CNQP3

2023-01-03

Load packages

```
library(tidyverse)
library(scales)
library(performance)
library(stargazer)
options(scipen = 999, digits = 2)
```

Read dataset

```
brazil <- read.csv("brazil.csv")</pre>
```

Question 1

1a.

```
sum(is.na(brazil$council.age))
```

[1] 99

• The author have no data on the age of the health council for 99 of the municipalities.

1b

- The boxplot of the health council age above implies a median of 12 and 1st quartile and 3rd quartile values of 8 and 14 respectively.
- Two noticeable outliers were observed in the boxplot. The outliers are indicated with a red filled color.

1c.

```
summary(brazil$corruption)
```


Figure 1: Boxplot of the health council age

```
Min. 1st Qu. Median Mean 3rd Qu. Max.
```

- The mean and median of the corruption variable was observed to be 19 and 17 respectively.
- The mean is somewhat higher than the median as it would take into consideration all the values in the sample. As a result, the mean can be easily affected by an outlier. On the other hand, the median is a robust statistic as it's not easily affected by outliers.
- The estimate of the median implies that on the average, the corruption index of the municipalities that the author considered can be taken to be 17.

Question 2

2a.

```
model1 <- lm(corruption ~ council.age, data = brazil)
stargazer::stargazer(model1, type = "text")</pre>
```

	Dependent variable:
	corruption
council.age	-0.340**
	(0.150)
Constant	23.000***
	(1.800)
Observations	881
R2	0.006
Adjusted R2	0.005
Residual Std. Error	21.000 (df = 879)
F Statistic	5.100** (df = 1; 879)
Note:	*p<0.1; **p<0.05; ***p<0.01

2b.

- From the output of the simple linear regression above, it could be deduced that both the intercept and the council.age variates are significant at 5% level of significant.
- The estimate of the council.age implies that there would be on the average a 0.340 reduction in the corruption index as the age of the health council increases by a unit.
- On the other hand, the corruption index for a health council with age of zero is expected to be 23.0. This is the estimate of the intercept.
- The model is significant at 5% level of significant as the p-value of the F-statistic is less than 0.05.

2c.

We can interpret the regression coefficient as the average effect of council age on corruption under the following assumptions:

- Linear relationship: The relationship between corruption and council.age is expected to be linear.
- Independence: Observations are independent of each other
- Homoscedasticity: The variance of the residual is the same for any value of council.age.
- Normality: For any fixed value of corruption, council.age is normally distributed.

Question 3

3a.

```
model2 <- lm(corruption ~ council.age + margin + reelected + poverty, data = brazil)
stargazer(model1, model2, type = "text")</pre>
```

	Dependent variable:		
	corruption		
	(1)	(2)	
council.age	-0.340** (0.150)	-0.290** (0.150)	
margin		0.050 (0.036)	
reelected		-1.600 (1.500)	
poverty		0.150*** (0.030)	
Constant	23.000*** (1.800)	15.000*** (2.400)	
Observations R2 Adjusted R2 Residual Std. Error F Statistic	881 0.006 0.005 21.000 (df = 879) 5.100** (df = 1; 879)	877 0.037 0.033 20.000 (df = 872) 8.500*** (df = 4; 872)	
Note:	*p<0	.1; **p<0.05; ***p<0.01	

3b.

- The estimated coefficient for margin in the model above is 0.050. This implies an increase in the corruption index for any elected major with a wide margin over the runner-up candidate in the previous election.
- Thus, the wider the margin between the elected major and the runner-up candidate, the higher the average corruption index.

3c.

• The model fit for the multiple linear regression seems to be a better fit than the simple linear regression as the adjusted R^2 for the multiple linear regression (0.033 or 3.3%) is significantly higher than the simple linear regression (0.005 or 0.5%). Both models are significant at 5% level of significant.

3d.

1 19

• The predicted corruption index score for a municipality health council that is 10 years old, that has a re-elected Major, where the Major won the last election by 12 percentage points, and where the poverty level is 50 is 19.

Question 4

4a.

```
model3 <- lm(corruption ~ council.age + margin + reelected + poverty + council.age*reelected, data = br
stargazer(model2, model3, type = "text")</pre>
```

______ Dependent variable: corruption (1) (2) -0.290** -0.120 council.age (0.150)(0.190)margin 0.050 0.054 (0.036)(0.036)-1.600 3.200 reelected (1.500)(3.700)poverty 0.150*** 0.150*** (0.030)(0.030)council.age:reelected -0.430 (0.300)Constant 15.000*** 13.000*** (2.400)(2.800)

Observations 877 R2 0.037 0.040 Adjusted R2 0.033 0.034 Residual Std. Error 20.000 (df = 872)20.000 (df = 871)F Statistic 8.500*** (df = 4; 872) 7.200*** (df = 5; 871)_____ Note: *p<0.1; **p<0.05; ***p<0.01

4b.

- The estimated coefficient for margin in the model above is 0.054. This implies an increase in the corruption index for any elected major with a wide margin over the runner-up candidate in the previous election.
- Thus, the wider the margin between the elected major and the runner-up candidate, the higher the average corruption index.

4c.

```
confint(model3, "poverty")

2.5 % 97.5 %
poverty 0.095 0.21
```

• For the multiple model with interaction, the 95% confidence interval for the estimate of poverty is obtained to be (0.095, 0.21).

4d.

```
cor.test(brazil$corruption, brazil$council.age)
```

Pearson's product-moment correlation

```
data: brazil$corruption and brazil$council.age
t = -2, df = 879, p-value = 0.02
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
   -0.14 -0.01
sample estimates:
   cor
   -0.076
```

• From the Pearson product-moment correlation above, it could be deduced that there exist a low negative linear relationship between corruption and council.age.

4e.

```
predict(model3, newdata = test_df2)

1  2
24  19
plot(predict(model3, newdata = test_df2), ylab = "Predicted Corruption Index", xlab = "")
```


• The plot above also shows that as the council.age increases, the corruption index decreases. This is evident as the corruption index for council.age == 0 is 24 and the corruption index for council.age == 20 is 19.