Introduction to Machine Learning: Work 3

Pedro Agúndez*, Bruno Sánchez*, María del Carmen Ramírez*, Antonio Lobo*

December 8, 2024

 ${\bf Abstract}$

Abstract

^{*}Universitat de Barcelona pedro.agundez@estudiantat.upc.edu bruno.sanchez.gomez@estudiantat.upc.edu maria.del.carmen.ramirez@estudiantat.upc.edu antonio.lobo@estudiantat.upc.edu

1 Introduction

Introduction.

2 Methodology

Introduction to methodology.

2.1 K-Means

K-Means intro.

2.1.1 Hyperparameters

1. **k**:

• The number of clusters to partition the dataset. Determines the complexity and granularity of the clustering.

2. Distance Metrics:

• Euclidean Distance: Calculates the root of the sum of squared differences between feature values. Standard metric for continuous data:

$$d(x,y) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$$

• Manhattan Distance: Computes the sum of absolute differences between feature values, suitable for both categorical and continuous data:

$$d(x,y) = \sum_{i=1}^{n} |x_i - y_i|$$

• Clark Distance: Accounts for proportional differences between feature values, enhancing interpretability for attributes with varying scales:

$$d(x,y) = \sqrt{\sum_{i=1}^{n} \left(\frac{|x_i - y_i|}{x_i + y_i + \epsilon}\right)^2}$$

where ϵ is a small constant to avoid division by zero.

3. Additional Parameters:

- Initial Centroids: Pre-defined initial cluster centers used as the starting point for the clustering algorithm.
- Maximum Iterations: Limits the number of iterations to prevent excessive computational time, with a default of 10 iterations.

2.1.2 Clustering Methodology

• Clustering Process:

- 1. Assign each data point to the nearest centroid using the specified distance metric.
- 2. Recalculate centroids by computing the mean of all points in each cluster.
- 3. Repeat assignment and recalculation until convergence or maximum iterations are reached.

• Convergence Criteria:

- Clusters are considered stable when centroids no longer significantly change between iterations.

• Variance Computation:

- Total within-cluster variance (E) is calculated by summing squared distances of points to their respective cluster centroids.
- Provides a measure of clustering compactness and quality.

This methodology allows for flexible clustering configurations, enabling analysis across different datasets and hyperparameter values.

2.2 Global K-Means

Out of the proposed improvements to the K-Means algorithm, the first we chose to implement was the **Global K-Means** algorithm [3], which focuses on following a deterministic and systematic approach to "optimal" centroid initialization and cluster formation. Additionally, we have also implemented the improvements to the Global K-Means algorithm itself, proposed in the original article by Likas et al.: *Fast Global K-Means*, and *Initialization with k-d Trees*. By addressing the limitations of traditional K-Means, this enhanced methodology introduces novel strategies, including PCA-based data partitioning and iterative error-reduction mechanisms, to improve both accuracy and computational efficiency.

This section outlines the hyperparameter configurations and clustering methodology adopted for the Global K-Means algorithm, which was implemented in the GlobalKMeansAlgorithm class.

2.2.1 Hyperparameters

We consider the same hyperparameters as for the standard K-Means algorithm (Section 2.1), except for 2 significant modifications:

1. Initial Centroids:

• Global K-Means no longer accepts a collection of initial centroids as a hyperparameter, since the goal of this algorithm is rooted in the deterministic calculation of the "best possible" centroids, which substitutes their random initialization.

2. Number of Buckets:

- Controls initial data partitioning, by defining the number of candidate points that we will consider as possible centroids throughout the algorithm.
- Its default value is $2 \cdot k$, but we also test values $3 \cdot k$ and $4 \cdot k$.

2.2.2 Clustering Methodology

• Initialization with k-d Trees:

- 1. Use k-d tree partitioning based on Principal Component Analysis (PCA).
- 2. Recursively partition data samples into buckets.
- 3. Select candidate points based on bucket centroids.

• Fast Global K-Means Algorithm:

- 1. Initialize first centroid as dataset mean.
- 2. Iteratively add centroids by:
 - For each $k'=2,\ldots,k$, we already have k'-1 centroids.
 - Compute guaranteed error reduction for candidate points with respect to the k'-1 centroids,

$$b_n = \sum_{j=1}^{N} \max \left(d_{k'-1}^j - ||x_n - x_j||^2, 0 \right) ,$$

where $d_{k'-1}^j$ is the squared distance between x_j and the closest centroid among the k'-1 obtained so far. The pair-wise squared distances between points are precomputed at the start.

- Select point with maximum guaranteed error reduction.
- Run k'-means with the k'-1 centroids plus the selected point, until convergence.
- 3. Repeat until k clusters are formed.

This methodology provides a sophisticated approach to centroid initialization and clustering, leveraging PCA-based partitioning and error reduction strategies in order to achieve an improvement in consistency and speed with respect to the base K-Means algorithm.

2.3 Fuzzy C-Means

We selected the **generalized suppressed Fuzzy C-Means** (gs-FCM) algorithm, an improvement over traditional FCM, which often shows multimodal behavior near cluster boundaries (Fig. 1a). This issue, where fuzzy memberships remain high for unrelated clusters, was addressed by Höppner and Klawonn [2].

The suppressed Fuzzy C-Means (s-FCM) algorithm [1] enhances convergence speed and classification accuracy without minimizing the traditional objective function J_{FCM} . It introduces a suppression step during each iteration to reduce non-winner fuzzy memberships, which is mathematically equivalent to virtually reducing the distance to the winning cluster's prototype (Fig. 1b) [5].

Szilágyi et al. [5] defined the quasi-learning rate η of s-FCM, analogous to learning rates in competitive algorithms:

$$\eta(m, \alpha, u_{wk}) = 1 - \frac{\delta_{wk}}{d_{wk}} = 1 - \left(1 + \frac{1 - \alpha}{\alpha u_{wk}}\right)^{(1-m)/2}.$$

Building on this, gs-FCM modifies the learning rate to decay linearly with increasing winner membership u_{wk} for faster convergence, as proposed in sg_{ρ} -FCM [4]:

$$\eta(u_{wk}) = 1 - \rho u_{wk}, \text{ where } 0 \le \rho \le 1.$$

This approach ensures a logical adaptation of membership weighting, expressed as:

$$\alpha_k = \left[1 - u_w + u_w \left(1 - f(u_w)\right)^{2/(1-m)}\right]^{-(1-m)}.$$

(a) Multimodal fuzzy memberships near cluster boundaries for varying fuzzy exponent m.

(b) Suppression effect: Winner cluster $(w_k = 2)$ gains increased membership while non-winners are suppressed.

Figure 1: Figures adapted from [4].

3 Results

To systematically evaluate the different configurations of each clustering algorithm, the following procedure is followed to extract results for each of the 3 data sets, in order to later perform an statistical analysis:

1. **Data Preparation**: The dataset is loaded and the data samples are separated from their labels into separate 2 sets. This way, we perform the clustering analysis in a completely non-supervised way, and we then utilize the labels to extract supervised metrics of the cultering results.

- 2. **Parameter Configuration**: A comprehensive set of values for the algorithm's hyperparameters is defined. These combinations reflect various ways to tune the clustering algorithm.
- 3. Model Evaluation: For each parameter combination, the clustering algorithm is applied on the unlabeled data and then evaluated with different metrics. This step yields the following metrics: total cluster variance (E), Adjusted Rand Score (ARI), F1-score, Davies-Bouldin Index(DBI), Silhouette score, Calinski-Harabasz score, and execution time. Together, these metrics (some supervised, some non-supervised) measure the effectiveness and efficiency of the clustering.
 - *Note:* Not all clustering algorithms are based on centroids, hence the total cluster variance is not computed for those which are not.
- 4. **Results Compilation**: The performance metrics for each parameter combination are recorded in a structured format. These results are saved as a dataset that summarizes the outcomes of all evaluations, forming a basis for analysis.
- 5. **Statistical Analysis**: After results are compiled across all configurations, statistical analysis is performed to identify the best-performing configurations. This analysis helps determine the most reliable and effective parameter settings for accurate and efficient clustering. We will discuss our results in the following sections.

3.1 K-Means

Results of K-Means.

4 Conclsuion

Conclusion.

References

- [1] J.L. Fan, W.Z. Zhen, and W.X. Xie. Suppressed fuzzy c-means clustering algorithm. <u>Pattern Recognition</u> Letters, 24:1607–1612, 2003.
- [2] F. Höppner and F. Klawonn. Improved fuzzy partitions for fuzzy regression models. <u>International Journal</u> of Approximate Reasoning, 32:85–102, 2003.
- [3] Aristidis Likas, Nikos Vlassis, and Jakob J. Verbeek. The global k-means clustering algorithm. Pattern Recognition, 36(2):451–461, 2003.
- [4] László Szilágyi and Sándor M. Szilágyi. Generalization rules for the suppressed fuzzy c-means clustering algorithm. Neurocomputing, 139:298–309, 2014.
- [5] L. Szilágyi, S.M. Szilágyi, and Z. Benyó. Analytical and numerical evaluation of the suppressed fuzzy c-means algorithm: a study on the competition in c-means clustering models. <u>Soft Computing</u>, 14:495–505, 2010.