One's complement addition

- To add one's complement numbers:
 - First do unsigned addition on the numbers, including the sign bits.
 - Then take the carry out and add it to the sum.
- Two examples:

This is simpler and more uniform than signed magnitude addition.

Two's complement addition

- Negating a two's complement number takes a bit of work, but addition is much easier than with the other two systems.
- To find A + B, you just have to:
 - Do unsigned addition on A and B, including their sign bits.
 - Ignore any carry out.
- For example, to find 0111 + 1100, or (+7) + (-4):
 - First add 0111 + 1100 as unsigned numbers:

- Discard the carry out (1).
- The answer is 0011 (+3).

Comparing the signed number systems

- Here are all the 4-bit numbers in the different systems.
- Positive numbers are the same in all three representations.
- Signed magnitude and one's complement have two ways of representing 0. This makes things more complicated.
- Two's complement has asymmetric ranges; there is one more negative number than positive number. Here, you can represent -8 but not +8.
- However, two's complement is preferred because it has only one 0, and its addition algorithm is the simplest.

Decimal	S.M.	1's comp.	2's comp.
7	0111	0111	0111
6	0110	0110	0110
5	0101	0101	0101
4	0100	0100	0100
3	0011	0011	0011
2	0010	0010	0010
1	0001	0001	0001
0	0000	0000	0000
-0	1000	1111	_
-1	1001	1110	1111
-2	1010	1101	1110
-3	1011	1100	1101
-4	1100	1011	1100
-5	1101	1010	1011
-6	1110	1001	1010
-7	1111	1000	1001
-8	_	_	1000

Ranges of the signed number systems

 How many negative and positive numbers can be represented in each of the different systems on the previous page?

			One's complement	Two's complement
Smallest Largest	` ,	` '		1000 (-8) 0111 (+7)

• In general, with n-bit numbers including the sign, the ranges are:

	Unsigned	Signed Magnitude	One's complement	Two's complement
Smallest	0	-(2 ⁿ⁻¹ -1)	-(2 ⁿ⁻¹ -1)	-2 ⁿ⁻¹
Largest	2 ⁿ -1	+(2 ⁿ⁻¹ -1)	+(2 ⁿ⁻¹ -1)	+(2 ⁿ⁻¹ -1)

Example solution

Convert 110101 to decimal, assuming this is a number in:

Since the sign bit is 1, this is a negative number. The easiest way to find the magnitude is to convert it to a positive number.

(a) signed magnitude format

Negating the original number, 110101, gives 010101, which is +21 in decimal. So 110101 must represent -21.

(b) ones' complement

Negating 110101 in ones' complement yields $001010 = +10_{10}$, so the original number must have been -10_{10} .

(c) two's complement

Negating 110101 in two's complement gives 001011 = 11_{10} , which means $110101 = -11_{10}$.

 The most important point here is that a binary number has different meanings depending on which representation is assumed.

Our four-bit unsigned adder circuit

· Here is the four-bit unsigned addition circuit from an earlier lecture.

Making a subtraction circuit

- We could build a subtraction circuit directly, similar to the way we made unsigned adders yesterday.
- However, by using two's complement we can convert any subtraction problem into an addition problem. Algebraically,

$$A - B = A + (-B)$$

- So to subtract B from A, we can instead add the negation of B to A.
- This way we can re-use the unsigned adder hardware from last week.

A two's complement subtraction circuit

- · To find A B with an adder, we'll need to:
 - Complement each bit of B.
 - Set the adder's carry in to 1.
- The net result is A + B' + 1, where B' + 1 is the two's complement negation of B.

Remember that A3, B3 and S3 here are actually sign bits.

Small differences

- The only differences between the adder and subtractor circuits are:
 - The subtractor has to negate B3 B2 B1 B0.
 - The subtractor sets the initial carry in to 1, instead of 0.

 It's not too hard to make one circuit that does both addition and subtraction.

An adder-subtractor circuit

XOR gates let us selectively complement the B input.

$$X \oplus 0 = X$$
 $X \oplus 1 = X'$

- When Sub = 0, the XOR gates output B3 B2 B1 B0 and the carry in is 0.
 The adder output will be A + B + 0, or just A + B.
- When Sub = 1, the XOR gates output B3' B2' B1' B0' and the carry in is 1.
 Thus, the adder output will be a two's complement subtraction, A B.

