VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta informačních technologií

Matematická analýza 2016/2017 Domácí úkol č. 1, varianta 1

> Iva Kavánková xkavan05, Erik Kelemen xkelem01, Martin Kobelka xkobel02, Josef Kolář xkolar71, Matej Kolesár xkoles07, Son Hai Nguyen xnguye16

1. úkol

Zadání

Rozložte na parciální zlomky tuto racionální lomenou funkci.

$$f(x) = \frac{3x^3 + x^2 - 4x + 16}{x^5 + 5x^4 + 9x^3 + 13x^2 + 14x + 6}$$

Rozbor příkladu

Máme za úkol najít rozklad na parciální zlomky. Polynom ve **jmenovateli má vyšší stupneň**, než polynom v čitateli. Není třeba provádět dělení a můžeme rovnou přistoupit k rozkladu.

Pro rozklad polynomu ve jmenovateli použijeme Hornerovo schéma a následně si napíšeme rovnici vyjadřující rozklad na jednotlivé parciální zlomky v obecném tvaru. Dle rovnice si poté sestavíme soustavu rovnic pro výpočet jednotlivých koeficientů. Řešením rovnice budou koeficienty z množiny \mathbb{Q} , čímž získáme rozklad funkce na parciální zlomky.

Řešení

Rozklad čitatele za pomocí Hornerova algoritmu na součin závorek.

	1	5	9	13	14	6	
-1	1	4	5	8	6	0	OK
-1	1	3	2	6	0		OK
-3	1	0	2	0			OK

Tabulka 1: Rozklad čitatele

Rozklad jmenovatele na součin v oboru reálných čísel je

$$x^{5} + 5x^{4} + 9x^{3} + 13x^{2} + 14x + 6 = (x+1)^{2}(x+3)(x^{2}+2)$$

Výraz $x^2 + 2$ nelze dále v oboru reálných čísel rozložit. Dostáváme funkci:

$$f(x) = \frac{3x^3 + x^2 - 4x + 16}{(x+1)^2(x+3)(x^2+2)}$$

Funkci můžeme nyní rozložit na parciální zlomky. Rozklad vypadá tedy následovně:

$$f(x) = \frac{3x^3 + x^2 - 4x + 16}{(x+1)^2(x+3)(x^2+2)} = \frac{A}{x+1} + \frac{B}{(x+1)^2} + \frac{C}{x+3} + \frac{Dx + E}{x^2 + 2}$$

Rovnici upravíme:

$$3x^{3} + x^{2} - 4x + 16 = A(x^{4} + 4x^{3} + 5x^{2} + 8x + 6) +$$

$$+ B(x^{3} + 3x^{2} + 2x + 6) +$$

$$+ C(x^{4} + 2x^{3} + 3x^{2} + 4x + 2) +$$

$$+ (Dx + E) \cdot (x^{3} + 5x^{2} + 7x + 3)$$

a po roznásobení dostáváme:

$$3x^{3} + x^{2} - 4x + 16 = A(x^{4} + 4x^{3} + 5x^{2} + 8x + 6) +$$

$$+ B(x^{3} + 3x^{2} + 2x + 6) +$$

$$+ C(x^{4} + 2x^{3} + 3x^{2} + 4x + 2) +$$

$$+ D(x^{4} + 5x^{3} + 7x^{2} + 3x) +$$

$$+ E(x^{3} + 5x^{2} + 7x + 3)$$

Vytkneme mocniny:

$$3x^{3} + x^{2} - 4x + 16 = x^{4}(A + C + D) +$$

$$+ x^{3}(4A + B + 2C + 5D + E) +$$

$$+ x^{2}(5A + 3B + 3C + 7D + 5E) +$$

$$+ x^{1}(8A + 2B + 4C + 3D + 7E) +$$

$$+ x^{0}(6A + 6B + 2C + 3E)$$

a dle této rovnice sestavíme soustavu rovnic pro výpočet koeficientů A, B, C, D a E:

$$0 = A + C + D$$

$$3 = 4A + B + 2C + 5D + E$$

$$1 = 5A + 3B + 3C + 7D + 5E$$

$$-4 = 8A + 2B + 4C + 3D + 7E$$

$$16 = 6A + 6B + 2C + 3E$$

Vyřešením soustavy rovnic dostáváme A=1, B=3, C=-1, D=0, E=-2.Výsledkem rozkladu je:

$$f(x) = \frac{1}{x+1} + \frac{3}{(x+1)^2} - \frac{1}{x+3} - \frac{2}{x^2+2}$$

2. úkol

Zadání

Najděte asymptoty grafu funkce

$$f(x) = x^{2} \left(\frac{\pi}{4} - arctg \left(\frac{x^{2}}{x^{2} - 1} \right) \right)$$

Rozbor příkladu

Máme najít asymptoty grafu funkce. To znamená najít svislé asymptoty, šikmé asymptoty i vodorovné asymptoty.

Svislou asymptotou rozumíme přímku ve tvaru x=a, jestliže

$$\lim_{x \to a^{-}} f(x) = \pm \infty \bigvee \lim_{x \to a^{+}} f(x) = \pm \infty$$

Vodorovnou asymptotou rozumíme přímku ve tvatu y = a, jestliže

$$\lim_{x \to +\infty} f(x) = c \bigvee \lim_{x \to -\infty} f(x) = c$$

Šikmmou asymptotou rozumíme přímku, ve tvaru $y=ax+b; a\neq 0$. Ta existuje v případě, že

$$\lim_{x \to \pm \infty} f(x) = c; c \neq 0$$

Tyto limity je třeba najít a ověřit.

Řešení

Svislé asymptoty

Limita ze součinu dvou závorek je rovna $\pm \infty$, pokud jedna z techto závorek je rovna $\pm \infty$. Výraz x^2 je primitiní funkcí, která má nevlastní limitu pouze v $\pm \infty$ Výraz $\frac{\pi}{4} - arctg\left(\frac{x^2}{x^2-1}\right)$ má obor hodnot $\left(-\frac{\pi}{2}; +\frac{3\pi}{4}\right)$ Funkce tedy nemá svislou asymptotu.

Vodorovné asymptoty

$$\lim_{x \to -\infty} \underbrace{x^2}_{\to +\infty} \left(\frac{\pi}{4} - \underbrace{arctg\left(\frac{x^2}{x^2 - 1}\right)}_{\to \pi/4} \right) = \infty \cdot 0$$

$$\lim_{x \to -\infty} \underbrace{x^2}_{\to +\infty} \left(\frac{\pi}{4} - \underbrace{arctg\left(\frac{x^2}{x^2 - 1}\right)}_{\to \pi/4} \right) = \infty \cdot 0$$

Zjistíme, zda funkce je sudá.

$$x^{2}\left(\frac{\pi}{4} - arctg\left(\frac{x^{2}}{x^{2} - 1}\right)\right) = (-x)^{2}\left(\frac{\pi}{4} - arctg\left(\frac{(-x)^{2}}{(-x)^{2} - 1}\right)\right)$$

Což platí. Funkce má tedy nanejvýše jednu vodorovnou asymptotu. Pro výpočet limity použijeme L'Hospitalovo pravidlo.

$$\lim_{x \to \pm \infty} x^2 \left(\frac{\pi}{4} - arctg\left(\frac{x^2}{x^2 - 1}\right) \right) = \lim_{x \to \infty} \frac{\frac{\pi}{4} - arctg\left(\frac{x^2}{x^2 - 1}\right)}{x^{-2}} =$$

$$= \lim_{x \to \pm \infty} \frac{\frac{1}{1 + \left(\frac{x^2}{x^2 - 1}\right)^2} \cdot \frac{2x(x^2 - 1) - 2x \cdot x^2}{(x^2 - 1)^2}}{-2x^{-3}} = \lim_{x \to \pm \infty} \frac{1}{1 + \left(\frac{x^2}{x^2 - 1}\right)^2} \cdot \frac{2x(x^2 - 1) - 2x \cdot x^2}{(x^2 - 1)^2} \cdot \left(-\frac{1}{2}\right) \cdot x^3$$

$$= \lim_{x \to \pm \infty} \frac{-x^4 + 2x^2 - 1}{2x^4 - 2x^2 + 1} \cdot \frac{x^4}{x^4 - 2x^2 + 1} = \lim_{x \to \pm \infty} \frac{x^8 \cdot (-1 + \underbrace{\cdots})}{x^8 \cdot (2 + \underbrace{\cdots})} = -\frac{1}{2}$$

Funkce má tedy jedinou vodorovnou asymtotu s rovnicí

$$y = -\frac{1}{2}$$

Šikmé asymptoty

Jelikož $\lim_{x\to\pm\infty} f(x) = c$, tak potom $\lim_{x\to\pm\infty} \frac{f(x)}{x} = 0$ Šikmá asymptota neexistuje.

3. úkol

Zadání

Na grafu funkce $f(x) = x^2 - x$ najděte bod, který má nejkratší vzdálenost od bodu A = [0, 1]. Řešte jako úlohu na extrém.

3. úkol

Řešení

4. úkol

4. Načrtněte graf funkce f, pro kterou platí: $D_f = \mathbb{R}-1$, pro x=1 má nespojitost 2.druhu,

$$f(0) = f(-1) = 0, \qquad \lim_{x \to 1^+} f(x) = 2 \quad \lim_{x \to -\infty} f(x) = 2$$
$$f'(0) = -2, \qquad \lim_{x \to -1^-} f'(x) = -\infty \qquad \lim_{x \to -1^+} f'(x) = \infty \qquad \lim_{x \to 1^+} f'(x) = -2$$

f''(x) > 0 pro $x \in (0,1)$ a $x \in (1,\infty)$, f''(x) < 0 pro $x \in (-\infty,-1)$ a $x \in (-1,0)$, přímka y = 2 - x je asymptota pro $x \to \infty$.

Do obrázku nakreslete i asymptoty a tečn
z resp. polotečny ke grafu funkce v bodech x=0, x=1 a
 x=-1.

5. úkol

Zadanie

Najděte největší a nejmenší hodnotu funkce $f(x) = \sqrt[3]{(x+1)^2} - \sqrt[3]{(x-1)^2}$ na intervale < -2, 2 >.

Výpočet

$$f'(x) = \left(\frac{2}{3} * \frac{1}{\sqrt[3]{(x+1)}}\right) * 1\left(\frac{2}{3} * \frac{1}{\sqrt[3]{(x-1)}}\right) * 1$$

Upravíme na vhodný tvar a nájdeme stacionárne body

$$f'(x) = \frac{2 * (\sqrt[3]{(x-1)} - \sqrt[3]{(x+1)})}{3 * \sqrt[3]{(x+1)} * \sqrt[3]{(x-1)}}$$

Body $x = 1 \land x = 1$ su stacionarne body.

Zistíme kedy sa derivácia rovná 0.

$$2*(\sqrt[3]{(x-1)} - \sqrt[3]{(x+1)}) = 0$$

Upravíme podľa vzorca a^2-b^2

$$\left(\sqrt[6]{(x-1)} - \sqrt[6]{(x+1)}\right) * \left(\sqrt[6]{(x-1)} + \sqrt[6]{(x+1)}\right) = 0$$
$$x - 1 = x + 1 \Rightarrow -1 \neq 1$$

$$x - 1 = -x - 1 \Rightarrow 2x = 0$$

K stacionárnym bodom pridáme ešte hraničné hodnoty
<-2,2>. Dostaneme body-2,-1,0,1,2. Tieto body dosadíme do základnej funkcie.

$$f(-2) = 1 - \sqrt[3]{9}$$
 $f(-1) = -\sqrt[3]{4}$ $f(0) = 0$
 $f(1) = \sqrt[3]{4}$ $f(2) = \sqrt[3]{9} - 1$

Maximum na intevale < -2, 2 > je v bode x = 1 Minimum je v bode x = -1