A Book of Abstract Algebra (2nd Edition)

Chapter 16, Problem 3EC

1 Bookmark

Show all steps: ON

Problem

Let G be an abelian group. Let $H = \{x^2 : x \in G\}$ and $K = \{x \in G : x^2 = e\}$.

Use the FHT to conclude that $H \cong G/K$

Step-by-step solution

Step 1 of 4

Suppose that *G* be an abelian group. Consider the following sets:

$$H = \{x^2 : x \in G\},$$

$$K = \{x \in G : x^2 = e\}.$$

Let $f: G \to H$ is a mapping defined by $f(x) = x^2$. Objective is to prove that $H \cong G / K$ by using fundamental homomorphism theorem.

According to the fundamental homomorphism theorem, if $f: G \to H$ is a homomorphism of Gonto H, with kernel K then

$$H \cong G/K$$

Comment

Step 2 of 4

Let $x, y \in G$. Since G is an abelian group so for all $x, y \in G$, one have

$$xy = yx$$
.

Then

$$f(xy) = (xy)^{2}$$
$$= xy \cdot xy$$
$$= x(xy)y$$
$$= x^{2} y^{2}$$

