

Meno:		
Priezvisko:		

Test z matematiky

Celoslovenské testovanie žiakov 9. ročníka ZŠ

T9-2018

Milí žiaci,

máte pred sebou test z matematiky. Test obsahuje 20 testových úloh. Obrázky v teste sú ilustračné. Dĺžky úsečiek a veľkosti uhlov na obrázkoch nemusia presne zodpovedať zadaniam úloh. Svoje riešenia a odpovede zapisujte priamo do testu, následne svoje odpovede prepíšte do odpoveďového hárka. Hodnotené budú len odpovede <u>správne zapísané v odpoveďovom hárku</u>. Každá správna odpoveď bude hodnotená 1 bodom.

Pri 01.-10. úlohe zapíšte do príslušných políčok konkrétny číselný výsledok. Pri 11.-20. úlohe vyznačte jednu zo štyroch možných odpovedí A, B, C, D.

Každú úlohu si pozorne prečítajte. Na vypracovanie testu máte čas 60 minút.

Prajeme vám veľa úspechov.

Vypočítajte a výsledok napíšte v tvare desatinného čísla.

$$\frac{3}{4} - 1\frac{2}{5} + 0.5 =$$

Máme číslo A = 753 672.

Vypočítajte rozdiel čísla A zaokrúhleného na stovky a čísla A zaokrúhleného na desaťtisíce.

Na obrázku je znázornený rovnoramenný lichobežník *CDEF*. Veľkosť uhla α je 73°. Vypočítajte v stupňoch veľkosť uhla β .

Štvorec *JKLM* má strany dĺžky 24 cm. Bod *S* je stredom strany *LM*. Vypočítajte obsah štvoruholníka *JKSM* v cm².

Na obrázku je znázornený trojuholník NET. Bod P je päta výšky tohto trojuholníka z vrcholu T na stranu NE; bod N leží na úsečke PE.

Vieme, že:

|PE| = 16 cm,

|TP| = 12 cm,

|TE| = 20 cm,

|NE| = 7 cm.

Zistite obvod trojuholníka NET v cm.

V stĺpcovom diagrame je znázornené umiestnenie Petra Sagana v jednotlivých etapách Tour de France v roku 2016. Všetkých etáp bolo spolu 21. Koľko percent zo všetkých etáp predstavujú tie etapy, v ktorých skončil na 1. až 3. mieste? Výsledok zaokrúhlite na celé číslo.

Reštaurácia bola v čase obeda plne obsadená. Kým v reštaurácii obsluhovali len traja čašníci, hostia čakali na obedové menu v priemere 45 minút. Koľko minút v priemere budú hostia čakať, ak sa k trom obsluhujúcim čašníkom pridajú ešte ďalší dvaja čašníci obsluhujúci rovnako rýchlo?

Τ

Na hodine fyziky žiaci odhadovali objem smetného koša v triede. Na tabuli je záznam odpovedí 20 žiakov. Skutočný objem tohto smetného koša bol 12 litrov. O koľko litrov sa od tejto hodnoty líši priemerný žiacky odhad?

08

```
objem počet žiakov

5 l ///
6 l ///
8 l //// /
9 l /
10 l //// /
15 l /
```

Zadanie AQUAPARK

V aquaparku sú rôzne bazény: jeden vírivý, jeden plavecký a dva detské. Odporúčaná doba pobytu vo vírivom bazéne je 15 minút a môžu v ňom byť maximálne 4 osoby. Plavecký a detské bazény majú tvar kvádra a ich rozmery sú uvedené v tabuľke.

Rozmery bazéna	Dĺžka (m)	Šírka (m)	Hĺbka (m)
plavecký	25	14,5	1,8
vnútorný detský	5	8	0,6
vonkajší detský	9	8,5	0,4

Na zadanie AQUAPARK sa vzťahujú úlohy 09 a 10

Najviac koľko osôb sa môže vystriedať vo vírivom bazéne za 2 hodiny, ak bude dodržaný aj maximálny počet osôb, aj odporúčaná doba pobytu v tomto bazéne?

09

Pri napúšťaní vnútorného detského bazéna bol kvôli poruche vypnutý prívod vody práve vo chvíli, keď bolo v tomto bazéne napustených 15,6 m³ vody. Koľko percent z celkového objemu tohto bazéna bolo napustených do momentu vypnutia prívodu vody?

10

Brigádnici Ivan, Lea a Dana zarobili spolu 480 eur. Ivan zarobil tretinu z týchto peňazí. Zvyšné peniaze zarobili Lea a Dana v pomere 3 : 1. Koľko eur zarobila Lea?

- **A** 240 €
- **B** 120 €
- **(C)** 320 €
- **D** 80 €

Zuzana má v mobilnom telefóne 5 priečinkov s rôznymi hudobnými štýlmi. V tabuľke sú uvedené ich názvy a počty skladieb, ktoré obsahujú. Doplňte chýbajúce číslo tak, aby pri funkcii náhodného prehrávania hrala rocková skladba s pravdepodobnosťou 21 % ako prvá.

- **(A)** 21
- **B** 32
- **(C)** 36
- **D** 42

Hudobný štýl	Počet skladieb		
hip hop	52		
jazz	11		
disco	79		
rock	?		
vážna hudba	16		

Vstupný test z chémie vo forme A alebo B riešilo spolu 100 žiakov. Každý z nich mal v odpoveďovom hárku uviesť, ktorú formu testu riešil. Piati žiaci to <u>neurobili</u>.

V kruhovom diagrame na obrázku je znázornené rozdelenie testovaných žiakov podľa toho, ktorú formu testu uviedli.

Pri analýze testovanej vzorky žiakov boli vyslovené dve tvrdenia.

- 1. Je možné, že formu A riešilo o 6 žiakov menej ako formu B.
- 2. Je možné, že formu B riešilo o 11 žiakov viac ako formu A.

Posúďte pravdivosť týchto dvoch tvrdení a vyberte správnu možnosť.

- A Len prvé tvrdenie je pravdivé.
- **B** Len druhé tvrdenie je pravdivé.
- C Obidve tvrdenia sú pravdivé.
- D Obidve tvrdenia sú nepravdivé.

Vypočítajte.

$$\frac{1}{3} + \frac{1}{3} \cdot \frac{1}{3} + \frac{1}{3} =$$

- **A** 0,8
- **B** 0,7
- **(C)** 0,5
- (**D** $) 0, \bar{4}$

Vyberte mocninu, ktorá má najväčšiu hodnotu.

- $(\mathbf{A}) 5^2$
- **B** 4³
- **(C)** 3⁴
- **(D)** 2⁵

Najčastejšie formáty papiera majú označenie pozostávajúce z písmena a číslice, napr. A4. Základným formátom radu A je A0. Ďalšie formáty tohto radu (A1, A2, A3,...) vznikajú postupným strihaním listu papiera na polovicu, kolmo na dlhšiu stranu.

Najviac na koľko papierov formátu A6 možno rozstrihnúť papier formátu A2?

- **(A)** 8
- **B** 16
- **(C)** 32
- **D** 64

Drevenú kocku s hranou dĺžky 4 cm sme natreli po celom povrchu zelenou farbou. Potom sme ju rozrezali na malé kocky s hranou dĺžky 1 cm. Počet kociek, ktoré majú práve dve steny zafarbené nazeleno je

- **(A)** 8.
- **B** 12.
- **(C)** 16.
- **D** 24.

Na ľavej strane rovnice je výraz x - 2,4. Zistite, ktorý z výrazov patrí na pravú stranu rovnice, aby rovnica mala koreň x = 2,8.

- **A** $3 \cdot (x 1, 1)$
- **B** $2 \cdot (3 x)$
- (\mathbf{C}) 3 · (x + 1,1)
- \bigcirc 2 · (3 + x)

Zadanie KÚPA BYTU

Manželia Novákovci sa rozhodli pre kúpu bytu. V realitnej kancelárii im ponúkli 4 voľné byty. Údaje o jednotlivých bytoch sú uvedené v tabuľke.

Označenie bytu	Rozloha	Stav bytu	Počet izieb	Cena bytu
byt č. 1	70 m ²	novostavba	3	65 000 €
byt č. 2	56 m²	pôvodný stav	2	32 000 €
byt č. 3	42 m ²	pôvodný stav	2	26 000 €
byt č. 4	65 m ²	prerobený	2	47 000 €

Na zadanie **KÚPA BYTU** sa vzťahujú úlohy č. 19 a 20

Pani Nováková navrhovala byt č. 2, lebo podľa nej má zo všetkých ponúkaných bytov najnižšiu cenu za 1 m². Pán Novák navrhoval byt č. 3, lebo je najlacnejší.

Ktorý z nich správne odôvodnil svoj návrh?

- A Len pani Nováková.
- (B) Len pán Novák.
- C Obidvaja.
- **D** Ani jeden.

Nakoniec sa rozhodli pre dvojizbový byt v pôvodnom stave. Vybrali si ten s väčšou rozlohou. Majú našetrených 17 000 eur, zvyšnú časť ceny si požičajú od banky. Splácať budú 120 eur mesačne po dobu 15 rokov. O koľko eur zaplatia banke viac oproti požičanej sume?

- **A** 4 600 €
- **B** 5 400 €
- **(C)** 6 200 €
- **(D)** 6 600 €

KONIEC TESTU

Prehľad vzťahov a jednotiek

Jednotky dĺžky:

km, m, dm, cm, mm

Jednotky obsahu:

km², ha, a, m², dm², cm², mm²

Jednotky objemu:

km³, m³, dm³, cm³, mm³

hl, l, dl, cl, ml

Jednotky času:

deň, h, min, s

Jednotky hmotnosti:

t, kg, dag, g, mg

Uhly v trojuholníku

$$\alpha + \beta + \gamma = 180^{\circ}$$

Pravouhlý trojuholník

$$c^2 = a^2 + b^2$$
$$S = \frac{a \cdot b}{2}$$

Obvody a obsahy rovinných útvarov

Štvorec

o = 4·a

$$S = a^2$$

Obdĺžnik

 $o = 2 \cdot (a + b)$

$$S = a \cdot b$$

Kosoštvorec

 $o = 4 \cdot a$

$$S = a \cdot v_a$$

Kosodĺžnik

 $o = 2 \cdot (a + b)$

$$S = a \cdot v_a = b \cdot v_b$$

Kruh

 $o = 2 \cdot \pi \cdot r = \pi \cdot d$

$$S = \pi \cdot r^2$$

Lichobežník

o = a + b + c + d

$$S = \frac{(a+c)\cdot v}{2}$$

Trojuholník

o = a + b + c

$$S = \frac{a \cdot v_a}{2} = \frac{b \cdot v_b}{2} = \frac{c \cdot v_c}{2}$$

Objemy a povrchy telies

Kváder

 $V = a \cdot b \cdot c$

 $S = 2 \cdot (a \cdot b + b \cdot c + a \cdot c)$

Kocka

 $V = a^3$

$$S = 6 \cdot a^2$$

Hranol

 $V = S_{D} \cdot V$

$$S = 2 \cdot S_{D} + S_{DI}$$

Valec

 $V = S_{p} \cdot v = \pi \cdot r^{2} \cdot v$

 $S = 2 \cdot S_p + S_{pl}$

 $S = 2 \cdot \pi \cdot r^2 + 2 \cdot \pi \cdot r \cdot v$

 S_p – obsah podstavy, S_{pl} – obsah plášťa