Stream Mining One-Hot Encoding and DGIM

Zeno Adrian Weil

Data Science 1 Goethe University Frankfurt

7th of June, 2022

One-Hot Encoding

- categorical features
 - nominal (e.g. colours)
 - ordinal (e.g. satisfaction levels)
- need for numbers in algorithms
- naive approach: number serially
 - may introduce arbitrary orders
 - calculating non-sensical differences
- one-hot encoding
 - one binary feature for each possible value

Encoding The DGIM Algorithm The Mushroom Data Set The Implementation References

The Datar-Gionis-Indyk-Motwani Algorithm

Objectives

- Estimate the number of ones in a bit stream!
- Be space-efficient!
- window size N
- O(log₂ N) buckets
 - timestamp
 - size = number of ones
 - powers of two
 - one or two of each size
 - sizes never decreasing moving back
 - · include all ones; end with ones
- estimation: sum of sizes of all included buckets + half the size of partially included bucket (if any)
 - error rate: 50%
- needs only $\mathcal{O}((\log_2 N)^2)$ many bits

References

- Project code: https://github.com/s9770652/DS1-DGIM
- Mushroom data set: https://archive-beta.ics.uci.edu/ml/datasets/mushroom
- Streamlit: https://streamlit.io/
- Python package dgim: https://pypi.org/project/dgim/
- Description of one-hot encoding: https://sherbold.github.io/intro-to-data-science/04_ Data-Analysis-Overview.html#Features
- Description of the DGIM algorithm: http://infolab.stanford.edu/~ullman/mmds/ch4.pdf