Détection non supervisée de sons anormaux

Sylvain DEBIEU Geneviève FLEURY Quentin ROTT

Mentor:

Thomas - DataScientest

Promotion: Bootcamp Data Scientist Mai-Juillet 2022

Problématiques

- Amélioration de la maintenance préventive de machine industrielle
- Le son est un indicateur de l'état de la machine en temps réel

C'est normal ce bruit-là!!?

L' humain n'est pas forcément le plus apte à juger de la conformité d'un son

pas le stagiaire!

Enjeux

- Concevoir un système de détection de sons anormaux (ASD)
- Peu de sons "anormaux" à disposition et beaucoup d'éléments à prendre en compte(bruits de fonds,...)
- Approche Deep-Learning non supervisé privilégiée

Description du jeu de données

- > 25200 clips sonores de 10 secondes en format .wav
- > 7 types de machines ('fan', 'gearbox', 'bearing', 'slider', 'toy car', 'toy train', 'valve') mixé avec des bruits environnementaux provenant d'usines
- > Par machines:
 - un jeu d'entraînement: 3000 clips normauxdomaine source /domaine cible(99/1)
 - un jeu de test : 300 clips normaux + 300 clips anormaux - domaine source /domaine cible (50/50)

- > Librairie spécifique utilisé: Librosa
- Ecoute des sons
- Extraction et Visualisation des attributs simples:
 - série temporelle
 - moyenne quadratique
 - spectre d'amplitude
- Extraction et Visualisation des attributs dans le domaine temporel:
 - Chromagramme (Tonalité en fonction du temps)
 - Spectrogramme (FFT, Mel, Wavelet)

Utilisation des Mel-spects: Échelle non linéaire de la perception des fréquences pour l'oreille humaine

- Transformée de Fourier Discrète
 - Taille fenêtre: 1024 (64ms)
 - Saut de fenêtre : 512 (32ms)
 - Filtres mel: 128

- Utilisation des Mel-spects: Échelle non linéaire de la perception des fréquences pour l'oreille humaine
 - Comparaison entre sons normaux :
 - Des sons ayant le même attribut qui différent
 - Des sons ayant un attribut différent qui se ressemblent

- Comparaison entre sons normaux/anormaux
- > Conclusion EDA:
 - -Des bruits environnementaux prédominants
 - -Des anomalies visibles/non visibles
 - -Des anomalies pouvant être ponctuelles

Tableau des (principaux) modèles étudiés

	INPUT	DESCRIPTION	SCORE
ML supervisé	Spectrogrammes (échelle linéaire) aplatis en vecteurs	Réduction de dimension (SelectPercentile + PCA) + Gradient Boosting (xgboost)	0.82 < AUC < 0.98
DL supervisé	Spectrogrammes (échelle linéaire) 2D	CNN avec softmax / accuracy en métrique Modèle toutes machines	Arrive à séparer les différents type de machines 0.69 < F1-score < 0.98
	Mel-spectrogrammes 2D 128x313 (+ renormalization des pixels)	Embedding en vecteurs de taille 128 (FaceNet + triplet loss sur la section/la machine) + Random Forest	0.45 < AUC < 0.78
DL non supervisé	Mel-spectrogrammes 2D 128x313	Modèles DL basiques type CNN+DNN entrainés à reconnaître le type de machine	0.45 < AUC < 0.78
DL non supervisé	Mel-spectrogrammes 2D 128x313	Embedding via classifieurs de machines ou sections + autoencodeurs	0.48 < AUC < 0.64

Description du modèle : DL non supervisé

1) Construire un classifieur de machines

 \Rightarrow Output : probabilités $p_{machine}$

2) Post-processing: extraire l'info normal/anormal

 $p_{anormal} \equiv 1 - p_{machine} \rightarrow anomaly \ score \equiv g^{-1}(p_{anormal})$

Analyse rétrospective / Bilan

Quelques résultats ...

- Preuve de faisabilité du problème <u>supervisé</u> en ML et DL : Bons résultats (au vu du temps limité et de l'étape de notre apprentissage)
- > DL <u>non supervisé</u>: AUC dépendant du type de machines + sections

... mais très insatisfaisants. Pourquoi?

- Enregistrements bruyants: inadaptés pour auto-encodeurs
- Difficile de distinguer les anomalies à l'oreille/œil
- 🕨 « Domain shift » : simplifier en considérant que le domaine « source 🥦

Perspectives et suggestions d'amélioration

Deep learning: > Approfondir l'approche FaceNet

- Classifieur de machines avec centerloss (pour l'approche AE)
- Transfer LearningAnalyse GradCAM

> RNN

Pre-processing:

- Utilisation de filtres
 - > Varier ou combiner les formats des données d'entrées
 - Spectrogrammes de phase (+ amplitude)

Méthodologie :

- > Analyse des mauvaises prédictions
- Utiliser une approche d'ensemble
- Entrainer en utilisant les sons des autres machines comme des anomalies ou entrainer à reconnaitre les attributs

- **Al or not Al?** > Empreinte carbone des codes
 - > Coût développement / infrastructure

Présentation Streamlit

Details Coef. of the discrete wavelet transform (gearbox volt_1.0)

Approche FaceNet + classifieur RF

2D mel-spectros (128 x 313)

FaceNet (sur sections ou machines) Vecteurs d'embedding de taille 128

Probas $p_{sections}$ ou $p_{machines}$

Normal Anormal

Dépendance de l'AUC aux sections

- Données du domaine source uniquement
- Classification non supervisée normal/anormal via modèle de classification des machines (CNN - Dense basique)

