

AXIS/ORMIR Student Challenge Utility for Fitting Loss Distributions

Haoen CUI and Peng JIN

Department of Mathematics University of Illinois at Urbana-Champaign

May 01, 2018

Agenda

AXIS's Demand

- Distribution Fitting
 - Coverage Modification
 - Changing Volume
 - Binned Data
- Documentation
 - Usable
 - Maintainable
 - Scalable

Agenda

- Statistical Models
 - Coverage Modifications of Severity Random Variables
 - Coverage Modifications of Frequency Random Variables
 - CDF Interpolation
 - Modeling Loss Ratio via GLM
- Demonstration
- Documentation
- Conclusion

Coverage Modifications of Severity Random Variables

Definition

- L. raw loss size random variable
 - Likelihood: $f_L(I; \theta)$
- Y, coverage modified loss size random variable
 - Likelihood: $f_Y(y;\theta)$
 - Dataset: D

- Coverage Modifications
 - Deductible (ordinary/franchise)
 - Limit
 - Per loss / per payment
 - $\bullet \ \ {\it Coinsurance factor} \ \alpha$
 - Interest rate r

Data Fitting Procedure for Coverage Modified Severity Random Variables

Parametric Model
$$f_L(I; \boldsymbol{\theta}) \xrightarrow{\text{modifications}} f_Y(y; \boldsymbol{\theta}) \xrightarrow{\text{generates}} \mathcal{D} = \{y_i\}_{i=1}^n$$

$$\xrightarrow{\text{est methods}} \widehat{\boldsymbol{\theta}}$$

$$\xrightarrow{\text{evaluate}} \text{GoF Stats/Plots, Boot Conf Interval}$$

Coverage Modifications of Frequency Random Variables

- Definition
 - N^L , raw loss count random variable
 - N^P, deductible modified payment count random variable

Theorem: N^L and N^P are from the same parametric family under conditions

Assume compound frequency model, $N^P = \sum_{i=1}^{N^L} \mathbb{1}\{L > d\}$ where N^L is parametrized by (α, β) and $\nu := \mathbb{P}(L > d)$. Let $G(\cdot)$ denote the probability generating function of a random variable. Then, *under some conditions*,

$$G_{NP}(z) = G_{NL}(z; \alpha^*, \beta^*)$$

where change of parameter is given by

$$\alpha = \mathbb{P}(N^L = 0)$$
 $\alpha^* = \mathbb{P}(N^P = 0)$ $\beta^* = \nu\beta$

Coverage Modifications of Frequency Random Variables

Table 1: Examples for Change of Parameters Under Coverage Modifications

$$N^L$$
 with parameters $\boldsymbol{\theta} = (\alpha, \beta)$ N^P with parameters $\boldsymbol{\theta}^* = (\alpha^*, \beta^*)$ N^P with parameters $\boldsymbol{\theta}^* = (\alpha^*, \beta^*)$ and N^P with parameters $\boldsymbol{\theta}^* =$

Data Fitting Procedure for Coverage Modified Frequency Random Variables

Parametric Model
$$(a,b,0)$$
 or $(a,b,1)$ $p_{N^L}(n;\theta)$ and $\nu = \mathbb{P}(L>d)$
$$\xrightarrow{\text{modifications}} p_{N^P}(n;\theta^*) \xrightarrow{\text{generates}} \mathcal{D} = \{n_i\}_{i=1}^n$$

$$\xrightarrow{\text{est methods}} \widehat{\theta}^* \xrightarrow{\text{transform}} \widehat{\theta} \xrightarrow{\text{evaluate}} \text{GoF Stats/Plots, Boot Conf Interval}$$

Binned Data and CDF Interpolation

- Definition
 - L, raw loss size random variable
 - Dataset $\mathcal{D} = \{F_n(I_b)\}_{b=1}^B$ where $(I_b)_{b=1}^B$ is the set of pre-determined break points
- Goal
 - ullet Find $\hat{F} \in \mathcal{F}$ based on data \mathcal{D}
 - ullet where ${\cal F}$ is constrained such that its members are all valid distributions

Data Fitting Procedure for Global Parametric Family $\mathcal{F}_{ heta}$

Suppose \mathcal{F}_{θ} is a global (not piecewise) parametric family, then

$$\hat{F}_{ heta} = \underset{F_{ heta} \in \mathcal{F}_{ heta}}{\operatorname{argmin}} d(F_{ heta}, F_{ extit{n}})$$

where $d(\cdot, \cdot)$ is a distance measure between distributions (e.g., Kullback–Leibler divergence) and F_n is empirical distribution based on the observed dataset \mathcal{D} .

Binned Data and CDF Interpolation

In general, we may consider to interpolate the dataset \mathcal{D} to get our estimate \hat{F} . However, we will need to ensure the constraint for arbitrary \mathcal{F} . There is no equivalent conditions for a general class of functions.

- Polynomials: The Bernstein Form of a Polynomial by Cargo and Shisha (1966) provides a sufficient condition for an increasing quantile function modeling by a polynomial of degree n
- Piecewise Pareto: Linear relationship between log(rank) and log(loss)

$$\forall l \geq l_0$$
 $\ln \left(\mathbb{P}(L > l) \right) = -\alpha \ln(l) + \alpha \ln(l_0)$

- Hunter and Drown (2017) implemented some methods to interpolate CDFs
 - R package: binsmooth
 - Publication: Better Estimates from Binned Income Data: Interpolated CDFs and Mean-Matching, available on arXiv

Modeling Loss Ratio via GLM

- Tweedie distribution (μ, ϕ, p)
 - Poisson(λ) distributed sum of Gamma(shape= α , scale= θ) random losses
 - Tweedie mean, $\mu = \lambda \alpha \theta$
 - Tweedie poewr, $p = \frac{1}{\alpha+1} + 1$
 - Tweedie dispersion, $\phi = \frac{\lambda^{1-p}(\alpha\theta)^{2-p}}{2-p}$
- CAS Monograph Generalized Linear Models for Insurance Rating suggests to model loss ratio (aka pure premium) using GLM with Tweedie distribution
 - Note that Tweedie GLM implicitly assumes frequency and severity moves in the same direction

Coverage Modifications of Severity Random Variables

Model Plot 600n 500n 400n Density 300n 200n 100n 10M 20M 30M 40M Modified Loss Play 2005 2011 2013

Figure 2: Model Plot with Estimated Parameters

Figure 1: Policy Configuration

Adding User-Defined Distributions

Run User-Defined Distribution in R Code

```
# R default: Define Distribution
source(helper file.R)
dbeta
pbeta
rbeta
# helper.R: Coverage Modification
actuar::coverage(pdf = ddist, cdf = pdist,
                 deductible = deductible, limit = limit,
                 franchise = franchise, inflation = inflation
                 coinsurance = coinsurance,
                 per.loss = per.loss)
# helper.R: Fit Distribution
fitdistrplus::fitdist(data = temp data raw, distr = dist.name
                      method = method)
```

Adding User-Defined Distributions

• Run User-Defined Distribution in R Shiny

```
# helper.R: Add to the list of distributions
Distribution.list <- list(
  "select.beta"=c(ddist = dbeta, pdist = pbeta,
                  rdist = rbeta, qdist = qbeta,
                  dist.name = "beta", dist.nparams = 2),
  ...)
# App new.R: Add to User Interface
box(title = "Fitting Specification",
    selectInput(inputId = "loss.dist",
                "Select distribution of raw loss random varial
                c("Beta"="select.beta", ...))
```

Summary of Documentations

- User Manual: Step-by-step procedure to run the utility
- Statistics Manual: Details of statistical assumptions, results, and procedures
- Maintainability
 - Users can add new loss distributions
 - Code formatted and commented under Google R style
 - Reproducibility ensured by R project and packrat
- Scalability
 - Modular and functional programming
 - Ability to add user-defined loss distributions

Model Constrains and Directions of Future Works

- Credibility framework (e.g., Bayesian)
- From parametric to non-parametric
- Cross Validation

Conclusion

AXIS's Demand

- Distribution Fitting
 - Coverage Modification
 - Changing Volume
 - Binned Data
- Documentation
 - Usable
 - Maintainable
 - Scalable

Project Deliverables

- Statistical Models
 - Coverage Modifications
 - Severity Random Variables
 - Frequency Random Variables
 - CDF Interpolation
 - Modeling Loss Ratio via GLM
- Platform
 - Interface: R Shiny
 - Development: R project and packrat
- Documentation
 - User Manual
 - Statistics Manual

References

- G. E. Willmot, H. H. Panjer, S. A. Klugman. (2012). Loss Models: From Data to Decisions, 4th Edition.
- M. B. Finan. (2017). An Introductory Guide in the Construction of Actuarial Models: A Preparation for the Actuarial Exam C/4.
 Retrieved From Link.
- D. Bahnemann. (2015). Distributions for Actuaries. Retrieved From Link
- M. Goldburd, A. Khare, and D. Tevet. (2016). Generalized Linear Models for Insurance Rating. Retrieved From Link