Seven Different Possible Scenarios of Finding the area of Cumulative Standard Normal Distribution.

1.
$$P(Z < a)$$

See Direct from Table

2.
$$P(Z > a)$$

$$=1-P(Z$$

See from Table

3.
$$P(Z < -a)$$

$$= 1 - P(Z < a)$$

See from Table

4.
$$P(Z > -a)$$

= $1 - P(Z < -a)$
= $1 - [1 - P(Z < a)]$
= $P(Z < a)$

See Direct from Table

5.
$$P(a < Z < b)$$

$$= P(Z < b) - P(Z < a)$$

See from Table

6.
$$P(-a < Z < -b)$$

$$= P(Z < -b) - P(Z < -a)$$

$$= [1 - P(Z < b)] - [1 - P(Z < a)]$$

$$= P(Z < a) - P(Z < b)$$

See from Table

7.
$$P(-a < Z < b)$$

$$= P(Z < b) - P(Z < -a)$$

$$= P(Z < b) - [1 - P(Z < a)]$$

$$= P(Z < b) + P(Z < a) - 1$$

See form Table

A Case of Scenario 7.

7 (a).
$$P(|Z| < a)$$

 $= P(-a < Z < a)$
 $= P(Z < a) - P(Z < -a)$
 $= P(Z < a) - [1 - P(Z < a)]$
 $= P(Z < a) - 1 + P(Z < a)$
 $= 2[P(Z < a)] - 1$

See from Table

Mixture of Scenario 2 and 3

$$P(|Z| > a)$$

$$= P(Z < -a \text{ or } Z > a)$$

$$= P(Z < -a) + P(Z > a)$$

$$= 1 - P(Z < a) + [1 - P(Z < a)]$$

$$= 2 - 2P(Z < a)$$

See from Table

OR

$$= P(Z < -a) + P(Z < -a)$$
$$= 2P(Z < -a)$$

See from Table