First Order Logic

- known as Predicate logic or First-order predicate logic
- **Objects:** A, B, people, numbers, colors, wars, theories, squares, pits, wumpus
- Relations: It can be unary relation such as: red, round, is adjacent, or n-any relation such as: the sister of, brother of, has color, comes between
- Function: Father of, best friend, third inning of, end of

Basic Elements of FOPL

Constant	1, 2, A, John, Mumbai, cat,
Variables	x, y, z, a, b,
Predicates	Brother, Father, >,
Function	sqrt, LeftLegOf,
Connectives	Λ, ∨, ¬, ⇒, ⇔
Equality	==
Quantifier	∀, ∃

Atomic Sentences and Complex Sentences

- formed from a predicate symbol followed by a parenthesis with a sequence of terms.
- Predicate (term1, term2,, term n)
- Example:
 - Ravi and Ajay are brothers: => Brothers(Ravi, Ajay).
 - Chinky is a cat: => cat (Chinky).
- Complex sentences are made by combining atomic sentences using connectives

First Order Logic Statements

First-order logic statements can be divided into two parts:

- Subject: Subject is the main part of the statement.
- Predicate: A predicate can be defined as a relation, which binds two atoms together in a statement.

Quantifiers

- a. Universal Quantifier, (for all, everyone, everything)
- b. Existential quantifier, (for some, at least one).

Universal Quantifiers

- The Universal quantifier is represented by a symbol ∀
- If x is a variable, then \forall x is read as:
 - o For all x
 - For each x
 - o For every x.
- Example: All man drink coffee

$$\forall x \text{ man}(x) \rightarrow \text{drink } (x, \text{ coffee})$$

There are all x where x is a man who drink coffee.

Existential Quantifier

- denoted by the logical operator \exists
- If x is a variable, then existential quantifier will be $\exists x \text{ or } \exists (x)$. And it will be read as:
 - There exists a 'x.'
 - o For some 'x.'
 - o For at least one 'x.'
- Example: Some boys are intelligent.

 $\exists x: boys(x) \land intelligent(x)$

There are some x where x is a boy who is intelligent.

Some boys are intelligent.

Points to remember:

- \circ The main connective for universal quantifier \forall is implication \rightarrow .
- \circ The main connective for existential quantifier \exists is and \land .

Properties of Quantifiers:

- \circ In universal quantifier, $\forall x \forall y$ is similar to $\forall y \forall x$.
- \circ In Existential quantifier, $\exists x \exists y \text{ is similar to } \exists y \exists x.$
- $\circ \exists x \forall y \text{ is not similar to } \forall y \exists x.$

1. All birds fly

$$\forall x \text{ bird}(x) \rightarrow \text{fly}(x)$$

2. Every man respects his parent.

 \forall x man(x) \rightarrow respects (x, parent).

3. Some boys play cricket.

 $\exists x \text{ boys}(x) \land \text{play}(x, \text{cricket}).$

4. All students are smart.

 $\forall x (Student (x) \Rightarrow Smart (x))$

5. There exists a student.

 $\exists x \ Student(x)$

6. There exists a smart student.

 $\exists x (Student(x) \land Smart(x))$

7. All grass is green

$$\forall$$
 (y)(Grass(y) \rightarrow Green(y))

8. There exist some friends which are not perfect

$$\exists x (F(x) \land \neg P(x))$$

9. There are some people who are not my friend and are perfect

$$\exists x (\neg F(x) \land P(x))$$

10. There exist some people who are not my friend and are not perfect.

$$\exists x (\neg F(x) \land \neg P(x))$$

11. There doesn't exist any person who is my friend and perfect.

$$\neg \exists x (F(x) \land P(x))$$

12. "There exist some numbers which are either real OR rational"

$$\exists x (real(x) \lor rational(x))$$

13. "All real numbers are rational"

 $\forall x (real(x) \rightarrow rational(x))$

14. There exist some numbers which are both real AND rational

 $\exists x (real(x) \land rational(x))$

CNF (Conjunctive Normal Form)

A formula which is equivalent to a given formula and which consists of a product of elementary sums is called a conjunctive normal form of given formula.

$$(P \sim \lor Q) \land (Q \lor R) \land (\sim P \lor Q \lor \sim R)$$