

UNISOC Android9.0 UDS710+UDX710 Camera IIRCNR Tuning Guide

## 修改历史



## 文档信息



| 适用产品信息        | 适用版本信息      | 关键字    |
|---------------|-------------|--------|
| UDS710+UDX710 | Android 9.0 | IIRCNR |



- 1 原理介绍
- 2 调试流程
- 3 功能确认
- 4 调试案例
- 5 附: param list



IIRCNR模块作用在YUV域,主要用于去除前面的色彩降噪模块PRECDN,CDN,POSTCDN没有去除的颜色噪声算法会在Y/U/V三个不同的平面进行处理

在调试IIRCNR之前除了确保RAW域及RGB域的模块都已经调试完毕外,还需要确保前面的颜色处理模块PRECDN,CDN,POSTCDN也已经调试完毕。

Tune



| Name             | Value    | Name             | Value |
|------------------|----------|------------------|-------|
| ccnr_bypass      | 0        |                  |       |
| pre_uv_th        | 30       |                  |       |
| uv_th            | 15       | uv_dist          | 10    |
| uv_low_thr1_0    | 384      | uv_low_thr1_1    | 512   |
| uv_low_thr1_2    | 772      | uv_low_thr1_3    | 772   |
| y_edge_thr_max_0 | 40       | y_edge_thr_max_1 | 49    |
| y_edge_thr_max_2 | 49       | y_edge_thr_max_3 | 49    |
| y_edge_thr_min_0 | 20       | y_edge_thr_min_1 | 34    |
| y_edge_thr_min_2 | 34       | y_edge_thr_min_3 | 34    |
| y_th             | 240      | uv_diff_thr      | 16    |
| alpha_hl_diff_u  | 500      | alpha_low_u      | 15683 |
| uv_low_thr2_0    | 576      | uv_high_thr2_0   | 1280  |
| uv_low_thr2_1    | 1024     | uv_high_thr2_1   | 1920  |
| uv_low_thr2_2    | 1289tial | uv_high_thr2_2   | 3860  |
| uv_low_thr2_3    | 1280     | uv_high_thr2_3   | 3860  |
| css_lum_thr      | 32       |                  |       |

| Name               | Value  | Name               | Value  |
|--------------------|--------|--------------------|--------|
| ymd_u              | 491520 | ymd_v              | 491520 |
| ymd_min_u          | 0      | ymd_min_v          | 0      |
| slop_uv_0          | 5      | slop_uv_1          | 4      |
| slop_uv_2          | 3      | slop_uv_3          | 3      |
| slop_uv_4          | 3      | siop_uv_5          | 3      |
| slop_uv_6          | 3      | slop_uv_7          | 3      |
| slop_y_0           | 409    | slop_y_1           | 546    |
| slop_y_2           | 546    | slop_y_3           | 124    |
| slop_y_4           | 124    | slop_y_5           | 124    |
| slop_y_6           | 124    | slop_y_7           | 124    |
| middle_factor_uv_0 | 19392  | middle_factor_uv 1 | 19712  |
| middle_factor_uv_2 | 17792  | middle_factor_uv_3 | 17792  |
| middle_factor_uv_4 | 17792  | middle_factor_uv_5 | 17792  |
| middle_factor_uv_6 | 17792  | middle_factor_uv_7 | 17792  |
| middle_factor_y_0  | 24552  | middle_factor_y_1  | 34946  |
| middle_factor_y_2  | 34946  | middle_factor_y_3  | 20592  |
| middle_factor_y_4  | 20592  | middle_factor_y_5  | 20592  |
| middle_factor_y_6  | 20592  | middle_factor_y_7  | 20592  |

Get

Set

YUV

判断是否要进行去噪

控制去噪强度

输出



| Name            | Value | Name             | Value | Name               | Value  | Name               | Value  |
|-----------------|-------|------------------|-------|--------------------|--------|--------------------|--------|
| cnr_bypass      | 0     |                  |       | ymd_u              | 491520 | ymd_v              | 491520 |
| re_uv_th        | 30    |                  |       | ymd_min_u          | 0      | ymd_min_v          | 0      |
| v_th            | 15    | uv_dist          | 10    | slop_uv_0          | 5      | slop_uv_1          | 4      |
| v_low_thr1_0    | 384   | uv_low_thr1_1    | 512   | slop_uv_2          | 3      | slop_uv_3          | 3      |
| v_low_thr1_2    | 772   | uv_low_thr1_3    | 772   | slop_uv_4          | 3      | slop_uv_5          | 3      |
| _edge_thr_max_0 | 40    | y_edge_thr_max_1 | 49    | slop_uv_6          | 3      | slop_uv_7          | 3      |
| _edge_thr_max_2 | 49    | y_edge_thr_max_3 | 49    | slop_y_0           | 409    | slop_y_1           | 546    |
| _edge_thr_min_0 | 20    | y_edge_thr_min_1 | 34    | slop_y_2           | 546    | slop_y_3           | 124    |
| _edge_thr_min_2 | 34    | y_edge_thr_min_3 | 34    | slop_y_4           | 124    | slop_y_5           | 124    |
| _th             | 240   | uv_diff_thr      | 16    | slop_y_6           | 124    | slop_y_7           | 124    |
| lpha_hl_diff_u  | 500   | alpha_low_u      | 15683 | middle_factor_uv_0 | 19392  | middle_factor_uv_1 | 19712  |
| v_low_thr2_0    | 576   | uv_high_thr2_0   | 1280  | middle_factor_uv_2 | 17792  | middle_factor_uv_3 | 17792  |
| v_low_thr2_1    | 1024  | uv_high_thr2_1   | 1920  | middle_factor_uv_4 | 17792  | middle_factor_uv_5 | 17792  |
| v_low_thr2_2    | 1280  | uv_high_thr2_2   | 3860  | middle_factor_uv_6 | 17792  | middle_factor_uv_7 | 17792  |
| v_low_thr2_3    | 1280  | uv_high_thr2_3   | 3860  | middle_factor_y_0  | 24552  | middle_factor_y_1  | 34946  |
| ss_lum_thr      | 32    |                  |       | middle_factor_y_2  | 34946  | middle_factor_y_3  | 20592  |
|                 |       |                  |       | middle_factor_y_4  | 20592  | middle_factor_y_5  | 20592  |
|                 |       |                  |       | middle_factor_y_6  | 20592  | middle_factor_y_7  | 20592  |
|                 |       | ntial For        | ı ior |                    |        |                    |        |

uv\_th: UV方差阈值。该值越大,越多的像素被滤波。

uv\_dist: UV梯度阈值。该值越大,越多的像素被滤波。

uv\_low\_thr1\_0/1/2/3: 不同亮度的UV阈值。该值越大越多像素在对应亮度被滤波。

y\_edge\_thr\_min\_0/1/2/3: 在不同亮度下的最小边缘判断阈值。该值用来在边缘和平坦像素之间做平滑过渡。

y\_edge\_thr\_max\_0/1/2/3: 在不同亮度下的最大边缘判断阈值。该值将决定当前像素是否在边缘位置,如果在边缘上,

将不会被滤波。所以该值越大,越多的像素会被滤波。









Y\_th: 亮度阈值

Alpha\_hl\_diff\_u: UV平面低强度与高强度之间的差值。该值越大滤波强度越强

Alpha\_low\_u: UV平面低强度滤波。该值越大滤波强度越强

Uv\_low\_thr2\_0/1/2/3: 不同亮度下,随着边缘度增加用来控制减小滤波器强度。该值越小,去噪强度会越弱

Uv\_high\_thr2\_0/1/2/3: 不同亮度下,随着边缘度增加用来控制减小滤波器强度。该值越小,去噪强度会越弱

Css\_lum\_thr: 色彩抑制阈值。该值越大, 越多的像素被色彩抑制。

#### 调试流程





- 在调试该模块时,需要先根据gain值配置不同的档位,并且enable位要使能
- gain值要按照从小到大的规则填写,不能反转或者空置
- 参数档位可以根据调试者的需要增加或者删减

### 调试流程

Tune



level number 1 Gain: 1.00 Copy Paste

| Name             | Value     | Name             | Value |
|------------------|-----------|------------------|-------|
| ccnr_bypass      | 0         |                  |       |
| pre_uv_th        | 30        |                  |       |
| uv_th            | 15        | uv_dist          | 10    |
| uv_low_thr1_0    | 384       | uv_low_thr1_1    | 512   |
| uv_low_thr1_2    | 772       | uv_low_thr1_3    | 772   |
| y_edge_thr_max_0 | 40        | y_edge_thr_max_1 | 49    |
| y_edge_thr_max_2 | 49        | y_edge_thr_max_3 | 49    |
| y_edge_thr_min_0 | 20        | y_edge_thr_min_1 | 34    |
| y_edge_thr_min_2 | 34        | y_edge_thr_min_3 | 34    |
| y_th             | 240       | uv_diff_thr      | 16    |
| alpha_hl_diff_u  | 500       | alpha_low_u      | 15683 |
| uv_low_thr2_0    | 576 (2)   | uv_high_thr2_0   | 1280  |
| uv_low_thr2_1    | 1024      | uv_high_thr2_1   | 1920  |
| uv_low_thr2_2    | 1280 tial | uv_high_thr2_2   | 3860  |
| uv_low_thr2_3    | 1280      | uv_high_thr2_3   | 3860  |
| css_lum_thr      | 32        |                  |       |

| Name               | Value  | Name               | Value  |
|--------------------|--------|--------------------|--------|
| ymd_u              | 491520 | ymd_v              | 491520 |
| ymd_min_u          | 0      | ymd_min_v          | 0      |
| slop_uv_0          | 5      | slop_uv_1          | 4      |
| slop_uv_2          | 3      | slop_uv_3          | 3      |
| slop_uv_4          | 3      | slop_uv_5          | 3      |
| slop_uv_6          | 3      | slop_uv_7          | 3      |
| slop_y_0           | 409    | slop_y_1           | 546    |
| slop_y_2           | 546    | slop_y_3           | 124    |
| slop_y_4           | 124    | slop_y_5           | 124    |
| slop_y_6           | 124    | slop_y_7           | 124    |
| middle_factor_uv_0 | 19392  | middle_factor_uv_1 | 19712  |
| middle_factor_uv_2 | 17792  | middle_factor_uv_3 | 17792  |
| middle_factor_uv_4 | 17792  | middle_factor_uv_5 | 17792  |
| middle_factor_uv_6 | 17792  | middle_factor_uv_7 | 17792  |
| middle_factor_y_0  | 24552  | middle_factor_y_1  | 34946  |
| middle_factor_y_2  | 34946  | middle_factor_y_3  | 20592  |
| middle_factor_y_4  | 20592  | middle_factor_y_5  | 20592  |
| middle_factor_y_6  | 20592  | middle_factor_y_7  | 20592  |

Get

Set

- ① 频域划分参数
- ②去噪强度控制
- ③ 通过左侧参数tool自动生成的参数



#### Android9.0平台调试步骤:

1、在调试IIRCNR之前需要先采集任意一张主观场景的YUV图片 adb shell setprop debug.camera.save.snpfile 1 在data/misc/cameraserver目录下生产yuv图片

d600000\_4656X3496\_uv.raw

d600000\_4656X3496\_y.raw

- d600000\_4656X3496\_.vu420
- d600000\_4656X3496\_.y420
- 2、将y.raw改名为.y420,将uv.raw改名为.vu420,并将2个文件导入isp tool
- U3、修改tuning参数后,点击tune,生成右侧参数
  - 4、点set保存

注意:每次修改tuning参数后,都需要导入任意一张YUV图片,用来生成上页③中的参数

#### 调试流程



| Name                | Value | Name             | Value |
|---------------------|-------|------------------|-------|
| ccnr_bypass         | 0     |                  |       |
| pre_uv_th           | 30    |                  |       |
| uv_th               | 15    | uv_dist          | 10    |
| uv_low_thr1_0       | 384   | uv_low_thr1_1    | 512   |
| uv_low_thr1_2       | 772   | uv_low_thr1_3    | 772   |
| y_edge_thr_max_0    | 40    | y_edge_thr_max_1 | 49    |
| y_edge_thr_max_2    | 49    | y_edge_thr_max_3 | 49    |
| y_edge_thr_min_0    | 20    | y_edge_thr_min_1 | 34    |
| y_edge_thr_min_2    | 34    | y_edge_thr_min_3 | 34    |
| y th                | 240   | u∨ diff thr      | 16    |
| alpha hl diffical F | 500   | alpha_low_u      | 15683 |
| Suv_low_thr2_0      | 576   | uv_high_thr2_0   | 1280  |
| uv_low_thr2_1       | 1024  | uv_high_thr2_1   | 1920  |
| uv_low_thr2_2       | 1280  | uv_high_thr2_2   | 3860  |
| uv_low_thr2_3       | 1280  | uv_high_thr2_3   | 3860  |
| css_lum_thr         | 32    |                  |       |

调试过程中,建议调试左图方框中的参数,其他参数填写默认值即可

uv\_th:数值越大,更多的像素会被滤波

uv\_dist:数值越大,更多的像素会被滤波

uv\_low\_thr1:数值越大,更多的像素会被滤波

alpha\_hl\_diff\_u:数值越大,去噪强度越强

alpha\_low\_u:数值越大,去噪强度越强

uv\_low\_thr2:数值越大,去噪强度越强

css\_lum\_thr:数值越大,去噪强度越强

#### 参数修改规则:

- alpha\_hl\_diff\_u+alpha\_low\_u < 16384</li>
- uv\_high\_thr2 = uv\_low\_thr2 或 uv\_high\_thr2 uv\_low\_thr2> 65
- y\_edge\_thr\_max = y\_edge\_thr\_min 或 y\_edge\_thr\_max y\_edge\_thr\_min > 5



Value

先将其他去彩噪模块bypass,如PRECDN/CDN/POSTCDN/CCEUVDIV/CNR模块等,在暗处同一场景,拍摄对比图,图1关闭IIRCNR,图2开启IIRCNR并使用较强去噪参数



| uv_th            | 200  | uv_dist          | 600   |
|------------------|------|------------------|-------|
| uv_low_thr1_0    | 1000 | uv_low_thr1_1    | 1000  |
| uv_low_thr1_2    | 1000 | uv_low_thr1_3    | 1000  |
| y_edge_thr_max_0 | 1000 | y_edge_thr_max_1 | 1000  |
| y_edge_thr_max_2 | 1000 | y_edge_thr_max_3 | 1000  |
| y_edge_thr_min_0 | 900  | y_edge_thr_min_1 | 900   |
| y_edge_thr_min_2 | 900  | y_edge_thr_min_3 | 900   |
| y_th             | 240  | uv_diff_thr      | 16    |
| alpha_hl_diff_u  | 700  | alpha_low_u      | 15683 |
| uv_low_thr2_0    | 7000 | uv_high_thr2_0   | 8000  |
| uv_low_thr2_1    | 7000 | uv_high_thr2_1   | 8000  |
| uv_low_thr2_2    | 7000 | uv_high_thr2_2   | 8000  |
| uv_low_thr2_3    | 7000 | uv_high_thr2_3   | 8000  |
| css_lum_thr      | 255  |                  |       |

Name

Value

30

Name

ccnr\_bypass

pre\_uv\_th

强去噪参数示例

图1: IIRCNR关闭

图2: IIRCCNR开启



### 暗态下色卡色块颜色丢失,如下图





#### 图像大片颜色丢失,优先查看CMC, 若CMC无异常, 需要检查IIRCNR模块是否去噪太强

| •     | Name             | Value | Name             | Value |
|-------|------------------|-------|------------------|-------|
|       | ccnr_bypass      | 0     |                  |       |
|       | pre_uv_th        | 30    |                  |       |
|       | uv_th            | 60    | uv_dist          | 70    |
|       | uv_low_thr1_0    | 1200  | uv_low_thr1_1    | 1600  |
|       | uv_low_thr1_2    | 1780  | uv_low_thr1_3    | 1780  |
|       | y_edge_thr_max_0 | 400   | y_edge_thr_max_1 | 512   |
|       | y_edge_thr_max_2 | 512   | y_edge_thr_max_3 | 512   |
|       | y_edge_thr_min_0 | 350   | y_edge_thr_min_1 | 480   |
|       | y_edge_thr_min_2 | 480   | y_edge_thr_min_3 | 480   |
|       | y_th             | 240   | uv_diff_thr      | 16    |
|       | alpha_hl_diff_u  | 500   | alpha_low_u      | 15683 |
| Uniso | uv_low_thr2_0    | 3200  | uv_high_thr2_0   | 4000  |
| Ollio | uv_low_thr2_1    | 3400  | uv_high_thr2_1   | 4300  |
|       | uv_low_thr2_2    | 3600  | uv_high_thr2_2   | 4600  |
|       | uv_low_thr2_3    | 4000  | uv_high_thr2_3   | 5000  |
|       | css_lum_thr      | 200   |                  |       |

Value Name Name Value ccnr\_bypass 30 pre\_uv\_th 15 10 uv\_th uv\_dist 512 uv\_low\_thr1\_0 uv\_low\_thr1\_1 uv\_low\_thr1\_2 uv\_low\_thr1\_3 772 y\_edge\_thr\_max\_0 40 y\_edge\_thr\_max\_1 49 y\_edge\_thr\_max\_2 49 y\_edge\_thr\_max\_3 49 y\_edge\_thr\_min\_0 20 y\_edge\_thr\_min\_1 34 y\_edge\_thr\_min\_2 34 y\_edge\_thr\_min\_3 34 uv\_diff\_thr 16 y\_th 240 alpha\_hl\_diff\_u 500 15683 alpha\_low\_u uv\_low\_thr2\_0 576 1920 uv\_high\_thr2\_0 uv\_high\_thr2\_1 2560 uv\_low\_thr2\_1 1024 uv\_low\_thr2\_2 1280 uv\_high\_thr2\_2 3860 uv\_low\_thr2\_3 1280 3860 uv\_high\_thr2\_3 32 css\_lum\_thr

修改前

修改后



修改前

修改后

# 附: param list



| Parameters                                          | Description    | Range      | Default |
|-----------------------------------------------------|----------------|------------|---------|
| ccnr_bypass                                         | 控制CCNR打开和关闭    | [0, 1]     | 0       |
| pre_uv_th                                           | 针对第一行像素点uv方差阈值 | [0, 255]   | 30      |
| uv_th                                               | uv方差阈值         | [0, 255]   | 15      |
| uv_dist                                             | uv梯度阈值         | [0, 765]   | 10      |
| uv_low_thr1_0                                       | 该亮度下的uv低频阈值    | [0, 16383] | 384     |
| uv_low_thr1_1                                       | 该亮度下的uv低频阈值    | [0, 16383] | 512     |
| uv_low_thr1_2                                       | 该亮度下的uv低频阈值    | [0, 16383] | 772     |
| uv_low_thr1 <sup>-2</sup> uv_low_thr1 <sup>-3</sup> | 该亮度下的uv低频阈值    | [0, 16383] | 772     |
|                                                     | 该亮度下的最大亮度边缘阈值  | [0, 65535] | 40      |
| y_edge_thr_max_1                                    | 该亮度下的最大亮度边缘阈值  | [0, 65535] | 49      |
| y_edge_thr_max_2                                    | 该亮度下的最大亮度边缘阈值  | [0, 65535] | 49      |
| y_edge_thr_max_3                                    | 该亮度下的最大亮度边缘阈值  | [0, 65535] | 49      |
|                                                     |                |            |         |

# 附: param list



| Parameters                  | Description     | Range      | Default |
|-----------------------------|-----------------|------------|---------|
| y_edge_thr_min_0            | 该亮度下的最小亮度边缘阈值   | [0, 65535] | 20      |
| y_edge_thr_min_1            | 该亮度下的最小亮度边缘阈值   | [0, 65535] | 34      |
| y_edge_thr_min_2            | 该亮度下的最小亮度边缘阈值   | [0, 65535] | 34      |
| y_edge_thr_min_3            | 该亮度下的最小亮度边缘阈值   | [0, 65535] | 34      |
| y_th                        | 亮度阈值            | [0, 255]   | 240     |
| uv_diff_thr                 | uv平面与周围像素点差值的阈值 | [0, 255]   | 16      |
| alpha_hl_diff_u             | 滤波低强度与高强度之间的差值  | [0, 16383] | 500     |
| alphastow_ufidential For hi | uv平面低强度滤波       | [0, 16383] | 15683   |
|                             | 该亮度下低频的去噪强度     | [0, 81600] | 576     |
| uv_low_thr2_1               | 该亮度下低频的去噪强度     | [0, 81600] | 1024    |
| uv_low_thr2_2               | 该亮度下低频的去噪强度     | [0, 81600] | 1280    |

# 附: param list



| Parameters     | Description | Range      | Default |
|----------------|-------------|------------|---------|
| uv_low_thr2_3  | 该亮度下低频的去噪强度 | [0, 81600] | 1280    |
| uv_high_thr2_0 | 该亮度下高频的去噪强度 | [0, 81600] | 1920    |
| uv_high_thr2_1 | 该亮度下高频的去噪强度 | [0, 81600] | 2560    |
| uv_high_thr2_2 | 该亮度下高频的去噪强度 | [0, 81600] | 3860    |
| uv_high_thr2_3 | 该亮度下高频的去噪强度 | [0, 81600] | 3860    |
| css_lum_thr    | 色彩抑制阈值      | [0, 255]   | 32      |



## **THANKS**







本文件所含数据和信息都属于紫光展锐所有的机密信息,紫光展锐保留所有相关权利。本文件仅为信息参考之目的提供,不包含任何明示或默示的知识产权许可,也不表示有任何明示或默示的保证,包括但不限于满足任何特殊目的、不侵权或性能。当您接受这份文件时,即表示您同意本文件中内容和信息属于紫光展锐机密信息,且同意在未获得紫光展锐书面同意前,不使用或复制本文件的整体或部分,也不向任何其他方披露本文件内容。紫光展锐有权在未经事先通知的情况下,在任何时候对本文件做任何修改。紫光展锐对本文件所含数据和信息不做任何保证,在任何情况下,紫光展锐均不负责任何与本文件相关的直接或间接的、任何伤害或损失。

WWW.UNISOC.COM 紫光展锐科技