5

5

5

Bachelor of Science (Information Technology) (I.T.) Semester—VI Examination OPERATIONS RESEARCH

Paper—6

Time: Three Hours] [Maximum Marks: 50

- **N.B.**:— (1) All questions are compulsory and carry equal marks.
 - (2) Draw neat and labelled diagrams wherever necessary.

EITHER

1. (A) Solve the following LPP using graphical method:

Maximize: $Z = 15x_1 + 18x_2$

sub to : $4x_1 + 6x_2 \le 360$

$$3x_1 \leq 180$$

$$5x_{2} \le 200$$

$$x_1, x_2 \ge 0$$

(B) Write an algorithm of Big-M method.

OR

(C) Solve the following LPP using Simplex method:

Maximize : $Z = 6x_1 + 8x_2$

sub to :
$$5x_1 + 10x_2 \le 60$$

$$4x_1 + 4x_2 \le 40$$

$$x_1, x_2 \geq 0$$

(D) Solve the following LPP by using two phase method:

Minimize :
$$Z = x_1 - 2x_2 - 3x_3$$

sub to :
$$-2x_1 + x_2 + 3x_3 = 2$$

$$2x_1 + 3x_2 + 4x_3 = 1$$

$$x_{1}, x_{2}, x_{3} \geq 0$$

NXO—20524 1 (Contd.)

EITHER

2. (A) Solve the following LPP using Dual Simplex method:

Minimize :
$$Z = 2x_1 + 4x_2$$

sub to : $2x_1 + x_2 \ge 4$
 $x_1 + 2x_2 \ge 3$
 $2x_1 + 2x_2 \le 12$

 $x_1, x_2 \ge 0$

(B) Find the initial basic feasible solp of transportation problem by using least cost method :

	D	estinati	Supply	
Source	D_{1}	D_2	D_3	Бирргу
S ₁	10	13	6	10
S_2	16	7	13	12
S_3	8	22	2	8
Demand	6	11	13	

5

OR

(C) Find the initial basic feasible sol of transportation problem using Vogel's Approximation method :

_	Destination				Supply
Source	$\mathbf{D}_{_{1}}$	D_2	D_3	D_4	Биррту
S_1	10	2	20	11	15
S_2	12	7	9	20	25
S_3	4	14	16	18	10
Demand	5	15	15	15	<u>-</u>

5

(D) Solve the following problem by using Hungarian method :

Operation				
Job	A	В	С	D
I	15	13	14	17
II	11	12	15	13
III	18	12	10	11
IV	15	17	14	16

5

EITHER

3. (A) Explain Critical Path Analysis in details with suitable example.

5

(B) A small project consists of seven activities for which the relevant data are given below:

Activity	Preceding Activities	Activity Duration
A	_	4
В	_	7
С	_	6
D	A,B	5
Е	A,B	7
F	C,D,E	6
G	C,D,E	5

- (i) Draw the network and find the project completion time.
- (ii) Calculate total float for each of the activities.
- (iii) Draw the time scaled diagram.

5

OR

(C) Explain Dynamic programming and its application.

5

(D) Project has the following time schedule:

Activity	Time in Months
1–2	2
1–3	2
1–4	1
2–5	4
3–6	8
3–7	5
4–6	3
5–8	1
6–9	5
7–8	4
8–9	3

Construct the network and compute:

- (i) Float for each activity
- (ii) Critical path and its duration.

5

EITHER

4. (A) Solve the assignment problem using the branch and bound algorithm. The cell entries represent the processing time in hours (c_{ij}) of the job i if it is assigned to the operator j.

Operator j

		1	2	3	4
	1	23	20	21	24
	2	19	21	20	20
Job i	3	20	18	24	22
	4	22	18	21	23

(B) Explain zero-one programming model for assignment problem.

5

5

OR

(C) Explain in detail types of assignment problem.

5

(D) Consider the problem of assigning four sales persons to four different sales regions as shown in Table such that the total sales in maximized :

Sales region

	1	2	3	4
1	10	22	12	14
2	16	18	22	10
3	24	20	12	18
4	16	14	14	20

The cell entries represent annual sales figure in lakhs of rupees, find the optimal allocation of the sales person to different regions.

5. Attempt ALL:—

(A) Discuss Linear Programming Problem.

 $2\frac{1}{2}$

(B) Explain Transportation Algorithm.

 $2\frac{1}{2}$

(C) Explain Network Model in detail.

 $2\frac{1}{2}$

(D) Explain Assignment problem in detail.

21/2