Theory of data validation

Mark van der Loo and Edwin de Jonge

Statistics Netherlands Research & Development @markvdloo @edwindjonge

useR!2021

Statistical Value Chain

Statistical Value Chain

Statistical Value Chain

Data validation

Data validation is an activity in which one verifies whether a combination of values is acceptable.

Examples

- Is the Age nonnegative?
- Does *Turnover Cost* equal *Profit*?
- Is the average *Profit* positive?
- Does the mean *Profitratio* differ less than 10% from last year's?

Why data validation rules?

Because

- you want to clearly communicate your data quality
- validation rules have a life cycle
 - treat like data (CRUD, analyze)
 - treat like code (version control, review, test)
- they are **Input** for algorithms that improve data quality.

validate

Define, use, analyze, manipulate data validation rules and validation results.

The validate package: basic workflow

Rule complexity

How complex is a validation rule?

Intuition

A rule is 'complex' if I need different a lot of different information to evaluate it.

To label a data point

Intuition

A data point is a key-value pair, where the key determines what the value means.

From the previous picture, a key should at least label

- What population (entity type) we are measuring: U
- When did we make the measurement: τ
- Which element of the population (entity) was measured: u
- Which variable was measured: X

 \rightarrow mnemonic: $U \tau u X$

A measure for rule complexity

To evaluate my rule, do I need values from one or more

- 1. populations (entity types) U?
- 2. measurements τ ?
- 3. population units u?
- 4. variables X?

- \rightarrow For each 'yes' denote a m (multiple)
- \rightarrow For each 'no', denote a s (single)
- The number of m's is the complexity level of your rule.

Examples

Rule		labels level	
Age >= 0	SSSS	0	
Turnover-Cost=Profit	sssm	1	
Mean(Profit) >= 10	ssms	1	
$ \mathit{Mean}(\mathit{Profit}/\mathit{Turnover})_t - \mathit{Mean}(\mathit{Profit}/\mathit{Turnover})_{t-1} < 5$	smmm	3	

Not all 4-sequences of m's and s's are possible

Validation level					
0	1	2	3	4	
SSSS	sssm	ssmm	smmm	mmmm	
	ssms	smsm	msmm		
	smss	smms			

More information: arxiv.org/abs/2012.12028

Assignment 2

pdf/assignment2.pdf

