SCC-276 – Aprendizado de Máquina

Exploração e Preprocessamentode dados

Revisado por Profa. Roseli Ap. Francelin Romero – SCC

Tópicos

- Dados
 - Caracterização de dados
 - Objetos e atributos
 - Tipos de dados
 - Exploração de dados
 - Dados univariados
 - Dados multivariados
 - Visualização
 - Limpeza de dados
 - Desbalanceamento
 - Transformação de dados C/USP

Conjuntos de dados

- Estruturados
 - Mais facilmente analisados por técnicas de MD
 - Ex.: Planilhas e tabelas atributo-valor
- Não estruturados
 - Mais facilmente analisados por seres humanos
 - Para DM, são geralmente convertidos em dados estruturados
 - Ex.: Sequência de DNA, conteúdo de página na web, emails, vídeos, ...

Conjuntos de dados estruturados

Atributos de entrada (preditivos)

	Nome	Temp.	Idade	Peso	Altura	Diagnóstico
Exemplos (objetos, instâncias)	João Maria José Sílvia Pedro	39 38	70 65 19 25 70	94 60 70 65 90	185	Saudável Doente Doente Saudável Doente

Atributo alvo

Tipos de atributos

- Simbólicos ou qualitativos
 - Nominal ou categórico
 - Ex.: cor, código de identificação, profissão
 - Ordinal
 - Ex.: gosto (ruim, médio, bom), dias da semana
- Numéricos, contínuos ou quantitativos
 - Intervalar
 - Ex.: data, temperatura em Celsius
 - Racional
 - Ex.: peso, tamanho, idade

Exemplo

Nome	Temp	Enjôo	Batimento	Dor	Salário	Diagnóstico
João		sim	baixo	sim	1000	doente
Pedro		não	normal	não	1100	saudável
Maria		sim	elevado	não	600	saudável
José		não	baixo	sim	2000	doente
Ana		não	elevado	sim	1800	saudável
Leila		não	elevado	sim	900	doente

Nominal Intervalar Ordinal

Racional

Tipos de atributos

- Nominal (=, ≠)
 - Valores são apenas nomes diferentes
- Ordinal (<, >)
 - Existe uma relação de ordem entre valores
- Intervalar (+, -)
 - Diferença entre valores faz sentido
- Racional (*, /)
 - Razão e diferença entre valores fazem sentido

- Definir o tipo dos seguintes atributos:
 - Número de palavras de um texto
 - Fotografia
 - Número de RG
 - Data de nascimento
 - Código de disciplina
 - Posição em uma corrida
 - Expressão de um gene em um tecido
 - Sequência de aminoácidos

- Definir o tipo dos seguintes atributos:
 - Número de palavras de um texto
 - Fotografia
 - Número de RG
 - Data de nascimento
 - Código de disciplina
 - Posição em uma corrida
 - Expressão de um gene em um tecido
 - Sequência de aminoácidos

Quantidade de valores

- Atributos também se distinguem pela quantidade de valores
 - Discretos
 - Número finito ou infinito e enumerável de valores, como números naturais
 - Ex.: código postal, contagem (quantidade de algum elemento)
 - Caso especial: valores binários
 - Contínuos
 - Número infinito de valores, como números reais
 - Ex.: temperatura, peso, distância

Exploração de dados

- Exploração preliminar dos dados facilita entendimento de suas características
- Principais motivações:
 - Ajudar a selecionar a melhor técnica para pré-processamento e/ou modelagem
- Ferramentas
 - Estatística descritiva
 - Visualização

Estatística descritiva

- Descreve propriedades estatísticas de dados
- Produz valores que resumem características de um conjunto de dados
 - Na maioria das vezes por meio de cálculos muito simples

Estatística descritiva

- Pode capturar medidas de:
 - Frequência
 - Localização ou tendência central
 - Ex.: Média
 - Dispersão ou espalhamento
 - Ex.: Desvio padrão
 - Distribuição ou formato

Frequência

- Proporção de vezes que um atributo assume um dado valor
 - Em um determinado conjunto de dados
 - Muita usada para dados categóricos
 - Ex.: Em um BD de um hospital, 40% dos pacientes é maior de idade

Exemplo

Febre Idade		Batimento	Dor	Diagnóstico
sim	23	elevado	sim	doente
não	9	normal	não	saudável
sim	61	elevado	não	saudável
sim	32	baixo	sim	doente
sim	21	elevado	sim	saudável
não	48	elevado	sim	doente

66% das medidas de batimento cardíaco encontradas em pacientes são superiores ao normal

Medidas de localidade (centralidade)

- Tendência central
- Valores quantitativos
 - Média
 - Mediana
 - Percentil
- Valores qualitativos ou quantitativos
 - Moda

Média

Pode ser calculada facilmente

$$m\acute{e}dia(x) = \overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_{i}$$

Problema: sensível a outliers

Mediana

- Menos sensível a outliers que média
- Necessário ordenar valores

mediana (x) =
$$\tilde{x}$$
 =
$$\begin{cases} x_{(r+1)} \text{ se n \'e \'impar (n = 2r + 1)} \\ \frac{1}{2} (x_r + x_{(r+1)}) \text{ se n \'e par (n = 2r)} \end{cases}$$

Média versus Mediana

- Média é uma boa medida de localização quando os valores estão distribuídos simetricamente
- Mediana indica melhor o centro
 - Se distribuição é oblíqua (assimétrica)
 - Skewed
 - Se existem outliers

Média Podada

- Trimmed mean
- Melhora estimativa da média descartando exemplos nos extremos
 - Define porcentagem p dos exemplos a serem eliminados
 - Ordena os dados
 - Elimina (p/2)% dos exemplos em cada extremidade

Winsorização

- Winsorization
- Semelhante à média podada
 - Valores que passam dos extremos, ao invés de eliminados, são substituídos pelos extremos permitidos
 - Percentis mínimos e máximos
 - Ex.: Winsorização de 80% para os valores

$$1, 2, 3, 4, 5, 6, 7, 8, 9, 10 =$$

- Valor mais frequente nos dados
 - Nenhuma moda: Todos os valores não são iguais
 - Uma moda: Unimodal
 - Mais de uma moda: Multimodal (Bimodal, Trimodal, ...)
- Indicada quando existem poucos possíveis valores
- Para dados moderadamente assimétricos, moda pode ser estimada por média e mediana

 $moda \approx m\'edia - 3 \times (m\'edia - mediana)$

Exemplo

Febre Idade		Batimento	Dor	Diagnóstico
sim	23	elevado	sim	doente
não	9	normal	não	saudável
sim	61	elevado	não	saudável
sim	32	baixo	sim	doente
sim	23	elevado	sim	saudável
não	48	elevado	sim	doente

Valor da moda para o atributo batimento: elevado Valor da moda para o atributo idade: 23

- Dado o conjunto de dados {2, 2, 3, 4, 5, 80}, calcular:
 - Média
 - Mediana
 - Média podada com p = 33%
 - Média com Winsorização de 10%
 - Moda

Quartis e Percentis

- Mediana divide os dados ao meio
 - No entanto, pontos de localização diferentes podem ser usados
 - Quartis dividem um conjunto ordenado de dados em quartos
 - Q₁: Primeiro quartil (quartil inferior)
 - Valor da observação para a qual 25% dos dados do conjunto tem valor menor ou igual
 - Também é o valor do 25º percentil
 - Q₂: Segundo quartil = mediana
 - Q₃: Terceiro quartil (quartil superior)
 - 75° percentil

Percentis

- Características do valor do 100pº percentil:
 - Pelo menos 100p% das observações possuem um valor menor ou igual a ele
 - Pelo menos 100(1-p)% das observações tem um valor igual ou acima
- Mediana é o 100x0,5° ou 50° percentil
 - Para cálculo, usar fórmula da mediana

Cálculo dos percentis

- Ordenar os valores
 - Posição do p-percentil:

$$posição = \left\lceil p \times n + \frac{1}{2} \right\rceil$$

- Arredonda posição para o valor inteiro seguinte (21,5 = 22)
- Retorna o valor nessa posição

Exemplo

 Obter os quartis e o 95º percentil para o conjunto de dados abaixo:

```
6,2 7,67 8,3 9,0 9,4 9,8 10,5 10,7 11,0 12,3
```


Exemplo

 Obter os quartis e o 95º percentil para o conjunto de dados abaixo:

```
6,2 7,67 8,3 9,0 9,4 9,8 10,5 10,7 11,0 12,3
```

```
Q_1: np = 0.25x10 + 0.5 = 3

usar \ o \ terceiro \ valor: Q_1 = 8.3

Q_2: np = 0.5x10 + 0.5 = 5.5

para \ a \ mediana, usar \ a \ média \ entre \ o \ quinto \ e \ o \ sexto \ valor: Q_2 = 9.6

Q_3: np = 0.75x10 + 0.5 = 8

usar \ o \ oitavo \ valor: Q_3 = 10.7

P_{0.95}: np = 0.95x10 + 0.5 = 10

usar \ o \ décimo \ valor: P_{0.95} = 12.3
```


Exercício

- Calcular quartis inferior e superior e o 60º percentil para os valores
 - 16, 25, 4, 18, 11, 13, 20, 8, 11 e 9

Exercício

- Calcular quartis inferior e superior e o 60º percentil para os valores
 - 16, 25, 4, 18, 11, 13, 20, 8, 11 e 9
 - **4**, 8, 9, 11, 11, 13, 16, 18, 20, 25
 - $Q_1 =$
 - $Q_3 =$
 - 60° percentil =

Exercício

- Calcular a mediana, o primeiro quartil e o segundo quartil
 - **23**, 7, 12, 6, 10
 - **23**, 7, 12, 6, 10, 7, 10
 - **1**, 1, 1, 1, 1, 98

 Gráfico que resume informações dos quartis

Intervalo entre quartis

Boxplot modificado

- Identifica outliers e reduz seu efeito no formato do boxplot
 - Tolerância = 1,5 x intervalo entre quartis
 - Verificar se máximo Q₃ (Q₁ mínimo) > tolerância
 - Valor fora do intervalo é considerado outlier
 - Define novo mínimo e/ou máximo

Medidas de espalhamento

- Medem variabilidade, dispersão ou espalhamento de um conjunto de valores
- Indicam se os dados estão:
 - Amplamente espalhados ou
 - Relativamente concentrados em torno de um ponto (ex. média)
- Medidas comuns
 - Intervalo ou amplitude
 - Variância
 - Desvio padrão

Intervalo

- Medida mais simples
 - Mostra espalhamento máximo
 - Usada em controle de qualidade
- Sejam $\{x_1, ..., x_n\}$ *n* valores para um atributo x

- Pode não ser uma boa medida
 - Maioria dos valores próximos de um ponto e poucos valores próximos aos extremos

Variância

 Medida mais utilizada para analisar espalhamento de valores

$$var(x) = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2$$

- Denominador n-1: correção de Bessel, usada para uma melhor estimativa da variância verdadeira
 - Amostra (estimada) e população (verdadeira)
- Desvio padrão: raiz quadrada da variância
- Um dos momentos de uma distribuição de probabilidade

- "o quão longe" em geral os seus valores se encontram do <u>valor esperado</u> (média) da variável aleatória *X*.
- Desvio Padrão indica qual é o "erro" se quiséssemos substituir um dos valores coletados pelo valor da média.

Funcionários	Quantidade de peças produzidas por dia						
	Segunda	Terça	Quarta	Quinta	Sexta		
Α	10	9	11	12	8		
В	15	12	16	10	11		
С	11	10	8	11	12		
D	8	12	15	9	11		

Funcionários	Média Aritmética (x)					
Α	$\overline{X}_A = \underline{10 + 9 + 11 + 12 + 8} = \underline{50}$	X _A = 10,0				
В	$\overline{X}_B = \underline{15 + 12 + 16 + 10 + 11} = \underline{64}$	X _B = 12,8				
С	$\overline{X}_c = \underline{11 + 10 + 8 + 11 + 12} = \underline{52}$	X _c = 10,4				
D	$X_D = 8 + 12 + 15 + 9 + 11 = 55$	X _D = 11,0				

Variância → Funcionário A:

var (A) =
$$(10 - 10)^2 + (9 - 10)^2 + (11 - 10)^2 + (12 - 10)^2 + (8 - 10)^2 + (10 -$$

$$Var(B) = 5,36$$

 $Var(C) = 1,84$
 $Var(D) = 6,0$

Variância e Desvio Padrão

- $dp(A) \approx 1.41$
- $dp(B) \approx 2.32$
- $dp(C) \approx 1.36$
- $dp(D) \approx 2,45$
- Funcionário A: 10,0 \pm 1,41 peças por dia

Funcionário B: 12,8 \pm 2,32 peças por dia

Funcionário C: $10,4 \pm 1,36$ peças por dia

Funcionário D: 11,0 \pm 2,45 peças por dia

Medidas de distribuição

- Definem como os valores de uma variável (atributo) estão distribuídos
- Calculada por meio de momentos
 - Medida quantitativa usada na estatística e na mecânica
 - Captura o formato da distribuição de um conjunto de valores

Momentos

- Usados para caracterizar a distribuição de valores de variáveis aleatórias
 - Estimam medidas de uma população de valores usando uma amostra dela
- Vários cálculos de momento
 - Cálculo de momento original
 - Cálculo de momento central
 - Cálculo de momento padronizado

_ ...

Momento original

Momento em torno da origem

$$\mu_k = E(x^k) = \sum_{i=1}^n x_i^k p(x_i) = \sum_{i=1}^n x_i^k f(x_i)$$

- Valor de k define qual é a medida de momento estimada
 - Em geral, apenas primeiro momento (k = 1) é usado: média

Momento central

- Centralizado ou centrado
 - K=1: média = 0 (primeiro momento em torno da média = primeiro momento central)
 - K=2: variância (segundo momento central)
 - K=3: obliquidade (terceiro momento central)
 - K=4: curtose (quarto momento central)

$$\mu_k = E[x - E(x)]^k = \sum_{i=1}^n (x_i - \bar{x})^k p(x_i) = \sum_{i=1}^n (x_i - \bar{x})^k f(x_i)$$

$$\mu_k = \frac{\sum_{i=1}^{n} (x_i - \bar{x})^k}{(n-1)}$$
 Assumindo cada x_i aparece com a mesma frequência

Momento padronizado

- Fornece informações mais claras sobre a distribuição dos dados
 - Utiliza distribuição normal padrão
 - Normaliza o k-ésimo momento pelo desvio padrão elevado a k
 - Torna a medida independente de escala

$$\mu_k = \frac{\mu_k}{\sigma^k}$$
 Em torno da média

Momento padronizado

- Primeiro momento (K=1):
 - Média = 0
- Segundo momento (K=2):
 - Variância = 1

$$\mu_2 = \frac{\sum_{i=1}^n (x_i - \overline{x})^k}{(n-1)\sigma^2}$$

Obliquidade

- Terceiro momento (Skewness)
 - Mede a simetria da distribuição dos dados em torno da média
 - Distribuição simétrica tem a mesma aparência à direita e à esquerda do ponto central

$$Obl = \mu_3 = \frac{\sum_{i=1}^{n} (x_i - \bar{x})^3}{(n-1)\sigma^3}$$

$$\mu_3 = \frac{1}{\sigma_3} \sum_{i=1}^{n} (x_i - \bar{x})^3 p(x_i) = \frac{1}{\sigma_3} \sum_{i=1}^{n} (x_i - \bar{x})^3 f(x_i)$$

Distribuição normal

Curtose

- Quarto momento (Kurtosis)
 - Medida de dispersão que captura o achatamento da função de distribuição
 - Verifica se os dados apresentam um pico elevado ou são achatados em relação a uma distribuição normal

$$Curt = \mu_4 = \frac{\sum_{i=1}^{n} (x_i - \bar{x})^4}{(n-1)\sigma^4}$$

Curtose

- Para uma distribuição normal padrão (média = 0 e desv. pad. = 1), Curt = 3
- Para que a distribuição normal padrão tenha curtose = 0, usa-se a correção:

$$Curt = \mu_4 = \frac{\sum_{i=1}^{n} (x_i - \bar{x})^4}{(n-1)\sigma^4} - 3$$

Histograma

Melhor forma para verificar graficamente curtose e obliquidade

Curtose faz a diferenca

Todas tem media zero e variância 1 São diferentes!!!

Exercício

 Obter o valor dos 4 primeiros momentos padronizados para os valores:

1, 3, 5, 6, 8, 10, 15

Boxplot e Estatística Descritiva

Centralidade

Espalhamento

Boxplot e Estatística Descritiva

Obliquidade (simetria)

Curtose (achatamento)

Boxplot e Estatística Descritiva

 Análise da distribuição de dados para 4 atributos preditivos:

Exercício

 Obter o valor dos 4 primeiros momentos padronizados para os valores:

1, 3, 5, 6, 8, 10, 15

- Possuem mais de um atributo
 - Cada atributo é uma variável
- Medidas de localização (tendência central)
 - Podem ser obtidas calculando medida de localização de cada atributo separadamente
 - Ex.: média, mediana, ...
 - Média dos objetos de um conjunto de dados com m atributos é dada por: $\bar{x} = (\bar{x}_1, ..., \bar{x}_m)$

- Medidas de espalhamento (dispersão)
 - Podem ser calculadas para cada atributo independentemente dos demais
 - Usando qualquer medida de espalhamento
 - Intervalo, variância, desvio padrão
 - Para dados multivariados numéricos é melhor usar uma matriz de covariância
 - Cada elemento da matriz é a covariância entre dois atributos

• Cálculo de cada elemento s_{ij} de uma matriz de covariância S para um conjunto de n objetos

$$s_{ij} = \text{covariância}(x_i, x_j) = \frac{1}{n-1} \sum_{k=1}^{n} (x_{ki} - \bar{x}_i)(x_{kj} - \bar{x}_j)$$

Onde:

 $\overline{x_i}$: Valor médio do i-ésimo atributo

 x_{ki} : Valor do i-ésimo atributo para o k-ésimo objeto

É de ordem nxn

- Obs: covariância (x_i, x_i) = variância (x_i)
 - Matriz de covariância tem em sua diagonal as variâncias dos atributos

Calcular a matriz de covariância para o conjunto de dados:

Altura	Temperatura
170	37
165	38
190	34
152	31
	170 165 190

- Covariância de dois atributos
 - Mede o grau com que os atributos variam juntos (linearmente)
 - Valor próximo de 0:
 - Atributos não têm um relacionamento linear
 - Valor positivo:
 - Atributos diretamente relacionados
 - Quando o valor de um atributo aumenta, o do outro também aumenta
 - Valor negativo:
 - Atributos inversamente relacionados
 - Valor depende da magnitude dos atributos

Peso	Altura
60	170
70	180
80	190

Peso	Altura
60	190
70	180
80	170

Peso	Altura
60	170
70	190
80	180

- Covariância de dois atributos
 - É difícil avaliar o relacionamento entre dois atributos olhando apenas a covariância
 - Sofre influência da faixa de valores dos atributos
 - Correlação linear entre dois atributos ilustra mais claramente a força da relação linear entre eles
 - Mais popular que covariância
 - Elimina influência da faixa de valores

Correlação linear

- Indica força da relação linear entre dois atributos
- Matriz de correlação R

$$r_{ij} = \operatorname{correlação}(x_i, x_j) = \frac{\operatorname{covariância}(x_i, x_j)}{\operatorname{Onde:}}$$
Onde:
 x_i : i-ésimo atributo
 s_i : Desvio padrão do atributo x_i

- Obs: correlação $(x_i, x_i) = 1$
 - Elementos da diagonal principal têm valor 1
 - Demais elementos têm valor entre −1 e +1

Exercício

 Calcular a matriz de covariância e a matriz de correlação para o conjunto de dados:

Peso Altura Temperatura

Peso	Altura	Temperatura
73	170	37
67	165	38
90	190	34
49	152	31

 Ilustrar graficamente pares de atributos direta e inversamente correlacionados

Outras formas de sumarizar dados

- Visualização gráfica
 - Em vários casos, facilita compreensão de padrões mais complexos nos dados
 - Exemplos simples
 - Histograma
 - Diagrama de torta
 - Scatter plot
 - Faces de Chernoff

- Correção de problemas detectados nos dados deve lidar com:
 - Atributos com valores ausentes
 - Atributos e objetos redundantes
 - Atributos e objetos com valores inconsistentes
 - Atributos com ruídos
 - Outliers

Valores ausentes

- Dados faltosos, faltantes, incompletos
- Várias técnicas de AM não foram projetadas para lidar com valores ausentes
 - Têm dificuldades ou não conseguem induzir um modelo

Valores ausentes

- Não é raro um objeto não ter valores para um ou mais atributos
- Possíveis causas:
 - Atributo não foi considerado quando os primeiros dados foram coletados
 - Desconhecimento do valor do atributo por ocasião do preenchimento
- Distração, mal entendido ou declinação na hora do preenchimento
- Problema com dispositivo
 / processo de coleta de valores para o atributo

Exemplo de valores ausentes

Nome	Febre	Enjoo	Batimentos	Dor	Salário	Diagnóstico
João Maria José Sérgio Ana Leila Marta	sim não sim não sim	sim não sim não não não não	baixo baixo baixo alto alto baixo	sim não não sim não sim	1000 1100 600 1100 1800 900 2000	doente saudável saudável doente saudável saudável doente doente

Lidar com valores ausentes

- Agir como se não houvessem valores ausentes
 - Utilizar apenas os valores que estão presentes
 - Ex.: Menos atributos no cálculo da distância entre objetos
 - Modificar algoritmo de AM para lidar com valores ausentes
- Descartar objetos com atributos sem valores
- Preencher valores ausentes

Descarte de objetos

- Geralmente empregado quando:
 - Um dos atributos ausentes é o atributo classe
 - Objeto tem muitos valores ausentes
- Não é indicado quando:
 - Ocorre com poucos atributos do objeto
 - Há risco de perder dados importantes

Preenchimento de valor

- Criação de um novo valor que significa ausência
 - Para valores nominais (sem ordem)
- Criação de um novo atributo preditivo
 - Marcando objetos em que um dado atributo tinha valor ausente
- Estimativa de um valor para suprir a ausência

Estimativa do valor

- Usar medida de localidade
 - Média (mediana, moda) dos valores do atributo
 - Todos os valores
 - Dos objetos mais próximos e/ou da mesma classe
 - Para série temporais, medida de localidade entre valores anterior e posterior

Estimativa do valor

- Induzir valor induzido por algum estimador
 - Valor presente em objetos semelhantes
 - Utilizar algoritmo de AM
 - Alternativa mais eficiente

Valores ausentes

Observações

- Em alguns casos, a ausência de valor é uma informação importante sobre o objeto
- Existem situações em que o valor pode ou precisa estar ausente
 - Ex.: Atributo número do apartamento para quem mora em uma casa
 - Ao invés de ausente, é um valor inexistente
 - Difícil tratar de forma automática
 - Criação de um novo atributo

Exercício

Tratar dos valores ausentes da tabela abaixo

Nome	Profissão	Nível	Peso	Altura	Salário	Situação
João	Encanador	Médio	70	180	3000	adimplente
Lia		Superior	200	174	7000	inadimplente
Maria	Advogado	Médio		180	600	adimplente
José	Médico	Superior	100		2000	inadimplente
Sérgio	Bancário		82	178	5000	inadimplente
Ana	Professor	Fundam.	77	188	1800	adimplente
Luísa	Médico	Superior	100	36	2000	inadimplente
José	Médico	Médio	340		800	

Valores inconsistentes

- Dados podem conter valores inconsistentes
 - Atributos preditivos
 - Ex. Código postal invalido para uma cidade
 - Erro / engano
 - Proposital (fraude)
 - Atributo alvo
 - Podem levar a objetos conflitantes (ambiguidade)
 - Ex.: valores iguais para atributos preditivos e diferentes para atributo alvo
 - Podem ser causados por erro na rotulação do objeto

Valores inconsistentes

- Algumas inconsistências são de fácil detecção
 - Violação de relações conhecidas entre atributos
 - Ex.: Valor de atributo A é sempre menor que valor de atributo B
 - Valor inválido para o atributo
 - Ex.: altura com valor negativo
 - Em outros casos, informações adicionais precisam ser consideradas
- Podem indicar presença de ruído

Exemplo de objetos inconsistentes

Nome	Febre	Enjoo	Batimentos	Dor	Salário	Diagnóstico
João	sim	sim	<mark>baixo</mark>	sim	1000	doente
Pedro		não	baixo	não	1100	saudável
Maria	sim	sim	alto	não	600	saudável
José	sim	não	baixo	sim	2000	doente
Sérgio	não	não	baixo	não	1100	doente
Ana	sim	não	alto	sim	1800	saudável
Leila	não	não	alto	sim	900	doente
Marta	sim	não	alto	sim	3000	doente

Considerações Finais

- Caracterização de dados
 - Objetos e atributos
 - Tipos de dados
- Exploração de dados
 - Dados univariados
 - Medidas de localidade, espalhamento e distribuição
 - Dados multivariados

