JP8145068

Title: SHAFT COUPLING

Abstract:

PURPOSE: To transmit power by allowing slide of axial cores of a driving shaft and a driven shaft, and provide clutch function, and simplify a structure. CONSTITUTION: A shaft coupling consists of a first end disk 1 which is installed by fixing to a side inner than the shaft end of a driven shaft, a center disk 2 which is installed in a condition in which a space is provided on the shaft end part of the outer side thereof, and a second end disk which is installed on the shaft end of a driving shaft. A pin 5 and a bush bearing 4 which are arranged on one diameter are provided on the surface of the first end disk 1, and a U-shaped notch part 22 which is engaged with the center disk 2 is formed on the center disk 2. A pair of tooth parts 21 are formed on the outer side surface of the center disk 2, and two pair or more of recessed parts which are engaged therewith are formed on the surface of the second end disk.

(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号

特開平8-145068

(43)公開日 平成8年(1996)6月4日

(51) Int.Cl. ⁶		識別記号	庁内整理番号	FΙ	技術表示箇所
F 1 6 D	3/04	K			
	11/00	Z			

審査請求 未請求 請求項の数2 OL (全 6 頁)

		E ZEPITAT	
(21)出願番号	特願平6-283328	(71)出願人	390022806
			日本ピストンリング株式会社
(22)出願日	平成6年(1994)11月17日	į	東京都千代田区九段北4丁目2番6号
		(72)発明者	富井 廣恭
			栃木県下都賀郡野木町野木1111番地 日本
			ピストンリング株式会社栃木工場内
•		(72)発明者	田中 伸一
			栃木県下都賀郡野木町野木1111番地 日本
		į.	ピストンリング株式会社栃木工場内
		(74) 代班人	弁理士 小林 英一
		(4)(42)	THE THE K
		į	

(54)【発明の名称】 軸継手

(57)【要約】

【目的】 駆動軸と被駆動軸の軸芯のずれを許容して動 力を伝達するとともにクラッチ機能を有する簡易な構造 の軸継手を実現する。

【構成】 被駆動軸の軸端よりもやや内側に固定して取 り付けられる第1のエンドディスク1と、その外側の軸 端部に隙間を有する状態で取り付けられるセンターディ スク2と、駆動軸の軸端に取り付けられる第2のエンド ディスク3とから構成される軸継手であって、第1のエ ンドディスク1の面上には一本の直径上に配置されたピ ン5およびブッシュペアリング4を設け、センターディ スク2にはこれに嵌合するU字状切り欠き部22を形成す るとともに、センターディスク2の外側表面には一対の 爪部、第2のエンドディスク3の表面にはこれに係合す る2対以上の凹部31を形成して構成する。

【特許請求の範囲】

【請求項1】 駆動軸および被駆動軸(8、9)の一方 の軸端よりやや内側に固定して取り付けられる第1のエ ンドディスク (1) と、その外側の軸端部に内径部分に 隙間を有する状態で取り付けられるセンターディスク (2) と、駆動軸および被駆動軸(8、9)の他方の軸 端に取り付けられる第2のエンドディスク(3)とから 構成される軸継手であって、第1のエンドディスク (1) とセンターディスク(2) の面間には、その一方 の面上に1本の直径上に配置された突出部(4、5)を 10 有し、他方の面にはこれに嵌合する切り欠き部(22)を 1本の直径上に形成するとともに、センターディスク (2) の外側表面には、軸方向に伸びる1対の爪部(2 1) を前記の一本の直径と直角方向に配置して形成し、 第2のエンドディスク(3)の表面にはこれに係合する 2対以上の凹部 (31) を形成したことを特徴とする軸継 手。

【請求項2】 駆動軸および被駆動軸(8、9)の一方 の軸端よりやや内側に固定して取り付けられる第1のエ ンドディスク (1) と、その外側の軸端部に内径部分に 隙間を有する状態で取り付けされるセンターディスク (2) と、駆動軸および被駆動軸(8、9)の他方の軸 端に取り付けられる第2のエンドディスク(3)とから 構成される軸継手であって、第1のエンドディスク (1) とセンターディスク (2) の面間には、その一方 の面上に同じ側の一端をピン(5、6)で係止され、他 端を他の面にピン(5、6)で係止された互いに平行す る1対のリンク(7)を設けるとともに、センターディ スク(2)の外側表面には、軸方向に伸びる1対の爪部 (21) をセンターディスク (2) に打ち込まれたピン孔 30 を結ぶ直線と直角方向に配置して形成し、第2のエンド ディスク (3) の表面にはこれに係合する2対以上の凹 部 (31) を形成したことを特徴とする軸継手。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、伝動軸に取り付けられる軸継手に関し、さらに詳しくは、駆動軸と被駆動軸との接続を断続するクラッチの機能を有し、かつ駆動軸と被駆動軸との軸芯のずれを吸収して動力を伝達することのできる軸継手に関する。

[0002]

【従来の技術】駆動軸と被駆動軸とが平行を保った状態における軸芯のずれを吸収して動力を伝達することのできるコンパクトな軸継手として、ダブルリンク式軸継手やオルダム式軸継手などが知られている。ダブルリンク式軸継手の一例を図8により説明する。この図は分解状態で示した斜視図で、51はエンドディスク、52はセンターディスク、53はリンク、54はピンである。

【0003】ダブルリンク式軸継手は、駆動軸および被構成され、ソレノイドSにより一方の軸を軸方向に移動駆動軸に取り付けられる2枚のエンデディスクを表す。 M_{ion} をはるこれたにより。 M_{ion} をはるこれたにより。 M_{ion} をはるこれたにより。 M_{ion} をはるこれたにより。 M_{ion} をはるこれたにより。 M_{ion} をはるこれたにより。 M_{ion} をはる。 M_{ion} のののでは、 M_{ion} ののでは、 M_{ion} のの

b と、その中間にはさまれるセンターディスク52と、センターディスク52の表裏両面で各エンドディスクと接続するそれぞれ2個のリンク 53a、53b ならびに 53c、53 d と、これら各リンクを係止する8本のピン54で構成される。

【0004】2対のリンク53a、53bならびに53c、53dは、両端にピン孔を有し、一端においてセンターディスク52と、他端において2枚のエンドディスク51a、51bのいずれかとピン54により結合される。同じディスクに取り付けられたピンの間隔は一定であるが、各リンクはピンを中心として回転自在であるから、図8の状態においては、エンドディスク51aとセンターディスク52とは、リンク53a、53bが平行を保ちながら回転することにより略上下方向に移動可能であり、エンドディスク51bとセンターディスク52とは、リンク53c、53dが平行を保ちながら回転することにより略水平方向に移動可能である。したがって全体として、2枚のエンドディスク51a、51bの取り付けられた駆動軸、被駆動軸は上下、水平あらゆる方向に相対変位が可能であり、継手は軸芯のずれを許容しつつ動力を伝達できるのである。

【0005】また、オルダム式軸継手の一例を図9によ り説明する。図9(a)は分解状態、(b)は組み立て 状態で示した斜視図で、51はエンドディスク、52はセン ターディスク、 511はエンドディスク51に設けられた溝 部、 521はセンターディスク52に設けられた突起部であ る。オルダム式軸継手は、駆動軸および被駆動軸に取り 付けられる2枚のエンドディスク 51a、51b と、その中 間にはさまれるセンターディスク52とから構成され、エ ンドディスク 51a、51b の表面には直径方向で幅一定の 直線状の溝部511 が設けられ、センターディスク52の表 裏両面にはこれら溝部511 に嵌合する直線状の突起部52 1 が設けられているが、センターディスク52の表裏両面 において突起部521 の位相は90°異なっているので、ダ ブルリンク式軸継手と同様に、2枚のエンドディスク5 1a、51b の取り付けられた駆動軸、被駆動軸は上下、水 平あらゆる方向に相対変位が可能であり、継手は軸芯の ずれを許容しつつ動力を伝達できる。

【0006】一方、駆動軸と被駆動軸の連結をタイミングにより入り切りしようとする場合や、駆動軸側の動力 20 ユニットを被駆動軸側の機器本体から取り外したり再び取り付けたりする場合、駆動軸や被駆動軸の中間にクラッチを設けることが一般に行われている。一例を図10により説明する。T1 は駆動軸、T2 は被駆動軸、Cはクラッチでこの例では爪クラッチ、Sはソレノイドである。

【0007】クラッチCは、駆動軸T、、被駆動軸T2の軸端に取り付けられたディスクの一方の表面に爪状の突起を、また他方の表面にはこれに嵌合する溝を設けて構成され、ソレノイドSにより一方の軸を軸方向に移動

3

したりして、任意のタイミングでトルクを伝達するのである。図10において(a)はクラッチの切れた状態、

(b) はつながった状態を示す。

【0008】実開平1-178225号公報によれば、オルダム継手そのものをクラッチとして使用し、たとえば図9におけるセンターディスク52は右側のエンドディスク51bとともに駆動軸側に係止し、左側のエンドディスク51aとセンターディスク52の間で軸を切り離すようにすることが記載されている。しかし、このような構成においては、継手部の切り離しは容易に行うことができるが、再10度継手を結合しようとするときに、両軸の軸芯、および溝部と突起部の位相が一致していないと溝部と突起部が嵌合しない。この実開平1-178225号公報記載の考案においては、各隙間の寸法を特定の条件下に限定することによってこれを容易とするようにしているが、爪クラッチのように容易に接続を行うことはできず、実用の域に達していない。

【0009】以上説明したように、駆動軸において、軸 芯の変位を吸収する軸継手や、動力を入り切りするクラ ッチはそれぞれ公知であるが、両方の機能を併せ持つ簡 20 易な構造のものは実現していないため、軸芯の変位を吸 収しつつ動力を入り切りしたい場合には、軸継手とクラ ッチの両者を取り付ける必要があり、構造が複雑になる と同時に機器の寸法が大きくなるという問題点があっ

[0010]

【発明が解決しようとする課題】本発明は、こうした問題点を解消し、駆動軸と被駆動軸との接続を断続するクラッチの機能を有し、かつ駆動軸と被駆動軸との軸芯のずれを吸収して動力を伝達することのできる軸継手を実 30 現することを目的とする。

[0011]

【課題を解決するための手段】請求項1に記載の本発明は、駆動軸および被駆動軸の一方の軸端よりやや内側に固定して取り付けられる第1のエンドディスクと、その外側の軸端部に内径部分に隙間を有する状態で取り付けられるセンターディスクと、駆動軸および被駆動軸の他方の軸端に取り付けられる第2のエンドディスクとから構成される軸継手であって、第1のエンドディスクとセンターディスクの面間には、その一方の面上に1本の直径上に配置された突出部を有し、他方の面にはこれに嵌合する切り欠き部を1本の直径上に形成するとともに、センターディスクの外側表面には、軸方向に伸びる1対の爪部を前記の一本の直径と直角方向に配置して形成し、第2のエンドディスクの表面にはこれに係合する2対以上の凹部を形成したことを特徴とする軸継手である

【0012】また、請求項2に記載の本発明は、駆動軸 状切り欠き部22の幅に対応している。したがってブッシャよび被駆動軸の一方の軸端よりやや内側に固定して取 ユベアリング4が幅一定のU字状切り欠き部22内を半径り付けられる第1のエンドディスクをTent Fro 2010 側の動端rue Mion 方向に移動しながら動力を伝達することが可能であり、

部に内径部分に隙間を有する状態で取り付けされるセンターディスクと、駆動軸および被駆動軸の他方の軸端に取り付けられる第2のエンドディスクとから構成される軸継手であって、第1のエンドディスクとセンターディスクの面間には、その一方の面上に同じ側の一端をピンで係止され、他端を他の面にピンで係止された互いに平行する1対のリンクを設けるとともに、センターディスクの外側表面には、軸方向に伸びる1対の爪部をセンターディスク(2)に打ち込まれたピン孔を結ぶ直線と直角方向に配置して形成し、第2のエンドディスクの表面にはこれに係合する2対以上の凹部を形成したことを特徴とする軸継手である。

[0013]

【作 用】本発明によれば、オルダム式軸継手またはダブルリンク式軸継手の機構を半分用いて1本の直径方向に軸芯のずれを可能とするとともに、これと直角方向には爪クラッチの爪部と凹部との隙間を設けることにより軸芯のずれを可能とし、軸芯のずれを許容してかつクラッチ機能も行うことのできる軸継手が実現した。

[0014]

【実施例】

実施例1

本発明の第1の実施例を図1~図5により説明する。図1はこの実施例の軸継手の溝付きエンドディスクを除いた斜視図、図2は図1と同じものを分解状態で示す斜視図、図3は第2のエンドディスクの側面図、図4は図3のAA矢視による第2のエンドディスクの断面図、図5はこの実施例の軸継手を一部断面で示す組み立て正面図で、1は第1のエンドディスク、2はセンターディスク、21はその爪部、22はU字状切り欠き部、3は第2のエンドディスク、31はその表面に形成された凹部、32は勾配部、4はブッシュペアリング、5はピンである。

【0015】第1のエンドディスク1は、図5に示すように軸8の先端よりもやや内側(以下軸端側を外側、軸長部側を内側という)に、沈みキー、ビス、ピン等によりタイトに取り付けられており、図2に示すようにその外側表面には180°間隔で2本のピン5が打ち込まれている。一方、センターディスク2は、同じく180°間隔で2か所の半径方向のU字状切り欠き部22を有するとともに、外側表面にはこれと90°異なる位置に2本の爪部21が設けられている。また、センターディスク2は軸8に対しては内径部分に隙間を有し、軸長方向のみを抜け防止用のスナップリング等により拘束されている。

【0016】図1、図2に示すように第1のエンドディスク1に打ち込まれたピン5にはフランジ付き円筒状のブッシュベアリング4が挿通され、ブッシュベアリング4の円筒部分の外径は爪付きセンターディスク2のU字状切り欠き部22の幅に対応している。したがってブッシュベアリング4が幅一定のU字状切り欠き部22内を半径

前記したオルダム式軸継手における直径方向で幅一定の **滯部とこれに嵌合する突起部の組み合わせと同等の機能** を有する。

【0017】したがって、突出部とこれに嵌合する切り 欠き部の組み合わせとしては本実施例に示したプッシュ ベアリング4とU字状切り欠き部22に限定されるもので はなく、一定幅の突条と溝の組み合わせや、さらには他 の直線案内機構を採用してもよいことは、いうまでもな い。なお、本実施例とは逆に、ピン5、ブッシュペアリ ング4をセンターディスク2側に取り付け、第1のエン 10 ドディスク1にU字状切り欠き部22を設けるようにして も同じ効果が得られる。

【0018】図1、図2は、2本のピン5および2か所 のU字状切り欠き部22が水平に並んだ状態で示している ので、これを結ぶ方向をx方向とすれば、センターディ スク2は内径部の隙間の範囲においてこのx方向に摺動 可能である。ブッシュベアリング4を、含油メタルやふ っ素樹脂等の潤滑性を有する材料とすれば、給油を行う 必要がなく、汚れも発生しない。また、ブッシュペアリ ング4をフランジのない単なる円筒状とすることもでき 20 るが、フランジを設けると第1のエンドディスク1とセ ンターディスク2の面間のすべりを助けるスペーサの機 能を果たすので都合がよい。

【0019】つぎに、図5において、軸9の軸端に取り 付けられている第2のエンドディスク3は、図3に示す ように外側表面に90°方向に4か所の円弧状の凹部31が 設けられており、さきに図10により説明したように、ソ レノイド等により軸8、9が接近してクラッチが接続さ れた状態においては、爪付きセンターディスク2の2本 の爪部21が第2のエンドディスク3の4か所の凹部31の 30 うち2か所に嵌合してトルクを伝達する。

【0020】なお、この実施例では凹部31を一周に2 対、4か所としたが、寸法的に許容できればさらに多く すると嵌合するチャンスが増大するので好ましい。ま た、回転方向が一定の場合、凹部31に隣接する部分に勾 配を設けた勾配部32とすることにより、クラッチをつな いだ状態では爪部21と凹部31が嵌合しなくても、スプリ ングの作用により爪部21が押しつけられ、嵌合する位置 まで軸が回転した時点で自動的に嵌合が行われる。

【0021】図3および図5に示すように、第2のエン 40 ドディスク3の凹部31は、センターディスク2の2本の 爪部21に対して半径方向に隙間を有しており、この隙間 の範囲内でトルクを伝達しながら図2におけるy方向に 相対移動が可能である。以上の構成により、この実施例 の軸継手は、爪クラッチ機能を有するとともに、駆動 軸、被駆動軸の軸芯のずれ、すなわちx、y両方向の相 対変位を許容して動力を伝達することができる。

【0022】滯付きエンドディスク3は、複雑な形状で あり、かつ爪部21との接触を繰り返す部分であるから、 含油メタルやふっ素樹脂等の潤滑性を有する材料によりrue Mion、主程や主式工工原図である。tom

鋳造あるいは成型加工により製作することが好ましい。 実施例2

6

本発明の第2の実施例を図6、7により説明する。図6 はこの第2の実施例の軸継手の第2のエンドディスクを 除いた斜視図、図7はこれを分解状態で示す斜視図で、 1は第1のエンドディスク、2はセンターディスク、21 はその爪部、5、6はピン、7はリンクである。

【0023】第1のエンドディスク1は、第1の実施例 と同様、図示しない軸の先端よりもやや内側にタイトに 取り付けられており、その外側表面には、軸端より見て 10時および2時の位置にピン5が打ち込まれている。一 方、爪つきセンターディスク2の内側表面には、4時お よび8時の位置にピン6が打ち込まれるとともに、外側 表面には6時と12時の位置に第1の実施例と同様の爪部 が設けられている。また、センターディスク2は図示し ない軸に対しては内径に隙間を有し、軸長方向のみをス ナップリング等により拘束されている。

【0024】図6、図7に示すように、第1のエンドデ ィスク1に打ち込まれたピン5と、センターディスク2 に打ち込まれたピン6の間に2枚のリンク7が平行に挿 入され、前記したダブルリンク式軸継手のちょうど半分 と同一構造となる。したがって図7において、3時-9 時の方向をx方向とすれば、センターディスク2は内径 部の隙間の範囲においてこのx方向に移動可能である。

【0025】センターディスク2に設けられている爪部 21と、図示しないエンドディスク3については第1の実 施例と同様であり、したがってy方向にも相対移動が可 能である。以上の構成により、この実施例の軸継手も、 爪クラッチ機能を有するとともに、駆動軸、被駆動軸の 軸芯のずれ、すなわちx、y両方向の相対変位を許容し てトルクを伝達できる。

【0026】この軸継手においても、リンク7を、含油 メタルやふっ素樹脂等の潤滑性を有する材料とすれば、 給油を行う必要がなく、汚れも発生しないので好まし 11

[0027]

【発明の効果】本発明によれば、駆動軸と被駆動軸との 接続を断続するクラッチの機能を有し、かつ駆動軸と被 駆動軸との軸芯のずれを吸収して動力を伝達することの できる軸継手が実現し、機器の動力伝達部分が構造単純 にしてかつ小寸法になるというすぐれた効果を奏する。

【図面の簡単な説明】

【図1】本発明の第1の実施例の軸継手を示す斜視図で

【図2】図1の軸継手を分解状態で示す斜視図である。

【図3】本発明の第1の実施例の軸継手の一部を示す側 面図である。

【図4】図3のAA矢視による断面図である。

【図5】本発明の第1の実施例の軸継手を一部断面で示

8

7

【図6】本発明の第2の実施例の軸継手を示す斜視図である。

【図7】図6の軸継手を分解状態で示す斜視図である。

【図8】従来の技術であるダブルリンク式軸継手を分解 状態で示す斜視図である。

【図9】従来の技術であるオルダム式軸継手を (a)分解状態および (b) 組み立て状態で示す斜視図である。

【図10】従来の技術である駆動軸にクラッチを設けた例を示す正面図である。

【符号の説明】

- 1 第1のエンドディスク
- 2 センターディスク
- 3 第2のエンドディスク
- 4 ブッシュペアリング
- 5、6 ピン

7 リンク

- 8、9 軸
- 10 スプリング
- 21 爪部
- 22 U字状切り欠き部
- 31 凹部、
- 32 勾配部
- 51 エンドディスク
- 52 センターディスク
- 10 53 リンク
 - 54 ピン
 - C クラッチ
 - S ソレノイド
 - T

【図1】

【図2】

[図3]

