Electroacústica I 9 de Junio

MEDICIÓN DE RESPUESTA EN FRECUENCIA Y SENSIBILIDAD DE VARIOS MICROFONOS

Federico Feldsberg¹

¹Universidad Nacional de Tres De Febrero, Buenos Aires, Argentina fedefelds@hotmail.com

Resumen

En este artículo se describe una serie de mediciones llevadas a cabo en el marco de la materia Electroacústica I. Se recurre a dos métodos de medición distintos para caracterizar los microfonos Shure SM57, Rode NT2000, Earthworks M50 y Beyerdynamic MM1

1. Introducción

El presente trabajo tiene como objetivo describir los procesos de medición llevados a cabo en el marco de la materia Electroacustica I, así como analizar los resultados allí obtenidos desde el marco teorico de la misma.

Las mediciones están relacionadas con los conceptos de sensibilidad y respuesta en frecuencia de micrófonos. Se consideran dos micrófonos durante todo el proceso: uno se utiliza como micrófono referencia, y el micrófono a medir, de sensibilidad y respuesta en frecuencia desconocidas. Se utilizaron dos métodos de medición: el método clásico de Davis y otro método moderono basado en la función de transferencia.

2. MÉTODO CLÁSICO

El metodo clásico propuesto por Davis en [1] permite medir la sensibilidad y la respuesta en frecuencia de un microfono dado.

Para este método se utiliza el siguiente instrumental:

- una consola mezcladora Behringer
- un parlante de monitoreo KRK
- un sonometro Svantek y su calibrador
- un multimetro digital Uni-T
- un osciloscopio digital Tektronix
- un microfono de referencia Earthworks M50

2.1. MEDICIÓN DE SENSIBILIDAD

En primer lugar, se mide el piso de ruido en el lugar de medición para asegurarse de que el mismo no afecte las demas mediciones. Se calibra el sonómetro con el tono puro de 1 kHz que emite su calibrador, de manera que este último detecte un nivel de presión sonora de referencia de 94 dBSPL, y calcule las compensaciones necesarias. Ademas se le asigna un tiempo de integración lento.

Dicho método consiste en utilizar un microfono de referencia (Earthworks M50) cuya sensibilidad es conocida. Debido a sus respuesta en frecuencia en respuesta practicamente plana, es considerado un microfono ideal. Tanto el microfono de referencia como el microfono a medir se colocan a una distancia de 15 cm del parlante para poder asegurar el nivel de presion sonora deseado.

La figura 2 indica el arreglo instrumental utilizado en el método clásico

Figura 1: Arreglo instrumental del método clásico

El micrófono de referencia es expuesto a un tono puro de 1 kHz a un nivel de presion sonora de 94 dB SPL. El nivel de presión sonora es controlado con el sonómeto Svantek. Debido a que no poseemos instrumental lo suficientemente preciso para medir tensiones en el orden de magnitud de los mV, debemos amplificar la tension generada en los termi-

nales del microfono mediante el uso de una consola mezcladora. La forma de onda de la salida de dicha consola es monitoreada por medio de un osciloscopio digital, a modo de hallar una ganancia tal que sea medible por nuestro instrumental y aun asi no ocasione recortes de señal. Dicha ganancia se fija para toda la medicion.

La sensibilidad de un microfono S_0 esta definida como la tension en los terminales de salida del mismo, al estar expuesto a un nivel de presion sonora de 94 dB SPL. Debido a que la sensibilidad de nuestro microfono de referencia es conocida, podemos averiguar la ganancia de la consola si consideramos las ecuaciones 1 y 2.

$$G_v = \frac{V_o}{V_i} \tag{1}$$

$$G_{dB} = 20 \log \left(\frac{V_o}{V_i}\right) \tag{2}$$

Bajo las condiciones de esta medición V_o es conocido y V_i = S_0 , por lo que la ganancia tanto en veces como en dB queda determinada por las ecuaciones 3 y 4 respectivamente:

$$G_v = \frac{V_o}{S} \tag{3}$$

$$G_{dB} = 20 \log \left(\frac{V_o}{S}\right) \tag{4}$$

Luego se intercambia el microfono de referencia por el Shure SM57, cuya sensibilidad desconocida es S_1 . Dicho transductor es expuesto a un tono puro de 1 kHz a 94 dB SPL y la tensión en la salida de la consola mezcladora es medido. Por lo tanto, la sensibilidad del microfono bajo medicion esta dada por la ecuación

5:

$$S_1 = \frac{V_o}{G_o} \tag{5}$$

2.2. MEDICIÓN DE RESPUESTA EN FRECUENCIA

La medición de respuesta en frecuencia se basa en un arreglo instrumental similar al usado en la medición de sensibilidad según el método clásico. La única diferencia esta en el nivel de presión sonora de la señal utilizada: Debido a que el monitor no es capaz de manejar un nivel de 94 dB SPL en altas frecuencias, se uso 84 dB SPL. En los ajustes del generador se regula la frecuencia del tono puro y al mismo tiempo se mide la tensión en la salida de la consola mezcladora en 100 Hz, 500 Hz, 1 kHz y 10 kHz.

3. MÉTODO MODERNO

el metodo moderno propuesto se basa el empleo de una función de transferencia [2] y permite medir la respuesta en frecuencia de un microfono dado.

Para este método se utiliza el siguiente instrumental:

- un micrófono de referencia Earthworks M50
- una interfaz USB
- Software Smaart V 7.4
- un parlante de monitoreo KRK
- micrófonos Shure SM57 y Rode NT2000
- micrófono Beyerdynamic MM1

En primer lugar, se mide el piso de ruido en el lugar de medición para asegurarse de que el mismo no afecte las demás mediciones. Luego se coloca el micrófono de referencia y el micrófono a medir frente al centro acústico del monitor. Las cápsulas de ambos micrófonos deben estar lo mas cerca posible para que el campo acústico captado por ambos sea lo mas parecido posible.

La figura ?? indica el arreglo instrumental del metodo moderno:

Figura 2: Arreglo instrumental del método moderno CAMBIAAAR

Ambos microfonos son expuestos a ruido rosa y las señales captadas por ambos es procesada por el Software. Este ultimo compara ambas señales y bajo la suposicion que micrófono de referencia Earthworks M50 es un microfono con respuesta en frecuencia plana, permite obtener la respuesta en frecuencia del microfono a medir.

Los microfonos medidos son : Shure SM57, Rodes NT2000, Earthworks M50 y Beyerdynamic MM1. El Earthworks M50 y el Beyerdynamic MM1 fueron medidos en eje y a 90°.

4. RESULTADOS

En la siguiente seccion exponemos los resultados de las mediciones realizadas:

4.1. MÉTODO CLASICO

El calibrador del sonometro establece una correccion de 0.02 dB. En un intervalo de 10 segundos, dicho sonometro indica un nivel de ruido equivalente de 75,3 dB Leq. Considerando que S_0 = 34 mV/Pa , la sensibilidad del Shure SM57 medida es de 1 mV/Pa.

La tabla 1 presenta los resultados de la medición de respuesta en frecuencia del microfono Shure SM57. La tercer columna presenta los valores en dB referidos a 1kHz.

Frecuencia	Sensibilidad [mV]	Sensibilidad [dB]
100 Hz	690	-1,8
500 Hz	580	-3,3
1 kHz	850	0
10 kHz	1150	2,6

Tabla 1: Valores obtenidos en la medicion de respueta en frecuencia del Shure SM57

La figura 3 es una representación grafica de la información presentada en la tabla 1:

Figura 3: Respuesta en frecuencia del SM57

4.2. MÉTODO MODERNO

Las curvas de respuesta en frecuencia son exportados y graficados en Python, mediante el uso de la libreria *Matplotlib*

- piso de ruido
- factor de calibracion

5. ANÁLISIS DE RESULTADOS

6. CONCLUSIÓNES

NO PUEDE FALTAR MI TP Supuestamente el earthorks es omni, pero en altas frecuencias no tanto

7. REFERENCIAS

- [1] D. Davis y E. Patronis. *Sound System Engineering*. Elsevier Focal Press, 2006.
- [2] *Getting Started with Smaart v7*. Rational Acoustics.