Polynomial Interpolation

Vasily Arzhanov

Reactor Physics, KTH

Overview

- Polynomial Interpolation
- Newtonian Approach
- Lagrangian Approach
- Polynomial Interpolation Error
- Runge's Phenomenon
- Mini-Max Problem
- Chebyshev Polynomials

Interpolation

- Limited number of data points
- Interpolate = Estimate in between
- Interpolant = Function/Method
- Questions to be answered
 - How accurate is the interpolant
 - How expensive is the interpolant
 - How smooth is the interpolant
 - How many data points are needed

Interpolation Problem

Find function f(x) such that $f(x_i) = y_i$ $0 \le i \le n$

Example Problem

$$y = f(x) = a_2 x^2 + a_1 x + a_0$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 1 & 2 & 4 \\ 1 & 3 & 9 \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 1 & 2 & 4 \\ 1 & 3 & 9 \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix} \qquad f(0) = a_2 0^2 + a_1 0^1 + a_0 = 1$$
$$f(2) = a_2 2^2 + a_1 2^1 + a_0 = 2$$
$$f(3) = a_2 3^2 + a_1 3^1 + a_0 = 4$$

$$\begin{bmatrix} a_0 \\ a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} 1 \\ -1/2 \\ 1/2 \end{bmatrix}$$

Other Interpolants

$$\begin{bmatrix} 1 & 0 & 1 \\ 1 & \sin 2 & e^2 \\ 1 & \sin 3 & e^3 \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix} \quad f(0) = a_2 e^0 + a_1 \sin 0 + a_0 = 1$$
$$f(2) = a_2 e^2 + a_1 \sin 2 + a_0 = 2$$
$$f(3) = a_2 e^3 + a_1 \sin 3 + a_0 = 4$$

Why Polynomials

Find polynomial p(x) such that $p(x_i) = y_i$ $(0 \le i \le n)$

Taylor's theorem:
$$f(x) = f(c) + \sum_{k=1}^{n} \frac{1}{k!} f^{(k)}(c) (x - c)^{k} + E_{n}(x)$$

Weierstrass theorem: If f is continuous on [a,b],

then for any $\varepsilon > 0$ there is a polynomial p(x)

satisfying $|f(x) - p(x)| < \varepsilon$ on the interval [a,b].

Practical Considerations

- Polynomials have straightforward mathematical properties;
- There is a simple theory about interpolating polynomials;
- Polynomials are the most fundamental of functions for digital computers;
- Addition and multiplication are the only operations needed to evaluated a polynomial;
- CPUs have fast methods in hardware for adding and multiplying floating point numbers.
- Complicated functions can be approximated by polynomials to make them computable with these two hardware operations.

Fundamental Theorem of Algebra

- Every non-constant polynomial with complex coefficients has at least one complex root.
- Every non-zero, degree *n* polynomial with complex coefficients has, counted with multiplicity, exactly *n* roots.

Interpolation Polynomial

$$p(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$$

We seek a polynomial *p* of lowest possible degree such that

$$p(x_i) = y_i \quad (0 \le i \le n)$$

Theorem. If $x_0, x_1, \ldots x_n$ are distinct real numbers, then for arbitrary values $y_0, y_1, \ldots y_n$ there is a unique polynomial $p_n(x)$ of degree at most n such that $p_n(x_i) = y_i$ $(0 \le i \le n)$.

Finding the Polynomial

$$p_n(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$$

$$p_n(x_0) = a_0 + a_1 x_0 + a_2 x_0^2 + \dots + a_n x_0^n = y_0$$

$$p_n(x_1) = a_0 + a_1 x_1 + a_2 x_1^2 + \dots + a_n x_1^n = y_1$$

$$\vdots$$

$$p_n(x_n) = a_0 + a_1x_n + a_2x_n^2 + \dots + a_nx_n^n = y_n$$

Vandermonde Matrix

$$\begin{bmatrix} 1 & x_0 & x_0^2 & \cdots & x_0^n \\ 1 & x_1 & x_1^2 & \cdots & x_1^n \\ 1 & x_2 & x_2^2 & \cdots & x_2^n \\ \vdots & \vdots & \cdots & \ddots & \vdots \\ 1 & x_n & x_n^2 & \cdots & x_n^n \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix} = \begin{bmatrix} y_0 \\ y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$$

$$\det \mathbf{X} = \prod_{0 \le i < j \le n} (x_j - x_i) = (x_n - x_{n-1}) \cdot \dots \cdot (x_1 - x_0)$$

Avoid Vandermonde Matrix

$$n = 16$$
 $x_0 = 1/10$ $x_0^n = 10^{-16} \approx \varepsilon_M$

$$fl\left(1+x_0^n\right)=1$$

$$\det \mathbf{X} = \prod_{0 \le i < j \le n} \left(x_j - x_i \right) = \left(x_n - x_{n-1} \right) \cdot \dots \cdot \left(x_1 - x_0 \right) \approx \mathbf{0}$$

Newtonian Approach

$$p_{n}(x) = c_{0} + c_{1}(x - x_{0}) + c_{2}(x - x_{0}) \cdot (x - x_{1}) + c_{2}(x - x_{0}) \cdot \dots \cdot (x - x_{k-1}) + c_{k}(x - x_{0}) \cdot \dots \cdot (x - x_{k-1}) + c_{k}(x - x_{0}) \cdot \dots \cdot (x - x_{k-1}) \cdot \dots \cdot (x - x_{n-1})$$

Newton's Basis

$$\{\pi_{0}(x), \pi_{1}(x), \dots, \pi_{n}(x)\} \qquad \{1, x, x^{2}, \dots, x^{n}\}$$

$$\pi_{0}(x) = 1$$

$$\pi_{1}(x) = (x - x_{0})$$

$$\pi_{2}(x) = (x - x_{0})(x - x_{1})$$

$$\vdots$$

$$\pi_{n}(x) = (x - x_{0})(x - x_{1}) \dots (x - x_{n-1})$$

$$p_{n}(x) = c_{0}\pi_{0}(x) + c_{1}\pi_{1}(x) + \dots + c_{n}\pi_{n}(x)$$

Newton's Coefficients

$$p_n(x_0) = f(x_0) = c_0$$

$$p_n(x_1) = f(x_1) = c_0 + c_1(x_1 - x_0) \to c_1 = \frac{f(x_1) - f(x_0)}{x_1 - x_0}$$

$$p_n(x_2) = f(x_2) = c_0 + c_1(x_2 - x_0) + c_2(x_2 - x_0)(x_2 - x_1)$$

Coefficient c₂

$$c_2 = \frac{f(x_2) - c_0 - c_1(x_2 - x_0)}{(x_2 - x_0)(x_2 - x_1)}$$

$$c_{2} = \frac{f(x_{2}) - f(x_{1})}{x_{2} - x_{1}} - \frac{f(x_{1}) - f(x_{0})}{x_{1} - x_{0}}$$

$$c_{2} = \frac{x_{2} - x_{1}}{x_{2} - x_{0}}$$

1st Order Divided Difference

$$f\left[x_{1}, x_{2}\right] \equiv \frac{f\left(x_{2}\right) - f\left(x_{1}\right)}{x_{2} - x_{1}}$$

$$c_2 = \frac{f[x_1, x_2] - f[x_0, x_1]}{x_2 - x_0}$$

$$c_1 = \frac{f(x_1) - f(x_0)}{x_1 - x_0} = f[x_0, x_1]$$

2nd Order Divided Difference

$$f[x_0, x_1, x_2] = \frac{f[x_1, x_2] - f[x_0, x_1]}{x_2 - x_0}$$

Order 2:
$$c_2 = f[x_0, x_1, x_2]$$

Order 1:
$$c_1 = f[x_0, x_1]$$

Order 0:
$$c_0 = f[x_0] \equiv f(x_0)$$

High-Order Divided Differences

$$c_{3} = \frac{f\left[x_{1}, x_{2}, x_{3}\right] - f\left[x_{0}, x_{1}, x_{2}\right]}{x_{3} - x_{0}} \equiv f\left[x_{0}, x_{1}, x_{2}, x_{3}\right]$$

$$\vdots$$

$$c_{k} = \frac{f[x_{1}, \dots, x_{k}] - f[x_{0}, \dots, x_{k-1}]}{x_{k} - x_{0}} \equiv f[x_{0}, x_{1}, \dots, x_{k-1}, x_{k}]$$

$$c_3$$
: x_0 x_1 x_2 x_3

Property 1

Theorem 1. The divided difference is a symmetric function of its arguments. Thus, if $(z_0, z_1, \ldots z_n)$ is a permutation of $(x_0, x_1, \ldots x_n)$ then

$$f[z_0, z_1, ..., z_n] = f[x_0, x_1, ..., x_n]$$

$$f\left[x_0, x_1\right] = \frac{f\left(x_1\right) - f\left(x_0\right)}{x_1 - x_0}$$

Property 2

Theorem 2. Let $p_n(x)$ be the polynomial of degree at most n that interpolates f(x) at a set of n+1 distinct nodes, $x_0, x_1, \ldots x_n$. If x is a point different from the nodes, then

$$f(x) - p_n(x) = f\left[x_0, x_1, \dots, x_n, x\right] \prod_{j=0}^n \left(x - x_j\right)$$

Property 3

Theorem 3. If f is n times continuously differentiable on [a,b] and if $x_0, x_1, \ldots x_n$ are distinct points in [a,b], then there exists a point ξ in (a,b) such that

$$f[x_0, x_1, ..., x_n] = \frac{1}{n!} f^{(n)}(\xi)$$

$$f[x_0, x_1] = \frac{f(x_1) - f(x_0)}{x_1 - x_0} = f'(\xi)$$

Comparing with Taylor

$$f(x) - p_n(x) = f\left[x_0, x_1, \dots, x_n, x\right] \prod_{j=0}^n \left(x - x_j\right)$$

$$f[x_0, x_1, ..., x_n, x] = \frac{1}{(n+1)!} f^{(n+1)}(\xi)$$

$$f(x) - p_n(x) = \frac{1}{(n+1)!} f^{(n+1)}(\xi) \prod_{j=0}^n (x - x_j)$$

$$f(x) - t_n(x) = E_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x - c)^{n+1}$$

Newton's Form

$$p_{n}(x) = f[x_{0}] + f[x_{0}, x_{1}](x - x_{0}) + f''(\xi)/2! + f[x_{0}, x_{1}, x_{2}](x - x_{0})(x - x_{1}) + f[x_{0}, x_{1}, x_{2}](x - x_{0})(x - x_{1}) + f[x_{0}, x_{1}, \dots, x_{n}](x - x_{0}) \cdots (x - x_{n-1})$$

Taylor

$$f(x) = f(c) + f'(c)(x-c) + \frac{f''(c)}{2!}(x-c)^2 + \dots + \frac{f^{(n)}(c)}{n!}(x-c)^n + \dots$$

Table of Divided Differences

$$x_0 \quad f[x_0]$$

$$x_1 \quad f[x_1]$$

$$x_2 \quad f[x_2]$$

$$x_3$$
 $f[x_3]$

$$f[x_0, x_1]$$

$$f[x_1,x_2]$$

$$f[x_1, x_2, x_3]$$

$$f[x_0, x_1, x_2]$$

$$x_0$$
 $f[x_0]$ $f[x_0, x_1]$ x_1 $f[x_1]$ $f[x_1, x_2]$ $f[x_1, x_2]$ $f[x_1, x_2, x_3]$ x_2 $f[x_2]$ $f[x_2, x_3]$ $f[x_2, x_3]$ x_3 $f[x_3]$

Nested Multiplication

$$p_3(x) = c_0 + c_1(x - x_0) + c_2(x - x_0)(x - x_1) + c_3(x - x_0)(x - x_1)(x - x_2)$$

$$p_3(x) = c_0 + (x - x_0)[c_1 + (x - x_1)[c_2 + c_3(x - x_2)]]$$

Lagrange's Approach

$$p(x) = y_0 \ell_0(x) + y_1 \ell_1(x) + \dots + y_n \ell_n(x)$$

 $\ell_k(x)$ is a polynomial of degree at most n that depends only on the nodes $x_0, x_1, \ldots x_n$ but not on the ordinates $y_0, y_1, \ldots y_n$.

$$\ell_k\left(x_i\right) = \begin{cases} 1 & i = k \\ 0 & i \neq k \end{cases}$$

Example

Interpolant

$$\ell_k\left(x_i\right) = \begin{cases} 1 & i = k \\ 0 & i \neq k \end{cases}$$

$$p(x) = y_0 \ell_0(x) + y_1 \ell_1(x) + \dots + y_n \ell_n(x)$$

$$p(x_0) = y_0 \ell_0(x_0) + y_1 \ell_1(x_0) + \dots + y_n \ell_n(x_0) = y_0$$

$$p(x_1) = y_0 \ell_0(x_1) + y_1 \ell_1(x_1) + \ldots + y_n \ell_n(x_1) = y_1$$

Cardinal Functions

$$\ell_0(x) = 0 \quad x = x_1, x_2, \dots, x_n \longrightarrow \ell_0(x) = c(x - x_1) \cdots (x - x_n)$$

$$\ell_0(x_0) = 1 = c \prod_{j=1}^n (x_0 - x_j) \longrightarrow c = \prod_{j=1}^n (x_0 - x_j)^{-1}$$

$$\ell_0(x) = \prod_{j=1}^n \frac{x - x_j}{x_0 - x_j}; \qquad \ell_i(x) = \prod_{\substack{j=0 \ j \neq i}}^n \frac{x - x_j}{x_i - x_j} \qquad (0 \le i \le n)$$

Polynomial Interpolation Error

Theorem. Let f be a function in $C^{n+1}[a,b]$, and let p_n be the polynomial of degree at most n that interpolates the function f at n+1 distinct points $x_0, x_1, \ldots x_n$ in the interval [a,b]. To each x in [a,b] there corresponds a point ξ_x in (a,b) such that

$$f(x) - p_n(x) = \frac{f^{(n+1)}(\xi_x)}{(n+1)!} \prod_{i=0}^n (x - x_i)$$

Evaluating Error

Example. Let $f(x) = \sin x$. It is interpolated by $p_9(x)$ at 10 points in (0,1). How large is the error?

$$\left| f^{(n+1)}(\xi_x) \right| \le 1; \quad \left| \prod_{i=0}^n (x - x_i) \right| \le 1$$

$$|f(x) - p_n(x)| = \frac{|f^{(n+1)}(\xi_x)|}{(n+1)!} \cdot \left| \prod_{i=0}^n (x - x_i) \right| \le \frac{1}{10!} < 2.8 \times 10^{-7}$$

Convergence

$$\left| \sin x - p_n(x) \right| = \frac{\left| \sin^{(n+1)}(\xi_x) \right|}{(n+1)!} \left| \prod_{i=0}^n (x - x_i) \right| \le \frac{1}{(n+1)!} \xrightarrow{n \to \infty} 0$$

$$\forall f(x) \in C^m[a,b] \qquad p_n(x) \xrightarrow[n \to \infty]{} f(x) ??$$

$$f_{n}(x) \xrightarrow[n \to \infty]{} f(x) : \begin{cases} \forall x \in [a,b] & f_{n}(x) \xrightarrow[n \to \infty]{} f(x) \\ \|f - f_{n}\| \xrightarrow[n \to \infty]{} 0 & \text{(uniformly)} \end{cases}$$

Convergence of p_n

$$\left\|\sin - p_n\right\|_{\infty} = \max_{0 \le x \le 1} \left|\sin x - p_n(x)\right| \xrightarrow[n \to \infty]{} 0$$

$$||f - p_n||_{\infty} = \max_{a \le x \le b} |f(x) - p_n(x)| \xrightarrow[n \to \infty]{} 0$$

(For most continuous functions!!)

Runge's Function

Runge's Example

Medium Degree Polynomials

Runge's Phenomenon

Negative Result

Theorem. For any prescribed system of nodes

$$a \le x_0^{(n)} < x_1^{(n)} < \dots < x_n^{(n)} \le b$$
$$\left(x_i = i \cdot \frac{b - a}{n} \quad 0 \le i \le n\right)$$

there exists a continuous function f on [a,b] such that the interpolating polynomials for f using these nodes fail to converge uniformly to f, i.e. $||f - p_n|| \leftrightarrow 0$

Positive Result

Theorem. If f is a continuous function on [a,b] then there exists a system of nodes

$$a \le x_0^{(n)} < x_1^{(n)} < \dots < x_n^{(n)} \le b$$

Such that the polynomials p_n of interpolation to f at these nodes converge uniformly to f i.e.

$$||f - p_n||_{\infty} = \max_{a \le x \le b} |f(x) - p_n(x)| \xrightarrow[n \to \infty]{} 0$$

Interpolation Error

$$f \in C^{n+1}[a,b] \longrightarrow f(x) - p_n(x) = \frac{f^{(n+1)}(\xi_x)}{(n+1)!} \prod_{i=0}^n (x - x_i)$$

$$\min_{x_i} \max_{x} \left| \prod_{i=0}^n (x - x_i) \right|$$

$$\prod_{i=0}^{n} (x - x_i) = x^{n+1} + a_n x^n + \dots + a_0$$

Mini-Max Problem

If
$$f \in C^{n+1}[-1,1]$$
 then $f(x) - p_n(x) = \frac{f^{(n+1)}(\xi_x)}{(n+1)!} \prod_{i=0}^n (x - x_i)$

$$\max_{|x| \le 1} |f(x) - p_n(x)| \le \frac{1}{(n+1)!} \max_{|x| \le 1} |f^{(n+1)}(x)| \max_{|x| \le 1} \left| \prod_{i=0}^{n} (x - x_i) \right|$$

Theorem. The minimum of the maximum is attained when the nodes x_i are chosen to be the roots of the Chebyshev polynomial $T_{n+1}(x)$ then

$$\min_{|x_i| \le 1} \max_{|x| \le 1} \left| \prod_{i=0}^{n} (x - x_i) \right| = \frac{1}{2^n}$$

Chebyshev Polynomials

$$T_n(x) = \begin{cases} \cos(n\cos^{-1}x) & (-1 \le x \le 1) \\ \cosh(n\cosh^{-1}x) & (x > 1) \\ (-1)^n \cosh(n\cosh^{-1}(-x)) & (x < -1) \end{cases}$$

$$\begin{cases} T_0(x) = 1 & T_1(x) = x \\ T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x) \end{cases}$$

First 6 Polynomials

$$T_{0}(x) = 1 T_{1}(x) = x$$

$$T_{2}(x) = 2x^{2} - 1$$

$$T_{3}(x) = 4x^{3} - 3x$$

$$T_{4}(x) = 8x^{4} - 8x^{2} + 1$$

$$T_{5}(x) = 16x^{5} - 20x^{3} + 5x$$

$$T_{6}(x) = 32x^{6} - 48x^{4} + 18x^{2} - 1$$

$$T_n(x) = 2^{n-1}x^n + \cdots$$

Some Properties

$$\left|T_n(x)\right| \le 1 \qquad \left(-1 \le x \le 1\right)$$

$$T_n(1) = 1 \qquad T_n(-1) = (-1)^n$$

$$T_n(m_j) = (-1)^j$$
 $m_j = \cos\frac{j\pi}{n}$ $(0 \le j \le n)$

$$T_n(z_j) = 0$$
 $z_j = \cos\frac{(j-1/2)\pi}{n}$ $(1 \le j \le n)$

Chebyshev Zeros

$$z_{j} = \cos\frac{(j-1/2)\pi}{n} = \cos\frac{(2j-1)\pi}{2n} \qquad (1 \le j \le n)$$

Approximation Error

Plotting $T_{41}(x)$

Best Estimate

$$x_i = z_j = \cos\frac{(j-1/2)\pi}{n+1}$$
 $(1 \le j \le n+1)$

$$||f - p_n||_{\infty} \le \frac{1}{(n+1)!2^n} \max_{|x| \le 1} |f^{(n+1)}(x)|$$

$$x = \frac{b-a}{2}z + \frac{b+a}{2}$$
: $[-1,1] \to [a,b]$

Chebyshev Interpolation

Important

- Polynomial Interpolation
- Newton's Approach
- Lagrange Approach
- Polynomial Interpolation Error
- Runge's Phenomenon
- Mini-Max Problem
- Chebyshev Polynomials