

Fakultät Versorgungstechnik

Wo befinden sich Kraftwerksreserven in Deutschland?

Welche Herausforderungen und Veränderungen ergeben sich in der Zukunft?

Deckert, Moritz

Linnenbrügger, Fynn

Ostfalia Hochschule für angewandte Wissenschaften

- Hochschule Braunschweig/Wolfenbüttel · Salzdahlumer Str. 46/48 · 38302 Wolfenbüttel

Gliederung der Präsentation

- Thematische und begriffliche Einleitung in den Begriff der Kraftwerksreserven
- Wie funktioniert der deutsche Strommarkt?
- Kraftwerksreserven zur Frequenzstabilisierung
- Kraftwerksreserven zur Reserveleistungsvorhaltung
- Versorgungslage der Reserven
- Zukünftige Entwicklung der Reserven
- Zusammenfassung und Fazit

Begriffliche und thematische Einleitung in den Begriff der Kraftwerksreserven

- Derzeit zwei Aufgaben:
 - Frequenzstabilisierung
 - Reserveleistungsvorhaltung
- Herausforderungen aufgrund des Russland-Ukraine-Konflikts:
 - Ausgefallene Gaslieferungen → steigende Energiepreise
 - Maßnahmen zur Reduzierung von Gas an der Stromproduktion
- Herausforderungen aufgrund des steigenden Anteils erneuerbarer Energien an der Stromproduktion:
 - Fehlende Momentanreserve
 - Fehlende Planbarkeit von Betriebsstunden → geringe Wirtschaftlichkeit

Wie funktioniert der deutsche Strommarkt?

- Energy-Only-Market (EOM)
- Merit Order: Kraftwerke werden mit entsprechenden Grenzkosten aufsteigend aufgelistet
- Grenzkostenkraftwerk deckt Angebot und Nachfrage → legt Strompreis fest
- Merit Order Effekt:
 - FF haben Grenzkosten nahe null
 - Drücken den Strompreis
 - Konventionelle Kraftwerke rücken nach rechts
 - → Folge: Schwankende Strompreise, unsichere Betriebsstunden für konventionelle Kraftwerke, häufig unwirtschaftlich

Euro / MWh

Nachfrage in MWh

Euro / MWh

Nachfrage in MWh

Kraftwerksreserven zur Frequenzstabilisierung

- Werden am Regelenergiemarkt gehandelt
- Regelleistung: Reservierung von Kraftwerksleistung
 - → Vergütung von vorgehaltener Leistung (Leistungspreis)
- Regelarbeit: Angebot und Nachfrage regelzonenübergreifend decken
 - → Vergütung von tatsächlich erbrachter Arbeit (Arbeitspreis)
 - → Positive und negative Regelarbeit
- Frequenz < 49,99 Hz
 - → Zu wenig Strom im Netz
- Frequenz > 50,01 Hz
 - → Zu viel Strom im Netz

Amprion

Quelle: https://link.springer.com/book/10.1007/978-3-658-38418-0

50 Hertz

Tennet

Kraftwerksreserven zur Frequenzstabilisierung

- Momentanreserve: Schwungmassen aus z.B. Generatoren (Wirken intrinsisch)
- Systemdienstleistungen: Teil der maximalen Kraftwerksleistung zur Regelung der Frequenz bereitstellen

Quelle: https://www.bundesnetzagentur.de/SharedDocs/Mediathek/Monitoringberichte/Monitoringbericht Energie2021.pdf? blob=publicationFile&v=2

Kraftwerksreserven zur Frequenzstabilisierung – Primärenergieträger

Kumulierte Leistung ausgewählter Primärenergieträger für die PRL, SRL und MRL in GW

Technologie	PRL	SRL+	SRL -	MRL+	MRL -
Kernenergie	0,22	0,18	0,19	1,27	1,27
Braunkohle	0,56	1,20	1,21	4,16	4,20
Steinkohle	0,48	1,05	1,07	2,98	2,88
Erdgas	0,35	3,53	3,57	7,10	6,94
Wasser	4,79	15,10	15,15	13,99	14,01
Batteriespeicher	0,48	0,08	0,06	-	-

Quelle: https://www.regelleistung.net/ext/

- Wasserkraft hat generell den größten Anteil
- Batteriespeicher weisen geringen Anteil auf (SRL und MRL)
- Braun- und Steinkohlekraftwerke langsamer regelbar

Kraftwerksreserven zur Reserveleistungsvorhaltung

Netzreserve, Kapazitätsreserve und Sicherheitsbereitschaft

Netzreserve:

- Kraftwerke für den Redispatch
- Winter 2022/2023: 8,264 GW; Winter 2023/2024: 5,361 GW
- Kapazitätsreserve:
 - Aktivierung bei Unterdeckung von Angebot und Nachfrage
 - Zeitlich nach Strombörse und Systemdienstleistungen
 - 2 GW ausgeschrieben → 1,263 GW kontrahiert
- Sicherheitsbereitschaft:
 - Ausschließlich frühzeitig stillgelegte jedoch systemrelevante
 Braunkohlekraftwerke (Überprüfung durch BNetzA)

Veränderungen durch den Überfall Russlands auf die Ukraine

- Mehrere Verordnungen basierend auf EnWG erlassen
- Steinkohlekraftwerke aus Netzreserve
- Braunkohlekraftwerke aus Sicherheitsbereitschaft

Reguläre Rückkehr an den Strommarkt

- Gelten vorübergehend bis Frühling 2024 und Sommer 2023
- Bedingung: Alarm- oder Notfallstufe Gas ausgerufen
- Steinkohlekraftwerke Mehrum und Heyden 4
- Braunkohlekraftwerke aus Sicherheitsbereitschaft

An den Strommarkt zurückgekehrt

Versorgungslage der Reserven - Braunkohle

- Einziger inländisch geförderter Brennstoff
- Brennstoffversorgung über kraftwerksnahen Tagebau gesichert
- Personelle Lage ebenfalls kein Problem

Quelle: Google Maps/RWE Power AG Kraftwerk Neurath, Energiestraße, Grevenbroich

Quelle: Google Maps/LEAG Lausitz Energie Kraftwerke AG - Kraftwerk Jänschwalde, Teichland

Versorgungslage der Reserven - Steinkohle

- Kein Steinkohleförderung in Deutschland
- Reines Importgut
- Substitution russischer Kohle durch erhöhte Einfuhr aus anderen Ländern

Versorgungslage der Reserven - Erdgas

- Versorgungslage weiter angespannt
- Speicher gefüllt
- Netzumbau schon vor Beginn des Ukraine-Krieges

https://www.bundesnetzagentur.de/DE/Gasversorgung/aktuelle_gasversorgung/_svg/Gasspeicherfuellstand_Veraenderung_taeglich/Gasspeicherfuellstand_Veraenderung_taeglich.html

Versorgungslage der Reserven - Mineralöl

- Versorgung Deutschlands über Pipelines und Schiffsverkehr
- Wegfall von russischem Öl durch Mehrimport aus anderen Staaten kompensiert
- Großteil der Importe durch private Firmen

Oil stocks in selected countries (mb)
and days of forward demand	

and days or forward demand						
Country	Total	Public	Industry	Days		
Czech Republic	22	15	7	123		
Finland	36	19	17	200		
Germany	267	171	98	117		
Hungary	27	11	16	163		
Lithuania	8	2	7	150		
Poland	81	22	59	128		
Slovakia	12	6	6	151		

Source: IEA

Days of forward demand are based on average OECD demand over the next three months.

Quelle: https://www.iea.org/reports/oil-market-report-march-2022

Figure 10.9 Map of Germany's oil infrastructure

Quelle:https://www.greenpeace.de/publikationen/Oelembargo_statt_Kriegsfinanzierung.pdf

Zukünftige Entwicklung der Reserven - Szenario Klimaneutrale Stromversorgung 2035

- Aufbau auf Zielen der aktuellen Bundesregierung
- Berechnungsgrundlagen aus Studie "Klimaneutrales Deutschland 2045"
- Annahmen auf Basis der Novellierung des Erneuerbare-Energien-Gesetz

Annahmen zum Ausbau der Erneuerbaren Energien in KNS2035 und KNDE2045* Tabelle 1							
	KNS2035				KNDE2045		
	2020	2025	2030	2035	2025	2030	2035
Wind Onshore	54	77	115	157	65	80	104
Wind Offshore	8	12	30	58	11	25	41
Photovoltaik	54	108	215	309	91	150	234
Wasserkraft	5	6	6	6	6	6	6
Bioenergie	9	8	8	6	7	7	3
Summe	130	211	374	535	179	268	390

* Angaben in Gigawatt installierter elektrischer Leistung

Prognos (2022)

Quelle: Agora-Energiewende/ Studie Klimaneutrales Stromsystem 2035/ Seite 22

Zukünftige Entwicklung der Reserven - Ergebnisse der Studie

- Aufbau einer Gaskraftwerksreserve von 60 GW
 - → Deckung der Residuallast
- Spätere Versorgung der Kraftwerke durch grünen Wasserstoff aus Elektrolyseprozessen

Quelle: Agora-Energiewende/ Studie Klimaneutrales Stromsystem 2035/ Seite 25 Prognos (2022)

^{*} Stromerzeugung aus Erdgas, die bei Ersatz durch strombasierte Energieträger zu weiteren Treibhausgas-Einsparungen führen kann.

Zukünftige Entwicklung der Reserve - Regelenergiebedarf

- Schon heute großteils aus Gas- und Wasserkraftwerken
- Zukünftige Flexibilität soll Abschaltungen verringern
- In Zeiten hoher Erzeugung Speicherung der Energie
 - → Wärme, Wasserstoff o.ä.

Quelle: Agora-Energiewende/ Studie Klimaneutrales Stromsystem 2035/ Seite 33

Zukünftige Entwicklung der Reserven - Szenario Klimaneutralität 2045

- Aufbau auf EU-Zielen zur Klimaneutralität
- Berechnungsgrundlage bietet das Modell SCOPE-Path
- Annahmen basierend auf dem "Ariadne-Report" des PIK

Energieträger	Ausbau 2020	Ausbauziel 2045
Photovoltaik	54 GW	400 GW
Windkraft Onshore	54 GW	130 GW
Windkraft Offshore	8 GW	40 GW
Summe	116 GW	570 GW

Quelle: Fraunhofer IEE/ Energiewende im Sozialen Raum/ Produkt 3.3/ Seite 15 ff.

Zukünftige Entwicklung der Reserven - Ergebnisse der Studie

- Auch hier: Deckung der Residuallast über Gaskraftwerke
- Benötigte Leistung von 58 GW schon 2030
- Danach schrittweise Umstellung auf Wasserstoff

Quelle: Fraunhofer IEE/ Energiewende im Sozialen Raum/ Produkt 3.3/ Seite 10

Zukünftige Entwicklung der Reserve -Regelenergiebedarf

- Wasserkraft und Backup-Gaskraftwerke
- Flexibilisierung der Verbraucher zentraler Punkt

Quelle: Fraunhofer IEE/ Energiewende im Sozialen Raum/ Produkt 3.3/ Seite 9

Zusammenfassung und Fazit

- Beide Studien liefern ähnliches Ergebnis
 - Frequenzstabilisierung und Redispatch durch vorrangig H₂-Gaskraftwerke und Wasserkraftwerke
 - Erheblicher Zubau von H₂-Gaskraftwerken ca. 30 GW bis 2030
 - Zusätzliche Flexibilität durch bilaterale Verbraucher
 - → Abfederung von Lastspitzen
 - → Verringerte Abschaltung von EE
- Netzreserve und Sicherheitsbereitschaft fallen größtenteils weg (Kohleausstieg)
- Kritik:
 - Kaum Anreize für den Zubau → Abhilfe durch z. B. Kapazitätsmarkt
 - Planung, Bau und Inbetriebnahme von Gaskraftwerks dauert ca. 5 Jahre
- → Ziel des Ausbaus scheint damit sehr schwer erreichbar