10/562101 JC10 Rec'd PCT/PTO 22 DEC 2005

Amendments to the Claims

- 1. (CURRENTLY AMENDED) Arrangement on a semiconductor chip for calibrating a temperature setting curve having
- a signal generation unit (2)-for providing a first signal (I_{ptat17} , V_{ptat17} , which is proportional to the actual temperature T_+ -of the chip, whereby a signal offset (I_{virt} , V_{virt} , f_{virt})-is creatable by the signal generation unit (2), which is combined with the first signal (I_{ptat17} , I_{ptat1} , I_{ptat1} , I_{ptat2});
 - a signal extraction unit (3)-receiving the first signal (I_{ptan5} , v_{ptatJ5}) for calculating a first temperature point (T_1)-based on the first signal (I_{ptatJ5} , v_{ptatJ5} , v_{pt
- 2. (CURRENTLY AMENDED) Arrangement as claimed in claim 1, whereby the first signal- $(I_{ptatl}, V_{ptatl}, f_{ptan})$, which is proportional to the actual temperature (T_+) -of the chip, is a current- (I_{ptan}) , a voltage (V_{ptatl}) -or a frequency- (f_{ptatl}) .
- 3. (CURRENTLY AMENDED) Arrangement as claimed in claim 1, whereby the first signal $(I_{ptatl}, v_{ptatl}, f_{ptatl})$ and the second signal $(I_{ptatl}, v_{ptatl}, f_{ptatl})$ are convertible into digital signals, whereby the temperature extraction unit-(3) calculates the first and second temperature points (T_1, T_2) -for calibrating the temperature setting curve.
- 4. (CURRENTLY AMENDED) Method for calibrating a temperature setting curve of a temperature sensor arrangement on a semiconductor chip, the method comprising:
 - reading a first signal- $(I_{ptatl}, V_{ptatl}, 4_{ptatl})$, which is proportional to the actual temperature (T_1) -of the chip
- generating a signal offset $(I_{virt}, V_{virt}, f_{virt})$, which is combined with the first signal $(I_{ptatl}, V_{ptatl}, f_{ptatl})$ defining a second signal $(I_{ptatZ}, V_{ptatZ}, f_{ptatZ})$
- extracting a first actual temperature T_1 from the first signal $(I_{ptat1}, V_{plat1}, f_{ptat1})$ and a second temperature (T_z) from the second signal $(I_{plat2}, V_{ptat2}, f_{plat2})$
- 5. (CURRENTLY AMENDED) Method as claimed in claim 4, whereby the resulting temperatures (T_1, T_2) are used for providing calibration parameters to the

Appl. No. Unassigned; Filed: Concurrently Preliminary Amendment

chip.

- 6. (ORIGINAL) Method as claimed in claim 5, whereby calculating calibration parameters can be performed on-chip or off-chip.
- 7. (CURRENTLY AMENDED) Method as claimed in claim 4, whereby additional signal offsets (I_{virtZ} , V_{virtZ} , f_{virtz}) are provided for calculating more than two temperature points (T_n) and calibrating a non linear temperature setting curve.
- 8. (CURRENTLY AMENDED) Method as claimed in claim 4, whereby the signal offset $(I_{virt}, V_{virt}, f_{virt})$ is subtracted from first signal $(I_{ptat1}, V_{ptat2}, f_{ptat2})$ or added to the first signal $(I_{ptat2}, V_{ptat2}, f_{ptat2})$, which is provided to the temperature extraction unit (3).