Algoritmi e Strutture Dati (modulo I) - testo prova scritta 26/06/2025 docente: Luciano Gualà

Cognome: Nome: Matr:.....

Esercizio 1 [16 punti]

A: notazione asintotica. Dire quali delle seguenti relazioni asintotiche sono vere: $n \log n + \sqrt{n} = \Theta(\frac{n^{3/2}}{\sqrt{n+3}}); \quad \log^2 n = \Theta(\log n^2); \quad \sqrt{\log n} = o(\log \log n); \quad 2^{2n} = \omega(2^n);$

B: equazioni di ricorrenza. Fornire la soluzione asintotica alle seguenti relazioni di ricorrenza: T(n) = 2T(n/4) + 1; Soluzione: Soluzione:

C: algoritmi e complessità. Quale algoritmo useresti e quanto costa se devi:

- Cercare un elemento in un vettore ordinato di n elementi:
- Dato un vettore di n numeri, trovare i primi $\lceil \sqrt{n} \rceil$ valori più piccoli:
- Trovare il diametro di un grafo non orientato e non pesato, ovvero la massima distanza fra due nodi:
- Costruire un albero AVL con n specifiche chiavi prese in input:

Esercizio 2 [8 punti] (inclusion coefficient)

Dati due insiemi A e B, definiamo l'inclusion coefficient di B in A il valore numerico: $\Phi(A, B) = \frac{|A \cap B|}{|A|}$. Dati due insiemi A e B di n elementi ciascuno memorizzati in due vettori, progettare un algoritmo che calcoli $\Phi(A.B)$ in tempo $o(n^2)$. Si fornisca lo pseudocodice dettagliato dell'algoritmo.

<i>a</i>			i																
Tipo Terreno	Mazza 1	Mazza 2					./'								`\.				
1 W	6	11		4		.''				,/.	/_	. 🗷	•	•	:	λ,			
2	3	5		,	1	W	•	•		À	•	*	W	W	•	Ŵ			•
3	1	2			1	2	3	4	5	6	7	8	9	10	11	12	13	• 14	15

Esercizio 3 [8 punti] (golf unidimensionale)

Partecipate a un importante torneo di golf unidimensionale, uno strano sport simile al golf in cui il campo è un segmento di terreno stretto e lungo discretizzato in n posizioni consecutive indirizzate con gli interi da 1 ad n. La pallina si trova inizialmente in posizione 1, mentre la buca si trova in posizione $b \in \{2, ..., n\}$. Esistono 3 diversi tipi di terreno, indicizzati con gli interi da 1 a 3, e a ogni posizione i è associato un tipo $t_i \in \{1, 2, 3\}$. Avete inoltre a disposizione 2 mazze e potete scegliere liberamente la mazza da usare per ogni colpo. In generale, quando la pallina è posizionata su una generica posizione i e viene colpita con la j-esima mazza, essa può essere indirizzata verso una delle due posizioni $i - d(t_i, j)$ o $i + d(t_i, j)$ (a seconda della direzione del colpo), dove $d(t_i, j)$ è una distanza intera positiva che dipende sia dal tipo t_i di terreno della posizione i che dalla mazza scelta. In ogni caso, è vietato mandare la pallina oltre i limiti del campo da gioco. L'obiettivo è quello di mandare la pallina in buca (cioè in posizione b) con il minor numero possibile di colpi. Progettate un algoritmo efficiente di tempo O(n) per il problema.