bearing quickly when irrelevant attributes aband: a new lower - threshold algorithm 1. We assume that becoming tales place in a seq. of trials. 1. The order of event in a triel or as follows: 1. The Garner receives an instance & {0,13". {0,13" is referred to as the instance space. 1. The learner makes a predection of the correct value & {0,1}. 3. The learner is told whether or not the prechetten was accurate, referred to as the veinforcement. 3. We assume that I f: {0,1}n -> {0,1} which maps each instance to each correct response. 4. This f is called the torget finalism or target concept. 5. An algo. for learning in this cetting is called on-line learning from examples. 6. When they menter learning also. without further qualification, they mean I 7. They only consider deterministra dogo. 8. The class of possible target function is called the "target class!", referred to a C. 3. The nature of absolute mistale bounds: 1. + learning algo. A and +f, let Ma(f) be the max. over all possible seq. of mitances of the no. of mitakes that algo. A makes when the target tun. is it. 2. If A and non-empty C, let MA(f) = max MA(f). 4. Any no. greater than or equal to M(C) will be called a mistake bound

for algo. A applied to a class C.

5. opt CC) = min MA(C).

6. Ats optimal for C of MA (C) = opt (C) 7. opt (C) is the best possible worst use nistake bound.

for any algo. bearing C 8. If compt. recourse is not an issue, we can use "halving also".

9. Given a target class C and an instance x, let. $\frac{1}{2} \frac{1}{2} \frac{1$

10. Hafing also. pseudo code:

1. Set CONSIST to C

If | \(\xi, \(\consisT, \tall \) | > | \(\xi(\consisT, \tall \) |, predicts 1, ow. pudlet 0.

Receive veryonce ment E {0,1} Set CONSIST = G. (CONSIST, 20) if remforement is 1, go (consist, x) o.w.

consist now contains fun. constent to all post instances.

11. Let MHALVING (C) be the max. no. of mistakes that the algo	(7)
makes when: It is run for the target class C	
. CONSIST is mitally set to C	
The Arest from EC.	
2. For any non-empty target class C, MHALVING (C) & log2 C . 6 4	heorem 1.
13. For any finite target class C, opt CC) & lag_1C/ & theorem 2.	
14. A mistake tree for a target class C over on netance space X is:	
. a binary tree	
, each node is a non-empty subset of C) def. 2.
. each internal node is labelled with a p	
. the root of the tree is a halad with x the left this:	
. the root of the tree is C. . given any internal node C' labeled with x the left this: . the left child of C', if present, is $f_0(C', x)$.)
. the left child of " " & (C',x).	
the nyn	
and to pinal	root.
15. A complete k-mitake tree is a mistake tree in a complete binary tree with height k. complete binary tree with height k. 16. The height of a tree is the length in edges of the largest path from the 17. For any non-empty finite target class C, let K(C) equals the 17. For any non-empty finite target class C, let K(C) equals the	
17. For any non-empty timite target class tree for C.	
17. For any non-empty timite interestate tree for C. layest int. 17 a complete k-mistake tree for C.	
18. 8-tandered opinion	ago
tour of white 1. or	$\omega = 0$.
If K(G(consist, x)) > K(G(consis	o & (cowsist, x) J
one [3. If $K(G_1(consist, x)) > K(G_2(consist, x))$; produce to the set consist = $G_1(consist, x)$ of renforcement is 1, 0.w. the secons the remaining consistent fines have	
frial [4. Set CONSIST = \(\xi_1 \) (CONSIST, \times) if a some state occurs, the remaining consistent fines have 19. Whenever a mistake occurs, the remaining consistent fines have the smaller maximal complete mistake tree.	
19. Whenever a mistake occurs, the nemaining the smaller maximal complete mistake tree.	
20. Let X be any mistance space. SOA denote the standard optimal algo. C be any finite class of times with domain X and mage 10, 1).	therem 3.
Som almore that eless of tems with clomain & are mo	
2) The theorem proof regules 2 lemma.	
21. This theorem proof class C, apt (C) > K(C) & lemma 1. 22. For any target class C, apt (C) > K(C) & lemma 1.	\
72 Let C be a time to 10	
SOA I'S used as the central	
0, $+$, $+$, $+$, $+$, $+$, $+$	Jemma 2.
. The seq. of instances is a consist at the start of trial i. CONSIST: the value of consist at the start of trial i.	
14 / 04.4656 7 - 14	
for any k>0 and i & 21,ts, sum we make at most	J
k mostates during trials i, it	

24. A set SCX is shuttered by a target class C of for every U = CS, I f EC | f is I on U and O on S-U. 25. The V(olim (C) is the eardinality of the largest set that is shattered by C. E diff 26. For any target class C, VCdon(C) \le opt(C) t theorem 4. Some tun. classified in the query.

Some tun. classified in the query.

L. Whenever an edg. receives a may ans. to an equi, query, if also receives a courser-example, a pt ort which the tot tun. It proposed tum. due disagree.

a pt ort which the tot they consider receive no examples as input other than 3. The equi. query also, that they consider receive no examples as input other than queries.

The conter-example in the queries. General transformations 1. A equivalence (equi.) query is a request by an algorithm that asts if the fift ten. metables 4. In this section, they we "query algo" to refer to an algo that learning team aramples "

ond" online learning aly", "mistake-bounded alg.", "alg. for learning team aramples"

L. D. - "" to refer to the alg. of the A type discussed before. 5. Del: current hypothesis for an aly. for online learning from examples.

the curr. hypo. is defined initially R bit trials.

the curr. hypo. is defined initially R bit trials.

the u is a tun from the instance space to f0,13.

the u is a tun from the instance space to that the elgo. would the value at any instance x is defined to be the normal that is x.

give at the next trial of the instance received in the next trial is x. 6. The state of an algo. at the conclusion of a total is a nepresentation of the expert hypo. of the elso. 7. Using this kep. to represent the tim appearing in queries, an dyo. Had beens from examples can be transformed to a quay algo. 8. Transform mutakee-bounded algo -> query algo = the algo. Frontormatra 1. Gren: a mistake-bounded also A. -> query also. B . the fact query of B is the mittal hypo of A. . for each grown of B: of the next medicates that the query specifies the cornect top top. I the next fun., B halts and reports the cornect top top.

if not, B tell A its production was wrong.

B then takes the new hypo. of A as the next query.

B then takes the new hypo. of A as the next query. 9. The no. of queries needed by the derived alg. B to exectly identify the text. Tun.

It is borneled by MA(4) +1. 10. Smilerly, we can transform a query also to a metale-bounded also.

AUD. A tree or & true of the fine. (4) The brear-threshold algorithm 3. They will consider brearly- repairable Boolean functions, which are those functions that can be computed by a one-layer linear-threshold network. 3. A function from {0,1}" to {0,1} is said to be linearly separable of 3 a hyperplane in R" separating the points on which the function is I from the points on which it is O. 4. Monotone disjunctions constitute one class of brearly-separable functions. 5. A monotone disjunction is a disjunction in which ho literal appears regated, that is, a function of the form: $f(x_1, ..., x_n) = x_i$, $V ... V \times i_k$.

6. The hyperplane given by x_i , $\dots + x_{i_k} = \frac{1}{2}$ is a separating hyperplane for $\frac{1}{2}$ def $\frac{5}{2}$.

1. The Part various of their doublem is appearable and for a learned morotone. 7. The first variant of their algorithm is apecralized for a learning morotone disjunctions.

8. WINNOW! a algorithm 3: 8. WINNOW! & algorithma 3:
The instance space is $X = \{0,1\}^n$. The algo mantains non-negative neights (wi si=1, each having an inettal value of I. . The dgo also was a na referred to as the thrushold, A. . When the learner nectives an instance (x_1, \ldots, x_n) , the learner neupondo as follows: · of Ewizi > 0, then it predects 1. · if \(\hat{\Sigma}\) wixi \(\left\) \(\text{\ten}\), then \(\delta\) predects \(\theta\). learner's practition commet response update action update name . Update: w:=0 of x:= | elimination
wi unchanged if xi=0 step wi := a.wi if xi = 1 | promotion wi unchanged if

9. Suppose that the tot. tun. is a t-literal monotone disjunction given by $f(x_1,...,x_n) = x_i V...Vx_i$ If winnow 1 is run with $\alpha > 1$ and $\theta > \frac{1}{\alpha}$, then for any sequence of instances the total no. of mistakes will be bounded by $ock(log_{x}\theta+1)+\frac{n}{\theta}$. \in theorem 7.

. Let u be the no. of promotion steps athert have occurred by the end of some seq. of truls. 10.3 lummas used in the proof: let v be the no. of elimination steps "

1. $v \leq \frac{n}{\theta} + (\alpha - 1) u \neq lemma 3$

2. ¥1, wi ≤ αθ

3. After u promotion steps & an arbitrary no. of elimination steps, I some i for which logor wi > k.

- 11. Let Ck: class of k-leteral monotone disjunctions transform. CK: class of all monotone chisjunctions that have at most k-literals.
- 12. lever bound on the no. of mistakes needed to learn Exlex. For $1 \le k \le n$, of $(C_k) \ge opt (\widetilde{C_k}) \ge k \lfloor \log_2 \frac{n}{k} \rfloor$.

theorem 8

. For n>1, opt (Ck) > \frac{k}{8} (1+ log 2 \frac{n}{k})

13. In the space of d variables, the k-DNF timethans have the following Elemetime:

where r is the no. of disjunctive terms and each term Tx represents the conjunction (and) of k out of d varicibles (x1, x2, ..., xd). 14. k-literal monotone conj. are 1-term monotone k-ONF.

- . l-litered monttone disj. are l-term monotone 1-0NF.
- 15. For IEK &n and Isl & (n),

Let: C'be the class of times expressible as l-term monotone k-DNF fernulas. . In be any integer, $k \le n \le n \mid {m \choose k} \ge \ell$.

=> VCdm(C)> ke[692]

16. The ego. (WIMNOW 1?) can be modified to work on larger class of Boolean tunetons. For any instance space X = 10,13", for any & 10 < 8 \le 1.

Let F be the class of Jun. from X to 90,13 with the following property: for each f ∈ F(X, S), ∃ M, ..., M, ≥0 / + (x,..., x,) ∈ X: Σμιχι >/ β f(x,,..., xn)=/ and (1) = Mixi <1-8 of f(x,,..,xn)=0 cr)

In words: the inverse mages of 0 and 1 are theory separable with a minimum reportation that depends on S.

learner's prediction	correct nesponse	update action	upilate name
	0	$w_i := \frac{w_i}{\alpha} \forall x_i = 1$ $w_i := w_i \forall x_i = 0$	demotron
0	l	w: = a.w; if x:=1	promotean

theorem 9

18. They will use $\alpha = 1 + \frac{\delta}{2} \int_{0}^{\infty} for learning a + gt. -line. on <math>f(X, \delta)$

18. For O < S \ 1, if:

. the tot fun. E F(X,S)

. M.,..., Mn satisfies (1) & (2).

· \(\alpha = 1+ \frac{1}{2}

. The algo. receives métance from $X \subseteq \{0,1\}^n$,

then the no. I mitake will be bounded by: $\frac{8}{8^2} \frac{n}{\theta} + \left(\frac{5}{8} + \frac{14 \ln \theta}{8^2}\right) \frac{2}{i=1} \mu_i$.

20. 3 lemmas used to prove le théonem 9:

lemma 7 $v \leq \frac{\alpha}{\alpha-1} \cdot \frac{\eta}{\theta} + \alpha u$

lemma 8 . +i, wi ≤ do

. After u promotron step & v elimination steps, 3 i / $\log w_i \ge \frac{u - (1 - \delta)v}{\sum_{i=1}^{2} \mu_i} \log \alpha$.