

Literacy situation models knowledge base creation

Erik Kastelec, Bjorn Bračko, and Matic Isovski

Abstract

The abstract goes here. The abstract goes here.

Keywords

Keyword1, Keyword2, Keyword3 ...

Advisors: Slavko Žitnik

Introduction

Literary text comprehension is a complex and challenging task in natural language processing.

To extract the relevant information, we need to address a number of challenging language processing tasks.

This article will focus on capturing information in a form of a Knowledge Graph (KG). In the recent years event-centric KGs started to replace the conventional entity-centric KGs. Event-centric KGs allow us to more easily capture causal and temporal relations as well as relations between entities.

We can see that event extraction is one of the main sub tasks for our knowledge base creation. In the recent years methods for sentence-level event extraction are being replaced with document-level event extractors.

To understand how extracted events are connected, event causal relation extraction (ECE) methods are used. Causal relations define what events caused another event. For event causal relation extraction there are two available datasets, Causal-TimeBank [1] and EventStoryLine[2].

Transformer-based machine learning technique BERT was introduced in Devlin et al. [3]. In Hosseini et al. [4] they show that BERT can be used to predict directionality in causal pairs. They also present a CREST framework, which unifies causal relation datasets.

In Gao et al. [5] they present a document level main event detection based on event participating in multiple causal links.

A rule-based, domain-sensitive multilingual temporal tagger HeidelTime was introduces in [6].

In Wei et al. [7] they propose a translation-based approach for cross-lingual data augmentation, which can be used on labeled data from a different language to extend the available training data.

In recent years a lot of work has been done to improve natural language processing (NLP) for Slovene language. Large accurately annotated corpora are needed for NLP task, such as the latest training corpus ssj500k introduced in Krek et al. (2019) [8], which was used for training models for CLASSLA pipeline, which can be used for text preprocessing as well as named entity extraction (NER). CLASSLA library was introduced in Ljubešić and Dobrovoljc (2019) [9]

Methods

Use the Methods section to describe what you did an how you did it – in what way did you prepare the data, what algorithms did you use, how did you test various solutions ... Provide all the required details for a reproduction of your work.

Below are LATeX examples of some common elements that you will probably need when writing your report (e.g. figures, equations, lists, code examples ...).

Equations

You can write equations inline, e.g. $\cos \pi = -1$, $E = m \cdot c^2$ and α , or you can include them as separate objects. The Bayes's rule is stated mathematically as:

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)},\tag{1}$$

where *A* and *B* are some events. You can also reference it – the equation 1 describes the Bayes's rule.

Lists

We can insert numbered and bullet lists:

- 1. First item in the list.
- 2. Second item in the list.
- 3. Third item in the list.
- First item in the list.
- Second item in the list.
- Third item in the list.

We can use the description environment to define or describe key terms and phrases.

Word What is a word?.

Concept What is a concept?

Idea What is an idea?

Random text

This text is inserted only to make this template look more like a proper report. Lorem ipsum dolor sit amet, consectetur adipiscing elit. Etiam blandit dictum facilisis. Lorem ipsum dolor sit amet, consectetur adipiscing elit. Interdum et malesuada fames ac ante ipsum primis in faucibus. Etiam convallis tellus velit, quis ornare ipsum aliquam id. Maecenas tempus mauris sit amet libero elementum eleifend. Nulla nunc orci, consectetur non consequat ac, consequat non nisl. Aenean vitae dui nec ex fringilla malesuada. Proin elit libero, faucibus eget neque quis, condimentum laoreet urna. Etiam at nunc quis felis pulvinar dignissim. Phasellus turpis turpis, vestibulum eget imperdiet in, molestie eget neque. Curabitur quis ante sed nunc varius dictum non quis nisl. Donec nec lobortis velit. Ut cursus, libero efficitur dictum imperdiet, odio mi fermentum dui, id vulputate metus velit sit amet risus. Nulla vel volutpat elit. Mauris ex erat, pulvinar ac accumsan sit amet, ultrices sit amet turpis.

Phasellus in ligula nunc. Vivamus sem lorem, malesuada sed pretium quis, varius convallis lectus. Quisque in risus nec lectus lobortis gravida non a sem. Quisque et vestibulum sem, vel mollis dolor. Nullam ante ex, scelerisque ac efficitur vel, rhoncus quis lectus. Pellentesque scelerisque efficitur purus in faucibus. Maecenas vestibulum vulputate nisl sed vestibulum. Nullam varius turpis in hendrerit posuere.

Figures

You can insert figures that span over the whole page, or over just a single column. The first one, Figure 1, is an example of a figure that spans only across one of the two columns in the report.

Figure 1. A random visualization. This is an example of a figure that spans only across one of the two columns.

On the other hand, Figure 2 is an example of a figure that spans across the whole page (across both columns) of the report.

Tables

Use the table environment to insert tables.

Table 1. Table of grades.

Name		
First name	Last Name	Grade
John	Doe	7.5
Jane	Doe	10
Mike	Smith	8

Code examples

You can also insert short code examples. You can specify them manually, or insert a whole file with code. Please avoid inserting long code snippets, advisors will have access to your repositories and can take a look at your code there. If necessary, you can use this technique to insert code (or pseudo code) of short algorithms that are crucial for the understanding of the manuscript.

Listing 1. Insert code directly from a file.

Figure 2. Visualization of a Bayesian hierarchical model. This is an example of a figure that spans the whole width of the report.

```
import os
import time
import random

fruits = ["apple", "banana", "cherry"]
for x in fruits:
    print(x)
```

Listing 2. Write the code you want to insert.

Results

Use the results section to present the final results of your work. Present the results in a objective and scientific fashion. Use visualisations to convey your results in a clear and efficient manner. When comparing results between various techniques use appropriate statistical methodology.

More random text

This text is inserted only to make this template look more like a proper report. Lorem ipsum dolor sit amet, consectetur adipiscing elit. Etiam blandit dictum facilisis. Lorem ipsum dolor sit amet, consectetur adipiscing elit. Interdum et malesuada fames ac ante ipsum primis in faucibus. Etiam convallis tellus velit, quis ornare ipsum aliquam id. Maecenas tempus mauris sit amet libero elementum eleifend. Nulla nunc orci, consectetur non consequat ac, consequat non nisl. Aenean vitae dui nec ex fringilla malesuada. Proin elit libero, faucibus eget neque quis, condimentum laoreet urna. Etiam at nunc quis felis pulvinar dignissim. Phasellus turpis turpis, vestibulum eget imperdiet in, molestie eget neque. Curabitur quis ante sed nunc varius dictum non quis nisl. Donec nec lobortis velit. Ut cursus, libero efficitur dictum imperdiet, odio mi fermentum dui, id vulputate metus velit sit amet risus. Nulla vel volutpat elit. Mauris ex erat, pulvinar ac accumsan sit amet, ultrices sit amet turpis.

Phasellus in ligula nunc. Vivamus sem lorem, malesuada sed pretium quis, varius convallis lectus. Quisque in risus nec lectus lobortis gravida non a sem. Quisque et vestibulum sem, vel mollis dolor. Nullam ante ex, scelerisque ac efficitur vel, rhoncus quis lectus. Pellentesque scelerisque efficitur purus in faucibus. Maecenas vestibulum vulputate nisl sed vestibulum. Nullam varius turpis in hendrerit posuere.

Nulla rhoncus tortor eget ipsum commodo lacinia sit amet eu urna. Cras maximus leo mauris, ac congue eros sollicitudin ac. Integer vel erat varius, scelerisque orci eu, tristique purus. Proin id leo quis ante pharetra suscipit et non magna. Morbi in volutpat erat. Vivamus sit amet libero eu lacus pulvinar pharetra sed at felis. Vivamus non nibh a orci viverra rhoncus sit amet ullamcorper sem. Ut nec tempor dui. Aliquam convallis vitae nisi ac volutpat. Nam accumsan, erat eget faucibus

commodo, ligula dui cursus nisi, at laoreet odio augue id eros. Curabitur quis tellus eget nunc ornare auctor.

Discussion

Use the Discussion section to objectively evaluate your work, do not just put praise on everything you did, be critical and exposes flaws and weaknesses of your solution. You can also explain what you would do differently if you would be able to start again and what upgrades could be done on the project in the future.

Acknowledgments

Here you can thank other persons (advisors, colleagues ...) that contributed to the successful completion of your project.

References

- [1] Paramita Mirza and Sara Tonelli. An analysis of causality between events and its relation to temporal information. In *COLING*, 2014.
- [2] Tommaso Caselli and P. Vossen. The event storyline corpus: A new benchmark for causal and temporal relation extraction. In NEWS@ACL, 2017.
- [3] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidirectional transformers for language understanding. In NAACL, 2019.
- [4] Pedram Hosseini, David A. Broniatowski, and Mona T. Diab. Predicting directionality in causal relations in text. ArXiv, abs/2103.13606, 2021.

- [5] Lei Gao, Prafulla Kumar Choubey, and Ruihong Huang. Modeling document-level causal structures for event causal relation identification. In NAACL, 2019.
- [6] Jannik Strotgen and Michael Gertz. A baseline temporal tagger for all languages. In EMNLP, 2015.
- [7] Sam Wei, Igor Korostil, Joel Nothman, and Ben Hachey. English event detection with translated language features. In *Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)*, pages 293–298, Vancouver, Canada, July 2017. Association for Computational Linguistics.
- [8] Simon Krek, Kaja Dobrovoljc, Tomaž Erjavec, Sara Može, Nina Ledinek, Nanika Holz, Katja Zupan, Polona Gantar, Taja Kuzman, Jaka Čibej, Špela Arhar Holdt, Teja Kavčič, Iza Škrjanec, Dafne Marko, Lucija Jezeršek, and Anja Zajc. Training corpus ssj500k 2.2, 2019. Slovenian language resource repository CLARIN.SI.
- [9] Nikola Ljubešić and Kaja Dobrovoljc. What does neural bring? analysing improvements in morphosyntactic annotation and lemmatisation of Slovenian, Croatian and Serbian. In *Proceedings of the 7th Workshop on Balto-Slavic Natural Language Processing*, pages 29–34, Florence, Italy, August 2019. Association for Computational Linguistics.