МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ Національний технічний університет України "Київський політехнічний інститут"

ЗАГАЛЬНА ФІЗИКА

ВИВЧЕННЯ ВІЛЬНИХ КОЛИВАНЬ В ЕЛЕКТРИЧНОМУ КОЛИВАЛЬНОМУ КОНТУРІ

МЕТОДИЧНІ ВКАЗІВКИ

до виконання лабораторної роботи з розділу "КОЛИВАННЯ"

Затверджено Методичною радою НТУУ "КПІ"

Київ НТУУ"КПІ" 2008 Загальна фізика. Вивчення вимушених коливань в електричному коливальному контурі: Метод. вказівки до виконання лаборатор. роботи з курсу "Загальна фізика" В.П.Бригинець, О.О.Гусева, І.В. Лінчевський, Н.О.Якуніна. - К.: НТУУ"КПІ", 2008.- 12 с.

Гриф надано Методичною радою НТУУ "КПІ" (Протокол № від 2008 р.)

Навчальне видання

Загальна фізика

Вивчення вимушених коливань в електричному коливальному контурі

Методичні вказівки

до виконання лабораторної роботи з розділу "КОЛИВАННЯ" курсу "Загальна фізика"

Укладачі:

Бригінець Валентин Петрович,к.ф.-м.н,доцент Гусєва Ольга Олександрівна, к.ф.-м.н,доцент Лінчевський Ігор Валентинович, к.т.н, доцент Якуніна Наталія Олександрівна, к.ф.-м.н,доцент

Відповідальний редактор В.М.Локтєв, д-р ф.-м.н, акад.

Рецензент

Юрачковській П.П., к. ф.-м.н., доцент

ВИМУШЕНІ КОЛИВАННЯ В ПОСЛІДОВНОМУ КОЛИВАЛЬНОМУ КОНТУРІ

Мета роботи: експериментальне дослідження частотної залежності напруги на конденсаторі при вимушених коливаннях у послідовному коливальному контурі. Визначення резонансної частоти, смуги пропускання та добротності контура.

Теоретичні відомості

Вимушені коливання в послідовному контурі. Коливання, що відбуваються внаслідок періодичного зовнішнього впливу на будь-яку фізичну систему, називаються вимушеними. Особливий інтерес являють вимушені коливання осциляторів, тобто, систем, у яких можливі вільні коливання. Прикладом електромагнітного осцилятора є послідовний коливальний контур, — електричне коло, що складається з котушки індуктивності L, конденсатора ємності C і резистора з опором R. Для створення вимушених коливань у контур включають джерело (генератор) змінної EPC E(t). У даній роботі досліджується послідовний контур, схема якого показана на (рис. 1). Під дією генератора в контурі виникають і підтримуються вимушені електромагнітні коливання, тобто, періодичні зміни напруги на елементах контура та струму в ньому.

Рис. 1.

Найпростішим і найважливішим у теорії видом коливань є гармонічні вимушені коливання, що створюються генератором з ЕРС

$$E(t) = E_0 \cos \omega t \tag{1}$$

За законом Ома для ділянки кола квазістаціонарного електричного струму (струму, величина якого в даний момент однакова у всіх елементах кола) можна записати:

$$U_R + U_C = E + E_s \implies IR + \varphi_2 - \varphi_1 = -L \frac{\mathrm{d}I}{\mathrm{d}t} + E(t),$$
 (2)

де $U_{\rm C} = \varphi_{_{\! 1}} - \varphi_{_{\! 1}} = q/C$ — різниця потенціалів (напруга) на обкладках

конденсатора, $U_R = IR$ — напруга на опорі R, $E_s = -L(dI/dt)$ — EPC самоїндукції в котушці, E(t) — EPC генератора (1), внутрішній опір якого вважається малим у порівнянні з R.

Виразимо величини U_C та I через заряд конденсатора q: $U_C = q/C$, I = dq/dt, тоді $E_s = -L(d^2I/dt^2)$. Зробивши такі підстановки в (2), і, поділивши на L, одержимо диференціальне рівняння вимушених електричних коливань у контурі:

$$\frac{\mathrm{d}^2 q}{\mathrm{d}t^2} + \frac{R}{L} \cdot \frac{\mathrm{d}q}{\mathrm{d}t} + \frac{1}{LC} q = \frac{E_0}{L} \cos \omega t,$$

або

$$\frac{\mathrm{d}^2 q}{\mathrm{d}t^2} + 2\beta \frac{\mathrm{d}q}{\mathrm{d}t} + \omega_0^2 q = \frac{E_0}{L} \cos \omega t \tag{3},$$

де $\omega_0 = 1/\sqrt{LC}$ — власна частота контура, тобто, частота вільних коливань у цьому контурі за умови R=0, і $\beta=R/2L$ — коефіцієнт загасання контура.

Рівняння (3) являє собою неоднорідне диференціальне рівняння другого порядку з постійними коефіцієнтами. З математики відомо, що його загальний розв'язок складається із загального розв'язку $q^{o}(t)$ відповідного однорідного рівняння та будь-якого частинного розв'язку q(t) повного рівняння. Однорідна частина (3) має вигляд

$$\frac{\mathrm{d}^2 q^o}{\mathrm{d}t^2} + 2\beta \frac{\mathrm{d}q^o}{\mathrm{d}t} + \omega_0^2 q^o = 0$$

і відповідає вільним загасаючим коливанням у контурі, амплітуда яких змінюється за законом $A(t) = q_0 e^{-\beta t}$ ([1], § 12.2, або [2], § 11.2.). Такі коливання виникають у момент включення генератора й відіграють суттєву роль тільки протягом невеликого проміжку часу $\sim 1/\beta$, після якого в контурі встановлюються стаціонарні гармонічні коливання з частотою генератора ω і сталою амплітудою. Тому частинний розв'язок рівняння (3), що відповідає незагасаючим вимушеним коливанням заряду конденсатора контура можна подати у вигляді:

$$q(t) = q_0 \cos(\omega t - \varphi_0), \tag{4}$$

де q_0 – амплітуда, а φ_0 – зсув фаз між коливаннями заряду конденсатора та ЕРС генератора.

Після підстановки (4) у (3) можна отримати ([1], § 12.3, або [2], § 11.3.) такі вирази q_0 і φ_0 :

$$q_{0} = \frac{E_{0}}{L\sqrt{(\omega_{0}^{2} - \omega^{2})^{2} + 4\beta^{2}\omega^{2}}},$$
 (5)

$$\varphi_0 = -arctg \frac{2\beta\omega}{\omega_0^2 - \omega^2}.$$
 (6)

На практиці режим контура визначають не зарядом конденсатора, а напругою на різних елементах і силою струму в контурі. Зокрема, з урахуванням (4), рівняння вимушених коливань напруги на конденсаторі $U_C = q/C$ має вигляд:

$$U_C = U_{C0} \cos(\omega t - \varphi_0)$$
,

де амплітуда напруги

$$U_{C0} = \frac{E_0}{LC\sqrt{(\omega_0^2 - \omega^2)^2 + 4\beta^2 \omega^2}} = \frac{E_0\omega_0^2}{\sqrt{(\omega_0^2 - \omega^2)^2 + 4\beta^2 \omega^2}}$$
(7)

Продиференціювавши (4) по t, знайдемо рівняння вимушених коливань сили струму I = dq/dt у контурі:

$$I = -\omega q_0 \sin(\omega t - \varphi_0) = I_0 \cos(\omega t - \varphi), \tag{8}$$

де амплітуда струму I_0 і зсув фаз φ між вимушеними коливаннями струму та EPC генератора визначаються виразами:

$$I_{0} = \frac{E_{0}\omega}{L\sqrt{(\omega_{0}^{2} - \omega^{2})^{2} + 4\beta^{2}\omega^{2}}},$$
 (9)

$$\varphi = \varphi_0 - \frac{\pi}{2}. \tag{10}$$

Амплітудні характеристики контура. Резонанс. Характерною особливістю вимушених коливань є залежність (причому не монотонна) їх амплітуди від частоти, що випливає з виразів (7) і (9), які називаються амплітудними характеристиками контура. Справді, якщо частоту ω поступово збільшувати, починаючи з нуля, то величина $\omega_0^2 - \omega^2$ у знаменнику цих виразів спочатку зменшується, потім проходить через 0 і далі необмежено зростає. Відповідно, амплітуда вимушених коливань спочатку зростає, потім сягає максимуму, й далі асимптотично прямує до нуля. Отже, в коливальному контурі можливий резонанс — зростання амплітуди вимушених коливань до максимальної величини при наближенні частоти коливань до певного

значення $\omega_{\text{рез}}$, яке називають резонансною частомою.

Резонансну частоту напруги на конденсаторі ω_u можна знайти, дослідивши вираз (7) на екстремум. Для цього в (7) треба продиференціювати по ω підкорінний вираз і прирівняти похідну до нуля. Результат виходить такий:

$$\omega_u = \sqrt{\omega_0^2 - 2\beta^2} \ . \tag{11}$$

Отже, резонансна частота напруги на конденсаторі менша, ніж власна частота контура, причому, тим менша, чим більше загасання β . Аналогічно, диференціюванням по ω виразу (9), знаходиться резонансна частота сили струму ω_i , яка виявляється рівною власній частоті контура:

$$\omega_i = \omega_0 = \frac{1}{\sqrt{LC}}.$$
 (12)

3 огляду на явище резонансу, амплітудні характеристики, зокрема, $U_{C0} = U_{C0}(\omega)$ та $I_0 = I_0(\omega)$, інакше називають резонансними характеристиками, а їх графіки — резонансними кривими. На рис.2 показано вид резонансних кривих напруги на конденсаторі контура для трьох різних значень загасання, а на рис.3 — аналогічні резонансні криві сили струму в послідовному контурі.

Рис.2

Характерно, що резонансні криві тим вужчі й вищі (тим гостріший резонанс), чим менше загасання контура. Це цілком природньо, оскільки при зменшенні загасання зменшуються втрати енергії коливань.

Існує зв'язок між резонансними кривими й іншою характеристикою контура — його добротністю Q (про добротність див. [1], § 11.2.). При слабкому загасанні ($\beta << \omega_0$) добротність виражається через параметри контура формулою

$$Q = \frac{\omega_0}{2\beta} = \frac{1}{R} \sqrt{\frac{L}{C}} \,. \tag{13}$$

Якщо в (7) замість ω підставити значення (11), то вийде такий вираз для резонансної амплітуди напруги U_m на конденсаторі:

$$U_{p} = \frac{E_{0}\omega_{0}^{2}}{\beta\sqrt{\omega_{0}^{2} - \beta^{2}}}.$$

При слабкому загасанні величина β^2 під коренем є нехтовною, і $U_p = E_0 \frac{\omega_0}{2\,\beta} = E_0 Q$. Отже, добротність контура

$$Q = \frac{U_m}{E_0}. (13a)$$

Таким чином, на конденсаторі послідовного контура відбувається підсилення напруги, а добротність виступає в якості коефіцієнта підсилення. На цьому базується вся техніка приймання радіосигналів. У кожному радіоприймачі є вхідні контури, в яких можна на свій розсуд установлювати резонансну частоту і, тим самим, різко підсилювати сигнал тільки від обраної станції (налаштовуватися на дану станцію).

Якщо в (9) замість ω підставити вираз (12), отримаємо резонансну

амплітуду струму I_m :

$$I_{p} = \frac{E_{0}}{2\beta L} = \frac{E_{0}}{R}.$$
 (14)

З параметрів резонансної кривої струму теж можна визначити добротність контура Q при слабкому загасанні. Можна показати, що в цьому випадку вона визначається, як

$$Q = \frac{\omega_0}{\Delta \omega} = \frac{\omega_0}{\omega_2 - \omega_1}.$$
 (15)

Величина $\Delta \omega = \omega_2 - \omega_1$ називається шириною резонансної кривої або *смугою пропускання контура*; частоти ω_1 і ω_2 відповідають амплітуді струму $I_0 = I_p/\sqrt{2}$, рис. 3.(резонансна крива, на якій відмічено рівень $I_p/\sqrt{2}$ і часто́ти ω_1 і ω_2) При такій амплітуді струму на опорі R виділяється половина резонансної потужності.

Опис лабораторної установки

Для вивчення вимушених коливань у контурі використовується установка, зображена на Рис.4

Рис. 4

За допомогою цієї установки можна вивчити залежність напруги на конденсаторі C (перемикач K1 у положенні 2) або на опорах R1-R3 (перемикач K1 у положенні 1) від частоти ω зовнішнього генератора. Вимірювання напруги діючої здійснюється за допомогою цифрового вольтметра V. Активний опір контура можна змінювати за допомогою резисторів R1-R3 та перемикачів K2-K4.

Порядок виконання роботи

- 1. Увімкнути звуковий генератор в мережу. Встановити на виході генератора напругу 10 В.
- 2. Установити перемикач K1 в положення 2, K2 у положення 1, K3 у положення 2 і K4 у положення 2. (При цьому в контур буде увімкнений опір K1). Змінюючи частоту генератора K1, знайти резонансну частоту K1, при якій напруга на конденсаторі буде максимальною K10 = K11. Значення K12 та K13 занести до табл. 1.
- 3. Зменшуючи й збільшуючи частоту генератора в обидва боки від резонансної частоти (узяти 8-10 значень), виміряти амплітуди напруги Uc_0 Значення f і Uc_0 занести до табл. 1.

Табл. 1

<i>R</i> 1	f_{u}					
	Uc_0					
R2	f_u					
	Uc_0					
R3	f _u					
	Uc ₀					

- 4. Перевести перемикач K1 у положення 1. (При цьому вольтметр V буде показувати напругу на опорі контура). Змінюючи частоту генератора, знайти резонансну частоту f_i , при якій напруга на резисторі R1 буде максимальною. Обчислити амплітуду напруги U_{Rm} на резисторі R1 при резонансній частоті f_i . Значення R1, f_i та U_{Rm} занести до табл. 2.
- 5. Зменшуючи і збільшуючи частоту генератора в обидва боки від резонансної частоти (взяти 8-10 значень частоти), обчислити амплітуди напруги U_{R0} Значення fi та U_{R0} занести до табл. 2. Для кожного значення U_{R0} знайти амплітуду струму $I_0 = U_{R0}/R$ і занести результат у табл. 2.

Табл. 2.

<i>R</i> 1	f_i					
	U_{R0}					
	I_0					
R2	f_i					
	U_{R0}					
	I_0					
R3	fi					
	U_{R0}					
	I_0					

6. Виміри п.п. 2 — 5 повторити при опорі контура R2 та R3. Вибір опорів здійснити за допомогою перемикачів K2 - K4.

Обробка результатів вимірювань

- 1. За даними табл. 1 побудувати резонансні криві $Uc_0 = U(\cancel{r})$ для різних значень R.
- 2. Визначити добротність контура за формулою (13а) для різних значень R. За отриманими даними побудувати графік Q = Q(1/R), відкладаючи по осі ординат добротність Q, а по осі абсцис обернений опір контура 1/R.
- 3. За даними табл. 2 побудувати резонансні криві $I_0 = I(\cancel{f})$ для різних значень R.
- 4. Із графіків п. 3 визначити ширини Δf резонансних кривих струму та обчислити добротність контура Q для різних значень R за формулою

(15). Отримані значення Q нанести на графік п. 2 і порівняти результати, отримані в п. 2 і п. 3.

Контрольні запитання

- 1. Записати диференціальне рівняння вимушених коливань у послідовному контурі. Який вигляд має загальний розв'язок цього рівняння?
- 2. Що таке стаціонарні вимушені коливання та який вигляд має їх рівняння?
- 3. Записати формули для амплітудної характеристики напруги на конденсаторі контура та резонансної частоти напруги.
- 4. Вивести формулу (11).
- 5. Записати формули для амплітудної характеристики струму в контурі та резонансної частоти струму.
- 6. Вивести формулу (12).
- 7. Який вигляд мають резонансні криві напруги на конденсаторі та струму в контурі при різних значеннях опору *R*?
- 8. Що таке добротність контура? Отримати формулу (13).
- 9. Як змінюються параметри резонансних кривих із зміною добротності?
- 10. Як можна визначити добротність за параметрами резонансної кривої напруги на конденсаторі? Отримати формулу (13a).
- 11. Як можна визначити добротність за параметрами резонансної кривої струму в контурі? Що таке ширина резонансної кривої?
- 12. Довести вираз (15)
- 13. Який вигляд має векторна діаграма напруг при вимушених коливаннях у контурі?
- 14. Як відрізняються векторні діаграми напруг на елементах контуру в залежності від частоти генератора?

Література

- 1. Кучерук І.М., Горбачук І.І., Загальний курс фізики, т.2, § 12.3, Техніка, К.2001;
- 2. Иродов И.Е., Электромагнетизм. Основные законы.,Физ-мат лит, М, 2002, §§ 11.2, 11.3.