Lista 2 - Espaços Métricos - IME USP 2025

Professor: Rodrigo Rey Carvalho

Sobre as aulas de 13/01/2025 - 17/01/2025

Esta lista será utilizada para a avaliação do curso de verão. Escolha dois exercícios dentre os seis abaixo para entregar até dia 23/01.

- 1) Dados (X_1, d_1) , (X_2, d_2) espaços métricos e $f: X_1 \to X_2$ função mostre que são equivalentes:
 - (a) f é contínua;
 - (b) para todo $F \subseteq X_2$ fechado, $f^{-1}[F]$ é fechado em X_1 .
- **2)** Dados (X_1, d_1) , (X_2, d_2) e (X_3, d_3) espaços métricos e $f: X_1 \to X_2$, $g: X_2 \to X_3$ funções, mostre as seguintes implicações:
 - (a) Se f e g são uniformemente contínuas então $g \circ f$ é uniformemente contínua.
 - (b) Se f e g são Lipschitzianas então $g \circ f$ é Lipschitziana.
- 3) Dados (X,d) espaço métrico, \mathbb{R} com a métrica usual e $p \in X$, defina $f: X \to \mathbb{R}$ dada por f(x) = d(p,x). Verifique que f é uma função contínua. (Dica: Usar designaldade triangular para verificar que f é Lipschitziana)
- **4)** Dados (X, d) espaço métrico, \mathbb{R} com a métrica usual e $A \subseteq X$, defina $f: X \to \mathbb{R}$ dada por f(x) = d(x, A). Verifique que f é uma função contínua. O que é o conjunto $f^{-1}[\{0\}]$ em relação a A?
- 5) Seja (X,d) espaço métrico onde d é a métrica 0-1. Prove que as únicas sequências convergentes em X são as eventualmente constantes, isto é, as sequências $s: \mathbb{N} \to X$ tais que existem $x \in X$ e $n \in \mathbb{N}$ satisfazendo s(m) = x para todo $m \geq n$.
- 6) Dados (X_1, d_1) , (X_2, d_2) espaços métricos e $f: X_1 \to X_2$ função mostre que são equivalentes:
 - (a) f é contínua;
 - (b) para qualquer sequência $s: \mathbb{N} \to X_1$ convergente para $x \in X_1$ a sequência $f \circ s: \mathbb{N} \to X_2$ converge em X_2 para f(x).

(Dica: Usar as caracterizações de continuidade por fecho e de fecho por sequência)