B6A1 Seien X_1, X_2, \ldots *iid* uniform auf [0,1] verteilt. Weiter sei $f \in L^1([0,1])$. Zeigen Sie, dass die Monte-Carlo Simulation $\hat{I}_n := \frac{1}{n} \sum_{i=1}^n f(X_i)$ fast sicher gegen das Integral $\int_0^1 f(x) \mathrm{d}x$ konvergiert.

Siehe hierzu, was wir in der Letzten Vorlesung dazu hatten. (24.5. Minute 23) Es gilt

$$\int f(x)dF(x) = \int f(x)dF_n(x)$$

$$= \int f(x)d\mu(x)$$

$$= \sum d\left(\frac{1}{n}\sum_{i=1}^n \delta_{X_i}\right)$$

$$= \frac{1}{n}\sum_{i=1}^n f(X_i)$$

B6A2 Für jedes $n \in \mathbb{N}$ seien $X_1^{(n)}, \dots, X_n^{(n)}$ paarweise unkorrelierte Zufallsvariablen mit endlicher Varianz (also nicht notwendig identisch verteilt) und

$$\lim_{n\to\infty}\frac{1}{n^2}\sum_{i=1}^n \mathrm{Var}\big[X_i^{(n)}\big]=0\,.$$

Zeigen Sie, dass die $\boldsymbol{X}_i^{(n)}$ dem schwachen Gesetz der großen Zahlen genügen, d.h. beweisen Sie

$$\frac{1}{n}\sum_{i=1}^{n} \left(X_i^{(n)} - E\left[X_i^{(n)}\right]\right) \xrightarrow{P} 0, \quad n \to \infty.$$

Es sei $(X_n)_{n\geq 2}$ eine Folge unabhängiger Zufallsvariablen mit

$$P(X_n = n) = \frac{1}{n \log n}$$
 und $P(X_n = 0) = 1 - \frac{1}{n \log n}$.

Zeigen Sie, dass die Folge dem schwachen Gesetz der großen Zahlen genügt, in dem Sinne, dass

$$\frac{1}{n}\sum_{i=2}^{n}(X_i-E[X_i]) \xrightarrow{P} 0.$$

Zeigen Sie weiter, dass die obige Folge nicht fast sicher konvergiert und sie somit nicht dem Gesetz der großen Zahlen genügt. Verwenden Sie dazu das Lemma von Borel-Cantelli.

B6A3

B6A4

Literatur