(11) EP 0 810 410 A1

(12)

DEMANDE DE BREVET EUROPEEN

(43) Date de publication: 03.12.1997 Bulletin 1997/49 (51) Int Cl.6: F25B 49/04, F25B 17/08

(21) Numéro de dépôt: 97401162.9

(22) Date de dépôt: 27.05.1997

(84) Etats contractants désignés: AT BE CH DE DK ES FR GB GR IE IT LI LU NL PT SE

(30) Priorité: 30.05.1996 FR 9606682

(71) Demandeur: ELF AQUITAINE 92400 Courbevole (FR)

(72) Inventeurs:

EP 0 810 410 A1

 Prosdocimi, Jacques 66680 Canohes (FR) Spinner, Bernard 66200 Corneilla del Vercol (FR)

• Goetz, Vincent 66000 Perpignan (FR)

(74) Mandataire: Timoney, lan Charles Craig ELF AQUITAINE Departement Propriété Industrielle

> Tour Elf Cedex 45

92078 Paris La Défense (FR)

(54) Procédé de gestion d'une réaction thermochimique ou d'une adsorption solide-gaz

(57) Procédé de gestion d'une réaction thermochimique ou d'une adsorption solide-gaz, dont le siège est un dispositif comprenant un réacteur (10'), qui contient un solide susceptible de réagir avec un gaz, un ensemble_évaporateur/condenseur (14') pour le_gaz_et_des moyens (24) destinés à réchauffer le solide, le procédé comprenant les étapes qui consistent à :

mettre en communication l'ensemble évaporateur/

condenseur (14'), lorsque celui-ci est rempli de liquide, avec le réacteur (10'), afin de refroidir l'évaporateur,

 mettre en marche les moyens (24) destinés à réchauffer le solide, afin de refouler le gaz vers l'ensemble évaporateur/condenseur (14').

Selon l'invention, l'étape de mise en marche des moyens (24) destinés à réchauffer le solide débute avant que l'étape précédente ne soit terminée.

FIG.7

Description

5

10

15

25

30

40

45

55

La présente invention concerne un procédé de gestion d'une réaction thermochimique ou d'une adsorption solidegaz permettant la production de froid et/ou de la chaleur par réaction solide-gaz.

La réaction thermochimique, ou l'adsorption est fondée sur une réaction réversible entre un solide et un gaz du

La réaction est exothermique dans le sens 1, ce qui veut dire que dans ce sens elle produit de la chaleur, et elle est endothermique dans le sens 2. Dans le sens 1, elle produit du froid par évaporation du gaz (G); dans le sens 2, elle peut aussi produire du froid, si elle est menée dans une enceinte fermée.

. Un tel système permet le stockage d'énergie sous forme chimique et présente des domaines d'application variés. De plus, un tel système permet la production, à partir d'une source de chaleur à la température Ts, de chaleur à la température Tu telle que :

Dans ce cas, le système est appelé "pompe à chaleur chimique".

Un tel système permet également la production, à partir d'une source de chaleur à la température T's, de chaleur à la température T'u telle que :

T'u > T's

Dans ce cas, le système est appelé "thermo transformateur chimique"... Grâce à ce système, il est possible de produire de l'énergie frigorifique à partir d'une source de chaleur et de

produire simultanément, à partir d'une source de chaleur à la température T"s, de la chaleur à la température T"u(T"u < T"s) et de l'énergie frigorifique.

Suivant les cas, l'utilisation de la chaleur ou du froid produit est simultanée à la consommation d'énergie à haute température (Ts, T's, T"s) ou différée dans le temps (effet de stockage).

Du document EP-A-0.382.586, on connaît un dispositif pour la production de froid et/ou de chaleur par réaction solide-gaz, comportant deux réacteurs, formant chambre de réaction, contenant chacun un sel susceptible de réagir chimiquement avec un gaz, un condenseur et un évaporateur pour le gaz. Les éléments du dispositif sont disposés de façon à permettre au gaz de suivre un chemin d'un réacteur à l'autre en passant par le condenseur et l'évaporateur. A la fin de la réaction chimique, le réacteur pauvre en gaz se trouve à une température supérieure à celle du réacteur contenant le gaz venant de réagir avec le sel, les deux réacteurs se trouvant à des niveaux de pression différents. De la chaleur est envoyée par un système caloporteur, du réacteur se trouvant à la température supérieure au réacteur se trouvent à la température inférieur afin d'augmenter la température de ce dernier. La réaction chimique a ensuite lieu dans le sens inverse, une partie de la chaleur d'un réacteur servant comme source de chaleur de désorption du gaz de l'autre réacteur. Ce transfert de chaleur entre les deux réacteurs sert à améliorer l'efficacité du système.

Dans certaines applications, par exemple la fabrication de glaçons, un dispositif plus simple peut convenir. Ainsi, un dispositif simplifié peut comprendre un réacteur unique, muni d'un échangeur de chaleur permettant de régénérer le solide, ce réacteur pouvant être relié sélectivement à un ensemble évaporateur/condenseur disposé dans un réservoir d'eau. L'évaporation du liquide, lorsque le gaz réagit avec le sel ou s'adsorbe sur le solide dans le réacteur provoque la formation de glaçons. Lorsque le sel dans le réacteur est en phase de synthèse, ou que l'adsorbant s'enrichit en gaz, c'est-à-dire réagit exothermiquement, la chaleur produite est évacuée par l'échangeur de chaleur. La régénération du solide, par chauffage, en fin de réaction de décomposition ou de désorption, entraîne un réchauffement de l'ensemble évaporateur/condenseur par la condensation du gaz, ce qui a pour résultat de détacher les glaçons disposés sur l'extérieur de l'évaporateur.

Cependant, les moyens permettant d'évacuer la chaleur de réaction du sel, ou d'adsorption du gaz sur le solide

adsorbant, disposé dans le réacteur ont l'inconvénient d'encombrer le dispositif. De plus, le cycle complet de production de glaçons et de régénération du sel peut s'avérer très long.

La présente invention a donc pour objet un procédé de gestion d'une réaction thermochimique ou d'une adsorption solide-gaz, qui permet de réduire la durée de son cycle de fonctionnement, de réduire l'énergie nécessaire à la régénération du système, et qui permet également de réduire l'encombrement du dispositif, siège de la réaction.

5

10

15

20

25

30

35

40

50

55

Pour atteindre cet objet, l'invention propose un procédé de gestion d'une réaction thermochimique, ou d'une adsorption solide-gaz, dont le siège est un dispositif comprenant un réacteur, qui contient un solide susceptible de réagir ou de s'adsorber avec un gaz, un ensemble évaporateur/condenseur pour le gaz et des moyens destinés à réchauffer le solide, le procédé comprenant les étapes qui consistent à :

mettre en communication l'ensemble évaporateur/condenseur, lorsque celui-ci est rempli de liquide, avec le réacteur, afin de refroidir l'évaporateur,

 mettre en marche les moyens destinés à réchauffer le solide, afin de refouler le gaz vers l'ensemble évaporateur/ condenseur, et se caractérisant en ce que l'étape de mise en marche des moyens destinés à réchauffer le solide débute avant que l'étape précédente ne soit terminée.

De préférence, ce procédé comporte une étape préalable consistant à aménager le réacteur, avec son contenu, afin qu'il ait une masse thermique suffisante pour absorber la chaleur produite lors de la réaction exothermique.

Selon un mode de réalisation de l'invention, l'étape préalable consiste à aménager le réacteur, avec son contenu, afin que le produit de sa masse thermique par sa capacité thermique avec un gradient de température fixé soit supérieur à la chaleur libérée lors de la réaction entre le sel et le gaz.

Selon un autre mode de réalisation, l'étape préalable consiste à disposer autour du réacteur une chemise adaptée pour contenir un liquide destiné à s'évaporer au cours de la phase de synthèse de la réaction.

Selon un autre mode de réalisation, l'étape préalable consiste à disposer, en contact thermique avec le solide, un matériau à changement de phase.

D'autres caractéristiques et avantages de la présente invention apparaîtront plus clairement à la lecture de la description suivante, faite en référence aux dessins annexés sur lesquels :

- la figure 1 est une vue schématique d'un dispositif conventionnel pour produire du froid;
- les figures 2 à 6 représentent chacune un diagramme de Clapeyron illustrant les phases opératoires du dispositif de la figure 1 ;
- la figure 7 est une vue schématique d'un dispositif pour produire du froid permettant la mise en oeuvre du procédé
 de l'invention ;
- les figures 8 à 10 représentent chacune un diagramme de Clapeyron illustrant les phases d'une réaction chimique utilisée dans le dispositif de la figure 7; et
- les figures 11 à 13 représentent chacune un diagramme de Clapeyron illustrant les phases d'une adsorption utilisée dans le dispositif de la figure 7.

Sur la figure 1 est représenté un dispositif conventionnel pour produire du froid qui, dans l'exemple illustré, est destiné à produire des glaçons. Ce dispositif comprend une chambre de réaction, appelée réacteur 1, contenant un solide actif, par exemple un sel, destiné à réagir de manière réversible avec un gaz. Le réacteur 10 est muni d'un échangeur de chaleur 12, par exemple un échangeur tubulaire relié à un circuit caloporteur (non représenté). Le réacteur 10 est relié à un évaporateur 14 par un conduit 16 muni d'une vanne 18. L'évaporateur 14 est disposé dans un récipient 22 contenant de l'eau à transformer en glaçons. Le fonctionnement de ce dispositif de construction classique sera maintenant décrit en se référant aux diagrammes de Clapeyron des figures 2 à 6.

Le cycle de fonctionnement sera décrit à partir de la phase de stockage, phase représentée sur les figures 2.à 6 représentant ici un système à réaction chimique solide-gaz. Lors de cette phase, l'évaporateur 14, qui est rempli d'ammoniac liquide, et le réacteur 10 se trouvent à la température ambiante. La vanne 18 est fermée, le réacteur 10 se trouvant à basse pression tandis que l'évaporateur est à une pression supérieure.

Lors de la phase de production, représentée sur le diagramme de la figure 3, la vanne 18 est ouverte, mettant en communication le réacteur 10 et l'évaporateur 14. L'ammoniac liquide s'évapore et réagit avec le sel contenu dans le réacteur 10 provoquant, ainsi, une baisse de température de l'évaporateur 14. L'échangeur de chaleur 12 permet d'évacuer au moins une partie des calories produites lors de la réaction exothermique entre le sel et le gaz, permettant de maintenir le sel en conditions de synthèse. La production de froid à l'évaporateur 14, immergé dans de l'eau, entraîne la formation de glaçons sur, la surface externe de l'évaporateur.

Ensuite, le dispositif passe dans une phase transitoire, représentée sur la figure 4. Cette phase permet de régénérer le dispositif en refoulant le gaz du réacteur 10 vers l'évaporateur 14. Lors de cette phase le sel est chauffé au moyen de l'échangeur de chaleur 12 à sa température de régénération.

La suite de cette phase transitoire est représentée sur le diagramme de la figure 5 où le sel tend à se trouver dans les conditions de pression et de température de régénération. La vanne 18 est maintenue fermée pendant la durée de la phase transitoire.

La phase finale du cycle de fonctionnement est représentée sur la figure 6 et concerne la décomposition du sel. Pendant cette phase, la vanne 18 est ouverte permettant le passage du gaz du réacteur 10 vers l'évaporateur 14. L'évaporateur, recevant le gaz émanant du réacteur, joue le rôle d'un condenseur pour le gaz. La chaleur libérée au condenseur, pendant la condensation du gaz, augmente la température de l'extérieur du condenseur, ce qui a pour résultat de détacher les glaçons. Lorsque la régénération est terminée, la vanne 18 est refermée et le dispositif se trouve ainsi dans les conditions initiales de la phase de stockage du début du cycle de fonctionnement.

Ce type de dispositif présente deux inconvénients importants. D'abord, il nécessite la présence d'un échangeur de chaleur puissant, et, de plus, la durée du cycle de fonctionnement peut s'avérer longue. Or, il est souhaitable, lorsque le dispositif est destiné à produire des glaçons pour un usage domestique, d'avoir une production rapide. Sur la figure 7 est représenté un dispositif pour produire du froid qui permet la mise en oeuvre du procédé de gestion d'une réaction thermochimique ou d'une adsorption solide-gaz selon l'invention. Dans un exemple préféré, ce dispositif est destiné à produire des glaçons. Le dispositif de la figure 7 est comparable à celui de la figure 1 en ce qu'il comprend un réacteur 10', un évaporateur condenseur 14' et un conduit de transfert de gaz 16' muni d'une vanne 18'. En revanche, le dispositif de la figure 7 diffère de celui de la figure 1 en ce qu'il ne comporte pas d'échangeur de chaleur 12, qui avait pour fonction d'évacuer les calories produites lors de la réaction exothermique entre le sel et le gaz.

Afin de compenser cette absence d'échangeur 12, une des étapes du procédé selon l'invention consiste à aménager le réacteur 10' afin qu'il ait une masse thermique suffisante pour absorber la chaleur produite lors de la réaction exothermique. Plus précisément, le réacteur, avec son contenu, est dimensionné afin que le produit de sa masse thermique par sa capacité thermique parcourant une plage de température Δ t=(T équil- Tamb)soit supérieur à la chaleur de la réaction. Ceci est représenté par la formule suivante :

Δ Hr < M Cp Δ T

Néanmoins, le réacteur 10' est muni d'une résistance électrique 24 permettant de régénérer le sel.

Un autre aspect du procédé de gestion d'une réaction thermochimique selon l'invention sera maintenant décrit en référence aux diagrammes de Clapeyron des figures 8 à 10. Comme dans l'exemple précédent, le cycle de fonctionnement du dispositif sera décrit à partir de la phase de stockage, phase représentée sur la figure 8. Lors de cette phase, l'évaporateur 14, qui est rempli d'ammoniac liquide, et le réacteur 10' se trouvent à la température ambiante. La vanne 18' est fermée, le réacteur 10' se trouvant à basse pression tandis que l'évaporateur est à une pression supérieure.

Lors de la phase de production représentée sur le diagramme de la figure 9, la vanne 18' est ouverte mettant en communication le réacteur 10' et l'évaporateur 14'. Ensuite la pression dans le dispositif de la figure 1 se stabilise. L'évaporation de l'ammoniac produit du froid tandis que le sel est en phase de synthèse, la chaleur de la réaction exothermique n'est pas évacuée. La masse thermique du réacteur, avec son contenu, constitue l'équivalent d'un condensateur thermique qui absorbe l'énergie de la réaction, permettant ainsi de maintenir le sel en condition de synthèse pendant le temps nécessaire.

Ensuite, et selon une autre étape du procédé de l'invention représentée sur la figure 10, la résistance électrique est mise en route avant que le sel n'ait terminé sa réaction de synthèse, la vanne 18' restant ouverte. Lors de la mise en oeuvre des dispositifs classiques, tel que celui de la figure 1, le sel n'était chauffé qu'à partir du moment où la réaction de synthèse était terminée.

Selon l'invention, la phase transitoire, décrite en référence aux figures 4 et 5, est supprimée. Une part de l'énergie libérée lors de la synthèse du sel est utilisée à préchauffer le sel. La phase de régénération commence ensuite, puisque le condenseur constitué par l'évaporateur 14' se trouve à une température basse. Le sel atteint sa température de régénération plus rapidement grâce à la chaleur de la réaction de synthèse stockée dans le condensateur thermique qui est formé par la masse de réactif et du réacteur

L'arrêt de la fourniture d'énergie thermique sous forme d'effet Joule à partir de la résistance électrique est effectué avant la régénération totale du réactif : l'inertie du réacteur chaud, en cours de refroidissement, permet de poursuivre la désorption tant que l'écart à l'équilibre T régé - Teq décomp (figure 10) est > 0.

Sur les figures 11 à 13 est représenté le cycle de fonctionnement d'un dispositif pour produire du froid, analogue à celui décrit en référence aux figures 7 à 10 mais mettant en oeuvre un procédé de gestion d'une adsorption solidegaz selon l'invention. Les diagrammes de Clapeyron des figures 11 à 13 comportent des isostères du solide adsorbant lorsqu'il passe d'un état riche en gaz adsorbé à un état pauvre en gaz.

Comme dans l'exemple précédent, le cycle de fonctionnement du dispositif sera décrit à partir de la phase de stockage, phase représentée sur la figure 11. Lors de cette phase, l'évaporateur 14, qui est rempli de gaz liquefié, et

5

10

15

20

25

35

40

45

50

le réacteur 10' se trouvent à la température ambiante. La vanne 18' est fermée, le réacteur 10' se trouvant à basse pression tandis que l'évaporateur est à une pression supérieure.

Lors de la phase de production représentée sur le diagramme de la figure 12, la vanne 18' est ouverte mettant en communication le réacteur 10' et l'évaporateur 14'. Ensuite, la pression dans le dispositif de la figure 1 se stabilise. L'évaporation du gaz liquefié produit du froid tandis que l'adsorbant est en phase de synthèse, la chaleur de l'adsorption exothermique n'est pas évacuée. La masse thermique du réacteur, avec son contenu, constitue l'équivalent d'un condensateur thermique qui absorbe l'énergie de l'adsorption, permettant ainsi, de maintenir l'adsorbant en condition de synthèse pendant le temps nécessaire.

Ensuite, et selon une autre étape du procédé de l'invention représentée sur le diagramme de la figure 13, la résistance électrique est mise en route avant que l'adsorbent n'ait terminé son adsorption, la vanne 18' restant ouverte. Dans le premier exemple retenu, se trouve décrit un réacteur muni d'un échangeur à eau ouvert sur l'extérieur, eau qui s'évapore pendant la phase de synthèse. Ainsi, pour la régénération (par un échangeur différent, ici une vanne électrique), la masse thermique est réduite.

Un dispositif destiné à produire des glaçons comprend un réacteur 10' formé d'une virole entourée d'une chemise remplie d'un volume d'eau qui s'évapore au cours de la phase de synthèse de la réaction. Un évaporateur condenseur 14' en acier inoxydable d'une masse de 210 g muni d'ailettes en cuivre d'une masse de 60 g contient 43 g d'ammoniac liquide. Le dispositif est destiné à refroidir de l'eau de 20°C à - 35°C pour produire soit trois glaçons de 20 g chacun, soit, de préférence, trois fois 20 g de glaçons.

Le réacteur 10' a un volume interne de 0,55 l qui contient 185 g de liant constitué de graphite expansé comprimé dans lequel est dispersé 130 g de $NiCl_2$. L'avancement opérationnel est de $\Delta x = 0,6$. La masse du réacteur, qui est en acier inoxydable, est de 250 g. Une résistance électrique d'une masse de 100 g est disposée à l'intérieur du réacteur. La chemise du réacteur contient 48 g d'eau.

La capacité thermique de l'ensemble réacteur-réactif est de 291 J.K⁻¹. La chemise-échangeur contenant 48g d'eau portée de 30°C à 100°C consomme 14 kJ, l'évaporation de cette eau consommant 108 kJ. L'enthalpie de réaction de synthèse de NiCl₂ 2 en 6 NH₃ étant de 59 kJ/mole d'ammoniac, pour 130 g de NiCl₂ avec Δ X= 0,6, la chaleur dissipée est de 141 kJ. La réaction est donc terminée après cette évaporation des 48g d'eau à pression ambiante, les 141 kJ s'étant dissipés dans l'ensemble réacteur-réactif consommant 20 kJ (= 291x70) où 70 = Δ T de 30 à 100°C et dans la chemise-échangeur : 122 kJ. Après la mise en route de la phase de production, l'enclenchement de la résistance électrique s'effectue après 42 secondes pour permettre une régénération complète après 3 minutes et 10 secondes.

De manière alternative, au lieu de prévoir une chemise adaptée pour contenir de l'eau destinée à s'évaporer au cours de la phase de synthèse de la réaction, le réacteur peut être dimensionné afin qu'il ait une masse suffisante pour absorber la chaleur produite lors de la réaction exothermique.

Dans-une installation analogue à la précédente, comme la température du réactif passera de 30°C à 100°C, ΔT=70°C, 141 kJ sont à dissiper. Le réacteur, qui est le même que dans l'exemple précédent, a un Cp de 116 JK⁻¹. 116x70=8120 J sont donc à absorber. La masse de réacteur, qui est en acier inoxydable ayant un Cp=0,5 J/gk, doit être de 3,8 kg.

Selon un autre mode de réalisation, au lieu de prévoie une chemise adaptée pour contenir de l'eau, on peut disposer des capsules ou des nodules, contenant un matériau à changement de phase de capacité élevée, en contact thermique avec le solide réactif. Par exemple, on dispose, en contact thermique avec le solide réactif, des capsules ou des nodules contenant du naphthalène fondant à 78°C et consommant 149 J/g.

Le procédé de gestion selon l'invention présente de nombreux avantages. D'abord, la vanne 18' n'est actionnée que deux fois dans le cycle, pour son ouverture et sa fermeture, tandis que la vanne 18 du dispositif classique était actionnée à quatre reprises. De plus, la durée d'un cycle de fonctionnement est réduite, dans certains cas, jusqu'à la moitié. Ceci provient de la réduction des phases transitoires résultant du dimensionnement du réacteur afin qu'il forme un condensateur thermique.

Enfin, l'énergie nécessaire à la régénération est inférieure à celle utilisée dans le dispositif classique car une part de cette énergie est fournie par celle stockée dans le condensateur thermique.

Le procédé selon l'invention permet, par exemple, la production de glaçons ou le refroidissement d'un fluide.

Revendications

5

10

15

30

35

40

50

55

- 1. Procédé de gestion d'une réaction thermochimique ou d'une adsorption solide-gaz, dont le siège est un dispositif comprenant un réacteur, qui contient un solide susceptible de réagir ou de s'adsorber avec un gaz, un ensemble évaporateur/condenseur pour le gaz et des moyens destinés à réchauffer le solide, le procédé comprenant les étapes qui consistent à :
 - mettre en communication l'ensemble évaporateur/condenseur, lorsque celui-ci est rempli de liquide, avec le

réacteur, afin de refroidir l'évaporateur,

- mettre en marche les moyens destinés à réchauffer le solide, afin de refouler le gaz vers l'ensemble évaporateur/condenseur, et se caractérisant en ce que l'étape de mise en marche des moyens destinés à réchauffer le solide débute avant que l'étape précédente ne soit terminée et en ce que le procédé comporte une étape préalable consistant à aménager le réacteur, avec son contenu, afin qu'il ait une masse thermique suffisante pour absorber la chaleur produite lors de la réaction exothermique.
- 2. Procédé selon la revendication 1 caractérisé en ce que l'étape préalable consiste à aménager le réacteur, avec son contenu, afin que le produit de sa masse thermique par sa capacité thermique avec un gradient de température fixé soit supérieur à la chaleur libérée lors de la réaction entre le sel et le gaz.
 - 3. Procédé selon la revendication 1 caractérisé en ce que l'étape préalable consiste à disposer autour du réacteur une chemise adaptée pour contenir un liquide destiné à s'évaporer au cours de la phase de synthèse de la réaction.
- 4. Procédé selon la revendication 1 caractérisé en ce que l'étape préalable consiste à disposer, en contact thermique avec le solide, un matériau à changement de phase.

20

5

10

25

30

35

40

45

50

55

FIG.1

FIG.7

Tévap Tamb

-1/T

Trégé

FIG.8

FIG.13

RAPPORT DE RECHERCHE EUROPEENNE

Numero de la demando EP 97 40 1162

DO	CUMENTS CONSIDE					
Catégorie	Citation du document avec i des parties per			ndication cernée	CLASSEMENT DE LA DEMANDE (Int.CL6)	
A	EP 0 307 297 A (ELF * colonne 2, ligne 42; figure 1 *	AQUITAINE) 45 - colonne 5, lign	ie 1		F25B49/04 F25B17/08	
A	US 2 162 256 A (HER * page 1, colonne d page 2, colonne de figure 1 *	e gauche, ligne 52 -	52 -			
Α	US 2 208 716 A (AMU * page 1, colonne d page 3, colonne de figures 1-3 *	e droite, ligne 42 -	. 1			
A	GB 476 676 A (ANDRE * page 3, ligne 115 figures 1-4 *	WS) - page 5, ligne 91;	1			
A	WO 96 11368 A (ELEC APPLIANCES) * page 6, alinéa 6 figures 1-6 *	TROLUX LEISURE - page 13, alinéa 1;	1,	3	DOMAINES TECHNIQUES RECHERCHES (Int.Cl.6)	
Α	GB 398 467 A (FROTZ	.)	1,:	3	F25B	
A	figures 1-5 * GB 549 730 A (ERLAN * page 2, ligne 24 figures 1-3 * * page 7, ligne 3 - figures 7,8 *	<pre>- page 5, ligne 54; page 8, ligne 35;</pre>	1,			
A	US 4 759 191 A (THOMAS) * colonne 3, ligne 46 - colonne 7, lign 68; figure */		ne 1,	4		
Lep	résent rapport a été établi pour to	utes les revendications				
	Lieu de la recherche	Date d'achivement de la recherche		_	Examinateur	
	LA HAYE	8 septembre	1997	Boe	ets, A	
X: particulièrement pertinent à lui seul date de d Y: particulièrement pertinent en combinaison avec un autre document de la même catégorie l.: cité pour A: arrière-plan technologique			t de brevet an épôt ou après la demande d'autres rais	principe à la base de l'invention le brevet antérieur, mais publié à la oft ou après cette date a demande autres raisons la même famille, document correspondant		

EP 97 40 1162

Catégorie	CUMENTS CONSIDER Citation du document avec ind des parties pertin	ication, en cas de besoin,	Revend		CLASSEMENT DE LA DEMANDE (Int.CL6)
A	EP 0 527 466 A (ZEO- TECHNOLOGIE) * colonne 2, ligne 2: 57; figure *		e 1		
A	EP 0 695 920 A (LE C	ARBONE LORRAINE)			
A	FR 982 202 A (GLAFKI	DÈS)			
A	US 5 442 931 A (RYAN)			
					DOMAINES TECHNIQUES RECHERCHES (Int.Cl.6)
					,
		\$			
Le	présent rapport a été établi pour toutes les revendications				Examinateur
Ž Λ:	Lieu de la recherche	Date d'achèvement de la recherci		Des	
	particulièrement pertinent à lui seul E : docume particulièrement pertinent en combinaison avec un D : cité dar untre despurent de la même catégorie L : cité pou		ou principe à la nt de brevet an dépôt ou après is la demande r d'autres raiss	principe à la base de l'invention de brevet antérieur, mais publié à la pôt ou après cette date	

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.