Online Homework System

Assignment Worksheet 6/1/20 - 10:16:33 AM EDT

Name:	Class:	
Class #:	Section #:	
<pre>Instructor: Nathaniel Stevens</pre>	Assignment: Quiz 3	

Question 1: (1 point)

The randomization test is inappopriate for the comparison of 90th percentiles in two conditions.

(a) True (b) Halse

Question 2: (1 point)

Consider an experiment with two conditions (A vs. B) that gives rise to the following data:

Α	В
1	4
2	3

$$t = \sqrt{A} - \sqrt{B} = 1.5 - 3.5$$

And suppose interest lies in testing the following hypothesis:

$$H_0: \mu_A = \mu_B$$
 versus $H_A: \mu_A
eq \mu_B$

The 6 possible unique re-arrangements of the data are shown in the table below.

Α	В
{1,2}	{3,4}
{1,3}	{2,4}
{1,4}	{2,3}
{2,3}	{1,4}
{2,4}	{1,3}
{3,4}	{1,2}

$$\frac{\sqrt{4} - \sqrt{6}}{1.5 - 3.5} = -2 \cdot t_{1}^{6}$$

$$2 - 3 = -(\cdot \cdot t_{2}^{6})$$

$$2.5 - 2.5 = 0 \cdot t_{3}^{6}$$

$$2.5 - 2.5 \cdot 0 \cdot t_{4}^{6}$$

$$3 - 2 = 1 \cdot b_{5}^{6}$$

$$3.5 - 1.5 \cdot 2 \cdot t_{6}^{6}$$

Calculate the p-value associated with an exact permutation test of the hypothesis stated above. Round your answer to 4 decimals.

R p-value =
$$\frac{1}{6}\sum_{k=1}^{6}I(t_{k}^{*}=1-21)+I(t_{k}^{*}\leq-1-21)=\frac{2}{6}=\frac{1}{3}$$

Question 3: (1 point)

Interest lies in comparing average purchase size for 10 different mobile checkout experiences. To begin we test:

$$H_0: \mu_1 = \mu_2 = \; ... \; = \mu_{10} \; ext{versus} \; H_A: \mu_j
eq \mu_k \; ext{for} \; j
eq k$$

To do so we use the F-test of overall significance associated with an appropriately defined linear regression model. In the context of such a regression model, which of the null hypothesis statements is equivalent to the one above?

(a)
$$H_0: eta_0 = eta_1 = eta_2 = \; ... \; = eta_9$$

(b)
$$H_0: \beta_1 = \beta_2 = ... = \beta_9$$

(c)
$$H_0: \beta_1 = \beta_2 = \dots = \beta_{10}$$

(d)
$$H_0: eta_0 = eta_1 = eta_2 = \ ... \ = eta_{10}$$

Question 4: (2 points)

n=8×100 = 800

Interest lies in comparing average time-on-page for 8 different homepage designs. Suppose that n=100 is assigned to each condition and an F-test is used to test the following hypothesis:

$$H_0: \mu_1 = \mu_2 = \; ... \; = \mu_8 \; ext{versus} \; H_A: \mu_j
eq \mu_k \; ext{for} \; j
eq k$$

In the space below, state the number of *numerator* and *denominator* degrees of freedom associated with this test. Note that your answers must be integers.

Numerator df:

m-1 = 8-1 = 7

Denominator df: _____

N-m=800-8=792

Question 5: (1 point)

Consider the following hypothesis and suppose the appropriate F-test statistic t is calculated. In the context of this hypothesis, what values of t are considered "extreme" and would give us evidence against H_0 ?

$$H_0: \mu_1 = \mu_2 = \; ... \; = \mu_m \; ext{versus} \; H_A: \mu_j
eq \mu_k \; ext{for} \; j
eq k$$

- (a) (a) Large positive values
- (b) (b) Large negative values
- (c) (c) Small positive values
- (d) (d) Both (a) and (b)
- (e) (e) Both (a) and (c)

Question 6: (3 points)

Suppose we conduct an experiment with a single design factor at 3 levels (and hence three conditions). We analyze the results with the following linear regression model:

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \epsilon_i$$

where:

- $x_{i1} = 1$ if unit i is in condition 1, and 0 otherwise.
- $x_{i2}=1$ if unit i is in condition 2, and 0 otherwise.

With the observed data we estimate the regression coefficients as $\hat{eta_0}=$ 3.1, $\hat{eta_1}=$ 1.8, and $\hat{eta_2}=$ -0.6.

Using these values, estimate the expected response in each of the three conditions. Be sure to round your answers to 1 decimal place.

mal place.
•
$$\hat{\mu}_1 = 3.1 + 1.8 = 4.9$$

•
$$\hat{\mu}_{2}^{1} = \frac{1}{\beta_{0}} = \frac{1}{\beta_{0}}$$

Question 7: (1 point)

Interest lies in comparing click-through rates across 7 different experimental conditions. Suppose that a χ^2 -test is used to test the following hypothesis:

$$H_0:\pi_1=\pi_2=\;...\;=\pi_7$$
 versus $H_A:\pi_j
eq\pi_k$ for $j
eq k$

In the space below, state the number of degrees of freedom associated with this test. Note that your answer must be an integer.

Question 8: (2 points)

The *observed* 2x2 contingency table associated with a χ^2 -test of independence is shown below.

	Condition 1	Condition 2	
Response = 1	10	20	30
Response = 0	40	130	170
	50	150	200

$$\frac{\lambda}{11} = \frac{36}{200} = \frac{3}{20}$$

Fill in the missing cells for the *expected* 2x2 contingency table below. Round decimal answers to 4 decimal places.

Question 9: (1 point)

Consider the following hypothesis and suppose the appropriate χ^2 -test statistic t is calculated. In the context of this hypothesis, what values of t are considered "not extreme" and would give us evidence in favor of H_0 ?

$$H_0:\pi_1=\pi_2=\;...\;=\pi_m$$
 versus $H_A:\pi_j
eq\pi_k$ for $j
eq k$

- (a) Large positive values
- (b) Large negative values
- (c) Small positive values
- (d) Both (a) and (b)
- (e) Both (a) and (c)