Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

Claims 1 - 94. (Cancelled)

95. (New) A method for controlling microbial or biofilm growth in a medium, the method comprising mixing

a nitrogen-containing compound or mixture of such compounds selected from the group consisting of:

(i) salts of the formula $Y^{*-}Z^{n_{\chi/n}}$, wherein x is 1 to 3, Y^{*-} is a basic form of an acid Y that contains at least one moiety selected from the group consisting of a primary amine moiety, a secondary amine moiety, a tertiary amine moiety, an amide moiety, an imide moiety, a sulfamide moiety, a sulfimide moiety, and an amineimine moiety, and Z^{+} is a cation other than a cation of the form $[NH_2R^3R^4]^+$ wherein $[NH_2R^3R^4]^+$ is an acidic form of a base NHR^3R^4 wherein R^3 and R^4 are each independently selected from the group consisting of H and C_{1-8} alkyl, or R^3 and R^4 , together with the nitrogen atom to which they are attached, form a 5- to 10-member heterocyclic ring optionally substituted by one or more groups selected from C_{1-6} alkyl, C_{3-8} cycloalkyl, halogen, hydroxy, $-OC_{1-6}$ alkyl or $-OC_{3-8}$ cycloalkyl, and n is a whole number greater than zero; and

(ii) amphoteric molecules Q containing at least one moiety selected from the group consisting of COOH and SO₃H and at least one moiety selected from the group consisting of a primary amine moiety, a secondary amine moiety, and a tertiary amine moiety;

and an aqueous solution of a hypochlorite oxidant to form a biocide,

wherein the molar ratio of nitrogen atoms in said nitrogencontaining compound to said hypochlorite is at least 1:1, and applying said biocide to said medium.

- 96. (New) A method according to claim 95, wherein Y is selected from the group consisting of:
- (a) straight, branched and cyclic molecules containing at least one moiety selected from the group consisting of an amide moiety, an imide moiety, a sulfamide moiety, a sulfimide moiety, and an amineimine moiety, and Y^{x-} is a basic form of said molecule; and
- (b) amphoteric molecules containing at least one moiety selected from the group consisting of COOH and SO_3H and at least one moiety selected from the group consisting of a primary amine moiety, a secondary amine moiety, and a tertiary amine moiety, and Y^{*-} is an anionic form of the amphoteric molecule.
- 97. (New) A method according to claim 96, wherein Y^{x^-} is of the formula $[R^1R^2N-A-COO]^{x^-}$ or $[R^2R^2N-A-SO_3]^{x^-}$, wherein:

A is a bond, straight-chain or branched C₁₋₂₀ alkyl, straightchain or branched $C_{2\text{--}20}$ alkenyl, straight-chain or branched $C_{2\text{--}20}$ alkynyl, C_{3-10} cycloalkyl, straight-chain or branched C_4-C_{20} alkylcycloalkyl, C_{4-10} cycloalkenyl, C_{4-10} cycloalkynyl, or C_6-C_{10} aryl, wherein each C_{1-20} alkyl, C_{2-20} alkenyl, C_{2-20} alkynyl, C_{3-10} cycloalkyl, C_4-C_{20} alkylcycloalkyl, C_{4-10} cycloalkenyl, C_{4-10} cycloalkynyl or C_6-C_{10} aryl is optionally substituted with one or more groups selected from -COOH, -COH, -SCH3, -NH2, =NH, -NHC (=NH) NH_2 , -C(=O) NH_2 , -OH, 4-hydroxyphenyl, 5-imidazolyl, 3indolyl, halogen, $-SO_3H$, =0, C_{1-8} alkyl, C_{3-8} cycloalkyl, C_{4-9} cycloalkylalkyl, phenyl, 4-methylphenyl, benzyl, -O-C₃₋₈ cyclalkyl, $-O-C_{3-8}$ cycloalkyl, $-O-C_{4-9}$ cycloalkylalkyl, -O-phenyl, -0-4-methylphenyl, -0-benzyl, $-SO_2R^7$ or $-NHR^7$ wherein R^7 is H, C_{1-} $_{8}$ alkyl, phenyl, 4-methylphenyl, benzyl or -NH $_{2}$, and wherein each C_{1-20} alkyl, C_{2-20} alkenyl, C_{2-20} alkynyl, C_{3-10} cycloalkyl, C_4 - C_{20} alkylcycloalkyl, C_{4-10} cycloalkenyl, C_{4-10} cycloalkynyl or C_6-C_{10} aryl optionally contains one to three heteroatoms selected from N, O and S;

 R^1 and R^2 are each independently selected from the group consisting of H, straight-chain or branched C_{1-20} alkyl, straight-chain or branched C_{2-20} alkenyl, straight-chain or branched C_{2-20} alkynyl, C_{3-10} cycloalkyl, straight-chain or branched C_4-C_{20} alkylcycloalkyl, C_{4-10} cycloalkenyl, C_{4-10} cycloalkynyl, or C_6-C_{10} aryl, wherein each C_{1-20} alkylcycloalkyl, C_{2-20} alkenyl, C_{2-20} alkynyl, C_{3-10} cycloalkyl, C_4-C_{20} alkylcycloalkyl, C_{4-10} cycloalkenyl, C_{4-10} cycloalkynyl or C_6-C_{10} aryl is optionally substituted with one or more groups selected from -COOH, -COH, -

 SCH_3 , $-NH_2$, =NH, -NHC (=NH) NH_2 , -C (=O) NH_2 , -OH, 4-hydroxyphenyl, 5-imidazolyl, 3-indolyl, halogen, $-SO_3H$, =O, C_{1-8} alkyl, C_{3-8} cycloalkyl, C_{4-9} cycloalkylalkyl, phenyl, 4-methylphenyl, benzyl, $-O-C_{3-8}$ cyclalkyl, $-O-C_{3-8}$ cycloalkyl, $-O-C_{4-9}$ cycloalkylalkyl, $-O-C_{4-9}$ phenyl, -O-4-methylphenyl, -O-benzyl, $-SO_2R^7$ or $-NHR^7$ wherein R^7 is H, C_{1-8} alkyl, phenyl, 4-methylphenyl, benzyl or -NH₂, and wherein each C_{1-20} alkyl, C_{2-20} alkenyl, C_{2-20} alkynyl, C_{3-10} cycloalkyl, C_4-C_{20} alkylcycloalkyl, C_{4-10} cycloalkenyl, C_{4-10} cycloalkynyl or C₆-C₁₀ aryl optionally contains one to three heteroatoms selected from N, O and S; or R1 and A, together with the nitrogen atom to which they are attached, form a 5- to 10-member heterocyclic ring or a 5- to 10-member heteroaromatic ring in which the free electron pair of the nitrogen atom to which R1 and A is attached is not part of the aromatic pi-electron system, the 5- to 10-member heterocyclic or heteroaromatic ring being optionally substituted by one or more groups selected from C_{1-6} alkyl, C_{3-8} cycloalkyl, halogen, hydroxy, $-OC_{1-6}$ alkyl or $-OC_{3-8}$ cycloalkyl; or R1 and R2, together with the nitrogen atom to which they are attached, form a 5- to 10-member heterocyclic ring or a 5- to 10-member heteroaromatic ring in which the free electron pair of the nitrogen atom to which R1 and A is attached is not part of the aromatic pi-electron system, the 5- to 10-member heterocyclic or heteroaromatic ring being optionally substituted by one or more groups selected from C₁₋₆ alkyl, C₃₋₈ cycloalkyl, halogen, hydroxy, $-OC_{1-6}$ alkyl or $-OC_{3-8}$ cycloalkyl.

98. (New) A method according to claim 95, wherein Q is of the formula R¹R²N-A-COOH or R¹R²N-A-SO₃H, wherein: A is a bond, straight-chain or branched C₁₋₂₀ alkyl, straightchain or branched C_{2-20} alkenyl, straight-chain or branched C_{2-20} alkynyl, C_{3-10} cycloalkyl, straight-chain or branched C_4-C_{20} alkylcycloalkyl, C_{4-10} cycloalkenyl, C_{4-10} cycloalkynyl, or C_6-C_{10} aryl, wherein each C_{1-20} alkyl, C_{2-20} alkenyl, C_{2-20} alkynyl, C_{3-10} cycloalkyl, C_4-C_{20} alkylcycloalkyl, C_{4-10} cycloalkenyl, C_{4-10} cycloalkynyl or C_6 - C_{10} aryl is optionally substituted with one or more groups selected from -COOH, -COH, -SCH $_3$, -NH $_2$, =NH, -NHC(=NH)NH₂, -C(=O)NH₂, -OH, 4-hydroxyphenyl, 5-imidazolyl, 3indolyl, halogen, $-SO_3H$, =O, C_{1-8} alkyl, C_{3-8} cycloalkyl, C_{4-9} cycloalkylalkyl, phenyl, 4-methylphenyl, benzyl, -O-C₃₋₈ cyclalkyl, $-O-C_{3-8}$ cycloalkyl, $-O-C_{4-9}$ cycloalkylalkyl, -O-phenyl, -O-4-methylphenyl, -O-benzyl, $-SO_2R^7$ or $-NHR^7$ wherein R^7 is H, C_{1-} $_8$ alkyl, phenyl, 4-methylphenyl, benzyl or -NH $_2$, and wherein each C_{1-20} alkyl, C_{2-20} alkenyl, C_{2-20} alkynyl, C_{3-10} cycloalkyl, C_4 - C_{20} alkylcycloalkyl, C_{4-10} cycloalkenyl, C_{4-10} cycloalkynyl or C_6-C_{10} aryl optionally contains one to three heteroatoms selected from N, O and S;

 R^1 and R^2 are each independently selected from the group consisting of H, straight-chain or branched C_{1-20} alkyl, straight-chain or branched C_{2-20} alkenyl, straight-chain or branched C_{2-20} alkynyl, C_{3-10} cycloalkyl, straight-chain or branched C_4-C_{20} alkylcycloalkyl, C_{4-10} cycloalkenyl, C_{4-10} cycloalkynyl, or C_6-C_{10} aryl, wherein each C_{1-20} alkylcycloalkyl, C_{2-20} alkenyl, C_{2-20} alkynyl, C_{3-10} cycloalkyl, C_4-C_{20} alkylcycloalkyl, C_4

 $_{10}$ cycloalkenyl, C_{4-10} cycloalkynyl or $C_{6}-C_{10}$ aryl is optionally substituted with one or more groups selected from -COOH, -COH, - SCH_3 , $-NH_2$, =NH, $-NHC(=NH)NH_2$, $-C(=O)NH_2$, -OH, 4-hydroxyphenyl, 5-imidazolyl, 3-indolyl, halogen, $-SO_3H$, =0, C_{1-8} alkyl, C_{3-8} cycloalkyl, C_{4-9} cycloalkylalkyl, phenyl, 4-methylphenyl, benzyl, $-O-C_{3-8}$ cyclalkyl, $-O-C_{3-8}$ cycloalkyl, $-O-C_{4-9}$ cycloalkylalkyl, $-O-C_{4-9}$ phenyl, -O-4-methylphenyl, -O-benzyl, $-SO_2R^7$ or $-NHR^7$ wherein R^7 is H, C_{1-8} alkyl, phenyl, 4-methylphenyl, benzyl or -NH₂, and wherein each C_{1-20} alkyl, C_{2-20} alkenyl, C_{2-20} alkynyl, C_{3-10} cycloalkyl, C_4-C_{20} alkylcycloalkyl, C_{4-10} cycloalkenyl, C_{4-10} cycloalkynyl or C₆-C₁₀ aryl optionally contains one to three heteroatoms selected from N, O and S; or R1 and A, together with the nitrogen atom to which they are attached, form a 5- to 10-member heterocyclic ring or a 5- to 10-member heteroaromatic ring in which the free electron pair of the nitrogen atom to which R^1 and A is attached is not part of the aromatic pi-electron system, the 5- to 10-member heterocyclic or heteroaromatic ring being optionally substituted by one or more groups selected from C_{1-6} alkyl, C_{3-8} cycloalkyl, halogen, hydroxy, $-OC_{1-6}$ alkyl or $-OC_{3-8}$ cycloalkyl; or ${\ensuremath{\mbox{R}}}^1$ and ${\ensuremath{\mbox{R}}}^2$, together with the nitrogen atom to which they are attached, form a 5- to 10-member heterocyclic ring or a 5- to 10-member heteroaromatic ring in which the free electron pair of the nitrogen atom to which R1 and A is attached is not part of the aromatic pi-electron system, the 5- to 10-member heterocyclic or heteroaromatic ring being optionally substituted

by one or more groups selected from C_{1-6} alkyl, C_{3-8} cycloalkyl, halogen, hydroxy, $-OC_{1-6}$ alkyl or $-OC_{3-8}$ cycloalkyl; or a salt thereof.

- 99. (New) A method according to claim 95, wherein the concentration of said hypochlorite oxidant in said aqueous hypochlorite oxidant solution immediately prior to mixing with said nitrogen-containing compound is not more than 24,000 ppm as total chlorine.
- 100. (New) A method according to claim 95, wherein said nitrogen-containing compound or mixture thereof is in an aqueous solution at a concentration of 0.5-60% w/v prior to mixing with the hypochlorite oxidant solution.
- 101. (New) A method according to claim 95, wherein said mixing takes place in a mixing chamber into and out of which there is a continuous flow of water during said mixing.
- 102. (New) A method according to claim 95, wherein said hypochlorite oxidant is selected from the group consisting of alkaline and alkali earth metal hypochlorites, hypochlorite released to water from a stable chlorine carrier and hypochlorite formed *in situ* from chlorine gas, and mixtures thereof.
- 103. (New) A method according to claim 95, wherein said hypochlorite oxidant is selected from the group consisting of

lithium hypochlorite, sodium hypochlorite, calcium hypochlorite, magnesium hypochlorite and potassium hypochlorite.

- 104. (New) A method according to claim 95, wherein said nitrogen-containing compound is selected from the group consisting of carbamic acid, sulfamic acid, glycine, glutamine, arginine, histidine, lysine, and mixtures thereof.
- 105. (New) A method according to claim 95, wherein Y is selected from the group consisting of carbamic acid, sulfamic acid, glycine, glutamine, arginine, histidine, and lysine.
- 106. (New) A method according to claim 101, wherein the concentration of said hypochlorite oxidant in said aqueous hypochlorite oxidant solution prior to mixing with said nitrogen-containing compound is not more than 24,000 ppm as total chlorine, and said mixing chamber comprises a conduit through which water flows as said hypochlorite oxidant solution and the nitrogen-containing compound are mixed.
- 107. (New) A method according to claim 106, wherein said solution of hypochlorite oxidant is prepared *in situ* in said conduit prior to addition of said solution of said nitrogen-containing compound to said conduit.
- 108. (New) A method according to claim 95, wherein said nitrogen-containing compound is diluted prior to mixing with the hypochlorite oxidant.

109. (New) A method according to claim 95, wherein said medium is pulp and paper factory process water.

- 110. (New) A method according to claim 95, wherein said medium is cooling tower water.
- 111. (New) A method according to claim 95, wherein said medium is waste water or reclaimed waste water.
- 112. (New) A method according to claim 95, wherein said medium is a clay slurry.
- 113. (New) A method according to claim 95, wherein said medium is a starch slurry.
- 114. (New) A method according to claim 95, wherein said medium is a sludge.
- 115. (New) A method according to claim 95, wherein said medium is soil.
- 116. (New) A method according to claim 95, wherein said medium is a colloidal suspension.
- 117. (New) A method according to claim 95, wherein said medium is irrigation water.

118. (New) A method according to claim 95, wherein said medium is a medium containing strong reducing agents.

- 119. (New) A method according to claim 95, wherein said medium is a medium having a high reducing capacity.
- 120. (New) A method according to claim 95, wherein said medium has an ORP of not greater than 150 millivolts.
- 121. (New) A method according to claim 95, wherein said hypochlorite oxidant and said nitrogen-containing compound are mixed in the absence of added bromide and the medium is substantially free of added bromide during application of said biocide.
- 122. (New) A method according to claim 95, wherein the concentration of said biocide immediately prior to being applied to said medium is from 1000 to 12,000 ppm expressed as total chlorine.
- 123. (New) A method according to claim 95, wherein the concentration of said biocide in said medium, upon application of the biocide to said medium, is 0.5-300 ppm expressed as chlorine.
- 124. (New) A method according to claim 95, wherein said biocide is effective within 1 hour of application to said medium.

125. (New) Apparatus for applying a biocide to a medium, comprising:

a nitrogen-containing compound reservoir containing a nitrogen-containing compound or mixture thereof selected from the group consisting of:

salts of the formula $Y^{x-}Z^{n+}_{x/n}$, wherein wherein x is 1 to 3, Y^{x^-} is a basic form of an acid Y that contains at least one moiety selected from the group consisting of a primary amine moiety, a secondary amine moiety, a tertiary amine moiety, an amide moiety, an imide moiety, a sulfamide moiety, a sulfimide moiety, and an amineimine moiety, and Z^+ is a cation other than a cation of the form [NH₂R³R⁴] + wherein $[NH_2R^3R^4]^+$ is an acidic form of a base NHR^3R^4 wherein R^3 and R^4 are each independently selected from the group consisting of H and C_{1-8} alkyl, or R^3 and R^4 , together with the nitrogen atom to which they are attached, form a 5- to 10-member heterocyclic ring optionally substituted by one or more groups selected from C_{1-6} alkyl, C_{3-8} cycloalkyl, halogen, hydroxy, $-OC_{1-6}$ alkyl or $-OC_{3-8}$ cycloalkyl, and n is a whole number greater than zero; and amphoteric molecules Q containing at least one moiety selected from the group consisting of COOH and SO3H and at least one moiety selected from the group consisting of a primary amine moiety, a secondary amine moiety, and a tertiary amine moiety;

a source of hypochlorite oxidant dilution having a concentration of between not more than 24,000 ppm as total chlorine,

and a mixing chamber operable to mix the dilution and the nitrogen-containing compound or mixture thereof in a molar ratio of nitrogen atoms in the nitrogen-containing compound to the hypochlorite of at least 1:1, to produce the biocide in the mixing chamber.

- . 126. (New) Apparatus according to claim 125, wherein Y is selected from the group consisting of
- (a) straight, branched and cyclic molecules containing at least one moiety selected from the group consisting of an amide moiety, an imide moiety, a sulfamide moiety, a sulfimide moiety, and an amineimine moiety, and Y^{x-} is basic form of the molecule, and
- (b) amphoteric molecules containing at least one moiety selected from the group consisting of COOH and SO_3H and at least one moiety selected from the group consisting of a primary amine moiety, a secondary amine moiety, and a tertiary amine moiety, and Y^{x-} is an anionic form of said amphoteric molecule.
- 127. (New) Apparatus according to claim 125, wherein said source of hypochlorite oxidant dilution comprises a hypochlorite-containing reservoir containing a hypochlorite oxidant solution, and a diluter operable to dilute the

hypochlorite oxidant solution to produce said hypochlorite oxidant dilution having a concentration of not more than 24,000 ppm expressed as total chlorine.

128. (New) Apparatus according to claim 127, wherein said diluter and said mixing chamber are a single conduit which is adapted to dilute said hypochlorite oxidant prior to mixing with said nitrogen-containing compound or mixture thereof.

129. (New) A method for controlling microbial or biofilm growth in a medium, the method comprising mixing a nitrogen-containing compound, a bromide and an aqueous solution of a hypochlorite oxidant to form a biocide, said nitrogen-containing compound being selected from the group consisting of salts of the formula $Y^{x-}[NH_2R^3R^4]^+_x$, salts of the formula $Y^{x-}Z^{n+}_{x/n}$, and molecules Y per se, wherein

 Z^{n+} is a cation other than a cation of the form $[NH_2R^3R^4]^+$ wherein $[NH_2R^3R^4]^+$ is as defined below, and n is a whole number greater than zero

 Y^{*-} is a basic form of an acid Y that contains at least one moiety selected from the group consisting of a primary amine moiety, a secondary amine moiety, a tertiary amine moiety, an amide moiety, an imide moiety, a sulfamide moiety, a sulfamide moiety, and sulfimide moiety, and an amineimine moiety; and $[NH_2R^3R^4]^+$ is an acidic form of a base NHR^3R^4 wherein: R^3 and R^4 are each independently selected from the group consisting of H and C_{1-8} alkyl,

or R^3 and R^4 , together with the nitrogen atom to which they are attached, form a 5- to 10-member heterocyclic ring optionally substituted by one or more groups selected from C_{1-6} alkyl, C_{3-8} cycloalkyl, halogen, hydroxy, $-OC_{1-6}$ alkyl or $-OC_{3-8}$ cycloalkyl; and

x is 1 to 3;

and the molar ratio of nitrogen atoms in said nitrogencontaining compound to hypochlorite is at least 1:1, and applying said biocide to said medium.