

Hope Artificial Intelligence

Inferential Data Analysis Answers

```
In [1]: import pandas as pd
In [2]: dataset = pd.read csv("Placement.csv")
        1) Replace the NaN values with correct value. And justify why you
        have chosen the same.
In [3]: dataset.isna().sum()
Out[3]: sl no
                           0
        gender
        ssc p
                           0
        ssc b
                           0
        hsc_p
                           0
        hsc_b
        hsc s
        degree p
        degree t
        workex
                           0
                           0
        etest p
        specialisation
                           0
        mba p
                           0
        status
        salary
                          67
        dtype: int64
In [4]: dataset["salary"].fillna(0,inplace=True)
In [5]: dataset.isna().sum()
```

```
Out[5]: sl no
                         0
                         0
        gender
                         0
        ssc p
                         0
        ssc b
        hsc p
                         0
        hsc b
                         0
                         0
        hsc s
        degree_p
                         0
        degree_t
                         0
        workex
        etest p
                         0
        specialisation 0
                         0
        mba p
                         0
        status
        salary
        dtype: int64
```

2) How many of them are not placed?

```
In [6]: Not_Placed = dataset[dataset['status']=="Not Placed"]
No_of_Not_Placed = len(Not_Placed.index)
print(No_of_Not_Placed, "Students are Not Placed")
```

67 Students are Not Placed

3) Find the reason for non placement from the dataset?

```
In [7]: quan = [col for col in dataset.columns if dataset[col].dtype != '0']
    dataset[quan].corr()
```

Out[7]:		sl_no	ssc_p	hsc_p	degree_p	etest_p	mba_p	sala
	sl_no	1.000000	-0.078155	-0.085711	-0.088281	0.063636	0.022327	0.0025
	ssc_p	-0.078155	1.000000	0.511472	0.538404	0.261993	0.388478	0.5380
	hsc_p	-0.085711	0.511472	1.000000	0.434206	0.245113	0.354823	0.4525
	degree_p	-0.088281	0.538404	0.434206	1.000000	0.224470	0.402364	0.4083
	etest_p	0.063636	0.261993	0.245113	0.224470	1.000000	0.218055	0.1869
	mba_p	0.022327	0.388478	0.354823	0.402364	0.218055	1.000000	0.1398
	salary	0.002543	0.538090	0.452569	0.408371	0.186988	0.139823	1.0000

Since, SSC, HSC and Degree marks are highly corellated with salary, they maybe the reason for the placement of a candidate

```
degree p = row["degree p"]
    status = row["status"]
   if ssc p <= 57 and status == "Not Placed":</pre>
        below avg ssc += 1
   elif hsc p <= 58 and status == "Not Placed":</pre>
        below avg hsc += 1
   elif degree p <= 69 and status == "Not Placed":</pre>
        below avg degree += 1
if below avg ssc > below avg hsc > below avg degree:
    print("Those who scored less in SSC and HSC are not placed")
elif below avg ssc > below avg degree > below avg hsc:
    print("Those who scored less in SSC and degree are not placed")
elif below avg hsc > below avg degree > below avg ssc:
    print("Those who scored less in HSC and degree are not placed")
elif below avg hsc > below avg ssc > below avg degree:
    print("Those who scored less in HSC and SSC are not placed")
elif below avg degree > below avg ssc > below avg hsc:
    print("Those who scored less in degree and SSC are not placed")
elif below avg degree > below avg hsc > below avg ssc:
    print("Those who scored less in degree and HSC are not placed")
```

Those who scored less in SSC and degree are not placed

4) What kind of relation between salary and mba p

```
In [9]: quan = [col for col in dataset.columns if dataset[col].dtype != '0']
In [10]: dataset[quan].corr()
                      sl_no
                                         hsc_p degree_p
                                                          etest p
                                                                    mba p
                                                                              sala
Out[10]:
                                ssc_p
                   1.000000 -0.078155 -0.085711 -0.088281 0.063636 0.022327 0.0025
            sl no
            ssc p -0.078155 1.000000 0.511472
                                                0.538404 0.261993 0.388478 0.5380
            hsc_p -0.085711 0.511472 1.000000
                                                0.434206  0.245113  0.354823  0.4525
         degree_p -0.088281 0.538404 0.434206
                                                1.000000 0.224470 0.402364 0.4083
          etest p 0.063636 0.261993 0.245113
                                                0.224470 1.000000 0.218055 0.1869
                                                0.402364 0.218055 1.000000 0.1398
           mba p 0.022327 0.388478 0.354823
           salary 0.002543 0.538090 0.452569
                                                0.408371 0.186988 0.139823 1.000(
```

In [11]: # Salary and MBA_p has low Degree Positive Correlation with a value of 0.13

5) Which specialization is getting minimum salary?

```
if(Mkt_HR_Sal < Mkt_Fin_Sal):
    difference = Mkt_Fin_Sal - Mkt_HR_Sal
    print("Marketing and Finance gets higher salary than Marketing and HR wi
else:
    difference = Mkt_HR_Sal - Mkt_Fin_Sal
    print("Marketing and HR gets higher salary than Marketing and Finance wi</pre>
```

Marketing and Finance gets higher salary than Marketing and HR with ₹ 85749. 56140350876

6) How many of them getting above 500000 salary?

```
In [13]: list = 0
for sal in dataset['salary']:
    if (sal < 500000):
        list+=1

print(list, "Of the Placed students getting the salary above 500000")</pre>
```

209 Of the Placed students getting the salary above 500000

7) Test the Analysis of Variance between etest_p and mba_p at signifance level 5%.(Make decision using Hypothesis Testing)

```
In [14]: import scipy.stats as stats
    stats.f_oneway(dataset['etest_p'],dataset['mba_p'])
    print('There is a Significant Difference between Enterance test and MBA Pas
```

There is a Significant Difference between Enterance test and MBA Pass mark

8) Test the similarity between the degree_t(Sci&Tech) and specialisation(Mkt&HR) with respect to salary at significance level of 5%.(Make decision using Hypothesis Testing)

```
In [15]: Sci_Tech = dataset[dataset['degree_t']=="Sci&Tech"]['salary']
   Mkt_HR = dataset[dataset['specialisation']=="Mkt&HR"]['salary']

from scipy import stats
   print(stats.ttest_ind(Sci_Tech, Mkt_HR))

print("Accept Alternate Hypothesis since p value is less than 0.05. Threfore
```

TtestResult(statistic=2.692041243555374, pvalue=0.007897969943471179, df=15 2.0)

Accept Alternate Hypothesis since p value is less than 0.05. Threfore, there is a similarity between the $degree_t(Sci\&Tech)$ and specialisation(Mkt&HR) with respect to salary

9) Convert the normal distribution to standard normal distribution for salary column

```
mean=dataset.mean()
std=dataset.std()

values=[i for i in dataset]

z_score=[((j-mean)/std) for j in values]

sns.distplot(z_score,kde=True)

sum(z_score)/len(z_score)
#z_score.std()

stdNBgraph(dataset["salary"])
```


10) What is the probability Density Function of the salary range from 700000 to 900000?

```
In [18]: def get_pdf_probability(dataset,startrange,endrange):
    from matplotlib import pyplot
    from scipy.stats import norm
    import seaborn as sns
    ax = sns.distplot(dataset,kde=True,kde_kws={'color':'blue'},color='Greer
    pyplot.axvline(startrange,color='Red')
    pyplot.axvline(endrange,color='Red')
    # generate a sample
    sample = dataset
    # calculate parameters
    sample_mean =sample.mean()
    sample_std = sample.std()
    print('Mean=%.3f, Standard Deviation=%.3f' % (sample_mean, sample_std))
Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js
```

```
# define the distribution
dist = norm(sample_mean, sample_std)

# sample probabilities for a range of outcomes
values = [value for value in range(startrange, endrange)]
probabilities = [dist.pdf(value) for value in values]
prob=sum(probabilities)
print("The area between range({},{}):{}".format(startrange,endrange,sum(return prob)

get_pdf_probability(dataset["salary"],700000,900000)
```

 $\label{eq:mean} \begin{array}{lll} \mbox{Mean=}198702.326, & \mbox{Standard Deviation=}154780.927 \\ \mbox{The area between } \mbox{range}(700000,900000):0.0005973310593974901 \\ \end{array}$

Out[18]: 0.0005973310593974901

11) Test the similarity between the degree_t(Sci&Tech)with respect to etest_p and mba_p at significance level of 5%.(Make decision using Hypothesis Testing)

```
In [19]: Etest = dataset[dataset['degree_t']=="Sci&Tech"]['etest_p']
MBA = dataset[dataset['degree_t']=="Sci&Tech"]['mba_p']

from scipy import stats
print(stats.ttest_ind(Etest, MBA))

print("Accept Null Hypothesis since p value is Greater than 0.05. Threfore,
```

TtestResult(statistic=4.532000225151251, pvalue=1.4289217003775636e-05, df=1 16.0)

Accept Null Hypothesis since p value is Greater than 0.05. Threfore, there is a significant Difference between the degree_t(Sci&Tech)with respect to ete st p and mba p at significance level of 5%

12) Which parameter is highly correlated with salary?

In [20]:	<pre>dataset[quan].corr()</pre>											
Out[20]:		sl_no	ssc_p	hsc_p	degree_p	etest_p	mba_p	sala				
	sl_no	1.000000	-0.078155	-0.085711	-0.088281	0.063636	0.022327	0.0025				
	ssc_p	-0.078155	1.000000	0.511472	0.538404	0.261993	0.388478	0.5380				
	hsc_p	-0.085711	0.511472	1.000000	0.434206	0.245113	0.354823	0.4525				
	degree_p	-0.088281	0.538404	0.434206	1.000000	0.224470	0.402364	0.4083				
	etest_p	0.063636	0.261993	0.245113	0.224470	1.000000	0.218055	0.1869				
	mba_p	0.022327	0.388478	0.354823	0.402364	0.218055	1.000000	0.1398				
	salary	0.002543	0.538090	0.452569	0.408371	0.186988	0.139823	1.0000				
In [21]:	# SSC_P is Higly correlated with salary with 53%											

13) plot any useful graph and explain it.

```
In [22]: import seaborn as sns
sns.pairplot(dataset)
```

Out[22]: <seaborn.axisgrid.PairGrid at 0xla778al1610>

Phone Number: +91 9444333914

E Mail mail@banish.in

Website https://www.banish.in/

Prepared by Banish J Mentored by Ramisha Rani Mam