_1 = R_z(\phi)R_v(\delta)R_x(\theta)$$

$$=\begin{bmatrix} \cos\phi & -\sin\phi & 0 \\ \sin\phi & \cos\phi & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos\delta & 0 & \sin\delta \\ 0 & 1 & 0 \\ -\sin\delta & 0 & \cos\delta \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta \\ 0 & \sin\theta & \cos\theta \end{bmatrix}$$

$$= \begin{bmatrix} cos\phi cos\delta & -sin\phi & cos\phi sin\delta \\ sin\phi cos\delta & cos\phi & sin\phi sin\delta \\ -sin\delta & 0 & cos\delta \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & cos\theta & -sin\theta \\ 0 & sin\theta & cos\theta \end{bmatrix}$$

$$=\begin{bmatrix} cos\phi cos\delta & -sin\phi cos\theta + cos\phi sin\delta sin\theta & sin\phi sin\theta + cos\phi sin\delta cos\theta \\ sin\phi cos\delta & cos\phi cos\theta + sin\phi sin\delta sin\theta & -cos\phi sin\theta + sin\phi sin\delta cos\theta \\ -sin\delta & cos\delta sin\theta & cos\delta cos\theta \end{bmatrix}$$

$$R_2 = R_z(\phi)R_x(\theta)R_y(\delta)$$

$$= \begin{bmatrix} \cos\phi & -\sin\phi & 0 \\ \sin\phi & \cos\phi & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta \\ 0 & \sin\theta & \cos\theta \end{bmatrix} \begin{bmatrix} \cos\delta & 0 & \sin\delta \\ 0 & 1 & 0 \\ -\sin\delta & 0 & \cos\delta \end{bmatrix}$$

$$= \begin{bmatrix} \cos\phi & -\sin\phi\cos\theta & \sin\phi\sin\theta \\ \sin\phi & \cos\phi\cos\theta & -\cos\phi\sin\theta \\ 0 & \sin\theta & \cos\theta \end{bmatrix} \begin{bmatrix} \cos\delta & 0 & \sin\delta \\ 0 & 1 & 0 \\ -\sin\delta & 0 & \cos\delta \end{bmatrix}$$

$$= \begin{bmatrix} \cos\phi\cos\delta - \sin\phi\sin\theta\sin\delta & -\sin\phi\cos\theta & \cos\phi\sin\delta + \sin\phi\sin\theta\cos\delta \\ \sin\phi\cos\delta - \cos\phi\cos\theta\sin\delta & \cos\phi\cos\theta & \sin\phi\sin\delta - \cos\phi\sin\theta\cos\delta \\ -\cos\theta\sin\delta & \sin\theta & \cos\theta\cos\delta \end{bmatrix}$$

2.

$$R_1 R_1^T = R_z(\phi) R_y(\delta) R_x(\theta) R_x^T(\theta) R_y^T(\delta) R_z^T(\phi)$$

$$= R_z(\phi) R_y(\delta) R_x(\theta) R_x(-\theta) R_y(-\delta) R_z(-\phi)$$

$$= I$$

$$\begin{split} R_2 R_2^T &= R_z(\phi) R_x(\theta) R_y(\delta) R_y^T(\delta) R_x^T(\theta) R_z^T(\phi) \\ &= R_z(\phi) R_x(\theta) R_y(\delta) R_y(-\delta) R_x(-\theta) R_z(-\phi) \\ &- I \end{split}$$

1.2

Apply SVD on matrixes A, B and C:

 $A = [3 \ 3 \ 13 \ 8 \ 9; 1 \ 6 \ 10 \ 2 \ 4; 9 \ 7 \ 6 \ 9 \ 5; 14 \ 15 \ 3 \ 4 \ 10; 11 \ 3 \ 7 \ 6 \ 4];$

B = [1391377;152452;1114939;614138];

 $C = [11\ 5\ 11\ 10\ 23; 11\ 8\ 15\ 12\ 21; 10\ 10\ 8\ 7\ 8; 1\ 7\ 5\ 2\ 4; 2\ 13\ 2\ 4\ 13; 1\ 24\ 3\ 9\ 11];$

W1 = A.' * A;

 $[\sim, S, \sim] = \text{svd}(A)$

W2 = B.' * B;

 $[\sim, S2, \sim] = svd(B)$

W3 = C.' * C;

 $[\sim, S3, \sim] = svd(C)$

1 and 2: According to lecture 3, the largest singular value is the largest amount by which a vector is scaled by A;

the smallest singular value is the smallest amount by which a vector is scaled by A(for low-rank or non-square matrices this can be 0). The results are shown in the following table.

3. According to the formula: $\dim(N(A)) = \dim(V) - \dim(im(A))$, where im(A) is the result vector of A transformation on x.

$$\begin{split} \dim\left(\mathbf{N}(\mathbf{A})\right) &= \dim(V) - \mathrm{rank}(\mathbf{A}) = 5 - 5 = 0 \\ \dim\left(\mathbf{N}(\mathbf{B})\right) &= \dim(V) - \mathrm{rank}(\mathbf{B}) = 5 - 4 = 1 \\ \dim\left(\mathbf{N}(\mathbf{C})\right) &= \dim(V) - \mathrm{rank}(\mathbf{C}) = 5 - 5 = 0 \\ \dim\left(\mathbf{N}(A^TA)\right) &= \dim(V) - rank(A^TA) = 5 - 5 = 0 \\ \dim\left(\mathbf{N}(B^TB)\right) &= \dim(V) - rank(B^TB) = 5 - 4 = 1 \\ \dim\left(\mathbf{N}(C^TC)\right) &= \dim(V) - rank(C^TC) = 5 - 5 = 0 \end{split}$$

	S					max projection length	min projection length
A	35.4271 6 6 6 6	0 14.0273 0 0	0 0 7.8850 0	0 0 0 3.7671	0 0 0 0 0 3.1270	35.43	3.13

	S					max projection length	min projection length
В	37.0792 0 0 0	0 12.6429 0 0	0 0 6.7574 0	0 0 0 2.1503	0 0 0	37.08	0
С	54.6186 0 0 0 0	0 21.0221 0 0 0	8.1179 8.2 8.2	0 0 0 3.9057 0 0	0 0 0 0 2.5932 0	54.62	2.59

1,3

1. Run B = inv(eye(2017) - ones(2017)/2021) - eye(2017); in Matlab; observe B and get $\alpha=0.25$

$$2. \quad (I - \frac{1}{n}A)e = \begin{bmatrix} 1 - \frac{1}{n} & -\frac{1}{n} & \dots & -\frac{1}{n} \\ -\frac{1}{n} & 1 - \frac{1}{n} & \dots & -\frac{1}{n} \\ \vdots & & & \vdots \\ -\frac{1}{n} & -\frac{1}{n} & \dots & 1 - \frac{1}{n} \end{bmatrix}_{n \times n} \begin{bmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix} = \begin{bmatrix} 1 - \frac{1}{n} - \frac{1}{n} \times (n-1) \\ 1 - \frac{1}{n} - \frac{1}{n} \times (n-1) \\ \vdots \\ 1 - \frac{1}{n} - \frac{1}{n} (n-1) \end{bmatrix}_{1 \times n} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

Since Rank(e) is not zero while Rank($(I - \frac{1}{n}A)e$)=0, so Rank($I - \frac{1}{n}A$) = 0, so it is not invertible.

2.2

1.derivation of $\frac{dE}{dW}$

$$E = \frac{1}{DT} ||M - NW||^2 = \frac{1}{DT} (M^T - W^T N^T) (M - NW) = \frac{1}{DT} (M^T M - W^T N^T M - M^T NW + W^T N^T NW)$$

$$\frac{dE}{dW} = \frac{2}{DT}N^T(NW - M)$$

2.3

Assume that there are two transformation matrixes that can be applied separately to the magnitude matrix and phase matrix of a piano music to convert it to guitar version. I calculated and applied two matrixes and got something like guitar music.