Digital Transmission

Channel Capacity

- How to find coding scheme that achieves Shannon capacity?
- How fast can bits be transmitted reliably over a given transmission system?
 - Amount of energy put in transmitting the system
 - Amount of noise that receiver has to deal with
 - Distance that the signal has to be transmitted over
 - Bandwidth of the transmission channel
- If bandwidth of channel is B, max rate of transmission is 2B pulses/sec
- Infinite data rate by increasing number of bits/pulse
- Practically limited by SNR, non-linear effects, receiver sensitivity, transmitter capability, choice of medium.

Digital Signals

Sampling and Quantization Line coding

Line coding

Digital Transmission

- Discrete, discontinuous voltage pulses called signal elements
- Data levels: voltage levels that actually represent bits
- Multi-level schemes: many bits per pulse
- Unipolar: All signal elements have same polarity
- Polar: positive and negative voltage levels for different elements
- Modulation rate: signal elements per sec (measured in baud)

Digital Signal Properties

- Timing of bits: When does a bit start and end?
 - Synchronous and Asynchronous transmission
- Signal levels: Is the level for a bit high or low? (differential)
- Affected by data rate, bandwidth, SNR, synchronization
- Encoding: converting binary data into digital signal
- Objectives of encoding

- Maximize data rate in a given bandwidth
- Robustness to noise minimize bit error rate
- Lower complexity and cost
- Other properties like self-synchronization, zero DC, error detection
- Tune signal spectrum: concentrate power at mid-frequencies

Encoding Considerations

- Data rate Bandwidth BER tradeoff
 - Increase in data rate increases bit error rate BER
 - Increase in SNR decreases BER
 - Increase in bandwidth increases data rate but also increases noise
- Signal spectrum
 - Lack of DC components
 - Lack of high frequency components
- Clocking/synchronization
- Error detection
- Noise immunity
- Cost and complexity

Encoding schemes

Unipolar-NRZ

Polar-NRZ

differential encoding: data represented by changes rather than levels

- more reliable detection of transition rather than level
- easy to lose sense of polarity due to wrong wiring

NRZ codes

- Pros: easy to engineer, good use of bandwidth
- Cons
 - dc component
 - lack of synchronization capability
- used for magnetic recording, not often for signal transmission

Bipolar-AMI (and Psuedoternary)

Amplitude

- No DC Component
- Lower bandwidth than NRZ codes
- Easy error detection
- Long runs of 0s still a problem

Biphase coding schemes

- Transition at the middle of each bit period
- Predictable transition helps receiver synchronization
- No DC component
- Absence of expected transition helps identification of bit flip
- Used popularly in Ethernet

Bipolar-RZ

- No DC Component
- No problem with long runs of 1s or 0s
- Wastage of bandwidth for a multilevel scheme
- Requires higher signal power for same BER

Manchester

- Transition for clocking and bit representation
- No DC component
- Noise has to invert signal before and after midpoint
- Requires higher bandwidth than other bipolar schemes

Differential Manchester

- Transition at the beginning of bit period represents 0
- Another differential encoding scheme
- Two transitions per bit in the worst case
- Requires twice bandwidth of bitrate

Bandwidth comparison

Scrambling

- Use scrambling to replace sequences that would produce constant voltage
- Filling sequence
- Must produce enough transitions to sync
- Must be recognized by receiver and replace with original
- Same length as original
- No dc component
- No reduction in data rate
- Error detection capability

Block coding

- Handling synchronization issues for schemes with lower bandwidth
- NRZ-I has problem with string of 0s
- Eliminate consecutive 0s by encoding block with another one
- mB/nB: replace m bits with n bits
- Can be used for error detection also
- Increases the bitrate and introduces delay in encoding
- Does not solve DC component issue
- Solution is to use Scrambling for long distance communication

B8ZS

Any run of 4 zeros is replaced by the special pattern: B00X

- X is sent as +/-, such that successive X's have alternating polarity (1st X is arbitrary)
- B is sent as 0 or +/- . Select B such that the next X violates the AMI alternating polarity result,
 i.e send B as 0 if X violates the polarity rule. Otherwise send
 B=X to force a violation of the alternating polarity rule

Valid bipolar signal Bipolar violation

Multi-level schemes

- Increase number of bits per baud
- 2^m data elements on Lⁿ signal patterns; often expressed as mBnL
- Mostly $2^m \le L^n$;
- Redundancy used for synchronization, error detection, DC balance
- Average baud rate is n/m * B/2.
- Combined with parallel transmission to get high data rates
- Complex coding tables

2B1Q

- No redundancy available
- Used in DSL
- Transition table defines the coding scheme
- Requires half bandwidth compared to NRZ-L

8B6T

- 256 bit patterns encoded with 478 signal elements
- Redundancy used for DC balance, synchronization, error detection
- Sender keeps track of weight; signal always has 0 or +1 weight
- Pattern inverted before transmission to produce -1 weight
- Synchronization patterns are introduced during transmission
- 8B4Q sent using 4 parallel lines each with 125Mbaud capacity in 1Gbps LAN

Overview of Analog to Digital Conversion

Pulse Code Modulation (PCM)

- Nyquist Sampling Rate
 - Uniform sampling rate twice the highest frequency is enough
- Pulse amplitude modulation signal
- Discretized by quantization
- Coded in m-digits
- Quantization error or noise
 - Depends on V and m
- SNR = 6.02m + 1.76 dB

Non-linear coding

- Equal spacing of levels produce same mean error for any signal value
- Lower signal values are more distorted
- More levels near low amplitude values non-linear spacing
- Alternately, companding (compress-expand) the input signal
 - Impart higher gain to weaker signal values
 - Higher values are reduced relative to the lower values

Non-linear coding

Delta Modulation

- Analog input is approximated by a staircase function
 - can move up or down one level (δ) at each sample interval
 - has binary behavior, hence can encode each sample as single bit
 - 1 for up or 0 for down
- DM has simplicity compared to PCM
- but has worse SNR

Delta Modulation

Analog Transmission

Analog Signals

Modulation of Carrier Amp., Freq., or Phase

Modulation with digital signal

Amplitude Shift Keying

- encode 0/1 by different carrier amplitudes
 - usually have one amplitude zero
- susceptible to sudden gain changes
- inefficient
- used for
 - up to 1200bps on voice grade lines
 - very high speeds over optical fiber

Amplitude Shift Keying

Frequency Shift Keying

Phase Shift Keying

Quadrature Phase Shift Keying

Dibit	Phase
00	0
01	90
10	180
11	270

Dibit (2 bits)

Constellation diagram

8-level Phase Shift Keying

Tribit	Phase
000	0
001	45
010	90
011	135
100	180
101	225
110	270
111	315

Tribits (3 bits)

Constellation diagram

Quadrature Amplitude Modulation

- QAM used on asymmetric digital subscriber line (ADSL) and some wireless
- combination of ASK and PSK
- logical extension of QPSK
- send two different signals simultaneously on same carrier frequency
 - use two copies of carrier, one shifted 90°
 - each carrier is ASK modulated
 - two independent signals over same medium
 - demodulate and combine for original binary output

8-QAM

QAM Variants

- two level ASK
 - each of two streams in one of two states
 - four state system
 - essentially QPSK
- four level ASK
 - combined stream in one of 16 states
- have 64 and 256 state systems
- improved data rate for given bandwidth
 - but increased potential error rate

