Lösung der Probeklausur zur Theoretischen Physik II (Elektrodynamik)

1 Multiple-Choice Fragen (10P)

Zu jeder Frage darf nur eine Antwort angekreuzt werden. Für jede richtig beantwortete Frage gibt es einen Punkt.

	→					
Ein Feld $\vec{A}(\vec{r})$ ist quellenfrei, wenn gilt $\label{eq:condition} \bigotimes \nabla \cdot \vec{A} = 0$			_	$\vec{A}=0$	$\bigcirc \ \nabla \times \vec{A} = 0$	
	_	mponente welche stante stetig?	er Größe ist an einer	Grenzfläche zwi	ischen zwei Dielektrika mit ver	eschiedener
	\bigotimes die des elektrischen Felds E_t			\bigcirc die der dielektrischen Verschiebung D_t		
	_		ttelpunkt einer meta ren der Kugel zu be		ugel. Wie viele Bildladungen	sind nötig
		\bigotimes null	() unenc	dlich viele	\bigcirc eine	
	erhalten.					
Zylindersymmetrie aufweist. Zwei kreisförmige Leiterschleifen sind parallel übereinander angeordnet, in den Leiterschleifen fließt Stror in entgegengesetzten Richtungen. Die beiden Leiterschleifen O ziehen sich an Stossen sich ab O wirken keine Kraft aufeinander aus						
Ebene in	n Vakuun Flächenla	n. Die eine Platt dungsdichte $-\sigma$ Für $ z >> z_1$ Das Potential	e bei $z_1 > 0$ hat die . Sind die folgenden	Flächenladungs Aussagen richt Feld wie ein Di $\to \infty$ und $z \to 0$	polfeld proportional zu $1/z^3$.	

2 Zwei Ladungen an leitender Oberfläche (10P)

Der Halbraum z < 0 wird von einem idealen Leiter ausgefüllt. Zwei Ladungen +q und -q sind im Abstand d starr miteinander verbunden. Der Mittelpunkt befindet sich im Abstand $z_M > \frac{d}{2}$ zur Leiteroberfläche. Die Verbindungsachse steht im Winkel α zur Oberflächennormalen

Die Positionen von Ladungen und Bildladungen sind

$$\vec{r}_q = \begin{pmatrix} \frac{d}{2}\sin\alpha \\ 0 \\ z_m + \frac{d}{2}\cos\alpha \end{pmatrix}, \vec{r}_{-q} = \begin{pmatrix} -\frac{d}{2}\sin\alpha \\ 0 \\ z_m - \frac{d}{2}\cos\alpha \end{pmatrix}, \vec{r}'_q = \begin{pmatrix} \frac{d}{2}\sin\alpha \\ 0 \\ -z_m - \frac{d}{2}\cos\alpha \end{pmatrix}, \vec{r}'_{-q} = \begin{pmatrix} -\frac{d}{2}\sin\alpha \\ 0 \\ -z_m + \frac{d}{2}\cos\alpha \end{pmatrix}$$
(1)

a) Geben Sie alle Bedingungen an, die das elektrostatische Potenzial $\Phi(\vec{r})$ im Bereich z>0 erfüllen muss.

Bedingungen an das Potential:

• Poisson-Geichung:

$$\Delta\Phi(\vec{r}) = \frac{\rho(\vec{r})}{\epsilon_0}, \qquad \rho(\vec{r}) = q\delta(\vec{r} - \vec{r}_q) - q\delta(\vec{r} - \vec{r}_{-q})$$
 (2)

• Randbedingungen:

$$\left. \frac{\partial \Phi(\vec{r})}{\partial x} \right|_{z=0} = \left. \frac{\partial \Phi(\vec{r})}{\partial y} \right|_{z=0} = 0 \tag{3}$$

$$|\Phi(\vec{r})| < \infty, \qquad \vec{r} \neq \vec{r}_q, \vec{r}_{-q}$$
 (4)

b) Bestimmen Sie das Potenzial und das elektrische Feld für z>0 mit Hilfe der Bildladungsmethode.

z > 0:

$$\Phi(|\vec{r}|) = \frac{q}{4\pi\epsilon_0} \left(\frac{1}{|\vec{r} - \vec{r}_q|} - \frac{1}{|\vec{r} - \vec{r}_{-q}|} - \frac{1}{|\vec{r} - \vec{r}_{-q}'|} + \frac{1}{|\vec{r} - \vec{r}_{-q}'|} \right)$$

$$= \frac{q}{4\pi\epsilon_0} \left(\frac{1}{\sqrt{(x - \frac{d}{2}\sin\alpha)^2 + y^2 + (z - z_m - \frac{d}{2}\cos\alpha)^2}} - \frac{1}{\sqrt{(x + \frac{d}{2}\sin\alpha)^2 + y^2 + (z - z_m + \frac{d}{2}\cos\alpha)^2}} \right)$$

$$- \frac{1}{\sqrt{(x - \frac{d}{2}\sin\alpha)^2 + y^2 + (z + z_m + \frac{d}{2}\cos\alpha)^2}} + \frac{1}{\sqrt{(x + \frac{d}{2}\sin\alpha)^2 + y^2 + (z + z_m - \frac{d}{2}\cos\alpha)^2}}$$
(6)

$$\vec{E}(\vec{r}) = -\vec{\nabla} \cdot \Phi(|\vec{r}|) = \frac{q}{4\pi\epsilon_0} \left(\frac{\vec{r} - \vec{r}_q}{|\vec{r} - \vec{r}_q|^3} - \frac{\vec{r} - \vec{r}_{-q}}{|\vec{r} - \vec{r}_{-q}|^3} - \frac{\vec{r} - \vec{r}_q'}{|\vec{r} - \vec{r}_q'|^3} + \frac{\vec{r} - \vec{r}_{-q}'}{|\vec{r} - \vec{r}_{-q}'|} \right)$$

$$= \frac{q}{4\pi\epsilon_0} \left(\frac{(x - \frac{d}{2}\sin\alpha)\hat{x} + y\hat{y} + (z - z_m - \frac{d}{2}\cos\alpha)\hat{z}}{[(x - \frac{d}{2}\sin\alpha)^2 + y^2 + (z - z_m - \frac{d}{2}\cos\alpha)^2]^{3/2}} - \frac{(x + \frac{d}{2}\sin\alpha)\hat{x} + y\hat{y} + (z - z_m + \frac{d}{2}\cos\alpha)\hat{z}}{[(x + \frac{d}{2}\sin\alpha)^2 + y^2 + (z - z_m + \frac{d}{2}\cos\alpha)^2]^{3/2}} - \frac{(x - \frac{d}{2}\sin\alpha)\hat{x} + y\hat{y} + (z - z_m + \frac{d}{2}\cos\alpha)\hat{z}}{[(x - \frac{d}{2}\sin\alpha)^2 + y^2 + (z + z_m + \frac{d}{2}\cos\alpha)^2]^{3/2}} + \frac{(x + \frac{d}{2}\sin\alpha)\hat{x} + y\hat{y} + (z + z_m - \frac{d}{2}\cos\alpha)\hat{z}}{[(x + \frac{d}{2}\sin\alpha)^2 + y^2 + (z + z_m - \frac{d}{2}\cos\alpha)^2]^{3/2}} \right)$$

$$(9)$$

c) Das elektrische Feld ist 0 fuer z<0. Die Ladungdichte ist notwendig um das elektrische Feld bei z=0 zu kompensieren. Also gilt für die Oberflächenladungsdichte:

$$\vec{E}(z=0^{+}) - \vec{E}(z=0^{-}) = \frac{\sigma(x,y)\hat{n}}{\epsilon_{0}},$$
(10)

wobei $\hat{n} = \hat{z}$ der Normalenvektor auf der Oberfläche ist.

$$\sigma(x,y) = \frac{q}{2\pi} \left(-\frac{z_m + \frac{d}{2}\cos\alpha}{\left[(x - \frac{d}{2}\sin\alpha)^2 + y^2 + (z_m + \frac{d}{2}\cos\alpha)^2 \right]^{3/2}} + \frac{z_m - \frac{d}{2}\cos\alpha}{\left[(x + \frac{d}{2}\sin\alpha)^2 + y^2 + (z_m - \frac{d}{2}\cos\alpha)^2 \right]^{3/2}} \right). \tag{11}$$

3 Rotierende geladene Kugel – magnetischer Dipol (12P)

Eine homogene Vollkugel mit Radius R und Gesamtladung Q rotiert um eine feste Achse durch ihren Mittelpunkt mit konstanter Winkelgeschwindigkeit $\vec{\omega}$.

a) Geben Sie die Stromdichte $\vec{j}(\vec{r})$ an.

Mit Hilfe der Relation $\vec{j}=\rho\vec{v}$ und $T=2\pi/\omega$ sowie $\rho=3Q/(4\pi R^3)$ ergibt sich die Stromdichte zu:

$$\vec{j} = \hat{e}_{\phi} \frac{2\pi r \sin\left(\theta\right)}{T} \rho. \tag{12}$$

Der Richtungsvektor ergibt sich aus der Drehbewegung der Kugel und der Betrag der Geschwindigkeit ist für jeden Raumpunkt der Kugel über seinen Abstand von der Drehachse (o.B.d.A. die z-Achse) bestimmt, hier also $r \sin(\theta)$. Es gilt weiterhin:

$$\vec{j} = \omega \rho r \sin\left(\theta\right) \hat{e}_{\phi} = \omega \rho \begin{pmatrix} -y \\ x \\ 0 \end{pmatrix} = \omega \rho \sqrt{\frac{8\pi}{3}} \frac{r}{2} \begin{pmatrix} \frac{1}{i} \left[Y_{1,-1}\left(\Omega\right) + Y_{1,1}\left(\Omega\right) \right] \\ Y_{1,-1}\left(\Omega\right) - Y_{1,1}\left(\Omega\right) \\ 0 \end{pmatrix}. \tag{13}$$

Dabei wurden die Ortskoordinaten x und y mit Hilfe der Kugelflächenfunktionen ausgedrückt (Ω steht für die beiden Winkel θ und ϕ), also:

$$x = \frac{r}{2} \sqrt{\frac{8\pi}{3}} \left[Y_{1,-1}(\Omega) - Y_{1,1}(\Omega) \right] \quad \text{und} \quad y = \frac{r}{2i} \sqrt{\frac{8\pi}{3}} \left[Y_{1,-1}(\Omega) + Y_{1,1}(\Omega) \right].$$
 (14)

b) Berechnen Sie das Vektorpotential $\vec{A}(\vec{r})$ außerhalb der Kugel. Zeigen Sie, dass ein reines Dipolfeld entsteht.

Hinweis: Drücken Sie \vec{r} mit Hilfe der Kugelflächenfunktionen $Y_{lm}(\theta, \phi)$ aus.

Das Vektorfeld \vec{A} berechnet sich folgendermaßen:

$$\vec{A}(\vec{r}) = \frac{\mu_0}{4\pi} \int d^3r' \frac{\vec{j}(\vec{r}')}{|\vec{r} - \vec{r}'|}$$

$$= \frac{\mu_0}{4\pi} \omega \rho \int r'^2 dr' \int d\Omega' \sqrt{\frac{8\pi}{3}} \frac{r'}{2} \begin{pmatrix} \frac{1}{i} \left[Y_{1,-1}(\Omega') + Y_{1,1}(\Omega') \right] \\ Y_{1,-1}(\Omega') - Y_{1,1}(\Omega') \end{pmatrix} \sum_{lm} \frac{r'^l}{r^{l+1}} \frac{4\pi}{2l+1} Y_{lm}(\Omega) Y_{lm}^*(\Omega')$$

$$= \mu_0 \omega \rho \sum_{lm} \int_0^R dr' r'^{l+3} \frac{1}{2l+1} \frac{1}{r^{l+1}} Y_{lm}(\Omega) \sqrt{\frac{8\pi}{3}} \frac{1}{2} \begin{pmatrix} \frac{1}{i} \left[\delta_{l1} \delta_{m,-1} + \delta_{l1} \delta_{m1} \right] \\ \delta_{l1} \delta_{m,-1} - \delta_{l1} \delta_{m1} \end{pmatrix}$$

$$= \mu_0 \omega \rho \frac{1}{5} R^5 \frac{1}{3r^2} \sqrt{\frac{8\pi}{3}} \frac{1}{2} \begin{pmatrix} \frac{1}{i} \left[Y_{1,-1}(\Omega) + Y_{1,1}(\Omega) \right] \\ Y_{1,-1}(\Omega) - Y_{1,1}(\Omega) \end{pmatrix}$$

$$= \frac{\mu_0}{4\pi} \frac{\omega R^2 Q}{5r^2} \sin(\theta) \hat{e}_{\phi}, \qquad (15)$$

wobei wieder \hat{e}_{ϕ} verwendet wurde, vgl. hierzu die Umformung aus (13), und auch die Orthonormalität der Kugelflächenfunktionen spielt eine wichtige Rolle, da diese zwischenzeitlich die Kronecker-Deltas erzeugen.

Man beachte hier den wichtigen Unterschied zwischen gestrichenen und ungestrichenen Variablen. Desweiteren kam die sogenannte Zauberformel der Vorlesung zum Tragen mit $r_{<} = r'$ und $r_{>} = r$. Es liegt ein reines Dipolfeld vor, da nur l = 1 relevant ist.

c) Wie groß ist das magnetische Dipolmoment $\vec{\mu}$ der Kugel? Berechnen Sie das Magnetfeld im Außenraum.

Für das magnetische Dipolmoment $\vec{\mu}$ erhält man:

$$\vec{\mu} = \frac{1}{2} \int d^3r' \, \vec{r'} \times \vec{j} \, (\vec{r'}) = \frac{1}{2} \int dr' \, r'^2 \int d\Omega' \, r' \hat{e}_{r'} \times \hat{e}_{\phi'} \omega \rho r' \sin(\theta')$$

$$= -\frac{1}{2} \omega \rho \int_0^R dr' \, r'^4 \int d\Omega' \, \hat{e}_{\theta'} \sin(\theta') = -\frac{1}{2} \omega \rho \frac{1}{5} R^5 \int_0^{2\pi} \int_0^{\pi} d\phi' d\theta' \sin^2(\theta') \begin{pmatrix} \cos(\theta') \cos(\phi') \\ \cos(\theta') \sin(\phi') \\ -\sin(\theta') \end{pmatrix}$$

$$= \frac{\omega \rho R^5}{10} 2\pi \hat{e}_z \int_0^{\pi} d\theta' \sin^3(\theta') = \frac{\omega Q}{5} R^2 \hat{e}_z. \tag{16}$$

Hierbei ist zu beachten, dass über die Richtungsvektoren integriert wird und diese nicht vor das Integral gezogen werden dürfen. Das Vektorpotential dieses Dipols ist:

$$\vec{A}_{\text{Dipol}} = \frac{\mu_0}{4\pi} \frac{\vec{\mu} \times \vec{r}}{r^3} = \frac{\mu_0}{4\pi} \frac{\omega R^2 Q}{5r^2} \sin(\theta) \,\hat{e}_{\phi},\tag{17}$$

identisch mit dem Ergebnis von b). Zuletzt bestimmt man noch das entstehende Magnetfeld:

$$\vec{B}_{\text{Dipol}} = \frac{\mu_0}{4\pi} \left[3 \frac{\vec{\mu} \cdot \vec{r}}{r^5} \vec{r} - \frac{\vec{\mu}}{r^3} \right] = \frac{\mu_0}{4\pi} \frac{\omega Q}{5} \frac{R^2}{r^3} \left[3\cos\left(\theta\right) \hat{e}_r - \hat{e}_z \right]. \tag{18}$$

4 Kugelkondensator mit inhomogenem Dielektrikum (8P)

Ein Kugelkondensator besteht aus zwei konzentrischen, unendlich dünnen Kugelschalen mit den Radien R_1 und $R_2 > R_1$. Die Kugelschalen haben die Ladungen $q_1 = q$ und $q_2 = -q$. Der Zwischenraum zwischen den beiden Schalen sei ganz mit einem inhomogenen Dielektrikum der Dielektrizitätskonstanten $\varepsilon(r)$ gefüllt.

a) Bestimmen Sie das elektrische Feld $\vec{E}(\vec{r})$.

Satz von Gauss:

$$\vec{D}(r) = \begin{cases} 0 & \text{für } r < R_1 \\ -\frac{q}{4\pi r^2} \hat{r} & \text{für } R_1 \le r \le R_2 \\ 0 & \text{für } r > R_2 \end{cases}$$
 (19)

und da $\vec{D} = \epsilon_0 \epsilon(r) \vec{E}$

$$\vec{E}(r) = \begin{cases} 0 & \text{für} \quad r < R_1 \\ -\frac{q}{4\pi\epsilon_0 \epsilon(r)r^2} \hat{r} & \text{für} \quad R_1 \le r \le R_2 \\ 0 & \text{für} \quad r > R_2 \end{cases}$$
 (20)

b) Betrachten Sie nun den Fall $\varepsilon(r) = \tilde{\varepsilon}r^2$. Berechnen Sie das elektrische Feld und die Kapazität des Kondensators, und geben Sie die elektrostatische Energie an.

$$mit \ \epsilon(r) = \tilde{\epsilon}r^2$$

$$\vec{E}(r) = \begin{cases} 0 & \text{für} \quad r < R_1 \\ -\frac{q}{4\epsilon_0 \pi \tilde{\epsilon} r^4} \hat{r} & \text{für} \quad R_1 \le r \le R_2 \\ 0 & \text{für} \quad r > R_2 \end{cases}$$
 (21)

Das Elektrische Feld ist $\vec{E}(r) = -\vec{\nabla}\Phi(r)$. Daher ist die Potenzialdifferenz zwischen den beiden Kugelschalen gegeben durch:

$$\Delta\Phi(r) = -\int_{R_1}^{R_2} dr E(r) = \frac{q}{12\pi\epsilon_0\tilde{\epsilon}} \left(\frac{1}{R_2^3} - \frac{1}{R_1^3}\right) \tag{22}$$

Die Kapazitaet ist somit:

$$C = \frac{q}{|\Delta\Phi|} = 12\epsilon_0 \pi \tilde{\epsilon} \frac{(R_2 R_1)^3}{R_2^3 - R_1^3}$$
 (23)

Mit $\rho_i(r) = q_i \delta(r-R_i)/4\pi r^2,$ i =1,2 erhält man

$$E = \frac{1}{2} \sum_{i=1}^{2} \int_{V} \rho_{i}(\vec{r}) \Phi(\vec{r}) d^{3} \vec{r} = \frac{q^{2}}{24\pi\epsilon_{0}\tilde{\epsilon}} \left(\frac{1}{R_{2}^{3}} - \frac{1}{R_{1}^{3}} \right)$$
 (24)