

IUT GEII - Outils Mathématiques et Logiciels III (OML3)

Suites numériques

Andrés F. López-Lopera Université Polytechnique Hauts-de-France (UPHF)

Thèmes

- Suites numériques
 Mode de définition d'une suite
 Suites de références
- Convergence d'une suite
 Suites de références
 Définitions et vocabulaires
 Étude de la monotonie
- 3. Limite d'une suite

1

Suites numériques

Suites numériques

Voici une version améliorée de la phrase :

· Les suites jouent un rôle crucial dans de nombreux aspects de la discrétisation rencontrés en génie électrique, par exemple dans le traitement des signaux discrets.

Suites numériques

 \cdot Une suite numérique est une fonction de $\mathbb N$ dans $\mathbb R$, définie par :

$$u_n = \begin{cases} \mathbb{N} \to \mathbb{R}, \\ n \mapsto u_n. \end{cases}$$

- · On utilise plus souvent:
 - $(u_n)_{n\in\mathbb{N}}$ pour désigner la suite dans son ensemble,
 - u_n pour désigner l'image de l'entier n (le n-ème terme de la suite).

3

Mode de définition d'une suite

 \cdot Les suites numériques sont généralement définies de deux manières : suite explicite ou suite implicite.

Définition explicite

 \cdot Si u_n est une suite définie directement en fonction de n, on parle de suite explicite :

$$u_n = f(n)$$
.

Mode de définition d'une suite

Définition implicite

· Si u_n est une suite définie en fonction des $k \in \mathbb{N}$ termes précédents, on parle de suite définie par récurrence (ou implicite) d'ordre k:

$$u_n = f(u_{n-1}, u_{n-2}, \ldots, u_{n-k}).$$

Exemple.

$$u_n = u_{n-1} + 1$$
, avec $u_0 = 0$.

Mode de définition d'une suite

- · Cas particulier $u_n = f(u_{n-1})$:
 - Représentation graphique dans un repère (u_n, u_{n-1}) ;
 - Tracer la droite d'équation y = x;
 - Tracer la fonction y = f(x).

Exemple

$$u_n = \begin{cases} 1, & n = 0, \\ \frac{4u_{n-1}}{u_{n-1} + 2}, & n \ge 1. \end{cases}$$

 u_n

Suite de Dirac

$$\delta_n = \begin{cases} 1, & \text{si } n = 0, \\ 0, & \text{si } n \ge 1. \end{cases}$$

7

Suite "échelon-unité"

$$u_n=1, \quad n\geq 0.$$

Suite arithmétique

· La suite arithmétique (u_n) de raison $r \in \mathbb{R}$ et de premier terme $a \neq 0$ est définie par :

$$u_n = \begin{cases} a, & \text{si } n = 0, \\ u_{n-1} + r, & \text{si } n \ge 1. \end{cases}$$

9

· Si (u_n) est une suite arithmétique de raison $r \in \mathbb{R}$ et de premier terme $a \neq 0$, alors on peut écrire la définition implicite de la suite (u_n) :

$$u_n = \begin{cases} a, & \text{si } n = 0, \\ u_0 + nr, & \text{si } n \ge 1. \end{cases}$$

· La somme des (n + 1) premiers termes de la suite (u_n) est :

$$\begin{split} \sum_{p=0}^{n} u_p &= u_0 + u_1 + u_2 + \ldots + u_{n-2} + u_{n-1} + u_n \\ &= \underbrace{u_0 + (u_0 + r) + (u_0 + 2r) + \ldots}_{+ (u_n - 2r) + (u_n - r) + \underbrace{u_n (n+1 \text{ termes})}_{= (u_0 + u_n) + (u_0 + u_n) + (u_0 + u_n) + \ldots}_{= (u_0 + u_n)(n+1)} \\ &= \underbrace{(u_0 + u_n)(n+1)}_{2}. \end{split}$$

Suite géométrique

· La suite géométrique (u_n) de raison $q \in \mathbb{R}$ et de premier terme $a \neq 0$ est définie par :

$$u_n = \begin{cases} a, & \text{si } n = 0, \\ qu_{n-1}, & \text{si } n \ge 1. \end{cases}$$

11

· Si (u_n) est une suite géométrique de raison $q \in \mathbb{R}$ et de premier terme $a \neq 0$, alors on peut écrire la définition implicite de la suite (u_n) :

$$u_n = \begin{cases} a, & \text{si } n = 0, \\ u_0 q^n, & \text{si } n \ge 1. \end{cases}$$

· La somme des (n + 1) premiers termes de la suite (u_n) est :

$$\sum_{p=0}^{n} u_{p} = u_{0} + u_{1} + u_{2} + \dots + u_{n-2} + u_{n-1} + u_{n}$$

$$= u_{0} + qu_{0} + q^{2}u_{0} + \dots + q^{n-1}u_{0} + q^{n}u_{0}$$

$$= [1 + q + q^{2} + \dots + q^{n-1} + q^{n}]u_{0} = \frac{1 - q^{n+1}}{1 - q}u_{0}.$$

Exercice. Démontrer que $1 + q + q^2 + \ldots + q^{n-1} + q^n = \frac{1 - q^{n+1}}{1 - q}$.

Piste. Définir $S = 1 + q + q^2 + ... + q^{n-1} + q^n$, et développer S - qS.

Suite récurrente linéaires d'ordre 1

· On appelle suite récurrente linéaire d'ordre 1 (ou suite arithmético-géométrique) de raisons $q \in \mathbb{R}$ et $r \in \mathbb{R}$, et de premier terme $a \neq 0$, toute suite (u_n) telle que :

$$u_n = \begin{cases} a, & \text{si } n = 0, \\ qu_{n-1} + r, & \text{si } n \ge 1. \end{cases}$$

- · Cas particuliers:
 - si q= 1 et $r\in\mathbb{R}$, on obtient la suite arithmétique.
 - si r= o et $q\in\mathbb{R}-$ {1}, on obtient la suite géométrique.

Suites récurrentes linéaires d'ordre 2

On appelle suite récurrente linéaires d'ordre 2 toute suite (u_n) telle que :

$$u_n = \begin{cases} a, & \text{si } n = 0, \\ b, & \text{si } n = 1, \\ \alpha u_{n-1} + \beta u_{n-2}, & \text{si } n \ge 2, \end{cases}$$

avec $a, b, \alpha, \beta \in \mathbb{R}$.

· Toute suite récurrente linéaire d'ordre 2 peut s'écrire comme une combinaison linéaire de deux suites.

Convergence d'une suite

Convergence d'une suite

· Une suite (u_n) est convergente de limite ℓ , si

$$\lim_{n\to+\infty}(u_n)=\ell.$$

Théorème

Si une suite (u_n) admet une limite alors cette limite est unique.

- · Si (u_n) n'est pas convergente, on dit qu'elle est divergente.
- · Il existe deux types de divergence :
 - Soit (u_n) a une limite infinie.
 - Soit (u_n) n'a pas de limite du tout.

• Pour tout réel α tel que $\alpha > 0$, la suite $\left(\frac{1}{n^{\alpha}}\right)$ converge vers 0.

· Pour tout réel α tel que $\alpha >$ 0, la suite (n^{α}) diverge vers $+\infty$.

· Pour tout réel q tel que |q| < 1, la suite (q^n) converge vers o.

· Pour tout réel q tel que $|q| \ge 1$, la suite (q^n) diverge.

- · Une suite (u_n) est majorée si, pour tout n, on a $u_n \leq M$.
- · Une suite (u_n) est minorée si, pour tout n, on a $u_n \ge m$.
- · Une suite (u_n) est bornée si, pour tout n, on a $m \le u_n \le M$.

- · Une suite (u_n) est *croissante* si, pour tout n, on a $u_n \leq u_{n+1}$.
- · Une suite (u_n) est décroissante si, pour tout n, on a $u_n \ge u_{n+1}$.
- · Une suite croissante ou décroissante est dite monotone.

· (u_n) est une suite alternée si, pour tout n, on a $u_n u_{n+1} \le 0$.

Théorème sur la convergence

- · Toute suite croissante et majorée est convergente.
- · Toute suite décroissante et minorée est convergente.
- · Toute suite monotone et bornée est convergente.

Étude de la monotonie

Suite définie de façon explicite $u_n = f(n)$

- Si f est croissante, alors (u_n) est croissante.
- Si f est décroissante, alors (u_n) est décroissante.

Suite définie par récurrence $u_{n+1} = f(u_n)$

- Si f est croissante et $u_0 \le u_1$, alors (u_n) est croissante.
- Si f est croissante et $u_0 \ge u_1$, alors (u_n) est décroissante.
- $\operatorname{Si} f$ est $\operatorname{d\acute{e}croissante}$, alors on ne peut pas conclure.

Convergence d'une suite

Exercice. Étudier la monotonie des suites suivantes :

1.
$$u_n = \frac{2n^2 - 3}{n^2 + 2}$$

2. $u_n = \begin{cases} 8, & n = 0\\ \frac{1}{2}u_{n-1} + 5, & n \ge 1 \end{cases}$

Convergence d'une suite

Exercice. Étudier la monotonie des suites suivantes :

1.
$$u_n = \frac{2n^2 - 3}{n^2 + 2}$$

2.
$$u_n = \begin{cases} 8, & n = 0 \\ \frac{1}{2}u_{n-1} + 5, & n \ge 1 \end{cases}$$

Solution.

$$f'(n) = \frac{4n(n^2+2)-2n(2n^2-3)}{(n^2+2)^2} = \frac{14n}{(n^2+2)^2} > 0, \qquad \forall n \ge 1.$$

Lorsque f est croissante, alors (u_n) est croissante.

2.

$$f'(u_n)=\frac{1}{2}>0,$$

alors $f(u_n)$ est croissante.

· Lorsque
$$u_1 = \frac{8}{2} + 5 = 9 > u_0$$
, alors (u_n) est croissante.

Étude de la monotonie

Étude de la monotonie selon le signe de $u_{n+1}-u_n$

- Si $u_{n+1} u_n \ge 0$, alors (u_n) est croissante.
- Si $u_{n+1} u_n \le o$, alors (u_n) est décroissante.

Étude de la monotonie selon le rapport de u_{n+1}/u_n

- Si $\frac{u_{n+1}}{u_n} \ge 1$, alors (u_n) est croissante.
- Si $\frac{u_{n+1}}{u_n} \le 1$, alors (u_n) est décroissante.

Opérations sur les limites

- · Soient deux suites (u_n) et (v_n) convergentes, de limites respectives ℓ et ℓ' , alors :
 - $(u_n + v_n)$ est convergente, de limite $\ell + \ell'$.
 - (λu_n) , avec $\lambda \in \mathbb{R}$, est convergente, de limite $\lambda \ell$.
 - $(u_n \cdot v_n)$ est convergente, de limite $\ell \cdot \ell'$.
 - (u_n/v_n) est convergente, de limite ℓ/ℓ' , sous réserve que $\ell' \neq 0$.

· A partir de la définition explicite, si $u_n = f(n)$ et $\lim_{x \to +\infty} f(x) = \ell$, alors

$$\lim_{n\to+\infty}(u_n)=\ell.$$

· À partir de la définition implicite (d'ordre 1), si $u_{n+1} = f(u_n)$:

Propriété

Si (u_n) converge vers une limite ℓ , et f est continue en ℓ , alors ℓ est solution de l'équation f(x) = x.

Théorème de gendarmes

Soient (u_n) , (v_n) et (w_n) trois suites telles que :

$$\lim_{n\to +\infty} u_n = \ell, \qquad \lim_{n\to +\infty} v_n = \ell.$$

S'il existe un $n_0 \in \mathbb{N}$ tel que pour tout $n \ge n_0$, $u_n \le w_n \le v_n$, alors, (w_n) est convergente et $\lim_{n \to +\infty} w_n = \ell$.

Suites adjacentes

- · Deux suites (u_n) et (v_n) sont adjacentes si et seulement si :
 - L'une est croissante et l'autre est décroissante ;
 - et $\lim_{n\to +\infty} (u_n v_n) = 0$.

Théorème

Deux suites (u_n) et (v_n) adjacentes sont convergentes et ont la même limite ℓ .

Références

Frédéric Guegnard and Marc Bourcerie.

Mathématiques IUT GEII 2ème Année.

Ellipses, 2018.

