

iSplit LBI: Individualized Partial Ranking with Ties via Split LBI

Qianqian Xu, Xinwei Sun, Zhiyong Yang, Xiaochun Cao, Qingming Huang and Yuan Yao ICT, CAS; MSRA; IIE, CAS; UCAS;BDKM, CAS; Dep. of Math, HKUST;PCL.

Introduction

- ► The majority work of crowd-sourced preference learning either focuses on instance-wise preference learning or assumes that the candidates are comparable.
- Introducing pair-wise comparisons into the preferential learning helps to avoid calibration bias.
- ► Facing pair-wise data, the tie results are ubiquitous, since the annotators might abstain from a decision whenever he/she thinks that none of the objects in a given pair can win the other easily.
- ➤ Seeing the issues mentioned above, we propose a unified framework, called iSplitLBI, for personalized partial ranking, tie state recognition and abnormal user detection.

Methodology

- ▶ The comparison graph G = (V, E). Let $V = \{1, 2, ..., n\}$: the vertex set of n items, $E = \{(u, i, j) : i, j \in V \text{ are compared by user } u, u \in U\}$. The annotation results $y_{ij}^u = 1$ means u prefers i to j and $y_{ij}^u = -1$ otherwise.
- Probabilistic Model
- \triangleright We assume that there is a true list of personalized score : $s^u = [s_1^u, \cdots, s_{n_u}^u], \forall u$
- \triangleright We assume that y_{ij}^u is produced by comparing the score difference $s_i^u s_j^u$ with the threshold λ^u , yielding to the following decision rule.

$$y_{ij}^{u} = \begin{cases} 1, s_{i}^{u} - s_{j}^{u} + \epsilon_{ij}^{u} > \lambda^{u}; \\ -1, s_{i}^{u} - s_{j}^{u} + \epsilon_{ij}^{u} \leq -\lambda^{u}; \\ 0, \text{ else.} \end{cases}$$
(1)

- $\triangleright \epsilon_{ii}^u$ is a random noise which has a c.d.f $\Phi(t)$.
- \triangleright The probability to observe y_{ii}^u becomes:

$$P\{y_{ij}^{u}\} = \left[P_{1,ij}^{u}\right]^{1\{y_{ij}^{u}=1\}} \left[P_{0,ij}^{u}\right]^{1\{y_{ij}^{u}=0\}} \left[P_{-1,ij}^{u}\right]^{1\{y_{ij}^{u}=-1\}}.$$

- **▶** Parameter Decomposition:
- ▶ We assume the majority of participants share a common preference interest and behave rationally, while deviations from that exist but are sparse.

$$s^{u} = c_{s} + p_{s}^{u}, \lambda^{u} = c_{\lambda} + p_{\lambda}^{u}, y_{ij}^{u} = (c_{s_{i}} + p_{s_{i}}^{u}) - (c_{s_{j}} + p_{s_{i}}^{u}) + \epsilon_{ij}^{u}.$$
 (2)

- ▶ We use group lasso regularization to force the personalized parameters to be sparse in a user-specific manner.
- \triangleright Variable splitting: Since practically personalized parameters might not obey the sparsity rule ,we transfer the sparsity constraints to the auxiliary parameters Γ and penalize the distance between Γ and P.
- Overall Objective Function

$$\min_{\Theta} \sum_{u} \mathcal{L}(\mathcal{O}^{u}, \mathcal{Y}^{u} | s^{u}, \lambda^{u}) + \underbrace{\mathcal{S}_{\nu}(\Gamma, P)}_{\mathbf{V}(\Gamma, P)} + \underbrace{\mathcal{J}(\Gamma_{s}, \Gamma_{\lambda})}_{\mathbf{U}(\Gamma_{s}, \Gamma_{\lambda})}$$

$$s.t. \ s^{u} = c_{s} + \Gamma_{s}^{u}, \ \lambda^{u} = c_{\lambda} + \Gamma_{\lambda}^{u},$$

$$\lambda^{u} \geq \delta, \ c_{\lambda} \geq \delta.$$
(3)

In the constraints we use $\lambda^u \geq \delta$, $c_\lambda \geq \delta$, where $\delta > 0$, as closed and convex approximations of the positivity constraints $\lambda^u > 0$, $c_\lambda > 0$. The benefit to employ the relaxations are two-fold: 1) The closed domain constraints induce closed-form solution; 2) The threshold δ improves the quality of the solution to avoid ill-conditioned cases being too close to zero.

Optimization

Instead of directly solving the above-mentioned problem, we adopt the Split Linearized Bregman Iterations which we call individualized Split LBI (iSplitLBI), which gives rise to a regularization path where both the model parameters and hyper-parameters are simultaneously evolved. The k+1-th iteration of such path is given as:

$$\begin{pmatrix} \mathbf{c}_{s}^{u,k+1} \\ c_{\lambda}^{u,+1} \end{pmatrix} = \mathsf{Prox}_{J_{c}} \left(\begin{pmatrix} \mathbf{c}_{s}^{u,k} \\ c_{\lambda}^{u,k} \end{pmatrix} - \kappa \alpha_{k} \nabla_{\mathbf{c}} \mathcal{L}(\mathbf{\Theta}^{k}) \right), \forall u \in \mathcal{U}$$

$$\tag{4a}$$

$$\begin{pmatrix} P_{s}^{k+1} \\ P_{\lambda}^{k+1} \end{pmatrix} = \operatorname{Prox}_{J_{P}} \left(\begin{pmatrix} P_{s}^{k} \\ P_{\lambda}^{k} \end{pmatrix} - \kappa \alpha_{k} \nabla_{P} \mathcal{L}(\Theta^{k}) \right), \tag{4b}$$

$$\begin{pmatrix} Z_s^{k+1} \\ Z_\lambda^{k+1} \end{pmatrix} = \begin{pmatrix} Z_s^k \\ Z_\lambda^k \end{pmatrix} - \alpha_k \nabla_{\Gamma} \mathcal{L}(\Theta^k), \tag{4c}$$

$$\begin{pmatrix} \Gamma_s^{k+1} \\ \Gamma_\lambda^{k+1} \end{pmatrix} = \kappa \cdot \operatorname{Prox}_J \left(\begin{pmatrix} Z_s^k \\ Z_\lambda^k \end{pmatrix} \right), \tag{4d}$$

where the proximal h is defined by $\operatorname{Prox}_h(z) = \arg\min_x \|z - x\|^2/2 + h(x)$. The initial choice $c_\lambda^{u,0} = 1 \in \mathbb{R}^1$, $c_s^{u,0} = 0 \in \mathbb{R}^p$, $P_s^0 = Z_s^0 = 0 \in \mathbb{R}^{U \times p}$, $P_\lambda^0 = Z_\lambda^0 = 0 \in \mathbb{R}^U$, parameters $\kappa > 0$, $\alpha > 0$, $\nu > 0$. The $J_c(c_\lambda)$ and $J_P(P_\lambda)$ are denoted as the indicator function for the set $c_\lambda \geq \delta$ and $\lambda^u \geq \delta$ respectively (an indicator function of a set is 0 when the input variable is in the set, otherwise it is $+\infty$).

Experiments

Figure: (a)-(b) The L_2 distance between individualized ranking scores and common ranking scores of selected users on age and college datasets. (c) Fine-grained comparison on college dataset. P1, P2, P3 represent the precision for class -1, 0, 1, respectively; while R1, R2, R3 represent the corresponding recalls, respectively.

(a) Age: Micro-F1						(b) Age: Macro-F1					(c) Col:Micro-F1						(d) Col: Macro-F1		
types algorithms min median max std						min median max std					types algorithms min median max std					min	min median max std		
lpha–cut	LRLasso	.428	.443	.458 .008	•	327	.358	.381	.016			LRLasso	.318	.350	.408 .026	.32	3.349	.367 .011	
	LRRidge	.422	.443	.457 .008		30	.364	.387	.015	lpha–cut	LRRidge	.325	.352	.408 .023	.32	3 .348	.364 .010		
	SVMlasso	.422	.442	.463 .010	-	31	.355	.371	.013		SVMlasso	.325	.343	.404 .029	.33	3 .345	.371 .009		
	SVMRidge	.424	.443	.457 .008		30	.351	.379	.014		SVMRidge	.327	.354	.402 .025	.32	7 .345	.365 .010		
	LSLasso	.423	.441	.455 .008		35	.361	.383	.014		a cut	LSLasso	.305	.320	.377 .016	.33	L .342	.362 .010	
	LSRidge	.426	.442	.464 .009		35	.365	.398	.014		LSRidge	.331	.345	.403 .023	.33	1 .345	.365 .009		
	SVRlasso	.418	.431	.449 .008		33	.364	.397	.014		SVRlasso	.306	.328	.378 .018	.32	7 .346	.363 .010		
	SVRRidge	.422	.432	.450 .007		37	.367	.381	.012		SVRRidge	.323	.348	.402 .023	.32	3.350	.361 .012		
MLE	Uni.	.692	.705	.738 .012		89	.606	.641	.012			Uni.	.521	.536	.550 .009	.48	2 .496	.514 .009	
	BT	.731	.741	.755 .008		99	.628	.647	.012	MLE	BT	.539	.552	.565 .008	.49	5 .513	.526 .010		
	TM	.728	.739	.756 .008	.(503	.623	.647	.012		TM	.539	.551	.565 .008	.49	5 .511	.526 .010		
Ours	Ours	.765	.779	.791 .007	.(088	.694	.712	.010		Ours	Ours	.637	.649	.663 .008	.60	.645	.674 .016	

Table: Comparison Results on Age and College Dataset