Franz W. Peren

Statistics for Business and Economics

Compendium of Essential Formulas

Second Edition

Statistics for Business and Economics

Franz W. Peren

Statistics for Business and Economics

Compendium of Essential Formulas

Second Edition

Franz W. Peren Bonn-Rhein-Sieg University Sankt Augustin, Germany

ISBN 978-3-662-65845-1 ISBN 978-3-662-65846-8 (eBook) https://doi.org/10.1007/978-3-662-65846-8

© Springer-Verlag GmbH Germany, part of Springer Nature 2021, 2022

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer-Verlag GmbH, DE, part of Springer Nature.

The registered company address is: Heidelberger Platz 3, 14197 Berlin, Germany

Preface

Preface to the 2nd edition

The 2nd edition of this compendium of formulas for economic statistics has been supplemented with numerous practical examples, especially in chapters 3 and 4. My valuable student and research assistants Steven Dyla, Nawid Schahab, and Paula Schmidt have contributed to the current edition. They deserve my thanks. Should any mistakes remain, such errors shall be exclusively at the expense of the author. The author is thankful in advance to all users of this formulary for any constructive comments or suggestions.

Bonn, June 2022

Franz W. Peren

Preface to the 1st edition

The following book is based on the author's expertise in the field of business statistics. After completing his studies in business administration and mathematics, he started his career working for a global bank and the German government. Later he became a professor of business administration, specialising in quantitative methods. He has been a professor at the Bonn-Rhein-Sieg University in Sankt Augustin, Germany since 1995, where he is mainly teaching business mathematics, business statistics, and operations research. He has also previously taught and conducted research at the University of Victoria in Victoria, BC, Canada and at Columbia University in New York City, New York, USA. To the author's best knowledge and beliefs, this formulary presents its statistical contents in a practical manner, as they are needed for meaningful and relevant application in global business, as well as in universities and economic practice.

The author would like to thank his academic colleagues who have contributed to this work and to many other projects with creativity, knowledge and dedication for more than 25 years. In particular, he would

VIII Preface

like to thank Ms. Eva Siebertz and Mr. Nawid Schahab, who were instrumental in managing and creating this formulary. Special thanks are given to Ms. Camilla Demuth, Ms. Linh Hoang, Ms. Michelle Jarsen, and Ms. Paula Schmidt. Should any mistakes remain, such errors shall be exclusively at the expense of the author. The author is thankful in advance to all users of this formulary for any constructive comments or suggestions.

Bonn, June 2021

Franz W. Peren

Contents

A	About the Author				
Li	st of Abbreviations	XVII			
1	Statistical Signs and Symbols	1			
2	Descriptive Statistics	3			
	2.1 Empirical Distributions	3 3 4			
	2.2 Mean Values and Measures of Dispersion	6 6 12			
	2.3 Ratios and Index Figures	22 22 25 38			
	2.4 Correlation Analysis	50			
	2.5 Regression Analysis	51 51			
	sion Function	55 57			
		٠.			

X Contents

		2.5.2	Multiple Linear Regression	62
			Coefficients of a Multiple Linear Regression Function	64
			2.5.2.2 Student's t-Tests for the Regression Coefficients of a Multiple Linear Regression Function	66
		2.5.3	Double Linear Regression	66
			2.5.3.1 Confidence Intervals for the Regression Coefficients of a Double Linear Regression Function	69
			sion Function	71
3	Inte	rentia	al Statistics	77
	3.1		ability Calculation	77
			Fundamental Terms/Definitions	77 82
	3.2		ability Distributions	88
			Concept of Random Variables Probability, Distribution and Density Function	88 89
		3.2.2	3.2.2.1 Discrete Random Variables	89
			3.2.2.2 Continuous Random Variables	91
		3.2.3	Parameters for Probability Distributions	94
	3.3		retical Distributions	96
			Discrete Distributions	96
		3.3.2	Continuous Distributions	106
	3.4		stical Estimation Methods (Confidence Intervals)	126
		3.4.1	Confidence Interval for the Arithmetic Mean of the Population μ	126
		3.4.2	Confidence Interval for the Variance of the	.20
			Population σ^2	130
		3.4.3	Confidence Interval for the Share Value in the Population θ	132

Contents XI

	3.4.4		ence Interval for the Difference of the Mean	134
	215	Confice	of Two Populations μ_1 and μ_2	134
	5.4.5		of Two Populations θ_1 and θ_2	138
2.5	Dotor	mination	of the Required Sample Size	141
3.5			ination of the Required Sample Size for	141
			mation of the Arithmetic Mean μ	141
	3.5.2	Determ	ination of the Required Sample Size for	
		an Estir	mation of the Share Value θ	143
3.6	Statis	tical Tes	ting Methods	145
			eter Tests	145
		3.6.1.1	Arithmetic Mean with Known Variance of	
			the Population One Sample Test	145
		3.6.1.2	Arithmetic Mean with Unknown Variance	
			of the	4.40
		0.04.0	Population One Sample Test	148 150
			Share Value One Sample Test Variance One Sample Test	150
			Difference of Two Arithmetic Means with	152
		0.0.1.0	Known Variances of the Population Two	
			Samples Test	155
		3.6.1.6	Difference of Two Arithmetic Means with	
			Unknown Variances of the Populations	
			under the Assumption that their Vari-	
			ances are Unequal Two Samples Test	157
		3.6.1.7	Difference of Two Arithmetic Means with	
			Unknown Variances of the Populations	
			under the Assumption that their Vari-	400
		2610	ances are Equal Two Samples Test Difference of Two Share Values Two	160
		3.0.1.0	Samples Test	163
		3619	Quotients of Two Variances Two Sam-	100
		0.0.1.0	ples Test	166
	3.6.2	Distribu	tion Tests (Chi-Squared Tests)	169
			Chi-Squared Goodness of Fit Test	169
			3.6.2.1.1 Chi-Squared Goodness of Fit	
			Test for a Discrete Distribution	
			of the Population	169

XII Contents

			3.6.2.1.2 Chi-Squared Goodness of Fit Test for a Continous Distribu- tion of the Population	175 179
		3.6.3	3.6.2.3 Chi-Squared Homogeneity Test Yates's Correction	185 190
4	Pro	babili	ty Calculation	193
	4.1	Terms	s and Definitions	193
	4.2	4.2.1 4.2.2 4.2.3	itions of Probability The Classical Definition of Probability The Statistical Definition of Probability The Subjective Definition of Probability Axioms of Probability Calculation	194 194 195 196
	4.3	4.3.1	rems of Probability Calculation	198 198 199
		4.3.4 4.3.5 4.3.6 4.3.7 4.3.8	The Addition Theorem Conditional Probability Stochastic Independence The Multiplication Theorem in General Form The Theorem of Total Probability Bayes' Theorem (Bayes' Rule) Overview of the Probability Calculation of Mutually Exclusive and Non-Exclusive Events	199 201 202 203 203 205 208
	4.4	4.4.1	om Variable	209 209 209
			The Distribution Function of Discrete Random Variables	211
		4.4.5	Continuous Random Variables Expected Value and Variance of Random Variables	212 217

Contents	XIII
A Statistical Tables	221
B Bibliography	299
Index	307

About the Author

Prof. Dr. rer. pol. Franz W. Peren, Ph.D., is a professor of business administration, specializing in quantitative methods. He has been teaching business mathematics, business statistics and quantitative methods in planning, taxation and controlling within operational and strategic management since 1993, mainly at German universities of applied sciences. He has also taught and conducted research as a visiting professor at the University of Victoria in Victoria, BC, Canada and at Columbia University in New York City, USA.

List of Abbreviations

bln billion

cm centimetre(s)

CV coefficient of variation

e Euler's number

ed. edition, editor

e.g. exempli gratia

Fig. figure

G geometric mean

GDP gross domestic product

H harmonic mean

i.e. id est

kWh kilowatt-hour(s)

lb/lbs libra

lim limit

max maximum, maximise

Me median

min minimum, minimise

Mo mode

mph miles per hour

PCI Peren-Clement index

QU quantity units

R range

rep. repetition

Tab. table

Var variance

Vol. volume

w/ with

w/out without

Chapter 1

Statistical Signs and Symbols

General

Signs/Symbols	Meaning
N	set of natural numbers $\{0,1,2,\}$ (formerly \mathbb{N}_0)
\mathbb{Z}	set of integers
\mathbb{Q}	set of rational numbers
\mathbb{R}	set of real numbers
\mathbb{C}	set of complex numbers
$a \ge b$	a is greater than or equal to b
$a \approx b$	a is approximately equal to b
$\sum_{i=1}^{n} a_i$	$a_1 + a_2 + \dots + a_n$
$\prod_{i=1}^{n} a_i$	$a_1 \cdot a_2 \cdot \ldots \cdot a_n$
$\frac{\mathrm{d}y}{\mathrm{d}x} = y'(x)$	1 st derivative of the function $y = y(x)$ with respect to the variable x
$\frac{\partial y}{\partial x}$	1 st partial derivative of the function y with respect to the variable x
ſ	integral
a	absolute value of a
$\lim_{x \to a} f(x)$	limit of the function $f(x)$, with x converging towards a

[©] Springer-Verlag GmbH Germany, part of Springer Nature 2022 F. W. Peren, *Statistics for Business and Economics*,

Set Theory

Symbols	Meaning
A'	transposed matrix for A
sgn(x)	algebraic sign of x
$\{a_1, a_2,, a_n\}$	set of the elements $a_1, a_2,, a_n$
${x \mid B(x)}$	set of all x , to which $B(x)$ applies
Ø, also {}	empty set (includes no elements)
$a \in A$	a is element of A
$a \notin A$	a is not element of A
A = B	A equals B
$A \subseteq B$, also $A \subset B$	A is subset of B
$A \subsetneq B$	A is proper subset of B
$A\supseteq B$, also $A\supset B$	A is superset of B
$A \cap B$	intersection of A and B
$A \cup B$	union of A and B
$A \backslash B$	relative complement of A and B
$ar{A}$	complement of A
$A \times B$	cartesian product of A and B
$\phi(A)$	power set of A

Chapter 2

Descriptive Statistics

2.1 Empirical Distributions

2.1.1 Frequencies

The frequency distribution is a clear and meaningful summary, sorted by frequencies of results in the form of tables, graphs and statistical measurement figures (e.g. mean values, measures of dispersion).

If a statistical characteristic exists in k different characteristic values, $x_1, x_2, ..., x_k$, for which, given a population of N elements or a sample of n observations, the

absolute frequencies,
$$h_i$$
 $h_1, h_2, ..., h_k$ with $0 \le h_i \le N$ and $\sum\limits_{i=1}^k h_i = N$ or $\sum\limits_{i=1}^k h_i = n$

are given, this results in the corresponding

relative frequencies,
$$f_i$$
 $f_1,\,f_2,\,...,\,f_k$ with $0\leq f_i\leq 1$ and $\sum\limits_{i=1}^k f_i=1$
$$f_i=\frac{h_i}{N} \qquad \text{or} \qquad f_i=\frac{h_i}{n}$$

i	Height [cm]	h_i	f_i
1	under 160	9	$0.09 = \frac{9}{100}$
2	[160 – 170 [28	0.28
3	[170 – 180 [35	0.35
4	[180 – 190[24	0.24
_ 5	190 ≤	4	0.04
\sum_{i}	-	100	1.0

Example: Height of 100 students

2.1.2 Cumulative Frequencies

By continuous summation (cumulation) of the absolute frequencies h_j , one obtains the *absolute* cumulative frequencies H_i .

$$H_i = h_1 + h_2 + ... + h_i$$
 $j = 1, ..., i$
= $\sum_{j=1}^{i} h_j$

By continuous summation of the relative frequencies f_j , one obtains the *relative* cumulative frequencies F_i .

$$F_i = f_1 + f_2 + ... + f_i$$

$$= \sum_{j=1}^i f_j \qquad \qquad j = 1, ..., i$$

$$= \frac{H_i}{N} \qquad \Rightarrow \text{ for the population}$$

$$= \frac{H_i}{n} \qquad \Rightarrow \text{ for the sample}$$

Cumulative Frequency Function for Ungrouped Data

$$F(x) = \begin{cases} 0 & \text{for} & x < x_1 \\ F_i & \text{for} & x_i \le x \le x_{i+1} \\ 1 & \text{for} & x \ge x_k \end{cases}$$
 with $i = 1, ..., k-1$

Example: Number of newspapers regularly read by students

i	x_i	h_i	f_i	H_i	F_i
1	0	200	0.160	200	0.160
2	1	510	0.407	710	0.567
3	2	253	0.202	963	0.769
4	3	163	0.130	1,126	0.899
_ 5	4	127	0.101	1,253	1.0
Σ	-	1,253	1.0	-	-

Cumulative Frequency Function for Grouped Data

The accumulated (absolute or relative) cumulative frequencies are each assigned to the ends of the class interval.

Example: Height of 100 students

i	Height [cm]	h_i	f_i	H_i	F_i
1	under 160	9	0.09	9	0.09
2	[160 – 170 [28	0.28	37	0.37
3	[170-180[35	0.35	72	0.72
4	[180 – 190 [24	0.24	96	0.96
_ 5	190 ≤	4	0.04	100	1.0
Σ	-	100	1.0	-	-

2.2 Mean Values and Measures of Dispersion

2.2.1 Mean Values

Arithmetic Mean (μ or \bar{x})

Definition for the population N with $x_1, x_2, ..., x_N$

$$\mu = \frac{1}{N}(x_1 + ... + x_N) = \frac{1}{N} \sum_{i=1}^{N} x_i$$

Definition for a sample in the range of n with $x_1, x_2, ..., x_n$

$$\bar{x} = \frac{1}{n}(x_1 + \dots + x_n) = \frac{1}{n} \sum_{i=1}^{n} x_i$$

Frequency Distributions

· absolute frequency distributions

$$\mu = \frac{1}{N} \sum_{i=1}^{k} x_i h_i = \frac{1}{N} (x_1 h_1 + x_2 h_2 + \dots + x_k h_k)$$

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{k} x_i h_i = \frac{1}{n} (x_1 h_1 + x_2 h_2 + \dots + x_k h_k)$$

· relative frequency distributions

$$\mu = \sum_{i=1}^{k} x_i f_i$$
 with $f_i = \frac{h_i}{N}$

$$\bar{x} = \sum_{i=1}^{k} x_i f_i$$
 with $f_i = \frac{h_i}{n}$

• with a frequency distribution of grouped data, the following applies

for the population:

$$\mu = \frac{1}{N} \sum_{i=1}^k x_i' h_i \ = \ \sum x_i' f_i \qquad \text{Usually the centre of the class interval is chosen}.$$

for the sample:

$$ar{x} = rac{1}{n} \sum_{i=1}^k x_i' h_i = \sum x_i' f_i$$
 Usually the centre of the class interval is chosen.

Example:

i	x_i hours of sleep per night	h_i people	f_i	F_i	H_i
1	8	3	0.176	0.176	3
2	6	1	0.059	0.235	4
3	7	7	0.412	0.647	11
4	10	4	0.235	0.882	15
_ 5	4	2	0.118	1	17
Σ	-	17	-	-	-

arithmetic mean

$$\mu = \frac{1}{17} (8 \cdot 3 + 6 \cdot 1 + 7 \cdot 7 + 10 \cdot 4 + 4 \cdot 2)$$
$$= 7.471 \text{ hours}$$

On average, the respondents slept 7.471 hours per night.

Median (Me)

The single values $x_1, x_2, ..., x_N$ are ordered, so that the following applies:

$$x_{[1]} \le x_{[2]} \le ... \le x_{[N]}$$
 with $x_{[j]} =$ the element x at the j^{th} position; $j = 1, ..., N$

Median for **uneven**
$$N$$
: $Me = x_{\lceil \frac{N+1}{2} \rceil}$

Example:

Height of five children in cm: 120, 150, 110, 124, 132

Sorting the values: 110, 120, 124, 132, 150

Calculating median:
$$\frac{N+1}{2}$$

$$\Rightarrow \frac{5+1}{2} = 3^{rd} \text{ observation}$$

$$\Rightarrow x_3 = 124$$

The median is 124 cm.

Median for **even**
$$N$$
:
$$Me = \frac{1}{2} \left(x_{\left[\frac{N}{2}\right]} + x_{\left[\frac{N}{2}+1\right]} \right)$$

Example:

Height of six children in cm: 131, 124, 135, 115, 119, 126

Sorting the values: 115, 119, 124, 126, 131, 135

Calculating median:
$$\frac{1}{2} \left(\frac{6}{2} + \frac{6}{2} + 1 \right)$$

= $\frac{1}{2} (x_3 + x_4)$
= $\frac{1}{2} (124 + 126)$

$$=\frac{1}{2}\cdot 250$$

The median is $125 \text{ cm} \cdot 125$

Frequency Distributions

For *ungrouped data*, the median is equal to the characteristic value x_i , for which the cumulative frequency function F(x) exceeds the value 0.5.

For *grouped data*, the median is calculated using the class interval's lower limit x_i^l and the class interval's upper limit x_i^u of the class, in which the cumulative frequency function F(x) exceeds the value 0.5.

$$\begin{split} \textit{Me} &= x_i^l + \alpha \\ \Rightarrow & \frac{\alpha}{0.5 - F(x_i^l)} = \frac{x_i^u - x_i^l}{F(x_i^u) - F(x_i^l)} \\ \Rightarrow & \alpha &= \frac{x_i^u - x_i^l}{F(x_i^u) - F(x_i^l)} \cdot (0.5 - F(x_i^l)) \\ \textit{Me} &= x_i^l + \frac{x_i^u - x_i^l}{F(x_i^u) - F(x_i^l)} \cdot (0.5 - F(x_i^l)) \end{split}$$

Mode (Mo)

The mode is defined as the most frequent characteristic value.

Example: newspapers read regularly

	$0 \ {\sf newspapers}$	\Rightarrow	19 people		
	1 newspaper	\Rightarrow	45 people		
	2 newspapers	\Rightarrow	24 people		
	3 newspapers	\Rightarrow	8 people		
$\Rightarrow Mo = 1$ newspaper, as 45 people form the largest (absolute) frequency					

For *grouped data*, the class interval with the highest frequency density is first selected as the modal class. The centre of this class interval is then defined as the mode.

density =
$$\frac{h_i}{\text{class width}}$$
 · standard class width

Example: Height of 100 students

i	Height [cm]	h_i	x_i'	Δx	Density
1	[140 – 160 [9	150	20	0.45
2	[160 – 170 [28	165	10	2.8
3	[170-180[35	175	10	3.5
4	[180 – 190 [24	185	10	2.4
5	[190-210[4	200	20	0.2
Σ	-	100	-	-	-

The highest frequency density is located in the third class interval:

$$x_3 = \frac{35}{10} = 3.5$$
 students per 10-cm-interval height

The centre of this class is 175 cm. $\Rightarrow Mo = 175 cm$

Geometric Mean (G)

Geometric mean for single values:

$$G = \sqrt[N]{x_1 \cdot x_2 \cdot \dots \cdot x_N}$$

Example:

Percentage p	7 %	3 %	-5 %	4 %
$x_i = 1 + \frac{p}{100}$	1.07	1.03	0.95	1.04

$$G = \sqrt[4]{1.07 \cdot 1.03 \cdot 0.95 \cdot 1.04} = 1.022$$

Geometric mean for frequency distributions:

$$G = \sqrt[N]{x_1^{h_1} \cdot x_2^{h_2} \cdot \dots \cdot x_k^{h_k}}$$
 with $i = 1, ..., k$

Example:

Percentage p	-3 %	-2 %	1 %	3 %
$x_i = 1 + \frac{p}{100}$	0.97	0.98	1.01	1.03
absolute frequencies H_i	3	2	4	1

$$n = 3 + 2 + 4 + 1 = 10$$

$$G = \sqrt[10]{0.97^3 \cdot 0.98^2 \cdot 1.01^4 \cdot 1.03^1} = 0.994 = -0.6\%$$

Tab. 2.1 shows at which scale level the application of the corresponding mean values is possible.

	Scale							
Mean value	Nominal scale	Ordinal scale	Interval scale	Ratio scale				
Mode	×	×	×	×				
Median		×	×	×				
Arithmetic mean			×	×				
Geometric mean				×				
Harmonic mean				×				

Tab. 2.1: Mean Values in Correspondence to Scale Levels¹

¹ Cf. Bleymüller, J. & Gehlert, G. (2011), p. 13.

Harmonic Mean (H)

$$H = \frac{n}{\sum_{i=1}^{n} \frac{1}{x_i}} = \frac{n}{\frac{1}{x_1} + \frac{1}{x_2} + \dots + \frac{1}{x_n}}$$

The dimension of the respective characteristic under consideration and the resulting harmonic mean corresponds to a quotient.

Example: A car drives 12 miles: a) 6 miles at 6 mph and b) 6 miles at 60 mph.

What is the average speed?
$$H = \frac{2}{\frac{1}{6mph} + \frac{1}{60mph}} = \frac{2}{\frac{10}{60} + \frac{1}{60}} = \frac{2}{\frac{11}{60}} = \frac{2 \cdot 60}{11} = 10.91 mph$$

Remark: The dimension of the characteristic considered here corresponds to the quotient *mph*.

2.2.2 Measures of Dispersion

Variance σ^2 / Standard Deviation σ

For single values:

Definition for the population N

$$\sigma^{2} = \frac{1}{N} \sum_{i=1}^{N} (x_{i} - \mu)^{2} = \frac{1}{N} \sum_{i=1}^{N} (x_{i}^{2}) - \mu^{2}$$
$$\sigma = \sqrt{\sigma^{2}}$$

Example:

US shoe sizes of four people: 9, 8, 10, 11

$$\mu = \frac{9 + 8 + 10 + 11}{4} = 9.5$$

$$\sigma^2 = \frac{(9 - 9.5)^2 + (8 - 9.5)^2 + (10 - 9.5)^2 + (11 - 9.5)^2}{4} = 1.25$$

$$\sigma = \sqrt{1.25} = 1.12$$

Definition for a sample of n observations with $x_1, x_2, ..., x_n$

$$s^{2} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2} = \frac{1}{n} \sum_{i=1}^{n} (x_{i}^{2}) - \bar{x}^{2}$$
$$s = \sqrt{s^{2}}$$

For frequency distributions:

• for absolute frequency distributions

$$\sigma^{2} = \frac{1}{N} \sum_{i=1}^{k} (x_{i} - \mu)^{2} h_{i} = \frac{1}{N} \sum_{i=1}^{k} (x_{i}^{2} h_{i}) - \mu^{2}$$

$$s^{2} = \frac{1}{n} \sum_{i=1}^{k} (x_{i} - \bar{x})^{2} h_{i} = \frac{1}{n} \sum_{i=1}^{k} (x_{i}^{2} h_{i}) - \bar{x}^{2}$$

Example of frequency d	distribution with	absolute	frequencies:
------------------------	-------------------	----------	--------------

i	x_i	h_i	$x_i h_i$	$x_i^2 h_i$
	Number of sold books of a particular book	Number of days		
1	0	19	0	0
2	1	34	34	34
3	2	17	34	68
4	3	6	18	54
5	4	12	48	192
Σ	-	88	-	348

$$\mu = \frac{1}{N} (x_1 \cdot h_1 + \dots + x_N \cdot h_N) = \frac{1}{N} \sum_{i=1}^{N} x_i h_i =$$

$$= \frac{1}{88} (0 \cdot 19 + 1 \cdot 34 + 2 \cdot 17 + 3 \cdot 6 + 4 \cdot 12) =$$

$$= 1.523$$

$$\sigma^2 = \frac{348}{88} - 1.523^2 =$$
= 1.635 books²

$$\sigma = \sqrt{1.635} = 1.279 \text{ books}$$

• for relative frequency distributions

$$\sigma^{2} = \sum_{i=1}^{k} (x_{i} - \mu)^{2} f_{i} = \sum_{i=1}^{k} (x_{i}^{2} f_{i}) - \mu^{2}$$

$$s^{2} = \sum_{i=1}^{k} (x_{i} - \bar{x})^{2} f_{i} = \sum_{i=1}^{k} (x_{i}^{2} f_{i}) - \bar{x}^{2}$$

Fxam	nle of	a frec	illencv	distribution	for	relative	frequencie	es.
LAGIII	וט טוק	ance	Juciicy	distribution	101	ICIALIVE	11 CquC11CIC	<i>-</i> 0.

i	x_i	h_i	$x_i h_i$	$x_i^2 h_i$	f_i	$x_i f_i$	$x_i^2 f_i$
	Number of sold books of a particular books	Number of days					
1	0	19	0	0	0.216	0	0
2	1	34	34	34	0.386	0.386	0.386
3	2	17	34	68	0.193	0.386	0.772
4	3	6	18	54	0.068	0.204	0.612
5	4	12	48	192	0.136	0.544	2.176
Σ	-	88	-	348	1.000	-	3.946

$$\mu = \frac{1}{N} (x_1 \cdot h_1 + \dots + x_N \cdot h_N) = \frac{1}{N} \sum_{i=1}^{N} x_i h_i =$$

$$= \frac{1}{88} (0 \cdot 19 + 1 \cdot 34 + 2 \cdot 17 + 3 \cdot 6 + 4 \cdot 12) =$$

$$= 1.523$$

$$\sigma^2 = 3.946 - 1.523^2 =$$
= 1.626 books²

$$\sigma = \sqrt{1.626} = 1.275 \text{ books}$$

With a frequency distribution of *grouped data*, the variance/standard deviation are approximately calculated using the centres of the class intervals x'_i .

· for absolute frequency distributions of grouped data

$$\sigma^{2} = \frac{1}{N} \sum_{i=1}^{k} (x_{i}' - \mu)^{2} h_{i} = \frac{1}{N} \sum_{i=1}^{k} (x_{i}'^{2} h_{i}) - \mu^{2}$$

$$s^{2} = \frac{1}{n} \sum_{i=1}^{k} (x_{i}' - \bar{x})^{2} h_{i} = \frac{1}{n} \sum_{i=1}^{k} (x_{i}'^{2} h_{i}) - \bar{x}^{2}$$

i	Height [cm]	h_i	x_i'	Δx	Density	$x_i'h_i$	$x_i^{\prime 2}h_i$
1	[140 – 160[9	150	20	0.45	1,350	202,500
2	[160 – 170[28	165	10	2.8	4,620	762,300
3	[170 – 180[35	175	10	3.5	6,125	1,071,875
4	[180 – 190[24	185	10	2.4	4,440	821,400
_ 5	[190-210[4	200	20	0.2	800	160,000
Σ	-	100	-	-	-	-	3,018,075

Example: Height of 100 students

with $x_i'=$ class midpoint, $\Delta x=$ class width, $\text{density of the elements}=\frac{h_i}{\Delta x}=\text{elements per unit}$

$$\mu = \frac{1}{N} (x'_1 \cdot h_1 + \dots + x'_N \cdot h_N) = \frac{1}{N} \sum_{i=1}^{N} x'_i h_i =$$

$$= \frac{1}{100} (150 \cdot 9 + 165 \cdot 28 + 175 \cdot 35 + 185 \cdot 24 + 200 \cdot 4) =$$

$$= 173.35$$

$$\sigma^2 = \frac{3,018,075}{100} - 173.35^2 =$$
= 130.5275 cm²

$$\sigma = \sqrt{130.5275} = 11.425 \text{ cm}$$

· for relative frequency distributions of grouped data

$$\sigma^{2} = \sum_{i=1}^{k} (x'_{i} - \mu)^{2} f_{i} = \sum_{i=1}^{k} (x'_{i}^{2} f_{i}) - \mu^{2}$$

$$s^{2} = \sum_{i=1}^{k} (x'_{i} - \bar{x})^{2} f_{i} = \sum_{i=1}^{k} (x'_{i}^{2} f_{i}) - \bar{x}^{2}$$

Example: Height of	100 students
--------------------	--------------

i	Height [cm]	h_i	x_i'	Δx	Density	f_i	$x_i'f_i$	$x_i^{\prime 2} f_i$
1	[140 – 160[9	150	20	0.45	0.09	13.5	2,025
2	[160 – 170[28	165	10	2.8	0.28	46.2	7,623
3	[170 – 180[35	175	10	3.5	0.35	61.25	10,718.75
4	[180 – 190[24	185	10	2.4	0.24	44.4	8,214
5	[190 – 210[4	200	20	0.2	0.04	8	1,600
Σ	-	100	-	-	-	1	-	30,180.75

with
$$x_i'=$$
 class midpoint,
$$\Delta x=$$
 class width,
$$\text{density of the elements}=\frac{h_i}{\Delta x}=\text{elements per unit}$$

$$\mu = \frac{1}{N} (x'_1 \cdot h_1 + \dots + x'_N \cdot h_N) = \frac{1}{N} \sum_{i=1}^{N} x'_i h_i =$$

$$= \frac{1}{100} (150 \cdot 9 + 165 \cdot 28 + 175 \cdot 35 + 185 \cdot 24 + 200 \cdot 4) =$$

$$= 173.35$$

$$\sigma^2 = 30,180.75 - 173.35^2 =$$
= 130.5275 cm²

$$\sigma = \sqrt{130.5275} = 11.425 \text{ cm}$$

If the distribution of the characteristic values is unimodal and the class widths Δx are constant, Sheppard's correction leads to a better approximate value:

$$\sigma_{corr.}^2 = \sigma^2 - \frac{(\Delta x)^2}{12}$$

Example: Height of 100 stude

i	Height [cm]	h_i	x_i'	Δx	Density	$x_i'h_i$	$x_i^{\prime 2}h_i$	f_i	$x_i'f_i$	$x_i^{\prime 2} f_i$
1	[140 – 150[9	145	10	0.9	1,305	189,225	0.09	13.05	1,892.25
2	[150 – 160[28	155	10	2.8	4,340	672,700	0.28	43.4	6,727
3	[160 – 170[35	165	10	3.5	5,775	952,875	0.35	57.75	9,528.75
4	[170 – 180[24	175	10	2.4	4,200	735,000	0.24	42	7,350
5	[180 - 190[4	185	10	0.4	740	136,900	0.04	7.4	1,369
Σ	-	100	-	-	-	ı	2,686,700	1	-	26,867

$$\mu = \frac{1}{N} (x'_1 \cdot h_1 + \dots + x'_N \cdot h_N) = \frac{1}{N} \sum_{i=1}^{N} x'_i h_i =$$

$$= \frac{1}{100} (145 \cdot 9 + 155 \cdot 28 + 165 \cdot 35 + 175 \cdot 24 + 185 \cdot 4) =$$

$$= 163.6$$

$$\sigma^2 = 26,867 \, - \, 163.6^2 =$$

$$= 102.04 \; \text{cm}^2$$

$$\sigma = \sqrt{102.04} = 10.10 \text{ cm}$$

Sheppard's correction:

$$\sigma_{korr.}^2 = \sigma^2 - \frac{(\Delta x)^2}{12} =$$

$$= 102.04 - \frac{(10)^2}{12} =$$

$$= 93.706$$

The absolute frequencies h_i show that this distribution is unimodal. The maximum of this distribution is within the class i = 3.

Fig. 2.1: Example of a unimodal frequency distribution with constant class width

Coefficient of Variation (CV)

$$CV = \frac{\sigma}{\mu} (\cdot 100\%)$$
 or $CV = \frac{s}{\bar{x}} (\cdot 100\%)$

Example:

Height of six people in cm: 174, 168, 151, 160, 171, 147

$$\mu = \frac{1}{6} \left(174 + 168 + 151 + 160 + 171 + 147 \right) =$$
 = 161.83 cm

$$\begin{split} \sigma^2 \, = \, \frac{(-14.83)^2 + (-10.83)^2 + (-1.83)^2 + 6.17^2 + 9.17^2 + 12.17^2}{6} \, = \\ &= \, 101.806 \; \text{cm}^2 \end{split}$$

$$\sigma = \sqrt{101.806} = 10.09 \text{ cm}$$

$$CV = \frac{\sigma}{\mu \text{ or } \bar{x}} = \frac{10.09}{161.83} = 0.062$$

Range (R)

If the single values $x_1, x_2, ..., x_N$ are arranged according to size, so that:

$$x_{[1]} \le x_{[2]} \le \dots \le x_{[N]},$$

the following applies:

$$R = x_{[N]} - x_{[1]}$$
 or $R = x_{maximum} - x_{minimum}$

Example:

Person	1	2	3	4	5	6
Age in years	17	24	12	42	60	11

Range: 60 - 11 = 49 years

• for grouped data

R = upper limit of the largest class interval minus lower limit of the smallest class interval

Example: Height of 100 students

i	Height [cm]	h_i	x_i'	Δx	Density
1	[140 – 160[9	150	20	0.45
2	[160 - 170[28	165	10	2.8
3	[170 – 180[35	175	10	3.5
4	[180 – 190[24	185	10	2.4
_ 5	[190 – 210[4	200	20	0.2
Σ	-	100	-	-	-

$$R = 210 - 140 = 70 \ cm$$

Tab. 2.2 shows at which scale level the calculation of the corresponding measure of dispersion is possible.

Manageman	Scale							
Measures of dispersion	Nominal scale	Ordinal scale	Interval scale	Ratio scale				
Range		×	×	×				
Mean absolute deviation			×	×				
Variance, standard deviation			×	×				
Coefficient of variation				×				

Tab. 2.2: Measures of Dispersion in Correspondence to Scale Levels²

² Cf. Bleymüller, J. & Gehlert, G. (2011), p. 17.

2.3 Ratios and Index Figures

2.3.1 Ratios

Ratios are key figures that are formed as quotients (Fig. 2.2).

Fig. 2.2: Ratio Figures³

Examples:

Classification figures

These relate a partial quantity to a corresponding total quantity

e.g.: consumption rate
$$=\frac{\text{consumption}}{\text{income}^4} \cdot 100 \%$$

³ Cf. Voß, W. (2000), p. 209.

⁴ Generally, the disposable income is chosen here.

Relationship figures

These relativise two measures that belong to different sets, i.e. the numerator of the quotient is not a subset of the denominator. In the case of relationship figures, a distinction is made between causation figures and correlation figures.

In the case of *causation figures*, the subset measured in the numerator is "caused" by the mass shown in the denominator:

e.g.: productivity
$$=$$
 $\frac{\text{output}}{\text{input}}$ $=$ $\frac{\text{profit}}{\text{capital}}$

In the case of *correlation figures*, there is no causality between the masses shown in the numerator and denominator:

e.g.: population density
$$=$$
 $\frac{\text{population}}{\text{area}}$ density of doctors $=$ $\frac{\text{number of doctors}}{\text{population}}$

A **measurement figure** m_{0t} describes the ratio of a (usually current) value x_t to the base value x_0 , where t is the reporting period or reporting time and 0 is the base period (reference period) or base time (reference time):

$$m_{0t} = rac{x_t}{x_0}$$
 or $rac{x_t}{x_0} \cdot 100\,\%$ with $t=$ reporting period or reporting time $0=$ base period or base time

Properties of Measurement Figures

- (1) If the base and reporting periods or base and reporting time are equal, the following applies: $m_{0t} = 1$.
- (2) Measurement figures are dimensionless. The same dimensions of x_t and x_0 cancel each other out.
- (3) If base and reporting periods or base and reporting time are swapped reciprocally, the following applies: $m_{t0} = \frac{1}{m_{Ot}}$.
- (4) Several periods (0, s and t) can be concatenated or uniformly based (see: Operations with Measurement Figures).
- (5) If the value W is the product of P and Q for all periods, the following applies analogously to the measurement figures: $m_{Ot}^W = m_{Ot}^P \cdot m_{Ot}^Q$ (factor reversal sampling).

Operations with Measurement Figures

Concatenation: $m_{0t} = m_{0s} \cdot m_{st}$

Rebasing: $m_{st} = \frac{m_{0t}}{m_{0s}}$

Growth rate: $w_t = \frac{x_t - x_{t-1}}{x_{t-1}} \cdot 100\%$ or $w_t = \left(\frac{x_t}{x_{t-1}} - 1\right) \cdot 100\%$

Examples for Measurement Figures:

- 1. Index figures (see chapter 2.3.2)
- 2. Growth rate

The (nominal) gross domestic product (GDP) of an economy in three subsequent years t_i with i = 1, ..., 3 is:

 $t_1 = \$3,700 \text{ bln}, t_2 = \$3,800 \text{ bln}, t_3 = \$3,900 \text{ bln}.$

The annual economic growth, measured as the rate of change in nominal GDP, is calculated as follows:

$$\begin{aligned} w_{t_1-t_2} &= \frac{3,800-3,700}{3,700} \cdot 100 \,\% = 2.70 \,\% \\ w_{t_2-t_3} &= \frac{3,900-3,800}{3,800} \cdot 100 \,\% = 2.63 \,\% \end{aligned} \quad \begin{array}{l} \text{(reference period)} \\ t_1 \text{ corresponds to the base period} \\ \text{(reference period)} \\ t_2 \text{ corresponds to the base period} \\ \end{array}$$

2.3.2 Index Figures

Index figures measure aggregated changes.

Symbols for Prices and Quantities

 $p_0^{(j)}$... price of good j at base period or at base time $p_t^{(j)}$... price of good j at reporting period or at reporting time $q_0^{(j)}$... quantity of good j at base period or at base time $q_t^{(j)}$... quantity of good j at reporting period or at reporting time

Example:

	Price		Quantity					
Goods_j	Base period	Reporting period	Base period	Reporting period	<i>p</i> 0 <i>q</i> 0	$p_t q_t$	p_0q_t	$p_t q_0$
	Pо	p_t	q_0	q_t				
1	5	7	3	6	15	42	30	21
2	7	9	6	13	42	117	91	54
3	8	4	10	15	80	60	120	40
4	10	12	7	19	70	228	190	96
Σ	-	-	-	-	207	447	431	211

Tab. 2.3: Example with one base period and one reporting period

Sales Index/Value Index

$$U_{0t} = \frac{\sum p_t q_t}{\sum p_0 q_0} \cdot 100\%$$

Example:

$$U_{0t} = \frac{447}{207} \cdot 100 \% =$$

$$= 2.1594 \cdot 100 \% =$$

$$= 215.94$$

The sales generated within the reporting period more than doubled those generated at the base period, i.e. the sales generated within the reporting period correspond to $215.94\,\%$ of those generated at the base period, i.e. 2.1594 times.

Laspeyres⁵ Price Index

$$P_{0t}^{L} = \frac{\sum_{j=1}^{n} \frac{p_{0}^{(j)}}{p_{0}^{(j)}} \cdot p_{0}^{(j)} q_{0}^{(j)}}{\sum_{j=1}^{n} p_{0}^{(j)} q_{0}^{(j)}} \cdot 100 \% =$$

$$= \frac{\sum_{j=1}^{n} p_{t}^{(j)} q_{0}^{(j)}}{\sum_{j=1}^{n} p_{0}^{(j)} q_{0}^{(j)}} \cdot 100 \% =$$

$$= \frac{\sum_{j=1}^{n} p_{0}^{(j)} q_{0}^{(j)}}{\sum_{j=1}^{n} p_{0}^{(j)} q_{0}^{(j)}} \cdot 100 \%$$

Example:

$$P_{0t}^{L} = \frac{211}{207} \cdot 100 \% =$$

$$= 1.0193 \cdot 100 \% =$$

$$= 101.93 \%$$

The prices of this shopping cart within the reporting period increased by 1.93 percent compared to those at the base period, i.e. during the reporting period according to Laspeyres, they amounted to 1.0193 times the average price level within the base period.

Laspeyres Volume Index

$$Q_{0t}^{L} = \frac{\sum q_{t} p_{0}}{\sum q_{0} p_{0}} \cdot 100\% = \frac{U_{0t}}{P_{0t}^{P}}$$

Example:

$$Q_{0t}^L = \frac{431}{207} \cdot 100 \% = 208.21 \%$$

⁵ Ernst Louis Étienne Laspeyres (1834 - 1913) was a German national economist and statistician.

The quantities of this shopping cart within the reporting period more than doubled those at the base period, i.e. during the reporting period according to Laspeyres, they amounted to 2.0821 times the average quantity level within the base period.

Paasche⁶ Price Index

$$P_{0t}^{P} = \frac{\sum_{j=1}^{n} \frac{p_{t}^{(j)}}{p_{0}^{(j)}} \cdot p_{0}^{(j)} q_{t}^{(j)}}{\sum_{j=1}^{n} p_{0}^{(j)} q_{t}^{(j)}} \cdot 100 \% =$$

$$= \frac{\sum_{j=1}^{n} p_{t}^{(j)} q_{t}^{(j)}}{\sum_{j=1}^{n} p_{0}^{(j)} q_{t}^{(j)}} \cdot 100 \% =$$

$$= \frac{\sum_{j=1}^{n} p_{t} q_{t}}{\sum_{j=1}^{n} p_{0} q_{t}} \cdot 100 \%$$

Example:

$$P_{0t}^{P} = \frac{447}{431} \cdot 100 \% =$$

$$= 1.0371 \cdot 100 \% =$$

$$= 103.71 \%$$

The prices of this shopping cart within the reporting period increased by 17.81 percent compared to those at the base period, i.e. during the reporting period according to Paasche, they amounted to 1.1781 times the average price level within the base period.

Paasche Volume Index

$$Q_{0t}^{P} = \frac{\sum q_{t} p_{t}}{\sum q_{0} p_{t}} \cdot 100\% = \frac{U_{0t}}{P_{0t}^{L}}$$

⁶ Hermann Paasche (1851 - 1925) was a German statistician.

Example:

$$Q_{0t}^P = \frac{447}{211} \cdot 100 \% = 211.85 \%$$

The volumes of this shopping cart within the reporting period more than doubled those at the base period, i.e., during the reporting period according to Paasche, they amounted to 2.1185 times the average volume level within the base period.

Sales Index/Value Index as Index Product

$$U_{0t} = P_{0t}^L Q_{0t}^P = P_{0t}^P Q_{0t}^L$$

Example:

$$U_{0t} = \frac{447}{431} \cdot \frac{431}{207} \cdot 100 \% =$$
$$= 215.94 \%$$

or

$$U_{0t} = \frac{101.93 \cdot 211.85}{100} = \frac{103.71 \cdot 208.21}{100} = 215.94 \%$$

Fisher⁷ Price Index

$$P_{0t}^{F} = \sqrt{P_{0t}^{L} \cdot P_{0t}^{P}} \cdot 100\%$$

Example:

$$P_{0t}^{F} = \sqrt{\frac{211}{207} \cdot \frac{447}{431}} \cdot 100 \% =$$

$$= \sqrt{1.0193 \cdot 1.0371} \cdot 100 \% =$$

$$= 102.82 \%$$

⁷ Irving Fisher (1867 - 1947) was an American economist.

Fisher Volume Index

$$Q_{0t}^F = \sqrt{Q_{0t}^L \cdot Q_{0t}^P} \cdot 100 \%$$

Example:

$$Q_{0t}^F = \sqrt{\frac{431}{207} \cdot \frac{447}{211}} \cdot 100 \% =$$

$$= \sqrt{2.0821 \cdot 2.1185} \cdot 100 \% =$$

$$= 210.02 \%$$

Stuvel Price Index⁸

$$\begin{split} P_{0t}^{ST} \; = \; \left(\; \frac{P_{0t}^L - Q_{0t}^L}{2} \; + \; \sqrt{\left(\frac{P_{0t}^L - Q_{0t}^L}{2} \right)^2 \; + \; U_{0t}} \; \; \right) \cdot \; 100 \, \% \\ \text{with} \quad U_{0t} \; = \; \frac{\sum p_t \, q_t}{\sum p_0 \, q_0} \quad \text{(sales-/value index)} \end{split}$$

Example:

$$P_{0t}^{ST} = \left(\frac{1.0193 - 2.0821}{2} + \sqrt{\left(\frac{1.0193 - 2.0821}{2}\right)^2 + 2.1594}\right) \cdot 100\% =$$

$$= 1.0312 \cdot 100\% =$$

$$= 103.12\%$$

Stuvel Volume Index9

$$Q_{0t}^{ST} = \left(\frac{Q_{0t}^{L} - P_{0t}^{L}}{2} + \sqrt{\left(\frac{Q_{0t}^{L} - P_{0t}^{L}}{2}\right)^{2} + U_{0t}}\right) \cdot 100\%$$

⁸ The *Stuvel Price Index* can also be explained as a special case of the *Banerjee* approach. Cf. Banerjee, K.S. (1977): On the Factorial Approach Providing the True Cost of Living Index, Göttingen.

⁹ The *Stuvel Volume Index* can also be explained as a special case of the *Banerjee* approach. Cf. Banerjee, K.S. (1977): On the Factorial Approach Providing the True Cost of Living Index, Göttingen.

with
$$U_{0t} = \frac{\sum p_t q_t}{\sum p_0 q_0}$$
 (sales-/value index)

Example:

$$Q_{0t}^{ST} = \left(\frac{2.0821 - 1.0193}{2} + \sqrt{\left(\frac{2.0821 - 1.0193}{2}\right)^2 + 2.1594}\right) \cdot 100\% =$$

$$= 2.094 \cdot 100\% =$$

$$= 209.4\%$$

Example:

A household consumed in the years 2014 - 2020 products A, B and C in the following volumes:

		Product A		Product B		Product C	
k	Year	volumes	prices per unit	volumes	prices per unit	volumes	prices per unit
0	2014	300	0.25	180	0.70	96	0.80
1	2015	250	0.30	145	0.71	100	1.10
2	2016	340	0.41	290	0.73	142	0.95
3	2017	170	0.28	242	0.72	200	0.96
4	2018	190	0.21	311	0.69	170	0.87
5	2019	245	0.19	196	0.68	164	0.91
6	2020	320	0.31	215	0.74	171	1.02

Tab. 2.4: Example with one base period (year 2014) and five subsequent periods

Lowe¹⁰ Price Index

$$P_{0t}^{LO} = \frac{\sum p_i^{(t)} q_i}{\sum p_i^{(0)} q_i} \cdot 100\%$$
 with $q_i = \frac{1}{t+1} \sum_{k=0}^{t} q_i^k$

 q_i is the arithmetic mean of the values within the periods 0 to t.

Example:

$$q_1 = \frac{1}{7} (300 + 250 + 340 + 170 + 190 + 245 + 320) = 259.29$$

$$q_2 = \frac{1}{7} (180 + 145 + 290 + 242 + 311 + 196 + 215) = 225.57$$

$$q_3 = \frac{1}{7} (96 + 100 + 142 + 200 + 170 + 164 + 171) = 149.00$$

$$P_{06}^{LO} = \frac{0.31 \cdot 259.29 + 0.74 \cdot 225.57 + 1.02 \cdot 149.00}{0.25 \cdot 259.29 + 0.70 \cdot 225.57 + 0.80 \cdot 149.00} \cdot 100 \% =$$

$$= \frac{399.28}{341.92} \cdot 100 \% =$$

$$= 116.78 \%$$

Lowe Volume Index

$$Q_{0t}^{LO} = \frac{\sum q_i^{(t)} p_i}{\sum q_i^{(0)} p_i} \cdot 100\%$$
 with $p_i = \frac{1}{t+1} \sum_{k=0}^{t} p_i^k$

 p_i is the arithmetic mean of the values within the periods 0 to t.

Example:

$$p_1 = \frac{1}{7} (0.25 + 0.30 + 0.41 + 0.28 + 0.21 + 0.19 + 0.31) = 0.28$$

 $p_2 = \frac{1}{7} (0.70 + 0.71 + 0.73 + 0.72 + 0.69 + 0.68 + 0.74) = 0.71$

¹⁰ Adolph Lowe, born Adolf Löwe, (1893 - 1995) was a German sociologist and national economist.

$$p_{3} = \frac{1}{7} (0.80 + 1.10 + 0.95 + 0.96 + 0.87 + 0.91 + 1.02) = 0.94$$

$$Q_{06}^{LO} = \frac{320 \cdot 0.28 + 215 \cdot 0.71 + 171 \cdot 0.94}{300 \cdot 0.28 + 180 \cdot 0.71 + 96 \cdot 0.94} \cdot 100 \% =$$

$$= \frac{402.99}{302.04} \cdot 100 \% =$$

$$= 133.42 \%$$

Laspeyres Price Index

Example:

$$\begin{split} P_{06}^{L} &= \frac{\sum p_{6}q_{0}}{\sum p_{0}q_{0}} \cdot 100 \% = \\ &= \frac{(0.31 \cdot 300) + (0.74 \cdot 180) + (1.02 \cdot 96)}{(0.25 \cdot 300) + (0.70 \cdot 180) + (0.80 \cdot 96)} \cdot 100 \% = \\ &= \frac{324.12}{277.80} \cdot 100 \% = \\ &= 116.67 \% \end{split}$$

Laspeyres Volume Index

Example:

$$Q_{06}^{L} = \frac{\sum p_0 q_6}{\sum p_0 q_0} \cdot 100 \% =$$

$$= \frac{(0.25 \cdot 320) + (0.70 \cdot 215) + (0.80 \cdot 171)}{(0.25 \cdot 300) + (0.70 \cdot 180) + (0.80 \cdot 96)} \cdot 100 \% =$$

$$= \frac{367.30}{277.80} \cdot 100 \% =$$

$$= 132.22 \%$$

Alternative calculation using the sales/value index U_{06} and the price index according to Paasche P_{06}^P :

$$Q_{06}^{L} = \frac{U_{06}}{P_{06}^{P}} =$$

$$= \frac{432.72/277.80}{432.72/367.30} \cdot 100 \% = \frac{1.5577}{1.1781} \cdot 100 \% =$$

$$= 132.22 \%$$

with

$$U_{06} = \frac{\sum p_6 q_6}{\sum p_0 q_0} =$$

$$= \frac{(0.31 \cdot 320) + (0.74 \cdot 215) + (1.02 \cdot 171)}{(0.25 \cdot 300) + (0.70 \cdot 180) + (0.80 \cdot 96)} =$$

$$= \frac{432.72}{277.80} = 1.5577$$

$$P_{06}^P = \frac{\sum p_6 q_6}{\sum p_0 q_6} =$$

$$= \frac{(0.31 \cdot 320) + (0.74 \cdot 215) + (1.02 \cdot 171)}{(0.25 \cdot 320) + (0.70 \cdot 215) + (0.80 \cdot 171)} =$$

$$= \frac{432.72}{367.30} = 1.1781$$

Paasche Price Index

Example:

$$P_{06}^{P} = \frac{\sum p_{6}q_{6}}{\sum p_{0}q_{6}} \cdot 100 \% =$$

$$= \frac{(0.31 \cdot 320) + (0.74 \cdot 215) + (1.02 \cdot 171)}{(0.25 \cdot 320) + (0.70 \cdot 215) + (0.80 \cdot 171)} \cdot 100 \% =$$

$$= \frac{432.72}{367.30} \cdot 100 \% =$$

$$= 117.81 \%$$

Paasche Volume Index

Example:

$$Q_{06}^{P} = \frac{\sum p_6 q_6}{\sum p_6 q_0} \cdot 100 \% =$$

$$= \frac{(0.31 \cdot 320) + (0.74 \cdot 215) + (1.02 \cdot 171)}{(0.31 \cdot 300) + (0.74 \cdot 180) + (1.02 \cdot 96)} \cdot 100 \% =$$

$$= \frac{432.72}{324.12} \cdot 100 \% =$$

$$= 133.51 \%$$

Alternative calculation using the sales/value index U_{06} and the price index according to Laspeyres P_{06}^{L} :

$$Q_{06}^P = \frac{U_{06}}{P_{06}^L} =$$

$$= \frac{432.72/277.80}{324.12/277.80} \cdot 100 \% = \frac{1.5577}{1.1667} \cdot 100 \% =$$

$$= 133.51 \%$$

with

$$\begin{split} U_{06} &= \frac{\sum p_6 q_6}{\sum p_0 q_0} = \\ &= \frac{(0.31 \cdot 320) + (0.74 \cdot 215) + (1.02 \cdot 171)}{(0.25 \cdot 300) + (0.70 \cdot 180) + (0.80 \cdot 96)} = \\ &= \frac{432.72}{277.80} = 1.5577 \\ P_{06}^L &= \frac{\sum p_6 q_0}{\sum p_0 q_0} = \\ &= \frac{(0.31 \cdot 300) + (0.74 \cdot 180) + (1.02 \cdot 96)}{(0.25 \cdot 300) + (0.70 \cdot 180) + (0.80 \cdot 96)} = \end{split}$$

$$= \frac{324.12}{277.80} = 1.1667$$

Fisher Price Index

Example:

$$P_{06}^{F} = \sqrt{P_{06}^{L} \cdot P_{06}^{P}} \cdot 100 \% =$$

$$= \sqrt{\frac{324.12}{277.80} \cdot \frac{432.72}{367.30}} \cdot 100 \% =$$

$$= \sqrt{1.1667 \cdot 1.1781} \cdot 100 \% =$$

$$= 117.24 \%$$

Fisher Volume Index

Example:

$$Q_{06}^{F} = \sqrt{Q_{06}^{L} \cdot Q_{06}^{P}} \cdot 100 \% =$$

$$= \sqrt{\frac{367.30}{277.80} \cdot \frac{432.72}{324.12}} \cdot 100 \% =$$

$$= \sqrt{1.3222 \cdot 1.3351} \cdot 100 \% =$$

$$= 132.86 \%$$

Marshall¹¹ Edgeworth¹² Price Index

$$P_{0t}^{ME} = \frac{\sum p_{it}(q_{i0} + q_{it})}{\sum p_{i0}(q_{i0} + q_{it})} \cdot 100\%$$

¹¹ Alfred Marshall (1842 - 1924) was a British national economist.

¹² Francis Ysidro Edgeworth (1845 - 1926) was an Irish economist.

Example:

$$\begin{split} P_{06}^{ME} &= \frac{\sum p_{i6}(q_{i0}+q_{i6})}{\sum p_{i0}(q_{i0}+q_{i6})} \cdot 100 \% = \\ &= \frac{0.31 \ (300+320) + 0.74 \ (180+215) + 1.02 \ (96+171)}{0.25 \ (300+320) + 0.70 \ (180+215) + 0.80 \ (96+171)} \cdot 100 \% = \\ &= \frac{756.84}{645.10} \cdot 100 \% = \\ &= 117.32 \% \end{split}$$

Walsh Price Index

$$P_{0t}^{W} = \frac{\sum p_{it}(q_{i0}q_{it})^{0.5}}{\sum p_{i0}(q_{i0}q_{it})^{0.5}} \cdot 100\%$$

Example:

$$P_{06}^{W} = \frac{\sum p_{i6}(q_{i0}q_{i6})^{0.5}}{\sum p_{i0}(q_{i0}q_{i6})^{0.5}} \cdot 100\% =$$

$$= \frac{0.31(300 \cdot 320)^{0.5} + 0.74(180 \cdot 215)^{0.5} + 1.02(96 \cdot 171)^{0.5}}{0.25(300 \cdot 320)^{0.5} + 0.70(180 \cdot 215)^{0.5} + 0.80(96 \cdot 171)^{0.5}} \cdot 100\% =$$

$$= \frac{372.31}{317.67} \cdot 100\% =$$

$$= 117.20\%$$

2.3.3 Peren-Clement Index (PCI)¹³

The PCI¹⁴ is a risk index for the assessment of country risks in *Foreign Direct Investments*.

The PCI is determined by three factors:

- · cross-company factors,
- · cost and production-oriented factors, and
- · sales-oriented factors.

Cross-company factors include:

- · political and social stability.
- state influence on business decisions and bureaucratic obstacles,
- · general economic policy,
- · investment incentives.
- · enforceability of contractual agreements, and
- the respect of property rights in the transfer of technology and know-how

Cost and production-oriented factors include:

- · legal restrictions on production,
- · cost of capital in the host country and possibilities of capital import,
- · availability and cost of acquiring land and property,
- · availability and cost of labour,
- availability and cost of fixed assets, raw materials and supplies in the host country,
- trade barriers to the import of goods, and
- availability and quality of infrastructure and government services

¹³ Reiner Clement (1958 - 2017) was a German economist.

¹⁴ Cf. Pakusch, C.; Peren, F.W. & Shakoor, M.A. (2016): The PCI - A Global Risk Index for the Simultaneous Assessment of Macro and Company Individual Investment Risks. In: Journal of Business Strategies, 33(2), p. 154-173; Clement, R. & Peren, F.W. (2017): Peren-Clement-Index: Bewertung von Direktinvestitionen durch eine simultane Erfassung von Makroebene und Unternehmensebene, Wiesbaden; Pakusch, C.; Peren, F.W. & Shakoor, M.A. (2018): Peren-Clement-Index – eine exemplarische Fallstudie. In: Gadatsch, A. et al. (Ed.): Nachhaltiges Wirtschaften im digitalen Zeitalter: Innovation - Steuerung - Compliance, Wiesbaden, p. 105-117.

Sales-oriented factors include:

- · size and dynamics of the market,
- · competitive situation,
- · reliability, quality of local contractors,
- · quality and sales opportunities, and
- · trade barriers to exports from the host country

Depending on the type of investment or motives of the respective companies, there are different location factors or differing weightings of the various factors.

PCI | Case Study

Environment	Points	Weight	Sum
Political and social stability		4	
Bureaucratic obstacles		2	
Economic policy		3	
Legal security		3	
Solvency		3	
Sum		15	

Localisation	Points	Weight	Sum
Human capital		4	
Transport connections		2	
Management skills		2	
Access to markets		2	
Quality of life		3	
Sum		13	

Production	Points	Weight	Sum
Economic and property rights		2	
Manufacturing costs		2	
Capital procurement		3	
Complementary industries		2	
Investment incentives		2	
Sum		11	

Sales	Points	Weight	Sum
Size and dynamic of the market		3	
Per capita income		2	
Avoidance of tariff barriers		2	
Reliability of local contractors		2	
Distribution structures		2	
Sum		11	

Total score PCI	
10.00.000.000	

Tab. 2.5: Structural Arrangement of PCI

Company A and Company B want to internationalise. Both Countries/ Regions X and Y are eligible for direct investment abroad. Both companies use the index presented here (Tab. 2.5) to measure and make a comparative quantitative assessment of country risks. The PCI shows a total score of 71 points for Country X (Tab. 2.6). This value implies a relatively low investment risk.

Investment Alternative 1: Country/Region X PCI = 71

Environment	Points	Weight	Sum
Political and social stability	1.5	4	6
Bureaucratic obstacles	2	2	4
Economic policy	2	3	6
Legal security	1.5	3	4.5
Solvency	1.5	3	4.5
Sum		15	25

Localisation	Points	Weight	Sum
Human capital	0.5	4	2
Transport connections	2	2	4
Management skills	0	2	0
Access to markets	1.5	2	3
Quality of life	2	3	6
Sum		13	15

Production	Points	Weight	Sum
Economic and property rights	2	2	4
Manufacturing costs	2	2	4
Capital procurement	2	3	6
Complementary industries	2	2	4
Investment incentives	2	2	4
Sum		11	22

Sales	Points	Weight	Sum
Size and dynamic of the market	0	3	0
Per capita income	0.5	2	1
Avoidance of tariff barriers	2	2	4
Reliability of local contractors	0.5	2	1
Distribution structures	1.5	2	3
Sum		11	9

al score PCI 71

Tab. 2.6: Risk Assessment for Country/Region X

The calculation for the alternative Country/Region Y also results in a total score of 71 points (Tab. 2.7). Company A and Company B now know that both direct investments would be associated with a relatively low risk and thus tend to be assessed positively. However, which region would be the more suitable location for the company cannot be derived from the macroeconomic risk assessment carried out so far.

Investment Alternative 2: Country/Region Y PCI = 71

Environment	Points	Weight	Sum
Political and social stability	2	4	8
Bureaucratic obstacles	1	2	2
Economic policy	1	3	3
Legal security	2	3	6
Solvency	1.5	3	4.5
Sum		15	23.5

Localisation	Points	Weight	Sum
Human capital	1.5	4	6
Transport connections	2	2	4
Management skills	1.5	2	3
Access to markets	2	2	4
Quality of life	1.5	3	4.5
Sum		13	21.5

Production	Points	Weight	Sum
Economic and property rights	2	2	4
Manufacturing costs	0.5	2	1
Capital procurement	0	3	0
Complementary industries	0	2	0
Investment incentives	0.5	2	1
Sum		11	6

Sales	Points	Weight	Sum
Size and dynamic of the market	2	3	6
Per capita income	2	2	4
Avoidance of tariff barriers	1.5	2	3
Reliability of local contractors	1.5	2	3
Distribution structures	2	2	4
Sum		11	20

al score PCI 71

Tab. 2.7: Risk Assessment for Country/Region Y

The evaluation model is now extended to include another company-specific dimension. The companies pursue different company-specific goals with internationalisation (Tab. 2.8). While for Company A it is most important to access the foreign market and to expand the existing resources through additional resources of the foreign location, Company B focuses on the cost advantages that can be generated with production at the foreign location.

Internationalisation aims of Company A:	Target weight
Sales in the foreign market	50 %
2. Expand resources through localisation	30 %
Secure foreign location/strategic importance (macro environment)	15 %
4. Realise cost advantages (production)	5 %
	100 %
Internationalisation aims of Company B:	Target weight
Realise cost advantages (production)	70 %
Secure foreign location/strategic importance (macro environment)	15 %
3. Expand resources through localisation	10 %
4. Sales in the foreign market	5 %
	100 %

Tab. 2.8: Company-Specific Internationalisation Aims

Accordingly, the companies now assign the individual factors of the PCI in a second dimension with the weights of their individual goals. The factors *macro environment*, *localisation*, *production* and *sales* are to be distributed to 100 % (or 1.0 target weight overall) on a company-specific basis. The result is a company-specific, two-dimensional total score, which now enables a company-specific, target-oriented decision (Fig. 2.3).

In contrast to all currently existing risk indices, the two-dimensional cumulative scores measured in PECLE¹⁵ now clearly show which region is best suited for which investor for a direct investment at the current time. Company A should opt for a direct investment in Country/Region X, as this is where it can best realise its individual company goals at the moment. Country/Region X achieves a company-specific total score of 20.275 PECLE for Company A, while Country/Region Y is only rated with a total of 13.85 PECLE for the individual company. The reason for the now apparent distinction is that Country/Region A offers the better

¹⁵ PECLE as a one-dimensional measurement of a two-dimensional cumulative score.

starting position for the factors *sales* and *localisation*, which are most important to Company A when choosing a location ("sales in the foreign market: 50 % and "expand recources through localisation: 30 %").

Company B primarily wants to internationalise in order to realise cost advantages in production ("realise cost advantages in production: 70 %"). Company B should therefore choose Country/Region Y. Country/Region Y, with a company-specific total score of 21.1 PECLE, is much more suitable for a direct investment for Company B than Country/Region X (total score of 10.875 PECLE).

The two-dimensional graphical representation clearly shows the advantage of such a combinatorial view of the macroeconomic level on the one hand and company-specific objectives on the other, illustrated by the example of Country/Region X versus Country/Region Y (Fig. 2.4).

Factor PCI Target weights in decreased by the collisation (L) Factor Factor PCI Factor PCI Factor PCI PECLE Amacro environment (M) 23.5 0.15 3.525 Macro environment (M) 23.5 0.15 3.525 Macro environment (M) 23.5 0.15 3.525 Macro environment (M) 23.5 0.15 0.20 0.05 0.005 10.000 Sales (S) 20.15 0.005 10.000 Sales (S) 20 0.05 10.000 Sales (S) 20 0.05 1 0.005 10.000 Sales (S) 20 0.05 1 0.005 1 0.005 1 0.005 1 0.005 1 0.005 1 0.005 1 0.005 0.15 <		Com	Company A	∢		Com	Company B	B	
Macro environment (M) 23.5 0.15 3.525 Macro environment (M) 23.5 0.15 0.25 0.15 0.25 0.15 0.25 0.10 0.25 0.20 0.05 0.05 0.00 <th></th> <th>Factor</th> <th>PCI</th> <th>Target weights</th> <th>Sum in PECLE</th> <th>Factor</th> <th>PCI</th> <th>Target weights</th> <th>Sum in PECLE</th>		Factor	PCI	Target weights	Sum in PECLE	Factor	PCI	Target weights	Sum in PECLE
Localisation (L) 21.5 0.30 6.450 Localisation (L) 21.5 0.05 0.05 0.05 0.05 0.000 Droduction (P) 6 0.70 0.05 Sales (S) 20 0.05 10.000 Sales (S) 20 0.05 Total Score PCI 71 1.00 20.275 Total Score PCI 71 1.00 Factor Pct Target Sum in weights Factor Pct Pct Pct Macro environment (M) 25 0.15 3.75 Macro environment (M) 25 0.15 Production (P) 22 0.05 1.1 Production (P) 22 0.70 Sales (S) 6 0.50 4.5 Sales (S) 6 0.05 Total Score PCI 71 1.00 13.85 Total Score PCI 71 1.00	χΛ	Macro environment (M)	23.5	0.15	3.525	Macro environment (M)	23.5	0.15	3.525
Production (P) 6 0.05 0.300 Production (P) 6 0.70 Sales (S) 20 0.05 10.000 Sales (S) 20 0.05 Total Score PCI 71 1.00 20.275 Total Score PCI 71 1.00 Factor Pactor PECLE Macro environment (M) 25 0.15 3.75 Macro environment (M) 25 0.15 3.75 Macro environment (M) 25 0.15 Production (P) 15 0.30 4.5 Localisation (L) 15 0.05 1.1 Production (P) 22 0.70 Sales (S) 6 0.50 4.5 Sales (S) 6 0.05 1.1 O.01 1.00<	նյս	Localisation (L)	21.5	0.30	6.450	Localisation (L)	21.5	0.10	2.15
Sales (S) 20 0.05 10.000 Sales (S) 20 0.05 10.000 Sales (S) 20 0.05 0.05 10.000 Total Score PCI 71 1.00 70 0.05 0.05 0.05 1.1 1.00 0.05	ıno	Production (P)	9	0.05	0.300	Production (P)	9	0.70	4.2
Total Score PCI 71 1.00 20.275 Total Score PCI 71 1.00 Factor PCI Aveights weights Sum in Merco environment (M) ECLE Macro environment (M) 25 0.15 3.75 Macro environment (M) 25 0.15 0.15 3.75 Localisation (L) 15 0.00 4.5 Localisation (L) 15 0.00 0.10 22 0.00 <th>O</th> <td>Sales (S)</td> <td>20</td> <td>0.05</td> <td>10.000</td> <td>Sales (S)</td> <td>20</td> <td>0.05</td> <td>-</td>	O	Sales (S)	20	0.05	10.000	Sales (S)	20	0.05	-
Factor PCI weights weights Sum in weights Factor PCI weights Factor PCI weights Macro environment (M) 25 0.15 3.75 Macro environment (M) 25 0.15 Localisation (L) 15 0.30 4.5 Localisation (L) 15 0.10 Production (P) 22 0.05 1.1 Production (P) 22 0.70 Sales (S) 6 0.50 4.5 Sales (S) 6 0.05 Total Score PCI 71 1.00 13.85 Total Score PCI 71 1.00		Total Score PCI	71	1.00	20.275	Total Score PCI	11	1.00	10.875
Factor PCI weights weights Sum in weights weights Factor PCI weights Target weights Macro environment (M) 25 0.15 3.75 Macro environment (M) 25 0.15 Localisation (L) 15 0.30 4.5 Localisation (L) 15 0.05 Production (P) 22 0.05 1.1 Production (P) 22 0.70 Sales (S) 6 0.50 4.5 Sales (S) 6 0.05 Total Score PCI 71 1.00 13.85 Total Score PCI 71 1.00									
Macro environment (M) 25 0.15 3.75 Macro environment (M) 25 0.15 Localisation (L) 15 0.30 4.5 Localisation (L) 15 0.10 Production (P) 22 0.05 1.1 Production (P) 22 0.70 Sales (S) 6 0.50 4.5 Sales (S) 6 0.05 Total Score PCI 71 1.00 13.85 Total Score PCI 71 1.00		Factor	PCI	Target weights	Sum in PECLE	Factor	PCI	Target weights	Sum in PECLE
Localisation (L) 15 0.30 4.5 Localisation (L) 15 0.10 Production (P) 22 0.05 1.1 Production (P) 22 0.70 Sales (S) 6 0.50 4.5 Sales (S) 6 0.05 Total Score PCI 71 1.00 13.85 Total Score PCI 71 1.00	٨ ٨	Macro environment (M)	25	0.15	3.75	Macro environment (M)	25	0.15	3.75
Production (P) 22 0.05 1.1 Production (P) 22 0.70 Sales (S) 6 0.50 4.5 Sales (S) 6 0.05 Total Score PCI 71 1.00 13.85 Total Score PCI 71 1.00	նյս	Localisation (L)	15	0.30	4.5	Localisation (L)	15	0.10	1.5
Sales (S) 6 0.50 4.5 Sales (S) 6 0.05 Total Score PCI 71 1.00 13.85 Total Score PCI 71 1.00	ıno	Production (P)	22	0.05	1.1	Production (P)	22	0.70	15.4
71 1.00 13.85 Total Score PCI 71 1.00	O	Sales (S)	9	0.50	4.5	Sales (S)	9	0.05	0.45
		Total Score PCI	11	1.00	13.85	Total Score PCI	11	1.00	21.1

Fig. 2.3: Individual Assessment of Country Risks

Fig. 2.4: PCI – Simultaneous Assessment of Macroeconomic

Macro Level and Individual Company Objectives in Direct Investments

2.4 Correlation Analysis

Simple Linear Coefficient of Determination (r^2)

$$r^{2} = \frac{SSE}{SST} = \frac{\sum_{i=1}^{n} (\hat{y}_{i} - \bar{y})^{2}}{\sum_{i=1}^{n} (y_{i} - \bar{y})^{2}} = 1 - \frac{SSR}{SST} \qquad 0 \le r^{2} \le 1$$

with

SST = sum of the squared deviations

= SSE + SSR

SSE = sum of the deviation squares explained
(by the regression function)

SSR = sum of the deviation squares unexplained (by the regression function)

Simple Linear Correlation Coefficient (r)

$$r = sgn(b_2)\sqrt{r^2} \qquad -1 \le r \le 1$$

Pearson's 16 Correlation Coefficient (r)

$$r = \frac{s_{xy}}{s_x \cdot s_y} \qquad -1 \le r \le 1$$

$$r = \frac{\sum_{i=1}^{n} (x_i - \bar{x}) (y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2} \sqrt{\sum_{i=1}^{n} (y_i - \bar{y})^2}} =$$

¹⁶ Karl Pearson (1857 - 1936) was a British mathematician.

$$= \frac{\sum_{i=1}^{n} x_{i} y_{i} - \frac{\left(\sum_{i=1}^{n} x_{i}\right) \left(\sum_{i=1}^{n} y_{i}\right)}{n}}{\sqrt{\sum_{i=1}^{n} x_{i}^{2} - \frac{\left(\sum_{i=1}^{n} x_{i}\right)^{2}}{n}} \sqrt{\sum_{i=1}^{n} y_{i}^{2} - \frac{\left(\sum_{i=1}^{n} y_{i}\right)^{2}}{n}}$$

2.5 Regression Analysis

2.5.1 Simple Linear Regression

Description of the relationship (dependence) between two variables x and y using a linear function.

Symbols:

- x_i value of the independent variables x at the i^{th} observation
- y_i value of the dependent variables y at the i^{th} observation
- \hat{y}_i value of the dependent variables y estimated by the regression function (regression line) at the point x_i
- b_1, b_2 regression coefficients sought, specifying the regression line (b_1 : ordinate intercept; b_2 : slope of the regression line)
- e_i residual $(e_i = y_i \hat{y}_i)$; deviation of the value estimated by the regression function from the observed (true) value of the dependent variables y

with
$$i = 1, ..., n$$

Least Squares Method (= LS-Method)

The sum of the squared deviation (SAQ) must be minimised:

$$\begin{split} SAQ &= \sum_{i=1}^n e_i^2 &\to min \\ &= \sum_{i=1}^n (y_i - \hat{y}_i)^2 &\to min \\ &= \sum_{i=1}^n (y_1 - b_1 - b_2 \cdot x_i)^2 &\to min \\ \\ &\Rightarrow \frac{\delta SAQ}{\delta b_1} = \frac{\delta SAQ}{\delta b_2} \stackrel{!}{=} 0 \qquad \text{(necessary condition of a local minimum)} \end{split}$$

Regression coefficients:

$$b_{1} = \frac{\sum_{i=1}^{n} x_{i}^{2} \sum_{i=1}^{n} y_{i} - \sum_{i=1}^{n} x_{i} \sum_{i=1}^{n} x_{i} y_{i}}{n \sum_{i=1}^{n} x_{i}^{2} - \left(\sum_{i=1}^{n} x_{i}\right)^{2}}$$

$$b_{2} = \frac{n \sum_{i=1}^{n} x_{i} y_{i} - \sum_{i=1}^{n} x_{i} \sum_{i=1}^{n} y_{i}}{n \sum_{i=1}^{n} x_{i}^{2} - \left(\sum_{i=1}^{n} x_{i}\right)^{2}} \quad \text{or} \quad b_{2} = \frac{s_{xy}}{s_{x^{2}}} \quad \text{or} \quad b_{2} = r \cdot \frac{s_{y}}{s_{x}}$$

Regression function:

$$\hat{y}_i = b_1 + b_2 x_i$$
 with $i = 1, ..., n$
or $\hat{y} = b_1 + b_2 x$

 \hat{y}_i = estimated values of y_i with i = 1, ..., n \hat{y} = estimated regression function

Example:

Following points (observations) are given:

x_i	1	2	3	4	5	6	7	8
y_i	6.36	7.12	8.22	9.55	10.40	11.51	12.58	13.67

with

$$\bar{x} = \frac{1}{8} \sum_{i=1}^{8} x_i = \frac{1}{8} \cdot 36 = 4.5$$

$$\bar{y} = \frac{1}{8} \sum_{i=1}^{8} y_i = \frac{1}{8} \cdot 79.41 = 9.93$$

$$\sum_{i=1}^{8} x_i = 36 \qquad \qquad \sum_{i=1}^{8} y_i = 79.41$$

$$\sum_{i=1}^{8} x_i^2 = 204 \qquad \qquad \sum_{i=1}^{8} y_i^2 = 835.68$$

$$\sum_{i=1}^{8} x_i y_i = 401.94$$

$$\sum_{i=1}^{8} (x_i - \bar{x})^2 = 12.25 + 6.25 + 2.25 + 0.25 + 0.25 + 2.25 + 6.25 + 12.25 = 42$$

$$b_1 = \frac{204 \cdot 79.41 - 36 \cdot 401.94}{8 \cdot 204 - (36)^2} = 5.1482$$

$$b_2 = \frac{8 \cdot 401.94 - 36 \cdot 79.41}{8 \cdot 204 - (36)^2} = 1.0618$$

$$\hat{y} = 5.1482 + 1.0618x$$

The ordinate value (*y*-value with x = 0) of the estimated regression function \hat{y} is 5.1482 and the slope of \hat{y} is 1.0618.

Properties of the Regression Function

(1)
$$\sum_{i=1}^{n} e_i = 0$$

(2)
$$\sum_{i=1}^{n} x_i e_i = 0$$

(3)
$$\frac{1}{n} \sum_{i=1}^{n} y_i = \frac{1}{n} \sum_{i=1}^{n} \hat{y}_i$$

(4) The regression line passes through the centre of gravity $\bar{P}(\bar{x}; \bar{y})$ of the corresponding cluster of points

$$\bar{x} = \frac{1}{n} \sum x_i$$
 or $\bar{y} = \frac{1}{n} \sum y_i$

(5) $s_E = \text{standard deviation of the residuals } e_i \text{ with } i = 1, ..., n$ $s_E^2 = \text{variance of the residuals } e_i \text{ with } i = 1, ..., n$

$$s_E^2 = \frac{1}{n-2} \sum_{i=1}^n e_i^2 =$$

$$= \frac{1}{n-2} \sum_{i=1}^n (y_i - \hat{y}_i)^2 =$$

$$= \frac{1}{n-2} \left[\sum_{i=1}^n y_i^2 - b_1 \sum_{i=1}^n y_i - b_2 \sum_{i=1}^n x_i y_i \right]$$

2.5.1.1 Confidence Intervals for the Regression Coefficients of a Simple Linear Regression Function

For a simple linear regression function, the confidence intervals for the regression coefficients are shown in Tab. 2.9.

Parameter	Confidence Interval	Standard Error	Applicable Distribution
\hat{b}_1	$b_1 - t s_{B_1} \le \hat{b}_1 \le b_1 + t s_{B_1}$	$s_{B_1} = s_E \sqrt{\frac{\sum_{i=1}^{n} x_i^2}{n \sum_{i=1}^{n} (x_i - \bar{x})^2}}$	Student's Distribution with $v = n - 2$ Requirement:
\hat{b}_2	$b_2 - t s_{B_2} \le \hat{b}_2 \le b_2 + t s_{B_2}$	$s_{B_2} = \frac{s_E}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2}}$	validity of the model assumptions

Tab. 2.9: Confidence Intervals for the Regression Coefficients of a Simple Linear Regression Function¹⁷

Example:

If $\hat{y} = 5.1482 + 1.0618x$ by considering a confidence level of 95%, the confidence intervals for the regression coefficients b_1 and b_2 are calculated as follows:

When $(1 - \alpha) = 0.95$ and v = n - 2 = 8 - 2 = 6, the *t*-value would be 2.447 (Student's t-distribution, two-sided symmetric confidence interval; see appendix A, statistical tables).

Confidence intervals

(1) for the regression coefficient \hat{b}_1 :

$$b_1 - ts_{B_1} \le \hat{b}_1 \le b_1 + ts_{B_1}$$
$$5.1482 - 2.447 \cdot s_{B_1} \le \hat{b}_1 \le 5.1482 + 2.447 \cdot s_{B_1}$$

¹⁷ Cf. Bleymüller, J. & Gehlert, G. (2011), p. 54.

$$s_{B_1} = s_E \sqrt{\frac{\sum_{i=1}^{n} x_i^2}{n \sum_{i=1}^{n} (x_i - \bar{x})^2}}$$

with

$$s_E^2 = \frac{1}{n-2} \left[\sum_{i=1}^n y_i^2 - b_1 \sum_{i=1}^n y_i - b_2 \sum_{i=1}^n x_i y_i \right] =$$

$$= \frac{1}{8-2} \left[835.68 - 5.1482 \cdot 79.41 - 1.0618 \cdot 401.94 \right] =$$

$$= 0.0136$$

$$s_E = \sqrt{0.0136} = 0.1166$$

$$s_{B_1} = 0.1166 \cdot \sqrt{\frac{204}{8 \cdot 42}} = 0.0909$$

$$5.1482 - 2.447 \cdot 0.0909 \le \hat{b}_1 \le 5.1482 + 2.447 \cdot 0.0909$$

 $+4.9258 \le \hat{b}_1 \le +5.3706$

With a probability of 95% (the selected confidence level), the unknown regression coefficient \hat{b}_1 , which determines the ordinate value (y-value with x=0) of the estimated (unknown) regression function, assumes a value between +4.9258 and +5.3706.

(2) for the regression coefficient \hat{b}_2 :

$$b_2 - ts_{B_2} \le \hat{b}_2 \le b_2 + ts_{B_2}$$

$$1.0618 - 2.447 \cdot s_{B_2} \le \hat{b}_2 \le 1.0618 + 2.447 \cdot s_{B_2}$$

$$s_{B_2} = \frac{s_E}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2}}$$
$$= \frac{0.1166}{\sqrt{42}} =$$
$$= 0.0180$$

$$1.0618 - 2.447 \cdot 0.018 \le \hat{b}_2 \le 1.0618 + 2.447 \cdot 0.018$$

 $+ 1.0178 \le \hat{b}_2 \le +1.1058$

With a probability of 95% (the selected confidence level), the unknown regression coefficient \hat{b}_2 , which determines the slope of the estimated (unknown) regression function, assumes a value between +1.0178 and +1.1058.

2.5.1.2 Student's t-Tests for the Regression Coefficients of a Simple Linear Regression Function

For a simple linear regression function, the Student's t-tests for the regression coefficients are shown in Tab. 2.10.

Parameter	Standard Error	Applicable Distribution
$\hat{b}_1 = 0$	$t = \frac{b_1}{s_{B_1}}$ with $s_{B_1} = s_E \sqrt{\frac{\sum_{i=1}^n x_i^2}{n \sum_{i=1}^n (x_i - \bar{x})^2}}$	Requirement.
$\hat{b}_2 = 0$	$t = \frac{b_2}{s_{B_2}}$ with $s_{B_2} = \frac{s_E}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2}}$	validity of the model assumptions

Tab. 2.10: Student's t-Tests for the Regression Coefficients of a Simple Linear Regression Function¹⁸

¹⁸ Cf. Bleymüller, J. & Gehlert, G. (2011), p. 54.

For testing hypotheses of stochastic parameters like regression coefficients, the practical procedure is as follows:

- a. Definition of null hypothesis (H_0) and alternative hypothesis (H_A) as well as significance level (α)
- b. Determination of the test statistic
- c. Determination of the test distribution
- d. Identification of the critical range
- e. Calculation of the value of the test statistic
- f. Decision and interpretation

(1) Test of the regression coefficient \hat{b}_1

a.
$$H_0$$
: $\hat{b}_1=0$
$$H_A$$
: $\hat{b}_1\neq 0$
$$\alpha=0.05 \quad (1-\alpha)=0.95 \quad \text{(in the example above)}$$

 H_0 means that the ordinate value (y-value with x=0) of the estimated regression function would be zero. For example, in a cost function, the fixed costs are assumed to be zero.

 H_A can be $\hat{b}_1 \neq 0$, $\hat{b}_1 > 0$ or $\hat{b}_1 < 0$. For example, in a cost function, H_A would be defined as $\hat{b}_1 > 0$.

b. Test statistic

$$t = \frac{b_1}{s_{B_1}} \quad \text{(table 2.10)}$$
with $s_{B_1} = s_E \sqrt{\frac{\sum_{i=1}^{n} x_i^2}{n \sum_{i=1}^{n} (x_i - \bar{x})^2}}$

e.g.
$$s_{B_1} = 0.0909$$
 (in the example above)
with $b_1 = 5.1482$

Determination of the test distribution

Student's t-distribution, two-sided symmetric confidence interval with $(1-\alpha)$ and v=n-2 (see appendix A, statistical tables)

e.g. with
$$(1-\alpha) = 0.95$$
 and $v = 8-2 = 6$ (in the example above)

d. Identification of the critical range

For $(1-\alpha)=0.95$ and v=6, the critical *t*-value, t_c , is 2.447 (Student's t-distribution, two-sided symmetric confidence interval; see appendix A, statistical tables).

If
$$t = \frac{b_1}{s_{B_1}} > 2.447$$
, the null hypothesis H_0 has to be rejected.

If
$$t = \frac{b_1}{s_{B_1}} \le 2.447$$
, the null hypothesis H_0 cannot be rejected.

e. Calculation of the value of the test statistic

$$t = \frac{5.1482}{0.0909} = 56.636$$
 (in the example above)

f. Decision and interpretation

$$t > t_c$$
 (56.636 > 2.447)

 H_0 has to be rejected.

The observed value for b_1 ($b_1 = 5.1482$) is statistically valid with a significance level of 0.05 (= 5 %).

In case of a cost function, there would be a 95 % probability that the fixed costs are positive at a level of approximately 5.1482 monetary units (e.g. \$5.1482 bln).

(2) Test of the regression coefficient \hat{b}_2

a.
$$H_0$$
: $\hat{b}_2=0$ H_A : $\hat{b}_2\neq 0$ $\alpha=0.05$ $(1-\alpha)=0.95$ (in the example above)

 H_0 implies that the slope of the real function would be zero, which means there is no correlation between the tested variables (y and x_2 in the example above).

 H_A can be $\hat{b}_2 \neq 0$, $\hat{b}_2 > 0$ (positive correlation between x and y) or $\hat{b}_2 < 0$ (negative correlation between x_2 and y).

b. Test statistic

$$t = rac{b_2}{s_{B_2}}$$
 (table 2.10) with $s_{B_2} = rac{s_E}{\sqrt{\sum\limits_{i=1}^{n}{(x_i - ar{x})^2}}}$

e.g.
$$s_{B_2}=0.0180$$
 (in the example above) with $b_2=1.0618$

Determination of the test distribution

Student's t-distribution, two-sided symmetric confidence interval with $(1-\alpha)$ and v=n-2 (see appendix A, statistical tables)

e.g. with
$$(1-\alpha)=0.95$$
 and $v=8-2=6$ (in the example above)

d. Identification of the critical range

For $(1-\alpha) = 0.95$ and v = 6, the critical *t*-value, t_c , is 2.447 (Student's t-distribution, two-sided symmetric confidence interval; see appendix A, statistical tables).

If
$$t = \frac{b_2}{s_{B_2}} > 2.447$$
, the null hypothesis H_0 has to be rejected.

If
$$t = \frac{b_2}{s_{B_2}} \le 2.447$$
, the null hypothesis H_0 cannot be rejected.

e. Calculation of the value of the test statistic

$$t = \frac{1.0618}{0.0180} = 58.989$$
 (in the example above)

f. Decision and interpretation

$$t > t_c$$
 (58.989 > 2.447)

 H_0 has to be rejected.

The observed value for b_2 ($b_2 = 1.0618$) is statistically valid with a significance level of 0.05 (= 5 %).

There is a significant correlation between the tested variables (y and x_2 in the example above).

2.5.2 Multiple Linear Regression

Description of the relationship (dependence) between a dependent variable y and multiple independent variables x_i , with i = 1, ..., n using a linear function.

Symbols:

- x_{ji} fixed (non-random) value of the independent random variable X_j (j=2,...,k) at the i^{th} observation (i=1,...,n) with $x_{1i}=1$ for all i
- y_i stochastic (random) value of the dependent variable y at the i^{th} observation
- \hat{y}_i the estimated value provided by the sampling regression line for y_i
- b_j the regression coefficient sought for the independent variable x_j (j = 2, ..., k) for the regression function of the population
- e_i residual $(e_i = y_i \hat{y}_i)$; value of the deviation between the observed value y_i and the value \hat{y}_i estimated by the regression function at the point x_i
- $[\hat{y}]$ column vector of dimension $n \times 1$ containing the estimated values of the dependent variables y
- [b] column vector of dimension $k \times 1$ containing the sought sample regression coefficients
- [X] matrix of the dimension $n \times k$ (n: observations, k: characteristic values considered in the estimation), which contains the observed values of the independent variables

Remark: $x_{1i} = 1$ for all i with i = 1, ..., n

$$[\hat{y}] = \begin{bmatrix} \hat{y}_1 \\ \hat{y}_2 \\ \hat{y}_3 \\ \vdots \\ \hat{y}_n \end{bmatrix}_{n \times 1} [b] = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ \vdots \\ b_k \end{bmatrix}_{k \times 1} [X] = \begin{bmatrix} 1 & x_{21} & x_{31} & \dots & x_{k1} \\ 1 & x_{22} & x_{32} & \dots & x_{k2} \\ 1 & x_{23} & x_{33} & \dots & x_{k3} \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & x_{2n} & x_{3n} & \dots & x_{kn} \end{bmatrix}_{n \times k}$$

Least Squares Method

Minimise the sum of squared deviation (SAQ):

$$SAQ = \sum_{i=1}^{n} e_i^2 \longrightarrow min$$

$$= \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 \longrightarrow min$$

$$= \sum_{i=1}^{n} (y_i - b_1 - b_2 x_{2i} - b_3 x_{3i} - \dots - b_k x_{ki})^2 \longrightarrow min$$

$$\Rightarrow \frac{\delta SAQ}{\delta b_1} = \frac{\delta SAQ}{\delta b_2} = \frac{\delta SAQ}{\delta b_3} = \dots = \frac{\delta SAQ}{\delta b_k} \stackrel{!}{=} 0$$

Regression coefficients:

$$[b]_{k\times 1} = ([X]' \cdot [X])_{k\times k}^{-1} \cdot [X]'_{k\times n} \cdot [y]_{n\times 1}$$
 with $b = (b_1, ..., b_k)'$

Regression function:

· Using the normal equation

$$\hat{y}_i = b_1 + b_2 x_{2i} + b_3 x_{3i} + ... + b_k x_{ki}$$
 with $i = 1, ..., n$

· Using the matrix notation

$$[\hat{y}]_{n\times 1} = [X]_{n\times k} \cdot [b]_{k\times 1}$$

Partial Linear Coefficient of Determination

$$SST = \sum_{i=1}^{n} (y_i - \bar{y}_i)^2 = \sum_{i=1}^{n} y_i^2 - \frac{1}{n} \left(\sum_{i=1}^{n} y_i \right)^2$$

$$SSE = \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2$$

Multiple Linear Coefficient of Determination

$$r_{Y \cdot 2,3,...,k}^{2} = \frac{SSE}{SST} = \frac{\sum_{i=1}^{n} (\hat{y}_{i} - \bar{y})^{2}}{\sum_{i=1}^{n} (y_{i} - \bar{y})^{2}} = 1 - \frac{SSR}{SST} = 1 - \frac{\sum_{i=1}^{n} e_{i}^{2}}{\sum_{i=1}^{n} (y_{i} - \bar{y})^{2}}$$

$$0 \le r_{Y \cdot 2, 3, \dots, k}^2 \le 1$$

with

$$SST = \sum_{i=1}^{n} (y_i - \bar{y})^2 = \sum_{i=1}^{n} y_i^2 - \frac{1}{n} (\sum y_i)^2$$

$$SSE = \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2$$

$$SSR = \sum_{i=1}^{n} (y_i - \hat{y})^2 = \sum_{i=1}^{n} e_i^2$$

$$= \sum_{i=1}^{n} y_i^2 - b_1 \sum_{i=1}^{n} y_i - b_2 \sum_{i=1}^{n} x_{2i} y_i - \dots - b_k \sum_{i=1}^{n} x_{ki} y_i$$

Multiple Linear Correlation Coefficient

$$r_{Y \cdot 2,3,...,k} = \sqrt{r_{Y \cdot 2,3,...,k}^2}$$
 $0 \le r_{Y \cdot 2,3,...,k} \le 1$

2.5.2.1 Confidence Intervals for the Regression Coefficients of a Multiple Linear Regression Function

For a multiple linear regression function, the confidence intervals for the regression coefficients are shown in Tab. 2.11.

Parameter	Confidence Interval	Standard Error	Applicable Distribution
\hat{b}_j $j=1,,k$	$b_j - ts_{B_j} \le \hat{b}_j \le b_j + ts_{B_j}$	$s_{B_j} = \sqrt{\widehat{CV}_{jj}}$	Student's Distribution with $v = n - k$
j = 1,, k		$\widehat{CV} = s_E^2 \left([X]' \cdot [X] \right)^{-1}$	Requirement:
			validity of the model assumptions
		s_{Bj}^2 with $j = 1, k$ corres-	
		poind to the elements at the main diagonal of the estimated covariance matrix \widehat{CV} .	

Tab. 2.11: Confidence Intervals for the Regression Coefficients of a Multiple Linear Regression Function¹⁹

A covariance matrix (also known as auto-covariance matrix or variance-covariance matrix) is a square matrix which shows the covariances between each pair of elements of a given random vector (of a multiple random variable). Any covariance matrix is symmetric and positive semi-definite. Its main diagonal contains the covariances (the variances of each element with itself).

The estimated cavariance matrix can be calculated as follows:

$$\widehat{CV} = s_E^2 \left([X]'_{n \times n} \cdot [X]_{n \times n} \right)^{-1}$$

with
$$s_E^2 = \frac{1}{n-k} \sum e_i^2$$

n = number of observations (elements)

k = number of variables

$$s_E^2 = \frac{1}{n-k} \left[\sum_{i=1}^n y_i^2 - b_1 \sum_{i=1}^n y_i - b_2 \sum_{i=1}^n x_{2i} y_i - \dots - b_k \sum_{i=1}^n x_{ki} y_i \right]$$

¹⁹ Cf. Bleymüller, J. & Gehlert, G. (2011), p. 61.

2.5.2.2 Student's t-Tests for the Regression Coefficients of a Multiple Linear Regression Function

For a multiple linear regression function, the Student's t-tests for the regression coefficients are shown in Tab. 2.12.

Hypothesis	Test Statistic	Applicable Distribution
$\hat{b}_j = 0$ $j = 1,, k$	$t = \frac{b_j}{s_{B_j}} \text{with} s_{B_j} = \sqrt{\widehat{CV}_{jj}}$ $\widehat{CV} = s_E^2 \left([X]' \cdot [X] \right)^{-1}$ $s_{Bj}^2 \text{ with } j = 1, \dots k \text{ correspond to the elements at the main diagonal of the estimated covariance matrix } \widehat{CV}.$	Student's Distribution with $v = n - k$ Requirement: validity of the model assumptions

Tab. 2.12: Student's t-Tests for the Regression Coefficients of a Multiple Linear Regression Function²⁰

The Student's t-Tests for the Regression Coefficients of a Multiple Regression Function take place analogously as the Student's t-Tests for the Regression Coefficients of a Linear Regression Function (chapter 2.5.1.2).

2.5.3 Double Linear Regression

Regression function:

Regression function for the population (normal equation)

$$\hat{y} = b_1 + b_2 x_{2i} + b_3 x_{3i}$$
 $i = 1, ..., n$

• Regression function for the population (matrix notation)

$$[\hat{y}]_{n \times 1} = [X]_{n \times 3} \cdot [b]_{3 \times 1}$$

²⁰ Cf. Bleymüller, J. & Gehlert, G. (2011), p. 62.

Regression coefficients:

· Regression coefficients by using equations

$$b_{1}n + b_{2} \sum x_{2i} + b_{3} \sum x_{3i} = \sum y_{i}$$

$$b_{1} \sum x_{2i} + b_{2} \sum x_{2i}^{2} + b_{3} \sum x_{2i}x_{3i} = \sum x_{2i}y_{i}$$

$$b_{1} \sum x_{3i} + b_{2} \sum x_{3i}x_{2i} + b_{3} \sum x_{3i}^{2} = \sum x_{3i}y_{i}$$

· Regression coefficients by using a matrix notation

$$[b]_{3\times 1} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} \qquad [b]_{3\times 1} = ([X]'[X])_{3\times 3}^{-1} \cdot [X]'_{3\times n} \cdot [y]_{n\times 1}$$

Example:

Following revenues (observations) are given:

i	y _i revenue in \$1,000	<i>x</i> _{1<i>i</i>}	x_{2i} price of an	x _{3i} sales area in
			offered good USD/unit	square metres
1	2,512	1	112	1,980
2	1,810	1	108	1,400
3	1,635	1	104	1,420
4	1,487	1	100	1,160
5	2,270	1	110	1,750
6	1,805	1	108	1,400
7	1,984	1	109	1,560
8	2,043	1	110	1,590
9	1,943	1	108	1,500
10	2,170	1	111	1,700
11	1,820	1	108	1,430
12	1,440	1	102	1,110

Tab. 2.13: Example of a double linear regression

$$[X]' \cdot [X] = \begin{pmatrix} 12 & 1290 & 18000 \\ 1290 & 138822 & 1943640 \\ 18000 & 1943640 & 27643600 \end{pmatrix}$$

$$([X]' \cdot [X])^{-1} = \begin{pmatrix} 249.685 & -2.8170 & 0.03549 \\ -2.8170 & 0.03224 & -0.00043 \\ 0.03549 & -0.00043 & 0.0000074 \end{pmatrix}$$

$$[X]' \cdot [Y] = \begin{pmatrix} 22919 \\ 2475344 \\ 35201790 \end{pmatrix}$$

$$b_{1}n + b_{2} \sum x_{2i} + b_{3} \sum x_{3i} = \sum y_{i}$$

$$b_{1} \sum x_{2i} + b_{2} \sum x_{2i}^{2} + b_{3} \sum x_{2i}x_{3i} = \sum x_{2i}y_{i}$$

$$b_{1} \sum x_{3i} + b_{2} \sum x_{3i}x_{2i} + b_{3} \sum x_{3i}^{2} = \sum x_{3i}y_{i}$$

$$12 b_{1} + 1290 b_{2} + 18000 b_{3} = 22919$$

$$1290 b_{1} + 138822 b_{2} + 1943640 b_{3} = 2475344$$

$$18000 b_{1} + 1943640 b_{2} + 27643600 b_{3} = 35201790$$

This is a linear system of equations with three equations and three variables. A linear system of equations can be solved with the substitution method, the equalization method or the addition method. A definite determination of n variables is only possible if n independent equations exist (unambiguously determinable equation system).

$$b_1 = -1415.294$$

 $b_2 = 16.099$
 $b_3 = 1.0631$
 $\hat{y} = -1415.294 + 16.099x_2 + 1.0631x_3$
with $i = 1, ..., 12$

2.5.3.1 Confidence Intervals for the Regression Coefficients of a Double Linear Regression Function

$$s_E^2 = \frac{1}{n-k} \sum e_i^2$$

n = number of observations (elements) k = number of variables

²¹ Cf. Peren, F.W. (2021), pp. 57-60.

$$s_E^2 = \frac{1}{n-3} \left[\sum y_i^2 - b_1 \sum y_i - b_2 \sum x_{2i} y_i - b_3 \sum x_{3i} y_i \right]$$

$$= \frac{1}{12-3} \cdot (44861817 + 1415.294 \cdot 22919 - 16.099 \cdot 2475344 - -1.0631 \cdot 35201990)$$

$$= \frac{1}{9} \cdot 25354.181$$

$$= 2817.13$$

$$s_E = \sqrt{2817.13} = 53.08$$

At a multiple linear regression function, it is recommendable to identify the variances respectively the standard deviations of the regression coefficients by using the (estimated) covariance matrix:

(a)
$$\widehat{CV} = s_E^2 \left([X]'_{n \times n} \cdot [X]_{n \times n} \right)^{-1}$$

$$= 2817.13 \cdot \begin{pmatrix} 249.685 & -2.8170 & 0.03549 \\ -2.8170 & 0.03224 & -0.00043 \\ 0.03549 & -0.00043 & 0.0000074 \end{pmatrix}$$

$$= \begin{pmatrix} 703395.10 & -7935.86 & 99.98 \\ -7935.86 & 90.82 & -1.2114 \\ 99.98 & -1.2114 & 0.02085 \end{pmatrix}$$

(b) s_{Bj}^2 with $j=1,\ldots k$ correspond to the elements at the main diagonal of the estimated covariance matrix \widehat{CV} .

$$s_{B1}^2 = 703395.10$$
 $s_{B1} = \sqrt{703395.10} = 838.69$
 $s_{B2}^2 = 90.82$ $s_{B2} = 9.530$
 $s_{B3}^2 = 0.02085$ $s_{B3} = 0.1444$

Confidence intervals when $(1 - \alpha) = 0.95$

(1) for the regression coefficient \hat{b}_1 :

$$b_1 - ts_{B_1} \le \hat{b}_1 \le b_1 + ts_{B_1}$$

$$-1415.294 - 2.228 \cdot 838.69 \le \hat{b}_1 \le -1415.294 + 2.228 \cdot 838.69$$

$$-3283.90 \le \hat{b}_1 \le +453.31$$

(2) for the regression coefficient \hat{b}_2 :

$$b_2 - ts_{B_2} \le \hat{b}_2 \le b_2 + ts_{B_2}$$

$$16.099 - 2.228 \cdot 9.530 \le \hat{b}_2 \le 16.099 + 2.228 \cdot 9.530$$

$$-5.134 \le \hat{b}_2 \le +37.332$$

(3) for the regression coefficient \hat{b}_3 :

$$b_3 - ts_{B_3} \le \hat{b}_3 \le b_3 + ts_{B_3}$$

$$1.0631 - 2.228 \cdot 0.1444 \le \hat{b}_3 \le 1.0631 + 2.228 \cdot 0.1444$$

$$+0.7414 \le \hat{b}_3 \le +1.3848$$

2.5.3.2 Student's t-Tests for the Regression Coefficients of a Double Linear Regression Function

For testing hypotheses of stochastic parameters like regression coefficients, the practical procedure is as follows:

- a. Definition of null hypothesis (H_0) and alternative hypothesis (H_A) as well as significance level (α)
- b. Determination of the test statistic
- c. Determination of the test distribution

- d. Identification of the critical range
- e. Calculation of the value of the test statistic
- f. Decision and interpretation

(1) Test of the regression coefficient \hat{b}_1

a.
$$H_0$$
: $\hat{b}_1=0$
$$H_A$$
: $\hat{b}_1\neq 0$
$$\alpha=0.05 \quad (1-\alpha)=0.95 \quad \text{(in the example above)}$$

 H_0 means that the ordinate value of the estimated regression function would be zero.

$$H_A \ {
m can be} \ \hat{b}_1
eq 0 \, , \ \hat{b}_1 > 0 \ {
m or} \ \hat{b}_1 < 0 .$$

b. Test statistic

$$t = \frac{b_1}{s_{B_1}}$$
 (table 2.12)
with $s_{B_1} = 838.69$ (in the example above)

c. Determination of the test distribution

Student's t-distribution, two-sided symmetric confidence interval with $(1-\alpha)$ and v=n-2 (see appendix A, statistical tables)

e.g. with
$$(1-\alpha)=0.95$$
 and $v=12-2=10$ (in the example above)

d. Identification of the critical range

For $(1-\alpha)=0.95$ and v=10, the critical t-value, t_c , is 2.228 (Student's t-distribution, two-sided symmetric confidence

interval; see appendix A, statistical tables).

If
$$t = \frac{b_1}{s_{B_1}} > 2.228$$
, the null hypothesis H_0 has to be rejected.

If $t = \frac{b_1}{s_{B_1}} \le 2.228$, the null hypothesis H_0 cannot be rejected.

e. Calculation of the value of the test statistic

$$t = \frac{-1415.294}{838.69} = -1,6875$$
 (in the example above)

f. Decision and interpretation

$$t < t_c$$
 (-1,6875 < 2.228)

 H_0 cannot be rejected.

The observed value for b_1 ($b_1 = -1415.294$) is statistically invalid with a significance level of 0.05 (= 5%).

(2) Test of the regression coefficient \hat{b}_2

a. H_0 : $\hat{b}_2 = 0$

$$H_A$$
: $\hat{b}_2 \neq 0$

$$\alpha = 0.05$$
 $(1 - \alpha) = 0.95$ (in the example above)

 H_0 implies that there would be no correlation between the tested variables (y and x_2 in the example above).

 H_A can be $\hat{b}_2 \neq 0$, $\hat{b}_2 > 0$ (positive correlation between x_2 and y) or $\hat{b}_2 < 0$ (negative correlation between x_2 and y).

b. Test statistic

$$t = \frac{b_2}{s_{B_2}}$$
 (table 2.12)

with $s_{B_2} = 9.530$ (in the example above)

Determination of the test distribution

Student's t-distribution, two-sided symmetric confidence interval with $(1-\alpha)$ and v=n-2 (see appendix A, statistical tables)

e.g. with
$$(1-\alpha)=0.95$$
 and $v=12-2=10$ (in the example above)

d. Identification of the critical range

For $(1-\alpha)=0.95$ and $\nu=6$, the critical *t*-value, t_c , is 2.228 (Student's t-distribution, two-sided symmetric confidence interval; see appendix A, statistical tables).

If
$$t = \frac{b_2}{s_{B_2}} > 2.228$$
, the null hypothesis H_0 has to be rejected.

If
$$t = \frac{b_2}{s_{B_2}} \le 2.228$$
, the null hypothesis H_0 cannot be rejected.

e. Calculation of the value of the test statistic

$$t = \frac{16.099}{9.530} = 1.6893$$
 (in the example above)

f. Decision and interpretation

$$t < t_c$$
 (1.6893 < 2.228)

 H_0 cannot be rejected.

The observed value for b_2 ($b_2=16.099$) is statistically invalid with a significance level of 0.05 (= 5 %).

There is no significant correlation between the tested variables y (revenue) and x_2 (price) in the example above.

(3) Test of the regression coefficient \hat{b}_3

a. H_0 : $\hat{b}_3 = 0$

 H_A : $\hat{b}_3 > 0$ (a positive correlation between y (revenue) and x_3 (sales area) can be expected)

$$\alpha = 0.05$$
 $(1 - \alpha) = 0.95$ (in the example above)

b. Test statistic

$$t = \frac{b_3}{s_{B_3}}$$
 (table 2.12)

with $s_{B_3} = 0.1444$ (in the example above)

c. Determination of the test distribution

Student's t-distribution function with
$$(1-\alpha) = 0.95$$
 and $v = 12 - 2 = 10$ (in the example above)

d. Identification of the critical range

For $(1-\alpha)=0.95$ and v=10, the critical *t*-value, t_c , is 1.812 (Student's t-distribution, two-sided symmetric confidence interval; see appendix A, statistical tables).

If
$$t = \frac{b_3}{s_{B_3}} > 1.812$$
, the null hypothesis H_0 has to be rejected.

If
$$t = \frac{b_3}{s_{B_3}} \le 1.812$$
, the null hypothesis H_0 cannot be rejected.

e. Calculation of the value of the test statistic

$$t = \frac{1.0631}{0.1444} = 7.3622$$
 (in the example above)

f. Decision and interpretation

$$t > t_c$$
 (7.3622 > 1.812)

 H_0 has to be rejected.

The observed value for b_3 ($b_3 = 1.0631$) is statistically valid with a significance level of 0.05 (= 5 %).

There is a significant correlation between the tested variables y (revenue) and x_3 (sales area) in the example above.

Chapter 3

Inferential Statistics

3.1 Probability Calculation

3.1.1 Fundamental Terms/Definitions

Random Experiment

A process that can be repeated as often as desired and whose result depends on chance.

Elementary Event e_i

An elementary event e_i (also called a sample point) is an event which contains only the single outcome e_i in the sample space S.

Sample Space S

The sample space *S* (of an experiment or random trial) is the set of all elementary events or possible outcomes or results (of that experiment or that random trial):

$$S = \{e_1, e_2, ..., e_i, ..., e_n\}$$

Event A

Any subset of the sample space S.

Laplace's Definition of Probability

If all elementary events are equally possible, then

$$P(A) = \frac{\text{number of favourable cases}}{\text{number of all cases}}$$

<u>Examples:</u> For the event *A* that a coin lands on heads in a toss,

$$P(A) = \frac{1}{2}$$

For the event *B* that a die lands on a two in a roll,

$$P(B) = \frac{1}{6}$$

Von Mises'² Definition of Probability

$$P(A) = \lim_{n \to \infty} f_n(A) = \lim_{n \to \infty} \frac{h_n(A)}{n}$$

 $\underline{\text{Example:}}$ For the event A that a die lands on a two in infinite rolls,

$$P(A) = \frac{1}{6}$$

The more often a die is rolled, the probability that this die lands on the number two approaches $\frac{1}{6}$.

 $^{^{\}rm 1}$ Pierre-Simon Laplace (1749 - 1827) was a French mathematician, physicist and astronomer.

² Richard Edler von Mises (1883 - 1953) was an Austrian-American mathematician.

Kolmogorov's³ Definition of Probability

Axiom 1: $0 \le P(A) \le 1$ for $A \subset S$ (non-negativity)

Axiom 2: P(S) = 1 (standardisation)

Axiom 3: $P(A \cup B) = P(A) + P(B)$ for $A \cap B = \emptyset$ (additivity)

Axiom (3) results in the relation

$$P(A_1 \cup A_2 \cup ... \cup A_n) = P(A_1) + P(A_2) + ... + P(A_n)$$

for $A_i \cap A_j = \emptyset$ $(i \neq j)$

Rules of Calculation for Probabilities

(1) Complementary Probability (Counter Probability)

For \overline{A} , the complementary event of A, the following applies:

$$P(\overline{A}) = 1 - P(A)$$

Example:

The probability of rolling a six in one roll of a die is $\frac{1}{6}$. What is the probability of rolling a six when rolling a die four times?

 $\overline{A} = \text{rolling at least a six}$

A = not rolling any sixes

³ Andrej Nikolaevič Kolmogorov (1903 - 1987) was a Soviet mathematician.

The probability of not rolling any sixes in four rolls is:

$$\frac{5}{6} \cdot \frac{5}{6} \cdot \frac{5}{6} \cdot \frac{5}{6} = \frac{625}{1,296} = 0.482 = 48.2 \%$$

The counter probability is therefore:

$$1 - \frac{625}{1,296} = 0.518 = 51.8\%$$

(2) Probability of an Impossible Event

$$P(\varnothing) = 0$$

Example:

The probability of getting an eight in a single roll of a die is zero.

Ø: "getting eight points in a single roll of a die"

Indeed, a normal die only has the numbers one to six.

Ø: "number of dots is equal to eight"

$$P(\varnothing) = 0$$

(3) Addition Theorem for Two Arbitrary Events

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Example:

 $A = \{\text{rolling a number} < 4\}$

 $B = \{\text{rolling an odd number}\}$

$$P(A) = \frac{3}{6}$$
 and $P(B) = \frac{3}{6}$

Probability of $A \cap B$:

$$P(A \cap B) = P(\{\text{rolling an odd number less than 4}\}) =$$
 $= P(\{\text{rolling 1 or 3}\}) =$
 $= \frac{2}{6} = \frac{1}{3}$

Accordingly:

$$P(A \cup B) = P(A) + P(B) - P(A \cap B) =$$

$$= \frac{3}{6} + \frac{3}{6} - \frac{2}{6} = \frac{4}{6} =$$

$$= \frac{2}{3} = 66.67 \%$$

(4) Condition of Probability for a Sub-Event

$$P(A) \leq P(B)$$
 for $A \subset B$

Example:

$$A = \{ \text{rolling an odd number} < 4 \}$$

$$B = \{\text{rolling a number} < 4\}$$

$$P(A) = \frac{2}{6} \quad \text{and} \quad P(B) = \frac{3}{6}$$

$$P(A) < P(B) \qquad \frac{2}{6} < \frac{3}{6}$$

3.1.2 Theorems of Probability Theory

Multiplication Theorem

For two stochastically $\underline{independent}$ events A and B, the following applies:

$$P(A \cap B) = P(A) \cdot P(B)$$

Example:

What is the probability of getting "heads" twice if a coin is tossed twice?

For each toss, the probability of getting "heads" is $\frac{1}{2}$, so the following applies:

$$P(A \cap B) = P(A) \cdot P(B) =$$

$$= \frac{1}{2} \cdot \frac{1}{2} =$$

$$= \frac{1}{4} = 25\%$$

For two stochastically <u>dependent</u> events A and B, the following applies:

$$P(A \cap B) = P(A) \cdot P(B/A) = P(B) \cdot P(A/B)$$

Example:

The probability of being a motorcyclist in a traffic accident last year was 31 %. Of these, 46 % were not wearing a helmet. What is the probability of being a motorcyclist in a traffic accident who is not wearing a helmet?

$$P(A) = P(\text{accident as a motorcyclist}) = 0.31$$

 $P(B/A) = P(\{\text{without helmet}\} / \{\text{accident as a motorcyclist}\}) = 0.46$

$$P(A \cap B) = P(A) \cdot P(B/A) =$$

= 0.31 \cdot 0.46 =
= 0.1426 = 14.26 %

Conditional Probability

For P(A) > 0, the conditional probability of event B under the condition A is defined as

$$P(B/A) = \frac{P(A \cap B)}{P(A)}$$

Example:

Out of 20 students, 4 own a car. 12 of these 20 students are male. 3 of the 12 male students own a car and the remaining 9 do not. What is the probability that a randomly selected student in this group who owns a car is male?

A: The selected student has a car.

B: The selected student is male.

Fourfold table:

	В	\overline{B}	
A	3	1	4
\overline{A}	9	7	16
	12	8	20

Calculating probabilities:

	В	\overline{B}	
A	$\frac{3}{20} = 0.15$	$\frac{1}{20} = 0.05$	$\frac{4}{20} = 0.2$
\overline{A}	$\frac{9}{20} = 0.45$	$\frac{7}{20} = 0.35$	$\frac{16}{20} = 0.8$
	$\frac{12}{20} = 0.6$	$\frac{8}{20} = 0.4$	$\frac{20}{20} = 1$

Conditional probability:

$$P(B/A) = \frac{P(A \cap B)}{P(A)} =$$

$$= \frac{0.15}{0.2} =$$

$$= 0.75 = 75 \%$$

The probability of a randomly selected student in this group who owns a car being male is 75 %.

with
$$P(A \cap B) = P(A) \cdot P(B/A) = P(B) \cdot P(A/B) =$$

= $0.2 \cdot (0.15/0.2) = 0.6 \cdot (0.15/0.6) =$
= $0.15 = 15\%$

The proportion of students who A) own a car and B) are male is $15\,\%$.

Stochastic Independence

Two events A and B are stochastically independent if the following applies:

$$P(A/B) = P(A/\overline{B}) \quad \lor \quad P(B/A) = P(B/\overline{A})$$
 or
$$P(A \cap B) = P(A) \cdot P(B)$$

Example:

A die is rolled once. Event *A* is "even number of dots" and event *B* is "number of dots less than 5".

$$P(A) = \frac{3}{6} = \frac{1}{2}$$
 $P(\overline{A}) = \frac{3}{6} = \frac{1}{2}$ $P(B) = \frac{4}{6} = \frac{2}{3}$ $P(\overline{B}) = \frac{2}{6} = \frac{1}{3}$

$$P(A \cap B) = \text{ events 2 and } 4 = \frac{1}{2} \cdot \frac{2}{3} = \frac{2}{6} = \frac{1}{3}$$

$$P(\overline{A} \cap B) = \text{ events 1 and } 3 = \frac{1}{2} \cdot \frac{2}{3} = \frac{2}{6} = \frac{1}{3}$$

Furthermore, the following applies in the case of stochastic independence:

$$P(B/A) = P(B/\overline{A})$$

with

$$P(B/A) = \frac{P(A \cap B)}{P(A)} = \frac{1}{3} / \frac{1}{2} = \frac{2}{3}$$

$$P(B/\overline{A}) = \frac{P(\overline{A} \cap B)}{P(A)} = \frac{1}{3} / \frac{1}{2} = \frac{2}{3}$$

$$P(B/A) = P(B/\overline{A})$$

$$\frac{2}{3} = \frac{2}{3}$$

$$P(A/B) = P(A/\overline{B})$$

$$\frac{1}{2} = \frac{1}{2}$$

Law of Total Probability

If $A_1 \cup A_2 \cup ... \cup A_n = S$ and $A_i \cap A_j = \emptyset$ for $i \neq j$, the following is true for $E \subset S$:

$$P(E) = \sum_{i=1}^{n} P(A_i) \cdot P(E/A_i)$$
 with $i = 1, ..., n$

Example:

A company manufactures $2{,}000$ units of a product daily. Out of these, the following machines produce:

 M_1 500 units with a scrap rate of 5 %,

 M_2 800 units with a scrap rate of 4 %,

 M_3 700 units with a scrap rate of 2 %.

One unit is randomly selected from a daily production. What is the probability that the selected unit is defective?

 A_i : The selected unit was produced by M_i .

E : The selected unit is defective.

$$P(A_1) = \frac{500}{2,000} = 0.25$$
 and $P(E/A_1) = \frac{5}{100} = 0.05$
 $P(A_2) = \frac{800}{2,000} = 0.4$ and $P(E/A_2) = \frac{4}{100} = 0.04$
 $P(A_3) = \frac{700}{2,000} = 0.35$ and $P(E/A_3) = \frac{2}{100} = 0.02$

Searched probability:

$$P(E) = \sum_{i=1}^{3} P(A_i) \cdot P(E/A_i) =$$

$$= 0.25 \cdot 0.05 + 0.4 \cdot 0.04 + 0.35 \cdot 0.02 =$$

$$= 0.0355$$

The probability of a unit being defective is approximately 3.55 %.

Bayes'4 Theorem

If $A_1 \cup A_2 \cup ... \cup A_n = S$ and $A_i \cap A_j = \emptyset$ for $i \neq j$, the following is true for $E \subset S$:

$$P(A_j/E) = \frac{P(A_j) \cdot P(E/A_j)}{\sum\limits_{i=1}^n P(A_i) \cdot P(E/A_i)} \quad \text{with} \quad i, j = 1, ..., n$$

⁴ Thomas Bayes (1701 - 1761) was an English mathematician and statistician.

Example:

The example of the "Law of Total Probability" is considered again. One unit is selected from a daily production again. In this case, it is a defective unit.

What is the probability that this unit comes from M_1 , M_2 or M_3 ?

$$P(A_1/E) = \frac{P(A_1) \cdot P(E/A_1)}{\sum_{i=1}^{3} P(A_i) \cdot P(E/A_i)} =$$

$$= \frac{0.25 \cdot 0.05}{0.25 \cdot 0.05 + 0.4 \cdot 0.04 + 0.35 \cdot 0.02} =$$

$$= \frac{0.0125}{0.0355} = 0.35$$

$$P(A_2/E) = \frac{0.4 \cdot 0.04}{0.0355} = 0.45$$

$$P(A_3/E) = \frac{0.35 \cdot 0.02}{0.0355} = 0.20$$

The probability of the randomly selected unit being from machine 1 is 35%, of it being from machine 2 is 45%, and of it being from machine 3 is 20%.

3.2 Probability Distributions

3.2.1 Concept of Random Variables

To express or process the result of a random experiment quantitatively, it must be transformed into a real number, if possible.

The random variable X comprises a certain number of n elementary events e_j with j = 1, 2, ..., n in the sample space S.

Domain: sample space *S* Codomain: set of real numbers

A distinction must be made:

- 1. *Discrete random variables:* Each possible event can be assigned a specific probability of occurrence (e.g. rolling a die).
- 2. Continuous random variables: There is an infinite number of possible manifestations of a characteristic. The possibility of determining the probability of occurrence is almost zero.

3.2.2 Probability, Distribution and Density Function

3.2.2.1 Discrete Random Variables

Probability Function

$$f(x_i) = P(X = x_i)$$
 with $i = 1, 2, ..., n$

Characteristics of a probability function:

(1)
$$f(x_i) \ge 0$$
 with $i = 1, 2, ..., n$

$$(2) \quad \sum_{i} f(x_i) = 1$$

Distribution Function

$$F(x) = P(X \le x)$$

Characteristics of a distribution function:

- (1) F(x) is monotonically increasing
- (2) F(x) is continuous

(3)
$$\lim_{x \to -\infty} F(x) = 0$$

$$(4) \quad \lim_{x \to +\infty} F(x) = 1$$

Example:

A die is rolled. The set of events Ω that can occur, is:

$$\Omega = \{1, 2, 3, 4, 5, 6\}$$

Probability Function

The probability that one of the events e_i with i = 1, 2, ..., 6, will occur, is in each case $\frac{1}{6}$.

$$P(x=1)=rac{1}{6}$$

$$P(x=2)=rac{1}{6} \qquad ext{and so forth}$$

$$f(x_i)=rac{1}{6} \qquad ext{with} \qquad i=1,...,6$$

Distribution Function

$$F(x) = \begin{cases} 0 & \text{for } x < 1 \\ \frac{1}{6} & \text{for } 1 \le x < 2 \\ \frac{2}{6} & \text{for } 2 \le x < 3 \\ \frac{3}{6} & \text{for } 3 \le x < 4 \\ \frac{4}{6} & \text{for } 4 \le x < 5 \\ \frac{5}{6} & \text{for } 5 \le x < 6 \\ 1 & \text{for } x \ge 6 \end{cases}$$

3.2.2.2 Continuous Random Variables

Instead of probabilities, so-called densities are given. This is done in the form of density functions.

Probability Function

$$P(a \le X \le b) = \int_{a}^{b} f(x)dx$$

Characteristics of each probability density:

(1)
$$f(x) \ge 0$$

$$(2) \int_{-\infty}^{+\infty} f(x) dx = 1$$

Distribution Function

$$F(x) = P(X \le x) = \int_{-\infty}^{x} f(q)dq$$

$$\Rightarrow F'(x) = f(x)$$

Properties of each distribution function of continuous random variables:

- (1) $0 \le F(x) \le 1$
- (2) F(x) is monotonically increasing,

for
$$x_1 < x_2$$
 applies $F(x_1) \le F(x_2)$

(3)
$$\lim_{x \to -\infty} F(x) = 0$$

$$(4) \quad \lim_{x \to +\infty} F(x) = 1$$

(5) F(x) is continuous throughout the entire domain.

Example:

The random variable X describes the delay of a cab at a certain stop, measured in minutes. This results in the following density function (dimension: minutes):

$$f(x) = \begin{cases} 0.4 - 0.125x & \text{for } 0 \le x \le 4\\ 0 & \text{for all other x} \end{cases}$$

Probability Function

The probability for *X* to take a value between one and three minutes is:

$$P(1 \le x \le 3) = \int_{1}^{3} f(x)dx =$$

$$= \int_{1}^{3} (0.4 - 0.125x)dx =$$

$$= \left[0.4x - \frac{0.125}{2} x^{2} \right]_{1}^{3} =$$

$$= \frac{51}{80} - \frac{27}{80} = 0.3$$

Distribution Function

$$F(x) = P(X \le x) = \int_{-\infty}^{x} f(q)dq$$

$$\Rightarrow F'(x) = f(x)$$

$$F(x) = \int_{-\infty}^{x} f(q)dq =$$

$$= \int_{0}^{x} (0.4 - 0.125q)dq =$$

$$= \left[0.4q - \frac{0.125}{2} q^{2} \right]_{0}^{x} =$$

$$= 0.4x - 0.0625x^{2}$$

3.2.3 Parameters for Probability Distributions

Expected Value and Variance of Random Variables

Discrete Random Variables

$$E(X) = \sum_{i} x_{i} f(x_{i})$$

$$Var(X) = E [[X - E(X)]^{2}] =$$

$$= \sum_{i} [x_{i} - E(X)]^{2} f(x_{i}) =$$

$$= \sum_{i} x_{i}^{2} \cdot f(x_{i}) - [E(X)]^{2}$$

Example:

The random variable *X* describes the odd number of a die rolled once.

There are three possible realizations:

$$x_1 = 1$$
 $x_2 = 3$ $x_3 = 5$

The probability for each realization is $\frac{1}{3}$.

$$E(X) = \sum_{i} x_{i} f(x_{i}) =$$

$$E(X) = 1 \cdot \frac{1}{3} + 3 \cdot \frac{1}{3} + 5 \cdot \frac{1}{3} = 3$$

$$Var(X) = \sum_{i} x_{i}^{2} \cdot f(x_{i}) - [E(X)]^{2} =$$

$$= 1^{2} \cdot \frac{1}{3} + 3^{2} \cdot \frac{1}{3} + 5^{2} \cdot \frac{1}{3} - 3^{2} =$$

$$= \frac{8}{3} \approx 2.6667$$

Continuous Random Variables

$$E(X) = \int_{-\infty}^{+\infty} x f(x) dx$$

$$Var(X) = E\left[[X - E(X)]^2 \right] =$$

$$= \int_{-\infty}^{+\infty} [x - E(X)]^2 f(x) dx =$$

$$= \int_{-\infty}^{+\infty} x^2 \cdot f(x) dx - [E(X)]^2$$

Example:

Given a continuous random variable X with the following density function:

$$f(x) = \begin{cases} 0.4 - 0.125x & \text{für } 0 \le x \le 4\\ 0 & \text{for all other x} \end{cases}$$

$$E(X) = \int_{-\infty}^{+\infty} x f(x) dx$$

$$E(X) = \int_{0}^{4} x(0.4 - 0.125x) dx =$$

$$= \int_{0}^{4} (0.4x - 0.125x^{2}) dx =$$

$$= \left[\frac{0.4}{2} x^{2} - \frac{0.125}{3} x^{3} \right]_{0}^{4} =$$

$$= \frac{8}{15} \approx 0.5333$$

$$Var(X) = \int_{-\infty}^{+\infty} x^2 \cdot f(x) dx - [E(X)]^2 =$$

$$= \int_{0}^{4} x^2 (0.4x - 0.125x) dx - 0.5333^2 =$$

$$= \int_{0}^{4} (0.4x^2 - 0.125x^3) dx - 0.5333^2 =$$

$$= \left[\frac{0.4}{3} x^3 - \frac{0.125}{4} x^4 \right]_{0}^{4} - 0.5333^2 =$$

$$= 0.2489$$

3.3 Theoretical Distributions

3.3.1 Discrete Distributions

Binomial Distribution

Probability Function

$$f_B(x/n; \theta) = \begin{cases} \binom{n}{x} \theta^x (1-\theta)^{n-x} & \text{for } x = 0, 1, ..., n \\ 0 & \text{for } x \neq 0, 1, ..., n \end{cases}$$

Distribution Function

$$F_B(x/n;\theta) = \sum_{\nu=0}^{x} {n \choose \nu} \theta^{\nu} (1-\theta)^{n-\nu}$$

Expected Value

$$E(X) = n \cdot \theta$$

Variance

$$Var(X) = n \cdot \theta(1 - \theta)$$

Recursive Formula

$$f_B(x+1/n;\theta) = f_B(x/n;\theta) \cdot \frac{n-x}{x+1} \cdot \frac{\theta}{1-\theta}$$

Example:

Probability Function

The probability of tossing "heads" exactly x = 2 times in n = 4 coin tosses is P(X = 2).

$$f_B(x/n;\theta) = \binom{n}{x} \theta^x (1-\theta)^{n-x}$$

$$f_B(2/4;0.5) = \binom{4}{2} 0.5^2 (1-0.5)^{4-2} = 0.3750$$

See Appendix A, Binomial Distribution – Probability Mass Function for n = 4, x = 2 and $\theta = 0.5$.

Distribution Function

The probability of tossing "heads" at most x = 2 times in n = 4 coin tosses is P(X = 2).

$$F_B(x/n;\theta) = \sum_{\nu=0}^{x} {n \choose \nu} \theta^{\nu} (1-\theta)^{n-\nu}$$

$$= F_B(2/4;0.5) = f_B(0/4;0.5) + f_B(1/4;0.5) + f_B(2/4;0.5) =$$

$$= 0.0625 + 0.2500 + 0.3750 = 0.6875$$

See Appendix A, Binomial Distribution – Probability Mass Function. See also Appendix A, Binomial Distribution – Cumulative Distribution Function for n = 4, x = 2 and $\theta = 0.5$.

Expected Value

$$E(X) = n \cdot \theta$$
$$E(X) = 4 \cdot 0.5 = 2$$

Variance

$$Var(X) = n \cdot \theta(1 - \theta)$$
$$Var(X) = 4 \cdot 0.5(1 - 0.5) = 1$$

Recursive Formula

$$f_B(x+1/n;\theta) = f_B(x/n;\theta) \cdot \frac{n-x}{x+1} \cdot \frac{\theta}{1-\theta}$$

$$f_B(x+1/n;\theta) = f_B(2+1/4;0.5) = f_B(3/4;0.5) =$$

$$= 0.3750 \cdot \frac{4-2}{2+1} \cdot \frac{0.5}{1-0.5} = 0.25$$

See Appendix A, Binomial Distribution – Probability Mass Function for n = 4, x = 3 and $\theta = 0.5$.

The binomial distribution is equal to the one-dimensional case of a multidimensional distribution, the so-called *multinomial distribution* with the probability function

$$f_B^{mult}(x_1, x_2, ..., x_k/n; \theta_1; \theta_2; ...; \theta_k) =$$

$$= \frac{n!}{x_1! x_2! ... x_k!} \cdot \theta_1^{x_1} \cdot \theta_2^{x_2} \cdot ... \cdot \theta_k^{x_k}$$
with
$$\sum_{i=1}^k x_i = n \quad \text{and} \quad \sum_{i=1}^k \theta_i = 1$$

For k=2 the probability function of the *multinomial distribution* is equal to the probability function of the *binomial distribution* with $x_2 = n - x_1$ and $\theta = 1 - \theta_1$.

Example:

An imported delivery of oranges includes the following qualities:

50 % correspond to grade I,

30 % correspond to grade II and

 $20\ \%$ of the delivery are unusable.

A sample with replacement of ten oranges is randomly taken. What is the probability that six of these oranges are of grade I and four are of grade II, i.e. that all ten oranges are for sale?

 X_1 = random variable "Number of oranges of grade I" in the sample X_2 = random variable "Number of oranges of grade II" in the sample X_3 = random variable "Number of unusable oranges" in the sample

The multinomial probability looked for is calculated as follows:

$$f_B^{mult}(6, 4, 0/10; 0.5; 0.3; 0.2) =$$

$$= \frac{10!}{6!4!0!} \cdot 0.5^6 \cdot 0.3^4 \cdot 0.2^0 =$$

$$= 210 \cdot 0.00013 \approx 0.02668 \approx 2.66\%$$

Hypergeometric Distribution

Probability Function

$$f_H(x/N; n; M) = \begin{cases} \frac{\binom{M}{x} \binom{N-M}{n-x}}{\binom{N}{n}} & \text{for } x = 0, 1, ..., n \\ 0 & \text{for } x \neq 0, 1, ..., n \end{cases}$$

Distribution Function

$$F_H(x/N; n; M) = \sum_{v=0}^{x} \frac{\binom{M}{v} \binom{N-M}{n-v}}{\binom{N}{n}}$$

Expected Value

$$E(X) = n \cdot \frac{M}{N}$$

Variance

$$Var(X) = n \cdot \frac{M}{N} \cdot \frac{N-M}{N} \cdot \frac{N-n}{N-1}$$

Recursive Formula

$$f_H(x+1/N; n; M) = f_H(x/N; n; M) \cdot \frac{(M-x)(n-x)}{(x+1)(N-M-n+x+1)}$$

Example:

Probability Function

$$f_{H}(x/N; n; M) = \begin{cases} \frac{\binom{M}{x} \binom{N-M}{n-x}}{\binom{N}{n}} & \text{for } x = 0, 1, ..., n \\ 0 & \text{for } x \neq 0, 1, ..., n \end{cases}$$

A total of N=10 balls includes M=4 green balls and N-M=6 nongreen balls. A random sample of n=4 balls is drawn without returning any already drawn ball to the population, meaning the number of balls still available is reduced by 1 from draw to draw. Since the sample is drawn "without replacement", each element (each individual ball) can occur at most only once in the drawn sample. The order of the selected elements (drawn balls) does not matter.

What is the probability of drawing x=2 green balls at n=4 (sample size)?

$$f_H(2/10; 4; 4)$$

$$P(X = 2) = f_H(2/10; 4; 4) = \frac{\binom{4}{2} \binom{10 - 4}{4 - 2}}{\binom{10}{4}} = \frac{\binom{4}{2} \binom{6}{2}}{\binom{10}{4}} = \frac{6 \cdot 15}{210} = 0.4286$$

The probability of drawing two green balls in a sample size of n=4 is 42%.

See Appendix A, Hypergeometric Distribution – Probability Mass Function for N = 10, n = 4, M = 4 and x = 2.

Distribution Function

$$F_H(x/N; n; M) = \sum_{v=0}^{x} \frac{\binom{M}{v} \binom{N-M}{n-v}}{\binom{N}{n}}$$

If the probability is looked for that at most x = 2 balls should be green within the conducted sample in the extent of n = 4, then the distribution function is to be used:

$$F_H(2/10; 4; 4) = f_H(0/10; 4; 4) + f_H(1/10; 4; 4) + f_H(2/10; 4; 4) =$$

= 0.0174 + 0.3810 + 0.4286 = 0.8810

See Appendix A, Hypergeometric Distribution – Probability Mass Function. See also Appendix A, Hypergeometric Distribution – Cumulative Distribution Function for N = 10, n = 4, M = 4 and x = 2.

Expected Value

$$E(X) = n \cdot \frac{M}{N}$$
$$E(X) = 4 \cdot \frac{4}{10} = 1.6$$

Variance

$$Var(X) = n \cdot \frac{M}{N} \cdot \frac{N - M}{N} \cdot \frac{N - n}{N - 1}$$
$$Var(X) = 4 \cdot \frac{4}{10} \cdot \frac{10 - 4}{10} \cdot \frac{10 - 4}{10 - 1} = 0.64$$

Recursive Formula

$$f_H(x+1/N; n; M) = f_H(x/N; n; M) \cdot \frac{(M-x)(n-x)}{(x+1)(N-M-n+x+1)}$$

$$f_H(3/10; 4; 4) = \frac{\binom{4}{3}\binom{10-4}{4-3}}{\binom{10}{4}} = \frac{\binom{4}{3}\binom{6}{1}}{\binom{10}{4}} = \frac{4 \cdot 6}{210} = 0.1143$$

$$f_H(2/10; 4; 4) \cdot \frac{(4-2)(4-2)}{(2+1)(10-4-4+2+1)} = 0.4286 \cdot 0.2667 = 0.1143$$

See Appendix A, Hypergeometric Distribution – Probability Mass Function for N=10, n=4, M=4 and x=2.

Poisson⁵ Distribution

Probability Function

$$f_p(x/\mu) = \begin{cases} \dfrac{\mu^x e^{-\mu}}{x!} & \text{for } x = 0, 1, ..., n \\ 0 & \text{for } x \neq 0, 1, ..., n \end{cases}$$

$$e = 2.71828...$$
 (Euler's Number)

⁵ Siméon Denis Poisson (1781 - 1840) was a French physicist and mathematician.

Distribution Function

$$F_p(x/\mu) = \sum_{v=0}^{x} \frac{\mu^v e^{-\mu}}{v!}$$

Expected Value and Variance

$$E(X) = Var(X) = \mu$$

Recursive Formula

$$f_p(x+1/\mu) = f_p(x/\mu) \frac{\mu}{x+1}$$

Example:

Probability Function

A company manufactures motor vehicles in an assembly line. The proportion of motor vehicles produced that do not meet the desired standard of quality is $\theta=0.001$; i.e. one per mill. It is looked for the probability that exactly two motor vehicles are defective, meaning they do not meet the required quality standards, during a random inspection in which n=1,500 motor vehicles are randomly selected.

$$f_p(x/\mu) = \begin{cases} \frac{\mu^x e^{-\mu}}{x!} & \text{for } x = 0, 1, ..., n \\ 0 & \text{for } x \neq 0, 1, ..., n \end{cases}$$
 with $\mu = n \cdot \theta$

$$f_p(2/\mu) = f_p(2/1.5) = \frac{1.5^2 e^{-1.5}}{2!} = 0.2510$$

with
$$\mu = 1,500 \cdot 0.001 = 1.5$$

See Appendix A, Poisson Distribution – Probability Mass Function for $\mu=1.5$ and x=2.

Distribution Function

$$F_p(x/\mu) = \sum_{\nu=0}^{x} \frac{\mu^{\nu} e^{-\mu}}{\nu!}$$

Now it is looked for the probability that, in a random sample in which n=1,500 motor vehicles are randomly selected, a at most two motor vehicles are defective, meaning they do not meet the required quality standards.

$$F_p(2/1.5) = \frac{1.5^0 e^{-1.5}}{0!} + \frac{1.5^1 e^{-1.5}}{1!} + \frac{1.5^2 e^{-1.5}}{2!} = 0.2231 + 0.3347 + 0.2510 = 0.8088$$

See Appendix A, Poisson Distribution – Probability Mass Function. See also Appendix A, Poisson Distribution – Cumulative Distribution Function for $\mu=1.5$ and x=2.

Expected Value and Variance

$$E(X) = Var(X) = \mu = n \cdot \theta = 1,500 \cdot 0.001 = 1.5$$

Recursive Formula

$$f_p(x+1/\mu) = f_p(x/\mu) \frac{\mu}{x+1}$$

$$f_p(3/1.5) = \frac{1.5^3 e^{-1.5}}{3!} = 0.1255$$

alternative calculation:

$$f_p(3/1.5) = \frac{1.5}{2+1} = 0.1255 =$$

$$= 0.2510 \frac{1.5}{2+1} =$$

$$= 0.1255$$

See Appendix A, Poisson Distribution – Probability Mass Function for $\mu = 1.5$ and x = 3.

3.3.2 Continuous Distributions

Normal Distribution

Probability Function

$$f_n(x/\mu;\sigma^2) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$$

Distribution Function

$$F_n(x/\mu;\sigma^2) = \int\limits_{-\infty}^{x} \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}\left(\frac{q-\mu}{\sigma}\right)^2} dq$$

Expected Value

$$E(X) = \mu$$

Variance

$$Var(X) = \sigma^2$$

Standard Normal Distribution

If the random variable X is normally distributed with $E(X) = \mu$ and $Var(X) = \sigma^2$, then X becomes the standardised random variable Z with

$$Z = \frac{X - \mu}{\sigma}$$

and the expected value E(Z) = 0 and the variance Var(Z) = 1.

Probability Function

$$f_N(z) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}z^2}$$

Distribution Function

$$F_N(z) = \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}q^2} dq$$

Expected Value

$$E(Z) = 0$$

Variance

$$Var(Z) = 1$$

Example 1:

Probability Function

The height of a given tree, X, is assumed to be normally distributed over the entire Earth with an expected value E(X) of 10m and a variance Var(X) of $1.44m^2$.

What is the probability that a randomly selected tree is exactly

- a) 9.90*m*
- b) 11.40*m*
- c) 14.10*m*

tall?

$$f_n(x/\mu; \sigma^2) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$$

a)
$$f_n(9.90/10; 1.44) =$$

= $\frac{1}{1.2\sqrt{2\pi}} \cdot e^{-\frac{1}{2}\left(\frac{9.90-10}{1.2}\right)^2} =$
= $0.3325 \cdot 0.9965 = 0.3313 = 33.13\%$

b)
$$f_n(11.40/10; 1.44) =$$

= $\frac{1}{1.2\sqrt{2\pi}} \cdot e^{-\frac{1}{2}\left(\frac{11.40-10}{1.2}\right)^2} =$
= $0.3325 \cdot 0.5063 = 0.1684 = 16.84\%$

c)
$$f_n(14.10/10; 1.44) =$$

$$= \frac{1}{1.2\sqrt{2\pi}} \cdot e^{-\frac{1}{2}\left(\frac{14.10-10}{1.2}\right)^2} =$$

$$= 0.3325 \cdot 0.0029 = 0.00097 \approx 0.001 =$$

$$\approx 0.1\% \approx 1\%$$

What is the probability that a randomly selected tree is

- a) smaller than 9m,
- b) at least 10.80m tall,
- c) between 9.20m and 11.20m tall?

Here it is a case of a normal distribution with the probability function (density function) of

$$f_n(x/\mu; \sigma^2) = \frac{1}{1.0954 \cdot \sqrt{2\pi}} e^{-\frac{1}{2} \left(\frac{x-10}{1.0954}\right)^2}$$

with

- a) W(X < 9)
- b) W(X > 10.8)
- c) W(9.20 < X < 11.20)

Since the values in the probability function are given according to a left-sided integral (area under the normally distributed curve), the relations are all to be written in "less than" or "less than/equal to" directions (see Appendix A, Standard Normal Distribution).

- a) W(X < 9)
- b) 1 W(X < 10.8)
- c) $W(X < 11.20) W(X \le 9.20)$

Since these are integrals (area segments), it is of no significance whether it is called "<" or " \le ", so that usually the following applies:

- a) $W(X \le 9)$
- b) $1 W(X \le 10.8)$
- c) $W(X \le 11.20) W(X \le 9.20)$

If the random variable X is normally distributed with $E(X) = \mu$ and $Var(X) = \sigma^2$, then X becomes the standardized random variable Z with

$$Z = \frac{X - \mu}{\sigma}$$
 and $E(Z) = 0$ and $Var(Z) = 1$.

a)
$$W(Z \le \frac{9-10}{1.2}) = W(Z \le -0.833)$$

b)
$$1 - W(Z \le \frac{10.8 - 10}{1.2}) = 1 - W(Z \le 0.667)$$

c)
$$W(Z \le \frac{11.20 - 10}{1.2}) - W(Z \le \frac{9.20 - 10}{1.2}) = W(Z \le 1) - W(Z \le -0.667)$$

a)
$$W(Z \le -0.833) = z(-0.833) = 1 - z(0.833)$$

b)
$$1 - W(Z \le 0.667) = 1 - z(0.667)$$

c)
$$W(Z \le 1) - W(Z \le -0.667) = z(1) - z(-0.667) =$$

= $z(1) - (1 - z(0.667)) =$
= $z(1) - 1 + z(0.667)$

Due to the symmetry of the (standard) normal distribution z(-g)=1-z(g) can be applied. The z is also often written as the Greek letter Phi ϕ .

The z-values can be taken from Appendix A, Standard Normal Distribution - Distribution Function, so that the following applies:

a)
$$1-z(0.833) = 1-0.7976 = 0.2024 = 20.24\%$$

b)
$$1-z(0.667) = 1-0.7476 = 0.2524 = 25.24\%$$

c)
$$z(1) - 1 + z(0.667) = 0.8413 - 1 + 0.7476 =$$

= 0.5889 = 58.89%

Example 2:

What height do 30% of the trees of example 1 exceed?

$$W(X \ge x_o) = 0.3$$

$$\Leftrightarrow 1 - W(X \le x_o) = 0.3$$

$$\Leftrightarrow -W(X \le x_o) = -0.7$$

$$\Leftrightarrow W(X \le x_o) = 0.7$$

$$\Rightarrow W(Z \le z_o) = 0.7$$

$$\Leftrightarrow W(Z \le \frac{X - \mu}{\sigma}) = W(Z \le \frac{X - 10}{1.2}) = 0.7$$

In Appendix A, Standard Normal Distribution - Distribution Function, the value of 0.7 is first exceeded at a z-value of 0.525.

$$\Rightarrow \frac{x_o - 10}{1.2} = 0.525$$
$$x_o = 0.525 \cdot 1.2 + 10 = 10.63 \, m$$

Chi-Squared Distribution

Probability Function

$$f_{Ch}(\chi^2/v) = egin{cases} rac{1}{2^{v/2} \Gamma\left(rac{v}{2}
ight)} \, e^{-rac{\chi^2}{2}} \left(\chi^2
ight)^{\left(rac{v}{2}-1
ight)} & \qquad ext{for } \chi^2 \geq 0 \ 0 & \qquad \qquad ext{for } \chi^2 < 0 \end{cases}$$

Distribution Function

$$F_{Ch}(\chi^2/v) = rac{1}{2^{v/2} \Gamma\left(rac{v}{2}
ight)} \int\limits_0^{\chi^2} e^{-rac{q}{2}} \, q^{\left(rac{v}{2}-1
ight)} \, dq$$

Expected Value

$$E(\chi^2) = v$$

Variance

$$Var(\chi^2) = 2v$$

Example:

A bus line is served by a bus once a day. The variances of the arrival times x_i with i=1,...n are normally distributed with an expected value of $E(x_i)=0$ hours and a variance of $Var(x_i)=1$ hour $\dot{\sigma}=1$ hour). The (total) costs in \$ caused by an early or late arrival of the bus (measured in hours) are calculated by the following total cost function:

$$K(x) = 20 \sum_{i=1}^{n} x_i^2$$
 with $i = 1, ..., n$ rides

The daily varying deviations occur independently of each other.

- a) What are the total costs to be calculated that will be generated as a result of a **single** time deviation of this bus with a probability of 90%?
- b) With what probability can costs of more than \$100 per ride generated as a result of a **single** time deviation of this bus be excluded?
- c) This bus is now to be observed for one month, i.e. over 30 days. What is the probability that, if this bus continues to make one trip per day, the cost will be no more than \$800 per month as a result of time deviations?
- d) Now the bus is to be observed for two months, i.e. over 60 days. What is the probability that at most \$800 costs will be generated each month as a result of time deviations (measured in hours)?

a)
$$K(x) = 20 \sum_{i=1}^{n} x_i^2$$
 with $i = 1, ..., n$ rides

x is normally distributed over i = 1, ..., n with $E(x_i) = 0$ and $Var(x_i) = 1$

That means that $\sum_{i=1}^{n} x_i^2$ as the sum of the squared deviations (sum of squares of distances) from the scheduled arrival time is Chi-squared distributed.

The Chi-squared distribution can be derived from the normal distribution. Given n random variables X_i with i=1,...,n, that are independently and standardly normally distributed, the Chi-squared distribution is $\chi^2 = \sum_{i=1}^n x_i^2$ with n degrees of freedom.

The exact formulas for the Chi-squared distribution are:

Probability Function

$$f_{Ch}(\chi^2/v) = egin{cases} rac{1}{2^{v/2}\Gamma\left(rac{v}{2}
ight)}\,e^{-rac{\chi^2}{2}}\left(\chi^2
ight)^{\left(rac{v}{2}-1
ight)} & \quad ext{for } \chi^2 \geq 0 \ 0 & \quad ext{for } \chi^2 < 0 \end{cases}$$

Distribution Function

$$F_{Ch}(\chi^2/\nu) = \frac{1}{2^{\nu/2}\Gamma\left(\frac{\nu}{2}\right)} \int_{0}^{\chi^2} e^{-\frac{q}{2}} q^{\left(\frac{\nu}{2}-1\right)} dq$$

For the present case, the cost function $K(x) = \sum_{i=1}^{n} x_i^2$ can be represented accordingly by $K(\chi^2) = 20\chi^2$. Investigated is a **single** ride, so that the following can be applied:

$$v=1$$
 at $1-\alpha=0.90$ $W(\chi^2<\chi^2_o)=0.90$ with $v=1$ $\Rightarrow \chi^2=2.706$

See Appendix A, Chi-Squared Distribution.

$$\Rightarrow K(2.706) = 20 \cdot 2.706 = $54.12$$

The operator of this bus has to calculate \$54.12 in costs **per ride** for possible delays.

b) Again, a **single** ride is considered, i.e. v = 1.

$$K(\chi^2) = 20 \cdot \chi^2 \le $100$$
$$\Rightarrow \chi^2 < 5$$

See Appendix A, Chi-Squared Distribution.

For v=1, a Chi-squared value is first exceeded at a $(1-\alpha)$ -value of 0.975. The probability is approximately 97.5%.

c)
$$n = 30$$

Since the daily deviations occur independently from each other, the Chi-squared distribution here includes v=30 degrees of freedom.

$$K(\chi^2) = 20\chi^2 \le \$800$$
$$\Rightarrow \chi^2 \le 40$$

For v=30, the Chi-squared value of 40 is reached at a $(1-\alpha)$ -value of approximately 0.9000 (see Appendix A, Chi-Squared Distribution). The probability that the time deviations cost at most \$800 per month is approximately 90%. Higher costs can be expected with a probability of about 10%.

d) If the sample size consists of more than 30 elements or observations, the Chi-squared distribution can be approximated by the standard normal distribution as follows:

$$\chi^2 = \frac{1}{2}(z + \sqrt{2n - 1})^2 \quad \text{for} \quad n > 30$$

$$\Rightarrow z = \sqrt{\chi^2 \cdot 2} - \sqrt{2n - 1}$$

$$\text{monthly (= 30 days):} \quad K = 20\chi^2 \le \$800$$

$$\text{two months (= 60 days):} \quad K = 20\chi^2 \le \$1,600$$

$$\Rightarrow \chi^2 \le 80$$

Since n = 60 > 30, an approximation of the Chi-squared distribution can be made by the standard normal distribution with

$$z = \sqrt{\chi^2 \cdot 2} - \sqrt{2n - 1} =$$

$$= \sqrt{80 \cdot 2} - \sqrt{2 \cdot 60 - 1} =$$

$$= 12.6491 - 10.9087 = 1.7404$$

For z=1.7404, a $(1-\alpha)$ -value of approximately 0.9591 is calculated (see Appendix A, Standard Normal Distribution – Distribution Function).⁶

The probability that the time deviations cost at most \$800 per month increases compared to task c) with a now higher sample size of n=60 to approximately \$95.91. Higher costs can be expected with a probability of about $4.09\,\%$.

Student's t-Distribution⁷

Probability Function

$$f_{S}(t/v) = \frac{\Gamma\left(\frac{v+1}{2}\right)}{\sqrt{v\pi} \Gamma\left(\frac{v}{2}\right)} \cdot \frac{1}{\left(1 + \frac{t^{2}}{v}\right)^{(v+1)/2}} - \infty < t < +\infty$$

⁶ In Appendix A, Standard Normal Distribution - Distribution Function, a $(1-\alpha)$ -value of 0.9591 is calculated for z=1.740 and a $(1-\alpha)$ -value of 0.9592 is calculated for z=1.741.

⁷ Developed by William Sealy Gosset (1876 - 1937). Gosset was an English statistician.

Distribution Function

$$F_{S}(t/v) = \frac{\Gamma\left(\frac{v+1}{2}\right)}{\sqrt{v\pi} \Gamma\left(\frac{v}{2}\right)} \cdot \int_{-\infty}^{t} \frac{dq}{\left(1 + \frac{q^{2}}{v}\right)^{(v+1)/2}}$$

Expected Value

$$E(T) = 0$$
 for $v > 1$

Variance

$$Var(T) = \frac{v}{v-2}$$
 for $v > 2$

The Student's t-distribution is relevant when the variance needed to standardize the normal distribution is unknown. The sample variance s^2 is used for this case.

If n > 30, the Student's t-distribution can be approximated by the standardized normal distribution. The larger the sample size (= number of degrees of freedom) is selected, the closer the Student's t-distribution approaches the (standardized) normal distribution until it becomes congruent with the (standardized) normal distribution at $v = \infty$.

Example:

A healthy kidney excretes about $60-70\,\%$ of the phosphate ingested with food. To evaluate the functioning of a patient's kidneys, six measurements are taken at different times, which indicate the concentrations of phosphate in the blood, measured in mg/dl (milligrams/deciliter):

t_i	1	2	3	4	5	6
Phosphate in mg/dl	5.4	4.8	5.7	6.4	4.5	5.0

Both the mean μ and the variance σ^2 of the population are unknown, so to estimate these two parameters a sample (here of six measurements) is used and the Student's t-distribution, which, like the standardized normal distribution, is symmetric.

a) It is looked for a symmetrical confidence interval, which shows the distribution of phosphate concentrations within the blood of the patient analyzed above at a significance level (= probability of error) of 1%.

Accordingly, it is searched for a 99% confidence interval of the following structure:

$$\begin{split} \bar{x} - t &_{1-\frac{\alpha}{2}} \cdot \frac{s}{\sqrt{n}} \leq \mu \leq \bar{x} + t &_{1-\frac{\alpha}{2}} \cdot \frac{s}{\sqrt{n}} \\ \text{or} & (\bar{x} - t \frac{s}{\sqrt{n}} \; ; \; \bar{x} + t \frac{s}{\sqrt{n}}) \\ \text{with} & \bar{x} = \frac{1}{6} (5.4 + 4.8 + 5.7 + 6.4 + 4.5 + 5.0) = \\ &= 5.3 \\ s^2 &= \frac{1}{6} \big[(5.4 - 5.3)^2 + (4.8 - 5.3)^2 + (5.7 - 5.3)^2 + \\ &\quad + (6.4 - 5.3)^2 + (4.5 - 5.3)^2 + (5.0 - 5.3)^2 \big] = \\ &= \frac{1}{6} (0.01 + 0.25 + 0.16 + 1.21 + 0.64 + 0.09) = \\ &= \frac{1}{6} \cdot 2.36 = 0.3933 \, (mg/dl)^2 \end{split}$$

$$v = n - 1 = 5$$

$$\Rightarrow \bar{x} - t \frac{\alpha}{1 - \frac{\alpha}{2}} \cdot \frac{s}{\sqrt{n}} \le \mu \le \bar{x} + t \frac{\alpha}{1 - \frac{\alpha}{2}} \cdot \frac{s}{\sqrt{n}}$$
or
$$(5.3 - t \cdot \frac{\sqrt{0.3933}}{\sqrt{6}}; 5.3 + t \cdot \frac{\sqrt{0.3933}}{\sqrt{6}}) mg$$
with $t = 4.032$

See Appendix A, Student's t-Distribution – Two-sided, Symmetric Confidence Intervals.

$$\Rightarrow (5.3 - 4.032 \cdot \frac{\sqrt{0.3933}}{\sqrt{6}}; 5.3 + 4.032 \cdot \frac{\sqrt{0.3933}}{\sqrt{6}}) =$$

$$= (4.268 \, mg/dl; 6.332 \, mg/dl)$$

With a probability of 99%, the true average phosphate value μ lies between 4.268 mg/dl and 6.332 mg/dl. With a (residual) probability of 1%, the true average phosphate value μ may also lie outside (below or above) this confidence interval.

b) If the sample size increases to n > 30, the Student's t-distribution can be approximated by the standardized normal distribution.

For example, if n=100 with unchanged parameters, i.e., with $\bar{x}=5.3$ and $s^2=0.3933$, then the following applies:

$$\begin{split} & \bar{x} - z_{1 - \frac{\alpha}{2}} \cdot \frac{s}{\sqrt{n}} \leq \mu \leq \bar{x} + z_{1 - \frac{\alpha}{2}} \cdot \frac{s}{\sqrt{n}} \\ & \text{or} \quad (5.3 - z \cdot \frac{\sqrt{0.3933}}{\sqrt{6}} \; ; \; 5.3 + z \cdot \frac{\sqrt{0.3933}}{\sqrt{6}}) \, \textit{mg} \\ & \text{with} \quad z = 2.58 \end{split}$$

See Appendix A, Standard Normal Distribution –

One-sided Confidence Intervals with $\frac{0.99}{2} = 0.495$.

$$\Rightarrow (5.3 - 2.58 \cdot \frac{\sqrt{0.3933}}{\sqrt{6}} \; ; \; 5.3 + 2.58 \cdot \frac{\sqrt{0.3933}}{\sqrt{6}}) =$$

$$= (4.639 \; mg/dl \; ; \; 5.961 \; mg/dl)$$

If unchanged parameters apply, i.e. $\bar{x}=5.3$ and $s^2=0.3933$, with a now significantly higher sample size of n=100, the confidence interval looked for is shortened compared with task a), so that it can now be assumed with a probability of 99% that the true average phosphate value μ of the examined patient lies between $4.639\,mg/dl$ and $5.961\,mg/dl$. With a (residual) probability of 1%, the true average phosphate value μ can also lie outside (below or above) this confidence interval.

c) Searched is the probability that under the conditions of task a), i.e., at $\bar{x}=5.3$, $s^2=0.3933$ and v=6-1=5, the mean μ lies below $5.68 \ mg/dl$?

$$\Rightarrow P(\mu < 5.68) = ?$$

$$\Rightarrow 5.68 = 5.3 + t \cdot \frac{\sqrt{0.3933}}{\sqrt{6}}$$

$$\Leftrightarrow t = \frac{(5.68 - 5.3) \cdot \sqrt{6}}{\sqrt{0.3933}}$$

$$\Leftrightarrow t = 1.4842 \quad \text{with} \quad v = 5$$

See Appendix A, Student's t-Distribution – Distribution Function.

For v = 5, a t-value of 1.476 is given at a probability of 0.900.

1.4842 > 1.476, so it can be assumed that the probability looked for is at least 90%.

d) Searched is the probability that under the conditions of task a), i.e., at $\bar{x} = 5.3$, $s^2 = 0.3933$ and v = 6 - 1 = 5, the mean μ lies below $5.68 \ mg/dl$ and above $5.37 \ mg/dl$?

$$P(\mu < 5.68) \approx 90$$
 according to task c)
 $\Rightarrow P(\mu < 5.37) = ?$
 $\Rightarrow 5.37 = 5.3 + t \cdot \frac{\sqrt{0.3933}}{\sqrt{6}}$
 $\Leftrightarrow t = \frac{(5.37 - 5.3) \cdot \sqrt{6}}{\sqrt{0.3933}} = 0.2734$ with $v = 5$

See Appendix A, Student's t-Distribution – Distribution Function.

For v = 5, a t-value of 0.267 is given at a probability of 0.6000.

0.2734 > 0.267, so it can be assumed that the partial probability looked for is slightly more than 60%.

The probability looked for between the two values given, $P(5.37 < \mu < 5.68)$, should therefore be somewhat less than 0.90 - 0.60 = 0.30, i.e., < 30%.

e) Searched is the probability that under the conditions of task a), i.e., at $\bar{x} = 5.3$, $s^2 = 0.3933$ and v = 6 - 1 = 5, the mean μ lies below $5.68 \ mg/dl$ and above $5.16 \ mg/dl$?

$$P(\mu < 5.68) \approx 90~$$
 according to task c)
 $\Rightarrow P(\mu < 5.16) = ?$
 $\Rightarrow 5.16 = 5.3 - t \cdot \frac{\sqrt{0.3933}}{\sqrt{6}}$

Note:

There is now **minus** $t \cdot \frac{s}{\sqrt{n}}$ to calculate because 5.16 < 5.3, i.e., the given value of 5.16 mg/dl is to the left of μ , i.e., in the left half of the confidence interval.

$$\Leftrightarrow -t = \frac{(5.16 - 5.3) \cdot \sqrt{6}}{\sqrt{0.3933}}$$

$$\Leftrightarrow -t = -0.5468$$

$$\Leftrightarrow t = 0.5468$$

See Appendix A, Student's t-Distribution – Distribution Function.

For v = 5 and t = 0.559, a probability of 0.7000 is obtained.

Since 5.16 < 5.3, i.e., it is left of the (symmetric) center, i.e., left of μ ($\bar{x} = 5.3$), the probability is not 70%, but 30% for t = 0.559.

The calculated t-value is 0.5468 and is slightly smaller than the table value 0.559 from Appendix A, i.e., the probability looked for is slightly larger than 30%.

The probability $P(5.16 < \mu < 5.68)$ is calculated approximately from the difference of the two individual probabilities.

$$P(\mu < 5.68) \approx 90$$
 according to task c) $P(\mu < 5.16) \approx 30$ see above

Thus, the sought probability that the mean value of the concentration of phosphate in blood is above $5.16\,mg/dl$ and below $5.68\,mg/dl$, $P(5.16 < \mu < 5.68)$, is about 60%. In praxi it would be advisable to increase the sample size n (at least to the extent of n > 30), so that also in the present case the Student's t-distribution could be approximated by the standardized normal distribution (as in task b)).

F-Distribution8

Probability Function

$$f_F(f/v_1; v_2) = \begin{cases} \frac{\Gamma\left(\frac{v_1 + v_2}{2}\right)}{\Gamma\left(\frac{v_1}{2}\right)\Gamma\left(\frac{v_2}{2}\right)} & \frac{\left(\frac{v_1}{v_2}\right)^{\frac{v_1}{2}} f^{\frac{v_1}{2} - 1}}{\left(1 + \frac{v_1}{v_2} f\right)^{\frac{v_1 + v_2}{2}}} & \text{for } f > 0 \\ 0 & \text{for } f \leq 0 \end{cases}$$

Distribution Function

$$F_{F}(f/v_{1};v_{2}) = \begin{cases} \frac{\Gamma\left(\frac{v_{1}+v_{2}}{2}\right)}{\Gamma\left(\frac{v_{1}}{2}\right)\Gamma\left(\frac{v_{2}}{2}\right)} \left(\frac{v_{1}}{v_{2}}\right)^{\frac{v_{1}}{2}} \int\limits_{0}^{f} \frac{q^{\frac{v_{1}}{2}-1}}{\left(1+\frac{v_{1}}{v_{2}}q\right)^{\frac{v_{1}+v_{2}}{2}}} dq & \text{for } f > 0 \\ 0 & \text{for } f \leq 0 \end{cases}$$

Expected Value

$$E(F) = \frac{v_2}{v_2 - 2}$$
 for $v_2 > 2$

Variance

$$Var(F) = \frac{2 v_2^2 (v_1 + v_2 - 2)}{v_1 (v_2 - 2)^2 (v_2 - 4)}$$
 for $v_2 > 4$

⁸ Ronald Aylmer Fisher (1890 - 1962) was an English statistician.

The F-distribution was constructed for testing purposes. It describes the quotient of two Chi-squared distributed random variables, V_1 and V_2 . each divided by the number of their degrees of freedom:

$$F = \frac{\frac{V_1}{v_1}}{\frac{V_2}{v_2}} \qquad \text{with} \qquad v_1 = n_1 - 1$$
$$v_2 = n_2 - 1$$

$$F = \frac{\frac{(n_1 - 1) \cdot S_1^2}{(n_1 - 1) \cdot \sigma_1^2}}{\frac{(n_2 - 1) \cdot S_2^2}{(n_2 - 1) \cdot \sigma_2^2}} = \frac{S_1^2 / \sigma_1^2}{S_2^2 / \sigma_2^2}$$

The F-distribution is mainly used to compare the variances of two samples from normally distributed populations and for variance analysis to compare sample mean values.

For *n* independent standard normally distributed random variables $X_1, ..., X_{n_1}$ and m independent standard normally distributed random variables $Y_1, ..., Y_n$, the two Chi-squared distributed random variables, V_1 and V_2 , can be formed from the respective sums of squares:

$$V_1 = \sum_{i=1}^{n_1} X_i^2$$
 with $i = 1, ..., n_1$ $V_2 = \sum_{j=1}^{n_2} Y_j^2$ with $j = 1, ..., n_2$

$$V_2 = \sum_{j=1}^{n_2} Y_j^2$$
 with $j = 1, ..., n_2$

Example: Testing for equality of two variances

Two samples (of different sizes) are drawn from two normally distributed populations. The aim is to test whether both populations differ significantly in their variances.

The aim is to test statistically whether the price fluctuations of airline tickets for a specific route in travel agencies are significantly higher than the price fluctuations of online offers on the Internet.

Two contemporary samples are used for this purpose:

Travel agency offers i	1	2	3	4	5
Prices x_i in \$	98.90	109.50	102.90	108.00	96.00

with
$$\bar{x} = \frac{1}{5} (98.90 + 109.50 + 102.90 + 108.00 + 96.00) = \$103.06$$

$$s_1^2 = \frac{1}{5} [(98.90 - 103.06)^2 + (109.50 - 103.06)^2 + (102.90 - 103.06)^2 + (108.00 - 103.06)^2 + (108.00 - 103.06)^2]$$

$$+ (96.00 - 103.06)^2] = \$^2 26.6104$$

Internet offers
$$i$$
 1
 2
 3
 4

 Prices y_j in \$
 104.50
 99.90
 106.10
 110.50

with
$$\bar{y} = \frac{1}{4}(104.50 + 99.90 + 106.10 + 110.50) = \$105.25$$

$$s_2^2 = \frac{1}{4}[(104.50 - 105.25)^2 + (99.90 - 105.25)^2 + (106.10 - 105.25)^2 + (110.50 - 105.25)^2] = \frac{1}{4}(0.5625 + 28.6225 + 0.7225 + 27.5625) = \$^2 14.3675$$

It is to be assumed that both distributions are standard normally distributed. The test is to be conducted at a significance level of $\alpha=0.05$ (probability of error).

This is a so-called parameter test. Cf. chapter 3.6.1.

(1) null hypothesis
$$H_0: \sigma_1^2 = \sigma_2^2$$

(2) alternative hypothesis $H_A: \sigma_1^2 > \sigma_2^2$

with
$$n_1 = 5 \Rightarrow v = 5 - 1 = 4$$

 $n_2 = 4 \Rightarrow v = 4 - 1 = 3$

Test distribution is the F-distribution.

Calculation of the test size:

$$F = \frac{s_1^2 / v_1}{s_2^2 / v_2} = \frac{26.6104 / 4}{14.3675 / 3} = 1.3891$$

This F-value is to be compared with the so-called **critical value** of the F-distribution for the selected significance level of $\alpha = 0.05$.

$$v_1 = 4$$
 and $v_2 = 3$ at $\alpha = 0.05$

See Appendix A, F-distribution with $\alpha = 0.05$.

$$\Rightarrow F_{critical} = 9.12$$

Since F = 1.3891 is smaller than $F_{critical} = 9.12$, the null hypothesis must be rejected.

The variance of the first distribution (price fluctuations in travel agencies) is not significantly higher than the variance of the second distribution (price fluctuations of online offers), i.e., at a significance level of $\alpha=0.05$, the observed price fluctuations suggest that they are independent of the type of distribution. Price fluctuations occur regardless of whether these airline tickets are offered online on the Internet or terrestrially in travel agencies.

Notes:

Reciprocal symmetry applies to the F-distribution:

$$F_{(1-\alpha)}(v_{V_1}; v_{V_2}) = \frac{1}{F_{(\alpha)}(v_{V_2}; v_{V_1})}$$

 If n₁ > 30 and n₂ > 30, the F-distribution can be approximated by the standardized normal distribution.

3.4 Statistical Estimation Methods (Confidence Intervals)

3.4.1 Confidence Interval for the Arithmetic Mean of the Population μ

(a) for samples of $n \ge 30$ and known variance $\sigma_{\bar{x}}^2$

with $\bar{x} = \text{arithmetic mean of the sample}$

Confidence interval:
$$\left[\bar{x}-z_{(1-\frac{\alpha}{2})}\cdot\sigma_{\bar{x}}\;;\;\bar{x}+z_{(1-\frac{\alpha}{2})}\cdot\sigma_{\bar{x}}\right]$$

or
$$\bar{x} - z_{(1-\frac{\alpha}{2})} \cdot \sigma_{\bar{x}} \leq \mu \leq \bar{x} + z_{(1-\frac{\alpha}{2})} \cdot \sigma_{\bar{x}}$$

with $z_{(1-rac{lpha}{2})}=$ value of the distribution function of the standard normal distribution at $1-rac{lpha}{2}$

in case of normally distributed population.

The standard error $\sigma_{\bar{x}}$ is calculated with the known variance σ :

$$\sigma_{\!\scriptscriptstyle ar{x}} = rac{\sigma}{\sqrt{n}}$$
 when sampling with replacement (w/ rep.) or

$$\sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}} \, \sqrt{\frac{N-n}{N}} \,\,$$
 when sampling without replacement (w/o rep.)

If
$$\frac{n}{N} < 0.05$$
, $\sqrt{\frac{N-n}{N}}$ can be omitted.

(b) for samples of ${\it n} < 30$ and unknown variance $\sigma_{\bar{\it x}}^2$

with $\bar{x} = \text{arithmetic mean of the sample}$

Confidence interval:
$$\left[\bar{x} - t_{(1-\frac{\alpha}{2};\nu)} \cdot \hat{\sigma}_{\bar{x}} ; \bar{x} + t_{(1-\frac{\alpha}{2};\nu)} \cdot \hat{\sigma}_{\bar{x}}\right]$$

or
$$\bar{x} - t_{(1-\frac{\alpha}{2};\nu)} \cdot \hat{\sigma}_{\bar{x}} \leq \mu \leq \bar{x} + t_{(1-\frac{\alpha}{2};\nu)} \cdot \hat{\sigma}_{\bar{x}}$$

with
$$t_{(1-rac{lpha}{2}\,;
u)}=$$
 value of the distribution function of the Student's t-distribution at $1-rac{lpha}{2}$ and $u=n-1$

in case of normally distributed population.

The standard error $\hat{\sigma}_{\bar{x}}$ is calculated with the known variance s:

$$\hat{\sigma}_{ar{x}} = rac{s}{\sqrt{n}}$$
 sampling with replacement (w/ rep.) or

$$\hat{\sigma}_{ar{x}} = rac{s}{\sqrt{n}} \, \sqrt{rac{N-n}{N}}$$
 when sampling without replacement (w/o rep.)

If
$$\frac{n}{N} < 0.05$$
, $\sqrt{\frac{N-n}{N}}$ can be omitted.

Example 1:

To estimate the average monthly expenditures on rent, μ , of a total of 3,347 students in a given faculty, a sample of over n=100 students is surveyed on this in the form of sampling without replacement (w/o rep.). It can be assumed that the monthly expenditures for rent are distributed approximately normally within the population for all 3,347 students, i.e., that they are normally distributed.

The confidence level of a confidence interval to be estimated is to cover 95%, i.e. with a probability of error of 5% the parameter μ to be estimated can also lie outside the resulting confidence interval.

The survey of n = 100 students results in an arithmetic mean of $\bar{x} = \$356$ with a standard deviation of $\sigma_{\bar{x}} = \$34.17$.

Since n = 100 > 30, the following applies:

$$\bar{x} - z_{(1-\frac{\alpha}{2})} \cdot \sigma_{\bar{x}} \le \mu \le \bar{x} + z_{(1-\frac{\alpha}{2})} \cdot \sigma_{\bar{x}}$$

A confidence level of $95\,\%$ results in $(1-\alpha)=0.95$ and $\alpha=0.05,$ respectively. This results in a so-called quantile of

$$(1 - \frac{\alpha}{2}) = (1 - 0.025) = 0.975.$$

 $\Rightarrow z_{0.975} = 1.960$

See Appendix A, Standard Normal Distribution - Distribution Function.

⇒ confidence interval

$$356 - 1.96 \cdot 34.17 \le \mu \le 356 + 1.96 \cdot 34.17$$

 $289.03 \le \mu \le 422.97$

Since
$$\frac{n}{N} = \frac{100}{3.347} = 0.0299 < 0.05$$
, the so-called correction factor for

finite totals $\sqrt{\frac{N-n}{N}}$ can be omitted for the standard deviation.

At a confidence interval of 0.95, i.e., of 95%, it can be assumed that the average expenditure on rent of all 3,347 students will be between \$289.03 and \$422.97. The risk that the estimated parameter μ could fall outside this interval is 5%.

Example 2:

A machine fills 250g packs of coffee. From past quality tests it can be assumed that the filling weight is approximately normally distributed. From a daily production, a sample is taken in the form of sampling with replacement (w/ rep.) in the amount of n=6, which shows the following weights, in g:

Looked for is a $99\,\%$ confidence interval for the average filling weight of all coffee packages of this type filled on that day.

$$\bar{x} = \frac{1}{6} (245 + 256 + 251 + 244 + 252 + 250) =$$

$$= \frac{1,498}{6} = 249.67g$$

$$s^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x}) =$$

$$= \frac{1}{6} \cdot \left[(245 - 249.67)^2 + (256 - 249.67)^2 + (251 - 249.67)^2 + (244 - 249.67)^2 + (252 - 249.67)^2 + (250 - 249.67)^2 \right] =$$

$$= \frac{1}{6} \cdot 101.3334 = 16.8889g^2$$

$$\hat{\sigma}_{\bar{x}} = \frac{s}{\sqrt{n}} = \frac{\sqrt{16.8889}}{\sqrt{6}} = 1.6777g$$

At a confidence level of 99%, i.e., a significance level of $\alpha=0.01$, and a degree of freedom of v=n-1=5

$$\Rightarrow t_{(0.99;5)} = 4.032$$

See Appendix A, Student's t-Distribution – Two-sided, Symmetric Confidence Intervals.

⇒ confidence interval

$$249.67 - 4.032 \cdot 1.6777 \le \mu \le 249.67 + 4.032 \cdot 1.6777$$

 $242.91 \le \mu \le 256.43$

At a confidence interval of 0.99, i.e. of 99%, it can be assumed that the average filling weight of the daily production observed is between 242.91g and 256.43g. The risk that the estimated parameter μ could lie outside this interval is 1%.

3.4.2 Confidence Interval for the Variance of the Population σ^2

Confidence interval:

$$\left[\frac{(n-1)s^2}{\chi^2_{(1-\frac{\alpha}{2};\,n-1)}} \le \sigma^2 \le \frac{(n-1)s^2}{\chi^2_{(\frac{\alpha}{2};\,n-1)}}\right]$$

or
$$\frac{(n-1)s^2}{\chi^2_{(1-\frac{\alpha}{2};n-1)}} \le \sigma^2 \le \frac{(n-1)s^2}{\chi^2_{(\frac{\alpha}{2};n-1)}}$$

with $s^2 = \text{variance of the sample}$

n = sample size

 χ^2 = Chi-squared distribution with v = n - 1

sampling without replacement (w/o rep.) = sampling with replacement (w/ rep.), i.e. there is no case distinction for normally distributed population

Example:

In a randomly selected sample of a group of n=24 people, the average age is $\bar{x}=44.2$ years with a standard deviation of s=5.6 years. Let the ages of all individuals, i.e. within the population, be normally distributed.

Searched is a 98% confidence interval for the unknown variance σ^2 of all people, i.e. of the population.

$$(1 - \alpha) = 0.98$$
 or $\alpha = 0.02$

$$\Rightarrow \chi^2_{(1 - \frac{\alpha}{2}; n - 1)} = \chi^2_{(0.99; 23)} = 41.638$$

$$\chi^2_{(\frac{\alpha}{2}; n - 1)} = \chi^2_{(0.01; 23)} = 10.196$$

See Appendix A, Chi-Squared Distribution – Distribution Function.

$$\frac{(n-1)s^2}{\chi^2_{(0.99\,;\,23)}} \le \sigma^2 \le \frac{(n-1)s^2}{\chi^2_{(0.01\,;\,23)}}$$
 with $n-1=24-1=23$
$$s^2=5.6^2=31.36 \text{ years}^2$$

$$\frac{23\cdot 31.36}{41.638} \le \sigma^2 \le \frac{23\cdot 31.36}{10.196}$$

$$17.3226 \le \sigma^2 \le 70.7415$$

$$\sqrt{17.3226} \le \sigma \le \sqrt{70.7415}$$

$$4.162 \le \sigma \le 8.411$$

At a confidence interval of 0.98, i.e. 98%, the standard deviation in the population can be expected to be between 4.162 and 8.411 years. The risk that the estimated parameter σ or σ^2 might lie outside this interval is 2%.

3.4.3 Confidence Interval for the Share Value in the Population θ

The share value p within a sample drawn from a dichotomous population is normally distributed with the expected value $E(P) = \theta$ and the variance $Var(P) = \sigma_p^2$ for a sufficiently large sample size n, with at least $n \geq 30$.

Confidence interval:
$$\left[p-z_{(1-\frac{\alpha}{2})}\cdot\hat{\pmb{\sigma}}_p\ ;\ p+z_{(1-\frac{\alpha}{2})}\cdot\hat{\pmb{\sigma}}_p\right]$$

or
$$p-z_{(1-rac{lpha}{2})}\cdot\hat{m{\sigma}}_p \leq m{ heta} \leq p+z_{(1-rac{lpha}{2})}\cdot\hat{m{\sigma}}_p$$

with p =share value of the sample

 $z_{(1-rac{lpha}{2})}=$ value of the distribution function of the standard normal distribution at $1-rac{lpha}{2}$ for normally distributed population

The (estimated) standard error $\hat{\sigma}_p$ is calculated as follows:

sampling without replacement

sampling with replacement

$$\hat{\sigma}_p = \sqrt{rac{p(1-p)}{n-1}} \, \sqrt{rac{N-n}{N}} \qquad \qquad \hat{\sigma}_p = \sqrt{rac{p(1-p)}{n-1}}$$

If
$$\frac{n}{N} < 0.05$$
, $\sqrt{\frac{N-n}{N}}$ can be omitted.

Example:

For a given geography, e.g., a given city, with a population of about 240,000, the share of the population that is vaccinated against COVID-19 should be estimated. For this purpose, a sample of n=1,000 inhabitants is used in the form of sampling without replacement (w/o rep.). The share of those vaccinated out of these 1,000 inhabitants is p=0.64 (64 percent).

Searched is a 99% confidence interval for the corresponding share value in the population θ , i.e., for the entire urban population.

$$\hat{\sigma}p = \sqrt{\frac{p(1-p)}{n-1}} =$$

$$= \sqrt{\frac{0.64(1-0.64)}{1,000-1}} =$$

$$= 0.01519$$

Since $\frac{n}{N}=\frac{1,000}{240,000}\approx 0.0042<0.05$, the so-called correction factor for finite populations $\sqrt{\frac{N-n}{N}}$ can be omitted from the standard deviation.

At a confidence interval of 99 %, $(1-\alpha)=0.99$ or $\alpha=0.01$ This results in a so-called quantile of $(1-\alpha)=(1-0.005)=0.995$

$$\Rightarrow = z_{0.995} = 2.58$$

See Appendix A, Standard Normal Distribution – Cumulative Distribution Function.

⇒ confidence interval

$$0.64 - 2.58 \cdot 0.01519 \le \theta \le 0.64 + 2.58 \cdot 0.01519$$

 $0.6008 \le \theta \le 0.6792$

At a confidence interval of 0.99, i.e. of 99%, it can be assumed that the investigated vaccination rate of the entire population of the investigated city is between 60.08% and 67.92%. The risk that the estimated parameter θ could lie outside this interval is 1%.

3.4.4 Confidence Interval for the Difference of the Mean Values of Two Populations μ_1 and μ_2

Samples of size n_1 and n_2 are drawn from two populations. These two independent samples result in the sample means \bar{x}_1 and \bar{x}_2 as well as their difference $\bar{x}_1 - \bar{x}_2$. If, in addition to the independence of these two samples, sufficiently large sample sizes of $n_1 \geq 30$ and $n_2 \geq 30$ can be guaranteed, it can be assumed that the two random variables \bar{X}_1 and \bar{X}_2 are normally distributed.

The expected value of the difference of these two random variables \bar{X}_1 and \bar{X}_2 is then given by

$$E(\bar{X}_1 - \bar{X}_2) = \mu_1 - \mu_2$$

with the variance

$$Var(\bar{X}_1 - \bar{X}_2) = \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}$$

 μ_1 and μ_2 correspond to the arithmetic means and σ_1^2 and σ_2^2 to the variances of the two populations relevant here.

Confidence Interval:
$$\left[(\overline{x}_1 - \overline{x}_2) - t \hat{\sigma}_D \; ; \; (\overline{x}_1 + \overline{x}_2) - t \hat{\sigma}_D \right]$$
 or
$$(\overline{x}_1 - \overline{x}_2) - t \hat{\sigma}_D \leq \mu_1 - \mu_2 \leq (\overline{x}_1 - \overline{x}_2) + t \hat{\sigma}_D$$

with $\bar{x}_1 - \bar{x}_2 =$ difference of the means of the two samples

$$t = \text{Student's distribution with} \quad v = \frac{\left[\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right]^2}{\left[\frac{s_1^2}{n_1}\right]^2 + \left[\frac{s_2^2}{n_2}\right]^2}$$

$$\hat{\sigma}_D = \hat{\sigma}_{\mu_1 - \mu_2} = \sqrt{\frac{{s_1}^2}{n_1} + \frac{{s_2}^2}{n_2}}$$

with s_1^2 = variance of the first sample

 s_2^2 = variance of the second sample

sampling without replacement (w/o rep.) $\widehat{=}$ sampling with replacement (w/ rep.), i.e. w/o rep. corresponds to w/ rep.

Example 1:

It is to be clarified whether within a certain occupational group significant differences exist in the remuneration between men and women. For this purpose, two random samples of equal size are drawn:

men: $n_1 = 100$ with $\bar{x}_1 = \$42,400$

as an annual gross average salary with a

standard deviation of $s_1 = \$10,400$

women: $n_2 = 100$ mit $\bar{x}_2 = $40,100$

as an annual gross average salary with a

standard deviation of $s_2 = $14,800$

It is looked for a 95% confidence interval for the difference of the average gross salaries $\mu_1 - \mu_2$.

$$\hat{\sigma}_D = \hat{\sigma}_{\mu_1 - \mu_2} = \sqrt{\frac{10,400^2}{100} + \frac{14,800^2}{100}} = 1,808.87$$

Since n_1 , $n_2 = 100 > 30$, the standard normal distribution with z = 1.960 can be used. At a confidence interval of 95%, $(1 - \alpha) = 0.95$ and $\alpha = 0.05$, respectively. This results in a so-called quartile of

$$(1 - \frac{\alpha}{2}) = (1 - 0.025) = 0.975 \implies z_{0.975} = 1.960$$

See Appendix A, Standard Normal Distribution – Distribution Function.

Confidence interval:

$$(\bar{x}_1 - \bar{x}_2) - z\hat{\sigma}_D \le \mu_1 - \mu_2 \le (\bar{x}_1 - \bar{x}_2) + z\hat{\sigma}_D$$

with $(\bar{x}_1 - \bar{x}_2) = 42,400 - 40,100 = \$2,300$
 $2,300 - 1.96 \cdot 1,808.47 \le \mu_1 - \mu_2 \le 2,300 + 1.96 \cdot 1,808.87$
 $-1,245.39 \le \mu_1 - \mu_2 \le 5,845.39$

At a confidence level of 0.95, i.e., of $95\,\%$, the difference in annual gross average salaries between men and women can be assumed to range from $-\$\,1,245.39$ to $+\$\,5,845.39$, i.e., within the populations being evaluated, men tend to be predominantly paid more than their female counterparts (so-called right skewed distribution) in favor of male employees.

Example 2:

The portfolios offered by two leading producers of sports wagering are to be compared with each other in terms of their addictiveness. will be compared. For this purpose, the addiction potentials of $n_1=12$ products of the sports wagering producer A and $n_2=15$ products of the sports wagering producer B are measured with the help of the world's leading tool for the measurement and Assessment of addiction risk potentials of gambling products, ASTERIG⁹.

⁹ Cf. Wikimedia Foundation Inc. (Ed.): https://en.wikipedia.org/wiki/ASTERIG [2022-03-10]

For the portfolio of producer A, the average score is $\bar{x}_1 = 90$ with a standard deviation of $s_1 = 8$ points. The portfolio of producer B has an average score of $\bar{x}_2 = 78$ points with a standard deviation of $s_2 = 6$ points.

Searched for is a 98 % confidence interval for the difference of the average score according to ASTERIG $\mu_1 - \mu_2$.

$$\hat{\sigma}_D = \hat{\sigma}_{\mu_1 - \mu_2} = \sqrt{\frac{8^2}{12} + \frac{6^2}{15}} = 2.7809$$

Since $n_1 = 12$ and $n_2 = 15$ are smaller than 30, here the Student's t-distribution must be used with

$$v = \frac{\left[\frac{8^2}{12} + \frac{6^2}{15}\right]^2}{\left[\frac{8^2}{12}\right]^2 + \left[\frac{6^2}{15}\right]^2} = 19.953 \approx 20$$

At a confidence interval of 98 % $(1-\alpha)=0.98$ or $\alpha=0.02$. This results in a so-called quartile of $(1-\frac{\alpha}{2})=(1-0.01)=0.99$

$$\Rightarrow t_{0.99} = 2.528$$
 at $v = 20$

See Appendix A, Student's t-Distribution – Distribution Function.

Confidence interval:

$$(\bar{x}_1 - \bar{x}_2) - t\hat{\sigma}_D \le \mu_1 - \mu_2 \le (\bar{x}_1 - \bar{x}_2) + t\hat{\sigma}_D$$

with $(\bar{x}_1 - \bar{x}_2) = 90 - 78 = \12
 $12 - 2.528 \cdot 2.7809 \le \mu_1 - \mu_2 \le 12 + 2.528 \cdot 2.7809$
 $4.9699 \le \mu_1 - \mu_2 \le 19.0301$

At a confidence interval of 0.98, i.e. 98%, it can be assumed that the differences in the average rating points according to ASTERIG between sports betting wagering producer A and sports wagering producer B range approximately from 4.97 to 19.03 points, i.e. it can be assumed with an probability of error of 2% that the portfolio of producer A is significantly more addictive than the portfolio of producer B.

3.4.5 Conficence Interval for the Difference of the Share Values of Two Populations θ_1 and θ_2

Samples of n_1 and n_2 are drawn from two populations. These two independent samples result in the share values p_1 and p_2 as well as their difference p_1-p_2 . If, in addition to the independence of these two samples, sufficiently large sample sizes of $n_1 p_1 (1-p_1) \geq 9$ and $n_2 p_2 (1-p_2) \geq 9$ can be ensured, it can be assumed that the two random variables P_1 and P_2 are normally distributed.

If the conditions $\frac{n_1}{N_1} < 0.05$ and $\frac{n_2}{N_2} < 0.05$ do also apply, the so-called correction factor $\sqrt{\frac{N-n}{N}}$ can be omitted.

The expected value of the difference of these two random variables P_1 and P_2 is then given by

$$E(P_1-P_2) = \theta_1-\theta_2$$

with the variance

$$Var(P_1 - P_2) = \frac{\theta_1(1 - \theta_1)}{n_1} + \frac{\theta_2(1 - \theta_2)}{n_2}$$

 θ_1 and θ_2 correspond to the share values within the two here relevant populations.

Confidence interval:
$$\begin{bmatrix} (p_1-p_2)-z\hat{\sigma}_D\ ;\ (p_1-p_2)+z\hat{\sigma}_D \end{bmatrix}$$
 or
$$(p_1-p_2)-z\hat{\sigma}_D\ \leq\ \theta_1-\theta_2\ \leq\ (p_1-p_2)+z\hat{\sigma}_D$$

with $p_1 - p_2 =$ difference of the share values within the two samples

z =standard normal distribution

$$\hat{\sigma}_D = \hat{\sigma}_{\theta_1 - \theta_2} = \sqrt{\frac{p_1(1 - p_1)}{n_1} + \frac{p_2(1 - p_2)}{n_2}}$$

with p_1 = share value in the first sample

 p_2 = share value in the second sample

Example 2:

Within a pandemic, $n_1=400$ residents of a city (group 1) and $n_2=350$ residents of a rural neighboring region (group 2) are asked about their approval of a vaccination intended by the government. In the city, the proportion of those agreeing is $68\,\%$, whereas in the countryside only $42\,\%$ agree.

$$p_1 = 0.68$$

$$p_2 = 0.42$$

Searched for is a 98% confidence interval for the difference in the proportional consents $q_1 - q_2$.

$$\hat{\sigma}_D = \hat{\sigma}_{\theta_1 - \theta_2} = \sqrt{\frac{0.68(1 - 0.68)}{400} + \frac{0.42(1 - 0.42)}{350}} = 0.0352$$

Since
$$n_1 \cdot p_1 (1 - p_1) = 400 \cdot 0.68 (1 - 0.68) = 87.04 > 9$$

and $n_2 \cdot p_2 (1 - p_2) = 350 \cdot 0.42 (1 - 0.42) = 85.26 > 9$,

the standard normal distribution can be used with z = 2.325

At a confidence interval of 98% $(1-\alpha)=0.98$ or $\alpha=0.02$. This results in a so-called quartile of $(1-\frac{a}{2})=(1-0.01)=0.99 \Rightarrow z_{0.99}=2.325$

See Appendix A, Standard Normal Distribution – Distribution Function.

⇒ Confidence interval

$$(p_1 - p_2) - z\sigma_D \le \theta_1 - \theta_2 \le (p_1 - p_2) + z\sigma_D$$
 with
$$(p_1 - p_2) = 0.68 - 0.42 = 0.26$$

$$0.26 - 2.325 \cdot 0.0352 \le \theta_1 - \theta_2 \le 0.26 + 2.325 \cdot 0.0352$$

$$0.1782 \le \theta_1 - \theta_2 \le 0.3418$$

At a confidence interval of 0.98, i.e., 98%, it can be assumed that the difference in the share values of the two investigated populations is between 0.1782 and 0.3418, i.e., that in the investigated city between 17.82% and 34.18% more agreement with the planned vaccination prevails than in the investigated rural region.

3.5 Determination of the Required Sample Size

3.5.1 Determination of the Required Sample Size for an Estimation of the Arithmetic Mean μ

Estimation of the required sample size n

$$n = \frac{z^2 \cdot \sigma^2}{(\Delta \mu)^2} \qquad \qquad \text{sampling w/ rep.} \qquad \text{or if} \qquad \frac{n}{N} < 0.05$$

$$n = \frac{z^2 \cdot N \cdot \sigma^2}{(\Delta \mu)^2 (N-1) + z^2 \cdot \sigma^2} \qquad \qquad \text{sampling w/o rep.}$$

 $\Delta\mu$ is defined as the absolute error of the arithmetic mean which is a measure of the accuracy of the estimate of the arithmetic mean μ . The range of the confidence interval estimated for μ is determined by the difference between the upper and lower limits of this confidence interval:

$$2\Delta\mu \,=\, 2\,z\,\sigma_{\!\scriptscriptstyle \overline{\!\chi}}$$
 or
$$\Delta\mu \,=\, z\cdot\sigma_{\!\scriptscriptstyle \overline{\!\chi}} = z\cdot\frac{\sigma}{\sqrt{n}}$$
 when sampling w/ rep. or if $\,\frac{n}{N} < 0.05$

When sampling w/o rep. the absolute error is $\Delta\mu=z\cdot\frac{\sigma}{\sqrt{n}}~\sqrt{\frac{N-n}{N-1}}$

If the variance of the population σ^2 or its standard deviation σ is unknown, in practice known values from previous surveys or expert interviews (Delphi studies) are used or σ^2 or σ respectively is estimated from a preliminary sample, which then generates s^2 or s.

Example:

The average expenditure on a given good within a defined geography where 20,511 consumers of that good live is to be estimated at a confidence interval of 95%, i.e., at a significance level of 5%, and with an accepted absolute error of $\Delta\mu=\$2.5$. A preliminary sample in the size of n=100 consumers results in a standard deviation of s=\$28.

$$\frac{n}{N}=\frac{100}{20,511}=0.0049<0.05 \Rightarrow \text{ sampling w/ rep.}$$

$$(1-\alpha)=0.99 \quad \text{or} \quad \alpha=0.01$$

This results in a so-called quartile of
$$(1 - \frac{\alpha}{2}) = (1 - 0.005) = 0.995$$

 $\Rightarrow z_{0.995} = 2.58$

See Appendix A, Standard Normal Distribution – Distribution Function.

$$\Rightarrow n = \frac{z^2 \cdot \sigma^2}{(\Delta \mu)^2} = \frac{z^2 \cdot s^2}{(\Delta \mu)^2} =$$
$$= \frac{2.58^2 \cdot 28^2}{(2.5)^2} = 834.98 \approx 835$$

The required sample size equals n=835 consumers.

3.5.2 Determination of the Required Sample Size for an Estimation of the Share Value θ

Estimation of the required sample size n

$$n = \frac{z^2 \cdot \theta(1-\theta)}{(\Delta \theta)^2} \qquad \qquad \text{sampling} \quad \text{or if} \quad \quad \frac{n}{N} < 0.05$$
 w/ rep.

$$n = \frac{z^2 \cdot N \cdot \theta(1-\theta)}{(\Delta\theta)^2(N-1) + z^2 \cdot \theta(1-\theta)} \quad \text{ sampling w/o rep.}$$

 $\Delta\theta$ is defined as the absolute error of the share value which is a measure of the precision of the estimate of the share value θ . The range of the confidence interval estimated for θ is determined by the difference between the upper and lower limits of this confidence interval:

$$2\Delta\theta=2z\sigma_p$$
 or
$$\Delta\theta=z\cdot\sigma_p=z\cdot\sqrt{\frac{\theta\left(1-\theta\right)}{n}}$$
 when sampling w/ rep. or if $\frac{n}{N}<0.05$

When sampling w/o rep. the absolute error is

$$\Delta \theta = z \sqrt{\frac{\theta (1-\theta)}{n}} \sqrt{\frac{N-n}{N-1}}$$

If the share value of the population θ is unknown, in practice known values from earlier surveys or expert interviews (Delphi studies) are used or θ is estimated from a preliminary sample, which then generates p. It turns out that $\theta (1-\theta)$ can at most have the value 0.25.

Example:

The proportion vaccinated against COVID-19 within a given city of 231,509 residents at a given time is to be estimated at a confidence interval of 98%, i.e., at a significance level of 2%, and with an accepted absolute error of $\Delta\theta=0.02$. A preliminary sample in the size of n=500 residents of this city results in a proportion vaccinated against COVID-19 of p=0.68.

$$\frac{n}{N}=\frac{500}{231,509}=0.0022<0.05 \Rightarrow \text{ samlpling w/ rep.}$$

$$(1-\alpha)=0.98 \quad \text{or} \quad \alpha=0.02$$

This results in a so-called quartile of
$$(1 - \frac{\alpha}{2}) = (1 - 0.01) = 0.99$$

 $\Rightarrow z_{0.99} = 2.325$

See Appendix A, Standard Normal Distribution – Distribution Function.

$$\Rightarrow n = \frac{z^2 \cdot \theta (1 - \theta)}{(\Delta \theta)^2} = \frac{z^2 \cdot p (1 - p)}{(\Delta \theta)^2} =$$
$$= \frac{(2.325)^2 \cdot 0.68 \cdot 0.32}{0.02^2} = 2,940.66 \approx 2,941$$

The required sample size equals n = 2,941 people.

3.6 Statistical Testing Methods

Random sampling is used to test certain assumptions (hypotheses) about unknown populations.

3.6.1 Parameter Tests

Testing hypotheses of unknown parameters of one or two populations.

Basic Scheme | Practical Procedure

- a. Definition of null hypothesis (H_0) and alternative hypothesis (H_A) as well as significance level (α)
- b. Determination of the test statistic
- c. Determination of the test distribution
- d. Identification of the critical range
- e. Calculation of the value of the test statistic
- f. Decision and interpretation

3.6.1.1 Arithmetic Mean with Known Variance of the Population | One Sample Test

a. Null hypothesis $\mu = \mu_o \ (\sigma \ \text{known})$

Testing a specific mean value μ_o using a <u>single</u> sample (one sample test).

b. Test statistic

$$z = \frac{\overline{x} - \mu_0}{\frac{\sigma}{\sqrt{n}}}$$

c. Test distribution

z = standard normal distribution under the condition that the population is normally distributed or n > 30.

Example:

The average electric power consumption of stoves using ceramic cooktops of 500 randomly selected 4-person households has historically averaged 360~kWh (kilowatt-hours) per month total, i.e., including the use of an oven, with a standard deviation of $\sigma=42~kWh$.

After all cooktops are replaced with induction cooktops, a sample size of n=68 households results in an average electric power consumption of $292 \ kWh$ per month.

Based on the result of this sample, can it be concluded that the average electric power consumption in the population has changed assuming that the standard deviation σ has remained unchanged at a significance level of $\alpha=0.01$?

a. Definition of null and alternative hypothesis

 $H_0: \mu = 360 \, kWh$ $H_A: \mu \neq 360 \, kWh$

 $\alpha = 0.01$

b. Determination of the test statistic

$$z = \frac{\overline{x} - \mu_0}{\frac{\sigma}{\sqrt{n}}}$$

c. Determination of the test distribution

z =standard normal distribution as n = 68 > 30

d. Identification of the critical range

$$\alpha = 0.01$$
 or $(1 - \alpha) = 0.99$
 $\Rightarrow z = 2.58$

See Appendix A, Standard Normal Distribution – Two-sided, Symmetric Confidence Intervals.

If the test statistic is between z=-2.58 and z=+2.58, then the null hypothesis H_0 cannot be rejected, i.e., the following applies:

rejection of
$$H_0$$
 if $z < -2.58$ or if $z > +2.58$

no rejection of H_0 if $-2.58 \le z \le +2.58$

e. Calculation of the value of the test statistic

$$z = \frac{\overline{x} - \mu_0}{\frac{\sigma}{\sqrt{n}}} = \frac{292 - 360}{\frac{42}{\sqrt{68}}} = -13.351$$

f. Decision and interpretation

Since z = -13.351 < -2.58, the null hypothesis H_0 must be rejected, i.e., at a significance level of $\alpha = 0.01$ and a sample size of n = 68,

it can be assumed that the use of induction cooktops results in significantly lower average electric power consumption.

3.6.1.2 Arithmetic Mean with Unknown Variance of the Population | One Sample Test

a. Null hypothesis $\mu = \mu_o$ (σ unknown)

Testing a specific mean value μ_o using a <u>single</u> sample (one sample test).

b. Test statistic

$$t = \frac{\overline{x} - \mu_0}{\frac{s}{\sqrt{n}}}$$

c. Test distribution

t =Student's t-distribution with v = n - 1 under the condition that the population is normally distributed

Example:

Within a production of a certain car, the engine hood of this type of car is also produced. These punched hoods must not be too thin, otherwise they would endanger the safety of the passengers inside this car. On the other hand, they must not be too thick, as this would negatively affect the consumption of the car.

In the practice of the investigated plant, the thickness of the hoods produced there is normally distributed with a nominal value (mean value) of $\mu=0.073\,inches$.

Within a sample of n=15 engine hoods, the arithmetic mean is $\bar{x}=0.071$ inches with a standard deviation of s=0.0025 inches. Based on a significance level of $\alpha=0.01$, it is to be tested whether the machine on which the engine hoods are manufactured is working accurately.

a. Definition of null and alternative hypothesis

$$H_0$$
: $\mu = 0.073$ inches
 H_A : $\mu \neq 0.073$ inches
 $\alpha = 0.01$

b. Determination of the test statistic

$$t = \frac{\overline{x} - \mu_0}{\frac{s}{\sqrt{n}}}$$

c. Determination of the test distribution

$$t = \text{Student's t-distribution}$$

with $v = n - 1 = 15 - 1 = 14$ degrees of freedom

d. Identification of the critical range

$$\alpha=0.01$$
 bzw. $(1-\alpha)=0.99$ und $v=14$ $\Rightarrow t=2.977$

See Appendix A, Student's t-Distribution – Two-sided, Symmetric Confidence Intervals.

If the test statistic is between t=-2.977 and t=+2.977, then the null hypothesis H_0 cannot be rejected, i.e., the following applies:

rejection of
$$H_0$$
 if $t<-2.977$ or if $t>+2.977$ no rejection of H_0 if $-2.977 \le t \le +2.977$

e. Calculation of the value of the test statistic

$$t = \frac{\overline{x} - \mu_0}{\frac{s}{\sqrt{n}}} = \frac{0.071 - 0.073}{\frac{0.0025}{\sqrt{15}}} = -3.0984$$

f. Decision and interpretation

Since t=-3.0984<-2.977 the null hypothesis H_0 must be rejected, i.e., at a significance level of $\alpha=0.01$ and a sample size of n=15, it can be assumed that the investigated machine does not work accurately.

3.6.1.3 Share Value | One Sample Test

a. Null hypothesis $\theta=\theta_0$

Testing a specific share value θ_0 using a <u>single</u> sample (one sample test).

b. Test statistic

$$z = \frac{p - \theta_0}{\sqrt{\frac{\theta_0(1 - \theta_0)}{n}}}$$

c. Test distribution

z= standard normal distribution under the following condition: $n \theta_0 (1-\theta_0) \geq 9$

Example:

A manufacturer of kitchen furniture has the fittings for furniture supplied externally. For this purpose, he contractually agrees with this supplier that the share of defective parts, the so-called share of rejects, may not exceed five percent ($\theta \leq 0.05$).

During a quality control, a random sample without replacement (w/o rep.) is drawn to the extent of n=250, of which 15 are found to be defective. To be examined is whether this may violate the terms of the underlying contract based on a significance level of $\alpha=0.01$.

a. Definition of null and alternative hypothesis

$$H_0: \ \theta \le \theta_0 = 0.05$$

 $H_A: \ \theta > \theta_0 = 0.05$
 $\alpha = 0.01$

b. Determination of the test statistic

$$z = \frac{p - \theta_0}{\sqrt{\frac{\theta_0(1 - \theta_0)}{n}}}$$

c. Determination of the test distribution

$$z = {
m standard\ normal\ distribution}$$
 as $n\,\theta_0\,(1-\theta_0) = 250\cdot 0.05\,(1-0.05) = 11.875 > 9$

d. Identification of the critical range

$$\alpha = 0.01$$
 or $(1 - \alpha) = 0.99$
 $\Rightarrow z = 2.325$

See Appendix A, Standard Normal Distribution – Distribution Function, since one-sided question.

If the test statistic is below z=2.325, then the null hypothesis H_0 cannot be rejected, i.e., the following applies:

rejection of
$$H_0$$
 if $z > 2.325$
no rejection of H_0 if $z \le 2.325$

e. Calculation of the value of the test statistic

$$z = \frac{p - \theta_0}{\sqrt{\frac{\theta_0(1 - \theta_0)}{n}}} = \frac{0.06 - 0.05}{\sqrt{\frac{0.05(1 - 0.05)}{250}}} = 0.7255$$

with
$$p = \frac{15}{250} = 0.06$$

f. Decision and interpretation

Since z = 0.7255 < 2.325 the null hypothesis H_0 cannot be rejected. Based on a significance level of $\alpha = 0.01$ and a sample size of n = 250, the sample result suggests that the contract is fulfilled by the supplier.

3.6.1.4 Variance | One Sample Test

a. Null hypothesis $\sigma^2=\sigma_0^2$

Testing a specific variance σ_0^2 using a <u>single</u> sample (one sample test).

b. Test statistic

$$\chi^2 = \frac{(n-1)s^2}{\sigma_0^2}$$

Test distribution

 χ^2 = Chi-squared distribution with v = n - 1 under the condition, that the population is normally distributed

Example:

With prescribed storage, the standard deviation of the shelf life of a particular drug in the past was $\sigma = 1.5$ years.

The shelf life of this drug always behaved normally distributed. Using random sampling by drawing without replacement (w/o rep.), it will be tested whether the variance of the shelf life of this drug increases as a result of changes in storage conditions.

Within a test under the altered storage conditions, a sample of n=46 drugs results in a standard deviation of s=2.1 years.

The test of the altered storage conditions is to be based on a significance level of $\alpha=0.01$.

a. Definition of null and alternative hypothesis

$$H_0: \ \sigma^2 = \sigma_0^2 = 2.25 \ years^2$$

 $H_A: \ \sigma^2 > \sigma_0^2 = 2.25 \ years^2$
 $\alpha = 0.01$

Remark:
$$\sigma = 1.5 \text{ years} \implies \sigma^2 = 2.25 \text{ years}^2$$

Determination of the test statistic

$$\chi^2 = \frac{(n-1)s^2}{\sigma_0^2}$$

c. Determination of the test distribution

$$\chi^2 =$$
 Chi-squared distribution
with $v = n - 1 = 45$ degrees of freedom

d. Identification of the critical range

$$\alpha=0.01$$
 or $(1-\alpha)=0.99$ and $\nu=45$ $\Rightarrow \chi^2=69.957$

See Appendix A, Chi-Squared Distribution – Distribution Function, since one-sided question.

If the test statistic is below $\chi^2 = 69.957$, then the null hypothesis H_0 cannot be rejected, i.e., the following applies:

rejection of
$$H_0$$
 if $\chi^2 > 69.957$ no rejection of H_0 if $\chi^2 \le 69.957$

e. Calculation of the value of the test statistic

$$\chi^2 = \frac{(n-1)s^2}{\sigma_0^2} = \frac{(46-1)\cdot 2.1^2}{1.5^2} = 88.2$$

f. Decision and interpretation

Since $\chi^2=88.2>69.957$, the null hypothesis H_0 has to be rejected. Based on a significance level of $\alpha=0.01$ and a sample size of n=46 the sample result suggests that the altered storage conditions increase the variance of the shelf life of the investigated drug significantly.

3.6.1.5 Difference of Two Arithmetic Means with Known Variances of the Population | Two Samples Test

a. Null hypothesis $\mu_1 = \mu_2$ with σ_1, σ_2 known

Testing the equality of the mean values of two populations using two samples (two samples test).

b. Test statistic

$$z = \frac{\overline{x}_1 - \overline{x}_2}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$$

- c. Test distribution
 - z =standard normal distribution under the conditions that
 - the two investigated populations are normally distributed or the sizes of both samples are sufficiently large with $n_1 > 30$ and $n_2 > 30$,
 - the two samples are indpendent of each other.

Example:

Two samples are drawn from a production of vendor parts for the manufacture of cars from different machines with which these parts are manufactured.

From machine I $n_1 = 50$ parts are drawn which on average weigh $\bar{x}_1 = 6.3 \, lbs$. It is known from regular quality checks that the standard deviation of all units produced on machine I so far is $0.6 \, lbs$.

From machine II $n_2 = 55$ parts are drawn, which on average weigh $\bar{x}_2 = 6.6 lbs$. Here, the standard deviation of all units produced on Machine II so far is 0.5 lbs.

Based on a significance level of $\alpha=0.05$, it is to be tested whether there is a significant difference between the (average) output qualities of both machines.

a. Definition of null and alternative hypothesis

$$H_0: \mu_1 = \mu_2$$

 $H_A: \mu_1 \neq \mu_2$
 $\alpha = 0.05$

b. Determination of the the test statistic

$$z = \frac{\overline{x}_1 - \overline{x}_2}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$$

c. Determination of the test distribution

$$z =$$
standard normal distribution
as $n_1 = 50 > 30$ and $n_2 = 55 > 30$

d. Identification of the critical range

$$\alpha = 0.05$$
 or $(1 - \alpha) = 0.95$
 $\Rightarrow z = 1.96$

See Appendix A, Standard Normal Distribution – Two-sided, Symmetric Confidence Intervals.

If the test statistic is between z=-1.96 and z=+1.96, then the null hypothesis H_0 cannot be rejected, i.e., the following applies:

rejection of
$$H_0$$
 if $z<-1,96$ or
$${\rm if} \ z>+1.96$$
 no rejection of H_0 if $-1.96\leq z\leq +1.96$

e. Calculation of the value of the test statistic

$$z = \frac{\overline{x}_1 - \overline{x}_2}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} = \frac{6.3 - 6.6}{\sqrt{\frac{3.6}{50} + \frac{2.5}{55}}} = -0.8754$$

f. Decision and interpretation

Since z=-0.8754>-1.96 and <+1.96, the null hypothesis H_0 cannot be rejected. Based on a significance level of $\alpha=0.05$ and the two sample sizes of $n_1=50$ and $n_2=55$ it can be assumed, that significantly equal qualities are produced on the two machines.

3.6.1.6 Difference of Two Arithmetic Means with Unknown Variances of the Populations under the Assumption that their Variances are Unequal | Two Samples Test

- a. Null hypothesis $\mu_1 = \mu_2$ with σ_1, σ_2 unknown and $\sigma_1 \neq \sigma_2$ Testing the equality of the mean values of two populations using two samples (two samples test).
- b. Test statistic

$$z = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

c. Test distribution

- z =standard normal distribution under the conditions that
- the two investigated populations are normally distributed or the sizes of both samples are sufficiently large with $n_1 > 30$ and $n_2 > 30$,
- the two samples are independent of each other.

Example:

A family business bottles tea into 30 oz bags using two machines.

To guarantee the fill weight marked on the bags, $n_1 = n_2 = 50$ bags are taken from both machines per week and the tea contained in each is weighed.

The bags filled on machine I contained an average of $\bar{x}_1 = 32oz$ tea with a standard deviation of $s_1 = 3oz$ in the last sample taken.

The bags filled on machine II meanwhile, contained an average of $\bar{x}_2 = 33 \, oz$ tea with a standard deviation of $s_2 = 4 \, oz$.

Based on a significance level of $\alpha=0.03$, it is to be tested whether there is a significant difference between the average filling weights of the two machines.

a. Definition of null and alternative hypothesis

 $H_0: \mu_1 = \mu_2$ $H_A: \mu_1 \neq \mu_2$ $\alpha = 0.03$ Determination of the test statistic

$$z = \frac{\overline{x}_1 - \overline{x}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

c. Determination of the test distribution

$$z =$$
standard normal distribution

as
$$n_1 = n_2 = 50 > 30$$

d. Identification of the critical range

$$\alpha = 0.03 \text{ or } (1 - \alpha) = 0.97$$

 $\Rightarrow z = 2.17$

See Appendix A, Standard Normal Distribution – Two-sided, Symmetric Confidence Intervals.

If the test statistic is between z=-2.17 and z=+2.17, then the null hypothesis H_0 cannot be rejected, i.e., the following applies:

rejection of
$$H_0$$
 if $z<-2.17$ or
$${\rm if} \ z>+2.17$$
 no rejection of H_0 if $-2.17\leq z\leq +2.17$

e. Calculation of the value of the test statistic

$$z = \frac{\overline{x}_1 - \overline{x}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}} = \frac{32 - 33}{\sqrt{\frac{9}{50} + \frac{16}{50}}} = -1,4142$$

f. Decision and interpretation

Since z=-1.4142>-2.17 and <+2.17, the null hypothesis H_0 cannot be rejected. Based on a significance level of $\alpha=0.03$ and the two sample sizes of $n_1=n_2=50$ it can be assumed, that the average fill weights are significantly equal for both machines.

3.6.1.7 Difference of Two Arithmetic Means with Unknown Variances of the Populations under the Assumption that their Variances are Equal | Two Samples Test

a. Null hypothesis $\mu_1=\mu_2$ with σ_1,σ_2 unknown and $\sigma_1=\sigma_2$ (homogeneity of variance)

Testing the equality of the mean values of two populations using two samples (two samples test).

b. Test statistic

$$t = \frac{\bar{x}_1 - \bar{x}_2}{s \cdot \sqrt{\frac{n_1 + n_2}{n_1 n_2}}}$$

with
$$s = \sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}}$$

c. Test distribution.

t =Student's t-distribution with $v = n_1 + n_2 - 2$ under the conditions that

- the two investigated populations are normally distributed or the sizes of both samples are sufficiently large with $n_1 > 30$ and $n_2 > 30$,
- the two samples are independet of each other.

Example:

Within a milk processing factory, a special energy drink based on milk is bottled to a third of a *gallon* each on two different machines.

For quality control of the filling weight, $n_1 = n_2 = 51$ bottles are taken from both machines weekly and their contents are measured.

In the past, it was noticed that machine I tends to fill a larger quantity than machine II, which will now be tested based on a significance level of $\alpha=0.01$.

The two current samples provide the following measurement results:

machine I: $\bar{x}_1 = 0.3352 \ gallon$ with a standard deviation of

 $s_1 = 0.0040 \ gallon$

machine II: $\bar{x}_2 = 0.3320 \ gallon$ with a standard deviation of

 $s_2 = 0.0040 \ gallon$

a. Definition of null and alternative hypothesis

 $H_0: \mu_1 = \mu_2$

 $H_A: \mu_1 > \mu_2$

 $\alpha = 0.01$

b. Determination of the test statistic

$$t = \frac{\overline{x}_1 - \overline{x}_2}{s \cdot \sqrt{\frac{n_1 + n_2}{n_1 n_2}}}$$

with
$$s = \sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}}$$

Determination of the test distribution

$$t=$$
 Student's t-distribution with $v=n_1+n_2-2=51+51-2=100$ degrees of freedom

d. Identification of the critical range

$$\alpha=0.01$$
 or $(1-\alpha)=0.99$ and $\nu=100$ $\Rightarrow t=2.364$

See Appendix A, Student's t-Distribution – Distribution Function, since one-sided question.

If the test statistic is smaller than t=-2.364, then the null hypthesis H_0 cannot be rejected, i.e., the following applies:

rejection of
$$H_0$$
 if $t > 2.364$ no rejection of H_0 if $t \le 2.364$

e. Calculation of the value of the test statistic

$$t = \frac{\bar{x}_1 - \bar{x}_2}{s \cdot \sqrt{\frac{n_1 + n_2}{n_1 n_2}}} = \frac{0.3352 - 0.3320}{0.004 \cdot \sqrt{\frac{51 + 51}{51 \cdot 51}}} = 4.0398$$

with
$$s = \sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}} =$$

$$= \sqrt{\frac{(51 - 1) \cdot 0.004^2 + (51 - 1) \cdot 0.004^2}{51 + 51 - 2}} = 0.004$$

f. Decision and interpretation

Since t=4.0398>2.364, the null hypothesis H_0 can be rejected. Based on a significance level of $\alpha=0.01$ and the two sample sizes of $n_1=n_2=51$ it can be assumed, that the average fill weight of machine I is significantly higher than that of machine II.

3.6.1.8 Difference of Two Share Values | Two Samples Test

a. Null hypothesis $\theta_1 = \theta_2$

Testing the equality of equal share values of two populations using two samples (two samples test).

b. Test statistic

$$z = \frac{p_1 - p_2}{\sqrt{p(1-p)}\sqrt{\frac{n_1 + n_2}{n_1 n_2}}}$$

with
$$p = \frac{n_1 p_1 + n_2 p_2}{n_1 + n_2}$$

- c. Test distribution
 - z =standard normal distribution under the conditions that
 - the following applies: $n_1 \theta_1 (1 \theta_1) \ge 9$ and $n_2 \theta_2 (1 \theta_2) \ge 9$,
 - the two samples are independent of each other.

Example:

A producer of kitchen furniture has the fittings for furniture supplied by two different producers. In order to check the quality, two random samples are drawn from the supplied fittings for furniture without replacement (w/o rep.) in the size of $n_1 = 250$ and $n_2 = 300$.

The sample $n_1 = 250$ drawn from the supplied fittings for furniture of supplier I shows 15 defective parts, which corresponds to a share of rejects of $p_1 = \frac{15}{250} = 0.06$ (6%).

The sample $n_2=300$, drawn from the supplied fittings for furniture of supplier II, shows 17 defective parts, which corresponds to a share of rejects of $p_2=\frac{17}{300}=0.0567~(5.67\%)$.

To be checked is whether the shares of defective fittings for furniture (shares of rejects) differ significantly between the two suppliers. The test is to be based on a significance level of $\alpha=0.01$.

a. Definition of null and alternative hypothesis

$$H_0: \ \theta_1 = \theta_2$$

 $H_A: \ \theta_1 \neq \theta_2$
 $\alpha = 0.01$

b. Determination of the test statistic

$$z = \frac{p_1 - p_2}{\sqrt{p(1-p)}\sqrt{\frac{n_1 + n_2}{n_1 n_2}}}$$

with
$$p = \frac{n_1 p_1 + n_2 p_2}{n_1 + n_2}$$

c. Determination of the test distribution

z= standard normal distribution as: $n_1 p_1 (1-p_1)=250\cdot 0.06\cdot (1-0.06)=14.1$ which suggests that also $n_1 \theta_1 (1-\theta_1)\geq 9$ (condition for the population) is fulfilled.

Furthermore: $n_2 p_2 (1 - p_2) = 300 \cdot 0.0567 \cdot (1 - 0.0567) = 16.05$ which suggests that also $n_2 \theta_2 (1 - \theta_2) \ge 9$ (condition for the population) is fulfilled.

d. Identification of the critical range

$$\alpha = 0.01$$
 or $(1 - \alpha) = 0.99$
 $\Rightarrow z = 2.58$

See Appendix A, Standard Normal Distribution – Two-sided, Symmetric Confidence Intervals.

If the test statistic is between z=-2.58 and z=+2.58, then the null hypothesis H_0 cannot be rejected, i.e., the following applies:

rejection of
$$H_0$$
 if $z<-2,58$ or if $z>+2,58$ no rejection of H_0 if $-2,58\leq z\leq +2,58$

e. Calculation of the value of test statistic

$$z = \frac{p_1 - p_2}{\sqrt{p(1-p)}\sqrt{\frac{n_1 + n_2}{n_1 n_2}}} = \frac{0.06 - 0.0567}{\sqrt{0.0582(1 - 0.0582)}\sqrt{\frac{250 + 300}{250 \cdot 300}}} = 0.1646$$

with
$$p = \frac{n_1 p_1 + n_2 p_2}{n_1 + n_2} = \frac{250 \cdot 0.06 + 300 \cdot 0.0567}{250 + 300} = 0.0582$$

f. Decision and interpretation

Since z=0.1646>-2.58 and <+2.58, the null hypothesis H_0 cannot be rejected. Based on a significance level of $\alpha=0.01$ and the two sample sizes of $n_1=250$ and $n_2=300$ it can be assumed that the shares of defective fittings for furniture (share of rejects) is significantly

equal for both suppliers.

3.6.1.9 Quotients of Two Variances | Two Samples Test

a. Null hypothesis $\sigma_1^2 = \sigma_2^2$

Testing the equality of the variance of two populations using two samples (two samples test).

b. Test statistic

$$F = \frac{s_1^2}{s_2^2}$$

c. Test distribution

$$F = F$$
-ditribution with $v_1 = n_1 - 1$ and $v_2 = n_2 - 1$ under the conditions that

- the two investigated populations are normally distributed or the sizes of both samples are sufficiently large with $n_1 > 30$ and $n_2 > 30$,
- the two samples are independent of each other.

Example:

To measure a possible correlation between the use of a particular pesticide within agriculture on species extinction, the statistical spread of the lifespan of a particular ant species will be examined as an example

- a) within an agriculture A, where this pesticide is not used in comparison to
- b) an agriculture B where this pesticide is used

Empirical data from past measurements show that in in both investigated populations the life span of these ants is normally distributed in the sense of a Gaussian¹⁰ distribution, i.e., that in the case of additive superposition of many small independent random effects to a total effect, a normal distribution according to Gauss is approximated, insofar as no single effect has a dominant influence on the variance (central limit theorem according to Lindeberg¹¹ and Lévy¹²).

A sample of $n_1 = 101$ ants from agriculture A results in a standard deviation of $s_1 = 2.6$ years of life, while a sample of $n_2 = 151$ ants from agriculture B results in a standard deviation of $s_2 = 2.1$ years.

Based on a significance level of $\alpha=0.05$, it is to be investigated whether the dispersion of the lifespan of the investigated ants is larger within agriculture A than in agriculture B.

a. Definition of null and alternative hypothesis

$$H_0: \ \sigma_1^2 = \sigma_2^2$$

 $H_A: \ \sigma_1^2 > \sigma_2^2$
 $\alpha = 0.05$

b. Determination of the test statistic

$$F = \frac{s_1^2}{s_2^2}$$

c. Determination of the test distribution

$$F=F$$
-distribution with $v_1=n_1-1=101-1=100$ degrees of freedom and $v_2=n_2-1=151-1=150$ degrees of freedom

¹⁰ Johann Carl Friedrich Gauß (1777-1855) was a German mathematician.

¹¹ Jarl Waldemar Lindeberg (1876-1932) was a Finnish mathematician.

¹² Paul Pierre Lévy (1886-1971) was a French mathematician.

d. Identification of the critical range

$$\alpha = 0.05$$
 or $(1 - \alpha) = 0.95$
 $\Rightarrow F = 1.34$

See Appendix A, F-Distribution – Distribution Function with $\alpha = 0.05$.

If the test statistic is below F=1.34, the the null hypothesis H_0 cannot be rejected, i.e., the following applies:

rejection of
$$H_0$$
 if $F > 1.34$ no rejection of H_0 if $F < 1.34$

e. Calculation of the value of the test statistic

$$F = \frac{s_1^2}{s_2^2} = \frac{2.6^2}{2.1^2} = 1.5329$$

f. Decision and interpretation

Since F=1.5329>1.34, the null hypothesis H_0 is to be rejected. Based on a significance level of $\alpha=0.05$ and the two sample sizes of $n_1=101$ and $n_2=151$ it can be assumed that the dispersion of the life span of the investigated ant species is significantly shortened by the use of this pesticide.

3.6.2 Distribution Tests (Chi-Squared Tests)

Testing hypotheses of unknown distributions of a population.

3.6.2.1 Chi-Squared Goodness of Fit Test

Goodness of fit tests check whether empirical data are (approximately) fitted with a theoretical distribution, i.e. whether the distribution observed on the basis of a sample (approximately) conforms to or contradicts the assumed (unknown) distribution of the population.

Goodness of fit tests check the goodness of fit of an empirical distribution based on a sample to a theoretical (unknown) distribution assumed for the population.

3.6.2.1.1 Chi-Squared Goodness of Fit Test for a Discrete Distribution of the Population

a. Null hypothesis

Testing a sample that is drawn from a population with unknown distribution.

b. Test statisto

$$\chi^2 = \sum_{i=1}^k \frac{(h_i^o - h_i^e)^2}{h_i^e}$$

with

- h_i^o observed absolute frequency of a characteristic in its i^{th} occurrence (i = 1, ..., k)
- h_i^e expected absolute frequency of a characteristic in its i^{th} occurrence (i = 1, ..., k)

k = number of classes

c. Test distribution

 χ^2 = Chi-squared distribution with v = k - m - 1

k = number of classes

m = number of estimated parameters

Condition: $h_i^e \ge 5$ i = 1, ..., k

Example:

Four elevators exist inside an office building. In order to optimize the control of these elevators, the people who enter this office building and want to use an elevator within an interval of two minutes are recorded.

The discrete distribution of the corresponding measurement in the form of a random sampling by drawing without replacement (w/o rep.) is shown in the following (absolute) frequency distribution:

i	number of people x_i	class widths $x_{i}^{'}$	number of 2-minute-intervals with x_i relevant people; h_i^o
1	0	0	5
2	1	1	8
3	2	2	12
4	3	3	16
5	4	4	8
6	5 – 7	6	4
7	≥ 8	_	0

Based on a significance level of $\alpha=0.01$ it is to be checked whether the arrivals of people who want to use an elevator are poisson distributed.

a. Definition of null and alternative hypothesis

 H_0 : The arrivals of people who want to use an elevator are poisson distributed.

 H_A : The arrivals of people who want to use an elevator are not poisson distributed.

$$\alpha = 0.01$$

b. Determiantion of the test statistic

$$\chi^2 = \sum_{i=1}^k \frac{(h_i^o - h_i^e)^2}{h_i^e}$$

c. Determination of the test distribution

$$\chi^2=$$
 Chi-squared distribution with $v=k-m-1=$ degrees of freedom

To determine the expected absolute frequencies h_i^e , the parameter μ of the Poisson distribution has to be estimated (see chapter 3.3.1). For this purpose, the arithmetic mean of the sample \bar{x} is appropriate, which forms an unbiased estimate $\hat{\mu}$ for μ :

$$\hat{\mu} = \bar{x} = \frac{\sum_{i=1}^{k} x_i h_i^o}{\sum_{i=1}^{k} h_i^o} = \frac{136}{53} = 2.566$$
with
$$\sum_{i=1}^{k} x_i h_o = (0.5) + (1.8) + (2.12) + (3.16) + (4.8) + (6.4) = 136$$

At class "5 – 7" using the class center $x_i^{'}$ (cf. Chapter 2.2.1).

$$\sum_{i=1}^{k} h_i^o = 5 + 8 + 12 + 16 + 8 + 4 + 0 = 53$$

$$\Rightarrow \hat{\mu} = \bar{x} = \frac{136}{53} = 2.566$$

Using the probability function of the Poisson distribution (see Appendix A), $\hat{\mu}=2.566\approx 2.6$ the individual probabilities can be estimated (approximately) (see following table):

i	x_i	$x_i^{'}$	h_i^o	$f_p\left(x_i/2,6\right)$
1	0	0	5	0.0743
2	1	1	8	0.1931
3	2	2	12	0.2510
4	3	3	16	0.2176
5	4	4	8	0.1414
6	5-7	6	4	$\begin{vmatrix} 0.0735 + 0.0319 + 0.0118 = \\ = 0.1172 \end{vmatrix}$
7	≥ 8	_	0	$\begin{vmatrix} 0.0038 + 0.0011 + 0.0003 + \\ +0.0001 = 0.0053^{13} \end{vmatrix}$

Interpreting the $f_p(x_i/\mu)$ values as relative frequencies, multiplication by $n=\sum\limits_{i=1}^k h_i^o=53$ produces the searched expected absolute frequencies h_i^e :

 $^{^{13}}$ $1-0.0743-0.1931-0.2510-0.2176-0.1414-0.1172=0.0054\approx0.0053$ (rounding error). See Appendix A, Poisson Distribution – Cumulative Distribution Function. For $\mu=2.6$ and x=7 the resulting value is $0.9947\cdot(1-0.9947)=0.0053$.

i	x_i	h_i^o	$h_i^e = 53 \cdot f_p \left(x_i / 2.6 \right)$
1	0	5	3.9379
2	1	8	10.2343
3	2	12	13.3030
4	3	16	11.5328
5	4	8	7.4942
6	5 – 7	4	6.2116
7	≥ 8	0	0.2809
Σ	_	53	≈ 53 ¹⁴

Since the use of the Chi-squared distribution as a test distribution requires that $h_i^e \ge 5$ must be valid for all 1, ..., k (see above), the classes 1 and 2 as well as 6 and 7 are grouped together:

i	x_i	h_i^o	$h_i^e = 53$
1	≤ 1	5 + 8 = 13	3.9379 + 10.2343 = 14.1722
2	2	12	13.3030
3	3	16	11.5328
4	4	8	7.4942
5	≥ 5	4+0=4	6.2116 + 0.2809 = 6.4925
Σ	_	53	$\approx 53^{15}$

d. Identification of the critical range

$$\alpha=0.01$$
 or $(1-\alpha)=0.99$ and $\nu=5-1-1=3$

Remarks:

- By grouping classes together due to the condition $h_i^e \ge 5$ eventually the result is not seven classes, but five classes,

¹⁴ rounding error

¹⁵ rounding error

i.e.
$$k = 5$$
.

- m=1, because only the parameter μ has to be estimated due to the Poisson distribution.
- Since v=3>1 , no continuity correction (Yates's correction) is to be applied.

$$\Rightarrow \chi^2 = 11.345$$

See Appendix A, Chi-Squared Distribution – Distribution Function.

If the test statistic is below $\chi^2=11.345$, then the null hypothesis H_0 cannot be rejected, i.e., the following applies:

rejection of
$$H_0$$
 if $\chi^2 > 11.345$ no rejection of H_0 if $\chi^2 \leq 11.345$

e. Calculation of the value of the test statistic

$$\chi^{2} = \sum_{i=1}^{k} \frac{(h_{i}^{o} - h_{i}^{e})^{2}}{h_{i}^{e}} =$$

$$= \frac{(13 - 14.1722)^{2}}{14.1722} + \frac{(12 - 13.3030)^{2}}{13.3030} + \frac{(16 - 11.5328)^{2}}{11.5328} +$$

$$+ \frac{(8 - 7.4942)^{2}}{7.4942} + \frac{(4 - 6.4925)^{2}}{6.4925} = 2.9460$$

f. Decision and interpretation

Since $\chi^2=2.9460<11.345$, the null hypothesis H_0 cannot be rejected. Based on a significance level of $\alpha=0.01$ and the sample size of n=53 it can be assumed that the people entering the office building who want to use an elevator are poisson distributed.

3.6.2.1.2 Chi-Squared Goodness of Fit Test for a Continous Distribution of the Population

If the feature is continuous or if a discrete feature occurs in a very large number of characteristics, the characteristic values are to be classified in k intervals.

Example:

Based on a significance level of $\alpha=0.05$, it is to be tested whether the lifespan of an endangered butterfly is normally distributed. For this purpose, n=100 butterflies are observed. The following table shows the test result:

i	lifespan in days, x_i	number of butterflys, h_i^o
1	≤ 14	8
2	$> 14 \text{ bis} \le 18$	17
3	> 18 bis ≤ 22	25
4	$>$ 22 bis \leq 26	30
5	$>$ 26 bis \leq 30	18
6	> 30	2
Σ	_	100

Close observation within this sample of n=100 butterflies indicates an average lifespan of $\bar{x}=21.48$ days with a standard deviation of s=5.26 days.

a. Definition of null and alternative hypothesis

 H_0 : The lifespan of this butterfly is normally distributed.

 ${\it H}_{\it A}$: The lifespan of this butterfly is not normally distributed.

 $\alpha = 0.05$

b. Determination of the test statistic

$$\chi^2 = \sum_{i=1}^k \frac{(h_i^o - h_i^e)^2}{h_i^e}$$

c. Determiantion of the test distribution

$$\chi^2=$$
 Chi-squared distribution with $v=k-m-1=$ degrees of freedom

The arithmetic mean from the sampling \bar{x} and the variance s^2 serve as unbiased estimates for the two unknown parameters μ and σ^2 of the normal distribution (cf. chapter 3.3.2):

$$\hat{\mu} = \bar{x} = 21.48 \, days$$

$$\hat{\sigma}^2 = s^2 = (5.26)^2 = 27.6676 \, days^2$$

By using the distribution function of the normal distribution (see Appendix A, Standard Normal Distribution – Cumulative Distribution Function), $\hat{\mu}=21.48$ and $\hat{\sigma}^2=27.6676$ the values of the distribution function of the normal distribution for the upper class limits x_i^o , i.e. $F_n(x_i^o/21.48;27.6676)$ can be determined.

The following relationship applies to the use of the standard normal distribution (cf. Chapter 3.3.2):

$$F_n(x/\mu; \sigma^2) = F_N(z)$$

with $z = \frac{x-\mu}{\sigma}$
or $F_n(x_i^o/\mu; \sigma^2) = F_N(z_i^o)$
with $z_i^o = \frac{x_i^o - \mu}{\sigma}$ for $i = 1, ..., k$

i	x_i^o	$z_i^o = \frac{x_i^o - 21.48}{5.26}$	$F_{N}\left(z_{i}^{o} ight)$
1	14	-1.422	1 - 0.9225 = 0.0775
2	18	-0.662	1 - 0.7460 = 0.2540
3	22	0.099	0.5394
4	26	0.859	0.8048
5	30	1.620	0.9474
6	∞	∞	1.0000

The expected <u>relative</u> frequencies f_i^e result from the formation of the following differences:

$$f_i^e = F_N(z_i^o) - F_N(z_{i-1}^o)$$

with $F_N(z_{i-1}^o) = F_N(z_0^o) = 0$

The expected <u>absolute</u> frequencies h_i^e are calculated as follows:

$$h_i^e = n \cdot f_i^e$$
 with $n = \text{sample size}$

For this example, the following applies:

i	h_i^o	f_i^e	$h_i^e = 100 \cdot f_i^e$
1	8	0.0775 - 0 = 0.0775	7.75
2	17	0.2540 - 0.0775 = 0.1765	17.65
3	25	0.5394 - 0.2540 = 0.2854	28.54
4	30	0.8048 - 0.5394 = 0.2654	26.54
5	18	0.9474 - 0.8048 = 0.1426	14.26
6	2	1.0000 - 0.9474 = 0.0526	5.26
Σ	100	1.0000	100.00

 $h_i^e \ge 5$ is fulfilled for all classes i with i=1,...,6 so that no classes need to be grouped together.

d. Identification of the critical range

$$\alpha = 0.05$$
 or $(1 - \alpha) = 0.95$ and $v = 6 - 2 - 1 = 3$

Remarks:

- m=2 because here, as a result of the (standard) normal distribution, the two parameters μ and σ^2 are estimated.
- Since v = 3 > 1, no continuity correction (Yates's correction) is to be applied.

$$\Rightarrow \chi^2 = 7.815$$

See Appendix A, Chi-Squared Distribution – Distribution Function.

If the test statistic is below $\chi^2 = 7.815$, then the null hypothesis H_0 cannot be rejected, i.e., the following applies:

rejection of
$$H_0$$
 if $\chi^2 > 7.815$ no rejection of H_0 if $\chi^2 \leq 7.815$

e. Calculation of the value of the test statistic

$$\chi^{2} = \sum_{i=1}^{k} \frac{(h_{i}^{o} - h_{i}^{e})^{2}}{h_{i}^{e}} =$$

$$= \frac{(8 - 7.75)^{2}}{7.75} + \frac{(17 - 17.65)^{2}}{17.65} + \frac{(25 - 28.54)^{2}}{28.54} +$$

$$+ \frac{(30 - 26.54)^{2}}{26.54} + \frac{(18 - 14.26)^{2}}{14.26} + \frac{(2 - 5.26)^{2}}{5.26} =$$

$$= 3.9235$$

f. Decision and interpretation

Since $\chi^2 = 3.9235 < 7.815$, the null hypothesis H_0 cannot be rejected. Based on a significance level of $\alpha = 0.05$ and a sample size of n = 100,

it can be assumed that the lifespan of this butterfly is normally distributed.

3.6.2.2 Chi-Squared Independence Test

This test can be used to check whether two characteristics are stochastically independent of each other. It also applies to qualitative (nominally or ordinally scaled) characteristics.

a. Null hypothesis

Testing two characteristics of two samples drawn from one or from two different populations.

b. Test statistic

$$\chi^2 = \sum_{i=1}^r \sum_{j=1}^s \frac{(h_{ij}^o - h_{ij}^e)^2}{h_{ij}^e}$$

with

 h_{ij}^o observed absolute frequency of the combination of two characteristics. The first characteristic in its i^{th} occurrence (i=1,...,r) and the second characteristic in its i^{th} occurrence (j=1,...,s).

$$\begin{array}{lll} h^{o}_{i.} &=& \sum\limits_{j=1}^{s} h^{o}_{ij} & i = 1,...,r \\ h^{o}_{.j} &=& \sum\limits_{i=1}^{r} h^{o}_{ij} & j = 1,...,s \\ h^{o}_{..} &=& \sum\limits_{i=1}^{s} h^{o}_{i.} &=& \sum\limits_{i=1}^{s} h^{o}_{.,j} = n & i = 1,...,r \text{ and } j = 1,...,s \end{array}$$

 h_{ij}^e expected absolute frequency of the combination of two characteristics. The first characteristic in its i^{th} occurrence (i=1,...,r) and the second characteristic in its j^{th} occurrence (j=1,...,s).

$$h_{ij}^e = \frac{h_{i.}^o \cdot h_{.j}^o}{n}$$
 $i = 1, ..., r \text{ und } j = 1, ..., s$

c. Test distribution

 $\chi^2 = \text{Chi-squared distribution}$ with v = (r-1)(s-1)

r: number of the i^{th} characteristic value

s: number of the j^{th} characteristic value

Condition: $h_{ij}^e \ge 5$ i = 1, ..., r and j = 1, ..., s

Example:

It is to be tested whether the demand for a certain product is related to gender by the color of the packaging of this product. Both characteristics are nominally scaled. The following observations concerning the buying behavior of n=100 subjects are summarized in the following contingency table 16 :

gender (B)	male (B1)	female (B2)	diverse (B3)	Σ
red (A1)	$h_{11}^o = 10$	$h_{12}^o = 16$	$h_{13}^o = 2$	$h_{1.}^{o} = 28$
blue (A2)	$h_{21}^o = 22$	$h_{22}^o = 9$	$h_{23}^o = 2$	$h_{2.}^{o} = 33$
green (A3)	$h_{31}^o = 8$	$h_{32}^o = 14$	$h_{33}^o = 2$	$h_{3.}^{o} = 24$
yellow (A4)	$h_{41}^o = 6$	$h_{42}^o = 9$	$h_{43}^o = 0$	$h_{4.}^{o} = 15$
Σ	$h_{.1}^o = 46$	$h_{.2}^o = 48$	$h_{.3}^o = 6$	$h^o_{} = n = 100$

¹⁶ Contingency tables are tables that show the absolute or relative frequencies of combinations of certain characteristic values.

The significance level of this Chi-squared independence test should be $\alpha=0.05$.

- a. Definition of null and alternative hypothesis
 - H_0 : The two characteristics "color of the packaging of the investigated product" (A) and "gender of the demander" (B) are independent of each other.
 - H_A : The two characteristics "color of the packaging of the investigated product" (A) and "gender of the demander" (B) are dependent on each other.

$$\alpha = 0.05$$

b. Determination of the test statistic

$$\chi^2 = \sum_{i=1}^r \sum_{j=1}^s \frac{(h_{ij}^o - h_{ij}^e)^2}{h_{ij}^e}$$

Determination of the test distribution

$$\chi^2=$$
 Chi-squared distribution with $v=(r-1)(s-1)$ degrees of freedom

To determine the expected absolute frequencies h_i^e , it is known that the **share** of the elements with the characteristic value is

$$A_i$$
 with $i = 1, ..., 3$ $f(A_i) = \frac{h_{i.}^o}{n}$ with $i = 1, ..., r$

and the share of elements with characteristic value is

$$B_j$$
 with $j = 1, ..., 4$ $f(B_j) = \frac{h_{.j}^o}{n}$ with $j = 1, ..., s$.

The relative frequencies $f(A_i)$ and $f(B_j)$ can be interpreted as probabilities, so that if the two investigated characteristics are independent, according to the multiplication theorem for two stochastically independent events A and B the following applies (cf. chapter 3.1.2):

or

$$W(A \cap B) = W(A) \cdot W(B)$$

 $W(A \cap B) = f(A_i \cap B_j) =$

$$W(A \cap B) = f(A_i \cap B_j) =$$

$$= f(A_i) \cdot f(B_j) = \frac{h_{i.}^o}{n} \cdot \frac{h_{.j}^o}{n}$$

$$\Rightarrow h_{ij}^e = n \cdot W(A \cap B) = n \cdot f(A_i \cap B_j) =$$

$$= n \cdot \frac{h_{i.}^o h_{.j}^o}{n^2} = \frac{h_{i.}^o h_{.j}^o}{n}$$

with i = 1, ..., r and j = 1, ..., s

	1			1
gender (B)	male	female	diverse	Σ
colour (A)	(B1)	(B2)	(B3)	_
red (A1)	$h_{11}^{e} =$	$h_{12}^{e} =$	$h_{13}^{e} =$	$h_{1.}^{e} = 28$
	$=\frac{28\cdot 46}{100}=$	$=\frac{28\cdot48}{100}=$	$=\frac{28\cdot 6}{100}=$	
	= 12.88	= 13.44	= 1.68	
blue (A2)	$h_{21}^{e} =$	$h^e_{22} =$	$h^e_{23} =$	$h_{2.}^e = 33$
	$=\frac{33\cdot46}{100}=$	$=\frac{33\cdot48}{100}=$	$=\frac{33\cdot 6}{100}=$	
	= 15.18	= 15.84	= 1.98	
green (A3)	$h_{31}^{e} =$	$h^e_{32} =$	$h^e_{33} =$	$h_{3.}^{e} = 24$
	$=\frac{24\cdot 46}{100}=$	$=\frac{24\cdot48}{100}=$	$=\frac{24\cdot6}{100}=$	
	= 11.04	= 11.52	= 1.44	
yellow (A4)	$h_{41}^{e} =$	$h^e_{42} =$	$h^e_{43}=$	$h_{4.}^e = 15$
	$=\frac{15\cdot 46}{100}=$	$=\frac{15\cdot48}{100}=$	$= \frac{15 \cdot 6}{100} =$	
	= 6.90	= 7.20	= 0.90	
Σ	$h_{.1}^e = 46$	$h_{.2}^e = 48$	$h_{.3}^e = 6$	$h_{}^{e} = 100$

Since using the Chi-squared distribution as a test distribution requires $h_{ij}^e \geq 5$ for all i=1,...,r and j=1,...,s (see above), rows and/or columns may need to be grouped appropriately.

In the present case, all h_{i3}^e -values with i=1,...,4 are smaller than 5, so here the condition $h_{ij}^e \geq 5$ is violated. Since there are 48 female participants and 46 male participants in the study, the diverse individuals will be equally distributed between the male and female participants in the following:

gender (B)	male (B1) + diverse (B3)	female (B2)	Σ
red (A1)	$h_{11}^o = 11$	$h_{12}^o = 17$	28
	$h_{11}^e = 13.72$	$h_{12}^e = 14.28$	
blue (A2)	$h_{21}^o = 23$	$h_{22}^o = 10$	33
	$h_{21}^e = 16.17$	$h_{22}^e = 16.83$	
green (A3)	$h_{31}^o = 9$	$h_{32}^o = 15$	24
	$h_{31}^e = 11.76$	$h_{32}^e = 12.24$	
yellow (A4)	$h_{41}^o = 6$	$h_{42}^o = 9$	15
	$h_{41}^e = 7.35$	$h_{42}^e = 7.65$	
Σ	49	51	100

d. Identification of the critical range

$$\alpha = 0.05$$
 or $(1 - \alpha) = 0.95$
and $v = (r - 1)(s - 1) = (2 - 1)(4 - 1) = 1 \cdot 3 = 3$

Remarks:

- By grouping male and diverse participants due to the condition $h_{ij}^e \geq 5$, the characteristic "gender" finally statistically does not result in three expressions, but in two, i.e. r=2.
- Since v = 3 > 1 no continuity correction (Yates's correction) is to be applied.

$$\Rightarrow \chi^2 = 7.815$$

See Appendix A, Chi-Squared Distribution – Distribution Function.

If the test statistic is below $\chi^2=7.815$, then the null hypothesis H_0 cannot be rejected, i.e., the following applies:

rejection of
$$H_0$$
 if $\chi^2 > 7,815$ no rejection of H_0 if $\chi^2 \leq 7,815$

e. Calculation of the value of the test statistic

$$\chi^{2} = \sum_{i=1}^{r} \sum_{j=1}^{s} \frac{(h_{ij}^{o} - h_{ij}^{e})^{2}}{h_{ij}^{e}} =$$

$$= \frac{(11 - 13.72)^{2}}{13.72} + \frac{(17 - 14.28)^{2}}{14.28} + \frac{(23 - 16.17)^{2}}{16.17} +$$

$$+ \frac{(10 - 16.83)^{2}}{16.83} + \frac{(9 - 11.76)^{2}}{11.76} + \frac{(15 - 12.24)^{2}}{12.24} + \frac{(6 - 7.35)^{2}}{7.35} +$$

$$+ \frac{(9 - 7.65)^{2}}{7.65} = 8.4704$$

f. Decision and interpretation

Since $\chi^2=8.4704>7.815$, the null hypothesis H_0 is to be rejected. Based on a significance level of $\alpha=0.05$ and a sample size of n=100, it can be assumed that the gender-specific demand for this product does

not depend on the color of its packaging.

3.6.2.3 Chi-Squared Homogeneity Test

This test can be used to check whether two or more random samples of discrete characteristics originate from the same distribution respectively a homogeneous population.

a. Null hypothesis

Testing two or more samples (two samples or multiple samples test) which hypothetically come from a (homogeneous) population.

b. Test statistic

$$\chi^{2} = \sum_{i=1}^{r} \sum_{j=1}^{s} \frac{\left(h_{ij}^{o} - \frac{h_{i}^{o} h_{.j}^{o}}{n}\right)^{2}}{\frac{h_{i}^{o} h_{.j}^{o}}{n}}$$

with

 h_{ij}^o observed absolute frequency of the combination of two characteristics. The first characteristic in its i^{th} occurrence (i=1,...,r) and the second characteristic in its j^{th} occurrence (j=1,...,s).

$$\begin{array}{lll} h^{o}_{i.} &=& \sum\limits_{j=1}^{s} h^{o}_{ij} & i = 1,...,r \\ h^{o}_{.j} &=& \sum\limits_{i=1}^{r} h^{o}_{ij} & j = 1,...,s \\ h^{o}_{..} &=& \sum\limits_{i=1}^{s} h^{o}_{i.} &=& \sum\limits_{i=1}^{s} h^{o}_{.,j} = n & i = 1,...,r \text{ and } j = 1,...,s \end{array}$$

 h_{ij}^e expected absolute frequency of the combination of two characteristics. The first characteristic in its i^{th} occurrence (i=1,...,r) and the second characteristic in its j^{th} occurrence (j=1,...,s).

$$h_{ij}^e = \frac{h_{i.}^o \cdot h_{.j}^o}{n}$$
 $i = 1, ..., r$ and $j = 1, ..., s$

c. Test distribution

 $\chi^2 = \text{Chi-squared distribution}$ with v = (r-1)(s-1)

r: number of the i^{th} characteristic value

s: number of the j^{th} characteristic value

Condition: $h_{ij}^e \ge 5$ i = 1, ..., r and j = 1, ..., s

Example:

To monitor the populations of birds, the occurrence of five specific endangered birds is also monitored by two world-leading biological institutes. Within two samples of these two institutes during the same period, the following observed absolute frequencies were obtained:

bird species i	observation sample of institute A	observation sample of institute B	Σ
1	$h_{11}^o = 18$	$h_{12}^o = 12$	$h_{1.}^{o} = 30$
2	$h_{21}^o = 9$	$h_{22}^o = 10$	$h_{2.}^{o} = 19$
3	$h_{31}^o = 9$	$h_{32}^o = 8$	$h_{3.}^{o}=17$
4	$h_{41}^o = 12$	$h_{42}^o = 11$	$h_{4.}^{o} = 23$
5	$h_{51}^o = 15$	$h_{52}^o = 17$	$h_{5.}^{o}=32$
Σ	$h_{.1}^o = 63$	$h_{.2}^o = 58$	n = 121

At a significance level of $\alpha=0.05$, it is to be tested whether the study results differ significantly. In other words, it is to be examined whether the two study results of the two institutes are homogeneous, i.e. whether they can be regarded as observation samples from the same population.

a. Definition of null and alternative hypothesis

 H_0 : The study results are homogeneous.

 H_A : The study results are heterogeneous.

 $\alpha = 0.05$

b. Determination of the test statistc

$$\chi^{2} = \sum_{i=1}^{r} \sum_{j=1}^{s} \frac{\left(h_{ij}^{o} - \frac{h_{i.}^{o} h_{.j}^{o}}{n}\right)^{2}}{\frac{h_{i.}^{o} h_{.j}^{o}}{n}}$$

c. Determination of the test distribution

$$\chi^2=$$
 Chi-squared distribution with $v=(r-1)(s-1)$ degrees of freedom

To determine the expected absolute frequencies h_i^e the sums per considered bird species i, h_i^o , can be put into perspective as follows:

$$h_1^o: h_2^o = 63:58 = 1.0862:1$$

Alternatively, the already known formula (see chapter 3.6.2.2) can be used:

$$h_{ij}^e = \frac{h_{i.}^o h_{.j}^o}{n}$$
 with $i=1,...,r$ and $j=1,...,s$

i	observations of institute A	observations of institute B	Σ
1	$h_{11}^e = \frac{30 \cdot 63}{121} = 15.62$	$h_{12}^e = \frac{30 \cdot 58}{121} = 14.38$	$h_{1.}^e = 30$
2	$h_{21}^e = \frac{19 \cdot 63}{121} = $ $= 9.89$	$h_{22}^e = \frac{19 \cdot 58}{121} = 9.11$	$h_{2.}^e = 19$
3	$h_{31}^e = \frac{17 \cdot 63}{121} = 8.85$	$h_{32}^e = \frac{17 \cdot 58}{121} = 8.15$	$h_{3.}^{e} = 17$
4	$h_{41}^e = \frac{23 \cdot 63}{121} = 11.98$	$h_{42}^e = \frac{23 \cdot 58}{121} = 11.02$	$h_{4.}^{e} = 23$
5	$h_{51}^e = \frac{32 \cdot 63}{121} = 16.66$	$h_{52}^e = \frac{32 \cdot 58}{121} = $ $= 15.34$	$h_{5.}^{e} = 32$
Σ	$h_{.1}^e = 63$	$h_{.2}^e = 58$	$h^{e}_{} = 121$

The condition $h^e_{ij} \geq 5$ is fulfilled for all i=1,...,r and j=1,...,s, so that the Chi-squared distribution may be (directly) applied as a test distribution.

Remark:

- Since $\nu=4>1$, no continuity correction (Yates's correction) is to be applied.

d. Identification of the critical range

$$\alpha = 0.05$$
 or $(1 - \alpha) = 0.95$
and $v = (r - 1)(s - 1) = (5 - 1)(2 - 1) = 4 \cdot 1 = 4$
 $\Rightarrow \chi^2 = 9.488$

See Appendix A, Chi-Squared Distribution – Distribution Function.

If the test statistic is below $\chi^2=9.488$, then the null hypothesis H_0 cannot be rejected, i.e., the following applies:

rejection of
$$H_0$$
 if $\chi^2 > 9.488$ no rejection of H_0 if $\chi^2 \le 9.488$

e. Calculation of the value of the test statistic

$$\chi^{2} = \sum_{i=1}^{r} \sum_{j=1}^{s} \frac{\left(h_{ij}^{o} - \frac{h_{i}^{o} h_{.j}^{o}}{n}\right)^{2}}{\frac{h_{i}^{o} h_{.j}^{o}}{n}} = \sum_{i=1}^{r} \sum_{j=1}^{s} \frac{(h_{ij}^{o} - (h_{ij}^{e})^{2}}{h_{ij}^{e}} =$$

$$= \frac{(18 - 15.62)^{2}}{15.62} + \frac{(12 - 14.38)^{2}}{14.38} + \frac{(9 - 9.89)^{2}}{9.89} +$$

$$+ \frac{(10 - 9.11)^{2}}{9.11} + \frac{(9 - 8.85)^{2}}{8.85} + \frac{(8 - 8.15)^{2}}{8.15} +$$

$$+ \frac{(12 - 11.98)^{2}}{11.98} + \frac{(11 - 11.02)^{2}}{11.02} + \frac{(15 - 16.66)^{2}}{16.66} +$$

$$+ \frac{(17 - 15.34)^{2}}{15.34} = 1.2738$$

f. Decision and interpretation

Since $\chi^2=1.2738<9.488$, the null hypothesis H_0 cannot be rejected. Based on a significance level of $\alpha=0.05$ and a sample size of n=121, it can be assumed that that the two independently obtained study results are homogeneous, i.e. they do not differ significantly from each other.

3.6.3 Yates's Correction

At $\nu=1$ degree of freedom a continuity correction (Yates's¹⁷ correction) is to be applied:

$$\chi_{korr}^2 = \sum_{i=1}^k \frac{(|h_i^o - h_i^e| - 0.5)^2}{h_i^e}$$

or

$$\chi^{2}_{korr} = \sum_{i=1}^{r} \sum_{j=1}^{s} \frac{\left(|h^{o}_{ij} - h^{e}_{ij}| - 0.5 \right)^{2}}{h^{e}_{ij}}$$

Example:

... according to the example of chapter 3.6.2.3 reduced to two bird species:

bird species i	observation sample of institute A	observation sample of institute B	Σ
1	$h_{11}^o = 18$	$h_{12}^o = 12$	$h_{1.}^{o}=30$
2	$h_{21}^o = 9$	$h_{22}^o = 10$	$h_{2.}^{o} = 19$
Σ	$h_{1.}^{o} = 27$	$h_{2.}^{o} = 22$	n = 49

¹⁷ Frank Yates (1902 - 1994) was an English statistician.

b. and e. Determination and calculation of the test statistic

$$\chi^{2}_{korr} = \sum_{i=1}^{r} \sum_{j=1}^{s} \frac{\left(|h^{o}_{ij} - h^{e}_{ij}| - 0.5 \right)^{2}}{h^{e}_{ij}}$$

using Yates's correction,

since
$$v = (r-1)(s-1) = (2-1)(2-1) = 1$$
.

$$h_{ij}^e = \frac{h_{i.}^o h_{.j}^o}{n}$$

with i = 1, ..., r and j = 1, ..., s

i	observations of institute A	observations of institute B	Σ
1	$h_{11}^e = \frac{30 \cdot 27}{49} =$	$h_{12}^e = \frac{30 \cdot 22}{49} =$	$h_{1.}^{e} = 30$
	= 16.53	= 13.47	
2	$h_{21}^e = \frac{19 \cdot 27}{49} =$	$h_{22}^e = \frac{19 \cdot 22}{49} =$	$h_{2.}^{e} = 19$
	= 10.47	= 8.53	
Σ	$h_{.1}^e = 27$	$h_{.2}^e = 22$	$h^{e}_{} = 49$

 $\text{with} \quad h_{ij}^e \geq 5 \quad \text{for all} \quad i=1,...,r \quad \text{and} \quad j=1,...,s$

$$\chi_{korr}^{2} = \sum_{i=1}^{r} \sum_{j=1}^{s} \frac{\left(|h_{ij}^{o} - h_{ij}^{e}| - 0.5 \right)^{2}}{h_{ij}^{e}}$$

$$= \frac{\left(|18 - 16.53| - 0.5 \right)^{2}}{16.53} + \frac{\left(|12 - 13.47| - 0.5 \right)^{2}}{13.47} + \frac{\left(|9 - 10.47| - 0.5 \right)^{2}}{10.47} + \frac{\left(|10 - 8.53| - 0.5 \right)^{2}}{8.53} =$$

$$= 0.0569 + 0.0699 + 0.0899 + 0.1103 = 0.3270$$

d. Identification of the critical range

$$\alpha = 0.05$$
 bzw. $(1 - \alpha) = 0.95$ and $\nu = (r - 1)(s - 1) = (2 - 1)(2 - 1) = 1$ $\Rightarrow \chi^2 = 3,841$

See Appendix A, Chi-Squared Distribution – Distribution Function.

rejection of
$$H_0$$
 if $\chi^2 > 3.841$ no rejection of H_0 if $\chi^2 < 3.841$

f. Decision and interpretation

Since $\chi^2=0.3270<3.841$, the null hypothesis H_0 cannot be rejected. Given the test conditions ($\alpha=0.05$ and n=49), the sample result suggests that the two independently obtained test results are homogeneous, i.e., they are not significantly different from each other.

Chapter 4

Probability Calculation

4.1 Terms and Definitions

Definition:

Probability calculation forms the basis of inferential statistics.

Many events of economic decisions are not strictly determined (predictable), but are stochastic, i.e. determined by chance.

Fundamental Terms

(1) Random Experiment

A process which is carried out according to specific regulations and can be repeated as often as desired, but whose result is determined by chance, i.e. it cannot be clearly determined in advance.

Example:

Games of chance like lottery or roulette.

(2) Elementary Event / Event / Sample space

In every random experiment, a set of possible elementary events exists, so-called elementary events or realisations. An event comprises any subset of the sample space *S*.

Example:

Throwing a die once.

This random experiment is comprised of six possible *elementary events*: $e_1 = 1$, $e_2 = 2$, ..., $e_6 = 6$

The set of all elementary events comprises the so-called sample space *S*.

4.2 Definitions of Probability

Probability is a measure to quantify the certainty or uncertainty of the occurrence of a certain event in the context of a random experiment.

4.2.1 The Classical Definition of Probabilty

If all elementary events are equally probable, the probability of event \boldsymbol{A} occurring in a given random experiment is determined by the following quotient:

$$P(A) = rac{ ext{number of favourable cases}}{ ext{number of all equally probable cases}}$$

with $A = \{\text{set of all favourable cases}\}$

Example:

What is the probability of event A, that you land on the number 6 when throwing an (untainted) die?

$$P(A) = \frac{1}{6}$$

Remark:

The practical significance of the classical definition of probability is limited since it can only be applied to equally probable events.

4.2.2 The Statistical Definition of Probability

The statistical definition of probability assumes a random experiment consisting of a sequence of independent trials tending towards infinity.

$$P(A) = \lim_{n \to \infty} \frac{h_n(A)}{n} = \lim_{n \to \infty} f_n(A)$$

with: n = number of tries/observations

 $h_n = absolute frequency of event A$

 f_n = relative frequency of event A

Example:

What is the probability of tossing the event "heads" with a coin that has two sides ("heads" and "tails")?

It can be assumed that $f_n(A)$ approaches increasingly the value 0.5, if the tosses were continued infinitely. If $f_n(A)$ was found to deviate increasingly less from the value 0.5, it would be an "ideal coin" here. For this coin, the probability of the event "heads" is the same as the probability of the event "tails".

4.2.3 The Subjective Definition of Probability

Especially in practical decision making, probabilities are determined neither by using the classical nor the statistical definition of probability. In most cases, the subjective probability of experts are used, usually by using the so-called *Delphi method*. In economics, subjective probabilities are often used in decision models with uncertainty.

4.2.4 Axioms of Probability Calculation

The axiomatic definition of probability does not seek to explain the essence of probability, but rather defines the mathematical properties of probability in terms of three axioms.

Axiom 1:

The probability P(A) of event A of a random experiment is a uniquely determined, real, non-negative number between zero and one:

$$0 \le P(A) \le 1$$
 with $P(A) \in \text{real numbers and } A \subset S$

Remark:

P(A) is not negative.

Example:

What is the probability of rolling the number 5 when rolling the dice once?

$$W(5) = \frac{1}{6} = 0.166$$

Axiom 2:

The probability of the occurrence of all events within a random experiment, i.e. for the entire sample space *S*, is one:

$$P(S)=1$$

Example:

Consider a die roll within the sample space S with $S = \{1, 2, 3, 4, 5, 6\}$ where $e_1 = 1, e_2 = 2, e_3 = 3, e_4 = 4, e_5 = 5$ and $e_6 = 6$.

$$W(S) = \frac{6}{6} = 1$$

Axiom 3:

If two events A and B of a random experiment are mutually exclusive, the following applies:

$$P(A \cup B) = P(A) + P(B) \text{ with } A \cap B = \{ \}$$

Example:

What is the probability of rolling a "2" or a "5" when rolling the dice once?

$$W(e_1 \cup e_2)$$
 with $e_1 = 2$ and $e_2 = 5 = \frac{1}{6} + \frac{1}{6} = \frac{2}{6}$
 $W(e_1 \cap e_2) = \{\}$

4.3 Theorems of Probability Calculation

4.3.1 Theorem of Complementary Events

The sum of probabilities of the random event A and the event complementary to A, \overline{A} (= event not-A), is equal to one:

$$P(A \cup \overline{A}) = P(A) + P(\overline{A}) = 1$$

Example:

What is the probability that in a roll of two dice the sum of both dice is not 4?

 \Rightarrow 2 dice of 6 values each, i.e. there are 36 equally probable elementary events (i, j), whereby i = 1, ..., 6 and j = 1, ..., 6.

Since the elementary events (i, j) are equally probable, the following applies:

$$P(i, j) = \frac{1}{36}$$
 with $\sum_{i=1}^{6} \sum_{j=1}^{6} P(i, j) = 1$

Event A, that the sum of both dice equals 4, is composed of three elementary events:

$$A = \{(1,3) \cup (2,2) \cup (3,1)\}$$

$$\Rightarrow P(A) = P(1,3) + P(2,2) + P(3,1) = \frac{1}{36} + \frac{1}{36} + \frac{1}{36} = \frac{1}{12}$$

$$\Rightarrow P(\overline{A}) = 1 - P(A) = 1 - \frac{1}{12} = \frac{11}{12}$$

4.3.2 The Multiplication Theorem with Independence of Events

If events A and B occur independently from another, the following applies:

$$P(A \cap B) = P(A) \cdot P(B)$$

Example:

A coin with tails on one side is tossed twice. What is the probability of getting tails both times?

Each toss is new and therefore independent of one other.

$$\Rightarrow P(A) = 0.5$$
 with $A =$ tails and $\overline{A} =$ not-tails

$$\Rightarrow P(A_1 \cap A_2) = P(A_1) \cdot P(A_2) = 0.5 \cdot 0.5 = 0.25$$

The probability of getting tails twice in a row is 0.25; the counter probability is 0.75.

4.3.3 The Addition Theorem

(1) Events A and B are <u>not</u> mutually exclusive.

If A and B are any two events of a random experiment that are not mutually exclusive, the additive (joint) probability of the event $P(A \cup B)$ is calculated as:

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

The probability that either A or B or $A \cap B$, i.e. A and B occur together, is obtained by adding P(A) and P(B) minus the probability of the joint occurrence of A and B.

(2) A and B are mutually exclusive.

In the case where events A and B are <u>mutually exclusive</u>, the following applies:

$$P(A \cup B) = P(A) + P(B)$$

Example:

What is the probability that, if two identical coins are tossed with heads on one side and tails on the other, at least one coin will show tails?

Step 1: Sample space S

$$S=\{tt,th,ht,hh\}$$
 with $t=$ tails and $h=$ heads $P(tt)=P(th)=P(ht)=P(hh)=rac{1}{4}$

All events are equally probable.

Step 2: Exclusivity / non-exclusivity:

 $A = \text{event that the 1}^{\text{st}} \text{ coin lands on tails} = \{tt, th\}$

 $B = \text{event that the 2}^{\text{nd}} \text{ coin lands on tails} = \{tt, ht\}$

 \Rightarrow Events A and B are not mutually exclusive if the 1st and 2nd coin shows tails {tt}.

Step 3: Addition theorem

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Step 4: Calculation

$$P(A \cup B) = \underbrace{\frac{1}{4} + \frac{1}{4}}_{P(A)} + \underbrace{\frac{1}{4} + \frac{1}{4}}_{P(B)} - \underbrace{\frac{1}{4}}_{P(tt)} = \frac{3}{4} = 0.75$$

4.3.4 Conditional Probability

The probability of an event A occurring is often *conditional*, i.e. dependent on the occurrence of another event B. The probability of A given the occurrence of (another) event B is called the *conditional probability* of event A given condition B, P(A/B), with:

$$P(A/B) = \frac{P(A \cap B)}{P(B)}$$

Example:

A dice roll is considered. The sample space $A = \{1, 3, 5\}$ includes all odd numbers and the sample space B includes the following set of numbers $B = \{3, 5, 6\}$.

$$W(A) = \frac{3}{6} = \frac{1}{2}$$

$$W(B) = \frac{3}{6} = \frac{1}{2}$$

$$A \cap B = \{3, 5\}$$

$$W(A\cap B) = \frac{2}{6} = \frac{1}{3}$$

$$W(A/B) = \frac{W(A \cap B)}{W(B)} = \frac{\frac{1}{3}}{\frac{1}{2}} = \frac{2}{3}$$

4.3.5 Stochastic Independence

An event *A* is *stochastically* (taking chance into account) *independent* of event *B* if the occurrence of *A* does <u>not depend on</u> the occurrence or non-occurrence of event *B*.

The following applies:

$$P(A/B) = P(A/\overline{B})$$

Example:

A dice roll is considered. The event A includes all dice rolls with even numbers and the event B describes all dice rolls with numbers smaller than B. It is to be tested whether the event B is stochastically independent of the event B.

Event
$$A = \{2, 4, 6\}$$
 $\overline{A} = \{1, 3, 5\}$ $W(A) = \frac{3}{6} = \frac{1}{2}$ $W(\overline{A}) = \frac{3}{6} = \frac{1}{2}$ Event $B = \{1, 2, 3, 4\}$ $\overline{B} = \{5, 6\}$ $W(B) = \frac{4}{6} = \frac{2}{3}$ $W(\overline{B}) = \frac{2}{6} = \frac{1}{3}$ $W(A \cap B) = \frac{2}{6} = \frac{1}{3}$ $W(A \cap B) = \frac{2}{6} = \frac{1}{3}$ $W(A \cap B) = \frac{W(A \cap B)}{W(B)} = \frac{2/6}{2/3} = \frac{3}{6} = \frac{1}{2}$ $W(A \cap B) = \frac{W(A \cap B)}{W(\overline{B})} = \frac{1/6}{1/3} = \frac{1}{2}$

⇒ The two events A and B are stochastically independent of each other.

4.3.6 The Multiplication Theorem in General Form

If the multiplication theorem in section 4.3.2 is to be generally applied, i.e. event B is conditioned by event A, the following applies:

$$P(A \cap B) = P(A) \cdot P(B/A) = P(B) \cdot P(A/B)$$

Example:

The probability of drawing a king from a pack of cards (52 cards with 4 kings) is: $P(A) = \frac{4}{52} = \frac{1}{13}$. If the drawn card is a king, the probability of drawing a king again is: $P(B) = \frac{3}{51}$. The probability of drawing two kings with two cards is therefore:

$$P(A \cap B) = P(A) \cdot P(B/A) = \frac{1}{13} \cdot \frac{3}{51} \approx 0.0045 = 0.45\% = 4.5\%$$

4.3.7 The Theorem of Total Probability

Let $A_1, A_2, ..., A_n$ be mutually exclusive events that completely fill a sample space S, so that:

$$A_1 \cup A_2 \cup ... \cup A_n = S$$
 and $A_i \cap A_j = \{ \}$ with $i, j = 1, ..., n; i \neq j$

then any event E can be expressed as a union of mutually exclusive events:

$$E = (E \cap A_1) \cup (E \cap A_2) \cup ... \cup (E \cap A_n)$$

(1) Application of the <u>addition theorem</u> for mutually exclusive events:

$$\Rightarrow P(E) = P(E \cap A_1) + ... + P(E \cap A_n)$$

(2) Application of the <u>general multiplication theorem</u> in the case of dependency of events:

$$\Rightarrow P(E) = P(A_1) \cdot P(E/A_1) + \dots + P(A_n) \cdot P(E/A_n)$$

$$\Leftrightarrow P(E) = \sum_{i=1}^{n} P(A_i) \cdot P(E/A_i)$$

Example:

A plant produces 2,000 pieces of a product per day. Of this, machine M_1 delivers 800 pieces with 9% share of rejects, M_2 delivers 700 pieces with 7% share of rejects, and M_3 delivers 500 pieces with 4% share of rejects.

Randomly, a unit of quantity is selected. What is the probability that the selected unit of quantity is defective.

 $A_i (i = 1, 2, 3)$ describes the event that a piece was produced by machine M_i .

 E_i describes the number of pieces produced on machine M_i .

The following probabilities can be calculated:

$$W_1(A_1) = \frac{800}{2,000} = 0.40$$
 and $W_1(E_1/A_1) = \frac{9}{100} = 0.09$
 $W_2(A_2) = \frac{700}{2,000} = 0.35$ and $W_2(E_2/A_2) = \frac{7}{100} = 0.07$
 $W_3(A_3) = \frac{500}{2,000} = 0.25$ and $W_3(E_3/A_3) = \frac{4}{100} = 0.04$

Event E is calculated as:

$$E = (E \cap A_1) \cup (E \cap A_2) \cup (E \cap A_3)$$

$$W(E) = \sum_{i=1}^{3} W_i(A_i) \cdot W_i(E_i/A_i) =$$

$$= 0.4 \cdot 0.09 + 0.35 \cdot 0.07 + 0.25 \cdot 0.04 =$$

$$= 0.0705$$

A: The probability that a selected piece is defective is 7.05%.

4.3.8 Bayes' Theorem (Bayes' Rule)

With the help of Bayes' theorem, the conditional probability for any event A_j can be determined from the possible events $A_1, A_2, ..., A_n$ of the sample space S under the condition that a certain event E has occurred:

$$P(A_j/E) = \frac{P(A_j \cap E)}{P(E)} =$$

$$= \frac{P(A_j) \cdot P(E/A_j)}{\sum_{i=1}^{n} P(A_i) \cdot P(E/A_i)}$$

with:

$$A_1 \cup A_2 \cup ... \cup A_n = S$$
 and $A_i \cap A_j = \{\}$ with $i, j = 1, ..., n; i \neq j$

Since the probability for the occurrence of event A_j refers to an event that has occurred before, $P(A_j/E)$, i.e. can in fact only be calculated after the event E, the probability $P(A_i/E)$ is also called the a posteriori probability. The non-conditional probability $P(A_j)$ is accordingly called the a priori probability.

Example:

A daily production of 1,000 quantity units (QU) of a product is distributed among three machines as follows: M_1 100 QU, M_2 400 QU and M_3 500 QU. The relative error frequencies (error rates) are 0.05 (5%) for M_1 , 0.04 (4%) for M_2 and 0.02 (2%) for M_3 .

One unit is randomly selected from a daily production. This unit is found to be defective.

What is the probability that this defective unit was produced on machine M_1 or M_2 or M_3 ?

 A_i : QU was produced on machine M_i ; j = 1, 2, 3

E: QU is defective.

Bayes' Theorem

$$P(A_j/E) = \frac{P(A_j \cap E)}{P(E)} =$$

$$= \frac{P(A_j) \cdot P(E/A_j)}{\sum_{i=1}^{n} P(A_i) \cdot P(E/A_i)}$$

$$P(A_1) = \frac{100}{1,000} = 0.1$$

$$P(A_2) = \frac{400}{1,000} = 0.4$$

$$P(A_3) = \frac{500}{1,000} = 0.5$$

$$\Rightarrow P(A_1/E) = \frac{0.1 \cdot 0.05}{0.1 \cdot 0.05 + 0.4 \cdot 0.04 + 0.5 \cdot 0.02} = \frac{0.1 \cdot 0.05}{0.031} \approx 0.16$$

$$\Rightarrow P(A_2/E) = \frac{0.4 \cdot 0.04}{0.031} \approx 0.52$$

$$\Rightarrow P(A_3/E) = \frac{0.5 \cdot 0.02}{0.031} \approx 0.32$$

The probability that the defective unit was drawn from machine M_2 is highest with approximately 0.52 (= 52%).

4.3.9 Overview of the Probability Calculation of Mutually Exclusive and Non-Exclusive Events

	∪ ⇒ + or	$\begin{array}{c} \cap \Rightarrow \times \\ \text{and} \end{array}$
Events A and B are mutually exclusive	$P(A \cup B) = = P(A) + P(B)$	$P(A \cap B) = = P(A) \cdot P(B)$
⇒ no common elements	see 4.3.3 (2)	see 4.3.2
⇒ independence of events		
Events A and B are not mutually exclusive	$P(A \cup B) = = P(A) + P(B) -P(A \cap B)$	$P(A \cap B) =$ $= P(A) \cdot P(B/A)$ $= P(B) \cdot P(A/B)$
⇒ there are common elements	see 4.3.3 (1)	see 4.3.6
⇒ dependence of events		

4.4 Random Variable

4.4.1 The Concept of Random Variables

Definition:

If a variable changes in an unpredictable way, i.e. if the variable takes on its values only depending on chance, it is called a *random variable*. Random variables are usually symbolised with capital letters X, Y, Z, while their values are correspondingly marked with lowercase letters.

Example:

In the random experiment of tossing a coin with tails on one side twice, the frequency of the "tails"-event depends on chance. The values of this random variable X, X = number of tails when a coin is tossed twice, can be $x = 0 \lor x = 1 \lor x = 2$.

4.4.2 The Probability Function of Discrete Random Variables

A probability $P(X = x_i)$ can be assigned to each specific value x_i of a random variable X. The function $f(x_i)$, which indicates the probability of realisation for each value of the random variable, is referred to as the probability function of the random variable X:

$$f(x_i) = P(X = x_i)$$

It has the properties: $f(x_i) \ge 0$ and $\sum_{i=1}^n f(x_i) = 1$

with i = 1, ..., n

Example:

A coin with two sides "heads" (H) and "tails" (T) is tossed twice in a row. What is the probability that heads will be tossed at least once?

The different possibilities resulting from tossing a coin twice are: HH, HT, TH, HH.

elementary event e_i with $i = 1,, 4$	probability $W(e_i)$		
$e_1 = TT$	$W(e_1) = \frac{1}{4} = 0.25$	$x_1 = 0$	$f(x_1) = 0.25$
$e_2 = HT$	$W(e_2) = \frac{1}{4} = 0.25$ $W(e_3) = \frac{1}{4} = 0.25$	$x_2 = 1$	$f(x_2) = 0.50$
$e_3 = TH$ $e_4 = HH$	$W(e_3) = \frac{1}{4} = 0.25$ $W(e_4) = \frac{1}{4} = 0.25$		$f(x_3) = 0.25$
	4		$f(x_1) + f(x_2) + f(x_3) = 1$

The probability of tossing heads at least once is:

$$W(e_2) + W(e_3) + W(e_4) = 0.25 + 0.25 + 0.25 = 0.75$$

4.4.3 The Distribution Function of Discrete Random Variables

The function value of a distribution function F(x) of a random variable *X* indicates the probability that the random variable *X* is at most the value x_i :

$$F(x) = P(X \le x_i)$$

The distribution function of discrete random variables has the following properties:

- (1) for an arbitrary x: 0 < F(x) < 1
- $\lim_{\substack{x \to -\infty \\ \text{or } x \to 0}} F(x) = 0$ (2) impossible event:
- $\lim_{x \to \infty} F(x) = 1$ (3) certain event:

Example:

Regarding the example from 4.4.2:

$$F(x) = W(X \le x_i)$$

$$x_i$$
 $F(x) = W(X \le x)$
 $x_1 = 0$ 0.25
 $x_2 = 1$ 0.75
 $x_3 = 2$ 1.00

graphical distribution function

4.4.4 Probability Density and Distribution Function of Continuous Random Variables

(1) The Probability Density (The Density Function)

If the observed random variable X takes not only on discrete values but (in a certain interval) any value from the range of real numbers, then the probability distribution becomes a so-called probability density or, in other words, a density function.

The density function has the properties:

$$f(x) \ge 0$$
 and $\int\limits_{x_{min}}^{x_{max}} f(x) dx = 1$

Example:

The daily cash receipts of a retailer fluctuate between $x_{min} = \$0$ and $x_{max} = \$10,000$. By definition, the variable x has 1 million [in cents] values and thus corresponds de facto to a continuous random variable. The probability distribution of the random variable X can be represented by the following density function:

$$f(x) = -0.006x^{2} + 0.06x$$

$$f'(x) = -0.012x + 0.06 = 0$$

$$\Rightarrow x_{max} = 5$$

$$f(5) = 0.15$$

$$f(x) = 0$$

$$\Rightarrow x = 0 \lor x = 10$$

$$0.15$$

$$x = 0$$

The function $f(x) = -0.006x^2 + 0.06x$ is a density function if the area under the function between x_{min} and x_{max} is equal to one.

$$\int_{x_{min}}^{x_{max}} f(x)dx = \int_{0}^{10} (-0.006x^{2} + 0.06x)dx =$$

$$= \left[-0.006 \cdot \frac{1}{3}x^{3} + 0.06 \cdot \frac{1}{2} \cdot x^{2} \right]_{0}^{10} =$$

$$= (-0.002 \cdot 10^{3} + 0.03 \cdot 10^{2}) - 0 = -2 + 3 = 1$$

The probability that the continuous random variable X will take on a value x that lies in the interval [a,b] corresponds to the area, which locates under the considered density function f(x) within the limits a and b:

$$P(a \le X \le b) = \int_{a}^{b} f(x)dx$$

Remark:

For continuous random variables, the probability that the random variable X takes on any specific value x is always equal to zero:

$$P(X=x)=0$$

so that: $P(a \le X \le b) = P(a < x < b)$

215

Example:

The continuous random variable X records the delay of a subway at a certain stop and has the following density function in minutes:

$$f(x) = \begin{cases} 0.5 - 0.125x & \text{for } 0 \le x \le 4 \text{ [minutes]} \\ 0 & \text{for } x > 4 \text{ [minutes]} \end{cases}$$

f(x) is a density function, because:

(1)
$$f(x) \ge 0$$
 for all x

(2)
$$\int_{x_{min}}^{x_{max}} f(x)dx = \int_{0}^{4} (0.5 - 0.125x)dx =$$
$$= \left[0.5x - 0.0625 \cdot x^{2}\right]_{0}^{4} =$$
$$= 2 - 1 = 1$$

What is the probability that the subway will be delayed by one to two minutes?

 $P(1 \le x \le 2) =$ corresponding area under the density function

$$f(x) = \int_{1}^{2} f(x)dx = \int_{1}^{2} (0.5 - 0.125x)dx =$$

$$= \left[0.5x - 0.125 \cdot \frac{1}{2}x^{2} \right]_{1}^{2} = 0.75 - 0.4375 = 0.3125 = 31.25\%$$

(2) The Distribution Function

The distribution function of a continuous random variable X, F(x), is a continuous function:

Interpretation: x_j : $F(x_j) = 0.7$ indicates the probability that the random variable takes on the realisation x_j at most.

Properties of the Distribution Function F(x)

(1)
$$0 \le F(x) \le 1$$

(2) F(x) is monotonically increasing, i.e. for $x_1 \le x_2$: $F(x_1) \le F(x_2)$

$$(3) \lim_{x\to\infty} F(x) = 1$$

$$\lim_{\substack{x\to -\infty \\ \text{or } x\to 0}} F(x)=0$$

- (5) F(x) is continuous for all x
- (6) The first derivative of the distribution function F(x) yields the density function (= probability function) f(x).

For the density function from the example "delay of a subway" (see section 4.4.4)

$$f(x) = \begin{cases} 0.5 - 0.125x & \text{for } 0 \le x \le 4 \text{ [minutes]} \\ 0 & \text{for } x > 4 \text{ [minutes]} \end{cases}$$

the following distribution function is obtained

$$F(x) = \begin{cases} 0 & \text{for } x < 0 \\ 0.5x - 0.125 \cdot \frac{1}{2}x^2 & \text{for } 0 \le x \le 4 \\ 1 & \text{for } x > 4 \end{cases}$$

Example: Random variable X = delay of a subway

What is the probability that the subway is delayed by one to two minutes?

$$P(1 \le x \le 2) = F(2) - F(1) =$$

$$= (0.5 \cdot 2 - 0.0625 \cdot 2^{2}) - (0.5 \cdot 1 - 0.0625 \cdot 1^{2}) =$$

$$= 0.75 - 0.4375 = 0.3125 = 31.25\%$$

4.4.5 Expected Value and Variance of Random Variables

Like the frequency distributions of descriptive statistics, the probability distributions of random variables can be characterised by measures (parameters).

(1) Expected Value E(X)

for discrete random variables:

$$E(X) = \sum_{i} x_i \cdot P(X = x_i) = \sum_{i} x_i \cdot f(x_i)$$

for continuous random variables:

$$E(X) = \int_{-\infty}^{\infty} x \cdot f(x) dx$$

or for an interval
$$[x_u ; x_o]$$
: $E(X) = \int_{x_u}^{x_o} x \cdot f(x) dx$

(2) Variance Var(X)

for discrete random variables:

$$Var(X) = \sum_{i} [x_{i} - E(X)]^{2} f(x_{i}) =$$

$$= \sum_{i} x_{i}^{2} f(x_{i}) - [E(X)]^{2}$$

for continuous random variables:

$$Var(X) = \int_{-\infty}^{\infty} [x - E(X)]^2 f(x) dx =$$
$$= \int_{-\infty}^{\infty} x^2 f(x) dx - [E(X)]^2$$

or for an interval $[x_u; x_o]$:

$$\int_{x_u}^{x_o} [x - E(X)]^2 f(x) dx =$$

$$= \int_{x_u}^{x_o} x^2 f(x) dx - [E(X)]^2$$

Example 1:

Random experiment "tossing a coin three times" with tails on one side:

X = number of tails \Rightarrow discrete random variable

E(X) =the number of tails to be expected on average for a larger number of trials

$$E(X) = \sum_{i} x_{i} f(x_{i}) =$$

$$= 0 \cdot 0.125 + 1 \cdot 0.375 + 2 \cdot 0.375 + 3 \cdot 0.125 = 1.5$$

On average, each attempt, i.e. "tossing a coin three times", is expected to result in tails 1.5 times.

$$Var(X) = \sum_{i} x_i^2 f(x_i) - [E(X)]^2 =$$

$$= 0^2 \cdot 0.125 + 1^2 \cdot 0.375 + 2^2 \cdot 0.375 + 3^2 \cdot 0.125 - 1.5^2 = 0.75$$

Example 2:

Delay of a subway at a certain stop in minutes.

 $X = \text{delay in minutes} \Rightarrow \text{continuous random variable}$

(1)
$$f(x) = \begin{cases} 0.5 - 0.125x & \text{for } 0 \le x \le 4\\ 0 & \text{for } x > 4 \end{cases}$$

(2)
$$E(X) = \int_{x_u}^{x_o} x \cdot f(x) dx = \int_{0}^{4} x \cdot (0.5 - 0.125x) dx =$$

$$= \int_{0}^{4} (0.5x - 0.125x^2) dx = \left[0.5 \cdot \frac{1}{2} x^2 - 0.125 \cdot \frac{1}{3} x^3 \right]_{0}^{4} =$$

$$= F(4) - F(0) = 1.\overline{3} \text{ [minutes]}$$

On average, a delay of about 1.33 minutes can be expected.

$$Var(x) = \int_{x_u}^{x_o} x^2 \cdot f(x) dx - [E(X)]^2 =$$

$$= \int_{0}^{4} x^2 \cdot (0.5 - 0.125x) dx - (1.3333)^2 =$$

$$= \int_{0}^{4} (0.5x^2 - 0.125x^3) dx - (1.3333)^2 =$$

$$= \left[0.5 \cdot \frac{1}{3}x^3 - 0.125 \cdot \frac{1}{4}x^4 \right]_{0}^{4} - 1.3333^2 =$$

$$= F(4) - F(0) - 1.3333^2 = 0.889 \text{ [minutes}^2]$$

Standard deviation = $\sqrt{0.889} = 0.9429$ [minutes]

Appendix A Statistical Tables

$$f_B(x \mid n; \, \theta) = \begin{cases} \binom{n}{x} \; \theta^x \; (1 - \theta)^{n - x} & \text{for } x = 0, 1, ..., n \qquad 0 < \theta < 1 \\ 0 & \text{others} \end{cases}$$

_						θ			
n	Х	0.01	0.05	0.10	0.15	0.20	0.30	0.40	0.50
1	0	0.9900	0.9500	0.9000	0.8500	0.8000	0.7000	0.6000	0.5000
	1	0.0100	0.0500	0.1000	0.1500	0.2000	0.3000	0.4000	0.5000
2	0	0.9801	0.9025	0.8100	0.7225	0.6400	0.4900	0.3600	0.2500
	1	0.0198	0.0950	0.1800	0.2550	0.3200	0.4200	0.4800	0.5000
	2	0.0001	0.0025	0.0100	0.0225	0.0400	0.0900	0.1600	0.2500
3	0	0.9703	0.8574	0.7290	0.6141	0.5120	0.3430	0.2160	0.1250
	1	0.0294	0.1354	0.2430	0.3251	0.3840	0.4410	0.4320	0.3750
	2	0.0003	0.0071	0.0270	0.0574	0.0960	0.1890	0.2880	0.3750
	3	0.0000	0.0001	0.0010	0.0034	0.0080	0.0270	0.0640	0.1250
4	0	0.9606	0.8145	0.6561	0.5220	0.4096	0.2401	0.1296	0.0625
	1	0.0388	0.1715	0.2916	0.3685	0.4096	0.4116	0.3456	0.2500
	2	0.0006	0.0135	0.0486	0.0975	0.1536	0.2646	0.3456	0.3750
	3	0.0000	0.0005	0.0036	0.0115	0.0256	0.0756	0.1536	0.2500
	4	0.0000	0.0000	0.0001	0.0005	0.0016	0.0081	0.0256	0.0625
5	0	0.9510	0.7738	0.5905	0.4437	0.3277	0.1681	0.0778	0.0313
	1	0.0480	0.2036	0.3281	0.3915	0.4096	0.3602	0.2592	0.1563
	2	0.0010	0.0214	0.0729	0.1382	0.2048	0.3087	0.3456	0.3125
	3	0.0000	0.0011	0.0081	0.0244	0.0512	0.1323	0.2304	0.3125
	4	0.0000	0.0000	0.0005	0.0022	0.0064	0.0284	0.0768	0.1563
	5	0.0000	0.0000	0.0000	0.0001	0.0003	0.0024	0.0102	0.0313
6	0	0.9415	0.7351	0.5314	0.3771	0.2621	0.1176	0.0467	0.0156
	1	0.0571	0.2321	0.3543	0.3993	0.3932	0.3025	0.1866	0.0938
	2	0.0014	0.0305	0.0984	0.1762	0.2458	0.3241	0.3110	0.2344
	3	0.0000	0.0021	0.0146	0.0415	0.0819	0.1852	0.2765	0.3125
	4	0.0000	0.0001	0.0012	0.0055	0.0154	0.0595	0.1382	0.2344
	5	0.0000	0.0000	0.0001	0.0004	0.0015	0.0102	0.0369	0.0938
	6	0.0000	0.0000	0.0000	0.0000	0.0001	0.0007	0.0041	0.0156
7	0	0.9321	0.6983	0.4783	0.3206	0.2097	0.0824	0.0280	0.0078
	1	0.0659	0.2573	0.3720	0.3960	0.3670	0.2471	0.1306	0.0547
	2	0.0020	0.0406	0.1240	0.2097	0.2753	0.3177	0.2613	0.1641
	3	0.0000	0.0036	0.0230	0.0617	0.1147	0.2269	0.2903	0.2734
	4	0.0000	0.0002	0.0026	0.0109	0.0287	0.0972	0.1935	0.2734

n	х					θ			
	^	0.60	0.70	0.75	0.80	0.85	0.90	0.95	0.99
_1	0	0.4000	0.3000	0.2500	0.2000	0.1500	0.1000	0.0500	0.0100
_	1	0.6000	0.7000	0.7500	0.8000	0.8500	0.9000	0.9500	0.9900
2	0	0.1600	0.0900	0.0625	0.0400	0.0225	0.0100	0.0025	0.0001
	1	0.4800	0.4200	0.3750	0.3200	0.2550	0.1800	0.0950	0.0198
_	2	0.3600	0.4900	0.5625	0.6400	0.7225	0.8100	0.9025	0.9801
3	0	0.0640	0.0270	0.0156	0.0080	0.0034	0.0010	0.0001	0.0000
	1	0.2880	0.1890	0.1406	0.0960	0.0574	0.0270	0.0071	0.0003
	2	0.4320	0.4410	0.4219	0.3840	0.3251	0.2430	0.1354	0.0294
_	3	0.2160	0.3430	0.4219	0.5120	0.6141	0.7290	0.8574	0.9703
4	0	0.0256	0.0081	0.0039	0.0016	0.0005	0.0001	0.0000	0.0000
	1	0.1536	0.0756	0.0469	0.0256	0.0115	0.0036	0.0005	0.0000
	2	0.3456	0.2646	0.2109	0.1536	0.0975	0.0486	0.0135	0.0006
	3	0.3456	0.4116	0.4219	0.4096	0.3685	0.2916	0.1715	0.0388
_	4	0.1296	0.2401	0.3164	0.4096	0.5220	0.6561	0.8145	0.9606
5	0	0.0102	0.0024	0.0010	0.0003	0.0001	0.0000	0.0000	0.0000
	1	0.0768	0.0284	0.0146	0.0064	0.0022	0.0005	0.0000	0.0000
	2	0.2304	0.1323	0.0879	0.0512	0.0244	0.0081	0.0011	0.0000
	3	0.3456	0.3087	0.2637	0.2048	0.1382	0.0729	0.0214	0.0010
	4	0.2592	0.3602	0.3955	0.4096	0.3915	0.3281	0.2036	0.0480
_	5	0.0778	0.1681	0.2373	0.3277	0.4437	0.5905	0.7738	0.9510
_6	0	0.0041	0.0007	0.0002	0.0001	0.0000	0.0000	0.0000	0.0000
	1	0.0369	0.0102	0.0044	0.0015	0.0004	0.0001	0.0000	0.0000
	2	0.1382	0.0595	0.0330	0.0154	0.0055	0.0012	0.0001	0.0000
	3	0.2765	0.1852	0.1318	0.0819	0.0415	0.0146	0.0021	0.0000
	4	0.3110	0.3241	0.2966	0.2458	0.1762	0.0984	0.0305	0.0014
	5	0.1866	0.3025	0.3560	0.3932	0.3993	0.3543	0.2321	0.0571
	6	0.0467	0.1176	0.1780	0.2621	0.3771	0.5314	0.7351	0.9415
7	0	0.0016	0.0002	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000
	1	0.0172	0.0036	0.0013	0.0004	0.0001	0.0000	0.0000	0.0000
	2	0.0774	0.0250	0.0115	0.0043	0.0012	0.0002	0.0000	0.0000
	3	0.1935	0.0972	0.0577	0.0287	0.0109	0.0026	0.0002	0.0000
	4	0.2903	0.2269	0.1730	0.1147	0.0617	0.0230	0.0036	0.0000

n	x					θ			
	^	0.01	0.05	0.10	0.15	0.20	0.30	0.40	0.50
_7	5	0.0000	0.0000	0.0002	0.0012	0.0043	0.0250	0.0774	0.1641
	6	0.0000	0.0000	0.0000	0.0001	0.0004	0.0036	0.0172	0.0547
	7	0.0000	0.0000	0.0000	0.0000	0.0000	0.0002	0.0016	0.0078
8	0	0.9227	0.6634	0.4305	0.2725	0.1678	0.0576	0.0168	0.0039
	1	0.0746	0.2793	0.3826	0.3847	0.3355	0.1977	0.0896	0.0313
	2	0.0026	0.0515	0.1488	0.2376	0.2936	0.2965	0.2090	0.1094
	3	0.0001	0.0054	0.0331	0.0839	0.1468	0.2541	0.2787	0.2188
	4	0.0000	0.0004	0.0046	0.0185	0.0459	0.1361	0.2322	0.2734
	5	0.0000	0.0000	0.0004	0.0026	0.0092	0.0467	0.1239	0.2188
	6	0.0000	0.0000	0.0000	0.0002	0.0011	0.0100	0.0413	0.1094
	7	0.0000	0.0000	0.0000	0.0000	0.0001	0.0012	0.0079	0.0313
_	8	0.0000	0.0000	0.0000	0.0000	0.0000	0.0001	0.0007	0.0039
9	0	0.9135	0.6302	0.3874	0.2316	0.1342	0.0404	0.0101	0.0020
	1	0.0830	0.2985	0.3874	0.3679	0.3020	0.1556	0.0605	0.0176
	2	0.0034	0.0629	0.1722	0.2597	0.3020	0.2668	0.1612	0.0703
	3	0.0001	0.0077	0.0446	0.1069	0.1762	0.2668	0.2508	0.1641
	4	0.0000	0.0006	0.0074	0.0283	0.0661	0.1715	0.2508	0.2461
	5	0.0000	0.0000	0.0008	0.0050	0.0165	0.0735	0.1672	0.2461
	6	0.0000	0.0000	0.0001	0.0006	0.0028	0.0210	0.0743	0.1641
	7	0.0000	0.0000	0.0000	0.0000	0.0003	0.0039	0.0212	0.0703
	8	0.0000	0.0000	0.0000	0.0000	0.0000	0.0004	0.0035	0.0176
_	9	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0003	0.0020
10	0	0.9044	0.5987	0.3487	0.1969	0.1074	0.0282	0.0060	0.0010
	1	0.0914	0.3151	0.3874	0.3474	0.2684	0.1211	0.0403	0.0098
	2	0.0042	0.0746	0.1937	0.2759	0.3020	0.2335	0.1209	0.0439
	3	0.0001	0.0105	0.0574	0.1298	0.2013	0.2668	0.2150	0.1172
	4	0.0000	0.0010	0.0112	0.0401	0.0881	0.2001	0.2508	0.2051
	5	0.0000	0.0001	0.0015	0.0085	0.0264	0.1029	0.2007	0.2461
	6	0.0000	0.0000	0.0001	0.0012	0.0055	0.0368	0.1115	0.2051
	7	0.0000	0.0000	0.0000	0.0001	0.0008	0.0090	0.0425	0.1172
	8	0.0000	0.0000	0.0000	0.0000	0.0001	0.0014	0.0106	0.0439
	9	0.0000	0.0000	0.0000	0.0000	0.0000	0.0001	0.0016	0.0098
	10	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0001	0.0010
11	0	0.8953	0.5688	0.3138	0.1673	0.0859	0.0198	0.0036	0.0005
	1	0.0995	0.3293	0.3835	0.3248	0.2362	0.0932	0.0266	0.0054
	2	0.0050	0.0867	0.2131	0.2866	0.2953	0.1998	0.0887	0.0269
	3	0.0002	0.0137	0.0710	0.1517	0.2215	0.2568	0.1774	0.0806
	4	0.0000	0.0014	0.0158	0.0536	0.1107	0.2201	0.2365	0.1611

n	x					θ			
	^	0.60	0.70	0.75	0.80	0.85	0.90	0.95	0.99
_ 7	5	0.2613	0.3177	0.3115	0.2753	0.2097	0.1240	0.0406	0.0020
	6	0.1306	0.2471	0.3115	0.3670	0.3960	0.3720	0.2573	0.0659
	7	0.0280	0.0824	0.1335	0.2097	0.3206	0.4783	0.6983	0.9321
8	0	0.0007	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	1	0.0079	0.0012	0.0004	0.0001	0.0000	0.0000	0.0000	0.0000
	2	0.0413	0.0100	0.0038	0.0011	0.0002	0.0000	0.0000	0.0000
	3	0.1239	0.0467	0.0231	0.0092	0.0026	0.0004	0.0000	0.0000
	4	0.2322	0.1361	0.0865	0.0459	0.0185	0.0046	0.0004	0.0000
	5	0.2787	0.2541	0.2076	0.1468	0.0839	0.0331	0.0054	0.0001
	6	0.2090	0.2965	0.3115	0.2936	0.2376	0.1488	0.0515	0.0026
	7	0.0896	0.1977	0.2670	0.3355	0.3847	0.3826	0.2793	0.0746
	8	0.0168	0.0576	0.1001	0.1678	0.2725	0.4305	0.6634	0.9227
9	0	0.0003	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	1	0.0035	0.0004	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000
	2	0.0212	0.0039	0.0012	0.0003	0.0000	0.0000	0.0000	0.0000
	3	0.0743	0.0210	0.0087	0.0028	0.0006	0.0001	0.0000	0.0000
	4	0.1672	0.0735	0.0389	0.0165	0.0050	0.0008	0.0000	0.0000
	5	0.2508	0.1715	0.1168	0.0661	0.0283	0.0074	0.0006	0.0000
	6	0.2508	0.2668	0.2336	0.1762	0.1069	0.0446	0.0077	0.0001
	7	0.1612	0.2668	0.3003	0.3020	0.2597	0.1722	0.0629	0.0034
	8	0.0605	0.1556	0.2253	0.3020	0.3679	0.3874	0.2985	0.0830
	9	0.0101	0.0404	0.0751	0.1342	0.2316	0.3874	0.6302	0.9135
_10	0	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	1	0.0016	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	2	0.0106	0.0014	0.0004	0.0001	0.0000	0.0000	0.0000	0.0000
	3	0.0425	0.0090	0.0031	0.0008	0.0001	0.0000	0.0000	0.0000
	4	0.1115	0.0368	0.0162	0.0055	0.0012	0.0001	0.0000	0.0000
	5	0.2007	0.1029	0.0584	0.0264	0.0085	0.0015	0.0001	0.0000
	6	0.2508	0.2001	0.1460	0.0881	0.0401	0.0112	0.0010	0.0000
	7	0.2150	0.2668	0.2503	0.2013	0.1298	0.0574	0.0105	0.0001
	8	0.1209	0.2335	0.2816	0.3020	0.2759	0.1937	0.0746	0.0042
	9	0.0403	0.1211	0.1877	0.2684	0.3474	0.3874	0.3151	0.0914
	10	0.0060	0.0282	0.0563	0.1074	0.1969	0.3487	0.5987	0.9044
11	0	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
-	1	0.0007	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	2	0.0052	0.0005	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000
	3	0.0234	0.0037	0.0011	0.0002	0.0000	0.0000	0.0000	0.0000
	4	0.0701	0.0173	0.0064	0.0017	0.0003	0.0000	0.0000	0.0000

n	x					θ			
	^	0.01	0.05	0.10	0.15	0.20	0.30	0.40	0.50
_11	5	0.0000	0.0001	0.0025	0.0132	0.0388	0.1321	0.2207	0.2256
	6	0.0000	0.0000	0.0003	0.0023	0.0097	0.0566	0.1471	0.2256
	7	0.0000	0.0000	0.0000	0.0003	0.0017	0.0173	0.0701	0.1611
	8	0.0000	0.0000	0.0000	0.0000	0.0002	0.0037	0.0234	0.0806
	9	0.0000	0.0000	0.0000	0.0000	0.0000	0.0005	0.0052	0.0269
	10	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0007	0.0054
	11	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0005
_12	0	0.8864	0.5404	0.2824	0.1422	0.0687	0.0138	0.0022	0.0002
	1	0.1074	0.3413	0.3766	0.3012	0.2062	0.0712	0.0174	0.0029
	2	0.0060	0.0988	0.2301	0.2924	0.2835	0.1678	0.0639	0.0161
	3	0.0002	0.0173	0.0852	0.1720	0.2362	0.2397	0.1419	0.0537
	4	0.0000	0.0021	0.0213	0.0683	0.1329	0.2311	0.2128	0.1208
	5	0.0000	0.0002	0.0038	0.0193	0.0532	0.1585	0.2270	0.1934
	6	0.0000	0.0000	0.0005	0.0040	0.0155	0.0792	0.1766	0.2256
	7	0.0000	0.0000	0.0000	0.0006	0.0033	0.0291	0.1009	0.1934
	8	0.0000	0.0000	0.0000	0.0001	0.0005	0.0078	0.0420	0.1208
	9	0.0000	0.0000	0.0000	0.0000	0.0001	0.0015	0.0125	0.0537
	10	0.0000	0.0000	0.0000	0.0000	0.0000	0.0002	0.0025	0.0161
	11	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0003	0.0029
	12	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0002
_13	0	0.8775	0.5133	0.2542	0.1209	0.0550	0.0097	0.0013	0.0001
	1	0.1152	0.3512	0.3672	0.2774	0.1787	0.0540	0.0113	0.0016
	2	0.0070	0.1109	0.2448	0.2937	0.2680	0.1388	0.0453	0.0095
	3	0.0003	0.0214	0.0997	0.1900	0.2457	0.2181	0.1107	0.0349
	4	0.0000	0.0028	0.0277	0.0838	0.1535	0.2337	0.1845	0.0873
	5	0.0000	0.0003	0.0055	0.0266	0.0691	0.1803	0.2214	0.1571
	6	0.0000	0.0000	0.0008	0.0063	0.0230	0.1030	0.1968	0.2095
	7	0.0000	0.0000	0.0001	0.0011	0.0058	0.0442	0.1312	0.2095
	8	0.0000	0.0000	0.0000	0.0001	0.0011	0.0142	0.0656	0.1571
	9	0.0000	0.0000	0.0000	0.0000	0.0001	0.0034	0.0243	0.0873
	10	0.0000	0.0000	0.0000	0.0000	0.0000	0.0006	0.0065	0.0349
	11	0.0000	0.0000	0.0000	0.0000	0.0000	0.0001	0.0012	0.0095
	12	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0001	0.0016
	13	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0001
_14	0	0.8687	0.4877	0.2288	0.1028	0.0440	0.0068	0.0008	0.0001
	1	0.1229	0.3593	0.3559	0.2539	0.1539	0.0407	0.0073	0.0009
	2	0.0081	0.1229	0.2570	0.2912	0.2501	0.1134	0.0317	0.0056
	3	0.0003	0.0259	0.1142	0.2056	0.2501	0.1943	0.0845	0.0222

n	x					θ			
	^	0.60	0.70	0.75	0.80	0.85	0.90	0.95	0.99
_11	5	0.1471	0.0566	0.0268	0.0097	0.0023	0.0003	0.0000	0.0000
	6	0.2207	0.1321	0.0803	0.0388	0.0132	0.0025	0.0001	0.0000
	7	0.2365	0.2201	0.1721	0.1107	0.0536	0.0158	0.0014	0.0000
	8	0.1774	0.2568	0.2581	0.2215	0.1517	0.0710	0.0137	0.0002
	9	0.0887	0.1998	0.2581	0.2953	0.2866	0.2131	0.0867	0.0050
	10	0.0266	0.0932	0.1549	0.2362	0.3248	0.3835	0.3293	0.0995
	11	0.0036	0.0198	0.0422	0.0859	0.1673	0.3138	0.5688	0.8953
12	0	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	1	0.0003	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	2	0.0025	0.0002	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	3	0.0125	0.0015	0.0004	0.0001	0.0000	0.0000	0.0000	0.0000
	4	0.0420	0.0078	0.0024	0.0005	0.0001	0.0000	0.0000	0.0000
	5	0.1009	0.0291	0.0115	0.0033	0.0006	0.0000	0.0000	0.0000
	6	0.1766	0.0792	0.0401	0.0155	0.0040	0.0005	0.0000	0.0000
	7	0.2270	0.1585	0.1032	0.0532	0.0193	0.0038	0.0002	0.0000
	8	0.2128	0.2311	0.1936	0.1329	0.0683	0.0213	0.0021	0.0000
	9	0.1419	0.2397	0.2581	0.2362	0.1720	0.0852	0.0173	0.0002
	10	0.0639	0.1678	0.2323	0.2835	0.2924	0.2301	0.0988	0.0060
	11	0.0174	0.0712	0.1267	0.2062	0.3012	0.3766	0.3413	0.1074
	12	0.0022	0.0138	0.0317	0.0687	0.1422	0.2824	0.5404	0.8864
_13	0	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	1	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	2	0.0012	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	3	0.0065	0.0006	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000
	4	0.0243	0.0034	0.0009	0.0001	0.0000	0.0000	0.0000	0.0000
	5	0.0656	0.0142	0.0047	0.0011	0.0001	0.0000	0.0000	0.0000
	6	0.1312	0.0442	0.0186	0.0058	0.0011	0.0001	0.0000	0.0000
	7	0.1968	0.1030	0.0559	0.0230	0.0063	0.0008	0.0000	0.0000
	8	0.2214	0.1803	0.1258	0.0691	0.0266	0.0055	0.0003	0.0000
	9	0.1845	0.2337	0.2097	0.1535	0.0838	0.0277	0.0028	0.0000
	10	0.1107	0.2181	0.2517	0.2457	0.1900	0.0997	0.0214	0.0003
	11	0.0453	0.1388	0.2059	0.2680	0.2937	0.2448	0.1109	0.0070
	12	0.0113	0.0540	0.1029	0.1787	0.2774	0.3672	0.3512	0.1152
	13	0.0013	0.0097	0.0238	0.0550	0.1209	0.2542	0.5133	0.8775
_14	0	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	1	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	2	0.0005	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	3	0.0033	0.0002	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

n	x					θ			
	^	0.01	0.05	0.10	0.15	0.20	0.30	0.40	0.50
14	4	0.0000	0.0037	0.0349	0.0998	0.1720	0.2290	0.1549	0.0611
	5	0.0000	0.0004	0.0078	0.0352	0.0860	0.1963	0.2066	0.1222
	6	0.0000	0.0000	0.0013	0.0093	0.0322	0.1262	0.2066	0.1833
	7	0.0000	0.0000	0.0002	0.0019	0.0092	0.0618	0.1574	0.2095
	8	0.0000	0.0000	0.0000	0.0003	0.0020	0.0232	0.0918	0.1833
	9	0.0000	0.0000	0.0000	0.0000	0.0003	0.0066	0.0408	0.1222
	10	0.0000	0.0000	0.0000	0.0000	0.0000	0.0014	0.0136	0.0611
	11	0.0000	0.0000	0.0000	0.0000	0.0000	0.0002	0.0033	0.0222
	12	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0005	0.0056
	13	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0001	0.0009
	14	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0001
15	0	0.8601	0.4633	0.2059	0.0874	0.0352	0.0047	0.0005	0.0000
	1	0.1303	0.3658	0.3432	0.2312	0.1319	0.0305	0.0047	0.0005
	2	0.0092	0.1348	0.2669	0.2856	0.2309	0.0916	0.0219	0.0032
	3	0.0004	0.0307	0.1285	0.2184	0.2501	0.1700	0.0634	0.0139
	4	0.0000	0.0049	0.0428	0.1156	0.1876	0.2186	0.1268	0.0417
	5	0.0000	0.0006	0.0105	0.0449	0.1032	0.2061	0.1859	0.0916
	6	0.0000	0.0000	0.0019	0.0132	0.0430	0.1472	0.2066	0.1527
	7	0.0000	0.0000	0.0003	0.0030	0.0138	0.0811	0.1771	0.1964
	8	0.0000	0.0000	0.0000	0.0005	0.0035	0.0348	0.1181	0.1964
	9	0.0000	0.0000	0.0000	0.0001	0.0007	0.0116	0.0612	0.1527
	10	0.0000	0.0000	0.0000	0.0000	0.0001	0.0030	0.0245	0.0916
	11	0.0000	0.0000	0.0000	0.0000	0.0000	0.0006	0.0074	0.0417
	12	0.0000	0.0000	0.0000	0.0000	0.0000	0.0001	0.0016	0.0139
	13	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0003	0.0032
	14	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0005
	15	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
20	0	0.8179	0.3585	0.1216	0.0388	0.0115	0.0008	0.0000	0.0000
	1	0.1652	0.3774	0.2702	0.1368	0.0576	0.0068	0.0005	0.0000
	2	0.0159	0.1887	0.2852	0.2293	0.1369	0.0278	0.0031	0.0002
	3	0.0010	0.0596	0.1901	0.2428	0.2054	0.0716	0.0123	0.0011
	4	0.0000	0.0133	0.0898	0.1821	0.2182	0.1304	0.0350	0.0046
	5	0.0000	0.0022	0.0319	0.1028	0.1746	0.1789	0.0746	0.0148
	6	0.0000	0.0003	0.0089	0.0454	0.1091	0.1916	0.1244	0.0370
	7	0.0000	0.0000	0.0020	0.0160	0.0545	0.1643	0.1659	0.0739
	8	0.0000	0.0000	0.0004	0.0046	0.0222	0.1144	0.1797	0.1201
	9	0.0000	0.0000	0.0001	0.0011	0.0074	0.0654	0.1597	0.1602
	10	0.0000	0.0000	0.0000	0.0002	0.0020	0.0308	0.1171	0.1762

n	x					θ			
	^	0.60	0.70	0.75	0.80	0.85	0.90	0.95	0.99
14	4	0.0136	0.0014	0.0003	0.0000	0.0000	0.0000	0.0000	0.0000
	5	0.0408	0.0066	0.0018	0.0003	0.0000	0.0000	0.0000	0.0000
	6	0.0918	0.0232	0.0082	0.0020	0.0003	0.0000	0.0000	0.0000
	7	0.1574	0.0618	0.0280	0.0092	0.0019	0.0002	0.0000	0.0000
	8	0.2066	0.1262	0.0734	0.0322	0.0093	0.0013	0.0000	0.0000
	9	0.2066	0.1963	0.1468	0.0860	0.0352	0.0078	0.0004	0.0000
	10	0.1549	0.2290	0.2202	0.1720	0.0998	0.0349	0.0037	0.0000
	11	0.0845	0.1943	0.2402	0.2501	0.2056	0.1142	0.0259	0.0003
	12	0.0317	0.1134	0.1802	0.2501	0.2912	0.2570	0.1229	0.0081
	13	0.0073	0.0407	0.0832	0.1539	0.2539	0.3559	0.3593	0.1229
	14	0.0008	0.0068	0.0178	0.0440	0.1028	0.2288	0.4877	0.8687
15	0	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	1	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	2	0.0003	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	3	0.0016	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	4	0.0074	0.0006	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000
	5	0.0245	0.0030	0.0007	0.0001	0.0000	0.0000	0.0000	0.0000
	6	0.0612	0.0116	0.0034	0.0007	0.0001	0.0000	0.0000	0.0000
	7	0.1181	0.0348	0.0131	0.0035	0.0005	0.0000	0.0000	0.0000
	8	0.1771	0.0811	0.0393	0.0138	0.0030	0.0003	0.0000	0.0000
	9	0.2066	0.1472	0.0917	0.0430	0.0132	0.0019	0.0000	0.0000
	10	0.1859	0.2061	0.1651	0.1032	0.0449	0.0105	0.0006	0.0000
	11	0.1268	0.2186	0.2252	0.1876	0.1156	0.0428	0.0049	0.0000
	12	0.0634	0.1700	0.2252	0.2501	0.2184	0.1285	0.0307	0.0004
	13	0.0219	0.0916	0.1559	0.2309	0.2856	0.2669	0.1348	0.0092
	14	0.0047	0.0305	0.0668	0.1319	0.2312	0.3432	0.3658	0.1303
	15	0.0005	0.0047	0.0134	0.0352	0.0874	0.2059	0.4633	0.8601
20	0	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	1	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	2	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	3	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	4	0.0003	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	5	0.0013	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	6	0.0049	0.0002	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	7	0.0146	0.0010	0.0002	0.0000	0.0000	0.0000	0.0000	0.0000
	8	0.0355	0.0039	0.0008	0.0001	0.0000	0.0000	0.0000	0.0000
	9	0.0710	0.0120	0.0030	0.0005	0.0000	0.0000	0.0000	0.0000
	10	0.1171	0.0308	0.0099	0.0020	0.0002	0.0000	0.0000	0.0000

	x					θ			
	^	0.01	0.05	0.10	0.15	0.20	0.30	0.40	0.50
20	11	0.0000	0.0000	0.0000	0.0000	0.0005	0.0120	0.0710	0.1602
	12	0.0000	0.0000	0.0000	0.0000	0.0001	0.0039	0.0355	0.1201
	13	0.0000	0.0000	0.0000	0.0000	0.0000	0.0010	0.0146	0.0739
	14	0.0000	0.0000	0.0000	0.0000	0.0000	0.0002	0.0049	0.0370
	15	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0013	0.0148
	16	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0003	0.0046
	17	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0011
	18	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0002
	19	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	20	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
30	0	0.7397	0.2146	0.0424	0.0076	0.0012	0.0000	0.0000	0.0000
	1	0.2242	0.3389	0.1413	0.0404	0.0093	0.0003	0.0000	0.0000
	2	0.0328	0.2586	0.2277	0.1034	0.0337	0.0018	0.0000	0.0000
	3	0.0031	0.1270	0.2361	0.1703	0.0785	0.0072	0.0003	0.0000
	4	0.0002	0.0451	0.1771	0.2028	0.1325	0.0208	0.0012	0.0000
	5	0.0000	0.0124	0.1023	0.1861	0.1723	0.0464	0.0041	0.0001
	6	0.0000	0.0027	0.0474	0.1368	0.1795	0.0829	0.0115	0.0006
	7	0.0000	0.0005	0.0180	0.0828	0.1538	0.1219	0.0263	0.0019
	8	0.0000	0.0001	0.0058	0.0420	0.1106	0.1501	0.0505	0.0055
	9	0.0000	0.0000	0.0016	0.0181	0.0676	0.1573	0.0823	0.0133
	10	0.0000	0.0000	0.0004	0.0067	0.0355	0.1416	0.1152	0.0280
	11	0.0000	0.0000	0.0001	0.0022	0.0161	0.1103	0.1396	0.0509
	12	0.0000	0.0000	0.0000	0.0006	0.0064	0.0749	0.1474	0.0806
	13	0.0000	0.0000	0.0000	0.0001	0.0022	0.0444	0.1360	0.1115
	14	0.0000	0.0000	0.0000	0.0000	0.0007	0.0231	0.1101	0.1354
	15	0.0000	0.0000	0.0000	0.0000	0.0002	0.0106	0.0783	0.1445
	16	0.0000	0.0000	0.0000	0.0000	0.0000	0.0042	0.0489	0.1354
	17	0.0000	0.0000	0.0000	0.0000	0.0000	0.0015	0.0269	0.1115
	18	0.0000	0.0000	0.0000	0.0000	0.0000	0.0005	0.0129	0.0806
	19	0.0000	0.0000	0.0000	0.0000	0.0000	0.0001	0.0054	0.0509
	20	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0020	0.0280
	21	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0006	0.0133
	22	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0002	0.0055
	23	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0019
	24	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0006
	25	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0001
	26	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

n	x					θ			
	^	0.60	0.70	0.75	0.80	0.85	0.90	0.95	0.99
20	11	0.1597	0.0654	0.0271	0.0074	0.0011	0.0001	0.0000	0.0000
	12	0.1797	0.1144	0.0609	0.0222	0.0046	0.0004	0.0000	0.0000
	13	0.1659	0.1643	0.1124	0.0545	0.0160	0.0020	0.0000	0.0000
	14	0.1244	0.1916	0.1686	0.1091	0.0454	0.0089	0.0003	0.0000
	15	0.0746	0.1789	0.2023	0.1746	0.1028	0.0319	0.0022	0.0000
	16	0.0350	0.1304	0.1897	0.2182	0.1821	0.0898	0.0133	0.0000
	17	0.0123	0.0716	0.1339	0.2054	0.2428	0.1901	0.0596	0.0010
	18	0.0031	0.0278	0.0669	0.1369	0.2293	0.2852	0.1887	0.0159
	19	0.0005	0.0068	0.0211	0.0576	0.1368	0.2702	0.3774	0.1652
	20	0.0000	0.0008	0.0032	0.0115	0.0388	0.1216	0.3585	0.8179
30	0	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	1	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	2	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	3	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	4	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	5	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	6	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	7	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	8	0.0002	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	9	0.0006	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	10	0.0020	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	11	0.0054	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	12	0.0129	0.0005	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	13	0.0269	0.0015	0.0002	0.0000	0.0000	0.0000	0.0000	0.0000
	14	0.0489	0.0042	0.0006	0.0000	0.0000	0.0000	0.0000	0.0000
	15	0.0783	0.0106	0.0019	0.0002	0.0000	0.0000	0.0000	0.0000
	16	0.1101	0.0231	0.0054	0.0007	0.0000	0.0000	0.0000	0.0000
	17	0.1360	0.0444	0.0134	0.0022	0.0001	0.0000	0.0000	0.0000
	18	0.1474	0.0749	0.0291	0.0064	0.0006	0.0000	0.0000	0.0000
	19	0.1396	0.1103	0.0551	0.0161	0.0022	0.0001	0.0000	0.0000
	20	0.1152	0.1416	0.0909	0.0355	0.0067	0.0004	0.0000	0.0000
	21	0.0823	0.1573	0.1298	0.0676	0.0181	0.0016	0.0000	0.0000
	22	0.0505	0.1501	0.1593	0.1106	0.0420	0.0058	0.0001	0.0000
	23	0.0263	0.1219	0.1662	0.1538	0.0828	0.0180	0.0005	0.0000
	24	0.0115	0.0829	0.1455	0.1795	0.1368	0.0474	0.0027	0.0000
	25	0.0041	0.0464	0.1047	0.1723	0.1861	0.1023	0.0124	0.0000
	26	0.0012	0.0208	0.0604	0.1325	0.2028	0.1771	0.0451	0.0002

n	x	θ									
	^	0.01	0.05	0.10	0.15	0.20	0.30	0.40	0.50		
50	0	0.6050	0.0769	0.0052	0.0003	0.0000	0.0000	0.0000	0.0000		
	1	0.3056	0.2025	0.0286	0.0026	0.0002	0.0000	0.0000	0.0000		
	2	0.0756	0.2611	0.0779	0.0113	0.0011	0.0000	0.0000	0.0000		
	3	0.0122	0.2199	0.1386	0.0319	0.0044	0.0000	0.0000	0.0000		
	4	0.0015	0.1360	0.1809	0.0661	0.0128	0.0001	0.0000	0.0000		
	5	0.0001	0.0658	0.1849	0.1072	0.0295	0.0006	0.0000	0.0000		
	6	0.0000	0.0260	0.1541	0.1419	0.0554	0.0018	0.0000	0.0000		
	7	0.0000	0.0086	0.1076	0.1575	0.0870	0.0048	0.0000	0.0000		
	8	0.0000	0.0024	0.0643	0.1493	0.1169	0.0110	0.0002	0.0000		
	9	0.0000	0.0006	0.0333	0.1230	0.1364	0.0220	0.0005	0.0000		
	10	0.0000	0.0001	0.0152	0.0890	0.1398	0.0386	0.0014	0.0000		
	11	0.0000	0.0000	0.0061	0.0571	0.1271	0.0602	0.0035	0.0000		
	12	0.0000	0.0000	0.0022	0.0328	0.1033	0.0838	0.0076	0.0001		
	13	0.0000	0.0000	0.0007	0.0169	0.0755	0.1050	0.0147	0.0003		
	14	0.0000	0.0000	0.0002	0.0079	0.0499	0.1189	0.0260	0.0008		
	15	0.0000	0.0000	0.0001	0.0033	0.0299	0.1223	0.0415	0.0020		
	16	0.0000	0.0000	0.0000	0.0013	0.0164	0.1147	0.0606	0.0044		
	17	0.0000	0.0000	0.0000	0.0005	0.0082	0.0983	0.0808	0.0087		
	18	0.0000	0.0000	0.0000	0.0001	0.0037	0.0772	0.0987	0.0160		
	19	0.0000	0.0000	0.0000	0.0000	0.0016	0.0558	0.1109	0.0270		
	20	0.0000	0.0000	0.0000	0.0000	0.0006	0.0370	0.1146	0.0419		
	21	0.0000	0.0000	0.0000	0.0000	0.0002	0.0227	0.1091	0.0598		
	22	0.0000	0.0000	0.0000	0.0000	0.0001	0.0128	0.0959	0.0788		
	23	0.0000	0.0000	0.0000	0.0000	0.0000	0.0067	0.0778	0.0960		
	24	0.0000	0.0000	0.0000	0.0000	0.0000	0.0032	0.0584	0.1080		
	25	0.0000	0.0000	0.0000	0.0000	0.0000	0.0014	0.0405	0.1123		
	26	0.0000	0.0000	0.0000	0.0000	0.0000	0.0006	0.0259	0.1080		
	27	0.0000	0.0000	0.0000	0.0000	0.0000	0.0002	0.0154	0.0960		
	38	0.0000	0.0000	0.0000	0.0000	0.0000	0.0001	0.0084	0.0788		
	29	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0043	0.0598		
	30	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0020	0.0419		
	31	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0009	0.0270		
	32	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0003	0.0160		
	33	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0001	0.0087		
	34	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0044		
	35	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0020		
	40	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
	45	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
	50	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		

	x	θ									
n 	X	0.60	0.70	0.75	0.80	0.85	0.90	0.95	0.99		
50	0	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
	1	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
	2	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
	3	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
	4	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
	5	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
	6	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
	7	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
	8	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
	9	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
	10	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
	11	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
	12	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
	13	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
	14	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
	15	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
	16	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
	17	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
	18	0.0003	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
	19	0.0009	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
	20	0.0020	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
	21	0.0043	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
	22	0.0084	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
	23	0.0154	0.0002	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
	24	0.0259	0.0006	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
	25	0.0405	0.0014	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000		
	26	0.0584	0.0032	0.0002	0.0000	0.0000	0.0000	0.0000	0.0000		
	27	0.0778	0.0067	0.0006	0.0000	0.0000	0.0000	0.0000	0.0000		
	38	0.0959	0.0128	0.0016	0.0001	0.0000	0.0000	0.0000	0.0000		
	29	0.1091	0.0227	0.0036	0.0002	0.0000	0.0000	0.0000	0.0000		
	30	0.1146	0.0370	0.0077	0.0006	0.0000	0.0000	0.0000	0.0000		
	31	0.1109	0.0558	0.0148	0.0016	0.0000	0.0000	0.0000	0.0000		
	32	0.0987	0.0772	0.0264	0.0037	0.0001	0.0000	0.0000	0.0000		
	33	0.0808	0.0983	0.0432	0.0082	0.0005	0.0000	0.0000	0.0000		
	34	0.0606	0.1147	0.0648	0.0164	0.0013	0.0000	0.0000	0.0000		
	35	0.0415	0.1223	0.0888	0.0299	0.0033	0.0001	0.0000	0.0000		
	40	0.0014	0.0386	0.0985	0.1398	0.0890	0.0152	0.0001	0.0000		
	45	0.0000	0.0006	0.0049	0.0295	0.1072	0.1849	0.0658	0.0001		
	50	0.0000	0.0000	0.0000	0.0000	0.0003	0.0052	0.0769	0.6050		

$$F_B(x \mid n; \theta) = \sum_{v=0}^{x} {n \choose v} \theta^v (1-\theta)^{n-v}$$
 $0 < \theta < 1$

	θ								
	^	0.01	0.05	0.10	0.15	0.20	0.30	0.40	0.50
1	0	0.9900	0.9500	0.9000	0.8500	0.8000	0.7000	0.6000	0.5000
	1	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
2	0	0.9801	0.9025	0.8100	0.7225	0.6400	0.4900	0.3600	0.2500
	1	0.9999	0.9975	0.9900	0.9775	0.9600	0.9100	0.8400	0.7500
	2	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
3	0	0.9703	0.8574	0.7290	0.6141	0.5120	0.3430	0.2160	0.1250
	1	0.9997	0.9928	0.9720	0.9393	0.8960	0.7840	0.6480	0.5000
	2	1.0000	0.9999	0.9990	0.9966	0.9920	0.9730	0.9360	0.8750
	3	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
4	0	0.9606	0.8145	0.6561	0.5220	0.4096	0.2401	0.1296	0.0625
	1	0.9994	0.9860	0.9477	0.8905	0.8192	0.6517	0.4752	0.3125
	2	1.0000	0.9995	0.9963	0.9880	0.9728	0.9163	0.8208	0.6875
	3	1.0000	1.0000	0.9999	0.9995	0.9984	0.9919	0.9744	0.9375
	4	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
5	0	0.9510	0.7738	0.5905	0.4437	0.3277	0.1681	0.0778	0.0313
	1	0.9990	0.9774	0.9185	0.8352	0.7373	0.5282	0.3370	0.1875
	2	1.0000	0.9988	0.9914	0.9734	0.9421	0.8369	0.6826	0.5000
	3	1.0000	1.0000	0.9995	0.9978	0.9933	0.9692	0.9130	0.8125
	4	1.0000	1.0000	1.0000	0.9999	0.9997	0.9976	0.9898	0.9688
	5	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
_6	0	0.9415	0.7351	0.5314	0.3771	0.2621	0.1176	0.0467	0.0156
	1	0.9985	0.9672	0.8857	0.7765	0.6554	0.4202	0.2333	0.1094
	2	1.0000	0.9978	0.9842	0.9527	0.9011	0.7443	0.5443	0.3438
	3	1.0000	0.9999	0.9987	0.9941	0.9830	0.9295	0.8208	0.6563
	4	1.0000	1.0000	0.9999	0.9996	0.9984	0.9891	0.9590	0.8906
	5	1.0000	1.0000	1.0000	1.0000	0.9999	0.9993	0.9959	0.9844
	6	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
7	0	0.9321	0.6983	0.4783	0.3206	0.2097	0.0824	0.0280	0.0078
	1	0.9980	0.9556	0.8503	0.7166	0.5767	0.3294	0.1586	0.0625
	2	1.0000	0.9962	0.9743	0.9262	0.8520	0.6471	0.4199	0.2266
	3	1.0000	0.9998	0.9973	0.9879	0.9667	0.8740	0.7102	0.5000
	4	1.0000	1.0000	0.9998	0.9988	0.9953	0.9712	0.9037	0.7734
	5	1.0000	1.0000	1.0000	0.9999	0.9996	0.9962	0.9812	0.9375
-	6	1.0000	1.0000	1.0000	1.0000	1.0000	0.9998	0.9984	0.9922
	7	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000

n	x					θ			
		0.60	0.70	0.75	0.80	0.85	0.90	0.95	0.99
1	0	0.4000	0.3000	0.2500	0.2000	0.1500	0.1000	0.0500	0.0100
	1	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
2	0	0.1600	0.0900	0.0625	0.0400	0.0225	0.0100	0.0025	0.0001
	1	0.6400	0.5100	0.4375	0.3600	0.2775	0.1900	0.0975	0.0199
	2	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
_ 3	0	0.0640	0.0270	0.0156	0.0080	0.0034	0.0010	0.0001	0.0000
	1	0.3520	0.2160	0.1563	0.1040	0.0608	0.0280	0.0073	0.0003
	2	0.7840	0.6570	0.5781	0.4880	0.3859	0.2710	0.1426	0.0297
	3	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
_ 4	0	0.0256	0.0081	0.0039	0.0016	0.0005	0.0001	0.0000	0.0000
	1	0.1792	0.0837	0.0508	0.0272	0.0120	0.0037	0.0005	0.0000
	2	0.5248	0.3483	0.2617	0.1808	0.1095	0.0523	0.0140	0.0006
	3	0.8704	0.7599	0.6836	0.5904	0.4780	0.3439	0.1855	0.0394
	4	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
_ 5	0	0.0102	0.0024	0.0010	0.0003	0.0001	0.0000	0.0000	0.0000
	1	0.0870	0.0308	0.0156	0.0067	0.0022	0.0005	0.0000	0.0000
	2	0.3174	0.1631	0.1035	0.0579	0.0266	0.0086	0.0012	0.0000
	3	0.6630	0.4718	0.3672	0.2627	0.1648	0.0815	0.0226	0.0010
	4	0.9222	0.8319	0.7627	0.6723	0.5563	0.4095	0.2262	0.0490
	5	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
_6	0	0.0041	0.0007	0.0002	0.0001	0.0000	0.0000	0.0000	0.0000
	1	0.0410	0.0109	0.0046	0.0016	0.0004	0.0001	0.0000	0.0000
	2	0.1792	0.0705	0.0376	0.0170	0.0059	0.0013	0.0001	0.0000
	3	0.4557	0.2557	0.1694	0.0989	0.0473	0.0159	0.0022	0.0000
	4	0.7667	0.5798	0.4661	0.3446	0.2235	0.1143	0.0328	0.0015
	5	0.9533	0.8824	0.8220	0.7379	0.6229	0.4686	0.2649	0.0585
	6	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
7	0	0.0016	0.0002	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000
	1	0.0188	0.0038	0.0013	0.0004	0.0001	0.0000	0.0000	0.0000
	2	0.0963	0.0288	0.0129	0.0047	0.0012	0.0002	0.0000	0.0000
	3	0.2898	0.1260	0.0706	0.0333	0.0121	0.0027	0.0002	0.0000
	4	0.5801	0.3529	0.2436	0.1480	0.0738	0.0257	0.0038	0.0000
	5	0.8414	0.6706	0.5551	0.4233	0.2834	0.1497	0.0444	0.0020
	6	0.9720	0.9176	0.8665	0.7903	0.6794	0.5217	0.3017	0.0679
	7	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000

		θ								
n	х	0.01	0.05	0.10	0.15	0.20	0.30	0.40	0.50	
_ 8	0	0.9227	0.6634	0.4305	0.2725	0.1678	0.0576	0.0168	0.0039	
	1	0.9973	0.9428	0.8131	0.6572	0.5033	0.2553	0.1064	0.0352	
	2	0.9999	0.9942	0.9619	0.8948	0.7969	0.5518	0.3154	0.1445	
	3	1.0000	0.9996	0.995	0.9786	0.9437	0.8059	0.5941	0.3633	
	4	1.0000	1.0000	0.9996	0.9971	0.9896	0.9420	0.8263	0.6367	
	5	1.0000	1.0000	1.0000	0.9998	0.9988	0.9887	0.9502	0.8555	
	6	1.0000	1.0000	1.0000	1.0000	0.9999	0.9987	0.9915	0.9648	
	7	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9993	0.9961	
	8	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	
9	0	0.9135	0.6302	0.3874	0.2316	0.1342	0.0404	0.0101	0.0020	
	1	0.9966	0.9288	0.7748	0.5995	0.4362	0.1960	0.0705	0.0195	
	2	0.9999	0.9916	0.9470	0.8591	0.7382	0.4628	0.2318	0.0898	
	3	1.0000	0.9994	0.9917	0.9661	0.9144	0.7297	0.4826	0.2539	
	4	1.0000	1.0000	0.9991	0.9944	0.9804	0.9012	0.7334	0.5000	
	5	1.0000	1.0000	0.9999	0.9994	0.9969	0.9747	0.9006	0.7461	
	6	1.0000	1.0000	1.0000	1.0000	0.9997	0.9957	0.9750	0.9102	
	7	1.0000	1.0000	1.0000	1.0000	1.0000	0.9996	0.9962	0.9805	
	8	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9997	0.9980	
	9	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	
_10	0	0.9044	0.5987	0.3487	0.1969	0.1074	0.0282	0.0060	0.0010	
	1	0.9957	0.9139	0.7361	0.5443	0.3758	0.1493	0.0464	0.0107	
	2	0.9999	0.9885	0.9298	0.8202	0.6778	0.3828	0.1673	0.0547	
	3	1.0000	0.9990	0.9872	0.9500	0.8791	0.6496	0.3823	0.1719	
	4	1.0000	0.9999	0.9984	0.9901	0.9672	0.8497	0.6331	0.3770	
	5	1.0000	1.0000	0.9999	0.9986	0.9936	0.9527	0.8338	0.6230	
	6	1.0000	1.0000	1.0000	0.9999	0.9991	0.9894	0.9452	0.8281	
	7	1.0000	1.0000	1.0000	1.0000	0.9999	0.9984	0.9877	0.9453	
	8	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9983	0.9893	
	9	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9990	
	10	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	
11	0	0.8953	0.5688	0.3138	0.1673	0.0859	0.0198	0.0036	0.0005	
	1	0.9948	0.8981	0.6974	0.4922	0.3221	0.1130	0.0302	0.0059	
	2	0.9998	0.9848	0.9104	0.7788	0.6174	0.3127	0.1189	0.0327	
	3	1.0000	0.9984	0.9815	0.9306	0.8389	0.5696	0.2963	0.1133	
	4	1.0000	0.9999	0.9972	0.9841	0.9496	0.7897	0.5328	0.2744	
	5	1.0000	1.0000	0.9997	0.9973	0.9883	0.9218	0.7535	0.5000	
	6	1.0000	1.0000	1.0000	0.9997	0.9980	0.9784	0.9006	0.7256	
	7	1.0000	1.0000	1.0000	1.0000	0.9998	0.9957	0.9707	0.8867	
	8	1.0000	1.0000	1.0000	1.0000	1.0000	0.9994	0.9941	0.9673	
	9	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9993	0.9941	
	10	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9995	
	11	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	

n	х	θ								
	^	0.60	0.70	0.75	0.80	0.85	0.90	0.95	0.99	
8_	0	0.0007	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
	1	0.0085	0.0013	0.0004	0.0001	0.0000	0.0000	0.0000	0.0000	
	2	0.0498	0.0113	0.0042	0.0012	0.0002	0.0000	0.0000	0.0000	
	3	0.1737	0.0580	0.0273	0.0104	0.0029	0.0004	0.0000	0.0000	
	4	0.4059	0.1941	0.1138	0.0563	0.0214	0.0050	0.0004	0.0000	
	5	0.6846	0.4482	0.3215	0.2031	0.1052	0.0381	0.0058	0.0001	
	6	0.8936	0.7447	0.6329	0.4967	0.3428	0.1869	0.0572	0.0027	
	7	0.9832	0.9424	0.8999	0.8322	0.7275	0.5695	0.3366	0.0773	
	8	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	
9	0	0.0003	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
	1	0.0038	0.0004	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000	
	2	0.0250	0.0043	0.0013	0.0003	0.0000	0.0000	0.0000	0.0000	
	3	0.0994	0.0253	0.0100	0.0031	0.0006	0.0001	0.0000	0.0000	
	4	0.2666	0.0988	0.0489	0.0196	0.0056	0.0009	0.0000	0.0000	
	5	0.5174	0.2703	0.1657	0.0856	0.0339	0.0083	0.0006	0.0000	
	6	0.7682	0.5372	0.3993	0.2618	0.1409	0.0530	0.0084	0.0001	
	7	0.9295	0.8040	0.6997	0.5638	0.4005	0.2252	0.0712	0.0034	
	8	0.9899	0.9596	0.9249	0.8658	0.7684	0.6126	0.3698	0.0865	
	9	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	
_10	0	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
	1	0.0017	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
	2	0.0123	0.0016	0.0004	0.0001	0.0000	0.0000	0.0000	0.0000	
	3	0.0548	0.0106	0.0035	0.0009	0.0001	0.0000	0.0000	0.0000	
	4	0.1662	0.0473	0.0197	0.0064	0.0014	0.0001	0.0000	0.0000	
	5	0.3669	0.1503	0.0781	0.0328	0.0099	0.0016	0.0001	0.0000	
	6	0.6177	0.3504	0.2241	0.1209	0.0500	0.0128	0.0010	0.0000	
	7	0.8327	0.6172	0.4744	0.3222	0.1798	0.0702	0.0115	0.0001	
	8	0.9536	0.8507	0.7560	0.6242	0.4557	0.2639	0.0861	0.0043	
	9	0.9940	0.9718	0.9437	0.8926	0.8031	0.6513	0.4013	0.0956	
	10	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	
11	0	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
	1	0.0007	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
	2	0.0059	0.0006	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000	
	3	0.0293	0.0043	0.0012	0.0002	0.0000	0.0000	0.0000	0.0000	
	4	0.0994	0.0216	0.0076	0.0020	0.0003	0.0000	0.0000	0.0000	
	5	0.2465	0.0782	0.0343	0.0117	0.0027	0.0003	0.0000	0.0000	
	6	0.4672	0.2103	0.1146	0.0504	0.0159	0.0028	0.0001	0.0000	
	7	0.7037	0.4304	0.2867	0.1611	0.0694	0.0185	0.0016	0.0000	
	8	0.8811	0.6873	0.5448	0.3826	0.2212	0.0896	0.0152	0.0002	
	9	0.9698	0.8870	0.8029	0.6779	0.5078	0.3026	0.1019	0.0052	
	10	0.9964	0.9802	0.9578	0.9141	0.8327	0.6862	0.4312	0.1047	
	11	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	

n	x					θ			
	^	0.01	0.05	0.10	0.15	0.20	0.30	0.40	0.50
_12	0	0.8864	0.5404	0.2824	0.1422	0.0687	0.0138	0.0022	0.0002
	1	0.9938	0.8816	0.6590	0.4435	0.2749	0.0850	0.0196	0.0032
	2	0.9998	0.9804	0.8891	0.7358	0.5583	0.2528	0.0834	0.0193
	3	1.0000	0.9978	0.9744	0.9078	0.7946	0.4925	0.2253	0.0730
	4	1.0000	0.9998	0.9957	0.9761	0.9274	0.7237	0.4382	0.1938
	5	1.0000	1.0000	0.9995	0.9954	0.9806	0.8822	0.6652	0.3872
	6	1.0000	1.0000	0.9999	0.9993	0.9961	0.9614	0.8418	0.6128
	7	1.0000	1.0000	1.0000	0.9999	0.9994	0.9905	0.9427	0.8062
	8	1.0000	1.0000	1.0000	1.0000	0.9999	0.9983	0.9847	0.9270
	9	1.0000	1.0000	1.0000	1.0000	1.0000	0.9998	0.9972	0.9807
	10	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9997	0.9968
	11	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9998
	12	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
_13	0	0.8775	0.5133	0.2542	0.1209	0.0550	0.0097	0.0013	0.0001
	1	0.9928	0.8646	0.6213	0.3983	0.2336	0.0637	0.0126	0.0017
	2	0.9997	0.9755	0.8661	0.6920	0.5017	0.2025	0.0579	0.0112
	3	1.0000	0.9969	0.9658	0.8820	0.7473	0.4206	0.1686	0.0461
	4	1.0000	0.9997	0.9935	0.9658	0.9009	0.6543	0.3530	0.1334
	5	1.0000	1.0000	0.9991	0.9925	0.9700	0.8346	0.5744	0.2905
	6	1.0000	1.0000	0.9999	0.9987	0.9930	0.9376	0.7712	0.5000
	7	1.0000	1.0000	1.0000	0.9998	0.9988	0.9818	0.9023	0.7095
	8	1.0000	1.0000	1.0000	1.0000	0.9998	0.9960	0.9679	0.8666
	9	1.0000	1.0000	1.0000	1.0000	1.0000	0.9993	0.9922	0.9539
	10	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9987	0.9888
	11	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9983
	12	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999
	13	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
14	0	0.8687	0.4877	0.2288	0.1028	0.0440	0.0068	0.0008	0.0001
	1	0.9916	0.8470	0.5846	0.3567	0.1979	0.0475	0.0081	0.0009
	2	0.9997	0.9699	0.8416	0.6479	0.4481	0.1608	0.0398	0.0065
	3	1.0000	0.9958	0.9559	0.8535	0.6982	0.3552	0.1243	0.0287
	4	1.0000	0.9996	0.9908	0.9533	0.8702	0.5842	0.2793	0.0898
	5	1.0000	1.0000	0.9985	0.9885	0.9561	0.7805	0.4859	0.2120
	6	1.0000	1.0000	0.9998	0.9978	0.9884	0.9067	0.6925	0.3953
	7	1.0000	1.0000	1.0000	0.9997	0.9976	0.9685	0.8499	0.6047
	8	1.0000	1.0000	1.0000	1.0000	0.9996	0.9917	0.9417	0.7880
	9	1.0000	1.0000	1.0000	1.0000	1.0000	0.9983	0.9825	0.9102
	10	1.0000	1.0000	1.0000	1.0000	1.0000	0.9998	0.9961	0.9713
	11	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9994	0.9935
	12	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9991
	13	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999
	14	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000

n	x					θ			
	^	0.60	0.70	0.75	0.80	0.85	0.90	0.95	0.99
_12	0	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	1	0.0003	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	2	0.0028	0.0002	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	3	0.0153	0.0017	0.0004	0.0001	0.0000	0.0000	0.0000	0.0000
	4	0.0573	0.0095	0.0028	0.0006	0.0001	0.0000	0.0000	0.0000
	5	0.1582	0.0386	0.0143	0.0039	0.0007	0.0001	0.0000	0.0000
	6	0.3348	0.1178	0.0544	0.0194	0.0046	0.0005	0.0000	0.0000
	7	0.5618	0.2763	0.1576	0.0726	0.0239	0.0043	0.0002	0.0000
	8	0.7747	0.5075	0.3512	0.2054	0.0922	0.0256	0.0022	0.0000
	9	0.9166	0.7472	0.6093	0.4417	0.2642	0.1109	0.0196	0.0002
	10	0.9804	0.9150	0.8416	0.7251	0.5565	0.3410	0.1184	0.0062
	11	0.9978	0.9862	0.9683	0.9313	0.8578	0.7176	0.4596	0.1136
	12	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
13	0	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	1	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	2	0.0013	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	3	0.0078	0.0007	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000
	4	0.0321	0.0040	0.0010	0.0002	0.0000	0.0000	0.0000	0.0000
	5	0.0977	0.0182	0.0056	0.0012	0.0002	0.0000	0.0000	0.0000
	6	0.2288	0.0624	0.0243	0.0070	0.0013	0.0001	0.0000	0.0000
	7	0.4256	0.1654	0.0802	0.0300	0.0075	0.0009	0.0000	0.0000
	8	0.6470	0.3457	0.2060	0.0991	0.0342	0.0065	0.0003	0.0000
	9	0.8314	0.5794	0.4157	0.2527	0.1180	0.0342	0.0031	0.0000
	10	0.9421	0.7975	0.6674	0.4983	0.3080	0.1339	0.0245	0.0003
	11	0.9874	0.9363	0.8733	0.7664	0.6017	0.3787	0.1354	0.0072
	12	0.9987	0.9903	0.9762	0.9450	0.8791	0.7458	0.4867	0.1225
	13	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
_14	0	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	1	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	2	0.0006	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	3	0.0039	0.0002	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	4	0.0175	0.0017	0.0003	0.0000	0.0000	0.0000	0.0000	0.0000
	5	0.0583	0.0083	0.0022	0.0004	0.0000	0.0000	0.0000	0.0000
	6	0.1501	0.0315	0.0103	0.0024	0.0003	0.0000	0.0000	0.0000
	7	0.3075	0.0933	0.0383	0.0116	0.0022	0.0002	0.0000	0.0000
	8	0.5141	0.2195	0.1117	0.0439	0.0115	0.0015	0.0000	0.0000
	9	0.7207	0.4158	0.2585	0.1298	0.0467	0.0092	0.0004	0.0000
	10	0.8757	0.6448	0.4787	0.3018	0.1465	0.0441	0.0042	0.0000
	11	0.9602	0.8392	0.7189	0.5519	0.3521	0.1584	0.0301	0.0003
	12	0.9919	0.9525	0.8990	0.8021	0.6433	0.4154	0.1530	0.0084
	13	0.9992	0.9932	0.9822	0.9560	0.8972	0.7712	0.5123	0.1313
	14	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000

240 A Statistical Tables

	x					θ			
	^	0.01	0.05	0.10	0.15	0.20	0.30	0.40	0.50
15	0	0.8601	0.4633	0.2059	0.0874	0.0352	0.0047	0.0005	0.0000
	1	0.9904	0.8290	0.5490	0.3186	0.1671	0.0353	0.0052	0.0005
	2	0.9996	0.9638	0.8159	0.6042	0.3980	0.1268	0.0271	0.0037
	3	1.0000	0.9945	0.9444	0.8227	0.6482	0.2969	0.0905	0.0176
	4	1.0000	0.9994	0.9873	0.9383	0.8358	0.5155	0.2173	0.0592
	5	1.0000	0.9999	0.9978	0.9832	0.9389	0.7216	0.4032	0.1509
	6	1.0000	1.0000	0.9997	0.9964	0.9819	0.8689	0.6098	0.3036
	7	1.0000	1.0000	1.0000	0.9994	0.9958	0.9500	0.7869	0.5000
	8	1.0000	1.0000	1.0000	0.9999	0.9992	0.9848	0.9050	0.6964
	9	1.0000	1.0000	1.0000	1.0000	0.9999	0.9963	0.9662	0.8491
	10	1.0000	1.0000	1.0000	1.0000	1.0000	0.9993	0.9907	0.9408
	11	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9981	0.9824
	12	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9997	0.9963
	13	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9995
	14	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	15	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
20	0	0.8179	0.3585	0.1216	0.0388	0.0115	0.0008	0.0000	0.0000
	1	0.9831	0.7358	0.3917	0.1756	0.0692	0.0076	0.0005	0.0000
	2	0.9990	0.9245	0.6769	0.4049	0.2061	0.0355	0.0036	0.0002
	3	1.0000	0.9841	0.8670	0.6477	0.4114	0.1071	0.0160	0.0013
	4	1.0000	0.9974	0.9568	0.8298	0.6296	0.2375	0.0510	0.0059
	5	1.0000	0.9997	0.9887	0.9327	0.8042	0.4164	0.1256	0.0207
	6	1.0000	1.0000	0.9976	0.9781	0.9133	0.6080	0.2500	0.0577
	7	1.0000	1.0000	0.9996	0.9941	0.9679	0.7723	0.4159	0.1316
	8	1.0000	1.0000	0.9999	0.9987	0.9900	0.8867	0.5956	0.2517
	9	1.0000	1.0000	1.0000	0.9998	0.9974	0.9520	0.7553	0.4119
	10	1.0000	1.0000	1.0000	1.0000	0.9994	0.9829	0.8725	0.5881
	11	1.0000	1.0000	1.0000	1.0000	0.9999	0.9949	0.9435	0.7483
	12	1.0000	1.0000	1.0000	1.0000	1.0000	0.9987	0.9790	0.8684
	13	1.0000	1.0000	1.0000	1.0000	1.0000	0.9997	0.9935	0.9423
	14	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9984	0.9793
	15	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9997	0.9941
	16	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9987
	17	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9998
	18	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	19	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	20	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000

n	x					θ			
	^	0.60	0.70	0.75	0.80	0.85	0.90	0.95	0.99
15	0	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	1	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	2	0.0003	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	3	0.0019	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	4	0.0093	0.0007	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000
	5	0.0338	0.0037	0.0008	0.0001	0.0000	0.0000	0.0000	0.0000
	6	0.0950	0.0152	0.0042	0.0008	0.0001	0.0000	0.0000	0.0000
	7	0.2131	0.0500	0.0173	0.0042	0.0006	0.0000	0.0000	0.0000
	8	0.3902	0.1311	0.0566	0.0181	0.0036	0.0003	0.0000	0.0000
	9	0.5968	0.2784	0.1484	0.0611	0.0168	0.0022	0.0001	0.0000
	10	0.7827	0.4845	0.3135	0.1642	0.0617	0.0127	0.0006	0.0000
	11	0.9095	0.7031	0.5387	0.3518	0.1773	0.0556	0.0055	0.0000
	12	0.9729	0.8732	0.7639	0.6020	0.3958	0.1841	0.0362	0.0004
	13	0.9948	0.9647	0.9198	0.8329	0.6814	0.4510	0.1710	0.0096
	14	0.9995	0.9953	0.9866	0.9648	0.9126	0.7941	0.5367	0.1399
	15	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
20	0	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	1	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	2	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	3	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	4	0.0003	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	5	0.0016	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	6	0.0065	0.0003	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	7	0.0210	0.0013	0.0002	0.0000	0.0000	0.0000	0.0000	0.0000
	8	0.0565	0.0051	0.0009	0.0001	0.0000	0.0000	0.0000	0.0000
	9	0.1275	0.0171	0.0039	0.0006	0.0000	0.0000	0.0000	0.0000
	10	0.2447	0.0480	0.0139	0.0026	0.0002	0.0000	0.0000	0.0000
	11	0.4044	0.1133	0.0409	0.0100	0.0013	0.0001	0.0000	0.0000
	12	0.5841	0.2277	0.1018	0.0321	0.0059	0.0004	0.0000	0.0000
	13	0.7500	0.3920	0.2142	0.0867	0.0219	0.0024	0.0000	0.0000
	14	0.8744	0.5836	0.3828	0.1958	0.0673	0.0113	0.0003	0.0000
	15	0.9490	0.7625	0.5852	0.3704	0.1702	0.0432	0.0026	0.0000
	16	0.9840	0.8929	0.7748	0.5886	0.3523	0.1330	0.0159	0.0000
	17	0.9964	0.9645	0.9087	0.7939	0.5951	0.3231	0.0755	0.0010
	18	0.9995	0.9924	0.9757	0.9308	0.8244	0.6083	0.2642	0.0169
	19	1.0000	0.9992	0.9968	0.9885	0.9612	0.8784	0.6415	0.1821
	20	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000

n	x					θ			
	^	0.01	0.05	0.10	0.15	0.20	0.30	0.40	0.50
_30	0	0.7397	0.2146	0.0424	0.0076	0.0012	0.0000	0.0000	0.0000
	1	0.9639	0.5535	0.1837	0.0480	0.0105	0.0003	0.0000	0.0000
	2	0.9967	0.8122	0.4114	0.1514	0.0442	0.0021	0.0000	0.0000
	3	0.9998	0.9392	0.6474	0.3217	0.1227	0.0093	0.0003	0.0000
	4	1.0000	0.9844	0.8245	0.5245	0.2552	0.0302	0.0015	0.0000
	5	1.0000	0.9967	0.9268	0.7106	0.4275	0.0766	0.0057	0.0002
	6	1.0000	0.9994	0.9742	0.8474	0.6070	0.1595	0.0172	0.0007
	7	1.0000	0.9999	0.9922	0.9302	0.7608	0.2814	0.0435	0.0026
	8	1.0000	1.0000	0.9980	0.9722	0.8713	0.4315	0.0940	0.0081
	9	1.0000	1.0000	0.9995	0.9903	0.9389	0.5888	0.1763	0.0214
	10	1.0000	1.0000	0.9999	0.9971	0.9744	0.7304	0.2915	0.0494
	11	1.0000	1.0000	1.0000	0.9992	0.9905	0.8407	0.4311	0.1002
	12	1.0000	1.0000	1.0000	0.9998	0.9969	0.9155	0.5785	0.1808
	13	1.0000	1.0000	1.0000	1.0000	0.9991	0.9599	0.7145	0.2923
	14	1.0000	1.0000	1.0000	1.0000	0.9998	0.9831	0.8246	0.4278
	15	1.0000	1.0000	1.0000	1.0000	0.9999	0.9936	0.9029	0.5722
	16	1.0000	1.0000	1.0000	1.0000	1.0000	0.9979	0.9519	0.7077
	17	1.0000	1.0000	1.0000	1.0000	1.0000	0.9994	0.9788	0.8192
	18	1.0000	1.0000	1.0000	1.0000	1.0000	0.9998	0.9917	0.8998
	19	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9971	0.9506
	20	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9991	0.9786
	21	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9998	0.9919
	22	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9974
	23	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9993
	24	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9998
	25	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	26	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
50	0	0.6050	0.0769	0.0052	0.0003	0.0000	0.0000	0.0000	0.0000
	1	0.9106	0.2794	0.0338	0.0029	0.0002	0.0000	0.0000	0.0000
	2	0.9862	0.5405	0.1117	0.0142	0.0013	0.0000	0.0000	0.0000
	3	0.9984	0.7604	0.2503	0.0460	0.0057	0.0000	0.0000	0.0000
	4	0.9999	0.8964	0.4312	0.1121	0.0185	0.0002	0.0000	0.0000
	5	1.0000	0.9622	0.6161	0.2194	0.0480	0.0007	0.0000	0.0000
	6	1.0000	0.9882	0.7702	0.3613	0.1034	0.0025	0.0000	0.0000
	7	1.0000	0.9968	0.8779	0.5188	0.1904	0.0073	0.0001	0.0000
	8	1.0000	0.9992	0.9421	0.6681	0.3073	0.0183	0.0002	0.0000
	9	1.0000	0.9998	0.9755	0.7911	0.4437	0.0402	0.0008	0.0000
	10	1.0000	1.0000	0.9906	0.8801	0.5836	0.0789	0.0022	0.0000

n	x					θ			
		0.60	0.70	0.75	0.80	0.85	0.90	0.95	0.99
_30	0	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	1	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	2	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	3	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	4	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	5	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	6	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	7	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	8	0.0002	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	9	0.0009	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	10	0.0029	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	11	0.0083	0.0002	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	12	0.0212	0.0006	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000
	13	0.0481	0.0021	0.0002	0.0000	0.0000	0.0000	0.0000	0.0000
	14	0.0971	0.0064	0.0008	0.0001	0.0000	0.0000	0.0000	0.0000
	15	0.1754	0.0169	0.0027	0.0002	0.0000	0.0000	0.0000	0.0000
	16	0.2855	0.0401	0.0082	0.0009	0.0000	0.0000	0.0000	0.0000
	17	0.4215	0.0845	0.0216	0.0031	0.0002	0.0000	0.0000	0.0000
	18	0.5689	0.1593	0.0507	0.0095	0.0008	0.0000	0.0000	0.0000
	19	0.7085	0.2696	0.1057	0.0256	0.0029	0.0001	0.0000	0.0000
	20	0.8237	0.4112	0.1966	0.0611	0.0097	0.0005	0.0000	0.0000
	21	0.9060	0.5685	0.3264	0.1287	0.0278	0.0020	0.0000	0.0000
	22	0.9565	0.7186	0.4857	0.2392	0.0698	0.0078	0.0001	0.0000
	23	0.9828	0.8405	0.6519	0.3930	0.1526	0.0258	0.0006	0.0000
	24	0.9943	0.9234	0.7974	0.5725	0.2894	0.0732	0.0033	0.0000
	25	0.9985	0.9698	0.9021	0.7448	0.4755	0.1755	0.0156	0.0000
	26	0.9997	0.9907	0.9626	0.8773	0.6783	0.3526	0.0608	0.0002
50	0	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	1	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	2	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	3	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	4	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	5	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	6	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	7	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	8	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	9	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	10	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

n	x					θ			
	^	0.01	0.05	0.10	0.15	0.20	0.30	0.40	0.50
50	11	1.0000	1.0000	0.9968	0.9372	0.7107	0.1390	0.0057	0.0000
	12	1.0000	1.0000	0.9990	0.9699	0.8139	0.2229	0.0133	0.0002
	13	1.0000	1.0000	0.9997	0.9868	0.8894	0.3279	0.0280	0.0005
	14	1.0000	1.0000	0.9999	0.9947	0.9393	0.4468	0.0540	0.0013
	15	1.0000	1.0000	1.0000	0.9981	0.9692	0.5692	0.0955	0.0033
	16	1.0000	1.0000	1.0000	0.9993	0.9856	0.6839	0.1561	0.0077
	17	1.0000	1.0000	1.0000	0.9998	0.9937	0.7822	0.2369	0.0164
	18	1.0000	1.0000	1.0000	0.9999	0.9975	0.8594	0.3356	0.0325
	19	1.0000	1.0000	1.0000	1.0000	0.9991	0.9152	0.4465	0.0595
	20	1.0000	1.0000	1.0000	1.0000	0.9997	0.9522	0.5610	0.1013
	21	1.0000	1.0000	1.0000	1.0000	0.9999	0.9749	0.6701	0.1611
	22	1.0000	1.0000	1.0000	1.0000	1.0000	0.9877	0.7660	0.2399
	23	1.0000	1.0000	1.0000	1.0000	1.0000	0.9944	0.8438	0.3359
	24	1.0000	1.0000	1.0000	1.0000	1.0000	0.9976	0.9022	0.4439
	25	1.0000	1.0000	1.0000	1.0000	1.0000	0.9991	0.9427	0.5561
	26	1.0000	1.0000	1.0000	1.0000	1.0000	0.9997	0.9686	0.6641
	27	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9840	0.7601
	38	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9924	0.8389
	29	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9966	0.8987
	30	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9986	0.9405
	31	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9995	0.9675
	32	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9998	0.9836
	33	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9923
	34	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9967
	35	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9987
	40	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	45	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	50	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000

n	x					θ			
	^	0.60	0.70	0.75	0.80	0.85	0.90	0.95	0.99
50	11	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	12	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	13	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	14	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	15	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	16	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	17	0.0002	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	18	0.0005	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	19	0.0014	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	20	0.0034	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	21	0.0076	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	22	0.0160	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	23	0.0314	0.0003	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	24	0.0573	0.0009	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	25	0.0978	0.0024	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000
	26	0.1562	0.0056	0.0004	0.0000	0.0000	0.0000	0.0000	0.0000
	27	0.2340	0.0123	0.0010	0.0000	0.0000	0.0000	0.0000	0.0000
	38	0.3299	0.0251	0.0026	0.0001	0.0000	0.0000	0.0000	0.0000
	29	0.4390	0.0478	0.0063	0.0003	0.0000	0.0000	0.0000	0.0000
	30	0.5535	0.0848	0.0139	0.0009	0.0000	0.0000	0.0000	0.0000
	31	0.6644	0.1406	0.0287	0.0025	0.0001	0.0000	0.0000	0.0000
	32	0.7631	0.2178	0.0551	0.0063	0.0002	0.0000	0.0000	0.0000
	33	0.8439	0.3161	0.0983	0.0144	0.0007	0.0000	0.0000	0.0000
	34	0.9045	0.4308	0.1631	0.0308	0.0019	0.0000	0.0000	0.0000
	35	0.9460	0.5532	0.2519	0.0607	0.0053	0.0001	0.0000	0.0000
	40	0.9992	0.9598	0.8363	0.5563	0.2089	0.0245	0.0002	0.0000
	45	1.0000	0.9998	0.9979	0.9815	0.8879	0.5688	0.1036	0.0001
	50	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000

$$f_H(x \mid N; n; M) = \begin{cases} \frac{\binom{M}{x} \binom{N-M}{n-x}}{\binom{N}{n}} & \text{for } x = 0, 1, ..., n \\ 0 & \text{others} \end{cases}$$

For M > n the following applies: $f_H(x \mid N; n; M) = f_H(x \mid N; M; n)$

_	N	n	M	х	f_H	ı	N	n	М	х	f_H	ı	N	n	М	х	f_H
_	2	1	1	0	0.5000		5	3	2	0	0.1000		6	4	1	0	0.3333
_	2	1	1	1	0.5000		5	3	2	1	0.6000		6	4	1	1	0.6667
_	3	1	1	0	0.6667		5	3	2	2	0.3000		6	4	2	0	0.0667
	3	1	1	1	0.3333		5	3	3	1	0.3000		6	4	2	1	0.5333
_	3	2	1	0	0.3333		5	3	3	2	0.6000		6	4	2	2	0.4000
_	3	2	1	1	0.6667		5	3	3	3	0.1000		6	4	3	1	0.2000
_	3	2	2	1	0.6667		5	4	1	0	0.2000		6	4	3	2	0.6000
_	3	2	2	2	0.3333		5	4	1	1	0.8000		6	4	3	3	0.2000
_	4	1	1	0	0.7500		5	4	2	1	0.4000		6	4	4	2	0.4000
_	4	1	1	1	0.2500		5	4	2	2	0.6000		6	4	4	3	0.5333
	4	2	1	0	0.5000		5	4	3	2	0.6000		6	4	4	4	0.0667
_	4	2	1	1	0.5000		5	4	3	3	0.4000		6	5	1	0	0.1667
	4	2	2	0	0.1667		5	4	4	3	0.8000		6	5	1	1	0.8333
	4	2	2	1	0.6667		5	4	4	4	0.2000		6	5	2	1	0.3333
_	4	2	2	2	0.1667		6	1	1	0	0.8333		6	5	2	2	0.6667
	4	3	1	0	0.2500		6	1	1	1	0.1667		6	5	3	2	0.5000
	4	3	1	1	0.7500		6	2	1	0	0.6667		6	5	3	3	0.5000
	4	3	2	1	0.5000		6	2	1	1	0.3333		6	5	4	3	0.6667
	4	3	2	2	0.5000		6	2	2	0	0.4000		6	5	4	4	0.3333
	4	3	3	2	0.7500		6	2	2	1	0.5333		6	5	5	4	0.8333
	4	3	3	3	0.2500		6	2	2	2	0.0667		6	5	5	5	0.1667
	5	1	1	0	0.8000		6	3	1	0	0.5000		7	1	1	0	0.8571
	5	1	1	1	0.2000		6	3	1	1	0.5000		7	1	1	1	0.1429
	5	2	1	0	0.6000		6	3	2	0	0.2000		7	2	1	0	0.7143
_	5	2	1	1	0.4000		6	3	2	1	0.6000		7	2	1	1	0.2857
	5	2	2	0	0.3000		6	3	2	2	0.2000		7	2	2	0	0.4762
	5	2	2	1	0.6000		6	3	3	0	0.0500		7	2	2	1	0.4762
	5	2	2	2	0.1000		6	3	3	1	0.4500		7	2	2	2	0.0476
	5	3	1	0	0.4000		6	3	3	2	0.4500		7	3	1	0	0.5714
	5	3	1	1	0.6000		6	3	3	3	0.0500		7	3	1	1	0.4286

N	n	М	х	f_H	N	n	М	х	f_H	N	n	М	х	f_H
7	3	2	0	0.2857	7	6	6	6	0.1429	8	5	5	3	0.5357
7	3	2	1	0.5714	8	1	1	0	0.8750	8	5	5	4	0.2679
7	3	2	2	0.1429	8	1	1	1	0.1250	8	5	5	5	0.0179
7	3	3	0	0.1143	8	2	1	0	0.7500	8	6	1	0	0.2500
7	3	3	1	0.5143	8	2	1	1	0.2500	8	6	1	1	0.7500
7	3	3	2	0.3429	8	2	2	0	0.5357	8	6	2	0	0.0357
7	3	3	3	0.0286	8	2	2	1	0.4286	8	6	2	1	0.4286
7	4	1	0	0.4286	8	2	2	2	0.0357	8	6	2	2	0.5357
7	4	1	1	0.5714	8	3	1	0	0.6250	8	6	3	1	0.1071
7	4	2	0	0.1429	8	3	1	1	0.3750	8	6	3	2	0.5357
7	4	2	1	0.5714	8	3	2	0	0.3571	8	6	3	3	0.3571
7	4	2	2	0.2857	8	3	2	1	0.5357	8	6	4	2	0.2143
7	4	3	0	0.0286	8	3	2	2	0.1071	8	6	4	3	0.5714
_ 7	4	3	1	0.3429	8	3	3	0	0.1786	_8_	6	4	4	0.2143
_ 7	4	3	2	0.5143	8	3	3	1	0.5357	8	6	5	3	0.3571
_ 7	4	3	3	0.1143	8	3	3	2	0.2679	_8_	6	5	4	0.5357
7	4	4	1	0.1143	8	3	3	3	0.0179	_8_	6	5	5	0.1071
_ 7	4	4	2	0.5143	8	4	1	0	0.5000	_8_	6	6	4	0.5357
7	4	4	3	0.3429	8	4	1	1	0.5000	_8_	6	6	5	0.4286
_ 7	4	4	4	0.0286	8	4	2	0	0.2143	_8_	6	6	6	0.0357
_7	5	1	0	0.2857	8	4	2	1	0.5714	_8_	7	1	0	0.1250
7	5	1	1	0.7143	8	4	2	2	0.2143	_8_	7	1	1	0.8750
7	5	2	0	0.0476	8	4	3	0	0.0714	_8_	7	2	1	0.2500
7	5	2	1	0.4762	8	4	3	1	0.4286	_8_	7	2	2	0.7500
_ 7	5	2	2	0.4762	8	4	3	2	0.4286	_8_	7	3	2	0.3750
7	5	3	1	0.1429	8	4	3	3	0.0714	_8_	7	3	3	0.6250
7	5	3	2	0.5714	8	4	4	0	0.0143	_8_	7	4	3	0.5000
7	5	3	3	0.2857	8	4	4	1	0.2286	_8_	7	4	4	0.5000
7	5	4	2	0.2857	8	4	4	2	0.5143	_8_	7	5	4	0.6250
7	5	4	3	0.5714	8	4	4	3	0.2286	_8_	7	5	5	0.3750
7	5	4	4	0.1429	8	4	4	4	0.0143	_8_	7	6	5	0.7500
7	5	5	3	0.4762	8	5	1	0	0.3750	_8_	7	6	6	0.2500
7	5	5	4	0.4762	8	5	1	1	0.6250	_8_	7	7	6	0.8750
7	5	5	5	0.0476	8	5	2	0	0.1071	8	7	7	7	0.1250
7	6	1	0	0.1429	8	5	2	1	0.5357	9	1	1	0	0.8889
7	6	1	1	0.8571	8	5	2	2	0.3571	_9_	1	1	1	0.1111
7	6	2	1	0.2857	8	5	3	0	0.0179	_9_	2	1	0	0.7778
	6	2	2	0.7143	8	5_	3	1_	0.2679	9_	2	1	_1_	0.2222
7	6	3_	2	0.4286	8_	5	3_	2	0.5357	9	2	2	0	0.5833
7	6	3	3	0.5714	8	5	3	3	0.1786	9	2	2	1	0.3889
	6	4	3	0.5714	8	5	4	1	0.0714	9	2	2	2	0.0278
7	6	4	4	0.4286	8_	5_	4	2	0.4286	9	3_	1_	0	0.6667
7	6	5	4	0.7143	8	5	4	3_4	0.4286	9	3	1	1	0.3333
<u>7</u> 7	6	5	5	0.2857	8	5	4	4	0.0714	9	3	2	0	0.4167
	6	6	5	0.8571	8	5	5	2	0.1786	9	3	2	1	0.5000

N	n	М	х	f_H	N	n	М	х	f_H	N	n	М	х	f_H
9	3	2	2	0.0833	9	6	3	2	0.5357	9	8	6	6	0.3333
9	3	3	0	0.2381	9	6	3	3	0.2381	9	8	7	6	0.7778
9	3	3	1	0.5357	9	6	4	1	0.0476	9	8	7	7	0.2222
9	3	3	2	0.2143	9	6	4	2	0.3571	9	8	8	7	0.8889
9	3	3	3	0.0119	9	6	4	3	0.4762	9	8	8	8	0.1111
_ 9	4	1	0	0.5556	9	6	4	4	0.1190	10	1	1	0	0.9000
_ 9	4	1	1	0.4444	9	6	5	2	0.1190	_10	1	1	1	0.1000
_ 9	4	2	0	0.2778	9	6	5	3	0.4762	_10	2	1	0	0.8000
_ 9	4	2	1	0.5556	9	6	5	4	0.3571	_10	2	1	1	0.2000
_ 9	4	2	2	0.1667	9	6	5	5	0.0476	10	2	2	0	0.6222
_ 9	4	3	0	0.1190	9	6	6	3	0.2381	_10	2	2	1	0.3556
_ 9	4	3	1	0.4762	9	6	6	4	0.5357	_10	2	2	2	0.0222
9	4	3	2	0.3571	9	6	6	5	0.2143	_10_	3	1	0	0.7000
_ 9	4	3	3	0.0476	9	6	6	6	0.0119	_10	3	1	1	0.3000
9	4	4	0	0.0397	9	7	1	0	0.2222	10	3	2	0	0.4667
9	4	4	1	0.3175	9	7	1	1	0.7778	_10_	3	2	1	0.4667
_ 9	4	4	2	0.4762	9	7	2	0	0.0278	_10	3	2	2	0.0667
_ 9	4	4	3	0.1587	9	7	2	1	0.3889	_10	3	3	0	0.2917
9	4	4	4	0.0079	9	7	2	2	0.5833	_10_	3	3	1	0.5250
9	5	1	0	0.4444	9	7	3	1	0.0833	10	3	3	2	0.1750
_ 9	5	1	1	0.5556	9	7	3	2	0.5000	_10	3	3	3	0.0083
_ 9	5	2	0	0.1667	9	7	3	3	0.4167	10	4	1	0	0.6000
_ 9_	5	2	1	0.5556	9	7	4	2	0.1667	10	4	1	1	0.4000
9	5	2	2	0.2778	9	7_	4	3	0.5556	10	4	2	0	0.3333
9	5	3	0	0.0476	9	7	4	4	0.2778	10	4	2	1	0.5333
9	5_	3	1	0.3571	9	7_	5_	3	0.2778	10	4	2	2	0.1333
9	5	3	2	0.4762	9	7_	5_	4_	0.5556	10	4	3	0	0.1667
9	5	3	3_	0.1190	9	7	5	5	0.1667	10	4	3_	1	0.5000
9	5	4	0	0.0079	9	7	6	4	0.4167	10	4	3	2	0.3000
9	5	4	1	0.1587	9	7_	6	5	0.5000	10	4	3	3	0.0333
9	5	4	2	0.4762	9	7_	6	6	0.0833	10	4	4	0	0.0714
9	5	4	3_	0.3175	9	7	7	5	0.5833	10	4	4	1	0.3810
9	5	4	4	0.0397	9	7	7	6	0.3889	10	4	4	2	0.4286
9	<u>5</u> 5	<u>5</u> 5	1 2	0.0397	9	7 8	7 1		0.0278	10	4	4	<u>3</u> 4	0.1143
_	5	5		0.3175	_		1	1	0.1111		5	1		0.0048
9	_ 5	5	<u>3</u> 4	0.4762	9	8		1	0.8889	10		1	<u>0</u> 1	0.5000
						8	2		0.2222	10	5			0.5000
9	<u>5</u>	5 1	<u>5</u> 0	0.0079	9	<u> </u>	3	2	0.7778	10	<u>5</u> 5	2	<u>0</u> 1	0.2222
9	6	1	1	0.6667	9	8	3	3	0.6667	10	5	2	2	0.2222
9	6	2	0	0.0833	9	8	4	3	0.4444	10	5	3	0	0.0833
9	6	2	1		9	8	4	4	0.5556				1	0.4167
9	6	2	2	0.5000	9	<u> </u>	_ 4 5	4	0.5556	10	<u>5</u> 5	3	2	0.4167
9	6	3	0	0.4167	9	<u> </u>	5	_ 4 5	0.5556	10	5	3	3	0.4167
9	6	3	1	0.0119	9	8	6	5	0.4444	10	5	<u>3</u> 4	0	0.0033
9	U	J		0.2143	J	O	υ	J	0.0007	10	J	4	U	0.0236

														l .
N	n	М	х	f_H	N	n	М	х	f_H	N	n	М	х	f_H
_10	5	4	1	0.2381	10	7	4	3	0.5000	_10	9	5	4	0.5000
_10	5	4	2	0.4762	10	7	4	4	0.1667	_10	9	5	5	0.5000
_10	5	4	3	0.2381	10	7	5	2	0.0833	_10	9	6	5	0.6000
_10	5	4	4	0.0238	10	7	5	3	0.4167	10	9	6	6	0.4000
_10	5	5	0	0.0040	10	7	5	4	0.4167	10	9	7	6	0.7000
_10	5	5	1	0.0992	10	7	5	5	0.0833	_10	9	7	7	0.3000
_10	5	5	2	0.3968	10	7	6	3	0.1667	_10	9	8	7	0.8000
_10	5	5	3	0.3968	10	7	6	4	0.5000	_10	9	8	8	0.2000
_10	5	5	4	0.0992	10	7	6	5	0.3000	_10	9	9	8	0.9000
_10	5	5	5	0.0040	10	7	6	6	0.0333	10	9	9	9	0.1000
_10	6	1	0	0.4000	10	7	7	4	0.2917	_11	1	1	0	0.9091
_10	6	1	1	0.6000	10	7	7	5	0.5250	_11	1	1	1	0.0909
_10	6	2	0	0.1333	10	7	7	6	0.1750	_11_	2	1	0	0.8182
_10	6	2	1	0.5333	10	7	7	7	0.0083	_11	2	1	1	0.1818
_10	6	2	2	0.3333	10	8	1	0	0.2000	11	2	2	0	0.6545
_10	6	3	0	0.0333	10	8	1	1	0.8000	11	2	2	1	0.3273
_10	6	3	1	0.3000	10	8	2	0	0.0222	11	2	2	2	0.0182
_10	6	3	2	0.5000	10	8	2	1	0.3556	_11	3	1	0	0.7273
_10	6	3	3	0.1667	10	8	2	2	0.6222	_11_	3	1	1	0.2727
_10	6	4	0	0.0048	10	8	3	1	0.0667	11	3	2	0	0.5091
10	6	4	1	0.1143	10	8	3	2	0.4667	11	3	2	1	0.4364
10	6	4	2	0.4286	10	8	3	3	0.4667	11	3	2	2	0.0545
_10	6	4	3	0.3810	10	8	4	2	0.1333	11	3	3	0	0.3394
_10	6	4	4	0.0714	10	8	4	3	0.5333	_11	3	3	1	0.5091
10	6	5	1	0.0238	10	8	4	4	0.3333	11	3	3	2	0.1455
_10	6	5	2	0.2381	10	8	5	3	0.2222	11	3	3	3	0.0061
10	6	5	3	0.4762	10	8	5	4	0.5556	11	4	1	0	0.6364
10	6	5	4	0.2381	10	8	5	5	0.2222	11	4	1	1	0.3636
_10	6	5	5	0.0238	10	8	6	4	0.3333	11	4	2	0	0.3818
10	6	6	2	0.0714	10	8	6	5	0.5333	11	4	2	1	0.5091
10	6	6	3	0.3810	10	8	6	6	0.1333	11	4	2	2	0.1091
10	6	6	4	0.4286	10	8	7	5	0.4667	11	4	3	0	0.2121
10	6	6	5	0.1143	10	8	7	6	0.4667	11	4	3	1	0.5091
10	6	6	6	0.0048	10	8	7	7	0.0667	11	4	3	2	0.2545
10	7	1	0	0.3000	10	8	8	6	0.6222	11	4	3	3	0.0242
10	7	1	1	0.7000	10	8	8	7	0.3556	11	4	4	0	0.1061
10	7	2	0	0.0667	10	8	8	8	0.0222	11	4	4	1	0.4242
10	7	2	1	0.4667	10	9	1	0	0.1000	11	4	4	2	0.3818
10	7	2	2	0.4667	10	9	1	1	0.9000	11	4	4	3	0.0848
10	7	3	0	0.0083	10	9	2	1	0.2000	11	4	4	4	0.0030
10	7	3	1	0.1750	10	9	2	2	0.8000	11	5	1	0	0.5455
10	7	3	2	0.5250	10	9	3	2	0.3000	11	5	1	1	0.4545
10	7	3	3	0.2917	10	9	3	3	0.7000	11	5	2	0	0.2727
10	7	4	1	0.0333	10	9	4	3	0.4000	11	5	2	1	0.5455
10	7	4	2	0.3000	10	9	4	4	0.6000	11	5	2	2	0.1818

11 5 3 0 0.1212 11 7 2 2 0.3818 11 8 6 11 5 3 1 0.4545 11 7 3 0 0.0242 11 8 7 11 5 3 2 0.3636 11 7 3 1 0.2545 11 8 7 11 5 4 0 0.0455 11 7 3 2 0.5091 11 8 7 11 5 4 1 0.3030 11 7 4 0 0.0030 11 8 8 11 5 4 2 0.4545 11 7 4 1 0.0848 11 8 8 11 5 4 3 0.1818 11 7 4 2 0.3818 11 8 8 11 5 4 4	4 5 5 7 6 7 7 8 5 6 8 7	0.0606 0.2121 0.5091 0.2545 0.0242 0.3394 0.5091
11 5 3 2 0.3636 11 7 3 1 0.2545 11 8 7 11 5 3 3 0.0606 11 7 3 2 0.5091 11 8 7 11 5 4 0 0.0455 11 7 3 3 0.2121 11 8 7 11 5 4 1 0.3030 11 7 4 0 0.0030 11 8 8 11 5 4 2 0.4545 11 7 4 1 0.0848 11 8 8 11 5 4 3 0.1818 11 7 4 2 0.3818 11 8 8	5 6 7 7 8 5 8 6 8 7	0.5091 0.2545 0.0242 0.3394 0.5091
11 5 3 2 0.3636 11 7 3 1 0.2545 11 8 7 11 5 3 3 0.0606 11 7 3 2 0.5091 11 8 7 11 5 4 0 0.0455 11 7 3 3 0.2121 11 8 7 11 5 4 1 0.3030 11 7 4 0 0.0030 11 8 8 11 5 4 2 0.4545 11 7 4 1 0.0848 11 8 8 11 5 4 3 0.1818 11 7 4 2 0.3818 11 8	6 7 7 8 5 8 6 8 7	0.2545 0.0242 0.3394 0.5091
11 5 4 0 0.0455 11 7 3 3 0.2121 11 8 7 11 5 4 1 0.3030 11 7 4 0 0.0030 11 8 8 11 5 4 2 0.4545 11 7 4 1 0.0848 11 8 8 11 5 4 3 0.1818 11 7 4 2 0.3818 11 8 8	7 3 5 3 6 3 7	0.0242 0.3394 0.5091
11 5 4 1 0.3030 11 7 4 0 0.0030 11 8 8 11 5 4 2 0.4545 11 7 4 1 0.0848 11 8 8 11 5 4 3 0.1818 11 7 4 2 0.3818 11 8 8	5 6 7	0.3394 0.5091
11 5 4 2 0.4545 11 7 4 1 0.0848 11 8 8 11 5 4 3 0.1818 11 7 4 2 0.3818 11 8 8	6 8 7	0.5091
11 5 4 3 0.1818 11 7 4 2 0.3818 11 8	3 7	
<u>11 5 4 4 0.0152</u> <u>11 7 4 3 0.424</u> 2 11 8 8	8	0.1455
		0.0061
<u>11 5 5 0 0.0130</u> <u>11 7 4 4 0.1061</u> <u>11 9 1</u>		0.1818
<u>11 5 5 1 0.1623</u> <u>11 7 5 1 0.0152</u> <u>11 9 1</u>		0.8182
<u>11 5 5 2 0.4329</u> <u>11 7 5 2 0.1818</u> <u>11 9 2</u>		0.0182
<u>11 5 5 3 0.3247</u> <u>11 7 5 3 0.4545</u> <u>11 9 2</u>		0.3273
<u>11 5 5 4 0.0649</u> <u>11 7 5 4 0.3030</u> <u>11 9 2</u>		0.6545
<u>11 5 5 5 0.0022</u> <u>11 7 5 5 0.0455</u> <u>11 9 3</u>		0.0545
<u>11 6 1 0 0.4545</u> <u>11 7 6 2 0.0455</u> <u>11 9 3</u>		0.4364
<u>11 6 1 1 0.5455</u> <u>11 7 6 3 0.3030</u> <u>11 9 3</u>		0.5091
<u>11 6 2 0 0.1818</u> <u>11 7 6 4 0.4545</u> <u>11 9 4</u>		0.1091
11 6 2 1 0.5455 11 7 6 5 0.1818 11 9 4		0.5091
11 6 2 2 0.2727 11 7 6 6 0.0152 11 9 4		0.3818
11 6 3 0 0.0606 11 7 7 3 0.1061 11 9 5		0.1818
<u>11 6 3 1 0.3636</u> <u>11 7 7 4 0.4242</u> <u>11 9 5 1 9 1 9</u>		0.5455
11 6 3 2 0.4545 11 7 7 5 0.3818 11 9 5 11 6 3 3 0.1212 11 7 7 6 0.0848 11 9 6		0.2727
		0.2727
<u>11 6 4 0 0.0152</u> <u>11 7 7 7 0.0030</u> <u>11 9 6</u>		0.5455
<u>11 6 4 1 0.1818</u> <u>11 8 1 0 0.2727</u> <u>11 9 6</u>		0.1818
11 6 4 2 0.4545 11 8 1 1 0.7273 11 9 7 11 6 4 3 0.3030 11 8 2 0 0.0545 11 9 7		0.3818
11 6 4 4 0.0455		0.5091
11 6 5 0 0.0022 11 8 2 2 0.5091 11 9 8		0.5091
11 6 5 1 0.0649		0.4364
11 6 5 2 0.3247		0.4504
11 6 5 3 0.4329 11 8 3 2 0.5091 11 9 S		0.6545
11 6 5 4 0.1623		0.3273
11 6 5 5 0.0130		0.0182
11 6 6 1 0.0130 11 8 4 2 0.2545 11 10 1		0.0909
11 6 6 2 0.1623 11 8 4 3 0.5091 11 10 1		0.9091
11 6 6 3 0.4329 11 8 4 4 0.2121 11 10 2		0.1818
11 6 6 4 0.3247 11 8 5 2 0.0606 11 10 2		0.8182
<u>11 6 6 5 0.0649</u> <u>11 8 5 3 0.3636</u> <u>11 10 3</u>		0.2727
11 6 6 6 0.0022 11 8 5 4 0.4545 11 10 3		0.7273
11 7 1 0 0.3636 11 8 5 5 0.1212 11 10 4		0.3636
11 7 1 1 0.6364 11 8 6 3 0.1212 11 10 4		0.6364
<u>11 7 2 0 0.1091</u> <u>11 8 6 4 0.4545</u> <u>11 10 5</u>	5 4	0.4545
11 7 2 1 0.5091 11 8 6 5 0.3636 11 10 5	5	0.5455

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	N	**	М		£	N	**	М		£	N	***	М		£
11 10 6 6 0.4545 12 5 3 1 0.4773 12 7 2 2 0.3182 11 10 7 6 0.6364 12 5 3 2 0.3182 12 7 3 0 0.0455 11 10 7 7 7 0.3636 12 5 3 3 0.0455 12 7 3 0 0.0455 11 10 7 7 7 7 7 7 7 7 7															
11 10 7 6 0.6364 12 5 3 2 0.3182 12 7 3 0 0.0455 11 10 8 8 7 0.7273 12 5 4 0 0.0707 12 7 3 2 0.4773 11 10 8 8 0.2727 12 5 4 2 0.4242 12 7 4 0 0.0101 11 10 9 8 0.8182 12 5 4 2 0.4242 12 7 4 0 0.0101 11 10 10 9 9 0.1818 12 5 4 4 0.0101 12 7 4 1 0.1414 11 10 10 9 9 0.9091 12 5 5 5 0 0.0265 12 7 4 3 0.3535 12 1 1 1 0 0.9909 12 5 5 5 0 0.0265 12 7 4 4 0.0707 12 1 1 1 0 0.9909 12 5 5 5 0 0.0265 12 7 4 4 0.0707 12 1 1 1 0.0833 12 5 5 5 0.0265 12 7 4 4 0.0707 12 1 1 1 0.0833 12 5 5 5 0.0013 12 7 5 0 0.0013 12 2 1 1 0.0833 12 5 5 5 0.0013 12 7 5 0 0.0013 12 2 1 1 0.0833 12 5 5 5 0.0013 12 7 5 5 0.00462 12 7 5 0 0.0013 12 2 1 1 0.0833 12 5 5 5 0.0013 12 7 5 5 0.0442 12 7 5 0 0.0013 12 2 1 0 0.6868 12 5 5 5 0.0013 12 7 5 3 0.4419 12 7 5 0 0.0013 12 2 2 0 0.6818 12 5 5 5 0.0013 12 7 5 3 0.4419 12 2 2 2 0.0152 12 6 1 0.5000 12 7 5 5 0.0265 12 7 5 4 0.2210 12 3 1 0.2500 12 6 2 0.0273 12 7 5 5 0.0265 12 7 5 0.0265 12 3 3 0 0.5455 12 6 2 0.0273 12 7 6 6 0.0076 12 3 3 0 0.5818 12 6 3 0 0.0909 12 7 7 0.0265 12 3 3 0 0.0462 12 6 3 0.04091 12 7 6 6 0.0076 12 8 3 0.0045 12 6 4 0.0303 12 7 7 7 0.0265 12 4 4 1 0.06667 12 6 4 0.0303 12 7 7 7 0.0265 12 4 4 1 0.04666 12 6 6 0.00076 12 8 1 0.00666 12 4 4 4 0.05667 12 6 6 0.00076 12 8 3 0.0482 12 4 4 4 0.04525 12 6 6 0.00001															
11 10 7 7 0.3636															
11 10 8 7 0.7273 12 5 4 0 0.0707 12 7 3 2 0.4773 11 10 8 8 0.2727 12 5 4 1 0.3535 12 7 3 3 0.1591 11 10 9 9 0.1818 12 5 4 2 0.4242 12 7 4 0 0.0101 11 10 9 9.9091 12 5 4 4 0.0101 12 7 4 2 0.4242 11 10 10 0.0909 12 5 5 0 0.0265 12 7 4 3 0.3535 12 1 1 0 0.9167 12 5 5 1 0.2210 12 7 4 4 0.0707 12 1 1 1 0 0.9833 12 5 5 5 0.2210 12 7 4 4 0.0707 12 1 1 0 0.0833 12 5 5 5 0.0265 12 7 5 1 0.0442 12 2 1 0 0.8818 12 5 5 5 0.0013 12 7 5 1 0.0442 12 2 2 1 0.3030 12 6 1 0.5000 12 7 5 5 0.0265 12 7 5 0.0265 12 2 2 0.0528 12 2 2 0.0528 12 2 0.0528 12 2 0.0528 12 2 0.0528 12 0.0528															
11 10 8 8 0.2727 12 5 4 1 0.3535 12 7 3 3 0.1591 11 10 9 8 0.8182 12 5 4 2 0.4242 12 7 4 0 0.0101 11 10 9 9 0.1818 12 5 4 3 0.1414 12 7 4 1 0.1414 11 10 10 9 0.9091 12 5 5 0 0.0265 12 7 4 3 0.3535 12 1 1 0 0.9167 12 5 5 5 0 0.0265 12 7 4 4 0.0707 12 1 1 1 0.0833 12 5 5 5 0 0.0265 12 7 5 0 0.0013 12 2 1 1 0 0.8333 12 5 5 5 0 0.2442 12 7 5 0 0.0013 12 2 1 1 0.1667 12 5 5 4 0.0442 12 7 5 0 0.0013 12 2 1 1 0.1667 12 5 5 5 0.0013 12 7 5 3 0.4419 12 2 2 1 0.3030 12 6 1 0.5000 12 7 5 5 0.0265 12 3 1 0 0.7500 12 6 2 0.5273 12 7 6 1 0.0076 12 3 2 0 0.5455 12 6 2 0.5455 12 7 6 2 0.1136 12 3 2 1 0.4091 12 6 3 0.0909 12 7 6 6 0.0076 12 3 3 0 0.3818 12 6 3 0.0909 12 7 6 6 0.0076 12 3 3 0 0.3818 12 6 3 0.0909 12 7 7 7 0.0265 12 3 3 0 0.3455 12 6 3 0.0909 12 7 7 7 0.0265 12 3 3 0 0.0445 12 6 4 0.0000 12 7 7 7 0.0265 12 3 3 0 0.0455 12 6 3 0.0909 12 7 7 7 0.0265 12 3 3 0 0.0455 12 6 3 0.0909 12 7 7 7 0.0066 12 4 1 0 0.6667 12 6 4 0.00006 12 7 7 7 0.0013 12 4 1 0 0.6667 12 6 4 0.00006 12 7 7 7 0.0013 12 4 1 0 0.6667 12 6 5 0.00006 12 7 7 0.0013 12 4 2 0 0.4242 12 6 5 0.00006 12 7 7 0.0013 12 4 4 0 0.4448 12 6 5 0.00006 12 7 7 0.0014 12 4 4 0 0.4448 12 6 5 0.00006 12 8 0.0006 12 4 4 0 0.4448 12 6 5 0.00006 12 8 0.00006 12 4 4 4 0.0466 12															
11 10 9 8 0.8182 12 5 4 2 0.4242 12 7 7 4 0 0.0101 11 10 10 9 9 0.1818 12 5 4 3 0.1414 11 12 7 4 1 0.1414 11 10 10 9 9.9091 12 5 5 0 0.0265 12 7 4 2 0.4242 11 10 10 10 0.0909 12 5 5 0 0.0265 12 7 4 4 0.0707 12 1 1 1 0.0833 12 5 5 2 0.4419 12 7 5 0 0.0013 12 2 1 0 0.8333 12 5 5 2 0.4419 12 7 5 0 0.0013 12 2 1 0 0.6818 12 5 5 3 0.2652 12 7 5 1 0.0442 12 2 1 0 0.6818 12 5 5 5 0.0013 12 7 5 2 0.2652 12 2 2 0 0.6818 12 5 5 5 0.0013 12 7 5 3 0.4419 12 2 2 1 0.3030 12 6 1 0 0.5000 12 7 5 3 0.4419 12 2 2 1 0.3030 12 6 1 0 0.5000 12 7 5 3 0.4419 12 2 2 1 0.3030 12 6 1 0 0.5000 12 7 5 3 0.4419 12 2 2 2 0.0152 12 6 1 1 0.5000 12 7 5 5 0.0265 12 3 1 0 0.7500 12 6 2 0 0.2273 12 7 6 1 0.0076 12 3 2 0 0.5455 12 6 2 0 0.2273 12 7 6 3 0.3788 12 3 2 1 0.4091 12 6 3 0 0.0909 12 7 6 4 0.3788 12 3 3 0 0.3818 12 6 3 2 0.4091 12 7 6 5 0.1136 12 3 3 1 0.4909 12 6 3 3 0.0099 12 7 7 7 0.0265 12 3 3 1 0.4909 12 6 3 3 0.0099 12 7 7 7 0.0265 12 3 3 1 0.4909 12 6 3 3 0.0090 12 7 7 7 0.0265 12 4 1 1 0.3333 12 6 5 5 0.0076 12 8 1 0.0333 12 4 2 1 0.4848 12 6 5 0 0.0076 12 8 1 0.0333 12 4 2 1 0.4848 12 6 5 0 0.0076 12 8 3 0.0008 12 4 4 1 0.4525 12 6 6 6 0.00076 12 8 3 0.0008 12 4 4 4 0.0020 12 6 6 5 0.0000 12 8 4 0.0000 12 4 4 4 0.00666 12 6 6 6															
11 10 9 9 0.1818 12 5 4 3 0.1414 12 7 4 1 0.1414 11 10 10 9 0.9091 12 5 5 4 4 0.0101 12 7 4 2 0.4242 11 10 10 10 0.0909 12 5 5 5 0 0.0265 12 7 4 3 0.3535 12 1 1 0 0.9167 12 5 5 1 0.2210 12 7 4 4 0.0707 12 1 1 1 0.0833 12 5 5 2 0.4419 12 7 5 0 0.0013 12 2 1 1 0 0.6867 12 5 5 3 0.2652 12 7 5 1 0.0442 12 2 1 1 0.1667 12 5 5 4 0.0442 12 7 5 2 0.2652 12 7 5 1 0.0442 12 2 2 0 0.6818 12 5 5 5 0.0013 12 7 5 3 0.4419 12 2 2 1 0.3030 12 6 1 0.5000 12 7 5 3 0.4419 12 2 2 1 0.3030 12 6 1 0.5000 12 7 5 5 0.0265 12 2 2 2 0.0152 12 6 1 0.5000 12 7 5 5 0.0265 12 3 1 0.07500 12 6 2 0.2273 12 7 6 1 0.0076 12 3 1 1 0.2500 12 6 2 1 0.5455 12 7 6 2 0.1136 12 3 2 1 0.4091 12 6 3 0.0099 12 7 6 6 0.03788 12 3 2 1 0.4091 12 6 3 3 0.0491 12 7 6 6 0.0076 12 3 3 1 0.4099 12 6 3 3 0.0099 12 7 7 5 0.2655 12 3 3 0.03818 12 6 3 2 0.4091 12 7 6 6 0.0076 12 3 3 3 0.0045 12 6 4 4 0.00303 12 7 7 7 0.0013 12 4 2 2 0.00909 12 6 5 0.0076 12 8 1 0.0333 12 6 4 4 0.00303 12 7 7 7 0.0013 12 4 2 2 0.00909 12 6 5 5 0.0076 12 8 3 0.00909 12 4 4 4 0.0020 12 6 5 5 0.0076 12 8 3 0.00909 12 4 4 4 0.0020 12 6 6 5 0.0076 12 8 3 0.00909 12 4 4 4 0.0020 12 6 6 6 0.00001 12 8 4 0.00020 12 4 4 4 0.0020 12 6 6 6 0.00001 12 8 4 0.00020 12 4 4 4 0.0020 12 6 6 6 0.00001 12 8 4 0.00020 12 4 4 4 0.00666 12 6 6 6															
11 10 10 9 0.9091 12 5 4 4 0.0101 12 7 4 2 0.4242 11 10 10 10 0.0909 12 5 5 0 0.0265 12 7 4 4 0.0707 12 1 1 1 0.0833 12 5 5 5 0.2210 12 7 5 0 0.0013 12 2 1 1 0.0833 12 5 5 5 0.4419 12 7 5 0 0.0013 12 2 1 1 0.1667 12 5 5 4 0.0442 12 7 5 0 0.0042 12 2 2 1 0 0.6818 12 5 5 5 0.0013 12 7 5 2 0.2652 12 2 2 0 0.6818 12 5 5 5 0.0013 12 7 5 3 0.4419 12 2 2 2 0 0.6818 12 5 5 5 0.0013 12 7 5 5 0.0412 12 2 2 2 0.0152 12 6 1 0.5000 12 7 5 5 0.02652 12 7 5 1 0.0442 12 7 5 5 0.02652 12 2 2 2 0.0152 12 6 1 0.5000 12 7 5 5 0.02652 12 7 5 1 0.0476 12 3 3 1 0 0.7500 12 6 2 0 0.2273 12 7 6 1 0.0076 12 3 3 1 0 0.5455 12 6 2 1 0.5455 12 7 6 2 0.1136 12 3 2 1 0.4091 12 6 3 0 0.0909 12 7 6 4 0.3788 12 3 2 0 0.5455 12 6 3 2 0.4091 12 7 6 5 0.1136 12 3 3 3 0.03818 12 6 3 2 0.4091 12 7 6 6 0.0076 12 3 3 3 0.0455 12 6 4 0 0.0303 12 7 7 2 0.0265 12 4 1 1 0.3333 12 6 4 4 0.0303 12 7 7 7 0.0013 12 4 2 0 0.4242 12 6 4 4 0.0303 12 7 7 7 0.0013 12 4 2 1 0.4848 12 6 5 0 0.0076 12 8 1 0.6667 12 6 4 4 0.0303 12 7 7 7 0.0013 12 4 4 4 0 0.1441 12 6 6 5 0.0076 12 8 1 0.6667 12 6 4 4 0.0303 12 7 7 7 0.0013 12 4 4 4 4 0.0020 12 6 6 5 0.0076 12 8 4 1 0.66667 12 6 6 0.00076 12 8 3 0.0048 12 6 6 6 0.0016 12 8 3 0.0048 12 6 6 6 0.0016 12 8 3 0.0048 12 6 6 6 0.0016 12 8 3 0.0048 12 6 6 6															
11															
12 1 1 0 0.9167 12 5 5 1 0.2210 12 7 4 4 0.0707 12 1 1 1 0.0833 12 5 5 2 0.4419 12 7 5 0 0.0013 12 2 1 1 0.6667 12 5 5 4 0.0442 12 7 5 1 0.0442 12 2 2 0 0.6818 12 5 5 0.0013 12 7 5 2 0.2652 12 2 2 1 0.3030 12 6 1 0.5000 12 7 5 4 0.2210 12 2 2 2 0.0152 12 6 1 0.5000 12 7 5 4 0.2210 12 3 1 1 0.2500 12 6 2															
12 1 1 1 0.0833 12 5 5 2 0.4419 12 7 5 0 0.0013 12 2 1 0 0.8333 12 5 5 3 0.2652 12 7 5 1 0.0442 12 2 1 1 0.1667 12 5 5 4 0.0442 12 7 5 2 0.2652 12 2 2 0 0.6818 12 5 5 5 0.0013 12 7 5 3 0.4419 12 2 2 0.0152 12 6 1 0.5000 12 7 5 5 0.0265 12 3 1 1 0.2500 12 6 2 1 0.5455 12 7 6 2 0.1136 12 3 2 1 0.4941 12 6					_				<u> </u>						
12 2 1 0 0.8333 12 5 5 3 0.2652 12 7 5 1 0.0442 12 2 1 1 0.1667 12 5 5 4 0.0442 12 7 5 2 0.2652 12 2 2 0 0.6818 12 5 5 5 0.0013 12 7 5 2 0.2652 12 2 2 2 0.0152 12 6 1 0 0.5000 12 7 5 4 0.2210 12 3 1 0 0.7500 12 6 2 0 0.2273 12 7 6 1 0.0265 12 3 1 1 0.2500 12 6 2 0.0273 12 7 6 1 0.03788 12 3 2 1 0.0465 12															
12 2 1 1 0.1667 12 5 5 4 0.0442 12 7 5 2 0.2652 12 2 2 0 0.6818 12 5 5 5 0.0013 12 7 5 3 0.4419 12 2 2 1 0.3030 12 6 1 0 0.5000 12 7 5 4 0.2210 12 3 1 0 0.7500 12 6 2 0 0.2273 12 7 6 1 0.076 12 3 1 1 0.2500 12 6 2 0 0.2273 12 7 6 1 0.076 12 3 2 1 0.4991 12 6 2 0.2273 12 7 6 2 0.1136 12 3 3 0 0.3818 12															
12 2 2 0 0.6818 12 5 5 5 0.0013 12 7 5 3 0.4419 12 2 2 1 0.3030 12 6 1 0 0.5000 12 7 5 4 0.2210 12 3 1 0 0.7500 12 6 2 0 0.2273 12 7 6 1 0.0076 12 3 1 1 0.2500 12 6 2 1 0.5455 12 7 6 1 0.0076 12 3 2 1 0.4091 12 6 2 2 0.2273 12 7 6 2 0.1136 12 3 2 1 0.4091 12 6 3 0.02293 12 7 6 5 0.1136 12 3 3 0.0455 12 6															
12 2 2 1 0.3030 12 6 1 0 0.5000 12 7 5 4 0.2210 12 2 2 2 0.0152 12 6 1 1 0.5000 12 7 5 5 0.0265 12 3 1 0 0.7500 12 6 2 0 0.2273 12 7 6 1 0.0076 12 3 1 1 0.2500 12 6 2 1 0.5455 12 6 2 0 0.2273 12 7 6 1 0.076 12 3 2 0 0.5455 12 6 2 0.2273 12 7 6 4 0.3788 12 3 2 0.0455 12 6 3 0.0909 12 7 6 6 0.0136 12 3 3															
12 2 2 2 0.0152 12 6 1 1 0.5000 12 7 5 5 0.0265 12 3 1 0 0.7500 12 6 2 0 0.2273 12 7 6 1 0.0076 12 3 1 1 0.2500 12 6 2 1 0.5455 12 6 2 1 0.5455 12 6 2 2 0.2273 12 7 6 2 0.1136 12 3 2 1 0.4091 12 6 3 0.0909 12 7 6 4 0.3788 12 3 3 1 0.4909 12 6 3 1 0.4901 12 6 3 0.0909 12 7 7 2 0.0265 12 3 3 2 0.1227 12 6 4															
12 3 1 0 0.7500 12 6 2 0 0.2273 12 7 6 1 0.0076 12 3 1 1 0.2500 12 6 2 1 0.5455 12 6 2 2 0.2273 12 7 6 2 0.1136 12 3 2 1 0.4091 12 6 3 0 0.0909 12 7 6 4 0.3788 12 3 2 2 0.0455 12 6 3 1 0.4091 12 7 6 5 0.1136 12 3 3 1 0.4909 12 6 3 2 0.4091 12 7 7 2 0.0265 12 3 3 2 0.1227 12 6 4 0 0.0303 12 7 7 2 0.0265															
12 3 1 1 0.2500 12 6 2 1 0.5455 12 7 6 2 0.1136 12 3 2 0 0.5455 12 6 2 2 0.2273 12 7 6 3 0.3788 12 3 2 1 0.4091 12 6 3 0 0.0909 12 7 6 4 0.3788 12 3 2 2 0.0455 12 6 3 1 0.4091 12 7 6 5 0.1136 12 3 3 1 0.4909 12 6 3 2 0.4091 12 7 7 2 0.0265 12 3 3 2 0.1227 12 6 4 0 0.0303 12 7 7 2 0.0265 12 4 1 0 0.6667												7			
12 3 2 1 0.4091 12 6 3 0 0.0909 12 7 6 4 0.3788 12 3 2 2 0.0455 12 6 3 1 0.4091 12 7 6 5 0.1136 12 3 3 0 0.3818 12 6 3 2 0.4091 12 7 6 6 0.0076 12 3 3 1 0.4909 12 6 4 0 0.0303 12 7 7 2 0.0265 12 3 3 2 0.1227 12 6 4 0 0.0303 12 7 7 2 0.0265 12 4 1 0 0.6667 12 6 4 2 0.4545 12 7 7 5 0.2652 12 4 1 0 0.6667															
12 3 2 2 0.0455 12 6 3 1 0.4091 12 7 6 5 0.1136 12 3 3 0 0.3818 12 6 3 2 0.4091 12 7 6 6 0.0076 12 3 3 1 0.4909 12 6 3 3 0.0909 12 7 7 2 0.0265 12 3 3 2 0.1227 12 6 4 0 0.0303 12 7 7 2 0.0265 12 4 1 0 0.6667 12 6 4 2 0.4545 12 7 7 5 0.2652 12 4 1 1 0.3333 12 6 4 2 0.4545 12 7 7 7 0.0013 12 4 2 1 0.4848	12	3	2	0	0.5455	12	6	2	2	0.2273	12	7	6	3	0.3788
12 3 2 2 0.0455 12 6 3 1 0.4091 12 7 6 5 0.1136 12 3 3 0 0.3818 12 6 3 2 0.4091 12 7 6 6 0.0076 12 3 3 1 0.4909 12 6 3 3 0.0909 12 7 7 2 0.0265 12 3 3 2 0.1227 12 6 4 0 0.0303 12 7 7 2 0.0265 12 4 1 0 0.6667 12 6 4 2 0.4545 12 7 7 5 0.2652 12 4 1 1 0.3333 12 6 4 2 0.4545 12 7 7 7 0.0013 12 4 2 1 0.4848	12	3	2	1	0.4091	12	6	3	0	0.0909	12	7	6	4	0.3788
12 3 3 1 0.4909 12 6 3 3 0.0909 12 7 7 2 0.0265 12 3 3 2 0.1227 12 6 4 0 0.0303 12 7 7 3 0.2210 12 3 3 3 0.0045 12 6 4 1 0.2424 12 7 7 4 0.4419 12 4 1 0 0.6667 12 6 4 2 0.4545 12 7 7 5 0.2652 12 4 1 1 0.3333 12 6 4 3 0.2424 12 7 7 6 0.0442 12 4 2 1 0.4848 12 6 5 0 0.0076 12 8 1 0 0.3333 12 4 3 0 0.2545	12	3		2	0.0455	12	6		1		12		6	5	
12 3 3 1 0.4909 12 6 3 3 0.0909 12 7 7 2 0.0265 12 3 3 2 0.1227 12 6 4 0 0.0303 12 7 7 3 0.2210 12 3 3 3 0.0045 12 6 4 1 0.2424 12 7 7 4 0.4419 12 4 1 0 0.6667 12 6 4 2 0.4545 12 7 7 5 0.2652 12 4 1 1 0.3333 12 6 4 3 0.2424 12 7 7 6 0.0442 12 4 2 1 0.4848 12 6 5 0 0.0076 12 8 1 0 0.3333 12 4 3 0 0.2545	12	3	3	0	0.3818	12	6	3	2	0.4091	12	7	6	6	0.0076
12 3 3 0.0045 12 6 4 1 0.2424 12 7 7 4 0.4419 12 4 1 0 0.6667 12 6 4 2 0.4545 12 7 7 5 0.2652 12 4 1 1 0.3333 12 6 4 3 0.2424 12 7 7 6 0.0442 12 4 2 1 0.4848 12 6 5 0 0.0076 12 8 1 0 0.3333 12 4 2 1 0.4848 12 6 5 1 0.1136 12 8 1 0 0.3333 12 4 3 0 0.2545 12 6 5 2 0.3788 12 8 2 0 0.0909 12 4 3 1 0.5091 12	12	3	3	1	0.4909	12	6	3	3		12	7	7	2	0.0265
12 4 1 0 0.6667 12 6 4 2 0.4545 12 7 7 5 0.2652 12 4 1 1 0.3333 12 6 4 3 0.2424 12 7 7 6 0.0442 12 4 2 0 0.4242 12 6 4 4 0.0303 12 7 7 7 0.0013 12 4 2 1 0.4848 12 6 5 0 0.0076 12 8 1 0 0.3333 12 4 2 2 0.0909 12 6 5 1 0.1136 12 8 1 1 0.6667 12 4 3 1 0.5091 12 6 5 2 0.3788 12 8 2 1 0.4848 12 4 3 2 0.2182	12	3	3	2	0.1227	12	6	4	0	0.0303	12	7	7	3	0.2210
12 4 1 1 0.3333 12 6 4 3 0.2424 12 7 7 6 0.0442 12 4 2 0 0.4242 12 6 4 4 0.0303 12 7 7 7 0.0013 12 4 2 1 0.4848 12 6 5 0 0.0076 12 8 1 0 0.3333 12 4 2 2 0.0909 12 6 5 1 0.1136 12 8 1 1 0.6667 12 4 3 0 0.2545 12 6 5 2 0.3788 12 8 2 0 0.0909 12 4 3 1 0.5091 12 6 5 3 0.3788 12 8 2 1 0.4848 12 4 3 3 0.0182	12	3	3	3	0.0045	12	6	4	1	0.2424	12	7	7	4	0.4419
12 4 2 0 0.4242 12 6 4 4 0.0303 12 7 7 7 0.0013 12 4 2 1 0.4848 12 6 5 0 0.0076 12 8 1 0 0.3333 12 4 2 2 0.0909 12 6 5 1 0.1136 12 8 1 1 0.6667 12 4 3 0 0.2545 12 6 5 2 0.3788 12 8 2 0 0.0909 12 4 3 1 0.5091 12 6 5 3 0.3788 12 8 2 1 0.4848 12 4 3 2 0.2182 12 6 5 4 0.1136 12 8 2 2 0.4242 12 4 4 0 0.1414	_12	4	1	0	0.6667	12	6	4	2	0.4545	_12	7	7	5	0.2652
12 4 2 1 0.4848 12 6 5 0 0.0076 12 8 1 0 0.3333 12 4 2 2 0.0909 12 6 5 1 0.1136 12 8 1 1 0.6667 12 4 3 0 0.2545 12 6 5 2 0.3788 12 8 2 0 0.0909 12 4 3 1 0.5091 12 6 5 2 0.3788 12 8 2 1 0.4848 12 4 3 2 0.2182 12 6 5 4 0.1136 12 8 2 2 0.4242 12 4 3 3 0.0182 12 6 5 5 0.0076 12 8 3 1 0.2182 12 4 4 1 0.4525	_12	4	1	1	0.3333	12	6	4	3	0.2424	12	7	7	6	0.0442
12 4 2 2 0.0909 12 6 5 1 0.1136 12 8 1 1 0.6667 12 4 3 0 0.2545 12 6 5 2 0.3788 12 8 2 0 0.0909 12 4 3 1 0.5091 12 6 5 3 0.3788 12 8 2 1 0.4848 12 4 3 2 0.2182 12 6 5 4 0.1136 12 8 2 2 0.4242 12 4 3 3 0.0182 12 6 5 5 0.0076 12 8 3 0 0.0182 12 4 4 0 0.1414 12 6 6 0 0.0011 12 8 3 1 0.2182 12 4 4 1 0.4525	_12	4	2	0	0.4242	12	6	4	4	0.0303	_12	7	7	7	0.0013
12 4 3 0 0.2545 12 6 5 2 0.3788 12 8 2 0 0.0909 12 4 3 1 0.5091 12 6 5 3 0.3788 12 8 2 1 0.4848 12 4 3 2 0.2182 12 6 5 4 0.1136 12 8 2 2 0.4242 12 4 3 3 0.0182 12 6 5 5 0.0076 12 8 3 0 0.0182 12 4 4 0 0.1414 12 6 6 0 0.0011 12 8 3 1 0.2182 12 4 4 1 0.4525 12 6 6 1 0.0390 12 8 3 2 0.5091 12 4 4 2 0.3394	12	4	2	1	0.4848	12	6	5	0	0.0076	12	8	1	0	0.3333
12 4 3 1 0.5091 12 6 5 3 0.3788 12 8 2 1 0.4848 12 4 3 2 0.2182 12 6 5 4 0.1136 12 8 2 2 0.4242 12 4 3 3 0.0182 12 6 5 5 0.0076 12 8 3 0 0.0182 12 4 4 0 0.1414 12 6 6 0 0.0011 12 8 3 1 0.2182 12 4 4 1 0.4525 12 6 6 1 0.0390 12 8 3 2 0.5091 12 4 4 2 0.3394 12 6 6 2 0.2435 12 8 4 0 0.0020 12 4 4 4 0.0020	_12	4	2	2	0.0909	12	6	5	1	0.1136	12	8	1	1	0.6667
12 4 3 2 0.2182 12 6 5 4 0.1136 12 8 2 2 0.4242 12 4 3 3 0.0182 12 6 5 5 0.0076 12 8 3 0 0.0182 12 4 4 0 0.1414 12 6 6 0 0.0011 12 8 3 1 0.2182 12 4 4 1 0.4525 12 6 6 1 0.0390 12 8 3 2 0.5091 12 4 4 2 0.3394 12 6 6 2 0.2435 12 8 3 3 0.2545 12 4 4 3 0.0646 12 6 6 3 0.4329 12 8 4 1 0.0646 12 5 1 0 0.5833	_12	4	3	0	0.2545	12	6	5	2		_12	8	2	0	0.0909
12 4 3 3 0.0182 12 6 5 5 0.0076 12 8 3 0 0.0182 12 4 4 0 0.1414 12 6 6 0 0.0011 12 8 3 1 0.2182 12 4 4 1 0.4525 12 6 6 1 0.0390 12 8 3 2 0.5091 12 4 4 2 0.3394 12 6 6 2 0.2435 12 8 3 3 0.2545 12 4 4 3 0.0646 12 6 6 3 0.4329 12 8 4 0 0.0020 12 5 1 0 0.5833 12 6 6 4 0.2435 12 8 4 1 0.0646 12 5 1 0 0.5833	_12	4	3	1		12	6	5	3	0.3788	_12	8	2	1	0.4848
12 4 4 0 0.1414 12 6 6 0 0.0011 12 8 3 1 0.2182 12 4 4 1 0.4525 12 6 6 1 0.0390 12 8 3 2 0.5091 12 4 4 2 0.3394 12 6 6 2 0.2435 12 8 3 3 0.2545 12 4 4 3 0.0646 12 6 6 3 0.4329 12 8 4 0 0.0020 12 4 4 4 0.0020 12 6 6 4 0.2435 12 8 4 1 0.0646 12 5 1 0 0.5833 12 6 6 5 0.0390 12 8 4 2 0.3394 12 5 1 1 0.4167					1									2	
12 4 4 1 0.4525 12 6 6 1 0.0390 12 8 3 2 0.5091 12 4 4 2 0.3394 12 6 6 2 0.2435 12 8 3 3 0.2545 12 4 4 3 0.0646 12 6 6 3 0.4329 12 8 4 0 0.0020 12 4 4 4 0.0020 12 6 6 4 0.2435 12 8 4 1 0.0646 12 5 1 0 0.5833 12 6 6 5 0.0390 12 8 4 2 0.3394 12 5 1 1 0.4167 12 6 6 6 0.0011 12 8 4 2 0.3394 12 5 2 0 0.3182					0.0182				5	0.0076					0.0182
12 4 4 2 0.3394 12 6 6 2 0.2435 12 8 3 3 0.2545 12 4 4 3 0.0646 12 6 6 3 0.4329 12 8 4 0 0.0020 12 4 4 4 0.0020 12 6 6 4 0.2435 12 8 4 1 0.0646 12 5 1 0 0.5833 12 6 6 5 0.0390 12 8 4 2 0.3394 12 5 1 1 0.4167 12 6 6 6 0.0011 12 8 4 3 0.4525 12 5 2 0 0.3182 12 7 1 0 0.4167 12 8 4 4 0.1414 12 5 2 1 0.5303							6					8			
12 4 4 3 0.0646 12 6 6 3 0.4329 12 8 4 0 0.0020 12 4 4 4 0.0020 12 6 6 4 0.2435 12 8 4 1 0.0646 12 5 1 0 0.5833 12 6 6 5 0.0390 12 8 4 2 0.3394 12 5 1 1 0.4167 12 6 6 6 0.0011 12 8 4 3 0.4525 12 5 2 0 0.3182 12 7 1 0 0.4167 12 8 4 4 0.1414 12 5 2 1 0.5303 12 7 1 1 0.5833 12 8 5 1 0.0101	_12				0.4525					0.0390	_12			2	
12 4 4 4 0.0020 12 6 6 4 0.2435 12 8 4 1 0.0646 12 5 1 0 0.5833 12 6 6 5 0.0390 12 8 4 2 0.3394 12 5 1 1 0.4167 12 6 6 6 0.0011 12 8 4 3 0.4525 12 5 2 0 0.3182 12 7 1 0 0.4167 12 8 4 4 0.1414 12 5 2 1 0.5303 12 7 1 1 0.5833 12 8 5 1 0.0101															
12 5 1 0 0.5833 12 6 6 5 0.0390 12 8 4 2 0.3394 12 5 1 1 0.4167 12 6 6 6 0.0011 12 8 4 3 0.4525 12 5 2 0 0.3182 12 7 1 0 0.4167 12 8 4 4 0.1414 12 5 2 1 0.5303 12 7 1 1 0.5833 12 8 5 1 0.0101															
12 5 1 1 0.4167 12 6 6 6 0.0011 12 8 4 3 0.4525 12 5 2 0 0.3182 12 7 1 0 0.4167 12 8 4 4 0.1414 12 5 2 1 0.5303 12 7 1 1 0.5833 12 8 5 1 0.0101					_										
12 5 2 0 0.3182 12 7 1 0 0.4167 12 8 4 4 0.1414 12 5 2 1 0.5303 12 7 1 1 0.5833 12 8 5 1 0.0101															
12 5 2 1 0.5303 12 7 1 1 0.5833 12 8 5 1 0.0101															
12 5 2 2 0.1515 12 7 2 0 0.1515 12 8 5 2 0 1414															
	12	5	2	2	0.1515	12	7	2	0	0.1515	12	8	5	2	0.1414

 f_H 7 0.2182 8 0.0182 6 0.3818 7 0.4909 8 0.1227 9 0.0045 0 0.1667 1 0.8333 0 0.0152 1 0.3030 2 0.6818 1 0.0455 2 0.4091 3 0.5455 2 0.0909 3 0.4848 4 0.4242 3 0.1515 4 0.5303 5 0.3182 4 0.2273 5 0.5455 6 0.2273 5 0.3182 6 0.5303 7 0.1515 6 0.4242 7 0.4848 8 0.0909 7 0.5455 8 0.4091 9 0.0455 8 0.6818 9 0.3030 10 0.0152 0 0.0833 1 0.9167 1 0.1667 2 0.8333 2 0.2500 3 0.7500 3 0.3333 4 0.6667 4 0.4167 5 0.5833

N	n	M	х	f_H	N	n	М
12	8	5	3	0.4242	12	9	8
12	8	5	4	0.3535	12	9	8
12	8	5	5	0.0707	12	9	9
12	8	6	2	0.0303	12	9	9
12	8	6	3	0.2424	12	9	9
12	8	6	4	0.4545	12	9	9
12	8	6	5	0.2424	12	10	1
12	8	6	6	0.0303	12	10	1
12	8	7	3	0.0707	12	10	2
12	8	7	4	0.3535	12	10	2
12	8	7	5	0.4242	12	10	2
12	8	7	6	0.1414	12	10	3
12	8	7	7	0.0101	12	10	3
12	8	8	4	0.1414	12	10	3
12	8	8	5	0.4525	12	10	4
12	8	8	6	0.3394	12	10	4
12	8	8	7	0.0646	12	10	4
12	8	8	8	0.0020	12	10	5
12	9	1	0	0.2500	12	10	5
12	9	1	1	0.7500	12	10	5
12	9	2	0	0.0455	12	10	6
12	9	2	1	0.4091	12	10	6
12	9	2	2	0.5455	12	10	6
12	9	3	0	0.0045	12	10	7
12	9	3	1	0.1227	12	10	7
12	9	3	2	0.4909	12	10	7
12	9	3	3	0.3818	12	10	8
12	9	4	1	0.0182	12	10	8
12	9	4	2	0.2182	12	10	8
12	9	4	3	0.5091	12	10	9
12	9	4	4	0.2545	12	10	9
12	9	5	2	0.0455	12	10	9
12	9	5	3	0.3182	12	10	10
12	9	5	4	0.4773	12	10	10
12	9	5	5	0.1591	12	10	10
12	9	6	3	0.0909	12	11	1
12	9	6	4	0.4091	12	11	1
12	9	6	5	0.4091	12	11	2
12	9	6	6	0.0909	12	11	2
12	9	7	4	0.1591	12	11	3
12	9	7	5	0.4773	12	11	3
12	9	7_	6	0.3182	12	11	4
12	9	7_		0.0455	12	11	4
12	9	8	5	0.2545	12	11	5
12	9	8	6	0.5091	12	11	5

N	n	М	х	fн
12	11	6	5	0.5000
12	11	6	6	0.5000
12	11	7	6	0.5833
12	11	7	7	0.4167
12	11	8	7	0.6667
12	11	8	8	0.3333
12	11	9	8	0.7500
12	11	9	9	0.2500
12	11	10	9	0.8333
12	11	10	10	0.1667
12	11	11	10	0.9167
12	11	11	11	0.0833

$$F_H(x \mid N; n; M) = \sum_{\nu=0}^{x} \frac{\binom{M}{\nu} \binom{N-M}{n-\nu}}{\binom{N}{n}}$$
 for $x = 0, 1, ..., n$

For M > n the following applies: $F_H(x \mid N; n; M) = F_H(x \mid N; M; n)$

N	n	М	х	F_H	N	n	М	х	F_H	N	n	М	х	F_H
_ 2	1	1	0	0.5000	5	3	2	0	0.1000	_6	4	1	0	0.3333
_2	1	1	1	1.0000	5	3	2	1	0.7000	6	4	1	1	1.0000
3	1	1	0	0.6667	5	3	2	2	1.0000	6	4	2	0	0.0667
3	1	1	1	1.0000	5	3	3	1	0.3000	_6	4	2	1	0.6000
_3	2	1	0	0.3333	5	3	3	2	0.9000	6	4	2	2	1.0000
3	2	1	1	1.0000	5	3	3	3	1.0000	6	4	3	1	0.2000
_3	2	2	1	0.6667	5	4	1	0	0.2000	_6_	4	3	2	0.8000
_3	2	2	2	1.0000	5	4	1	1	1.0000	6	4	3	3	1.0000
_ 4	1	1	0	0.7500	5	4	2	1	0.4000	6	4	4	2	0.4000
4	1	1	1	1.0000	5	4	2	2	1.0000	_6_	4	4	3	0.9333
4	2	1	0	0.5000	5	4	3	2	0.6000	6	4	4	4	1.0000
4	2	1	1	1.0000	5	4	3	3	1.0000	6	5	1	0	0.1667
_ 4	2	2	0	0.1667	5	4	4	3	0.8000	6	5	1	1	1.0000
_ 4	2	2	1	0.8333	5	4	4	4	1.0000	6	5	2	1	0.3333
_4	2	2	2	1.0000	6	1	1	0	0.8333	6	5	2	2	1.0000
_4	3	1	0	0.2500	6	1	1	1	1.0000	6	5	3	2	0.5000
4	3	1	1	1.0000	6	2	1	0	0.6667	6	5	3	3	1.0000
_ 4	3	2	1	0.5000	6	2	1	1	1.0000	6	5	4	3	0.6667
_4	3	2	2	1.0000	6	2	2	0	0.4000	6	5	4	4	1.0000
_4	3	3	2	0.7500	6	2	2	1	0.9333	6	5	5	4	0.8333
4	3	3	3	1.0000	6	2	2	2	1.0000	6	5	5	5	1.0000
_ 5	1	1	0	0.8000	6	3	1	0	0.5000	7	1	1	0	0.8571
_5	1	1	1	1.0000	6	3	1	1	1.0000	7	1	1	1	1.0000
_5	2	1	0	0.6000	6	3	2	0	0.2000	_7_	2	1	0	0.7143
_5	2	1	1	1.0000	6	3	2	1	0.8000	7	2	1	1	1.0000
_5	2	2	0	0.3000	6	3	2	2	1.0000	7	2	2	0	0.4762
_5	2	2	1	0.9000	6	3	3	0	0.0500	_7_	2	2	1	0.9524
_5	2	2	2	1.0000	6	3	3	1	0.5000	7	2	2	2	1.0000
_ 5	3	1	0	0.4000	6	3	3	2	0.9500	7	3	1	0	0.5714
5	3	1	1	1.0000	6	3	3	3	1.0000	7	3	1	1	1.0000
						_	_			_		_	_	

$\overline{}$				_					_					
N	n	М	х	F_H	N	n	М	х	F_H	N	n	М	х	F_H
7_	3	2	0	0.2857	7	6	6	6	1.0000	8	5	5	3	0.7143
7	3	2	1	0.8571	_8_	1_	1	0	0.8750	8	5	5	4	0.9821
_ 7	3	2	2	1.0000	8	1	1	1	1.0000	8	5	5	5	1.0000
7	3	3	0	0.1143	8	2	1	0	0.7500	8	6	1	0	0.2500
7	3	3	1	0.6286	8	2	1	1	1.0000	8	6	1	1	1.0000
7	3	3	2	0.9714	8	2	2	0	0.5357	8	6	2	0	0.0357
7	3	3	3	1.0000	8_	2	2	1	0.9643	8	6	2	1	0.4643
7	4	1	0	0.4286	8	2	2	2	1.0000	8	6	2	2	1.0000
7	4	1	1	1.0000	8	3	1	0	0.6250	8	6	3	1	0.1071
7	4	2	0	0.1429	8	3	1	1	1.0000	8	6	3	2	0.6429
7	4	2	1	0.7143	8	3	2	0	0.3571	8	6	3	3	1.0000
_ 7	4	2	2	1.0000	8	3	2	1	0.8929	8	6	4	2	0.2143
7	4	3	0	0.0286	8	3	2	2	1.0000	8	6	4	3	0.7857
_7	4	3	1	0.3714	8	3	3	0	0.1786	8	6	4	4	1.0000
_ 7	4	3	2	0.8857	8	3	3	1	0.7143	8	6	5	3	0.3571
_ 7	4	3	3	1.0000	8	3	3	2	0.9821	8	6	5	4	0.8929
_ 7	4	4	1	0.1143	8	3	3	3	1.0000	8	6	5	5	1.0000
_ 7	4	4	2	0.6286	8	4	1	0	0.5000	8	6	6	4	0.5357
7	4	4	3	0.9714	8	4	1	1	1.0000	8	6	6	5	0.9643
7	4	4	4	1.0000	8	4	2	0	0.2143	8	6	6	6	1.0000
7	5	1	0	0.2857	8	4	2	1	0.7857	8	7	1	0	0.1250
_ 7	5	1	1	1.0000	8	4	2	2	1.0000	8	7	1	1	1.0000
7	5	2	0	0.0476	8	4	3	0	0.0714	8	7	2	1	0.2500
7	5	2	1	0.5238	8	4	3	1	0.5000	8	7	2	2	1.0000
7	5	2	2	1.0000	8	4	3	2	0.9286	8	7	3	2	0.3750
7	5	3	1	0.1429	8	4	3	3	1.0000	8	7	3	3	1.0000
7	5	3	2	0.7143	8	4	4	0	0.0143	8	7	4	3	0.5000
7	5	3	3	1.0000	8	4	4	1	0.2429	8	7	4	4	1.0000
7	5	4	2	0.2857	8	4	4	2	0.7571	8	7	5	4	0.6250
7	5	4	3	0.8571	8	4	4	3	0.9857	8	7	5	5	1.0000
7	5	4	4	1.0000	8	4	4	4	1.0000	8	7	6	5	0.7500
7	5	5	3	0.4762	8	5	1	0	0.3750	8	7	6	6	1.0000
7	5	5	4	0.9524	8	5	1	1	1.0000	8	7	7	6	0.8750
7	5	5	5	1.0000	8	5	2	0	0.1071	8	7	7	7	1.0000
7	6	1	0	0.1429	8	5	2	1	0.6429	9	1	1	0	0.8889
7	6	1	1	1.0000	8	5	2	2	1.0000	9	1	1	1	1.0000
7	6	2	1	0.2857	8	5	3	0	0.0179	9	2	1	0	0.7778
7	6	2	2	1.0000	8	5	3	1	0.2857	9	2	1	1	1.0000
7	6	3	2	0.4286	8	5	3	2	0.8214	9	2	2	0	0.5833
7	6	3	3	1.0000	8	5	3	3	1.0000	9	2	2	1	0.9722
7	6	4	3	0.5714	8	5	4	1	0.0714	9	2	2	2	1.0000
7	6	4	4	1.0000	8	5	4	2	0.5000	9	3	1	0	0.6667
7	6	5	4	0.7143	8	5	4	3	0.9286	9	3	1	1	1.0000
7	6	5	5	1.0000	8	5	4	4	1.0000	9	3	2	0	0.4167
7	6	6	5	0.8571	8	5	5	2	0.1786	9	3	2	1	
	υ	υ	J	0.0371	U	J	J	۷	0.1700	Э	J	2		0.9167

N	n	М	х	F_H	N	n	M	х	F_H	N	n	M	х	F_H
_ 9	3	2	2	1.0000	9	6	3	2	0.7619	_ 9	8	6	6	1.0000
_ 9	3	3	0	0.2381	9	6	3	3	1.0000	9	8	7	6	0.7778
_ 9	3	3	1	0.7738	9	6	4	1	0.0476	9	8	7	7	1.0000
_ 9	3	3	2	0.9881	9	6	4	2	0.4048	9	8	8	7	0.8889
9	3	3	3	1.0000	9	6	4	3	0.8810	_9_	8	8	8	1.0000
_ 9	4	1	0	0.5556	9	6	4	4	1.0000	10	1	1	0	0.9000
9	4	1	1	1.0000	9	6	5	2	0.1190	_10_	1	1	1	1.0000
_ 9	4	2	0	0.2778	9	6	5	3	0.5952	_10	2	1	0	0.8000
_ 9	4	2	1	0.8333	9	6	5	4	0.9524	10	2	1	1	1.0000
_ 9	4	2	2	1.0000	_9_	6	5	5	1.0000	_10	2	2	0	0.6222
_ 9	4	3	0	0.1190	9	6	6	3	0.2381	_10	2	2	1	0.9778
_ 9	4	3	1	0.5952	9	6	6	4	0.7738	10	2	2	2	1.0000
_ 9	4	3	2	0.9524	9	6	6	5	0.9881	10	3	1	0	0.7000
9	4	3	3	1.0000	9	6	6	6	1.0000	10	3	1	1	1.0000
_ 9	4	4	0	0.0397	9	7	1	0	0.2222	_10	3	2	0	0.4667
_ 9	4	4	1	0.3571	9	7	1	1	1.0000	10	3	2	1	0.9333
_ 9	4	4	2	0.8333	9	7	2	0	0.0278	10	3	2	2	1.0000
_ 9	4	4	3	0.9921	9	7	2	1	0.4167	10	3	3	0	0.2917
9	4	4	4	1.0000	9	7	2	2	1.0000	10	3	3	1	0.8167
9	5	1	0	0.4444	9	7	3	1	0.0833	10	3	3	2	0.9917
9	5	1	1	1.0000	9	7	3	2	0.5833	10	3	3	3	1.0000
9	5	2	0	0.1667	9	7	3	3	1.0000	10	4	1	0	0.6000
9	5	2	1	0.7222	9	7	4	2	0.1667	10	4	1	1	1.0000
9	5	2	2	1.0000	9	7	4	3	0.7222	10	4	2	0	0.3333
9	5	3	0	0.0476	9	7	4	4	1.0000	10	4	2	1	0.8667
9	5	3	1	0.4048	9	7	5	3	0.2778	10	4	2	2	1.0000
_ 9	5	3	2	0.8810	9	7	5	4	0.8333	10	4	3	0	0.1667
9	5	3	3	1.0000	9	7	5	5	1.0000	10	4	3	1	0.6667
9	5	4	0	0.0079	9	7	6	4	0.4167	10	4	3	2	0.9667
_ 9	5	4	1	0.1667	9	7	6	5	0.9167	10	4	3	3	1.0000
_ 9	5	4	2	0.6429	9	7	6	6	1.0000	10	4	4	0	0.0714
_ 9	5	4	3	0.9603	9	7	7	5	0.5833	10	4	4	1	0.4524
9	5	4	4	1.0000	9	7	7	6	0.9722	10	4	4	2	0.8810
_ 9	5	5	1	0.0397	9	7	7	7	1.0000	10	4	4	3	0.9952
9	5	5	2	0.3571	9	8	1	0	0.1111	10	4	4	4	1.0000
_ 9	5	5	3	0.8333	9	8	1	1	1.0000	10	5	1	0	0.5000
_ 9	5	5	4	0.9921	9	8	2	1	0.2222	10	5	1	1	1.0000
9	5	5	5	1.0000	9	8	2	2	1.0000	10	5	2	0	0.2222
9	6	1	0	0.3333	9	8	3	2	0.3333	10	5	2	1	0.7778
9	6	1	1	1.0000	9	8	3	3	1.0000	10	5	2	2	1.0000
9	6	2	0	0.0833	9	8	4	3	0.4444	10	5	3	0	0.0833
9	6	2	1	0.5833	9	8	4	4	1.0000	10	5	3	1	0.5000
9	6	2	2	1.0000	9	8	5	4	0.5556	10	5	3	2	0.9167
9	6	3	0	0.0119	9	8	5	5	1.0000	10	5	3	3	1.0000
9	6	3	1	0.2262	9	8	6	5	0.6667	10	5	4	0	0.0238

										_				
N	n	М	х	F_H	N	n	M	Х	F_H	N	n	M	х	F_H
_10	5	4	1	0.2619	10	7	4	3	0.8333	_10	9	5	4	0.5000
_10	5	4	2	0.7381	10	7	4	4	1.0000	10	9	5	5	1.0000
_10	5	4	3	0.9762	10	7	5	2	0.0833	_10	9	6	5	0.6000
10	5	4	4	1.0000	10	7	5	3	0.5000	10	9	6	6	1.0000
_10	5	5	0	0.0040	10	7	5	4	0.9167	_10	9	7	6	0.7000
_10	5	5	1	0.1032	10	7	5	5	1.0000	10	9	7	7	1.0000
_10	5	5	2	0.5000	_10	7	6	3	0.1667	10	9	8	7	0.8000
_10	5	5	3	0.8968	10	7	6	4	0.6667	10	9	8	8	1.0000
_10	5	5	4	0.9960	10	7	6	5	0.9667	_10	9	9	8	0.9000
10	5	5	5	1.0000	10	7	6	6	1.0000	10	9	9	9	1.0000
_10	6	1	0	0.4000	_10	7	7	4	0.2917	_11_	1	1	0	0.9091
_10	6	1	1	1.0000	10	7	7	5	0.8167	11	1	1	1	1.0000
_10	6	2	0	0.1333	10	7	7	6	0.9917	11	2	1	0	0.8182
_10	6	2	1	0.6667	10	7	7	7	1.0000	11	2	1	1	1.0000
10	6	2	2	1.0000	10	8	1	0	0.2000	11	2	2	0	0.6545
_10	6	3	0	0.0333	10	8	1	1	1.0000	11	2	2	1	0.9818
_10	6	3	1	0.3333	10	8	2	0	0.0222	11	2	2	2	1.0000
_10	6	3	2	0.8333	_10_	8	2	1	0.3778	11	3	1	0	0.7273
10	6	3	3	1.0000	10	8	2	2	1.0000	11	3	1	1	1.0000
_10	6	4	0	0.0048	10	8	3	1	0.0667	11	3	2	0	0.5091
_10	6	4	1	0.1190	10	8	3	2	0.5333	11	3	2	1	0.9455
_10	6	4	2	0.5476	10	8	3	3	1.0000	11	3	2	2	1.0000
_10	6	4	3	0.9286	10	8	4	2	0.1333	11	3	3	0	0.3394
_10	6	4	4	1.0000	10	8	4	3	0.6667	11	3	3	1	0.8485
_10	6	5	1	0.0238	10	8	4	4	1.0000	11	3	3	2	0.9939
_10	6	5	2	0.2619	10	8	5	3	0.2222	11	3	3	3	1.0000
_10	6	5	3	0.7381	10	8	5	4	0.7778	_11	4	1	0	0.6364
_10	6	5	4	0.9762	10	8	5	5	1.0000	11	4	1	1	1.0000
10	6	5	5	1.0000	10	8	6	4	0.3333	11	4	2	0	0.3818
_10	6	6	2	0.0714	10	8	6	5	0.8667	_11_	4	2	1	0.8909
_10	6	6	3	0.4524	10	8	6	6	1.0000	11	4	2	2	1.0000
_10	6	6	4	0.8810	10	8	7	5	0.4667	11	4	3	0	0.2121
10	6	6	5	0.9952	10	8	7	6	0.9333	_11	4	3	1	0.7212
_10	6	6	6	1.0000	10	8	7	7	1.0000	_11_	4	3	2	0.9758
_10	7	1	0	0.3000	10	8	8	6	0.6222	11	4	3	3	1.0000
10	7	1	1	1.0000	10	8	8	7	0.9778	_11	4	4	0	0.1061
_10	7	2	0	0.0667	10	8	8	8	1.0000	11	4	4	1	0.5303
_10	7	2	1	0.5333	10	9	1	0	0.1000	_11_	4	4	2	0.9121
_10	7	2	2	1.0000	10	9	1	1	1.0000	11	4	4	3	0.9970
_10	7	3	0	0.0083	10	9	2	1	0.2000	_11_	4	4	4	1.0000
_10	7	3	1	0.1833	10	9	2	2	1.0000	_11	5	1	0	0.5455
_10	7	3	2	0.7083	10	9	3	2	0.3000	11	5	1	1	1.0000
10	7	3	3	1.0000	10	9	3	3	1.0000	_11_	5	2	0	0.2727
_10	7	4	1	0.0333	10	9	4	3	0.4000	_11_	5	2	1	0.8182
10	7	4	2	0.3333	10	9	4	4	1.0000	11	5	2	2	1.0000

N	n	М	х	F_H	N	n	М	х	F_H	N	n	М	х	F_H
11	5	3	0	0.1212	11	7	2	2	1.0000	11	8	6	6	1.0000
11	5	3	1	0.5758	11	7	3	0	0.0242	11	8	7	4	0.2121
11	5	3	2	0.9394	11	7	3	1	0.2788	11	8	7	5	0.7212
11	5	3	3	1.0000	11	7	3	2	0.7879	11	8	7	6	0.9758
11	5	4	0	0.0455	11	7	3	3	1.0000	11	8	7	7	1.0000
11	5	4	1	0.3485	11	7	4	0	0.0030	11	8	8	5	0.3394
11	5	4	2	0.8030	11	7	4	1	0.0879	_11	8	8	6	0.8485
_11	5	4	3	0.9848	11	7	4	2	0.4697	_11_	8	8	7	0.9939
11	5	4	4	1.0000	11	7	4	3	0.8939	11	8	8	8	1.0000
_11	5	5	0	0.0130	11	7	4	4	1.0000	11	9	1	0	0.1818
11	5	5	1	0.1753	11	7	5	1	0.0152	_11	9	1	1	1.0000
_11	5	5	2	0.6082	11	7	5	2	0.1970	_11_	9	2	0	0.0182
11	5	5	3	0.9329	11	7	5	3	0.6515	11	9	2	1	0.3455
_11	5	5	4	0.9978	11	7	5	4	0.9545	11	9	2	2	1.0000
11	5	5	5	1.0000	11	7	5	5	1.0000	_11_	9	3	1_	0.0545
11	6	1	0	0.4545	11	7	6	2	0.0455	_11_	9	3	2	0.4909
11	6	1	1	1.0000	_11_	7	6	3	0.3485	11	9	3	3	1.0000
_11	6	2	0	0.1818	11	7	6	4	0.8030	11	9	4	2	0.1091
11	6	2	1	0.7273	11	7	6	5	0.9848	11	9	4	3	0.6182
_11	6	2	2	1.0000	11	7	6	6	1.0000	11	9	4	4	1.0000
_11	6	3	0	0.0606	11	7	7	3	0.1061	11	9	5	3	0.1818
11	6	3	1	0.4242	11	7_	7_	4	0.5303	11	9	5	4	0.7273
11	6	3	2	0.8788	11	7_	7_	5	0.9121	11	9	5	5	1.0000
11	6	3	3	1.0000	11	7_	7_	6	0.9970	11	9	6	4_	0.2727
_11	6	4	0	0.0152	11	7	7	7	1.0000	11	9	6	5	0.8182
	6	4	1_	0.1970	11	8	1	0	0.2727	11	9	6	6	1.0000
11	6	4	2	0.6515	11	8	1	1	1.0000	11	9	7	5	0.3818
11	6	4	3	0.9545	11	8	2	0	0.0545	11	9	7_	6	0.8909
11	6	4	4	1.0000	11	8_	2	1	0.4909	11	9	7	7	1.0000
	6	5	0	0.0022	11	8	2	2	1.0000	11	9	8	6	0.5091
11	6	5	1	0.0671	11	8	3	0	0.0061	11	9	8	7	0.9455
11	6	5	2	0.3918	11	8	3	1	0.1515	11	9	8	8	1.0000
11	6	5	<u>3</u> 4	0.8247	11	8	3	2	0.6606	11	9	9	7	0.6545
11	6	<u>5</u> 5	_ 4 5	1.0000	11	8	3 4	3 1	1.0000 0.0242	11	9	9	<u>8</u> 9	0.9818
11	6	6	1	0.0130	11	8	4	2	0.0242		9	_		1.0000
11	6	6	2	0.0130	11	8	4	3	0.7879	11	10	1	<u>0</u> 1	0.0909
11	6	6	3	0.6082	11	8	4	4	1.0000		10	1	1	1.0000
11	6	6	4	0.9329	11	8	5	2	0.0606	11 11	10 10	2	2	0.1818 1.0000
11	6	6	5	0.9978	11	8	5	3	0.4242	11	10	3	2	0.2727
11	6	6	6	1.0000	11	8	5	4	0.4242	11	10	3	3	1.0000
11	7	1	0	0.3636	11	8	5	5	1.0000	11	10	4	3	0.3636
11	7	1	1	1.0000	11	8	6	3	0.1212	11	10	4	4	1.0000
11	7	2	0	0.1091	11	8	6	4	0.5758	11	10	5	4	0.4545
11	7	2	1	0.6182	11	8	6	5	0.9394	11	10	5	5	1.0000
											10	J	J	1.0000

3.7		1.7		-										
N	n	M	х	F_H	N	n	M	Х	F_H	N	n	М	Х	F_H
	10	6	5	0.5455	12	5	3	0	0.1591	_12	7	2	1	0.6818
_11	10	6	6	1.0000	12	5	3	1	0.6364	12	7	2	2	1.0000
11	10	7	6	0.6364	12	5	3	2	0.9545	_12	7	3	0	0.0455
_11	10	7	7	1.0000	12	5	3	3	1.0000	_12	7	3	1	0.3636
_11	10	8	7	0.7273	12	5	4	0	0.0707	_12_	7	3	2	0.8409
_11	10	8	8	1.0000	12	5	4	1	0.4242	12	7	3	3	1.0000
_11	10	9	8	0.8182	12	5	4	2	0.8485	_12	7	4	0	0.0101
_11	10	9	9	1.0000	12	5	4	3	0.9899	_12_	7	4	1	0.1515
11	10	10	9	0.9091	12	5	4	4	1.0000	_12_	7	4	2	0.5758
_11	10	10	10	1.0000	12	5	5	0	0.0265	_12	7	4	3	0.9293
_12	1	1	0	0.9167	12	5	5	1	0.2475	12	7	4	4	1.0000
_12	1	1	1	1.0000	12	5	5	2	0.6894	_12_	7	5	0	0.0013
_12	2	1	0	0.8333	12	5	5	3	0.9545	_12	7	5	1	0.0455
12	2	1	1	1.0000	12	5	5	4	0.9987	_12	7	5	2	0.3106
_12	2	2	0	0.6818	12	5	5	5	1.0000	_12_	7	5	3	0.7525
_12	2	2	1	0.9848	12	6	1	0	0.5000	_12	7	5	4	0.9735
_12	2	2	2	1.0000	12	6	1	1	1.0000	12	7	5	5	1.0000
_12	3	1	0	0.7500	12	6	2	0	0.2273	_12_	7	6	1	0.0076
12	3	1	1	1.0000	12	6	2	1	0.7727	_12	7	6	2	0.1212
12	3	2	0	0.5455	12	6	2	2	1.0000	_12	7	6	3	0.5000
_12	3	2	1	0.9545	12	6	3	0	0.0909	_12_	7	6	4	0.8788
_12	3	2	2	1.0000	12	6	3	1	0.5000	_12	7	6	5	0.9924
_12	3	3	0	0.3818	12	6	3	2	0.9091	12	7	6	6	1.0000
_12	3	3	1	0.8727	12	6	3	3	1.0000	_12_	7	7	2	0.0265
_12	3	3	2	0.9955	12	6	4	0	0.0303	_12_	7	7	3	0.2475
12	3	3	3	1.0000	12	6	4	1	0.2727	_12	7	7	4	0.6894
_12	4	1	0	0.6667	12	6	4	2	0.7273	_12_	7	7	5	0.9545
12	4	1	1	1.0000	12	6	4	3	0.9697	_12	7	7	6	0.9987
12	4	2	0	0.4242	12	6	4	4	1.0000	12	7	7	7	1.0000
12	4	2	1	0.9091	12	6	5	0	0.0076	_12_	8	1	0	0.3333
12	4	2	2	1.0000	12	6	5	1	0.1212	12	8	1	1	1.0000
12	4	3	0	0.2545	12	6	5	2	0.5000	_12_	8	2	0	0.0909
12	4	3	1	0.7636	12	6	5	3	0.8788	_12	8	2	1	0.5758
12	4	3	2	0.9818	12	6	5	4	0.9924	12	8	2	2	1.0000
12	4	3	3	1.0000	12	6	5	5	1.0000	12	8	3	0	0.0182
12	4	4	0	0.1414	12	6	6	0	0.0011	_12_	8	3	1	0.2364
12	4	4	1	0.5939	12	6	6	1	0.0400	12	8	3	2	0.7455
12	4	4	2	0.9333	12	6	6	2	0.2835	12	8	3	3	1.0000
12	4	4	3	0.9980	12	6	6	3	0.7165	_12	8	4	0	0.0020
12	4	4	4	1.0000	12	6	6	4	0.9600	_12_	8	4	1	0.0667
12	5	1	0	0.5833	12	6	6	5	0.9989	_12	8	4	2	0.4061
12	5	1	1	1.0000	12	6	6	6	1.0000	_12_	8	4	3	0.8586
12	5	2	0	0.3182	12	7	1	0	0.4167	12	8	4	4	1.0000
12	5	2	1	0.8485	12	7	1	1	1.0000	_12	8	5	1	0.0101
12	5	2	2	1.0000	12	7	2	0	0.1515	12	8	5	2	0.1515

					_
N	n	M	х	F_H	
12	8	5	3	0.5758	_1
12	8	5	4	0.9293	_1
12	8	5	5	1.0000	_1
12	8	6	2	0.0303	_1
12	8	6	3	0.2727	_1
12	8	6	4	0.7273	_1
12	8	6	5	0.9697	_1
12	8	6	6	1.0000	_1
12	8	7	3	0.0707	_1
12	8	7	4	0.4242	_1
12	8	7	5	0.8485	_1
12	8	7	6	0.9899	_1
12	8	7	7	1.0000	_1
12	8	8	4	0.1414	_1
12	8	8	5	0.5939	_1
12	8	8	6	0.9333	_1
12	8	8	7	0.9980	_1
12	8	8	8	1.0000	_1
12	9	1	0	0.2500	_1
12	9	1	1	1.0000	_1
12	9	2	0	0.0455	_1
12	9	2	1	0.4545	_1
12	9	2	2	1.0000	_1
12	9	3	0	0.0045	_1
12	9	3	1	0.1273	_1
12	9	3	2	0.6182	_1
12	9	3	3	1.0000	_1
12	9	4	1	0.0182	_1
12	9	4	2	0.2364	_1
12	9	4	3	0.7455	_1
12	9	4	4	1.0000	_1
12	9	5	2	0.0455	_1
12	9	5	3	0.3636	_1
12	9	5	4	0.8409	_1
12	9	5	5	1.0000	_1
12	9	6	3	0.0909	_1
12	9	6	4	0.5000	_1
12	9	6	5	0.9091	_1
12	9	6	6	1.0000	_1
12	9	7	4	0.1591	_1
12	9	7	5	0.6364	_1
12	9	7_	6	0.9545	_1
12	9	7	7	1.0000	_1
12	9	8	5	0.2545	_1
12	9	8	6	0.7636	_1

N	n	М	х	F_H
12	9	8	7	0.9818
12	9	8	8	1.0000
12	9	9	6	0.3818
12	9	9	7	0.8727
12	9	9	8	0.9955
12	9	9	9	1.0000
12	10	1	0	0.1667
12	10	1	1	1.0000
12	10	2	0	0.0152
12	10	2	1	0.3182
12	10	2	2	1.0000
12	10	3	1	0.0455
12	10	3	2	0.4545
12	10	3	3	1.0000
12	10	4	2	0.0909
12	10	4	3	0.5758
12	10	4	4	1.0000
12	10	5	3	0.1515
12	10	5	4	0.6818
12	10	5	5	1.0000
12	10	6	4	0.2273
12	10	6	5	0.7727
12	10	6	6	1.0000
12	10	7	5	0.3182
12	10	7	6	0.8485
12	10	7	7	1.0000
12	10	8	6	0.4242
12	10	8	7	0.9091
12	10	8	8	1.0000
12	10	9	7	0.5455
12	10	9	8	0.9545
12	10	9	9	1.0000
12	10	10	8	0.6818
12	10	10	9	0.9848
12	10	10	10	1.0000
12	11	1	0	0.0833
12	11	1	1	1.0000
12	11	2	1	0.1667
12	11	2	2	1.0000
12	11	3	2	0.2500
12	11	3	3	1.0000
12	11	4	3	0.3333
12	11	4	4	1.0000
12	11	5	4	0.4167
12	11	5	5	1.0000

N	n	M	х	F_H
12	11	6	5	0.5000
12	11	6	6	1.0000
12	11	7	6	0.5833
12	11	7	7	1.0000
12	11	8	7	0.6667
12	11	8	8	1.0000
12	11	9	8	0.7500
12	11	9	9	1.0000
12	11	10	9	0.8333
12	11	10	10	1.0000
12	11	11	10	0.9167
12	11	11	11	1.0000

Poisson Distribution - Probability Mass Function

$$f_P(x \,|\, \mu) = \begin{cases} \frac{\mu^x e^{-\mu}}{x!} & \text{ for } \ x = 0, \ 1, \ \dots & \text{ with } \ \mu > 0 \end{cases} \quad e = 2.71828...$$

$$0 \quad \text{ others}$$

х		μ												
	0.001	0.005	0.010	0.015	0.020	0.025	0.030	0.035	0.040					
0	0.9990	0.9950	0.9900	0.9851	0.9802	0.9753	0.9704	0.9656	0.9608					
1	0.0010	0.0050	0.0099	0.0148	0.0196	0.0244	0.0291	0.0338	0.0384					
2	0.0000	0.0000	0.0000	0.0001	0.0002	0.0003	0.0004	0.0006	0.0008					

х		μ												
	0.045	0.050	0.055	0.060	0.065	0.070	0.075	0.080	0.085					
0	0.9560	0.9512	0.9465	0.9418	0.9371	0.9324	0.9277	0.9231	0.9185					
1	0.0430	0.0476	0.0521	0.0565	0.0609	0.0653	0.0696	0.0738	0.0781					
2	0.0010	0.0012	0.0014	0.0017	0.0020	0.0023	0.0026	0.0030	0.0033					
3	0.0000	0.0000	0.0000	0.0000	0.0000	0.0001	0.0001	0.0001	0.0001					

х		μ											
	0.090	0.100	0.150	0.200	0.300	0.400	0.500	0.600	0.700				
0	0.9139	0.9048	0.8607	0.8187	0.7408	0.6703	0.6065	0.5488	0.4966				
1	0.0823	0.0905	0.1291	0.1637	0.2222	0.2681	0.3033	0.3293	0.3476				
2	0.0037	0.0045	0.0097	0.0164	0.0333	0.0536	0.0758	0.0988	0.1217				
3	0.0001	0.0002	0.0005	0.0011	0.0033	0.0072	0.0126	0.0198	0.0284				
4	0.0000	0.0000	0.0000	0.0001	0.0003	0.0007	0.0016	0.0030	0.0050				
5	0.0000	0.0000	0.0000	0.0000	0.0000	0.0001	0.0002	0.0004	0.0007				
6	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0001				

х					μ				
	0.800	0.900	1.000	1.100	1.200	1.300	1.400	1.500	1.600
0	0.4493	0.4066	0.3679	0.3329	0.3012	0.2725	0.2466	0.2231	0.2019
1	0.3595	0.3659	0.3679	0.3662	0.3614	0.3543	0.3452	0.3347	0.3230
2	0.1438	0.1647	0.1839	0.2014	0.2169	0.2303	0.2417	0.2510	0.2584
3	0.0383	0.0494	0.0613	0.0738	0.0867	0.0998	0.1128	0.1255	0.1378
4	0.0077	0.0111	0.0153	0.0203	0.0260	0.0324	0.0395	0.0471	0.0551
5	0.0012	0.0020	0.0031	0.0045	0.0062	0.0084	0.0111	0.0141	0.0176
6	0.0002	0.0003	0.0005	0.0008	0.0012	0.0018	0.0026	0.0035	0.0047
7	0.0000	0.0000	0.0001	0.0001	0.0002	0.0003	0.0005	0.0008	0.0011
8	0.0000	0.0000	0.0000	0.0000	0.0000	0.0001	0.0001	0.0001	0.0002

261

Poisson Distribution - Probability Mass Function

х					μ				
	1.700	1.800	1.900	2.000	2.100	2.200	2.300	2.400	2.500
0	0.1827	0.1653	0.1496	0.1353	0.1225	0.1108	0.1003	0.0907	0.0821
_1	0.3106	0.2975	0.2842	0.2707	0.2572	0.2438	0.2306	0.2177	0.2052
2	0.2640	0.2678	0.2700	0.2707	0.2700	0.2681	0.2652	0.2613	0.2565
3	0.1496	0.1607	0.1710	0.1804	0.1890	0.1966	0.2033	0.2090	0.2138
4	0.0636	0.0723	0.0812	0.0902	0.0992	0.1082	0.1169	0.1254	0.1336
5	0.0216	0.0260	0.0309	0.0361	0.0417	0.0476	0.0538	0.0602	0.0668
6	0.0061	0.0078	0.0098	0.0120	0.0146	0.0174	0.0206	0.0241	0.0278
7	0.0015	0.0020	0.0027	0.0034	0.0044	0.0055	0.0068	0.0083	0.0099
8	0.0003	0.0005	0.0006	0.0009	0.0011	0.0015	0.0019	0.0025	0.0031
9	0.0001	0.0001	0.0001	0.0002	0.0003	0.0004	0.0005	0.0007	0.0009
10	0.0000	0.0000	0.0000	0.0000	0.0001	0.0001	0.0001	0.0002	0.0002

х					μ				
	2.600	2.700	2.800	2.900	3.000	3.100	3.200	3.300	3.400
0	0.0743	0.0672	0.0608	0.0550	0.0498	0.0450	0.0408	0.0369	0.0334
1	0.1931	0.1815	0.1703	0.1596	0.1494	0.1397	0.1304	0.1217	0.1135
2	0.2510	0.2450	0.2384	0.2314	0.2240	0.2165	0.2087	0.2008	0.1929
3	0.2176	0.2205	0.2225	0.2237	0.2240	0.2237	0.2226	0.2209	0.2186
4	0.1414	0.1488	0.1557	0.1622	0.1680	0.1733	0.1781	0.1823	0.1858
5	0.0735	0.0804	0.0872	0.0940	0.1008	0.1075	0.1140	0.1203	0.1264
6	0.0319	0.0362	0.0407	0.0455	0.0504	0.0555	0.0608	0.0662	0.0716
7	0.0118	0.0139	0.0163	0.0188	0.0216	0.0246	0.0278	0.0312	0.0348
8	0.0038	0.0047	0.0057	0.0068	0.0081	0.0095	0.0111	0.0129	0.0148
9	0.0011	0.0014	0.0018	0.0022	0.0027	0.0033	0.0040	0.0047	0.0056
10	0.0003	0.0004	0.0005	0.0006	0.0008	0.0010	0.0013	0.0016	0.0019
11	0.0001	0.0001	0.0001	0.0002	0.0002	0.0003	0.0004	0.0005	0.0006
12	0.0000	0.0000	0.0000	0.0000	0.0001	0.0001	0.0001	0.0001	0.0002

x		μ													
	3.500	3.600	3.700	3.800	3.900	4.000	4.500	5.000	5.500						
0	0.0302	0.0273	0.0247	0.0224	0.0202	0.0183	0.0111	0.0067	0.0041						
1	0.1057	0.0984	0.0915	0.0850	0.0789	0.0733	0.0500	0.0337	0.0225						
2	0.1850	0.1771	0.1692	0.1615	0.1539	0.1465	0.1125	0.0842	0.0618						
3	0.2158	0.2125	0.2087	0.2046	0.2001	0.1954	0.1687	0.1404	0.1133						
4	0.1888	0.1912	0.1931	0.1944	0.1951	0.1954	0.1898	0.1755	0.1558						
5	0.1322	0.1377	0.1429	0.1477	0.1522	0.1563	0.1708	0.1755	0.1714						
6	0.0771	0.0826	0.0881	0.0936	0.0989	0.1042	0.1281	0.1462	0.1571						
7	0.0385	0.0425	0.0466	0.0508	0.0551	0.0595	0.0824	0.1044	0.1234						

Poisson Distribution - Probability Mass Function

х					μ				
	3.500	3.600	3.700	3.800	3.900	4.000	4.500	5.000	5.500
8	0.0169	0.0191	0.0215	0.0241	0.0269	0.0298	0.0463	0.0653	0.0849
9	0.0066	0.0076	0.0089	0.0102	0.0116	0.0132	0.0232	0.0363	0.0519
10	0.0023	0.0028	0.0033	0.0039	0.0045	0.0053	0.0104	0.0181	0.0285
11	0.0007	0.0009	0.0011	0.0013	0.0016	0.0019	0.0043	0.0082	0.0143
12	0.0002	0.0003	0.0003	0.0004	0.0005	0.0006	0.0016	0.0034	0.0065
13	0.0001	0.0001	0.0001	0.0001	0.0002	0.0002	0.0006	0.0013	0.0028
14	0.0000	0.0000	0.0000	0.0000	0.0000	0.0001	0.0002	0.0005	0.0011
15	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0001	0.0002	0.0004
16	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0001

x					μ				
	6.000	6.500	7.000	7.500	8.000	8.500	9.000	9.500	10.000
0	0.0025	0.0015	0.0009	0.0006	0.0003	0.0002	0.0001	0.0001	0.0000
1	0.0149	0.0098	0.0064	0.0041	0.0027	0.0017	0.0011	0.0007	0.0005
2	0.0446	0.0318	0.0223	0.0156	0.0107	0.0074	0.0050	0.0034	0.0023
_3	0.0892	0.0688	0.0521	0.0389	0.0286	0.0208	0.0150	0.0107	0.0076
_4	0.1339	0.1118	0.0912	0.0729	0.0573	0.0443	0.0337	0.0254	0.0189
_5	0.1606	0.1454	0.1277	0.1094	0.0916	0.0752	0.0607	0.0483	0.0378
_6	0.1606	0.1575	0.1490	0.1367	0.1221	0.1066	0.0911	0.0764	0.0631
7	0.1377	0.1462	0.1490	0.1465	0.1396	0.1294	0.1171	0.1037	0.0901
8	0.1033	0.1188	0.1304	0.1373	0.1396	0.1375	0.1318	0.1232	0.1126
_ 9	0.0688	0.0858	0.1014	0.1144	0.1241	0.1299	0.1318	0.1300	0.1251
10	0.0413	0.0558	0.0710	0.0858	0.0993	0.1104	0.1186	0.1235	0.1251
_11	0.0225	0.0330	0.0452	0.0585	0.0722	0.0853	0.0970	0.1067	0.1137
12	0.0113	0.0179	0.0263	0.0366	0.0481	0.0604	0.0728	0.0844	0.0948
13	0.0052	0.0089	0.0142	0.0211	0.0296	0.0395	0.0504	0.0617	0.0729
14	0.0022	0.0041	0.0071	0.0113	0.0169	0.0240	0.0324	0.0419	0.0521
_15	0.0009	0.0018	0.0033	0.0057	0.0090	0.0136	0.0194	0.0265	0.0347
16	0.0003	0.0007	0.0014	0.0026	0.0045	0.0072	0.0109	0.0157	0.0217
_17	0.0001	0.0003	0.0006	0.0012	0.0021	0.0036	0.0058	0.0088	0.0128
18	0.0000	0.0001	0.0002	0.0005	0.0009	0.0017	0.0029	0.0046	0.0071
_19	0.0000	0.0000	0.0001	0.0002	0.0004	0.0008	0.0014	0.0023	0.0037
20	0.0000	0.0000	0.0000	0.0001	0.0002	0.0003	0.0006	0.0011	0.0019
21	0.0000	0.0000	0.0000	0.0000	0.0001	0.0001	0.0003	0.0005	0.0009
22	0.0000	0.0000	0.0000	0.0000	0.0000	0.0001	0.0001	0.0002	0.0004
23	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0001	0.0002
24	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0001

$$F_P(x \mid \mu) = \sum_{v=0}^{x} \frac{\mu^v e^{-\mu}}{v!}$$
 with $e = 2.71828...$

х	μ ,												
	0.001	0.005	0.010	0.015	0.020	0.025	0.030	0.035	0.040				
0	0.9990	0.9950	0.9900	0.9851	0.9802	0.9753	0.9704	0.9656	0.9608				
1	1.0000	1.0000	1.0000	0.9999	0.9998	0.9997	0.9996	0.9994	0.9992				
2	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000				

х		μ												
	0.045	0.050	0.055	0.060	0.065	0.070	0.075	0.080	0.085					
0	0.9560	0.9512	0.9465	0.9418	0.9371	0.9324	0.9277	0.9231	0.9185					
1	0.9990	0.9988	0.9985	0.9983	0.9980	0.9977	0.9973	0.9970	0.9966					
2	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9999	0.9999	0.9999					
3	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000					

х		μ													
	0.090	0.100	0.150	0.200	0.300	0.400	0.500	0.600	0.700						
0	0.9139	0.9048	0.8607	0.8187	0.7408	0.6703	0.6065	0.5488	0.4966						
1	0.9962	0.9953	0.9898	0.9825	0.9631	0.9384	0.9098	0.8781	0.8442						
2	0.9999	0.9998	0.9995	0.9989	0.9964	0.9921	0.9856	0.9769	0.9659						
3	1.0000	1.0000	1.0000	0.9999	0.9997	0.9992	0.9982	0.9966	0.9942						
4	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9998	0.9996	0.9992						
5	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999						
6	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000						

x					μ				
	0.800	0.900	1.000	1.100	1.200	1.300	1.400	1.500	1.600
0	0.4493	0.4066	0.3679	0.3329	0.3012	0.2725	0.2466	0.2231	0.2019
1	0.8088	0.7725	0.7358	0.6990	0.6626	0.6268	0.5918	0.5578	0.5249
2	0.9526	0.9371	0.9197	0.9004	0.8795	0.8571	0.8335	0.8088	0.7834
3	0.9909	0.9865	0.9810	0.9743	0.9662	0.9569	0.9463	0.9344	0.9212
4	0.9986	0.9977	0.9963	0.9946	0.9923	0.9893	0.9857	0.9814	0.9763
5	0.9998	0.9997	0.9994	0.9990	0.9985	0.9978	0.9968	0.9955	0.9940
6	1.0000	1.0000	0.9999	0.9999	0.9997	0.9996	0.9994	0.9991	0.9987
7	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9999	0.9998	0.9997
8	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000

264 A Statistical Tables

х					μ				
	1.700	1.800	1.900	2.000	2.100	2.200	2.300	2.400	2.500
0	0.1827	0.1653	0.1496	0.1353	0.1225	0.1108	0.1003	0.0907	0.0821
1	0.4932	0.4628	0.4337	0.4060	0.3796	0.3546	0.3309	0.3084	0.2873
2	0.7572	0.7306	0.7037	0.6767	0.6496	0.6227	0.5960	0.5697	0.5438
3	0.9068	0.8913	0.8747	0.8571	0.8386	0.8194	0.7993	0.7787	0.7576
4	0.9704	0.9636	0.9559	0.9473	0.9379	0.9275	0.9162	0.9041	0.8912
5	0.9920	0.9896	0.9868	0.9834	0.9796	0.9751	0.9700	0.9643	0.9580
6	0.9981	0.9974	0.9966	0.9955	0.9941	0.9925	0.9906	0.9884	0.9858
_7	0.9996	0.9994	0.9992	0.9989	0.9985	0.9980	0.9974	0.9967	0.9958
8	0.9999	0.9999	0.9998	0.9998	0.9997	0.9995	0.9994	0.9991	0.9989
9	1.0000	1.0000	1.0000	1.0000	0.9999	0.9999	0.9999	0.9998	0.9997
10	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999
11	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000

х					μ				
	2.600	2.700	2.800	2.900	3.000	3.100	3.200	3.300	3.400
0	0.0743	0.0672	0.0608	0.0550	0.0498	0.0450	0.0408	0.0369	0.0334
1	0.2674	0.2487	0.2311	0.2146	0.1991	0.1847	0.1712	0.1586	0.1468
2	0.5184	0.4936	0.4695	0.4460	0.4232	0.4012	0.3799	0.3594	0.3397
3	0.7360	0.7141	0.6919	0.6696	0.6472	0.6248	0.6025	0.5803	0.5584
4	0.8774	0.8629	0.8477	0.8318	0.8153	0.7982	0.7806	0.7626	0.7442
5	0.9510	0.9433	0.9349	0.9258	0.9161	0.9057	0.8946	0.8829	0.8705
6	0.9828	0.9794	0.9756	0.9713	0.9665	0.9612	0.9554	0.9490	0.9421
7	0.9947	0.9934	0.9919	0.9901	0.9881	0.9858	0.9832	0.9802	0.9769
8	0.9985	0.9981	0.9976	0.9969	0.9962	0.9953	0.9943	0.9931	0.9917
9	0.9996	0.9995	0.9993	0.9991	0.9989	0.9986	0.9982	0.9978	0.9973
10	0.9999	0.9999	0.9998	0.9998	0.9997	0.9996	0.9995	0.9994	0.9992
11	1.0000	1.0000	1.0000	0.9999	0.9999	0.9999	0.9999	0.9998	0.9998
12	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999
13	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000

х		μ													
	3.500	3.600	3.700	3.800	3.900	4.000	4.500	5.000	5.500						
0	0.0302	0.0273	0.0247	0.0224	0.0202	0.0183	0.0111	0.0067	0.0041						
1	0.1359	0.1257	0.1162	0.1074	0.0992	0.0916	0.0611	0.0404	0.0266						
2	0.3208	0.3027	0.2854	0.2689	0.2531	0.2381	0.1736	0.1247	0.0884						
3	0.5366	0.5152	0.4942	0.4735	0.4532	0.4335	0.3423	0.2650	0.2017						
4	0.7254	0.7064	0.6872	0.6678	0.6484	0.6288	0.5321	0.4405	0.3575						
5	0.8576	0.8441	0.8301	0.8156	0.8006	0.7851	0.7029	0.6160	0.5289						

×					μ				
	3.500	3.600	3.700	3.800	3.900	4.000	4.500	5.000	5.500
6	0.9347	0.9267	0.9182	0.9091	0.8995	0.8893	0.8311	0.7622	0.6860
7	0.9733	0.9692	0.9648	0.9599	0.9546	0.9489	0.9134	0.8666	0.8095
8	0.9901	0.9883	0.9863	0.9840	0.9815	0.9786	0.9597	0.9319	0.8944
9	0.9967	0.9960	0.9952	0.9942	0.9931	0.9919	0.9829	0.9682	0.9462
10	0.9990	0.9987	0.9984	0.9981	0.9977	0.9972	0.9933	0.9863	0.9747
11	0.9997	0.9996	0.9995	0.9994	0.9993	0.9991	0.9976	0.9945	0.9890
12	0.9999	0.9999	0.9999	0.9998	0.9998	0.9997	0.9992	0.9980	0.9955
13	1.0000	1.0000	1.0000	1.0000	0.9999	0.9999	0.9997	0.9993	0.9983
14	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9998	0.9994
15	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9998
16	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999
17	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000

х					μ				
	6.000	6.500	7.000	7.500	8.000	8.500	9.000	9.500	10.000
0	0.0025	0.0015	0.0009	0.0006	0.0003	0.0002	0.0001	0.0001	0.0000
1	0.0174	0.0113	0.0073	0.0047	0.0030	0.0019	0.0012	0.0008	0.0005
_2	0.0620	0.0430	0.0296	0.0203	0.0138	0.0093	0.0062	0.0042	0.0028
_ 3	0.1512	0.1118	0.0818	0.0591	0.0424	0.0301	0.0212	0.0149	0.0103
4	0.2851	0.2237	0.1730	0.1321	0.0996	0.0744	0.0550	0.0403	0.0293
_ 5	0.4457	0.3690	0.3007	0.2414	0.1912	0.1496	0.1157	0.0885	0.0671
_6	0.6063	0.5265	0.4497	0.3782	0.3134	0.2562	0.2068	0.1649	0.1301
_ 7	0.7440	0.6728	0.5987	0.5246	0.4530	0.3856	0.3239	0.2687	0.2202
8	0.8472	0.7916	0.7291	0.6620	0.5925	0.5231	0.4557	0.3918	0.3328
9	0.9161	0.8774	0.8305	0.7764	0.7166	0.6530	0.5874	0.5218	0.4579
10	0.9574	0.9332	0.9015	0.8622	0.8159	0.7634	0.7060	0.6453	0.5830
_11	0.9799	0.9661	0.9467	0.9208	0.8881	0.8487	0.8030	0.7520	0.6968
12	0.9912	0.9840	0.9730	0.9573	0.9362	0.9091	0.8758	0.8364	0.7916
_13	0.9964	0.9929	0.9872	0.9784	0.9658	0.9486	0.9261	0.8981	0.8645
14	0.9986	0.9970	0.9943	0.9897	0.9827	0.9726	0.9585	0.9400	0.9165
15	0.9995	0.9988	0.9976	0.9954	0.9918	0.9862	0.9780	0.9665	0.9513
16	0.9998	0.9996	0.9990	0.9980	0.9963	0.9934	0.9889	0.9823	0.9730
_17	0.9999	0.9998	0.9996	0.9992	0.9984	0.9970	0.9947	0.9911	0.9857
_18	1.0000	0.9999	0.9999	0.9997	0.9993	0.9987	0.9976	0.9957	0.9928
19	1.0000	1.0000	1.0000	0.9999	0.9997	0.9995	0.9989	0.9980	0.9965
20	1.0000	1.0000	1.0000	1.0000	0.9999	0.9998	0.9996	0.9991	0.9984
21	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9998	0.9996	0.9993
22	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9999	0.9997
23	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9999
24	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000

$$f_N(z) = \frac{1}{\sqrt{2\pi}}e^{\frac{-z^2}{2}}$$

with $\pi = 3.14159...$ e = 2.71828...

The following applies:

$$f_N(-z) = f_N(z)$$
$$-\infty < z < +\infty$$

z	0.000	0.001	0.002	0.003	0.004	0.005	0.006	0.007	0.008	0.009
0.00	0.39894	0.39894	0.39894	0.39894	0.39894	0.39894	0.39894	0.39893	0.39893	0.39893
0.01	0.39892	0.39892	0.39891	0.39891	0.39890	0.39890	0.39889	0.39888	0.39888	0.39887
0.02	0.39886	0.39885	0.39885	0.39884	0.39883	0.39882	0.39881	0.39880	0.39879	0.39877
0.03	0.39876	0.39875	0.39874	0.39873	0.39871	0.39870	0.39868	0.39867	0.39865	0.39864
0.04	0.39862	0.39861	0.39859	0.39857	0.39856	0.39854	0.39852	0.39850	0.39848	0.39846
0.05	0.39844	0.39842	0.39840	0.39838	0.39836	0.39834	0.39832	0.39829	0.39827	0.39825
0.06	0.39822	0.39820	0.39818	0.39815	0.39813	0.39810	0.39807	0.39805	0.39802	0.39799
0.07	0.39797	0.39794	0.39791	0.39788	0.39785	0.39782	0.39779	0.39776	0.39773	0.39770
0.08	0.39767	0.39764	0.39760	0.39757	0.39754	0.39750	0.39747	0.39744	0.39740	0.39737
0.09	0.39733	0.39729	0.39726	0.39722	0.39718	0.39715	0.39711	0.39707	0.39703	0.39699
0.10	0.39695	0.39691	0.39687	0.39683	0.39679	0.39675	0.39671	0.39667	0.39662	0.39658
0.11	0.39654	0.39649	0.39645	0.39640	0.39636	0.39631	0.39627	0.39622	0.39617	0.39613
0.12	0.39608	0.39603	0.39598	0.39594	0.39589	0.39584	0.39579	0.39574	0.39569	0.39564
0.13	0.39559	0.39553	0.39548	0.39543	0.39538	0.39532	0.39527	0.39522	0.39516	0.39511
0.14	0.39505	0.39500	0.39494	0.39488	0.39483	0.39477	0.39471	0.39466	0.39460	0.39454
0.15	0.39448	0.39442	0.39436	0.39430	0.39424	0.39418	0.39412	0.39406	0.39399	0.39393
0.16	0.39387	0.39381	0.39374	0.39368	0.39361	0.39355	0.39348	0.39342	0.39335	0.39329
0.17	0.39322	0.39315	0.39308	0.39302	0.39295	0.39288	0.39281	0.39274	0.39267	0.39260
0.18	0.39253	0.39246	0.39239	0.39232	0.39225	0.39217	0.39210	0.39203	0.39195	0.39188
0.19	0.39181	0.39173	0.39166	0.39158	0.39151	0.39143	0.39135	0.39128	0.39120	0.39112
0.20	0.39104	0.39096	0.39089	0.39081	0.39073	0.39065	0.39057	0.39049	0.39041	0.39032
0.21	0.39024	0.39016	0.39008	0.38999	0.38991	0.38983	0.38974	0.38966	0.38957	0.38949
0.22	0.38940	0.38932	0.38923	0.38915	0.38906	0.38897	0.38888	0.38880	0.38871	0.38862
0.23	0.38853	0.38844	0.38835	0.38826	0.38817	0.38808	0.38799	0.38789	0.38780	0.38771
0.24	0.38762	0.38752	0.38743	0.38734	0.38724	0.38715	0.38705	0.38696	0.38686	0.38676
0.25	0.38667	0.38657	0.38647	0.38638	0.38628	0.38618	0.38608	0.38598	0.38588	0.38578
0.26	0.38568	0.38558	0.38548	0.38538	0.38528	0.38518	0.38508	0.38497	0.38487	0.38477
0.27	0.38466	0.38456	0.38445	0.38435	0.38424	0.38414	0.38403	0.38393	0.38382	0.38371
0.28	0.38361	0.38350	0.38339	0.38328	0.38317	0.38306	0.38296	0.38285	0.38274	0.38263
0.29	0.38251	0.38240	0.38229	0.38218	0.38207	0.38196	0.38184	0.38173	0.38162	0.38150

z	0.000	0.001	0.002	0.003	0.004	0.005	0.006	0.007	0.008	0.009
0.30	0.38139	0.38127	0.38116	0.38104	0.38093	0.38081	0.38070	0.38058	0.38046	0.38034
0.31	0.38023	0.38011	0.37999	0.37987	0.37975	0.37963	0.37951	0.37939	0.37927	0.37915
0.32	0.37903	0.37891	0.37879	0.37867	0.37854	0.37842	0.37830	0.37817	0.37805	0.37793
0.33	0.37780	0.37768	0.37755	0.37743	0.37730	0.37717	0.37705	0.37692	0.37679	0.37667
0.34	0.37654	0.37641	0.37628	0.37615	0.37602	0.37589	0.37576	0.37563	0.37550	0.37537
0.35	0.37524	0.37511	0.37498	0.37484	0.37471	0.37458	0.37445	0.37431	0.37418	0.37405
0.36	0.37391	0.37378	0.37364	0.37351	0.37337	0.37323	0.37310	0.37296	0.37282	0.37269
0.37	0.37255	0.37241	0.37227	0.37213	0.37199	0.37186	0.37172	0.37158	0.37144	0.37129
0.38	0.37115	0.37101	0.37087	0.37073	0.37059	0.37044	0.37030	0.37016	0.37002	0.36987
0.39	0.36973	0.36958	0.36944	0.36929	0.36915	0.36900	0.36886	0.36871	0.36856	0.36842
0.40	0.36827	0.36812	0.36797	0.36783	0.36768	0.36753	0.36738	0.36723	0.36708	0.36693
0.41	0.36678	0.36663	0.36648	0.36633	0.36618	0.36603	0.36587	0.36572	0.36557	0.36542
0.42	0.36526	0.36511	0.36496	0.36480	0.36465	0.36449	0.36434	0.36418	0.36403	0.36387
0.43	0.36371	0.36356	0.36340	0.36324	0.36309	0.36293	0.36277	0.36261	0.36245	0.36229
0.44	0.36213	0.36198	0.36182	0.36166	0.36150	0.36133	0.36117	0.36101	0.36085	0.36069
0.45	0.36053	0.36036	0.36020	0.36004	0.35988	0.35971	0.35955	0.35938	0.35922	0.35906
0.46	0.35889	0.35873	0.35856	0.35839	0.35823	0.35806	0.35789	0.35773	0.35756	0.35739
0.47	0.35723	0.35706	0.35689	0.35672	0.35655	0.35638	0.35621	0.35604	0.35587	0.35570
0.48	0.35553	0.35536	0.35519	0.35502	0.35485	0.35468	0.35450	0.35433	0.35416	0.35399
0.49	0.35381	0.35364	0.35347	0.35329	0.35312	0.35294	0.35277	0.35259	0.35242	0.35224
0.50	0.35207	0.35189	0.35171	0.35154	0.35136	0.35118	0.35100	0.35083	0.35065	0.35047
0.51	0.35029	0.35011	0.34993	0.34975	0.34958	0.34940	0.34922	0.34904	0.34885	0.34867
0.52	0.34849	0.34831	0.34813	0.34795	0.34777	0.34758	0.34740	0.34722	0.34703	0.34685
0.53	0.34667	0.34648	0.34630	0.34612	0.34593	0.34575	0.34556	0.34538	0.34519	0.34500
0.54	0.34482	0.34463	0.34445	0.34426	0.34407	0.34388	0.34370	0.34351	0.34332	0.34313
0.55	0.34294	0.34276	0.34257	0.34238	0.34219	0.34200	0.34181	0.34162	0.34143	0.34124
0.56	0.34105	0.34085	0.34066	0.34047	0.34028	0.34009	0.33990	0.33970	0.33951	0.33932
0.57	0.33912	0.33893	0.33874	0.33854	0.33835	0.33815	0.33796	0.33777	0.33757	0.33738
0.58	0.33718	0.33698	0.33679	0.33659	0.33640	0.33620	0.33600	0.33581	0.33561	0.33541
0.59	0.33521	0.33502	0.33482	0.33462	0.33442	0.33422	0.33402	0.33382	0.33362	0.33342
0.60	0.33322	0.33302	0.33282	0.33262	0.33242	0.33222	0.33202	0.33182	0.33162	0.33142
0.61	0.33121	0.33101	0.33081	0.33061	0.33040	0.33020	0.33000	0.32980	0.32959	0.32939
0.62	0.32918	0.32898	0.32878	0.32857	0.32837	0.32816	0.32796	0.32775	0.32754	0.32734
0.63	0.32713	0.32693	0.32672	0.32651	0.32631	0.32610	0.32589	0.32569	0.32548	0.32527
0.64	0.32506	0.32485	0.32465	0.32444	0.32423	0.32402	0.32381	0.32360	0.32339	0.32318
0.65	0.32297	0.32276	0.32255	0.32234	0.32213	0.32192	0.32171	0.32150	0.32129	0.32108
0.66	0.32086	0.32065	0.32044	0.32023	0.32002	0.31980	0.31959	0.31938	0.31916	0.31895
0.67	0.31874	0.31852		0.31810	0.31788	0.31767	0.31745	0.31724	0.31702	0.31681
0.68	0.31659	0.31638	0.31616	0.31595	0.31573	0.31551	0.31530	0.31508	0.31487	0.31465
0.69	0.31443	0.31421	0.31400	0.31378	0.31356	0.31334	0.31313	0.31291	0.31269	0.31247

z	0.000	0.001	0.002	0.003	0.004	0.005	0.006	0.007	0.008	0.009
0.70	0.31225	0.31204	0.31182	0.31160	0.31138	0.31116	0.31094	0.31072	0.31050	0.31028
0.71	0.31006	0.30984	0.30962	0.30940	0.30918	0.30896	0.30874	0.30852	0.30829	0.30807
0.72	0.30785	0.30763	0.30741	0.30719	0.30696	0.30674	0.30652	0.30630	0.30607	0.30585
0.73	0.30563	0.30540	0.30518	0.30496	0.30473	0.30451	0.30429	0.30406	0.30384	0.30361
0.74	0.30339	0.30316	0.30294	0.30272	0.30249	0.30227	0.30204	0.30181	0.30159	0.30136
0.75	0.30114	0.30091	0.30069	0.30046	0.30023	0.30001	0.29978	0.29955	0.29933	0.29910
0.76	0.29887	0.29865	0.29842	0.29819	0.29796	0.29774	0.29751	0.29728	0.29705	0.29682
0.77	0.29659	0.29637	0.29614	0.29591	0.29568	0.29545	0.29522	0.29499	0.29476	0.29453
0.78	0.29431	0.29408	0.29385	0.29362	0.29339	0.29316	0.29293	0.29270	0.29246	0.29223
0.79	0.29200	0.29177	0.29154	0.29131	0.29108	0.29085	0.29062	0.29039	0.29015	0.28992
0.80	0.28969	0.28946	0.28923	0.28900	0.28876	0.28853	0.28830	0.28807	0.28783	0.28760
0.81	0.28737	0.28714	0.28690	0.28667	0.28644	0.28620	0.28597	0.28574	0.28550	0.28527
0.82	0.28504	0.28480	0.28457	0.28433	0.28410	0.28387	0.28363	0.28340	0.28316	0.28293
0.83	0.28269	0.28246	0.28223	0.28199	0.28176	0.28152	0.28129	0.28105	0.28081	0.28058
0.84	0.28034	0.28011	0.27987	0.27964	0.27940	0.27917	0.27893	0.27869	0.27846	0.27822
0.85	0.27798	0.27775	0.27751	0.27728	0.27704	0.27680	0.27657	0.27633	0.27609	0.27586
0.86	0.27562	0.27538	0.27514	0.27491	0.27467	0.27443	0.27419	0.27396	0.27372	0.27348
0.87	0.27324	0.27301	0.27277	0.27253	0.27229	0.27205	0.27182	0.27158	0.27134	0.27110
0.88	0.27086	0.27063	0.27039	0.27015	0.26991	0.26967	0.26943	0.26919	0.26896	0.26872
0.89	0.26848	0.26824	0.26800	0.26776	0.26752	0.26728	0.26704	0.26680	0.26656	0.26632
0.90	0.26609	0.26585	0.26561	0.26537	0.26513	0.26489	0.26465	0.26441	0.26417	0.26393
0.91	0.26369	0.26345	0.26321	0.26297	0.26273	0.26249	0.26225	0.26201	0.26177	0.26153
0.92	0.26129	0.26105	0.26081	0.26056	0.26032	0.26008	0.25984	0.25960	0.25936	0.25912
0.93	0.25888	0.25864	0.25840	0.25816	0.25792	0.25768	0.25744	0.25719	0.25695	0.25671
0.94	0.25647	0.25623	0.25599	0.25575	0.25551	0.25527	0.25502	0.25478	0.25454	0.25430
0.95	0.25406	0.25382	0.25358	0.25333	0.25309	0.25285	0.25261	0.25237	0.25213	0.25189
0.96	0.25164	0.25140	0.25116	0.25092	0.25068	0.25044	0.25019	0.24995	0.24971	0.24947
0.97	0.24923	0.24899	0.24874	0.24850	0.24826	0.24802	0.24778	0.24754	0.24729	0.24705
0.98	0.24681	0.24657	0.24633	0.24608	0.24584	0.24560	0.24536	0.24512	0.24487	0.24463
0.99	0.24439	0.24415	0.24391	0.24366	0.24342	0.24318	0.24294	0.24270	0.24245	0.24221
1.00	0.24197	0.24173	0.24149	0.24124	0.24100	0.24076	0.24052	0.24028	0.24003	0.23979
1.01	0.23955	0.23931	0.23907	0.23883	0.23858	0.23834	0.23810	0.23786	0.23762	0.23737
1.02	0.23713	0.23689	0.23665	0.23641	0.23616	0.23592	0.23568	0.23544	0.23520	0.23496
1.03	0.23471	0.23447	0.23423	0.23399	0.23375	0.23351	0.23326	0.23302	0.23278	0.23254
1.04	0.23230	0.23206	0.23181	0.23157	0.23133	0.23109	0.23085	0.23061	0.23036	0.23012
1.05	0.22988	0.22964	0.22940	0.22916	0.22892	0.22868	0.22843	0.22819	0.22795	0.22771
1.06	0.22747	0.22723	0.22699	0.22675	0.22651	0.22626	0.22602	0.22578	0.22554	0.22530
1.07	0.22506	0.22482	0.22458	0.22434	0.22410	0.22386	0.22362	0.22338	0.22313	0.22289
1.08	0.22265	0.22241	0.22217	0.22193	0.22169	0.22145	0.22121	0.22097	0.22073	0.22049
1.09	0.22025	0.22001	0.21977	0.21953	0.21929	0.21905	0.21881	0.21857	0.21833	0.21809

z	0.000	0.001	0.002	0.003	0.004	0.005	0.006	0.007	0.008	0.009
1.10	0.21785	0.21761	0.21737	0.21713	0.21689	0.21665	0.21642	0.21618	0.21594	0.21570
1.11	0.21546	0.21522	0.21498	0.21474	0.21450	0.21426	0.21402	0.21379	0.21355	0.21331
1.12	0.21307	0.21283	0.21259	0.21235	0.21212	0.21188	0.21164	0.21140	0.21116	0.21092
1.13	0.21069	0.21045	0.21021	0.20997	0.20973	0.20950	0.20926	0.20902	0.20878	0.20855
1.14	0.20831	0.20807	0.20783	0.20760	0.20736	0.20712	0.20688	0.20665	0.20641	0.20617
1.15	0.20594	0.20570	0.20546	0.20523	0.20499	0.20475	0.20452	0.20428	0.20404	0.20381
1.16	0.20357	0.20334	0.20310	0.20286	0.20263	0.20239	0.20216	0.20192	0.20168	0.20145
1.17	0.20121	0.20098	0.20074	0.20051	0.20027	0.20004	0.19980	0.19957	0.19933	0.19910
1.18	0.19886	0.19863	0.19839	0.19816	0.19793	0.19769	0.19746	0.19722	0.19699	0.19675
1.19	0.19652	0.19629	0.19605	0.19582	0.19559	0.19535	0.19512	0.19489	0.19465	0.19442
1.20	0.19419	0.19395	0.19372	0.19349	0.19325	0.19302	0.19279	0.19256	0.19232	0.19209
1.21	0.19186	0.19163	0.19140	0.19116	0.19093	0.19070	0.19047	0.19024	0.19001	0.18977
1.22	0.18954	0.18931	0.18908	0.18885	0.18862	0.18839	0.18816	0.18793	0.18770	0.18747
1.23	0.18724	0.18701	0.18678	0.18654	0.18631	0.18609	0.18586	0.18563	0.18540	0.18517
1.24	0.18494	0.18471	0.18448	0.18425	0.18402	0.18379	0.18356	0.18333	0.18311	0.18288
1.25	0.18265	0.18242	0.18219	0.18196	0.18174	0.18151	0.18128	0.18105	0.18083	0.18060
1.26	0.18037	0.18014	0.17992	0.17969	0.17946	0.17924	0.17901	0.17878	0.17856	0.17833
1.27	0.17810	0.17788	0.17765	0.17743	0.17720	0.17697	0.17675	0.17652	0.17630	0.17607
1.28	0.17585	0.17562	0.17540	0.17517	0.17495	0.17472	0.17450	0.17427	0.17405	0.17383
1.29	0.17360	0.17338	0.17315	0.17293	0.17271	0.17248	0.17226	0.17204	0.17181	0.17159
1.30	0.17137	0.17115	0.17092	0.17070	0.17048	0.17026	0.17003	0.16981	0.16959	0.16937
1.31	0.16915	0.16893	0.16870	0.16848	0.16826	0.16804	0.16782	0.16760	0.16738	0.16716
1.32	0.16694	0.16672	0.16650	0.16628	0.16606	0.16584	0.16562	0.16540	0.16518	0.16496
1.33	0.16474	0.16452	0.16430	0.16408	0.16386	0.16365	0.16343	0.16321	0.16299	0.16277
1.34	0.16256	0.16234	0.16212	0.16190	0.16168	0.16147	0.16125	0.16103	0.16082	0.16060
1.35	0.16038	0.16017	0.15995	0.15973	0.15952	0.15930	0.15909	0.15887	0.15866	0.15844
1.36	0.15822	0.15801	0.15779	0.15758	0.15737	0.15715	0.15694	0.15672	0.15651	0.15629
1.37	0.15608	0.15587	0.15565	0.15544	0.15523	0.15501	0.15480	0.15459	0.15437	0.15416
1.38	0.15395	0.15374	0.15352	0.15331	0.15310	0.15289	0.15268	0.15246	0.15225	0.15204
1.39	0.15183	0.15162	0.15141	0.15120	0.15099	0.15078	0.15057	0.15036	0.15015	0.14994
1.40	0.14973	0.14952	0.14931	0.14910	0.14889	0.14868	0.14847	0.14826	0.14806	0.14785
1.41	0.14764	0.14743	0.14722	0.14701	0.14681	0.14660	0.14639	0.14618	0.14598	0.14577
1.42	0.14556	0.14536	0.14515	0.14494	0.14474	0.14453	0.14433	0.14412	0.14392	0.14371
1.43	0.14350	0.14330	0.14309	0.14289	0.14268	0.14248	0.14228	0.14207	0.14187	0.14166
1.44	0.14146	0.14126	0.14105	0.14085	0.14065	0.14044	0.14024	0.14004	0.13984	0.13963
1.45	0.13943	0.13923	0.13903	0.13882	0.13862	0.13842	0.13822	0.13802	0.13782	0.13762
1.46	0.13742	0.13722	0.13702	0.13682	0.13662	0.13642	0.13622	0.13602	0.13582	0.13562
1.47	0.13542	0.13522	0.13502	0.13482	0.13462	0.13442	0.13423	0.13403	0.13383	0.13363
1.48	0.13344	0.13324	0.13304	0.13284	0.13265	0.13245	0.13225	0.13206	0.13186	0.13166
1.49	0.13147	0.13127	0.13108	0.13088	0.13069	0.13049	0.13030	0.13010	0.12991	0.12971

270 A Statistical Tables

z	0.000	0.001	0.002	0.003	0.004	0.005	0.006	0.007	0.008	0.009
1.50	0.12952	0.12932	0.12913	0.12894	0.12874	0.12855	0.12835	0.12816	0.12797	0.12778
1.51	0.12758	0.12739	0.12720	0.12701	0.12681	0.12662	0.12643	0.12624	0.12605	0.12586
1.52	0.12566	0.12547	0.12528	0.12509	0.12490	0.12471	0.12452	0.12433	0.12414	0.12395
1.53	0.12376	0.12357	0.12338	0.12320	0.12301	0.12282	0.12263	0.12244	0.12225	0.12207
1.54	0.12188	0.12169	0.12150	0.12132	0.12113	0.12094	0.12075	0.12057	0.12038	0.12020
1.55	0.12001	0.11982	0.11964	0.11945	0.11927	0.11908	0.11890	0.11871	0.11853	0.11834
1.56	0.11816	0.11797	0.11779	0.11761	0.11742	0.11724	0.11705	0.11687	0.11669	0.11651
1.57	0.11632	0.11614	0.11596	0.11578	0.11559	0.11541	0.11523	0.11505	0.11487	0.11469
1.58	0.11450	0.11432	0.11414	0.11396	0.11378	0.11360	0.11342	0.11324	0.11306	0.11288
1.59	0.11270	0.11253	0.11235	0.11217	0.11199	0.11181	0.11163	0.11145	0.11128	0.11110
1.60	0.11092	0.11074	0.11057	0.11039	0.11021	0.11004	0.10986	0.10968	0.10951	0.10933
1.61	0.10915	0.10898	0.10880	0.10863	0.10845	0.10828	0.10810	0.10793	0.10775	0.10758
1.62	0.10741	0.10723	0.10706	0.10688	0.10671	0.10654	0.10637	0.10619	0.10602	0.10585
1.63	0.10567	0.10550	0.10533	0.10516	0.10499	0.10482	0.10464	0.10447	0.10430	0.10413
1.64	0.10396	0.10379	0.10362	0.10345	0.10328	0.10311	0.10294	0.10277	0.10260	0.10243
1.65	0.10226	0.10210	0.10193	0.10176	0.10159	0.10142	0.10126	0.10109	0.10092	0.10075
1.66	0.10059	0.10042	0.10025	0.10009	0.09992	0.09975	0.09959	0.09942	0.09926	0.09909
1.67	0.09893	0.09876	0.09860	0.09843	0.09827	0.09810	0.09794	0.09777	0.09761	0.09745
1.68	0.09728	0.09712	0.09696	0.09679	0.09663	0.09647	0.09630	0.09614	0.09598	0.09582
1.69	0.09566	0.09550	0.09533	0.09517	0.09501	0.09485	0.09469	0.09453	0.09437	0.09421
1.70	0.09405	0.09389	0.09373	0.09357	0.09341	0.09325	0.09309	0.09293	0.09278	0.09262
1.71	0.09246	0.09230	0.09214	0.09199	0.09183	0.09167	0.09151	0.09136	0.09120	0.09104
1.72	0.09089	0.09073	0.09057	0.09042	0.09026	0.09011	0.08995	0.08980	0.08964	0.08949
1.73	0.08933	0.08918	0.08902	0.08887	0.08872	0.08856	0.08841	0.08826	0.08810	0.08795
1.74	0.08780	0.08764	0.08749	0.08734	0.08719	0.08703	0.08688	0.08673	0.08658	0.08643
1.75	0.08628	0.08613	0.08598	0.08583	0.08567	0.08552	0.08537	0.08522	0.08508	0.08493
1.76	0.08478	0.08463	0.08448	0.08433	0.08418	0.08403	0.08388	0.08374	0.08359	0.08344
1.77	0.08329	0.08315	0.08300	0.08285	0.08270	0.08256	0.08241	0.08227	0.08212	0.08197
1.78	0.08183	0.08168	0.08154	0.08139	0.08125	0.08110	0.08096	0.08081	0.08067	0.08052
1.79	0.08038	0.08024	0.08009	0.07995	0.07981	0.07966	0.07952	0.07938	0.07923	0.07909
1.80	0.07895	0.07881	0.07867	0.07852	0.07838	0.07824	0.07810	0.07796	0.07782	0.07768
1.81	0.07754	0.07740	0.07726	0.07712	0.07698	0.07684	0.07670	0.07656	0.07642	0.07628
1.82	0.07614	0.07600	0.07587	0.07573	0.07559		0.07531	0.07518	0.07504	0.07490
1.83	0.07477	0.07463	0.07449	0.07436	0.07422	0.07408	0.07395	0.07381	0.07368	0.07354
1.84	0.07341	0.07327	0.07314	0.07300	0.07287	0.07273	0.07260	0.07247	0.07233	0.07220
1.85	0.07206	0.07193	0.07180	0.07167	0.07153	0.07140	0.07127	0.07114	0.07100	0.07087
1.86	0.07074	0.07061	0.07048	0.07035	0.07022	0.07008	0.06995	0.06982	0.06969	0.06956
1.87	0.06943	0.06930	0.06917	0.06904	0.06892	0.06879	0.06866	0.06853	0.06840	0.06827
1.88	0.06814	0.06802	0.06789	0.06776	0.06763	0.06751	0.06738	0.06725	0.06712	0.06700
1.89	0.06687	0.06674	0.06662	0.06649	0.06637	0.06624	0.06612	0.06599	0.06587	0.06574

z	0.000	0.001	0.002	0.003	0.004	0.005	0.006	0.007	0.008	0.009
1.90	0.06562	0.06549	0.06537	0.06524	0.06512	0.06499	0.06487	0.06475	0.06462	0.06450
1.91	0.06438	0.06425	0.06413	0.06401	0.06389	0.06376	0.06364	0.06352	0.06340	0.06328
1.92	0.06316	0.06304	0.06291	0.06279	0.06267	0.06255	0.06243	0.06231	0.06219	0.06207
1.93	0.06195	0.06183	0.06171	0.06159	0.06148	0.06136	0.06124	0.06112	0.06100	0.06088
1.94	0.06077	0.06065	0.06053	0.06041	0.06029	0.06018	0.06006	0.05994	0.05983	0.05971
1.95	0.05959	0.05948	0.05936	0.05925	0.05913	0.05902	0.05890	0.05879	0.05867	0.05856
1.96	0.05844	0.05833	0.05821	0.05810	0.05798	0.05787	0.05776	0.05764	0.05753	0.05742
1.97	0.05730	0.05719	0.05708	0.05697	0.05685	0.05674	0.05663	0.05652	0.05641	0.05629
1.98	0.05618	0.05607	0.05596	0.05585	0.05574	0.05563	0.05552	0.05541	0.05530	0.05519
1.99	0.05508	0.05497	0.05486	0.05475	0.05464	0.05453	0.05442	0.05432	0.05421	0.05410
2.00	0.05399	0.05388	0.05378	0.05367	0.05356	0.05345	0.05335	0.05324	0.05313	0.05303
2.01	0.05292	0.05281	0.05271	0.05260	0.05250	0.05239	0.05228	0.05218	0.05207	0.05197
2.02	0.05186	0.05176	0.05165	0.05155	0.05145	0.05134	0.05124	0.05113	0.05103	0.05093
2.03	0.05082	0.05072	0.05062	0.05052	0.05041	0.05031	0.05021	0.05011	0.05000	0.04990
2.04	0.04980	0.04970	0.04960	0.04950	0.04939	0.04929	0.04919	0.04909	0.04899	0.04889
2.05	0.04879	0.04869	0.04859	0.04849	0.04839	0.04829	0.04819	0.04810	0.04800	0.04790
2.06	0.04780	0.04770	0.04760	0.04750	0.04741	0.04731	0.04721	0.04711	0.04702	0.04692
2.07	0.04682	0.04673	0.04663	0.04653	0.04644	0.04634	0.04624	0.04615	0.04605	0.04596
2.08	0.04586	0.04577	0.04567	0.04558	0.04548	0.04539	0.04529	0.04520	0.04510	0.04501
2.09	0.04491	0.04482	0.04473	0.04463	0.04454	0.04445	0.04435	0.04426	0.04417	0.04408
2.10	0.04398	0.04389	0.04380	0.04371	0.04362	0.04352	0.04343	0.04334	0.04325	0.04316
2.11	0.04307	0.04298	0.04289	0.04280	0.04271	0.04261	0.04252	0.04243	0.04235	0.04226
2.12	0.04217	0.04208	0.04199	0.04190	0.04181	0.04172	0.04163	0.04154	0.04146	0.04137
2.13	0.04128	0.04119	0.04110	0.04102	0.04093	0.04084	0.04075	0.04067	0.04058	0.04049
2.14	0.04041	0.04032	0.04023	0.04015	0.04006	0.03998	0.03989	0.03981	0.03972	0.03964
2.15	0.03955	0.03947	0.03938	0.03930	0.03921	0.03913	0.03904	0.03896	0.03887	0.03879
2.16	0.03871	0.03862	0.03854	0.03846	0.03837	0.03829	0.03821	0.03813	0.03804	0.03796
2.17	0.03788	0.03780	0.03771	0.03763	0.03755	0.03747	0.03739	0.03731	0.03722	0.03714
2.18	0.03706	0.03698	0.03690	0.03682	0.03674	0.03666	0.03658	0.03650	0.03642	0.03634
2.19	0.03626	0.03618	0.03610	0.03602	0.03595	0.03587	0.03579	0.03571	0.03563	0.03555
2.20	0.03547	0.03540	0.03532	0.03524	0.03516	0.03509	0.03501	0.03493	0.03485	0.03478
2.21	0.03470	0.03462	0.03455	0.03447	0.03440	0.03432	0.03424	0.03417	0.03409	0.03402
2.22	0.03394	0.03387	0.03379	0.03372	0.03364	0.03357	0.03349	0.03342	0.03334	0.03327
2.23	0.03319	0.03312	0.03305	0.03297	0.03290	0.03283	0.03275	0.03268	0.03261	0.03253
2.24	0.03246	0.03239	0.03232	0.03224	0.03217	0.03210	0.03203	0.03195	0.03188	0.03181
2.25	0.03174	0.03167	0.03160	0.03153	0.03146	0.03138	0.03131	0.03124	0.03117	0.03110
2.26	0.03103	0.03096	0.03089	0.03082	0.03075	0.03068	0.03061	0.03054	0.03047	0.03041
2.27	0.03034	0.03027	0.03020	0.03013	0.03006	0.02999	0.02993	0.02986	0.02979	0.02972
2.28	0.02965	0.02959	0.02952	0.02945	0.02939	0.02932	0.02925	0.02918	0.02912	0.02905
2.29	0.02898	0.02892	0.02885	0.02879	0.02872	0.02865	0.02859	0.02852	0.02846	0.02839

z	0.000	0.001	0.002	0.003	0.004	0.005	0.006	0.007	0.008	0.009
2.30	0.02833	0.02826	0.02820	0.02813	0.02807	0.02800	0.02794	0.02787	0.02781	0.02775
2.31	0.02768	0.02762	0.02755	0.02749	0.02743	0.02736	0.02730	0.02724	0.02717	0.02711
2.32	0.02705	0.02699	0.02692	0.02686	0.02680	0.02674	0.02667	0.02661	0.02655	0.02649
2.33	0.02643	0.02636	0.02630	0.02624	0.02618	0.02612	0.02606	0.02600	0.02594	0.02588
2.34	0.02582	0.02576	0.02570	0.02564	0.02558	0.02552	0.02546	0.02540	0.02534	0.02528
2.35	0.02522	0.02516	0.02510	0.02504	0.02498	0.02492	0.02486	0.02481	0.02475	0.02469
2.36	0.02463	0.02457	0.02452	0.02446	0.02440	0.02434	0.02428	0.02423	0.02417	0.02411
2.37	0.02406	0.02400	0.02394	0.02389	0.02383	0.02377	0.02372	0.02366	0.02360	0.02355
2.38	0.02349	0.02344	0.02338	0.02332	0.02327	0.02321	0.02316	0.02310	0.02305	0.02299
2.39	0.02294	0.02288	0.02283	0.02277	0.02272	0.02266	0.02261	0.02256	0.02250	0.02245
2.40	0.02239	0.02234	0.02229	0.02223	0.02218	0.02213	0.02207	0.02202	0.02197	0.02192
2.41	0.02186	0.02181	0.02176	0.02170	0.02165	0.02160	0.02155	0.02150	0.02144	0.02139
2.42	0.02134	0.02129	0.02124	0.02119	0.02113	0.02108	0.02103	0.02098	0.02093	0.02088
2.43	0.02083	0.02078	0.02073	0.02068	0.02063	0.02058	0.02053	0.02048	0.02043	0.02038
2.44	0.02033	0.02028	0.02023	0.02018	0.02013	0.02008	0.02003	0.01998	0.01993	0.01989
2.45	0.01984	0.01979	0.01974	0.01969	0.01964	0.01960	0.01955	0.01950	0.01945	0.01940
2.46	0.01936	0.01931	0.01926	0.01921	0.01917	0.01912	0.01907	0.01903	0.01898	0.01893
2.47	0.01888	0.01884	0.01879	0.01875	0.01870	0.01865	0.01861	0.01856	0.01851	0.01847
2.48	0.01842	0.01838	0.01833	0.01829	0.01824	0.01820	0.01815	0.01811	0.01806	0.01802
2.49	0.01797	0.01793	0.01788	0.01784	0.01779	0.01775	0.01770	0.01766	0.01762	0.01757

z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
2.5	0.01753	0.01709	0.01667	0.01625	0.01585	0.01545	0.01506	0.01468	0.01431	0.01394
2.6	0.01358	0.01323	0.01289	0.01256	0.01223	0.01191	0.01160	0.01130	0.01100	0.01071
2.7	0.01042	0.01014	0.00987	0.00961	0.00935	0.00909	0.00885	0.00861	0.00837	0.00814
2.8	0.00792	0.00770	0.00748	0.00727	0.00707	0.00687	0.00668	0.00649	0.00631	0.00613
2.9	0.00595	0.00578	0.00562	0.00545	0.00530	0.00514	0.00499	0.00485	0.00470	0.00457
3.0	0.00443	0.00430	0.00417	0.00405	0.00393	0.00381	0.00370	0.00358	0.00348	0.00337
3.1	0.00327	0.00317	0.00307	0.00298	0.00288	0.00279	0.00271	0.00262	0.00254	0.00246
3.2	0.00238	0.00231	0.00224	0.00216	0.00210	0.00203	0.00196	0.00190	0.00184	0.00178
3.3	0.00172	0.00167	0.00161	0.00156	0.00151	0.00146	0.00141	0.00136	0.00132	0.00127
3.4	0.00123	0.00119	0.00115	0.00111	0.00107	0.00104	0.00100	0.00097	0.00094	0.00090
3.5	0.00087	0.00084	0.00081	0.00079	0.00076	0.00073	0.00071	0.00068	0.00066	0.00063
3.6	0.00061	0.00059	0.00057	0.00055	0.00053	0.00051	0.00049	0.00047	0.00046	0.00044
3.7	0.00042	0.00041	0.00039	0.00038	0.00037	0.00035	0.00034	0.00033	0.00031	0.00030
3.8	0.00029	0.00028	0.00027	0.00026	0.00025	0.00024	0.00023	0.00022	0.00021	0.00021
3.9	0.00020	0.00019	0.00018	0.00018	0.00017	0.00016	0.00016	0.00015	0.00014	0.00014

$$F_N(z) = \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} e^{\frac{-v^2}{2}} dv$$

with $\pi = 3.14159...$
 $e = 2.71828...$

The following applies:

$$F_N(-z) = 1 - F_N(z)$$
$$-\infty < z < +\infty$$

z	0.000	0.001	0.002	0.003	0.004	0.005	0.006	0.007	0.008	0.009
0.00	0.5000	0.5004	0.5008	0.5012	0.5016	0.5020	0.5024	0.5028	0.5032	0.5036
0.01	0.5040	0.5044	0.5048	0.5052	0.5056	0.5060	0.5064	0.5068	0.5072	0.5076
0.02	0.5080	0.5084	0.5088	0.5092	0.5096	0.5100	0.5104	0.5108	0.5112	0.5116
0.03	0.5120	0.5124	0.5128	0.5132	0.5136	0.5140	0.5144	0.5148	0.5152	0.5156
0.04	0.5160	0.5164	0.5168	0.5171	0.5175	0.5179	0.5183	0.5187	0.5191	0.5195
0.05	0.5199	0.5203	0.5207	0.5211	0.5215	0.5219	0.5223	0.5227	0.5231	0.5235
0.06	0.5239	0.5243	0.5247	0.5251	0.5255	0.5259	0.5263	0.5267	0.5271	0.5275
0.07	0.5279	0.5283	0.5287	0.5291	0.5295	0.5299	0.5303	0.5307	0.5311	0.5315
80.0	0.5319	0.5323	0.5327	0.5331	0.5335	0.5339	0.5343	0.5347	0.5351	0.5355
0.09	0.5359	0.5363	0.5367	0.5370	0.5374	0.5378	0.5382	0.5386	0.5390	0.5394
0.10	0.5398	0.5402	0.5406	0.5410	0.5414	0.5418	0.5422	0.5426	0.5430	0.5434
0.11	0.5438	0.5442	0.5446	0.5450	0.5454	0.5458	0.5462	0.5466	0.5470	0.5474
0.12	0.5478	0.5482	0.5486	0.5489	0.5493	0.5497	0.5501	0.5505	0.5509	0.5513
0.13	0.5517	0.5521	0.5525	0.5529	0.5533	0.5537	0.5541	0.5545	0.5549	0.5553
0.14	0.5557	0.5561	0.5565	0.5569	0.5572	0.5576	0.5580	0.5584	0.5588	0.5592
0.15	0.5596	0.5600	0.5604	0.5608	0.5612	0.5616	0.5620	0.5624	0.5628	0.5632
0.16	0.5636	0.5640	0.5643	0.5647	0.5651	0.5655	0.5659	0.5663	0.5667	0.5671
0.17	0.5675	0.5679	0.5683	0.5687	0.5691	0.5695	0.5699	0.5702	0.5706	0.5710
0.18	0.5714	0.5718	0.5722	0.5726	0.5730	0.5734	0.5738	0.5742	0.5746	0.5750
0.19	0.5753	0.5757	0.5761	0.5765	0.5769	0.5773	0.5777	0.5781	0.5785	0.5789
0.20	0.5793	0.5797	0.5800	0.5804	0.5808	0.5812	0.5816	0.5820	0.5824	0.5828
0.21	0.5832	0.5836	0.5839	0.5843	0.5847	0.5851	0.5855	0.5859	0.5863	0.5867
0.22	0.5871	0.5875	0.5878	0.5882	0.5886	0.5890	0.5894	0.5898	0.5902	0.5906
0.23	0.5910	0.5913	0.5917	0.5921	0.5925	0.5929	0.5933	0.5937	0.5941	0.5944
0.24	0.5948	0.5952	0.5956	0.5960	0.5964	0.5968	0.5972	0.5975	0.5979	0.5983
0.25	0.5987	0.5991	0.5995	0.5999	0.6003	0.6006	0.6010	0.6014	0.6018	0.6022
0.26	0.6026	0.6030	0.6033	0.6037	0.6041	0.6045	0.6049	0.6053	0.6057	0.6060
0.27	0.6064	0.6068	0.6072	0.6076	0.6080	0.6083	0.6087	0.6091	0.6095	0.6099
0.28	0.6103	0.6106	0.6110	0.6114	0.6118	0.6122	0.6126	0.6129	0.6133	0.6137
0.29	0.6141	0.6145	0.6149	0.6152	0.6156	0.6160	0.6164	0.6168	0.6171	0.6175

z	0.000	0.001	0.002	0.003	0.004	0.005	0.006	0.007	0.008	0.009
0.30	0.6179	0.6183	0.6187	0.6191	0.6194	0.6198	0.6202	0.6206	0.6210	0.6213
0.31	0.6217	0.6221	0.6225	0.6229	0.6232	0.6236	0.6240	0.6244	0.6248	0.6251
0.32	0.6255	0.6259	0.6263	0.6267	0.6270	0.6274	0.6278	0.6282	0.6285	0.6289
0.33	0.6293	0.6297	0.6301	0.6304	0.6308	0.6312	0.6316	0.6319	0.6323	0.6327
0.34	0.6331	0.6334	0.6338	0.6342	0.6346	0.6350	0.6353	0.6357	0.6361	0.6365
0.35	0.6368	0.6372	0.6376	0.6380	0.6383	0.6387	0.6391	0.6395	0.6398	0.6402
0.36	0.6406	0.6410	0.6413	0.6417	0.6421	0.6424	0.6428	0.6432	0.6436	0.6439
0.37	0.6443	0.6447	0.6451	0.6454	0.6458	0.6462	0.6465	0.6469	0.6473	0.6477
0.38	0.6480	0.6484	0.6488	0.6491	0.6495	0.6499	0.6503	0.6506	0.6510	0.6514
0.39	0.6517	0.6521	0.6525	0.6528	0.6532	0.6536	0.6539	0.6543	0.6547	0.6551
0.40	0.6554	0.6558	0.6562	0.6565	0.6569	0.6573	0.6576	0.6580	0.6584	0.6587
0.41	0.6591	0.6595	0.6598	0.6602	0.6606	0.6609	0.6613	0.6617	0.6620	0.6624
0.42	0.6628	0.6631	0.6635	0.6639	0.6642	0.6646	0.6649	0.6653	0.6657	0.6660
0.43	0.6664	0.6668	0.6671	0.6675	0.6679	0.6682	0.6686	0.6689	0.6693	0.6697
0.44	0.6700	0.6704	0.6708	0.6711	0.6715	0.6718	0.6722	0.6726	0.6729	0.6733
0.45	0.6736	0.6740	0.6744	0.6747	0.6751	0.6754	0.6758	0.6762	0.6765	0.6769
0.46	0.6772	0.6776	0.6780	0.6783	0.6787	0.6790	0.6794	0.6798	0.6801	0.6805
0.47	0.6808	0.6812	0.6815	0.6819	0.6823	0.6826	0.6830	0.6833	0.6837	0.6840
0.48	0.6844	0.6847	0.6851	0.6855	0.6858	0.6862	0.6865	0.6869	0.6872	0.6876
0.49	0.6879	0.6883	0.6886	0.6890	0.6893	0.6897	0.6901	0.6904	0.6908	0.6911
0.50	0.6915	0.6918	0.6922	0.6925	0.6929	0.6932	0.6936	0.6939	0.6943	0.6946
0.51	0.6950	0.6953	0.6957	0.6960	0.6964	0.6967	0.6971	0.6974	0.6978	0.6981
0.52	0.6985	0.6988	0.6992	0.6995	0.6999	0.7002	0.7006	0.7009	0.7013	0.7016
0.53	0.7019	0.7023	0.7026	0.7030	0.7033	0.7037	0.7040	0.7044	0.7047	0.7051
0.54	0.7054	0.7057	0.7061	0.7064	0.7068	0.7071	0.7075	0.7078	0.7082	0.7085
0.55	0.7088	0.7092	0.7095	0.7099	0.7102	0.7106	0.7109	0.7112	0.7116	0.7119
0.56	0.7123	0.7126	0.7129	0.7133	0.7136	0.7140	0.7143	0.7146	0.7150	0.7153
0.57	0.7157	0.7160	0.7163	0.7167	0.7170	0.7174	0.7177	0.7180	0.7184	0.7187
0.58	0.7190	0.7194	0.7197	0.7201	0.7204	0.7207	0.7211	0.7214	0.7217	0.7221
0.59	0.7224	0.7227	0.7231	0.7234	0.7237	0.7241	0.7244	0.7247	0.7251	0.7254
0.60	0.7257	0.7261	0.7264	0.7267	0.7271	0.7274	0.7277	0.7281	0.7284	0.7287
0.61	0.7291	0.7294	0.7297	0.7301	0.7304	0.7307	0.7311	0.7314	0.7317	0.7320
0.62	0.7324	0.7327	0.7330	0.7334	0.7337	0.7340	0.7343	0.7347	0.7350	0.7353
0.63	0.7357	0.7360	0.7363	0.7366	0.7370	0.7373	0.7376	0.7379	0.7383	0.7386
0.64	0.7389	0.7392	0.7396	0.7399	0.7402	0.7405	0.7409	0.7412	0.7415	0.7418
0.65	0.7422	0.7425	0.7428	0.7431	0.7434	0.7438	0.7441	0.7444	0.7447	0.7451
0.66	0.7454	0.7457	0.7460	0.7463	0.7467	0.7470	0.7473	0.7476	0.7479	0.7483
0.67	0.7486	0.7489	0.7492	0.7495	0.7498	0.7502	0.7505	0.7508	0.7511	0.7514
0.68	0.7517	0.7521	0.7524	0.7527	0.7530	0.7533	0.7536	0.7540	0.7543	0.7546
0.69	0.7549	0.7552	0.7555	0.7558	0.7562	0.7565	0.7568	0.7571	0.7574	0.7577

z	0.000	0.001	0.002	0.003	0.004	0.005	0.006	0.007	0.008	0.009
0.70	0.7580	0.7583	0.7587	0.7590	0.7593	0.7596	0.7599	0.7602	0.7605	0.7608
0.71	0.7611	0.7615	0.7618	0.7621	0.7624	0.7627	0.7630	0.7633	0.7636	0.7639
0.72	0.7642	0.7645	0.7649	0.7652	0.7655	0.7658	0.7661	0.7664	0.7667	0.7670
0.73	0.7673	0.7676	0.7679	0.7682	0.7685	0.7688	0.7691	0.7694	0.7697	0.7700
0.74	0.7704	0.7707	0.7710	0.7713	0.7716	0.7719	0.7722	0.7725	0.7728	0.7731
0.75	0.7734	0.7737	0.7740	0.7743	0.7746	0.7749	0.7752	0.7755	0.7758	0.7761
0.76	0.7764	0.7767	0.7770	0.7773	0.7776	0.7779	0.7782	0.7785	0.7788	0.7791
0.77	0.7794	0.7796	0.7799	0.7802	0.7805	0.7808	0.7811	0.7814	0.7817	0.7820
0.78	0.7823	0.7826	0.7829	0.7832	0.7835	0.7838	0.7841	0.7844	0.7847	0.7849
0.79	0.7852	0.7855	0.7858	0.7861	0.7864	0.7867	0.7870	0.7873	0.7876	0.7879
0.80	0.7881	0.7884	0.7887	0.7890	0.7893	0.7896	0.7899	0.7902	0.7905	0.7907
0.81	0.7910	0.7913	0.7916	0.7919	0.7922	0.7925	0.7927	0.7930	0.7933	0.7936
0.82	0.7939	0.7942	0.7945	0.7947	0.7950	0.7953	0.7956	0.7959	0.7962	0.7964
0.83	0.7967	0.7970	0.7973	0.7976	0.7979	0.7981	0.7984	0.7987	0.7990	0.7993
0.84	0.7995	0.7998	0.8001	0.8004	0.8007	0.8009	0.8012	0.8015	0.8018	0.8021
0.85	0.8023	0.8026	0.8029	0.8032	0.8034	0.8037	0.8040	0.8043	0.8046	0.8048
0.86	0.8051	0.8054	0.8057	0.8059	0.8062	0.8065	0.8068	0.8070	0.8073	0.8076
0.87	0.8078	0.8081	0.8084	0.8087	0.8089	0.8092	0.8095	0.8098	0.8100	0.8103
0.88	0.8106	0.8108	0.8111	0.8114	0.8117	0.8119	0.8122	0.8125	0.8127	0.8130
0.89	0.8133	0.8135	0.8138	0.8141	0.8143	0.8146	0.8149	0.8151	0.8154	0.8157
0.90	0.8159	0.8162	0.8165	0.8167	0.8170	0.8173	0.8175	0.8178	0.8181	0.8183
0.91	0.8186	0.8189	0.8191	0.8194	0.8196	0.8199	0.8202	0.8204	0.8207	0.8210
0.92	0.8212	0.8215	0.8217	0.8220	0.8223	0.8225	0.8228	0.8230	0.8233	0.8236
0.93	0.8238	0.8241	0.8243	0.8246	0.8248	0.8251	0.8254	0.8256	0.8259	0.8261
0.94	0.8264	0.8266	0.8269	0.8272	0.8274	0.8277	0.8279	0.8282	0.8284	0.8287
0.95	0.8289	0.8292	0.8295	0.8297	0.8300	0.8302	0.8305	0.8307	0.8310	0.8312
0.96	0.8315	0.8317	0.8320	0.8322	0.8325	0.8327	0.8330	0.8332	0.8335	0.8337
0.97	0.8340	0.8342	0.8345	0.8347	0.8350	0.8352	0.8355	0.8357	0.8360	0.8362
0.98	0.8365	0.8367	0.8370	0.8372	0.8374	0.8377	0.8379	0.8382	0.8384	0.8387
0.99	0.8389	0.8392	0.8394	0.8396	0.8399	0.8401	0.8404	0.8406	0.8409	0.8411
1.00	0.8413	0.8416	0.8418	0.8421	0.8423	0.8426	0.8428	0.8430	0.8433	0.8435
1.01	0.8438	0.8440	0.8442	0.8445	0.8447	0.8449	0.8452	0.8454	0.8457	0.8459
1.02	0.8461	0.8464	0.8466	0.8468	0.8471	0.8473	0.8476	0.8478	0.8480	0.8483
1.03	0.8485	0.8487	0.8490	0.8492	0.8494	0.8497	0.8499	0.8501	0.8504	0.8506
1.04	0.8508	0.8511	0.8513	0.8515	0.8518	0.8520	0.8522	0.8525	0.8527	0.8529
1.05	0.8531	0.8534	0.8536	0.8538	0.8541	0.8543	0.8545	0.8547	0.8550	0.8552
1.06	0.8554	0.8557	0.8559	0.8561	0.8563	0.8566	0.8568	0.8570	0.8572	0.8575
1.07	0.8577	0.8579	0.8581	0.8584	0.8586	0.8588	0.8590	0.8593	0.8595	0.8597
1.08	0.8599	0.8602	0.8604	0.8606	0.8608	0.8610	0.8613	0.8615	0.8617	0.8619
1.09	0.8621	0.8624	0.8626	0.8628	0.8630	0.8632	0.8635	0.8637	0.8639	0.8641

z	0.000	0.001	0.002	0.003	0.004	0.005	0.006	0.007	0.008	0.009
1.10	0.8643	0.8646	0.8648	0.8650	0.8652	0.8654	0.8656	0.8659	0.8661	0.8663
1.11	0.8665	0.8667	0.8669	0.8671	0.8674	0.8676	0.8678	0.8680	0.8682	0.8684
1.12	0.8686	0.8689	0.8691	0.8693	0.8695	0.8697	0.8699	0.8701	0.8703	0.8706
1.13	0.8708	0.8710	0.8712	0.8714	0.8716	0.8718	0.8720	0.8722	0.8724	0.8726
1.14	0.8729	0.8731	0.8733	0.8735	0.8737	0.8739	0.8741	0.8743	0.8745	0.8747
1.15	0.8749	0.8751	0.8753	0.8755	0.8757	0.8760	0.8762	0.8764	0.8766	0.8768
1.16	0.8770	0.8772	0.8774	0.8776	0.8778	0.8780	0.8782	0.8784	0.8786	0.8788
1.17	0.8790	0.8792	0.8794	0.8796	0.8798	0.8800	0.8802	0.8804	0.8806	0.8808
1.18	0.8810	0.8812	0.8814	0.8816	0.8818	0.8820	0.8822	0.8824	0.8826	0.8828
1.19	0.8830	0.8832	0.8834	0.8836	0.8838	0.8840	0.8842	0.8843	0.8845	0.8847
1.20	0.8849	0.8851	0.8853	0.8855	0.8857	0.8859	0.8861	0.8863	0.8865	0.8867
1.21	0.8869	0.8871	0.8872	0.8874	0.8876	0.8878	0.8880	0.8882	0.8884	0.8886
1.22	0.8888	0.8890	0.8891	0.8893	0.8895	0.8897	0.8899	0.8901	0.8903	0.8905
1.23	0.8907	0.8908	0.8910	0.8912	0.8914	0.8916	0.8918	0.8920	0.8921	0.8923
1.24	0.8925	0.8927	0.8929	0.8931	0.8933	0.8934	0.8936	0.8938	0.8940	0.8942
1.25	0.8944	0.8945	0.8947	0.8949	0.8951	0.8953	0.8954	0.8956	0.8958	0.8960
1.26	0.8962	0.8963	0.8965	0.8967	0.8969	0.8971	0.8972	0.8974	0.8976	0.8978
1.27	0.8980	0.8981	0.8983	0.8985	0.8987	0.8988	0.8990	0.8992	0.8994	0.8996
1.28	0.8997	0.8999	0.9001	0.9003	0.9004	0.9006	0.9008	0.9010	0.9011	0.9013
1.29	0.9015	0.9016	0.9018	0.9020	0.9022	0.9023	0.9025	0.9027	0.9029	0.9030
1.30	0.9032	0.9034	0.9035	0.9037	0.9039	0.9041	0.9042	0.9044	0.9046	0.9047
1.31	0.9049	0.9051	0.9052	0.9054	0.9056	0.9057	0.9059	0.9061	0.9062	0.9064
1.32	0.9066	0.9067	0.9069	0.9071	0.9072	0.9074	0.9076	0.9077	0.9079	0.9081
1.33	0.9082	0.9084	0.9086	0.9087	0.9089	0.9091	0.9092	0.9094	0.9096	0.9097
1.34	0.9099	0.9100	0.9102	0.9104	0.9105	0.9107	0.9108	0.9110	0.9112	0.9113
1.35	0.9115	0.9117	0.9118	0.9120	0.9121	0.9123	0.9125	0.9126	0.9128	0.9129
1.36	0.9131	0.9132	0.9134	0.9136	0.9137	0.9139	0.9140	0.9142	0.9143	0.9145
1.37	0.9147	0.9148	0.9150	0.9151	0.9153	0.9154	0.9156	0.9157	0.9159	0.9161
1.38	0.9162	0.9164	0.9165	0.9167	0.9168	0.9170	0.9171	0.9173	0.9174	0.9176
1.39	0.9177	0.9179	0.9180	0.9182	0.9183	0.9185	0.9186	0.9188	0.9189	0.9191
1.40	0.9192	0.9194	0.9195	0.9197	0.9198	0.9200	0.9201	0.9203	0.9204	0.9206
1.41	0.9207	0.9209	0.9210	0.9212	0.9213	0.9215	0.9216	0.9218	0.9219	0.9221
1.42	0.9222	0.9223	0.9225	0.9226	0.9228	0.9229	0.9231	0.9232	0.9234	0.9235
1.43	0.9236	0.9238	0.9239	0.9241	0.9242	0.9244	0.9245	0.9246	0.9248	0.9249
1.44	0.9251	0.9252	0.9253	0.9255	0.9256	0.9258	0.9259	0.9261	0.9262	0.9263
1.45	0.9265	0.9266	0.9267	0.9269	0.9270	0.9272	0.9273	0.9274	0.9276	0.9277
1.46	0.9279	0.9280	0.9281	0.9283	0.9284	0.9285	0.9287	0.9288	0.9289	0.9291
1.47	0.9292	0.9294	0.9295	0.9296	0.9298	0.9299	0.9300	0.9302	0.9303	0.9304
1.48	0.9306	0.9307	0.9308	0.9310	0.9311	0.9312	0.9314	0.9315	0.9316	0.9318
1.49	0.9319	0.9320	0.9322	0.9323	0.9324	0.9325	0.9327	0.9328	0.9329	0.9331

z	0.000	0.001	0.002	0.003	0.004	0.005	0.006	0.007	0.008	0.009
1.50	0.9332	0.9333	0.9335	0.9336	0.9337	0.9338	0.9340	0.9341	0.9342	0.9344
1.51	0.9345	0.9346	0.9347	0.9349	0.9350	0.9351	0.9352	0.9354	0.9355	0.9356
1.52	0.9357	0.9359	0.9360	0.9361	0.9362	0.9364	0.9365	0.9366	0.9367	0.9369
1.53	0.9370	0.9371	0.9372	0.9374	0.9375	0.9376	0.9377	0.9379	0.9380	0.9381
1.54	0.9382	0.9383	0.9385	0.9386	0.9387	0.9388	0.9389	0.9391	0.9392	0.9393
1.55	0.9394	0.9395	0.9397	0.9398	0.9399	0.9400	0.9401	0.9403	0.9404	0.9405
1.56	0.9406	0.9407	0.9409	0.9410	0.9411	0.9412	0.9413	0.9414	0.9416	0.9417
1.57	0.9418	0.9419	0.9420	0.9421	0.9423	0.9424	0.9425	0.9426	0.9427	0.9428
1.58	0.9429	0.9431	0.9432	0.9433	0.9434	0.9435	0.9436	0.9437	0.9439	0.9440
1.59	0.9441	0.9442	0.9443	0.9444	0.9445	0.9446	0.9448	0.9449	0.9450	0.9451
1.60	0.9452	0.9453	0.9454	0.9455	0.9456	0.9458	0.9459	0.9460	0.9461	0.9462
1.61	0.9463	0.9464	0.9465	0.9466	0.9467	0.9468	0.9470	0.9471	0.9472	0.9473
1.62	0.9474	0.9475	0.9476	0.9477	0.9478	0.9479	0.9480	0.9481	0.9482	0.9483
1.63	0.9484	0.9486	0.9487	0.9488	0.9489	0.9490	0.9491	0.9492	0.9493	0.9494
1.64	0.9495	0.9496	0.9497	0.9498	0.9499	0.9500	0.9501	0.9502	0.9503	0.9504
1.65	0.9505	0.9506	0.9507	0.9508	0.9509	0.9510	0.9511	0.9512	0.9513	0.9514
1.66	0.9515	0.9516	0.9517	0.9518	0.9519	0.9520	0.9521	0.9522	0.9523	0.9524
1.67	0.9525	0.9526	0.9527	0.9528	0.9529	0.9530	0.9531	0.9532	0.9533	0.9534
1.68	0.9535	0.9536	0.9537	0.9538	0.9539	0.9540	0.9541	0.9542	0.9543	0.9544
1.69	0.9545	0.9546	0.9547	0.9548	0.9549	0.9550	0.9551	0.9552	0.9552	0.9553
1.70	0.9554	0.9555	0.9556	0.9557	0.9558	0.9559	0.9560	0.9561	0.9562	0.9563
1.71	0.9564	0.9565	0.9566	0.9566	0.9567	0.9568	0.9569	0.9570	0.9571	0.9572
1.72	0.9573	0.9574	0.9575	0.9576	0.9576	0.9577	0.9578	0.9579	0.9580	0.9581
1.73	0.9582	0.9583	0.9584	0.9585	0.9585	0.9586	0.9587	0.9588	0.9589	0.9590
1.74	0.9591	0.9592	0.9592	0.9593	0.9594	0.9595	0.9596	0.9597	0.9598	0.9599
1.75	0.9599	0.9600	0.9601	0.9602	0.9603	0.9604	0.9605	0.9605	0.9606	0.9607
1.76	0.9608	0.9609	0.9610	0.9610	0.9611	0.9612	0.9613	0.9614	0.9615	0.9616
1.77	0.9616	0.9617	0.9618	0.9619	0.9620	0.9621	0.9621	0.9622	0.9623	0.9624
1.78	0.9625	0.9625	0.9626	0.9627	0.9628	0.9629	0.9630	0.9630	0.9631	0.9632
1.79	0.9633	0.9634	0.9634	0.9635	0.9636	0.9637	0.9638	0.9638	0.9639	0.9640
1.80	0.9641	0.9641	0.9642	0.9643	0.9644	0.9645	0.9645	0.9646	0.9647	0.9648
1.81	0.9649	0.9649	0.9650	0.9651	0.9652	0.9652	0.9653	0.9654	0.9655	0.9655
1.82	0.9656	0.9657	0.9658	0.9658	0.9659	0.9660	0.9661	0.9662	0.9662	0.9663
1.83	0.9664	0.9664	0.9665	0.9666	0.9667	0.9667	0.9668	0.9669	0.9670	0.9670
1.84	0.9671	0.9672	0.9673	0.9673	0.9674	0.9675	0.9676	0.9676	0.9677	0.9678
1.85	0.9678	0.9679	0.9680	0.9681	0.9681	0.9682	0.9683	0.9683	0.9684	0.9685
1.86	0.9686	0.9686	0.9687	0.9688	0.9688	0.9689	0.9690	0.9690	0.9691	0.9692
1.87	0.9693	0.9693	0.9694	0.9695	0.9695	0.9696	0.9697	0.9697	0.9698	0.9699
1.88	0.9699	0.9700	0.9701	0.9701	0.9702	0.9703	0.9704	0.9704	0.9705	0.9706
1.89	0.9706	0.9707	0.9708	0.9708	0.9709	0.9710	0.9710	0.9711	0.9712	0.9712

z	0.000	0.001	0.002	0.003	0.004	0.005	0.006	0.007	0.008	0.009
1.90	0.9713	0.9713	0.9714	0.9715	0.9715	0.9716	0.9717	0.9717	0.9718	0.9719
1.91	0.9719	0.9720	0.9721	0.9721	0.9722	0.9723	0.9723	0.9724	0.9724	0.9725
1.92	0.9726	0.9726	0.9727	0.9728	0.9728	0.9729	0.9729	0.9730	0.9731	0.9731
1.93	0.9732	0.9733	0.9733	0.9734	0.9734	0.9735	0.9736	0.9736	0.9737	0.9737
1.94	0.9738	0.9739	0.9739	0.9740	0.9741	0.9741	0.9742	0.9742	0.9743	0.9744
1.95	0.9744	0.9745	0.9745	0.9746	0.9746	0.9747	0.9748	0.9748	0.9749	0.9749
1.96	0.9750	0.9751	0.9751	0.9752	0.9752	0.9753	0.9754	0.9754	0.9755	0.9755
1.97	0.9756	0.9756	0.9757	0.9758	0.9758	0.9759	0.9759	0.9760	0.9760	0.9761
1.98	0.9761	0.9762	0.9763	0.9763	0.9764	0.9764	0.9765	0.9765	0.9766	0.9766
1.99	0.9767	0.9768	0.9768	0.9769	0.9769	0.9770	0.9770	0.9771	0.9771	0.9772
2.00	0.9772	0.9773	0.9774	0.9774	0.9775	0.9775	0.9776	0.9776	0.9777	0.9777
2.01	0.9778	0.9778	0.9779	0.9779	0.9780	0.9780	0.9781	0.9782	0.9782	0.9783
2.02	0.9783	0.9784	0.9784	0.9785	0.9785	0.9786	0.9786	0.9787	0.9787	0.9788
2.03	0.9788	0.9789	0.9789	0.9790	0.9790	0.9791	0.9791	0.9792	0.9792	0.9793
2.04	0.9793	0.9794	0.9794	0.9795	0.9795	0.9796	0.9796	0.9797	0.9797	0.9798
2.05	0.9798	0.9799	0.9799	0.9800	0.9800	0.9801	0.9801	0.9802	0.9802	0.9803
2.06	0.9803	0.9803	0.9804	0.9804	0.9805	0.9805	0.9806	0.9806	0.9807	0.9807
2.07	0.9808	0.9808	0.9809	0.9809	0.9810	0.9810	0.9811	0.9811	0.9811	0.9812
2.08	0.9812	0.9813	0.9813	0.9814	0.9814	0.9815	0.9815	0.9816	0.9816	0.9816
2.09	0.9817	0.9817	0.9818	0.9818	0.9819	0.9819	0.9820	0.9820	0.9820	0.9821
2.10	0.9821	0.9822	0.9822	0.9823	0.9823	0.9824	0.9824	0.9824	0.9825	0.9825
2.11	0.9826	0.9826	0.9827	0.9827	0.9827	0.9828	0.9828	0.9829	0.9829	0.9830
2.12	0.9830	0.9830	0.9831	0.9831	0.9832	0.9832	0.9832	0.9833	0.9833	0.9834
2.13	0.9834	0.9835	0.9835	0.9835	0.9836	0.9836	0.9837	0.9837	0.9837	0.9838
2.14	0.9838	0.9839	0.9839	0.9839	0.9840	0.9840	0.9841	0.9841	0.9841	0.9842
2.15	0.9842	0.9843	0.9843	0.9843	0.9844	0.9844	0.9845	0.9845	0.9845	0.9846
2.16	0.9846	0.9847	0.9847	0.9847	0.9848	0.9848	0.9848	0.9849	0.9849	0.9850
2.17	0.9850	0.9850	0.9851	0.9851	0.9851	0.9852	0.9852	0.9853	0.9853	0.9853
2.18	0.9854	0.9854	0.9854	0.9855	0.9855	0.9856	0.9856	0.9856	0.9857	0.9857
2.19	0.9857	0.9858	0.9858	0.9858	0.9859	0.9859	0.9860	0.9860	0.9860	0.9861
2.20	0.9861	0.9861	0.9862	0.9862	0.9862	0.9863	0.9863	0.9863	0.9864	0.9864
2.21	0.9864	0.9865	0.9865	0.9866	0.9866	0.9866	0.9867	0.9867	0.9867	0.9868
2.22	0.9868	0.9868	0.9869	0.9869	0.9869	0.9870	0.9870	0.9870	0.9871	0.9871
2.23	0.9871	0.9872	0.9872	0.9872	0.9873	0.9873	0.9873	0.9874	0.9874	0.9874
2.24	0.9875	0.9875	0.9875	0.9876	0.9876	0.9876	0.9876	0.9877	0.9877	0.9877
2.25	0.9878	0.9878	0.9878	0.9879	0.9879	0.9879	0.9880	0.9880	0.9880	0.9881
2.26	0.9881	0.9881	0.9882	0.9882	0.9882	0.9882	0.9883	0.9883	0.9883	0.9884
2.27	0.9884	0.9884	0.9885	0.9885	0.9885	0.9885	0.9886	0.9886	0.9886	0.9887
2.28	0.9887	0.9887	0.9888	0.9888	0.9888	0.9888	0.9889	0.9889	0.9889	0.9890
2.29	0.9890	0.9890	0.9890	0.9891	0.9891	0.9891	0.9892	0.9892	0.9892	0.9892

z	0.000	0.001	0.002	0.003	0.004	0.005	0.006	0.007	0.008	0.009
2.30	0.9893	0.9893	0.9893	0.9894	0.9894	0.9894	0.9894	0.9895	0.9895	0.9895
2.31	0.9896	0.9896	0.9896	0.9896	0.9897	0.9897	0.9897	0.9897	0.9898	0.9898
2.32	0.9898	0.9899	0.9899	0.9899	0.9899	0.9900	0.9900	0.9900	0.9900	0.9901
2.33	0.9901	0.9901	0.9901	0.9902	0.9902	0.9902	0.9903	0.9903	0.9903	0.9903
2.34	0.9904	0.9904	0.9904	0.9904	0.9905	0.9905	0.9905	0.9905	0.9906	0.9906
2.35	0.9906	0.9906	0.9907	0.9907	0.9907	0.9907	0.9908	0.9908	0.9908	0.9908
2.36	0.9909	0.9909	0.9909	0.9909	0.9910	0.9910	0.9910	0.9910	0.9911	0.9911
2.37	0.9911	0.9911	0.9912	0.9912	0.9912	0.9912	0.9912	0.9913	0.9913	0.9913
2.38	0.9913	0.9914	0.9914	0.9914	0.9914	0.9915	0.9915	0.9915	0.9915	0.9916
2.39	0.9916	0.9916	0.9916	0.9916	0.9917	0.9917	0.9917	0.9917	0.9918	0.9918
2.40	0.9918	0.9918	0.9918	0.9919	0.9919	0.9919	0.9919	0.9920	0.9920	0.9920
2.41	0.9920	0.9920	0.9921	0.9921	0.9921	0.9921	0.9922	0.9922	0.9922	0.9922
2.42	0.9922	0.9923	0.9923	0.9923	0.9923	0.9923	0.9924	0.9924	0.9924	0.9924
2.43	0.9925	0.9925	0.9925	0.9925	0.9925	0.9926	0.9926	0.9926	0.9926	0.9926
2.44	0.9927	0.9927	0.9927	0.9927	0.9927	0.9928	0.9928	0.9928	0.9928	0.9928
2.45	0.9929	0.9929	0.9929	0.9929	0.9929	0.9930	0.9930	0.9930	0.9930	0.9930
2.46	0.9931	0.9931	0.9931	0.9931	0.9931	0.9931	0.9932	0.9932	0.9932	0.9932
2.47	0.9932	0.9933	0.9933	0.9933	0.9933	0.9933	0.9934	0.9934	0.9934	0.9934
2.48	0.9934	0.9934	0.9935	0.9935	0.9935	0.9935	0.9935	0.9936	0.9936	0.9936
2.49	0.9936	0.9936	0.9936	0.9937	0.9937	0.9937	0.9937	0.9937	0.9938	0.9938

z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
3.1	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993
3.2	0.9993	0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995
3.3	0.9995	0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997
3.4	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998
3.5	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998
3.6	0.9998	0.9998	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999
3.7	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999
3.8	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999
3.9	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999

Standard Normal Distribution - One-sided Confidence Intervals

The following applies:

$$F_N^*(z) = F_N(z) - 0.5$$

= $F_N^*(-z)$
 $F_N^*(0) = 0$
 $0 \le z < +\infty$

z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.0000	0.0040	0.0080	0.0120	0.0160	0.0199	0.0239	0.0279	0.0319	0.0359
0.1	0.0398	0.0438	0.0478	0.0517	0.0557	0.0596	0.0636	0.0675	0.0714	0.0753
0.2	0.0793	0.0832	0.0871	0.0910	0.0948	0.0987	0.1026	0.1064	0.1103	0.1141
0.3	0.1179	0.1217	0.1255	0.1293	0.1331	0.1368	0.1406	0.1443	0.1480	0.1517
0.4	0.1554	0.1591	0.1628	0.1664	0.1700	0.1736	0.1772	0.1808	0.1844	0.1879
0.5	0.1915	0.1950	0.1985	0.2019	0.2054	0.2088	0.2123	0.2157	0.2190	0.2224
0.6	0.2257	0.2291	0.2324	0.2357	0.2389	0.2422	0.2454	0.2486	0.2517	0.2549
0.7	0.2580	0.2611	0.2642	0.2673	0.2704	0.2734	0.2764	0.2794	0.2823	0.2852
0.8	0.2881	0.2910	0.2939	0.2967	0.2995	0.3023	0.3051	0.3078	0.3106	0.3133
0.9	0.3159	0.3186	0.3212	0.3238	0.3264	0.3289	0.3315	0.3340	0.3365	0.3389
1.0	0.3413	0.3438	0.3461	0.3485	0.3508	0.3531	0.3554	0.3577	0.3599	0.3621
1.1	0.3643	0.3665	0.3686	0.3708	0.3729	0.3749	0.3770	0.3790	0.3810	0.3830
1.2	0.3849	0.3869	0.3888	0.3907	0.3925	0.3944	0.3962	0.3980	0.3997	0.4015
1.3	0.4032	0.4049	0.4066	0.4082	0.4099	0.4115	0.4131	0.4147	0.4162	0.4177
1.4	0.4192	0.4207	0.4222	0.4236	0.4251	0.4265	0.4279	0.4292	0.4306	0.4319
1.5	0.4332	0.4345	0.4357	0.4370	0.4382	0.4394	0.4406	0.4418	0.4429	0.4441
1.6	0.4452	0.4463	0.4474	0.4484	0.4495	0.4505	0.4515	0.4525	0.4535	0.4545
1.7	0.4554	0.4564	0.4573	0.4582	0.4591	0.4599	0.4608	0.4616	0.4625	0.4633
1.8	0.4641	0.4649	0.4656	0.4664	0.4671	0.4678	0.4686	0.4693	0.4699	0.4706
1.9	0.4713	0.4719	0.4726	0.4732	0.4738	0.4744	0.4750	0.4756	0.4761	0.4767
2.0	0.4772	0.4778	0.4783	0.4788	0.4793	0.4798	0.4803	0.4808	0.4812	0.4817
2.1	0.4821	0.4826	0.4830	0.4834	0.4838	0.4842	0.4846	0.4850	0.4854	0.4857
2.2	0.4861	0.4864	0.4868	0.4871	0.4875	0.4878	0.4881	0.4884	0.4887	0.4890
2.3	0.4893	0.4896	0.4898	0.4901	0.4904	0.4906	0.4909	0.4911	0.4913	0.4916
2.4	0.4918	0.4920	0.4922	0.4925	0.4927	0.4929	0.4931	0.4932	0.4934	0.4936
2.5	0.4938	0.4940	0.4941	0.4943	0.4945	0.4946	0.4948	0.4949	0.4951	0.4952
2.6	0.4953	0.4955	0.4956	0.4957	0.4959	0.4960	0.4961	0.4962	0.4963	0.4964
2.7	0.4965	0.4966	0.4967	0.4968	0.4969	0.4970	0.4971	0.4972	0.4973	0.4974
2.8	0.4974	0.4975	0.4976	0.4977	0.4977	0.4978	0.4979	0.4979	0.4980	0.4981
2.9	0.4981	0.4982	0.4982	0.4983	0.4984	0.4984	0.4985	0.4985	0.4986	0.4986

Standard Normal Distribution – One-sided Confidence Intervals

z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
3.0	0.4987	0.4987	0.4987	0.4988	0.4988	0.4989	0.4989	0.4989	0.4990	0.4990
3.1	0.4990	0.4991	0.4991	0.4991	0.4992	0.4992	0.4992	0.4992	0.4993	0.4993
3.2	0.4993	0.4993	0.4994	0.4994	0.4994	0.4994	0.4994	0.4995	0.4995	0.4995
3.3	0.4995	0.4995	0.4995	0.4996	0.4996	0.4996	0.4996	0.4996	0.4996	0.4997
3.4	0.4997	0.4997	0.4997	0.4997	0.4997	0.4997	0.4997	0.4997	0.4997	0.4998
3.5	0.4998	0.4998	0.4998	0.4998	0.4998	0.4998	0.4998	0.4998	0.4998	0.4998
3.6	0.4998	0.4998	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999
3.7	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999
3.8	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999
3.9	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000

Standard Normal Distribution – Two-sided, Symmetric Confidence Intervals

The following applies:

$$F_N^{**}(z) = F_N(z) - F_N(-z)$$

$$= 2F_N(z) - 1$$

$$= 2F_N^*(z)$$

$$-\infty < z < +\infty$$

 $\mathit{F}_{\mathit{N}}^{*}(z)$ see also standard normal distribution, one-sided confidence intervals.

_	0.00	0.01	0.00	0.00	0.04	0.05	0.00	0.07	0.00	0.00
Z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.0000	0.0080	0.0160	0.0239	0.0319	0.0399	0.0478	0.0558	0.0638	0.0717
0.1	0.0797	0.0876	0.0955	0.1034	0.1113	0.1192	0.1271	0.1350	0.1428	0.1507
0.2	0.1585	0.1663	0.1741	0.1819	0.1897	0.1974	0.2051	0.2128	0.2205	0.2282
0.3	0.2358	0.2434	0.2510	0.2586	0.2661	0.2737	0.2812	0.2886	0.2961	0.3035
0.4	0.3108	0.3182	0.3255	0.3328	0.3401	0.3473	0.3545	0.3616	0.3688	0.3759
0.5	0.3829	0.3899	0.3969	0.4039	0.4108	0.4177	0.4245	0.4313	0.4381	0.4448
0.6	0.4515	0.4581	0.4647	0.4713	0.4778	0.4843	0.4907	0.4971	0.5035	0.5098
0.7	0.5161	0.5223	0.5285	0.5346	0.5407	0.5467	0.5527	0.5587	0.5646	0.5705
0.8	0.5763	0.5821	0.5878	0.5935	0.5991	0.6047	0.6102	0.6157	0.6211	0.6265
0.9	0.6319	0.6372	0.6424	0.6476	0.6528	0.6579	0.6629	0.6680	0.6729	0.6778
1.0	0.6827	0.6875	0.6923	0.6970	0.7017	0.7063	0.7109	0.7154	0.7199	0.7243
1.1	0.7287	0.7330	0.7373	0.7415	0.7457	0.7499	0.7540	0.7580	0.7620	0.7660
1.2	0.7699	0.7737	0.7775	0.7813	0.7850	0.7887	0.7923	0.7959	0.7995	0.8029
1.3	0.8064	0.8098	0.8132	0.8165	0.8198	0.8230	0.8262	0.8293	0.8324	0.8355
1.4	0.8385	0.8415	0.8444	0.8473	0.8501	0.8529	0.8557	0.8584	0.8611	0.8638
1.5	0.8664	0.8690	0.8715	0.8740	0.8764	0.8789	0.8812	0.8836	0.8859	0.8882
1.6	0.8904	0.8926	0.8948	0.8969	0.8990	0.9011	0.9031	0.9051	0.9070	0.9090
1.7	0.9109	0.9127	0.9146	0.9164	0.9181	0.9199	0.9216	0.9233	0.9249	0.9265
1.8	0.9281	0.9297	0.9312	0.9328	0.9342	0.9357	0.9371	0.9385	0.9399	0.9412
1.9	0.9426	0.9439	0.9451	0.9464	0.9476	0.9488	0.9500	0.9512	0.9523	0.9534
2.0	0.9545	0.9556	0.9566	0.9576	0.9586	0.9596	0.9606	0.9615	0.9625	0.9634
2.1	0.9643	0.9651	0.9660	0.9668	0.9676	0.9684	0.9692	0.9700	0.9707	0.9715
2.2	0.9722	0.9729	0.9736	0.9743	0.9749	0.9756	0.9762	0.9768	0.9774	0.9780
2.3	0.9786	0.9791	0.9797	0.9802	0.9807	0.9812	0.9817	0.9822	0.9827	0.9832
2.4	0.9836	0.9840	0.9845	0.9849	0.9853	0.9857	0.9861	0.9865	0.9869	0.9872
2.5	0.9876	0.9879	0.9883	0.9886	0.9889	0.9892	0.9895	0.9898	0.9901	0.9904
2.6	0.9907	0.9909	0.9912	0.9915	0.9917	0.9920	0.9922	0.9924	0.9926	0.9929
2.7	0.9931	0.9933	0.9935	0.9937	0.9939	0.9940	0.9942	0.9944	0.9946	0.9947
2.8	0.9949	0.9950	0.9952	0.9953	0.9955	0.9956	0.9958	0.9959	0.9960	0.9961
2.9	0.9963	0.9964	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972

Standard Normal Distribution – Two-sided, Symmetric Confidence Intervals

z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
3.0	0.9973	0.9974	0.9975	0.9976	0.9976	0.9977	0.9978	0.9979	0.9979	0.9980
3.1	0.9981	0.9981	0.9982	0.9983	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986
3.2	0.9986	0.9987	0.9987	0.9988	0.9988	0.9988	0.9989	0.9989	0.9990	0.9990
3.3	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993
3.4	0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995	0.9995
3.5	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997	0.9997
3.6	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998	0.9998	0.9998
3.7	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998
3.8	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999
3.9	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999

Chi-Squared Distribution – Distribution Function

The corresponding values of χ^2 for the parameters ν and (1-a) in form of a distribution function are given.

The following is applicable for χ^2 :

$$W(0 < X^2 \le \chi^2) = F_{CH}\left(\frac{\chi^2}{\nu}\right)$$
$$= 1 - \alpha$$

with $X^2 = \text{random variable}$

v					$1-\alpha$				
	0.001	0.005	0.010	0.025	0.050	0.100	0.250	0.400	0.500
1	0.000	0.000	0.000	0.001	0.004	0.016	0.102	0.275	0.455
2	0.002	0.010	0.020	0.051	0.103	0.211	0.575	1.022	1.386
3	0.024	0.072	0.115	0.216	0.352	0.5840	1.213	1.869	2.366
4	0.091	0.207	0.297	0.484	0.711	1.064	1.923	2.753	3.357
5	0.210	0.412	0.554	0.831	1.145	1.610	2.675	3.655	4.351
6	0.381	0.676	0.872	1.237	1.635	2.204	3.455	4.570	5.348
7	0.598	0.989	1.239	1.690	2.167	2.833	4.255	5.493	6.346
8	0.857	1.344	1.646	2.180	2.733	3.490	5.071	6.423	7.344
9	1.152	1.735	2.088	2.700	3.325	4.168	5.899	7.357	8.343
10	1.479	2.156	2.558	3.247	3.940	4.865	6.737	8.295	9.342
11	1.834	2.603	3.053	3.816	4.575	5.578	7.584	9.237	10.341
12	2.214	3.074	3.571	4.404	5.226	6.304	8.438	10.182	11.340
13	2.617	3.565	4.107	5.009	5.892	7.042	9.299	11.129	12.340
14	3.041	4.075	4.660	5.629	6.571	7.790	10.165	12.078	13.339
15	3.483	4.601	5.229	6.262	7.261	8.547	11.037	13.030	14.339
16	3.942	5.142	5.812	6.908	7.962	9.312	11.912	13.983	15.338
17	4.416	5.697	6.408	7.564	8.672	10.085	12.792	14.937	16.338
18	4.905	6.265	7.015	8.231	9.390	10.865	13.675	15.893	17.338
19	5.407	6.844	7.633	8.907	10.117	11.651	14.562	16.850	18.338
20	5.921	7.434	8.260	9.591	10.851	12.443	15.452	17.809	19.337
21	6.447	8.034	8.897	10.283	11.591	13.240	16.344	18.768	20.337
22	6.983	8.643	9.542	10.982	12.338	14.041	17.240	19.729	21.337
23	7.529	9.260	10.196	11.689	13.091	14.848	18.137	20.690	22.337
24	8.085	9.886	10.856	12.401	13.848	15.659	19.037	21.652	23.337
25	8.649	10.520	11.524	13.120	14.611	16.473	19.939	22.616	24.337

Chi-Squared Distribution – Distribution Function

v					$1-\alpha$				
	0.001	0.005	0.010	0.025	0.050	0.100	0.250	0.400	0.500
30	11.588	13.787	14.953	16.791	18.493	20.599	24.478	27.442	29.336
35	14.688	17.192	18.509	20.569	22.465	24.797	29.054	32.282	34.336
40	17.916	20.707	22.164	24.433	26.509	29.051	33.660	37.134	39.335
45	21.251	24.311	25.901	28.366	30.612	33.350	38.291	41.995	44.335
50	24.674	27.991	29.707	32.357	34.764	37.689	42.942	46.864	49.335
60	31.738	35.534	37.485	40.482	43.188	46.459	52.294	56.620	59.335
70	39.036	43.275	45.442	48.758	51.739	55.329	61.698	66.396	69.334
80	46.520	51.172	53.540	57.153	60.391	64.278	71.145	76.188	79.334
90	54.155	59.196	61.754	65.647	69.126	73.291	80.625	85.993	89.334
100	61.918	67.328	70.065	74.222	77.929	82.358	90.133	95.808	99.334

Chi-Squared Distribution – Distribution Function

v					$1-\alpha$				
	0.600	0.750	0.800	0.850	0.900	0.950	0.975	0.980	0.990
_1	0.708	1.323	1.642	2.072	2.706	3.841	5.024	5.412	6.635
2	1.833	2.773	3.219	3.794	4.605	5.991	7.378	7.824	9.210
_3	2.946	4.108	4.642	5.317	6.251	7.815	9.348	9.837	11.345
4	4.045	5.385	5.989	6.745	7.779	9.488	11.143	11.668	13.277
_5	5.132	6.626	7.289	8.115	9.236	11.070	12.833	13.388	15.086
_6	6.211	7.841	8.558	9.446	10.645	12.592	14.449	15.033	16.812
7	7.283	9.037	9.803	10.748	12.017	14.067	16.013	16.622	18.475
8	8.351	10.219	11.030	12.027	13.362	15.507	17.535	18.168	20.090
_9	9.414	11.389	12.242	13.288	14.684	16.919	19.023	19.679	21.666
10	10.473	12.549	13.442	14.534	15.987	18.307	20.483	21.161	23.209
_11	11.530	13.701	14.631	15.767	17.275	19.675	21.920	22.618	24.725
12	12.584	14.845	15.812	16.989	18.549	21.026	23.337	24.054	26.217
_13	13.636	15.984	16.985	18.202	19.812	22.362	24.736	25.472	27.688
14	14.685	17.117	18.151	19.406	21.064	23.685	26.119	26.873	29.141
15	15.733	18.245	19.311	20.603	22.307	24.996	27.488	28.259	30.578
16	16.780	19.369	20.465	21.793	23.542	26.296	28.845	29.633	32.000
_17	17.824	20.489	21.615	22.977	24.769	27.587	30.191	30.995	33.409
_18	18.868	21.605	22.760	24.155	25.989	28.869	31.526	32.346	34.805
_19	19.910	22.718	23.900	25.329	27.204	30.144	32.852	33.687	36.191
20	20.951	23.828	25.038	26.498	28.412	31.410	34.170	35.020	37.566
_21	21.991	24.935	26.171	27.662	29.615	32.671	35.479	36.343	38.932
22	23.031	26.039	27.301	28.822	30.813	33.924	36.781	37.659	40.289
23	24.069	27.141	28.429	29.979	32.007	35.172	38.076	38.968	41.638
24	25.106	28.241	29.553	31.132	33.196	36.415	39.364	40.270	42.980
25	26.143	29.339	30.675	32.282	34.382	37.652	40.646	41.566	44.314
30	31.316	34.800	36.250	37.990	40.256	43.773	46.979	47.962	50.892
35	36.475	40.223	41.778	43.640	46.059	49.802	53.203	54.244	57.342
40	41.622	45.616	47.269	49.244	51.805	55.758	59.342	60.436	63.691
45	46.761	50.985	52.729	54.810	57.505	61.656	65.410	66.555	69.957
_50	51.892	56.334	58.164	60.346	63.167	67.505	71.420	72.613	76.154
60	62.135	66.981	68.972	71.341	74.397	79.082	83.298	84.580	88.380
70	72.358	77.577	79.715	82.255	85.527	90.530	95.020	96.390	100.430
80	82.566	88.130	90.410	93.110	96.580	101.880	106.630	108.070	112.330
90	92.760	98.650	101.050	103.900	107.570	113.150	118.140	119.650	124.120
100	102.950	109.140	111.670	114.660	118.500	124.340	129.560	131.140	135.810

Student's t-Distribution – Two-sided, Symmetric Confidence Intervals

The corresponding values of t for the parameters ν and (1-a) in form of two-sided, symmetric confidence intervals are given.

The following is applicable for *t*:

$$W(-t < T \le t) = 1 - \alpha$$

with T = random variable

ν					$1-\alpha$				
	0.100	0.150	0.200	0.250	0.300	0.350	0.400	0.450	0.500
1	0.158	0.240	0.325	0.414	0.510	0.613	0.727	0.854	1.000
2	0.142	0.215	0.289	0.365	0.445	0.528	0.617	0.713	0.816
3	0.137	0.206	0.277	0.349	0.424	0.502	0.584	0.671	0.765
4	0.134	0.202	0.271	0.341	0.414	0.490	0.569	0.652	0.741
_5	0.132	0.199	0.267	0.337	0.408	0.482	0.559	0.641	0.727
6	0.131	0.197	0.265	0.334	0.404	0.477	0.553	0.633	0.718
_7	0.130	0.196	0.263	0.331	0.402	0.474	0.549	0.628	0.711
8	0.130	0.195	0.262	0.330	0.399	0.471	0.546	0.624	0.706
9	0.129	0.195	0.261	0.329	0.398	0.469	0.543	0.621	0.703
10	0.129	0.194	0.260	0.328	0.397	0.468	0.542	0.619	0.700
11	0.129	0.194	0.260	0.327	0.396	0.466	0.540	0.617	0.697
12	0.128	0.193	0.259	0.326	0.395	0.465	0.539	0.615	0.695
13	0.128	0.193	0.259	0.325	0.394	0.464	0.538	0.614	0.694
14	0.128	0.193	0.258	0.325	0.393	0.464	0.537	0.613	0.692
15	0.128	0.192	0.258	0.325	0.393	0.463	0.536	0.612	0.691
16	0.128	0.192	0.258	0.324	0.392	0.462	0.535	0.611	0.690
17	0.128	0.192	0.257	0.324	0.392	0.462	0.534	0.610	0.689
18	0.127	0.192	0.257	0.324	0.392	0.461	0.534	0.609	0.688
19	0.127	0.192	0.257	0.323	0.391	0.461	0.533	0.609	0.688
20	0.127	0.192	0.257	0.323	0.391	0.461	0.533	0.608	0.687
21	0.127	0.191	0.257	0.323	0.391	0.460	0.532	0.608	0.686
22	0.127	0.191	0.256	0.323	0.390	0.460	0.532	0.607	0.686
23	0.127	0.191	0.256	0.322	0.390	0.460	0.532	0.607	0.685
24	0.127	0.191	0.256	0.322	0.390	0.460	0.531	0.606	0.685
25	0.127	0.191	0.256	0.322	0.390	0.459	0.531	0.606	0.684

290 A Statistical Tables

Student's t-Distribution – Two-sided, Symmetric Confidence Intervals

v					$1-\alpha$				
	0.100	0.150	0.200	0.250	0.300	0.350	0.400	0.450	0.500
26	0.127	0.191	0.256	0.322	0.390	0.459	0.531	0.606	0.684
27	0.127	0.191	0.256	0.322	0.389	0.459	0.531	0.605	0.684
28	0.127	0.191	0.256	0.322	0.389	0.459	0.530	0.605	0.683
29	0.127	0.191	0.256	0.322	0.389	0.459	0.530	0.605	0.683
30	0.127	0.191	0.256	0.322	0.389	0.458	0.530	0.605	0.683
40	0.126	0.190	0.255	0.321	0.388	0.457	0.529	0.603	0.681
50	0.126	0.190	0.255	0.320	0.388	0.457	0.528	0.602	0.679
100	0.126	0.190	0.254	0.320	0.386	0.455	0.526	0.600	0.677
150	0.126	0.189	0.254	0.319	0.386	0.455	0.526	0.599	0.676
∞	0.126	0.189	0.253	0.319	0.385	0.454	0.524	0.598	0.675

Student's t-Distribution – Two-sided, Symmetric Confidence Intervals

v					$1-\alpha$				
	0.600	0.700	0.800	0.850	0.900	0.950	0.975	0.990	0.995
1	1.376	1.963	3.078	4.165	6.314	12.706	25.452	63.657	127.321
2	1.061	1.386	1.886	2.282	2.920	4.303	6.205	9.925	14.089
_3	0.978	1.250	1.638	1.924	2.353	3.182	4.177	5.841	7.453
4	0.941	1.190	1.533	1.778	2.132	2.776	3.495	4.604	5.598
_5	0.920	1.156	1.476	1.699	2.015	2.571	3.163	4.032	4.773
_6	0.906	1.134	1.440	1.650	1.943	2.447	2.969	3.707	4.317
7	0.896	1.119	1.415	1.617	1.895	2.365	2.841	3.499	4.029
8	0.889	1.108	1.397	1.592	1.860	2.306	2.752	3.355	3.833
9	0.883	1.100	1.383	1.574	1.833	2.262	2.685	3.250	3.690
10	0.879	1.093	1.372	1.559	1.812	2.228	2.634	3.169	3.581
_11	0.876	1.088	1.363	1.548	1.796	2.201	2.593	3.106	3.497
12	0.873	1.083	1.356	1.538	1.782	2.179	2.560	3.055	3.428
13	0.870	1.079	1.350	1.530	1.771	2.160	2.533	3.012	3.372
14	0.868	1.076	1.345	1.523	1.761	2.145	2.510	2.977	3.326
15	0.866	1.074	1.341	1.517	1.753	2.131	2.490	2.947	3.286
16	0.865	1.071	1.337	1.512	1.746	2.120	2.473	2.921	3.252
_17	0.863	1.069	1.333	1.508	1.740	2.110	2.458	2.898	3.222
18	0.862	1.067	1.330	1.504	1.734	2.101	2.445	2.878	3.197
19	0.861	1.066	1.328	1.500	1.729	2.093	2.433	2.861	3.174
20	0.860	1.064	1.325	1.497	1.725	2.086	2.423	2.845	3.153
21	0.859	1.063	1.323	1.494	1.721	2.080	2.414	2.831	3.135
22	0.858	1.061	1.321	1.492	1.717	2.074	2.405	2.819	3.119
23	0.858	1.060	1.319	1.489	1.714	2.069	2.398	2.807	3.104
24	0.857	1.059	1.318	1.487	1.711	2.064	2.391	2.797	3.091
25	0.856	1.058	1.316	1.485	1.708	2.060	2.385	2.787	3.078
26	0.856	1.058	1.315	1.483	1.706	2.056	2.379	2.779	3.067
_27	0.855	1.057	1.314	1.482	1.703	2.052	2.373	2.771	3.057
28	0.855	1.056	1.313	1.480	1.701	2.048	2.368	2.763	3.047
29	0.854	1.055	1.311	1.479	1.699	2.045	2.364	2.756	3.038
30	0.854	1.055	1.310	1.477	1.697	2.042	2.360	2.750	3.030
40	0.851	1.050	1.303	1.468	1.684	2.021	2.329	2.704	2.971
_50	0.849	1.047	1.299	1.462	1.676	2.009	2.311	2.678	2.937
100	0.845	1.042	1.290	1.451	1.660	1.984	2.276	2.626	2.871
150	0.844	1.040	1.287	1.447	1.655	1.976	2.264	2.609	2.849
∞	0.842	1.036	1.282	1.440	1.645	1.960	2.242	2.576	2.808

Student's t-Distribution - Distribution Function

The corresponding values of t for the parameters v and (1-a) in form of a distribution function are given.

The following is applicable for *t*:

$$W(-\infty < T \le t) = F_S\left(\frac{t}{v}\right) = 1 - \alpha$$

with T = random variable

The following applies:

$$F_S\left(\frac{-t}{v}\right) = 1 - F_S\left(\frac{t}{v}\right)$$

v	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$													
	0.600	0.700	0.800	0.900	0.950	0.975	0.990	0.995	0.999					
1	0.325	0.727	1.376	3.078	6.314	12.706	31.821	63.657	318.309					
2	0.289	0.617	1.061	1.886	2.920	4.303	6.965	9.925	22.327					
3	0.277	0.584	0.978	1.638	2.353	3.182	4.541	5.841	10.215					
4	0.271	0.569	0.941	1.533	2.132	2.776	3.747	4.604	7.173					
5	0.267	0.559	0.920	1.476	2.015	2.571	3.365	4.032	5.893					
6	0.265	0.553	0.906	1.440	1.943	2.447	3.143	3.707	5.208					
_7	0.263	0.549	0.896	1.415	1.895	2.365	2.998	3.499	4.785					
8	0.262	0.546	0.889	1.397	1.860	2.306	2.896	3.355	4.501					
9	0.261	0.543	0.883	1.383	1.833	2.262	2.821	3.250	4.297					
10	0.260	0.542	0.879	1.372	1.812	2.228	2.764	3.169	4.144					
11	0.260	0.540	0.876	1.363	1.796	2.201	2.718	3.106	4.025					
12	0.259	0.539	0.873	1.356	1.782	2.179	2.681	3.055	3.930					
13	0.259	0.538	0.870	1.350	1.771	2.160	2.650	3.012	3.852					
14	0.258	0.537	0.868	1.345	1.761	2.145	2.624	2.977	3.787					
15	0.258	0.536	0.866	1.341	1.753	2.131	2.602	2.947	3.733					
16	0.258	0.535	0.865	1.337	1.746	2.120	2.583	2.921	3.686					
17	0.257	0.534	0.863	1.333	1.740	2.110	2.567	2.898	3,646					
18	0.257	0.534	0.862	1.330	1.734	2.101	2.552	2.878	3.610					
19	0.257	0.533	0.861	1.328	1.729	2.093	2.539	2.861	3.579					
20	0.257	0.533	0.860	1.325	1.725	2.086	2.528	2.845	3.552					
21	0.257	0.532	0.859	1.323	1.721	2.080	2.518	2.831	3.527					
22	0.256	0.532	0.858	1.321	1.717	2.074	2.508	2.819	3.505					
23	0.256	0.532	0.858	1.319	1.714	2.069	2.500	2.807	3.485					
24	0.256	0.531	0.857	1.318	1.711	2.064	2.492	2.797	3.467					
25	0.256	0.531	0.856	1.316	1.708	2.060	2.485	2.787	3.450					
30	0.256	0.530	0.854	1.310	1.697	2.042	2.457	2.750	3.385					
40	0.255	0.529	0.851	1.303	1.684	2.021	2.423	2.704	3.307					
50	0.255	0.528	0.849	1.299	1.676	2.009	2.403	2.678	3.261					
100	0.254	0.526	0.845	1.290	1.660	1.984	2.364	2.626	3.174					
150	0.254	0.526	0.844	1.287	1.655	1.976	2.351	2.609	3.145					
∞	0.253	0.524	0.842	1.282	1.645	1.960	2.326	2.576	3.090					

F-Distribution – Distribution Function with $\alpha=0.05$

The corresponding values of F_c for the parameters v_1 and v_2 in form of a F-distribution function with (1-a) = 0.95 are given.

The following is applicable for F_c :

$$W(0 < F \le F_c) = F\left(\frac{F_c}{v_1; v_2}\right)$$

= 1 - \alpha = 0.95 f_{F_0}(v/v_1; v_2)

with F = random variable

and
$$F_{\alpha; v_1; v_2} = \frac{1}{F_{1-\alpha; v_1; v_2}}$$

with
$$v_1 = n_1 - 1$$

and $v_2 = n_2 - 1$

v_2	1	2	3	4	5	6	7	8	9	10	11	
1	161.45	199.50	215.71	224.58	230.16	233.99	236.77	238.88	240.54	241.88	242.98	
2	18.51	19.00	19.16	19.25	19.30	19.33	19.35	19.37	19.38	19.40	19.40	
3	10.13	9.55	9.28	9.12	9.01	8.94	8.89	8.85	8.81	8.79	8.76	
_4	7.71	6.94	6.59	6.39	6.26	6.16	6.09	6.04	6.00	5.96	5.94	
_5	6.61	5.79	5.41	5.19	5.05	4.95	4.88	4.82	4.77	4.74	4.70	
_6	5.99	5.14	4.76	4.53	4.39	4.28	4.21	4.15	4.10	4.06	4.03	
_7	5.59	4.74	4.35	4.12	3.97	3.87	3.79	3.73	3.68	3.64	3.60	
8	5.32	4.46	4.07	3.84	3.69	3.58	3.50	3.44	3.39	3.35	3.31	
9	5.12	4.26	3.86	3.63	3.48	3.37	3.29	3.23	3.18	3.14	3.10	
10	4.96	4.10	3.71	3.48	3.33	3.22	3.14	3.07	3.02	2.98	2.94	
11	4.84	3.98	3.59	3.36	3.20	3.09	3.01	2.95	2.90	2.85	2.82	
12	4.75	3.89	3.49	3.26	3.11	3.00	2.91	2.85	2.80	2.75	2.72	
_13	4.67	3.81	3.41	3.18	3.03	2.92	2.83	2.77	2.71	2.67	2.63	
14	4.60	3.74	3.34	3.11	2.96	2.85	2.76	2.70	2.65	2.60	2.57	
15	4.54	3.68	3.29	3.06	2.90	2.79	2.71	2.64	2.59	2.54	2.51	
16	4.49	3.63	3.24	3.01	2.85	2.74	2.66	2.59	2.54	2.49	2.46	
17	4.45	3.59	3.20	2.96	2.81	2.70	2.61	2.55	2.49	2.45	2.41	
18	4.41	3.55	3.16	2.93	2.77	2.66	2.58	2.51	2.46	2.41	2.37	
19	4.38	3.52	3.13	2.90	2.74	2.63	2.54	2.48	2.42	2.38	2.34	
20	4.35	3.49	3.10	2.87	2.71	2.60	2.51	2.45	2.39	2.35	2.31	
21	4.32	3.47	3.07	2.84	2.68	2.57	2.49	2.42	2.37	2.32	2.28	
22	4.30	3.44	3.05	2.82	2.66	2.55	2.46	2.40	2.34	2.30	2.26	
23	4.28	3.42	3.03	2.80	2.64	2.53	2.44	2.37	2.32	2.27	2.24	
24	4.26	3.40	3.01	2.78	2.62	2.51	2.42	2.36	2.30	2.25	2.22	
25	4.24	3.39	2.99	2.76	2.60	2.49	2.40	2.34	2.28	2.24	2.20	

F-Distribution – Distribution Function with lpha=0.05

v_2						ν_1					
v 2	1	2	3	4	5	6	7	8	9	10	11
26	4.23	3.37	2.98	2.74	2.59	2.47	2.39	2.32	2.27	2.22	2.18
27	4.21	3.35	2.96	2.73	2.57	2.46	2.37	2.31	2.25	2.20	2.17
28	4.20	3.34	2.95	2.71	2.56	2.45	2.36	2.29	2.24	2.19	2.15
29	4.18	3.33	2.93	2.70	2.55	2.43	2.35	2.28	2.22	2.18	2.14
30	4.17	3.32	2.92	2.69	2.53	2.42	2.33	2.27	2.21	2.16	2.13
40	4.08	3.23	2.84	2.61	2.45	2.34	2.25	2.18	2.12	2.08	2.04
50	4.03	3.18	2.79	2.56	2.40	2.29	2.20	2.13	2.07	2.03	1.99
60	4.00	3.15	2.76	2.53	2.37	2.25	2.17	2.10	2.04	1.99	1.95
70	3.98	3.13	2.74	2.50	2.35	2.23	2.14	2.07	2.02	1.97	1.93
80	3.96	3.11	2.72	2.49	2.33	2.21	2.13	2.06	2.00	1.95	1.91
90	3.95	3.10	2.71	2.47	2.32	2.20	2.11	2.04	1.99	1.94	1.90
100	3.94	3.09	2.70	2.46	2.31	2.19	2.10	2.03	1.97	1.93	1.89
150	3.90	3.06	2.66	2.43	2.27	2.16	2.07	2.00	1.94	1.89	1.85
200	3.89	3.04	2.65	2.42	2.26	2.14	2.06	1.98	1.93	1.88	1.84
∞	3.84	3.00	2.60	2.37	2.21	2.10	2.01	1.94	1.88	1.83	1.79

F-Distribution – Distribution Function with lpha=0.05

1/-						v_1					
V ₂	12	13	14	15	20	30	40	50	100	200	∞
_1	243.91	244.69	245.36	245.95	248.01	250.1	251.14	251.77	253.04	253.68	254.31
_ 2	19.41	19.42	19.42	19.43	19.45	19.46	19.47	19.48	19.49	19.49	19.50
_3	8.74	8.73	8.71	8.70	8.66	8.62	8.59	8.58	8.55	8.54	8.53
_ 4	5.91	5.89	5.87	5.86	5.80	5.75	5.72	5.70	5.66	5.65	5.63
5	4.68	4.66	4.64	4.62	4.56	4.50	4.46	4.44	4.41	4.39	4.37
6	4.00	3.98	3.96	3.94	3.87	3.81	3.77	3.75	3.71	3.69	3.67
7	3.57	3.55	3.53	3.51	3.44	3.38	3.34	3.32	3.27	3.25	3.23
8	3.28	3.26	3.24	3.22	3.15	3.08	3.04	3.02	2.97	2.95	2.93
_ 9	3.07	3.05	3.03	3.01	2.94	2.86	2.83	2.80	2.76	2.73	2.71
10	2.91	2.89	2.86	2.85	2.77	2.70	2.66	2.64	2.59	2.56	2.54
_11	2.79	2.76	2.74	2.72	2.65	2.57	2.53	2.51	2.46	2.43	2.40
12	2.69	2.66	2.64	2.62	2.54	2.47	2.43	2.40	2.35	2.32	2.30
_13	2.60	2.58	2.55	2.53	2.46	2.38	2.34	2.31	2.26	2.23	2.21
14	2.53	2.51	2.48	2.46	2.39	2.31	2.27	2.24	2.19	2.16	2.13
_15	2.48	2.45	2.42	2.40	2.33	2.25	2.20	2.18	2.12	2.10	2.07
_16	2.42	2.40	2.37	2.35	2.28	2.19	2.15	2.12	2.07	2.04	2.01
_17	2.38	2.35	2.33	2.31	2.23	2.15	2.10	2.08	2.02	1.99	1.96
_18	2.34	2.31	2.29	2.27	2.19	2.11	2.06	2.04	1.98	1.95	1.92
19	2.31	2.28	2.26	2.23	2.16	2.07	2.03	2.00	1.94	1.91	1.88
_20	2.28	2.25	2.22	2.20	2.12	2.04	1.99	1.97	1.91	1.88	1.84
_21	2.25	2.22	2.20	2.18	2.10	2.01	1.96	1.94	1.88	1.84	1.81
_22	2.23	2.20	2.17	2.15	2.07	1.98	1.94	1.91	1.85	1.82	1.78
23	2.20	2.18	2.15	2.13	2.05	1.96	1.91	1.88	1.82	1.79	1.76
24	2.18	2.15	2.13	2.11	2.03	1.94	1.89	1.86	1.80	1.77	1.73
25	2.16	2.14	2.11	2.09	2.01	1.92	1.87	1.84	1.78	1.75	1.71
26	2.15	2.12	2.09	2.07	1.99	1.90	1.85	1.82	1.76	1.73	1.69
_27	2.13	2.10	2.08	2.06	1.97	1.88	1.84	1.81	1.74	1.71	1.67
28	2.12	2.09	2.06	2.04	1.96	1.87	1.82	1.79	1.73	1.69	1.65
_29	2.10	2.08	2.05	2.03	1.94	1.85	1.81	1.77	1.71	1.67	1.64
30	2.09	2.06	2.04	2.01	1.93	1.84	1.79	1.76	1.70	1.66	1.62
40	2.00	1.97	1.95	1.92	1.84	1.74	1.69	1.66	1.59	1.55	1.51
_50	1.95	1.92	1.89	1.87	1.78	1.69	1.63	1.60	1.52	1.48	1.44
_60	1.92	1.89	1.86	1.84	1.75	1.65	1.59	1.56	1.48	1.44	1.39
_70	1.89	1.86	1.84	1.81	1.72	1.62	1.57	1.53	1.45	1.40	1.35
80	1.88	1.84	1.82	1.79	1.70	1.60	1.54	1.51	1.43	1.38	1.32
_90	1.86	1.83	1.80	1.78	1.69	1.59	1.53	1.49	1.41	1.36	1.30
100	1.85	1.82	1.79	1.77	1.68	1.57	1.52	1.48	1.39	1.34	1.28
150	1.82	1.79	1.76	1.73	1.64	1.54	1.48	1.44	1.34	1.29	1.22
200	1.80	1.77	1.74	1.72	1.62	1.52	1.46	1.41	1.32	1.26	1.19
∞	1.75	1.72	1.69	1.67	1.57	1.46	1.39	1.35	1.24	1.17	1.01

F-Distribution – Distribution Function with $\alpha=0.01$

The corresponding values of F_c for the parameters v_1 and v_2 in form of a F-distribution function with (1-a) = 0.99 are given.

The following is applicable for F_c :

$$W(0 < F \le F_c) = F\left(\frac{F_c}{v_1; v_2}\right)$$
$$= 1 - \alpha = 0.99$$

with F = random variable

and
$$F_{\alpha; \, \nu_1; \, \nu_2} = \frac{1}{F_{1-\alpha; \, \nu_1; \, \nu_2}}$$

with
$$v_1 = n_1 - 1$$

and $v_2 = n_2 - 1$

ν_2												
• 2	1	2	3	4	5	6	7	8	9	10	11	
1	4052	4999	5403	5625	5764	5859	5928	5981	6022	6056	6083	
2	98.50	99.00	99.17	99.25	99.30	99.33	99.36	99.37	99.39	99.40	99.41	
_3	34.12	30.82	29.46	28.71	28.24	27.91	27.67	27.49	27.35	27.23	27.13	
_4	21.20	18.00	16.69	15.98	15.52	15.21	14.98	14.80	14.66	14.55	14.45	
_5	16.26	13.27	12.06	11.39	10.97	10.67	10.46	10.29	10.16	10.05	9.96	
6	13.75	10.92	9.78	9.15	8.75	8.47	8.26	8.10	7.98	7.87	7.79	
7	12.25	9.55	8.45	7.85	7.46	7.19	6.99	6.84	6.72	6.62	6.54	
8	11.26	8.65	7.59	7.01	6.63	6.37	6.18	6.03	5.91	5.81	5.73	
9	10.56	8.02	6.99	6.42	6.06	5.80	5.61	5.47	5.35	5.26	5.18	
10	10.04	7.56	6.55	5.99	5.64	5.39	5.20	5.06	4.94	4.85	4.77	
11	9.65	7.21	6.22	5.67	5.32	5.07	4.89	4.74	4.63	4.54	4.46	
12	9.33	6.93	5.95	5.41	5.06	4.82	4.64	4.50	4.39	4.30	4.22	
13	9.07	6.70	5.74	5.21	4.86	4.62	4.44	4.30	4.19	4.10	4.02	
14	8.86	6.51	5.56	5.04	4.69	4.46	4.28	4.14	4.03	3.94	3.86	
15	8.68	6.36	5.42	4.89	4.56	4.32	4.14	4.00	3.89	3.80	3.73	
16	8.53	6.23	5.29	4.77	4.44	4.20	4.03	3.89	3.78	3.69	3.62	
17	8.40	6.11	5.18	4.67	4.34	4.10	3.93	3.79	3.68	3.59	3.52	
18	8.29	6.01	5.09	4.58	4.25	4.01	3.84	3.71	3.60	3.51	3.43	
19	8.18	5.93	5.01	4.50	4.17	3.94	3.77	3.63	3.52	3.43	3.36	
20	8.10	5.85	4.94	4.43	4.10	3.87	3.70	3.56	3.46	3.37	3.29	
21	8.02	5.78	4.87	4.37	4.04	3.81	3.64	3.51	3.40	3.31	3.24	
22	7.95	5.72	4.82	4.31	3.99	3.76	3.59	3.45	3.35	3.26	3.18	
23	7.88	5.66	4.76	4.26	3.94	3.71	3.54	3.41	3.30	3.21	3.14	
24	7.82	5.61	4.72	4.22	3.90	3.67	3.50	3.36	3.26	3.17	3.09	
25	7.77	5.57	4.68	4.18	3.85	3.63	3.46	3.32	3.22	3.13	3.06	

F-Distribution – Distribution Function with lpha=0.01

v_2						ν_1					
*2	1	2	3	4	5	6	7	8	9	10	11
26	7.72	5.53	4.64	4.14	3.82	3.59	3.42	3.29	3.18	3.09	3.02
27	7.68	5.49	4.60	4.11	3.78	3.56	3.39	3.26	3.15	3.06	2.99
28	7.64	5.45	4.57	4.07	3.75	3.53	3.36	3.23	3.12	3.03	2.96
29	7.60	5.42	4.54	4.04	3.73	3.50	3.33	3.20	3.09	3.00	2.93
30	7.56	5.39	4.51	4.02	3.70	3.47	3.30	3.17	3.07	2.98	2.91
40	7.31	5.18	4.31	3.83	3.51	3.29	3.12	2.99	2.89	2.80	2.73
50	7.17	5.06	4.20	3.72	3.41	3.19	3.02	2.89	2.78	2.70	2.63
60	7.08	4.98	4.13	3.65	3.34	3.12	2.95	2.82	2.72	2.63	2.56
70	7.01	4.92	4.07	3.60	3.29	3.07	2.91	2.78	2.67	2.59	2.51
80	6.96	4.88	4.04	3.56	3.26	3.04	2.87	2.74	2.64	2.55	2.48
90	6.93	4.85	4.01	3.53	3.23	3.01	2.84	2.72	2.61	2.52	2.45
100	6.90	4.82	3.98	3.51	3.21	2.99	2.82	2.69	2.59	2.50	2.43
150	6.81	4.75	3.91	3.45	3.14	2.92	2.76	2.63	2.53	2.44	2.37
200	6.76	4.71	3.88	3.41	3.11	2.89	2.73	2.60	2.50	2.41	2.34
∞	6.64	4.61	3.78	3.32	3.02	2.80	2.64	2.51	2.41	2.32	2.25

F-Distribution – Distribution Function with lpha=0.01

	v_1										
v_2	12	13	14	15	20	30	40	50	100	200	
1	6106	6126	6143	6157	6209	6261	6287	6303	6334	6350	6366
2	99.42	99.42	99.43	99.43	99.45	99.47	99.47	99.48	99.49	99.49	99.50
3	27.05	26.98	26.92	26.87	26.69	26.50	26.41	26.35	26.24	26.18	26.13
_4	14.37	14.31	14.25	14.20	14.02	13.84	13.75	13.69	13.58	13.52	13.46
_5	9.89	9.82	9.77	9.72	9.55	9.38	9.29	9.24	9.13	9.08	9.02
6	7.72	7.66	7.60	7.56	7.40	7.23	7.14	7.09	6.99	6.93	6.88
7	6.47	6.41	6.36	6.31	6.16	5.99	5.91	5.86	5.75	5.70	5.65
8	5.67	5.61	5.56	5.52	5.36	5.20	5.12	5.07	4.96	4.91	4.86
_ 9	5.11	5.05	5.01	4.96	4.81	4.65	4.57	4.52	4.41	4.36	4.31
10	4.71	4.65	4.60	4.56	4.41	4.25	4.17	4.12	4.01	3.96	3.91
_11	4.40	4.34	4.29	4.25	4.10	3.94	3.86	3.81	3.71	3.66	3.60
12	4.16	4.10	4.05	4.01	3.86	3.70	3.62	3.57	3.47	3.41	3.36
_13	3.96	3.91	3.86	3.82	3.66	3.51	3.43	3.38	3.27	3.22	3.17
14	3.80	3.75	3.70	3.66	3.51	3.35	3.27	3.22	3.11	3.06	3.00
_15	3.67	3.61	3.56	3.52	3.37	3.21	3.13	3.08	2.98	2.92	2.87
_16	3.55	3.50	3.45	3.41	3.26	3.10	3.02	2.97	2.86	2.81	2.75
_17	3.46	3.40	3.35	3.31	3.16	3.00	2.92	2.87	2.76	2.71	2.65
_18	3.37	3.32	3.27	3.23	3.08	2.92	2.84	2.78	2.68	2.62	2.57
_19	3.30	3.24	3.19	3.15	3.00	2.84	2.76	2.71	2.60	2.55	2.49
_20	3.23	3.18	3.13	3.09	2.94	2.78	2.69	2.64	2.54	2.48	2.42
21	3.17	3.12	3.07	3.03	2.88	2.72	2.64	2.58	2.48	2.42	2.36
_22	3.12	3.07	3.02	2.98	2.83	2.67	2.58	2.53	2.42	2.36	2.31
23	3.07	3.02	2.97	2.93	2.78	2.62	2.54	2.48	2.37	2.32	2.26
24	3.03	2.98	2.93	2.89	2.74	2.58	2.49	2.44	2.33	2.27	2.21
25	2.99	2.94	2.89	2.85	2.70	2.54	2.45	2.40	2.29	2.23	2.17
26	2.96	2.90	2.86	2.81	2.66	2.50	2.42	2.36	2.25	2.19	2.13
_27	2.93	2.87	2.82	2.78	2.63	2.47	2.38	2.33	2.22	2.16	2.10
28	2.90	2.84	2.79	2.75	2.60	2.44	2.35	2.30	2.19	2.13	2.06
29	2.87	2.81	2.77	2.73	2.57	2.41	2.33	2.27	2.16	2.10	2.03
30	2.84	2.79	2.74	2.70	2.55	2.39	2.30	2.25	2.13	2.07	2.01
40	2.66	2.61	2.56	2.52	2.37	2.20	2.11	2.06	1.94	1.87	1.80
_50	2.56	2.51	2.46	2.42	2.27	2.10	2.01	1.95	1.82	1.76	1.68
_60	2.50	2.44	2.39	2.35	2.20	2.03	1.94	1.88	1.75	1.68	1.60
_70	2.45	2.40	2.35	2.31	2.15	1.98	1.89	1.83	1.70	1.62	1.54
_80	2.42	2.36	2.31	2.27	2.12	1.94	1.85	1.79	1.65	1.58	1.49
_90	2.39	2.33	2.29	2.24	2.09	1.92	1.82	1.76	1.62	1.55	1.46
100	2.37	2.31	2.27	2.22	2.07	1.89	1.80	1.74	1.60	1.52	1.43
150	2.31	2.25	2.20	2.16	2.00	1.83	1.73	1.66	1.52	1.43	1.33
200	2.27	2.22	2.17	2.13	1.97	1.79	1.69	1.63	1.48	1.39	1.28
∞	2.18	2.13	2.08	2.04	1.88	1.70	1.59	1.52	1.36	1.25	1.01

Appendix B Bibliography

[1] Arnold, V.I. (2001): Gewöhnliche Differentialgleichungen, 2nd ed., Berlin, Heidelberg & New York.

- [2] Asser, G. (1988): Grundbegriffe der Mathematik Mengen, Abbildungen, natürliche Zahlen, 5th ed., Leipzig.
- [3] Bamberg, G. & Baur, F. (2007): Statistik, Munich & Vienna.
- [4] Banerjee, K.S. (1977): On the Factorial Approach Providing the True Cost of Living Index, Göttingen.
- [5] Bär, G. (2001): Geometrie, 2nd ed., Stuttgart, Leipzig & Wiesbaden.
- [6] Bartsch, H.-J. (2004): Taschenbuch mathematischer Formeln, 20th ed., Munich & Vienna.
- [7] Beyer, W.H. (1976): Handbook of Tables for Probability and Statistics, Cleveland (Ohio).
- [8] Biermann, B. (2002): Die Mathematik von Zinsinstrumenten, Munich.
- [9] Biess, G. (1979): Graphentheorie, Frankfurt am Main.
- [10] Bleymüller, J. & Gehlert, G. (2011): Statistische Formeln, Tabellen und Statistik-Software, 12th ed., Munich.
- [11] Bleymüller, J. (2012): Statistik für Wirtschaftswissenschaftler, 16th ed., Munich.
- [12] Bohley, P. (1998): Formeln, Rechenregeln, EDV und Tabellen zur Statistik, 6th ed., Munich & Vienna.
- [13] Bomsdorf, E.; Gröhn, E.; Mosler, K. & Schmid, F. (2006): Definitionen, Formeln und Tabellen zur Statistik, 5th ed., Cologne.
- [14] Bosch, K. (1998): Statistik-Taschenbuch, Munich & Vienna.

- [15] Bosch, K. (2007): Finanzmathematik, Munich & Vienna.
- [16] Brehmer, S. & Haar, H. (1972): Differentialformen und Vektoranalysis, Berlin.
- [17] Bröcker, T. (1992): Analysis III, 1st ed., Zurich.
- [18] Bronstein, I.N.; Semendjajew, K.A.; Musiol, G. & Mühlig, H. (2005): Taschenbuch der Mathematik, 6th ed., Frankfurt am Main.
- [19] Bröse, K. & Schmetzke, R. (1985): Tabellen- und Formelsammlung zur Finanz- und Lebensversicherungsmathematik, Karlsruhe.
- [20] Bücker, R. (2002): Mathematik für Wirtschaftswissenschaftler, 6th ed., Munich.
- [21] Bücker, R. (2003): Statistik für Wirtschaftswissenschaftler, 5th ed., Munich.
- [22] Castillo, E.; Gutièrrez, J.M. & Hadi, A.S. (1997): Expert Systems and Probabilistic Network Models, New York.
- [23] Clement, R. & Peren, F.W. (2017): Peren-Clement-Index: Bewertung von Direktinvestitionen durch eine simultane Erfassung von Makroebene und Unternehmensebene, Wiesbaden.
- [24] Clement, R. & Peren, F.W. (2019): Peren-Clement Index PCI 2.0. Evaluation of Foreign Direct Investments through Simultaneous Assessment at the Macro and Corporate Levels, Passau.
- [25] Collatz, L. (1966): Numerical Treatment of Differential Equations, Berlin, Heidelberg & New York.
- [26] Courant, R. (1972): Vorlesungen über Differential- und Integralrechnung, Vol. 1 & 2, 4th ed., Berlin, Heidelberg & New York.

[27] Cox, D.R. & Wermuth, N. (1995): Multivariate Dependencies, London.

- [28] Drabek, P. & Kufner, A. (1996): Integralgleichungen, Stuttgart & Leipzig.
- [29] Eichholz, W. & Vilkner, E. (2013): Taschenbuch für Wirtschaftsmathematik, 6th updated ed., Munich.
- [30] Engeln-Müllges, G. & Reutter, F. (1987): Formelsammlung zur Numerischen Mathematik mit C-Programmen, Mannheim, Vienna & Zurich.
- [31] Fetzer, A. & Fränkel, H. (1995): Mathematik Lehrbuch für Fachhochschulen, Vol. 1 & 2, Berlin, Heidelberg & New York.
- [32] Fischer, W. & Lieb, I. (2003): Funktionentheorie, 8th ed., Wiesbaden.
- [33] Fisz, M. (1988): Wahrscheinlichkeitsrechnung und mathematische Statistik, Berlin.
- [34] Görke, L. (1974): Mengen Relationen Funktionen, Frankfurt am Main.
- [35] Gottwald, S. (1995): Mehrwertige Logik Eine Einführung in Theorie und Anwendung, Munich.
- [36] Grundmann, W. & Luderer, B. (2003): Formelsammlung Finanzmathematik, Versicherungsmathematik, Wertpapieranalyse, 2nd ed., Stuttgart, Leipzig & Wiesbaden.
- [37] Grundmann, W. & Luderer, B. (2009): Finanz- und Versicherungsmathematik, 3rd updated ed., Stuttgart, Leipzig & Wiesbaden.
- [38] Hartung, J.; Elpelt, B. & Klösener, K.-H. (2005): Statistik Lehrund Handbuch der angewandten Statistik, 14th ed., Munich & Vienna.

[39] Hippmann, H.-D. (1995): Formelsammlung Statistik, Statistische Grundbegriffe, Formeln, Schaubilder und Tabellen, Stuttgart.

- [40] Joos, G. & Richter, E.W. (1994): Höhere Mathematik für den Praktiker, Frankfurt am Main.
- [41] Klingbeil, E. (1988): Variationsrechnung, Mannheim, Vienna & Zurich.
- [42] Klingenberg, W. (1992): Lineare Algebra und Geometrie, Berlin, Heidelberg & New York.
- [43] Knopp, K. (1996): Theorie und Anwendung der unendlichen Reihen, 6th ed., Berlin, Heidelberg & New York.
- [44] Koller, S. (2012): Neue graphische Tafeln zur Beurteilung statistischer Zahlen, reprint of the 4th ed. from 1969, Darmstadt.
- [45] Kosmol, P. (1992): Methoden zur numerischen Behandlung nichtlinearer Gleichungen und Optimierungsaufgaben, Leipzig.
- [46] Lippe, P. von der (2001): Chain Indices, A Study in Price Index Theory, Stuttgart.
- [47] Lippe, P. von der (2007): Index Theory and Price Statistics, Frankfurt am Main.
- [48] Luderer, B.; Nollau, V. & Vetters, K. (2005): Mathematische Formeln für Wirtschaftswissenschaftler, 5th ed., Stuttgart & Leipzig.
- [49] Pakusch, C.; Peren, F.W. & Shakoor, M.A. (2016): The PCI A Global Risk Index for the Simultaneous Assessment of Macro and Company Individual Investment Risks. In: Journal of Business Strategies, 33(2), pp. 154-173.

[50] Pakusch, C.; Peren, F.W. & Shakoor, M.A. (2018): Peren-Clement-Index – eine exemplarische Fallstudie. In: Gadatsch, A. et al. (ed.): Nachhaltiges Wirtschaften im digitalen Zeitalter: Innovation – Steuerung – Compliance, Wiesbaden, pp. 105-117.

- [51] Papoulis, A. (1962): The Fourier Integral and its Applications, McGraw-Hill.
- [52] Pearl, J. (1992): Probabilistic Reasoning in Intelligent Systems, 2nd ed., San Mateo.
- [53] Peren, F.W. (1986): Einkommen, Konsum und Ersparnis der privaten Haushalte in der Bundesrepublik Deutschland seit 1970: Analyse unter Verwendung makroökonomischer Konsumfunktionen, Frankfurt am Main.
- [54] Peren, F.W. (2021a): Formelsammlung Wirtschaftsstatistik, 4th ed., Berlin & Heidelberg.
- [55] Peren, F.W. (2021b): Math for Business and Economics. Compendium of Essential Formulas, Berlin & Heidelberg.
- [56] Peren, F.W. (2021c): Statistics for Business and Economics. Compendium of Essential Formulas, Berlin & Heidelberg.
- [57] Peren, F.W. (2022): Formelsammlung Wirtschaftsmathematik, 4th ed., Berlin & Heidelberg.
- [58] Rinne, H. (1982): Statistische Formelsammlung, Frankfurt am Main.
- [59] Rinne, H. (2003): Taschenbuch der Statistik für Wirtschafts- und Sozialwissenschaften, 3rd ed., Frankfurt am Main.
- [60] Sauerbier, T. & Voß, W. (2006): Kleine Formelsammlung Statistik, 3rd ed., Leipzig.

[61] Scheid, H. & Frommer, A. (2006): Zahlentheorie, 4th ed., Mannheim, Vienna & Zurich.

- [62] Schneider, W.; Kornrumpf, J. & Mohr, W. (1995): Statistische Methodenlehre – Definitions- und Formelsammlung zur deskriptiven und induktiven Statistik mit Erläuterungen, Vienna & Munich.
- [63] Schütte, K. (1966): Index mathematischer Tafelwerke und Tabellen, Munich.
- [64] Schwarze, J. (2005): Grundlagen der Statistik Band 1 und 2 Neue Wirtschaftsbriefe, 10th ed., Herne & Berlin.
- [65] Schwetlick, H. & Kretschmar, H. (1991): Numerische Verfahren für Naturwissenschaftler und Ingenieure, Leipzig.
- [66] Sieber, H. (1995): Mathematische Begriffe und Formeln, Stuttgart.
- [67] Spirtes, P.; Glymour, C. & Scheines, R. (1993): Causation, Prediction and Search Lecture Notes in Statistics 81, New York.
- [68] Stiefel, E. & Fässler, A. (1992): Gruppentheoretische Methoden und ihre Anwendungen, Basel.
- [69] Toda, M. (1989): Nonlinear Waves and Solitons, Tokyo & Dordrecht.
- [70] Vianelli, S. (1959): Prontuari per Calcoli Statistici, Bologna.
- [71] Vogel, F. (2005): Beschreibende und schließende Statistik Formeln, Definitionen, Erläuterungen, Stichwörter und Tabellen, Munich & Vienna.
- [72] Voß, W. (2000): Taschenbuch der Statistik, Leipzig.

[73] Wechler, W. (1992): Universal Algebra for Computer Scientists, Berlin, Heidelberg & New York.

- [74] Wobst, R. (1997): Methoden, Risiken und Nutzen der Datenverschlüsselung, Boston.
- [75] Wolfram, S. (1999): Mathematica, 4th ed., Cambridge.
- [76] Wooldridge, J.M. (2012): Introductory Econometrics: A Modern Approach, 5th ed., Mason (Ohio).
- [77] Yosida, K. (2008): Functional Analysis, reprint of the 6th ed. from 1980, Berlin, Heidelberg & New York.

A	for the Difference of
A L III	the Share Values
Addition Theorem 80, 199	of Two Populations
Arithmetic Mean 6	θ_1 and θ_2
Axioms of Probability	for the Regression
Calculation 196	Coefficients of a Double
В	Linear Regression
D	Function 69
Bayes' Theorem 87, 205	for the Regression
Binomial	Coefficients of a Multiple
Distribution96, 222, 234	Linear Regression
210111041101111111111111111111111111111	Function 64
С	for the Regression
	Coefficients of a Simple
Central Limit Theorem 167	Linear Regression
Chi-Squared Distribution	Function 55
111,286	for the Share Value in
Chi-Squared Goodness of Fit	the Population θ
Test	for the Variance of
for a Continous Distribution	the Population σ^2 130
of the Population 175	Contingency Table
for a Discrete Distribution	Correlation Analysis 50 Covariance Matrix 65
of the Population 169	
Chi-Squared Homogeneity	Cumulative Frequencies4
Test	Cumulative Frequency Function5
Chi-Squared Independence	for Grouped Data 5
Test	for Ungrouped Data5
Chi-Squared Tests169	ioi oligioupeu bala
Coefficient of Variation 19	D
Conditional Probability 83, 201	
Confidence Intervals126	Definitions of
for the Arithmetic Mean	Probability 78, 194
of the Population $\mu \dots 126$	Classical194
for the Difference of	Kolmogorov's79
the Mean Values of Two	Laplace's78
Populations μ_1 and $\mu_2 \dots 134$	Statistical 195
© Springer-Verlag GmbH Germany, part of Sprin	nger Nature 2022

[©] Springer-Verlag GmbH Germany, part of Springe F. W. Peren, *Statistics for Business and Economics*,

Subjective	Hypergeometric Distribution 100, 246, 253 I Index Figures			
Continuous Random Variables	Law of Total Probability 86 Least Squares Method 52, 63			
Distribution Function of Discrete Random	M			
Variables	Mean Values			
E	Mode			
Elementary Event	Multiple Linear Coefficient of Determination			
Random Variables 94, 218	N			
F	Normal Distribution 106			
F-Distribution 122,293,296 Frequencies 3 Absolute 3 Relative 3	One Sample Test			
G	Population148			
Geometric Mean10	Arithmetic Mean with Known Variance of the			
Н	Population			
Harmonic Mean 12	Variance			

P	Causation Figures23 Classification Figures22
Parameter Tests 145	Correlation Figures 23
Parameters for Probability	Relationship Figures 23
Distributions	Regression
Partial Linear Coefficient of	Coefficients52, 63, 67
Determination 63	
Pearson's Correlation	Regression Analysis 51
Coefficient50	Regression Function 52, 63, 66
	Rules of Calculation for
Peren-Clement Index (PCI) 38	Probabilities 79
Poisson	S
Distribution 103, 260, 263	3
Price Index	Sales Index 26, 29
Fisher 29, 36	Sample Space
Laspeyres 27, 33	
Lowe	Simple Linear Coefficient of Determination 50
Marshall Edgeworth 36	
Paasche	Simple Linear Correlation
Stuvel30	Coefficient
Walsh37	Simple Linear Regression51
Probability Calculation 77, 193	Standard Deviation 12
Probability Density of	for Frequency
Continuous Random	Distributions
Variables	for Single Values 12
Probability Distributions 88	Standard Normal
Probability Function of	Distribution
Discrete Random	Cumulative Distribution
Variables 89, 209	Function
Probability Function of	One-sided Confidence
Continuous Random	Intervals
Variables	Probability Density
_	Function
R	Two-sided, Symmetric
	Confidence Intervals 284
Random Experiment 77, 193	Statistical Estimation
Random Variable 209	Methods126
Continuous89	Statistical Signs and Symbols 1
Discrete	Statistical Testing Methods 145
Random Variables 88	Stochastic
Range20	Independence 85, 202
Ratios	Student's t-Distribution 115, 289

Distribution Function 292	Difference of Two Arithmetic
Two-sided, Symmetric	Means with Unknown
Confidence Intervals 289	Variances of the Populations
	under the Assumption that
Т	their Variances are
	Equal
t-Tests	Difference of Two Arithmetic
for the Regression	Means with Unknown
Coefficients of a Double	Variances of the Populations
Linear Regression	under the Assumption that
Function 71	their Variances are
for the Regression	Unequal 157
Coefficients of a Multiple	Quotients of Two
Linear Regression	Variances 166
Function 66	
for the Regression	V
Coefficients of a Simple	Val. a lasta
Linear Regression	Value Index
Function 57	Variance94, 217
Theorem of Complementary	for Frequency
Events	Distributions
Theorem of Total	of Continuous
Probability203	Random Variables 95, 218
Theorems of Probability	of Discrete
Calculation 198	Random Variables 94, 218
Theorems of Probability	Volume Index27
Theory 82	Fisher
Theoretical Distributions 96	Laspeyres 27, 33
Continuous Distributions 106	Lowe
Discrete Distributions96	Paasche28,35
Two Samples Test 155	Sales Index/Value Index
Difference of Two	as Index Product 29
Share Values 163	Stuvel30
Difference of Two Arithmetic	2.2.3
Means with Known	Υ
Variances of the	
Population 155	Yates's Correction 190