CONTROLADORES PID

rio rio rio rio rio

12/0 12/0 12/0 12/0

AJUSTE EMPÍRICO

Fernando Morilla García Dpto. de Informática y Automática ETSI de Informática, UNED

Madrid 16 de febrero de 2006

Contenido

INTRODUCCIÓN AJUSTE POR PRUEBA Y ERROR **AJUSTE EMPÍRICO ESTIMACIÓN EN LAZO ABIERTO ESTIMACIÓN EN LAZO CERRADO CRITERIOS DE SINTONÍA FORMULAS DE SINTONÍA**

1 Introducción

¿Qué se entiende por ajuste (sintonía)?

1 Introducción

¿Qué se entiende por ajuste (sintonía)?

Determinación de los parámetros de control, de acuerdo con algún conjunto de especificaciones (criterio de sintonía)

¿Cuándo es necesaria la sintonía?

En la puesta en marcha de un sistema de control (1ª sintonía o presintonía)

Cuando el usuario observa un deterioro del comportamiento del sistema de control (supervisión + sintonía)

Tanto la supervisión como la sintonía se pueden automatizar; de ahí los términos "sintonía automática" y "autosintonía"

1 Introducción

¿Por qué es difícil el ajuste?

Dado el conjunto de especificaciones, es posible que:

210 210 210 210 210

- 1) Exista un único juego de parámetros de control tal que se cumplan estas especificaciones (Caso más favorable)
- 2) Existan varios juegos de parámetros de control tal que se cumplan estas especificaciones (¿Cuál es el mejor?)
- 3) No exista un juego de parámetros de control tal que se cumplan estas especificaciones (Caso peor)

2 Ajuste por prueba y error (manual)

¿Qué se entiende por prueba y error?

Modificaciones sucesivas de los parámetros de control hasta conseguir las especificaciones. (Ej. de procedimiento en pag. 10 y 11 Cap.1)

Se empleó en el intercambiador de calor. (Cap. 7 y primer seminario)

¿Qué inconvenientes presenta?

Sucesivas comprobaciones del comportamiento del sistema en lazo cerrado; NO permitidas en la planta real (por el coste en tiempo y el coste en la producción), SÍ posibles off-line (en simulación).

No hay certeza de poder conseguir las especificaciones.

¿Por qué se utiliza?

Porque hay personas muy experimentadas, con modelos empíricos del sistema de control (proceso+controlador)

Es complemento (ajuste fino) de otros procedimientos de ajuste.

3 Ajuste empírico (experimental)

Especialmente orientado al mundo industrial

Debido a la gran dificultad para obtener una descripción analítica del proceso.

¿En qué consiste?

Paso 1: Estimación de características dinámicas del proceso.

- Lazo abierto
- Lazo cerrado

Paso 2: Cálculo de parámetros de control (fórmulas de sintonía).

¿Qué ventaja presenta?

Suele ser una buena aproximación a la solución del problema de ajuste (sintonía).

¿En qué se basa?

La mayoría de los procesos tienen respuesta monótona creciente estable a una entrada escalón.

Ejemplo de cuatro procesos representativos

¿En qué consiste?

Estimar los parámetros (K, T_p y T_o) de un modelo simple (primer orden+retardo) que mejor aproxima las características de la

respuesta.

Ejemplo de

características:

- Estacionario
- 28.3% del estacionario
- 63.2% del estacionario

Procedimiento recomendable

- Control en manual.
- Esperar hasta que la salida esté en estado estacionario.

RID RID RID RID

- Provocar salto en la variable manipulada.
- Registrar la salida (variable controlada) hasta que alcance el nuevo estado estacionario.
- Obtener K como el cociente entre cambios.
- Medir instantes: t₁ al 28.3% y t₂ al 63.2%.
- Obtener $T_p = 1.5 (t_2-t_1) y T_o = t_2 T_p$

Ejemplo: Intercambiador de calor (Cap. 7)

Característica al 28.3%

$$50 + 0.283 (52.22 - 50) \cong 50.63$$

$$t_1 \cong 12.32 \text{ min}$$

Característica al 63.2%

$$50 + 0.632 (52.22 - 50) \cong 51.40$$

$$t_2 \cong 15.96 \text{ min}$$

$$K = \frac{\text{cambio en la temperatura}}{\text{cambio en la apertura}} = \frac{52.22 - 50}{60 - 50} = 0.22$$

$$T_p \cong 5.45 \text{ min}$$

$$T_o \cong 0.51 \text{ min}$$

¿En qué se basa?

La mayoría de los procesos pueden oscilar de forma mantenida bajo control proporcional con una ganancia adecuada:

- Ganancia crítica (k_c)
- Período de oscilación mantenida (t_c)

Método de la oscilación mantenida (Ziegler y Nichols, 1942)

- Control proporcional.
- Provocar salto en la variable de consigna.
- Aumentar o disminuir la ganancia proporcional hasta que se observe la oscilación mantenida en la salida (variable controlada).

rio rio rio rio

 Anotar la ganancia proporcional como k_c y el período de la oscilación mantenida como t_c.

Método del relé (Aström y Hägglund ,1984)

Forma indirecta de automatizar la experiencia de la oscilación mantenida:

- Controlador todo/nada (relé ideal)
- Relé con histéresis

Método del relé (Aström y Hägglund ,1984)

- Llevar el proceso a un estacionario.
- Cerrar el lazo con un relé como controlador.
- Registrar la salida (variable controlada) hasta que se observe un ciclo límite.
- Anotar la amplitud del ciclo límite como a y el período como t_c
- Determinar la ganancia crítica como

$$k_c = \frac{4 d}{\pi \sqrt{a^2 - \epsilon^2}}$$

Ejemplo: Intercambiador de calor

Características del relé:

Características del ciclo límite:

 $t_c \cong 6.7 \text{ min}$

$$k_c = \frac{4 d}{\pi \sqrt{a^2 - \epsilon^2}} \cong 13$$

OJO: como conversión del modelo (K=0.22, $T_p \cong 5.45$ min, y $T_o \cong 0.51$ min)

$$\Rightarrow$$
 k_c \cong 79.22 y t_c \cong 1.97 min.

Los cuatro procesos representativos del Cap. 3

	Procesos				
Característica	1	2	3	4	
K	1 1 20.07 33.63		1 41.41	1 39.20	
T _p					
T _o	2.03	11.03	27.62	42.33	
Θ	0.10	0.33	0.67	1.08	
k _c	29.69	7.27	2.24	0.92	
t _c	5.51	33.04	94.91	132.14	

T_o aumenta

k_c disminuye

Aumenta la dificultad para controlarlo

t_c aumenta F. Morilla

4 y 5 Estimación de características

Recomendaciones

- Registrar en buenas condiciones y con pocos efectos sobre la producción.
- Evitar experiencias de oscilación mantenida, por tiempo y porque a veces son imposibles de conseguir.
- Elegir adecuadamente las características del relé.

NO RIO RIO RIO RIO

- No conformarse con una sola estimación en lazo abierto, repetir en varios puntos de operación.
- Ser conscientes de las limitaciones de cada método y de que son el primer paso de la sintonía.

Tres tipos de criterios, basados en:

- Características de la respuesta temporal
- Integrales de la señal de error
- Características de la respuesta en frecuencia

210 210 210 210

Comentarios y recomendaciones

Características de la respuesta temporal para cambio en la carga o para cambio en la señal de referencia

Razón de amortiguamiento (b/a) Tiempo de asentamiento (t_s) Máxima sobreelongación (m_p)

Minimización de integrales de la señal de error

F. Morilla

Características de la respuesta en frecuencia del controlador + proceso

Margen de fase (♠m) Margen de ganancia (♠m)

Comentarios

- Las características temporales son las más fáciles de inspeccionar (validación de la sintonía).
- Determinadas características se pueden cumplir con varios juegos de parámetros de control (no unicidad de la sintonía).
- El mínimo absoluto de una integral siempre está asociado a unos parámetros de control (unicidad de la sintonía).
- Los mismos criterios temporales para cambios en la carga y cambios en la consigna no son posibles (¿tipo de cambio?).
- Los criterios de respuesta en frecuencia tratan de garantizar estabilidad (combinación de ϕ_m y A_m).
- No olvidar las relaciones que existen entre las características de respuesta temporal y de respuesta en frecuencia.

Introducción

Fórmulas más importantes

Ziegler y Nichols (1942)

Mejoras a las fórmulas de Ziegler y Nichols (años 90)

Fórmulas con criterios integrales (finales de los años 60)

Fórmulas con criterios de estabilidad (años 80 y 90)

Fórmulas AMIGO (2005)

Ejemplos sobre los modelos simples (K, T_p y T_o) (k_c y t_c)

Ejemplos sobre el intercambiador de calor

Resumen de características

¿Qué se entiende por fórmulas de sintonía?

Expresiones de los parámetros de control en función de determinadas características (modelo simple) del proceso.

El PASO 2 de un típico procedimiento de ajuste.

¿Qué características presentan?

Resumen la experiencia de otras personas.

Son específicas para un tipo de modelo, un tipo de controlador y un criterio de sintonía.

Son aproximaciones en un rango limitado de características del proceso, requieren un posterior ajuste fino.

Son muy utilizadas en la industria y están implícitas en muchos reguladores industriales.

Ziegler y Nichols (1942)

Características del proceso:

(K_c, t_c) obtenidas de una experiencia de oscilación mantenida (K, T_p, T_o) obtenidas de una experiencia en lazo abierto Estable en lazo abierto

Criterio de sintonía:

Razón de amortiguamiento 1/4 para cambio en la carga

Características de las fórmulas:

Controladores: P, PI y PID (no interactivo)

Para PID; $T_D = T_1/4$

Importancia de las fórmulas:

Las primeras, las más conocidas, las más citadas Han inspirado las de otros autores

Ziegler y Nichols (1942)

Controlador	Parámetros	Lazo cerrado	Lazo abierto
Р	K_{P}	0.5 K _c	$\frac{T_{\rm p}}{{ m K}{ m T_o}}$
ח	K_{P}	$0.45\mathrm{K_c}$	$0.9 \frac{T_p}{K T_o}$
Pl	T_{I}	$\frac{t_c}{1.2}$	$\frac{T_o}{0.3}$
PID	$K_{_{\mathrm{P}}}$	0.6 K _c	$1.2 \frac{\mathrm{T_p}}{\mathrm{K T_o}}$
no interactivo	T_{I}	$\frac{\mathrm{t_c}}{2}$	2 T _o
	T_{D}	$\frac{t_c}{8}$	$0.5\mathrm{T_o}$

F. Morilla

Inconvenientes de las fórmulas de Ziegler y **Nichols**

Modelos

(a)
$$K=1$$
, $T_0=10$, $T_0=1$

(a) K=1,
$$T_p=10$$
, $T_o=1$
(b) K=1, $T_p=2$, $T_o=1$

(c)
$$K=1$$
, $T_{p}=1$, $T_{o}=1$

Mejoras de las fórmulas de Ziegler y Nichols

Hang, Aström y Ho (1991):

Máxima sobreelongación del 10%

Estimación en lazo cerrado (K_c, t_c) y estimación de K.

Controlador	Parámetros	Ajuste para m _p =10%		
PI	$K_{\!\scriptscriptstyle{ ho}}$	$\frac{5 \mathrm{k_c}}{6} \left(\frac{12 + \mathrm{K} \mathrm{k_c}}{15 + 14 \mathrm{K} \mathrm{k_c}} \right)$		
	T _i	$\frac{t_c}{5} \left(1 + \frac{4}{15} K k_c \right)$		

Mejoras de las fórmulas de Ziegler y Nichols

González (1994):

Razón de amortiguamiento (δ).

Estimación en lazo abierto (K, Tp, To).

PI y PID $(T_D = \alpha T_I)$

Controlador	Parámetros Ajuste por coeficiente de amortiguamiento (δ)	
PI	ω _h	$-\frac{2\delta}{T_{o}} + \sqrt{\frac{4\delta^{2}}{T_{o}^{2}} + \frac{2}{T_{p}T_{o}}}$
	K _p	$\frac{\omega_{\rm n}^2T_{\rm p}T_{\rm o}}{2K}$
	T _i	$\frac{T_o}{2}$
PID	ω_{n}	$\frac{-\delta T_{p} + \sqrt{\delta^{2} T_{p}^{2} + T_{p} (T_{o} - T_{i}) - \alpha T_{i}^{2}}}{T_{p} (T_{o} - T_{i}) - \alpha T_{i}^{2}}$
	Kp	$\frac{\omega_n^2 T_i T_p}{\left(1 + \omega_n^2 \alpha T_i^2\right) K}$
	Ti	$\frac{T_o}{4\alpha} \left(1 - \sqrt{1 - 4\alpha} \; \right)$
	T _d	α T _i

Fórmulas con criterios integrales

Lopez, Murrill y Smith (1967)

Criterios de sintonía: MISE, MIAE, MITAE cambio en la carga

Controladores: PI, PID no interactivo

Rovira, Murrill y Smith (1969)

Criterios de sintonía: MISE, MIAE, MITAE cambio en la referencia

Controladores: PI, PID no interactivo

Kaya y Scheib (1988)

Criterios de sintonía: MISE, MIAE, MITAE cambio en la carga y en la referencia

Controladores: PID interactivo y PID paralelo

Fórmulas con criterios integrales

Expresión general:

$$y = K K_P ; T_p/T_I ; T_D/T_p$$

$$y = a_1 \Theta^{a_2} + a_3$$

$$\Theta = T_o/T_p$$

			Cambio en la carga			Cambio en la consigna		
C	Criterio	Modo	a ₁	a_2	a ₃	a ₁	a_2	a ₃
	MISE	Р	1.495	-0.945	0			
		I	1.101	-0.771	0			
		D	0.560	1.006	0			
	MIAE	Р	1.435	-0.921	0	1.086	-0.869	0
		I	0.878	-0.749	0	-0.130	1	0.740
		D	0.482	1.137	0	0.348	0.914	0
ı	MITAE	Р	1.357	-0.947	0	0.965	-0.855	0
		I	0.842	-0.738	0	-0.147	1	0.796
		D	0.381	0.995	0	0.308	0.929	0

Fórmulas con criterios integrales

PI, MITAE cambio en la carga

PI, MITAE cambio en la consigna

Aström y Hägglund (1984)

Características del proceso:

 $(K_c, \omega_c=2\pi/t_c)$ obtenidas por el método del relé

Criterio de sintonía: a elección del usuario

(om) margen de fase

(A_m) margen de ganancia

Características de las fórmulas:

Controladores: P, PID no interactivo

Grado de libertad en el caso PID: $\alpha = T_D/T_I$

Importancia de las fórmulas:

Sin limitación a priori

Se han impuesto en los reguladores industriales comerciales

Aström y Hägglund (1984)

F. Morilla

Aström y Hägglund (1984)

Se recomienda utilizarlas para ajuste por margen de ganancia

PID,
$$A_{m} = 4$$
, $\alpha = 0.1$

Ho, Hang y Cao (1995)

Características del proceso:

(K, T_p, T_o) obtenidas de una experiencia en lazo abierto Estable en lazo abierto

Criterio de sintonía: a elección del usuario Márgenes de fase (ϕ_m) y de ganancia (A_m)

Características de las fórmulas: Controlador PI

Importancia de las fórmulas:

Las primeras en combinar especificaciones (ϕ_m) y (A_m)

Ho, Hang y Cao (1995)

	Ρl
K_{P}	$\frac{\omega_{p} T_{p}}{A_{m} K}$
T_{I}	$\frac{1}{2\omega_{\rm p} - \frac{4\omega_{\rm p}^2T_{\rm o}}{\pi} + \frac{1}{T_{\rm p}}}$
ω_{p}	$\frac{A_{m} \left(\frac{\pi \phi_{m}}{180} - \frac{\pi}{2}\right) + \frac{\pi}{2} A_{m}^{2}}{(A_{m}^{2} - 1) T_{o}}$

$$\phi_{\rm m} = 60^{\rm o} \, {\rm y \, A_m} = 4$$

Aström y Hägglund (2005): AMIGO

Características del proceso:

(K_c, t_c) obtenidas de una experiencia de oscilación mantenida (K, T_p, T_o) obtenidas de una experiencia en lazo abierto Estable en lazo abierto

Criterio de sintonía: a elección del usuario Máximo de la función de sensibilidad ($M_s=1.4$), para garantizar $\phi_m \ge 41^{\circ}$ y $A_m \ge 3.5$

Características de las fórmulas:

Controladores: PI, PID

Importancia de las fórmulas:

Las más ambiciosas, intentan reemplazar a las de ZN

Aström y Hägglund (2005): AMIGO

Astroniy	ii y i laggiuliu (2003). AlviiGO				
Controlador	Parámetros	Lazo cerrado	Lazo abierto		
ΡI	K_{P}	$\frac{0.16}{k_c}$	$\frac{0.15}{K} + \left(0.35 - \frac{T_{o} T_{p}}{(T_{o} + T_{p})^{2}}\right) \frac{T_{p}}{K T_{o}}$		
	T_{I}	$\frac{t_c}{1+4.5\frac{k_c}{K}}$	$0.35 \mathrm{T_o} + \frac{13 \mathrm{T_o} \mathrm{T_p^2}}{\mathrm{T_p^2} + 12 \mathrm{T_o} \mathrm{T_p} + 7 \mathrm{T_o^2}}$		
	$K_{_{\mathrm{P}}}$	$\frac{0.3 - 0.1 \left(\frac{k_c}{K}\right)^4}{k_c}$	$\frac{1}{K} \left(0.20 + 0.45 \frac{T_p}{T_o} \right)$		
PID	T_{I}	$\frac{0.6 t_c}{1 + 2 \frac{k_c}{K}}$	$\frac{0.4 \mathrm{T_o} + 0.8 \mathrm{T_p}}{\mathrm{T_o} + 0.1 \mathrm{T_p}} \; \mathrm{T_o}$		
no interactivo	$T_{\scriptscriptstyle D}$	$\frac{0.15 \left(1 - \frac{k_{c}}{K}\right) t_{c}}{1 - 0.95 \frac{k_{c}}{K}}$	$\frac{0.5 \ T_{o} \ T_{p}}{0.3 \ T_{o} + T_{p}}$		

Aström y Hägglund (2005): AMIGO

PI, en lazo cerrado

PI, en lazo abierto

Características

- Aproximación en un paso al ajuste deseado.
- Se suelen complementar con un Paso 3 (ajuste fino).
- Rango limitado de aplicación.

ZN y fórmulas con criterios integrales; $0.1 < T_o/T_p < 1$

Fórmulas con criterios frecuenciales; ϕ_m entre 45 y 60°, A_m entre 3 y 4

AMIGO; kc/K > 0.2 ;
$$\frac{T_o}{T_o + T_p} \le 0.2$$
 (si PID)

- Aplicables a controladores PID discretos:
 - Como si fueran continuos
 - Con K_c y t_c obtenidos con el mismo período de muestreo
 - Con retardo corregido T_o+h/2

¿Ajustes para el intercambiador de calor?

Características del proceso:

Respuesta monótona creciente (K=0.22, T_p =5.45, T_o =0.51) "Fácil" de controlar

No se pueden emplear todas las fórmulas de sintonía.

Y 111	Fórmula	Especificaciones	K _P	4,	T_D
PI	ZNIa	5 92/5	43.7		0
PI	HAH		7.5	2.2	0
PI	MITAE	consigna	23.3	5.4	0
PI	HHC	consigna ϕ_m =60 y A _m =4	18.7	3.2	0
PI	AMIGO		13.9	3.2	0

Resultados de los ajustes para el intercambiador

Pl continuo En regulación

Resultados de los ajustes para el intercambiador

PI continuo En servo

Resultados de los ajustes para el intercambiador

PI discreto HHC (4,60) Varios h

