Computação Gráfica

Realce de bordas

Profa. Fátima Nunes

Por que bordas são importantes em imagens?

Uso de máscaras - templates

- Matriz cujo elemento central é posicionado no pixel de interesse.
- Os elementos da vizinhança, incluindo o pixel em questão, são multiplicados pelos valores indicados nas posições correspondentes da matriz.

Uso de máscaras - templates

 Soma dos resultados obtidos substitui o valor do pixel de interesse na nova imagem.

\mathbf{w}_1	\mathbf{w}_2	W3
W4	W5	W ₆
W7	\mathbf{w}_8	W 9

Máscara de tamanho 3 X 3

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
10	10	0	0	0	0	0	0	0	0
10	20	20	10	0	0	0	0	0	0
10	20	25	25	25	20	0	0	0	0
20	20	25	25	25	30	30	30	0	0
20	20	20	20	30	40	40	50	40	0
15	20	20	30	40	40	50	80	80	0
30	30	30	30	30	50	50	50	50	0
10	10	20	20	20	40	40	40	50	10

® 1	® 2	W 3	0	0	0	0	0	0	0
W 4	® 5	W 6	0	0	0	0	0	0	0
1 W7	1 W8	W 9	0	0	0	0	0	0	0
10	20	20	10	0	0	0	0	0	0
10	20	25	25	25	20	0	0	0	0
20	20	25	25	25	30	30	30	0	0
20	20	20	20	30	40	40	50	40	0
15	20	20	30	40	40	50	80	80	0
30	30	30	30	30	50	50	50	50	0
10	10	20	20	20	40	40	40	50	10

0	W 1	W 2	W 3	0	0	0	0	0	0
0	W 4	Ø 5	W 6	0	0	0	0	0	0
10	1 %)	W 8	W	0	0	0	0	0	0
10	20	20	10	0	0	0	0	0	0
10	20	25	25	25	20	0	0	0	0
20	20	25	25	25	30	30	30	0	0
20	20	20	20	30	40	40	50	40	0
15	20	20	30	40	40	50	80	80	0
30	30	30	30	30	50	50	50	50	0
10	10	20	20	20	40	40	40	50	10

0	0	Ø	W2	W 3	0	0	0	0	0
0	0	W	W5	W 6	0	0	0	0	0
10	10	W	w 8	W 9	0	0	0	0	0
10	20	20	10	0	0	0	0	0	0
10	20	25	25	25	20	0	0	0	0
20	20	25	25	25	30	30	30	0	0
20	20	20	20	30	40	40	50	40	0
15	20	20	30	40	40	50	80	80	0
30	30	30	30	30	50	50	50	50	0
10	10	20	20	20	40	40	40	50	10

0	0	0	0	0	0	0	W1	W 2	W 3
0	0	0	0	0	0	0	W 4	W ₅	W ₆
10	10	0	0	0	0	0	W 7	W 8	W9
10	20	20	10	0	0	0	0	0	0
10	20	25	25	25	20	0	0	0	0
20	20	25	25	25	30	30	30	0	0
20	20	20	20	30	40	40	50	40	0
15	20	20	30	40	40	50	80	80	0
30	30	30	30	30	50	50	50	50	0
10	10	20	20	20	40	40	40	50	10

0	0	0	0	0	0	0	0	0	0
W ₁	W ₂	W ₃	0	0	0	0	0	0	0
144	1w ₅	W ₆	0	0	0	0	0	0	0
1 w ₂	248	20	10	0	0	0	0	0	0
10	20	25	25	25	20	0	0	0	0
20	20	25	25	25	30	30	30	0	0
20	20	20	20	30	40	40	50	40	0
15	20	20	30	40	40	50	80	80	0
30	30	30	30	30	50	50	50	50	0
10	10	20	20	20	40	40	40	50	10

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
10	10	0	0	0	0	0	0	0	0
10	20	20	10	0	0	0	0	0	0
10	20	25	25	25	20	0	0	0	0
20	20	25	25	25	30	30	30	0	0
20	20	20	20	30	40	40	50	40	0
15	20	20	30	40	40	50	80	80	W 3
30	30	30	30	30	50	50	5 0	5 0	W ₀
10	10	20	20	20	40	40	¥7 0	<u>w</u> 80	40

Exercício

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
10	10	0	0	0	0	0	0	0	0
10	20	20	10	0	0	0	0	0	0
10	20	25	25	25	20	0	0	0	0
20	20	25	25	25	30	30	30	0	0
20	20	20	20	30	40	40	^w 10	¥20	W ₃
15	20	20	30	40	40	50	80	850	Wg
30	30	30	30	30	50	50	% 70	₩ 80	Wg
10	10	20	20	20	40	40	40	50	10

Considerando cada pixel da imagem denominado por $I_{i,j}$ e cada posição da máscara como $M_{k,l}$, qual é o algoritmo para aplicar na imagem toda uma máscara de tamanho 3x3?

Exercício

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
10	10	0	0	0	0	0	0	0	0
10	20	20	10	0	0	0	0	0	0
10	20	25	25	25	20	0	0	0	0
20	20	25	25	25	30	30	30	0	0
20	20	20	20	30	40	40	5 0	420	W 3
15	20	20	30	40	40	50	840	80	W ₆
30	30	30	30	30	50	50	5 70	5 80	W9
10	10	20	20	20	40	40	40	50	10

Considerando cada pixel da imagem denominado por $I_{i,j}$ e cada posição da máscara como $M_{k,l}$, qual é o algoritmo para aplicar na imagem toda uma máscara de tamanho NxN?

- Relembrando Conceitos
 - -Gradiente???

Relembrando Conceitos

-Gradiente???

Vetor que aponta para onde a função tem seu maior crescimento.

Relembrando Conceitos

Gradiente

Exemplo: gradiente de $f(x,y) = x^2 + y^2 + xy$

$$G[f(x,y)] = \begin{bmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{bmatrix} G[f(x,y)] = \begin{bmatrix} 2x+y \\ 2y+x \end{bmatrix}$$

- Realce de bordas e detalhes
- Realce por diferenciação
 - Maioria dos métodos usados de realce de bordas em processamento de imagens é baseada na aplicação de gradientes.
 - Dada uma função f(x,y), o gradiente de f nas coordenadas (x,y) é definido pelo vetor:

$$G[f(x,y)] = \begin{bmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{bmatrix}$$

- Detecção de bordas e detalhes
- Realce por diferenciação
 - Duas propriedades importantes do gradiente são:
 - o vetor G[f(x,y)] aponta na direção do máximo da função f(x,y);
 - a magnitude de G[f(x,y)] é dada por:

$$mag[G] = \sqrt{\left[\left(\frac{\partial}{\partial x} / \frac{\partial}{\partial x} \right)^2 + \left(\frac{\partial}{\partial y} / \frac{\partial}{\partial y} \right)^2 \right]}$$

- Detecção de bordas e detalhes
- Realce por diferenciação
 - Para uma imagem digital, a magnitude pode ser aproximada pelas diferenças.
 - Uma aproximação comumente utilizada é:

$$G[f(x,y)] \cong \sqrt{[f(x,y)-f(x+1,y)]^2 + [f(x,y)-f(x,y+1)]^2}$$

Detecção de bordas e detalhes

- Realce por diferenciação
 - A utilização de valores absolutos produz resultados similares:

$$G[f(x,y)] \cong |f(x,y)-f(x+1,y)| + |f(x,y)-f(x,y+1)|$$

 Portanto, subtraindo-se ponto a ponto a imagem resultante da diferenciação da imagem original, pode-se obter uma imagem final com detalhes realçados.

Gradiente - Exemplo

 Mean: 119,43
 Level: 100

 Std Dev: 51,52
 Count: 1162

 Median: 122
 Percentile: 34,42

Pixels: 187500 Cache Level: 1

Gradiente - Exemplo

Realce por diferenciação - algoritmo

$$G[f(x,y)] \cong |f(x,y)-f(x+1,y)| + |f(x,y)-f(x,y+1)|$$

- Detecção de bordas e detalhes
- Filtro passa-alta
 - Realça componentes de alta frequência sinais pequenos e bordas.
 - Template:

-1	-1	-1
-1	8	-1
-1	-1	-1

Filtro passa-alta

Filtro passa-alta

- Detecção de bordas e detalhes
- Operador Gradiente Borda Horizontal
 - Template:

- Detecção de bordas e detalhes
- Operador Gradiente Borda Vertical
 - Template:

-1	1
-1	1

Borda - Gradiente Vertical e Horizontal

Borda - Gradiente Vertical e Horizontal

- Detecção de bordas e detalhes
- Detector de Bordas de Sobel
 - Bom para imagens ruidosas.
 - Templates:

Horizontal		
1	0	-1
2	0	-2
1	0	-1

Sobel - Vertical e Horizontal

Sobel - Vertical e Horizontal

Exercícios (para entregar)

- 1) Continuar a implementação do programa iniciado na aula anterior, incluindo as seguintes funcionalidades:
 - realce de bordas utilizando gradiente
 - filtro passa alta
- 2) Para cada uma das funcionalidades dos exercícios anteriores:
 - processar uma imagem escolhida por você (em nível de cinza) e apresentar a imagem original, a imagem processada e seus respectivos histogramas;

Siga as instruções de entrega disponibilizadas na plataforma utilizada pela disciplina.

Computação Gráfica

Realce de bordas

Profa. Fátima Nunes