Yuming Liu PS6

```
In [1]: import pandas as pd
   import numpy as np
   import matplotlib.pyplot as plt
   from pandas.plotting import scatter_matrix
   import statsmodels.api as sm
   from sklearn.neighbors import KNeighborsClassifier
   from sklearn.model_selection import train_test_split
   from sklearn.linear_model import LogisticRegression
   from sklearn.metrics import confusion_matrix
   from sklearn.metrics import classification_report
```

Problem 1(a)

```
In [2]: df = pd.read_csv("data/Auto.csv", na_values='?')
    df.dropna(inplace = True)
    df.head()
```

Out[2]:

	mpg	cylinders	displacement	horsepower	weight	acceleration	year	origin	name
(18.0	8	307.0	130.0	3504	12.0	70	1	chevrolet chevelle malibu
•	I 15.0	8	350.0	165.0	3693	11.5	70	1	buick skylark 320
;	2 18.0	8	318.0	150.0	3436	11.0	70	1	plymouth satellite
;	16.0	8	304.0	150.0	3433	12.0	70	1	amc rebel sst
	1 7.0	8	302.0	140.0	3449	10.5	70	1	ford torino

Problem 1(b)

```
In [3]: df_quant = df[['mpg','cylinders', 'displacement', 'horsepower', 'weight', 'acc
eleration', 'year', 'origin']]
    scatter_matrix(df_quant, alpha=0.3, ax=None, figsize=(10, 10), diagonal='kde')
    plt.show()
```


Problem 1(c)

In [4]: df_quant.corr()

Out[4]:

	mpg	cylinders	displacement	horsepower	weight	acceleration	year
mpg	1.000000	-0.777618	-0.805127	-0.778427	-0.832244	0.423329	0.580541
cylinders	-0.777618	1.000000	0.950823	0.842983	0.897527	-0.504683	-0.345647
displacement	-0.805127	0.950823	1.000000	0.897257	0.932994	-0.543800	-0.369855
horsepower	-0.778427	0.842983	0.897257	1.000000	0.864538	-0.689196	-0.416361
weight	-0.832244	0.897527	0.932994	0.864538	1.000000	-0.416839	-0.309120
acceleration	0.423329	-0.504683	-0.543800	-0.689196	-0.416839	1.000000	0.290316
year	0.580541	-0.345647	-0.369855	-0.416361	-0.309120	0.290316	1.000000
origin	0.565209	-0.568932	-0.614535	-0.455171	-0.585005	0.212746	0.181528

Problem 1(d)

```
In [5]: df_quant['const'] = 1
```

```
In [6]: reg1 = sm.OLS(endog=df_quant['mpg'], exog=df_quant[['const','cylinders', 'disp
lacement', 'horsepower', 'weight', 'acceleration', 'year', 'origin']], missing
='drop')
results = reg1.fit()
print(results.summary())
```

OLS Regression Results

=========	=======	========	=======		=======	
=						
Dep. Variable:		mpg	R-square	ea:		0.82
Model: 8		OLS	Adj. R-s	squared:		0.81
Method:	L	east Squares	F-statis	stic:		252.
4 Date:	Sun,	16 Feb 2020	Prob (F-	-statistic):		2.04e-13
9 Time:		17:18:40	Log-Like	elihood:		-1023.
5		2, (20)	_			
No. Observatio	ns:	392	AIC:			206
Df Residuals:		384	BIC:			209
5. Df Model:		7				
Covariance Typ		nonrobust				
=======================================	=======	========	=======	========	=======	
	coef	std err	t	P> t	[0.025	0.9
75]						
const 087	-17.2184	4.644	-3.707	0.000	-26.350	-8.
cylinders	-0.4934	0.323	-1.526	0.128	-1.129	0.
•	0.0199	0.008	2.647	0.008	0.005	0.
035 horsepower	-0.0170	0.014	-1.230	0.220	-0.044	0.
010 weight	-0.0065	0.001	-9.929	0.000	-0.008	-0.
005						
acceleration 275	0.0806	0.099	0.815	0.415	-0.114	0.
year 851	0.7508	0.051	14.729	0.000	0.651	0.
origin 973	1.4261	0.278	5.127	0.000	0.879	1.
9/3	========	========	=======	-=======	=======	
=						
Omnibus: 9		31.906	Durbin-V	Natson:		1.30
Prob(Omnibus):		0.000	Jarque-E	Bera (JB):		53.10
0 Skew:		0.529	Prob(JB)):		2.95e-1
2 Kurtosis:		4.460	Cond. No).		8.59e+0
4						
=				=		

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

```
[2] The condition number is large, 8.59e+04. This might indicate that there a re
strong multicollinearity or other numerical problems.
```

- i. We have 'displacement', 'year', 'weight', and 'origin' are significant at 1% level.
- ii. We have 'horsepower', 'cylinders', and 'acceleration' are not significant at 10% level.
- iii. Suppose other variables will not change. We have 1 unit of year increase would bring mpg about 0.7508 unit increase.

Problem 1(e)

```
In [7]: df_quant['displacement2'] = np.square(df_quant['displacement'])
    df_quant['horsepower2'] = np.square(df_quant['horsepower'])
    df_quant['acceleration2'] = np.square(df_quant['acceleration'])
    df_quant['weight2'] = np.square(df_quant['weight'])
```

```
In [8]: reg2 = sm.OLS(endog=df_quant['mpg'], exog=df_quant[['const','cylinders', 'disp
lacement', 'horsepower', 'weight', 'acceleration', 'year', 'origin', 'displace
ment2', 'horsepower2', 'weight2', 'acceleration2']], missing='drop')
results2 = reg2.fit()
print(results2.summary())
```

OLS Regression Results

=========	:=======	· ·	=======		:=======	======
= Dep. Variable:		mpg	R-squared	i:		0.87
0 Model:		OLS	Adj. R-so	quared:		0.86
6 Method:	Lo	east Squares	F-statist	ic:		230.
2 Date:		16 Feb 2020			1	75e-16
0	Suii,		,	·	_	
Time: 2		17:18:40	Log-Likel	lihood:		-962.0
No. Observatio	ons:	392	AIC:			194
Df Residuals:		380	BIC:			199
6. Df Model:		11				
Covariance Typ		nonrobust ======	========	:=======	:=======	
====						
975]	coef	std err	t	P> t	[0.025	0.
const	20.1084	6.696	3.003	0.003	6.943	3
3.274						
cylinders 0.893	0.2519	0.326	0.773	0.440	-0.389	
displacement 0.023	-0.0169	0.020	-0.828	0.408	-0.057	
horsepower 0.083	-0.1635	0.041	-3.971	0.000	-0.244	-
weight 0.008	-0.0136	0.003	-5.069	0.000	-0.019	-
acceleration 0.994	-2.0884	0.557	-3.752	0.000	-3.183	-
year	0.7810	0.045	17.512	0.000	0.693	
0.869 origin	0.6104	0.263	2.320	0.021	0.093	
1.128 displacement2	2.257e-05	3.61e-05	0.626	0.532	-4.83e-05	9.35
e-05 horsepower2	0.0004	0.000	2.943	0.003	0.000	
0.001 weight2	1.514e-06	3.69e-07	4.105	0.000	7.89e-07	2.24
e-06 acceleration2 0.090	0.0576	0.016	3.496	0.001	0.025	
=========	=======	========	=======	:======	:=======	======
= Omnibus: 6		33.614	Durbin-Wa	atson:		1.57
Prob(Omnibus): 5		0.000	Jarque-Be	era (JB):		77.98
Skew: 7		0.438	Prob(JB):			1.16e-1

Kurtosis: 5.002 Cond. No. 5.13e+0

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 5.13e+08. This might indicate that there a re

strong multicollinearity or other numerical problems.

- ii. The adjusted R-squared stats is better than which of part(d).
- iii. The terms are both non-significant at 10% level.
- iv. It is not significant at 10% level, and its p-value is greater that which of the previous model.

Problem 1(f)

```
In [9]: X = [1, 6, 200, 100, 3100, 15.1, 99, 1, 200**2, 100**2, 3100**2, 15.1**2]
    prediction = results2.predict(X)
    print('The prediction mpg of cylinders displacement of 200, horsepower of 100,
    a weight of 3,100, acceleration of 15.1, model year of 1999, and origin of 1 i
    s', prediction[0])
```

The prediction mpg of cylinders displacement of 200, horsepower of 100, a weight of 3,100, acceleration of 15.1, model year of 1999, and origin of 1 is 3 8.73211109753366

Problem 2(a)

```
In [12]: df2
```

Out[12]:

	X1	X2	Х3	Y	Eucl. Dist from X1=X2=X3=0
0	0	3	0	Red	3.000000
1	2	0	0	Red	2.000000
2	0	1	3	Red	3.162278
3	0	1	2	Green	2.236068
4	-1	0	1	Green	1.414214
5	1	1	1	Red	1.732051

Problem 2(b)

```
In [13]: min(df2['Eucl. Dist from X1=X2=X3=0'])
Out[13]: 1.4142135623730951
```

Since the fifth row has distance closest to X1 = X2 = X3 = 0, we have the prediction is green.

Problem 2(c)

Since the second, fifth, and sixth rows have distances closest to X1 = X2 = X3 = 0, we have the prediction is more likely to be red.

Problem 2(d)

If the Bayes (optimal) decision boundary in this problem is highly nonlinear, we would expect the best value for K to be large. Larger K can cover more points near the target, so the prediction could be more accurate.

Problem 2(e)

```
In [14]: neigh = KNeighborsClassifier(n_neighbors=2)
X = df2[['X1','X2','X3']]
Y = df2['Y']
neigh.fit(X, Y)
print('The KNN prediction for X1=X2=X3=1 and K=2 is', neigh.predict([(1,1,1)])
[0])
```

The KNN prediction for X1=X2=X3=1 and K=2 is Green

Problem 3(a)

```
In [15]: df_quant['mpg_high'] = np.where(df_quant['mpg'] >= np.median(df['mpg']), 1, 0)
```

Optimization terminated successfully.

Current function value: 0.200944

Iterations 9

Logit Regression Results

==========		Logit Regre	ssion Resu	ılts :======		=====	
= Dep. Variable:	:	mpg_high	No. Obse	ervations:		39	
2							
Model:		Logit	Df Resid	luals:		38	
Method:		MLE	Df Model	.:			
7			_				
Date: Sun,		16 Feb 2020	Pseudo R-squ.:		0.710		
1 Time:		17:18:40	Log-Like	elihood:	-78.77		
0							
converged:		True	LL-Null:		-271.7		
1 Covariance Typ	oe:	nonrobust	LLR p-va	lue:	2.531e-7		
9							
===							
_	coef	std err	Z	P> z	[0.025	0.9	
75]							
const 858	-17.1549	5.764	-2.976	0.003	-28.452	- 5.	
cylinders 667	-0.1626	0.423	-0.384	0.701	-0.992	0.	
	0.0021	0.012	0.174	0.862	-0.021	0.	
horsepower 006	-0.0410	0.024	-1.718	0.086	-0.088	0.	
weight 002	-0.0043	0.001	-3.784	0.000	-0.007	-0.	
acceleration 293	0.0161	0.141	0.114	0.910	-0.261	0.	
year 577	0.4295	0.075	5.709	0.000	0.282	0.	
origin 187	0.4773	0.362	1.319	0.187	-0.232	1.	

Possibly complete quasi-separation: A fraction 0.14 of observations can be perfectly predicted. This might indicate that there is complete quasi-separation. In this case some parameters will not be identified.

We have weight and year are significant at 5% level.

Problem 3(b)

Problem 3(c)

```
In [18]: clf = LogisticRegression(max_iter = 10000).fit(X_train, y_train)

for i in range(7):
    print('The coeffecient for',X.columns[i],'is',clf.coef_[0][i])

The coeffecient for const is -0.0014062712185044482
    The coeffecient for cylinders is -1.1505902795202694
    The coeffecient for displacement is 0.01692195670266103
    The coeffecient for horsepower is 0.014535241600150541
    The coeffecient for weight is -0.007220539658275798
    The coeffecient for acceleration is 0.1521838862892103
    The coeffecient for year is 0.5780143927460908
```

Problem 3(d)

```
In [19]: | predict y = clf.predict(X test)
          compare_y = confusion_matrix(y_test, predict_y)
In [20]: compare y
Out[20]: array([[85, 14],
                 [ 9, 88]], dtype=int64)
In [21]: | print(classification_report(y_test, predict_y))
                        precision
                                      recall f1-score
                                                          support
                             0.90
                     0
                                        0.86
                                                  0.88
                                                               99
                     1
                             0.86
                                        0.91
                                                  0.88
                                                               97
                                                  0.88
                                                              196
              accuracy
                             0.88
                                        0.88
                                                  0.88
                                                              196
             macro avg
         weighted avg
                             0.88
                                        0.88
                                                  0.88
                                                              196
```

The model predicts both equally well.