

SAS° GLOBAL FORUM 2018

USERS PROGRAM

April 8 - 11 | Denver, CO Colorado Convention Center

#SASGF

Interpreting Black-Box Machine Learning Models Using Partial Dependence and ICE Plots

#SASGF

Ray Wright, SAS Institute

Ray is Principal Machine Learning Developer at SAS.

USERS PROGRAM

Interpreting Black-Box Machine Learning Models Using Partial Dependence and ICE Plots

Topics

- What a "black box" model is
- 2. Methods for understanding a model's predictions
 - Visual
 - Model Agnostic
 - Post Hoc
- Limitations of these methods and ways to scale up for big data

Black Box Models

- Provide highly accurate predictions
- Are capable of discovering complicated interactions and nonlinearities.
- Are opaque due to their large numbers of parameters and many layers

Examples: neural network, gradient boosting, and random forest.

Partial Dependence Plot

What is it?

- A graph that depicts the functional relationship between a small number of model inputs and a model's predictions.
- Show how the model's predictions *partially depend* on values of the input variables of interest.

Partial Dependence Plot

One-Way Plots

- Plot the average model prediction for each value of a single model input.
- Valid if the plot variable does not interact strongly with other model inputs.

Overall relationship between horsepower and predicted MSRP for automobile models.

Partial Dependence Plot

Two-Way Plots

- In actual practice, interactions are common.
- You can use higher-order PD plots to check for specific interactions.

Horsepower by Origin by Predicted MSRP

Divide model inputs into two sets

Training Data (Hypothetical)

—	Horsepower	Make	Model	Cylinders	Drive Train
	100	Honda	Accord	4	Front
Plot variable /	150	Toyota	Camry	6	Front
	250	Dodge	Ram	6	Rear
	200	Acura	MDX	6	All
	100	MINI	Cooper	4	Front

Complementary model variables

Find the unique values of the plot variable

Create one replicate of the training set for each value of the plot variable

Replicate #1

Replicate #2

Horsepower	Make	Model	Cylinders	Drive Train
100	Honda	Accord	4	Front
100	Toyota	Camry	6	Front
100	Dodge	Ram	6	Rear
100	Acura	MDX	6	All
100	MINI	Cooper	4	Front
150	Honda	Accord	4	Front
150	Toyota	Camry	6	Front
150	Dodge	Ram	6	Rear
150	Acura	MDX	6	All
150	MINI	Cooper	4	Front

Score the replicates

Horsepower	Make	Model	Cylinders	Drive Train	Predicted MSRP
100	Honda	Accord	4	Front	\$13000
100	Toyota	Camry	6	Front	\$15000
100	Dodge	Ram	6	Rear	\$15000
100	Acura	MDX	6	All	\$18000
100	MINI	Cooper	4	Front	\$16000
150	Honda	Accord	4	Front	\$15000
150	Toyota	Camry	6	Front	\$17000
150	Dodge	Ram	6	Rear	\$17000
150	Acura	MDX	6	All	\$20000
150	MINI	Cooper	4	Front	\$18000

Compute the average predicted value within each replicate

Horsepower	Average Predicted MSRP
100	\$15400
150	\$17400

Plots for Big Data

Problem

 As the number of unique values and observations increase, the number of replicated observations can grow out of hand.

Solutions

- Bin unique values of high-cardinality inputs such as income.
- Sample or cluster observations.
- Process the replicates one (or a few) at a time, keeping only the average predicted value for each replicate.

Individual Conditional Expectation

Toy Example

Partial Dependence

ICE for two individuals

Individual Conditional Expectation

- Whereas PD plots provide a coarse view of a model's workings, ICE plots enable you to drill down to the level of individual observations.
- ICE plots disaggregate the PD function to reveal interactions and interesting subgroups.

Computing the ICE Function

Unique Values of Plot Variable

Horsepower		
100		
150		
200		
250		
300		

Complementary Variables for One Observation

Make	Model	Cylinders	Drive Train
Honda	Accord	4	Front

Replicates

Horsepower	Make	Model	Cylinders	Drive Train
100	Honda	Accord	4	Front
150	Honda	Accord	4	Front
200	Honda	Accord	4	Front
250	Honda	Accord	4	Front
300	Honda	Accord	4	Front
	Honda	Accord	4	Front

Scored Replicates

Horsepower	Make	Model	Cylinders	Drive Train	Predicted MSRP
100	Honda	Accord	4	Front	\$12,000
150	Honda	Accord	4	Front	\$15,000
200	Honda	Accord	4	Front	\$20,000
250	Honda	Accord	4	Front	\$26,000
300	Honda	Accord	4	Front	\$35,000
	Honda	Accord	4	Front	

Individual Conditional Expectation

Managing Visual Overload

- Traditional ICE plots display one curve for each individual in the training set.
- You can manage the number of curves by sampling individuals or clustering the curves.

Sampled ICE curves

Example: Predicting NBA Shot Success

Model Variables

Variable	Role	Measurement Level	Values
Shot outcome	Target	Binary	0=made,1=missed
Distance to basket	Input	Interval	In feet
Player experience	Input	Interval	In years
Player height	Input	Interval	In inches
Player weight	Input	Interval	In pounds
Player position	Input	Nominal	Center, guard, or forward
Shot style	Input	Nominal	Jump, layup, hook, or dunk
Shot location	Input	Nominal	Right, left, center, left center, or right center
Shot area	Input	Nominal	Mid-range, restricted area (RA), in the paint
			(non-RA), above the break 3, right corner 3,
			left corner 3

PD Plots for Top Three Model Inputs

Distance to basket

Shot style

Shot location

Model Comparison

Partial Dependence Functions for Three Candidates

Segmented ICE Plot

Centroids of clustered shot curves

Grouped ICE Plot

ICE curves grouped by shot location

SAS Model Studio

Machine Learning Pipeline

Partial Dependence Plots

Recap

- PD and ICE plots are visual, model-agnostic techniques that can help you interpret black box models.
- ICE plots let you drill down further to discover individual differences, interesting subgroups, and interactions among model variables.
- You may need to make adjustments for efficient computation.

Closing Thoughts

- Both PD and ICE are post hoc methods and therefore approximations of the truth.
- To understand individual decisions, consider techniques like Locally Interpretable Model Agnostic Explanations (LIME).

Want to Learn More?

- The SGF paper has code examples.
- Stop by the Data Mining and Machine Learning demo booth to chat.

Your Feedback Counts!

Don't forget to complete the session survey in your conference mobile app.

- 1. Go to the Agenda icon in the conference app.
- 2. Find this session title and select it.
- 3. On the Sessions page, scroll down to Surveys and select the name of the survey.
- 4. Complete the survey and click Finish.

