メディアプログラミング演習

第8回

本日は簡単な的当てゲームの作成

準備

プロジェクトの作成

projectGenerator を起動する

windows 版のパッケージ

macOS 版のパッケージ

空のプロジェクトの作成

- Project name:
 - 作成するプロジェクト(プログラム)の名前
- Project path:
 - 作成するプロジェクトのファイル を置く場所
 - openFrameworks のパッケージを展開した場所の中の apps¥myApps

プロジェクトの作成成功

Visual Studio 2019 が起動する

ソリューションの再ターゲット

Visual Studio は頻繁に更新しているので皆さんがお使いの Visual Studio SDK のバージョンと合わない場合がある

Visual Studio 起動

課題7

矢印キーで砲台の方位角や砲身の仰角を設定しスペースキーでその方向に 砲弾を射出する

ofApp クラスに以下のメンバを追加しなさい

- ■カメラのオブジェクト
 - ofCamera もしくは ofEasyCam クラスのオブジェクトを作成する
 - ofEasyCam クラスはマウスでカメラを操作するクラス
 - ofEasyCam を使うときはキーボード等マウス以外でシーンを操作する
- ライトのオブジェクト
 - ofLight クラスのオブジェクトを作成する
- ■砲弾の速度と加速度
 - それぞれ glm::vec3 クラスのオブジェクトを作成する
- 図形のオブジェクト(回転台、台座、砲身、砲弾、地面)

図形のオブジェクト

ofApp::setup()に以下の処理を追加しなさい

- ■カメラの位置、方向、画角の設定
- ■ライトの位置の設定と有効化
- ■隠面消去処理の有効化
- ■砲弾の速度と加速度の初期値の設定
- ■図形のオブジェクトの設定
 - 回転台、台座、砲身、砲弾、地面の大きさと位置
 - 砲弾の初速度、加速度は0にする

ofApp::update() に以下の処理を追加しなさい

- 左右の矢印キーで砲台の方位角 (heading / pan) の変更
- ■上下の矢印キーで砲身の仰角 (pitch / tilt) の変更
- ■砲弾の位置と速度の更新
- ■砲弾の着弾判定
 - ■着弾は目標との衝突か地面への着地で判定する
 - ■着弾後の処理は任意
 - ■音を出す、視覚効果を表示する、ほか

ofApp::draw() に以下の処理を追加しなさい

- ■カメラの使用開始
- ■図形のオブジェクトの描画
 - ■回転台、台座、砲身、砲弾、地面
- ■カメラの使用終了

ofApp::keyPressed() に以下の処理を追加しなさい

- ■スペースキーで砲弾の発射速度の設定
 - 砲台の方位角と砲身の仰角から射出方向の速度ベクトルを決定
 - ■速度の設定
 - 加速度(重力加速度)の設定

課題のアップロード

- 作成したプログラムの実行中のウィンドウを5秒以内で動画 キャプチャして、7.mp4 というファイル名で Moodle の第7 回課題にアップロードしてください
 - 動画のキャプチャができないときはスクリーンショットを撮って 7.png というファイル名でアップロードしてください
- ソースプログラム ofApp.h と ofApp.cpp を Moodle の第 7 回 課題にアップロードしてください