Módulo 4: Introducción a programación No Lineal y Análisis Convexo

Departamento MACC Matemáticas Aplicadas y Ciencias de la Computación Universidad del Rosario

Primer Semestre de 2021

Agenda

Funciones convexas

2 Minimización de funciones convexas

Convergencia

Conjuntos convexos

- $\Omega \subset \mathbb{R}^n$
- Ω es un conjunto convexo si

$$\lambda x_1 + (1 - \lambda)x_2 \in \Omega$$
,

$$\forall x_1, x_2 \in \Omega \text{ y } \lambda \in (0,1)$$

Funciones convexas

• $f: \Omega \to \mathbb{R}$ es una función convexa si

$$f(\lambda x + (1 - \lambda)\hat{x}) \leq \lambda f(x) + (1 - \lambda)f(\hat{x}),$$

 $\forall x, \hat{x} \in \Omega, \lambda \in (0,1)$, Ω un conjunto convexo

- Estrictamente convexa: <
- Una función $f:\Omega\to\mathbb{R}$ es cóncava si f=-g es convexa.
- Si f es convexa, entonces es continua en el interior de Ω , es decir, la continuidad en el interior de Ω es una condición necesaria para la convexidad.

Funciones convexas (cont.)

• Si $f \in \mathcal{C}^1$, entonces $f:\Omega \to \mathbb{R}$ es una función convexa si y solo si

$$f(x) \ge f(\hat{x}) + \nabla f(\hat{x})'(x - \hat{x})$$

para $x, \hat{x} \in \Omega$

Ejemplos:

- f(x) = 3x + 4
- $f(x) = x^2 2x$

Funciones convexas (cont.)

- Si $f \in \mathcal{C}^2$, f es convexa (estrictamente) en Ω si y solo si H(x) es semidefinida positiva (definida) $\forall x \in \Omega$
- Si $f \in \mathcal{C}^2$, f es cóncava (estrictamente) en Ω si y solo si H(x) es semidefinida negativa (definida) $\forall x \in \Omega$
- Todo mínimo local de f en Ω (convexo) es un mínimo global

Ejemplos:

•
$$f(x_1, x_2) = 2x_1^2 + x_2^2 - 2x_1x_2$$

Funciones cuasi-convexas

- $máx\{f(x),g(x)\}$ es convexa
- $f: \Omega \to \mathbb{R}$ es una función *cuasi-convexa* si

$$f(\lambda x + (1 - \lambda)\hat{x}) \le \max\{f(x), f(\hat{x})\},$$

$$\forall x, \hat{x} \in \Omega, \lambda \in (0,1)$$

Toda función convexa es cuasi-convexa

Funciones cuasi-convexas (cont.)

Teorema

Sea $f : \mathbb{R} \to \mathbb{R}$ una función estrictamente cuasi-convexa en [a,b], y sea $\lambda, \mu \in [a,b]$, con $\lambda < \mu$. Entonces,

- $Si\ f(\mu) < f(\lambda) \Rightarrow f(\mu) \le f(z), \ \forall z \in [a, \lambda)$
- Si $f(\lambda) < f(\mu) \Rightarrow f(\lambda) \le f(z), \ \forall z \in (\mu, b]$

Agenda

Funciones convexas

Minimización de funciones convexas

Convergencia

funciones convexas

Teorema

Sea f una función convexa definida en un conjunto Ω convexo. El conjunto S donde f alcanza es mínimo también es convexo, y el mínimo local es también el mínimo global.

Teorema

Sea $f \in \mathcal{C}^1$ convexa en el conjunto Ω convexo. Si existe un punto $\hat{x} \in \Omega, x \in \Omega, (x - x^*)' \nabla f(x^*) \geq 0$, entonces x^* es un mínimo global sobre Ω .

Teorema

Sea f una función convexa definida en un conjunto Ω acotado y cerrado. Si f tiene un máximo sobre Ω este es un punto extremo de Ω .

Agenda

Funciones convexas

- 2 Minimización de funciones convexas
- 3 Convergencia

Algoritmos iterativos

Puntos sucesivos

$$x_{k+1} = A(x_k)$$

- La transformación de x_k en x_{k+1} constituye una iteración del algoritmo
- Correspondencia algorítmica
- Una correspondencia $A:\Omega\to\Omega$ converge sobre $Y\subseteq\Omega$, comenzando con $x_0\in Y$, cuando el limite de la secuencia generada por el algoritmo pertenece al conjunto solución S.

Correspondencia cerrada

• $\Omega \in \mathbb{R}^n$ y $Y \in \mathbb{R}^m$, $A : X \to Y$ es cerrado para $x \in \Omega$ si para cualquie secuencia $\{x_k\}$ y $\{y_k\}$,

$$x_k \in \Omega, \qquad x_k \to x$$
 $y_k \in A(x), \qquad y_k \to y$

tenemos que $y \in A(x)$.

Convergencia

Teorema

Sea Ω un conjunto cerrado en \mathbb{R}^n , y un conjunto solucuion $S \subseteq \Omega$. $A : \Omega \to \Omega$ una correspondencia punto a conjunto. Dado $x \in \Omega$, la secuencia $\{x_k\}$ se genera así: $Si \ x_k \in S$ se detiene; de otra forma, $x_{k+1} \in A(x_k)$, reemplace k por k+1 y repita.