

1           use with the computer, such that the plurality of selectively arranged parts  
2           in the modified digital good [has] have been rearranged to have a  
3           substantially unique operative configuration that properly functions with  
4           the computer and is different than the initial configuration; and  
5           causing the at least one computer to run the modified digital good.

6

7       18. (Twice Amended) A computer-readable medium comprising  
8       computer-executable instructions for:

9           with the at least one computer:  
10           receiving an initial digital good, wherein the initial digital good includes a  
11           plurality of selectively arranged parts in an initial configuration and [at least a  
12           portion of] the initial digital good is configured as to not properly function with  
13           the computer;

14           receiving unique key data; and

15           converting the initial digital good into a modified digital good using the  
16       unique key data to selectively individualize the initial digital good for use with the  
17       at least one computer, such that the plurality of selectively arranged parts in the  
18       modified digital good [has] are rearranged to have a substantially unique operative  
19       [u]is operatively different in] configuration that properly functions with the at least  
20       one computer and is different than the initial configuration.

1  
2       27. (Twice Amended) A computer-readable medium comprising  
3 computer-executable instructions for:

4             receiving unique identifier data associated with at least one computer;

5             generating unique key data based on at least the unique identifier data;

6             receiving at least a portion of an initial digital good having a plurality of  
7 selectively arranged parts in an initial configuration;

8             converting the at least a portion [of an initial digital good] using the unique  
9 key data to selectively individualize the portion [of the initial digital good], such  
10 that a modified portion of the digital good is produced [that is operatively] having  
11 the plurality of parts rearranged in a different [in] configuration than the initial  
12 configuration; and

13             providing at least the modified portion of the digital good and at least a  
14 portion of the unique key data to the at least one computer.

15  
16        34. (Twice Amended) An apparatus for use in a host computer, the  
17 apparatus comprising:

18             an individualizer configured to receive unique key data and at least a  
19 portion of an initial digital good that includes a plurality of selectively arranged  
20 parts in an initial configuration, and produce at least a portion of a modified digital  
21 good using the unique key data to selectively individualize the initial digital good  
22 for use with the host computer, and such that the plurality of selectively arranged  
23 parts in the modified digital good [is] are rearranged to be operatively different in  
24 configuration than the initial configuration of the digital good.

1  
2       43. (Twice Amended) An apparatus for use in a source computer, the  
3 apparatus comprising:

4             a key generator configured to receive a unique identifier data from a  
5 destination computer and generate unique key data based on the received unique  
6 identifier data associated with the destination computer; and

7             an individualizer configured to receive the unique key data and at least a  
8 portion of an initial digital good having a plurality of selectively arranged parts in  
9 an initial configuration and output at least a portion of a modified digital good  
10 using the unique key data to selectively individualize the initial digital good, such  
11 that in the modified digital good the plurality of selectively arranged parts have  
12 been rearranged to have an [is] operatively different [in] configuration than the  
13 initial configuration [digital good].

14  
15       50. (Twice Amended) A system comprising:

16             an identifier configured to output unique identifier data associated with a  
17 computer;

18             a key generator coupled to receive the unique identifier data and generate at  
19 least one unique key data based on the received unique identifier data; and

20             at least one individualizer configured to receive the unique key data and at  
21 least a portion of an initial digital good that includes a plurality of selectively  
22 arranged parts in an initial configuration, and output at least a portion of a  
23 modified digital good using the unique key data to selectively individualize the  
24 initial digital good, such that the plurality of selectively arranged parts in the

1 modified digital good [is] have been rearranged to be operatively different in  
2 configuration than the initial configuration of the digital good.

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Pending Claims as a result of the above amendments:

1. A method comprising:

2  
3 providing an initial digital good to at least one computer, wherein the initial  
4 digital good includes a plurality of selectively arranged parts in an initial  
5 configuration and the initial digital good is configured as to not properly function  
6 with the computer;

7  
8 with the at least one computer:

9 receiving unique key data;

10  
11 converting the initial digital good into a modified digital good using  
12 the unique key data to selectively individualize the initial digital good for  
13 use with the computer, such that the plurality of selectively arranged parts  
14 in the modified digital good have been rearranged to have a substantially  
15 unique operative configuration that properly functions with the computer  
and is different than the initial configuration; and

16  
17 causing the at least one computer to run the modified digital good.

18  
19 2. A method as recited in claim 1, wherein converting the initial digital  
good into the modified digital good further includes manipulating at least one flow  
control operation within the initial digital good.

20  
21 3. A method as recited in claim 1, further comprising:

22  
23 causing at least one other computer to generate the unique key data based  
on at least one unique identifier data associated with the at least one computer.

1           4. A method as recited in claim 3, further comprising:  
2                 selectively limiting operation of the modified digital good to computers that  
3             are properly associated with at least the unique identifier data.

4  
5           5. A method as recited in claim 3, wherein causing the at least one  
6             other computer to generate the unique key data further includes:

7                 causing the at least one computer to provide the unique identifier data  
8             associated with the at least one computer to the at least one other computer; and

9                 causing the at least one other computer to cryptographically generate the  
10            unique key data based on the unique identifier data provided by the at least one  
11            computer and at least one secret key.

12  
13           6. A method as recited in claim 5, wherein the at least one other  
14            computer generates at least a first key and a second key, and the first key and the  
15            second key are different, but cryptographically related to the secret key, and  
16            wherein the received unique key data includes the first key .

17  
18           7. A method as recited in claim 1, wherein providing an initial digital  
19            good to the at least one computer further includes:

20                 dividing the initial digital good into at least a first portion and a second  
21             portion using at least one other computer;

22                 providing the first portion to the at least one computer via a first computer  
23             readable medium; and

24                 subsequently providing the second portion to the at least one computer via a  
25             second computer readable medium.

1           8. A method as recited in claim 7, wherein the first computer readable  
2 medium includes a different type of computer readable medium than the second  
3 computer readable medium.

4

5           9. A method as recited in claim 8, wherein the first computer readable  
6 medium includes a fixed computer readable medium and the second computer  
7 readable medium includes a network communication.

8

9           10. A method as recited in claim 7, wherein providing the second  
10 portion to the at least one computer further includes:

11                 converting the second portion into a modified second portion using the  
12 unique key data to selectively manipulate at least one flow control operation  
13 within the second portion, such that the modified second portion is operatively  
14 different in configuration to the second portion; and

15                 providing the modified second portion to the at least one computer via the  
16 second computer readable medium, in place of the second portion.

17

18           11. A method as recited in claim 10, wherein the at least one other  
19 computer is used to convert the second portion into the modified second portion.

20

21           12. A method as recited in claim 10, wherein the unique key data  
22 includes at least a first key and a second key, and converting the second portion  
23 into a modified second portion further includes using the second key to selectively  
24 manipulate at least one flow control operation within the second portion.

1           13. A method as recited in claim 10, wherein the unique key data  
2 includes at least a first key and a second key, and providing the second portion to  
3 the at least one computer further includes providing the first key to the at least one  
4 computer.

5  
6           14. A method as recited in claim 13, wherein converting the initial  
7 digital good into a modified digital good further includes

8                 with the at least one computer, converting the first portion into a modified  
9 first portion using the first key to selectively manipulate at least one flow control  
10 operation within the first portion, such that the modified first portion is operatively  
11 different in configuration; and

12                 causing the at least one computer to operatively combine the modified first  
13 portion and the modified second portion to produce the modified digital good.

14  
15           15. A method as recited in claim 13, further comprising:  
16                 selectively limiting operation of the modified digital good to computers that  
17 are properly associated with at least the first key.

18  
19           16. A method as recited in claim 3, further comprising:  
20                 causing the at least one computer to provide the unique identifier data  
21 associated with the at least one computer to the at least one other computer; and  
22                 accessing computer identification data within the at least one computer and  
23 including the computer identification data within the unique identifier data  
24 associated with the at least one computer.

1        17. A method as recited in claim 16, wherein causing the at least one  
2 computer to provide the unique identifier data associated with the at least one  
3 computer to the at least one other computer further includes:

4            receiving user identification data at the at least one computer and including  
5 the user identification data within the unique identifier data associated with the at  
6 least one computer.

7  
8        18. A computer-readable medium comprising computer-executable  
9 instructions for:

10            with the at least one computer:

11            receiving an initial digital good, wherein the initial digital good includes a  
12 plurality of selectively arranged parts in an initial configuration and the initial  
13 digital good is configured as to not properly function with the computer;

14            receiving unique key data; and

15            converting the initial digital good into a modified digital good using the  
16 unique key data to selectively individualize the initial digital good for use with the  
17 at least one computer, such that the plurality of selectively arranged parts in the  
18 modified digital good are rearranged to have a substantially unique operative  
19 configuration that properly functions with the at least one computer and is  
20 different than the initial configuration.

21  
22        19. A computer-readable medium as recited in claim 18, wherein  
23 converting the initial digital good into the modified digital good further includes  
24 manipulating at least one flow control operation within the initial digital good.

1        20. A computer-readable medium as recited in claim 18, comprising  
2 further computer-executable instructions for:

3              subsequently determining if the at least one computer is properly associated  
4 with at least the unique identifier data ; and

5              disabling operation of the modified digital good if the at least one computer  
6 that is not properly associated with the unique identifier data.

7  
8        21. A computer-readable medium as recited in claim 18, comprising  
9 further computer-executable instructions for:

10             causing the at least one computer to provide unique identifier data  
11 associated with the at least one computer to at least one other computer that is  
12 configurable to cryptographically generate the unique key data based on the  
13 unique identifier data and at least one secret key.

14  
15        22. A computer-readable medium as recited in claim 18, wherein:

16             receiving the initial digital good further includes receiving a first portion of  
17 the digital good via a first type of computer readable medium and a modified  
18 second portion of the digital good via a second computer readable medium; and

19             converting the initial digital good into a modified digital good further  
20 includes converting the first portion using the unique key data to selectively  
21 manipulate at least one flow control operation within the first portion, to produce a  
22 modified first portion that is operatively different in configuration, and then  
23 operatively combining the modified first portion and the modified second portion  
24 to produce the modified digital good.

1           23. A computer-readable medium as recited in claim 22, wherein the  
2 first computer readable medium includes a different type of computer readable  
3 medium than the second computer readable medium.

4

5           24. A computer-readable medium as recited in claim 23, wherein the  
6 first computer readable medium includes a fixed computer readable medium and  
7 the second computer readable medium includes a network communication.

8

9           25. A computer-readable medium as recited in claim 20, wherein  
10 causing the at least one computer to provide unique identifier data further  
11 includes:

12                 accessing computer identification data within the at least one computer and  
13 including the computer identification data within the unique identifier data  
14 associated with the at least one computer.

15

16           26. A computer-readable medium as recited in claim 20, wherein  
17 causing the at least one computer to provide unique identifier data further  
18 includes:

19                 receiving user identification data and including the user identification data  
20 within the unique identifier data associated with the at least one computer.

1           27. A computer-readable medium comprising computer-executable  
2 instructions for:

3           receiving unique identifier data associated with at least one computer;

4           generating unique key data based on at least the unique identifier data;

5           receiving at least a portion of an initial digital good having a plurality of  
6 selectively arranged parts in an initial configuration;

7           converting the at least a portion using the unique key data to selectively  
8 individualize the portion, such that a modified portion of the digital good is  
9 produced having the plurality of parts rearranged in a different configuration than  
10 the initial configuration; and

11           providing at least the modified portion of the digital good and at least a  
12 portion of the unique key data to the at least one computer.

13  
14           28. A computer-readable medium as recited in claim 27, wherein  
15 converting at least the portion of the initial digital good using the unique key data  
16 to selectively individualize the portion of the initial digital good further includes  
17 manipulating at least one flow control operation within the portion of the initial  
18 digital good.

19  
20           29. A computer-readable medium as recited in claim 27, wherein  
21 generating the unique key data further includes:

22           cryptographically generating the unique key data based on the unique  
23 identifier data provided by the at least one computer and at least one secret key.

1           30. A computer-readable medium as recited in claim 29, wherein the  
2 unique key data includes at least a first key and a second key, and the first key and  
3 the second key are different, but cryptographically related to the secret key.

4

5           31. A computer-readable medium as recited in claim 29, wherein  
6 converting at least portion of the initial digital good using the unique key data  
7 further includes:

8                 dividing the initial digital good into at least a first portion and a second  
9 portion;

10                 providing the first portion to the at least one computer via a first computer  
11 readable medium;

12                 converting the second portion using the second key to selectively  
13 manipulate at least one flow control operation within the second portion, such that  
14 a modified second portion is produced that is operatively different in  
15 configuration[, but substantially functionally equivalent to the second portion];  
16 and

17                 providing the modified second portion and the first key to the at least one  
18 computer via a second computer readable medium.

19

20           32. A computer-readable medium as recited in claim 31, wherein the  
21 first computer readable medium includes a different type of computer readable  
22 medium than the second computer readable medium.

1           33. A computer-readable medium as recited in claim 32, wherein the  
2 first computer readable medium includes a fixed computer readable medium and  
3 the second computer readable medium includes a network communication.

4

5           34. An apparatus for use in a host computer, the apparatus comprising:  
6           an individualizer configured to receive unique key data and at least a  
7 portion of an initial digital good that includes a plurality of selectively arranged  
8 parts in an initial configuration, and produce at least a portion of a modified digital  
9 good using the unique key data to selectively individualize the initial digital good  
10 for use with the host computer, and such that the plurality of selectively arranged  
11 parts in the modified digital good are rearranged to be operatively different in  
12 configuration than the initial configuration of the digital good.

13

14             
15           35. An apparatus as recited in claim 34, wherein the individualizer is  
16 further configured to selectively individualize the initial digital good by selectively  
17 manipulating at least one program flow control operation within the initial digital  
18 good.

19

20           36. An apparatus as recited in claim 34, wherein the unique key data is  
21 cryptographically related to unique identifier data associated with the host  
22 computer.

23

24           37. An apparatus as recited in claim 36, further comprising:  
25           an identifier configured to output the unique identifier data associated with  
the host computer to the source computer.

1  
2       38. An apparatus as recited in claim 34, further comprising:  
3  
4           a program combiner configured to receive a modified first portion of the  
5 digital good from the individualizer and a modified second portion from the source  
6 computer, and output the modified digital good by combining the modified first  
portion with the modified second portion.

7  
8       39. An apparatus as recited in claim 34, wherein the modified digital  
9 good is operatively configured to selectively verify that the host computer is  
10 properly associated with the unique identifier data output by the identifier.

11  
12       40. An apparatus as recited in claim 34, wherein the modified digital  
13 good is operatively configured to selectively verify that the host computer is  
14 properly associated with the unique key data.

15  
16       41. An apparatus as recited in claim 37, wherein the identifier is further  
17 configured to access computer identification data within the host computer and  
18 include the computer identification data within the unique identifier data  
19 associated with the host computer.

20  
21       42. An apparatus as recited in claim 37, wherein the identifier is further  
22 configured to receive user identification data at the host computer and include the  
23 user identification data within the unique identifier data associated with the host  
24 computer.  
25

1           43. An apparatus for use in a source computer, the apparatus  
2 comprising:

3           a key generator configured to receive a unique identifier data from a  
4 destination computer and generate unique key data based on the received unique  
5 identifier data associated with the destination computer; and

6           an individualizer configured to receive the unique key data and at least a  
7 portion of an initial digital good having a plurality of selectively arranged parts in  
8 an initial configuration and output at least a portion of a modified digital good  
9 using the unique key data to selectively individualize the initial digital good, such  
10 that in the modified digital good the plurality of selectively arranged parts have  
11 been rearranged to have an operatively different configuration than the initial  
12 configuration.

13  
14           44. An apparatus as recited in claim 43, wherein the individualizer is  
15 further configured to selectively individualize the initial digital good by  
16 manipulating at least one program flow control operation within the initial digital  
17 good.

18  
19           45. An apparatus as recited in claim 43, further comprising:

20           a splitter configured to divide the initial digital good into at least a first  
21 portion and a second portion, provide the first portion to the individualizer, and  
22 provide the second portion to the destination computer.

23  
24           46. An apparatus as recited in claim 45, wherein the key generator is  
25 further configured to cryptographically generate the unique key data based on the

unique identifier data and at least one secret key, the unique key data includes at least a first key and a second key which are unique, but cryptographically related to the secret key, and wherein the key generator is configured to provide the first key is to the individualizer, and the second key to the destination computer.

47. An apparatus as recited in claim 46, wherein the individualizer is further configured to use the second key to selectively individualize the second portion, such that a resulting modified second portion is operatively different in configuration from the second portion.

48. An apparatus as recited in claim 45, wherein the splitter is further configured to allow the first portion to be provided to the destination computer via a first computer readable medium, and to provide the modified second portion to the destination computer via a second computer readable medium that is a different type of computer readable medium than the first computer readable medium.

49. An apparatus as recited in claim 48, wherein the first computer readable medium includes a fixed computer readable medium and the second computer readable medium includes a network communication.

50. A system comprising:  
an identifier configured to output unique identifier data associated with a computer;

1           a key generator coupled to receive the unique identifier data and generate at  
2 least one unique key data based on the received unique identifier data; and

3           at least one individualizer configured to receive the unique key data and at  
4 least a portion of an initial digital good that includes a plurality of selectively  
5 arranged parts in an initial configuration, and output at least a portion of a  
6 modified digital good using the unique key data to selectively individualize the  
7 initial digital good, such that the plurality of selectively arranged parts in the  
8 modified digital good have been rearranged to be operatively different in  
9 configuration than the initial configuration of the digital good.

10  
11           51. A system as recited in claim 50, wherein the individualizer is further  
12 configured to selectively individualize the initial digital good by manipulating at  
13 least one program flow control operation within the initial digital good.  
*Copy*

14  
15           52. A system as recited in claim 50, further comprising:  
16           at least one source computer; and  
17           at least one destination computer coupled to the source computer.

18  
19           53. A system as recited in claim 52, wherein the identifier is provided  
20 within the destination computer and is configured to output unique identifier data  
21 associated with the destination computer to the source computer, and the key  
22 generator and individualizer are each provided within the source computer.

23  
24           54. A system as recited in claim 52, wherein the identifier is provided  
25 within the destination computer and is configured to output unique identifier data

1 associated with the destination computer to the source computer, the key generator  
2 is provided within the source computer, and the individualizer is provided within  
3 the destination computer.

4

5 55. A system as recited in claim 52, wherein the identifier is provided  
6 within the destination computer and is configured to output unique identifier data  
7 associated with the destination computer to the source computer, the key generator  
8 is provided within the source computer, a first individualizer is provided within  
9 the destination computer, and a second individualizer is provided within the source  
10 computer.

11

12 56. A system as recited in claim 55, further comprising:  
13 a splitter provided within the source computer and configured to divide the  
14 initial digital good into at least a first portion and a second portion, provide the  
15 first portion to the first individualizer, and provide the second portion to the  
16 second individualizer.

17

18 57. A system as recited in claim 56, wherein the key generator is further  
19 configured to cryptographically generate the unique key data based on the unique  
20 identifier data and at least one secret key, the unique key data includes at least a  
21 first key and a second key which are unique, but cryptographically related to the  
22 secret key, the first key is provided to the first individualizer, and the second key  
23 is provided to the second individualizer.

1           58. A system as recited in claim 57, wherein the first individualizer is  
2 further configured to use the first key to selectively individualize the first portion,  
3 such that the resulting modified first portion is operatively different in  
4 configuration from the first portion.

5  
6           59. A system as recited in claim 58, wherein the second individualizer is  
7 further configured to use the second key to selectively individualize the second  
8 portion, such that the resulting modified second portion is operatively different in  
9 configuration from the second portion.

10  
11          60. A system as recited in claim 59, further comprising:  
12           a combiner provided within the destination computer and configured to  
13 receive the modified first portion from the first individualizer and the modified  
14 second portion from the second individualizer, and output the modified digital  
15 good by combining the modified first portion with the modified second portion.

16  
17          61. A system as recited in claim 50, wherein the modified digital good is  
18 operatively configured to selectively verify that the destination computer is  
19 properly associated with the unique identifier data output by the identifier.

20  
21          62. A system as recited in claim 50, wherein the modified digital good  
22 is operatively configured to selectively verify that the destination computer is  
23 properly associated with the first key as provided by the key generator.

1  
2  
3  
4  
5  
6  
7  
8  
9  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25

63. A system as recited in claim 56, wherein the first portion is provided to the destination computer via a first computer readable medium, the modified second portion is provided to the destination computer via a second computer readable medium that is a different type of computer readable medium than the first computer readable medium.

64. A system as recited in claim 63, wherein the first computer readable medium includes a fixed computer readable medium and the second computer readable medium includes a network communication.

65. A system as recited in claim 50, wherein the identifier is further configured to access computer identification data within a destination computer and includes the computer identification data within the unique identifier data associated with the destination computer.

66. A system as recited in claim 45, wherein the identifier is further configured to receive user identification data at a destination computer and include the user identification data within the unique identifier data associated with the destination computer.