Raft-Consensus-Algorithmus

Wissenswertes

Diego Ongaro und John Ousterhout

• Ph.D für Diego (2014)

Ablösung des Paxos Algorithmus

Consensus Algorithm

• Sicher

Voll Funktional

Keine Zeitabhängigkeit

Basics

- 3 Zustände
- Terms (Zeitabschnitte)
- Wahlen
- Protokollierung
- Sicherheit

Kommunikation

- RequestVote RPC
- AppendEntries RP

• InstallSnapshot RPC

Client

Follower

Wahlphase

- Term beginnt mit einer Wahlphase
- Follower
- Wahl kann fehlschlagen
- Term wird incrementiert

Client

Follower

Client

Client

Protokollierung

Anfrage vom Client

Leader merkt sich die Anfrage

Replizierung auf die Follower

Speichern im Log (Protokoll)

Sicherheit

- Wahleinschränkung
- Anfragen aus vergangenen Terms
- Sicherheit
- Abstürze (Crashes)
- Timing und Verfügbarkeit

Follower

T: 1 I: 1 B:Copy

T: 1 I: 2 B:Copy

T: 2 I: 3 B: Copy

Follower

T: 1 I: 1 B:Copy

T: 1 I: 2 B:Copy

T: 2 I: 3 B: Copy

T: 3 I: 4 B:Copy

Follower

T: 1 I: 1 B:Copy

T: 1 I: 2 B:Copy

Fall 1

Follower

T: 1 I: 1 B:Copy

T: 1 I: 2 B:Copy

T: 2 I: 3 B: Copy

Follower

T: 1 I: 1 B:Copy

T: 1 I: 2 B:Copy

T: 2 I: 3 B: Copy

T: 3 I: 4 B:Copy

Follower

T: 1 I: 1 B:Copy

T: 1 I: 2 B:Copy

T: 3 I: 3 B:Copy

Fall 2

Follower

T: 1 I: 1 B:Copy

T: 1 I: 2 B:Copy

T: 2 I: 3 B: Copy

Follower

T: 1 I: 1 B:Copy

T: 1 I: 2 B:Copy

T: 2 I: 3 B: Copy

T: 3 I: 4 B:Copy

Follower

T: 1 I: 1 B:Copy

T: 1 I: 2 B:Copy

Fall 3

Follower

T: 1 I: 1 B:Copy

T: 1 I: 2 B:Copy

T: 2 I: 3 B: Copy

Follower

T: 1 I: 1 B:Copy

T: 1 I: 2 B:Copy

T: 2 I: 3 B: Copy

T: 3 I: 4 B:Copy

Follower

T: 1 I: 1 B:Copy

T: 1 I: 2 B:Copy

Sicherheit

Wahleinschränkung

Anfragen aus vergangenen Terms

Abstürze (Crashes)

Timing und Verfügbarkeit

Anfragen aus vergangenen Terms

• Leader fällt aus bevor er die Anfrage commited

Anfrage ist auf der Mehrheit der Server repliziert

Neuer Leader wird den Eintrag im Log haben

 Sobald dieser eine neue Anfrage commited wird die alte ebenfalls commited

Timing und Verfügbarkeit

- broadcastTime << electionTimeout << MTBF
- broadcastTime
 - Durchschnittliche Zeit die es braucht RPC's an die Server zu senden und eine Antwort zu erhalten
- electionTimeout
 - Die Zeit, die jeder Server hat bevor er in den candidate Zustand wechselt
- MTBF
 - Durchschnittliche Zeit zwischen Fehlern eines einzelnen Servers

Änderung in der Gruppe

Passiert in zwei Schritten

- 1. Schritt: Joint Consensus
 - Kombination aus alter und neuer Konfiguration

- Wird über einen RPC vermittelt und als Log-Eintrag behandelt
- 3 Probleme können auftreten

Zusammenfassung

- 3 Sever-States
- 1 Leader
 - Aktuellster Log
 - Ansprechpartner für den Client
- Follower
 - electionTimeout
 - Passiv
- Kommunikation über RPC's
- Wahlen für einen Leader
- Logs speichern Anfragen vom Client

Gibt es noch Fragen?

