Math 185 Notes Complex Analysis

Professor: Christopher Ryba Scribe: Kelvin Lee

Contents

1	Complex Numbers	3
	1.1 Intro	3

Lecture 1

Complex Numbers

1.1 Intro

Suppose we have the a Taylor series as follows:

$$\sum_{n=0}^{\infty} a_n x^n, \quad a_n \in \mathbb{R}$$

which happens to converge absolutely for |x| < r, where r is the radius of convergence, i.e.

$$\sum_{n=0}^{\infty} |a_n| |x|^n < \infty \quad \text{when } |x| < r, \quad \text{i.e. } x \in (-r, r).$$

Example 1.1.1. The series

$$\sum_{n=0}^{\infty} x^n = \frac{1}{1-x}$$

converges absolutely for |x| < 1.

Question. Now what if we replace the real variable x by the complex variable z?

Answer. If |z| < r, then

$$\sum_{n=0}^{\infty} |a_n| |z|^n < \infty.$$

so the sum converges absolutely for $z \in D(0,r)$ (disc of radius r centered at zero). This gives a wider range than the real case.

So in this situation, our real-valued series can be extended to a complex-valued series.

Example 1.1.2. Let

$$f(z) = \begin{cases} e^{-1/z^2} & z \neq 0, \\ 0 & z = 0. \end{cases}$$

When viewed as a function $\mathbb{R} \to \mathbb{R}$, f(z) is infinitely differentiable at z = 0, and all derivatives of f(z) are zero at z = 0. Hence, the Taylor series is

$$f(0) + f'(0) \cdot x + \frac{f''(0)}{2} \cdot x^2 + \dots = 0 + 0 + 0 + \dots = 0.$$

So the Taylor series converges to a function different from f(z)!

Example 1.1.3. Consider the same example as above, but with z as a complex number. Let z = it where $t \in \mathbb{R}$. Then

$$e^{-1/z^2} = e^{1/t^2}$$
.

and so

$$f(it) = \begin{cases} e^{1/t^2} & t \neq 0, \\ 0 & t = 0 \end{cases}$$

which is not continuous at z = 0 and thus not complex-differentiable at z = 0.

Example 1.1.4. Now let's set z = x + iy where $x, y \in \mathbb{R}$. Consider a suitable power series

$$f(z) = \sum_{n=0}^{\infty} a_n z^n,$$

which we may view as a function $\mathbb{R}^2 \to \mathbb{R}^2$ (instead of $\mathbb{C} \to \mathbb{C}$). Let's differentiate with respect to x:

$$\frac{\partial f(z)}{\partial x} = \frac{\partial f(z)}{\partial z} \cdot \frac{\partial z}{\partial x} = f'(z)$$
$$\frac{\partial^2 f(z)}{\partial x^2} = \frac{\partial f'(z)}{\partial x} = \frac{\partial f'(z)}{\partial z} \cdot \frac{\partial z}{\partial x} = f''(z).$$

Now with respect to y:

$$\begin{split} \frac{\partial f(z)}{\partial y} &= \frac{\partial f(z)}{\partial z} \cdot \frac{\partial z}{\partial y} = if'(z) \\ \frac{\partial^2 f(z)}{\partial y^2} &= i\frac{\partial f'(z)}{\partial y} = i\frac{\partial f'(z)}{\partial z} \cdot \frac{\partial z}{\partial y} = -f''(z). \end{split}$$

We observe that

$$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) f(z) = 0,$$

which means (the real and imaginary parts of) f(z) satisfy the two-dimensional Laplace equation.

Thus, complex analysis is a very powerful tool for solving the 2D Laplace equation.

Example 1.1.5. Consider the integral

$$\int_{-\infty}^{\infty} \frac{1}{1+x^2} dx = \arctan(\infty) - \arctan(-\infty)$$
$$= \frac{\pi}{2} - \left(-\frac{\pi}{2}\right)$$
$$= \pi.$$

But what about

$$\int_{-\infty}^{\infty} \frac{\cos(ax)}{1+x^2} dx, \quad a \in \mathbb{R}$$

It turns out that this would be quite tricky to compute this with real-valued techniques. But it would be easier using complex techniques (contour integration). Thus, complex analysis is also a powerful too for computing integrals.