```
06.12.20. Cheyrype. glf or newyuu12.
@ a) cov(u(Ox); xpe) = a. Sxp.
         COV/ (110x); xpe) = E (110x) - m) (xpe-m) = E [ E((110x)-m) (xpe-m) | 0x) =
                                                                                                                   MIOK)=E(XX; 10K)
                                  = E[|\mathcal{U}(\theta_{K})-m|] E[|Xpe-m||\theta_{K}|] = E[|\mathcal{U}(\theta_{K})-m|] \cdot \delta_{Kp} \cdot E(|Xke||\theta_{K})-m|] = \frac{1}{|\mathcal{U}(\theta_{K})-m|} = \frac{1}{|\mathcal{
                                     = E \left[ \frac{\delta \kappa p \cdot \left| \mu(\theta \kappa) - m \right|^2}{1} = \frac{\delta \kappa p \cdot \Omega \left[ \mu(\theta \kappa) \right]}{\sqrt{q}} = \frac{\delta \kappa p \cdot \Omega}{\sqrt{q}} = \frac{\delta \kappa p \cdot \Omega}{\sqrt{q}}
         of coulkki; xpe = (a+s? Sie) Sxp.
                  COV ( XKi; Xpe) = E(XKi-Elia) ( Xpe-Elyd = E(XKi ± E(XKi 18K)-Elia) ( Xpe ± E(Xpe 18K) - EXpe) =
                                     = E(Xxi-E(Xxi/Bx))(Xpe-E(Xpe/Bx))+
                                     + E ( Kri - E / Kri / OK)) · (E/Xpe / OK) - EXpe) +
                              + E[E(XKi | DK)-EXKi ](Xpe-E/Xpe/DK)]+
                   + E(E(Xxi/Ox)-EXxi)(E(Xpe/Ox)-EXpe)=
                 = E[ E|(Xxi-E(Xxi:18x))(Xpe-E(Xpe18x)) | By]+
                  + E[ E[( XKi - E(XKi 10K)) (E(Xpe 10K) - EXpe) 10K)]+
                    +E[E[(E(Xxi/Ox)-EXxi)(Xpe-E/Xpe/Ox))/Ox)]+
                    + COV (E/Xxi/Dx); E/Xpe/Dx) =
        = E COV (XKi; XKe 10K). SKP
           + E[ E(Kpe 10x)-Expe ) E(Xxi-E(Xxi10x))/Ox) ] +
     + E[ E(Xxi 10x-EXxi) · E(Xpe-E(Xpe 10x))10x)]+
          + cov[E(xxx/0x]; E(xpe/0u)] = Txp. Sie. E 52/0x) + 8xp. D/u(0x) = 8xp. (0+8ie.8).
                                                                         18kp. 2( E( XKi 10 x))
    b) cov( \( \text{K. (t)}, \( \text{Fp. (t)} = (a + \frac{s^2}{t}) \delta \text{kp.}
     cov(x_k.t_l); x_p.t_l) = cov({\{\frac{1}{2}, \frac{1}{2}, \frac{1}{2
                  = \frac{1}{t^2} = \frac{1}{5^2} \frac{1}{(1+5^2)} \frac{1}
```

```
Mu bononnemme unorez (BSI) 4 (BS2):
                a) cov(u(0x); xpi ]= a. Sxp
                  COV(u(\theta x); Xpi) = E(u(\theta x) - m)(Xpi - m) =
                   = E[E[410x]-m](Xpi-m)[0x] = E[[410x]-m).E(Xpi-m|0x)] =
                            = E(8kp. (µ10k)-m). (E(1/ki 10k)-m) = 8kp. D(µ10k) = 8kp. Q
                                cov(xxi; Xpj) = 1a + Sij & Nxi ) Sxp
            COV/XXi; Xpj) = El/Xxi + ElXxilOx/-EXxi) (Xpj + E(Xpj 10x)-EXpj)=
                                = ECOV (KKi; Xpj / OK) + COV (E(KKi/OK); E(Xpj /OK)) =
                                    = \delta \kappa \rho \cdot E \cdot Cov \left( \frac{\kappa_i}{\kappa_i}, \frac{\kappa_i}{\kappa_i} | \theta_k \right) + \delta \kappa \rho \cdot \Omega \left( \frac{\Omega(\theta_k)}{\delta} \right) = \delta \kappa \rho \cdot \left( \alpha + \frac{\delta ij}{\delta ij} \cdot E \cdot G^2(\theta_k) \right) = \delta \kappa \rho \cdot \left( \alpha + \delta ij \cdot \frac{S^2}{N\kappa_i} \right)
= \delta \kappa \rho \cdot \left( \frac{\delta^2(\theta_k) \cdot \delta^2(\theta_k)}{N\kappa_i} \right) + \delta \kappa \rho \cdot \Omega \left( \frac{\delta^2(\theta_k)}{\delta ij} \cdot \frac{S^2}{N\kappa_i} \right)
        B) COV(Xxi; Xx.") = COV(Xx."; Xx.") = Q+ 52
Nx.
     • Cov(Xei; Xe.^{N}) = Cov(Xei; \stackrel{t}{\underline{t}} \frac{Wkj}{Wk}, Xkj) = \stackrel{t}{\underline{t}} \frac{Wkj}{Wk}, Cov(Xei; Xkj) = \stackrel{t}{\underline{t}} \frac{Wkj}{Wk}, (a+\delta ij \frac{S^{2}}{Wkj}) = 
= a + \underset{j=1}{\underline{t}} \frac{Wkj}{Wk}, \delta ij \cdot \frac{S^{2}}{Wk} = n + S^{2}
                  = a+ st wkj. Sij. se = a + st Nk.
  · COV (XK., XV.) = COV ($\frac{5}{4} \frac{WKi}{WKi} \frac{5}{1} \frac{1}{WKi} \frac{1}{1} \frac{1}{WKi} \frac{1}{1} \frac{1}{WKi} \frac{1}{1} \frac{1}{WKi} \frac{1}{1} \frac{1}{WKi} \frac{1}{1} \frac{1}{WKi} \frac{1}{1} \frac{1}{WKi} \frac{1}{WKi} \frac{1}{1} \frac{1}{WKi} \frac{1
                     =\frac{\left(N\kappa_{\bullet}\right)^{2}\cdot \alpha}{(N\kappa_{\bullet})^{2}}+\frac{S^{2}\cdot N\kappa_{\bullet}}{(N\kappa_{\bullet})^{2}}=\alpha+\frac{S^{2}}{N\kappa_{\bullet}}
    2) COV(XKC; X.W) = \frac{S^2}{N_{\odot}} + a \cdot \frac{Wk_{\odot}}{W_{\odot}}
         COV[XKi; X.N] = COV[XKi; Z^n \frac{Ne.}{e=1} \frac{Ne.}{Ne.} \times e^N] = Z^n \frac{Ne.}{Ne.} COV[XKi; Xe.N] = Z^n \frac{Ne.}{Ne.} COV[XKi; Z^n \frac{Ne.}{Ne.} \times e^N] =
              9) Cov(x_{k}, v_{i}, x_{o}, v_{i}) = \frac{g^{2}}{N_{o}} + \frac{OW_{k}}{N_{o}} + \frac{OW_{k}}{N_{
        COV(X.W; Xo.W) = COV(\( \frac{k}{e_{-1}} \) \( \frac{Ne.}{No.} \) 
    e) cov (x. "; x. ") = 32 + a. 2 ( Ww. )2
                                                                       = Q. 2 | Ne. 12+52
```

```
30. H. 20. Cheyrype. 93 or newyww H.
П. Масти мастучение придлижение хыл Спосионую х. ... хы. (меориородиом)
                                        B respecte of onnew nhousepe non gollagare,
                                             ymo X++ = E (X++2 / X1 ... Xt).
                                      B japare 3 sono gy mo gomennen, uno Elxer/X1...X1) = E(110)/X1...X1)
                                            4 & rechesse oppriared no basculing
                                                           runo E(u(0)/x=2,... Xt=xe)= u(0)*= (1-9t/m+9t Xt, rge Xt= { 2t xi
                                           => / X+1 = 11-5+ /m + 5+ Kt
                                                                                                                                                        3am. Mosus Abus: 2=464 = £ Ciki
                                                                                                                                                                      E(14-2)-1 =0; 6=0. 6 , X0=1;
                                                                                                                                                       (=0: M=Co+2g·M > XH=2-yeugup, u co=MH-2g)
                                                                                                                                                     (3): COV ( Y+H-3; Xi) = E(Y+H-2)Xi - E(H+H-2)EXi = 0.
                  Масіми маштучше придничиеми
                       м(в) с помощью пин. однорорной комб.
                                                                                                                                                         => cov(x+1, x;) = 2 5. cov(x; x;) 10
                                                                                                                                                                 => a =1/2 cj + Ci s2
                                                                                                                                                                                                           11 bigs 2+ a
                              Z= ¿ C·Xi
                                                                                                                                                                        » Ci = a/1-Eci) » ci-bec oquianobore
                      2 1 nhocuser (x1... Xt) => E(u(t)-2/Xi=0; [=1. t (x)
                                                                                                                                                                                                               => s2.c=a-atc
     3anumen con (1101-2; xi) glynis inocootaru,
 · COV ( 4181-2; Xi) = E ( 4181-2) Xi _ E ( 418)-2) · EXi = 0 - ( E ( 418) - EZ) · EXi = - tm - $\frac{1}{2}Ci \cdot m) M = - m^2/1-\frac{1}{2}Ci \cdot)
• cov(u(0)-z; \chi_i) = cov(u(0); \chi_i) - cov(z; \chi_i) = a - cov(z; \chi_i) = a - zgcov(x; \chi_i) = 1
                   = a - \( \frac{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pmatrew{\pmathrew{\pmathrew{\pmatrew{\pmathrew{\pmathrew{\pmathrew{\pmathrew{\pm
```

=> - M2 (1-5 ci)= 9/1-5 ci)-cis?

32. c = (1-t.c)(a+m2)

 $= C = \frac{1}{t + \frac{s^2}{m^2 + a}} = \frac{m^3 + a}{s^2 + t(m^2 + a)}$

Haupen Ux:

 $\frac{s^2C}{m^2+0} = 1 - t \cdot C$

 $C/t + \frac{g^2}{m^2 + a} = 1$

 $\Rightarrow Ci = 11 - \underbrace{2}_{i=1}^{t} Ci)(1 + m^{2})$

=> bee Ci - opineanobore. u pabuo c

 $\Rightarrow Z = \left(\frac{z^{t}}{z^{t}} \times i\right) \circ C = \left[\overline{X_{t}} \cdot \frac{t/m^{2} + a}{s^{2} + t/m^{2} \cdot a}\right] \leftarrow \text{orden}.$

+ E[E[K++1 | Ka ... Xe] - f[Ka ... Xe]]2

 $E(μ(θ)-E(x_{μ(λ_1...x_k)})) = E(x_{μ(λ_1...x_k)}) = E(x_{μ(λ_1$

24.11.20. Oneyrync. gly or newycus-10.

$$\exists n \ Par(B,0); \ \overline{F_2}(t) = \frac{B^2}{(B+t)^2} \cdot \underline{TLO(+\infty)}$$

$$\frac{\partial \rho(Y)}{\partial t} = \int_{0}^{+\infty} \left| e^{-\frac{t}{\beta \theta}} \right|^{\frac{1}{\beta \theta}} dt = \int_{0}^{+\infty} e^{-\frac{t}{\beta \theta}} \left| e^{-\frac{t}{\beta \theta}} \right|^{\frac{1}{2}} = \int_{0}^{+\infty} e^{-\frac{t}{\beta \theta}} \left| e^$$

Coxpanser nu rhunyan H(x) = f g (Fx/t)) alt nohugun & v =?] g(x)

Obem: ga, eoxpanises.

CRUTARUN, runo g - los parra suyas bornyras, g(0) =0; g(1) = 1. => g(Fx/t) = g(Fx/t)

$$\Pi_{X}(x) := E[(X-x)_{+}] = \int_{x}^{+\infty} F_{X}(t)dt$$

```
Begin nousare "crossover pont", unu CD
      la; Uf ∈ IRXIR &BRACIES CP gns 1 F1(x); F2(x)}
           eenu que i +jE 51/2]: |Fi(E) & Fj(E) & Fj(E) & Fi(E)
                                                             E=Fj'(u) = Fj'(u) = Fj'(u+) = Fi'(u+)
          Kan Chagana CP 4 Torun nepelerencus F14F2?
           Mems pagger (ai; b); -00 = ai < bi = 00 - oreporter nocusens to general gene me apouer oper)
                 B = max & Bi; big
               =>(9,8) - Orcharus nocurens napor f Estal; E(x)}
                     (4)0}418/18-00anmae CP.
      Умі нам помарогать обобщенням пеорена Карпии мовинова и помов.
     Roperta lossay. T. Rafrina-Hobinoba o references
                X, Y - cays. menueuno c/1x, ux, Fx/x); Fx/x/; Tx/x/; Tx/x/.
                 hyoms paenpegeneums nepeceratores has pay & normax totalente.
                Mongo V & V (=> [ MUSO REPEASE REPEASED JURGE C-14+,

" = 2m u Tx[tzj-1] = Ny[tzj-1], j=1...n
                                                                    nuso replas repetitiona quana y Frize-Friz) infoliceropus e + 140 -,
                                                                                             1 = 2m+1 / Mx = flv u nx (ty) = ny (txj); j=1...m.
     Newmas X & X2 (= set & CP-nap 18, uf gous 1 Fx (x); F2 (x)}
     DOU- 60: • In 16) = n2 18) = - Bi = 62 - TK Pick) = f Filt) dt
                                                                                                     bononueuro: Ma(E) = n2(E)
                         · 31(a) = N2(a) => A1 = M2 — The ecan a>-∞, TO be chepyer by 1000, 4mo Nola) = Mi-a
                                                                                                                               eenu g = -\infty, 70:
                                                                                                                                  M_1 = \int_{-\infty}^{+\infty} \frac{1}{F_1(x)} dx - \int_{-\infty}^{\infty} \frac{1}{F_1(x)} dx = \int_{-\infty}^{+\infty} \frac{1}{F_2(x)} dx =

\int_{-\infty}^{\infty} a_1(a) = \int_{-\infty}^{\infty} F_1(x) dx \in \Re(a) = \int_{-\infty}^{\infty} F_2(x) dx

        #0/1111-80 CP-nap eems { C... Cuf V10; 0} v 88; 1}.
                |\mathcal{H}(\varepsilon)| \leq |\mathcal{H}(\varepsilon)| + |\mathcal{H}(\varepsilon)| \leq |\mathcal{H}(\varepsilon)|
                         (=> born. you. Respection Kapuna-Molentolo (=> X1 50 X2. Mup.
```

```
Пенерь вверен преобразование жерди-пиствуда, х":
               (Fx#5/4) = f ful Fx'/ Walv, 428
  NEMMAS / X1 £ X2 => X1 4 5 X2 4 / - The chemic con-noce nopogone Reconnecteding
     Dou-bo: (Kertz and Rösler (1992), Lemma 18)
                          4 CP-naps; & practicule ( 1 files-Files falt = (1 files-Files falt = (1 files)-Files falt
                          Borpallaer por grant, your pholyego melligy FINFZ phabee & padred
                              nhougapu ruelusy Fi "4 Fz" nhabee U.
                                Из этого и пенног г попучаем:
                     K to Ka GRADARE
     |E| = \int_{E}^{+\infty} |E_{1}(E)| dE \leq \int_{E}^{+\infty} |E_{2}(E)| dE = \int_{E}^{+\infty} |E| dE = \int_{E
   => 1 Fil4-Fil4} alt = 0 & CD-napor 18,45
   = { 1/2 - 1/v - F- 1/v } dv > 0 + cp-napa 1 = u }
(=) (F1") [U) = (F2") (U) Y 4 = 10.13
 ( X1 1 1 1 7 mg
  Monto Lang to acqueronus x8 e g. p. F. 2 to La Dry Coes.
  Nemma2 X 5€ Y => 3 noen-n cn. len 21, 22...2n: ∫ X=21
Y=24
                                                                                                                                                                                                                        -en. Kaas Lall (1994)
                                                                                                                                                               ti & Zi+1; E=1... 11-12
                                ма егр. 46 вкиме Е.В. Бупинсирь.
    Teneps gonamen, ymo kg - coxpaniser fe.
   Deu-Co. And con Ben X >0 onfugenum X9 e gon. p.p. Fx (2) = 9 (Fx(2))
                      No nemue 2 goem. gou. B., TALO X = Y Breven X = Y 9
                           ronga nor nonyuun, mo Mg(X) = EX9 = EY9 = Hg(Y)
                  Uman, xonin gou-to, rino X & Y breven X & & Y.
```

```
NO NEMMES goes gours, and X = Y buenens (Ng) + = (Ng) H
      My Memo { X & Y

EX = EY

* Q E (Q1): 3 Fx '(U) > Fy '(U), 0 = U = Q

Fr '(U) & Fr '(U) : 9 & U = 1.
                                                             Fx '(u) & Fy '(u); 9 & u & s.
           (Fx) = (to Fx)
      NO (Fx ") (to) = / Fu ( Fx "(v)dv; uce
    => (Fx 3.4) |U| = 1 (80 Fx) '(V) olv = 1 f Fx '(V) oly |V| = 1 Fx 
    XOMM: (Fx 214) - /4/ = (Fy 214) /4) * 4 € 19,13,
                The ST (Fx 1/V) - Fx 1/V) d 8/V) >0 4 WE SO, 17.
       ECHU NZQ-10 BEE OKER, THE FX /U) EFY /V), 9 ENES
 Eems 0≤NEQ21: $6x) - Bonyunas => 8/12) - Bognaeraer

=> 8/1N/≤ 8/19) ≤ 8/11)
       >> f 1 Fx '(N) - Fx '(N) f ols/v) = - f 2 Fx '(N) - Fy '(N) f y '(N) ol >
                > 8'18) 5'1 Fr'14- Fr'14) fdv > 8'18) - 5'1Fr'14) - Fr'14 fdv = 8'18) - EY-EXTO. 29.
            DOU-10, ruco H(X+Y) = H(X) + H(Y)
<u>Пои во</u>: Доем. дои-к это др дия произв. У и дисирению у со риах. 1,... п.
                        Devietherenous, HIAX+81=AHIXI+8 => yet lepus gas VESK;... N+K}
                           4 XE & Kh ... (M+K)h}, KEN+, h>0.
                        A noenonomy mongo en ben mount enons yropus xopomo
                                          npushipun quenperioù en ben e goer mansuh, ro yob. Most
                                              before gas noson X.
                 Докашем по имрукции.
        bajo: n=0 - Bce ones.
          Mar: Ansn+1
                           X € 60. - n+1}
                           nyenu (x, q) paenpepeneuor kare (x, 41 x >0).
                  holuonomy & = 11... ng - no nhapon ung: H(x+x) = H(x)+H(x).
                    080pu. &= P(X=0)
                                   Fy10(x) = P(V>x | U=0)
            UMPlue 4 x>0:
```

```
FX(2)= (1-E) Fx /2)
Fy(2) = & Fy10(2)+(1-8) Fg(2)
Fx+y (2) - E Fy10 (2) - (1-E) FX+X (2)
```

Менопоррем <u>пемму</u>: д(х) - воличтал дия х > 0.

=> \tx>0: g(x+8)-g(x+a) = g(8)-g(a) (hy g(x)-boungere $\Rightarrow g(y)-g(x) \Rightarrow g(z)-g(y)$ $\forall 0 \in x \neq y \neq z$.

U spoets no enepobare nous repulsement of g(x) g(x)u a L X+a c b C X + 6

=> no nemme:

9 (Fx+y12) - g(Fx12)) g(Fy12)) = g(11-E) Fx+y12) - g(11-E) Fx(2))-g(11-E) Fx(2)]

Teneps jamener, runo $|k(x)| = \frac{g(1-\epsilon)x}{g(1-\epsilon)}$ - logpaerausyan bornyran grynn no $10, \epsilon$

Имгерируем собем сорон, использурам прера мируруми дто когу:

Wherehappen covers cropon, nemonoryens unyon $\Rightarrow H(x+y) - H(x) = g(1-\epsilon)f \int_{0}^{+\infty} k[F_{x+y}(x)]dx - \int_{0}^{+\infty} k[F_{x}(x)]dx - \int_{0}^{+\infty} k[F_{y}(x)]dx = \int_{0}^{+\infty} k[F_{y}(x)]dx = \int_{0}^{+\infty} k[F_{y}(x)]dx$ Together product the content of the

16. 11-20. Energype Gyn. 917 9.

(1) XL: 5 x3 2 => espayobyuu manit nhu Xi E [2;7] 4 воробновления -> М = 5 (4+1) = 25 -мане. Сумма во плат перестраговиния

$$C_1 = \frac{1}{4}, C_2 = \frac{1}{2}, C_3 = 1, C_4 = 2.$$

X-400 neu: 6,10,7,4,6,8,3,9.

hoerutan paynep gosalorusx nherus (AP)

Решение: і	Villeu)	Yi	1 XXX	XL, N=25	AP
NI	5	3	3	3	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
N2	10	5	8	5	B. 3. 4 = 3Re - bacer. 1 nonacy
N 3	7	5	13	5	Poo \frac{2}{5} \cdot \frac{1}{4} + Po \cdot \frac{3}{2} = Po \cdot \frac{1}{10} + \frac{3P_0}{10} = \frac{4P_0}{10} = \frac{8P_0}{20} - T.U \left \text{locer. 1} \text{1} \text{2} \\ \text{nonolest.}
NY	4	2	15	2	0.2 1 0.5 1 = Po. 1 + 3Po = 4Po = 16Po - TH PORET. 243
N 5	6	4	19	4	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
N 6	8	5	24		To 5 20 - THE BOSCY MONDEY
N 7	3	1	25	5	Po. \frac{1}{3} \cdot 2 = Po2 = \frac{8 Po}{20} - T.U boeer 4 nonvey.
NB	9	5	30	1	— т.к. вородновления уше законченог.
		9	30	_	-
				W	
<i>y</i> ₁ <i>y</i> ₂	У3	Уч	λ2 λ	6 Y7	y ₈ /
0 + 1 + 1 + 1	HIH	XIXI	11111	HA	
3 5 8	10	15	20	25	\ Juce
-> / 14					repressage and andario

$$\Rightarrow \angle AP = \frac{3P_0}{20} + \frac{8P_0}{20} + \frac{16P_0}{20} + \frac{8P_0}{20} + \frac{32P_0}{20} + \frac{8P_0}{20} = \frac{75}{20}P_0 = \boxed{3,75P_0} = 15 \rightarrow 0$$
Where $P_0 = P_0 = P_0$

(2) Yeary pakera neering no gorolopy 3 xs 2 (MNU.) [2;5] Cence X = 3; 3.4; 3.2; 4.8; 4.4; 7

CROND JULIAN CRABIA OF 2% go sto Inhu rosque Magsabru 100 yourob ma rapaurus neperparabyung hplums apenors charolyuna = 200.106 = 200 (MAN) (REA = 200)

Pemenne:

$$t_{min} = 290;$$

 $t_{max} = 590;$
 $d = 100;$

i	XIFGUI	Yi	1 2 VK
NI	3	1	1
N2	3.4	1.4	2.4
N3	3. 2	1.2	3.6
NY	4.8	2.8	6.4
N5	4.4	2.4	8.8
N6	7	3	14-8

=> y801TKU = 11.8, a nplrum = 200 (yenaxoluma)

UMPLLU: $P = t \cdot A = \min \left(\frac{1}{4} \max_{x} A_{x} \right) = min \left(\frac{0}{4} \cdot \frac{1}{4} \cdot \frac{1}{4}$

```
01.11.20. Calyrype Byn. KP1.
 (1) F_K - q_1 p_1 N(\mu_K; 6_K^2); K = 1,2 = \sum_{s \in F_2} F_1 \leq F_2.
                                                                                                                                                                                                                                                                                    forber: boosige weness, 40
          Mouno nu Fi u Fz ynops gorna & consere croxaes. nopsgra? ( monno, eenn guenepun
Решение: проверили сначала, мощно пи в и вг упорядочив в емасте 5±
                                       TILL COME FIST FI SE FZ)
                    F1 & F2 (20) = F2 (20) & 72
        F_{i}(z) = \int_{-\infty}^{\infty} \frac{1}{0i\sqrt{2\pi}} e^{-\frac{(t-\mu_{i})^{2}}{26i^{2}}} dt = \int_{-\infty}^{\infty} \frac{x-\mu_{i}}{\sqrt{\pi}} e^{-\frac{y^{2}}{\sqrt{\pi}}} dy
y = \frac{t-\mu_{i}}{0i\sqrt{2}}
   = F_{1}(x) - F_{2}(x) = \int_{-\infty}^{x-\mu_{1}} \frac{x-\mu_{2}}{\sqrt{n}} \frac{x-\mu_{2}}{\sqrt{n}} \frac{x-\mu_{2}}{\sqrt{n}} = \int_{-\infty}^{x-\mu_{1}} \frac{x-\mu_{1}}{\sqrt{n}} \frac{x-\mu_{2}}{\sqrt{n}} \int_{-\infty}^{x-\mu_{1}} \frac{x-\mu_{1}}{\sqrt{n}} \int_{-\infty}^{x-\mu_{2}} \frac{x-\mu_{1}}{\sqrt{n}} \int_{-\infty}^{x-\mu_{2}} \frac{x-\mu_{1}}{\sqrt{n}} \int_{-\infty}^{x-\mu_{2}} \frac{x-\mu_{1}}{\sqrt{n}} \int_{-\infty}^{x-\mu_{2}} \frac{x-\mu_{1}}{\sqrt{n}} \int_{-\infty}^{x-\mu_{2}} \frac{x-\mu_{1}}{\sqrt{n}} \int_{-\infty}^{x-\mu_{2}} \frac{x-\mu_{2}}{\sqrt{n}} \int_{-\infty}^{x-\mu_{2}} \frac{x-\mu_{2}}{\sqrt
     limax, F_1(x), F_2(x), lenu \frac{\mathcal{X}-\mathcal{U}_2}{62} \leq \frac{\mathcal{X}-\mathcal{U}_1}{61}
                                                                                                                                                                                                               , y=Gz(x-41)
                                                                                                                                                                                                                                                                                          y = G_1(x-u_2)
                                                                                                     G1(x-42) & 62 (x-41)
     THE FI(X) > FI(X) TUNGUO gas $2 > 20.
    отегода по сразу видим я вещи:
   1) FIUFZ MENOPS Ynopus garun b
          CMORENE Z, FK MEBERNO MUTO,
                    4mo F1(20) > F2(20) 4x => F1 / F2
         MU 10,7000 F1/2) = F2(2) Vx => F1 $ F2
  2) F1 52 F2 NO 1-11 Teopense o represerences (CM. Teopens 12 Ma CP 46 BRUME)
                                                                                                                                                                                                  или ер. 9 в пекции 5
Tegena Tuera Xu y ygoba. Yenobusa EX = EY U 3 c > 0 rauce, 4mo:
                |Fx/t/= Fy/t/ npu tec, no X & Y.
| Fx/t/> Fy/t/ npu tec, no X & Y.
      Uj raprimu lupuo, rmo y nae unenno Tak: f(F_1(x)) > F_2(x) gra x > 20 => F_1 \leq F_2. f(x) \leq F_2(x) gra x \in 20.
   3am. Fi u Fi monuno ynopogoruno, ecnu f Mi & Miz
                           BO-MEP BOX, muo unichecuo camo no cere, a lo-broporx,
```

nopponder gas gryrol pelleulle 1-it paparce (xois a sonce guillus)

Wax, nyel Fin N/42; 6,2) F2,1~N(M2; 6,2) => F1 5 F2 mo nounce nony run war menocheperbenuo uz rono, YMO $F_1(x) - F_2(x) > 0$, een $\frac{x-\mu_2}{6} \in \frac{x-\mu_1}{6}$ 1606,=62 => X-Hz & 2-H1 => F1(x) = F2(x) 4x => F1 & F2 no onf. A MOULUO U NO GOEF. YMOBUW (CM. TECHEURA 6 MA CPP. 34 KHURU) Teopena ryems 3c: | dFx(x) > dFy(x) npu x < c

dFx(x) = dFy(x) npu x > c B Maller engrae: $dF_1(x) \stackrel{?}{>} dF_{24}(x)$ $\frac{1}{6\sqrt{y_{11}}} \ell^{-\frac{(x-\mu_{1})^{2}}{26/2}} \geqslant \frac{1}{6\sqrt{y_{11}}} \ell^{-\frac{(x-\mu_{2})^{2}}{26/2}}$ -(x-1/2)2 > -(x-1/2)2 (x-42)2 > (x-4,)2 22-12/12+422 > 22-12/1, +4,2 (M2+41) (M2+41) > 292/11/41) => | dF1(x) = dF2(x) npu x = 1/1+/2 dF1(x) = dF2(x) npu x= 1/1+/2 => F1 & F21. Jamenus Tarrie, rue $F_{21} \leqslant F_2$ $-i \cdot k \cdot F_{21}(x) - F_{2}(x) > 0$, leau $\frac{x - \mu_2}{52} \leqslant \frac{x - \mu_2}{52}$ N(A2; 62) 2 N(A2; 62) 62 (x-1/2) = 62 (x-1/2) => { Fr1(x) > Fr(x) npu x > 1/2 Fr1(x) = Fr(x) npu x < 1/2 => Fr1 & Fr => F1 & F2,1 & F2 => F1 & F2 7mg.

MOLLINO RULLY hyperabus bluge $u(x,d,p)=(d+px)^{1-\frac{1}{p}}$ c d+px $>0; p\neq0; p\neq1$ unu NUMO RU UX PREPETABUR & BULGE $U(x,d,\beta)=(d+pn)$ C a+pn $(-1)^{-1}$.

RAIR UX PREPER PRU $\beta \to 0$, $\beta \to 1$? Maximu coost. Juaneume Karp. Menpuspus puru a(x). $\frac{1}{v(x)}$ $\frac{1}{v(x)}$

Persence: • When
$$d := 6$$

$$\beta := -1$$

$$U(R, b, \beta) = \frac{(b-2c)^2}{2} = -\frac{1}{2}(b-2c)^2 - k bappanenas gryus noneprocy$$
(4 Hae nonyrunes ROJO. L. NIO JONEPHEN NINO REPRESENTED TO LEAD TO LEAD

Умае попучилея козр. Е, то замения, что пинейного преобразования of the noneproces gavor to me course plunemed, nothing he cannot успе, домия поперность определена с почность до варыпования

• Now
$$d=1$$
; $b\to 0$: $u(x,d,p)=\frac{(1+px)^{d-1}}{p-1}=\frac{(1+px)^{d-1}}{(b-1)^{d-1}}=\frac{1}{(b-1)^{d-1}}$

Now $d>1$: $b\to 0$: $u(x,d,p)=\frac{(1+px)^{d-1}}{p-1}=\frac{1}{(b-1)^{d-1}}$

Now $d>1$: $b\to 0$:

$$\lim_{p\to 0} \frac{U(x,d,p) = (d+px)^{\frac{1}{p}}}{\lim_{p\to 0} \frac{1}{p-1}} = \lim_{p\to 0} \frac{1}{\lim_{p\to 0}$$

$$\lim_{\beta \to 0} u(x, d, \beta) = \lim_{\gamma \to \infty} \frac{-d}{(d+\frac{x}{\delta})} x \xrightarrow{\gamma \to \infty} 0$$

$$\lim_{\delta \to \infty} d \cdot d \cdot \ell = 0.$$

· Mu
$$\beta \rightarrow 1$$
: $\lim_{\beta \rightarrow 1} \frac{(1+\beta z)^{\frac{1-1}{\beta}}}{\beta-1} = \infty$

• npu
$$p \rightarrow \infty$$
: $\lim_{\beta \rightarrow \infty} \frac{U(x,d,\beta) = \lim_{\beta \rightarrow \infty} \frac{(d+\beta x)^{\frac{1-\beta}{\beta}}}{\beta-1} = \chi \Rightarrow nuh. g. yus noughoory.$

Mor represpanse fee bopuo usuoen $\Rightarrow u(x) = lu(d+x) - neuoze nonyuna.$

$$U(x) = x \implies a(x) = -\frac{u''(x)}{u'(x)} = \frac{0}{\tau} = 0$$

$$U(x) = -(\theta - x)^{2} = \lambda l(x) = -u''(x) = \frac{\lambda}{u'(x)} = \frac{\lambda}{2(\theta - x)} = \frac{1}{\theta - x}$$

$$U(x) = \int u(x+x) dx = \frac{\lambda}{2(\theta - x)} = \frac{1}{\theta - x}$$

$$U(x) = \ln(d+2) = 2 \ln(x) = -\frac{u'(x)}{u'(x)} = -\frac{1}{(d+2)^2} = \frac{1}{d+2}$$

$$U(x) = -\frac{1}{d+2} = \frac{1}{d+2}$$

$$U(x) = -d \cdot e^{-dx}$$

$$= \frac{u(x)}{u'(x)} = \frac{1}{d^{2} \cdot e^{-dx}} = d.$$

(3) And pacel Beridynna: Fx1t1=1-e-Ixt x ;0 \(\xeta\) (0 \(\xeta\) (12, eacy yer Fi \(\xeta\) Fx \(\xeta\).

Pellenne: Ucnonspyen respectly as 12 na ch 46 & rene (200 ch. 9 & newyon 5):

ECNIC PUCKER XUY YGOBA. YCHOLUSM EXEEY U 3 CZO TAMOSO ZIO:

FXItI = FYITI NAU t < C, NO X 5€ Y.

FXITI = FYITI NAU t > C.

Ronga $F_{2}(h)$, $F_{2}(t)$ $1-e^{-Nt}t^{dN} \ge 1-e^{-\lambda_{2}t^{d2}}$ $e^{-\lambda_{2}t^{d2}} \ge e^{-\lambda_{1}t^{d1}}$ $-\lambda_{2}t^{d2} \ge -\lambda_{1}t^{d1}$ $\lambda_{1}t^{d1} \ge \lambda_{2}t^{d2}$ $t^{d_{1}-d_{2}} \ge \lambda_{2}$ $t^{d_{1}-d_{2}} \ge \lambda_{2}$ $t \ge \sqrt{\lambda_{2}}$ $t \ge \sqrt{\lambda_{2}}$

Filt > Filt) how $t > C = \sqrt{\frac{n}{2}}$ Filt > Filt) now $t > C = \sqrt{\frac{n}{2}}$ $F_1(t) > F_2(t)$ now $t > C = \sqrt{\frac{n}{2}}$ $F_2(t) > F_2(t)$

4) DOU-6: IFR < IFRA < NBU C NBUE

(F-IFR), eenu gmg 0= x1 < x2 eo: Fx2 5t Fx1

 $\langle \Rightarrow F_{x_2}(t) \rangle F_{x_1}(t) \forall t$ $\langle \Rightarrow F_{x_2}(t) \rangle F_{x_1}(t) \forall t$

(F-IFRA), econ - lu F/t) leogp. no t

F-NBH, leave $F_{\mathbf{x}} \leq F \forall \mathbf{x} \neq 0$ The $F_{\mathbf{x}}(t) \leq F(t) \forall \mathbf{x} \neq 0$ The $F/t+\mathbf{x}$ $\leq F/t+\mathbf{x} \neq 0$.

F-NBUE, elme JEXCOD ETX & EX Pociamence Bheres surpre (=> 241-841 - Consuprais

(=> Alt)=flt) =- of lu Flt) - monor.

Noremy bospacites not.

noteing?

Noteing?

Noteing?

The Fix H) \nearrow Fix+ δ The Fix H) \nearrow Fix+ δ | \uparrow Fix+ δ | \uparrow Fix+ δ | \uparrow Algebras \uparrow Algebra \uparrow Fix | \uparrow = 0 -

Perulture: (IFR => IFRA)

Dano: Alt) Monor boppaeraer not

KORIM: - lu Flt) Bojpaeraer no t

Upreen: Alt = - d lu Flt)

=> Fles= e - gt Alyloly

=> lu Flt) = - [* My)dy

=> - $\frac{\ln F(t)}{t} = \int_{-\infty}^{t} \frac{\lambda(y) dy}{t} - \log paeraer not?$

=> KORIN: 6 Aly) oly 2 6 Aly) oly

t+8

=> tf ayldy + 8. ft myldy = t f myldy = t f myldy + t f myldy

=> 8. f "Nyldy =" t. f" nyldy

to Spt Alyldy = 8.t. Alt = t. f Alyldy -> Bepuro

 $\begin{cases} \lambda(y) \in \lambda(t) & \lambda(t) \in \lambda(y) \end{cases}$

IFRA => NBY) Daws: - lu Flt | Begg. not

Flt+x1 = Flt). Flx) Htzo, Hzzo.

TeluFl+x) & luFlt)+luFlx)

Eine of $t \in \mathcal{X} \in \mathcal{X} + t$

 $\mu = \frac{\ln \bar{f}(t)}{t} - \frac{\ln \bar{f}(t)}{t} = \frac{\ln \bar{f}(t)}{t} = \frac{\ln \bar{f}(t)}{\ln \bar{f}(t)} = \frac{\ln \bar{f}(t$

=> $\lim_{x \to \infty} |x| = \lim_{x \to \infty} |x| = \lim_{x \to \infty} |x| + \lim_{x \to \infty} |x| = \lim_{x \to \infty} |x| + \lim_{x \to \infty}$ Ex mFlt)

 $com \alpha ge \in t \leq x+t \Rightarrow \frac{du F(x)}{x}, \frac{du F(t)}{t}, \frac{du F(x+t)}{x+t}$

=> $lu F(x+t) \in \frac{x+t}{t} lu F(t) = lu F(t) + \frac{x}{t} lu F(t) \leq \frac{t}{x} lu F(x)$ = lu Flt)+2- 5/lu Flx) = lu Flt)+ lu Flx) NBU => NBUE) Raue: $FR \nleq F \forall x \neq 0$, $FR = \frac{F(t+xe)}{F(xe)} \neq F(t)$ $\forall x \neq 0$; $\forall t \neq 0$. (x)

NBUE) Raue: $FR \nleq F \forall x \neq 0$, $FR = \frac{F(t+xe)}{F(xe)} \neq FR = \frac{100}{F(t+xe)} \neq \frac{100}{F(t+xe$

Unu morno tan: $X \leftarrow Y \Rightarrow Eh(X) \leq Eh(Y) \quad \forall \quad begg. \quad bonyahout f$ braenwen, $EX \leq EY$

NO To - UNLER gr.p. For

=> hay Fre & F, D ETre & EX Ymg:

87.10.20. Cheyrype Byn. 913 8.

D Hahucobaro republio Nopercya gns paemp. napero c F(x)=1-(x)-4; 22,6>0

Pennenue: Khulus Nopunya:
$$L_X(u) = \int_{0}^{4} F_X^{-1}(t) dt$$

[F1] = 1-(-) = 1-(-)

(C.14)

$$=>$$
 $\left(\frac{6}{2}\right)^{d}=1-F_{\chi}()$

$$\Rightarrow \underline{6} = \sqrt{4 - F\chi/2}$$

$$\Rightarrow F_{x}^{-1}/t = \frac{6}{\sqrt{1-t}}$$

$$= \int_{0}^{4} f_{x}^{-1} |t| dt = \int_{0}^{4} \frac{1}{6 \cdot (1-t)} dt = -6 \cdot (1-t) \frac{1}{d+1} = -\frac{6d}{d-1} \left((1-u)^{\frac{d-1}{d}} - 1 \right) = \frac{6d}{d-1} \left((1-u)^{\frac{d-1}{d}} \right)$$

$$\int_{0}^{1} F_{x}^{-1} |t| dt = \int_{0}^{1} 6(1-t)^{-\frac{1}{2}} dt = -6(1-t)^{-\frac{1}{2}+1} \int_{0}^{1} = -\frac{6d}{d-1} \left(0-1\right) = \frac{6d}{d-1}$$

$$=> L_{X}/U) = \int_{0}^{4} F_{x}^{-1} |t| dt = 1 - (1 - U)^{\frac{d-1}{d}}$$

$$\int_{0}^{4} F_{x}^{-1} |t| dt = 1 - (1 - U)^{\frac{d-1}{d}}$$

$$\int_{0}^{4} F_{x}^{-1} |t| dt = 1 - (1 - U)^{\frac{d-1}{d}}$$

$$L_{X/1} = \frac{\int_{0}^{1} F_{x}^{-1}(Holt)}{\int_{0}^{1} F_{x}^{-1}(Holt)} = 1. \quad (\text{Now } d > 1)$$

Lx (4) bornyana bung, rx

$$L_{x}''(u) = W(u) \frac{d-1}{d} \cdot \left(-\frac{1}{\alpha}\right) \cdot (1-u)^{-\frac{1}{\alpha}-1} \cdot [-1] =$$

$$L_{X}^{"}(u) = WW \frac{d-1}{d} \cdot \left(-\frac{1}{\alpha}\right) \cdot (1+u)^{-\frac{1}{\alpha}-1} \cdot [-1] = \frac{d-1}{d^{2}} \cdot (1+u)^{-\frac{1}{\alpha}-1} = 0 \quad \text{where } d \in (0,1)$$

$$CV(X) \leq CV(X)$$

From onyque me nogr

Pluence: 0 X Lor V, eenu Lx(U) > Ly(u) &ue (0,1)

UMQUE,
$$X \leftarrow Y \Rightarrow \frac{X}{EX} \stackrel{?}{\subset} X \stackrel{?}{EY} \Rightarrow \frac{E(\frac{X^2}{EX)^2}) \stackrel{?}{\leq} E(\frac{Y^2}{EY)^2}$$

$$\begin{array}{l} \Rightarrow \underbrace{EY}^* = \underbrace{EY}^$$

ch2

(3.)
$$X \perp Z = \exp(\lambda)$$

$$X \sim \Gamma(1, \frac{1}{2}) \implies V = \frac{X}{Z} \sim \text{Paireto } e \text{ p.p. } \Gamma(\mathcal{R}) = 1 - \left(1 + \frac{\lambda \mathcal{R}}{M_{\text{pl}}}\right) \quad \substack{1 \ \text{0}}{\text{0}} \times 1$$

$$= \frac{X}{Z} \sim \Gamma(d, 1) \qquad \qquad 1 > 0.$$

Permenue:
$$\Gamma(K;\theta) : p(x) = \frac{x^{k-1} e^{-\frac{x}{\theta}}}{\Gamma(K) \cdot \theta^{K}} \cdot I(x>0)$$

$$= \sum_{\substack{\Gamma(K) \in \mathbb{N} \\ \Gamma(K) = x}} \frac{x \cdot e^{-\lambda x}}{\Gamma(K) \cdot \frac{1}{\lambda}} \cdot I(x>0)$$

$$= \sum_{\substack{\Gamma(K) \in \mathbb{N} \\ \Gamma(K) = x}} \frac{x^{k-1} e^{-x}}{\Gamma(K) \cdot \frac{1}{\lambda}} \cdot I(x>0)$$

$$= \sum_{\substack{\Gamma(K) \in \mathbb{N} \\ \Gamma(K) = x}} \frac{x^{k-1} e^{-x}}{\Gamma(K)} \cdot I(x>0)$$

$$F_{\frac{X}{2}}[H] = P(\frac{X}{2} \leq t) = \iint P_{X}(x) \cdot P_{\frac{X}{2}}(y) \, dxoly = \iint P_{\frac{X}{2}}(t) \, dxoly = \iint$$

A X 5t V ★ X € Y

WOULD TO

Ont X & Y set Fx (t) = Fy(t), It - my ga, cm. rapring

$$\begin{cases} \text{Echu } d=0 - \text{ no } 0=0. \\ \text{Echu } d\in \{0;1\}, \text{ no } E(x-d)^{+} = \int_{-1}^{1} dne = \frac{2-d}{2} = 1-\frac{d}{2} \leq 1 \\ = \sum_{i=0}^{2-d} 1 \text{ othe} = 2-d-14-d = 1 \end{cases}$$

$$\begin{cases} \text{Echu } d\in \{1;2\}: E(x-d)^{+} = \int_{-1}^{2-d} dne = \frac{2-d}{2} \text{ millips} \\ = \sum_{i=0}^{2-d} 1 \text{ othe} = 2-d \text{ millips} \end{cases} \Rightarrow E(x-d)^{+} = 2-d = 2-d = E(x-d)^{+}$$

$$E(y-d)^{+} = \int_{-1}^{2-d} dne = 2-d \text{ millips} \Rightarrow E(x-d)^{+} = 2-d = 2-d = E(y-d)^{+}$$

$$E(y-d)^{+} = \int_{-1}^{2-d} 1 \text{ other} = 2-d \text{ millips} \Rightarrow E(x-d)^{+} = 2-d = 2-d = E(y-d)^{+}$$

$$E(y-d)^{+} = \int_{-1}^{2-d} 1 \text{ other} = 2-d \text{ millips} \Rightarrow E(x-d)^{+} = 2-d = 2-d = E(y-d)^{+}$$

$$E(y-d)^{+} = \int_{-1}^{2-d} 1 \text{ other} = 2-d \text{ millips} \Rightarrow E(x-d)^{+} = 2-d = 2-d = E(y-d)^{+}$$

$$E(y-d)^{+} = \int_{-1}^{2-d} 1 \text{ other} = 2-d \text{ millips} \Rightarrow E(x-d)^{+} = 2-d = 2-d = E(y-d)^{+}$$

$$E(y-d)^{+} = \int_{-1}^{2-d} 1 \text{ other} = 2-d \text{ millips} \Rightarrow E(x-d)^{+} = 2-d = 2-d = E(y-d)^{+}$$

$$E(y-d)^{+} = \int_{-1}^{2-d} 1 \text{ other} = 2-d \text{ millips} \Rightarrow E(x-d)^{+} = 2-d = 2-d = E(y-d)^{+}$$

$$E(y-d)^{+} = \int_{-1}^{2-d} 1 \text{ other} = 2-d \text{ millips} \Rightarrow E(x-d)^{+} = 2-d = 2-d = E(y-d)^{+}$$

$$E(y-d)^{+} = \int_{-1}^{2-d} 1 \text{ other} = 2-d \text{ millips} \Rightarrow E(x-d)^{+} = 2-d = 2-d = E(y-d)^{+}$$

$$E(y-d)^{+} = \int_{-1}^{2-d} 1 \text{ other} = 2-d \text{ millips} \Rightarrow E(x-d)^{+} = 2-d = 2-d = E(y-d)^{+}$$

$$E(y-d)^{+} = \int_{-1}^{2-d} 1 \text{ other} = 2-d \text{ millips} \Rightarrow E(x-d)^{+} = 2-d = 2-d = E(y-d)^{+}$$

$$E(y-d)^{+} = \int_{-1}^{2-d} 1 \text{ other} = 2-d \text{ millips} \Rightarrow E(x-d)^{+} = 2-d = 2-d$$

=> MX/2/= MY/2) +270, => X + Y

6 noragan, ruis [(d; 0) ed=1 u R[a, 8] unceror non IFR.

ch3

Plucenue: Pacent & IFR = Set : Alt) = f(t) - leducques (= Alt) nonce boys net)

Fit) nonce boysacraer not

a)
$$\chi \sim \Gamma(k;\theta)$$

$$f(x) = x^{\alpha-1} \cdot e^{-\frac{x}{\theta}} \quad I(x > 0)$$

$$F_{\chi}(x) = \int_{0}^{\infty} t^{d-1} \cdot e^{-\frac{t}{\theta}} dt = \frac{1}{\Gamma(k) \cdot \theta^{\lambda}} \cdot \int_{0}^{\infty} t^{d-1} e^{-\frac{t}{\theta}} dt = 1 - \int_{x}^{t^{\alpha}} t^{\lambda-1} e^{-\frac{t}{\theta}} dt$$

$$\Rightarrow \chi(x) = \int_{0}^{\infty} t^{d-1} \cdot e^{-\frac{t}{\theta}} dt = \frac{1}{\Gamma(k) \cdot \theta^{\lambda}} \cdot \int_{0}^{\infty} t^{d-1} e^{-\frac{t}{\theta}} dt = 1 - \int_{x}^{t^{\alpha}} t^{\lambda-1} e^{-\frac{t}{\theta}} dt$$

$$\Rightarrow \chi(x) = \int_{0}^{x} t^{d-1} \cdot e^{-\frac{t}{\theta}} \cdot I(k) \cdot \theta^{\lambda} \cdot \int_{0}^{x} t^{\lambda-1} e^{-\frac{t}{\theta}} dt = \int_{0}^{x} \left(\frac{t}{x}\right)^{d-1} e^{-\frac{t}{\theta}} \left(\frac{t}{x}\right)^{d-1} \cdot e^{-\frac{t}{\theta}} \left(\frac{t}{x}\right)^{d-1} \cdot e^{-\frac{t}{\theta}} dt$$

$$\Rightarrow \chi^{-1}(x) = \int_{0}^{t^{\alpha}} \left(\frac{t}{x}\right)^{d-1} \cdot e^{-\frac{t}{\theta}} \left(\frac{t}{x}\right)^{d-1} \cdot e^{-\frac{t}{\theta}} dt = \int_{0}^{x} \left(\frac{t}{x}\right)^{d-1} e^{-\frac{t}{\theta}} dt = \int_{0}^{x} \left(\frac{t}{x}\right)^{d-1} e^{-\frac{t}{\theta}} dt$$

3amenum, ymo $d \ge 1 \Rightarrow \int_{0}^{t+2} \left(\frac{t}{x}\right)^{d-1} \cdot e^{-\frac{t}{\theta}} dx - \int_{0}^{x} e^{-\frac{t}{\theta}} dx - \int_{0}^{x}$

$$\begin{cases} x \sim R \leq 0.67. \\ f_{x}(x) = \frac{1}{\theta - a} \cdot I \leq 0.67 \end{cases}$$

$$F_{x}(x) = \int_{0}^{\infty} \frac{1}{\theta - a} alt = \frac{x}{\theta - a} \quad ; x \in \leq 0.67 \end{cases}$$

$$\Rightarrow \lambda(x) = \frac{f(x)}{\theta - a} = \frac{1}{\theta - a} = \frac{1}{\theta - a - x}$$

18-a - monor. befractaet nox

2) Ki kor Yi; is I somin ki Lo min Yi

Pellerene: X (Y sole) Ax (t) = Ay(t), 4 +20.

1000005
WHAT HAR CP 39 NEWYWY & DANGE NEALMO: XZmor Y => => = 2114: X = min (4,2)

[X1 = 1 => => == | X1 | X1 : X1 = min (1/1/21)

[X2 = 1 => == | X2 | X2 : X2 = min (1/2/22)

MO min (X3; X2) = min (min (X1; Z3); min (X2; Z2)) = min (X1; X2; Z2) = min (Min (X1; X2); min (Z1; Z2))

>> 3 Z = min (Z3; Z2) 11 Y = min (Y3; Y2): X = min (YiZ). Yng.

2 cnocos Ecnu XIIY, TO James = Tx + Ty. Unclus: $J_X(x) = \frac{f_X(x)}{F_X(x)}$ Aylx) = fylx)
Fylx) Macigala grp ninex, v) $F_{z}(x) = P(\min(x, y) \le x) = 1 - P(\min(x, y) > x) = 1 - P(x > x), y > x) = 1 - P(x > x), P(y > x) = 1$ = 1- (1- Fx(x)) (1- Fx(x)) = 1- Fx(x). Fy(x) => $f_2(x) = F_2(x) = -(1-F_X(x)) - f_Y(x) - (-f_X(x)) \cdot (1-F_Y(x)) =$ = $F_x(x) \cdot f_y(x) + f_x(x) \cdot F_y(x)$ $\frac{F_{\chi}(x) = f_{\chi}(x) = F_{\chi}(x) \cdot f_{\chi}(x) + f_{\chi}(x) \cdot F_{\chi}(x)}{\overline{F_{\chi}(x)} \cdot \overline{F_{\chi}(x)}} = \frac{f_{\chi}(x)}{\overline{F_{\chi}(x)}} + \frac{f_{\chi}(x)}{\overline{F_{\chi}(x)}} = \frac{f_{\chi}(x) + f_{\chi}(x)}{\overline{F_{\chi}(x)}} = \frac{f_{\chi}(x)}{\overline{F_{\chi}(x)}} = \frac{f_{\chi}(x)}{\overline{F_{\chi}(x)}} = \frac{f_{\chi}(x)}{\overline{F_$

=> leau Xi from Yi, TO Axi(x) > Axi(x) 4 xx >0.

 $\Rightarrow \lambda_{\min}(x_i) = \sum_{i} \lambda_{x_i}(x_i) = \sum_{i} \lambda_{y_i}(x_i) = \lambda_{\min}(y_i)$ >> min (xi) to min (xi)

Croxaces. we confidence que repercue sucepa.

Munup:
$$P(X=0, Y=0) = \frac{1}{3}$$

 $P(X=0; Y=\frac{2}{3h}) = \frac{1}{3}$
 $P(X=\frac{3}{h}; Y=\frac{3}{h}) = \frac{1}{3}$

Torga X & Y, no Px > Py

Pellernee: . X & Y == Fx/t) > Fy/t) &t

•
$$\Pi_{X} = EX_{h}$$
, $rge \quad X_{h} \approx F_{X,h} : dF_{X,h} = e^{hx} dF_{X}(x)$

=> $\Pi_{X} = \int x \cdot e^{hxe} dF_{X}(x) = \frac{E(Xe^{hX})}{Ee^{hX}} = \frac{g'_{X}(h)}{g_{X}(h)}$, $rge \quad g_{X}(h) = Ee^{hX}$

Unclue:
$$X = \int_{0}^{0} c \, k \, k \, k \, ds$$
 $X = \int_{0}^{0} c \, k \, k \, k \, ds$
 $X = \int_{0}^{0} c \, k \, k \, k \, ds$
 $X = \int_{0}^{0} c \, k \, k \, k \, ds$
 $X = \int_{0}^{0} c \, k \, k \, k \, ds$
 $X = \int_{0}^{0} c \, k \, k \, k \, ds$
 $X = \int_{0}^{0} c \, k \, k \, k \, ds$
 $X = \int_{0}^{0} c \, k \, k \, k \, ds$
 $X = \int_{0}^{0} c \, k \, k \, k \, ds$
 $X = \int_{0}^{0} c \, k \, k \, k \, ds$
 $X = \int_{0}^{0} c \, k \, k \, k \, ds$
 $X = \int_{0}^{0} c \, k \, k \, k \, ds$
 $X = \int_{0}^{0} c \, k \, k \, k \, ds$
 $X = \int_{0}^{0} c \, k \, k \, k \, ds$
 $X = \int_{0}^{0} c \, k \, k \, k \, ds$
 $X = \int_{0}^{0} c \, k \, k \, k \, ds$
 $X = \int_{0}^{0} c \, k \, k \, k \, ds$
 $X = \int_{0}^{0} c \, k \, k \, k \, ds$
 $X = \int_{0}^{0} c \, k \, k \, k \, ds$
 $X = \int_{0}^{0} c \, k \, k \, k \, ds$
 $X = \int_{0}^{0} c \, k \, k \, k \, ds$
 $X = \int_{0}^{0} c \, k \, k \, k \, ds$
 $X = \int_{0}^{0} c \, k \, k \, k \, ds$
 $X = \int_{0}^{0} c \, k \, k \, k \, ds$
 $X = \int_{0}^{0} c \, k \, k \, k \, ds$
 $X = \int_{0}^{0} c \, k \, k \, k \, ds$
 $X = \int_{0}^{0} c \, k \, k \, k \, ds$
 $X = \int_{0}^{0} c \, k \, k \, k \, ds$
 $X = \int_{0}^{0} c \, k \, k \, k \, ds$
 $X = \int_{0}^{0} c \, k \, k \, k \, ds$
 $X = \int_{0}^{0} c \, k \, k \, k \, ds$
 $X = \int_{0}^{0} c \, k \, k \, k \, ds$
 $X = \int_{0}^{0} c \, k \, k \, k \, ds$
 $X = \int_{0}^{0} c \, k \, k \, k \, ds$
 $X = \int_{0}^{0} c \, k \, k \, k \, ds$
 $X = \int_{0}^{0} c \, k \, k \, k \, ds$
 $X = \int_{0}^{0} c \, k \, k \, k \, ds$
 $X = \int_{0}^{0} c \, k \, k \, k \, ds$
 $X = \int_{0}^{0} c \, k \, k \, k \, ds$
 $X = \int_{0}^{0} c \, k \, k \, k \, ds$
 $X = \int_{0}^{0} c \, k \, k \, k \, ds$
 $X = \int_{0}^{0} c \, k \, k \, k \, ds$
 $X = \int_{0}^{0} c \, k \, k \, k \, ds$
 $X = \int_{0}^{0} c \, k \, k \, k \, ds$
 $X = \int_{0}^{0} c \, k \, k \, k \, ds$
 $X = \int_{0}^{0} c \, k \, k \, k \, ds$
 $X = \int_{0}^{0} c \, k \, k \, k \, ds$
 $X = \int_{0}^{0} c \, k \, k \, k \, ds$
 $X = \int_{0}^{0} c \, k \, k \, k \, ds$
 $X = \int_{0}^{0} c \, k \, k \, k \, ds$
 $X = \int_{0}^{0} c \, k \, k \, k \, k \, ds$
 $X = \int_{0}^{0} c \, k \, k \, k \, k \, ds$
 $X = \int_{0}^{0} c \, k \, k \, k \, k \, ds$
 $X = \int_{0}^{0} c \, k \, k \, k \, k \, ds$
 $X = \int_{0}^{0} c \, k \, k \, k \, k \, ds$
 $X = \int_{0}^{0} c \, k \, k \, k \, k \, k$

a) by Raprodicu: Fx (t) > Fy (t), It

$$\int g_{X}(t) = E_{\ell} t X = \frac{2}{3} \cdot e^{3t} + \frac{1}{3} \cdot e^{3t} = \frac{2}{3} + \frac{1}{3} e^{3t} + 2$$

$$= 2 \cdot g_{X}'(t) = \frac{1}{3} \cdot \frac{3}{h} e^{3t} = \frac{1}{h} \cdot e^{3t}$$

$$\Rightarrow P_{X} = \frac{g_{X}'(h)}{g_{X}(h)} = \frac{1}{h} \cdot e^{3} = \frac{3e^{3}}{h(2+e^{3})}$$

$$9y|t| = Eety = \frac{1}{3}e^{0} + \frac{1}{3} \cdot e^{\frac{2\pi}{3h}t} + \frac{1}{3} \cdot e^{\frac{3\pi}{h}t}$$

$$= \frac{9\gamma(h)}{9\gamma(h)} = \frac{2}{3h} \cdot \ell^{\frac{2}{3}} + \frac{3}{h} \cdot \ell^{3}$$

$$\frac{1 + \ell^{\frac{2}{3}} + \ell^{3}}{1 + \ell^{\frac{2}{3}} + \ell^{3}}$$

$$\frac{3e^{3}}{h(R+e^{3})}? \frac{\frac{3}{3}h \cdot e^{\frac{2}{3}} + \frac{3}{h}e^{3}}{1+e^{\frac{2}{3}} + e^{3}}$$

$$3e^{3} + 3e^{3} + 3e^{6}$$
 ? $(2+e^{3})(\frac{2}{3}e^{\frac{2}{3}} + 3e^{3})$

$$3e^{3} + 3e^{\frac{43}{3}} + 3e^{6}$$
? $4e^{\frac{2}{3}} + 6e^{3} + \frac{3}{3}e^{\frac{43}{3}} + 3e^{6}$

$$\frac{3}{3}e^{\frac{43}{3}} ? \frac{4}{3}e^{\frac{2}{3}} + 3e^{3}$$

$$7e^{\frac{43}{3}} ? 4e^{\frac{2}{3}} + ge^{3}$$

$$8RR2NN BARR NHOUSER
273,8488...? 7,7408... + 190,769...$$

@ Coxpanderes me crox nops gan nou nogerive aperius no apunyung epipuentago? order: Lees X~R(0,2) Acnoco 8

hyems X = \$ 0, C bep-nop

10, C bep-no 1-p

$$EX = \frac{10}{13}(1-p)$$

$$EX^{2} = \frac{100}{192}(1-p)$$

Acnocos
$$\chi \sim R(0,2)$$

 $\gamma \sim R(1,2)$
 $\Rightarrow \chi \leq \chi$ -ear respanses
 $E \chi = 1; \Omega \chi = \frac{1}{12}$
 $E \chi = 1,5; \Omega \chi = \frac{1}{12}$

$$AX = EX^{2} - (EX)^{2} = \frac{100}{\beta^{2}} (1-\beta) - \frac{100}{\beta^{2}} |1-\beta|^{2} = \frac{100}{\beta^{2}} |1-\beta|^{$$

$$\frac{D}{2\sqrt{3}}?\frac{1}{2}.$$

$$p?\sqrt{3} \Rightarrow n \mu p p > \sqrt{3}: |P_{X} > P_{Y}|$$

$$\Rightarrow \mu l coxpanses p cox. abprept$$

$$P_{X} = E_{X} + p_{X} = \frac{10}{p} (1-p) + p_{X} \cdot \frac{10}{p} (1-p)p = 1000 \cdot 10(p-p^{2})$$

$$\Rightarrow \frac{\partial P_{X}}{\partial P} = -10 \cdot 100(p-p^{2}) \cdot \frac{\partial P_{X}}{\partial P} = -10 \cdot 100(p-p^{2})$$

$$\frac{\partial P_{x}}{\partial p} = -\frac{10}{\beta} + 10(1 - 2p) \stackrel{?}{=} 0.$$

$$1 - 2p = \frac{1}{\beta}$$

$$1 - \frac{1}{\beta} = 2p \Rightarrow p = \frac{p-1}{2p} < 1.$$

3) постра пи принции нупевы попериост обесненивает прини с нагрузими? HET, IN TAK MAGUO ECUL J-YUS NOUGHOEN BOILYTES. Pelicerties: npunyun uynekou noayuoen: Eu(P-X)= U(0) U(x)-lossyrad => no H. by lienceus f(EZ) > Ef(Z) -i.u f(Ex) & Ef(x) gas bonyunox (buy) => U(0) = E U(P-X) = U(E(P-X)) = U(P-EX) => U(0) = U(P-EX) MO U-MYSOTBACT NO OUP => P-EX >0 Eenu u- bornyenas, Maupunep, U(x)=ex => P>EX => P-cuarpyzuow. Bofbrien Xx RS1,23. => EX = 3. Mylu Px: EUIP-X) = 410) El P-8 10° = 1. => e. Ee-X = 1. $Ee^{-x} = \int_{-1}^{2} 1 \cdot e^{-x} dx = -1 \cdot e^{-x} \Big|_{x=-1}^{2} - (e^{-2}e^{-1}) = e^{-e^{-2}} = \frac{1}{e^{-2}} = \frac{1}{e^{-2}}$ $\Rightarrow \ell^{p}. \frac{\ell^{-1}}{\ell^{2}} = 1.$ ep-2= 1 p-2 = - hule-1) h=2-lu(e-1) =1,4586... <1,5=EX. » РСЕХ » дыя волуклой до-чии помериосы при муши муневый с геадругия. (1) Lan Memberce & enoune noprepea = cenerates nech pacup npu poese naparcepa? other: Sopraeraer. Muller: X & Y = S Ee X = Ee X, Va>0. Myeurs a < 8. Kn Exp(a) : Yn Exp(8)

 $X \sim Exp(a) ; Y \sim Exp(b)$ $P_{X}(\alpha) = a \cdot e^{-a\alpha} \cdot I_{fx>0}$ $= \sum E \cdot e^{dX} = \int e^{dx} \cdot a \cdot e^{-a\alpha} dx = a \cdot \int e^{(d-a)x} dx = \frac{a}{d-a} \cdot e^{(d-a)x} \int_{0}^{+\infty} = \int \frac{a}{a-d} \cdot e^{c\alpha u} dx = \frac{a}{d-a} \cdot e^{(d-a)x} \int_{0}^{+\infty} = \int \frac{a}{a-d} \cdot e^{c\alpha u} dx = \frac{a}{d-a} \cdot e^{(d-a)x} \int_{0}^{+\infty} = \int \frac{a}{a-d} \cdot e^{c\alpha u} dx = \frac{a}{d-a} \cdot e^{(d-a)x} \int_{0}^{+\infty} = \int \frac{a}{a-d} \cdot e^{c\alpha u} dx = \frac{a}{d-a} \cdot e^{(d-a)x} \int_{0}^{+\infty} = \int \frac{a}{a-d} \cdot e^{c\alpha u} dx = \frac{a}{d-a} \cdot e^{(d-a)x} \int_{0}^{+\infty} = \int \frac{a}{a-d} \cdot e^{(d-a)x} dx = \frac{a}{d-a} \cdot e^{(d-a)x} \int_{0}^{+\infty} = \int \frac{a}{a-d} \cdot e^{(d-a)x} dx = \frac{a}{d-a} \cdot e^{(d-a)x} \int_{0}^{+\infty} = \int \frac{a}{a-d} \cdot e^{(d-a)x} dx = \frac{a}{d-a} \cdot e^{(d-a)x} \int_{0}^{+\infty} = \int \frac{a}{a-d} \cdot e^{(d-a)x} dx = \frac{a}{d-a} \cdot e^{(d-a)x} \int_{0}^{+\infty} = \int \frac{a}{a-d} \cdot e^{(d-a)x} dx = \frac{a}{d-a} \cdot e^{(d-a)x} \int_{0}^{+\infty} = \int \frac{a}{a-d} \cdot e^{(d-a)x} dx = \frac{a}{d-a} \cdot e^{(d-a)x} \int_{0}^{+\infty} = \int \frac{a}{a-d} \cdot e^{(d-a)x} dx = \frac{a}{d-a} \cdot e^{(d-a)x} \int_{0}^{+\infty} = \int \frac{a}{a-d} \cdot e^{(d-a)x} dx = \frac{a}{d-a} \cdot e^{(d-a)x} \int_{0}^{+\infty} = \int \frac{a}{a-d} \cdot e^{(d-a)x} dx = \frac{a}{d-a} \cdot e^{(d-a)x} \int_{0}^{+\infty} = \int \frac{a}{a-d} \cdot e^{(d-a)x} dx = \frac{a}{d-a} \cdot e^{(d-a)x} \int_{0}^{+\infty} = \int \frac{a}{a-d} \cdot e^{(d-a)x} dx = \frac{a}{d-a} \cdot e^{(d-a)x} \int_{0}^{+\infty} = \int \frac{a}{a-d} \cdot e^{(d-a)x} dx = \frac{a}{d-a} \cdot e^{(d-a$

Repeat of
$$d < 0 < 6$$
 $\Rightarrow \frac{1}{6} = \frac{1}{6}$
 $\Rightarrow \infty \otimes \frac{1}{6} = \infty$
 $\Rightarrow \infty \otimes \infty \otimes \infty$
 $\Rightarrow \infty \otimes$

=> the xux nee ynopegar. benoeve such achieges

=> FACEN. NOPHEPOUR HE NONHOW

13.10.20. Cheyrype Byn. 91 6. Tokala Americangpa 409 N ~ pois(2) кашдая гочка отравняеть в ст группу с вер-по ре Ni- won to rece fire spynne i=1...m DOU-10: as Non pois (pin) of fris " - negal. Permenne: a) Ni = { Xt , rge xt-ruspes; Xt = f 1, (Bep-oup: ; Xt II N => $P(N_{i}=k) = P(\underbrace{z}_{t=0}^{N} X_{t}=k) = \underbrace{z}_{t=0}^{N} P(\underbrace{z}_{t=0}^{N} X_{t}=k) = \underbrace{z}_{t=0}^{N} P(\underbrace{N=n}) = \underbrace{z}_{t=0}^{N$ $= \frac{3}{100} P(\frac{1}{200} \text{ K}_{t} = K | N=n) P(N=n) = \frac{3}{1000} P(\frac{1}{200} \text{ K}_{t} = K) \cdot P(N=n) = \frac{3}{1000} P(\frac{1}{200} \text{ K}_{t} = K) \cdot P(N=n) = \frac{3}{1000} P(\frac{1}{200} \text{ K}_{t} = K) \cdot P(N=n) = \frac{3}{1000} P(\frac{1}{200} \text{ K}_{t} = K) \cdot P(N=n) = \frac{3}{1000} P(\frac{1}{200} \text{ K}_{t} = K) \cdot P(N=n) = \frac{3}{1000} P(\frac{1}{200} \text{ K}_{t} = K) \cdot P(N=n) = \frac{3}{1000} P(\frac{1}{200} \text{ K}_{t} = K) \cdot P(N=n) = \frac{3}{1000} P(\frac{1}{2000} \text{ K}_{t} = K) \cdot P(N=n) = \frac{3}{1000} P(\frac{1}{2000} \text{ K}_{t} = K) \cdot P(N=n) = \frac{3}{1000} P(\frac{1}{2000} \text{ K}_{t} = K) \cdot P(N=n) = \frac{3}{1000} P(\frac{1}{2000} \text{ K}_{t} = K) \cdot P(N=n) = \frac{3}{1000} P(\frac{1}{2000} \text{ K}_{t} = K) \cdot P(N=n) = \frac{3}{1000} P(\frac{1}{2000} \text{ K}_{t} = K) \cdot P(N=n) = \frac{3}{1000} P(\frac{1}{2000} \text{ K}_{t} = K) \cdot P(N=n) = \frac{3}{1000} P(\frac{1}{2000} \text{ K}_{t} = K) \cdot P(N=n) = \frac{3}{1000} P(\frac{1}{2000} \text{ K}_{t} = K) \cdot P(\frac{1}$ $= \sum_{h=0}^{\infty} \binom{k}{h!} \binom{h!}{h!} \binom{h-k}{k!} \binom{h-k}{k!$ $= \frac{p_{i}^{k} \cdot e^{-\frac{1}{2}} \underbrace{g^{k} \cdot e^{ = \frac{pi^{k} \cdot e^{-2} \cdot \lambda^{k}}{k!} \frac{\infty ((1-pi)\lambda)^{n-k}}{(n-k)!} = \frac{pi^{k} \cdot e^{-2} \cdot \lambda^{k}}{n!} e^{11-pi\lambda} = \frac{pi^{k} \cdot \lambda^{k} \cdot e^{-pi\lambda}}{n!} = P(pois(\lambda pi) = k)$

=> Ni~ pois (Api)

T) Ni = E Xt , rgc Na Pois(A); Xt = f 1, C Bep-Aw pi NILNE; SXt/11NI; 1Xt/1NS $N_j = \underbrace{\xi}_{t=0}^{R_2} Y_t$, age $N_2 \sim poisin$; $Y_t = \int_0^1 \frac{1}{t} \frac{d^2 p}{dt} \frac{dp}{dt}$ DOLERWIEW, YAMO $P(N_i=K | N_j=m) \stackrel{?}{=} P(N_i=K) \cdot P(N_j=m) = p(\lambda) \cdot e^{-p(\lambda)} \cdot e^{-p(\lambda)} \cdot e^{-p(\lambda)} \cdot e^{-p(\lambda)}$ HO P(Ni=K) Nj=m) = 2 = P(Ni=K) Nj=m | Ni=n; Nz=k) - P(Ni=n; Nz=k) = $= \underbrace{\sum_{N=0}^{\infty} \sum_{k=0}^{N_1} X_{t} = K \cap \sum_{k=0}^{N_2} Y_{t} = m \mid N_1 = n; N_2 = n}_{k=0} \cdot P(N_1 = n) \cdot P(N_2 = n) = \underbrace{\sum_{N=0}^{\infty} \sum_{k=0}^{N_2} P(\sum_{k=0}^{N_2} X_{t} = k) \cdot P(\sum_{k=0}^{N_2} Y_{t} = m)}_{t=0} \cdot P(N_1 = n) \cdot P(N_2 = k) = \underbrace{\sum_{N=0}^{\infty} \sum_{k=0}^{N_2} P(\sum_{k=0}^{N_2} X_{t} = k) \cdot P(\sum_{k=0}^{N_2} Y_{t} = m)}_{t=0} \cdot P(N_1 = n) \cdot P(N_2 = k) = \underbrace{\sum_{N=0}^{\infty} \sum_{k=0}^{N_2} P(\sum_{k=0}^{N_2} X_{t} = k) \cdot P(\sum_{k=0}^{N_2} Y_{t} = m)}_{t=0} \cdot P(N_1 = n) \cdot P(N_2 = k) = \underbrace{\sum_{N=0}^{\infty} \sum_{k=0}^{N_2} P(\sum_{k=0}^{N_2} X_{t} = k) \cdot P(\sum_{k=0}^{N_2} Y_{t} = m)}_{t=0} \cdot P(N_1 = n) \cdot P(N_2 = k) = \underbrace{\sum_{N=0}^{\infty} \sum_{k=0}^{N_2} P(\sum_{k=0}^{N_2} X_{t} = k) \cdot P(\sum_{k=0}^{N_2} Y_{t} = m)}_{t=0} \cdot P(N_1 = n) \cdot P(N_2 = k) = \underbrace{\sum_{N=0}^{\infty} \sum_{k=0}^{N_2} P(\sum_{k=0}^{N_2} X_{t} = k) \cdot P(\sum_{k=0}^{N_2} Y_{t} = m)}_{t=0} \cdot P(N_1 = n) \cdot P(N_2 = k) = \underbrace{\sum_{N=0}^{N_2} \sum_{k=0}^{N_2} P(\sum_{k=0}^{N_2} X_{t} = k)}_{t=0} \cdot P(N_1 = n) \cdot P(N_2 = k) = \underbrace{\sum_{N=0}^{N_2} \sum_{k=0}^{N_2} P(\sum_{k=0}^{N_2} X_{t} = k)}_{t=0} \cdot P(N_1 = n) \cdot P(N_2 = k) = \underbrace{\sum_{N=0}^{N_2} \sum_{k=0}^{N_2} P(\sum_{k=0}^{N_2} X_{t} = k)}_{t=0} \cdot P(\sum_{k=0}^{N_2} X_{t} = k) \cdot P(\sum$ $= p_i^{\kappa} p_j^{m} e^{-\beta} e^{-\beta} \beta^{\kappa} \beta^{m} = \frac{1}{2} \frac{1}{2$ $= \frac{p_{i} \times p_{j} = \frac{1}{2} e^{-\lambda} g^{k} g^{k}}{k!} e^{-\lambda p_{i}} e^{$

2 Doll-10, rue a) Bin (n, p,) & bin (n; pz) when p, cpz a ware come xis yo 8) Bin (ns; p) & Bin (ns; p) npu nichz. Lunurau come F1 L F2 cest Filt | 7 F2 (1) Vt. на еф. 23 пещии 4 отпа теорема: lenu I c: [dfx 1x) > dfy (x) npu xxc, n X & Y. a) UNLEM: X~BM (M.p.) Y~ BM (1; pz) MLP2. dFx(x)= P(x=x)= C x p1 x (1-p1) n-x dfy(x) = p(y=x) = (2 p2 2 (1-p2) "-x dFx(x) ? dFx(x) Cn pr 211-pr) 11-x? Cn p2 2/1-p2/11-x 1/P2)2 ? (1-P2) h-x (1-p1) h-x ? (p2) x $\left(\frac{1-p_1}{1-p_2}\right)^{\frac{1}{2}}$? $\left(\frac{p_2}{p_1}, \frac{1-p_1}{1-p_2}\right)^{\frac{1}{2}}$ M lm (1-p1) ? 2 lm (P2(1-p1)) $\frac{n \ln\left(\frac{1-p_1}{1-p_2}\right)}{\ln\left(\frac{p_2(1-p_1)}{n_1(1-p_2)}\right)}? 2$ $7e \exists C = n \ln \left(\frac{1-p_1}{1-p_2} \right) > 0: \int dF_X(x) > dF_Y(x), \text{ Now } e > \infty$ $\frac{\ln \left(\frac{p_2 r_1 - p_2}{r_1 - p_2} \right)}{\ln \left(\frac{p_2 r_2 - p_2}{r_1 - p_2} \right)} = \left(\frac{dF_X(x)}{dF_X(x)} > dF_Y(x), \text{ Now } e < \infty \right)$ => Kg/ >> bm(u,p) enxacr. ynopsgounn no p mu grucen.

δ) Unceen: χη pin(ni;p); nichz.

Chabulerer dFx(x) u dFy(x):

Cha p x. (1-p) 11-x ? Cha p x. (1-p) 12-x

mi! (1-p) 1/2 (1-p) 2 ? m2! (1-p) 1/2 (1-p) 2 ? (1-p) 2 ? (1-p) 2 ?

$$\frac{n_1!}{(n_1-x)!} \frac{(1-p)^{n_1}}{(n_2-x_2)!} \frac{n_2!}{(n_2-x_2)!} \frac{(1-p)^{n_2}}{(n_2-x_2)!}$$

actor of the many leps " mitter of the rest top "?

$$\frac{(n_2 - 2e)!}{(n_1 - 2e)!} \qquad \frac{n_2!}{n_2!} (1 - p) = \frac{n_2 - n_1}{n_2!}$$

$$(n_2-x)(n_2-x-s)...(n_1-x+s)$$
? $\frac{n_2!}{n_2!}(1-p)^{n_2-n_1}$

Nebas raes $(0) = \frac{n_2!}{n_4!}$ was a pabois raen rebas raes $(n_4) = 0$ < masses raen

3) X se Y = 2X = DY. Wer!

Pluenue: Ober-ner. (Kors EXEV-200 apalga)
Novemy Mor phepromaraem, runo 300 neer ran:

$$X \leq Y \Rightarrow f(Ex) \leq Ef(x) + banyanas f$$
 $\Rightarrow Ex^{K} \leq Ey^{K}$

$$(PK \times Y \Rightarrow EX \leq X \Rightarrow no u \cdot by cheuceus)$$

$$\begin{array}{c} PK \times Y \Rightarrow EX \leq X \Rightarrow no u \cdot by cheuceus \\ no dy um \end{array}$$

HO
$$\Omega X = EX^{2} - (EX)^{2} \stackrel{?}{\leq} EY^{2} - (EY)^{2} = \Omega Y.$$

$$(EY^{2} - EX^{2}) + (EX)^{2} - (EY)^{2} \stackrel{?}{>} 0.$$

$$(EY^{2} - EX^{2}) + (EX - EY) (EX + EY) \stackrel{?}{>} 0.$$

(EV^2-EX°) + (EX-EY) (EX+EY) 3°0. Bupuo, ruo ne oss parensuo RY = 2X >0.

>> Musymalu roup nhunes.

Myenus
$$Y = \begin{cases} \frac{3}{h}, e \text{ Bep Dio 1/3} \\ 0, e \text{ Bep Rio 1/3} \end{cases}$$

$$Y = \begin{cases} \frac{3}{h}, e \text{ Bep Rio 1/3} \\ 0, e \text{ Bep Rio 1/3} \\ \frac{2}{3h}, c \text{ Bep Rio 1/3} \end{cases}$$

$$F_{X}$$

$$F_{Y}$$

Bupun ymo $\forall t: F_X(t) > F_Y(t) \implies X \leq Y \Rightarrow X \leq Y$.

MO
$$EX = \frac{3}{h} \cdot \frac{1}{3} = \frac{1}{h}$$

$$EX^{2} = \frac{9}{h^{2}} \cdot \frac{1}{3} = \frac{3}{h^{2}}$$

$$DX = EX^{2} - (EX)^{2} = \frac{3}{h^{2}} - \frac{1}{h^{2}} = \frac{2}{h^{2}}$$

$$EY = \left(\frac{3}{h} + \frac{2}{3h}\right) \cdot \frac{1}{3} = \frac{11}{01}$$

$$EY = \left(\frac{3}{h} + \frac{2}{3h}\right)\frac{1}{3} = \frac{11}{9h}$$

$$\mathcal{D}Y = EY^{\frac{1}{2}} - (EY)^{\frac{1}{2}} = \frac{85}{27h^{2}} - \frac{121}{81h^{2}} = \frac{255 - 121}{81h^{2}} = \frac{134}{81h^{2}}$$

$$\Rightarrow \int X \stackrel{<}{\lesssim} Y$$

$$\partial X = \frac{2}{h^2} > \frac{134}{81h^2} = 2Y. \quad \forall mp.$$

Plucenues
$$EX = \frac{6-9}{2} = 1$$
.
 $EY = \gamma = 1$.

Mapueyen man mapun.
$$df_X(x) = \frac{1}{2} \cdot Iso_{23}$$

$$4 \frac{df_Y(x)}{d} = e^{-x} \cdot Is_{x>0}$$

hone noppeur respectly co ep. 10 newyour 5:

When replied teoperary co of . 10 reasons
$$5$$
:

Evaluate $EX = EY$ is F the meneficial unreplicate F and F and F and F and F are F and F and F are F are F and F are F and F are F are F and F are F are F and F are F and F are F are F and F are F are F and F are F and F are F are F and F are F are F and F are F and F are F are F and F are F are F and F are F and F are F are F and F are F are F are F are F and F are F are F and F are F are F and F are F are

Mounder of
$$dF_X(x) \leq dF_Y(x)$$
 now $\chi \in I_0 \cup I_2$.

 $dF_X(x) > dF_Y(x)$ now $\chi \in I_1 - PO(\chi \leq 1)$.

```
06-10.20. Cheyrype byn. grj 5. Tokalba Mneucaugha 409
1 ryems 4 - nounout nopropou beex pueuos quis nuya & & B
    enpegenum L Tak: X & Y => X & Y HEB.
     Дон-п, что ф - то частинай порядок.
 Pewerne: 1) Than qual brock \begin{cases} X & \text{if } Y \\ Y & \text{if } T \end{cases} \Rightarrow X & \text{if } T
                       => X { } $ $ $ $ $ $ $ $ $ - a Aro ween $ $ 2.
                                                                                   (TIK & - NOPUR BOK)
             2) pegnercubuoes:
                                  99, TIL X & X (=> X & X & Y & CB - A 200 BEALLO, T.K & - noplegok
             3) Anneumn: \begin{cases} X \leq Y \\ Y \leq X \end{cases} \Rightarrow X = Y.
                                90, TK / X & Y & B & B => MOLLONSLY & - MORREPOU,
         Muser L- reenomoni nope jou, The see or spare nous price X & Y & be B
                                                                             hus VEX HBEB'
                     T.K MONEET pus neworlber: X & Y
                                               PRZEB: X & Y.
2) Myears X & Y
        Melino nulua pour nee canon bep up-be) mainur V : 1 X & V
Pullence: X_1 \leq_{\mathcal{X}} X_2 \leq_{\mathcal{Y}} F_1 \leq_{\mathcal{Y}} F_2

The F_2(\xi) \gg F_2(\xi) by the X_1 \leq_{\mathcal{X}_2} X_2 \leq_{\mathcal{Y}_3} F(X_1 \leq_{\mathcal{X}_2}) = 1.
         Unellu: Fx (t) > Fx (t) & t - T. W X 2 Y
            nogeraluse t:=X
                                                        que queuf en ben
en un su Bépus - en realpaperes
                  \Rightarrow F_{\mathbf{y}}(X) \geqslant F_{\mathbf{y}}(X)
         >> (noewondry Fy' - loghaera wyas, me Fy - ano p.p):
         \widehat{Y} := F_{\overline{Y}}'(F_{X}(X)) \geqslant X
  3aneam, umo Fg (20) = P(Fy "/Fx (x)) = 20) = P(Fx(x) = Fy (20) = P(X = Fx "/Fy(20)) =
                = F_X(F_X''|F_Y(x)) = F_Y(x)
               \Rightarrow / \tilde{Y} \stackrel{\text{el}}{>} X rup.
```

3) Dou-1806 Cb-Ro 3° reply oup Chepacu. Bepus nu cl. la 1;i, 4° que cox. noprogua? Perumer: (3): Das FoFo GEBZ: Fx * GEBZ; K=1,2 F1 L F2 => F1 * 6 L F2 * G Y nac 1 - mo 1 St St FRITAGILITE GRADIAN YORM: F & 6 => F*P L G*P $(F*P)(t) = \int_{-\infty}^{+\infty} F(t-x) dP(x) \geqslant \int_{-\infty}^{+\infty} G(t-x) dP(x) = (G*P)(t) \quad \forall t$ $\Rightarrow F*P \leq G*P \qquad F \leq G$ Cb. ba 1: 2: 40: (1): F1 < F2 => M1 & M2 Bepuro, T.K $EX = \int_{-\infty}^{+\infty} (1 - F_X(x)) dx = \int_{-\infty}^{+\infty} F_X(x) dx$ => lenu \(\xi \) \(\xi \ () 068 (=> Pa < De. Fa My Bepuro, runo Fa(t) > Fe(t) 49 YC>OGIR: F3 54 F2 = > MASS F3 \ L F2, upe FC(2)=F(2) FI GFE CEST FILE) \$ FILE VE.

=> Fs/t/= > Fs/t/ + +c>0 -TH MORE JANUA E=t. A mo ween out more, and Fi 2 Fic => Cb-ba 1:2:3:4°-bee bepus que fr.

(F) Coxpanieres nu croxaco, nopis gon nous bzernin coerabuoix pacup? Kenin: N₁ < N₂ $X_{K} \overset{\text{st}}{\lesssim} Y_{K}$ $\begin{cases}
X_{K} \overset{\text{st}}{\lesssim} Y_{K} & \text{st} & \text{st} & \text{st} \\
X_{K} \overset{\text{st}}{\lesssim} Y_{K} & \text{st} & \text{st} & \text{st} \\
Y_{K} \overset{\text{st}}{\lesssim} Y_{K} & \text{st} & \text{st} & \text{st} & \text{st}
\end{cases}$

Mycus
$$N_4 = \int_1^1 p = \frac{3}{4}$$

 $N_2 = \int_1^1 p = 1/4$
 $N_3 = \int_1^1 p = 1/4$

Norga Falt/> Falt/ It => No 5 No no onp.

Mence
$$X_1 = Y_2$$
; $X_2 = Y_2 = > \int X_1 \leq Y_2$; $X_1 = \int_1^0 \cdot p = \frac{1}{2}$
 $X_2 \leq Y_2$; $X_2 = \int_1^0 \cdot p = \frac{1}{2}$
 $X_3 = \int_1^0 \cdot p = \frac{1}{2}$

$$M0 F_{3}[-1] = P(\underbrace{\times}_{k=1}^{N}, X_{K} \leq -1) = P(N_{1} = 1) \cdot P(X_{1} \leq -1) + P(N_{1} = 2) \cdot P(X_{1} + X_{2} \leq -1)$$

$$\times L \leq N_{1}$$

$$\times L \leq N_{1}$$

$$\times L \leq N_{1}$$

$$= \frac{3}{4} \cdot 0 + \frac{1}{4} \cdot P(12 = -3) = \frac{1}{4} \cdot \frac{1}{2} = \frac{1}{8}$$

$$F_{2}(-1) = P(\underbrace{\geq}_{k=1}^{N_{2}} X_{k} \leq -1) = P(N_{2} = 1) \cdot P(X_{1} \leq -1) + P(N_{2} = 2) \cdot P(X_{1} + X_{2} \leq -1) = \underbrace{\frac{1}{q} \cdot 0 + \frac{3}{4} \cdot P(X_{2} = -3) = \frac{3}{4} \cdot \frac{1}{2} = \frac{9}{8}}_{f}$$

$$F_{3}(-1) = \frac{1}{8} < \frac{3}{8} = F_{2}(-1) \implies \text{ne beparo, rano } F_{3}(t) > F_{2}(t) \text{ } \forall t$$

$$P_{3}(-1) = \frac{1}{8} < \frac{3}{8} = F_{2}(-1) \implies \text{ne beparo, rano } F_{3}(t) > F_{2}(t) \text{ } \forall t$$

$$P_{3}(-1) = \frac{1}{8} < \frac{3}{8} = F_{2}(-1) \implies \text{ne beparo, rano } F_{3}(t) > F_{2}(t) \text{ } \forall t$$

$$P_{3}(-1) = \frac{1}{8} < \frac{3}{8} = F_{2}(-1) \implies \text{ne beparo, rano } F_{3}(t) > F_{2}(t) \text{ } \forall t$$

6. DOU-B: EX & X.

Pelleure: X1 2 X2, een E(X1-d) + E(X2-d) + fd.

XORIN: E(EX-01)+ = E(X-01)+

Even EX > d, v $|E(EX-d)|^{+} = E(EX-d) = EX-d$ => $|E(X-d)|^{+} \le |E(X-d)|^{+} \le |E(X-d)|^{+}$

Ecnu
$$Ex, ∞ $fE(Ex-d)^{+}=0$.
 $F(x-d)^{+}>0$ beerga $\Longrightarrow E(Ex-d)^{+}=E(x-d)^{+}$ rup.$$

a hyeme $X \leq_{\overline{V}} Y$.

Thomas our (Ha now we canon begins be) main $\overline{V}: \int_{V}^{X} = \overline{V}$

BOT KONTH WHELLEP: N= 1W1; W23

$$P(W_1) = 3/4$$
; $P(W_2) = 1/4$
 $X_1 = \begin{cases} 0, uq w_1 \\ 1, uq w_2 \end{cases}$ The $\begin{cases} X_1 = \begin{cases} 0, c \\ 1, c \\ 1 \end{cases}$ The $\begin{cases} 0, uq \\ 1, uq \end{cases}$ To $\begin{cases} 0, e \\ 1, c \\ 1, uq \\ 1, uq \\ 1, uq \end{cases}$ To $\begin{cases} 0, e \\ 1, uq \\ 1, uq \\ 1, uq \\ 1, uq \end{cases}$ To $\begin{cases} 0, e \\ 1, uq \\ 1, uq \\ 1, uq \\ 1, uq \end{cases}$

 $F_{X_2(x_2)}$

27.09. 20. Cheyrype Bynunchas, gg 4 Tokalla Anekcangpa 409

Ayeno
$$f_{\mathbf{X}}(x) = e^{-\frac{|x|}{\theta}}$$
; $x \in (-\infty, +\infty)$; $\theta \neq 0$

Havin paint. $Y = e^{x}$

Permenue: $F_{y}(x) = P(y \leq x) = P(e^{x} \leq x) = P(x \leq \ln x) = F_{x}(\ln x)$

$$= f_{\chi}(x) = f_{\chi}'(ux) \cdot \underline{f} = \frac{f_{\chi}(ux)}{x}; x > 0.$$

$$\frac{x}{x} = \frac{1}{2x\theta} = \frac{\ln x}{2x\theta} = \frac{\ln x}{2x\theta} \cdot I(xe(0.1)) + \frac{\ln x}{2x\theta} \cdot I(x \ge 1) = \frac{1}{2x\theta}$$

$$= \frac{x^{1/\theta}}{2x\theta} \cdot \frac{I(x \in [0,1])}{I(x \in [0,1])} + \frac{x^{-\frac{1}{\theta}}}{2x\theta} \cdot \frac{I(x > 1)}{I(x > 1)} = \frac{1}{2\theta} \left(x^{\frac{1}{\theta} - 1} \cdot \frac{I(x \in [0,1])}{I(x \in [0,1])} + x^{\frac{1}{\theta} - 1} \cdot \frac{I(x > 1)}{I(x > 1)} \right)$$
(anhance, and $\theta = 1$:

Dyget nu chépica eserabusir nyaé paent cuosa coer nyaé paent?

Penuenue: un rance coer nyac. parap.

Nhobenuu, rmo PN(2) = PN(PNK(2))

Ecne No Pois (A), in
$$P_N(z) = Ez^N = \sum_{k=0}^{\infty} z^k \cdot \frac{1}{2^k} e^{-\lambda} = e^{-\lambda} \cdot \sum_{k=0}^{\infty} \frac{k\lambda}{k!} = e^{-\lambda} \cdot e^{2\lambda} = e^{2\lambda(z-s)}$$

Pacen. elipney 2-x eocrabuox. nyae. pacap terry x epenas n no no pay epenas chipny (x) X = & Xi; Y = & Yi; upe Nampois(2s) Na mpois(12)

```
\Rightarrow P_{X}(2) = P_{N1}(P_{Xi}(2)) = e^{\beta_{1}(P_{Xi}(2)-1)}
                       Py(2) = PN2 (Px: (2)) = e 22 (Px:(21-1)
       MO P_{X+Y/Z} = E z^{X+Y} = E (z^X, z^Y) = E z^X \cdot E z^Y = P_{X/Z} \cdot P_{Y/Z} = e^{A_1 (P_{X/Z}) - I} e^{A_2 (P_{X/Z}) - I} = e^{A_1 (P_{X/Z}) - I} e^{A_2 (P_{X/Z}) - I} = e^{A_1 (P_{X/Z}) - I} e^{A_2 (P_{X/Z}) - I} = e^{A_1 (P_{X/Z}) - I} e^{A_2 (P_{X/Z}) - I} = e^{A_1 (P_{X/Z}) - I} e^{A_2 (P_{X/Z}) - I} = e^{A_1 (P_{X/Z}) - I} e^{A_2 (P_{X/Z}) - I} = e^{A_1 (P_{X/Z}) - I} e^{A_2 (P_{X/Z}) - I} = e^{A_1 (P_{X/Z}) - I} e^{A_2 (P_{X/Z}) - I} = e^{A_1 (P_{X/Z}) - I} e^{A_2 (P_{X/Z}) - I} = e^{A_1 (P_{X/Z}) - I} e^{A_2 (P_{X/Z}) - I} = e^{A_1 (P_{X/Z}) - I} e^{A_2 (P_{X/Z}) - I} = e^{A_1 (P_{X/Z}) - I} e^{A_2 (P_{X/Z}) - I} = e^{A_1 (P_{X/Z}) - I} e^{A_2 (P_{X/Z}) - I} = e^{A_1 (P_{X/Z}) - I} e^{A_2 (P_{X/Z}) - I} = e^{A_1 (P_{X/Z}) - I} e^{A_2 (P_{X/Z}) - I} = e^{A_1 (P_{X/Z}) - I} e^{A_2 (P_{X/Z}) - I} = e^{A_1 (P_{X/Z}) - I} e^{A_2 (P_{X/Z}) - I} = e^{A_1 (P_{X/Z}) - I} e^{A_2 (P_{X/Z}) - I} = e^{A_1 (P_{X/Z}) - I} e^{A_2 (P_{X/Z}) - I} = e^{A_1 (P_{X/Z}) - I} e^{A_2 (P_{X/Z}) - I} = e^{A_1 (P_{X/Z}) - I} e^{A_2 (P_{X/Z}) - I} = e^{A_1 (P_{X/Z}) - I} e^{A_2 (P_{X/Z}) - I} = e^{A_1 (P_{X/Z}) - I} e^{A_2 (P_{X/Z}) - I} = e^{A_1 (P_{X/Z}) - I} e^{A_2 (P_{X/Z}) - I} = e^{A_1 (P_{X/Z}) - I} e^{A_2 (P_{X/Z}) - I} = e^{A_1 (P_{X/Z}) - I} e^{A_2 (P_{X/Z}) - I} e^
                                Bojonen N3 ~ Pois (2,+22); U= 2 Ui
                                    a lai - makes IN3, cappe the c nhaugh gruen Pa. 12) = 1, Px: (2) + 2 Px: (2)
         Mga Px+y(2) = Py (2) => Abnueres.
          Ananomino, eene chèpica n coer nyae paens:
                                                             S = S_1 + S_2 + \dots + S_n, \Re S - eoet. Nyae. paenp. C = \sum_{i=1}^n \lambda_i
3.) Проверить, что NB - это пуас -погариры, расу
                                                                                                                                                                                                                                                                                                                                                                                                                       PS(x) = E ni Pi(x)
   Pelleule: NB/m;p): P(N=K) = CK pm/1-p)k; k=0,1,2...
                                                                                        Pais(2): P(N=K) = 2K. P. K. K. =0,1,2...
                                                                                   Morap. (p): p(N=k) = \frac{(B)^{k}}{(1+p)^{k}} = \frac{(B)^{k}}{(B)^{k}} = \frac{(B)^{k}}{(B)^{k}}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             m ( hup-do 11-29)
                          Майден произв. д-чин кандого:
                    PNB(n;p) = EZE = 5 2 K. CK pm q = pm & (29) Cm+4-1 = pm (1-29) = (1-29)
           Prois (2) = EZE = 30 2k. 1k. e.) = e-3. 2k. 1k. e.) = e-3. e = e 2/2-1)
          P_{nonap(z)} = E z^{e} = \underbrace{\sum_{k=1}^{e} \frac{z^{k} / B}{(1+p)}^{k}}_{k=1} = \underbrace{\frac{1}{(1+p)}}_{k=1} \underbrace{\sum_{k=1}^{e} \frac{(z^{p})}{(1+p)}}_{k=1} = \underbrace{\frac{1}{(1+p)}}_{k=1} \underbrace{\sum_{k=1}^{e} \frac{(z^{p})}{(1+p)}}_{k=1} = \underbrace{\frac{1}{(1+p)}}_{k=1} \underbrace{\frac{z^{p}}{(1+p)}}_{k=1} = \underbrace{\frac{z^{p}}{(1+p)}}_{k=1} \underbrace{\frac{z^{p}}{(1+p)}}_{k=1} = \underbrace{\frac{z^{p}}}_{k=1} \underbrace{\frac{z^{p}}{(1+p)}}_{k=1} = \underbrace{\frac{z^{p}}}_{k=1} \underbrace{\frac{z^{p}}}_{k=1} = \underbrace
    => Prois (Prozap. (21) = e^{3(\frac{\ln(1-2p)}{\log 2}-1)} = e^{m(\frac{\ln q}{2}-\frac{\ln(1-2p)}{\log 2})} = (\frac{2}{1-2p})^{m} - 370 NB(m;q)
                      \Rightarrow cymma \not\in \underset{i=1}{\overset{N}{\succeq}} x_i \sim NB(m;q)
                                                                                                                                            Xi~ Log(p)
```

(4) nowayare, your ghis coer nywe pacup:
$$g_n = \underbrace{A}_{n} \cdot \underbrace{\xi}_{j=1}^{n} j f_j \cdot g_{n-j}.$$

$$Pn = P(N=n)$$

$$f_n = P(Ml = n)$$

Mor pracu, romo PN(2)= PN(Pm: (2))

Coer. ryac. hacup-mo korga N~ Pois (1).

Pois(2) $\in \text{Knacey}(a, b, o) : p_{K} = p_{K-1} \cdot \left(a + \frac{b}{K}\right); k \ge 1.$

YMMORIUM OSE TAETH MA (PM:(2)) - PM:(2) U Nhoeymmupyaes no K > 1:

$$\frac{1}{2} \left(\frac{PN(2)}{PN(2)} \right) = \frac{1}{2} \cdot \frac{1}{2} \left(\frac{PN(2)}{PN(2)} \right) \cdot \frac{PN(2)}{PN(2)} = \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{PN(2)}{PN(2)} \cdot \frac{PN(2)}{PN(2)} \cdot \frac{PN(2)}{PN(2)}$$

$$= \frac{1}{2} \left(\frac{PN(2)}{PN(2)} \right) \cdot \frac{PN(2)}{PN(2)} = \frac{1}{2} \cdot \frac{PN(2)}{PN(2)} \cdot \frac{PN(2)}{PN(2)} = \frac{1}{$$

Pajnounim ose raene no crepinion ? u npupabuellu rosp. npu ?":

$$h \cdot g_n = \lambda \cdot \underbrace{2}_{j=0}^{n} j f_j \cdot g_{n-j} = \lambda \cdot \underbrace{2}_{j=1}^{n} j \cdot f_j \cdot g_{n-j}$$

$$= \frac{1}{2} \int_{j=1}^{n} j \cdot f_j \cdot g_{n-j} \quad \text{ang.}$$

Eence replecence paemp. NE Knacey (a, b, s), no gn = [p_1-1a+b]po]fn + 2. 10+bj)fj. gmj

Peluenne:
$$p_{\kappa} = p_{\kappa-1} \cdot \left(a + \frac{\beta}{\kappa}\right)$$
; $\kappa \geqslant 2$.

IMMORIUM OSE raen HEA (PMILZ) ** PMILZ) 4 ApoeyMALL PYELL NO K >1:

 $\underbrace{\sum_{k=2}^{\infty} K \cdot p_{K} \cdot \left(p_{Mi}(2) \right) \cdot p_{Mi}'(2)}_{k=2} = 0 \cdot \underbrace{\sum_{k=2}^{\infty} \left(K - 1 \right) p_{k-1} \cdot \left(p_{Mi}(2) \right) p_{Mi}'(2) + \left(a + 6 \right) \cdot \underbrace{\sum_{k=2}^{\infty} p_{k-1} \cdot \left(p_{Mi}(2) \right) p_{Mi}'(2)}_{k=2} + \underbrace{\left(p_{Mi}(2) \right) p_{Mi}'(2) + \left(p_{Mi}(2) \right) p_{Mi}'(2)}_{k=2} + \underbrace{\left(p_{Mi}(2) \right) p_{Mi}'(2) + \left(p_{Mi}(2) \right) p_{Mi}'(2)}_{k=2} + \underbrace{\left(p_{Mi}(2) \right) p_{Mi}'(2) + \left(p_{Mi}(2) \right) p_{Mi}'(2)}_{k=2} + \underbrace{\left(p_{Mi}(2) \right) p_{Mi}'(2) + \left(p_{Mi}(2) \right) p_{Mi}'(2)}_{k=2} + \underbrace{\left(p_{Mi}(2) \right) p_{Mi}'(2) + \left(p_{Mi}(2) \right) p_{Mi}'(2)}_{k=2} + \underbrace{\left(p_{Mi}(2) \right) p_{Mi}'(2) + \left(p_{Mi}(2) \right) p_{Mi}'(2)}_{k=2} + \underbrace{\left(p_{Mi}(2) \right) p_{Mi}'(2) + \left(p_{Mi}(2) \right) p_{Mi}'(2)}_{k=2} + \underbrace{\left(p_{Mi}(2) \right) p_{Mi}'(2) + \left(p_{Mi}(2) \right) p_{Mi}'(2)}_{k=2} + \underbrace{\left(p_{Mi}(2) \right) p_{Mi}'(2) + \left(p_{Mi}(2) \right) p_{Mi}'(2)}_{k=2} + \underbrace{\left(p_{Mi}(2) \right) p_{Mi}'(2) + \left(p_{Mi}(2) \right) p_{Mi}'(2)}_{k=2} + \underbrace{\left(p_{Mi}(2) \right) p_{Mi}'(2) + \left(p_{Mi}(2) \right) p_{Mi}'(2)}_{k=2} + \underbrace{\left(p_{Mi}(2) \right) p_{Mi}'(2) + \left(p_{Mi}(2) \right) p_{Mi}'(2)}_{k=2} + \underbrace{\left(p_{Mi}(2) \right) p_{Mi}'(2) + \left(p_{Mi}(2) \right) p_{Mi}'(2)}_{k=2} + \underbrace{\left(p_{Mi}(2) \right) p_{Mi}'(2) + \left(p_{Mi}(2) \right) p_{Mi}'(2)}_{k=2} + \underbrace{\left(p_{Mi}(2) \right) p_{Mi}'(2) + \left(p_{Mi}(2) \right) p_{Mi}'(2)}_{k=2} + \underbrace{\left(p_{Mi}(2) \right) p_{Mi}'(2) + \left(p_{Mi}(2) \right) p_{Mi}'(2)}_{k=2} + \underbrace{\left(p_{Mi}(2) \right) p_{Mi}'(2) + \left(p_{Mi}(2) \right) p_{Mi}'(2)}_{k=2} + \underbrace{\left(p_{Mi}(2) \right) p_{Mi}'(2) + \left(p_{Mi}(2) \right) p_{Mi}'(2)}_{k=2} + \underbrace{\left(p_{Mi}(2) \right) p_{Mi}'(2) + \left(p_{Mi}(2) \right) p_{Mi}'(2)}_{k=2} + \underbrace{\left(p_{Mi}(2) \right) p_{Mi}'(2) + \left(p_{Mi}(2) \right) p_{Mi}'(2)}_{k=2} + \underbrace{\left(p_{Mi}(2) \right) p_{Mi}'(2) + \left(p_{Mi}(2) \right) p_{Mi}'(2)}_{k=2} + \underbrace{\left(p_{Mi}(2) \right) p_{Mi}'(2) + \left(p_{Mi}(2) \right) p_{Mi}'(2)}_{k=2} + \underbrace{\left(p_{Mi}(2) \right) p_{Mi}'(2) + \left(p_{Mi}(2) \right) p_{Mi}'(2)}_{k=2} + \underbrace{\left(p_{Mi}(2) \right) p_{Mi}'(2) + \left(p_{Mi}(2) \right) p_{Mi}'(2)}_{k=2} + \underbrace{\left(p_{Mi}(2) \right) p_{Mi}'(2) + \left(p_{Mi}(2) \right) p_{Mi}'(2)}_{k=2} + \underbrace{\left(p_{Mi}(2) \right) p_{Mi}'(2) + \left(p_{Mi}(2) \right) p_{Mi}'(2)}_{k=2} + \underbrace{\left(p_{Mi}(2) \right) p_{Mi}'(2) + \left(p_{Mi}(2) \right) p_{Mi}'(2)}_{k=2} + \underbrace{\left(p_{Mi}(2) \right) p_{Mi}'(2$ Marce see xbaraer characurox npu K=1:

** Pri(2) = + Pr. (Pm. (2)) . Pri(2) (2) - PA: (1) (2) - PA: (2) - PA: (2) - Q. (2 (K-1) px., (10mil2)) . PN: (2) - 0) + 10+8 (2 px., (10mil2)) PM: (2) - Po PM: (2) $\Rightarrow (P_{N}(z)) - p_{z} \cdot p_{N_{i}}(z) = a \cdot p_{N_{i}}(z) + (a+b) (p_{N_{i}}(z) \cdot p_{N}(z) - p_{0} p_{N_{i}}(z))$ lugere Rosp. npu 2 n-1. $n \cdot g_n - p_1 \cdot n \cdot f_n = 0 \cdot \underbrace{\xi}_{j=0}^n f_j \cdot (n_j) g_{n-j} + (a+6) \left(\underbrace{\xi}_{j=0}^n j \cdot f_j \cdot g_{n-j} - p_0 \cdot \underbrace{\xi}_{j=0}^n n \cdot f_n\right)$ moqueum & npaboir vaen cranaesusa e j=0: n.gn-p1.n.fn = afongn+as fj (n-j)gn-j + (a+6) & j.fjgn-j - (a+6)pon.fn =>ngn (1-afo) = nfn(p1-(a+6)po) + $\frac{n}{2}$ (a(n-j)+(a+e)j) fj gnj => gn (1-afo) = fn(p1-(a+8)po) + = (a+ bij) fj. gnj

20.09.20. Cheyrype Bynuneur 933. Tokaela Aneneaugpa 409 Д Дон-т, что почиский распр Масштабио инвер, мо не обпараст масшта внам парам. <u>Опр.</u> Семейство распр. мај мереметовно имвар, ести с тобот распр. У , распр. СУ поше примеждовнит семейству в с >0. onf. Maclus. - unbap. cemuieho omapaer macus. napanegrous o, lenu y en ben ex ronous & repersput & c o, a bee seransnore napanepa ravue uce, kan y x. Memi Y~ LogNorm/4,63, Te V= ex, ege X~N/4,63 Умого узнаго распр. сп. вел су, нам дост посмогрей, напримир, на се жир думению распреренения ст ссь вр-ориди соок. Мещру распререпениями и их функциими распререления). $\text{Haigin q.p V = e^{X}}: P(Y \in x) = P(e^{X} = x) = P(X \in \text{ln}x) = P(X - u) = P(\text{ln}x - u) = P(\text{ln}x - u)$ => $q^{y}.p = c.e^{x}$: $P(z=x) = P(c.e^{x}=x) = P(e^{x}=x) = P(\frac{x}{c}) = P(\frac{x}$ => b q.p. 7 Nor yrapalaeve q.p. Lognorm (luc+4;63) => = c.y- nucle & knacey normohim. pount => normohim. paent. maccuratur un lat. NO MARIUT. NAPAMETPA MEN, THE # 2-15 Napametp 62- Me Uzmariunses a 1-i naparen u -> buc+u, a ue u -> c/4. rrg. DOES. Npolepumo, ruco pr > pr ois nou yrajannax? Mar yenobusx. Pois(a): pr= 1.e-7; K=0,1,2... UMPLLU: $b_{K} = c_{K+d-1} \cdot \frac{b}{(1+b)}^{K} \cdot \frac{1}{(1+b)}^{K} = \frac{(K+d-1)!}{K! (d-d)!} \cdot \frac{b_{K}}{(1+b)^{K}} \cdot \frac{1}{(1+b)^{d}} = \frac{(K+d-1)(K+d-2)...d}{K!} \cdot \frac{b_{K}}{(1+b)^{d}} \cdot \frac{1}{(1+b)^{d}}$ $= (K + \frac{3}{1} - 1)(K + \frac{3}{1} - 2) \dots \frac{3}{1} \cdot \frac{3}{1} \cdot \frac{3}{1} = (K\beta + 3 - \beta)(K\beta + 3 - 2\beta) \dots \frac{3}{1} \cdot \frac{1}{(1 + \beta)^{1/2}} = (K\beta + 3 - \beta)(K\beta + 3 - 2\beta) \dots \frac{3}{1} \cdot \frac{1}{(1 + \beta)^{1/2}} = (K\beta + 3 - \beta)(K\beta + 3 - 2\beta) \dots \frac{3}{1} \cdot \frac{1}{(1 + \beta)^{1/2}} = (K\beta + 3 - \beta)(K\beta + 3 - 2\beta) \dots \frac{3}{1} \cdot \frac{1}{(1 + \beta)^{1/2}} = (K\beta + 3 - \beta)(K\beta + 3 - 2\beta) \dots \frac{3}{1} \cdot \frac{1}{(1 + \beta)^{1/2}} = (K\beta + 3 - \beta)(K\beta + 3 - 2\beta) \dots \frac{3}{1} \cdot \frac{1}{(1 + \beta)^{1/2}} = (K\beta + 3 - \beta)(K\beta + 3 - 2\beta) \dots \frac{3}{1} \cdot \frac{1}{(1 + \beta)^{1/2}} = (K\beta + 3 - \beta)(K\beta + 3 - 2\beta) \dots \frac{3}{1} \cdot \frac{1}{(1 + \beta)^{1/2}} = (K\beta + 3 - \beta)(K\beta + 3 - 2\beta) \dots \frac{3}{1} \cdot \frac{1}{(1 + \beta)^{1/2}} = (K\beta + 3 - \beta)(K\beta + 3 - 2\beta) \dots \frac{3}{1} \cdot \frac{1}{(1 + \beta)^{1/2}} = (K\beta + 3 - \beta)(K\beta + 3 - 2\beta) \dots \frac{3}{1} \cdot \frac{1}{(1 + \beta)^{1/2}} = (K\beta + 3 - \beta)(K\beta + 3 - 2\beta) \dots \frac{3}{1} \cdot \frac{1}{(1 + \beta)^{1/2}} = (K\beta + 3 - \beta)(K\beta + 3 - 2\beta) \dots \frac{3}{1} \cdot \frac{1}{(1 + \beta)^{1/2}} = (K\beta + 3 - \beta)(K\beta + 3 - 2\beta) \dots \frac{3}{1} \cdot \frac{1}{(1 + \beta)^{1/2}} = (K\beta + 3 - 2\beta) \dots \frac{3}{1} \cdot \frac{1}{(1 + \beta)^{1/2}} = (K\beta + 3 - 2\beta) \dots \frac{3}{1} \cdot \frac{1}{(1 + \beta)^{1/2}} = (K\beta + 3 - 2\beta) \dots \frac{3}{1} \cdot \frac{1}{(1 + \beta)^{1/2}} = (K\beta + 3 - 2\beta) \dots \frac{3}{1} \cdot \frac{1}{(1 + \beta)^{1/2}} = (K\beta + 3 - 2\beta) \dots \frac{3}{1} \cdot \frac{1}{(1 + \beta)^{1/2}} = (K\beta + 3 - 2\beta) \dots \frac{3}{1} \cdot \frac{1}{(1 + \beta)^{1/2}} = (K\beta + 3 - 2\beta) \dots \frac{3}{1} \cdot \frac{1}{(1 + \beta)^{1/2}} = (K\beta + 3 - 2\beta) \dots \frac{3}{1} \cdot \frac{1}{(1 + \beta)^{1/2}} = (K\beta + 3 - 2\beta) \dots \frac{3}{1} \cdot \frac{1}{(1 + \beta)^{1/2}} = (K\beta + 3 - 2\beta) \dots \frac{3}{1} \cdot \frac{1}{(1 + \beta)^{1/2}} = (K\beta + 3 - 2\beta) \dots \frac{3}{1} \cdot \frac{1}{(1 + \beta)^{1/2}} = (K\beta + 3 - 2\beta) \dots \frac{3}{1} \cdot \frac{1}{(1 + \beta)^{1/2}} = (K\beta + 3 - 2\beta) \dots \frac{3}{1} \cdot \frac{1}{(1 + \beta)^{1/2}} = (K\beta + 3 - 2\beta) \dots \frac{3}{1} \cdot \frac{1}{(1 + \beta)^{1/2}} = (K\beta + 3 - 2\beta) \dots \frac{3}{1} \cdot \frac{1}{(1 + \beta)^{1/2}} = (K\beta + 3 - 2\beta) \dots \frac{3}{1} \cdot \frac{1}{(1 + \beta)^{1/2}} = (K\beta + 3 - 2\beta) \dots \frac{3}{1} \cdot \frac{1}{(1 + \beta)^{1/2}} = (K\beta + 3 - 2\beta) \dots \frac{3}{1} \cdot \frac{1}{(1 + \beta)^{1/2}} = (K\beta + 3 - 2\beta) \dots \frac{3}{1} \cdot \frac{1}{(1 + \beta)^{1/2}} = (K\beta + 3 - 2\beta) \dots \frac{3}{1} \cdot \frac{1}{(1 + \beta)^{1/2}} = (K\beta + 3 - 2\beta) \dots \frac{3}{1} \cdot \frac{1}{(1 + \beta)^{1/2}} = (K\beta + 3 - 2\beta) \dots \frac{3}{1} \cdot \frac{1}{(1 + \beta)^{1/2}} = (K\beta + 3 - 2\beta) \dots \frac{3}{1} \cdot \frac{1}{(1 + \beta)^{1/2}} = (K\beta + 3 - 2\beta) \dots \frac{3}{1} \cdot \frac{1}{$

 $\frac{1}{\beta \to 0} \frac{1}{k!} \cdot \frac{1}{1} \cdot \frac{1}{\ell^{2}} = \frac{1}{k!} \frac{1}{\ell^{2}} = \frac{1}{k!} \frac{pois(A)}{k!}$

41

```
(3) Bel me paenp. nina (9, 8,0) sonswice secu. genunomu?
                Ont CA. BEA. X May. Secu. GENUMOES, COM VA X = X+...+ /4; X- Maple
                                                          TO early fin: Px(2) = (Px(2)), upe P = EZX-Mouzh. gryus cn. Ben. X.
                                                                  Neme apough gryws X aba. n-i eteneuses apough grywu kawai no en-Ben X.
                          B KNALLE (0,6,0) Seno 4 paeup: Euronimonouse, nyre, op. dinor. u resulpureouse.
                a) Bin(n.p): PK = CK. pk. (1-p) "-K; K=0..."

\begin{aligned}
& \rho_{X}(z) = E_{z} = \sum_{k=0}^{m} \frac{1}{z^{k}} C_{n}^{k} p^{k} |_{1-p})^{n-k} = \sum_{k=0}^{m} C_{n}^{k} C_{n}^{k} p^{k} |_{1-p}) = (1-p+2p) + (P_{\eta}(z)), \text{ elmu } m \nmid n \\
& \text{ ropore, } n \mid \mu \mid m > n : (P_{X}(z)) - \text{ ne sen. } n \mid \mu \mid \mu \mid n \\
& \text{ pois } (A) : p_{k} = \frac{1}{2^{k}} p^{-k} : V - 0.20
\end{aligned}

         8) Pois(A): pr = 7k. e-7; K=0,1.2...
                           |P_{X}(z)| = E_{z}^{X} = \sum_{k=0}^{\infty} z^{k} \frac{\partial^{k}}{\partial x^{k}} \cdot (e^{2})^{k} = e^{-2} \frac{\partial^{2}}{\partial x^{k}} = e^{-2} e^{2} \frac{\partial^{2}}{\partial x^{k}} = e^{-2} \frac{\partial^{2}}{\partial x^{k}
                                                                             nge 1 ~ pois(2) -> pois(2) - ABA. BA3
      8) NB(d,p): p_{K} = C_{K+K-2}^{K} \frac{p_{K}}{p_{K+K-2}} = C_{K+K-2}^{K} \frac{p_{K+K-2}}{p_{K+k}} \frac{p_{K+k-2}}{p_{K+k}} \frac{p_{K+k-2}}{p_{K+k}} \frac{p_{K+k-2}}{p_{K+k-2}} \frac{p_{K+k-2
                                                                                      = 1
((1+p-2p) Nn)n = (Pp(2)), rge ~ NB(d,p) - SON. GA3.
            2) beom(p): px = px / H+px+s.
                         Baniain, mu reon poent - no racriai engrai NB(d, B) April = 1 => beam - ance Iba. Ga3
    (4.) hornean ubicat bug PK 1 K > 1 gms ypezaulox & myre pacop. y knaeca 10,6,0).
                Manorumenue: \int p_{\kappa}^{T} = d \cdot p_{\kappa}, rge d = \frac{1}{2p_{\kappa}} = \frac{1}{1-p_{0}}
               a) Bih(n,p): pk = Ck.pk.(1-p) n-k , k=0....n
                                                                               \Rightarrow p_0 = (1-p)^n \Rightarrow d = \frac{1}{1-p_0} = \frac{1}{1-11-p_0} \Rightarrow p_K^T = \frac{p_K}{1-11-p_0} = \frac{C_n^K \cdot p_0^K \cdot 11-p_0^{-n}}{1-11-p_0^{-n}} ; K=1...u
             δ) Pois(2): p_{k} = \frac{\lambda^{k}}{k!} e^{-\lambda}; k = 0.1.2...
                                                                             P_{0} = e^{-\eta} = A = \frac{1}{1-h_{0}} = \frac{1}{1-e^{-\eta}} = P_{K} = \frac{p_{K}}{1-e^{-\eta}} = \frac{p_{K}}{p_{1}^{2}-1} = \frac{p_{K}}{k!(e^{\eta}-1)}; k=1,2...
             B) NB/d, B): PK = CK+1-1 (B) K. /1/b) d; k=0,1,2...
                                                                                       2) Geom(B): pk= pk

(1+p)+1=(1+p) 1+B (k=0,1,2...
                                                                         |b| = \frac{1}{1+b} \implies d = \frac{1}{1-p_0} = \frac{1}{1-\frac{1}{1+p_0}} = \frac{1+b}{b} \implies p_k^{\dagger} = \frac{1+b}{b}p_k = \frac{1}{p_0} \cdot \frac{1}{1+p_0} \cdot \frac{1}{p_0} \cdot \frac{1}{1+p_0} \cdot \frac{1}{p_0} \cdot \frac{1}{1+p_0} \cdot \frac{1}{p_0} \cdot
```

(в.) Как вабрал прешию пі тан, члого вероготигел раупрешие с Е?

Pluenue: Byquu bzunar C ramporo nueva uperuno ni Inononio, 4mo ni >EXi, посионому хі-спучанная веничина, а зі-депринированная, потойну ма деласи надравну за риск). Been cospanu $\pi = \sum_{i=1}^{n} \pi_i$; $S_n = \sum_{i=1}^{n} \chi_i$

YORAN: $P(S_n \leq \pi)$ > 1-E -Te beg-to mepagopulus > 1-E (rivoruguo k 1 assigno)

HO
$$P(S_n \leq N) = P(S_n = S_n) = \frac{N - ES_n}{V VarS_n} = \frac{N - ES_n}{V VarS_n}$$

(д) Дои-п, что еринев. шпрер пастр со св-вым опеутовых памоги- но эксп. растр.

Pluseus: Korin:
$$P(X > x+t | X > x) = P(X>t)$$
 $P(X>x+t | X>x) = P(X>t)$
 $P(X>x+t | X>x)$
 $P(X>x+t | X>x)$

=> YORIM:
$$\frac{1-F(2e+t)}{1-F(2e)} = 1-F(t)$$

ORGINARUM g(K):=1-F(K)

roga japara crana rauois: maires bee pupp. 9-400 g(k) Taxue, ruo g(2+t) - g(2). g(t)

Будии решал жу зарачу. Charana nogeralum x=t=0

```
Banenin, Muio erun glo1=0,
                      10 fx: g(x+0) = g(0).g(x) = 0.
                           => g(K)=0
             HO g(k)=1-F(k) \Rightarrow F(k)=1-Tauono y g.p. Don me money,
                          => g(0)=1.
     Denle, nocuonouy g-gupp. no yan:
         Wently, notion buy g - gupp. no yan:

g'(x) = \lim_{h \to 0} \frac{g(x+h) - g(x)}{h} = \lim_{h \to 0} \frac{g(x) \cdot g(h) - g(x)}{h} = \lim_{h \to 0} \frac{g(x) \cdot g(h) - g(x)}{h} = \lim_{h \to 0} \frac{g(x) \cdot g(h) - g(x)}{h} = \lim_{h \to 0} \frac{g(x) \cdot g(h) - g(x)}{h} = \lim_{h \to 0} \frac{g(x) \cdot g(h) - g(x)}{h} = \lim_{h \to 0} \frac{g(x) \cdot g(h) - g(x)}{h} = \lim_{h \to 0} \frac{g(x) \cdot g(h) - g(x)}{h} = \lim_{h \to 0} \frac{g(x) \cdot g(h) - g(x)}{h} = \lim_{h \to 0} \frac{g(x) \cdot g(h) - g(x)}{h} = \lim_{h \to 0} \frac{g(x) \cdot g(h) - g(x)}{h} = \lim_{h \to 0} \frac{g(x) \cdot g(h) - g(x)}{h} = \lim_{h \to 0} \frac{g(x) \cdot g(h) - g(x)}{h} = \lim_{h \to 0} \frac{g(x) \cdot g(h) - g(x)}{h} = \lim_{h \to 0} \frac{g(x) \cdot g(h) - g(x)}{h} = \lim_{h \to 0} \frac{g(x) \cdot g(h) - g(x)}{h} = \lim_{h \to 0} \frac{g(x) \cdot g(h) - g(x)}{h} = \lim_{h \to 0} \frac{g(x) \cdot g(h) - g(x)}{h} = \lim_{h \to 0} \frac{g(x) \cdot g(h) - g(x)}{h} = \lim_{h \to 0} \frac{g(x) \cdot g(h) - g(x)}{h} = \lim_{h \to 0} \frac{g(x) \cdot g(h) - g(x)}{h} = \lim_{h \to 0} \frac{g(x) \cdot g(h) - g(x)}{h} = \lim_{h \to 0} \frac{g(x) \cdot g(h) - g(x)}{h} = \lim_{h \to 0} \frac{g(x) \cdot g(h) - g(x)}{h} = \lim_{h \to 0} \frac{g(x) \cdot g(h) - g(x)}{h} = \lim_{h \to 0} \frac{g(x) \cdot g(h) - g(x)}{h} = \lim_{h \to 0} \frac{g(x) \cdot g(h) - g(x)}{h} = \lim_{h \to 0} \frac{g(x) \cdot g(h) - g(x)}{h} = \lim_{h \to 0} \frac{g(x) \cdot g(h) - g(x)}{h} = \lim_{h \to 0} \frac{g(x) \cdot g(h) - g(x)}{h} = \lim_{h \to 0} \frac{g(x) \cdot g(h) - g(x)}{h} = \lim_{h \to 0} \frac{g(x) \cdot g(h)}{h} = \lim_{h \to 0} \frac{g(h)}{h} = \lim_{h \to 0} \frac{g(h
                   => g'(x) = g(x) · g'(0)
               \Rightarrow \frac{dg}{dx} = g(x) \cdot e
                                                                                            Te-range-ro noueraura.
                  \Rightarrow \frac{dg}{g} = cdx \Rightarrow lug = cx + \hat{c} \Rightarrow g(x) = e^{cx} \hat{c}
          Mouren boule not basening, runo g(0)=1 \Rightarrow g(0)=\ell \cdot \tilde{c}=1 \Rightarrow \tilde{c}=1.
          \Rightarrow g(x) = e^{cx}
\Rightarrow |F(x)| = 1 - e^{cx} - a \Rightarrow p.p. gas seen. benureus e napanepau <math>A = -c.
3) /= x 1/2
                     X~ Exp(1), i.e F/90 = 1-e-2e
                 Main paceup y
   Pennenne: Eenn 2>0: P(Y \in t) = p(X^{(1)} = t) = p(X \in t^2) = F(t^2) = 1 - t^2
                                                       Evalu 200: p(y \in t) = p(x^{1/2} \in t) = p(x \Rightarrow t^2) = 1 - f(t^2) = e^{-t^2}
```

07. 09.20. Спеукуре Буринецая. 313 от семинара о Tokaeba Aneutrusgos vog

(1)
$$X \sim Geom(p)$$
, re $p_k = P(X=K) = pq^K$; $k=0,1,2...$

DOU-B:
$$P(X \geqslant K + \ell \mid X \geqslant K) = P(X \geqslant \ell) - cb$$
-bo oregrerbus namen.

Permenue:
$$P(x>l) = \sum_{t=0}^{\infty} P(x=t) = \sum_{t=0}^{\infty} pq^{t} = pq^{t}(1+q+q^{2}...) = \frac{pq}{p} = q^{t}$$

$$P(X \ge K + \ell/X \ge K) = P(X \ge K + \ell \cap X \ge K) = \frac{P(X \ge K + \ell)}{P(X \ge K)} = \frac{Q^{K + \ell}}{Q^{K}} = Q^{\ell} = P(X \ge \ell). \ \forall rg.$$

$$P(X \ge K + \ell/X \ge K) = \frac{Q^{K + \ell}}{Q^{K}} = Q^{\ell} = P(X \ge \ell). \ \forall rg.$$

$$P(X \ge K + \ell/X \ge K) = \frac{Q^{K + \ell}}{Q^{K}} = Q^{\ell} = P(X \ge \ell). \ \forall rg.$$

$$P(X \ge K + \ell/X \ge K) = \frac{Q^{K + \ell}}{Q^{K}} = Q^{\ell} = P(X \ge \ell). \ \forall rg.$$

$$P(X \ge K + \ell/X \ge K) = \frac{Q^{K + \ell}}{Q^{K}} = Q^{\ell} = P(X \ge \ell). \ \forall rg.$$

$$P(X \ge K + \ell/X \ge K) = \frac{Q^{K + \ell}}{Q^{K}} = \frac{Q^{K + \ell}}{Q^{K + \ell}} = \frac{Q^{K + \ell}}{Q^{K}} = \frac{Q^{K + \ell}}{Q^{K}} = \frac{Q^{K + \ell}}{Q^{K + \ell}} = \frac{Q^{$$

4 (t) = Elite - xap gryung

gett) = Elte - nhouze p-yme moneuse

LEIE = E e te - npeasp nannaca

 $\Psi_{\xi}(Z) = E Z^{\xi} - n \rho u g \ell \cdot p - y u \ell$

(2.)
$$S \stackrel{col}{=} \frac{N(\omega)}{\zeta = 1} X_1$$

$$P_N(z) = E z^N - n pough. gryus N$$

$$\underline{\Omega}_{0U-0}: a) g_{scoe}(t) = E_{\ell}^{tscoe} = P_{N}(g_{x}(t))$$
 $\underline{E}_{S}^{col} = f_{N}(g_{x}(t))$

Personne.

Petternee: a)
$$g_{scoe}/t$$
 = $E_{l} t_{scoe}$ = $E_{l} t_{sec}$ g_{scoe}/t g_{scoe}/t = $E_{l} t_{sec}$ g_{scoe}/t g_{scoe}/t = $E_{l} t_{sec}$ g_{scoe}/t g_{scoe}/t = $E_{l} t_{sec}/t$ g_{scoe}/t = $E_{l} t_{sec}/t$ g_{scoe}/t g_{scoe}/t = $E_{l} t_{sec}/t$ g_{scoe}/t g_{scoe}/t = $E_{l} t_{sec}/t$ g_{scoe}/t $g_{scoe}/$

$$= \underbrace{\underbrace{\int_{h=0}^{t} \left\{ \underbrace{\int_{h=0}^{t} \left\{ \int_{h=0}^{t} \left\{ \int_{h=0}^{t}$$

8) Kar grais
$$g_{\xi}(t) = E l^{t\xi}$$
 lorumun $E_{\xi} = R_{\xi}^{2} - (E_{\xi})^{2}$?

Uneen: $R_{\xi}(t) = R_{\xi}^{2} + (E_{\xi})^{2}$?

Uneen:
$$g_{\xi}'(t) = (Ee^{t\xi})' = E[(e^{t\xi})'] = E[\xi \cdot e^{t\xi}]'$$

Dance,
$$g_{\xi}''(0) = E_{\xi}$$

$$\Rightarrow f_{\xi}''(0) = E_{\xi}^{2} = f_{\xi}''(0)$$

$$\Rightarrow g_{\xi}'''(0) = E_{\xi}^{2} = f_{\xi}''(0) - f_{\xi}''(0)$$

$$\Rightarrow f_{\xi}'''(0) = E_{\xi}^{2} = f_{\xi}''(0) - f_{\xi}''(0)$$

$$\Rightarrow ES^{col} = P_N'(g_X(o)) \cdot g_X'(o) = P_N'(1) \cdot EXi = [EN \cdot EXi]$$

```
norany * PN ( 9x (0)) = EN?
                          My gx/0) = El = 1.
Dance, PN /2/= EZ N = Z Zn. P(N=n)
       => PN(2) = $ 2 n. 2" -! P(N=N)
          => PN'(1) = = n. P(N=n) = EN.
    Alanorusus, P_{N}^{11}(z) = \frac{2}{2} n(n-1) z^{n-2} P(N=n)
                                             => PN(1) = 2 n(n-1) P(N=u) = 2 n2 P(N=n) - 2 n P(N=n) = EN2-EN.
                                                     => | EN= PN(1)
                                                       / EN = P"/11) + EN = P"/11) + PN/1) / (**)
    Temps, onen uenonoppe gove (t) = PN (gx/t)), novembre DScoe = Elscoe) - Escoe)
                           Man uyuu E(sece)^2

MO NO gene(*): E(sece)^2 = g_{scoe}(0) = (P_N(g_X(t))) \Big|_{t=0}^{t} = (P_N(g_X(t)) \cdot g_X(t)) \Big|_{t=0}^{t}
                 = P_{N} \left[ g_{x}(t) \right] \cdot \left[ g_{x}'(t) \right] \Big|_{t=0}^{2} + P_{N} \left[ g_{x}(t) \right] \cdot \left[ g_{x}''(t) \right] = 0
              = P_{N}^{"} (g_{X}(0)) \cdot (g_{X}^{'}(0))^{2} + P_{N}^{'} (g_{X}(0)) \cdot g_{X}^{"}(0) = P_{N}^{"} (1) \cdot (g_{X}^{'}(0))^{2} + P_{N}^{'}(1) \cdot g_{X}^{"}(0) = P_{N}^{"} (1) \cdot (g_{X}^{'}(0))^{2} + P_{N}^{'}(1) \cdot g_{X}^{"}(0) = P_{N}^{"} (1) \cdot (g_{X}^{'}(0))^{2} + P_{N}^{'}(1) \cdot g_{X}^{"}(0) = P_{N}^{"} (1) \cdot (g_{X}^{'}(0))^{2} + P_{N}^{'}(1) \cdot g_{X}^{"}(0) = P_{N}^{"} (1) \cdot (g_{X}^{'}(0))^{2} + P_{N}^{'}(1) \cdot g_{X}^{"}(0) = P_{N}^{"}(1) \cdot (g_{X}^{'}(0))^{2} + P_{N}^{'}(1) \cdot g_{X}^{"}(0) = P_{N}^{'}(1) \cdot (g_{X}^{'}(0))^{2} + P_{N}^{'}(1) \cdot (g
               = (EN-EN) (EK;) + EN. EX;2 = EN. (EX;) + EN. (EX;2) = EN. (EX;) + EN. DX;
      => A scal = E/scal)2/Escal)2 = EN2/EXi) + EN. DXi-(EN.EXi) =
                  = (EXi) (EN2-(EN)2) + EN. DXi = (EXi)2. DN + EN. DXi
     Ombem: EScol = EN. EXi
                                        DScol = EN. DKi + DN. (EXi)
```

B MULLYUNE, gray good Escal a DE col MOUND BOLD MONTHER OF BROS, CAND des apouzoogewen p-you morional. $\begin{aligned} & \int_{\mathbb{R}^{2}} \operatorname{col} = \underset{k=0}{\operatorname{M(\omega)}} \chi_{i} \\ & = \int_{\mathbb{R}^{2}} \operatorname{M(\omega)} \chi_{i} \\ & = \int_{\mathbb{R}^{2}} \operatorname{E} \left\{ \underset{k=0}{\mathbb{R}^{2}} \left\{ \underset{k=0}{\mathbb{R}^{2}}$ $E[scoe]^{2} = E[\frac{N(\omega)}{2} x_{i}]^{2} = \underbrace{E[\frac{n}{2}, x_{i}]^{2}}_{N=0} \underbrace{I[SN(\omega)=n]}_{n=0}^{2} = \underbrace{E[x_{i}^{2} + ... + x_{in}^{2} + 2x_{i}x_{2} + ... + 2x_{in}, x_{in}]}_{n=0} \cdot P[N(\omega)=n] =$ $= \underbrace{\frac{1}{2} \left[(n \cdot E x_i^2 + 4 n (u - 1) E x_i \cdot E x_j) \cdot P(N(w) = n) \right]}_{N(E x_i)^2} = \underbrace{E x_i^2 \cdot \frac{1}{2} n \cdot P(N(w) = n)}_{N(E x_i)^2} + \underbrace{E x_i^2 \cdot \frac{1}{2} n \cdot P(N(w) = n)}_{N(E x_i)^2} + \underbrace{E x_i^2 \cdot \frac{1}{2} n \cdot P(N(w) = n)}_{N(E x_i)^2} + \underbrace{E x_i^2 \cdot \frac{1}{2} n \cdot P(N(w) = n)}_{N(E x_i)^2} + \underbrace{E x_i^2 \cdot \frac{1}{2} n \cdot P(N(w) = n)}_{N(E x_i)^2} + \underbrace{E x_i^2 \cdot \frac{1}{2} n \cdot P(N(w) = n)}_{N(E x_i)^2} + \underbrace{E x_i^2 \cdot \frac{1}{2} n \cdot P(N(w) = n)}_{N(E x_i)^2} + \underbrace{E x_i^2 \cdot \frac{1}{2} n \cdot P(N(w) = n)}_{N(E x_i)^2} + \underbrace{E x_i^2 \cdot \frac{1}{2} n \cdot P(N(w) = n)}_{N(E x_i)^2} + \underbrace{E x_i^2 \cdot \frac{1}{2} n \cdot P(N(w) = n)}_{N(E x_i)^2} + \underbrace{E x_i^2 \cdot \frac{1}{2} n \cdot P(N(w) = n)}_{N(E x_i)^2} + \underbrace{E x_i^2 \cdot \frac{1}{2} n \cdot P(N(w) = n)}_{N(E x_i)^2} + \underbrace{E x_i^2 \cdot \frac{1}{2} n \cdot P(N(w) = n)}_{N(E x_i)^2} + \underbrace{E x_i^2 \cdot \frac{1}{2} n \cdot P(N(w) = n)}_{N(E x_i)^2} + \underbrace{E x_i^2 \cdot \frac{1}{2} n \cdot P(N(w) = n)}_{N(E x_i)^2} + \underbrace{E x_i^2 \cdot \frac{1}{2} n \cdot P(N(w) = n)}_{N(E x_i)^2} + \underbrace{E x_i^2 \cdot \frac{1}{2} n \cdot P(N(w) = n)}_{N(E x_i)^2} + \underbrace{E x_i^2 \cdot \frac{1}{2} n \cdot P(N(w) = n)}_{N(E x_i)^2} + \underbrace{E x_i^2 \cdot \frac{1}{2} n \cdot P(N(w) = n)}_{N(E x_i)^2} + \underbrace{E x_i^2 \cdot \frac{1}{2} n \cdot P(N(w) = n)}_{N(E x_i)^2} + \underbrace{E x_i^2 \cdot \frac{1}{2} n \cdot P(N(w) = n)}_{N(E x_i)^2} + \underbrace{E x_i^2 \cdot \frac{1}{2} n \cdot P(N(w) = n)}_{N(E x_i)^2} + \underbrace{E x_i^2 \cdot \frac{1}{2} n \cdot P(N(w) = n)}_{N(E x_i)^2} + \underbrace{E x_i^2 \cdot \frac{1}{2} n \cdot P(N(w) = n)}_{N(E x_i)^2} + \underbrace{E x_i^2 \cdot \frac{1}{2} n \cdot P(N(w) = n)}_{N(E x_i)^2} + \underbrace{E x_i^2 \cdot \frac{1}{2} n \cdot P(N(w) = n)}_{N(E x_i)^2} + \underbrace{E x_i^2 \cdot \frac{1}{2} n \cdot P(N(w) = n)}_{N(E x_i)^2} + \underbrace{E x_i^2 \cdot \frac{1}{2} n \cdot P(N(w) = n)}_{N(E x_i)^2} + \underbrace{E x_i^2 \cdot \frac{1}{2} n \cdot P(N(w) = n)}_{N(E x_i)^2} + \underbrace{E x_i^2 \cdot \frac{1}{2} n \cdot P(N(w) = n)}_{N(E x_i)^2} + \underbrace{E x_i^2 \cdot P(N(w) = n)}_{N(E x_i)$ $+(EXi)^{2} \cdot \frac{5}{2} \cdot n(n-1) P(N(\omega)=n) = EXi^{2} \cdot EN + (EXi)^{2} (\frac{5}{2} \cdot n^{2}P(N=n) - \frac{5}{2} \cdot n \cdot P(N=n) =$ = Exi. EN+(Exi) 2 (EN = EN) = (Exi) 2 EN + EN(Exi. 2 (Exi.)) = (Exi) 2 EN + EN DXi => A seel = Escoe) = (Exi) = (Exi) = EN + EN. DX: -(EN. Exi) = = (Exi) (EN=(EN)) + EN. DXi = (EXi) 2 DN + EN. DXi (3) $CV(x) = \sqrt{Dx} - \kappa o s \varphi$. U mensue boen Mych S, col No Vi; S col N2 = 2 2i, yuero elle pontico 142 MCHONDET rge Ny ~NB(10; 9); N2 ~NB(1, 10); Y~ Exp(a); Z~ Par(20; 4) a ganome mer, TK 24 4 23 Marini: 2019. yneurubochi N, N2 V Z S, Sz. Oboju: NB(m,p): P(N=K)= CK pm/1-p) K; K=0,1,2... Exp(a): f(x)=a.e-ax 1/x>0} $Par(x_0,d): P(Z>x) = \frac{x_0}{x} \int_{-\infty}^{\infty} \frac{1}{2} \left\{ x > x_0 \right\} - gaua gon. gr-que parap.$ => - $f(x) = (x_0)^d (-d) \cdot \frac{1}{x^{d+1}} \cdot \frac{1}{2} x > x_0$ => $f(x) = \frac{d(x_0)^d}{x^{d+1}} \cdot 116x > x_0$ — nonvoer parent. napero.

Roy Meruraen EUD gra N/ N2 Y 4 2. no prome uj japanei?, uam sono kbanci, rmodor necemmen E42 gras, 452. (ghe Ni) P(N=K) = CK pm (1-p) = CK pm k-1 pm k; k=91.... The boodye monices, re & PlN,=14=1, 7.K nopne y Yamuna 11-xj-1 = 2 CK XK => $\leq p(N_1=k)=p^m \leq C_{m+k-1}q^k=p^m/1-q)^m=p^mp^{-m}$ Mocueraeue EN, 4 AN1 repet reposeff. gr. 4112 $V_{N_1/2} = E_2^{N_1} = \frac{5}{2} Z^{N_1} P(N_1 = n)$ Ma que basenen (en **), ymo 4'n1 (1) = EN1 Willell: $V_{N_1}(z) = E z^{N_1} = p^m \frac{z}{z} z^k . C_{m+k-1}^k q^k = p^m \frac{z}{z} c_{m+k-1}^k (zq) = \frac{p^m}{(1-zq)^m}$ Sincon

12-k1-9 $= \frac{1}{2} \frac{1}{N_{4}(2)} = p^{m} (-m) \cdot [-q] \cdot \frac{1}{(1-2q)^{m+1}} = \frac{mp^{m}q}{(1-2q)^{m+1}}$ $= \frac{1}{2} \frac{1}{N_{4}(1)} = \frac{mp^{m}q}{(1-q)^{m+1}} = \frac{mp^{m}q}{p^{m+1}} = \frac{mq}{p} = \frac{1}{2} \frac{1}{p} = \frac{mq}{p} = \frac{mq}{p}$ Dance, $\psi''_{N_4/2}$ = $mp^mq \cdot (-m-1) \cdot (-q) \cdot 1 = p^m q^2 \cdot m(m+1) \cdot (4-2q)^{m+2} = \frac{p^m q^2 \cdot m(m+1)}{(4-2q)^{m+2}}$ => $\frac{V''_{N_1}[I]}{N_1[I]} = \frac{p^m q^2 m(m+1)}{p^m q^2 m(m+1)} = \frac{p^m q^2 m(m+1)}{p^m q^2} = \frac{q^2 m(m+1)}{p^2}$ $= \sum_{p=1}^{\infty} EN_{1}^{2} = \frac{4^{n}}{n!} |l| + EN_{1} = \frac{q^{2}m(m+1)}{p^{2}} + \frac{q}{2} \frac{mq}{p} = \frac{mq(q(m+1)+p)}{p^{2}} = \frac{mq(q(m+1)+p)}{p^{2}} = \frac{mq(q(m+1)+p)}{p^{2}} = \frac{mq(q(m+1)+p)}{p^{2}}$ => $DN_1 = EN_1^2 - (EN_1)^2 = \frac{mq (mq+s)}{p^2} - \frac{m^2q^2}{p^2} = \frac{mq (mq+1-mq)}{p^2} + \frac{mq}{p^2}$ $|EN_1 = \frac{mq}{p}$ $|DN_1 = \frac{mq}{p^2}$

$$EY = \int x \cdot a \cdot e^{-ax} dx = \frac{\alpha}{a} \cdot \int x d(e^{-ax}) = -x \cdot e^{-ax} \int x dx = \frac{1}{a} \cdot \int x dx = \frac{1}{a} \cdot e^{-ax} \int x dx = \frac{1}$$

$$EY^{2} = \int x^{2} \cdot a \cdot e^{-ax} dx = \frac{1}{a} \int x^{2} de^{-ax} = -x^{2} \cdot e^{-ax} + \int e^{-ax} dx = \frac{1}{a} \int x de^{-ax} = -\frac{1}{a} \int e^{-ax} dx = \frac{1}{a} \int e$$

=>
$$2Y = EY^{2} - (EY)^{2} = \frac{2}{a^{2}} - \frac{1}{a^{2}} = \frac{1}{a^{2}}$$

$$= EY = \frac{1}{a}$$

$$EY^{2} = \frac{1}{a^{2}}$$

and Za Mar (20, d)

$$E = \int_{x_0}^{x_0} \frac{d \cdot x_0^d}{\chi^{d+1}} dx = dx_0^d \int_{x_0}^{+\infty} \frac{dx}{\chi^{d}} = dx_0^d \left(\frac{-1}{d-1} \right) \cdot \frac{1}{\chi^{d-1}} \Big|_{x_0}^{+\infty} = \frac{d}{d-1} \cdot \frac{\chi_0^d}{\chi^{d-1}} = \frac{d}{d-1} \cdot \frac{\chi_0^d}$$

$$E^{2^{2}} = \int_{x^{2}}^{+\infty} \frac{dx_{0}}{x^{d+1}} dx = dx_{0} \int_{x^{d-1}}^{+\infty} \frac{dx}{x^{d-1}} = dx_{0} \int_{-1}^{+\infty} \frac{dx}{x^{d-1}} = dx_{0} \int_{-1}^{+\infty} \frac{dx}{x^{d-1}} = dx_{0} \int_{-1}^{+\infty} \frac{dx}{x^{d-2}} \int_{x_{0}}^{+\infty} \frac{dx}{x^{d-2}} = dx_{0} \int_{-1}^{+\infty} \frac{dx}{x^{d-2}} \int_{x_{0}}^{+\infty} \frac{dx}{x^{d-2}} = dx_{0} \int_{-1}^{+\infty} \frac{dx}{x^{d-2}} \int_{-1}^{+\infty} \frac$$

$$\Rightarrow \mathcal{A} \mathcal{Z} = \left[\mathcal{Z}^{2} - \left(\mathcal{E} \mathcal{Z} \right)^{2} \right] = \frac{d}{d-2} 20^{2} - \frac{d^{2} \mathcal{L}_{0}^{2}}{\left(d-1 \right)^{2}} = \frac{d 20^{2} \left(\left(d-1 \right)^{2} - d \left(d-2 \right) \right)}{\left(d-1 \right)^{2} \left(d-2 \right)} = \frac{d 20^{2} \left(\left(d-2 \right)^{2} - d \left(d-2 \right) \right)}{\left(d-1 \right)^{2} \left(d-2 \right)} = \frac{d 20^{2} \left(\left(d-2 \right)^{2} - d \left(d-2 \right) \right)}{\left(d-1 \right)^{2} \left(d-2 \right)} = \frac{d 20^{2} \left(\left(d-2 \right)^{2} - d \left(d-2 \right) \right)}{\left(d-2 \right)^{2} \left(d-2 \right)}$$

$$E = \frac{d}{d-1} x_0$$

$$A = \frac{dx_0^2}{(d-1)^2 (d-2)}$$

no g-nam uj japanu 2: ES1 = EVi·EN1

$$\mathcal{D}S_2 = (EZ_i)^2 \mathcal{D}N_2 + EN_2 \cdot \mathcal{D}Z_i$$

Bee rueneuno ques NI~NB(10, 90) * ~ Explas 2~ Par(20:9/4)

$$EN_{1} = \frac{mq}{p} = \frac{10 \frac{1}{10}}{3100} \frac{10}{3} \frac{10}$$