Barwick et al. (2024)

"From Fog to Smog: The Value of Pollution Information"

Hulai Zhang

Env.Climate

Feb 24, 2025

• The effect of pollution information on avoidance behavior and health

$$Outcome_{ct} = \alpha Pollution_{ct} + \beta Pollution_{ct} \times Post_{ct} + X'_{ct}\gamma + \varepsilon_{ct}$$
(1)

• I quantify and decompose the impact of investor flows on firm's financing and investment.

Challenges to quantify the real effect of investor flows

- (1) Feedback effect
 - firm's investment ⇒ investor flows
- (2) Measurement error
 - Investor flows via index reconstitution, mutual fund flow, or dividend reinvestment.
 - Hypothetical investor flows
 - Active trades between investors
 - No impact on stock prices and firms (Wardlaw, 2020)
- (3) Decomposition is hard!

This paper addresses these challenges!

- (1) Derive the equilibrium effect of investor flows via a demand-supply framework
 - The equilibrium effects are linear functions of investor flows
 - The real effects are identifiable via linear regressions
- (2) Construct a granular instrumental variable to estimate the parameters
- (3) Conduct counterfactual analysis for decomposition based on estimated parameters

Overview of Results

Using quarterly US data from 1999 to 2023, I find that

- Investor demand is key in determining firm's policies
 - \$1 flow induces \$.24 share issuance and \$.19 increase in firm's investment over two years
 - Investor preferences substantially diminish direct effects
- Two asymmetries
 - Stronger responses to investor inflows than outflows
 - Stronger responses during economic expansions than recessions
- Firms are key in determining stock prices
 - Firm's net issuance and changed fundamentals affect price dynamics

Literature

- This paper integrates both demand and production based models
 - Demand-Based AP: Koijen and Yogo (2019); Gabaix and Koijen (2023); Van der Beck (2024); Haddad et al. (2024)
 - Production-Based AP: Cochrane (1996); Zhang (2005); Belo (2010); Gomes and Schmid (2021)
 - The *q* theory of investment: Hayashi (1982); Erickson and Whited (2000); Liu et al. (2009); Bolton et al. (2011); Crouzet and Eberly (2023)
- This paper quantifies the real impact of investor demand
 - Mutual fund flows: Edmans et al. (2012); Khan et al. (2012); Hau and Lai (2013); Norli et al. (2015);
 Bennett et al. (2020); Xu and Kim (2022)
 - Dividend reinvestment: Hartzmark and Solomon (2024); Schmickler and Tremacoldi-Rossi (2023);
 Van der Beck (2024)
 - Index reconstitution: Chang et al. (2015); Chaudhry (2024); Sammon and Shim (2024); Tamburelli (2024)

Model: Setup

- *N* firms: n = 1, ..., N
 - Total shares issued $Q_t^F(n)$: normalized to 1 at the beginning of each quarter
 - Investment $X_t(n)$
- I investors: i = 1, ..., I
 - ullet The investor i's ownership shares of stocks are $Q_{i,t}=Q_{i,t}(P_t,X_t,V_t)$

- Market clearing condition: $Q_t^F = \sum_{i=1}^{I} Q_{i,t}$
 - Firms don't issue shares: $Q_t^F = \sum_{i=1}^{I} Q_{i,t} = 1$
 - Firms net issue shares: $Q_t^F = \sum_{i=1}^{l} Q_{i,t} > 1$
 - Firms net repurchase shares: $Q_t^F = \sum_{i=1}^{I} Q_{i,t} < 1$

• The aggregate demand elasticity to asset prices is ζ_t^P .

$$\zeta_t^P = \sum_{i=1}^I \operatorname{diag}(Q_{i,t}) \zeta_{i,t}^P \tag{2}$$

where
$$\zeta_{i,t}^P(n,n) = -\frac{\partial \ln(Q_{i,t}(n))}{\partial \ln(P_t(n))}$$
 and $\zeta_{i,t}^P(n,m) = -\frac{\partial \ln(Q_{i,t}(n))}{\partial \ln(P_t(m))}$.

• The aggregate demand elasticity to firm characteristics is ζ_t^X .

$$\zeta_t^X = \sum_{i=1}^I \operatorname{diag}(Q_{i,t}) \zeta_{i,t}^X$$
(3)

where
$$\zeta_{i,t}^X(n) = \frac{\partial \ln(Q_{i,t}(n))}{\partial \ln(X_t(n))}$$
 and $\zeta_{i,t}^X(n,m) = \frac{\partial \ln(Q_{i,t}(n))}{\partial \ln(X_t(m))}$.

- Assume an exogenous shock ΔV_t
- The impact of the demand shock (1st Order Taylor Approximation)
 - Firm level demand shock: $\Delta D_t \stackrel{\text{def}}{=} \left(\sum_{i=1}^{I} \frac{\partial Q_{i,t}}{\partial V_t} \right) \Delta V_t$
 - Asset price: $\Delta P_t = \frac{\partial P_t}{\partial V_t} \Delta V_t$
 - Share issuance: $\Delta Q_t^F = \frac{\partial Q_t^F}{\partial V_t} \Delta V_t$
 - Firm's real investment: $\Delta X_t = \frac{\partial X_t}{\partial V_t} \Delta V_t$

Lemma 1

The equilibrium effects of investor flows satisfy

$$\Delta D_{t} = \zeta_{t}^{P} \underbrace{\operatorname{diag}(P_{t})^{-1} \Delta P_{t}}_{\text{Price Effect}} + \underbrace{\Delta Q_{t}^{F}}_{\text{Financing Effect}} - \zeta_{t}^{X} \underbrace{\operatorname{diag}(X_{t})^{-1} \Delta X_{t}}_{\text{Investment Effect}}$$
(4)

where ζ_t^P and ζ_t^X are demand elasticities.

- If no financing and investment effects, the price effect $\operatorname{diag}(P_t)^{-1}\Delta P_t=(\zeta_t^P)^{-1}\Delta D_t$.
 - Price effect by estimating ζ_t^P (Gabaix and Koijen, 2023; Van der Beck, 2024; Haddad et al., 2024)
- Evidence shows non-zero financing and investment effects

Model: Firm Side

- (1) Q-theory of investment
 - Hayashi (1982); Liu et al. (2009); Bolton et al. (2011)
 - Assume CRS and quadratic adjustment cost
 - Investment is linear in Tobin's *q*: $\mathrm{diag}(X_t)^{-1}\Delta X_t = \mathbf{\Lambda}^X\mathrm{diag}(P_t)^{-1}\Delta P_t$
- (2) Information role of stock prices
 - Bond et al. (2012); Foucault and Fresard (2014); Dessaint et al. (2019)
 - Assume price as a noisy indicator of MPK: $P_t = MPK_t + u_t$
 - Investment is linear in stock prices: $\mathrm{diag}(X_t)^{-1}\Delta X_t = \mathbf{\Lambda}^X\mathrm{diag}(P_t)^{-1}\Delta P_t$
- ⇒ Total shares and investment are linear functions of stock prices
 - $\Delta Q_t^F = \mathbf{\Lambda}^F \mathrm{diag}(P_t)^{-1} \Delta P_t$ and $\mathrm{diag}(X_t)^{-1} \Delta X_t = \mathbf{\Lambda}^X \mathrm{diag}(P_t)^{-1} \Delta P_t$

Model: Equilibrium

Proposition 1

The equilibrium effects of investor flows on firm's share issuance and investment are

$$\Delta Q_t^F = \underbrace{\Lambda_t^F (\zeta_t^P + \Lambda_t^F - \zeta_t^X \Lambda_t^X)^{-1}}_{\stackrel{\text{def}}{=} M_t^F} \Delta D_t$$
 (5)

$$\operatorname{diag}(X_t)^{-1} \Delta X_t = \underbrace{\Lambda_t^X (\zeta_t^P + \Lambda_t^F - \zeta_t^X \Lambda_t^X)^{-1}}_{\stackrel{\text{def}}{=} M_t^X} \Delta D_t$$
 (6)

Model: No Feedback Effects

The direct impact of investor flows ($\zeta_t^X = 0$):

$$\Delta Q_t^F = \Lambda_t^F (\zeta_t^P + \Lambda_t^F)^{-1} \Delta D_t \tag{7}$$

$$\operatorname{diag}(X_t)^{-1} \Delta X_t = \Lambda_t^X (\zeta_t^P + \Lambda_t^F)^{-1} \Delta D_t$$
 (8)

How much the feedback effect diminishes the direct effect:

$$\Delta^X = \frac{(\zeta_t^P + \Lambda_t^F - \zeta_t^X \Lambda_t^X)^{-1}}{(\zeta_t^P + \Lambda_t^F)^{-1}} - 1.$$
(9)

Data and Sample

Data

- Quarterly firm data: Compustat
- Stock data: CRSP
- Quarterly institutional holdings: Factset Ownership v5

Sample

- Industrial firms: exclude financial and utilities firms
- Common stocks listed in NYSE, AMEX, and NASDAQ
- 1999Q1 2023Q4

The identification strategy is based on Gabaix and Koijen (2024).

• The demand-supply system to be estimated:

$$\Delta q_{i,t}(n) = -\zeta^{P}(n)R_{t}(n) + \zeta^{X}(n)\Delta x_{t}(n) + \gamma_{i}(n)\eta_{t}(n) + \varepsilon_{i,t}(n)$$
(10)

$$\Delta Q_t^F(n) = \lambda^F(n) R_t(n) + \mu_t(n) \tag{11}$$

$$\Delta x_t(n) = \lambda^X(n)R_t(n) + \nu_t(n) \tag{12}$$

- Assumptions
 - (1) Exogenous demand shocks: $\varepsilon_{i,t}(n) \perp \eta_t(n), \mu_t(n), \nu_t(n)$
 - (2) No spillover effects
 - (3) Homogenous demand elasticity: $\zeta_{i,t}^{p}(n) = \zeta^{p}(n)$ and $\zeta_{i,t}^{X}(n) = \zeta^{X}(n)$
 - (4) Homogenous supply elasticity: $\lambda_t^F(n) = \lambda^F(n)$ and $\lambda_t^X(n) = \lambda^X(n)$

- Define three weights: $S_{i,t}(n) = \frac{Q_{i,t-1}(n)}{\sum_i Q_{i,t-1}(n)}$, $E_i(n)$, and $S_{i,t}(n) E_i(n)$
- The aggregate demand functions are

$$S_{i,t}(n): \qquad \widetilde{\Delta q_t(n)} = -\zeta^P(n)R_t(n) + \zeta^X(n)\Delta x_t(n) + \widetilde{\gamma(n)}\eta_t(n) + \widetilde{\varepsilon_t(n)}$$
 (13)

$$E_i(n): \qquad \overline{\Delta q_t(n)} = -\zeta^P(n)R_t(n) + \zeta^X(n)\Delta x_t(n) + \overline{\gamma(n)}\eta_t(n) + \overline{\varepsilon_t(n)}$$
 (14)

$$S_{i,t}(n) - E_i(n) : \qquad \widehat{\Delta q_t(n)} = \widehat{\gamma(n)} \eta_t(n) + \widehat{\varepsilon_t(n)}.$$
 (15)

- The demand shock is $D_t(n) = \widetilde{\varepsilon_t(n)}$, but unidentifiable.
 - $z_t(n) \stackrel{\text{def}}{=} \widehat{\varepsilon_t(n)}$ is identified!
 - $z_t(n)$ is called the granular instrumental variable (GIV). (Gabaix and Koijen, 2024)

•
$$\Delta Q_t^F(n) = \widetilde{\Delta q_t(n)}$$

Proposition 2

The equilibrium effects of investor flows are identified from regressions

$$\Delta Q_t^F(n) = M^F(n)z_t(n) + \xi_t(n) \tag{16}$$

$$\Delta x_t(n) = M^{X}(n)z_t(n) + \upsilon_t(n)$$
(17)

where

$$M^{F}(n) = \lambda^{F}(n)[\zeta^{P}(n) + \lambda^{F}(n) - \zeta^{X}(n)\lambda^{X}(n)]^{-1}$$

$$M^{X}(n) = \lambda^{X}(n)[\zeta^{P}(n) + \lambda^{F}(n) - \zeta^{X}(n)\lambda^{X}(n)]^{-1}$$
(19)

(18)

Estimation Procedure

- Aggregate institutional holdings to nine: brokers, hedge funds, long term investors, private banking, small active, large active, small passive, large passive, and households.
- Compute the weights $S_{i,t}(n)$ and $E_i(n)$: $S_{i,t}(n) = \frac{Q_{i,t-1}(n)}{\sum_i Q_{i,t-1}(n)}$ and $E_i(n) = \frac{1/\sigma_i^2(n)}{\sum_i 1/\sigma_i^2(n)}$
- Follow Gabaix and Koijen (2024) to construct $z_t(n)$
 - $\eta_t = (\text{GDP Growth}_t, \eta_{1t}(n), \eta_{2t}(n))$
 - $(\eta_{1t}(n), \eta_{2t}(n))$ by PCA
- Run the two regressions

$$\Delta Q_t^F(n) = M^F z_t(n) + \alpha^F(n) + \gamma^F(n) \eta_t(n) + \xi_t(n)$$
(20)

$$\Delta x_t(n) = M^X z_t(n) + \alpha^X(n) + \gamma^X(n) \eta_t(n) + \upsilon_t(n)$$
(21)

GIV $z_t(n)$ Validity

- Main results are stable for GIVs constructed by different factors
- The GIVs are unrelated to firm characteristics in previous quarters
- The GIVs should capture the *hypothetical* demand shocks.
 - (1) Demand shocks from mutual fund flows positively predict $z_t(n)$.

 Method Result
 - (2) Demand shocks by dividend reinvestment positively predict $z_t(n)$.

 Method Result
 - (3) $z_t(n)$ captures both hypothetical demand shocks at the same time.

Long-term Issuance

$$\sum_{\tau=0}^{8} \Delta Q_{t+\tau}^{F}(n) = M^{F} z_{t}(n) + \alpha^{F}(n) + \gamma^{F}(n) \eta_{t}(n) + \xi_{t}(n)$$
(22)

Long-term Growth of Real Investment

$$\sum_{t=0}^{8} \Delta \frac{I_{t+\tau}}{K_{t+\tau-1}}(n) = M^{X} z_{t}(n) + \alpha^{X}(n) + \gamma^{X}(n) \eta_{t}(n) + \upsilon_{t}(n)$$
(23)

	(1)	(2)	(3)
$z_t(n)$	0.184***	0.188***	0.188***
, ,	(0.057)	(0.058)	(0.058)
Obs.	38172	38172	38172
R^2	0.461	0.463	0.463
Firm FEs	Yes	Yes	Yes
Firm×GDP Growth	Yes	Yes	Yes
$Firm \! imes \! \eta_1$		Yes	Yes
$Firm \times \eta_2$			Yes

Heterogeneity Analysis

- Investor Inflows vs. Outflows
 - Almost zero net buybacks for outflows

 Financing
 - Dis-investment is 50% for outflows of investment for inflows
- Economic Expansions vs. Recessions
 - Net issuance is 56% during recessions of that during expansions
 - Investment responses are 50% during recessions of that during expansions

The Effect of Investor Preferences

How much the feedback effect diminishes the direct effect:

$$\Delta^X = \frac{(\zeta_t^P + \Lambda_t^F - \zeta_t^X \Lambda_t^X)^{-1}}{(\zeta_t^P + \Lambda_t^F)^{-1}} - 1.$$
(24)

- (1) $(\boldsymbol{\zeta}_t^P + \boldsymbol{\Lambda}_t^F \boldsymbol{\zeta}_t^X \boldsymbol{\Lambda}_t^X)^{-1}$: identify by $R_t(n)$ on $z_t(n)$
- (2) Λ_t^F : identify by $\mathbb{E}\left[z_t(n)[\Delta Q_t^F(n) \lambda^F(n)R_t(n)]\right] = 0$
- (3) ζ_t^P : identify by instruments in DSAP such as investment mandate of institutions

The Effect of Investor Preferences

The price impact of investor flows is

$$\operatorname{diag}(P_t)^{-1}\Delta P_t = (\zeta_t^P + \Lambda_t^F - \zeta_t^X \Lambda_t^X)^{-1}\Delta D_t$$
(25)

$$(1) (\boldsymbol{\zeta}_t^P + \boldsymbol{\Lambda}_t^F - \boldsymbol{\zeta}_t^X \boldsymbol{\Lambda}_t^X)^{-1} = 0.266$$

(2)
$$\Lambda_t^F = 0.236/0.266 = 0.887$$

The Effect of Investor Preferences

Reverse Question: Firm's Role in the Stock Market

The price impact of investor flows

$$\operatorname{diag}(P_t)^{-1}\Delta P_t = (\boldsymbol{\zeta}_t^P + \boldsymbol{\Lambda}_t^F - \boldsymbol{\zeta}_t^X \boldsymbol{\Lambda}_t^X)^{-1}\Delta D_t$$
 (26)

The price impact without fundamental responses ($\mathbf{\Lambda}_t^X = 0$)

$$\operatorname{diag}(P_t)^{-1}\Delta P_t = (\boldsymbol{\zeta}_t^P + \boldsymbol{\Lambda}_t^F)^{-1}\Delta D_t \tag{27}$$

The price impact without firm responses ($\mathbf{\Lambda}_t^F = \mathbf{\Lambda}_t^X = 0$)

$$\operatorname{diag}(P_t)^{-1}\Delta P_t = (\zeta_t^P)^{-1}\Delta D_t \tag{28}$$

Reverse Question: Firm's Role in the Stock Market

Benchmark price impact is 0.266.

Conclusion

- This paper develops a demand-supply framework to study the multipliers of investor flows
 - The multipliers depend on both demand and supply side elasticities
 - The multipliers can be decomposed as direct and feedback effects
- The multipliers can be identified using GIV
 - $\bullet~1\%$ investor flow leads to .24% share issuance and 0.19% growth of real investment
 - The effect to outflows and during recessions is half of that inflows and economic expansions
 - The direct effect is mostly diminished by the feedback effect
- The framework also provides a novel tool to evaluate how a firm shapes financial markets
 - Share supply reduces the price impact of investor flows by 80%
 - Firm's investment reduces the price impact by additional 10%

GIV $z_t(n)$ Validity: Mutual Fund Flows

- The *hypothetical* demand shocks are defined as Lou (2012).
 - Keep only $\frac{F_{i,t}}{TNA_{i,t-1}} \ge 5\%$ mutual fund flows
 - Firm level demand shock is

$$MFFlow_t(n) = \sum_{i=1}^{T} Q_{i,t-1}(n) \frac{F_{i,t}}{TNA_{i,t-1}}$$
(29)

GIV $z_t(n)$ Validity: Mutual Fund Flows

$$z_t(n) = \beta MFFlow_t(n) + FEs + \epsilon_t(n)$$

(30)

GIV $z_t(n)$ Validity: Dividend Reinvestment

- The hypothetical demand shocks are defined as Schmickler and Tremacoldi-Rossi (2023).
 - Investor flow to n due to dividend reinvestment is $\Delta q_{i,t}(n) = \frac{\sum_{m \neq n} Div_{i,t}(m)}{AUM_{i,t-1}}$
 - Firm level demand shock is

$$DivxFlow_t(n) = \frac{\sum_{i=1}^{l} Q_{i,t-1}(n) \Delta q_{i,t}(n)}{Q_{t-1}^F(n)}$$
(31)

GIV $z_t(n)$ Validity: Dividend Reinvestment

$$z_t(n) = \beta DivxFlow_t(n) + FEs + \epsilon_t(n)$$
(32)

	(1)	(2)	(3)
DivxFlow	9.007***	16.002***	16.002***
	(1.464)	(1.904)	(2.124)
Obs.	399635	399635	399635
R^2	0.004	0.012	0.012
Quarter FEs		Yes	Yes
Quarter Clustering	Yes	Yes	Yes
Firm Clustering			Yes
Obs.	399635	399635	399635
R^2	0.0041	0.0117	0.0117

GIV $z_t(n)$ Validity: Mutual Fund Flows vs Dividend Reinvestment

$$z_t(n) = \beta_1 MFFlow_t(n) + \beta_2 DivxFlow_t(n) + FEs + \epsilon_t(n)$$
(33)

Share Issuance: Inflows versus Outflows

- 0.85% net issuance to inflows
- 0.01% net buyback in outflows
- ⇒ All effects from inflows

Real Investment: Inflows versus Outflows

For 1% investor flows,

- 0.30% investment growth to inflows
- 0.15% dis-investment growth in outflows
- \Rightarrow 50% of the effect

Share Issuance during Economic Recessions

For 1% investor flows,

- 0.25% share issuance in expansions
- 0.14% share issuance in recessions
- \Rightarrow 56% of the effect in recessions

Real Investment during Economic Recessions

	(1)	(2)	(3)
$z_t(n)$	0.187***	0.183***	0.183***
	(0.044)	(0.045)	(0.045)
Recession	-0.300***	-0.297***	-0.297***
	(0.096)	(0.095)	(0.095)
$z_t(n) \times \text{Recession}$	-0.093*	-0.095*	-0.095*
	(0.047)	(0.050)	(0.050)
Obs.	38172	38172	38172
R^2	0.123	0.131	0.131
Firm FEs	Yes	Yes	Yes
$Firm \! imes \! \eta_1$		Yes	Yes
$Firm \times \eta_2$			Yes

For 1% investor flows,

- 0.18% investment growth in expansions
- 0.09% investment growth in recessions
- \Rightarrow 50% of the effect in recessions

References I

- Barwick, P. J., S. Li, L. Lin, and E. Y. Zou (2024). From fog to smog: The value of pollution information. *American Economic Review 114*(5), 1338–1381.
- Belo, F. (2010). Production-based measures of risk for asset pricing. *Journal of Monetary Economics* 57(2), 146–163.
- Bennett, B., R. Stulz, and Z. Wang (2020). Does the stock market make firms more productive? *Journal of Financial Economics* 136(2), 281–306.
- Bolton, P., H. Chen, and N. Wang (2011). A unified theory of tobin's q, corporate investment, financing, and risk management. *Journal of Finance 66*(5), 1545–1578.
- Bond, P., A. Edmans, and I. Goldstein (2012). The real effects of financial markets. *Annual Review of Financial Economics* 4(1), 339–360.
- Chang, Y.-C., H. Hong, and I. Liskovich (2015). Regression discontinuity and the price effects of stock market indexing. *Review of Financial Studies* 28(1), 212–246.

References II

- Chaudhry, A. (2024). The impact of prices on analyst cash flow expectations: Reconciling subjective beliefs data with rational discount rate variation. *SSRN*.
- Cochrane, J. H. (1996). A cross-sectional test of an investment-based asset pricing model. *Journal of Political Economy* 104(3), 572–621.
- Crouzet, N. and J. Eberly (2023). Rents and intangible capital: A q+ framework. *Journal of Finance* 78(4), 1873–1916.
- Dessaint, O., T. Foucault, L. Frésard, and A. Matray (2019). Noisy stock prices and corporate investment. *Review of Financial Studies* 32(7), 2625–2672.
- Edmans, A., I. Goldstein, and W. Jiang (2012). The real effects of financial markets: The impact of prices on takeovers. *Journal of Finance 67*(3), 933–971.
- Erickson, T. and T. M. Whited (2000). Measurement error and the relationship between investment and q. *Journal of Political Economy* 108(5), 1027–1057.

References III

- Foucault, T. and L. Fresard (2014). Learning from peers' stock prices and corporate investment. *Journal of Financial Economics* 111(3), 554–577.
- Gabaix, X. and R. S. Koijen (2023). In search of the origins of financial fluctuations: The inelastic markets hypothesis. *SSRN*.
- Gabaix, X. and R. S. Koijen (2024). Granular instrumental variables. *Journal of Political Economy* 132(7), 000–000.
- Gomes, J. F. and L. Schmid (2021). Equilibrium asset pricing with leverage and default. *Journal of Finance* 76(2), 977–1018.
- Haddad, V., P. Huebner, and E. Loualiche (2024). How competitive is the stock market? theory, evidence from portfolios, and implications for the rise of passive investing. *SSRN*.
- Hartzmark, S. M. and D. H. Solomon (2024). Marketwide predictable price pressure. SSRN.

References IV

- Hau, H. and S. Lai (2013). Real effects of stock underpricing. *Journal of Financial Economics* 108(2), 392–408.
- Hayashi, F. (1982). Tobin's marginal q and average q: A neoclassical interpretation. *Econometrica*, 213–224.
- Khan, M., L. Kogan, and G. Serafeim (2012). Mutual fund trading pressure: Firm-level stock price impact and timing of seos. *Journal of Finance 67*(4), 1371–1395.
- Koijen, R. S. and M. Yogo (2019). A demand system approach to asset pricing. *Journal of Political Economy* 127(4), 1475–1515.
- Liu, L. X., T. M. Whited, and L. Zhang (2009). Investment-based expected stock returns. *Journal of Political Economy* 117(6), 1105–1139.
- Lou, D. (2012). A flow-based explanation for return predictability. *Review of Financial Studies* 25(12), 3457–3489.

References V

- Norli, Ø., C. Ostergaard, and I. Schindele (2015). Liquidity and shareholder activism. *Review of Financial Studies* 28(2), 486–520.
- Sammon, M. and J. J. Shim (2024). Who clears the market when passive investors trade? SSRN.
- Schmickler, S. and P. Tremacoldi-Rossi (2023). Spillover effects of payouts on asset prices and real investment. *SSRN*.
- Tamburelli, T. (2024). Firms issue shares to satisfy inelastic demand. SSRN.
- Van der Beck, P. (2024). Flow-driven esg returns. SSRN (21-71).
- Wardlaw, M. (2020). Measuring mutual fund flow pressure as shock to stock returns. *Journal of Finance* 75(6), 3221–3243.
- Xu, Q. and T. Kim (2022). Financial constraints and corporate environmental policies. *Review of Financial Studies* 35(2), 576–635.
- Zhang, L. (2005). The value premium. *Journal of Finance* 60(1), 67–103.