Take-Home Final Examination of Math 55a (January 17 to January 23, 2004)

N.B. FOR PROBLEMS WHICH ARE SIMILAR TO THOSE ON THE HOMEWORK ASSIGNMENTS, COMPLETE SELF-CONTAINED SOLUTIONS ARE REQUIRED AND HOMEWORK PROBLEMS CANNOT BE QUOTED SIMPLY AS KNOWN FACTS IN THE SOLUTIONS.

Notations. \mathbb{N} = all positive integers.

 \mathbb{Z} = all integers.

 \mathbb{R} = all real numbers.

 \mathbb{C} = all complex integers.

 \mathbb{F} means either \mathbb{C} or \mathbb{R} .

Problem 1. The five axioms of Peano are the following.

- (1) The set \mathbb{N} of all natural numbers contains an element 1.
- (2) There is an *immediate successor* $x' \in \mathbb{N}$ defined for every element $x \in \mathbb{N}$.
- (3) 1 is not an immediate successor of any element of \mathbb{N} .
- (4) Two distinct elements of \mathbb{N} have distinct immediate successors.
- (5) If a subset E of \mathbb{N} contains 1 and contains the immediate successor of every one of its elements, then E must be all of \mathbb{N} .

Addition in \mathbb{N} is defined by x+1=x' and x+y'=(x+y)'. Multiplication in \mathbb{N} is defined by $x\cdot 1=x$ and $x\cdot y'=(x\cdot y)+x$. From the five Peano's axioms and the definitions of addition and multiplication prove that $x\cdot (y+z)=(x\cdot y)+(x\cdot z)$ for $x,y,z\in\mathbb{N}$.

Problem 2. For every natural number $\nu \in \mathbb{N}$ let X_{ν} be a (nonempty) metric space with metric $d_{X_{\nu}}(\cdot,\cdot)$. Let \mathcal{X} be the product space $\prod_{\nu \in \mathbb{N}} X_{\nu}$. We denote the components of an element $\mathbf{x} \in \mathcal{X}$ by x_{ν} so that we write $\mathbf{x} = \{x_{\nu}\}_{\nu=1}^{\infty}$ with $x_{\nu} \in X_{\nu}$. Let $\rho > 1$. Define the metric $d_{\mathcal{X}}(\cdot,\cdot)$ on \mathcal{X} by

$$d_{\mathcal{X}}\left(\mathbf{x}^{(1)}, \, \mathbf{x}^{(2)}\right) = \sum_{\nu=1}^{\infty} \frac{1}{\rho^{\nu}} \frac{d_{X_{\nu}}\left(x_{\nu}^{(1)}, \, x_{\nu}^{(2)}\right)}{1 + d_{X_{\nu}}\left(x_{\nu}^{(1)}, \, x_{\nu}^{(2)}\right)}.$$

for
$$\mathbf{x}^{(1)} = \left\{ x_{\nu}^{(1)} \right\}_{\nu=1}^{\infty} \text{ and } \mathbf{x}^{(2)} = \left\{ x_{\nu}^{(2)} \right\}_{\nu=1}^{\infty}.$$

- (a) Verify that $d_{\mathcal{X}}$ is indeed a metric on \mathcal{X} .
- (b) Verify that a subset G of \mathcal{X} is open in \mathcal{X} if and only if for every point $\mathbf{x}^{(0)} = \left\{x_{\nu}^{(0)}\right\}_{\nu=1}^{\infty}$ of G there exist some $N \in \mathbb{N}$ and some positive numbers r_1, r_2, \dots, r_N such that every point $\mathbf{x} = \{x_{\nu}\}_{\nu=1}^{\infty}$ of \mathcal{X} with $d_{X_{\nu}}\left(x_{\nu}, x_{\nu}^{(0)}\right) < r_{\nu}$ for $1 \leq \nu \leq N$ belongs to G.
- (c) Show that \mathcal{X} is compact if and only if each X is compact.

Problem 3. Let X and Y be metric spaces and $f: X \to Y$ be a surjective continuous map. Assume the following three conditions.

- (a) X is compact.
- (b) $f^{-1}(y)$ is connected for every $y \in Y$.
- (c) Y is connected.

Prove that X is connected.

Problem 4. Let c_n for $n \in \mathbb{N}$ be a non-increasing sequence of positive numbers. Prove that the following two statements are equivalent.

(a) For any $-\infty < a < b < \infty$ the sequence

$$\sum_{n=1}^{\infty} c_n \sin nx$$

converges uniformly on [a,b] (in the sense that given any $\varepsilon>0$ there exists some $N\in\mathbb{N}$ such that

$$\left| \sum_{n=p}^{q} c_n \sin nx \right| < \varepsilon$$

for $a \le x \le b$ and $p, q \ge N$).

$$\lim_{n \to \infty} nc_n = 0.$$

(*Hint:* For $(a) \Rightarrow (b)$, for any n sufficiently large choose p roughly of the order $\frac{n}{2}$ and choose x positive sufficiently close to zero, roughly of the order $\frac{\pi}{n}$, such that $\sum_{k=p}^{n} c_k \sin kx$ dominates a fixed positive number times nc_n . For $(b) \Rightarrow (a)$, argue as follows. For $x \geq \frac{\pi}{p}$, use summation by parts and bound $c_p \sum_{n=p}^{q} \sin nx$ by using the summation formula for $\sum_{n=p}^{q} \sin nx$. For $x \leq \frac{\pi}{q}$, use $\sin \theta < \theta$ for $\theta > 0$ to bound $\sum_{n=p}^{q} c_n \sin nx$. For $\frac{\pi}{q} < x < \frac{\pi}{p}$, bound $\sum_{n=p}^{q} c_n \sin nx$ by breaking it up suitably into two summands and use separately the preceding two bounding arguments for the two summands.)

Problem 5. Let V be a vector space over \mathbb{F} of finite dimension n which is endowed with an inner product $\langle \cdot, \cdot \rangle$. Let $T: V \to V$ be an \mathbb{F} -linear map which is self-adjoint with respect to $\langle \cdot, \cdot \rangle$ (that is, $\langle Tv, w \rangle = \langle v, Tw \rangle$ for all $v, w \in V$). Consider the following procedure. Choose a vector v_1 of unit length in V such that $\langle Tv, v \rangle$ achieves its minimum at $v = v_1$ among all $v \in V$ of unit length. Inductively suppose v_1, \cdots, v_k have been chosen and the set v_1, \cdots, v_k does not span V over \mathbb{F} . Let V_k be the orthogonal complement of the \mathbb{F} -vector subspace of V spanned by v_1, \cdots, v_k . Choose a vector v_{k+1} of unit length in V_k such that $\langle Tv, v \rangle$ achieves its minimum at $v = v_{k+1}$ among all $v \in V_k$ of unit length. Show that this procedure produces an orthonormal basis v_1, \cdots, v_n with respect to which T is represented by a diagonal matrix with real eigenvalues. Justify carefully each step and explain why each v_k exits.

Problem 6. Let V be a vector space over \mathbb{F} of finite dimension n. Denote by V^* the dual vector space of V and regard V as the set of all \mathbb{F} -valued \mathbb{F} -linear functions on V^* . Let $1 \leq k \leq n$. Define the exterior product $\wedge^k V$ of k copies of V as the set of all \mathbb{F} -valued \mathbb{F} -multilinear functions on

$$\underbrace{V^* \times V^* \times \cdots \times V^*}_{k \text{ copies}}$$

which are skew-symmetric in its k variables (that is, the value of the function changes sign when any two of the k variables are interchanged). For $v_1, \dots, v_k \in V$ define the wedge product $v_1 \wedge \dots \wedge v_k$ as the \mathbb{F} -valued \mathbb{F} -multilinear function on

$$\underbrace{V^* \times V^* \times \cdots \times V^*}_{k \text{ copies}}$$

which is the skew-symmetrization of the function

$$(x_1, x_2, \cdots, x_k) \mapsto v_1(x_1) v_2(x_2) \cdots v_k(x_k)$$

for $x_1, x_2, \dots, x_k \in V^*$. In other words.

$$(v_1 \wedge v_2 \wedge \cdots \wedge v_k) (x_1, x_2, \cdots, x_k)$$

$$= \frac{1}{k!} \sum_{\sigma} \operatorname{sign}(\sigma) v_1 (x_{\sigma(1)}) v_2 (x_{\sigma(2)}) \cdots v_k (x_{\sigma(k)}),$$

where the summation is over all the k! permutations σ of the k letters $\{1, 2, \dots, k\}$ and sign (σ) is the signature of the permutation σ . Let $\langle \cdot, \cdot \rangle_V$ be an inner product of V. Let e_1, \dots, e_n be an orthonormal basis of V over \mathbb{F} . Let $\langle \cdot, \cdot \rangle_{\wedge^k V}$ be the inner product on $\wedge^k V$ which is defined by the condition that the following collection of $\binom{n}{k}$ elements of $\wedge^k V$

$$e_{j_1} \wedge e_{j_2} \wedge \cdots \wedge e_{j_k} \quad (1 \le j_1 < j_2 < \cdots < j_k \le n)$$

form an *orthonormal* basis of $\wedge^k V$ over \mathbb{F} . Show that for $u_1, \dots, u_k \in V$ and $v_1, \dots, v_k \in V$ the inner product

$$\langle u_1 \wedge \cdots \wedge u_k, v_1 \wedge \cdots \wedge v_k \rangle_{A_k}$$

of the two elements $u_1 \wedge \cdots \wedge u_k$ and $v_1 \wedge \cdots \wedge v_k$ of $\wedge^k V$ is equal to the determinant of the $k \times k$ matrix whose element on the j-th row and in the ℓ -th column is $\langle u_j, v_\ell \rangle_V$.

Hint: Let A be a $k \times n$ matrix and B be an $n \times k$ matrix. For any $1 \le j_1 < \cdots < j_k \le n$ let A_{j_1, \cdots, j_k} be the $k \times k$ matrix obtained from A by taking only its j-th columns for $j = j_1, \cdots, j_k$. Let B_{j_1, \cdots, j_k} be the $k \times k$ matrix obtained from B by taking only its j-th rows for $j = j_1, \cdots, j_k$. Express the $k \times k$ determinant of AB in terms of the collection of the determinants of $A_{j_1, \cdots, j_k} B_{j_1, \cdots, j_k}$ for all $1 \le j_1 < \cdots < j_k \le n$. The special case k = 2 of the problem for $u_1 = v_1 = \sum_{j=1}^n a_j e_j$ and $u_2 = v_2 = \sum_{j=1}^n b_j e_j$ is equivalent to the identity

$$\left(\sum_{j=1}^{n} |a_j|^2\right) \left(\sum_{j=1}^{n} |b_j|^2\right) - \left|\sum_{j=1}^{n} a_j \overline{b_j}\right|^2 = \sum_{1 \le j < \ell \le n} |a_k b_\ell - a_\ell b_k|^2,$$

which is used in the proof of the Cauchy-Schwarz inequality.

Problem 7. Let $-\infty < a < b < \infty$. For $n \in \mathbb{N}$ let $f_n(x)$ be a \mathbb{C} -valued continuous function on [a,b] whose first-order derivative $f'_n(x)$ is also continuous on [a,b]. Assume that $|f_n(a)| \leq 1$ and

$$\int_{a}^{b} \left| f_n'(x) \right|^2 dx \le 1$$

for $n \in \mathbb{N}$. Show that there is a subsequence f_{n_j} $(j \in \mathbb{N})$ such that

$$\sup_{a \le x \le b} \left| f_{n_j}(x) - f_{n_k}(x) \right|$$

approach 0 as $j, k \to \infty$.

Hint: Use

$$\left| \int_{x}^{y} g(t)h(t)dt \right|^{2} dt \le \left(\int_{x}^{y} \left| g(t) \right|^{2} dt \right) \left(\int_{x}^{y} \left| h(t) \right|^{2} dt \right)$$

for x < y and use

$$f(x) - f(y) = \int_{x}^{y} f'(t)dt$$

to show that for $\varepsilon > 0$ the number $\delta > 0$ chosen in the definition for uniform continuity of $f_n(x)$ on [a,b] can be chosen to be independent of n.)

Problem 8. Let $-\infty < a < b < \infty$. Let X be the set of all C-valued functions f on [a, b] which is continuous on [a, b]. Define the norm

$$||f||_X = \sup_{a \le x \le b} |f(x)|$$

for $f \in X$. Let Y be the set of all \mathbb{C} -valued functions g on [a,b] which is continuous on [a,b] and whose first-order derivative g' is also continuous on [a,b]. Define the norm

$$||g||_Y = \sup_{a \le x \le b} (|g(x)| + |g'(x)|)$$

for $g \in Y$.

- (a) Verify that X with the norm $\|\cdot\|_X$ is a Banach space.
- (b) Verify that Y with the norm $\|\cdot\|_{Y}$ is a Banach space.
- (c) Show that for every sequence g_{ν} in Y ($\nu \in \mathbb{N}$) with $||g_{\nu}||_{Y} \leq 1$ there is a subsequence $g_{\nu_{j}}$ ($j \in \mathbb{N}$) such that as a sequence in X the subsequence $g_{\nu_{j}}$ converges in X to some element of X as $j \to \infty$.

(*Hint:* for the proof of (c) compare with Problem 7.)

Problem 9. For 0 < x < 1 and $n \in \mathbb{N}$ let $f_n(x)$ be the distance between x and the nearest number of the form $\frac{m}{10^n}$, where $m \in \mathbb{Z}$. Let $f(x) = \sum_{n=1}^{\infty} f_n(x)$. Prove the following two statements.

- (a) The function f(x) is continuous at every point of (0,1).
- (b) The function f(x) is not differentiable at any point of (0,1).

(*Hint*: For the proof of (b), for a fixed $x \in (0,1)$ let

$$x = \sum_{q=1}^{\infty} \frac{a_q}{10^q},$$

where $a_q \in \mathbb{Z}$ with $0 \le a_q \le 9$. Define $x_q = x - \frac{1}{10^q}$ if $a_q = 4$ or 9, otherwise define $x_q = x + \frac{1}{10^q}$. Then

$$\frac{f(x_q) - f(x)}{x_q - x} = q',$$

where q' is an integer which is congruent to q-1 modulo 2.)

Problem 10. Suppose $-\infty < a < b < \infty$. Let f(x) be a bounded real-valued function on [a, b] and $\alpha(x)$ be a real-valued non-decreasing function [a, b]. Let E be a subset of [a, b]. Assume the following two conditions.

- (a) f is continuous at every point of [a, b] which is not in E.
- (b) For ever $\varepsilon > 0$ there exist a finite number of disjoint open intervals $(c_1, d_1), \dots, (c_N, d_N)$ inside [a, b] such that $\sum_{j=1}^{N} (\alpha(d_j) \alpha(c_j)) < \varepsilon$ and their union $\bigcup_{j=1}^{N} (c_j, d_j)$ contains E. (Note that in this condition the number N, as well as the intervals $(c_1, d_1), \dots, (c_N, d_N)$, may depend on ε .)

Prove that f is Riemann-Stieltjes integrable with respect to α on [a, b] (that is, in the notation of the book of Rudin, $f \in \mathcal{R}(\alpha)$ on [a, b]).

Problem 11. For $1 < s < \infty$, define the Riemann zeta function by

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}.$$

Let [x] denote the greatest integer $\leq x$. Prove the following three statements.

(a)
$$\zeta(s) = s \lim_{b \to \infty} \int_{x=1}^{b} \frac{[x]}{x^{s+1}} dx.$$

(b)
$$\zeta(s) = \frac{s}{s-1} - s \lim_{b \to \infty} \int_{s-1}^{b} \frac{x - [x]}{x^{s+1}} dx.$$

(c) The limit

$$\lim_{b \to \infty} \int_{x=1}^{b} \frac{x - [x]}{x^{s+1}} \, dx$$

exists for all s > 0.

(*Hint:* To prove (a), compute the difference between the integral over [1, N] and the N-th partial sum of the series that defines $\zeta(s)$.)

Problem 12. Let $-\infty < a < b < \infty$. Let f(x) be a real-valued continuous function on [a,b] and $\phi(x)$ be a non-increasing function on [a,b] whose first-order derivative $\phi'(x)$ is continuous on [a,b]. Show that there exists $\xi \in [a,b]$ such that

$$\int_{x=a}^{b} f(x)\phi(x)dx = \phi(a)\int_{x=a}^{\xi} f(x)dx + \phi(b)\int_{x=\xi}^{b} f(x)dx.$$

(*Hint:* First reduce to the special case where $\phi(b) = 0$. Let F'(x) = f(x) with F(a) = 0. Use F(x) to apply integration by parts to $f(x)\phi(x)$ and estimate F(x) by its supremum and infimum on [a,b] and use the Intermediate Value Theorem.)