Marche au hasard

F. Kany. ISEN-Brest & La Croix-Rouge

Position du problème

On se propose de simuler la marche au hasard d'une particule dans un espace à une ou plusieurs dimensions. Ce phénomène correspond en physique au mouvement Brownien; il s'applique au mouvement d'un électron dans un fil métalique, à l'adsorption d'une particule sur une surface, à la diffusion d'un parfum dans un volume,... On suppose que la particule M part de l'origine O et, qu'à chaque pas, elle se déplace d'une petite quantité par rapport à sa position précédente. On veut trouver, au bout de N pas, la position finale $\overrightarrow{OM_{(N)}}$ de la particule et sa distance $d_{(N)}$ à l'origine. On refait le calcul K fois. On souhaite vérifier que, si toutes les directions sont équiprobables, la moyenne des $d_{(N)}$ est nulle et que l'écart-type dépend de \sqrt{N} .

Déplacement sur une droite

On suppose que la particule se déplace, à chaque itération, de Δx sur un axe (Ox).

- 1. À chaque pas, la particule effectue un déplacement entier $\Delta x = \pm 1$. (On a donc : $\langle (\Delta x)^2 \rangle = 1$).
 - (a) Se fixer une valeur de N (par exemple N = 100).
 - (b) Calculer $OM_{(N)}$ au bout de N pas $(OM_{(N)} \in \mathbb{Z})$; incrémenter un compteur $c_{(N)}[OM_{(N)}]$ pour comptabiliser le nombre de fois où la position $OM_{(N)}$ a été atteinte.
 - (c) Réitérer K fois l'opération b. (K de l'ordre de \sqrt{N}).
 - (d) Tracer un graphique indiquant, pour chaque position $x \in \mathbb{Z}$, le nombre de fois $c_{(N)}(x)$ où cette position a été atteinte lors des K essais.
 - (e) Calculer la moyenne et l'écart-type de $c_{(N)}(x)$.
 - (f) Reprendre tout le calcul pour différentes valeurs de N et tracer l'écart-type de $c_{(N)}(x)$ en fonction de \sqrt{N} .
- 2. À chaque pas, la particule effectue un déplacement dans \mathbb{R} tel que $\Delta x \in [-\sqrt{3}, +\sqrt{3}]$. (On a donc : $\langle (\Delta x)^2 \rangle = 1$ car $\langle (\Delta x)^2 \rangle = \int_{-x_{max}}^{+x_{max}} x^2$. p avec p = $\frac{X}{2.x_{max}}$).
 - (a) Se fixer une valeur de N.
 - (b) Calculer $OM_{(N)}$ au bout de N pas $(OM_{(N)} \in \mathbb{R})$.
 - (c) Réitérer K fois le calcul et calculer σ^2 : la moyenne de $(OM_{(N)})^2$ (i.e. la variance de la distance à l'origine).
 - (d) Reprendre tout le calcul pour différentes valeurs de N et tracer σ (i.e. l'écart-type de la distance à l'origine) en fonction de \sqrt{N} .

Déplacement dans un plan

On suppose que la particule se déplace, à chaque itération, de $(\Delta x, \Delta y)$ dans un plan (Oxy). En théorie, on a : $d_{(N)}^2 = (\Delta x_1 + \Delta x_2 + \dots + \Delta x_N)^2 + (\Delta y_1 + \Delta y_2 + \dots + \Delta y_N)^2$. D'où : $d_{(N)}^2 = \Delta x_1^2 + \Delta x_2^2 + \dots + \Delta x_N^2 + 2 \cdot \Delta x_1 \cdot \Delta x_2 + 2 \cdot \Delta x_1 \cdot \Delta x_3 + \dots + 2 \cdot \Delta x_2 \cdot \Delta x_3 + \dots + (x \to y)$. Pour un déplacement équiprobable dans toute les directions, les termes croisés s'annulent en moyenne ; il reste : $d_{(N)}^2 \simeq \Delta x_1^2 + \Delta x_2^2 + \dots + \Delta x_N^2 + \Delta y_1^2 + \Delta y_2^2 + \dots + \Delta y_N^2 = N \cdot (\langle \Delta x^2 \rangle + \langle \Delta y^2 \rangle) = N \cdot \langle d^2 \rangle$. Finalement : $d_{(N)} \simeq \sqrt{N} \cdot d_{rms}$.

- 1. À chaque pas, la particule effectue un déplacement entier vers le haut $(\Delta y = +1)$, le bas $(\Delta y = -1)$, la droite $(\Delta x = +1)$ ou la gauche $(\Delta x = -1)$. Cela revient à choisir une direction parmi 4 avec la probabilité 1/4 et à avoir : $\langle (\Delta x)^2 \rangle = \langle (\Delta y)^2 \rangle = 1/2$.
 - (a) Se fixer une valeur de N.
 - (b) Tracer l'évolution de $\overrightarrow{OM_{(N)}}$ en fonction de N.
 - (c) Réitérer K fois le calcul et calculer σ^2 : la moyenne de $(OM_{(N)})^2$.
 - (d) Reprendre tout le calcul pour différentes valeurs de N et tracer σ en fonction de \sqrt{N} .
- 2. À chaque pas, la particule effectue un déplacement $\Delta x \in [-\sqrt{3/2}, +\sqrt{3/2}]$ et $\Delta y \in [-\sqrt{3/2}, +\sqrt{3/2}]$. (Ainsi : $\langle (\Delta x)^2 \rangle = \langle (\Delta y)^2 \rangle = 1/2$). Reprendre les mêmes questions.