DATA SCIENCE & MACHINE LEARNING-LAB

CYCLE 2

- 1. Create a three dimensional array specifying float data type and print it.
- 2. Create a 2 dimensional array (2X3) with elements belonging to complex data type and print it. Also display
 - a. the no: of rows and columns
 - b. dimension of an array
 - c. reshape the same array to 3X2
- 3. Familiarize with the functions to create
 - a) an uninitialized array
 - b) array with all elements as 1,
 - c) all elements as 0
- 4. Create an one dimensional array using **arange** function containing 10 elements.

Display

- a. First 4 elements
- b. Last 6 elements
- c. Elements from index 2 to 7
- 5. Create an 1D array with **arange** containing first 15 even numbers as elements
 - a. Elements from index 2 to 8 with step 2(also demonstrate the same using slice function)
 - b. Last 3 elements of the array using negative index
 - c. Alternate elements of the array
 - d. Display the last 3 alternate elements
 - 6. Create a 2 Dimensional array with 4 rows and 4 columns.
 - a. Display all elements excluding the first row
 - b. Display all elements excluding the last column
 - c. Display the elements of $\mathbf{1}^{\text{st}}$ and $\mathbf{2}^{\text{nd}}$ column in $\mathbf{2}^{\text{nd}}$ and $\mathbf{3}^{\text{rd}}$ row
 - d. Display the elements of 2nd and 3rd column
 - e. Display 2nd and 3rd element of 1st row
 - f. Display the elements from indices 4 to 10 in descending order(use -values)
- 7. Create two 2D arrays using array object and
 - a. Add the 2 matrices and print it
 - b. Subtract 2 matrices

- c. Multiply the individual elements of matrix
- d. Divide the elements of the matrices
- e. Perform matrix multiplication
- f. Display transpose of the matrix
- g. Sum of diagonal elements of a matrix
- 8. Demonstrate the use of insert() function in 1D and 2D array
- 9. Demonstrate the use of diag() function in 1D and 2D array.(use both square matrix and matrix with different dimensions)
- 10. Create a square matrix with random integer values(use randint()) and use appropriate functions to find:
 - i) inverse
 - ii) rank of matrix
 - iii) Determinant
 - iv) transform matrix into 1D array
 - v) eigen values and vectors
 - 11.. Create a matrix X with suitable rows and columns
 - i) Display the cube of each element of the matrix using different

methods(use multiply(), *, power(),**)

- ii) Display identity matrix of the given square matrix.
 - iii) Display each element of the matrix to different powers.
- 11. Create a matrix Y with same dimension as X and perform the operation X^2+2Y
- 12. Define matrices A with dimension 5x6 and B with dimension 3x3. Extract a sub matrix of dimension 3x3 from A and multiply it with B. Replace the extracted sub matrix in A with the matrix obtained after multiplication

13. Given 3 Matrices A, B and C. Write a program to perform matrix multiplication of the 3 matrices.

- 14. Write a program to check whether given matrix is symmetric or Skew Symmetric.
- 15. Given a matrix-vector equation AX=b. Write a program to find out the value of X using **solve()**, given A and b as below

$$X = A^{-1}b$$
.

$$A = \begin{bmatrix} 2 & 1 & -2 \\ 3 & 0 & 1 \\ 1 & 1 & -1 \end{bmatrix} \quad \mathbf{b} = \begin{bmatrix} -3 \\ 5 \\ -2 \end{bmatrix}$$

Note: Numpy provides a function called solve for solving such equations.

16. Write a program to perform the SVD of a given matrix A. Also reconstruct the given matrix from the 3 matrices obtained after performing SVD.

Use the function: numpy.linalg.svd()

Singular value Decomposition

Matrix decomposition, also known as matrix factorization, involves describing a given matrix using its constituent elements.

The Singular-Value Decomposition, or SVD for short, is a matrix decomposition method for reducing a matrix to its constituent parts in order to make certain subsequent matrix calculations simpler. This approach is commonly used in reducing the no: of attributes in the given data set.

The SVD of mxn matrix A is given by the formula $A = U\Sigma V^T$