Лабораторная работа 1. Критерий согласия Пирсона

Теоретические сведения

Теория вероятностей и математическая статистика занимаются анализом закономерностей случайных массовых явлений. Предметом математической статистики является изучение случайных величин (или случайных событий, процессов) по результатам наблюдений.

Множество значений результатов наблюдений над одной и той же СВ ξ при одних и тех же условиях называется **выборкой**. Элементы выборки называются **выборочными** значениями. Количество проведенных наблюдений называется объемом выборки. Разность W между максимальным и минимальным элементами называется **размахом** выборки: $W = x_{\text{max}} - x_{\text{min}}$.

Пусть имеется выборка объема n: x_1 ; x_2 ; ...; x_n . Если в выборке объема n элемент x_i встречается n_i раз, число n_i называется **частотой** выборочного значения x_i , а $\frac{n_i}{n}$ — **относительной частотой**. Очевидно, что $\sum_{i=1}^k n_i = n$, где k — число различных элементов выборки.

Последовательность пар $(x_i^*; n_i)$, где $x_1^*, x_2^*, ..., x_k^*$ – различные выборочные значения, а $n_1, n_2, ..., n_k$ – соответствующие им частоты, называется *статистическим рядом*. Обычно статистический ряд записывают в виде таблицы, первая строка которой содержит различные выборочные значения x_i^* , а вторая – их частоты n_i (или относительные частоты $\frac{n_i}{n}$, иногда и те, и другие).

В случае, когда число значений признака (СВ ξ) велико или признак является непрерывным (т. е. когда СВ ξ может принимать любое значение в некотором интервале), составляют интервальный статистический ряд. Для этого весь диапазон выборочных значений от x_{\min} до x_{\max} разбивают на k интервалов (обычно от 5 до 20; для определения количества интервалов можно использовать полуэмпирическую формулу Стерджесса $k \approx 1 + \log_2 n$) одинаковой длины $h = \frac{W}{k}$ и определяют частоты n_i — количество элементов

k выборки, попавших в i-й интервал (элемент, совпадающий с верхней границей интервала, относится к последующему интервалу). Полученные данные сводят в таблицу:

$[x_i; x_{i-1})$	$[x_0; x_1)$	$[x_1; x_2)$	•••	$[x_{k-1};x_k]$
$x_i^* = \frac{x_{i-1} + x_i}{2}$	${x_1}^*$	x_2^*		${x_k}^*$
n_i	n_1	n_2		n_k
$\underline{n_i}$	$\underline{n_1}$	$\underline{n_2}$		n_k
n	n	n	•••	n

Пусть выборка объема *п* представлена в виде интервального статистического ряда. Оценками для математического ожидания и дисперсии наблюдаемой случайной величины являются *выборочное среднее*

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{k} x_i^* n_i$$

и выборочная дисперсия

$$D_{\scriptscriptstyle \mathrm{B}} = \frac{1}{n} \sum_{i=1}^k (x_i^* - \overline{x})^2 n_i, \;$$
или $D_{\scriptscriptstyle \mathrm{B}} = \frac{1}{n} \sum_{i=1}^k (x_i^*)^2 n_i - (\overline{x})^2.$

При этом выборочная дисперсия дает всегда немного заниженную оценку для дисперсии, поэтому вместо нее используют несмещенную оценку дисперсии

$$s^2 = \frac{n}{n-1}D_{\rm B}.$$

Эмпирической функцией распределения называется функция $F_n^*(x)$, определяющая для каждого значения x относительную частоту наблюдения значений, меньших x:

$$F_n^*(x) = \sum_{\substack{x \\ x_i < x}} \frac{n_i}{n}.$$

Гистограммой относительных частот называют ступенчатую фигуру, состоящую из прямоугольников, основаниями которых служат частичные интервалы длины h, а высоты равны $\frac{n_i}{nh}$. Площадь гистограммы относительных частот равна 1. При достаточно большом объеме выборки n и достаточно малых интервалах группировки h гистограмма относительных частот является хорошим приближением графика плотности распределения наблюдаемой случайной величины. Поэтому по виду гистограммы можно выдвинуть предположение (гипотезу) о распределении изучаемой случайной величины.

Процедура сопоставления высказанного предположения (гипотезы) с выборочными данными называется *проверкой гипотез*.

Под *статистической гипотезой* понимают всякое высказывание (предположение) о виде (*непараметрическая гипотеза*) или параметрах (*параметрическая гипотеза*) неизвестного распределения. Статистическая гипотеза называется *простой*, если она полностью определяет функцию распределения. В противном случае гипотеза называется *сложной*.

Одну из гипотез выделяют в качестве *основной* (или *нулевой*) H_0 , а другую, являющуюся логическим отрицанием H_0 , – в качестве конкурирующей (или альтернативной) гипотезы \overline{H} .

Правило, по которому принимается решение принять или отклонить проверяемую гипотезу, называется *критерием проверки статистической гипотезы* (*статистическим критерием*). При этом заранее выбирают допустимое значение ошибки вывода, которое называется *уровнем значимости* статистического критерия и обозначается α (это вероятность отвергнуть нулевую гипотезу, когда она верна).

Статистические критерии, с помощью которых проверяются гипотезы о виде распределения, называются *критериями согласия* или *непараметрическими критериями*.

Критерий согласия χ^2 **Пирсона**. Пусть имеется выборка объема n и сгруппированный статистический ряд, в котором k групп. Например, в случае непрерывной СВ это будут k интервалов $[x_{i-1}; x_i)$.

Группы должны выбираться так, чтобы охватывать весь диапазон значений предполагаемой СВ. Если диапазон значений СВ не ограничен (к примеру, нормальная СВ принимает любые значения из $(-\infty; +\infty)$), то крайние интервалы должны быть расширены до $-\infty$ и $+\infty$ соответственно.

Кроме того, интервалы (группы) должны быть не очень маленькими, чтобы в каждый из них входило не менее 5 наблюдений. Группы с малым количеством наблюдений объединяют с соседними.

Проверяемая гипотеза представляет собой предположение о распределении наблюдаемой СВ и является простой (конкретно указывает предполагаемое распределение):

 H_0 : функция распределения наблюдаемой *CB* совпадает с F(x);

 \overline{H} : функция распределения наблюдаемой CB не совпадает c F(x).

Критерий согласия χ^2 Пирсона основан на сравнении эмпирических и теоретических частот попадания СВ в рассматриваемые группы (интервалы):

 n_i – эмпирическая частота наблюдения значений из интервала $[x_{i-1}; x_i)$;

 $np_i = n \ P(\xi \in [x_{i-1}; x_i)) = n(F(x_i) - F(x_{i-1}))$ — теоретическое значение соответствующей частоты.

Рассмотрим статистику

$$\chi_{\text{pac}^{4}}^{2} = \sum_{i=1}^{k} \frac{(n_{i} - np_{i})^{2}}{np_{i}}.$$

Для вычисления статистики $\chi^2_{\text{расч}}$ нужно знать сгруппированный статистический ряд и теоретическую функцию распределения F(x) для расчета вероятностей p_i . При этом теоретическое распределение F(x) может зависеть от одного или нескольких параметров. В этом случае вместо значений параметров используются их оценки, рассчитанные по сгруппированному статистическому ряду до объединения групп.

Замечание. Контроль вычислений можно осуществить по формуле

$$\chi^2_{\text{pacq}} = \sum_{i=1}^k \frac{n_i^2}{np_i} - n.$$

Пусть r — число неизвестных параметров теоретического распределения, оцененных по выборке. **Критерий согласия** χ^2 **Пирсона** заключается в следующем: ecnu $\chi^2_{pacq} < \chi^2_{\alpha;\,k-r-1}$, zde $\chi^2_{\alpha;\,k-r-1}$ определяется по таблице квантилей распределения χ^2 , то гипотеза H_0 принимается (признается непротиворечащей экспериментальным данным; нет оснований отвергнуть гипотезу H_0) на уровне значимости α , а если $\chi^2_{pacq} \ge \chi^2_{\alpha;\,k-r-1}$, то гипотеза H_0 отвергается (не согласуется с данными эксперимента).

Основное достоинство критерия согласия χ^2 Пирсона — его универсальность, т. е. применимость для любого закона распределения, в том числе с неизвестными параметрами. Основной недостаток — необходимость большого объема выборки (не менее 60– 100 наблюдений) и произвольность группировки, влияющая на величину $\chi^2_{\text{расч}}$.

Контрольные вопросы

- 1. Что называется выборкой? Что называется объемом выборки?
- 2. Что называется частотой выборочного значения? Что называется относительной частотой?
- 3. Как оценить по выборке математическое ожидание и дисперсию наблюдаемой СВ?
 - 4. Как рассчитать несмещенную оценку дисперсии?
- 5. Как оценить по выборке функцию распределения и плотность распределения наблюдаемой СВ?
 - 6. Что называется эмпирической функции распределения?
 - 7. Что называется гистограммой относительных частот?
 - 8. Чему равна площадь гистограммы относительных частот?
 - 9. Что называется статистической гипотезой?
- 10. В каком случае статистическая гипотеза называется простой? сложной?
 - 11. В чем разница между нулевой и альтернативной гипотезами?
 - 12. Что называется уровнем значимости статистического критерия?
 - 13. Что называется критерием согласия?
 - 14. В чем суть критерия согласия χ^2 Пирсона?
- 15. Какие достоинства и недостатки имеет критерий согласия χ^2 Пирсона?

Пример и методические указания по выполнению лабораторной работы в Excel

1. Составить интервальный статистический ряд.

Величину интервалов округлить с точностью до 0,1 в большую сторону.

- 2. Найти эмпирическую функцию распределения и построить ее график.
- 3. Построить гистограмму относительных частот.

Можно ли предположить, что данная выборка взята из нормального распределения?

- 4. Определить выборочное среднее и несмещенную оценку дисперсии по сгруппированному статистическому ряду.
- 5. Записать предполагаемую плотность закона распределения.
- 6. Проверить по критерию χ^2 Пирсона гипотезу о законе распределения. Уровень значимости принять равным $\alpha = 0.05$.

41 32 34 37 34 42 38 31 40 35 37 37 26 39 45 37 40 40 45 31 39 42 47 37 42 40 29 35 40 36 34 31 28 41 49 41 33 37 40 41 43 43 37 29 39 35 42 42 39 50 31 33 38 42 38 35 32 37 45 42 38 44 34 34 34 38 38 30 39 35 47 41 42 33 35 31 35 53 48 39 41 43 29 37 48 42 33 48 39 42 41 33 41 36 43 37 38 43 37 34

1. Объем выборки n=100. Построим интервальный статистический ряд. Количество интервалов определим по формуле Стерджесса $k\approx 1+\log_2 n=1+\log_2 100=7,644$. Принимаем k=8. Размах выборки $W=x_{\max}-x_{\min}=53-26=27$. Длина каждого интервала будет $h\approx \frac{W}{k}=\frac{27}{8}=3,375$. Округлив с точностью до 0,1 в большую сторону, принимаем h=3,4. Находим количество элементов выборки в каждом интервале.

$[x_i; x_{i-1})$	$oldsymbol{x}_{_{i}}^{st}$	n_i	$\frac{n_i}{n}$	$\frac{n_i}{nh}$
[26; 29,4)	27,7	5	0,05	0,015
[29,4; 32,8)	31,1	8	0,08	0,024
[32,8; 36,2)	34,5	21	0,21	0,062
[36,2; 39,6)	37,9	25	0,25	0,074
[39,6; 43)	41,3	19	0,19	0,056
[43; 46,4)	44,7	14	0,14	0,041
[46,4; 49,8)	48,1	6	0,06	0,018
[49,8; 53,2]	51,5	2	0,02	0,006

2. Для построения эмпирической функции распределения и гистограммы относительных частот дополним интервальный статистический ряд столбцами $\frac{n_i}{n}$ (относительные частоты нужны для построения эмпирической функции распределения) и $\frac{n_i}{nh}$ (высоты прямоугольников гистограммы).

Запишем эмпирическую функцию распределения, накапливая относительные частоты $\frac{n_i}{n}$ (отметим, что при построении эмпирической функции распределения по интервальному статистическому ряду изменения ее значений (скачки) происходят в точках, соответствующих серединам интервалов группировки):

$$F_n^*(x) = \begin{cases} 0 & \text{при } x \le 27,7, \\ 0,05 & \text{при } 27,7 < x \le 31,1, \\ 0,13 & \text{при } 31,1 < x \le 34,5, \\ 0,34 & \text{при } 34,5 < x \le 37,9, \\ 0,59 & \text{при } 37,9 < x \le 41,3, \\ 0,78 & \text{при } 41,3 < x \le 44,7, \\ 0,92 & \text{при } 44,7 < x \le 48,1, \\ 0,98 & \text{при } 48,1 < x \le 51,5, \\ 1 & \text{при } x > 51,5. \end{cases}$$

Построим график $F_n^*(x)$.

3. Построим гистограмму относительных частот, состоящую из прямоугольников шириной h=3,4 и высотой $\frac{n_i}{nh}$,

По виду гистограммы можно выдвинуть гипотезу о том, что выборка взята из нормального распределения. Для проверки этой гипотезы по критерию согласия χ^2 Пирсона нужно рассчитать оценки параметров распределения по сгруппированному статистическому ряду.

Ниже приведен фрагмент рабочего листа и даны рекомендации по выполнению пунктов 1, 3 в Excel.

1. 1) В ячейке А1: "Исходные данные", в ячейки А2:J11 введите или скопируйте выборку.

2) В ячейке А12: "Кол-во интервалов"; в ячейке D12: "k="; в ячейке E12 вычислите количество интервалов по формуле Стерджесса и округлите до целого: =ОКРУГЛ(1+LOG(100;2);0) (в Excel каждая формула начинается со знака =; в формулах недопустимы пробелы). Получается k = 8.

В ячейке A13: "min="; в ячейке B13 =МИН(A2:J11); в ячейке C13: "max="; в ячейке D13 =МАКС(A2:J11); в ячейке E13: "W="; в ячейке F13 =D13-B13. В ячейке A14: "длина интервалов"; в ячейке D14 =F13/E12; в ячейке E14: "округляем"; в ячейке G14: "h="; в ячейке H14 =ОКРВВЕРХ(D14;0,1).

- 3) В ячейке А15: "Интервальный статистический ряд". В ячейке А16: "[xi;"; в ячейке В16 "xi+1)"; в ячейке С16: "xi*"; в ячейке Е16: "ni"; в ячейке F16: "ni/n"; в ячейке G16: "ni/n/h". 4) Для нахождения концов интервалов в ячейку А17 запишите минимальное выборочное значение (используйте формулу или ссылку на вычисленное значение), а в ячейки А18 и В17 формулу = A17+\$H\$14, затем скопируйте (протяните) эту формулу в ячейки соответствующих столбцов до строки 24
- При копировании формула в Excel перенастраивается на новые адреса (относительные ссылки). Чтобы адрес какой-либо ячейки был абсолютным (т. е. не перенастраивался), нужно после его указания в процессе формирования формулы нажать клавишу F4 или записать адрес в виде \$A\$1. Клавиша F4 действует в этом случае как переключатель, преобразуя адрес последовательно в \$A\$1, A\$1, \$A1, A1. Знаком \$ обозначается та часть адреса, которая должна оставаться абсолютной. При перемещении формулы в новое место таблицы ссылки в формуле не изменяются.
- 5) В столбце С вычислите середины интервалов.

включительно (т. к. должно быть 8 интервалов).

6) Для вычисления частот выделите массив D17:D24, вызовите

функцию = ЧАСТОТА(А2:J11;В17:В24) и нажмите сочетание клавиш Ctrl+Shift+Enter (три клавиши вместе!). Поскольку в рассматриваемых интервалах левый конец включен, а правый нет, а функция ЧАСТОТА включает, наоборот, правый конец и не включает левый, то для правильного подсчета частот нужно внести следующие исправления. В ячейке E18 запишите формулу = D18-СЧЁТЕСЛИ(\$A\$2:\$J\$11;В18)+СЧЁТЕСЛИ(\$A\$2:\$J\$11;А18) и протяните ее на ячейки E19:E23. В первом интервале нужно только отнять правый конец:

E17=D17-CЧЁТЕСЛИ(\$A\$2:\$J\$11;B17), а в последнем — только прибавить левый конец: E24=D24+CЧЁТЕСЛИ(\$A\$2:\$J\$11;A24). Для контроля вычислений рассчитайте в ячейке E25 сумму частот.

7) Вычислите относительные частоты и высоты прямоугольников гистограммы в столбцах F и G.

3. Построим гистограмму относительных частот, используя вкладку Вставка → Диаграмма.

1) Выделите данные, которые будут отображаться по оси *Ox*, т. е. ячейки C17:C24 (обозначим интервалы их серединами) и, нажав клавишу **Ctrl**, выберите данные, которые будут включены в гистограмму по оси *Oy*, т. е. ячейки G17:G24.

2) Выберите вкладку Вставка → Диаграмма, выберите вариант Гистограмма.

Иелкнув по прямоугольникам гистограммы правой кнопкой мыши, выбираем Формат ряда данных и во вкладке Параметры устанавливаем Боковой зазор 5%.

4) Далее можно изменить название гистограммы и подписи осей.

4. Рассчитаем оценки параметров предполагаемого нормального закона распределения по сгруппированному статистическому ряду. Данный закон содержит два параметра a и σ , которые имеют смысл математического ожидания и среднего квадратического отклонения CB ξ : $M\xi = a$, $D\xi = \sigma^2$.

В качестве оценок для математического ожидания a и дисперсии σ^2 наблюдаемой случайной величины рассчитаем соответственно выборочное среднее \overline{x} и несмещенную оценку дисперсии s^2 , для вычисления s^2 предварительно найдем выборочную дисперсию $D_{\rm R}$:

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{k} x_i^* n_i;$$

$$D_{\text{B}} = \frac{1}{n} \sum_{i=1}^{k} (x_i^*)^2 n_i - (\overline{x})^2;$$

$$s^2 = \frac{n}{n-1} D_{\text{B}}.$$

Используя интервальный статистический ряд, получим:

$$\overline{x} = \frac{1}{100} \cdot (27, 7 \cdot 5 + 31, 1 \cdot 8 + 34, 5 \cdot 21 + 37, 9 \cdot 25 + 41, 3 \cdot 19 + 44, 7 \cdot 14 + 48, 1 \cdot 6 + 51, 5 \cdot 2) \approx 38, 61;$$

$$D_{\rm B} = \frac{1}{100} \cdot (27,7^2 \cdot 5 + 31,1^2 \cdot 8 + 34,5^2 \cdot 21 + 37,9^2 \cdot 25 + 41,3^2 \cdot 19 + 34,5^2 \cdot 21 + 37,9^2 \cdot 25 + 41,3^2 \cdot 19 + 31,1^2 \cdot 19 + 31,1^2$$

$$+44,7^{2} \cdot 14 + 48,1^{2} \cdot 6 + 51,5^{2} \cdot 2) - 38,61^{2} \approx 29,43;$$

$$s^{2} = \frac{100}{99} \cdot 29,43 \approx 29,73.$$

Тогда оценкой для среднего квадратического отклонения σ будет $s = \sqrt{29,43} \approx 5,45$.

5. Функция плотности нормального закона распределения имеет вид

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(x-a)^2}{2\sigma^2}}.$$

Следовательно, выдвигаем гипотезу о том, что выборка взята из нормального распределения с плотностью

$$f(x) = \frac{1}{5,45\sqrt{2\pi}} e^{-\frac{(x-38,61)^2}{59,46}}.$$

4. 1) В ячейке Н16: "Выборочное среднее"; в ячейке Н17: "х-ср="; в ячейке I17 вычислите выборочное среднее по формуле =СУММПРОИЗВ(С17:С24;Е17:Е24)/100.

2) В ячейке Н18: "Выборочная дисперсия"; в ячейке Н19: "Dв="; в ячейке I19 вычислите выборочную дисперсию по формуле = CУММПРОИЗВ(C17:C24;C17:C24;E17:E24)/100-I17*I17.

В ячейке H20: "s2="; в ячейке I20 вычислите несмещенную оценку дисперсии: =I19*100/99.

4) В ячейке H21: "s="; в ячейке I21 вычислите оценку среднего квадратического отклонения: =КОРЕНЬ(I20).

6. Проверим с помощью критерия согласия χ^2 Пирсона гипотезу

 H_0 : наблюдаемая CB имеет нормальное распределение с параметрами $a=38,61, \sigma=5,45$

при альтернативе

 $ar{H}$: наблюдаемая CB имеет другое распределение.

Для расчета статистики критерия Пирсона

$$\chi_{\text{pac}^{4}}^{2} = \sum_{i=1}^{k} \frac{(n_{i} - np_{i})^{2}}{np_{i}}$$

составим новую таблицу, содержащую следующие столбцы:

интервалы $[x_{i-1}; x_i)$ (при этом крайние интервалы должны быть расширены до $-\infty$ и $+\infty$ соответственно; а интервалы с количеством наблюдений меньше 5 объединяются с соседними);

 n_i – эмпирическая частота наблюдения значений из интервала $[x_{i-1}; x_i);$

 $p_i = P(\xi \in [x_{i-1}; x_i))$ — теоретическая вероятность попадания СВ в интервал $[x_{i-1}; x_i)$, в случае нормального распределения с параметрами $a = 38, 61, \sigma = 5, 45$ эта вероятность рассчитывается как разность значений функции Лапласа:

$$p_i = \Phi\left(\frac{x_i - 38,61}{5,45}\right) - \Phi\left(\frac{x_{i-1} - 38,61}{5,45}\right);$$

 np_i – теоретическое значение соответствующей частоты,

а также столбцы со значениями $n_i - np_i$, $(n_i - np_i)^2$, $\frac{(n_i - np_i)^2}{np_i}$, $\frac{n_i^2}{np_i}$.

Последний столбец используется для контроля вычислений по формуле

$$\chi^2_{\text{pacq}} = \sum_{i=1}^k \frac{n_i^2}{np_i} - n.$$

Все вычисления заносим в таблицу.

Интервалы	n_i	p_i	np_i	n_i - np_i	$(n_i - np_i)^2$	$\frac{(n_i - np_i)^2}{}$	n_i^2
						np_i	$\overline{np_i}$
[-∞; 29,4)	5	0,0455	4,552	0,448	0,201	0,044	5,492
[29,4; 32,8)	8	0,0976	9,761	-1,76	3,103	0,318	6,556
[32,8; 36,2)	21	0,1858	18,58	2,416	5,838	0,314	23,73
[36,2; 39,6)	25	0,2428	24,28	0,722	0,521	0,021	25,74
[39,6; 43)	19	0,2177	21,77	-2,77	7,657	0,352	16,58
[43; 46,4)	14	0,1339	13,39	0,607	0,368	0,027	14,63
$[46,4;+\infty)$	8	0,0766	7,664	0,336	0,113	0,015	8,35
Суммы	100	1	100		χ _{pac4} =	=1.0915	101.09

Суммирования значения в предпоследнем столбце, вычисляем выборочное значение статистики критерия χ^2 Пирсона: $\chi^2_{\rm pacq} = \sum_{i=1}^k \frac{(n_i - np_i)^2}{np_i} \approx 1,09$. Сумма элементов последнего столбца равна $\sum_{i=1}^k \frac{n_i^2}{np_i} \approx 101,09$. Это позволяет провести контроль вычислений: $\chi^2_{\rm pacq} = \sum_{i=1}^k \frac{n_i^2}{np_i} - n = 101,09 - 100 = 1,09$.

Определим критическое значение $\chi^2_{\text{крит}} = \chi^2_{\alpha;\,k-r-1}$, где $\alpha = 0,05$ – заданный уровень значимости; k=7 – число интервалов после объединения малочисленных групп с соседними; r=2, поскольку при расчете теоретических вероятностей p_i использовались две полученные по выборке оценки \overline{x} и s параметров нормального распределения. По таблице квантилей распределения χ^2 получаем $\chi^2_{\text{крит}} = \chi^2_{0,05;\,4} = 9,4877$.

Таким образом, $\chi^2_{\rm pacq}=1,09<\chi^2_{\rm крит}=9,4877$, поэтому на уровне значимости $\alpha=0,05$ нет оснований отвергнуть гипотезу H_0 , согласно которой выборка взята из нормального распределения с параметрами $a=38,61,\sigma=5,45$.

Ниже приведен фрагмент рабочего листа и даны рекомендации по выполнению пункта 6 в Excel.

6. 1) В ячейке A26: "Проверка гипотезы о законе распределения по критерию Пирсона". В ячейках A27:G36 будет расположена таблица, помогающая рассчитать значение критерия $\chi^2_{\text{расч}} = \sum_{i=1}^k \frac{(n_i - np_i)^2}{np_i}.$

- 2) Подпишите столбцы таблицы в строке 27: в ячейке A27: "[xi;"; в ячейке B27 "xi+1)"; в ячейке C27: "ni"; в ячейке D27: "pi"; в ячейке E27: "n*pi"; в ячейке F27: "ni-npi "; в ячейке G27: "(ni-npi)^2"; в ячейке H27: "(ni-npi)^2/npi"; в ячейке I27: "ni^2/npi".
- 3) Запишите в ячейки A28:B35 интервалы группировки, задав в ячейке A28 формулу =A17 и протянув ее на остальные ячейки. Аналогично скопируйте в массив C28:C35 частоты из массива E17:E24.
- 4) **Помните**, что при использовании критерия χ^2 Пирсона интервалы числом наблюдений ni < 5 объединяют с соседними. Исправьте интервальный статистический ряд в соответствии с этим замечанием. Учтите, что первый интервал нужно продлить до $-\infty$, а последний до $+\infty$. В ячейке C36 введите формулу =CУММ(C28:C35) и проконтролируйте: сумма частот должна быть равна объему выборки. Скопируйте эту формулу на ячейки D36, E36, H36, I36.
- 5) В столбце D вычислите вероятности попадания нормальной случайной величины в соответствующие интервалы. Для этого в ячейке D29 задайте формулу

=HOPM.PACП(B29;\$I\$17;\$I\$21;ИСТИНА)-

НОРМ.РАСП(A29;\$I\$17;\$I\$21;ИСТИНА) и протяните ее на ячейки D30:D34.

Функция

НОРМ.РАСП(*x*;среднее;стандартное откл;интегральная) вычисляет значение функции нормального распределения

 $F(x) = 0.5 + \Phi\left(\frac{x-a}{\sigma}\right)$. Здесь x — значение, для которого

вычисляется значение функции, среднее — математическое ожидание a (задаем выборочное среднее \overline{x}), стандартное откл — среднеквадратическое отклонение σ (задаем s), интегральная — логическое значение, определяющее форму функции. Для того чтобы получить нужное значение интегральной функции распределения, задаем Интегральная: ИСТИНА. Если задать значение ЛОЖЬ, то получится значение плотности нормального распределения.

Для первого интервала вероятность вычисляется в ячейке D28 как = HOPM.PACП(B28;\$I\$17;\$I\$21;ИСТИНА), для последнего — в ячейке D34 как =1-HOPM.PACП(A34;\$I\$17;\$I\$21;ИСТИНА). В ячейке D36 проконтролируйте, что сумма вероятностей равна 1.

6) В столбцах Е, F, G, H, I вычислите для каждого интервала значения np_i , $n_i - np_i$, $(n_i - np_i)^2$, $\frac{(n_i - np_i)^2}{np_i}$, $\frac{n_i^2}{np_i}$ и посчитайте

соответствующие суммы:

$$\sum_{i=1}^{k} n p_i = n; \qquad \chi_{\text{pac}_{\Psi}}^2 = \sum_{i=1}^{k} \frac{(n_i - n p_i)^2}{n p_i}; \qquad \sum_{i=1}^{k} \frac{n_i^2}{n p_i} = \chi_{\text{pac}_{\Psi}}^2 + n.$$

- 7) Вычислите критическое значение $\chi^2_{\text{крит}} = \chi^2_{\alpha; k\text{-}r\text{-}1}$, где k число интервалов группировки после объединения малочисленных с соседними, r=2, поскольку при расчете теоретических вероятностей использовались две полученные по выборке оценки \overline{x} и s параметров нормального распределения. Для этого в ячейке E37 запишите значение k-r-1 с учетом объединения интервалов, а в ячейке H37 найдите $\chi^2_{\text{крит}}$ по формуле =XИ2.ОБР.ПХ(0,05;E37).
- 8) Сделайте вывод о соответствии или несоответствии проверяемой гипотезы экспериментальным данным при заданном уровне значимости.