

Contents

- LU decomposition
- **■** Gauss-Jordan elimination
- Summary
- Code exercise

LU Decomposition

Introduction of Triangular Matrix

- Matrix in which values of terms above or below diagonal elements based on main diagonal are all 0.
- Lower triangular matrix
 - \blacktriangleright Matrix whose where diagonal terms are all θ .
- **■** Upper triangular matrix
 - \blacktriangleright Matrix whose below diagonal terms are all θ .

$$\boldsymbol{L} = \begin{bmatrix} l_{1,1} & 0 & 0 & 0 & 0 \\ l_{2,1} & l_{2,2} & 0 & 0 & 0 \\ l_{3,1} & l_{3,2} & \ddots & 0 & 0 \\ \vdots & \vdots & \ddots & \ddots & 0 \\ l_{n,1} & l_{n,2} & \cdots & l_{n,n-1} & l_{n,n} \end{bmatrix} \qquad \boldsymbol{U} = \begin{bmatrix} u_{1,1} & u_{1,2} & u_{1,3} & \cdots & u_{1,n} \\ 0 & u_{2,2} & u_{2,3} & \cdots & u_{2,n} \\ 0 & 0 & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & \ddots & u_{n-1,n} \\ 0 & 0 & 0 & 0 & 0 & u_{n,n} \end{bmatrix}$$

$$\boldsymbol{U} = \begin{bmatrix} u_{1,1} & u_{1,2} & u_{1,3} & \cdots & u_{1,n} \\ 0 & u_{2,2} & u_{2,3} & \cdots & u_{2,n} \\ 0 & 0 & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & \ddots & u_{n-1,n} \\ 0 & 0 & 0 & 0 & u_{n,n} \end{bmatrix}$$

Lower triangular matrix

Upper triangular matrix

Remind Solving Simultaneous Equations

Elementary matrix

- Row multiplication
- Row switching
- Row addition

If we think again about process of obtaining solution through elementary row operations,

- Equation at bottom leaves only expression for last unknown.
- Equation above it leaves only last two unknowns, thereby eliminating the unknowns.
- Obtain value of last unknown from bottom equation.
- Substitute into equation above it to obtain value of next unknown...
- You can see that it is possible to obtain values of unknowns one by one in this order.

This process is called back substitution.

Because it calculates from last unknown to first unknown.

$$\begin{cases} x + y + z = 6 \\ 2x + 3y - z = 5 \\ 2x + 3y + 3z = 17 \end{cases}$$

$$r_2 \rightarrow r_2 - 2r_1$$

$$r_3 \rightarrow r_3 - 2r_1$$

$$r_3 \rightarrow r_3 - r_2$$

$$\begin{cases} x + y + z = 6 \\ 2x + 3y - z = 5 \\ 2x + 3y + 3z = 17 \end{cases} r_2 \rightarrow r_2 - 2r_1 \\ r_3 \rightarrow r_3 - 2r_1 \\ r_3 \rightarrow r_3 - r_2 \end{cases} \begin{cases} x + y + z = 6 \\ 0x + y - 3z = -7 \\ 0x + 0y + 4z = 12 \end{cases} \Rightarrow r_2 \rightarrow y = 2 \\ \Rightarrow r_1 \rightarrow x = 1 \end{cases}$$

$$z = 3$$

$$\Rightarrow r_2 \rightarrow y = 2$$

$$\Rightarrow r_4 \rightarrow r = 1$$

Back substitution

Simultaneous Equations represented as Matrix

- Let's find solution using matrix.
 - Perform elementary row operations.

$$r_2 \rightarrow r_2 - 2r_1$$

$$r_3 \rightarrow r_3 - 2r_1$$

$$r_3 \rightarrow r_3 - r_2$$

$$\begin{bmatrix} 1 & 1 & 1 & 6 \\ 0 & 1 & -3 & -7 \\ 0 & 0 & 4 & 12 \end{bmatrix}$$

Representation of simultaneous equations as augmented matrix

Back Substitution represented as Matrix

- If elementary row operations are expressed using elementary matrices,
 - ▶ They can be summarized as Eq 1..
- If you think about meaning of elementary matrices attached to left of original [A|b] matrix,
 - ▶ They are elementary row operations as Eq 2..

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -2 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 6 \\ 2 & 3 & -1 & 5 \\ 2 & 3 & 3 & 17 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 6 \\ 0 & 1 & -3 & -7 \\ 0 & 0 & 4 & 12 \end{bmatrix}$$

Eq 1. Representation of elementary matrix as elementary matrix

$$\begin{matrix} r_3 \rightarrow (r_3 - r_2) & r_2 \rightarrow (r_2 - 2r_1) \\ \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -2 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 2 & 3 & -1 \\ 2 & 3 & 3 \\ A|b \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 6 \\ 5 & 17 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 6 \\ 0 & 1 & -3 & 6 \\ 0 & 0 & 4 & 12 \end{bmatrix}$$

Eq 2. Perform back substitution with final result obtained through elementary matrix operations.

Convert Coefficient Matrix *A* **into Upper Triangular Matrix**

Let's try something a little different by applying this idea.

- ▶ If we multiply elementary matrix in same way for matrix *A*,
 - Only has equation coefficients instead of [A|b].
- we can obtain form without augmenting matrix on right side.

ALU

• The result will be in form of weer triangular matrix introduced earlier.

$$\begin{pmatrix}
r_3 \to (r_3 - r_2) & r_2 \to (r_2 - 2r_1) \\
\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -1 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
-2 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 0 & 0 \\
-2 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 1 & 1 \\
2 & 3 & -1 \\
2 & 3 & 3
\end{bmatrix} = \begin{bmatrix}
1 & 1 & 1 \\
0 & 1 & -3 \\
0 & 0 & 4
\end{bmatrix}$$

$$r_3 \to (r_3 - 2r_1)$$

Convert coefficient matrix A into upper triangular matrix through elementary matrix operations.

Inverse of Elementary Matrix

Inverse matrices of elementary matrices have very simple form.

- ► Row multiplication as Eq 1.
- ▶ Row addition as Eq 2.
- ▶ Elementary matrix that changes order of rows as Eq 3.

$$\boldsymbol{E} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & s & 0 \\ 0 & 0 & 1 \end{bmatrix} \rightarrow \boldsymbol{E}^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1/s & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Eq 1. Relationship between row multiplication matrix and its inverse matrix

$$\mathbf{E} = \begin{bmatrix} 1 & 0 & 0 \\ s & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \rightarrow \mathbf{E}^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ -s & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Eq 2. Relationship between elementary matrix that performs row addition and its inverse matrix

$$\boldsymbol{E} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \rightarrow \boldsymbol{E}^{-1} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$

Eq 3. Relationship between elementary matrix and its inverse matrix that performs function of changing order of rows

Multiply by Inverse of Elementary Matrix

- If you multiply inverse matrices of elementary matrices that were multiplied in front of coefficient matrix A in order,
 - You can rewrite matrix A as follows.

 $\begin{bmatrix} 1 & 1 & 1 \\ 2 & 3 & -1 \\ 2 & 3 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}^{-1} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -2 & 0 & 1 \end{bmatrix}^{-1} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix}^{-1} \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & -3 \\ 0 & 0 & 4 \end{bmatrix}$

of elementary matrix

Multiplying inverse matrix of elementary matrix

LU Decomposition

- If calculate inverse matrices and combine them into one matrix through matrix multiplication,
 - ► They can be combined into triangular matrix as shown in equation below.

$$\begin{bmatrix} 1 & 1 & 1 \\ 2 & 3 & -1 \\ 2 & 3 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}^{-1} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -2 & 0 & 1 \end{bmatrix}^{-1} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix}^{-1} \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & -3 \\ 0 & 0 & 4 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 2 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & -3 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & -3 \\ 0 & 0 & 4 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 2 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & -3 \\ 0 & 0 & 4 \end{bmatrix}$$

Matrix A represented as product of lower triangular matrix and upper triangular matrix

Example of LU Decomposition

- Code Exercise (10_05)
 - ► Function for LU decomposition is in MATLAB.

$$\begin{bmatrix} 2 & 2 & 4 \\ 1 & 0 & 3 \\ 2 & 1 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 1/2 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 2 & 2 & 4 \\ 0 & -1 & 1 \\ 0 & 0 & -3 \end{bmatrix}$$

Numerical example of LU decomposition

```
% Clear workspace, command window, and close all figures
clc; clear; close all;

% Matrix A
A = [2 2 4; 1 0 3; 2 1 2];

% LU decomposition
[L,U] = lu(A);

% Display the results
disp("L")
disp(L);
disp(U);
```

MATLAB code of LU decomposition

Use of Permutation Matrix

For some matrices,

- ► LU decomposition may not be possible immediately without row swap.
- Consider LU decomposition, which also includes row swap operations.
 - Consider matrix A as shown below.
 - Final output of this type of matrix cannot be upper triangular matrix.
 - By using only row addition or row scaling among elementary lower triangular matrices.
 - Because first and second elements in first row are already set to θ .
 - Therefore, rows of *A* must be changed and started.
 - In order to be able to use only elementary matrix corresponding to row addition and row scaling of lower triangular matrix.

$$\mathbf{A} = \begin{bmatrix} 0 & 0 & 3 \\ 1 & 1 & 1 \\ 2 & 3 & -1 \end{bmatrix}$$

Example of matrix

LU Decomposition including Row Operations

- First, let's replace rows 1 and 3 and then consider LU decomposition.
 - ightharpoonup Then, A is multiplied by matrix P_{13} .

$$P_{13} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$

$$P_{13}A = \begin{bmatrix} 2 & 3 & -1 \\ 1 & 1 & 1 \\ 0 & 0 & 3 \end{bmatrix}$$

Result of $P_{13}A$

Result of LU Decomposition including Row Operations

- Perform $r_2 \to r_2 (1/2)r_1$.
 - Result is an upper triangular matrix.
- Thus, consider that you can take inverse matrix of elementary row operations and write it as follows.

$$\Rightarrow \begin{bmatrix} 1 & 0 & 0 \\ -1/2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 3 & -1 \\ 1 & 1 & 1 \\ 0 & 0 & 3 \end{bmatrix} = \begin{bmatrix} 2 & 3 & -1 \\ 0 & -1/2 & 3/2 \\ 0 & 0 & 3 \end{bmatrix}$$

Result is an upper triangular matrix

$$P_{13}A = \begin{bmatrix} 1 & 0 & 0 \\ -1/2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}^{-1} \begin{bmatrix} 2 & 3 & -1 \\ 0 & -1/2 & 3/2 \\ 0 & 0 & 3 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 1/2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 3 & -1 \\ 0 & -1/2 & 3/2 \\ 0 & 0 & 3 \end{bmatrix} = LU$$
Representation of LU decomposition

PLU Decomposition

- When performing LU decomposition by changing $[r_{\mathfrak{W}}]$ order of matrix A to be decomposed in advance.
- Since inverse matrix of row permutation matrix is itself
 - Original coefficient matrix A can be decomposed as follows.

$$\mathbf{A} = \begin{bmatrix} 0 & 0 & 3 \\ 1 & 1 & 1 \\ 2 & 3 & -1 \end{bmatrix}$$

$$\mathbf{P}_{13}\mathbf{L}\mathbf{U} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 1/2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 3 & -1 \\ 0 & -1/2 & 3/2 \\ 0 & 0 & 3 \end{bmatrix}$$
$$\mathbf{P} \qquad \mathbf{L} \qquad \mathbf{U}$$

Result of decomposition of coefficient matrix A

Code Exercise of PLU decomposition

- Code Exercise (10_06)
 - ▶ Use MATLAB function lu().

```
% Clear workspace, command window, and close all figures
clc; clear; close all;
                                                               figure;
                                                               imagesc(L);
% Matrix A
                                                               title('L Matrix');
A = [3 1 5 7 2 10]
                                                               colorbar;
     987157;
                                                               colormap jet;
     10 1 2 5 7 3;
                                                               axis equal tight;
     4 8 6 9 3 6];
                                                               figure;
% LU decomposition
                                                               imagesc(U);
[L,U,P] = lu(A);
                                                               title('U Matrix');
                                                               colorbar;
% Verify the equality of A and transpose(P)*L*U
                                                               colormap jet;
A2 = P' * L * U;
                                                               axis equal tight;
% Visualize the results
                                                               figure;
                                                               imagesc(A2);
imagesc(A); % Display the matrix as a color image
                                                               title('A2 Matrix');
title('A matrix');
                                                               colorbar;
colorbar; % Show a color scale
                                                               colormap jet;
colormap jet; % Use the jet color map
                                                               axis equal tight;
axis equal tight; % Adjust axes to fit the data
figure;
imagesc(P');
title('transpose P Matrix');
colorbar;
colormap jet;
axis equal tight;
```

MATLAB code to verify LU decomposition with permutation matrix

Visualization of results of PLU decomposition

Visualization results of LU decomposition with permutation matrix

Use of LU Decomposition

- Find solution to Ax = b
 - If A is square matrix and can be decomposed as A = LU
 - You can think about it as follows.
 - Ux can also be thought of as a kind of column vector.
 - Therefore, replace it with column vector named Ux = c.
 - It becomes the same problem as Lc = b.

$$Ax = b$$

$$\Rightarrow (LU)x = b$$

$$\Rightarrow L(Ux) = b$$

$$\Rightarrow Lc = b$$

Using LU decomposition to solve Ax = b

Characteristic of LU Decomposition

- However, if you think about it carefully,
 - ▶ *L* is lower triangular matrix.
 - ► Solution for lower triangular matrix can be easily obtained
 - By using forward substitution.
- Then we solve problem as Ux = c, we will get answer to x.
 - ► In this case, solution can be easily obtained
 - By using substitution.

Example of LU Decomposition

- LU decomposition for matrix A is as Eq 1...
- - ▶ If **b** is $[6, 5, 17]^T$, LUx = b is Eq 2...

$$A = LU$$

$$\Rightarrow \begin{bmatrix} 1 & 1 & 1 \\ 2 & 3 & -1 \\ 2 & 3 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 2 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & -3 \\ 0 & 0 & 4 \end{bmatrix}$$

Eq 1. LU decomposition for matrix A

$$\begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 2 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & -3 \\ 0 & 0 & 4 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 6 \\ 5 \\ 17 \end{bmatrix}$$

Eq 2. Substitute LU decomposition

Example of Shaping LU Decomposition

- If LUx = b is changed to Lc = b,
 - ▶ It becomes Eq 1..
 - ▶ Then, we can easily know that $c_1 = 6$, $c_2 = -7$, $c_3 = 12$.
 - ightharpoonup So considering that additional problem we need to solve is Ux = c.
 - Using Eq 2. and back-substitution, we can see that z = 3, y = 2, and x = 1.

$$\begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 2 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & -3 \\ 0 & 0 & 4 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 6 \\ 5 \\ 17 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 2 & 1 & 1 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix} = \begin{bmatrix} 6 \\ 5 \\ 17 \end{bmatrix}$$

Result of LUx = b

$$\boldsymbol{U}\boldsymbol{x} = \boldsymbol{c} \Rightarrow \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & -3 \\ 0 & 0 & 4 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 6 \\ -7 \\ 12 \end{bmatrix}$$

Result of Ux = c

Properties of Determinant

- In same principle, if matrix A can be LU decomposed,
 - ➤ You can consider Eq 1..
- Eq 2. is established.
 - ▶ Due to properties of determinant.

$$A = LU$$

Eq 1. LU decomposition

$$det(A) = det(L)det(U)$$

Eq 2. Property of determinant

Easy Way to Obtain Determinant

- \blacksquare However, determinant of A can be easily obtained.
 - ▶ since both *L* and *U* are triangular matrices, considering that determinant is calculated only by multiplying ચિંહ્યું હતે components.
- In other words, if L and U decomposed from A are the same as lower triangular matrix and upper triangular matrix,
 - ▶ Determinant of *A* is the same as Eq 1..
 - It can be calculated simply.

$$det(A) = \prod_{i=1}^{n} l_{i,i} \prod_{j=1}^{n} l_{j,j} = \prod_{i=1}^{n} l_{i,i} u_{i,i}$$

Eq 1. Determinant of A

Gauss-Jordan Elimination

Introduction

- In LU decomposition, row operation is not only possible on square matrix.
 - How to create something similiar to an upper triangular matrix.
 - When number of expressions and variables are different ?
 - What if all the numbers on the diagonal elements are eliminated?
 - By taking a row operation.

Process to get upper triangular matrix by basic row operations

LU Decomposition and REF, RREF

- REF: Row-Echelon Form
- RREF: Row-Echelon Form
- Performing a row operation on a rectangular matrix.
 - Same as obtaining upper triangular matrix through LU decomposition.
 - ► Matrix in below figure: Row-Echelon matrix
 - Or called Row-Echelon matrix of given matrix.
 - A, -: non-zero elements.

_	-		-	-	-	-	-	
0	4	-	-	-	-	-	-	
0	() 🔺		-	-	-	-	
0	(0	A	_	-	-	-	
0	(0	0	0	0	_	-	
	(0 (0	0	0	0	0	

What is Echelon?

- If translated into Korean, "사다리꼴" (trapezoid)
 - ▶ **Mistranslation**…! Then, how to translate Echelon?

Echelon

- ► Means "ladder" shape, not "trapezoid" shape
- ► "ladder" shape means "Step-['ke architecture"
 - 0 is concentrated at the bottom of the matrix, their shape looks like a staircase

If translated into Korean, "사다리꼴" (trapezoid)

Mistranslation...! Then, how to translate Echelon?

Echelon

Means "lack trapezoid" shape

"ladder" shape means

• 0 is concentrated at tep-like architecture"
bottom of the matrix, their shape looks like a staircase

Step-like architecture

Form of Row-Echelon matrix

Three Characteristics of Row-Echelon Matrix

- All non-zero rows are above row 0.
 - ► Rows where all elements are 0 are at the bottom of the matrix.
- Leading coefficient in a non-zero row
 - ► Always exists to the Myht of the first non-zero entry in the row above.
- \blacksquare All column entries under pivot are 0.
 - Pivot: Part where you step on the foot at the end of each step.

Form of Row-Echelon matrix

Characteristics of Reduced Row-Echelon Matrix

Reduced Row-Echelon Form (RREF)

- ► Make all pivots as [].
- ▶ Make the numbers above the pivots **0** as well.

Reduced Row-Echelon Form

Example of form of REF

- Distinguish REF with 5 example matrices!
 - ▶ Hint: Consider three characteristics of Row-Echelon matrix
 - —: non zero number
- Is the first matrix in row-echelon form?
 - ► Yes., then why is it?
- Is the second matrix in row-echelon form?
 - ► Yes, then why is it?
- Is the third matrix in row-echelon form?
 - ► No, then why isn't it?
- Is the fourth matrix in row-echelon form?
 - ► No, then why isn't it?
- Is the fifth matrix in row-echelon form?
 - ▶ Mo, then why isn't it?

$$\begin{bmatrix} 1 & - & - & - \\ 0 & 1 & - & - \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 3 & - & - & - & - & - \\ 0 & 0 & 2 & - & - & - & - \\ 0 & 0 & 0 & 0 & 0 & 5 & - \\ 0 & 0 & 0 & 0 & 0 & 0 & - \end{bmatrix}$$

$$\begin{bmatrix} 1 & - & - & - \\ 0 & 2 & - & - \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 1 & - & -1 \\ 1 & - & - & -1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 3 & - & - & - \\ 0 & 4 & - & - \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Matrix 1

Matrix 2

Matrix 3

Matrix 4

Matrix 5

Example of form of RREF

- Distinguish RREF with 3 example matrices!
 - ► Hint: Consider definition of RREF
- Is the first matrix in row-echelon form?
 - ► Tes, then why is it?
- Is the second matrix in row-echelon form?
 - ► No, then why isn't it?
- Is the third matrix in row-echelon form?
 - ▶ Yes-, then why is it?

[1	0	3	2]
0	1	4	5
0	0	0	0
0	0	0	0

Matrix 1

$$\begin{bmatrix} 1 & 0 & 0 & 2 \\ 0 & 4 & 1 & 5 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Matrix 2

$$\begin{bmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 1/4 & 5/4 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Matrix 3

Get REF and RREF by Hand

Let's find REF and RREF with matrix A with elementary row operation

Step 1.

$$r_2 \rightarrow r_2 - 2r_1$$

$$r_3 \rightarrow r_3 - 3r_1$$

$$\begin{bmatrix} 1 & 1 & 2 & 3 & 4 \\ 0 & 4 & 0 & 0 & -6 \\ 0 & 0 & 2 & 3 & 5 \end{bmatrix} \longrightarrow REF$$

Result of Step 1.

Step 2.

$$r_2 \rightarrow \frac{1}{4}r_2$$

$$r_2 \rightarrow \frac{1}{2}r_3$$

$$\begin{bmatrix} 1 & 1 & 2 & 3 & 4 \\ 0 & 1 & 0 & 0 & -3/2 \\ 0 & 0 & 1 & 3/2 & 5/2 \end{bmatrix}$$

Result of Step 2.

$$\begin{bmatrix} 1 & 1 & 2 & 3 & 4 \\ 2 & 6 & 4 & 6 & 2 \\ 3 & 3 & 8 & 12 & 17 \end{bmatrix}$$

Matrix A

$$r_1 \rightarrow r_1 - r_2$$

$$r_1 \rightarrow r_1 - 2r_3$$

$$\begin{bmatrix}
1 & 0 & 0 & 0 & 1/2 \\
0 & 1 & 0 & 0 & -3/2 \\
0 & 0 & 1 & 3/2 & 5/2
\end{bmatrix}$$
RREF
$$\begin{bmatrix}
1 & 2 & 3 & 4 \\
0 & 4 & 0 & 6 & -6 \\
0 & 2 & 3 & 5
\end{bmatrix}$$
Result of Step 3.

Get REF Using MATLAB

■ REF is not unique.

- In MATLAB, result of REF can be different from answer obtained by hand.
- ► Even if the pivot value is not abbreviated when calculating the REF of a certain matrix, it is still treated as REF.

$$\begin{bmatrix} 1 & 1 & 2 & 3 & 4 \\ 2 & 6 & 4 & 6 & 2 \\ 3 & 3 & 8 & 12 & 17 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 2 & 3 & 4 \\ 0 & 4 & 0 & 0 & -6 \\ 0 & 0 & 2 & 3 & 5 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 2 & 3 & 4 \\ 0 & 2 & 0 & 0 & -3 \\ 0 & 0 & 2 & 3 & 5 \end{bmatrix}$$

Matrix A

 $REF(A)_1$

 $REF(A)_2$

```
% Clear workspace, command window, and close all figures
clc; clear; close all;

% Matrix A
A = [1 1 2 3 4;2 6 4 6 2; 3 3 8 12 17];

% Calculate REF of A
[~,ref_A] = lu(A);

% Display the result
disp("A")
disp(A);
disp("ref_A")
disp(ref_A);
MATLAB code
```

```
Α
                             17
ref A
    3.0000
                                  12.0000
                                             17.0000
               3.0000
                         8.0000
                                  -2.0000
                                             -9.3333
               4.0000
                        -1.3333
                        -0.6667
                                  -1.0000
                                             -1.6667
                 Answer of MATLAB
```


Get RREF Using MATLAB

RREF is unique.

- ► In MATLAB, result of RREF always same with answer obtained by hand.
- ▶ In MATLAB, we can obtain RREF using a function called
- ▶ RREF is unique because it decomposes the pivot and eliminates all elements above the pivot.

$$\begin{bmatrix} 1 & 1 & 2 & 3 & 4 \\ 2 & 6 & 4 & 6 & 2 \\ 3 & 3 & 8 & 12 & 17 \end{bmatrix}$$

Matrix A

```
% Clear workspace, command window, and close all figures
clc; clear; close all;

% Matrix A
A = [1 1 2 3 4;2 6 4 6 2; 3 3 8 12 17];

% Calculate RREF of A
rref_A = rref(A);

% Display the result
disp("A")
disp(A);
disp("rref_A")
disp(rref_A);

MATLAB code
```

```
\begin{bmatrix} 1 & 0 & 0 & 0 & 1/2 \\ 0 & 1 & 0 & 0 & -3/2 \\ 0 & 0 & 1 & 3/2 & 5/2 \end{bmatrix}
```

RREF(A)

```
1 1 2 3 4
2 6 4 6 2
3 3 8 12 17

rref_A
1.0000 0 0 0 0.5000
0 1.0000 0 0 -1.5000
0 0 1.0000 1.5000 2.5000
```


Application of RREF

- When multiple types of b vectors in Ax = b,
 - ➤ *x* can be obtained all at once by RREF.
- Using augmented matrix and performing Gauss-Jordan elimination, it is possible to solve three equations at once!

Application of RREF: Inverse Matrix

How to get inverse matrix by Gauss-Jordan elimination?

- ▶ Apply the fact that we can use an augmented matrix.
- ▶ Matrix *B* must be multiplied by matrix *A*, and matrix *I* should be obtained as a result.
 - It means matrix **B** is the inverse of the matrix **A**.

$$\mathbf{B} = \mathbf{A}^{\mathsf{C}}$$

$$\begin{cases} 3x - z = 1 \\ x + 2y + 3z = 1 \\ 2x - y + z = 1 \end{cases}$$

$$\begin{cases} 3x - z = 2 \\ x + 2y + 3z = 2 \\ 2x - y + z = 2 \end{cases}$$

$$\begin{cases} 3x - z = 3 \\ x + 2y + 3z = 3 \\ 2x - y + z = 3 \end{cases}$$

3 equations

Set
$$[A|I]$$

$$\begin{bmatrix} 3 & 0 & -1 & 1 & 0 & 0 \\ 1 & 2 & 3 & 0 & 1 & 0 \\ 2 & -1 & 1 & 0 & 0 & 1 \end{bmatrix}$$
Gauss – Jordan Elimination
$$\begin{bmatrix} 1 & 0 & 0 & 1/4 & 1/20 & 1/10 \\ 0 & 1 & 0 & 1/4 & 1/2 & -1/2 \\ 0 & 0 & 1 & -1/4 & 3/20 & 3/10 \end{bmatrix} A^{-1}$$

Agumented matrix

Row Equivalent

Solution is still same.

- ▶ Even if row operation is applied.
- Original matrix: A
 - REF of original matrix: *U*
 - RREF of original matrix: *R*
- ▶ All of solution *x* is same.
 - \bullet Ax = b, Ux = c, Rx = d
 - *c*, *d* the vector *b* on the right side transformed
 - By changing the original matrices A and U.
- ightharpoonup A, U, R: row equivalent
 - No change in the row space.
 - Even if a row operation is performed

$$\begin{cases} 3x + 3y + z = 3 \\ 4x + 5y + 2z = 1 \\ 2x + 5y + z = 3 \end{cases}$$

$$\begin{bmatrix} 3 & 3 & 1 \\ 4 & 5 & 2 \\ 2 & 5 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \\ 3 \end{bmatrix} : Ax = b$$

$$\begin{bmatrix} 4 & 5 & 2 \\ 0 & 5/2 & 0 \\ 0 & 0 & -1/2 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 5/2 \\ 3 \end{bmatrix} : Ux = c$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \\ 6 \end{bmatrix} : Rx = d$$

All of solution:
$$x = 2, y = 1, z = -6$$

Row equivalent

Application of REF: Determination of Linear Dependence of rows

Review of linear dependent or independent

- If Eq 1. can be established with c_1 and c_2 other than 0, then two vectors v_1 and v_2 are linear.
 - If can't established, then linear

$$c_1v_1+c_2v_2=0$$

Obtaining REF or RREF

- ► Performed through a
- ▶ If some row elements becomes all zero,
 - That row could be obtained by a linear combination of other rows.
 - That row is **linearly dependent** with other rows.

$$A = \begin{bmatrix} 5 & 3 & 3 \\ 5 & 1 & 3 \\ 5 & 2 & 3 \end{bmatrix}$$

$$To make REF$$

$$A = \begin{bmatrix} 5 & 3 & 3 \\ 5 & 1 & 3 \\ 0 & 0 & 0 \end{bmatrix}$$

Third row eliminated through row operation

Summary

Summary

LU decomposition

- ightharpoonup To decompose matrix A = LU
 - *L*: lower triangular matrix
 - *U*: upper triangular matrix

Gauss-Jordan Elimination

- ► Row operation to make form of matrix:
 - Row echelon form(REF).
 - Reduced echelon form(RREF).
- ► Application of REF and RREF.
 - Can get solution from multiple equations.
 - Calculate matrix inverse.
 - Can determine linear dependence of rows.

Code Exercises

Solving Simultaneous Equations

- Implement simultaneous equation in this lecture
- In Eq 1. you can get matrix B after solving simultaneous equation

 - $r_3 \rightarrow (r_3 2r_1)$
- \blacksquare Make 3 elementary matrix and multiply with matrix A for get matrix B

3 elementary matrix ×
$$\begin{bmatrix} 1 & 1 & 1 \\ 2 & 3 & -1 \\ 2 & 3 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & -3 \\ 0 & 0 & 4 \end{bmatrix}$$

A
B

Eq 1.

```
% Clear workspace, command window, and close all figures
clc; clear; close all;
% Matrix A
A = [1 \ 1 \ 1;2 \ 3 \ -1; \ 2 \ 3 \ 3];
% Matrix B
B = [1 \ 1 \ 1;0 \ 1 \ -3;0 \ 0 \ 4];
% Implement three elementary Matrix
% like elem = [1 0 0;0 1 0;0 0 1];
% r_2 > r_2 - 2*r_1
% r_3 > r_3 - 2*r_1
elem_2 = ;
% r 3 > r 3 - r 2
elem 3 = ;
% and multiply with matrix A
result = ;
% check that result are same
disp(B):
disp(result);
```

Sample code

LU Implementation

- Implement LU decomposition in this lecture
 - ▶ Do not use lu() function in MATLAB
- You can use three elementary matrix in previous exercise

$$\begin{bmatrix} 1 & 1 & 1 \\ 2 & 3 & -1 \\ 2 & 3 & 3 \end{bmatrix} = \mathbf{L} * \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & -3 \\ 0 & 0 & 4 \end{bmatrix}$$

$$A \qquad U$$

Eq 1.

```
% Clear workspace, command window, and close all figures
clc; clear; close all;
% Matrix A
A = [1 \ 1 \ 1;2 \ 3 \ -1; \ 2 \ 3 \ 3];
% Matrix B
U = [1 \ 1 \ 1;0 \ 1 \ -3;0 \ 0 \ 4];
% Implement three elementary Matrix
% like elem = [1 0 0;0 1 0;0 0 1];
% r_2 > r_2 - 2*r_1
elem_1 = ;
% r_3 > r_3 - 2*r_1
elem 2 = ;
% r 3 > r 3 - r 2
elem_3 = ;
% get inverse matrix
elem_1_inv = ;
elem_2_inv = ;
elem 3 inv = ;
% and multiply with matrix A
L = ;
% display L & U
disp(L);
disp(U);
% Check that L * U is same with A
disp('--');
disp(L * U);
disp(A);
```

Sample code

THANK YOU FOR YOUR ATTENTION

