PEU 356 Assignment 5

Mohamed Hussien El-Deeb (201900052)

May 26, 2024

Contents

1	5.1.11																						3
	1.1 Prob	lem																					3
	1.2 Solu																						
2	5.1.12																						4
	2.1 Prob	lem																					4
	2.2 Solu	tion										•											4
3																5							
	3.1 Prob																						5
	3.2 Solu	tion										•											5
4	O																						7
	4.1 Prob																						7
	4.2 Solu																						
5																9							
	5.1 Prob	lem																					g
	5.2 Solu																						
6	5.3.2															10							
	6.1 Prob	lem																					10
	6.2 Solu																						
7	5.4.4																						11

7.1	Problem																			1	
7.2	Solution							_	_	_	_		_		_	_			_	1	1

1 5.1.11

1.1 Problem

Using conventional vector notation, evaluate $\sum_{j} |\hat{\mathbf{e}}_{j}\rangle \langle \hat{\mathbf{e}}_{j} | \mathbf{a} \rangle$, where \mathbf{a} is an arbitrary vector in the space spanned by the $\hat{\mathbf{e}}_{j}$.

1.2 Solution

$$\sum_{j} \ket{\hat{\mathbf{e}}_{j}} \braket{\hat{\mathbf{e}}_{j} \mid \mathbf{a}} = \sum_{j} \ket{\hat{\mathbf{e}}_{j}} (\hat{\mathbf{e}}_{j} \cdot \mathbf{a}) = \sum_{j} (\hat{\mathbf{e}}_{j} \cdot \mathbf{a}) \hat{\mathbf{e}}_{j}$$

This is the projection of **a** onto the basis vectors $\hat{\mathbf{e}}_{j}$.

2 5.1.12

2.1 Problem

Letting $\mathbf{a} = a_1\hat{\mathbf{e}}_1 + a_2\hat{\mathbf{e}}_2$ and $\mathbf{b} = b_1\hat{\mathbf{e}}_1 + b_2\hat{\mathbf{e}}_2$ be vectors in \mathbb{R}^2 , for what values of k, if any, is

$$\langle \mathbf{a} | \mathbf{b} \rangle = a_1 b_1 - a_1 b_2 - a_2 b_1 + k a_2 b_2$$

a valid definition of a scalar product?

2.2 Solution

$$\langle \mathbf{a} \mid \mathbf{a} \rangle = (a_1 - a_2)^2 + (k - 1)a_2^2 \ge 0$$

For this to be true, $k \geq 1$.

3 5.2.2

3.1 Problem

Apply the Gram-Schmidt procedure to form the first three Laguerre polynomials:

$$u_n(x) = x^n$$
, $n = 0, 1, 2, \dots$, $0 \le x < \infty$, $w(x) = e^{-x}$.

The conventional normalization is

$$\int_0^\infty L_m(x)L_n(x)e^{-x}dx = \delta_{mn}.$$

ANS.
$$L_0 = 1$$
, $L_1 = (1 - x)$, $L_2 = \frac{2 - 4x + x^2}{2}$.

$$L_n = x^n - \sum_{k=0}^{n-1} \langle x^n \mid L_k \rangle \tilde{L}_k$$

$$\tilde{L}_k = \frac{L_k}{\langle L_k \mid L_k \rangle}$$

$$\hat{L}_k = \frac{L_k}{\sqrt{\langle L_k \mid L_k \rangle}}$$

$$L_0 = 1$$

$$\langle 1 \mid 1 \rangle = \int_0^\infty e^{-x} dx = 1$$

$$\tilde{L}_0 = \frac{L_0}{\langle L_0 \mid L_0 \rangle} = \frac{1}{\langle 1 \mid 1 \rangle} = 1$$

$$\langle x \mid 1 \rangle = \int_0^\infty x e^{-x} dx = 1$$

$$L_{1} = x - \langle x \mid 1 \rangle 1 = x - 1$$

$$\langle x - 1 \mid x - 1 \rangle = \int_{0}^{\infty} (x - 1)^{2} e^{-x} dx = 1$$

$$\tilde{L}_{1} = \hat{L}_{1} = x - 1$$

$$\langle x^{2} \mid 1 \rangle = \int_{0}^{\infty} x^{2} e^{-x} dx = 2$$

$$\langle x^{2} \mid x - 1 \rangle = \int_{0}^{\infty} x^{2} (x - 1) e^{-x} dx = 4$$

$$L_{2} = x^{2} - 2 - 4(x - 1) = x^{2} - 4x + 2$$

$$\langle L_{2} \mid L_{2} \rangle = \int_{0}^{\infty} (x^{2} - 4x + 2)^{2} e^{-x} dx = 4$$

$$\hat{L}_{2} = \frac{x^{2} - 4x + 2}{2}$$

$4 \quad 5.2.4$

4.1 Problem

Using the Gram-Schmidt orthogonalization procedure, construct the lowest three Hermite polynomials:

$$u_n(x) = x^n$$
, $n = 0, 1, 2, \dots$, $-\infty < x < \infty$, $w(x) = e^{-x^2}$.

For this set of polynomials the usual normalization is

$$\int_{-\infty}^{\infty} H_m(x)H_n(x)w(x)dx = \delta_{mn}2^m m! \pi^{1/2}$$
ANS. $H_0 = 1$, $H_1 = 2x$, $H_2 = 4x^2 - 2$.

$$H_n = x^n - \sum_{k=0}^{n-1} \langle x^n \mid H_k \rangle \, \tilde{H}_k$$

$$\tilde{H}_k = \frac{H_k}{\langle H_k \mid H_k \rangle}$$

$$\hat{H}_k = \sqrt{\frac{2^k k! \sqrt{\pi}}{\langle H_k \mid H_k \rangle}} H_k$$

$$H_0 = 1$$

$$\langle H_0 \mid H_0 \rangle = \int_{-\infty}^{\infty} e^{-x^2} dx = \sqrt{\pi}$$

$$\tilde{H}_0 = \frac{H_0}{\langle H_0 \mid H_0 \rangle} = \frac{1}{\langle 1 \mid 1 \rangle} = \frac{1}{\sqrt{\pi}}$$

$$\hat{H}_0 = 1$$

$$H_0 \equiv \hat{H}_0$$

$$\langle x \mid H_0 \rangle = \int_{-\infty}^{\infty} x e^{-x^2} dx = 0$$

$$H_1 = x - \langle x \mid H_0 \rangle \tilde{H}_0 = x$$

$$\langle H_1 \mid H_1 \rangle = \int_{-\infty}^{\infty} x^2 e^{-x^2} dx = \frac{\sqrt{\pi}}{2}$$

$$\tilde{H}_1 = \frac{2x}{\sqrt{\pi}}$$

$$\hat{H}_1 = 2x$$

$$H_1 \equiv \hat{H}_1$$

$$\langle x^2 \mid H_0 \rangle = \int_{-\infty}^{\infty} x^2 e^{-x^2} dx = \frac{\sqrt{\pi}}{2}$$

$$\langle x^2 \mid H_1 \rangle = 2 \int_{-\infty}^{\infty} x^3 e^{-x^2} dx = 0$$

$$H_2 = x^2 - \langle x^2 \mid H_0 \rangle \tilde{H}_0 - \langle x^2 \mid H_1 \rangle \tilde{H}_1 = x^2 - \frac{1}{2}$$

$$\langle H_2 \mid H_2 \rangle = \int_{-\infty}^{\infty} (x^2 - \frac{1}{2})^2 e^{-x^2} dx = \frac{\sqrt{\pi}}{2}$$

$$\hat{H}_2 = 4x^2 - 2$$

5 5.3.1

5.1 Problem

Show (without introducing matrix representations) that the adjoint of the adjoint of an operator restores the original operator, i.e., that $(A^{\dagger})^{\dagger} = A$.

$$\langle \psi | A | \phi \rangle = \langle A^{\dagger} \psi | \phi \rangle = \langle \phi | A^{\dagger} | \psi \rangle^* = \langle (A^{\dagger})^{\dagger} \psi | \phi \rangle^* = \langle \psi | (A^{\dagger})^{\dagger} | \phi \rangle$$

$6 \quad 5.3.2$

6.1 Problem

 ${\cal U}$ and ${\cal V}$ are two arbitrary operators. Without introducing matrix representations of these operators, show that

$$(UV)^{\dagger} = V^{\dagger}U^{\dagger}.$$

Note the resemblance to adjoint matrices.

$$\langle \psi | UV | \phi \rangle = \langle U^{\dagger} \psi | V | \phi \rangle = \langle V^{\dagger} U^{\dagger} \psi | \phi \rangle$$
$$\langle \psi | UV | \phi \rangle = \langle (UV)^{\dagger} \psi | \phi \rangle$$
$$\langle (UV)^{\dagger} \psi | \phi \rangle = \langle V^{\dagger} U^{\dagger} \psi | \phi \rangle$$
$$(UV)^{\dagger} = V^{\dagger} U^{\dagger}$$

7 5.4.4

7.1 Problem

The operator \mathcal{L} is Hermitian. Show that $\langle \mathcal{L}^2 \rangle \geq 0$, meaning that for all ψ in the space in which \mathcal{L} is defined, $\langle \psi | \mathcal{L}^2 | \psi \rangle \geq 0$.

7.2 Solution

$$\langle \psi | \mathcal{L}^2 | \psi \rangle = \langle \psi | \mathcal{L} \mathcal{L} | \psi \rangle = \langle \mathcal{L}^{\dagger} \psi | \mathcal{L} \psi \rangle = \langle \mathcal{L} \psi | \mathcal{L} \psi \rangle$$

By definition of inner product,

$$\langle \mathcal{L}\psi | \mathcal{L}\psi \rangle \ge 0$$

References

 $[1]\,$ M.H. El-Deeb. PEU-356 Assignments.