Seminar in Directed Graphical Models and Causality

1. Conditional Independence and Directed Acyclic Graphs

Grigor Keropyan

Technical University of Munich

August 11, 2021

Outline

- 1. (Conditional) Independence
- 2. Properties of Conditional Independence
- 3. Directed Acyclic Graphs (DAG)
- 4. Markov Properties for DAGs
- 5. Factorization according to DAG
- 6. Exercises

Densities

- ▶ Let $X \in \mathbb{R}^m$ and $Y \in \mathbb{R}^n$ be random vectors, where $m, n \in \mathbb{N}$.
- Assume f(x, y) is the joint density function of (X, Y) with respect to product measure $\lambda = \lambda_X \otimes \lambda_Y$, where λ_X and λ_Y are measures in \mathbf{R}^m and \mathbf{R}^n , respectively.
- ightharpoonup Marginal distributions P^X and P^Y have densities

$$f_X(x) = \int f(x,y) \, d\lambda_Y(y)$$
 and $f_Y(y) = \int f(x,y) \, d\lambda_X(x)$

Conditional Densities/Distributions

Definition

Conditional density of X given Y = y is

$$f_{X|Y}(x|y) = \begin{cases} \frac{f(x,y)}{f_Y(y)} & \text{if } f_Y(y) > 0\\ \text{any density } f_0(x) & \text{otherwise} \end{cases}$$

The **conditional distribution** of X given Y = y is

$$P^{X|Y=y}(A) \equiv P(X \in A|Y=y) := \int_A f(x|y) \, d\lambda_X(x) \quad orall A \in \mathbf{R}^m ext{ Borel set.}$$

Independence

▶ X and Y are called **independent** if

$$P(X \in A, Y \in B) = P(X \in A)P(Y \in B)$$

 $\forall A, B$ Borel sets and write $X \perp\!\!\!\perp Y$.

▶ The following is a characterization of independence

$$X \perp \!\!\! \perp Y \iff f(x,y) = f_X(x)f_Y(y) \quad [\lambda - a.e.]$$

Conditional independence

▶ Let Z be random vector in \mathbf{R}^k , where $k \in \mathbf{N}$.

Definition

X and Y are called **conditionally independent** given Z if

$$P(X \in A, Y \in B|Z = z) = P(X \in A|Z = z)P(Y \in B|Z = z) \quad [P^{Z} - a.e]$$

 $\forall A, B$ Borel sets and write $X \perp\!\!\!\perp Y|Z$.

Question 1

Given a joint density of random vector (X, Y, Z) as

$$f(x,y,z) = \frac{1}{C}(x-z)^4x^2y^6(y-z)^8,$$

where constant C ensures that we have a valid density. Is the following relation true?

$$X \perp\!\!\!\perp Y|Z.$$

Properties of Conditional Independence

Assume f(x, y, z) is the joint density of (X, Y, Z) with respect to product measure $\lambda = \lambda_X \otimes \lambda_Y \otimes \lambda_Z$.

Lemma

The followings are equivalent and the equations hold $P^{X,Y,Z}$ -a.e.:

- 1. $X \perp \!\!\!\perp Y|Z$
- 2. f(x,y|z) = f(x|z)f(y|z)
- 3. f(x|y,z) = f(x|z)
- 4. $f(x, y, z) = \frac{f(x,z)f(y,z)}{f(z)}$
- 5. f(x, y, z) = g(x, z)h(y, z) for some measurable functions g and h
- 6. f(x|y,z) = g(x,z) for some measurable function g

Proof of Lemma

 $1 \iff 2$: If $X \perp \!\!\!\perp Y \mid Z$, then

$$P(X \in A, Y \in B|Z = z) = P(X \in A|Z = z)P(Y \in B|Z = z)$$

$$= \int_{A} f(x|z) d\lambda_{X}(x) \int_{B} f(y|z) d\lambda_{Y}(y)$$

$$= \int_{A \times B} f(x|z)f(y|z) d(\lambda_{X} \otimes \lambda_{Y})(x, y)$$

where A and B are arbitrary Borel sets. So, f(x, y|z) = f(x|z)f(y|z) almost surely. If f(x, y|z) = f(x|z)f(y|z) a.s., then

$$P(X \in A, Y \in B | Z = z) = \int_{A \times B} f(x, y | z) d(\lambda_X \otimes \lambda_Y)(x, y) = \int_{A \times B} f(x | z) f(y | z) d(\lambda_X \otimes \lambda_Y)(x, y)$$

$$= \int_A f(x | z) d\lambda_X(x) \int_B f(y | z) d\lambda_Y(y)$$

$$= P(X \in A | Z = z) P(Y \in B | Z = z).$$

Proof of Lemma

2 \iff 3:

$$f(x,y|z) = f(x|z)f(y|z) \iff \frac{f(x,y,z)}{f(z)} = \frac{f(x,z)f(y,z)}{f(z)f(z)}$$
$$\iff \frac{f(x,y,z)}{f(y,z)} = \frac{f(x,z)}{f(z)} \iff f(x|y,z) = f(x|z),$$

where we are considering all the cases when the denominator is not zero and the equations hold almost surely. From the definition of conditional density the zero cases are trivial.

3 \iff 4:

$$f(x|y,z) = f(x|z) \iff \frac{f(x,y,z)}{f(y,z)} = \frac{f(x,z)}{f(z)} \iff f(x,y,z) = \frac{f(x,z)f(y,z)}{f(z)}.$$

Proof of Lemma

```
3 \implies 6: Denote g(x,z) := f(x|z).

6 \implies 5: Denoting h(y,z) := f(y,z) we have f(x,y,z) = f(x|y,z)f(y,z) = g(x,z)h(y,z).

5 \implies 4: We have \frac{f(x,z)f(y,z)}{f(z)} = \frac{\int f(x,y,z) d\lambda_Y(y) \int f(x,y,z) d\lambda_X(x)}{\int f(x,y,z) d\lambda_X(y) \int g(x,z) d\lambda_X(y)}= \frac{g(x,z)h(y,z) \int h(y,z) d\lambda_Y(y) \int g(x,z) d\lambda_X(x)}{\int g(x,z) d\lambda_X(x) \int h(y,z) d\lambda_Y(y)}
```

= g(x,z)h(y,z) = f(x,y,z).

11/36

Question 1 (now should be easy)

Given a joint density of random vector (X, Y, Z) as

$$f(x, y, z) = \frac{1}{C}(x - z)^4 x^2 y^6 (y - z)^8,$$

where constant C ensures that we have a valid density. Is the following relation true?

$$X \perp \!\!\! \perp Y|Z$$
.

General Properties of Conditional Independence

(C1) "Symmetry":

$$X \perp\!\!\!\perp Y|Z \iff Y \perp\!\!\!\perp X|Z.$$

(C2) "Decomposition":

$$X \perp\!\!\!\perp Y|Z \implies h(X) \perp\!\!\!\perp Y|Z$$
 for any measurable function h .

In particular, $(X, W) \perp \!\!\!\perp Y | Z \implies X \perp \!\!\!\perp Y | Z$.

(C3) "Weak union":

$$X \perp\!\!\!\perp Y|Z \implies X \perp\!\!\!\perp Y|(Z,h(X))$$
 for any measurable function h.

In particular, using also (C2) we obtain $(X, W) \perp \!\!\! \perp Y | Z \implies X \perp \!\!\! \perp Y | (Z, W)$.

(C4) "Contraction":

$$X \perp\!\!\!\perp Y|Z \text{ and } X \perp\!\!\!\perp W|(Y,Z) \iff X \perp\!\!\!\perp (W,Y)|Z.$$

Proof of (C1) and (C2)

(C1): For all Borel sets A, B and for all values of z we have

$$P(X \in A, Y \in B|Z=z) = P(X \in A|Z=z)P(Y \in B|Z=z)$$

(C2): For all Borel sets A, B and for all values of z we have

$$P(h(X) \in A, Y \in B|Z = z) = P(X \in h^{-1}(A), Y \in B|Z = z)$$

= $P(X \in h^{-1}(A)|Z = z)P(Y \in B|Z = z)$
= $P(h(X) \in A|Z = z)P(Y \in B|Z = z)$

So, $h(X) \perp \!\!\! \perp Y|Z$.

Proof of (C3) and (C4)

(C3): The proof is only for last equation when we have densities

$$f(x|y,z,w) = \frac{f(x,w|y,z)}{f(w|y,z)} = \frac{f(x,w|z)}{f(w|y,z)} = \frac{f(x,w|z)}{f(w|z)} = f(x|w,z)$$

So, $X \perp \!\!\!\perp Y | (Z, W)$.

(C4): If $X \perp \!\!\! \perp Y|Z$ and $X \perp \!\!\! \perp W|(Y,Z)$, then

$$P^{X|(W,Y,Z)=(w,y,z)} = P^{X|(Y,Z)=(y,z)} = P^{X|Z=z} [P^{(W,Y,Z)} - a.s.]$$

So, $X \perp \!\!\! \perp (W,Y)|Z$. Now if $X \perp \!\!\! \perp (W,Y)|Z$ from (C3) we have $X \perp \!\!\! \perp W|Y,Z$ and from (C2) we have $X \perp \!\!\! \perp Y|Z$.

Intersection "Axiom"

From (C4) we have

$$X \perp \!\!\! \perp (W,Y)|Z \implies X \perp \!\!\! \perp W|(Y,Z) \text{ and } X \perp \!\!\! \perp (W,Y)|Z \implies X \perp \!\!\! \perp Y|(W,Z).$$

(C5) "Intersection":

Assume that we have a joint density f(x, y, w, z) with respect to $\lambda = \lambda_X \otimes \lambda_Y \otimes \lambda_W \otimes \lambda_Z$ such that f(y, w, z) > 0 [$\lambda - a.e.$]. Then,

$$X \perp \!\!\! \perp (W,Y)|Z \iff X \perp \!\!\! \perp W|(Y,Z) \text{ and } X \perp \!\!\! \perp Y|(W,Z)$$

Proof of (C5)

From previous slide we need only the reverse implication \iff . From the Lemma we have

$$f(x, y, w, z) = \frac{f(x, w, z)f(y, w, z)}{f(w, z)} = \frac{f(x, y, z)f(y, w, z)}{f(y, z)}$$

Since f(y, w, z) > 0 almost surely we have

$$\frac{f(x,w,z)}{f(w,z)} = \frac{f(x,y,z)}{f(y,z)} \implies f(x,w,z)f(y,z) = f(x,y,z)f(w,z).$$

From the marginalization we have

$$f(x,w,z)f(z)=f(x,w,z)\int f(y,z)\,d\lambda_Y(y) = \int f(x,y,z)f(w,z)\,d\lambda_Y(y) = f(x,z)f(w,z).$$

So, from the Lemma we have $X \perp\!\!\!\perp W|Z$. Using (C4) with $X \perp\!\!\!\perp Y|(W,Z)$ we obtain $X \perp\!\!\!\perp (W,Y)|Z$.

Terminology and Notation for DAGs

Definition

A graph $\mathcal{G} = (\mathbf{V}, \mathcal{E})$ consists of a finite set of nodes \mathbf{V} and edges $\mathcal{E} \subseteq \mathbf{V} \times \mathbf{V}$ of ordered pairs of distinct nodes.

- ▶ Given a set of random variables $\mathbf{X} = (X_1, \dots, X_p)$, $\mathbf{V} := \{1, \dots, p\}$ and a graph $\mathcal{G} = (\mathbf{V}, \mathcal{E})$ we associate every random variable X_j with node $j \in \mathbf{V}$.
- ▶ The joint distribution of **X** is denoted by P^X and marginal distribution of **X**_j by P^{X_j} .
- ▶ A graph $\mathcal{G}_1 = (\mathbf{V}_1, \mathcal{E}_1)$ is called a **subgraph** of \mathcal{G} if $\mathbf{V}_1 \subseteq \mathbf{V}$ and $\mathcal{E}_1 \subseteq \mathcal{E}$.
- ▶ If \mathcal{G}_1 is a subgraph of \mathcal{G} we write $\mathcal{G}_1 \leq \mathcal{G}$ and if $\mathcal{E}_1 \neq \mathcal{E}$ we say \mathcal{G}_1 is **proper subgraph** of \mathcal{G} .

Example 1

Figure 1: Graph $\mathcal{G} = (\{1, 2, 3, 4, 5, 6\}, \{(2, 1), (3, 1), (1, 4), (1, 5), (4, 6), (5, 6)\}).$

Terminology and Notation for DAGs

- ▶ A node *i* is called a child of *j* if $(j,i) \in \mathcal{E}$ and is called a parent, if $(i,j) \in \mathcal{E}$.
- ▶ If $(i,j) \in \mathcal{E}$ we also write $i \to j$.
- ▶ Children of j is denoted by $\mathbf{CH}_{j}^{\mathcal{G}} := \{i \in \mathbf{V} : (j,i) \in \mathcal{E}\}$ and parents of j by $\mathbf{PA}_{j}^{\mathcal{G}} := \{i \in \mathbf{V} : (i,j) \in \mathcal{E}\}.$
- ▶ Two nodes i and j are called **adjacent** if $(j,i) \in \mathcal{E}$ or $(i,j) \in \mathcal{E}$ and if both holds we say the edge between i and j is **undirected**, otherwise **directed**.
- A graph is called **complete** if every two nodes are adjacent. **Cliques** of a graph \mathcal{G} are the maximal complete subgraphs of \mathcal{G} (here maximal in a sense of set inclusion).
- ▶ A path in \mathcal{G} is a sequence of distinct nodes j_1, \ldots, j_n such that j_k and j_{k+1} are adjacent $\forall k = 1, \ldots, n-1$ and $n \geq 2$. If $j_k \to j_{k+1} \ \forall k = 1, \ldots, n-1$ path is called **directed** from j_1 to j_n .

Example 2

Figure 2: Graph $\mathcal{G} = (\{1, 2, 3, 4, 5, 6\}, \{(2, 1), (3, 1), (1, 4), (1, 5), (4, 6), (5, 6)\}).$

Some (directed) paths are

$$1 \rightarrow 4 \rightarrow 6 \leftarrow 5, \quad 3 \rightarrow 1 \rightarrow 4 \rightarrow 6, \quad 5 \rightarrow 6$$

Terminology and Notation for DAGs

- ▶ We say j is a **descendant** of i if there is a directed path from i to j and denote all the descendants of j by $\mathbf{DE}_{j}^{\mathcal{G}}$ and all non-descendants by $\mathbf{ND}_{j}^{\mathcal{G}}$. Note that descendants and non-descendants do not contain the node.
- ▶ j_k is called a **collider** in the path if $j_{k-1} \rightarrow j_k$ and $j_{k+1} \rightarrow j_k$.
- \triangleright \mathcal{G} is called a **Partially Directed Acyclic Graph (PDAG)** if there is no directed cycle, i.e., if there is no pair (i, j) such that there are directed paths from i to j and from j to i.
- \[
 \mathcal{G}\] is called **Directed Acyclic Graph (DAG)** if all edges are directed and there is no cycle in \(\mathcal{G}\).
 \]

Terminology and Notation for DAGs

- ▶ Three nodes i, j, k are called **immorality** or **v-structure** if one of them, say j is a child of the others and these parents are not adjacent: $i \to j, k \to j$ and $(k, i) \notin \mathcal{E}, (i, k) \notin \mathcal{E}$.
- ▶ The **skeleton** of graph \mathcal{G} is the set of all edges without taking the direction into account, that is all (i,j) such that $i \to j$ or $j \to i$.

Example 3

Figure 3: Graph $\mathcal{G} = (\{1, 2, 3, 4, 5, 6\}, \{(2, 1), (3, 1), (1, 4), (1, 5), (4, 6), (5, 6)\}).$

- ▶ Descendants of node 1 are {4, 5, 6}.
- ▶ 6 is a collider in the path $1 \rightarrow 4 \rightarrow 6 \leftarrow 4$
- ▶ 4, 5, 6 is a v-structure

Local Markov Property

Definition

The joint distribution P^X of **X** is said to be **Local Markov with respect to the DAG** $\mathcal G$ if

$$\forall \nu \in \boldsymbol{V}: \quad \boldsymbol{\nu} \perp \!\!\! \perp \boldsymbol{V} \setminus \{\{\boldsymbol{\nu}\} \cup \boldsymbol{\mathsf{PA}}_{\boldsymbol{\nu}}^{\mathcal{G}} \cup \boldsymbol{\mathsf{DE}}_{\boldsymbol{\nu}}^{\mathcal{G}}\} | \boldsymbol{\mathsf{PA}}_{\boldsymbol{\nu}}^{\mathcal{G}}.$$

Example 4

Figure 4: Graph $\mathcal{G} = (\{1, 2, 3, 4, 5, 6\}, \{(2, 1), (3, 1), (1, 4), (1, 5), (4, 6), (5, 6)\}).$

▶ From Local Markov Property we have $\{5\} \perp \{2,3,4\} | \{1\}$.

d-separation

Definition

In a DAG $\mathcal{G} = (\mathbf{V}, \mathcal{E})$, a path between i and j is **blocked** by $\mathbf{S} \subsetneq \mathbf{V}$ $(i, j \notin \mathbf{S})$ whenever there is a node k in the path and one of the following holds:

- 1. $k \in \mathbf{S}$ and k is not a collider in the path, or
- 2. $k \notin \mathbf{S}$ and k is a collider in the path and $\forall I \in \mathbf{DE}_k^{\mathcal{G}} \implies I \notin \mathbf{S}$.

Definition

Given disjoint subsets A, B, C, we say A and B are d-separated by C if every path between nodes in A and B is blocked by C.

Example 5

Figure 5: Graph $\mathcal{G} = (\{1, 2, 3, 4, 5, 6\}, \{(2, 1), (3, 1), (1, 4), (1, 5), (4, 6), (5, 6)\}).$

- ► Are {2} and {4, 6} d-separated by {1}?
- ▶ Are {2} and {3} d-separated by {1}?

Markov Property and Faithfulness

Definition

The joint distribution $\mathcal{L}(X)$ of X is said to be (Global) Markov with respect to the DAG \mathcal{G} if

$$A, B \text{ d-sep. by } C \implies A \perp\!\!\!\perp B|C.$$

for all disjoint sets $\mathbf{A}, \mathbf{B}, \mathbf{C} \subseteq \mathbf{V}$.

Definition

The joint distribution $\mathcal{L}(\mathbf{X})$ is said to be **faithful to the DAG** \mathcal{G} if

$$A, B$$
 d-sep. by $C \iff A \perp\!\!\!\perp B | C$.

for all disjoint sets $\mathbf{A}, \mathbf{B}, \mathbf{C} \subseteq \mathbf{V}$.

Example 6

Figure 6: Graph $\mathcal{G} = (\{1, 2, 3, 4, 5, 6\}, \{(2, 1), (3, 1), (1, 4), (1, 5), (4, 6), (5, 6)\}).$

▶ From Global Markov Property we have $\{2,3\} \perp \{4,5,6\} | \{1\}$.

Markov Equivalence class and Causal Minimality

- A distribution satisfies **causal minimality** with respect to graph \mathcal{G} if it is Markov with respect to \mathcal{G} , but not to any proper subgraph of \mathcal{G} .
- Let's denote $\mathcal{M}(\mathcal{G}) := \{P^{\mathbf{X}} : P^{\mathbf{X}} \text{ is Markov w.r.t. } \mathcal{G}\}$ all the distributions which are Markov with respect to \mathcal{G} .
- ▶ Two DAGs \mathcal{G}_1 and \mathcal{G}_2 are called **Markov equivalent** if $\mathcal{M}(\mathcal{G}_1) = \mathcal{M}(\mathcal{G}_2)$.
- lacktriangle The above holds if and only if \mathcal{G}_1 and \mathcal{G}_2 satisfy same set of d-separations.
- ► The set of all DAGs that are Markov equivalent to some DAG is called Markov equivalence class.

Factorization

Definition

Let \mathcal{G} be a DAG. The joint distribution $P^{\mathbf{X}}$ factorizes according to \mathcal{G} if the joint density has the following form

$$f(x) = \prod_{v \in \mathbf{V}} f(x_v | x_{\mathbf{PA}_v^{\mathcal{G}}})$$

Example 7

Figure 7: Graph $\mathcal{G} = (\{1, 2, 3, 4, 5, 6\}, \{(2, 1), (3, 1), (1, 4), (1, 5), (4, 6), (5, 6)\}).$

▶ If the joint distribution *f* factorizes according to the above graph then

$$f(x) = f(x_2)f(x_3)f(x_1|x_2,x_3)f(x_4|x_1)f(x_5|x_1)f(x_6|x_4,x_5).$$

Equivalence of Markov Properties and Factorization

Theorem

Let \mathcal{G} be a DAG. Suppose the joint distribution P^X has density with respect to a product measure λ . Then, the following conditions are equivalent

- 1. The joint distribution P^X factorizes according to graph \mathcal{G} .
- 2. The joint distribution P^X is Global Markov w.r.t. \mathcal{G} .
- 3. The joint distribution P^X is Local Markov w.r.t. \mathcal{G} .

Proof.

In the next lecture.

Exercises

- 1. Let \mathcal{G} be a DAG and A, B any non adjacent nodes. Prove that there is a set of nodes \mathbf{S} such that A and B are d-separated given \mathbf{S} .
- 2. Given a DAG $\mathcal{G}=(\mathbf{V},\mathcal{E})$ and any non adjacent nodes L and W in \mathbf{V} . Then, for any set of nodes \mathbf{R} in \mathbf{V} such that $\mathbf{R}\subset\mathbf{ND}_W^{\mathcal{G}}$

$$L, W$$
 d-sep. by $S \cup R$,

where
$$S := PA_L^{\mathcal{G}} \cup PA_W^{\mathcal{G}}$$
.

3. If $P^{\mathbf{X}}$ is Markov and faithful with respect to graph \mathcal{G} , then $P^{\mathbf{X}}$ satisfies causal minimality with respect to \mathcal{G} . (Hint: use exercise 1)

References

Some of the statements and proofs I have taken from Prof. Dr. Mathias Drton lecture in "Graphical Models in Statistics" at TUM.