Worksheet 3

Due by midnight of Wednesday, Feb. 12, on Gradescope.

Let A, B, and C be sets. Prove or disprove the following statements.

- 1. If $A \cap B = \emptyset$ and $B \cap C = \emptyset$, then $A \cap C = \emptyset$.
- 2. If $A \not\subseteq B$ and $B \not\subseteq C$, then $A \not\subseteq C$.
- 3. If $A \subseteq \emptyset$, then $A = \emptyset$.
- 4. If $A \subseteq C$ and $B \subseteq C$, then $A \cap B \subseteq C$.
- 5. If $f:A\to B$ is injective and $g:B\to C$ is injective, then $g\circ f:A\to C$ is injective.
- 6. If $f:A\to B$ is surjective and $g:B\to C$ is surjective, then $g\circ f:A\to C$ is surjective.
- 7. Give an example of a function $f:A\to A$ that is injective but not surjective.
- 8. Give an example of a function $g:A\to A$ that is surjective but not injective.
- 9. Let $f: A \to B$ and $g: B \to A$. If $g \circ f = \mathrm{id}_A$, then both f and g are bijections.
- 10. If $f: A \to A$ is surjective, and if A is a finite set, then f is injective.

Bonus question.

11. If $f: A \to A$ satisfies the property that $f \circ f = \mathrm{id}_A$, then f is a bijection.

¹Recall that $\mathrm{id}_A:A\to A$ is the identity function on A, given by $\mathrm{id}_A(x)=x$ for all $x\in A$.