USN Model Question Paper-I with effect from 2022

Fourth Semester B.E Degree Examination Complex Analysis, Probability & Linear Programming (Mechanical Engg. Allied branches)-21MATME41

TIME: 03 Hours Max. Marks: 100

Note: Answer any **FIVE** full questions, choosing at least **ONE** question from each module.

Q.No.		Question Question			СО
Q.		Module -1	M	L	
01	a	With usual notations, derive the Cauchy-Riemann equation in the Cartesian form	06	L2	CO1
	b	If f(z) is regular function of z, prove that $\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) f(z) ^2 = 4 f'(z) ^2$	07	L2	CO1
	с	Determine the analytical function whose real part is $y + e^x \cos y$	07	L2	CO1
		OR		•	
02	a	If $f(z)$ is an analytic function with constant modulus, show that $f(z)$ is constant.	06	L2	CO1
	b	Show that $w = \log z$ is analytic everywhere except at $z = 0$ and hence find its derivative.	07	L2	CO1
	С	Find the analytical function whose imaginary part is $e^{-x}(x \sin y - y \cos y)$	07	L2	CO1
	1	Module-2	1	1	
03	a	Discuss the transformation $w = e^z$	06	L3	CO2
	b	State and prove the Cauchy Integral theorem	07	L2	CO2
	С	Find the bilinear transformation which maps the points $z = 1, i, -1$ onto the points $\omega = i, 0, -i$	07	L2	CO2
		OR			
4	a	Find the bilinear transformation which maps 1, i , -1 to 2, i , -2 respectively.	06	L2	CO2
	b	Verify Cauchy's theorem for the integral of z^3 over the boundary of the rectangle with vertices $z = -1$, 1, $1 + i$, $-1 + i$	07	L2	CO2
	С	Evaluate $\oint \frac{e^{-z}}{(z-1)(z-2)^2} dz$, over the curve $ z = 3$	07	L3	CO2
		Module-3			•
5	a	A random variable <i>X</i> has the following probability function: x -2 -1 0 1 2 3 $P(x)$ 0.1 k 0.2 $2k$ 0.3 k Find the value of k and calculate the mean and variance	06	L2	CO3
	b	Find the mean and standard deviation of the Binomial distribution	07	L2	CO3
	С	In a certain factory turning out razor blades, there is a small chance of 0.002 for any blade to be defective. The blades are supplied in packets of 20. Use Poisson distribution to calculate the approximate number of packets containing no defective, one defective and two defective blades respectively in a consignment of 500 packets			СОЗ

		OR			
6	a	The diameter of an electric cable is assumed to be a continuous variable with p.d.f	06	L2	CO3
		$f(x) = \begin{cases} 6x(1-x), & 0 \le x \le 1\\ 0, & elsewhere \end{cases}$			
		(0, elsewhere			
		Verify that the above is a valid p.d.f. Also, find its mean and variance.			
	b	In a test on 2000 electric bulbs, it was found that the life of a particular make was	07	L3	CO3
		normally distributed with an average life of 2040 hours and Standard deviation of 60			
		hours. Estimate the number of bulbs likely to burn for			
		i. More than 2150 hours			
		ii. Less than 1950 hours			
		iii. Between 1920 and 2160 hours			
	С	The life of a T.V tube manufactured by a company is known to have a mean of 200	07	L3	CO3
		months. Assuming that the life has an exponential distribution, find the probability			
		that the life of a tube manufactured by the company is			
		i. Less than 200 months			
		ii. Between 100 and 300 months			
		iii. More than 200 months			
7	Ι.,	Module-4	10	L3	CO4
/	a	Using Simplex method solve the L.P.P	10	L3	CO4
		Maximize $Z = 3x_1 + 2x_2$, subject to:			
		$ \begin{aligned} 2x_1 + x_2 &\le 5 \\ x_1 + x_2 &\le 3 \end{aligned} $			
		$\begin{array}{c} x_1 + x_2 \le 3 \\ x_1, x_2 \ge 0 \end{array}$			
	b	Using Big –M method, solve the LPP	10	L3	CO4
		Minimize $Z = 2x_1 + x_2$, subject to:			
		$3x_1 + x_2 = 3$			
		$4x_1 + 3x_2 \ge 6$			
		$x_1 + 2x_2 \le 3$			
		$x_1, x_2 \ge 0$			
		OR			
8	a	Explain the canonical form and standard form of an LPP. Convert the following LPP to the	10	L3	CO4
		standard form			
		$Maximize Z = 3x_1 + 5x_2 + 7x_3, \text{ subject to:}$			
		$6x_1 - 4x_2 \le 5$			
		$3x_1 + 2x_2 + 5x_3 \ge 11$			
		$4x_1 + 3x_3 \le 2$			
		$x_1, x_2 \ge 0$			
	b	$x_1, x_2 \ge 0$ Use two –Phase method to solve the LPP	10	L3	CO4
		Maximize $Z = 9x_1 + 3x_2$, subject to:			
		$4x_1 + x_2 \le 8$			
		$ x_1 + x_2 \le 6$ $ 2x_1 + x_2 \le 4$			
		$x_1, x_2 \ge 0$			
		Module-5			

9	a	Solve the	following trans	portation	problen	n				10		CO5
		Source	Destination							L3		
				A	В		С	D	Availabil			
									ity			
			I	21	16	5	25	13	11			
			II	17	18	3	14	23	13			
			III	33	27	7	18	41	19			
			Require	6	10)	12	15	43			
			ments									
	b	Solve the	assignment pro	hlem						10	L3	CO5
		Borve the t	assignment pro	010111	Mach	ines						
				М	₁	M_2	2	M_3	M_4			
			J_1	2	2	3		4	5			
			J_2	4	_	5		6	7			
			J_3	7	7	8		9	8			
		Jobs	J_4	3	3	5		8	4			
		Assign the jobs to different machines so as to minimize the total cost										
		1 1331gii tiit	Joos to differe	110 1110011111		OR		ie total cost				
10	a	Obtain an	Obtain an initial basic solution to the following transportation problem							10	L3	CO5
							To					
		From		A	В	C	D	Availability				
			I	11	13	17	14	250				
			II	16	18	14	10	300				
			III	21	24	13	10	400				
			Requirements		225	275	250					
	b	J 1 ,							(in hours) that	10	L3	CO5
		each man takes to do each job is given below Jobs										
				I	II		III	IV	V			
		Man	A	2	9		2	7	1			
				6	8		$\frac{2}{7}$	6	1			
				<u>4</u>	6		5	3	1			
			D	4	2		7	3	1			
			E	5	3		9	5	1			
		Find the ass	signment of mer	to jobs tha	at will m	inimize	the total	time taken			-	

Lower-order thinking skills					
Bloom's Taxonom y Levels	Remembering (knowledge): L_1	Understanding (Comprehension): L ₂	Applying (Application): L_3		
y 201018		Higher-order thinking skills			

Г

<u></u>			
	Analyzing (Analysis): L ₄	Valuating (Evaluation): L_5	Creating (Synthesis): L ₆