Grundbegriffe der Theoretischen Informatik

Sommersemester 2018 - Thomas Schwentick

Teil D: Komplexitätstheorie

21: Zufallsbasierte Algorithmen

Version von: 10. Juli 2018 (12:59)

Einleitung

- In diesem Kapitel betrachten wir drei zufallsbasierte Algorithmen
 - Das sind Algorithmen, die Zufallsbits verwenden, um ein Problem zu lösen
 - Sie lösen ein Problem also nur mit einer gewissen Wahrscheinlichkeit und/oder ihre Laufzeit lässt sich nur mit einer gewissen Wahrscheinlichkeit beschränken
- Wir betrachten Algorithmen für
 - 3-SAT
 - das Problem, ob eine gegebene Zahl eine Primzahl ist
 - das Problem zu testen, ob ein arithmetischer Schaltkreis immer 0 ausgibt

Inhalt

21.1 Zufallsbasierte Algorithmen für

> **21.1.1** 3-SAT

21.1.2 Primzahlen

21.1.3 Arithmetischer Schaltkreise

Ein zufallsbasierter Algorithmus für 3-SAT

- Naiver Algorithmus für SAT: Probiere alle $\mathbf{2}^n$ Belegungen der n Variablen der Eingabeformel φ aus
 - ightarrow Laufzeit $heta(|arphi|\mathbf{2^n})$
- ullet Hier betrachten wir einen einfachen zufallsbasierter Algorithmus für 3-SAT mit Laufzeit $\mathcal{O}(1.334^n)$
- Typisch für zufallsbasierte Algorithmen:
 - einfacher Algorithmus
 - komplizierte Analyse

Algorithmus 21.1 [Schöning]

```
Eingabe: \varphi mit Variablen x_1, \dots, x_n

1: \gamma(n) := \left\lceil 70\sqrt{n}(\frac{4}{3})^n \right\rceil

2: for \gamma(n) mal do

3: Wähle zufällig eine Belegung \alpha der Variablen

4: for 3n mal do

5: if \alpha \models \varphi then

6: Ausgabe "ja", Fertig

7: else

8: Zufallsschritt
```

Algorithmus Zufallsschritt

9: Ausgabe "nein"

- 1: Wähle zufällig eine Klausel C, die von lpha nicht wahr gemacht wird
- 2: Wähle zufällig eine Variable $x_{m k}$ in m C
- 3: Ändere lpha durch: $lpha(x_k) := 1 lpha(x_k)$
- ullet Wir nennen jeden der $oldsymbol{\gamma}(oldsymbol{n})$ Durchläufe der äußeren Schleife einen $\emph{Versuch}$

Schönings Algorithmus: Illustration

- ullet $lpha^*$: Erfüllende Belegung von arphi
- ullet K(j): Menge der Belegungen mit Hamming-Abstand j von $lpha^*$
- ullet $lpha_0$: Zufällig gewählte erste Belegung

Ein zufallsbasierter Algorithmus für 3-SAT (Forts.)

Satz 21.2 [Schöning 99]

- (a) Für erfüllbare Formeln findet Algorithmus 21.1 mit Wahrscheinlichkeit >0,9999 eine erfüllende Belegung
- (b) Für unerfüllbare Formeln gibt der Algorithmus "unerfüllbar" aus
- (c) Die Laufzeit ist $\mathcal{O}(|arphi|n^{3/2}(rac{4}{3})^n)$

Beweisskizze

- (b) und (c) sind klar
- Wir zeigen nun (a)
- ullet Sei arphi eine 3KNF-Formel und $lpha^*$ eine erfüllende Belegung von arphi
- ullet Sei \underline{p} die Wahrscheinlichkeit, dass der Algorithmus in einem einzelnen Versuch α^* findet (oder vorher auf eine andere erfüllende Belegung stößt)
- ullet Behauptung (A): $p\geqslant rac{1}{7\sqrt{n}}(rac{3}{4})^n$

Beweisskizze (Forts.)

Notation:

- $-\underline{\alpha_0}\stackrel{\text{def}}{=}$ die in Zeile 3 eines Versuches gewählte Belegung
- $-rac{oldsymbol{K}(oldsymbol{j})}{\operatorname{mit}oldsymbol{d}(oldsymbol{lpha},oldsymbol{lpha}^*)}=oldsymbol{j}$

 $ightharpoonset d(\cdot,\cdot)$: Hamming-Abstand

- $\underline{p_{j}}\stackrel{ ext{ iny def}}{=}$ W-keit, dass $oldsymbol{lpha_{0}}\in oldsymbol{K}(oldsymbol{j})$ gilt
- $\overline{q_j} \stackrel{ ext{def}}{=}$ W-Keit, dass α^* von einem $\overline{\alpha_0} \in K(j)$ in $\leqslant \! 3j$ Schritten erreicht wird oder der Algorithmus vorher eine andere Lösung findet

• Klar:

-
$$p = \sum_{j=0}^n p_j q_j$$

- $p_j = \binom{n}{j}/2^n$

ullet Behauptung (B): $q_j\geqslant rac{1}{7\sqrt{j}}(rac{1}{2})^j$

Schönings Algorithmus: Illustration (Wdh.)

- ullet $lpha^*$: Erfüllende Belegung von arphi
- ullet K(i): Menge der Belegungen mit Hamming-Abstand i von $lpha^*$
- α_0 : Zufällig gewählte erste Belegung

Beweis von Behauptung $(oldsymbol{B})$ (1/2)

Beweisskizze

- Zur Erinnerung:
 - q_j : W-Keit, dass $lpha^*$ von einem $lpha_0 \in K(j)$ in $\leqslant 3j$ Schritten erreicht wird, oder der Alg. vorher eine andere Lösung findet
 - Behauptung (B): $q_j\geqslant rac{1}{7\sqrt{j}}(rac{1}{2})^j$
- ullet Für $i\leqslant j$ sei $\underline{q_{j,i}}$ die W-keit, dass der Alg. von $lpha_0\in K(j)$ aus in 2i+j Schritten $lpha^*$ erreicht, oder vorher eine andere erfüllende Belegung erreicht
- ullet Ein Weg, der in 2i+j Schritten von $lpha_0\in K(j)$ zu $lpha^*$ führt, macht i+j Schritte auf $lpha^*$ zu und i Schritte von $lpha^*$ weg
- ullet Wir ordnen jedem solchen Weg einen String der Länge 2i+j über dem Alphabet $\{-,+\}$ zu $\hbox{$\mathbb R^*$}+: {\sf auf}\; lpha^* {\sf zu}, -: {\sf von}\; lpha^* {\sf weg}$
- Jedes Suffix des Strings muss dabei mindestens soviele + wie enthalten
- ullet Die Anzahl der Strings dieser Form ist $inom{2i+j}{i}rac{j}{2i+j}$ ohne Beweis

Beweis von Behauptung $(oldsymbol{B})$ (2/2)

Beweisskizze (Forts.)

- Die W-Keit, in einem Schritt näher an α^* zu kommen, ist $\geqslant \frac{1}{3}$, denn:
 - Da C von α^* wahr gemacht wird, von dem jeweils aktuellen α aber nicht, gibt es mindestens eine Variable von C für die α und α^* sich unterscheiden
 - Wird die Belegung dieser Variablen in α geändert verringert sich der Abstand zu α^* um 1

$$lack q_{j,i}\geqslantinom{2i+j}{i}rac{j}{2i+j}(rac{1}{3})^{i+j}(rac{2}{3})^i$$

$$egin{align} igoplus q_j &= \sum_{i=0}^j q_{j,i} \ &\geqslant rac{1}{3} \sum_{i=0}^j inom{2i+j}{i} inom{1}{3} i^{i+j} inom{2}{3} i \ &\geqslant rac{1}{2\sqrt{3\pi j}} inom{1}{2} j^j \geqslant rac{1}{7\sqrt{j}} inom{1}{2} j^j \ \Rightarrow ext{(B)} \end{array}$$

Die letzte Zeile wird durch eine Reihe weiterer Umformungen erreicht, die unter anderem die Stirling-Approximations-Formel für die Fakultätsfunktion verwenden

Beweis von Satz 21.2

Beweisskizze

• Also:

$$\begin{split} p &\geqslant \sum_{j=0}^n p_j q_j \\ &\geqslant \sum_{j=0}^n \binom{n}{j} (\frac{1}{2})^n \frac{1}{7\sqrt{j}} (\frac{1}{2})^j \\ &\geqslant \frac{1}{7\sqrt{n}} (\frac{1}{2})^n \sum_{j=0}^n \binom{n}{j} (\frac{1}{2})^j \\ &= \frac{1}{7\sqrt{n}} (\frac{1}{2})^n (1+\frac{1}{2})^n \end{split} \qquad \text{Binomischer Lehrsatz} \\ &= \frac{1}{7\sqrt{n}} (\frac{3}{4})^n \qquad \qquad (=: \tilde{p}) \end{split}$$

- ➡ Behauptung (A)
- ullet Die W-Keit, dass in einem Versuch weder $lpha^*$ noch eine andere erfüllende Belegung gefunden wird ist also $\leqslant 1- ilde{p}$
- ullet Die W-keit, dass dies $oldsymbol{\gamma}(oldsymbol{n})$ -mal passiert ist $\leqslant (\mathbf{1} ilde{oldsymbol{p}})^{oldsymbol{\gamma}(oldsymbol{n})}$

$$\leqslant e^{-10} < 5\cdot 10^{-5}$$

→ (a)

SAT-Solving

- Relativ effiziente Algorithmen für das SAT-Problem zu finden ist ein sehr wichtiges Forschungsthema
- Denn: viele andere algorithmischen Probleme lassen sich leicht auf die Erfüllbarkeit einer aussagenlogischen Formel zurückführen
- Anders gesagt: Reduktionen auf SAT sind häufig einfach

- Durch verfeinerte Techniken werden die Laufzeitschranken für SAT-Algorithmen kontinuierlich verbessert
- Einer der aktuell besten deterministischen Algorithmen für 3-SAT ist durch **Derandomisierung** von Schönings Algorithmus entstanden [Moser, Scheder 2011]
- ullet Seine Laufzeit ist $\mathcal{O}(1.334^n)$
- ullet Noch besser: $\mathcal{O}(1.3303^n)$ [Makino, Tamaki, Yamamoto 2011]
- ullet Der beste zufallsbasierte Algorithmus hat Laufzeit $\mathcal{O}(1.30704^n)$ [Hertli 2011]
- Für praktische Anwendungen werden SAT-Solver heute in der Industrie "Routine-mäßig" eingesetzt und haben für "typische" Formeln eine gute Laufzeit

Inhalt

21.1 Zufallsbasierte Algorithmen für

21.1.1 3-SAT

▶ 21.1.2 Primzahlen

21.1.3 Arithmetischer Schaltkreise

Primzahltests: Vorbereitung (1/2)

ullet Zur Erinnerung: eine *Primzahl* ist eine Zahl $p\in \mathbb{N}$, die außer 1 und p keine Teiler hat

Notation

- $oldsymbol{lack}oldsymbol{k} oldsymbol{h} oldsymbol{h} \stackrel{ ext{def}}{\Leftrightarrow} oldsymbol{k}$ ist Teiler von $oldsymbol{n}$, d.h.: es gibt ein $oldsymbol{l} \in \mathbb{N}$ mit $oldsymbol{k} oldsymbol{l} = oldsymbol{n}$
- $\underline{\mathsf{ggT}(n,m)} \stackrel{\mathsf{def}}{=} \mathsf{gr\"o}\mathfrak{B}\mathsf{ter} \; \mathsf{gemeinsamer} \; \mathsf{Teiler} \; \mathsf{von} \; \boldsymbol{n} \; \mathsf{und} \; \boldsymbol{m},$ also die gr\"o $\mathfrak{B}\mathsf{te} \; \mathsf{Zahl} \; \boldsymbol{k} \; \mathsf{mit} \; \boldsymbol{k} \; | \; \boldsymbol{n} \; \mathsf{und} \; \boldsymbol{k} \; | \; \boldsymbol{m}$
- ullet $m{m}$ $m{mod}$ $m{n}$ $\stackrel{ ext{def}}{=}$ Rest bei Division von $m{m}$ durch $m{n}$, also die eindeutig bestimmte Zahl $m{k}$ mit:
 - (1) $oldsymbol{n} \mid (oldsymbol{m} oldsymbol{k})$ und
 - (2) $0 \leqslant k < n$

 $39 \mod 9 = 4$

 $ullet \underline{a} \equiv_{m n} m b \stackrel{ ext{ iny def}}{\Leftrightarrow} m a$ und m b haben den selben Rest bei Division durch m n, also m a mod m n = m b mod m n

Primzahltests: Vorbereitung (2/2)

Definition (PRIMES)

Gegeben: Zahl $\,N\,$

Frage: Ist N eine Primzahl?

Definition (Composites)

Gegeben: Zahl $\,N\,$

Frage: Ist N eine zusammengesetzte Zahl?

► Klar: Composites ∈ NP

- Zu beachten:
 - Die Länge n der Eingabe ist jeweils $\lceil \log_2 N
 ceil$
- Naiver Algorithmus für PRIMES:
 - Für alle $k \leqslant \sqrt{N}$:
 - st Teste ob $k\mid N$
 - * Falls ja, ablehnen
 - Falls Test ok, für alle k: akzeptieren
- ullet Aufwand, falls N Primzahl ist:

$$heta(\sqrt{N}) = heta(2^{rac{1}{2}\log_2 N}) = heta(2^{rac{n}{2}})$$
 Tests exponentieller Aufwand

 Das geht besser, z.B. mit Hilfe des Zufalls...

Fermats Primzahltest

Satz 21.3 [Kleiner Satz von Fermat]

ullet Ist N eine Primzahl, so gilt für alle a, $1 \leqslant a < N$:

$$a^{N-1} \equiv_{N} 1$$

Beweisidee

- ullet Wenn N eine Primzahl ist, bilden die Zahlen $1,\dots,N-1$ mit der Operation $(x,y)\mapsto xy$ mod N eine multiplikative Gruppe mit N-1 Elementen
- ullet In einer endlichen Gruppe G gilt für jedes Element g: $g^{|G|}=1$
- ullet Was ist, wenn N keine Primzahl ist?

ullet Für 75% der möglichen Werte für a würde durch den Test " $a^{9-1}\equiv_9 1$?" erkannt werden, dass 9 keine Primzahl ist

- Lässt sich daraus ein zufallsbasierter Primzahltest konstruieren?
 - (1) Wähle zufällig a, $1 \leqslant a < N$
 - (2) Falls $a^{N-1} \equiv_N 1$, akzeptiere
- ullet Fehler-Wahrscheinlichkeiten für andere zusammengesetzte Zahlen N:

4	33%
6	20%
8	14,3%
10	11%
12	9,1%
14	7,7%
16	13,3%
18	6%
:	:
561	99,1%

- → Wir brauchen einen verbesserten Ansatz
- **561** ist die kleinste *Carmichael-Zahl*:
 - ullet Sie ist zusammengesetzt: 3 imes 11 imes 17
 - ullet Für zu 561 teilerfremde a gilt: $a^{560}\equiv_{561}1$

Primzahltest von Solovay-Strassen: (1/3)

• Der Primzahltest von Solovay-Strassen verwendet das *Jakobi-Symbol* $\left(\frac{a}{h}\right)$

Definition (Quadratischer Rest modulo p)

- Eine ganze Zahl a ist quadratischer Rest modulo p, für eine Primzahl p, $p \nmid a$, falls es eine Zahl c gibt mit $c^2 \equiv_p a$
- ullet Ist p eine Primzahl, so sei

$$\left(rac{a}{p}
ight) \stackrel{ ext{def}}{=} egin{cases} 1, & ext{wenn } a ext{ quadratischer } \ ext{Rest modulo } p ext{ ist,} \ 0 & ext{falls } p \mid a \ -1 & ext{andernfalls} \end{cases}$$

ullet Ist $p_1^{n_1} imes \cdots imes p_k^{n_k}$ die Primfaktorzerlegung

der Zahl
$$b$$
, so sei $\left(rac{a}{b}
ight) \stackrel{ ext{def}}{=} \prod_{i=1}^k \left(rac{a}{p_i}
ight)^{n_i}$

riangle Für Primzahlen p heißt $\left(rac{a}{p}
ight)$ auch Legendre-Symbol

Grundlage für den Solovay-Strassen-Test:

Proposition 21.4

- $ullet \ a^{(N-1)/2} \equiv_{oldsymbol{N}} \left(rac{a}{N}
 ight)$ gilt
 - für alle $a \in \{1, \dots, N-1\}$, falls $N \neq 2$ eine Primzahl ist;
 - für höchstens die Hälfte aller zu N teilerfremden $a \in \{1,\dots,N-1\}$, falls $N \neq 2$ keine Primzahl ist
- Daraus lässt sich direkt ein Primzahltest gewinen, der
 - Primzahlen immer erkennt
 - bei zusammengesetzten Zahlen eine Fehlerwahrscheinlichkeit $\leqslant \frac{1}{2}$ hat
- ullet Es stellt sich allerdings die Frage, wie sich $\left(rac{a}{N}
 ight)$ berechnen lässt, da die Definition die Primfaktorzerlegung von N verwendet...

Primzahltest von Solovay-Strassen: (2/3)

ullet Zur Berechnung von $\left(rac{a}{N}
ight)$ können wir die folgenden Regeln anwenden

1.
$$\left(rac{a}{b}
ight)=\left(rac{a\ \mathsf{mod}\ b}{b}
ight)$$
, falls $a>b$

2.
$$\left(\frac{a_1a_2}{b}\right)=\left(\frac{a_1}{b}\right)\left(\frac{a_2}{b}\right)$$

3.
$$\left(\frac{a}{b}\right)=(-1)^{(a-1)(b-1)/4}\left(\frac{b}{a}\right),$$

falls a < b und a und b ungerade sind

$$4. \left(\frac{1}{b}\right) = 1$$

5.
$$\left(\frac{2}{b}\right) = (-1)^{(b^2-1)/8}$$

6.
$$\left(\frac{b-1}{b}\right) = (-1)^{(b-1)/2}$$
,

falls b ungerade

Regel 3 wird auch quadratisches Reziprozitätsgesetz genannt

- Rekursive Berechung von $\left(\frac{a}{b}\right)$:
 - Falls $\operatorname{\mathsf{ggT}}(a,b)>1$: Ergebnis =0
 - Falls a>b: verwende Regel 1
 - Falls a oder b gerade: Spalte mit Regel 2 und der Definition Zweierpotenzen ab
 - Falls $a \in \{1, 2, b 1\}$: verwende die entsprechende Regel (4-6)
 - Andernfalls (a < b): verwende Regel 3

Beispiel

•
$$\left(\frac{18}{11}\right) \stackrel{\text{1.}}{=} \left(\frac{7}{11}\right) \stackrel{\text{3.}}{=} (-1)^{6 \cdot 10/4} \left(\frac{11}{7}\right)$$

= $-\left(\frac{11}{7}\right) \stackrel{\text{1.}}{=} -\left(\frac{4}{7}\right) \stackrel{\text{2.}}{=} -\left(\frac{2}{7}\right)^2 \stackrel{\text{5.}}{=} -1$

 Bemerkung: Die Vorgehensweise ist also ähnlich zur Berechnung des ggT

Fakt

ullet $\left(rac{a}{b}
ight)$ lässt sich in Poly-Zeit in der Länge der Kodierung von a und b berechnen

Primzahltest von Solovay-Strassen (3/3)

Algorithmus 21.5 (Solovay-Strassen-Test)

Eingabe: N

- 1. Wähle zufällig a < N
- 2. Falls $\operatorname{\mathsf{ggT}}(a,N)>1$ lehne ab
- 3. Akzeptiere, falls $a^{(N-1)/2} \equiv_{m N} \left(rac{a}{N}
 ight)$
 - Eigenschaften des Solovay-Strassen-Tests:
 - Laufzeit: polynomiell in $\log_2 N$
 - Falls $N \in \mathsf{PRIMES}$: Wahrscheinlichkeit einer fehlerhaften Antwort: 0
 - Falls $N \notin \mathsf{PRIMES}$: Wahrscheinlichkeit einer fehlerhaften Antwort: $\leqslant \frac{1}{2}$

• Es gilt allerdings auch:

Satz 21.6 [Agrawal et al. 04]

- PRIMES ∈ P
- Der zugehörige Polynomialzeit-Algorithmus ist jedoch ziemlich kompliziert
- ullet Laufzeit: $\mathcal{O}((\log_2 N)^{10+\epsilon})$, inzwischen verbessert auf: $\mathcal{O}((\log_2 N)^{6+\epsilon})$
- Für praktische Zwecke ist der Solovay-Strassen-Test immer noch vorzuziehen

Fehler-Wahrscheinlichkeit zufallsbasierter Algorithmen (1/2)

Definition (Zufallsbasierter (f, g)-Algorithmus)

- ullet Seien $f,g:\mathbb{N} o\mathbb{R}$
- Wir sagen, dass ein Algorithmus A für eine Sprache L ein zufallsbasierter (f,g)-Algorithmus ist, falls er polynomielle Laufzeit hat und für jedes n gilt:
 - Für alle $m{w} \in m{L}$ der Länge $m{n}$ ist die Wkeit einer fehlerhaften Antwort von $m{A}$ höchstens $m{f}(m{n})$
 - Für alle $m{w}
 otin m{L}$ der Länge $m{n}$ ist die Wkeit einer fehlerhaften Antwort von $m{A}$ höchstens $m{g}(m{n})$

- Der Solovay-Strassen-Test ist also
 - ein zufallsbasierter $(0, \frac{1}{2})$ -Algorithmus mit polynomieller Laufzeit für PRIMES
 - ein zufallsbasierter $(\frac{1}{2},0)$ -Algorithmus mit polynomieller Laufzeit für COMPOSITES
- ullet Hier hängen f und g also nicht von n ab:
 - Für PRIMES ist $oldsymbol{f}(oldsymbol{n}) = oldsymbol{0}$ und $oldsymbol{g}(oldsymbol{n}) = rac{1}{2}$, für alle $oldsymbol{n}$
- Sind Algorithmen mit einer so großen Fehlerwahrscheinlichkeit relevant?
 - Ja, denn die Fehlerwahrscheinlichkeit lässt sich durch Wiederholung verkleinern

Fehler-Wahrscheinlichkeit zufallsbasierter Algorithmen (2/2)

- Was passiert, wenn wir den Solovay-Strassen-Test zweimal laufen lassen und N akzeptieren, wenn es den Test zweimal besteht?
- ullet Falls $N\in \mathsf{PRIMES}$:

Fehler-W-keit weiterhin 0

- Falls $N \notin PRIMES$:
 - W-keit eines Fehlers im ersten Durchgang: $\leqslant \frac{1}{2}$
 - Also: für höchstens die Hälfte der Fälle wird der zweite Durchlauf erreicht
 - W-keit eines Fehlers im zweiten Durchgang: $\leqslant \frac{1}{2}$
 - ightharpoonup W-keit, dass insgesamt die falsche Antwort gegeben wird, ist $\leqslant \frac{1}{4}$
- Dieser Ansatz lässt sich weiterführen: wenn wir den Test k-mal ausführen, haben wir:
 - Falls $N\in\mathsf{PRIMES}$ Fehler-W-keit 0
 - Falls $N \notin \mathsf{PRIMES}$ Fehler-W-keit $\leqslant \frac{1}{2^k}$

- ullet Für praktische Zwecke reicht es also sicherlich aus, den Solovay-Strassen-Test 100 mal zu wiederholen, um sich zu vergewissern, dass N eine Primzahl ist
 - Die Wahrscheinlichkeit, dass während der Berechnung ein Asteroid einschlägt, ist dann größer als die Irrtumswahrscheinlichkeit des Algorithmus
- Die beschriebene Vorgehensweise lässt sich für alle $(0,\frac{1}{2})$ -Algorithmen und $(\frac{1}{2},0)$ -Algorithmen anwenden

Inhalt

21.1 Zufallsbasierte Algorithmen für

21.1.1 3-SAT

21.1.2 Primzahlen

▷ 21.1.3 Arithmetischer Schaltkreise

Zwischenbemerkung

- Wir haben zwei Beispiele für zufallsbasierte Algorithmen gesehen:
 - Schönings Algorithmus löst das NP-vollständige
 3-SAT-Problem, allerdings nicht in polynomieller
 Zeit
 - Der Solovay-Strassen-Test löst das Primzahl-Problem in polynomieller Zeit, das ist aber auch ohne Zufall möglich
- Als drittes betrachten wir nun einen zufallsbasierten Algorithmus, der ein Problem in polynomieller Zeit entscheidet, für das kein deterministischer polynomieller Algorithmus bekannt ist

Arithmetische Schaltkreise

 Dieser arithmetische Schaltkreis berechnet das Polynom

$$4x^2y + 2x^3y + 4x^2y^2 + 4xy^3$$

- Dieser arithmetische Schaltkreis berechnet das Polynom 0
- Frage: Wie lässt sich testen, ob ein arithmetischer Schaltkreis das Nullpolynom berechnet?

Nulltest für arithmetischer Schaltkreise (1/2)

Definition (ZEROCIRC)

Gegeben: Arithmetischer Schaltkreis C

Frage: Berechnet C das Nullpolynom, hat es also für jede Eingabe die Ausgabe 0?

- ullet ZEROCIRC lässt sich natürlich dadurch lösen, dass das durch C repräsentierte Polynom p berechnet wird
- Problem: Die explizite Darstellung als Polynom kann exponentiell viele Terme haben
 - Deshalb führt dieser Ansatz nicht zu einem Polynomialzeit-Algorithmus
- Aber: Wir können ausnutzen, dass ein vom Nullpolynom verschiedenes Polynom für "die meisten" Belegungen der Variablen nicht 0 ergibt
- Das folgende Lemma ist die Basis für einen zufallsbasierten Algorithmus für ZEROCIRC

Lemma 21.7 [Schwartz-Zippel]

- ullet Sei $p(x_1,\ldots,x_k)$ ein von $oldsymbol{0}$ verschiedenes Polynom vom Grad $\leqslant d$ und S eine Menge ganzer Zahlen
- Werden a_1, \ldots, a_k zufällig in S gewählt (gleichverteilt, unabhängig, mit Zurücklegen), so gilt:

$$\mathsf{Pr}[p(a_1,\ldots,a_k)
eq 0] \geqslant 1 - rac{d}{|S|}$$

- Im Prinzip können wir also wie folgt vorgehen:
 - Wähle $S\stackrel{ ext{ iny def}}{=}\{1,\ldots,2d\}$
 - Wähle zufällig

$$ec{a}=(a_1,\ldots,a_k)\in S^k$$

- Teste ob $oldsymbol{p}(oldsymbol{ec{a}}) = oldsymbol{0}$
- Akzeptiere, falls dieser Test positiv verläuft
- ullet Falls p=0: Fehler-W-keit 0
- ullet Falls $p \ne 0$: Fehler-W-keit $\leqslant rac{1}{2}$

Nulltest arithmetischer Schaltkreise (2/2)

- Zwei Komplikationen:
 - (1) Wir kennen den Grad d von p nicht
 - (2) $oldsymbol{p}(oldsymbol{ec{a}})$ kann *exponentiell lang* werden
- ullet Lösung für (1): Hat $C\leqslant m$ Operationen, so ist der Grad von p höchstens 2^m

$$ightarrow S \stackrel{ ext{def}}{=} \{1, \dots, 2^{m+1}\}$$

ullet Lösung für (2): Werte C modulo einer Zahl N aus

Algorithmus 21.8

Eingabe: C

- 1. Wähle $N \sim 2^{2m}$ zufällig
- 2. Wähle $S\stackrel{ ext{def}}{=}\{1,\ldots,2^{m+1}\}$
- 3. Wähle zufällig $ec{a} \in S^k$
- 4. Teste ob $oldsymbol{p}(oldsymbol{ec{a}}) \ \mathsf{mod} \ oldsymbol{N} = oldsymbol{0}$
- 5. Akzeptiere, falls Test positiv

- Klar: $p=0 \Rightarrow$ der Test akzeptiert
- ullet Es gilt auch: Falls $p \neq 0$ ist die W-keit, dass der Test *nicht akzeptiert* $\geqslant rac{1}{20m}$
 - Denn: die W-keit, dass N eine Primzahl ist, die $p(\vec{a})$ nicht teilt, ist $\geqslant \frac{1}{10m}$ (ohne Beweis)
- Falls $p \neq 0$ ist die Fehler-W-keit $\leqslant 1 rac{1}{20m}$
 - ullet Durch 20m Wiederholungen lässt sich diese Fehler-W-keit auf $rac{1}{2}$ senken (wegen $(1-rac{1}{x})^x\leqslantrac{1}{e}\leqslantrac{1}{2}$)
 - Auf diese Art erhalten wir also einen polynomiellen zufallsbasierten $(0,\frac{1}{2})$ Algorithmus für ZEROCIRC

Zusammenfassung

- Für manche algorithmischen Probleme sind die schnellsten bekannten zufallsbasierten Algorithmen schneller als die besten bekannten Algorithmen, die deterministisch arbeiten
 - Der beste bekannte zufallsbasierte Algorithmus für das 3-SAT-Problem ist beispielsweise deutlich schneller als der beste bekannte deterministische Algorithmus
- ZEROCIRC ist ein Beispiel eines Problems, für das kein deterministischer Polynomialzeit-Algorithmus bekannt ist, aber zufallsbasierte Algorithmen, die in polynomieller Zeit laufen
- Häufig sind zufallsbasierte Algorithmen relativ einfach, ihre Analyse jedoch kompliziert
- Zufallsbasierte Algorithmen motivieren die Untersuchung von zufallsbasierten Komplexitätsklassen

nächstes Kapitel

Literaturhinweise

- Manindra Agrawal, Neeral Kayal, and Nitin Saxena. Primes in P. Annals of Mathematics, 160(2):781–793, 2004
- Timon Hertli. 3-SAT faster and simpler Unique-SAT bounds for PPSZ hold in general. In Rafail Ostrovsky, editor, FOCS, pages 277–284. IEEE, 2011
- Robin A. Moser and Dominik Scheder. A full derandomization of Schoening's k-SAT algorithm. In *Proceedings of the 43rd annual* ACM symposium on Theory of computing, STOC '11, pages 245— 252, New York, NY, USA, 2011. ACM
- Kazuhisa Makino, Suguru Tamaki, and Masaki Yamamoto. Derandomizing the HSSW algorithm for 3-SAT. Algorithmica, 67(2):112–124, 2013
- Christos M. Papadimitriou. Computational complexity. Addison-Wesley, Reading, Massachusetts, 1994
- Uwe Schöning. A probabilistic algorithm for k-SAT and constraint satisfaction problems. In *FOCS*, pages 410–414, 1999