

RTL8187L

802.11b/g RTL8187 miniCard

Rev. 1.2 06 September 2005 Track ID: JATR-1076-21

Realtek Semiconductor Corp.

No. 2, Industry E. Rd. IX, Science-Based Industrial Park, Hsinchu 300, Taiwan Tel: +886-3-5780211 Fax: +886-3-5776047 www.realtek.com.tw

COPYRIGHT

©2005 Realtek Semiconductor Corp. All rights reserved. No part of this document may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any language in any form or by any means without the written permission of Realtek Semiconductor Corp.

DISCLAIMER

Realtek provides this document "as is", without warranty of any kind, neither expressed nor implied, including, but not limited to, the particular purpose. Realtek may make improvements and/or changes in this document or in the product described in this document at any time. This document could include technical inaccuracies or typographical errors.

TRADEMARKS

Realtek is a trademark of Realtek Semiconductor Corporation. Other names mentioned in this document are trademarks/registered trademarks of their respective owners.

USING THIS DOCUMENT

This document is intended for the software engineer's reference and provides detailed programming information.

Though every effort has been made to ensure that this document is current and accurate, more information may have become available subsequent to the production of this guide. In that event, please contact your Realtek representative for additional information that may help in the development process.

REVISION HISTORY

Revision	Release Date	Summary
1.0	2004/10/22	First release.
1.1	2005/04/25	Revised data transaction content.
		Added offset 8 information (Table 27, page 23, and Table 28, page 23).
1.2	2005/09/06	Added RoHS declaration (see last 2 pages).
		Added lead (Pb)-free and package identification information on page 4.
		Corrected section 14 Mechanical Dimensions, page 34.

Table of Contents

1.	GENERAL DESCRIPTION	1
2.]	FEATURES	1
3.	SYSTEM APPLICATIONS	3
4.]	BLOCK DIAGRAM	7
5.]	PIN ASSIGNMENTS	
5.1	. LEAD (PB)-FREE PACKAGE IDENTIFICATION	4
6.]	PIN DESCRIPTIONS	5
6.1	. USB Transceiver Interface	5
6.2	EEPROM INTERFACE	5
6.3	. POWER PINS	5
6.4	LED INTERFACE	6
6.5	ATTACHMENT UNIT INTERFACE	6
	6.5.1. RTL8225 RF Chipset	<i>c</i>
	6.5.2. RTL8255 RF Chipset	
6.6	CLOCK AND OTHER PINS	8
7.	CPU ACCESS TO ENDPOINT DATA	9
7.1	. Control Transfer	C
7.1		
8.	USB REQUEST	10
8.1	. GET DESCRIPTOR-DEVICE	10
8.2	GET DESCRIPTOR-DEVICE QUALIFIER (HIGH SPEED)	10
8.3	GET DESCRIPTOR-CONFIGURATION	11
8.4	GET DESCRIPTOR-STRING INDEX 0	11
8.5		
8.6		
8.7		
8.8		
8.9		
8.1		
8.1		
8.1		
8.1		
8.1		
8.1		
8.1	6. Set Config 1	16
9.]	EEPROM (93C46 OR 93C56) CONTENTS	17
9.1	. EEPROM REGISTERS SUMMARY	20
9.2		
10.	USB PACKET BUFFERING	21
10.	1. Transmit Buffer Manager	21
10.		

10.3. PACKET RECOGNITION	21
11. FUNCTIONAL DESCRIPTION	22
11.1. Transmit & Receive Operations	22
11.1.1. Transmit	
11.1.2. Receive	
11.2. LOOPBACK OPERATION	27
11.3. TX ENCAPSULATION (WITH RTL8187L INTERNAL BASEBAND PROCE	ESSOR)
11.4. RX DECAPSULATION (WITH RTL8187L INTERNAL BASEBAND PROCE	
11.5. LED FUNCTIONS	28
11.5.1. Link Monitor	28
11.5.2. Infrastructure Monitor	
11.5.3. Rx LED	
11.5.4. Tx LED	
11.5.5. Tx/Rx LED	
11.5.6. LINK/ACT LED	30
12. APPLICATION DIAGRAM	31
13. ELECTRICAL CHARACTERISTICS	32
13.1. TEMPERATURE LIMIT RATINGS	32
13.2. DC CHARACTERISTICS	
13.3. AC CHARACTERISTICS	
13.3.1. Serial EEPROM Interface Timing (93C46(64*16)/93C56(128*16	
	· ·
14. MECHANICAL DIMENSIONS	34
14.1. MECHANICAL DIMENSIONS NOTES	35
15. ORDERING INFORMATION	50
List of Tables	
	-
TABLE 1. USB TRANSCEIVER INTERFACE	
TABLE 2. EEPROM INTERFACE	
TABLE 4. LED INTERFACE	
TABLE 5. ATTACHMENT UNIT INTERFACE	
TABLE 5. ATTACHMENT UNIT INTERFACE	
TABLE 7. CLOCK AND OTHER PINS	
TABLE 8. GET DESCRIPTOR-DEVICE	
TABLE 9. GET DESCRIPTOR-DEVICE QUALIFIER (HIGH SPEED)	
TABLE 10. GET DESCRIPTOR-CONFIGURATION	
TABLE 10. GET DESCRIPTOR-CONFIGURATION	
TABLE 11. GET DESCRIPTOR-STRING INDEX U	
TABLE 12. GET DESCRIPTOR-STRING INDEX 1 TABLE 13. GET DESCRIPTOR-STRING INDEX 2	
TABLE 13. GET DESCRIPTOR-STRING INDEX 2 TABLE 14. GET DESCRIPTOR-STRING INDEX 3	
TABLE 15. GET DESCRIPTOR-STRING INDEX 4	
TABLE 16. GET DESCRIPTOR-STRING INDEX 5	
TABLE 17. GET DESCRIPTOR-OTHER SPEED CONFIGURATION	
TABLE 18 SET ADDRESS	15

Table 20. Set Feature Device	15
Table 21. Clear Feature Device	16
TABLE 22. SET CONFIG 0	
TABLE 23. SET CONFIG 1	
TABLE 24. EEPROM (93C46 OR 93C56) CONTENTS	17
TABLE 25. EEPROM REGISTERS SUMMARY	20
TABLE 26. EEPROM POWER MANAGEMENT REGISTERS SUMMARY	20
TABLE 27. TX DESCRIPTOR FORMAT	22
TABLE 28. TX STATUS DESCRIPTOR.	23
TABLE 29. RX DESCRIPTOR FORMAT	25
TABLE 30. RX STATUS DESCRIPTOR.	
TABLE 31. TEMPERATURE LIMIT RATINGS	32
TABLE 32. DC CHARACTERISTICS	32
TABLE 33. EEPROM ACCESS TIMING PARAMETERS	33
TABLE 34. ORDERING INFORMATION	36

List of Figures

FIGURE 1.	BLOCK DIAGRAM	3
FIGURE 2.	PIN ASSIGNMENTS.	4
	Rx LED	
FIGURE 4.	Tx LED	29
	Tx/Rx LED	
	LINK/ACT LED.	
	APPLICATION DIAGRAM	
	SERIAL EEPROM INTERFACE TIMING.	

1. General Description

The Realtek RTL8187L is a low-profile highly integrated cost-effective Wireless LAN USB 2.0 network interface controller that integrates a USB 2.0 PHY, SIE (Serial Interface Engine), 8051 MCU, a Wireless LAN MAC, and a Direct Sequence Spread Spectrum/OFDM baseband processor onto one chip. It provides USB high speed (480Mbps), and full speed (12Mbps), and supports 4 endpoints for transfer pipes. To reduce protocol overhead, the RTL8187L supports Short InterFrame Space (SIFS) burst mode to send packets back-to-back. A protection mechanism prevents collisions among 802.11b nodes. The RTL8187L fully complies with IEEE 802.11a/b/g specifications.

Direct Sequence Spread Spectrum (DSSS), Complementary Code Keying (CCK), and Orthogonal Frequency Division Multiplexing (OFDM) baseband processing are implemented to support all IEEE 802.11a, 802.11b, and 802.11g data rates. Differential phase shift keying modulation schemes, DBPSK and DQPSK with data scrambling capability, are available, along with complementary code keying to provide data rates of 1, 2, 5.5, and 11Mbps, with long or short preamble. A high-speed Fast Fourier Transform (FFT)/Inverse Fast Fourier Transform (IFFT), combined with BPSK, QPSK, 16QAM and 64QAM modulation of the individual sub-carriers, provides data rates of 6, 9, 12, 18, 24, 36, 48 and 54Mbps, with rate-compatible punctured convolutional coding with a coding rate of 1/2, 2/3, and 3/4.

An enhanced signal detector, an adaptive frequency domain equalizer, and a soft-decision Viterbi decoder are built-in to alleviate severe multipath effects. Efficient IQ-imbalance calibration, DC offset, phase noise, frequency offset, and timing offset compensation reduce radio frequency front-end impairments. Selectable digital transmit and receiver FIR filters are provided to meet the requirements of transmit spectrum masks, and to reject adjacent channel interference, respectively. Both in the transmitter and receiver, programmable scaling in the digital domain trades the quantization noise against the increased probability of clipping. Robust signal detection, symbol boundary detection, and channel estimation perform well at the minimum sensitivity.

The RTL8187L supports fast receiver Automatic Gain Control (AGC) and antenna diversity functions, and an adaptive transmit power control function to obtain better performance in the analog portions of the transceiver. It also has on-chip digital-to-analog converters and analog-to-digital converters for analog I and Q inputs and outputs, transmit TSSI and receiver RSSI inputs, and transmit and receiver AGC outputs.

The RTL8187L is highly integrated and requires no 'glue' logic or external memory. It keeps network maintenance costs low and eliminates usage barriers.

2. Features

- 128-Pin LQFP and 128-pin LQFP Lead (Pb)-Free package
- State machine implementation without external memory (RAM, flash) requirement
- Complies with IEEE 802.11a/b/g standards
- Supports descriptor-based buffer management
- Integrated Wireless LAN MAC and Direct Sequence Spread Spectrum/OFDM Baseband Processor in one chip
- Enhanced signal detector, adaptive frequency domain equalizer, and soft-decision Viterbi decoder to alleviate severe multipath effects
- Processing Gain compliant with FCC
- On-Chip A/D and D/A converters for I/Q Data, AGC, and Adaptive Power Control
- Supports both transmit and receive Antenna Diversity
- Data rates of 1, 2, 5.5, 6, 9, 11, 12, 18, 24, 36, 48, and 54Mbps
- Supports 40MHz OSC as the internal clock source. The frequency deviation of the OSC must be within 25 PPM on IEEE 802.11g and 20 PPM on IEEE 802.11a
- IEEE 802.11g protection mechanisms for both RTS/CTS and CTS-to-self
- Burst-mode support for dramatically enhanced throughput
- DSSS with DBPSK and DQPSK, CCK modulations and demodulations supported with long and short preamble

- OFDM with BPSK, QPSK, 16QAM and 64QAM modulations and demodulations supported with rate compatible punctured convolutional coding with coding rate of 1/2, 2/3, and 3/4
- Efficient IQ-imbalance calibration, DC offset, phase noise, frequency offset and timing offset compensation reduce analog front-end impairments
- Selectable digital transmit and receiver FIR filters provided to meet transmit spectrum mask requirements and to reject adjacent channel interference
- Programmable scaling both in transmitter and receiver to trade quantization noise against the increased probability of clipping
- Fast receiver Automatic Gain Control (AGC) & antenna diversity functions
- Hardware-based IEEE 802.11i encryption/decryption engine, including 64-bit/128-bit WEP, TKIP, and AES
- Supports Wi-Fi alliance WPA and WPA2 security
- Contains two large independent transmit and receive FIFO buffers
- Advanced power saving mode when the LAN and wakeup function are not used
- Uses 93C46 (64*16-bit EEPROM) or 93C56 (128*16-bit EEPROM) to store resource configuration and ID parameter data
- LED pins for various network activity indications
- Two GPIO pins supported

- Supports digital loopback capability on both ports
- Scatter and gather operation
- Complies with USB Specification 2.0
 - ◆ Supports Full-speed (12Mbps) and High-speed (480Mbps)
- Embedded standard 8051 CPU with enhanced features:
 - Four cycles per instruction
 - Variable clock speed cuts power consumption

- Supports 4 endpoints:
 - ◆ 64-Byte buffer for control endpoint
 - ◆ 512-Byte buffer for bulk IN endpoint
 - ◆ Two 512-Byte buffers for bulk OUT endpoint
- 3.3V and 1.8V power supplies required
- 5V tolerant I/Os
- 0.18µm CMOS process

3. System Applications

- USB Dongle WLAN adapter
- Embedded WLAN solution in notebook, desktop, mobile phone, and motherboard

4. Block Diagram

BBP, TX Section

BBP, RX Section

Figure 1. Block Diagram

5. Pin Assignments

Figure 2. Pin Assignments

5.1. Lead (Pb)-Free Package Identification

Lead (Pb)-free package is indicated by an 'L' in the location marked 'T' in Figure 2.

6. Pin Descriptions

In order to reduce pin count, and therefore size and cost, some pins have multiple functions. In such cases, the functions are separated with a '/' symbol. Refer to the Pin Assignments diagram on page 4 for a graphical representation.

The following signal type codes are used in the tables:

I: Input. S/T/S: Sustained Tri-State.

O: Output O/D: Open Drain.

T/S: Tri-State bi-directional input/output pin.

6.1. USB Transceiver Interface

Table 1. USB Transceiver Interface

Symbol	Type	Pin No	Description
HSDP	I/O	26	High speed USB D+ signal
HSDM	I/O	24	High speed USB D- signal
FSDP	I/O	27	Full speed USB D+ signal
FSDM	I/O	25	Full speed USB D- signal
RUP	N/A	28	External pull-up resistor (1.5kW) for D+ line.
RREF	N/A	31	External Reference. Requires 1% precision 6.25K resistor to ground

6.2. EEPROM Interface

Table 2. EEPROM Interface

Symbol	Type	Pin No	Description
EESK	O	51	EESK in 93C46 (93C56) programming or auto-load mode.
EEDI	О	39	EEDI in 93C46 (93C56) programming or auto-load mode.
EEDO	I/O	36	EEDO in 93C46 (93C56) programming or auto-load mode.
EECS	О	47	EEPROM Chip Select.
			93C46 (93C56) chip select.

6.3. Power Pins

Table 3. Power Pins

Symbol	Type	Pin No	Description				
VDD33	P	40, 59, 78, 93, 111	+3.3V (Digital).				
AVDD	P	2, 9, 22, 29, 32, 127	+3.3V (Analog).				
VDD	P	44, 53, 72, 82, 90, 96,	+1.8V.				
		105, 115					
GND	P	41, 45, 52, 60, 73, 80,	Ground (Digital).				
		83, 91, 110					
AGND	P	3, 10, 21, 23, 30, 123,	Ground (Analog).				
		126, 128					

6.4. LED Interface

Table 4. LED Interface

Symbol	Type	Pin No	De	scription					
LED0, 1	O	48, 56		LED Pins (Active low)					
				LEDS1~0	00	01	10	11	
				LED0	TX/RX	TX/RX	TX	LINK/ACT	
				LED1	Infrastructure	LINK	RX	Infrastructure	
				During power down mode, the LED signals are logic high.					

6.5. Attachment Unit Interface

6.5.1. RTL8225 RF Chipset

Table 5. Attachment Unit Interface

Symbol	Type	Pin No	Description
RIFSCK	О	57	Serial Clock Output.
			For the RTL8225 RF chipset, all operation mode switching and register setting is
			done via a 4-wire serial interface.
RIFSD	I/O	61	Serial Data Input/Output.
RFLE	О	58	Serial Enable control.
CALEN	О	77	Serial Read/Write control.
CALMODE	О	108	Receiver Output.
			I and Q channel AC coupling high-pass corner frequency selection. The output function of this pin is not used in the RTL8225 RF chipset.
LNA_HL	О	88	Not used in the RTL8225 RF chipset.
ANTSEL	О	87	Antenna Select.
			The antenna detects signal change states as the receiver switches from antenna to antenna during the acquisition process in antenna diversity mode. This is a complement for ANTSELB for differential drive of antenna switches.
ANTSELB	О	95	Antenna Select B.
			The antenna detects signal change states as the receiver switches from antenna to antenna during the acquisition process in the antenna diversity mode. This is a complement for ANTSEL for differential drive of antenna switches.
TRSW	О	104	Transmit/Receive path select.
TRSWB	О	103	The TRSW select signal controls the direction of the Transmit/Receive switch.
VCOPDN	О	49	Output Pin as shutdown mode select digital input.
A_PAPE	О	85	2.4GHz Transmit Power Amplifier Power Enable.
B_PAPE	О	107	Not used in the RTL8225 RF chipset.
RFTXEN	О	102	Not used in the RTL8225 RF chipset.
RFRXEN	О	113	Not used in the RTL8225 RF chipset.
GPIO0	О	67	General purpose input/output pin.
GPIO1	О	68	General purpose input/output pin.
GPIO2	О	69	General purpose input/output pin.
GPIO3	О	70	General purpose input/output pin.

Symbol	Type	Pin No	Description
GPIO4	О	100	General purpose input/output pin.
GPIO5	О	94	General purpose input/output pin.
VREFO	X	118	Not used in the RTL8225 RF chipset.
VRP	X	119	Not used in the RTL8225 RF chipset.
VRN	X	120	Not used in the RTL8225 RF chipset.
RXIP	I	121	Receive (Rx) In-phase Analog Data.
RXIN	I	122	
RXQP	I	124	Receive (Rx) Quadrature-phase Analog Data.
RXQN	I	125	
RXAGC	I	4	Not used in the RTL8225 RF chipset.
TXAGC	О	5	Not used in the RTL8225 RF chipset.
RSSI	I	6	Analog Input to the Receive Power A/D Converter for Receive AGC Control.
TSSI0	I	7	Input to the Transmit Power A/D Converter for 2.4GHz Transmit AGC Control.
TSSI1	I	8	Not used in the RTL8225 RF chipset.
TXQP	I	11	Not used in the RTL8225 RF chipset.
TXQN	I	12	
TXIP	О	14	Not used in the RTL8225 RF chipset.
TXIN	О	13	
TXQTP	О	15	Transmit (TX) Quadrature-phase Analog Data.
TXQTN	О	16	
TXITP	О	17	Transmit (TX) In-phase Analog Data.
TXITN	O	18	

6.5.2. RTL8255 RF Chipset

Table 6. RTL8255 RF Chipset

Symbol	Type	Pin No	Description
RIFSCK	О	57	Serial Clock Output.
			For the RTL8255 RF chipset, all operation mode switching and register setting is
			done via a 3-wire serial interface.
RIFSD	О	61	Serial Data Input/Output.
RFLE	О	58	Serial Enable control.
CALEN	X	77	Not used in the RTL8255 RF chipset.
CALMODE	О	108	Receiver Output.
			I and Q channel AC coupling high-pass corner frequency selection. The output
			function of this pin is not used in the RTL8255 RF chipset.
LNAHL	О	88	Not used in the RTL8255 RF chipset.
ANTSEL	О	87	Antenna Select.
ANTSELB	О	95	The antenna detects signal change states as the receiver switches from antenna to
			antenna during the acquisition process in antenna diversity mode.
TRSW	О	104	Transmit/Receive path select.
TRSWB	О	103	The TRSW select signal controls the direction of the Transmit/Receive switch.
VCOPDN	О	49	Not used in the RTL8255 RF chipset.
APAPE	О	85	2.4GHz Transmit Power Amplifier Power Enable.
BPAPE	О	107	5GHz Transmit Power Amplifier Power Enable.

Symbol	Type	Pin No	Description
RFTXEN	О	102	Not used in the RTL8255 RF chipset.
RFRXEN	О	113	Not used in the RTL8255 RF chipset.
GPIO[0]	О	67	General purpose input/output pin.
GPIO[1]	О	68	General purpose input/output pin.
GPIO[2]	О	69	General purpose input/output pin.
GPIO[3]	О	70	General purpose input/output pin.
GPIO[4]	О	100	General purpose input/output pin.
GPIO[5]	О	94	General purpose input/output pin.
VREFO	X	118	Not used in the RTL8255 RF chipset.
VRP	X	119	Not used in the RTL8255 RF chipset.
VRN	X	120	Not used in the RTL8255 RF chipset.
RXIP	I	121	Receive (Rx) In-phase Analog Data.
RXIN	I	122	
RXQP	I	124	Receive (Rx) Quadrature-phase Analog Data.
RXQN	I	125	
RXAGC	О	4	Not used in the RTL8255 RF chipset.
TXAGC	О	5	Not used in the RTL8255 RF chipset.
RSSI	I	6	Analog Input to the Receive Power A/D Converter for Receive AGC Control.
TSSI0	I	7	Input to the Transmit Power A/D Converter for 2.4GHz Transmit AGC Control.
TSSI1	I	8	Input to the Transmit Power A/D Converter for 5GHz Transmit AGC Control.
TXQP	О	11	Transmit (TX) Quadrature-phase Analog Data.
TXQN	О	12	
TXIP	О	14	Transmit (TX) In-phase Analog Data.
TXIN	O	13	
TXQTP	О	15	Not used in the RTL8255 RF chipset.
TXQTN	О	16	
TXITP	О	17	Not used in the RTL8255 RF chipset.
TXITN	О	18	

6.6. Clock and Other Pins

Table 7. Clock and Other Pins

Symbol	Type	Pin No	Description				
R15K I/O 1			This pin must be pulled low by a 15K Ω resistor.				
XI	I	20	40MHz OSC Input.				

7. CPU Access to Endpoint Data

7.1. Control Transfer

Control transfers configure and send commands to a device. Because they are so important, they employ extensive USB error checking. The host reserves a portion of each USB frame for control transfers. Control transfers consist of two or three stages. The SETUP stage contains eight bytes of USB control data. An optional DATA stage contains more data, if required. The STATUS stage allows the device to indicate successful completion of a control operation.

7.2. Bulk Transfer

Bulk data is bursty, traveling in packets of 8, 16, 32, or 64 bytes at full speed, or at 512 bytes at high speed. Bulk data has guaranteed accuracy due to an automatic retry mechanism for erroneous data. The host schedules bulk packets when there is available bus time.

8. USB Request

8.1. Get Descriptor-Device

Table 8. Get Descriptor-Device

Setup Transaction

BmReq	bReq	wValueL	wValueH	wIndexL	wIndexH	wLengthL	wLengthH
80	06	00	01	00	00	Lengh_L	Length_H

High Speed Data Transaction

DATA0	DATA1	DATA2	DATA3	DATA4	DATA5	DATA6	DATA7
12	01	00	02	00	00	00	40
DA	0B	87	81	00	01	01	02
03	01						

Full Speed Data Transaction

DATA0	DATA1	DATA2	DATA3	DATA4	DATA5	DATA6	DATA7
12	01	10	01	00	00	00	40
DA	0B	87	81	00	01	01	02
03	01						

8.2. Get Descriptor-Device Qualifier (High Speed)

Table 9. Get Descriptor- Device Qualifier (High Speed)

Setup Transaction

70 0 0 0 0 0	· · · · · · · · · · · · · · · · · · ·											
BmReq	bReq	wValueL	wValueH	wIndexL	wIndexH	wLengthL	wLengthH					
80	06	00	06	00	00	Lengh_L	Length_H					

DATA0	DATA1	DATA2	DATA3	DATA4	DATA5	DATA6	DATA7
0A	06	00	02	00	00	00	40
01	00						

8.3. Get Descriptor-Configuration

Table 10. Get Descriptor-Configuration

Setup Transaction

BmReq	bReq	wValueL	wValueH	wIndexL	wIndexH	wLengthL	wLengthH
80	06	00	02	00	00	Lengh_L	Length_H

High Speed Data Transaction

	11.81 × peed 2 did 11 dispersion										
DATA0	DATA1	DATA2	DATA3	DATA4	DATA5	DATA6	DATA7				
09	02	27	00	01	01	04	80				
FA	09	04	00	00	03	00	00				
00	05	07	05	81	02	00	02				
00	07	05	02	02	00	02	00				
07	05	03	02	00	02	00					

Full Speed Data Transaction

DATA0	DATA1	DATA2	DATA3	DATA4	DATA5	DATA6	DATA7
09	02	27	00	01	01	00	E0
01	09	04	00	00	03	00	00
00	05	07	05	81	02	40	00
00	07	05	02	02	40	00	00
07	05	03	02	40	00	00	

8.4. Get Descriptor-String Index 0

Table 11. Get Descriptor-String Index 0

Setup Transaction

	BmReq	bReq	wValueL	wValueH	wIndexL	wIndexH	wLengthL	wLengthH	
	80	06	00	03	00	00	Lengh_L	Length_H	

DATA0	DATA1	DATA2	DATA3	DATA4	DATA5	DATA6	DATA7
04	03	09	04	-	-	-	-

8.5. Get Descriptor-String Index 1

Table 12. Get Descriptor-String Index 1

Setup Transaction

BmReq	bReq	wValueL	wValueH	wIndexL	wIndexH	wLengthL	wLengthH
80	06	01	03	09	04	Lengh_L	Length_H

Data Transaction

DATA0	DATA1	DATA2	DATA3	DATA4	DATA5	DATA6	DATA7
10	03	52	00	65	00	61	00
6C	00	74	00	65	00	6B	00

8.6. Get Descriptor-String Index 2

Table 13. Get Descriptor-String Index 2

Setup Transaction

BmReq	bReq	wValueL	wValueH	wIndexL	wIndexH	wLengthL	wLengthH
80	06	02	03	09	04	Lengh_L	Length_H

DATA0	DATA1	DATA2	DATA3	DATA4	DATA5	DATA6	DATA7
3A	03	52	00	54	00	4C	00
38	00	31	00	38	00	37	00
20	00	57	00	59	00	72	00
65	00	6C	00	65	00	73	00
73	00	20	00	4C	00	41	00
4E	00	20	00	41	00	64	00
61	00	70	00	74	00	65	00
72	00						

8.7. Get Descriptor-String Index 3

Table 14. Get Descriptor-String Index 3

Setup Transaction

BmReq	bReq	wValueL	wValueH	wIndexL	wIndexH	wLengthL	wLengthH
80	06	03	03	09	04	Lengh_L	Length_H

Data Transaction

DATA0	DATA1	DATA2	DATA3	DATA4	DATA5	DATA6	DATA7
1A	03	30	00	30	00	65	00
30	00	34	00	63	00	30	00
30	00	30	00	30	00	30	00
31	00						

8.8. Get Descriptor-String Index 4

Table 15. Get Descriptor-String Index 4

Setup Transaction

BmReq	bReq	wValueL	wValueH	wIndexL	wIndexH	wLengthL	wLengthH
80	06	04	03	09	04	Lengh_L	Length_H

DATA0	DATA1	DATA2	DATA3	DATA4	DATA5	DATA6	DATA7
2C	03	57	00	69	00	72	00
65	00	6C	00	65	00	73	00
73	00	20	00	4E	00	65	00
74	00	77	00	6F	00	72	00
6B	00	20	00	43	00	61	00
72	00	64	00				

8.9. Get Descriptor-String Index 5

Table 16. Get Descriptor-String Index 5

Setup Transaction

BmReq	bReq	wValueL	wValueH	wIndexL	wIndexH	wLengthL	wLengthH
80	06	05	03	09	04	Lengh_L	Length_H

Data Transaction

DATA0	DATA1	DATA2	DATA3	DATA4	DATA5	DATA6	DATA7
34	03	42	00	75	00	6C	00
6B	00	2D	00	49	00	4E	00
2C	00	42	00	75	00	6C	00
6B	00	2D	00	4F	00	55	00
54	00	2C	00	42	00	75	00
6C	00	6B	00	2D	00	4F	00
55	00	54	00				

8.10. Get Descriptor-Other Speed Configuration

Table 17. Get Descriptor-Other Speed Configuration

Setup Transaction

BmReq	bReq	wValueL	wValueH	wIndexL	wIndexH	wLengthL	wLengthH
80	06	00	07	00	00	Lengh_L	Length_H

High Speed Data Transaction

8 -1							
DATA0	DATA1	DATA2	DATA3	DATA4	DATA5	DATA6	DATA7
09	02	27	00	01	01	04	80
FA	09	04	00	00	03	00	00
00	05	07	05	81	02	00	02
00	07	05	02	02	00	02	00
07	05	03	02	00	02	00	

Full Speed Data Transaction

DATA0	DATA1	DATA2	DATA3	DATA4	DATA5	DATA6	DATA7
09	02	27	00	01	01	00	E0
01	09	04	00	00	03	00	00
00	05	07	05	81	02	40	00
00	07	05	02	02	40	00	00
07	05	03	02	40	00	00	

8.11. Set Address

Table 18. Set Address

Setup Transaction

BmReq	bReq	wValueL	wValueH	wIndexL	wIndexH	wLengthL	wLengthH	
00	05	addrL	addrH	00	00	00	00	

Note: No data transaction.

8.12. Set Interface 0

Table 19. Set Interface 0

Setup Transaction

BmReq	q bReq wValueL		wValueH	wIndexL	wIndexH	wLengthL	wLengthH	
01	0B	00	00	00	00	00	00	

Note: No data transaction.

8.13. Set Feature Device

Table 20. Set Feature Device

Setup Transaction

BmReq	bReq wValueL		wValueH	wIndexL	wIndexH	wLengthL	wLengthH	
00	03	01	00	00	00	00	00	

Note: No data transaction.

8.14. Clear Feature Device

Table 21. Clear Feature Device

Setup Transaction

BmReq	bReq wValueL		wValueH	wIndexL	wIndexH	wLengthL	wLengthH	
00	01	01	00	00	00	00	00	

Note: No data transaction.

8.15. Set Config 0

Table 22. Set Config 0

Setup Transaction

70 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			1		1		1	
BmReq	bReq	wValueL	wValueH wIndexL		wIndexH	wLengthL	wLengthH	
00	09	00	02	00	00	00	00	

Note: No data transaction.

8.16. Set Config 1

Table 23. Set Config 1

Setup Transaction

BmReq	1 1		wValueH	wIndexL	wIndexH	wLengthL	wLengthH	
00	09	01	00	00	00	00	00	

Note: No data transaction.

9. **EEPROM (93C46 or 93C56) Contents**

The RTL8187L supports the attachment of an external EEPROM. The 93C46 is a 1Kbit EEPROM (the 93C56 is a 2Kbit EEPROM). The EEPROM interface provides the ability for the RTL8187L to read from, and write data to, an external serial EEPROM device. If the EEPROM is not present, the RTL8187L initialization uses default values for the Operational Registers. Software can read and write to the EEPROM using "bit-bang" accesses via the 9346CR Register.

Although it is actually addressed by words, its contents are listed below by bytes for convenience. After the initial power on or auto-load command in the 9346CR, the RTL8187L performs a series of EEPROM read operations from the 93C46 (93C56).

Note: It is suggested to obtain Realtek approval before changing the default settings of the EEPROM.

Table 24. EEPROM (93C46 or 93C56) Contents

	able 24. EEPROM (93C46 or 93C56) Contents
	Description
	These 2 bytes contain the ID code word for the RTL8187L. The RTL8187L will load
81h	the contents of the EEPROM into the corresponding location if the ID word (8187h) is
	correct.
	USB Vendor ID.
	USB Device ID.
ChannelPlan	Channel Plan: Map of channels to be scanned.
EnergyDetThr	Energy detection threshold.
RFParm	RF specific parameter.
Version	The version of EEPROM content.
Options function	Bit0: Timeout function.
	0: Disable RTL8187L's USB timeout mechanism.
	1: Enable RTL8187L's USB timeout mechanism.
	Bit1: USB remote wake up function.
	0: There is no remote wake up feature for the RTL8187L.
	1: There is a remote wake up feature for the RTL8187L.
	Bit2:
	0: The RTL8187L's remote wake-up is based on the WLAN's wake-up signal
	1: The RTL8187L's remote wake-up is push-button based.
	Bit3: USB Status stage.
	1: Bypass the check setup interrupt procedure of 8051 when host sends set address
	command.
	Bit4: SelfloopbackISR function.
	1: The UTM self loopback will be initialized by internal 8051.
	Bit7:
	1: The power control signal to AFE will be auto controlled by suspendm.
RFChinID	RF Chip ID.
Tu cinpib	The identifier of the RF chip.
	RFParm Version

Bytes	Contents	Description
0Dh	CONFIG3	RTL8187L Configuration register 3.
		Operational register FF59h.
0Eh~13h	MAC Address	MAC Address.
		After the auto-load command or a hardware reset, the RTL8187L loads MAC
		Addresses to IDR0~IDR5 of the I/O registers of the RTL8187L.
14h	-	Reserved.
15h	CONFIG1	RTL8187L Configuration register 1.
		Operational register FF52h.
16h~17h	CRC	16-bit CRC value of EEPROM content.
18h	CONFIG2	RTL8187L Configuration register 2.
		Operational register FF53h.
19h	CONFIG4	RTL8187L Configuration register 4.
		Operational register FF5Ah.
1Ah~1Dh	ANA PARM	Analog Parameter for the RTL8187L.
	_	Operational registers of the RTL8187L are from FF54h to FF57h.
		Reserved. Do not change this field without Realtek approval.
1Eh	TESTR	RTL8187L Test Mode Register.
		Operational register FF5Bh.
		Reserved. Do not change this field without Realtek approval.
1Fh	-	Reserved.
20h	OFDM TxPower	Transmit Power Level for 802.11a-defined channel ID 36
	1	(Center frequency=5180MHz).
21h	OFDM TxPower	Transmit Power Level for 802.11a-defined channel_ID 40
		(Center frequency=5200MHz).
22h	OFDM TxPower	Transmit Power Level for 802.11a-defined channel ID 44
	3	(Center frequency=5220MHz).
23h	OFDM TxPower	Transmit Power Level for 802.11a-defined channel ID 48
	4	(Center frequency=5240MHz).
24h	OFDM TxPower	Transmit Power Level for 802.11a-defined channel ID 52
	5	(Center frequency=5260MHz).
25h	OFDM TxPower	Transmit Power Level for 802.11a-defined channel_ID 56
	_6	(Center frequency=5280MHz).
26h	OFDM_TxPower	
	7	(Center frequency=5300MHz).
27h	OFDM_TxPower	Transmit Power Level for 802.11a-defined channel ID 64
	8	(Center frequency=5320MHz).
28h	OFDM TxPower	Transmit Power Level for 802.11a-defined channel ID 149
	_9	(Center frequency=5745MHz).
29h	OFDM TxPower	Transmit Power Level for 802.11a-defined channel ID 153
	10	(Center frequency=5765MHz).
2Ah	OFDM TxPower	Transmit Power Level for 802.11a-defined channel ID 157
	11	(Center frequency=5785MHz).
2Bh	OFDM TxPower	Transmit Power Level for 802.11a-defined channel_ID 161
	12	(Center frequency=5805MHz).
2Ch	CCK TxPower1	Transmit Power Level for 802.11b(g)-defined channel ID 1
		(center frequency=2412MHz).
L	1	1 / /

Bytes	Contents	Description
2Dh	CCK_TxPower2	Transmit Power Level for 802.11b(g)-defined channel_ID 2
		(center frequency=2417MHz).
2Eh	CCK_TxPower3	Transmit Power Level for 802.11b(g)-defined channel_ID 3
		(center frequency=2422MHz).
2Fh	CCK_TxPower4	Transmit Power Level for 802.11b(g)-defined channel_ID 4
		(center frequency=2427MHz).
30h	CCK_TxPower5	Transmit Power Level for 802.11b(g)-defined channel_ID 5
		(center frequency=2432MHz).
31h	CCK_TxPower6	Transmit Power Level for 802.11b(g)-defined channel_ID 6
		(center frequency=2437MHz).
32h-35h	ANA_PARM2	Reserved: Do not change this field without Realtek approval.
		Analog Parameter1 for the RTL8187L: Operational registers of the RTL8187L are
		from FF60h to FF63h.
36h	CCK_TxPower11	Transmit Power Level for 802.11b(g)-defined channel_ID 11
		(center frequency=2462MHz).
37h	CCK_TxPower12	Transmit Power Level for 802.11b(g)-defined channel_ID 12
		(center frequency=2467MHz).
38h	CCK_TxPower13	Transmit Power Level for 802.11b(g)-defined channel_ID 13
		(center frequency=2472MHz).
39h	CCK_TxPower14	Transmit Power Level for 802.11b(g)-defined channel_ID 14
		(center frequency=2484MHz).
3Ah-6Bh	Manufacture String	Manufacture String and Product String: Those bits specify both manufacturer's
	&	information and device's information for the USB standard request.
	Product String	Maximum two strings total length are 50 bytes.
6Ch-79h	-	Reserved.
7Ah	CCK_TxPower7	Transmit Power Level for 802.11b(g)-defined channel_ID 7
		(center frequency=2442MHz).
7Bh	CCK_TxPower8	Transmit Power Level for 802.11b(g)-defined channel_ID 8
		(center frequency=2447MHz).
7Ch	CCK_TxPower9	Transmit Power Level for 802.11b(g)-defined channel_ID 9
		(center frequency=2452MHz).
7Dh	CCK_TxPower10	Transmit Power Level for 802.11b(g)-defined channel_ID 10
		(center frequency=2457MHz).

9.1. EEPROM Registers Summary

Table 25. EEPROM Registers Summary

Address	Name	Type	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
FF00h- FF05h	IDR0 – IDR5	R/W*									
FF52h	CONFIG1	R	LEDS1	LEDS0	=	LWACT	ı	ı	-	I	
1113211	CONFIGI	W^*	LEDS1	LEDS0	=	LWACT	ı	ı	-	I	
		R	LCK					PAPE	PA	PE	
FF53h	CONFIG2	K	LCK	ı	=	=	1	_sign	_tii	ne	
1113311		w*					_ _	PAPE	PAPE		
		vv	-	-	_	-	_	_sign	_tii	ne	
FF54h- FF57h	ANA_PARM	R/W**		32-bit Read Write							
FF59h	CONFIG3	R	-	PARM_En	Magic	-	-	-	-	-	
FF3911	CONFIGS	W*	-	PARM_En	Magic	-	-	-	-	-	
FF5Ah	CONFIG4	R	-	-	-	LWPME	-	LWPTN	_		
FFJAII	CONFIG4	W*	-	-	-	LWPME	-	LWPTN	_		
FF5Bh	TESTR					8-bit Read	Write				
FF60h- FF63h	ANA_PARM2	R/W		32-bit Read Write							
FFD8h	CONFIG5	R/W**	-	-					LANWake	-	

Note 1: Registers marked W^* can be written only if bits EEM1=EEM0=1.

Note 2: Registers marked 'W**' can be written only if bits EEM1:0=[1:1] and

CONFIG3 < PARM EN > = 0.

9.2. EEPROM Power Management Registers Summary

Table 26. EEPROM Power Management Registers Summary

Configuration Space Offset	Name	Type	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
52h	PMC	R	Aux_I_b1	Aux_I_b0	DSI	Reserved	PMECLK	Version		
53h		R	PME_D3_{cold}	PME_D3 _{hot}	PME_D2	PME_D1	PME_D0	D2	D1	Aux_I_b2

10. USB Packet Buffering

The RTL8187L incorporates two independent FIFOs for transferring data to/from the system interface and from/to the network. The FIFOs provide temporary storage of data, freeing the host system from the real-time demands of the network.

The way in which the FIFOs are emptied and filled is controlled by the FIFO threshold values in the Receive Configuration registers. These values determine how full or empty the FIFOs must be before the device requests the bus. Once the RTL8187L requests the bus, it will attempt to empty or fill the FIFOs as allowed by the respective MXDMA settings in the Transmit Configuration and Receive Configuration registers.

10.1. Transmit Buffer Manager

The buffer management scheme used on the RTL8187L allows quick, simple, and efficient use of the frame buffer memory. The buffer management scheme uses separate buffers and descriptors for packet information. This allows effective transfers of data to the transmit buffer manager by simply transferring the descriptor information to the transmit queue.

The Tx Buffer Manager DMA's packet data from system memory and places it in the 3.5KB transmit FIFO, and pulls data from the FIFO to send to the Tx MAC. Multiple packets may be present in the FIFO, allowing packets to be transmitted with Short InterFrame (SIF) space. Additionally, once the RTL8187L requests the bus, it will attempt to fill the FIFO as allowed by the MXDMA setting.

The Tx Buffer Manager process also supports priority queuing of transmit packets. It handles this by drawing from two separate descriptor lists to fill the internal FIFO. If packets are available in the high priority queues, they will be loaded into the FIFO before those of low priority.

10.2. Receive Buffer Manager

The Rx Buffer Manager uses the same buffer management scheme as used for transmits. The Rx Buffer Manager retrieves packet data from the Rx MAC and places it in the 4KB receive data FIFO, and pulls data from the FIFO for DMA to system memory. The receive FIFO is controlled by the FIFO threshold value in RXFTH. This value determines the number of long words written into the FIFO from the MAC unit before a DMA request for system memory occurs. Once the RTL8187L gets the bus, it will continue to transfer the long words from the FIFO until the data in the FIFO is less than one long word, or has reached the end of the packet, or the max DMA burst size is reached, as set in MXDMA.

10.3. Packet Recognition

The Rx packet filter and recognition logic allows software to control which packets are accepted, based on destination address and packet type. Address recognition logic includes support for broadcast, multicast hash, and unicast addresses. The packet recognition logic includes support for WOL and programmable pattern recognition.

11. Functional Description

11.1. Transmit & Receive Operations

The RTL8187L supports a new descriptor-based buffer management that will significantly lower host CPU utilization. The RTL8187L supports transmit descriptor and receive descriptor in memory. Each OUT packet contains 3-double-word transmit descriptors and each IN packet contains 4-double-word receive descriptors.

11.1.1. Transmit

Tx Descriptor Format

Table 27. Tx Descriptor Format

																			_
31	30 29	28	27 26 25	5 24	23	22 21 20 19	18	17	16	15	14 13 12	11	10	9 8	7	6	5 4	3 2 1 0	
					R		C	M	S	N	RSVD			TPK	ΓSI	ZE ((12 bi	ts)	Offset 0
I	RSVI)	TXRA	TE	T	RTSRATE	Т	О	P	О									
			(4 bit	s)	S	(4 bits)	S	R	L	_									
			, i		Е	, ,	Е	Е	C	Ē									
					N		Ν	F	P	N									
								R		C									
								A		R									
								G		Y									
										P									
										Т									
- 1																			1
L						~ 1 ·							ьжа	DIID		• • •			0.00
E N			Le	ength	1 (I	5 bits)							KIS	DUR	(16	bits)		Offset 4
G																			
E																			
X																			
T																			
	ATE		R	A		AGC (8 bi	ts)			R	ETRY_L	IMI	T (8	bits)		CWN	ИАХ	CWMIN	Offset 8
	FALL	_	S	N		(* * * * * * * * * * * * * * * * * *	-/						, ,	,		(4 b		(4 bits)	
	ACK		V	T												`			
	IMIT	_	D	Е															
(-	4 bits)	(3 bits)	N															
			` /	N															
				A]

Table 28. Tx Status Descriptor

Offset#	Bit#	Symbol	Description							
0	31:28	RSVD	Reserved.							
0	27:24	TXRATE	Tx Rate.							
			These four bits indicat	e the current	frame's trans	smission rate				
				Bit 27	Bit 26	Bit 25	Bit 24			
			1Mbps	0	0	0	0			
			2Mbps	0	0	0	1			
			5.5Mbps	0	0	1	0			
			11Mbps	0	0	1	1			
			6Mbps	0	1	0	0			
			9Mbps	0	1	0	1			
			12Mbps	0	1	1	0			
			18Mbps	0	1	1	1			
			24Mbps	1	0	0	0			
			36Mbps	1	0	0	1			
			48Mbps	1	0	1	0			
			54Mbps	1	0	1	1			
			Reserved		All other co	ombinations				
	23	RTSEN	RTS Enable.							
0	22:19	RTSRATE	Management, the fram length of the frame is § RTS Rate. These four bits indicate current frame and will	greater than I	RTSThreshol nme's transmi	d. ssion rate bef	ore transmitt			
				Bit 22	Bit 21	Bit 20	Bit 19			
			1Mbps	0	0	0	0			
			2Mbps	0	0	0	1			
			5.5Mbps	0	0	1	0			
			11Mbps	0	0	1	1			
			6Mbps	0	1	0	0			
			9Mbps	0	1	0	1			
			12Mbps	0	1	1	0			
			18Mbps	0	1	1	1			
			24Mbps	1	0	0	0			
			36Mbps	1	0	0	1			
			48Mbps	1	0	1	0			
			54Mbps	1	0	1	1			
			Reserved		All other co	ombinations				
0	18	CTSEN	CTS Enable. Both RTSEN and CTS mechanism will be use		indicates that	the CTS-to-S	Self protection	on		

Offset#	Bit#	Symbol	Description
0	17	MOREFRAG	More Fragment.
			This bit is set to 1 in all data type frames that have another fragment of the current
			packet to follow.
0	16	SPLCP	Short Physical Layer Convergence Protocol format.
			When set, this bit indicates that a short PLCP preamble will be added to the
			header before transmitting the frame.
0	15	NO_ENCRYPT	No Encryption.
			This packet will be sent out without encryption even if Tx encryption is enabled.
0	14:12	RSVD	Reserved.
0	11:0	TPKTSIZE	Transmit Packet Size.
			This field indicates the number of bytes required to transmit the frame.
4	31	LENGEXT	Length Extension.
			This bit is used to supplement the Length field (bits 30:16, offset 4). This bit will
			be ignored if the TXRATE is set to 1Mbps, 2Mbps, or 5.5Mbps.
4	30:16	Length	PLCP Length.
			The PLCP length field indicates the number of microseconds required to transmit
			the frame.
4	15:0	RTSDUR	RTS Duration.
			These bits indicate the RTS frame's duration field before transmitting the current
	21.20	DATE DATE	frame and will be ignored if the RTSEN bit is set to 0.
8	31:28	RATE_FALL BACK_LIMIT	Data Rate Auto Fallback Limit.
0	27.25		Dagamand
8	27:25	RSVD	Reserved.
8	24	ANTENNA	Tx Antenna.
8	23:16	AGC	Tx AGC.
8	15:8	RETRY_LIMIT	Retry Count Limit.
8	7:4	CWMAX	Maximum Contention Window.
8	3:0	CWMIN	Minimum Contention Window.

11.1.2. Receive

Rx Descriptor Format

Table 29. Rx Descriptor Format

31	30 29	28	27	26	25	24	23	22	2 2	1 2	20	19	18	17	16	15	14	13	12	11	10	9	9 8	7	1	6	5	4	3	2	1	0	
			D	F	S	R						R	M	P	В	R	P	C	I														Offset 0
F	RSVE)	M	О	P	S	F	RX	R.A	ΙT	Ε	S	A		Α		W	R	C			Fr	am	e_:	Le	ngtl	h ((12)	bi	ts)			
			A	V	L	V		(4	bi	ts)		V	R	M	R	S	R	C	V														
			F	F	C	D						D					M	3															
					P												G	2															
																	T																
					W	D										A																	Offset 4
R	SVD	(61	bits	s)	Α	Е			Α	.G(C (8 b	its)		N			F	RSS	I							S	Q				
					K	C										T			(7	bit:	s)						(8 b	its)			
					Е	R										Е											`		ĺ				
					U	Y										Ν																	
					P	P										N																	
						T										Α																	
						Е																											
						D																											
															TS	FTI	,																Offset 8
															ΓSI	FTI	I																Offset 12

Table 30. Rx Status Descriptor

Offset#	Bit#	Symbol	Description
0	31:28	RSVD	Reserved.
0	27	DMAF	RX DMA Fail.
			When set, this packet will be dropped by software.
0	26	FOVF	FIFO Overflow.
			When set, this bit indicates that the receive FIFO was exhausted before this packet was fully received.
0	25	SPLCP	Short Physical Layer Convergence Protocol format.
			When set, this bit indicates that a short PLCP preamble was added to the current
			received frame.
0	24	RSVD	Reserved.

Offset#	Bit#	Symbol	Description			-							
0	23:20	RXRATE	Rx Rate.										
			These four bits indicat	e the current	frame's rece	iving rate.							
				Bit 23	Bit 22	Bit 21	Bit 20						
			1Mbps	0	0	0	0						
			2Mbps	0	0	0	1						
			5.5Mbps	0	0	1	0						
			11Mbps	0	0	1	1						
			6Mbps	0	1	0	0						
			9Mbps	0	1	0	1						
			12Mbps	0	1	1	0						
			18Mbps	0	1	1	1						
			24Mbps	1	0	0	0						
			36Mbps	1	0	0	1						
			48Mbps	1	0	1	0						
			54Mbps	1	0	1	1						
			Reserved		All other co	ombinations							
0	19	RSVD	Reserved.										
0	18	MAR	Multicast Address Packet Received.										
			When set, this bit indic	cates that a m	nulticast pack	et was receiv	ed.						
0	17	PAM	Physical Address Mato										
			When set, this bit indic			ddress of this	Rx packet m	atches					
			the value in the RTL8187L's ID registers.										
0	16	BAR	Broadcast Address Rec				1 5 1 5 1						
			When set, this bit indic		oadcast pack	tet was receiv	red. BAR and	ı MAR					
0	15	RES	will not be set simultant Receive Error.	leously.									
U	13	KES	Valid if DMAF=0										
0	14	PWRMGT	Receive Power Manag	amant Daaka	. t								
U	14	I WKWIGI	When set, this bit indic			gement hit is	set on the re	ceived					
			packet.	ates that the	1 OWCI IVIAIIC	igement ou is	set on the re	ccivca					
0	13	CRC32	CRC32 Error.										
			When set, this bit indic	cates that a C	RC32 error l	nas occurred	on the receiv	ed					
			packet. A CRC32 pack										
0	12	ICV	Integrity Check Value	Error.									
			When set, this bit indic	ates that an I	CV error has	occurred on	the received p	packet.					
			A ICV packet can be re										
0	11:0	Frame_Length	This bit indicates the r	eceived pack	et length inc	luding CRC3	2, in bytes.						
4	31:26	RSVD	Reserved.										
4	25	WAKEUP	The received packet is a unicast wakeup packet.										
4	24	DECRYPTED	The received packet ha	as been decry	pted.								
4	23:16	AGC	The AGC of the receiv	ed packet.									
4	15	ANTENNA	The received packet is	received thr	ough this ant	enna.							
4	14:8	RSSI	Received Signal Streng	gth Indicator									
			The RSSI is a measure of the RF energy received by the PHY.										

Offset#	Bit#	Symbol	Description
4	7:0	SQ	Signal Quality.
			The SQ is a measure of the quality of BAKER code lock, providing an effective measure during the full reception of a PLCP preamble and header.
8	31:0	TSFTL	A snapshot of the TSFTR's least significant 32 bits.
12	31:0	TSFTH	A snapshot of the TSFTR's most significant 32 bits.

11.2. Loopback Operation

Loopback mode is normally used to verify that the logic operations have performed correctly. In loopback mode, the RTL8187L takes frames from the transmit descriptor and transmits them up to internal Rx logic. The loopback function does not apply to an external PHYceiver.

11.3. Tx Encapsulation (With RTL8187L Internal Baseband Processor)

While operating in Tx mode, the RTL8187L encapsulates the frames that it transmits according to the Differential Binary Phase Shift Keying (DBPSK) for 1Mbps, Differential Quaternary Phase Shift Keying (DQPSK) for 2Mbps, and Complementary Code Keying (CCK) for 5.5Mbps and 11Mbps modulators. The changes to the original packet data are as follows:

- 1. The PLCP preamble is always transmitted as the DBPSK waveform and used by the receiver to achieve initial PN synchronization.
- 2. The PLCP header can be configured to be either DBPSK or DQPSK and includes the necessary data fields of the communications protocol to establish the physical layer link.
- 3. The MAC frame can be configured for DBPSK, DQPSK, or CCK.

11.4. Rx Decapsulation (With RTL8187L Internal Baseband Processor)

The RTL8187L continuously monitors the network when reception is enabled. When activity is recognized it starts to process the incoming data. After detecting receive activity on the channel, the RTL8187L starts to process the PLCP preamble and header based on the mode of operation.

The RTL8187L checks CRC16 and CRC32, then reports if CRC16 or CRC32 has errors. When using the 40-bit WEP and 104-bit WEP module for decryption, the RTL8187L also checks the Integrity Check Value (ICV) and reports if the ICV has errors.

11.5. LED Functions

The RTL8187L supports 2 LED signals in 4 configurable operation modes. The following sections describe the different LED actions.

11.5.1. Link Monitor

The Link Monitor senses the link integrity. Whenever link status is established, the specific link LED pin is driven low.

11.5.2. Infrastructure Monitor

The Infrastructure Monitor senses the link integrity of an Infrastructure network. Whenever Link OK in Infrastructure network status is established, the specific Infrastructure LED pin is driven low.

11.5.3. Rx LED

Blinking of the Rx LED indicates that receive activity is occurring.

Figure 3. Rx LED

11.5.4. Tx LED

Blinking of the Tx LED indicates that transmit activity is occurring.

Figure 4. Tx LED

11.5.5. Tx/Rx LED

Blinking of the Tx/Rx LED indicates that both transmit and receive activity is occurring.

Figure 5. Tx/Rx LED

11.5.6. LINK/ACT LED

Blinking of the LINK/ACT LED indicates that the RTL8187L is linked and operating properly. If this LED is high for extended periods it indicates that a link problem exists.

Figure 6. LINK/ACT LED

12. Application Diagram

Figure 7. Application Diagram

13. Electrical Characteristics

13.1. Temperature Limit Ratings

Table 31. Temperature Limit Ratings

Parameter	Minimum	Maximum	Units
Storage temperature	-55	+125	°C
Operating temperature	-10	70	°C

13.2. DC Characteristics

Table 32. DC Characteristics

Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Units
VDD33	3.3V Supply Voltage		3.0	3.3	3.6	V
VDD18	1.8V Supply Voltage		1.7	1.8	1.9	V
V _{oh}	Minimum High Level Output Voltage	$I_{oh} = -8mA$	0.9 * Vcc		Vcc	V
V _{ol}	Maximum Low Level Output Voltage	$I_{ol} = 8mA$			0.1 * Vcc	V
V _{ih}	Minimum High Level Input Voltage		0.5 * Vcc		Vcc+0.5	V
V _{il}	Maximum Low Level Input Voltage		-0.5		0.3 * Vcc	V
I _{in}	Input Current	$V_{\text{in}} = V_{\text{cc or GND}}$	-1.0		1.0	μΑ
I_{OZ}	Tri-State Output Leakage Current	$V_{\text{out}} = V_{\text{cc or GND}}$	-10		10	μΑ
I _{cc}	Average Operating Supply Current	$I_{out} = 0mA,$			460	mA

13.3. AC Characteristics

13.3.1. Serial EEPROM Interface Timing (93C46(64*16)/93C56(128*16))

Figure 8. Serial EEPROM Interface Timing

Table 33. EEPROM Access Timing Parameters

Symbol	Parameter		Minimum	Typical	Maximum	Units
tes	Minimum CS Low Time	9346/9356	1000/250			ns
twp	Write Cycle Time	9346/9356			10/10	ms
tsk	SK Clock Cycle Time	9346/9356	4/1			μs
tskh	SK High Time	9346/9356	1000/500			ns
tskl	SK Low Time	9346/9356	1000/250			ns
tess	CS Setup Time	9346/9356	200/50			ns
tesh	CS Hold Time	9346/9356	0/0			ns
tdis	DI Setup Time	9346/9356	400/50			ns
tdih	DI Hold Time	9346/9356	400/100			ns
tdos	DO Setup Time	9346/9356	2000/500			ns
tdoh	DO Hold Time	9346/9356			2000/500	ns
tsv	CS to Status Valid	9346/9356			1000/500	ns

14. Mechanical Dimensions

See the Mechanical Dimensions notes on the next page.

14.1. Mechanical Dimensions Notes

Symbol	Dime	nsion in	inch	Dime	ension in	mm		
Symoor	Min	Typical	Max	Min	Typical	Max		
A	-	-	0.063	-	-	1.60		
A ₁	0.002	-	-	0.05	-	-		
A ₂	0.053	0.055	0.057	1.35	1.40	1.45		
b	0.005	0.007	0.009	0.13	0.18	0.23		
c	0.004	-	0.006	0.09	-	0.20		
D	0.624	0.630	0.636	15.85	16.00	16.15		
D1	0.547	0.551	0.555	13.90	14.00	14.10		
е	0	.016 BS0	2	0.40 BSC				
E	0.624	0.630	0.636	15.85	16.00	16.15		
E1	0.547	0.551	0.555	13.90	14.00	14.10		
L	0.018	0.024	0.030	0.45	0.60	0.75		
\mathbf{L}_1	C	0.039 REI	F	1.00 REF				
Θ	0°	3.5°	7°	0°	3.5°	7°		

Note

- 1. Dimension b does not include dambar protrusion/intrusion.
- 2. Controlling dimension: Millimeter
- 3.General appearance spec. should be based on final visual inspection spec.

TITLE: 128LD LQFP (TITLE: 128LD LQFP (14x14x1.4 mm*2) PACKAGE OUTLINE									
-CU L/F, FOOTPRINT 2.0 mm										
LEADFRAME MATERIAL:										
APPROVE DOC. NO. 530-ASS-P004										
	VERSION	1								
	PAGE	OF								
CHECK	CHECK DWG NO. LQ128 - 2									
DATE MAY. 13.2002										
REALTEK SEMICONDUCTOR CORP.										

15. Ordering Information

Table 34. Ordering Information

Part Number	Package	Status
RTL8187L	128-pin LQFP	MP
RTL8187L-LF	RTL8187L with Lead (Pb)-Free package	MP

Realtek Semiconductor Corp. Headquarters

No. 2, Industry East Road IX, Science-based Industrial Park, Hsinchu, 300, Taiwan, R.O.C. Tel: 886-3-5780211 Fax: 886-3-5776047 www.realtek.com.tw

Federal Communication Commission Interference Statement

This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.

FCC Caution: Any changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate this equipment.

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

This device and its antenna(s) must not be co-located or operating in conjunction with any other antenna or transmitter.

This device is intended only for OEM integrators under the following conditions:

OEM integrator is still responsible for testing their end product for any additional compliance requirements required with this module installed (for example, digital device emissions, PC peripheral requirements, etc.).

IMPORTANT NOTE: In the event that these conditions can not be met (for example certain laptop configurations or co-location with another transmitter), then the FCC authorization is no longer considered valid and the FCC ID can not be used on the final product. In these circumstances, the OEM integrator will be responsible for re-evaluating the end product (including the transmitter) and obtaining a separate FCC authorization.

Without Co-located

The antenna (s) used for this transmitter must not be co-located or operating in conjunction with any other antenna or transmitter.

Modular Approval

OEM integrator is still responsible for testing their end product for any additional compliance requirements required with this module installed (for example, digital device emissions, PC peripheral requirements, etc.).

IMPORTANT NOTE: In the event that these conditions can not be met (for example certain laptop configurations or co-location with another transmitter), then the FCC authorization is no longer considered valid and the FCC ID can not be used on the final product. In these circumstances, the OEM integrator will be responsible for re-evaluating the end product (including the transmitter) and obtaining a separate FCC authorization. Modular OEM Integrator Notice

End Product Labeling

This transmitter module is authorized only for use in device where the antenna may be installed such that 20 cm may be maintained between the antenna and users. The final end product must be labeled in a visible area with the following: "Contains TX FCC ID: TX2-RTL8187".

IC Radiation Exposure Statement:

"Operation is subject to the following two conditions: (1) this device may not cause interference, and (2) this device must accept any interference, including interference that may cause undesired operation of the device."

OEM integrator is still responsible for testing their end product for any additional compliance requirements required with this module installed (for example, digital device emissions, PC peripheral requirements, etc.).

IMPORTANT NOTE: In the event that these conditions can not be met (for example certain laptop configurations or co-location with another transmitter), then the FCC authorization is no longer considered valid and the FCC ID can not be used on the final product. In these circumstances, the OEM integrator will be responsible for re-evaluating the end product (including the transmitter) and obtaining a separate FCC authorization.

This transmitter module is authorized only for use in device where the antenna may be installed such that 20 cm may be maintained between the antenna and users. The final end product must be labeled in a visible area with the following: "Contains TX IC ID: 6317A – RTL8187".

This device has been designed to operate with an antenna having a maximum gain of [3.00] dBi. Antenna having a higher gain is strictly prohibited per regulations of Industry Canada. The required antenna impedance is 50 ohms."

List of antennas below:

	List of antennas below.									
1.	Ant. Type	PIFA	PK Gain(dBi)	3	2.	Ant. Type	PIFA	PK Gain(dBi)	2.32	
	Connector	IPEX	Model No.	DQ661500301		Connector	IPEX	Model No.	MA6001	
3.	Ant. Type	PIFA	PK Gain(dBi)	2.39	4.	Ant. Type	PIFA	PK Gain(dBi)	2.11	
	Connector	IPEX	Model No.	AR830WIPI02A		Connector	IPEX	Model No.	AR320WIPI02B	
5.	Ant. Type	PIFA	PK Gain(dBi)	0.78	6.	Ant. Type	PIFA	PK Gain(dBi)	1.1	
	Connector	IPEX	Model No.	WDAN-QMA6002 -DF		Connector	IPEX	Model No.	DQ661500115	
7.	Ant. Type	PIFA	Gain(abi)	0.3	8.	Ant. Type	PIFA	PK Gain(dBi)	2.57	
	Connector	IPEX	Model No.	AAFJ5050002LF0		Connector	IPEX	Model No.	AR620WIPI02C	
9.	Ant. Type	PIFA	PK Gain(dBi)	1.97	10	Ant. Type	PIFA	PK Gain(dBi)	1	
J.	Connector	IPEX	Model No.	ARMK8WIPI02A	•	Connector	IPEX	Model No.	ARMK8WIPI02A	
11	Ant. Type	PIFA	PK Gain(dBi)	2.37	•	Ant. Type	PIFA	PK Gain(dBi)	2.11	
•	Connector	IPEX	Model No.	AAFA5050004LQ 0		Connector	IPEX	Model No.	AR320WIPI01B	
13	Ant. Type	PIFA	PK Gain(dBi)	2.57	' -	Ant. Type	PIFA	PK Gain(dBi)	2.21	
•	Connector	IPEX	Model No.	B0785028000003		Connector	IPEX	Model No.	AR330WIPI01D	
15	Ant. Type	PIFA	PK Gain(dBi)	2.55	16	Ant. Type	PIFA	PK Gain(dBi)	2.48	
•	Connector	IPEX	Model No.	AR621WIPI02D	•	Connector	IPEX		ARW62WIPI01G	
17	Ant. Type	PIFA	PK Gain(dBi)	2.49	18	Ant. Type	PIFA	PK Gain(dBi)	0.46	
•	Connector	IPEX	Model No.	ARK8MWIPI01B		Connector			AAFQ5050001L K0	
19	Ant. Type	PIFA	PK Gain(dBi)	2.86		Ant. Type	PIFA	PK Gain(dBi)	2.45	
	Connector	IPEX	No.	AAFQ5050002LK 0		Connector		Model No.	B012502800000 4	
21	Ant. Type	PIFA	PK Gain(dBi)	0.74	22	Ant. Type	PIFA	PK Gain(dBi)	0.03	
-	Connector	IPEX	Model No.	MA6002	•	Connector	IPEX	Model No.	W340UA1	

To reduce potential radio interference to other users, the antenna type and its gain should be so chosen that the equivalent isotropically radiated power (e.i.r.p.) is not more than that permitted for successful communication.

Installation Guide

Realtek RTL8187 + RTL8225-VF (Z2) 802.11 b/g miniCard

Date: 2006/06/06 Version: 1.0

This document is subject to change without notice. The document contains Realtek confidential information and must not be disclosed to any third party without appropriate NDA.

Installation Description

This module is to be installed only by the professionals.

When IRF303JU/IRF303U2is installed in a product, we shall consider the following points;

- 1. Since RTL8187 miniCard owns its FCC ID Number/IC Number, we shall affix an exterior label on the outside of the product if the FCC ID/IC Number is not visible. The exterior label shall use wording such as either "Contains Transmitter Module FCC ID: TX2-RTL8187/IC Number: 6317A-RTL8187" or "Contains FCC ID: TX2-RTL8187/ IC Number: 6317A-RTL8187".
- 2. RTL8187 miniCard complies with requirements of sub-sections 15.203, 15.205, 15.207, 15.247 and 15.407 in FCC Rules Part 15. We shall installRTL8187 miniCard in accordance with their requirements. RTL8187 miniCard complies with requirements of the sub-section 2.1091. When installers install RTL8187 miniCard into a product, they shall ensure that the public is not exposed to radio frequency energy levels in excess of the Commission's guidelines in accordance with the sub-section 15.247(e)(i) and 15.407(f) in FCC Rules Part 15.