

Theoretical foundation for covariance matrix adaptation evolutionary strategy (CMA-ES) from information geometry perspective

Presented by : Ahmed MAZARI 20 February 2017

Context and motivation

Context:

Continuous domain optimization

Target:

Minimize an objective function in a continuous domain

$$f: \mathbb{X} \subseteq \mathbb{R}^n \longrightarrow \mathbb{R},$$

$$x \longmapsto f(x)$$

Context and motivation

Black box scenario:

How to minimize f in a black-box scenario? Why it's difficult to solve?

non-convex

gradient direction Newton directic

ill-conditioning

- Gradient not available
- Non-convex, noisy, rugged, high dimensional
- Analytic form is not known
- Time evaluation ...

Context and motivation

Goal:

Convergence to the global optimum.

As fast as possible

Problem:

- Exhaustive search is infeasible
- Naive random and deterministic search take too long time

CMA-ES for deep learning hyperparameter optimization

name	description	transformation	range
x_1	selection pressure at e_0	$10^{-2+10^{2}x_1}$	$[10^{-2}, 10^{98}]$
x_2	selection pressure at e_{end}	$10^{-2+10^{2}x_{2}}$	$[10^{-2}, 10^{98}]$
x_3	batch size at e_0	2^{4+4x_3}	$[2^4, 2^8]$
x_4	batch size at e_{end}	2^{4+4x_4}	$[2^4, 2^8]$
x_5	frequency of loss recomputation r_{freq}	$2x_5$	[0, 2]
x_6	alpha for batch normalization	$0.01 + 0.2x_6$	[0.01, 0.21]
x_7	epsilon for batch normalization	10^{-8+5x_7}	$[10^{-8}, 10^{-3}]$
x_8	dropout rate after the first Max-Pooling layer	$0.8x_{8}$	[0, 0.8]
x_9	dropout rate after the second Max-Pooling layer	$0.8x_9$	[0, 0.8]
x_{10}	dropout rate before the output layer	$0.8x_{10}$	[0, 0.8]
x_{11}	number of filters in the first convolution layer	$2^{3+5x_{11}}$	$[2^3, 2^8]$
x_{12}	number of filters in the second convolution layer	$2^{3+5x_{12}}$	$[2^3, 2^8]$
x_{13}	number of units in the fully-connected layer	$2^{4+5x_{13}}$	$[2^4, 2^9]$
x_{14}	Adadelta: learning rate at e_0	$10^{0.5-2x_{14}}$	$[10^{-1.5}, 10^{0.5}]$
x_{15}	Adadelta: learning rate at e_{end}	$10^{0.5-2x_{15}}$	$[10^{-1.5}, 10^{0.5}]$
x_{16}	Adadelta: ρ	$0.8 + 0.199x_{16}$	[0.8, 0.999]
x_{17}	Adadelta: ϵ	$10^{-3-6x_{17}}$	$[10^{-9}, 10^{-3}]$
x_{14}	Adam: learning rate at e_0	$10^{-1-3x_{14}}$	$[10^{-4}, 10^{-1}]$
x_{15}	Adam: learning rate at e_{end}	$10^{-3-3x_{15}}$	$[10^{-6}, 10^{-3}]$
x_{16}	Adam: β_1	$0.8 + 0.199x_{16}$	[0.8, 0.999]
x_{17}	Adam: ϵ	$10^{-3-6x_{17}}$	$[10^{-9}, 10^{-3}]$
x_{18}	Adam: β_2	$1 - 10^{-2 - 2x_{18}}$	[0.99, 0.9999]
x_{19}	adaptation end epoch index e_{end}	$20 + 200x_{19}$	[20, 220]

Hyperparameters to optimize

CMA-ES for deep learning hyperparameter optimization

Comparison of optimizers for Adam with batch selection when solutions are evaluated sequentially for 5 minutes each (left), and in parallel for 30 minutes each (right).

Covariance matrix adaptation evolutionary strategy (CMA-ES) algorithm

The CMA-ES

```
Input: m \in \mathbb{R}^n, \sigma \in \mathbb{R}_+, \lambda
Initialize: \mathbf{C} = \mathbf{I}, and p_{\mathbf{c}} = \mathbf{0}, p_{\sigma} = \mathbf{0},
Set: c_{\mathbf{c}} \approx 4/n, c_{\sigma} \approx 4/n, c_1 \approx 2/n^2, c_{\mu} \approx \mu_w/n^2, c_1 + c_{\mu} \leq 1, d_{\sigma} \approx 1 + \sqrt{\frac{\mu_w}{n}}, and w_{i=1...\lambda} such that \mu_w = \frac{1}{\sum_{i=1}^{\mu} w_i^2} \approx 0.3 \ \lambda
```

While not terminate

$$m{x}_i = m{m} + \sigma \, m{y}_i, \quad m{y}_i \sim \mathcal{N}_i(\mathbf{0}, \mathbf{C}) \,, \quad \text{for } i = 1, \dots, \lambda$$
 sampling $m{m} \leftarrow \sum_{i=1}^{\mu} w_i \, m{x}_{i:\lambda} = m{m} + \sigma \, m{y}_w \quad \text{where } m{y}_w = \sum_{i=1}^{\mu} w_i \, m{y}_{i:\lambda}$ update mean $m{p}_c \leftarrow (1-c_c) \, m{p}_c + 1\!\!\!\mid_{\{\|m{p}_\sigma\| < 1.5\sqrt{n}\}} \sqrt{1-(1-c_c)^2} \sqrt{\mu_w} \, m{y}_w$ cumulation for $m{C}$ $m{p}_\sigma \leftarrow (1-c_\sigma) \, m{p}_\sigma + \sqrt{1-(1-c_\sigma)^2} \sqrt{\mu_w} \, m{C}^{-\frac{1}{2}} \, m{y}_w$ cumulation for σ $m{C} \leftarrow (1-c_1-c_\mu) \, m{C} + c_1 \, m{p}_c \, m{p}_c^{\rm T} + c_\mu \sum_{i=1}^{\mu} w_i \, m{y}_{i:\lambda} \, m{y}_{i:\lambda}^{\rm T}$ update $m{C} \leftarrow \sigma \times \exp\left(\frac{c_\sigma}{dc} \left(\frac{\|m{p}_\sigma\|}{\mathbf{E}\|\mathcal{N}(\mathbf{0},\mathbf{I})\|} - 1\right)\right)$ update of σ

Not covered on this slide: termination, restarts, useful output, boundaries and encoding

Rank-u update in CMA-ES

• Increases the possible learning rate in large populations

 Uses the evolution path and reduces the number of necessary function evaluations

Properties of CMA-ES

- Learns the dependencies between variables
- Invariant for any increasing function g : g(f(x))

increases the likelihood of previously successful steps

Approximates the inverse of hessian on quadratic functions

Problems of CMA-ES

- O(n²) time and space complexities :
 - -To store and update C in R^(n by n)
 - To compute the eigendecomposition of C
- Internal CPU-time 10^(-8) n^(2) secondes per function evaluation on a 2GHZ pc, tweaks are available
 - -1 000 000 f -evaluations in 100-D take 100 seconds internal CPU-time

Youhei Akimoto, Anne Auger and Nikolaus Hansen . In CMA-ES and Advanced Adaptation Mechanisms talk

Covariance matrix adaptation evolutionary strategy (CMA-ES)

Initialize distribution parameters $\{m, C\}$, set population size $\lambda \in \mathbb{N}$ While not terminate

1- Sample λ independent points $x_1...x_{\lambda}$ from $P(x|\theta)$ such that

 $P(x|\theta)$ multivariate gaussian distribution

$$\theta = \{m, \sigma^2, C\}$$

m: mean vector, $m \in \mathbb{R}^n$

 σ : global step size controls step length, $\sigma \in \mathbb{R}_+$

C: Covariance matrix (symmetric, positive definite) determines the shape of the distribution ellipsoid, $C \in \mathbb{R}^{n \times n}$

2- Evaluate the fitness values $f(x_1), ..., f(x_{\lambda})$

3-Update the parameters of θ

$$m^{t+1} = m^t + \eta_m \sum_{i=1}^{\lambda} W_{R_i}(x_i - m^t)$$
 (1)

$$C^{t+1} = C^t + \eta_C \sum_{i=1}^{\lambda} W_{R_i} ((x_i - m^t)(x_i - m^t)^T - C^t)$$
 (2)

where η_m and η_C are learning rate parameters and W_{R_i} : the weight for the R_i^{th} highest point

Rank-u update CMA-ES and Natural Gradient Ascent

1- Expected Fitness

$$J(\theta) = \mathbb{E}[f(x); \theta] = \int f(x)P(x; \theta)dx$$

2-Natural Gradient

2-B $\nabla J(\theta)$ gradient of J

$$ilde{
abla} J(heta) = F_{ heta}^{-1}
abla J(heta)$$
 or $heta$ such that

2-A F_{θ} : Fisher metric for θ such that

$$=\int \frac{\partial \ln P(z)}{\partial z}$$

$$=\int \frac{\partial \ln P(x)}{\partial x}$$

$$F_{\theta} = \int \frac{\partial ln P(x;\theta)}{\partial \theta} \left(\frac{\partial ln P(x;\theta)}{\partial \theta} \right)^{T} P(x;\theta) dx$$

$$\int \partial \theta$$

$$\mathbb{E} \left[\partial \ln P(x;\theta) \right] \left(\partial \theta \right)$$

$$=\mathbb{E}\left[rac{\partial \mathit{InP}(x; heta)}{\partial heta}\left(rac{\partial \mathit{InP}(x; heta)}{\partial heta}
ight)^T
ight]$$

$$\mathbb{E}\left[\frac{\partial \theta}{\partial \theta}\right]$$

$$(\overline{} \partial \theta \overline{})$$

$$\nabla J(\theta) = \nabla \int f(x)P(x,\theta)\nabla lnP(x,\theta)dx$$

$$= \mathbb{E}[f(x)\nabla lnP(x,\theta)]$$

Under some regularity conditions which are derived from Lebsgue's dominated convergence theorem 16.3

(6)

(3)

(4)

(5)

Rank-u update CMA-ES and Natural Gradient Ascent

3- Monte carlo approximation of the natural gradient: fitness function is unknown

$$\delta(\theta|\{x_i\}) = \sum_{i=1}^{\lambda} \frac{f(x_i)}{\lambda} \mathbf{F}^{-1}(\theta) \nabla ln P(x_i; \theta)$$

Circumvent the computation of the inverse of the information matrix by theorem 4.1

$$\tilde{\delta}(\theta|\{x_i\}) = \sum_{i=1}^{\lambda} \frac{f(x_i)}{\lambda} \left[\underset{vech((x_i - m(\theta^t))(x_i - m(\theta^t))^T - C(\theta^t))}{x_i - m(\theta^t)} \right]$$

4- Update rule for natural gradient learning :

update
$$heta$$
 such that : $heta = heta + \eta ilde{\delta}(heta)$

update
$$\theta$$
 such that : $\theta = \theta + \eta \delta(\theta)$

$$m^{t+1} = m^t + \eta \sum_{i=1}^{\lambda} \frac{f(x_i)}{\lambda} (x_i - m^t)$$

$$m^{t+1} = m^t + \eta \sum_{i=1}^{\infty} \frac{r(x_i)}{\lambda} (x_i - m^t)$$

$$m^{r+1} = m^r + \eta \sum_{i=1}^{r} \frac{1}{\lambda} (x_i - m^r)$$

$$C^{t+1} = C^t + \eta \sum_{i=1}^{\lambda} \frac{f(x_i)}{\lambda} ((x_i - m^t)(x_i - m^t)^T - C^t)$$

(8)

(9)

 $\eta_C = \eta_m = \eta$

Important property of Natural Gradient

The natural gradient equipped with the Fisher metric on the density p is invariant under re-parameterization of the distribution

$$F_{\theta} = \int \frac{\partial ln P(x;\theta)}{\partial \theta} \left(\frac{\partial ln P(x;\theta)}{\partial \theta} \right)^{T} P(x;\theta) dx$$
$$= \mathbb{E} \left[\frac{\partial ln P(x;\theta)}{\partial \theta} \left(\frac{\partial ln P(x;\theta)}{\partial \theta} \right)^{T} \right]$$

Importance of invariance

Why it is important to build invariants?

Natural gradient ascent along with rank-u CMA-ES update

Natural gradient ascent with monte-carlo approximation ⇔ rank-u CMA-ES

From equation (1), (2) of CMA-ES
$$m^{t+1} = m^t + \eta_m \sum_{i=1}^{\lambda} W_{R_i}(x_i - m^t) \tag{1}$$

$$C^{t+1} = C^t + \eta_C \sum_{i=1}^{\lambda} W_{R_i} ((x_i - m^t)(x_i - m^t)^T - C^t)$$
 (2)

And from (9), (10) of natural gradient

$$W_{R_i} = \sum_{i=1}^{\lambda} \frac{f(x_i)}{\lambda}$$

$$m^{t+1} = m^t + \eta \sum_{i=1}^{\lambda} \frac{f(x_i)}{\lambda} (x_i - m^t)$$
 (9)

$$C^{t+1} = C^t + \eta \sum_{i=1}^{\lambda} \frac{f(x_i)}{\lambda} ((x_i - m^t)(x_i - m^t)^T - C^t)$$
 (10)

Building invariants

How to build invariants?

Building invariants

How to build invariants?

- Riemannian geometry
- Information theory
- Group theory
- Approximation theory
- Theory of complexity

Perspectives and open problems

- Theoretical foundation for the evolution path and cumulation
- Evaluation of the estimated natural gradient (Coefficients)
- Stability of CMA-ES
- Fitness shaping exploration
- Build a group of invariants

Limit of CMA-ES

What if x is on an arbitrary space?

Extended results from Information-Geometric Optimization and group theory

Perspective from Information geometric optimization:

- Optimization on arbitrary space
- Invariance principles for generalization

Quantile rewriting of the objective function

Yann Ollivier, Ludovic Arnold, Anne Auger and Nikolaus Hansen. Information-Geometric Optimization Algorithms: A Unifying Picture via Invariance Principles. 2011

Extended results from Information-Geometric Optimization and group theory

Perspective from group theory:

- Learning group of invariants (translation, rotation, elastic deformation)
- Linearization of symmetries in high dimension without a loss of information
- Retrieve more invariants from the inner structure of information

My intuition

- Building invariants in CMA-ES can also lead to theoretical grounding of deep neural networks
- Both CMA-ES and neural networks are black-box architectures.
- Rely on neural networks to learn invariants for CMA.
- Apply CMA-ES to optimize the hyperparameters of deep architecture to learn the complex inner structure
- Dialectic relationship between CMA-ES and deep neural networks

References

- Youhei Akimoto, Yuichi Nagata, Isao Ono, Shigenobu Kobayashi. Theoretical foundation for CMA-ES from information geometric perspective. 2012
- Yann Ollivier, Ludovic Arnold, Anne Auger and Nikolaus Hansen. Information-Geometric Optimization
 Algorithms: A Unifying Picture via Invariance Principles. 2011
- Stephane Mallat. Understanding deep convolutional neural networks. 2016
- Tom Schaul . Studies in Continuous Black-box Optimization, PHD thesis. Technical university of Munich.
 2011
- Ilya Loshchilov & Frank Hutter. CMA-ES for hyperparameter optimization of deep neural networks. ICLR 2016
- Yann Ollivier. Optimization and recurrent neural networks training talk. College de France, 2016
- Stephane Mallat. Mathematical mysteries of deep neural networks. College de France, 2016
- Anne Auger. How information theory sheds new light on black-box optimization talk. Institut Henré Poincaré,
 France, 2016
- Anne Auger, Youhei Akimoto and Nikolaus Hansen. Miscellaneous talks.
- Anne Auger and Dimo Brockhoff. Introduction and advanced optimization class (M2 AIC). 2016-2017