# Household Electricity Prices on Europe

Python Programming Class Project

Sebastian Continghiu Merve Pakcan Tudor Ungureanu















## Project Scope

This project aims to analyze the evolution of retail electricity prices in Europe over an extended period.



Dataset: European wholesale electricity prices – monthly

The mentioned dataset contains the prices of electricity in Europe, which are centralised in a monthly configuration. However, these are not the end consumer prices as they do not include taxes, levies, network charges, subsidies, and supplier profits. These are prices on what is called the spot market. Unlike the previous dataset, which may be more relevant for this analysis, end-customer prices make a more relatable analysis.



### Data Cleaning

| Country | ISO3<br>Code | Date     | Price<br>(EUR/MWhe) |  |  |
|---------|--------------|----------|---------------------|--|--|
| Austria | AUT          | 1/1/2015 | 29.94               |  |  |
| Belgium | BEL          | 1/1/2015 | 42.33               |  |  |
| Czechia | CZE          | 1/1/2015 | 29.47               |  |  |
| Denmark | DNK          | 1/1/2015 | 27.12               |  |  |
| Estonia | EST          | 1/1/2015 | 33.84               |  |  |
| Finland | FIN          | 1/1/2015 | 33.81               |  |  |
| France  | FRA          | 1/1/2015 | 40.94               |  |  |
| Germany | DEU          | 1/1/2015 | 29.94               |  |  |

The datasets has 3504 observations, it contains monthly data for 31 countries starting with January 2015 and ending with December 2024.

3504 observations

#### Data Cleaning



2 countries with inappropiate data were removed from the dataset. •

Four countries (Bulgaria, Croatia, Serbia, and the United Kingdom) were missing price values for the first part of 2015.







## Data Analysis





#### **Price Variation**





The difference can be best seen in the years 2021 and 2022 where the difference in prices is as much as 200 to 250 euros.



#### SAS Viya Explore and Visualize Tab

Electricity Price Variance by Country (2015 -2024)









#### Data Prediction

Models used:

- ARIMA (AutoRegressive Moving Average);
- LSTM (Long Short-Term Memory) for Hybrid Model with ARIMA;
- Linear Regression

#### 1. ARIMA



The results show a **decreasing projection** of the price and a **repetitive pattern** as well. One reason for this may be the inappropriate choice of ARIMA parameters, the large variability in the data caused by two disruptive events, or non-linearity in the data.

## 2. Hybrid (ARIMA & LSTM)



LSTM was prepared using the residual values of ARIMA. The combination between the two follows this function: hybrid\_forecast = alpha \* arima\_forecast + (1 - alpha) \* lstm\_predictions, where alpha = 0.7

## 3. Linear Regression



## Model Performance Comparison

| Country        | MAE_ARIMA | MAE_Hybrid | MAE_LR  | MSE_ARIMA | MSE_Hybrid | MSE_LR    | MAPE_ARIMA | MAPE_Hybrid | MAPE_LR |
|----------------|-----------|------------|---------|-----------|------------|-----------|------------|-------------|---------|
| Austria        | 61.983    | 56.576     | 88.840  | 6383.839  | 3596.395   | 8145.227  | 81.187     | 72.860      | 121.313 |
| Belgium        | 55.648    | 50.534     | 84.725  | 5079.431  | 2985.570   | 7382.206  | 83.876     | 74.781      | 131.982 |
| Bulgaria       | 54.862    | 56.508     | 83.590  | 3841.798  | 4377.110   | 7565.018  | 54.388     | 57.642      | 97.835  |
| Croatia        | 67.253    | 63.623     | 108.773 | 5608.334  | 5389.934   | 12074.013 | 72.219     | 69.955      | 128.124 |
| Czechia        | 56.411    | 54.060     | 76.224  | 6014.487  | 3399.889   | 6063.563  | 69.854     | 65.396      | 98.878  |
| Denmark        | 54.741    | 50.384     | 69.459  | 4738.767  | 3184.536   | 4894.224  | 76.697     | 71.176      | 102.729 |
| Estonia        | 57.062    | 62.848     | 49.921  | 4193.317  | 4823.942   | 2865.419  | 68.768     | 73.816      | 65.882  |
| Finland        | 86.006    | 43.158     | 59.586  | 9075.502  | 2481.734   | 4122.784  | 204.439    | 100.000     | 279.801 |
| France         | 71.071    | 52.542     | 110.518 | 6424.827  | 3430.918   | 12625.815 | 126.625    | 90.210      | 238.253 |
| Germany        | 69.584    | 58.152     | 75.214  | 5960.109  | 4249.632   | 5749.111  | 89.437     | 74.248      | 102.076 |
| Greece         | 38.333    | 38.678     | 82.988  | 2267.674  | 2039.015   | 7327.661  | 36.798     | 37.326      | 94.937  |
| Hungary        | 63.318    | 61.342     | 75.800  | 5285.712  | 5004.089   | 6322.103  | 65.246     | 63.950      | 90.581  |
| Ireland        | 62.942    | 82.640     | 104.639 | 5702.153  | 7992.894   | 11065.293 | 56.693     | 76.464      | 101.429 |
| Italy          | 62.020    | 55.711     | 87.431  | 5163.666  | 3705.261   | 7709.097  | 55.451     | 51.467      | 83.772  |
| Latvia         | 67.740    | 57.668     | 60.052  | 5896.306  | 4205.632   | 4092.251  | 81.527     | 68.886      | 78.305  |
| Lithuania      | 72.691    | 59.336     | 61.858  | 6618.215  | 4374.976   | 4315.168  | 87.471     | 70.820      | 80.575  |
| Luxembourg     | 69.584    | 57.431     | 75.214  | 5960.109  | 4179.254   | 5749.111  | 89.437     | 73.195      | 102.076 |
| Netherlands    | 52.625    | 48.462     | 78.203  | 4426.005  | 2844.518   | 6243.636  | 69.832     | 64.135      | 108.179 |
| Norway         | 35.042    | 32.946     | 53.775  | 1589.294  | 1236.648   | 3223.927  | 117.109    | 97.901      | 184.847 |
| Poland         | 54.424    | 79.989     | 38.396  | 3423.799  | 6733.590   | 1587.952  | 56.923     | 83.313      | 42.276  |
| Portugal       | 58.205    | 54.571     | 60.660  | 5020.441  | 4343.703   | 4591.265  | 107.903    | 86.308      | 194.034 |
| Romania        | 61.006    | 61.059     | 69.919  | 4866.345  | 4919.611   | 5568.072  | 61.507     | 62.181      | 83.371  |
| Serbia         | 64.962    | 62.645     | 90.798  | 5561.916  | 5344.897   | 8726.874  | 65.695     | 64.714      | 104.175 |
| Slovakia       | 66.565    | 58.622     | 78.192  | 5247.291  | 4506.454   | 6386.459  | 72.865     | 65.273      | 95.384  |
| Slovenia       | 69.396    | 59.801     | 84.402  | 5655.853  | 4837.550   | 7362.970  | 76.810     | 67.189      | 103.270 |
| Spain          | 57.801    | 54.305     | 60.455  | 4990.889  | 4340.177   | 4541.672  | 103.979    | 83.786      | 188.985 |
| Sweden         | 46.019    | 33.570     | 48.697  | 2587.094  | 1464.381   | 2858.523  | 144.760    | 96.377      | 227.359 |
| Switzerland    | 72.558    | 63.686     | 101.658 | 6649.662  | 4912.970   | 10787.545 | 103.978    | 86.352      | 159.153 |
| United Kingdom | 79.688    | 71.534     | 94.795  | 8433.256  | 5895.464   | 9108.516  | 91.866     | 83.887      | 118.336 |

The hybrid model outperforms ARIMA and Linear Regression in the majority of observations.

The MAE, MSE and MAPE values are big overall which implies further tuning of the model is needed or choosing another model or a larger dataset.

## Conclusion and Recommendations

- Objective: Analyze European electricity prices (2015–2024) and predict future prices using advanced modeling techniques.
- Data Insights:
- Price surges during disruptive events (COVID-19, Russian invasion of Ukraine) reached 4-5x increases.
  - Countries with high renewable energy showed greater price stability.
- Prediction Models:
  - ARIMA: Produced inaccurate results, including negatives.
  - Hybrid Model (ARIMA + LSTM): Achieved the best performance with precise forecasts.
  - Linear Regression: Acceptable results but weaker metrics.
- Performance Metrics: Compared models using MAE, MSE, and MAPE; Hybrid model outperformed others.
- Future Work:
  - Refine model parameters for better performance.
  - Explore larger datasets with hourly observations or alternative modeling techniques.

