Model Documentation of the:

Kapitza's Pendulum

1 Nomenclature

1.1 Nomenclature for Model Equations

- γ Dampening factor
- l length of the pendulum
- g acceleration due to gravity
- φ angle of deflection from the equilibrium position
- a magnitude of the harmonic oscillation of the suspension point
- ω frequency of the harmonic oscillation of the suspension point

1.2 Nomenclature for Derivation

2 Model Equations

State Vector: $(x_1 \ x_2)^T = (\varphi \ \dot{\varphi})^T$

$$\frac{d}{dt}\varphi = \dot{\varphi} \tag{1a}$$

$$\frac{d}{dt}\dot{\varphi} = -2\gamma\dot{\varphi} - \left(\frac{g}{l} - \frac{a}{l}\omega^2\cos(\omega t)\right)\sin\varphi \tag{1b}$$

Inputs:

Parameters: ω , a, l, g, γ

Outputs: φ

2.1 Assumptions

1. Mass of the pendulum is a pointmass

2.2 Exemplary parameter values

Parameter Name	Symbol	Value	Unit
Pendulum length	1	10	cm
acceleration due to gravitation	g	9.81	$\frac{m}{s^2}$
Amplitude of Oscillation	\mathbf{a}	$0.2 \ 1$	$^{ m cm}$
Frequency of Oscillation	ω	$16\omega_0$	Hz
Dampening Factor	γ	$0.1\omega_0$	$_{\mathrm{Hz}}$

with
$$\omega_0 = \sqrt{\frac{g}{I}}$$

3 Derivation and Explanation

References

[1] Butikov, E. I.: Kapitza's Pendulum: A Physically Transparent Simple Treatment, unpublished 2021