Лекция 7

Неразрешимость исчисления предикатов Аксиоматика Пеано и формальная арифметика

Машина Тьюринга

Определение

Машина Тьюринга — упорядоченная тройка:

- 1. Внешний алфавит q_1, \ldots, q_n
- 2. Внутренний алфавит (состояний) $s_1, ..., s_k$; s_s начальное, s_f конечное.
- 3. Таблица переходов $\langle k,s \rangle \Rightarrow \langle k',s',\leftrightarrow \rangle$

Определение

Состояние машины Тьюринга — упорядоченная тройка:

- 1. Бесконечная лента с символом-заполнителем q_{ε} , текст конечной длины.
- 2. Головка над определённым символом.
- 3. Символ состояния (состояние в узком смысле) символ внутреннего алфавита.

- 1. Внешний алфавит ε , 0, 1.
- 2. Внутренний алфавит s_s, s_f (начальное и завершающее состояния соответственно).
- 3. Переходы:

- 1. Внешний алфавит ε , 0, 1.
- 2. Внутренний алфавит s_s, s_f (начальное и завершающее состояния соответственно).
- 3. Переходы:

Пример

Головка — на первом символе 011, состояние s_s .

- 1. Внешний алфавит ε , 0, 1.
- 2. Внутренний алфавит s_s, s_f (начальное и завершающее состояния соответственно).
- 3. Переходы:

Пример

Головка — на первом символе 011, состояние s_s . 011

- 1. Внешний алфавит ε , 0, 1.
- 2. Внутренний алфавит s_s, s_f (начальное и завершающее состояния соответственно).
- 3. Переходы:

Пример

Головка — на первом символе 011, состояние s_s . 011 \Rightarrow 111

- 1. Внешний алфавит ε , 0, 1.
- 2. Внутренний алфавит s_s, s_f (начальное и завершающее состояния соответственно).
- 3. Переходы:

Пример

Головка — на первом символе 011, состояние s_s . $011 \Rightarrow 111 \Rightarrow 101$

- 1. Внешний алфавит ε , 0, 1.
- 2. Внутренний алфавит s_s, s_f (начальное и завершающее состояния соответственно).
- 3. Переходы:

Пример

Головка — на первом символе 011, состояние s_s . $011 \Rightarrow 111 \Rightarrow 101 \Rightarrow 100 \varepsilon$

- 1. Внешний алфавит ε , 0, 1.
- 2. Внутренний алфавит s_s, s_f (начальное и завершающее состояния соответственно).
- 3. Переходы:

Пример

Головка — на первом символе 011, состояние $s_{\rm s}$.

$$\underline{0}11 \Rightarrow 1\underline{1}1 \Rightarrow 10\underline{1} \Rightarrow 100\underline{\varepsilon}$$

Состояние s_f , завершающее.

Разрешимость

Определение

Язык — множество строк

Определение

Язык L разрешим, если существует машина Тьюринга, которая для любого слова w возвращает ответ «да», если $w \in L$, и «нет», если $w \notin L$.

Неразрешимость задачи останова

Определение

Рассмотрим все возможные описания машин Тьюринга. Составим упорядоченные пары: описание машины Тьюринга и входная строка. Из них выделим язык останавливающихся на данном входе машин Тьюринга.

Теорема

Язык всех останавливающихся машин Тьюринга неразрешим

Доказательство.

От противного. Пусть S(x,y) — машина Тьюринга, определяющая, остановится ли машина x, примененная κ строке y.

Неразрешимость задачи останова

Определение

Рассмотрим все возможные описания машин Тьюринга. Составим упорядоченные пары: описание машины Тьюринга и входная строка. Из них выделим язык останавливающихся на данном входе машин Тьюринга.

Теорема

Язык всех останавливающихся машин Тьюринга неразрешим

Доказательство.

От противного. Пусть S(x,y) — машина Тьюринга, определяющая, остановится ли машина x, примененная κ строке y.

$$W(x) = if(S(x,x)) \{ while (true); return 0; \} else \{ return 1; \}$$

Неразрешимость задачи останова

Определение

Рассмотрим все возможные описания машин Тьюринга. Составим упорядоченные пары: описание машины Тьюринга и входная строка. Из них выделим язык останавливающихся на данном входе машин Тьюринга.

Теорема

Язык всех останавливающихся машин Тьюринга неразрешим

Доказательство.

От противного. Пусть S(x,y) — машина Тьюринга, определяющая, остановится ли машина x, примененная x строке y.

$$W(x) = if(S(x,x)) \{ while (true); return 0; \} else \{ return 1; \}$$

Что вернёт S(code(W), code(W))?

Кодируем состояние

- 1. внешний алфавит: n 0-местных функциональных символов q_1, \ldots, q_n ; q_{ε} символ-заполнитель.
- 2. список: ε и c(l,s); «abc» представим как $c(q_a,c(q_b,c(q_c,\varepsilon)))$.
- 3. положение головки: «ab.pq» как $(c(q_b, c(q_a, \varepsilon)), c(q_p, c(q_q, \varepsilon)))$.
- 4. внутренний алфавит: k 0-местных функциональных символов s_1, \dots, s_k . Из них выделенные s_s начальное и s_f завершающее состояние.

Достижимые состояния

Предикатный символ $F_{x,y}(w_l,w_r,s)$: если у машины x с начальной строкой y состояние s достижимо на строке $rev(w_l)@w_r$.

Достижимые состояния

Предикатный символ $F_{x,y}(w_l, w_r, s)$: если у машины x с начальной строкой y состояние s достижимо на строке $rev(w_l)@w_r$. Будем накладывать условия: семейство формул C_m .

Достижимые состояния

Предикатный символ $F_{x,y}(w_l, w_r, s)$: если у машины x с начальной строкой y состояние s достижимо на строке $rev(w_l)@w_r$. Будем накладывать условия: семейство формул C_m . Очевидно, начальное состояние достижимо:

$$C_0 = F_{x,y}(\varepsilon, x, s_s)$$

1. Занумеруем переходы.

- 1. Занумеруем переходы.
- 2. Закодируем переход m:

$$\langle k, s \rangle \Rightarrow \langle k', s', \rightarrow \rangle$$

 $\langle k, w_t \rangle, s_s \rangle \Rightarrow F_{s, v}(c(a_{k'}, w_t), w_t, s_{s'})$

 $C_m = \forall w_l. \forall w_r. F_{x,y}(w_l, c(q_k, w_r), s_s) \rightarrow F_{x,y}(c(q_{k'}, w_l), w_r, s_{s'})$

- 1. Занумеруем переходы.
- 2. Закодируем переход *m*:

$$\langle k, s \rangle \Rightarrow \langle k', s', \rightarrow \rangle$$

 $C_m = \forall w_I. \forall w_r. F_{x,y}(w_I, c(q_k, w_r), s_s) \rightarrow F_{x,y}(c(q_{k'}, w_I), w_r, s_{s'})$

3. Переход посложнее:

$$\langle k,s \rangle \Rightarrow \langle k',s',\leftarrow \rangle$$

$$C_m = \forall w_l. \forall w_r. \forall t. F_{x,y}(c(t, w_l), c(q_k, w_r), s_s) \rightarrow F_{x,y}(w_l, c(t, c(q_{k'}, w_r)), s_{s'}) \& \forall w_l. \forall w_r. F_{x,y}(\varepsilon, c(q_k, w_r), s_s) \rightarrow F_{x,y}(\varepsilon, c(q_{\varepsilon}, c(q_{k'}, w_r)), s_{s'})$$

- 1. Занумеруем переходы.
- 2. Закодируем переход *m*:

$$\langle k, s \rangle \Rightarrow \langle k', s', \rightarrow \rangle$$

$$C_m = \forall w_l. \forall w_r. F_{x.y}(w_l, c(q_k, w_r), s_s) \rightarrow F_{x.y}(c(q_{k'}, w_l), w_r, s_{s'})$$

3. Переход посложнее:

$$\langle k, s \rangle \Rightarrow \langle k', s', \leftarrow \rangle$$

$$C_m = \forall w_l. \forall w_r. \forall t. F_{x,y}(c(t, w_l), c(q_k, w_r), s_s) \rightarrow F_{x,y}(w_l, c(t, c(q_{k'}, w_r)), s_{s'}) \& \forall w_l. \forall w_r. F_{x,y}(\varepsilon, c(q_k, w_r), s_s) \rightarrow F_{x,y}(\varepsilon, c(q_{\varepsilon}, c(q_{k'}, w_r)), s_{s'})$$

4. и т.п.

$$C = C_0 \& C_1 \& \cdots \& C_n$$

«правильное начальное состояние и правильные переходы между состояниями»

$$C = C_0 \& C_1 \& \cdots \& C_n$$

«правильное начальное состояние и правильные переходы между состояниями»

Теорема

состояние s со строкой $rev(w_l)@w_r$ достижимо тогда и только тогда, когда $C \vdash F_{x,y}(w_l, w_r, s)$

$$C = C_0 \& C_1 \& \cdots \& C_n$$

«правильное начальное состояние и правильные переходы между состояниями»

Теорема

состояние s со строкой $rev(w_l)@w_r$ достижимо тогда и только тогда, когда $C \vdash F_{x,y}(w_l, w_r, s)$

Доказательство.

 (\Leftarrow) Рассмотрим модель: предикат $F_{x,y}(w_l,w_r,s)$ положим истинным, если состояние достижимо.

$$C = C_0 \& C_1 \& \cdots \& C_n$$

«правильное начальное состояние и правильные переходы между состояниями»

Теорема

состояние s со строкой $rev(w_l)@w_r$ достижимо тогда и только тогда, когда $C \vdash F_{x,y}(w_l, w_r, s)$

Доказательство.

 (\Leftarrow) Рассмотрим модель: предикат $F_{x,y}(w_l,w_r,s)$ положим истинным, если состояние достижимо. Это — модель для C (по построению C_m).

$$C = C_0 \& C_1 \& \cdots \& C_n$$

«правильное начальное состояние и правильные переходы между состояниями»

Теорема

состояние s со строкой $rev(w_l)@w_r$ достижимо тогда и только тогда, когда $C \vdash F_{x,y}(w_l, w_r, s)$

Доказательство.

 (\Leftarrow) Рассмотрим модель: предикат $F_{x,y}(w_l,w_r,s)$ положим истинным, если состояние достижимо. Это — модель для C (по построению C_m). Значит, доказуемость влечёт истинность (по корректности).

$$C = C_0 \& C_1 \& \cdots \& C_n$$

«правильное начальное состояние и правильные переходы между состояниями»

Теорема

состояние s со строкой $rev(w_l)@w_r$ достижимо тогда и только тогда, когда $C \vdash F_{x,y}(w_l, w_r, s)$

Доказательство.

- (\Leftarrow) Рассмотрим модель: предикат $F_{x,y}(w_l,w_r,s)$ положим истинным, если состояние достижимо. Это модель для C (по построению C_m). Значит, доказуемость влечёт истинность (по корректности).
- (\Rightarrow) Индукция по длине лога исполнения.

Неразрешимость исчисления предикатов: доказательство

Теорема

Язык всех доказуемых формул исчисления предикатов неразрешим

Т.е. нет машины Тьюринга, которая бы по любой формуле s определяла, доказуема ли она.

Неразрешимость исчисления предикатов: доказательство

Теорема

Язык всех доказуемых формул исчисления предикатов неразрешим Т.е. нет машины Тьюринга, которая бы по любой формуле s определяла, доказуема ли она.

Доказательство.

 s_f — завершающее состояние.

Неразрешимость исчисления предикатов: доказательство

Теорема

Язык всех доказуемых формул исчисления предикатов неразрешим

Т.е. нет машины Тьюринга, которая бы по любой формуле s определяла, доказуема ли она.

Доказательство.

 s_f — завершающее состояние.

Умение определять истинность формулы $\exists w_I. \exists w_r. F_{x,y}(w_I, w_r, s_f)$ разрешает задачу останова.

Аксиоматика Пеано и формальная арифметика

1. Вещественные (\mathbb{R}).

1. Вещественные (\mathbb{R}). $X = \{A, B\}$, где $A, B \subseteq \mathbb{Q}$ — дедекиндово сечение, если:

1. Вещественные (\mathbb{R}). $X=\{A,B\}$, где $A,B\subseteq \mathbb{Q}$ — дедекиндово сечение, если: 1.1 $A\cup B=\mathbb{Q}$

- 1. Вещественные (\mathbb{R}). $X = \{A, B\}$, где $A, B \subseteq \mathbb{Q}$ дедекиндово сечение, если:
 - 1.1 $A \cup B = \mathbb{Q}$
 - 1.2 Если $a \in A$, $x \in \mathbb{Q}$ и $x \leq a$, то $x \in A$

- 1. Вещественные (\mathbb{R}). $X = \{A, B\}$, где $A, B \subseteq \mathbb{Q}$ дедекиндово сечение, если:
 - 1.1 $A \cup B = \mathbb{Q}$
 - 1.2 Если $a \in A$, $x \in \mathbb{Q}$ и $x \leq a$, то $x \in A$
 - 1.3 Если $b \in B$, $x \in \mathbb{Q}$ и $b \le x$, то $x \in B$

1. Вещественные (\mathbb{R}). $X = \{A, B\}$, где $A, B \subseteq \mathbb{Q}$ — дедекиндово сечение, если:

- 1.1 $A \cup B = \mathbb{Q}$
- 1.2 Если $a \in A$, $x \in \mathbb{Q}$ и x < a, то $x \in A$
- 1.3 Если $b \in B$, $x \in \mathbb{Q}$ и $b \le x$, то $x \in B$
- 1.4 А не содержит наибольшего.

1. Вещественные (\mathbb{R}). $X = \{A, B\}$, где $A, B \subseteq \mathbb{Q}$ — дедекиндово сечение, если:

- 1.1 $A \cup B = \mathbb{O}$
- 1.2 Если $a \in A$, $x \in \mathbb{Q}$ и $x \leq a$, то $x \in A$
- 1.3 Если $b \in B$, $x \in \mathbb{Q}$ и $b \le x$, то $x \in B$
- 1.4 A не содержит наибольшего.

 \mathbb{R} — множество всех возможных дедекиндовых сечений.

1. Вещественные (\mathbb{R}). $X = \{A, B\}$, где $A, B \subseteq \mathbb{Q}$ — дедекиндово сечение, если:

- 1.1 $A \cup B = \mathbb{O}$
- 1.2 Если $a \in A$, $x \in \mathbb{Q}$ и $x \leq a$, то $x \in A$
- 1.3 Если $b \in B$, $x \in \mathbb{Q}$ и $b \le x$, то $x \in B$
- 1.4 А не содержит наибольшего.

 \mathbb{R} — множество всех возможных дедекиндовых сечений.

Рациональные (Q).

1. Вещественные (\mathbb{R}). $X = \{A, B\}$, где $A, B \subseteq \mathbb{Q}$ — дедекиндово сечение, если:

- 1.1 $A \cup B = \mathbb{O}$
- 1.2 Если $a \in A$, $x \in \mathbb{Q}$ и $x \leq a$, то $x \in A$
- 1.3 Если $b \in B$, $x \in \mathbb{Q}$ и $b \le x$, то $x \in B$
- 1.4 А не содержит наибольшего.

 \mathbb{R} — множество всех возможных дедекиндовых сечений.

Рациональные (ℚ).

 $Q=\mathbb{Z} imes\mathbb{N}$ — множество всех простых дробей.

1. Вещественные (\mathbb{R}). $X = \{A, B\}$, где $A, B \subseteq \mathbb{Q}$ — дедекиндово сечение, если:

- 1.1 $A \cup B = \mathbb{O}$
- 1.2 Если $a \in A$, $x \in \mathbb{Q}$ и $x \leq a$, то $x \in A$
- 1.3 Если $b \in B$, $x \in \mathbb{Q}$ и $b \le x$, то $x \in B$
- 1.4 А не содержит наибольшего.

 \mathbb{R} — множество всех возможных дедекиндовых сечений.

Рациональные (ℚ).

 $Q=\mathbb{Z} imes\mathbb{N}$ — множество всех простых дробей.

$$\langle p,q \rangle$$
 — то же, что $\frac{p}{q}$

1. Вещественные (\mathbb{R}). $X = \{A, B\}$, где $A, B \subseteq \mathbb{Q}$ — дедекиндово сечение, если:

- 1.1 $A \cup B = \mathbb{O}$
- 1.2 Если $a \in A$, $x \in \mathbb{Q}$ и $x \leq a$, то $x \in A$
- 1.3 Если $b \in B$, $x \in \mathbb{Q}$ и $b \le x$, то $x \in B$
- 1.4 А не содержит наибольшего.

 \mathbb{R} — множество всех возможных дедекиндовых сечений.

Рациональные (ℚ).

$$Q=\mathbb{Z} imes\mathbb{N}$$
 — множество всех простых дробей.

$$\langle p,q
angle$$
 — то же, что $rac{p}{q}$ $\langle p_1,q_1
angle\equiv\langle p_2,q_2
angle$, если $p_1q_2=p_2q_1$

1. Вещественные (\mathbb{R}). $X = \{A, B\}$, где $A, B \subseteq \mathbb{Q}$ — дедекиндово сечение, если:

- 1.1 $A \cup B = \mathbb{O}$
- 1.2 Если $a \in A$, $x \in \mathbb{Q}$ и $x \leq a$, то $x \in A$
- 1.3 Если $b \in B$, $x \in \mathbb{Q}$ и $b \le x$, то $x \in B$
- 1.4 А не содержит наибольшего.

 \mathbb{R} — множество всех возможных дедекиндовых сечений.

Рациональные (ℚ).

$$Q=\mathbb{Z} imes\mathbb{N}$$
 — множество всех простых дробей.

$$\langle p,q
angle$$
 — то же, что $rac{p}{q}$ $\langle p_1,q_1
angle\equiv\langle p_2,q_2
angle$, если $p_1q_2=p_2q_1$

$$\mathbb{Q}=Q/_{\equiv}$$

$$\mathbb{Z}: \cdots -3, -2, -1, 0, 1, 2, 3, \ldots$$

$$\mathbb{Z}: \cdots -3, -2, -1, 0, 1, 2, 3, \ldots$$

$$\mathbb{Z}: \cdots -3, -2, -1, 0, 1, 2, 3, \ldots$$

- ▶ Интуиция: $\langle x, y \rangle = x y$

$$\mathbb{Z}: \cdots -3, -2, -1, 0, 1, 2, 3, \ldots$$

- $ightharpoonup Z = \{\langle x, y \rangle \mid x, y \in \mathbb{N}_0\}$
- ightharpoonup Интуиция: $\langle x, y \rangle = x y$

$$\langle a,b\rangle + \langle c,d\rangle = \langle a+c,b+d\rangle$$

$$\mathbb{Z}: \cdots -3, -2, -1, 0, 1, 2, 3, \ldots$$

- ▶ Интуиция: $\langle x, y \rangle = x y$

$$\langle a, b \rangle + \langle c, d \rangle = \langle a + c, b + d \rangle$$

 $\langle a, b \rangle - \langle c, d \rangle = \langle a + d, b + c \rangle$

«Бог создал целые числа, всё остальное— дело рук человека.» Леопольд Кронекер

$$\mathbb{Z}: \cdots -3, -2, -1, 0, 1, 2, 3, \ldots$$

- ▶ Интуиция: $\langle x, y \rangle = x y$

$$\langle a, b \rangle + \langle c, d \rangle = \langle a + c, b + d \rangle$$

 $\langle a, b \rangle - \langle c, d \rangle = \langle a + d, b + c \rangle$

lackbox Пусть $\langle a,b
angle \equiv \langle c,d
angle$, если a+d=b+c. Тогда $\mathbb{Z}=Z/_{\equiv}$

$$\mathbb{Z}: \cdots -3, -2, -1, 0, 1, 2, 3, \ldots$$

- ▶ Интуиция: $\langle x, y \rangle = x y$

$$\langle a, b \rangle + \langle c, d \rangle = \langle a + c, b + d \rangle$$

 $\langle a, b \rangle - \langle c, d \rangle = \langle a + d, b + c \rangle$

- lackbox Пусть $\langle a,b
 angle \equiv \langle c,d
 angle$, если a+d=b+c. Тогда $\mathbb{Z}=Z/_{\equiv}$
- $lackbox{0} = [\langle 0, 0 \rangle], \ 1 = [\langle 1, 0 \rangle], \ -7 = [\langle 0, 7 \rangle]$

 $\mathbb{N}:1,2,\ldots$ или $\mathbb{N}_0:0,1,2,\ldots$

 $\mathbb{N}:1,2,\ldots$ или $\mathbb{N}_0:0,1,2,\ldots$

Определение

N (или, более точно, $\langle N,0,(')\rangle$) соответствует аксиоматике Пеано, если следующее определено/выполнено:

 $\mathbb{N}:1,2,\ldots$ или $\mathbb{N}_0:0,1,2,\ldots$

Определение

N (или, более точно, $\langle N,0,(')\rangle$) соответствует аксиоматике Пеано, если следующее определено/выполнено:

1. Операция «штрих» (') : $N \to N$, причём нет $a,b \in N$, что $a \neq b$, но a' = b'.

 $\mathbb{N}:1,2,\ldots$ или $\mathbb{N}_{0}:0,1,2,\ldots$

Определение

N (или, более точно, $\langle N,0,(')\rangle$) соответствует аксиоматике Пеано, если следующее определено/выполнено:

1. Операция «штрих» (') : $N \to N$, причём нет $a, b \in N$, что $a \ne b$, но a' = b'. Если x = y', то x назовём следующим за y, а y — предшествующим x.

 $\mathbb{N}:1,2,\ldots$ или $\mathbb{N}_{0}:0,1,2,\ldots$

Определение

N (или, более точно, $\langle N,0,(')\rangle$) соответствует аксиоматике Пеано, если следующее определено/выполнено:

- 1. Операция «штрих» (') : $N \to N$, причём нет $a, b \in N$, что $a \ne b$, но a' = b'. Если x = y', то x назовём следующим за y, а y предшествующим x.
- 2. Константа $0 \in N$: нет $x \in N$, что x' = 0.

 $\mathbb{N}:1,2,\ldots$ или $\mathbb{N}_0:0,1,2,\ldots$

Определение

N (или, более точно, $\langle N,0,(') \rangle$) соответствует аксиоматике Пеано, если следующее определено/выполнено:

- 1. Операция «штрих» (') : $N \to N$, причём нет $a, b \in N$, что $a \ne b$, но a' = b'. Если x = y', то x назовём следующим за y, а y предшествующим x.
- 2. Константа $0 \in N$: нет $x \in N$, что x' = 0.
- 3. Индукция. Каково бы ни было свойство («предикат») P: N o V, если:
 - 3.1 P(0)
 - 3.2 При любом $x \in N$ из P(x) следует P(x')

то при любом $x \in N$ выполнено P(x).

 $\mathbb{N}:1,2,\ldots$ или $\mathbb{N}_{0}:0,1,2,\ldots$

Определение

N (или, более точно, $\langle N,0,(')\rangle$) соответствует аксиоматике Пеано, если следующее определено/выполнено:

- 1. Операция «штрих» (') : $N \to N$, причём нет $a, b \in N$, что $a \ne b$, но a' = b'. Если x = y', то x назовём следующим за y, а y предшествующим x.
- 2. Константа $0 \in N$: нет $x \in N$, что x' = 0.
- 3. Индукция. Каково бы ни было свойство («предикат») P: N o V, если:
 - 3.1 P(0)
 - 3.2 При любом $x \in N$ из P(x) следует P(x')

то при любом $x \in N$ выполнено P(x).

Как построить? Например, в стиле алгебры Линденбаума:

 $\mathbb{N}:1,2,\ldots$ или $\mathbb{N}_0:0,1,2,\ldots$

Определение

N (или, более точно, $\langle N,0,(')\rangle$) соответствует аксиоматике Пеано, если следующее определено/выполнено:

- 1. Операция «штрих» (') : $N \to N$, причём нет $a, b \in N$, что $a \ne b$, но a' = b'. Если x = y', то x назовём следующим за y, а y предшествующим x.
- 2. Константа $0 \in N$: нет $x \in N$, что x' = 0.
- 3. Индукция. Каково бы ни было свойство («предикат») P: N o V, если:
 - 3.1 P(0)
 - 3.2 При любом $x \in N$ из P(x) следует P(x')

то при любом $x \in N$ выполнено P(x).

Как построить? Например, в стиле алгебры Линденбаума:

1. N — язык, порождённый грамматикой $\nu := 0 \mid \nu$ «'»

$$\mathbb{N}:1,2,\ldots$$
 или $\mathbb{N}_0:0,1,2,\ldots$

Определение

N (или, более точно, $\langle N,0,(')\rangle$) соответствует аксиоматике Пеано, если следующее определено/выполнено:

- 1. Операция «штрих» (') : $N \to N$, причём нет $a, b \in N$, что $a \ne b$, но a' = b'. Если x = y', то x назовём следующим за y, а y предшествующим x.
- 2. Константа $0 \in N$: нет $x \in N$, что x' = 0.
- 3. Индукция. Каково бы ни было свойство («предикат») P: N o V, если:
 - 3.1 P(0)
 - 3.2 При любом $x \in N$ из P(x) следует P(x')

то при любом $x \in N$ выполнено P(x).

Как построить? Например, в стиле алгебры Линденбаума:

- 1. N язык, порождённый грамматикой $\nu := 0 \mid \nu$ «'»
- 2. 0 970 < 0, x' 970 x ++ < '

1. \mathbb{Z} , где $x' = x^2$

1. \mathbb{Z} , где $x' = x^2$ Функция «штрих» не инъективна: $-3^2 = 3^2 = 9$

- 1. \mathbb{Z} , где $x' = x^2$ Функция «штрих» не инъективна: $-3^2 = 3^2 = 9$
- 2. Кольцо вычетов $\mathbb{Z}/7\mathbb{Z}$, где x'=x+1

- 1. \mathbb{Z} , где $x' = x^2$ Функция «штрих» не инъективна: $-3^2 = 3^2 = 9$
- 2. Кольцо вычетов $\mathbb{Z}/7\mathbb{Z}$, где x' = x + 1 6' = 0, что нарушает свойства 0

- 1. \mathbb{Z} , где $x' = x^2$ Функция «штрих» не инъективна: $-3^2 = 3^2 = 9$
- 2. Кольцо вычетов $\mathbb{Z}/7\mathbb{Z}$, где x'=x+1 6'=0, что нарушает свойства 0
- 3. $\mathbb{R}^+ \cup \{0\}$, где x' = x + 1

- 1. \mathbb{Z} , где $x' = x^2$ Функция «штрих» не инъективна: $-3^2 = 3^2 = 9$
- 2. Кольцо вычетов $\mathbb{Z}/7\mathbb{Z}$, где x'=x+1 6'=0, что нарушает свойства 0
- 3. $\mathbb{R}^+ \cup \{0\}$, где x' = x+1 пусть P(x) означает « $x \in \mathbb{Z}$ »:

- 1. \mathbb{Z} , где $x' = x^2$ Функция «штрих» не инъективна: $-3^2 = 3^2 = 9$
- 2. Кольцо вычетов $\mathbb{Z}/7\mathbb{Z}$, где x' = x + 1 6' = 0, что нарушает свойства 0
- 3. $\mathbb{R}^+ \cup \{0\}$, где x' = x + 1 пусть P(x) означает « $x \in \mathbb{Z}$ »:
 - 3.1 P(0) выполнено: $0 \in \mathbb{Z}$.

- 1. \mathbb{Z} , где $x' = x^2$ Функция «штрих» не инъективна: $-3^2 = 3^2 = 9$
- 2. Кольцо вычетов $\mathbb{Z}/7\mathbb{Z}$, где x' = x + 1 6' = 0, что нарушает свойства 0
- 3. $\mathbb{R}^+ \cup \{0\}$, где x' = x + 1 пусть P(x) означает « $x \in \mathbb{Z}$ »:
 - 3.1 P(0) выполнено: $0 \in \mathbb{Z}$.
 - 3.2 Если P(x), то есть $x \in \mathbb{Z}$, то и $x+1 \in \mathbb{Z}$ так что и P(x') выполнено.

- 1. \mathbb{Z} , где $x' = x^2$ Функция «штрих» не инъективна: $-3^2 = 3^2 = 9$
- 2. Кольцо вычетов $\mathbb{Z}/7\mathbb{Z}$, где x' = x + 1 6' = 0, что нарушает свойства 0
- 3. $\mathbb{R}^+ \cup \{0\}$, где x' = x + 1 пусть P(x) означает « $x \in \mathbb{Z}$ »:
 - 3.1 P(0) выполнено: $0 \in \mathbb{Z}$.
 - 3.2 Если P(x), то есть $x\in\mathbb{Z}$, то и $x+1\in\mathbb{Z}$ так что и P(x') выполнено.

Однако P(0.5) ложно.

Пример доказательства

Теорема

0 единственен: если t таков, что при любом y выполнено $y' \neq t$, то t = 0.

Пример доказательства

Теорема

0 единственен: если t таков, что при любом y выполнено $y' \neq t$, то t = 0.

Доказательство.

ightharpoonup Определим P(x) как «либо x=0, либо x=y' для некоторого $y\in N$ ».

Пример доказательства

Теорема

0 единственен: если t таков, что при любом y выполнено $y' \neq t$, то t = 0.

Доказательство.

- ightharpoonup Определим P(x) как «либо x=0, либо x=y' для некоторого $y\in N$ ».
 - 1. P(0) выполнено, так как 0 = 0.

Пример доказательства

Теорема

0 единственен: если t таков, что при любом y выполнено $y' \neq t$, то t = 0.

- ightharpoonup Определим P(x) как «либо x=0, либо x=y' для некоторого $y\in N$ ».
 - 1. P(0) выполнено, так как 0 = 0.
 - 2. Если P(x) выполнено, то возьмём x в качестве y: тогда для P(x') будет выполнено x' = y'.

Пример доказательства

Теорема

0 единственен: если t таков, что при любом y выполнено $y' \neq t$, то t = 0.

Доказательство.

- ightharpoonup Определим P(x) как «либо x=0, либо x=y' для некоторого $y\in N$ ».
 - 1. P(0) выполнено, так как 0 = 0.
 - 2. Если P(x) выполнено, то возьмём x в качестве y: тогда для P(x') будет выполнено x'=y'.

Значит, P(x) для любого $x \in N$.

Пример доказательства

Теорема

0 единственен: если t таков, что при любом y выполнено $y' \neq t$, то t = 0.

Доказательство.

- ightharpoonup Определим P(x) как «либо x=0, либо x=y' для некоторого $y\in N$ ».
 - 1. P(0) выполнено, так как 0 = 0.
 - 2. Если P(x) выполнено, то возьмём x в качестве y: тогда для P(x') будет выполнено x' = y'.

Значит, P(x) для любого $x \in N$.

Рассмотрим P(t): «либо t=0, либо t=y' для некоторого $y\in N$ ». Но так как такого y нет, то неизбежно t=0.

Определение

$$1=0',\, 2=0'',\, 3=0''',\, 4=0'''',\, 5=0''''',\, 6=0'''''',\, 7=0''''''',\, 8=0'''''''',\, 9=0'''''''''$$

Определение

Определение

$$a+b=\left\{egin{array}{ll} a, & ext{если } b=0 \ (a+c)', & ext{если } b=c' \end{array}
ight.$$

Определение

$$1=0'\text{, }2=0''\text{, }3=0'''\text{, }4=0''''\text{, }5=0'''''\text{, }6=0''''''\text{, }7=0''''''\text{, }8=0'''''''\text{, }9=0''''''''$$

Определение

$$a+b=\left\{egin{array}{ll} a, & ext{ecли } b=0 \ (a+c)', & ext{ecли } b=c' \end{array}
ight.$$

$$2 + 2 = 0'' + 0'' =$$

Определение

$$1=0'\text{, }2=0''\text{, }3=0'''\text{, }4=0''''\text{, }5=0'''''\text{, }6=0''''''\text{, }7=0''''''\text{, }8=0'''''''\text{, }9=0''''''''$$

Определение

$$a+b=\left\{egin{array}{ll} a, & ext{если } b=0 \ (a+c)', & ext{если } b=c' \end{array}
ight.$$

$$2+2=0''+0''=(0''+0')'=$$

Определение

$$1=0'\text{, }2=0''\text{, }3=0'''\text{, }4=0''''\text{, }5=0'''''\text{, }6=0''''''\text{, }7=0''''''\text{, }8=0'''''''\text{, }9=0''''''''$$

Определение

$$a+b=\left\{egin{array}{ll} a, & ext{если } b=0 \ (a+c)', & ext{если } b=c' \end{array}
ight.$$

$$2+2=0''+0''=(0''+0')'=((0''+0)')'=$$

Определение

$$1=0'\text{, }2=0''\text{, }3=0'''\text{, }4=0''''\text{, }5=0'''''\text{, }6=0''''''\text{, }7=0''''''\text{, }8=0'''''''\text{, }9=0''''''''$$

Определение

$$a+b=\left\{egin{array}{ll} a, & ext{ecли } b=0 \ (a+c)', & ext{ecли } b=c' \end{array}
ight.$$

$$2+2=0''+0''=(0''+0')'=((0''+0)')'=((0'')')'=0''''=4$$

Определение

$$1=0',\ 2=0'',\ 3=0''',\ 4=0'''',\ 5=0''''',\ 6=0'''''',\ 7=0''''''',\ 8=0'''''''',\ 9=0'''''''''$$

Определение

$$a+b=\left\{egin{array}{ll} a, & ext{ecли } b=0 \ (a+c)', & ext{ecли } b=c' \end{array}
ight.$$

Например,

$$2+2=0''+0''=(0''+0')'=((0''+0)')'=((0'')')'=0''''=4$$

Определение

$$a \cdot b = \left\{ egin{array}{ll} 0, & ext{если } b = 0 \ a \cdot c + a, & ext{если } b = c' \end{array}
ight.$$

Лемма
$$(1)$$
 $a + 0 = 0 + a$

Лемма (1) a+0=0+a

$$a+b=\left\{egin{array}{ll} a, & ext{если } b=0 \ (a+c)', & ext{если } b=c' \end{array}
ight.$$

Лемма (1)

$$a + 0 = 0 + a$$

Пусть
$$P(x)$$
 — это $x + 0 = 0 + x$.

$$a+b=\left\{egin{array}{ll} a, & ext{если } b=0 \ (a+c)', & ext{если } b=c' \end{array}
ight.$$

Лемма (1)

$$a + 0 = 0 + a$$

Доказательство.

Пусть P(x) — это x + 0 = 0 + x.

1. Покажем P(0). 0+0=0+0

$$a+b=\left\{egin{array}{ll} a, & ext{если } b=0 \ (a+c)', & ext{если } b=c' \end{array}
ight.$$

Лемма (1)

$$a + 0 = 0 + a$$

Доказательство.

Пусть P(x) — это x + 0 = 0 + x.

- 1. Покажем P(0). 0+0=0+0
- 2. Покажем, что если P(x), то P(x'). Покажем P(x'), то есть x' + 0 = ...

 $a+b=\left\{egin{array}{ll} a, & ext{если } b=0 \ (a+c)', & ext{если } b=c' \end{array}
ight.$

Лемма (1)

$$a + 0 = 0 + a$$

$$a + b = \left\{ egin{array}{ll} a, & ext{если } b = 0 \ (a + c)', & ext{если } b = c' \end{array}
ight.$$

Доказательство.

- 1. Покажем P(0). 0+0=0+0
- 2. Покажем, что если P(x), то P(x'). Покажем P(x'), то есть x' + 0 = ...

$$\cdots = x'$$
 $a = x', b = 0$: $x' + 0 \Rightarrow x'$

Лемма (1)

$$a + 0 = 0 + a$$

$$a+b=\left\{egin{array}{ll} a, & ext{если } b=0 \ (a+c)', & ext{если } b=c' \end{array}
ight.$$

Доказательство.

- 1. Покажем P(0). 0+0=0+0
- 2. Покажем, что если P(x), то P(x'). Покажем P(x'), то есть $x'+0=\dots$

$$\cdots = x'$$
 $a = x', b = 0$: $x' + 0 \Rightarrow x'$
 $\cdots = (x)'$

Лемма (1)

$$a + 0 = 0 + a$$

$$a+b=\left\{egin{array}{ll} a, & ext{если } b=0 \ (a+c)', & ext{если } b=c' \end{array}
ight.$$

Доказательство.

- 1. Покажем P(0). 0+0=0+0
- 2. Покажем, что если P(x), то P(x'). Покажем P(x'), то есть $x'+0=\dots$

$$\cdots = x'$$
 $a = x', b = 0$: $x' + 0 \Rightarrow x'$
 $\cdots = (x)'$

$$\cdots = (x+0)'$$
 $a = x, b = 0$: $(x+0) \Leftarrow (x)$

Лемма (1)

$$a + 0 = 0 + a$$

$$a + b = \left\{ egin{array}{ll} a, & ext{если } b = 0 \ (a + c)', & ext{если } b = c' \end{array}
ight.$$

Доказательство.

- 1. Покажем P(0). 0+0=0+0
- 2. Покажем, что если P(x), то P(x'). Покажем P(x'), то есть $x' + 0 = \dots$

$$\cdots = x' \qquad a = x', b = 0: \quad x' + 0 \Rightarrow x'$$

$$\cdots = (x)' \qquad a = x, b = 0: \quad (x + 0) \Leftarrow (x)$$

$$\cdots = (0 + x)' \qquad P(x): \quad (x + 0) \Rightarrow (0 + x)$$

Лемма (1)

$$a + 0 = 0 + a$$

$$a+b=\left\{egin{array}{ll} a, & ext{если } b=0 \ (a+c)', & ext{если } b=c' \end{array}
ight.$$

Доказательство.

- 1. Покажем P(0). 0+0=0+0
- 2. Покажем, что если P(x), то P(x'). Покажем P(x'), то есть $x'+0=\ldots$

Лемма (1)

$$a + 0 = 0 + a$$

$$a+b=\left\{egin{array}{ll} a, & ext{если } b=0 \ (a+c)', & ext{если } b=c' \end{array}
ight.$$

Доказательство.

Пусть P(x) — это x + 0 = 0 + x.

- 1. Покажем P(0). 0+0=0+0
- 2. Покажем, что если P(x), то P(x'). Покажем P(x'), то есть $x'+0=\ldots$

$$\cdots = x'$$
 $a = x', b = 0$: $x' + 0 \Rightarrow x'$
 $\cdots = (x)'$
 $\cdots = (x + 0)'$ $a = x, b = 0$: $(x + 0) \Leftarrow (x)$
 $\cdots = (0 + x)'$ $P(x)$: $(x + 0) \Rightarrow (0 + x)$
 $\cdots = 0 + x'$ $a = 0, b = x'$: $0 + x' \Leftarrow (0 + x)'$

Значит, P(a) выполнено для любого $a \in N$.

$$a + b' = a' + b$$

Пример: коммутативность сложения (завершение) Лемма (2) a+b'=a'+b

$$P(x)$$
 — это $a + x' = a' + x$

Лемма (2)

$$a + b' = a' + b$$

$$P(x)$$
 — это $a + x' = a' + x$

1.
$$a + 0' = (a + 0)' = (a)' = a' = a' + 0$$

Лемма (2)

$$a + b' = a' + b$$

$$P(x)$$
 — это $a + x' = a' + x$

- 1. a + 0' = (a + 0)' = (a)' = a' = a' + 0
- 2. Покажем, что P(x') следует из P(x): a + x'' = (a + x')' = (a' + x)' = a' + x'

Лемма (2)

$$a + b' = a' + b$$

Доказательство.

$$P(x)$$
 — это $a + x' = a' + x$

- 1. a + 0' = (a + 0)' = (a)' = a' = a' + 0
- 2. Покажем, что P(x') следует из P(x): a + x'' = (a + x')' = (a' + x)' = a' + x'

Теорема

$$a + b = b + a$$

Лемма (2)

$$a + b' = a' + b$$

Доказательство.

$$P(x)$$
 — это $a + x' = a' + x$

- 1. a + 0' = (a + 0)' = (a)' = a' = a' + 0
- 2. Покажем, что P(x') следует из P(x): a+x''=(a+x')'=(a'+x)'=a'+x'

Теорема

$$a + b = b + a$$

Доказательство индукцией по
$$b$$
: $P(x)$ — это $a+x=x+a$.

1.
$$a + 0 = 0 + a$$
 (лемма 1)

Лемма (2)

$$a + b' = a' + b$$

Доказательство.

$$P(x)$$
 — это $a + x' = a' + x$

- 1. a + 0' = (a + 0)' = (a)' = a' = a' + 0
- 2. Покажем, что P(x') следует из P(x): a+x''=(a+x')'=(a'+x)'=a'+x'

Теорема

$$a + b = b + a$$

Доказательство индукцией по b: P(x) — это a + x = x + a.

- 1. a + 0 = 0 + a (лемма 1)
- 2. a + x' = (a + x)' = (x + a)' = x + a' = x' + a

ightharpoonup Пусть требуется доказывать утверждения про равенство. Введём E(p,q) — предикат «равенство».

- ightharpoonup Пусть требуется доказывать утверждения про равенство. Введём E(p,q) предикат «равенство».
- $lackbox{
 ightharpoonup}$ Однако ot
 ot E(p,q) o E(q,p): если $D=\{0,1\}$ и E(p,q):=(p>q), то ot
 ot E(p,q) o E(q,p).

- ightharpoonup Пусть требуется доказывать утверждения про равенство. Введём E(p,q) предикат «равенство».
- $lackbox{
 ightharpoonup}$ Однако ot
 ot E(p,q) o E(q,p): если $D=\{0,1\}$ и E(p,q)::=(p>q), то ot
 ot E(p,q) o E(q,p).
- ► Конечно, можем указывать $\forall p. \forall q. E(p,q) \rightarrow E(q,p) \vdash \varphi$.

- ightharpoonup Пусть требуется доказывать утверждения про равенство. Введём E(p,q) предикат «равенство».
- $lackbox{
 ightharpoonup}$ Однако ot
 ot E(p,q) o E(q,p): если $D=\{0,1\}$ и E(p,q):=(p>q), то ot
 ot E(p,q) o E(q,p).
- lacktriangle Конечно, можем указывать $\forall p. \forall q. E(p,q)
 ightarrow E(q,p) dash arphi.$
- lacktriangle Но лучше добавим аксиому orall p. orall q. E(p,q)
 ightarrow E(q,p).

- ightharpoonup Пусть требуется доказывать утверждения про равенство. Введём E(p,q) предикат «равенство».
- ► Конечно, можем указывать $\forall p. \forall q. E(p,q) \rightarrow E(q,p) \vdash \varphi$.
- lacktriangle Но лучше добавим аксиому orall p. orall q. E(p,q)
 ightarrow E(q,p).
- Добавив необходимые аксиомы, получим теорию первого порядка.

Теория первого порядка

Определение

Теорией первого порядка назовём исчисление предикатов с дополнительными («нелогическими» или «математическими»):

- предикатными и функциональными символами;
- аксиомами.

Сущности, взятые из исходного исчисления предикатов, назовём логическими

Порядок логики/теории

Порядок	Кванторы	Формализует суждения	Пример
нулевой	запрещены	об отдельных значениях	И.В.
первый	по предметным переменным	о множествах	И.П.
		$S = \{t \mid \psi[x := t]\}$	
второй	по предикатным переменным	о множествах множеств	
		$S = \{\{t \mid P(t)\} \mid \varphi[p := P]\}$	

Формальная арифметика

Определение

Формальная арифметика— теория первого порядка, со следующими добавленными нелогическими . . .

ightharpoonup двухместными функциональными символами (+), (\cdot) ; одноместным функциональным символом ('), нульместным функциональным символом 0;

Формальная арифметика

Определение

Формальная арифметика— теория первого порядка, со следующими добавленными нелогическими ...

- ▶ двухместными функциональными символами (+), (·); одноместным функциональным символом (′), нульместным функциональным символом 0;
- ▶ двухместным предикатным символом (=);

Формальная арифметика

Определение

Формальная арифметика — теория первого порядка, со следующими добавленными нелогическими . . .

- ightharpoonup двухместными функциональными символами (+), (\cdot) ; одноместным функциональным символом ('), нульместным функциональным символом (-); одноместным функциональным (-); одноместным функциональными (-); одноместным функциональными (-); одноместным (-)
- двухместным предикатным символом (=);
- восемью нелогическими аксиомами:

(A1)
$$a = b \rightarrow a = c \rightarrow b = c$$
 (A5) $a + 0 = a$
(A2) $a = b \rightarrow a' = b'$ (A6) $a + b' = (a + b)'$
(A3) $a' = b' \rightarrow a = b$ (A7) $a \cdot 0 = 0$
(A8) $a \cdot b' = a \cdot b + a$

Формальная арифметика

Определение

Формальная арифметика — теория первого порядка, со следующими добавленными нелогическими . . .

- ightharpoonup двухместными функциональными символами (+), (\cdot) ; одноместным функциональным символом ('), нульместным функциональным символом 0;
- двухместным предикатным символом (=);
- восемью нелогическими аксиомами:

(A1)
$$a = b \rightarrow a = c \rightarrow b = c$$
 (A5) $a + 0 = a$
(A2) $a = b \rightarrow a' = b'$ (A6) $a + b' = (a + b)'$
(A3) $a' = b' \rightarrow a = b$ (A7) $a \cdot 0 = 0$
(A8) $a \cdot b' = a \cdot b + a$

▶ нелогической схемой аксиом индукции $\psi[x:=0]$ & $(\forall x.\psi \to \psi[x:=x']) \to \psi$ с метапеременными x и ψ .

Пусть $\top ::= 0 = 0 \rightarrow 0 = 0 \rightarrow 0 = 0$, тогда:

Пусть
$$\top ::= 0 = 0 \to 0 = 0 \to 0 = 0$$
, тогда:

 $(3) \qquad \top \rightarrow (a = b \rightarrow a = c \rightarrow b = c)$

 $(4) \qquad \top \rightarrow (\forall c. a = b \rightarrow a = c \rightarrow b = c)$

$$(1) \quad a = b \rightarrow a = c \rightarrow b = c$$

$$a = b \rightarrow a = c \rightarrow b = c$$

$$(1) \qquad a = b \rightarrow a = c \rightarrow b = c$$

(1)
$$a=b \rightarrow a=c \rightarrow b=c$$
 (AKC. A1)
(2) $(a=b \rightarrow a=c \rightarrow b=c) \rightarrow \top \rightarrow (a=b \rightarrow a=c \rightarrow b=c)$ (CX. aKC. 1)

$$c \rightarrow b = c$$

$$b = c$$

$$b = c$$

$$=c$$

$$T \rightarrow 0$$

$$(a-b-$$

$$b o a =$$

$$= c$$
 –

(Akc. A1)

(M.P. 1, 2)

(Введ. ∀)

$$a = c$$

Пусть
$$\top ::= 0 = 0 \to 0 = 0 \to 0 = 0$$
, тогда:
(1) $a = b \to a = c \to b = c$
(2) $(a = b \to a = c \to b = c) \to \top \to (a = b \to a = c \to b = c)$
(3) $\top \to (a = b \to a = c \to b = c)$

(2)
$$(a = b \rightarrow a = c \rightarrow b = c) \rightarrow \top \rightarrow (a = b \rightarrow a = c \rightarrow b = c)$$
 (Cx. akc. 1)
(3) $\top \rightarrow (a = b \rightarrow a = c \rightarrow b = c)$ (M.P. 1, 2)
(4) $\top \rightarrow (\forall c.a = b \rightarrow a = c \rightarrow b = c)$ (Введ. \forall)
(5) $\top \rightarrow (\forall b. \forall c.a = b \rightarrow a = c \rightarrow b = c)$ (Введ. \forall)

(Akc. A1)

(Введ. ∀)

$$(3) \qquad \uparrow \rightarrow (a = b \rightarrow a = c \rightarrow b = c)$$

$$(4) \qquad \top \rightarrow (\forall c.a = b \rightarrow a = c \rightarrow b = c)$$

$$(5) \qquad \top \rightarrow (\forall b. \forall c.a = b \rightarrow a = c \rightarrow b = c)$$

 $(6) \qquad \top \rightarrow (\forall a. \forall b. \forall c. a = b \rightarrow a = c \rightarrow b = c)$

(6)

(7)

(8)

Пусть
$$\top ::= 0 = 0 \to 0 = 0 \to 0 = 0$$
, тогда:

(1)
$$a = b \rightarrow a = c \rightarrow b = c$$

 $(4) \qquad \top \rightarrow (\forall c.a = b \rightarrow a = c \rightarrow b = c)$

 $(5) \qquad \top \rightarrow (\forall b. \forall c. a = b \rightarrow a = c \rightarrow b = c)$

 $\top \rightarrow (\forall a. \forall b. \forall c. a = b \rightarrow a = c \rightarrow b = c)$

 $(\forall a. \forall b. \forall c. a = b \rightarrow a = c \rightarrow b = c)$

(1)
$$a = b \rightarrow a = c \rightarrow b = c$$

(2) $(a - b \rightarrow a = c \rightarrow b = c)$

(1)
$$a = b \rightarrow a = c \rightarrow b = c$$
 (AKC. A1)
(2) $(a = b \rightarrow a = c \rightarrow b = c) \rightarrow \top \rightarrow (a = b \rightarrow a = c \rightarrow b = c)$ (Cx. akc. 1)

$$b = c$$

$$(c) \rightarrow \top$$

(2)
$$(a = b \rightarrow a = c \rightarrow b = c) \rightarrow \top \rightarrow (3)$$
 $T \rightarrow (a = b \rightarrow a = c \rightarrow b = c)$

$$\perp \rightarrow$$
 (

$$\top \rightarrow ($$

$$\perp \rightarrow$$
 (

$$\Gamma o (a)$$

$$\rightarrow$$
 (a =

$$\cdot$$
 (a = b \rightarrow

$$= b \rightarrow a$$

$$\rightarrow a = 0$$

$$a = c$$

$$a = c$$

$$a = c$$

(Akc. A1)

(M.P. 1, 2)

(Введ. ∀)

(Введ. ∀)

(Введ. ∀)

(Cx. akc 1)

(M.P. 7, 6)

(7)

(8)

(9)

Пусть
$$\top$$
 ::= $0 = 0 \to 0 = 0 \to 0 = 0$, тогда:
(1) $a = b \to a = c \to b = c$ (Aкс. A1)
(2) $(a = b \to a = c \to b = c) \to \top \to (a = b \to a = c \to b = c)$ (Сх. акс. 1)
(3) $\top \to (a = b \to a = c \to b = c)$ (М.Р. 1, 2)
(4) $\top \to (\forall c.a = b \to a = c \to b = c)$ (Введ. \forall)
(5) $\top \to (\forall b. \forall c.a = b \to a = c \to b = c)$ (Введ. \forall)
(6) $\top \to (\forall a. \forall b. \forall c.a = b \to a = c \to b = c)$ (Введ. \forall)

 $(\forall a. \forall b. \forall c. a = b \rightarrow a = c \rightarrow b = c)$

 $(\forall a. \forall b. \forall c. a = b \rightarrow a = c \rightarrow b = c) \rightarrow$ $\rightarrow (\forall b. \forall c. a + 0 = b \rightarrow a + 0 = c \rightarrow b = c)$ (Cx. akc 1)

(M.P. 7, 6)

(Cx. akc. 11)

(9)

(10)

Пусть
$$\top ::= 0 = 0 \to 0 = 0 \to 0 = 0$$
, тогда:
(1) $a = b \to a = c \to b = c$ (Aкс. A1)
(2) $(a = b \to a = c \to b = c) \to \top \to (a = b \to a = c \to b = c)$ (Сх. акс. 1)
(3) $\top \to (a = b \to a = c \to b = c)$ (М.Р. 1, 2)
(4) $\top \to (\forall c.a = b \to a = c \to b = c)$ (Введ. \forall)
(5) $\top \to (\forall b. \forall c.a = b \to a = c \to b = c)$ (Введ. \forall)
(6) $\top \to (\forall a. \forall b. \forall c.a = b \to a = c \to b = c)$ (Введ. \forall)
(7) \top (Сх. акс 1)
(8) $(\forall a. \forall b. \forall c.a = b \to a = c \to b = c)$ (М.Р. 7, 6)

(Cx. akc. 11)

(M.P. 8. 9)

 $(\forall a. \forall b. \forall c. a = b \rightarrow a = c \rightarrow b = c) \rightarrow$ $\rightarrow (\forall b. \forall c. a + 0 = b \rightarrow a + 0 = c \rightarrow b = c)$

 $\forall b. \forall c. a + 0 = b \rightarrow a + 0 = c \rightarrow b = c$

(10)

(12)

Пусть
$$\top ::= 0 = 0 \to 0 = 0 \to 0 = 0$$
, тогда:
(1) $a = b \to a = c \to b = c$ (Акс. A1)
(2) $(a = b \to a = c \to b = c) \to \top \to (a = b \to a = c \to b = c)$ (Сх. акс. 1)
(3) $\top \to (a = b \to a = c \to b = c)$ (М.Р. 1, 2)
(4) $\top \to (\forall c.a = b \to a = c \to b = c)$ (Введ. \forall)
(5) $\top \to (\forall b. \forall c.a = b \to a = c \to b = c)$ (Введ. \forall)
(6) $\top \to (\forall a. \forall b. \forall c.a = b \to a = c \to b = c)$ (Введ. \forall)
(7) \top (Сх. акс 1)
(8) $(\forall a. \forall b. \forall c.a = b \to a = c \to b = c)$ (М.Р. 7, 6)

(Cx. akc. 11)

(M.P. 10, 11)

(M.P. 8, 9)

 $\rightarrow (\forall b. \forall c. a + 0 = b \rightarrow a + 0 = c \rightarrow b = c)$

 $\forall b, \forall c, a+0=b \rightarrow a+0=c \rightarrow b=c$

 $\forall c.a + 0 = a \rightarrow a + 0 = c \rightarrow a = c$

(10)

(12)

(14)

Пусть
$$\top ::= 0 = 0 \to 0 = 0 \to 0 = 0$$
, тогда:
(1) $a = b \to a = c \to b = c$ (Акс. A1)
(2) $(a = b \to a = c \to b = c) \to \top \to (a = b \to a = c \to b = c)$ (Сх. акс. 1)
(3) $\top \to (a = b \to a = c \to b = c)$ (М.Р. 1, 2)
(4) $\top \to (\forall c.a = b \to a = c \to b = c)$ (Введ. \forall)
(5) $\top \to (\forall b. \forall c.a = b \to a = c \to b = c)$ (Введ. \forall)
(6) $\top \to (\forall a. \forall b. \forall c.a = b \to a = c \to b = c)$ (Введ. \forall)
(7) \top (Сх. акс 1)
(8) $(\forall a. \forall b. \forall c.a = b \to a = c \to b = c)$ (М.Р. 7, 6)
(9) $(\forall b. \forall c.a + 0 = b \to a + 0 = c \to b = c)$ (Сх. акс. 11)

(M.P. 8, 9)

(M.P. 10, 11)

(M.P. 12, 13)

 $\forall b. \forall c. a + 0 = b \rightarrow a + 0 = c \rightarrow b = c$

 $\forall c.a + 0 = a \rightarrow a + 0 = c \rightarrow a = c$

 $a+0=a\rightarrow a+0=a\rightarrow a=a$

(17)

a = a

Пусть
$$\top$$
 ::= $0 = 0 \rightarrow 0 = 0 \rightarrow 0 = 0$, тогда:
(1) $a = b \rightarrow a = c \rightarrow b = c$ (Aкс. A1)
(2) $(a = b \rightarrow a = c \rightarrow b = c) \rightarrow T \rightarrow (a = b \rightarrow a = c \rightarrow b = c)$ (Сх. акс. 1)
(3) $T \rightarrow (a = b \rightarrow a = c \rightarrow b = c)$ (М.Р. 1, 2)
(4) $T \rightarrow (\forall c.a = b \rightarrow a = c \rightarrow b = c)$ (Введ. \forall)
(5) $T \rightarrow (\forall b. \forall c.a = b \rightarrow a = c \rightarrow b = c)$ (Введ. \forall)
(6) $T \rightarrow (\forall a. \forall b. \forall c.a = b \rightarrow a = c \rightarrow b = c)$ (Введ. \forall)
(7) T (Сх. акс. 1)
(8) $(\forall a. \forall b. \forall c.a = b \rightarrow a = c \rightarrow b = c)$ (М.Р. 7, 6)
(9) $(\forall a. \forall b. \forall c.a = b \rightarrow a = c \rightarrow b = c)$ (Сх. акс. 11)
(10) $\forall b. \forall c.a + 0 = b \rightarrow a + 0 = c \rightarrow b = c$ (М.Р. 8, 9)
(12) $\forall c.a + 0 = a \rightarrow a + 0 = c \rightarrow a = c$ (М.Р. 10, 11)
(14) $a + 0 = a \rightarrow a + 0 = a \rightarrow a = a$ (М.Р. 12, 13)
(15) $a + 0 = a$ (Акс. A5)
(16) $a + 0 = a \rightarrow a = a$

(M.P. 15, 16)