<u>Lead-Acid Battery</u>

- Comprised of six 2 V cells connected in series
- Overall voltage is the sum of the voltages produced by the individual cells (12 V)
- In the charged state, each cell contains electrodes of Pb and PbO₂ in an electrolyte of H₂SO₄
- As the battery is discharged, both electrodes form PbSO₄ and the [H₂SO₄] is reduced
- Large SA supplied by the plates allows high currents to be generated for short periods of time
- When it charges, an external current is used to provide the energy needed for the nonspontaneous reverse reaction in each of the battery's 6 cells

Other Rechargeable Batteries

• Nickel-Cadmium (NiCd) Batteries:

- o Cadmium at the anode and nickel oxide at the cathode
- o Gradually lose their max. energy capacity after repeated recharging ("memory effect")

Nickel-Metal Hydride (NiMH) Batteries:

- Most popular today, since they don't have any toxic cadmium or a "memory effect"
- o Also able to store more energy than NiCd on a weight-by-weight basis
- Cheap to manufacture, reliable, and relatively safe
- The metal hydride is at the anode and nickel oxyhydroxide is at the cathode

• Lithium-Ion (Li-Ion) Batteries:

- o Popular due to its high energy-to-weight ratio
- LiC₆ is at the anode and CoO₂ is at the cathode
- Li⁺ ions aren't oxidized or reduced to generate a voltage
 - Instead, they migrate to and from the anode and cathode in a process called *intercalation* (possible due to layered structure of electrodes)
- Although more expensive than NiMH, Li-ion batteries are light, deliver more power and don't suffer from "memory effect"
- However, they can rupture, ignite or explode when subjected to high temperature or overcharging, and also cannot deliver high currents

• Lithium-Polymer (Li-Pol) Batteries:

- Uses a polymer (solid phase) electrolyte between the two electrodes
- Electrode material are situated in a spiral inside a cylinder, which prevents electrodes from touching
- Advantage over a liquid electrolyte is that it allows the materials in the Li-Pol battery to be stacked, with little chance of the two electrodes coming into contact
- o These batteries can therefore be manufactured in virtually any shape

Chapter 5.1 – Reaction Rates and Rate Laws

Reaction Rates

- The speed at which a reaction takes place depends on: what the reactants are and their concentrations, the temperature, and whether or not a catalyst is present
- For any reaction: $aA + bB \rightarrow cC + dD$
 - O The rate is expressed as: $Rate = -\frac{1}{a} \left(\frac{\Delta[A]}{\Delta t} \right) = -\frac{1}{b} \left(\frac{\Delta[B]}{\Delta t} \right) = \frac{1}{c} \left(\frac{\Delta[C]}{\Delta t} \right) = \frac{1}{d} \left(\frac{\Delta[D]}{\Delta t} \right)$

Concentration Effects and Rate Laws

- Rate laws mathematical expressions that link the rate of a rxn with reactant concentration
- In the reaction: $aA + bB \rightarrow products$
 - The rate of the reaction (rate law) is: $Rate = k[A]^x[B]^y$
 - K is the specific rate constant for the reaction at a given temperature
 - o x and y are the orders for each reactant and can only be found experimentally
- The "order" of a reaction defines how the rate of a reaction is affected by the concentration of the species involved in the reaction
- Overall order of a reaction the sum of all the individual orders
- Experimental Determination of the Exponents
 - The initial rates are observed immediately after the reactants are mixed
 - If there is a graph, the initial slope = instantaneous rate at t = 0
 - Between any 2 runs, one of the reactant concentrations must be constant in order to determine the order of the second reactant

<u>First-Order Reactions</u>

- If $A \to products$ is a first-order reaction, $Rate = k[A] = -\left(\frac{\Delta[A]}{\Delta t}\right)$ Integrated rate law: $\ln\left(\frac{\Delta[A]}{\Delta t}\right) = -k[t]$ or $[A]_t = [A]_0 e^{-kt}$ OR $\ln[A]_t = -kt + \ln[A]_0$
 - o [A]_t = concentration of A after time t has elapsed
 - [A]₀ = initial concentration
- A plot of ln[A]_t vs. time yields a straight line with a slope of –k and y-intercept of ln[A]₀
- Half-life $(t_{1/2})$ the amount of time it takes to use up half of the reactant
 - (it only depends on the rate constant k in first-order reactions)
 - The half-life of a first-order reaction follows an exponential decay
 - Exponential decay plot is not a straight line ([A] vs. time)
 - Graph approaches 0 but never reaches it; thus, the reaction is never complete
 - o The fraction of reactant remaining after "n" half-lives can be expressed as:
 - Fraction remaining = $\frac{[A]_t}{[A]_0}$ = $(0.05)^n$
 - $n = number \ of \ elapsed \ halflives = \frac{time \ elapsed}{length \ of \ half-life}$

Zero-Order Reactions

- If A o products is a zero-order reaction, $Rate = -\left(\frac{\Delta[A]}{\Delta t}\right) = k[A]^0 = k$
- Integrated rate law: $[A]_t = -kt + [A]_0$
 - o A plot of [A] vs. time yields a straight line with a slope of -k and y-intercept of [A]₀
- Half-life of zero-order reaction: $t_{1/2}=rac{[A]_0}{2^L}$

Second-Order Reactions

- If A o products is a second-order reaction, $Rate = -\left(\frac{\Delta[A]}{\Delta t}\right) = k[A]^2$
- Integrated rate law: $\frac{1}{|A|_t} = kt + \frac{1}{|A|_0}$
 - o A plot of 1/[A] vs. time yields a straight line with a slope of k and y-intercept of 1/[A]₀
- Half-life of a 2nd order reaction depends on the concentration of the reactant: $t_{1/2} = \frac{1}{|t|_{A|_{-}}}$

Chapter 5.2 – Reaction Mechanisms & the Arrhenius Equation

Thermodynamics and Kinetics

- **Thermodynamics** net energy difference (ΔE) between reactants and products of a reaction
- **Kinetics** the rate of the reaction depends on the size of the barrier
- Reaction coordinate diagrams illustrate the energy changes that occur on the route from reactants to products (represents progress along a reaction pathway)
- Activation Energy the amount of energy required to overcome the activation barrier, in order to allow a reaction to proceed (this energy comes from heat, which is measured by temp.)
 - Temperature is a measure of the avg. kinetic energy of a collection of molecules
 - At any given temperature, there is a distribution of kinetic energies for molecules, as represented by a Boltzmann distribution graph
 - At low temperature, none of the reactants have enough energy to overcome barrier
 - As temperature increases, more of the molecules gain enough energy to overcome E_a
- Collision Theory for a reaction to occur, reactants must collide in a proper orientation, with sufficient energy to overcome the activation barrier
- The rate of a reaction is affected by these factors:
 - Reactant concentration (higher concentration = more collisions)
 - Probability factor based on the probabilities of colliding in a particular geometry (steric factor) and continuing to the products at the transition state
 - E_a and temperature (higher temperature = more reactants able to overcome E_a)
- $Rate = \# \ of \ collisions \ \times [probability \ factor \ \times \ fraction \ of \ collisions \ with \ enough \ energy \ to \ overcome \ E_a]$

The Arrhenius Equation

- $k=Ae^{-rac{E_{lpha}}{RT}}$, where A = Arrhenius probability factor for a specific reaction
- As the value of E_a increases (higher activation barrier), the value of k decreases
 - Therefore, fastest reactions have the smallest activation energy barrier
- **Effect of Temperature on Rate:**
 - For a given reaction, Ea is a constant and can be determined without knowing the probability factor by performing two experiments at different temperatures while maintaining the same reactant concentrations
 - o $Rate_{T1} = k_{T1}[A][B]$ at temperature 1

 - o $Rate_{T2} = k_{T2}[A][B]$ at temperature 2 o Therefore, $\ln\left(\frac{Rate_{T2}}{Rate_{T1}}\right) = \ln\frac{k_2}{k_1} = \frac{E_a}{R}\left(\frac{1}{T_1} \frac{1}{T_2}\right)$
- **Determining Activation Energy Graphically:**
 - The Arrhenius equation can be rearranged as: $\ln k = \ln A \frac{E_a}{R} \left(\frac{1}{T}\right)$
 - E_a can be determined experimentally by measuring a reaction rate at different temperatures, then plotting the graph of lnK vs. 1/T
 - A straight line with a slope of $-\frac{E_a}{R}$ and a y-intercept of lnA
- **Effect of a Catalyst on Activation Energy:**
 - A catalyst increases the rate of reaction but is not consumed in the reaction
 - o It provides an alternative pathway with a lower Ea, that, in turn, increases k
 - \circ Has no effect on the net enthalpy change (Δ H) of a reaction
 - Rate enhancement factor the ratio of k values for the catalyzed and uncatalyzed reaction (k_{cat} / k_{uncat})

 $\begin{tabular}{ll} \hline \circ & To determine that magnitude of the E_a reduction (ΔE_a) resulting from the introduction of a catalyst: $\ln\left(\frac{Rate_{cat}}{Rate_{uncat}}\right) = \ln\frac{k_{cat}}{k_{uncat}} = \frac{E_{a(uncat)} - E_{a(cat)}}{RT} = \frac{\Delta E_a}{RT} $$$

Reaction Mechanisms

- Reaction Mechanism describes the sequence of steps that occur during a chemical reaction
- Each step is called an elementary step
 - o Each elementary step has an Ea and a rate constant
 - o # of steps = # of transition states
- Species formed and consumed within the reaction mechanism are reaction intermediates
 - Unlike transition states, these are real species that can be found in the reaction mixture as the reaction progresses (transition states are short-lived; cannot be found in mixture)
- Molecularity refers to how many species react together in an elementary step
 - Unimolecular process involves only one reactant species (first-order kinetics)
 - Bimolecular process involves two species (second-order)
- ONLY in an elementary step, the coefficients of the reactants become exponents of the rate law
- The overall rate of a reaction is determined by the rate of the slowest or rate-determining step
- Determining Reaction Mechanisms
 - Proposal A reaction occurs in one step
 - Overall reaction is therefore the elementary step
 - Reaction is bimolecular and rate law for the reaction is overall 2nd order
 - Proposal B reaction occurs in two steps
 - First step slow; second step fast
 - Rate law for overall reaction is based on RDS (1st step)
 - Slower step has the higher transition rate
 - Proposal C reaction occurs in two steps, but the slow/fast steps have been swapped
 - First step fast; second step slow
 - Rate law for overall reaction is based on step 2
 - However, since step 2 includes the intermediates (which cannot appear in overall rate law), step 1 must be rearranged and a substitute for the intermediate must be used in the step 2 (RDS) rate expression
- Guidelines for Deriving a Rate Law
 - 1. Look for the RDS
 - 2. Write a rate law in terms of concentrations of reactions in the RDS
 - 3. If there are intermediates, express their concentrations in terms of stable reactants appearing in the overall reaction equation
 - In an equilibrium reaction, forward and reverse rates are equal $(k_{IF}[A] = k_{IR}[B])$
 - 4. Substitute concentrations of stable reactants for concentrations of intermediates in the rate law
 - 5. Fast steps following the RDS in the mechanistic sequence may be ignored
 - o NOTE: the RDS isn't always the one with the largest activation barrier
 - It is the step whose transition state has the highest overall energy