PRACTICAL 5: Temperature on LCD

<u>Aim</u>: To interface a 16x2 LCD with Arduino and display temperature readings.

Overview:

In this project, a temperature sensor is interfaced with an Arduino and a 16x2 LCD to display real-time temperature readings. This practical helps in learning about LCD interfacing, data communication between components, and the importance of real-time monitoring in IoT systems.

Materials Required:

- Arduino Uno R3
- 1 x 220 Ω Resistor
- LCD 16x2
- Temperature Sensor (TMP36)
- Jumper Wires
- Arduino IDE (Installed on your Computer)

Circuit Connection and Steps:

- 1. Connect the TMP36 Temperature Sensor:
 - \circ VCC \rightarrow 5V, GND \rightarrow GND, VOUT \rightarrow A5 (Arduino).
- 2. Connect the 16x2 LCD Display:
 - \circ RS \rightarrow D7, E \rightarrow D8, D4-D7 \rightarrow D9-D12 (Arduino).
 - \circ VSS, RW, K \rightarrow GND, VDD, A \rightarrow 5V.
 - \circ V0 \rightarrow Potentiometer (Middle Pin) for contrast control.
- 3. Connect the Potentiometer:
 - \circ One side \rightarrow 5V, Other side \rightarrow GND, Middle \rightarrow V0 (LCD).
- 4. Power Connections:
 - \circ 5V \rightarrow Positive Rail, GND \rightarrow Negative Rail on Breadboard.

Circuit Diagram:

AMTICS Page No. 1

Schematic Diagram:

Code:

```
#include<LiquidCrystal.h>
const int rs = 12, en = 11, d4 = 5, d5 = 4, d6 = 3, d7 = 2;
LiquidCrystal lcd(rs, en, d4, d5, d6, d7);
float celsius;
int temp = A1;
void setup(){
      pinMode(temp,INPUT);
}
void loop(){
      celsius = analogRead(temp)*0.004882814;
      celsius = (celsius - 0.5) * 100.0;
      lcd.setCursor(0,1);
      lcd.print("\longrightarrow Temp : ");
      lcd.print(celsius);
      lcd.print(" C");
      delay(1000);
      lcd.clear();
```

Results:

Conclusion:

This project successfully demonstrates how to interface a 16x2 LCD with an Arduino to display real-time temperature readings. It reinforces the concepts of sensor integration and data visualization, providing a crucial step toward developing more complex IoT applications involving real-time monitoring systems.

AMTICS Page No. 2