IN THE SPECIFICATION

Please replace paragraph [0059] with the following marked up paragraph:

[0059] A scale $j \in \{1...J\}$ is assigned to each block of an image of size $M \times N$, so that a cost function Λ is maximized,

$$S_{opt} = \arg \max_{S \in \{1...J\}^{M \times N}} \Lambda(S, B)$$
 (8)

where S_{opt} is the optimal segmentation map for the entire image, S is one of the $\underline{J^{M\times N}}$ possible labelings. In one embodiment, each of blocks represents a pixel of an image of size $\underline{m\times n}$ $\underline{M\times N}$, where there are $\underline{\frac{M/2^j}{m}\times \frac{N/2^j}{n}}$ blocks of size $\underline{m\times n}$ at level $j\in\{1...J\}$, with each $\underline{\text{pixel}}$ block assigned one of the scales in $\{1...J\}$, and $\Lambda(S,B)$ yields the cost given any segmentation S and any entropy distribution B. In another embodiment, S_{opt} is the optimal segmentation map for the image composed of blocks, greater than one pixel, of size $m\times n$.