

无监督学习

黄书剑

- 无监督学习
- 聚类分析
 - -k均值聚类
- 关联分析
 - Apriori
- 异常检测

无监督学习

- Unsupervised machine learning algorithms infer patterns from a dataset without reference to known, or labeled, outcomes.
- "Mining" / infer patterns from examples x_i
- 维度约简 Dimension Reduction
- 聚类 Clustering
- 关联分析 Association Analysis
- 异常检测 Anomaly Detection

关联分析

• 发掘元素集合中潜在的关联性

- -商品布局、购物习惯分析
- 网页访问日志
- -基因关联性

TID	Items
t1	{牛奶,面包}
t2	{面包,尿布,啤酒,鸡蛋}
t3	{牛奶,尿布,啤酒,可乐}
t4	{面包,牛奶,尿布,啤酒}
t5	{面包,牛奶,尿布,可乐}
	•••

{牛奶,面包,尿布}!

{牛奶,面包} → {尿布}!

基本概念

- 项/元素 (item)
 - -如:面包、牛奶
- 项集 (itemset)
 - -如: {面包、牛奶}
- k-项集 (k-itemset)
 - -有k个项的项集
- 事务 (transaction)
 - -如: t₂:{面包,尿布,啤酒,鸡蛋}
 - -事务中项的个数,也称为事务的宽度
 - -给定一系列事务的集合记为T

TID	Items
t1	{牛奶,面包}
t2	{面包,尿布,啤酒,鸡蛋}
t3	{牛奶,尿布,啤酒,可乐}
t4	{面包,牛奶,尿布,啤酒}
t5	{面包,牛奶,尿布,可乐}
	•••

基本概念

- 项/元素、项集、k-项集、事务
- 关联分析
 - 从给定事务集合T中发掘:频繁项集(Frequent Itemset)和关联规则(Association Rule)
- 关联规则
 - X → Y : X和Y是两个不相交的项集
 - -如: {牛奶,面包} → {尿布}

基本概念

- 项/元素、项集、k-项集、事务、关联规则
- 关联分析: 频繁项集和关联规则
- 重要程度:
 - -在T中出现次数计为 σ :
 - $\sigma(X) = |\{t_i | X \subseteq t_i, t_i \in T\}|$
 - 支持度support:
 - ●给定事务集合T中出现的频繁程度(概率p(X))

•
$$s(X) = \frac{\sigma(X)}{N}$$
 , $s(X \to Y) = \frac{\sigma(X \cup Y)}{N}$

- 置信度confidence:
 - ●关联规则的可靠程度(条件概率p(Y|X))

•
$$c(X \to Y) = \frac{\sigma(X \cup Y)}{\sigma(X)}$$

实例:

- 给定右图的事务集合
- 要求 s>0.5, c>0.5

TID	Items
t1	{牛奶,面包}
t2	{面包,尿布,啤酒,鸡蛋}
t3	{牛奶,尿布,啤酒,可乐}
t4	{面包,牛奶,尿布,啤酒}
t5	{面包,牛奶,尿布,可乐}

• 频繁项集:

- {牛奶} 0.8、{面包} 0.8、{尿布} 0.8、{啤酒} 0.6
- {牛奶,面包} 0.6、 {牛奶,尿布} 0.6、 {面包,尿布} 0.6、 {啤酒,尿布} 0.6

• 关联规则:

- {牛奶} -> {面包} 0.6, 0.75
- {啤酒} -> {尿布} 0.6, 1
- {尿布} -> {啤酒} 0.6, 0.75

–

首先考虑频繁项集

蛮力方法 (Brute-force)

- 穷举所有可能的项集,并依次为其计数
 - -对每个事务,考察其包含的每一个项集
 - -O(NMW)
 - M为项集候选数 (2^n-1)
 - •N为事务数、w为事务的宽度

		_	候选项集	计数
TID	Items		{xxx}	
t1	{牛奶,面包}		{xxx}	
t2	{面包,尿布,啤酒,鸡蛋}			
t3	{牛奶,尿布,啤酒,可乐}		{xxx}	
t4	{面包,牛奶,尿布,啤酒}		{xxx}	
t5	{面包,牛奶,尿布,可乐}		{xxx}	

Apriori原理

- 频繁项集的子集一定是频繁的(Any subset of a frequent itemset must be frequent)
 - 如果{牛奶,尿布,啤酒}是频繁的, {尿布,啤酒}一 定是频繁的
 - 任何包含某项集的事务,一定包含其子项集 $\forall X, Y: (X \subseteq Y) \Rightarrow s(X) \geq s(Y)$
 - 不频繁项集的超集一定是不频繁的

Figure 6.3. An illustration of the *Apriori* principle. If $\{c,d,e\}$ is frequent, then all subsets of this itemset are frequent.

Apriori: A Candidate Generation & Test Approach

- Apriori pruning principle: If there is any itemset which is infrequent, its superset should not be generated/tested! (Agrawal & Srikant @VLDB'94, Mannila, et al. @ KDD' 94)
- Method:
 - Initially, scan DB once to get frequent 1-itemset
 - Generate length (k+1) candidate itemsets from length k frequent itemsets
 - Test the candidates against DB
 - Terminate when no frequent or candidate set can be generated

The Apriori Algorithm—An Example

如何生成候选集合?

• 蛮力方法

- 穷举所有可能,并按照前述剪枝
- $F_{k-1} * F_1$
 - 从已有的k-1频繁项集扩展
- $\bullet \; \boldsymbol{F_{k-1}} * \boldsymbol{F_{k-1}}$
 - 所有的k-1子项都应该是频繁的

- 避免重复候选保持字典顺序

基本概念(回顾)

- 项/元素、项集、k-项集、事务、关联规则
- 关联分析: 频繁项集和关联规则
- 重要程度:
 - -在T中出现次数计为 σ :
 - $\sigma(X) = |\{t_i | X \subseteq t_i, t_i \in T\}|$
 - 支持度support:
 - ●给定事务集合T中出现的频繁程度(概率p(X))

•
$$s(X) = \frac{\sigma(X)}{N}$$
 , $s(X \to Y) = \frac{\sigma(X \cup Y)}{N}$

- 置信度confidence:
 - ●关联规则的可靠程度(条件概率p(Y|X))

•
$$c(X \to Y) = \frac{\sigma(X \cup Y)}{\sigma(X)}$$

关联规则生成

- 关联规则 $(X \to Y)$ 的项集 $X \cup Y$ 是频繁的
 - -首先得到符合支持度要求的k-频繁项集(记为Y)
 - 将该项集划分为两个非空子集X和Y-X,则得到 关联规则(X)Y-X)
 - •逐层生成, 每层规则后件的项数增大
 - 检查置信度要求
- 如果规则X->Y-X不满足置信度要求,则X'->Y-X'也一定不满足,其中X'为X的子集

Table 5.3. List of binary attributes from the 1984 United States Congressional Voting Records. Source: The UCI machine learning repository.

1 D 11'	10 '1 N'
1. Republican	18. aid to Nicaragua = no
2. Democrat	19. MX -missile = yes
3. handicapped-infants $=$ yes	20. MX -missile = no
4. handicapped-infants $=$ no	21. immigration $=$ yes
5. water project cost sharing $=$ yes	22. immigration $=$ no
6. water project cost sharing $=$ no	23. synfuel corporation cutback $=$ yes
7. budget-resolution = yes	24. synfuel corporation $cutback = no$
8. budget-resolution = no	25. education spending = yes
9. physician fee freeze $=$ yes	26. education spending $=$ no
10. physician fee freeze $=$ no	27. right-to-sue = yes
11. aid to El Salvador $=$ yes	28. right-to-sue = no
12. aid to El Salvador $=$ no	29. crime = yes
13. religious groups in schools $=$ yes	30. crime = no
14. religious groups in schools $=$ no	31. $duty$ -free-exports = yes
15. anti-satellite test ban $=$ yes	32. $duty$ -free-exports = no
16. anti-satellite test ban $=$ no	33. export administration act $=$ yes
17. aid to Nicaragua $=$ yes	34. export administration $act = no$

https://archive.ics.uci.edu/ml/datasets/congressional+voting+records

Association Rule	Confidence
{budget resolution = no, MX-missile=no, aid to El Salvador = yes }	91.0%
$\longrightarrow \{\text{Republican}\}$	
{budget resolution = yes, MX-missile=yes, aid to El Salvador = no }	97.5%
$\longrightarrow \{ Democrat \}$	
${\text{crime} = \text{yes, right-to-sue} = \text{yes, physician fee freeze} = \text{yes}}$	93.5%
$\longrightarrow \{\text{Republican}\}$	
${\text{crime} = \text{no, right-to-sue} = \text{no, physician fee freeze} = \text{no}}$	100%
$\longrightarrow \{ Democrat \}$	

https://archive.ics.uci.edu/ml/datasets/congressional+voting+records

练习五

- 尝试实现一个简单的Apriori算法,比较不同实现的 性能差距
- 尝试观察原有数据中的异常分布

参考资料

- 本章大部分内容来源于以下两个课程的相关部分:
 - Introduction to Data Mining (Second Edition) https://www-users.cs.umn.edu/~kumar001/dmbook/index.php
 - Data Mining: Concepts and Techniques,
 3rd ed.

https://hanj.cs.illinois.edu/bk3/bk3_slidesindex.htm