Kovariācija. Korelācijas koeficients.

Kā aprakstīt divu gadījuma lielumu savstarpējo saistību?

Definīcija. Par divu gadījuma lielumu ξ_1 un ξ_2 <u>kovariāciju</u> sauc skaitli

$$K(\xi_1, \xi_2) = M((\xi_1 - M \xi_1)(\xi_2 - M \xi_2))$$

Var pārrakstīt 4. dispersijas īpašību:

$$D(\xi_1 \pm \xi_2) = D\xi_1 + D\xi_2 \pm 2M ((\xi_1 - M \xi_1)(\xi_2 - M \xi_2)) =$$

$$= D\xi_1 + D\xi_2 \pm 2K(\xi_1, \xi_2)$$

$$K(\xi_{1},\xi_{2}) = M(\xi_{1}\xi_{2} - \xi_{1}M\xi_{2} - \xi_{2}M\xi_{1} + M\xi_{1}M\xi_{2}) = M(\xi_{1}\xi_{2}) - M\xi_{1}M\xi_{2}$$

Kovariācijas īpašības.

1.
$$K(\xi, \xi) = D\xi$$

2.
$$K(\xi_1, \xi_2) = K(\xi_2, \xi_1)$$

3.
$$K(c\xi_1, \xi_2) = cK(\xi_1, \xi_2)$$

4. neatkarīgiem gadījuma lielumiem $K(\xi_1, \xi_2) = 0$, jo $K(\xi_1, \xi_2) = M(\xi_1 \xi_2) - M \xi_1 M \xi_2$

4a. no $K(\xi_1, \xi_2) = 0$ vēl neseko, ka ξ_1 un ξ_2 neatkarīgi.

5. $-\infty < K(\xi, \xi) < \infty$ (galvenais kovariācijas trūkums)

Definīcija. Par divu gadījuma lielumu ξ_1 un ξ_2 <u>korelācijas koeficientu</u> sauc skaitli

$$\rho(\xi_1, \xi_2) = \frac{K(\xi_1, \xi_2)}{\sqrt{D\xi_1 D\xi_2}}$$

Korelācijas koeficienta īpašības.

$$1. -1 \le \rho(\xi_1, \xi_2) \le 1$$

Pierādījums. Ievedīsim normētu gadījuma lielumu $\tilde{\xi} = \frac{\xi - M \xi}{\sqrt{D\xi}}$

$$M\,\tilde{\xi} = \frac{1}{\sqrt{D\xi}}M\,(\xi - M\,\xi) = 0 \qquad \qquad D\tilde{\xi} = \left(\frac{1}{\sqrt{D\xi}}\right)^2D(\xi - M\,\xi) = \frac{1}{D\xi}(D\xi + 0) = 1$$

$$\rho(\xi_{1}, \xi_{2}) = \frac{M((\xi_{1} - M \xi_{1})(\xi_{2} - M \xi_{2}))}{\sqrt{D\xi_{1}D\xi_{2}}} = M(\tilde{\xi}_{1}\tilde{\xi}_{2})$$

$$0 \leq D(\tilde{\xi}_{1} \pm \tilde{\xi}_{2}) = M(\tilde{\xi}_{1} \pm \tilde{\xi}_{2})^{2} - (M(\tilde{\xi}_{1} \pm \tilde{\xi}_{2}))^{2} = M\tilde{\xi}_{1}^{2} \pm 2M(\tilde{\xi}_{1}\tilde{\xi}_{2}) + M\tilde{\xi}_{2}^{2} =$$

$$= 2 \pm 2\rho(\xi_{1}, \xi_{2}) \qquad \Rightarrow \qquad -1 \leq \rho(\xi_{1}, \xi_{2}) \leq 1$$

2. neatkarīgiem gadījuma lielumiem $\rho(\xi_1, \xi_2) = 0$. Seko no kovariācijas 4. īpašības.

3. Ja
$$\xi_2 = A\xi_1 + B$$
 un $A \neq 0$, tad $|\rho(\xi_1, \xi_2)| = 1$

Pierādījums. Pieņemsim, ka $M\,\xi_1=a\,$ un $D\,\xi_1=\sigma^2$. Tad $M\,\xi_2=Aa+B\,$ un $D\,\xi_2=A^2\sigma^2$.

$$K(\xi_1, \xi_2) = M((\xi_1 - a)(\xi_2 - Aa + B)) = M((\xi_1 - a)(A\xi_1 - B - Aa + B)) =$$

$$= AM(\xi_1 - a)^2 = A\sigma^2$$

$$\rho(\xi_1, \xi_2) = \frac{A\sigma^2}{\sqrt{\sigma^2 A^2 \sigma^2}} = \frac{A}{\pm A} = \pm 1$$

Augstāku kārtu momenti. k-tās kārtas sākuma moments $M \xi^k$.

k-tās kārtas centrālais moments $M(\xi - M\xi)^k$.

Statisticians may be dull, but they have their moments!

Jauktie momenti.

Dots gadījuma vektors $\vec{\xi} = (\xi_1, \xi_2, ..., \xi_n)$

<u>Definīcija</u>. Skaitli $M\left(\xi_1^{k_1}\xi_2^{k_2}...\xi_n^{k_n}\right)$, kur $k=\sum_{i=1}^n k_i$, sauc par gadījuma lielumu $\xi_1, \xi_2, ..., \xi_n$ jaukto k-tās kārtas momentu.

Definīcija. Skaitli
$$M\left(\left(\xi_1 - M \xi_1\right)^{k_1} \left(\xi_2 - M \xi_2\right)^{k_2} ... \left(\xi_n - M \xi_n\right)^{k_n}\right)$$
, kur

 $k = \sum_{i=1}^{n} k_i$, sauc par gadījuma lielumu $\xi_1, \xi_2, ..., \xi_n$ jaukto k-tās kārtas centrālo momentu.

Kovariācija ir divu gadījuma lielumu otrās kārtas jauktais centrālais moments.

$$K(\xi_{1}, \xi_{2}) = M((\xi_{1} - M \xi_{1})(\xi_{2} - M \xi_{2})) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (x_{1} - M \xi_{1})(x_{2} - M \xi_{2}) p_{\xi_{1}\xi_{2}}(x_{1}, x_{2}) dx_{1} dx_{2}$$

$$K(\xi_{1}, \xi_{2}) = M((\xi_{1} - M \xi_{1})(\xi_{2} - M \xi_{2})) = \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} (x_{1_{i}} - M \xi_{1})(x_{2_{j}} - M \xi_{2}) p_{ij}$$

Kovariācijas aprēķina piemēri.

1. Diskrēts sadalījums

\$ 52	-2	0	2	4
1	0.1	0.2	0.1	0
2	0.2	0.1	0	0.1
3	0	0	0.1	0.1

Koordinātas ξ_1 sadalījuma likums

Š١	1	2	3
p	0.4	0.4	0.2

Koordinātas ξ_2 sadalījuma likums

<i>ξ</i> ₂	-2	0	2	4
p	0.3	0.3	0.2	0.2

$$M \xi_1 = 1 \cdot 0.4 + 2 \cdot 0.4 + 3 \cdot 0.2 = 1.8$$

$$M \xi_2 = -2 \cdot 0.3 + 0 \cdot 0.3 + 2 \cdot 0.2 + 4 \cdot 0.2 = 0.6$$

$$\begin{split} K(\xi_1,\xi_2) &= \sum_{i=1}^3 \sum_{j=1}^4 \left(x_{1_i} - M \, \xi_1 \right) (x_{2_j} - M \, \xi_2) \, p_{ij} = \\ &= (1-1.8)(-2-0.6)0.1 + (1-1.8)(0-0.6)0.2 + (1-1.8)(2-0.6)0.1 + (1-1.8)(4-0.6)0 + \\ &+ (2-1.8)(-2-0.6)0.2 + (2-1.8)(0-0.6)0.1 + (2-1.8)(2-0.6)0 + (2-1.8)(4-0.6)0.1 + \\ &+ (3-1.8)(-2-0.6)0 + (3-1.8)(0-0.6)0 + (3-1.8)(2-0.6)0.1 + (3-1.8)(4-0.6)0.1 = 0.72 \end{split}$$

Kovariācijas aprēķina piemēri.

2. Nepārtraukts sadalījums.

Dota gadījuma vektora $\vec{\xi}=(\xi_1,\xi_2)$ sadalījuma blīvuma funkcija $p_{\xi_1\xi_2}(x,y)=rac{4}{3}(x+rac{y}{2})$, ja $x,y\in D$, ko nosaka nevienādības 0< x<1 un 0< y<1. Ārpus šī apgabala p(x,y)=0. Aprēķināsim gadījuma lielumu ξ_1 un ξ_2 kovariāciju.

$$K(\xi_1, \xi_2) = M((\xi_1 - M \xi_1)(\xi_2 - M \xi_2)) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (x_1 - M \xi_1)(x_2 - M \xi_2) p_{\xi_1 \xi_2}(x_1, x_2) dx_1 dx_2$$

$$p_{\xi_1}(x) = \int_0^1 \frac{4}{3}(x + \frac{y}{2})dy = \frac{4}{3}x + \frac{1}{3}$$

$$p_{\xi_2}(y) = \int_0^1 \frac{4}{3}(x + \frac{y}{2})dx = \frac{2}{3} + \frac{2}{3}y$$

$$M\xi_1 = \int_0^1 x \left(\frac{4}{3}x + \frac{1}{3}\right)dx = \frac{11}{18}$$

$$M\xi_2 = \int_0^1 y \left(\frac{2}{3} + \frac{2}{3}y\right)dy = \frac{5}{9}$$

$$K(\xi_1, \xi_2) = \int_0^1 \int_0^1 (x - \frac{11}{18})(y - \frac{5}{9}) \frac{4}{3} \left(x + \frac{y}{2}\right) dx dy = -\frac{1}{162} \approx -0.0061728$$

Piemērs

No Kovariācijas vienādības ar 0 vēl neseko gadījuma lielumu neatkarība (īpašība 4a).

$\xi_1 \setminus \xi_2$	1	2	3
1	0	0.2	0
2	0.1	0	0.1
3	0.2	0.2	0.2

$$M \xi_1 = 1 \cdot 0.2 + 2 \cdot 0.2 + 3 \cdot 0.6 = 2.4$$
$$M \xi_2 = 1 \cdot 0.3 + 2 \cdot 0.4 + 3 \cdot 0.3 = 2$$

Koordinātas ξ_1 sadalījuma likums

51	1	2	3
p	0.2	0.2	0.6

Koordinātas ξ_2 sadalījuma likums

ξ ₂	1	2	3
p	0.3	0.4	0.3

$$K(\xi_1, \xi_2) = \sum_{i=1}^{3} \sum_{j=1}^{3} (x_{1_i} - M \xi_1)(x_{2_j} - M \xi_2) p_{ij} = (1 - 2.4)(1 - 2)0 + (1 - 2.4)(2 - 2)0.2 + (1 - 2.4)(2 - 2)0 + (2 - 2.4)(2 - 2)0.1 + (2 - 2.4)(2 -$$

$$+(1-2.4)(3-2)0 + (2-2.4)(1-2)0.1 + (2-2.4)(2-2)0 + (2-2.4)(3-2)0.1 + (3-2.4)(1-2)0.2 + (3-2.4)(2-2)0.2 + (3-2.4)(3-2)0.2 = 0$$

Taču lielumi ir atkarīgi, io, piemēram,

			-, J - , F						
	$\xi_2 \xi_1 = 1$	1	2	3		$\xi_2 \left \xi_1 = 3 \right $	1	2	
	P	$\frac{0}{0.2} = 0$	$\frac{0.2}{0.2} = 1$	$\frac{0}{0.2} = 0$		P	$\frac{0.2}{0.6} = \frac{1}{3}$	$\frac{0.2}{0.6} = \frac{1}{3}$	
I	$P(\xi_2 (\xi_1 = 1) =$	1) = $\frac{P(\xi_1 = 1)}{P(\xi_1 = 1)}$	$\frac{\xi_2 = 1}{= 1} = \frac{0}{0.2}$	=0 $P($	$\xi_2 (\xi_1 $	$=1)=2)=\frac{P(a)}{a}$	$\frac{\xi_1}{\xi_1} = 1, \xi_2 = 2$ $P(\xi_1 = 1)$	$-\frac{0.2}{0.2} = 1$	
N	Jostkariaiam	lialumiam	čiom godolīji	ımiam būtu i	āhūt v	vionādiom			

$$P$$
 $\frac{0}{0.2} = 0$ $\frac{0.2}{0.2} = 1$ $\frac{0}{0.2} = 0$

$$P(\xi_2 | (\xi_1 = 1) = 1) = \frac{P(\xi_1 = 1, \xi_2 = 1)}{P(\xi_1 = 1)} = \frac{0}{0.2} = 0$$

$$P(\xi_2 | (\xi_1 = 1) = 2) = \frac{P(\xi_1 = 1, \xi_2 = 2)}{P(\xi_1 = 1)} = \frac{0.2}{0.2} = 1$$

Neatkarīgiem lielumiem šiem sadalījumiem būtu jābūt vienādiem.

Korelācijas koeficienta aprēķins 1. piemērs

Koordinātas ξ_1 sadalījuma likums

ξ_1	1	2	3
p	0.4	0.4	0.2

Koordinātas ξ_2 sadalījuma likums

<i>ξ</i> ₂	-2	0	2	4
p	0.3	0.3	0.2	0.2

$$M \, \xi_1 = 1.8$$

$$M \, \xi_2 = 0.6$$

$$M \, \xi_1 = 1.8$$
 $M \, \xi_2 = 0.6$ $K(\xi_1, \xi_2) = 0.72$

$$D\xi_1 = (1-1.8)^2 \cdot 0.4 + (2-1.8)^2 \cdot 0.4 + (3-1.8)^2 \cdot 0.2 = 0.56$$

$$D\xi_2 = (-2 - 0.6)^2 \cdot 0.3 + (0 - 0.6)^2 \cdot 0.3 + (2 - 0.6)^2 \cdot 0.2 + (4 - 0.6)^2 \cdot 0.2 = 4.84$$

$$\sigma(\xi_1) = \sqrt{0.56} = 0.74833$$
 $\sigma(\xi_2) = \sqrt{4.84} = 2.2$

$$\sigma(\xi_2) = \sqrt{4.84} = 2.2$$

$$\rho(\xi_1, \xi_2) = \frac{K(\xi_1, \xi_2)}{\sigma(\xi_1)\sigma(\xi_2)} = \frac{0.72}{0.74833 \cdot 2.2} = 0.43734$$

Korelācijas koeficienta aprēķins

2. piemērs

$$p_{\xi_{1}\xi_{2}}(x,y) = \frac{4}{3}(x+\frac{y}{2})$$

$$p_{\xi_{1}}(x) = \int_{0}^{1} \frac{4}{3}(x+\frac{y}{2})dy = \frac{4}{3}x + \frac{1}{3}$$

$$p_{\xi_{2}}(y) = \int_{0}^{1} \frac{4}{3}(x+\frac{y}{2})dx = \frac{2}{3} + \frac{2}{3}y$$

$$M\xi_{1} = \frac{11}{18}$$

$$M\xi_{2} = \frac{5}{9}$$

$$K(\xi_{1}, \xi_{2}) = -0.0061728$$

$$D\xi_1 = \int_0^1 \left(x - \frac{11}{18}\right)^2 \left(\frac{4}{3}x + \frac{1}{3}\right) dx = \frac{23}{324} \approx 0.070988$$

$$D\xi_2 = \int_0^1 \left(y - \frac{5}{9}\right)^2 \left(\frac{2}{3} + \frac{2}{3}y\right) dy = \frac{13}{162} \approx 0.080247$$

$$\sigma(\xi_1) = \sqrt{0.070988} = 0.26644$$

$$\sigma(\xi_2) = \sqrt{0.080247} = 0.28328$$

$$\rho(\xi_1, \xi_2) = \frac{K(\xi_1, \xi_2)}{\sigma(\xi_1)\sigma(\xi_2)} = \frac{-0.0061728}{0.26644 \cdot 0.28328} = -0.081784$$

Varbūtību teorijas robežteorēmas.

Lielā skaita likums. (The Law of Great Numbers. Закон больших чисел)

1. teorēma. Ja gadījuma lielums $\xi = \xi(\omega) \ge 0$ visiem $\omega \in \Omega$ un $M\xi < \infty$, tad

jebkuram
$$\varepsilon > 0$$
 ir spēkā $P(\xi \ge \varepsilon) \le \frac{M\xi}{\varepsilon}$.

<u>Pierādījums.</u> Apzīmēsim $\Omega_{\varepsilon} = \{\omega : \xi(\omega) \ge \varepsilon\} \subset \Omega$. Ievedīsim jaunu gadījuma

lielumu
$$\eta = \begin{cases} 0, & \omega \notin \Omega_{\varepsilon} \\ \varepsilon, & \omega \in \Omega_{\varepsilon} \end{cases}$$
. Redzams, ka visiem $\omega \in \Omega$ ir spēkā $\xi \geq \eta$. Tad

$$M\xi = \int_{\Omega} xp(x)dx \ge \int_{\Omega_{\varepsilon}} xp(x)dx \ge \int_{\Omega_{\varepsilon}} \varepsilon p(x)dx \ge \varepsilon \int_{\Omega_{\varepsilon}} p(x)dx = \varepsilon P(\xi \ge \varepsilon).$$

2. teorēma (Čebiševa nevienādība). Ja gadījuma lielumam ξ $D\xi < \infty$, tad jebkuram

$$\varepsilon > 0$$
 ir spēkā $P(\left|\xi - M\xi\right| \ge \varepsilon) \le \frac{D\xi}{\varepsilon^2}$.

<u>Pierādījums.</u> Ievedīsim jaunu gadījuma lielumu $\eta = (\xi - M \xi)^2 \ge 0$.

$$M\eta = M(\xi - M\xi)^2 = D\xi$$
 un saskaņā ar 1. teorēmu

$$P(\eta \ge \varepsilon^2) = P((\xi - M\xi)^2 \ge \varepsilon^2) = P(|\xi - M\xi| \ge \varepsilon) \le \frac{M\eta}{\varepsilon^2} = \frac{D\xi}{\varepsilon^2}.$$

Piemērs. $\xi \sim N(0,1)$. Novērtēsim $P(|\xi| > 3)$. Saskaņā ar 2. teorēmu $P(|\xi| > 3) \le \frac{1}{9} \approx 0.11111$. Precīzi: $P(|\xi| > 3) = 1 - 2\Phi_0(3) = 1 - 2 \cdot 0.49865 = 0.0026998$.

3. teorēma (Lielā skaita likums). Ja gadījuma lielumi $\xi_1, \xi_2, ..., \xi_n, ...$ neatkarīgi un to dispersijām ir spēkā $\lim_{n\to\infty}\frac{1}{n^2}\sum_{k=1}^n D\xi_k=0$, tad jebkuram $\varepsilon>0$:

 $\lim_{n\to\infty} P(\left|\frac{1}{n}\sum_{k=1}^n \xi_k - \frac{1}{n}\sum_{k=1}^n M\xi_k\right| < \varepsilon) = 1$. (Vidējais aritmētiskais tiecas uz vidējo matemātisko cerību pēc varbūtības).

<u>Pierādījums.</u> Ievedīsim gadījuma lielumus $\eta_n = \frac{1}{n} \sum_{k=1}^n \xi_k$. Tad jāpierāda, ka

$$\lim_{n\to\infty} P(|\eta_n - M\eta_n| \ge \varepsilon) = 0. \text{ No lielumu neatkarības seko } D\eta_n = \frac{1}{n^2} \sum_{k=1}^n D\xi_k \text{ (*)}.$$

No Čebiševa nevienādības: $P(|\eta_n - M\eta_n| \ge \varepsilon) \le \frac{D\eta_n}{\varepsilon^2}$. Tad

$$\lim_{n\to\infty} P(\left|\eta_n - M\eta_n\right| \ge \varepsilon) \le \frac{1}{\varepsilon^2} \lim_{n\to\infty} \frac{1}{n^2} \sum_{k=1}^n D\xi_k = 0$$
. Teorēma pierādīta.

<u>Piezīme.</u> Gadījuma lielumu $\xi_1, \xi_2, ..., \xi_n, ...$ neatkarības prasību var nedaudz mīkstināt. Pietiek ar to nekorelētību pa pāriem, jo, ja $K(\xi_i, \xi_j) = 0$, tad arī izpildās (*).

Ja gadījuma lielumiem $\xi_1, \xi_2, ..., \xi_n, ...$ izpildās 3. teorēmas nosacījumi, saka, ka tiem ir spēkā lielā skaita likums.

4. teorēma (Čebiševa teorēma). Ja gadījuma lielumi $\xi_1, \xi_2, ..., \xi_n, ...$ neatkarīgi un to dispersijas ir vienmērīgi ierobežotas, t.i., $D\xi_k \leq c$, visiem k=1,2,...tad jebkuram

$$\varepsilon > 0: \lim_{n \to \infty} P\left(\left| \frac{1}{n} \sum_{k=1}^{n} \xi_k - \frac{1}{n} \sum_{k=1}^{n} M \xi_k \right| < \varepsilon\right) = 1. \text{ (Tas pats apgalvojums, kas 3. teorēmā).}$$

<u>Pierādījums.</u> Ja $D\xi_k \le c$, tad izpildās 3. teorēmas prasība $\lim_{n\to\infty} \frac{1}{n^2} \sum_{k=1}^n D\xi_k = 0$.

Čebiševa teorēmas speciālgadījumi.

5. teorēma (Hinčina teorēma). Ja gadījuma lielumi $\xi_1, \xi_2, ..., \xi_n, ...$ vienādi sadalīti,

neatkarīgi un tiem eksistē dispersija, t.i., $D\xi_k < \infty$, tad: $\lim_{n \to \infty} P(\left| \frac{1}{n} \sum_{k=1}^n \xi_k - a \right| < \varepsilon) = 1$, kur $M\xi_k = a$.

6. teorēma (Bernulli teorēma). Ja μ_n ir labvēlīgo notikumu skaits un P labvēlīgā notikuma iestāšanās varbūtība Bernulli shēmā, tad jebkuram $\varepsilon > 0$:

$$\lim_{n\to\infty} P(\left|\frac{\mu_n}{n}-p\right|<\varepsilon)=1.$$

<u>Pierādījums</u> seko no Hinčina teorēmas, ja $\xi_1, \xi_2, ..., \xi_n, ...$ ir sadalīti ar Bernulli

sadalījumu. Tad
$$\sum_{k=1}^{n} \xi_k = \mu_n \quad \text{un} \quad M \xi_k = p.$$

Secinājums. Kursa sākumā mēs bijām spekulatīvi pieņēmuši, ka eksistē skaitlis

 $p \in [0, 1]$, tāds, ka $\frac{n_A}{n} \xrightarrow[n \to \infty]{} p$, neierobežotu skaitu reižu atkārojot eksperimentu vienos un tajos pašos apstākļos neatkarīgi no iepriekšējo eksperimentu rezultātiem. **Tagad mēs to esam pierādījuši!**

Centrālā robežteorēma. (The Central Limit Theorem. Центральная предельная теорема)

Jau apskatītas trīs teorēmas, kur pierādīta sadalījuma likumu konverģence — Puasona teorēma, lokālā un integrālā Muavra — Laplasa teorēma. Integrālās Muavra — Laplasa teorēma apgalvo, ka ar atbilstošu normējumu un centrējumu Bernulli sadalījums konverģē uz standartnormālo sadalījumu pēc varbūtības.

$$\lim_{n \to \infty} P\left(a \le \frac{\mu_n - np}{\sqrt{np(1-p)}} \le b\right) = \frac{1}{\sqrt{2\pi}} \int_a^b e^{-\frac{x^2}{2}} dx$$

Ievērojot Bernulli sadalījuma skaitliskos raksturotājus $M\xi_k = p$ un $D\xi_k = p(1-p)$, un pārejot uz robežu, kad $a \to -\infty$, var pārrakstīt:

$$\lim_{n \to \infty} P \left(-\infty < \frac{\sum_{k=1}^{n} \xi_k - nM \, \xi_1}{\sqrt{nD\xi_1}} < x \right) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{x^2}{2}} dx$$

Izteiksmes kreisajā un labajā pusē ir gadījuma lielumu sadalījuma funkcijas $P(\xi < x) = F(x)$.

$$\frac{\sum\limits_{k=1}^{n}\xi_{k}-nM\,\xi_{1}}{\sqrt{nD\xi_{1}}}$$
 ir asimptotiski normāls.

Var pierādīt analoģisku rezultātu jebkuram patvaļīgam varbūtību sadalījumam.

Teorēma (Centrālā robežteorēma vienādi sadalītiem gadījuma lielumiem).

Ja gadījuma lielumi $\xi_1, \xi_2, ..., \xi_n, ...$ neatkarīgi, vienādi sadalīti un tiem ir galīga dispersija, tad:

$$\lim_{n \to \infty} P\left(\frac{\sum_{k=1}^{n} \xi_{k} - nM \, \xi_{1}}{\sqrt{nD\xi_{1}}} < x\right) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{x^{2}}{2}} dx$$

<u>Lapunova teorēma (Centrālā robežteorēma dažādi sadalītiem gadījuma lielumiem).</u>

Ja gadījuma lielumi $\xi_1, \xi_2, ..., \xi_n, ...$ neatkarīgi, dažādi sadalīti un tiem ir galīgi šādi

momenti:
$$M\xi_k = a_k < \infty$$
, $D\xi_k = b_k^2 < \infty$ un $M|\xi_k - a_k|^3 = c_k^3 < \infty$ un summām:

$$A_n = \sum_{k=1}^n a_k, \quad B_n^2 = \sum_{k=1}^n b_k^2, \quad C_n^3 = \sum_{k=1}^n c_k^3 \quad \text{izpildās} \quad \frac{C_n}{B_n} \underset{n \to \infty}{\longrightarrow} 0, \text{ tad:}$$

$$\lim_{n\to\infty} P\left(\frac{\sum_{k=1}^n \xi_k - A_n}{B_n} < x\right) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^x e^{-\frac{x^2}{2}} dx.$$

Daudzdimensiju normālais sadalījums.

Apskatīsim n-dimensiju gadījuma vektoru $\vec{\xi} = \begin{pmatrix} \zeta_1 \\ \vdots \\ \zeta_n \end{pmatrix}$ un pierakstīsim m tā koordinātu

lineāras kombinācijas: $\eta_i = \sum_{j=1}^n c_{ij} \xi_j + a_i$, i = 1, 2, ..., m.

To var pierakstīt matricu formā $\vec{\eta} = C\vec{\xi} + \vec{a}$;, kur

$$\vec{\eta} = \begin{pmatrix} \eta_1 \\ \vdots \\ \eta_m \end{pmatrix}, \qquad \vec{a} = \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix}, \qquad C = \begin{pmatrix} c_{11} & \dots & c_{1n} \\ \vdots & \ddots & \ddots \\ c_{m1} & \dots & c_{mn} \end{pmatrix}. \text{ Apzīmēsim ar } K(\vec{\xi})$$

matricu, kas sastādīta no vektora $\vec{\xi}$ koordinātu kovariācijām:

$$K(\vec{\xi}) = \begin{pmatrix} K(\xi_1, \xi_1) & \dots & K(\xi_1, \xi_n) \\ \vdots & \vdots & \ddots & \vdots \\ K(\xi_n, \xi_1) & \dots & K(\xi_n, \xi_n) \end{pmatrix}. K(\vec{\xi}) \text{ sauc par kovariāciju matricu.}$$

Var pierādīt, ka $M\vec{\eta} = M\vec{\xi} + \vec{a}$, $K(\vec{\eta}) = CK(\vec{\xi})C^T$.

<u>Definīcija.</u> Par *m*-dimensiju normāli sadalītu gadījuma lielumu (vektoru) sauc gadījuma

vektoru
$$\vec{\eta}=\begin{pmatrix} \eta_1 \\ \vdots \\ \eta_m \end{pmatrix}$$
, kuru uzdod izteiksme $\vec{\eta}=C\vec{\xi}+\vec{a}$, bet gadījuma vektora

$$\vec{\xi} = \begin{pmatrix} \xi_1 \\ \vdots \\ \xi_n \end{pmatrix}$$
 koordinātas ir standartnormāli sadalīti neatkarīgi gadījuma lielumi.

Īpašības.

- 1. Visas koordinātas η_i ir normāli sadalīti gadījuma lielumi vai konstantes.
- 2. Jebkuru koordinātu η_i lineāra kombinācija ir normāli sadalīts gadījuma lielums vai konstante.
- 3. Jebkurai lineārai funkcijai $\vec{\zeta} = A\vec{\eta} + \vec{b}$, kur A un \vec{b} ir konstantas matricas, ir daudzdimensiju normālais sadalījums.

4. Ja neviena no koordinātām η_i nav konstante, kovariāciju matrica $K(\vec{\eta})$ nav singulāra, t.i., $\det(K(\vec{\eta})) \neq 0$. Šajā gadījumā vektoram $\vec{\eta}$ eksistē sadalījuma

 $p_{\vec{\eta}}(\vec{x}) = \frac{1}{\left(2\pi\right)^{\frac{n}{2}} \sqrt{\det\left(K\left(\vec{\eta}\right)\right)}} e^{-\frac{1}{2}Q(\vec{x}-\vec{a})}, \text{ kur}$ blīvuma funkcija

$$\vec{x} = \begin{pmatrix} x_1 \\ \vdots \\ x_m \end{pmatrix}, \quad \vec{a} = \begin{pmatrix} a_1 \\ \vdots \\ a_m \end{pmatrix} \text{ ir } m\text{-dimensiju vektori , bet}$$

 $Q(\vec{x}) = \sum_{i=1}^{n} \sum_{j=1}^{n} q_{ij} x_i x_j \text{ kvadrātiska forma, kuras koeficienti ir } q_{ij} \text{ ir kovariāciju}$ matricas $K(\vec{\eta})$ inversās matricas $K^{-1}(\vec{\eta})$ elementi.

Tātad daudzdimensiju normālais sadalījums tiek pilnībā uzdots ar vektora \vec{a} un matricas $K(\vec{\eta})_{
m palīdz\bar{1}bu}$.

Pēc definīcijas tā kā $\xi_j \sim N(0,1)$ un neatkarīgi, tad

$$K\left(\vec{\xi}\right) = I = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{pmatrix} \text{ ir vienības matrica un } M\vec{\xi} = \vec{0} = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}. \text{ Tad}$$

$$K\left(\vec{\eta}\right) = CK\left(\vec{\xi}\right)C^T = CIC^T = CC^T \text{ un}$$

$$M\vec{\eta} = M\vec{\xi} + \vec{a} = \vec{0} + \vec{a} = \vec{a}$$