|     | <br> | <br> | <br> | <br> |  | <br> |
|-----|------|------|------|------|--|------|
| SRN |      |      |      |      |  |      |



## PES University, Bangalore

**UE 17EC 251** 

(Established under Karnataka Act No. 16 of 2013)

## END SEMESTER ASSESSMENT (ESA) - MAY 2019

## **B.TECH. IV SEMESTER**

**UE 17EC 251- CONTROL SYSTEMS** 

Time: 3hrs

**Answer All Questions** 

Max Marks: 100

|    | n.<br>lo. |                                                                                                                                                                                 | Question                                                                                                         | Marks |
|----|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-------|
| 1. | a)        | A coupled spring-mass system is shown in Fig.1. Obtain the differential equations describing the mechanical system and hence draw the $f-i$ electrical analogous of the system. | Force $F(t)$ $M$ $M$ $M$ $B$ $A$                                             | 5     |
|    | b)        | Simplify the block diagram shown in Fig.2 to open loop form.                                                                                                                    | $R \xrightarrow{\downarrow 1} G_1 \xrightarrow{\downarrow 2} G_2 \xrightarrow{3} G_3 \xrightarrow{4} C$ $Fig. 2$ | 8     |
|    | c)        | Determine the transfer function $C(s)/R(s)$ of the Signal flow graph shown in Fig.3                                                                                             | $G_1$ $G_2$ $G_3$ $G_4$ $G_5$ $G_6$ $G_7$ $G_8$ Fig.3                                                            | 7     |

| 1  | n.<br>lo. | Que                                                                                                                                                                                                                                                                                                                                                                        | stion                                                                           | Marks |  |  |  |
|----|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-------|--|--|--|
| 2. | a)        | car is represented by the model spown in Fig. 4. Find                                                                                                                                                                                                                                                                                                                      | Engine and tires $ \begin{array}{c}  & 100 \\  & (s+2)(s+5) \end{array} $ Speed | 6     |  |  |  |
|    | b)        | If $H(s) = 1$ , $Gc(s) = \frac{K}{10s+1}$ and $G(s) = \frac{1}{2s+1}$ in the block diagram of the system shown in Fig. 5 determine:- i) the closed loop transfer function. ii) the sensitivity $S_K^T$ . iii) the steady state error for a step change in the desired consistency if $R(s)=A/s$ . iv) the value of $K$ required for an allowable steady state error of 2%. | M(s)                                                                            | 7     |  |  |  |
|    | c)        | For the system shown in Fig.5, with $H(s) = \frac{1}{2}$ determine:- i) the value of error rate $K_e$ so to ii) the values of $M_p$ and $t_s$ with a Comment on the effect of $K_e$ on performance.                                                                                                                                                                        | that $\xi = 0.5$ .<br>and without error rate control for a step input.          | 7     |  |  |  |
| 3. | a)        | Use R-H criterion to determine the values of $K$ and $a$ so that the UFB system with $G(s) = \frac{K(s+1)}{s^3 + as^2 + 2s + 1}$ oscillates at a frequency of $2rad/sec$ .                                                                                                                                                                                                 |                                                                                 |       |  |  |  |
|    | b)        | The transfer function of a UFB systems is root locus (Mark all the relevant points) to di) range of stability ii) frequency of sustain                                                                                                                                                                                                                                     |                                                                                 | 10    |  |  |  |

| 1  | Qn.<br>No. | Question                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Marks |  |  |
|----|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--|--|
| 4. | a)         | Investigate the stability of the negative feedback control system whose open loop transfer function is given by $GH(s) = \frac{50}{s(0.5s+1)(0.05s+1)}$ . Use Bode plots. Find the following:  i) gain cross over frequency ii) phase cross over frequency iii) gain margin iv) phase margin                                                                                                                                                                       | 10    |  |  |
|    | b)         | Use Nyquist stability criterion to find the range of $K$ for closed loop stability. $G(s)H(s) = \frac{K(4s+1)}{s(s-1)}, K > 0$                                                                                                                                                                                                                                                                                                                                     | 10    |  |  |
| 5. | a)         | A system has a transfer function $\frac{Y(s)}{U(s)} = G(s) = \frac{1}{(s+1)^2}$ . Obtain the state model of the system.                                                                                                                                                                                                                                                                                                                                            |       |  |  |
|    | b)         | A single input, single output system is given by $\dot{x}(t) = Ax(t) + Bu(t)$ $y(t) = Cx(t)$ where, $A = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix}$ , $B = \begin{bmatrix} 0 \\ 2 \end{bmatrix}$ and $C = \begin{bmatrix} 1 & 0 \end{bmatrix}$ Compute the corresponding transfer function representation of the system. If the initial conditions are zero, determine the response $y(t)$ when the input to the system $u(t)$ is a unit step for $t \ge 0$ . | 5     |  |  |
|    | c)         | The state space representation of a system is given by $\dot{x} = \begin{bmatrix} 2 & 0 \\ -1 & 1 \end{bmatrix} x + \begin{bmatrix} 1 \\ -1 \end{bmatrix} u$ $y = \begin{bmatrix} 1 & 1 \end{bmatrix} x$ Determine whether the system is controllable and observable.                                                                                                                                                                                              | 4     |  |  |
|    | d)         | The State variable model of a plant to be controlled is $\dot{x} = \begin{bmatrix} -10 & 0 \\ 1 & 0 \end{bmatrix} x + \begin{bmatrix} 1 \\ 0 \end{bmatrix} u$ $y = \begin{bmatrix} 0 & 1 \end{bmatrix} x + \begin{bmatrix} 0 \end{bmatrix} u$ Determine the state variable feedback gains to achieve a settling time (with a 2% criterion) of 1 second and an overshoot of about 10%.                                                                              | 7     |  |  |