

Netzwerke

5. Gesteuerte Quellen

Vadim Issakov Sommersemester 2024

Feste Quellen

Ungesteuerte (feste) Spannungs- und Stromquelle:

- Feste Vorgabe der Spannung oder des Stroms
- Keine Rückwirkung der Schaltung auf die Quelle
- Werte unabhängig von anderen Strömen und Spannungen des Netzwerks

Gesteuerte Quellen:

- werden durch Ströme oder Spannungen anderer Zweige gesteuert
- Beispiel MOSFET (Bauteil mit mehreren Klemmenpaaren)
 - Steuernde Spannung zwischen einem Klemmenpaar (v_{IN}) bestimmt Verhalten des MOSFETs zwischen einem anderen Klemmenpaar

Idealisierte spannungsgesteuerte Stromquelle:

- ein Klemmenpaar als Eingang (control port, steuernder Anschluss)
- ein Klemmenpaar als Ausgang (output port)
- $i_{\text{OUT}} = f(v_{\text{IN}})$

Spannungsgesteuerte Spannungsquelle - VCVS

a) Spannungsgesteuerte Spannungsquelle (VCVS – voltage-controlled voltage source)

$$i_{\rm IN}=0$$
, d.h. Eingangswiderstand $(Z_{\rm IN}) \to \infty$

$$v_{\mathrm{OUT}} = \mu \cdot v_{\mathrm{IN}}$$

 μ : Spannungsübertragungsrate (voltage transfer ratio), Spannungsverstärkung, [μ] = 1

Beispiel: Spannungsverstärker, OPAMP

Stromgesteuerte Spannungsquelle - CCVS

b) Stromgesteuerte Spannungsquelle (CCVS – current-controlled voltage source)

$$v_{\rm IN} = 0$$
, d.h. Eingangswiderstand $(Z_{\rm IN}) \rightarrow 0$

$$v_{ ext{OUT}} = r \cdot i_{ ext{IN}}$$

r: Transimpedanz, $[r] = \Omega$

Beispiel: Selbsterregter Gleichstromgenerator

Spannungsgesteuerte Stromquelle - VCCS

c) Spannungsgesteuerte Stromquelle (VCCS – voltage-controlled current source)

$$i_{\rm IN} = 0$$
, d.h. Eingangswiderstand $(Z_{\rm IN}) \rightarrow \infty$

$$v_{\mathrm{OUT}} = g \cdot v_{\mathrm{IN}}$$

g: Transkonduktanz, $[g] = 1/\Omega$

Beispiel: MOSFET (metal oxide semiconductor field-effect transistor)

Stromgesteuerte Stromquelle - CCCS

d) Stromgesteuerte Stromquelle (CCCS – current-controlled current source)

$$v_{\rm IN} = 0$$
, d.h. Eingangswiderstand $(Z_{\rm IN}) \rightarrow 0$

$$i_{\text{OUT}} = \alpha \cdot i_{\text{IN}}$$

 α : Stromübertragungsrate (current transfer ratio), Stromverstärkung, [α] = 1

Beispiel: Bipolartransistor (BJT (bipolar junction transistor))

Zusammenfassung Gesteuerte Quellen

Beispiele gesteuerter Quellen: CCVS und CCCS

Stromgesteuerte Spannungsquelle: Selbsterregter Gleichstromgenerator Stromgesteuerte Stromquelle: Optokoppler

Feldwicklung

Gesteuerte Quellen – Beispiel VCCS

Beispiel: Analyse des Ausgangs des folgenden Netzwerks mit spannungsgesteuerter Stromquelle

Strom der gesteuerten Quelle: $0.001 \text{S} \cdot v_{\text{IN}} = 2 \text{ mA}$

Kirchhoffsche Knotengleichungen: $i_{OUT} = 2 \text{ mA}$ und $i_R = -2 \text{ mA}$

Zweiggleichung für R: $v_R = 3 \text{ k}\Omega \cdot i_R = -6 \text{V}$

Kirchhoffsche Maschengleichung: $v_{OUT} = v_R = -6 \text{ V}$

Allgemeine (nichtlineare) gesteuerte Quellen

Gesteuerte Quellen – Beispiel VCVS

- Verstärker als spannungsgesteuerte Spannungsquelle $U_A = f(U_E)$.
- Nichtlineare Übertragungskennlinie $U_A = f(U_E) = U_{max} \tanh(kU_E)$

Gesteuerte Quellen – Beispiel VCVS

Linearisierung VCVS

Linearisierung der Schaltung in einem Arbeitspunkt von $U_A \approx 0$ V.

Funktion, die dieses Zweitor realisiert:

$$U_A = f(U_E) = U_{A,max} \tanh(kU_E)$$

Differenzieren und Einsetzen des Arbeitspunkts:

$$u_A = \frac{\partial}{\partial U_E} \left(U_{A,max} \tanh(kU_E) \right) \bigg|_{U_E = 0} \cdot u_E = U_{A,max} \cdot k \cdot u_E$$

$$= A_v \cdot u_E$$

$$\Rightarrow A_v = U_{A,max} \cdot k$$
 $A_v : \text{Spannungsverstärkung}$

⇒ Schaltung verhält sich für kleine Auslenkungen aus dem Arbeitspunkt wie ein linearer Verstärker.

Linearisierte gesteuerte Quellen

$$u_2 = \frac{\partial f(U_1)}{\partial U_1} \bigg|_{AP} \cdot u_1$$

$$u_1$$
 v_2
 v_3
 v_4
 v_4
 v_5
 v_6
 v_7
 v_8
 v_8

$$i_2 = \frac{\partial f(U_1)}{\partial U_1} \bigg|_{AP} \cdot u_1$$

$$u_2 = \frac{\partial f(I_1)}{\partial I_1} \bigg|_{AP} \cdot i_1$$

$$i_2 = \frac{\partial f(I_1)}{\partial I_1} \bigg|_{\text{AP}} \cdot i_1$$

Beispiel: Kleinsignalersatzschaltbild des BJTs in zwei alternativen Darstellungen

Transkonduktanz-Verstärker, repräsentiert durch

- Eingangswiderstand zwischen B und E (r_{π})
- Kurzschluss-Transkonduktanz g_m
- Ausgangswiderstand r_o

Beispiel: Verstärker

Schaltsymbol eines Verstärkers

Verstärker mit gemeinsamen Anschluss zwischen Eingang und Ausgang

Spannungsverstärker

Übertragungseigenschaften eines linearen Spannungsverstärkers mit Spannungsverstärkung A_{v}

Spannungsverstärkung

$$A_v = \frac{v_o}{v_I}$$

Beispiel: Verstärker

Beispiel für gesteuerte Quelle: Spannungsverstärker

Ersatzschaltbild

Spannungsverstärker mit Eingangsquelle und Lastwiderstand

$$v_i = v_s \frac{R_i}{R_i + R_s} \qquad v_o = A_{vo} v_i \frac{R_L}{R_L + R_o}$$

Spannungsverstärkung

$$\frac{v_o}{v_s} = A_{vo} \frac{R_i}{R_i + R_s} \frac{R_L}{R_L + R_o}$$

Vier Verstärkertypen

vici verstarkertypen			
Verstärkertyp	Ersatzschaltbild	Verstärkungsparameter	Ideale Eigenschaften
Spannungs- verstärker	$ \begin{array}{c cccc} & i_{o} & i_{o} \\ & & & $	Leerlaufspannungsverstärkung $A_{vo} \equiv \frac{v_o}{v_i} \bigg _{i_o=0} \qquad \begin{bmatrix} \frac{V}{V} \end{bmatrix}$	$R_i = \infty$ $R_o = 0$
Strom- verstärker	$ \begin{array}{c c} i_{i} & i_{o} \\ + & + \\ v_{i} \geqslant R_{i} & A_{is}i_{i} \geqslant R_{o} & v_{o} \\ - & - & - \\ \hline \end{array} $	Kurzschlussstromverstärkung $A_{is} \equiv \frac{i_o}{i_i} \bigg _{v_o=0} \qquad \left[\frac{\mathrm{A}}{\mathrm{A}}\right]$	$R_i = 0$ $R_o = \infty$
Transkonduktanz- Verstärker	$ \begin{array}{c c} i_{i} & i_{o} \\ + & + \\ v_{i} & R_{i} & G_{m}v_{i} & R_{o} & v_{o} \\ - & - & - & - & - \end{array} $	Kurzschluss-Transkonduktanz $G_m \equiv \frac{i_o}{v_i}\bigg _{v_o=0} \qquad \left[\frac{\mathrm{A}}{\mathrm{V}}\right]$	$R_i = \infty$ $R_o = \infty$
Transresistanz- verstärker	$ \begin{array}{c cccc} & i_o & i_o \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$	Leerlauf-Transresistanz $R_m \equiv rac{v_o}{i_i}igg _{i_o=0} igg[rac{ extsf{V}}{ extsf{A}}igg]$	$R_i = 0$ $R_o = 0$

Gesteuerte Quellen mit zeitabgeleiteter Steuerung

Beispiel: Gekoppelte verlustlose Spulen, verlustloser Transformator

Annahmen: Ohmsche Verluste vernachlässigbar, niedrige Frequenzen

Ersatzschaltbild

Gleichungen im Zeitbereich:

$$u_1(t) = L_1 \cdot \frac{\mathrm{d}i_1(t)}{\mathrm{d}t} + M \cdot \frac{\mathrm{d}i_2(t)}{\mathrm{d}t}$$

$$u_2(t) = M \cdot \frac{\mathrm{d}i_1(t)}{\mathrm{d}t} + L_2 \cdot \frac{\mathrm{d}i_2(t)}{\mathrm{d}t}$$

Gleichungen bei Anwendung der KWR:

$$U_1 = j\omega L_1 I_1 + j\omega M I_2$$

$$U_2 = j\omega M I_1 + j\omega L_2 I_2$$

Gesteuerte Quellen mit zeitabgeleiteter Steuerung

Bei allen vier Arten der gesteuerten Quellen kann eine nach der Zeit abgeleitete Größe (Spannung oder Strom) steuern.

Um anzuzeigen, dass die steuernde Größe abgeleitet wird: Index "d" bei den konstanten Faktoren.

VCVS:
$$v_{OUT}(t) = \mu_d \cdot \frac{\mathrm{d}v_{IN}(t)}{\mathrm{d}t}$$

$$v_{OUT}(t) = M \cdot \frac{\mathrm{d}i_{IN}(t)}{\mathrm{d}t}$$

M- Mutual inductance (Beispiel Trafo)

$$i_{OUT}(t) = g_d \cdot \frac{\mathrm{d}v_{IN}(t)}{\mathrm{d}t}$$

$$i_{OUT}(t) = \alpha_d \cdot \frac{\mathrm{d}i_{IN}(t)}{\mathrm{d}t}$$

Superposition bei gesteuerter Quelle

Mit Kirchhoffscher Knotengleichung,

$$V_q = r_0 I_1 + R I_2 \text{ und } I_1 = \frac{1}{R} V_q \text{ folgt}$$

$$I = I_1 + I_2 = \frac{V_q}{R} + \frac{1}{R} \left(V_q - \frac{r_0}{R} V_q \right) = \frac{1}{R} \left(2 - \frac{r_0}{R} \right) V_q$$

Superpositionsregel falsch angewendet ergibt:

$$r_0 I_1 = 0, V_q \neq 0$$

$$I = \frac{2}{R} V_q + 0$$
Falsches Ergebnis!

Korrekte Berücksichtigung einer gesteuerten Quelle mit dem Superpositionsprinzip:

- 1) Zunächst Ersetzen der gesteuerten Quelle durch feste Quelle: $r_0I_1 \rightarrow V_1$
- 2) Berechnung von I und steuernder Variable I_1 per Superposition

$$I = \frac{2}{R}V_q - \frac{1}{R}V_1, \qquad I_1 = \frac{1}{R}V_q + 0$$

3) Nachträgliche Berücksichtigung der gesteuerten Quelle ($V_1 = r_0 I_1$); Einsetzen des Ergebnisses für I_1 , Einsetzen in das Ergebnis für I

$$I = \frac{2}{R}V_q - \frac{1}{R}r_0I_1 = \frac{2}{R}V_q - \frac{r_0}{R}\frac{V_q}{R} = \frac{1}{R}\left(2 - \frac{r_0}{R}\right)V_q$$

