

Optimization of the Search Experience in Search Engines with Vector Databases and Transfer Learning

Under the supervision of:

Prof. Dr. rer. nat. habil. Gunter Saake Dr.-Ing. David Broneske

6th September 2023

Ashish Soni (221453)

Data and Knowledge Engineering (M.Sc.)

- → Introduction
- → Goal, Motivation and Main Contribution
- → Background
 - **♦** Lexical vs Semantic Search
 - Transfer Learning and Vector Databases
 - Evaluation Measures and Similarity Metrics
 - Traditional Approaches
- Methodology
 - **♦** Design
 - Experimental Setup
- → Results
- Conclusion and Future work

What is Search?

- Search, also known as <u>information retrieval</u> is the process of taking a user query and returning ranked, relevant results
- The first modern information retrieval system was built in the 1960s[1] led by Gerard Salton with his research group at Cornell
- Google started as research project in the late 1990s[2] becoming the world's dominant search engine due to two key innovations - MapReduce and PageRank
- Currently, Platforms such as Quora, Reddit and Stack Overflow have refined search, offering organized and user-specific content in the digital age

What is the significance of Search?

- According to Internet Live Stats (May 2023)[1], Google runs around 8.5 billion searches per day
- Quora[2], Reddit[3] has 300+ million monthly visitors
- Inaccurate or Irrelevant search results can lead to misinformation, decreased user trust, lost productivity and bad decision making

[1] Source: https://fitsmallbusiness.com/google-search-statistics/#searches-on-google

[2] Source: https://www.demandsage.com/quora-statistics

[3] Source: https://foundationinc.co/lab/reddit-statistics

Goal

Enhancing the relevance and speed of results in search engines through the integration of Vector Databases and Transfer Learning

Motivation

- Evolving landscape of Q&A platforms
- Changing nature of search
- Advancements in neural network approaches

Main Contributions

- Comparison of vector databases Milvus, Pinecone, Qdrant, Weaviate
- Performance benchmarking: Pinecone vs. PostgreSQL vs. PostgreSQL + pgvector
- Zero-shot evaluation of multilingual models
- Development of a multilingual semantic search prototype using quora dataset

Background: Lexical Search

also called Keyword Search[1]

Query: Where was the last world cup?

Sentences
The previous world cup was in Qatar
The sky is blue
The bear lives in the woods
An apple is a fruit

Lexical Search Problems...

Sentences
The previous world cup was in Qatar
The cup is where you left it
Where in the world is my last cup of coffee?
An apple is a fruit

[1] Source: https://docs.cohere.com/docs/what-is-semantic-search

Background: Multilingual Lexical Search

Challenges

- Multilingual Support
- Storage
- Engineering
- Latency
- Maintenance

Background: Semantic Search

What is an Embedding?

It is a way to assign each piece of text, a vector, which is a list of numbers[1].

- Word Embeddings
- Sentence Embeddings

[1] Pinecone. Dense vector embeddings for nlp. URL: https://www.pinecone.io/learn/dense-vector-embeddings-nlp

Background: Multilingual Semantic Search

Challenges

- Computational resources
- Maintenance

Similar sentences from different languages to similar vector spaces

Multilingual Semantic Search

Background: Sparse vs Dense vectors

- Sparse vectors: hold information sparsely
- Dense vectors: large number of dimensions hold relevant information

Comparison of sparse and dense vectors

Background: Transfer Learning

Depiction of Relationships between areas of Al

Advantages

- Leverages knowledge from one task to help learn a new related task
- Reduces the need for extensive data and training time for the new task

Background: Attention Mechanism

NLP had a major breakthrough in 2017[1]:

•

Encoder-Decoder with attention mechanism

Background: Transformer Models

The architecture of the transformer model

The transformer has the following main parts[1]:

- Tokenization
- Embedding
- Positional Encoding
- Transformer block
- Softmax

Background: Sentence Transformers

NLP had a major breakthrough in 2017[1]:

SBERT applied to a pair of sentences

Background: Multilingual Sentence Transformers

Knowledge Distillation Training Approach

Background: Traditional Approaches

- TF-IDF, BM25, Word2Vec
- BERT
- ANN Indexes

^[2] Text mining: Use of tf-idf to examine the relevance of words to documents

^[3] Pinecone. Semantic search. https://www.pinecone.io/learn/semantic-search

Background: Evaluation Measures

Metrics to assess the performance of the IR system

^[1] A survey on performance evaluation measures for information retrieval system. 2015

^[2] BEIR: A heterogeneous benchmark for zero-shot evaluation of information retrieval models

Background: Similarity Metrics

Name	Vector Properties Considered	
Euclidean Distance	Magnitudes and Direction	
Cosine Similarity	Only Direction	
Dot product Similarity	Magnitudes and Direction	

Metrics to compare similarity between vectors

Background: Vector Databases

- Designed to index and store vector embeddings
- CRUD capabilities along with metadata filtering

Feature	Qdrant	Milvus	Weaviate	Pinecone
Version	1.1.0	2.2.4	1.18.2	2.2.0
Written in	Rust	Go	Go	Rust
Consistency Model	Eventual	Strong	Eventual	Eventual
Max Vectors Dimension	N/A	32,768	N/A	20,000
Deployment	Managed/ Self Hosted	Self-Hosted	Managed/Se If Hosted	Managed
Filtering with ANN	N/A	N/A	Pre-filtering	Single-stage filtering

^[1] Manu: a cloud native vector database management system

^[2] Powering ai with vector databases: A benchmark(part i). https://www.farfetchtechblog.com/en/blog/post/powering-ai-with-vector-databases-a-benchmark-part-i

Background: Vector Library vs Vector Database

Attributes	Vector Library	Vector Database
Filtering with Vector Search	No	Yes
CRUD Support	No	Yes
Stores Objects and Vectors	No	Yes
Speed	Faster	Slower
Durability	No	Yes
Persistence	Only at explicit Snapshot	Immediate
Sharding	No	Yes
Replication	No	Yes
Multi-tenancy	No	Yes
Hybrid Search	No	Yes

Background: Relational vs Vector Database

Feature	PostgreSQL	Pinecone	PostgreSQL with pgvector
Data Types	Standard + JSON/blob	Vectors	Standard + Vectors
Geometric Filters	No	Yes	Yes
Query Language	SQL	Model(Query, X) > threshold	SQL
Max Vector Dimensions	-	20,000	16,000
Distance Metric	-	Euclidean, Cosine, Dot Product	Euclidean, Cosin e, Dot Product
ANN Based Algorithm	-	Graph Based	Inverted File Index
Programming Language	С	Rust	С

Design: Research Questions

- 1. What are the currently available vector databases and their capabilities?
- 2. How does a vector database perform as compared to a PostgreSQL database (with and without pgvector-python extension)?
- 3. What are some of the similarity functions that help to measure the similarity of vectors?
- 4. What are the currently available multilingual models that can perform a semantic search?
- 5. How do these multilingual models differ in terms of zero-shot evaluation of their retrieval capabilities and comparison of their inference speed?

Design and Experimental Setup for Database Performance

- Synthetic Data for Assessing Database Performance Benchmarks
- Varied Row Quantities and Embedding Dimensionality

Name	Datatype
Id	Integer
Sentence	Object
Embeddings	Object

Name	ld	Sentence	Embeddings
PostgreSQL	Integer()	Text()	ARRAY(Float)
Pinecone	String	String	Vector
PostgreSQL(pgvector)	Integer()	Text()	Vector(size)

Design and Experimental Setup for Database Performance

Core Tasks:

1. Implementation of CRUD Operations (Create, Read, Update, Delete)

Row Size	Embedding Size
100	384
200	512
300	768
400	1024

K	
3	
5	
10	
100	
250	

2. Efficient Handling of Batch Insertions

10000 30000 50000 70000
50000
70000
100000

Experimental Environment for Database Performance

Machine Configuration

- Operating System Microsoft Windows 10 Home
- Processor Intel(R) Core(TM) i5-7200U CPU @ 2.50GHz, 2701 Mhz, 2 Core(s),
- 4 Logical Processor(s)
- Memory 8.0 GB RAM
- Graphics NVIDIA® GeForce® 920MX (2 GB DDR3 dedicated)

Design and Experimental Setup for Multilingual Models

Conducted zero-shot evaluation using two open source datasets in BEIR

Model Name	max_seq_length	embedding_dimension
paraphrase-multilingual-MiniLM-L12-v2	128	384
distiluse-base-multilingual-cased-v1	128	512
paraphrase-multilingual-mpnet-base-v2	128	768
quora-distilbert-multilingual	128	768

& MRR@K
1
3
5
10
100
֡֡֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜

Experimental Environment for Multilingual Models

Machine Configuration

- Operating System Ubuntu 20.04.5 LTS (Focal Fossa)
- Processor Intel(R) Xeon(R) CPU @ 2.30GHz, 2300 Mhz, 2 Core(s), 4 Logical Processor(s)
- Memory 11.0 GB RAM
- Graphics NVIDIA A100-SXM (40 GB)
 - Driver Version: 525.85.12
 - CUDA Version: 12.0

Insertion Performance for 100 rows with varying Dimensional Embedding Size

Insertion Performance for 200 rows with varying Dimensional Embedding Size

Insertion Performance for 300 rows with varying Dimensional Embedding Size

Insertion Performance for 400 rows with varying Dimensional Embedding Size

Insertion Performance for 384 Dimensional Embedding with varying Row Count

Insertion Time(s) vs Row Count

Insertion Performance for 512 Dimensional Embedding with varying Row Count

Insertion Time(s) vs Row Count

Insertion Performance for 768 Dimensional Embedding with varying Row Count

Insertion Time(s) vs Row Count

Insertion Performance for 1024 Dimensional Embedding with varying Row Count

Results: Time taken for Retrieval for different values of K

Extraction Performance Comparison for different K values

Results: Performance Evaluation for Update Task

Database Name	Updation time(s)
PostgreSQL	0.026
Pinecone	0.142
PostgreSQL with pgvector	0.030

Results: Performance Evaluation for Delete Task

Database Name	Deletion time(s)
PostgreSQL	0.020
Pinecone	0.136
PostgreSQL with pgvector	0.023

Results: Performance Evaluation for Batch Insertion Task

Batch Insertion Performance Comparison: Postgres Vs Pinecone

Results: Selection of Storage Backend

Results: Comparison of Multilingual Models

Results: Evaluation of Performance on BEIR Quora Dataset

Results: Evaluation of Performance on Germandpr-beir Dataset

Results: Comparison of Inference Speed of Multilingual Models

Model Name	Output Dim.	Index Size (MB)	Avg Inference Time (ms)
MiniLM-L12-v2 distiluse-cased-v1		153.60	17 9
		204.80	
mpnet-base-v2	768	307.20	17
quora-distilbert	768	307.20	9

Selection of Best Model

Prototype: Multilingual Semantic Search Application

Multilingual Semantic Search Application Architecture

Demo: https://huggingface.co/spaces/Ashish08/Multilingual-Search-Quora-Similar-Questions

Conclusion

- Storage Backend Evaluation
 - PostgreSQL pgvector extension showed superior performance over Pinecone
 - Overheads such as network and authentication might affect Pinecone's speed.
 - Pinecone version 2.0, while purpose-built for vector storage, still offers high search quality with speed.
- Multilingual Model Performance
 - paraphrase-multilingual-MiniLM-L12-v2 and paraphrase-multilingual-mpnet-base-v2 were
 in the BEIR-Quora dataset.
 - o paraphrase-multilingual-mpnet-base-v2 excelled in the Germandpr-beir dataset.
 - Fastest models: distiluse-base-multilingual-cased-v1 and quora-distilbert-multilingual, with 9 milliseconds for top-k results.

Future work

- Investigate Performance of other Vector Databases
- Comparison of Performance after Fine tuning models
- Explore the impact of varying vector indexes on search quality and speed

Thank You!

