

DEPARTMENT OF COMPUTER SCIENCE/INFORMATION SCIENCE ENGINEERING/DATA SCIENCE ENGINEERING

PRACTICE PAPER III

Semester: III	Session: Aug- Dec 2022
Course Name: Discrete Mathematics and Graph Theory	Course Code: 21CIDS31
Date:	Max Marks: 50
Time:	Duration: 90 min

Note:

- i. PART A (Question 1-5) answer any 4 full questions.
- ii. PART B (Question 6-8) answer any 2 full questions.

iii. PART - C (Question 9) is compulsory to attend.

Q. No	Questions	Marks	CO's	Bloom's Level							
1	$PART -A (4 \times 5 = 20 Marks)$										
1.	Prove that for any three propositions p, q and r: $[(p \lor q) \rightarrow r] \Leftrightarrow [(p \rightarrow r) \land (q \rightarrow r)]$	5	CO1	L2							
2.	Find the Rook polynomial for the 3x3 board by using the expansion formula.	5	CO2	L2							
3.	Using generating function, find the number of partitions of $n = 6$ into distinct summands.	5	СОЗ	L3							
4.	Construct the duals for the following planar graphs. e_1 e_2 R_3 e_4 e_4 e_4	5	CO5	L2							
5.	Suppose that a tree T has two vertices of degree 2, four vertices of degree 3 and three vertices of degree 4. Find the number of pendent vertices in T.	5	CO5	L2							
	PART -B $(2\times9 = 18 \text{ Marks})$		1								
6.	 a Let A={2,8,14,18} Let R be a relation on A defined by xRy if and only if x - y > 5 i. Write down R as a set of ordered pairs. ii. Write M(R). iii. Draw a directed graph of the relation. iv. Determine the indegree and out-degree of the vertices in the digraph. 	4	CO2	L3							
	 b Determine the truth value of each of the following quantified statements, the universe being the set of all non-zero integers. (i) ∃ x, ∃ y, [xy = 1] (ii) ∃ x, ∀ y, [xy = 1] (iii) ∀ x, ∃ y, [xy = 1] (iv) ∃ x, ∃ y, [(2x + y = 5)Λ(x - 3y = -8)] (v) ∃ x, ∃ y, [(3x - y = 17)Λ(2x + 4y = 3)] 	5	CO1	L3							

7.	a Define the terms with example for each:			
/•	i. Planar Graph	4	CO4	L1
	ii. Non planar graph			
	b Find the chromatic polynomial for the graph.			L2
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5	CO4	
8.	a Explain the following terms with an example i. Sorting and Prefix Codes.	4	CO5	L1
	ii. Minimal Spanning Trees.			
	b Construct the optimal prefix code for the symbols A, B, C, D, E, F, G, H, I, J that occurs with frequencies 78, 16, 30, 35, 125, 31, 20, 50, 80, 3 respectively.	5	CO3	L3
	$PART -C (1 \times 12 = 12 Marks)$			
9.	a. Solve the recurrence relation $a_n = 6a_{n-1} - 9a_{n-2}$ with the initial conditions $a_0 = 1$ and $a_1 = 4$	6	CO3	L3
	b. Using the Kruskal's algorithm find a minimal spanning tree of the given weighted graph 10 8 10 10 8 10 10 10 10 10	6	CO4	L3

Course C	Outcomes:
CO-1	Discuss logical reasoning to verify the correctness of the logical statements and Perform set operations.
CO-2	Illustrate the relations, partially ordered sets and lattices in data bases and data structures.
CO-3	Employ generating function techniques to solve recurrence relations problems
CO-4	Examine recurrence relations to solve problems involving an unknown sequence in engineering problems
CO-5	Solve network analysis problems using graph theory.
CO-6	Employ graphs for Mathematical structures, trees, and shortest path techniques in computer applications.
Program	me Outcomes:

PO-1: Knowledge, PO-2: Analyze, PO-3: Design, PO-4: Conduct, PO-5: Tools, PO-6: Societal Problems, PO-7:

Sustainability, PO-8: Ethics, PO-9: Teamwork and leadership qualities, PO-10: Communication, PO-11: Project and finance management, PO-12: Lifetime Learning

CO/PO: Mapping

(3/2/1 indicates strength (of correlation) 3-High, 2-Medium, 1-Low
ogramme Outcome (POs)	

Course	Progr	ramme O	outcome ((POs)				,				
Outcome (COs)	PO- 1	PO-2	PO-3	PO-4	PO-5	PO-6	PO-7	PO-8	PO-9	PO-10	PO-11	PO-12
CO-1	3	2	1									
CO-2	3	2	1									
CO-3	3	2	1	1	2							
CO-4	3	2	1	1	2							
CO-5	3	2	1						1		D.	2 62

CO-6	3	2	1	1			1		

L1	L2	L3	L4	L5	L6
Remembering	Understanding	Applying	Analyzing	Evaluating	Creating