Educación y

Ciencias Humanas

Práctica calificada 1

Curso: Lógica y Argumentación

Sección: 8

Nombre y apellidos: Roszngela Iszbel Rojas Julcarima

Parte I. Sintaxis y semántica de LC

[6 puntos]

Desarrolla los siguientes:

A) Indica cuáles de las siguientes secuencias de símbolos son mal formadas. Además, debes indicar qué error se comete en cada una de ellas (0.75 puntos c/u).

a.
$$\neg \left(\neg R \land \neg \left(\neg P \neg \left(\neg S \lor \neg (Q \equiv T)\right)\right)\right)$$

b.
$$((\neg P \lor \neg (T \equiv \neg S)) \supset ((Q < \neg R) \lor \neg Q))$$

c.
$$\neg (\neg (R \lor (\neg (\neg (S \equiv Q) \land P))) \supset (S \lor \neg T))$$

d.
$$((P \land \neg Q) \equiv \neg R) \supset (\neg S \equiv \neg (P \lor T))$$

Secuencia mal formada	Error cometido
9	a. $\neg (\neg R \land \neg (\neg P \neg 0 \neg S \lor \neg (Q \equiv T))))$ Mal formado porque la negación no puede unir dos fórmulas.
Ь	b. $(\neg P \lor \neg (T \equiv \neg S)) \supset ((Q \bigodot R) \lor \neg Q))$ Mal formado porque el signo señalado no es válido.
С	c. $\neg(\neg(R((\neg(\neg(S \equiv Q) \land P)))) \supset (S \lor \neg T))$ Hay un exceso de paréntesis. Si el único conector de la fórmula es una negación, no debe llevar paréntesis.

B) Construye el árbol sintáctico de la fórmula bien formada. Además, señala cuál es su operador principal, cuál es su grado de complejidad y cuántas subfórmulas tiene. (1.75 puntos)

Fórmula bien	Árbol sintáctico
formada	
d	$ \begin{array}{c c} Q & P & 1 \\ \hline P & 7Q & R & S & (P \lor T) \\ \hline (P \land \neg Q) & \neg R & \neg S & \neg (P \lor T) \\ \hline ((P \land \neg Q) \equiv \neg R) & (\neg S \equiv \neg (P \lor T)) \\ \hline ((P \land \neg Q) \equiv \neg R) \supset (\neg S \equiv \neg (P \lor T)) \end{array} $ Operador principal: $P = P \land $

C) Elabora un modelo y un contramodelo para la fórmula bien formada. Debes consignar el cálculo lineal de valores de la fila correspondiente (1 punto c/u):

	Modelo				Cálculo
P	Q	R	S	T	$\left(\left((P \land \neg Q) \equiv \neg R\right) \supset \left(\neg S \equiv \neg (P \lor T)\right)\right)$
V	V	V	V	F	NE EN NEN N EN NE NNE

C	Contramodelo				Cálculo
P	Q	R	S	T	$\left(\left((P \land \neg Q) \equiv \neg R \right) \supset \left(\neg S \equiv \neg (P \lor T) \right) \right)$
V	F	F	٧	F	VVVF VVF F FVFFVVF

Parte II. Tablas de verdad y conceptos semánticos

[8 puntos]

Considera las siguientes reglas extra para el conector ∝ que se añaden a la LC:

Reglas de formación extra

rf5. Si ϕ y ψ son fbf's, entonces (ϕ # ψ) es una fbf.

Reglas de interpretación extra

ri7.
$$U(\phi + \psi) = V \sin U(\phi) = F y U(\psi) = V$$

A continua ión, desarrolla los siguientes ítems;

A) Crea la tabla de verdad compartida p ϕ r ϕ y ψ . Debes consignar, como mínimo, todos los valores de los conectores lógicos. (2 puntos)

Parte III. Propiedades de la LC

[6 puntos]

Considera las siguientes afirmaciones:

- a. $(\phi \supset \neg \chi)$ implica a $(\phi \land \neg \chi)$.
- b. Si ψ es tautológica e implica a ω , entonces $\phi : (\psi \land \omega)$ es válido.

A continuación, señala si expresan propiedades cumplidas por cualquier fórmula en LC o no. Justifica tu respuesta. (3 puntos c/u)

	¿Expresa una propiedad de la LC?	Justificación
a.	NO, porque no se cumple la implicancia.	Se da la terma Porque de la coma Porque de la forma Porque
b.	Sí, porque sí se cumple la validez.	Si y es teutológico e implico a W, Y=V entonces p: (Y \ W) es válido premisa premisa V V V Rpta: (Y \ W) es válido porque nunca se dará la forma V-F, ya que la conclusión será siempre verdadera.