

IM3332 电能计量模块产品手册

PRODUCT MANUAL

V1.3

一、IM3332 三相电能质量监测计量模块简介

IM3332 三相电能质量监测计量模块是深圳市艾锐达光电有限公司研制开发的拥有完全自主知识产权的三相电计量产品。该产品技术性能完全符合 IEC 62053-21 国标标准中 1 级三相有功电能表的相关技术要求,能直接精确地测量额定频率为 50HZ 或60HZ 三相交流电网中的电压、电流、 功率、功率因数、电量及电能总量等用电相关参数以及用电质量分析相关谐波、间谐波、闪变、失压、过压、过流等相关数据。该产品内置 1 路 TTL 通讯接口、1 路 485通讯接口、能量脉冲输出接口,并支持 Modbus-RTU/DLT645-2007 通讯协议。方便与各种 AMR 系统联接,具有可靠性好、体积小、重量轻、外形美观、安装方便等特点。

该产品可广泛应用于节能改造、电力、通信、交通、环保、石化、动环监控等行业中,用于 监测交流设备的电量消耗和电能质量情况。

1.1 产品概述

- 提供三相全波电压、电流、功率、功率因数、电量及总电量等用电参数
- 提供全波有功、无功、RMS 或 PQS 视在功率
- 提供有功、无功、视在电能
- 提供三相电压、电流的 41 次谐波、21 次间谐波、闪变、实时采样波形等数据
- 提供依据波形数据检测暂降、过压、过流的中断信号输出
- 提供 A 型剩余电流检测报警功能
- 提供3路模拟量采集功能,可直接外接工业标准的温感、湿感等。
- 提供三相失压、过载、过流、失流、过压、欠压、失压、电压电流逆相序、不平衡度等事件检测
- 具有 1 路 TTL 和 1 路 485 通讯接口,通信规约采用标准 Modbus-RTU 和 DLT645-2007 协议
- 具有脉冲指示灯和 PF(有功)、QF(无功)输出,便于质量检定
- 具有报警输出,可自定义输出事件。如过压、过流、失压、失流、相序错误、欠压等。
- 三相三线与三相四线硬件兼容,软件可根据需求配置
- 符合欧盟 RoHS 指令 2011/65EU 附录的修订指令(EU)2015/863 要求

1.2 应用场合

目前,公司 IM 系列交直流计量模块已经在交流充电桩、智能家居、动环监控 FSU、智能安防、照明监控、智能园区、数字机房、能耗管理、电机保护等领域广泛应用,得到各行业标杆企业的采用和认可。

此模块可方便应用于路灯监控、智能家居、智能家电、节能改造、智能用电管理、安防监控、设备能耗监测、电机保护等诸多行业,是迈入物联网时代的重要配套模块。

1.3 应用说明

- 请根据产品规格型号,参照图示正确接线。接线前要确保断开所有信号源,避免发生危险及损坏 设备。检查确认接线无误后,再接通电源测试。
- 接通电源后,电源蓝色指示灯常亮,通讯时,此蓝色指示灯在通讯数据传输时同步闪烁。
- 产品出厂时,均设置为默认配置:地址 1 号、波特率 9600bps、数据格式"n,8,1",可通过我们提供的测试软件来更改设置产品参数及产品的一般性测试。
- 模块校表通讯接口与对外数据通讯可以共用一个 UART 通讯口,也可以通过 485 通讯口进行调校。
- 请使用我公司提供的相关软件进行模块的调准,具体见《校表软件使用说明书》。不同规格量程的 设置在校表软件中可以进行设置。
- 模块板载 CT 版本支持 5 (60) A 量程计量,同时支持扩展二级 CT, 具体 CT 规格型号由用户根据需求决定,用户需根据扩展 CT 的参数对原数据进行等比例转换。此种方式由于二级 CT 未校准,所以一般受二级 CT 精度影响较大,因此不推荐使用。推荐直接用外置 CT 方式扩展量程。
- 模块外置 CT 版本可以兼容各种量程规格的 CT, CT 变比的选择按下表推荐选型。只需要校准时在软件上选择对应的 CT 规格参数进行调校即可使用。此种方式性能上要远优于扩展二级 CT 的方式。 具体可支持规格和变比等参数如下:

最大电流	CT 变比	脉冲常数	说明
10A	2000	6000	
20A	2000	3000	
40A	2000	1000	
50A	2000	1000	
80A	2000	600	
100A	2000	600	
150A	2000	400	
200A	2000	200	
250A	5000	200	
300A	5000	200	
350A	5000	100	
400A	5000	100	
450A	5000	100	
500A	5000	100	

二、技术参数

测量参数				
有功精度等级	B 级 ^{注 1}			
电压量程	1−380V ±0.5%F.S			
电流量程	0.05-0.5(50) A ±0.5%F.S			
电流量程扩展	最大电流 100A、150A、200A、300A、500A 可定制			
频率	AC50Hz			
最小功率变量	0.0001kW			
功率因数	可测量			
脉冲常数	有功: 1000imp/kWh; 无功: 1000imp/kvar;			
电能	kWh 6 位整数, 3 位小数			
二氧化碳	国家标准公式计算			
通讯功能				
接口类型	UART ロ TTL 电平和 RS485			
通讯规约	DL/T 645-2007和MODBUS-RTU 双规约			
数据格式	默认"n,8,1"(无校验、8位数据位、1位停止位)			
波特率	2400bps-9600bps,默认 9600bps			
数据刷新间隔	≥250ms			
指示灯	脉冲指示(红)/电源指示(蓝)/报警指示(红)			
生能指标				
典型功耗	≤25mA			
供电电源	DC5V 供电(4.8V~5.3V)			
耐压等级	AC3000Vrms			
过载能力	1.2 倍			
温度漂移	≤100ppm/°C;			
使用环境				
工作温度	-40°C ~+85°C			
相对湿度	5~95%,无结露(在 40℃下)			
海拔高度	海拔高度 0~3000 米			
工作环境	无爆炸、腐蚀气体及导电尘埃,无显著振动和冲击的场所			
机械尺寸				
外形尺寸	长 98.1mmx 宽 71.6mmx 高 31.6mm			
安装方式	插针安装(提供封装库)			

注1: 此处为相对误差;

三、模块引脚定义

指示灯定义

- LED2: 有功脉冲指示;
- LED3: 无功脉冲指示;
- LED1: 电源或通讯指示;常亮,有数据包闪烁一次。上电时常亮 1S,表示处于自检状态。
- LED4:报警指示。常亮,表示有负载。闪烁,表示负载超限。上电时常亮 1S,表示处于自检状态。

引脚定义

编号	名称	特性	引脚定义	功能描述
1	IA+	输入	A 相电流输入正	采用外置互感接入时,注意最大信号不要超过 100mA。
2	IA-	输入	A 相电流输入负	采用外置互感接入时,注意最大信号不要超过 100mA。
3	IB+	输入	B相电流输入正	采用外置互感接入时,注意最大信号不要超过 100mA。
4	IB-	输入	B相电流输入负	采用外置互感接入时,注意最大信号不要超过100mA。
5	IC+	输入	C 相电流输入正	采用外置互感接入时,注意最大信号不要超过 100mA。
6	IC-	输入	C 相电流输入负	采用外置互感接入时,注意最大信号不要超过 100mA。
7	IN+	输入	零线电流输入正	只支持外置互感接入,注意最大信号不要超过 100mA。
8	IN-	输入	零线电流输入负	只支持外置互感接入,注意最大信号不要超过 100mA。
34	A	输入	三相电压 A 相	电压通道 A 相采样输入端口。直接连接三相 A 相。
33	В	输入	三相电压 B 相	电压通道 B 相采样输入端口。直接连接三相 B 相。三相三

		ı	I	
				线接法时,不接。
32	С	输入	三相电压C相	电压通道 C 相采样输入端口。直接连接三相 C 相。
31	N	输入	电压通道零线输入端口。可直接连接三相零线。三相电压零线	
state . S				接法时,接В相。
数字口		ı	T	
30	WARN	输出	模块报警输出脚	模块输出报警信号引脚,开漏输出。电平: 5V
				模块数据收发方向引脚,CMOS 输出。电平:5V
29	RD	输出	模块数据收发控制引脚	低电平:接收数据,高电平:发送数据。
				此信号可直接做为 485 芯片控制信号使用。
28	V+	输入	模块电源	模块供电电源输入脚。工作电压 5V (4.8V~5.3V)。
27	V-	参考地	模块参考地	模块电源地。
26	RX	输入	模块串口接收脚	模块串口通信数据接收引脚。悬空输入, 电平 5V。
25	TX	输出	模块串口发送脚	模块串口通信数据发送引脚,开漏输出,电平: 5V。
24	QF	输出	有功脉冲信号	模块有功脉冲信号输出引脚。 CMOS 输出, 电平: 5V。
23	PF	输出	无功脉冲信号	模块无功脉冲信号输出引脚。 CMOS 输出, 电平: 5V。
22	S0	输入	保留	悬空处理。
21	SI	输出	波形输出 SPI_MISO	SPI 实时波形输出 MISO 信号, 开漏输出, 电平: 5V。
00 0777 46.11		44.1.		SPI 实时波形输出 CLK 信号,约 2.5MHz,开漏输出,电平:
20	20 CLK 输出	输出	波形输出 SPI_CLK	5V.
19	CS	输出	波形输出 SPI_CS	SPI 实时波形输出 CS 信号, 开漏输出, 电平 5V。
18	OVER	输出	波形检测中断	过压、过流、暂降波形中断信号。开漏输出, 电平 5V。
17	ZC	输出	过零中断	过零信号, 2ms 低电平。开漏输出, 电平 5V。
剩余电池	 充检测	l .		
35	L	输入	剩余电流检测电源火线	剩余电流检测功能电源, AC 220V
36	N	输入	剩余电流检测电源零线	
			剩余电流检测报警信号	 内部光耦隔离,无源输出,驱动能力 200uA。
37	TRIG-	输出	负端	出厂默认配置: 当剩余电流超过 XXmA 时,此引脚信号有
0.0	MDIG.	<i>+</i> ∆ .1.	剩余电流检测报警信号	输出。超过标称值时开漏输出低,低于标称值时为高阻态。
38	TRIG+	输出	正端	
模拟量轴	俞 入			
9	IN1	输入	4 [~] 20mA 模拟信号输入	4~20mA 工业传感器模拟信号输入,可检测相应的模拟信号
10	1111	和八	4 20004 関切信号制入	数据。
11	IN2	输入	4 [~] 20mA 模拟信号输入	
12	111/2	刊りノ	1 20㎜(大)外口 寸側/	
13	IN3	输入	4 [~] 20mA 模拟信号输入	
14	1110	TINノへ	1 20㎜(大)外旧 寸쒜/\	
485 通讯	-			
15	485A	/	DS 405	可直接接入有极性 RS485 总线。
16	485B	/	RS485	

注: 模块采用 5V 电源系统,为方便与 3V 系统对接,数据信号口均采用开漏输出方式,注意使用时要外接上拉电阻。

四、计量模块数据

计量模块具有丰富的数据,方便用户使用。可以通过 Modbus 协议以及 DL645-2007 协议抄读。 具体的协议说明,请查阅相关标准。以下给出数据项列表。其中,Modbus-RTU 数据值都为 HEX 形式,如一个数据有两个寄存器,则高位在前。DLT645-2007 数据值以对应标准为准。

4.1 基本电能 (Modbus 功能码: 0x03 读)

以下列表中组合有功默认为正+反有功。组合无功 1 默认为 I 象限+IV 象限无功,组合无功 2 默认为 II 象限+III 象限无功。组合有关的电能为有符号型,其他为无符号型。

名称	Modbus (HEX)	DLT645 DI(HEX)	备注	
基本电能: (权限 R)	DLT645 协议:			
	DI3 为 0x00 时,单位量	上纲为 0.01kW h/0.01kvarh	/0.01kVAh,长度为4字节;	
	DI3 为 0x80 时,单位量纲为 0.001kWh/0.001kvarh/0.001kVAh,长度为 5 字节;			
	Modbus 协议:			
	寄存器地址从 0000H 开	始,单位量纲为 0.01kWh/	'0.01kvarh/0.01kVAh;	
	寄存器地址从 9000H 开	始,单位量纲为 0.001kWh	n/0.001kvarh/0.001kVAh;	
组合有功总电能	0000-0001/9000-9001	00000000/80000000		
正向有功总电能	0002-0003/9002-9003	00010000/80010000		
反向有功总电能	0004-0005/9004-9005	00020000/80020000		
组合无功1电能	0006-0007/9006-9007	00030000/80030000		
组合无功2电能	0008-0009/9008-9009	00040000/80040000		
第一象限无功总电能	000A-000B/900A-900B	00050000/80050000		
第二象限无功总电能	000C-000D/900C-900D	00060000/80060000		
第三象限无功总电能	000E-000F/900E-900F	00070000/80070000		
第四象限无功总电能	0010-0011/9010-9011	00080000/80080000		
正向视在总电能	0012-0013/9012-9013	00090000/80090000		
反向视在总电能	0014-0015/9014-9015	000A0000/800A0000		
A 相组合有功总电能	0016-0017/9016-9017	00140000/80140000		
A 相正向有功总电能	0018-0019/9018-9019	00150000/80150000		
A 相反向有功总电能	001A-001B/901A-901B	00160000/80160000		
A 相组合无功 1 电能	001C-001D/901C-901D	00170000/80170000		
A 相组合无功 2 电能	001E-001F/901E-901F	00180000/80180000		
A 相第一象限无功总电能	0020-0021/9020-9021	00190000/80190000		
A 相第二象限无功总电能	0022-0023/9022-9023	001A0000/801A0000		
A 相第三象限无功总电能	0024-0025/9024-9025	001B0000/801B0000		
A 相第四象限无功总电能	0026-0027/9026-9027	001C0000/801C0000		
A 相正向视在总电能	0028-0029/9028-9029	001D0000/801D0000		
A 相反向视在总电能	002A-002B/902A-902B	001E0000/801E0000		
B 相组合有功总电能	002C-002D/902C-902D	00280000/80280000		
B 相正向有功总电能	002E-002F/902E-902F	00290000/80290000		
B相反向有功总电能	0030-0031/9030-9031	002A0000/802A0000		

http://www.irdopto.com 让电测与计量变得简单 第 7 页 共 34 页

		I	
B 相组合无功 1 电能	0032-0033/9032-9033	002B0000/802B0000	
B 相组合无功 2 电能	0034-0035/9034-9035	002C0000/802C0000	
B 相第一象限无功总电能	0036-0037/9036-9037	002D0000/802D0000	
B 相第二象限无功总电能	0038-0039/9038-9039	002E0000/802E0000	
B 相第三象限无功总电能	003A-003B/903A-903B	002F0000/802F0000	
B 相第四象限无功总电能	003C-003D/903C-903D	00300000/80300000	
B 相正向视在总电能	003E-003F/903E-903F	00310000/80310000	
B 相反向视在总电能	0040-0041/9040-9041	00320000/80320000	
C 相组合有功总电能	0042-0043/9042-9043	003C0000/803C0000	
C 相正向有功总电能	0044-0045/9044-9045	003D0000/803D0000	
C 相反向有功总电能	0046-0047/9046-9047	003E0000/803E0000	
C 相组合无功 1 电能	0048-0049/9048-9049	003F0000/803F0000	
C 相组合无功 2 电能	004A-004B/904A-904B	00400000/80400000	
C相第一象限无功总电能	004C-004D/904C-904D	00410000/80410000	
C相第二象限无功总电能	004E-004F/904E-904F	00420000/80420000	
C 相第三象限无功总电能	0050-0051/9050-9051	00430000/80430000	
C 相第四象限无功总电能	0052-0053/9052-9053	00440000/80440000	
C 相正向视在总电能	0054-0055/9054-9055	00450000/80450000	
C 相反向视在总电能	0056-0057/9056-9057	00460000/80460000	
基波电能: (权限 R)			量纲单位、数据长度同上
总正向有功基波电能	0058-0059/9058-9059	00810000/80810000	
总反向有功基波电能	005A-005B/905A-905B	00820000/80820000	
A 相正向有功基波电能	005C-005D/905C-905D	00950000/80950000	
A 相反向有功基波电能	005E-005F/905E-905F	00960000/80960000	
B相正向有功基波电能	0060-0061/9060-9061	00A90000/80A90000	
B相反向有功基波电能	0062-0063/9062-9063	00AA0000/80AA0000	
C相正向有功基波电能	0064-0065/9064-9065	00BD0000/80BD0000	
C相反向有功基波电能	0066-0067/9066-9067	00BE0000/80BE0000	

4.2 瞬时量 (Modbus 功能码: 0x03 读)

以下列表中功率、电流、功率因素为有符号型,其他数据为无符号型。

名称(权限: R)	寄存器地址 (HEX)	DLT645 DI (HEX)	单位量纲
总有功功率	2000-2001	02030000	0.0001kW
总无功功率	2002-2003	02040000	0.0001kvar
总视在功率	2004-2005	02050000	0. 0001kVA
总功率因素	2006	02060000	0.001
A 相电压	2007	02010100	0.1V
A 相电流	2008-2009	02020100	0.001A
A 相有功功率	200A-200B	02030100	0.0001kW
A 相无功功率	200C-200D	02040100	0.0001kvar
A 相视在功率	200E-200F	02050100	0.0001kVA

A 相功率因素	2010	02060100	0.001
A 相二氧化碳排放量	2011-2012	02810100	0.001kg
A 相报警状态	2013	02820100	意义具体见 4.10 中报警状态
B相电压	2014	02010200	0. 1V
B相电流	2015-2016	02020200	0. 001A
B相有功功率	2017-2018	02030200	0.0001kW
B相无功功率	2019-201A	02040200	0. 0001kvar
B相视在功率	201B-201C	02050200	0. 0001kVA
B相功率因素	201D	02060200	0.001
B相二氧化碳排放量	201E-201F	02810200	0.001kg
B相报警状态	2020	02820200	意义具体见 4.10 中报警状态
C相电压	2021	02010300	0. 1V
C相电流	2022-2023	02020300	0. 001A
C 相有功功率	2024-2025	02030300	0.0001kW
C 相无功功率	2026-2027	02040300	0. 0001kvar
C 相视在功率	2028-2029	02050300	0. 0001kVA
C 相功率因素	202A	02060300	0.001
C相二氧化碳排放量	202B-202C	02810300	0. 001kg
C相报警状态	202D	02820300	意义具体见 4.10 中报警状态
电网频率	202E	02800002	0.01Hz
总二氧化碳排放量	2030-2031	02810000	0.001kg
A 相电压角度	2032	020C0100	0.1°
B 相电压角度	2033	020C0200	0.1°
C相电压角度	2034	020C0300	0.1°
A 相相角	2035	02070100	0.1°
B相相角	2036	02070200	0.1°
C相相角	2037	02070300	0.1°
零线电流	2038-2039	02800050 (XXXXX. XXX)	0.001A
A 相线电压	203A	02310100 (XXXXX. X)	0. 1V
A 相线电流	203B-203C	02320100 (XXXXX. XXX)	0.001A
B相线电压	203D	02310200 (XXXXX. X)	0.1V
B相线电流	203E-203F	02320200 (XXXXX. XXX)	0.001A
C相线电压	2040	02310300 (XXXXX. X)	0.1V
C 相线电流	2041-2042	02320300 (XXXXX. XXX)	0.001A
A 相基波电压	2080	02170100 (XXXXX. X)	0. 1V
A 相基波电流	2081-2082	02180100 (XXXXX. XXX)	0.001A
A 相基波有功功率	2083-2084	02120100 (XXXX. XXXX)	0.0001kW
A 相基波无功功率	2085-2086	02130100 (XXXX. XXXX)	0.0001kvar
A 相基波视在功率	2087-2088	02140100 (XXXX. XXXX)	0.0001kVA
B 相基波电压	2089	02170200 (XXXXX. X)	0. 1V
B 相基波电流	208A-208B	02180200 (XXXXX. XXX)	0.001A

B 相基波有功功率	208C-208D	02120200 (XXXX. XXXX)	0.0001kW
B相基波无功功率	208E-208F	02130200 (XXXX. XXXX)	0. 0001kvar
B相基波视在功率	2090-2091	02140200 (XXXX. XXXX)	0. 0001kVA
C相基波电压	2092	02170300 (XXXXX. X)	0. 1V
C相基波电流	2093-2094	02180300 (XXXXX. XXX)	0. 001A
C相基波有功功率	2095-2096	02120300 (XXXX. XXXX)	0.0001kW
C相基波无功功率	2097-2098	02130300 (XXXX. XXXX)	0.0001kvar
C相基波视在功率	2099-209A	02140300 (XXXX. XXXX)	0. 0001kVA
A 相电压半波有效值	209B	021F0100 (XXXXX. X)	0. 1V
A 相电流半波有效值	209C-209D	02200100 (XXXXX. XXX)	0. 001A
B相电压半波有效值	209E	021F0200 (XXXXX. X)	0. 1V
B相电流半波有效值	209F-20A0	02200200 (XXXXX. XXX)	0. 001A
C相电压半波有效值	20A1	021F0300 (XXXXX. X)	0. 1V
C相电流半波有效值	20A2-20A3	02200300 (XXXXX. XXX)	0. 001A
零线电流半波有效值	20A4-20A5	02800051 (XXXXX. XXX)	0. 001A
A 相闪变	20A6	02800052 (XX. XX)	0.01%
B相闪变	20A7	02800053 (XX. XX)	0.01%
C相闪变	20A8	02800054 (XX. XX)	0.01%
谐波相关:			量纲单位: 0.01%
A 相电压 1 次谐波含量	1201	020A0101	
······2~40 次	1202~1228		
A 相电压 41 次谐波含量	1229	020A0129	
B 相电压 1 次谐波含量	1231	020A0201	
······2~40 次	1232~1258		
B 相电压 41 次谐波含量	1259	020A0229	
C 相电压 1 次谐波含量	1261	020A0301	
······2~40 次	1262~1288		
C 相电压 41 次谐波含量	1289	020A0329	
A 相电流 1 次谐波含量	1291	020B0101	
······2~40 次	1292~12B8		
A 相电流 41 次谐波含量	12B9	020B0129	
B 相电流 1 次谐波含量	12C1	020B0201	
······2~40 次	12C2~12E8		
B 相电流 41 次谐波含量	12E9	020B0229	
C 相电流 1 次谐波含量	12F1	020B0301	
······2~40 次	12F2~1318		
C 相电流 41 次谐波含量	1319	020B0329	
A 相电压波形失真度	1321	02080100	
B相电压波形失真度	1322	02080200	
C 相电压波形失真度	1323	02080300	
A 相电流波形失真度	1324	02090100	
B相电流波形失真度	1325	02090200	
	1	1	I.

C相电流波形失真度	1326	02090300	
间谐波相关:			量纲单位: 0.01%
A 相电压 1 次间谐波群含量	1401	021B0101	
······2~20 次	1402~1414	•••••	
A 相电压 21 次间谐波群含量	1415	021B0115	
B 相电压 1 次间谐波群含量	1431	021B0201	
······2~20 次	1432~1444	•••••	
B相电压 21 次间谐波群含量	1445	021B0215	
C 相电压 1 次间谐波群含量	1461	021B0301	
······2~20 次	1462~1474	•••••	
C 相电压 21 次间谐波群含量	1475	021B0315	
A 相电流 1 次间谐波群含量	1491	021C0101	
······2~20 次	1492~14A4		
A 相电流 21 次间谐波群含量	14A5	021C0115	
B 相电流 1 次间谐波群含量	14C1	021C0201	
······2~20 次	14C2~14D4		
B相电流 21 次间谐波群含量	14D5	021C0215	
C 相电流 1 次间谐波群含量	14F1	021C0301	
······2~20 次	14F2~1504		
C 相电流 21 次间谐波群含量	1505	021C0315	

现有 DL645T 协议下电压、电流、功率输出范围有限,为适应各种电压电流规格,扩展 DLT645 协议下的电压、电流、功率高精度数据:

名称(权限: R)	DLT645 DI (HEX)	数据格式	单位量纲
总有功功率	02230000	XXXX. XXXX	0.0001kW
总无功功率	02240000	XXXX. XXXX	0.0001kvar
总视在功率	02250000	XXXX. XXXX	0. 0001kVA
A 相电压	02210100	XXXX. XXXX	0. 0001V
A 相电流	02220100	XXXX. XXXX	0. 0001A
A 相有功功率	02230100	XXXX. XXXX	0.0001kW
A 相无功功率	02240100	XXXX. XXXX	0.0001kvar
A 相视在功率	02250100	XXXX. XXXX	0.0001kVA
B相电压	02210200	XXXX. XXXX	0.0001V
B相电流	02220200	XXXX. XXXX	0. 0001A
B 相有功功率	02230200	XXXX. XXXX	0.0001kW
B 相无功功率	02240200	XXXX. XXXX	0.0001kvar
B 相视在功率	02250200	XXXX. XXXX	0.0001kVA
C相电压	02210300	XXXX. XXXX	0.0001V
C相电流	02220300	XXXX. XXXX	0. 0001A
C 相有功功率	02230300	XXXX. XXXX	0.0001kW
C 相无功功率	02240300	XXXX. XXXX	0. 0001kvar

C 相视在功率 02250300	XXXX. XXXX	0. 0001kVA
------------------	------------	------------

4.3 电表基本信息(Modbus 功能码: 0x03 读/0x06 写/0x10 写多个)

名称	寄存器地址	DLT645 DI (HEX)	备注
模块地址(R/W)	4000	04000401	高 8 位 00, 低 8 位为 645 通信地
			址的最低字节
电压变比(R/W)	4001	04000307	最大为 9999
电流变比(R/W)	4002	04000306	最大为 9999
波特率 1 (R/W)	4003	04000703	高8位为00,低8位:
			0x02 表示 600,
			0x04 表示 1200,
			0x08 表示 2400,
			0x10 表示 4800,
			0x20 表示 9600,
			0x40 表示 19200
波特率 2 (R/W)	4004	04000704	高8位为00,低8位:
			0x02 表示 600,
			0x04 表示 1200,
			0x08 表示 2400,
			0x10 表示 4800,
			0x20 表示 9600,
			0x40 表示 19200
校验位 1 (R/W)	4006	04810013	高8位为00,低8位:
			0x01 表示奇校验,
			0x02 表示偶校验,
			0x00 表示无校验
校验位 2(R/W)	4007	04810014	高8位为00,低8位:
			0x01 表示奇校验,
			0x02 表示偶校验,
			0x00 表示无校验
接线方式(R/W)	400A	04810002	高8位为00,低8位:
			0x55 表示三相四线制,
			0xAA 表示三相三线制
额定电压(R)	400E	04000404	0. 1V
额定电流(R)	400F-4010	04000405	0. 001A
最大电流(R)	4011	04000406	0. 1A
软件版本(R)	4012	04810003	
型号(R)	4013	04810007	
电表运行状态字 1 (R)	4015	04000501	读取当前运行状态字,详见 4.10
电表运行状态字 2-6(R)	4016-401A	•••••	645 协议可通过 DI:040005FF 一
电表运行状态字 7(R)	401B	04000507	次性读取

工作状态(R)	401C	04000508	
电压量程(R)	401D	04810004	
二氧化碳排放因子(R/W)	4022	04810006	0.0001KgCo2/kWh
电表运行状态字 1 报警配置	4023	0481000B	
字(R/W)			
电表运行状态字	4024-4028	•••••	
2-6 报警配置字(R/W)			配置运行状态字,具体用法见 <u>状</u>
电表运行状态字 7 报警配置	4029	04810011	· <u>态字/报警配置字</u>
字(R/W)			
工作状态报警配置字(R/W)	402A	04810012	
日期(R/W)	402B-402C	04000101	年/月/日/星期
时间(R/W)	402D-402E	04000102	时/分/秒/
脉冲常数(R)	402F-4030	04000409	
暂降、过零中断配置(R/W)	4031-4032	04FB0300 (XXXXXXXX)	具体用法见状态字/报警配置字
过压、过流中断配置(R/W)	4033-4034	04FB0301 (XXXXXXXX)	具体用法见 <u>状态字/报警配置字</u>
EMUIF 中断标志(R)	4035-4036	04FB0400 (XXXXXXXXX)	645 协议可通过 DI:04FB04FF 一
EMUIF2 中断标志(R)	4037-4038	04FB0401 (XXXXXXXX)	次性读取

4.4 参变量(Modbus 功能码: 0x03 读/0x06 写/0x10 写多个)

名称 (权限: R/W)	寄存器地址	DLT645 DI (HEX)	备注
失压事件电压触发上限	4041	04090101	0. 1V
失压事件电压恢复下限	4042	04090102	0. 1V
失压事件电流触发下限	4043-4044	04090103	0.0001A
失压事件判定延时时间	4045	04090104	S
欠压事件电压触发上限	4046	04090201	0. 1V
欠压事件判定延时时间	4047	04090202	S
过压事件电压触发下限	4048	04090301	0. 1V
过压事件判定延时时间	4049	04090302	S
断相事件电压触发上限	404A	04090401	0. 1V
断相事件电流触发上限	404B-404C	04090402	0.0001A
断相事件判定延时时间	404D	04090403	S
电压不平衡率限值	404E	04090501	0.01%
电压不平衡率判定延时时间	404F	04090502	S
电流不平衡率限值	4050	04090601	0.01%
电流不平衡率判定延时时间	4051	04090602	S
失流事件电压触发下限	4052	04090701	0. 1V
失流事件电流触发上限	4053-4054	04090702	0.0001A
失流事件电流触发下限	4055-4056	04090703	0.0001A
失流事件判定延时时间	4057	04090704	S
过流事件电流触发下限	4058	04090801	O. 1A

过流事件判定延时时间	4059	04090802	S
断流事件电压触发下限	405A	04090901	0. 1V
断流事件电流触发上限	405B-405C	04090902	0.0001A
断流事件判定延时时间	405D	04090903	S
过载事件有功功率触发下限	405E-405F	04090B01	0.0001kW
过载事件判定延时时间	4060	04090B02	S
总功率因数超下限阀值	4061	04090E01	0.001
总功率因数超下限判定延时	4062	04090E02	s
时间			

4.5 清零、进出厂内等(Modbus 功能码: 0x06 写)

名称	寄存器地址(HEX)	DLT645 实现方式
总清零	6000(值为 0xAAAA)	利用控制码: C=1AH, 见 645-2007 协议
事件清零	6001(值为 0xAAAA)	利用控制码: C=1BH, 见 645-2007 协议
参数初始化	6002(值为 0xAAAA)	控制码: C=0AH, DI 为 0xF814C00F
电能清零	6003	控制码: C=0AH
	(值为 0,清零所有电	DI 为 0xF814C010,使用此命令清零时,地址码需设置为全 98
	能)	(16 进制),帧命令格式:
		FE FE FE 68 98 98 98 98 98 98 0A 04 43 F3 47 2B 16 16
总清零+参数	6004	控制码: C=0AH
初始化		DI 为 0xF814C00D
进/退厂内	6005	具体见 <u>第五章工作模式</u> 。
	(OxAAAA 为进厂内,其	
	他值为退出厂内)	

4.6 电网相关事件次数、时间(仅支持645协议)

名称 (权限: R)	DLT645 DI (HEX)	备注
失压总次数	10000001	
失压总累计时间	10000002	
最近1次失压发生时刻	10000101	
最近1次失压结束时刻	10000201	
A相失压总次数	10010001	
A相失压总累计时间	10010002	
B相失压总次数	10020001	
B相失压总累计时间	10020002	
C相失压总次数	10030001	
C相失压总累计时间	10030002	
A相欠压总次数	11010001	
A相欠压总累计时间	11010002	

B相欠压总次数	11020001
B相欠压总累计时间	11020002
C相欠压总次数	11030001
C相欠压总累计时间	11030002
A相过压总次数	12010001
A相过压总累计时间	12010002
B相过压总次数	12020001
B相过压总累计时间	12020002
B相过压总次数	12030001
C相过压总累计时间	12030002
A相断相总次数	13010001
A相断相总累计时间	13010002
B相断相总次数	13020001
B相断相总累计时间	13020002
C相断相总次数	13030001
C相断相总累计时间	13030002
电压逆相序总次数	14000001
电压逆相序总累计时间	14000002
电流逆相序总次数	15000001
电流逆相序总累计时间	15000002
电压不平衡总次数	16000001
电压不平衡总累计时间	16000002
电流不平衡总次数	17000001
电流不平衡总累计时间	17000002
A相失流总次数	18010001
A相失流总累计时间	18010002
B相失流总次数	18020001
B相失流总累计时间	18020002
C相失流总次数	18030001
C相失流总累计时间	18030002
A相过流总次数	19010001
A相过流总累计时间	19010002
B相过流总次数	19020001
B相过流总累计时间	19020002
C相过流总次数	19030001
C相过流总累计时间	19030002
A相断流总次数	1A010001
A相断流总累计时间	1A010002
B相断流总次数	1A020001
B相断流总累计时间	1A020002
C相断流总次数	1A030001
C相断流总累计时间	1A030002

A相过载总次数	1C010001
A相过载总累计时间	1C010002
B相过载总次数	1C020001
B相过载总累计时间	1C020002
C相过载总次数	1C030001
C相过载总累计时间	1C030002
总功率因数超下限总次数	1F000001
总功率因数超下限总累计时间	1F000002
掉电总次数	03110000
编程总次数	03300000
电表清零总次数	03300100
事件清零总次数	03300300

4.7 事件记录 (仅支持 645-2007 协议)

名称 (权限: R)	DLT645 DI (HEX)	备注
(上1次)A相失压记录	1001FF01	
	•••••	
(上10次)A相失压记录	1001FF0A	
(上1次)B相失压记录	1002FF01	
	•••••	
(上10次)B相失压记录	1002FF0A	
(上1次)C相失压记录	1003FF01	
	•••••	
(上10次)C相失压记录	1003FF0A	
(上1次)A相欠压记录	1101FF01	
	•••••	
(上10次)A相欠压记录	1101FF0A	
(上1次)B相欠压记录	1102FF01	
	•••••	
(上10次)B相欠压记录	1102FF0A	
(上1次)C相欠压记录	1103FF01	
(上10次)C相欠压记录	1103FF0A	
(上1次)A相过压记录	1201FF01	
	•••••	
(上10次)A相过压记录	1201FF0A	
(上1次)B相过压记录	1202FF01	
(上10次)B相过压记录	1202FF0A	
(上1次)C相过压记录	1203FF01	

•••••	•••••	
(上10次)C相过压记录	1203FF0A	
(上1次)A相断相记录	1301FF01	
(上10次)A相断相记录	1301FF0A	
(上1次)B相断相记录	1302FF01	
•••••	•••••	
(上10次)B相断相记录	1302FF0A	
(上1次)C相断相记录	1303FF01	
•••••	•••••	
(上10次)C相断相记录	1303FF0A	
(上1次) 电压逆相序记录	1400FF01	
•••••	•••••	
(上10次)电压逆相序记录	1400FF02	
(上1次) 电流逆相序记录	1500FF01	
•••••	•••••	
(上10次) 电流逆相序记录	1500FF02	
(上1次) 电压不平衡记录	1600FF01	
•••••	•••••	
(上10次) 电压不平衡记录	1600FF02	
(上1次) 电流不平衡记录	1700FF01	
(上10次) 电流不平衡记录	1700FF02	
(上1次)A相失流记录	1801FF01	
(上10次)A相失流记录	1801FF0A	
(上1次)B相失流记录	1802FF01	
	•••••	
(上10次)B相失流记录	1802FF0A	
(上1次)C相失流记录	1803FF01	
	•••••	
(上10次)C相失流记录	1803FF0A	
(上1次)A相过流记录	1901FF01	
•••••		
(上10次)A相过流记录	1901FF0A	
(上1次)B相过流记录	1902FF01	
(上10次)B相过流记录	1902FF0A	
(上1次)C相过流记录	1903FF01	
	•••••	
(上10次)C相过流记录	1903FF0A	
(上1次)A相断流记录	1A01FF01	

(上10次)A相断流记录	1A01FF0A
(上1次)B相断流记录	1A02FF01
(上10次)B相断流记录	1A02FF0A
(上1次)C相断流记录	1A03FF01
(上10次)C相断流记录	1A03FF0A
(上1次)A相过载记录	1C01FF01
(上10次)A相过载记录	1C01FF0A
(上1次)B相过载记录	1C02FF01
(上10次)B相过载记录	1C02FF0A
(上1次)C相过载记录	1C03FF01
(上10次)C相过载记录	1C03FF0A
(上1次)总功率因数超下限	1F00FF01
(上10次)总功率因数超下限	1F00FF0A
(上1次)掉电记录	03110001
(上10次)掉电记录	0311000A
(上1次)次编程记录	03300001
•••••	
(上10次)次编程记录	0330000A
(上1次)电表清零记录	03300101
(上 10 次)电表清零记录	0330010A
(上1次)事件清零记录	03300301
(上10次)事件清零记录	0330030A

4.8 波形输出采样功能(Modbus 功能码: 0x03 读/0x06 写/0x10 写多个)

1.6 次/V····································			
名称	寄存器地址	DLT645 DI (HEX)	备注
原始数据输出控制(R/W)	7000	04FB0000 (XXH)	0x55 表示关闭,0xAA 表示开启
采样数据配置信息	645 协议下可	通过 04FB001FF 获取所	有配置信息
采样点数(R/W)	7001	04FB0100 (XXXX)	可配置为 32、64、128、256, 其它不可设。
采样类型(R)	7002	04FB0101 (XX)	1表示单相;3表示三相
采样长度(R)	7003	04FB0102 (XX)	表示 ADC 采样数据位数,1 表示 1 个字
			节 (8 位)、2 表示 2 个字节 (16 位)、
			3 表示 3 个字节 (24 位)

偏移小数位数(R)	7004	04FB0103 (XX)	表示电压,电流系数缩放比例
A 相电压系数(R)	7005-7006	04FB0104 (XXXXXXXX)	A 相电压采样值系数
A 相电流系数(R)	7007-7008	04FB0105 (XXXXXXXX)	A 相电流采样值系数
A 相相位系数(R)	7009-700A	04FB0106 (XXXXXXXX)	保留
B 相电压系数(R)	700B-700C	04FB0107 (XXXXXXXX)	B 相电压采样值系数
B 相电流系数(R)	700D-700E	04FB0108 (XXXXXXXX)	B 相电流采样值系数
B 相相位系数(R)	700F-7010	04FB0109 (XXXXXXXX)	保留
C 相电压系数(R)	7011-7012	04FB010A (XXXXXXXX)	C 相电压采样值系数
C 相电流系数(R)	7013-7014	04FB010B (XXXXXXXXX)	C 相电流采样值系数
C 相相位系数(R)	7015-7016	04FB010C (XXXXXXXX)	保留

4.9 模拟信号采集功能(Modbus 功能码: 0x03 读/0x06 写/0x10 写多个)

名称	寄存器地址	DLT645 DI (HEX)	备注
传感器1采集标定(R/W)	8000	04FB0001 (XXXXH)	高8位为0xAA表示上限标定;
传感器 2 采集标定 (R/W)	8001	04FB0002 (XXXXH)	低 8 位为 0xAA 表示下限标定。
传感器 3 采集标定(R/W)	8002	04FB0003 (XXXXH)	(注:设置时上、下限需分别进行标定,
			即高、低位不能同时为 0xAA; 当上、下
			限标定值都设为 OxAA 以外的其他值
			时,表明重新标定。读取时高8位为
			0xAA 表示上限标定、低 8 位为 0xAA 表
			示下限标定,上下限标定值若都为
			0xAA 以外其他值,表明未标定或标定
			时信号值不合理。)
传感器模拟信号采集值			
传感器 1 模拟信号采集值(R)	8003	02800055 (XXX. X)	如果未完成标定或者上、下限值设置
传感器 2 模拟信号采集值(R)	8004	02800056 (XXX. X)	不合理或者上、下限值标定有误,读取
传感器 3 模拟信号采集值(R)	8005	02800057 (XXX. X)	采集值时,数据恒为-799.9,请检查标
			定流程重新进行标定。(有符号数)
传感器模拟信号采集配置信息			
传感器1采集上限(R/W)	8006	04FB0200 (XXX. X)	有符号数(最高位是符号位,
传感器1采集下限(R/W)	8007	04FB0201 (XXX. X)	0 正 1 负; 取值范围: 0.0~799.9)
传感器2采集上限(R/W)	8008	04FB0202 (XXX. X)	
传感器2采集下限(R/W)	8009	04FB0203 (XXX. X)	
传感器 3 采集上限(R/W)	800A	04FB0204 (XXX. X)	
传感器 3 采集下限 (R/W)	800B	04FB0205 (XXX. X)	

4.10 状态字/报警配置字

如状态字发生置位且对应报警配置字配置为 1,则模块产生报警拉高 WRAN 引脚。此时,可以通过发送抄读状态字指令来获取八个寄存器地址里面的值(例: 01 03 40 15 00 08 40 08)获取相应状态字信息,此后模块将清除报警状态、拉低WRAN 引脚,直到状态字再次发生置位,重复上述步骤。(状态字及相应的状态报警配置字各 bit 定义相同)

电表运行状态字1(报警配置字默认启用 bit5 和 bit4)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
保留	保留	无功功率方向	有功功率方向	保留	保留	保留	保留
Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8
保留	保留	保留	1: 传感器 3 断开	1: 传感器2断开	1: 传感器1断开	保留	保留
			0: 传感器 3 接入	0: 传感器 2 接入	0: 传感器 1 接入		
			或未标定好	或未标定好	或未标定好		

注: 0 代表正向, 1 代表反向

电表运行状态字 2 (报警配置字默认启用 bit0~bit2 以及 bit4~bit6)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
保留	C 相无功	B 相无功	A 相无功	保留	C 相有功	B 相有功	A 相有功
	功率方向	功率方向	功率方向		功率方向	功率方向	功率方向
Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8
保留							

注: 0代表正向,1代表反向

电表运行状态字 3 (操作类)(报警配置字默认不启用)

_			*** A M * *** ***					
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
	保留	保留	保留	保留	保留	供电	方式	保留
						(00 主电源, 01 辅助电源)		
	Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8
	保留	保留	保留	保留	保留	保留	电能表	長类型

电表运行状态字 4(A相故障状态)(报警配置字默认启用bit0~bit5以及bit7~bit8)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
断相	保留	过载	过流	失流	过压	欠压	失压
Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8
保留	保留	保留	保留	保留	保留	保留	断流

注: 0代表无此类故障, 1代表当前发生此类故障。

电表运行状态字 5 (B相故障状态)(报警配置字默认启用bit0~bit5以及bit7~bit8)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
断相	保留	过载	过流	失流	过压	欠压	失压
Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8
保留	保留	保留	保留	保留	保留	保留	断流

注: 0代表无此类故障, 1代表当前发生此类故障。

电表运行状态字 6(C 相故障状态)(报警配置字默认启用 bit0~bit5 以及 bit7~bit8)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
断相	保留	过载	过流	失流	过压	欠压	失压
Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8
保留	保留	保留	保留	保留	保留	保留	断流

注: 0代表无此类故障, 1代表当前发生此类故障。

电表运行状态字 7(合相故障状态)(报警配置字默认启用 bit0~bit3 以及 bit7)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
总功率因素	保留	掉电	保留	电流不平衡	电压不平衡	电流逆相序	电压逆相序
超下限							
Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8
保留							

注: 0代表无此类故障, 1代表当前发生此类故障。

工作状态/工作状态报警配置字(报警配置字默认启用 bit0~bit6 以及 bit12~bit13)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
保留	至少有一相	至少有一相	电流逆向序	电压逆向序	C 相失压	B 相失压	A 相失压
	无功功率为	有功功率为					
	负	负					
Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8
保留	保留	合相无功功	合相有功功	1: C 相处于	1: B 相处于	1: A 相处于	保留
		率为负	率为负	潜动	潜动	潜动	
				0: C 相处于	0: B 相处于	0: A 相处于	
				启动	启动	启动	

注: 0代表无此类故障, 1代表当前发生此类故障。

报警状态

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
保留	保留	保留	保留	保留	1继电器闭合	1 电流报警	1 电压报警
					0继电器断开	0 电流正常	0 电压正常

暂降、过零中断配置(默认都不启用)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
N 线电流过	C 相电流过	B 相电流过	A 相电流过	C 相电压过	B 相电压过	A 相电压过	保留
零	零	零	零	零	零	零	
Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8
保留	暂降	保留	保留	保留	保留	保留	保留
Bit23	Bit22	Bit21	Bit20	Bit19	Bit18	Bit17	Bit16
保留	保留	保留	保留	保留	C相暂降	B 相暂降	A 相暂降
Bit31	Bit30	Bit29	Bit28	Bit27	Bit26	Bit25	Bit24

电能计量芯片+电测计量套件|模块|方案+电能检定装置 一站式专业提供商

| 保留 |
|----|----|----|----|----|----|----|----|

过压、过流中断配置 (默认都不启用)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
保留	保留	保留	保留	保留	C 相电流过	B相电流过	A 相电流过
					流	流	流
Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8
保留	保留	保留	保留	C 相电压过	B相电压过	A 相电压过	保留
				压	压	压	
Bit23	Bit22	Bit21	Bit20	Bit19	Bit18	Bit17	Bit16
保留	保留	保留	保留	保留	保留	保留	保留
Bit31	Bit30	Bit29	Bit28	Bit27	Bit26	Bit25	Bit24
保留	保留	保留	保留	保留	保留	保留	保留

EMUIF 中断标志

Bit 位	说明
Bit31~Bit19	保留
Bit18	C 相电压暂降中断标志,读后清 0
Bit17	B 相电压暂降中断标志,读后清 0
Bit16	A 相电压暂降中断标志,读后清 0
Bit15	保留
Bit14	三相中任意相发生暂降测产生中断,配置时如果为三相三线计量模式建议将 B 相中断和此中断位关
	闭,依据需要开启 C 相暂降中断和 A 相暂降中断。具体配置位参看暂降、过零中断配置寄存器。
Bit13~Bit8	保留
Bit7	零线通道正向过零中断标志,读后清0
Bit6	C 相电流正向过零中断标志,读后清 0
Bit5	B 相电流正向过零中断标志,读后清 0
Bit4	A 相电流正向过零中断标志,读后清 0
Bit3	C 相电压正向过零中断标志,读后清 0
Bit2	B 相电压正向过零中断标志,读后清 0
Bit1	A 相电压正向过零中断标志,读后清 0
Bit0	保留

EMUIF2 中断标志

Bit 位	说明
Bit31~Bit12	保留
Bit11	C 相过压中断标志,读后清 0
Bit10	B 相过压中断标志,读后清 0
Bit9	A 相过压中断标志,读后清 0
Bit8	保留

Bit7	保留
Bit6	保留
Bit5~Bit3	保留
Bit2	C 相过流中断标志,读后清 0
Bit1	B 相过流中断标志,读后清 0
Bit0	A 相过流中断标志,读后清 0

4.11 中断信号说明

用户可以通过对过零、暂降中断配置字和过压、过流中断配置字配置输出相关的中断信号。

其中过零信号为 2ms 左右的低电平。当被打开的信号源产正向过零时, ZC 信号脚有相应的信号输出。由于信号脚使用开漏输出模式,以便兼容不同电源系统。所以使用时注意要在信号脚上加上上拉电阻,建议值为 10K。

过流、过压和暂降信号是芯片监控波形数据,以设置的监测条件为依据产生的信号。具体设置方法需要使用我司提供的校表软件,在校表过程中进行设置。

当对应的波形数据满足设置的条件后,且对应的中断使能配置打开,则会产生相应的中断信号,信号 从 OVER 引脚上输出。常态为高阻,信号输出时为低电平。直到用户读取到相应的状态位后,自动清除为 高阻状态。引脚采用开漏输出,建议外加 10K 上拉电阻。

特殊的,当暂降和过流或过压在两个状态寄存器中都产生中断信号时,需要将两个寄存器状态都读取一次才能清除输出信号。

4.12波形输出功能

波形输出功能是为满足用户对电网质量分析等特殊应用而设计的,采用 SPI 接口主模式对外实时输出每个周波的原始采样数据,每周波可配置为 32、64、128、256 采样点。用户可以主动开启或关闭,并能存储用户设置的状态和参数,掉电不丢失。具体设置方法参看相关的数据定义。

波形输出采用 SPI 主模式每周波主动往外发送数据帧,时钟空闲为低电平,前边沿建立数据,后边沿采样数据。速率为 2.5MHz 左右。SPI 均采用开漏输出模式,以便兼容不同的电源系统。使用时需要根据电路匹配情况,外接上拉电阻。

数据帧格式为:

帧	地	帧	控	数据	数据	数	采样	采样	采样	采样		校	帧
头	址	头	制	长度	长度	据	电压	电流	电压	电流		验	尾
标		标	码	0	1	标	值	值	值	值		和	标
志		志				识	1	1	2	2	•••	CS	识

68H	A0	68H	21H	C1H	00Н	01H	U1	I1	U2	12	•••	CS	16H
	•••												
	A5												

地址域: 为将来扩展用,用户可忽略。

控制码: 固定为 21H。

数据长度: 2字节, 低字节在前。

数据标识: 固定为 01H。

采样数据:低字节在前,每个采样点占3个字节。存放顺序为UA1、IA1、UB1、IB1、UC1、IC1......UAn、

IAn.....UCn、ICn。

校验和:从 68 开始到 CS 前一字节所有字节的 8 位累加和。

4.13 扩展数据标识编码(DL/T645-2007)

表1电能量数据扩展标识编码表

	数据	标识		数据格式	数据	单位	功	能	数据项名称
DI ₃	DI ₂	DI ₁	DIo		长度 (字节)		读	写	
00	14	00	00	XXXXXX. XX	4	kWh	*		(当前)A 相组合有功总电能
00	28	00	00	XXXXXX. XX	4	kWh	*		(当前)B 相组合有功总电能
00	3C	00	00	XXXXXX. XX	4	kWh	*		(当前)C 相组合有功总电能

表2变量数据扩展标识编码表

	据标	示识		数据格式	数据	单位	功	能	数据项名称
					长度		`生	€	
DI_3	DI_2	$\mathrm{DI}_{\scriptscriptstyle 1}$	$\mathrm{DI}_{\scriptscriptstyle{0}}$		(学节)		读	写	
02	81	00	00	XXXXX. XXX	4	kg	*		总二氧化碳排放量
		01							A 相二氧化碳排放量
		02							B相二氧化碳排放量
		03							C 相二氧化碳排放量
		FF							二氧化碳排放量数据块
02	82	01	00	XX	1		*		A 相报警状态
		02							B相报警状态
		03							C 相报警状态
		FF							报警状态数据块
02	1F	01	00	XXXXX. X	3	V	*		A 相电压半波有效值
		02							B相电压半波有效值
		03							C 相电压半波有效值
		FF							电压半波有效值数据块

02	20	01	00	XXXXX. XXX	4	A	*	A 相电流半波有效值
02	20		00	AAAAA• AAA	4	, A	, T	
		02						B相电流半波有效值
		03						C相电流半波有效值
		FF						电流半波有效值数据块
02	80	00	50	XXXXX. XXX	4	A	*	零线电流
			51	XXXXX. XXX	4	A	*	零线电流半波有效值
			52	XX. XX	2	%	*	A 相闪变
			53	XX. XX	2	%	*	B 相闪变
			54	XX. XX	2	%	*	C相闪变
			55	XXX. X	2		*	传感器 1 模拟信号采集值
			56	XXX. X	2		*	传感器 2 模拟信号采集值
			57	XXX. X	2		*	传感器 3 模拟信号采集值
02	31	01	00	XXXXX. X	3	V	*	A 相线电压
		02						B相线电压
		03						C 相线电压
		FF						线电压数据块
02	32	01	00	XXXXX. XXX	4	A	*	A 相线电流
		02						B相线电流
		03						C 相线电流
		FF						线电流数据块

表3参变量数据扩展标识编码表

	数据	标识		数据格式	数据	单位	功	能	数据项名称
DI ₃	DI ₂	DI ₁	DIo		长度 (字节)		 读	写	
04	81	00	01	XXXX	2		*	*	Modbus 协议标识版本号
			02	XXXX	2		*	*	接线方式
			03	XXXX	2		*		软件版本号
			04	XXXX	2		*		电压量程
			05	XXXX	2		*	*	符号标识(内部用)
			06	XXXX	2		*	*	二氧化碳排放因子 0.0001KgCo2/kWh
			07	XXXX	2		*		型号
			08	XXXX	2		*		通讯方式
			09	XXXX	2		*		协议版本号
			OA	XXXX	2		*		输入检测
			OB	XXXX	2		*	*	电表运行状态字1配置字
			OC	XXXX	2		*	*	电表运行状态字 2 配置字
			OD	XXXX	2		*	*	电表运行状态字3配置字
			OE	XXXX	2		*	*	电表运行状态字 4 配置字
			0F	XXXX	2		*	*	电表运行状态字 5 配置字
			10	XXXX	2		*	*	电表运行状态字 6 配置字
			11	XXXX	2		*	*	电表运行状态字7配置字
			12	XXXX	2		*	*	工作状态配置字

			13	XXXX	2	*	*	校验位1
			14	XXXX	2	*	*	校验位 2
04	00	05	08	XXXX	2	*		工作状态
04	FB	00	00	XXH	1	*	*	原始数据输出控制
			01	XXXXH	2	*	*	传感器1采集标定
			02	XXXXH	2	*	*	传感器2采集标定
			03	XXXXH	2	*	*	传感器 3 采集标定
04	FB	01	00	XXXX	2	*	*	采样点数
			01	XX	1	*		采样类型
			02	XX	1	*		采样长度
			03	XX	1	*		偏移小数位数
			04	XXXXXXX	4	*		A 相电压系数
			05	XXXXXXXX	4	*		A 相电流系数
			06	XXXXXXX	4	*		A 相相位系数
			07	XXXXXXXX	4	*		B相电压系数
			08	XXXXXXX	4	*		B 相电流系数
			09	XXXXXXXX	4	*		B相相位系数
			OA	XXXXXXX	4	*		C相电压系数
			0B	XXXXXXXX	4	*		C 相电流系数
			OC	XXXXXXX	4	*		C相相位系数
			OD	XXXXXXXX	4	*		零线系数
			FF			*		波形输出参数数据块
04	FB	02	00	XXX. X	2	*	*	传感器1采集上限
			01					传感器1采集下限
			02					传感器2采集上限
			03					传感器2采集下限
			04					传感器 3 采集上限
			05					传感器 3 采集下限
04	FB	03	00	XXXXXXXX	4	*	*	暂降、过零中断配置
			01					过压、过流中断配置
04	FB	04	00	XXXXXXXX	4	*		EMUIF 中断标志
			01					EMUIF2 中断标志
			FF					中断标志数据块

4.14 通讯报文举例

本仪表提供 UART TTL 通讯接口,采用标准 Modbus-RTU 协议,各种数据信息均可在通讯线路上传送。每个网络仪表均可设定其通讯地址,通讯连接应使用带有铜网的屏蔽双绞线,线径不小于 0.5 mm²。布线时应使通讯线远离强电电缆或其他强电场环境。

Modbus 协议在一根通讯线上采用主从应答方式的通讯连接方式。首先,主计算机的信号寻址到一台 唯一地址的终端设备(从机),然后,终端设备发出的应答信号以相反的方向传输给主机,即:在一根单独

的通讯线上信号沿着相反的两个方向传输所有的通讯数据流(半双工的工作模式)。Modbus 协议只允许在 主机(PC, PLC等)和终端设备之间通讯,而不允许独立的终端设备之间的数据交换,这样各终端设备不 会在它们初始化时占据通讯线路,而仅限于响应到达本机的查询信号。

主机查询:查询消息帧包括设备地址、功能代码、数据信息码、校验码。地址码表明要选中的从机设备;功能代码告之被选中的从设备要执行何种功能,例如功能代码 03 或 04 是要求从设备读寄存器并返回它们的内容;数据段包含了从设备要执行功能的任何附加信息,校验码用来检验一帧信息的正确性,从设备提供了一种验证消息内容是否正确的方法,它采用 CRC16 的校准规则。

从机响应:如果从设备产生正常的回应,在回应消息中有从机地址码、功能代码、数据信息码和 CRC16 校验码。数据信息码则包括了从设备收集的数据:像寄存器值或状态。如果有错误发生,我们约定是从机不进行响应。

我们规定在本仪表中采用的通讯数据格式:每个字节的位(1个起始位、8个数据位、奇校验或偶校验或无校验、1个或2个停止位)。

数据帧的结构,即报文格式:

设备地址	功能代码	数据段	CRC16校验码
1个byte	1个byte	N个byte	2个byte(低字节在前)

设备地址:由一个字节组成,每个终端设备的地址必须是唯一的,仅仅被寻址到的终端会响应相应的 查询。

功能代码:告诉了被寻址到的终端执行何种功能。下表列出该系列仪表所支持的功能代码,以及它们的功能。

功能代码	功能
03Н	读一个或多个寄存器的值
10Н	写一个或多个寄存器的值

数据段:包含了终端执行特定功能所需要的数据或者终端响应查询时采集到的数据。这些数据的内容可能是数值、参考地址或者设置值。

校验码: CRC16 占用两个字节,包含了一个16 位的二进制值。CRC 值由传输设备计算出来,然后附

加到数据帧上,接收设备在接收数据时重新计算 CRC 值,然后与接收到的 CRC 域中的值进行比较,如果这两个值不相等,就发生了错误。

生成一个 CRC16 的流程为:

- (1) 预置一个 16 位寄存器为 OFFFFH (全1), 称之为 CRC 寄存器。
- (2) 把数据帧中的第一个字节的8 位与CRC 寄存器中的低字节进行异或运算,结果存回CRC 寄存器。
- (3) 将 CRC 寄存器向右移一位,最高位填以 0,最低位移出并检测。
- (4) 如果最低位为 0: 重复第三步 (下一次移位); 如果最低位为 1: 将 CRC 寄存器与一个预设的固定 值 (0A001H) 进行异或运算。
 - (5) 重复第三步和第四步直到8次移位。这样处理完了一个完整的八位。
 - (6) 重复第2 步到第5 步来处理下一个八位,直到所有的字节处理结束。
 - (7) 最终 CRC 寄存器的值就是 CRC16 的值。

4.14.1 Modbus 通讯报文举例

功能码 0x03: 读多路寄存器

例子: 主机要读取地址为01, 开始地址为0048H的2个从机寄存器数据

主机发送: 01 03 00 48 00 02 CRC

地址 功能码 起始地址 数据长度 CRC 码

从机响应: 01 03 04 HH HH HH CRC

地址 功能码 返回字节数 寄存器数据 1 寄存器数据 2 CRC 码

功能码 0x10: 写多路寄存器

例子: 主机要把 0000,0000 保存到地址为 000C,000D 的从机寄存器去(从机地址码为 0x01)

主机发送: 01 10 00 0C 00 02 04 00 00 00 F3 FA

地址 功能码 起始地址 写寄存器数量 字节计数 数据 1 数据 2 CRC 码

从机响应: 01 10 00 0C 00 02 81 CB

地址 功能码 起始地址 写寄存器数量 CRC 码

说明

设置参数时,注意不要写入非法数据(即超过数据范围限制的数据值);

4.14.2 DL/T645 通讯报文举例

请参考《DL/T645-2007 多功能电能表通信协议》。

五、工作模式

工作模式	讲入方式
1.11日72日11	ガバカル

厂内模式	新模块方式:新模块第一次上电默认进入厂内(EEPROM 格式化即为新模块)								
	方式一: 发送 645 命令								
	方式二: 发送 Modbus_RTU 命令								
出厂模式	方法一: 依据新模块方式进入厂内的,在进厂内后累计上电运行48小时后自动退出								
	方法二:通过命令进入厂内的,在进厂内后累计上电运行24小时后自动退出								
	方式三: 发送 645 命令退出。								
	方式四:发送 Modbus_RTU 命令退出。								

5.1 645 协议进出厂内帧格式:

68H	AO	 A5	68H	1FH	L	DIO	 DI3	PA	P0	P1	P2	N1		Nm	CS	16H
								L	密码	 	 认密码	马为全	0)			

	数据	标识			数据格式	数据长度	单位	功能		数据项名称
DI3	DI2	DI1	DIO			(字节)		读	写	
80	54	14	16	写	=0 退出,	1			*	进入/退出厂内模式
					=1 进入					

进入厂内模式: FE FEFEFE 68 01 11 11 11 11 168 1F 09 49 47 87 B3 33 33 33 33 34 18 16 退出厂内模式: FE FEFEFE 68 01 11 11 11 11 168 1F 09 49 47 87 B3 33 33 33 33 33 37 16

5.2 Modbus 协议进出厂内帧格式:

功能	控制码	寄存器地址	数据值
进厂内	06	6005Н	OxAAAA
退出厂内	06	6005Н	非 OxAAAA 的其他值

进入厂内模式: 01 06 60 05 AA AA 79 14 退出厂内模式: 01 06 60 05 00 00 87 CB

5.3 厂内模式说明

必须进厂内模式下才能进行的操作有:

- 校表;
- 线制切换(三相四线或者三相三线)。线制有变化时,模块会自动进行清零操作;
- 总清零:
- 清电能;
- 清事件;
- 参数初始化;

5.4 出厂模式说明

厂内模式下,达到累计上电运行时间门限或者发送命令退出厂内后,线制、电能、事件等均无法再 修改或清除。除非重新进入厂内模式。

出厂后,645 协议可以通过判断密码权限来确定能否进行参数修改。通过645 协议或者 Modbus 协议修改参数,都会产生编程记录。

六、模块尺寸(可提供封装库)

七、计量模块应用接线图

板载 CT 版本接线示意图(引脚位置仅供参考,以实物为准)

八、外部保护电路设计(推荐)

九、系列产品

IM3332 带剩余电流互感器产品图

IM3332 外置开口互感器产品图 (电流支持 50A/150A/250A/500A

十、工艺要求

- 1. 对本产品焊接时,焊接最高温度<350℃,焊接时长≤5秒。
- 2. 本产品内含石英晶体,严禁对本产品使用超声波清洗。
- 3. 本产品板面喷有三防漆进行保护,严禁清洗产品板面。

十一、注意事项

- 1. 请根据产品规格型号,参照图示正确接线。接线前要确保断开所有信号源及电源,避免发生危险及损坏设备。检查确认接线无误后,再接通电源测试。
- 2. 电压回路或 PT 的二次回路不可短路。
- 3. 在 CT 一次侧有电流时, CT 的二次回路严禁开路; 严禁带电接线或拔下端子。
- 4. 产品在有强电磁干扰的环境中使用时,请注意输入输出信号线的屏蔽。
- 5. 集中安装时,最小安装间隔不应小于 10mm。
- 6. 本系列产品内部未设置防雷击电路,当模块的输入、输出馈线暴露于室外恶劣气候环境之中时,应注意采取防雷措施。
- 7. 请勿损坏或修改产品的标签、标志,请勿拆卸或改装产品,否则本公司将不再对该产品提供"三包" (包换、包退、包修)服务。
- 8. 本手册图片仅为当前版本,本公司为提升产品性能有权修改软件及硬件版本而不另行通知。
- 9. 本手册最终解释权归本公司所有,公司保留修改本手册中资料、数据、技术细节等的权利。

说明

本手册已经过仔细核对,但不排除有少量文字与内容错误的可能性,如有发现,请与本公司客服联系。对于手册更改恕 不另行通知。

官网: http://www.irdopto.com/

技术支持邮箱: Wang. Changgen@ireader-opto.com

固话: 0755-26902860

地址:深圳市南山区西丽街道松白路 1008 号港鸿基高新智能

产业园 A 栋 503

[扫一扫进入官方网站]

[扫一扫关注公众号]