Solutions by Lucas Chen

lucasch(at)uchicago.edu

This document contains my solutions to the Gradescope assignment named on the top of this page. Specifically, my solutions to the following problems are included:

- 5.15 (page 2)
- 5.18 (pages 3-4)
- 5.22 (page 5)
- 5.28 (page 6)
- 5.41 (pages 7-8)
- 6.15 (pages 9-10)

I did not forget

- to REFRESH my browser for the latest information about each problem
- to link problems to pages.

 This page is linked to the problems I did not solve.
- to update the items marked *** in the template (my name, email, the Gradescope title of the assignment, the list of problems solved, the \lambdahead statements (left page headers: list of (sub)problems solved on each page)
- to make sure no subproblem solution spills over to the next page (except when this is unavoidable, i.e., when the solution to a subproblem does not fit on a page)
- if a problem takes more than one page, I linked each of those pages to the problem
- I took care not to defeat the mechanisms provided by this template.

With each problem, I stated my sources and collaborations.

By submitting this solution *I certify* that *my statement of sources and collaborations is accurate and complete*. I understand that without this certification, my solutions will not be accepted.

In case I am giving a \underline{link} to a source, I am also sending this link to the instructor by email.

5.15 Question.

Let S(n) > 0 for every $n \in \mathbb{N}$ and assume $S(n) \leq 3S(n/2) + O(n)$ for those $n \geq 2$ that are powers of 2. From this information we derived that $S(n) = o(n^{\alpha})$ where $\alpha = \log_2 3 \approx 1.58$.

Prove that $S(n) = o(n^{\alpha})$ does NOT follow from the same information (namely, from the recurrent inequality given and the positivity of S(n). Sources and collaborations.

Answer.

In order to show the desired statement does not follow we may provide a counterexample of some S(n) which satisfies $S(n) \leq 3S(n/2) + O(n)$ but does not satisfy $S(n) = o(n^{\alpha})$. The desired counterexample is provided by $S(n) = n^{\alpha}$ itself: then $\lim_{n\to\infty} \frac{S(n)}{n^{\alpha}} = \lim_{n\to\infty} 1 = 1 \neq 0$ and $3\left(\frac{n}{2}\right)^{\alpha} = n^{\alpha} \geq n^{\alpha}$, satisfying the condition for S(n) but not for $o(n^{\alpha})$.

5.18 Question.

Let T(n) denote the cost of a Divide-and-Conquer algorithm on inputs of size n, so T(n) > 0 for all $n \in \mathbb{N}$. Assume that the function T(n) is monotone non-decreasing, i.e., $(\forall n \in \mathbb{N})(T(n+1) \geq T(n))$. Assume further that for all $n \geq 2$ we have $T(n) \leq 7 \cdot T(\lceil n/2 \rceil) + O(n^2)$. Prove that $T(n) = O(n^{\beta})$ for some constant β . Find the smallest value of β for which this conclusion follows from the assumptions.

Sources and collaborations.

Answer.

We will assume first the stronger condition that $T(n) \leq 7 \cdot T(\lceil n/2 \rceil)$, find the smallest possible value of β , and prove it holds for the more general condition. Take $T_1(n) = n^{\beta}$ for n a power of 2 (we will fill in the rest of $T_1(n)$ later. We find β that satisfies the condition. For some even n we want

$$n^{\beta} \le 7 \left(\frac{n}{2}\right)^{\beta}$$

and we may set $\beta = \log_2(7)$, yielding $n^{\beta} \leq n^{\beta}$. For n not a power of 2, we set $T_1(n) = T_1(2^m)$ where 2^m is the least power of 2 greater than n. Then if $2^m < n \leq 2^{m+1}$ we know $2^{m-1} < \frac{\lceil n \rceil}{2} \leq 2^m$ and

$$T_1(2^{m+1}) = 7T_1(2^m) \implies T_1(n) = 7T_1(\lceil n/2 \rceil)$$

We note that since T_1 satisfies our stronger condition it satisfies the original condition, and if we take a $\beta < \log_2(7)$, then

$$\lim_{m \to \infty} \frac{T_1(2^m)}{2^{m\beta}} = \lim_{m \to \infty} 2^{m(\beta - \log_2(7))}$$

which diverges.

Thus no value of β less than $\log_2(7)$ may follow directly from the assumptions (as we cannot rule out $T_1(n)$).

Theorem 1: If T(n) satisfies $T(n) \le 7 \cdot T(\lceil n/2 \rceil) + O(n^2)$ then $T(n) = O(n^{\beta})$ where $\beta = \log_2(7)$.

Proof: Rewrite the inequality as $T(n) \leq 7 \cdot T(\lceil n/2 \rceil) + Cn^2$, which we are able to do since $O(n^2)$ is bounded by some positive constant multiple of n^2 . We use the method of reverse inequalities. Take $g(n) = An^{\beta} - Dn^2$ for even n and $g(n) = A(n+1)^{\beta} - D(n+1)^2$ for odd n. We aim to find A and D such that

$$g(n-1) = g(n) \ge 7 \cdot g(n/2) + Cn^2 \ge 7 \cdot g(n/2) + C(n-1)^2$$

January 21, 2025

for even n. We solve for

$$An^{\beta} - Dn^2 \ge 7(A(n/2)^{\beta} - D(n/2)^2) + Cn^2$$

Then since $n^{\beta} = 7(n/2)^{\beta}$ this becomes

$$\frac{3}{4}Dn^2 \ge Cn^2$$

We pick $D = \frac{4}{3}C \ge 0$ to satisfy the inequality and A > D so g(n) > 0 (since $\beta > 2$). We take a base case $Kg(1) \ge T(1)$ (and K > 1). Now assuming $Kg(n) \ge T(n)$ we apply both inductive steps:

$$Kg(2n) \ge 7 \cdot Kg(n) + 4KCn^2 \ge 7 \cdot T(n) + 4Cn^2 \ge T(2n)$$

 $Kg(2n-1) \ge 7 \cdot Kg(n) + 4KCn^2 \ge 7 \cdot T(n) + C(2n-1)^2 \ge T(2n-1)$ and thus $Kg(n) \ge T(n)$ for all $n \ge 1$. We note that

$$f(n) = 2An^{\beta} \ge A(n+1)\beta - D(n+1)^2 \ge An^{\beta} - Dn^2$$

meaning $Kf(n) \ge T(n)$ and since Kf(n), T(n) > 0 this yields $T(n) = O(2An^{\beta}) = O(n^{\beta})$ and we are done.

5.22 Question.

Let N be a k-bit positive integer. Prove: $k = \lceil \log_2(N+1) \rceil$.

Sources and collaborations.

Answer. If N is k-bit we must have $2^{k-1} \le N < 2^k$. Since \log_2 is an increasing function this yields:

$$2^{k-1} < N + 1 \le 2^k$$

$$k - 1 < \log_2(N + 1) \le k$$

and thus $\lceil \log_2(N+1) \rceil = k$ as desired.

5.28 Question.

Find two sequences, (a_n) and (b_n) , of positive numbers such that $a_n = \Theta(b_n)$ but the limit $\lim_{n\to\infty} \frac{a_n}{b_n}$ does not exist.

Sources and collaborations.

Answer. We take $a_n=(-1)^n+2$ and $b_n=1$. Then $\frac{a_n}{b_n}=a_n$ which diverges as n approaches infinity.

5.41 Question.

(Communication Complexity) Alice has access to an n-bit integer $X = \overline{x_0x_1 \dots x_{n-1}}$, Bob has access to an n-bit integer $Y = \overline{y_0y_1 \dots y_{n-1}}$. (Initial zeros are permitted; $x_i, y_i \in \{0, 1\}$.) Alice and Bob share a k-bit positive integer q such that $X \not\equiv Y \pmod{q}$. The numbers k and q are known to both of them. The task before Alice and Bob is to find i such that $x_i \neq y_i$. Show that they can accomplish this with no more than $\lceil log_2(n) \rceil \cdot (k+1)$ bits of communication. Describe the protocol in **pseudocode**.

Sources and collaborations.

Answer.

Algorithm:

Binary Search String Comparison

INPUT: X, Y *n*-bit binary integers, q an integer. We assume $X \not\equiv Y \pmod{q}$.

```
1: procedure StringCompare(X, Y, q, n)
       if n = 1 then return 0
       end if
3:
       p := |n/2|
                                                              ▷ Pivot index
4:
       X_2 := X \mod 2^p
                                                ▶ Second half of X, p bits
5:
       Y_2 := Y \mod 2^p
                                                              \triangleright Same for Y
6:
       if X_2 \equiv Y_2 \mod q then
                                      \triangleright Communication, max k+1 bits.
7:
           return StringCompare(|X/2^p|, |Y/2^p|, q, n-p)
8:
       else'
9:
           return n-p + StringCompare(X_2, Y_2, q, p)
10:
                                           \triangleright (First index of X_2 is n-p.)
11:
       end if
12:
13: end procedure
```

Analysis: Correctness: procedure ends when X,Y are both one bit long. We verify that StringCompare is never called on X,Y where $X \equiv Y \mod q$: the else statement ensures this trivially. If X_2 and Y_2 are equivalent then

$$X \not\equiv Y \mod q \implies \frac{X - X_2}{2^p} \not\equiv \frac{Y - Y_2}{2^p} \mod q$$

and thus the procedure may only end on 1-bit non-equivalent X and Y, when it will recursively return the indices of these bits.

Complexity: The only line of communication is the if statement, which requires the mod value of X_2 to be communicated (max k bits) and January 21, 2025

a 1 or 0 communicated back for comparison with Y_2 (1 bit). This line is run a maximum of $\lceil \log_2(n) \rceil$ times, as described in the binary search handout, as the pivot is calculated the same way — thus the algorithm's communication complexity is $\lceil \log_2(n) \rceil \cdot (k+1)$ bits.

8

6.15 Question.

Given an $n \times n$ array A of zeros and ones, find the maximum size of a contiguous square of all ones. (You do not need to locate such a largest all-ones square, just determine its size.) Solve this problem in *linear time*. "Linear time" means the number of steps must be O(size of the input). In the present problem, the size of the input is $O(n^2)$. Manipulating integers between 0 and n counts as one step; such manipulation includes copying, incrementing, addition ad subtraction, looking up an entry in an $n \times n$ array. Describe your solution in **pseudocode**.

Sources and collaborations. Initially iterated back over the array M to find the maximum size. Isaac Chang suggested recording this during each step using a variable, which uses almost the same number of integer manipulations (still equivalent to $O(n^2)$) but removes the need to write out two entire nested loops.

Answer.

Algorithm:

Maximum Square Size

```
INPUT: A: list[list[int]] of size n \times n, n positive integer
1: procedure MaxSquare(A, n)
      M := ARRAY[n] of ARRAY[n] of int
   \triangleright Entry is largest square in A with bottom left corner at indices.
      h := 0
                                         3:
      for 0 \le i < n do
4:
         for 0 \le j < n do
5:
             if i, j > 0 then
6:
                M[i,j] = A[i,j].
   (\min(M[i-1,j-1],M[i,j-1],M[i-1,j])
             else
8:
                M[i,j] = A[i,j]
9:
             end if
10:
             h = \max(h, M[i, j])
11:
         end for
12:
      end for
13:
      return h
15: end procedure
```

Analysis

Correctness: At each index [i, j] the value of h is the maximum square size in the rectangle with top left at [0, 0] and bottom right at [i, j]. The value of M[i, j] is the size of the largest square exactly with its 9 January 21, 2025

bottom right at [i, j]. For a square of size a to have a bottom right at i, j, there must be squares of at least size a-1 with bottom rights in the indices directly above, to the left, and to the upper right diagonal of [i, j], so we check these along with the value of M[i, j]. The maximum size square's bottom right corner will inevitably be iterated over so we will inevitably achieve the maximum size in h.

Complexity: We count the number of integer manipulations:

- Line 3: 1
- Line 4: n-1
- Line 5, run n times: n-1
- Line 6, run n^2 times: 2
- Lines 7-9, run n^2 times: a maximum of 5
- Line 11, run n^2 times: 3

This yields $11n^2 = O(n^2)$ total integer manipulations and we are done.