

UNIVERSIDADE FEDERAL DE SÃO JOÃO DEL-REI DEPARTAMENTO DE CIÊNCIA DA COMPUTAÇÃO ALGORITMOS BIOINSPIRADOS

ALGORITMOS GENÉTICOS COM REPRESENTAÇÃO DOS PARÁMETROS COM NÚMEROS REAIS

Gustavo Henriques da Cunha

São João del-Rei 2024

Lista de Figuras

1	tabela com comparação entre os testes	3
2	representação gráfica de execuções do melhor	4
3	representação gráfica do melhor	4

Sumário

1	INTRODUÇÃO				
	1.1 Objetivo	1			
2	ABORDAGEM DO PROBLEMA	1			
3	ANÁLISE DE DESEMPENHO	2			
4	CONCLUSÃO	5			

1 INTRODUÇÃO

Este é um trabalho prático da disciplina de Algoritmos Bioinspirados no curso de Ciência da Computação na UFSJ.

1.1 Objetivo

Neste trabalho, temos como objetivo aprender a construir e testar algoritmos genéticos, com foco na representação dos parámetros com números reais.

Além disso, focamos na análise da calibragem dos parâmetros, buscando melhorar a eficiência do algoritmo.

2 ABORDAGEM DO PROBLEMA

Para resolver o problema, utilizaremos de um algoritmo genético clássico, onde a partir de uma população inicial, constituida de números reais aleatórios no intervalo -2 a 2, usaremos a função matemática a baixo como função de avaliação para calcularmos seu fitness, onde temos que quanto menor o fitness, melhor é o indivíduo.

$$f(x) = -20e^{-0.2\sqrt{\frac{1}{n}\sum x_i^2}} - e^{\frac{1}{n}\sum\cos(2\pi x_i)} + 20 + e^{-\frac{1}{n}\sum\cos(2\pi x_i)} + e^$$

Depois disso, passamos para a parte de seleção de pais, onde selecionamos individuos da população, preferencialmente os melhores, e os utilizamos para gerarem novos indivíduos. O método para seleção de pais utilizado foi o método da roleta, que se baseia na probabilidade, permitindo que os indivíduos com menor fitness sejam mais prováveis de serem selecionados.

Com os pais escolhidos, vamos para a etapa de cruzamento, onde são gerados os indivíduos para a próxima geração. Nessa etapa, foram implementados dois métodos, o algoritmo $BLX - \alpha$ e o algoritmo $BLX - \alpha\beta$, onde depois testaremos o desempenho do algoritmo utilizando cada um deles. Também temos uma probabilidade de cruzamento, que é um valor que podemos ajustar e que dá a probabilidade de termos ou não um cruzamento para cada casal de pais.

Seguimos então para as etapas de mutação e elitismo. Para fazer a mutação, foi utilizado o método de substituição do valor a ser mutado por um aleátorio dentro do

intervalo. A mutação tem uma taxa que diz se esse número vai ser trocado ou não. Para testar o algoritmo, podemos ajustá-la. Já no elitismo, simplesmente escolhemos os dois melhores indivíduos da população. Por causa disso, é importante notar que limitamos a população de cada geração a ser um número par. Para os testes, podemos escolher ter ou não elitismo.

3 ANÁLISE DE DESEMPENHO

O algoritmo genético gera resultados diversos conforme especificamos seus parâmetros. Assim, para verificar qual o melhor conjunto de parâmetros para conseguirmos o melhor resultado, devemos realizar diferentes testes com diferentes conjuntos de parâmetros e fazer uma análise estatística em cima dos resultados obtidos.

Assim, calibrando os parâmetros de taxa de mutação, taxa de cruzamento, tamanho da população, número de gerações, função de cruzamento, e com ou sem elitismo, foram feitos 20 testes, cada um sendo executado 10 vezes, sendo coletado o melhor indivíduo de cada execução, para podermos calcular a média e o desvio padrão dos melhores resultados por conjunto de parâmetros, com o intuito de que quem tiver a menor média e o menor desvio está consistentemente produzindo os melhores resultados.

Com isso, temos a tabela a baixo, que mostra ordenadamente os resultados desses testes, onde vemos que o conjunto de 100 gerações, 100 indivíduos na população, probabilidade de cruzamento de 0.8, probabilidade de mutação de 0.01, algoritmo $BLX - \alpha\beta$ e com elitismo, produziu os melhores resultados.

Usando então o melhor conjunto de parâmetros, montamos dois gráficos para observarmos o comportamento do algoritmo ao longo de suas gerações.

No primeiro, executamos o algoritmo 10 vezes para vermos sua curva de convergência em busca da melhor solução. Vemos que, no geral, com 20 gerações ele se aproxima muito próximo a zero, e a melhora dos indivíduos depois disso é lenta.

O segundo gráfico mostra, em 1 execução do algoritmo, a evolução do melhor e pior indivíduo durante as gerações, assim como a média e a mediana dos fitness durante elas. Podemos ver que rapidamente temos uma melhora rápida do melhor indivíduo, bem como a média e a mediana da população. O pior indivíduo também nos da informações importantes, pois podemos perceber que ele oscila bastante conforme as gerações, o que nos

mostra que a mutação está realmente funcionando, o que é bom para o caso de encontrar um máximo local.

Gerações	População	Prob. de Cruzamento	Prob. de Mutação	Cruzamento	Elitismo	Media	Desvio
100	100	0.8	0.01	BLX-αβ	True	1.86517e-15	1.74047e-15
100	100	1	0.05	BLX-a	True	2.93099e-15	2.27485e-15
100	100	0.8	0.01	BLX-αβ	True	2.93099e-15	2.77476e-15
100	100	1	0.05	BLX-αβ	False	3.28626e-15	4.43734e-15
100	100	1	0.01	BLX-αβ	False	6.12843e-15	1.00737e-14
100	100	1	0.01	BLX-αβ	True	6.83897e-15	1.1099e-14
100	100	0.8	0.05	BLX-αβ	True	7.19425e-15	7.6939e-15
100	100	0.8	0.01	BLX-αβ	False	1.00364e-14	2.29171e-14
100	100	1	0.05	BLX-a	False	1.03917e-14	1.84468e-14
100	100	0.8	0.01	BLX-αβ	True	1.03917e-14	1.17616e-14
100	100	0.8	0.05	BLX-αβ	False	1.9984e-14	4.81193e-14
100	100	1	0.05	BLX-αβ	True	3.1708e-14	6.50797e-14
100	100	0.8	0.1	BLX-a	False	7.18536e-14	9.5017e-14
100	100	0.8	0.05	BLX-a	True	9.31699e-14	1.87619e-13
100	100	1	0.1	BLX-αβ	True	1.28697e-13	3.14629e-13
100	50	0.8	0.1	BLX-αβ	True	1.39484e-11	1.75663e-11
100	26	1	0.05	BLX-a	True	4.11646e-10	4.07922e-10
100	100	0.6	0.05	BLX-αβ	True	2.39946e-07	7.1907e-07
50	100	1	0.05	BLX-αβ	True	4.83466e-07	7.34934e-07
25	100	1	0.05	BLX-αβ	True	0.00158399	0.00213629

Figura 1: tabela com comparação entre os testes

Figura 2: representação gráfica de execuções do melhor

Figura 3: representação gráfica do melhor

4 CONCLUSÃO

Com a análise de performace, podemos perceber a importância do ajuste de parâmetros para conseguirmos melhores resultados com o algoritmo genético. É importante percebermos que temos que testar os parâmetros diversas vezes, compararmos os resultados, além de outros fatores que são importantes em um problema real, como o tempo de execução.

Os algoritmos genéticos são, então, uma ferramenta importante para resolvermos problemas complexos, mas sabermos como usá-los, regulando seus parâmetros, é essencialmente necessário para conseguirmos resultados satisfatórios.