Dressed Graphene Hamiltonian in Reciprocal Space

1

In this chapter, the Hamiltonian

$$H_0 = -t_{\mathcal{X}} \sum_{\langle ij \rangle, \sigma} d^{\dagger}_{i,\sigma} d_{j,\sigma} - t_{Gr} \sum_{\langle ij \rangle, \sigma} c^{(A),\dagger}_{i,\sigma} c^{(B)}_{j,\sigma} + V \sum_{i,\sigma\sigma'} d^{\dagger}_{i,\sigma} c^{(A)}_{i,\sigma'} + \text{h.c.}$$
 (1.1)

from **??** will be treated to obtain the electronic band structure shown in the chapter. The first step is to write out the sums over nearest neighbors $\langle i,j\rangle$ explicitly, writing δ_X , δ_ε ($\varepsilon=A,B$) for the vectors to the nearest neighbors of the X atoms and Graphene A,B sites. For example, for the X atoms this gives:

$$-t_{X} \sum_{\langle ij \rangle, \sigma} (d_{i,\sigma}^{\dagger} d_{j,\sigma} + d_{j,\sigma}^{\dagger} d_{i,\sigma}) = -\frac{t_{X}}{2} \sum_{i,\delta_{X},\sigma} d_{i,\sigma}^{\dagger} d_{i+\delta_{X},\sigma} - \frac{t_{X}}{2} \sum_{j,\delta_{X},\sigma} d_{j,\sigma}^{\dagger} d_{j+\delta_{X},\sigma}$$
(1.2)
$$= -t_{X} \sum_{i,\sigma} \sum_{\delta_{X}} d_{i,\sigma}^{\dagger} d_{i+\delta_{X},\sigma} .$$
(1.3)

The factor $^{1/2}$ in eq. (1.2) is to account for double counting when going to the sum over all lattice sites i. By relabeling $j \rightarrow i$ in the second sum, the two sum are the same and eq. (1.3) is obtained. Now, using the discrete Fourier transform

$$c_{i} = \frac{1}{\sqrt{N}} \sum_{\mathbf{k}} e^{i\mathbf{k}\mathbf{r}_{i}} c_{\mathbf{k}}, \ c_{i}^{\dagger} = \frac{1}{\sqrt{N}} \sum_{\mathbf{k}} e^{-i\mathbf{k}\mathbf{r}_{i}} c_{\mathbf{k}}^{\dagger}$$
(1.4)

with the completeness relation

$$\sum_{i} e^{i\mathbf{k}\mathbf{r}_{i}} e^{-i\mathbf{k}'\mathbf{r}_{i}} = N\delta_{\mathbf{k},\mathbf{k}'}, \qquad (1.5)$$

eq. (1.3) reads:

$$-t_{X}\frac{1}{N}\sum_{i,\sigma}\sum_{\mathbf{X}}d_{i,\sigma}^{\dagger}d_{i+\delta_{\mathbf{X}},\sigma} = -t_{X}\frac{1}{N}\sum_{i,\sigma}\sum_{\mathbf{k},\mathbf{k}',\delta_{\mathbf{Y}}}\left(e^{-i\mathbf{k}\mathbf{r}_{i}}d_{\mathbf{k},\sigma}^{\dagger}\right)\left(e^{i\mathbf{k}'\mathbf{r}_{i}}e^{i\mathbf{k}'\delta_{\mathbf{X}}}d_{\mathbf{k}',\sigma}\right) \quad (1.6)$$

$$= -t_{X} \frac{1}{N} \sum_{\mathbf{k}, \mathbf{k}', \delta_{X}, \sigma} d^{\dagger}_{\mathbf{k}, \sigma} d_{\mathbf{k}', \sigma} e^{i\mathbf{k}' \delta_{X}} \sum_{i} e^{-i\mathbf{k}\mathbf{r}_{i}} e^{i\mathbf{k}'\mathbf{r}_{i}}$$
(1.7)

$$= -t_{X} \frac{1}{N} \sum_{\mathbf{k}, \mathbf{k}', \sigma} d_{\mathbf{k}, \sigma}^{\dagger} d_{\mathbf{k}', \sigma} \sum_{\delta_{X}} e^{i\mathbf{k}'\delta_{X}} \left(N \delta_{\mathbf{k}, \mathbf{k}'} \right)$$
(1.8)

$$= -t_X \sum_{\mathbf{k},\sigma} d^{\dagger}_{\mathbf{k},\sigma} d_{\mathbf{k},\sigma} \sum_{\delta_X} e^{i\mathbf{k}\delta_X}$$
 (1.9)

This is now diagonal in **k** space. The sum over δ_X can be explicitly calculated using the fact that the nearest neighbours vectors δ_X for the X atoms are the vectors $\delta_{AA,i}$ from ??, for example

$$\mathbf{k} \cdot \delta_{\mathbf{AA},\mathbf{1}} = \begin{pmatrix} k_x \\ k_y \end{pmatrix} \cdot \begin{pmatrix} 1 \\ \sqrt{3} \end{pmatrix} = k_x + \sqrt{3}k_y \tag{1.10}$$

Clear up definition NN vectors and results

$$f_X(\mathbf{k}) = -t_X \sum_{\delta_X} e^{i\mathbf{k}\delta_X}$$
 (1.11)

$$= -t_X \left[e^{ia(\frac{k_x}{2} + \frac{\sqrt{3}k_y}{2})} + e^{iak_x} + e^{ia(\frac{k_x}{2} - \frac{\sqrt{3}k_y}{2})} \right]$$
 (1.12)

$$+ e^{ia(-\frac{k_x}{2} - \frac{\sqrt{3}k_y}{2})} + e^{-iak_x} + e^{ia(-\frac{k_x}{2} + \frac{\sqrt{3}k_y}{2})}$$
 (1.13)

$$= -t_X \left(2\cos(ak_x) + 2e^{ia\frac{\sqrt{3}k_y}{2}}\cos(\frac{a}{2}k_x) + 2e^{-ia\frac{\sqrt{3}k_y}{2}}\cos(\frac{a}{2}k_x) \right)$$
 (1.14)

$$= -2t_X \left(\cos{(ak_x)} + 2\cos{(\frac{a}{2}k_x)} \cos{(\sqrt{3}\frac{a}{2}k_y)} \right). \tag{1.15}$$

The same can be done for the hopping between Graphene sites, for example :

$$-t_{\rm Gr} \sum_{\langle ij\rangle,\sigma\sigma'} c_{i,\sigma}^{(A),\dagger} c_{j,\sigma'}^{(B)} = -t_{\rm Gr} \sum_{i,\sigma\sigma'} \sum_{\delta_{AB}} c_{i,\sigma}^{(A),\dagger} c_{i+\delta_{AB},\sigma'}^{(B)}$$
(1.16)

$$= -t_{\rm Gr} \sum_{\mathbf{k}, \sigma, \sigma'} c_{\mathbf{k}, \sigma}^{(A)\dagger} c_{\mathbf{k}, \sigma'}^{(B)} \sum_{\delta_{AB}} e^{i\mathbf{k}\delta_{AB}}$$
(1.17)

with again the sum over δ_{AB}

$$f_{\rm Gr}(\mathbf{k}) = -t_{\rm Gr} \sum_{\delta_{AB}} e^{i\mathbf{k}\delta_{AB}} \tag{1.18}$$

$$= -t_{\rm Gr} \left(e^{i\frac{a}{\sqrt{3}}k_y} + e^{i\frac{a}{2\sqrt{3}}(\sqrt{3}k_x - k_y)} + e^{i\frac{a}{2\sqrt{3}}(-\sqrt{3}k_x - k_y)} \right)$$
(1.19)

$$= -t_{Gr} \left(e^{i\frac{a}{\sqrt{3}}k_y} + e^{-i\frac{a}{2\sqrt{3}}k_y} \left(e^{i\frac{a}{2}k_x} + e^{-i\frac{a}{2}k_x} \right) \right)$$
 (1.20)

$$= -t_{Gr} \left(e^{i\frac{a}{\sqrt{3}}k_y} + 2e^{-i\frac{a}{2\sqrt{3}}k_y} \cos(\frac{a}{2}k_x) \right)$$
 (1.21)

We note _____ Show that!

$$\sum_{\delta_{AB}} e^{i\mathbf{k}\delta_{AB}} = \left(\sum_{\delta_{BA}} e^{i\mathbf{k}\delta_{BA}}\right)^* = \sum_{\delta_{BA}} e^{-i\mathbf{k}\delta_{BA}}$$
(1.22)

All in all:

$$H_{0} = \sum_{\mathbf{k},\sigma,\sigma'} \begin{pmatrix} c_{\mathbf{k},\sigma}^{A,\dagger} & c_{\mathbf{k},\sigma}^{B,\dagger} & d_{\mathbf{k},\sigma}^{\dagger} \end{pmatrix} \begin{pmatrix} 0 & f_{Gr} & V \\ f_{Gr}^{*} & 0 & 0 \\ V & 0 & f_{X} \end{pmatrix} \begin{pmatrix} c_{\mathbf{k},\sigma}^{A} \\ c_{\mathbf{k},\sigma}^{B} \\ d_{\mathbf{k},\sigma} \end{pmatrix}$$
(1.23)