CSC236 Worksheet 6 Review

Hyungmo Gu

May 10, 2020

Question 1

Rough Work:

Assume that $\forall k \in \mathbb{N}, R(3^k) = k3^k$.

I need to prove $R \in \Theta(n \lg n)$. That is, $R \in \mathcal{O}(n \lg n)$ and $R \in \Omega(n \lg n)$.

I will do so in parts.

1. Part 1 (Proving $R \in \mathcal{O}(n \lg n)$)

Let $n \in \mathbb{N}$. Define $n^* = 3^{\lceil \log_3 n \rceil}$. Then, we have

$$\lceil \log_3 n \rceil - 1 < \log_3 n \le \lceil \log_3 n \rceil \tag{1}$$

I will also use the fact proved in week 7 tutorial exercise that R is non-decreasing.

Let d = 6. Then, $d \in \mathbb{R}^+$. Let B = 3. Then, $B \in \mathbb{R}^+$. Assume $n \geq B$.

I need to show $R(n) \leq dn \lg n$.

Starting from R(n), we have

$$R(n) \leq R(n^*) \qquad [\text{Since } n \leq n^* \text{ and } R \text{ is non-decreasing}] \quad (2)$$

$$= n^* \log_3 n^* \qquad [\text{By replacing } 3^k \text{ for } n^*] \quad (3)$$

$$\leq 3n \log_3 3n \qquad [\text{Since } n \leq n^* \Rightarrow 3n \leq 3n^*] \quad (4)$$

$$= 3n(\log_3 n + 1) \qquad (5)$$

$$= 3n(\log_3 n + \log_3 n) \qquad [\text{Since } n \leq B = 3 \Rightarrow \log_3 n \leq 1] \quad (6)$$

$$\leq 6n \log_3 n \qquad (7)$$

$$\leq dn \log_3 n \qquad [\text{Since } d = 6] \quad (8)$$

$$\leq dn \log_3 n \qquad (9)$$

2. Part 2 (Proving $R \in \Omega(n \lg n)$)