Notes of B-V formalism in derived settings

Notes by Lind Axiao

2018 ETH

Contents

Don	ived function, homotopy pushout
Der	ived functor, homotopy pushout
Derived everything	
3.1	Recap on spaces, functor of point
3.2	Stacks, derived stacks
3.3	Derived critical locus

1 Recap on BV formalism

$$\int_X e^{iS_0(X)/\hbar} f(x) dx$$

If S_0 is a Morse function on a finite dimensional manifold.

But usually we would have to work on infinite dimensional space. idea:

1. embed X into a larger graded manifold V and extend $S_0(X)$ to a function on S(x) on V and express the initial integral as

$$\int_{V \subset T^*[-1]V} e^{iS(y)/\hbar} f(y) dy$$

then deform V as a Lagrangian inside the odd cotangent bundle. In order to make the integral invariant, the new S has to satisfies the quantum master equation QME. At the oder $\hbar=0$, QME reduces to the classical master equation

$$[S_0, S_0] = 0$$

We first given a heuristic version of BV-formalism of quantum field theory on "points", where the moduli space is finite dimensional.

Let M be a finite dimensional smooth manifold or affine variety. Let $S:M\longrightarrow \mathbb{A}^1$ be a smooth function. The critical locus of S

$$Crit(S) = graph(dS) \times_{T^*M} M$$

the fibered product

$$Crit(S) \longrightarrow M$$

$$\downarrow \qquad \qquad \downarrow dS_0$$

$$M^{zero \ sections} T^*M$$

is the intersection of graph of dS and the zero section inside T^*M .

Sometimes this intersection could be non-transitive, we want to define a derived version.

Traditionally, the BV-BRST complex of Lagrangian field theory is obtained in three steps

- 1. Find a Koszul-Tate complex to resolve the critical locus;
- 2. find a BRST complex to encode the gauge invariance

3. apply the homological perturbation theory to find a unified BV-differential.

$$s_{BV} = s_{KT} + s_{BRST} + \dots$$

Choosing the derived critical locus is equivalent to inverting the Koszul-Tate resolution.

2 Derived functor, homotopy pushout

We skip here the introduction of model category but only remember that given a model category \mathcal{C} , the homotopy category $\gamma: \mathcal{C} \longrightarrow Ho(\mathcal{C})$ exists, which is the localization of \mathcal{C} w.r.t the weak equivalence. Any functor $G: \mathcal{C} \longrightarrow \mathcal{B}$ which sends weak equivalences to isomorphisms would factor through γ .

Given three categories, $\mathcal{A}, \mathcal{B}, \mathcal{C}$ and two functors X, F.

The **right Kan extension of** X **along** F consists of a functor $R: \mathcal{B} \longrightarrow \mathcal{C}$ and a natural transformation $\eta: RF \longrightarrow X$ which is **couniversal** with respect to the specification, in the sense that for any functor $M: \mathcal{B} \longrightarrow \mathcal{C}$ and a natural transformation $\mu: MF \longrightarrow X$, a unique natural transformation $\delta: M \longrightarrow R$ is defined and the diagram of functors commutes

$$RF$$

$$\eta \downarrow \qquad \qquad \delta_F$$

$$X \leftarrow \mu \qquad MF$$

where $\delta_F(a) = \delta(F(a)) \longrightarrow RF(a)$ for any object a of \mathcal{A} .

Similarly, we have a dual notion of **left Kan extension**.

Definition 2.1. Let C be a model category and let $F: C \longrightarrow B$ by any functor. We call the right Kan extension of F along $\gamma: C \longrightarrow Ho(C)$ the left derived functor of F. We will denote it by $(\mathbf{L}F, \eta)$, where η is a defining natural transformation in Kan extension.

Dually, the left Kan extension of F along $\gamma: \mathcal{C} \longrightarrow Ho(\mathcal{C})$ the right derived functor of F.

In the case $F = (co)lim : \mathcal{C}^{\mathcal{D}} \longrightarrow \mathcal{C}$, where \mathcal{D} is a diagram. We can define the homotopy limits and homotopy colimits: $\mathbf{R}lim$ and $\mathbf{L}colim$.

It would be long story to introduce the model structure on $\mathcal{C}^{\mathcal{D}}$, which we suppress here.

If \mathcal{D} is chosen to be

the Rlim is the homotopy pullback

The derived critical locus is now defined to be a homotopy pullback in the category $caga_{<0}^{op}$

The detailed construction is discussed in the next section.

3 Derived everything

3.1 Recap on spaces, functor of point

First, we recall the definition of a topological manifold.

A topological variety is an topological space together with an open cover $\{U_i\}_{i\in I}$ such that for each $i\in I$ there exists a homeomorphism from U_i to an open set in \mathbb{R}^{n_i} , each integer $n_i\geq 0$ depends on i.

We can give a fancy definition of topological manifolds

Consider the coequilizer

$$Colim\left(\coprod_{(i,j)\in I^2}U_{i,j}
ightrightarrowthing \coprod_{i\in I}U_i
ight),$$

where the upper morphism is induced by $U_{i,j} \longrightarrow U_i$ while the second morphism is induced by the morphism $U_{i,j} \longrightarrow U_j$. The morphism from $\coprod_i U_i \longrightarrow X$ would factorize through

$$Colim\left(\coprod_{(i,j)\in I^2}U_{i,j}\rightrightarrows\coprod_{i\in I}U_i\right)\longrightarrow X$$

Lemma 3.1. The morphism

$$Colim\left(\coprod_{(i,j)\in I^2}U_{i,j}
ightrightarrows\coprod_{i\in I}U_i
ight)\longrightarrow X$$

is an isomorphism.

Proof. Consider Y another topological space with a morphism

$$Colim\left(\coprod_{(i,j)\in I^2} U_{i,j} \rightrightarrows \coprod_{i\in I} U_i\right) \stackrel{f}{\longrightarrow} Y$$

 $f_i := f|_{U_i}$ and $f_i|_{U_{i,j}} = f_j|_{U_{i,j}}$. We can define an map g from X to Y such that they agree pointwisely. $g|_{U_i} = f_i$. The restriction to each open set in the open cover is continuous, we therefore know g is itself continuous.

Hence, there is a morphism from X to Y and continuous map g is unique because it has to agree with f pointwisely.

X satisfies the universal property of coequalizer hence is isomorphic to the coequalizer.

We can consider it in an even fancier way. Use \mathcal{C} to denote the full subcategory of topological manifold. One consider the Yoneda embedding from the category \mathcal{C} to the category of presheaves over \mathcal{C} , where $PSh(\mathcal{C})$ denote the functor category $[\mathcal{C}^{op}, Sets]$

$$h_{_}: TopMfd \longrightarrow PSh(\mathcal{C})$$

$$X \longmapsto h_{X}$$

where $h_X(Y) := \operatorname{Hom}_{TopMfd}(Y,X)$ for al $Y \in \mathcal{C} \subset TopMfd$

Lemma 3.2. The functor h_{\perp} defined above is fully faithful.

Proof. refer to any proof of Yoneda lemma.

(This functor is not necessarily essentially surjective) These lemma means TopMfd is equivalent to a subcategory of presheaves over C. We all now trying to characterize this subcategory.

We start by making \mathcal{C} a Grothendieck site.

Definition 3.3. We can specify that certain collections of maps with a common codomain should cover their codomain. A family of morphisms $\{U_i \longrightarrow U\}_{i \in I}$ is called a covering family is each morphism $U_i \longrightarrow U$ is an open immersion and the induced morphism on the coproduct $\coprod_{i \in I} U_i \longrightarrow U$ is surjective. This definition gives the neighborhood system for a pretopology (Grothendieck pretopology), we denote the associated topology τ

Lemma 3.4. For every $X \in TopMfd$, the presheaf $h_X \in PSh(\mathcal{C})$ is a sheaf with the specified topology τ

Definition 3.5. We say a functor $F: \mathcal{C} \longrightarrow Sets$ is **representable** if it is naturally isomorphic to h_X for some object $X \in \mathcal{C}$.

A morphism $f: F \longrightarrow G$ of $Sh(\mathcal{C}, \tau)$ is a local homeomorphism if for each $X \in \mathcal{C}$ and all morphism $h_X \longrightarrow G$, the sheaf $F \times_G \times h_X$ is representable by $Y \in TopMfd$, and the induced morphism $Y \longrightarrow X$ by projection $F \times_G h_X \cong h_Y \longrightarrow X$ is a local homeomorphism of topological spaces.

A morphism of sheaves $Sh(C, \tau)$ is an **open immersion** if it is a monomorphism and a local homeomorphism.

Proposition 3.6. A sheaf $F \in Sh(\mathcal{C}, \tau)$ is representable by a topological manifold if there exists a family of objects $\{U_i\}_{i\in I}$ in \mathcal{C} and a morphism of sheaves

$$p: \coprod_{i\in I} h_{U_i} \longrightarrow F$$

such that the following two conditions holds

- 1. p is an epimorphism.
- 2. For all $i \in I$, the morphism $U_i \longrightarrow F$ is an open immersion.

Generally, we can identifies the category of TopMfd with its image in $Sh(\mathcal{C}, \tau)$ In context of algebraic geometry, things are more famous.

Schemes can be characterized as representable sheaves $Sh(Aff, \tau)$, where τ is the canonical Grothendieck topology.

Definition 3.7. A derived scheme is a pair (X, \mathcal{O}) consisting of topological space and a sheaf \mathcal{O} of commutative ring spectra on X such that the

- 1. pair $(X, \pi_0 \mathcal{O})$ is a scheme and
- 2. each $\pi_k \mathcal{O}$ is a quasi-coherent $\pi_0 \mathcal{O}$ -module.

From the homotopical point of view, we note that a derived scheme X defines a functor

$$h_X: dAff^{op} = cdga_{<0} \longrightarrow Sets$$

Furthermore, we have the following lemma

Lemma 3.8. h_X sends each quasi-isomorphism of $cdga_{\leq 0}$ to an isomorphism in Sets.

Recall the model structure on $cdga_{\leq}$, the weak equivalence are just the quasiisomorphisms, i.e., the functor h_X factors through the homotopy category $Ho(cdga_{\leq 0})$. Following the spirit of functor of points, we can regard X as a locally representable sheaf in $Sh(Ho(cdga_{\leq 0}))$.

3.2 Stacks, derived stacks

Roughly speaking, a Stack is a sheaf that takes values in categories rather than sets.

Definition 3.9. A category \mathcal{B} with a functor F to a category \mathcal{C} is called a **fibered** category over \mathcal{C} if for any morphism $G: X \longrightarrow Y$ in \mathcal{C} and any object $y \in \mathcal{B}$ s.t. F(y) = Y, there is a poullback $g: x \longrightarrow y$ of y by F, i.e. F(g) = G.

Definition 3.10. The category \mathcal{B} is called a **prestack** over a category \mathcal{C} with a Grothendieck topology if it is fibered over \mathcal{C} and

for any object $U \in \mathcal{C}$ and object $x, y \in \mathcal{B}$ with image U, the functor from objects over U to sets taking $[F: V \longrightarrow U]$ to $Hom(F^*x, F^*y)$ is a sheaf.

The category \mathcal{B} is called a **stack** over the category \mathcal{C} with a Grothendieck topology if it is a prestack over \mathcal{C} and every descent datum is effective.

A descent datum consists roughly of a covering of an object V of C by family V_i , elements x_i in the fiber over V_i and morphism f_{ji} between the restrictions of x_i and x_j to $V_{ij} = V_i \times_V V_j$ satisfying the compatibility condition $f_{ki} = f_{kj}f_{ji}$. The descent datum is called effective if the elements x_i are essentially the pullbacks of an element x with image V.

The descent condition here is just a derived version of the usual sheaf axioms. The fiber functor $F: \mathcal{B} \longrightarrow \mathcal{C}$ can be regarded a sheaf on \mathcal{B} with value in \mathcal{C} .

For example if we tak C = Grpds the stack is called 1-stack.

We will jump through the story of *n*-stacks and go directly to $\infty - stacks$.

3.3 Derived critical locus

Mostly, it would be easier to analyze it in terms of functions on it. We will mostly work in the affine case only to convince ourselves.

Let R be a commutative k-algebra, and P a projective R-module of finite type. Let $S:=Sym_R(P^\vee)$ the symmetric algebra on on the R-dual P^\vee . S is a commutative R-algebra. Consider $\wedge^{\bullet}P^\vee$ be the exterior algebra of P^\vee as an R-module and we can construct a non-positively graded S-module $S\otimes_R \wedge^{\bullet}P^\vee$ graded by

$$(S \otimes_R \wedge^{\bullet} P^{\vee})_m := S \otimes_R \wedge^{-m} P^{\vee}$$

. This $S \otimes_R P^{\vee}$ is naturally a graded commutative S-algebra and can be endowed with a degree 1 differential d. The differential d is induced by a homomorphism

$$h: R \longrightarrow Hom_R(P, P) \cong P^{\vee} \otimes P$$

 $1_R \longmapsto \sum_i \alpha_i \otimes x_i$

$$d(a \otimes (\beta \wedge \dots \wedge \beta_{n+1})) = \sum_{j} a \cdot \alpha_{j} \otimes \sum_{k} (-1)^{k} \beta_{k}(x_{j}) (\beta_{1} \wedge \dots \wedge \hat{\beta}_{k} \wedge \dots \wedge \beta_{n+1})$$

 $(S \otimes_R, d)$ is commutative differential non-positively graded algebra over S. We call it Koszul cdga and denote it by K(R; P).

Proposition 3.11. The cohomology of Koszul cdga K(R; P) is zero in degrees ≤ 0 , and $H^0(K(R; P)) \cong R$.

Proof. See for example this notes

4 The BRST on dCrit(S) =the BV-BRST on Crit(S)