FUNDAMENTOS DE INFORMÁTICA (Teleco)

(4 de septiembre de 2014; RESUELTO)

- ${f 1.}$ (4/09/2014) Un fichero de texto contiene 12.000 palabras ocupando en total 72.000 caracteres (incluyendo en ambos casos signos de puntuación y espacios en blanco). Suponiendo que contiene 250 palabras o signos de puntuación distintos y que se almacena utilizando la técnica de compresión de diccionario adaptativo:
 - a) Estimar la capacidad que ocupará el diccionario.
 - b) Estimar la capacidad total del fichero, incluyendo la información tanto del diccionario como del texto.
 - c) Estimar el factor de compresión con respecto a haber almacenado el fichero en UNICODE, sin ningún tipo de compresión.

RESPUESTAS

a) Estimar la capacidad que ocupará el diccionario.

El diccionario contiene el conjunto de palabras o signos de puntuación distintos; es decir 250 elementos. Por otra parte, por término medio, cada elemento tendrá un total de 72.000/12.000 = 6 caracteres. Como están originalmente codificados en UNICODE, la capacidad del diccionario será:

$$C_{diccionario} = 6 \frac{caracteres}{palabra} x \quad 2 \frac{Bytes}{caracter} \cdot 250 \ palabra = 3000 \ Bytes =$$
2,93KBytes

b) Estimar la capacidad total del fichero, incluyendo la información tanto del diccionario como del texto

Como el diccionario tiene 250 elementos, cada uno de las 12.000 palabras ser recodificará con 8 bits (ya que 2⁸=256 < 250), con lo que el texto ocupara:

$$C_{texto} = 12.000 \ palabras \ x \ 1 \frac{Byte}{palabra} = 12.000 \ Bytes$$

Y la capacidad total del fichero después de comprimirlo será:

$$C_d = C_{diccionario} + C_{texto} = 15.000 \, Bytes = 14,65 \, KBytes$$

c) Estimar el factor de compresión con respecto a haber almacenado el fichero en UNICODE

Antes de la compresión la ocupación del fichero será:
$$C_a = 72.000\ caracteres \cdot 2 \frac{Bytes}{caracter} = 144.000\ Bytes$$

Con lo que el factor de compresión será:

$$f_c = \frac{C_a}{C_d} = \frac{144.000}{15000} = 9.6$$

Factor de compresión de 9,6 a 1.

2. (4/09/2014) Suponga que en un computador con un procesador CODE-2, tiene instalada una unidad de disco cuyo controlador tiene asociado el puerto de entrada IPA1 para la lectura de datos del disco y el IPA2 como puerto de estado, y el puerto de salida OPA1 para la grabación de datos en el disco y el OPA2 como puerto de control.

Se desea disponer de un programa que almacene en disco un archivo que se encuentra en memoria principal a partir de la dirección que se encuentra en el registro rA y cuya longitud en palabras se encuentra en el registro rB, teniendo en cuenta, simplificadamente, lo siguiente:

- i. Antes de enviar datos al disco hay que arrancarlo, cargando en el puerto de control la orden H'FEFE.
- ii. Los datos se transfieren a la unidad de disco a través del puerto OPA1.
- iii. Al finalizar el almacenamiento de datos, hay que leer del puerto de estado el código que indica si la operación de almacenamiento en disco se ha realizado correctamente o no, y proporcionar esta información al usuario por el puerto de salida OPO2.
 - a) Realizar un organigrama del programa.
 - b) Efectuar la asignación de registros y memoria
 - c) Redactar el programa en nemónicos (código máquina).
 - d) Escribir el programa en hexadecimal, y
 - e) ¿Cuánto tardaría en ejecutarse el programa (en milisegundos) si se tuviese que almacenar en disco desde memoria un archivo de 2 MBytes, suponiendo que la frecuencia de reloj de CODE-2 fuese de 1 GHz.

a. Organigrama

b. Asignación de registros y de memoria.

El programa se carga a partir de la dirección M(0000)

Rtro.	Contenido	Valor inicial
r0	Valor 0	0000
r1	Valor 1	0001
r2	Orden de arranque del disco	H'FEFE
r3	Dato que se transfiere de memoria a disco	
r4	Información de estado del disco después de realizada la transferencia	
rA	Dirección de memoria del dato a transferirá disco	
rB	Nº de palabras que quedan por transferir a disco	

c. Programa en nemónicos y código máquina. Puede verse en la siguiente tabla:

Dcc. salto	Dirección	Nemónico	Hexadeci mal	Comentarios	
	0000	LLI r0,00	2000	RO ← H'0000	
	0001	LLI r1,01	2101	R1 ←H′0001	
	0002	LLI r2,H'FE	22FE	Cargar en r2 parte baja orden para controlador	
	0003	LHI r2,H'FE	32FE	Cargar en r2 parte alta orden para el controlador	
(a)	0004	ADDS rD,rA,r0	6DA0	rD ← rA; cargar en rD la dirección del dato	
	0005	LD r3, [00]	0300	$r3 \leftarrow M(rD)$; cargar en r3 el dato a transferir a disco	
	0006	OUT OPA1,r3	53A1	OPA1 \leftarrow r3; almacenar el dato en el disco	
	0007	ADDS rA,rA,r1	6AA1	rA ←rA+1; incrementar dirección de memoria	
	0008	SUBS rB,rB,r1	7BB1	rB ← rB -1; restar 1 al n º de datos que quedan por transferir	
	0009	LLI rD, H'0D	2D04	Rd ← 000D; dirección de salto (b)	
	000A	BZ	C100	saltar a (b) si se ha acabado (si rB=0)	
	000B	LLI rD,H'04	2D04	rD ← 004; dirección de salto (a)	
	000C	BR	C000	si no se ha acabado salta a (a) (nueva iteración)	
(b)	000D	IN r4,IPA2	44A2	Leer de controlador de disco el estado	
	000E	OUT OP02,r4	5402	Visualizar en OPO2 el resultado de la transferencia a disco	
	000F	HALT	FFFF	Final	

d. Tiempo que tardaría en ejecutarse el programa

Llamando N al número de datos que hay en la zona de memoria a considerar (valor inicial de rB), en la siguiente tabla se indica el número de ciclos que consume cada instrucción

Nemónico	Nº ciclos/instrucción	Nº de veces que se repite
LLI r0,00	6	1
LLI r1,01	6	1
LLI r2,H'FE	6	1
LHI r2,H'FE	8	1
ADDS rD,rA,r0	7	N
LD r3, [00]	9	N
OUT OPA1,r3	8	N
ADDS rA,rA,r1	7	N
SUBS rB,rB,r1	7	N
LLI rD, H'0D	6	N
BZ	6	N
LLI rD,H'04	6	N
BR	6	N
IN r4,IPA2	8	1
OUT OP02,r4	8	1
HALT	6	1

Entonces el número total de ciclos consumidos en la ejecución del programa será:

$$NC = 26 + 62 \cdot N + 22 = 62 \cdot N + 48$$

Por otra parte, el periodo de reloj (tiempo de ciclo) es:

$$T = \frac{1}{F} = \frac{1}{1 \times 10^9} = 1ns$$

con lo que el tiempo de ejecución del programa sería:

$$t = T \cdot NC = 1 \text{ ns} \cdot (62N + 48) = (62 \cdot N + 48) \text{ ns}$$

Un fichero de 2 MB; es decir de 1 Mp, tardaría en transmitirse del procesador a disco, lo siguiente:

$$t = 62 \cdot 2^{20} + 48 = 65011760 \, ns \approx 65 \, ms$$

3. (4/09/2014) Una estación de medida de la contaminación ambiental tiene que procesar tres tareas periódicas (SPM, CO y SO2) que se presentan simultáneamente cada T_p= 70ms. La ejecución de cada instrucción máquina consume por término medio 4 ciclos de reloj. Las características de las tareas se dan en la siguiente tabla:

Medida	Proceso	Prioridad (1 la mayor)	Nº de instrucciones (millones)
Partículas en suspensión	SPM	2	10
Monóxido de carbono	СО	3	5
Dióxido de azufre	SO2	1	20

Suponiendo que los tiempos de intervención del SO son despreciables (por estar contabilizadas en las instrucciones de los tres procesos):

 a) Obtener la frecuencia mínima del reloj del procesador para que las tres tareas puedan ejecutarse antes de que vuelvan a aparecer (es decir, para que las tres tareas se ejecuten antes de 70 ms).

Los tiempos de ejecución de las distintas tareas, en función de la frecuencia, son:

$$t_{SPM} = NI \cdot NCI \cdot T = \frac{10 \cdot 10^6 \cdot 4}{F}$$

$$t_{CO} = NI \cdot NCI \cdot T = \frac{5 \cdot 10^6 \cdot 4}{F}$$

$$t_{SO2} = NI \cdot NCI \cdot T = \frac{20 \cdot 10^6 \cdot 4}{F}$$

La condición es que los tres procesos se ejecuten en menos de 70 ms; es decir:

$$t_{total} = t_{SPM} + t_{CO} + t_{SO2} += NI \cdot NCI \cdot T = (10 + 5 + 20) \cdot \frac{10^6 \cdot 4}{F} = \frac{140 \times 10^6}{F} segundos \le 70 \times 10^{-3} segundos$$

Es decir,

$$F \ge \frac{140}{70} x 10^9 Hz = 2 GHz$$

Sustituyendo este valor de F en las expresiones del tiempo de ejecución

Resultado	2 GHz

b) Obtener el coeficiente de respuesta del proceso SPM suponiendo planificación SPN (Shortest Process Next).

Sustituyendo el valor de F = 2 GHz en las expresiones del tiempo de ejecución de cada uno de los procesos, se obtienen los resultados que aparecen en la última columna de la siguiente tabla:

Proceso	Prioridad (1 la mayor)	Tiempo de procesador (ms)
SPM	2	20
СО	3	10
SO2	1	40

Con planificación SPN el orden de ejecución de los procesos será: CO \rightarrow SPM \rightarrow SO2. En consecuencia, el tiempo de respuesta del proceso SPM será:

$$t_{res,SPM} = t_{CO} + t_{SPM} = 10 + 20 = 30 \text{ ms}$$

Y el coeficiente de respuesta será:

$$R_{SPM} = \frac{t_{respueta}}{t_{CPU}} = \frac{30 \text{ ms}}{20 \text{ ms}} = 1.5$$

Resultado	1,5
-----------	-----

c) Obtener el coeficiente de respuesta del proceso SPM suponiendo planificación con derecho preferencial.

En este caso el orden de ejecución de los procesos será: SO2 \rightarrow SPM \rightarrow CO. En consecuencia, ahora el tiempo de respuesta del proceso SPM será:

$$t_{res,SPM} = t_{SO2} + t_{SPM} = 40 + 20 = 60 \text{ ms}$$

Y el coeficiente de respuesta será:

$$R_{SPM} = \frac{60 \, ms}{20 \, ms} = 3$$

Resultado	3	