MATH 258: Homework #9

Jesse Farmer

09 March 2005

1. Let A be a commutative ring and define $E = \{f \in A[x] \mid \deg f \leq n-1, fmonic\}$. Let $f_0, \ldots, f_{n-1} \in E$ with $\deg f_i = i$ for $0 \leq i \leq n-1$. Show that $\{f_0, \ldots, f_{n-1}\}$ form a basis for E over A, and hence that E is a free A-module of rank n.

We prove this by induction on n. It is obviously true for n=1, so assume it for the n-1 case. Without loss of generality assume that for $f \in E$ we have $\deg f = n$, since otherwise the n-1 case applies. Then we can write

$$f(x) = x^n + \sum_{i=0}^{n-1} \lambda_i f_i(x)$$

for some $\lambda_i \in A$. Write $f_n(x) = x^n + a_{n-1} + \cdots + a_0$. Then

$$f(x) - f_n(x) = \sum_{i=0}^{n-1} (\lambda_i - a_i) f_i(x)$$

so that

$$f(x) = \sum_{i=0}^{n-1} (\lambda_i - a_i) f_i(x) + f_n(x)$$

Since the $\{f_i\}$ are monic they must be linearly independent. This follows since if $\lambda x^k = 0$ for some $k \in \mathbb{N}$ then $\lambda = 0$, so this applies equally well to sums of such components. Therefore E is a free A-module of rank n.

2. Let K be a field and $f \in K[x]$ with $\deg f = n > 0$. Show that $V = K[x]/(f \cdot K[x])$ is a vector space of dimension n over K.

Any quotient of an A-module, where A is a ring, field, etc., is always an A-module, so we must just verify that the dimension is n. Consider the set $\{\bar{1}, \ldots, \bar{x}^{n-1}\}$. Writing \bar{x} as x for now, this set spans since we have the following:

$$f(x) = \sum_{x=0}^{n} a_i x_i \equiv 0$$

Hence we can write $x^m = \sum_{i=0}^{m-1} b_i x_i$ for all $m \ge n$. Any $g \in K[x]/(f \cdot K[x])$ can therefore be written as a linear combination of $\{1, \ldots, x^{n-1}\}$ since any power of x greater than n can be successively reduced by using the above equality until it is a polynomial of degree less than n.

3. Let K be a field and V, V' finite-dimensional vector spaces over K. Let $f: V \to V'$ be a K-linear map. Show that $\dim V = \dim(\ker f) + \dim f(V)$.

1

From class, for any subspace W of a vector space V, $\dim V = \dim W + \dim V/W$. By the first isomorphism theorem it follows that $\dim V = \dim \ker f + \dim f(V)$.

4. Let K be a field and V, V' be finite-dimensional vector spaces over K. Suppose that $\dim V = \dim V' = n$. Show that for a K-linear map $f: V \to V'$ being an isomorphism, being injective, and being surjective are all equivalent.

It is sufficient to show that a K-linear map is surjective if and only if it is injective. Recall that $\dim V = \dim \ker f + \dim f(V)$. If f is surjective then f(V) = V' and hence $\dim \ker f = 0$. But then $\ker f = 0$ and hence f is injective. Similarly, if f is injective then $\dim f(V) = n$, so that $f(V) \cong V'$ (two finite-dimensional vector spaces are isomorphic if and only if they have the same dimension), and hence f is surjective.

5. Let $V = K^n$ where K is a field and $(\lambda_1, \ldots, \lambda_n) \in K^n$ with not all $\lambda_i = 0$. Define

$$W = \left\{ (a_1, \dots, a_n) \in K^n \mid \sum_{i=1}^n \lambda_i a_i = 0 \right\}$$

Show that W is a subspace of V. Compute $\dim W$.

Since the 0-vector is in $W \subset V$, it suffices to check that $x + ky \in W$ for all $x, y \in W$ and $k \in K$. But this is fairly obvious as $x + ky = (x_1 + ky_1, \dots, x_n + ky_n)$ and hence

$$\sum \lambda_i(x_i + ky_i) = \sum \lambda_i x_i + k \sum \lambda_i y_i = 0$$

Consider K as a one dimensional vector space over itself and define $\varphi: V \to K$ by

$$\varphi(a_1,\ldots,a_n) = \sum_{i=1}^n \lambda_i a_i$$

Since not all λ_i are zero and K is a field this map is surjective. $\ker \varphi = W$, so that

$$\dim W = \dim V - \dim K = n - 1$$

6. Let A be a commutative ring and E an A-modules. Let $\{e_1, \ldots, e_n\}$ generate E. Show that E is a free A-module with basis $\{e_1, \ldots, e_n\}$ if and only if for all A-modules M and $x_1, \ldots, x_n \in M$ there exists an A-linear map $f: E \to M$ such that $f(e_i) = x_i$. Is such an f unique?

Let $\{e_1,\ldots,e_n\}$ be a basis for E and let M be an A-module with $x_1,\ldots,x_n\in M$. Define

$$f\left(\sum a_i e_i\right) = \sum a_i x_i$$

Clearly this satisfies the condition that $f(e_i) = x_i$. It is linear since

$$f(x+y) = f\left(\sum (a_i + b_i)e_i\right) = \sum (a_i + b_i)x_i = \sum a_i x_i + \sum b_i x_i = f(x) + f(y)$$

and similarly for the ring action on E and M. For the converse, let $M = A^n$ and fix the standard basis $\{x_1, \ldots, x_n\}$ of M, i.e., x_i is 0 in every coordinate except the i^{th} where it is 1. Then any A-linear map satisfying $f(e_i) = x_i$ is obviously surjective. To see injectivity, recall that the $\{e_i\}$ generate E. Then if $f(x) = f(\lambda_1 e_1 + \cdots + \lambda_n e_n) = 0$ it follows that $\lambda_i e_i = 0$ for every λ_i, e_i , and hence x = 0. Therefore $\ker f = 0$ and f is injective.

7. Let A be a nonzero commutative ring and $I \subset A$ an ideal. Show that any two elements of I are linearly dependent. Deduce that every nonzero ideal of A is a free A-module if and only if A is a principal ideal domain.

Let a = y and b = -x, then for any $x, y \in I$, ax + by = 0 even though $a, b \neq 0$. If A is a PID then every ideal is generated by a single element, and a single element in a PID is always linearly independent. If every nonzero ideal of A is free then, from the first part, every ideal must be generated by one element (since otherwise no set of generators could be a basis).

8. (a) Let A be an integral domain and $a \in A$. Let E be an A-module and define

$$E(a) = \{x \in E \mid a^r x = 0, \text{ for some } r \ge 0\}$$

Show that E(a) is a submodule of E.

Since $0 \in E(a)$ for any $a, E(a) \neq \emptyset$. Let $x, y \in E(a)$ and $b \in A$, then there exist $r, s \in \mathbb{Z}_+$ such that $a^s x = 0$ and $a^r y = 0$. Therefore

$$a^{r+s}(x+by) = a^{r+s}x + ba^{r+s}y = 0$$

Hence $x + by \in E(a)$ and therefore E(a) is a submodule.

(b) Let A be as above and let E be a finitely generated torsion module. Show that Ann(E) is a nonzero ideal.

Ann(E) is an ideal since it is the kernel of the homomorphism from A to the sub-modules of E given by $a \mapsto aE$. Recall that E is a torsion module if $E = \text{tor}(E) = \{x \in E \mid \exists a \in A \text{ s.t. } ax = 0\}$. Assume $E = \langle F \rangle$ where F is finite. Then for every $x \in F$ there exists some nonzero a_x such that $a_x x = 0$. Let

$$a = \prod_{x \in F} a_x$$

Then $a \in \text{Ann}(E)$, since every element of E can be written as an A-linear combination of elements of F.

9. Let A be a PID and $E \neq 0$ a finitely generated torsion module. Let I = Ann(E), and, say, I = Aa where

$$a = \prod_{i=1}^{r} p_i^{m_i}$$

for $m_i > 0$ and p_i a prime element of A with $Ap_i \neq Ap_j$ for $i \neq j$.

(a) Show that the sub-module $E(p_1)+\cdots+E(p_r)=E'$ is a direct sum of the sub-modules $E(p_1),\ldots,E(p_r)$. First, it cannot be the case that there exist p,q prime elements such that $p^nx=q^mx=0$ for $x\neq 0$ since if this were the case then $(p^n-q^m)x=0$, and hence $p\mid q$ or $q\mid p$, a contradiction. Therefore, since E is a torsion module, it follows that $E(p_i)=\{x\in E\mid p_i^{m_i}x=0\}$. This is because if aE=0 (as it does, by assumption) then if $x\in E(p_i), p_i^rx=p_i^{m_i}x=0$ for some p_i . But by construction $r\leq m_i$.

This condition, viz., that no two prime distinct elements have powers which annihilate a given element of E', also guarantees that E' is in fact the direct sum of the $E(p_i)$.

(b) Show that E = E'.

This follows from the Chinese Remainder Theorem by noting that the ideals $p_i^{m_i}A$ are comaximal and that $E/(p_i^{m_i}A)E \cong E(p_i)$ (it is the kernel of the homomorphism defined by $x \mapsto a_i x$ where $a_i = \frac{a}{p_i^{m_i}}$). Therefore

$$E \cong \frac{E}{\{0\}} \cong \frac{E}{(a)E} \cong E(p_1) \times \cdots \times E(p_n)$$

and, from the previous part, the last expression is isomorphic to the direct sum of the $E(p_i)$.

(c) Show that $E(p_i) = a_i E$, and hence that $p_i^{m_i} E(p_i) = 0$.

This was essentially shown already, but, since every element $x \in E$ is annihilated by a, then it must be annihilated by some prime power dividing a. From the first part there is only one such prime, p_i , and hence the power to do this is m_i . Therefore $E(p_i)$ consists of precisely those elements that are divisible by other primes dividing a. By the first part, again, this means that $E(p_i) = a_i E$, and hence $p_i^{m_i} E(p_i) = a E = 0$.

3

10. Let A be a commutative ring and R = A[x]. Let E be an A-module and $\alpha \in End_A(E)$. Show that E acquires an R-module structure if, for $x \in E$, we define

$$f(x) \cdot z = f(\alpha) \cdot z = \sum_{i=1}^{r} a_i \alpha^i(z)$$

where $f(x) = \sum_{i=1}^{r} a_i x^i$.

Note that $\alpha^i \in \operatorname{End}_A(E)$ for any $i \in \mathbb{N}$, where this means not "to the power of" but rather "i-fold composition." We take addition on E as it is as an A-module, and multiplication as defined above. Fix $\alpha \in \operatorname{End}_A(E)$. Let $f, g \in R$ and $z \in E$, then

$$(f+g) \cdot z = \sum (a_i + b_i)\alpha^i(z) = \sum a_i \alpha^i(z) + \sum a_i \alpha^i(z) = f \cdot z + g \cdot z$$

Let $f, g \in R$ and $z \in E$, then

$$f \cdot (g \cdot z) = f \cdot \left(\sum_{i} b_{i} \alpha^{i}(z)\right) = \sum_{k} a_{k} \alpha^{k} \left(\sum_{i} b_{i} \alpha^{i}(z)\right) = \sum_{k} a_{k} \sum_{i} b_{i} \alpha^{k+i}(z) = \sum_{j} c_{j} \alpha^{j}(z)$$

where $c_j = \sum_l a_l b_{j-l}$. But this last expression is equal to $(fg) \cdot z$). Now let $y, z \in E$ and $f \in R$, then

$$f \cdot (y+z) = \sum a_i \alpha^i(y+z) = \sum a_i \left(\alpha^i(y) + \alpha^i(z)\right) = \sum a_i \alpha^i(y) + \sum a_i \alpha^i(z) = f \cdot y + f \cdot z$$

That $1 \cdot z = z$ for all $z \in E$ is obvious, and hence E can be extended from an A-module to an A[x]-module, given some $\alpha \in \operatorname{End}_A(E)$.

11. Let A be a commutative ring and E, F be A-modules. Let $\alpha \in End_A(E)$ and $\beta \in End_A(F)$. Show that an A-lienar map $\eta : E \to F$ is an A[x]-linear map if $f \circ \alpha = \beta \circ f$.

Let E_{α} and E_{β} be as defined in the previous problem. Let $f \in A[x]$ and $z \in E$. Assume $\eta \circ \alpha = \beta \circ \eta$, then

$$\eta(f \cdot z) = \eta \left(\sum a_i \alpha^i(z) \right)
= \sum a_i \eta \left(\alpha^i(z) \right)
= \sum a_i \beta^i \left(\eta(z) \right)
= f \cdot \eta(z)$$

The additive properties of η certainly still hold as a function on E_{α} , so it follows that η is an A[x]-linear map.