Last name	
First name	

LARSON—OPER 731—CLASSROOM WORKSHEET 27 Cutting Planes!

Concepts

- (Sec. 3.1) dual LP, Weak duality theorem.
- (Sec. 4.3) complementary slackness, cone, cone of tight constraints.
- (Sec. 4.4) Farkas's Lemma.
- (Sec. 5.1) primal-dual algorithm.
- (Sec. 5.3) directed graph, flow, flow balance, flow value, capacity, totally unimodular matrix, max-flow min-cut.

1. What is an s-t flow? What is the value of a flow?

2. Model the maximum s-t flow problem for this network.

3. Find a maximum flow for this network.

4.	Argue that a maximum flow for a network with integer capacities will be integer (have an integer value on each arc).
5.	What is an s - t cut ? What is the $capacity$ of an s - t cut ?
6.	Can you find a minimum cut in this network?
7.	What is the dual LP for the above LP?
8.	Argue that the dual LP has an integer optimum solution.
9.	Find a feasible dual solution that proves optimality.
10.	What is a <i>cutting plane</i> ?