Regulation-induced Interest Rate Risk Exposure

Maximilian Huber

NYU Student Macro Lunch

November 1, 2021

Research Question

- How exposed are life insurers to interest rate risk?
- Naturally exposed through their business:
 - ► Liabilities: long-term mortality insurance policies and retirement savings vehicles ⇒ 7% of household financial assets
 - \blacktriangleright Assets: bonds and mortgages \Rightarrow more than 25% of corporate bonds
- Maturity matching? Potential for risk-shifting ⇒ statutory regulation

Findings

- Quantification: when interest rates fall by one-percentage-point...
 - life insurers realize a balance sheet loss of \$121 billion or 26% of capital in 2019.
 Regulatory micro data ⇒ how long-term are the liabilities compared to assets?
 - life insurers earn a half percentage point lower spread on newly issued policies.Incomplete pass-through from bond market interest rates to annuity interest rates
- Two exposures do not offset each other! Explanation:
 - 3. Model of a life insurer featuring statutory regulation ⇒ statutory hedging motives overpower economic hedging motives!
 - Empirical evidence, policy recommendations, learnings

0. Preliminaries

Interest Rate Sensitivity

 \bullet Value V of a risk-free bond:

$$V = \sum_{h=1}^{\infty} e^{-h \cdot \mathbf{r}_h} \cdot b_h$$

where b_h is the cash flows in h years and r_h is the corresponding Treasury yield.

• Contemplate a level shift \Rightarrow Duration:

$$D_V = -\frac{1}{V} \frac{\partial V}{\partial r} = \frac{1}{V} \sum_{h=1}^{\infty} h \cdot e^{-h \cdot r_h} \cdot b_h$$

- Duration of a 10-year zero-coupon bond? 10 years.
- Value *E* of a life insurer:

$$E = \underbrace{A - L}_{\text{net assets}} + \underbrace{F}_{\text{franchise}}$$

• Duration:

$$D_E = \frac{A - L}{F} D_{A-L} + \frac{F}{F} D_F$$

1. Net Assets A - L

Duration of Net Assets

• Duration of net assets D_{A-L} and duration gap G:

$$D_{A-L} = -\frac{1}{A-L} \frac{\partial (A-L)}{\partial r} = \frac{A}{A-L} \left(\underbrace{D_A - \frac{L}{A} D_L}_{=G} \right) \geq 0$$

- Estimate D_A from the transparent data on the assets.
- Estimate D_L from the statutory accounting data on the liabilities.

Actuarial and Reserve Value of a Liability

ullet Actuarial (fair) V and reserve value \hat{V} of a liability:

$$V_t = \sum_{h=1}^{\infty} e^{-h \cdot r_{t,h}} \cdot \mathbb{E}_tig[oldsymbol{b}_{t+h} ig] \qquad \hat{V_t} = \sum_{h=1}^{\infty} ig(1 + oldsymbol{\hat{r}}_{\mathcal{S}} ig)^{-h} \cdot \hat{oldsymbol{b}}_{t+h}$$

where \hat{r}_s is the reserve discount rate and \hat{b} are reserve cash flows specific to a valuation standard S prescribed by regulation.

• Pseudo-actuarial value:

$$ilde{V}_t = \sum_{h=1}^{\infty} e^{-h \cdot r_{t,h}} \cdot \hat{b}_{t+h}$$

Example

Valuation and duration at issuance for a life annuity for a 65-year-old male

▶ Cash flows and Life-cylce

Data

- Need \hat{b} for the pseudo-actuarial value and duration!
- Back out from reserve values \hat{V} :

$$\hat{V}_{i,t,S} = \left(1 + \hat{r}_S\right)^{-1} \hat{b}_{i,t+1,S} + \left(1 + \hat{r}_S\right)^{-1} \hat{V}_{i,t+1,S}$$

- "Exhibit 5 Aggregate Reserves for Life Contracts":
 - at the end of year t from 2001 to 2020
 - for each life insurer i out of 900
 - ▶ aggregated to valuation standard S (mortality table, reserve discount rate \hat{r} , issue years)

1	2				
Valuation Standard	Total				
Life Insurance:		Life Insu			
0100001. 58 CSO - NL 2.50% 1961-1969	243,737	010000			
T.	1				
0100025. 80 CSO - CRVM 4.50% 1998-2004	306,242,662	010002			
I	1				
0100037. 01CSO CRVM - ANB 4.00% 2009		010003			
0199997. Totals (Gross)	466,142,285	019999			
0199998. Reinsurance ceded	339,424,855	019999			
0199999. Totals (Net)	126,717,430	0199999			
Annuities (excluding supplementary contracts with life contingencies): Annuit					
0200001. 71 IAM 6.00% 1975-1982 (Imm)	359,802	020000			
	1				
0200028. 83 IAM 7.25% 1986 (Def)	188,675,689	020002			
	1				
0200043. Annuity 2000 4.75% 2004 (Def)	206,817,839	020004			
0200047. Annuity 2000 4.50% 2010 (Def)		020004			
0299997. Totals (Gross)		029999			
0299998. Reinsurance ceded	7,415,759	029999			
0299999. Totals (Net)	9,669,485,517	029999			
9999999. Totals (Net) - Page 3, Line 1	9,804,893,998	9999999			

Exhibit 5 of the Great American Life Insurance Company in 2010

Empirics of Reserve Decay

• Reserve decay has life-cycle pattern:

$$\frac{\hat{b}_{i,t,S}}{\hat{V}_{i,t-1,S}} = \Psi_{t-\tau,S} + \epsilon_{i,t,S}$$

estimated by least squares weighted by $\hat{V}_{i,t-1,S}$.

- Estimated model yields predictions for \hat{b} . Richer Models
- Calculate pseudo-actuarial duration D_{I} .
- Duration gap:

$$G=D_A-\frac{L}{A}D_L$$

Evolution of selected reserve positions

Estimated reserve decay

Duration of liabilities

Net assets

Duration of Net Assets

2. Funding Franchise

Incomplete Pass-Through: Annuity Rates

• How do the annuity interest rate react to a change of Treasury interest rates?

$$\Delta r_{t,h}^{a} = \alpha_h + \beta_h \cdot \Delta r_{t,h}^{T} + \epsilon_{t,h}$$

• How does the reserve discount rate react to a change of Treasury market interest rates?

$$\Delta \hat{r}_t^a = \alpha_h + \hat{\beta}_h \cdot \Delta r_{t,h}^T + \epsilon_{t,h}$$

Estimates $\hat{\beta} \approx 0.15$.

• Interest rates rise, economic spreads rise: $1 - \beta > 0$

Recap

- When interest rates fall...
 - 1. life insurers realize a capital loss on their existing balance sheet.
 - 2. life insurers earn a lower spread on newly issued policies.
- What would make them to amplify rather than hedge these two exposures after 2010?
 - ► Towers Watson Life Insurance CFO Survey #30 June 2012
 - * "Almost all (97%) respondents consider interest rate risk a significant exposure for their company."
 - * "When considering interest rate exposure, respondents cited the level of statutory capital and earnings as the primary metrics for concern."

Incomplete Pass-Through: Annuity Rates

• How do the annuity interest rate react to a change of Treasury interest rates?

$$\Delta r_{t,h}^{A} = \alpha_h + \beta_h \cdot \Delta r_{t,h}^{T} + \epsilon_{t,h}$$

Estimates $\beta \approx 0.5$ are consistent with Charupat, Kamstra, and Milevsky (2016).

• How does the reserve discount rate react to a change of Treasury market interest rates?

$$\Delta \hat{r}_t^A = \alpha_h + \hat{\beta}_h \cdot \Delta r_{t,h}^T + \epsilon_{t,h}$$

Estimates $\hat{\beta} \approx 0.15$.

• Interest rates rise, economic spreads rise: $1 - \beta > 0$, statutory spreads falls: $\hat{\beta} - \beta < 0$.

3. Model

Model of a Life Insurer

- Partial equilibrium model of a life insurer:
 - chooses the duration of legacy capital (net assets)
 - ▶ is subject to variation in economic earnings from issuing new policies
- Two reduced form financial frictions:
 - cost of operating with a volatile economic capital
 - cost of operating with a volatile statutory capital

Model of a Life Insurer

- \bullet Static problem with exogenous, stochastic bond market interest rate r
- Life insurer issues annuity, pays interest rate r^A , and earns the spread $r r^A$
- Life insurer chooses the duration of the existing balance sheet D:

$$\max_{D} \quad \mathbb{E}\Big[r - r^{A} - C(R_{K}) - \hat{C}(R_{\hat{K}})\Big]$$

with reduced form costs $C(R_K) = \frac{\chi}{2} R_K^2$ and $\hat{C}(R_{\hat{K}}) = \frac{\hat{\chi}}{2} R_K^2$.

• Economic capital return:

$$R_K = \underbrace{-D(r - \mathbb{E}[r])}_{\text{return on legacy capital}} + \underbrace{r - r^A}_{\text{economic earnings}}$$

• Statutory capital return:

$$R_{\hat{K}} = \underbrace{-\psi D(r - \mathbb{E}[r])}_{\text{return on legacy statutory capital}} + \underbrace{\hat{r} - r^A}_{\text{statutory earnings}}$$

Balance Sheet Duration

• First-order condition:

$$D = \frac{\chi(1-\beta) + \hat{\chi}\psi(\hat{\beta} - \beta)}{\chi + \psi^2 \hat{\chi}}$$

• Without the regulatory friction $\hat{\chi} = 0$, the economic hedging motives prevail:

$$D = 1 - \beta > 0$$

• Without the economic friction $\chi = 0$, the statutory hedging motives prevail:

$$D = \frac{\hat{\beta} - \beta}{\psi} < 0$$

• The annuity interest rate reacts more to the bond market interest rate than the reserve discount rate does!

Balance Sheet Duration: Predictions

$$D = \frac{\chi(1-\beta) + \hat{\chi}\psi(\hat{\beta} - \beta)}{\chi + \psi^2\hat{\chi}}$$

• Reserve discount varies by policy type: $\hat{\beta}^{\text{life}} < \hat{\beta}^{\text{annuity}}$:

$$\mathit{FL}_{i,t} = \frac{(\text{Liabilities in Life Insurance Policies})_{i,t}}{(\text{Liabilities})_{i,t}}$$

• Higher statutory leverage increases $\hat{\chi}$.

$$Lev_{i,t} = \frac{(\text{Statutory Assets})_{i,t}}{(\text{Statutory Equity})_{i,t}}$$

• Larger life insurers have better access to capital and lower χ :

$$Log A_{i,t} = log ((Market Value of Assets)_{i,t})$$

Evidence

• What explains the cross section of the duration gaps?

$$\begin{aligned} G_{i,t} = & \alpha_t + \\ & \gamma_{FL} F L_{i,t} + \gamma_{Lev} Lev_{i,t} + \gamma_{LogA} Log A_{i,t} + \gamma \cdot X_{i,t} + \epsilon_{i,t} \end{aligned}$$

• What explains the panel of the duration gaps?

$$\begin{aligned} \textit{G}_{\textit{i},t} = & \alpha_{\textit{i}} + \alpha_{\textit{t}} + \\ & \gamma_{\textit{FL}} \textit{FL}_{\textit{i},2008} + \gamma_{\textit{Lev}} \textit{Lev}_{\textit{i},t} + \gamma_{\textit{LogA}} \textit{LogA}_{\textit{i},t} + \gamma \cdot \textit{X}_{\textit{i},t} + \epsilon_{\textit{i},t} \end{aligned}$$

	(1)	(2)
FL	-12.323***	-8.868***
Lev	-0.020***	0.002
LogA	-0.135***	0.826
Mutual	-1.510***	
MktLev	-0.000	-0.000
Year FE	Yes	Yes
Life Insurer FE		Yes
N	5,871	5,867
R^2	0.332	0.804

Recent Regulatory Reform

- Annuity reserve discount rate changed in 2018 with "VM-22":
 - replaced formula with 7 pages of text and formulas
 - ▶ based on the Treasury yields over previous quarter or even day \Rightarrow higher $\hat{\beta}$!
- Life insurance policies reserve discount rate changed in 2020 with "VM-20":
 - based on yields on assets and prescribed mean reversion interest rate set by the state insurance commissioners
 - $\hat{\beta}$ depends on insurance commissioners \Rightarrow make it responsive and be transparent about it!

Literature Review

- Interest rate risk in banking: Begenau, Piazzesi, and Schneider (2020), Drechsler, Savov, and Schnabl (2017, 2021), Di Tella and Kurlat (forthcoming)
- Financial frictions and risk taking of life insurers: Becker and Ivashina (2015), Koijen and Yogo (2021)
- Risk management and accounting: DeMarzo and Duffie (1992), Heaton, Lucas, and McDonald (2010), Sen (2019)
- Overcoming balance sheet opacity: Gomez, Landier, Srear, and Thesmar (2021), Möhlmann (2021), Tsai (2009)
- Stability of life insurance liabilities: Chodorow-Reich, Ghent, and Haddad (2020), Ozdagli and Wang (2019)

Conclusion

When interest rates fall:

- 1. life insurers realize a capital loss on the existing balance sheet
- 2. life insurers earn a lower spread on newly issued policies
- 3. life insurers want to hedge statutory earnings rather than economic earnings because of statutory regulation

Thank you!

mjh635@nyu.edu

Background

- Life insurers provide insurance against mortality and retirement saving vehicles.
- Assets: transparent!
 - ▶ Life insurance companies own assets of about \$6.3 trillion or 30% of U.S. GDP in 2020
 - ▶ 37% of life insurer's assets are invested in corporate and foreign bonds
 - ▶ Corporate and foreign bond debt \$15 trillion of which 22% are held by life insurers
- Liabilities: opaque!
 - ▶ Household financial assets of \$105 trillion: 13% deposits, 43% securities, 30% pension entitlements and life insurance
 - ▶ Guaranteed by state guaranty funds in the case of default
- Equity: many public/private stock companies, few large mutual companies

Related Literature

- Risk taking behaviour of financial intermediaries (Koijen and Yogo 2021, Sen 2019, Hartley et al. 2016, English et al. 2018). Financial frictions affect the behaviour of life insurance companies (Koijen and Yogo 2015, Ellul et al. 2011).
- Creative methods try to overcome the opacity of the balance sheet (Begenau et al. 2020, Gomez et al. 2020, Möhlmann 2021). The stability of life insurance companys' liabilities is a contentious matter (Chodorow-Reich et al. 2020, Ozdagli and Wang 2019).
- Banks have a negative correlation between the balance sheet gains and future profits (Drechsler et al. 2021, Kurlat and DiTella 2017). Interest rate pass-through of interest rates is well studied in banking: average deposit spread beta of 0.54 (Drechsler et al. 2017).
- Low interest rates may impede financial intermediation (Brunnermeir and Koby 2019).

Reserves

Reserves

Composition of annuity reserves and the evolution of the A2000 6% Immediate reserve position of the Delaware Life Insurance Company

Empirics of Reserve Decay

• Insurer-specific weighted-average decay $\hat{\lambda}_{i,t,S} = \frac{\hat{b}_{i,t,S}}{\hat{V}_{i,t-1,S}}$:

$$\hat{\lambda}_{i,t,S} = \alpha_i + \epsilon_{i,t,S}$$

weighted by the previous size of the reserve position.

• Life-cycle model of average reserve decay:

$$\hat{\lambda}_{i,t,S} = \Psi(t-\tau,S) + \epsilon_{i,t,S}$$

where Ψ is as fixed effect which captures the average decay of a $t - \tau$ year old reserve position of type S.

Asset duration and average decay across life insurance companies

Life-Cycle Reserve Decay

	Rate of Decay $\lambda_{i,t,S, au}$						
Decade		0.000	-0.001	-0.010***	-0.000	-0.007***	
$\Delta r_{t, au,10}^{T}$			0.171***	0.227***			
$\Delta r_{t,t-1,10}^T$					-0.147***	-0.113***	
Life-cycle FE	Yes	Yes	Yes		Yes		
Finer Life-cycle FE				Yes		Yes	
N	97,712	97,712	94,707	94,227	97,712	97,120	
R^2	0.286	0.286	0.286	0.350	0.286	0.349	

Decay

√ back

Life-Cycle Reserve Decay

Duration Gap under constant Interest Rates

Duration gap under constant 2004 interest rates $G = D_A - \frac{L}{A}D_L$

return

Balance Sheet of publicly-traded Life Insurers

return

	r_{t}^{L}					
	Full	Before	After	Full	Before	After
$r x_t^{\mathrm{T}}$	0.492**	0.017	-0.672**	0.407**	-0.109	-0.658***
	(0.234)	(0.176)	(0.336)	(0.163)	(0.132)	(0.170)
$r x_t^{\mathrm{M}}$				1.588***	0.751***	1.543***
				(0.096)	(0.071)	(0.095)
Intercept	0.004**	0.002**	0.001	-0.001	0.000	-0.000
	(0.002)	(0.001)	(0.002)	(0.001)	(0.001)	(0.001)
N	257	140	92	257	140	92
R^2	0.017	0.000	0.042	0.525	0.447	0.757

Regressions on FOMC days

	$r\chi_{\mathrm{t}}^{L}$					
	Full	Before	After	Full	Before	After
$r x_t^{\mathrm{T}}$	-0.388**	0.293	-0.839**	-0.467***	-0.155	-0.677***
	(0.178)	(0.207)	(0.329)	(0.120)	(0.156)	(0.191)
$rx_t^{\mathbf{M}}$				1.332***	0.836***	1.491***
				(0.063)	(0.078)	(0.096)
Intercept	0.003***	0.002**	0.003*	-0.000	0.000	0.000
	(0.001)	(0.001)	(0.002)	(0.001)	(0.001)	(0.001)
N	243	133	78	249	134	83
R^2	0.019	0.015	0.079	0.660	0.467	0.787

Regressions on FOMC days excluding outliers

	After 2009	After 2010	After 2011		After 2010	
		Until 2021		Until 2019	Until 2020	Until 2021
r_{t}^{T}	0.307	-0.658***	-0.855***	-0.526***	-0.552***	-0.658***
	(0.256)	(0.170)	(0.186)	(0.165)	(0.165)	(0.170)
$r x_t^{M}$	2.127***	1.543***	1.547***	1.520***	1.478***	1.543***
	(0.177)	(0.095)	(0.095)	(0.107)	(0.105)	(0.095)
Intercept	0.001	-0.000	-0.001	-0.001	-0.001	-0.000
	(0.002)	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)
N	100	92	84	72	80	92
R^2	0.603	0.757	0.780	0.750	0.728	0.757

Regressions on FOMC days with different cut-off dates

	$r_{\mathbf{x}_{t}^{L}}$					
	Full	Before	After	Full	Before	After
$r x_t^{\mathrm{T}}$	1.044***	0.842**	-0.782*	0.869***	0.262	-1.048***
	(0.349)	(0.347)	(0.463)	(0.329)	(0.286)	(0.302)
$r x_t^{\mathrm{M}}$				0.504	0.689***	1.051***
				(0.400)	(0.169)	(0.395)
Intercept	0.003*	0.001	0.001	0.002	-0.000	-0.000
	(0.002)	(0.001)	(0.002)	(0.002)	(0.001)	(0.001)
N	241	139	76	241	139	76
R^2	0.008	0.016	0.011	0.277	0.414	0.630

Regressions on FOMC days with different cut-off dates

Calculating the Yield Curve

• What term structure of interest rates r rationalizes the observed prices of a menu of policies?

$$V_n^{term} = \sum_{h=1}^n e^{-h \cdot r_{t,h}} \cdot 1 \quad V_{age}^{\textit{life}} = \sum_{h=1}^\infty e^{-h \cdot r_{t,h}} \cdot b_{age,h}$$

• Parametrize $r_{i,t,h}$ by imposing a B-spline on the forward rates for every insurer i, time t, and policy j:

$$P_{i,j,t} = V_{i,j,t} + \epsilon_{i,j,t}$$

√ back

Incomplete Pass-Through: Reserve Interest Rate

 How does the reserve discount rate react to a change of bond market interest rates?

$$\hat{r}_t = 0.03 + 0.8 \cdot \left(\bar{r}_{June(t)-12,June(t)}^{\mathrm{NAIC}} - 0.03 \right)$$

• Changes over the 1-vear time interval:

$$\Delta r_{t,h}^a = \alpha_h + \beta_h \cdot \Delta r_{t,h}^b + \epsilon_{h,t}$$

$$\Delta \hat{r}_t = \alpha_h + \hat{\beta}_h \cdot \Delta r_{t,h}^b + \epsilon_{h,t}$$

• Annuities:

$$0.5 = \beta > \hat{\beta} = 0.13$$

Pass-through to reserve discount rates

Incomplete Pass-Through: lower at lower rates?

• How does the annuity interest rate react to a change of bond market interest rates?

$$\Delta r_{t,h}^{a} = \alpha_h + \beta_h \cdot \Delta r_{t,h}^{b} + \gamma_h \cdot \Delta r_{t,h}^{b} \cdot r_{t,h}^{b} + \epsilon_{h,t}$$

Pass-through to annuity rates at higher interest rates

√ return

Incomplete Pass-Through

Market Concentration and Pass-Through

	Annuity Spread					
	Lev	els s	Changes Δs			
r · HHI	0.022*** (0.001)	0.033*** (0.001)				
$\Delta r \cdot \mathrm{HHI}$			0.060*** (0.006)	0.082*** (0.006)		
Horizon FE Rating FE	Yes	Yes Yes	Yes	Yes Yes		
N R ²	$13,290 \\ 0.916$	$13,290 \\ 0.931$	13,290 0.319	13,290 0.333		

Cross-sectional pass-through related to a proxy for the insurance company specific market power: the average of Herfindahl-Hirschman indices of U.S. states weighted by the share of the collected premiums from a state to overall premiums. The regression specification is: $s_{i,t,h} = \gamma \cdot r_{t,h} + HII_{i,t-1} + \beta_h \cdot r_{t,h} + Rating_{i,t} \cdot r_{t,h} + \epsilon_{i,t,h}$

Spread affects future Net Gain from Operations

The annuity spreads $s_{i,t,h}$ predicts the future net gain of operations:

$$NetGain_{i,t+h} = Spread_{i,t} + \epsilon_{i,t}$$

A higher annuity spread implies larger future profits!

✓ return

Actuarial vs. Reserve vs. Pseudo-Actuarial

Comparison of cash flows and and valuations after issuance in December 1989 for a life annuity for a 65-year-old male

Indirect Evidence: Supplemental Information

- New York-based life insurance companies have to file the "Analysis of Valuation Reserves" supplement to the annual statement
 - ► How well does the annual income align with the predicted cash flow?

			To	tal
1		Location in		
1		last year's		
1		analysis of		
1		valuation	Annual	
1	VALUATION STANDARD	reserves	Income(a)	_
		Line No.	(000 Omitted)	Reserve
0200014.	83 Table 'A'; 9.50%; Imn.; 1981	200015	56	106,355
0200015.	83 Table 'A'; 7.65%; Imn.; 1984	200017	457	1,634,586
0200016.	83 Table 'A'; 7.65%; Im.; 1985		1,850	10,263,129
0200017.	83 Table 'A'; 7.65%; Imn.; 1986	200019	1,696	7, 104, 998
0200018.	83 Table 'A'; 7.65%; Imn.; 1987	200020	2,307	9,379,066
0200019.	83 Table 'A'; 7.65%; Imn.; 1988	200021	2,566	10,575,657
0200020.	83 Table 'A'; 7.65%; Imn.; 1989		3,913	16,526,073
0200021.	83 Table 'A'; 7.65%; Imn.; 1990		4,933	22,012,788
0200022.	83 Table 'A'; 7.50%; Imn.; 1991		2,169	10,523,236
0200023.	83 Table 'A'; 7.00%; Imn.; 1992	200025	2,426	10,323,403
0200024.	83 Table 'A'; 6.00%; Imn.; 1993		2,559	10,382,114
0200025.	83 Table 'A'; 6.50%; Imn.; 1994		4,363	20,934,023
0200026.	83 Table 'A'; 6.50%; Imn.; 1995		5,904	32,589,468
0200027.	83 Table 'A'; 6.00%; Imn.; 1996	200029	5.559	29.913.379

Supplement of the New York Life Insurance Company in 2011

return

Effect of Market Rates on Policyholder Behaviour

• Model with policyholder behaviour:

$$\bar{b}_{i,t,S} = \Psi(t-\tau,S) + \delta \cdot \Delta r_{t,\tau,10} + \epsilon_{i,t,S}$$

- The change in the market interest rate since the issuance of the policy may make the outside option more or less attractive.
- A one-percent increase leads to a 0.16 percent higher rate of decay.
- The policyholder behavior has a marginal effect on the duration of the liabilities!

	(1)	(2)
t in decades	0.003***	0.003***
	(0.000)	(0.000)
$\Delta r_{t, au,10}^{ extit{Treasury}}$	-0.008	
	(0.022)	
$\Delta r_{t, au,10}^{HQM}$		-0.017
-7-7-		(0.024)
N	90,954	90,954
R^2	0.355	0.355

Evidence under Constant Interest Rates

- Time-series evidence is subject to omitted variable bias:
 falling interest rates mechanically increase the duration of life insurance policies!
- Evaluate all objects under constant 2004 interest rates.

$$\begin{aligned} \textit{G}_{\textit{i},t} = & \alpha_{\textit{t}} + \\ & \gamma_{\textit{FL}} \textit{FL}_{\textit{i},t} + \gamma_{\textit{Lev}} \textit{Lev}_{\textit{i},t} + \gamma_{\textit{LogA}} \textit{LogA}_{\textit{i},t} + \gamma \cdot \textit{X}_{\textit{i},t} + \epsilon_{\textit{i},t} \end{aligned}$$

$$\begin{aligned} \textit{G}_{\textit{i},t} = & \alpha_{\textit{i}} + \alpha_{\textit{t}} + \\ & \gamma_{\textit{FL}} \textit{FL}_{\textit{i},2008} + \gamma_{\textit{Lev}} \textit{Lev}_{\textit{i},t} + \gamma_{\textit{LogA}} \textit{LogA}_{\textit{i},t} + \gamma \cdot \textit{X}_{\textit{i},t} + \epsilon_{\textit{i},t} \end{aligned}$$

	(1)	(2)
FL	-6.260***	-4.577**
Lev	-0.022***	-0.005
LogA	-0.057	1.002
mutual	-1.356***	
MktLev	-0.021**	-0.003
Year FE	Yes	Yes
Life Insurer FE		Yes
N	5,868	5,864
R^2	0.298	0.758