

Unsupervised Learning

COMP9321 2019T1

Supervised learning

Supervised learning: given labeled examples

Unsupervised learning

Unupervised learning: given data, i.e. examples, but no labels

Unsupervised Learning

Definition of Unsupervised Learning:

Learning useful structure *without* labeled classes, optimization criterion, feedback signal, or any other information beyond the raw data

Unsupervised learning applications

learn clusters/groups without any label

customer segmentation (i.e. grouping)

image compression

bioinformatics: learn motifs

find important features

. . .

Today's Agenda

- K-Means
- Apriori

Clustering

Unsupervised Learning

Clustering

Clustering:

- Unsupervised learning
- Requires data, but no labels
- Detect patterns

Motivations of Clustering

- exploratory data analysis
- understanding general characteristics of data
- visualizing data
- generalization infer something about an instance (e.g. a gene) based on how it relates to other instances

Paradigms

Flat algorithms

- Usually start with a random (partial) partitioning
- Refine it iteratively
 - -K means clustering
 - Model based clustering
- Spectral clustering

Hierarchical algorithms

- Bottom-up, agglomerative
- Top-down, divisive

Paradigms

Hard clustering: Each example belongs to exactly one cluster

Soft clustering: An example can belong to more than one cluster (probabilistic)

- Makes more sense for applications like creating browsable hierarchies
- You may want to put a pair of sneakers in two clusters: (i) sports apparel and (ii) shoes

Disjunctive (an instance can belong to multiple clusters) vs. nondisjunctive

Deterministic (same clusters produced every time for a given data set) vs. stochastic

Clustering: Image Segmentation

Break up the image into meaningful or perceptually similar regions

Clustering: Edge Detection

Basic Idea of Clustering

Basic Idea of Clustering

Basic Idea of Clustering

Group together similar data points (instances)

- How to measure the similarity?
- ✓ What could similar mean?
- How many clusters do we need?

Most well-known and popular clustering algorithm:

Step 1. Start with some initial cluster centers (k random points)

Step 2. Iterate:

- Assign/cluster each example to closest center
- Recalculate and change centers as the mean of the points in the cluster.

Step 3. Stop when no points' assignments change

K-means: an example

K-means: Initialize centers randomly

K-means: assign points to nearest center

K-means: readjust centers

K-means: assign points to nearest center

K-means: readjust centers

K-means: assign points to nearest center

K-means: readjust centers

K-means: assign points to nearest center

No changes: Done

- Assign/cluster each example to closest center
- Recalculate centers as the mean of the points in a cluster

- Assign/cluster each example to closest center iterate over each point:
 - get distance to each cluster center
 - assign to closest center (hard cluster)
- Recalculate centers as the mean of the points in a cluster

- Assign/cluster each example to closest center iterate over each point:
 - get **distance** to each cluster center
 - assign to closest center (hard cluster)
- Recalculate centers as the mean of the points in a cluster

Distance measures

Euclidean:

$$d(x,y) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$$

good for spatial data

- Assign/cluster each example to closest center
- Recalculate centers as the mean of the points in a cluster

- Assign/cluster each example to closest center
- Recalculate centers as the mean of the points in a cluster

Iterate:

- Assign/cluster each example to closest center
- Recalculate centers as the mean of the points in a cluster

e.g., for a set of instances that have been assigned to a cluster \mathcal{C}_j , we recompute the mean of the cluster as follow

$$\mu(c_j) = \frac{\sum_{\vec{x}_i \in c_j} \vec{x}_i}{|c_j|}$$


```
given : a set X = \{\vec{x}_1 ... \vec{x}_n\} of instances
select k initial cluster centers \vec{f}_1 ... \vec{f}_k
while stopping criterion not true do
      for all clusters c_i do
              // determine which instances are assigned to this cluster
             c_{i} = \left\{ \vec{x}_{i} \mid \forall f_{l} \operatorname{dist}(\vec{x}_{i}, \vec{f}_{i}) < \operatorname{dist}(\vec{x}_{i}, \vec{f}_{l}) \right\}
      for all means \vec{f}_i do
              // update the cluster center
             \vec{f}_i = \mu(c_i)
```


Run an example together ~~

Initialization: 4 points, 2 clusters and distance function

 $dist(x_1, f_1) = 2$, $dist(x_1, f_2) = 5$ $dist(x_2, f_1) = 2$, $dist(x_2, f_2) = 3$ $dist(x_3, f_1) = 3$, $dist(x_3, f_2) = 2$ $dist(x_4, f_1) = 11$, $dist(x_4, f_2) = 6$

$$f_1 = \left\langle \frac{4+4}{2}, \frac{1+3}{2} \right\rangle = \left\langle 4, 2 \right\rangle$$

$$f_2 = \left\langle \frac{6+8}{2}, \frac{2+8}{2} \right\rangle = \left\langle 7, 5 \right\rangle$$

 $dist(x_1, f_1) = 1, \quad dist(x_1, f_2) = 7$ $dist(x_2, f_1) = 1, \quad dist(x_2, f_2) = 5$ $dist(x_3, f_1) = 2, \quad dist(x_3, f_2) = 4$ $dist(x_4, f_1) = 10, \quad dist(x_4, f_2) = 4$

$$f_1 = \left\langle \frac{4+4+6}{3}, \frac{1+3+2}{3} \right\rangle = \left\langle 4.67, 2 \right\rangle$$

$$f_2 = \left\langle \frac{8}{1}, \frac{8}{1} \right\rangle = \left\langle 8, 8 \right\rangle$$

K-means loss function

K-means tries to minimize what is called the "k-means" loss function:

$$loss = \sum_{i=1}^{n} d(x_i, \mu_k)^2$$
 where μ_k is cluster center for x_i

that is, the sum of the squared distances from each point to the associated cluster center

Iterate:

- 1. Assign/cluster each example to closest center
- 2. Recalculate centers as the mean of the points in a cluster

$$loss = \sum_{i=1}^{n} d(x_i, \mu_k)^2$$
 where μ_k is cluster center for x_i

Does each step of k-means move towards reducing this loss function (or at least not increasing)?

Iterate:

- 1. Assign/cluster each example to closest center
- 2. Recalculate centers as the mean of the points in a cluster

$$loss = \sum_{i=1}^{n} d(x_i, \mu_k)^2$$
 where μ_k is cluster center for x_i

This isn't quite a complete proof/argument, but:

- Any other assignment would end up in a larger loss
- 2. The mean of a set of values minimizes the squared error

Iterate:

- 1. Assign/cluster each example to closest center
- 2. Recalculate centers as the mean of the points in a cluster

$$loss = \sum_{i=1}^{n} d(x_i, \mu_k)^2$$
 where μ_k is cluster center for x_i

Does this mean that k-means will always find the minimum loss/clustering?

Iterate:

- 1. Assign/cluster each example to closest center
- 2. Recalculate centers as the mean of the points in a cluster

$$loss = \sum_{i=1}^{n} d(x_i, \mu_k)^2$$
 where μ_k is cluster center for x_i

NO! It will find a minimum.

Unfortunately, the k-means loss function is generally not convex and for most problems has many, many minima

We're only guaranteed to find one of them

Properties of K-means

Guaranteed to converge in a finite number of iterations Running time per iteration

- 1. Assign data points to closest cluster center O(KN) time
- 2. Change the cluster center to the average of its assigned points O(N)

K-means variations/parameters

Start with some initial cluster centers

Iterate:

- Assign/cluster each example to closest center
- Recalculate centers as the mean of the points in a cluster

What are some other variations/parameters we haven't specified?

K-means variations/parameters

Initial (seed) cluster centers

Convergence

- A fixed number of iterations
- partitions unchanged
- Cluster centers don't change

K

K-means: Initialize centers randomly

What would happen here?

Seed selection ideas?

Seed choice

Results can vary drastically based on random seed selection

Some seeds can result in poor convergence rate, or convergence to sub-optimal clusterings

Common heuristics

- Random centers in the space
- Randomly pick examples
- Points least similar to any existing center (furthest centers heuristic)
- Try out multiple starting points
- Initialize with the results of another clustering method

Furthest centers heuristic

 μ_1 = pick random point

for i = 2 to K:

 μ_i = point that is furthest from **any** previous centers

$$\mu_i = \frac{\underset{x}{\operatorname{arg max}} \quad \underset{\mu_j}{\operatorname{min}}}{\underbrace{\mu_j : 1 < j < i}} \quad d(x, \mu_j)$$

point with the largest distance to any previous center

smallest distance from x to any previous center

Furthest point from center
What point will be chosen next?

Furthest point from center
What point will be chosen next?

Furthest point from center
Any issues/concerns with this approach?

Furthest points concerns

Furthest points concerns

K-means++

```
\mu_1 = pick random point
```

```
for k = 2 to K:
```

for i = 1 to N:

 $s_i = \min d(x_i, \mu_{1...k-1}) // \text{ smallest distance to any center}$

 μ_k = randomly pick point **proportionate** to s

How does this help?

K-means++

```
\begin{split} \mu_1 &= \text{pick random point} \\ \text{for k = 2 to } \textbf{K}: \\ \text{for i = 1 to } \textbf{N}: \\ s_i &= \min d(x_i, \mu_{1...k-1}) \text{ // smallest distance to any center} \\ \mu_k &= \text{randomly pick point } \textit{proportionate} \text{ to } \textbf{s} \end{split}
```

- Makes it possible to select other points
 - if #points >> #outliers, we will pick good points
- Makes it non-deterministic, which will help with random runs
- Nice theoretical guarantees!

What Is A Good Clustering?

Internal criterion: A good clustering will produce high quality clusters in which:

- •the <u>intra-class</u> (that is, intra-cluster) similarity is high
- the <u>inter-class</u> similarity is low
- The measured quality of a clustering depends on both the document representation and the similarity measure used

Clustering Evaluation

- Intra-cluster cohesion (compactness):
- Cohesion measures how near the data points in a cluster are to the cluster centroid.
- Sum of squared error (SSE) is a commonly used measure.
- Inter-cluster separation (isolation):
- Separation means that different cluster centroids should be far away from one another.
- In most applications, expert judgments are still the key

Association rule

Unsupervised Learning

Mining Association Rules

What is Association rule mining

Apriori Algorithm

Additional Measures of rule interestingness

What Is Association Rule Mining?

- Finding frequent patterns, associations, correlations, or causal structures among sets of items in transaction databases
- Understand customer buying habits by finding associations and correlations between the different items that customers place in their "shopping basket"
- Applications
 - Basket data analysis, cross-marketing, catalog design, loss-leader analysis, web log analysis, fraud detection (supervisor->examiner)

What Is Association Rule Mining?

Rule form

Antecedent → Consequent [support, confidence]

(support and confidence are user defined measures of interestingness)

Examples

buys(x, "computer") \rightarrow buys(x, "financial management software") [0.5%, 60%]

 $age(x, "30..39") \land income(x, "42..48K") \rightarrow buys(x, "car") [1%,75%]$

How can Association Rules be used?

Stories - Beer and Diapers

- Diapers and Beer. Most famous example of market basket analysis for the last few years.
 If you buy diapers, you tend to buy beer.
- T. Blischok headed Terradata's Industry Consulting group.
- K. Heath ran self joins in SQL (1990), trying to find two itemsets that have baby items, which are particularly profitable.
- Found this pattern in their data of 50 stores/90 day period.
- Unlikely to be significant, but it's a nice example that explains associations well.

🚅 Ronny Kohavi 🔝 ICML 1998

Probably mom was calling dad at work to buy diapers on way home and he decided to buy a six-pack as well.

The retailer could move diapers and beers to separate places and position high profit items of interest to young fathers along the path.

How can Association Rules be used?

Let the rule discovered be

 $\{Bagels,...\} \rightarrow \{Potato Chips\}$

Potato chips as consequent → Can be used to determine what should be done to boost its sales

Bagels in the antecedent → Can be used to see which products would be affected if the store discontinues selling bagels

Bagels in antecedent and Potato chips in the consequent → Can be used to see what products should be sold with Bagels to promote sale of Potato Chips

Association Rule: Basic Concepts

Given:

- (1) database of *transactions*,
- (2) each transaction is a *list of items* purchased by a customer in a visit

Find:

- all rules that correlate the presence of one set of items (itemset) with that of another set of items
- E.g., 98% of people who purchase tires and auto accessories also get automotive services done

Rule basic Measures: Support and Confidence

$$A \rightarrow B [s, c]$$

Support: denotes the frequency of the rule within transactions. A high value means that the rule involve a great part of database.

$$support(A \rightarrow B [s, c]) = p(A \rightarrow B)$$

Confidence: denotes the percentage of transactions containing A which contain also B. It is an estimation of conditioned probability.

confidence(A \rightarrow B [s, c]) = p(B|A) = sup(A,B)/sup(A).

Example

Trans. Id	Purchased Items
1	A,D
2	A,C
3	A,B,C
4	B,E,F

Itemset:

A,B or B,E,F

Support of an itemset:

Sup(A,B)=1 Sup(A,C)=2

Frequent pattern:

Given min. sup=2,

{A,C} is a frequent pattern

For minimum support = 50% and minimum confidence = 50%, we have the following rules

$$A \rightarrow C$$
 with 50% support and

66% confidence

$$C \rightarrow A$$
 with 50% support and

100% confidence

Mining Association Rules

What is Association rule mining

Apriori Algorithm

Boolean association rules

Each transaction is represented by a Boolean vector

Cliente	Α1	Α2	A 3	Α4	Α5	Α6	Α7	A 8	Α9	A10	A11	A12	A13
1	1	1	0	0	1	0	0	0	0	0	0	0	0
2	0	0	1	0	0	1	0	0	0	0	0	0	0
3	1	0	1	1	1	0	0	0	0	0	0	0	0
4	1	1	1	0	1	0	0	0	0	0	0	0	0
5	0	0	1	0	0	1	0	1	1	1	0	0	0
6	0	1	0	0	0	0	0	1	0	1	0	0	0
7	1	0	0	0	0	0	1	1	0	1	0	1	1
8	0	1	0	0	0	0	0	1	0	0	0	0	0
9	0	0	0	0	0	0	0	0	0	1	0	1	0

Mining Association Rules - An Example

Transaction ID	Items Bought
2000	A,B,C
1000	A,C
4000	A,D
5000	B,E,F

Min. support 50% Min. confidence 50%

Frequent Itemset	Support
{A}	75%
{B}	50%
{ <i>C</i> }	50%
{A,C}	50%

For rule $A \rightarrow C$:

support = support(
$$\{A, C\}$$
) = 50%
confidence = support($\{A, C\}$) / support($\{A\}$) = 66.6%

The Apriori principle

Any subset of a frequent itemset must be frequent

A transaction containing {beer, diaper, nuts} also contains {beer, diaper}

{beer, diaper, nuts} is frequent

→ {beer, diaper} must also be frequent

The Apriori principle

No superset of any infrequent itemset should be generated or tested

Many item combinations can be pruned

Itemset Lattice null Ε В D AB AC AD ΑE BE CD CE DE BC BD CDE ABE ACD BCE BDE ABC ABD ACE ADE BCD BCDE ABCD ABCE ABDE ACDE ABCDE

Apriori principle for pruning candidates

Mining Frequent Itemsets (the Key Step)

Find the *frequent itemsets:* the sets of items that have minimum support

A subset of a frequent itemset must also be a frequent itemset

Generate length (k+1) candidate itemsets from length k frequent itemsets, and

Test the candidates against DB to determine which are in fact frequent

Use the frequent itemsets to generate association rules.

Generation is straightforward

The Apriori Algorithm — Example

How to Generate Candidates?

The items in L_{k-1} are <u>listed in an order</u>

Step 1: self-joining L_{k-1}

- insert into C_k
- select $p.item_1$, $p.item_2$, ..., $p.item_{k-1}$, $q.item_{k-1}$
- from $L_{k-1}p$, $L_{k-1}q$
- where $p.item_1=q.item_1$, ..., $p.item_{k-2}=q.item_{k-2}$, $p.item_{k-1} < q.item_{k-1}$

Step 2: pruning

for all itemsets c in C_k do

for all (k-1)-subsets s of c do

if (s is not in L_{k-1}) then delete c from C_k

Example of Generating Candidates

 L_3 ={abc, abd, acd, ace, bcd}

Self-joining: L_3*L_3

abcd from abc and abd

acde from acd and ace

Pruning (before counting its support):

acde is removed because ade is not in L_3

 C_4 ={abcd}

The Apriori Algorithm

 C_k : Candidate itemset of size k L_k : frequent itemset of size k Join Step: C_k is generated by joining L_{k-1} with itself

Prune Step: Any (k-1)-itemset that is not frequent cannot be a subset of a frequent k-itemset

Algorithm:

```
L_1 = {frequent items};

for (k = 1; L_k! = \emptyset; k++) do begin

C_{k+1} = candidates generated from L_k;

for each transaction t in database do

increment the count of all candidates in C_{k+1} that are contained in t

L_{k+1} = candidates in C_{k+1} with min_support

end

return L = \bigcup_k L_k;
```


Generating AR from frequent intemsets

Confidence
$$(A \rightarrow B) = P(B|A) = \frac{\text{support_count}(\{A,B\})}{\text{support_count}(\{A\})}$$

For every frequent itemset x, generate all non-empty subsets of x

For every non-empty subset s of x, output the rule " $s \rightarrow (x-s)$ " if

$$\frac{\text{support_count}(\{x\})}{\text{support_count}(\{s\})} \ge \min_\text{conf}$$

Generating AR from frequent intemsets

Given a frequent itemset L, find all non-empty subsets $f \subset L$ such that $f \to L - f$ satisfies the minimum confidence requirement

If $\{A,B,C,D\}$ is a frequent itemset, candidate rules: $ABC \rightarrow D$, $ABD \rightarrow C$, $ACD \rightarrow B$, $BCD \rightarrow A$, $A \rightarrow BCD$, $B \rightarrow ACD$, $C \rightarrow ABD$, $D \rightarrow ABC$, $AB \rightarrow CD$, $AC \rightarrow BD$, $AD \rightarrow BC$, $BC \rightarrow AD$,

 $BD \rightarrow AC$, $CD \rightarrow AB$

If |L| = k, then there are $2^k - 2$ candidate association rules (ignoring $L \to \emptyset$ and $\emptyset \to L$)

From Frequent Itemsets to Association Rules

Q: Given frequent set {A,B,E}, what are possible association rules?

$$A \rightarrow B, E$$

$$A, B \rightarrow E$$

$$A, E \rightarrow B$$

$$B \rightarrow A, E$$

B,
$$E \rightarrow A$$

$$E \rightarrow A, B$$

$$A,B,E$$
 (empty rule), or true A,B,E

Generating Rules: example

Trans-ID	Items
1	ACD
2	BCE
3	ABCE
4	BE
5	ABCE

Rule	Conf.
$\{BC\} => \{E\}$	100%
{BE} =>{C}	75%
$\{CE\} => \{B\}$	100%
{B} =>{CE}	75%
{C} =>{BE}	75%
$\{E\} => \{BC\}$	75%

Frequent Itemset	Support
{ BCE },{AC}	60%
{BC},{CE},{A}	60%
{BE},{B},{C},{E}	80%

Database TDB

Tid	Items
10	A, C, D
20	B, C, E
30	A, B, C, E
40	B, E

Itemset	sup
{A}	2
{B}	3
{C}	3
{D}	1
{E}	3

L_2	Itemset	sup
4	{A, C}	2
	{B, C}	2
1	{B, E}	3
	{C, E}	2

 C_2 | Itemset | sup | {A, B} | 1 | {A, C} | 2 | {A, E} | 1 | {B, C} | 2 | {B, E} | 3 | {C, E} | 2

2nd scan

Itemset
{A, B}
{A, C}
{A, E}
{B, C}
{B, E}
{C, E}

Itemset	sup
{B, C, E}	2

Challenges of Frequent Pattern Mining

Challenges

Multiple scans of transaction database

Huge number of candidates

Tedious workload of support counting for candidates

Improving Apriori: general ideas

Reduce number of transaction database scans

Shrink number of candidates

Facilitate support counting of candidates

