$$\frac{dv}{dv} = 0$$

由此得

$$\frac{\mathrm{d}f(v)}{\mathrm{d}v} = 0 \qquad \text{if } \qquad \text{i$$

如果某一个物理量 F(v) 是分子速率 v 的函数,则其对分子总数的统计平均 值为

$$\overline{F(v)} = \frac{\sum_{i} F(v_i) \Delta N_i}{N} = \int_{0}^{\infty} F(v) f(v) dv$$

这是求统计平均值的基本方法。利用这个求统计平均值的方法和麦克斯韦速率分 布函数式(11-5),可以分别求出分子热运动的平均速率(average speed)

$$\overline{v} = \int_0^\infty v f(v) \, \mathrm{d}v = \sqrt{\frac{8kT}{\pi m}} = \sqrt{\frac{8RT}{\pi M}} \approx 1.60 \sqrt{\frac{RT}{M}}$$

和方均根速率(root-mean-square speed)

$$v_{\rm rms} = \sqrt{\overline{v^2}} = \sqrt{\frac{3kT}{m}} = \sqrt{\frac{3RT}{M}} \approx 1.73 \sqrt{\frac{RT}{M}}$$
 (11-9)

可以看出,同一种气体分子的三种特征速率中, $v_{ms}>\bar{v}>v_{p}$,它们都与 \sqrt{T} 成正比, 与 \sqrt{M} 成反比。因为在求统计平均时,速率高的分子(速率平方)对积分的贡献非常 大,所以 v_{mm} 最大。这三种速率分别应用于不同问题的讨论,例如:当讨论速率分布 时,要知道哪一种速率的分子所占的百分比最高,就要用到最概然速率 v。; 当计算 分子运动的平均自由程、平均碰撞频率时,要使用平均速率 v;当计算分子的平均平 动动能时,就要用到方均根速率 v_m。

麦克斯韦速率分布定律是一个统计规律,它只适用于大量分子组成的气体。 由于分子运动的无规则性,在任何速率区间 v~v+dv 内的分子数都是不断变化的。 用 dN 丰元在这一速离区间的公子粉的统计亚均值 为了值 dN 在确定的意义 区间

热力学第零定律:

如果系统B和系统C分别与系统A的同一状态处于热平衡,那么当B和C接触时,它们也必定 处于热平衡。

描述这一共同宏观性质的物理量称为温度

$$k = \frac{R}{N_A} = \frac{8.31 J / mol \cdot K}{6.022 \times 10^{23} / mol}$$

$$k = \frac{R}{N_A} = \frac{8.31 J / mol \cdot K}{6.022 \times 10^{23} / mol} = 1.38 \times 10^{-23} J / K$$

理想气体准静态过程公式。

共性方程: $pV = \frac{m_0}{M}RT$; $U = \frac{m_0}{M}\frac{i}{2}RT$

热力学第一定律: $Q=U_2-U_1+A$ +

过程。	过程方程。	吸收热量。	对外做功。	内能增量。
等体过程。	V=付重量+>	$\frac{m_0}{M} \frac{i}{2} R(T_2 - T_1) \psi$ $= \frac{i}{2} (P_2 - P_1) V \psi$	0+0	$\frac{m_0}{M}\frac{i}{2}R(T_2-T_1)$
等压 过程。	P=恒量♪	$\frac{m_0}{M}(\frac{i+2}{2})R(T_2-T_1)+$	$\frac{m_0}{M}R(T_2-T_1) =$ $= P(V_2-V_1) \circ$	$\frac{m_0}{M}\frac{i}{2}R(T_2-T_1)$
等温过程。	T-恒量。	$\frac{m_0}{M}RT\ln\frac{P_1}{P_2} e^{\nu}$ $= \frac{m_0}{M}RT\ln\frac{V_2}{V_1} e^{\nu}$	$\begin{split} &\frac{m_0}{M}RT\ln\frac{P_1}{P_2}\psi \\ &=\frac{m_0}{M}RT\ln\frac{V_2}{V_1}\psi \end{split}$	0~
绝热 过程。	V ^{r-1} T =恒 量 ·· pV ^r =恒量 ·· p ^{r-1} T ·-r = ·· 恒量 ··	Q+ ²	$\begin{split} &-\frac{m_0}{M}\frac{i}{2}R(T_2-T_1) = \\ &= \frac{p_1V_1 - p_2V_2}{\gamma - 1} \circ \end{split}$	$\frac{m_0}{M}\frac{i}{2}R(T_2-T_1)$
多方过程。	$pV^n = C o$	ψ.	$= \frac{\frac{p_1 V_1 - p_2 V_2}{n-1}}{1 - n} e^{t}$ $= \frac{1}{1 - n} \frac{m_0}{M} R(T_2 - T_1) e^{t}$	$\frac{m_0}{M}\frac{i}{2}R(T_2-T_1)$
$C_{\rm F} = \frac{i}{2} R$	$C_p = \frac{i+2}{2}$	$\gamma = \frac{C_p}{C_p} = \frac{2}{i}$		

理想气体准静态过程公式。

۳

共性方程: $pV = \frac{m_0}{M}RT$; $U = \frac{m_0}{M}\frac{i}{2}RT$

热力学第一定律: $Q=U_2-U_1+A$ ₽

过程。	过程方程。	吸收热量₽	对外做功。	内能增量』
等体过程。	V=恒 <u>量</u> ₽	$\frac{m_0}{M} \frac{i}{2} R(T_2 - T_1) = \frac{i}{2} (P_2 - P_1) V = 0$	0-0	$\frac{m_0}{M}\frac{i}{2}R(T_2-T_1) \in$
等压 过程。	P=恒 <u>單</u> ₽	$\frac{m_0}{M}(\frac{i+2}{2})R(T_2 - T_1) \in$	$\frac{m_0}{M}R(T_2 - T_1) \Leftrightarrow$ $= P(V_2 - V_1) \Leftrightarrow$	$\frac{m_0}{M}\frac{i}{2}R(T_2-T_1) \in$
等温过程。	T=恒 <u>單</u> ₽	$\frac{m_0}{M}RT\ln\frac{P_1}{P_2} = \frac{m_0}{M}RT\ln\frac{V_2}{V_1} = \frac{m_0}{M}RT\ln\frac{V_2}{M} = \frac{m_0}{M}RT\lnV_$	$\frac{m_0}{M}RT\ln\frac{P_1}{P_2}$ $=\frac{m_0}{M}RT\ln\frac{V_2}{V_1}$	0 ₽
绝热 过程。	$V^{\gamma-1}T = 10$ 量。 $pV^{\gamma} = 10 = 10$ $p^{\gamma-1}T^{-\gamma} = 10$ 恒量。	0∻	$-\frac{m_0}{M} \frac{i}{2} R (T_2 - T_1) + \frac{p_1 V_1 - p_2 V_2}{\gamma - 1} + \frac{p_1 V_1 - p_2 V_2}{\gamma - 1}$	$\frac{m_0}{M} \frac{i}{2} R (T_2 - T_1) =$
多方过程。	$pV^n = C \Leftrightarrow$	43	$= \frac{p_1 V_1 - p_2 V_2}{n - 1} $ $= \frac{1}{1 - n} \frac{m_0}{M} R(T_2 - T_1) $	$\frac{m_0}{M} \frac{i}{2} R(T_2 - T_1) +$

ų,

$$C_{v} = \frac{i}{2}R \qquad C_{p} = \frac{i+2}{2}R \qquad \gamma = \frac{C_{p}}{C_{v}} = \frac{2+i}{i} \qquad C_{p} - C_{v} = R \leftrightarrow C_{p}$$

摩尔热容C

系统在一个过程中从外界吸热(放热)dO,温度上升(降低)dT,定义:

热容量
$$C' = \frac{dQ}{dT}$$

摩尔热容 C:1mol物质温度升高 1K所吸收的热量,

 $C' = \frac{m_0}{M}C \qquad \qquad C = \frac{C'}{\frac{m_0}{M}} = \frac{dQ}{\frac{m_0}{M}} dT$ $C_V = \frac{(dQ)_V}{\frac{m_0}{M}} = \frac{i}{2}R \qquad (dQ)_V = dU = \frac{m_0}{M}\frac{i}{2}RdT$ 2 等体摩尔热容

定体过程从外界吸热 $Q_V = \frac{m_0}{M} \frac{1}{2} R(T_2 - T_1) = \frac{m_0}{M} \frac{C_V}{M} (T_2 - T_1)$

理想气体内能表达式也可以写为: $U = \frac{m_0}{M} \frac{i}{2} RT = \frac{m_0}{M} C_v T$

等压摩尔热容: 1mol 理想气体在等压过程中吸 收的热量 dQ_p ,温度升高 dT,其等压摩尔热容为

$$C_P = \frac{(dQ)_P}{\frac{m_0}{M}dT} = \frac{i+2}{2}R$$
 $(\bar{d}Q)_P = \frac{m_0}{M}(\frac{i+2}{2})RdT$

等压过程从外界吸热 $Q_P = \frac{m_0}{M} C_P (T_2 - T_1)$

等压摩尔热容与等体摩尔热容之比 $\gamma = \frac{C_P}{C_v} = \frac{i+2}{i}$ 单原子分子与体 $(\cdot; \cdot)$

单原子分子气体(i=3):

$$C_V = \frac{i}{2}R$$

$$C_P - C_V = R$$

$$C_V = \frac{3}{2}R \qquad C_P = \frac{5}{2}R \qquad \gamma = \frac{5}{3}$$

刚性双原子分子理想气 体 (i=5) ,有 $C_{V} = \frac{5}{2}R \qquad \qquad \Gamma_{P} = \frac{7}{2}R \qquad \qquad \gamma = \frac{7}{5} = 1.4$

$$C_{V} = \frac{5}{2}R$$

$$C_P = \frac{7}{2}R$$

$$\gamma = \frac{7}{5} = 1.4$$

$$\eta = 1 - \frac{|Q_2|}{Q_1} = 1 - \frac{T_2}{T_1} \frac{\ln \frac{V_3}{V_4}}{\ln \frac{V_2}{V_1}}$$

$$\frac{V_2}{V_1} = \frac{V_3}{V_4}$$

◆ 卡诺热机效率

$$\eta = 1 - \frac{T_2}{T_1}$$

卡诺热机效率与工作物质无关,只与两个热源的温度有关,两热源的温差越大,则卡诺循环的效率越高.

◆ 卡诺致冷机(卡诺逆循环)

高温热源 T_1

卡诺致冷机致冷系数
$$\varepsilon = \frac{Q_2}{|Q_1| - Q_2} = \frac{T_2}{T_1 - T_2}$$

◆ 理想气体卡诺循环热机效率的计算

卡诺循环

- 1-2 等温膨胀
- 2-3 绝热膨胀
- 3 4 等温压缩
- 4-1 绝热压缩

1-2等温膨胀吸热

$$Q_{1} = Q_{ab} = \frac{m_{0}}{M} RT_{1} \ln \frac{V_{2}}{V_{1}}$$

①转化已知物理量的单位

P: Pa、V: m^3 【L= 10^{-3} m^3 , $cm^3 = 10^{-6}$ m^3 】、m: g T: K【 n° C = (n+273)K】、Q: J、物质的量: mol

(2)【表中R=8.31】 熵变 ΔS 基础公式 $\Delta S = \frac{m}{M} \, C_{V,m} ln \, \frac{T_{\text{M.S.}}}{T_{\text{M.S.}}} = \frac{m}{M} \, C_{V,m} ln \, \frac{P_{\text{M.S.}}}{P_{\text{M.S.}}}$ 等体过程 = mol数 $\cdot C_{V,m} \ln \frac{T_{\& \underline{A}}}{T_{\& \underline{A}}} = \text{mol}$ 数 $\cdot C_{V,m} \ln \frac{P_{\& \underline{A}}}{P_{\& \underline{A}}}$ $[C_{V,m} = \frac{1}{2}R]$ 理 $\Delta S = rac{m}{M} C_{P,m} ln rac{T_{\& \&}}{T_{\& \&}} = rac{m}{M} C_{P,m} ln rac{V_{\& \&}}{V_{\& \&}}$ 想气 $= \operatorname{mol}$ 数 \cdot $C_{P,m} \ln \frac{T_{\& \underline{A}}}{T_{\& \underline{A}}} = \operatorname{mol}$ 数 \cdot $C_{P,m} \ln \frac{V_{\& \underline{A}}}{V_{\& \underline{A}}}$ 等压过程 体 $\begin{bmatrix} C_{P,m} = \frac{i+2}{2} R \end{bmatrix}$ $\Delta S = \frac{1}{M} \ln \frac{V_{\& \underline{A}}}{V_{\& \underline{A}}} = \frac{m}{M} \operatorname{Rln} \frac{P_{\& \underline{A}}}{P_{\& \underline{A}}}$ 等温过程 $= \operatorname{mol}$ 数 · $\operatorname{Rln} \frac{\operatorname{V}_{\hspace{-0.1em}\cancel{\hspace{-0.1em}\raisebox{0.75em}\raisebox{0.75em}{\hspace{-0.1em}\raisebox{0.75em}\raisebox{0.75em}{\hspace{-0.1em}\raisebox{0.75em}\raisebox{0.75em}\raisebox{0.75em}{\hspace{-0.1em}\raisebox{0.75em}\raisebox{0.75em}{\hspace{-0.1em}\raisebox{0.75em}\raisebox{0.75em}\raisebox{0.75em}\raisebox{0.75em}{\hspace{-0.1em}\raisebox{0.75em}\raisebox{0.75em}\raisebox{0.75em}\raisebox{0.75em}\raisebox{0.75em}{\hspace{-0.1em}\raisebox{0.75em}\raisebox0.75em}\raisebox{0.75em}\raisebox{0.75em}\raisebox{0.75em}\raisebox{0.75em}\raisebox{0.75em}\raisebox{0.75em}\raisebox{0.75em}\raisebox{0.75em}\raisebox0.75em}\raisebox{0.75em}\raisebox0.75em}\raisebox{0.75em}\raisebox{0.75em}\raisebox0.75em}\raisebox{0.75em}\raisebox0.75em}\raisebox0.75em}\raisebox0.5em}\raisebox0.5em}\raisebox0.5em}\hspace{0.75em}\raisebox0.5em}\raisebox0.5em}\raisebox0.5em}\raisebox0.5em \hspace{0.75em}\raisebox0.5em}\raisebox0.5em \hspace{0.75em}\raisebox0.75em}\raisebox0.5em}\raisebox0.5em}\raisebox0.5em}\raisebox0.5em}\raisebox0.5em}\raisebox0.5em}\raisebox0.5em}\hspace0.5em}\raisebox0.5em}\hspace0.5em$ 绝热过程 $\Delta S = 0$ 固体、液体状态不变 $\Delta S = \text{cmln} \frac{T_{\text{Sta}}}{T_{\text{Sta}}} \mathbb{C}$: 比热容】 $\Delta S = \frac{\lambda m}{T}$ 【 λ : 熔化热】 固体熔化 $\Delta S = \frac{Lm}{r}$ 【L: 汽化热】 液体汽化

注意: $\Delta S_{\text{总过程}} = \Delta S_{\text{过程1}} + \Delta S_{\text{过程2}} + \cdots + \Delta S_{\text{过程n}}$ $\Delta S_{\text{多物体}} = \Delta S_{\text{物体1}} + \Delta S_{\text{物体2}} + \cdots + \Delta S_{\text{物体n}}$ 具有动能以外,还具有势能.振动物体的动能为

$$E_k = \frac{1}{2}mv^2$$

如果取物体在平衡位置的势能为零,则弹性势能为

$$E_p = \frac{1}{2}kx^2$$

用式(10-3a)和式(10-5)代入,则得X

8

悉

教

,是古

通道

的总

不舍

$$E_{k} = \frac{1}{2}m\omega^{2}A^{2}\sin^{2}(\omega t + \phi_{0})$$
 (10-14)

$$E_{p} = \frac{1}{2}kA^{2}\cos^{2}(\omega t + \phi_{0}) \qquad (10-15)$$

式(10-14)和式(10-15)说明物体作谐振动时,其动能和势能都是随时间;作周期性变化.位移最大时,势能达最大值,动能为零;物体通过平衡位置时,势能为零,动能达最大值.由于在运动过程中,弹簧振子不受外力和非保守内力的作用,其总能量守恒

$$E = E_k + E_p = \frac{1}{2} m\omega^2 A^2 \sin^2(\omega t + \phi_0) + \frac{1}{2} kA^2 \cos^2(\omega t + \phi_0)$$

考虑到 $\omega^2 = \frac{k}{m}$,则总能量为

$$E = \frac{1}{2} M \left(\frac{24}{3}\right)^2 A^2$$

$$E = \frac{1}{2}kA^2 \qquad (10-16)$$

图 10-12 谐振子的动能,势能和总能量随时间的变化曲线

