Pointless Topology 勉強ノート

中村仁宣

2024年6月13日~

1 Preliminary

1.1 Topology トポロジー

Let $\mathcal{P}(X)$ denote the power set of X.

定義 1.1 (Topology トポロジー). A topological space is an ordered pair (X,τ) , $\tau \subseteq \mathcal{P}(X)$ which satisfies the following properties

- 1. $\emptyset \in \tau$ and $X \in \tau$.
- 2. if $U, V \in \tau$, then $U \cap V \in \tau$.
- 3. if $\forall I, U_i \in \tau$ forall $i \in I$, then $\bigcup_{i \in I} U_i$.

 τ is called the **topology** of X. The members of the topology $U \in \tau$ is said to be **open** and $V \subseteq X$ is said to be **closed** if $\exists U$ open such that $V = U^c$.

定義 1.2. If X is a topological space and $x \in X$, a neighbourhood (abbreviated "nhood") od x is a set U which contains an open set V containing x. Thus, U is a nhood of x iff $x \in U$ °. The collection \mathcal{U}_x of all nhoods of x is the nhood system of x.

定義 1.3 (Separation Axioms 分離公理). A space (X,τ) is called T_i , if respectively satisfies the following conditions,

- 1. $T_0: \forall x, y \in X \exists an open set U \in \tau such that U contains one of x, y and not the other.$
- 2. $T_1: \forall x, y \in X \exists a \text{ nhood of each not containing the other.}$

例 1.1 (T_0 -space). $X = \{a, b\}, \tau = \{\emptyset, \{a\}, X\}$

1.2 Posets, Lattices 半順序集合、束

定義 1.4 (Posets). A partial order (半順序) on a set X is a binary relation $R \subseteq X \times X$ satisfying,

- 1. ∀a, aRa (reflexivity, 反射律),
- 2. $\forall a, b, c, aRb \& bRc \Rightarrow aRc (transitivity, 推移律),$
- 3. $\forall a, b, aRb \& bRa \Rightarrow a = b \ (antisymmetry, 反対称律).$

if moreover

4. $\forall a, b \text{ either } aRb \text{ or } bRa \text{ holds},$

it is said to be a linear or total order.

A **poset** or **partially ordered set**, (X, \leq) is a set with a partial order. If the order of a poset is linear (or total), it is called a **linearly ordered set**, **totally ordered set** or **chain**. A relation that satisfies only (1) and (2) is called **preorder**.

定義 1.5 (Suprema, infima). A supremum s of a subset $M \subseteq (X, \leq)$ the least upper bound of M, that is

- 1. $\forall m \in M, m \leq s$,
- 2. $\forall m \in M, m \le x \Rightarrow s \le x$.

Similarly, a **infimum** of a subset $M \subseteq (X, \leq)$ the greatest lower bound of M.

We also call a supremum a **join** and an infimum **meet** and notate $\sup M$, $\inf M$ or $\bigvee M$, $\bigwedge M$ respectively.

For finite cases, we wirte $a \lor b := \sup\{a, b\}$ or $a_1 \lor \cdots \lor a_n := \sup\{a_1 \ldots a_n\}$ and $a \land b := \inf\{a, b\}$ or $a_1 \land \cdots \land a_n := \inf\{a_1 \ldots a_n\}$.

Since each $x \in X$ is both a lower and an upper bound of the empty set \emptyset ,

$$\sup \emptyset$$
 is the least element of X (1.1)

and

$$\inf \varnothing$$
 is the greatest element of X (1.2)

We use the symbols 0 or \perp for the former and 1 or \top for the latter.

定義 1.6 (Semilattices, Lattice). A meet-semilattice is a poset X such that $\forall a, b \in X$ there exists an infimum $a \wedge b$.

A **join-semilattice** is a poset X such that $\forall a, b \in X$ there exists an supremum $a \vee b$.

A lattice is a poset X such that $\forall a, b \in X$ both an infimum $a \land b$ and a supremum $a \lor b$ exist.

A bounded lattice is a poset in which all finite subsets have infima and suprema (i.e. a lattice with bottom and top).

A poset is a **complete lattice** if every subset has a supremum and an infimum.

In a bounded semilattice, \wedge or \vee is a binary operation and satisfies the following properties,

$$a \wedge a = a \tag{1.3}$$

$$a \wedge b = b \wedge a \qquad \qquad a \vee b = b \vee a \tag{1.4}$$

$$(a \wedge b) \wedge c = a \wedge (b \wedge c) \qquad (a \vee b) \vee c = a \vee (b \vee c) \qquad (1.5)$$

$$a \wedge 1 = a \qquad \qquad a \vee 0 = a. \tag{1.6}$$

In other words, bounded semilattices are commutative monoids (semigroup with unit/identity element) in which every element is idempotent.

定理 1.1. Let $(A, \vee, 0)$ be a commutative monoid in which every element is idempotent. Then there exists a unique partial order on A such that $a \wedge b$ is the join of a and b, and 0 is the least element.

証明. If such a partial order exists,

$$a \le b \Leftrightarrow a \lor b = b. \tag{1.7}$$

would be the correspondence. Now, let us verify this connection.

Reflexivity

$$a \wedge a = a \Rightarrow a \le a. \tag{1.8}$$

Antisymmetry

If a < b and b < a, then $b = a \land b = b \land a = a$ by commutativity.

Transitivity

If $a \leq b$ and $b \leq c$, then

$$a \wedge c = a \wedge (b \wedge c)$$
 $(\because b \leq c)$
 $= (a \wedge b) \wedge c$ (associativity)
 $= b \wedge c$ $(\because a \leq b)$
 $= c$ $(\because b \leq c)$

Hence, $a \leq c$.

Join-uniqueness

Since $a \wedge (a \wedge b) = (a \wedge a) \wedge b = a \wedge b$, $a \leq a \wedge b$. Similarly, $b \leq a \wedge b$, so $a \wedge b$ is an upper-bound for $\{a,b\}$. For the leastness, suppose $a \leq c$ and $b \leq c$, then

$$(a \wedge b) \wedge c = a \wedge (b \wedge c)$$
$$= a \wedge c$$
$$= c.$$

Hence, $a \wedge b \leq c$.

A lattice can also be defined purely algebraically in those terms,

定義 1.7. A lattice (L, \vee, \wedge) is an algebra (a set with two binary operations) that satisfy

- $a \lor a = a$ (L1) $a \wedge a = a$ (idempotency) $a \wedge b = b \wedge a$ (L2)(commutativity)
- $a \wedge b = b \wedge a$ $a \vee b = b \vee a$ (commutativity) $(a \wedge b) \wedge c = a \wedge (b \wedge c)$ $(a \vee b) \vee c = a \vee (b \vee c)$ (associativity) (L3)
- $a \wedge (a \vee b) = a$ (L4) $a \vee (a \wedge b) = a$ (absorption identities)

(L4) is necessary for the two operations \land, \lor to be consistent with the corresponding order \leq . In fact, $a \wedge b = b$ implies $a \vee b = a \vee (a \wedge b) = a$ by (L4).

For homomorphisms (structure-preserving maps) of (semi)lattices and posets, we need to be a little bit careful since the order-preserving homomorphisms of posets does not always preserve the joins (or meets) as shown in the following example. ([Stone] section 1.3 Exercise)

例 1.2. Consider the posets $X = \{a \le c, b \le c\}$ and $Y = \{e \le g, f \le g, g \le h\}$, and a homomorphism $\phi: X \to Y$ which maps each element as in the diagram below:

Indeed, we have $a, b \leq c$ and $\phi(a), \phi(b) \leq \phi(c)$, which means the order is preserved, but $\phi(a \vee b) \neq \phi(a) \vee \phi(b)$.

([Stone] Sec.1.5) In most of the lattices we'll consider, the operations \land and \lor will satisfy an additional identity, namely the distributive law

(i)
$$a \wedge (b \vee c) = (a \wedge b) \vee (a \wedge c)$$
 (1.9)

for all a, b, c.

補題 1.2. If the distributive law (i) holds in a lattice, then so does its dual, i.e. the identity

$$(ii) \ a \lor (b \land c) = (a \lor b) \land (a \lor c) \tag{1.10}$$

証明.

$$(a \lor b) \land (a \lor c) = ((a \lor b) \land a) \lor ((a \lor b) \land c)$$
 by (i)
= $a \lor ((a \land c) \lor (b \land c))$ by absorption law
= $a \lor (b \land c)$ by absorption law

Note also that in the presence of (i), we can deduce either of the two absorptive law from the other,

$$a \wedge (a \vee b) = (a \wedge a) \vee (a \wedge b) = a \vee (a \wedge b) \tag{1.11}$$

命題 1.3. Let a, b, c be three elements of a distributive lattice A. Then there exists at most one $x \in A$ satisfying $x \wedge a = b$ and $x \vee a = c$.

証明. Suppose both x and y satisfy the conditions. Then,

$$x = x \land (x \lor a) = x \land c = x \land (y \lor a)$$
$$= (x \land y) \lor (x \land a)$$
$$= (x \land y) \lor b = x \land y$$

since $b = x \wedge a = y \wedge a$ is a lower bound for $\{x, y\}$. Similarly, we have $y = x \wedge y$; so x = y.

In any lattice, an element x satisfying $x \wedge a = 0$ and $x \vee a = 1$ is called a **complement** od a. The Porposition above tells us that in a distributive lattice, complements are unique when they exist. A **Boolean algebra** is a distributive lattice A equipped with an additional unary operation $\neg: A \to A$ such that $\neg a$ is a complement of a. Since \neg is uniquely determined by the other data in the definition, it follows that any lattice homomorphism $f: A \to B$ between Boolean algebras is actually a Boolean algebra homomorphism (i.e. commutes with \neg).

例 1.3 (Power set). For any set X, the power set $\mathcal{P}(X)$ of X is a lattice, with \leq interpreted as inclusion, \wedge and \vee as union and intersection of subsets, and 0 and 1 as the empty set and the whole of X. Moreover $\mathcal{P}(X)$ is distributive. Since $\mathcal{P}(X)$ has complements for all its elements, it is a Boolean algebra.

例 1.4 (Total Order). Let A be a totally ordered set with least and greatest elements 0 and 1. Then A is a lattice, with \land and \lor interpreted as min and max. It is distributive;

$$\min\{a, \max\{b, c\}\} = \max\{\min\{a, b\}, \min\{a, c\}\}$$
(1.12)

But if A has more than two elements, it is not a Boolean elgebra; for no element other than 0 and 1 can have a complement.

例 1.5 (Lattices of subgroups). Let G be agroup.

例 1.6 (Poset). ([Gratzer] Chap.1 Exercise 4) Here are some examples of the possible numbers of partial orders on finite sets:

Size 1

0

Size 2

0 - 0

Size 3

Size 4

1.3 Ideals and Filters イデアルとフィルター

定義 1.8 (Ideal). An ideal in a bounded distributive lattice L is a subset $J \subseteq L$ such that

$$0 \in J, \tag{1.13}$$

$$a, b \in J \Rightarrow a \lor b \in J,$$
 (1.14)

$$b \le a \& a \in J \Rightarrow b \in J. \tag{1.15}$$

定義 1.9 (Filter). A filter in a bounded distributive lattice L is a subset $F \subseteq L$ such that

$$1 \in F, \tag{1.16}$$

$$a, b \in F \Rightarrow a \land b \in F,$$
 (1.17)

$$b \ge a \& a \in F \Rightarrow b \in F. \tag{1.18}$$

2 Stone Spaces

3 Spaces and Lattices of Open Sets

We will suppose that all topological spaces that appear here will be T_0 .

3.1 Sober spaces

定義 3.1 (meet-irrducibility). Let (X, τ) be a top.space. $W \in \tau$ is said to be a **meet-irreducible** open set if $U, V \in \tau$ and $U \cap V \subseteq W$, then either $U \subseteq W$ or $V \subseteq W$.

定義 3.2 (sober space). X is said to be **sober** if all the meet-irreducible open sets are of the form $X \setminus \overline{\{x\}}$.

命題 3.1. Each Haudorff space is sober.

証明. Suppose W is meet-irreducible, for contradiction, there exists $x_1, x_2 \notin W$ and $x_i \in U_i, x_j \notin U_i (i \neq j)$. Then $W = (W \cup U_1) \cap (W \cup U_2)$ and $W \cup U_i \nsubseteq W$.

参考文献

[Gratzer] George A. Gratzer, 2009, Lattice Theory: First concept and distributive lattices, Dover Publications.

[Picado] Jorge Picado, Aleš Putlr, Frames and Locales: Topology without points, Birkhäuser.

[Stone] Peter T. Johnstone, Stone Spaces, Cambridge University Press.

[Willard] Steven Willard, General Topology, Dover Publications