assignment 4 - due Oct 2

Graded

Student

Scott A. Fullenbaum

Total Points

6 / 6 pts

Question 1

1 / 1 pt

- 0.3 pts Did not explain why proof generalizes to non-cycles
- **0.1 pts** Did not say what the final two permutations are in the non-cycles case, but did give a method to find them (I know this is nitpicky but it is important to write things out explicitly)
- 0.1 pts Your permutations are slightly off.
- **0.5 pts** Your permutations are incorrect

Question 2

6.5 1 / 1 pt

✓ - 0 pts Correct

Question 3

6.6 1 / 1 pt

- 0.2 pts Trouble with counting
- 0.2 pts Unclear presentation of logic

Question 4

6.12 1 / 1 pt

✓ - 0 pts Correct

Question 5

7.5 1 / 1 pt

✓ - 0 pts Correct

– 0.5 pts To prove G is abelian you need to show xy=yx for **all** $x,y\in G$

7.7 1 / 1 pt

- **0.1 pts** Did not prove that ϕ is a bijection/invertible
- **0.1 pts** Did not do example in ${\cal A}_4$
- **0.1 pts** Incorrect computation in the ${\cal A}_4$ example

Question assigned to the following page: 1		

6.7) First show for cyclic permutation and = 188 where IBI=181=2. Note transpositions order 2 and product of dissiont tenspositions is order 2. Define B= (d, dn) (dz dn-1) (ds dn-2)..... If n=odd is left alone. So, this puts accepthing in reverse order. So set is Can done of a di after B. din eight place, nothing elseis. Define 8= (dz xn)(dz dn-1) (dy dn-z)---If n is even, middle is left alone So, applying this orders the list. Caz az an. . an a. I which is the cyclic permutation. So (a, az ... an)= (az an) (az an) Ca, xn) (xxxxx Now, to show can be done for any 565, ō can be written as product of dissoint cycles. WLOG &= aB8 C. dissoint. By above can write \a = \a, dz B=B, Bz 8= Sidz - where la, 1=2 laz 1=2 and so on by above. However, as each cycle is disvoint, can say a = (x, 2) (B, B2) (5, S2). = (x, B, S,) (x, B2 82) and as each of these x,18,5, are disjoint transpositions This is WLOGsand holds for any number of dissoint cycles making of But we've written 6 as product of 2 permutations and as disjoint transpositions are order a, pooling the statement. Note: F n=3 con't unite as dissoint transpositions so where it needs n=4.

Questions assigned to the following page: 2 and 3			
	7		

G.5) PCX, (X2, X3, X4) = (X, -X2)(X, -X3)(X, -X4) (X2-X3)(X2-X4)(X3-X4) d= (143) so «P=CX4-x2)CX4-X1)(X4-X3)CX2-X1)(X2-X3) (CX3-X1) = -PPS0 (1413)P=P ~= (23) (412) = (1324) 2P= Cx3-x4) Cx3-x2) (x3-x1) (X4-x2) (X4-X1) So (143) P= P 1 (23) (142) P=-P 6.6) HCS, and HQA, so 305H where of is odd. Consider
fill-it f is bivective so X -> SX as x, x'&H f(x)= 5x f(x') = 5x' as σEH and His subgroup σ'EH so σ'(σx = σx') =) x= x' and f is injective For surjective, let XEH show FyEH

s.t. f(y)=X well o' (oy=x) y=o'X so fis
onto. Therefore, fis bis ective. Multiplying add permutation by odd makes even and ever by odd makes odd permutation. So fis a bijection that pairs up each odd permutation with even promutation and as fill that mans half of the permutations in Haro odd, so the remaining half is even

Question assigned to the following page: <u>4</u>				

Gold) So for a cycle x= Cx, x2... x1 lal=0 as more elements or times unt relements n times until return to original position. Suppose for OGESN G= &BS... x, B, 8 etc are dissoint eyeles. For Simplicity assume &= is finite, can induct this out to any WLOG lal=m IBl=J So want order of CaBSY). Let XEZ, so want CaBSY)'X= 2×B×8×Y/×=e So, we need an X s.t. 3 2,122,2/3,2/462 S.t. mZ,= X JZ,= X KZ3= X 1Z4= X = 021 e22 e23 e24 = So, we want the smallest X where Z, 12, 23, 24 S, +. MZ, = x J22 = x KZ3=X LZ4=X. This x is then by def, LCMCM, J, K, 1) So IXBSY = LCM Char, 181, 181,1 which shows the statement. Again, this is cosily generalizable to any product of disjoint cycles in So, as finite # of cycles would just have more variables to work with in organish. So kept at I fer simplicity. No step is dependent on 4 dissint agales, just that there are finitely many which follows again as nis limited

Question assigned to the following page: <u>5</u>			

7.5) => \$\phi: G \rightarrow G\$ is isomorphism.

Show G:s Abelian x \rightarrow x \rightarrow

\$\Phi(ab) = \phi(a)\phi(b) = a^{-1}b^{-1} = Cba)^{-1}\$

\$\phi(ab) = Cab)^{-1} = Cba)^{-1} \quad \text{Meaning ab = ba}

and \$G\$ is Abelian Es Abelian so show & is isomorphism First bijectives Injective: let x,y & G s.t. $\phi(x) = \phi(y)$ then $\chi(x'=y'') = y'' \times so \times = y$ Survicetive: Let yEG, Show 3xEG s.t.

QCX)=y. As yEG, then y'EG

and dty')= Cy')=y So pis

Survicetive and therefore bivective To check isomorphism show $\phi(ab) = \phi(a)\phi(b)$ $\phi(ab) = (ab)^{-1} = b^{-1} a^{-1} = \phi(b)\phi(a)$ $\phi(ba) = (ba)^{-1} = a^{-1} b^{-1} = \phi(a)\phi(b)$ As G:s abelian ab = ba so \$ (ab) = \$ (ba) = \$ (a) \$ (b) = \$ (b) \$ (a) So Q (ab) = ob (a) ob (b) and Q is an isomarphism.

Question assigned to the following page: 6			

Inicative: X,y & G & Cx) = & Cy)
S= 5' (9x9' = 9y9') = 7 (xg'=y9') y=) x=y Survicetive: yEE show JXEE s.t gxg=y g g'gx=yg x=g'yg So $\phi(g^{-1}yg) = y$ and ϕ is surjective Soit is bid colive To show isomorphism: Let x,y E G φ (xy)= 9xy9" φ (x) = 9x9" φ (y) = 9y9" = φ (x) φ (y) 80 φ (xy) = 9xy9" = 9xy9" = φ (x) φ (y) 5. Ay= {e, Clas), Claa), Clay), Clua), Clay), Clus), Casy), Caus), Cla) (34), Cla) (23)} and g= (128) so g-1 = C321 So Q(e)=e Scrap werk on back O(123)=C123) Just solved all of \$ (321) = (321) them by plugging in (124) = C342) Also used fact that or 142) = (243) QCX) = ((Cx-1))-1 which (134)= (142) is shown on back as Q(431) = (241) B (234) = (143) Gets all 12 clements d(432)= (341) of Ay, no westap and @ (12)(34)= (23)(14) See clear bisection. Q(13)(24)= C12)(34) (14)(23) = (24)(13)

Question assigned to the following page: <u>6</u>			

