

基于强化学习的黑白棋的设计与实现

Design and Implementation of Othello Based on Reinforcement Learning

Zhao Qian

Adviser: Wang Jianhua

Yantai University School of Computer and Control Engineering

6th June 2019

Why Reversi and Prior Work

Why Reversi?

- 以往算法的设计中大都使用博弈树搜索的方法
- 2017 年 AlphaGo Zero 出现了
- 打算将这种思路扩展到黑白棋中

Prior Work

Minimax Tree Search + Alpha-Beta pruning

- 搜索空间巨大(随搜索层数指数级增加)
- 棋力受限于搜索的层数 (理想时间内很难提高)
- 棋力受限于设计者的能力(如估值函数的设计)

Monte Carlo Tree Search

- 无需任何领域知识便可工作
- 非对称式增长,算法会频繁地访问"更感兴趣" 的节点,并聚焦搜索空间于更加相关树的部分
- 算法可在任何时间终止,并返回当前最优的估计

Reversi: Basic Rules

How to play

- 棋盘 8×8 大小
- E4、D5 为黑棋
- D4、E5 为白棋
- 执黑先手

- 落子必须在一空位
- 落子必须造成翻转
- 无子可走则本轮 pass
- 有子可走则必须走棋

How to win

- 双方都无子可下
- ② 棋子数目多者获胜,若相等为平局

Reinforcement Learning

强化学习解决一类序贯决策问题,它不关心输入的数据长什么样子,它只关心当前采取什么样的行动才能使得最终的回报最大

Structure Breakdown

神经网络 f_{θ} (predict)

$$(\vec{p}, v) = f_{\theta}(s)$$

- $\vec{p}_{\theta}(s_t)$: 状态 s_t 下选择每个动作的概率 vector, $\sum \vec{p}_{\theta}(s_t) = 1$
- $v_{\theta}(s_t)$: 状态 s_t 下获胜的价值估计, $v_{\theta}(s_t) \in [-1,1]$

One action

 $f_{\theta}(s) \xrightarrow{(\vec{p},v)} \text{MCTS} \xrightarrow{\vec{\pi}_t} action$ 终止态 s_T 获得本局胜利者 Z,产生对局数据 $(s_t, \vec{\pi}_t, z_t)$

One iteration

通过 self play 得到一组 train data 使用 train data 训练神经网络得出新 model 新旧 model 进行对抗判断胜率是否超过阈值需要更新

Neural Policy and Value Network

神经网络 f_{θ} (train)

Input: train data $(s_t, \vec{\pi}_t, z_t)$

ToDo: 最小化 $\vec{p}_{\theta}(s_t)$ 与 $\vec{\pi}_t$, $v_{\theta}(s_t)$ 与 z_t 间的差距

$$Loss = \sum_{t} (v_{\theta}(s_t) - z_t)^2 - \vec{\pi}_t \cdot \log(\vec{p}_{\theta}(s_t))$$

NNet Structure (CNN)

Monte Carlo Tree Search for Policy Improvement

使用 MCTS 改进神经网络预测 $(\vec{p}, v) \leftarrow f_{\theta}(s)$

算法流程:

- 以当前状态 s 作为 Tree 根节点, 扩展 s'
- 若状态 $s' \in Tree$, 递归搜索 s'
- 若状态 s' ∉ Tree, 创建并初始化该节点, 回溯 更新递归链中各节点的权值
- 若遇到终止态, 直接返回最终的实际奖励

算法目标: 最大化置信区间上界 U(s,a)

在经过多次 MCTS 后,N(s,a) 已能为每个状态的决策提供一个很好的近似值,因此得到最终结果: $N(s,a)^{\frac{1}{\tau}}$

- Q(s,a): 在状态 s 下采取动作 a 所得到的预期奖励
- N(s,a): 所有模拟中在状态 s 下采取动作 a 的次数
- $P(s,\cdot) = \vec{p}_{\theta}(s)$: 在状态 s 下采取动作的先验概率
- $U(s, a) = Q(s, a) + c_{puct} \cdot P(s, a) \cdot \frac{\sqrt{\sum_b N(s, b)}}{1 + N(s, a)}$

Experiments and Analysis

不同超参数配置下的 LOSS 变化曲线

Experiments and Analysis

一块 Tesla T4 中训练了 150h, 共迭代 120 次, 其中成功 29 次, 平均每次成功迭代耗时 5.17h

Elo rating 随迭代版本的变化曲线

Experiments and Analysis

不同算法实现的 AI 与本方对局结果

本方胜场数 / 总场数	本方胜率
80/80	100%
80/80	100%
80/80	100%
56/80	70%
	80/80 80/80 80/80

Conclusions and Prospects

我所做的工作

- 在传统博弈树算法以外尝试了新算法的探索
- 设计并实现了一个适用于双人回合制游戏的强化学习框架
- 设计并构建了一个兼具策略评估与价值评估的神经网络
- 使用蒙特卡洛搜索方法对神经网络的预测进行改进

Conclusions and Prospects

一些结论

- 人们往往认为机器学习只有在大数据下才能发挥作用,但这是不准确的
- 有些时候设计一个好的自学习算法比数据的输入更重要
- 不需要任何人类知识的输入,它总是和一个与自己棋力相当的 AI 对局并从中总结经验改进自己
- 使用强化学习方法相比于传统算法预测时间短(但需预先进行训练),可提升空间大

期间遇到的问题 (已解决)

- Keras 多线程预测产生的线程安全问题(预先将图处理为静态的)
- 多进程 self-play fork 时产生的内存资源消耗严重的问题(减少不必要的内存复制)

展望未来

- 即使后来的 AlphaZero 可以挑战 Dota2 等相对于围棋更为复杂的游戏,但这些游戏相对于现实 □ □ □ 世界来说仍然属于简单问题
- 步入强人工智能领域还需要走很长的路,也希望我们未来的生活会因此变得更加美好

Acknowledgement

- 感谢王建华老师在毕设期间的指导
- 感谢 ACM 实验室卢云宏老师、周世平老师、封玮老师
- 感谢班主任毕远伟老师
- 感谢四年里遇到的各位老师和同学

请多提宝贵意见

