MA 544: Homework 4

Carlos Salinas

February 8, 2016

PROBLEM 4.1 (WHEEDEN & ZYGMUND §3, Ex. 12)

If E_1 and E_2 are measurable sets in \mathbf{R}^1 , show $E_1 \times E_2$ is a measurable subset of \mathbf{R}^2 and $|E_1 \times E_2| = |E_1||E_2|$. (Interpret $0 \cdot \infty$ as 0.) [HINT: Use a characterization of measurability.]

Proof. By (3.28) (i) we may write E_1 and E_2 as the set difference $H_1 \setminus Z_1$ and $H_2 \setminus Z_2$, respectively, where H_1 and H_2 are G_{δ} and Z_1 and Z_2 are measure zero. Now, by elementary set theory, the Cartesian product $E_1 \times E_2$ can then be written as

$$E_1 \times E_2 = (H_1 \setminus Z_1) \times (H_2 \setminus Z_2) = \underbrace{(H_1 \times H_2)}_{H} \setminus \underbrace{(Z_1 \times H_2 \setminus H_1 \times Z_2 \setminus Z_1 \times Z_2)}_{Z} \tag{1}$$

Hence, we win by (3.28) (i) if we can show that the Cartesian product of two G_{δ} sets is an G_{δ} set and if the Cartesian product of a measurable set with a set of measure zero is measure zero.

First, we prove the former, since the argument to be made is little more than elementary set theory.

Lemma 1. The Cartesian product of G_{δ} sets is again G_{δ} .

Proof of lemma 1. Let G_1 and G_2 be G_δ . Write $G_1 = \bigcap G_k'$ and $G_2 = \bigcap G_k''$ where the G_k' 's and the G_k'' 's are open subsets of \mathbf{R} . Then, $G_k' \times G_\ell''$ are open subsets of \mathbf{R}^2 by the definition of the product topology. Moreover, $G_k' \times G_\ell'' \subset G_1 \times G_2$ hence, $\bigcap_{k,\ell} G_k' \times G_\ell'' \subset G_1 \times G_2$. Thus, it suffices to show that $\bigcap_{k,\ell} G_k' \times G_\ell'' \supset G_1 \times G_2$. Let $(x,y) \in G_1 \times G_2$. Then $x \in G_1$ and $y \in G_2$. But since $G_1 = \bigcap G_k'$ and $G_2 = \bigcap G_k''$ then $x \in G_k'$ and $x \in G_\ell''$ for some k, ℓ . In other words, $(x,y) \in G_k' \times G_\ell''$ so (x,y) is in the intersection $\bigcap_{k,\ell} G_k' \times G_\ell''$. Hence, we have $G_1 \times G_2 = \bigcap_{k,\ell} G_k' \times G_\ell''$. We conclude that if G_1 and G_2 are G_δ , then so is their Cartesian product $G_1 \times G_2$.

Lemma 2. Let E be measurable and Z be measure zero. Then $E \times Z$ is measure zero.

Proof of lemma 2. Let E be a measurable set with $|E| < \infty$ and Z a set of measure zero. Then, for every $\varepsilon > 0$ there exists a countable collection of intervals $\{I_k\}$ containing Z such that $\sum \operatorname{vol}(I_k) < \varepsilon$. Similarly, we can find a collection $\{I'_k\}$ of intervals containing E such that $\sum \operatorname{vol}(I'_k) < |E| + \varepsilon$. Then, $\{I'_k \times I_\ell\}$ is a countable collection of 2-intervals containing $E \times Z$ with

$$\sum_{k,\ell} \operatorname{vol}(I'_k \times I_\ell) = \sum_{k,\ell} \operatorname{vol}(I'_k) \operatorname{vol}(I_\ell)$$

$$= \sum_k \sum_{\ell} \operatorname{vol}(I'_k) \operatorname{vol}(I_\ell)$$

$$= \left(\sum_k \operatorname{vol}(I'_k)\right) \left(\sum_{\ell} \operatorname{vol}(I_\ell)\right)$$

$$= (|E| + \varepsilon)\varepsilon$$

Letting $\varepsilon \to 0$, we have $E \times Z$ is measure zero. If $|E| = \infty$, partition E into disjoint finite measure subsets of \mathbf{R} by taking the following intersection

$$E_k = E \cap (B(0,k) \setminus B(0,k-1))$$

for $k \in \mathbb{N}$. By our previous argument, $E_k \times Z$ is measure zero so $\{E_k \times Z\}$ is a cover of $E \times Z$ 1 In fact, it might be quicker from now on to quote the fact that \mathbb{R}^n is σ -finite.

MA 544: Homework 4

hence, by (3.24), we have

$$|E \times Z| = \left| \left(\bigcup_{k} E_{k} \right) \times Z \right|$$

$$= \left| \bigcup_{k} E_{k} \times Z \right|$$

$$= \sum_{k} |E_{k} \times Z|$$

$$= 0.$$

Thus, $E \times Z$ is measure zero.

By lemma 1 and 2, $E_1 \times E_2$ is measurable with $|E_1 \times E_2| = |H_1 \times H_2|$. It's left to show is that $|H_1 \times H_2| = |H_1||H_2|$.

Lemma 3. If G_1 and G_2 are G_{δ} then $|G_1 \times G_2| = |G_1||G_2|$.

But before that, we need to prove the above for the case where G_1 and G_2 are open sets.

Lemma 4. If G_1 and G_2 are open then $|G_1 \times G_2| = |G_1||G_2|$.

Proof of lemma 4. Let G_1 and G_2 be open with $|G_1|, |G_2| < \infty$. By (1.11), we may write G_1 and G_2 as the countable intersection of a collection of nonoverlapping closed intervals $\{I_k\}$ and $\{I'_k\}$, respectively. Therefore, we have

$$|G_1| = \sum_k \operatorname{vol}(I_k)$$
 and $|G_2| = \sum_k \operatorname{vol}(I'_k)$.

Moreover the collection $\{I_k \times I'_\ell\}$ is a cover of $G_1 \times G_2$ of nonoverlapping closed 2-intervals,² so by (3.2) we have

$$|G_1 \times G_2| = \sum_{k,\ell} \operatorname{vol}(I_k \times I'_{\ell})$$

$$= \sum_{k,\ell} \operatorname{vol}(I_k) \operatorname{vol}(I'_{\ell})$$

$$= \left(\sum_k \operatorname{vol}(I_k)\right) (\operatorname{vol}(I'_{\ell}))$$

$$= |G_1||G_2|$$

•

They are closed because of elementary topology: the Cartesian product of two closed sets is again closed in the product topology; and they are nonoverlapping because if $(x,y) \in I_k \times I'_\ell \cap I_{k'} \times I_{\ell'} \neq \emptyset$ then $x \in I_k \cap I_{k'}$ and $y \in I_\ell \cap I_{\ell'}$ a contradiction.

Proof of lemma 3. Now that we have the result of lemma 4 we may easily proceed to the countable case. Let G_1 and G_2 be G_δ . Then by lemma 1 $G_1 \times G_2$ is G_δ and we may write $G_1 \times G_2$ as the intersection of a countable collection of open sets $\{G'_k\}$. In particular, if $\{G'_k\}$ is a collection of open sets covering $G_1 \times G_2$ that intersects to $G_1 \times G_2$ then the collection $\{G''_k\}$, where $G''_k := \bigcap_{\ell=1}^k G'_\ell$, also intersects to G_1 and has the property that $G''_{k+1} \subset G''_k$. Thus, we may as well assume that $\{H_k\}$ is decreasing so, by (3.26), we have

$$|G_1 \times G_2| = \lim_{k \to \infty} |H_k|,$$

but H_k is open in the product topology so $H_k = H'_k \times H''_k$ for open subsets $H'_k, H''_k \subset \mathbf{R}$, giving us

$$= \lim_{k \to \infty} |H_k \times H_k''|,$$

which, by lemma 4, is just

$$= \lim_{k \to \infty} |H'_k| |H''_k|$$
$$= |E_1| |E_2|,$$

since $H'_k \supset E_1$ and $H''_k \supset E_2$ are open so $\bigcap H'_k \supset E_1$ and $\bigcap H''_k \supset E_2$ and their outer measure approach the outer measure of E_1 and E_2 as $k \to \infty$.

Putting together our results, by equation 1, lemma 2, and lemma 3, we can express $E_1 \times E_2$ as a G_δ set H minus a set of measure zero Z and its measure is

$$|E_1 \times E_2| = |H_1||H_2| = |E_1||E_2|,$$

as desired.

PROBLEM 4.2 (WHEEDEN & ZYGMUND §3, Ex. 13)

Motivated by (3.7), define the *inner measure* of E by $|E|_i = \sup |F|$, where the supremum is taken over all closed subsets F of E. Show that

- (i) $|E|_i \leq |E|_e$, and
- (ii) if $|E|_e < +\infty$, then E is measurable if and only if $|E|_i = |E|_e$.

[Use (3.22).]

Proof. (i) If the outer measure of E is infinite, the inequality holds trivially. Suppose $|E|_e < \infty$. Since closed sets are measurable and their outer measure is equal to their Lebesgue measure, then we may replace |F| by $|F|_e$ to mirror the definition of the outer-measure and, by the monotonicity of the outer measure, we have

$$|F| = |F|_e \le |E|_e. \tag{2}$$

Taking the supremum on both sides of (2), we obtain the desired inequality

$$|E|_i \le |E|_e. \tag{3}$$

(ii) \Longrightarrow Suppose E is measurable with $|E| < \infty$. By (3.22), given $\varepsilon > 0$, there exists a closed set $F \subset E$ such that $|E \setminus F|_e < \varepsilon$. Since F is measurable, by (3.31), we have

$$|E \setminus F|_{e} = |E|_{e} - |F|. \tag{4}$$

But E is also measurable, so equation (4) becomes

$$|E \setminus F|_{\varepsilon} + |F| = |E| < \varepsilon + |F|. \tag{5}$$

Taking the supremum of (5) over all F, we gave

$$|E|_{e} = |E| \le |F| + \varepsilon = |E|_{i} + \varepsilon$$

for all $\varepsilon > 0$. By equation (3), we achieve equality of the inner and outer measure, i.e., $|E|_i = |E|_e$. \leftarrow Conversely, suppose that $|E|_i = |E|_e$. Then, given $\varepsilon > 0$, by the definition of outer measure, there exists an open set $G \supset E$ and, by the definition of inner measure, closed set $F \subset E$ such that

$$|G| - |E|_e < \frac{\varepsilon}{2}$$
 and $|E|_i - |F| = |E|_e - |F| < \frac{\varepsilon}{2}$. (6)

Then

$$|E \setminus F|_e < |G \setminus F|_e = |G|_e - |G \cap F|_e = |G|_e - |F|_e < 2\left(\frac{\varepsilon}{2}\right) = \varepsilon.$$

So by (3.22) E is measurable.

PROBLEM 4.3 (WHEEDEN & ZYGMUND §3, Ex. 15)

If E is measurable and A is any subset of E, show that $|E| = |A|_i + |E \setminus A|_e$. (See Exercise 13 for the definition of $|A|_i$.)

Proof. If A is measurable, by our previous problem, $|A|_e = |A| = |A|_i$ so by (3.31), we have

$$|E \setminus A|_e = |E|_e - |A| = |E| - |A|_i$$

so $|E| = |A|_i + |E \setminus A|_e$.

If A is not measurable and $|E| < \infty$ then $|A|_e$ and $|E \setminus A|_e < \infty$ since $E \setminus A \subset E$. Hence, we can subtract the quantity $|E \setminus A|_e$ from $|E|_e = |E|$ and we get

$$\begin{split} |E| - |E \smallsetminus A|_e &= |E| - \inf \{\, |G| : G \supset E \smallsetminus A \text{ is open} \,\} \\ &= |E| - \inf \{\, |G| : G \supset E \smallsetminus A \text{ is open} \,\} \\ &= |E| - \inf \{\, |G| : E \supset G \supset E \smallsetminus A \text{ is open} \,\} \\ &= |E| - \inf \{\, |E| - |F| : E \smallsetminus G \subset A, \, G \supset E \smallsetminus A \text{ is open} \,\} \end{split}$$

pulling the |E| inside of the infimum we get

$$= -\inf\{-|F| : F \subset A, \text{ where } F \coloneqq E \setminus G \text{ and } G \supset A \text{ is open }\}$$

$$= \sup\{|F| : F \subset A, \text{ where } F \coloneqq E \setminus G \text{ and } G \supset A \text{ is open }\}$$

$$= |A|_i,$$

so $|E| = |A|_i + |E \setminus A|_e$ as desired.

More generally, if E is measurable we can establish the following lower bound on |E|: By definition of the inner measure, for every $F \subset A$ closed we have

$$|E| = |F| + |E \setminus F| \ge |F| + |E \setminus A|_{e},\tag{7}$$

which follows from (3.31), since $F \subset A \subset E$ is measurable, $E \setminus A \subset E \setminus F$, and the monotonicity of outer measure. Taking the supremum on both sides of equation (7) over all closed $F \subset A$ we achieve the desired lower bound

$$|E| \ge |A|_i + |E \setminus A|_e. \tag{8}$$

Now, let E be measurable. Then, we have

$$\begin{split} |A|_i + |E \setminus A|_e &\geq \sup\{\,|F \cap A|_i + |F \setminus A|_e : F \subset E \text{ is closed, } |F| < \infty\,\} \\ &= \sup\{\,|F| : F \subset E \text{ closed, } |F| < \infty\,\} \\ &= |E|_i \end{split}$$

which by our last problem is just

$$=|E|, (9)$$

since E is measurable. Having bounded |E| by equations (8) and (9) we achieve the equality

$$|E| = |A|_i + |E \setminus A|_e.$$