Study	Approach	Findings	Gap Identified
Nawrocki & Smendowski (2024)	CRUOS – a machine learning–based FinOps system forecasting long-term HPC usage	Achieved over 90% cost reduction using BiGRU models	Lacks explainability and conversational reasoning layer
Khan et al. (2024)	Graph-based cost modeling with Google Cloud Pricing API	Captures inter-resource dependencies	Difficult for non-experts to interpret
Bhardwaj (2024)	Empirical FinOps evaluation in large-scale cloud environments; analyzed AWS, Azure, GCP, multi-cloud enterprises	FinOps reduced average cloud spend by 20 %; improved right-sizing (+25 %), forecast accuracy (+15 %) and cost visibility (+25 %)	No Al-driven decision support or cross-organizational coordination model for governance
Jabbari et al. (2016)	Systematic mapping of 49 studies to synthesize DevOps definitions and practices	Defined DevOps as a methodology bridging development and operations through communication, contin ous integration and automated deployment	Lack of standardized definition and limited integration between DevOps and organizational finance functions
Huang et al. (2025)	Foundation-model decision frameworks integrating GPT-like models	Enables contextual, multimodal reasoning	Not yet applied to FinOps or cloud governance
Acharya et al.(2025)	Survey of Agentic AI frameworks for autonomous goal-driven decision-making across industries (incl. finance and governance)	Defines Agentic AI as autonomous systems pursuing complex goals with adaptability and self-supervision; identifies applications in finance and adaptive software	Open challenges in goal alignment, multi-agent coordination, and ethical governance for real-world deployment