Chapitre 6 : PRIMITIVES – CALCUL INTEGRAL EQUATIONS DIFFERENTIELLES

6.1. RESUME DU COURS

6.1.1. PRIMITIVES

Définition:

Une fonction F est une primitive d'une fonction f sur un intervalle I si F est dérivable sur I et F'(x) = f(x), $\forall x \in I$.

Théorème:

Toute fonction continue sur un intervalle I, y admet une infinité de primitives.

Propriétés :

- \gt Si f est une fonction qui admet F comme primitive sur un intervalle I, alors
- toutes les primitives de f sont de la forme F + k où k est un nombre réel.
- pour tout couple $(x_0; y_0)$ où $x_0 \in I$ et $y_0 \in \mathbb{R}$, f admet une primitive et une seule F_0 qui prend la valeur y_0 en x_0 .
- ightharpoonup Si u est une fonction dérivable sur un intervalle I et si v est une fonction dérivable sur un intervalle contenant u(I), alors la fonction u'(v'ou) admet sur I la fonction vou comme primitive.

Primitives de fonctions usuelles:

Soit f et u des fonctions, F une primitive de f, k, a et b des nombres réels $(a \neq 0)$, $n \in \mathbb{N}^*$ - $\{1\}$ et $r \in \mathbb{Q}^*$ - $\{-1\}$.

f(x)	0	k	x^r	$\frac{1}{x^n}$	$\frac{1}{\sqrt{x}}$	cosx	sinx	$\frac{1}{\cos^2 x}$
$\mathbf{F}(x)$	k	kx	$\frac{x^{r+1}}{r+1}$	$\frac{-1}{(n-1)x^{n-1}}$	$2\sqrt{x}$	sinx	-cosx	tanx

$\frac{1}{x}$	e^x	e^{ax+b}	cos(ax+b)	sin(ax+b)	$\frac{a}{\cos^2(ax+b)}$
ln x	e^x	$\frac{1}{a}e^{ax+b}$	$\frac{1}{a}$ sin(ax+b)	$\frac{-1}{a}$ cos(ax+b)	tan(ax+b)

Opérations sur les primitives

Soit f, g et u des fonctions, F et G des primitives respectives de f et g, k un nombre réel, $n \in \mathbb{N}^*$ - $\{1\}$ et $r \in \mathbb{Q}^*$ - $\{-1\}$.

Fonction	f+g	kf	u'u ^r	$\frac{u'}{u^n}$	$\frac{u'}{\sqrt{u}}$	$\frac{u'}{u}$	u'e ^u	u'cosu	u'sinu
Primitive	F+G	kF	$\frac{u^{r+1}}{r+1}$	$\frac{-1}{(n-1)u^{n-1}}$	$2\sqrt{u}$	ln/u/	e^u	sinu	-cosu

6.1.2. CALCUL INTEGRAL

Définition:

Soit f une fonction continue sur un intervalle I, a et b deux éléments de I. On appelle intégrale de f, de a à b le nombre réel

 $\int_a^b f(x)dx = [F(x)]_a^b = F(b) - F(a) \text{ où } F \text{ est une primitive de } f \text{ sur } I.$

Remarques:

- $\rightarrow \int_a^b f(x)dx$ existe si f est continue sur [a; b] ou [b; a].

Interprétation graphique d'une intégrale

Soit f une fonction continue sur [a; b], (a < b) et C_f sa courbe dans un repère orthogonal (O, \vec{l}, \vec{j}) .

Si f est positive sur [a; b] alors $\int_a^b f(x)dx$ est l'aire du domaine limité par C_f , l'axe des abscisses, les droites d'équation x = a et x = b.

Ce domaine est aussi défini par l'ensemble des points $\{M(x; y), a \le x \le b \text{ et } 0 \le y \le f(x)\}.$

ightharpoonup Si f est négative sur [a; b] alors $-\int_a^b f(x)dx$ est l'aire du domaine limité par C_f , l'axe des abscisses, les droites d'équation x = a et x = b.

Ce domaine est aussi défini par l'ensemble des points $\{M(x; y), a \le x \le b \text{ et } f(x) \le y \le 0\}.$

Remarque:

L'aire $\mathcal{A} = |\int_a^b f(x)dx|$ est exprimée en unité d'aire.

- Si (O, \vec{i} , \vec{j}) est un repère orthogonal d'unités m et n centimètres alors $\mathcal{A} = |\int_a^b f(x) dx|$.(m.n) cm^2 .
- Si (O, \vec{i}, \vec{j}) est un repère orthonormé d'unité m centimètres alors $\mathcal{A} = |\int_a^b f(x) dx| . \text{(m.m) } cm^2$.

Propriétés

Soit f et g deux fonctions continues sur un intervalle I; a, b, c des éléments de I et α une constante..

$$ightharpoonup \int_a^c f(x)dx + \int_c^b f(x)dx = \int_a^b f(x)dx$$
. (relation de Chasles)

$$> \int_a^b [f(x) + g(x)] dx = \int_a^b f(x) dx + \int_a^b g(x) dx.$$

Aire du domaine compris entre deux courbes

Soit f et g deux fonctions continues sur [a; b], C_f et C_g leurs courbes respectives.

Si $f(x) \le g(x)$ sur [a; b], alors l'aire du domaine compris entre C_f ,

$$C_g$$
, les droites $x = a$ et $x = b$ est $\int_a^b [g(x) - f(x)] dx$.

Ce domaine est aussi défini par l'ensemble des points

$$\{M(x ; y), a \le x \le b \text{ et } f(x) \le y \le g(x)\}.$$

Inégalités et intégrales

Soit f et g deux fonctions continues sur un intervalle I ; a et b des éléments de I tels que a < b.

- ightharpoonup Si $f(x) \ge 0$ sur [a;b], alors $\int_a^b f(x) dx \ge 0$.
- $ightharpoonup \operatorname{Si} f(x) \le g(x) \operatorname{sur} [a;b], \operatorname{alors} \int_a^b f(x) dx \le \int_a^b g(x) dx.$
- $|\int_a^b f(x)dx| \le \int_a^b |f(x)|dx.$

Remarque:

$$I = \int_a^b f(x) dx$$
, implique que $a \le x \le b$;

donc pour encadrer I on peut commencer par $a \le x \le b$, encadrer ensuite f(x), puis l'intégrale I en utilisant la deuxième propriété de la rubrique « Inégalités et intégrales ».

Inégalité de la moyenne

Soit f une fonction continue sur un intervalle I et a, b des éléments de I tels que a < b.

S'il existe deux réels m et M tels que $m \le f(x) \le M$ sur I, alors $m(b-a) \le \int_a^b f(x) dx \le M(b-a)$.

Fonction intégrale

Soit f une fonction continue sur un intervalle I et a un élément de I. La fonction φ définie sur I par $\varphi(x) = \int_a^x f(t)dt$ est appelée fonction intégrale de f.

Cette fonction φ est la primitive de f sur I qui s'annule en a.

Intégration par parties

Soit u et v des fonctions dérivables sur un intervalle I et a, b des éléments de I.

$$\int_{a}^{b} u'(x)v(x)dx = [u(x)v(x)]_{a}^{b} - \int_{a}^{b} u(x)v'(x)dx.$$

Calcul de volume

ightharpoonup Soit $(O, \vec{u}, \vec{v}, \vec{w})$ un repère orthogonal de l'espace d'axes (Ox), (Oy) et (Oz).

Si S(t) est l'aire de la section d'un solide par le plan d'équation z=t alors le volume de la partie du solide limité par les plans d'équations z=a et z=b ($a \le t \le b$) est $V=\int_a^b S(t)dt$ en unité de volume.

Si on fait tourner autour de l'axe des abscisses la portion de C_f (la courbe de f) dont les abscisses des points sont comprises entre a et b (a < b), alors le volume décrit par C_f est $V = \int_a^b \pi [f(x)]^2 dx$.

6.1.3. EQUATIONS DIFFERENTIELLES

Définition

Une équation différentielle est une équation faisant intervenir comme inconnue une fonction f et ses dérivées. L'inconnue f est en général notée y.

Equations différentielles du premier ordre

Soit a, b des nombres réels tels que $a \neq 0$.

Les solutions de l'équation différentielle ay' + by = 0 sont les fonctions f_k définies sur \mathbb{R} par $f_k(x) = ke^{\frac{-b}{a}x}$, où k est une constante.

Equations différentielles du second ordre

Soit a, b, c des nombres réels, $a \ne 0$ et ay ''+ by '+ cy = 0 (1) une équation différentielle d'ordre 2.

Si son équation caractéristique $ar^2 + br + c = 0$ admet

- deux racines réelles distinctes r_1 et r_2 , alors les solutions de (1) sont les fonctions $f_{\alpha,\beta}$ définies sur $\mathbb R$ par

 $f_{\alpha,\beta}(x) = \alpha e^{r_1 x} + \beta e^{r_2 x}$ où α et β sont des nombres réels.

- une racine double r_0 , alors les solutions de (1) sont les fonctions $f_{\alpha,\beta}$ définies sur $\mathbb R$ par

 $f_{\alpha,\beta}(x) = (\alpha x + \beta)e^{r_0x}$ où α et β sont des nombres réels.

- deux racines complexes conjugués u + iv et u - iv, alors les solutions de (1) sont les fonctions $f_{\alpha,\beta}$ définies sur \mathbb{R} par $f_{\alpha,\beta}(x) = e^{ux}(\alpha cosvx + \beta sinvx)$ où α et β sont des nombres réels.

6.2. EXERCICES D'APPLICATION