Skanowanie obiektów 3D z użyciem kamery

Studenci: Maciej Dąbroś, Dawid Suder

Opiekun: Tomasz Jurczyk

Opis wymagań:

- Komponenty fizyczne tanie, a użyte zewnętrzne oprogramowanie darmowe
- Urządzenie łatwe w obsłudze i instalacji
- Intuicyjny interfejs użytkownika
- Konfigurowalna szczegółowość obiektu
- Możliwie szybkie działanie
- Obliczenia wykonywane w czasie rzeczywistym
- Możliwość wyświetlenia obiektu przed zapisem
- Zapis obiektu w popularnym formacie

Ogólny schemat systemu:

Analiza ryzyka:

MODUŁ	ZAGROŻENIA	OCENA RYZYKA
Skanera	 mikrokontroler, platforma obrotowa, oświetlenie, kamera - błędy związane z elektroniką 	wysokie
Komunikacji	 obsługa magistrali komunikacyjnej (USB / I²C / SPI) konwersja danych do bitmapy 	wysokie
Analizy obrazu	 ALGORYTM analizy (niepowodzenie analizy) wielowątkowość (podział obliczeń, synchronizacja dostępu do danych) 	niskie
Obliczeń	 obliczenia geometryczne wielowątkowość (j.w.) 	wysokie
Wyświetlania	interfejs graficznywyświetlanie obiektu 3D	bardzo niskie
Persystencji	- błędy wejścia/wyjścia	średnie
Ocena ryzyka: bardzo niskie, niskie, średnie, wysokie, bardzo wysokie		

Oszacowanie kosztów:

komputer	w posiadaniu	
mikrokontroler	w posiadaniu	
kamera	w posiadaniu	
platforma obrotowa (serwomechanizm)	40 zł	
oświetlenie	40 zł	

Wstępny harmonogram prac:

SPRINT 1 (do 31.05):

- 1. Dokumentacja koncepcyjna
- Szkielet aplikacji
- 3. Moduł wyświetlania obrazu
- 4. Implementacja algorytmów analizy obrazu (moduł analizy obrazu)

SPRINT 2 (01.06 - 30.06):

- 1. Wstęp do dokumentacji specyfikacyjnej
- 2. Moduł obliczeń

Wstępny harmonogram prac:

SPRINT 3 - Wakacyjny (01.07 - 31.08):

- 1. Pełna implementacja modułu analizy obrazu
- 2. Rozpoczęcie prac nad budową części fizycznej
- 3. Moduł komunikacji
- 4. Moduł skanera
- 5. Moduł persystencji
- 6. Testy integracyjne

SPRINT 4 (01.09 - 30.09):

- 1. Testy systemowe
- 2. Poprawa błędów
- 3. Implementacja GUI
- 4. Implementacja Features