

departamento de eletrónica, telecomunicações e informática

Curso 8309 - Mestrado Integrado em Engenharia Eletrónica e Telecomunicações

Disciplina 41489 – Sistemas de Instrumentação Eletrónica

Ano letivo 2021/2022

Relatório

Projeto 3 – Sensor de distância

Autores:

[84739] [Manuel Silva] [84953] [Bruno Santos]

Turma [P2] Grupo 9]

Data [05/04/2022]
Docente [Pedro Fonseca]

Resumo: Este trabalho prático tem como objetivo fazer a medição de distâncias através do sensor

Sharp GP2Y0A21YK0F. Vamos recorrer à placa de desenvolvimento chipKIT MAX32 de forma a disponibilizar uma saída digital da distância medida pelo sensor. Este valor, vai ser usado para variar o *duty cycle* de um sinal PWM, gerado pela MAX32, que é ligado a uma interface 4-20 mA para fazer uma correspondência linear entre a distância e a corrente.

Introdução

Como foi referido no resumo, este trabalho prático consiste na construção de um sistema de medição de distâncias com recurso ao sensor Sharp GP2Y0A21YK0F e ao kit de desenvolvimento chipKIT MAX32.

O utilizador deverá poder observar no seu computador a que distância se encontra o objeto do sensor, através da conversão analógico-digital dos valores recebidos pelo sensor, desde que esteja numa gama de 100 mm a 600 mm. Se o objeto estiver dentro desta gama, devera acender um LED, que tem o objetivo de alertar o utilizador que existe um objeto nessa gama de distâncias ([100 600] mm).

O sistema deverá ainda ter outro instrumento de medida: uma interface 4-20 mA. Trata-se de um circuito que disponibiliza à sua saída uma gama de correntes entre 4 e 20 mA. No caso deste projeto, os 4 mA irão corresponder à distância mais curta possível (100 mm), e por sua vez, os 20 mA devem corresponder à maior distância possível (600 mm).

Para haver comunicação entre o computador do utilizador e a placa MAX32, deverá ser configurada a UART.

Descrição do problema e objetivos

O sensor Sharp GP2Y0A21YK0F, apresentado na figura 1, não apresenta um comportamento linear, como podemos ver na figura 2, retirada do datasheet, desta forma, é necessário encontrar uma forma de obter um sistema de medida linear.

Na figura 3, está ilustrado o diagrama de blocos que foi apresentado no guião deste trabalho prático. Podemos então a partir desse diagrama definir os pontos-chave deste trabalho:

- Dimensionamento do circuito de acondicionamento:
- Dimensionar e otimizar a interface 4-20 mA;
- Otimizar os recursos disponíveis pela MAX32, nomeadamente o máximo aproveitamento possível da gama da ADC, e ter uma boa correspondência entre a distância do objeto e o *duty cycle* do sinal PWM gerado;

Projeto e conceção

Linearização do Sistema

Como já foi referido, a figura 2 indica-nos que o sensor não possui um comportamento linear. Contudo, se considerarmos o inverso da distância, observamos um comportamento bastante mais linear, como podemos ver na figura 4, que foi retirada do *datasheet* do sensor.

Recorrendo ao Excel, obtivemos 7 regressões lineares. Nas distâncias mais curtas ([100, 300] mm), usámos 4 retas pois é nessa gama que existem mais variações do declive do gráfico. As gamas que foram usadas nas curtas distâncias foram: [100, 160] mm, [160, 200] mm, [200, 260] mm e [260,300] mm. Os valores e os gráficos das medidas que fizemos estão apresentados na tabela 1, e na figura 5.

Para as longas distâncias ([300, 600] mm), usámos menos uma reta, uma vez que nessa gama os valores da tensão de saída do sensor sofrem menos variações com o aumentar da distância do objeto. Os valores que medimos podem ser consultados na tabela 2, e as retas obtidas na figura 6.

Por fim, escrevemos em código as equações das retas obtidas, na função *dist2mm.c*, de forma a calcular as distâncias para cada gama.

Resolução da ADC e Sensor

Vemos que a tensão de saúda do sensor varia entre, aproximadamente, 0.5 e 2.3, na gama de distâncias entre

100 e 600 mm.

A ADC do microcontrolador PIC32 é de 10 bits, e a sua resolução é:

$$Resolução_{ADC} = \frac{3.3 - 0}{2^{10} - 1} = 3.23 \text{ mV/nível}$$

No caso do sensor, se apenas considerarmos as gamas relevantes para o trabalho, a resolução é:

$$Resolução_{Sensor} = \frac{2.3 - 0.5}{600 - 100} = 3.6 \text{ mV/mm}$$

Daqui podemos concluir que 1 mm ocupa uma gama considerável em relação à resolução da ADC. Esta situação piora se pensarmos que ainda temos que acondicionar o sinal:

$$Resolução_{Sensor} = \frac{3.3 - 0}{600 - 100} = 6.6 \text{ mV/mm}$$

Estas expressões eram válidas se tivéssemos usado apenas uma reta para linearizar o sistema. Recorrendo novamente às tabelas 1 e 2, podemos determinar as resoluções para as linearizações que fizemos.

Começando pelas distâncias curtas:

$$\begin{split} Resolução_{[100,160]} &= \frac{2.3-1.55}{160-100} = 12,5 \ mV/\ mm \\ Resolução_{[160,200]} &= \frac{1.55-1.3}{200-160} = 6.25 \ mV/\ mm \\ Resolução_{[200,260]} &= \frac{1.3-1.05}{260-200} = 4.17 \ mV/\ mm \\ Resolução_{[260,300]} &= \frac{1.05-0.9}{300-260} = 3.75 \ mV/\ mm \end{split}$$

Verificamos que quanto maior é a distância mais baixa é a resolução, assim, podemos concluir que os valores das distâncias mais curtas são mais confiáveis do que as longas. Vejamos agora para as longas distâncias:

$$\begin{aligned} Resolução_{[300,400]} &= \frac{0.9 - 0.75}{400 - 300} = 2.5 \ mV/mm \\ Resolução_{[400,500]} &= \frac{0.75 - 0.6}{500 - 400} = 1.5 \ mV/mm \\ Resolução_{[500,600]} &= \frac{0.6 - 0.515}{600 - 500} = 0.85 \ mV/mm \end{aligned}$$

Naturalmente, o mesmo se verifica para as longas distâncias, ou seja, quanto maior for a distância menor será a resolução, sendo esses valores menos confiáveis. Visto que a resolução do sensor não é a melhor, vai ser necessário um circuito de amplificação, que ao aumentar as gamas de tensões nos intervalos de distâncias, aumenta a resolução.

Para reduzir o erro das conversões da ADC, em vez de usarmos apenas um registo (ADC1BUF0), usámos a média dos 16 registos disponíveis.

Circuito de acondicionamento e filtragem

Na primeira interação que tivemos com o sensor, reparámos que a tensão de saída se apresentava com bastante ruído. Percebemos logo que havia necessidade de filtrar o sinal. Inicialmente optámos por um filtro passivo pela sua simplicidade, contudo, os resultados da medição eram afetados. Finalmente, optamos por um filtro ativo *Sallen-Key*, representado na figura 7.

No nosso projeto, usamos dois filtros *Sallen-Key*. O primeiro ira ser onde vamos ligar o sensor ao resto do circuito, o segundo serve para filtrar o sinal PWM gerado pela MAX32. Tivemos o cuidado de dimensionar os componentes passivos do filtro, pois já que a frequência do sinal PWM que usámos foi de 60 KHz, logo, vamos precisar de dimensionar o filtro para uma frequência de corte de, pelo menos, 30 KHz. Para esse efeito, as dimensões dos componentes que calculámos foram determinados pela seguinte expressão:

$$fc = \frac{1}{2 * \pi * sqrt(R4 * R5 * C1 * C2)}$$

Obtivemos os seguintes valores para os componentes passívos: C1 = 3.3 nF, C2 = 6.8 nF e R1 = R2 = 10 k Ω

Como foi referido anteriormente, a gama de distâncias a medir foram divididas em duas outras gamas (curtas [100, 300] mm e longas [300, 600] mm). Assim sendo, fizemos um circuito em configuração diferença dedicado para cada uma dessas gamas.

Para isso, é necessário gerar duas tensões de *offset* com valores de, aproximadamente, 0.5 V e 0.9 V. O primeiro trata-se da tensão de saída do sensor á distância de 600 mm, ou seja, o valor mínimo de tensão da gama das longas distâncias, e a segunda é o valor mais baixo de tensão da gama das distâncias curtas.

De forma gerar estas tensões de offset, usámos dois dispositivos TL431, como está ilustrado na figura 8.

Para a tensão de 0.5 V usámos: $R3 = 1k\Omega$ e $R2 = 5k2\Omega$. Por fim, para a tensão de 0.9 V usámos $R3 = 1k\Omega$ e $R2 = 1k78\Omega$. Com estes valores, as tensões de *offset* obtidas foram 0.481 V e 0.907 V.

A figura 9 mostra o esquema do nosso circuito, que vai ser ligado às ADCs da MAX32. Contudo, é preciso dimensionar as resistências do circuito diferença.

Em primeiro lugar é preciso perceber que os *opamps* que foram usados, embora sejam *rail-to-rail*, não disponibilizam à sua saída exatamente o valor da tensão de alimentação. Desta forma, fomos ao *datasheet* do MCP2022, e retirámos o parâmetro *Maximum Output Voltage Swing*, que é 20 mV relativamente ao VDD e 15 mV relativamente ao VSS. Isto quer dizer que a tensão que podemos esperar à saída do *opamp* é:

$$V_{outMax} = 3.3 - 0.02 - 0.015 = 3.265 V$$

Assim é possível dimensionar com mais precisão os ganhos das configurações diferença:

$$G_{Curtas} = \frac{3.265}{2.474 - 0.907} = 2.085 \, V/V$$

$$G_{Longas} = \frac{3.265}{0.907 - 0.481} = 7.668 \, V/V$$

Olhando novamente para a figura 9, podemos concluir que para as curtas distâncias, o ganho também pode ser descrito na seguinte equação:

$$G_{Curtas} = \frac{R8}{R7} = \frac{R9}{R6} = 2.085$$

Se considerarmos que $R7 = R6 = 1k\Omega$, então $R8 = R9 = 2.085 k\Omega$.

No caso das longas distâncias, e ainda recorrendo à figura 9:

$$G_{Longas} = \frac{R11}{R6} = \frac{R10}{R7} = 7.668$$

Com R6 e R7 iguais ao valor que usámos nas curtas distâncias, então R11 = R10 = $7.668 \text{ k}\Omega$.

É importante referir que todo o nosso *hardware* foi alimentado a +5V, contudo, para os *opamps* que usámos no circuito de acondicionamento e nos filtros usámos um regulador de tensão para gerar os 3.3V de alimentação.

Interface 4-20 mA

Como foi referido, este sistema deve ter um instrumento de medida adicional, para além do valor de distância que deve ser imprimido no computador do utilizador. Esse instrumento trata-se da interface 4-20 mA, cujo circuito está ilustrado na figura 10.

A corrente de saída deste circuito deverá variar, dependendo da distância que se encontra o objeto do sensor. Se o objeto se encontrar à distância mínima a medir (100 mm), então a corrente de saída deve ser de 4 mA, caso o objeto esteja a 600 mm, a corrente deve ser de 20 mA.

Para dimensionar os parâmetros deste circuito começámos por criar outra tensão de *offset* de 2.5V, recorrendo a um novo TL431.

De seguida, assumimos que 1 mA é suficiente para polarizar o transístor Q1, podemos então definir um valor para a resistência R15:

$$R15 = \frac{2.5 V}{1 mA} = 2k5 \Omega$$

Podemos dizer também que: $I_{R13} = I_{R15} + I_{R12}$, sendo que: $I_{R12} = \frac{V_{PWM_{DC}}}{R12}$

Desta forma, podemos concluir que:

$$I_{R13} = \frac{V_{PWM_{DC}}}{R12} + 1 \, mA$$
 , $logo: V_{R13} = R13 * I_{R13} = R13 * (\frac{V_{PWM_{DC}}}{R12} + 1 \, mA)$

Assim, assumindo a idealidade do opamp:

$$V_{R14} = V_{R13} = R14 * I_{out} = R13 * \left(\frac{V_{PWM_{DC}}}{R12} + 1 \; mA\right) \; (=) \; I_{out} = \frac{R13}{R14} * \left(\frac{V_{PWM_{DC}}}{R12} + 1 \; mA\right)$$

Sabendo que para $V_{PWM_{DC}} = 0$, a corrente de saída tem que ser 4 mA:

$$4 mA = \frac{R13}{R14} * \left(\frac{0}{R12} + 1 mA\right) (=) R13 = 4 * R14$$

Se usarmos R14 = 68 Ω , então R14 = 272 Ω . Para um melhor funcionamento do circuito, ajustámos o valor de R14 com um potenciómetro à medida que fomos testando. O valor de R14 que proporciona o melhor funcionamento desta interface foi 358 Ω .

Sabemos também que para $V_{PWM_{DC}}=3.3~\mathrm{V}$, a corrente de saída tem que ser 20 mA:

20 mA =
$$\frac{R13}{R14} * \left(\frac{3.3}{R12} + 1\right) (=) R12 = 812,5 \Omega$$

Resultados

Começámos por verificar a relação entre do *duty-cycle* gerado pela MAX32 e a distância a que objeto se encontra do sensor. Por exemplo, para a distância mais longa possível, os resultados obtidos no terminal e o sinal PWM estão disponíveis nas figuras 11 e 12, respetivamente. Fomos afastando o objeto de forma a estar fora da gama pretendida, daí o aparecimento do "E" no terminal, como pode ser visto na figura 11. Com o objeto fora da gama, programamos uma saída digital (RA12) para acender um LED.

Às distâncias mais curtas, movemos o objeto devagar para que se verifique a medição da distância pelo utilizador, como se pode ver na figura 14.

Verificámos também o valor da corrente de saída da interface 4-20 mA. Para um valor mínimo de distância (100 mm), a corrente medida foi 5.51 mA, como pode ser verificado na figura 14. Para as distâncias maiores, a corrente de saída obtida foi 18.90 mA, como indica a figura 15.

Análise dos Resultados

Os valores obtidos para as longas distâncias não são perfeitos, aliás, como é possível de verificar na figura 12, o *duty-cycle* mínimo que conseguimos obter foi de, aproximadamente 9%, o que justifica o facto da interface 4-20, a corrente de saída máximo não chegar bem a 20 mA. Os valores de distância que aparecem no terminal também nunca chegam exatamente aos 600 mm, como se pode ver na figura 11. Como já foi explicado anteriormente, isso deve-se ao facto de, na gama das longas distâncias, o sensor possuir uma diferença de tensão de saída ser muito pequena, tendo uma má resolução.

Embora não existem imagens do *duty-cycle* resultante, o funcionamento do sistema nas curtas distâncias é muito mais confiável, uma vez que foi possível medir com boa precisão o valor da distância no terminal do computador do utilizador. O *duty-cycle* gerado pela MAX32 à distância mínima é de, aproximadamente 98%, o que é bastante bom.

Não podemos dizer o mesmo do valor da corrente de saída da interface 4-20 mA, uma vez que à distância mínima temos 1.5 mA acima do que é suposto. Embora não seja um valor muito bom, foi o melhor que conseguimos obter nesta interface, uma vez que tentámos estabelecer o melhor equilíbrio entre o valor máximo através de ajustes das resistências da interface através de um potenciómetro.

Conclusões

Após a análise dos resultados práticos, e da comparação destes com as especificações do projeto, podemos dizer que os principais objetivos deste trabalho foram cumpridos.

A medição às curtas distâncias foi bastante precisa, já que conseguimos que esta fosse feita com um erro milimétrico. O mesmo se verificou às longas distâncias, embora com um erro consideravelmente maior, uma vez que a distância máxima nunca atinge exatamente os 600 mm, o que irá afetar o funcionamento da interface 4-20 mA, já que o sinal PWM gerado depende unicamente da distância a que se encontra o objeto.

Poderíamos ter usado apenas um TL431 para gerar as tensões de *offset* em vez de três. Isto apenas tornar o *hardware* deste trabalho ligeiramente mais simples, e por estar a desperdiçar mais recursos.

A uma distância de 100 mm, a interface 4-20 mA também não atinge os 4 mA desejados. Tentámos ao máximo ajustar a interface para que a essa distância tenha o valor mais próximo possível de 4 mA. Contudo, concluímos que a melhor solução para este problema seria usarmos resistências de precisão, tal como fizemos para o circuito de acondicionamento de sinal. Para além disso, teria sido mais vantajoso se tivéssemos definido uma gama de transição entre as curtas e as longas distâncias, como nos foi sugerido.

Anexos

Figura 1- Sensor de distância

Figura 2- Relação Tensão-Distância do Sensor

Figura 3- Diagrama de blocos do sistema

Figura 4- Relação de proporcionalidade Inversa da Tensão de saída- Distância

Figura 5- Linearizações para as curtas distâncias

Figura 6- Linearizações para as longas distâncias

Figura 7- Filtro Sallen-Key

Figura 8- Gerador de offset

Figura 9- Circuito de acondicionamento

Figura 10- Interface 4-20 mA

Figura 11- Terminal com os valores da distância em mm (Transição de longas para curtas)

Figura 12- PWM às longas distâncias

Figura 13-Terminal com valores da distância em mm (Transição de curtas para longas distâncias)

Figura 14- Interface 4-20 mA aos 10 cm

Figura 15- Interface 4-20 mA aos 60 cm

Tabela 1

	[100,160]	
mm	mV	ADC
100	3281	1010
110	2872	884
120	2542	782
130	2254	693
140	1954	600
150	1697	521
160	1505	462
	[160-200]	
mm	mV	ADC
160	1505	462
170	1318	404
180	1149	349
190	1019	312
200	930	284
[200,260]		
mm	mV	ADC
200	930	284
210	777	237
220	664	202
230	583	178
240	507	154
250	393	119
260	307	93
[260,300]		
mm	mV	ADC
260	307	93
270	230	69
280	192	57
290	115	33
300	76	21

Tabela 2

	[300,400]	
mm	mV	ADC
300	3291	1013
310	3083	949
320	2933	903
330	2636	814
340	2486	767
350	2338	723
360	2188	676
370	2009	617
380	1854	569
390	1854	563
400	1701	522
[400,500]		
mm	mV	ADC
400	1701	522
410	1548	475
420	1398	429
430	1321	405
440	1245	381
450	1093	334
460	1017	311
470	941	288
480	867	265
490	793	242
500	648	195
[500,600]		
mm	mV	ADC
500	648	195
550	333	100
600	30	7