Assignment No.1

1) Suppose that the values for a given set of data are grouped into intervals. The intervals and corresponding frequencies are as follows:

age	frequency
1–5	200
6–15	450
16–20	300
21–50	1500
51-80	700
81–110	44

Compute an approximate median value for the data.

Answer:

Age Interval	Frequency	Cumulative Frequency
1–5	200	200
6–15	450	650
16–20	300	950
21–50	1500	2450
51-80	700	3150
81–110	44	3194

total frequency (n) =200+450+300+1500+700+44=3194

The formula for the approximate median is:

$$\mathrm{Median} = L + \left(\frac{\frac{n}{2} - F}{f}\right) \times_{\!\!\!\bullet} \! w$$

- L = lower boundary of the median interval = 21
- n = total frequency = 3194
- F = cumulative frequency before the median interval = 950
- f = frequency of the median interval = 1500
- w = width of the median interval = 50-21+1=3050-21+1=30

$$egin{aligned} ext{Median} &= 21 + \left(rac{1597 - 950}{1500}
ight) imes 30 \ \\ ext{Median} &= 21 + \left(rac{647}{1500}
ight) imes 30 \ \\ ext{Median} &= 21 + 12.94 \ \\ ext{Median} &\approx 33.94 \end{aligned}$$

2) Suppose that a hospital tested the age and body fat data for 18 randomly selected adults with the following results:

age	23	23	27	27	39	41	47	49	50
%fat	9.5	26.5	7.8	17.8	31.4	25.9	27.4	27.2	31.2
age	52	54	54	56	57	58	58	60	61
%fat	34.6	42.5	28.8	33.4	30.2	34.1	32.9	41.2	35.7

- (a) Calculate the mean, median, and standard deviation of age and % fat
- (b) Plot the Boxplot of age and %fat

Answer:

Mean (Age) =
$$\sum Age = 836 - 46.5$$

N 18

Median (Age) =
$$50 + 52 = 51$$

$$\sqrt{rac{\sum (x_i - ar{x})^2}{n}}$$

Standard Deviation =

Where:

- xi = each data point
- $x^- = \text{mean} (46.5)$
- n = number of data points (18)

Age (xi)	Mean (<i>x</i> ⁻)	<i>xi</i> - <i>x</i> ⁻	$(xi-x^-)2$
23	46.4	-23.4	547.56
23	46.4	-23.4	547.56
27	46.4	-19.4	376.36
27	46.4	-19.4	376.36
39	46.4	-7.4	54.76
41	46.4	-5.4	29.16
47	46.4	0.6	0.36
49	46.4	2.6	6.76
50	46.4	3.6	12.96
52	46.4	5.6	31.36
54	46.4	7.6	57.76
54	46.4	7.6	57.76
56	46.4	9.6	92.16
57	46.4	10.6	112.36
58	46.4	11.6	134.56
58	46.4	11.6	134.56

Age
$$(xi)$$
 Mean (x^{-}) $xi-x^{-}$ $(xi-x^{-})2$

Variance =
$$\frac{\Sigma(xi-x^{-})}{n} = \frac{2970.12}{18} = 165.01$$

Standard Deviation =
$$\sqrt{\text{Variance}} = \sqrt{165.01} = 12.85$$

<u>%fat</u>

Mean (% fat) =
$$\frac{498}{18}$$
 = 27.63

Median (
$$\%$$
 fat) = 30.7

$$xi$$
 $xi-x^ (xi-x^-)2$

xi	<i>xi</i> - <i>x</i> ⁻	$(xi-x^-)2$
31.2	4.63	21.44
34.6	8.03	64.48
42.5	15.93	253.76
28.8	2.23	4.97
33.4	6.83	46.65
30.2	3.63	13.18
34.1	7.53	56.70
32.9	6.33	40.07
41.2	14.63	214.04
35.7	9.13	83.36

Variance =
$$\frac{1544.12}{18} = 85.6$$

Standard Deviation = $\sqrt{85.6} = 9.25$

- 3) Suppose that the data for analysis includes the attribute age. The age values for the data tuples are(in increasing order) 13,15,16,16,19,20,20,21,22,22,25,25,25,25,30, 33,33,35,35, 35,35,36,40,45,46, 52,70.
- a) What is the mean of the data? What is the median?

Mean =
$$\frac{\Sigma \ age \ values}{number \ of \ data \ points} = \frac{809}{27} = 29.96$$

Median = 25

b) What is the mode of the data?

The mode is the value that appears most frequently in the data

Bimodal = 25 and 35

c) What is the mid range of the data?

Midrange =
$$\frac{13+70}{2}$$
 = 41.5

d) Can you find(roughly) the first quartile(Q1)and the third quartile(Q3) of the data?

For 27 values:

Q1 (25th percentile) =
$$20$$
 (7th value)

e) Give the five-number summary of the data.

Minimum = 13

$$Q1 = 20$$

Median = 25

Maximum = 70

f) Show a box plot of the data.

