Πανεπιστήμιο Κρήτης - Τμήμα Επιστήμης Υπολογιστών Θεωρία Πιθανοτήτων - Πρόοδος Διδάσκων: Π. Τσακαλίδης

12 Νοεμβρίου 2016 - Διάρκεια: 3 Ώρες

Θέμα 1 - 10 μονάδες. Βασικές έννοιες

(a) Ρίχνουμε ένα δίκαιο κέρμα 3 φορές. Ορίζουμε τα γεγονότα $A = \{$ έρχονται περισσότερα από ένα $\Gamma \}$ και $B = \{$ έρχονται ένα ή δύο $K \}$. Είναι τα γεγονότα A και B ανεξάρτητα ;

(β) Αποδείξτε την ακόλουθη πρόταση: Αν τα C και D είναι ανεξάρτητα μεταξύ τους και $D \subset C$, τότε P(D) = 0 ή P(C) = 1.

Θέμα 2 - 15 μονάδες. Συνδυαστική

(a) Ο Χρήστος και ο Ανδρέας είναι δύο καλοί φίλοι που παίζουν στην ίδια ομάδα μπάσκετ. Υπάρχουν συνολικά 8 παίκτες στην ομάδα τους. Η αρχική πεντάδα του τελικού επιλέγεται τυχαία από τους 8 παίκτες. Με ποια πιθανότητα τουλάχιστον ένας από τους δύο φίλους θα αρχίσει τον αγώνα;

(β) Στην εικόνα του Σχήματος 1 επιλέγουμε τυχαία τρεις από τις κουκκίδες και τις ενώνουμε με γραμμές. Ποια είναι η πιθανότητα ότι θα σχηματιστεί ένα τρίγωνο;

Σχήμα 1: Η διάταξη του Θέματος 2(β).

Θέμα 3 - 25 μονάδες. Βασικές έννοιες τ.μ. Γράφος είναι ένα σύνολο από κορυφές που ενώνονται μεταξύ τους με ακμές. Με γράφους μπορούν να μοντελοποιηθούν πολλές διαφορετικές φυσικές ή τεχνολογικές δομές, όπως π.χ. τα δίκτυα υπολογιστών. Στο Σχήμα 2 απεικονίζεται ένας γράφος με 25 κορυφές και ακμές μοναδιαίου μήκους σε ένα καρτεσιανό σύστημα συντεταγμένων. Η κεντρική κορυφή έχει συντεταγμένες (0,0).

Εστω οι ανεξάρτητες τυχαίες μεταβλητές (τ.μ.) X, Y ομοιόμορφα κατενεμημένες στο σύνολο τιμών $\{-2,-1,0,1,2\}$. Επομένως, το ζεύγος (X,Y) αντιπροσωπεύει τις συντεταγμένες των κορυφών ενός γράφου που επιλέγονται τυχαία με ομοιόμορφο τρόπο. Ορίζουμε την τ.μ. H ως την απόσταση (το μήκος της συντομότερης διαδρομής - minimum number of hops) μεταξύ καθενός από τους 25 κόμβους (X,Y) και του κεντρικού κόμβου (0,0). Π.χ. H=3 για την κορυφή (1,2) ενώ H=4 για την κορυφή (2,2).

- (a) Υπολογίστε και δώστε τη γραφική παράσταση της συνάρτησης πιθανότητας (σ . π .) της τ. μ . H.
- **(β)** Υπολογίστε και δώστε τη γραφική παράσταση της $\sigma.\pi$. της τ.μ. H, δεδομένου ότι $|X| \neq |Y|$.
- (γ) Έστω D η Ευκλείδεια απόσταση μεταξύ των κόμβων (X,Y) και (0,0): $D^2=X^2+Y^2$. Υπολογίστε τη δεύτερη ροπή της τ.μ. D, $E[D^2]$.

Σχήμα 2: Ο γράφος του Θέματος 3.

Θέμα 4 - 25 μονάδες. Ανεξάτητες δοκιμές Bernoulli

Ένας φοιτητής δίνει μία εξέταση 10 ερωτήσεων πολλαπλών επιλογών με 5 δυνατές επιλογές ανά ερώτημα. Δεν είναι καλά διαβασμένος (όπως εσείς σήμερα!) οπότε απαντά κάθε ερώτημα διαλέγοντας τυχαία μία από τις 5 δυνατές απαντήσεις, ανεξάρτητα από την μία ερώτηση στην άλλη.

Ορίζουμε $X_i=1$ αν ο φοιτητής απαντήσει σωστά την i-στή ερώτηση και $X_i=0$ αν την απαντήσει λάθος. Έστω Y το πλήθος των ερωτήσεων που απαντά σωστά.

- (a) Υπολογίστε την δεσμευμένη πιθανότητα $P(Y = 3 \mid X_1 = 1, X_{10} = 0)$.
- (β) Αν ο φοιτητής λαμβάνει 2 μονάδες για κάθε σωστή απάντηση, υπολογίστε τη μέση τιμή και διασπορά του συνολικού βαθμού, Z, που επιτυγχάνει στην εξέταση. Πως τα βλέπετε τα πράγματα για τον φίλο μας;
- (γ) Αν ο φοιτητής λαμβάνει 2 μονάδες για κάθε σωστή απάντηση και -1 μονάδα για κάθε λανθασμένη, υπολογίστε τη μέση τιμή και διασπορά του συνολικού βαθμού που λαμβάνει στην εξέταση.

Θέμα 5 - 25 μονάδες. Από κοινού κατανομές

Οι τ.μ. X και Y παίρνουν τιμές x και y, αντίστοιχα, στο σύνολο $\{0,1,2,3\}$. Στον παρακάτω πίνακα μας δίδεται μερική πληροφορία για την από κοινού $\sigma.\pi.$ $p_{X,Y}(x,y)$ και τις περιθωριακές $\sigma.\pi.$ $p_X(x)$ και $p_Y(y)$ των τ.μ. X και Y, αντίστοιχα. Επίσης, μας δίδεται ότι: (i) $P(X=3\mid Y\geq 2)=0.0909$ και (ii) P(X=Y)=0.06.

				Y		
		y = 0	y = 1	y = 2	y = 3	$p_X(x)$
	x = 0	0.01	?	0.1	?	0.3
X	x = 1	0	0	?	0.1	0.2
	x = 2	0.09	0.01	0.05	0.05	0.2
	x = 3	0.05	0.2	?	?	?
	$p_Y(y)$	0.15	?	0.3	0.25	

- (a) Χρησιμοποιώντας την πληροφορία που σας δίδεται, να συμπληρώσετε τις εφτά τιμές που λείπουν στον πίνακα.
- (β) Υπολογίστε την πιθανότητα η τ.μ. X να παίρνει τιμές μεγαλύτερες από την τ.μ. Y.
- **(γ)** Δεδομένου ότι Y=0, ποια είναι η δεσμευμένη πιθανότητα ότι X=3;
- **(δ)** Υπολογίστε τη δεσμευμένη πιθανότητα P(Y είναι ζυγός | X είναι περιττός);
- (ε) Έστω $Z=3X-Y^2$. Βρείτε τη μέση τιμή, E[Z], της τ.μ. Z.