Math 2001 Homework 8

Due 12 April 2019 (start of class)

Exercises

- 1. (13.4.1) Suppose < is a strict partial order on a domain A, and define a < b to mean that a < b or a = b.
 - Show that \leq is a partial order.
 - Show that if < is moreover a strict total order, then ≤ is a total order.

(In Chapter 13 of the text, the analogous theorem going in the other direction is proved.)

- 2. (13.4.2) **OPTIONAL** Suppose < is a strict partial order on a domain A. (In other words, it is transitive and asymmetric.) Suppose that \le is defined so that $a \le b$ if and only if a < b or a = b. We saw in class that \le is a partial order on a domain A, i.e.~it is reflexive, transitive, and antisymmetric. Prove that for every a and b in A, we have a < b iff $a \le b$ and $a \ne b$, using the facts above.
- 3. (13.4.3) An ordered graph is a collection of vertices (points), along with a collection of arrows between vertices. For each pair of vertices, there is at most one arrow between them: in other words, every pair of vertices is either unconnected, or one vertex is "directed" toward the other. Note that it is possible to have an arrow from a vertex to itself.

Define a relation \leq on the set of vertices, such that for two vertices a and b, $a \leq b$ means that there is an arrow from a pointing to b.

On an arbitrary graph, is \leq a partial order, a strict partial order, a total order, a strict total order, or none of the above? If possible, give examples of graphs where \leq fails to have these properties.

4. (13.4.4) Let \equiv be an equivalence relation on a set A. For every element a in A, let [a] be the equivalence class of a: that is, the set of elements $\{c \mid c \equiv a\}$. Show that for every a and b, [a] = [b] if and only if $a \equiv b$.

(Hints and notes:

- Remember that since you are proving an \$\$if and only if" statement, there are two directions to prove.
- Since that [a] and [b] are sets, [a] = [b] means that for every element c, c is in [a] if and only if c is in [b].
- By definition, an element c is in [a] if and only if $c \equiv a$. In particular, a is in [a].)

- 5. (13.4.5) Let the relation \sim on the natural numbers \mathbb{B} be defined as follows: if n is even, then $n \sim n+1$, and if n is odd, then $n \sim n-1$. Furthermore, for every n, $n \sim n$. Show that \sim is an equivalence relation. What is the equivalence class of the number 5? Describe the set of equivalence classes $\{[n] \mid n \in \mathbb{N}\}.$
- 6. (13.4.7) A binary relation \leq on a domain A is said to be a *preorder* it is is reflexive and transitive. This is weaker than saying it is a partial order; we have removed the requirement that the relation is asymmetric. An example is the ordering on people currently alive on the planet defined by setting $x \leq y$ if and only if x's birth date is earlier than y's. Asymmetry fails, because different people can be born on the same day. But, prove that the following theorem holds:

Theorem. Let \leq be a preorder on a domain A. Define the relation \equiv , where $x \equiv y$ holds if and only if $x \leq y$ and $y \leq x$. Then \equiv is an equivalence relation on A.