```
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error, r2_score
```

```
In [2]:
```

In [1]:

```
import numpy as np, pandas as pd, matplotlib.pyplot as plt, seaborn
from datetime import datetime, timedelta
from fredapi import Fred
import quandl
```

In [3]:

```
def get_info(names):
    data = []
    for i in range(len(names)):
        data.append(fred.get_series(names[i]).to_frame().rename(col
        data[i] = data[i].groupby(data[i].index.year).mean().dropna
    return data
```

In [4]:

```
# https://github.com/mortada/fredapi
fred = Fred(api_key="a02df0a22c57860f5f7cf25edc70ffb3")
quandl.ApiConfig.api_key = "QZLZXdHDDPZna9Yw48NP"
```

Northeast - New York

Define the variables to be used in analysis:

X attributes:

- Monthly Stocks
 - S&P 500 (MULTPL/SP500_REAL_PRICE_MONTH)
- Quarterly Gross Domestic Product (GDP)
- Annual Unemployment Rate (LAUST360000000000003A)
- Annual House Ownership Ratio (NYHOWN)
- Annual Resident Population (NYPOP)
- Annual Median Income Rate (MEHOINUSNYA672N)
- Annual Home Vacancy Rate (NYHVAC)

y attributes:

Quarterly New York State Housing Price Index (NYSTHPI)

Connect to APIs and create a dataframe with information from each dataset:

In [5]:

```
sp500 = quandl.get('MULTPL/SP500_REAL_PRICE_MONTH').rename(columns=
sp500 = sp500.groupby(sp500.index.year).mean().dropna()
names_ny = ['LAUST3600000000000003A', "NYHOWN","NYPOP", "MEHOINUSNYA
ny_data_series = get_info(names_ny) + [sp500]
```

In [6]:

```
# quarterly housing price index
nyHPI = fred.get_series('NYSTHPI').to_frame()
nyHPI.index.name = "DATE"
nyHPI = nyHPI.rename(columns={0:"NYSTHPI"})
# convert to annual
nyHPI_annual = nyHPI.groupby(nyHPI.index.year).mean()
```

In [7]:

```
ny_annual = nyHPI_annual.copy()
for df in ny_data_series:
    ny_annual = ny_annual.merge(df, left_index=True, right_index=Tr
ny_annual.tail()
```

Out[7]:

	NYSTHPI	LAUST360000000000003A	NYHOWN	NYPOP	MEHOINUS
2014	570.9975	6.3	52.9	19656.330	
2015	591.8425	5.3	51.5	19661.411	
2016	613.9100	4.9	51.5	19641.589	
2017	644.7200	4.7	51.1	19590.719	
2018	682.2450	4.1	51.0	19542.209	

Analyze the correlation coefficient for each indicator we have specified:

In [8]:

corr = ny_annual.corr().round(4)
sns.heatmap(data=corr)

Out[8]:

<matplotlib.axes._subplots.AxesSubplot at 0x129e436a0>

In [9]:

corr

Out [9]:

	NYSTHPI	LAUST360000000000003A	NYHOWN	N
NYSTHPI	1.0000	-0.0679	0.3505	(
LAUST360000000000003A	-0.0679	1.0000	0.1524	(
NYHOWN	0.3505	0.1524	1.0000	(
NYPOP	0.9229	0.0372	0.2901	1
MEHOINUSNYA672N	0.4768	-0.6925	-0.1009	(
NYHVAC	0.5110	0.2963	0.2004	(
GDP	0.9399	-0.0336	0.1265	(
SP500	0.8121	-0.2694	-0.0416	(

Create a model using linear regression to express the Case-Schiller index as dependent on the other datasets we have downloaded:

In [10]:

```
X = ny_annual.drop(columns=['NYSTHPI'], axis=1)
Y = ny_annual['NYSTHPI']
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size lin_model = LinearRegression() lin_model.fit(X_train, Y_train)
```

Out [10]:

LinearRegression(copy_X=True, fit_intercept=True, n_jo
bs=None, normalize=False)

```
In [11]:
# model evaluation for training set
v train predict = lin model.predict(X train)
rmse = (np.sqrt(mean squared error(Y train, y train predict)))
r2 = r2 score(Y train, y train predict)
print("The model performance for training set")
print("----
print('Root Mean Squared Error is {}'.format(rmse))
print('R-Squared score is {}'.format(r2))
print("\n")
# model evaluation for testing set
y test predict = lin model.predict(X test)
rmse = (np.sgrt(mean squared error(Y test, y test predict)))
r2 = r2_score(Y_test, y_test_predict)
print("The model performance for testing set")
print("----
print('Root Mean Squared Error is {}'.format(rmse))
print('R-Squared score is {}'.format(r2))
```

R-Squared score is 0.952166261889279

```
In [1]:
```

In [2]:	
In [3]:	
In [4]:	
Northeast - New York	
Define the variables to be used in englysis	

Define the variables to be used in analysis:

X attributes:

- Monthly Stocks
 - S&P 500 (MULTPL/SP500_REAL_PRICE_MONTH)
- Quarterly Gross Domestic Product (GDP)
- Annual Unemployment Rate (LAUST360000000000003A)
- Annual House Ownership Ratio (NYHOWN)
- Annual Resident Population (NYPOP)
- Annual Median Income Rate (MEHOINUSNYA672N)
- Annual Home Vacancy Rate (NYHVAC)

y attributes:

• Quarterly New York State Housing Price Index (NYSTHPI)

Connect to APIs and create a dataframe with information from each dataset:

```
In [5]:
In [6]:
```

In [7]:

Out[7]:

	NYSTHPI	LAUST360000000000003A	NYHOWN	NYPOP	MEHOINUS
2014	570.9975	6.3	52.9	19656.330	_
2015	591.8425	5.3	51.5	19661.411	
2016	613.9100	4.9	51.5	19641.589	
2017	644.7200	4.7	51.1	19590.719	
2018	682.2450	4.1	51.0	19542.209	

Analyze the correlation coefficient for each indicator we have specified:

In [8]:

Out[8]:

<matplotlib.axes._subplots.AxesSubplot at 0x129e436a0>

In [9]:

Out [9]:

	NYSTHPI	LAUST360000000000003A	NYHOWN	N
NYSTHPI	1.0000	-0.0679	0.3505	(
LAUST360000000000003A	-0.0679	1.0000	0.1524	(
NYHOWN	0.3505	0.1524	1.0000	(
NYPOP	0.9229	0.0372	0.2901	1
MEHOINUSNYA672N	0.4768	-0.6925	-0.1009	(
NYHVAC	0.5110	0.2963	0.2004	(
GDP	0.9399	-0.0336	0.1265	(
SP500	0.8121	-0.2694	-0.0416	(

Create a model using linear regression to express the Case-Schiller index as dependent on the other datasets we have downloaded:

In [10]:

Out [10]:

LinearRegression(copy_X=True, fit_intercept=True, n_jo
bs=None, normalize=False)

In [11]:

The model performance for training set

Root Mean Squared Error is 20.550389410992903 R-Squared score is 0.9820594540751048

The model performance for testing set

Root Mean Squared Error is 31.309697006192742

R-Squared score is 0.952166261889279