《电磁学》作业七

2.3-4 平行板电容器(极板面积为 S,间距为 d)中间有两层厚度各为 d_1 和 d_2 ($d_1+d_2=d$),相对介电常数各为 \mathcal{E}_{r1} 和 \mathcal{E}_{r2} 的电介质层。求:(1)电容 C;(2)当金属极板上带电而面密度为 $\pm \sigma_{e0}$ 时,两层介质间的分界面上的极化电荷密度 σ_e' ;(3)极板间电位差 U;(4)两层介质中的电位移 D。

2.3-12 一平行板电容器的两极板间距为 d,其间充满了两部分介质,介电常数为 ε_{r1} 的介质所占的面积为 S_1 ,介电常数为 ε_{r2} 的介质所占的面积为 S_2 。略去边缘效应,求电容 C 。

- 2.3-15 同心球内外半径分别为 \mathbf{R}_1 和 \mathbf{R}_2 ,两球间充满相对介电常数为 $\boldsymbol{\varepsilon}_r$ 的均匀介质,内球的电荷时 \mathbf{Q} 。求:
- (1) 电容器内各处的电场强度 E 的分布和电位差 U; (2) 介质表面的极化电荷密度;
- (3) 电容 C。(它是真空时电容的多少倍)

2.3-17 一半径为 R 的导体球带电荷 Q,处在相对介电常数为 ε_r 的无限大均匀分布的介质中。求:(1)介质中的的电场强度 E,电位移 D 和极化强度 P 的分布;(2)极化电荷的面密度。