Illuminiation Correction Techniques

Submitted By

Harshit Kumar Gupta

2013EET2369

Project Superviser

Dr. Santanu Chaudhury

EE dept, IITD

Motivation of Project

- Removal of uneven and non-uniform illumination caused by several factors.
- Illumination correction is based on background subtraction.
- scene is composed of an homogeneous background and relatively small objects brighter or darker than the background.
- visual quality can further be improved by using image enhancement techniques

Noises in Image

- Image noise is random variation of brightness or color information.
- Types Of Noises
 - 1- Gaussian Noise
 - 2- Shot Noise
 - 3-Anisotopic Noise
 - 4- Quantization Noise (Uniform Noise)

Illumination Correction Techniques

 Prospective correction - uses additional images obtained at the time of image capture

 retrospective correction -When additional image are not available, model has to estimate the bright image

Project Flow

Prospective Correction

Correction from a Dark Image and a Bright Image

Correction from a Bright Image.

Correction from a Dark Image

Correction from a Dark and a Bright Image

• The corrected image g(x,y) is obtained using the following transformation:

$$f(x,y) - d(x,y)$$

 $g(x,y) = ---- .C$
 $b(x,y) - d(x,y)$

where f(x,y) is the original image, d(x,y) is the dark image,
 b(x,y) is the bright image, and C is a

normalization constant used to recover the original colors.

• where mean(i(x,y)) is the mean value of the image i(x,y).

Correction from a Bright Image

In case of a linear acquisition device, the corrected image g(x,y) is obtained using the following transformation:

$$g(x,y) = \begin{cases} f(x,y) \\ ---- \\ b(x,y) \end{cases}$$
 C

 where f(x,y) is the original image, b(x,y) is the bright image, and C is a normalization constant that is used to recover the initial colors:

where mean(i(x,y)) is the mean value of the image i(x,y).

Correction from a Dark and a Bright Image

Correction from a Dark Image

- If only the dark image is available, the method consists in subtraction of the dark image with the original image.
- The corrected image g(x,y) is then obtained using the following transformation:
- g(x,y) = f(x,y) d(x,y) + mean(d(x,y))
- where f(x,y) is the original image, d(x,y) is the dark image and mean(d(x,y)) is the mean value of the dark image.

Retrospective Correction

using Low-pass Filtering

using Homomorphic Filtering

using Morphological Filtering

Retrospective Correction using Low-pass Filtering

- Estimate background image by using a low-pass filtering with a very large kernel and subtract from input image to compensate the illumination.
- The corrected image g(x,y) is obtained from the input image f(x,y) by:
- g(x,y) = f(x,y) LPF(f(x,y)) + mean(LPF(f(x,y)))
 - where LPF(f(x,y)) is the low-pass filtering of image f(x,y), and mean(LPF(f(x,y))) is the mean value of the low pass image.

Retrospective Correction using Homomorphic Filtering

- The background is removed by highpass filtering the logarithm of the image and then taking the exponent (inverse logarithm) to restore the image.
- The corrected image g(x,y) is obtained from the input image f(x,y) by:
- $g(x,y) = \exp(LPF(\log(f(x,y))))$. C

Retrospective Correction using Morphological Filtering

- Estimate background by mathematical morphology opening or closing.
- The total sequence of operations corresponds to a top hat of the image.
- If the background is clear, the corrected image g(x,y) is obtained using:
- g(x,y) = BTH[f(x,y)] + mean(closing(f(x,y)))
- g(x,y) = [f(x,y) closing(f(x,y))] + mean(closing(f(x,y)))

Image after correction

ate visual display of results.

ures and demonstrations will be pres ith the teaching of image processing of n-action.

programs experimenting with image and during the lectures, as concepts are pre-

al still and moving picture processing, is

ate visual display of results.

ures and demonstrations will be pres ith the teaching of image processing of n-action.

programs experimenting with image and during the lectures, as concepts are pre-

al still and moving picture processing, in

Comparision Of various Methods

TABLE I. PSNR COMPARISON

No	Value PSNR		
	PSNR	min	max
1	Correction from a Bright Image and Dark Image	48	50
2	Correction from Bright Image	13	20
3	Correction from Dark Image	60	63
4	Retrospective Correction using Low-pass Filtering	20	25
5	Retrospective Correction using Homomorphic Filtering	16	20
6	Retrospective Correction using Morphological Filtering	3	10

Future Work

- Visual quality of images can further be improved by using image enhancement techniques.
- Above method can be used for increasing efficiency of character recognition from textual images.
- Above techniques can also be used in retinal and MRI scan images to remove illumination.

THANK YOU