Investigating Piecewise Smooth Hybrid Systems

Debsankha Manik

April 21, 2013

HYBRID SYSTEMS

These are systems described partly by differential equations and partly by maps: a *hybrid* of continuous time and discrete time systems.

Examples:

- A bell.
- A typewriter.
- Walking motion.

HYBRID SYSTEMS: MATHEMATICAL DEFINITION

definition

A system described by a set of ODE's and a set of **reset maps**:

$$\dot{x} = F_i(x, \mu), \ \forall x \in S_i \tag{1}$$

$$x \mapsto R_{ij}(x,\mu), \ \forall x \in \Sigma_{ij} = \bar{S}_i \cup \bar{S}_j$$
 (2)

is called a piecewise smooth hybrid system if all the R_i 's, F_i 's as well as the associated flows φ_i 's are smooth in both x and the parameter μ in the appropriate regimes.

EXAMPLE: OSCILLATOR WITH HARD IMPACTS

Figure: Hard impacting oscillator

$$m\ddot{x} = -\gamma \dot{x} - k_1 x + G(t)$$
 for $x < \sigma$ (3)

$$(x,v) \mapsto (x,-rv)$$
 for $x = \sigma$ (4)

r is the coefficient of restitution, which is 1 for perfectly elastic collisions.

BIFURCATIONS IN HYBRID SYSTEMS

Bifurcations are *qualitative* change in steady state system behaviour on a change of system parameters.

BIFURCATIONS IN HYBRID SYSTEMS

Bifurcations are *qualitative* change in steady state system behaviour on a change of system parameters.

Bifurcations which are direct consequence of the switching of the system dynamics at the switching manifold are called **border collision bifurcations**.

BIFURCATIONS IN HYBRID SYSTEMS

Bifurcations are *qualitative* change in steady state system behaviour on a change of system parameters.

Bifurcations which are direct consequence of the switching of the system dynamics at the switching manifold are called **border collision bifurcations**.

GRAZING BIFURCATION OF LIMIT CYCLES

Figure: Grazing orbit

Figure: Hard impacting oscillator

$$m\ddot{x} = -\gamma \dot{x} - \omega_0^2 x + F \cos \omega t$$
 for $x < \sigma$ (5)
 $(x, v) \mapsto (x, -rv)$ for $x = \sigma$ (6)

A FEW POSSIBLE TRAJECTORIES

STROBOSCOPIC POINCARÉ MAP

Kundu and Banerjee [?] investigated the grazing bifurcations in this system by deriving an approximate analytical expression for the stroboscopic Poincaré map near grazing.

Their results:

- Unless $n = \frac{2\omega_g}{\omega_{forcing}} \in \mathbb{N}$, chaos ¹ immediately follows grazing of the steady state orbit.
- If $n \in \mathbb{N}$, no chaos after grazing.

Experimental data:

• Chaos vanishes not only at $n \in \mathbb{N}$, but at small neighbourhoods around each $n \in \mathbb{N}$

$$^{1}\omega_{g}=\sqrt{\omega_{0}^{2}-rac{\gamma^{2}}{4}}$$