Topology: Class Notes

Emmanuel Flores *

October 3, 2024

1 General Defintions

2 Bases and Subspaces

In what follows I'm going to use TS for Topological Space. Given a topological space we define a basis for this TS as follows:

Definition 1 (Basis). Given a TS (X, \mathcal{T}) , we say that $\beta \subset \mathcal{T}$ is a basis for the TS if all open subsets of X can be written as the union of elements of β

Theorem 1. Let (X, \mathcal{T}) be a TS, and let β be a collection of subsets of X. Then β is a basis for \mathcal{T} if and only if

- $\beta \subset \mathcal{T}$,
- for each open set U in \mathcal{T} and a point $p \ni U$ there is a set $V \in \beta$ such that $p \in V \subset U$

Proof. Let's assume that β is a basis, thus it follows that $\beta \subset \mathcal{T}$ by definition. On the other hand, let $U \in \mathcal{T}$ such that $p \in U$, because β is basis it follows that U can be written as the union of elements of β , and from this it follows that there exists $V \in \beta$ such that $p \in V \subset U$.

Now let's β as given

^{*}eq.emmanuel@gmail.com