Доказательство: $\Gamma \vdash \alpha \to \beta$ влечёт $\Gamma, \alpha \vdash \beta$

№ п/п	формула	пояснение
(1)	δ_{1}	в соответствии с исходным доказательством
(n - 1)		в соответствии с исходным доказательством
(n)	$\alpha \to \beta$	в соответствии с исходным доказательством
(n + 1)	α	гипотеза
(n+2)	β	Modus Ponens $n+1$, n

Вывод $\Gamma, \alpha \vdash \beta$ предоставлен, первая часть теоремы доказана.

Доказательство: $\Gamma, \alpha \vdash \beta$ влечёт $\Gamma \vdash \alpha \to \beta$, случай аксиомы

№ п/п	новый вывод	пояснение	
(1)	$lpha ightarrow \delta_1$		
(2)	$\alpha o \delta_2$		
(n + 0.3)	$\delta_{n+1} \to \alpha \to \delta_{n+1}$	схема аксиом 1	
(n+0.6)	δ_{n+1}	аксиома, либо $\delta_{n+1} \in \Gamma$	
(n+1)	$\alpha \to \delta_{n+1}$	Modus Ponens $n + 0.3$, $n + 0.6$	

Доказательство: $\Gamma, \alpha \vdash \beta$ влечёт $\Gamma \vdash \alpha \to \beta$, случай $\delta_i = \alpha$

№ п/п	новый вывод	пояснение
(1)	$\alpha \to \delta_1$	
(2)	$\alpha \to \delta_2$	
(n+0.4) (n+0.6)	$\begin{array}{l} \cdots \\ \alpha \to (\alpha \to \alpha) \\ (\alpha \to (\alpha \to \alpha)) \to (\alpha \to (\alpha \to \alpha) \to \alpha) \to (\alpha \to \alpha) \\ (\alpha \to (\alpha \to \alpha) \to \alpha) \to (\alpha \to \alpha) \\ \alpha \to (\alpha \to \alpha) \to \alpha \\ \alpha \to \alpha \end{array}$	Cx. akc. 1 Cx. akc. 2 M.P. $n + 0.2$, $n + 0.4$ Cx. akc. 1 M.P. $n + 0.8$, $n + 0.6$

Доказательство: $\Gamma, \alpha \vdash \beta$ влечёт $\Gamma \vdash \alpha \rightarrow \beta$, случай Modus Ponens

№ п/п	новый вывод	пояснение
(1)	$lpha o \delta_1$	
(2)	$lpha ightarrow \delta_2$	
(<i>j</i>)	$\alpha \to \delta_j$	
(<i>k</i>)	$\alpha \to \delta_j \to \delta_{n+1}$	
(n + 0.6)	$(\alpha \to \delta_j) \to (\alpha \to \delta_j \to \delta_{n+1}) \to (\alpha \to \delta_{n+1})$ $(\alpha \to \delta_j \to \delta_{n+1}) \to (\alpha \to \delta_{n+1})$ $\alpha \to \delta_{n+1}$	Cx. akc. 2 M.P. j , $n + 0.3$ Modus Ponens $n + 0.6$, k