

Analyse de Fourier

Author: CatMono

Date: November, 2025

Version: 0.1

Contents

Pretace	ii
Chapter 1 Fourier Series	1
1.1 Fourier Expansion	1
Chapter 2 Convergence of Fourier Series	2
2.1 Mean Convergence	2
2.2 Pointwise Convergence	2
Chapter 3 Fourier Transform on $\mathbb R$	3
Chapter 4 Fourier Transform on \mathbb{R}^n	4
Chapter 5 Finite Fourier Analysis	5
Chapter 6 Dirichlet Theorem	6

Preface

This is the preface of the book...

Chapter 1 Fourier Series

1.1 Fourier Expansion

Chapter 2 Convergence of Fourier Series

2.1 Mean Convergence

Lemma 2.1 (Riemann-Lebesgue Lemma)

Let $f(x) \in R[a,b]$, g(x) has a period T and $g(x) \in R[0,T]$, then:

$$\lim_{p\to +\infty} \int_a^b f(x)g(px)\,\mathrm{d}x = \int_a^b f(x)\,\mathrm{d}x \cdot \frac{1}{T} \int_0^T g(t)\,\mathrm{d}t.$$

A special case is when $g(x) = \sin x$ or $g(x) = \cos x$, then:

$$\lim_{p \to +\infty} \int_a^b f(x) \sin(px) \, \mathrm{d}x = \int_a^b f(x) \cos(px) \, \mathrm{d}x = 0.$$

2.2 Pointwise Convergence

Chapter 3 Fourier Transform on \mathbb{R}

Chapter 4 Fourier Transform on \mathbb{R}^n

Chapter 5 Finite Fourier Analysis

Chapter 6 Dirichlet Theorem

Bibliography

- [1] Elias M. Stein, Rami Shakarchi. Fourier Analysis: An Introduction. Princeton University Press, 2016.
- [2] Author2, Title2, Journal2, Year2. This is another example of a reference.