Lecture 1: Events and their Probabilities

PhD Mathematics II: Probability

Juan Llavador Peralt

IIES

November 3, 2024

Outline for Today

Basic Measure Theoretic Probability

Conditional Probability

Independence

- Roll two fair dice
- What is the probability that the sum of the two dice is 10?
- What are all the possible outcomes?

• Intuitively the probability of a 10 is 3/36 = 1/12

- Roll two fair dice
- What is the probability that the sum of the two dice is 10?
- What are all the possible outcomes?

 \bullet Intuitively the probability of a 10 is 3/36=1/12

- Roll two fair dice
- What is the probability that the sum of the two dice is 10?
- What are all the possible outcomes?

 \bullet Intuitively the probability of a 10 is 3/36=1/12

Experiments, Sample Spaces, and Events

Experiment:

Repeatable procedure with a well-defined set of possible outcomes

Sample Space:

- Set of all possible outcomes of an experiment
- ullet Denoted by Ω
- $\omega \in \Omega$ is a generic outcome

Event:

- Subset of the sample space $A \subseteq \Omega$
- The complement of A is $A^c = \{\omega \in \Omega : \omega \notin A\}$

σ -algebra

- Let Ω be a non-empty set
- \mathcal{F} is a collection of subsets of Ω
- \mathcal{F} is a σ -algebra if:
 - 1. $\emptyset \in \mathcal{F}$
 - 2. $A \in \mathcal{F} \Rightarrow A^c \in \mathcal{F}$
 - 3. $A_1, A_2, \dots \in \mathcal{F} \Rightarrow \bigcup_{i=1}^{\infty} A_i \in \mathcal{F}$
- ullet We write $\sigma(A)$ to denote the smallest σ -algebra containing A

$$\sigma(A) = \{\emptyset, A, A^c, \Omega\}$$

• And $\mathcal{P}(\Omega)$ to denote the collection of all subsets of Ω (the power set)

Measurable Space and Measure

- A measurable space is a pair (Ω, \mathcal{F}) where Ω is a set and \mathcal{F} is a σ -algebra on Ω
- A measure is a function $\mu : \mathcal{F} \to [0, \infty]$ such that:
 - 1. $\mu(A) \geq 0$ for all $A \in \mathcal{F}$
 - 2. $\mu(\emptyset) = 0$
 - 3. If $A_1, A_2, \dots \in \mathcal{F}$ are pairwise disjoint, then

$$\mu\left(\cup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} \mu(A_i)$$

 \bullet Example: the counting measure $\mu(A) = |A|$ for $|\Omega| < \infty$

Probability Measure and Space

- A probability measure is a measure \mathbb{P} on a measurable space (Ω, \mathcal{F}) such that:
 - 1. $\mathbb{P}: \mathcal{F} \to [0,1]$
 - 2. $\mathbb{P}(\Omega) = 1$
- The triplet $(\Omega, \mathcal{F}, \mathbb{P})$ is a probability space
- Example: $|\Omega| < \infty$ and $\mathbb{P}(A) := \frac{|A|}{|\Omega|}$
- Example: Indicator function is a probability measure:

$$\mathbb{P}(A) := \mathbf{1}_A(\omega) = \begin{cases} 1 & \text{if } \omega \in A \\ 0 & \text{if } \omega \notin A \end{cases}$$

Kolmogorov's Probability Axioms

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space where \mathbb{P} is a probability measure that satisfies:

- 1. Non-negativity: $\mathbb{P}(A) \geq 0$ for all $A \in \mathcal{F}$
- 2. Normalization: $\mathbb{P}(\Omega) = 1$
- 3. Countable Additivity: If $A_1, A_2, \dots \in \mathcal{F}$ are pairwise disjoint, then

$$\mathbb{P}\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} \mathbb{P}(A_i)$$

Basic Properties

1.
$$\mathbb{P}(A^c) = 1 - \mathbb{P}(A)$$

2. If
$$A \subseteq B$$
, then $\mathbb{P}(A) \leq \mathbb{P}(B)$

3.
$$\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cap B)$$

We can extend (3) to n events:

$$\mathbb{P}\left(\bigcup_{i=1}^{n} A_i\right) = \sum_{i=1}^{n} \mathbb{P}(A_i) - \sum_{i < j} \mathbb{P}(A_i \cap A_j) + \sum_{i < j < k} \mathbb{P}(A_i \cap A_j \cap A_k) - \dots + (-1)^{n+1} \mathbb{P}(A_1 \cap \dots \cap A_n)$$

Boole's Inequality

- Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space
- Let $A_1, A_2, \dots \in \mathcal{F}$ be a countable sequence of events
- Then $\mathbb{P}\left(\bigcup_{i=1}^{\infty} A_i\right) \leq \sum_{i=1}^{\infty} \mathbb{P}(A_i)$

Sketch of Proof:

- Define $B_1 = A_1$, $B_2 = A_2 \setminus B_1$, $B_3 = A_3 \setminus (B_1 \cup B_2)$, ..., $B_n = A_n \setminus \bigcup_{i=1}^{n-1} B_i$
- Then B_1, B_2, \ldots are pairwise disjoint
- Furthermore $\bigcup_{i=1}^{\infty} A_i = \bigcup_{i=1}^{\infty} B_i$ (why?) and $B_i \subseteq A_i$
- Then $\mathbb{P}\left(\cup_{i=1}^{\infty}A_i\right)=\mathbb{P}\left(\cup_{i=1}^{\infty}B_i\right)=\sum_{i=1}^{\infty}\mathbb{P}(B_i)\leq\sum_{i=1}^{\infty}\mathbb{P}(A_i)$

Continuity of Probability Measure

Given a probability space $(\Omega, \mathcal{F}, \mathbb{P})$:

- Let A_1, A_2, \ldots be a sequence of events such that $A_1 \subseteq A_2 \subseteq \ldots$
- ullet This is called an increasing sequence of events, define $\lim_{n o \infty} A_n = \cup_{i=1}^\infty A_i$
- Then $\mathbb{P}(\bigcup_{i=1}^{\infty} A_i) = \lim_{n \to \infty} \mathbb{P}(A_n)$

Similarly,

- Let A_1, A_2, \ldots be a sequence of events such that $A_1 \supseteq A_2 \supseteq \ldots$
- ullet This is called a **decreasing** sequence of events, define $\lim_{n \to \infty} A_n = \cap_{i=1}^\infty A_i$
- Then $\mathbb{P}(\bigcap_{i=1}^{\infty} A_i) = \lim_{n \to \infty} \mathbb{P}(A_n)$

Proof Sketch

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and A_1, A_2, \ldots be an increasing sequence of events

- Define $B_1 = A_1$, $B_2 = A_2 \setminus A_1$, $B_3 = A_3 \setminus A_2$, ..., $B_n = A_n \setminus A_{n-1}$
- Then B_1, B_2, \ldots are pairwise disjoint
- And $A_n = \bigcup_{i=1}^n B_i$
- By countable additivity,

$$\lim_{n \to \infty} \mathbb{P}(A_n) = \lim_{n \to \infty} \sum_{i=1}^n \mathbb{P}(B_i) = \mathbb{P}\left(\bigcup_{i=1}^\infty B_i\right) = \mathbb{P}\left(\bigcup_{i=1}^\infty A_i\right)$$

Conditional Probability

- Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space
- Let $A, B \in \mathcal{F}$ be events such that $\mathbb{P}(B) > 0$
- Question: what is the probability that A occurs given that B has occurred?

• The conditional probability of A given B is defined as

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}$$

• Let
$$|\Omega| < \infty$$
 and $\mathbb{P}(A) = \frac{|A|}{|\Omega|}$

Then

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)} = \frac{|A \cap B|/|\Omega|}{|B|/|\Omega|} = \frac{|A \cap B|}{|B|}$$

ullet In fact, one can show that $\mathbb{P}(\cdot|B):\mathcal{F} o [0,1]$ is a probability measure

Application: Simultaenous Events

- Suppose we care about the probability that both A and B occur: $\mathbb{P}(A \cap B)$
- We can use the definition of conditional probability to write

$$\mathbb{P}(A \cap B) = \mathbb{P}(A|B)\mathbb{P}(B)$$

Generalizes:

$$\mathbb{P}(A\cap B\cap C)=\mathbb{P}(A|B\cap C)\mathbb{P}(B\cap C)=\mathbb{P}(A|B\cap C)\mathbb{P}(B|C)\mathbb{P}(C)$$

And so on to n events (see next slide)

The Multiplication Law

- Let $A_1, A_2, \ldots, A_n \in \mathcal{F}$ be events
- Define $A_0 = \Omega$
- Then

$$\mathbb{P}(\cap_{i=1}^{n} A_i) = \prod_{i=1}^{n} \mathbb{P}(A_i | \cap_{j=0}^{i-1} A_j)$$

Preamble to Bayes' Theorem and Law of Total Probability

• Let $A, B \in \mathcal{F}$

- $\bullet \ \mathbb{P}(B) = \mathbb{P}(A)\mathbb{P}(B|A) + \mathbb{P}(A^c)\mathbb{P}(B|A^c)$
- $\mathbb{P}(B|A) = \mathbb{P}(B) \frac{\mathbb{P}(A|B)}{\mathbb{P}(A)}$

Partitions (of the Sample Space)

- Consider a probability space $(\Omega, \mathcal{F}, \mathbb{P})$
- The set $\{A_1, A_2, \dots, A_n\} \in \mathcal{F}$ is a **partition** of Ω if the following conditions hold:
 - 1. (Exhaustive) $\bigcup_{i=1}^{n} A_i = \Omega$
 - 2. (Mutual Exclusivity) $A_i \cap A_j = \emptyset$ for all $i \neq j$
 - 3. (Non-zero probability) $\mathbb{P}(A_i) > 0$ for all i
- Note that 3. is not strictly necessary, but convenient

Law of Total Probability

- Let $\{A_1, A_2, \dots, A_n\}$ be a partition of Ω
- Then for any event $B \in \mathcal{F}$, we have

$$\mathbb{P}(B) = \sum_{i=1}^{n} \mathbb{P}(B|A_i)\mathbb{P}(A_i)$$

Proof of the Law of Total Probability

• Let $\{A_1, A_2, \dots, A_n\}$ be a partition of Ω

$$\mathbb{P}(B) = \mathbb{P}(B \cap \Omega)$$

$$= \mathbb{P}(B \cap \bigcup_{i=1}^{n} A_i)$$

$$= \mathbb{P}(\bigcup_{i=1}^{n} B \cap A_i)$$

$$= \sum_{i=1}^{n} \mathbb{P}(B \cap A_i)$$

$$= \sum_{i=1}^{n} \mathbb{P}(B|A_i)\mathbb{P}(A_i)$$

• the thrid equality follows from the distributive property of the intersection over the union:

$$B \cap \bigcup_{i=1}^{n} A_i = \bigcup_{i=1}^{n} B \cap A_i$$

Bayes' Theorem

- Let $A, B \in \mathcal{F}$ be events such that $\mathbb{P}(A), \mathbb{P}(B) > 0$
- Let $\{A_1, A_2, \dots, A_n\}$ be a partition of Ω
- Then:

1.
$$\mathbb{P}(A|B) = \frac{\mathbb{P}(B|A)\mathbb{P}(A)}{\mathbb{P}(B)}$$

2.
$$\mathbb{P}(A|B) = \frac{\mathbb{P}(B|A)\mathbb{P}(A)}{\mathbb{P}(B|A)\mathbb{P}(A) + \mathbb{P}(B|A^c)\mathbb{P}(A^c)}$$

3.
$$\mathbb{P}(A_j|B) = \frac{\mathbb{P}(B|A_j)\mathbb{P}(A_i)}{\sum_{i=1}^n \mathbb{P}(B|A_i)\mathbb{P}(A_i)}$$

► Monty Hall Example

Independence

- Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space
- Let $A, B \in \mathcal{F}$ be events
- ullet A and B are **independent** if and only if

$$\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B)$$

- Sometimes written as $A \perp B$
- Intuitively, if *A* is independent of *B*:

$$\mathbb{P}(A|B) = \mathbb{P}(A)$$

or

$$\frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)} = \mathbb{P}(A)$$

Pairwise and Mutual Independence

- Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space
- Let $A_1, A_2, \ldots, A_n \in \mathcal{F}$ be events
- What does it mean to say that $\{A_1, A_2, \dots, A_n\}$ are independent?
- The events are pairwise independent if and only if for all $i \neq j$

$$\mathbb{P}(A_i \cap A_j) = \mathbb{P}(A_i)\mathbb{P}(A_j)$$

• The events are **mutually independent** if and only if for all $I \subseteq \{1, 2, ..., n\}$

$$\mathbb{P}(\cap_{i\in I}A_i) = \prod_{i\in I}\mathbb{P}(A_i)$$

Monty Hall Problem

- You are a contestant on a game show hosted by Monty Hall
- There are three (ex-ante identical) doors
- Behind one of the doors is a car, behind the other two are goats
- Monty asks you to choose a door
- Then, Monty opens another door revealing a goat
- You are given the option to switch doors
- Should you switch?

Monty Hall Problem

- Suppose the three doors are numbered 1, 2, and 3
- Let us define the following events:
 - B_1, B_2, B_3 : the car is behind door 1, 2, or 3
 - M_1, M_2, M_3 : Monty opens door 1, 2, or 3
- Suppose (WLOG) you choose door 1 and Monty opens door 2
- Doors 1 and 3 are now the only possibilities
- ullet You should switch if $\mathbb{P}(B_3|M_2)>\mathbb{P}(B_1|M_2)$

Monty Hall Problem

• Let's use Bayes' Theorem to calculate $\mathbb{P}(B_1|M_2)$

$$\mathbb{P}(B_1|M_2) = \frac{\mathbb{P}(M_2|B_1)}{\mathbb{P}(M_2|B_1)\mathbb{P}(B_1) + \mathbb{P}(M_2|B_2)\mathbb{P}(B_2) + \mathbb{P}(M_2|B_3)\mathbb{P}(B_3)} \mathbb{P}(B_1)$$

- The doors are ex-ante identical: $\mathbb{P}(B_1) = \mathbb{P}(B_2) = \mathbb{P}(B_3) = 1/3$
- Monty will never open the door with the car: $\mathbb{P}(M_2|B_1)=1/2$, $\mathbb{P}(M_2|B_2)=0$, $\mathbb{P}(M_2|B_3)=1$
- Therefore, $\mathbb{P}(B_3|M_2) = 2/3$
- $\mathbb{P}(B_1|M_2) = 1 \mathbb{P}(B_3|M_2) = 1/3$
- You should switch!