

NASIONALE SENIOR SERTIFIKAAT-EKSAMEN NOVEMBER 2023

WISKUNDE: VRAESTEL II

NASIENRIGLYNE

Tyd: 3 uur 150 punte

Hierdie nasienriglyne is opgestel vir gebruik deur eksaminators en hulpeksaminators van wie verwag word om almal 'n standaardiseringsvergadering by te woon om te verseker dat die riglyne konsekwent vertolk en toegepas word by die nasien van kandidate se skrifte.

Die IEB sal geen bespreking of korrespondensie oor enige nasienriglyne voer nie. Ons erken dat daar verskillende standpunte oor sommige aangeleenthede van beklemtoning of detail in die riglyne kan wees. Ons erken ook dat daar sonder die voordeel van die bywoning van 'n standaardiseringsvergadering verskillende vertolkings van die toepassing van die nasienriglyne kan wees.

IEB Copyright © 2023 BLAAI ASSEBLIEF OM

LET WEL:

- Indien 'n kandidaat 'n vraag meer as een keer beantwoord, sien slegs die EERSTE poging na.
- Deurlopende akkuraatheid geld vir alle aspekte van die nasienmemorandum.

AFDELING A

VRAAG 1

(a)(1)	95-a=80 a=15	a=15
(a)(2)	b-40=30 b=70	b=70
(b)	$Q_1 - 1.5 \times IKV$ = $40 - 1.5 \times 30$ = -5	-5 nie 'n uitskieter nie
	Aangesien die minimumwaarde groter is as –5, is dit nie 'n uitskieter nie.	
(c)(1)	y = a + bx y = 19,259 + 0,552x y = 19,259 + 0,552(180) y = 118,603 Die leerder sal 100% behaal.	19,259 0,552 Leerder sal 100% behaal.
(c)(2)	Nee 180 min. is buite die datastel, dus ekstrapolasie. Impliseer dat enigiemand wat vir meer as 180 min. studeer, 100% sal behaal.	Nee Verduideliking

IEB Copyright © 2023 BLAAI ASSEBLIEF OM

(a)(1)	$m_{BC} = \frac{7-4}{6-0}$ $\therefore m_{BC} = \frac{1}{2}$	$m_{BC} = \frac{7-4}{6-0}$ $m_{BC} = \frac{1}{2}$
(a)(2)	$m_{CD} = -2$ Vergelyking van CD: y = -2x + c vervang (6;7) c = 19 $\therefore y = -2x + 19$ Alternatief: $m_{CD} = -2$ y - 7 = -2(x - 6) y = -2x + 19 Vergelyking AD:	$m_{CD} = -2$ vervang (6; 7) y = -2x + 19
	Vergelyking AD: $y = \frac{1}{2}x + c \dots \text{ vervang } (4;1)$ $c = -1$ $\therefore y = \frac{1}{2}x - 1$ Snypunt van CD en AD: $-2x + 19 = \frac{1}{2}x - 1$ $-5x = -40$ $x = 8$ $\therefore y = -2(8) + 19$ $y = 3$ $\therefore D(8;3)$	$y = \frac{1}{2}x + c$ $c = -1$ $-2x + 19 = \frac{1}{2}x - 1$ $x = 8$ $D(8;3)$

		-
(c)(1)	Alternatief: Vergelyking AD: vervang (4;1) $y - 1 = \frac{1}{2}(x - 4)$ $y = \frac{x}{2} - 1$ Snypunt van CD en AD: $-2x + 19 = \frac{x}{2} - 1$ $-5x = -40$ $x = 8$ $\therefore y = -2(8) + 19$ $y = 3$ $\therefore D(8;3)$	E(5;4)
	$E\!\left(\frac{6+4}{2};\frac{7+1}{2}\right)$	Middelpunt AE $\left(\frac{9}{2}, \frac{5}{2}\right)$
	∴ E(5;4)	F(1;2)
	Middelpunt AE $\left(\frac{9}{2}, \frac{5}{2}\right)$	· ("-)
	$F\left(\frac{x+8}{2};\frac{y+3}{2}\right)$ $\therefore F(1;2)$	
(c)(2)	Uit V2b: $m_{AD} = \frac{1}{2}$ $\tan \theta_1 = \frac{1}{2}$ $\theta_1 = 26,6^{\circ}$ Gradiënt AC: $m_{AC} = \frac{7-1}{6-4}$ $\therefore m_{AC} = 3$ $\tan \theta_2 = 3$ $\therefore \theta_2 = 71,6^{\circ}$ EÂD = $71,6^{\circ} - 26,6^{\circ}$	$\theta_1 = 26.6^{\circ}$ $m_{AC} = 3$ $\theta_2 = 71.6^{\circ}$ $E \hat{A} D = 45^{\circ}$
	$\therefore E \stackrel{\wedge}{A} D = 45^{\circ}$	

(d)(2) Oppervlakte EAD = $\frac{1}{2}$ EA × AD × sin EÂD Afstand EA = $\sqrt{10}$

Afstand AD = $2\sqrt{5}$

Oppervlakte EAD $=\frac{1}{2} \times \sqrt{10} \times 2\sqrt{5} \times \sin 45^{\circ}$

∴ Oppervlakte EAD = 5 eenhede²

∴ Opp EFA = 5 eenhede² ... hoeklyne $//^m$ halveer opp

∴ Opp ADEF = 10 eenhede^2

Afstand EA = $\sqrt{10}$ Afstand AD = $2\sqrt{5}$

Oppervlakte EAD

$$= \frac{1}{2} \times \sqrt{10} \times 2\sqrt{5} \times \sin 45^{\circ}$$

Opp EAD = 5 eenhede²

Opp ADEF = 10 eenhede²

(a)	$\bar{x} = \frac{(10 \times 1) + (30 \times 7) + (50 \times 10) + (70 \times 5) + (90 \times 4)}{27}$	middelpunt × frekwensie deel deur 27
	$\bar{x} = 53$	$\bar{x} = 53$
(b)	$\frac{5}{27}$ ×100	=18,5%
	= 18,5%	
(c)		
	30 T f KUMULATIEWEFREKWENSIE-KROMME 28	(0;0)
	26	
	24	Stip eindpunte
	22 20	Kumulatiewe frekwensie
	18	
	16	
	14	
	10	
	8	
	6 4	
	2	
	20 Q140 Md 60 Q3 80 100	
	Alternatief:	
	30 T f KUMULATIEWEFREKWENSIE-KROMME	
	28	
	26	
	22	
	20	
	16	
	14	
	12	
	8	
	6 4	
	2	
	20 Q140 Md 60 Q3 80 100	

IEB Copyright © 2023

(d)(1)(i)		sien grafiek
(d)(1)(ii)		sien grafiek
(d)(2)	Gemiddelde > Mediaan Positief skeef OF Gemiddelde = Mediaan Simmetries	gemiddelde > mediaan positief skeef

(a)	$\hat{C}_1 = 25^{\circ} \dots$ hoeke teenoor = sye/radii	$\hat{C}_1 = 25^{\circ}$ = 130°
	$\hat{COA} = 180^{\circ} - 50^{\circ}$ binnehoeke van driehoek = 130°	
(b)	$\hat{C}_2 = 25^{\circ}$ verw. hoeke OA // CB	$\hat{C}_2 = 25^{\circ}$
	$\hat{C}_1 + \hat{C}_2 = \hat{B}$ hoeke teenoor = sye/radii	$ \hat{C}_2 = 25^{\circ} $ $ \hat{C}_1 + \hat{C}_2 = \hat{B} $
	$\therefore \hat{B} = 50^{\circ}$	Ô₁ = 80°
	$\hat{O}_1 = 180^{\circ} - 100^{\circ}$ binnehoeke van driehoek	01 = 00
	$\hat{O}_1 = 80^{\circ}$	

IEB Copyright © 2023 BLAAI ASSEBLIEF OM

(a)	Konstruksie:	konstruksie
	Verbind DC en BE. $ \frac{Opp \ \Delta ADE}{Opp \ \Delta BDE} = \frac{\frac{1}{2} \times AD \times EF}{\frac{1}{2} \times DB \times EF} $ $ \frac{Opp \ \Delta ADE}{Opp \ \Delta BDE} = \frac{AD}{BD} (1) $ $ \frac{Opp \ \Delta ADE}{Opp \ \Delta DEC} = \frac{\frac{1}{2} \times AE \times DG}{\frac{1}{2} \times EC \times DG} $ $ \frac{Opp \ \Delta ADE}{Opp \ \Delta DEC} = \frac{AE}{CE} (2) $ Maar: Opp \(\Delta BDE = Opp \Delta DEC \cdots \text{ dieselfde}	$\frac{Opp\ \DeltaADE}{Opp\ \DeltaBDE} = \frac{\frac{1}{2} \times AD \times EF}{\frac{1}{2} \times DB \times EF}$ $\frac{Opp\ \DeltaADE}{Opp\ \DeltaDEC} = \frac{\frac{1}{2} \times AE \times DG}{\frac{1}{2} \times EC \times DG}$ $Opp\ \DeltaBDE = Opp\ \DeltaDEC$ $Opp\ \DeltaBDE = Opp\ \DeltaDEC$ $rede$ $\therefore \frac{AD}{BD} = \frac{AE}{CE}$
(b)	basis, tussen // lyne $ \frac{AD}{BD} = \frac{AE}{CE} $ In Δ HIJ: $(HI)^2 = (29)^2 - (21)^2 \text{ Pythagoras}$ $HI = 20 \text{ eenhede}$ $ \frac{IL}{IJ} = \frac{IK}{IH} \text{ lyn // een sy van } \Delta$ $ \frac{12}{21} = \frac{IK}{20} $ $ \therefore IK = 11\frac{3}{7} $ of IK = 11,4 eenhede	$(HI)^{2} = (29)^{2} - (21)^{2}$ $HI = 20$ eenhede $\frac{IL}{IJ} = \frac{IK}{IH}$ rede $IK = 11\frac{3}{7}$

AFDELING B

VRAAG 7

In ∆ABC:

$$\hat{B} = 90^{\circ}$$
 ... raaklyn loodreg op radius AO = 7 ... radius

$$\therefore \cos 38^{\circ} = \frac{14}{AC}$$

$$AC = \frac{14}{\cos 38^{\circ}}$$

 $AC = 17,766...$

Konstrueer: DB

$$\hat{ADB} = 90^{\circ}$$
 ... hoek in halfsirkel

$$\cos 38^\circ = \frac{AD}{14}$$

$$\therefore AD = 11,032...$$

$$\therefore$$
 CD = 17,766... - 11,032...

∴ CD
$$\approx$$
 6,7 eenhede

Alternatief:

$$\hat{B} = 90^{\circ}$$
 ... raaklyn loodreg op radius AO = 7 ...radius

In ∆ABC:

$$\tan 38^\circ = \frac{CB}{14}$$

$$\therefore$$
 CB = 10,9 eenhede

Konstrueer: DB

$$\overrightarrow{ADB} = 90^{\circ}$$
 ... hoek in halfsirkel

In ∆DCB:

$$\hat{C} = 52^{\circ}$$

$$\therefore \cos 52^{\circ} = \frac{CD}{CB}$$

$$\therefore$$
 CD = 6,7 eenhede

$$\hat{B} = 90^{\circ}$$
 en rede

$$\cos 38^\circ = \frac{14}{AC}$$

$$ADB = 90^{\circ}$$

rede
 $\cos 38^{\circ} = \frac{AD}{14}$

(a)	a>b>0 en sinθ<0 ∴Kwadrant 4	∴Kwadrant 4
	$x = a^2 - b^2$	$\therefore y^2 = (a^2 + b^2)^2 - (a^2 - b^2)^2$ $\therefore y^2 = 4a^2b^2$
	$r = a^2 + b^2$	$\therefore y^2 = 4a^2b^2$
	$\therefore y^2 = (a^2 + b^2)^2 - (a^2 - b^2)^2 \dots \text{ Pythagoras}$ $y^2 = a^4 + 2a^2b^2 + b^4 - a^4 + 2a^2b^2 - b^4$	$\therefore \tan \theta = -\frac{2ab}{a^2 - b^2}$
	$\therefore y^2 = 4a^2b^2$	a -b
	$y = \pm \sqrt{4a^2b^2}$	
	∴ <i>y</i> = −2 <i>ab</i> kwadrant 4	
	$\therefore \tan \theta = -\frac{2ab}{a^2 - b^2}$	
(b)	$\tan\theta = -\frac{2ab}{a^2 - b^2}$	$\tan \theta = -\frac{2 \times (3) \times (2)}{(3)^2 - (2)^2}$
	$\tan\theta = -\frac{2\times(3)\times(2)}{(3)^2-(2)^2}$	(0) (2)
	(3) -(2)	Verwysingshoek
	Verwysingshoek: -67,4°	$\theta \in \left\{652,6^{\circ}\right\}$
	$\theta = -67,4^{\circ} + 360^{\circ}(k) \dots k \in \mathbb{Z}$	
	$\theta \in \{292,6^{\circ};652,6^{\circ}\}$	
	Alternatief:	
	$\cos\theta = \frac{(3)^2 - (2)^2}{(3)^2 + (2)^2}$	
	$\therefore \cos \theta = \frac{5}{13}$	
	Verwysingshoek: 67,4°	
	$\theta = 292,6^{\circ} + 360^{\circ}(k) \dots k \in \mathbb{Z}$	
	$\theta \in \{292,6^{\circ};652,6^{\circ}\}$	

(a)	$\frac{\frac{1}{2}\cos(90^{\circ}+\theta)-\sin\theta.\sin(\theta-90^{\circ})}{\cos^{2}(180^{\circ}-\theta)-2\cos(-\theta)+\cos^{2}(\theta+90^{\circ})}$ $=\frac{-\frac{1}{2}\sin(\theta)-(\sin\theta).(-\cos(\theta))}{\cos^{2}(\theta)-2\cos(\theta)+\sin^{2}(\theta)}$ $=\frac{-\frac{1}{2}\sin\theta+\sin\theta.\cos\theta}{1-2\cos\theta}$ $=\frac{-\frac{1}{2}\sin\theta(1-2\cos\theta)}{1-2\cos\theta}$ $=\frac{-\frac{1}{2}\sin\theta}{1-2\cos\theta}$	$-\frac{1}{2}\sin(\theta)$ $(-\cos(\theta))$ $\cos^{2}(\theta)$ $-2\cos(\theta)$ $\sin^{2}\theta + \cos^{2}\theta = 1$ $-\frac{1}{2}\sin\theta(1-2\cos\theta)$ $= -\frac{1}{2}\sin\theta$
(b)(1)		sinθ
	$ LK = \sin\theta \times \frac{\sin\theta}{\cos\theta} \div \left \frac{\sin 2\theta}{\cos 2\theta} \times \left(1 - \frac{\sin^2\theta}{\cos^2\theta} \right) \right $	$\frac{\sin \theta}{\cos \theta}$
	$= \frac{\sin^2 \theta}{\cos \theta} \div \left[\frac{\sin 2\theta}{\cos 2\theta} \times \left(\frac{\cos^2 \theta - \sin^2 \theta}{\cos^2 \theta} \right) \right]$	$\left(\cos^2\theta - \sin^2\theta\right)$
	$= \frac{\sin^2 \theta}{\cos \theta} \div \left[\frac{\sin 2\theta}{\cos 2\theta} \times \left(\frac{\cos 2\theta}{\cos^2 \theta} \right) \right]$	cos2θ
		2sinθ.cosθ
	$= \frac{\sin^2 \theta}{\cos \theta} \div \left[\frac{2 \sin \theta \cdot \cos \theta}{\cos^2 \theta} \right]$	
		$=\frac{\sin^2\theta}{\cos\theta}\times\frac{\cos^2\theta}{2\sin\theta.\cos\theta}$
	$= \frac{\sin^2 \theta}{\cos \theta} \times \left[\frac{\cos^2 \theta}{2 \sin \theta \cdot \cos \theta} \right]$	cosθ [2sinθ.cosθ]
	sinθ	= RK
	$=\frac{2}{2}$	
(b)(2)	= RK Berekening: Nie geldig nie vir:	tan2θ = 0
(b)(2)	$\sin 2\theta = 0$	Algemene oplossing
	$\therefore \theta = 90^{\circ}k \dots k \in \mathbb{Z}$	
	$\cos 2\theta = 0$	$1 - tan^2 θ = 0$ Algemene oplossing
	$\therefore \theta = 45^{\circ} + 90^{\circ}k \dots k \in \mathbb{Z}$	
	$\cos\theta = 0 \therefore \theta = \pm 90^{\circ} + 360^{\circ}k \dots k \in \mathbb{Z}$	$\theta = 45^{\circ}k k \in \mathbb{Z}$
	$\tan^2 \theta = 1$	
	$\therefore \theta = \pm 45^{\circ} + 180^{\circ}k \dots k \in \mathbb{Z}$	
	Dus nie geldig nie vir $\theta = 45^{\circ}k$ $k \in \mathbb{Z}$	

Alternatief:	
$tan 2\theta = 0$	
$\therefore 2\theta = 180^{\circ}k$	
∴ $\theta = 90^{\circ}k$ en tan 2θ is ongedefinieerd vir:	
$\theta = 45^{\circ} + 90^{\circ} k$	
Dus: $\theta = 45^{\circ}k$ $k \in \mathbb{Z}$	

(a)	$\hat{A_1} = 90^{\circ}$ raaklyn loodreg op radius	Â ₁ = 90°
	$\hat{D}_3 = 90^{\circ}$ raaklyn loodreg op radius	raaklyn loodreg op radius $\hat{D}_3 = 90^{\circ}$
	∴ AODE is koordevierh teenoorst. hoeke suppl.	teenoorst. hoeke suppl.
(b)	$\hat{O}_2 = 2(68^\circ)$ hoek by middelpunt $\hat{O}_2 = 136^\circ$ $\hat{E} = 44^\circ$ teenoorst. hoeke koordevierhoek	$\hat{O}_2 = 136^\circ$ rede $\therefore \hat{E} = 44^\circ$ rede

(a)	$x^2 - 12x + y^2 - 4y = -p$	$ \left(x-6 \right)^2 $ $ \left(y-2 \right)^2 $
	$(x-6)^2 + (y-2)^2 = -p+36+4$	
	$(x-6)^2 + (y-2)^2 = -p + 40$	$(y-2)^2$
	C(6;2) ∴ radius = 2	Padius – 2
	$-p+40=2^2$	Radius = 2 $-p+40=2^2$
	∴ <i>p</i> = 36	p = 36 $p = 36$
		<i>p</i>
(b)	Trek CB	$m_{CB} = -\frac{1}{3}$
	0-2	_{CB} 3
	$m_{CB} = \frac{0-2}{12-6}$	^
	$m_{CB} = -\frac{1}{3}$	∴ CBD = 18,4349
	$m_{CB} = -\frac{\pi}{3}$	ΔECB≡ΔDCB RHS
	Trok CD: radius loadrog on raaklyn OR by D	
	Trek CD: radius loodreg op raaklyn OB by D	DBA = 36,8698
	$\tan C \hat{B} D = \frac{1}{3}$,
	∴ CBD=18,4349	$m_{AB} = -\frac{3}{4}$
		4
	ΔECB≡ΔDCB RHS	c = 9
	$\therefore DBA = 2 \times 18,4349$	
	DBA = 36,8698	$\therefore y = -\frac{3}{4}x + 9$
		4
	$m_{AB} = \tan(180^{\circ} - 36,8689)$	
	$m_{AB} \approx -0.75 = -\frac{3}{4}$	
	4	
	$y = -\frac{3}{4}x + c$ vervang (12; 0)	
	<i>c</i> = 9	
	3	
	$\therefore y = -\frac{3}{4}x + 9$	
	<u> </u>	

(c)	Tweede sirkel:
	$x^2 + (y-9)^2 = r^2$ vervang (2;3)
	Tweede sirkel: $x^2 + (y-9)^2 = r^2$ vervang (2;3) $r^2 = 40$
	Alternatief: $r = \sqrt{(2-0)^2 + (3-9)^2} = \sqrt{40}$

Afstand tussen middelpunte

$$= \sqrt{(6-0)^2 + (2-9)^2}$$

$$= \sqrt{85}$$

$$\approx 9.2$$

Som van radii = $\sqrt{40} + 2$ ≈ 8.3

Hulle sny nie, aangesien die afstand tussen middelpunte groter is as die som van die radii.

$$x^2 + (y-9)^2 = r^2$$

$$r^2 = 40$$

$$\approx 9,2$$

$$\approx 8.3$$

Hulle sny nie.

Die afstand tussen middelpunte is groter as die som van die radii

(c)		
(a)	In $\triangle ABC$ en $\triangle OFC$: $\hat{C}_1 = \hat{C}_2 \dots gegee$	
		hoek in halfsirkel
	$\hat{B} = 90^{\circ}$ hoek in halfsirkel	∴ ΔABC /// ΔOFC
	$\therefore \hat{\mathbf{B}} = \hat{\mathbf{F}}_1$	gelykhoekig
	$\hat{A}_2 = \hat{O}_2$ derde hoek	
	∴ ∆ABC /// ∆OFC gelykhoekig	
(b)	$\frac{BC}{FC} = \frac{AC}{OC}$ /// driehoeke; sye eweredig	$\frac{BC}{FC} = \frac{AC}{OC}$ $\therefore BC : FC = 2:1$
	Laat: OC = <i>x</i> ∴ AC = 2 <i>x</i> …radii	
	∴BC:FC = 2:1	
(c)	$LK = \left(\frac{AC}{2}\right)^2 - \left(\frac{AB}{2}\right)^2$	$\frac{\left(BC\right)^2}{4}$
	$LK = \frac{\left(AC\right)^2 - \left(AB\right)^2}{4}$	$\frac{\left(BC\right)^2}{4} = \left(CF\right)^2$
		$\hat{E} = \hat{A}$ en $\hat{C}_1 = \hat{D}$
	$=\frac{(BC)^2}{4}$ Pythagoras	rede
		∴∆CFA/// ∆DFE
	$\frac{\left(BC\right)^2}{4} = \left(CF\right)^2 \text{uit 12(b)}$	$\therefore \frac{CF}{DF} = \frac{FA}{FE}$
	4 ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '	CF = FE
	Te bewys: $(FC)^2 = DF \times FA$	$\therefore (CF)^2 = DF \times FA$
	In ΔCFA en ΔDFE	
	$\hat{E} = \hat{A}$ hoek in dieselfde segment	
	$\hat{C}_1 = \hat{D}$ hoek in dieselfde segment	
	∴ ΔCFA /// ΔDFE gelykhoekig	
	$\therefore \frac{CF}{DF} = \frac{FA}{FE}$	
	CF = FE lyn van middelpunt loodreg op	
	koord	
	$\therefore \frac{CF}{DF} = \frac{FA}{CF}$	
	$\therefore (FC)^2 = DF \times FA$	

Alternatief:

In
$$\triangle OFC$$
: $(OC)^2 = (CF)^2 + (OF)^2$... Pythag

$$(CF)^2 = (OC)^2 - (OF)^2$$

Aangesien AC = 2.OC

$$\left(CF\right)^{2} = \left(\frac{AC}{2}\right)^{2} - \left(\frac{AB}{2}\right)^{2}$$

Te bewys: $(CF)^2 = DF \times FA$

In ∆CFA en ∆DFE

 $\hat{E}=\hat{A}$... hoek in dieselfde segment

 $\hat{C}_1 = \hat{D}$... hoek in dieselfde segment

∴ ΔCFA /// ΔDFE ... gelykhoekig

$$\therefore \frac{CF}{DF} = \frac{FA}{FE}$$

CF = FE ... lyn van middelpunt loodreg op koord

$$\therefore \frac{CF}{DF} = \frac{FA}{CF}$$

$$\therefore (CF)^2 = DF \times FA$$

 $\hat{NTC} = 46^{\circ}$... binne \angle van Δ

Vir CT: $\frac{10}{\sin 46^{\circ}} = \frac{CT}{\sin 69^{\circ}}$

CT = 12,978295...

In ∆ATC:

 $tan\,43,5^\circ = \frac{Hoogte\;van\;boom}{12,978...}$

 \therefore Hoogte = 12,3 m

$$\frac{x}{12,978295} = \sin 65^{\circ}$$

- x = 11,7623...
- .. Die boom die huis tref.

 $\hat{NTC} = 46^{\circ} \dots \text{ binne} \angle \text{ van } \Delta$

 $\frac{10}{\sin 46^{\circ}} = \frac{CT}{\sin 69^{\circ}}$

CT = 12,978295...

tan 43,5° = $\frac{\text{Hoogte van boom}}{12,978...}$ \therefore Hoogte = 12,3 m

 $\frac{x}{12,978295} = \sin 65^{\circ}$

x = 11,7623...gevolgtrekking

Totaal: 150 punte