

Evaluación computacional del espectro UV-VIS de flavonoides

Andres E. Perez-Hernandez, Marco A. García-Revilla,* J. Oscar C. Jiménez-Halla*

Universidad de Guanajuato, División de Ciencias Naturales y Exactas

Introducción

La naturaleza está llena de colores vibrantes y llamativos.

Fig. 1 Estructura base de los flavonoides

En las plantas, los **flavonoides** se posicionan como una de las clases más extendidas de **metabolitos secundarios**.

Durante la última década se ha disparado su interés en la medicina, especialmente como anticancerígenos debido a sus propiedades antioxidantes.

Fig. 2 Commelina Comunnis, Delfidina.

Nuestro objetivó fue realizar un Benchmarking utilizando la Teoría del Funcional de la densidad (DFT) para calcular teóricamente los espectros UV-VIS de flavonoides.

Métodos

☐ Software: Gaussian 09W/Gauss-View, ChemCraft.

1er Benchmark (*Delfidina*)

☐ **DFT** Optimización de la geometría y los cálculos de frecuencias (opt-freq):

Funcionales: | ωB97X-D, CAM-B3LYP, τHCTH_{hyb}, M06-HF, LC-ωPBE | Conjunto base:

def2-svpp

☐ TD-DFT Cálculos del espectro UV-VIS

Combinaciones de funcionales

Dos conjuntos base: def2-svpp y **def2-tzvpp**

- Comparación de mejores niveles de teoría:
 Espectro UV-VIS // opt-freq
- Selección del nivel de teoría final

Evaluación de distintos flavonoides

- -Reportados experimentalmente:
- Luteolina-7-Oglicosilada
- Quercetina
- -Espectros **no** reportados **experimentalmente**:
- Silkone A
- Bougainvinone P
- Pyronomelodorone B

El nivel de teoría
τHCTH_{hyb}/def2-svpp //
ωB97X-D/def2-svpp puede
calcular con precisión el
espectro UV-VIS de emisión
en los flavonoides.

Con este nivel se determinaron 3 nuevos espectros de emisión de flavonoides no descritos anteriormente.

Resultados

Los funcionales *ωB97X-D* y *CAM-B3LYP* son apropiados para la optimización y cálculos de frecuencias

	Delfidina (Valor experimental: 534 nm)								
	а	TD-DFT // Opt-Freq			λ max (nm) Tc.	3	Energia de excitación vertical		
	1	+U∩TU	def2-svpp		532.8	0.2044	2.3272		
	2	тНСТН _{hyb}	def2-tzvpp	ωB97X-D/def2-svpp	522.8	0.2519	2.3718		
	3	CAM-B3LYP ωB97X-D	def2-tzvpp		448.0	0.5479	2.7673		
	4		def2-svpp		446.4	0.5715	2.77		
	5		def2-tzvpp		443.0	0.5388	2.7988		
	6	LC-ωPBE	def2-svpp		421.2	0.624	2.9437		
ſ	7	тНСТН _{hyb}	def2-svpp	тНСТН _{hyb} /def2-svpp	529.4	0.2534	2.3419		
	8		def2-tzvpp		522.4	0.3239	2.3736		
	9	CAM-B3LYP			455.8	0.5945	2.7201		
	10	ωB97X-D	def2-svpp		450.4	0.5849	2.7528		
	11	LC-ωPBE	def2-svpp		388.1	0.1825	3.1945		
	12	тНСТН _{hyb}	def2-svpp		527.2	0.2114	2.3519		
	13	CAM-B3LYP	def2-tzvpp	CAM-B3LYP/def2-svpp	448.8	0.5666	2.7627		
	14	ωB97X-D	def2-svpp	CAMPOSE IF/Geiz-Sypp	441.0	0.5812	2.8116		
	15	LC-ωPBE	def2-svpp		423.0	0.6471	2.9303		
	16	тНСТН _{hyb}	def2-svpp	LC-ωPBE/def2-svpp	532.8	0.2031	2.3273		
	18	LC-ωPBE	def2-svpp		416.2	0.6131	2.9791		
	17	тНСТН _{hyb}	def2-svpp	M06-HF/def2-svpp	526.9	0.2053	2.3529		

n. estados = 2. UV-Vis en fase gaseosa. Estado: singlete, carga: 1+

THCTH_{hyb} tuvo el mejor desempeño en la obtención de espectros UV-VIS

	Aureusidina-4-glucósido (Valor experimental: 402 nm)							
b	TD-DFT // Opt-Freq	λ max (nm) Tc.	3	Energia de excitación (eV)	% Variación			
1	τHCTH _{hyb} /def2-svpp//ωB97X-D/def2-svpp	405.5	0.4529	3.0578	0.8632			
2	τΗCTH _{hyb} /def2-svpp//τΗCTH _{hyb} /def2-svpp	412.0	0.4858	3.0096	2.4801			
3	:HCTH _{hyb} /def2-svpp//CAM-B3LYP/def2-svpp	405.0	0.4571	3.0612	0.7512			
4	τHCTH _{hyb} /def2-svpp//LC-ωPBE/def2-svpp	397.8	0.5314	3.1171	1.0547			

n. estados = 2. UV-Vis en fase gaseosa Estado: singlete, carga: 0

Los cálculos en flavonoides neutros como glicosilados concuerdan con lo experimental

τHCTH _{hyb} /def2-svpp//ωB97X-D/def2-svpp							
С	Molecula	λ max (nm) Exp.	λ max (nm) Tc.	ω	Energia de excitación (eV)	% Variacion	
1	Luteolina-7-O-glicosilada	350	357.9	0.0922	3.4645	2.2486	
2	Quercitina	372	374.6	0.4361	3.3094	0.7097	
3	Silkone A		360.6	0.1012	3.4381	-	
4	Bougainvinone P	Sin reportar	480.7	0.0003	2.5791	-	
5	Pyronomelodorone B		392.5	0.0278	3.1592	-	

n. estados = 2. UV-Vis en fase gaseosa

Agradecimientos

Este proyecto no hubiera sido posible sin el apoyo de la Universidad de Guanajuato y Laboratorio de supercomputo de alto rendimiento Pípila.

Referencias

[1] Berland, H., Albert, N. W., Stavland, A., Jordheim, M., McGhie, T. K., Zhou, Y., Zhang, H., Deroles, S. C., Schwinn, K. E., Jordan, B. R., Davies, K. M. Proc. Natl. Acad. Sci. U.S.A. 2019, 116, 20232-20239.

[2] Corradini, E., Foglia, P., Giansanti, P., Gubbiotti, R., Samperi, R., Laganà, A. Nat. Prod. Res. 2011, 25, 469-495.

[3] Pérez-Hernández, Andres. E. Las moléculas queer, flavonoides. 1ra ed. 2022, pp 35–40.

