CS 481

Artificial Intelligence Language Understanding

February 14, 2023

Announcements / Reminders

- Please follow the Week 05 To Do List instructions
- PA #01 due on Monday (02/20/23) at 11:59 PM CST

Exam dates:

■ Midterm: 03/02/2023 during Thursday lecture time

■ Final: 04/27/2023 during Thursday lecture time

Plan for Today

- Parts of Speech tagging continued
- Context-Free Grammars

Example

Given our synthetic corpus, what is the most like sequence of categories (tags) corresponding to a sentence:

Flies like a flower

For example:

P(Flies, like, a, flower | N, V, ART, N) * P(N, V, ART, N)

$$\cong 5.4 * 10^{-5} * 0.081$$

Example: All Possible Sequences

Every sequence can be assigned a probability:

$$P(w_1, w_2, w_3, ..., w_T \mid C_1, C_2, C_3, ..., C_T) \cong \prod_{i=1}^{T} P(w_i \mid C_i)$$

Example: Best Option

Best option will be:

$$\prod_{i=1}^{T} P(w_i \mid C_i) = P(flies|N) * P(like|V) * P(a|ART) * P(flower|N)$$

Example: All Possible Sequences

Brute force approach time complexity: O(KL)

$$K = 20, L = 10 \rightarrow 20^{10} = 10240000000000$$

Example: Best Option

How can we efficiently find:

$$\prod_{i=1}^{T} P(w_i \mid C_i) = P(flies|N) * P(like|V) * P(a|ART) * P(flower|N)$$

Hidden Markov Model

Transition probability matrix A										
	\mathbf{q}_0 \mathbf{q}_1 \mathbf{q}_2 \mathbf{q}_3 \mathbf{q}_4 Notes									
\mathbf{q}_0	a ₀₀	a ₀₁	a ₀₂	a ₀₃	a ₀₄	row sum = 1				
$\mathbf{q_1}$	a ₁₀	a ₁₁	a ₁₂	a ₁₃	a ₁₄	row sum = 1				
\mathbf{q}_{2}	a ₂₀	a ₂₁	a ₂₂	a ₂₃	a ₂₄	row sum = 1				
q_3	a ₃₀	a ₃₁	a ₃₂	a ₃₃	a ₃₄	row sum = 1				
q_4	a ₄₀	a ₄₁	a ₄₂	a ₄₃	a ₄₄	row sum = 1				

HMMs are specified with:

A set of N states:

$$Q = \{q_1, q_2, ..., q_N\}$$

- A transition probability matrix
 A, where each a_{ij} represents
 the probability of moving from
 state q_i to state q_i
- A sequence of observations O:

$$O = O_1, O_2, ..., O_T$$

 A sequence of observation likelihoods (emission probabilities): probability of observation o_T being generated by a state q_i

$$B = b_i(o_t)$$

Special <s> and end (final) states

 q_0 and q_E

Hidden Markov Model

Transition probability matrix									
	<s></s>	ARTICLE	NOUN	VERB	PREPOSITION				
<s></s>	0.00	0.71	0.29	0.00	0.00				
ARTICLE	0.00	0.00	1.00	0.00	0.00				
NOUN	0.00	0.00	0.13	0.43	0.44				
VERB	0.00	0.65	0.35	0.00	0.00				
PREPOSITION	0.00	0.74	0.26	0.00	0.00				

Emission probability matrix										
	flies like a flower									
<s></s>	0.000	0.000	0.000	0.000						
ARTICLE	0.000	0.000	0.360	0.000						
NOUN	0.025	0.012	0.001	0.063						
VERB	0.076	0.100	0.000	0.050						
PREPOSITION	0.000	0.068	0.000	0.000						

Hidden Markov Models: Decoding

The task of determining which sequence of variables is the underlying source of some sequence of observations is called the decoding:

Given as input an HMM α = (A, B) and a sequence of observations o_1 , o_2 , ..., o_T find the most probable sequence of states q_1 , q_2 , ..., q_T .

or in our case:

Given as input an HMM α = (A, B) and a sequence of **words** w_1 , w_2 , ..., w_T find the most probable sequence of **tags/states** C_1 , C_2 , ..., C_T .

- A transition probabilities matrix
- **B** emission probabilities matrix

Viterbi Algorithm: the Idea

In other words: maximize P() for all "sub-sentences".

Example: Possible Tag Sequences

Brown corpus tags:

NN - commn noun
NNP - singular proper noun
DT - singular determiner
VB - verb, base form
JJ - adjcective
MD - modal auxiliary
RB - adverb

	NNP	MD	VB	JJ	NN	RB	DT		Janet	will	back	the	bill
< <i>s</i> >	0.2767	0.0006	0.0031	0.0453	0.0449	0.0510	0.2026	NNP	0.000032	0	0	0.000048	0
NNP	0.3777	0.0110	0.0009	0.0084	0.0584	0.0090	0.0025	MD	0	0.308431	0	0	0
MD	0.0008	0.0002	0.7968	0.0005	0.0008	0.1698	0.0041	VB	0		0.000672	0	0.000028
VB	0.0322	0.0005	0.0050	0.0837	0.0615	0.0514	0.2231		0	0.000028			
JJ	0.0366	0.0004	0.0001	0.0733	0.4509	0.0036	0.0036	JJ	0	0	0.000340		0
NN	0.0096	0.0176	0.0014	0.0086	0.1216	0.0177	0.0068	NN	0	0.000200	0.000223	0	0.002337
RB	0.0068	0.0102	0.1011	0.1012	0.0120	0.0728	0.0479	RB	0	0	0.010446	0	0
DT	0.1147	0.0021	0.0002	0.2157	0.4744	0.0102	0.0017	DT	0	0	0	0.506099	0

Transition probabilities matrix

Emission probabilities matrix

Viterbi Algorithm: Pseudocode

function VITERBI(*observations* of len *T*, *state-graph* of len *N*) **returns** *best-path*, *path-prob*

```
create a path probability matrix viterbi[N,T]
for each state s from 1 to N do
                                                          ; initialization step
      viterbi[s,1] \leftarrow \pi_s * b_s(o_1)
      backpointer[s,1] \leftarrow 0
for each time step t from 2 to T do
                                                          ; recursion step
   for each state s from 1 to N do
      viterbi[s,t] \leftarrow \max_{s',s} viterbi[s',t-1] * a_{s',s} * b_s(o_t)
      backpointer[s,t] \leftarrow \underset{N}{\operatorname{argmax}} viterbi[s',t-1] * a_{s',s} * b_s(o_t)
bestpathprob \leftarrow \max^{N} viterbi[s, T] ; termination step
bestpathpointer \leftarrow \underset{}{\operatorname{argmax}} viterbi[s, T] ; termination step
bestpath ← the path starting at state bestpathpointer, that follows backpointer[] to states back in time
return bestpath, bestpathprob
```

Viterbi Algorithm: Pseudocode

```
function VITERBI (observations of len T, state-graph of len N) returns best-path, path-prob
create a path probability matrix viterbi[N,T]
for each state s from 1 to N do
                                                         ; initialization step
     viterbi[s,1] \leftarrow \pi_s * b_s(o_1)
     backpointer[s,1] \leftarrow 0
for each time step t from 2 to T do
                                                         ; recursion step
   for each state s from 1 to N do
     viterbi[s,t] \leftarrow \max^{N} viterbi[s',t-1] * a_{s',s} * b_{s}(o_{t})
     backpointer[s,t] \leftarrow \underset{N}{\operatorname{argmax}} viterbi[s',t-1] * a_{s',s} * b_s(o_t)
bestpathprob \leftarrow \max^{N} viterbi[s, T] ; termination step
bestpathpointer \leftarrow \underset{}{\operatorname{argmax}} viterbi[s, T] ; termination step
bestpath ← the path starting at state bestpathpointer, that follows backpointer[] to states back in time
return bestpath, bestpathprob
```

Viterbi Algorithm: Example

Viterbi Algorithm: Pseudocode

function VITERBI(*observations* of len *T*, *state-graph* of len *N*) **returns** *best-path*, *path-prob*

```
create a path probability matrix viterbi[N,T]
for each state s from 1 to N do
                                                          ; initialization step
      viterbi[s,1] \leftarrow \pi_s * b_s(o_1)
     backpointer[s,1] \leftarrow 0
for each time step t from 2 to T do
                                                          ; recursion step
   for each state s from 1 to N do
      viterbi[s,t] \leftarrow \max^{N} viterbi[s',t-1] * a_{s',s} * b_{s}(o_{t})
      backpointer[s,t] \leftarrow \underset{N}{\operatorname{argmax}} viterbi[s',t-1] * a_{s',s} * b_s(o_t)
bestpathprob \leftarrow \max^{N} viterbi[s, T] ; termination step
bestpathpointer \leftarrow \underset{}{\operatorname{argmax}} viterbi[s, T] ; termination step
bestpath ← the path starting at state bestpathpointer, that follows backpointer[] to states back in time
return bestpath, bestpathprob
```

Viterbi Algorithm: Example

Viterbi Algorithm: Example

Transition probabilities matrix

	NNP	MD	VB	JJ	NN	RB	DT
< <i>s</i> >	0.2767	0.0006	0.0031	0.0453	0.0449	0.0510	0.2026
NNP	0.3777	0.0110	0.0009	0.0084	0.0584	0.0090	0.0025
MD	0.0008	0.0002	0.7968	0.0005	0.0008	0.1698	0.0041
VB	0.0322	0.0005	0.0050	0.0837	0.0615	0.0514	0.2231
JJ	0.0366	0.0004	0.0001	0.0733	0.4509	0.0036	0.0036
NN	0.0096	0.0176	0.0014	0.0086	0.1216	0.0177	0.0068
RB	0.0068	0.0102	0.1011	0.1012	0.0120	0.0728	0.0479
DT	0.1147	0.0021	0.0002	0.2157	0.4744	0.0102	0.0017

Emission probabilities matrix

	Janet	will	back	the	bill
NNP	0.000032	0	0	0.000048	0
MD	0	0.308431	0	0	0
VB	0	0.000028	0.000672	0	0.000028
JJ	0	0	0.000340	0	0
NN	0	0.000200	0.000223	0	0.002337
RB	0	0	0.010446	0	0
DT	0	0	0	0.506099	0

```
Initialization step:
v_1(1) = v_1(NNP) = P(T)*P(E) =
(NNP|<s>)*P(Janet|NNP)
v_1(2) = v_1(MD) = P(T)*P(E) =
(MD|<s>)*P(Janet|MD)
v_1(3) = v_1(VB) = P(T)*P(E) =
(VB|<s>)*P(Janet|VB)
V_1(4) = V_1(JJ) = P(T)*P(E) =
(JJ|<s>)*P(Janet|JJ)
v_1(5) = v_1(NN) = P(T)*P(E) =
(NN | <s>)*P(Janet | NN)
v_1(6) = v_1(RB) = P(T)*P(E) =
(RB|<s>)*P(Janet|RB)
v_1(7) = v_1(DT) = P(T)*P(E) =
(DT|<s>)*P(Janet|DT)
P(T) - P(transition)
P(E) - P(emission)
```

Viterbi Algorithm: Pseudocode

function VITERBI(observations of len T, state-graph of len N) **returns** best-path, path-prob

```
create a path probability matrix viterbi[N,T]
for each state s from 1 to N do
                                                        ; initialization step
     viterbi[s,1] \leftarrow \pi_s * b_s(o_1)
     backpointer[s,1] \leftarrow 0
for each time step t from 2 to T do
                                                         ; recursion step
   for each state s from 1 to N do
     viterbi[s,t] \leftarrow \max^{N} viterbi[s',t-1] * a_{s',s} * b_{s}(o_{t})
     backpointer[s,t] \leftarrow \underset{s}{\operatorname{argmax}} viterbi[s',t-1] * a_{s',s} * b_s(o_t)
bestpathprob \leftarrow \max_{s} viterbi[s, T]
                                         ; termination step
bestpathpointer \leftarrow argmax \ viterbi[s, T]; termination step
bestpath ← the path starting at state bestpathpointer, that follows backpointer[] to states back in time
return bestpath, bestpathprob
```

Viterbi Algorithm: Example

For each state q_j at time t, compute: $v_t(j) = \max_{i=1to} v_{t-1}(i) * a_{ij} * b_j(o_t)$

Viterbi Algorithm: Example

For each state q_j at time t, compute: $v_t(j) = \max_{i=1toN} v_{t-1}(i) * P(transition) * P(emisssion)$

Viterbi Algorithm: the Idea

In other words: maximize P() for all "sub-sentences".

Viterbi Algorithm: Example

Viterbi Algorithm: Example

Some paths need not to be explored!

Example: Viterbi

L words in a sentence

Viterbi algorithm approach time complexity: O(L * K²)

$$K = 20, L = 10 \rightarrow 10 * 20^2 = 4000$$

versus brute force approach time complexity: O(KL)

$$K = 20, L = 10 \rightarrow 20^{10} = 10240000000000$$

Basic NLP Text Processing Pipeline

Syntax

- Words in sentences are not arranged randomly
- Syntax: "the way words are arranged together"

Formal Languages

 In formal language theory, a language is defined as a set of strings of symbols that may be constrained by specific rules.

 Written English language is made up of groups of letters (words) separated by spaces. A valid (accepted) sentence in the language must follow particular rules, the grammar.

Regular Languages

 A regular language is a language that can be expressed with a regular expression or a deterministic or non-deterministic <u>finite</u> <u>automata or state machine</u>.

Context-Free Languages

 A context-free language is a language generated by a context-free grammar.

More general than (but include) regular languages.

 The same context-free language might be generated by multiple context-free grammars.

The Concept of Constituency Groups of words that may behave as a single unit or phrase are called a constituent.

Context-Free Grammar

Contex-Free Grammar: A mathematical system for modeling constituent structure in languages (English, other natural languages, etc.).

Also called Phase-Structure Grammars.

CFG Grammar = Rules + Lexicon

 Rules (also called productions): define how individual language symbols can be grouped and ordered together

+

Lexicon: a set of language symbols (NLP: words)

Backus-Naur Form Notation

Backus—Naur form or Backus normal form (BNF) is a metasyntax notation for context-free grammars, often used to describe the syntax of languages used in computing, such as computer programming languages, document formats, instruction sets and communication protocols.

Simple Sample Grammar

 $S \longrightarrow NP \ VP$ $NP \longrightarrow Pronoun$ $\mid Proper-Noun$

| Det Nominal

Nominal \rightarrow Nominal Noun

Noun

 $VP \longrightarrow Verb$

Verb NP

Verb NP PP

| Verb PP

 $NP \longrightarrow Preposition NP$

Legend:

S - start symbol

NP - noun phrase

VP - verb phrase

PP - prepositional phrase

The | ("or") symbol means that a non-terminal has alternate expansions.

Simple Grammar: Rules / Productions

Simple Grammar: Expansions

Simple Sample Lexicon

```
\rightarrow flights | breeze | trip | morning
Noun
                    \rightarrow is | prefer | like | need | want | fly
Verb
                    \rightarrow cheapest | non-stop | first | latest |
Adjective
                        other | direct
                    \rightarrow me \mid I \mid you \mid it
Pronoun
Proper-Noun \rightarrow Alaska \mid Baltimore \mid Los Angeles \mid Chicago \mid United
Determiner \rightarrow the \mid a \mid an \mid this \mid these \mid that
Preposition \rightarrow from \mid to \mid on \mid near
Conjunction \rightarrow and | or | but
```

Simple Sample Lexicon

```
\rightarrow flights | breeze | trip | morning
Noun
                   \rightarrow is | prefer | like | need | want | fly
Verb
                   \rightarrow cheapest | non-stop | first | latest |
Adjective
                       other | direct
Pronoun
                   \rightarrow me \mid I \mid you \mid it
Proper-Noun
                   \rightarrow Alaska | Baltimore | Los Angeles | Chicago | United
                   \rightarrow the | a | an | this | these | that
Determiner
Preposition
                  \rightarrow from | to | on | near
Conjunction
                  \rightarrow and | or | but
```

Non-terminal symbols (generalizations)

Terminal symbols

Simple Grammar: Example Phrases

S	$\rightarrow NP VP$	I want a morning flight
NP	$\rightarrow Pronoun$	I
	Proper-Noun	Los Angeles
	Det Nominal	a flight
Nominal	→ Nominal Noun	morning flight
	Noun	flights
VP	$\rightarrow Verb$	do
	Verb NP	want a flight
	Verb NP PP	leave Boston in the morning
	Verb PP	leaving on Thursday
NP	$\rightarrow Preposition NP$	from Los Angeles
	-	

"Context-Free"

"expansion of a non-terminal does not depend on its neighbors"

Parse tree (representing a sequence of expansions = derivation) for sentence:

Context Free Grammar

A context-free grammar G is defined by:

- lacktriangleq N: a set of non-terminal symbols (variables)
- Σ : a set of terminal symbols (disjoint from N)
- R: a set of rules or productions of the form $A \rightarrow \beta$, where:
 - A: a non-terminal symbol
 - β : a string of symbols from the infinite set of strings $(\Sigma \cup N)^*$
- S: a designated start symbol

Direct Derivation: Formal Definition

One string derives another if it can be rewritten as the second one by some series of rule applications:

If $A \to \beta$ is a rule / production and α and γ are any strings in the set $(\Sigma \cup N)^*$, then we can say that

 $\alpha A \gamma$ directly derives $\alpha \beta \gamma$

or

$$\alpha A \gamma \Rightarrow \alpha \beta \gamma$$

Derivation: Formal Definition

Derivation is a generalization of direct derivation:

Let α_1 , α_2 , ..., α_m are strings in the set $(\Sigma \cup N)^*$, with $m \ge 1$ such that

$$\alpha_1 \Rightarrow \alpha_2, \alpha_2 \Rightarrow \alpha_3, ..., \alpha_{m-1} \Rightarrow \alpha_m$$

and we can say that $lpha_{\it l}$ derives $lpha_{\mu}$, or $lpha_{\it l} \stackrel{*}{\Rightarrow} lpha_{\mu}$

Language vs. Grammar

Language L_G generated by a grammar G is the set of all strings composed of terminal symbols that can be derived from the designated start symbol S.

$$L_G = \{ w \mid w \text{ is in } \Sigma * \text{ and } S \overset{*}{\Rightarrow} w \}$$
 strings made up of terminals derived from symbol S

Grammatical vs. Ungrammatical

Formal language is made of sentences:

- sentences that CAN be derived by a grammar are IN the formal language defined by that grammar are called grammatical sentences
- sentences that CANNOT be derived by a grammar are NOT IN the formal language defined by that grammar are called ungrammatical sentences

Parse tree for:

S

NP

VP

NP

Parse tree for:

S

Parse tree for:

Parse tree for:

Parse tree for:

Parse tree for:

Syntactic Parsing: Sentence → Tree

Parsing

The task of determining the parts of speech, phrases, clauses, and their relationship to one another is called parsing.

BNF Example: CNF Propositional Logic

- BNF: Backus-Naur Form
- CNF: Conjunctive Normal Form

Arithmetic Expressions Grammar

$$S \longrightarrow S \ Op \ S \mid Num$$
 $Op \longrightarrow + \mid - \mid \times \mid \div$
 $Num \longrightarrow Num \ Digit \mid Digit$
 $Digit \longrightarrow 0 \mid 1 \mid 2 \mid 3 \mid 4 \mid 5 \mid 6 \mid 7 \mid 8 \mid 9$

Arithmetic Expressions Grammar

$$S \longrightarrow S \ Op \ S \mid Num$$

$$Op \longrightarrow + \mid - \mid \times \mid \div$$

$$Num \longrightarrow Num \ Digit \mid Digit$$

$$Digit \longrightarrow 0 \mid 1 \mid 2 \mid 3 \mid 4 \mid 5 \mid 6 \mid 7 \mid 8 \mid 9$$

Arithmetic Expressions Grammar

$$S \longrightarrow S \ Op \ S \mid Num$$
 $Op \longrightarrow + \mid - \mid \times \mid \div$
 $Num \longrightarrow Num \ Digit \mid Digit$
 $Digit \longrightarrow 0 \mid 1 \mid 2 \mid 3 \mid 4 \mid 5 \mid 6 \mid 7 \mid 8 \mid 9$

Grammar: Derivation / Parse Trees

Grammar: Derivation / Parse Trees

Grammar: Derivation / Parse Trees

Ambiguous Grammar

A grammar is said to be ambiguous if it can generate the same string (here: 1 + 2 - 3) through multiple derivations.

Ambiguous Grammar

Derivations (generated by pre-order tree traversal):

Left: (S(S(Num(Digit 1)))(Op +)(S(Num(Digit 2))))(Op -)(S(Num(Digit 3))))

Right: (S(S(Num(Digit 1)))(Op +)(S(Num(Digit 2))(Op -)(S(Num(Digit 3)))))

Grammar Equivalence

Two grammars are equivalent if they can generate the same strings:

- weak equivalence: generate the same strings
- strong equivalence: generate the same strings through the same derivations

Grammar Equivalence: Example

Grammar A: $S \rightarrow aSB \mid ab$

Grammar B: $S \rightarrow aSB \mid aabb \mid ab$

Both can define language a^nb^n (sequences of n as and n bs) for n > 0