Science knows it doesn't know everything; otherwise, it'd stop

1

Systematic Review

1.1 Lay summary

1.1. Lay summary

1.2 Additional ideas

1.2. Additional ideas

- Evidence map show the distribution of the different studies population across the world.
- Living systematic review approach update weekly based on medRxiv

1.3 Aims

1.3. Aims

The aim of this chapter is to systematically review all available literature on the association between blood levels of total cholesterol and it's constituent parts (HDL-c,LDL-c and triglycerides) on the subsequent risk of dementia.

Based on the review of prev, no previous

Literature con

1.4 Methods

1.4. Methods

1.4.1 Search strategy

We will systematically search electronic bibliographic databases to identify potentially relevant records. The search strategy used in each database will be developed in an iterative manner using a combination of free text and controlled vocabulary (MeSH/EMTREE) terms to identify studies which have examined the relationship between blood lipids levels and dementia, incorporating input from an information specialist. The strategy will include terms related to lipids, lipid modifying treatments, and dementia and its sub-types, and will be designed for MEDLINE before being adapted for use in the other bibliography databases listed. An outline of the general strategy is presented in the Table 3.2 below and the full draft search strategies for each database are attached to this protocol. To ensure that the study design filters are not excluding potentially relevant records, a random sample of 500 records identified by the main search but excluded by the filters (defined as Line 7 NOT Line 13 in Table 3.2) will be screened. If any potentially relevant studies are identified, their titles and abstracts will be searched for key terms that can be incorporated into the filters to improve search sensitivity. The following databases will be searched from inception onwards: Medline, EM-BASE, Psychinfo, Cochrane Central Register of Controlled Trials (CENTRAL), and Web of Science Core Collection. We will also search clinical trial registries, for example ClinicalTrials.gov, to identify relevant randomized controlled trials. The abstracts list of relevant conferences (e.g. the proceedings of the Alzheimer's Association International Conference, published in the journal Alzheimer's & Dementia) will be searched. Grey literature will also be searched via ProQuest, OpenGrey and Web of Science Conference Proceedings Citation Index, while theses will be accessed using the Open Access Theses and Dissertations portal. We will also search bioRxiv and medRxiv, preprint repositories using a tool built as part of this thesis, to identify potentially relevant studies. Finally, the reference lists of

included studies will be searched by hand while studies citing included studies will be examined using Google Scholar (forward and reverse citation searching).

1.4.2 Study selection

Records will be imported into Endnote and deduplicated using the method outlined in Bramer et al. (2016). [@bramer2016] Screening (both title/abstract and full-text) will be performed using a combination of Endnote and Rayyan, a web based screening application. [@ouzzani2016] Title and abstract screening to remove obviously irrelevant records will be performed by the primary author, with a random selection of excluded records being screened in duplicate to ensure consistency with the inclusion criteria. If this demonstrates a significant level of erroneous exclusion by the primary author a larger proportion will be dual-screened. Full-text screening will also be completed in full by the primary author. A second reviewer will screen a random sample of included and excluded records, in addition to any records identified by the first reviewer as being difficult to assess against the inclusion criteria. Reasons for exclusion at this stage will be recorded. Disagreements occurring during either stage of the screening process will be resolved through discussion with a senior colleague. A PRIMSA flow diagram will be produced to document how records moved through the review. [@zotero-766]

Inclusion

We will seek studies that examine the relationship between blood lipid levels (or any specific lipid fraction, including total cholesterol, HDL, LDL, and triglycerides) and risk of incident dementia/MCI. Eligible study designs include randomized controlled trials and non-randomized observational studies of lipid modifying treatments, longitudinal studies examining the effect of increased/decreased blood lipid levels, and genetic instrumental variable (Mendelian randomization) studies examining the effect of genetically increased/decreased blood lipid levels.

Participants will be free (or assumed to be free) of dementia/MCI at baseline. Studies of any duration will be included to allow for exploration of the effect of

length of follow-up on the effect estimate using meta-regression. No limits will be placed on the sample size of included studies.

Eligible studies will define dementia according to recognised criteria, for example the National Institute of Neurological Disorders and Stroke Association-Internationale pour la Recherche en l'Enseignement en Neurosciences (NINDS-AIREN), International Classification of Diseases (ICD), or Diagnostic and Statistical Manual of Mental Disorders (DSM) criteria. For MCI, eligible studies are those that attempted state a definition for diagnoses of MCI (e.g. an adapted version of the Petersen criteria [@petersen1999]) and create ordinal groups of patients (e.g. no dementia or dementia/MCI/dementia) based on this definition.

No limitations will be imposed on publication status, publication date, venue or language, although we will require sufficiently detailed reports of the studies to be able to examine their methods. Preprints and unpublished reports will be eligible for inclusion if relevant. Multiple publications resulting from the analysis of the same data will be included and grouped.

Exclusion

Case-control studies, cross-sectional studies, qualitative studies, case reports/series and narrative reviews will be excluded. Studies which present no evidence of attempting to exclude prevalent cases from their analyses will also be excluded. Studies that measure change in continuous cognitive measures (e.g. MoCA score) without attempt to map these scores to ordinal groups (e.g. no dementia/MCI/dementia) will be excluded. Conference abstracts with no corresponding full-text publication will be examined, and we will contact authors to obtain information on the study's status. Studies that are reported in insufficient detail (e.g. only in conference abstracts, new, letters, editorials and opinion) will be excluded. Previous systematic reviews will not be eligible, but their reference lists will be screened to identify any potentially relevant articles. Studies with outcomes not directly related to the clinical syndrome of dementia (e.g., neuroimaging), studies implementing a "multi-domain intervention" where the lipid-regulating agent is included in each

arms (e.g. for example, a study examining exercise + statins vs statins alone, but a study examining exercise + statins vs exercise alone would be included), and studies where there was no screening for dementia at baseline except if the sample was initially assessed in mid-life (i.e. below the age of 50) will be excluded.

Excluded studies performing autopsy unless it was done under accepted criteria Exclude studies using a dietary intervention, for example omega-3 fatty acid enriched diet, as it hard to disentangle the effect of other elements contained within te diet, vs simple tablet based supplements of

1.4.3 Data extraction

Harmonization of cholesterol measures across studies was performed, as different studies used different methods to quantify exposure, including comparing differing risks in the highest vs lowest quartiles of a lipid, using a binary classification of patients into a hypercholesterolaemia or not, categorising lipid levels into high, middle, and low groups according to study-defined criteria, and simply treating the exposure as a continuous variable.

1.4.4 Risk of bias assessment

Risk of bias assessment was performed using the domain-based risk-of-bias assessment tool appropriate to the study design. Randomised controlled trials were assessed using the RoB2 tool, [@sterne2019], non-randomised studies of interventions were assessed using the ROBINS-I tool, [@sterne2016] and non-randomised studies of exposures were assessed using the ROBINS-E tool. [TBC]

At present, no risk of bias assessment tool for Mendelian randomisation studies is available. Bias in these studies was assessed with the help of an expert panel [TBC] Data will be visualized using a paired forest and risk of bias plot

1.4.5 Patient and public involvement

1.5 Results

1.5. Results

1.5.1 Screening results

Following screening, XXX studies were included.

The distribution of included studies over time demonstrates that despite the conduct of several previous reviews of different types of literature surrounding this question, primary studies continue to the published as these reviews have yet to provide a definite answer.

Table ?? shows the characteristics [Include column here that says whether it was included in a systematic review - see below]

As part of our our forward snowballing exercise (where articles citing an included study are cited), we recorded whether a study included in our review had been included in any previous evidence synthesis attempt in an attempt to qualify the added value of this analysis. Additionally, if an included article was subsequently cited by a review, all studies in that review were screened for inclusion for the sake of completeness. This analysis was performed by extracting the citing articles from Google Scholar on XXXX and screening them manually. The DOI of articles extracted from this analysis are included in the appendix, as the Google Scholar search functionality is not readily reproducible.

As a summary of the duplication of work in this area, we looked at how many reviews a single included study had previously been included in.

Inter-rater reliability

Inter- and intra-rater reliability was assessed for a 10% subsample of records at the title and abstract screening stage. Intra-rater reliability involved a single reviewer applying the inclusion criteria to the same set of records while blinded to their

previous decisions, while inter-rater reliability involved two reviewers independently screening the same set of records.

Rater reliability was assessed using Gwet's agreement coefficient (AC1). [@gwet2008] This measure of inter-rater reliability was chosen over other methods of assessing inter-rater reliability such as percent agreement (number of agreements divided by total number of assessments) as i account for chance agreement between reviewers but does not suffer from severely imbalanced marginal totals in the same way that Cohen's kappa value does. [@cohen1960: [@gwet2008; @wongpakaran2013]

How to interpret agreement co-efficients is widely debated. Here we use guidelines based on a stricter interpretation of the Cohen's Kappa coefficient, [@mchugh2012] presented in Table 1.1.

Table 1.1: Agreement for kappa

Kappa	Interpretation
0 - 0.20	None
0.21 - 0.39	Minimal
0.4059	Weak
0.60 - 0.79	Moderate
0.80 – 0.90	Strong
> 0.90	Almost perfect

In a two by two table with cells A, B, C and D, Gwet's AC1 is calculated using the following:

$$AC1 = \frac{p - e(\gamma)}{1 - e(\gamma)}$$

Here, $p = \frac{A+D}{N}$ and $e(\gamma)$ is the chance agreement between raters, given as 2q(1-q), where $q = \frac{(A+C)+(A+B)}{2N}$

-> Insert formula here. Need to be sure of how to calculate. [@gwet2008; @sim2005] For the inter-rater reliability, percentage agreement was 97.3% (AC1 = XXXX, Table ??), while for the intra-rater reliability, agreement was 98.6% (AC1 = XXXX, Table ??).

Table 1.2: Inter-rater reliability

		Initial screening descision	
		Exclude	Include Total
Second reviewer decision	Exclude	1244	9 1253
	Include	26	22 48
	Total	1270	31 1301

Table 1.3: Intra-rater reliability

		Initial screening decision	
		Exclude	Include Total
Same reviewer decision	Exclude	1266	14 1280
	Include	4	17 21
	Total	1270	31 1301

The discrepancy between the percent agreement and the associated value of AC is expected, due to the heavy imbalance in this sample towards exclusion. [@feinstein1990] Those records which were excluded in the initial screening, but were included either by the same reviewer on their second viewing (n=4), or by the second reviewer (n=29), were investigated. This discrepancy between the two reviewers was explained in all cases by differing interpretations of the inclusion criteria, specifically around the definition of cognitive decline vs mild cognitive impairment and the definition of eligible lipids.

PRISMA flowchart

Following de-duplication, the titles and abstracts of 16109 records were assessed for eligibility. 387 were deemed potentially eligible and the full text records for these were requested and screened. [CROSS-REF to PRISMA flow here]

A breakdown of records by

1.6 Included studies

1.6. Included studies

XXXX studies met the criteria for inclusion in the review.

Include here:

- PRISMA Flowchart (use PRISMA2020 from GitHub depending on level of involvement, could refer to the Appendix here too.)
- Summary of types of study
- Summary of locations
- Summary of diagnostic criteria used
- Summary of risk of bias
- Long table, horizontally. Newer version of flextable (GH) allows for PDF output

1.7 Publication bias

1.7. Publication bias

- Check if there are protocols available for any of the published reports, and whether there were
- Vascular dementia has substantially less published reports. Many (reference Smeeth et al 2010 here) simply group into AD and non-AD making comparison between published st

1.7.1 Triangualtion across evidence sources

One key question for which multiple distinct sources of evidence were available were those looking at Laz

A key limitiation for other types of dementia, in particularly vascular, is that there has yet to be a GWAS identifying relevant SNPS that could then be used in a

MR study with SNPS for lipids to estimates the causal effect of lipids on vascular dementia [Is this true?] This rules out the use

1.8 Discussion

1.8. Discussion

Of note, as part of the review, we identified serveral previous systematic reviews of this topic. However, this review is the firest to

Consideration of the potential impact of the magnitude and direct of unaddressed confounders/bias is not a major stretch from what is already happening in the assessment of the quality of evidence (GRADE) framework. Wihtin GRADE the overall quality of evidence can be upgraded when there is deemed to be will need to confirm this.l [@guyatt2011]

1.9 Conclusion

1.9. Conclusion