日本国特許庁 JAPAN PATENT OFFICE

29.10.2004

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日
Date of Application:

2003年11月 7日

出願番号 Application Number: 特願2003-377708

[ST. 10/C]:

[JP2003-377708]

REC'D 2 3 DEC 2004

WIPO PCT

出 願 人
Applicant(s):

独立行政法人産業技術総合研究所

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

特許庁長官 Commissioner, Japan Patent Office 2004年12月 9日

【曹類名】 特許願 【整理番号】 113MS0553 【提出日】 平成15年11月 7日 【あて先】 特許庁長官 殿

【国際特許分類】

【発明者】

【住所又は居所】

大阪府池田市緑丘1丁目8番31号 独立行政法人産業技術総合

研究所関西センター内

【氏名】 舟橋 良次

【特許出願人】

【識別番号】

【氏名又は名称】

【代表者】

【連絡先】

【提出物件の目録】

【物件名】 【物件名】

【物件名】 【物件名】 【物件名】 301021533

CO1F 17/00

独立行政法人産業技術総合研究所

理事長 吉川 弘之

072 - 751 - 9681

特許請求の範囲 1

明細書 1 図面 1 要約書 1

【書類名】特許請求の範囲

【請求項1】

組成式: LavM¹wNixM²yOz

【請求項2】

組成式: LavM¹wNixM²yOz

【請求項3】

請求項1又は2に記載の複合酸化物からなる n 型熱電変換材料。

【請求項4】

請求項3に記載のn型熱電変換材料を含む熱電発電モジュール。

【書類名】明細書

【発明の名称】 n型熱電変換特性を有する複合酸化物

【技術分野】

[0001]

本発明は、n型熱電変換材料として優れた性能を有する複合酸化物、該複合酸化物を用 いたn型熱電変換材料、及び熱電発電モジュールに関する。

【背景技術】

[0002]

我が国では、一次供給エネルギーからの有効なエネルギーの得率は30%程度に過ぎず 、約70%ものエネルギーを最終的には熱として大気中に廃棄している。また、工場やご み焼却場などにおいて燃焼により生じる熱も他のエネルギーに変換されることなく大気中 に廃棄されている。このように、我々人類は、非常に多くの熱エネルギーを無駄に廃棄し ており、化石エネルギーの燃焼等の行為から僅かなエネルギーしか獲得していない。

[0003]

エネルギーの得率を向上させるためには、大気中に廃棄されている熱エネルギーを利用 できるようにすることが有効である。そのためには熱エネルギーを直接電気エネルギーに 変換する熱電変換が有効な手段である。熱電変換とは、ゼーベック効果を利用したもので あり、熱電変換材料の両端で温度差をつけることで電位差を生じさせて発電を行うエネル ギー変換法である。この熱電発電では、熱電変換材料の一端を廃熱により生じた高温部に 配置し、もう一端を大気中(室温)に配置して、それぞれの両端に導線を接続するだけで 電気が得られ、一般の発電に必要なモーターやタービン等の可動装置は全く必要ない。こ のためコストも安く、燃焼等によるガスの排出も無く、熱電変換材料が劣化するまで継続 的に発電を行うことができる。

[0004]

このように、熱電発電は今後心配されるエネルギー問題の解決の一端を担う技術として 期待されているが、熱電発電を実現するためには、高い熱電変換効率を有し、耐熱性、化 学的耐久性等に優れた熱電変換材料を大量に供給することが必要となる。

[0005]

これまでに、高温の空気中で優れた熱電変換性能を示す物質としてСа3Со4О9等の C o O2系層状酸化物が報告されている(例えば、下記特許文献1~5等参照)。しかし ながら、これらの酸化物は、全てp型の熱電特性を有するものであり、ゼーベック係数が 正の値を示す材料、即ち、高温側に位置する部分が低電位部となる材料である。

[0006]

熱電変換作用を利用した熱電発電モジュールを組み立てる場合には、p型熱電変換材料 の他に、n型熱電発電材料が不可欠である。そこで、毒性が少なく、存在量の多い元素に より構成され、耐熱性、化学的耐久性等に優れ、しかも高い熱電変換効率を有するn型熱 電変換材料の開発が期待されている。

[0007]

これまで、LaNiO3、La2NiO4等の複合酸化物の一部をBi等の元素で置換し た酸化物が、n型熱電変換性能を有することが報告されている(例えば、下記特許文献 6 等参照)。しかしながら、熱電発電の実用化のためには、より優れた熱電変換効率を有す るn型熱電変換材料の開発が望まれている。

【特許文献1】特許第3069701号公報

【特許文献2】特開2001-223393号公報

【特許文献3】特許第3089301号公報

【特許文献4】特許第3472814号公報

【特許文献5】国際公開WO 03/000605号公報

【特許文献6】特開2003-282964号公報

【発明の開示】

【発明が解決しようとする課題】

[0008]

本発明は、上記した従来技術の問題点に鑑みてなされたものであり、その主な目的は、n型熱電変換材料として優れた性能を有する新規な材料を提供することである。

【課題を解決するための手段】

[0009]

本発明者は、上記した課題を達成すべく鋭意研究を重ねた結果、La、Ni及びOを必須元素として含み、その一部が特定の元素で置換された特定組成の複合酸化物が、負のゼーベック係数を有するものであり、しかも、電気抵抗値が低く、n型熱電変換材料として優れた特性を有することを見出し、ここに本発明を完成するに至った。

[0010]

即ち、本発明は、下記の複合酸化物、及び該複合酸化物を用いたn型熱電変換材料を提供するものである。

1. 組成式: LavM¹wNixM²yOz

2. 組成式: La_vM¹_wN i_xM²_yO_z

- 3. 上記項1又は2に記載の複合酸化物からなるn型熱電変換材料。
- 4. 上記項3に記載のn型熱電変換材料を含む熱電発電モジュール。

[0011]

本発明の複合酸化物は、組成式 : $L_{av}M^1_wN_{ix}M^2_yO_2$ で表される組成を有するものである。

[0012]

[0013]

上記した複合酸化物は、負のゼーベック係数を有するものであり、該酸化物からなる材料の両端に温度差を生じさせた場合に、熱起電力により生じる電位は、高温側の方が低温側に比べて高くなり、n型熱電変換材料としての特性を示すものである。具体的には、上記複合酸化物は、100℃以上の温度において負のゼーベック係数を有するものである。

[0014]

更に、上記複合酸化物は、電気伝導性がよく、低い電気抵抗率を示し、100℃以上の温度において、10mΩcm以下の電気抵抗率である。

[0015]

上記した複合酸化物の内で、後述する実施例1で得られた複合酸化物のX線回折パターンを図1に示す。このX線回折パターンから、本発明の複合酸化物が、ペロブスカイト型の結晶構造を有することが認められる。

[0016]

[0017]

本発明の複合酸化物の製造方法については、特に限定はなく、上記した組成を有する単 結晶体又は多結晶体を製造できる方法であればよい。

[0018]

例えば、フラックス法、ゾーンメルト法、引き上げ法、ガラス前駆体を経由するガラス アニール法等の単結晶製造法、固相反応法、ゾルゲル法等の粉末製造法、スパッタリング 法、レーザーアブレーション法、ケミカル・ベーパー・デポジション法等の薄膜製造法等 の公知の方法によって上記組成を有する結晶構造の複合酸化物を製造すればよい。

[0019]

これらの方法の内で、固相反応法による複合酸化物の製造方法について、より詳細に説明する。

[0020]

上記した複合酸化物は、例えば、目的とする複合酸化物の元素成分比率と同様の元素成分比率となるように原料物質を混合し、焼成することによって製造することができる。

[0021]

焼成温度及び焼成時間については、目的とする複合酸化物が形成される条件とすれば良く、特に限定されないが、例えば、700~1200℃程度の温度範囲において、10~40時間程度焼成すれば良い。尚、原料物質として炭酸塩や有機化合物等を用いる場合には、焼成する前に予め仮焼きして原料物質を分解させた後、焼成して目的の複合酸化物を形成することが好ましい。例えば、原料物質として炭酸塩を用いる場合には、700~900℃程度で10時間程度仮焼きした後、上記した条件で焼成すれば良い。焼成手段はに限定されず、電気加熱炉、ガス加熱炉等任意の手段を採用できる。焼成雰囲気は、通常、酸素気流中、空気中等の酸化性雰囲気中とすればよいが、原料物質が十分量の酸素をむ場合には、例えば、不活性雰囲気中で焼成することも可能である。生成する複合酸化物中の酸素量は、焼成時の酸素分圧、焼成温度、焼成時間等により制御することができる。固相反応法でもる複合酸化物を作製するには、固相反応を効率よく進行させるために、原料粉末を加圧成形体として焼成することが好ましい。この場合、得られた成形体を粉砕して必要な粒径の粉体とすればよい。

[0022]

原料物質としては、焼成により酸化物を形成し得るものであれば特に限定されず、金属単体、酸化物、各種化合物(炭酸塩等)等を使用できる。例えば、La源としては酸化ランタン(La2O3)、炭酸ランタン(La2(CO3)3)、硝酸ランタン(La(NO3)3)、塩化ランタン(LaCl3)、水酸化ランタン(La(OH)3)、アルコシキド化合物(トリメトキシランタン(La(OCH3)3)、トリエトキシランタン(La(OC2H5)3)、トリプロポキシランタン(La(OC3H7)3等)のアルコキシド化合物を使用でき、Ni源としては、酸化ニッケル(NiO)、硝酸ニッケル(Ni(NO3)2)、塩化ニッケル(NiCl2)、水酸化ニッケル(Ni(OH)2)、アルコキシド化合物(ジメトキシニッケル(Ni(OCH3)2)、ジエトキシニッケル(Ni(OC2H5)2)、ジプロポキシニッケル(Ni(OC3H7)2)等)等を使用できる。その他の元素についても同様に酸化物、塩化物、炭酸塩、硝酸塩、水酸化物、アルコキシド化合物等を用いることができる。また本発明の複合酸化物の構成元素を二種以上含む化合物を使用してもよい。

[0023]

また、原料物質を溶解した水溶液を出発原料として、同様の方法で目的とする複合酸化物を得ることができる。この場合、原料物質としては、硝酸塩などの水溶性の化合物を用いれば良く、金属成分のモル比が L a: M^1 :N i: M^2 = 0. $5 \sim 1$. $2:0 \sim 0$. 5:0. $5 \sim 1$. $2:0 \sim 0$. 5

例えば、アルミナるつぼ中でこの水溶液を加熱、撹拌して水を蒸発させた後、残渣を空気 中で600~800℃程度で10時間程度加熱して仮焼粉末とした後、上記した方法と同 様にして焼成すればよい。

[0024]

この様にして得られる本発明の複合酸化物は、100℃以上の温度で負のゼーベック係 数を有し、且つ10mΩcm以下という非常に低い電気抵抗率を有するものであり、 n型 熱電変換材料として優れた熱電変換性能を発揮できる。更に、該複合酸化物は、耐熱性、 化学的耐久性等が良好であって、毒性の少ない元素により構成されており、熱電変換材料 として実用性の高いものである。

[0025]

本発明の複合酸化物は、上記した特性を利用して、空気中において高温で用いるn型熱 電変換材料として有効に利用することができる。

[0026]

本発明の複合酸化物からなる熱電変換材料をn型熱電変換素子として用いた熱電発電モ ジュールの一例の模式図を図3に示す。該熱電発電モジュールの構造は、公知の熱電発電 モジュールと同様であり、高温部用基板、低温部用基板、p型熱電変換材料、n型熱電変 換材料、電極、導線等により構成される熱電発電モジュールであり、本発明の複合酸化物 はn型熱電変換材料として使用される。

【発明の効果】

[0027]

本発明の複合酸化物は、負のゼーベック係数と低い電気抵抗率を有し、更に、耐熱性、 化学的耐久性などにも優れた複合酸化物である。

[0028]

該複合酸化物は、この様な特性を利用して、従来の金属間化合物では不可能であった、 高温の空気中で用いるn型熱電変換材料として有効に利用することができる。よって、該 複合酸化物を熱電発電モジュールのn型熱電変換素子としてシステム中に組み込むことに より、これまで大気中に廃棄されていた熱エネルギーを有効に利用することが可能になる

【発明を実施するための最良の形態】

[0029]

以下、実施例を挙げて本発明を更に詳細に説明する。

[0030]

実施例1

La源として硝酸ランタン(La2(NO3)3・6H2O)、Ni源として硝酸ニッケル (Ni (NO3)2・ 6H2O) 、C u 源として硝酸銅(Cu(NO3)2・3H2O)を用い、L a:N i:C u(元素比)=1 : 0. 8:0. 2となる割合でこれらの原料を蒸留水に完全に溶解し、アルミナるつぼ中 で十分に撹拌混合した後、水分を蒸発させて乾固した。次いで、電気炉を用いて、析出物 を空気中で600℃で10時間焼成して、硝酸塩を分解した。その後、焼成物を粉砕し、 加圧成形後、300m1/分の酸素気流中で1000℃で20時間加熱して複合酸化物を 合成した。

[0031]

得られた複合酸化物は、LaNio.8Cuo.2〇3.1で表されるものであり、図1に示す X線回折パターンを有するものであった。

[0032]

得られた複合酸化物の100℃~700℃(373K~973K)におけるゼーベック 係数(S)の温度依存性を示すグラフを図4に示す。図4から、この複合酸化物が、10 0℃(373K)以上の温度において負のゼーベック係数を有するものであり、髙温側が 高電位となるn型熱電変換材料であることが確認できた。図4には、比較例として、La N i O₃についてのゼーベック係数の測定結果も示す。実施例1の複合酸化物のゼーベッ ク係数と比較例の複合酸化物のゼーベック係数とを比較した場合に、実施例1の酸化物に

おいて顕著なゼーベック係数の増加は認められなかったが、後述する実施例では、置換元 素の種類によっては明らかなゼーベック係数の増加が認められた。なお、以下の全ての実 施例においても、ゼーベック係数は、100℃以上において、負の値であった。

[0033]

また、該複合酸化物について、電気抵抗率(ρ)の温度依存性を示すグラフを図 5 に示す 。図5から、該複合酸化物の電気抵抗率は、100~700℃(373K~973K)の 全ての範囲において、10mΩcm以下という低い値であることが判る。図5には、比較 例として、LaNiO3についての電気抵抗率の測定結果も示す。実施例1の複合酸化物 の電気抵抗率と比較例の複合酸化物の電気抵抗率とを比較した場合に、実施例1の複合酸 化物において明らかな電気抵抗率の低下が認められた。

[0034]

なお、以下の全ての実施例においても、100~700℃(373K~973K)の全 ての範囲で電気抵抗率が10mΩcm以下であった。

[0035]

また、実施例 1 と比較例の複合酸化物について、出力因子(S^2 /
ho)の温度依存性を 示すグラフを図6に示す。図6から明らかなように、実施例1の複合酸化物は、比較例の 複合酸化物(LaNiO3)と比べて高い出力因子を有するものであった。後述する全て の実施例の複合酸化物についても、比較例の複合酸化物(LaNiO3)と比べて高い出 力因子を示した。

[0036]

実施例2~380

下記表1~表19に示す元素比となるように原料物質を溶解した水溶液を用いて、実施例 1と同様にして複合酸化物を作製した。

[0037]

焼成温度及び焼成時間については、目的とする酸化物が生成するように適宜変更した。 下記表1~表19に、得られた複合酸化物における元素比、700℃におけるゼーベック 係数、700℃における電気抵抗率、及び700℃における出力因子を示す。

[0038]

【表1】 La_{0.8-1.2}M¹₀Ni_{0.5-1.2}M²_{0.01-0.5}O_{2.8-3.2}

	1.2112 01130.3~1.2112 0		ゼーベック係数	電気抵抗率	出力因子
No.	M^2	La; Ni: M ² : O	973K(700°C)	973K(700°C)	973K(700°C)
	101	La, 141. M	$(\mu V K^{-1})$	(mΩcm)	(10 ⁻⁵ W/K ² m)
1	Cu	1.0:0.8:0.2:3.1	-29	1.1	7.6
2	Cu	1.0:1.2:0.01:3.1	-25	1.2	5.20
3	Cu	1.0:0.9:0.1:3.0	-28	1.0	7.8
4	Cu	1.2:0.5:0.5:2.8	-31	0.9	10.6
5	Ti	1.0:1.2:0.01:3.1	-32	1.4	7.3
6	Ti	1.0:0.9:0.1:3.2	-29	1.9	4.4
7	V	1.0 : 1.2 : 0.01 : 3.0	-28	1.5	5.2
8	v	1.0:0.9:0.1:3.1	-25	2.4	2.6
9	Cr	1.0:1.2:0.01:2.9	-32	1.8	5.7
10	Cr	1.0:0.9:0.1:3.2	-35	2.0	6.1
11	Mn	1.0:1.2:0.01:3.0	-29	1.0	8.4
12	Mn	1.0:0.9:0.1:3.1	-32	1.4	7.3
13	Mn	0.8:0.8:0.2:3.2	-31	1.8	5.3
14	Mn	1.2:0.5:0.5:2.8	-28	2.2	3.6
15	Fe	1.0: 1.2: 0.01: 2.9	-27	1.2	6.1
	Fe	1.0:0.9:0.1:3.0	-30	1.3	6.9
16	Fe	1.0:0.8:0.2:3.1	-31	1.6	6.0
17	Co	1.0:1.2:0.01:3.2	-27	1.2	6.1
18	Co	1.0:0.9:0.1:3.0	-26	1.4	4.8
19		1.0:0.8:0.2:3.1	-29	2.0	4.2
20	Co	1.0 . 0.3 . 0.2 . 3.1		1	

[0039]

【表2】

 $La_{0.8-1.2}Na_{0.1}Ni_{0.5-1.2}M^2_{0.01-0.5}O_{2.8-3.2}$

La _{0.8} _	1.2Na 0.1 N10.5-1.2 M 0	.01~0.5 • 2.8~3.2	ゼーベック係数	電気抵抗率	出力因子
No.	× e ²	La: Ni: M ² : O	973K(700°C)	973K(700°C)	973K(700℃)
140.	M^2	La: NI: WI . O	(μVK ⁻¹)	(mΩ cm)	(10 ⁻⁵ W/K ² m)
21	Cu	1.2:1.2:0.01:3.2	-29	1.1	7.6
22	Cu	0.9:0.8:0.2:3.0	-31	1.3	7.4
23	Cu	0.8:0.5:0.5:2.8	-27	1.2	6.1
24	Cu	0.9:0.9:0.1:2.9	-30	1.0	9.0
25	Ti	0.9:0.8:0.1:3.1	27	1.5	4.9
26	Ti	0.9:0.6:0.5:3.0	-28	2.1	3.7
27	V	0.9:0.8:0.1:3.1	-25	1.2	5.2
28	v	0.9:0.6:0.5:3.0	-26	1.9	3.6
29	Cr	0.9:0.8:0.1:3.1	-31	1.5	6.4
30	Cr	0.9:0.6:0.5:3.0	-35	2.4	5.1
31	Mn	1.2:1.2:0.01:3.2	-27	1.4	5.2
32	Mn	0.9:0.8:0.2:3.0	-30	1.3	6.9
33	Mn	0.8:0.5:0.5:2.8	-25	1.8	3.5
	Mn	0.9:0.9:0.1:2.9	-28	1.2	6.5
34	Fe	0.9:0.9:0.1:3.1	-35	1.3	9.4
35	Fe	0.8:0.8:0.2:2.9		1.5	6.0
36	Fe	1.0:0.5:0.5:3.0		2.2	4.7
37		0.9:0.9:0.1:3.1		1.2	7.5
38	Co	0.8 : 0.8 : 0.2 : 2.9		1.0	8.4
39	Co	1.0:0.5:0.5:3.0		1.9	6.4
40	Co	1.0 . 0.5 . 0.5 . 5.0			

[0040]

【表3】 La_{0.8-1.2} K_{0.1} Ni_{0.5-1.2} M²_{0.01-0.5}O_{2.8-3.2}

	0.01-0.5 - 2.0-5.2			
		ゼーベック係数	電気抵抗率	出力因子
M ²	La: Ni: M ² : O		973K(700°C)	973K(700℃)
141		$(\mu V K^{-1})$	(mΩ cm)	(10 ⁻⁵ W/K ² m)
Cu	12:12:0.01:3.2	-28	1.0	7.8
		-30	0.9	10
			1.1	9.3
			1.2	7.5
				4.7
				3.3
				4.9
				3.3
				6.5
			 	8.4
				10.2
				6.9
		 		3.6
				4.9
Mn		 		8.0
Fe	0.9:0.9:0.1:3.1			
Fe	0.8:0.8:0.2:2.9	-33		8.4
Fe	1.0:0.5:0.5:3.0	-35	1.9	6.4
Co	0.9:0.9:0.1:3.1	-29	1.0	8.4
		-28	1.1	7.1
		-27	1.8	4.1
	Fe	Cu	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

[0041]

【表 4】 La_{0.8-1.2} Sr_{0.1} Ni_{0.5-1.2} M²_{0.01-0.5}O_{2.8-3.2}

La _{0.8} .	. _{1.2} SI _{0.1} IN10.5~1.2 ¹ 1.	VI 0.01~0.5 ~ 2.8~ 3.2			
- -			ゼーベック係数	電気抵抗率	出力因子
No.		La: Ni: M ² : O	973K(700°C)	973K(700℃)	
	M ²		$(\mu V K^{-1})$	(mΩ cm)	$(10^{-5} \text{ W/K}^2\text{m})$
61	Cu	1.2:1.2:0.01:3.2	-28	1.1	7.1
62	Cu	0.9:0.8:0.2:3.0	-30	1.0	9.0
63	Cu	0.8:0.5:0.5:2.8	-29	1.2	7.0
64	Cu	0.9:0.9:0.1:2.9	-32	1.3	7.9
65	Ti	0.9:0.8:0.1:3.1	-30	1.7	5.3
66	Ti	0.9:0.6:0.5:3.0	-33	2.0	5.4
67	v	0.9:0.8:0.1:3.1	-30	1.4	6.4
68	v	0.9:0.6:0.5:3.0	-27	2.1	3.5
69	Cr	0.9:0.8:0.1:3.1	-35	1.4	8.8
70	Cr	0.9:0.6:0.5:3.0	-36	2.4	5.4
71	Mn	1.2:1.2:0.01:3.2	-30	1.2	7.5
72	Mn	0.9:0.8:0.2:3.0	-31	1.5	6.4
73	Mn	0.8:0.5:0.5:2.8	-30	2.2	4.1
	Mn	0.9:0.9:0.1:2.9		1.2	7.5
74	Fe	0.9:0.9:0.1:3.1		1.4	5.2
75	Fe	0.8:0.8:0.2:2.9		1.5	5.2
76		1.0:0.5:0.5:3.0		2.4	2.8
77	Fe C-	0.9:0.9:0.1:3.1		1.2	6.1
78	Co	0.8:0.8:0.2:2.9		1.3	5.2
79	Co	1.0:0.5:0.5:3.0		1.9	3.3
80	Co	1 1.0 . 0.5 . 0.5 . 5.0			

[0042]

【表 5】 La_{0.8-1.2} Ca _{0.1} Ni_{0.5-1.2} M²_{0.01-0.5}O_{2.8-3.2}

 α0.8~]	1.2 -4 0.1 - 1.0.3-1.2	11x 0.01=0 = 2.0=3.2			
			ゼーベック係数	電気抵抗率	出力因子
No.	M^2	La: Ni: M ² : O	973K(700°C)	973K(700°C)	973K(700°C)
	141		$(\mu V K^{-1})$	(mΩ cm)	(10 ⁻⁵ W/K ² m)
81	Cu	1.2:1.2:0.01:3.2	-31	1.2	8.0
82	Cu	0.9:0.8:0.2:3.0	-30	1.3	6.9
83	Cu	0.8:0.5:0.5:2.8	-32	1.2	8.5
84	Cu	0.9:0.9:0.1:2.9	-30	1.1	8.2
85	Ti	0.9:0.8:0.1:3.1	-27	1.5	4.9
86	Ti	0.9:0.6:0.5:3.0	-29	2.5	3.4
87	v	0.9:0.8:0.1:3.1	-30	1.6	5.6
88	v	0.9:0.6:0.5:3.0	-31	2.3	4.2
89	Cr	0.9:0.8:0.1:3.1	-40	1.8	8.9
90	Cr	0.9:0.6:0.5:3.0	-42	2.1	8.4
91	Mn	1.2:1.2:0.01:3.2	-30	1.2	7.5
92	Mn	0.9:0.8:0.2:3.0	-31	1.3	7.4
93	Mn	0.8 : 0.5 : 0.5 : 2.8	-33	1.5	7.3
94	Mn	0.9:0.9:0.1:2.9	-32	1.1	9.3
95	Fe	0.9:0.9:0.1:3.1	-30	1.4	6.4
96	Fe	0.8:0.8:0.2:2.9	-27	1.5	4.9
97	Fe	1.0:0.5:0.5:3.0	-28	2.4	3.3
	Со	0.9:0.9:0.1:3.1	-27	1.2	6.1
98		0.8:0.8:0.2:2.9	-	1.1	5.7
99	Co Co			1.9	3.6
100	Co	1.0:0.5:0.5:3.0		1.9	

[0043]

【表6】

 $La_{0.8\text{--}1.2}\,Bi_{0.1}\,Ni_{0.5\text{--}1.2}\,M^2_{0.01\text{--}0.5}O_{2.8\text{--}3.2}$

1	10.8~1.2 10.1 1740.5~1.2	0.01-0.5 240 542			
			ゼーベック係数	電気抵抗率	出力因子
No.	M^2	La: Ni: M ² : O	973K(700°C)	973K(700°C)	973K(700°C)
110.	IVI	La, IVI. IVI	$(\mu V K^{-1})$	(m\Ocm)	(10 ⁻⁵ W/K ² m)
		1.2:1.2:0.01:3.2	-33	1.0	10.9
101	Cu	0.9:0.8:0.2:3.0	-32	0.9	11.4
102	Cu		-30	1.1	8.2
103	Cu	0.8:0.5:0.5:2.8			10.5
104	Cu	0.9:0.9:0.1:2.9	-29	0.8	6.9
105	Ti	0.9:0.8:0.1:3.1	-30	1.3	
106	Ti	0.9:0.6:0.5:3.0	-31	1.5	6.4
107	v	0.9:0.8:0.1:3.1	-27	1.6	4.6
108	v	0.9:0.6:0.5:3.0	-26	1.7	4.0
109	Cr	0.9:0.8:0.1:3.1	-35	1.8	6.8
110	Cr	0.9:0.6:0.5:3.0	-37	2.0	6.8
111	Mn	1.2:1.2:0.01:3.2		1.3	6.5
	Mn	0.9:0.8:0.2:3.0	-28	1.5	5.3
112	Mn	0.8:0.5:0.5:2.8	-29	1.7	4.9
113	Mn	0.9:0.9:0.1:2.9	-30	1.4	6.4
114	Fe	0.9:0.9:0.1:3.1	-31	1.2	8.0
115		0.8:0.8:0.2:2.9	-33	1.5	. 7.3
116	Fe		-34	1.7	6.8
117	Fe	1.0:0.5:0.5:3.0			7.5
118	Co	0.9:0.9:0.1:3.1	-30	1.2	5.6
119	Со	0.8:0.8:0.2:2.9		1.3	
120	Co	1.0:0.5:0.5:3.0	-29	1.6	5.3

[0044]

【表 7】 La_{0.8-1.2} Nd _{0.1} Ni_{0.5-1.2} M²_{0.01-0.5}O_{2.8-3.2}

1.2 144 0.1 1120.5~1.2	212 0.01-0.5 - 2.0-5.2			
		ゼーベック係数	i i	出力因子
M^2	La: Ni: M ² : O	973K(700°C)	1 '	973K(700°C)
		$(\mu V K^{-1})$	(mΩ cm)	(10 ⁻⁵ W/K ² m)
Cu	1.2:1.2:0.01:3.2	-29	1.3	6.5
		-30	1.5	6.0
		-27	1.4	5.2
		-28	1.4	5.6
	0.9:0.8:0.1:3.1	-26	1.8	3.8
	0.9:0.6:0.5:3.0	-26	2.1	3.2
	0.9:0.8:0.1:3.1	-25	1.5	4.2
	0.9:0.6:0.5:3.0	-27	1.9	3.8
	0.9:0.8:0.1:3.1	-30	1.3	6.9
	0.9:0.6:0.5:3.0	-35	2.0	6.1
		-27	1.5	4.9
		-29	1.6	5.3
		-31	2.1	4.6
		-33	1.7	6.40
		-30	1.4	6.4
		-27	1.8	4.1
		-29	2.4	3.5
		-31	1.7	5.7
		-29	1.8	4.7
			2.4	5.1
	M² Cu Cu Cu Cu Ti Ti V V Cr Cr Cr Mn Mn Mn Mn Fe Fe Fe Co Co Co	M² La: Ni: M²: O Cu 1.2: 1.2: 0.01: 3.2 Cu 0.9: 0.8: 0.2: 3.0 Cu 0.8: 0.5: 0.5: 2.8 Cu 0.9: 0.9: 0.1: 2.9 Ti 0.9: 0.8: 0.1: 3.1 Ti 0.9: 0.6: 0.5: 3.0 V 0.9: 0.8: 0.1: 3.1 V 0.9: 0.6: 0.5: 3.0 Cr 0.9: 0.6: 0.5: 3.0 Mn 1.2: 1.2: 0.01: 3.2 Mn 0.9: 0.8: 0.2: 3.0 Mn 0.9: 0.9: 0.1: 3.1 Fe 0.9: 0.9: 0.1: 3.1 Fe 0.8: 0.8: 0.2: 2.9 Fe 1.0: 0.5: 0.5: 3.0 Co 0.8: 0.8: 0.2: 2.9 Co 0.8: 0.8: 0.2: 2.9	M² La: Ni: M²: O	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

[0045]

【表8】 La_{0.8-1.0} Na _{0.2} Ni_{0.5-1.2} M²_{0.01-0.5}O_{2.8-3.2}

1.40,8~	1.0 144 0.2 1 140.5~1.2	144 0.01-0.30 2.82-3.2			出力因子
	2	- 27. 24.0	ゼーベック係数 973K(700℃)	電気抵抗率 973K(700℃)	973K(700°C)
No.	M ²	La: Ni: M ² : O	9/3K(/00 C) (μVK ⁻¹)	(mΩ cm)	(10 ⁻⁵ W/K ² m)
141	Cu	1.0:1.2:0.01:3.2	-27	2.0	3.6
142	Cu	0.9:0.8:0.2:3.0	-30	2.3	3.9
143	Cu	0.8:0.5:0.5:2.8	-27	2.5	2.9
144	Cu	0.9:0.9:0.1:2.9	-28	2.6	3.0
145	Ti	0.9:0.8:0.1:3.1	-25	3.0	2.1
146	Ti	0.9:0.6:0.5:3.0	-26	3.5	1.9
147	V	0.9:0.8:0.1:3.1	-27	3.0	2.4
	v	0.9:0.6:0.5:3.0	-30	3.6	2.5
148	Cr	0.9:0.8:0.1:3.1	-37	3.2	4.3
149	Cr	0.9:0.6:0.5:3.0	-38	3.7	3.9
150	Mn	1.0: 1.2: 0.01: 3.2		3.0	2.4
151	Mn	0.9:0.8:0.2:3.0	-25	3.5	1.8
152	Mn	0.8:0.5:0.5:2.8	-26	3.6	1.9
153	Mn	0.9:0.9:0.1:2.9		3.8	1.5
154		0.9:0.9:0.1:3.1	-30	4.0	2.3
155	<u>Fe</u>	0.8:0.8:0.2:2.9		4.2	2.3
156	Fe	1.0:0.5:0.5:3.0		4.1	2.5
157	Fe			3.8	2.9
158	Со	0.9:0.9:0.1:3.1		3.5	2.9
159	Со	0.8:0.8:0.2:2.9		3.6	2.5
160	Co	1.0:0.5:0.5:3.0	-30	3.0	

[0046]

【表9】 La_{0.8-1.0}K _{0.2} Ni_{0.5-1.2} M²_{0.01-0.5}O_{2.8-3.2}

	1.0K 0.2 N10.5-1.2 N		ゼーベック係数	電気抵抗率	出力因子
No.	M^2	La: Ni: M ² : O	973K(700°C)	973K(700°C)	973K(700℃)
	141	2	(μVK ⁻¹)	(mΩ cm)	(10 ⁻⁵ W/K ² m)
161	Cu	1.0:1.2:0.01:3.2	-34	2.1	5.5
162	Cu	0.9:0.8:0.2:3.0	-30	3.0	3.0
163	Cu	0.8:0.5:0.5:2.8	-29	3.5	2.4
164	Cu	0.9:0.9:0.1:2.9	-29	2.7	3.1
165	Ti	0.9:0.8:0.1:3.1	-27	2.4	3.0
166	Ti	0.9:0.6:0.5:3.0	-28	3.6	2.2
167	v	0.9:0.8:0.1:3.1	-30	2.9	3.1
168	v	0.9:0.6:0.5:3.0	-35	3.8	3.2
169	Cr	0.9:0.8:0.1:3.1	-39	2.5	6.1
170	Ст	0.9:0.6:0.5:3.0	-25	3.2	2.0
171	Mn	1.0:1.2:0.01:3.2	-30	2.7	3.3
172	Mn	0.9:0.8:0.2:3.0	-32	2.6	3.9
173	Mn	0.8 : 0.5 : 0.5 : 2.8	-33	3.9	2.8
174	Mn	0.9:0.9:0.1:2.9	-35	2.7	4.5
	Fe	0.9:0.9:0.1:3.1	-29	2.3	3.7
175	Fe	0.8:0.8:0.2:2.9	-28	2.5	3.1
176		1.0:0.5:0.5:3.0		3.9	2.6
177	Fe	0.9:0.9:0.1:3.1		2.7	3.1
178	Co	0.8:0.8:0.2:2.9		2.4	3.8
179	Co	1.0:0.5:0.5:3.0		3.8	2.2
180	Co	1.0 . 0.3 . 0.3 . 3.0			

[0047]

【表10】 La_{0.8-1.0}Sr_{0.2}Ni_{0.5-1.2}M²_{0.01-0.5}O_{2.8-3.2}

.031 0.2 1 10.5-1.2 1	VI 0.01=0.3 © 2.8=3.2		con hom lest date site	出力因子
M ²	I a: Ni: M ² : O		電気抵抗率 973K(700℃)	973K(700°C)
141	24. 14. 14.	(μVK ⁻¹)	(mΩ cm)	$(10^{-5} \text{ W/K}^2\text{m})$
Cu	1.0:1.2:0.01:3.2	-29	2.4	3.5
		-31	3.6	2.7
		-27	3.9	1.9
		-26	2.8	2.4
		-28	2.7	2.9
		-30	3.4	2.6
		-25	3.0	2.1
		-32	3.6	2.8
		-30	2.9	3.1
		-38	3.2	4.5
		-27	2.7	2.7
		-20	3.0	1.3
		-29	3.7	2.3
		-30	3.2	2.8
		-27	3.0	2.4
		-24	3.4	1.7
			3.8	2.5
			2.7	2.7
			3.0	2.6
			3.9	2.3
	M ² Cu Cu Cu Cu Ti Ti V V Cr Cr Cr Mn Mn Mn Fe Fe Fe Co Co Co	M² La: Ni: M²: O Cu 1.0: 1.2: 0.01: 3.2 Cu 0.9: 0.8: 0.2: 3.0 Cu 0.8: 0.5: 0.5: 2.8 Cu 0.9: 0.9: 0.1: 2.9 Ti 0.9: 0.8: 0.1: 3.1 Ti 0.9: 0.6: 0.5: 3.0 V 0.9: 0.8: 0.1: 3.1 V 0.9: 0.8: 0.1: 3.1 Cr 0.9: 0.6: 0.5: 3.0 Mn 1.0: 1.2: 0.01: 3.2 Mn 0.9: 0.8: 0.2: 3.0 Mn 0.9: 0.9: 0.1: 3.1 Fe 0.9: 0.9: 0.1: 3.1 Fe 0.8: 0.8: 0.2: 2.9 Fe 1.0: 0.5: 0.5: 3.0 Co 0.8: 0.8: 0.2: 2.9 Re 1.0: 0.5: 0.5: 3.0 Co 0.8: 0.8: 0.8: 0.2: 2.9	M² La: Ni: M²: O ゼーペック係数 973K(700°C) (μVK¹) Cu 1.0: 1.2: 0.01: 3.2 -29 Cu 0.9: 0.8: 0.2: 3.0 -31 Cu 0.8: 0.5: 0.5: 2.8 -27 Cu 0.9: 0.9: 0.1: 2.9 -26 Ti 0.9: 0.8: 0.1: 3.1 -28 Ti 0.9: 0.6: 0.5: 3.0 -30 V 0.9: 0.6: 0.5: 3.0 -32 Cr 0.9: 0.8: 0.1: 3.1 -25 V 0.9: 0.6: 0.5: 3.0 -32 Cr 0.9: 0.8: 0.1: 3.1 -30 Cr 0.9: 0.8: 0.1: 3.1 -27 Mn 0.9: 0.8: 0.5: 0.5: 3.0 -20 Mn 0.9: 0.9: 0.1: 3.2 -27 Mn 0.9: 0.9: 0.1: 3.1 -27 Fe 0.8: 0.8: 0.2: 2.9 -24 Fe 1.0: 0.5: 0.5: 3.0 -31 Co 0.9: 0.9: 0.1: 3.1 -27 Co 0.8: 0.8: 0.2: 2.9 -28	M^2 La: Ni: M^2 : O 973K(700°C) (μVK ⁻¹) 973K(700°C) (πΩ cm) Cu 1.0: 1.2: 0.01: 3.2 -29 2.4 Cu 0.9: 0.8: 0.2: 3.0 -31 3.6 Cu 0.8: 0.5: 0.5: 2.8 -27 3.9 Cu 0.9: 0.9: 0.1: 2.9 -26 2.8 Ti 0.9: 0.6: 0.5: 3.0 -30 3.4 V 0.9: 0.6: 0.5: 3.0 -30 3.4 V 0.9: 0.8: 0.1: 3.1 -25 3.0 V 0.9: 0.6: 0.5: 3.0 -32 3.6 Cr 0.9: 0.8: 0.1: 3.1 -30 2.9 Cr 0.9: 0.8: 0.1: 3.1 -30 2.9 Mn 1.0: 1.2: 0.01: 3.2 -27 2.7 Mn 0.9: 0.8: 0.2: 3.0 -20 3.0 Mn 0.9: 0.9: 0.1: 2.9 -30 3.2 Fe 0.9: 0.9: 0.1: 3.1 -27 3.0 Fe 0.8: 0.8: 0.2: 2.9 -24 3.4 Fe 1.0: 0.5: 0.5: 3.0 -31 3.8 Co 0.8: 0.8: 0.2: 2.9 -28 3.0 30 <t< td=""></t<>

[0048]

【表11】 La_{0.8-1.0} Ca _{0.2} Ni_{0.5-1.2} M²_{0.01-0.5}O_{2.8-3.2}

_au.8~	1.0 Ca 0.2 1140.5~1.2	1.2 0'01-0"3 - T'0-2:T			
<u> </u>			ゼーベック係数	電気抵抗率	出力因子
No.	M^2	La: Ni: M ² : O	973K(700°C)	973K(700℃)	973K(700°C)
,,,,	141	La. IVI. IVI . G	(μVK ⁻¹)	(mΩ cm)	(10 ⁻⁵ W/K ² m)
201	Cu	1.0:1.2:0.01:3.2	-29	2.1	4.0
201	Cu	0.9:0.8:0.2:3.0	-30	3.2	2.8
202	Cu	0.8:0.5:0.5:2.8	-27	4.0	1.8
203		0.9:0.9:0.1:2.9	-29	2.1	4.0
204	Cu	0.9:0.8:0.1:3.1	-31	2.0	4.8
205	Ti	0.9:0.6:0.5:3.0	-29	3.9	2.2
206	TiV	0.9:0.8:0.1:3.1	-30	3.2	2.8
207	v 	0.9:0.6:0.5:3.0	-32	3.7	2.8
208		0.9:0.8:0.1:3.1	-29	3.0	2.8
209	Cr	0.9:0.6:0.5:3.0	-39	3.8	4.0
200	Cr	1.0: 1.2: 0.01: 3.2		2.7	3.1
211	Mn Mn	0.9:0.8:0.2:3.0	-30	3.5	2.6
212		0.8:0.5:0.5:2.8	-33	3.9	2.8
213	Mn	0.8 : 0.3 : 0.3 : 2.8		3.0	3.0
214	<u>Mn</u>	0.9:0.9:0.1:2.9	-27	3.1	2.4
215	Fe			3.4	2.3
216	Fe	0.8:0.8:0.2:2.9	-33	3.8	2.9
217	Fe	1.0:0.5:0.5:3.0	-25	2.7	2.3
218	Со	0.9:0.9:0.1:3.1		3.0	2.8
219	Co	0.8:0.8:0.2:2.9		3.9	2.5
220	Со	1.0:0.5:0.5:3.0	-31	3.9	

[0049]

【表12】

 $La_{0.8\text{--}1.0}\,Bi_{0.2}\,Ni_{0.5\text{--}1.2}\,M^2_{0.01\text{--}0.5}O_{2.8\text{--}3.2}$

	1.0 10.21 140.3-1.2	0.02 0.0	ゼーベック係数	電気抵抗率	出力因子
No.	M^2	La: Ni: M ² : O	973K(700°C)	973K(700°C)	973K(700°C)
110.	IAI	La. IVI. IVI . O	(μVK ⁻¹)	(mΩ cm)	$(10^{-5} \text{ W/K}^2 \text{m})$
221	Cu	1.0:1.2:0.01:3.2	-28	2.1	3.7
222	Cu	0.9:0.8:0.2:3.0	-30	2.5	3.6
223	Cu	0.8:0.5:0.5:2.8	-37	3.0	4.6
224	Cu	0.9:0.9:0.1:2.9	-29	2.6	3.2
225	Ti	0.9:0.8:0.1:3.1	-27	3.2	2.3
226	Ti	0.9:0.6:0.5:3.0	-30	4.0	2.3
227	v	0.9:0.8:0.1:3.1	-31	3.1	3.1
228	v	0.9:0.6:0.5:3.0	-35	4.1	3.0
229	Cr	0.9:0.8:0.1:3.1	-29	3.7	2.3
230	Cr	0.9:0.6:0.5:3.0	-38	4.4	3.3
231	Mn	1.0:1.2:0.01:3.2	-27	2.9	2.5
232	Mn	0.9:0.8:0.2:3.0	-29	3.6	2.3
233	Mn	0.8:0.5:0.5:2.8	-34	4.7	2.5
234	Mn	0.9:0.9:0.1:2.9	-29	3.3	2.5
235	Fe	0.9:0.9:0.1:3.1	-27	2.8	2.6
	Fe	0.8:0.8:0.2:2.9	-28	3.5	2.2
236	Fe	1.0:0.5:0.5:3.0	-34	4.1	2.8
237	Co	0.9:0.9:0.1:3.1	-30	2.9	3.1
238		0.8:0.8:0.2:2.9	-35	3.0	4.1
239	Co	1.0:0.5:0.5:3.0		4.0	3.2
240	Со	1.0 . 0.3 . 0.3 . 3.0	1 250		

[0050]

【表13】 La_{0.8-1.0} Nd _{0.2} Ni_{0.5-1.2} M²_{0.01-0.5}O_{2.8-3.2}

1-8.08-1.	0 140 0.2 1410,5~1.2	0.01-0.5 - 2.0 -5.2			
			ゼーベック係数	電気抵抗率	出力因子
No.	M^2	La: Ni: M ² : O	973K(700°C)	973K(700°C)	973K(700°C)
			$(\mu V K^{-1})$	(mΩ cm)	(10 ⁻⁵ W/K ² m)
241	Cu	1.0:1.2:0.01:3.2	-29	1.9	4.4
242	Cu	0.9:0.8:0.2:3.0	-31	2.2	4.4
243	Cu	0.8:0.5:0.5:2.8	-33	3.1	3.5
244	Cu	0.9:0.9:0.1:2.9	-29	2.3	3.7
245	Ti	0.9:0.8:0.1:3.1	-28	2.2	3.6
246	Ti	0.9:0.6:0.5:3.0	-35	3.8	3.2
247	V	0.9:0.8:0.1:3.1	-27	2.1	3.5
248	v	0.9:0.6:0.5:3.0	-28	4.0	2.0
249	Cr	0.9:0.8:0.1:3.1	-28	2.3	3.4
250	Сг	0.9:0.6:0.5:3.0	-37	4.5	3.0
251	Mn	1.0:1.2:0.01:3.2	-29	2.8	3.0
252	Mn	0.9:0.8:0.2:3.0	-32	3.0	3.4
253	Mn	0.8:0.5:0.5:2.8	-34	4.1	2.8
254	Mn	0.9:0.9:0.1:2.9	-30	3.0	3
255	Fe	0.9:0.9:0.1:3.1	-29	2.7	3.1
256	Fe	0.8:0.8:0.2:2.9	-30	3.1	2.9
257	Fe	1.0:0.5:0.5:3.0		4.5	3.0
	Co	0.9:0.9:0.1:3.1		2.7	2.7
258	Co	0.8:0.8:0.2:2.9		3.9	2.0
259 260	Co	1.0:0.5:0.5:3.0		4.6	2.1

[0051]

【表14】 La_{0.5-0.7} Na _{0.5}Ni_{0.5-1.2} M²_{0.01-0.5}O_{2.8-3.2}

La _{0.5} .	_{-0.7} Na _{0.5} N1 _{0.5} -1.2 I	VI 0.01~0.50 2.8~3.2			
			ゼーベック係数	電気抵抗率	出力因子
No.	M^2	La: Ni: M ² : O	973K(700°C)	973K(700°C)	
1	172		$(\mu V K^{-1})$	(mΩ cm)	$(10^{-5} \text{ W/K}^2\text{m})$
261	Cu	0.7:1.2:0.01:3.2	-30	3.0	3.0
262	Cu	0.6:0.8:0.2:3.0	-37	4.2	3.3
263	Cu	0.5 : 0.5 : 0.5 : 2.8	-37	5.0	2.7
264	Cu	0.6:0.9:0.1:2.9	-27	3.9	1.9
265	Ti	0.6:0.8:0.1:3.1	-26	3.6	1.9
266	Ti	0.6:0.6:0.5:3.0	-37	5.4	2.5
267	v	0.6:0.8:0.1:3.1	-29	3.7	2.3
268	v	0.6:0.6:0.5:3.0	-38	5.5	2.6
269	Cr	0.6:0.8:0.1:3.1	-29	3.4	2.5
	Cr	0.6:0.6:0.5:3.0	-36	5.0	2.6
270	Mn	0.7:1.2:0.01:3.2	-25	3.8	1.6
271	Mn	0.6:0.8:0.2:3.0	-28	2.9	2.7
272	Mn	0.5 : 0.5 : 0.5 : 2.8	-34	5.4	2.1
273	Mn	0.6:0.9:0.1:2.9		3.2	2.8
274	Fe	0.6:0.9:0.1:2.5	-27	3.0	2.4
275		0.5 : 0.8 : 0.2 : 2.9		3.9	2.3
276	Fe T	0.7:0.5:0.5:3.0		5.4	1.9
277	Fe	0.6:0.9:0.1:3.1		3.7	2.3
278	Со	0.5:0.8:0.2:2.9		4.2	2.6
279	Co			5.1	2.7
280	Co	0.7:0.5:0.5:3.0			

[005.2]

【表 1 5 】 La_{0.5-0.7}K _{0.5}Ni_{0.5-1.2} M²_{0.01-0.5}O_{2.8-3.2}

La0.5-0.	.712 0.51 110.5~1.2 114	0.01-0.0 - 2.0-2.2			
1		T	ゼーベック係数	電気抵抗率	出力因子
No.	M^2	La: Ni: M ² : O	973K(700°C)	973K(700°C)	973K(700°C)
140.	M	12. 141. 141 . 0	$(\mu V K^{-1})$	(mΩcm)	(10 ⁻⁵ W/K ² m
201	Cu	0.7:1.2:0.01:3.2	-29	3.4	2.5
281		0.6:0.8:0.2:3.0	-30	3.9	2.3
282	Cu	0.5:0.5:0.5:2.8	-34	5.0	2.3
283	Cu	0.6:0.9:0.1:2.9	-27	3.4	2.1
284	Cu	0.6:0.8:0.1:3.1	-28	4.2	1.9
285	<u>Ti</u>	0.6:0.6:0.5:3.0	-34	5.6	2.1
286	<u>Ti</u>	0.6:0.8:0.1:3.1	-30	3.9	2.3
287		0.6:0.6:0.5:3.0	-36	5.5	2.4
288	<u>v</u>	0.6:0.8:0.1:3.1	-27	4.2	1.7
289	Cr		-39	5.9	2.6
290	Cr	0.6:0.6:0.5:3.0		4.0	1.7
291	Mn	0.7:1.2:0.01:3.2		5.0	1.6
292	Mn	0.6:0.8:0.2:3.0	-28	5.5	1.7
293	Mn	0.5:0.5:0.5:2.8	-31		2.1
294	<u> </u>	0.6:0.9:0.1:2.9	-30	4.3	1.7
295	Fe	0.6:0.9:0.1:3.1	-27	4.4	
296	Fe	0.5:0.8:0.2:2.9	-34	5.0	2.3
297	Fe	0.7:0.5:0.5:3.0	-38	5.6	2.6
298	Co	0.6:0.9:0.1:3.1	-29	4.3	2.0
299	Со	0.5:0.8:0.2:2.9	-30	4.7	1.9
300	Со	0.7:0.5:0.5:3.0	-40	5.4	3.0

[0053]

【表 1 6】 La_{0.5-0.7} Sr _{0.5}Ni_{0.5-1.2} M²_{0.01-0.5}O_{2.8-3.2}

	-0.7 S1 0.51410.5-1.2 14		ゼーベック係数	電気抵抗率	出力因子
No.	M^2	La: Ni: M ² : O	973K(700°C)	973K(700°C)	973K(700°C)
110.	M	La. 141. W O	$(\mu V K^{-1})$	(mΩ cm)	$(10^{-5} \text{ W/K}^2\text{m})$
201	Cu	0.7:1.2:0.01:3.2	-27	4.1	1.8
301		0.6:0.8:0.2:3.0	-30	4.2	2.1
302	Cu	0.5 : 0.5 : 0.5 : 2.8	-27	5.1	1.4
303	Cu	0.6:0.9:0.1:2.9	-29	4.0	2.1
303	Cu	0.6:0.8:0.1:3.1	-30	3.9	2.3
305	<u>Ti</u>	0.6:0.6:0.5:3.0	-34	5.7	2.0
306	Ti	0.6:0.8:0.1:3.1	-29	4.2	2.0
307	V		-32	5.5	1.9
308	V	0.6:0.6:0.5:3.0	-31	5.0	1.9
309	Cr	0.6:0.8:0.1:3.1		5.9	2.4
310	Cr	0.6:0.6:0.5:3.0	-38	3.8	1.9
311	Mn	0.7:1.2:0.01:3.2	1		1.6
312	Mn	0.6:0.8:0.2:3.0	-26	4.2	1.4
313	Mn	0.5:0.5:0.5:2.8	-28	5.6	
314	Mn	0.6:0.9:0.1:2.9	-27	4.7	1.6
315	Fe	0.6:0.9:0.1:3.1	-29	3.9	2.2
316	Fe	0.5:0.8:0.2:2.9	-30	4.4	2.0
317	Fe	0.7:0.5:0.5:3.0		5.9	2.6
318	Co	0.6:0.9:0.1:3.1		4.7	1.9
319	Co	0.5:0.8:0.2:2.9		5.0	1.7
320	Co	0.7:0.5:0.5:3.0		5.8	2.8

[0054]

【表17】 La_{0.5-0.7} Ca _{0.5}Ni_{0.5-1.2} M²_{0.01-0.5}O_{2.8-3.2}

	.0,7 Ca 0,51110.5~1.2 4	U.S. C.	ゼーベック係数	電気抵抗率	出力因子
No.	M^2	La: Ni: M ² : O	973K(700°C)	973K(700°C)	973K(700°C)
110.	IVI	La. 141. 142 . G	$(\mu V K^{-1})$	(mΩ cm)	(10 ⁻⁵ W/K ² m)
201	Cu	0.7:1.2:0.01:3.2	-27	4.1	1.8
321	Cu	0.6:0.8:0.2:3.0	-28	4.5	1.7
322	Cu	0.5 : 0.5 : 0.5 : 2.8	-30	5.5	1.6
323	Cu	0.6:0.9:0.1:2.9	-30	3.9	2.3
324	Ti	0.6:0.8:0.1:3.1	-27	4.3	1.7
325	Ti	0.6:0.6:0.5:3.0	-29	5.1	1.6
326	V	0.6:0.8:0.1:3.1	-26	4.2	1.6
327	v	0.6:0.6:0.5:3.0	-32	6.0	1.7
328	Cr	0.6:0.8:0.1:3.1	-27	3.9	1.9
329	Cr	0.6:0.6:0.5:3.0	-34	5.9	2.0
330	Mn	0.7:1.2:0.01:3.2	-27	3.7	2.0
331	Mn	0.6:0.8:0.2:3.0	-29	4.4	1.9
332	Mn	0.5:0.5:0.5:2.8	-35	5.7	2.1
333	Mn	0.6:0.9:0.1:2.9		3.9	2.0
334	Fe	0.6:0.9:0.1:3.1		4.3	2.1
335	Fe	0.5 : 0.8 : 0.2 : 2.9		5.2	1.6
336		0.7:0.5:0.5:3.0		5.9	1.8
337	Fe	0.6:0.9:0.1:3.1		3.8	1.9
338	Co	0.5:0.8:0.2:2.9		4.2	2.1
339	Co	0.7:0.5:0.5:3.0		5.5	2.8
340	Co	0.7 . 0.3 . 0.3 . 3.0			

[0055]

【表18】 La_{0.5-0.7} Bi _{0.5}Ni_{0.5-1.2} M²_{0.01-0.5}O_{2.8-3.2}

			ゼーベック係数	電気抵抗率	出力因子
No.	M^2	La: Ni: M ² : O	973K(700°C)	973K(700°C)	973K(700°C)
			(μVK^{-1})	(mΩ cm)	(10 ⁻⁵ W/K ² m)
341	Cu	0.7:1.2:0.01:3.2	-29	3.9	2.2
342	Cu	0.6:0.8:0.2:3.0	-30	4.7	1.9
343	Cu	0.5:0.5:0.5:2.8	-30	5.8	1.6
344	Cu	0.6:0.9:0.1:2.9	-33	4.2	2.6
345	Ti	0.6:0.8:0.1:3.1	-26	4.4	1.5
346	Ti	0.6:0.6:0.5:3.0	-30	5.6	1.6
347	V	0.6:0.8:0.1:3.1	-30	5.5	1.6
348	V	0.6:0.6:0.5:3.0	-37	6.8	2.0
349	Cr	0.6:0.8:0.1:3.1	-35	4.5	2.7
350	Cr	0.6:0.6:0.5:3.0	-40	6.0	2.7
351	Mn	0.7:1.2:0.01:3.2	-27	4.0	1.8
352	Mn	0.6:0.8:0.2:3.0	-28	4.9	1.6
353	Mn	0.5:0.5:0.5:2.8	-30	5.8	1.6
354	Mn	0.6:0.9:0.1:2.9	-24	4.7	1.2
355	Fe	0.6:0.9:0.1:3.1	-27	4.4	1.7
356	Fe	0.5:0.8:0.2:2.9	-29	4.9	1.7
357	Fe	0.7:0.5:0.5:3.0	-35	6.3	1.9
358	Co	0.6:0.9:0.1:3.1	-27	4.5	1.6
359	Co	0.5:0.8:0.2:2.9	-26	5.5	1.2
360	Со	0.7:0.5:0.5:3.0	-39	6.3	2.4

[0056]

【表19】

La_{0.5-0.7}Nd _{0.5}Ni_{0.5-1.2} M²_{0.01-0.5}O_{2.8-3.2}

			ゼーベック係数	電気抵抗率	出力因子
No.	M^2	La: Ni: M ² : O	973K(700°C)	973K(700°C)	973K(700°C)
			(μVK ⁻¹)	(mΩ cm)	(10 ⁻⁵ W/K ² m)
361	Cu	0.7:1.2:0.01:3.2	-29	3.8	2.2
362	Cu	0.6:0.8:0.2:3.0	-32	4.2	2.4
363	Cu	0.5:0.5:0.5:2.8	-34	5.5	2.1
364	Cu	0.6:0.9:0.1:2.9	-27	3.9	1.9
365	Ti	0.6:0.8:0.1:3.1	-30	4.0	2.3
366	Ti	0.6:0.6:0.5:3.0	-27	4.3	1.7
367	V	0.6:0.8:0.1:3.1	-32	4.0	2.6
368	V	0.6:0.6:0.5:3.0	-29	5.5	1.5
369	Cr	0.6:0.8:0.1:3.1	-34	4.5	2.6
370	Cr	0.6:0.6:0.5:3.0	-40	6.5	2.5
371	Mn	0.7:1.2:0.01:3.2	-37	4.2	3.3
372	Mn	0.6:0.8:0.2:3.0	-42	4.5	3.9
373	Mn	0.5:0.5:0.5:2.8	-45	5,9	3.4
374	Mn	0.6:0.9:0.1:2.9	-29	4.0	2.1
375	Fe	0.6:0.9:0.1:3.1	-28	4.2	1.9
376	Fe	0.5:0.8:0.2:2.9	-32	3.9	2.6
377	Fe	0.7:0.5:0.5:3.0	-45	5.6	3.6
378	Со	0.6:0.9:0.1:3.1	-27	3.6	2.0
379	Со	0.5:0.8:0.2:2.9	-38	5.0	2.9
380	Со	0.7:0.5:0.5:3.0	-29	5.9	1.4

【図面の簡単な説明】

[0057]

- 【図1】実施例1で得られた複合酸化物のX線回折パターンを示す図面。
- 【図2】本発明の複合酸化物の結晶構造を模式的に示す図面。
- 【図3】本発明の複合酸化物を熱電変換材料として用いた熱電発電モジュールの模式図。
- 【図4】実施例1で得られた複合酸化物及び比較例の複合酸化物のゼーベック係数の 温度依存性を示すグラフ。
- 【図 5 】実施例 1 で得られた複合酸化物及び比較例の複合酸化物の電気抵抗率の温度 依存性を示すグラフ。
- 【図 6 】実施例 1 で得られた複合酸化物及び比較例の複合酸化物の出力因子の温度依存性を示すグラフ。

【曹類名】図面 【図1】

【図2】

∠ La, M¹

 Ni, M^2

【図5】

【魯類名】要約魯

【要約】

【課題】 n型熱電変換材料として優れた性能を有する新規な材料を提供する。

【解決手段】 組成式 : LavM¹wNixM²yOz

【選択図】図6

特願2003-377708

出願人履歴情報

識別番号

[301021533]

 変更年月日 [変更理由] 2001年 4月 2日

新規登録

住 所 東京都千代田区霞が関1-3-1 氏 名 独立行政法人産業技術総合研究所