Instrumentation II (III/I)

Course Code: EX-602 (Module#1)

Dhawa Sang Dong

(Lecturer)

Kathmandu Engineering College, Kalimati

May 17, 2022

Chapter#1

Microprocessor based Instrumentation System

Class Outline

- 1 Course Evaluation
- 2 Basics of Instrumentation System
- 3 microprocessor based control system
- 4 Interfacing and address decoding

Course Evaluation

Theory (100)

- 1 Internal weight (20/100)
 - Assignments (in total 7/8) for each module [10 marks]
 - Class Activities and average of 3-ADT [4+6=10 marks]
- ① External weight (80/100)
 - End Semester Exam by IOE, TU

Practical (25)

- Lab attendance (5)
- Lab report and Case Study (10+10=20)

Basics of Instrumentation System

- microprocessor
- instrumentation
- 3 open loop control system
- 4 closed loop control system
- interfacing with microprocessor
- 6 address decoding

Microprocessor

- basically, microprocessor is programmable, clock driven, register based electronic device.
- fabricated from SSI (Small Scale Integration) to VLSI (Very Large Scale Integration)

```
SSI- up to 10 Transistor (12 gates),
```

- MSI up to 500 transistors (99 gates),
 LSI up to 20,000 Transistors (9,999 gates),
 VLSI greater than 20,000 Transistors
- reads binary instruction from storage device (memory)
- accepts binary input data and process according to instruction.
- provides results as output for corresponding input

Instrumentation System

 fundamentally, it is assembly of instruments and other components for the purposes: measure, analyze, control a process or physical quantities such as electrical, thermal or mechanical.

Microprocessor based Instrumentation System

- microprocessor is core component in the system
- programmability adds the improved logical and computing capabilities, and improved accuracy and efficiency because computing power is function of algorithm too.

merits of using microprocessor

- can be used in any system
- applicable in any specific design and applications
- Accuracy and efficiency of the system can be enhanced because of logical (algorithm) and computational power of microprocessor.

demerits of using microprocessor

- complex interfacing introduces system complexity.
- needs machine level programming language knowledge.
- microprocessor development process itself is expensive.

Features of microprocesor based system

- major components: microprocessor, I/O devices, and memory.
- decision making power based on set value.
- user friendly with signal levels or information.
- parallel processing; multiprocessing with time sharing.
- data storage, retrieval and transmission.
- effective control of multiple equipments on time sharing basis.
- lot of processing capability with powerful microprocessor.

microprocessor based control system

- Open Loop control system
- 2 Closed Loop control system

Open Loop Control System

- Depending up on the control output from microprocessor, operator makes the changes to control input.
- output quantity from the microprocessor could be displayed or presented in readable form for the operators.

Closed Loop Control System

- continuous monitoring of process variables
- output signal to control system or units

Example of Open Loop Control System

Fig. 1 Block Diagram for Pressure monitoring system

Block Diagram for Pressure monitoring system

- simple, low cost and used for non-critical feedback.
- Upper and lower limt of desired pressure is set by operator.
- analog (pressure) signal is converted to digital form and fed to microprocessor.
- microprocessor compares the sample measurement with present pressure limits.
- if the sample is beyond limits, the microprocessor indicates in the form of some alarm or light.
- according to output signal, operator makes necessary changes.

Example of Closed Loop Control System

Fig. 2 Block Diagram for automatic temperature Control System

Automatic Temperature control system

- For accurate and adaptive monitoring
- no human interference or operator is not required
- Upper or lower limits of temperature are set by operator.
- each sample of temperature is compared to predefined value by the processor.
- If the temperature exceeds the upper limit, microprocessor transmits an output signal to control system which turn off (generally) the supply to some of the heating elements.
- if temperature is less than preset lower limit, the microprocessor transmits signal to control system so that it turns on the supply to some heating elements.

Benefits of Microprocessor based System

- Complete automation and intelligence to some extend.
- Redesign flexibility due to programmability.
- Economic and reduced complexity.
- reduced operating costs.
- Higher accuracy of control enforcement
- timely and accurate information enables operators for efficient plant running.
- Information exchange with other plant system with relational database management.

Microcomputer on Instrumentation Design

Fig. 3 Typical Computer based Instrumentation System

Microcomputer on Instrumentation Design

- A process or Plant may have to measure multiple variables simultaneously: pressure, temperature, velocity, viscosity, flow rate etc.
- computer based system can process all inputs or variables in real time simultaneously.
- computer or microprocessor is fed with a sequence of instructions known as computer program for processing or manipulation of data.

Microcomputer on Instrumentation Design

Advantage

- programmed to carry out the task such as noise reduction, gain adjustment etc automatically.
- It contains signal conditioning and display system suitable to work in wide range of conditions like industrial, consumer etc.
- diagnostic subroutines can be integrated for detection and correction.
- capable of real time measurement, processing and display.
- lower cost, higher accuracy, and more flexible.

Disadvantage

- pedestrian can not replace the program themselves.
- updating software is not easy relatively.
- prone to virus problem, so dysfunctional probability.

Interfacing and address decoding

Interfacing with Microprocessor

- primarily, a microprocessor has the functions:
 - accept data from input devices
 - read instruction from memory
 - process data according to the instructions.
 - send results to output devices.
- input devices : keyboard, A/D converters
- output devices : LEDs, Printers, Video monitors.
- these input devices/output devices are peripherals or I/Os

Interfacing and address decoding

Interfacing with Microprocessor

- designing logic circuits and writing instructions to enable the microprocessor to communicate with these peripherals is called interfacing.
- these logic circuits are called I/O ports of interfacing devices.

PC Interfacing Techniques

 PC compatible devices can be interfaced through I/O BUS (internal expansion slot), parallel or serial ports, USB ports

PC Interfacing techniques

I/O BUS

- I/O BUS is also known as expansion slot (expand system bus to external devices for direct connection)
- external devices such as video card, sound card or network card can be interfaced through I/O buses to motherboard.

Parallel and Serial Ports

- PC includes one parallel port (LPT1 25pins) and two serial ports com1 and com2.
- LPT1 (line printer terminal) is basically for printer interfacing.
- serial ports are used for long distance communications ie for remote data acquisition, serial ports (COM1 - 9pins, COM2 -25pins) are used.

PC Interfacing techniques

USB ports:

- printer, scanner, digital cameras, and pendrives are connected to PC using USB ports
- comparatively faster than traditional serial and parallel ports.

- memory cell consists of registers which are group of flip flops to store bits of information.
- the number of bits stored in a register is called memory word.
- in memory chip, these registers are arranged in sequence which are identified by binary sequence memory address.
- to communicate with memory, microprocessor unit should:
 - select the chip
 - identify the register
 - carry read/write operation over register.
- the address decoding circuit makes microprocessor unit(MPU) to select particular sequences of register indicated by address within memory chip or I/O chip.
- Once the sequence is selected, read/write operation is executed using data bus.

- operation should avoid data contention or collision using proper addressing.
- microprocessor is connected with memory and I/O devices through common address and data bus.
- Only one device can send data at a time, and other devices can only receive the data.
- if more than one device sends data at the same time, the data could get collision.
- to avoid the collision, proper device should get addressed at the proper time.

- in method of address decoding, all devices (memory blocks, I/O units) are assigned with specific address.
- the address of the devices is determined from the way suitable to select particular device using chip selection (\overline{CS}) signal.
- for read/write operation, \overline{CS} signal to that device should be enabled.
- it is to be ensured (\overline{CS}) signal to other devices are not activated.

Address decoding method can be classified depending up on the no. of address line used to generate \overline{CS} .

- 1/O mapped I/O
- 2 memory mapped I/O

I/O mapped I/O

- a device is identified with 8-bit address
- being 8-bit for addressing, 256 bytes can be identified uniquely.
- I/O related functions IN and OUT are used for the read/write operation.
- generally, lower order address bits $(A_0 A_7)$ are used for addressing.
- upper bits $A_8 A_{15}$ are considered don't care.
- I/O mapped I/O is used to map devices like 8255A, 8251A etc.

memory mapped I/O

- a device is identified with 16-bit address.
- memory related functions STA, LDA are used for the read/write operation.
- chip select \overline{CS} signal for each device can be generated from 16 bit address lines; therefore, addressing capability is 64K bytes.
- generally, RAM, ROM etc are mapped using this kind of address decoding.

Based on the address allocated to the device, address decoding are classified as:

- Unique address decoding
- 2 Non-unique address decoding

Unique Address Decoding

- all address lines are used for address decoding
- in I/O mapped I/O
 - * all 8-bits are used for addressing.
- in memory mapped I/O
 - * all 16-bits are used to generate \overline{CS} signal.
- it is expensive and complicated.

Unique Address Decoding

Fig. 4 Unique Address Decoding

Unique Address Decoding

Fig. 5 Input Interfacing at 35H

Non-Unique Address Decoding

- if all the address lines are not used in address decoding then that decoding is called non-unique address decoding.
- cheaper technique but higher chance of address conflict.

Fig. 6 Non-Unique Address Decoding

Non-Unique Address Decoding

Non-Unique Address Decoding

- if A_0 and \overline{IOW} is low, latch get enabled.
- higher address lines $(A_1 A_7)$ are neglected.
 - * that is any even address (..0H, ...2H, ...) can enable the latch.

Memory Interfacing

- address lines are used to identify memory register in a memory chip.
- if there are n address lines, 2ⁿ number of registers can be recognized.
- Chip Select (\overline{CS}) signal enable the memory chip.
- the address lines (remaining) from the microprocessor can be used to connect \overline{CS} line through the interfacing logic.
- all the address lines are responsible to select a specific register within a memory chip.

Programmed I/O, Interrupt Driven I/O, Direct Memory Access(DMA)

Programmed I/O

- microprocessor is programmed for loop to check if data are available.
- to read data from input keyboard, microprocessor can keep polling the port until a key is pressed.

Programmed I/O, Interrupt Driven I/O, Direct Memory Access(DMA)

Interrupt Driven I/O

- when a peripheral is ready to transfer data, it sends an interrupt signal to the microprocessor.
- the microprocessor stops the execution of the current program, accepts the data from peripherals and then returns to the program.

Programmed I/O, Interrupt Driven I/O, Direct Memory Access(DMA)

Direct Memory Access

- this type of data transfer is used for faster peripherals than microprocessor.
- DMA controller sends a HOLD signal to the microprocessor and microprocessor releases its data bus and address bus to the DMA and microprocessor continues its tasks.

A decoder design problem

Memory Interfacing

design an address decoding circuit for two RAM chips each of 4K X 8 at address 2050H

Momory Block	Address	A15	A14	A13	A12	A11	A10	 	 A4	A3	A2	A1	A0
Start Address	2050H	0	0	1	0	0	0		1	0	0	0	0
RAM#1													
End Address	304FH	0	0	1	1	0	0		0	1	1	1	1
Start Address	3050H	0	0	1	1	0	0		1	0	0	0	0
RAM#2													
End Address	404FH	0	1	0	0	0	0		0	1	1	1	1

A decoder design problem

Memory Interfacing

design an address decoding circuit for two RAM chips each of 4K X 8 at address 2050H

A decoder design problem

Memory Interfacing

design an address decoding circuit for two RAM chips each of 4K X 8 at address 2050H

As you go Assignment

Assignment Module#1 is available at MS-Team.

Submission Deadline: May 27, 2022 (Before 3:00 PM)