Árvores AVL e Árvores B

Jeane Melo

Roteiro

- Árvores Binárias
- Árvores AVL
 - □ Definição
 - □Motivação
 - □ Balanceamento
 - □ Operações de rebalanceamento
- Árvores B
 - □Introdução

Árvores Binárias

- Árvores binárias
 - □ Cada nó tem no máximo duas sub-árvores
 - Quando há apenas uma sub-árvore indicar se é esquerda ou direita
- Árvore binária completa
 - Cada nó ou é uma folha ou tem grau exatamente igual a dois
 - Não existe nenhum nó de grau 1

Árvores Binárias

- Se uma árvore binária tem m nós no nível d então ela terá no máximo 2m nós no nível d+1
- Observe que o nível i de uma árvore binária poderá conter no máximo 2ⁱ nós

Árvores AVL

- Proposta pelos matemáticos russos Georgii
 Adelson Vel'sky e Yevgeniy Landis: "Algoritmos para organização de informação" [1962]
- Árvore de busca binária auto-balanceada
 - As alturas das sub-árvores esquerda e direita diferem por no máximo 1
 - Complexidade da ordem de O(logn), onde n é o número de nós, para operações de inserção, remoção e busca por elementos.

Árvores AVL - Definição

Uma árvore binária T é denominada AVL quando, para todo nó v, a altura das 2 subárvores, esquerda e direita, satisfazem

$$fb(v) = |altura(dir) - altura(esq)| \le 1$$

onde fb(v) é o fator de balanceamento do nó v.

Árvores AVL - Motivação

- As operações básicas sobre árvores de busca binária têm complexidade proporcionais à altura da árvore
- No caso de uma árvore binária completa O(logn)
- Se a árvore é uma cadeia linear de n nós as mesma operações custa O(n) no pior caso.

Árvores AVL

 A altura de uma ALV é proporcional a log n, assim, o custo para inserir e retirar elementos é da O(log n)

Após operações de inserção e remoção verifica-se o fator de balanceamento para manter esta propriedade da árvore.

Balanceamento

"Uma árvore AVL é dita balanceada quando a diferença entre as alturas das sub-árvores não é maior do que um."

 É possível demonstrar que a altura de uma árvore AVL é proporcional a log₂n (~ 1.5* log₂n).

Árvores AVL

- As operações básicas sobre uma AVL são as mesmas utilizadas em árvores binárias de busca: Inserção, Remoção, Busca.
- Porém, após realizar uma inserção ou remoção verifica-se o fator de balanceamento. Se este difere de 1, 0 ou -1, se faz necessária uma operação de rotação para "rebalancear" a árvore.

Árvores AVL

- Como calcular o fator de balanceamento?
 - Altura (sub-árvore da direita) Altura (sub-árvore da esquerda)
- Como calcular a altura da árvore?

```
int altura (arvore r) {
if (r == NULL) return -1;
else {
    int he = altura (r->esq);
    int hd = altura (r->dir);
    if (he < hd)
       return hd + 1;
    else
       return he + 1;
```

Exemplos

AVL - Rebalanceamento

- Operações de Rotação
 - □ Rotação à esquerda
 - □ Rotação à direita
 - □ Rotação dupla à esquerda
 - □ Rotação dupla à direita
- Usadas após inserção ou remoção de um elto.

Inserção em uma AVL

AVL-Inserir (T, x)

Entrada: Árvore AVL e um elto x para inserção em T.

Saída: Árvore AVL (T + x)

Início

- 1. Use o algoritmo de inserção para árvore de busca binária.
- 2. Se (T + x) é AVL então devolva (T + x)
- 3. senão T' = AVL-Balance (T + x).
- 4. Devolva T'.

Fim

Remoção em uma AVL

AVL-Remoção(T,x)

Entrada: árvore AVL e o nó x a ser removido em T.

Saída: árvore AVL (T - x).

Início

- 1. Execute a remoção como na arvore binária de busca.
- 2. Verifique se a árvore ficou desregulada (use o fator de balanceamento como na inserção).
 - 3. Execute uma ou mais rotações (simples ou dupla).
 - 4. Devolva (T x).

Fim

Rotação à esquerda

Rotação à direita

Rotação dupla à esquerda

Rotação dupla à direita

3-Árvore resultante

- As árvores de busca, quando balanceadas, permitem acesso em tempo logarítmico
- No caso das AVL o tempo é log₂ (n)
- Podemos tentar melhorar esse tempo?

 Uma forma seria procurar fazer a busca em tempo log_k (n), com k > 2

Isto pode ser feito aumentando o número de elementos em cada nó.

- Árvores balanceadas
- Projetadas para trabalhar com dispositivos de armazenamento secundário (discos magnéticos)
- Otimizar as operações de entrada e saída nos dispositivos (minimizar o número de acessos ao disco)
- Um nó em uma árvores B pode ter muitos filhos

- Seja d um número natural. Uma árvore B de ordem d é uma árvore ordenada que é vazia, ou que satisfaz as seguintes condições:
- 1) A raiz é uma folha ou tem no mínimo 2 filhos;
- Cada nó diferente da raiz e das folhas possui no mínimo (d + 1) filhos;
- 3) Cada nó tem no máximo (2d + 1) filhos;
- 4) Todas as folhas estão no mesmo nível.

- Um nó em uma árvore B é chamado de página
- Cada página armazena m chaves

Uma página não folha tem (m + 1) filhos:

- \square raiz $1 \le m \le 2d$
- □ outras $d \le m \le 2d$

Em cada página P as chaves estão ordenadas $s_1 \le s_2 \le ... \le s_m$ e contém

- \square (m + 1) ponteiros $p_0, p_1, ..., p_m$ para os filhos de P
- □ (nas folhas estes ponteiros são NULL).

$$p_0 \mid s_1 p_1 \mid s_2 p_2 \mid \cdots \mid s_m p_m$$

para qualquer chave y da página apontada por p_{0} , y < s_1

Para qualquer chave y da página apontada por p_k , $1 \le k \le (m-1)$, $s_k < y < s_{(k+1)}$

Para qualquer chave y da página apontada por p_m , y > s_m

- Para o projeto, estamos interessados em árvores B de ordem 1 (d=1)
- Árvores 2-3

- Inserção
 - □ Folha
 - □ Se houver espaço para acrescentar o novo elemento

- Se não há espaço:
 - □ (inserção de N)

- □ Gera-se dois nós com os elementos extremos do nó
- Promove-se o nó central (incluído no nível superior)

Se não há espaço para acrescentar o nó promovido:

- Mesmo procedimento
 - Nó que tenha espaço
 - Raiz

Referências

- Cormen
- Estruturas de dados e seus algoritmos (Jayme Luiz Szwarcfiter)
- http://www.lcad.icmc.usp.br/~nonato/ED/B_arv ore/btree.htm
- Katia Guim (Cin UFPE)