Linear algebra IV Positive semidefinite matrices

Topics we'll cover

- Positive semidefinite matrices
- 2 Properties of PSD matrices
- 3 Checking if a matrix is PSD
- 4 A hierarchy of square matrices

When is a square matrix "positive"?

- A superficial notion: when all its entries are positive
- A deeper notion: when the quadratic function defined by it is always positive

Example:
$$M = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$

Positive semidefinite matrices

Recall: every **square** matrix M encodes a **quadratic function**:

$$x \mapsto x^T M x = \sum_{i,j=1}^d M_{ij} x_i x_j$$

 $(M \text{ is a } d \times d \text{ matrix and } x \text{ is a vector in } \mathbb{R}^d)$

A symmetric matrix M is **positive semidefinite (psd)** if:

$$x^T M x \ge 0$$
 for all vectors x

A symmetric matrix M is **positive semidefinite (psd)** if:

$$x^T M x \ge 0$$
 for all vectors x

We saw that
$$\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$
 is PSD. What about $\begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$?

A symmetric matrix M is **positive semidefinite (psd)** if:

$$x^T M x \ge 0$$
 for all vectors z

When is a diagonal matrix PSD?

A symmetric matrix M is **positive semidefinite (psd)** if:

$$x^T M x \ge 0$$
 for all vectors z

If M is PSD, must cM be PSD for a constant c?

A symmetric matrix M is **positive semidefinite (psd)** if:

$$x^T M x \ge 0$$
 for all vectors z

If M, N are of the same size and PSD, must M + N be PSD?

Checking if a matrix is PSD

A matrix M is PSD if and only if it can be written as $M = UU^T$ for some matrix U.

Quick check: say $U \in \mathbb{R}^{r \times d}$ and $M = UU^T$.

- 1 *M* is square.
- 2 *M* is symmetric.
- **3** Pick any $x \in \mathbb{R}^r$. Then

$$x^{T}Mx = x^{T}UU^{T}x = (x^{T}U)(U^{T}x)$$

= $(U^{T}x)^{T}(U^{T}x)$
= $||U^{T}x||^{2} \ge 0$.

Another useful fact: any covariance matrix is PSD.

A hierarchy of square matrices

