OSM Bootcamp Lecture 1

John Stachurski

2018

Dynamics

Essential to almost all areas of economics and finance

- Can't price an asset today without considering what it could be sold for tomorrow
- Can't analyze viability of a pension system without considering time paths for income, savings, etc.
- Central banks can't choose interest rates without considering future inflation, unemployment and output

Introductory Example: Solow-Swan

We start with a simple example: Solow–Swan growth

- 1. Agents save some of their current income
- 2. Those savings are used to increase capital stock
- 3. Capital is combined with labour to produce output
- 4. Output is income (wages, rent on capital)
- 5. Return to step 1

What happens to output / capital / etc. over time?

In the model, output in each period is

$$Y_t = F(K_t, L_t)$$
 $(t = 0, 1, 2, ...)$

Here

- $K_t = \text{capital}$
- $L_t = labor$
- $Y_t = \text{output}$
- *F* is the aggregate production function

F assumed to be homogeneous of degree one (HD1), meaning

$$F(\lambda K, \lambda L) = \lambda F(K, L)$$
 for all $\lambda \geqslant 0$

Examples.

Cobb-Douglas:

$$F(K,L) = AK^{\alpha}L^{1-\alpha}$$

CES:

$$F(K,L) = \gamma \{\alpha K^{\rho} + (1-\alpha)L^{\rho}\}^{1/\rho}$$

Closed economy:

current domestic investment = aggregate domestic savings

The savings rate is a positive constant s, so

investment = savings =
$$sY_t = sF(K_t, L_t)$$

Depreciation means that 1 unit of capital today becomes $1-\delta$ units next period

Thus, capital stock evolves according to

$$K_{t+1} = sF(K_t, L_t) + (1 - \delta)K_t$$

We simplify $K_{t+1} = sF(K_t, L_t) + (1 - \delta)K_t$ as follows

Assume that $L_t = \text{some constant } \underline{L}$

Set $k_t := K_t/L$ and use HD1 to get

$$k_{t+1} = s \frac{F(K_t, L)}{L} + (1 - \delta)k_t$$
$$= sF(k_t, 1) + (1 - \delta)k_t$$

Setting f(k) := F(k, 1), the final expression is

$$k_{t+1} = sf(k_t) + (1 - \delta)k_t$$

In summary, we can write

$$k_{t+1} = g(k_t)$$
 where $g(k) := sf(k) + (1 - \delta)k$

This kind of equation is called a (scalar) difference equation Question: What are the implied properties of $\{k_t\}$?

More generally, given

- difference equation $x_{t+1} = g(x_t)$
- initial condition x₀,

what are the properties of $\{x_t\}$?

45 Degree Diagrams

Useful for one dimensional dynamic systems

Equally helpful for both linear and nonlinear systems

Let's look at some examples, starting with the difference equation

$$x_{t+1} = g(x_t)$$
 when $g(x) = 2 + 0.5x$

We want to be able to take any x_0 and map out the sequence

$$x_0$$
, $x_1 = g(x_0)$, $x_2 = g(x_1)$, ...

Figure: g(x) = 2 + 0.5x with $x_0 = 0.4$

Figure: g(x) = 2 + 0.5x with $x_0 = 1.5$

Figure: g(x) = 2 + 0.5x with $x_0 = 5.8$ Light with a constitution sequence (a) to be received sequence.

OuantEcon

Figure: g(x) = 1 + 1.2x with $x_0 = 0.4$

Figure: $g(x) = 2.125/(1+x^{-4})$ with $x_0 = 0.85$

Figure: $g(x) = 2.125/(1+x^{-4})$ with $x_0 = 1.1$

Let's compare

- 45 degree diagrams
- corresponding time series plots

Figure: g(x) = 2 + 0.5x with $x_0 = 0.4$

Figure: g(x) = 2 + 0.5x with $x_0 = 0.4$

Figure: g(x) = 1 + 1.2x with $x_0 = 0.4$

Figure: g(x) = 1 + 1.2x with $x_0 = 0.4$

Figure: $g(x) = 2.125/(1+x^{-4})$ and g(0) = 0 with $x_0 = 0.85$

Figure: $g(x) = 2.125/(1+x^{-4})$ and g(0) = 0 with $x_0 = 0.85$

Figure: $g(x) = 2.125/(1+x^{-4})$ and g(0) = 0 with $x_0 = 1.1$

Figure: $g(x) = 2.125/(1+x^{-4})$ and g(0) = 0 with $x_0 = 1.1$

See Wk2_Dynamics/scalar_dynamics.ipynb

Back to Solow-Swan

Let's return to the model

$$k_{t+1} = g(k_t)$$
 where $g(k) := sf(k) + (1 - \delta)k$

Let's assume that

- $f(k) = Ak^{\alpha}$ where A = 1 and $\alpha = 0.6$
- s=0.3 and $\delta=0.1$

The dynamics can be seen graphically

Figure: Solow-Swan dynamics, low initial capital

Figure: Solow-Swan dynamics, low initial capital

Figure: Solow-Swan dynamics, high initial capital

Figure: Solow-Swan dynamics, high initial capital

Graphical analysis of the model suggests that

- k_t increases over time if k_0 is small
- k_t decreases over time if k_0 is large
- ullet k_t converges to the same point regardless of k_0

Formally, a dynamical system is a pair (X, g), where is the well of the speed.

1. X is a nonempty set

2. g is a function.

- 2. g is a function mapping X into itself (a self-mapping on X)

These objects are used to represent the difference equation

$$x_{t+1} = g(x_t)$$
 where $g: \mathbb{X} \to \mathbb{X}$

The set X is called the **state space**

The function g is called the **transition rule** or **law of motion**

Example. Let $g(k) = sAk^{\alpha} + (1 - \delta)k$ with

- *A* > 0
- $0 < s, \alpha, \delta < 1$

Is $([0,\infty),g)$ a dynamical system? Yet -g a self mapping Is $((0,\infty),g)$ a dynamical system? Yet, given the retrictors on the parameters.

Example. Let $g: x \mapsto 2x$

Is ([0,1],g) a dynamical system? No. g will map set out of itself.

Let (X,g) be a dynamical system and consider the sequence generated recursively by

$$x_{t+1} = g(x_t)$$
, where $x_0 =$ some given point in X

Not that for this sequence we have

$$x_2 = g(x_1) = g(g(x_0)) =: g^2(x_0)$$

and, more generally,

$$x_t = g^t(x_0)$$
 where $g^t = \underbrace{g \circ g \circ \cdots \circ g}_{t \text{ compositions of } g}$

The sequence $\{g^t(x_0)\}_{t\geqslant 0}$ is called the **trajectory** of $x_0\in\mathbb{X}$

We will also call it a **time series**

Figure: The trajectory of x under g

Fact. If g is increasing on \mathbb{X} and $\mathbb{X} \subset \mathbb{R}$, then every trajectory is monotone (either increasing or decreasing)

Proof: Pick any $x \in X$

Either $x \leq g(x)$ or $g(x) \leq x$ — let's treat the first case

Since g is increasing and $x \leqslant g(x)$ we have $g(x) \leqslant g^2(x)$

Putting these inequalities together gives

$$x \leqslant g(x) \leqslant g^2(x)$$

Continuing in this way gives

Breakly sown in
$$\mathbb{R}^N$$
.

(partial order) $x \leqslant g(x) \leqslant g^2(x) \leqslant g^3(x) \leqslant \cdots$

Steady States

Let (X,g) be a dynamical system

Suppose that x^* is a fixed point of g, so that

$$g(x^*) = x^*$$

Then, for any trajectory $\{x_t\}$ generated by g,

$$x_t = x^* \implies x_{t+1} = g(x_t) = g(x^*) = x^*$$

In other words, if we ever get to x^* we stay there

As a result, in this context, a fixed point of g in $\mathbb X$ is also called a **steady state**

Just a fixed point, not a new concept mathematically

Figure: Steady states of $g(x)=2.125/(1+x^{-4})$ and g(0)=0

Example. Recall the Solow-Swan growth model

$$k_{t+1} = g(k_t)$$
 where $g(k) := sAk^{\alpha} + (1 - \delta)k$

Assume that

- 1. $X = (0, \infty)$
- 2. A > 0 and $0 < s, \alpha, \delta < 1$

The system (X,g) has a steady state given by the solution to

$$k = sAk^{\alpha} + (1 - \delta)k$$

Ex. Solve this equation for k to get steady state

when for
$$k$$
 to get steady state
$$k^* := \left(\frac{sA}{\delta}\right)^{1/(1-\alpha)} - \frac{\sin q \cdot x}{\sin q \cdot x} = \frac{\cos x \cdot \sin x}{\cos x}$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty}$$

Figure: Steady state of the Solow model

Example. Let's modify the Solow-Swan model to

$$k_{t+1} = g(k_t)$$
 where $g(k) = s\underline{A(k)}k^{\alpha} + (1 - \delta)k$

In the Azariadis-Drazen growth model \boldsymbol{A} takes the form

$$\text{ for the problem of the problem } A(k) = \begin{cases} A_1 & \text{if } 0 < k < \underline{k_b} \\ A_2 & \text{if } \underline{k_b} \leqslant k < \infty \end{cases}$$

The value k_b is a "threshold" value of capital stock

- Assume $0 < A_1 < A_2$, so more productive above k_b
- As usual, $0 < s, \alpha, \delta < 1$

This is a dynamical system with

•
$$\mathbb{X} = (0, \infty)$$

•
$$g(k) = s\underline{A(k)}k^{\alpha} + (1 - \delta)k$$

Let

$$k_i^* := \left(\frac{sA_i}{\delta}\right)^{1/(1-\alpha)}$$
 for $i = 1, 2$

Suppose that $k_1^* < k_b < k_2^*$

Ex. Show that (\mathbb{X},g) has two steady states, given by k_1^* and k_2^*

Figure: The threshold model when $k_1^* < k_b < k_2^*$

Stability: Intuition

In some settings trajectories converge

Example. Graphical analysis suggests all trajectories converge for the Solow-Swan model (see above)

Let's look at some more pictures illustrating stability

We focus on the system (\mathbb{X},g) where $\mathbb{X}=[0,2]$ and

$$g(x) = \begin{cases} 2.125/(1+x^{-4}) & \text{if } x > 0\\ 0 & \text{otherwise} \end{cases}$$

Figure: Steady states of $g(x)=2.125/(1+x^{-4})$ and g(0)=0

These steady states appear to have different stability properties

- 1. x_{ℓ} is "locally stable"
 - nearby points converge to it
- 2. x_m is "unstable"
 - nearby points diverge from it
- 3. x_h is "locally stable"
 - nearby points converge to it

The "basin of attraction" for

- x_{ℓ} is $[x_{\ell}, x_m)$
- x_h is $(x_m, x_h]$

Figure: Basin of attraction for x_ℓ

Figure: Basin of attraction for x_h

Let's try to formalize these ideas...

Local Stability

Let (X,d) be a metric space and let x^* be a steady state of (X,g)

The **stable set** of x^* is

$$\mathscr{O}(x^*) := \{x \in \mathbb{X} : g^t(x) \to x^* \text{ as } t \to \infty \}$$

$$\uparrow^{\text{polars in State Space countries to } \chi^*}$$
This set is nonempty (why?)
$$\chi^* \iota \, \mathscr{O}(\chi^*)$$

The steady state x^* called **locally stable** or an **attractor** if there exists an $\epsilon > 0$ such that

$$x \in \mathbb{X} \text{ and } d(x, x^*) < \epsilon \implies x \in \mathscr{O}(x^*)$$

Figure: A poverty trap in the Azariadis-Drazen threshold model

Figure: A poverty trap in the Azariadis-Drazen threshold model

Figure: The higher steady state is also an attractor

Let $\mathbb{X} \subset \mathbb{R}$ and let $x^* \in \mathbb{X}$ be a steady state of (\mathbb{X}, g)

Fact. If g is continuously differentiable at x^* and $|g'(x^*)| < 1$, then x^* is locally stable for (\mathbb{X},g)

Proof (omitted) shows that g is "locally a contraction" near x^{\ast} under this condition

Ex. Recall the Azariadis-Drazen growth model with steady states

$$k_i^* := \left(\frac{sA_i}{\delta}\right)^{1/(1-\alpha)}$$
 for $i = 1, 2$

Under the assumptions given above, show that k_1^{\ast} and k_2^{\ast} are both locally stable

Global Stability

Dynamical system (X,g) is called **globally stable** if

- 1. (X,g) has exactly one steady state x^* and
- 2. $\mathcal{O}(x^*) = \mathbb{X}$

Figure: Visualizing global stability in \mathbb{R}^2

Example. Recall the Solow-Swan growth model where

$$k_{t+1} = g(k_t)$$
 for $g(k) = sAk^{\alpha} + (1 - \delta)k$

with

- 1. $\mathbb{X} = (0, \infty)$
- 2. A > 0 and $0 < s, \alpha, \delta < 1$

The system (X,g) is globally stable with unique fixed point

$$k^* := \left(\frac{sA}{\delta}\right)^{1/(1-\alpha)}$$

Proof: Simple algebra shows that for k > 0 we have

$$k = sAk^{\alpha} + (1 - \delta)k \iff k = \left(\frac{sA}{\delta}\right)^{1/(1-\alpha)}$$

Hence (X, g) has unique steady state k^*

It remains to show that $g^t(k) o k^*$ for every $k \in \mathbb{X} := (0, \infty)$

Let's show this for any $k \leqslant k^*$, leaving $k^* \leqslant k$ as an exercise

Since calculating $g^t(k)$ directly is messy, let's try another strategy

Claim: If $0 < k \le k^*$, then $\{g^t(k)\}$ is increasing and bounded

Proof increasing: Since g increasing $\{g^t(k)\}$ is monotone

From $k \leqslant k^*$ and some algebra (exercise) we get

$$k \leqslant \left(\frac{sA}{\delta}\right)^{1/(1-\alpha)} \implies g(k) \geqslant k \implies \{g^t(k)\} \text{ increasing }$$

Proof bounded: From $k \leq k^*$ and the fact that g is increasing,

$$g(k) \leqslant g(k^*) = k^*$$

Applying g to both sides gives $g^2(k)\leqslant k^*$ and so on Hence both bounded and increasing

To complete the proof we use the following fact

Fact. If $g^t(k) \to \hat{k}$ for some $k, \hat{k} \in \mathbb{X}$ and g is continuous at \hat{k} , then \hat{k} is a fixed point of g

Now fix $k\leqslant k^*$ and recall that $\{g^t(k)\}$ is bounded, increasing

Hence $g^t(k) \to \hat{k}$ for some $\hat{k} \in \mathbb{X}$

Because g is continuous, we know that \hat{k} is a fixed point

But k^* is the only fixed point of k = g(k) as discussed above

Hence $\hat{k} = k^*$

In other words, $g^t(k) \rightarrow k^*$ as claimed

Example. Consider again the Solow-Swan growth model

$$k_{t+1} = g(k_t)$$
 for $g(k) := sAk^{\alpha} + (1 - \delta)k$

where parameters are as before

If $\mathbb{X} = [0, \infty)$ then the same model (\mathbb{X}, g) is $\underline{\mathsf{not}}$ globally stable

- We showed above that g has a fixed point k^* in $(0, \infty)$
- However, 0 is also a fixed point of g on $[0, \infty)$
- Hence (\mathbb{X}, g) has two steady states in $\mathbb{X} = [0, \infty)$

Moral: The state space matters for dynamic properties

Periodic Points and Cycles

If x^* is a steady state of (X, g) then

$$g^k(x^*) = x^*$$
 for all $k \in \mathbb{N}$

However, some (X,g) have points x^* such that

$$g^k(x^*) = x^*$$
 for some but not all $k \in \mathbb{N}$

Figure: Here $g(x^*) \neq x^*$ but $g^2(x^*) = x^*$

A point $x^* \in \mathbb{X}$ is called **periodic** for dynamical system (\mathbb{X},g) if

$$g^k(x^*) = x^*$$
 for some $k \in \mathbb{N}$

Example. Every steady state of (X, g) is periodic (set k = 1)

Example. If $\mathbb{X} = \mathbb{R}$ and g(x) = -x then 1 is periodic because

$$g^{2}(1) = g(g(1)) = -(-1) = 1$$

The **period** of x^* is the smallest $k \in \mathbb{N}$ such that $g^k(x^*) = x^*$

Example. In the previous example, 1 has period 2

Example. Let X = [0,1] and let g be the **logistic** map

$$g(x) = 3.5x(1-x)$$

The second composition g^2 has the form

$$g^{2}(x) = 3.5g(x)(1 - g(x))$$
$$= 3.5^{2}x(1 - x)(1 - 3.5x(1 - x))$$

It has two fixed points that are not fixed points of g

These points are periodic with period 2

Figure: Logistic map g(x) = 3.5x(1-x) and second iterate g^2

Figure: Time series of logistic map g(x) = 3.5x(1-x)

Chaotic Dynamics

Some simple systems generate complicated time series

Classic example is (some of) the logistic maps

These are systems of the form (X,g) where X:=[0,1] and

$$g(x) = rx(1-x), \qquad r \in [0,4]$$
 (1)

Arise mainly in biological models

Let's consider the case r=4

Then almost all starting points generate "complicated" trajectories

Figure: Logistic map g(x) = 4x(1-x) with $x_0 = 0.3$

Figure: The corresponding time series

Figure: A longer time series

Figure: A long time series, histogram of values

