

Sandra Hansen-Morath Sascha Wolfer

STATISTIK MIT R

Einführung in die empirische Forschung

Mitglied der
Leibniz-Gemeinschaft

WAS ERWARTET UNS?

- Einführung in grundlegende statistische Methoden
- Einführung in R
- Grundlegende Visualisierungsmöglichkeiten
- Ziele:
 - Grundlegendes Verständnis für empirische Arbeit vermitteln
 - Ausgangslage für weitere Arbeit mit Statistik und R schaffen
 - Gefühl für verschiedene Arten der Visualisierung herausbilden

FRAGEN

- Wie arbeite ich empirisch-statistisch?
 - Herausbilden von Fragestellungen und Hypothesen
 - Studiendesign
 - Auswertung
 - Interpretation
- Ich habe Daten. Welchen statistischen Test wende ich an?
- Ich habe Ergebnisse. Wie vermittle ich sie an andere?

DETAILLIERTER KURSPLAN (VORLÄUFIG)

- Grundlagen Empirie, Vorstellung R
- 2. Einfache deskriptive Maße & Skalenniveaus
 - Zentrale Tendenz, Streuung, Quantile, Kreuztabellen
- Grundlagen R
- Interface RStudio, Daten einladen, Datentypen, Indizierung
- 4. Einfaches Plotten
 - Balkendiagramme, Streudiagramme, Boxplots, ...

DETAILLIERTER KURSPLAN (VORLÄUFIG)

- 5. Zusammenhangsmaße
 - Korrelation, Regression, geeignete Visualisierungen
- 6. Umgehen mit Häufigkeiten
 - Kreuztabellen, Chi-Quadrat-Test, geeignete Visualisierungen
- 7. Fortgeschrittenes Plotten
 - Fehlerbalken, Anpassungslinien, Verteilungsvisualisierung, Mosaikplots, Assoziationsplots
- 8. Inferenzstatistik
 - Grundlagen, t-Test, ANOVA

HEUTE

- Wozu empirische Forschung?
- Theorien und Hypothesen
- Gütekriterien
- Kreislauf empirischer Forschung
- Vorstellung von R

Warum Empirie? Beispiel

- Anstehende Wartungsarbeit blockiert Kaffeebezug!
- Meine Beobachtung:
 - Jedes Mal, wenn ich mir einen Kaffee holen möchte, muss ich zuerst eine oder mehrere dieser Aufgaben erfüllen.
 - Das geschieht nur mir! Alle KollegInnen bekommen ihren Kaffee immer direkt.
- Ich fühle mich also ungerecht behandelt.

- Ich habe nun beschlossen, der Sache auf den Grund zu gehen.
- Ich formuliere zunächst eine überprüfbare Hypothese:
 - "Wenn ich mir einen Kaffee holen möchte, muss ich überproportional viele Wartungsvorgänge im Vergleich zu den KollegInnen durchführen."
- Messverfahren: Protokoll der Wartungsaufgaben in Abhängigkeit der MitarbeiterInnen.

	SW	LK	SH	DM
ohne Wartungsarbeit	26	21	24	35
mit Wartungsarbeit	22	14	9	22

- Die entscheidende Frage: Weicht diese Verteilung von einer gleichmäßigen Verteilung ab?
- Die Antwort darauf gibt uns ein χ^2 -Test.

> chisq.test(tab)

Pearson's Chi-squared test

```
data: tab
X-squared = 2.8704, df = 3, p-value = 0.412
```

- Wenn ich weiterhin annehmen würde, dass mich die Kaffeemaschine ungerecht behandelt, würde ich mich mit einer Wahrscheinlichkeit von 41,2% irren.
- Das ist (zumindest mir) nicht sicher genug, um den Bürofrieden zu gefährden.

Warum Empirie?

Theorie

WARUM EMPIRIE?

- Ohne Bezug zur Welt ist eine Theorie bedeutungslos.
- Beobachtungen sind nicht immer verlässlich.
 - Vorurteile und Einstellungen der Beobachtenden
 - Ungenaue oder unangemessene Messinstrumente
 - Fehlerbehaftete Erinnerungen
 - Relevanz von Beobachtungen
- Jeder Mensch neigt dazu, in Beobachtungen seine Theorien von der Welt bestätigt zu sehen.

THEORIE UND HYPOTHESE

- Um Theorien überprüfbar zu machen, benötigen wir Hypothesen.
- Hypothesen: Aussage in Form einer überprüfbaren Behauptung.
 - Allgemeingültige, über den Einzelfall oder ein singuläres Ereignis hinausgehende Behauptung (All-Satz)
 - Zumindest implizit muss die Formalstruktur eines sinnvollen Konditionalsatzes vorliegen: "Wenn…dann", "Je…desto"
 - Der Konditionalsatz muss falsifizierbar sein: Es müssen Ereignisse denkbar sein, die dem Konditionalsatz widersprechen.
 - Die in der Hypothese genannten Konstrukte müssen messbar (operationalisierbar) sein.

HYPOTHESEN: BEISPIELE

"Bei starkem Zigarettenkonsum kann es zu einem Herzinfarkt kommen."	"Wenn Personen viel rauchen, haben sie ein höheres Infarktrisiko als Personen, die wenig oder gar nicht rauchen."	
"Manche Nomen werden schneller gelesen als Verben."	"Die durchschnittliche Lesezeit von Nomen ist signifikant kürzer als jene von Verben."	
"Die meisten Sätze in Zeitungsartikeln sind sehr kurz."	"Die durchschnittliche Satzlänge in Zeitungsartikeln ist signifikant geringer als in Gerichtsurteilen."	
"Nicht alle Menschen reagieren gleich auf Medikament X."	"Die Wirkung des Medikaments X hängt vom Gewicht des Menschen ab. Je schwerer der Mensch, desto geringer die Wirkung derselben Dosis von X."	

STATISTISCHE HYPOTHESEN

- Inhaltliche Hypothesen müssen für die Überprüfung in statistische Hypothesen überführt werden.
 - Inhaltliche Hypothesen beziehen sich auf empirische Sachverhalte, also Populationen von Individuen.
 - Statistische Hypothesen beziehen sich auf statistische Konzepte.

Inhaltliche Hypothese

"Wenn Personen viel rauchen, haben sie ein höheres Infarktrisiko als Personen, die wenig oder gar nicht rauchen."

Unterschiedshypothese

Das mittlere Infarktrisiko ist in Gruppe 1 (> 20 Zigaretten/Tag) signifikant höher als in Gruppe 2 (< 3 Zigaretten/Tag).

Zusammenhangshypothese

Das mittlere Infarktrisiko ist signifikant positiv korreliert mit der Anzahl Zigaretten pro Tag.

NULL- UND ALTERNATIVHYPOTHESE

- Jeder inferenzstatistische Test prüft die Nullhypothese (H_0) .
 - Die H0 besagt, dass es keinen Unterschied / Zusammenhang gibt.
- Die Forschungshypothese ist die Alternativhypothese (H₁).
 - Die H1 ist die Gegenhypothese zur H0 und besagt, dass ein Unterschied / Zusammenhang besteht.
- Ziel ist es, die H₀ ablehnen zu können, um die H₁ annehmen zu können.
- Kann die H₀ nicht abgelehnt werden, gilt sie damit nicht als bewiesen!
 - Nulleffekte können nicht interpretiert werden.
- Darauf kommen wir zurück, wenn wir die Grundlagen der Inferenzstatistik aufarbeiten.

GÜTEKRITERIEN EMPIRISCHER FORSCHUNG

- Um Hypothesen empirisch überprüfen zu können, müssen bestimmte Kriterien erfüllt sein.
 - Objektivität: Untersuchungsergebnis darf nicht abhängig sein von VersuchsleiterIn, Testsituation, Auswertung oder Interpretation.
 - Reliabilität: Die Testmethode muss unter Konstanthaltung aller Umstände das gleiche Ergebnis liefern.
 - Validität: Wie genau erfasst eine Untersuchung das, was sie erfassen soll?

RELIABILITÄT (ZUVERLÄSSIGKEIT)

- re-test reliability: Erneute Messung muss bei gleichen Ausgangsbedingungen gleiche Ergebnisse hervorbringen.
- inter-rater reliability: Zwei BewerterInnen müssen bei der Bewertung gleicher Gegenstände zu gleichen / sehr ähnlichen Ergebnissen kommen.
- **split-half reliability**: Ein Datensatz, der ein bestimmtes Konstrukt messen soll (bspw. ein Fragebogen), wird in zwei Hälften geteilt. In beiden Hälften sollten sehr ähnliche Ergebnisse auftreten.

VALIDITÄT (GÜLTIGKEIT)

- Konstruktvalidität: Die Messung erfasst das, was sie erfassen soll. Das Konstrukt ist gut operationalisiert.
- Interne vs. externe (ökologische) Validität: Ökologisch valide sind Messungen dann, wenn die Grundbedingungen der Messung in möglichst vielen Lebensbedingungen gegeben sind.
 - → Inwieweit sind Ergebnisse aus dem Labor auf das Alltagsgeschehen übertragbar?

RELIABILITÄT UND VALIDITÄT

- Grobe Metapher: Ausrichten einer Kanone auf ein bestimmtes Ziel.
- Treffen die Kugeln immer neben das Ziel, aber immer dieselbe Stelle, liegt Reliabilität vor.
- Treffen die Kugeln zusätzlich immer das Ziel, liegt auch Validität vor.

KREISLAUF EMPIRISCHER FORSCHUNG

BEGRIFFE

Theorie

Hypothese

Falsifizierbarkeit

Unterschiedshypothese

Zusammenhangshypothese

Objektivität

Reliabilität

Validität

Operationalisierung