

Algorithm: Quantum Classifier

Training sets with label 0,1: S_0, S_1

Given encoding $E(\boldsymbol{\theta})$ of classical data $\boldsymbol{\theta}$ and a parametrized circuit $U(\mathbf{w})$ For data point i , Probability of measuring 0,1 in the top qubit: $p_0^{(i)}, p_1^{(i)}$

Objective function: $\min \sum \log p_1^{(i)} - \sum \log p_1^{(i)}$

Instance: 2-qubit circuit

Abstract / pre-compiled circuit

Circuit Compilation

Qubit mapping

Circuit Execution on QVM and/or QPU

Post-process & Storage

Decision boundaries of the classifier

