IESTI01 - TinyML

Embedded Machine Learning

- 6. The Building Blocks of Deep Learning Part A
 - Regression

Prof. Marcelo Rovai
UNIFEI

Machine Learning Models

Machine Learning Types and Arquitectures

Supervised Learning

Unsupervised Learning

Reinforcement Learning

Machine Learning

Unsupervised Learning

Reinforcement Learning

Deep Learning Basics: An introductory lecture for MIT course 6.S094 by Prof. Lex Fridman

Machine Learning

Unsupervised Learning

Reinforcement Learning

Tiny Machine Learning

Tiny Machine Learning

Supervised Learning

Regression

Classification

a) Regression

b) Classification

Regression

What is the temperature going to be tomorrow?

Regression

Classification

Classification

Will it be Cold or Hot tomorrow?

Machine Learning

Supervised models - Regression

$$X \longrightarrow -1$$
, 0, 1, 2, 3, 4
 $Y \longrightarrow -3$, -1, 1, 3, 5, 7

X	Υ
-1	-3
0	-1
1	1
2	3
3	5
4	7

$$Y = w*X + b$$

Cost Function

X_{1}	Υ
-1	-3
0	-1
1	1
2	3
3	5
4	7

$$Y = w_1 X_1 + b_0$$

Cost Function

X_{1}	X_2	Υ
-1	-8	-8
0	1	0
1	3	7
2	7	1
3	0	2
4	2	3

$$Y = w_1 X_1 + w_2 X_2 + b_0$$

Cost Function

$$Y = w_1^* X_1^+ w_2^* X_2^+ \dots + w_n^* X_n^+ b_0^-$$

Regression using DNN with TF2 Code Time!

TF_Boston_Housing_Regression.ipynb

Collect Data

```
data = tf.keras.datasets.boston_housing

(x_train, y_train), (x_test, y_test) = data.load_data()
```

Collect Preprocess Data

```
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
scaler.fit(x_train)

x_train_norm = scaler.transform(x_train)
x_test_norm = scaler.transform(x_test)
```

Collect Data Preprocess Design a Model

```
model.compile(
    optimizer='adam',
    loss='mse',
    metrics=['mae']
)
```

Collect Data Preprocess Design a Model Train a Model

```
history = model.fit(
    x_train_norm,
    y_train,
    epochs=1000,
    verbose=0
    )
```


Collect Data Preprocess Design a Model Train a Evaluate Make Inferences

```
xt = np.array([1.1, 0., 9., 0., 0.6, 7., 92., 3.8 , 4., 300., 21., 200, 19.5])
xt = np.reshape(xt, (1, 13))
xt_norm = scaler.transform(xt)
yt = model.predict(xt_norm)
```


Reading Material

Main references

- Harvard School of Engineering and Applied Sciences CS249r: Tiny Machine Learning
- Professional Certificate in Tiny Machine Learning (TinyML) edX/Harvard
- Introduction to Embedded Machine Learning (Coursera)
- <u>Text Book: "TinyML" by Pete Warden, Daniel Situnayake</u>

I want to thank <u>Shawn Hymel</u> and Edge Impulse, <u>Pete Warden</u> and <u>Laurence Moroney</u> from Google, and especially Harvard professor <u>Vijay Janapa Reddi</u>, Ph.D. student <u>Brian Plancher</u> and their staff for preparing the excellent material on TinyML that is the basis of this course at UNIFEI.

The IESTI01 course is part of the <u>TinyML4D</u>, an initiative to make TinyML education available to everyone globally.

Thanks And stay safe!

