KING SAUD UNIVERSITY							
COLLEGE OF COMPUTER AND INFORMATION SCIENCES							
COMPUTER SCIENCE DEPARTMENT							
CSC 329: Computer Network	Tutorial 2		1st Semester 1437-1438				
Name:		Student ID:					
Serial Number:		Section Number:					

СОМР	UTER SCIE	NCE DEPAR	RTMENT	
CSC 329: Computer Network	Tuto	rial 2	1st Semester 1437-1438	
Name:		Student ID:	<u>:</u>	
Serial Number:		Section Number:		
Part1: Multiple-Choice Quest	tions <mark>(Mo</mark>	<mark>del Answe</mark>	<u>r)</u>	
 Which of the following can a signal? a. Bandwidth b. Phase c. Power d. All the above 	an be deter	mined from	n a frequency-domain graph of	
2) In a time-domain plot, the a. Amplitude b. Frequency c. Phase d. Slope	ne vertical a	axis measure	es the	
 a. Exactly an odd number b. A set of sine waves. c. A set of sine waves, one d. None of the above 	of sine way	es -		
 A sine wave is a. Periodic and continuous b. Aperiodic and continuous c. Periodic and discrete d. Aperiodic and discrete 				
5) If the maximum amplitude V. a. 2 b. 1 c2 d. Between -2 and 2	de of a sine	wave is 2 V,	, the minimum amplitude is	
6) Given two sine waves A a period of B is		e frequency	of A is twice that of B, then the	
a. One-half				

	c. The same as d. Indeterminate from
7)	As frequency increases, the period a. Decreases b. Increases c. Remains the same d. Doubles
8)	A periodic signal completes one cycle in 0.001 s. What is the frequency? a. 1Hz b. 100Hz c. 1KHz d. 1MHz
9)	If the bandwidth of a signal is 5 KHz and the lowest frequency is 52 KHz, what is the highest frequency? a. 5KHz b. 10KHz c. 47KHz d. 57KHz
10)	What is the bandwidth of a signal that ranges from 40 KHz to 4 MHz? a. 36 MHz b. 360 KHz c. 3.96 MHz d. 396 KHz
11) Twisted-Pair and coaxial cable are used a.copper b.light c.unwired d.wireless
12	 Cable that accepts and transports signals in form of light is a. Unwired b. fiber optic cable c. coaxial cable d. twisted pair cable
13)	A repeater takes a weakened or corrupted signal andit. a. Amplifies b. Regenerates c. Re-samples d. Reroutes

b. Twice

Part2: Exercises

1) What is the phase shift for the following?

- a. A sine wave starts at time Zero with minimum amplitude. The amplitude is increasing. The phase shift = 270
- b. A sine wave with minimum amplitude after 3/4 cycle. The phase shift = 0
- c. A sine wave with zero amplitude after 1/2 cycle and increasing. The phase shift = 180

2) What is the bit rate for each of the following signals?

- a. A signal in which 1 bit lasts 2 ms. $1/2*10^{-3} = 500$ bps
- b. A signal in which 10 bits last 20 μ s. $\frac{10}{20} * 10^{-6} = 500000 \text{ bps} = 0.5 \text{ Mbps}$

3) A device is sending out data at the rate of 500 bps.

Bit interval (how long it takes a bit to travel)=1/ bit rate =1/500 = 0.002 s

a. How long does it take to send out a single character (8 bits)?

Time to send 8 bits = 8 * bit interval = 8 * 0.002 = 0.016 s

b. How long does it take to send a file of 100,000 characters?

Time to send 800,000 bits = 800,000 * bit interval = 800,000 * 0.002 = 1600 s

4) What is the bit rate for the signal in the following figure?

Number of bits per level =log2 L = log2 4 = log2 4 = 2

Bit rate =
$$2*8/(30*10-9) = 0.533$$
 Gbps

5) What is the frequency of the signal in the following figure?

8 cycles in 4ms ? cycles in 1 s 1*8 / 4*10-3 = 2000Hz

2 1ms 1s

6) What is the bandwidth and the lowest frequency of the composite signal shown in the figure?

bandwidth = 5 * 5 = 25 Hzbandwidth = $f_h - f_l$ $f_l = \text{bandwidth} - f_h = 180 - 25 = 155 \text{ Hz}$

7) A periodic composite signal with a bandwidth of **200 Hz** is composed of constant signal of **10 V** and three sine waves: The first one has a frequency of **40 Hz** with a maximum amplitude of **5V**; the second one has a frequency of **120 Hz** with a maximum amplitude of **20 V** and the third one has a maximum amplitude of **10 V**. Draw the frequency spectrum of the signal.

8) A non-periodic composite signal contains frequencies from 10 to 30 KHz. The amplitude is 10 V for the extreme (min and max) frequencies and 30 V for middle frequency. Assuming that the amplitudes change gradually from the minimum to the maximum. Draw the frequency spectrum of the signal.

