General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some
 of the material. However, it is the best reproduction available from the original
 submission.

Produced by the NASA Center for Aerospace Information (CASI)

HC A04/MF A01

DOE/JPL-95:055-81/6 Distribution Category UC-63

(NASA-CR-164164) SILICON SOLAR CELL PROCESS DEVELOPMENT, FABRICATION AND ANALYSIS Final Report (Spectrolab, Inc.) 75 p N81-21541

CSCL 10A

Unclas G3/44 41994

SILICON SOLAR CELL PROCESS
DEVELOPMENT, FABRICATION AND ANALYSIS

Final Report

CDRL #6

JPL Contract No. 955055

Prepared by:

Joseph A. Minahan Principal Investigator

SPECTROLAB, INC. 12500 Gladstone Avenue Sylmar, California 91342

March 9, 1981

The JPL Low-Cost Silicon Solar Array Project is sponsored by the U.S. Department of Energy and forms part of the Solar Photovoltaic Conversion Program to initiate a major effort toward the development of low-cost solar arrays. This work was performed for the Jet Propulsion Laboratory, California Institute of Technology by agreement between NASA and DOE.

"This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Department of Energy, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights."

ABSTRACT

Solar cells have been fabricated from unconventional silicon materials in the second and final phase of the contract.

In the most recent period of week, EFG, Web, Hem, and Continuous CZ silicon materials were fabricated into solar cells, measured and analyzed.

Current-voltage measurements under AM1 conditions, in addition to those under AM0 conditions, were introduced in Phase II.

Several low-cost fabrication steps were included in that phase.

Both Hem and Continuous CZ silicon were found to be superior to what had been provided in Phase I. Correlation between quality of starting materials and cell conversion efficiency was observed for Hem-grown silicon. Correlation between position in the crystal growth sequence and cell quality was observed for Continuous CZ.

TABLE OF CONTENTS

Section		Title	Page
	Abstract		i
	Table of Con	tents	ii
	List of Table	es	iv
	List of Figu	res	v
1.0	INTRODUCTION		1
2.0	TECHNICAL DI		2
2.1	CONTROL PROG		2
2.2	PROCESSING F		3
2.3	MEASUREM, NT	SYSTEM	4
		minated Current-Voltage	4
	2.3.2 Spec	tral Response	5
	2.3.3 Dark	Current-Voltage	6
	2.3.4 Resi	stivity	6
2.4	UNCONVENTION	AL SILICON MATERIALS	6
	2.4.1 Wack	er Silso	6
	2.4.2 Ribb	on to Ribbon (RTR) Silicon	7
	2.4.3 Edge	-Defined Film Fed Growth (EFG) Silicon	7
	2.4.4 Dend	ritic Silicon Sheet (Web)	7
	2.4.5 Heat	Exchange Method (Hem) Silicon	8
		inuous CZ	8
	2.4.7 Sili	con on Ceramic (SOC)	8
2.5	PROCESS OPTI	MIZATION	9
	2.5.1 Text	urization	9
	2.5.2 Back	Surface Field	10
	2.5.3 Junc	tion Depth	10
	2.5.4 Gett	ering	11

Table of Contents (cont.)

Section	<u>Title</u>		
2.6	PHASE II	12	
2.7	RESULTS	13	
	2.7.1 Westinghouse Web	13	
	2.7.2 Mobil-Tyco EFG	14	
	2.7.3 Crystal Systems Hem	15	
	2.7.4 Kayex Continuous CZ	18	
2.8	AIR MASS ONE I-V CHARACTERISTICS	21	
2.9	CONCLUSIONS	22	
3.0	REVIEW OF PHASE II	23	
4.0	SUMMARY AND CONCLUSIONS	25	
5.0	ACKNOWLEDGEMENTS	27	
6.0	REFERENCES	28	
7.0	TABLES	29	
8.0	FIGURES	63	

LIST OF TABLES

Number	<u>Title</u>	Page
1	Illuminated I-V, Web0-1	29
2	Spectral Response, Web0-1	30
3	Illuminated I-V, Web0-2	32
4	Spectral Response, Web0-2	34
5	Illuminated I-V, Web0-3	36
6	Spectral Response, Web0-3	37
7	Illuminated I-V, EFG0-2	38
8	Spectral Response, EFG0-2	40
9	Illuminated I-V, Hem0-2	41
10	Spectral Response, Hem0-2	43
11	Illuminated I-V, Hem0-3	44
12	Spectral Response, Hem0-3	45
13	Illuminated I-V, Hem0-4	47
14	Spectral Response, Hem0-4	48
15	Illuminated I-V, HamcB-1	50
16	Dark I-V, HamcB-1	52
1 /	Spectral Response, HamcB-1	53
18	Illuminated I-V, HamcB-2	55
19	Spectral Response, HamcB-2	56
20	Dark I-V, HamcB-2	58
21	Illuminated I-V, Hamc0-1	59
22	Spectral Response, Hamc0-1	60
23	Dark I-V, Hamc0-1	62

LIST OF FIGURES

Number	<u>Title</u>	Page
1	Illuminated I-V Measurement System	63
2	SEM Microphotograph of Texturized Surface	63
3	Spectral Response, Web0-2	6.3
4	Spectral Response, Web0-3	63
5	Spectral Response 2, Web0-3	6 4
6	Spectral Response, Hem0-2	64
7	Spectral Response Enhancement, BSF, Hem0-2	64
8	Histograms, I-V Characteristics, Hem Crystal #349	64
9	Histograms, I-V Characteristics, Hem Crystal #314	65
10	Histograms, I-V Characteristics, Hem Crystal #342	65
11	Spectral Response, HamcB-1	65
12	Distribution of Cell Efficiencies, HamcB-2	65
13	Spectral Response, HamcB-2	66
14	% Reduction in I_{sc} at λ_1 , λ_2 , HamcB-2	66
15	Voc and Isc; Hamc0-1	66
16	AMO Cell Efficiency, Hamc0-1	67
17	Spectral Response, Hamc0-1	67
1.8	I-V Characteristics for Best Cells by Group	6.8

1.0 INTRODUCTION

The goal of this contract has been to conduct a silicon solar cell process development, fabrication and analysis program. The effort being directed toward the evaluation of the solar cell potential of unconventional silicon sheets of interest to the Large Area Silicon Sheet Task of the Low-Cost Solar Array Project. What has been required has been the fabrication of a statistically significant number of solar cells using standard and reproducible processes and reliable testing of them using standardized measurement equipment and techniques. In addition, to investigate, develop and utilize technologies appropriate and necessary for improving the efficiency of solar cells made from these silicon sheets using a standard process as the baseline starting point. The goal for solar efficiency is 12% Air Mass Zero (AMO), measured at 28°C minimum.

In this report we shall provide a review of the control program, baseline processing, various optimization processes, the measurement systems/procedures and a brief description of the unconventional silicon materials in the program. We shall then report on results obtained since the last published report. This will then be followed by a brief review of results in Phase I and Phase II of the contract.

2.0 TECHNICAL DISCUSSION

A number of diverse silicon materials have been made into solar cells by both conventional and optimized processing methods during the period of this contract. In order to provide a reasonable amount of reproducibility within each material group of cells, a specific control program was mandated. It was believed that this control program would minimize the occurrence of wafer contamination from extrinsic sources. Because elevated temperatures are used and since contamination is sustained via a thermal pathway, emphasis was given to reduction of contamination before and during the impurity diffusion process.

2.1 CONTROL PROGRAM

Quartz diffusion tubes dedicated to the program were used throughout the study. After cleaning a diffusion tube the tubes were then used in processing control wafers into solar cells. The finished solar cells were measured for I-V on a solar simulator and if the results were satisfactory the tube was then considered contamination-free and used for thermal diffusion of one of the unconventional materials into solar cells. In the event the control cells were found not to be satisfactory, the diffusion tube was again cleaned and the process repeated until suitable control cells were obtained. At no time were different sheet materials run together in the same diffusion tube, and only after the above control procedure had been satisfactorily completed would a tube be used for a different sheet material.

During processing of the sheet materials control cells were included. Within the diffusion tube eight control wafers were

positioned on the quartz diffusion tube such that every unconventional silicon wafer had a control wafer neighbor. Control wafers were also positioned at the front and back of the wafer assembly on the diffusion boat.

These same control wafers accompanied the lot throughout fabrication and measurement. Such a procedure also allowed a means of comparison and some indication of processing fidelity.

2.2 PROCESSING FORMAT

The unconventional silicon material was supplied by the Jet Propulsion Laboratory. CZ, p-type, $\sim 2\Omega$ cm silicon control wafers were produced in Spectrolab's crystal growing and cutting facilities. After cutting of the material into slices both the front and back of the slices were etched sufficiently to remove saw damage. This was not required for the material that had been grown in sheet form. In the latter case various cleaning methods, including acid etch, were used to remove surface stains that might have been present. The slices, or ribbons, were then diced to their planar wafer dimensions on a Tempress saw.

After cleaning to remove both organic and metallic surface impurities, the wafers were loaded onto a clean quartz boat and placed within a three-inch diameter quartz diffusion tube maintained at the diffusion temperature (850°C) by a Thermco furnace. The diffusion schedule was arranged such that the wafers were loaded and in the furnace within an hour of the wafer cleaning.

A three step diffusion procedure was used: warmup (nitrogen flow), pre-dep (phosphine, nitrogen, oxygen flow), and drive (oxygen and nitrogen flow). These conditions were expected to result in a

phosphorous surface concentration in excess of 10^{20} cm⁻³ and pn junction depth of $\sim .35 \mu m$. Following the diffusion drive the boat was removed from the furnace and allowed to cool in air.

After diffusion and cool the wafers were immersed in an HF solution to remove the thermal oxide. Sheet rho was then measured on a four point probe to obtain an estimate of junction depth. The fronts of the wafers were then masked and the wafers passed through an acid shower. This was used in order to remove the n-diffused region on the back surface of the wafers. After removal of the etch mask the wafers were cleaned in various solutions, loaded in an evaporation mask and holder and placed in the chamber of a high vacuum system. Using an electron-beam heating source, thin layers of titanium, palladium and silver were deposited on the wafers in a contact pattern defined by the masks. After removal from the evaporation system and masks, the wafers were sintered in a hydrogen atmosphere to minimize contact resistance. The cells were then placed in an electron-beam evaporator where an AR film of Ta₂O₅ was deposited.

In the next and final procedure the wafers were masked with an organic film over top and bottom surfaces. In this state the cells were immersed in a solution to remove any metal or other undesirable contaminant that could cause low shunt resistance at the cell edges. The cells were cleaned and made ready for measurement.

2.3 MEASUREMENT SYSTEMS

2.3.1 Illuminated Current-Voltage

This system is shown schematically in Figure 1. The Spectrosun Solar Simulator is adjusted to produce an AMO spectrum and intensity. Temperature and intensity calibration for each group of

I-V measurements is made by adjusting water bath temperature and simulator intensity while monitoring these parameters with the #1037 balloon-flown solar cell standard.

The cel. test fixture is water cooled, uses a vacuum hold-down and has spring-loaded voltage probes and spring-loaded current probes for cell top contact. The fixture itself makes electrical contact with the bottom of the cell. A Spectrolab Model D-550 electronic load is used in series with the cell under test. Both short circuit current and open circuit voltage are measured by means of a 4½ digit Dana Digital Voltmeter. The I-V curve is generated by the electronic load and recorded on a Hewlett-Packard X-Y Recorder.

AMI measurements are obtained by introduction of a constant temperature Pyrex-water filter into the light path between the Xenon source and the water-cooled test fixture. After insertion of the filter into the system the light source is adjusted using a standard solar cell, #1039, that has been calibrated to Air Mass One. The filter is tilted slightly from the horizontal to prevent reflection of the radiation back into the source.

2.3.2 Spectral Response

This system consists essentially of a water-cooled test fixture enclosed within a light box. A broad spectrum, high intensity light source impinges upon a filter contained within a filter wheel. Narrow-band radiation is transmitted through the filter and onto the tor surface of the cell under test. The short circuit current is measured by amplifying the voltage across a low value precision resistor and reading the amplified voltage on a Dana 5 digit Digital Voltmeter.

The filter wheel consists of thirteen narrow band-pass filters incremented across the spectrum from .4 to 1.05 μm .

Irradiance at the cell surface for each of the thirteen filter positions is measured using a calibrated solar cell. Based upon the irradiance and output of cell under test the relative response can be determined for the cell under test at each of the thirteen wavelengths.

2.3.3 Dark Current-Voltage

Dark current, forward and reverse, is measured on a system consisting of a high resolution constant current supply, a light shielded brass test fixture, and two 5-digit Dana Digital Voltmeters. Measurements are made point-by-point using voltage as the independent variable.

2.3 Resistivity

Wafer resistivities are measured by means of a four point, inline probe and micrometer thickness gauge. The in-line probe is also used to measure sheet resistance after diffusion.

2.4 UNCONVENTIONAL SILICON MATERIALS

2.4.1 Wacker Silso

Wacker Silso polycrystalline silicon is a product of the Wacker Siltronic Corporation. It is produced by casting molten silicon into rectangular blocks. Casting is controlled so as to promote columnar grain growth such that grains grow perpendicular to the plane of the finished cut sheet. The casting is sawed into sheets of square form. This material was used for solar cell fabrication in Phase I of the contract.

2.4.2 Ribbon-to-Ribbon (RTR) Silicon

This material is a product of Motorola and is produced by a process that deposits silicon upon strips of substrate material by CVD. The resultant silicon strips are then laser or electron beam scanned to promote grain growth from the extremely small grains obtained during CVD deposition. A phosphorous gettering step completes the process. The strips used in this contract were about an inch in width and 12 inches in length. This material was used in Phase I of the contract.

2.4.3 Edge-Defined Film Fed Growth (EFG) Silicon

This polycrystalline silicon is produced by Mobil-Tyco. Silicon strips are pulled through dies (SiC) from the melt with widths in excess of two inches and lengths greater than four inches. The finished sheet has a smooth, somewhat rippled surface. Both rf heated and resistance heated systems have been used in the production of the sheet material, only resistance heated material was used in Phase II of the contract.

2.4.4 Dendritic Silicon Sheet (Web)

Web silicon is produced for the program by Westinghouse Research and Development Center. This sheet material is manufactured by supporting a silicon meniscus between two dendrite rails which are slowly lifted out of the melt. The silicon solidifies as it is lifted and this forms a continuous sheet of material. The surface of the drawn filament, or ribbon, is in the 111 plane. Thickness of the filament is well controlled and width is determined by the spacing of the dendrite rails. Web material used in the program was generally in widths of about one inch while thicknesses ranged from 4 mils up to 12 mils.

2.4.5 Heat Exchange Method (Hem) Silicon

This material is produced by Crystal Systems, Inc. In this method a seed crystal is placed at the bottom of an insulated chamber. An inert gas is used as a heat exchanger for the seed and precludes its loss when molten silicon is injected into the chamber.

The freeze boundary of the cooling silicon proceeds out from the seed, generally with growth of a single crystal. Directional solidification, proceeding at a very low rate (depending upon how well heat exchange is controlled), will cause those materials having low segregation coefficients to segregate and thus be moved along with the freeze boundary toward the outer surfaces of the boule. The boule is generally formed in a rectangular shape. Rectangular slices are then cut from the boule.

2.4.6 Continuous CZ Ingots

This material is produced by the Kayex Corporation. In the conventional CZ method a single crystal is pulled from the melt contained in a quartz crucible. The pull of one crystal completes the operation and the crucible is treated as an expendable at a rate of one crucible per pulled crystal. In the continuous CZ method several crystals are pulled in sequence from a single crucible. The melt in the crucible is replenished after each pull. In Phase I of this contract, material from a five crystal pull run was processed into cells while in Phase II material from a nine crystal pull was processed into solar cells.

2.4.7 Silicon on Ceramic (SOC)

This method of producing unconventional silicon has been developed at the Honeywell Corporate Research Center. Slotted

ceramic substrates coated on one side are either dipped into or skimmed over molten silicon, leaving a coating of polycrystalline silicon on the ceramic. Although this material was received under Phase I and Phase II, cell fabrication and measurement were not completed within the time and funding limits for the contract.

2.5 PROCESS OPTIMIZATION

Process optimization in this program is proposed in the sense of both general and specific methods that might be expected to enhance device performance over and above what was achieved by the baseline process. Optimization procedures were limited, however, by the large number of materials studied and the size of the program. With this in mind a number of optimization steps were used for each of the silicon materials in the program.

2.5.1 Texturization

This process modification has two functions. The primary one is the reduction of surface reflections while the second is to increase absorption in the immediate region of the junction.

Surface texturization is the result of directionally selective etching of a wafer surface that leaves a matrix of pyramids at the surface. (In Figure 2 we show a photograph of a typical texturized surface.) This matrix promotes transmission of reflected primary rays. Solar cell surfaces that have been both texturized and coated with an antireflecting film appear mattelike to the observer. Since the index of refraction of silicon is high, and since the pyramids present a surface of about 45° to the normal incidence, normal rays are refracted away from the normal to the wafer plane. The result of this

refracted path for the transmitted radiation is a longer path of light with wafer depth and hence enhanced absorption near the junction.

Texturization is most effective for (100) silicon and ineffective for (111) silicon. Since dendritic web silicon is grown with a (111) surface this optimization procedure was not used on that material. For the polycrystalline material the effectiveness of texturization varied according to the orientation of individual grains.

2.5.2 Back Surface Field

In this procedure a P region is processed onto the back side of the wafer. This P region serves a number of purposes. It creates an electrostatic reflector in the lower base region and reduces contact resistance. The electrostatic reflecting properties should increase short circuit current and reduce dark currents that arise by recombination at the back surface. This should, in turn, increase open circuit voltages. In addition to the obvious requirement that the electric field generated by the P P configuration be of a sufficient magnitude the distance from the junction to the P P boundary region, vis a vis the minority carrier diffusion length, must be within certain limits. For a given χ_{τ} to P P distance, a threshold minority carrier diffusion length exists to observe the effect. Therefore, materials with short minority carrier diffusion lengths cannot be expected to be enhanced by a back surface field. One could, of course, speak of a threshold χ_{τ} to P P distance for a given L_D.

2.5.3 Junction Depth

Historically, junctions of space solar cells have followed a course of decreasing depths. An observer could speculate that

this has been the result of a somewhat gradual realization that photons absorbed above the junction are wasted. Shallower junctions have required heavier doping in the top layer and improved contact systems because of the increased sheet resistance that accompanies the shallow junction. Improved diffusion methods have also accompanied the shallower junctions providing a somewhat higher minority carrier lifetime in the top layer. Recently, efforts at reducing surface recombination velocities on silicon solar cells have shown some degree of success.

Shallow junctions are of greater efficacy at AMO because of the relative portion of that spectrum in the blue and violet. Though it is less of a factor for cells to be employed at terrestrial sites, it is still possible to enhance collection efficiency of terrestrial cells by means of shallow junctions. Shallow junctions, however, increase the risk of junction leakage and result in lower production yields. With these caveats in mind shallow junctions were utilized in several optimized processing runs.

2.5.4 Gettering

It is well known that certain types of "gettering" can enhance performance of silicon devices. Gettering is believed to result because of an out-diffusion and trapping of various secondary impurities at gettering sites. The type of secondary impurities that combine with lattice structure defects to produce recombination centers are in most cases fast diffusers and are trapped at regions of structural damage and strain. Various experimental work has shown that phosphorous precipitates generate high strain, dislocation tangles, etc. This highly damaged region in the top layer of the silicon device leads to very short minority carrier

lifetimes in volume immediate to the surface. At the same time, however, it tends to clean up the rest of the device, especially the junction region.

Evidence for the effect of secondary impurities on device performance has been shown by, amongst others, experiments of Goetzberger and Shockley (2). Specific evidence for mechanisms in the junction region have been described in the SEM-EBIC experiments of Varker and Ravi (3). Murarka (4) has identified the phosphorous gettering action on trace impurities of gold using neutron activation analysis. The latter work shows conclusive evidence that the gettered specie (gold) is trapped within the surface region of the precipitates and not within the phosphorous glass.

2.6 PHASE II

A number of changes were made in the program going from Phase I to Phase II. The first of these changes was I-V measurement at AM1 as well as at AM0, for about 20% of the cells. This was done to provide measurements more meaningful for terrestrial application, and to provide empirical relationships between AM0 and AM1 efficiencies for the cells fabricated in the program. A second change was the use of processes that could be considered low cost, as opposed to the methods of Phase I that were based upon aerospace manufacturing processes. A third change was a somewhat more general use of the cell areas greater than 2 cm x 2 cm. Finally, a record was made of the steps in the processing where cell breakage occurred. This was suggested as a means of determining any critical breakage points in the processing for a specific material.

2.7 RESULTS

2.7.1 Westinghouse Web

In this section we report results for three lots of solar cells fabricated on dendritic web-grown silicon utilizing processes intended to enhance conversion efficiency. In the first of these lots, Web0-1, cells were 2 cm x 4 cm and had back surface field processing. Results obtained from illuminated I-V at AMO and AMI are presented in Table 1.

In a second lot, Web0-2, also with BSF, cells were made in a 2 cm x 2 cm configuration. Results obtained for illuminated I-V measured at AMO and AMI are shown in Table 3. It is apparent that the latter BSF were more effective in improving cell efficiency than in the case of lot Web0-1. This can be attributed to insufficient heating of the substrate during the high temperature anneal following deposition of aluminum paste for the BSF. The warmup of the wafers is dependent upon furnace temperature, boat configuration and wafer size. To produce the back surface field the wafer temperature must surpass the Al-Si eutectic temperature over the whole of the wafer area. In Figure 3 we show those cells with BSF having the highest efficiency of the cells in each dendritic web strip. Other noteworthy differences between the two lots can be seen in the open circuit voltages. In Web0-1 we find $\rm V_{\rm OC}$ of the order of 530 mV and 545 mV for 9 N-cm and 3 N-cm cells as compared with 555 to 585 for the 13 Nacm web materials in lot Web0-2. Another factor of importance in comparing these two lots is the difference in wafer thicknesses. The lesser thickness in Web0-2 cells would be expected to enhance the effect of the back surface field. Diffusion length would of course be expected to play a noticeable role in the effects promoted by wafer thickness.

A third and final web optimization lot, Web0-3, was made using a shallow junction. Measurements for the completed cells are given in Table 5. Cell size used in this lot was 2 cm x 4 cm. Spectral response data has been plotted for a number of cells in Figures 4 and 5. Blue response is equivalent for the Web and CZ cells, but a rather extensive divergence for red response is seen between the two materials. This suggests considerable differences in minority carrier diffusion lengths between the two materials.

We examine this difference by calculation of the effective diffusion lengths from spectral response measurements $^{(5)}$.

S/N	LD	Υ	
X-1	223 um	.9997	
X-5	209	.9995	
191-1	79	.9993	
187-1	71	.9995	
171-1	79	.9995	
171-3	74	.9994	

2.7.2 Mobil-Tyco EFG

Lot EFG0-2 was intended as an optimization of cell characteristics by means of a back surface field. Application of the back surface field structure to the cells was by screen printing of aluminum paste followed by a high temperature anneal for a brief period (spike anneal). Processing of the cells in this lot met with a continuous series of misfortune. Breakage for the cells in the lot was widespread. Six of ten control cells and three of about thirty-five EFG cells were unbroken. As can be seen in the tables for this lot (Tables 7 and 8) breakage occurred

at most steps of the cell processing. Although breakage has not been found unusual for the EFG material, results in this lot indicate a high degree of fragility. Breakage losses were also unusually high for the control cells, however. In comparing losses in this present lot with those of previous lots, one must conclude that faulty processing must account for a large share of the breakage. Cell data for the lot is given in the tables. Illuminated I-V characteristics are lower than expected for both the EFG cells and control cells.

2.7.3 Crystal Systems Hem

Silicon wafers by the heat exchange method have been fabricated into solar cells by methods intended to improve the solar conversion efficiency over the cells fabricated by the baseline method. Some of these methods are considered to be low cost. A base etch was used in place of the usual conventional acid etch for removal of saw damage and control of wafer thickness. A back surface field has been applied to the cells for increased $V_{\rm oc}$ and $I_{\rm sc}$.

Lot Hem0-2 was fabricated to determine the effectiveness of the back surface field on this material from a specific Hem crystal (342C) and also to see what, if any, enhancement could be expected by using a thinner wafer thickness. The lot consisted of 9 mil cells made using back surface field cells, 9 mil cells made by the baseline method, and 5 mil cells made using back surface fields.

Results for the lot are given in Tables 9 and 10.

Comparison of I $_{\rm SC}$ between baseline and back surface field processing indicates a definite enhancement for the latter cells. In the case of the control cells $\rm V_{\rm OC}$ enhancement is also observed although this is not the case for the Hem cells. Lack of $\rm V_{\rm OC}$

enhancement for the Hem cells is not too surprising, however, since resistivity was determined to be less than 1 Ω -cm.

In Figure 6 we display data for average values of the spectral response from 6 μm to 1.05 μm for the 5 mil-BSF, 9 mil-BSF and 9 mil-baseline. One observes the current enhancement of the cells having back surface fields. In Figure 7, percent enhancement of 9 mil BSF cells over 9 mil baseline cells is shown (average values). As one would expect, enhancement is greatly increased for current generated by photons absorbed deeper in the base region of the cell (and hence the path described by distance from absorption site to BSF + distance from BSF to junction is less for longer λ photons, on average).

L measured from spectral response on the following baseline cells in Hem0-2 is given $below^{(5)}$,

S/N	L	Υ		
C-7	200	.9987		
14	100	.9998		
15	80	.9992		
12	70	.9995		

Diffusion length calculations suggest variation in Hem material within crystal sections. (Exact location of section in crystal 342C was not noted by processing personnel.)

Two lots of cells were fabricated from the Hem silicon to determine the effect of impurity gettering on this material and what this might do insofar as efficiency optimization is concerned.

In the first of these lots, Hem0-3, the wafers were phosphorous diffused in the usual manner. The wafers were then etched

sufficiently to remove the diffused n layer. The pre-diffusion clean was repeated and the wafers were again diffused. Processing was continued by the baseline method and the fit shed cells were measured.

In the second lot, Hem0-4, the processing used in Hem0-3 was duplicated with the exception that the diffusion drive time in the first diffusion was extended by a factor of three.

Results for both of these lots are given in Tables 11, 12, 13 & 14.

In Figures 8, 9 and 10 we show a histogram of the crystals for the various I-V parameters in the three lots. One may draw several conclusions from these figures. The first of these is that cells made from silicon material in crystal 349 had degraded properties in the runs with the extra gettering step. The results for cells from material in crystal 342 indicate little or no change. Results for cells from material in crystal 314 indicate a definite improvement, especially evident in the Hem0-4 results.

A disturbing feature of these results is the high $\rm V_{oc}$ for this material (1.4 $\rm G-cm$). One would expect a maximum of 590 for such resistivity.

As a specific group, cells made from crystal 349 without an added diffusion step (gettering) had the best conversion efficiencies.

Crystals 349 and 342, with resistivities in the range of .4 to .8 Ω -cm, were grown from high purity melt stock. Crystal 314, with resistivity of 1.4 Ω -cm, was grown from float zone remelt stock. One can account for the higher open circuit voltages of the former by the lower resistivities. The reduced short circuit

currents and efficiencies obtained for solar cells fabricatelon crystal 314 material could result from the increased secondary impurities one would expect to be contained in float zone remelt stock.

2.7.4 Kayex - Continuous CZ

Material for solar cell fabrication in Phase II of the contract came from run 62 of the Kayex effort. Nine crystals were pulled from a single crucible in run 62. The crystals were of the order of five to six inches in diameter and were sliced to give representative portions of the top, middle, and bottom sections of each crystal.

Two baseline runs were made on this material. Since this was CZ material the primary interest here was to determine how the cells from this material compared with conventional CZ grown material, how cells fabricated from top, middle and bottom sections of a crystal compared and finally how cells from one crystal compared with cells from other crystals in the pull sequence.

Illuminated I-V results for the first baseline run, HamcB-1, are given in Table 15. A and B prefixes denote cells from slice A and slice B. Both slices are from the top section of crystal #1 in Kayex run 62. Dark current data are given in Table 16 and spectral response data are given in Table 17. Comparing the Kayex CZ with the control CZ cells one observes a higher solar conversion efficiency for the latter. In Figure 11 a comparison of spectral response is made between the cells with highest efficiency in slice A, slice B and the CZ control cells. This group of curves implies a slightly greater minority carrier diffusion length for the control CZ silicon.

In the second baseline run, HamcB-2, cells were fabricated from slices cut from five different crystals in Kayex run Number 62. Data for illuminated I-V, spectral response and dark current are presented in Tables 18, 19, and 20, respectively. A modification in this run was the use of NaOH (30%) etchant in place of the usual acid etch to remove saw damage and thin the wafers to 9 mils, but without surface texturizing.

In Figure 12 the distribution for conversion efficiency is plotted for the Kayex CZ cells and for the control cells. The distribution for both groups is similar. The Kayex cells are identified as to the location they occupied in the crystals; top, middle, or bottom. Distributions for efficiency are plotted for the cells and separated by crystal source. Control cell efficiencies are clustered about 11.5% whereas the Kayex CZ cells are clustered about 11%. Cells from bottom sections of crystals 7 and 9 represent the lowest efficiencies for the Kayex group. Three of the four low efficiency cells are polycrystalline while the cell with the lowest efficiency had arrays of deep etch pits across its surface.

In Figure 13 spectral response data for a number of the cells has been plotted. Cells fabricated from top sections of the crystals group about the control cell C-1. The bottom of crystal number 1, middle of crystal nine, bottom of crystal number 7 and bottom of crystal number 9 have reduced spectral response, with the bottom of number 9 occupying the position of lowest response.

Such an order is not unexpected since the secondary impurities would be segregated out of the growing crystal and into the liquid silicon remaining in the crucible. The density of impurities remaining in the crucible would increase with growth causing the concentration of impurities to be higher at the bottom end

of the crystal. With the addition of more silicon before the next crystal pull, the impurities would be diluted hence the top of the next crystal should be "cleaner" than the bottom of the previous crystal. Going from the first crystal to the ninth crystal one would expect a gradual increase in impurities in the melt. An increase in the concentration of secondary impurities in the crystal would reduce the minority carrier diffusion length and this would be apparent in a reduced long wavelength spectral response. In Figure 14 the percent reduction in spectral response for the various crystal sections is shown, at .8 mm and at .9 mm, where the average response for cells from top sections of the crystals serves as the benchmark value.

Although there is evidence of reduced diffusion length as growth proceeds from beginning to end, the effect on conversion efficiency is apparent, yet not large.

In the next fabrication lot the cells were made incorporating a back surface field. Illuminated I-V data for this run, HamcO-I, are given in Table 21. Spectral response and dark current data are given in Tables 22 and 23, respectively. In Figure 15 open circuit voltage and short circuit current are plotted for the cells in this run. Baseline values, derived from runs HamcB-1 and HamcB-2, are given for comparison. There is a general enhancement in both open circuit voltage and short circuit current for both the top and middle s ction cells with the greater enhancement for the former. For the bottom cells there is some short circuit current enhancement but none for open circuit voltage. Cells below the baseline had shunting and/or series resistance indications in their illuminated I-V curves.

In Figure 16 conversion efficiency at AMO is plotted for run HamcO-1. The enhancement by the BSF is in evidence here with

greatest percentage enhancement for cells from top sections and least enhancement for cells from bottom sections. In the final figure for this section, Figure 17, spectral response is presented for several cells having the best efficiency in their respective group. From this plot one observes the degree of enhancement provided by the back surface field for a given cell thickness and minority carrier diffusion length. The greater enhancement can be easily seen for the longer diffusion length material.

2.8 AIR MASS ONE I-V CHARACTERISTICS

As stated in Section 2.6, I-V measurements at AM1 were instituted in Phase II of the contract for 20% of the cells. This was done to obtain more relevance for terrestrial application and to determine an empirical relation between AM0 and AM1 characteristics for cells of this type. AM1 measurements were made on the Spectrolab solar simulator (X-25) with a Pyrex water filter in the optical path and calibrated against a standard cell, #1039, traceable to NASA standards. Results are presented below for $^\eta AM0/^\eta AM1$. On several occasions the efficiency ratio was found to diverge sharply from $^{\circ}1.17$. Generally, this could be traced to measurement or calculation error.

Results for efficiency ratio measurements are given below.

	N	R
Hem	29	1.17
Web	36	1.18
Kayex	24	1.18
Control CZ	41	1.17
Composite	130	1.17

where N = number of cells

 \overline{R} = average value of R

 $R = \eta_{AM1}/\eta_{AM0}$

2.9 CONCLUSIONS

Cells fabricated from Web silicon were somewhat broad in their distribution of efficiencies. This would be expected since the web material was itself rather varied in both resistivity and minority carrier lifetime. The back surface field was found to be effective in enhancing the open circuit voltage, as in lot Web0-2 where 12 Ω -cm web material had open circuit voltages of 580 mv. Spectral response measurements have shown the wide differences in diffusion length between the CZ control material and some of the web material used in these few lots as they have also shown differences in the diffusion length from one web strip to the other.

For the Hem material we have found a variation in cells fabricated from different crystals. The crystals we have used represent but a small fraction of the boule so what we have found must be qualified by that condition. As would be expected the "cleaner" the starting material the higher the cell efficiency. Some of the Hem material was apparently equivalent to the CZ material used for control cells. The low resistivity material, in some instances, when fabricated into cells had open circuit voltages greater than 600 mv and with BSF some enhancement in current was observed. Gettering did not appear to offer enhancement of the cell efficiencies.

The continuous CZ material was found to produce reasonably good cells with some fall-off in efficiency from the top to the bottom of the crystals. The fall-off in diffusion length from the first to the last crystal was obvious from the spectral response curves, however its effect upon conversion efficiencies was not so apparent. Only when back surface fields were applied was the reduced diffusion length significant as a factor that attenuated the effect of the back surface field.

3.0 REVIEW OF PHASE II

Phase II has followed a path very similar to Phase I. In essence much of the work was a repeat with some variations. Most of the size etching was done using NaOH etchant in place of the usual acid etchant. This was a part of the low cost thrust. It had limited significance on the outcome of the various lots.

Screen printed contacts were tried on cells fabricated from EFG material but the effect was to degrade the cell performance. It became obvious that screen printed contacts could be a program in its own right since several of the materials could not be printed without some very specific fixtures and problems.

The most significant outcome in this phase would have to be associated with the Hem material and the continuous CZ silicon. In the case of the former, some Hem crystals were found to provide cells with performance on a par with CZ control cells and showed a dependence upon the quality of silicon material being processed by the heat exchange method. It did not, and could not, show uniformity or the lack of uniformity in the Hem boule because only small sections of each crystal were provided.

In the case of the continuous CZ material, considerable improvement was evident in the Phase II material over the Phase I material. In Phase I, with fewer and smaller crystals pulled, only top sections were single crystalline and only those produced quality cells. The Phase II product, however, consisted of more and larger crystals in a single run, and most parts of the crystals had the potential for quality solar cells. Only in bottom sections was optimization limited.

The EFG material was not better than the resistance heated source material in Phase I. It would have been more productive to have had some of the material developed with controlled ${\rm CO}_{\bf x}$ atmospheres and reported on by Mobil-Tyco.

4.0 SUMMARY AND CONCLUSIONS

In this section we provide a table containing maximum conversion efficiencies for each material throughout Phase I and Phase II of the program. Data are displayed graphically in Figure 18.

We note from this table that of the expressed Phase I contract goal of 12% AMO at 28°C, three of the materials reached or surpassed the goal, namely: dendritic web, Hem, and continuous CZ.

LIST OF CELLS HAVING HIGHEST EFFICIENCY FOR THEIR MATERIAL GROUP

	n % (AMO)	Jsc	Voc				
Material	(28°C)	ma cm ⁻²	(mV)	FF	Lot	S/N	Comment
RTR Control*	7.2 11.6	23.6 36.3	559 588	.74 .73	RTR-2	5 C-7	Baseline
EFG-RF Control*	9.8 8.9	31.3 35.5	567 563	.75 .60	EFG-3	46 C-5	Baseline
EFG-RH Control*	8.4 11.9	29.0 35.8	537 586	.73 .77	EFGB-1	D 6	Baseline
Wacker	10.6	33.5	554	.77	W-4	4	Baseline
Silso Control*	12.5	35.5	598	.79		2	
Web Control*	12.0	37.3 37.0	579 596	.75 .80	Web-5	6 Н	BSF BSF
Hem Control*	12.3	34.8 35.8	605 589	.790 .778	HemB-1	349 S2 E1 C-3	Baseline
Cont. CZ Control*	12.6 All Shu	36.8 nted	602	.770	Hamc0-1	9T2	BSF

^{*}Control cell with highest n in the same lot.

The RTR and EFG materials used in this contract are now obsolete. Claims by both sources of these materials indicate that considerable improvement in quality has been attained. The Wacker material

could probably be brought to higher efficiencies than reported here by using thirner cells in conjunction with back surface fields. There was a noticeable drop-off in efficiency at the corners of the Wacker sheet due to either reduced grain size or oblique grain boundaries.

The web material would appear to have considerable potential for high quality cells. The ability to control the sheet thickness as well as resistivity and lifetime would rake this material a formidable contender in the high efficiency cell class.

The heat exchange method has shown itself to be capable of producing quality solar cells. This is especially true when clean polysilicon is used as the starting material. How uniform the quality is throughout the grown crystal has not been shown. The method also appears appropriate for growth of solar material from starting material that could only be classed below semiconductor grade polysilicon.

The continuous CZ method employed to produce some of the material in the contract does appear to have considerable potential. The consistent results from top to bottom and crystal to crystal and the overall improvement from Phase I material to Phase II material supports this outlook.

5.0 ACKNOWLEDGEMENTS

The author wishes to acknowledge the support of Mr. Dennis Dionne throughout Phase I and Phase II of the contract, of Mrs. Emily Castorena in part of Phase I and Phase II and of Dr. Lincoln Fajardo in part of Phase II of the contract.

He appreciates the patience and forbearance shown by Dr. Taher Daud, Mr. Francis Uno, Ms. Catherine Dumas, Ms. Sandra Hyland and Dr. James Liu, of the Jet Propulsion Laboratory. Their understanding of the difficulties involved, especially in the zero slope beginning of Phase I, has been heroic.

Finally, to Mrs. Linda Stone my thanks and respect for preparation of the manuscript and her patience in making numerous corrections in copy, tables and figures.

6.0 REFERENCES

- J. A. Minahan, Annual Report, JPL Contract 955055, September 1979.
- (2) A. Goetzberger and W. Shockley, "Metal Precipitates in Silicon PN Junctions," JAP 31 (1960) 1821.
- (3) C. Varker and K. Ravi, "Oxidation-Induced Stacking Faults in Silicon. II Electrical Effects in PN Diodes," JAP, 45 (1974) 272.
- (4) S. Murarka, "A Study of the Phosphorous Gettering of Gold in Silicon by Use of Neutron Activation Analysis," J. Electroch. Soc. 123 (1976) 765.
- (5) J. A. Minahan, Quarterly Progress Report for Period ending December 31, 1979, JPL Contract #955055.

7.0 TABLES

Table 1

					INATED CHAR					
	1000				EB01					
*										
									7	
	CELL	_NAME								
									6.000	
		(CM2)	4.000	6.000	.022	. 022	6.000	4.000	. 022	0
	B.D.	K (CM) RHO(OHM-CM) R-SGR(OHM) VOC (MV)	.022	.000	.000	.000	.000	.000	. 000	
	A.D.	R-SOR(OHM)	58.010	57.163	52.118	55.064	.000	56.650	55.517	
	AMO	VOC (MV)	549.000	546.000	544.000	533.000	.000	538.000	.000	
	MILL	ISC (NA)	127.000	245.000	239.000	245.000	.000	126.000	.000	
and the second		VMP (MV)	119.000	226.000	214.000	192.000	.000	104.000	.000	-
		FILL FCTR	.758	.759	.686	.626	.000	.669	.000	
		EFFICIENCY	. 098	.125	.110	.101	.000	. 084	.000	
	1119	VCC (NV)	548.000	545.000	544.000	531.000	.000	537.000	. 000	
		ISC (MA)	111.000	213.000	206.000	213.000	.000	109.000	.000	
		IMP (MV)	453.000	453.000	190.000	425.000	.000	69.000	.000	
		FILL FCTR	.760	.765	.704	.594	.000	.662	.000	
		EFFICIENCY	.116	.148	.131	.112	.000	1.155	.000	
		EFF/AMO EFF	1.163	1.184	1.198	1.111	.000	1.155	.000	
									_	
	WHEN	BROKEN	0	0	0	0	PROBE TES	0 7	PRINTING	
	CELL	NAME				c	D	E E	E	
	AREA	(CM2)	6.000	6.000	6.000	6.000	6.000	6.000	6.000	-
		K (CM)	. 022	.025	. 025	. 025	. 025	.025	. 025	
	E.D.	RHO(OHM-CM)	0.0.0	.000	.000	.000 53.704	.000 55.744	.000 55.744	.000	
	A.D.	R-SGR(OHM)	52.931 544.000	51.665	55.517	528.000	526.000	530.000	526.000	-
		VOC (MV)		.000	247.000	246.000	251.000	253.000	244.000	
		VMP (MV)	447.000	.000	427.000	422.000	414.000	426.000	423.000	
		IMP (MA)		.000	226.000	226.000	231.000	235.000	226.000	
		FILL FOTR	.747	.000	.737	.734	.724	.747	.745	
		EFFICIENCY _	.121	.000	.119	527.000	525.000	529.000	525.000	
		VOC (MV)	543.000 209.000	.000	529.000 215.000	213.000	218.000	219.000	214.000	
		VMP (MV)	445.000	.000	425.000	426.000	419.000	429.000	424.000	
		IMF (MA)	189 000	.000	195.000	194.000	199.000	202.000	195.000	
		FILL FOTR	.741	.000	.729	.736	.729	.748	.736	
		EFFICIENCY EFF/AMC EFF	1.157	.000	1.162	1.172	1.180	1.171	1.170	
		Erry And Err			.,,,					
	NHEN	EROKEN	C .	LOADING	CHIPPED	CHIPPED	CHIP/OHM	IC 0	CHIFPED	
100	CELL	NAME	с	×1	×10	X11	X12	X13	X14	
	605	(Cf(2)	6.000							
		K (CM)	. 027	6.000	4.000	4.000	6.000	4.000	. 627	
		RHO(OHM-CM)	.000	.000	. 000	.000	.000	. 000	.000	
		R-SURCOHM)	58.010	46.226	48.946	49.852	48.492	48.492	45.093	
		VOC (MV)	531.000	59€.000	592.000	596.000	513.000	565.000	608.000	
		ISC (MA)	253.000	270.000	141.606	140.600	274.000	141.000	144.000	
		IMP (MA)	408.000	480.000	109.000	93.000	204.000	410.000	495.000	
	* * * * * * * * * * * * * * * * * * * *	FILL FOTE	.699	.737	.589	.527	.463	79.000	124.000	
		EFFICIENCY	.116	.147	. 091	. 080	. 060	. 060	.113	
	IMA	VOC (MV)	530.000	596.000	. 000	.000	.000	. 600	605.000	
		ISC (MA)	220.000	235.000	.000	.000	.000	. 600	124.000	
		VMP (MV)	416.000	480.000	.000	.000	.000	.000	496.000	
	Sec. 1	******	198.000	217.000	.000	.000	.000	. 000	164.000	
	AMI	FILL ECTS	704	744	0.0.0					
		FILL FOTR EFFICIENCY	.706	.744	.000	.000	.000	. 000	.688	

Table 1 continued

		RESISTIVITY	AND ILLUNIA	NATED CHARA	CTERISTICS			
			uer.	801				
						m + con		
	CELL HAME	x2	ж3	84	×5	×6		×e
305 100 0000 0	AREA (CM2)	.000	6.000	6.000	. 024	4.600	4.000	6.000
	B.D. RHO(OHM-CM)	. 000	.000	.000	50.758	.000	46.453	.000
	A.D.R-SQR(OHM)	597.000	51 . 212	51.212	604.000	596.000	496.000	599.000
	AMO ISC (MA)	259.600	.000	.000	276.000	138.000	140.000	271.000
	AMO VMP (MV)	495.000	.000	.000	244.000	130.000	71.000	459.000
	AMO FILL FOTE	.727	.000	.000	.751	.778	.270	.690
	AMO EFFICIENCY	.136	,000	.000	.151	.119	. 035	. 138
	AMI VOC (MV)	.000	.000	.000	235.000	118.000	.000	598.000 234.000
	AM! VMP (HV)	.000	.000	.000	496.000	496.000	. 000	466.000
	AMI IMP (MA)	. 600	.000	.000	210.000	110.000	.000	210.000
	AMI FILL FOTE AMI EFFICIENCY	.000	. 000	.000	.737	.776	.000	.693
	AM1 EFF/AMO EFF	.000	.000	.000	1.151	1.149	.000	1.182
	WHEN BROKEN	0	TEMP. TEST	75 NO 7557		0		0
	SHEN BRUKEN	U	TEMP. TEST	IERP. IEST	·	U		•
	CELL NAME	×9	-					
- 1	AREA (CM2)	4.000						
	THICK (CM) B.D.RHO(GHM-CM)	.000						
	A.D. K-SOR(OHM)	53.704						
	AMO VOC (MV)	599.000						
	AMO ISC (MA)	146.000 456.000						
* *	AMO IMP (MA)	121.000						
	AMO FILL FOTE	.642						
	AMO EFFICIENCY _	. 102						
	AM: 150 (MA)	.000						
	AMI VMP (MV)	.600						
	AMI IMP (MA)	.000						
	AMI EFFICIENCY	.000						
	AM1 EFF/AMO EFF	.000						
			Tabl	le 2				
			SPECTRAL SE	ENSITIVITY				
			UE					
			The Section of					
	CELL NAME	1	2	3	4	5	6	?
	W.L. (MICRON)							
						.000	.127	.000
	.41	.125	.150	.146	.160	.000	.298	.000
	.50	.394	.451	.437	.456	.000	. 391	
	.55	.428	.493	.480	.505	.000	.425	.000
	.65	.462	.521	.556	.560	.000	.459	.000
	.70	.487	.580	.570	.578	.000	.476	.000
	.75 .80	.508	.614	.615	.606	.000	.507	. 000
	.85	.466	.602	.563	.588	. 000	.476	.000
	.90	.451	.536	.520	. 556	.000	.479	.000
	1.05	. 098	.126	.116	.120	.000	. 339	. 000
	1.05	. 070						

Table 2 continued

SPECTRAL SENSITIVITY

W.L. (MICRON)		A		c	D			
and the second second								
.41	.154	.000	.152	.149	.157	.148	. 143	
.50	.450	.000	.442	.430	.460	.452	.439	
.55	.494	.000	.484	.483	.500	.493	.483	
.60	.520	.000	. 531	. 526	.547	.542	.523	
.65	.551	.000	.556	.564	.599	.570	.576	
.75	.600	.000	.614	.616	.628	.622	.611	
,60	591	.000	. 363	.649	. 654	.657	.639	
.65	.508	.000	.618	.622	.632	. 636	.618	
. 95	.547	.000	.560	. 566	.566	.572	.565	
1.05	121	.000	.137	. 139	.137	.142	.136	
CELL NAME	G	X1	X10	×11	X12	×13	X14	
W.L. (MICRON)								
.41	.152	.146	.162	.206	.167	.246	.147	
.45	.342	.328	.325	.349	.342	.377	.294	
.50	.450	.503	407	413	445	.423	.407	-
.60	.541	.558	.488	.446	.502	.456	.435	
	571	.592	.496	.487		.492	.485	
.76	.593	.626	.536	.540	.623	.568	.520	
. 80	.632 .648	.704	.894	.573 .594	.677	.608	.564	
.85	.644	.743	.637	.623	.767	.645	.632	
.90	.660	.735	.725	.719	.803	.765	.661	
1.05	.476	.702	.357	.659	.650	.746	.710	
	. 140	. 300	.357	.347	.436	.411	.353	
				-				
CELL NAME	×2	жз	X4	×5	×6		×6	
W.L. (MICRON)								
.41	.161	.000	.000	.165	.127	.344		
.45	. 331	. 000	.000	.335	.280	.472	. 166	
. 50	.437	.000	.000	.445	.390	.453	.460	
.60	.486	.000	.000	.489	.432	.475	.515	-
. 65	574	. 000	.000	.545 .578	.466	.503	.564	
.70	.613	.000	.000	.622	.511	.624	.634	
.75	.653	.000	.000	.662	.543	.630	.682	
.85	.742	.000	.000	.707	.569	.622	.716	
.90	.764	.000	.000	.758	.601	.644	.772	
.95	.776		.000	. 600	.564	.663	.625	
1.05	. 394	.000	.000	.401	.233	.415	416	
CELL NAME	×9							
W.L. (MICRON)								
.41	.160							-
. 45	.316							
.55	.444							-
. 60	.463							
.70	.518			-				
.75	.518							-
	584							
. 65	.622							-
. 90	.674							
1.65	.336							

Table 3

RESISTIVITY AND ILLUMINATED CHARACTERISTICS CELL NAME 1 1 12

	HEN BROKEN	DICING SAM	LOADING	0	0	SPEC . RESP	0	DICING SAU
* /								
	MI EFF/AND EFF	.000		1.173		1.177		
	MI EFFICIENCY			.132				000
	MI FILL FOTE	.006	.000	.737	.736	.740	.741	.000
	MI IMP (Me)	. 665	.000		112.000	113.006	112.000	.000
	MI VMP (MV)	.000	.000	470.000		468.000		. 600
-	MI ISC (MA)	.000	.000		122.000		122.000	.000
	MI VOC (MV)	.000	.000	£75.000	.109		575.000	.000
	MG FILL FOTR	.000	.000	.746	.737	.724	.732	.000
	MO IMP (MA)	.000	.000			131.000	130.000	.000
	MO VMF (MV)	.000	. 000		457.000			.600
	MO ISC (MA)	.000	.000				142.000	.000
	MO VOC (MV)	.060	.000	580.000		563.000	578.000	.000
	.D.R-SOR. OHM)					48.039		.000
	D. RHO (OHM-CM)	13.835	15.374	13.562	12.554	14.214	13.420	14.706
	HICK (CH)	.018	.018	.016	.010	.018	.018	.018
			4.000				4.000	4. one
	ELL NAME	. 2	3.	4	4		5,-	
	HEN BROKEN	EDGE CLEAN	0	o	0	SPEC . RESP	. 0	0
•	AM: EFF/AMO EFF	.000	1.181	.000	1.176	1.162	.000	1.176
	AMI EFFICIENCY		.129		.125			.133
	AMI FILL FOTR	.000	.734	.000	.736	.754	.000	.742
	AMI IMP (MA)		112.000	.000	111.000		.000	114.000
	AMI VMP (MV)		462.000	.000	450.000			466.000
	AM! ISC (MA)	.000	123.000	.000	121.000	123.000	.000	:23.000
	AMI VOC (MV)	.000	573.000	.000	561.000	580.000	.000	592.000
	AND EFFICIENCY			. 097			103	
	AMO FILL FOTE	.000	.728	.681	.730	.737	.732	.745
	AMO IMP (MA)	.000	128.000	117.000	130.000	130.000	127.000	131.000
	AMO VMP (MV)	.000	463.000				138.000	141.000
	And ISC (MA)	.000	142.000	136.000	562.000	565.000	553.000	565.000
	ANO V. (NV)	49.652	47.586				46.680	47.133
	B.D.RHOKOHM-CM)	14.315	14.508	14.206	13.046	14.935	12.063	15.556
	THICK (CH)	.016	.018	.018	.018	.016	.018	.018

CEL	L NAME	6.	•		٠	•.	,	*.
AFE	A (CM2)	4.000	4.000	4.000	4.000	4.000	4.000	4.000
THI	CK (CM)	.018	.018	.018	.018	.018	.016	.018
B . D	RHO(OHM-CM)	13.231	14.359	12.997	15.048	13.320	14.097	12.296
A.D	.R-SQR(OHM)	47.586	50.305	47.133	47.133	45.773	49.852	45.773
AMO	VOC Chirs	561.000	584.000	575.000	581.000	571.000	582.000	.000
AM 0	ISC (MA)	141.000	144.900	127.000	142.000	140.000	139.000	.000
AMO	VMP (MV)	436.000	471.000	461.000	469.000	455.000	471.000	. 000
AHO	IMP (MA)	112.000	130.000	116.000	130.000	129.000	127.000	.000
	FILL FOTR	.620	.728	.732	.739	.734	.739	.000
	EFFICIENCY	. 091	.113	. 099	.113	.108	.111	000
	VOC (MV)	.000	578.000	.000	579.000	562.000	573.000	. 000
AMI	ISC (MA)	.000	124.000	.000	122.000	122.000	121.000	. 000
	VMP (MV)	.000	470.000		- 469.000	455.000	465.000	
AMI	IMP (MA)	.000	113.000	.000	112.000	112.000	111.000	.000
AM I	FILL FOTE	.000	.741					. 000
				.000	.744	.743	.744	.000
	EFFICIENCY	. 000	.133	. 000	.131	. 127	.129	.000
AM1	EFF/AMO EFF	. 000	1.174	. 000	1.166	1.175	1.167	. 000

O EDGE ETCH O O 0 B.S.F.

WHEN BROKEN

٥

Table 3 continued

RESISTIVITY AND ILLUMINATED CHARACTERISTICS

		RESIS	TIVITY	AND ILLUMIN	ATED CHARAC	CTERISTICS				
				UEB	02					
					•					
41.00.7										
	CELL HAME			13	13.	14		2		
	CELL NAME		12.	13		1.4		-	•	
	AREA (CM2)		.000	4.000	4.000	4.000		4.000	4.000	
	THICK (CM)		.018	.018	. 019	.018	.019	.018	.018	
	B.D. PHOK OHM		2.127	15.209	.000	14.613	.000	13.706	14.291	
	A.L.R-SORCO		5.773	.000	.000	48.492	.000	. 000	563.000	
	AMO VOC CMV		7.000	.000	.000	.000	.000	.000	140.000	
	AND VMP (MV		7.000	.000	.000			.000	472.300	
	AMO IMP CHA		7.000	.000	.000	.000	.000	.000	129.000	
	AMO FILL FC		.740	.000	.000	.000	. 600	.000	.746	
	AMO EFFICIE		.105	.000	.000	.000	.000	.000	.113	
	AM1 VOC (MV		.000	.000	.000	.000	.000	.000	581.000	
	ANT ISC (MA		.000	.000	.000	.000	.000	.000	122.000	
	ANT VMP (MV		.000	.000	.000	.000	.000	. 000	112.000	
	AMI IMP (MA		.000	.000	.000	.000	. 600	. 000	.739	
	AMI EFFICIE		.000	.000	.000	.000	.000	. 000	131-	
	AM1 EFF/AMO		.000	.000	.000	.000	.000	.000	1.165	
	WHEN BROKEN	0		V/I PROBE	DICING	V/I PROBE	DICING	SCRIB 1.0	. 0	
	CELL HAME		X1	×2	×3	×4	×5	×6	×7	
								4.000	4 000	
	AREA (CM2)		.000	4.000	4.000	4.000	.000	. 023		
	B.D. RHO! DHM		.023	. 023 1.948	2.031	1.989	2.196	2.134	2.002	
	4. D. R-SQR(0		5.773	45.773				46 . 226	44.414	
	AMO VOC (MV		0.000	603.000	313.000	576.000	598.000	601.000	605.000	
	AND ISC (MA		7.000	149.000	137.000	146.000	149.000	142.000	152.000	
-	AMO VMP (MV		0.600	509.000	178.000	437.000	495.000	498.000	504.000	
	AMO IMP (MA) 13:	3.000	137.000	98.000	94.000	127.000	126.000	140.000	
	AND FILL FC	TR	.754	.776	.407	.488	.706	.735	767	
	AMO EFFICIE	NCY	.123	.129	. 032	. 076	.116	.116	.130	
	AMI VOC CHV		. 600	601.000	.000	. 000	.000	.000	602.000	
	AMI ISC (MA		7.000	129.000	.000	.000	.000	.000	502.000	-
	AMI THE CMA		. 000	120.000	.000	.000	.000	.000	122.000	
	AMI FILL FC		.744	.762	.000	. 000	.000	.000	.777	
	AMI EFFICIE	NCY	.141	.151			000	. 000	153	
	AM1 EFF/AMO	EFF	1.146	1.176	. 000	.000	. 660	.000	1.174	
				_						
	WHEN BROKEN	٥		0	CELL SLIP	0	0	c	o	
	CELL NAME		X8							-
	AREA (CM2)		. 900							
	THICK (CM)		. 023							
	B.D. RHOCOHM		. 634							
	A.D.P-50R.0									
	AMO VOC (MY		7.000							
	AND VHP CHY		3.000							
	AND IMP CHA		8.000							
	AMO FILL FC	TR	.359							
	AMO EFFICIE		. 033							
	AMI VOC CHY)	. 660							
	AMI ISC (MA)	.000							
	AMI VMP (MV		.000		-					
	AMI IMP (MA		.000							
	AMI EFFICIE									
	AMI EFF/AMO		. 000							
	e	-								
						***				11,000
	WHEN BROKEN	CHI	P OHM	C						

Table 4

CELL NAME 1			SPECTRAL SE	HSTITIVITY				
U.L. (RICRON) 41			. DEE	02				
### #### #############################						an distance and an electronic of		
U.L. (MICRON) 41								
### ### #### #########################	CELL NAME			10	10.	11	11.	12
45 000 225 227 236 241 250 244 55 26 254 37 374 364 65 255 260 0 349 345 363 347 374 364 65 55 000 433 422 445 444 449 443 445 15 0 000 479 468 495 493 466 462 15 000 528 596 595 577 556 555 555 75 000 659 539 577 556 555 555 75 000 628 600 000 614 610 630 662 553 620 553 620 600 600 600 614 610 630 662 553 620 553 620 600 600 710 668 642 702 609 600 900 6710 668 642 702 609 600 955 600 626 500 626 551 633 495 623 1.05 600 620 520 161 214 183 208	W.L. (HICRON)							
45 000 225 227 226 241 250 244 55 24 35 347 374 364 65 255 200 00 342 345 363 347 374 374 364 65 55 000 479 468 495 493 466 462 55 000 526 596 597 576 556 555 555 75 000 625 599 577 556 555 555 75 000 625 599 577 556 555 555 75 000 625 599 577 556 555 555 75 000 625 599 577 556 555 555 75 000 625 599 577 556 555 555 75 000 625 599 600 000 634 610 630 620 593 620 593 600 600 600 710 668 644 700 600 649 90 000 710 668 644 700 600 600 625 591 621 633 499 623 1.05 000 620 200 202 161 214 183 208	41		097	498	.099	. 101	.105	.103
10								
. 1 0 000 .479 .468 .495 .493 .466 .482 .700 .000 .528 .506 .523 .524 .524 .524 .520 .70 .000 .528 .506 .523 .524 .524 .524 .520 .70 .000 .528 .509 .577 .556 .555 .555 .555 .555 .600 .60 .000 .625 .591 .621 .604 .553 .600 .80 .000 .604 .610 .630 .620 .533 .620 .90 .90 .000 .710 .668 .642 .702 .609 .620 .95 .000 .620 .655 .605 .649 .95 .000 .620 .655 .511 .633 .499 .623 .1.05 .000 .200 .202 .161 .214 .153 .208			.349	.345	. 363	.367		
. 65								
.70								
75 000 625 591 621 604 593 600 60 000 634 610 630 620 593 620 65 000 666 636 640 655 605 649 90 000 710 668 642 702 609 660 95 000 200 200 202 161 214 153 208 CELL NAME 3 3 4 4 5 5 5 6 W.L. (RICROH) 41 000 000 105 105 109 073 103 000 50 000 000 246 294 170 245 000 50 000 000 366 377 258 270 000 60 000 000 474 480 314 447 000 60 000 000 575 596 367 561 000 60 000 000 575 596 420 661 000 60 000 000 575 598 420 661 000 60 000 000 575 598 420 661 000 60 000 000 655 598 420 661 000 60 000 000 655 598 420 661 000 60 000 000 665 598 420 661 000 60 000 000 665 598 420 661 000 60 000 000 620 620 658 482 671 000 60 000 000 620 658 598 420 661 000 60 000 000 620 658 598 420 661 000 60 000 000 620 658 482 671 000 60 000 000 620 658 482 671 000 60 000 000 620 658 482 671 000 60 000 000 620 658 482 671 000 60 000 000 620 658 482 671 000 60 000 000 620 658 482 671 000 60 000 000 620 658 482 671 000 60 000 000 620 658 482 671 000 60 000 000 620 658 482 671 000 60 000 000 620 658 482 671 000 60 000 000 620 658 482 671 000 60 000 000 620 658 482 671 000 60 000 000 620 658 482 671 000 60 000 000 620 658 482 671 000 60 000 000 620 658 482 671 000 60 000 000 620 658 482 671 000 60 000 000 620 658 482 671 000 60 000 000 620 658 482 671 000 60 000 000 640 658 598 420 671 000 60 000 000 620 658 482 671 000 60 000 000 640 658 598 482 671 000 60 000 000 640 658 598 482 671 000 60 000 000 640 658 598 482 671 000 60 000 000 640 658 598 482 671 000 60 000 000 640 658 598 482 671 000 60 000 000 640 658 598 482 671 000 60 000 000 640 658 598 482 671 000 60 000 000 640 658 598 482 671 000 60 000 000 640 658 658 642 671 000 60 000 000 640 658 658 668 671 000 60 000 000 640 658 658 668 671 000 60 000 000 640 658 658 668 671 000 60 000 000 640 658 658 668 671 000 60 000 000 640 658 658 668 671 000 60 000 600 600 600 600 600 600 600								
80 000 666 636 640 655 605 649 90 000 710 668 642 702 609 680 90 000 710 668 642 702 609 680 105 105 000 200 200 202 161 214 153 208 10.05 000 200 200 105 107 214 153 208 10.05 10.								
90 000 710 668 642 702 609 660 1.05 000 200 202 161 214 153 208 CELL NAME 3 3. 4 4. 5 5. 6 W.L. (MICROM) (
1.05		. 600		.636	.640	.655		
CELL NAME 3 3. 4 4. 5 5. 6 U.L. (RICROM) .41 .000 .000 .105 .109 .073 .103 .000 .45 .000 .000 .248 .254 .170 .245 .000 .50 .000 .000 .366 .377 .258 .370 .000 .55 .000 .000 .472 .480 .314 .447 .600 .60 .000 .000 .575 .522 .363 .525 .000 .75 .000 .000 .575 .598 .416 .607 .000 .75 .000 .000 .575 .598 .416 .607 .000 .85 .000 .000 .575 .598 .416 .607 .000 .85 .000 .000 .575 .598 .416 .607 .000 .85 .000 .000 .575 .598 .416 .607 .000 .85 .000 .000 .575 .598 .416 .607 .000 .85 .000 .000 .575 .598 .410 .000 .95 .000 .000 .575 .598 .410 .000 .95 .000 .000 .575 .598 .420 .611 .000 .95 .000 .000 .575 .598 .420 .611 .000 .95 .000 .000 .575 .598 .420 .611 .000 .95 .000 .000 .520 .554 .417 .578 .000 .105 .000 .000 .562 .554 .417 .578 .000 .105 .000 .000 .562 .554 .417 .578 .000 .105 .000 .000 .187 .173 .140 .185 .000 .105 .000 .000 .187 .173 .140 .185 .000 .50 .321 .379 .241 .369 .393 .376 .000 .50 .321 .379 .241 .369 .393 .376 .000 .50 .321 .491 .445 .489 .496 .477 .000 .60 .491 .491 .445 .489 .496 .477 .000 .65 .526 .516 .478 .525 .523 .512 .000								
CELL NAME 3 3. 4 4. 5 5. 6 W.L. (MICRON) 41 .000 .000 .105 .109 .073 .103 .000 .45 .000 .000 .246 .254 .170 .245 .000 .50 .000 .000 .346 .377 .258 .370 .000 .60 .000 .000 .474 .480 .335 .456 .000 .60 .000 .000 .575 .526 .363 .525 .000 .70 .000 .000 .575 .554 .367 .561 .000 .70 .000 .000 .575 .598 .420 .611 .000 .80 .000 .000 .575 .598 .420 .611 .000 .85 .000 .000 .605 .598 .420 .611 .000 .85 .000 .000 .618 .626 .444 .641 .000 .95 .000 .000 .620 .625 .482 .671 .000 .95 .000 .000 .562 .554 .417 .578 .000 .1.05 .000 .000 .167 .173 .140 .165 .000 .50 .000 .000 .167 .173 .140 .165 .000 .50 .000 .000 .167 .173 .140 .165 .000 .50 .321 .379 .241 .369 .393 .376 .000 .50 .321 .379 .241 .369 .393 .376 .000 .50 .321 .491 .445 .89 .496 .477 .000 .60 .478 .526 .516 .478 .525 .523 .512 .000								
W.L. (RICRON) 41 000 000 105 109 073 103 000 45 000 000 246 254 170 245 000 50 000 000 366 377 258 370 000 55 000 000 476 480 315 496 000 60 000 000 476 480 335 496 000 65 000 000 587 522 363 525 000 70 000 000 587 522 363 525 000 75 000 000 575 598 416 607 000 60 000 000 575 598 420 611 000 65 000 000 605 598 420 611 000 65 000 000 605 598 420 611 000 65 000 000 618 626 444 641 000 69 000 000 620 659 482 671 000 95 000 000 562 554 417 578 000 1.05 000 000 187 173 140 165 000 CELL NAME 6 7 7 8 8 9 9 W.L. (RICRON) CELL NAME 6 7 7 8 8 9 9 W.L. (RICRON) 41 113 110 094 105 144 106 000 60 301 379 741 369 393 376 000 60 491 491 491 445 489 496 477 000 65 526 556 556 556 476 555 523 512 000	1.05	. 000	.200	. 202	. 161	.214	. 153	. 206
### L. (HICRON) ### 1								
### ### ##############################	CELL NAME		3.		4,	- 5	· · · · · · · · · · · · · · · · · ·	
### ### ##############################	W.L. (MICRON)							
### ### ##############################	41	666	0.00	105	109	. 673	.103	.000
S0								
SE								.000
.60				.434	.448			
.70		.060	.000					
75								
CELL NAME								
SS								
CELL NAME 6. 7 7. 8 8. 9 9 W.L. (HICRON) 1.13 110 094 105 144 106 000 .41 113 110 094 105 144 106 000 .45 256 259 227 245 290 254 000 .50 381 379 341 369 393 376 000 .55 453 442 410 446 458 444 000 .60 491 491 445 489 496 477 000 .65 526 516 478 525 523 512 000								
95								
CELL NAME 6. 7 7. 8 8. 9 9. U.L. (MICRON) .41 .113 .110 .094 .105 .144 .106 .000 .45 .256 .259 .227 .245 .290 .254 .000 .50 .381 .379 .741 .369 .393 .376 .000 .50 .453 .442 .410 .446 .458 .444 .000 .60 .491 .491 .445 .489 .496 .477 .000 .65 .526 .516 .478 .525 .523 .512 .000								
W.L. (MICRON) .41								
W.L. (MICRON) .41								
W.L. (MICRON) .41								
.41 .113 .110 .094 .105 .144 .106 .000 .45 .256 .259 .227 .245 .290 .254 .000 .50 .361 .379 .741 .369 .393 .376 .000 .55 .453 .442 .410 .446 .458 .444 .000 .60 .491 .491 .445 .489 .496 .477 .000 .65 .526 .516 .478 .525 .523 .512 .000		6.	7	7.		8	,	9.
.45 .256 .259 .227 .245 .290 .254 .000 .50 .361 .379 .341 .369 .393 .376 .000 .55 .453 .442 .410 .446 .458 .444 .000 .60 .491 .491 .445 .469 .496 .477 .000 .65 .526 .516 .478 .525 .523 .512 .000			114	69.	105	144	. 106	.000
.50 .381 .379 .241 .369 .393 .376 .000 .55 .453 .442 .410 .446 .458 .444 .000 .60 .491 .491 .445 .489 .496 .477 .000 .65 .526 .516 .478 .525 .523 .512 .000								
.55 .453 .442 .410 .446 .458 .444 .000 .60 .491 .491 .445 .489 .496 .477 .000 .65 .526 .516 .478 .525 .523 .512 .000								
.60 .491 .491 .445 .489 .496 .477 .000 .65 .526 .516 .478 .525 .523 .512 .000							.444	.000
.65 .526 .516 .478 .525 .523 .512 .000				.445	. +89	.496		
TA FAT BAS BAS BEA BAS BAS AAA		.526	.516	.478				
	.70	.563	.546	.505	.550	.565	.529	. 600
.75 .607 .564 .540 .606 .595 .564 .000								
.60 .614 .617 .544 .621 .592 .606 .000								
.85 .642 .638 .568 .653 .595 .629 .000 .90 .674 .650 .586 .691 .617 .654 .000								
.90 .674 .650 .586 .691 .617 .654 .000 .95 .580 .598 .504 .620 .49£ .594 .000								
1.05 .189 .206 .165 .204 .172 .200 .000								

Table 4 continued

SPECTRAL SENSITIVITY

CELL NAME	12.	13	13.	10	14.	•	•.
W.L. (MICRON)							
.41	.115	.000	.000	.000	.000	.000	.110
.45	.272	.000	.000	.000	.000	.000	.261
.50	.389	.000	.000	.000	.000		332
.55	.451	.000	.000	.000	.000	.000	.448
.60	.483	.000	.000	.000	.000	.000	.480
.65	.510	.600	.000	.000	.000 -	.000	.512
.70	.536	.000	.000	.000	.000	.000	.539
.75	.569	.000	.000	.000	.000	.000	.576
	.570	000	.000	.000			591
. 05	.586	.000	.000	.000	.000	.000	.619
.90	.596	.000	.000	.000	.000	.000	.639
.95	.479	.000			.000	.000 -	.567
1.05	.151	.000	.000	.000	.000	.000	.200

CELL NAME	X1	×2	X3	×4	×5	X6	X7
W.L. (MICRON)							
.41	.105	.106	.112	.115	.126	.111	.109
.45	.241	.242	.234	.261	.267	.232	.248
.50	.365	.368	.339	.363	.383	.347	.376
.55	.441	.446	.406	.452	.459	. 426	.451
.60	.490	.495	.457	.482	.457	.475	.500
.65	.525	.532	.488	.519	.535	.514	.540
.70	.562	.569	.532	.555	.590	.560	.578
.75	.616	.624	.575	.605	.633	.613	.627
.86	.656	.656	.617	.630	.666	.651	.667
.65	.663	.694	.637	.669	.707	.693	.709
.50	.721	.754	.661	.733	.603	.776	.776
.95	.740	.764	.609	.734	.798	.767	.794
1.05	.319	.340	.304	.313	.371	.366	.373

CELL	HAME	88
u.L.	(MICRON)	
	.41	.217
	.45	.310
	.50	.359
	.55	.415
	.60	.465
	.65	.490
	.70	.617
	.75	.628
	.60	.626
	.85	.666
	. 9	.911
	.95	.715
	1.05	.369

Table 5

		WE(603				
CELL NAME	175 1	176.3	167 1	191 1	X1	X2	жз
APEA (CM2)	e.000	6.000	8.000	8.000	8.000	8.000	0.00
THICK (CM)	027	.025	.024	.028	.030	. 033	. 63
B.D. RHOCOHM-CM)	. 1100	.000	.000	.000	.000	.000	.00
A.D.R-SOR(OHM)	111,714	1 06.275	140.719	101.290	108.315	119.645	97.66
AMO VOC (MV)	521.000	531.000	525.000	231.000	294.000	255.000	262.00
AMO ISC (MA)	377.000	214.000	412.000	406.000	309.000	382.000	469.00
AND IMP (MA)	220.000	198.000	234.000	223.000	221.606	189.000	260.00
AMO FILL FOTR	.663	.718	.729	.735	.477	,511	.77
AND EFFICIENCY	. 077	.075	.089	.084	.063	.067	.11
HHI VOC (MV)	523.000	532.000	525:000	533.000			584:00
HITT 180 (MA)	204.000	182.000	215.000	209.000	.000	.000	242.00
ANT VHP (NV)	377.000	421.000	416.000	419.000	.000	.000	486.00
HM1 IMP (MH)	190.000	170.000	200.000	192.000	.000	.000	.77
AMI EFFICIENCY	.090	.089	.104	.101	.000	.000	.13
AMT EFF/AMO EFF	1.166	7.167	1.166	T.202			7.15
WHEN BROKEN	RESISTIVITY	EVAPORATOR		CTERISTICS"		BACKETCH	UNCOAD
		AND ILLUMI		CTERISTICS"		BACKETCH	UNLOAD
		AND ILLUMI	HATED CHARA	CTERISTICS"	×ė	BACKETCH	UNICAD
WHEN BROKEN		AND ILLUMIN	NATED CHARA 603 	×7 8.000	X6 6.000	BACKETCH	UNLOAD
CELL NAME MEE (CM2) THICK (CM)	KESISTIVITY K4 6.000 .030	##D	NATED CHARA 603 	8.000 .023	#6.000 .133	BACKETCH	UNLOAD
CELL NAME HREA (CM2) THICK (CM) B.D. PHOLOHM-CM)	#4 #4 #4 #4 #4 #4 #4 #4 #4 #4 #4 #4 #4 #	##D ILLUMIO #E1 25 6.000 .030	NATED CHARA 603 	8.000 .033	#6.000 .033 .000	BACKETCH	UNICAD
CELL NAME AREA (CM2) THICK (CM) B. D. PHOS CHM-CM) A. D. P-SOR CHM)	#4 #4 #4 #4 #4 #4 #4 #4 #4 #4 #4 #4 #4 #	## ILLUMIN ## ## ## ## ## ## ## ## ## ## ## ## ##	8.000 - 030 - 030 - 000 - 91.773	8.000 .033 .000 61.123	6.000 .033 .000 79.990	BACKETCH	UNICAD
CELL NAME MREA (CM2) THICK (CM) B.D. PHOLOHM-CM)	#4 #4 #4 #4 #4 #4 #4 #4 #4 #4 #4 #4 #4 #	#EI ILLUMII #EI #5 8.000 .030 .000 94.945 578.000	NATED CHARA 603 	8.000 .033	#6.000 .033 .000	BACKETCH	UNICAD
CELL NAME HREA (CM2) THICK (CM) B.D.PHOLOHMO-CM) HMA VOC (MV) HMA VOC (MV) HMA VOC (MV) HMA VOC (MV)	## ## ## ## ## ## ## ## ## ## ## ## ##	## ILLUMIN ## ## ## ## ## ## ## ## ## ## ## ## ##	8.000 8.000 91.773	8.000 .033 .000 61.123 567.000	8.000 .133 .000 79.990 561.000 274.000 444.000	BACKETCH	UNICAD
CELL NAME HREA (CM2) THICK (CM) B.D.PHOLOHMO-CM) AMD VOC (MV) AMD VOC (MV) AMD VOC (MV) AMD THE (MA)	#4 #4 #000 .030 .000 .000 .000 .000 .000	#EI HEI HEI HEI HEI HEI HEI HEI HEI HEI H	8.000 91.773 586.000 167.000	8.000 .033 .000 61.123 567.000 255.000 452.000	6.000 .233 .000 79.990 561.000 274.000 444.000	BACKETCH	UNLOAD
CELL NAME MREA (CM2) THICK (CM) B.D.PHOLOMM-CM) M.D.R-SOR OMM) MMO VOC (MV) MMO 15C (MA) AMO VMP (MV) AMO FILL FCTR	## ## ## ## ## ## ## ## ## ## ## ## ##	#EI ILLUMII #EI #5 8.000 .030 .000 94.945 576.000 264.000 463.000 263.000 .742	8.000 	8.000 .033 .000 61.123 567.000 255.000 452.000 223.000	6.000 .233 .000 79.990 561.000 274.000 444.000 251.000	BACKETCH	UNICAD
CELL NAME AREA (CM2) THICK (CM) B.D.P-SOR OHM AND VOC (MV) AND VOC (MV) AND VOC (MV) AND VOC (MV) AND THE (MA) AND THE (MA) AND THE (MA) AND FILL FCTR AND EFFICIENCY	## ## ## ## ## ## ## ## ## ## ## ## ##	##D ILLUMIN ### ### ### ### ### ### ### #	8.000 9.000 91.773 586.000 167.000 486.000 71.0	8.000 .033 .000 61.123 567.000 255.000 452.000 223.000 .697 .093	8.000 .233 .000 .79.990 561.000 274.000 444.000 .725 .103	BACKETCH	UNICOAD
CELL NAME AREA (CM2) THICK (CM) B.D.P-SOR OHM) AMO VOC (MV) AMO ISC (MA) AMO FILL FOTA AMO FILL FOT	#4 #4 #4 #4 #4 #4 #4 #4 #4 #4 #4 #4 #4 #	##D ILLUMIN ##E ##E ##E ##E ##E ##E ##E #	8.000 8.000 91.773 506.000 167.000 486.000 160.000 710 072	8.000 .033 .000 61.123 567.000 255.000 452.000 223.000 .697 .093 565.000	8.000 .033 .000 .79.990 561.000 274.000 444.000 .725 .103	BACKETCH	UNICAD
CELL HAME HREA (CM2) THICK (CM) B.D.PHOLOHMOON AMO VOC (MV) AMO THE (MH) AMO FILL FCTR AMO EFFICIENCY AMI VOC (MV) AMI ISC (MH) AMI ISC (MH)	#4 #4 #4 #4 #4 #4 #4 #4 #4 #4 #4 #4 #4 #	#EI ILLUMII #EI #5 8.000 030 94.945 576.000 263.000 263.000 742 112 576.000 244.000	8.000 91.773 586.000 167.000 710 072 585.000 163.000	8.000 .033 .000 61.123 567.000 255.000 452.000 223.000 .697 .093 565.000 220.000	6.000 .133 .000 79.990 561.000 274.000 444.000 251.000 .725 .103 .563.030 234.000	BACKETCH	UNICAD
CELL NAME PREA (CM2) THICK (CM) B.D.P-SOR OHM) AMO VOC (MV) AMO INC (MA) AMO FILL FOTE AMO EFFICIENCY AMI VOC (MV)	## ## ## ## ## ## ## ## ## ## ## ## ##	#EI ILLUMII #EI #5 8.000 .030 .000 94.945 576.000 264.000 463.000 .742 .112 576.000 244.000 471.000	8.000 8.000 0.30 0.00 91.773 586.000 167.000 466.000 710 0.72 585.000 163.000 499.000	8.000 .033 .000 61.123 567.000 255.000 452.000 223.000 .697 .693 565.000 220.000 450.000	6.000 .233 .000 79.990 561.000 444.000 444.000 251.000 .725 .103 563.000 234.000 449.000	BACKETCH	UNICAD
CELL NAME AREA (CM2) THICK (CM, B.D.P-SOR OHM) AND VOC (MV) AND ISC (MA) AND VOC (MV) AND ISC (MA) AND INP (MA)	## ## ## ## ## ## ## ## ## ## ## ## ##	##D ILLUMIN ####################################	8.000 91.773 586.000 167.000 486.000 160.000 163.000 489.000	8.000 .033 .000 61.123 567.000 255.000 452.000 223.000 .697 .093 565.000 220.000 134.040	86.000 .233 .000 79.990 561.000 444.000 444.000 .725 .103 563.030 234.000 449.000 213.000	BACKETCH	UNLOAD
CELL NAME PREA (CM2) THICK (CM) B.D.P-SOR OHM) AMO VOC (MV) AMO INC (MA) AMO FILL FOTE AMO EFFICIENCY AMI VOC (MV)	## ## ## ## ## ## ## ## ## ## ## ## ##	#EI ILLUMII #EI #5 8.000 .030 .000 94.945 576.000 264.000 463.000 .742 .112 576.000 244.000 471.000	8.000 8.000 0.30 0.00 91.773 586.000 167.000 466.000 710 0.72 585.000 163.000 499.000	8.000 .033 .000 61.123 567.000 255.000 452.000 223.000 .697 .693 565.000 220.000 450.000	6.000 .233 .000 79.990 561.000 444.000 444.000 251.000 .725 .103 563.000 234.000 449.000	BACKETCH	UNICOAD

Table 6

SPECTRAL SENSITIVITY

NECO3

×e	X7	×6	×5	×4	CELL NAME
					W.L. (MICRON)
 .104	7.046	.096	.112	.000	
.221	.193	.181	.232	.000	.45
.317	.269	.263	.317	.000	.50
 .361	.341	.322	.350	.000	.55
.419	.392	.358	.435	.000	.60
.457	.427	.368	.405	.000	.65
 471	.466	.415	.511	.000	.76
.503	.494	.444	.542	.000	.75
.544	.533	.474	.577	.000	.80
 .544	.566	.483	.600	.000	.05
.527	.566	.496	.609	.000	.90
.498	.548	.497	.605	.000	.95
 .186	226	.203	.247	.000	1.05

SPECTANL SEMBITIVITY

WE003

CELL NAME	175 1	175 3	167 1	191 1	X1	×2	х3
W.L. (MICRON)							
.41	.095	. 663	.107	. 093	.124	-112	.113
.45	.207	.172	.217	.167	.262	.246	.236
.50	.298	.245	.311	.272	.334	.321	.325
.55	.354	.308	.369	.345	.410	.376	.401
.60	.367	.350	.411	.386	.454	.425	.449
.65	.417	.362	.435	.416	.496	.457	.475
.70	.432	.404	.456	.437	.522	.465	.5.3
.75	.451	.419	.464	.458	.550	.522	.521
.00	.466	.420	.476	.470	.577	.562	.54?
.65	.456	.410	.473	.466	.609	.577	572
.90	.409	.376	.428	.421	.614	.580	.566
.95	.324	.285	.320	.322	.608	.573	.554
1.05	.095	.063	.091	.096	.259	.250	.218

Table 7

		EF	.02				
CELL NAME	A1	A2	A3	n4	A5	A6	A7
AREA (Ch2)	6.450	6.450	6.450	6.450	6.450	6.450	6.450
THICK (CH)	.037	.032	. 039	.038	.034	.030	. 627
B.D.RHO(OHM-CM) A.D.R-SOR(OHM)	2.136	1.338	1.766	1.425	1.904	47.359	52.798
AMO VOC (MV)	.000		.000	.000	.000	000	.000
and ISC (MA)	.000	.000	.000	.000	.000	.000	.000
AND VMP (MV)	.000	.000	.000	.000	.000	.000	.000
AMO FILL FCTR	.000	.000	.000	.000	.000	.000	.000
AND EFFICIENCY	.000	.000	.000	.000	.000	.000	.000
ANT VOC (MV)	.000	.000	.000	.000	.000	.000	.000
AMI VMP (MV)	.000	.000	.000	.000	.000	.000	.000
AMI IMP (Mm)	.000	.000	.000	.000	.000	.000	.000
AMI FILL FOTR	.000	.000	.000	.000	.000	.000	.000
AMI EFFICIENCY	.000	.000	.000	.000	.000	.000	.000
WHEN BROKEN	DICING	BHCK ETCH	PRINTING	SPINNER	PRINTING	PRINTING	HEL BOT
CELL NAME	#9	A9	61	62	63	64	65
AREA (CM2)	6.450	6.450	6.450	6.450	6.450	6.450	6.450
THICK (CH)	.026	.034	.036	.036	.037	.036	.033
B.D. RHOCOHM-CH >	.000	2.642	1.338	1.644	1.579	1.330	1.661
H.D.R.SOR(OHM)	.000	55.517	46.000	48.946	48.719	49.172	48.946
AMO VOC (MV)	.000	.000	.000	.000	.000	.000	.000
AMO VMP (MV)	.000	.000	.000	.000	.000	.000	.000
AND IMP (NA)	.000	.000	.000	.000	.000	.000	.000
AND FILL FOTE	.000	.000	.000	.000	.000	.000	.000
AMO EFFICIENCY		000		.000	.000	.000	.000
AMI ISC (MA)	.000	.000	.000	.000	.000	.000	.000
Ant VMF (MV)	.000	.000	.000	.000	.000	.000	.000
AMI INF (MA)	.000	.000	.000	.000	.000	.000	.000
ANT EFFICIENCY	.000	.000	.000	.000	.000	.000	.000
AMI EFFZAMO EFF	.000		000	.000			. 000
UHEN BROKEN	БІСТНЕ	BHCK ETCH	BACK EYCH	SHISTO	FIRTHS	-растис	V/I PRO
CELL NAME		_67	E0	69	<u> </u>	. <u>ç</u> 2	c3
AREA (CM2)	6.450	6.450	6.450	6.450	6.450	6.450	6.450
THICK (CH)	.030	. 025	.029	1.395	1.464	1.763	1.562
A.D.R-SOR OHM	1.265	1.197	.000	51.691	48.206	49.172	48.039
HHO VOC (MV)	473.000		:000	000	.000	000	000
AMO ISC (MA)	139.000	.000	.000	.000	.000	.000	.000
AND VER CHY)	72.000		.000	.000	.000	.000	.000
AMO FILL FOTR	.300	.000	.000	.000	.000	,000	.000
AND EFFICIENCY	,029	.000	.000	.000	.000	.000	.000
HILL VOC (NV)	.000	.000	.000	.000	.000	.000	.000
AMI ISC (MA)	.000	.000	.000	.000	.000	.000	.000
AMI IMP (MA)	.,000	000		.000	.000		.000
AMI FILL FCTR	.000	.000	.000	.000	.000	.000	.000
AMI EFFICIENCY	.000	.000	.000	.000	.000	.000	.000
TOME PERSONS PER	A A A	0.00	0.00	0.00	41,1111	. 11 (1 1)	
AMT EFF/AMO EFF	.000	.000	000	. 000			.000

Table 7 continued

/	****	*	G02				
CELL NAME	C4	ce.		67	Ce .	C9_	002
	6.450	6.450	6.450	6.450	6.450	6.450	6.45
THICK (CM)	.037	.032	.029	.025	.628	. 633	. 03
B.D.RHO(OHM-CM)	1.360	1.343	1.357	1.635	1.486	1.399	49.85
A.D.R-SOR(OHM)	48,719	47.359	52.116	52.116	353.000	.000	478.00
AND VOC (MV)	.000	.000	.000	.000	140.000	.000	136.00
AMO VMP (MV)	.000	.000	.000	.000	195.000	.000	368.00
AMO IMP (MH)	.000	.000	.000	.000	75.000	.000	.54
AMO FILL FOTR	.000	.000	.000	.000	.017	.000	.04
AND EFFICIENCY		000		000	.000	:000	.00
AM1 ISC (MH)	.000	.000	.000	.000	.000	.000	.00
AMI VIP (NV)	.000	000	000		.000	:000	.00
AMI IMP (MA)	.000	.000	.000	.000	.000	.000	.00
AMI EFFICIENCY	.000	.000	.000	.000	.000	.000	
HMT EFF/HMO EFF		.000	. 000	.000	. 600	.000	.00
WHEN EROKEN	SPINNER	FIRING AL	SPINNER	PRINTING		SPINNER	
CELL NAME	D1		63	04	0.5	. (·é	07
AREA (CM2)	6.450	6.450	6.450	6.450	6.450	6.450	6.45
THICK (CM)	.034	.032	. 634	1.279	1.907	1.865	.00
B.D.RHOKOHM-CM) A.D.R-SORKOHM)	1.376	49.852	1.608	49.852	.000	.000	.00
AMO VOC (MV)	.000	478.000	.000	.000	-:000	.000	.00
Amo ISC (MA)	.000	136.000	.000	.000	.000	.000	.00
AND VMP (NV)	.000	96.000	.000	.000	.000	.000	.00
AMO FILL FOTE	.000	.543	.000	.000	.000	.000	.00
AND EFFICIENCY	.000	.040	.000	.000	.000	.000	.00
AMI VUC (MY)	.000	.000	. 600	.000	.000	.000	.00
AM1 150 (MH)	.000	.000	.000	.000	.000	.000	.00
HM1 IMP (MV)	.000		.000	.000	.000	.003	.00
AMI FILL WOTE	.000	.000	.000	.000	.000	.000	.00
ANT EFFICIENCY	.000	.000		. 000	000		
AMI EFFZANO EFF	.600		.000	.000	.000		
WHEN BROKEN	BHCK ETCH		FIRING AL	PRINTING	V/T PROBE	V/1 PROBE	DICING
CELL NAME	Dâ	09	X1	×10	K7	×4	×5
						6.450	6.45
AREH (CM2)	6.450	6.450	6.450	6.450	6.450	. 024	.0.
B.D. RHOLOHM-CM)	.028	1.511	.000	.000	.000	.000	.00
A.D.R-SOR(OHM)	.000	51.891	94.266	58.463	52.116	52.571	53.02
AMO VOC (MV)	.000	.000	586.000	582.000	222.000	.000	218.00
AMO 150 (MA)	.000	.000	233.000 462.000	469.000	470.000	.000	459.00
AND VIP (MY)	.000	.000	205.000	192.000	191.000	.000	194.00
AND FILL FOTE	.000	.000	.694	.706	.691	.000	.71
AMO EFFICIENCY	.000	.000	.109	.103	.103	.000	
AMI VOC CMV)	.000	.000	.000	.000	.000	.000	.01
AM! ISC (MA)	.000	.000	.000	.000	.000	.000	. 0
HILL THE CHY		.000	.000	.000	.000	.000	.0
HM1 FILL FOTR	.000	.000	.000	.000	.000	.000	.01
AMI EFFICIENCY	.000	.000	.000	.000	.000		
	.000						

Table 7 continued

		EF	.02		
CELL NAME	N6	,×7	×s .		
HREA (CM2)	6.450	6.450	6.450	6.450	
THICK (CM)	.043	.022	.022	. 022	
B.D. RHOCOHM-CM)	.000	.000	.000	13.307	
A.D.R-SOR(OHM)	53.024	46.906	57.556	56.010	
AMO VOC (MV)	587.000	567.000	569.000	.000	
AMO ISC (MA)	228.000	230.000	222.000	.000	
AND VHP (NV)	474.000	470.000	473.000	.600	
AMO IMP (MA)	197.000	202.000	197.000	.000	
AMO FILL FCTR	.698	.703	.713	.000	
AND EFFICIENCY	.107	.109	.107	.000	
AMI VOC (MV)	.000	.000	000	.000	
AMI ISC (MA)	.000	.000	.000	.000	
AMI VMP (MV)	.000	.000	.000	.000	
AMI IMP (MM)	.000	.000	.000	.000	
AM1 FILL FCTR	.000	.000	.000	.000	
AMI EFFICIENCY	.000	.000	.000	.000	
HM1 EFFZAMO EFF	.000	.000	.000	. 000	
WHEN BROKEN		SIMULATOR		BACK ETCH	

Table 8

SPECTPAL SENSITIVITY

EFG02 64 C9 CELL NAME 65 67 C9 002 66 W.L. (MICRON) .211 .320 .328 .000 .000 .000 .000 7000 45 .000 .000 .000 .264 .000 .000 000 000 .000 .000 55 000 000 600 .303 .000 60 .000 .000 .000 .000 .263 65 262 .000 .000 600 .000 .000 .000 .000 .000 .000 .000 .000 .000 75 .000 .000 .000 .302 .220 .263 .220 .293 .154 000 000 .000 .204 000 .000 .000 .166 90 .000 .000 .000 .000 .000 .142 .000 .000 000 .000 .000 .090 1.05 . unu .000 .000 000 000 . 031 0.1 CELL NAME 02 0.3 05 07 04 Dé W.L. (MICPON) .000 .127 . 000 .000 . 000 .000 600 .264 .000 000 .000 .000 .000 .000 .000 . 000 . 000 ..000 55 050 .304 .000 .000 .000 .000 60 .000 .268 .000 .000 .000 .000 .000 262 65 .600 .000 . 000 .000 .000 .000 .000 .000 . 000 .000 .000 .000 75 .000 .006 .000 .000 .000 .000 20 000 204 .000 .000 .000 .000 .000 65 000 .000 0.10 000 .000. .000 90 .142 .000 . 000 . 000 .000 .000 .000 . 000 .000 .000 .000 --.000 -.000 1.05 .000 . 000 . 031 .000

Table 8 continued

			FC02				
A		D9	×1	. ×10	х3	×4	×5
W.L. (MICRON)	- Cô	09		***************************************			
.41	.000	.000	.129	.129	.262	.000	.201
.50	.000	.000	.172	,346	.343	.000	.345
55	.000	.000	.194	.405	.400	.000	.413
.65	.000	.000	.207	.453	.423	.000	.467
70	.060	.000	.240	.494	.427	.000	.500
.75	.000	.000	.257	.530	. 534	.000	.543
.80	.000	.0.6	276	.554	. 573	.000	:592
.85	.000	.000	.313	.679	.658	.000	.673
.95	.000	.000	.336	.716	.707	.000	.713
1.05	.000	.000	.166	.353	.361		.347

CELL NAME	16	X7	X6	119			
W.L. (MICRON)					//		
.45	377	161	247	.060			
	515		. 343	.000			
.55	440	274	210	.000			
.65	.471	232	.461	.600			
.70	.5 .6	.317	.495	.3.6			
75	.547	.340	.532	.300			
.80		.346	.595	.000	constitution a some manipul		
.90	.663	.464	.644	.000			
. 45	.739	445	.696	.000			
1.05	.14*	.252	.370	000			
		Tab	ole 9				
	RESISTIVITY	AND ILLUM	NATED CHAR	ACTERISTICS			
*****		HE	M02				
CELL NAME		- 10 -	11	12 -	13	14	15
	4.000	4.000	4.000	4.000		4.000	4.000
AREA (CM2)		. 045	.045	. 045	. 045	.046	. 046
THICK (CH)	. 045		. 082	54.384	58.916	54.384	-58.916
HICK (CM) B.D.RHO(OHM-CM)	.000	61.635	58.916				
THICK (CH) B.D.RHO(OHM-CM) A.D.R-SOR(OHM) AMO VOC (MV)	.000	61.635 587.000	567.000	567.000	585.000	597.000	594.000
THICK (CM) B.D.RHO(OHM-CM) A.D.R-SOR(OHM) AMO VOC (MV) AMO ISC (M4)	.000	61.635 587.000 131.000	122.000	125.000	130.000	135.000	131.000
THICK (CM) B.D.RHO(OHM-CM) A.D.R-SOR(OHM) AMO VOC (MV) AMO ISC (M4) AMO VMP (MV)	.000	61.635 587.000 131.000 472.000	567.000 122.000 482.000	567.000 125.000 - 493.000	130.000 480.000	597.000 135.000 495.000	131.000 483.000
THICK (CH) B.D.RHO(OHM-CM) A.D.R-SOR(OHM) AND VOC (MV) AND ISC (NA) AND VHP (MV) AND IMP (NA)	.000	61.635 587.000 131.000 472.000 119.000	567.000 122.000 482.000 106.000	567.000 125.000 493.000 119.000	130.000 130.000 480.000 120.000	597.000 135.000 495.000 125.000	594.000 131.000 483.000
THICK (CM) B.D.RHO(OHM-CM) A.D.R-SOR(OHM) AMO VOC (MV) AMO ISC (M4) AMO VMP (MV)	.000	61.635 587.000 131.000 472.000 119.000	567.000 122.000 482.000	567.000 125.000 - 493.000	585.000 130.000 460.000 120.000	597.000 135.000 495.000	594.000 131.000 483.000 118.000
THICK (CH) B.D.RHO(OHM-CM) A.D.R-SOR(OHM) AMO VOC (MV) AMO ISC (H4) AMO VMP (MV) AMO IMP (MV) AMO IMP (MA) AMO FILL FCTP AMO EFFICIENCY AMI VOC (MV)	.000 .000 .000 .000 .000	61.635 587.000 131.000 472.000 119.000 .730 .104	567.000 122.000 462.000 106.000 .713 .094	567.000 125.000 493.000 118.000 .793 	585.000 130.000 480.000 120.000 .757 .106 562.000	597.000 135.000 495.000 125.000 .768 .114 598.000	594.000 131.000 483.000 118.000 -732 -105
THICK (CH) B.D.RHO(OHM-CM) A.D.R-SOR(OHM) AMO VOC (MV) AMO ISC (M4) AMO VMP (MV) AMO IMP (MA) AMO FILL FCTP AMO EFFICIENCY AMI VOC (MV) AMI ISC (MA)	.000 .000 .000 .000 .000 .000	61.635 587.000 131.000 472.000 119.000 .730 .104 588.000 116.000	567.000 122.000 462.000 106.000 .713 .094	567.000 125.000 493.000 119.000 .793 107 588.000 107.000	585.000 130.000 480.000 120.000 .757 -106 582.000 109.000	597.000 135.000 495.000 125.000 .768 .114 598.000	594.000 131.000 483.000 118.000 .732
THICK (CH) B.D.RHOCOHM-CM) A.D.R-SOR(OHM) AMO VOC (HV) AMO ISC (H4) AMO VMP (HV) AMO IMP (HV) AMO FILL FCTR AMO EFFICIENCY AMI VOC (HV) AMI VOC (HV) AMI VMP (HV)	.000 .000 .000 .000 .000 .000 .000	61.635 587.000 131.000 472.000 119.000 .730 .104 588.000 478.000	567.000 122.000 462.000 106.000 .713 .094 .600 .600	567.000 125.000 493.000 119.000 .793 .107 588.000 107.000 497.000	585.000 130.000 480.000 120.000 757 	597.000 135.000 495.000 125.000 .768 .114 599.000 116.000 498.000	594.000 131.000 493.000 118.000 .732 .105 593.000 110.000 491.000
THICK (CM) B.D.RHO(OHM-CM) A.D.R-SOR(OHM) AMO VOC (MV) AMO ISC (M4) AMO VMP (MV) AMO IMP (MA) AMO FILL FCTR AMO EFFICIENCY AMI VOC (MV) AMI ISC (MA)	.000 .000 .000 .000 .000 .000	61.635 587.000 131.000 472.000 119.000 .730 .104 588.000 116.000	567.000 122.000 462.000 106.000 .713 .094	567.000 125.000 493.000 119.000 .793 107 588.000 107.000	585.000 130.000 480.000 120.000 .757 -106 582.000 109.000	597.000 135.000 495.000 125.000 .768 .114 598.000	594.000 131.000 483.000 118.000 .732

WHEN BROKEN

BACK ETCH 0 0 0 0 0 0

Table 9 continued

RESISTIVITY AND ILLUMINATED CHARACTERISTICS

******				MO2				
	CELL NAME		,		5		 7	
	APEA (CM2)							
	THICK (CM)	4.000	4.000	4.000	4.000	4.000	4.000	.046
	B.D.RHOCOHM-CM>	.063	.082	.061	.062	. 061	.062	.093
	A.D.R-SOR(OHM)		61.635	60.729	58.916			59.010
	AMO VOC (MV)	593.000	.000	131.000	.000	.000	132.000	132.000
***	AMO VMP (MV)	475.000	.600	471.000	.000	.000	486.600	477.000
	AND IMP (MA)	116.000	.000	106.000	.000	.000	119.000	96.000
-	AMO FILL FCTR		.000	.651	.000	.000	.744	.609
	AMI VOC (MV)	.000	.000	.000	.000	.000	589.000	.000
	AMI ISC (MA)	.000	.000	.000	.000	.000	113.000	.000
	AMI IMP (MV)	.600	.000	.600	.000	.000	100.000	.000
	AMI FILL FOTE	.000	.000	.000	.000	.000	.738	.000
	AMI EFFICIENCY	.000	.000	.000	.000	.000		
	ANT EFF/AMO EFF	.000	.000	.000	.000	.000	1.149	.000
	WHEN BROKEN	UNLOADING	P EDGE ETCH	P EDGE ETCH	P NO RECORD	? 0	0	0
	CELL NAME	•	×1	×2		×4	×5	×6
	AREA (CM2)	4.000	4.000	4.000	4.000	- 4.000	4.000	4.000
	THICK (CH)	. 046	. 623	.023	. 623	.023	. 023	. 123
	B.D.RHO(OHM-CM)	.083	.000	.000	53.931	.000	54.637	50.758
	A.D.R-SGR(OHM)	525.000	563.000	57.103	566.000	604.000	.000	604.000
	AMO ISC (MA)	130 000	144.000	153.000	143.000	150.000	.000	153.000
			476.000	482.000	441.000	487.000	.000	134.000
	AMO FILL FOTE	120.000	133.000	134.000	118.600	129.000	.000	.712
	AND EFFICIENCY	.106	.117	.119		.116	.000	.122
	AM1 VOC (NV)	.000	586.000	.000	.000	.000	.000	.000
	AMI ISC (MA) Ani VMP (MV)	.000	124.000	.000	.000	.000	.000	.000
	AMI IMP (MA)	.000	116.000	.000	.000	.000	.000	.600
	AMI FILL FOTE	.000	.761	.000	.000	.000	.000	.000
	AMI EFFICIENCY	.000	1.212	.000	.000	.000	.000	.000
	HIII EFFERNO EFF							
	WHEN BROKEN	0	0	0	0	0	NOT STABL	E O
	CELL NAME	x7	xe					
	CECE HAME	^′						
	AREA (CM2)	4.000	4.000					
	THICK (CH)	.000	.023					
	A.D. R-SOR(OHM)	48.946	49.852					
	AMO VOC (MV)	595.000	595.000					
	AMC ISC (MA)	146.000	150.000					
	AMO VMF (MV)	482.000	464.660					
	AMO FILL FCTR	136.000	109.000					
-	AMO EFFICIENCY	123	097					
	AM1 VOC (MV)	585.000	.000					
	AMI ISC (MA)	123.000	000					
	ANI IMP (NA)	116.000	.000					
	AMI FILL FOTE	.786	.000					
	AMI EFFICIENCY	1.154	.000					
	WHEN BROKEN	C	0					

Table 10

57:

594

.000

.578

.541

.209

. x7 ----

. 60

. 65

.90

.95

1.05

CELL NAME

.465

.460

.460

.361

XE

SPECTRAL SENSITIVITY HEMO2 CELL NAME 10 - 11------ 12------ 13------ 14 15 U.L. (MICRON) .104 .261 .372 .416 .447 .116 .277 .384 .434 .446 .470 .495 .105 .261 .379 .431 .467 .450 .101 .256 .355 .391 .178 .099 .251 .367 .101 .50 .257 .371 .425 .451 .420 .495 .495 .547 .60 .409 .456 454 .466 .450 .413 492 .75 .504 . 535 .460 561 535 :523 .575 .468 .532 .488 .351 .465 .552 .612 .90 .463 .273 .428 .398 .506 .382 . 95 . 396 .205 .343 .309 .454 .316 1.05 . 147 .218 . 054 . 095 . 681 .139 . 093 CELL NAME 2 3 W.L. (MICRON) .166 .41 .129 .128 .169 .139 .134 .168 .284 .394 .447 .500 .50 .293 .314 .289 .290 .321 .363 .397 .434 426 .424 . 433 .443 .478 .466 .424 .65 466 .453 .521 .451 .461 .491 .537 .480 .463 .496 .485 .526

CELL	Name		×-	vo			×5	×6
W.L. 6	(MICRON)							
						MI	411.00	M14 *
	.41	.119	.116	.120	.115	.146	.000	.138
	.45	.275	.274	.276	.273	.289	.000	.263
	.50	.396	.396	.394	.390	.395	.000	.392
	.55	.440	.456	.448	.453	.459	.000	.461
	.60	.479	.494	.477	.486	.501	.000	.503
	.65	.497	.512	.514	.513	.522	.000	.529
	.70	.522	.545	.543	.548	.566	.000	.564
	.75	.558	.591	.587	.594	.620	.000	.621
	.80	.591	.625	.611	.622	.656	.000	.652
	. 85	.602	.647	.640	.643	.665	.000	.701
	.90	.605	.678	.677	.681	.772	.000	.792
	.95	.597	.642	.687	.624	.811	.000	.618
	1.05	.243	.258	.293	.232	.405	.000	.410

.495

.458

.424

.330

.502

512

.480

.493

.403

.169

493

50€

.465 .466

. 141

.538

.514

.467

. 141

564

.544

.459

.179

U.L. (F		_		
	. • 1	.120	.176	
	.45	.279	.314	
10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	.50	.398	.400	
	.55	.453	.467	
	.60	.496	.467	
	.65	.517	.525	
	.70	.550	.594	
	.75	. 554	.678	
-	.80	.632	. 651	
	. 65	.649	.699	
	.90	.679	.613	
	.95	.646	.624	
1	. 05	.259	.405	

Table 11

RESISTIVITY AND ILLUMINATED CHARACTERISTICS

	00111 1 10000 ET 11181 1000 0gs 1 0			ch03-1				

	CELL NAME	A1	A2	АЗ		•• •	02	63
	AREA (CM2)	4.000	4.000	4.000	4.000	4.000	4.000	4.000
	THICK (CM)	.044	.044	. 045	.044	.044	.046	.044
	B.D.RHO(OHM-CM)	.060	.060	. 061	.061	.081	. 083	. 081
	A.D.R-SOR(OHM)	42.601 591.000	598.000	606.000	40.335	550.000	43.507	41.694
	AMO ISC (MA)	118.000	128.000	137.000	.000	123.000	130 000	598.000 134.000
M. P. S. L. S.	AND VHP (MV)	466.000	561.000	507.000	.000	484.000	249.000	478.000
	AMO IMP (MA)	96.000	121.000	129.000	.000	117.000	108.000	125.000
	AMO FILL FCTR	.653	.792	.766	.000	.794	.446	.746
	AND EFFICIENCY	. 023	.112	.121	.000	.105	. 049	.110
	AMI VOC (MV)	.000	.000	121.000	.000	.000	.000	.000
	AMI VMP (MV)	.000	000	509.000		:000	.000	.000
	AMI IMP (MA)	.000	.000	113.000	.000	.000	.000	.000
	AMI FILL FCTR	.000	.000	.766	.000	.000	.000	.000
	AMI EFFICIENCY	.000	.000	.144	.000	.000	.000	.000
	AM1 EFF/AMO EFF	.000	.000	1.190	.000	.000	.000	.000
	UHEN BROKEN	0	0	0	SCRIBING	0	0	0
	CELL NAME	B4	cı	cs	сз	c4		
-	HREA (CH2)		4.000		4.000	4.000		4.000
	THICK (CM)	.046	. 043	.043	.044	. 044	. 043	. 043
	B.D. PHO CHM-CM)	43.054	39.428	. 059	40.789	41.694	. 059	.059
	AND VOC (NV)	593.000	595.000	286.000	600.000	593.000	.000	600.000
		131.000	133.000	132.000	131.000	124.000	.000	133.000
-		492.000	484.000	180.000	500.000	491.000	000	
	AND IMP (MA)	121.000	117.000	105.000	121.000	110.000	.000	125.000
	AMO FILL FOTR	.766	.716	.501	.770	.735	.000	.786
		.110	.105		.112	.100	.000	.116
	Ant Voc (NV)	592.000	,000	.000	599.000	.000	.000	598.000
	AMI ISC (MA)	114.000	.000	.000	114.000	.000	.000	116.000
	AUT THE CHO	105.000	.000	.000	104.000	.000	.000	167.000
	AMI IMP (MA)	770	.000	.000	.763	.000	.000	.774
	AMI FILL FOTE AMI EFFICIENCY AMI EFFICAMO EFF	.130	.000		130	000		- 134
	ANT EFF. AND EFF	1.161	.000	.000	1.165	.000	.000	1.150
	WHEN BROKEN	0	٥	0	0	0	BACK ETCH	
	CELL NAME	03	D4	е,	- E2		E4	·····
***	AREA (CM2)	4.000	4.000	4.000	4.000	4.000	4.000	4.000
	THICK (CH)	. 046	. 046	.043	. 044	. 044	. 043	.043
	A.D.R-SQR(OHM)	41.694	46.226	51.665	49.399	50.758	48.039	48.039
	AND VGC (MV)	588.000	578.600	453.000	569.000	493.000	522.000	.000
	AMO 150 (MA)	126.000	120.000	130.000	116.000	122.000	110.000	.000
	AMO VMP (MV)	484.000	476.000	272.000	473.000 -	310.000	387.000	
	AMO IMP (MA)	110.000	112.000	100.000	107.000	90.000	76.000	.000
	AMO FILL FOTR	.707	.769	.462	.754	.464	.526	.000
	AND EFFICIENCY	. 096	. 099	.050	. 094	. 052	. 056	.000
	AMI VOC (MV)	.000	.000	.000	567.000	.000	.000	.000
	AMI ISC (MA)	.000	.000	.000	104.000	.000	.000	:000
	AMI IMP (MV)	.000	.000	.000	94.000	.000	.000	.000
	AMI FILL FCTR	.000	.000	.000	.73e	.000	.000	.000
	AMI EFFICIENCY	.000	.000	.000	.109	.000	.000	
	AMI EFF/AMO EFF	.000	.000	.000	1.163	.000	.000	,000
	WHEN BROKEN	DROPPED	0	0	0	0	DROPPED	SCRIBING

Table 11 continued

RESISTIVITY AND ILLUMINATED CHARACTERISTICS

			HE	mo3-1				
ce	LL NAME	F2	F3	F4	×1	×2	хз	×4
	EA (CM2)	4.000	4.000	4.000	4.000 -	4.000	4.000	4.000
	ICK (CM)	.043	.000	.000	.023	.023	. 023	. 023
	D. RHO(OHM-CM)	.098	.000	.000	.000	.000	.000	.000
	D.R-SGR(OHM)	47.359	.000	.000	577.000	46.660	593.000	581.000
	10 ISC (MA)	114.000	124.000	.000	139.000	140.000	139.000	131.000
At	10 VMP (MV)	435.000	453.000		- 466.000	482.600	476.000	493.060
	(IMP (MA)	85.000	98.000	.000	123.000	131.000	132.000	123.000
	O FILL FOTR	.584	.630	.000	.715	.776	.779	.781
	11 VOC (MV)	.000	567.000	.000	.000	581.400	.000	.000
At	I ISC (MA)	.000	109.000	.000	.000	121.000	.000	.000
	I VMP (NV)	.000	447.000	.000	000	485.000		.000
	I IMP (MA)	.000	85.000	.000	.000	.766	.000	.000
	FFECTENCY	.000	.615		.000	:135	.000	
	I EFF/AMO EFF		1.158	.000	.000	1.154	.000	.000
U+	EN BROKEN	c	0	SCRIBING	٥	•	DROPPED	0
CE	LL NAME	×5	×6	X7	×e			
- 65	E# (CH2)	4.000	4.000	4.000	4.000			****
TH	ICK (CH)	. 0.27	.023	.023	.023			
	D. RHOK OHM-CM >	.000	.600	.000	.000			
	D.R-SORCOHM)		582.000	584.000	537.000			
	0 ISC (MA)	139.000	140.000		137.000			
411	O VMP KMV3	472.600	493.000	485.000	366.000	W		
	O IMP (Mm)	132.000	132.000	131.000	71.000			
	O FILL FOTE	.769	.782	.786	. 357			
	1 VOC (MV)	.000	582.006	584.000	.000			
A11	1 ISC (MA)	.000	122.000	119.000	.000			
	I VMP (MV)	.000	465.000	469.000	.000			
	I IMP (MH)	.000	113.000	112.000	.000			
411	EFFICIENCY		137	.137	.000			
	I EFFZANO EFF	.000	1.163	1.166	.000			
UH	EN BROKEN	0	0	0	0		****	
			Table	e 12				
			SPECTRAL SE	NSITIVITY				
				03-1				
						da 1.1.2.4		
CEL	NAME	A,	- A2	са	A4	- 01	62 ····	63
W.L	(MICRON)							
	.41	.106	.117	.135	.000	.134	.135	.135
	.45	.260	.274	.304	.000	.306	.305	.309
	.50	.364	.322	.415	.000	.407	.420	.458
	.60	.440	.432	495	.000	.471	.502	.496
	.65	.457	.484	.514	000	.471	.512	.511
	.70	.456	.493	.524	.600	.459	.520	.520
		.479	.529	.567	.000	466	.546	.554
	.65	.463	.559	.571	.000	.429	.541	.594
	.90	.434	.541	.588	.000	.355	.492	.570
	.90 .95	.301	487	.552 .200	.000	- 1272 - 072	.402 .125	.570 .513 .189

Table 12 continued

SPECTRAL SENSITIVITY

****		не	M03-1			*****	
CELL NAME		cı	c2	c3	C4	D1	D2
U.L. (HICROH)							
.41	.127	.142	.126	.121	.136	.600	.140
.45	.306		.297	.266	.313	.000	.312
.55	.462	.456	.436	.423	.438	.000	.467
.60	.494	.483	.467	.450	.462	.000	.500
.65	.508	.498	.476	.459	.452	.000	.517
.75	.541	.519	.463	.463	.461	.000	.563
.60	.563	.567	.522	.515	.491	.000	.600
.65	.548	.538	.506	.497	.463	.000	.587
.95	.416	424	.396	391	.323	.000	.481
1.05	.125	.131	.127	.121	.092	.000	.163
***						****	
CELL NAME	D3	D4	c1	E2	E3		F1
W.L. (MICRON)							
.41	.000	.133	.113	.111	100	000	000
.45	.000	.306	.260	.276	.102	.000	.000
.50	.000	.404	.408	.365	368	.000	.000
.55	.000	.459	.454	.423	.434	.000	.630
.65	.000	444	.499	. 247	.465	.000	.000
.70	.000	.426	.469	.441	.465	.000	.000
	.000	.427	.505	.452	.470	.000	.000
. 65	.640	.374	.480	.406	.433	.000	.000
.90	.000	.303	.395	.327	.351	.000	.000
1.05	.000	. 236	. 309	.062	.269	.000	.000
CELL NAME	F2	- F3	F4	X1	×5	×3	×4
W.L. (MICRON)							
.41	.099	.107	.000	.129	.134	.600	.123
.45	.249	.266	.000	.291	.297	.000	.285
.50	.362	.366	.000	.416	.421	.000	.444
.60	.453	.490	.000	.515	.518	.000	.478
.65	.472	.506	.000	.540	.543	.000	.500
.70	.484	.532	.000	.616	.616	.000	.511
.96	.539	606		.651	663	.000	.566
.65	.525	.586	.000	.667	.676	.000	.596
	.499	.600	.000	.649	.655	000	.581
1.05	.143	.180	.000	.257	.266	.000	.161
W.L. (MICRON)	×5	X6	ж7	×e			
-41	.139	.135	.132	.253			
.45	.309	.300		.396			
.55	.473	.474	.467	.491			
.60	.504	.511	.491	.516			
.65	.530	.536	.524	.535			
.75	.590	.608	.595	.646			
.60	.638	.651	.615	.665			
.85	.640	.662	.639	.667			
95	.592	.636	611	.650			
1.05	.229	.258	.232	.302			

Table 13

RESISTIVITY AND ILLUMINATED CHARACTERISTICS

	* .						
CELL NAME	- 21	23	24	25	26	27	26
AREA (CM2)	4.000	4.000	4.000	4.000	4.000	4.000	4.00
THICK (CH)	. 625	.025	. 625	.025	.025	.025	02
B.D. RHOCOHM-CH)	.000	.000	.000	. 660	.000	.000	.00
A.D.P-SOR(OHM)	49.852	49.399	596.000	49.852	49.652	- 602.000	599:00
AMO VOC (MV)	128.000	125.000	122.000	126.000	.000	128.000	128.00
AND VMP (MV)	509.000	516.000	.000	. 600	.000	515.000	511.00
ano Inp (Ma)	119.000	116.000	.000	.000	.000	116.400	115.000
AMO FILL FCTR	.767	.797	.000	.000	.000	.776	.760
AMO EFFICIENCY	.112	111	.000	.000	.000		.109
AMI VOC (MV)	596.000	599.000	. 000	.000	.000	110.000	110.000
AMI ISC (MA)	511.000	517.000	.000	.000	.000	515.000	511.000
AMI IMP (MA)	102.000	98.000			.000	100.000	99.000
AMI FILL FOTE	.792	.791	.000	.000	.000	.762	.776
FEFTALF.		.127	.000	.000	.000	.129	. 126
AMI EFF/AMO EFF	1.164	1.145			000	1.162	-1:16
WHEN BROXEN			SHORTED	SHORTED	CHIPPED	CHIPPED	
CELL NAME	41	43	45	46	47	91	92
HREM (CM2)	4.000	4.000	4.000	4.000	4.000	4.000	4.000
THICK (CM)	.025	.025	. 025	.025	. 625	.025	. 02
B.D.RHO(OHM-CM)	52.571	49.652	49.652	49.399	48.946	45.320	46.22
AMO VOC (MV)	586.000	363.000	- 601.000	601.000	585.000-	581.000	591:00
amo ISC (MA)	122.000	124.000	128.000	128.000	123.000	120.000	124.00
AND VMP (MV)	492,000	489.000	509.000	509.000	469.000	486.000	497.00
HMO IMP (MH)	113.000	109.000	120.000	120.000	111.000	107.000	110.00
AND FILL FOTE	.778	.731	.794	.794	.754	.749	.74
AND EFFICIENCY	563.000	-591.000-	-599.000		562.000	576.000	586.00
AMI ISC (MA)	106.000	107.660	110.000	107.000	108.000	104.000	107.00
ANT VMP (MV)	497.000	487.000	509.000	.000	489.000	469.000	498.00
HMT IMP (MH)	99.000	93.000	103.000	.000	96.000	\$2.000	96.00
AM1 FILL FCTP	.796	.729	.796	.000	.747	.748	.70
AMI EFFICIENCY	1.197	1.160	1.161		1.170	7.766	1.19
WHEN EROKEN		CHIPPED		SHORTED			
CELL NAME	94	97	- 90	×10	X11	×12	×13
HREA (CH2)	4.000	4.000	4.000	4.000	4.000	4.000	4.00
THICK (CII)	.025	.025	.025	:025	.025	.025	.00
B. C. RHOLOHM-CM >	.000	.000	46.226	44.867	45.773	46.226	45 32
H. D. P-SOF. OHM	598.000	567.000	599.000	601.000	597.000	601.000	- 598.00
AMO VOC (MV)	130.000	112.000	130.000	136.000	137.000	135.000	132.00
AND VMP (MV)	502.000	463.000	501.000	506.000	502.000	514.000	509.00
AMO IMP (MA)	115.000	A0.000	116.000	127.000	123.000	123.000	123 00
AMO FILL FOTE	.743	.563	.746	.786	.755	.779	.79
AMO EFFICIENCY	.107	.068	.107	- 599.000	594.000	- 598:000	- 596.00
AMI VOC (IIV)	596.000	45.000 81.000	112.000	117.000	118.000	116.000	114.00
AMI ISC (MH)	497.000	.000	501.000	506.000	504.000	512.000	509 00
AMI IMP (MH)	97.000		99:000	109.000	106.000	106.000	105.00
AMI FILL FOTE	.729	.000	.742	.767	.762	.762	.76
	.121	.000	.124	.136	.134	.136	.13
AMI EFFICIENCY	1.130	.000	1.155	17161	1.171	1.161	1.15

SHORTED

WHEN BROKEN

Table 13 continued

CELL NAME	X14	×2		X4	×5	X7	к9
MPEH (CM2)	4.000	4.000	4.000	4.000	4.000	4.000	4.000
THICK (CM)	.025	.025	.025	. 025	. 025	.025	. 025
B.D. PHOCOHM-CM>	.000	.000	.000	.000	.000	.000	
A.D.R-SORCOHMY	46.226	51.665	48.946	48.039	49.399	50.758	45.326
MITO VOC (MV)	597.000	564.000	561.000	601.000	599:000	134.000	136.000
AMO 160 (MA)	509.000	137.000	135.000	510.000	513.000	511.000	513.000
AMO VMF (MV)	124.000	128.000	123.000	126.000	125.000	126.000	127.000
AMO FILL FOTE	.769	.792	.764	.786	.767	.801	.794
AMO EFFICIENCY	.117	.117	.111	.119	.116	.119	.120
AMI VOC (MV)	595.000	592.000	578.000	599.000	596:000	597.000	601.000
AMI ISC (MA)	115.000	1.8.000	116.000	116.000	116.000	115.000	116.000
AMI VMP (MV)	507 600	493.000	4:7.000	512.000	512.000	512.000	512.000
AMI IMP (MH)	100.000	111.000	1.6.000	100.000	167.000	167.000	109.000
AMI FILL FOTR	.765	.797	.770	.796	.792	.798	.001
AMI EFFICIENCY	.134	.137	.129	.138	.137	.137	.140
MI EFFZAMO EFF	1.152	1.169	1.766	1.164	1.156	1.151	1.159

WHEN BROKEN

. 1		SPECTRAL SI	ENSITIVITY				
		HE	104				
	***********						-
CELL NAME	21	23	24	25	26	27	28
W.L. (MICRON)							
.41	.116	.113	:104	106 -	.131	.106	.105
.45	.259	.262	.260	.257	.271	.265	.252
.50	.375	.374	.372	.300	.350	.370	.359
.55	.430	.411	.424	.407	.375	:426	.409
.60	.449	.450	.444	.431	.369	.450	.446
.65	.477	.475	.472	.453	.375	.473	.470
.70	.487	.476	.472	.459	.366	.485	.476
.75	.541	.524	.506	.498	.356	.527	.514
.00	.553	.548	.502	.507	.317	.542	.537
.65	.553	.534	.493	.487	.252	.553	.540
.90	.567	.504	.435	.416	.221	.516	.465
.95	.455	.453	.345	.353	.123	.463	.446
1.05	.147	.151	.093	.097	.047	.141	.156

Table 14 continued

		LIE!	MO4				
					*** ****** ** * * ****		
CELL NAME	41	43	45	46	47	91	92
W.L. (MICRON)							
.41	. use	. 092	360.	. 665	. 697	. 691	. 096
.45	.227	.210	.255	.231	.245	.218	.240
.50	.341	.344	.354	.344	.362	.335	.358
.55	. 394	.400	.405	.365	.409	.391	
.60	.425	.436	.441	.422	.440	.430	.436
,65	.447	.455	.459	.442	.458	.466	.457
.70	.470	.474	.460	.465	1661	.474	.445
.75	.505	.512	.510	.500	.521	.522	.484
.60	.535	.546	.545	.527	.536	.544	.496
.65	.522	540	:544	.532	539	.530	:467
.90	.466	.513	.504	.491	.506	.498	.377
.95	.432	.453	.459	.436	.454	.454	.324

CELL NAME	94	97	96	XIO	X11	X12	X13
W.L. (MICROIN)							
.41	.103	.107			.120	.112	.110
.45	.245	.244	.244	.278	.268	.281	.259
.50	.352	.338	.35€	.415	.404	. 391	.379
.55	.394	.373	.402	.466	.456	.446	:425
.60	.434	.416	.432	.496	.499	.474	.459
.65	.450	.421	.453	.523	.517	.500	.494
.70	.456	.413	.452	.539	.550	.516	.507
.75	.475	.433	.477	.585	.567	.558	.561
.80	.509	.444	.513	.545	.627	.608	.592
.65	.490	.412	.506	.601	.629	.614	.597
.90	.406	.326	.419	.545	.623	.598	.586
.95	.389	.264	.394	.507	.596	.568	.576
1.05	.116	.077	.114	.164	.237	.226	.222

CELL HERE	X14	ж2		X4	×5	87	х9
W.L. (MICRON)							
-41	.104	.122	.117	.121	.122	.121	.055
.45	.275	.287	.276	.264	.261	.279	.251
.50	.366	.411	.402	.399	.369	.410	.372
.55	.426	.462	.461	.445	.467	.453	.433
.60	.460	.494	.465	.470	.492	.474	.470
.65	.472	.519	.522	.504	.527	.498	.522
.70	.501	.525	.54e	.516	.536	.518	.522
.75	.559	.586	.602	.574	.580	.574	.554
. 80	.594	.634	.640	.626	.621	.605	.582
.85	.596	.635	. 635	.629	.628	.622	559
.90	.580	.624	.627	.635	.616	.604	.494
.95	.543	.604	.593	.611	.571	.574	.451
1.65	.196	.241	.226	.239	.211	.220	.137

Table 15

		Hel	106-1				
CELL NAME	A1	A10	A11	A12	A13	. A2	A3 _
AREA (CM2)	4.000	4.000	4.000	4.000	4.000	4.000	4.000
THICK (CM)	. 661	.061	130.	.061	.061	.061	.061
B.D. FHO (OHM-CM)	3.329	3.329	3.329	2.329	47.133	45.773	3.329
A.D.P.SOR(OHM)	45.320	51.665	48.946 575.000	577.000	.000	578.000	582:000
AMO VOC (MV)	138.000	139.000	136.000	140.000	.000	138.000	141.000
AMO UMP (MV)	491.000	460.000	476.000	476.000	.000	482.000	480.000
AND IMP (MA)	130.000	130.000	116.000	126.000	.000	.792	.790
AMO FILL FOTE	.796	.740	.102	.742	.000	.117	.120
AMO EFFICIENCY	550.000	000 -	.000	000		580:000	582.000
	124.000	.000	.000	.000	.000	125.000	127.000
AMI VMP (MV)	491.000	.000	.000	.000	.000	484.000	120.000
AMI IMP (MH)	116.000	.000	.000	.000	.000	.763	.766
AMI FILL FOTR	.792	.000	.000	.000	.000	.143	.145
AMI EFF/AMO EFF	17.207	.000		:000		1:224	1.213
					SPEC RESP		-0
UHEN BROKEN	٥	0	. 0		SPEC. KESP	. 0	
CELL NAME	H4	A5	46	H?	A8		61
AREA (CM2)	4.000	4.000	4.000	4.000	4.000	4.600	4.000
THICK (CM)	.061	.061	. 061	. 661	.061	7.720	3.343
B.D. RHOCOHM-CM)	3.329	3.329	3.329	49.652	3.329	3.329	45.773
H.D.R-SOR. OHM /	46.226	578.000	579.000	569.000	556.000	572.000	566.000
HMO VOC (MV)	.000	140.000	137.000	135.000	138.000	139.000	133.000
AND VIP (MV)	.000	412.000	477.000	460.000	435.000	467.000	460.000
AMO IMP (MA)	.000	122.000	129.000	108.000	100.000	116.000	106.000
AMO FILL FOTE	.000	.621	.776	.647	.080	.100	.090
AMO EFFICIENCY	.000	.000	579.000		.000		
AMI ISC (NA)	.000	.000	123.000	.000	.000	.000	.000
ANT VMP (MV)	.000	.000	479.000	.000	000.	.000	.000
AM! IMP (MA)	.000	.000	115.000	.000	.000	.000	.000
AMI EFFICIENCY	.000	.000	.138	.000	.000	.000	.000
ANTEFFZANO EFF	.000	.000	-1.211			. 000	.000
WHEN BROKEN	EDGE ETCH	0	~	0	0	-0	
						B3	64
CELL HAME	B10	611	- B12	B13	62		
AREA (CH2)	4.000	4.000	4.000	4.000	4.000	4.000	4.000
THICK COND	.061	:061		150.	.061	.061	. 061
B.D. RHOL CHM-CH.	3.315	3.343	3.343	3.329	3.343	3.343 47.586	3.343
A.D.R-SORCOHM	50.758	47.133	47.133 581.000	47.586	574.000	- 575.000°	581.000
AMO VOC (MV)	551.000 137.000	134.000	137.000	.000	140.000	138 000	138.000
AMO YER (MH)	397.000	244.000	466.000	.000	413.000	477.000	476.000
HMO INF (MH)	\$6.000	95.000	129.000	.000	105.000	126.000	.775
AMO FILL FOTE	.505	.408	.766	.000	. 540	.111	.115
AMO EFFICIENCY		.043	581.000				580.000
ANT ISC CHAP	.000	.000	124.000	.000	.000	.000	124.000
AMI VMP (MY)	.000	.000	482.000	.000	.000	.000	116.000
HMT INP (MA)	.000	.000	.776	.000	.000	.000	.773
AMI FILL FOTE	.000	.000	.140	.600	.000	.000	.139
AMT EFF/HMO EFF			1.207		000	.000	1.210

Table 15 continued

		· #A	HCE-1				
CELL NAME	65	B6		66		xı	N2
		4.000	4.000	4.000	4.000	4.000	4.000
AREA (CM2)	4.000	.061	.061	160	.061	.023	. 023
THICK (CM)	3.343	3.343	3.329	3.329	3.329	.000	.000
B.D. RHOLOHM-CM)	46.492	48.946	46.226	50.758	53.024	45.320	46.226
A.D.R-SOR(OHM)	577.000	571.000	-462.000	579:000	578.000	598:000	596.00C
AMO ISC (NA)	135.000	139.000	133.000	139.000	138.000	135.000	136.000
AND VER (MV)	482.000	473.000	268.000	480.000	481.000	507.000	502.000
AND IMP (MA)	126.000	118.000	95.000	130.000	131.000	129.000	716.000
ANG FILL FOTR	.780	.703	.414	.775	.790	810	.716
AMO EFFICIENCY			.047	.115	,116	.121	.108
AMI VOC (NV)	576.000	.103	.000	578.000	576.000	595.060	.000
AMI ISC (MA)	121.000	.000	.000	125.000	124.000	120.000	.000
AMI VMP (NV)	430.000	.000	.000	479.000	486.000	502.000	.000
ANT IMP (MA)	113.100	.000	.000	116.000	115.000	114.000	.000
AMI FILL FOTR	.778	.000	.000	.769	.763	.802	.000
AMI EFFICIENCY	.136	.000	.000	.139	.140	.143	.000
HHI EFF AND EFF	1.208	.000	.000	7.205	1.205	1:164	.000
WHEN BROKEN	-0	- 0		0	-0		
CELL NAME	N3	N4	xs	Хé	×7	×8	
AREA (CM2)	4.000	4.000	4.000	4.000	4.000	4.000	
THICK (CM)				.023	.023	.023	
B.D. RHOCOHM-CM	.000	.000	.000	.000	.000	.000	
A.D.R-SOR(OHM)	49.852	50.758	48.492	47.586	47.506	50.758	
EMO VOC (MV)	594.000	558.000	553.000	556.000	563.000	.000	
AND ISC (MH)	135.000	135.000	145.000	134.000	145.000	.000	
AMO VIIP (MV)	501.000	564.000	484.000	304.000	492.000	.000	
Amo Imp (mm)	127.000	125.000	137.000	127.000	137.000	.000	
AMO FILL FOTR	.793	.760	.764	.801	.761	.000	
AND EFFICIENCY	.118	.116	. 123	.118	581:000-	:000	
ANT VOC (MV)	.000	.000			128.600	.000	
ANT ISC (MA)	.000	.000	.000	.000	485.000	.000	
AMI VMP (MV)	.000	.000	.000	.000	120.000	-000	
ent Imp (ma)	.000	.000	7,000	.000	.763	.000	
AMI FILL FOTE	.000	.000	.000	.000	.146	.000	
AMI EFFICIENCY	,000	.000	000		T. 192		
THMT EFFZAND EFF		:000	.000	.000	1.172		

ORIGINAL PAGE IS OF POOR QUALITY

Table 16
GARK CURPENT DENSITY, RUN HARCE-1

Table 16 continued

Vp/5/N	C1	C3	cı	C.	cs	C6	C7	Vp/5/N	Al	A2	A)	AS	A6	A7
.01 Volts	5.0-08	4.5-08	1.3-07	3.8-08	6.0-00	5.8-08	1.3-06	.01 Volte	2.7-07	2.0-08	7.5-09	1.3-08	4.8-08	1.7-06
.04	2.2-07	2.6-07	6.0	2.2-07	2.8-07	2.7-07	5.0	.04	1.1-06	0.0	4.0-00	4.5	2.7-07	2.2-05
.00	5.6	1.4	1.6-06	1.5	0.2	7.7	1.5-07	.01	2.3	2.1-07	1.3-07	1.7-07	7.3	7.9
.10	1.2	1.2-06	2.5	1.5-06	1.3-06	1.2-06	2.3	.10	3.0	3.0	2.1	2.6	1.2-06	1.2-04
.15	1.4-06	2.9	6.6	4.0	3.0	3.4	61.	.15	5.0	9.6	5.4	6.0	1.7	1.7
.20	2.7	5.0	1.6-05	1.1-05	1.0		1.6-06	.20	7.3	2.3-06	1.4-06	1.4-06	1.5	7.0
.25	4.8	1.1-05	3.6	2.2	1.8-05	2.0-05	4.0	.25	1.1-65	5.0	3.4	3.6	2.0-05	1.4-03
. 30	1.5	1.9	7.3	3.0	3.3	3.0	9.0	. 30	1.6	1.1-05	1.6	9.6	1.9	2.3
. 25	1.5-05	3.5	1.4-04	6.2	6.1	7.0	2.4-05	.35	2.7	2.8	2.4-05	2.5-05	0	1.4
.40	2.5	1.0	2.5	1.1-04	1.2-04	1.3-04	6.6	.40	4.4	7.4	6.6	7.7	1.6-04	4.7
.45	3.9	1.9-04	5.1	2.3	3.0	2.9	2.4-04	.45	2.3-04	2.5-04	2.3-04	2.8-04	4.2	6.3 .
.50	5.1	7.6	1.3-03	7.2	7.2	•.5	•.0	.50	1.1-03	1.3-03	1.1-03	1.1-03	1.3-03	9.0
v,								v,						
.05 Volts	2.2-07	1.6-07	5.0-07	8.0-08	2.1-07	1.9-07	4.8-08	.05 Volts	1.2-06	4.5-08	3.0-08	6.5-08	1.2-07	8.2-06
.10	4.4	2.5	1.4	1.2-07	3.5	3.0	1.3	.10	2.5	7.0	4.1	1.1-07	1.9	1.2-05
.20	1.1	4.0	1.9-06	1.6	5.8	4.4	1.5-07	.20	5.7	1.1-07	0	1.8	2.9	1.4
.30	1.4-06	5.6	2.9	1.9	7.9	5.6	2.2	.30	1.4	1.6	1.1-07	2.5	3.7	1.7
.40	2.0	1.3	4.2	2.3	1.1	6.7	2.9	.40	1.4-05	2.2	1.4	3.3	4.6	2.0
.50	2.6	1.1-06	5.6	2.6	1.2-06	7.7	3.7	.50	1.9	2.7	1.6	3.9	5.3	2.3
.60	3.2	1.3	7.4	3.0	1.4	1.4	4.4	.60	2.5	3.4	1.9	4.6	6.3	2.7

Table 16 continued

		Tel	bie 16 co	teunia										
V _P /5/3		9.2	63	9.2	85	26	B 7	V _F /5/N	AE	A9	A10	*41	A12	A13
.01 Volts	5.2-06	4.5-68	6.0-07	5.5-08	1.2-08	1.8-06	1.1-05	.01 Volts	1.2-05	2.0-06	1.5-08	2.5-06	6.3-07	5.5-04
.04	2.1-05	2.1-07	4.5-06	2.9-07	5.3	1.1-05	2.8	.01	6.6	1.0-05	4.3	1.4-05	3.9-06	2.7-03
.06	6.9	5.6	1.5-65	9.1	1.5-07	3.4	1.7-04	.06	2.0-04	3.9	1.1-07	4.4	1.3-05	7.4
.10	1.1-04	1.2-06	2.5	1.5-66	2.2	5.8	5.7	.10	3.2	6.1	1.4	7.7	2.2	1.1-02
.15	3.1	3.8	7.6	4.1	5.5	1.5-04	9.5	.15	1.2	1.8-04	3.6	2.2-04	6.4	2.1
.20	7.3	1.1-05	1.6-04	1.1-05	1.4-06	3.5	2.4-03	.2:	1.7-03	4.4	1.6	4.5	1.4-04	
.25	103	2.6	3.1	2.4	3.5	6.4	4.1	.25	2.9	6.3	2.1-06	0.3	2.7	
. 30	2.4	5.1	5.2	4.6	9.2	1.1-03	1.2	. 30	4.4	1.5-03	5.4	1.3-03	4.6	
. 35	3.5	1.0+04	1.1	6.9	2.5-05	1.6	1.2-02	. 35	6.1	2.2	1.6-05	2.0	7.2	
.40	5.0	1.8	1.3-03	1.7-04	7.5	2.3	1.7	.40	1.4	3.3	5.2	2.6	1.1-03	
.45	6.9	3.3	1.9	3.8	2.9-04	3.4	2.3	.45	1.1-02	4.6	2.1-04	3.6	1.7	
.50	5.6	1.1-03	2.4	1.3-00	1.3-03	5.4		.50	1.4	7.1	1.0-03	5.3	3.0	
v _p								v _k						
.05 Volts	1.3-05	1.7-67	1.7-06	1.4-07	4.5-08	3.3-06	7.1-05	.05 Volts	2.9-05	3.3-06	3.3-08	5.1-06	2.0-06	1.5-0
.10	2.2	1.8	2.1	3.1	7.8	5.2	9.8	.10	4.1	5.0	5.5	1.0-05	3.2	2.0
.20	4.6	2.6	4.5	4.5	1.3-07	7.7	1.4-04	.20	3.5	7.2	9.5	1.4	4.6	2.6
. 10	6.9	3.8	5.9	5.7	1.7	9.9	1.7	.30		1.6	1.3-07	1.7	6.0	3.0
.40	9.7	4.7	7.3	615	2.0	1.0-05	1.9	.40	8.1	9.6	1.7	2.1	6.9	3.5
.50	1.3-04	6.0	1.7	7.3	2.3	1.1	2.0	.50	9.2	1.1-05	2.7	2.3	7.3	3.9
.60	1.6	6.7	1.0-05	1.3	1.7	1.1	2.2	.60	1.0-04	1.1	3.3	2.5	7.6	4.3

V _F /S/N	**		810	811	812
.01 Volte	2.0-07	2.7-07	1.2-05	3.8-05	2.5-08
.01	9.8	1.1-06	6.6	2.1-04	1.1-07
.01	3.0-06	2.6	2.3-04	7.2	2.7
.10	4.0	4.1	3.7	1.7-03	4.1
.15	1.3-05	9.7	9.7	3.3	1.0-06
.20	3.2	2.2-05	2.0-03	4.6	2.6
.25	6.6	4.2	3.4	1.1-02	6.4
. 30	1.2-04	7.4	5.1		1.5-05
. 35	2.1	1.3-04	7.2		3.3
.40	3.5	2.4	9.5		0.2
.45	6.8	5.2	1.2-02		2.6-94
.50	1.6-03	1.6-03	1.6		1.4-03
v _R					
.05 Volts	6.4-07	1.2-06	2.9-05	8.3-05	1.3-07
.10	1.3-06	2.0	4.3	1.2-04	2.5
.20	2.8	4.2	6.3	1.6	5.3
. 30	4.9	6.6	7.9	1.7	1.6
.40	7.5	9.4	8.1	1.9	1.2-06
.52	1.1-05	1.3-05	8.3	2.0	1.5
.60	1.4	1.6	8.6	2.1	1.9

Table 17

SPECTARL SENSITIVITY HANCE-1									
CELL NAME	н1	A10	A11	A12	H13	A2	H3		
W.L. (MICRON)									
	.122	.134	.120	.131	.666	.119	.126		
.45	.271	.290	.264	.289	.000	.272	.294		
.50	.352	.464	.306	.402	.000	.393	.403		
.55	- 437	.446	.432	.447	.000	.440	.448		
.60	.483	.512	.499	.512	.000	.510	.515		
.65	.492	.505	.497	.507	.000	.508	.511		
.70	.523	.531	.525	.536	.000	.534	.539		
.75	.552	.608	.562	.572	.000	.571	.577		
.80	.827	.692	.670	.685	.000	.665	.890		
. 85	.624	.633	.625	.634	.000	.635	.642		
.90	.625	.602	.545	.607	.000	.606	.611		
.95	.565	.592	.579	.587	.000	.564	.605		
1.05	.240	.244	.230	.240	.000	.240	.251		

Table 17 continued

		на	MCB-1				
CELL NAME	A4	A5	46	47	40	49	81
U.L. (MICRON)							
-41	.000		:121	.115	.115	.124	.107
.45	.000	.295	.277	.266	.259	.275	.266
.55		.454	: 396				.383
.60	.000	.516	.512	.508	.466	.512	.503
.65	.000	.512	.505	.501	.510	.506	.507
.75	.000	.575	.579	.565	.508	.576	.535
.80	.000	.862	.669	.670	.634	.662	.633
. 25	.000	.638	.632	.629	.599	.641	.627
.95	.000	.593	.582	.605	.576	.628	.615
1.05	.000	.233	.233	.231	.261	.243	:221
CELL HAME	85	86	_ 67	68	69	X1	x2
W.L. (MICRON)							
.41	.122	7127	.126	.135	.125	.117	.126
.45	.277	.206	.277	.293	.283	.269	.279
	441	.455		.407	.453		.369
.60	.505	.520	.494	.520	.517	.462	.477
.65	.501	502	.497	.515	.513	.472	.467
.75	.557	.536	.506	.542	.538	.516	.565
.80	. 653	.877	.851	.878	.878	.782	.762
. 65	.613	.620	.624	.639	.639	.613	.609
.95	.544	.582	.620	.614	.560	.639	.560
1.05	.209	. 233	.235	.229	. 236	.237	.206
CELL NAME	B 10	B11	613		•		
W.L. (MICPON)	B10	"!	<u>612</u>	613	B2	63	84
.41	.122	124	.119	.126	.132	.128	.128
.50	.401	.394	.273	.282	.289	.402	.235
.55	.453	.453	.452	.453	.455	.447	.448
.60	.519	.506	.509	.515	.519	.516	.509
.70	.543	.536	.542	540	.541	.534	.536
.75	.579	.571	.560	.575	.575	.566	.531
. 85	864	675		640	657	.629	594 -
.90	.635	.622	.635	.624	.615	.661	.576
1.05	.595	.576	251	.593	.573	.565	.569
Y-1	×3			X-6	¥7	Xá	
V.L. (MICRON)	×3	X4	×5				
.41	.126	.121	.125	.120	.125	. 600	
.45	.279	.266	.275	.275	.276	.000	
.50	.431	427	.391		454 -	000	
.60	.476	.470	.501	.481	.474	.000	
.65	.485	.492	.534	.494	.532	.000	
.70	.511	.463	.565	.521	.569	.000	
.80	.785	.800	.646	.747	.864	.000	
. 85	.606	.617	.660	.614	.650		
.90	.615	.631	.645	.625	.641	.000	
1.05	.216	- :230	.258	:221	.252	000	

Table 18

		- Hester	CG-2 .				
CELL MANE	161	162	171	112	211	212	371
CELL MAIL							
AREA (CH2)	. 4.000	4.000	4.000	4.000	-4:000 -	4.000	4.000
THICK (CH)	. 661	.061	3.272	3.272	2.172	2.172	2.135
B.D.RHO(OHM-CM)	1.989	1.989	41.241	.000	.000	.000	43.507
A.D.R-SOR(OHN)	500.000	.000	.000	.000	.000	.000	579.000
AMO ISC (MA)	135.000	.000	.000	.000	.000	.000	479.000
AMO VMP (MV)	475.000	000		-000	- 000		127.000
AMO IMP (MA) AMO FILL FOTR	127.000	.000	.000	.000	.000	.000	.773
AMO EFFICIENCY	.111	.000	.000	. 600	.000	.000	580 000
ANT VOC (NV)	590.000	.000	.000	.000	.000	.000	120.000
AMI ISC (MA)	119.000	.000	.000	.000	.000	.000	462.000
ant Inp (NV)	113.000			.000			-111.000
AMI FILL FOTE	.778	.000	.000	.000	.000	.000	.769
ANT EFFICIENCY	.134	.000	.000	.000		.000	1.190
AM1 EFF/AMO EFF	1.204	.000	.000	.000	.000		
WHEN BROKEN	-0	CHEM POLT	"HR TOOHTER"	HOT PEATE	HOT PLATE	SCRIB.I.D	0
CELL NAME	312	571	512	761	762	783	784
							4.000
AREA (CM2)	4.000	4.000	4.000	4.000	4.000	4.000	. 062
B.D. PHOCOHN-CM>	2.135	2.017	2.017	1.605	1.805	1.805	1.605
A.D.R-SOR(OHM)	.000	39.202	40.335	36.256	37.616	32.177	35.803
AMO VOS (MV)	.000	.000	575.000	570.000	574.000	132.000	116.000
AMO ISC (MA)	.000	.000	132.000 472.000	123.000	473.000	477.000	449.000
AND INP (MY)	.000		124.000	114.000	121.000	126:000	109:000
AND FILL FOTR	.000	.000	.771	.756	.779	.762	.760
AND EFFICIENCY	.000	.000	.108	.098	573.000	561.000	550.000
HHT VOC (HY)	.000	.000	115.000	107.000	112.000	115.000	101.00
AMI ISC (MH)	.000	.000	477.000	465.000	474.000	482.000	450.000
Ant IMP (MA)	.000	.000	108.000	99.000	106.000	108.000	95.000
AMI FILL FOTR	.600	.600	.779	.736	.763	.779	.10
AMI EFFICIENCY		000	1.191 -		1.188	1.172	17163
WHEN BROKEN	HOT PLATE	BACK ETCH	0	0	-6	0	-0
CELL_NAME	X2	×3	×4	×5	Né	×7	×e
		4.000	4.000	4.000	4.000	4.000	4.00
THICK (CM)	4.000	026	.628	.026	.028	.000	.02
B.D. PHOLOHM-CM)	.000	.000	.000	40.335	42.146	39.862	41.24
H.D.R-SORCOHM?	42,146	44.667	561 000	563.000	563.000	577.000	- 581.00
TAMO VOC (MV)	139.000	139.000	140.000	133.000	138.000	130.000	135.00
AMO 13C (MA) AMO VMF (MV)	490.000	485.000	474.000	484.000	479.000	456.000	127.00
AMO IMP (MH)	132.000	129.000	130.000	126.000	130.000	.693	.76
HMO FILL FOTR	.785	.772	.758	.766	.115	.096	.11
AMO EFFICIENCY	.117	584.000	582.000	564.000	503.000	.000	581.00
AMI VOC (MV)	122.000	121.000	123.000	117.000	121.000	.000	118.00
AMI ISC (MA)	497.000	482.000	483.000	485.000	484.000		155.00
HMI IMP (MA)	115.000	115.000	113.000	110.000	789	.000	.77
AMI FILL FOTE	.766	.784	.762	.781	.139	.000	.13
AMI EFFICIENCY	1140	(139 (199	1:198-	1.184	1.209		1:19

Table 18 continued

CELL NAME	961	982	9#1	9M2	971	972	ж1
						4.000	4.000
AREA (CM2)	4.000	4.000	4.000	4.000	4.000	.061	.025
THICK (CH)	.061	.061	.062	.062	. 061	2.044	.000
B.D.RHO(OHM-CM)	1.658	1.658	1.523	1.523	2.044	38.522	57.330
A.D.R-SOR(OHM)	43.054	.000	39.882	39.202	39.662		580.000
AMO VOC (MV)	559.000	.000	581.000	562.000	.000	561.000	143.000
AMO ISC (MA)	116.000	.000	130.000	131.000	.000	130.600	475.000
AMO VMP (MV)	454.000	.000	461.000	481.000	.000	482.000	
AMO IMP (MA)	110.000	.000	123.000	124.000	.000	124.000	134.000
AMO FILL FCTR	.770	.000	.783	.762	.000	.791	.767
AND EFFICIENCY	. 092	.000	.109	.110	.000	.110	116
ANT VOC THY	559.000	.000	581.000	581.000	.000	591.000	583.00
ANT 15C (MA)	102.000	.000	114.000	115.000	.000	114.000	126.00
AMI VHP (MV)	453.000	.000	462.000	490.000	.000	491.000	475.000
ANT INP (MA)	96.000	.000	108.000	107.000	.060	109.000	118.000
AMI FILL FOTE	.763	.000	.766	.765	.000	.792	.76
AMI EFFICIENCY	.109	.000	.130	.131	.000	.131	.14
"AMI EFF/HID EFF"	1,178	:000	1.190	7.189	.000	1.167	1.19

Table 19

		SPECTRAL SE	ENSITIVITY-				
		MH!	106-2				
CELL NAME	161	162	111	172	271	212	371
w.t. emicPon .							
	.128			.000	.000		.145
.45	.308	.000	.000	.000	.000	.000	.321
.56	.437	.000	.000	. 600	.000	.000	.439
.55	.475	.000	.000	.000	.000	.000	7497
.60	.522	.000	.000	.000	.000	.000	.516
.65	.540	.000	.000	.000	.000	.000	.540
.70	.562	.000	.000	.000	.000	.000	.568
.75	.602	.000	.000	.000	.000	.000	.623
.60	.621	.000	.000	.000	.000	.600	.636
. 65	.612	000	.000	.000	.000	000	.660
.90	.612	.000	.006	.000	.000	.600	.705
.95	.271	.000	.000	.000	.000	.000	.607
1.05	.176	400		.000	.000	.000	.227

Table 19 continued

		HAT	1CB-2				
CELL NAME	961	902	9H1	9m2	911	912	×1
W.L. (MICRON)							
.41	:128	.000	.127	.126	.000	.122	.14
.45	.310	.000	.304	.303	.000	.292	.31
	.434	.000	422	427	.000	.421	
.60	.478	.000	.501	.505	.000	.485	.48
.65	.515	.000	.522	.523	.000	.533	.50
.70	.522	.000	.539	.538	.000	.554	.53
.75	.536	.000	.570	.567	.000	.598	.57
	.567	000	-:602	.590	.000	.629	62
.90	.485	.000	.590	.565	.000	.632	.66
.95	.305	.000	.473	.467	.000	.551	.62
1.05	.086	.000	.153	.149	.000	.197	. 25
CELL NAME	312	511	512	781	762	763	78
W.L. (MICRON)							
.41	.000	.000	:125	.116	.122	.122	.12
.45	.000	.000	.295	.301	.365	.305	.30
	.000	.000	.495 -	1465	.429	.484	.42
.60	.000	.000	.517	.476	.469	.502	.49
.65	.000	.000	.547	.484	.499	.513	.50
.70	.000	.000	:571	.480	-497	.517	.512
.75	.000	.000	.621	.485	.50€	.529	.52
. 80	000	.000	. 641	.475	.467	.535	.517
.90	.000	.000	.646	.366	.395	.444	.427
.95	.000	.000	.547	.251	.296	.338	.30
1.05	.000	.000	.166	.061	.076		.765
CELL NAME	×2	X 3	×4	X5	X6	¥7	×8
W.L. (MICRON)							
.41	.121	.139	136	.137	.143	.118	.733
	.280	.309	.304	.292	.326	.293	.308
		424	.420	.365	.449	.419	425
.55	.450	.500	.472	.453	.459	.470	.502
.65	.504	.521	.522	.478	.504	.454	.53
.70	.530	.549	.550	.510	.526		.55
.75	.570	.591	.590	.554	.576	.520	.54
.80	.605	.632	.626	.605	.621	.574	.569
.90	.664	.679	.646	.691	.710	.585	.593
.95	.624	.644	.629	.642	.662	.604	.634
1.05	.256	.269		.268	275	.204	7215

Table 20 DARK CURRENT DENSITY, BUN Hame8-2

V _p /S/S	C1	C2	c)	C4	C5	C6	C7	CB
.01 Volta	1.5-07	2.3-08	6.6-06	1.6-07	1.7-96	1.8-26	3.8-06	1.7-06
.04	5.7	1.4-07	2.6-05	6.8	4.4	7.4	1.9-05	6.8
.08	1.2-06	5.3	5.3	1.9-06	1.1	1.4-05	3.1	1.4-95
.10	1.5	9.4	6.7	2.9	1.1-05	1.6	4.0	1.0
.15	2.7	3.1-06	1.1-04	9.1	1.7	2.7	6.2	3.1
.20	4.8	8.3	1.5	2.6-05	2.5	1.6	9.0	5.0
. 25	9.2	1.8-05	1.9	6.5	3.6	4.7	1.3-04	7.9
. 30	2.0-05	3.5	2.4	1.7-04	5.2	6.1	1.9	1.2-0
. 35	4.7	6.2	2.8	2.6	7.9	8.5	3.0	1.9
.40	1.2-04	1.2-04	3.1	4.6	1.4-04	1.4-04	5.1	2.7
.45	3.6	2.6	3.9	1.4	3.0	1.0	9.7	4.1
.52	1.2-03	9.7	4.6	.8-03	1.0-03	1.0-03	2.2-03	6.5
v _a								
.05 Vo.13	1.0-06	6.3-08	3.3-05	1.2-07	5.4-06	9.5-06	1.9-05	8.5-0
.10	2.2	6.8	6.6	1.5-66	1.1-05	1.9-05	3.8	1.7-0
.20	5.0	1.2-07	1.3-04	3 4	2.1	4.0	7.5	3.4
. 30	8.1	1.4	2.0	5.6	3.2	6.3	1.1-04	5.1
.40	1.2-05	1.5	2.6	11.1	4.3	8.7	1.5	6.8
.50	1.5	1.7	3.4	.1-05	5.4	1.1-04	1.9	8.5
.60	2.0	1.9	4.2	1.3	6.4	1.4	2.3	1.0-0

V _y 178	371	572	912	9111	9%2	191	781	78.2	783	784	981
.61 Vo.14	1.6-06	1.3-18	1.5-09	5.8-08	3.5-08	6.8-08	7.5-09	5.0-09	2.5-08	3.5-08	3.0-07
.04	1.0-05	5.3	4.3-06	2.7-07	2.0-07	3.1-07	4.5-08	2.8-08	1.1-07	1.9-07	1.0-06
.00	2.9	1.6-07	1.3-07	4.9	6.6	7.7	1.3-07	8.0	2.9	6.1	3.9
.10	4.2	2.5	2.0	6.4	1.0-06	1.1-06	2.1	1.2-07	4.4	1.0-06	5.7
.15	9.3	7.3	5.4	1.1-06	2.6	2.7	6.0	3.2	1.1-06	3.3	1.3-05
.20	1.4-14	2.1-06	1.4-06	2.0	5.8	6.0	1.8-06	8.9	3.0	9.1	2.3
.25	2.0	5.7	1.2	3.8	1.2-05	1.2-05	5.3	2.5-06	7.1	2.2-05	3.9
.30	2.7	1.5+05	7.7	8.6	2.4	2.7	1.6-05	8.4	1.8-05	4.6	6.5
. 75	3.6-04	3.8	2.0-05	2.2-05	5.1	6.0	5.2	3.1-05	4.7	1.1-04	1.2-04
.40	4.9	1.0-04	5.9	6.6	1.2-04	1.4-04	1.8-04	1.2-04	1.4-04	3.0	2.4
.45	7.3	3.4	2.2-04	2.4-04	3.4	4.2	6.7	5.2	4.5	1.0-03	6.7
.50	1.6-03	1.3-03	1.0-03	9.6	1.3-03	1.5-03	2.5-03	2.1-03	1.6-03	3.9	2.2-03
v _R											
.05 Valls	5.2-06	2.5-08	2.8-08	2.8-07	9.0-08	1.6-07	3.5-08	2.5-08	6.5-08	1.5-07	1.3-06
.10	7.4	4.5	4.3	5.5	1.3-07	2.9	6.8	5.0	1.1-07	2.8	2.5
.20	1.0-05	7.0	7.0	1.1-06	1.8	5.8	1.3-07	1.1-07	1.0	5.9	5.8
. 10	1.4	9.5	9.5	1.7	2.2	9.2	2.2	2.0	2.4	9.9	1.0-05
.40	1.7	1.2-07	1.2-07	2.4	2.5	1.3-06	3.3	3.0	3.0	1.5-06	1.6
.50	2.0	1.5	1.4	3.0	2.6	1.8	4.7	4.4	3.5	2.2	2.3
.60	2.4	1.7	1.7	3.7	3.2	2.3	6.6	6.0	4.1	3.0	3.1

Table 21
PESISTIVITY AND ILLUMINATED CHARACTERISTICS

HAMCO-1

CELL NAME	181	162	171	172	173	381	362
	4.000	4.000	4.000	4.000	4.000	4.000	4.000
THICK COMS	.060	.060	.061	.001	.061	.061	061
B.D.RHO(OHM-CM)	.189	.169	.332	.332	.332	.221	.221
H.D.P-SOR OHM)	53.476	53.931	49.652	53.470	51.665	55.290	57.103
And VOC (MV)	467.000	.000	546.000	595.000	571.000	417.000	000
AND ISC (MA)	117.000	.000	150.000	147.000	138.000	250.000	.000
AND VIP (MV)	325.000	.000	491.000	125.000	123.000	87.000	
HIO THE (MH)	.508	.000	152.000	.699	773	.450	.000
AMO FILL FOTR	.053	.000	.120	.113	.107	.040	.000
ANT VOC CHV	.000	.000	.000	.000	570.000	.000	.000
AMI ISC (MA)	.000	.000	.000	.000	119.000	.000	.000
AMI VMP (MV)	.000	.000	.000	.000	468.000	.000	.000
ent Inp (Me)	.000	.000	.000	.000	106.000	.000	.000
AMI FILL FOTR	.000	.000	.000	.000	.731	.000	.000
AMI EFFICIENCY	.000	.000	.000	.000	1.164	.000	.000
AMI EFFZAND EFF	.000	.000	. 000	.040	1.104	.000	.000
WHEN BROKEN		0	0	- 0	0	-0	0
CELL NAME	371	372	561	562	511	512	761
					4.000	4.000	4.000
AREA (CH2)	4.000		4.000 .061	4.000		.061	.061
THICK (CM)	.070	.222	.249	.249	.249	.249	.221
B.D.RHO(OHM-CM) A.D.R-SOR(OHM)	53.024	53.431	54.364	56.650	56.650	54.384	57.103
AHO VOC (MV)	000	601.000	560.000	577.000	557.000	521.000	575.000
And ISC (Mm)	.000		131.000	134.000	144.000	146.000	136.000
AND YMP (MY)	.000	495.000	462.000	475.000	385.000	338.000	470.000
AMO IMP (NH)	.000	131.000	120.000	123.000	106.000	112.000	724.000
AMO FILL FETR	.000	.734	.756	.756	.509	.498	.109
AMO EFFICIENCY	.000	.120	557.000	- 576 .000 -		:000	573.000
ANT VOC CHYD	.000	127.000	112.000	116.600	.000	.000	117.000
Ami 150 (ma)	.000	493.000	459.000	475.000	.000	.000	472.000
AMI VMP (MV)	.000	116.000	104.000	105.000	.000	.000	108.000
ANI FILL FOTE	.000	.769	.765	.746	.000	.000	.760
AMI EFFICIENCY	.000	.145	.119	.125	.000	.000	.127
AMI EFFZAMO EFF	:000-	1.214	1.165	1:155	.600	:-:000	T.183
WHEN BROKEN	-,			- 0	-c-		PRINTING
CELL NAME	711	712	9m1	9/12	9113		912
ekse (Ch2)	4.000	4.000	4.000	4.000	4.000	4.000	4.000
THICK COME	.061	.061	.060	.060	. 000	130.	.061
B.D.RHO OHM-CM>	.221	.221	.216	.216	.216	.221	53.024
A.D.P-SORCOHMO	56.650	54.364	53.024	54.384	54.364	57.556	602.000
AMO VOC KMV>	601.000	594.000	597.000	142.000	138.000	144.000	147.000
AMO ISC (MA)	504.000	143.000 488.000	500.000	500.000	250.000	300.000	505.000
AND INF (NA)	135.000	115.000	129.000	124.000	99.000	73.000	135.000
AMO FILL FOTP	.770	.661	.772	.734	.444	.265	.770
AND EFFICIENCY	.126	.104	.119	.115	. 046	.040	.126
HHI VOC (MV)	660.000	.000	595.000	593.000	.000	000	599.000
AM1 ISC (MH)	127.000	.000	122.000	122.000	.000	.000	496.000
AMI VMP (MV)	504.000	.000	497.000	491.000	.000	.000	117.000
AMI IMP (MA)	118.000	.000	.760	.733	.000	.000	.763
AMI FILL FOTR	.750	.000	.136	.133	.000	.000	.145
AMI EFFZAMO EFF	1.163		1.157	1.157			T.152

Table 21 continued

		HAM	co-1				
	.,						
CELL HAME	×1	. x2	хз	X4	xs	×6	X7
HEEH (CM2)	4.000	4.000	4.000	4.000	4.000	4.000	4.00
THICK (CH)	. 023	.023	.021	.0.3	.023	.000	.02
B.D. RHOL OHM-CH)	57.024	50.758	51.665	52.116	54.384	53.931	52.57
A.D.R-SOR(OHM)	560.000		561.000		572.600		- 577.00
AND ISC (MA)	142.000	.000	142.000	.000	142.000	.000	142.60
AND VMP (HV)	131.000		131.000	.000	125.000	.600	130.00
AND THE (MA)	.763	.000	.772	.000	.754	.000	.75
AND EFFICIENCY	.116	.000	.116	.000	113	.000	
ANT VOC (MV)	575.000	.000	123.000	.000	124.000	.000	124.60
AMI ISC (MA)	473.000	.000	461.000	.000	472.000	.000	470.00
AMI IMP (MA)	115.000	.000	114.000	.000	116.000		116.00
AMI FILL FOTE	.769	.000	.767	.000	.765	.000	.76
AMI EFFICIENCY	17176	:000	1.165		- T.209	: 660	T.18
WHEN BROKEN		FAINTING -		3	•	7	
CELL HAME	ко						
AFEA (CH2)	4.000						
THILF LEND	. 623						
B.O. PHOCOHN-CH)	51.665						
AND VOC THUS	.000						
AMO ISC (MA)	.000						
AHO VHP (HV)	.000						
AND FILL FCTP	.000						
AND EFFICIENCY	.000						
7H1 VOC (HV)	.000						
ANI ISC (MA)	.000						
the same of the sa	.000 -						
AMI THE (MA)							
AHI FILL FCTP	.000						
ANT EFFICIENCY	.000	Table	22				
AMI FILL FCTP	.000	Table					
ANT EFFICIENCY	.000	SECTION SE	meltivity.		•		
ANT EFFICIENCY	.000	SECTION SE					
ANT EFFICIENCY	.000	SECTION SE	meltivity.		1113	361	362
AMI FILL FCTP AMI EFFICIENCY TANT EFFZAMO EFF OTHER ENGIETE CELL NAME	.000	SHEETKHL SE	000-1		. 173	361	362
CELL NAME	. 000 . 200 . 000						
CELL NAME U.L. (MICFON)	.123	162	111	114.	.117	.103	.136
CELL NAME W.L. (MICFON) ANI FILL FCTP ANI EFFZAND EFF COUNTY CELL NAME W.L. (MICFON) .41 .45	.000 .200 .000			114	.117	.103 .254 .365	.136
CELL HAME U.L. (MICPON) 41 45 50 50	161 -123 -265 -372 -428			112	.117 .257 .762 .436	.103 .254 .365	.136
CELL NAME W.L. (MICFON) ANI FILL FCTP ANI EFFZAND EFF COUNTY CELL NAME W.L. (MICFON) .41 .45	.000 .200 .000		111 111 111 111 111 111 111 111		.117	.103 .254 .365 .402 .417	.136 .254 .371 .417
CELL HAME U.L. (MICFON) 41 45 50 65 76	161 - 123 - 268 - 372 - 428 - 451 - 465		111 		117 257 792 478 472 472 525	103 .254 .3.5 .402 .417 .415	.136 .254 .371 .417 .426 .425
CELL HAME U.L. (MICFON) A1 A5 A6 A6 A7 A7 A7 A7 A7 A7 A7 A7	161 -123 -265 -372 -428 -451 -465 -499			171 172 173 169 169 175 175 175 175 175 175 175 175 175 175	117 257 782 472 472 494 555	.103 .254 .365 .402 .417 .418	.136 .254 .371 .417 .426 .425
CELL NAME U.L. (MICPON) .41 .55 .60 .75 .60	.000 .000 .000		111 		117 257 792 478 472 472 525	103 .254 .3.5 .402 .417 .415	.136 .254 .371 .417 .426 .425 .443 .431
CELL NAME L. (MICFON) CELL NAME L. (MICFON)	161 - 123 - 265 - 372 - 451 - 465 - 494 - 495				117 257 762 479 472 494 525 559	.103 .254 .365 .402 .417 .416 .407	.136 .254 .371 .417 .426 .425

Table 22 continued

		на	100-1				
CELL III E	371	312	561	502	5T1	572	76
W.L. (MICROIL							
	141	.145	.113	.110	.125	.125	.111
.45	.247	.245	.261	.251	.270	.266	.26
.55	.453	.457	.422	.416	.448	.452	.40
.60	.501	.494	.448	.448	.491	.495	.45
.70	.523	.524		.466	.513	.567	
.75	.617	.637	.435	.519	.606	.612	.49
.65	670	716	4.70	523	:671	.657	.50
.90	.743	.617	.427	.493	.739	.740	.42
.95	,786	.650	.300	1115	.749	.751	.29
1.05	. 391	.367	. 543	.115	.350	.346	. 07
	* *						
CELL NAME	711	712	9M1	9112	9#3	971	91.
W.L. (MICRON)							
.41	.125	172		.116	.128	.121	.16
.45	.257	.270	.243	.259	.271	.264	.30
.50	.390	.300	374	.396	.370	.390	.39
.55	.465	.439	477	.436	.462	.452	.45
.65	.521	.500	.496	.501	.485	.523	.51
.70	.540	.563	.521	.532	.519	.565	.57
.75	.127	.605	.550	.565	.544	.666	.61
.65	.670	.666	.576		.556	.668	66
.90	.784	.829	.539	.562	.561	.704	.74
1.05	263	305	:163		:179	337	35
CELL NAME		X2		X4	×5	X6	×7
W.L. (MICRON)							
.41	.104	.000	.111	.137	.114	.257	.10
.45	.249	.000	.260	.281	.268	.385	.25
.55	.448	.000	.440	7.463	.450	.467	.45
.60	.466	.000	.519	.507	.490	.498	.50
7.0	.519	.000	555	.531	550	.633	.57
.75	.606	.000	.062	.630	.592	.648	.61
.85	.662	:000	.651				65
.90	.705	.000	.668	.776	.648	.916	.66
.95	.666	.000	.642	.612	.606	.824	.64
1.05	.277	.000	.255	.410	.276	.472	
CELL NAME	×9.						
W.L. (MICRON)							
.41	.165						
.50	.397						
.55	.457						
.60	.461						
.70	.626						
.75	.653						
	655						
.90	.622						
.95	.750						

Table 23 DANK CURRENT DENSITY, BUN Has 8-1

Vp/E.'N	C1	63	C.	C5	76	c)	V _p /S/N	721	712	771	9M1	942	983
.0: 791ts	2.6-07	4.4-06	5.9-05	4.6-06	5.2-04	1.6-06	.01 Volts	7.7-06	8.9-05	6.4-06	1.1-05	6.2-05	1.1-04
.04	1.4-06	1.9-05	2.4-04	1.9-05	1.8-03	5.4	.04	2.6-05	3.1-04	2.3-05	4.0	1.8-04	4.7
.08	4.4	4.7	4.5	4.7	4.2	1.2-05	01	4.8	5.0	4.3	7.5	3.5	1.6
.10	7.1	7.4	5.8	7.4	5.7	1.6	.10	6.1	7.2	5.6	9.3	4.3	1.3-03
-11	1.9-05	1.4-94	1.0-03	1.4-04	1.0-02	3.3	.15	2.6-04	1.1-03	1.2	1.4-04	6.6	2.5
.25	3.9	2.4	1.5	2.4	1.6	5.1	.20	3.5	1.5	1.1-04	1.9		4.7
.25	7.4	3.6	2.0	3.6	2.3	8.0	.25	4.5	1.9	1.4	2.4	1.1-03	1.1
. 30	1.2004	5.0	2.6	5.0		1.2-04	.32	5.7	2.4	1.8	3.0	1.4	1.3-02
. 35	1.5	6.4	3.1	6.4		1.9	.35	6.0	2.9	2.2	3.7	1.6	1.7
.40	3.1	6.4	3.7	1.4		3.1	.40	0.1	3.4	3.0	4.6	1.9	2.5
.45	5.5	1.1-03	4.4	1.1-03		6.0	.45	9.9	4.2	7.1	7.0	2.4	
.50	1.4-03	2.0	5.0	2.0		1.7-03	.50	1.2-03	5.2	1.0-03	1.6-03	3.4	
v _p							v _k						
.05 Tolts	8.4-04	9.2-06	2.5-04	9.2-06	2.3-03	6.3-06	.05 Volts	3.0-05	3.8-94	3.2-05	4.7-05	2.0-04	5.3-04
.10	1.3-03	1.5-05	4.2	1.5-05	4.2	1.3-05	.10		8.0	6.2	9.5	4.4	1.0-03
.20	2.1	2.0	8.1	2.0	8.2	2.4	.20	1.2-04	1.7-03	1.3-04	2.0-04	1.9	2.0
.30	2.8	2.5	1.2-03	2.4	1.2-02	3.5	. 30	1.9	2.7	2.1	3.0	1.3-03	3.1
.43	3.6	3.1	1.6	2.9	1.6	4.5	.40	4.1	3.8	3.0	4.1	1.0	4.1
.50	4.3	3.6	2.0	3.3	2.1	5.6	.50	7.3	5.1	3.7	5.1	2.3	5.2
.60	5.0	4.2	2.4	3.8	2.5	6.7	.60		6.5	5.0	6.3	2.8	6.2

Table 23 continued

.01 Volte	V, 2, 8	251	35.2	59.	552	571	572	371	27.1
.08			8.3-06	5.4-06	1.0+05	1.1-05		1.3-05	5.9-06
.10	.04	6.0-05	2,7+06	2.2-05	1.7	4.6	1.4-04	5.7	2.5-05
.15 9.6 1.5-24 8.0 1.4-04 1.7 7.3 2.2 9.8	.03	2.0-04	7.4	4.2	7.5	9.2	1.0	1.2-04	5.1
.25	.10	3.2	9.6	5.2	9.3	1.2-04	4.0	1.5	6.4
.25	.15	9.6	1.5-04	8.0	1.4-04	1.7	7.3	2.2	9.8
.32	.25	2.4-03	2.1	1.1-04	2.0	2.3	1.3-03	3.1	1.3-04
.35	.25	4.7	2.8	1.4	2.6	2.9	2.2	3.9	1.7
.40	. 32	8.0	3.4	1.8	3.2	3.4	3.7	4.8	2.2
.45	. 35	1.2-02	4.1	2.6	4.2	3.6	5.7	5.8	2.6
V _R .05 Volts 4.7-05 4.3-05 2.7-05 5.0-05 4.6-05 1.7-04 1.1-04 3.2-05 .10 8.7 8.6 5.6 1.0-04 9.4 3.5 2.0 6.4 .20 1.7-04 1.7-04 1.2-04 2.2 1.9-04 7.1 4.7 1.3-04 .30 2.7 2.6 1.8 3.5 2.9 1.1-03 7.7 1.9 .41 3.8 3.6 2.5 4.7 3.9 1.5 1.1-03 2.6 .50 4.9 4.6 3.3 6.2 4.8 1.9 1.6 3.3	.40	1.8	4.9	4.5	6.0	3.9	1.4	7.5	3.1
V _R .05 Volts 4.7-05 4.3-05 2.7-05 5.0-05 4.6-05 1.7-04 1.1-04 3.2-05 .10 8.7 8.6 5.6 1.0-04 9.4 3.5 2.0 6.4 .20 1.7-04 1.7-04 1.2-04 2.2 1.9-04 7.1 4.7 1.3-04 .30 2.7 2.6 1.8 3.5 2.9 1.1-03 7.7 1.9 .41 3.8 3.6 2.5 4.7 3.9 1.5 1.1-03 2.6 .50 4.9 4.6 3.3 6.2 4.8 1.9 1.6 3.3	.45	2.4	5.8	1.0-03	1.1-03	4.2	1.2-02	8.7	3.6
.05 Volts 4.7-05 4.3-05 2.7-05 5.0-05 4.6-05 1.7-04 1.1-04 3.2-05 1.0 8.7 8.6 5.6 1.0-04 9.4 3.5 2.0 6.4 1.20 1.7-04 1.7-04 1.2-04 2.2 1.9-04 7.1 4.7 1.3-04 1.2 2.7 2.6 1.8 3.5 2.9 1.1-03 7.7 1.9 1.1 3.8 3.6 2.5 4.7 3.9 1.5 1.1-03 2.6 1.5 4.9 4.6 3.3 6.2 4.8 1.9 1.6 3.3	.50		6.5	3.7	2.9	4.5	1.6	9.9	4.2
.10 8.7 8.6 5.6 1.0-04 9.4 3.5 2.0 6.4 .20 1.7-04 1.7-04 1.2-04 2.2 1.9-04 7.1 4.7 1.3-04 .30 2.7 2.6 1.8 3.5 2.9 1.1-03 7.7 1.9 .41 3.8 3.6 2.5 4.7 3.9 1.5 1.1-03 2.6 .50 4.9 4.6 3.3 6.2 4.8 1.9 1.6 3.3	v _R								
.20 1.7-04 1.7-04 1.2-04 2.2 1.9-04 7.1 4.7 1.3-04 .22 2.5 2.9 1.1-03 7.7 1.9 .25 2.5 4.7 3.9 1.5 1.1-03 2.6 .25 4.9 4.6 3.3 6.2 4.8 1.9 1.6 3.3	.05 Volts	4.7-05	4.3-05	2.7-05	5.0-05	4.6-05	1.7-04	1.1-04	3.2-05
.33 2.7 2.6 1.8 3.5 2.9 1.1-03 7.7 1.9 .41 3.8 3.6 2.5 4.7 3.9 1.5 1.1-03 2.6 .52 4.9 4.6 3.3 6.2 4.8 1.9 1.6 3.3	.10	8.7	8.6	5.6	1.0-04	9.4	3.5	2.0	6.4
.11 3.8 3.6 2.5 4.7 3.9 1.5 1.1-03 2.6 .50 4.9 4.6 3.3 6.2 4.8 1.9 1.6 3.3	.20	1.7-04	1.7-04	1.2-04	2.2	1.9-04	7.1	4.7	1.3-04
.50 4.9 4.6 3.3 6.2 4.8 1.9 1.6 3.3	. 33	2.7	2.6	1.8	3.5	2.9	1.1-03	7.7	1.9
	.45	3.8	3.6	2.5	4.7	3.9	1.5	1.1-03	2.6
.60 6.2 5.7 4.1 7.7 5.9 2.4 2.2 4.0	.60	4.9	4.6	3.3	6.2	4.8	1.9	1.6	3.3
	.60	6.2	5.7	4.1	7.7	5.9	2.4	2.2	4.0

8.0 FIGURES

Figure 2

TEXTURED SURFACE OF SOLAR CELL
NAGH FOTHAM
SCANNING ELECTRON MICROSCOPE
SECONDARY ELECTRONS, ~50° TILT, 1500X

ORIGINAL PAGE IS OF POOR QUALITY

