Санкт-Петербургский национальный исследовательский университет ИТМО Факультет систем управления и робототехники

Лабораторная работа №2

«Переходные процессы, свободное движение, устойчивость» по дисциплине «Теория автоматического управления» Вариант: 16

Подготовил: Дюжев Владислав Дмитриевич

Группа: R33353

Преподаватель: Пашенко А. В.

Содержание

Содержание

1	Свободное движение	2
2	Область устойчивости	4
3	Автономный генератор	5
4	Изучение канонической управляемой формы: фазовые портреты	6

1 Свободное движение

Рассмотрим систему второго порядка в форме В-В:

$$\ddot{y} + a_1 \dot{y} + a_0 y = u \tag{1}$$

Согласно заданию, выберем три набора корней (λ_1, λ_2) , удовлетворяющих модам из задания (2,3,8) и найдем небходимы пары коэффициентов (a_1,a_0) :

- 1. Нейтральная и устойчивая апериодическая: $\lambda_1 = 0, \lambda_2 = -1; a_1 = 1, a_0 = 0$
- 2. Нейтральная и неустойчивая апериодическая: $\lambda_1=0, \lambda_2=0.3; \, a_1=-0.3, a_0=0$
- 3. Пара неусточивых колебательных мод: $\lambda_1=0.4+2i, \lambda_2=0.4-2i; \ a_1=-0.8, a_0=4.16$

Рис. 1: Входные и выходные сигналы систем при нулевых начальных условиях (задание 1)

Вычисления пары (a_1, a_0) проведем, воспользовавшись теоремой Виета:

$$\begin{cases} \lambda_1 + \lambda_2 = -a_1 \\ \lambda_1 \lambda_2 = a_0 \end{cases}$$

Согласно корневому критерию, первый набор корней соответствует апериодической системе на границе устойчивости (оба корня действительные, неотрицательны и не кратные), второй - неустойчивой апериодической системе (корни действительные, один из корней имеет положительную

действительную часть), третий - неустойчивой колебательной системе (пара комплексно сопряженных корней с положительной действительной частью).

Проведем моделирование поведения систем с нулевыми начальными условиями и при $y(0) = 0, \dot{y}(0) = 1$ (рис. 1 и рис. 2 соответственно).

Task 1. Free movement. Initial conditions: y(0) = 0, $\dot{y}(0) = 1$.

Рис. 2: Входные и выходные сигналы систем при ненулевых начальных условиях (задание 1)

Заметим, что все системы ведут себя одинаково при задании нулевых начальных условий и подаче нулевого управляющего воздействия (они статичны в 0). При задании начальных условий системы ведут себя согласно аналитически предсказанному корневым критерием.

2 Область устойчивости

3 Автономный генератор

4 Изучение канонической управляемой формы: фазовые портреты