Endomorphismes semi-simples

Leçons: 122, 153, 154, 155

On se place dans E, un \mathbb{K} -espace vectoriel de dimension finie n.

Définition 1

On dit que $f \in \mathcal{L}(E)$ est semi-simple lorsque tout sous-espace vectoriel de E stable par f admet un supplémentaire stable par f.

Lemme 2

Soit \mathbb{L}/\mathbb{K} une extension de corps. Alors $\Pi_{f,\mathbb{K}} = \Pi_{f,\mathbb{L}}$.

Démonstration. C'est une conséquence de l'indépendance du rang vis à vis du corps de base (qui provient de l'indépendance du résultat du calcul des mineurs). Maintenant, on a déjà $\Pi_{f,\mathbb{L}}|\Pi_{f,\mathbb{K}}$ et comme ces polynômes sont unitaires, il suffit de montrer qu'ils sont de même degré pour conclure. Or, le degré du polynôme minimal de f sur \mathbb{L} est égal au rang de la famille (id, f,\ldots,f^{n-1}) dans $\mathscr{L}(E)$ qui est un espace vectoriel de dimension finie n^2 . Comme le rang ne dépend pas du corps de base, on en déduit l'égalité annoncée.

Lemme 3

Soit F un sous-espace stable par f. On note $\Pi_f = P_1^{\alpha_1} \dots P_r^{\alpha_r}$. On a :

$$F = \bigoplus_{i=1}^r \Big[\ker P_i^{a_i}(f) \cap F \Big].$$

Démonstration. Par le lemme des noyaux, on sait que :

$$F = \bigoplus_{i=1}^{r} \ker P_i^{\alpha_i}(f|_F) = \bigoplus_{i=1}^{r} \left[\ker P_i^{\alpha_i}(f) \cap F \right].$$

Théorème 4

Un endomorphisme f est semi-simple si et seulement si son polynôme minimal Π_f est un produit de polynômes irréductibles unitaires distincts deux à deux.

Démonstration. Étape 1. Lorsque Π_f est irréductible.

On va montrer que f est semi-simple, considérons donc F un sous-espace stable par f . Si F=E, il n'y a rien à faire. Sinon, soit $x\in E\setminus F$ et

$$E_x = \{ P(f)(x), \ P \in \mathbb{K}[X] \}.$$

Clairement E_x est stable par f. Pour conclure et quitte à itérer le processus, il suffit de montrer que F et E_x sont en somme directe. L'idéal $I_x = \{P \in \mathbb{K}[X], P(f)(x) = 0\}$ est non réduit à 0 (il y a Π_f) et principal donc il est engendré par un unique polynôme unitaire Π_x . Comme $\Pi_x|\Pi_f$, ce polynôme est irréductible.

Soit $y = P(f)(x) \in E_x \cap F$ que l'on suppose non nul. Alors $P \notin I_x$, c'est à dire que Π_x ne divise pas P et comme il est irréductible, P et Π_x sont premiers entre eux. Par le théorème

de Bézout, on peut écrire $UP + V\Pi_x = 1$. On a donc $x = U(f) \circ P(f)(x) = U(f)(y) \in F$ car $y \in F$, ce qui est absurde.

Étape 2. Cas général, condition nécessaire.

Soit $f \in \mathcal{L}(E)$ un endomorphisme semi-simple de polynôme minimal $\Pi_f = P_1^{\alpha_1} \dots P_r^{\alpha_r}$. Supposons qu'il existe $\alpha_i \geq 2$. On écrit alors $\Pi_f = P^2Q$.

 $F = \ker P(f)$ est un sous-espace stable par f qui admet un supplémentaire stable noté S. Si $x \in S$, alors $\Pi_f(f)(x) = P(f)P(f)Q(f)(x) = 0$ donc $P(f)Q(f)(x) \in F$. Par ailleurs, S est stable par f donc $P(f)Q(f)(x) \in S$.

Finalement, $P(f)Q(f)(x) \in F \cap S = \{0\}$ et P(f)Q(f) s'annule sur S.

Mais P(f)Q(f) = Q(f)P(f) donc par définition de F, P(f)Q(f) s'annule aussi sur F. Puisque F et S sont supplémentaires, le polynôme PQ annule f ce qui contredit la minimalité de Π_f .

Étape 3. Cas général, condition suffisante.

Soit $f \in \mathcal{L}(E)$ dont le polynôme minimal est de la forme $\Pi_f = P_1 \dots P_r$ où les P_i sont des polynômes irréductibles distincts. Soit F un sous-espace stable par f. Pour tout $i \in \{1, \dots r\}$, $F \cap \ker P_i(f)$ est stable par $f|_{\ker P_i(f)}$. Puisque P_i est un polynôme irréductible qui annule $f|_{\ker P_i(f)}$, c'est le polynôme minimal de $f|_{\ker P_i(f)}$. La première étape fournit l'existence d'un sous-espace S_i stable par $f|_{\ker P_i(f)}$ (donc par f) tel que $\ker P_i(f) = (F \cap \ker P_i(f)) \cap S_i$.

Il suffit d'écrire:

$$E = \bigoplus_{i=1}^{r} \left[F \cap \ker P_i(f) \oplus S_i \right] = \left[\bigoplus_{i=1}^{r} \left(F \cap \ker P_i(f) \right) \right] \oplus \bigoplus_{i=1}^{r} S_i = F \oplus S$$

et S est stable par f qui est donc semi-simple.

Lorsque \mathbb{K} est algébriquement clos, les polynômes irréductibles sont de degré 1 donc f est semi-simple si et seulement si f est diagonalisable. On note maintenant M la matrice de f dans une base et on dit qu'elle est semi-simple lorsque f l'est.

Théorème 5

Si le corps \mathbb{K} est de caractéristique nulle, alors M est semi-simple si et seulement s'il existe une extension \mathbb{L}/\mathbb{K} dans laquelle M est diagonalisable.

Démonstration. Soit \mathbb{K} de caractéristique nulle et \mathbb{L}/\mathbb{K} une extension de corps. On commence par montrer que M est semi-simple sur \mathbb{K} si et seulement si M l'est sur \mathbb{L} (ici, M est à coefficients dans \mathbb{K}). Le polynôme minimal de M sur \mathbb{K} est le même que celui de M sur \mathbb{L} . Il suffit donc de montrer que Π_M est sans facteur carré dans $\mathbb{K}[X]$ si et seulement s'il est sans facteur carré dans $\mathbb{L}[X]$.

Dans un corps de caractéristique nulle, P est sans facteur carré équivaut à $P \wedge P' = 1$. Mais comme le calcul du pgcd s'effectue dans \mathbb{K} , le fait que P et P' soient premiers entre eux ne dépend pas du corps considéré.

Prouvons le théorème : supposons que M est semi-simple dans \mathbb{K} . Alors soit \mathbb{L} est un corps de décomposition de $\Pi_M \in \mathbb{K}[X]$. Dans $\mathbb{L}[X]$, le polynôme Π_M est scindé à racines simples donc M est diagonalisable. Réciproquement, si M est diagonalisable dans \mathbb{L} alors M est semi-simple dans \mathbb{L} et on vient de montrer que ce fait était équivalent à la semi-simplicité de M sur \mathbb{K} .

Références:

- Xavier Gourdon (2009). Les maths en tête : algèbre. 2e éd. Ellipses, p. 224
- Vincent Beck, Jérôme Malick et Gabriel Peyré (2005). *Objectif agrégation*. 2^e éd. H et K, pp. 103-104.

Merci à Antoine Diez pour ce développement.