Intro to Docker

 $\bullet \bullet \bullet$

Luiz Irber
Research Assistant - DIB Lab
CS PhD Student - UC Davis
Supercomputing 16

Bioinformatics

- Pipelines
 - (lots of software dependencies)
- Method development
 - How do I share it?
- -> Fairly large initial setup
- Typically ~GB to TB datasets

Evolution of a bioinformatician

- Prepare analysis in my desktop
- While I'm developing, computer is mostly idle
- Wasted resources while I'm not running anything intensive (or I'm sleeping)
- Need to choose configuration based on peak performance
 - If my analysis need 64 GB of RAM and
 32 cores, do I need it all while I'm preparing scripts?
- Hard to move to other system
 - (because I probably didn't keep track of everything I installed)

Based on: https://www.docker.com/what-docker

Evolution of a bioinformatician: the cloud

- Move my analysis to a cloud server
- Share a server with other users without conflicts. I can choose:
 - Operating system
 - Compiler
 - specific library versions
 - How many CPUs, RAM and storage I want to use
- Allocation of new instances
- I can save an image and share with others

Source: https://www.docker.com/what-docker

Evolution of a bioinformatician: the cloud (Cons)

- Image still is a 'binary blob'
 - O What was installed?
 - Which compiler options or features were used?
 - Saves the whole guest OS
 - Possible solution: configuration
 management (Ansible, Chef, Puppet,
 Salt)
- Opaque resource allocation
 - Once I allocate resources, other VMs
 can't use it (even if my VM is idle)
- Guest OS overhead

Source: https://www.docker.com/what-docker

Evolution of a bioinformatician: containers

- uses the kernel on the host's OS to run multiple guest instances
- Container: Each guest instance
- Each container has its own
 - Root filesystem
 - Processes
 - Memory
 - Devices
 - Network ports
- Isolated application platform

Source: https://www.docker.com/what-docker

Containers vs VMs

- Containers are more lightweight
- No need to install guest OS
- Less CPU, RAM, storage space required
- More containers per machine than VMs
- Greater portability

Happy bioinformatician

- Easier to share pipelines
- Easier to share analysis
- Standardized tools to build upon
- Reproducibility

