9.3.1.2 Helical Gear *using Mott

In helical gear questions, you will usually be specifying a single gear only. You will likely be given the following:

- Diametral Pitch $(P_d)^{49}\ or$ Normal Diametral Pitch (P_{nd})
- Transverse Pressure Angle (ϕ_t) or Normal Pressure Angle (ϕ_n)
- Number of Teeth (N)
- Face Width (F)
- Helix Angle (ψ)

In return, you will need to specify the following:

- Transverse Circular Pitch (p_t)
- Normal Circular Pitch (p_n)
- Axial Pitch (p_x)
- Pitch Diameter (D)
- Whichever diametral pitch and pressure angle you are not given
- Number of Axial Pitches in the Face Width

These questions are very straight-forward. You'll be zooooooming using the calculator! Steps are below.

1. Start by calculating the normal diametral pitch⁵⁰.

$$P_{nd} = \frac{P_d}{\cos(\psi)}$$

2. Find the Transverse and Normal Circular Pitch.

$$p_t = \frac{\pi}{P_d}$$

$$p_n = p_t \cos(\psi)$$

$$p_n = p_t \cos(\psi)$$

3. Calculate Axial Pitch.

$$p_x = \frac{p_t}{tan(\psi)}$$

 $^{^{\}rm 49} {\rm Sometimes}$ also called the Transverse Diametral Pitch

 $^{^{50}}$ Use the equation to solve for P_d in-case the question gives you the transverse diametral pitch instead

4. Calculate Pitch Diameter.

$$D = \frac{N}{P_d}$$

5. Find the Normal (or Transverse) Pressure Angle

$$\phi_n = tan^{-1}[tan(\phi_t)cos(\psi)]$$

$$\phi_t = tan^{-1} \left[\frac{tan(\phi_n)}{cos(\psi)} \right]$$

6. Find Number of Axial Pitches in Face Width.

No. of Axial Pitches =
$$\frac{F}{p_x}$$

*Full Helical Action if greater than 2

That's basically it! Good job!