

Cálculo aceleración centro de masa (Agz, Agz, Agz)

Parte T		Longitudes en pulgadas, ángulos en grados, aceleración angular en rad/s²									
File	3	eslabón 2	eslabón 3	eslabón 4	eslabón 1	θ_2	θ_3	θ_{4}			
a	-	4	12	8	15	45	24.97	99.30			
b	ia .	3	10	12	6	30	90.15	106.60			

Parte 3	Longitudes en pulgadas, ángulos en grados, aceleraciones lineales en pulg/s ²								
Fila	R _{g2} mag	R _{g2} ang	R _{g3} mag	R _{g3} ang	R _{g4} mag	R _{g4} ang			
a.	2	0	5	0	4	30			
b.	1	20	4	- 30	6	40			

- $x: R_1 \cos\theta_2 + R_3 \cos\theta_3 R_1 \cos\theta_6 R_4 \cos\theta_4 = 0$ $y: R_2 \sin\theta_2 + R_3 \sin\theta_3 - R_1 \sin\theta_1 - R_4 \sin\theta_1 = 0$
- ler derivada
- $x: -R_2 \operatorname{sen}\Theta_2 \dot{\theta}_2 R_3 \operatorname{sen}\Theta_3 \dot{\theta}_3 + R_4 \operatorname{sen}\Theta_4 \dot{\theta}_4 = 0$ $y: +R_2 \cos \theta_2 \dot{\theta}_2 + R_3 \cos \theta_3 \dot{\theta}_3 - R_4 \cos \theta_4 \dot{\theta}_4 = 0$

2da derivada

$$\begin{pmatrix}
-R_3 \sin \theta_3 & +R_4 \sin \theta_4 & \theta_3 \\
R_3 \cos \theta_3 & -R_4 \cos \theta_4 & \theta_4
\end{pmatrix} = \begin{pmatrix}
R_2 \sin \theta_2 \dot{\theta}_2 \\
\theta_4 & -R_2 \cos \theta_2 \dot{\theta}_2
\end{pmatrix}$$

\ k3 005θ3

$$\theta_3$$
 \ $\left(R_2\cos\theta_2\,\theta_2^2 + R_3\cos\theta_3\,\theta_3^2 - R_4\cos\theta_4\,\theta_4^2\right)$

aceleración angular!

 $\theta_3 = W_3$ $\theta_4 = W_4$

 $\theta_3 = \alpha_3$ $\theta_4 = \alpha_4$

Aceleración centro de masa (Ag2, Ag3, Ag4)

 $(R_2 \operatorname{Sen} \theta_2 \dot{\theta}_2^2 + R_3 \operatorname{Sen} \theta_3 \dot{\theta}_3^2 - R_4 \operatorname{Sen} \theta_4 \dot{\theta}_4^2)$

Eslabón 2

$$\overrightarrow{A}_{A} = \overrightarrow{A}_{0} + \overrightarrow{A}_{1} + (0 \overrightarrow{K}_{1} R_{2}) + 2(\overrightarrow{W}_{2} \times \overrightarrow{y}) + W_{2} \times (W_{2} \times R_{2})$$

$$\overrightarrow{A}_{A} = \overrightarrow{W}_{2} \times (\overrightarrow{W}_{2} \times (R_{2} \cos \theta_{2}) + R_{2} \cos \theta_{2})$$

$$\overrightarrow{A}_{92} = \overrightarrow{A}_{02} + \overrightarrow{A} + (x_{2} \times R_{92}) + \lambda (\overrightarrow{W}_{2} \times \overrightarrow{V}) + U_{2} \times (U_{2} \times R_{92})$$

$$\overrightarrow{A}_{92} = W_{2} \times (W_{2} \times (R_{92} \cos (x_{1} + \theta_{2})) + R_{92} \sin (x_{2} + \theta_{2}))$$

Eslabón 3

$$\overline{AB} = \overline{AA} + \overline{A} + (K3 \times R3) + 2(W2XV) + (W3 \times (W3 \times R3))$$

$$\overline{AB} = \overline{AA} + (\overline{K3} \times (R3 \cos \theta3) + R3 \sin \theta3)) + W3 \times (W3 \times (R3 \cos \theta3) + R3 \sin \theta3))$$

$$\overrightarrow{Ag_3} = \overrightarrow{A}_A + (\overrightarrow{x_3} \times (R_{93} \cos (\delta_3 + \theta_3)) + R_{93} \sin (\delta_3 + \theta_3)) + W_3 \times (W_3 \times (R_{93} \cos (\delta_3 + \theta_3)) + R_{93} \sin (\delta_3 + \theta_3)))$$

Velocidad angular!

Eslabón 4

$$\overrightarrow{Ac} = \overrightarrow{Ab} + \overrightarrow{A} + \overrightarrow{log} \times \overrightarrow{R}_1 + 2(\overrightarrow{w}_4 \times \overrightarrow{V}) + (\overrightarrow{w}_4 \times (\overrightarrow{w}_4 \times \overrightarrow{R}_4))$$

$$\overrightarrow{Ac} = \overrightarrow{Ab} + (\overrightarrow{c}_4 \times (\cancel{R}_4 \cos \cancel{b}_4) + \cancel{R}_4 \cos \cancel{b}_4) + (\cancel{w}_4 \times (\cancel{R}_4 \cos \cancel{b}_4) + \cancel{R}_4 \cos \cancel{b}_4)$$