

SEQUENCE LISTING

<110> Hosted, Jr., Thomas J.
Horan, Ann C.

<120> Isolation of Micromonospora carbonacea var africana pMLP1 integrase and use of integrating function for site-specific integration into Micromonospora halophitica and Micromonospora carbonacea chromosome

<130> IN01164K US

<140> 09/855,340
<141> 2001-05-15

<150> 60/204,670
<151> 2000-05-17

<160> 19

<170> PatentIn Ver. 2.1

<210> 1
<211> 1179
<212> DNA
<213> Micromonospora carbonacea

<400> 1
gtgtggatcg agaagaacgg gcccgtctac cgcatcgaa acctcgttcg cggtaaaaag 60
gtcaccattc agaccggtta tccgacgaag accagcgcca agaatgcgtt ggtgcagtcc 120
cgtgcggagc agttgcaggc caacgcgttc atgccgcgcg gcggtcagat taccctcgcc 180
gatttcgtgg gggagtgggtg gccgagctac gaaaagacgc tgaaaccgcg cggcgtgaac 240
tcggaggggca accggatcg caaccacctc ctgccccatac tcggccatct cacccttgac 300
gagctggacg ggcagggtcac ccagcgttgc gtcaacgcggc tggaggccgg cgtcggccgg 360
tggccggagt ccacgcgggg tcgtcgaaag ccgctggcgg cgaagacgtt cagcaactgc 420
cacggcctgc tgcacacgtt ctgcggcgcg gcatcgccg cgaaacggat caggctcaac 480
ccgtgcttcc cgacgtatcg gccccggcgc gagccgaaag agatgaagtt cctgagcgac 540
ccggagatcg gtcggcttat cacggcgtt ccggccgactt ggcgaccgtt cgtcatgctg 600
ctgggtggcga ccggctgttag gtgggggttag gcatcgccg tgcgcggccgg ccgggtcgac 660
ctgctcgccg cgccggcccg gtcgaccgtc gtcgagcggc tccaggagct ggccagcacg 720
ggagagctcg tcttcccgatc gccaaggacc gcaaggggcc ggcgcacggcgtt cagtttacc 780
acgaaagtcg ctctactgt tacggcactc atcgccgaa agaaaagtga cgaggtcgtg 840
ttcacccgcg cggaaaggccg gatggtaagg acgcgcattt tccggccgtt ctgggtcaag 900
gcgtgcgagg aagccggggt tccgggtta cgcatcgatc atctgcggca cactcacgcg 960
gcatcgctga ttctcgccgg gctgtcgatct cccggccctt cggtcactcg 1020
tcgatcgccg tcacggatct gctgtacggg caccgtcgatc aggaggtcga cgaggggatc 1080
ctcgccgcga tcgaggaggc gatggccggc gtcgggtcgatc aggaccttggaa ggcggaaactc 1140
gacgaggagc tgacggacgt gttggccgac gcagcatga 1179

<210> 2
<211> 426
<212> DNA
<213> Micromonospora carbonacea

<400> 2
atgcgcacaaca caccgggggtt gggggcgccg acatggggccg catacgccctt caccggccgc 60
gagcgccgcg gactgaccaa gagcgagttt gccaggcgca tccagaagga cggggccacc 120
gtcgcccggtt gggaggacgg caagaaccgg cccgacgcgtt cggacccgtt tgccgcgtc 180
gcccagggtgc tccggctcgatc cctcgacgaa gcccctcgccg cccgcagggtt cgcggccggc 240
gtcaccggcgcg cagcgaccccc aaccatggac ctggacgcggg aaatcgagctt ggtccgcacc 300

gaccccaaggc tggacgagga catgaaggcg cgcatcatcg ccctaattctt ggagcgccgt 360
gagcgcgaca aggccgcggc gatcgaggaa accaagcgcc tcatcgacct gttccgcgg 420
426
agctga

<210> 3
<211> 34
<212> DNA
<213> Micromonospora carbonacea

<400> 3
ccccggtagt ggttcaattt ccatcagtca cccg

34

<210> 4
<211> 241
<212> DNA
<213> Micromonospora carbonacea

<400> 4
tattagtccg caegccgccc ggccccccg gagcggagcg catgggtggct gttagtcagt 60
tggcagagca cccgggttgtg gtcccccgtt tcgtgggttc aattccatc agtcacccgt 120
acacgaaggc cccctccact cggagggggc cttcggcggtt cctgagggtt cgccgtcagg 180
cggtcggctc ggcgctgggg gactcggccc cgtcggcggtt agtggcctcg gcgtccgggg 240
241
a

<210> 5
<211> 243
<212> DNA
<213> Micromonospora carbonacea

<400> 5
tggcgggggt gtggctatta ttatgtccgca cgccgcccgg ccccgccgga gcggagcgca 60
tggtggttgt agtcagtttgcagacccgggttgttgcgttgcgttcaaa 120
ttcccatcag tcacccggca agtggatcta ctccacagca gatcaggccc cctccgaaga 180
ggggcctga tggtcgtatag gggacaggta gggaaactca acccccggtt cttgtctcg 240
243
gtc

<210> 6
<211> 247
<212> DNA
<213> Micromonospora carbonacea

<400> 6
tagggaaatc cactccggag acgccccggag caatccggag catgacggag caaccagcag 60
gtcagggtggc ctgttgaccc cctgaccagg gccccggtagtac gggttcaatt cccatcagtc 120
acccgtacac gaaggcccccc tccactcgga gggggcccttc ggcgttctcg agggttcg 180
gtcaggcggtt cggctcgccgcttggggact cggccccgtc ggcgggagtg gcctcggcg 240
247
ccggggta

<210> 7
<211> 255
<212> DNA
<213> Micromonospora halophytica

<400> 7
tttctccgca cccggccggg gcgttgcggacc ggggtgcggcg gcatggtggc ttttagtcag 60
ttggcagagc accgggttgtt ggtcccggtt gtcgtgggtt caattccat cagtcacccc 120

aggtaagacc caggtcaggg ccggttctca ccggccctga cgcatttca ggggcatggt 180
ggggcgcta ccgggggtgg ggtgttcac cgcgagccag catctcgatc aggcgatcga 240
255
gccggcgctg ccggg

<210> 8
<211> 315
<212> DNA
<213> Micromonospora halophytica

<400> 8
tttctccgca cccgccccggg gcgttcgacc gggtgccggc gcatggtggc ttagtgcgtac 60
ttggcagagc accgggttgtt ggtcccggtt gtcgtgggtt caattccat cagtcacccg 120
gcaagtggat ctactccaca gcagatcagg cccctccga agagggggcc ttagtgcgtca 180
taggggacag gttagggaaac tcaacccccc gtccttgcct cgcgtccgggt catgccgtcc 240
gcttacccct ccgcgttacctt ggccctctcc cgttctcga tctccggcggc gagctgatcg 300
315
cgcaggtgcg cctcc

<210> 9
<211> 260
<212> DNA
<213> Micromonospora halophytica

<400> 9
taggggaatc cactccggag acgccccggag caatccggag catgacggag caaccagcag 60
gtcaggtggc ctgttgcacc cctgaccagg gccccgggtac gggttcaatt cccatcagtc 120
accccgagta agacccaggta cagggccgggt ttcacccggc cctgacgcata ttccaggggc 180
atggtgtgggg cgctaccggg ggtgggggtgt ctcaccgcga gccagcatct cgatcaggcg 240
260
atcgagccgg cgctgccggg

<210> 10
<211> 209
<212> DNA
<213> artificial sequence

<220>
<223> pMLP1 attP region

<400> 10
taggggaatc cactccggag acgccccggag caatccggag catgacggag caaccagcag 60
gtcaggtggc ctgttgcacc cctgaccagg gccccgggtac gggttcaatt cccatcagtc 120
acccggcaag tggatctact ccacagcaga tcaggcccc tccgaagagg gggcctgatg 180
209
cgtcataggg gacaggttagg ggaactcaa

<210> 11
<211> 19

<212> DNA
<213> artificial sequence

<220>
<223> primer PR144
<400> 11
tgcttcgacg ccatcargg 19

<210> 12
<211> 20
<212> DNA
<213> artificial sequence

<220>
<223> primer PR145
<220>
<221> misc_feature
<222> (7)..(7)
<223> n is inosine (I)

<400> 12
gtggaanccg ccgaakccgc 20
<210> 13
<211> 20
<212> DNA
<213> artificial sequence

<220>
<223> primer PDH504
<400> 13
agggcaacaa gggaagcgta 20
<210> 14

<211> 21
<212> DNA
<213> artificial sequence

<220>
<223> primer PDH505

<400> 14
ggcgaaaaatg tggctattat t 21

<210> 15
<211> 21
<212> PRT
<213> artificial sequence

<220>
<223> amino acid sequence of open reading frame indicated in figures 4b and 4d

<400> 15
Ser Pro Asp Ala Glu Ala Thr Pro Ala Asp Gly Ala Glu Ser Pro Ser
1 5 10 15

Ala Glu Pro Thr Ala
20

<210> 16
<211> 21
<212> PRT
<213> artificial sequence

<220>
<223> amino acid sequence of open reading frame indicated in figures 5b and 5d

<400> 16
Arg Gln Arg Arg Leu Asp Arg Leu Ile Glu Met Leu Ala Arg Gly Glu
1 5 10 15

Thr Pro His Pro Arg
20

<210> 17
<211> 21
<212> PRT
<213> Micromonospora carbonacea

<400> 17

Ser Pro Asp Ala Glu Ala Thr Pro Ala Asp Gly Ala Glu Ser Pro Ser
1 5 10 15

Ala Glu Pro Thr Ala
20

<210> 18
<211> 21
<212> PRT
<213> Micromonospora halophytica

<400> 18

Arg Gln Arg Arg Leu Asp Arg Leu Ile Glu Met Leu Ala Arg Gly Glu
1 5 10 15

Thr Pro His Pro Arg
20

<160> 19

<170> PatentIn version 3.3

<210> 1
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> primer PDH502

<400> 19
ttgttgttcc ggcccgcaac g