Lecture 2.5

更多文法分析理论

徐辉 xuh@fudan.edu.cn

大纲

- 一、语言解析问题
- 二、自底向上分析
- 三、不同文法的关系

概念回顾

- 一门语言(language)是多个句子(sentences)的集合。
- 句子(sentence)是由终结符(terminal symbols)组成的序列(sequence)。
- 字符串(string)是包含终结符和非终结符的序列。
 - 非终结符: X、Y、Z
 - 终结符(标签): <BINOP>、<NUM>
 - 字符串符号: α、β、γ
- 语法(grammar)包括一个开始符号S和多条推导规则 (productions)
 - $S \rightarrow \beta$
 - . . .

语言分析问题难度 Chomsky Hierarchy

类型	文法名称	自动机模型	生成式形式	语言示例
0 型	递归枚举	图灵机	无限制	
1 型	上下文敏感	Linear bounded TM	左侧可以多个符号 αS→β	$a^nb^nc^n$
2 型	上下文无关	下推自动机	左侧仅一个符号S→β	a^nb^n
3 型	正则	有穷自动机	右侧全部为终结符 <i>S→<a></i>	a^n

Turing Machine

Pushdown Automaton

Finite-State Machine

类型判定

- 一般意义上,判断一个句子是否属于某个语言 $w \in L(G)$ 是不能(通过图灵机)计算的
- 根据产生式判断语言类型
- 根据句子集合判定语言类型

正则语言 VS 上下文无关语言

- 正则语言也可以用CFG规则形式表示:
 - 规则:
 - $X \rightarrow \gamma$
 - $\gamma \rightarrow \gamma_1$
 - •
 - X是非终结符
 - γ是可能包含终结符和非终结符的字符串
- 特点: 右侧的非终结符均可替换为终结符

[1]
$$S \to A|B$$

[2] $A \to (0?1)^*$
[3] $B \to (1?0)^*$ \longrightarrow $S \to (0?1)^*|(1?0)^*$

非正则语言

- 不能用正则表达式或有穷自动机表示的语言
- $L = \{a^n b^n, n > 0\}$ 不是正则语言
 - 证明:
 - 假设DFA可识别该语言,其包含p个状态;
 - 假设某词素为 $a^q b^q$, q > p。
 - 识别该词素需要经过某状态 s_i 至少两次,分别对应第j和第k个 a_j
 - 该DFA可同时接受 $a^q b^q$ 和 $a^{q-k+j} b^q$,推出矛盾。

• $L = \{a^n b^n, n > 0\}$ 是上下文无关语言

$$S \rightarrow aSb$$

正则语言的泵引理(Pumping Lemma)

- 词素数量有限的语言一定是正则语言。
- 词素数量无穷多的语言是否为正则语言?
- 某语言L(r)是正则语言的必要条件:
 - 任意长度超过p(泵长)的句子都可以被分解为xyz的形式
 - 其中x和z可为空,
 - 子句y被重复任意次(如xyyz)后得到的句子仍属于该语言。

非CFG语言:上下文敏感语法

- $L = \{a^n b^n c^n, n > 0\}$ 不是CFG语言
- 如何定义?
- 上下文敏感语法定义
 - $\alpha A\beta \rightarrow \alpha \gamma \beta$
 - α 和 β 不变,A展开

```
[1] S \rightarrow aBC

[2] |aSBC|

[3] CB \rightarrow BC

[4] aB \rightarrow ab

[5] bB \rightarrow bb

[6] bC \rightarrow bc

[7] cC \rightarrow cc
```

非CFG语言的泵引理

- CFG语言的泵引理(必要条件):
 - 任意长度超过p(泵长)的句子可以被拆分为uvwxy,
 - •子句v和x被重复任意次后得到的新句子(如uvvwxxy) 仍属于该语言。
- 正则属于CFG: $uv^n w \epsilon^n \epsilon$

练习:下列语言是否为正则语言?

• 集合表示

- 1) $L = \{a^n b^n | n \le 100\}$
- 2) $L = \{a^n | n \ge 1\}$
- 3) $L = \{a^{2n} | n \ge 1\}$
- 4) $L = \{a^p | p \text{ is prime}\}$

• Regex/CFG语法表示

- 1) $S \to (0?1)^*$
- 2) $S \rightarrow aT | \epsilon, T \rightarrow Sb$
- 3) $S \rightarrow 0S1S|1S0S|\epsilon$

思考

- 1) 用正则表达式可以定义所有的正则语言吗?
- 2) 有穷自动机可以解析任意正则表达式吗?
- 3) 用CFG可以定义任意正则语言吗?
- 4) 用CFG可以定义任意上下文无关语言吗?
- 5) 用下推自动机可以解析任意正则表达式吗?
- 6) 用下推自动机可以解析任意CFG吗?
- 7) 用通用图灵机可以解析任意CFG吗?
- 8) 用通用图灵机可以解析任意程序吗?

大纲

- 一、语言解析问题
- 二、自底向上分析
- 三、不同文法的关系

基本思路: 基于规约的方法

- 如果在句法分析栈的上边缘找到 β 且 $A \rightarrow \beta$,则将其规约为A;
- 否则移进

[1] $S \rightarrow \epsilon$ [2] [S]S

当前栈 待输入

第1步: 第2步: 第3步: [S]

第4步: [S]S ||

第5步:

形式化表示

移进: $\frac{w:\beta}{wa:\beta a}$ shift

 $[r] X \to \alpha$ 规约: $\frac{w: \beta \alpha}{w: \beta X} \text{ reduce}[r]$

通用自底向上CFG分析: CYK算法

计算器语法分析

```
[1] E \rightarrow E OP1 E1
[2] | E1
[3] E1 \rightarrow E1 OP2 E2
[4] | E2
[5] E2 \rightarrow E3 OP3 E2
[6] | E3
[7] E3 \rightarrow NUM
[8] | <LPAR> E <RPAR>
[9] NUM \rightarrow \langle UNUM \rangle
[10] | <SUB> <UNUM>
[11] OP1 → <ADD>
[12] | <SUB>
[13] OP2 → <MUL>
[14] | <DIV>
[15] OP3 \rightarrow <EXP>
```

句柄状态分析(规范项)

```
[1] E → ∘ E OP1 E1

[1] E → E ∘ OP1 E1

[1] E → E OP1 ∘ E1

[1] E → E OP1 E1 ∘

[2] E → ∘ E1

[2] E → E1 ∘

[3] E1 → ∘ E1 OP2 E2

[3] E1 → E1 OP2 ∘ E2

[3] E1 → E1 OP2 ∘ E2
```

语法增强

```
[0] G \rightarrow E
[1] E \rightarrow E OP1 E1
[2] | E1
[3] E1 \rightarrow E1 OP2 E2
[4] | E2
[5] E2 \rightarrow E3 OP3 E2
[6] | E3
[7] E3 \rightarrow NUM
[8] | <LPAR> E <RPAR>
[9] NUM \rightarrow \langle UNUM \rangle
[10] | <SUB> <UNUM>
[11] OP1 → <ADD>
[12] <SUB>
[13] OP2 → <MUL>
[14] | <DIV>
[15] OP3 \rightarrow <EXP>
```

句柄状态分析(规范项)

```
[0] G \rightarrow \circ E
[0] G \rightarrow E \circ
[1] E \rightarrow \circ E OP1 E1
[1] E \rightarrow E \circ OP1 E1
[1] E \rightarrow E OP1 \circ E1
[1] E \rightarrow E OP1 E1 \circ
[2] E \rightarrow \circ E1
[2] E \rightarrow E1 \circ
[3] E1 \rightarrow \circ E1 OP2 E2
[3] E1 \rightarrow E1 \circ OP2 E2
[3] E1 \rightarrow E1 OP2 \circ E2
[3] E1 \rightarrow E1 OP2 E2 \circ
```

构建LR(0)自动机: 规范族

```
[0] G \rightarrow E
[1] E \rightarrow E OP1 E1
[2] | E1
[3] E1 \rightarrow E1 OP2 E2
[4] | E2
[5] E2 \rightarrow E3 OP3 E2
[6] | E3
[7] E3 → NUM
[8] | <LPAR> E <RPAR>
[9] NUM \rightarrow \langle UNUM \rangle
[10] | <SUB> <UNUM>
[11] OP1 → <ADD>
[12] | <SUB>
[13] OP2 → <MUL>
[14] | <DIV>
[15] OP3 → <EXP>
```

```
S0
G \rightarrow \circ E
E \rightarrow \circ E \text{ OP1 E1}
E \rightarrow \circ E1
E1 \rightarrow \circ E1 \text{ OP2 E2}
E1 \rightarrow \circ E2
E2 \rightarrow \circ E3 \text{ OP3 E2}
E2 \rightarrow \circ E3
E3 \rightarrow \circ \text{ NUM}
E3 \rightarrow \circ \text{ <LPAR> } E \text{ <RPAR>}
NUM \rightarrow \circ \text{ <UNUM>}
NUM \rightarrow \circ \text{ <SUB> <UNUM>}
```

Kernel iterms

Nonkernel items

```
While (S has changed) for each item [A \to \beta \circ C\delta, a] \in S for each production [C \to \lambda] \in G if [C \to \circ \lambda] \notin S S \leftarrow S \cup [C \to \circ \lambda]
```

构建LR(0)自动机 **S1** $G \rightarrow E \circ$ Ε $E \rightarrow E \circ OP1 E1$ $OP1 \rightarrow \circ \langle ADD \rangle$ OP1 → ∘ <SUB> $[0] G \rightarrow E$ **S2** $[1] E \rightarrow E OP1 E1$ E1 E → E1 ∘ [2] | E1 E1 → E1 ∘ OP2 E2 $[3] E1 \rightarrow E1 OP2 E2$ OP2 → ∘ <MUL> | E2 [4] OP2 → ∘ <DIV> So [5] E2 → E3 OP3 E2 $G \rightarrow \circ E$ E2 [6] | E3 **S**3 $E \rightarrow \circ E OP1 E1$ E1 → E2 ∘ [7] E3 → NUM $E \rightarrow \circ E1$ [8] E1 → ∘ E1 OP2 E2 **S4** E3 $E1 \rightarrow \circ E2$ $[9] NUM \rightarrow \langle UNUM \rangle$ E2 → E3 ∘ OP3 E2 E2 → ∘ E3 OP3 E2 <SUB> <UNUM> [10] E2 → E3 ∘ E2 → ∘ E3 [11] OP1 \rightarrow <ADD> E3 → ° NUM NUM | <SUB> [12] **S5** E3 → o <LPAR> E <RPAR> E3 → NUM ∘ [13] OP2 → <MUL> NUM → ∘ <UNUM> [14] <DIV> NUM → ∘ <SUB> <UNUM> **S6** [15] OP3 → <EXP> E3 → <LPAR> ∘ E <RPAR> $E \rightarrow \circ E OP1 E1$ $E \rightarrow \circ E1$ E1 → ∘ E1 OP2 E2 KAA9 E1 → ∘ E2 E2 → ∘ E3 OP3 E2 E2 → ∘ E3 E3 → o NUM E3 → ∘ <LPAR> E <RPAR>

NUM → ∘ <UNUM>

NUM → ∘ <SUB> <UNUM>

构建LR(0)自动机

```
[0] G \rightarrow E
[1] E \rightarrow E OP1 E1
[2] | E1
[3] E1 \rightarrow E1 OP2 E2
[4]
    | E2
[5] E2 \rightarrow E3 OP3 E2
[6]
    | E3
[7] E3 \rightarrow NUM
    | <LPAR> E <RPAR>
[9] NUM → <UNUM>
[10] | <SUB> <UNUM>
[11] OP1 → <ADD>
[12]
     <SUB>
[13] OP2 → <MUL>
[14] | <DIV>
[15] OP3 → <EXP>
```


LR(0)自动机的状态转移关系表

+□ ++ <i>>+</i> -					051	050	05.5				611-		5-:-	5):5			
规范族	E	E1	E2	E3	OP1	OP2	OP3	NUM	<unum></unum>	<add></add>		<mul></mul>	<div></div>	<exp></exp>	<lp></lp>	<rp></rp>	<eof></eof>
SØ	S1	S2	S 3	S4	Ø	Ø	Ø	S5	S7	Ø	S8	Ø	Ø	Ø	S6	Ø	Ø
S1	Ø	Ø	Ø	Ø	S9	Ø	Ø	Ø	Ø	S10	S11	Ø	Ø	Ø	Ø	Ø	成功
S2	Ø	Ø	Ø	Ø	Ø	S12	Ø	Ø	Ø	Ø	Ø	S13	S14	Ø	Ø	Ø	Ø
S3	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø
S4	Ø	Ø	Ø	Ø	Ø	Ø	S15	Ø	Ø	Ø	Ø	Ø	Ø	S16	Ø	Ø	Ø
S5	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø
S6	S17	S2	S 3	S4	Ø	Ø	Ø	S5	S 7	Ø	S8	Ø	Ø	Ø	S6	Ø	Ø
S7																	
S8																	
S9																	
S10																	
S11																	
S12																	
S13																	
S14																	
S15																	
S16																	
S17																	
S18																	
S19																	
S20																	
S21																	
S22																	

构建SLR解析器

- 移进条件: 如果 $A \to \alpha \circ a\beta \in S_i$, 并且 $Goto(S_i, a) = S_j$, 设置 $Action(S_i, a) = "shift j"$
- 规约条件: 如果 $A \to \alpha \circ \in S_i$, $\forall a \in Follow(A)$, 设置 $Action(S_i, a) = "reduce A \to \alpha"$

构建SLR解析表

- 移进条件: 如果 $A \to \alpha \circ \alpha \beta \in S_i$,并且 $Goto(S_i, \alpha) = S_j$,设置 $Action(S_i, \alpha) = s_i$ "shift j"
- 规约条件: 如果 $A \to \alpha \circ \in S_i$, $\forall a \in Follow(A)$, 设置 $Action(S_i, a) = "reduce A \to \alpha"$

加井佐	GOTO						Action (Shift-Reduce)										
规范族	Е	E1	E2	E3	0P1	OP2	0P3	NUM	<unum></unum>	<add></add>		<mul></mul>	<div></div>	<exp></exp>	<lp></lp>	<rp></rp>	<eof></eof>
SØ	S1	S2	S3	S4	Ø	Ø	Ø	S5	S 7	Ø	S8	Ø	Ø	Ø	S6	Ø	Ø
S1	Ø	Ø	Ø	Ø	S9	Ø	Ø	Ø	Ø	S10	S11		Ø	Ø	Ø	Ø	成功
S2	Ø	Ø	Ø	Ø	Ø	S12	Ø	Ø	Ø	R[2]	R[2]	S13	S14	Ø	Ø	R[2]	R[2]
S3	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	R[4]	R[4]	R[4]	R[4]	Ø	Ø	R[4]	R[4]
S4	Ø	Ø	Ø	Ø	Ø	Ø	S15	Ø	Ø	R[6]	R[6]	R[6]	R[6]	S16	Ø	R[6]	R[6]
S5	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	R[7]	R[7]	R[7]	R[7]	R[7]	Ø	R[7]	R[7]
S6	S17	S2	S3	S4	Ø	Ø	Ø	S5	S 7	Ø	S8	Ø	Ø	Ø	S6	Ø	Ø
S7	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	R[9]	R[9]	R[9]	R[9]	R[9]	Ø	R[9]	R[9]
S8	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	S18	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø
S8																	
S9																	
S10																	
S11																	
S12																	
S13																	
S14																	
s257																	

SLR应用示例

Stack	Symbols	Input	Action
SØ		<unum><mul><unum><eof></eof></unum></mul></unum>	shift <unum>, goto S7</unum>
S0,S7	<unum></unum>	<mul><unum><eof></eof></unum></mul>	Reduce [9], back to S0, goto S5
S0,S5	NUM	<mul><unum><eof></eof></unum></mul>	Reduce [7], back to S0, goto S4
50,54	E3	<mul><unum><eof></eof></unum></mul>	Reduce [6], back to S0, goto S3
50,53	E2	<mul><unum><eof></eof></unum></mul>	Reduce [4], back to S0, goto S2
50,52	E1	<mul><unum><eof></eof></unum></mul>	Shift <mul>, goto S13</mul>
S0,S2,S13	E1 <mul></mul>	<unum><eof></eof></unum>	Reduce [13], back to S2, goto S12
S0,S2,S12	E1 OP2	<unum><eof></eof></unum>	Shift <unum>, goto S7</unum>
50,52,512,57	E1 OP2 <unum></unum>	<eof></eof>	Reduce [9], back to S12, goto S5
S0,S2,S12,S5	E1 OP2 NUM	<eof></eof>	Reduce [7], back to S12, goto S4
50,52,512,54	E1 OP2 E3	<eof></eof>	Reduce [6], back to S12, goto S20
50,52,512,520	E1 OP2 E2	<eof></eof>	Reduce [4], back to S12, goto S2
S0	E1	<eof></eof>	Reduce [3], back to s0, goto S2
50,52	E1	<eof></eof>	Reduce [2], back to s0, goto S1
S0,S1	Е	<eof></eof>	成功

是否会存在冲突?

• 情形一: 同时满足移进和规约

• 情形二: 同时满足多条规约规则

二义性语法:移进-规约冲突

- 利用SLR解析表解析bda时存在移进-规约冲突
 - S4下一个字符为a, 可移进
 - $a \in Follow(A)$, 可规约

 $\begin{bmatrix}
1 \end{bmatrix} S \rightarrow bAc \\
\begin{bmatrix}
2 \end{bmatrix} & |bda \\
\end{bmatrix} Aa \\
\begin{bmatrix}
4 \end{bmatrix} A \rightarrow d$

什么情况下容易出现移进-规约冲突?

$$\begin{bmatrix}
1 \end{bmatrix} S \rightarrow bAc \\
\begin{bmatrix}
2 \end{bmatrix} & |bda \\
\end{bmatrix} Aa \\
\begin{bmatrix}
4 \end{bmatrix} A \rightarrow d$$

[1]
$$S \rightarrow \beta_1 X \beta_2$$

[2] $|\beta_1 \beta_3 \beta_4$
[3] $X \rightarrow \beta_3$

- 同一非终结符的两条规则:
 - 拥有共同的起始字符串 β_1 ;
 - β_1 后面分别为非终结符 $X\beta_2$ 和字符串 $\beta_3\beta_4$;
 - 存在规则 $X \to \beta_3$ 。
 - $Follow(X) \cap First(\beta_4) \neq \emptyset$
- 或存在两种推导满足上述条件,如:

$$[1] S \to \beta_0 \beta_1 X \beta_3$$

[2]
$$S \rightarrow \beta_0 Y$$

[3]
$$Y \rightarrow \beta_1 \beta_2 \beta_3$$

[4]
$$X \rightarrow \beta_2$$

二义性语法:规约-规约冲突

- 解析bda时存在规约 $(A \rightarrow d)$ -规约 $(B \rightarrow d)$ 冲突
 - $a \in Follow(A) \perp a \in Follow(B)$
- 解析da、dc等其它句子时存在同样的问题

[1] $S \to Aa$ [2] |bAc[3] |Bc[4] |bBa[5] $A \to d$ [6] $B \to d$

什么情况下容易出现规约-规约冲突?

$$\begin{bmatrix}
1 \end{bmatrix} S \rightarrow Aa \\
\begin{bmatrix}
2 \end{bmatrix} | bAc \\
\begin{bmatrix}
3 \end{bmatrix} | Bc \\
\begin{bmatrix}
4 \end{bmatrix} | bBa \\
\begin{bmatrix}
5 \end{bmatrix} A \rightarrow d \\
\begin{bmatrix}
6 \end{bmatrix} B \rightarrow d$$

- 同一非终结符的两条规则:
 - 拥有共同的起始字符串 β_1 ;
 - β_1 后面分别为非终结符 $X\beta_2$ 和字符串 $Y\beta_3$;
 - 存在规则 $X \to \beta_4$ 和 $Y \to \beta_4$ 。
 - $Follow(X) \cap Follow(Y) \neq \emptyset$
- 或存在两种推导满足上述条件,如

$$\begin{bmatrix}
1 \end{bmatrix} S \to \beta_0 X \\
\begin{bmatrix}
2 \end{bmatrix} & |\beta_0 \beta_1 Y \beta_3 \\
\end{bmatrix} X \to \beta_1 Z \beta_3 \\
\begin{bmatrix}
4 \end{bmatrix} Y \to \beta_2 \\
\end{bmatrix} \begin{bmatrix}
5 \end{bmatrix} Z \to \beta_2$$

如果存在冲突怎么办?

- 进一步细化SLR解析表
- LR(1)规范项/族:记录具体的Follow字符信息

LR(1)自动机构造

SLR存在移进-规约冲突的例子

LR(1)自动机构造

SLR存在规约-规约冲突的例子

[1]
$$S \to Aa$$

[2] $|bAc$
[3] $|Bc$
[4] $|bBa$
[5] $A \to d$
[6] $B \to d$

思考: SLR和LR如何选取移进、规约操作?

- SLR维护当前的栈顶句柄信息
 - 通过构造LR(0)自动机和下个字符判断是否可以移进
 - 需要规约时根据Follow判断是否可行
- 经典LR(1)思路类似:
 - 自动机构造时考虑Follow信息
 - 但LR(1)的规范项和规范族数量很多
- 折中思路: LALR(Lookahead LR)
 - 自动机构造时考虑Follow信息
 - 同时精简规范族

LALR构造思路

- 合并句柄状态完全相同的状态集
- 下面LR(1)自动机 S_2 和 S_5 可以合并,但合并后存在规约-规约冲突
 - 该语法不是LALR

LALR语法举例

$$\begin{bmatrix}
1 \end{bmatrix} S' \to S \\
\begin{bmatrix}
2 \end{bmatrix} S \to CC \\
\begin{bmatrix}
3 \end{bmatrix} C \to cC \\
\begin{bmatrix}
4 \end{bmatrix} \mid d$$

- 可以合并的规范族
 - S3和S6、S4和S7、S8和S9;
 - Follow项取并集。

LALR解析表

$$\begin{bmatrix}
1 \end{bmatrix} S' \to S \\
\begin{bmatrix}
2 \end{bmatrix} S \to CC \\
\begin{bmatrix}
3 \end{bmatrix} C \to cC \\
\end{bmatrix}$$

规范族				Goto	
	С	d	eof	S	С
<i>S</i> 0	shift S ₃	shift S ₄		S ₁	S ₂
<i>S</i> 1			accept		
<i>S</i> 2	shift S ₃				S ₅
<i>S</i> 3	shift S ₃	shift S ₄			S ₆
S4	reduce [4]	reduce [4]	reduce [4]		
<i>S</i> 5			reduce [2]		
<i>S</i> 6	reduce [3]	reduce [3]	reduce [3]		

大纲

- 一、语言解析问题
- 二、自底向上分析
- 三、不同文法的关系

几种语法的关系

- 语法表达能力: LR(1)>LALR(1)>SLR
 - 规约条件严苛: LR(1)>LALR(1)>SLR
 - 移进条件同LR(0)?

举例: LALR, 非SLR语法

- 构造SLR解析表则解析bda时存在移进-规约冲突
- LALR解析方法可以避免冲突

 $\begin{bmatrix}
1 \end{bmatrix} S \rightarrow bAc \\
\begin{bmatrix}
2 \end{bmatrix} & |bda \\
\begin{bmatrix}
3 \end{bmatrix} & |Aa \\
\begin{bmatrix}
4 \end{bmatrix} A \rightarrow d$

LL(1) vs LR(1)

- LL(1)语法一定是LR(1)吗? 为什么?
- LL(1)不一定是SLR(1), 反例?
- LL(1)不一定是LALR(1), 反例?

举例说明: LL(1)非SLR

```
[1] S \rightarrow AaAb

[2] |BbBa|

[3] A \rightarrow \epsilon

[4] B \rightarrow \epsilon
```

是LL(1)

- $First^+(S \rightarrow AaAb) = \{a\}$
- $First^+(S \rightarrow BbBa) = \{b\}$

不是SLR(1)

- $Follow(A) = Follow(B) = \{a, b\}$
- $Action(S_0, a) = reduce[3]$ 或 reduce[4] 是LR(1)

举例说明: LL(1)非LALR

• 基于前面非LL(1)、非LALR的例子改写。

练习

• 下面的语法是否是LL(1)? 是否是SLR(1)

$$\begin{bmatrix}
1 \end{bmatrix} S \to SA \\
\begin{bmatrix}
2 \end{bmatrix} & |A \\
\end{bmatrix} A \to a$$

练习

下列语法是否是LR(1) ?

```
[1] REGEX → UNION
                                [1] REGEX → CONCAT REGEX1
[2] | CONCAT
                                [2] REGEX1 → <OR> CONCAT REGEX1
[3] UNION → REGEX <OR> CONCAT
[4] CONCAT → CONCAT CLOSURE
                                [4] CONCAT → CLOSURE CONCAT1
[5]
          CLOSURE
                                [5] CONCAT1 → CLOSURE CONCAT1
                                [6]
[6] CLOSURE → ITEM <STAR>
           ITEM
                                [7] CLOSURE → ITEM FOLLOW
                                [8] FOLLOW → <STAR>
[8] ITEM → <LPAR>REGEX<RPAR>
                                [9] \epsilon
[9]
        <CHAR>
                                [10] ITEM → <LPAR>REGEX<RPAR>
                                [11] <CHAR>
```

如果LR(1)不够用怎么办?

- LR(1)解析表存在冲突
- GLR (Generalized LR)
 - 遇到冲突时分别尝试两种解析指令
 - 复制栈状态,维护解析搜索树

小结

- 编译器的任务: 找到语法树推导
 - 自顶向下(top-down parser)
 - 自底向上 (bottom-up parser)
- 语法难度: CFG>LR(1)>LL(1)>RE
 - 任意CFG需要花费更多时间进行语法分析
 - CYK/Earley算法复杂度O(n³)
 - LL(1)是LR(1)的一个子集
 - Left-to-Right, Leftmost
 - 前瞻单词1个
 - 适合自顶向下分析
 - LR(1)是无歧义CFG的一个子集
 - Left-to-Right, Rightmost
 - 前瞻单词1个
 - 适合自底向上分析

总结

- 语言解析问题
 - Chomsky Hierarchy
- 自底向上分析
 - SLR、LALR、LR(1)语言
 - LR(1)语言解析器构造
 - 通用算法: GLR算法、CYK算法
- 不同语法之间的关系

