Exam 29 December

Due Dec 29 at 11am **Points** 30 **Questions** 30 **Available** Dec 29 at 10am - Dec 29 at 11:05am about 1 hour

Time Limit 50 Minutes

Instructions

Notation: _ denotes the blank symbol in questions on configurations

Attempt History

	Attempt	Time	Score
LATEST	Attempt 1	49 minutes	18 out of 30

(!) Correct answers are hidden.

Score for this quiz: **18** out of 30 Submitted Dec 29 at 10:59am This attempt took 49 minutes.

Question 1	1 / 1 pts
$f(n)=10n^4+2n~g(n)=2^{n-2}$ Which one of the following statements holds? 1st statement: $f(n)=\Omega(g(n))$. 2nd statement: $g(n)=\Omega(f(n))$.	
Only the 1st statement holds.	
Only the 2nd statement holds.	
Both statements hold.	
None of the two statements holds.	

Question 2 1 / 1 pts

_	The state of the s
	$f(n)=n^4+2n g(n)=(2/3)^n$
	Which one of the following statements holds?
	1st statement: $f(n)=\Omega(g(n))$.
	2nd statement: $g(n)=\Omega(f(n))$.
	Only the 1st statement holds.
	Only the 2nd statement holds.
	Both statements hold.
	None of the two statements holds.

\bigcirc (q ₀ , λ ,abb, λ , λ)	
\bigcirc (q ₀ ,abb, λ)	

Question 5 0 / 1 pts

Let M = (Q, Σ , Γ , δ , q_0 , q_a , q_r) be a 2-tape Turing machine and let _ denote the blank symbol.

Which one of the following statements holds?

1st statement: $(q_0,\lambda,\lambda,\lambda,\lambda)$ is the starting configuration for input λ .

2nd statement: $(q_r,\lambda,_,\lambda,_)$ is a rejecting configuration.

- Only the 1st statement holds.
- Only the 2nd statement holds.
- Both statements hold.
- None of the two statements holds.

Incorrect

Question 6 0 / 1 pts

Let M = ($\{q_0,q_a,q_r\},\{a,c\},\{a,b,c,_\}, \delta, q_0, q_a, q_r\}$), where the transitions are

 $\delta(q_0,a)=(q_a,b,S),$

 $\delta(q_0,b)=(q_a,b,S),$

 $\delta(q_0,c)=(q_0,_,L),$

 $\delta(q_0, \underline{\ }) = (q_a, \underline{\ }, L).$

Is it true, that $b \in L(M)$? Is it true, that $c \in L(M)$?

- $b \in L(M)$ only
- \circ c \in L(M) only

both b∈L(M) and c∈L(M) holds	
○ none of b∈L(M) and c∈L(M) holds	

Which one of the following statements can be stated as being TRUE? 1st statement: Let M be an n³ time bounded nondeterministic Turing machine. Then there exist a deterministic O(n²) time bounded deterministic Turing machine equivalent with M. 2nd statement: Let M be an n³ time bounded deterministic 2-tape Turing machine. Then there exist a deterministic O(n²) time bounded 1-tape deterministic Turing machine equivalent with M. Only the 1st statement holds. Only the 2nd statement holds. Both statements hold.

Incorrect

Question 8 0 / 1 pts

Let L be a language and M be a nondeterministic Turing machine, such that L(M)=L holds.

Which one of the following statements follows from this assumption?

1st statement: $L \in R$

2nd statement: L ∈ RE

Only the 1st statement holds.

None of the two statements holds.

Only the 2nd statement holds.

Both statements hold.	
None of the two statements holds.	

Question 9 0 / 1 pts

Which one of the following statements holds?

1st statement: Every recursively enumerable language can be recognized by a nondeterministic Turing machine.

2nd statement: Every NP-complete language can be decided by a deterministic Turing machine.

- Only the 1st statement holds.
- Only the 2nd statement holds.
- Both statements hold.
- None of the two statements holds.

Incorrect

Question 10 0 / 1 pts

Which one of the following sequences is NOT a code of 3-state (q_0,q_r,q_a) 1-tape deterministic Turing machine according to the coding given on the lecture? [Before assigning a specific macine for non-codes.]

- 0101000100010001101001000100010001101000100010001000

2021/12/29 下午6:02

Incorrect

Question 11	0 / 1 pts
-------------	-----------

Which one of the following statements holds?

1st statement: The cardinality of the family of undecidable languages is countably infinite.

2nd statement: The cardinality of $\{L \mid L\subseteq \{0,1\}^*\}\$ is countably infinite.

- Only the 1st statement.
- Only the 2nd statement.
- Both statements.
- None of the two statements.

Question 12	1 / 1 pts

Which one of the following statements holds?

1st statement: L_h can be reduced to a decidable language.

2nd statement: The complement language of L_h is in RE.

- Only the 1st statement holds.
- Only the 2nd statement holds.
- Both statements hold.
- None of the two statements holds.

Incorrect

Question 13

0 / 1 pts

Which one of the following statements holds?

1st statement: VALIDITYPRED can be reduced to a decidable language.

2nd statement: The complement language of VALIDITYPRED is in R.

Only the 1st statement holds.
Only the 2nd statement holds.
Both statements hold.

Question 14 0 / 1 pts

Which one of the following statements holds (using the concepts of Rice's theorem)?

1st statement: $\{L \mid L \subseteq \{0,1\}^* \text{ and } L \text{ is finite } \}$ is a non-trivial property of the recursively enumerable languages.

2nd statement: Ø is a trivial property of the recursively enumerable languages.

- Only the 1st statement holds.
- Only the 2nd statement holds.
- Both statements hold.
- None of the two statements holds.

Question 15 1 / 1 pts

Which one of the following statements can be stated being TRUE?

1st statement: The language of unsatisfiable formulas of propositional logic is in NP.

2nd statement: The language of valid formulas of first order logic is in R.

Only the 1st statement.

Only the 2nd statement.	
Both statements.	
None of the two statements.	

Question 16 Consider a first order logic including a predicate symbol q and a function symbol f, both of arity 2. Which one of of the following is a string representation of a first order formula? (x and y are variables) 1. ∀yf(y,y) 2. q(x,y)∨q(f(y),x) only the 1st one only the 2nd one both none of them

Question 17 1 / 1 pts

Let $D=\{(u,v),(w,x),(y,z)\}\ (u,v,w,x,y,z\in\Sigma^+)$ be an instance of the Post Correspondence Problem. (There are 3 dominos, the first one has u at the top and v at the bottom, the second one has w at the top and x at the bottom, the third one has y at the top and z at the bottom.)

Which one of the following statements holds?

- 1. If uwuu=vxvv then D has a solution.
- 2. All solutions of D is a sequence of at most 3 dominos.
 - Only the 1st statement holds.

Only the 2nd statement holds.	
Both statements hold.	
None of the 2 statement holds.	

Question 18 0 / 1 pts

Which one of the following statements holds?

1st statement: For every nondeterministic Turing machine M there exists a grammar generating L(M).

2nd statement: For every grammar G there exists a nondeterministic Turing machine recognizing L(G).

- Only the 1st statement holds.
- Only the 2nd statement holds.
- Both statements hold.
- None of the two statements holds.

Question 19 1 / 1 pts

Which one of the following statements holds?

1st statement: For every nondeterministic Turing machine M there exists a context sensitive grammar generating L(M).

2nd statement: For every context sensitive grammar G there exists a nondeterministic Turing machine recognizing L(G).

Only the 1st statement.

Only the 2	nd statement.
Both state	ments.
O None of th	e two statements.

Question 20	1 / 1 pts
Which one of the following languages can be a language not in P?	
O HORNSAT	
O 2-COLORING	
PRIMES	
PRIME FACTORIZATON	

Question 21	1 / 1 pts
Which one of the following languages is not in NP?	
○ GRAPH ISOMORPHISM	
SUBGRAPH ISOMORPHISM	
UNSATPRED	
SAT	

Question 22

0 / 1 pts

Which one of the following two propositional formulas is a Horn formula?

1. (¬x ∨ y) ⁄	^ (¬x ∨ ¬z) ^ y
2. (¬x ∨ y ∨	$\neg z) \wedge (\neg x \vee \neg z \vee \neg w)$
(x,y,z,w are	atomic variables)
only t	the 1st one
only t	the 2nd one
o both	of them
none	of them

Question 23	1 / 1 pts
Complete the sentence to make it true. If then P=NP.	
REACHABILITY is in NP	
there is an NP-complete problem in NP	
there are no NP-intermediete problems in NP	
every problem in NP is reducible to an NP-complete problem	

Incorrect Question 24 0 / 1 pts

Let G be a simple undirected graph of 20 vertices.

Which one of the following statements holds?

1st statement: If G is 5-colorable, then G is 4-colorable.

2nd statement: If G has an independent set of size 7, then G has an independent set of size 8.

Only the 1st statement holds.

Only the 2nd statement holds.	
Both statements hold.	
O None of the two statements holds.	

Question 25 0 / 1 pts

Let L and L' be languages and assume that L is in NP. Then the following proves NP-completeness of L.

- L≤L' and L' is NP-complete
- L≤_pL' and L' is NP-complete
- L'≤_pL and L' is NP-complete
- L'≤L and L' is NP-complete

Question 26 1 / 1 pts

Which one of the following statements holds?

1st statement: If P=NP is FALSE, then there exists a non-NP-complete language in NP\P.

2nd statement: If P=NP, then PRIME FACTORIZATION is not NP-intermediete.

- Only the 1st statement holds.
- Only the 2nd statement holds.
- Both statements hold.
- None of the two statements holds.

Question 27	1 / 1 pts
Which one of the following statements holds? 1st statement: Space complexity class coNL is the complement of	space
complexity class NL. 2nd statement: NL⊆ coNL.	
Only the 1st statement holds.	
Only the 2nd statement holds.	
O Both statements hold.	
None of the two statements holds.	

Which one of the following statements holds? 1st statement: REACHABILITY can be decided by a nondeterministic Turing machine in polynomial time. 2nd statement: REACHABILITY is recursively enumerable. Only the 1st statement holds. Only the 2nd statement holds. Both statements hold. None of the two statements holds.

Question 29 1 / 1 pts

Which one of the following statements holds?

1st statement: There is a language which can be decided by nondeterministic offline Turing machine of O(nlog n) space complexity, but can not be decided by a deterministic offline Turing machine of polynomial space complexity.		
2nd statement: There is a language in NP which can not be decided by a deterministic offline Turing machine of polynomial space complexity.		
Only the 1st statement holds.		
Only the 2nd statement holds.		
Both statements hold.		
None of the two statements holds.		

Question 30	1 / 1 pts
Which one of the following statements can be stated being TRUE? 1st statement: Every PSPACE-complete language is in NPSPACE	
2nd statement: 3SAT is PSPACE-complete.	
Only the 1st statement.	
Only the 2nd statement.	
O Both statements.	
O None of the statements.	

Quiz Score: 18 out of 30