Corrigé-barème IE2

Novembre 2014

Exercice (11 pts)	1	
		T
1)	Cf document scanné fourni en annexe	2 pts
	- Rayon passant par F' ₁	0.25 0.75
	- Rayon passant par 0 ₁	0.5 (0.25 si valeur positive alors
	- Mesure graphique de $\overline{A'B'}$ et grandissement de -1.4	que définie avec des mesures
		algébriques)
	- Pour passer du format A4 à A3, il faut un grandissement égal en valeur absolue à	0.25
	42/29.7 ou 29.7/21 soit environ 1.4.	
	- Le dispositif remplit donc bien son rôle.	0.25
NB : La v	aleur exacte est $\sqrt{2}$ (la surface double).	Malus de 0.25 si schéma sale
2)	On identifie 2 sources d'erreur :	0.75 pt
	- Erreur de lecture + graduation	0.25
	- Erreur dans le tracé	0.5
>	Bonus de 0.25 si estimation de l'erreur	
>	Bonus de 0.25 si discussion des incertitudes lors de la comparaison du grandissement	
	théorique et mesuré.	
>	Bonus de 0.25 pour toute autre source pertinente	
3)	On applique deux fois de suite les relations de conjugaison.	1.5 pts
-	- Définition de A₁B₁ l'image intermédiaire	0.25
	$- \overline{O_1 A_1} = \frac{f'_{01} \cdot \overline{O_1 A}}{f'_{01} + \overline{O_1 A}}$	0.25
	$- O_1 H_1 - \frac{f'_{01} + \overline{O_1 A}}{f'_{01}}$	0.25
	$ \overline{O_2 A'} = \frac{f'_2 \overline{O_2 A_1}}{f'_2 + \overline{O_2 A_1}} - \text{Et } \overline{O_2 A_1} = \overline{O_2 O_1} + \overline{O_1 A_1} = \overline{O_1 A_1} - e $	
	$\frac{f'_2 + O_2 A_1}{O_1 O_2} + \frac{O_2 A_1}{O_2 O_3}$	0.25
	- Et $U_2A_1 = U_2U_1 + U_1A_1 = U_1A_1 - e$	
	$- \overline{O_2 A'} = \frac{f'_{2} \cdot \left(-e^{+ \int'_{01} \cdot \overline{O_1 A}} / f'_{01} + \overline{O_1 A}\right)}{f'_{2} + \left(\int'_{01} \cdot \overline{O_1 A} / f'_{01} + \overline{O_1 A}\right) - e}$	
	$- O_2 A' = \frac{(f'_{01}, \overline{O_1 A})}{(f'_{01}, \overline{O_1 A})}$	0.5 (résultat intermédiaire ci-contre
	$f'_{2} + (f'_{01} + \overline{O_{1}A}) - e$	accepté)
	$- \overline{O_2 A'} = f'_2 \frac{f'_{01}.\overline{O_1 A} - (f'_{01} + \overline{O_1 A}).e}{(f'_{01} + \overline{O_1 A})(f'_{2} - e) + (f'_{01}.\overline{O_1 A})}$, .
	$f'(f'_{01}+O_1A)(f'_{2}-e)+(f'_{01}.\overline{O_1A})$	
>	0 si oubli des indices ou toutes notations incorrectes (pas de barres algébriques)	
>	Bonus de 0.25 si vérification de l'homogénéité (que ce soit homogène ou non, du moment	
_	que la vérification est correcte)	
>	Malus de 0.25 si non homogène sans vérification	
4)	$\overline{O_2A'} = 8.0 \ cm \text{ (on tolère 3 CS)}$	1pt
	_ , , , , , , , , , , , , , , , , , , ,	(0 si pas d'unité)
>	Bonus de 0.25 si comparaison avec l'épure	
>	Malus de 0.25 si résultat différent de l'épure et pas de commentaire	
5)		1.5pt
Rais	sonnement graphique (Thalès) : $\gamma = \frac{\overline{A'B'}}{\overline{AB}} = \frac{O_2 J}{O_1 I} = -\frac{f'^2}{f'^2 O_1}$, avec I et J indiqués sur schéma ou	1 (0.5 si Thalès ou tangentes non
	les tangentes en indiquant l'angle sur le schéma.	expliqué et 0.5 si signe faux)
μαι	ics tangenites en maiquant i angle sur le schema.	
L'annlica	tion numérique donne $\gamma=-1.4$ comme la mesure directe sur l'épure et comme le voulait	0.5
	des charges du photocopieur pour le passage du format A4 au format A3.	
		1 5 m4
6)	Cette démonstration s'obtient assez simplement par les relations de conjugaison	1.5 pt
	appliquées aux deux lentilles de même centre O ₁ , en appelant A" l'image intermédiaire	
	fournie par L_1 qui sert d'objet à L_0 :	
	$\frac{1}{f'_1} = \frac{1}{\overline{O_1 A''}} - \frac{1}{\overline{O_1 A}} et \frac{1}{f'_0} = \frac{1}{\overline{O_1 A_1}} - \frac{1}{\overline{O_1 A''}}$	
	$f_1 O_1A'' O_1A f_0 O_1A_1 O_1A''$	
	En sommant il vient que $\frac{1}{f_{11}} + \frac{1}{f_{10}} = \frac{1}{\overline{O_1 A_1}} - \frac{1}{\overline{O_1 A}}$	4 (4)(
	Tout se passe donc comme s'il y avait une seule lentille de distance focale équivalente f'_{01}	1 (démo)
	telle que $\frac{1}{f_{i_1}} + \frac{1}{f_{i_0}} = \frac{1}{f_{i_{01}}}$	
	f' ₀₁ =24.5 cm	0.5

	1.5 pt
a la même focale que L_1 et de L_0 .	0.25 (explication ou calcul)
	0.05
Donc $f'_{02} = f'_{01} = 7.1$ cm.	0.25
NB : ce résultat peut bien entendu se retrouver par calcul.	
Tout se passe comme si on avait échangé les lentilles L ₀₁ et L ₂ de la première situation donc le	
doublet reste afocal et la relation établie à la question 5) reste valable en utilisant les nouvelles	0.5 (explication)
distances focales : $\gamma = \frac{\overline{A'B'}}{\overline{AB}} = -\frac{f'_{02}}{f'_{01}} \approx 0.71$	0.25 (AN)
01	
Ce grandissement permet une réduction du format A3 au format A4 puisqu'il est proche de	0,25 (comparaison theorie)
$\frac{29.7}{42}$.	
8) Cf document 2 scanné fourni en annexe	1.25 pt
- Placement des foyers	0.25
- Tracé des rayons + image	0.5
Mesure graphique de $\overline{A'B'}$ γ ~0,7 : comparer à l'épure	0.25+0,25
9) - Tout se passe dans la situation 2 comme si on avait échangé la place des deux lentilles	Bonus 1.5 pt
de la situation 1.	
- En vertu du principe du retour inverse de la lumière, tout se passe donc comme si on	
avait échangé la place de l'objet et de l'image entre les deux situations.	
- En outre, on a dans la situation 1 : $\overline{O_1A} \approx \overline{O_2A'}$, donc on retrouvera cette égalité	
dans la situation 2.	
 L'image n'a pas changé de position entre les deux situations, ce qui d'après l'énoncé 	
 Placement des foyers Tracé des rayons + image Mesure graphique de A'B' γ ~0,7 : comparer à l'épure 9) - Tout se passe dans la situation 2 comme si on avait échangé la place des deux lentilles de la situation 1. En vertu du principe du retour inverse de la lumière, tout se passe donc comme si on avait échangé la place de l'objet et de l'image entre les deux situations. En outre, on a dans la situation 1 : O₁A ≈ O₂A', donc on retrouvera cette égalité dans la situation 2. 	0.25 0.5 0.25+0,25

Exercice 2 (5.5 pts)	
1) Il y a deux types d'incertitudes : systématiques et aléatoires.	1.5 pt
Trois types d'incertitudes aléatoires :	
- graduations du banc + lecture de la position du cavalier sur le banc (p et p')	0.5
- intervalle de netteté de l'image (p' uniquement)	0.5
Une incertitude systématique : - positionnement des éléments par rapport au cavalier (p et p')	0.5
Ce qui donne des incertitudes globales :	
$\Delta p =$ e1+e2+e4 et $\Delta p' =$ e1+e2+e4+e3 (l'ordre de grandeur des estimations n'est pas demandé)	Bonus de 0.25
NB : il s'agit bien entendu d'un ordre de grandeur, la valeur des chaque type d'incertitude en soi n'a	
pas beaucoup de sens en l'absence d'une description précise du matériel. Noter uniquement	
l'origine de ces incertitudes et enlever 0.25 si les ordres de grandeurs sont aberrants.	
2) On a tracé p en fonction de 1-(p'/p). On retrouve la relation théorique à partir de la relation de	3 pts
conjugaison :	
$\frac{1}{p'} - \frac{1}{p} = \frac{1}{f'}$ et $p' = f' \cdot (1 - \frac{p'}{p})$	0.5
- On attend donc une droite de pente f' passant par 0.	0.5
- Points aberrants	0.5
 Tracé des droites extrêmes passant dans les boîtes d'incertitudes et mesure des 	1 (0.5 si que pente centrale et 0,5 si
pentes extrêmes : f'max = 3.5 cm et f'min = 2.8 cm	les droites ne passent pas par O
La droite doit passer par 0 mais on accepte des droites affines avec justification (erreurs	sans justification)
systématiques)	
NB : Sanctionner si les étudiants essaient d'incorporer les deux points manifestement aberrants	Malus de 0,5
- D'où f'= 3.2 ± 0.3 cm	0.5 (noter ici la bonne présentation
	du résultat en cohérence, et non
	pas le résultat)
3) $\left(1 - \frac{p'}{p}\right) \max = 1 - \frac{prmax}{pmax} = 1 + \frac{prmax}{ p min}$ Et $\left(1 - \frac{p'}{p}\right) \min = 1 - \frac{prmin}{pmin} = 1 + \frac{prmin}{ p max}$	Bonus 1 pt
p p max p min	
Et $\left(1-\frac{p}{n}\right)\min = 1-\frac{p \cdot m \cdot n}{n \cdot m \cdot n} = 1+\frac{p \cdot m \cdot n}{n \cdot n \cdot m \cdot n}$	
ζ γ , φιτιτι	

NB : il faut bien prendre p_{max} pour calculer $(1-p'/p)_{max}$ (respectivement min) car la valeur de p est négative ; si on prend l'expression avec la valeur absolue donnée sur le graphe, la question ne se pose pas.	
$(1 - p'/p) \max = 1.19 et (1 - p'/p) \min = 1.13$	
On en déduit :	
$\Delta(1-\frac{p'}{p)}=0.03$	
4) La linéarisation la plus simple consiste à tracer $(1/p')$ en fonction de $(1/p)$. La courbe obtenue est une droite de pente 1 et d'ordonnée à l'origine $(1/f')$ mais d'autres sont possibles (une bonne infinité en fait).	1 pt
NB : mettre 0.25 si méthode statistique proposée car ok pour la moyenne mais pas pour l'incertitude (à déterminer graphiquement).	

Exercice 3 (3.5 pts)		
1) [K]=T-1LM1/2L-1/2M-1/2L-1/2T=1: K est sans dimension (Si ils ont compris mu comme masse multipliée par unité de longueur et qu'ils trouvent L compter 0,5)	1 pt	
$F = \frac{f^2 l^2 \mu}{K^2}$	2,5 pts 0.25	
$F_{\text{max}} = 104.2 \text{ N et } F_{\text{min}} = 82.6 \text{ N}$ donc F=93±11 N	1 pour l'AN avec conversions 0,5 pour méthode min max correctement exposée	
NB : certains groupes ont peut-être travaillé avec la méthode différentielle, elle est parfaitement justifiée avec une incertitude de l'ordre de 10%. Elle donne 11.6% soit $\Delta F=11N$.	0,5 présentation cohérente du résultat	
F=9.6±1.1 kgf	0.25	

Exercice 4 (1 pt)	
U=-E-RI	1 pt