CellSeg2

Main Algorithmic Steps

- Identify Background
- Identify Points within Cells
- Segment Cells

Identify Background

Why?

Needed for robustness against artefacts / etc.

How?

- Based on fluorescence channel with high background fluorescence of cells
- Blur image with high radius
- Otsu thresholding
- Dilate thresholded image
- Invert

Otsu Thresholding

- Divide Pixels into foreground and background
- Create histogram of Pixel intensities, which is assumed to be bimodal
- Finds threshold in "valley" between two modes, by minimizing the variance within the two clusters

Point in Cell Identification

Why?

Used for segmentation later on

How?

- Based on (blurred) brightfield image
- Otsu thresholding, series of binary image transformation to give good approximation of where the cell borders are
- Calculate distance transform
- Find maxima of smoothed distance transform that aren't within background

Otsu thresholding

Erode image, remove noise

Close, better handling at cell connections

Smooth distance transform

Segment Cells

Why?

For every pixel, assign it to a cell

How?

- Watershed algorithm
- Start at identified cell points and identified background
- Look at the image intensity as a landscape. Start filling this landscape up with water at starting points. If two lakes meet, identify this as the border of the cell.

(image from ImageJ)

Learn from Previous Frame

Two key improvements in the next frame:

- If a cell in the previous frame doesn't have a point within it in the next cell, add the centroid as point
- After segmentation look at previous segmentation to identify cell correspondence.

