Assignment Projectd Examily Help Lecture 7 - Closure Properties & Reducibility

https://pow.coder.com

University of Toronto

Add WeChat2powcoder

Theorem

The class D is closed under union, intersection, concatenation,

ssignifient Project Exam Help

Let $A, B \in D$. By definition, there are deciders M_A and M_B that recoglitted ... / powcoder.com

Define a TM M as follows:

On input w:

- Otherwise accept.

Clearly, M is a decider and $\mathcal{L}(M) = A \cap B$. Hence, $A \cap B \in D$.

Exercise: Prove the rest.

Theorem

The class SD is closed under union, intersection, concatenation SSI general metal point and the proof.

Let $A,B\in SD$. By definition, there are TMs M_A and M_B that $\operatorname{recog} B/\operatorname{PEVVCOCET.COM}$

Define a TM M as follows:

 AdM_A and $\mathsf{Chattypo}_{\mathsf{M}}\mathsf{Copt}$ either M_A or M_B accepts, accept.

Clearly, $\mathcal{L}(M) = A \cup B$. Hence, $A \cup B \in SD$.

Exercise: Prove the rest.

Definition

 (\longrightarrow)

```
Assignment Project Exam Help

Theorem
D = \text{Inttps://powcoder.com}
Proof
```

If $A \in \mathcal{D}$, then $A \in \mathcal{D}(M)$ for some decider M. Naturally, $A \in \mathcal{D}$ define a YM M as follows: POWCOCET On input w:

- ightharpoonup Run M on w.
- ▶ If M accepts, reject; if M rejects, accept.

Clearly, $\mathcal{L}(M') = A^c$, which implies $A \in coSD$.

Assignment Project Exam Help

(←

Suppose $A \in SD \cap coSD$. Let E and E' be enumerators for A and A' the Evely-then A (code) that A in parallel and accepts or rejects based on which enumerator outputs w.

Add WeChat powcoder

DIAG and A_{TM}

Assignment Project Exam Help $DIAG := \{\langle M \rangle \mid M \text{ is a TM and } \langle M \rangle \notin \mathcal{L}(M)\}.$

 $\begin{array}{l} \color{red} \boldsymbol{https:}//powcoder.com \end{array}$

Theorem

- ► Adds WeChat powcoder
- $A_{TM} \in SD \setminus D.$

$DIAG^c$

Definition

Assignment Project Mand Market Mark

Theolettps://powcoder.com

Since $A_{TM} \in SD$, it follows that $DIAG^c \in SD$ as well.

On the other hand $DIAG^c \notin D$, since otherwise $DIAG \in D$ as D is closed under complementation.

 A^c_{TM}

Definition

$\underbrace{ \text{Assignment Project Exam Help} }_{A^c_{TM}} := \{ \langle M, w \rangle \mid M \text{ is a TM and } w \not\in \mathcal{L}(M) \}$

Theorem

Proof. Add WeChat powcoder

We have already shown that $A_{TM} \in SD$ and $D = SD \cap coSD$.

If $A_{TM}^c \in SD$, then $A_{TM} \in coSD$, and consequently, $A_{TM} \in D$.

Reducibility

Assignment Project Exam Help

Let A,B be two languages. We say A is mapping reducible to B, written $A \leq_{\mathcal{D}} B$, if there is a computable function $f: \mathcal{L}^* \to \mathcal{L}^*$ such that to \mathcal{L}^* \mathcal{L}^* \mathcal{L}^* \mathcal{L}^* \mathcal{L}^*

$$w \in A \iff f(w) \in B$$
.

The fated is Wee Chat poweoder

Properties of reduction

Assignment Project Exam Help

- 1. Reflexive: $A \leq_m A$.
- Transitive: If A ≤m B and B ≤m C, then A ≤m C.
 Attpst/en powecoder.com
- 4. If $A \leq_m B$ and B is (semi-) decidable, then A is (semi-) decidable.

Add WeChat powcoder

1, 2 and 3: Exercise!

Properties of reduction

4. Let M_B be a (semi-) decider for B, let f be a reduction from A to B, and let M_f be a TM that computes f.

Assignment Project Exam Help

Run M_f on w to obtain f(w).

The second property of the compute f(w) is a second property of the compute f(w).

As f is a reduction from A to B, $w \in A \iff f(w) \in B$.

Equivalently, M_B accepts f(w) iff $w \in A$.

Consequently, $\mathcal{L}(M_A)$ eChate, powcoder.

Corollary

If $A \leq_m B$ and A is not (semi-) decidable, then neither is B.

Application

Problem

Show that $A^c_{TM} \not\in SD$ by reducing from DIAG.

Assignment Project Exam Help

- $f(\langle M \rangle) = \langle M, \langle M \rangle \rangle;$
- Maccept is a machine that aways accepts:)

It is easy to see that f is computable.

Also, Add WeChat powcoder

 $\langle M \rangle \in DIAG \iff \langle M \rangle \notin \mathcal{L}(M) \iff \langle M, \langle M \rangle \rangle \in A^c_{TM}.$ (The reverse direction holds because $\langle M_{accent}, \varepsilon \rangle \notin A^c_{TM}.$)

Hence, $DIAG \leq_m A_{TM}^c$.

Since $DIAG \not\in SD$, it follows that $A^c_{TM} \not\in SD$.