Geometry of Principal Bundles Lecture 2: Connection on a Principal Bundle

Abstract

A connection on a principal G-bundle is introduced in two equivalent ways: (i) a Lie(G)-valued 1-form on P and (ii) a collection of local Lie(G)-valued 1-form on open sets of M. The key property of a connection is that it induces an affine-connection/covariant derivative on the associated vector bundles $P \times_{\rho} V$. Then, we note that the space of connections is an affine space modeled on $\Omega^1_M(P \times_{ad} Lie(G))$ and discuss the action of the gauge group on the space of connections.

Main Goal: An object on P that induces an affine connection on every vector bundle $P \times_{\rho} V$ associated with P.

Connection on trivial principal G-bundle

Preliminary: the tangent bundle of a Lie group.

Recall, that for \mathbb{R}^n , the tangent spaces in the tangent bundle $T\mathbb{R}^n$ can be canonically identified with \mathbb{R}^n itself. To see this, let $T\mathbb{R}^n = \left\{ (x, v_x) \in \mathbb{R}^n \times \mathbb{R}^n \right\}$ and consider the map:

$$Q: T\mathbb{R}^n \to \mathbb{R}^n$$
$$: (x, v_x) \mapsto v_x.$$

Similarly, for a Lie group G, the tangent spaces in the tangent bundle TG can be canonically identified with Lie(G). To see this, start with the canonical isomorphism $Q_0: T_eG \to Lie(G)$. Next, let $R_g: G \to G$ denote the right action $h*g \mapsto hg$. Differentiating, gives $(R_g)_*: TG \to TG$. Also, let $r_g: Lie(G) \to Lie(G)$ denote the right action $m*g \mapsto g^{-1}mg$. With these in hand, we use Q_0 to define $Q_g: T_gG \to Lie(G)$ as follows:

$$T_{g}G - - - - > Lie(G)$$

$$(R_{g^{-1}})^{*} \bigvee r_{g}$$

$$T_{e}G \xrightarrow{Q_{g}} Lie(G)$$

This gives a map $Q: TG \to Lie(G)$ which is G-equivariant wrt the right action of G on TG and Lie(G).

Example 1. The tangent bundle of $GL_n(\mathbb{R})$.

Recall $T_e(GL_n(\mathbb{R})) = Lie(GL_n(\mathbb{R})) = M_n(\mathbb{R})$. Now given a non-identity matrix $g \in GL_n(\mathbb{R})$, for each $m \in M_n(\mathbb{R})$ we get a path passing through g as follows:

$$t \mapsto g \exp(tm)$$
.

It turns out that paths of the above form captures all the possible paths passing through g up to equivalence. Now differentiating the path at t=0 gives the matrix gm. Thus,

$$T_gGL_n(\mathbb{R}) = \{(g,gm) : m \in M_n(\mathbb{R})\}.$$

Under this representation of $T_gGL_n(\mathbb{R})$, the map $Q:TG\to Lie(G)$ is just

$$Q: TG \to Lie(G)$$

$$: (g, gm) \mapsto m$$

$$: (g, \zeta) \mapsto g^{-1}\zeta$$

$$: (g, \zeta) \mapsto (\zeta g^{-1}) * g.$$

Note: the above also holds for any other matrix Lie group G.

Connection on trivial bundle

Definition 0. Let $P=M\times G$ be a trivial principal G-bundle over M. A <u>connection</u> on $M\times G$ denoted by A is a C^∞ -linear map

$$A: TM \times TG \xrightarrow{G-\text{equi}} TG$$

that is (i) G-equivariant and (ii) satisfies $A(x,0,g,\zeta)=(g,\zeta)$. The second condition says that A is a projection of $TM\times TG$ onto TG.

<u>Remark</u>: Although the above is a good definition of a connection, it is usually better to have the image of A to be the vector space Lie(G) instead of TG. This is achieved by simply post-composing A with Q which maps TG canonically to Lie(G).

In light of the remark, we redefine a <u>connection</u> on $M \times G$ as a Lie(G)-valued 1-form, i.e., a C^{∞} -linear map

$$A: TM \times TG \xrightarrow{G-\text{equi}} Lie(G)$$

that satisfies (i) G-equivariant and (ii) $A(x, 0, g, \zeta) = Q(g, \zeta) = g^{-1}\zeta$. Next, to understand the map A better we decompose it into two parts.

Decomposition of A.

Lemma 1. Given a connection $A: TM \times TG \to Lie(G)$ on the principal bundle $M \times G$, we have the following decomposition

$$A = g^{-1}dg + g^{-1}ag^{-1} \tag{1}$$

where $a:TM \to Lie(G)$ is a Lie(G)-valued 1-form on M.

Proof. Let $(x, v_x, g, \zeta) \in TM \times TG$ and define a Lie(G)-valued 1-form on $M \times G$

$$a: TM \rightarrow Lie(G)$$

 $a(v_x) := A(x, v_x, e, 0).$

Now we have the following computation:

$$A(x, v_x, g, \zeta) = A(x, 0, g, \zeta) + A(x, v_x, g, 0)$$

$$= g^{-1}\zeta + (A(x, v_x, e, 0)) * g$$

$$= g^{-1}\zeta + g^{-1}(A(x, v_x, e, 0))g$$

$$= g^{-1}\zeta + g^{-1}a(v_x)g$$
(2)

where (i) we have used linearity of A, (ii) $A(x,0,g,\zeta)=Q(g,\zeta)=g^{-1}\zeta$ is by definition, and (iii) $A(x,v_x,g,0)=(A(x,v_x,e,0))*g$ is by definition of G-equivariance and *denotes action of G on Lie(G). Calculation (2) now implies the required decomposition. More explicitly, $g^{-1}dg$ denotes the Lie(G)-valued 1-form on $M\times G$ that maps (x,v_x,g,ζ) to $g^{-1}\zeta$; and $g^{-1}ag^{-1}$ is the Lie(G)-valued 1-form on $M\times G$ that maps (x,v_x,g,ζ) to $g^{-1}a(v_x)g$.

<u>Remark</u>: Recall that a covariant derivative on a trivial vector bundle $M \times \mathbb{R}^n$ can be written as:

$$\nabla = d + \Gamma$$

where d is the standard derivative on \mathbb{R}^n and $\Gamma:TM\to M_n(\mathbb{R})=Lie(GL_n(\mathbb{R}))$ is the connection matrix or connection 1-form associated to the covariant derivative. Now note the similarity in decomposition (1) and $\nabla=d+\Gamma$. The first term is the fixed part and the second term is an extra term. Furthermore, both Γ and a appearing in the second terms are Lie(G)-valued 1-forms on M.

<u>Remark</u>: Examining the proof closely, we observe that a connection on $M \times G$ can be defined using $a: TM \to Lie(G)$, a Lie(G)-valued 1-form on M.

Principal bundles over the circle (Digression)

Fix the base manifold $M = S^1$ and a lie group G. Recall, that all principal G-bundles over

 S^1 are isomorphic to the trivial bundle $S^1 \times G$.

Question 1: What is the set of isomorphism classes of connections on $S^1 \times G$? Are they all isomorphic to the trivial connection $g^{-1}dg$?

Answer: The set of isomorphism classes of connections on $S^1 \times G$ is in bijection with the set:

$$\operatorname{Hom}(\pi_1(S^1), G)/G \simeq \{\text{conjugacy classes in } G\}$$

We shall only provide a partial proof here; we refer the interested reader to section 13.2 of [Taubes] for a complete proof. To get a glimpse of the matter, fix a connection A and consider parallel transport around the circle S^1 starting at a point $0 \in S^1$. This defines a map from the fiber $P|_0$ over 0 to itself:

$$f_{A,0}: P|_0 \to P|_0$$

: $G \to G$
: $g \mapsto f_{A,0}(g)$

Now because the connection A is G-equivariant, the parallel transport defined by A is also G-equivariant. Hence,

$$f_{A,0}: P|_0 \to P|_0$$

: $g \mapsto f_{A,0}(e) \cdot g$

Hence, the map $f_{A,0}$ is completely determined by $f_{A,0}(e)$. Now if $f_{A,0}(e)=e$, then $f_{A,0}\equiv \mathrm{Id}$. In this case we can show A is isomorphic the trivial connection $g^{-1}dg$. On the other hand, if $f_{A,0}(e)\neq e$, it can be shown that A is not isomorphic the trivial connection $g^{-1}dg$.

Connection on a principal bundle

Given a possibly non-trivial principal G-bundle, a connection is a map $A: TP \to Lie(G)$ that satisfies certain properties. To understand this better, we turn our attention to TP.

The structure of TP.

The projection $\pi: P \to M$ induces the following sequence of bundle homomorphisms.

$$0 \to \ker(\pi_*) \hookrightarrow TP \xrightarrow{"\pi_*"} \pi^* TM \to 0 \tag{3}$$

More about the sequence:

- 1. Each element of the sequence is a bundle over *P*.
- 2. $\ker(\pi_*)$ is a sub-bundle of TP and is called the <u>vertical subbundle</u> of TP because vectors in $\ker(\pi_*)$ are tangent to the fibers of P. Furthermore, the bundle $\ker(\pi_*)$ is canonically isomorphic to $P \times Lie(G)$. This isomorphism is given by

$$\Psi: P \times Lie(G) \rightarrow \ker(\pi_*)$$

 $\Psi: (p, m) \mapsto (t \mapsto p \cdot \exp(tm)).$

Further, this map is G-equivariant: the right action of G on $P \times Lie(G)$ by $(p,m) \cdot g = (pg,g^{-1}mg)$ and the right action of G on $\ker(\pi_*)$ by $(t \mapsto p \cdot \exp(tm)) \cdot g = (t \mapsto p \cdot \exp(tm) \cdot g)$.

- 3. The map $TP \to \pi^*TM$ is obtained from $\pi_* : TP \to TM$ by sending $(p_{\xi}, \xi) \in TP$ to $(p_{\xi}, \pi_*(\xi)) \in P \times TM$.
- 4. The sequence is exact, that is, for each $p \in P$, the following sequence of vector spaces is exact.

$$0|_p \to \ker(\pi_*)|_p \hookrightarrow TP|_p \to \pi^*TM|_p \to 0|_p$$

5. The group G has a right action on each bundle in the sequence (3). Moreover, the sequence of maps is G-equivariant wrt this G-action. Note: the right action on TP is obtained by the derivative of $R_g: P \to P$ (the right action on G).

Figure 1: Diagram showing how the connection form may be thought of as a projection operator on the tangent space of the principal bundle. (Created by Tazerenix and licensed under CC BY-SA 4.0.)

Definition 1 (global). A $\underline{connection}\ A$ on a principal G-bundle P is a Lie(G)-valued 1-form on P such that

- (i) A is G-equivariant
- (ii) and satisfies $A(\Psi(p, m)) = m$, that is $A(t \mapsto p \cdot \exp(tm)) = m$.

$$\begin{split} A: TP &\xrightarrow{G\text{-equi}} Lie(G) \\ A((R_g)_*\xi) &= g^{-1}A(\xi)g \quad \ \forall \ \xi \in TP \end{split}$$

Here, $R_g: P \to P$ is the right action of G and $(R_g)_*: TP \to TP$ is the derivative of R_g .

<u>Remark</u>: The condition $A(\Psi(p,m)) = m$ can be described as follows: A restricts to the canonical right-invariant form on the vertical sub-bundle of TP. Put differently $A|_{\ker \pi_*} = A|_{P \times Lie(G)} : P \times Lie(G) \to Lie(G)$ is just the projection onto the right factor.

Definition 2 (local). Let P be a principal G-bundle with trivializations $\psi_{\alpha}: P|_{U_{\alpha}} \to U_{\alpha} \times G$. A <u>connection</u> is a collection of Lie(G) valued 1-forms $\{a_{\alpha}\}$:

$$a_{\alpha}: TU_{\alpha} \to Lie(G)$$

that transform as follows under the change of trivializations.

$$a_{\beta} = \tau_{\beta\alpha} a_{\alpha} \tau_{\beta\alpha}^{-1} - d\tau_{\beta\alpha} \tau_{\beta\alpha}^{-1}$$
, or equivalently, $a_{\beta} = \tau_{\alpha\beta}^{-1} a_{\alpha} \tau_{\alpha\beta} + \tau_{\alpha\beta}^{-1} d\tau_{\alpha\beta}$

Relation between definitions.

Lemma 2 (local picture of A). Let $A:TP\to Lie(G)$ be a connection on P. Suppose $\psi_{\alpha}^{-1}:U_{\alpha}\times G\to P|_{U_{\alpha}}$ is a trivialization of P. Let $\left(\psi_{\alpha}^{-1}\right)^*A$ be the pullback Lie(G)-valued 1-form on $U_{\alpha}\times G$. Then, $\left(\psi_{\alpha}^{-1}\right)^*A$ can be decomposed as follows:

$$(\psi_{\alpha}^{-1})^* A = g^{-1} dg + g^{-1} a_{\alpha} g. \tag{4}$$

where $a_{\alpha}: TU_{\alpha} \to Lie(G)$ is a Lie(G)-valued 1-form on U_{α} .

<u>Proof.</u> Consider $U_{\alpha} \times G$ as trivial principal G-bundle over U_{α} . Now note that $\left(\psi_{\alpha}^{-1}\right)^*A$ is a connection on $U_{\alpha} \times G$ as per Definition 0. With this, Lemma 2 follows from Lemma 1.

Let $A:TP\to Lie(G)$ be a connection from Definition 1. Now, Lemma 2 gives a candidate for definition 2: collect all the $\{a_\alpha\}$ obtained by decomposing $\left(\psi_\alpha^{-1}\right)^*A$. To see that $\{a_\alpha\}$ is a connection as per Definition 2, we need to check that these $\{a_\alpha\}$ transform in the right way. This is provided by the Lemma 3 below. Conversely, equation (4) can be used to go the other way round too: start from the RHS and go to LHS.

Lemma 3 (transformation of Lie(G)-valued 1-forms under change of trivializations). Start with the simplicity assumption $U_{\alpha} = U_{\beta}$. Let $U_{\alpha} \times G$ and $U_{\beta} \times G$ be two principal G-bundles. Suppose $U_{\beta} \times G$ has a connection given by

$$A = g^{-1}dg + g^{-1}a_{\alpha}g.$$

Let $T: U_{\beta} \times G \to U_{\alpha} \times G$ be a G-equivariant bundle isomorphism that is given by

$$T: U_{\beta} \times G \to U_{\alpha} \times G$$
$$T: (x,g) \mapsto (x, \tau_{\alpha\beta}(x)g)$$
 where $\tau_{\beta\alpha}: U_{\alpha} \cap U_{\beta} \to G$.

Then, the pullback connection T^*A on $U_{\beta} \times G$ is given by

$$\begin{split} T^*A &= g^{-1}dg + g^{-1} \left(\tau_{\alpha\beta}^{-1} d\tau_{\alpha\beta} + \tau_{\alpha\beta}^{-1} a_{\alpha} \tau_{\alpha\beta}\right) g \\ &= g^{-1} dg + g^{-1} a_{\beta} g \\ \text{where } a_{\beta} &:= \tau_{\alpha\beta}^{-1} d\tau_{\alpha\beta} + \tau_{\alpha\beta}^{-1} a_{\alpha} \tau_{\alpha\beta} \\ &= -d\tau_{\beta\alpha} \tau_{\beta\alpha}^{-1} + \tau_{\beta\alpha} a_{\alpha} \tau_{\beta\alpha}^{-1}. \end{split}$$

<u>Proof.</u> The key is to calculate $T_*: TU_\alpha \times TG \to TU_\beta \times TG$.

$$T_*: TU_{\alpha} \times TG \to TU_{\beta} \times TG$$

$$T_*: \begin{bmatrix} x \\ v_x \\ g \\ \zeta_g \end{bmatrix} \mapsto \begin{bmatrix} x \\ v_x \\ \tau_{\beta\alpha}(x) \cdot g \\ D\tau_{\beta\alpha}(v_x) \cdot g + \tau_{\beta\alpha}(x) \cdot \zeta_g \end{bmatrix}$$

Next, we compute

$$(T^*A)(x, v_x, g, \zeta_g) = A(T_*(x, v_x, g, \zeta_g))$$

$$= A(x, v_x, \tau_{\beta\alpha}g, D\tau_{\beta\alpha}(v_x)g + \tau_{\beta\alpha}\zeta_g)$$

$$= g^{-1}\tau_{\beta\alpha}^{-1}(D\tau_{\beta\alpha}(v_x)g + \tau_{\beta\alpha}\zeta_g) + g^{-1}\tau_{\beta\alpha}^{-1}a_{\alpha}(v_x)\tau_{\beta\alpha}g$$

$$= g^{-1}\zeta_g + g^{-1}(\tau_{\beta\alpha}^{-1}D\tau_{\beta\alpha}(v_x) + \tau_{\beta\alpha}^{-1}a_{\alpha}(v_x)\tau_{\beta\alpha})g.$$

<u>Defining an affine connection on associated vector bundles $P \times_{\rho} V_{\underline{.}}$ </u>

Let P be a principal G-bundle with a connection $A/\{a_\alpha\}$ and let $P\times_\rho V$ be an associated vector bundle. We want to induce an affine connection on $P\times_\rho V$. An affine connection on

a vector bundle can be described in three ways: (1) by a connection matrix, i.e., matrix valued 1-forms, (2) by a covariant derivative $\nabla: T(P\times_{\rho}V) \to T^*M\otimes T(P\times_{\rho}V)$, and (3) parallel transport. We shall see all three descriptions.

1. (Connection matrix). If $a_{\alpha}: TU_{\alpha} \to Lie(G)$ is the connection on P, define the connection matrices

$$\Gamma_{\alpha} := \rho_* \circ a_{\alpha} : TU_{\alpha} \to M(n, \mathbb{R})$$

where $\rho_* : Lie(G) \to M(n, \mathbb{R})$ is the derivative of $\rho : G \to GL(n, \mathbb{R})$ at the identity.

For the viewpoint of covariant derivative and parallel transport, see the appendix at the end of this note.

Proposition 1 (\mathcal{A} is an affine space). Suppose $\pi: P \to M$ is a principal G-bundle. Let \mathcal{A} denote the set of all connections on the principal bundle P. We have the following:

- 1. The difference of two connections is <u>captured</u> by a map $c: TM \xrightarrow{C^{\infty}} P \times_{ad} Lie(G)$
- 2. If $A: TP \to Lie(G)$ is a connection, and $c: TM \xrightarrow{C^{\infty}} P \times_{ad} Lie(G)$, then A + "c" gives another connection.

<u>Takeaway</u>: The set of connections \mathcal{H} on a principal bundle P is an affine space modeled on $C^{\infty}\left(M;\left(P\times_{ad}Lie(G)\otimes T^{*}M\right)\right)=:\Omega^{1}_{M}(P\times_{ad}Lie(G))$. Note that this is an infinite dimensional space. Alternatively, the space $C^{\infty}\left(M;\left(P\times_{ad}Lie(G)\otimes T^{*}M\right)\right)$ can be thought of as $C^{\infty}\left(\pi^{*}TM;Lie(G)\right)$.

<u>Motivation</u>: Here is a related fact: let V be a vector space and $W \subseteq V$ be a subspace. We say a linear map $T: V \to W$ is a projection if T(w) = w. Now we have:

$$\left\{\begin{array}{c} \text{The set of projections} \\ T: V \to W \end{array}\right\} \qquad \begin{array}{c} \longleftarrow \\ \text{bijection} \end{array} \qquad \text{Hom}(V/W, W)$$

The analogy is that connections A are projections from TP to vertical bundle $\ker \pi_*$ and they are in bijection with homorphims from π^*TM to $\ker \pi_*$.

<u>Remark</u>: Recall that the difference of two affine connections on a vector bundle E is a section $TM \to \operatorname{End}(E)$. Now if $E = P \times_{\rho} V$ and the two connections on E are induced from two connections A, A' on P, then we have

$$\nabla_{A'} - \nabla_A = \rho_*(c)$$

where $c:TM\to P\times_{ad}Lie(G)$ is the difference of two connections A-A'; and $\rho_*:P\times_{ad}Lie(G)\to P\times_{\rho} \operatorname{End}(V)$ is the map induced by $\rho_*:Lie(G)\to\operatorname{End}(V)$ which is the derivative of $\rho:G\to GL(V)$ at the identity.

<u>Local viewpoint of observation 1</u>: Let the two connections be $\{a_{\alpha}\}$ and $\{a'_{\alpha}\}$. Now we have $(a_{\alpha} - a'_{\alpha}) : TU_{\alpha} \to Lie(G)$ which transform as follows:

$$(a_{\beta} - a'_{\beta}) = \tau_{\beta\alpha} a_{\alpha} \tau_{\beta\alpha}^{-1} - d\tau_{\beta\alpha} \tau_{\beta\alpha}^{-1} - \tau_{\beta\alpha} a'_{\alpha} \tau_{\beta\alpha}^{-1} + d\tau_{\beta\alpha} \tau_{\beta\alpha}^{-1}$$
$$= \tau_{\beta\alpha} (a_{\alpha} - a'_{\alpha}) \tau_{\beta\alpha}^{-1}$$
$$= (ad \circ \tau_{\beta\alpha}) (a_{\alpha} - a'_{\alpha}).$$

Thus, the collection of data $(a_{\alpha} - a'_{\alpha})$ extends to a map $c: TM \to P \times_{ad} Lie(G)$.

<u>Local viewpoint of observation 2</u>: Let $c: TM \to P \times_{ad} Lie(G)$ and $\{a_{\alpha}\}$ be a connection on P. Write c in local trivializations as maps $c_{\alpha}: TU_{\alpha} \to Lie(G)$ that transform as:

$$c_{\beta} = (ad \circ \tau_{\beta\alpha})(c_{\alpha})$$
$$= \tau_{\beta\alpha}c_{\alpha}\tau_{\beta\alpha}^{-1}$$

where $\tau_{\beta\alpha}$ are the transition maps of P. Now consider the collection $\{a_{\alpha}+c_{\alpha}\}$ consisting of maps $a_{\alpha}+c_{\alpha}: TU_{\alpha} \to Lie(G)$. This collection defines a connection on P because it transforms in the following way:

$$a_{\beta} + c_{\beta} = \tau_{\beta\alpha} a_{\alpha} \tau_{\beta\alpha}^{-1} - d\tau_{\beta\alpha} \tau_{\beta\alpha}^{-1} + \tau_{\beta\alpha} c_{\alpha} \tau_{\beta\alpha}^{-1}$$
$$= \tau_{\beta\alpha} (a_{\alpha} + c_{\alpha}) \tau_{\beta\alpha}^{-1} - d\tau_{\beta\alpha} \tau_{\beta\alpha}^{-1}.$$

Global viewpoint of observation 1: Let A, A': $TP \to Lie(G)$ be two connections on P. The difference A - A' also maps $TP \to Lie(G)$. But observe that vertical subbundle $\ker(\pi_*)$ of TP is in the kernel of A - A'; this is because

$$(A - A')(t \mapsto p \exp(tm)) = m - m$$

= 0.

Put differently, in local trivializations, we have:

$$(\psi_{\alpha}^{-1})^* (A - A') = g^{-1} dg + g^{-1} a_{\alpha} g - g^{-1} dg - g^{-1} a'_{\alpha} g$$
$$= g^{-1} (a_{\alpha} - a'_{\alpha}) g.$$

Coming back to A-A', we claim that $A-A':TP\to Lie(G)$ reduces to a map $b:\pi^*TM\to Lie(G)$. More precisely we have the following fact without proof.

Lemma 4. There is a canonical 1-1 correspondence between G-equivariant maps $TP \to Lie(G)$ that take $\ker(\pi_*)$ to 0 and G-equivariant maps $\pi^*TM \to Lie(G)$.

Note: Lemma 4 is the analog of this linear algebra result: the set of linear maps $T: V_1 \to V_2$ that map the subspace $W \subseteq V_1$ to 0 is in 1-1 correspondence with the set of maps $T: V_1/W \to V_2$. In our case, we should think of π^*TM as $TP/\ker(\pi_*)$. Also, note that the above correspondence does not depend on the connection A or A'.

By Lemma 4, the difference A-A' corresponds to a unique G-equivariant map $b:\pi^*TM\to Lie(G)$. Lastly, any G-equivariant map $b:\pi^*TM\to Lie(G)$ can be reinterpreted as a map $c:TM\to P\times_{ad}Lie(G)$. To see this, given a $(x,v_x)\in TM$, pick any $p\in P_x$ and consider $(p_x,x,v_x)\in\pi^*TM$. Now simply define $c(x,v_x):=[(p,b(p_x,x,v_x))]$. Thus, the A-A' corresponds to a G-equivariant map $c:TM\to P\times_{ad}Lie(G)$ in a canonical way.

Further reading

1. Chapter 11, Taubes, C. H. (2011). *Differential geometry: bundles, connections, metrics and curvature* (Vol. 23). OUP Oxford.

2. Section 2.1.1. Donaldson, S. K., & Kronheimer, P. B. (1990). *The geometry of four-manifolds*. Oxford university press.

Appendix

In this appendix we give two more viewpoints of how a connection on P induces a connection on $P\times_{\rho}V$.

2. (Covariant derivative). Let $s:M\to P\times_{\rho}V$ be a section of $P\times_{\rho}V$. We want to define

$$\nabla s: TM \to P \times_{\rho} V.$$

It is easier to work with $P \times V$ instead of $P \times_{\rho} V$, so we lift the section s to a section $\tilde{s}: P \to P \times V$ which is of the form $\tilde{s}(p) = (p, s_P(p))$.

$$\tilde{s} = \operatorname{Id} \times s_{p} \bigvee_{i}^{\gamma} \bigvee_{p}^{\gamma} \bigvee_{m}^{\gamma} \bigvee_{$$

Similarly, instead of looking for $\nabla s:TM\to P\times_{\rho}V$, we instead look for a lift $\widetilde{\nabla s}:TP\to P\times V$ which is of the form $\widetilde{\nabla s}(p,\xi)=(p,\nabla s_P(p,\xi))$.

Now $s_P: P \to V$. Ordinary differentiation gives $ds_P: TP \to V$. This defines the required lift $\widetilde{\nabla s}: TP \to P \times V$ as $\widetilde{\nabla s}(p,\xi) = (p,ds_P(p,\xi))$. The last step is to find a ∇s whose lift is $\widetilde{\nabla s}$. A priori, there are many sections whose lift is $\widetilde{\nabla s}$, but the connection A, picks out a unique section $\nabla s: TM \to P \times_\rho V$ whose lift is $\widetilde{\nabla s}$. The section ∇s is defined as follows:

$$P \times V \xrightarrow{\text{Id}} P \times V \xrightarrow{} P \times_{\rho} V$$

$$\widetilde{\nabla s} = \text{Id} \times ds_{p} \qquad (G\text{-equiv}) \qquad \nabla s \qquad V$$

$$TP \xleftarrow{} B_{A} \qquad \pi^{*}TM \xrightarrow{} TM$$

Here, B_A is a map canonical inverse of $\pi_*: TP \to \pi^*TM$ obtained from A, that is, B_A is the unique map that satisfies $\pi_* \circ B_A = \operatorname{Id}$ and $A \circ B_A \equiv 0$.

3. (Parallel transport 1). Suppose $\gamma: I \to M$ is a smooth curve and let [(p, v)] be a

starting point. Then we obtain a unique lift $\sigma: I \to P \times_{\rho} V$ starting at [(p, v)] as follows.

- (a) First, lift γ to $\gamma_1: I \to P$ starting at p. This lift should satisfy $A \circ \dot{\gamma}_1 \equiv 0$. Such a lift is unique by local calculation.
- (b) Second, lift γ_1 to $\gamma_2: I \to P \times V$. The lift $\gamma_2(t) := (\gamma_1(t), v)$.
- (c) Lastly, pushforward γ_2 via the quotient map $P \times V \to P \times_{\rho} V$ to get σ , i.e. put $\sigma(t) = [\gamma_2(t)]$.
- 4. (Parallel transport 2). To see parallel transport locally, let $\psi_{\alpha}: P|_{U_{\alpha}} \to U_{\alpha} \times G$ be a trivialization. Given $\gamma: I \to U_{\alpha}$, the lift $\gamma_1(t) = (\gamma(t), g(t))$ is such that:

$$A \circ \dot{\gamma}_1 \equiv 0$$

$$\gamma_1(0) = (\gamma(0), g_0)$$

Now $A = g^{-1}dg + g^{-1}a_{\alpha}g$ in local coordinates; hence:

$$g^{-1}\dot{g} + g^{-1}a_{\alpha}(\dot{\gamma})g = 0$$

$$\gamma_1(0) = (\gamma(0), g_0).$$

Solving the above linear ODE for g(t) with $g(0)=g_0$, gives the required lift γ_1 . Now, σ is just

$$\sigma(t) = (\gamma(t), \rho(g(t))v).$$