Correction partielle - TD n°5 - Cinématique

8 Escalier en colimaçon

- 1. Lorsque θ augmente, z(t) augmente, donc θ est orienté dans le sens trigonométrique d'après la photo.
- 2. Par dérivation, on obtient : $\vec{v}(t) = -a\dot{\theta}\sin\theta\vec{u}_x + a\dot{\theta}\cos\theta\vec{u}_y$, et $\vec{a}(t) = -a\left[\ddot{\theta}\sin\theta + \dot{\theta}^2\cos\theta\right]\vec{u}_x + a\left[\ddot{\theta}\cos\theta \dot{\theta}^2\sin\theta\right]\vec{u}_y$,
- 3. Le point H, projeté de M sur le plan z=0, a un mouvement de rotation circulaire puisque ses coordonnées x et y sont celles d'un cercle et que son ordonnée z est constante égale à 0. Le mouvement de M est donc la combinaison d'un mouvement circulaire dans le plan horizontal, et d'un mouvement de translation verticale.
- 4. Le pas de l'hélice correspond à l'altitude aquise ou perdue pendant un tour d'hélice, soit $h=2\pi b$
- 5. Le mouvement est uniforme si $\ddot{\theta}(t) = 0$. Le mouvement est alors la combinaison d'un mouvement circulaire uniforme et d'un mouvement de translation rectiligne uniforme.

• Coordonnées cylindriques

Les coordonnées cylindriques du point M sont données par : $r = R_0$, $\theta = \omega t$ et $z = h \frac{\omega t}{2\pi}$ où R_0 , ω et h sont des constantes.

- 1. Position : $M(R_0, 0, \frac{h\omega t}{2\pi})$, soit $\vec{OM} = R_0 \vec{u}_r + \frac{h\omega t}{2\pi} \vec{u}_z$. Vitesse : $\vec{v}_M = R_0 \omega \vec{u}_\theta + \frac{h\omega}{2\pi} \vec{u}_z$ et Accélération : $\vec{a}_M = -R_0 \omega \vec{u}_r$ puis dans la base cartésienne.
- 2. On voit directement que la norme de la vitesse est constante et vaut $\sqrt{R_0^2\omega^2 + \left(\frac{h\omega}{2\pi}\right)^2}$.
- 3. $\vec{v_M} \cdot \vec{u_z} = \frac{\hbar\omega}{2\pi} = |v_M|\cos\alpha$. On en déduit $\cos\alpha = \frac{\frac{\hbar\omega}{2\pi}}{\sqrt{R_0^2\omega^2 + \left(\frac{\hbar\omega}{2\pi}\right)^2}}$, et $\tan\alpha = \frac{2\pi R_0}{\hbar}$.

9 Particule freinée sur son axe

Une particule astreinte à évoluer sur un axe (Ox) a pour accélération $\vec{a} = -Kv^n\vec{e_x}$ avec K constante positive. A t = 0 elle est en O avec une vitesse $\vec{v}(0) = v_0\vec{e_x}$.

- 1. La dimension de K est donnée par $[K] = L^{1-n}T^{-2+n}$. Donc pour $n=1, [K] = T^{-1}$, et pour $n=2, [K] = L^{-1}$.
 - Le mouvement est freiné car \vec{a} et \vec{v} sont de sens opposés.
- 2. Pour n = 1: $\vec{a} = -Kv\vec{e_x}$, et donc $\frac{dv}{dt} + Kv = 0$, et $v = v_0e^{-Kt}$. On retrouve bien que K est homogène à l'inverse d'un temps (temps caractéristique du freinage). La vitesse tend exponentiellement vers 0. Par intégration, on peut obtenir l'équation horaire du mouvement :

$$x(t) = \int_0^t v(t')dt' = \frac{v_0}{K} \left[1 - e^{-Kt} \right].$$
 La distance parcourue avant immobilisation correspond à $L = x(t \to \infty) - x(0) = \frac{v_0}{K}$. On tire t de l'équation horaire et en le réinjectant

dans l'expression de la vitesse, on obtient l'équation de la trajectoire : $v = v_0 \left[1 - \frac{Kx}{v_0} \right]$

Pour
$$n=2$$
: $\vec{a}=-Kv^2\vec{e_x}$, et donc $\frac{dv}{dt}+Kv^2=0$, et $v=\frac{v_0}{1+v_0Kt}$. On retrouve bien que K est homogène à l'inverse d'une longueur. La vitesse tend vers 0 moins vite que précédemment. Par intégration, on peut obtenir l'équation horaire du mouvement : $x(t)=\int_0^t v(t')dt'=\frac{1}{K}ln(1+v_0Kt)$. La distance parcourue avant immobilisation n'est pas finie dans ce cas car $L=x(t\to\infty)-x(0)\to\infty$. On tire t de l'équation horaire et en le réinjectant dans l'expression de la vitesse, on obtient l'équation de la trajectoire : $v=v_0e^{-Kx}$. On retrouve que la vitesse ne s'annule que lorsque la particule a parcourue une distance infinie.

10 Echelle

- 1. On obteint $x_H(\theta) = \frac{L\cos\theta}{2}$ et $y_H(\theta) = \frac{3L\sin\theta}{2}$, donc $\left(\frac{2x_H}{L}\right)^2 + \left(\frac{2y_H}{3L}\right)^2 = 1$. C'est l'équation d'une ellipse de centre O.
- 2. Le vecteur vitesse vaut $\vec{v}_H = \frac{-L\dot{\theta}\sin\theta}{2}\vec{u}_x + \frac{3L\dot{\theta}\cos\theta}{2}\vec{u}_y$. Lorsque l'homme arrive sur le sol, $\theta=0$, à $t=t_0'$, et $\vec{v}_H=\frac{3L}{2}\dot{\theta}_{t_0'}\vec{u}_y$. La vitesse est donc verticale. Elle est bien dirigée vers le bas car θ diminue au cours du mouvement. Afin d'exprimer $\dot{\theta}_{t_0'}$, il faudrait étudier la dynamique complète du mouvement en faisant notamment intervenir la gravité.