x	n	wynik $\mathbf{F}(x, n)$	
2	2	4	
2	3		
3		81	
	5	32	
2		256	
	10	1024	

3.3.

Uzupełnij tabelę, podając łączną liczbę mnożeń wykonanych w wierszach oznaczonych (*) i (**) po wywołaniu F dla podanych argumentów x i n:

x	n	Liczba operacji mnożenia
2	2	1
2	3	
3	4	
4	7	
4	8	
4	9	

3.4.

Podaj, która z poniższych funkcji określa liczbę wszystkich operacji mnożenia wykonywanych przez powyższy algorytm dla argumentu n będącego potęgą trójki ($n = 3^m$ dla pewnego nieujemnego m):

- $lmnozen(n) = n \operatorname{div} 2$
- $lmnozen(n) = \log_2 n$
- $lmnozen(n) = 2 \cdot \log_3 n$
- $lmnozen(n) = 1 + \sqrt{n}$

Zadanie 4.

Wiązka zadań Silniowy system pozycyjny

Pojęcie silni dla liczb naturalnych większych od zera definiuje się następująco:

$$n! = 1 \cdot 2 \cdot 3 \cdot \dots \cdot (n-1) \cdot n$$

Silniowy system pozycyjny to pozycyjny sposób zapisu liczb naturalnych, w którym mnożniki dla kolejnych pozycji są definiowane przez silnie kolejnych liczb naturalnych, tzn.

$$(x)_1 = (x_n x_{n-1} x_{n-2} \dots x_2 x_1)_1 = x_n \cdot n! + x_{n-1} \cdot (n-1)! + \dots + x_2 \cdot 2! + x_1 \cdot 1!$$

W systemie silniowym współczynnik x_i , który odpowiada mnożnikowi i!, spełnia zależność $0 \le x_i \le i$.

Zapis każdej liczby w silniowym systemie pozycyjnym jest jednoznaczny, tzn. każdą liczbę naturalną można zapisać tylko w jeden sposób i każdą liczbę naturalną można zapisać dokładnie w jeden sposób.

Uwaga: W poniższych zadaniach będziemy mieć do czynienia tylko z takimi liczbami, dla których współczynniki x_i spełniają zależność $0 \le x_i \le 9$.

Przykład

$$(1220)_1 = 1 \cdot 4! + 2 \cdot 3! + 2 \cdot 2! + 0 \cdot 1! = 24 + 12 + 4 + 0 = 40.$$

4.1.

Uzupełnij tabelę. Zamień zapis liczby w systemie silniowym na jej zapis w systemie dziesiętnym.

liczba w systemie silniowym	liczba w systemie dziesiętnym
(310) _!	
(2011) _!	
(54211) _!	

4.2.

Podaj zapis w systemie silniowym największej liczby, jaką można w tym systemie zapisać na pięciu pozycjach.

4.3.

Zamiana zapisu liczby w systemie dziesiętnym na zapis w systemie silniowym może przebiegać według następującego schematu: Szukamy największej liczby k, której silnia nie przekracza liczby x. Pierwsza jej cyfra to wynik dzielenia całkowitego x przez k!. Kolejne cyfry zapisu silniowego (zaczynając od cyfr najbardziej znaczących) otrzymujemy przez wyznaczanie wyników dzielenia liczby x przez (k-1)!, (k-2)!, ..., 2!, 1!. Po wyznaczeniu cyfry x_i , odpowiadającej współczynnikowi i!, zmniejszamy wartość x o liczbę odpowiadającą cyfrze x_i , czyli x_i :i!. Oznacza to, że x przyjmuje wartość x mod k!.

Przykład

x	k	<i>x</i> div <i>k</i> !	<i>x</i> mod <i>k</i> !
1548	6	2	108
108	5	0	108
108	4	4	12
12	3	2	0
0	2	0	0
0	1	0	0

Liczba dziesiętna 1548 w zapisie silniowym: (204200)₁

Wykonaj zamianę liczby 5489 z systemu dziesiętnego na silniowy zgodnie z opisanym powyżej algorytmem. Uzupełnij poniższą tabelkę oraz podaj zapis silniowy liczby 5489.

k	<i>x</i> div <i>k</i> !	$x \mod k!$
	k	k x div k!

Liczba dziesiętna 5489 w zapisie silniowym:

4.4.

Poniżej przedstawiono algorytm z lukami, który zamienia zapis liczb z systemu dziesiętnego na system silniowy. Uzupełnij luki w tym algorytmie.

Specyfikacja

```
Dane:
```

x — liczba całkowita dodatnia zapisana w systemie dziesiętnym,

Wynik:

```
s — napis reprezentujący liczbę x zapisaną w systemie silniowym.
```

```
silnia \leftarrow 1
k \leftarrow 1
dopóki (silnia < x) wykonuj
k \leftarrow k + 1
silnia \leftarrow silnia * k
jeżeli
silnia \leftarrow silnia div k
k \leftarrow k - 1
s \leftarrow ""
dopóki (k>0) wykonuj
cyfra \leftarrow \dots
s \leftarrow s \circ tekst (cyfra)
x \leftarrow \dots
silnia \leftarrow \dots
silnia \leftarrow \dots
silnia \leftarrow \dots
s \leftarrow k \leftarrow k - 1
```

Uwaga

tekst (x) oznacza funkcję zamieniającą liczbę x na jej zapis tekstowy " oznacza napis pusty

 $u \circ v$ oznacza sklejenie dwóch napisów: u oraz v