Interpretadores Abstractos

Ernesto Rodriguez

Universidad del Itsmo erodriguez@unis.edu.gt

¿Como se computa?

- Podemos definir funciónes mediante Tipos Abstractos
- Sin embargo, necesitamos computar dichas funciónes.
- A todo esto ¿Que es computar?

¿Como se computa?

- Podemos definir funciónes mediante Tipos Abstractos
- Sin embargo, necesitamos computar dichas funciónes.
- A todo esto ¿Que es computar?
 - Aplicar un conjunto de reglas para reducir un ADT.
 - La computación termina cuando ya no se puede aplicar ninguna regla

¿Como se computa?

- Datao $\mathcal{A} := \langle \mathcal{S}^0, \mathcal{D} \rangle$, llamamos al cuarteto $\langle f :: \mathbb{A} \to \mathbb{R}; \mathcal{R} \rangle$ un **procedimiento abstracto** ssi \mathcal{R} es un conjunto de reglas para f.
 - A es el conjunto de parametros
 - ullet es el conjunto de resultados
- La computación de un procedimiento abstracto p es la secuencia de constructores c₁ → c₂ → ... segun las reglas de p
- Una computación abstracta es una computacion que ejecutamos en nuestra mente sin limites de memoria o tiempo.
- Un interpretador abstracto es la maquina imaginaria que ejecuta dicha computación

Ejemplo: Las funciones ρ y concat

$$\left\langle\begin{array}{c} \rho::\mathcal{L}(\mathbb{N})\to\mathcal{L}(\mathbb{N}); & \left\{\begin{array}{c} \rho(\mathsf{cons}(n,l))\leadsto \mathsf{concat}(\rho(l),\mathsf{cons}(n,\mathsf{nil})) \\ \rho(\mathsf{nil}\leadsto \mathsf{nil}) \end{array}\right\}\right\rangle$$

$$\left\langle\begin{array}{c} \mathsf{concat}::\mathcal{L}(\mathbb{N})\times\mathcal{L}(\mathbb{N})\to\mathcal{L}(\mathbb{N}); & \left\{\begin{array}{c} \mathsf{concat}(\mathsf{cons}(n,l),r)\leadsto \mathsf{cons}(n,\mathsf{concat}(l,r)) \\ \mathsf{concat}(\mathsf{nil}\leadsto \mathsf{nil}) \end{array}\right\}\right.\right\rangle$$

Caracteristicas de los Procedimientos Abstractos

- Se dice que un proceso abstracto **termina** si se produce un termino que ninguna regla en $\mathcal R$ puede reducir
- \bullet Este modelo de computación esta inspirado en el calculo- λ de Church.
- Los "pasos"