

AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE

Metody Obliczeniowe w Nauce i Technice

Rozwiązywanie układów równań liniowych metodami bezpośrednimi Zadanie 6a

Maciej Kmąk Informatyka WI AGH, II rok

1 Dane techniczne

Eksperymenty przeprowadzono na komputerze o następującej konfiguracji:

- System operacyjny: Windows 11 Pro
- Procesor: 12th Gen Intel (R) Core (TM) i5-1235U @ 1.3 GHz (10 rdzeni)
- Pamięć RAM: 16 GB DDR4
- Środowisko programistyczne:
 - Python 3.12
 - NumPy obliczenia numeryczne
 - Pandas analiza i raportowanie wyników
 - Matplotlib, Seaborn wizualizacje
 - time pomiar czasu wykonania

Część I

Zadanie 1

1 Treść Zadania

Dany jest układ równań liniowych

$$Ax = b$$

gdzie macierz $A \in \mathbb{R}^{n \times n}$ ma elementy zdefiniowane wzorem

$$a_{ij} = \begin{cases} 1, & i = 1, \\ \frac{1}{i+j-1}, & i \neq 1, \end{cases}$$
 $i, j = 1, 2, \dots, n.$

Przyjmij wektor $x \in \mathbb{R}^n$ jako dowolną permutację wektorów $\{1, -1\}$, oblicz wektor

$$b = A x$$
.

Następnie, traktując x jako niewiadomą, rozwiąż układ Ax = b metodą eliminacji Gaussa. Powtórz obliczenia przy dwóch precyzjach zmiennoprzecinkowych (float32 i float64) i dla różnych rozmiarów n. Porównaj otrzymane wektory $x_{\rm obliczone}$ z wektorem $x_{\rm zadany}$ według wybranej normy i oceń wpływ błędów zaokrągleń na jakość rozwiązania.

2 Przebieg Doświadczenia

Eksperyment składał się z następujących kroków:

1. Ustawienie losowości i precyzji.

Na początku ziarno generatora pseudolosowego ustalono poleceniem np.random.seed(0), aby zapewnić powtarzalność wyników. Dla każdego rozmiaru n przeprowadzono rozwiązanie układu w dwóch precyzjach: float32 i float64.

2. Rozwiązywanie układu i pomiar czasu.

Układ Ax = b rozwiązywano własną implementacją eliminacji Gaussa, a czas wykonania każdej operacji mierzono za pomocą funkcji time.perf_counter() i gromadzono w słowniku times. Dzięki temu dla każdej pary (n, dtype) znany był dokładny czas rozwiązania.

3. Ocena błędów.

Po otrzymaniu wektora x_{calc} obliczono dwie miary odległości od wektora wzorcowego x_{true} :

norma maksimum =
$$e_{\text{max}} = \max_{1 \le i \le n} |x_{\text{true},i} - x_{\text{calc},i}|,$$

norma euklidesowa =
$$e_{\text{euk}} = \sqrt{\sum_{i=1}^{n} (x_{\text{true},i} - x_{\text{calc},i})^2}$$
.

Obie miary zaimplementowano przy pomocy np.linalg.norm, co pozwoliło sprawdzić, jak zmienia się dokładność rozwiązania w zależności od precyzji i rozmiaru układu.

4. Obliczanie współczynnika uwarunkowania.

Dla każdej macierzy A wyznaczano wartość

$$\kappa(A) = ||A|| \cdot ||A^{-1}||,$$

gdzie przyjęto normę:

$$||A||_{\infty} = \max_{1 \le i \le n} \sum_{j=1}^{n} |a_{ij}|.$$

Obie normy obliczono w kodzie za pomocą np.linalg.norm(matrix, np.inf), a odwrotność macierzy A^{-1} wyznaczono przy użyciu funkcji np.linalg.inv(matrix). Współczynnik $\kappa(A)$ mierzy wrażliwość rozwiązania układu na błędy w danych wejściowych i operacjach zaokrąglania.

5. Zakres badań.

Badania wykonano dla wszystkich wymiarów

$$n = 2, 3, \dots, 100.$$

Wyniki — błędy, czasy oraz wartości $\kappa(A)$ — zapisano w postaci ramki pandas. DataFrame stanowiącej podstawę dalszej analizy i wizualizacji.

3 Wyniki doświadczenia

Poniżej przedstawiono porównanie wyników dla dwóch precyzji (float32, float64) w funkcji rozmiaru macierzy dla $n \in \{2,3,\dots 20\}$. Każdy wykres zawiera dwie podfigury: skala liniowa i logarytmiczna. Odpowiadające tym zakresom dane liczbowe zestawiono w tabeli 1, będącej ograniczonym do n=2–20 wycinkiem pełnych wyników eksperymentu, a także zobrazowano graficznie na rysunkach 1 – 4.

Tabela 1: Wyniki eksperymentu z zadania 1 dla obu precyzji (float32, float64) — $n \in \{2, 3, \dots 20\}$

		floa	t32		float64				
\mathbf{n}	e_max	e_euk	czas	κ	e_max	e_euk	czas	κ	
2	0.000e+00	0.000e+00	4.125e-04	8.000e+00	0.000e+00	0.000e+00	8.590e-05	8.000e+00	
3	1.311e-06	1.660 e-06	1.424 e - 04	2.400e+02	5.107e-15	6.489 e-15	8.860 e - 05	2.400e + 02	
4	1.907e-06	2.322e-06	1.991e-04	1.530e + 04	2.975e-14	3.767e-14	2.779e-04	1.530e + 04	
5	4.644e-04	6.392 e- 04	1.121e-04	7.435e + 05	1.125e-12	1.559e-12	9.960 e-05	7.431e + 05	
6	8.652e-03	1.298e-02	3.144e-04	3.266e + 07	1.807e-10	2.678e-10	1.600 e-04	3.216e + 07	
7	2.677e+00	3.849e + 00	1.459e-04	1.950e + 09	1.162e-09	1.670e-09	1.448e-04	1.417e + 09	
8	4.133e-01	6.608e-01	1.272 e-04	$1.250e{+10}$	1.795e-07	2.677e-07	1.084e-04	5.566e + 10	
9	4.133e+00	5.855e + 00	1.539e-04	1.487e + 11	1.318e-06	2.150e-06	2.748e-04	2.019e + 12	
10	3.290e+00	5.326e+00	2.656e-04	1.956e + 10	2.235e-05	3.545 e-05	1.867e-04	$8.025e{+13}$	
11	5.538e+00	9.358e + 00	2.219e-04	9.681e + 09	8.048e-05	1.328e-04	2.014e-04	3.014e + 15	
12	1.365e+01	1.939e + 01	2.132e-04	1.139e + 10	2.253e-01	3.769e-01	1.958e-04	1.090e + 17	
13	3.458e+00	6.108e + 00	3.717e-04	4.776e + 10	2.501e+01	4.246e + 01	3.155e-04	$3.190e{+18}$	
14	8.869e+00	1.603e + 01	3.349e-04	2.123e+10	1.747e + 00	2.809e+00	4.011e-04	5.476e + 18	
15	1.831e+01	2.950e + 01	3.807e-04	2.395e + 10	4.037e+00	6.354e + 00	3.122e-04	6.797e + 18	
16	1.388e+01	3.289e + 01	5.289 e-04	6.037e + 10	4.837e+00	8.773e + 00	3.989e-04	7.414e + 18	
17	9.063e+00	1.842e + 01	3.501e-04	$1.511e{+11}$	6.808e+00	9.786e + 00	3.401e-04	9.695e + 18	
18	3.052e+01	4.764e + 01	4.005e-04	7.394e + 10	3.891e+00	7.472e + 00	3.661e-04	$5.371e{+19}$	
19	5.168e+01	8.536e + 01	4.144e-04	7.890e + 10	6.956e + 00	1.169e + 01	4.392e-04	3.423e + 19	
20	2.125e+02	3.766e + 02	4.721e-04	8.415e + 10	3.479e+01	5.495e + 01	4.725 e-04	5.351e + 20	

Rysunek 1: Norma maksimum $||x_{\text{true}} - x_{\text{calc}}||$ dla float32 i float64

- (a) Norma euklidesowa skala liniowa
- (b) Norma euklidesowa skala logarytmiczna

Rysunek 2: Norma euklidesowa $||x_{\text{true}} - x_{\text{calc}}||$ dla float32 i float64

Rysunek 3: Czas obliczeń – skala liniowa dla n=2--100

Rysunek 4: Współczynnik uwarunkowania $\kappa(A)$ – skala log n=2–20

Pełne zestawienia wyników

Pełne zestawienia znajdują się w sekcji "Pełne tabele" na końcu dokumentu. Wyniki - błędy, czasy obliczeń i współczynniki uwarunkowania dla float32 i float64 – zebrano w tabeli 3 dla n=2-100.

4 Opracowanie danych (zakres n = 2...20)

Analiza wyników widocznych w tabeli 1 prowadzi do następujących obserwacji:

- Błędy numeryczne. Już przy n=7 dla float32 wyniki zaczynają istotnie odbiegać od wartości oczekiwanych co wyraźnie widać na wykresie 1a (norma maksimum, skala liniowa). W przypadku float64 ten efekt nasila się dopiero od n=13, a w obu przypadkach wzrost błędów obserwujemy zarówno w normie maksimum, jak i euklidesowej (zob. również wykres 2b, skala logarytmiczna).
- Czas obliczeń. W badanym zakresie nie zaobserwowano istotnych różnic w czasach wykonania dla float32 i float64. Oba zestawy danych podążają za tą samą krzywą trendu o charakterze $\mathcal{O}(n^3)$.
- Uwarunkowanie macierzy. Współczynnik $\kappa(A)$ osiąga przy n=20 wartość rzędu 10^{10} dla float32 i aż 10^{20} dla float64, co potwierdza ekstremalnie złe uwarunkowanie macierzy hilbertowskiej klasycznego przykładu macierzy numerycznie niestabilnej.

Część II

Zadanie 2

1 Treść Zadania

Powtórz eksperyment z Zadania 1 dla macierzy $A \in \mathbb{R}^{n \times n}$ określonej wzorem:

$$a_{ij} = \begin{cases} \frac{2i}{j}, & i \ge j, \\ a_{ji}, & i < j, \end{cases}$$
 $i, j = 1, 2, \dots, n.$

Jako wektor wzorcowy $x_{\text{true}} \in \{-1,1\}^n$ wybierz dowolną permutację wartości ± 1 . Oblicz $b = A x_{\text{true}}$ i rozwiąż układ Ax = b metodą eliminacji Gaussa w precyzjach float32 oraz float64. Porównaj wynikowe wektory z x_{true} za pomocą normy maksimum i normy euklidesowej, zmierz czas obliczeń oraz wyznacz współczynnik uwarunkowania $\kappa(A)$.

2 Przebieg Doświadczenia

- 1. Zainicjuj generator pseudolosowy: np.random.seed(0).
- 2. $n \in \{2, 3, \dots, 100\} \cup \{110, 120, \dots, 500\},\$
- 3. Dla danego n wygeneruj losowy wektor $x_{\text{true}} \in \{-1, 1\}^n$.
- 4. Zbuduj macierz A według wzoru i oblicz $b = A x_{\text{true}}$.
- 5. Dla każdej precyzji (float32, float64):
 - Rozwiąż Ax = b własną implementacją eliminacji Gaussa.
 - Zmierz czas wykonania funkcji.
 - Oblicz błędy:

$$e_{\text{max}} = \|x_{\text{true}} - x_{\text{calc}}\|_{\infty}, \quad e_{\text{euk}} = \|x_{\text{true}} - x_{\text{calc}}\|_{2}.$$

6. Wyznacz $\kappa(A) = ||A||_{\infty} ||A^{-1}||_{\infty}$ za pomocą np.linalg.norm(..., np.inf).

Pełne zestawienia wyników

Wszystkie uzyskane w eksperymencie dane — tj. wartości norm maksimum i euklidesowych błędów, czasy wykonania dla obu precyzji oraz współczynniki uwarunkowania macierzy — zebrano w tabeli 4. Zawiera ona szczegółowe wyniki dla każdego rozmiaru macierzy

$$n \in \{2, 3, \dots, 100\} \cup \{110, 120, \dots, 500\}.$$

3 Wyniki doświadczenia

Poniżej przedstawiono porównanie wyników dla dwóch precyzji (float32 vs float64) w funkcji rozmiaru macierzy n. Każdy wykres zawiera dwie podfigury: skala liniowa i logarytmiczna.

Tabela 2: Wyniki eksperymentu z zadania 1 dla obu precyzji (float32, float64) — $n \in \{2, 3, \dots 20\} \cup \{25, 30, 40, 50, 75, 100, 150, 200\}$

		floa	t32		float64			
n	e_max	e_euk	czas	κ	e_max	e_euk	czas	κ
2	0.000e+00	0.000e+00	5.180e-05	3.000e+00	0.000e+00	0.000e+00	2.460e-05	3.000e+00
3	1.192e-07	1.192e-07	3.100e-05	8.667e + 00	2.220e-16	2.483e-16	2.490e-05	8.667e + 00
4	1.192e-07	1.333e-07	3.690e-05	1.650e + 01	2.220e-16	2.483e-16	3.190e-05	1.650e + 01
5	2.980e-07	4.172e-07	4.640 e - 05	2.680e + 01	1.554e-15	2.254e-15	3.970e-05	2.680e + 01
6	2.384e-07	3.476e-07	5.730e-05	3.967e + 01	3.331e-16	4.710e-16	5.050 e-05	3.967e + 01
7	1.431e-06	1.912e-06	8.310e-05	5.457e + 01	8.882e-16	1.180e-15	6.480 e - 05	5.457e + 01
8	1.669e-06	2.157e-06	8.610e-05	7.242e + 01	4.219e-15	6.510e-15	7.710e-05	7.242e + 01
9	1.788e-06	2.447e-06	1.008e-04	9.238e + 01	5.329e-15	7.280e-15	9.120e-05	9.238e + 01
10	4.530e-06	5.868e-06	1.170e-04	1.147e + 02	2.665e-15	4.280e-15	1.065e-04	1.147e + 02
11	2.742e-06	4.396e-06	1.354e-04	1.398e + 02	4.663e-15	7.514e-15	1.237e-04	1.398e + 02
12	3.278e-06	5.022e-06	1.555e-04	1.668e + 02	7.772e-15	1.093e-14	1.425e-04	1.668e + 02
13	3.099e-06	5.723e-06	1.828e-04	1.968e + 02	9.548e-15	1.408e-14	1.616e-04	1.968e + 02
14	9.716e-06	1.280 e - 05	1.958e-04	2.289e + 02	4.774e-15	7.977e-15	1.918e-04	2.289e + 02
15	3.815e-06	6.902e-06	2.643e-04	2.633e+02	7.550e-15	1.403e-14	7.625e-04	2.633e+02
16	3.099e-06	5.902e-06	2.881e-04	3.005e + 02	6.439e-15	1.186e-14	3.040e-04	3.005e+02
17	4.768e-06	9.858e-06	3.007e-04	3.397e + 02	1.532e-14	2.912e-14	2.767e-04	3.397e + 02
18	8.345e-06	1.788e-05	3.283e-04	3.817e + 02	1.510e-14	2.092e-14	3.053e-04	3.817e + 02
19	1.651e-05	2.542e-05	3.715e-04	4.260e + 02	1.110e-14	2.020e-14	3.361e-04	4.260e + 02
20	1.669e-05	2.821e-05	4.341e-04	4.725e + 02	1.332e-14	2.423e-14	3.707e-04	4.725e + 02
25	1.359e-05	2.715e-05	5.723e-04	7.424e + 02	4.796e-14	7.926e-14	1.160e-03	7.424e + 02
30	2.128e-05	3.960e-05	8.560e-04	1.073e + 03	4.996e-14	9.060e-14	7.702e-04	1.073e + 03
40	2.551e-05	5.840 e-05	1.365e-03	1.916e + 03	7.017e-14	1.665e-13	1.457e-03	1.916e + 03
50	5.406e-05	1.249e-04	2.168e-03	3.002e+03	1.280e-13	2.335e-13	2.292e-03	3.002e+03
75	1.726e-04	5.749e-04	5.295 e-03	6.778e + 03	2.736e-13	6.868e-13	5.042e-03	6.778e + 03
100	5.060e-04	1.644e-03	8.918e-03	1.207e + 04	4.929e-13	1.527e-12	8.215 e-03	1.207e + 04
150	7.410e-04	2.420e-03	1.892e-02	2.720e + 04	1.751e-12	5.864e-12	2.028e-02	2.720e + 04
200	1.211e-03	4.152e-03	3.746e-02	4.841e + 04	1.390e-12	6.411e-12	3.552 e-02	4.840e+04

(a) Norma maksimum — skala liniowa

(b) Norma maksimum — skala logarytmiczna

Rysunek 5: Norma maksimum $||x_{\text{true}} - x_{\text{calc}}||$ dla float32 i float64, $n = 2 \dots 20$

4 Opracowanie danych (zakres n = 2, 3, ..., 100, 110, 120, ..., 500)

Analiza wyników zawartych w tabeli 2 prowadzi do następujących wniosków:

- Błędy numeryczne. W przeciwieństwie do przypadku z zadania 1, tutaj nie obserwujemy gwałtownego wzrostu błędów wraz z rozmiarem macierzy. Na wykresie 5a, obejmującym zakres n=2-20, norma maksimum utrzymuje się na niskim poziomie dla float32 rzędu 10^{-5} , a dla float64 rzędu około 10^{-12} . Tabela 2 pokazuje, że nawet dla n=200 maksymalny błąd jest rzędu 10^{-3} dla float32 i pozostaje w okolicach 10^{-12} dla float64. Norma euklidesowa, przedstawiona w skali logarytmicznej na wykresie 6b, wykazuje równoległy przebieg dla obu precyzji, różniących się głównie rzędami wielkości.
- Czas obliczeń. Czas wykonania dla obu precyzji (float32 i float64) jest praktycznie identyczny w zakresie $n=2\dots 100$. Trend wzrostu zachowuje charakter $\mathcal{O}(n^3)$, jak pokazano na wykresie 7.
- Uwarunkowanie macierzy. W odróżnieniu od macierzy hilbertowskiej (zadanie 1), współczynniki uwarunkowania $\kappa(A)$ w zadaniu 2 są niemal identyczne niezależnie od zastosowanej precyzji numerycznej. Na wykresie 8 (skala logarytmiczna, n=2-100) krzywe dla float32 i float64 pokrywają się, co świadczy o stabilności numerycznej i niewielkim wpływie błędów reprezentacji przy odwracaniu tych macierzy.

Część III

Podsumowanie Zagadnienia

Porównanie współczynnika uwarunkowania dla zadań

Poniżej zestawiono porównanie wartości współczynnika uwarunkowania $\kappa(A)$ dla macierzy z zadania 1 i zadania 2 w zakresie $n=2\dots 20$. Dla zadania 1 przedstawiono wyniki zarówno dla precyzji float32, jak i float64, ponieważ różnice między nimi są zauważalne i wynikają z numerycznej niestabilności tej macierzy. W przypadku zadania 2 pokazano wyłącznie przebieg dla float64, ponieważ wartości $\kappa(A)$ w obu precyzjach są niemal równe — różnice wynikają jedynie z ograniczeń arytmetyki zmiennoprzecinkowej i nie przekraczają kilku promili nawet dla największych badanych rozmiarów.

Rysunek 9: Porównanie współczynnika uwarunkowania $\kappa(A)$ dla zadań 1 i 2 (dla precyzji float32 i float64), w skali logarytmicznej.

Zauważalna różnica pomiędzy krzywymi wynika z charakterystyki macierzy użytych w obu zadaniach. W zadaniu 1 zastosowano zmodyfikowaną macierz Hilberta, w której pierwszy wiersz w całości składa się z jedynek $(a_{1j}=1)$, natomiast pozostałe elementy odpowiadają klasycznej definicji macierzy Hilberta. Tak skonstruowana macierz jest wyjątkowo podatna na zaburzenia numeryczne podczas odwracania — co skutkuje znaczną rozbieżnością wartości współczynnika uwarunkowania pomiędzy precyzjami float32 i float64, znacznie widoczną już od $n \approx 8$ –9. Dla porównania, w zadaniu 2 użyto zwykłej macierzy o znacznie bardziej stabilnej strukturze — nie wykazuje ona takiej wrażliwości numerycznej, co skutkuje znacznie wolniejszym wzrostem $\kappa(A)$ i mniejszym wpływem zaokrągleń na dokładność końcowego wyniku.

Zadanie 1

Macierz A w zadaniu 1 to zmodyfikowana macierz Hilberta, w której pierwszy wiersz składa się z samych jedynek $(a_{1j}=1)$, a pozostałe elementy są zgodne z klasyczną definicją macierzy Hilberta. Konstrukcja ta skutkuje bardzo złym uwarunkowaniem — już dla niewielkich n współczynnik $\kappa(A)$ osiąga wartości rzędu $10^{10}-10^{20}$. Tak wysoka wrażliwość numeryczna przekłada się bezpośrednio na istotne błędy w rozwiązaniach, szczególnie dla precyzji float32. Błędy te narastają gwałtownie wraz z rozmiarem układu, co widoczne jest w obu normach (maksimum i euklidesowej). Efekt precyzji staje się widoczny już dla małych wartości n i znacząco pogarsza stabilność rozwiązań w przypadku float32. Co istotne, nawet zastosowanie częściowego pivotingu (partial pivoting) nie wystarczyło, aby skutecznie skompensować skutki złego uwarunkowania — rozwiązywanie układu metodą Gaussa wciąż prowadziło do znaczących błędów numerycznych.

Zadanie 2

W zadaniu 2 macierz A zbudowano według prostszego i bardziej regularnego wzoru, bez właściwości skutkujących silnym złym uwarunkowaniem. Zarówno błędy obliczeniowe, jak i współczynnik $\kappa(A)$ rosną powoli, a ich wartości pozostają w granicach akceptowalnych nawet dla dużych n. Wartości $\kappa(A)$ dla float32 i float64 są niemal identyczne, co oznacza, że precyzja obliczeń nie wpływa znacząco na jakość rozwiązania. Macierz ta jest znacznie bardziej odporna na błędy zaokrągleń, a wyniki pozostają stabilne i precyzyjne w całym badanym zakresie.

Wspólne wnioski

- Precyzja obliczeń ma wpływ na jakość rozwiązania, zwłaszcza w przypadku źle
 uwarunkowanych macierzy (jak w zadaniu 1). W takich sytuacjach float64 zwykle znacząco przewyższa float32 pod względem dokładności choć należy podkreślić, że przy
 ekstremalnie złym uwarunkowaniu również rozwiązania w float64 mogą wykazywać zauważalne błędy.
- Czas wykonania obliczeń jest niemal identyczny dla obu precyzji w badanym zakresie, co oznacza, że w kontekście rozmiarów $n \leq 500$ wybór wyższej precyzji nie generuje istotnych kosztów czasowych.
- Struktura macierzy decyduje o stabilności numerycznej całego układu. W zadaniu 1 zastosowano macierz silnie źle uwarunkowaną, co prowadziło do znacznych błędów niezależnie od metody. W zadaniu 2 użyto konstrukcji znacznie bardziej odpornej na propagację błędów, dzięki czemu wyniki pozostały stabilne nawet przy większych rozmiarach.
- Współczynnik uwarunkowania $\kappa(A)$ okazuje się bardzo dobrą miarą przewidywania trudności numerycznych jego gwałtowny wzrost koreluje ze wzrostem błędów, co w zadaniu 1 pozwoliło przewidzieć gwałtowny wzrost błędów, a w zadaniu 2 potwierdziło numeryczną stabilność.

Część IV

Pełne tabele

Tabela 3: Wyniki eksperymentu z zadania 1 dla obu precyzji (float32 vs float64)

		floa		float64				
n	e_max	e_euk	czas	κ	e_max	e_euk	czas	κ
2	0.000e+00	0.000e+00	4.125e-04	8.000e+00	0.000e+00	0.000e+00	8.590e-05	8.000e+00
3	1.311e-06	1.660e-06	1.424 e - 04	2.400e + 02	5.107e-15	6.489e-15	8.860 e-05	2.400e+02
4	1.907e-06	2.322e-06	1.991e-04	1.530e + 04	2.975e-14	3.767e-14	2.779e-04	1.530e + 04
5	4.644e-04	6.392e-04	1.121e-04	7.435e + 05	1.125e-12	1.559e-12	9.960e-05	7.431e + 05
6	8.652e-03	1.298e-02	3.144e-04	3.266e + 07	1.807e-10	2.678e-10	1.600e-04	3.216e+07
7	2.677e+00	3.849e+00	1.459e-04	1.950e+09	1.162e-09	1.670e-09	1.448e-04	1.417e+09
8 9	4.133e-01 4.133e+00	6.608e-01	1.272e-04	1.250e+10 1.487e+11	1.795e-07 1.318e-06	2.677e-07 2.150e-06	1.084e-04	5.566e+10
10	3.290e+00	5.855e+00 5.326e+00	1.539e-04 2.656e-04	1.467e+11 1.956e+10	2.235e-05	3.545e-05	2.748e-04 1.867e-04	2.019e+12 8.025e+13
11	5.538e+00	9.358e+00	2.030e-04 2.219e-04	9.681e+09	8.048e-05	1.328e-04	2.014e-04	3.014e+15
12	1.365e+01	1.939e+01	2.132e-04	1.139e + 10	2.253e-01	3.769e-01	1.958e-04	1.090e + 17
13	3.458e+00	6.108e+00	3.717e-04	4.776e + 10	2.501e+01	4.246e + 01	3.155e-04	3.190e + 18
14	8.869e+00	1.603e+01	3.349e-04	2.123e+10	1.747e + 00	2.809e+00	4.011e-04	5.476e + 18
15	1.831e+01	2.950e + 01	3.807e-04	$2.395e{+}10$	4.037e+00	6.354e + 00	3.122e-04	6.797e + 18
16	1.388e+01	3.289e + 01	5.289 e-04	6.037e + 10	4.837e+00	8.773e + 00	3.989e-04	7.414e + 18
17	9.063e+00	1.842e + 01	3.501e-04	$1.511e{+11}$	6.808e+00	9.786e + 00	3.401e-04	9.695e + 18
18	3.052e+01	4.764e+01	4.005e-04	7.394e + 10	3.891e+00	7.472e+00	3.661e-04	5.371e + 19
19	5.168e+01	8.536e+01	4.144e-04	7.890e+10	6.956e+00	1.169e+01	4.392e-04	3.423e+19
20	2.125e+02	3.766e + 02	4.721e-04	8.415e+10	3.479e+01	5.495e+01	4.725e-04	5.351e+20
$\begin{array}{c c} 21 \\ 22 \end{array}$	6.496e+00 8.044e+00	1.234e+01 1.936e+01	5.353e-04 6.304e-04	4.861e+10 4.876e+10	3.334e+01 1.705e+01	5.925e+01 2.546e+01	6.182e-04 7.118e-04	2.247e+19 2.944e+20
23	1.574e+01	3.493e+01	6.037e-04	5.777e+11	2.264e+01	4.858e+01	5.676e-04	1.357e + 20
24	5.461e+01	1.281e+02	6.477e-04	4.382e+11	6.117e+01	1.166e + 02	2.097e-03	7.075e + 19
25	1.382e+02	2.563e+02	7.765e-04	3.943e+11	2.996e+01	5.460e+01	6.459e-04	9.380e + 19
26	2.182e+01	5.112e+01	6.967e-04	1.940e + 12	3.058e+01	6.851e + 01	6.768e-04	1.265e + 20
27	1.296e+01	3.562e + 01	8.057e-04	7.927e + 11	3.346e+01	7.278e + 01	7.700e-04	4.002e + 19
28	8.182e+00	1.862e + 01	8.019e-04	4.672e + 11	1.768e + 01	3.602e+01	7.683e-04	1.495e + 20
29	7.029e+00	1.545e + 01	9.728e-04	5.160e + 11	1.022e+01	2.235e+01	8.478e-04	6.994e + 19
30	1.923e+01	4.925e+01	9.782e-04	2.093e+11	1.149e+01	2.911e+01	8.601e-04	2.112e+20
31	9.578e+00	2.503e+01	1.039e-03	2.162e+11	6.873e+01	1.310e+02	9.758e-04	5.602e + 20
32 33	4.850e+01 1.555e+01	9.547e+01 3.498e+01	1.102e-03 1.936e-03	1.569e+11 3.012e+11	6.865e+00 6.774e+01	1.644e+01 1.677e+02	1.139e-03 1.541e-03	1.289e+20 1.609e+20
34	8.561e+00	2.712e+01	3.200e-03	4.077e+11	5.966e+00	1.505e+01	2.888e-03	6.875e + 20
35	6.662e+00	1.451e+01	1.221e-03	3.639e+11	9.721e+02	2.433e+03	3.156e-03	1.018e + 20
36	3.125e+02	5.866e + 02	1.627e-03	8.561e + 11	8.130e+00	1.737e + 01	1.220e-03	7.606e + 19
37	1.082e+01	3.023e+01	2.878e-03	2.785e + 11	2.462e+02	6.264e + 02	1.333e-03	4.959e + 19
38	8.845e+00	2.166e + 01	4.444e-03	1.472e + 15	9.271e+00	1.880e + 01	3.588e-03	1.852e + 20
39	3.183e+01	8.930e+01	4.117e-03	$4.624e{+11}$	7.067e+00	1.646e + 01	4.165e-03	2.647e + 20
40	6.018e+01	1.324e+02	4.761e-03	1.171e + 12	2.093e+01	5.242e+01	4.391e-03	7.691e + 20
41	8.525e+01	2.024e+02	4.322e-03	8.611e+11	2.766e+02	6.190e+02	1.653e-03	6.665e + 19
42	6.190e+01	1.330e+02	1.773e-03	4.300e+11	1.234e+01	3.328e+01	1.600e-03	8.805e + 20
43 44	7.882e+00 2.244e+01	2.009e+01 6.221e+01	2.493e-03 5.123e-03	6.010e+11 2.736e+11	8.108e+01 1.909e+01	1.770e+02 3.989e+01	2.158e-03 4.375e-03	1.579e+20 6.580e+20
45	1.406e+01	4.208e+01	2.089e-03	5.342e+11	1.326e+01	2.692e+01	1.826e-03	3.137e + 20
46	1.094e+01	3.842e+01	1.929e-03	3.897e + 11	2.700e+01	6.288e + 01	2.039e-03	1.306e + 20
47	2.522e+01	7.007e + 01	2.068e-03	8.412e + 11	4.140e+01	8.151e+01	2.485e-03	3.423e + 20
48	1.820e+01	4.629e + 01	2.071e-03	$8.541e{+12}$	1.641e+01	4.188e + 01	2.190e-03	2.358e + 20
49	2.217e+01	6.517e + 01	2.128e-03	6.973e + 12	7.900e+01	2.373e + 02	2.685e-03	3.390e + 21
50	5.799e + 01	1.921e + 02	2.342e-03	1.037e + 12	2.334e+02	5.568e + 02	2.209e-03	6.543e + 20
51	4.604e+01	1.352e + 02	2.281e-03	9.132e+11	2.127e+02	5.365e + 02	2.347e-03	5.203e + 20
52	3.308e+01	1.137e + 02	2.455e-03	1.295e + 12	4.319e+01	1.405e+02	2.268e-03	3.747e + 21
53	2.135e+01	5.061e+01	2.716e-03	9.647e+11	7.319e+01	1.936e+02	2.374e-03	6.160e + 20
54 55	4.439e+01	1.092e+02	2.699e-03	1.224e+12	4.771e+02	1.435e+03	2.652e-03	7.132e+20
55 56	1.102e+01 1.211e+01	4.004e+01 3.344e+01	2.537e-03 2.654e-03	3.619e+12 1.185e+12	2.376e+01 1.299e+01	6.519e+01 4.445e+01	2.515e-03 2.578e-03	9.101e+21 2.144e+21
50 57	2.371e+01	5.344e+01 5.312e+01	2.716e-03	3.388e+12	3.370e+01	1.092e+01	2.699e-03	5.469e+20
58	1.624e+01	6.008e+01	2.922e-03	3.505e+12	1.155e+02	2.994e+02	2.966e-03	3.818e + 20
59	2.900e+01	8.434e+01	3.533e-03	6.967e + 11	2.942e+01	7.877e + 01	3.200e-03	9.361e + 20
60	1.030e+01	3.438e + 01	3.599e-03	9.370e + 11	1.260e+01	3.025e+01	4.797e-03	6.546e + 20
61	1.382e+02	4.518e + 02	3.407 e-03	2.533e + 12	4.900e+01	1.428e + 02	4.363e-03	1.179e + 21
62	2.311e+02	6.951e + 02	3.375 e-03	$2.484e{+12}$	6.520e+01	1.713e + 02	3.419 e-03	7.120e + 20
63	3.442e+01	1.173e + 02	3.506e-03	1.117e+13	4.272e+01	1.234e+02	3.482e-03	3.141e+20
64	2.509e+01	8.180e+01	3.489e-03	8.113e+11	2.373e+01	7.388e + 01	3.599e-03	3.874e + 20

Tabela 3 – kontynuacja

	Tabela 3 – kontynuacja									
		floa	t32		float64					
n	e_max	e_euk	czas	κ	e_max	e_euk	czas	κ		
65	2.988e+01	9.019e+01	3.679e-03	3.947e + 12	2.687e+01	7.269e+01	3.550e-03	9.348e + 20		
66	3.400e+01	1.236e + 02	3.662e-03	7.741e + 11	5.295e+01	1.893e + 02	3.575e-03	7.207e + 20		
67	5.587e + 01	1.689e + 02	3.734e-03	1.506e + 12	1.980e+01	5.653e + 01	3.721e-03	2.324e + 20		
68	1.631e+02	4.653e + 02	3.854e-03	1.586e + 12	7.276e+01	2.275e + 02	3.786e-03	1.422e + 22		
69	4.441e+01	1.337e + 02	3.927e-03	2.190e + 12	3.424e+02	1.145e + 03	3.898e-03	8.154e + 20		
70	2.715e+02	9.356e + 02	4.048e-03	2.166e + 12	1.874e + 02	6.152e + 02	5.186e-03	1.067e + 21		
71	1.332e+02	3.051e + 02	4.565e-03	1.791e + 12	2.144e+01	7.099e + 01	6.551e-03	8.110e + 21		
72	4.993e+01	1.405e + 02	4.246e-03	3.491e + 12	4.704e+01	1.735e + 02	3.973e-03	6.232e + 20		
73	4.175e + 01	1.482e + 02	4.711e-03	1.338e + 12	1.524e+03	5.270e + 03	4.493e-03	1.177e + 21		
74	2.052e+01	7.293e + 01	4.649e-03	1.431e + 12	7.977e+01	2.757e + 02	5.100e-03	1.187e + 21		
75	7.419e + 01	1.873e + 02	5.025e-03	1.425e + 12	3.730e+01	1.368e + 02	5.958e-03	1.607e + 21		
76	1.193e+02	3.920e+02	4.985e-03	1.650e + 12	6.292e+01	1.884e + 02	5.678e-03	2.828e + 21		
77	8.182e+02	2.624e + 03	5.063e-03	1.710e + 12	1.043e+01	3.550e + 01	5.376e-03	8.925e + 22		
78	2.893e+02	7.949e + 02	5.058e-03	2.980e + 12	2.707e+01	1.033e + 02	5.400e-03	1.246e + 21		
79	6.380e + 02	1.834e + 03	6.776e-03	1.614e + 12	2.611e+01	8.384e + 01	5.356e-03	2.026e + 22		
80	4.539e+02	1.231e + 03	6.902e-03	2.466e + 12	2.453e+01	8.345e + 01	5.166e-03	3.170e + 21		
81	3.303e+01	1.035e + 02	7.120e-03	5.456e + 12	1.228e+02	4.657e + 02	5.931e-03	9.888e + 20		
82	1.394e+01	5.148e + 01	6.312e-03	3.874e + 12	5.324e+02	2.089e + 03	6.496e-03	7.999e + 20		
83	5.824e+01	1.935e + 02	7.479e-03	3.667e + 12	8.966e+01	2.689e + 02	6.066e-03	3.580e + 20		
84	1.917e + 01	6.244e + 01	7.036e-03	9.606e + 11	4.550e+01	1.140e + 02	6.707e-03	1.236e + 21		
85	1.653e + 02	5.104e + 02	7.788e-03	2.721e + 13	2.271e+01	8.363e + 01	6.748e-03	1.806e + 21		
86	2.233e+01	7.707e + 01	7.082e-03	3.056e + 12	3.538e+01	1.259e + 02	9.161e-03	2.091e + 21		
87	1.113e+02	4.660e + 02	9.603e-03	2.712e + 12	1.917e+01	7.455e + 01	8.380e-03	5.111e + 21		
88	1.518e + 01	5.570e + 01	9.507e-03	2.834e + 12	1.755e+02	5.636e + 02	7.340e-03	2.921e + 21		
89	7.682e+01	2.856e + 02	7.603e-03	4.649e + 12	4.237e+02	1.693e + 03	7.266e-03	1.368e + 21		
90	1.866e + 01	6.749e + 01	8.312e-03	2.415e + 12	9.685e+01	3.140e + 02	8.707e-03	3.157e + 21		
91	2.479e + 01	9.237e + 01	7.893e-03	2.441e + 12	1.539e+02	4.286e + 02	8.270 e-03	3.160e + 21		
92	2.328e+01	9.871e + 01	8.122e-03	4.934e + 12	4.543e+01	1.364e + 02	7.620e-03	4.396e + 21		
93	7.720e+01	2.627e + 02	8.415e-03	2.048e + 13	2.650e+02	7.839e + 02	7.163e-03	2.264e + 21		
94	4.018e+01	1.184e + 02	7.414e-03	2.106e + 13	2.292e+02	6.865e + 02	7.356e-03	6.133e + 20		
95	4.031e+01	1.457e + 02	7.279e-03	8.019e + 13	3.747e + 02	1.179e + 03	7.273e-03	9.738e + 20		
96	2.698e + 01	1.070e + 02	7.392e-03	2.747e + 13	5.580e+01	2.105e+02	7.741e-03	1.113e + 21		
97	3.972e+01	1.252e + 02	7.789e-03	7.124e + 12	5.776e+01	1.898e + 02	7.767e-03	3.644e + 21		
98	2.653e+01	1.022e+02	7.888e-03	6.867e + 12	1.252e+02	3.396e + 02	7.711e-03	1.458e + 21		
99	1.256e + 02	4.191e + 02	7.870e-03	3.231e + 13	7.744e + 01	3.244e + 02	8.638e-03	1.063e + 21		
100	6.234e+02	2.227e + 03	9.322 e-03	2.035e + 14	1.931e+02	5.668e + 02	8.854 e-03	5.729e + 20		

Tabela 4: Wyniki eksperymentu z zadania 2 dla obu precyzji (float32 vs float64)

		floa	t32		float64				
n	e_max	e_euk	czas	κ	e_max	e_euk	czas	κ	
2	0.000e+00	0.000e+00	5.180e-05	3.000e+00	0.000e+00	0.000e+00	2.460e-05	3.000e+00	
3	1.192e-07	1.192e-07	3.100e-05	8.667e+00	2.220e-16	2.483e-16	2.490e-05	8.667e+00	
$\begin{bmatrix} 4 \\ 5 \end{bmatrix}$	1.192e-07 2.980e-07	1.333e-07 4.172e-07	3.690e-05 4.640e-05	1.650e+01 2.680e+01	2.220e-16 1.554e-15	2.483e-16 2.254e-15	3.190e-05 3.970e-05	1.650e+01 2.680e+01	
$\frac{3}{6}$	2.384e-07	3.476e-07	5.730e-05	3.967e+01	3.331e-16	4.710e-16	5.050e-05	3.967e+01	
7	1.431e-06	1.912e-06	8.310e-05	5.457e + 01	8.882e-16	1.180e-15	6.480e-05	5.457e + 01	
8	1.669e-06	2.157e-06	8.610 e - 05	7.242e+01	4.219e-15	6.510e-15	7.710e-05	7.242e+01	
9	1.788e-06	2.447e-06	1.008e-04	$9.238e{+01}$	5.329e-15	7.280e-15	9.120 e-05	$9.238e{+01}$	
10	4.530e-06	5.868e-06	1.170e-04	1.147e + 02	2.665e-15	4.280e-15	1.065e-04	1.147e + 02	
11	2.742e-06	4.396e-06	1.354e-04	1.398e + 02	4.663e-15	7.514e-15	1.237e-04	1.398e + 02	
12 13	3.278e-06 3.099e-06	5.022e-06 5.723e-06	1.555e-04 1.828e-04	1.668e+02 1.968e+02	7.772e-15 9.548e-15	1.093e-14 1.408e-14	1.425e-04 1.616e-04	1.668e+02 1.968e+02	
14	9.716e-06	1.280e-05	1.958e-04	2.289e+02	4.774e-15	7.977e-15	1.918e-04	2.289e+02	
15	3.815e-06	6.902e-06	2.643e-04	2.633e+02	7.550e-15	1.403e-14	7.625e-04	2.633e+02	
16	3.099e-06	5.902e-06	2.881e-04	3.005e+02	6.439e-15	1.186e-14	3.040e-04	3.005e+02	
17	4.768e-06	9.858e-06	3.007e-04	3.397e + 02	1.532e-14	2.912e-14	2.767e-04	3.397e + 02	
18	8.345e-06	1.788e-05	3.283e-04	3.817e + 02	1.510e-14	2.092e-14	3.053e-04	3.817e + 02	
19	1.651e-05	2.542e-05	3.715e-04	4.260e+02	1.110e-14	2.020e-14	3.361e-04	4.260e+02	
$\begin{bmatrix} 20 \\ 21 \end{bmatrix}$	1.669e-05 7.510e-06	2.821e-05 1.776e-05	4.341e-04 4.854e-04	4.725e+02 5.219e+02	1.332e-14 1.665e-14	2.423e-14 3.001e-14	3.707e-04 6.111e-04	4.725e+02 5.219e+02	
$\begin{bmatrix} 21 \\ 22 \end{bmatrix}$	6.676e-06	1.610e-05	5.307e-04	5.213e+02 5.733e+02	1.799e-14	3.495e-14	4.394e-04	5.733e+02	
23	1.311e-05	3.167e-05	5.254e-04	6.274e+02	1.354e-14	3.048e-14	4.717e-04	6.274e + 02	
24	1.508e-05	2.742e-05	5.334e-04	6.838e + 02	2.975e-14	6.681e-14	5.173e-04	6.838e + 02	
25	1.359e-05	2.715e-05	5.723e-04	7.424e+02	4.796e-14	7.926e-14	1.160e-03	7.424e+02	
26	2.396e-05	4.116e-05	7.785e-04	8.040e+02	5.151e-14	9.817e-14	6.070e-04	8.040e + 02	
27	1.526e-05	3.189e-05	6.612e-04	8.675e+02	7.572e-14	1.305e-13	6.265e-04	8.675e + 02	
28 29	1.758e-05 6.914e-05	4.564e-05 9.066e-05	7.652e-04 9.177e-04	9.336e+02 1.002e+03	3.131e-14 3.331e-14	6.907e-14 7.934e-14	6.365e-04 7.490e-04	9.336e+02 1.002e+03	
30	2.128e-05	3.960e-05	8.560e-04	1.002e+03 1.073e+03	4.996e-14	9.060e-14	7.702e-04	1.002e+03 1.073e+03	
31	2.086e-05	4.836e-05	8.661e-04	1.147e + 03	8.038e-14	1.341e-13	9.053e-04	1.147e + 03	
32	1.979e-05	4.519e-05	1.063e-03	1.222e+03	7.339e-14	1.110e-13	8.728e-04	1.222e+03	
33	3.576e-05	9.576 e-05	9.605 e-04	1.301e + 03	3.997e-14	7.692e-14	9.353e-04	1.301e + 03	
34	4.888e-05	8.422e-05	1.045e-03	1.381e + 03	4.263e-14	9.116e-14	1.009e-03	1.381e + 03	
35	3.445e-05	5.314e-05	1.059e-03	1.464e + 03	5.085e-14	1.002e-13	1.057e-03	1.464e + 03	
36 37	4.214e-05 3.684e-05	1.039e-04 8.108e-05	1.139e-03 1.166e-03	1.550e+03 1.638e+03	5.751e-14 8.038e-14	1.268e-13 1.397e-13	1.086e-03 1.472e-03	1.550e+03 1.638e+03	
38	2.480e-05	5.088e-05	1.259e-03	1.728e + 03	6.173e-14	1.317e-13	1.203e-03	1.728e + 03	
39	3.397e-05	7.039e-05	1.424e-03	1.821e+03	9.637e-14	1.768e-13	1.360e-03	1.821e + 03	
40	2.551e-05	5.840 e-05	1.365e-03	1.916e + 03	7.017e-14	1.665e-13	1.457e-03	1.916e + 03	
41	7.367e-05	1.574 e-04	1.435e-03	2.014e+03	5.951e-14	1.307e-13	1.389e-03	2.014e+03	
42	5.090e-05	1.104e-04	1.765e-03	2.114e+03	4.829e-14	1.140e-13	1.594e-03	2.114e+03	
43 44	8.583e-05	1.580e-04	1.559e-03 1.724e-03	2.216e+03	7.194e-14	1.668e-13	1.646e-03	2.216e+03	
45	4.482e-05 3.964e-05	1.073e-04 9.511e-05	1.757e-03	2.322e+03 2.429e+03	9.837e-14 1.062e-13	2.058e-13 2.862e-13	1.725e-03 1.669e-03	2.322e+03 2.429e+03	
46	8.869e-05	1.652e-04	2.521e-03	2.539e+03	7.383e-14	1.888e-13	1.741e-03	2.539e+03	
47	6.866e-05	1.391e-04	1.949e-03	2.651e + 03	1.192e-13	2.779e-13	1.943e-03	2.651e + 03	
48	6.223e-05	1.579e-04	2.518e-03	2.765e + 03	1.488e-13	3.554e-13	2.103e-03	2.765e + 03	
49	8.404e-05	1.599e-04	3.531e-03	2.883e+03	1.652e-13	3.901e-13	2.563e-03	2.883e+03	
50 51	5.406e-05 7.296e-05	1.249e-04 1.385e-04	2.168e-03 2.493e-03	3.002e+03 3.124e+03	1.280e-13 2.749e-13	2.335e-13 5.791e-13	2.292e-03 2.836e-03	3.002e+03	
52	7.296e-05 5.567e-05	1.385e-04 1.514e-04	2.493e-03 2.283e-03	3.124e+03 3.248e+03	2.749e-13 1.441e-13	5.791e-13 3.439e-13	2.830e-03 2.514e-03	3.124e+03 3.248e+03	
53	5.555e-05	1.404e-04	2.556e-03	3.375e+03	1.208e-13	3.227e-13	2.457e-03	3.246e+03 3.375e+03	
54	1.595e-04	3.942e-04	2.583e-03	3.504e+03	1.041e-13	3.069e-13	2.437e-03	3.504e+03	
55	5.662e-05	1.303e-04	2.711e-03	3.636e + 03	1.400e-13	3.535e-13	2.452 e-03	$3.636e{+03}$	
56	8.225e-05	2.131e-04	2.750e-03	3.770e + 03	1.552e-13	3.434e-13	2.877e-03	3.770e + 03	
57	8.631e-05	2.196e-04	2.831e-03	3.906e+03	1.648e-13	4.174e-13	3.478e-03	3.906e+03	
58 59	8.410e-05 6.485e-05	1.997e-04 1.768e-04	3.041e-03 4.272e-03	4.045e+03 4.187e+03	2.829e-13 2.269e-13	6.024e-13 4.939e-13	2.920e-03 4.566e-03	4.045e+03 4.187e+03	
60	7.713e-05	1.768e-04 1.987e-04	4.272e-03 4.778e-03	4.187e+03 4.330e+03	2.209e-13 1.461e-13	4.959e-15 3.333e-13	4.500e-03 6.011e-03	4.187e+03 4.330e+03	
61	6.592e-05	1.834e-04	3.916e-03	4.476e+03	2.163e-13	5.027e-13	3.820e-03	4.476e+03	
62	7.105e-05	2.090e-04	4.131e-03	4.625e + 03	1.967e-13	4.763e-13	3.248e-03	4.625e + 03	
63	1.132e-04	2.889e-04	3.867e-03	4.776e + 03	4.210e-13	8.880e-13	5.788e-03	4.776e + 03	
64	2.000e-04	3.467e-04	7.783e-03	4.930e+03	1.621e-13	4.353e-13	7.408e-03	4.930e+03	
65	8.589e-05	2.315e-04	8.703e-03	5.085e+03	1.523e-13	5.032e-13	9.344e-03	5.085e+03	
66 67	3.397e-04 1.907e-04	6.866e-04 4.031e-04	5.289e-03 4.410e-03	5.244e+03 5.405e+03	1.816e-13 2.949e-13	4.542e-13 5.981e-13	4.412e-03 1.165e-02	5.244e+03 5.405e+03	
68	1.389e-04	3.433e-04	6.586e-03	5.405e+03 5.567e+03	2.949e-13 2.202e-13	5.583e-13	4.854e-03	5.405e+03 5.567e+03	
69	1.042e-04	2.686e-04	4.070e-03	5.733e+03	2.784e-13	7.169e-13	6.661e-03	5.733e+03	
70	1.307e-04	3.616e-04	6.737e-03	5.901e+03	2.129e-13	8.208e-13	5.083e-03	5.901e+03	
		4.012e-04	4.829e-03	6.072e + 03	2.156e-13	5.819e-13	4.058e-03	6.071e + 03	

Tabela 4 – kontynuacja

		floa		abela 4 – kon	ttynuacja float64				
n	e_max	e_euk	czas	κ	e_max	e_euk	czas	κ	
72	2.611e-04	6.119e-04	1.105e-02	6.245e+03	3.246e-13	8.766e-13	4.563e-03	6.245e+03	
73 74	3.089e-04 1.369e-04	6.226e-04 3.375e-04	4.952e-03 4.856e-03	6.420e+03 6.598e+03	5.564e-13 5.000e-13	1.519e-12 1.489e-12	5.465e-03 5.211e-03	6.420e+03 6.597e+03	
75	1.726e-04	5.749e-04	5.295e-03	6.778e + 03	2.736e-13	6.868e-13	5.042e-03	6.778e + 03	
76	1.624 e-04	4.104e-04	5.360e-03	6.960e + 03	8.692e-13	1.750e-12	5.835e-03	6.960e + 03	
77	1.239 e-04	4.380e-04	7.161e-03	7.145e + 03	4.156e-13	9.053e-13	6.417e-03	7.145e + 03	
78 - 8	2.033e-04	4.830e-04	5.372e-03	7.333e+03	8.296e-13	1.707e-12	5.153e-03	7.332e+03	
79	2.104e-04	5.752e-04	5.163e-03	7.523e+03	3.193e-13	7.358e-13	5.214e-03	7.522e+03	
80 81	2.284e-04 1.734e-04	5.926e-04 5.100e-04	5.851e-03 5.275e-03	7.715e+03 7.909e+03	4.420e-13 7.208e-13	1.088e-12 2.190e-12	5.374e-03 5.379e-03	7.715e+03 7.909e+03	
82	1.839e-04	4.411e-04	5.874e-03	8.107e+03	2.531e-13	7.568e-13	5.673e-03	8.107e + 03	
83	1.311e-04	4.338e-04	6.102 e-03	8.306e+03	2.873e-13	7.859e-13	5.847e-03	8.306e + 03	
84	1.845e-04	5.638e-04	6.641e-03	8.508e + 03	6.461e-13	1.636e-12	5.821e-03	8.508e + 03	
85	1.502e-04	4.401e-04	6.037e-03	8.713e+03	4.079e-13	1.067e-12	7.307e-03	8.712e + 03	
86 87	1.701e-04 2.990e-04	4.514e-04 7.231e-04	7.224e-03 7.290e-03	8.919e+03 9.129e+03	3.952e-13 2.580e-13	1.000e-12 8.349e-13	6.808e-03 6.410e-03	8.919e+03 9.129e+03	
88	2.298e-04	6.512e-04	7.290e-03 7.061e-03	9.340e+03	4.041e-13	1.146e-12	7.265e-03	9.340e+03	
89	3.991e-04	8.940e-04	6.750e-03	9.555e + 03	3.895e-13	1.140e-12	6.493e-03	9.554e+03	
90	1.893e-04	6.897e-04	7.116e-03	9.771e + 03	2.933e-13	9.982e-13	7.278e-03	9.771e + 03	
91	4.312e-04	1.099e-03	7.083e-03	9.990e + 03	4.823e-13	1.162e-12	7.117e-03	9.989e + 03	
92	1.767e-04	5.395e-04	6.972e-03	1.021e+04	1.009e-12	2.337e-12	8.015e-03	1.021e+04	
93	5.051e-04	1.211e-03	7.667e-03	1.044e+04	4.738e-13	1.377e-12	8.277e-03	1.043e + 04	
94 95	3.433e-04 3.533e-04	9.748e-04 8.955e-04	8.622e-03 8.425e-03	1.066e+04 1.089e+04	3.801e-13 6.907e-13	1.216e-12 1.975e-12	8.210e-03 8.334e-03	1.066e+04 1.089e+04	
96	2.480e-04	7.169e-04	8.626e-03	1.112e+04	3.735e-13	1.120e-12	8.019e-03	1.112e+04	
97	2.830e-04	6.282 e-04	8.285 e-03	1.136e + 04	4.573e-13	1.321e-12	8.512e-03	1.135e + 04	
98	2.599e-04	5.909e-04	8.789 e-03	1.159e + 04	6.781e-13	$1.555\mathrm{e}\text{-}12$	9.927e-03	1.159e + 04	
99	4.395e-04	1.165e-03	9.395e-03	1.183e+04	9.397e-13	2.435e-12	8.962e-03	1.183e+04	
100	5.060e-04	1.644e-03	8.918e-03	1.207e+04	4.929e-13	1.527e-12	8.215e-03	1.207e+04	
$\frac{110}{120}$	4.240e-04 5.257e-04	1.212e-03 1.394e-03	1.150e-02 1.370e-02	1.461e+04 1.740e+04	6.031e-13 7.612e-13	1.654e-12 2.393e-12	1.203e-02 1.255e-02	1.461e+04 1.740e+04	
130	6.666e-04	1.879e-03	1.439e-02	2.042e+04	1.197e-12	3.477e-12	1.499e-02	2.042e+04	
140	7.461e-04	2.555e-03	1.578e-02	2.369e + 04	1.947e-12	4.593e-12	1.684 e - 02	2.369e + 04	
150	7.410e-04	2.420 e-03	1.892e-02	2.720e + 04	1.751e-12	5.864e-12	2.028e-02	2.720e + 04	
160	1.176e-03	4.479e-03	2.537e-02	3.096e+04	2.268e-12	7.951e-12	2.127e-02	3.096e+04	
170 180	1.120e-03 1.261e-03	3.600e-03 4.216e-03	2.492e-02 2.736e-02	3.496e+04 3.920e+04	9.956e-13 2.634e-12	4.389e-12 9.707e-12	2.576e-02 3.112e-02	3.495e+04 3.919e+04	
190	1.517e-03	4.210e-03 4.646e-03	3.594e-02	4.368e+04	2.294e-12	7.923e-12	4.045e-02	4.368e+04	
200	1.211e-03	4.152e-03	3.746e-02	4.841e+04	1.390e-12	6.411e-12	3.552e-02	4.840e+04	
210	2.181e-03	6.959 e-03	3.457 e - 02	5.338e + 04	3.911e-12	1.349e-11	5.469 e-02	5.337e + 04	
220	1.400e-03	6.207e-03	4.637e-02	5.859e + 04	2.353e-12	9.597e-12	4.091e-02	5.858e + 04	
230	1.569e-03	6.337e-03	4.155e-02	6.404e+04	4.161e-12	1.432e-11	4.562e-02	6.403e+04	
$\frac{240}{250}$	3.196e-03 2.709e-03	1.393e-02 1.200e-02	4.804e-02 8.609e-02	6.975e+04 7.569e+04	3.836e-12 3.480e-12	1.257e-11 1.496e-11	5.619e-02 4.989e-02	6.973e+04 7.566e+04	
260	3.671e-03	1.333e-02	5.380e-02	8.186e+04	3.067e-12	1.384e-11	5.614e-02	8.184e+04	
270	2.129e-03	7.917e-03	6.042e-02	8.829e + 04	5.204e-12	2.387e-11	6.256e-02	8.827e + 04	
280	2.215e-03	1.011e-02	6.908e-02	9.498e + 04	8.092e-12	3.532e-11	7.017e-02	9.493e + 04	
290	3.777e-03	1.568e-02	6.977e-02	1.019e + 05	4.922e-12	2.261e-11	7.042e-02	1.018e + 05	
300	3.013e-03	1.337e-02	7.828e-02	1.090e+05	9.483e-12	4.666e-11	9.419e-02	1.090e+05 1.164e+05	
$\frac{310}{320}$	3.471e-03 3.898e-03	1.572e-02 1.559e-02	7.882e-02 8.379e-02	1.164e+05 1.241e+05	5.723e-12 6.067e-12	2.324e-11 3.124e-11	7.628e-02 9.041e-02	1.104e+05 1.240e+05	
330	3.004e-03	1.290e-02	9.188e-02	1.320e+05	1.076e-11	3.951e-11	1.016e-01	1.319e + 05	
340	5.846e-03	2.607e-02	9.782e-02	1.401e + 05	9.369e-12	5.010e-11	9.494 e-02	1.400e + 05	
350	7.022e-03	3.020 e-02	1.062e-01	1.485e + 05	1.340e-11	5.623e-11	1.037e-01	$1.484e{+05}$	
360	7.243e-03	2.808e-02	1.131e-01	1.571e + 05	6.571e-12	3.011e-11	1.141e-01	1.570e + 05	
370	5.679e-03	2.544e-02	1.171e-01	1.659e+05	1.086e-11	5.287e-11	1.132e-01	1.658e + 05	
$\frac{380}{390}$	5.606e-03 5.630e-03	2.217e-02 2.328e-02	1.267e-01 1.265e-01	1.750e+05 1.844e+05	1.284e-11 9.937e-12	5.627e-11 4.856e-11	1.230e-01 1.274e-01	1.749e+05 1.843e+05	
400	7.034e-03	3.446e-02	1.314e-01	1.939e+05	1.029e-11	4.364e-11	1.418e-01	1.938e+05	
410	7.591e-03	3.570 e-02	1.400e-01	2.038e + 05	1.020e-11	5.448e-11	1.435 e-01	2.037e + 05	
420	5.102e-03	2.489e-02	1.806e-01	2.138e + 05	2.361e-11	9.641e-11	1.708e-01	2.137e + 05	
430	6.388e-03	3.166e-02	1.570e-01	2.242e+05	1.444e-11	6.889e-11	1.688e-01	2.240e + 05	
$\frac{440}{450}$	5.176e-03 1.048e-02	3.155e-02 4.672e-02	1.784e-01 2.163e-01	2.347e+05 2.456e+05	2.055e-11 1.066e-11	7.727e-11 5.505e-11	1.752e-01 2.166e-01	2.346e+05 2.454e+05	
460	1.048e-02 1.101e-02	4.072e-02 4.742e-02	2.103e-01 1.747e-01	2.450e+05 2.567e+05	2.952e-11	1.238e-10	2.100e-01 1.831e-01	2.454e+05 2.564e+05	
470	5.870e-03	3.612e-02	1.824e-01	2.680e + 05	1.204e-11	6.842e-11	1.838e-01	2.677e + 05	
480	6.971e-03	3.789e-02	1.868e-01	2.796e + 05	2.896e-11	1.210e-10	2.104e-01	2.792e + 05	
490	9.501 e-03	4.597e-02	1.960e-01	2.913e+05	1.989e-11	1.099e-10	2.359e-01	2.910e + 05	
500	9.134e-03	4.806e-02	2.242e-01	3.034e+05	1.346e-11	7.007e-11	2.386e-01	3.030e+05	