Integration

Dylan Rupel, Matteo Paz

May 13, 2024

Introduction

Classically, we define the integral in one dimension as a limit of a riemann sum:

$$\int f(x)dx = \lim_{\Delta x \to 0} \sum_{i=1} f(x_i) \Delta x \tag{1}$$

This is essentially a mapping from a function and a 1D interval, to a 2D measure of area under a curve. This is done by taking $\Delta x \sim dx$ as the width, and f(x) as the height, then multiplying them.

In general if we have a function $f: \mathbb{R}^n \to \mathbb{R}$, we can define the integral over some n-dimensional domain D as a limit of a sum:

$$\int_{D} f dx_{1} \cdots dx_{k} = \lim_{\Delta x_{j} \to 0} \sum_{i=1} f \Delta x_{1} \cdots \Delta x_{k}$$
 (2)

Thus, we express the measure of a k+1 dimensional volume over a k dimensional domain.

Differential Forms and Integrals

Consider the k-form $\omega \in \Omega_k(\mathbb{R}^n) = \wedge^k \Omega_1(\mathbb{R}^n)$. Thus ω has dimension $\binom{n}{k}$, and can be written as:

$$\omega = \sum_{I = \{i_1 < \dots < i_k\}} \omega_I dx_I$$

Where $dx_I := dx_{i_1} \wedge \cdots \wedge dx_{i_k}$, and ω_I are the coefficients of the form, in $\mathcal{C}^{\infty}(\mathbb{R}^n)$. For our case, we will only be considering ω which are compactly supported. This means that ω (equivalently all ω_I) only takes a nonzero value in a closed and bounded subset of \mathbb{R}^n .

Integration of Differential Forms

Goal: Define the integral $\int_D \omega$ for a compactly supported k-form ω over a k-dimensional domain $D \subset \mathbb{R}^n$.