Automat finit (AF)

Automat finit: model fizic

Automat finit: model matematic

• Un *automat finit* este un ansamblu

$$M = (Q, \Sigma, \delta, q_0, F)$$
:

- Q alfabetul starilor
- Σ alfabet de intrare
- $\delta: Qx\Sigma \to \mathcal{P}(Q)$ functie de tranzitie
- $q_0 \in Q$ stare initialã
- F ⊆ Q multimea stãrilor finale

AF – reprezentare tabelara

δ	a_{j}	

 $z_i = 0$ daca q_i nu e stare finala 1 daca q_i este stare finala

AF reprezentat tabelar; exemplu

δ	0	1	
p	q	p	0
q	r	p	0
r	r	r	1

AF – reprezentare sub forma de graf

- graf orientat
- cu noduri si arce etichetate

• (graf de tranzitii)

Configuratii si relatii de tranzitie

$$\mathbf{M} = (\mathbf{Q}, \, \Sigma, \, \delta, \, \mathbf{q}_0, \, \mathbf{F}).$$

configuratie: $(q,x) \in \mathbf{Q}\mathbf{x}\mathbf{\Sigma}^*$

tranzitie: element din $(Qx\Sigma^*)$ x $(Qx\Sigma^*)$

- |— tranzitie directa
- k-tranzitie
- +-tranzitie
 +-tranzitie

 $(p,aw) \vdash (q,w) <=> \delta(p,a) \ni q;$ $p,q \in Q, a \in \Sigma, w \in \Sigma^*$

Limbaj acceptat; autom. echivalente

• Limbaj acceptat de automat

$$L(M) = \{ w \mid w \in \Sigma^*, (q_0, w) \mid -^* (q_f, \varepsilon), q_f \in F \}$$

Automate echivalente

 M_1 echivalent cu M_2 daca: $L(M_1) = L(M_2)$

Automat finit - exemplu

Determinism

Automat finit determinist (AFD)

$$|\delta(q,a)| \le 1 \quad \forall \ q \in Q, \ a \in \Sigma$$

Automat finit nedeterminist (AFN)

$$\exists q \in Q, a \in \Sigma \text{ astfel incat } |\delta(q,a)| > 1$$

• Automat finit determinist complet definit

$$|\delta(q,a)| = 1 \quad \forall \ q \in Q, \ a \in \Sigma$$

Echivalenta dintre AFD si AFN

Teorema:

• $\forall M_1 - AFN \quad \exists M_2 - AFD$ echivalent

Constructie (nu demonstratie!):

- Pornim cu: $M_1 = (Q_1, \Sigma_1, \delta_1, q_{01}, F_1) AFN$ oarecare
- Construim: $M_2 = (Q_2, \Sigma_2, \delta_2, q_{02}, F_2) AFD$ pe baza lui M_1 a.i. $L(M_1) = L(M_2)$

Teor: \forall $M_1 - AFN$ \exists $M_2 - AFD$ echivalent

- $\Sigma_2 = \Sigma_1$
- $Q_2 = \mathcal{P}(Q_1)$
- $q_{02} = \{q_{01}\}$
- $F_2 = \{ S \in \mathcal{P}(Q_1) \mid S \cap F_1 \iff \Phi \}$
- $\delta_2(q,a) = \{ r \in Q_1 \mid \exists \ q_1 \in q \ a.i. \ r \in \delta_1(q_1,a) \}$

$$= U_{q1 \in q} \delta(q_1,a)$$

M₂ – determinist (?)

10/10/2022

10

Problema: determinati AFD echiv. pt.

AF – stari care nu contribuie la acceptarea unui cuvant

- stare neproductiva (nu e stare productiva)
- stare inaccesibila (nu e stare accesibila)

• stare productiva: $q \in Q$ a.i.

$$\exists w \in \Sigma^* \text{ si } q_f \in F \text{ a.i. } (q,w) - (q_f,\varepsilon)$$

• stare accesibila: $q \in Q$ a.i.

$$\exists w \in \Sigma^* \text{ a.i. } (q_0, w) - (q, \varepsilon)$$

10/10/2022

12

Algoritm determin. stari accesibile

1.
$$i:=0$$

$$A_0:=\{q_0\}$$

2. Repeta

$$i = i + 1$$

$$A_{i+1} := A_i \cup \{ q \in Q \mid \exists p \in A_i, \exists a \in \Sigma \text{ a.i. } q \in \delta(p,a) \}$$

pana cand $A_i = A_{i+1}$

{A_i – multimea starilor accesibile}

Algoritm determin. stari productive

1.
$$i:=0$$

 $A_0:=F$

2. Repeta

i:=i+1

 $A_{i+1} = A_i \bigcup \{ q \in Q \mid \exists p \in A_i, \exists a \in \Sigma \text{ a.i. } p \in \delta(q,a) \}$

pana cand $A_i = A_{i+1}$

{A_i – multimea starilor productive}

Teorema:

 \forall M₁ – AF exista M₂ – AF fara st. neproductive **echiv**.

Constructie (nu demonstratie!):

- Pornim cu: $M_1 = (Q_1, \Sigma_1, \delta_1, q_{01}, F_1) AF$ oarecare
- determinam A multimea starilor productive (algoritmul anterior)
- Construim: M_2 pe baza lui M_1 (a.i. $L(M_1) = L(M_2)$)

$$M_2 = (A, \Sigma_1, \delta_{1/A}, q_{01}, F_1)$$
 $L(M_1) = L(M_2)$

Teorema:

 \forall M₁ – AF exista M₂ – AF fara st. inaccesibile **echiv**.

Constructie (nu demonstratie!):

• ... analog ...

alta metoda de determinare a AFD echivalent pentru un AFN dat

•
$$M_1 \Rightarrow ? M_2$$

Ideea:

- 1. $\{q_{01}\} \in Q_2$ pornim cu $Q_2 = \{q_{01}\}$
- 2. adaugam la Q_2 toate submultimile lui Q_1 la care se poate ajunge prin functia de tranzitie, atunci cand se aplica unei stari $q \in Q_2$ deja adaugata

AFD complet definit

$$\mathbf{M} = (\mathbf{Q}, \Sigma, \delta, \mathbf{q}_0, \mathbf{F}) \tag{AFD}$$

- $\delta: Qx\Sigma \to P(Q)$ functie de tranzitie ; $|\delta(q,a)| <=1$
- •
- <u>Teor</u>: ∀ AFD ∃ AFD complet definit echivalent
- Constructie:
- AFD => AFD complet definit:
- adaugam o stare (neproductiva) r si extindem δ astfel:
- \forall (q,a) \in Qx Σ a.i. δ (q,a)= ϕ devine: δ (q,a)= {r}
- $\forall a \in \Sigma$ $\delta(\mathbf{r}, a) = \{\mathbf{r}\}$

Minimizarea automatelor finite

Ce vrem:

Automat determinist cu numar minim de stari!

Automat redus

- AFD
- nu contine stari inaccesibile si neproductive
- nu contine perechi de stari echivalente

Minimizarea AFD

- automat cu numar minim de stari
 - fara stari –inaccesibile, neproductive
 - mai putine stari?
 - ideea: relatie de echivalenta; clase de echivalenta
- stari diferentiate
- stari k diferentiate
- stari echivalente
- stari k-echivalente

Fie M1 – un automat finit oarecare

- Determinam AFD echivalent
- Eliminam starile inaccesibile si neproductive
- Fie $M = (Q, \Sigma, \delta, q_0, F)$ automatul rezultat.
- Determinam relatia \equiv (stari echivalente, clase de echivalenta)
- Pe baza relatiei ≡ determinam automatul:

$$\begin{aligned} M_{\equiv} &= (Q/\equiv, \Sigma, \delta_{\equiv}, [q_0], F_{\equiv}) \\ Q/\equiv &- \text{multimea claselor de echivalenta} \\ \delta_{\equiv}([q], a) &= [\delta(q, a)] \\ F_{\equiv} &= \{[q] \mid q \in F\} \end{aligned}$$

Automatul redus

Automat redus

Teorema

Automatul redus are numar minim de stari dintre toate AFD echivalente

Teorema

 \forall M₁ – AF \exists M2 – automat redus echivalent

02/10/12 24

Determinati clasele de echivalenta ale starilor automatului de mai jos

determinati automatul redus!

Stari diferentiate

• o alta exprimare

$$q_1,q_2$$
 sunt *stari diferentiate* de $x \in \Sigma^*$ daca $\exists q_f \in F$ a.i. $(q_1,x) \models -^*(q_f,\epsilon)$ si nu exista nici un $q \in F$ a.i. $(q_2,x) \models -^*(q,\epsilon)$

sau

daca
$$\exists q_f \in F \text{ a.i. } (q_2,x) \models^*(q_f,\epsilon)$$

si nu exista nici un $q \in F \text{ a.i. } (q_1,x) \models^*(q,\epsilon)$

• x (de mai sus) diferentiaza pe q₁ si q₂

Stari diferentiate

• o alta exprimare

PP. AFD complet definit

$$q_1,q_2$$
 sunt *stari diferentiate* de $x \in \Sigma^*$ daca $\exists r_1, r_2$ astfel incat: $(q_1,x) \models -^*(r_1,\epsilon)$ si $(q_2,x) \models -^*(r_2,\epsilon)$

are loc una dintre:

1.
$$r_1 \in F$$
 si $r_2 \in Q$ -F

2.
$$r_1 \in Q$$
-F si $r_2 \in F$

Relatii intre stari

- q_1,q_2 stari differentiate
 - cf. def. de mai sus
 - $(\exists x \in \Sigma^* \text{ care sa le diferentieze})$
- stari k diferentiate
 - daca $\exists x \in \Sigma^*$, $|x| \le k$ care sa le diferentieze
- stari echivalente (≡)
 - daca nu exista $x \in \Sigma^*$ care sa le diferentieze
- stari k-echivalente (≡^k)
 - daca nu exista $x \in \Sigma^*$, $|x| \le k$, care sa le diferentieze

02/10/12

28

Proprietati ale rel. de k-echivalenta (≡k)

• $q_1 \equiv 0 q_2 \text{ ddaca} (q_1, q_2 \in F) \text{ sau } (q_1, q_2 \in Q-F)$

$$\bullet \equiv^0 \, \supseteq \equiv^1 \, \supseteq \equiv^2 \, \supseteq \cdots \, \supseteq \equiv^n \, \supseteq \cdots$$

• Daca $(\equiv^k) = (\equiv^{k+1})$ atunci $(\equiv^k) = \equiv$

Lema:

Pt. orice M exista $n \in \mathbb{N}$ a.i. $q_1 \equiv^n q_2 \Rightarrow q_1 \equiv q_2$

• ideea: pot avea un nr. finit de relatii distincte (max. |Q|)