Modelo Relacional

PASAJE A TABLAS

Tablas

Las estructuras consisten en TABLAS:

- Columnas corresponden a ATRIBUTOS de tipo atómico.
- Filas corresponden a registros de datos.

Ejemplo:

ESTUDIANTES(CI, nombre, dirección)

Tupla

En matemáticas, una tupla, es una lista ordenada de elementos

En base de datos lo asociamos a un registro

ESTUDIANTES(CI, nombre, dirección)

(123.456.-7, Adrian, Gral Flores 3223)

PASAJE A TABLAS

MODELO ENTIDAD RELACIÓN A MODELO RELACIONAL

Entidad

- •Por cada entidad se crea una tabla.
- •Por cada atributo simple se crea un campo en la tabla

PERSONAL(<u>cedula</u>, nombre, edad, ciudad, calle,numero)

Relaciones

- La relación entre las entidades se representa a través de una tabla, en general.
- •Esta tabla está conformada por los atributos determinantes de las entidades vinculadas en la relación.

Ejemplo

Esquema Relacional

- PERSONAL (Nro_Func, Nombre, Dirección, Teléfono*)
- SALAS (Nombre_Sala, Cant_Camas)
- PACIENTES (Nro_Reg, Nombre)
- TRABAJA (Nro_Func, Nombre_Sala)
- INTERNADO (Nro_Reg, Nombre_Sala)

Entidades

Relaciones

Entidad Débil

- Por cada entidad débil se crea una tabla.
- ·Se procede con los atributos igual que para las entidades.
- Se incluyen como atributos los de la clave primaria de la tabla que representa a la entidad "fuerte"

HOSPITALES

(<u>nombre</u>, direccion, telefono)

SALAS

(nombreHospital, nombreSala, cantCamas)

Otro ejemplo de entidad débil

Atributo Compuesto y Multivaluado

Se indica la lista de los atributos que lo componen

Persona (Cld, nombre, dirección {calle, número, esquina})

Por ahora se mantiene igual

Cliente (Cld, nombre, teléfono*)

Ejemplo

R (A1, B1)

El atributo determinante de la relación depende de la cardinalidad de la misma.

Relación N:N

Relaciones N:1

Relaciones 1:1

Para este tipo de relaciones, en la tabla que represente a la misma deberemos elegir entre una de las claves de las entidades para que sea clave de la relación

R(<u>A1</u>, <u>B1</u>)

Relaciones 1:N (con Totalidad)

La relación R, se representa en la entidad B

B hereda la clave de A B (<u>B1</u>, B2, *A1*)

Relaciones 1:N (con Totalidad)

Ejemplo

 Se puede representar la relación en la tabla que representa a la entidad con cardinalidad N. SALAS (nombre, cant_camas)
PERSONAL
(cedula, nombre, ciudad, calle,
numero, nombreSala,
hEntrada, hSalida)

Relaciones N-Arias

Autorrelación

A (A1, **A2**) **B** (A1, **A1**) **X Mismo nombre!**

B (Es, Está)

Agregación

Recordemos que en MER el operador de agregación transforma a las relaciones en entidades

A(<u>A1</u>, A2) B(<u>B1</u>, B2) R1 (<u>A1</u>, B1)

C(<u>C1</u>, C2) R2(<u>C1</u>, <u>A1</u>)

- Para el pasaje a tablas de una categorización hay varias formas y depende mucho de la realidad que estemos manejando.
- En este curso trabajaremos dos generalidades
 - Una tabla por cada entidad
 - Una sola tabla (la de la súper-entidad)

- Una tabla para la súper-entidad
- •Una tabla por cada sub-entidad con referencia a la súper-entidad.

PERSONAL(cedula, nombre, ciudad, calle, numero)

MEDICOS(cedulaPersonal, especialidad)

ENFERMEROS(cedulaPersonal)

ADMINISTRATIVOS(<u>cedulaPersonal</u>, antigüedad)

Cuando las categorías no tienen relaciones ni atributos

PERSONA(CI, Nombre, Edad, ES)

Una tabla por cada sub-entidad

MEDICOS(cedula, nombre, ciudad, calle, numero, especialidad)

ENFERMEROS(cedula, nombre, ciudad, calle, numero)

ADMINISTRATIVOS(cedula, nombre, ciudad, calle, numero, antigüedad)

Funciona solo si la categorización es total

Recordar

No existe un pasaje 100% automatizado, pero la mayoría cumplen lo antes marcado.

Restricciones no-estructurales requieren implementación no estructural (codificación desde los programas)