Growth of Function

Analysis of Algorithm

Faculty of Computing and Information Technology (FCIT)
University of the Punjab, Lahore, Pakistan.

Credit

- These notes contain material from Chapter 3 of Cormen, Leiserson, Rivest, and Stein (3rd Edition).
- "Design and Analysis Part 1" by Tim Roughgarden, Stanford University, available at coursera.
- "Algorithms Part 1" by Kevin Wayne and Robert Sedgewick, Princeton University, available at coursera.

Growth of Function

Cost of Basic Operations

operation	example	nanoseconds †	
variable declaration	int a	C 1	
assignment statement	a = b	C ₂	
integer compare	a < b	C 3	
array element access	a[i]	C 4	
array length	a.length	C 5	
1D array allocation	new int[N]	c ₆ N	
2D array allocation	new int[N][N]	C7 N ²	
string length	s.length()	C 8	
substring extraction	s.substring(N/2, N)	C 9	
string concatenation	s + t	C ₁₀ N	

Asymptotic Analysis

High Level Idea

- Suppress constant factors and lower-order terms
 - Constant factors; too system dependent
 - Lower-order terms: irrelevant for large inputs
- Example: an²+bn+c is just O(n²)

Asymptotic Analysis (Cont.)

- Lets assume an algorithm can be represented as f(n); where n is the input size. We need to calculate the running time of f(n).
- We define another function lets call it g(n) which represents the running time of the algorithm.
- Now three inequalities are possible
 - 1. f(n) < g(n)
 - 2. f(n) > g(n)
 - 3. f(n) = g(n)

 We use Big-Oh to represent the worst case running time of an algorithm.

- Upper bound of f(n)
- We define Big-Oh as:

 $O(g(n)) = \{f(n) : \text{ there exist positive constants } c \text{ and } n_0 \text{ such that } 0 \le f(n) \le cg(n) \text{ for all } n \ge n_0 \}$.

Let $f, g : \mathbb{N} \longrightarrow \mathbb{R}^+$ be functions. Define the set

$$O(g(n)) := \{ f : \mathbb{N} \longrightarrow \mathbb{R}^+ : \exists n_0 \in \mathbb{N}^+ : \exists c \in \mathbb{R}^+ : \forall n : n \geq n_0 \rightarrow f(n) \leq c \cdot g(n) \}$$

In words, $f \in O(g)$ if there exist a positive integer n_0 and a positive real c such that $f(n) \le c \cdot g(n)$ for all $n \ge n_0$.

Informally O(g) is the set of functions that are bounded above by g, ignoring constant factors, and ignoring a finite number of exceptions.

If $f \in O(g)$, then we say that "g is an asymptotic upper bound for f"

$$O(g(n)) := \{ f : \mathbb{N} \longrightarrow \mathbb{R}^+ : \exists n_0 \in \mathbb{N}^+ : \exists c \in \mathbb{R}^+ : \forall n : n \geq n_0 \rightarrow f(n) \leq c \cdot g(n) \}$$

- 1. $3^{98} \in O(1)$ [regarding 3^{98} and 1 as (constant) functions of n]. Take $n_0 = 1$ and $c = 3^{98}$.
- 2. $5n^2 + 9 \in O(n^2)$. Take $n_0 = 3$ and c = 6. Then for for all $n \ge n_0$, we have $9 \le n^2$, and so $5n^2 + 9 < 5n^2 + n^2 = 6n^2 = cn^2$.
- 3. Take $g(n) = n^2$ and $f(n) = 7n^2 + 3n + 11$. Then $f \in O(g)$.
- 4. Some more functions in $O(n^2)$: $1000n^2$, n, $n^{1.9999}$, $n^2/\lg \lg \lg n$ and 6.

Lemma 1. Let $f, g, h : \mathbb{N} \longrightarrow \mathbb{R}^+$. Then:

- 1. For every constant c > 0, if $f \in O(g)$ then $c f \in O(g)$.
- 2. For every constant c > 0, if $f \in O(g)$ then $f \in O(cg)$.
- 3. If $f_1 \in O(g_1)$ and $f_2 \in O(g_2)$ then $f_1 + f_2 \in O(g_1 + g_2)$.
- 4. If $f_1 \in O(g_1)$ and $f_2 \in O(g_2)$ then $f_1 + f_2 \in O(\max(g_1, g_2))$.
- 5. If $f_1 \in O(g_1)$ and $f_2 \in O(g_2)$ then $f_1 \cdot f_2 \in O(g_1 \cdot g_2)$.
- 6. If $f \in O(g)$ and $g \in O(h)$ then $f \in O(h)$.
- 7. Every polynomial of degree $l \ge 0$ is in $O(n^l)$.
- 8. For any c > 0 in \mathbb{R} , we have $\lg(n^c) \in O(\lg(n))$.
- 9. For every constant c, d > 0, we have $\lg^c(n) \in O(n^d)$.
- 10. For every constant c > 0 and d > 1, we have $n^c \in O(d^n)$.
- 11. For every constant $0 \le c \le d$, we have $n^c \in O(n^d)$.

Example. Show that

$$57n^3 + 4n^2 \cdot \lg^5(n) + 17n + 498 \in O(n^3)$$

by appealing to Lemma 1.

$$\lg^{5}(n) \in O(n) \qquad :: 9$$

$$4n^{2} \cdot \lg^{5}(n) \in O(4n^{3}) \qquad :: 5$$

$$57n^{3} + 4n^{2} \cdot \lg^{5}(n) + 17n + 498 \in O(57n^{3} + 4n^{3} + 17n + 498) \qquad :: 3$$

$$57n^{3} + 4n^{3} + 17n + 498 \in O(n^{3}) \qquad :: 7$$

$$57n^{3} + 4n^{2} \cdot \lg^{5}(n) + 17n + 498 \in O(n^{3}) \qquad :: 6$$

Example:
$$n^2 + n = O(n^3)$$

Proof:

- Here, we have $f(n) = n^2 + n$, and $g(n) = n^3$
- Notice that if $n \ge 1$, $n \le n^3$ is clear.
- Also, notice that if $n \ge 1$, $n^2 \le n^3$ is clear.
- Side Note: In general, if a ≤ b, then n^a ≤ n^b whenever n ≥ 1. This fact is used often in these types of proofs.
- Therefore,

$$n^2 + n \le n^3 + n^3 = 2n^3$$

We have just shown that

$$n^2 + n \le 2n^3$$
 for all $n \ge 1$

• Thus, we have shown that $n^2 + n = O(n^3)$ (by definition of Big-O, with $n_0 = 1$, and c = 2.)

 $O(g(n)) = \{ f(n) : \text{ there exist positive constants } c \text{ and } n_0 \text{ such that } 0 < f(n) < cg(n) \text{ for all } n > n_0 \}.$

Lets also verify this example for O(n^2)

Asymptotic-Complexity Classes

Class Name	Class Symbol	Example	
Constant	O(1)	Comparison of two integers	
Logarithmic	O(log(n))	Binary Search, Exponentiation	
Linear	<i>O</i> (<i>n</i>)	Linear Search	
Log-Linear	On(log(n))	Merge Sort	
Quadratic	$O(n^2)$	Integer multiplications	
Cubic	$O(n^3)$	Matrix multiplication	
Polynomial	$O(n^a)$, $a\in\mathbb{R}$		
Exponential	$O(a^n)$, $a \in \mathbb{R}$	Print all subsets	
Factorial	O(n!)	Print all permutations	

 $n! \gg 2^n \gg n^3 \gg n^2 \gg n \log n \gg n \gg \log n \gg 1$

Growth Rates of Functions

Growth Rates of Functions

Runtimes of algorithms of different runtime for input size n (on 1GHz PC). Assume that each operation takes 1 ns

n	$O(\log n)$	<i>O</i> (<i>n</i>)	$O(n \log n)$	$O(n^2)$	O(2 ⁿ)	O(n!)
10	$0.003 \mu s$	$0.01 \mu s$	$0.033 \mu s$	$0.1 \mu s$	$1\mu s$	3.63 <i>ms</i>
20	$0.004 \mu s$	$0.02 \mu s$	$0.086 \mu s$	$0.4 \mu s$	1ms	77.1 yrs
30	$0.005 \mu s$	$0.03 \mu s$	$0.147 \mu s$	$0.9 \mu s$	1sec	$8 \cdot 10^{15} \ yrs$
40	$0.005 \mu s$	$0.04 \mu s$	$0.213 \mu s$	$1.6 \mu s$	18.3 <i>min</i>	very long
50	$0.006 \mu s$	$0.05 \mu s$	$0.282 \mu s$	$2.5 \mu s$	13 days	very long
100	$0.007 \mu s$	$0.10 \mu s$	$0.644 \mu s$	$10 \mu s$	$4 \cdot 10^{13} \ yrs$	very long
10 ³	$0.010 \mu s$	$1.00 \mu s$	$9.966 \mu s$	1ms	very long	very long
10 ⁴	$0.013 \mu s$	$10 \mu s$	$130 \mu s$	100 <i>ms</i>	very long	very long
10 ⁵	$0.017 \mu s$	0.10 <i>ms</i>	1.67 <i>ms</i>	10sec	very long	very long
10 ⁶	$0.020 \mu s$	1ms	19.93 <i>ms</i>	16.7 <i>min</i>	very long	very long
107	$0.023 \mu s$	0.01 <i>sec</i>	0.23 <i>sec</i>	1.16 <i>days</i>	very long	very long
10 ⁸	$0.027 \mu s$	0.10 <i>sec</i>	2.66 <i>sec</i>	115.7 days	very long	very long
10 ⁹	$0.030 \mu s$	1sec	29.90 <i>sec</i>	31.7 <i>yrs</i>	very long	very long

Big-Omega (Ω)

We use Big-Omega to represent the best case running

time of an algorithm

Lower bound of f(n)

We define Big-Omega as:

 $\Omega(g(n)) = \{f(n) : \text{ there exist positive constants } c \text{ and } n_0 \text{ such that } 0 \le cg(n) \le f(n) \text{ for all } n \ge n_0 \}$.

Big-Omega (Ω)

Example:
$$n^3 + 4n^2 = \Omega(n^2)$$

Proof:

- Here, we have $f(n) = n^3 + 4n^2$, and $g(n) = n^2$
- It is not too hard to see that if $n \ge 0$,

$$n^3 < n^3 + 4n^2$$

• We have already seen that if $n \ge 1$,

$$n^2 \le n^3$$

• Thus when $n \ge 1$,

$$n^2 \le n^3 \le n^3 + 4n^2$$

• Therefore,

$$1n^2 \le n^3 + 4n^2$$
 for all $n \ge 1$

• Thus, we have shown that $n^3 + 4n^2 = \Omega(n^2)$ (by definition of Big- Ω , with $n_0 = 1$, and c = 1.)

 $\Omega(g(n)) = \{ f(n) : \text{ there exist positive constants } c \text{ and } n_0 \text{ such that } 0 < cg(n) < f(n) \text{ for all } n > n_0 \}.$

Big-Theta (Θ)

Big-Theta represents the range; upper and lower

- Tight bound of f(n)
- We define Big-Theta as:

 $\Theta(g(n)) = \{f(n) : \text{ there exist positive constants } c_1, c_2, \text{ and } n_0 \text{ such that } 0 \le c_1 g(n) \le f(n) \le c_2 g(n) \text{ for all } n \ge n_0 \}$.

Big-Theta (Θ)

Example:
$$n^2 + 5n + 7 = \Theta(n^2)$$

Proof:

• When $n \geq 1$,

$$n^2 + 5n + 7 \le n^2 + 5n^2 + 7n^2 \le 13n^2$$

• When $n \geq 0$,

$$n^2 \le n^2 + 5n + 7$$

• Thus, when $n \geq 1$

$$1n^2 \le n^2 + 5n + 7 \le 13n^2$$

Thus, we have shown that $n^2 + 5n + 7 = \Theta(n^2)$ (by definition of Big- Θ , with $n_0 = 1$, $c_1 = 1$, and $c_2 = 13$.)

 $\Theta(g(n)) = \{f(n) : \text{ there exist positive constants } c_1, c_2, \text{ and } n_0 \text{ such that } 0 \le c_1 g(n) \le f(n) \le c_2 g(n) \text{ for all } n \ge n_0 \}$.

Θ , O, and Ω Comparison

- **a.** $\Theta(g(n)) = \{f(n) : \text{ there exist positive constants } c_1, c_2, \text{ and } n_0 \text{ such that } 0 \le c_1 g(n) \le f(n) \le c_2 g(n) \text{ for all } n \ge n_0 \}$.
- C. $\Omega(g(n)) = \{f(n) : \text{ there exist positive constants } c \text{ and } n_0 \text{ such that } 0 \le cg(n) \le f(n) \text{ for all } n \ge n_0 \}$.
- b. $O(g(n)) = \{f(n) : \text{ there exist positive constants } c \text{ and } n_0 \text{ such that } 0 \le f(n) \le cg(n) \text{ for all } n \ge n_0 \}$.

3-SUM Problem

Given a set of integer array of size n, identify three elements that sum to zero.

3-SUM Problem (Cont.)

```
sort(S);
for i=0 to n-3 do
   a = S[i];
  k = i+1;
   1 = n-1:
  while (k<1) do
      b = S[k];
      c = S[1];
      if (a+b+c == 0) then
         output a, b, c;
         exit;
      else if (a+b+c > 0) then
         1 = 1 - 1;
      else
         k = k + 1;
      end
   end
end
```

Dry run it with following array

```
-25 -10 -7 -3 2 4 8 10 (a+b+c==-25)
-25 -10 -7 -3 2 4 8 10 (a+b+c==-22)
. . .
-25 -10 -7 -3 2 4 8 10 (a+b+c==-7)
-25 -10 -7 -3 2 4 8 10 (a+b+c==-7)
-25 -10 -7 -3 2 4 8 10 (a+b+c==-7)
-25 -10 -7 -3 2 4 8 10 (a+b+c==-3)
-25 -10 -7 -3 2 4 8 10 (a+b+c==2)
-25 -10 -7 -3 2 4 8 10 (a+b+c==0)
```

Source: Wikipedia.com

3-SUM Problem (Cont.)

Try this example:

Source: Wikipedia.com

3-SUM Problem (Cont.)

 Lets try to analyse the running time complexity of 3-SUM problem!