

PROJECTO DE SISTEMAS DIGITAIS

Laboratório 1

Unidade Lógico-Aritmética Simples

Rafael Gonçalves, 73786 Gonçalo Ribeiro, 73294

17 de Outubro de 2014

Conteúdo

1	Arc	quitect	\mathbf{ur}	\mathbf{a}																				2
	1.1	Descri	içã	О																				2
	1.2	Esque																						
2	Datapath 5																							
	2.1	Descri	içã	О																				5
	2.2	Regist	\cos																					5
	2.3	Unida																						5
		2.3.1				lor																		5
		2.3.2	Ν	Iul	ltip	olic	adc	or																5
		2.3.3	\mathbf{S}	hif	ΈĒ	Rig	ht	Ar	itn	nét	tic	О												5
		2.3.4				o Ĺ																		5
		2.3.5	S	im	ula	ação	ο.																	6
3	Uni	Unidade de Controlo 7																						
	3.1	Descri	içã	О																				7
	3.2	Máqui	$\sin a$	de	e E	Esta	ado	$^{\circ}$ S																7
	3.3	Sinais	s de	e C	on	tro	olo																	7
	3.4	Simula	laçâ	ão																				8
4	Sim	ulacõe	es																					9

1 Arquitectura

1.1 Descrição

A arquitectura que decidimos implementar divide-se em duas secções distintas, como na maioria das arquitecturas dedicadas:

- Uma Unidade de Controlo, mais especificamente uma Máquina de Estados
- Uma Datapath, cuja especificação corresponde à disponibilizada no enunciado (ver Figura 1)

De modo a melhor fazer a interface com os elementos da placa de desenvolvimento, as várias componentes do sistema foram projectados com vista a fazer a interface com os botões, interruptores e displays da Basys.

Uma vez que da Datapath saem os valores dos registos, que posteriormente terão de ser seleccionados para ir para os displays de sete segmentos, é necessário um multiplexer no exterior da mesma, cujo sinal de selecção provém dos interruptores da placa de desenvolvimento.

1.2 Esquemas

Figura 1: Datapath

Figura 2: Unidade Lógico-Aritmética

2 Datapath

2.1 Descrição

A decisão mais relevante na datapath foi a codificação de sinal utilizada nos registos e na Unidade Lógico-Aritmética.

De modo a compreender intuitivamente os valores em uso, os displays devem mostrar os valores com uma codificação sinal-módulo. Assim, e uma vez que os valores dos displays originam nos registos da Datapath, decidimos que todo o armazenamento de valores deve ser feito em formato sinal-módulo.

2.2 Registos

Os registos foram especificados através das funcionalidades de abstracção da linguagem VHDL, isto é, definimos uma arquitectura de registo com número de bits arbitrário. O tamanho de cada instância é depois determinado no código de instanciação.

Neste caso, foram instanciados dois registos, um de 7 bits e outro de 13 bits, consoante a arquitectura especificada no enunciado.

2.3 Unidade Lógico-Aritmética

Uma vez que os dois operadores das diversas unidades funcionais que compõem a ULA estão codificados no formato sinal-módulo, é necessário fazer a conversão de sinal-módulo para complemento para dois.

O Somador (que efectua as operações soma e diferença) e o Multiplicador foram incluídos da biblioteca *signed*, pelo que os seus operandos devem ser convertidos em complemento para dois à entrada, e o resultado deve ser convertido para sinal-módulo à saída (ver Figura 2).

2.3.1 Somador

O Somador efectua uma soma ou diferença, consoante os sinais de controlo, convencional, em complemento para dois.

2.3.2 Multiplicador

O multiplicador efectua um produto convencional em complemento para dois. Uma vez que o produto ocupa mais bits que aqueles disponíveis no registo que o deve armazenar, são desprezados vários dos bits mais significativos do resultado.

2.3.3 Shift Right Aritmético

A função shift afecta apenas os bits de módulo do valor armazenado no registo 2. O bit de sinal permanece inalterado.

2.3.4 Função Lógica NOR

A função lógica NOR aplica-se aos bits de sinal dos dois operadores e aos 6 bits menos significativos dos dois operadores. Os restantes bits do segundo operador (de dimensão 13) são negados (isto é, NOR 0).

2.3.5 Simulação

As operações realizadas na simulação são as indicadas na Tabela 1. É de notar que as operações não comutativas são efectuadas na ordem $Op_2 \cdot \cdot \cdot Op_1$.

Op_1	Op_2	Operação	Código	Resultado						
-63	4	MUL	01X	-252						
5	5	ADD	000	10						
-5	6	SUB	001	11						
5	-3	305	001	-8						
ObXXX X001	0b0 0000 0000 0111			0b0 0000 0000 0011						
ObXXX X001	0ъ0 0000 0000 0011	SHR	10X	0ъ0 0000 0000 0001						
ObXXX XO10	0b0 0000 0000 1111			0b0 0000 0000 0011						
0b000 0001	0b0 0000 0000 0010	NOR	11X	0b1 1111 1111 1100						
5	127		01X	635						
63	4095	MUL	OIV	4033 -4033						
-63	4095									

Tabela 1: Operações da Simulação da Figura 3

	200 ns	250 ns	300 ns
-15-01	00 75 705 705	01 100 101 105	25 75
a[6:0]	00 X 7f X 05 X 45 X 05	X 01 X 02 X 01 X 05	X 3f X 7f
b[12:0]	0000 \ 0004 \ 0005 \ 0006 \ 1003	0007 0003 000f 0002 007f	Offf
inst[2:0]	000 010 000 001	100 110	010
res[12:0]	0000 \ 10fc \ 000a \ 000b \ 1008	0003 0001 0003 1ffc 027b	Ofc1 1fc1

Figura 3: Simulação da Unidade Lógico-Aritmética

3 Unidade de Controlo

3.1 Descrição

A Unidade de Controlo implementa a Máquina de Estados e é o componente responsável por controlar os multiplexers e os enables e sinais de reset dos registos da Datapath. Como input tem os sinais da FPGA que permitem escolher a operação a realizar.

3.2 Máquina de Estados

A Máquina de Estados implementada é a da Figura 4. Tem um estado inicial e um final, dois estados de load e um de operação.

Nos estados load1 e load2 o valor à entrada da datapath é armazenado nos registo correspondente. No estado op o resultado da ULA é armazendo no registo R2. A operação que a ULA deve realizar é controlada pelo utilizador sob a forma do sinal INST à entrada da datapath.

Figura 4: Máquina de Estados

3.3 Sinais de Controlo

Os sinais que entram na Datapath vindos da Unidade de Controlo são três: dois sinais controlam a escrita nos registos R1 e R2; um outro sinal controla o multiplexer que existe antes de R2.

No estado load1 o enable de R1 é posto a high. No estado load2 o enable de R2 fica a high e o multiplexer deixa passar o valor à entrada da datapath.

Por fim no estado op o enable de R2 é posto a high e o multiplexer deixa passar o sinal à saída da ULA.

3.4 Simulação

A simulação da Unidade de Controlo pode ser vista na Figura 5. Nesta simulação pode verificar-se que a sequência de estados corresponde à descrita na Figura 4 e que os sinais de controlo estão correctos.

Figura 5: Simulação da Unidade de Controlo

4 Simulações

A simulação que verifica o correcto funcionamento dos diversos elementos em conjunção pode ser vista na Figura 6. São realizadas algumas operações de significado trivial, com o único propósito de demonstrar a interligação dos diversos blocos.

Figura 6: Simulação do Circuito Completo