

Etude de la capacité de jonction d'une photodiode

• Travail expérimental et rédaction du document : Jean-Baptiste Desmoulins (P.R.A.G.) mail : desmouli@physique.ens-cachan.fr

L'expérience proposée consiste à envoyer un flux lumineux qui varie en créneau sur une photodiode afin de déterminer le temps de réponse de cette dernière. De ce temps de réponse, nous déduirons sa capacité de jonction. Nous nous intéresserons, en particulier, à l'évolution de cette capacité avec la tension de polarisation inverse appliquée sur la photodiode

I. Principe de l'expérience.

L'expérience comporte un circuit émetteur de flux lumineux et un circuit récepteur. Les deux circuits sont disponibles sur une même maquette (ENSC349). La diode électroluminescente employée est une diode rouge. La photodiode caractérisée est de type PIN10. Elle présente une surface sensible de 1 cm² environ et comporte une capacité de jonction importante, de l'ordre de la centaine de pF. Elle fonctionne dans le visible.

• Le circuit chargé de créer le flux lumineux de test.

Le flux lumineux en créneau sera obtenu à partir d'une diode électroluminescente dans laquelle on injectera un courant en forme de créneau. En effet, en statique, le comportement d'une diode électroluminescente peut être représenté par les caractéristiques suivantes :

Dès que le courant injecté dans le composant dépasse une valeur donnée, la puissance optique émise va évoluer de façon affine par rapport au courant. Pour obtenir un flux lumineux évoluant temporellement en forme de créneau, il va falloir que le courant présente une composant continue afin d'être polarisé dans la zone affine. Sa partie variable donnera l'allure de la variation de puissance optique.

Le circuit électronique utilisé pour créer le flux lumineux d'allure voulue présente la structure suivante :

Il permet d'obtenir un courant dans la diode électroluminescente vérifiant :

$$i_{LED} = \frac{V_{cc} - (V_1 - \tilde{V}_{in})}{R_o} = \langle i_{LED} \rangle + \tilde{i}_{LED}$$

La tension V_1 est continue et réglable avec un potentiomètre situé sur la maquette. La tension V_{in} est une tension variable en créneau, sans composante continue, appliquée par un GBF. R_o est une résistance de 511Ω .

Sur le plan dynamique, on fera en sorte de rendre le temps de réponse de la photodiode le plus long possible, afin que le temps de réponse de la diode électroluminescente soit négligeable devant ce dernier et que l'on puisse considérer les créneaux de flux lumineux obtenus comme parfaits, vis-à-vis de la photodiode.

• Le circuit chargé de détecter le flux lumineux : photodiode et conversion tension/courant.

La photodiode va convertir la puissance optique reçue en un courant pratiquement proportionnel à cette puissance. Ce courant sera ensuite converti en tension pour être directement visualisable sur un oscilloscope.

Le circuit employé se présente sous la forme suivante :

La tension de polarisation V_{pol} est une tension positive réglable, qui permet d'assurer une polarisation en inverse de la photodiode. La résistance R_m est une résistance de précision destinée à convertir le courant de sortie de la photodiode en une tension observable.

Sous l'action d'un flux lumineux variable autour d'une valeur moyenne, le courant émis par la photodiode présentera également une valeur moyenne et une variation. Il en sera donc de même pour la tension aux bornes de la résistance de mesure. Sachant que nous allons chercher à étudier l'évolution du temps de réponse de la photodiode en fonction de la tension aux bornes de cette dernière, il va falloir faire en sorte que cette tension soit à pratiquement continue. La tension V_d aux bornes de la photodiode est donnée par

$$V_d = -V_{pol} + V_{R_m}$$

Pour limiter l'ondulation sur V_d , il faudra limiter l'ondulation sur V_{Rm} . Pour ça, on fera en sorte que la valeur moyenne du flux lumineux soit grande devant sa variation. Ainsi, l'ondulation sur V_d sera négligeable et V_d pourra être assimilée à sa valeur moyenne.

Par ailleurs, la diode est reliée à la maquette par un câble BNC. Pour tenir compte de ce câble sur le comportement du circuit, il faudra penser à ajouter, en parallèle sur la photodiode, une capacité de 100 pF par mètre de câble.

Pour comprendre le temps de réponse de ce circuit, on va le modéliser en régime de petits signaux.

$$<$$
 ${
m V_d}$ $>$ $+$ ${
m \widetilde{V}_d}$ $=$ $<$ ${
m V_{pol}}$ $>$ $+$ $<$ ${
m V_{R_m}}$ $>$ $+$ ${
m \widetilde{V}_{R_m}}$

Si on ne conserve que les variations, on arrive à

$$\tilde{V}_d = \tilde{V}_{R_m}$$

Ce qui signifie qu'on se ramène au schéma équivalent suivant :

La résistance r_j est une résistance de fuite que l'on considérera comme infinie. La résistance r_s est une résistance de connectique que nous supposerons très faible devant la résistance de mesure R_m qui vaut $100 \text{ k}\Omega$. La capacité C_j est la capacité de jonction que nous voulons étudier. Compte tenu des simplifications faites, le système étudié se présente, en régime de petits signaux, sous la forme suivante :

On a donc

$$\tilde{i}_p = (C_j + C_c) \cdot \frac{d\tilde{V}_{R_m}}{dt} + \frac{\tilde{V}_{R_m}}{R_m}$$

Sachant que i_p, le photocourant est pratiquement proportionnel à la puissance optique reçue, la relation entre la puissance optique d'entrée et la tension de sortie est de la forme

$$\frac{\tilde{V}_{R_m}}{\tilde{P}_{opt}}(p) = \frac{K}{1 + R_m.(C_j + C_c).p}$$

En mesurant le temps réponse à 63% du système, connaissant R_m, on en déduit une capacité qui est la somme de la capacité de jonction et de la capacité rapportée par le câble coaxial.

Remarque : pour réaliser la conversion courant/tension, on aurait pu employer un circuit transconductance à amplificateur opérationnel, mais il s'agit en fait d'une fausse bonne idée En effet, dans ce cas, on ne peut plus déduire la capacité de jonction du temps de réponse, car ce n'est plus la résistance $R_{\rm m}$ qui intervient dans le temps de réponse à 63% mais la résistance de connectique $r_{\rm s}$ que nous ne connaissons pas.

II. Résultats expérimentaux et discussion.

Expérimentalement, on mesure la tension aux bornes de la diode avec un voltmètre afin d'éviter les problèmes de masse. Le temps de réponse est mesuré à partir de la tension aux bornes de R_m , récupérée avec une sonde de tension d'oscilloscope afin d'éviter d'introduire une capacité de mesure trop importante en parallèle avec R_m . Compte tenu de la faiblesse de la variation de flux lumineux, le signal récupéré en sortie de la photodiode sera fortement perturbé, essentiellement par un signal à 50 Hz. Nous travaillerons à une fréquence voisine du kHz et nous moyennerons les traces sur lesquelles nous ferons nos mesures de temps de montée. Il faut noter que la prise de mesures est assez lente à cause du moyennage.

On fait un ajustement avec une fonction de la forme

$$C = C_c + \frac{C_o}{\sqrt{1 + \left|V_d\right|/V_o}}$$

Dans l'ajustement, on force C_c à 100 pF afin de prendre en compte la capacité du câble coaxial qui relie la photodiode au circuit. L'autre terme correspond à la capacité d'une jonction abrupte polarisée en inverse. On obtient, par l'ajustement, C_o = 1.11±0.03 nF . et B = 1.45 ± 0.10 V.

Pour la photodiode, le constructeur donne une valeur de capacité de jonction comprise entre 300 et 400 pF sous 10V pour la photodiode PIN10. Expérimentalement, pour 10V, nous avons trouvé une capacité globale légèrement inférieure à 500 pF ce qui correspond, pour la seule capacité à un peu moins de 400 pF ce qui est cohérent.

Conclusion.

Le fait que la capacité de jonction d'une photodiode diminue avec la valeur absolue de la tension inverse de polarisation explique que l'on polarise les photodiodes le plus fortement possible en inverse quand cherche a diminuer leur temps de réponse. C'est indispensable quand on cherche à observer des fluctuations rapides de puissance optique (télécom, ...). Il faut cependant veiller à ne pas dépasser la tension de claquage.

Références.

TP Phytem sur l'étude d'un photorécepteur en statique et en dynamique, conçu et écrit par Bernard Journet.

Liste de matériel.

Maquette sur l'étude d'un photorécepteur (ENSC349) avec la photodiode PIN10 et une LED rouge associée au kit ENSC349.

Deux pieds d'optique permettant de maintenir l'émetteur et le récepteur accolés.

Une alimentation stabilisée +15V/-15V.

Un GBF.

Un multimètre et deux pinces crocodiles.

Un oscilloscope Agilent ou HP (avec curseur en X et en Y simultanément) avec deux sondes de tension.