# kidney\_CellML1\_0\_model

## 1 "environment" component

This component has no equations.

#### 2 "kidney" component

This component has no equations.

# 3 "perfusion\_pressure" component

KD2A

$$\frac{\mathrm{d}(PAR1)}{\mathrm{d}(time)} = \frac{((100 + (PA - 100) * RCDFPC) - PAR1)}{RCDFDP}$$

KD1\_KD2\_and\_KD2A

$$PAR = \begin{cases} RAPRSP; & \text{if } (RAPRSP > 0) \land (RFCDFT \leq 0), \\ PAR1; & \text{if } RFCDFT > 0, \\ (PA - GBL) & \text{otherwise.} \end{cases}$$

#### 4 "renal\_autoregulatory\_feedback\_factor" component

KD57\_to\_KD61

$$RNAUG1T = ((MDFLW - 1) * RNAUGN + 1)$$

 $KD62\_and\_KD63$ 

$$RNAUG1 = \begin{cases} RNAULL; & \text{if } RNAUG1T < RNAULL, \\ RNAUUL; & \text{if } RNAUG1T > RNAUUL, \\ RNAUG1T & \text{otherwise.} \end{cases}$$

KD64

$$RNAUG2 = (RNAUG1 - RNAUG3)$$

 $KD65\_to\_KD67$ 

$$\frac{d(RNAUG3)}{d(time)} = (RNAUG2 - 1) * RNAUAD$$

## 5 "afferent\_arterial\_resistance" component

This component has no equations.

#### 6 "autonomic\_effect\_on\_AAR" component

KD10\_to\_KD12

$$AUMKT = ((AUM - 1) * ARF + 1)$$

KD13

$$AUMK = \begin{cases} 0.8; & \text{if } AUMKT < 0.8, \\ AUMKT & \text{otherwise.} \end{cases}$$

## 7 "angiotensin\_effect\_on\_AAR" component

KD3\_KD7\_and\_KD8

$$ANMAR1 = ((ANM - 1) * ANMAM + 1)$$

KD8A

$$ANMAR = \begin{cases} ANMARL; & \text{if } ANMAR1 < ANMARL, \\ ANMAR1 & \text{otherwise.} \end{cases}$$

## 8 "AAR\_calculation" component

KD9

AAR1 = AARK\*PAMKRN\*AUMK\*RNAUG2\*ANMAR\*40\*MYOGRS

## 9 "atrial\_natriuretic\_peptide\_effect\_on\_AAR" component

 $KD21\_and\_KD22$ 

$$AART = ((AAR1 - ANPX * ANPXAF) + ANPXAF)$$

KD23

$$AAR = \begin{cases} AARLL; & \text{if } AART < AARLL, \\ AART & \text{otherwise.} \end{cases}$$

## 10 "efferent\_arterial\_resistance" component

This component has no equations.

#### 11 "autonomic\_effect\_on\_EAR" component

KD14\_to\_KD16

$$AUMK2 = ((AUMK - 1) * AUMK1 + 1)$$

#### 12 "angiotensin\_effect\_on\_EAR" component

 $KD3_{to}KD5$ 

$$ANMER = ((ANM - 1) * ANMEM + 1)$$

# ${\it ``effect\_of\_renal\_autoregulatory\_feedback\_on\_EAR'' component}$

KD17\_to\_KD19

$$RNAUG4 = ((RNAUG2 - 1) * EFAFR + 1)$$

## 14 "EAR\_calculation" component

KD6

$$EAR1 = 43.333 * EARK * ANMER * RNAUG4 * MYOGRS * AUMK2$$

KD6A

$$EAR = \begin{cases} EARLL; & \text{if } EAR1 < EARLL, \\ EAR1 & \text{otherwise.} \end{cases}$$

## 15 "total\_renal\_resistance" component

KD20

$$RR = (AAR + EAR)$$

#### 16 "normal\_renal\_blood\_flow" component

KD24A

$$RFN = \frac{PAR}{RR}$$

#### 17 "actual\_renal\_blood\_flow" component

KD73

$$RBF = REK * RFN$$

#### 18 "glomerular\_capillaries" component

This component has no equations.

#### 19 "glomerular\_colloid\_osmotic\_pressure" component

KD68\_to\_KD71

$$EFAFPR1 = \frac{RFN * (1 - HM1)}{(RFN * (1 - HM1) - GFN)}$$

KD71A

$$EFAFPR = \begin{cases} 1; & \text{if } EFAFPR1 < 1, \\ EFAFPR1 & \text{otherwise.} \end{cases}$$

 $KD72\_to\_KD72B$ 

$$GLPC = \begin{cases} (EFAFPR)^{1.35} * PPC * 0.98; & \text{if } GLPCA > 0, \\ (PPC + 4) & \text{otherwise.} \end{cases}$$

# 20 "glomerular\_pressure" component

KD24

$$APD = AAR * RFN$$

KD25

$$GLP = (PAR - APD)$$

## 21 "glomerular\_filtration\_rate" component

KD26

$$PFL = ((GLP - GLPC) - PXTP)$$

KD27

$$GFN1 = PFL * GFLC$$

KD28

$$GFN = \begin{cases} GFNLL; & \text{if } GFN1 < GFNLL, \\ GFN1 & \text{otherwise.} \end{cases}$$

KD51

$$GFR = GFN * REK$$

## 22 "proximal\_tubular\_and\_macula\_densa\_flow" component

KD29

$$PTFL = GFN * 8$$

 $KD30\_to\_KD32$ 

$$MDFLWT = ((PTFL - 1) * MDFL1 + 1)$$

KD33

$$MDFLW = \begin{cases} 0; & \text{if } MDFLWT < 0, \\ MDFLWT & \text{otherwise.} \end{cases}$$

## 23 "renal\_tissue\_osmotic\_pressure" component

 $KD79\_and\_KD80$ 

$$RTSPPC1 = (GLPC * RTPPR - RTPPRS)$$

**KD81** 

$$RTSPPC = \begin{cases} 1; & \text{if } RTSPPC1 < 1, \\ RTSPPC1 & \text{otherwise.} \end{cases}$$

# 24 "urea\_handling" component

This component has no equations.

## 25 "glomerular\_urea\_concentration" component

 $KD53\_and\_KD54$ 

$$\frac{d(PLUR)}{d(time)} = (URFORM - UROD)$$

# 26 "plasma\_urea\_concentration" component

KD55

$$PLURC = \frac{PLUR}{VTW}$$

#### 27 "renal\_peritubular\_capillaries" component

This component has no equations.

#### 28 "peritubular\_capillary\_pressure" component

KD74\_to\_KD77

$$RCPRS = ((RFN - 1.2) * RFABX + 1.2) * RVRS$$

# ${\bf 29} \quad {\bf ``peritubular\_capillary\_reabsorption\_factor''} \ {\bf component}$

KD78

$$RABSPR = (((GLPC + RTSPRS) - RCPRS) - RTSPPC)$$

KD82

$$RFAB1 = RABSPR * RABSC$$

KD83

$$RFAB = RFAB1$$

KD84\_to\_KD86

$$RFABD1 = ((RFAB - 1) * RFABDM + 1)$$

KD87

$$RFABD = \begin{cases} 0.0001; & \text{if } RFABD1 < 0.0001, \\ RFABD1 & \text{otherwise.} \end{cases}$$

#### 30 "sodium\_and\_potassium\_handling" component

This component has no equations.

## 31 "distal\_tubular\_Na\_delivery" component

KD34

$$DTNAI = MDFLW * CNA * 0.0061619$$

#### 32 "Na\_reabsorption\_into\_distal\_tubules" component

 $KD113\_to\_KD115\_and\_KD36$ 

$$DTNARA1 = \frac{AMNA*RFABD*DTNAR}{DIURET}*((ADHMK-1)*AHMNAR+1)$$

KD37

$$DTNARA = \begin{cases} DTNARL; & \text{if } DTNARA1 < DTNARL, \\ DTNARA1 & \text{otherwise.} \end{cases}$$

# ${\it "angiotensin\_induced\_Na\_reabsorption\_into\_distal\_tubules" \\ component}$

 $KD108\_to\_KD111$ 

$$DTNANG1 = ((ANM - 1) * ANMNAM + 1) * 0.1$$

**KD112** 

$$DTNANG = \begin{cases} 0; & \text{if } DTNANG1 < 0, \\ DTNANG1 & \text{otherwise.} \end{cases}$$

## 34 "distal\_tubular\_K\_delivery" component

 $KD101\_and\_KD102$ 

$$DTKI = \frac{DTNAI * CKE}{CNA}$$

35 "effect\_of\_physical\_forces\_on\_distal\_K\_reabsorption" component

KD99\_and\_KD100

$$RFABK = (RFABD - 1) * RFABKM$$

#### 36 "effect\_of\_fluid\_flow\_on\_distal\_K\_reabsorption" component

KD88\_to\_KD90

$$MDFLK1 = ((MDFLW - 1) * MDFLKM + 1)$$

KD90A

$$MDFLK = \begin{cases} 0.1; & \text{if } MDFLK1 < 0.1, \\ MDFLK1 & \text{otherwise.} \end{cases}$$

#### 37 "K\_reabsorption\_into\_distal\_tubules" component

 $KD104\_to\_KD107$ 

$$\frac{\mathrm{d}(DTKA)}{\mathrm{d}(time)} = \left(\frac{KODN}{VUDN} * 0.0004518 - DTKA\right) * 1.0$$

#### 38 "K\_secretion\_from\_distal\_tubules" component

KD94\_to\_KD96

$$ANMKE1 = ((ANM - 1) * ANMKEM + 1)$$

KD97

$$ANMKE = \begin{cases} ANMKEL; & \text{if } ANMKE1 < ANMKEL, \\ ANMKE1 & \text{otherwise.} \end{cases}$$

 $KD91\_to\_KD93\_and\_KD98$ 

$$DTKSC = \frac{\left(\frac{CKE}{4.4}\right)^{CKEEX} * AMK * 0.08 * MDFLK}{ANMKE}$$

#### 39 "urinary\_excretion" component

This component has no equations.

#### 40 "normal\_Na\_excretion" component

KD35

$$NODN1 = ((DTNAI - DTNARA) - DTNANG)$$

KD38

$$NODN = \begin{cases} 0.00000001; & \text{if } NODN1 < 0.00000001, \\ NODN1 & \text{otherwise.} \end{cases}$$

## 41 "normal\_K\_excretion" component

KD103

$$KODN1 = (((DTKI + DTKSC) - DTKA) - RFABK)$$

KD103A

$$KODN = \begin{cases} 0; & \text{if } KODN1 < 0, \\ KODN1 & \text{otherwise.} \end{cases}$$

## 42 "normal\_urea\_excretion" component

KD52

$$DTURI = (GFN)^2 * PLURC * 3.84$$

#### 43 "normal\_osmolar\_and\_water\_excretion" component

 $KD40_{to}KD42$ 

$$OSMOPN1 = (DTURI + 2 * (NODN + KODN))$$

**KD44** 

$$OSMOPN = \begin{cases} 0.6; & \text{if } OSMOPN1 > 0.6, \\ OSMOPN1 & \text{otherwise.} \end{cases}$$

#### 44 "normal\_urine\_volume" component

KD43

$$OSMOP1T = (OSMOPN1 - 0.6)$$

KD45

$$OSMOP1 = \begin{cases} 0; & \text{if } OSMOP1T < 0, \\ OSMOP1T & \text{otherwise.} \end{cases}$$

 $KD46\_to\_KD48$ 

$$VUDN = \left(\frac{OSMOPN}{600*ADHMK} + \frac{OSMOP1}{360}\right)$$

## 45 "actual\_Na\_excretion\_rate" component

KD39

$$NOD = NODN * REK$$

## 46 "actual\_K\_excretion\_rate" component

**KD116** 

KOD = KODN \* REK

47 "actual\_urea\_excretion\_rate" component

KD56

UROD = DTURI \* REK

48 "actual\_urine\_volume" component

KD49

VUD = VUDN \* REK

49 "parameter\_values" component

This component has no equations.