	cal code. from the f	irst fit! Wh	at is going	on? Have I	I made a mi	stake?	
b) I fit a	neural ne	etwork usin	g the code				
nnet((y~., da	ata = data	.df, siz		10? If you	increase th	e value of s
nnet ((y^{2}) , date is the signal (y^{2})	ata = data	df, siz	nent size=	10? If you increase or		e value of s
nnet ((y^{2}) , date is the signal (y^{2})	ata = data	df, siz	nent size=			e value of s
nnet ((y^{2}) , date is the signal (y^{2})	ata = data	df, siz	nent size=			e value of s
nnet ((y^{2}) , date is the signal (y^{2})	ata = data	df, siz	nent size=			e value of s
nnet ((y^{2}) , date is the signal (y^{2})	ata = data	df, siz	nent size=			e value of s
nnet ((y^{2}) , date is the signal (y^{2})	ata = data	df, siz	nent size=			e value of s
nnet ((y^{2}) , date is the signal (y^{2})	ata = data	df, siz	nent size=			e value of s
nnet ((y^{2}) , date is the signal (y^{2})	ata = data	df, siz	nent size=			e value of s
nnet ((y^{2}) , date is the signal (y^{2})	ata = data	df, siz	nent size=			e value of s
nnet ((y^{2}) , date is the signal (y^{2})	ata = data	df, siz	nent size=			e value of s
nnet ((y^{2}) , date is the signal (y^{2})	ata = data	df, siz	nent size=			e value of s
nnet ((y^{2}) , date is the signal (y^{2})	ata = data	df, siz	nent size=			e value of s
nnet ((y^{2}) , date is the signal (y^{2})	ata = data	df, siz	nent size=			e value of s
nnet ((y^{2}) , date is the signal (y^{2})	ata = data	df, siz	nent size=			e value of s

	Wilde the result of	the following	g R code wou	d be.	
> crimes					
Write down	what the result of	the followin	g R code wou	ld be.	
> dim(crime	es)				

The following code creates a mongoDB collection from the JSON file.	
<pre>> library(mongolite) > m <- mongo(collection="testcrimes") > m\$insert(crimes)</pre>	
Write down what the result of the following R code would be.	
<pre>> m\$find(query='{ "id": 34274772 }', + fields='{ "_id": 0, "category": 1, "location_type": 1, "month":</pre>	1 }')
	1

```
[
        "category": "anti-social-behaviour",
        "location_type": "Force",
        "location": {
            "latitude": "51.497899",
            "street.id": 953525,
            "longitude": "-0.119685"
        },
        "id": 34274772,
        "month": "2014-07"
    },
{
        "category": "anti-social-behaviour",
        "location_type": "Force",
        "location": {
            "latitude": "51.507309",
            "street.id": 956645,
            "longitude": "-0.128348"
        },
        "id": 34290854,
        "month": "2014-07"
    }
]
```

Figure 1: The JSON file "data.json"

5. Figure 2 shows the content of an XML file, "data.xml". Write R code to read that file into R and extract all donation elements where the donation amount is larger than 2000. The output that your code should produce is shown below: [[1]] <donation id="d1" amount="15000.00" donor="D4"/> [[2]] <donation id="d2" amount="10000.00" donor="D1"/> <donation id="d3" amount="5383.73" donor="D5"/> [[4]] <donation id="d5" amount="2940.00" donor="D3"/> attr(,"class") [1] "XMLNodeSet"

```
<?xml version="1.0"?>
<ElectoralDonations>
  <party id="P2" name="National">
    <candidate id="C1" name="Amy" surname="ADAMS" electorate="E2">
      <donation id="d1" amount="15000.00" donor="D4"/>
      <donation id="d2" amount="10000.00" donor="D1"/>
    </candidate>
  </party>
  <party id="P1" name="Labour">
    <candidate id="C2" name="Glenda" surname="ALEXANDER" electorate="E3">
      <donation id="d3" amount="5383.73" donor="D5"/>
      <donation id="d4" amount="2000.00" donor="D6"/>
    </candidate>
    <candidate id="C3" name="Cliff" surname="ALLEN" electorate="E1">
      <donation id="d5" amount="2940.00" donor="D3"/>
      <donation id="d6" amount="2000.00" donor="D2"/>
    </candidate>
  </party>
  <donor id="D1" name="Douglas Catley (D H Catley Trust)"/>
  <donor id="D2" name="(Hamilton East Labour Electorate Committee)"/>
  <donor id="D3" name="J &amp; K Broughan"/>
  <donor id="D4" name="New Zealand National Party"/>
  <donor id="D5" name="Nordmeyer Trust"/>
  <donor id="D6" name="NZ Meatworkers Union"/>
  <electorate id="E1" name="Hamilton East"/>
  <electorate id="E2" name="Selwyn"/>
  <electorate id="E3" name="Waitaki"/>
</ElectoralDonations>
```

Figure 2: The XML file "data.xml"

		lata.CSV", S	tringsAsFact	ors=FALSE)		
escribe a	an alternative v	vay to work wi	ith the data se	t in R that wo	ould require les	s mem

```
2000,1,28,5,1647,1647,1906,1859,HP,154,N808AW,259,252,233,7,0,ATL,PHX,1587,15,11,0
2000,1,29,6,1648,1647,1939,1859,HP,154,N653AW,291,252,239,40,1,ATL,PHX,1587,5,47,0
2000,1,30,7,NA,1647,NA,1859,HP,154,N801AW,NA,252,NA,NA,NA,ATL,PHX,1587,0,0,1
2000,1,31,1,1645,1647,1852,1859,HP,154,N806AW,247,252,226,-7,-2,ATL,PHX,1587,7,14,0
2000,1,1,6,842,846,1057,1101,HP,609,N158AW,255,255,244,-4,-4,ATL,PHX,1587,3,8,0
2000,1,2,7,849,846,1148,1101,HP,609,N656AW,299,255,267,47,3,ATL,PHX,1587,8,24,0
2000,1,3,1,844,846,1121,1101,HP,609,N803AW,277,255,244,20,-2,ATL,PHX,1587,6,27,0
2000,1,1,6,1702,1657,1912,1908,HP,611,N652AW,250,251,232,4,5,ATL,PHX,1587,5,13,0
2000,1,2,7,1658,1657,1901,1908,HP,611,N807AW,243,251,233,-7,1,ATL,PHX,1587,3,7,0
2000,1,3,1,1656,1657,1922,1908,HP,611,N807AW,266,251,241,14,-1,ATL,PHX,1587,5,20,0
2000,1,4,2,1955,1932,2230,2153,HP,613,N509DC,275,261,232,37,23,ATL,PHX,1587,5,38,0
2000,1,5,3,1934,1932,2133,2153,HP,613,N509DC,239,261,224,-20,2,ATL,PHX,1587,5,10,0
2000,1,6,4,1929,1932,2125,2153,HP,613,N303AW,236,261,220,-28,-3,ATL,PHX,1587,5,11,0
2000,1,7,5,1932,1932,2146,2153,HP,613,N173AW,254,261,237,-7,0,ATL,PHX,1587,4,13,0
2000,1,9,7,2008,1932,2221,2153,HP,613,N168AW,253,261,237,28,36,ATL,PHX,1587,4,12,0
2000,1,10,1,1926,1932,2147,2153,HP,613,N160AW,261,261,235,-6,-6,ATL,PHX,1587,7,19,0
2000,1,11,2,1932,1932,2126,2153,HP,613,N160AW,234,261,217,-27,0,ATL,PHX,1587,6,11,0
2000,1,12,3,1936,1932,2142,2153,HP,613,N322AW,246,261,227,-11,4,ATL,PHX,1587,7,12,0
2000,1,13,4,1942,1932,2153,2153,HP,613,N160AW,251,261,220,0,10,ATL,PHX,1587,5,26,0
2000,1,14,5,1932,1932,2131,2153,HP,613,N314AW,239,261,218,-22,0,ATL,PHX,1587,6,15,0
```

Figure 3: The first few lines of the CSV file "data.csv"

.


```
top - 10:19:02 up 38 days, 1:59, 3 users, load average: 0.00, 0.01, 0.05
Tasks: 163 total, 1 running, 162 sleeping, 0 stopped, 0 zombie
Cpu0 : 0.0%us, 0.0%sy, 0.0%ni,100.0%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st
Cpu1 : 0.3%us, 0.3%sy, 0.0%ni, 99.3%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st
Mem: 3973448k total, 2512664k used, 1460784k free, 408404k buffers
Swap: 4115452k total, 125816k used, 3989636k free, 945436k cached
```

Figure 4: The first few lines of output from top on a Linux machine.

\$ ls 2000.csv data.json data.xml~ Alan.docx data-science-test.aux full.txt code-better.R data-science-test.log ideas.txt code-better.R~ data-science-test.out ideas.txt~ code-efficiency data-science-test.pdf medium.txt code.R data-science-test.Rnw sample.json~ code.R~ data-science-test.Rnw~ sample.txt Test779_2015.pdf data.csv data-science-test.tex data.csv~ data.xml unused-question.Rnw \$ mkdir Temp \$ cp data-science-test.* Temp \$ cp unused-question.Rnw Temp \$ rm Temp/*.Rnw ... write down the result of the following bash command: \$ ls Temp

8. Given the following bash commands and output ...

The contents of the file data.xml are shown in Figure 2. Write down the result of the following bash command (and explain what the output	it means):
\$ grep party data.xml wc	

9. Explain what the following R code is doing and what the output means. > Rprof("test.out") > replicate(5, mean(rnorm(1000000))) $\hbox{ [1] } \hbox{ -0.0017922088 } \hbox{ -0.0011004727 } \hbox{ -0.0008793575 } \hbox{ 0.0017379549 } \hbox{ 0.0007257155 } \\$ > Rprof(NULL) > summaryRprof("test.out") \$by.self self.time self.pct total.time total.pct "rnorm" 0.46 100 0.46 100 \$by.total total.time total.pct self.time self.pct "rnorm" 0.46 100 0.46 100 "FUN" 0.00 0.46 100 0 "lapply" 0.46 100 0.00 0 "mean" 0.46 100 0.00 0 "replicate" 0.46 100 0.00 0 "sapply" 0.46 100 0.00 0

10. The following code runs a simple bootstrap permutation test using 10000 replications and measures how long it takes to run the test.

```
> diffs <- function(N) {</pre>
      diffMean <- 1:N
      for(i in diffMean){
          GrpSample <- sample(Grp)</pre>
          diffMean[i] <- diff(tapply(BP, GrpSample, mean))</pre>
      }
      diffMean
+ }
> set.seed(1000)
> BP <- rnorm(10, 100, 20)
> Grp <- rep(1:2, 5)
> system.time(diffs(10000))
   user system elapsed
  1.204
          0.000
                   1.207
```

Write R code to perform the 10000 replications in parallel on 4 cores. You can assume that the machine you are running on has at least 4 cores. Estimate how much time your code will take to run and explain your reasoning.