Math 493 Lecture 22

Thomas Cohn

11/20/19

Spectral Theorem

Let V be a real vector space of dimension n with a positive definite, symmetric bilinear form \langle , \rangle . Note that positive definite means $\langle v, v \rangle > 0$ if $v \neq 0$, and is true iff the bilinear form is non-degenerate and has signature (n,0).

Defn: A linear operator $T: V \to V$ is **symmetric** if $\langle Tv, w \rangle = \langle v, Tw \rangle, \forall v, w \in V$.

The Spectral Theorem states that a symmetric linear operator is diagonalizable. In particular, all eigenvalues are real.

Let e_1, \ldots, e_n be an orthonormal basis (normal means $\langle e_i, e_i \rangle = 1$). This exists because of our assumption of the signature. Let \mathcal{A} be the matrix for T on this basis. $V \cong \mathbb{R}^n$, $\langle v, w \rangle = v^T \mathcal{A} w$. The symmetric condition on T gives us $\langle Tv, w \rangle = \langle v, Tw \rangle$, so $(\mathcal{A}v)^T w = v^T (\mathcal{A}w)$, so $v^T \mathcal{A}^T w = v^T \mathcal{A} w$. We conclude $\mathcal{A} = \mathcal{A}^T$.

Let $\lambda \in \mathbb{C}$ be an eigenvalue of \mathcal{A} , $v \in \mathbb{C}^n$ a corresponding eigenvector (so we have $\mathcal{A}v = \lambda v$). Write $v = \begin{bmatrix} v_1 & \cdots & v_n \end{bmatrix}^T$. Define $\bar{v} = \begin{bmatrix} \bar{v}_1 & \cdots & \bar{v}_n \end{bmatrix}$ (where $\bar{\cdot}$ denotes complex conjugation). Then

$$\bar{v}^T v = \bar{v}_1 v_1 + \dots + \bar{v}_n v_n = |v_1|^2 + \dots + |v_n|^2 \ge 0$$

In fact, $\bar{v}^T v > 0$, because $v \neq 0$, so $\exists i \text{ s.t. } v_i \neq 0$. Thus,

$$\lambda \bar{v}^T v = \bar{v}^T \mathcal{A} v = \bar{v}^T \mathcal{A}^T v = (\mathcal{A} \bar{v})^T v = \overline{(\mathcal{A} v)^T} v = \overline{(\lambda v)^T} v = \overline{\lambda} \bar{v}^T v$$

 $\overline{\lambda} \overline{v}^T v = \lambda \overline{v}^T v$, $\forall v$, so because $\overline{v}^T v \neq 0$, $\overline{\lambda} = \lambda$. Thus, $\lambda \in \mathbb{R}$. T has a real eigenvalue λ , so there is a real eigenvector $v \in \mathbb{R}^n$. $V = \operatorname{span}(v) \perp \operatorname{span}(v)^{\perp}$, so we claim T maps $\operatorname{span}(v)^{\perp}$ to itself.

Let $w \in \operatorname{span}(v)^{\perp}$, i.e., $\langle v, w \rangle = 0$. $\langle v, Tw \rangle = \langle Tv, w \rangle = \langle \lambda v, w \rangle = \lambda v, w = 0$. Thus, $Tw \in \operatorname{span}(v)^{\perp}$. Let T' be the restrition of T to $\operatorname{span}(v)^{\perp}$. T' is symmetric. So by induction on the dimension, spectral theorem applies to T'.

Thus, there exists a basis for $\operatorname{span}(v)^{\perp}$ consisting of eigenvectors for T'. Throwing in v, we get a basis for V consisting of eigenvectors of T. \square

Hermitian Forms

Defn: Let V be a \mathbb{C} -vector space. A **Hermitian form** on V is a function $\langle , \rangle : V \times V \to \mathbb{C}$ such that $\forall v, v', w, w' \in V, \alpha, \beta \in \mathbb{C}$,

- 1. \langle , \rangle is \mathbb{C} -linear in its second variable: $\langle v, \alpha w + \beta w' \rangle = \alpha \langle v, w \rangle + \beta \langle v, w' \rangle$.
- 2. \langle , \rangle is \mathbb{C} -sesquilinear in its first variable: $\langle \alpha v + \beta v', w' \rangle = \overline{\alpha} \langle v, w \rangle + \overline{\beta} \langle v', w \rangle$.
- 3. $\langle w, v \rangle = \overline{\langle v, w \rangle}$. (Note: $\langle v, v \rangle \in \mathbb{R}$.)

Defn: We say \langle , \rangle is **positive definite** if $\langle v, v \rangle > 0$ for $v \neq 0$.

Ex: $V = \mathbb{C}^n$, $\langle v, w \rangle = \sum_{i=1}^n \overline{v_i} w_i$.

This is a positive definite Hermitian form.

Anti-Symmetric Forms

Let \langle , \rangle be a non-degenerate anti-symmetric (that is, $\langle v, w \rangle = -\langle w, v \rangle$) form on V. (And, of course, V is an F-vector space, where F is not of characteristic 2.)

Defn: A symplectic basis for V is a basis $e_1, f_1, \ldots, e_n, f_n$ where

- $\langle e_i, e_j \rangle = 0$ if $i \neq j$
- $\langle e_i, f_j \rangle = 0$ if $i \neq j$
- $\langle f_i, f_j \rangle = 0$ if $i \neq j$ $\langle e_i, f_i \rangle = 1$

The matrix of $\langle \ , \ \rangle$ with respect to a symplectic basis is

$$\begin{array}{c} e_1 & f_1 & e_2 & f_2 & \cdots \\ e_1 & \begin{bmatrix} 0 & -1 & 0 & 0 & \cdots \\ 1 & 0 & 0 & 0 & \cdots \\ \hline 0 & 0 & 0 & -1 & \cdots \\ \hline 0 & 0 & 0 & -1 & \cdots \\ \hline \vdots & \vdots & \vdots & \vdots & \vdots & \ddots \\ \end{bmatrix}$$

Prop: \langle , \rangle is a non-degenerate, anti-symmetric form on V. Then there is a symplectic basis. Proof: pick $e_1 \neq 0$ in V. By non-degeneracy, $\exists f_1'$ s.t. $\langle e_1, f_1' \rangle \neq 0$. So we can scale f_1' to f_1 s.t. $\langle e_1, f_1 \rangle = 1$. Thus, $V = \operatorname{span}(e_1, f_1) \perp \operatorname{span}(e_1, f_1)^{\perp}$, and continue by induction. \square

Cor: First Corollary: If $\langle \ , \ \rangle$ is a non-degenerate, anti-symmetric form on V, then dim V is even.

Defn: A symplectic space is a pair (V, \langle , \rangle) , where \langle , \rangle is a non-degenerate anti-symmetric form.

Cor: Second Corollary: Any two symplectic spaces of the same dimension are isomorphic.

Group Representations

Let G be a group, V a vector space over a field F.

Defn: A linear action (or representation) of G on V is an action $G \times V \rightarrow V$ such that $g \cdot (\alpha v + \beta w) = \alpha(g \cdot v) + \beta(g \cdot w), \forall \alpha, \beta \in F, v, w \in V.$

So, given a representation of G on V, for each $g \in G$, we get an invertible linear map $\rho(g): V \to V$

This is an element $\rho(q) \in GL(V)$, so $\rho: G \to GL(V)$ is a group homomorphism.

$$g \mapsto \rho(g)$$

Conversely, if $\rho: G \to GL(V)$ is a group homomorphism, then defining $g \cdot v = \rho(q)v$ gives a representation of G on V.

So, we have a correspondence between representations on V and group homomorphisms $\rho: G \to GL(V)$.

Defn: A representation of G is a pair (V, ρ) where V is a vector space and $\rho : G \to GL(V)$ is a group homomorphism. We often omit ρ from the notation.

 $\mathbf{E}\mathbf{x}$:

- 1. G = GL(V), $\rho : G \times GL(V) \to GL(V)$ is the identity map. This is a representation of G on V, called the **standard** representation of G.
- 2. $G = S_n$, $V = F^n$ with basis (e_1, \ldots, e_n) . $\sigma(e_i) = e_{\sigma(i)}$. $\rho(\sigma)$ is the permutation matrix of σ .
- 3. In general, say a group G acts on a set X. Let F[X] be the vector space with basis symbols [x] for $x \in X$. An element of F[X] is a formal sum $\sum_{x \in X} c_x[x]$ where $c_x \in F$ and only finitely many c_x 's are nonzero. F[X] is naturally a representation of G by $g \cdot [x] = [gx]$. These are called **permutation representations**.
- 4. $G = D_n = \langle a, b \mid a^2, b^n, (ab)^2 \rangle$. Define $\rho : G \to \operatorname{GL}_2(\mathbb{R})$ by $a \mapsto \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ and $b \mapsto \begin{pmatrix} \cos \frac{2\pi}{n} & -\sin \frac{2\pi}{n} \\ \sin \frac{2\pi}{n} & \cos \frac{2\pi}{n} \end{pmatrix}$. This is a two-dimensional representation of D_n .
- 5. $G = \{1, \sigma\} \cong \mathbb{Z}/2\mathbb{Z}$. $V = \mathbb{C}[x, y]$, the set of all polynomials in two variables. $\sigma \cdot f(x, y) = f(y, x)$. This is an infinite dimensional representation of G.