Лабораторная работа №1: "Базовые сигналы ЦОС"

Единичный импульс. Единичный скачок. Дискретные синусоиды. Дискретные экспоненты.

Задача 1. Построить графики единичного импульса и единичного скачка

$$y(n) = \delta(n - n_0),$$

$$y(n) = u(n - n_0),$$

где n_0 – номер студента в списке группы.

Задача 2. Построить график дискретной синусоидальной последовательности с периодом $N=8\times n_0$, где n_0 — номер студента в списке группы.

Задача 3. Построить график дискретной непериодической синусоидальной последовательности (частоту ω_0 выберите самостоятельно).

Задача 4. Напишите функцию для формирования синусоиды, получаемой в результате дискретизации с частотой F_s непрерывной синусоиды:

$$s(t) = A\sin(2\pi f t + \varphi_0),$$

где $t=...-3\Delta T, -2\Delta T, -\Delta T, 0, \Delta T, 2\Delta T, ...\Delta T=1/F_s; A$ – амплитуда; f – частота синусоиды; φ_0 – начальная фаза.

Задача 5. Построить график затухающей экспоненты $g(n) = A^n u(n)$, где $A = \log_{10}(10 - n_0/5)$, где n_0 — номер студента в списке группы.

Задача 6. Построить графики действительной и мнимой части комплексной экспоненты

$$x(n) = A^n e^{j\omega_0 n}.$$

Задача 7. Построить трехмерный графики комплексной экспоненты из предыдущего задания. Используйте функцию matlab plot3.

Задача 8. Сгенерируйте в matlab аудио-файл (частота дискретизации 8 кГц), который содержит последовательность из 9 тональных сигналов с частотами 659, 622, 659, 622, 494, 587, 523 и 440 Гц. Длительность каждого тонального сигнала 0,5 с. Проиграйте полученный сигнал при помощи следующих функций:

player = audioplayer(x, Fs); play(player);