NAME : Edward Course : Advanced Database Systems

CLASS: LTY-1 Faculty / Department: School of Computer Science

<u>Class Assignment</u>: collect your answering to spits.hendric@binus.ac.id

1. Based in this OLTP model database, please design (a. star schema, b. snowflake, c. fact constellation schema)

Answer:

a) Star Schema

NAME : Edward Course : Advanced Database Systems

CLASS: LTY-1 Faculty / Department: School of Computer Science

b) Snowflake Schema

c) Fact Constellation Schema

NAME: Edward Course: Advanced Database Systems

CLASS: LTY-1 Faculty / Department: School of Computer Science

2. What the differences between Data Warehouse and Data Mart?

Answer:

Data Mart	Data Warehouse	
Deal with a single subject area like finance,	, Deal with more than once subject like a range of	
marketing, or operation etc.	subject areas together.	
Info is often in summarized nature.	Info is made detailed as possible.	
Easily built by a lone software engineer.	Requires a group of software engineers.	
Confined only to the department wise data.	Comprised of the whole enterprise data.	
Concentrated on a dimensional model.	necessarily made of dimensional models.	
Star schema and snowflake schema are used.	Fact constellation schema is used.	
Highly denormalization takes place	Lightly denormalization takes place.	

References:

Kimball, R., & Ross, M (2011). The data warehouse toolkit: the complete guide to dimensional modelling. : John Wiley & Sons.

3. What do you understanding regarding with term of non-volatile in data warehouse characteristic? Answer:

Non-volatile means that once entered the data warehouse, data should not change because the purpose of a data warehouse is to enable to analyse what has occurred where it is kept separate from the operational database and therefore frequent changes in operational database is not reflected in the data warehouse.

References:

Vaisman, A., & Zimányi, E. (2014). Data Warehouse Systems: Design and Implementation. : Springer.

4. What the difference between normalized and unnormalized database?

Answer:

Normalized Database	Unnormalized Databased	
Optimize the uses of disk spaces.	Do not optimize the disk spaces.	
Number of tables is increased.	Number of tables in decreased.	
Redundancy is reduced or eliminated.	Redundancy is added/permitted.	
Data integrity is maintained.	Data integrity is not maintained.	
Data are stored in set schema. Data are combined to execute the query quick		

References:

Kimball, R., & Ross, M (2011). The data warehouse toolkit: the complete guide to dimensional modelling. : John Wiley & Sons.

5. Can we apply Data Warehouse on unstructured data?

Answer:

Yes, in data warehousing the data be it unstructured or structured can be used for reporting and data analysis as well which is important as it is the core of business intelligence because the integration of data to several information and data coming from different sources being another important factor makes it important to be used.

One of the example of data warehouse which contains unstructured data such as Supermarket details, Clothing store etc. Users can be multiple and random for any such above mentioned information's. The information from other sources could be the information from a retailer, or online requirement of goods with respect to the seller / vendor because these are the centralized data storage system which helps the business to integrate the data from multiple applications and sources to one specific location.

References:

Vaisman, A., & Zimányi, E. (2014). Data Warehouse Systems: Design and Implementation. : Springer.

NAME : Edward Course : Advanced Database Systems

CLASS: LTY-1 Faculty / Department: School of Computer Science

6. How many DATA WAREHOUSE DEVELOPMENT METHODOLOGIES do you know and what are they? And explain each of them!

Answer:

	Data Driven	User Driven	Goal Driven		
Basic Approach	Bottom-up	Bottom-up Top-down			
Supported	Taylorism Classical	No Company is culture	Management by Objectives		
Management Method	School of Management	reflected			
Project Support	None	Department	Top Management		
Application Area /	Data Exploration and	Raise the Acceptance of	Foundation for Decision		
Requirement Domain	Data Mining	a System	Support		
Targeting	Operational Partly	Depends on the Group	Strategic Tactical		
Organisational Level	Tactical	of Interview Partners	Operational		
Focus	Short-Term Focus	Short-Term Focus	Long-Term Focus		
Extent of End User	None	High	Moderate		
Involvement					
Project Duration	Low	Very High High			
Skills of Project	Data Warehouse	se Moderator Data Moderator Econom			
Members	Designer	Warehouse Designer	Warehouse Designer		
Number of Measures	Many	Many	Few		
Type of Measures	Non-Financial and	Non-Financial and	Balanced Financial and		
	Quantitative Time-Based	Quantitative Time-	Non-Financial as well as		
	and Frequency-Based	Based and Frequency-	Qualitative and		
		Based	Quantitative		
Level of Granularity	Low	Low	High		
Number of Dimensions	Few	Many Few			
Type of Dimensions	Represents the Basic	Represents the Basic	Represents the Strategic		
	Structure of the	Structure of the	Building Blocks of the		
	Application	Application and	Organisation		
		external Sources			
Number of Source	Low	Moderate High			
Systems					
Longevity / Stability of	Long	Short Long			
Data Model					
Cost	Low	High High			

References:

Kimball, R., & Ross, M (2011). The data warehouse toolkit: the complete guide to dimensional modelling. : John Wiley & Sons.

NAME: Edward Course: Advanced Database Systems

CLASS: LTY-1 Faculty / Department: School of Computer Science

7. Give examples of 3 types of slowly changing dimensions!

Answer:

a) Type 1

→ Overwrites the historical information and erases the old data for the database and only dimension change that happens in a form of corrections and there is no necessity for historical reporting.

Member ID	Client Name	Country	Phone Number
123456789	John Doe	Indonesia	+623194556024

b) Type 2

→ Saves the historical info by including a brand-new row and keeps a track of historical details with several rows and columns provided in the dimension table.

Member ID	Client Name	Country	Phone Number	Start Date	End Date
214365879	John	Indonesia	+623194556024	16/04/2000	22/12/2004
896745231	Doe	Indonesia	+6283870989358	05/04/2000	NA

The complete historical data is retained. If the importance of a selected attribute changes, the present record is closed. A brand-new report is produced with the changed information values and this brand-new record will become the present record.

c) Type 3

→ Each record saves/stores the previous value as well as the present value of the selected feature and if the valuation of any of the selected characteristics changes, the present value is kept as the old value as well as the new value will become the present value.

Member ID Client Name		Current Country	Previous Country
591827364	Doe John	Indonesia	Japan

References:

Kimball, R., & Ross, M (2011). The data warehouse toolkit: the complete guide to dimensional modelling. : John Wiley & Sons.

Vaisman, A., & Zimányi, E. (2014). Data Warehouse Systems: Design and Implementation. : Springer.

8. What do you know regarding with factless fact table? Please give an example factless fact table! Answer:

It is a fact table that does not have any measures and it is intersection of dimension and contains dimension keys for describing events and coverage, meaning tables contain information that nothing has happened.

There is nothing that can measure about a student's attendance at a class. The student was there, and the attendance was recorded, or the student was not there, and no record is recorded.

References:

Kimball, R., & Ross, M (2011). The data warehouse toolkit: the complete guide to dimensional modelling. : John Wiley & Sons.