- **9.** We check that this order on \mathbb{C} satisfies properties 1.5 (i) and (ii). Clearly (i) holds using the new order relation together with the structre of \mathbb{R} . Suppose z < w and let x = e + fi such that w < x. Since z < w, then a < c or a = c and b < d. The same two cases holds for w, x since w < x.
 - If z < w such that $a \le c$ and w < x such that c < e, then $a \le c < e \Rightarrow z < x$.
 - If z < w such that a < c and w < x such that c = e, then $a < c = e \Rightarrow z < x$.
 - If z < w such that a = c, b < d and w < x such that c = e, d < f, then $b < d < f \Rightarrow z < x$.

Now suppose this ordered set has the least-upper-bound property. Let $E \subset \mathbb{C}$ be the set of all numbers v such that Re(v) < Re(z). It is clear that E is non-empty and bounded above. Then $\alpha = \sup E$ exists.

If $\alpha \in E$, then $\text{Re}(\alpha) < \text{Re}(z)$. Let u be a complex number such that $\text{Re}(u) = (\text{Re}(\alpha) + \text{Re}(z))/2$. Then

$$\operatorname{Re}(\alpha) = \frac{\operatorname{Re}(\alpha) + \operatorname{Re}(\alpha)}{2} < \frac{\operatorname{Re}(\alpha) + \operatorname{Re}(z)}{2} < \operatorname{Re}(z),$$

which implies $u \in E$ yet $\alpha < u$. Since α is an upper-bound to E this means that $\alpha \notin E$.

In that case, $\forall v \in E$ it is true that $\text{Re}(v) < \text{Re}(\alpha)$. Now choose $\beta = \text{Re}(\alpha) + i(\text{Im}(\alpha) - 1)$. Since $\text{Re}(\beta) = \text{Re}(\alpha)$, if $v \in E$ then $v < \beta$. Hence β is an upper-bound to E. Because β is chosen such that $\text{Re}(\beta) = \text{Re}(\alpha)$ while $\text{Im}(\beta) < \text{Im}(\alpha)$, we have that $\beta < \alpha$. But this is a contradiction since α is assumed to be the *least* upper-bound to E. This shows that α cannot exist and hence the initial assumption of least upper-bound property is false.