Neural network optimization

Victor Kitov

v.v.kitov@yandex.ru

Basic gradient methods

- Batch gradient descent: gradient descent using all objects
 - slow for big data
 - not applicable for dynamic data
 - gets stuck in local optima and inflection points (as all gradient based methods)

$$w_{t+1} := w_t - \eta \nabla L(w_t; X, Y)$$

 Stochastic gradient descent: stochastic descent with sampling one object

$$w_{t+1} := w_t - \eta_t \nabla L(w_t; x_i, y_i)$$

- requires $\eta_t \to 0$
- unstable gradient estimate

SGD convergence example

Basic gradient methods

 Minibatch stochastic gradient descent: stochastic descent with sampling a set of objects

$$w_{t+1} := w_t - \eta_t L(w_t; x_{i+1:i+K}, y_{i+1:i+K})$$

- more accurate gradient estimates
 - faster: computations parallelization over objects in the minibatch
- Difficulties:
 - requires $\eta_t \to 0$
 - the same step for different weights
 - better to take less weight, where the function changes sharply.

Momentum and Nesterov momentum

• Momentum ($\gamma > 0, \ \eta > 0$ - hyperparameters)

$$v_t := \gamma v_{t-1} + \eta \nabla_w L(w_t)$$

$$w_{t+1} := w_t - v_t$$

- an analogy with a ball rolling down a mountain
- does not stop in small local optima
- Nesterov Accelerated Gradient (Nesterov Momentum)

$$v_t := \gamma v_{t-1} + \eta \nabla_w L(w_t - \gamma v_{t-1})$$

$$w_{t+1} := w_t - v_t$$

Modifications of SGD

- Denote $g_t = \nabla L(\theta_t)$; $\theta, g_t \in \mathbb{R}^K$. Vector operations are elementwise
- AdaGrad ($\varepsilon = 10^{-6}$)

$$G_t := G_t + g_t^2$$

$$w_{t+1} := w_t - \frac{\eta}{\sqrt{G_t + \varepsilon}} g_t$$

RMSprop

$$E\left[g^{2}\right]_{t} := \gamma E\left[g^{2}\right]_{t-1} + (1 - \gamma)g_{t}^{2}$$

$$w_{t+1} := w_{t} - \frac{\eta}{\sqrt{E\left[g^{2}\right]_{t} + \varepsilon}}g_{t}$$

Modifications of SGD

 Adam=RMSprop+momentum $(\beta_1 = 0.9, \ \beta_2 = 0.999, \ \varepsilon = 10^{-8})$: $m_t := \beta_1 m_{t-1} + (1 - \beta_1) g_1$ $v_t := \beta_2 v_{t-1} + (1 - \beta_2) g_1^2$ $\widehat{m}_t = \frac{m_t}{1 - \beta_1^t}$ $\widehat{v}_t = rac{v_t}{1 - eta_2^t} \ w_{t+1} := w_t - rac{\eta}{\sqrt{\widehat{v_t}} + arepsilon} \widehat{m}_t$

Nadam: Adam+Nesterov Accelerated Gradient.

Modifications of SGD

- AMSGrad: remembers gradients without exponential forgetting.
 - renormalization m_t , v_t is not applied and needed.

$$\begin{split} & m_t := \beta_1 m_{t-1} + \left(1 - \beta_1\right) g_1 \\ & v_t := \beta_2 v_{t-1} + \left(1 - \beta_2\right) g_1^2 \\ & \widehat{v}_t = \max\left(\widehat{v}_{t-1}, v_t\right) \\ & w_{t+1} := w_t - \frac{\eta}{\sqrt{\widehat{v}_t} + \varepsilon} \widehat{m}_t \end{split}$$

Additional improvements¹

- Early stopping combats overfitting.
- Adding noise to the gradient allows finding the optimum with a larger neighborhood:

$$g_t := g_t + \mathcal{N}(0, \sigma_t^2)$$

$$\sigma_t^2 = \frac{\eta}{(1+t)^{\gamma}}$$

- Curriculum learning
 - first learn on simple objects, then on complex ones
- Improving speed of convergence: batch normalization.

¹More info: https://ruder.io/deep-learning-optimization-2017/

BatchNorm: motivation

- SGD $w := w \varepsilon \nabla_w \mathcal{L}(x, y)$ updates all weights on all layers simultaneously.
- Distribution of outputs changes and later layers have to relearn from scratch.
- Also input can shift to saturation region of non-linearity.

BatchNorm: intro

Idea: standardize outputs at intermediate layers

$$\tilde{x}_k = \frac{x_k - \mu_k}{\sigma_k}, \quad \mu_k = \mathbb{E} x_k, \sigma_k = \sqrt{Var(x_k)}$$

- guarantees $\mathbb{E}\tilde{x}_k = 0$, $\text{Var }\tilde{x}_k = 1$ after weight updates on previous layers.
 - training is faster for later layers
- Training:
 - problem: don't know μ_k, σ_k
 - they change dynamically with weight updates
 - solution: estimate them on current minibatch (should be large enough)
- Inference:
 - since now distribution of x_k is fixed, can estimate μ_k, σ_k from the whole training set.
 - more efficient: average estimates of μ_k , σ_k from final minibatches of training.

BatchNorm: actual version

$$\tilde{x}_k = \alpha_k \frac{x_k - \mu_k}{\sqrt{\sigma_k^2 + \varepsilon}} + \beta_k, \quad \mu_k = \bar{x}_k, \ \sigma_k = \sqrt{\textit{Var}(x_k)}, \ \varepsilon = 10^{-6}.$$

Training:

- μ_k, σ_k estimated from the minibatch
- α_k, β_k output std.dev. and mean.
 - learned during backpropagation
- motivation:
 - may cancel normalization effect (e.g. in image->time prediction)
 - flexibility to adjust better to non-linearity

Inference:

- μ_k, σ_k estimated fixed to be mean, std.dev. from a wide set of objects.
- α_k, β_k fixed.