Change of basis

Exercise

Find a basis for P_1 the set of *all* polynomials

Every polynomial is a linear combination of monomials,

$$a_0 + a_1 x + a_2 x^2 + a_3 x^3 \dots a_n x^n$$

So $B = \{1, x, x^2, x^3, \dots, x^n\}$ is a spanning set for P. It is linearly independent and also infinitely long ... cool.

Lets write a proof by contradiction that the set of al monomials is linearly independent:

Suppose there is some finite set of B with n vectors that is linearly $\textit{dependent}\ \{x^{P_1}, x^{P_2}, \dots, x^{Pn}\}$ where $P_1 < p_2 < p_3 \dots < p_n$. Then there are some scalars (not all zero), c_1, c_2, \dots, c_n so that $c_1 x^{P_1} + c_2 x^{P_2} + \dots + x^{P_n} = 0$

This polynomial is 0 for all values of x. BUT the fundamental theorem of algebra says that a nonzero polynomial can have at most n roots. Thus, the polynomial would have to be the zero polynomial with $c_1=c_2=\cdots=c_n=0$. This is a contradiction, \implies any finite set of B is linearly independent.

Dimension

Def:

- 1. A vector is #finite_dimensional if it has a basis consisting of finitely many vectors
- 2. A vector space is #inifinite_dimensional if it has no finite basis
- 3. The vector space $\vec{0}$ is #zero_dimensional

Coordinates

Lets move to something that is more concrete. Lets say we have a finite basis $B=\left\{ \vec{b}_1,\ldots,\vec{b}_n \right\}$ for the vector space V.then any $\vec{v}\in V$ can be written uniquely as a linear combination of $\vec{v}=c_1\vec{b}_1+\cdots+c_n\vec{b}_n$

The unique coefficient c_1,\ldots,c_n are called the #coordinates of \vec{v} relative to the basis β , (or #b-coordinates). The entries in the coordinate vector are the coordinates of this combination. We can see this easily with the x y plane - to specify a point $(2\vec{x},3\vec{y})$ we just write out (2,3). If instead we had a rotated representation, we would still be specifying points with the coefficients scaling each vector.

Take the vectorspace represented by $\begin{bmatrix} a \\ b \\ b \\ c \end{bmatrix}$

We have a basis

$$eta = \left\{ \left[egin{pmatrix} 1 \ 0 \ 0 \ 0 \end{pmatrix}, & egin{pmatrix} 0 \ 1 \ 1 \ 0 \end{pmatrix}, & egin{pmatrix} 0 \ 0 \ 0 \ 1 \end{pmatrix}
ight]
ight\}$$

We can specify coordinates of a point $\begin{bmatrix} 2 \\ -7 \\ -7 \\ 8 \end{bmatrix}$ with $\begin{bmatrix} 2 \\ -7 \\ 8 \end{bmatrix}$, because those

coordinates multiplied by the basis makes the point. We can make any basis and choose any coordinates to form that coordinate as long as β is a basis for V.

What are the coordinates of

```
egin{bmatrix} 2 & -7 \ -7 & 8 \end{bmatrix}$$inthebasis
```

```
\beta=\left{ \begin{bmatrix}
1 & 0 \
0 & 0
\end{bmatrix}
\begin{bmatrix}
0 & 1 \
1 & 0 \
\end{bmatrix},
\begin{bmatrix}
0 & 0 \
0 & 1
\end{bmatrix}
\right}
The same, $\begin{bmatrix}2\\-7\\8\end{bmatrix}$! ### Some facts about co
\begin{align}
\left{ \vec{u}{1}, \dots, \vec{u}{n} \right\\text{ is linearly independent } \
linearly independent in \\mathbb{R}^{n}
\end{align}
(make a careful note of the difference between $k$ and $n$ in the above). ##
C=\left{ \begin{bmatrix}
\begin{pmatrix}
0\1
\end{pmatrix}, & \begin{pmatrix}
2\3
```

```
\end{pmatrix}
\end{bmatrix} \right}
                                                                                                                                               We can represent xnow as the solution to {\it total} to {
\begin{bmatrix}
4\-1
\end{bmatrix} = c{1}\begin{pmatrix}
0\1
\end{pmatrix}+c{2}\begin{pmatrix}
2\3
\end{pmatrix}
                                                                                                                                                                                                                            We can write this out as
\begin{bmatrix}
4\-1
\end{bmatrix}=\begin{bmatrix}
2c{2}\c{1}+3c_{2}
\end{bmatrix}
                                                                            Or, in a slightly nice rand simultaneously grosser way,
\begin{bmatrix}
4\-1
\end{bmatrix}=\begin{bmatrix}
0 & 2 \
 1 & 3
\end{bmatrix}\begin{bmatrix}
c{1} \ c{2}
\end{bmatrix}
We can see that \$c_2=2\$, meaning \$c_1=-7\$. \ However, this was along property for the second property of the sec
```