## Universitatea Politehnica din București

Facultatea de Electronică, Telecomunicații și Tehnologia Informației

# Proiect 1- Dispozitive și circuite electronice

Stabilizator de tensiune cu ERS

Student: Îndrumători:

Voiculescu Vlad Cristian Ş.I Dr. Ing. Miron Cristea

433C Dr. Ing. Niculina Drăghici

## **CUPRINS**

### 1. Date inițiale de proiectare

- 1.1 Enunțul temei de proiectare
- 1.2 Schema bloc a montajului electric
- 1.3 Schema montajului electric

## 2. Conținutul tehnic/ științific al proiectului

- 2.1 Descrierea funcționării schemei de proiectare
- 2.2 Proiectarea schemei electrice în OrCAD
- 2.3 BOM

#### 1. Date inițiale de proiectare

#### 1.1 Tema proiectului

Proiectarea unui stabilizator de tensiune ERS cu următoarele cerințe

- Tensiunea de ieșire reglabilă în intervalul 12-24V
- Element de reglaj serie
- Sarcina la ieșire 1.2 Kohm
- Deriva termică <2mV/C</li>
- Protecție la suprasarcină prin limitarea temperaturii tranzistorului element de reglaj serie la 100 grade și a curentului maxim la 0,4A
- Tensiunea de intrare în intervalul 43.2-48V
- Domeniul temperaturilor de funcționare 0-70 grade
- Amplificarea în tensiune minimă a amplificatorului de eroare- minim 200
- Semnalizarea prezenței tensiunilor de intrare/ ieșire cu o dioda de tip LED

#### 1.2 Schema bloc a stabilizatorului de tensiune ERS



Ref. = referința de tensiune, Reg = regulator serie, a = amplificator de eroare, RL = rezistența (impedanța) de sarcină, Prot. = circuit de protecție.

## 1.3 Schema montajului electric:



### 2.1 Descrierea funcționării schemei de proiectare

Circuitul este format din:

- 1.Referinta de tensiune
- 2.Amplificatorul de eroare
- 3. Reteaua de reactie negativa
- 4. Protectia la suprasarcina (de curent)
- 5. Protectia de temperatura
- 6. Elementul de reglaj serie
- 1.Referinta de tensiune:



Este alcatuita din 2 diode Zener diode D4 care are 2.7V si dioda D3 care are 10 V,din tranzistorul Q1 si din rezistele R1 si R2 .Dioda D3 este polarizata de o sursa de curent constant alcatuit din diode D4 rezistorul R2 si tranzistorul Q1 .

## 2.Amplificatorul de eroare:



Care este alcatuit din oglinda de curent Q11 si Q7 si etajul diferential Q5 si Q6.

## 3. Reteaua de reactie negativa



Reteau de reactie negativa alcatuita din 2 rezistente R5 si R6 si un potentiometru ,R8 cu care putem regla tensiunea de iesire in intervalul 12-24 V.Cu ajutorul reletei de reactie putem controla valoarea iesirii deoarece putem cotrola amplificarea tranzistorului A=1+R6/R5 .Alt rol al reactiei negative este de a mentine amplificarea tranzistorului constanta in jurul valorii de (1+R6/R5) o banda mai mare de frecvente.Alegem rezistentele R5=2k si R6=0.82k ,iar potentiometrul de 2k => amplificarea la set =0 va fi

#### 4. Protectia la suprasarcina (de curent)



Formata din rezistentele R16,R18,R19,R15 si tranzistorii Q13 si Q18.

Rezistentele R16 R18 R19 formeaza o rezistenta de aproximativ 1.56 Ohm

In momentul in care la iesire se afla un curent de 400mA tensiunea pe aceasta rezistenta va fi 0.626 care duce la VBe13=0.626=> tranzistorul e on deci are un curent mare pe colector care este curentul de pe rezistenta R15 => creste tensiunea pe rezistenta R15 deci creste VBe18=> un curent mare pe emitor care va fura curentul de intrare in Ers astfel impiedicand valoare curentului de iesire sa mai creasca peste 400mA.

#### 5. Protectia de temperatura:



Are o dioda zener ca referinta de tensiune pt ca avem nevoie de tensiune constanta pe rezistoarele R17 R21 care formeaza un divizor de tensiune cu R10. Deriva termica a unui tranzistor este de aproximativ 2mV deci eu vreau ca la 0 grade tranzistorul Q17 sa fie inchis si in cele din urma el sa se deschida treptat la 80-90 grade. Tensiunea pt care tranzistorul se deschide la va fi 0.7-0.002\*80=0.54 V sau 540mV ,iar tensiunea prezenta pe divizorul rezistiv este 9.3\*(610/10 000)=0.55mV.

#### 6. Elementul de reglaj serie

Am folosit tranzistorul Q15 .Rolul ementului de reglaj serie este de a furniza curent pt a reusi capata voltajul dorit pe rezistenta de sarcina.

## 2.2 Proiectarea schemei electrice în OrCAD

Simulari:

Tensiunea de intrare 48 si set =0

Psf si puteri:





Tensiunea de intrare 48 si set =1







### Tensiunea de intrare 43.2V set=0





Tensiunea de intrare 43.2V set=1







Set =1



Set=0





Deriva termica este 100/70 =1.42mV <2mV

Se observa ca atunci cand temperatura ajunge la 80 de grade tensiunea incepe sa scada treptat la 92 de grade ajungand in 0

## Amplificarea in bucla deschisa:



Amplificarea este de aproximativ 4900 .

## 2.3 BOM

| Item | Quantity |                       | Reference        |       | Part |
|------|----------|-----------------------|------------------|-------|------|
|      |          |                       |                  |       |      |
| 1    | 2        | C1,C2                 | 1u               |       |      |
| 2    | 2        | D3,D5                 | BZX84-           | C10   |      |
| 3    | 1        | D4                    | BZX84-C2V7       |       |      |
| 4    | 2        | J1,J2                 | CON2             |       |      |
| 5    | 4        | Q1,Q7,                | Q11,Q13QBC807-25 |       |      |
| 6    | 3        | Q5,Q6,                | Q10              | QBC81 | 7-25 |
| 7    | 3        | Q15,Q2                | 16,Q17           | QMJD3 | 31C  |
| 8    | 2        | RI2,RI3               | 150              |       |      |
| 9    | 1        | RI4                   | 100              |       |      |
| 10   | 5        | R4,RI5,RI6,R12,R13 1k |                  |       |      |
| 11   | 1        | RI7                   | 51               |       |      |
| 12   | 3        | RI8,RI9               | ,R17             | 510   |      |
| 13   | 2        | R1,R9                 | 47k              |       |      |
| 14   | 2        | R2,R15                | 330              |       |      |
| 15   | 2        | R5,R8                 | 2k               |       |      |
| 16   | 1        | R6                    | 0.82k            |       |      |
| 17   | 1        | R10                   | 10K              |       |      |
| 18   | 3        | R16,R1                | 8,R19            | 4.7   |      |

