Theoretische Informatik 2 Exercises

Exercise 32

Given: $f: \{0,1\}^* \to \{0,1\}^*$ one-way permutation

Task: Show that f^k is one-way $\forall k \in \mathbb{N}$

Proof. by induction on k.

- k = 1
- k > 1

k = 2

By hypothesis, we have that for every probabilistic polynomial time algorithm A, the following holds $\forall n \in \mathbb{N}$:

$$\mathbb{P}(f(A(f(x))) = f(x)) < \varepsilon(n), \ x \in \{0, 1\}^n$$

Consider an arbitrary probabilistic polynomial algorithm B. Observe that

$$\mathbb{P}(f^2(B(f^2(x)) = f^2(x)) = P(f(f(B(f(f(x))))) = f(f(x)))$$

A permutation is bijective, so there exists an inverse function $f^{-1} \to \text{apply } f^{-1}$ on both sides and yield

$$\mathbb{P}(f(B(f(f(x)))) = f(x)) = \mathbb{P}[f(\underbrace{B \circ f(x))}_{\text{a prob. polyn. alg.}} = f(x)] < \varepsilon$$

 \Rightarrow defining $A := B \circ f$ we can show the assumption

Exercise 34

- a. Prove that $PCP(0, \log n) = P$
 - "P \subseteq PCP $(0, \log n)$ "

Let $L \in \mathcal{P}$. A verifier V of $\mathrm{PCP}(0,0) \subseteq \mathrm{PCP}(0,\log n)$ has polynomial running time and can decide L.

• "P \supseteq PCP $(0, \log n)$ "

Algorithm:

For each proof $(O(2^{\log n}) = O(n))$ If V accepts, accept Else Reject Total running time: $O(n) \cdot \text{poly}(n) = \text{poly}(n)$

- b. Prove that PCP(0, poly(n)) = P
 - \bullet There is a verifier V polynomial, deterministic
 - \bullet V decides L
 - $P(...) < \frac{1}{2}$ means 0 (no random bits)

Exercise 35

Show that $PCP(\log n, 1) \subseteq NP$.

Proof. Let $L \in PCP(logn, 1)$. We build a non-deterministic TM M which works as follows:

- 1. M generates non-deterministically all the proofs of length at most $2^{O(\log n)}$. This can be done in $O(\log n)$ steps.
- 2. M generates non-deterministically all the $2^{O(\log n)}$ possible sequences of coin tosses

- 3. M emulates the verifier on all these toss sequences $(M \in PCP)$
- 4. M accepts \Leftrightarrow the verifier accepts on all these sequences

$$\rightarrow M$$
runs in $2^{O(\log n)} = \bigcup\limits_{c \geq 0} n^c \Rightarrow L \in \mathsf{NP}$

Exercise 37

Task: Provide a PCP(poly(n, 1)) verifier for the complement of the graph isomorphism problem.

 $\overline{\mathrm{GI}}$ is the complement of GI , i.e. the language consisting of non-isomorphic graphs.

Input: graphs G_0, G_1 which both have nvertices and m edges.

The verifier expects the proof Π to contain a bit $\Pi(H)$ ($\in \{0,1\}$) for each labeled graph with n nodes such that $\Pi(H) \in \{0,1\}$ corresponding to whether $H \cong G_0$ or $H \cong G_1$

 \rightarrow in other words, Π can be seen as an exponentially long array of bits indexed by all possible graphs on n vertices.

Verifier picks random bit $b \in \{0,1\}$ and a random permutation $\rho \in S_n$

Apply ρ to vertices of G_b .

 \rightarrow Leads to graph $H \cong G_b$

Verifier queries the proof bit $\Pi(H)$ and accepts if this bit equals b

Case 1: $G_0 \ncong G_1$

In this case Π can be set up such that the verifier accepts with probability 1

Case 2: $G_0 \cong G_1$

The probability that any proof makes the verifier accept is at most $\frac{1}{2}$

Exercise 39

$$(x_1 \lor x_2 \lor x_3) \land (\overline{x_1} \lor \overline{x_3} \lor x_4) \land (x_2 \lor x_3 \lor \overline{x_4})$$

a.

$$q = (1 - x_1) \cdot x_2 \cdot (1 - x_3) + x_1 \cdot x_3 \cdot (1 - x_4) + (1 - x_2) \cdot (1 - x_2) \cdot x_4$$

$$= x_2 - x_1 \cdot x_2 - x_2 \cdot x_3 + x_1 \cdot x_2 \cdot x_3 + x_1 \cdot x_3 - x_1 \cdot x_3 \cdot x_4 + x_4 - x_2 \cdot x_4 - x_3 \cdot x_4 + x_2 \cdot x_3 \cdot x_4$$

$$= x_2 + x_4 - x_1 \cdot x_2 + x_1 x_3 - x_2 x_3 - x_2 x_4 + x_1 x_2 x_3 - x_1 x_3 x_4 + x_2 x_3 x_4$$

b.

$$I_q^1 = \{2, 4\}$$

$$I_q^2 = \{(1, 2), (1, 3), (2, 3), (2, 4), (3, 4)\}$$

$$I_q^3 = \{(1, 2, 3), (1, 3, 4), (2, 3, 4)\}$$

c.

$$a = (1, 0, 1, 1)$$

$$\gamma + L_1^q(a_1^1) + L_2^q(c_1^2) + L_2^q(c_q^3)$$

$$C_{q_i}^1 = \left\{ \begin{array}{ll} 1 & i \in I_1^1 \\ 0 & i \notin I_1^1 \end{array} \right.$$

$$\gamma_q = 0$$

$$L_1^a(c_q^1) = a_2 + a_4 = 1$$

$$L_2^a(c_q^1) = a_1a_2 + a_1a_3 + a_2a_3 + a_2a_4 + a_3a_4 = 0(2)$$

$$L_3^a(c_q^1) = a_1a_2a_3 + a_1a_3a_4 + a_2a_3a_4 = 1$$

$$\sum = 0 + 1 + 0 + 1 = 0.(2)$$

Insert into the original formula

$$0 + 0 + 0 = 0$$