Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский университет ИТМО» Факультет программной инженерии и компьютерной техники Направление подготовки 09.03.04 «Программная инженерия» – Системное и прикладное программное обеспечение

УИР №2

«Марковские модели систем массового обслуживания»

По моделированию

Вариант: 16/31

студенты 3 курса
Барсуков Максим Андреевич
Горляков Даниил Петрович
Группа: Р3315
Принял:
Алиев Тауфик Измайлович
Отчёт принят « <u>»</u> 2024 г.
Оценка:

Выполнили:

Задание

Цель работы

Изучение метода марковских случайных процессов и его применение для исследования простейших моделей – систем массового обслуживания (СМО) с однородным потоком заявок.

Содержание отчета

Разработка и расчет марковских моделей одно- и многоканальных СМО с однородным потоком заявок и выбор наилучшего варианта построения СМО в соответствии с заданным критерием эффективности. В процессе исследований для расчета характеристик функционирования СМО используется программа MARK

Этапы работы

- 1. Разработка марковских моделей исследуемых систем.
- 2. Освоение программы MARK.
- 3. Проведение расчетов по разработанным моделям и обработка результатов.
- 4. Анализ полученных результатов.
- 5. Выбор наилучшего варианта организации системы из двух вариантов в соответствии с заданным критерием эффективности

Порядок выполнения работы

- 1. Получить вариант работы.
- 2. Построить графы переходов для заданных СИСТЕМЫ 1 и СИСТЕМЫ 2.
- 3. С использованием программы MARK рассчитать характеристики марковского процесса для СИСТЕМЫ 1 и СИСТЕМЫ 2.
- 4. Проанализировать характеристики функционирования системы.
- 5. Выбрать и обосновать наилучший способ организации системы в соответствии с заданным критерием эффективности.

Содержание отчета

- 1. Постановка задачи и исходные данные.
- 2. Описание исследуемой системы.
- 3. Перечень состояний марковского процесса для исследуемой системы.
- 4. Результаты работы:
 - а. размеченный граф переходов марковского процесса;
 - b. матрица интенсивностей переходов;
 - с. значения стационарных вероятностей, сведенные в таблицу (форма 1);
 - d. формулы, используемые для расчета характеристик системы и значения характеристик системы, сведенные в таблицы (форма 2);
 - е. результаты (графики и выводы) сравнительного анализа характеристик функционирования исследуемых систем;
 - f. обоснование выбора наилучшего варианта организации системы в соответствии с заданным критерием эффективности.

Исходные данные

Таблица 1. Параметры структурной и функциональной организации исследуемых систем

Вариант	Сист	тема 1	Система 2					
	Приборы	Емкость Накопителей	Приборы	Емкость Накопителей				
16/31	3	1/1/0	2 (H ₂)	2				

Критерий эффективности: (а) максимальная производительность системы.

Таблица 2. Параметры нагрузки

Номер варианта	Интенс. потока	Ср.длит.обслу ж.	Вероятности занятия прибора							
	λ , 1/c	b , c	П1	П2	П3					
15	1,0	2	0,6	0,25	0,15					

Выполнение

Система 1

Описание исследуемой системы

- Система содержит 3 обслуживающих прибора
- Поток поступающих в систему заявок однородный
- Длительность обслуживания заявок в приборе случайная величина
- Перед первым и вторым прибором есть 1 место для заявок, ожидающих обслуживания и образующих очередь. Перед третьим прибором 0 мест, заявка идет сразу в прибор.
- Поступающие в систему заявки образуют простейший поток с интенсивностью λ.
- Длительность обслуживания заявок в приборе распределена по экспоненциальному закону с интенсивностью $\mu = 1/b$, где b средняя длительность обслуживания.
- Дисциплина буферизации с потерями: заявка, поступившая в систему и заставшая накопитель заполненным, теряется.
- Дисциплина обслуживания в порядке поступления по правилу «first come first served».
- Заявка, поступившая в систему, с заданной вероятностью занятия прибора направляется к соответствующему прибору и ставится в очередь, либо теряется, если накопитель заполнен или отсутствует

Рисунок 1. Схематичное представление Системы 1.

- Интенсивность входного потока: $\lambda = 1 \text{ c}^{-1}$
- Средняя длительность обслуживания b = 2 c
- Интенсивность обслуживания прибора: $\mu = \frac{1}{2} = 0.5 \text{ c}^{-1}$

Классификация каждого из приборов по Кендаллу:

- 1. M/M/1/1
- 1. M/M/1/1
- 2. M/M/1/0

Перечень состояний:

Обозначим состояние системы как n1/q1/n2/q2/n3, где

- n1 число заявок на П1, q1 число заявок в очереди на П1.
- n2 число заявок на П2, q2 число заявок в очереди на П2.
- n3 число заявок на П3, очередь отсутствует.

Таблица 3. Перечень возможных состояний Системы 1

№ состояния	Обозначение	Описание
S0	0/0/0/0/0	В системе нет заявок
S1	1/0/0/0/0	В системе 1 заявка, обрабатываемая на П1
S2	0/0/1/0/0	В системе 1 заявка, обрабатываемая на П2
S3	0/0/0/0/1	В системе 1 заявка, обрабатываемая на ПЗ
S4	1/0/1/0/0	В системе 2 заявки, обрабатываемые на П1 и П2
S5	1/0/0/0/1	В системе 2 заявки, обрабатываемые на П1 и П3
S6	0/0/1/0/1	В системе 2 заявки, обрабатываемые на П2 и П3
S7	1/1/0/0/0	В системе 2 заявки, обрабатываемая на П1 и в очереди на П1
S8	0/0/1/1/0	В системе 2 заявки, обрабатываемая на П2 и в очереди на П2
S9	1/0/1/0/1	В системе 3 заявки: на П1, П2, П3
S10	1/1/0/0/1	В системе 3 заявки: на П1, П3, и в очереди на П1.
S11	0/0/1/1/1	В системе 3 заявки: на П2, П3, и в очереди на П2.
S12	1/1/1/0/0	В системе 3 заявки: на П1, П2, и в очереди на П1.
S13	1/0/1/1/0	В системе 3 заявки: на П1, П2, и в очереди на П2.
S14	1/1/1/0/1	В системе 4 заявки: на П1, П2, П3, и в очереди на П1.
S15	1/0/1/1/1	В системе 4 заявки: на П1, П2, П3, и в очереди на П2.
S16	1/1/1/1/0	В системе 4 заявки: на П1 и П2, и в очередях на П1 и П2.
S17	1/1/1/1/1	В системе 5 заявок: на П1, П2, П3, и в очередях на П1 и П2.

Рисунок 2. Граф переходов Системы 1.

N.B. Каждое соединение двунаправленное.

C1	S0	S1	S2	S3	S4	S5	S6	S7	S8	S9	S10	S11	S12	S13	S14	S15	S16	S17
S0	-1	0,6	0,25	0,15														
S1	0,5	-1,5			0,25	0,15		0,6										
S2	0,5		-1,5		0,6		0,15		0,25									
S3	0,5			-1,35		0,6	0,25											
S4		0,5	0,5		-1,85								0,6	0,25				
S5		0,5		0,5		-1,85				0,25	0,6							
S6			0,5	0,5			-1,85			0,6		0,25						
S7		0,5						-0,9			0,15		0,25					
S8			0,5						-1,25			0,15		0,6				
S9						0,5	0,5			-1,85					0,6	0,25		
S10						0,5		0,5			-1,25				0,25			
S11							0,5		0,5			-1,6				0,6		
S12					0,5			0,5					-1,25				0,25	
S13					0,5				0,5					-1,75		0,15	0,6	
S14										0,5	0,5				-1,25			0,25
S15										0,5		0,5		0,5		-2,1		0,6
S16													0,5	0,5			-1,15	0,15
S17															0,5	0,5	0,5	-1,5

Таблица 4. Матрица интенсивностей переходов Системы 1.

p0	p1	p2	р3	p4	p5	p6	p7	p8
0,150635	0,117448	0,062942	0,120881	0,025221	0,074269	0,072665	0,072091	0,015622
p9	p10	p11	p12	p13	p14	p15	p16	p17
0,049536	0,061319	0,017945	0,036974	0,021110	0,042547	0,016405	0,026124	0,016266

Таблица 5. Значения стационарных вероятностей в точках Системы 1.

$$\lambda_1 = 0.6; \lambda_2 = 0.25; \lambda_3 = 0.15$$

Хар-ка	Приб ор	Расчетная формула	Сист.1
Нагрузка	П 1	$y_1 = \lambda_1 \times b$	1.2
	П2	$y_2 = \lambda_2 \times b$	0.5
	П3	$y_3 = \lambda_3 \times b$	0.3
	Сумм	$Y = y_1 + y_2 + y_3$	2
Загрузка	П1	$\rho_1 = 1 - (p_0 + p_2 + p_3 + p_6 + p_8 + p_1)$	0.559310
	П2	$\rho_2 = 1 - (p_0 + p_1 + p_3 + p_5 + p_7 + p_{10})$	0.403357
	П3	$\rho_3 = 1 - (p_0 + p_1 + p_2 + p_4 + p_7 + p_8 + p_{12} + p_{13} + p_{16})$	0.471833
	Сумм	$\rho = (\rho_1 + \rho_2 + \rho_3)/3$	0.478166
Вероятно	П1	$\pi_{1} = p_{7} + p_{10} + p_{12} + p_{14} + p_{16} + p_{17}$	0.255321
СТЬ	П2	$\pi_2 = p_8 + p_{11} + p_{13} + p_{15} + p_{16} + p_{17}$	0.113472
потери	П3	$\pi_3 = \rho_3$	0.471833
	Сумм	$\pi = 0.6 \times \pi_1 + 0.25 \times \pi_2 + 0.15 \times \pi_3$	0.252335
Длина	П1	$l_1 = p_7 + p_{10} + p_{12} + p_{14} + p_{16} + p_{17}$	0.255321
очереди	П2	$l_2 = p_8 + p_{11} + p_{13} + p_{15} + p_{16} + p_{17}$	0.113472
	П3	$l_3 = 0$	0
	Сумм	$l = l_1 + l_2 + l_3$	0.368793
Число	П1	$m_{1} = l_{1} + \rho_{1}$	0.814631
заявок в системе	Π2	$m_2 = l_2 + \rho_2$	0.516829
CNICTEINIC	П3	$m_3 = l_3 + \rho_3$	0.471833
	Сумм	$m = m_1 + m_2 + m_3$	1.803293
Произ	Π1	$\lambda_{1}^{'} = (1 - \pi_{1}) \times \lambda_{1}$	0.446807
водительн ость	Π2	$\lambda_2 = (1 - \pi_2) \times \lambda_2$	0.221632
	П3	$\lambda_{3}^{'} = (1 - \pi_{3}) \times \lambda_{3}$	0.079225
	Сумм	$\lambda = \lambda_1 + \lambda_2 + \lambda_3$	0.747664
Коэффиц	П1	$\eta_1 = 1 - \rho_1$	0.44069
простоя	Π2	$\eta_2 = 1 - \rho_2$	0.596643
простоя системы	П3	$\eta_3 = 1 - \rho_3$	0.528167
	Сумм	$\eta = 1 - \rho$	0.521833
Время	П1	$w_1 = l_1/\lambda_1$	0.571434
ожидания	Π2	$w_2 = l_2/\lambda_2$	0.511983

	П3	$w_3 = l_3/\lambda_3$	0
	Сумм	$w = l/\lambda'$	1.112433
Время	П1	$u_1 = w_1 + b$	2.571434
пребыван	П2	$u_2 = w_2 + b$	2.511983
ия	П3	$u_3 = w_3 + b$	2
	Сумм	u = w + b	3.112433

Таблица 6. Характеристики Системы 1.

Система 2

Описание исследуемой системы

- Система содержит 2 обслуживающих прибора
- Поток поступающих в систему заявок однородный
- Длительность обслуживания заявок в П1 случайная величина
- Перед первым и вторым прибором есть 2 места для заявок, ожидающих обслуживания и образующих очередь.
- Поступающие в систему заявки образуют простейший поток с интенсивностью λ.
- Длительность обслуживания заявок в П1 распределена по экспоненциальному закону с интенсивностью μ = 1/b, где b средняя длительность обслуживания.
- Длительность обслуживания заявок в $\Pi 2$ распределена по гиперэкспоненциальному закону с коэффициентом вариации v = 2.

$$q \le \frac{2}{1+v^2} = 0.4$$

b = 2 c, выбираем $q = \frac{1}{7}$

$$b'_{1} = [1 + \sqrt{\frac{1-q}{2q}(v^{2}-1)}]b = [1 + \sqrt{\frac{1-\frac{1}{7}}{2\frac{1}{7}}(2^{2}-1)}] * 2 = 8 \rightarrow \mu_{1} = \frac{1}{8} = 0.125$$

$$b'_{2} = [1 - \sqrt{\frac{q}{2(1-q)}(v^{2}-1)}]b = [1 - \sqrt{\frac{\frac{1}{7}}{2(1-\frac{1}{7})}(2^{2}-1)}]*2 = 1 \rightarrow \mu_{2} = \frac{1}{1} = 1$$

Проверка условия:
$$qb'_1 + (q-1)b'_2 = b \rightarrow \frac{1}{7}*8 + \frac{6}{7}*1 = \frac{14}{7} = 2$$

- Дисциплина буферизации с потерями: заявка, поступившая в систему и заставшая накопитель заполненным, теряется.
- Дисциплина обслуживания в порядке поступления по правилу «first come first served».
- Заявка, поступившая в систему, с заданной вероятностью занятия прибора направляется к соответствующему прибору и ставится в очередь, либо теряется, если накопитель заполнен или отсутствует

Рисунок 1. Схематичное представление Системы 2.

• Интенсивность входного потока: $\lambda = 1 \text{ c}^{-1}$

Классификация каждого из приборов по Кендаллу:

- 1. M/M/1/2
- 2. M/H₂/1/2

Перечень состояний:

Обозначим состояние системы как

n1/n2 q1/q2,

где

- n1 число заявок на П1, q1 число заявок в очереди на П1.
- n2 число заявок на П2, q2 число заявок в очереди на П2.

Таблица 7. Перечень возможных состояний Системы 2

№ состояния	Обозначение	Описание
S0	0/0 0/0	В системе 0 заявок
S1	1/0 0/0	В системе 1 заявка, обрабатываемая на П1
S2	0/1 ₁ 0/0	В системе 1 заявка, обрабатываемая на первом этапе П2
S3	0/1 ₂ 0/0	В системе 1 заявка, обрабатываемая на втором этапе П2
S4	1/0 1/0	В системе 2 заявки, обрабатываемая на П1 и в очереди на П1
S5	1/1 ₁ 0/0	В системе 2 заявки, обрабатываемые на П1 и первом этапе П2
S6	1/1 ₂ 0/0	В системе 2 заявки, обрабатываемые на П1 и втором этапе П2
S7	0/1 ₁ 0/1	В системе 2 заявки, обрабатываемая на первом этапе П2 и в очереди на П2
S8	0/1 ₂ 0/1	В системе 2 заявки, обрабатываемая на втором этапе П2 и в очереди на П2
S9	1/0 2/0	В системе 3 заявки: на П1 и 2 в очереди на П1
S10	1/1 ₁	В системе 3 заявки: на П1, первом этапе П2, и в очереди на П1.

	1/0	
S11	1/1 ₁ 0/1	В системе 3 заявки: на П1, первом этапе П2, и в очереди на П2.
S12	1/1 ₂ 1/0	В системе 3 заявки: на П1, втором этапе П2, и в очереди на П1.
S13	1/1 ₂ 0/1	В системе 3 заявки: на П1, втором этапе П2, и в очереди на П2.
S14	0/1 ₁ 0/2	В системе 3 заявки: на первом этапе П2, и 2 в очереди на П1.
S15	0/1 ₂ 0/2	В системе 3 заявки: на втором этапе П2, и 2 в очереди на П1.
S16	1/1 ₁ 2/0	В системе 4 заявки: на П1, первом этапе П2 и 2 в очереди на П1.
S17	1/1 ₂ 2/0	В системе 4 заявки: на П1, втором этапе П2 и 2 в очереди на П1.
S18	1/1 ₁ 0/2	В системе 4 заявки: на П1, первом этапе П2 и 2 в очереди на П2.
S19	1/1 ₂ 0/2	В системе 4 заявки: на П1, втором этапе П2 и 2 в очереди на П2.
S20	1/1 ₁ 1/1	В системе 4 заявки: на П1, первом этапе П2 и в очереди на П1 и П2.
S21	1/1 ₂ 1/1	В системе 4 заявки: на П1, втором этапе П2 и в очереди на П1 и П2
S22	1/1 ₁ 2/1	В системе 5 заявок: на $\Pi1$, первом этапе $\Pi2$ и 2 в очереди на $\Pi1$, 1 в очереди на $\Pi2$.
S23	1/1 ₂ 2/1	В системе 5 заявок: на $\Pi1$, втором этапе $\Pi2$ и 2 в очереди на $\Pi1$, 1 в очереди на $\Pi2$.
S24	1/1 ₁ 1/2	В системе 5 заявок: на П1, первом этапе П2 и 2 в очереди на П2, 1 в очереди на П1.
S25	1/1 ₂ 1/2	В системе 5 заявок: на $\Pi1$, втором этапе $\Pi2$ и 2 в очереди на $\Pi2$, 1 в очереди на $\Pi1$.
S26	1/1 ₁ 2/2	В системе 6 заявок: на П1, первом этапе П2 и 2 в очереди на П2, 2 в очереди на П1.
S27	1/1 ₂ 2/2	В системе 6 заявок: на П1, втором этапе П2 и 2 в очереди на П2, 2 в очереди на П1.

Рисунок 2. Граф переходов Системы 2.

N.B. Каждое соединение без стрелки двунаправленное.

C2	S0	S1	S2	S3	S4	S5	S6	S7	S8	S9	S10	S11	S12	S13	S14	S15	S16	S17	S18	S19	S20	S21	S22	S23	S24	S25	S26	S27
S0	-1,5	0,6	0,0571	0,3428																								
S1	0,5	-1,5			0,6	0,0571	0,3428																					
S2	0,125		-1,125			0,6		0,4																				
S3	1			-2			0,6		0,4																			
S4		0,5			-1,5					0,6	0,0571		0,3428															
S5		0,125	0,5			-1,625					0,6	0,4																
S6		1		0,5			-2,5						0,6	0,4														
S7			0,0178	0,1071				-1,125				0,6			0,4													
S8			0,1428	0,8571					-2					0,6		0,4												
S9					0,5					-0,9							0,0571	0,3428										
S10					0,125	0,5					-1,625						0,6				0,4							
S11						0,0178	0,1071	0,5				-1,625							0,4		0,6							
S12					1		0,5						-2,5					0,6				0,4						
S13						0,1428	0,8571		0,5					-2,5						0,4		0,6						
S14								0,0178	0,1071						-0,725				0,6									
S15								0,1428	0,8571							-1,6				0,6								
S16										0,125	0,5						-1,025						0,4					
S17										1			0,5					-1,9						0,4				
S18												0,0178	3	0,1071	0,5				-1,225						0,6			
S19												0,1428	3	0,8571		0,5				-2,1						0,6		
S20											0,0178	0,5	0,1071								-1,625		0,6		0,4			
S21											0,1428		0,8571	0,5								-2,5		0,6		0,4		
S22																	0,0178	0,1071			0,5		-1,025				0,4	
S23																	0,1428	0,8571				0,5		-1,9				0,4
S24																			0,5		0,0178	0,1071			-1,225		0,6	
S25																				0,5	0,1428	0,8571				-2,1		0,6
S26																							0,0178	0,1071	0,5		-0,625	
S27																							0,1428	0,8571		0,5		-1,5

Таблица 8. Матрица интенсивностей переходов Системы 2.

односторонние стрелки связанные с 0.4

■ 3315_Барсуков_Горляков_УИР2

p0	p1	p2	р3	p4	p5	p6
0,073611	0,088334	0,012393	0,027895	0,106	0,014872	0,033474
p7	p8	p9	p10	p11	p12	p13
0,012379	0,014568	0,1272	0,017847	0,014855	0,040169	0,017482
p14	p15	p16	p17	p18	p19	p20
0,039614	0,005827	0,021416	0,048203	0,047537	0,006993	0,017826
p21	p22	p23	p24	p25	p26	p27
0,020978	0,021392	0,025174	0,057044	0,008391	0,068453	0,010069

Таблица 9. Значения стационарных вероятностей в точках Системы 2.

$$\lambda_1^{} = 0.6; \lambda_2^{} = 0.4$$

Хар-ка	Прибор	Расчетная формула	Сист.1
Нагрузка	П1	$y_1 = \lambda_1 \times b$	1.2
	П2	$y_2 = \lambda_2 \times b$	0.8
	Сумм	$Y = y_1 + y_2$	2
Загрузка	П1	$\rho_1 = 1 - (p_0 + p_2 + p_3 + p_7 + p_8 + p_{14} + p_{15})$	0.813713
	П2	$\rho_2 = 1 - (p_0 + p_1 + p_4 + p_9)$	0.604855
	Сумм	$\rho = (\rho_1 + \rho_2)/2$	0.709284
Вероятность потери	П1	$\pi_{1} = p_{9} + p_{16} + p_{17} + p_{22} + p_{23} + p_{26} + p_{27}$	0.321907
	П2	$\pi_{2} = p_{14} + p_{15} + p_{18} + p_{19} + p_{24} + p_{25} + p_{26} + p_{27}$	0.243928
	Сумм	$\pi = 0.6 \times \pi_1 + 0.4 \times \pi_2$	0.290715
Длина очереди	П1	$l_{1} = p_{4} + p_{10} + p_{12} + p_{20} + p_{21} + p_{24} + p_{25}$	0.912069
		$+2 \times (p_9 + p_{16} + p_{17} + p_{22} + p_{23} + p_{26} + p_{27})$	
	П2	$l_2 = p_7 + p_8 + p_{11} + p_{13} + p_{20} + p_{21} + p_{22} + p_{23} + p_{24}$	0.63251
		$2 \times (p_{14} + p_{15} + p_{18} + p_{19} + p_{24} + p_{25} + p_{26} + p_{27})$	
	Сумм	$l = l_1 + l_2$	1.544579
Число заявок в системе	П1	$m_{1} = l_{1} + \rho_{1}$	1.725782
	П2	$m_2 = l_2 + \rho_2$	1.237365
	Сумм	$m = m_1 + m_2$	2.963147
Произ водительность	П1	$\lambda_{1}^{'} = (1 - \pi_{1}) \times \lambda_{1}$	0.406856
	П2	$\lambda_{2} = (1 - \pi_{2}) \times \lambda_{2}$	0.302429
	Сумм	$\lambda' = \lambda_1' + \lambda_2'$	0.709285

Коэффициент простоя системы	П1	$\eta_1 = 1 - \rho_1$	0.186287
	П2	$\eta_2 = 1 - \rho_2$	0.395145
	Сумм	$\eta = 1 - \rho$	0.581432
Время ожидания	П1	$w_1 = l_1/\lambda_1$	2.241750
	П2	$w_2 = l_2/\lambda_2$	2.091434
	Сумм	$w = l/\lambda'$	2.177658
Время пребывания	П1	$u_1 = w_1 + b$	4.241750
	П2	$u_2 = w_2 + b$	4.091434
	Сумм	u = w + b	4.177658

Таблица 10. Характеристики Системы 2.

Результаты

	система1	система2
Нагрузка	2	2
Загрузка	0,478166	0.709284
Вероятность потери	0.255502	0.290715
Длина очереди	0.368793	1.544579
Число заявок в системе	1.803293	2.963147
Производительность	0.747664	0.709285
Коэффициент простоя системы	0.521833	0.581432
Время ожидания	1.112433	2.177658
Время пребывания	3.112433	4.177658

Таблица 11. Сравнение характеристик.

Вывод

В процессе выполнения учебно-исследовательской работы нами были рассмотрены две системы. Для каждой из систем был составлен перечень состояний, граф переходов между ними и матрица интенсивности переходов, на основе которой были получены стационарные вероятности, с помощью которых были найдены и проверены характеристики систем. Согласно заданному критерию эффективности (максимальная производительность системы) лучший результат был определен у Системы 1, так как ее производительность выше.