טורי חזקות

נערך ע"י אמיר קסיס

תזכורת:

- . נקרא טור חזקות נקרא $\sum_{n=0}^{\infty}a_nx^n$:הגדרה
- ב"ש ב־ $x\in(-\left|x_{0}\right|,\left|x_{0}\right|)$ משפט: אם טור החזקות מתכנס ב־ x_{0} אזי הטור מתכנס בהחלט לכל $x\in(-\left|x_{0}\right|,\left|x_{0}\right|)$ עבור $x\in(-\left|x_{0}\right|,\left|x_{0}\right|)$ עבור $x\in(-\left|x_{0}\right|,\left|x_{0}\right|)$
 - תכונות התכנסות:
 - . הטור מתבדר אור |x|>R הטור מתכנס ולכל |x|< R הטור מתבדר $[0,\infty]$ ב־
 - (-R,R) הטור מתכנס בהחלט -
 - [0,R] אז יש התכנסות במ"ש ב־ x=R אם הטור מתכנס –
 - x=R אז אין התכנסות במ"ש ב־x=R אם הטור לא מתכנס ב־x=R
 - הטור מתכנס במ"ש לוקלית.
 - נוסחה לרדיוס ההתכנסות:

$$\frac{1}{R} = \limsup \sqrt[n]{|a_n|} = \limsup \left| \frac{a_{n+1}}{a_n} \right|$$

- , בקצות להתכנסות משמעות להתכנסות. אם יש משמעות לפונקציה רציפה בתחום ההתכנסות. אם יש משמעות להתכנסות בקצות, $\sum_{n=0}^{\infty}a_nx^n$ הכוונה היא לרציפות חד־צדדית.
- כמו כן, לכל .R בעל רדיוס $\sum_{n=0}^\infty \frac{a_n}{n+1} x^{n+1}$ אינטגרביליות: אם אינטגרביליות: בעל רדיוס $f\left(x\right)=\sum_{n=0}^\infty a_n x^n$ בעל רדיוס x בתחום ההתכנסות

$$\int_{0}^{x} f(t) dt = \sum_{n=0}^{\infty} \frac{a_n}{n+1} x^{n+1}$$

 $\sum_{n=0}^{\infty} rac{a_n}{n+1} x^{n+1}$ בנוסף, אם $\sum_{n=0}^{\infty} a_n x^n$ מתכנס ב־

בתחום .R כמו כן, לכל בתחום .R בעל רדיוס $\sum_{n=1}^\infty na_nx^{n-1}$ אז $f(x)=\sum_{n=0}^\infty a_nx^n$ בעל רדיוס . $f(x)=\sum_{n=0}^\infty a_nx^n$ בעל החתכנסות

$$f'(x) = \sum_{n=1}^{\infty} n a_n x^{n-1}$$

 $\sum_{n=0}^{\infty}a_nx^n$ בנוסף, אם $\sum_{n=1}^{\infty}na_nx^{n-1}$ מתכנס ב־

לטור לפיתוח שם, אומרים ש־ f ניתנת לפיתוח לטור והיא שווה לטור (-R,R) ניתנת בתחום הגדרה: אם f מוגדרת בתחום (-R,R)והיא מוגדרת מוגדרת חזקות.

מתמטיקאים משתמשים גם במינוח "**אנליטית**".

- , ונקרא טור משפט: אם ל־ fיש פיתוח לטור חזקות ב־ (-R,R), הפיתוח יחיד כאשר fיש פיתוח משפט: סיילור של סביב ל- $x_0=0$
- אזי ל־ ל $\sup_{[-r,r]}|f^n|\leq M$ כך ש־ M כך וקיים ב־ ∞ פעמים בי ∞ גזירה אזי לי אם \bullet משפט טיילור: אם $x_0=0$ ביב טיילור טביב פיתוח טיילור אזי מיילור אזי אזי ל

 \mathbb{R} ב־ אם לכל שהפיתוח תקף האומר אומר $M=M\left(r
ight)$ מוצאים לכל הערה:

• הדוגמאות:

$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n, \ x \in (-1,1)$$

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}, \ x \in \mathbb{R}$$

$$\sin x = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1}, \ x \in \mathbb{R}$$

$$\cos x = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n}, \ x \in \mathbb{R}$$

תרגילים:

1. מצאו את תחום ההתכנסות של הטורים

$$\sum_{n=1}^{\infty} n^n x^n$$

$$\sum_{n=1}^{\infty} \left(\frac{x}{n}\right)^n$$

פתרון:

מקדמים הטור הראשון $a_n=n^n$ לכן $\sqrt[n]{|a_n|}=n o \infty$ לכן $a_n=n^n$ לכן מקדמי הטור הראשון $R=\infty$ לכן לכן $\sqrt[n]{|a_n|}=\frac{1}{n} o 0$ לכן לכן $a_n=\frac{1}{n^n}$

2. מצאו את תחום ההתכנסות של הטור

$$\sum_{n=1}^{\infty} \frac{x^n}{2^n n \left(\ln n\right)^2}$$

פתרון:

(לכן: $a_n=rac{1}{2^n n \ln^2 n}$ לכן

$$\left| \frac{a_{n+1}}{a_n} \right| = \frac{1}{2} \frac{n}{n+1} \left(\frac{\ln n}{\ln (n+1)} \right)^2 \longrightarrow \frac{1}{2}$$

לכן הדלילות מתכנס לפי מתכנס לפי הדלילות וב־ x=2 הטור לייבניץ מקבלים מבחן ב־ x=-2 ב- לכן x=-2

$$\sum 2^n \frac{1}{2^n \left(\ln 2\right)^2 n^2} < \infty$$

3. חשבו את רדיוס ההתכנסות של הטור

$$\sum_{n=0}^{\infty} \frac{(n!)^3}{(3n)!} x^{3n}$$

פתרון:

לכן $a_n=\frac{(n!)^3}{(3n)!}$ הם מקדמיו הם $\sum_{n=0}^{\infty}\frac{(n!)^3}{(3n)!}w^n$ לכן . $w=x^3$ נסמן $w=x^3$

$$\frac{a_{n+1}}{a_n} = \frac{((n+1)!)^3}{(3n+3)!} \frac{(3n)!}{(n!)^3} = \frac{(n+1)^3}{(3n+1)(3n+2)(3n+3)} \to \frac{1}{27}$$

 $R=\sqrt[3]{27}=3$ הוא $\sum_{n=0}^{\infty}rac{(n!)^3}{(3n)!}x^{3n}$ הטור הטור לכן לדיוס דייוס אבעל רדיוס לכן בעל דייוס לכן בעל דייוס לכן ליי

4. מצא את תחום ההתכנסות של הטור

$$\sum_{n=0}^{\infty} n^n z^{n^2}$$

פתרון:

מקדמי הטור הם

$$a_k = \begin{cases} n^n & k = n^2 \\ 0 & k \notin \mathbb{Z}^2 \end{cases}$$

עבור .R=1 כמו כן, $\{0,1\}$. לכן $\sqrt[n]{|a_n|}$ יש שני גבולות חלקיים: . $\lim_{n\to\infty}\sqrt[n^2]{n^n}=1$. עבור . $x\in\{-1,1\}$ איבר כללי של הטור לא שואף לאפס לכן תחום ההתכנסות הוא . $x\in\{-1,1\}$

ניח שקיים בהתאמה. R_1 ו־ R_1 ו־ R_2 שני טורי חזקות עם רדיוס התכנסות בהתאמה. נניח שקיים .5 . $R_1 \geq R_2$ ו־ $R_1 \geq R_2$ פרט אולי למספר סופי של $R_1 \geq R_2$ פרט אולי למספר סופי של $R_1 \geq R_2$ קבוע ממשי $R_1 \geq R_2$ פרט אולי למספר סופי של הוכיחו כי

פתרון:

מהנתון:

 $\limsup \sqrt[n]{|a_n|} \le \limsup \sqrt[n]{M|b_n|} \le \limsup \sqrt[n]{|b_n|}$

(-3,3) מגדיר פונקציה גזירה בקטע בקטע $\sum_{0}^{\infty} \left(\frac{x}{(-1)^n+4}\right)^n$ 6. א. הראו שהטור

$$.0\leq f^{'}\left(x\right)\leq\frac{3}{\left(3-x\right)^{2}}$$
 מתקיים $x\in\left[0,3\right)$ ב. הראו שעבור

:פתרון

א. מקדמי הטור $a_{2n+1}=rac{1}{3}$ ו־ $a_{2n}=rac{1}{5}$ לכן לכן $a_n=rac{1}{((-1)^n+4)}$ מכאן

$$\lim \sqrt[2n]{|a_{2n}|} = \frac{1}{5}$$

$$\lim \sqrt[2n+1]{|a_{2n+1}|} = \frac{1}{3}$$

.(-3,3) בזיר ב־ $f(x)=\sum_{0}^{\infty}a_{n}x^{n}$ לכן R=3 מכאן ווא $\sqrt[n]{|a_{n}|}=\frac{1}{3}$ לכן

לכן $f^{'}(x) = \sum_{1}^{\infty} \frac{n}{((-1)^{n}+4)^{n}} x^{n-1}$ ב. לכל $x \in [0,3)$ לכן

$$0 \le f^{'}(x) \le \sum_{1}^{\infty} \frac{n}{\left(\left(-1\right)^{n}+4\right)^{n}} x^{n-1} \le \sum_{n \ge 1} \frac{n}{3^{n}} x^{n-1} = \frac{d}{dx} \sum_{n=0}^{\infty} \left(\frac{x}{3}\right)^{n}$$
 אבל $\frac{d}{dx} \left(\frac{3}{3-x}\right) = \frac{3}{(3-x)^{2}}$, $\sum_{n=0}^{\infty} \left(\frac{x}{3}\right)^{n} = \frac{3}{3-x}$ אבל

.סדרה ל מספרים ממשיים. $(a_n)_{n=0}^\infty$.7.

. לא מתכנס, אך $\sum_0^\infty a_n \, (-2)^n$ אך מתכנס, מתכנס $x \in \left(-2, \frac{1}{2}\right)$ לא מתכנס ידוע כי לכל

הוכח או הפרך ע"י דוגמה נגדית:

- .מתכנס $\sum_{0}^{\infty}a_{n}$ מתכנס
- .מתכנס $\sum_{0}^{\infty}2^{n}a_{n}$ מתכנס
- . מתבדר $\sum_{0}^{\infty}2^{n}a_{n}$ מתבדר

<u>פתרון:</u>

 $1\in (-2,2)$ מתכנס כי $\sum_0^\infty a_n$ מתכנס בי $x\in (-2,2)$. אם כן, אם מתכנס כי $x\in (-2,2)$ מתכנס בי $\sum_0^\infty 2^n a_n$ אז $a_n=\frac{(-1)^n}{n\cdot 2^n}$ אבל אם ניקח הטור $\sum_0^\infty 2^n a_n$ לאו דווקא מתכנס. למשל, ניקח $a_n=\frac{1}{2^n}$, אבל אם ניקח מתכנס

 $.\sum_{n=1}^{\infty} rac{(-1)^{n+1}}{n}$ את הסכום את .8

פתרוו

נשים לב כי |x|<1 לכל |x|<1 שטור החזקות הזה מתכנס ב־ |x|<1

בגלל שהטור מתכנס ב־ x=-1, אז יש התכנסות במ"ש ב־ [-1,0], לכן הטור רציף שם. ז.א יש x=-1 בגלל שהטור מתכנס ב־ x=-1

$$f\left(x\right) = \sum_{n=0}^{\infty} \frac{x^{n+1}}{n+1}$$

לכן $x\in (-1,0]$ לכל $f\left(x
ight)=\ln \left(1-x
ight)$ אבל לפי קודם $\left[-1,0
ight]$ לכל $x\in \left[-1,0
ight]$

$$f(-1) = \lim_{x \to -1} f(x) == \lim_{x \to -1} -\ln(1-x) = -\ln 2$$

ברמת העקרון, יכול להיות ש־ $f\left(x
ight)=-\ln\left(1-x
ight)$ לכל לכל $f\left(x
ight)=-\ln\left(1-x
ight)$, אבל רציפות העקרון, יכול להיות ש־ לא מאפשרת זאת.

$$\sum_{n=1}^{\infty} rac{(-1)^{n+1}}{n} = \ln 2$$
 ומכאן ומכאן $f\left(-1
ight) = \sum_{n=0}^{\infty} rac{(-1)^{n+1}}{n+1} = \sum_{n=1}^{\infty} rac{(-1)^n}{n} = -\ln 2$ סך הכל

אז הטור פי במ"ש ב־ (0,R) אז הטור פי אם יש התכנסות מייט אור חזקות אז איז איז פור פור אז יהי אי איז איז הטור פור אז יהי $\sum_{n=0}^{\infty}a_{n}x^{n}$ מתכנס ב־ x=R

 $.(1,\infty)$ ב במ"ש בהכנס אינו מתכנס $\sum_{n=1}^{\infty}\frac{1}{n^x}$ הוכיחו ב. ב

פתרון:

 $.\big|\sum_{k=n}^m a_k x^k\big| \le \epsilon$ מתקיים $m\ge n\ge N_\epsilon$ ו־ $x\in (0,R)$ כך שלכל N_ϵ קיים $\epsilon>0$ א. לכל $.\big|\sum_{k=n}^m a_k R^k\big| \le \epsilon$ ומשיקולי רציפות נקבל שלכל $x\to R$ שלכל לכן ניקח $x\to R$ ומשיקולי רציפות נקבל

הערה: יש כיוון שאומר שאם יש התכנסות ב־R=R אז יש התכנסות במ"ש ב־[0,R]. זה כבר לא טריוויאלי.

ב. בדיוק אותו רעיון של סעיף קודם, אם יש התכנסות במ"ש ב־ $(1,\infty)$, אז: ב. בדיוק אותו רעיון של סעיף קודם, אם יש התכנסות $m\geq n\geq N_\epsilon$ רכל 0<0, קיים N_ϵ כך שלכל עלכל 0<0

$$\sum_{k=n}^{m} \frac{1}{n^x} < \epsilon$$

ניקח $x o 1^+$ ונקבל סתירה.

הערה: זה לא טור חזקות.

 $\sum_{n=0}^{\infty} rac{a_n}{n+1} R^{n+1}$ אזי אוי הוכיחו כי אם $\sum_{n=0}^{\infty} a_n R^n$ מתכנס, אזי הוכיחו כי אם.10

. מתכנס, $\sum_{n=0}^{\infty}a_nR^n$ אזי מתכנס, $\sum_{n=1}^{\infty}na_nR^{n-1}$ מתכנס.

פתרון:

 $\sum_{n=0}^\infty a_n x^n$ על [0,R] על הטור $\sum_{n=0}^\infty a_n x^n$ מתכנס במ"ש ב־

ב. דיריכלה. לכן לפי מבחן היריכלה. $a_nR^n=na_nR^{n-1}\cdot \frac{R}{n}$.ב

הערה: שני הסעיפים זהים, אבל מוצגים שני פתרונות שונים.

המשמעות: באינטגרציה איבר־איבר ייתכן שמרוויחים התכנסות בקצוות. בגזירה איבר־איבר ייתכן שמאבדים התכנסות בקצוות.

. $x_0=1$ סביב $f\left(x\right)=rac{2x+3}{x+1}$ סביב את הפונקציה את לטור טור. .11 פתרון:

$$f(x) = \frac{2x+3}{x+1} = \frac{2x+3}{2+x-1} = (2x+3) \cdot \frac{1}{2} \cdot \frac{1}{1+\left(\frac{x-1}{2}\right)} =$$
$$= \frac{2x+3}{2} \cdot \sum_{n=0}^{\infty} (-1)^n \left(\frac{x-1}{2}\right)^n =$$
$$= \frac{2(x-1)+5}{2} \sum_{n=0}^{\infty} (-1)^n \left(\frac{x-1}{2}\right)^n$$

|x-1| < 2 זה נכון כאשר

 $x_{0}=0$ לטור טיילור סביב $f\left(x
ight) =\ln \left(1+x
ight)$ א. פתחו את 12.

 $x_{0}=0$ ביב חזקות לטור $f\left(x
ight) =\ln \left(1+x
ight)$ ב. פתחו את

פתרון:

n=0 ועבור $n\geq 1$ לכל $\frac{f^{(n)}(0)}{n!}=\frac{(-1)^{n-1}}{n}$ מחשבים ומקבלים $\frac{f^{(n)}(0)}{n!}$ לכל $n\geq 1$ ועבור $n\geq 1$ מקבלים $n\geq 1$ בבירור.

 $x-rac{x^2}{2}+rac{x^3}{3}-rac{x^4}{4}+-\ldots=\sum_{n=1}^{\infty}rac{(-1)^{n-1}}{n}x^n$ ואז פיתוח טיילור הוא $f\left(x
ight)$ שים לב: לא טענו שזה שווה ל־

ב. השאלה כאן שקולה ל־ "הוכיחו ש־ $\ln{(1+x)}$ שר בחביבת $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} x^n = \ln{(1+x)}$ שמראים שתנאי משפט טיילור מתקיים. או שעושים משחקים כמו בתרגיל 11:

$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n$$

$$\int_0^x \frac{1}{1+t} dt = \sum_{n=0}^\infty (-1)^n \frac{x^{n+1}}{n+1}$$

. ווא אא מתכנס בי x=1 ובי x=1 הוא אים לב שהטור מתכנס. |x|<1

.0 ביב $\int_0^x \frac{\sin t}{t} dt$ שווה לטור אומרת אומרת אומרת אנליטית ב־ $\int_0^x \frac{\sin t}{t} dt$ פתרון:

איך מוכיחים שהטור מתכנס דווקא לפונקציה הזו?

$$\frac{\sin x}{x} = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n}$$

$$\int_0^x \frac{\sin t}{t} dt = \sum_{n=0}^\infty \frac{(-1)^n}{(2n+1)!} \frac{x^{2n+1}}{(2n+1)}$$

xוכל זה נכון לכל

הערה: זאת לא פונקציה אלמנטרית.

. באופן דומה, הוכיחו ש־ $\int_0^x e^{-t^2} dt$ אנליטית

 $.x_0=0$ פתחו את $rac{x}{\sin x}$ לטור חזקות סביב.

<u>פתרון:</u>

נרשום

$$\frac{x}{\sin x} = \sum_{n=0}^{\infty} a_n x^n$$

ואז

$$1 = \left(\sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)!} x^{2k}\right) \cdot \left(\sum_{n=0}^{\infty} a_n x^n\right)$$

מיחידות טור טיילור של הפונקציה הקבועה 1 נשווה מקדמים ונקבל

$$a_m = \begin{cases} 0 & m \notin 2\mathbb{Z} \\ 1 & m = 0 \\ \sum_{k=1}^n \frac{(-1)^{k+1}}{(2k+1)!} a_{2n-2k} & m = 2n \ge 2 \end{cases}$$

 $\sum_{n=0}^{\infty} \frac{x^{2n+1}}{2n+1}$ של סכום של .15 פתרון:

$$\sum_{n=0}^{\infty} x^{2n} = \frac{1}{1 - x^2}$$

לכל $x \in (-1,1)$ לכן

$$\sum_{n=0}^{\infty} \frac{x^{2n+1}}{2n+1} = \int_0^x \frac{dt}{1-t^2}$$

 $x\in (-1,1)$ לכל , $\sum_{n=0}^{\infty}rac{x^{2n+1}}{2n+1}=rac{1}{2}\ln\left(rac{1+x}{1-x}
ight)$ לכל , חישוב פשוט נקבל

$$1+rac{1}{2}+rac{1}{4\cdot 2!}+rac{1}{8\cdot 3!}+rac{1}{16\cdot 4!}+\dots$$
 ג. חשבו $\sum_{n=0}^{\infty}rac{1}{(n+3)n!}$ ב. חשבו

פתרון:

ידוע ש־ $e^x = \sum_0^\infty rac{x^n}{n!}$ לכן

$$1 + \frac{1}{2} + \frac{1}{4 \cdot 2!} + \frac{1}{8 \cdot 3!} + \frac{1}{16 \cdot 4!} + \dots = \sum_{n=0}^{\infty} \frac{1}{2^n n!} = e^{\frac{1}{2}}$$
$$e - 2 = \int_0^1 x^2 e^x dx = \sum_{n=0}^{\infty} \frac{1}{(n+3) n!}$$

$$1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + - \dots$$
 חשבו. .17. פתרון:

מההרצאה

$$\arctan(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1}$$

 $.x \in [-1,1]$ לכל

לכן

$$\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots$$

נקודה למחשבה: $\arctan x$ היא פונקציה חלקה ב־ \mathbb{R} , אבל הטור פתאום מפסיק להתכנס מחוץ ל־ $\arctan x$ למה?

רמז: הרצאה ראשונה באלגברה, ומי שילמד קורס ב**פונקציות מרוכבות** יקבל את התשובה המלאה שם.

.18 בתרגיל בית $S_n=\sum_{k=1}^n\frac{1}{k}$ עבור $u_n=S_n-I_n$ עבור להוכיח ש־ $S_n=\sum_{k=1}^n\frac{1}{k}$ מתכנסת. בתרגיל בית $S_n=\sum_{k=1}^n\frac{1}{k}$ מתכנסת. בתרגול $S_n=\sum_{k=1}^n\frac{1}{k}$ מתכנס. $S_n=\sum_{k=1}^n\frac{1}{k}$ מתכנס. $S_n=\sum_{k=1}^n\frac{1}{k}$ מתכנס. $S_n=\sum_{k=1}^n\frac{1}{k}$ בתרגול $S_n=\sum_{k=1}^n\frac{1}{k}$ מתכנס. $S_n=\sum_{k=1}^n\frac{1}{k}$ בתרגול $S_n=\sum_{k=1}^n\frac{1}{k}$ מתכנס. $S_n=\sum_{k=1}^n\frac{1}{k}$ מתכנסת. $S_n=\sum_{k=1}^n\frac{1}{k}$ בתרגול $S_n=\sum_{k=1}^n\frac{1}{k}$ בתרגול $S_n=\sum_{k=1}^n\frac{1}{k}$ בתרגול $S_n=\sum_{k=1}^n\frac{1}{k}$ בית $S_n=\sum_{k=1}^n\frac{1}{k}$ מתכנסת. $S_n=\sum_{k=1}^n\frac{1}{k}$ בתרגול $S_n=\sum_{k=1}^n\frac{1}{k}$ בתרגול $S_n=\sum_{k=1}^n\frac{1}{k}$ בתרגול $S_n=\sum_{k=1}^n\frac{1}{k}$ בתרגול $S_n=\sum_{k=1}^n\frac{1}{k}$ בתרגול $S_n=\sum_{k=1}^n\frac{1}{k}$ בתרגול $S_n=\sum_{k=1}^n\frac{1}{k}$

פתרון:

מההוכחת ההתכנסות ראינו ש־

$$S_{3n} = \sum_{k=1}^{n} \frac{1}{4k-3} + \frac{1}{4k-1} - \frac{1}{2k}$$

לכן

$$S_{3n} = -\frac{1}{2}S_n + S_{2n} - \frac{1}{2}S_{2n-1}$$

ומכאן

$$\lim_{n \to \infty} S_{3n} = \lim_{n \to \infty} \ln \left(\frac{2n}{\sqrt{n}\sqrt{2n-1}} \right) = \frac{1}{2} \ln 2$$

תהי $x\in\mathbb{R}$ לכל $y=f\left(x
ight)=\sum_{n=0}^{\infty}a_{n}x^{n}$ 19. תהי

$$(1-x)y''-y=0$$

 $x \in \mathbb{R}$ לכל

מצא נוסחה ריקורסיבית של מקדמי הטור.

פתרון:

אפשר לגזור טור חזקות איבר־איבר ∞ פעמים בתחום ההתכנסות. לכן

$$(1-x)\sum_{n=2}^{\infty} n(n-1)a_n x^{n-2} - \sum_{n=0}^{\infty} a_n x^n = 0$$

נסדר את הביטוי ונקבל

$$\sum_{n=0}^{\infty} \left[(n+2) (n+1) a_{n+2} - (n+1) n a_{n+1} - a_n \right] x^n = 0$$

מיחידות טור טיילור נקבל:

$$(n+2)(n+1)a_{n+2} - (n+1)na_{n+1} - a_n = 0$$

משמעות: אם נתונים y ז.א. נתון y (y (y (y (y (y), y (y (y 1.א. נתון y 1.א. נ

מי שילמד קורס ב**משוואות דיפרנציאליות** הוא ישתמש בשיטה זו כדי לפתור משוואות מסוג זה לעיתים קרובות.

למשל, באותו אופן, פתרו את

$$y' - y = 0, y(0) = 1$$

$$y^{''} + y = 0, y(0) = 0, y^{'}(0) = 1$$

רמז: y הוא טור שאתם כבר מכירים. לצורך בדיקה, אתם יכולים להציב את התוצאה הסופית ולבדוק שהכל עובד.