CS1231(S) Tutorial 4: Functions

National University of Singapore

2020/21 Semester 1

Questions for discussion on the LumiNUS Forum

Answers to these questions will not be provided.

D1. Write down all possible functions $\{a, b, c\} \rightarrow \{1, 2\}$.

D2. (a) Define a function $\mathbb{Z} \to \mathbb{Z}^+$ that is neither injective nor surjective.

(b) Define a function $\mathbb{Z} \to \mathbb{Z}^+$ that is injective but not surjective.

(c) Define a function $\mathbb{Z} \to \mathbb{Z}^+$ that is surjective but not injective.

(d) Define a function $\mathbb{Z} \to \mathbb{Z}^+$ that is both injective and surjective.

You may use anything to define these functions, but you must give a precise definition.

D3. Find the values of the following:

(a) |12.31|;

(e) $|\sqrt{2}| + |\sqrt{2} + \frac{1}{2}|$;

(b) [12.31];

(f) $\lfloor 2\sqrt{2} \rfloor$;

(c) |-12.31|;

(g) $\left|\sqrt{2}\right| + \left|\sqrt{2} + \frac{1}{3}\right| + \left|\sqrt{2} + \frac{2}{3}\right|$;

(d) [-12.31];

(h) $|3\sqrt{2}|$.

Tutorial questions

- 1. Which of the following formulas define a function $f: \mathbb{Q} \to \mathbb{Q}$?
 - (a) $f(n) = \pm n$.
 - (b) $f(n) = 2\sqrt{n}$.
 - (c) $f(n) = \frac{1}{n^2 + 1}$.
 - (d) $f(n) = |\sin n|$.
- 2. Let U be a set and $A \subseteq U$ such that $\emptyset \neq A \neq U$. Define the function $\chi \colon U \to \mathbb{Z}$ by setting, for all $x \in U$,

$$\chi(x) = \begin{cases} 0, & \text{if } x \notin A; \\ 1, & \text{if } x \in A. \end{cases}$$

Find the domain, the codomain, and the image of χ .

3. Which of the functions defined in the following are injective? Which are surjective? Prove that your answers are correct. If a function defined below is both injective and surjective, then find a formula for the inverse of the function. Here we denote by Bool the set {true, false}.

$$f: \mathbb{Q} \to \mathbb{Q};$$

 $x \mapsto 12x + 31,$

$$f\colon \mathbb{Q} \to \mathbb{Q}; \hspace{1cm} g\colon \mathrm{Bool}^2 \to \mathrm{Bool}; \hspace{1cm} h\colon \mathrm{Bool}^2 \to \mathrm{Bool}^2;$$

1

$$\mathbb{Q} \to \mathbb{Q}; \qquad g: \operatorname{Bool}^2 \to \operatorname{Bool}; \qquad h: \operatorname{Bool}^2 \to \operatorname{Bool}^2;
x \mapsto 12x + 31, \qquad (p,q) \mapsto p \land \sim q, \qquad (p,q) \mapsto (p \land q, p \lor q),$$

$$k \colon \mathbb{Z} \to \mathbb{Z};$$

$$x \mapsto \begin{cases} x, & \text{if } x \text{ is even;} \\ 2x - 1, & \text{if } x \text{ is odd.} \end{cases}$$

- 4. Let $f: B \to C$.
 - (a) Suppose f is injective. Show that $g \circ f$ is injective whenever g is an injective function with domain C.
 - (b) Suppose we have a function g with domain C such that $g \circ f$ is injective. Show that f is injective.
- 5. Let $f: B \to C$.
 - (a) Suppose f is surjective. Show that $f \circ h$ is surjective whenever h is a surjective function with codomain B.
 - (b) Suppose we have a function h with codomain B such that $f \circ h$ is surjective. Show that f is surjective.
- 6. Let $A = \{1, 2, 3\}$. The *order* of a bijection $f: A \to A$ is defined to be the least $n \in \mathbb{Z}^+$ such that

$$\underbrace{f \circ f \circ \ldots \circ f}_{n\text{-many } f\text{'s}} = \mathrm{id}_A.$$

Define functions $g, h: A \to A$ by setting, for all $x \in A$,

$$g(x) = \begin{cases} 1, & \text{if } x = 2; \\ 2, & \text{if } x = 1; \\ x, & \text{otherwise,} \end{cases} \qquad h(x) = \begin{cases} 2, & \text{if } x = 3; \\ 3, & \text{if } x = 2; \\ x, & \text{otherwise.} \end{cases}$$

Find the orders of g, h, $g \circ h$, and $h \circ g$.

- 7. Let A, B, C be sets. Show that $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$ for all bijections $f: A \to B$ and all bijections $g: B \to C$.
- 8. Fix sets A, B. Define the graph of a function $f: A \to B$ to be

$$\{(x,y) \in A \times B : y = f(x)\}.$$

- (a) Assuming $A \neq \emptyset$, find a subset $S \subseteq A \times B$ that cannot be the graph of any function $A \to B$.
- (b) Show that a subset $S \subseteq A \times B$ is the graph of a function $A \to B$ if and only if

$$\forall x \in A \quad \exists ! y \in B \quad (x, y) \in S.$$

- 9. Let $f: A \to B$ be a function. Let $X \subseteq A$ and $Y \subseteq B$.
 - (a) Compare the sets X and $f^{-1}(f(X))$. Is one always a subset of the other? Justify your answer.
 - (b) Compare the sets Y and $f(f^{-1}(Y))$. Is one always a subset of the other? Justify your answer.