Combinatorial Multi-Armed Bandit with General Reward Functions

Wei Chen Wei Hu Fu Li Jian Li Yu Liu Pinyan Lu NIPS 2016

Stochastic Multi-armed Bandit

- A player against m arms
 - select one arm to pull in each round
- Each pulled arm generates a random reward following an unknown distribution
- Observe partial feedbacks
- Goal: collect cumulative reward over multiple rounds as much as possible
- Regret: measure the performance of a bandit algorithm
 - Difference of cumulative reward of optimal solution and the cumulative reward of the bandit strategy

Combinatorial Multi-armed Bandit

- The player selects a subset of arms (a super arm),
 collectively provides a random reward to the player
- Semi-bandit feedback
- Applications: Online advertising, online recommendations, wireless routing
- The action unit is a combinatorial object:
 - A set of advertisements, a route in a wireless network
- The reward depends on unknown stochastic behaviors
 - Users' click through behaviors, wireless transmission quality

Previous work on CMAB

- Linear reward functions
- Non-linear reward functions
 - The expected reward for playing a super arm is a linear combination/non-linear function of the expected outcomes from the constituent base arms
- Many natural reward functions do not satisfy this property
 - Function max(): its expectation depends on the entire distributions of the input random variables, not just their means
 - $X_1 = X_2 \sim \{0,1\}$ with p = 0.5, $\mathbb{E}[\max(X_1, X_2)] = 0.75$
 - $Y_1 = Y_2 \sim U(0,1)$, $\mathbb{E}[\max(Y_1, Y_2)] = \frac{2}{3}$

K-Max Problem

- An application in auctions:
- The auctioneer is repeatedly selling an item to m bidders
- In each round, the auctioneer selects K bidders to bid
- Each of the K bidders independently draws his bid from his private valuation distribution
- The auctioneer uses first-price auction to determine the winner
 - Payment = The largest bid

Expected Utility Maximization Problem

- Maximizing $\mathbb{E}[u(\sum_{i\in S}X_i)]$
 - X_i 's are independent random variables
 - S is decision among all feasible sets
 - *u* is the utility function
- X_i can be the random delay of edge e_i in a routing graph
- S is a routing path in the graph
- u is non-linear to model risk-averse/risk-prone behaviors
 - No longer a function of the means of underlying random variables

Rationale Behind EUM

- A graph with two nodes s and t, two parallel links e_1 and e_2
- e_1 has a fixed length 1
- e_2 has a length of 0.9 with probability 0.9 and a length of 1.9 with probability 0.1
- Risk-averse user: choose e_1 , $u(x) = \begin{cases} 1, x \le 1 \\ 0, x > 1 \end{cases}$
- Risk-prone user: choose e_2 , $u(x) = \frac{1}{x+1}$

Problem formulation

- A set of base arms: E = [m]
- A set of subsets: $\mathcal{F} \subseteq 2^E$
- A probability distribution D over $[0,1]^m$
- Stochastic outcomes: $X = (X_1, ..., X_m) \sim D$
- A reward function: $R: [0,1]^m \times \mathcal{F} \to \mathbb{R}^+$
 - Only depends on the revealed outcomes
- A super arm: each feasible subset of arms $S \in \mathcal{F}$
- Expected reward of choosing a super arm S: $r_D(S) = \mathbb{E}_{X \sim D}[R(X, S)]$

Benchmark

- When the distribution D is known, the optimal algorithm is to choose the optimal super arm in each round
 - $S^* = \operatorname{argmax}_{S \in \mathcal{F}} r_D(S)$
- May be computationally hard to find the optimal super arm
- α —approximation regret
- $Reg(T) = T \cdot \alpha \cdot r_D(S^*) \sum_{t=1}^{T} r_D(S_t)$

Assumptions

- Independent outcomes from arms
- Bounded reward value
- Monotone reward function
 - $R(x,S) \le R(x',S)$ if $x_i \le x_i'$
- Lipschitz-continuous reward function
 - $|R(x,S) R(x',S)| \le C \sum_{i \in S} |x_i x_i'|$
- Require an α —approximation computation oracle to produce decisions

Discrete Distributions

- Known finite support
 - $supp(D_i) = \{v_{i,1}, v_{i,2}, \dots, v_{i,s_i}\}, \forall i \in [m]$
- D_i can be fully described by its CDF values
 - $F_{i,j}^D = \Pr_{X_i \sim D_i} [X_i \le v_{i,j}]$, $\forall j \in [s_i]$
- The computation oracle takes a CDF vector as an input and output an approximated solution

Control the confidence radius

Algorithm SDCB

Algorithm 1 SDCB-FSD (SDCB for finitely supported distributions) with parameter $\lambda > 0$

```
1: // Initialization
2: for i = 1 to m do
    // Action in the i-th round
```

Initialization

Lower confidence bound

of each CDF value

- Play a super arm S_i that contains arm i, observe the outcome $X_i^{(i)}$ from arm i, and find $k \in [s_i]$ such that $X_i^{(i)} = v_{i,k}$
- 5: $\hat{F}_{i,j} \leftarrow 1 \quad \forall k \leq j \leq s_i$
- 6: $\hat{F}_{i,j} \leftarrow 0 \quad \forall 1 \leq j \leq k-1$
- 7: $T_i \leftarrow 1$
- 8: end for
- 9: **for** $t = m + 1, m + 2, \dots$ **do**
- // Action in the t-th round 10:
- for i = 1, 2, ..., m do

$$\underline{F}_{i,j} \leftarrow \max\{\hat{F}_{i,j} - \sqrt{\frac{3\ln(\lambda t)}{2T_i}}, 0\} \qquad \forall 1 \le j \le s_i - 1$$

$$\underline{F}_{i,s_i} \leftarrow 1$$

$$\forall 1 \leq j \leq s_i - 1$$

Empirical probability of

$$\{X_i \le v_{i,j}\}$$

end for 14:

13:

S1

S2

S3

- Play the super arm $S_t \leftarrow \text{Oracle}(\underline{F})$, where $\underline{F} = (\underline{F}_{i,j})_{i \in [m], j \in [s_i]}$ 15:
- for all $i \in S_t$ do 16:
- Observe the outcome $X_i^{(t)}$ from arm i, and find $k \in [s_i]$ such that $X_i^{(t)} = v_{i,k}$ 17:
- $\hat{F}_{i,j} \leftarrow \frac{T_i \cdot \hat{F}_{i,j} + 1}{T_i + 1} \qquad \forall k \le j \le s_i$ 18:
- $\hat{F}_{i,j} \leftarrow \frac{T_i \cdot \hat{F}_{i,j}}{T_i + 1} \qquad \forall 1 \le j \le k 1$ 19:
- $T_i \leftarrow T_i + 1$ 20:
- 21: end for
- **22: end for**

Observe and update

Sampling times

Algorithm SDCB

- Idea: Optimism in the face of uncertainty principle
- A smaller $F_{i,j}$ means the larger realization has a higher probability
- With high probability each \underline{D}_i has first-order stochastic dominance over D_i
 - The distribution F first-order stochastically dominates G iff $F(x) \leq G(x), \forall x$
 - F gives at least as high a probability of receiving at least x as does G
- Monotonicity $\Rightarrow r_{\underline{D}}(S) \ge r_D(S)$, $\forall S$ with high probability
- \underline{D} provides an optimistic estimation on the expected reward of each super arm

Proof Sketch

- Regret bound: $O(\log T)$ distribution-dependent
- Three terms in regret:
- Initialization stage
- When an inaccurate estimation happens
 - The number of bad rounds can be bounded by Chernoff bound
 - $\sum_{t} \frac{1}{t^2}$
- All base arms are accurately estimated
 - Sampling threshold

Compare with CMAB

- The mean value of $\underline{D_i}$ is close to the expectation with high probability
 - By Chernoff bound
- The previous analysis can be applied to SDCB
 - Nearly the same regret bound

General Distributions

A discretization step on distributions → Apply SDCB algorithm

Discretization parameter

Algorithm 2 SDCB-GDT (SDCB for general distributions with known T) with parameter $\eta \geq 0$

Input: T

1: $s \leftarrow \lceil T^{1+\eta} \rceil$

2: Invoke SDCB-FSD (Algorithm 1) with supp $(\tilde{D}_i) = \{\frac{1}{s}, \frac{2}{s}, \dots, 1\}$ ($\forall i \in [m]$) and $\lambda = (s-1)^{1/3}$ for T rounds, with the following change: whenever observing an outcome x (from any arm), find $j \in [s]$ such that $x \in I_j$, and regard this outcome as $\frac{j}{s}$

Algorithm 3 SDCB-GD (SDCB for general distributions, without knowing T) with parameter $\eta \geq 0$

1: $q \leftarrow \lceil \log_2 m \rceil$

2: In rounds $1, 2, \ldots, 2^q$, invoke SDCB-GDT (Algorithm 2) with input $T = 2^q$ and parameter η

3: **for** $k = q, q + 1, q + 2, \dots$ **do**

4: In rounds $2^k+1, 2^k+2, \ldots, 2^{k+1}$, invoke SDCB-GDT with input $T=2^k$ and parameter η

5: end for

Divide the whole time horizon into periods

General Distributions

- When the time horizon T is known in advance
- Perform a discretization on D to get a discrete distribution \widetilde{D}
- Partition [0,1] evenly into s intervals: I_1, \dots, I_s

•
$$\Pr_{\tilde{X}_i \sim \tilde{D}_i} [\tilde{X}_i = \frac{j}{s}] = \Pr_{X_i \sim D_i} [X_j \in I_j]$$

- Pretend that the outcomes are drawn from \widetilde{D} instead of D
 - Replacing any outcome $x \in I_j$ by $\frac{j}{s}$
- The discretization parameter s depends on T

General Distributions

- When the time horizon T is unknown in advance
- Use doubling trick to avoid the dependency on T
 - Partition time horizon into periods of exponentially increasing lengths and run the original algorithm on each period
 - Whenever we reach a round t such that t is a power of 2, restart the algorithm, forgetting all of the information gained in the past
 - At the expense of a constant factor

Proof Sketch

- $O(\log T)$ distribution-dependent regret and $O(\sqrt{T \log T})$ distribution-independent regret
- The regret consists of two parts
- The regret for the discretized CMAB problem
- The error due to discretization
 - Lipschitz continuous property
 - The lengths of discretized intervals

Summary

- A new problem: learning the shape of the distribution
- Previous work has strong assumptions
 - Bernoulli distribution, single parametric distribution with prior information
- Use UCB on CDF instead of mean value
- Could be a comparison to the current work