Proyecto **Final** Aprendizaje Máquina

Mónica Lara Pineda Manuel Ortiz Hernández Omar Alejandro Robledo Rodríguez Diego Ramírez Levy Raúl González Cardona

Contenido

01

Objetivo

Enfoque completo de modelación de problemas

02

Exploración de datos

Explicación del conjunto de datos a utilizar

03

Selección de modelos Explicación de la metodología de aprendizaje automático

04

Conclusiones

Resolución sobre desarrollo de modelo ML

Enfermedades Cardiovasculares!

Afectación cardiaca que se manifiesta mediante vasos sanguíneos enfermos, problemas estructurales y coágulos sanguíneos.

Ejemplo de enfermedades

Una enfermedad cardiovascular engloba varios problemas del corazón

Ejemplos

Arterias coronarias

Lesión en los principales vasos sanguíneos

Válvulas cardiacas

Válvulas no funcionan adecuadamente

Ritmo cardíaco

Impulsos eléctricos que no funcionan adecuadamente

Músculo cardiaco

Dificultad del corazón para transportar sangre

Defectos cardíacos de nacimiento

Defectos congénitos

Infección del corazón

Infección del revestimiento interior del corazón

Datos en México

Las enfermedad del corazón son la 1era causa de muerte en nuestro país

Causas de muerte en México (2010-2020)

Datos enfermedades relacionadas al corazón

105,485

personas que fallecen al año en México por enfermedades cardiovasculares

Objetivo modelo

El objetivo es poder establecer una **opción viable** para aquellos individuos que lleguen a ser diagnosticados con cualquier enfermedad relacionada al corazón

Exploración de datos

	Age	Sex	ChP nTy	Res BP	Cho lest.	Fast .BS	Rest .EC G	Max HR	Exe r.An.	Old pea k	ST_ Slop e	
0	40	M	АТА	140	289	0	Norm al	172	N	0.0	Up	0
1	49	F	NAP	160	180	0	Norm al	156	N	1.0	Flat	1
2	37	M	ATA	130	283	0	ST	98	N	0.0	Up	0
3	3	48	F	ASY	138	214	0	Norm al	108	Υ	1.5	Flat
4	4	54	Μ	NAP	150	195	0	Norm al	122	N	0.0	Up

Limpieza de datos

Se ejecutó una limpieza debido a que algunos valores no permiten trabajar con el modelo de forma correcta

Variables afectadas

Selección de modelos

En esta sección se muestra la metodología usada para determinar el modelo que se va a usar.

Se realizaron los siguientes pasos:

- Separación de variables independientes
- Gráfica relación Enfermos vs Edad
- Gráfica relación Sexo vs Enfermos
- Gráfica relación nivel Colesterol
- División de datos 80/20

Gráfica relación Enfermos vs Edad

Gráfica relación Sexo vs Enfermos

Gráfica relación nivel Colesterol

Random Forest

Precisión del modelo

Accuracy on Train	Accuracy on Text
1.0	0.880435

Matriz de confusión

399	0
0	335

Para la primera parte del notebook, se decidió utilizar Random Forest. Se tienen 399 pacientes en total que tenían la enfermedad y la falla del corazón, en donde 335 tenían la enfermedad y en realidad no contaban con falla del corazón.

Demostración visual

Se presenta el recorrido que hace el modelo por las variables iniciales que denotan si el paciente tiene una falla del corazón o no,

Conclusiones

Al finalizar este proyecto nos dimos cuenta que existen muchas herramientas de aprendizaje de máquina que nos pueden ayudar que nos faciliten tareas importantes como lo son los diagnósticos médicos.

