# Trabajo Integrador

- · Carrera: CESE 2024
- Materia: Protocolos de comunicación en sistemas embebidos
- Alumno: Mendoza, Dante.



## **Temario**

- Descripción.
- Funcionamiento.
- MEF.
- Estructura de archivos.
- Video demostrativo.
- Código.



# Descripción

En este trabajo práctico, se implementará un sistema de medición de distancia utilizando un sensor ultrasónico HC-SR04 y un microcontrolador NUCLEO-STM32F429ZI. El objetivo principal es diseñar un sistema que pueda medir la distancia entre un objeto y el sensor, y luego mostrar esta información en una pantalla LCD mediante el protocolo I2C.



## **Funcionamiento**

- El sensor ultrasónico HC-SR04 se coloca en una posición fija y apunta hacia el objeto cuya distancia se desea medir.
- El microcontrolador NUCLEO-STM32F429ZI adquiere los datos del sensor ultrasónico y realiza los cálculos necesarios para convertirlos en una medida de distancia en centímetros.
- La información de la distancia medida se envía al módulo de pantalla LCD a través del protocolo I2C.



#### **Funcionamiento**

- La pantalla LCD muestra la distancia actualizada en centímetros en tiempo real.
- Se implementará una técnica de "delay no bloqueantes" para actualizar la información en la pantalla LCD cada segundo sin interrumpir otras operaciones del sistema.





#### **MEF**

Se desarrollo una MEF que evalúa si la distancia se encuentra en un rango especifico, de ellos podemos distinguir;

NEAR: distancia menor o igual a 30cm.

NORMAL: distancia entre 31cm a 69cm.

FAR: distancia mayor o igual a 70cm.



# **MEF**





## Estructura de archivos

```
🗸 📂 Drivers
🕶 📂 API
   🕶 📂 Inc
     h API_delay.h
     h API_hcsr04_port.h
     h API_hcsr04.h
       h API_hcsr04FSM.h
       API_lcd_i2c.h
        .h gpio.h
        .h i2c.h
   🗸 📂 Src
     .c API_delay.c
     > lc API_hcsr04_port.c
     API_hcsr04.c
       .c API_hcsr04FSM.c
        API_Icd_i2c.c
        🤠 gpio.c
        .c i2c.c
```



## Video demostrativo





# Código

Vayamos al entorno de desarrollo.



# ¿PREGUNTAS?



