School on Univalent Mathematics (Cortona 2022)

I. Type theory

Gialuca Amato

slides mostly stolen from Benedikt Ahrens' ones errors definitively added by me

Foundation of Mathematics

By the name *foundations of mathematics* we mean the study of *formal systems* that allows us to formalize much if not all of mathematics.

There are several approaches to the foundations of mathematics, which we may mostly divide in two big families:

- set theories;
- type theories.

Set theories

- everything is a set;
- naive set-theory is the de-facto standard for most mathematicians not interested in the foundations of mathematics;
- Example:
 a function from A to B is a subset of A × B such that . . .

Type theories

- everything is a type or a term (program) of a given type;
- Example: a function from *A* to *B* is a type, denoted by $A \rightarrow B$;
- Example: the costant function which maps each element of *A* to the constant *b* of type *B* is the term $\lambda(x:A).b$ of type $A \to B$;
- all type theories contains λ-calculus at their core (a functional programming language) with the infrastructure for writing mathematical proofs;
- in some type theories, to each proposition *P* corresponds a type *P*, and proofs of *P* are terms of type *P* (*propositions as types*).

Martin-Löf type theory

In this course we will work in the type theory introduced by Per Martin-Löf. Its main characteristics:

- propositions as types;
- dependent types and functions: a type may depend on a element (term) of an other type:
 - type Vect(n) of vectors of length n;
 - concatenate : $\prod_{m,n:Nat} Vect(m) \rightarrow Vect(n) \rightarrow Vect(m+n)$;
 - tail: $\prod_{n:Nat} Vect(1+n) \rightarrow Vect(n)$;
- all functions are total and computable;

In the following we use the term "type theory" to denote the Martin-Löf type theory.

Multiple interpretations of type theory

There are two basic interpretation of types and terms which help intuition.

```
Set based a type A is a set;
a term a of type A is an element of the set A.
```

Logic based a type A is a proposition (or a predicate); a term a of type A is a proof of A.

More complex interpretations (such as types as **simplicial sets**) are at the basis of the Univalence Foundations of mathematics.

We will not discuss these interpretations in our lecture.

Outline

- 1 Non-dependent types
- 2 Dependent types
- More on propositions as types
- 4 Problem session

Outline

- 1 Non-dependent types
- 2 Dependent types
- More on propositions as types
- 4 Problem session

Our goal

Our main goal: to write well-typed terms

In type theory, both the activities of

- defining a mathematical object;
- proving a mathematical statement;

are done by writing well-typed terms.

We hence need to understand the **typing rules** of type theory. These rules are expressed in a logical language consisting of "judgements" and "inference rules".

Syntax of type theory

Fundamental: judgment

context ⊢ conclusion

0 0 . 1	
Contexts & judgments	
Γ	sequence of variable declarations
	$(x_1:A_1),(x_2:A_2(x_1)),\ldots,(x_n:A_n(\vec{x}_i))$
$\Gamma \vdash A$	A is well–formed type in context Γ
$\Gamma \vdash a : A$	term a is well-formed and of type A
$\Gamma \vdash A \equiv B$	types A and B are convertible
$\Gamma \vdash a \equiv b : A$	a is convertible to b in type A

 $(x : \mathsf{Nat}), (f : \mathsf{Nat} \to \mathsf{Bool}) \vdash f(x) : \mathsf{Bool}$

An example

Suppose you want to write a function is Zero? of type Nat \rightarrow Bool. You start out with

isZero? : Nat
$$\rightarrow$$
 Bool isZero?(n) := ??

At this point, you need to write a term b(n) such that

$$(n : Nat) \vdash b(n) : Bool$$

Inference rules and derivations (1)

Inference rules allow to derive correct judgments from already proved judgments.

• An inference rule is an implication of judgments,

$$\frac{J_1 \qquad J_2 \qquad \dots}{J}$$

e.g.,

$$\frac{\Gamma \vdash f : \mathsf{Nat} \to \mathsf{Bool} \qquad \Gamma \vdash n : \mathsf{Nat}}{\Gamma \vdash f(n) : \mathsf{Bool}}$$

$$\frac{\Gamma \vdash a \equiv b : A}{\Gamma \vdash b \equiv a : A}$$

• A **derivation of a judgment** is a tree of inference rules. e.g., writing Γ for the context $(f : \text{Nat} \rightarrow \text{Bool}), (n : \text{Nat})$

$$\frac{\Gamma \vdash f : \mathsf{Nat} \to \mathsf{Bool}}{\Gamma \vdash f : \mathsf{Nat}} \xrightarrow{\Gamma} \mathsf{Bool}$$

Inference rules and derivations (2)

We will be more informal in this presentation:

- We sometimes omit the context when writing judgments.
- We will use english for writing inference rules.
 e.g., by writing

" If
$$a \equiv b$$
, then $b \equiv a$ "

instead of

$$\frac{\Gamma \vdash a \equiv b : A}{\Gamma \vdash b \equiv a : A}$$

Important facts about judgments

- term a does not exist independently of its type A
- If x : A and $A \equiv B$ then x : B;
- a well-formed term a has exactly one type up to ≡
 (whereas an element a can be member of many different sets)
- \equiv is a congruence, e.g., if $a \equiv a'$ and $f \equiv f'$, then $f(a) \equiv f'(a')$.

Declaring types & terms

Any type and its terms are declared by giving 4 (groups of) rules:

Formation a way to construct a new type

Introduction way(s) to construct canonical terms of that type

Elimination ways to use a term of the new type to construct terms

Conversion what happens when one does Introduction followed by Elimination

The type of functions $A \rightarrow B$

Formation If
$$A$$
 and B are types, then $A \rightarrow B$ is a type (sets: set of functions from A to B) (logics: A implies B)

Introduction If $x : A \vdash b : B$, then $\vdash \lambda(x : A) . b : A \rightarrow B$

(b may conain some occurrences of x)

Elimination If $f: A \rightarrow B$ and a: A, then f(a): B

Conversion $(\lambda(x:A).b)(a) \equiv b[a/x]$ substitution b[a/x] is built-in and not part of the language of terms

Conversion and computation

The judgment

$$(\lambda(x:A).b)(a) \equiv b[a/x]$$

(and others we will see later) may be given a computational meaning by orienting the equivalence from left to right:

$$(\lambda(x:A).b)(a) \Longrightarrow b[a/x]$$

Rewriting terms according to ⇒ gives us an algorithm that

- always terminates;
- transforms every term to a normal form;
- may be used to decide whether two terms are convertible.

The singleton type

```
Formation 1 is a type
               (sets: a one-element set {t})
               (logic: the true proposition \top)
Introduction t:1
               (sets: the only element o 1)
               (logic: the trivial proof that \top is true)
Elimination If x : 1 and C is a type and c : C, then rec_1(C, c, x) : C
               (rec, is called a recursor)
               (rec, is not very useful until we introuce dependent types)
 Conversion rec_1(C, c, t) \equiv c
```

Booleans

Exercise: Define the type of boolean values, with two elements.

Formation

Introduction

Elimination

Conversion

Booleans

```
Formation Bool is a type
                (sets: a two element set {true, false})
Introduction true: Bool, false: Bool
Elimination If x: Bool and C is a type and c, c' : C,
                then rec_{Bool}(C, c, c', x) : C
                (interpretation: if x = \text{true then } c \text{ else } c')
 Conversion rec_{Bool}(C, c, c', true) \equiv c
                rec_{Bool}(C, c, c', false) \equiv c'
```

The empty type

Formation o is a type

(sets: the empty set)

(logic: the false proposition)

Introduction

Elimination If $x : \mathbf{o}$ and C is a type, then $rec_{\mathbf{o}}(C, x) : C$

(logic: from falsehood, anything)

Conversion

• Exercise: Define a function of type $\mathbf{o} \to \mathsf{Bool}$.

The type of natural numbers

Formation Nat is a type

(sets: the set of natural numbers)

Introduction o: Nat

if n: Nat, then S(n): Nat

Elimination If C is a type and $c_o : C$ and $c_s : C \to C$ and x : Nat then $rec_{Nat}(C, c_o, c_s, x) : C$

$$\left(\mathsf{rec}_{\mathsf{Nat}}(C, c_o, c_s, x) = \begin{cases} c_o & \text{if } x = o; \\ c_s(\mathsf{rec}_{\mathsf{Nat}}(C, c_o, c_s, y)) & \text{if } x = S(y) \end{cases} \right)$$

Conversion
$$\operatorname{rec}_{\mathsf{Nat}}(C, c_o, c_s, o) \equiv c_o$$

 $\operatorname{rec}_{\mathsf{Nat}}(C, c_o, c_s, S(n)) \equiv c_s(\operatorname{rec}_{\mathsf{Nat}}(C, c_o, c_s, n))$

Using the nat recursor

Exercise: Define a function is Zero? : Nat \rightarrow Bool

Using the nat recursor

Exercise: Define a function is Zero? : Nat \rightarrow Bool Solution:

isZero? :=
$$\lambda(x : Nat).rec_{Nat}(Bool, true, \lambda(x : Bool).false, x)$$

whose meaning is

```
isZero? := \lambda(x : \text{Nat}).if x = 0 then true
else (\lambda(x : \text{Bool}).false)(isZero?(x - 1))
```

Pattern matching

- Programming in terms of the recursors rec is cumbersome.
- Equivalently, we can specify functions by pattern matching:
 A function A → C is specified completely if it is specified on the canonical elements of A.

isZero? : Nat
$$\rightarrow$$
 Bool
isZero?(o) := true
isZero?($S(n)$) := false

 The "specifying equations" correspond to the computation rules.

Pattern matching for o, 1, Bool

How to define a map

•
$$\mathbf{o} \to A$$

Nothing to do

•
$$\mathbf{1} \rightarrow A$$

$$f(t) := ?? : A$$

•
$$f : \mathsf{Bool} \to A$$

$$f(true) := ?? : A$$

 $f(false) := ?? : A$

The type of pairs $A \times B$

Formation If *A* and *B* are types, then $A \times B$ is a type

(sets: Cartesian product of sets *A* and *B*)

(logic: $A \wedge B$)

Introduction If a : A and b : B, then $\langle a, b \rangle : A \times B$

(logic: given proofs a, b of A and B, we get a proof of $A \wedge B$)

Elimination If *C* is a type, and $p: A \rightarrow (B \rightarrow C)$ and $t: A \times B$, then $rec_{\times}(A, B, C, p, t): C$

Conversion $rec_{\times}(A, B, C, p, \langle a, b \rangle) \equiv p(a)(b)$

- Define fst : $A \times B \rightarrow A$ and snd : $A \times B \rightarrow B$
 - using the eliminator

• by pattern matching

• Compute $fst(\langle a,b\rangle)$ and $snd(\langle a,b\rangle)$

- Define fst : $A \times B \rightarrow A$ and snd : $A \times B \rightarrow B$
 - using the eliminator

$$\mathsf{fst} := \lambda(t : A \times B).\mathsf{rec}_{\times}(A, B, A, \lambda(x : A).\lambda(y : B).x, t)$$

by pattern matching

$$fst(\langle a,b\rangle) := a$$

• Compute $fst(\langle a,b\rangle)$ and $snd(\langle a,b\rangle)$

• Given types *A* and *B*, write a function swap of type $A \times B \rightarrow B \times A$.

• What is the type of swap($\langle t, false \rangle$)? Compute the result.

• Given types *A* and *B*, write a function swap of type $A \times B \rightarrow B \times A$.

Solution

$$swap := \lambda(x : A \times B). (snd(x), fst(x))$$

• What is the type of swap($\langle t, false \rangle$)? Compute the result.

Solution

```
swap((t, false)) : Bool \times 1 swap(\langle t, false \rangle) \equiv \langle snd(\langle t, false \rangle), fst(\langle t, false \rangle) \rangle \equiv \langle false, t \rangle
```

Associativity of cartesian product

Exercise

Write a function assoc of type $(A \times B) \times C \rightarrow A \times (B \times C)$.

Associativity of cartesian product

Exercise

Write a function assoc of type $(A \times B) \times C \rightarrow A \times (B \times C)$.

Solution

$$\mathsf{assoc} := \lambda(x : (A \times B) \times C). \Big\langle \mathsf{fst}(\mathsf{fst}(x)), \big\langle \mathsf{snd}(\mathsf{fst}(x)), \mathsf{snd}(x) \big\rangle \Big\rangle$$

or

$$\mathsf{assoc}((x,y),z) := (x,(y,z))$$

Outline

- Non-dependent types
- 2 Dependent types
- More on propositions as types
- 4 Problem session

Type dependency

In particular: dependent type *B* over *A*

$$x:A \vdash B(x)$$

"family B of types indexed by A"

• Example: type of vectors (with entries from, e.g., Bool) of length *n*

$$n: \mathsf{Nat} \vdash \mathsf{Vect}(n) \ (= \mathsf{Bool}^n)$$

A type can depend on several variables

Dependent types in pictures

Α

Universes

Universes

- There is also a type Type. Its elements are types, *A* : Type;
- The judgment $x:A \vdash B$ may be viewed as $x:A \vdash B$: Type;
- $(n : Nat), (A : Type) \vdash Vect(A, n) : Type.$

What is the type of Type?

• Actually, hierarchy $(\mathsf{Type}_i)_{i \in I}$ to avoid paradoxes.

$$\mathsf{Type}_{o} : \mathsf{Type}_{1} : \mathsf{Type}_{2} : \cdots$$

But we ignore this for the most part, and only write Type.

The type of dependent functions $\prod_{x:A} B$

Formation If
$$x : A \vdash B(x)$$
, then $\prod_{x:A} B(x)$ is a type.
(sets: mapping each $x \in A$ to the set $B(x)$)

(logic: $\forall x : A, B(x)$)

Introduction If $(x:A) \vdash b:B$, then $\lambda(x:A).b:\prod_{x:A}B$.

Elimination If $f: \prod_{x:A} B$ and a:A, then f(a): B[x/a]

Conversion $(\lambda(x:A).b)(a) \equiv b[x/a]$

The case $A \rightarrow B$ is a special case, where B does not depend on x : A

A dependent function in pictures

 $f:\prod_{x:A}B(x)$

Pattern matching for o, 1, Bool

To specify a dependent function

•
$$f: \prod_{x:\mathbf{o}} A(x)$$

•
$$f: \prod_{x:1} A(x)$$

$$f(t) := ?? : A(t)$$

• $f: \prod_{x:\mathsf{Bool}} A(x)$

$$f(true) := ?? : A(true)$$

 $f(false) := ?? : A(false)$

The type of dependent pairs $\sum_{x:A} B$

Formation If
$$x:A \vdash B(x)$$
, then $\sum_{x:A} B(x)$ is a type (sets: disjoint union $\coprod_{x:a} B(x)$) (logic: $\exists x:A,B(x)$)

Introduction If a:A and b:B[x/a], then $\langle a,b\rangle:\sum_{x:A}B$

Elimination ...

Conversion ...

The case $A \times B$ is a special case, where B does not depend on x : A

Σ -type in pictures

The identity type

```
Formation If a:A and b:A, then Id_A(a,b) is a type
               (logic: the equality predicate a = b)
Introduction If a:A, then refl(a): Id_A(a,a)
               (the trivial proof that a is equal to itself)
Elimination If
              (x,y:A),(p:|d_{\Lambda}(x,y)) \vdash C(x,y,p)
               and
              (x:A) \vdash t(x):C(x,x,refl(x))
               then
              (x,y:A), (p: Id_A(x,y)) \vdash ind_{Id}(t;x,y,p) : C(x,y,p)
 Conversion . . .
```

Exercise

• Write a term of type $Id_A(snd(\langle t, false \rangle), false)$.

(Hint: remember the important facts about \equiv)

Exercise

• Write a term of type $Id_A(snd(\langle t, false \rangle), false)$.

(Hint: remember the important facts about \equiv)

Solution

We have

 $snd(\langle t, false \rangle) \equiv false$

and hence

 $Id_A(snd(t, false), false) \equiv Id_A(false, false)$

Since

 $refl(false) : Id_A(false, false)$

we also have

 $refl(false) : Id_A(snd(t, false), false)$

The elimination principle for Id_A

- By pattern matching, to specify a map on a family of identities $Id_A(x,y)$, it suffices to specify its image on refl(x) for some x.
- For instance, to define

$$sym: \prod_{x,y:A} \mathsf{Id}(x,y) \to \mathsf{Id}(y,x)$$

it suffices to specify its image on (x, x, refl(x))

$$\operatorname{sym}(x, x, \operatorname{refl}(x)) :=$$

The elimination principle for Id_A

- By pattern matching, to specify a map on a family of identities $Id_A(x,y)$, it suffices to specify its image on refl(x) for some x.
- For instance, to define

$$sym: \prod_{x,y:A} \mathsf{Id}(x,y) \to \mathsf{Id}(y,x)$$

it suffices to specify its image on (x, x, refl(x))

$$\operatorname{sym}(x, x, \operatorname{refl}(x)) := \operatorname{refl}(x)$$

More about identities

Exercise: Using pattern matching, construct a term trans of type

$$\prod_{x,y:A} \mathsf{Id}(x,y) \to \prod_{z:A} \mathsf{Id}(y,z) \to \mathsf{Id}(x,z)$$

More about identities

Exercise: Using pattern matching, construct a term trans of type

$$\prod_{x,y:A} \mathsf{Id}(x,y) \to \prod_{z:A} \mathsf{Id}(y,z) \to \mathsf{Id}(x,z)$$

$$trans(x, x, refl(x), z, p) := p$$

Transport

Exercise

Given $x : A \vdash B$, define a function of type

$$\mathsf{transport}^B: \prod_{x,y:A} \mathsf{Id}(x,y) \to B(x) \to B(y)$$

Transport

Exercise

Given $x : A \vdash B$, define a function of type

transport^B:
$$\prod_{x,y:A} \operatorname{Id}(x,y) \to B(x) \to B(y)$$

Solution

 $transport^{B}(x, x, refl(x), b) := b$

Exercise: swap is involutive

Exercise

Given types A and B, write a function of type

$$\prod_{t:A\times R}\mathsf{Id}(\mathsf{swap}(\mathsf{swap}(t)),t)$$

Exercise: swap is involutive

Exercise

Given types *A* and *B*, write a function of type

$$\prod_{t:A\times B} \mathsf{Id}(\mathsf{swap}(\mathsf{swap}(t)), t)$$

Solution

$$f(\langle a,b\rangle) := \text{refl}(\langle a,b\rangle)$$

Why is f a solution?

The disjoint sum A + B

Formation If A and B are types, then A + B is a type (sets: disjoint union) (logic: constructive disjunction $A \lor B$)

Introduction If a:A, then inl(a):A+BIf b:B, then inr(b):A+B

Elimination If $f: A \to C$ and $g: B \to C$, then $rec_+(C, f, g): A + B \to C$

Conversion
$$\operatorname{rec}_+(C, f, g)(\operatorname{inl}(a)) \equiv f(a)$$

 $\operatorname{rec}_+(C, f, g)(\operatorname{inr}(b)) \equiv g(b)$

- Exercise: write down the dependent eliminator for A + B
- What is the pattern matching principle for A + B?

Outline

- Non-dependent types
- 2 Dependent types
- More on propositions as types
- 4 Problem session

Interpreting types as sets

Syntax	Set interpretation
A	set A
a:A	$a \in A$
$A \times B$	cartesian product
$A \rightarrow B$	set of functions $A \rightarrow B$
A + B	disjoint union $A \coprod B$
$x:A \vdash B(x)$	family <i>B</i> of sets indexed by <i>A</i>
$\sum_{x:A} B(x)$	disjoint union $\coprod_{x:A} B(x)$
$\prod_{x:A} B(x)$	dependent function
$\operatorname{Id}_A(a,b)$???

Interpreting types as propositions

Syntax	Logic
\overline{A}	proposition A
a:A	a is a proof of A
1	Τ
o	\perp
$A \times B$	$A \wedge B$
$A \rightarrow B$	$A \Rightarrow B$
A + B	$A \lor B$
$x:A \vdash B(x)$	predicate B on A
$\sum_{x:A} B(x)$	$\exists x \in A, B(x)$
$\prod_{x:A} B(x)$	$\forall x \in A, B(x)$
$\operatorname{Id}_A(a,b)$	equality $a = b$

• The connectives \vee and \exists thus obtained behave constructively.

Negation

Definition

$$\neg A := A \rightarrow \mathbf{o}$$

Exercise

- **1** Construct a term of type $A \rightarrow \neg \neg A$
- 2 Try to construct a term of type $\neg \neg A \rightarrow A$

Summary: Logic in type theory

Curry-Howard correspondence resp. Brouwer-Heyting-Kolmogorov interpretation:

- propositions are types
- proofs of *P* are terms of type *P*

Hence

- In principle, all types could be called propositions.
- To prove a proposition *P* means to construct a term of type *P*.
- In UF, only some types are called 'propositions', cf later.

Convention

For type X, we also say "Show X" or "Prove X" for "Construct a term of type X".

true is not false

Exercise

Construct a term of type $\neg(Id(true, false))$.

Hint: use transport^B with a suitable $B : Bool \rightarrow Type$

Solution

Set $B := rec_{\mathsf{Bool}}(\mathsf{Type}, \mathbf{1}, \mathbf{0}) : \mathsf{Bool} \to \mathsf{Type}$.

Then $B(\text{true}) \equiv \mathbf{1}$ and $B(\text{false}) \equiv \mathbf{0}$. Hence

 $\lambda p : \mathsf{Id}(\mathsf{true}, \mathsf{false}).\mathsf{transport}^B(p,\mathsf{t}) : \mathsf{Id}(\mathsf{true}, \mathsf{false}) \to o$

Exercise: Dependent elimination rules

Write down the dependent elimination rule for

- o If $x : \mathbf{o} \vdash C(x)$ is a type family and $x : \mathbf{o}$, then $\operatorname{ind}_{\mathbf{o}}(C, x) : C(x)$
- 1 If $x : \mathbf{1} \vdash C(x)$ is a type family and $c_t : C(t)$ and $x : \mathbf{1}$, then $\operatorname{ind}_1(C, c, x) : C(x)$
- Bool If $x : Bool \vdash C(x)$ is a type family and $c_{true} : C(true)$ and $c_{false} : C(false)$ and x : Bool, then $ind_{Bool}(C, c, c', x) : C(x)$

Outline

- Non-dependent types
- 2 Dependent types
- More on propositions as types
- 4 Problem session

Problems

- Solve the exercises from the lecture.
- Define addition + of natural numbers in terms of the eliminator, and via pattern matching.
- Give a proof of Id(2+2,4). Explain how/why your proof works.
- Given types A, B, and C, define maps between $A \times (B + C)$ and $A \times B + A \times C$. Show that they are pointwise inverses.
- For A, B, and $P: A \to \mathsf{Type}$, give maps between $\sum_{x:A} B \times P(x)$ and $B \times \sum_{x:A} P(x)$. Show that they are pointwise inverses.
- Prove that, for any x : 1, ld(x, t).