Math Scores for Different Teaching Styles

Heather Shaw

04-28-2022

Three teachers at a junior high school have different opinions about which teaching method is most effective for 8th grade math students. Ms. Wesson uses a traditional approach, while Ms. Ruger and Ms. Smith use a standards-based method. The first task is to determine which approach is more effective, based on the math scores of their current students.

In addition, it has been suggested that each teacher has strengths that will make them more effective with students in certain ethnic groups. One teacher believes that students should be divided into classes based on ethnicity. The second task is to determine if there is a difference between student performance for each teacher based on student demographics.

Another proposal was that students should be grouped according to ability within each classroom. The teacher making this suggestion referenced an article, "Math and Reading Instruction in Tracked First-Grade Classes" (Stephen M Ross, et.al). The third task is to review this study to determine if ability grouping is supported by the findings.

The data includes math scores for students in grades 7-8. More information about this data project can be found at Kaggle.com

It should be noted that this data includes only one score for each student. A more effective method for measuring the quality of instruction would be a collection of multiple scores that could be used to demonstrate student growth. Additionally, there is no recording in this data to determine the effectiveness of ability grouping within a classroom.

Load Necessary Packages and Data

```
library("tidyr")
library("dplyr")
library("foreign")
library("ggplot2")
#load data
math <- read.spss("1ResearchProjectData.sav", to.data.frame = TRUE)</pre>
```

Cleaning the Data

1. Preview Data

head(math) Student Teacher Gender Ethnic Freeredu Score wesson ## 1 Ruger Female 76 Ruger_Smith 1 Asian Free lunch Ruger Female 56 Ruger_Smith ## 2 Hispanic Paid lunch 3 ## 3 Ruger Female African-American Free lunch 34 Ruger_Smith ## 4 Ruger Female Asian Paid lunch 59 Ruger_Smith

2. Tidy Columns

Analysis

```
#rename columns to better describe data
math <- math %>%
 rename(Method="wesson")
math <- math %>%
  rename(Lunch="Freeredu")
colnames(math)
## [1] "Student" "Teacher" "Gender" "Ethnic" "Lunch"
                                                         "Score"
                                                                   "Method"
#drop word "lunch" from lunch status descriptions
math <- math %>%
 mutate(Lunch=gsub(' lunch','',Lunch))
#change Method factors Ruger_Smith = standards, Wesson = traditional
math$Method <- sub("Ruger_Smith", "Standards", math$Method)</pre>
math$Method <- sub("Wesson","Traditional",math$Method)</pre>
#check results
head(math)
    Student Teacher Gender
                                     Ethnic Lunch Score
                                                           Method
## 1
        1 Ruger Female
                                      Asian Free 76 Standards
## 2
         2 Ruger Female
                                                     56 Standards
                                   Hispanic Paid
## 3
          3 Ruger Female African-American Free 34 Standards
          4
                                                     59 Standards
## 4
              Ruger Female
                                      Asian Paid
## 5
          5
              Ruger
                      Male
                                   Hispanic Free
                                                     73 Standards
## 6
                      Male
                                                     58 Standards
              Ruger
                                  Caucasian Paid
```

3. Check for Duplicates and Omit Missing Values

```
#check for duplicates
math %>%
   duplicated() %>%
   table()

## .
## FALSE
## 217
#none found

#remove missing values
math <- na.omit(math)</pre>
```

1. Inspect Population

```
#total students
pop_total <- math %>%
 summarize(count=n())
pop_total
    count
##
## 1
      216
#student ethnicity
pop_ethnicity <- math %>%
 group_by(Ethnic) %>%
 summarize(count=n()) %>%
 mutate(Perc=(count/216)*100)
pop_ethnicity
## # A tibble: 4 x 3
    Ethnic count Perc <fct> <int> <dbl>
##
##
   <fct>
                      53 24.5
## 1 Asian
## 2 African-American 52 24.1
## 3 Hispanic 66 30.6
## 4 Caucasian 45 20.8
pop_ethnicity_viz <- ggplot(pop_ethnicity,aes(x="",y = Perc, fill = Ethnic,)) +</pre>
 geom_col(color="black")+
 scale_fill_manual(values =c("tomato2","khaki3","skyblue4","olivedrab"))+
 geom text(aes(label = round(Perc,2)),
           position = position_stack(vjust = 0.5)) +
 coord_polar(theta = "y")+
 labs(title="Percentages of Students By Ethnicity")+
 theme_void()
pop_ethnicity_viz
```

Percentages of Students By Ethnicity

Percentages of Students By Lunch Status

Initial comparison of average test scores for each method show higher scores for the traditional method (70.7), compared to the standards-based method (62.3).

```
#avg score by Method
avg_score_method <- math %>%
  group_by(Method) %>%
  summarize(Avg_Score=mean(Score,na.rm=TRUE))
avg_score_method
## # A tibble: 2 x 2
##
     Method
                 Avg_Score
##
     <chr>
                     <dbl>
## 1 Standards
                      62.3
## 2 Traditional
                      70.7
#plot
avg_method_viz <- ggplot(data=avg_score_method,aes(x=Method,y=Avg_Score,fill=Method))+</pre>
  geom_bar(stat="identity")+
  geom_text(aes(label=round(Avg_Score,2)), vjust=1.25)+
  scale_fill_manual(values=c("tomato2","skyblue4"))+
  labs(title="Average Math Score by Method")
avg_method_viz
```


Evaluating the scores by method shows higher scores for the traditional method, with little difference between groups of students based on ethnicity or lunch status.

```
#avg score by Method and ethnicity
avg_score_method_ethnicity <- math %>%
  group_by(Method,Ethnic) %>%
  summarize(Avg_Score=mean(Score, na.rm=TRUE))
avg_score_method_ethnicity
## # A tibble: 8 x 3
## # Groups:
               Method [2]
     Method
                 Ethnic
                                  Avg_Score
##
     <chr>>
                 <fct>
                                       <dbl>
## 1 Standards
                 Asian
                                       62.5
## 2 Standards
                 African-American
                                       62.7
## 3 Standards
                 Hispanic
                                       61.6
## 4 Standards
                                       62.9
                 Caucasian
## 5 Traditional Asian
                                       73.2
## 6 Traditional African-American
                                       72.9
## 7 Traditional Hispanic
                                       70.8
## 8 Traditional Caucasian
                                       66.3
#plot
avg_method_ethnicity_viz <- ggplot(data=avg_score_method_ethnicity,aes(x=Method,y=Avg_Score,fill=Method
  geom_bar(stat="identity")+
  geom_text(aes(label=round(Avg_Score,2)), vjust=1.25)+
  facet_wrap(~Ethnic)+
  scale_fill_manual(values=c("tomato2","skyblue4"))+
```

labs(title="Average Math Score by Method and Ethnicity")

Average Math Score by Method and Ethnicity


```
#avg score by Method and lunch status
avg_score_method_lunch <- math %>%
  group_by(Method,Lunch) %>%
  summarize(Avg_Score=mean(Score,na.rm=TRUE))
avg_score_method_lunch
```

```
## # A tibble: 4 x 3
               Method [2]
## # Groups:
##
    Method
                 Lunch Avg_Score
##
     <chr>
                 <chr>
                           <dbl>
## 1 Standards
                 Free
                            62.8
## 2 Standards
                 Paid
                            62
## 3 Traditional Free
                            70.9
## 4 Traditional Paid
                            70.5
```

```
#plot
```

```
avg_method_lunch_viz <- ggplot(data=avg_score_method_lunch,aes(x=Method,y=Avg_Score,fill=Method))+
geom_bar(stat="identity")+
geom_text(aes(label=round(Avg_Score,2)), vjust=1.25)+
facet_wrap(~Lunch)+
scale_fill_manual(values=c("tomato2","skyblue4"))+
labs(title="Average Math Score by Method and Lunch Status")
avg_method_lunch_viz</pre>
```

Average Math Score by Method and Lunch Status

2. Comparing Teachers

Compare student scores based on their math teacher.

Ms. Wesson and Ms. Smith have students with average scores that are very similar (70.7 and 69.6, respectively). Ms. Ruger's students average score is 55.26.

```
#avg score by teacher
avg_teacher_score <- math %>%
    group_by(Teacher) %>%
    summarize(Avg_Score=mean(Score,na.rm=TRUE))
avg_teacher_score
## # A tibble: 3 x 2
     Teacher Avg_Score
##
     <fct>
                 <dbl>
## 1 Ruger
                  55.3
## 2 Smith
                  69.6
## 3 Wesson
                  70.7
#plot
avg_teacher_viz <- ggplot(data=avg_teacher_score,aes(x=Teacher,y=Avg_Score,fill=Teacher))+</pre>
  geom_bar(stat="identity")+
  geom_text(aes(label=round(Avg_Score,2)), vjust=1.25)+
  scale_fill_manual(values=c("tomato2","khaki3","skyblue4"))+
  labs(title="Average Math Score by Teacher")
avg_teacher_viz
```


Next, examine how each teacher's students perform when grouped by ethnicity and lunch status.

There is little differences in overall performance between ethnic groups. While there are minor differences between average student scores of Ms. Smith and Ms. Wesson when grouped according to ethnicity, average student scores in Ms. Ruger's class were over 10-16 points lower than the other two student groups for all ethnic groups.

```
#avq score by ethnicity
avg_score_ethnicity <- math %>%
    group_by(Ethnic) %>%
    summarize(Avg_Score=mean(Score,na.rm=TRUE))
avg_score_ethnicity
## # A tibble: 4 x 2
##
     Ethnic
                      Avg_Score
     <fct>
##
                           <dbl>
## 1 Asian
                           65.7
## 2 African-American
                           66.2
## 3 Hispanic
                           64.8
## 4 Caucasian
                           64.3
#plot
avg_ethnicity_viz <- ggplot(data=avg_score_ethnicity,aes(x=Ethnic,y=Avg_Score,fill=Ethnic))+</pre>
  geom_bar(stat="identity")+
  geom_text(aes(label=round(Avg_Score,2)), vjust=1.25)+
  scale_fill_manual(values=c("tomato2","khaki3","skyblue4","olivedrab"))+
  labs(title="Average Math Score by Ethnicity")
avg_ethnicity_viz
```

Average Math Score by Ethnicity


```
#avg score by teacher for each ethnicity
avg_teacher_score_ethnicity <- math %>%
  group_by(Ethnic,Teacher) %>%
  summarize(Avg_Score=mean(Score,na.rm=TRUE))
avg_teacher_score_ethnicity
```

```
## # A tibble: 12 x 3
## # Groups:
               Ethnic [4]
##
      Ethnic
                        Teacher Avg_Score
##
      <fct>
                        <fct>
                                     <dbl>
##
    1 Asian
                        Ruger
                                      53.7
##
    2 Asian
                        Smith
                                      69.9
    3 Asian
                        Wesson
                                      73.2
                                      55.2
##
    4 African-American Ruger
    5 African-American Smith
                                      71.1
    6 African-American Wesson
                                      72.9
##
    7 Hispanic
                        Ruger
                                      55.6
##
##
    8 Hispanic
                        {\tt Smith}
                                      69.9
    9 Hispanic
                                      70.8
                        Wesson
## 10 Caucasian
                        Ruger
                                      56.9
## 11 Caucasian
                        Smith
                                      67.3
## 12 Caucasian
                        Wesson
                                      66.3
```

```
#plot
```

```
avg_teacher_ethnic_viz <- ggplot(data=avg_teacher_score_ethnicity,aes(x=Teacher,y=Avg_Score,fill=Teacher
geom_bar(stat="identity")+
   geom_text(aes(label=round(Avg_Score,2)), vjust=1.25)+
   facet_wrap(~Ethnic)+</pre>
```

```
scale_fill_manual(values=c("tomato2","khaki3","skyblue4"))+
labs(title="Average Math Score by Teacher and Ethnicity")
avg_teacher_ethnic_viz
```

Average Math Score by Teacher and Ethnicity

Again we find there is no large difference in performance between all students grouped by lunch status, but there remains a visible gap between the performance of students in both groups when comparing teachers.

```
#avg score by lunch status
avg_score_lunch <- math %>%
  group_by(Lunch)%>%
  summarize(Avg_Score=mean(Score,na.rm=TRUE))
avg_score_lunch
## # A tibble: 2 x 2
##
     Lunch Avg_Score
##
     <chr>>
               <dbl>
## 1 Free
                66.0
## 2 Paid
                64.6
#plot
avg_lunch_viz <- ggplot(data=avg_score_lunch, aes(x=Lunch,y=Avg_Score,fill=Lunch))+
      geom_bar(stat="identity")+
      geom_text(aes(label=round(Avg_Score,2)), vjust=1.25)+
      scale_fill_manual(values=c("tomato2","skyblue4"))+
      labs(title="Average Math Score by Lunch Status")
avg_lunch_viz
```

Average Math Score by Lunch Status


```
#avg score by teacher for lunch status
avg_teacher_score_lunch <- math %>%
    group_by(Teacher,Lunch) %>%
    summarize(Avg_Score=mean(Score,na.rm=TRUE))
avg_teacher_score_lunch

## # A tibble: 6 x 3
## # Groups: Teacher [3]
## Teacher Lunch Avg_Score
```

```
Teacher Lunch Avg_Score
     <fct>
             <chr>
                        <dbl>
##
## 1 Ruger
             Free
                        56.2
## 2 Ruger
             Paid
                        54.4
## 3 Smith
             Free
                        71.3
## 4 Smith
             Paid
                        68.5
## 5 Wesson Free
                        70.9
## 6 Wesson Paid
                        70.5
```

#plot

```
avg_teacher_lunch_viz <- ggplot(data=avg_teacher_score_lunch,aes(x=Teacher,y=Avg_Score,fill=Teacher))+
    geom_bar(stat="identity")+
        geom_text(aes(label=round(Avg_Score,2)), vjust=1.25)+
        facet_wrap(~Lunch)+
        scale_fill_manual(values=c("tomato2","khaki3","skyblue4"))+
        labs(title="Average Math Score by Teacher and Lunch Status")
avg_teacher_lunch_viz</pre>
```

Average Math Score by Teacher and Lunch Status

Conclusions

When comparing traditional and standards-based methods among all students, the traditional method seems to result in higher scores. However, the difference between the scores of students taught by Ms. Wesson and Ms. Smith is less than the difference between those two classes and Ms. Ruger's students.

#

Ms. Wesson and Ms. Ruger both use the standards-based method, and Ms. Smith uses the traditional method. When ranking the performance of students in each class, the standards-based method ranks first and last, while the traditional method is a close second place. Considering the discrepancy between the two standards-based classrooms, we cannot definitively conclude that the teaching method is the determining factor affecting student performance.

The data does not show any benefit for students being assigned to a specific teacher according to their ethnicity or lunch status that would outweigh the ethical issues that such groupings would create. It does show that Ms. Ruger's students do not perform as well as those taught by Ms. Smith or Ms. Wesson, even when taking ethnicity and lunch status into account.

The largest difference in student performance was found when comparing teachers. The differences between student scores in each class can be seen on a graph, but may not be statistically significant. There could be other factors causing an appearance of low performance. Hypothesis testing needs to be done to determine the level of significance for these results.

The final task was to evaluate the suggestion to group students by ability within the classroom. While the data set provided does not address this question, a careful read of the article cited by the teacher reveals that the data does not support the teacher's suggestion. The study observed the impact of grouping whole classes by ability, but did not address student grouping within a classroom. The paper showed no significant difference in teacher behavior or student performance between classes that were ability-tracked. There were negative differences in teacher attitude towards students in low-ability classrooms.

To find answers, it is necessary to look at other data. In his paper, "Ability Grouping in Mathematics Classrooms: A Bourdieuian Analysis," Robyn Zevenbergen found that ability grouping within the classroom

can have a negative impact on how students perceive themselves and the subject of mathematics in general.

Further, "Within-Class Grouping: A Meta-Analysis" (Yiping Lou, et.al) found that, while small-group instruction within a classroom is preferable to whole-class instruction, the effect was largest if the teacher received training to adapt instructional delivery to each group. When comparing homogeneous or heterogeneous grouping within the classroom, the analysis found homogeneous groups benefit students with medium ability, but not low- or high-ability students. Additionally, the a significant benefit of ability grouping was found in reading, but not in mathematics. In summary, "Larger effects occurred when the group formation was based on mixed sources and involved more considerations than ability alone."

These findings do support the use of small-group instruction with teacher training in adaptive methods for each group. They do not, however support using ability as the exclusive criteria for forming small groups.

Recommendations

- 1. Allow teachers to continue using their preferred method. Collect more data that includes beginning and post-instruction scores to demonstrate growth, then reevaluate based on future data.
- 2. Do not group classes according to ability, ethnicity, or socioeconomic status.
- 3. Encourage small-group instruction, and provide training to teachers on how to adapt instruction for each group. Small group criteria can include, but should not be limited to, mathematical ability.
- 4. If the difference between student scores proves to be statistically significant, the school administration should consider evaluating and offering professional development support for Ms. Ruger.