Package 'Colossus'

October 21, 2024

```
Type Package
Title ``Risk Model Regression and Analysis with Complex Non-Linear
      Models"
Version 1.1.4.2
URL https://ericgiunta.github.io/Colossus/,
      https://github.com/ericgiunta/Colossus
BugReports https://github.com/ericgiunta/Colossus/issues
Description Performs survival analysis using general non-linear models. Risk mod-
      els can be the sum or product of terms. Each term is the product of exponential/linear func-
      tions of covariates. Additionally sub-terms can be defined as a sum of exponential, linear thresh-
      old, and step functions. Cox Proportional haz-
      ards <a href="https://en.wikipedia.org/wiki/Proportional_hazards_model">https://en.wikipedia.org/wiki/Proportional_hazards_model</a>, Pois-
      son <a href="https://en.wikipedia.org/wiki/Poisson_regression">https://en.wikipedia.org/wiki/Poisson_regression</a>, and Fine-Grey compet-
      ing risks <https://www.publichealth.columbia.edu/research/</pre>
      population-health-methods/competing-risk-analysis> regression are sup-
      ported. This work was sponsored by NASA Grant 80NSSC19M0161 through a subcon-
      tract from the National Council on Radiation Protection and Measurements (NCRP). The com-
      puting for this project was performed on the Beocat Research Cluster at Kansas State Univer-
      sity, which is funded in part by NSF grants CNS-1006860, EPS-1006860, EPS-0919443, ACI-
      1440548, CHE-1726332, and NIH P20GM113109.
License GPL (>= 3)
Imports Rcpp, data.table, parallel, stats, utils, rlang, callr,
      stringr, processx
LinkingTo Rcpp, RcppEigen, testthat
SystemRequirements make
RoxygenNote 7.3.2
Encoding UTF-8
Suggests knitr, rmarkdown, testthat, xml2, ggplot2, pandoc, spelling,
      survival
Config/testthat/edition 3
```

VignetteBuilder knitr

2 Contents

Language en-US
Biarch TRUE
NeedsCompilation yes
Author Eric Giunta [aut, cre] (https://orcid.org/0000-0002-1577-766X>>https://orcid.org/0000-0002-4589-105X>>https://orcid.org/0000-0002-4589-105X>>https://orcid.org/0000-0001-7399-9191>>https://orcid.org/0000-0001-7399-9191>>https://orcid.org/0000-0001-9265-5378>>https://orcid.org/0000-0001-9265-5378>>https://orcid.org/0000-0002-8755-1299>>https://orcid.org
Maintainer Eric Giunta <egiunta@ksu.edu></egiunta@ksu.edu>
Repository CRAN
Date/Publication 2024-10-21 19:00:02 UTC

Contents

Check_Dupe_Columns			 3
Check_Trunc			 4
Check_Verbose			 5
Correct_Formula_Order			 6
Cox_Relative_Risk			 8
Date_Shift			 10
Def_Control			 11
Def_Control_Guess			 11
Def_modelform_fix			 12
Def_model_control			 13
actorize			 14
actorize_par			 15
Gather_Guesses_CPP			 16
gcc_version			 18
gen_time_dep			 19
GetCensWeight			 20
get_os			 23
nteract_them			 23
foint_Multiple_Events			 24
Likelihood_Ratio_Test			
Linked_Dose_Formula			 27
Linked_Lin_Exp_Para			
OMP_Check			 28
Rcomp_version			 29
Rcpp_version			 29
Renlace Missing			29

	RunCoxNull	30
	RunCoxPlots	32
	RunCoxRegression	34
	RunCoxRegression_Basic	36
	RunCoxRegression_CR	
	RunCoxRegression_Guesses_CPP	40
	RunCoxRegression_Omnibus	
	RunCoxRegression_Omnibus_Multidose	
	RunCoxRegression_Single	
	RunCoxRegression_STRATA	
	RunCoxRegression_Tier_Guesses	
	RunPoissonEventAssignment	
	RunPoissonEventAssignment_bound	
	RunPoissonRegression	
	RunPoissonRegression_Guesses_CPP	
	RunPoissonRegression_Joint_Omnibus	
	RunPoissonRegression_Omnibus	
	RunPoissonRegression_Residual	
	RunPoissonRegression_Single	
	RunPoissonRegression_STRATA	
	RunPoissonRegression_Tier_Guesses	
	System_Version	
	Time_Since	
Index		7 9

Description

Check_Dupe_Columns

Check_Dupe_Columns checks for duplicated columns, columns with the same values, and columns with single value. Currently not updated for multi-terms

Usage

```
Check_Dupe_Columns(df, cols, term_n, verbose = 0, factor_check = FALSE)
```

checks for duplicated column names

Arguments

df	a data.table containing the columns of interest
cols	columns to check
term_n	term numbers for each element of the model

4 Check_Trunc

verbose integer valued 0-4 controlling what information is printed to the terminal. Each

level includes the lower levels. 0: silent, 1: errors printed, 2: warnings printed, 3: notes printed, 4: debug information printed. Errors are situations that stop the regression, warnings are situations that assume default values that the user might not have intended, notes provide information on regression progress, and debug prints out C++ progress and intermediate results. The default level is 2

and True/False is converted to 3/0.

factor_check a boolean used to skip comparing columns of the form ?_? with the same initial

string, which is used for factored columns

Value

returns the usable columns

See Also

```
Other Data Cleaning Functions: Check_Trunc(), Check_Verbose(), Correct_Formula_Order(), Date_Shift(), Def_Control(), Def_Control_Guess(), Def_model_control(), Def_modelform_fix(), Joint_Multiple_Events(), Replace_Missing(), Time_Since(), factorize(), factorize_par(), gen_time_dep(), interact_them()
```

Examples

```
library(data.table)
a <- c(0, 1, 2, 3, 4, 5, 6)
b <- c(1, 2, 3, 4, 5, 6, 7)
c <- c(0, 1, 2, 1, 0, 1, 0)
df <- data.table::data.table("a" = a, "b" = b, "c" = c)
cols <- c("a", "b", "c")
term_n <- c(0, 0, 1)
unique_cols <- Check_Dupe_Columns(df, cols, term_n)</pre>
```

Check_Trunc

Applies time duration truncation limits to create columns for Cox model

Description

Check_Trunc creates columns to use for truncation

Usage

```
Check_Trunc(df, ce, verbose = 0)
```

Check_Verbose 5

Arguments

df a data.table containing the columns of interest ce columns to check for truncation, (t0, t1, event)

verbose integer valued 0-4 controlling what information is printed to the terminal. Each

level includes the lower levels. 0: silent, 1: errors printed, 2: warnings printed, 3: notes printed, 4: debug information printed. Errors are situations that stop the regression, warnings are situations that assume default values that the user might not have intended, notes provide information on regression progress, and debug prints out C++ progress and intermediate results. The default level is 2

and True/False is converted to 3/0.

Value

returns the updated data and time period columns

See Also

```
Other Data Cleaning Functions: Check_Dupe_Columns(), Check_Verbose(), Correct_Formula_Order(), Date_Shift(), Def_Control(), Def_Control_Guess(), Def_model_control(), Def_modelform_fix(), Joint_Multiple_Events(), Replace_Missing(), Time_Since(), factorize(), factorize_par(), gen_time_dep(), interact_them()
```

Examples

```
library(data.table)
df <- data.table::data.table(
   "UserID" = c(112, 114, 213, 214, 115, 116, 117),
   "Starting_Age" = c(18, 20, 18, 19, 21, 20, 18),
   "Ending_Age" = c(30, 45, 57, 47, 36, 60, 55),
   "Cancer_Status" = c(0, 0, 1, 0, 1, 0, 0)
)
# For the interval case
time1 <- "Starting_Age"
time2 <- "Ending_Age"
ce <- c("%trunc%", "Ending_Age")
val <- Check_Trunc(df, ce)
df <- val$df
ce <- val$ce</pre>
```

Check_Verbose

General purpose verbosity check

Description

Check_Verbose checks and assigns verbosity values

Usage

Check_Verbose(verbose)

Arguments

verbose

integer valued 0-4 controlling what information is printed to the terminal. Each level includes the lower levels. 0: silent, 1: errors printed, 2: warnings printed, 3: notes printed, 4: debug information printed. Errors are situations that stop the regression, warnings are situations that assume default values that the user might not have intended, notes provide information on regression progress, and debug prints out C++ progress and intermediate results. The default level is 2 and True/False is converted to 3/0.

Value

returns correct verbose value

See Also

```
Other Data Cleaning Functions: Check_Dupe_Columns(), Check_Trunc(), Correct_Formula_Order(), Date_Shift(), Def_Control(), Def_Control_Guess(), Def_model_control(), Def_modelform_fix(), Joint_Multiple_Events(), Replace_Missing(), Time_Since(), factorize(), factorize_par(), gen_time_dep(), interact_them()
```

Description

Correct_Formula_Order checks the order of formulas given and corrects any ordering issues, orders alphabetically, by term number, etc.

Usage

```
Correct_Formula_Order(
   term_n,
   tform,
   keep_constant,
   a_n,
   names,
   der_iden = 0,
   cons_mat = matrix(c(0)),
   cons_vec = c(0),
   verbose = FALSE,
   model_control = list()
)
```

Arguments

term_n term numbers for each element of the model

tform list of string function identifiers, used for linear/step keep_constant binary values to denote which parameters to change

a_n list of initial parameter values, used to determine number of parameters. May

be either a list of vectors or a single vector.

names columns for elements of the model, used to identify data columns

der_iden number for the subterm to test derivative at, only used for testing runs with a

single varying parameter, should be smaller than total number of parameters.

indexed starting at 0

cons_mat Matrix containing coefficients for system of linear constraints, formatted as ma-

trix

cons_vec Vector containing constants for system of linear constraints, formatted as vector

verbose integer valued 0-4 controlling what information is printed to the terminal. Each

level includes the lower levels. 0: silent, 1: errors printed, 2: warnings printed, 3: notes printed, 4: debug information printed. Errors are situations that stop the regression, warnings are situations that assume default values that the user might not have intended, notes provide information on regression progress, and debug prints out C++ progress and intermediate results. The default level is 2

and True/False is converted to 3/0.

model_control controls which alternative model options are used, see Def_model_control() for

options and vignette("Control_Options") for further details

Value

returns the corrected lists

See Also

```
Other Data Cleaning Functions: Check_Dupe_Columns(), Check_Trunc(), Check_Verbose(), Date_Shift(), Def_Control(), Def_Control_Guess(), Def_model_control(), Def_modelform_fix(), Joint_Multiple_Events(), Replace_Missing(), Time_Since(), factorize(), factorize_par(), gen_time_dep(), interact_them()
```

```
library(data.table)  
## basic example code reproduced from the starting-description vignette term_n <- c(\emptyset, 1, 1, \emptyset, \emptyset)  
tform <- c("loglin", "quad_slope", "lin", "lin_int", "lin_slope")  
keep_constant <- c(\emptyset, \emptyset, \emptyset, 1, \emptyset)  
a_n <- c(1, 2, 3, 4, 5)  
names <- c("a", "a", "a", "a", "a")  
val <- Correct_Formula_Order(term_n, tform, keep_constant, a_n, names, cons_mat = matrix(c(\emptyset)), cons_vec = c(\emptyset)
```

8 Cox_Relative_Risk

```
term_n <- val$term_n
tform <- val$tform
keep_constant <- val$keep_constant
a_n <- val$a_n
der_iden <- val$der_iden
names <- val$names</pre>
```

Cox_Relative_Risk

Calculates hazard ratios for a reference vector

Description

RunCoxRegression uses user provided data, vectors specifying the model, and options to calculate relative risk for every row in the provided data

Usage

```
Cox_Relative_Risk(
   df,
   time1 = "start",
   time2 = "end",
   event0 = "event",
   names = c("CONST"),
   term_n = c(0),
   tform = "loglin",
   keep_constant = c(0),
   a_n = c(0),
   modelform = "M",
   fir = 0,
   control = list(),
   model_control = list())
```

Arguments

df	a data.table containing the columns of interest
time1	column used for time period starts
time2	column used for time period end
event0	column used for event status
names	columns for elements of the model, used to identify data columns
term_n	term numbers for each element of the model
tform	list of string function identifiers, used for linear/step
keep_constant	binary values to denote which parameters to change

Cox_Relative_Risk 9

a_n	list of initial parameter values, used to determine number of parameters. May be either a list of vectors or a single vector.
modelform	string specifying the model type: M, ME, A, PA, PAE, GMIX, GMIX-R, GMIX-E
fir	term number for the initial term, used for models of the form $T0*f(Ti)$ in which the order matters
control	list of parameters controlling the convergence, see $Def_Control()$ for options or vignette("Control_Options")
model_control	controls which alternative model options are used, see Def_model_control() for options and vignette("Control_Options") for further details

Value

returns a list of the final results

See Also

Other Plotting Wrapper Functions: RunCoxPlots()

```
library(data.table)
## basic example code reproduced from the starting-description vignette
df <- data.table::data.table(</pre>
  "UserID" = c(112, 114, 213, 214, 115, 116, 117),
  "Starting_Age" = c(18, 20, 18, 19, 21, 20, 18),
  "Ending_Age" = c(30, 45, 57, 47, 36, 60, 55),
  "Cancer_Status" = c(0, 0, 1, 0, 1, 0, 0),
  "a" = c(0, 1, 1, 0, 1, 0, 1),
  "b" = c(1, 1.1, 2.1, 2, 0.1, 1, 0.2),
  "c" = c(10, 11, 10, 11, 12, 9, 11),
  "d" = c(0, 0, 0, 1, 1, 1, 1)
)
# For the interval case
time1 <- "Starting_Age"</pre>
time2 <- "Ending_Age"</pre>
event <- "Cancer_Status"</pre>
names <- c("a", "b", "c", "d")
term_n < -c(0, 1, 1, 2)
fir <- 0
tform <- c("loglin", "lin", "lin", "plin")</pre>
modelform <- "M"
a_n \leftarrow c(1.1, 0.1, 0.2, 0.5) # used to test at a specific point
keep\_constant <- c(0, 0, 0, 0)
control <- list(</pre>
  "ncores" = 2, "lr" = 0.75, "maxiter" = 5, "halfmax" = 5,
  "epsilon" = 1e-3,
  "deriv_epsilon" = 1e-3, "abs_max" = 1.0, "change_all" = TRUE,
  "dose_abs_max" = 100.0, "verbose" = FALSE, "ties" = "breslow",
  "double_step" = 1
```

Date_Shift

```
)
e <- Cox_Relative_Risk(
  df, time1, time2, event, names, term_n, tform,
  keep_constant, a_n, modelform, fir, control
)</pre>
```

Date_Shift

Automates creating a date difference column

Description

Date_Shift generates a new dataframe with a column containing time difference in a given unit

Usage

```
Date_Shift(df, dcol0, dcol1, col_name, units = "days")
```

Arguments

df a data.table containing the columns of interest dcol0 list of starting month, day, and year dcol1 list of ending month, day, and year col_name vector of new column names units time unit to use

Value

returns the updated dataframe

See Also

```
Other Data Cleaning Functions: Check_Dupe_Columns(), Check_Trunc(), Check_Verbose(), Correct_Formula_Order(), Def_Control(), Def_Control_Guess(), Def_model_control(), Def_modelform_fix(), Joint_Multiple_Events(), Replace_Missing(), Time_Since(), factorize(), factorize_par(), gen_time_dep(), interact_them()
```

```
library(data.table)
m0 <- c(1, 1, 2, 2)
m1 <- c(2, 2, 3, 3)
d0 <- c(1, 2, 3, 4)
d1 <- c(6, 7, 8, 9)
y0 <- c(1990, 1991, 1997, 1998)
y1 <- c(2001, 2003, 2005, 2006)
df <- data.table::data.table("m0" = m0, "m1" = m1, "d0" = d0, "d1" = d1, "y0" = y0, "y1" = y1)
df <- Date_Shift(df, c("m0", "d0", "y0"), c("m1", "d1", "y1"), "date_since")
```

Def_Control

Def_Control

Automatically assigns missing control values

Description

Def_Control checks and assigns default values

Usage

```
Def_Control(control)
```

Arguments

control

list of parameters controlling the convergence, see $Def_Control()$ for options or vignette("Control_Options")

Value

returns a filled list

See Also

```
Other Data Cleaning Functions: Check_Dupe_Columns(), Check_Trunc(), Check_Verbose(), Correct_Formula_Order(), Date_Shift(), Def_Control_Guess(), Def_model_control(), Def_modelform_fix(), Joint_Multiple_Events(), Replace_Missing(), Time_Since(), factorize(), factorize_par(), gen_time_dep(), interact_them()
```

Examples

```
library(data.table)
control <- list(
  "ncores" = 2, "lr" = 0.75, "maxiter" = 5,
  "ties" = "breslow", "double_step" = 1
)
control <- Def_Control(control)</pre>
```

Def_Control_Guess

Automatically assigns missing guessing control values

Description

Def_Control_Guess checks and assigns default values

Usage

```
Def_Control_Guess(guesses_control, a_n)
```

12 Def_modelform_fix

Arguments

```
guesses_control
```

list of parameters to control how the guessing works, see Def_Control_Guess()

for options or vignette("Control_Options")

a_n list of initial parameter values, used to determine number of parameters. May

be either a list of vectors or a single vector.

Value

returns a filled list

See Also

```
Other Data Cleaning Functions: Check_Dupe_Columns(), Check_Trunc(), Check_Verbose(), Correct_Formula_Order(), Date_Shift(), Def_Control(), Def_model_control(), Def_modelform_fix(), Joint_Multiple_Events(), Replace_Missing(), Time_Since(), factorize(), factorize_par(), gen_time_dep(), interact_them()
```

Examples

```
library(data.table)
guesses_control <- list(
   "maxiter" = 10,   "guesses" = 10,
      "loglin_min" = -1,   "loglin_max" = 1,   "loglin_method" = "uniform"
)
a_n <- c(0.1, 2, 1.3)
guesses_control <- Def_Control_Guess(guesses_control, a_n)</pre>
```

Def_modelform_fix

Automatically assigns geometric-mixture values and checks that a valid model form is used

Description

Def_model_control checks and assigns default values for modelform options

Usage

```
Def_modelform_fix(control, model_control, modelform, term_n)
```

Arguments

control list of parameters controlling the convergence, see Def_Control() for options or

vignette("Control_Options")

model_control controls which alternative model options are used, see Def_model_control() for

options and vignette("Control_Options") for further details

Def_model_control

model form string specifying the model type: M, ME, A, PA, PAE, GMIX, GMIX-R, GMIX-

Е

term_n term numbers for each element of the model

Value

returns a filled list

See Also

```
Other Data Cleaning Functions: Check_Dupe_Columns(), Check_Trunc(), Check_Verbose(), Correct_Formula_Order(), Date_Shift(), Def_Control(), Def_Control_Guess(), Def_model_control(), Joint_Multiple_Events(), Replace_Missing(), Time_Since(), factorize(), factorize_par(), gen_time_dep(), interact_them()
```

Examples

```
library(data.table)
control <- list(
    "ncores" = 2, "lr" = 0.75, "maxiter" = 5,
    "ties" = "breslow", "double_step" = 1
)
control <- Def_Control(control)
model_control <- list("single" = TRUE)
model_control <- Def_model_control(model_control)
term_n <- c(0, 1, 1)
modelform <- "a"
val <- Def_modelform_fix(control, model_control, modelform, term_n)
model_control <- val$model_control
modelform <- val$modelform</pre>
```

Def_model_control

Automatically assigns missing model control values

Description

Def_model_control checks and assigns default values

Usage

```
Def_model_control(control)
```

Arguments

control

list of parameters controlling the convergence, see Def_Control() for options or vignette("Control_Options")

14 factorize

Value

returns a filled list

See Also

```
Other Data Cleaning Functions: Check_Dupe_Columns(), Check_Trunc(), Check_Verbose(), Correct_Formula_Order(), Date_Shift(), Def_Control(), Def_Control_Guess(), Def_modelform_fix(), Joint_Multiple_Events(), Replace_Missing(), Time_Since(), factorize(), factorize_par(), gen_time_dep(), interact_them()
```

Examples

```
library(data.table)
control <- list("single" = TRUE)
control <- Def_model_control(control)</pre>
```

factorize

Splits a parameter into factors

Description

factorize uses user provided list of columns to define new parameter for each unique value and update the data.table. Not for interaction terms

Usage

```
factorize(df, col_list, verbose = 0)
```

Arguments

df a data.table containing the columns of interest

col_list an array of column names that should have factor terms defined

verbose integer valued 0-4 controlling what information is printed to the terminal. Each

level includes the lower levels. 0: silent, 1: errors printed, 2: warnings printed, 3: notes printed, 4: debug information printed. Errors are situations that stop the regression, warnings are situations that assume default values that the user might not have intended, notes provide information on regression progress, and debug prints out C++ progress and intermediate results. The default level is 2

and True/False is converted to 3/0.

Value

returns a list with two named fields. df for the updated dataframe, and cols for the new column names

factorize_par 15

See Also

```
Other Data Cleaning Functions: Check_Dupe_Columns(), Check_Trunc(), Check_Verbose(), Correct_Formula_Order(), Date_Shift(), Def_Control(), Def_Control_Guess(), Def_model_control(), Def_modelform_fix(), Joint_Multiple_Events(), Replace_Missing(), Time_Since(), factorize_par(), gen_time_dep(), interact_them()
```

Examples

```
library(data.table)
a <- c(0, 1, 2, 3, 4, 5, 6)
b <- c(1, 2, 3, 4, 5, 6, 7)
c <- c(0, 1, 2, 1, 0, 1, 0)
df <- data.table::data.table("a" = a, "b" = b, "c" = c)
col_list <- c("c")
val <- factorize(df, col_list)
df <- val$df
new_col <- val$cols</pre>
```

factorize_par

Splits a parameter into factors in parallel

Description

factorize_par uses user provided list of columns to define new parameter for each unique value and update the data.table. Not for interaction terms

Usage

```
factorize_par(df, col_list, verbose = 0, nthreads = as.numeric(detectCores()))
```

Arguments

df	a data.table containing the columns of interest
col_list	an array of column names that should have factor terms defined
verbose	integer valued 0-4 controlling what information is printed to the terminal. Each level includes the lower levels. 0: silent, 1: errors printed, 2: warnings printed, 3: notes printed, 4: debug information printed. Errors are situations that stop the regression, warnings are situations that assume default values that the user might not have intended, notes provide information on regression progress, and debug prints out C++ progress and intermediate results. The default level is 2 and True/False is converted to 3/0.
nthreads	number of threads to use, do not use more threads than available on your ma-

chine

Value

returns a list with two named fields. df for the updated dataframe, and cols for the new column names

See Also

```
Other Data Cleaning Functions: Check_Dupe_Columns(), Check_Trunc(), Check_Verbose(), Correct_Formula_Order(), Date_Shift(), Def_Control(), Def_Control_Guess(), Def_model_control(), Def_modelform_fix(), Joint_Multiple_Events(), Replace_Missing(), Time_Since(), factorize(), gen_time_dep(), interact_them()
```

Examples

```
library(data.table)
a <- c(0, 1, 2, 3, 4, 5, 6)
b <- c(1, 2, 3, 4, 5, 6, 7)
c <- c(0, 1, 2, 1, 0, 1, 0)
df <- data.table::data.table("a" = a, "b" = b, "c" = c)
col_list <- c("c")
val <- factorize_par(df, col_list, FALSE, 2)
df <- val$df
new_col <- val$cols</pre>
```

Gather_Guesses_CPP

Performs checks to gather a list of guesses and iterations

Description

Gather_Guesses_CPP called from within R, uses a list of options and the model definition to generate a list of parameters and iterations that do not produce errors

Usage

```
Gather_Guesses_CPP(
   df,
   dfc,
   names,
   term_n,
   tform,
   keep_constant,
   a_n,
   x_all,
   a_n_default,
   modelform,
   fir,
   control,
   guesses_control,
```

Gather_Guesses_CPP 17

```
model_control = list()
)
```

Arguments

df a data.table containing the columns of interest dfc vector matching subterm number to matrix column columns for elements of the model, used to identify data columns names term numbers for each element of the model term n tform list of string function identifiers, used for linear/step keep_constant binary values to denote which parameters to change list of initial parameter values, used to determine number of parameters. May a_n be either a list of vectors or a single vector. x all covariate matrix a_n_default center of parameter distribution guessing scope modelform string specifying the model type: M, ME, A, PA, PAE, GMIX, GMIX-R, GMIXfir term number for the initial term, used for models of the form T0*f(Ti) in which the order matters list of parameters controlling the convergence, see Def_Control() for options or control vignette("Control_Options") guesses_control

list of parameters to control how the guessing works, see Def_Control_Guess()

for options or vignette("Control_Options")

controls which alternative model options are used, see Def model control() for model_control

options and vignette("Control_Options") for further details

Value

returns a list of the final results

```
library(data.table)
a \leftarrow c(0, 1, 2, 3, 4, 5, 6)
b \leftarrow c(1, 2, 3, 4, 5, 6, 7)
c \leftarrow c(0, 1, 0, 0, 0, 1, 0)
d \leftarrow c(3, 4, 5, 6, 7, 8, 9)
df <- data.table::data.table("a" = a, "b" = b, "c" = c, "d" = d)</pre>
time1 <- "a"
time2 <- "b"
event <- "c"
names <- c("d")
term_n <- c(0)
tform <- c("loglin")
keep\_constant <- c(0)
```

18 gcc_version

```
a_n <- c(-0.1)
a_n_default <- a_n
modelform <- "M"
fir <- 0
der_iden <- 0
control <- list(</pre>
  "ncores" = 2, "lr" = 0.75, "maxiter" = -1,
  "halfmax" = 5, "epsilon" = 1e-9,
  "deriv_epsilon" = 1e-9, "abs_max" = 1.0, "change_all" = TRUE,
  "dose_abs_max" = 100.0, "verbose" = FALSE, "ties" = "breslow",
  "double_step" = 1
)
guesses_control <- list()</pre>
model_control <- list()</pre>
all_names <- unique(names(df))</pre>
dfc <- match(names, all_names)</pre>
term\_tot <- max(term\_n) + 1
x_all <- as.matrix(df[, all_names, with = FALSE])</pre>
control <- Def_Control(control)</pre>
guesses_control <- Def_Control_Guess(guesses_control, a_n)</pre>
model_control <- Def_model_control(model_control)</pre>
Gather_Guesses_CPP(
  df, dfc, names, term_n, tform, keep_constant,
  a_n, x_all, a_n_default,
  modelform, fir, control, guesses_control
)
```

gcc_version

Checks default c++ compiler

Description

gcc_version Checks default c++ compiler, part of configuration script

Usage

```
gcc_version()
```

Value

returns a string representation of gcc, clang, or c++ output

gen_time_dep 19

gen_time_dep Applies time dependence to parameters
--

Description

gen_time_dep generates a new dataframe with time dependent covariates by applying a grid in time

Usage

```
gen_time_dep(
   df,
   time1,
   time2,
   event0,
   iscox,
   dt,
   new_names,
   dep_cols,
   func_form,
   fname,
   tform,
   nthreads = as.numeric(detectCores())
)
```

Arguments

df	a data.table containing the columns of interest
time1	column used for time period starts
time2	column used for time period end
event0	column used for event status
iscox	boolean if rows not at event times should not be kept, rows are removed if true. a Cox proportional hazards model does not use rows with intervals not containing event times
dt	spacing in time for new rows
new_names	list of new names to use instead of default, default used if entry is "
dep_cols	columns that are not needed in the new dataframe
func_form	vector of functions to apply to each time-dependent covariate. Of the form func(df, time) returning a vector of the new column value
fname	filename used for new dataframe
tform	list of string function identifiers, used for linear/step
nthreads	number of threads to use, do not use more threads than available on your machine

20 GetCensWeight

Value

returns the updated dataframe

See Also

```
Other Data Cleaning Functions: Check_Dupe_Columns(), Check_Trunc(), Check_Verbose(), Correct_Formula_Order(), Date_Shift(), Def_Control(), Def_Control_Guess(), Def_model_control(), Def_modelform_fix(), Joint_Multiple_Events(), Replace_Missing(), Time_Since(), factorize(), factorize_par(), interact_them()
```

Examples

```
library(data.table)
# Adapted from the tests
a <- c(20, 20, 5, 10, 15)
b \leftarrow c(1, 2, 1, 1, 2)
c \leftarrow c(0, 0, 1, 1, 1)
df \leftarrow data.table::data.table("a" = a, "b" = b, "c" = c)
time1 <- "%trunc%"</pre>
time2 <- "a"
event <- "c"
control <- list(</pre>
  "1r" = 0.75, "maxiter" = -1, "halfmax" = 5, "epsilon" = 1e-9,
  "deriv_epsilon" = 1e-9, "abs_max" = 1.0, "change_all" = TRUE,
  "dose_abs_max" = 100.0,
  "verbose" = FALSE, "ties" = "breslow", "double_step" = 1
)
grt_f <- function(df, time_col) {</pre>
  return((df[, "b"] * df[, get(time_col)])[[1]])
func_form <- c("lin")</pre>
df_new <- gen_time_dep(</pre>
  df, time1, time2, event, TRUE, 0.01, c("grt"), c(),
  c(grt_f), paste("test", "_new.csv", sep = ""), func_form, 2
file.remove("test_new.csv")
```

GetCensWeight

Calculates and returns data for time by hazard and survival to estimate censoring rate

Description

GetCensWeight uses user provided data, time/event columns, vectors specifying the model, and options generate an estimate of the censoring rate, plots, and returns the data

GetCensWeight 21

Usage

```
GetCensWeight(
  df,
  time1,
  time2,
  event0,
  names,
  term_n,
  tform,
  keep_constant,
  a_n,
  modelform,
  fir,
  control,
  plot_options,
 model_control = list(),
  strat_col = "e"
)
```

Arguments

df	a data.table	containing	the	columns	of interest
uı	a data.tabic	Community	uic	COTUITING	or microst

time1 column used for time period starts
time2 column used for time period end
event0 column used for event status

names columns for elements of the model, used to identify data columns

term_n term numbers for each element of the model

tform list of string function identifiers, used for linear/step keep_constant binary values to denote which parameters to change

a_n list of initial parameter values, used to determine number of parameters. May

be either a list of vectors or a single vector.

model form string specifying the model type: M, ME, A, PA, PAE, GMIX, GMIX-R, GMIX-

Ε

fir term number for the initial term, used for models of the form T0*f(Ti) in which

the order matters

control list of parameters controlling the convergence, see Def_Control() for options or

vignette("Control_Options")

plot_options list of parameters controlling the plot options, see RunCoxPlots() for different

options

model_control controls which alternative model options are used, see Def_model_control() for

options and vignette("Control_Options") for further details

strat_col column to stratify by if needed

22 GetCensWeight

Value

saves the plots in the current directory and returns a data.table of time and corresponding hazard, cumulative hazard, and survival

```
library(data.table)
## basic example code reproduced from the starting-description vignette
df <- data.table::data.table(</pre>
  "UserID" = c(112, 114, 213, 214, 115, 116, 117),
  "Starting_Age" = c(18, 20, 18, 19, 21, 20, 18),
  "Ending_Age" = c(30, 45, 57, 47, 36, 60, 55),
  "Cancer_Status" = c(0, 0, 1, 0, 1, 0, 0),
  "a" = c(0, 1, 1, 0, 1, 0, 1),
  "b" = c(1, 1.1, 2.1, 2, 0.1, 1, 0.2),
  "c" = c(10, 11, 10, 11, 12, 9, 11),
  "d" = c(0, 0, 0, 1, 1, 1, 1)
)
# For the interval case
time1 <- "Starting_Age"</pre>
time2 <- "Ending_Age"
event <- "Cancer_Status"</pre>
names <- c("a", "b", "c", "d")
term_n < -c(0, 1, 1, 2)
tform <- c("loglin", "lin", "lin", "plin")
modelform <- "M"
fir <- 0
a_n < c(0.1, 0.1, 0.1, 0.1)
keep_constant <- c(0, 0, 0, 0)
der_iden <- 0
df$censor <- (df$Cancer_Status == 0)</pre>
event <- "censor"
control <- list(</pre>
  "ncores" = 2, "lr" = 0.75, "maxiter" = 20, "halfmax" = 5,
  "epsilon" = 1e-6, "deriv_epsilon" = 1e-6,
  "abs_max" = 1.0, "change_all" = TRUE, "dose_abs_max" = 100.0, "verbose" = FALSE,
  "ties" = "breslow", "double_step" = 1
)
plot_options <- list(</pre>
  "name" = paste(tempfile(), "run_06", sep = ""), "verbose" = FALSE,
  "studyID" = "studyID", "age_unit" = "years"
dft <- GetCensWeight(</pre>
  df, time1, time2, event, names, term_n, tform,
  keep_constant, a_n, modelform, fir, control, plot_options
)
t_ref <- dft$t
surv_ref <- dft$surv</pre>
t_c <- df$t1
cens_weight <- approx(t_ref, surv_ref, t_c, rule = 2)$y</pre>
```

get_os 23

get_os

Checks system OS

Description

get_os checks the system OS, part of configuration script

Usage

get_os()

Value

returns a string representation of OS

interact_them

Defines Interactions

Description

interact_them uses user provided interactions define interaction terms and update the data.table. assumes interaction is "+" or "*" and applies basic anti-aliasing to avoid duplicates

Usage

```
interact_them(df, interactions, new_names, verbose = 0)
```

Arguments

df a data.table containing the columns of interest

interactions array of strings, each one is of form term1?*?term2" for term1 interaction of

type * or + with term2, "?" dlimits

new_names list of new names to use instead of default, default used if entry is "

verbose integer valued 0-4 controlling what information is printed to the terminal. Each

level includes the lower levels. 0: silent, 1: errors printed, 2: warnings printed, 3: notes printed, 4: debug information printed. Errors are situations that stop the regression, warnings are situations that assume default values that the user might not have intended, notes provide information on regression progress, and debug prints out C++ progress and intermediate results. The default level is 2

and True/False is converted to 3/0.

Value

returns a list with two named fields. df for the updated dataframe, and cols for the new column names

See Also

```
Other Data Cleaning Functions: Check_Dupe_Columns(), Check_Trunc(), Check_Verbose(), Correct_Formula_Order(), Date_Shift(), Def_Control(), Def_Control_Guess(), Def_model_control(), Def_modelform_fix(), Joint_Multiple_Events(), Replace_Missing(), Time_Since(), factorize(), factorize_par(), gen_time_dep()
```

Examples

```
library(data.table)
a <- c(0, 1, 2, 3, 4, 5, 6)
b <- c(1, 2, 3, 4, 5, 6, 7)
c <- c(0, 1, 2, 1, 0, 1, 0)
df <- data.table::data.table("a" = a, "b" = b, "c" = c)
interactions <- c("a?+?b", "a?*?c")
new_names <- c("ab", "ac")
vals <- interact_them(df, interactions, new_names)
df <- vals$df
new_col <- vals$cols</pre>
```

Joint_Multiple_Events Automates creating data for a joint competing risks analysis

Description

Joint_Multiple_Events generates input for a regression with multiple non-independent events and models

Usage

```
Joint_Multiple_Events(
   df,
   events,
   name_list,
   term_n_list = list(),
   tform_list = list(),
   keep_constant_list = list(),
   a_n_list = list()
```

Arguments

df a data.table containing the columns of interest

events vector of event column names

name_list list of vectors for columns for event specific or shared model elements, required term_n_list list of vectors for term numbers for event specific or shared model elements,

defaults to term 0

```
tform_list list of vectors for subterm types for event specific or shared model elements, defaults to loglinear 
keep_constant_list list of vectors for constant elements for event specific or shared model elements, defaults to free (0)

a_n_list list of vectors for parameter values for event specific or shared model elements, defaults to term 0
```

Value

returns the updated dataframe and model inputs

See Also

```
Other Data Cleaning Functions: Check_Dupe_Columns(), Check_Trunc(), Check_Verbose(), Correct_Formula_Order(), Date_Shift(), Def_Control(), Def_Control_Guess(), Def_model_control(), Def_modelform_fix(), Replace_Missing(), Time_Since(), factorize(), factorize_par(), gen_time_dep(), interact_them()
```

```
library(data.table)
a \leftarrow c(0, 0, 0, 1, 1, 1)
b \leftarrow c(1, 1, 1, 2, 2, 2)
c \leftarrow c(0, 1, 2, 2, 1, 0)
d \leftarrow c(1, 1, 0, 0, 1, 1)
e \leftarrow c(0, 1, 1, 1, 0, 0)
df <- data.table("t0" = a, "t1" = b, "e0" = c, "e1" = d, "fac" = e)
time1 <- "t0"
time2 <- "t1"
dfpyr <- df$t1 - df$t0
pyr <- "pyr"
events <- c("e0", "e1")
names_e0 <- c("fac")</pre>
names_e1 <- c("fac")
names_shared <- c("t0", "t0")</pre>
term_n_e0 <- c(0)
term_n_e1 <- c(0)
term_n_shared <- c(0, 0)
tform_e0 <- c("loglin")</pre>
tform_e1 <- c("loglin")
tform_shared <- c("quad_slope", "loglin_top")</pre>
keep\_constant\_e0 <- c(0)
keep\_constant\_e1 <- c(0)
keep\_constant\_shared <- c(0, 0)
a_n_e0 <- c(-0.1)
a_n_e1 <- c(0.1)
a_n_{shared} <- c(0.001, -0.02)
name_list <- list("shared" = names_shared, "e0" = names_e0, "e1" = names_e1)</pre>
term_n_list <- list("shared" = term_n_shared, "e0" = term_n_e0, "e1" = term_n_e1)</pre>
tform_list <- list("shared" = tform_shared, "e0" = tform_e0, "e1" = tform_e1)</pre>
```

```
keep_constant_list <- list(
    "shared" = keep_constant_shared,
    "e0" = keep_constant_e0, "e1" = keep_constant_e1
)
a_n_list <- list("shared" = a_n_shared, "e0" = a_n_e0, "e1" = a_n_e1)
val <- Joint_Multiple_Events(
    df, events, name_list, term_n_list,
    tform_list, keep_constant_list, a_n_list
)</pre>
```

Description

Likelihood_Ratio_Test uses two models and calculates the ratio

Usage

```
Likelihood_Ratio_Test(alternative_model, null_model)
```

Arguments

```
alternative_model
the new model of interest in list form, output from a poisson regression
null_model a model to compare against, in list form
```

Value

returns the score statistic

```
library(data.table)
# In an actual example, one would run two seperate RunCoxRegression regressions,
# assigning the results to e0 and e1
e0 <- list("name" = "First Model", "LogLik" = -120)
e1 <- list("name" = "New Model", "LogLik" = -100)
score <- Likelihood_Ratio_Test(e1, e0)</pre>
```

Linked_Dose_Formula Calculates Full Parameter list for Special Dose Formula

Description

Linked_Dose_Formula Calculates all parameters for linear-quadratic and linear-exponential linked formulas

Usage

```
Linked_Dose_Formula(tforms, paras, verbose = 0)
```

Arguments

tforms list of formula types

paras list of formula parameters

verbose integer valued 0-4 controlling what information is printed to the terminal. Each

level includes the lower levels. 0: silent, 1: errors printed, 2: warnings printed, 3: notes printed, 4: debug information printed. Errors are situations that stop the regression, warnings are situations that assume default values that the user might not have intended, notes provide information on regression progress, and debug prints out C++ progress and intermediate results. The default level is 2

and True/False is converted to 3/0.

Value

returns list of full parameters

Examples

```
library(data.table)
tforms <- list("cov_0" = "quad", "cov_1" = "exp")
paras <- list("cov_0" = c(1, 3.45), "cov_1" = c(1.2, 4.5, 0.1))
full_paras <- Linked_Dose_Formula(tforms, paras)</pre>
```

Linked_Lin_Exp_Para Calculates The Additional Parameter For a linear-exponential formula with known maximum

Description

Linked_Lin_Exp_Para Calculates what the additional parameter would be for a desired maximum

28 OMP_Check

Usage

```
Linked_Lin_Exp_Para(y, a0, a1_goal, verbose = 0)
```

Arguments

y point formula switch

a0 linear slope

a1_goal exponential maximum desired

verbose integer valued 0-4 controlling what information is printed to the terminal. Each

level includes the lower levels. 0: silent, 1: errors printed, 2: warnings printed, 3: notes printed, 4: debug information printed. Errors are situations that stop the regression, warnings are situations that assume default values that the user might not have intended, notes provide information on regression progress, and debug prints out C++ progress and intermediate results. The default level is 2

and True/False is converted to 3/0.

Value

returns parameter used by Colossus

Examples

```
library(data.table)
y <- 7.6
a0 <- 1.2
a1_goal <- 15
full_paras <- Linked_Lin_Exp_Para(y, a0, a1_goal)</pre>
```

OMP_Check

Checks the OMP flag

Description

OMP_Check Called directly from R, checks the omp flag and returns if omp is enabled

Usage

```
OMP_Check()
```

Value

boolean: True for OMP allowed

Rcomp_version 29

Rcomp_version

Checks how R was compiled

Description

Rcomp_version Checks how R was compiled, part of configuration script

Usage

```
Rcomp_version()
```

Value

returns a string representation of gcc, clang, or R CMD config CC output

Rcpp_version

Checks default R c++ compiler

Description

Rcpp_version checks ~/.R/Makevars script for default compilers set, part of configuration script

Usage

```
Rcpp_version()
```

Value

returns a string representation of gcc, clang, or head ~/.R/Makevars

Replace_Missing

Automatically assigns missing values in listed columns

Description

Replace_Missing checks each column and fills in NA values

Usage

```
Replace_Missing(df, name_list, msv, verbose = FALSE)
```

30 RunCoxNull

Arguments

df a data.table containing the columns of interest

name_list vector of string column names to check

msv value to replace na with, same used for every column used

verbose integer valued 0-4 controlling what information is printed to the terminal. Each

level includes the lower levels. 0: silent, 1: errors printed, 2: warnings printed, 3: notes printed, 4: debug information printed. Errors are situations that stop the regression, warnings are situations that assume default values that the user might not have intended, notes provide information on regression progress, and debug prints out C++ progress and intermediate results. The default level is 2

and True/False is converted to 3/0.

Value

returns a filled datatable

See Also

```
Other Data Cleaning Functions: Check_Dupe_Columns(), Check_Trunc(), Check_Verbose(), Correct_Formula_Order(), Date_Shift(), Def_Control(), Def_Control_Guess(), Def_model_control(), Def_modelform_fix(), Joint_Multiple_Events(), Time_Since(), factorize(), factorize_par(), gen_time_dep(), interact_them()
```

Examples

```
library(data.table)
## basic example code reproduced from the starting-description vignette
df <- data.table::data.table(
   "UserID" = c(112, 114, 213, 214, 115, 116, 117),
   "Starting_Age" = c(18, 20, 18, 19, 21, 20, 18),
   "Ending_Age" = c(30, 45, NA, 47, 36, NA, 55),
   "Cancer_Status" = c(0, 0, 1, 0, 1, 0, 0)
)
df <- Replace_Missing(df, c("Starting_Age", "Ending_Age"), 70)</pre>
```

RunCoxNull

Performs basic Cox Proportional Hazards regression with the null model

Description

RunCoxRegression uses user provided data and time/event columns to calculate the log-likelihood with constant hazard ratio

RunCoxNull 31

Usage

```
RunCoxNull(
  df,
  time1 = "start",
  time2 = "end",
  event0 = "event",
  control = list()
)
```

Arguments

```
df a data.table containing the columns of interest
time1 column used for time period starts
time2 column used for time period end
event0 column used for event status
control list of parameters controlling the convergence, see Def_Control() for options or vignette("Control_Options")
```

Value

returns a list of the final results

See Also

Other Cox Wrapper Functions: RunCoxRegression(), RunCoxRegression_Basic(), RunCoxRegression_CR(), RunCoxRegression_Guesses_CPP(), RunCoxRegression_Omnibus(), RunCoxRegression_Omnibus_Multidose(), RunCoxRegression_STRATA(), RunCoxRegression_Single(), RunCoxRegression_Tier_Guesses()

```
library(data.table)
## basic example code reproduced from the starting-description vignette
df <- data.table::data.table(</pre>
  "UserID" = c(112, 114, 213, 214, 115, 116, 117),
  "Starting_Age" = c(18, 20, 18, 19, 21, 20, 18),
  "Ending_Age" = c(30, 45, 57, 47, 36, 60, 55),
  "Cancer_Status" = c(0, 0, 1, 0, 1, 0, 0)
)
# For the interval case
time1 <- "Starting_Age"
time2 <- "Ending_Age"
event <- "Cancer_Status"
control <- list(</pre>
  "ncores" = 2, "verbose" = FALSE, "ties" = "breslow",
  "double_step" = 1
)
e <- RunCoxNull(df, time1, time2, event, control)
```

32 RunCoxPlots

RunCoxPlots

Performs Cox Proportional Hazard model plots

Description

RunCoxPlots uses user provided data, time/event columns, vectors specifying the model, and options to choose and save plots

Usage

```
RunCoxPlots(
  df,
  time1 = "start",
  time2 = "end",
  event0 = "event",
  names = c("CONST"),
  term_n = c(0),
  tform = "loglin",
  keep\_constant = c(0),
  a_n = c(0),
 modelform = "M",
  fir = 0,
  control = list(),
  plot_options = list(),
 model_control = list()
)
```

Arguments

df	a data.table containing the columns of interest
time1	column used for time period starts
time2	column used for time period end
event0	column used for event status
names	columns for elements of the model, used to identify data columns
term_n	term numbers for each element of the model
tform	list of string function identifiers, used for linear/step
keep_constant	binary values to denote which parameters to change
a_n	list of initial parameter values, used to determine number of parameters. May be either a list of vectors or a single vector.
modelform	string specifying the model type: M, ME, A, PA, PAE, GMIX, GMIX-R, GMIX-E
fir	term number for the initial term, used for models of the form $T0*f(Ti)$ in which the order matters

RunCoxPlots 33

control	list of parameters controlling the convergence, see $Def_Control()$ for options or $vignette("Control_Options")$
plot_options	list of parameters controlling the plot options, see $RunCoxPlots()$ for different options
model_control	controls which alternative model options are used, see Def_model_control() for options and vignette("Control_Options") for further details

Value

saves the plots in the current directory and returns a string

See Also

Other Plotting Wrapper Functions: Cox_Relative_Risk()

```
library(data.table)
## basic example code reproduced from the starting-description vignette
df <- data.table::data.table(</pre>
  "UserID" = c(112, 114, 213, 214, 115, 116, 117),
  "Starting_Age" = c(18, 20, 18, 19, 21, 20, 18),
  "Ending_Age" = c(30, 45, 57, 47, 36, 60, 55),
  "Cancer_Status" = c(0, 0, 1, 0, 1, 0, 0),
  "a" = c(0, 1, 1, 0, 1, 0, 1),
  "b" = c(1, 1.1, 2.1, 2, 0.1, 1, 0.2),
  "c" = c(10, 11, 10, 11, 12, 9, 11),
  "d" = c(0, 0, 0, 1, 1, 1, 1)
)
# For the interval case
time1 <- "Starting_Age"</pre>
time2 <- "Ending_Age"</pre>
event <- "Cancer_Status"
names <- c("a", "b", "c", "d")
term_n <- c(0, 1, 1, 2)
tform <- c("loglin", "lin", "lin", "plin")</pre>
modelform <- "M"
fir <- 0
a_n < c(-0.1, 0.5, 1.1, -0.3)
keep_constant <- c(0, 0, 0, 0)
der_iden <- 0
control <- list(</pre>
  "ncores" = 2, "lr" = 0.75, "maxiter" = -1, "halfmax" = 5,
  "epsilon" = 1e-3, "deriv_epsilon" = 1e-3,
  "abs_max" = 1.0, "change_all" = TRUE, "dose_abs_max" = 100.0,
  "verbose" = FALSE, "ties" = "breslow", "double_step" = 1
)
# setting maxiter below 0 forces the function to calculate the score
# and return
plot_options <- list(</pre>
  "type" = c("surv", paste(tempfile(),
```

34 RunCoxRegression

```
"run",
    sep = ""
)), "studyid" = "UserID",
    "verbose" = FALSE
)
RunCoxPlots(
    df, time1, time2, event, names, term_n, tform, keep_constant,
    a_n, modelform, fir, control, plot_options
)
```

 ${\tt RunCoxRegression}$

Performs basic Cox Proportional Hazards regression without special options

Description

RunCoxRegression uses user provided data, time/event columns, vectors specifying the model, and options to control the convergence and starting position

Usage

```
RunCoxRegression(
   df,
   time1 = "start",
   time2 = "end",
   event0 = "event",
   names = c("CONST"),
   term_n = c(0),
   tform = "loglin",
   keep_constant = c(0),
   a_n = c(0),
   modelform = "M",
   fir = 0,
   der_iden = 0,
   control = list()
)
```

Arguments

df	a data.table containing the columns of interest
time1	column used for time period starts
time2	column used for time period end
event0	column used for event status
names	columns for elements of the model, used to identify data columns
term n	term numbers for each element of the model

RunCoxRegression 35

tform	list of string function identifiers, used for linear/step
keep_constant	binary values to denote which parameters to change
a_n	list of initial parameter values, used to determine number of parameters. May be either a list of vectors or a single vector.
modelform	string specifying the model type: M, ME, A, PA, PAE, GMIX, GMIX-R, GMIX-E
fir	term number for the initial term, used for models of the form $T0*f(Ti)$ in which the order matters
der_iden	number for the subterm to test derivative at, only used for testing runs with a single varying parameter, should be smaller than total number of parameters. indexed starting at 0
control	list of parameters controlling the convergence, see Def_Control() for options or vignette("Control_Options")

Value

returns a list of the final results

See Also

```
Other Cox Wrapper Functions: RunCoxNull(), RunCoxRegression_Basic(), RunCoxRegression_CR(), RunCoxRegression_Guesses_CPP(), RunCoxRegression_Omnibus(), RunCoxRegression_Omnibus_Multidose(), RunCoxRegression_STRATA(), RunCoxRegression_Single(), RunCoxRegression_Tier_Guesses()
```

```
library(data.table)
## basic example code reproduced from the starting-description vignette
df <- data.table::data.table(</pre>
  "UserID" = c(112, 114, 213, 214, 115, 116, 117),
  "Starting_Age" = c(18, 20, 18, 19, 21, 20, 18),
  "Ending_Age" = c(30, 45, 57, 47, 36, 60, 55),
  "Cancer_Status" = c(0, 0, 1, 0, 1, 0, 0),
  "a" = c(0, 1, 1, 0, 1, 0, 1),
  "b" = c(1, 1.1, 2.1, 2, 0.1, 1, 0.2),
  "c" = c(10, 11, 10, 11, 12, 9, 11),
  "d" = c(0, 0, 0, 1, 1, 1, 1)
)
# For the interval case
time1 <- "Starting_Age"</pre>
time2 <- "Ending_Age"</pre>
event <- "Cancer_Status"</pre>
names <- c("a", "b", "c", "d")
term_n < -c(0, 1, 1, 2)
tform <- c("loglin", "lin", "lin", "plin")</pre>
modelform <- "M"
fir <- 0
a_n \leftarrow c(0.1, 0.1, 0.1, 0.1)
keep_constant <- c(0, 0, 0, 0)
```

```
der_iden <- 0
control <- list(
   "ncores" = 2, "lr" = 0.75, "maxiter" = 5, "halfmax" = 5,
   "epsilon" = 1e-3, "deriv_epsilon" = 1e-3,
   "abs_max" = 1.0, "change_all" = TRUE, "dose_abs_max" = 100.0,
   "verbose" = FALSE, "ties" = "breslow", "double_step" = 1
)
e <- RunCoxRegression(
   df, time1, time2, event, names, term_n, tform,
   keep_constant, a_n, modelform, fir, der_iden, control
)</pre>
```

RunCoxRegression_Basic

Performs basic Cox Proportional Hazards regression with a multiplicative log-linear model

Description

RunCoxRegression_Basic uses user provided data, time/event columns, vectors specifying the model, and options to control the convergence and starting positions

Usage

```
RunCoxRegression_Basic(
   df,
   time1 = "start",
   time2 = "end",
   event0 = "event",
   names = c("CONST"),
   keep_constant = c(0),
   a_n = c(0),
   der_iden = 0,
   control = list()
)
```

Arguments

a_n

df a data.table containing the columns of interest

time1 column used for time period starts

time2 column used for time period end

event0 column used for event status

names columns for elements of the model, used to identify data columns

keep_constant binary values to denote which parameters to change

be either a list of vectors or a single vector.

list of initial parameter values, used to determine number of parameters. May

der_iden number for the subterm to test derivative at, only used for testing runs with a

single varying parameter, should be smaller than total number of parameters.

indexed starting at 0

control list of parameters controlling the convergence, see Def_Control() for options or

vignette("Control_Options")

Value

returns a list of the final results

See Also

```
Other Cox Wrapper Functions: RunCoxNull(), RunCoxRegression(), RunCoxRegression_CR(), RunCoxRegression_Guesses_CPP(), RunCoxRegression_Omnibus(), RunCoxRegression_Omnibus_Multidose(), RunCoxRegression_STRATA(), RunCoxRegression_Single(), RunCoxRegression_Tier_Guesses()
```

```
library(data.table)
## basic example code reproduced from the starting-description vignette
df <- data.table::data.table(</pre>
  "UserID" = c(112, 114, 213, 214, 115, 116, 117),
  "Starting_Age" = c(18, 20, 18, 19, 21, 20, 18),
  "Ending_Age" = c(30, 45, 57, 47, 36, 60, 55),
  "Cancer_Status" = c(0, 0, 1, 0, 1, 0, 0),
  "a" = c(0, 1, 1, 0, 1, 0, 1),
  "b" = c(1, 1.1, 2.1, 2, 0.1, 1, 0.2),
  "c" = c(10, 11, 10, 11, 12, 9, 11),
  "d" = c(0, 0, 0, 1, 1, 1, 1)
# For the interval case
time1 <- "Starting_Age"</pre>
time2 <- "Ending_Age"</pre>
event <- "Cancer_Status"
names <- c("a", "b", "c", "d")
a_n \leftarrow c(1.1, -0.1, 0.2, 0.5) # used to test at a specific point
keep_constant <- c(0, 0, 0, 0)
der_iden <- 0
control <- list(</pre>
  "ncores" = 2, "lr" = 0.75, "maxiter" = 5, "halfmax" = 5,
  "epsilon" = 1e-3, "deriv_epsilon" = 1e-3, "abs_max" = 1.0,
  "change_all" = TRUE, "dose_abs_max" = 100.0, "verbose" = FALSE,
  "ties" = "breslow", "double_step" = 1
e <- RunCoxRegression_Basic(</pre>
  df, time1, time2, event, names, keep_constant,
  a_n, der_iden, control
)
```

RunCoxRegression_CR Performs basic Cox Proportional Hazards regression with competing risks

Description

RunCoxRegression_CR uses user provided data, time/event columns, vectors specifying the model, and options to control the convergence, starting positions, and censoring adjustment

Usage

```
RunCoxRegression_CR(
  df,
  time1 = "start",
  time2 = "end",
  event0 = "event",
  names = c("CONST"),
  term_n = c(0),
  tform = "loglin",
  keep\_constant = c(0),
  a_n = c(0),
 modelform = "M",
  fir = 0,
  der_iden = 0,
  control = list(),
  cens_weight = "null"
)
```

Arguments

df	a data.table containing the columns of interest
time1	column used for time period starts
time2	column used for time period end
event0	column used for event status
names	columns for elements of the model, used to identify data columns
term_n	term numbers for each element of the model
tform	list of string function identifiers, used for linear/step
keep_constant	binary values to denote which parameters to change
a_n	list of initial parameter values, used to determine number of parameters. May be either a list of vectors or a single vector.
modelform	string specifying the model type: M, ME, A, PA, PAE, GMIX, GMIX-R, GMIX-E
fir	term number for the initial term, used for models of the form T0*f(Ti) in which the order matters

der_iden number for the subterm to test derivative at, only used for testing runs with a

single varying parameter, should be smaller than total number of parameters.

indexed starting at 0

control list of parameters controlling the convergence, see Def_Control() for options or

vignette("Control_Options")

cens_weight column containing the row weights

Value

returns a list of the final results

See Also

Other Cox Wrapper Functions: RunCoxNull(), RunCoxRegression(), RunCoxRegression_Basic(), RunCoxRegression_Guesses_CPP(), RunCoxRegression_Omnibus(), RunCoxRegression_Omnibus_Multidose(), RunCoxRegression_STRATA(), RunCoxRegression_Single(), RunCoxRegression_Tier_Guesses()

```
library(data.table)
## basic example code reproduced from the starting-description vignette
df <- data.table::data.table(</pre>
  "UserID" = c(112, 114, 213, 214, 115, 116, 117),
  "Starting_Age" = c(18, 20, 18, 19, 21, 20, 18),
  "Ending_Age" = c(30, 45, 57, 47, 36, 60, 55),
  "Cancer_Status" = c(0, 0, 1, 2, 1, 2, 0),
  "a" = c(0, 1, 1, 0, 1, 0, 1),
  "b" = c(1, 1.1, 2.1, 2, 0.1, 1, 0.2),
  "c" = c(10, 11, 10, 11, 12, 9, 11),
  "d" = c(0, 0, 0, 1, 1, 1, 1)
# For the interval case
time1 <- "Starting_Age"
time2 <- "Ending_Age"</pre>
event <- "Cancer_Status"
names <- c("a", "b", "c", "d")
term_n < -c(0, 1, 1, 2)
tform <- c("loglin", "lin", "lin", "plin")
modelform <- "M"
fir <- 0
a_n < c(0.1, 0.1, 0.1, 0.1)
keep_constant <- c(0, 0, 0, 0)
der_iden <- 0
control <- list(</pre>
  "ncores" = 2, "1r" = 0.75, "maxiter" = 5,
  "halfmax" = 5, "epsilon" = 1e-3,
  "deriv_epsilon" = 1e-3, "abs_max" = 1.0, "change_all" = TRUE,
  "dose_abs_max" = 100.0, "verbose" = FALSE,
  "ties" = "breslow", "double_step" = 1
# weights the probability that a row would continue to extend without censoring,
```

```
# for risk group calculation
df$cens_weight <- c(0.83, 0.37, 0.26, 0.34, 0.55, 0.23, 0.27)
# censoring weight is generated by the survival library finegray function, or by hand.
# The ratio of weight at event end point to weight at row endpoint is used.
e <- RunCoxRegression_CR(
   df, time1, time2, event, names, term_n, tform,
   keep_constant, a_n, modelform, fir, der_iden, control, "cens_weight"
)</pre>
```

RunCoxRegression_Guesses_CPP

Performs basic Cox Proportional Hazards regression, Generates multiple starting guesses on c++ side

Description

RunCoxRegression_Guesses_CPP uses user provided data, time/event columns, vectors specifying the model, and options to control the convergence and starting positions. Has additional options to starting with several initial guesses

Usage

```
RunCoxRegression_Guesses_CPP(
  df,
  time1 = "start",
  time2 = "end",
  event0 = "event"
  names = c("CONST"),
  term_n = c(0),
  tform = "loglin",
  keep\_constant = c(0),
  a_n = c(0),
 modelform = "M",
  fir = 0,
  der_iden = 0,
  control = list(),
  guesses_control = list(),
 strat_col = "null",
 model_control = list(),
  cens_weight = "null"
)
```

Arguments

df a data.table containing the columns of interest time1 column used for time period starts

time2	column used for time period end
event0	column used for event status
names	columns for elements of the model, used to identify data columns
term_n	term numbers for each element of the model
tform	list of string function identifiers, used for linear/step
keep_constant	binary values to denote which parameters to change
a_n	list of initial parameter values, used to determine number of parameters. May be either a list of vectors or a single vector.
modelform	string specifying the model type: M, ME, A, PA, PAE, GMIX, GMIX-R, GMIX-E
fir	term number for the initial term, used for models of the form $T0*f(Ti)$ in which the order matters
der_iden	number for the subterm to test derivative at, only used for testing runs with a single varying parameter, should be smaller than total number of parameters. indexed starting at 0
control	list of parameters controlling the convergence, see Def_Control() for options or vignette("Control_Options")
guesses_contro	
	list of parameters to control how the guessing works, see Def_Control_Guess() for options or vignette("Control_Options")
strat_col	column to stratify by if needed
model_control	controls which alternative model options are used, see Def_model_control() for options and vignette("Control_Options") for further details

Value

cens_weight

returns a list of the final results

See Also

Other Cox Wrapper Functions: RunCoxNull(), RunCoxRegression(), RunCoxRegression_Basic(), RunCoxRegression_CR(), RunCoxRegression_Omnibus(), RunCoxRegression_Omnibus_Multidose(), RunCoxRegression_STRATA(), RunCoxRegression_Single(), RunCoxRegression_Tier_Guesses()

Examples

```
library(data.table)
## basic example code reproduced from the starting-description vignette
df <- data.table::data.table(
   "UserID" = c(112, 114, 213, 214, 115, 116, 117),
   "Starting_Age" = c(18, 20, 18, 19, 21, 20, 18),
   "Ending_Age" = c(30, 45, 57, 47, 36, 60, 55),
   "Cancer_Status" = c(0, 0, 1, 0, 1, 0, 0),
   "a" = c(0, 1, 1, 0, 1, 0, 1),
   "b" = c(1, 1.1, 2.1, 2, 0.1, 1, 0.2),</pre>
```

column containing the row weights

```
"c" = c(10, 11, 10, 11, 12, 9, 11),
  "d" = c(0, 0, 0, 1, 1, 1, 1),
  "e" = c(0, 0, 1, 0, 0, 0, 1)
)
# For the interval case
time1 <- "Starting_Age"</pre>
time2 <- "Ending_Age"</pre>
event <- "Cancer_Status"
names <- c("a", "b", "c", "d")
a_n \leftarrow c(1.1, -0.1, 0.2, 0.5) # used to test at a specific point
term_n < -c(0, 1, 1, 2)
tform <- c("loglin", "lin", "lin", "plin")
modelform <- "M"
fir <- 0
keep\_constant <- c(0, 0, 0, 0)
der_iden <- 0
control <- list(</pre>
  "ncores" = 2, "lr" = 0.75, "maxiter" = 5,
  "halfmax" = 5, "epsilon" = 1e-3,
  "deriv_epsilon" = 1e-3, "abs_max" = 1.0, "change_all" = TRUE,
  "dose_abs_max" = 100.0, "verbose" = FALSE, "ties" = "breslow",
  "double_step" = 1
)
guesses_control <- list(</pre>
  "maxiter" = 10, "guesses" = 10,
  "lin_min" = 0.001, "lin_max" = 1,
  "loglin_min" = -1, "loglin_max" = 1,
  "lin_method" = "uniform",
  "loglin_method" = "uniform", strata = FALSE
)
strat_col <- "e"
e <- RunCoxRegression_Guesses_CPP(</pre>
  df, time1, time2, event, names, term_n,
  tform, keep_constant, a_n, modelform, fir,
  der_iden, control, guesses_control, strat_col
)
```

RunCoxRegression_Omnibus

Performs Cox Proportional Hazards regression using the omnibus function

Description

RunCoxRegression_Omnibus uses user provided data, time/event columns, vectors specifying the model, and options to control the convergence and starting positions. Has additional options for starting with several initial guesses, using stratification, multiplicative loglinear 1-term, competing risks, and calculation without derivatives

Usage

```
RunCoxRegression_Omnibus(
  df,
  time1 = "start",
  time2 = "end",
 event0 = "event",
  names = c("CONST"),
  term_n = c(0),
  tform = "loglin",
  keep\_constant = c(0),
  a_n = c(0),
 modelform = "M",
  fir = 0,
  der_iden = 0,
  control = list(),
  strat_col = "null",
  cens_weight = "null",
 model_control = list(),
  cons_mat = as.matrix(c(0)),
  cons_vec = c(0)
)
```

Arguments df

a.	a data-table containing the columns of interest
time1	column used for time period starts
time2	column used for time period end
event0	column used for event status
names	columns for elements of the model, used to identify data columns
term_n	term numbers for each element of the model
tform	list of string function identifiers, used for linear/step
keep_constant	binary values to denote which parameters to change
a_n	list of initial parameter values, used to determine number of parameters. May be either a list of vectors or a single vector.
modelform	string specifying the model type: M, ME, A, PA, PAE, GMIX, GMIX-R, GMIX-E
fir	term number for the initial term, used for models of the form $T0*f(Ti)$ in which the order matters
der_iden	number for the subterm to test derivative at, only used for testing runs with a single varying parameter, should be smaller than total number of parameters. indexed starting at 0
control	list of parameters controlling the convergence, see $Def_Control()$ for options or vignette("Control_Options")
strat_col	column to stratify by if needed

a data.table containing the columns of interest

cens_weight column containing the row weights

model_control controls which alternative model options are used, see Def_model_control() for options and vignette("Control_Options") for further details

cons_mat Matrix containing coefficients for system of linear constraints, formatted as matrix

cons_vec Vector containing constants for system of linear constraints, formatted as vector

Value

returns a list of the final results

See Also

Other Cox Wrapper Functions: RunCoxNull(), RunCoxRegression(), RunCoxRegression_Basic(), RunCoxRegression_CR(), RunCoxRegression_Guesses_CPP(), RunCoxRegression_Omnibus_Multidose(), RunCoxRegression_STRATA(), RunCoxRegression_Single(), RunCoxRegression_Tier_Guesses()

```
library(data.table)
## basic example code reproduced from the starting-description vignette
df <- data.table::data.table(</pre>
  "UserID" = c(112, 114, 213, 214, 115, 116, 117),
  "Starting_Age" = c(18, 20, 18, 19, 21, 20, 18),
  "Ending_Age" = c(30, 45, 57, 47, 36, 60, 55),
  "Cancer_Status" = c(0, 0, 1, 0, 1, 0, 0),
  "a" = c(0, 1, 1, 0, 1, 0, 1),
  "b" = c(1, 1.1, 2.1, 2, 0.1, 1, 0.2),
  "c" = c(10, 11, 10, 11, 12, 9, 11),
  "d" = c(0, 0, 0, 1, 1, 1, 1),
  "e" = c(0, 0, 1, 0, 0, 0, 1)
)
# For the interval case
time1 <- "Starting_Age"
time2 <- "Ending_Age"
event <- "Cancer_Status"
names <- c("a", "b", "c", "d")
a_n \leftarrow list(c(1.1, -0.1, 0.2, 0.5), c(1.6, -0.12, 0.3, 0.4))
# used to test at a specific point
term_n < -c(0, 1, 1, 2)
tform <- c("loglin", "lin", "lin", "plin")
modelform <- "M"
fir <- 0
keep\_constant <- c(0, 0, 0, 0)
der_iden <- 0
control <- list(</pre>
  "ncores" = 2, "lr" = 0.75, "maxiters" = c(5, 5, 5),
  "halfmax" = 5, "epsilon" = 1e-3, "deriv_epsilon" = 1e-3,
  "abs_max" = 1.0, "change_all" = TRUE, "dose_abs_max" = 100.0,
  "verbose" = FALSE,
  "ties" = "breslow", "double_step" = 1, "guesses" = 2
```

```
)
e <- RunCoxRegression_Omnibus(df, time1, time2, event,
  names, term_n, tform, keep_constant,
  a_n, modelform, fir, der_iden, control,
  model_control = list(
    "single" = FALSE,
    "basic" = FALSE, "cr" = FALSE, "null" = FALSE
)
)</pre>
```

RunCoxRegression_Omnibus_Multidose

Performs Cox Proportional Hazards regression using the omnibus function with multiple column realizations

Description

RunCoxRegression_Omnibus_Multidose uses user provided data, time/event columns, vectors specifying the model, and options to control the convergence and starting positions. Used for 2DMC column uncertainty methods. Returns optimized parameters, log-likelihood, and standard deviation for each realization. Has additional options for using stratification, multiplicative loglinear 1-term, competing risks, and calculation without derivatives

Usage

```
RunCoxRegression_Omnibus_Multidose(
  df,
  time1 = "start",
  time2 = "end",
  event0 = "event"
  names = c("CONST"),
  term_n = c(0),
  tform = "loglin",
  keep\_constant = c(0),
  a_n = c(0),
 modelform = "M",
  fir = 0,
  der_iden = 0,
 realization_columns = matrix(c("temp00", "temp01", "temp10", "temp11"), nrow = 2),
  realization_index = c("temp0", "temp1"),
  control = list(),
  strat_col = "null"
  cens_weight = "null",
 model_control = list(),
 cons_mat = as.matrix(c(0)),
  cons_vec = c(0)
)
```

Arguments

df a data.table containing the columns of interest

time1 column used for time period starts
time2 column used for time period end
event0 column used for event status

names columns for elements of the model, used to identify data columns

term_n term numbers for each element of the model

tform list of string function identifiers, used for linear/step keep_constant binary values to denote which parameters to change

a_n list of initial parameter values, used to determine number of parameters. May

be either a list of vectors or a single vector.

model form string specifying the model type: M, ME, A, PA, PAE, GMIX, GMIX-R, GMIX-

Ε

fir term number for the initial term, used for models of the form T0*f(Ti) in which

the order matters

der_iden number for the subterm to test derivative at, only used for testing runs with a

single varying parameter, should be smaller than total number of parameters.

indexed starting at 0

realization_columns

used for multi-realization regressions. Matrix of column names with rows for

each column with realizations, columns for each realization

realization_index

used for multi-realization regressions. Vector of column names, one for each

column with realizations. each name should be used in the "names" variable in

the equation definition

control list of parameters controlling the convergence, see Def Control() for options or

vignette("Control Options")

strat_col column to stratify by if needed cens_weight column containing the row weights

model_control controls which alternative model options are used, see Def_model_control() for

options and vignette("Control_Options") for further details

cons_mat Matrix containing coefficients for system of linear constraints, formatted as ma-

trix

cons_vec Vector containing constants for system of linear constraints, formatted as vector

Value

returns a list of the final results for each realization

See Also

Other Cox Wrapper Functions: RunCoxNull(), RunCoxRegression(), RunCoxRegression_Basic(), RunCoxRegression_CR(), RunCoxRegression_Guesses_CPP(), RunCoxRegression_Omnibus(), RunCoxRegression_STRATA(), RunCoxRegression_Single(), RunCoxRegression_Tier_Guesses()

```
library(data.table)
## basic example code reproduced from the starting-description vignette
df <- data.table::data.table(</pre>
  "UserID" = c(112, 114, 213, 214, 115, 116, 117),
  "t0" = c(18, 20, 18, 19, 21, 20, 18),
  "t1" = c(30, 45, 57, 47, 36, 60, 55),
  "lung" = c(0, 0, 1, 0, 1, 0, 0),
  "dose" = c(0, 1, 1, 0, 1, 0, 1)
)
set.seed(3742)
df$rand <- floor(runif(nrow(df), min = 0, max = 5))</pre>
df$rand0 <- floor(runif(nrow(df), min = 0, max = 5))</pre>
df$rand1 <- floor(runif(nrow(df), min = 0, max = 5))</pre>
df$rand2 <- floor(runif(nrow(df), min = 0, max = 5))</pre>
time1 <- "t0"
time2 <- "t1"
names <- c("dose", "rand")</pre>
term_n < -c(0, 0)
tform <- c("loglin", "loglin")</pre>
realization_columns <- matrix(c("rand0", "rand1", "rand2"), nrow = 1)</pre>
realization_index <- c("rand")</pre>
keep_constant <- c(1, 0)
a_n < c(0, 0)
modelform <- "M"
fir <- 0
der_iden <- 0
cens_weight <- c(0)
event <- "lung"
a_n < c(-0.1, -0.1)
keep_constant <- c(0, 0)
control <- list(</pre>
  "ncores" = 2, "lr" = 0.75, "maxiter" = 1,
  "halfmax" = 2, "epsilon" = 1e-6,
  "deriv_epsilon" = 1e-6, "abs_max" = 1.0,
  "change_all" = TRUE, "dose_abs_max" = 100.0,
  "verbose" = 0, "ties" = "breslow", "double_step" = 1
)
e <- RunCoxRegression_Omnibus_Multidose(df, time1, time2, event,
  names.
  term_n = term_n, tform = tform,
  keep_constant = keep_constant, a_n = a_n,
  modelform = modelform, fir = fir, der_iden = der_iden,
  realization_columns = realization_columns,
  realization_index = realization_index,
  control = control, strat_col = "fac",
  model_control = list(), cens_weight = "null"
)
```

RunCoxRegression_Single

Performs basic Cox Proportional Hazards calculation with no deriva-

Description

RunCoxRegression_Single uses user provided data, time/event columns, vectors specifying the model, and options and returns the log-likelihood

Usage

```
RunCoxRegression_Single(
   df,
   time1 = "start",
   time2 = "end",
   event0 = "event",
   names = c("CONST"),
   term_n = c(0),
   tform = "loglin",
   keep_constant = c(0),
   a_n = c(0),
   modelform = "M",
   fir = 0,
   control = list()
)
```

Arguments

df	a data.table containing the columns of interest
time1	column used for time period starts
time2	column used for time period end
event0	column used for event status
names	columns for elements of the model, used to identify data columns
term_n	term numbers for each element of the model
tform	list of string function identifiers, used for linear/step
keep_constant	binary values to denote which parameters to change
a_n	list of initial parameter values, used to determine number of parameters. May be either a list of vectors or a single vector.
modelform	string specifying the model type: M, ME, A, PA, PAE, GMIX, GMIX-R, GMIX-E
fir	term number for the initial term, used for models of the form $T0*f(Ti)$ in which the order matters
control	list of parameters controlling the convergence, see Def_Control() for options or vignette("Control_Options")

Value

returns a list of the final results

See Also

```
Other Cox Wrapper Functions: RunCoxNull(), RunCoxRegression(), RunCoxRegression_Basic(), RunCoxRegression_CR(), RunCoxRegression_Guesses_CPP(), RunCoxRegression_Omnibus(), RunCoxRegression_Omnibus_Multidose(), RunCoxRegression_STRATA(), RunCoxRegression_Tier_Guesses()
```

Examples

```
library(data.table)
## basic example code reproduced from the starting-description vignette
df <- data.table::data.table(</pre>
  "UserID" = c(112, 114, 213, 214, 115, 116, 117),
  "Starting_Age" = c(18, 20, 18, 19, 21, 20, 18),
  "Ending_Age" = c(30, 45, 57, 47, 36, 60, 55),
  "Cancer_Status" = c(0, 0, 1, 0, 1, 0, 0),
  "a" = c(0, 1, 1, 0, 1, 0, 1),
  "b" = c(1, 1.1, 2.1, 2, 0.1, 1, 0.2),
  "c" = c(10, 11, 10, 11, 12, 9, 11),
  "d" = c(0, 0, 0, 1, 1, 1, 1)
)
# For the interval case
time1 <- "Starting_Age"</pre>
time2 <- "Ending_Age"
event <- "Cancer_Status"
names <- c("a", "b", "c", "d")
term_n < -c(0, 1, 1, 2)
tform <- c("loglin", "lin", "lin", "plin")</pre>
modelform <- "M"
fir <- 0
a_n \leftarrow c(1.1, -0.1, 0.2, 0.5) # used to test at a specific point
keep_constant <- c(0, 0, 0, 0)
control <- list(</pre>
  "ncores" = 2, "verbose" = FALSE,
  "ties" = "breslow", "double_step" = 1
)
e <- RunCoxRegression_Single(
  df, time1, time2, event, names, term_n, tform,
  keep_constant, a_n, modelform, fir, control
```

RunCoxRegression_STRATA

Performs basic Cox Proportional Hazards regression with strata effect

Description

RunCoxRegression_STRATA uses user provided data, time/event columns, vectors specifying the model, and options to control the convergence and starting positions

Usage

```
RunCoxRegression_STRATA(
  df,
  time1 = "start",
  time2 = "end",
  event0 = "event",
  names = c("CONST"),
  term_n = c(0),
  tform = "loglin",
  keep\_constant = c(0),
  a_n = c(0),
 modelform = "M",
  fir = 0,
 der_iden = 0,
 control = list(),
  strat_col = "null"
)
```

Arguments df

df	a data.table containing the columns of interest
time1	column used for time period starts
time2	column used for time period end
event0	column used for event status
names	columns for elements of the model, used to identify data columns
term_n	term numbers for each element of the model
tform	list of string function identifiers, used for linear/step
keep_constant	binary values to denote which parameters to change
a_n	list of initial parameter values, used to determine number of parameters. May be either a list of vectors or a single vector.
modelform	string specifying the model type: M, ME, A, PA, PAE, GMIX, GMIX-R, GMIX-E
fir	term number for the initial term, used for models of the form $T0*f(Ti)$ in which the order matters
der_iden	number for the subterm to test derivative at, only used for testing runs with a single varying parameter, should be smaller than total number of parameters. indexed starting at 0
control	list of parameters controlling the convergence, see Def_Control() for options or vignette("Control_Options")
strat_col	column to stratify by if needed

Value

returns a list of the final results

See Also

```
Other Cox Wrapper Functions: RunCoxNull(), RunCoxRegression(), RunCoxRegression_Basic(), RunCoxRegression_CR(), RunCoxRegression_Guesses_CPP(), RunCoxRegression_Omnibus(), RunCoxRegression_Dunibus_Multidose(), RunCoxRegression_Single(), RunCoxRegression_Tier_Guesses()
```

```
library(data.table)
## basic example code reproduced from the starting-description vignette
df <- data.table::data.table(</pre>
  "UserID" = c(112, 114, 213, 214, 115, 116, 117),
  "Starting_Age" = c(18, 20, 18, 19, 21, 20, 18),
  "Ending_Age" = c(30, 45, 57, 47, 36, 60, 55),
  "Cancer_Status" = c(0, 0, 1, 0, 1, 0, 0),
 "a" = c(0, 1, 1, 0, 1, 0, 1),
 "b" = c(1, 1.1, 2.1, 2, 0.1, 1, 0.2),
  "c" = c(10, 11, 10, 11, 12, 9, 11),
 "d" = c(0, 0, 0, 1, 1, 1, 1),
  "e" = c(0, 0, 0, 0, 1, 0, 1)
)
# For the interval case
time1 <- "Starting_Age"</pre>
time2 <- "Ending_Age"</pre>
event <- "Cancer_Status"</pre>
names <- c("a", "b", "c", "d")
a_n \leftarrow c(1.1, -0.1, 0.2, 0.5) # used to test at a specific point
term_n < -c(0, 1, 1, 2)
tform <- c("loglin", "lin", "lin", "plin")
modelform <- "M"
fir <- 0
keep\_constant <- c(0, 0, 0, 0)
der_iden <- 0
control <- list(</pre>
  "ncores" = 2, "lr" = 0.75, "maxiter" = 5, "halfmax" = 5,
  "epsilon" = 1e-3, "deriv_epsilon" = 1e-3,
  "abs_max" = 1.0, "change_all" = TRUE, "dose_abs_max" = 100.0,
  "verbose" = FALSE, "ties" = "breslow", "double_step" = 1
)
strat_col <- "e"
e <- RunCoxRegression_STRATA(</pre>
 df, time1, time2, event, names, term_n,
 tform, keep_constant, a_n, modelform,
 fir, der_iden, control, strat_col
)
```

 ${\tt RunCoxRegression_Tier_Guesses}$

Performs basic cox regression, with multiple guesses, starts with solving for a single term

Description

RunCoxRegression_Tier_Guesses uses user provided data, time/event columns, vectors specifying the model, and options to control the convergence and starting positions, with additional guesses

Usage

```
RunCoxRegression_Tier_Guesses(
  time1 = "start",
  time2 = "end",
  event0 = "event"
  names = c("CONST"),
  term_n = c(0),
  tform = "loglin",
  keep\_constant = c(0),
  a_n = c(0),
 modelform = "M",
  fir = 0,
  der_iden = 0,
  control = list(),
  guesses_control = list(),
  strat_col = "null",
 model_control = list(),
  cens_weight = "null"
)
```

Arguments

df	a data.table containing the columns of interest
time1	column used for time period starts
time2	column used for time period end
event0	column used for event status
names	columns for elements of the model, used to identify data columns
term_n	term numbers for each element of the model
tform	list of string function identifiers, used for linear/step
keep_constant	binary values to denote which parameters to change
a_n	list of initial parameter values, used to determine number of parameters. May be either a list of vectors or a single vector.

modelform	string specifying the model type: M, ME, A, PA, PAE, GMIX, GMIX-R, GMIX-E
fir	term number for the initial term, used for models of the form $T0*f(Ti)$ in which the order matters
der_iden	number for the subterm to test derivative at, only used for testing runs with a single varying parameter, should be smaller than total number of parameters. indexed starting at 0
control	list of parameters controlling the convergence, see Def_Control() for options or vignette("Control_Options")
guesses_contro	1
	list of parameters to control how the guessing works, see Def_Control_Guess() for options or vignette("Control_Options")
strat_col	column to stratify by if needed
model_control	controls which alternative model options are used, see Def_model_control() for options and vignette("Control_Options") for further details
cens_weight	column containing the row weights

Value

returns a list of the final results

See Also

```
Other Cox Wrapper Functions: RunCoxNull(), RunCoxRegression(), RunCoxRegression_Basic(), RunCoxRegression_CR(), RunCoxRegression_Guesses_CPP(), RunCoxRegression_Omnibus(), RunCoxRegression_Omnibus_Multidose(), RunCoxRegression_STRATA(), RunCoxRegression_Single()
```

```
library(data.table)
## basic example code reproduced from the starting-description vignette
df <- data.table::data.table(</pre>
  "UserID" = c(112, 114, 213, 214, 115, 116, 117),
  "Starting_Age" = c(18, 20, 18, 19, 21, 20, 18),
  "Ending_Age" = c(30, 45, 57, 47, 36, 60, 55),
  "Cancer_Status" = c(0, 0, 1, 0, 1, 0, 0),
  "a" = c(0, 1, 1, 0, 1, 0, 1),
  "b" = c(1, 1.1, 2.1, 2, 0.1, 1, 0.2),
  "c" = c(10, 11, 10, 11, 12, 9, 11),
  "d" = c(0, 0, 0, 1, 1, 1, 1),
  "e" = c(0, 0, 0, 0, 1, 0, 1)
)
# For the interval case
time1 <- "Starting_Age"</pre>
time2 <- "Ending_Age"</pre>
event <- "Cancer_Status"</pre>
names <- c("a", "b", "c", "d")
a_n \leftarrow c(1.1, -0.1, 0.2, 0.5) # used to test at a specific point
term_n < -c(0, 1, 1, 2)
```

```
tform <- c("loglin", "lin", "lin", "plin")
modelform <- "M"
fir <- 0
keep_constant <- c(0, 0, 0, 0)
der_iden <- 0
control <- list(</pre>
  "ncores" = 2, "lr" = 0.75, "maxiter" = 5, "halfmax" = 5,
  "epsilon" = 1e-3, "deriv_epsilon" = 1e-3,
  "abs_max" = 1.0, "change_all" = TRUE, "dose_abs_max" = 100.0,
  "verbose" = FALSE, "ties" = "breslow", "double_step" = 1
)
guesses_control <- list(</pre>
 "iterations" = 10, "guesses" = 10, "lin_min" = 0.001,
  "lin_max" = 1, "loglin_min" = -1, "loglin_max" = 1, "lin_method" = "uniform",
  "loglin_method" = "uniform", strata = TRUE, term_initial = c(0, 1)
)
strat_col <- "e"
e <- RunCoxRegression_Tier_Guesses(</pre>
 df, time1, time2, event, names,
 term_n, tform, keep_constant,
 a_n, modelform, fir, der_iden,
 control, guesses_control,
 strat\_col
)
```

RunPoissonEventAssignment

Predicts how many events are due to baseline vs excess

Description

RunPoissonEventAssignment uses user provided data, person-year/event columns, vectors specifying the model, and options to calculate background and excess events

Usage

```
RunPoissonEventAssignment(
   df,
   pyr0 = "pyr",
   event0 = "event",
   names = c("CONST"),
   term_n = c(0),
   tform = "loglin",
   keep_constant = c(0),
   a_n = c(0),
   modelform = "M",
   fir = 0,
   der_iden = 0,
```

```
control = list(),
  strat_col = "null",
  model_control = list()
)
```

Arguments

df a data.table containing the columns of interest

pyr0 column used for person-years per row

event0 column used for event status

names columns for elements of the model, used to identify data columns

term_n term numbers for each element of the model

tform list of string function identifiers, used for linear/step keep_constant binary values to denote which parameters to change

a_n list of initial parameter values, used to determine number of parameters. May

be either a list of vectors or a single vector.

model form string specifying the model type: M, ME, A, PA, PAE, GMIX, GMIX-R, GMIX-

Ε

fir term number for the initial term, used for models of the form T0*f(Ti) in which

the order matters

der_iden number for the subterm to test derivative at, only used for testing runs with a

single varying parameter, should be smaller than total number of parameters.

indexed starting at 0

control list of parameters controlling the convergence, see Def_Control() for options or

vignette("Control_Options")

strat_col column to stratify by if needed

model_control controls which alternative model options are used, see Def_model_control() for

options and vignette("Control_Options") for further details

Value

returns a list of the final results

See Also

Other Poisson Wrapper Functions: RunPoissonEventAssignment_bound(), RunPoissonRegression(), RunPoissonRegression_Guesses_CPP(), RunPoissonRegression_Joint_Omnibus(), RunPoissonRegression_Omnibus(), RunPoissonRegression_Residual(), RunPoissonRegression_STRATA(), RunPoissonRegression_Single(), RunPoissonRegression_Tier_Guesses()

```
library(data.table)
## basic example code reproduced from the starting-description vignette
df <- data.table::data.table(
  "UserID" = c(112, 114, 213, 214, 115, 116, 117),</pre>
```

```
"Starting_Age" = c(18, 20, 18, 19, 21, 20, 18),
  "Ending_Age" = c(30, 45, 57, 47, 36, 60, 55),
  "Cancer_Status" = c(0, 0, 1, 0, 1, 0, 0),
 "a" = c(0, 1, 1, 0, 1, 0, 1),
 "b" = c(1, 1.1, 2.1, 2, 0.1, 1, 0.2),
 "c" = c(10, 11, 10, 11, 12, 9, 11),
  "d" = c(0, 0, 0, 1, 1, 1, 1)
# For the interval case
df$pyr <- df$Ending_Age - df$Starting_Age</pre>
pyr <- "pyr"
event <- "Cancer_Status"</pre>
names <- c("a", "b", "c", "d")
term_n < -c(0, 1, 1, 2)
tform <- c("loglin", "lin", "lin", "plin")
modelform <- "M"
fir <- 0
a_n < c(0.1, 0.1, 0.1, 0.1)
keep\_constant <- c(0, 0, 0, 0)
der_iden <- 0
control <- list(</pre>
  "ncores" = 2, "lr" = 0.75, "maxiter" = 5,
 "halfmax" = 5, "epsilon" = 1e-3,
 "deriv_epsilon" = 1e-3, "abs_max" = 1.0, "change_all" = TRUE,
  "dose_abs_max" = 100.0, "verbose" = FALSE, "double_step" = 1
)
e <- RunPoissonEventAssignment(</pre>
 df, pyr, event, names, term_n,
 tform, keep_constant,
 a_n, modelform, fir, der_iden, control
)
```

RunPoissonEventAssignment_bound

Predicts how many events are due to baseline vs excess at the confidence bounds of a single parameter

Description

RunPoissonEventAssignment_bound uses user provided data, the results of a poisson regression, and options to calculate background and excess events

Usage

```
RunPoissonEventAssignment_bound(
  df,
  pyr0 = "pyr",
  event0 = "event",
  alternative_model = list(),
```

```
keep_constant = c(0),
modelform = "M",
fir = 0,
der_iden = 0,
check_num = 1,
z = 2,
control = list(),
strat_col = "null",
model_control = list()
```

Arguments

df a data.table containing the columns of interest

pyr0 column used for person-years per row

event0 column used for event status

alternative_model

the new model of interest in list form, output from a poisson regression

keep_constant binary values to denote which parameters to change

model form string specifying the model type: M, ME, A, PA, PAE, GMIX, GMIX-R, GMIX-

Ε

fir term number for the initial term, used for models of the form T0*f(Ti) in which

the order matters

der_iden number for the subterm to test derivative at, only used for testing runs with a

single varying parameter, should be smaller than total number of parameters.

indexed starting at 0

check_num the parameter number to check at the bounds of, indexed from 1 using the order

returned by Colossus

z Z score to use for confidence interval

control list of parameters controlling the convergence, see Def_Control() for options or

vignette("Control_Options")

strat_col column to stratify by if needed

model_control controls which alternative model options are used, see Def_model_control() for

options and vignette("Control_Options") for further details

Value

returns a list of the final results

See Also

```
Other Poisson Wrapper Functions: RunPoissonEventAssignment(), RunPoissonRegression(), RunPoissonRegression_Guesses_CPP(), RunPoissonRegression_Joint_Omnibus(), RunPoissonRegression_Omnibus(), RunPoissonRegression_Regression_STRATA(), RunPoissonRegression_Single(), RunPoissonRegression_Tier_Guesses()
```

```
library(data.table)
## basic example code reproduced from the starting-description vignette
df <- data.table::data.table(</pre>
  "UserID" = c(112, 114, 213, 214, 115, 116, 117),
  "Starting_Age" = c(18, 20, 18, 19, 21, 20, 18),
  "Ending_Age" = c(30, 45, 57, 47, 36, 60, 55),
  "Cancer_Status" = c(0, 0, 1, 0, 1, 0, 0),
  "a" = c(0, 1, 1, 0, 1, 0, 1),
  "b" = c(1, 1.1, 2.1, 2, 0.1, 1, 0.2),
  "c" = c(10, 11, 10, 11, 12, 9, 11),
  "d" = c(0, 0, 0, 1, 1, 1, 1),
  "e" = c(0, 0, 1, 0, 0, 0, 1)
)
# For the interval case
pyr <- "Ending_Age"</pre>
event <- "Cancer_Status"
names <- c("a", "b", "c", "d")
a_n \leftarrow c(1.1, -0.1, 0.2, 0.5) # used to test at a specific point
term_n < -c(0, 1, 1, 2)
tform <- c("loglin", "lin", "lin", "plin")</pre>
modelform <- "M"
fir <- 0
keep_constant <- c(0, 0, 0, 0)
der_iden <- 0
control <- list(</pre>
  "ncores" = 2, "lr" = 0.75, "maxiter" = 5, "halfmax" = 5, "epsilon" = 1e-3,
  "deriv_epsilon" = 1e-3, "abs_max" = 1.0, "change_all" = TRUE,
  "dose_abs_max" = 100.0, "verbose" = FALSE, "ties" = "breslow",
  "double_step" = 1
)
guesses_control <- list(</pre>
  "maxiter" = 10, "guesses" = 10, "lin_min" = 0.001,
  "lin_max" = 1, "loglin_min" = -1, "loglin_max" = 1, "lin_method" = "uniform",
  "loglin_method" = "uniform", strata = FALSE
strat_col <- "e"
e0 <- RunPoissonRegression_Omnibus(</pre>
  df, pyr, event, names, term_n, tform,
  keep_constant,
  a_n, modelform, fir, der_iden,
  control, strat_col
)
e <- RunPoissonEventAssignment_bound(</pre>
  df, pyr, event, e0, keep_constant,
  modelform, fir, der_iden, 4, 2, control
)
```

RunPoissonRegression 59

Description

RunPoissonRegression uses user provided data, person-year/event columns, vectors specifying the model, and options to control the convergence and starting positions with no special options

Usage

```
RunPoissonRegression(
    df,
    pyr0 = "pyr",
    event0 = "event",
    names = c("CONST"),
    term_n = c(0),
    tform = "loglin",
    keep_constant = c(0),
    a_n = c(0),
    modelform = "M",
    fir = 0,
    der_iden = 0,
    control = list()
)
```

Arguments

df	a data.table	containing	the	columns	of interest
ui	a data.tabic	Commanning	uic	COTUITIO	or microst

pyr0 column used for person-years per row

event0 column used for event status

names columns for elements of the model, used to identify data columns

term_n term numbers for each element of the model

tform list of string function identifiers, used for linear/step keep_constant binary values to denote which parameters to change

a_n list of initial parameter values, used to determine number of parameters. May

be either a list of vectors or a single vector.

model form string specifying the model type: M, ME, A, PA, PAE, GMIX, GMIX-R, GMIX-

Ε

fir term number for the initial term, used for models of the form T0*f(Ti) in which

the order matters

der_iden number for the subterm to test derivative at, only used for testing runs with a

single varying parameter, should be smaller than total number of parameters.

indexed starting at 0

control list of parameters controlling the convergence, see Def_Control() for options or

vignette("Control_Options")

Value

returns a list of the final results

See Also

Other Poisson Wrapper Functions: RunPoissonEventAssignment(), RunPoissonEventAssignment_bound(), RunPoissonRegression_Guesses_CPP(), RunPoissonRegression_Joint_Omnibus(), RunPoissonRegression_Omnibus(), RunPoissonRegression_Regression_STRATA(), RunPoissonRegression_Single(), RunPoissonRegression_Tier_Guesses()

Examples

```
library(data.table)
## basic example code reproduced from the starting-description vignette
df <- data.table::data.table(</pre>
  "UserID" = c(112, 114, 213, 214, 115, 116, 117),
  "Starting_Age" = c(18, 20, 18, 19, 21, 20, 18),
  "Ending_Age" = c(30, 45, 57, 47, 36, 60, 55),
  "Cancer_Status" = c(0, 0, 1, 0, 1, 0, 0),
  "a" = c(0, 1, 1, 0, 1, 0, 1),
  "b" = c(1, 1.1, 2.1, 2, 0.1, 1, 0.2),
  "c" = c(10, 11, 10, 11, 12, 9, 11),
  "d" = c(0, 0, 0, 1, 1, 1, 1)
)
# For the interval case
df$pyr <- df$Ending_Age - df$Starting_Age</pre>
pyr <- "pyr"
event <- "Cancer_Status"
names <- c("a", "b", "c", "d")
term_n < -c(0, 1, 1, 2)
tform <- c("loglin", "lin", "lin", "plin")</pre>
modelform <- "M"
fir <- 0
a_n < c(0.1, 0.1, 0.1, 0.1)
keep\_constant <- c(0, 0, 0, 0)
der_iden <- 0
control <- list(</pre>
  "ncores" = 2, "1r" = 0.75, "maxiter" = 5,
  "halfmax" = 5, "epsilon" = 1e-3,
  "deriv_epsilon" = 1e-3, "abs_max" = 1.0, "change_all" = TRUE,
  "dose_abs_max" = 100.0, "verbose" = FALSE, "double_step" = 1
)
e <- RunPoissonRegression(</pre>
  df, pyr, event, names, term_n, tform,
  keep_constant,
  a_n, modelform, fir, der_iden, control
```

RunPoissonRegression_Guesses_CPP

Performs basic Poisson regression, generates multiple starting guesses on c++ side

Description

RunPoissonRegression_Guesses_CPP uses user provided data, time/event columns, vectors specifying the model, and options to control the convergence and starting positions. Has additional options to starting with several initial guesses

Usage

```
RunPoissonRegression_Guesses_CPP(
  pyr0 = "pyr",
  event0 = "event",
  names = c("CONST"),
  term_n = c(0),
  tform = "loglin",
  keep\_constant = c(0),
  a_n = c(0),
 modelform = "M",
  fir = 0,
  der_iden = 0,
  control = list(),
  guesses_control = list(),
 strat_col = "null",
 model_control = list()
)
```

Arguments

df	a data.table containing the columns of interest
pyr0	column used for person-years per row
event0	column used for event status
names	columns for elements of the model, used to identify data columns
term_n	term numbers for each element of the model
tform	list of string function identifiers, used for linear/step
keep_constant	binary values to denote which parameters to change
a_n	list of initial parameter values, used to determine number of parameters. May be either a list of vectors or a single vector.
modelform	string specifying the model type: M, ME, A, PA, PAE, GMIX, GMIX-R, GMIX-E
fir	term number for the initial term, used for models of the form $T0*f(Ti)$ in which the order matters
der_iden	number for the subterm to test derivative at, only used for testing runs with a single varying parameter, should be smaller than total number of parameters. indexed starting at 0
control	list of parameters controlling the convergence, see Def_Control() for options or vignette("Control_Options")

```
guesses_control
list of parameters to control how the guessing works, see Def_Control_Guess()
for options or vignette("Control_Options")

strat_col
model_control
controls which alternative model options are used, see Def_model_control() for options and vignette("Control Options") for further details
```

Value

returns a list of the final results

See Also

Other Poisson Wrapper Functions: RunPoissonEventAssignment(), RunPoissonEventAssignment_bound(), RunPoissonRegression(), RunPoissonRegression_Joint_Omnibus(), RunPoissonRegression_Omnibus(), RunPoissonRegression_Regression_STRATA(), RunPoissonRegression_Single(), RunPoissonRegression_Tier_Guesses()

```
library(data.table)
## basic example code reproduced from the starting-description vignette
df <- data.table::data.table(</pre>
  "UserID" = c(112, 114, 213, 214, 115, 116, 117),
  "Starting_Age" = c(18, 20, 18, 19, 21, 20, 18),
  "Ending_Age" = c(30, 45, 57, 47, 36, 60, 55),
  "Cancer_Status" = c(0, 0, 1, 0, 1, 0, 0),
  "a" = c(0, 1, 1, 0, 1, 0, 1),
  "b" = c(1, 1.1, 2.1, 2, 0.1, 1, 0.2),
  "c" = c(10, 11, 10, 11, 12, 9, 11),
  "d" = c(0, 0, 0, 1, 1, 1, 1),
  "e" = c(0, 0, 1, 0, 0, 0, 1)
# For the interval case
pyr <- "Ending_Age"</pre>
event <- "Cancer_Status"
names <- c("a", "b", "c", "d")
a_n \leftarrow c(1.1, -0.1, 0.2, 0.5) # used to test at a specific point
term_n < -c(0, 1, 1, 2)
tform <- c("loglin", "lin", "lin", "plin")
modelform <- "M"
fir <- 0
keep\_constant \leftarrow c(0, 0, 0, 0)
der_iden <- 0
control <- list(</pre>
  "ncores" = 2, "lr" = 0.75, "maxiter" = 5,
  "halfmax" = 5, "epsilon" = 1e-3,
  "deriv_epsilon" = 1e-3, "abs_max" = 1.0, "change_all" = TRUE,
  "dose_abs_max" = 100.0, "verbose" = FALSE, "ties" = "breslow",
  "double_step" = 1
)
```

```
guesses_control <- list(
  "maxiter" = 10,  "guesses" = 10,
  "lin_min" = 0.001,  "lin_max" = 1,
  "loglin_min" = -1,  "loglin_max" = 1,  "lin_method" = "uniform",
  "loglin_method" = "uniform",  strata = FALSE
)
strat_col <- "e"
e <- RunPoissonRegression_Guesses_CPP(
   df, pyr, event, names, term_n,
   tform, keep_constant, a_n, modelform, fir,
   der_iden, control, guesses_control, strat_col
)</pre>
```

RunPoissonRegression_Joint_Omnibus

Performs joint Poisson regression using the omnibus function

Description

RunPoissonRegression_Joint_Omnibus uses user provided data, time/event columns, vectors specifying the model, and options to control the convergence and starting positions. Has additional options to starting with several initial guesses, uses joint competing risks equation

Usage

```
RunPoissonRegression_Joint_Omnibus(
  df,
  pyr0,
  events,
  name_list,
  term_n_list = list(),
  tform_list = list(),
  keep_constant_list = list(),
  a_n_list = list(),
 modelform = "M",
  fir = 0,
  der_iden = 0,
  control = list(),
  strat_col = "null",
 model_control = list(),
 cons_mat = as.matrix(c(0)),
  cons_vec = c(0)
)
```

Arguments

```
df a data.table containing the columns of interest pyr0 column used for person-years per row
```

events	vector of event column names
name_list	list of vectors for columns for event specific or shared model elements, required
term_n_list	list of vectors for term numbers for event specific or shared model elements, defaults to term $\boldsymbol{0}$
tform_list	list of vectors for subterm types for event specific or shared model elements, defaults to loglinear
keep_constant_l	ist
	list of vectors for constant elements for event specific or shared model elements, defaults to free (0)
a_n_list	list of vectors for parameter values for event specific or shared model elements, defaults to term $\boldsymbol{0}$
modelform	string specifying the model type: M, ME, A, PA, PAE, GMIX, GMIX-R, GMIX-E
fir	term number for the initial term, used for models of the form $T0*f(Ti)$ in which the order matters
der_iden	number for the subterm to test derivative at, only used for testing runs with a single varying parameter, should be smaller than total number of parameters. indexed starting at $\boldsymbol{0}$
control	list of parameters controlling the convergence, see Def_Control() for options or vignette("Control_Options")
strat_col	column to stratify by if needed
model_control	controls which alternative model options are used, see Def_model_control() for options and vignette("Control_Options") for further details
cons_mat	Matrix containing coefficients for system of linear constraints, formatted as matrix
cons_vec	Vector containing constants for system of linear constraints, formatted as vector

Value

returns a list of the final results

See Also

Other Poisson Wrapper Functions: RunPoissonEventAssignment(), RunPoissonEventAssignment_bound(), RunPoissonRegression(), RunPoissonRegression_Guesses_CPP(), RunPoissonRegression_Omnibus(), RunPoissonRegression_Residual(), RunPoissonRegression_STRATA(), RunPoissonRegression_Single(), RunPoissonRegression_Tier_Guesses()

```
library(data.table)  
## basic example code reproduced from the starting-description vignette a <- c(0, 0, 0, 1, 1, 1)  
b <- c(1, 1, 1, 2, 2, 2)  
c <- c(0, 1, 2, 2, 1, 0)  
d <- c(1, 1, 0, 0, 1, 1)
```

```
e < -c(0, 1, 1, 1, 0, 0)
f \leftarrow c(0, 1, 0, 0, 1, 1)
df <- data.table("t0" = a, "t1" = b, "e0" = c, "e1" = d, "fac" = e)
time1 <- "t0"
time2 <- "t1"
dfpyr <- df$t1 - df$t0
pyr <- "pyr"
events <- c("e0", "e1")
names_e0 <- c("fac")</pre>
names_e1 <- c("fac")</pre>
names_shared <- c("t0", "t0")</pre>
term_n_e0 <- c(0)
term_n_e1 <- c(0)
term_n_shared <- c(0, 0)
tform_e0 <- c("loglin")
tform_e1 <- c("loglin")</pre>
tform_shared <- c("quad_slope", "loglin_top")</pre>
keep\_constant\_e0 <- c(0)
keep\_constant\_e1 <- c(0)
keep\_constant\_shared <- c(0, 0)
a_n_e0 <- c(-0.1)
a_n_e1 <- c(0.1)
a_n_{shared} <- c(0.001, -0.02)
name_list <- list("shared" = names_shared, "e0" = names_e0, "e1" = names_e1)</pre>
term_n_list <- list("shared" = term_n_shared, "e0" = term_n_e0, "e1" = term_n_e1)</pre>
tform_list <- list("shared" = tform_shared, "e0" = tform_e0, "e1" = tform_e1)</pre>
keep_constant_list <- list(</pre>
  "shared" = keep_constant_shared,
  "e0" = keep_constant_e0, "e1" = keep_constant_e1
)
a_n_list <- list("shared" = a_n_shared, "e0" = a_n_e0, "e1" = a_n_e1)</pre>
der_iden <- 0
modelform <- "M"
fir <- 0
control <- list(</pre>
  "ncores" = 2, "lr" = 0.75, "maxiter" = 5,
  "halfmax" = 5, "epsilon" = 1e-3,
  "deriv_epsilon" = 1e-3, "abs_max" = 1.0, "change_all" = TRUE,
  "dose_abs_max" = 100.0, "verbose" = FALSE,
  "ties" = "breslow", "double_step" = 1
)
guesses_control <- list(</pre>
  "maxiter" = 10, "guesses" = 10,
  "lin_min" = 0.001, "lin_max" = 1,
  "loglin_min" = -1, "loglin_max" = 1, "lin_method" = "uniform",
  "loglin_method" = "uniform", strata = FALSE
)
strat_col <- "f"
e <- RunPoissonRegression_Joint_Omnibus(</pre>
  df, pyr, events, name_list,
  term_n_list,
  tform_list, keep_constant_list,
  a_n_list,
```

```
modelform, fir, der_iden,
control, strat_col
)
```

RunPoissonRegression_Omnibus

Performs basic Poisson regression using the omnibus function

Description

RunPoissonRegression_Omnibus uses user provided data, time/event columns, vectors specifying the model, and options to control the convergence and starting positions. Has additional options to starting with several initial guesses

Usage

```
RunPoissonRegression_Omnibus(
  df,
  pyr0 = "pyr",
  event0 = "event"
  names = c("CONST"),
  term_n = c(0),
  tform = "loglin",
  keep\_constant = c(0),
  a_n = c(0),
 modelform = "M",
  fir = 0,
  der_iden = 0,
  control = list(),
  strat_col = "null",
 model_control = list(),
  cons_mat = as.matrix(c(0)),
  cons_vec = c(0)
)
```

Arguments

a data.table containing the columns of interest

pyr0 column used for person-years per row

event0 column used for event status

names columns for elements of the model, used to identify data columns

term_n term numbers for each element of the model

tform list of string function identifiers, used for linear/step

keep_constant binary values to denote which parameters to change

a_n	list of initial parameter values, used to determine number of parameters. May be either a list of vectors or a single vector.
modelform	string specifying the model type: M, ME, A, PA, PAE, GMIX, GMIX-R, GMIX-E
fir	term number for the initial term, used for models of the form $T0*f(Ti)$ in which the order matters
der_iden	number for the subterm to test derivative at, only used for testing runs with a single varying parameter, should be smaller than total number of parameters. indexed starting at 0
control	list of parameters controlling the convergence, see Def_Control() for options or vignette("Control_Options")
strat_col	column to stratify by if needed
model_control	controls which alternative model options are used, see Def_model_control() for options and vignette("Control_Options") for further details
cons_mat	Matrix containing coefficients for system of linear constraints, formatted as matrix
cons_vec	Vector containing constants for system of linear constraints, formatted as vector

Value

returns a list of the final results

See Also

Other Poisson Wrapper Functions: RunPoissonEventAssignment(), RunPoissonEventAssignment_bound(), RunPoissonRegression(), RunPoissonRegression_Guesses_CPP(), RunPoissonRegression_Joint_Omnibus(), RunPoissonRegression_Residual(), RunPoissonRegression_STRATA(), RunPoissonRegression_Single(), RunPoissonRegression_Tier_Guesses()

```
library(data.table)
## basic example code reproduced from the starting-description vignette
df <- data.table::data.table(</pre>
  "UserID" = c(112, 114, 213, 214, 115, 116, 117),
  "Starting_Age" = c(18, 20, 18, 19, 21, 20, 18),
  "Ending_Age" = c(30, 45, 57, 47, 36, 60, 55),
  "Cancer_Status" = c(0, 0, 1, 0, 1, 0, 0),
  "a" = c(0, 1, 1, 0, 1, 0, 1),
  "b" = c(1, 1.1, 2.1, 2, 0.1, 1, 0.2),
  "c" = c(10, 11, 10, 11, 12, 9, 11),
  "d" = c(0, 0, 0, 1, 1, 1, 1),
  "e" = c(0, 0, 1, 0, 0, 0, 1)
)
# For the interval case
pyr <- "Ending_Age"</pre>
event <- "Cancer_Status"</pre>
names <- c("a", "b", "c", "d")
```

```
a_n < c(1.1, -0.1, 0.2, 0.5) # used to test at a specific point
term_n < -c(0, 1, 1, 2)
tform <- c("loglin", "lin", "lin", "plin")</pre>
modelform <- "M"
fir <- 0
keep_constant <- c(0, 0, 0, 0)
der_iden <- 0
control <- list(</pre>
  "ncores" = 2, "lr" = 0.75, "maxiter" = 5,
  "halfmax" = 5, "epsilon" = 1e-3,
  "deriv_epsilon" = 1e-3, "abs_max" = 1.0, "change_all" = TRUE,
  "dose_abs_max" = 100.0, "verbose" = FALSE, "ties" = "breslow",
  "double_step" = 1
)
guesses_control <- list(</pre>
  "maxiter" = 10, "guesses" = 10, "lin_min" = 0.001,
  "lin_max" = 1, "loglin_min" = -1, "loglin_max" = 1, "lin_method" = "uniform",
  "loglin_method" = "uniform", strata = FALSE
)
strat_col <- "e"
e <- RunPoissonRegression_Omnibus(</pre>
  df, pyr, event, names, term_n,
  tform, keep_constant,
  a_n, modelform, fir, der_iden,
  control, strat_col
)
```

RunPoissonRegression_Residual

Calculates poisson residuals

Description

RunPoissonRegression_Residual uses user provided data, time/event columns, vectors specifying the model, and options. Calculates residuals or sum of residuals

Usage

```
RunPoissonRegression_Residual(
   df,
   pyr0 = "pyr",
   event0 = "event",
   names = c("CONST"),
   term_n = c(0),
   tform = "loglin",
   keep_constant = c(0),
   a_n = c(0),
   modelform = "M",
   fir = 0,
```

```
der_iden = 0,
  control = list(),
  strat_col = "null",
  model_control = list()
)
```

Arguments

df a data.table containing the columns of interest

pyr0 column used for person-years per row

event0 column used for event status

names columns for elements of the model, used to identify data columns

term_n term numbers for each element of the model

tform list of string function identifiers, used for linear/step keep_constant binary values to denote which parameters to change

a_n list of initial parameter values, used to determine number of parameters. May

be either a list of vectors or a single vector.

model form string specifying the model type: M, ME, A, PA, PAE, GMIX, GMIX-R, GMIX-

Ε

fir term number for the initial term, used for models of the form T0*f(Ti) in which

the order matters

der_iden number for the subterm to test derivative at, only used for testing runs with a

single varying parameter, should be smaller than total number of parameters.

indexed starting at 0

control list of parameters controlling the convergence, see Def_Control() for options or

vignette("Control_Options")

strat_col column to stratify by if needed

model_control controls which alternative model options are used, see Def_model_control() for

options and vignette("Control_Options") for further details

Value

returns a list of the final results

See Also

Other Poisson Wrapper Functions: RunPoissonEventAssignment(), RunPoissonEventAssignment_bound(), RunPoissonRegression(), RunPoissonRegression_Guesses_CPP(), RunPoissonRegression_Joint_Omnibus(), RunPoissonRegression_Omnibus(), RunPoissonRegression_STRATA(), RunPoissonRegression_Single(), RunPoissonRegression_Tier_Guesses()

Examples

```
library(data.table)
## basic example code reproduced from the starting-description vignette
df <- data.table::data.table(</pre>
  "UserID" = c(112, 114, 213, 214, 115, 116, 117),
  "Starting_Age" = c(18, 20, 18, 19, 21, 20, 18),
  "Ending_Age" = c(30, 45, 57, 47, 36, 60, 55),
  "Cancer_Status" = c(0, 0, 1, 0, 1, 0, 0),
  "a" = c(0, 1, 1, 0, 1, 0, 1),
  "b" = c(1, 1.1, 2.1, 2, 0.1, 1, 0.2),
  "c" = c(10, 11, 10, 11, 12, 9, 11),
  "d" = c(0, 0, 0, 1, 1, 1, 1),
  "e" = c(0, 0, 1, 0, 0, 0, 1)
)
# For the interval case
pyr <- "Ending_Age"</pre>
event <- "Cancer_Status"
names <- c("a", "b", "c", "d")
a_n \leftarrow c(1.1, -0.1, 0.2, 0.5) # used to test at a specific point
term_n < -c(0, 1, 1, 2)
tform <- c("loglin", "lin", "lin", "plin")
modelform <- "M"
fir <- 0
keep\_constant <- c(0, 0, 0, 0)
der_iden <- 0
control <- list(</pre>
  "ncores" = 2, "lr" = 0.75, "maxiter" = 5,
  "halfmax" = 5, "epsilon" = 1e-3,
  "deriv_epsilon" = 1e-3, "abs_max" = 1.0, "change_all" = TRUE,
  "dose_abs_max" = 100.0, "verbose" = FALSE, "ties" = "breslow",
  "double_step" = 1
)
guesses_control <- list(</pre>
  "maxiter" = 10, "guesses" = 10,
  "lin_min" = 0.001, "lin_max" = 1,
  "loglin_min" = -1, "loglin_max" = 1, "lin_method" = "uniform",
  "loglin_method" = "uniform", strata = FALSE
)
strat_col <- "e"
e <- RunPoissonRegression_Residual(</pre>
 df, pyr, event, names, term_n,
  tform, keep_constant,
  a_n, modelform, fir, der_iden,
  control, strat_col
)
```

RunPoissonRegression_Single

Performs poisson regression with no derivative calculations

Description

RunPoissonRegression_Single uses user provided data, person-year/event columns, vectors specifying the model, and returns the results

Usage

```
RunPoissonRegression_Single(
    df,
    pyr0 = "pyr",
    event0 = "event",
    names = c("CONST"),
    term_n = c(0),
    tform = "loglin",
    a_n = c(0),
    modelform = "M",
    fir = 0,
    control = list(),
    keep_constant = rep(0, length(names))
)
```

Arguments

df	a data.table containing the columns of interest
pyr0	column used for person-years per row
event0	column used for event status
names	columns for elements of the model, used to identify data columns
term_n	term numbers for each element of the model
tform	list of string function identifiers, used for linear/step
a_n	list of initial parameter values, used to determine number of parameters. May be either a list of vectors or a single vector.
modelform	string specifying the model type: M, ME, A, PA, PAE, GMIX, GMIX-R, GMIX-E
fir	term number for the initial term, used for models of the form $T0*f(Ti)$ in which the order matters
control	list of parameters controlling the convergence, see Def_Control() for options or vignette("Control_Options")
keep_constant	binary values to denote which parameters to change

Value

returns a list of the final results

See Also

Other Poisson Wrapper Functions: RunPoissonEventAssignment(), RunPoissonEventAssignment_bound(), RunPoissonRegression(), RunPoissonRegression_Guesses_CPP(), RunPoissonRegression_Joint_Omnibus(), RunPoissonRegression_Omnibus(), RunPoissonRegression_Residual(), RunPoissonRegression_STRATA(), RunPoissonRegression_Tier_Guesses()

Examples

```
library(data.table)
## basic example code reproduced from the starting-description vignette
df <- data.table::data.table(</pre>
  "UserID" = c(112, 114, 213, 214, 115, 116, 117),
  "Starting_Age" = c(18, 20, 18, 19, 21, 20, 18),
  "Ending_Age" = c(30, 45, 57, 47, 36, 60, 55),
  "Cancer_Status" = c(0, 0, 1, 0, 1, 0, 0),
  "a" = c(0, 1, 1, 0, 1, 0, 1),
  "b" = c(1, 1.1, 2.1, 2, 0.1, 1, 0.2),
  "c" = c(10, 11, 10, 11, 12, 9, 11),
  "d" = c(0, 0, 0, 1, 1, 1, 1)
)
# For the interval case
df$pyr <- df$Ending_Age - df$Starting_Age</pre>
pyr <- "pyr"
event <- "Cancer_Status"</pre>
names <- c("a", "b", "c", "d")
term_n < -c(0, 1, 1, 2)
tform <- c("loglin", "lin", "lin", "plin")</pre>
modelform <- "M"
fir <- 0
a_n < c(0.1, 0.1, 0.1, 0.1)
keep_constant <- c(0, 0, 0, 0)
control <- list(</pre>
  "ncores" = 2, "lr" = 0.75, "maxiter" = 5, "halfmax" = 5,
  "epsilon" = 1e-3, "deriv_epsilon" = 1e-3,
  "abs_max" = 1.0, "change_all" = TRUE, "dose_abs_max" = 100.0,
  "verbose" = FALSE, "double_step" = 1
)
e <- RunPoissonRegression_Single(
  df, pyr, event, names,
  term_n, tform, a_n, modelform,
  fir, control
)
```

RunPoissonRegression_STRATA

Performs poisson regression with strata effect

Description

RunPoissonRegression_STRATA uses user provided data, time/event columns, vectors specifying the model, and options to control the convergence and starting positions

Usage

```
RunPoissonRegression_STRATA(
    df,
    pyr0 = "pyr",
    event0 = "event",
    names = c("CONST"),
    term_n = c(0),
    tform = "loglin",
    keep_constant = c(0),
    a_n = c(0),
    modelform = "M",
    fir = 0,
    der_iden = 0,
    control = list(),
    strat_col = "null"
)
```

Arguments df

	u duminuoto contaming inc cotamins of interest
pyr0	column used for person-years per row
event0	column used for event status
names	columns for elements of the model, used to identify data columns
term_n	term numbers for each element of the model
tform	list of string function identifiers, used for linear/step
keep_constant	binary values to denote which parameters to change
a_n	list of initial parameter values, used to determine number of parameters. May be either a list of vectors or a single vector.
modelform	string specifying the model type: M, ME, A, PA, PAE, GMIX, GMIX-R, GMIX-E
fir	term number for the initial term, used for models of the form $T0*f(Ti)$ in which the order matters
der_iden	number for the subterm to test derivative at, only used for testing runs with a single varying parameter, should be smaller than total number of parameters. indexed starting at $\boldsymbol{0}$
control	list of parameters controlling the convergence, see $Def_Control()$ for options or vignette("Control_Options")
strat_col	column to stratify by if needed

a data.table containing the columns of interest

Value

returns a list of the final results

See Also

Other Poisson Wrapper Functions: RunPoissonEventAssignment(), RunPoissonEventAssignment_bound(), RunPoissonRegression(), RunPoissonRegression_Guesses_CPP(), RunPoissonRegression_Joint_Omnibus(), RunPoissonRegression_Omnibus(), RunPoissonRegression_Residual(), RunPoissonRegression_Single(), RunPoissonRegression_Tier_Guesses()

```
library(data.table)
## basic example code reproduced from the starting-description vignette
df <- data.table::data.table(</pre>
 "UserID" = c(112, 114, 213, 214, 115, 116, 117),
  "Starting_Age" = c(18, 20, 18, 19, 21, 20, 18),
  "Ending_Age" = c(30, 45, 57, 47, 36, 60, 55),
 "Cancer_Status" = c(0, 0, 1, 0, 1, 0, 0),
 "a" = c(0, 1, 1, 0, 1, 0, 1),
  "b" = c(1, 1.1, 2.1, 2, 0.1, 1, 0.2),
 "c" = c(10, 11, 10, 11, 12, 9, 11),
  "d" = c(0, 0, 0, 1, 1, 1, 1),
  "e" = c(0, 0, 0, 0, 1, 0, 1)
)
# For the interval case
df$pyr <- df$Ending_Age - df$Starting_Age</pre>
pyr <- "pyr"
event <- "Cancer_Status"</pre>
names <- c("a", "b", "c", "d")
term_n < -c(0, 1, 1, 2)
tform <- c("loglin", "lin", "lin", "plin")</pre>
modelform <- "M"
fir <- 0
a_n < c(0.1, 0.1, 0.1, 0.1)
keep\_constant <- c(0, 0, 0, 0)
der_iden <- 0
control <- list(</pre>
  "ncores" = 2, "lr" = 0.75, "maxiter" = 5, "halfmax" = 5,
  "epsilon" = 1e-3, "deriv_epsilon" = 1e-3,
  "abs_max" = 1.0, "change_all" = TRUE, "dose_abs_max" = 100.0,
  "verbose" = FALSE, "double_step" = 1
)
strat_col <- c("e")</pre>
e <- RunPoissonRegression_STRATA(</pre>
 df, pyr, event, names,
 term_n, tform, keep_constant,
 a_n, modelform, fir, der_iden, control, strat_col
```

 ${\tt RunPoissonRegression_Tier_Guesses}$

Performs basic poisson regression, with multiple guesses, starts with a single term

Description

RunPoissonRegression_Tier_Guesses uses user provided data, time/event columns, vectors specifying the model, and options to control the convergence and starting positions, with additional guesses

Usage

```
RunPoissonRegression_Tier_Guesses(
  df,
  pyr0 = "pyr",
  event0 = "event",
  names = c("CONST"),
  term_n = c(0),
  tform = "loglin",
  keep\_constant = c(0),
  a_n = c(0),
 modelform = "M",
  fir = 0,
  der_iden = 0,
  control = list(),
  guesses_control = list(),
  strat_col = "null",
 model_control = list()
)
```

Arguments df

pyr0	column used for person-years per row
event0	column used for event status
names	columns for elements of the model, used to identify data columns
term_n	term numbers for each element of the model
tform	list of string function identifiers, used for linear/step
keep_constant	binary values to denote which parameters to change
a_n	list of initial parameter values, used to determine number of parameters. May be either a list of vectors or a single vector.
modelform	string specifying the model type: M, ME, A, PA, PAE, GMIX, GMIX-R, GMIX-

a data.table containing the columns of interest

Ε

term number for the initial term, used for models of the form T0*f(Ti) in which fir the order matters der_iden number for the subterm to test derivative at, only used for testing runs with a single varying parameter, should be smaller than total number of parameters. indexed starting at 0 control list of parameters controlling the convergence, see Def Control() for options or vignette("Control Options") guesses_control list of parameters to control how the guessing works, see Def Control Guess() for options or vignette("Control_Options") strat col column to stratify by if needed model_control controls which alternative model options are used, see Def model control() for options and vignette("Control Options") for further details

Value

returns a list of the final results

See Also

Other Poisson Wrapper Functions: RunPoissonEventAssignment(), RunPoissonEventAssignment_bound(), RunPoissonRegression(), RunPoissonRegression_Guesses_CPP(), RunPoissonRegression_Joint_Omnibus(), RunPoissonRegression_Omnibus(), RunPoissonRegression_Residual(), RunPoissonRegression_STRATA(), RunPoissonRegression_Single()

```
library(data.table)
## basic example code reproduced from the starting-description vignette
df <- data.table::data.table(</pre>
  "UserID" = c(112, 114, 213, 214, 115, 116, 117),
  "Starting_Age" = c(18, 20, 18, 19, 21, 20, 18),
  "Ending_Age" = c(30, 45, 57, 47, 36, 60, 55),
  "Cancer_Status" = c(0, 0, 1, 0, 1, 0, 0),
  "a" = c(0, 1, 1, 0, 1, 0, 1),
  "b" = c(1, 1.1, 2.1, 2, 0.1, 1, 0.2),
  "c" = c(10, 11, 10, 11, 12, 9, 11),
 "d" = c(0, 0, 0, 1, 1, 1, 1),
  "e" = c(0, 0, 0, 0, 1, 0, 1)
)
# For the interval case
df$pyr <- df$Ending_Age - df$Starting_Age</pre>
pyr <- "pyr"
event <- "Cancer_Status"
names <- c("a", "b", "c", "d")
a_n \leftarrow c(1.1, -0.1, 0.2, 0.5) # used to test at a specific point
term_n < -c(0, 1, 1, 2)
tform <- c("loglin", "lin", "lin", "plin")
modelform <- "M"
fir <- 0
```

System_Version 77

```
keep_constant <- c(0, 0, 0, 0)
der_iden <- 0
control <- list(</pre>
 "ncores" = 2, "1r" = 0.75, "maxiter" = 5,
 "halfmax" = 5, "epsilon" = 1e-3,
  "deriv_epsilon" = 1e-3, "abs_max" = 1.0, "change_all" = TRUE,
  "dose_abs_max" = 100.0, "verbose" = FALSE, "double_step" = 1
)
guesses_control <- list(</pre>
  "iterations" = 10, "guesses" = 10,
 "lin_min" = 0.001, "lin_max" = 1,
 "loglin_min" = -1, "loglin_max" = 1, "lin_method" = "uniform",
  "loglin_method" = "uniform", strata = TRUE, term_initial = c(0, 1)
strat_col <- c("e")</pre>
e <- RunPoissonRegression_Tier_Guesses(</pre>
 df, pyr, event, names,
 term_n, tform, keep_constant, a_n, modelform,
 fir, der_iden, control, guesses_control, strat_col
)
```

System_Version

Checks OS, compilers, and OMP

Description

System_Version checks OS, default R c++ compiler, and if OMP is enabled

Usage

```
System_Version()
```

Value

returns a list of results

Time_Since

Automates creating a date since a reference column

Description

Time_Since generates a new dataframe with a column containing time since a reference in a given unit

Usage

```
Time_Since(df, dcol0, tref, col_name, units = "days")
```

78 Time_Since

Arguments

df	a data.table containing the columns of interest
dcol0	list of ending month, day, and year
tref	reference time in date format
col_name	vector of new column names
units	time unit to use

Value

returns the updated dataframe

See Also

```
Other Data Cleaning Functions: Check_Dupe_Columns(), Check_Trunc(), Check_Verbose(), Correct_Formula_Order(), Date_Shift(), Def_Control(), Def_Control_Guess(), Def_model_control(), Def_modelform_fix(), Joint_Multiple_Events(), Replace_Missing(), factorize(), factorize_par(), gen_time_dep(), interact_them()
```

```
library(data.table)
m0 <- c(1, 1, 2, 2)
m1 <- c(2, 2, 3, 3)
d0 <- c(1, 2, 3, 4)
d1 <- c(6, 7, 8, 9)
y0 <- c(1990, 1991, 1997, 1998)
y1 <- c(2001, 2003, 2005, 2006)
df <- data.table::data.table(
   "m0" = m0, "m1" = m1,
   "d0" = d0, "d1" = d1,
   "y0" = y0, "y1" = y1
)
tref <- strptime("3-22-1997", format = "%m-%d-%Y", tz = "UTC")
df <- Time_Since(df, c("m1", "d1", "y1"), tref, "date_since")</pre>
```

Index

* Cox Wrapper Functions	RunPoissonRegression_Guesses_CPP,
RunCoxNull, 30	60
RunCoxRegression, 34	RunPoissonRegression_Joint_Omnibus,
RunCoxRegression_Basic, 36	63
RunCoxRegression_CR, 38	RunPoissonRegression_Omnibus, 66
RunCoxRegression_Guesses_CPP, 40	RunPoissonRegression_Residual, 68
RunCoxRegression_Omnibus, 42	RunPoissonRegression_Single, 70
RunCoxRegression_Omnibus_Multidose,	RunPoissonRegression_STRATA, 72
45	RunPoissonRegression_Tier_Guesses,
RunCoxRegression_Single, 48	75
RunCoxRegression_STRATA, 49	
RunCoxRegression_Tier_Guesses, 52	Check_Dupe_Columns, 3, 5-7, 10-16, 20, 24,
* Data Cleaning Functions	25, 30, 78
Check_Dupe_Columns, 3	Check_Trunc, 4, 4, 6, 7, 10–16, 20, 24, 25, 30,
Check_Trunc, 4	78
Check_Verbose, 5	Check_Verbose, 4, 5, 5, 7, 10–16, 20, 24, 25,
Correct_Formula_Order, 6	30, 78
Date_Shift, 10	Correct_Formula_Order, 4–6, 6, 10–16, 20,
Def_Control, 11	24, 25, 30, 78
<pre>Def_Control_Guess, 11</pre>	Cox_Relative_Risk, 8, 33
<pre>Def_model_control, 13</pre>	Date_Shift, 4-7, 10, 11-16, 20, 24, 25, 30, 78
<pre>Def_modelform_fix, 12</pre>	Def_Control, 4–7, 10, 11–10, 20, 24, 25, 30, 78 Def_Control, 4–7, 10, 11, 12–16, 20, 24, 25,
factorize, 14	30, 78
factorize_par, 15	Def_Control_Guess, 4-7, 10, 11, 11, 13-16,
<pre>gen_time_dep, 19</pre>	20, 24, 25, 30, 78
<pre>interact_them, 23</pre>	Def_model_control, 4-7, 10-13, 13, 15, 16,
<pre>Joint_Multiple_Events, 24</pre>	20, 24, 25, 30, 78
Replace_Missing, 29	Def_modelform_fix, 4-7, 10-12, 12, 14-16,
Time_Since, 77	20, 24, 25, 30, 78
* Plotting Functions	,,,
GetCensWeight, 20	factorize, 4-7, 10-14, 14, 16, 20, 24, 25, 30,
* Plotting Wrapper Functions	78
Cox_Relative_Risk, 8	factorize_par, 4-7, 10-15, 15, 20, 24, 25,
RunCoxPlots, 32	30, 78
* Poisson Wrapper Functions	
RunPoissonEventAssignment, 54	Gather_Guesses_CPP, 16
RunPoissonEventAssignment_bound,	gcc_version, 18
56	gen_time_dep, 4-7, 10-16, 19, 24, 25, 30, 78
RunPoissonRegression.58	get os. 23

80 INDEX

```
GetCensWeight, 20
interact_them, 4-7, 10-16, 20, 23, 25, 30, 78
Joint_Multiple_Events, 4-7, 10-16, 20, 24,
         24, 30, 78
Likelihood_Ratio_Test, 26
Linked_Dose_Formula, 27
Linked_Lin_Exp_Para, 27
OMP_Check, 28
Rcomp_version, 29
Rcpp_version, 29
Replace_Missing, 4-7, 10-16, 20, 24, 25, 29,
RunCoxNull, 30, 35, 37, 39, 41, 44, 46, 49, 51,
         53
RunCoxPlots, 9, 32
RunCoxRegression, 31, 34, 37, 39, 41, 44, 46,
         49, 51, 53
RunCoxRegression_Basic, 31, 35, 36, 39, 41,
         44, 46, 49, 51, 53
RunCoxRegression_CR, 31, 35, 37, 38, 41, 44,
         46, 49, 51, 53
RunCoxRegression_Guesses_CPP, 31, 35, 37,
         39, 40, 44, 46, 49, 51, 53
RunCoxRegression_Omnibus, 31, 35, 37, 39,
         41, 42, 46, 49, 51, 53
RunCoxRegression_Omnibus_Multidose, 31,
         35, 37, 39, 41, 44, 45, 49, 51, 53
RunCoxRegression_Single, 31, 35, 37, 39,
         41, 44, 46, 47, 51, 53
RunCoxRegression_STRATA, 31, 35, 37, 39,
         41, 44, 46, 49, 49, 53
RunCoxRegression_Tier_Guesses, 31, 35,
         37, 39, 41, 44, 46, 49, 51, 52
RunPoissonEventAssignment, 54, 57, 60, 62,
         64, 67, 69, 72, 74, 76
RunPoissonEventAssignment_bound, 55, 56,
         60, 62, 64, 67, 69, 72, 74, 76
RunPoissonRegression, 55, 57, 58, 62, 64,
         67, 69, 72, 74, 76
RunPoissonRegression_Guesses_CPP, 55,
         57, 60, 60, 64, 67, 69, 72, 74, 76
RunPoissonRegression_Joint_Omnibus, 55,
         57, 60, 62, 63, 67, 69, 72, 74, 76
RunPoissonRegression_Omnibus, 55, 57, 60,
         62, 64, 66, 69, 72, 74, 76
```

```
\begin{aligned} & \text{RunPoissonRegression\_Residual}, \, 55, \, 57, \\ & 60, \, 62, \, 64, \, 67, \, 68, \, 72, \, 74, \, 76 \\ & \text{RunPoissonRegression\_Single}, \, 55, \, 57, \, 60, \\ & 62, \, 64, \, 67, \, 69, \, 70, \, 74, \, 76 \\ & \text{RunPoissonRegression\_STRATA}, \, 55, \, 57, \, 60, \\ & 62, \, 64, \, 67, \, 69, \, 72, \, 72, \, 76 \\ & \text{RunPoissonRegression\_Tier\_Guesses}, \, 55, \\ & 57, \, 60, \, 62, \, 64, \, 67, \, 69, \, 72, \, 74, \, 75 \end{aligned}
```

System_Version, 77

Time_Since, 4-7, 10-16, 20, 24, 25, 30, 77