1 Úkol

- 1. Změřte průběh intensity magnetického pole na ose souosých kruhových magnetisačních cívek
 - (a) v zapojení s nesouhlasným směrem proudu při vzdálenostech 12, 16, 20 cm
 - (b) v zapojení se souhlasným směrem proudu při týchž vzdálenostech cívek
- 2. Změřte intensitu magnetického pole uprostřed mezi souosými kruhovými magnetisačními cívkami v zapojení se souhlasným směrem magnetisačního proudu při proměnné vzájemné vzdálenosti cívek 7 až 20 cm.
- 3. Přesvědčte se, že při Helmholtzově poloze cívek v zapojení se souhlasným směrem proudu je pole na ose cívek v rámci možností homogenní. Pro tento případ stanovte experimentálně konstantu úměrnosti mezi intensitou magnetického pole cívek a napětím indukovaným na detekční cívce a porovnejte ji s teoretickou hodnotou.
- 4. Proměřte průběh intensity magnetického pole na ose solenoidu.
- 5. Experimentální výsledky podle bodů 1 až 4 porovnejte s teoretickými výpočty. Veškeré výsledky zpracujte tabelárně a graficky.

2 Teorie

Výsledná intenzita megnetického pole H vznikne superpozicí všech jeho zdrojů. Pro osu cívky platí

$$H = \frac{NIR^2}{2(R^2 + x^2)^{\frac{3}{3}}},\tag{1}$$

kde N je počet závitů cívky, I protékající proud, R poloměr a x zvdálenost od středu cívky. V úkolu 1 až 3 se jedná o dvě souosé cívky stejného poloměru. Na jejich společné ose má tento vektor stejný směr, proto se pouze sčítají jejich velikosti a záleží pouze na jeho orientaci, která je dána směrem proudu procházejícím cívkami. Při souhlasném proudu se vektory, při nesouhlasném odečítají. Výsledný vzorec pro intenzitu magnetického pole je

$$H = \frac{NIR^2}{2} \left\{ \frac{1}{[R^2 + (a+x)^2]^{\frac{3}{2}}} \pm \frac{1}{[R^2 + (a-x)^2]^{\frac{3}{2}}} \right\},\tag{2}$$

kde *a* je vzdálenost cívek a ostatní veličiny odpovídají rovnici 1. Cívkami protéká střídavý proud, proto velikost magnetického pole určujeme z velikosti indukovaného napětí v detekční cívce umístěné na místě, které vyšetřujeme.

Výsledný vztah pro velikost intenzity magnetickéh pole je tedy

$$H = \frac{U}{\omega N S \mu_0} = \frac{U}{2\pi f N r^2 \mu_0},\tag{3}$$

kde U je indukované napětí, f frekvence proudu, N počet závitl detekční cívky, r poloměr detekční cívky a μ_0 permeabilita vakua.

Helmholzova pozice je zvlástní případ rozložení cívek. Jedná se o dvě souosé cívky o stejném poloměru a vinutí, které mají mezi sebou vzdálenost rovnou poloměru cívek. Díky tomu mezi cívkami vzniká homogení magnetické pole, pro které platí

$$H = \frac{8}{5\sqrt{5}} \frac{NI}{R}.\tag{4}$$

Solenoid je případ cívky namotané na válci. Pro nekonečně dlouhý platí, že intenzita magnetického pole uvnítř je konstantní. V praxi však na krajích cívky dochátí ke snížení intenzity. Skutečnému průběhu by měla odpovídat funkce

$$H(x) = \frac{NI}{2l - (r_2 - r_1)} \left[\left(\frac{l}{2} + x \right) \ln \frac{r_2 + \sqrt{r_2^2 + (\frac{l}{2} + x)^2}}{r_1 + \sqrt{r_1^2 + (\frac{l}{2} + x)^2}} + \left(\frac{l}{2} - x \right) \ln \frac{r_2 + \sqrt{r_2^2 + (\frac{l}{2} - x)^2}}{r_1 + \sqrt{r_1^2 + (\frac{l}{2} - x)^2}} \right]$$
(5)

Všechna napětí byla měřena nastejném voltmetru. Pro úkoly 1 - 3 na rozsahu 2 V, kde je jeho chyba $\pm 0.8\% + 0.001$. V úkoly 4 na rozsahu 20, kde je chyba $\pm 2.5\% + 0.01$. Dále vystupovala nepřímá chyba, kde se relativní chyby u součinu a podílu veličin sčítaji. Všechny zadané rozměry a veličiny jsem bral s chybou 1%.

3 Měření

3.1 Úkol 1

Nejprve jsem měřil velikost intenzity magnetického pole na ose souosých cívek pro tři různé vzdálenosti cívek. Při měření jsem si nejprve zvolil počátek souřadného systému v první cívce. Z praktických důvodů jsem ho ale následně přesunul do středu mezi cívky. Po naměření první sady hodnot jsem prohodil směr proudu v jedné z cívek. Z výsledků druhé sady jsem následně určil, zda se jedná o zapojení při souhlasném směru proudu či nesouhlasném. Naměřené napětí jsem dle vzahu 3 přepočítal na intenzitu magnetického pole. V tabulce 1 a na obrázku 1 jsou výsledky pro souhlasný směr proudu. V tabulce 2 a na obrázku 2 jsou výsledky pro nesouhlasný směr proudu. V grafech jsou pro srovnání zaneseny teoretické závislosti velikosti magnetické indukce.

3.2 Úkol 2

Následně jsem měřil velikost intenzity magnetického pole uprostřed cívek pro jejich různé vzdálenosti. To jsem opět vypočítal dle vztahu 3 z naměřeného indukovaného napětí. Výsledné hodnoty jsou v tabulce 3 a na obrázku 3 opět se zanesenou teoretickou závislostí.

d/cm	12	16	20
x/cm	H/Am^{-1}	H/Am^{-1}	H/Am^{-1}
-7.5			770 ± 60
-6.5			740 ± 60
-5.5		840 ± 70	700 ± 60
-4.5		820 ± 60	670 ± 50
-3.5	970 ± 80	790 ± 60	700 ± 60
-3	970 ± 80		
-2.5	970 ± 80	770 ± 60	590 ± 50
-2	960 ± 80		
-1.5	960 ± 80	750 ± 60	570 ± 40
-1	950 ± 80		
-0.5	950 ± 80	740 ± 60	560 ± 40
0	950 ± 80		
0.5	950 ± 80	740 ± 60	560 ± 40
1	950 ± 80		
1.5	950 ± 80	740 ± 60	570 ± 40
2	950 ± 80		
2.5	950 ± 80	760 ± 60	590 ± 50
3	960 ± 80		
3.5		780 ± 60	620 ± 50
4.5		810 ± 60	650 ± 50
5.5			690 ± 50
6.5			730 ± 60

Tabulka 1: Velikosti intenzity magnetického pole na ose při souhlasném směru proudu v závislosti na poloze pro různé vzdálenosti cívek.

d/cm	12	16	20
x/cm	H/Am^{-1}	H/Am^{-1}	H/Am^{-1}
-7.5			580 ± 50
-6.5			510 ± 40
-5.5		500 ± 40	440 ± 30
-4.5		430 ± 30	360 ± 30
-3.5	380 ± 30	350 ± 30	280 ± 20
-3	330 ± 30		
-2.5	290 ± 20	260 ± 20	210 ± 20
-2	200 ± 20		
-1.5	180 ± 10	160 ± 10	130 ± 10
-1	130 ± 10		
-0.5	75 ± 6	45 ± 4	54 ± 4
0	31 ± 2		
0.5	48 ± 4	45 ± 4	36 ± 3
1	106 ± 6		
1.5	160 ± 10	140 ± 10	108 ± 8
2	200 ± 20		
2.5	250 ± 20	230 ± 20	180 ± 10
3	300 ± 20		
3.5		320 ± 30	260 ± 20
4.5		410 ± 30	340 ± 30
5.5			410 ± 30
6.5			480 ± 40

Tabulka 2: Velikosti intenzity magnetického pole na ose při nesouhlasném směru proudu v závislosti na poloze pro různé vzdálenosti cívek.

Obrázek 1: Graf závislosti velikosti intenzity magnetického pole na poloze pro různě vzdálenosti cívek při souhlasném směru proudu.

Obrázek 2: Graf závislosti velikosti intenzity magnetického pole na poloze pro různě vzdálenosti cívek při nesouhlasném směru proudu.

d/cm	H/Am^{-1}
7	1200 ± 100
8	1180 ± 90
9	1120 ± 90
10	1060 ± 80
11	1010 ± 80
12	950 ± 80
13	890 ± 70
14	840 ± 70
15	790 ± 60
16	740 ± 60
17	690 ± 50
18	640 ± 50
19	600 ± 50
20	560 ± 40

Tabulka 3: Tabulka závislosti velikosti intenzity magnetického pole uprostřed souosých cívek v závislosti na jejich vzdálenosti.

Obrázek 3: Graf závislosti velikosti intenzity magnetického pole uprostřed cívek na jejich vzdálenosti.

x/cm	H/Am^{-1}
2.5	1040 ± 80
3	1050 ± 80
3.5	1050 ± 80
4	1050 ± 80
4.5	1050 ± 80
5	1050 ± 80
5.5	1050 ± 80
6	1040 ± 80
6.5	1040 ± 80
7	1040 ± 80
7.5	1040 ± 80

Tabulka 4: Tabulka závislosti velikosti intenzity magnetického pole na poloze při Helmholtzově zapojení.

3.3 Úkol 3

Naměřil jsem indukované napětí pro různé body na ose při Helmholtzově poloze cívek. Dle 3 jsem vypočetl velikost magnetické indukce. Tyto hodnoty jsou v tabulce 4. Následně jsem je zanesl do grafu, kde jsem je proložil přímkou a zanesl do něj též teoretickou hodnotu. Výsledkem jest obrázek 4. Dle programu gnuplot je střední hodnota velikosti intenzity rovna

$$H = 1045 \text{Am}^{-1},$$
 (6)

což se od teoretické liší pouze o 1%. Konstanta úměrnosti mezi intenzitou magnetického pole a napětím indukovaném na detekční cívce je dle vztahu (6) z [1]

$$k = (4900 \pm 400) \frac{V}{\text{mA}} \tag{7}$$

3.4 Úkol 4

Nakonec jsem proměřoval velkosti intenzity magnetického pole uvnitř solenoidu. Počátek souřadného ssystěmu je přibližně na okraji cívky. Jeho parametry byly: N=4204, l=400 mm, $r_1=40$ mm, $r_2=70$ mm. Parametry detekční cívky byly R=10.5 mm a N=370. Indukci jsem opět vypočetl dle 3 z naměřeného napětí. Výsledky jsou v tabulce 5 a na obrázku 5 spolu s teoretickou křivkou dle předpisu 5 dofitovanou pomocí programu gnuplot, který dopočetl její posunutí o 20.3 cm, protože tento vztah platí pro souřeadnice od středu solenoidu.

Obrázek 4: Graf závislosti velikosti intenzity magnetického pole na poloze pro Helmholtzovo zapojení.

Obrázek 5: Graf závislosti velikosti intenzity magnetického pole uvnitř solenoidu na poloze.

x/cm	H/Am^{-1}	x/cm	H/Am^{-1}
0	2300 ± 200	20	5000 ± 400
1	2800 ± 200	22	5000 ± 400
2	3300 ± 300	23	5000 ± 400
3	3700 ± 300	24	5000 ± 400
4	4000 ± 300	25	5000 ± 400
5	4200 ± 300	26	5000 ± 400
6	4400 ± 400	27	4900 ± 400
7	4500 ± 400	28	4900 ± 400
8	4600 ± 400	29	4900 ± 400
9	4700 ± 400	30	4800 ± 400
10	4800 ± 400	31	4800 ± 400
11	4800 ± 400	32	4700 ± 400
12	4900 ± 400	33	4600 ± 400
13	4900 ± 400	34	4500 ± 400
14	4900 ± 400	35	4300 ± 300
15	4900 ± 400	36	4000 ± 300
16	5000 ± 400	37	3900 ± 300
17	5000 ± 400	38	3400 ± 300
18	5000 ± 400	39	2900 ± 200
19	5000 ± 400		

Tabulka 5: Tabulka velikosti intenzity magnetického pole uvnitř solenoidu v závislosti na poloze.

4 Diskuze

Celková chyba měření se dosahuje přibližně 8 %. To je způsobeno velkou nepřímou chybou z rovnice 3. Tři veličiny v ní vystupující jsou zadané v [1], kde bohužel není zadána jejich chyba. Z toho důvodu jsem ji mohl pouze odhadnout, takže skutečná chyba je možná o něco menší.

Naměřené hodnoty vesměs odpovídají těm teoretickým. Drobné odchylky jsou způsobeny pravděpodobně lehkou idealizací úlohy, kdy cívky nejsou nekonečně krátké, což se podle mě projevuje zejména u detekční cívky. V úloze 4 by také přesnosti napomohl lepší rozsah volmetr, protože jsem chybě odhadl velikost indukovaného napětí a proto byl rozsah zbytečně velký.

5 Závěr

Změřil jsem průběh intenzity magnetického pole na ose souosých kruhových cívek

- 1. v zapojení se souhlasným směrem proudu. Výsledky jsou v tabulce 1 a na obrázku 1.
- 2. v zapojení s nesouhlasným směrem proudu. Výsledky jsou v tabulce 2 a na obrázku 2.

Změřil jsem intenzitu magnetického pole uprostřed osy souosých cívek pro jejich různé vzdálenosti. Výsledky jsou v tabulce 3 a na obrázku 3.

Přesvědčil jsem se o homogenitě magnetického pole při Helmholtzově poloze cívek (tabulka 4 a obrázek 4) a stanovil experimentální hodnotu konstanty úměrnosti pod vztahem 7.

Proměřil jsem průběh intenzity magnetického pole uvnitř solenoidu. Výsledky jsou v tabulce 5 a na obrázku 5.

Do všech grafů jsem zanesl i jejich teoretické průběhy.

Reference

- [1] Studijní text na praktikum II http://physics.mff.cuni.cz/vyuka/zfp/txt_223.pdf (19. 10. 2011)
- [2] J. Englich: **Zpracování výsldků fyzikálních měření** LS 1999/2000