第一部分 卷积神经网络 / Convolutional Neural Networks

翻译&校正 | 韩信子@ShowMeAI 编辑 南乔@ShowMeAl 原文作者 | https://stanford.edu/~shervine 本节原文超链

[1] 概述 / Overview

■ 传统 CNN 架构 Architecture of a traditional CNN

卷积神经网络(Convolutional Neural Networks, CNNs),是一种特定类型的神经网 络,通常由以下几种网络层组成:

备注 1: Convolution layer [卷积层], Pooling layer[池化层], Fully connected layer[全连接层]。

备注 2: 卷积层(Convolution layer, CONV)和池化层(Pooling layer, POOL)可 以通过超参数来进行微调(详见下文)。

[2] 网络层类别 / Types of layer

■ 巻积层 Convolution layer (CONV)

卷积层(CONV)利用卷积核在相应的维度上扫描输入I,来实现卷积操作。它的超参 数包括卷积核的大小 F 和步长 S。得到的输出结果 O 即为特征图或激活图。

■ 池化层 Pooling (POOL)

池化层(POOL)是一种下采样操作,通常接在卷积层之后,具有空间不变性。

最大池化(Max pooling)和平均池化(Average pooling)是两种特殊的池化方式, 分别取邻域内的最大值和平均值作为单元输出。

■ 全连接层 Fully Connected (FC)

全连接层(FC)是在展开的输入上操作的,其中每个输入都会和所有神经元连接。如 果网络中存在全连结层的话,它通常出现在 CNN 网络结构的末尾处,可以用于目标函 数的优化,例如类别评分等。GIF 图→ 点击 ShowMeAI GitHub

[3] 卷积核超参数 / Filter Hyperparameters

卷积层中包含卷积核。对于这些卷积核,了解其超参数的含义是很重要的。

■ 巻积核的维度 Dimensions of a filter

一个大小为 $F \times F$ 的卷积核应用于包含 C 个通道的输入得到的卷积核体为 $F \times F \times C$, 在输入大小为 $I \times I \times C$ 上做卷积操作, 生成大小为 $0 \times 0 \times 1$ 的特征图(激活图)。

备注:用 K 个 F×F 大小的卷积核作用后得到大小为 O×O×K 的特征图

● 歩长 Stride

对干卷积或者沖化操作,步长 S 表示的是卷积窗口在每次操作完成后移动的像素数。

■零填充 Zero-padding

零填充表示在输入的边界增加 P 个 0 。这个值可以手动指定,也可以通过下面三种模 式自动设置如下:

模式	Valid	Same	Full
值	P = 0	$P_{star} = \left[\frac{S \left[\frac{1}{S} \right] - I + F - S}{2} \right]$ $P_{end} = \left[\frac{S \left[\frac{1}{S} \right] - I + F - S}{2} \right]$	$P_{start} \in [[0, F-1]]$ $P_{end} = F - 1$
图例			
目的	无填充 如果维度不匹配丢 弃最后的卷积操作	填充使得特征图大小为[-] 输出大小在数学计算上很方便 也称之为"半"填充	最大填充使得末端卷积应用于 输入的限制 卷积核"看到"端到端的输入

[4] 调整超参数 / Tuning Hyperparameters

■ ■ 巻积层中的参数兼容性 Parameter compatibility in convolution layer

用 I 来表示输入大小,F 表示卷积核的长度,P 表示零填充的大小,S表示步长,那么 沿着维度的输出特征图的大小 0 公式为:

$$O = \frac{I - F + P_{\text{start}} + P_{\text{end}}}{S} + 1$$

备注 1: 输入 [Input], 卷积核[Filter], 输出[Output]。

备注 2: 通常情况下, P_{start} = P_{end} ≜ P, 这个场景下就可以将上面公式中的 P_{start} + P_{end} 替换为 2P。

■ 理解模型的复杂度 Understanding the complexity of the model

为了确定一个模型的复杂度,确定模型框架中包含的参数量通常很有帮助。在卷积神经 网络的给顶层中, 其操作如下:

	CONV	POOL	FC
图例	$F \downarrow \longrightarrow \times K$ $\otimes C$	F \max	N _{in} N _{out}
输入大小	$I \times I \times C$	$I \times I \times C$	N_{in}
输出大小	$0 \times 0 \times K$	$0 \times 0 \times C$	N _{out}
参数量	$(F \times F \times C + 1) \cdot K$	0	$(N_{\rm in} + 1) \times N_{\rm out}$
备注	每个卷积核一个偏置参数 在大多数情况下 S < F 常见的 K 为 2C	池化操作是按通道进行的 大多数情况下,S = F	输入层展开 每个神经元一个偏置参数 FC 层的神经元数量不受结 构限制

■ 感受野 Receptive field

第 k 层的感受野是输入层中第 k 个激活图能够看到的像素,该区域记为 $R_k \times R_k$ 。

 F_j 表示第 j 层的卷积核大小, S_i 表示第 i 层的步长值,约定 $S_0=1$,第 k 层的感受野可以用一下的公式来计算:

$$R_k = 1 + \sum_{j=1}^{k} (F_j - 1) \prod_{i=0}^{j-1} S_i$$

在下面这个例子中, $F_1=F_2=3$ 以及 $S_1=S_2=1$,得到 $R_2=1+2\cdot 1+2\cdot 1=5$ 。

[5] 常用的激活函数 / Commonly Used Activation Functions

■ 修正线性单元 Rectified Linear Unit

修正线性单元(ReLU)是一个激活函数,在所有的输入所有元素上使用。它是为了将非线性引入到网络中。下表总结了其变体:

ReLU	Leaky ReLU	ELU
$g(z) = \max(0, z)$	$g(z) = \max(\epsilon z, z)$ with $\epsilon \ll 1$	$g(z) = \max(\alpha(e^z - 1), z)$ with $\alpha \ll 1$
0 1		
生物学上可以解释的 非线性复杂度	解决 ReLU 负值死亡的问题	全局可导

Softmax

在网络末尾的 softmax 操作,可以看成是适用性更广的逻辑(logistic)函数,输入一个分数向量,通过 softmax 函数输出概率向量。

$$p = \begin{pmatrix} p_1 \\ \vdots \\ p_n \end{pmatrix} \quad 其中 \quad p_i = \frac{e^{x_i}}{\sum_{j=1}^n e^{x_j}}$$

[6] 目标检测 / Object Detection

■模型类别 Types of models

有 3 中主要的目标检测算法,因此预测的目标是不同的。如下表:

图像分类	分类和定位	目标检测	
Teddy bear	Teddy bear	Teddy bear Book	
分类一张图片 预测物体的概率	在图片中检测一个物体 预测物体的概率和所处位置	在图片中检测多个物体 预测每个物体的概率和所处位置	
传统 CNN	简化的 YOLO,R-CNN	YOLO, R-CNN	

■ 植测 Detection

在目标检测的任务中,根据我们是指向定位物体的位置或者是检测图像中更复杂的形状,采用不同的方法。下表中总结了两个主要的方法:

边框检测 Bounding box detection	关键点检测 Landmark detection
检测物体所在的图片区域	检测一个形状或者物体的特征(比如眼睛),更精细
b_h (b_x,b_y) b_w	(l_{1x}, l_{1y}) (l_{2x}, l_{2y}) (l_{4x}, l_{4y}) (l_{7x}, l_{7y}) (l_{5x}, l_{5y}) (l_{5x}, l_{3y}) (l_{6x}, l_{6y}) (l_{9x}, l_{9y})
2 框中心 $\left(b_x,b_y ight)$,高度 b_h 和宽度 b_w	参考点 (l _{1x} , l _{1y}), , (l _{nx} , l _{ny})

■ 交并比 Intersection over Union

交并比,也称之为 IoU,是一个用于衡量预测框 B_n 与实际边框 B_a 相交正确率的函数。

$$IoU(B_p, B_a) = \frac{B_p \cap B_a}{B_p \cup B_a}$$

 $IoU(B_p, B_a) = 0.1$

 $IoU(B_p, B_a) = 0.5$

 $IoU(B_p, B_a) = 0.9$

备注: 总有 $IoU \in [0,1]$ 。通常情况下,如果预测框 B_n 的 $IoU(B_n,B_n) \ge 0.5$,表明该预测 结果相当不错了。

■ 描框 Anchor boxes

锚框是一种用于预测重叠边框的技术。在实际中,允许神经网络同时预测多个框,每个 预测框具有特定的几何参数(比如长宽比)。比如说,第一个预测可能是某个长宽比的 矩形框,而第二个可能是另一个长宽比的矩形框。

■ 非极大值抑制 Non-max suppression

非极大值抑制是一种用于移除相同物体的重叠边界框,通过选择最有代表性的那个边 框。删除小于 0.6 预测概率的边框之后, 重复执行以下步骤直至保留最终的边框: 对于一个给定的类型:

第一步: 选择预测概率最大的边框。

第二步: 去掉与上一个边框的 IoU≥0.5 的边框。

备注:边框预测[Box predictions],选择最大概率边框[Box selection of maximum probability],去除同一类别的重复边框[Overlap removal of same class],最终边框 [Final bounding boxes].

YOLO

You Only Look Once (YOLO) 是一个目标检测算法,执行步骤:

第一步: 将输入图像分割为 G×G 的网格。

第二步:对于每个网格,运行 CNN 网络预测下面给定的 y, 重复 k 次。

$$\mathbf{y} = \left[\mathbf{p}_{c}, \mathbf{b}_{x}, \mathbf{b}_{y}, \mathbf{b}_{k}, \mathbf{b}_{w}, \mathbf{c}_{1}, \mathbf{c}_{2}, \ldots, \mathbf{c}_{p}, \ldots\right]^{T} \in \mathbb{R}^{GxGxkx(5+p)}$$

- pc是检测物体的概率
- b_x, b_y, b_h, b_w 是检测边框的属性
- c₁,..., c_n 是 p 个类别的独热向量表示
- k 是锚框的数量

第三步: 运行非极大值抑制算法去除潜在的重叠边框。

 \longrightarrow Division in $G \times G$ grid \longrightarrow Bounding box prediction \longrightarrow Non-max suppression

备注 1: 原始图像[Original image],分成 G×G 网格[Division in GxG grid],边框预测 [Bounding box prediction], 非极大值抑制[Non-max suppression]。

备注 2: 当 $p_c = 0$, 神经网络没有检测到任何物体。这个情况下, 对应的预测结果 b_x,..., c_p 将被忽略。

R-CNN

R-CNN 是一个目标检测算法,首先对图像进行分割以找到候选边界框,然后运行检测 算法以在候选边界框中找到最可能的目标对象。

Bounding box prediction Non-max suppression

备注:尽管原始的 R-CNN 算法计算资源消耗大且速度慢,但是后面在它的基础上优化 的算法,例如 Fast R-CNN 和 Faster R-CNN,有着更快的速度和更好的效果。

6.1 人脸验证和识别 Face Verification and Recognition

■ 模型类别 Types of models

下表中总结两个主要的模型类别:

	人脸验证 Face verification			人脸识别 Face recognition	
这是正	这是正确的人吗?—对一查询			这是数据库中 K 个人的其中一个吗?一对多查询	
Query	6		Query	5	
	Ø	×			
Reference			Database		

■単样本学习 One Shot Learning

单样本学习是一种人脸验证算法,使用有限的训练数据集来学习一个能够衡量两张给定 图片的差异的相似度函数。通常将两张图片的相似度函数记作 d(image 1, image 2)。

■ 掌生神经网络 Siamese Network

Siamese Networks(孪生神经网络)这类神经网络可以学习如何对图像进行编码,然 后量化计算两个图像的不同程度。对于给定的输入图像 $\mathbf{x}^{(i)}$, 编码输出通常记作 $f(x^{(i)})_{\circ}$

■ 三元损失 Triplet loss

Triplet loss(三元损失) ₹是一个损失函数,根据图像三元组 A(锚点), P(正样 本), N(负样本)的嵌入表示进行计算。

锚点和正样本属于同一个类别,负样本属于另外一个类别。如果我们定义边界距离为 α ∈ \mathbb{R}^+ , 三元损失可以进行定义:

$$\ell(A, P, N) = \max(d(A, P) - d(A, N) + \alpha, 0)$$

6.2 神经风格迁移 Neural Style Transfer

■ 动机 Motivation

神经风格迁移的目标是基于给定的图片内容 C 和图片风格S, 生成具有C内容和S风格的 图片G。

■ 激活輸出 Activation

在给定的网络层 1, 激活函数输出记作 $a^{[1]}$, 它的维度为 $n_H \times n_w \times n_c$ 。

■ 内容代价函数 Content cost function

我们会用内容代价函数来衡量生成图片 G 和原始内容图片 C 的内容差异度。定义:

$$J_{\text{content}}(C, G) = \frac{1}{2} ||a^{[l](C)} - a^{[l](G)}||^2$$

■ 风格矩阵 Style matrix

同样第l层网络的风格矩阵 $G^{[l]}$ 是一个 **Gram** 矩阵,矩阵中的每个元素 $G^{[l]}_{kk'}$ 衡量通道k和k'之间的相关程度。它是基于激活输出 $a^{[l]}$ 计算得到的,计算方式:

$$G_{kk'}^{[l]} = \sum_{i=1}^{n_H^{[l]}} \sum_{j=1}^{n_W^{[l]}} a_{ijk}^{[l]} a_{ijk'}^{[l]}$$

备注:风格图片的风格矩阵和生成图片分别记作 $G^{[1](S)}$ 和 $G^{[1](G)}$ 。

■ 风格代价函数 Style cost function

风格代价函数 $J_{\text{style}}(S,G)$ 用于衡量生成图片G和原始风格图片S之间的风格差异。

$$J_{\text{style}}^{[l]}(S,G) = \frac{1}{(2n_{\text{H}}n_{\text{w}}n_{\text{c}})^2} \left| |G^{[l](S)} - G^{[l](G)}| \right|_F^2 = \frac{1}{(2n_{\text{H}}n_{\text{w}}n_{\text{c}})^2} \sum_{k,k'=1}^{n_{\text{c}}} (G_{kk'}^{[l](S)} - G_{kk'}^{[l](G)})^2$$

■ 总的代价函数 Overall cost function

最终代价函数定义为内容代价函数和风格代价函数的加权和,权重参数为 α , β 。

$$J(G) = \alpha J_{\text{content}}(C, G) + \beta J_{\text{style}}(S, G)$$

备注: 较高的 α 值会使模型更加关注内容, 而较高的 β 值会使模型更加关注风格。

6.3 使用计算技巧的架构 Architectures Using Computational Tricks

■ 生成对抗网络 Generative Adversarial Network

生成对抗网络,也称之为 **GANs**,是由一个生成模型和判别模型构成,生成模型的目标是生成最真实的结果,这个结果输入到判别模型中,判别模型需要努力区分生成的图片和真实的图片。

备注:使用 GANs 变体的用例包括文本图像转换,音乐生成和语音合成。

■ 残差网络架构 ResNet

残差网络架构(也称为 ResNet)使用具有大量网络层的残差单元来减小训练误差。残差单元具有以下特征方程式:

$$a^{[l+2]} = g(a^{[l]} + z^{[l+2]})$$

Inception 网络 Inception Network

inception 模块结构的特点在于,尝试不同的卷积,以便通过功能多样化来提高其性能。其中 1×1 是很特殊的卷积结构,可以降低计算量。

Awesome Al Courses Notes Cheat Sheets

Machine Learning **CS229**

Deep Learning CS230

Natural Language Processing CS224n

Computer Vision CS231n

Deep Reinforcement Learning

Neural Networks for NLP CS11-747

DL for Self-Driving Cars 6.S094

Stanford

Stanford

Stanford

Stanford

UC Berkeley

CMU

MIT

是 ShowMeAI 资料库的分支系列,覆盖最具知名度的 TOP20+门 AI 课程,旨在为读者和 学习者提供一整套高品质中文速查表,可以点击【这里】查看。

斯坦福大学(Stanford University)的 Machine Learning(CS229)和 Deep Learning (CS230)课程,是本系列的第一批产出。

本批两门课程的速查表由斯坦福大学计算机专业学生 Shervine Amidi 总 结整理。原速查表为英文,可点击【这里】查看, ShowMeAI 对内容进行 了翻译、校对与编辑排版,整理为当前的中文版本。

有任何建议和反馈,也欢迎通过下方渠道和我们联络(*-3-)

CS229 | Machine Learning @ Stanford University

监督学习

Supervised Learning

无监督学习

Unsupervised Learning

深度学习

Deep Learning

机器学习技巧和经验 Tips and Tricks

CS230 | Deep Learning @ Stanford University

卷积神经网络 CNN

循环神经网络

RNN

深度学习技巧与建议

Tips and Tricks

中文速查表链接

中文速查表链接

中文速查表链接

中文速查表链接

中文速查表链接

中文速查表链接

中文速查表链接

概率统计

线性代数与微积分 Linear Algebra and Calculus

Probabilities /Statistics

中文速查表链接

中文速查表链接

GitHub

ShowMeAl

https://github.com ShowMeAl-Hub/

ShowMeAI 研究中心

扫码回复"速查表

下载最新全套资料