

KERSEMI ELECTRONIC CO.,LTD.

- Advanced Process Technology
- Dynamic dv/dt Rating
- 175°C Operating Temperature
- Fast Switching
- Fully Avalanche Rated

$$V_{DSS} = 55V$$

$$\mathsf{R}_{\mathsf{DS}(\mathsf{on})} = 0.040\Omega$$

$$I_{D} = 26A$$

TO-220AB

Description

The TO-220 package is universally preferred for all commercial-industrial applications at power dissipation levels to approximately 50 watts. The low thermal resistance and low package cost of the TO-220 contribute to its wide acceptance throughout the industry.

Absolute Maximum Ratings

	Parameter	Max.	Units
I _D @ T _C = 25°C	Continuous Drain Current, V GS @ 10V	26	
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10V	18	Α
I _{DM}	Pulsed Drain Current ①	100	
P _D @T _C = 25°C	Power Dissipation	56	W
	Linear Derating Factor	0.37	W/°C
V _{GS}	Gate-to-Source Voltage	±20	V
E _{AS}	Single Pulse Avalanche Energy ②	110	mJ
I _{AR}	Avalanche Current ①	16	A
E _{AR}	Repetitive Avalanche Energy ①	5.6	mJ
dv/dt	Peak Diode Recovery dv/dt ③	4.6	V/ns
T _J	Operating Junction and	-55 to + 175	
T _{STG}	Storage Temperature Range		°C
	Soldering Temperature, for 10 seconds	300 (1.6mm from case)	
	Mounting torque, 6-32 or M3 screw.	10 lbf•in (1.1N•m)	

Thermal Resistance

	Parameter	Min.	Тур.	Max.	Units
$R_{\theta JC}$	Junction-to-Case			2.7	
$R_{\theta CS}$	Case-to-Sink, Flat, Greased Surface		0.50		°C/W
$R_{\theta JA}$	Junction-to-Ambient			62	

IRFZ34N

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	55			V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient		0.052		V/°C	Reference to 25°C, I _D = 1mA
R _{DS(ON)}	Static Drain-to-Source On-Resistance			0.040	Ω	V _{GS} = 10V, I _D = 16A⊕
V _{GS(th)}	Gate Threshold Voltage	2.0		4.0	V	$V_{DS} = V_{GS}$, $I_D = 250\mu A$
9 _{fs}	Forward Transconductance	6.5			S	$V_{DS} = 25V, I_{D} = 16A$
I _{DSS}	Drain-to-Source Leakage Current			25	μA	$V_{DS} = 55V, V_{GS} = 0V$
DSS	Drain to Godice Leakage Current			250	μΛ	$V_{DS} = 44V, V_{GS} = 0V, T_{J} = 150^{\circ}C$
I _{GSS}	Gate-to-Source Forward Leakage			100	nA	$V_{GS} = 20V$
1688	Gate-to-Source Reverse Leakage			-100	IIA	$V_{GS} = -20V$
Qg	Total Gate Charge			34		I _D = 16A
Q_{gs}	Gate-to-Source Charge			6.8	nC	$V_{DS} = 44V$
Q_{gd}	Gate-to-Drain ("Miller") Charge			14		V _{GS} = 10V, See Fig. 6 and 13 ④
t _{d(on)}	Turn-On Delay Time		7.0			$V_{DD} = 28V$
t _r	Rise Time		49		ns	$I_D = 16A$
t _{d(off)}	Turn-Off Delay Time		31		115	$R_G = 18\Omega$
t _f	Fall Time		40			$R_D = 1.8\Omega$, See Fig. 10 ④
L _D	Internal Drain Inductance		4.5		nH	Between lead, 6mm (0.25in.)
L _S	Internal Source Inductance		7.5		1111	from package and center of die contact
C _{iss}	Input Capacitance		700			$V_{GS} = 0V$
Coss	Output Capacitance		240		pF	$V_{DS} = 25V$
C _{rss}	Reverse Transfer Capacitance		100			f = 1.0MHz, See Fig. 5

Source-Drain Ratings and Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions							
Is	Continuous Source Current			26		MOSFET symbol							
	(Body Diode)				Α	showing the							
I _{SM}	Pulsed Source Current		400	400		400	400	400	400	400	400		integral reverse
	(Body Diode) ①			100		p-n junction diode.							
V_{SD}	Diode Forward Voltage			1.6	V	T _J = 25°C, I _S = 16A, V _{GS} = 0V ④							
t _{rr}	Reverse Recovery Time		57	86	ns	$T_J = 25^{\circ}C, I_F = 16A$							
Q _{rr}	Reverse Recovery Charge	_	130	200	nC	$di/dt = 100A/\mu s$ ④							
t _{on}	Forward Turn-On Time	Intrinsic turn-on time is negligible (turn-on is dominated by L _S +L _D)											

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11)
- $\ \Im \ I_{SD} \leq 16$ A, di/dt $\leq 420 A/\mu s, \ V_{DD} \leq V_{(BR)DSS}, \ T_J \leq 175^{\circ}C$
- $^{\odot}$ V_{DD} = 25V, starting T _J = 25°C, L = 610 μ H R $_{G}$ = 25 Ω , I $_{AS}$ = 16A. (See Figure 12)
- 4 Pulse width $\leq 300 \mu s$; duty cycle $\leq 2\%$.

Fig 1. Typical Output Characteristics, $T_C = 25^{\circ}C$

Fig 3. Typical Transfer Characteristics

Fig 2. Typical Output Characteristics, $T_C = 175^{\circ}C$

Fig 4. Normalized On-Resistance Vs. Temperature

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 8. Maximum Safe Operating Area

IRFZ34N

Fig 9. Maximum Drain Current Vs. Case Temperature

Fig 10a. Switching Time Test Circuit

Fig 10b. Switching Time Waveforms

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

IRFZ34N

Fig 12a. Unclamped Inductive Test Circuit

Fig 12b. Unclamped Inductive Waveforms

Fig 13a. Basic Gate Charge Waveform

Fig 12c. Maximum Avalanche Energy Vs. Drain Current

Fig 13b. Gate Charge Test Circuit

Peak Diode Recovery dv/dt Test Circuit

Fig 14. For N-Channel HEXFETS

Package Outline

TO-220AB Outline

Dimensions are shown in millimeters (inches)

Part Marking Information

TO-220AB

