Computer Language Processing

Exercise Sheet 02 - Solutions

October 6, 2022

Exercises **3.5** and **3.6** are taken from Basics of Compiler Design, and you can find the solutions here.

Exercise 1

a) The token sequence of the first word is: T4(c), T2(ac), T4(c), T1(a), T2(bacac), T3(cba), T2(b), T4(c).

For the second word, the token sequence is: T4(ccc), T1(aabab), T2(ac), T3(cba), T2(b), T4(cc), T2(b), T1(a), T2(bac).

b) The corresponding automata are given below.

c) The corresponding NFA is:

Now, let us transform it into a DFA.

The initial state will be $q_0'=E(q_0)=\{q_0,q_1,q_4,q_5,q_7,q_{11}\}$

From q'_0 :

- on
$$a \xrightarrow{r} \{q_2, q_6\} := q'_1$$

- on
$$b \rightarrow \{q_4, q_5\} := q_2'$$

- on
$$b \to \{q_4, q_5\} := q_2'$$

- on $c \to \{q_8, q_{12}\} := q_3'$

From q_1' :

- on
$$a \to \{q_3\} := q_4'$$

- on
$$a \to \{q_3\} := q'_4$$

- on $b \to \{\} := q'_5$, a trap state
- on $c \to \{q_5\} := q'_6$

- on
$$c \rightarrow \{q_5\} := q_6'$$

From q_2' :

- on
$$a \xrightarrow{n} \{q_6\} := q_7'$$

- on
$$b \rightarrow \{q_4, q_5\} = q_2'$$

- on
$$c \to \{\} = q_5'$$

From q_3' :

$$- \text{ on } a \to \{\} = q_5'$$

- on
$$b \rightarrow \{q_9\} := q_8'$$

- on
$$a \to \{\} = q'_5$$

- on $b \to \{q_9\} := q'_8$
- on $c \to \{q_{12}\} := q'_9$

From q_4' :

- on
$$a \rightarrow \{\} = q_5'$$

- on
$$b \to \{q_2\} := q'_{10}$$

- on $c \to \{\} = q'_5$

- on
$$c \to \{\} = q_5'$$

From q_5' :

- on
$$a \to \{\} = q_5'$$

- on
$$b \to \{\} = q_5'$$

- on
$$c \to \{\} = q_5'$$

From q_6' :

- on
$$a \to \{q_6\} = q_7'$$

- on
$$b \to \{\} = q_5'$$

- on
$$c \to \{\} = q_5'$$

From q_7' :

- on
$$a \to \{\} = q_5'$$

- on
$$b \to \{\} = q_5'$$

- on
$$c \to \{q_5\} = q_6'$$

From q_8' :

- on
$$a \to \{q_{10}\} := q'_{11}$$

- on
$$b \to \{\} = q_5'$$

- on
$$c \to \{\} = q_5'$$

From q_9' :

- on
$$a \rightarrow \{\} = q_5'$$

- on
$$b \to \{\} = q_5'$$

- on
$$c \to \{q_{12}\} = q_9'$$

From q'_{10} :

- on
$$a \to \{q_3\} = q'_4$$

- on
$$b \to \{\} = q_5'$$

- on
$$c \to \{\} = q_5'$$

From q'_{11} :

- on
$$a \to \{\} = q'_5$$

- on $b \to \{\} = q'_5$
- on $c \to \{\} = q'_5$

$$- \text{ on } b \to \{\} = q$$

- on
$$c \to \{\} = q_5'$$

The final states are: $q_0', q_1', q_2', q_3', q_6', q_9', q_{10}', q_{11}'$.

The resulting DFA is¹:

Exercise 2

N.B:

- Adding a 0 after a binary number multiplies it by 2 $\,$
- Adding a 1 after a binary number multiplies it by 2, and then adds 1 $\,$
- States in the automata will correspond to remainders

a)

The automaton of multiples of 2 is:

 $^{^{1}}$ The trap state q_{5}^{\prime} is not shown

The automaton of multiples of 3 is:

b), c) The automaton of multiples of either 2 or 3, but not both, is:

The parallel composition has the same DFA, but with the state (0, 0) being final.

Exercise 3

Proof by contradiction.

Assuming L is regular, the pumping lemma applies. Let the word $w \in L$ be of length at least the pumping constant p^2 .

According to the lemma, w = xyz with |y| > 0. Moreover, for any i, we must have that $xy^iz \in L$, and thus $|xy^iz|$ is prime. We also know that $|xy^iz| = |x| + i|y| + |z| = |xyz| + (i-1)|y|$.

Let us consider the case i = |xyz| + 1. We must have:

$$|xyz| + |xyz| \cdot |y| = (|y| + 1) \cdot |xyz|$$
 is prime.

Since |y| > 0, both terms of the product are greater than 1, and thus $|xy^iz|$ is not prime, therefore $xy^iz \notin L$ for i = |xyz| + 1, which contradicts our initial assumption.

 $^{^{2}}$ We also pick w with length strictly greater than 1