Project Report

Data Scientist Job Prediction

Gajam Anurag

Problem Statement: The dataset contains information about people's jobs such as them demographic information etc. and the target variable is to predict whether the person is looking for a job change or not, the dataset is imbalanced.

Data Description:

There are 14,368 rows in the training set and 4790 rows in the testing set. The columns in the dataset are as follows

1. index:

Unique ID for candidate

2. city:

City code

3. city development index:

Development index of the city (scaled)

4. gender:

Gender of candidate

5. relevent experience:

Relevant experience of candidate

6. enrolled_university:

Type of University course enrolled if any

7. education level:

Education level of candidate

8. major discipline:

Education major discipline of candidate

9. experience:

Candidate total experience in years

10. company_size:

No of employees in current employer's company

11. company type:

Type of current employer

12. last*new*job:

Difference in years between previous job and current job

13. training hours:

training hours completed

14. target:

0 – Not looking for job change, 1 – Looking for a job change

Data Analysis and Visualization:

Training Data:

Categorical features: city, gender, relevant experience, enrolled university, education level, major discipline, experience, company size, company type, lastnewjob

Continuous features: city development index, training hours

The data set has missing values and below can see column wise NaN values

[7]	df.isna().sum()		
	index	0	
	city	0	
	city_development_index	0	
	gender	3393	
	relevent_experience	0	
	enrolled_university	292	
	education_level	338	
	major_discipline	2089	
	experience	45	
	company_size	4430	
	company_type	4598	
	last_new_job	327	
	training_hours	0	
	target	0	
	dtype: int64		

Types of Data in Data Set:

Nominal Data: City, Gender, Enrolled_university, Major_discipline, Company_type, Target, Index

Ordinal Data: Education_level, Relevent_experience

Interval Data: City_development_index, Last_new_job

Ratio Data: Company_size, Experience, Training_hours

Basic information of continuous data in the DataFrame:

[49] df.describe()

	index	<pre>city_development_index</pre>	training_hours	target
count	14368.000000	14368.000000	14368.000000	14368.000000
mean	9634.231765	0.828252	65.396645	0.247982
std	5522.764568	0.123419	60.277583	0.431856
min	0.000000	0.448000	1.000000	0.000000
25%	4840.750000	0.738000	23.000000	0.000000
50%	9693.500000	0.899000	47.000000	0.000000
75%	14405.250000	0.920000	88.000000	0.000000
max	19157.000000	0.949000	336.000000	1.000000

Unique Values in the categorical features:

```
[6] cols = ['gender', 'relevent_experience', 'enrolled_university', 'education_level', 'major_discipline', 'company_type', 'experience', 'company_size', 'last_new_job']
for col in cols:
    print(col,'-',df[col].unique(),end = '\n\n')

gender - ['Male' nan 'Female' 'Other']
relevent_experience - ['Has relevent experience' 'No relevent experience']
enrolled_university - ['no_enrollment' nan 'Full time course' 'Part time course']
education_level - ['Masters' 'High School' 'Graduate' 'Phd' nan 'Primary School']

major_discipline - ['STEM' nan 'No Major' 'Other' 'Arts' 'Humanities' 'Business Degree']

company_type - ['NGO' nan 'Pvt Ltd' 'Public Sector' 'Early Stage Startup'
    "Funded Startup' 'Other']
experience - ['4' '3' '9' '14' '1' '17' '>20' '12' '11' '13' '20' '7' '6' '15' '8' '19'
    '2' '10' '5' '16' '<1' '18' nan]

company_size - ['100-500' nan '50-99' '5000-9999' '10000+' '500-999' '<10' '10/49'
    '1000-4999']

last_new_job - ['1' '4' '2' '>4' 'never' '3' nan]
```

Data Visualization:

Relation between continuous features and target column:

Here I have visualized the continuous data (city_delelopment_index, training_hours) with respect to target variable with the help of seaborn plot called displot and below are the plots

Relation between categorical features and target column:

For categorical data I have used pd.crosstab with respect to target variables and below are few crosstab that are shown:

target	0.0	1.0			
major_discipline			target	0.0	1.0
Arts	155	40	education_level		
Business Degree	162	64	Graduate	6271	2408
Humanities	385	108	High School	1204	301
No Major	128	44	Masters	2606	705
Other	201	67	Phd	261	49
STEM	8093	2832	Primary School	196	29

Distribution of features:

I have also visualized the distribution of individual column with the help of seaborn plot called displot. Few plots are shown below:

Finding correlation between continuous features and plotting heatmap:

[51]	df.corr()				
		index	city_development_index	training_hours	target
	index	1.000000	0.001561	0.006070	0.005439
	city_development_index	0.001561	1.000000	0.002239	-0.345985
	training_hours	0.006070	0.002239	1.000000	-0.021143
	target	0.005439	-0.345985	-0.021143	1.000000

Data Pre-processing:

Dealing with missing values:

I have made few corrections to **experience**, **last_new_job**, **company_size** columns by replacing it with suitable number value and imputing 0 for missing values.

```
df4.experience.replace('>20',25,inplace=True)
df4.experience.replace('<1',0,inplace=True)</pre>
df4.experience.fillna(0,inplace=True)
df4.experience = df4.experience.astype('int')
df4.last new job.fillna(0,inplace=True)
df4.last_new_job.replace('>4',5,inplace=True)
df4.last_new_job.replace('never',0,inplace=True)
df4.last new job = df4.last new job.astype('int')
## company size
df4.company size.replace('10/49','10-49',inplace=True)
df4.company_size.replace('10-49',30,inplace=True)
df4.company size.replace('<10',5,inplace=True)
df4.company size.replace('50-99',75,inplace=True)
df4.company_size.replace('100-500',250,inplace=True)
df4.company_size.replace('500-999',750,inplace=True)
df4.company size.replace('1000-4999',3000,inplace=True)
df4.company size.replace('5000-9999',7000,inplace=True)
df4.company size.replace('10000+',10000,inplace=True)
df4.company size.fillna(0,inplace=True)
df4.company size = df4.company size.astype('int')
```

For remaining all other categorical features, I have imputed **Unknown** value for missing values:

```
df4.fillna('Unknown',inplace=True)
```

For **Education_Level** and **relevant_experience** column I have replaced values with number based on ranking.

```
cat = {"Phd":5, "Masters":4,"Graduate":3,"High School":2,"Primary School":1,"Unknown":0}
df4.education_level.replace(cat,inplace=True)
df4.education_level = df4.education_level.astype('int')

re = {"Has relevent experience":1,"No relevent experience":0}
df4.relevent_experience.replace(re,inplace=True)
df4.relevent_experience = df4.relevent_experience.astype("int")
```

Performed t-test among the continuous features:

```
[23] ## Performing ttest on continuous features
    data1 = df[df.target == 1]
    data0 = df[df.target == 0]

print(ttest_ind(data1['training_hours'],data1['city_development_index']))

print(ttest_ind(data0['training_hours'],data0['city_development_index']))

Ttest_indResult(statistic=65.12128727167367, pvalue=0.0)
Ttest_indResult(statistic=110.80067187547533, pvalue=0.0)
```

Performed chi-square test among the categorical features with respect to target.

Below are few results of the chi square test:

```
for i in cols:
  crosstable = pd.crosstab(df[i],df['target'])
  chival, pval, d, exp = chi2 contingency(crosstable)
  print(crosstable)
  print(chival, pval, d, exp,'\n')
target
        0.0 1.0
gender
Female 684
            230
Male
       7644 2270
Other
       107
              40
3.8041120924187073 0.14926141515114838 2 [ 702.46833713 211.53166287]
 [7619.55261959 2294.44738041]
 target
                        0.0 1.0
relevent experience
Has relevent experience 8169 2216
No relevent experience
                      2636 1347
239.77850199755187 4.395437074135855e-54 1 [[7809.7108157 2575.2891843]
[2995.2891843 987.7108157]]
target
                    0.0 1.0
enrolled university
Full time course
                   1739 1071
Part time course
                   670 230
no enrollment
                   8195 2171
351.16473842350234 5.566034986241858e-77 2 [[2116.88263711 693.11736289]
 [ 678.00511509 221.99488491]
 [7809.1122478 2556.8877522 ]]
```

Testing Null Hypothesis with Chi square Test:

```
{'city': 'accepted',
  'company_size': 'accepted',
  'company_type': 'accepted',
  'education_level': 'accepted',
  'enrolled_university': 'accepted',
  'experience': 'accepted',
  'gender': 'accepted',
  'last_new_job': 'accepted',
  'major_discipline': 'accepted',
  'relevent_experience': 'accepted'}
```

In the above chi square test(question12) between categorial variables and target varaible, w ith the help of chi2_contigency function, we get the pval and upon observing the critical value of the alpha value which is 0.05 with the degree of freedom in the chi square distribution t able, every categorical feature is accepting the Null hypothesis which means there is no asso ciation with the feature and target varaible.

But from the question 5, with the distribution of data of every feature including categorical and continuous features, city column can be removed as it as same distribution of city_devel opment_index and for the model, I have considered all the columns as it is clearly visible that there is some association with target features. And from the heatmap we can see there is some correlation between target and city_development_index.

Dealing with Imbalance Data:

I have tried balancing the data with Smote, RandomUnderSampler and RandomOverSampler and out of those 3 RandomUnderSampler outperformed with better accuracy but minor difference in between them.

```
df4.drop('city',axis=1,inplace=True)

### deal with inbalance data

from imblearn.over_sampling import SMOTE, RandomOverSampler
from imblearn.under_sampling import RandomUnderSampler, NearMiss
smt = SMOTE(random_state=47)
oversample = RandomOverSampler()
undersample = RandomUnderSampler()
undersample = RandomUnderSampler()
nmiss = NearMiss(version=2, n_neighbors=5)
X1 = df4.drop('target',axis=1)
Y1 = df4['target']
print(X1.shape,Y1.shape)
X1,Y1=undersample.fit_resample(X1,Y1)
print(X1.shape,Y1.shape)
```

Training the Model:

Trained the data with 5 different classification algorithms as mentioned below.

1. logisticRegression

classitication	_report:			
]	precision	recall	f1-score	support
0.0	0.72	0.72	0.72	8652
1.0	0.72	0.72	0.72	8636
accuracy			0.72	17288
macro avg	0.72	0.72	0.72	17288
weighted avg	0.72	0.72	0.72	17288
confusion_matr [[6258 2394] [2387 6249]]	rix:			
f1_score: 0.7	233057468603	507		
classification	report:			
	precision	recall	f1-score	support
0.0	0.72	0.73	0.72	2118
1.0	0.74	0.72	0.73	2204
accuracy			0.73	4322
macro avg	0.73	0.73	0.73	4322
weighted avg	0.73	0.73	0.73	4322
confusion_matr [[1548 570] [612 1592]]	·ix:			
f1 score: 0.7	292716445258	818		

2. SVM

	precision	recall	f1-score	support	
0.0	0.70	0.77	0.74	7876	
1.0	0.79	0.73	0.76	9412	
accuracy			0.75	17288	
macro avg	0.75	0.75		17288	
weighted avg	0.75	0.75	0.75	17288	
werblicea avb	0.73	0.75	0.73	17200	
0.75984709988	3663				
	precision	recall	f1-score	support	
0.0	0.68	0.76	0.72	1938	
1.0	0.79	0.71	0.75	2384	
accuracy			0.74	4322	
macro avg	0.74	0.74	0.73	4322	
weighted avg	0.74	0.74	0.74	4322	

0.7485714285714286

3. DecisionTreeclassifier:

	precision	recall	f1-score	support
0.0 1.0	1.00 1.00	1.00 1.00	1.00 1.00	8632 8656
accuracy macro avg weighted avg	1.00 1.00	1.00	1.00 1.00 1.00	17288 17288 17288

0.9993066789923735

		precision	recall	f1-score	support
(0.0	0.78	0.94	0.85	1792
-	1.0	0.95	0.81	0.88	2530
accura	асу			0.86	4322
macro a	avg	0.86	0.88	0.86	4322
weighted a	avg	0.88	0.86	0.87	4322

0.875080076873799

4. RandomForestClassifier:

	V-I -	,	,		
	precision	recall	f1-score	support	
0.0	1.00	1.00	1.00	8625	
1.0	1.00	1.00	1.00	8663	
accuracy			1.00	17288	
macro avg	1.00	1.00	1.00	17288	
weighted avg	1.00	1.00	1.00	17288	
0.99924929260	026448				
	precision	recall	f1-score	support	
0.0	0.88	0.94	0.91	2029	
1.0	0.94	0.88	0.91	2293	
accuracy			0.91	4322	
macro avg	0.91	0.91	0.91	4322	
weighted avg	0.91	0.91	0.91	4322	

0.9122412241224124

5. LinearRegression

₽		precision	recall	f1-score	support
	0	0.73	0.72	0.72	8877
	1	0.71	0.72	0.71	8411
	accuracy			0.72	17288
	macro avg	0.72	0.72	0.72	17288
١	weighted avg		0.72	0.72	17288
(0.7149236192	714453			
		precision	recall	f1-score	support
	0	0.73	0.71	0.72	2209
	1	0.71	0.73	0.72	2113
	accuracy			0.72	4322
	macro avg	0.72	0.72	0.72	4322
١	weighted avg		0.72	0.72	4322
,	2 7190602156	10470			

0.718960315618473

Among those algorithms, **RandomForest** performed better with high accuracy, followed by DecisionTree, SVM, logistic and Linear Regression. The Submitted Kaggle submission file is from trained RandomForest Algorithm.

Training the Model without using sklearn:

Written a code for **logistic regression** by using sigmoid function and used weights and bias to the data. Without sklearn, the model got accuracy of 62% on test data.

Splitting the data:

Model Training:

```
def sigmoid(x):
  return 1/(1+np.exp(-x))
def fit(x, y,learning_rate,iterations,para):
    size = x.shape[0]
    weight = para["weight"]
    bias = para["bias"]
    for i in range(iterations):
      sigma = sigmoid(np.dot(x, weight) + bias)
      loss = -1/\text{size} * \text{np.sum}(y * \text{np.log}(\text{sigma})) + (1 - y) * \text{np.log}(1-\text{sigma})
      dW = 1/size * np.dot(x.T, (sigma - y))
      db = 1/size * np.sum(sigma - y)
      weight -= learning_rate * dW
      bias -= learning_rate * db
    para["weight"] = weight
    para["bias"] = bias
    print(para)
    return para
para = \{\}
para["weight"] = np.zeros(x_train.shape[1])
para["bias"] = 0
def train(x, y, learning_rate,iterations):
  params = fit(x, y, learning_rate, iterations ,para)
params = train(x_train, y_train, learning_rate = 0.02, iterations = 500)
```

Results:

```
[ ] y_pred = np.dot(x_test, params["weight"])+params["bias"]
    y_pred = sigmoid(y_pred)

for i in range(len(y_pred)):
    if y_pred[i] >= 0.5:
        y_pred[i] = 1
    else:
        y_pred[i] = 0

f1_score(y_pred,y_test)
```

0.6219361228026737

Conclusion:

On performing the required data pre-processing operations on the given imbalanced data set, we see Random Forest out performed with better accuracy on test data with 91%. And with oversampling the imbalanced data Random Forest produced better results than under sampling by using inbuilt imblearn package and smote also gave better results but not as good as imblearn functions. Of the available models I conclude that Random Forest is the best model for given dataset to predict data scientist Job.