21. Aquí, hacemos $D_1 = [0,1] \times [0,1]$ y $D_2 = [1,\infty] \times [1,\infty]$, como indica la sugerencia. En D_1 , sean $g(x,y) = \frac{1}{x^\alpha y^\beta}$ y $f(x,y) = \frac{1}{x^\alpha y^\beta + x^\gamma y^\rho}$. Puesto que $x,y \geq 0$, está claro que $0 \leq f(x,y) \leq g(x,y)$ para todos los puntos de D_1 . Por tanto, ya que $\iint_{D_1} g(x,y) \, dx \, dy$ existe por el Ejercicio 5, sabemos que $\iint_{D_1} f(x,y) \, dx \, dy$ también tiene que existir.

Se puede usar un argumento similar para la región D_2 eligiendo una g(x,y) diferente y aplicando el resultado del Ejercicio 6. Si $\iint f(x,y) dx dy$ existe en la regiones D_1 y D_2 , también existirá en su unión, $D = D_1 \cup D_2$.

Ejercicios de repaso del Capítulo 6

- **1.** (a) $T\begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} 2u+v \\ 2v \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix}$. (b) $\iint_P f(x,y) \ dx \ dy = 4 \iint_S f(2u+v,2v) \ du \ dv$.
- **3.** 3 (Utilizar el cambio de variables $u = x^2 y^2, v = xy$).
- **5.** $\frac{1}{3}\pi(4\sqrt{2}-\frac{7}{2}).$
- 7. $(5\pi/2)\sqrt{15}$.
- **9.** *abc*/6.
- **11.** Cortar con los planos $x + y + z = \sqrt[3]{k/n}$, $1 \le k \le n 1$, k entero.
- **13.** $(25 + 10\sqrt{5})\pi/3$.
- **15.** $(e e^{-1})/4$ (Utilizar el cambio de variables u = y x, v = y + x).
- **17.** $(9.92 \times 10^6)\pi$ gramos.
- **19.** (a) 32.
 - (b) Esto ocurre en el punto de la esfera unidad $x^2 + y^2 + z^2 = 1$ inscrita en el cubo.
- **21.** $(0,0,3a^{4/8})$.
- **23.** $4\pi \ln(a/b)$.
- **25.** $\pi/2$.
- **27.** (a) 9/2. (b) 64π .
- **29.** Calcular la integral con respecto a y primero en la región $D_{\varepsilon,L}=\{(x,y)|\varepsilon\leq x\leq L,0\leq y\leq x\}$ para obtener $I_{\varepsilon,L}=\iint_{D_{\varepsilon,L}}f\ dx\ dy=1$

 $\int_{\varepsilon}^{L} x^{-3/2} (1-e^{-x}) \ dx.$ El integrando es positivo y por tanto $I_{\varepsilon,L}$ crece cuando $\varepsilon \to 0$ y $L \to \infty.$ Acotar $1-e^{-x}$ por arriba por x cuando 0 < x < 1 y por 1 cuando $1 < x < \infty$ para ver que $I_{\varepsilon,L}$ permanece acotada y por tanto debe converger. La integral impropia existe.

- **31.** (a) 1/6. (b) $16\pi/3$.
- **33.** 2π .

Capítulo 7

Sección 7.1

- **1.** $\gamma(t) = \begin{cases} (3\cos \pi t, 3\sin \pi t), t \in [0, 1] \\ (6t 9, 0), t \in [1, 2] \end{cases}$
- **3.** $\gamma(t) = \begin{cases} (t, \sin \pi t), & t \in [0, 1] \\ (2\pi \pi t, 0), & t \in [1, 2] \end{cases}$
- **5.** $\gamma(t) = (3\cos 2\pi t, 4\sin 2\pi t, 3), \quad t \in [0, 1].$
- 7. $\gamma(t) = (t, t, t^3), \quad t \in [-3, 2], \text{ o}$ $\gamma(t) = (5t - 3, 5t - 3, (5t - 3)^3), \quad t \in [0, 1].$
- **9.** $\int_{\mathbf{c}} f(x, y, z) ds = \int_{I} f(x(t), y(t), z(t)) \|\mathbf{c}'(t)\| dt$ $= \int_{0}^{1} 0 \cdot 1 dt = 0.$
- **11.** (a) 2. (b) $52\sqrt{14}$.
- **13.** $-\frac{1}{3}(1+1/e^2)^{3/2} + \frac{1}{3}(2^{3/2}).$
- **15.** (a) La trayectoria sigue la recta que va de (0,0) a (1,1) y vuelve a (0,0) en el plano xy. Sobre la trayectoria, la gráfica de f es una recta que va de (0,0,0) a (1,1,1). La integral es dos veces el área del triángulo resultante y es igual a $\sqrt{2}$.
 - (b) $s(t) = \begin{cases} \sqrt{2}(1 t^4) & \text{cuando} \ -1 \le t \le 0\\ \sqrt{2}(1 + t^4) & \text{cuando} \ 0 < t \le 1. \end{cases}$

La trayectoria es

$$\mathbf{c}(s) = \begin{cases} (1 - s/\sqrt{2})(1, 1) & \text{cuando} \\ 0 \le s \le \sqrt{2} \\ (s/(\sqrt{2} - 1))(1, 1) & \text{cuando} \\ \sqrt{2} \le s \le 2\sqrt{2} \end{cases}$$