Министерство образования и науки Российской Федерации

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

САНКТ-ПЕТЕРБУРГСКИЙ УНИВЕРСИТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, МЕХАНИКИ И ОПТИКИ

Кафедра Систем Управления и Информатики Группа Р3340

Лабораторная работа №11 исследование математической модели пьезоэлектрического исполнительного устройства

Вариант - 11

Выполнил		Та М.Ш (фамилия, и.о.)	(подпись)		
Проверил		(фамилия, и.о.)		_ (подпись)	
	_20r.	Санкт-Петербург,	20 г.		
Работа выполн	ена с оценкой				
Дата защиты "	"	20r.			

Цель работы:

Целью работы является изучение математических моделей и исследование характеристик исполнительного устройства, построенного на основе пьезоэлектрического двигателя микроперемещений.

Таблица 1- Исходные данные:

№	C_p	m	K_0	K_d	T_{u}	$F_{_B}$
варианта	Н/м	КГ	H/B	Нс/м	мс	Н
11	2.10^{6}	0,125	7,5	$0.9.10^2$	0,15	4

1. Построение математической модели

$$K_U = \frac{U_{pm}}{U_m} = 30$$

Рисунок 1.1- Схема моделирования пьезоэлектрического исполнительного устройства

2. Получим графики переходных процессов при F=0 и U=10 В

Рисунок 2.1- Графика переходных процессов

3. Исследование влияния массы нагрузки m на вид переходных процессов

Рисунок 3.1- Графика переходного процесса при м=0,0625кг

Рисунок 3.2- Графика переходного процесса при м=0,125кг

Рисунок 3.3- Графика переходного процесса при м=0,1875кг

m, кг	0,0625	0,125	0,1875
t, c	0,006	0,012	0,022
σ , %	45,6	60	76
x_y ,m	6,25	6,25	6,25

Увеличение массы нагрузки приводит к увеличению времени переходного процесса и перерегулирования, также увеливается колебаьельность. На установившееся значение перемещения масса нагрузки не влияет

4. Исследование влияния постоянной времени T_u на вид переходных процессов:

Передаточная функция замкнутой системы по задающему водействию U имеет вид

$$W(s) = \frac{K_U K_0}{T_u m s^3 + (m + K_d T_u) s^2 + (K_d + C_p T_u) s + C_p} =$$

$$= \frac{30 * 7.5}{0.125 * T_u * s^3 + (0.125 + 0.9 * 10^2 * T_u) s^2 + (0.9 * 10^2 + 2 * 10^6 * T_u) s + 2 * 10^6}$$

Рисунок 4.1- Графика переходного процесса при $T_u = 0.15[\mathit{мc}]$

Рисунок 4.2- Графика переходного процесса при $T_u = 0.3[mc]$

Рисунок 4.3- Графика переходного процесса при $T_u = 0.6[mc]$

Рисунок 4.4- Графика переходного процесса при $T_{\scriptscriptstyle u}=0.9[{\scriptscriptstyle MC}]$

T_u , $\mathcal{M}c$	0,15	0,3	0,6	0,9
$t_{_{I\!I}},c$	0.012	0.011	0,009	0,008
σ ,%	60	44	12	5,6
x_y , M	6,25	6,25	6,25	6,25
S_1	-6666.67	-3333.33	-1666.67	-1111.11
S_2	-360 + 3983.77i	-360 + 3983.77i	-360 + 3983.77i	-360 + 3983.77i
S_3	-360 - 3983.77i	-360 - 3983.77i	-360 - 3983.77i	-360 - 3983.77i

Увеличение постоянной времени высоковольтного усилителя снижает перерегулирование и время переходного процесса. На установившееся значение перемещения постоянная времени не влияет

5. Графики переходных процессов по возмущению (Fв = 4 H, U = 0) при различных значениях коэффициента упругости:

Рисунок 5.1- Графика переходного процесса при $C_p = 10^6 [{\rm H/\,M}]$

Рисунок 5.2- Графика переходного процесса при $C_p = 4*10^6 [\text{H/M}]$

6. Построение асимптотической ЛАЧХ пьезодвигателя:

$$W(s) = \frac{K_{u}K_{0}}{T_{u}ms^{2} + (m + K_{d}T_{u})s^{2} + (K_{d} + C_{p}T_{u})s + C_{p}}$$

$$W(j\omega) = \frac{K_{o}K_{u}}{(C_{p} - m\omega^{2} - K_{o}T_{u}\omega^{2}) + j(C_{p}T_{u} + K_{o}\omega - T_{u}m\omega^{3})}$$

$$A(\omega) = \frac{K_{o}K_{u}}{\sqrt{(C_{p} - (m + K_{o}T_{u})\omega^{2})^{2} + (C_{p}T_{u} + K_{o}\omega - T_{u}m\omega^{3})^{2}}}$$

$$L(\omega) = 20\lg \frac{K_{o}K_{u}}{\sqrt{(C_{p} - (m + K_{o}T_{u})\omega^{2})^{2} + (C_{p}T_{u} + K_{o}\omega - T_{u}m\omega^{3})^{2}}}$$

$$\omega_{1} = \frac{1}{T_{u}} = 6666.67[c^{-1}]$$

Рисунок 6.1- ЛАЧХ пьезодвигателя

Вывод:

В работе была исследована математическая модель и зависимости переходных процессов исполнительного устройства, построенного на основе пьезоэлектрического двигателя микроперемещений, от его параметров и внешних воздействий. Исполнительное пьезоэлектрическое устройство моделируется колебательным звеном с малой постоянной времени. На вид переходных процессов оказывают влияние масса нагрузки и внешние возмущения.