Classification with Logistic Regression

Pavlos Protopapas

Lecture Outline

- What is Classification?
- Classification: Why not Linear Regression?
- Binary Response & Logistic Regression
- Estimating the Simple Logistic Model
- Classification using the Logistic Model
- Multiple Logistic Regression
- Extending the Logistic Model
- Classification Boundaries

Lecture Outline

- What is Classification?
- Classification: Why not Linear Regression?
- Binary Response & Logistic Regression
- Estimating the Simple Logistic Model
- Classification using the Logistic Model
- Multiple Logistic Regression
- Extending the Logistic Model
- Classification Boundaries

Advertising Data (from earlier lectures)

Y
outcome
response variable
dependent variable

0	
• —	
1	
ati	
۷	
er	
S	
Q	
0	

IV	radio	newspaper
230.1	37.8	69.2
44.5	39.3	45.1
17.2	45.9	69.3
151.5	41.3	58.5
180.8	10.8	58.4

sales 22.1 10.4 9.3 18.5 12.9

p predictors

The response variable is continuous or quantitative

Heart Data

These data contain a binary outcome AHD for 303 patients who presented with chest pain.

response variable Y is Yes/No

Age	Sex	ChestPain	RestB P	Chol	MaxH R	ExAn g	Thal	AHD
63	1	typical	145	233	150	0	fixed	No
67	1	asymptomati c	160	286	108	1	normal	Yes
67	1	asymptomati c	120	229	129	1	reversabl e	Yes
37	1	nonanginal	130	250	187	0	normal	No
41	0	nontypical	130	204	172	0	normal	No

Heart Data

These data contain a binary (or qualitative) outcome AHD for 303 patients who presented with chest pain. An outcome value of:

- **Yes** indicates the presence of heart disease based on an angiographic test,
- No means no heart disease.

There are 13 predictors including:

- Age
- Sex (0 for women, 1 for men)
- Chol (a cholesterol measurement),
- MaxHR
- RestBP

and other heart and lung function measurements.

Classification

- Linear Regression performs well on tasks that require the prediction of a quantitative response variable.
 - o For example, number of taxi pickups, number of bike rentals.
- When the response variable is categorical (or qualitative), regression techniques are no longer applicable.
- Such tasks fall under the umbrella of a classification problem.
 - o For example, whether the next taxi is going to be yellow or blue or black.
- The goal of a classification problem is to attempt to classify an observation into a category (aka, class or cluster) labeled by Y, based on a set of predictor variables X.

Typical Classification Examples

Classification problems are ubiquitous in many domains, such as healthcare, finance, sports.

Some examples of classification problems are:

- To determine whether a startup is worth investing in
- To determine the disease type of patients based on various genomic markers
- To determine if a certain candidate is suitable for a particular sports team
- To determine if a given image is a real or a fake one

Why not Linear Regression?

Simple Classification Example

Given a dataset:

$$igg\{(x_1,y_1),(x_2,y_2),\dots,(x_N,y_N)igg\}$$

where the ys are categorical, the aim is to predict which category y takes

$$y = egin{cases} 1 & if ext{ Computer Science (CS)} \ 2 & if ext{ Statistics} \ 3 & ext{ otherwise} \end{cases}$$

Simple Classification Example (cont.)

- A linear regression could be used to predict y from **x**.
- This model would imply though a specific ordering of the outcome, and would treat a one-unit change in y equivalently
 - For example; a change from y=1 to y=2 (Computer Science to Statistics) is the considered the same as a change from y=2 to y=3 (Statistics to everyone else).
- However, this change should not be interpreted as the same.

Simple Classification Example (cont.)

- Additionally, if the ordering of the response variable is changed, the model estimates and predictions would be fundamentally different.
 - For example, a model trained with y = 1 represents Statistics and y = 2 represents CS is different from a model trained with the original ordering.

• If a categorical response variable is ordinal (has a natural ordering, like Freshman, Sophomore, etc.), then a linear regression model would make some sense but is still not ideal.

Even Simpler Classification Problem: Binary Response

- The simplest form of classification is when the response variable y has only two categories.
- There is a natural ordering of the categories.

$$y = egin{cases} 1 & if ext{ lives in the Quad} \ 0 & ext{otherwise} \end{cases}$$

Even Simpler Classification Problem: Binary Response (cont.)

What could go wrong with this linear regression model?

Even Simpler Classification Problem: Binary Response (cont.)

The main issue is you could get nonsensical values for y. Since this is modeling P(y=1), values for \hat{y} below 0 and above 1 would be at odds with the natural measure for prob. Linear regression can lead to this issue.

Binary Response & Logistic Regression

Pavlos Game #45

Since we know, linear regression yields values for prob that are larger than 1 or smaller than zero what can we do to fix this?

We could transform the output of the linear regression to something that goes from 0 to 1.

Think of a function that would do this for us

- Logistic Regression addresses the problem of estimating a probability, P(y=1), to be outside the range of [0,1].
- In particular The logistic regression model uses a function, called the laxistic function to made D(1 - 1).

$$P(Y=1) = rac{e^{eta_0 + eta_1 X}}{1 + e^{eta_0 + eta_1 X}} = rac{1}{1 + e^{-(eta_0 + eta_1 X)}}$$

As a result, the model will predict P(y=1) with an S-shaped curve, which is the general shape of the logistic function.

$$eta_0$$
 shifts the curve right or left by $c=-rac{eta_0}{eta_1}$.

 β_1 controls how steep the S-shaped curve is. Distance from $\frac{1}{2}$ to almost 1 or $\frac{1}{2}$ to almost 0 to $\frac{2}{\beta_1}$

Note: if β_1 is positive, then the predicted P(y=1) goes from zero for small values of X to one for large values of X and if β_1 is negative, then the P(y = 1) has opposite association.

The coefficients beta0 and beta1 now control the shape of this s-shape curve

The point that P=1/2

$$P(Y=1) = rac{1}{1 + e^{-(eta_0 + eta_1 X)}}$$

$$P(Y=1) = rac{1}{1 + e^{-(eta_0 + eta_1 X)}}$$

With a little bit of algebraic work, the logistic model can be rewritten as:

$$\ln \left(rac{P(Y=1)}{1-P(Y=1)}
ight) = eta_0 + eta_1 X$$
 odds

Using Logistic Regression for Classification

How can we use a logistic regression model to perform classification?

That is, how can we predict when Y = 1 vs. when Y = 0?

We can classify all observations for which:

Using Logistic Regression for Classification

When will this Bayes classifier be a good one? When will it be a poor one?

The Bayes classifier is the one that minimizes the overall classification error rate. That is, it minimizes:

$$\frac{1}{n} \sum_{i}^{n} I\left(y_{i} = \hat{y}_{i}\right)$$

Is this a good Loss function to minimize? Why or why not?

The Bayes classifier may be a poor indicator within a group. Think about the Heart Data scatter plot.

Using Logistic Regression for Classification

This has potential to be a good classifier if the predicted probabilities are on both sides of 0 and 1.

How do we extend this classifier if Y has more than two categories?

