HW4

PB19111713钟颖康

1.

- 当交易佣金为0时,不妨设从货币1经过一系列的交换最终兑换为货币n的最优交易序列为s_{1-n}, s_{1-k} 表示这个序列的第一部分,它将货币1兑换为货币k, s_{k-n}表示这个序列的第二部分,它将货币k兑 换为货币n。若存在s'_{1-k}比s_{1-k}更优,则显然s'_{1-k}-s_{k-n}会比s_{1-n}更优,矛盾。s_{k-n}同理。
- 如果交易佣金c_k为任意值,不妨n = 3, c_i = 100000000000000000ⁱ⁻¹,汇率表d_{ii}如下

i\j	1	2	3
1	1	2	5
2	0.5	1	4
3	0.2	0.25	1

显然,1到3的收益最高的方案是 $1 \to 2 \to 3$,但成本上的亏损却比 $1 \to 3$ 高得多,导致子问题全取最优时总问题不一定是最优。

2.

算法:

- ①:先将点集从大到小排序,得到新的点集 $X_n = \{ x'_1, \dots, x'_n \}$,其中,对任意 $i \leq j$,均有 $x'_i \geq x'_j$,所求的区间集合Result为空集
- ②:取集合s = [x'_i , x'_i + 1],将 x'_i 从 X_i 中移出得到 X_{i-1} = { x'_1 , ... , x'_{i-1} },Result = Result \bigcup s
- ③:步骤②执行n次,其中i依次取n到1,所得集合Result即为所求集合

证明:

若区间的左端点不是点集中的某个点,则可以将区间下界增大直到到达第一个点,此时整体区间缩小或不变,该区间上的解达到最优;

根据步骤②,每个区间均是 [x'i, x'i+1]类型,故是最优解。

3.

在结构树的每个结点增添4个整数域:员工P的交际评分P->sco、邀请员工P时以P为根的子树所能提供的最大交际评分P->sco1与不邀请员工P时以P为根的子树所能提供的最大交际评分P->sco0、邀请状态P->status(0表示未被邀请,1表示被邀请)

不妨设员工P有k个直接下属P₁、…、P_k,则 $P.\,sco1 = P.\,sco + \sum_{i=1}^k (P_i.\,sco0)$, $P.\,sco0 = \sum_{i=1}^k max\{P_i.\,sco1,P_i.\,sco0\}$,P.status = (P.sco1 > P.sco0) ? 1 : 0

设该公司的根结点为 P_0 ,显然整个宴会的最大交际评分和为 $\max\{P_0$ -> $sco1, P_0$ -> $sco0\}$

最后遍历整棵公司结构树的status域即可得到宾客名单。

复杂度:每个结点处只需计算一次,故复杂度为O(n)

4.

算法:

①取a' < a个25美分硬币

②取 $b = \lfloor \frac{n-25a}{10} \rfloor$ 个10美分硬币

③取 $c=\lfloor rac{n-25a-10b}{5}
floor$ 个5美分硬币

④取d = n - 25a - 10b - 5c个1美分硬币

证明最优:

以下采用反证法:

设存在与算法得到的结果(a,b,c,d)不同的最优找零结果(a',b',c',d'),根据步骤①分析易知 $a' \leq a$

若a' < a,则(0, b', c', d')的价值(0, b, c, d)的价值大25 * (a - a'),而至少需要3枚10、5、1美分的组合才能达到1个25美分硬币的价值,将这些组合全部用25美分的硬币替换掉可以得到更优的组合,与(a', b', c', d')最优矛盾,故a' = a

若c'< c,则(0, 0, 0, d')的价值(0, 0, 0, d)的价值大5 * (c - c'),而至少需要5枚1美分的组合才能达到1个5美分硬币的价值,将这些组合全部用5美分的硬币替换掉可以得到更优的组合,与(a', b', c', d')最优矛盾,结合a'=a、b'=b可知c'=c,进而d'=d,矛盾

故给出的算法能找到最优解