

AD-A103 759

NEW JERSEY DEPT OF ENVIRONMENTAL PROTECTION TRENTON --ETC F/G 13/13
NATIONAL DAM SAFETY PROGRAM, HELMETTA DAM (NJ 00794) RARITAN RI--ETC(U)
AUG 81 W A GUINAN

DACW61-79-C-0011

DAFN/NAP-53A42/N.100794-A1/- NI

UNCLASSIFIED

1 of 1
ATA
100794

DAFN/NAP-53A42/N.100794-A1/- NI

END
DATE
FILED
10-81
DTIC

LEVEL II

RARITAN RIVER BASIN
TRIBUTARY TO MANALAPAN BROOK,
MIDDLESEX COUNTY
NEW JERSEY

ADA103759

HELMETTA DAM

NJ 00794

PHASE 1 INSPECTION REPORT

NATIONAL DAM SAFETY PROGRAM

APPROVED FOR PUBLIC RELEASE
DISTRIBUTION UNLIMITED.

DEPARTMENT OF THE ARMY

Philadelphia District
Corps of Engineers
Philadelphia, Pennsylvania

DTIC
ELECTE
S SEP 4 1981 D

REPT. NO: DAEN/NAP-53842/NJ00794-81/08

AUGUST 1981

81 9 03.071

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM	
REPORT NUMBER 19 DAEN/NAP/53842/NJ00794-81/08	2. GOVT ACCESSION NO. RD-A103 759	3. RECIPIENT'S CATALOG NUMBER	
4. TITLE (and Subtitle) Phase I Inspection Report National Dam Safety Program Helmetta Dam, NJ00794 Middlesex County, N.J.	5. TYPE OF REPORT & PERIOD COVERED FINAL Sept 1981		
7. AUTHOR(s) Guinan, Warren, P.E.	8. CONTRACT OR GRANT NUMBER(s) DACP61-79-C-0011		
9. PERFORMING ORGANIZATION NAME AND ADDRESS Anderson-Nichols 150 Causeway St. Boston, Massachusetts 02114	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS 15		
11. CONTROLLING OFFICE NAME AND ADDRESS NJ Department of Environmental Protection Division of Water Resources P.O. Box CN029 Trenton, NJ 08625	12. REPORT DATE August 1981		
14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office) U.S. Army Engineer District, Philadelphia Custom House, 2d & Chestnut Streets Philadelphia, PA 19106	13. NUMBER OF PAGES 50		
16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited.	15. SECURITY CLASS. (of this report) Unclassified		
17. DISTRIBUTION STATEMENT (of the abstract entered in 16)	16a. DECLASSIFICATION/DOWNGRADING SCHEDULE		
18. SUPPLEMENTARY NOTES Copies are obtainable from National Technical Information Service, Springfield, Virginia 22151.			
19. KEY WORDS (Continue on reverse side if necessary and identify by block number)			
Dams Embankments Visual Inspection Structural Analysis	National Dam Safety Program Helmetta Dam, N.J. Seepage Spillways	Erosion	
20. ABSTRACT (Continue on reverse side if necessary and identify by block number) This report cites results of a technical investigation as to the dam's adequacy. The inspection and evaluation of the dam is as prescribed by the National Dam Inspection Act, Public Law 92-367. The technical investigation includes visual inspection, review of available design and construction records, and preliminary structural and hydraulic and hydrologic calculations, as applicable. An assessment of the dam's general condition is included in the report.			

DEPARTMENT OF THE ARMY
PHILADELPHIA DISTRICT, CORPS OF ENGINEERS
CUSTOM HOUSE-2D & CHESTNUT STREETS
PHILADELPHIA, PENNSYLVANIA 19106

IN REPLY REFER TO
NAPEN-N

Honorable Brendan T. Byrne
Governor of New Jersey
Trenton, New Jersey 08621

25 AUG 1981

Accession For	
NTIS GRA&I <input checked="" type="checkbox"/>	
DTIC TAB <input type="checkbox"/>	
Unannounced <input type="checkbox"/>	
Justification _____	
By _____	
Distribution/ Availability Codes _____	
Avail and/or Dist	Special
A	

Dear Governor Byrne:

Inclosed is the Phase I Inspection Report for Helmetta Pond Dam in Middlesex County, New Jersey which has been prepared under authorization of the Dam Inspection Act, Public Law 92-367. A brief assessment of the dam's condition is given in the front of the report.

Based on visual inspection, available records, calculations and past operational performance, Helmetta Pond Dam, initially listed as a high hazard potential structure, but reduced to a significant hazard potential structure as a result of this inspection, is judged to be in poor overall condition. The dam's spillway is considered inadequate because a flow equivalent to 12 percent of the Spillway Design Flood - SDF - would cause the dam to be overtopped. (The SDF, in this instance, is one half of the Probable Maximum Flood). To ensure adequacy of the structure, the following actions, as a minimum, are recommended:

a. The spillway's adequacy should be determined by a qualified professional consultant engaged by the owner using more sophisticated methods, procedures and studies within three months from the date of approval of this report. Within three months of the consultant's findings remedial measures to ensure spillway adequacy should be initiated.

b. Within three months from the date of approval of this report the owner should engage a qualified professional consultant to perform the following:

(1) Investigate the cause of the seepage and wet, soft areas at the downstream toe of the dam.

(2) Design and oversee procedures for the removal of trees, from the upstream and downstream slopes and the one tree near the center of the dam which is approximately 15 ft. downstream from the toe.

APPROVED FOR PUBLIC RELEASE;
DISTRIBUTION UNLIMITED.

NAPEN-N

Honorable Brendan T. Byrne

(3) Design and oversee repairs for the erosion of the upstream slope of the dam and design and specify erosion protection for the upstream slope of the dam.

(4) Design and oversee repairs for the eroded areas on the downstream slope adjacent to the spillway.

(5) Investigate the reasons for the uneven surface of the crest, and design remedial measures as needed.

(6) Oversee filling of the animal burrows on the embankment.

(7) Design and oversee repairs to the concrete spillway and walls.

(8) Design and oversee reconstruction of the outlet works.

c. Within three months from the date of approval of this report the following remedial actions should be initiated:

(1) Start a program of checking the condition of the dam periodically and monitoring the seepage and wet areas along the toe of the downstream slope.

(2) Start a program for maintaining the embankment free of weeds and brush and filling animal burrows as they occur.

(3) Control trespassing on dam.

d. Within six months from the date of approval of this report the following remedial actions should be initiated:

(1) After repair of eroded areas on the dam, re-establish and maintain grassy vegetation on the dam.

(2) Repair deteriorated portions of service bridge.

e. The owner should develop written operating procedures and a periodic maintenance plan to ensure the safety of the dam, within one year from the date of approval of this report.

f. An emergency action plan and warning system should be developed which outlines actions to be taken by the owner to minimize the downstream effects of an emergency at the dam within six months from the date of approval of this report.

A copy of the report is being furnished to Mr. Dirk C. Hofman, New Jersey Department of Environmental Protection, the designated State Office contact for this program. Within five days of the date of this letter, a copy will also be sent to Congressman Smith of the Fourth District. Under the provision of the Freedom of Information Act, the inspection report will be subject to release by this office, upon request, five days after the date of this letter.

NAPEN-N

Honorable Brendan T. Byrne

Additional copies of this report may be obtained from the National Technical Information Services (NTIS), Springfield, Virginia 22161 at a reasonable cost. Please allow four to six weeks from the date of this letter for NTIS to have copies of the report available.

An important aspect of the Dam Inspection Program will be the implementation of the recommendations made as a result of the inspection. We accordingly request that we be advised of proposed actions taken by the State to implement our recommendations.

Sincerely,

ROGER L. BALDWIN
Lieutenant Colonel, Corps of Engineers
Commander and District Engineer

Incl
As stated

Copies furnished:

Mr. Dirk C. Hofman, P.E., Deputy Director
Division of Water Resources
N.J. Dept. of Environmental Protection
P.O. Box CN029
Trenton, NJ 08625

Mr. John O'Dowd, Acting Chief
Bureau of Flood Plain Regulation
Division of Water Resources
N.J. Dept. of Environmental Protection
P.O. Box CN029
Trenton, NJ 08625

HELMETTA POND DAM (NJUU794)

CORPS OF ENGINEERS ASSESSMENT OF GENERAL CONDITIONS

This dam was inspected on 20 April 1981 by Anderson-Nichols and Co. Inc., under contract to the State of New Jersey. The State, under agreement with the U.S. Army Engineer District, Philadelphia, had this inspection performed in accordance with the National Dam Inspection Act, Public Law 92-367.

Helmetta Pond Dam, initially listed as a high hazard potential structure, but reduced to a significant hazard potential structure as a result of this inspection, is judged to be in poor overall condition. The dam's spillway is considered inadequate because a flow equivalent to 12 percent of the Spillway Design Flood - SDF - would cause the dam to be overtopped. (The SDF, in this instance, is one half of the Probable Maximum Flood). To ensure adequacy of the structure, the following actions, as a minimum, are recommended:

a. The spillway's adequacy should be determined by a qualified professional consultant engaged by the owner using more sophisticated methods, procedures and studies within three months from the date of approval of this report. Within three months of the consultant's findings remedial measures to ensure spillway adequacy should be initiated.

b. Within three months from the date of approval of this report the owner should engage a qualified professional consultant to perform the following:

(1) Investigate the cause of the seepage and wet, soft areas at the downstream toe of the dam.

(2) Design and oversee procedures for the removal of trees, from the upstream and downstream slopes and the one tree near the center of the dam which is approximately 15 ft. downstream from the toe.

(3) Design and oversee repairs for the erosion of the upstream slope of the dam and design and specify erosion protection for the upstream slope of the dam.

(4) Design and oversee repairs for the eroded areas on the downstream slope adjacent to the spillway.

(5) Investigate the reasons for the uneven surface of the crest, and design remedial measures as needed.

(6) Oversee filling of the animal burrows on the embankment.

(7) Design and oversee repairs to the concrete spillway and walls.

(8) Design and oversee reconstruction of the outlet works.

c. Within three months from the date of approval of this report the following remedial actions should be initiated:

(1) Start a program of checking the condition of the dam periodically and monitoring the seepage and wet areas along the toe of the downstream slope.

(2) Start a program for maintaining the embankment free of weeds and brush and filling animal burrows as they occur.

(3) Control trespassing on dam.

d. Within six months from the date of approval of this report the following remedial actions should be initiated:

(1) After repair of eroded areas on the dam, re-establish and maintain grassy vegetation on the dam.

(2) Repair deteriorated portions of service bridge.

e. The owner should develop written operating procedures and a periodic maintenance plan to ensure the safety of the dam, within one year from the date of approval of this report.

f. An emergency action plan and warning system should be developed which outlines actions to be taken by the owner to minimize the downstream effects of an emergency at the dam within six months from the date of approval of this report.

APPROVED:

ROGER L. BALDWIN
Lieutenant Colonel, Corps of Engineers
Commander and District Engineer

DATE:

25 Aug 81

PHASE I INSPECTION REPORT
NATIONAL DAM SAFETY PROGRAM

Name of Dam:	Helmetta Pond
Identification No.:	Fed ID No. NJ00794
State Located:	New Jersey
County Located:	Middlesex
Stream:	Manalapan Brook
River Basin:	Raritan
Date of Inspection	April 20, 1981

ASSESSMENT OF GENERAL CONDITIONS

Helmetta Pond Dam is a horseshoe shaped, low earthen embankment, 653 feet long, at least 70 years old, small in size and in poor overall condition. The soft wet area and seepage at the downstream toe is indicative of seepage through and under the dam. If not properly controlled, it could lead to failure of the dam by piping and sloughing of the downstream slope. Serious erosion on the upstream slope of the dam at the waterline, if allowed to continue, could result in eventual breaching of the embankment. The crest of the dam is uneven, the cause of which cannot be determined by visual inspection alone, but may be indicative of a potential stability problem. Continued deterioration of the concrete spillway and steel plate covers over the outlet pipe could lead to a sudden release of water. The spillway can handle a storm about 11 percent the size of the Spillway Design Flood of one-half PMF and is considered inadequate. Because of the depression downstream behind the factory buildings, controlled by a 42-inch RCP culvert, failure of the dam would cause flooding from ponded water from 1 to 6-1/2 feet deep in the warehouses and factory. The economic loss would be appreciable but with little threat of loss of lives. Therefore, the hazard classification should be downgraded to Significant.

It is recommended that the owner retain the services of a professional engineer, qualified in the design and inspection of dams, to accomplish the following tasks very soon: Evaluate further the inadequate spillway capacity and also consider the hydraulic conveyance downstream; investigate the cause of the seepage and wet, soft areas at the downstream toe of the dam; design and oversee procedures for the removal of trees from the upstream and downstream slopes and the one tree near the center of the dam which is approximately 15 feet downstream from the toe; design and oversee repairs for the erosion of the upstream slope of the dam and design and specify erosion protection for the upstream slope of the dam; design and oversee repairs for the eroded areas on the downstream slope adjacent to the spillway; investigate the reasons for the uneven surface of the

crest, and design remedial measures as needed; oversee filling of the animal burrows on the embankment; design and oversee repairs to the concrete spillway and walls; and design and oversee reconstruction of the outlet works.

It is further recommended that the owner undertake the following as part of operating and maintenance procedures. Starting very soon: begin a program of checking the condition of the dam periodically and monitoring the seepage and wet areas along the toe of the downstream slope; start a program for maintaining the embankment free of weeds and brush, and filling animal burrows as they occur; control trespassing on the dam. Starting soon: develop an emergency action plan which outlines actions taken by the owner to minimize downstream effects of an emergency at the dam; after repair of eroded areas on the dam, re-establish and maintain grassy vegetation on the dam; repair deteriorated portions of service bridge; and in the near future: develop written operating procedures and a periodic maintenance plan to ensure the safety of the dam.

ANDERSON-NICHOLS & COMPANY, INC.

Warren A. Guinan, P.E.
Project Manager
New Jersey Number 16848

April 20, 1981

OVERVIEW PHOTO
HELMETTA POND DAM

PREFACE

This report is prepared under guidance contained in the Recommended Guidelines for Safety Inspection of Dams, for Phase I Investigations. Copies of these guidelines may be obtained from the Office of Chief of Engineers, Washington, D.C. 20314. The purpose of a Phase I Investigation is to identify expeditiously those dams which may pose hazards to human life or property. The assessment of the general condition of the dam is based upon available data and visual inspections. Detailed investigation, and analyses involving topographic mapping, subsurface investigations, testing, and detailed computational evaluations are beyond the scope of a Phase I investigation; however, the investigation is intended to identify any need for such studies.

In reviewing this report, it should be realized that the reported condition of the dam is based on observations of field conditions at the time of inspection along with data available to the inspection team. It is important to note that the condition of a dam depends on numerous and constantly changing internal and external conditions, and is evolutionary in nature. It would be incorrect to assume that the present condition of the dam will continue to represent the condition of the dam at some point in the future. Only through continued care and inspection can there be any chance that unsafe conditions be detected.

Phase I inspections are not intended to provide detailed hydrologic and hydraulic analyses. In accordance with the established Guidelines, the Spillway Test Flood is based on the estimated "Probable Maximum Flood" for the region (greatest reasonable possible storm runoff), or fractions thereof. The test flood provides a measure of relative spillway capacity and serves as an aid in determining the need for more detailed hydrologic and hydraulic studies, considering the size of the dam, its general condition and the downstream damage potential.

CONTENTS

PHASE I INSPECTION REPORT NATIONAL DAM SAFETY REPORT

HELMETTA POND DAM FED ID NO. NJ00794

SECTION	PROJECT INFORMATION	<u>Page</u>
	1.1 <u>General</u>	1
	1.2 <u>Project Description</u>	1
	1.3 <u>Pertinent Data</u>	3
SECTION 2	ENGINEERING DATA	
	2.1 <u>Design</u>	5
	2.2 <u>Construction</u>	5
	2.3 <u>Operation</u>	5
	2.4 <u>Evaluation</u>	5
SECTION 3	VISUAL INSPECTION	6
SECTION 4	OPERATIONAL PROCEDURES	
	4.1 <u>Procedures</u>	8
	4.2 <u>Maintenance of Dam</u>	8
	4.3 <u>Maintenance of Operating Facilities</u>	8
	4.4 <u>Warning System</u>	8
	4.5 <u>Evaluation of Operational Adequacy</u>	8
SECTION 5	HYDRAULIC/HYDROLOGIC	9
SECTION 6	STRUCTURAL STABILITY	10
SECTION 7	ASSESSMENT, RECOMMENDATIONS/REMEDIAL MEASURES	
	7.1 <u>Assessment</u>	11
	7.2 <u>Recommendations/Remedial Measures</u>	11
FIGURES	1. Essential Project Features 2. Essential Project Features 3. Regional Vicinity Map	
APPENDICES	1. Check List Visual Inspection 2. Photographs 3. Hydrologic Computations 4. HEC 1 Output 5. References	

PHASE I INSPECTION REPORT
NATIONAL DAM SAFETY INSPECTION PROGRAM
HELMETTA POND DAM
FED ID NO. #NJ00794

SECTION 1
PROJECT INFORMATION

1.1 General

a. Authority. Authority to perform the Phase I Safety Inspection of Helmetta Pond Dam was received from the State of New Jersey, Department of Environmental Protection, Division of Water Resources by letter dated 12 December 1980 under Basic Contract No. FPM-39 and Contract No. A01093 dated 10 October, 1979. This Authority was given pursuant to the National Dam Inspection Act, Public Law 92-367 and by agreement between the State and the U.S. Army Engineers District, Philadelphia. The inspection discussed herein was performed by Anderson-Nichols & Company, Inc.

b. Purpose: The purpose of the Phase I Investigation is to develop an assessment of the general conditions with respect to the safety of Helmetta Pond Dam and appurtenances. Conclusions are based upon available data and visual inspection. The results of this study are used to determine any need for emergency measures and to conclude if additional studies, investigations, and analyses are necessary and warranted.

1.2 Project Description

a. Description of Dam and Appurtenances. Helmetta Pond Dam is a horseshoe shaped, 653 foot long earth embankment dam with a hydraulic height of 5.6 feet and a structural height of 7.2 feet. The spillway type is concrete overflow with a 7.2-foot long weir. The dam's crest width ranges from 8 to 14 feet. There are tire ruts in a very wide road on the right (west) side of the crest and a 28-inch diameter tree is growing on the left (east) side of the crest. The dam's upstream face has a 3H:1V slope and a 20-foot wide erosion feature near the right abutment with trees growing in the area. The downstream slope varies from 3H:1V to 8H:1V. There is a large 2-foot diameter tree at the downstream toe of the dam. A large area of seepage has developed, over-grown with wetlands-type species of vegetation, downstream of the dam near the right abutment. Animal burrows are evident on the dam crest, as well as on the upstream and downstream faces.

b. Location. The dam is located in Helmetta Borough, New Jersey on Manalapan Brook. The dam is at $40^{\circ} 22.7'$ north latitude and $74^{\circ} 25.7'$ west longitude on the New Brunswick Quadrangle. The dam may be reached by exiting from the New Jersey Turnpike at Interchange 8A, turning east on Forsgate Drive, turning left on Possum Hollow Road, turning right on Bordentown - South Amboy Turnpike and continuing on Spotswood - Cranbury Road (Main Street in the Borough of Helmetta) to the dam site behind Helme Tobacco Co. Plant, a total distance of about 1.3 miles. A location map has been included as Figure 3.

c. Size Classification. Helmetta Pond Dam is classified as being small in size on the basis of storage at the dam crest of 142 acre-feet, which is less than 1000 acre-feet but more than 50 acre-feet, and on the basis of its structural height of 7.2 feet, which is less than 40 feet, in accordance with criteria given in the Recommended Guidelines for Safety Inspection of Dams.

d. Hazard Classification. The spillway at Helmetta Pond Dam will not pass the SDF of one-half PMF. Approximately 300 feet downstream of the dam, and next to the left (east) abutment are warehouses. About 200 feet further downstream are the factories of the Helme Tobacco Company. The downstream area is a depression with only a 42-inch RCP culvert to convey the water from the depression under the factory to the 500-foot open channel leading to Manalapan Brook. Breaching of the dam would fill the depression (about 63 acre-foot) and cause ponded water to inundate buildings from 1 to 6-1/2 feet. The economic loss would be appreciable but no serious threat to loss of life is apparent. Therefore, the hazard classification should be downgraded to significant.

e. Ownership. The dam is owned by Middlesex County. Information may be obtained by writing Middlesex County Council at 303 George Street, Plaza 1, 3rd Floor, New Brunswick, New Jersey 08901, or by calling (201) 745-3228.

f. Purpose. The purpose of construction of Helmetta Pond Dam was for fire protection for Helme Tobacco Company; this is also the present purpose.

g. Design and Construction History. No information regarding the original plan or design of the dam was available.

h. Normal Operational Procedure. No operational procedures were disclosed for the dam.

i. Site Geology. No site specific information (such as borings) was available at the time the dam was inspected. Information derived from the Geologic Map of New Jersey (Kummel and Johnson, 1912) indicates soils within the immediate site consists of coastal plain sediments which includes sand and clay deposits.

The depth to bedrock at the dam site is unknown and outcrops were not observed during the dam inspection. No information was available on the bedrock in this area based on the previously mentioned reports.

1.3 Pertinent Data

a. Drainage Area

.69 square miles

b. Discharge at Damsite (cfs)

Maximum flood at damsite - unknown

Total ungated spillway capacity at maximum pool elevation (at top of dam) - 41

c. Elevation (ft. above NGVD)

Top of dam - low point 45.2
high point 46.8

Test flood (1/2 PMF) - 46.6

Recreation pool (at time of inspection) - 43

Spillway crest - 43.7

Streambed at centerline of spillway - 39.6

Maximum tailwater (estimated) 41.0

d. Reservoir (length in feet)

Length of maximum pool - 3000 (estimated)

Spillway crest - 2800

e. Storage (acre-feet)

Spillway crest - 64

Top of dam - 142

Test Flood (1/2 PMF) - 267

f. Reservoir Surface (acres)

Top of dam - 72 (estimated)

Spillway crest - 32

g. Dam

Type - earth

Length - 653 feet

Height - 5.6 feet (hydraulic)

- 7.2 feet (structural)

Top width - ranges from 8 to 14 feet

Side slopes - upstream 3H:1V, downstream varies 3H:1V

to 8H:1V

Zoning - unknown

Impervious core - unknown

Cutoff - unknown

Grout curtain - unknown

h. Spillway

Type - Concrete overflow

Length of weir - 7.2 feet

Crest elevation - 43.7' NGVD

Low level outlet - 36-inch clay pipe

U/S Channel - Approach channel, about 35 feet wide and
150 feet long from Helmetta Pond.

D/S Channel - Three-foot wide channel open for 400
feet leading into a 42-inch pipe that passes flow
under building and thence downstream for about
500 feet into Manalapan Brook.

i. Regulating Outlets

Type - 36-inch clay pipe with steel plate covers
serving as a gate over upstream pipe inlet

Invert elevation - 40.1 feet NGVD

Length - about 3 feet

Access - Bridge deck over spillway

SECTION 2
ENGINEERING DATA

2.1 Design

No hydraulic, hydrologic, or other engineering data were disclosed.

2.2 Construction

No recorded data concerning construction of the Helmetta Pond Dam were found.

2.3 Operation

No written operational data were found.

2.4 Evaluation

a. Availability. A search of the New Jersey Department of Environmental Protection files revealed no information.

b. Adequacy. Data obtained in the visual inspection are deemed adequate to complete this Phase 1 Inspection Report

SECTION 3
VISUAL INSPECTION

3.1 Findings

a. Dam. Trees are growing on the upstream and downstream slopes of the dam near the right and left abutments. Extensive erosion has taken place on the upstream slope at and above the waterline. Near the center of the dam, the upstream slope has been flattened considerably which may be due to wave action.

The crest of the dam is uneven and is partially covered with depression tracks up to 4 inches deep caused by vehicular traffic. Several animal burrows, up to 10 inches in diameter and 2.5 feet deep, were observed on the crest and on the upstream slope near the crest. At the crest, a surface depression, 2 feet in diameter and 1 foot deep, had developed around one of the animal burrows. The area at the downstream toe of the dam is generally wet and soft. Wetlands-type species of vegetation, primarily cattails, is located everywhere along the toe of the slope. Seepage is flowing from a large swamp area on the right side of the dam in the vicinity of the right abutment. The visible water contained some orange colored flocs but no evidence of suspended soil fines in the water was observed.

Erosion has occurred on the downstream slope on either side of the concrete spillway wingwalls. On the right side, railroad ties have been placed on the slope in an attempt to minimize the erosion on the slope. An animal burrow, 6 in. in diameter and 2 ft. deep, has been developed beneath the ties.

b. Appurtenant Structures. The ungated spillway at the left end of the dam is in generally poor condition. The concrete abutment walls are badly eroded and undermined on the downstream side and the concrete is eroded at the water line on the upstream side. The makeshift steel plates used for gating the outlet pipe are leaking and are rusting. Some planks on the service bridge over the spillway are deteriorated.

c. Reservoir Area. The watershed above the lake is gently sloping and wooded. Some open fields were evident along the west side of the reservoir and low lying swamps exist on the north end of the reservoir. Slopes on the shore of the lake appear stable. No evidence of significant sedimentation was observed.

d. Downstream Channel. The channel downstream of the spillway makes a lefthand turn and joins the seepage flow from the right side of the dam. The channel bottom is in soil and there is no erosion protection on the sides of the channel. Considerable sloughing and erosion have occurred along the banks. After passing flow through a 48-inch CMP under a haul road, the open channel passes flow into a 42-inch RCP beneath the buildings egressing downstream beyond the building and enters Manalapan Brook 500 feet downstream of the buildings.

SECTION 4
OPERATIONAL PROCEDURES

4.1 Procedures

No formal operating procedures were revealed.

4.2 Maintenance of Dam

No formal maintenance procedures for the dam were found.

4.3 Maintenance of Operating Facilities

No formal maintenance procedures for the operating facilities were discovered.

4.4 Warning System

No description of any warning system was found.

4.5 Evaluation of Operational Adequacy

Because of the lack of operation and maintenance procedures, the remedial measures described in Section 7.2 should be implemented as described.

SECTION 5
HYDROLOGIC/HYDRAULIC

5.1 Evaluation of Features

a. Design Data. Because no original hydrologic design data were revealed, an evaluation of such data could not be performed.

b. Experience Data. No experience data were found.

c. Visual Inspection. The invert of the low-level outlet is estimated to be located well above the deeper parts of the reservoir. The dam has the appearance of a low earth berm added to increase stored water in an existing lake. The steel covers over the 36-inch clay pipe appear to be 9 makeshift arrangement; no lifting mechanism was noted. Considerable erosion and spalling of the concrete around the spillway at the end of the approach channel was observed.

d. Helmetta Pond Dam Overtopping Potential. The hydraulic/hydrologic evaluation for the dam is based on a selected Spillway Design Flood (SDF) equal to one-half the Probable Maximum Flood (PMF) in accordance with the range of test floods given in the evaluation guidelines, for dams classified as significant hazard and small in size. The PMF was determined by application of a 24-hour Probable Maximum Precipitation of 22.9 inches to the SCS dimensionless unit hydrograph. Hydrologic computations are given in Appendix 3. The routed half-PMF peak inflow to the reservoir is 849 cfs; the peak outflow is 267 cfs.

Water will rise to a depth of 1.5 foot above the spillway crest before overtopping the low point on the dam embankment crest. Under this head the spillway capacity is 41 cfs, which is less than the selected SDF.

Flood routing calculations indicate that Helmetta Pond Dam will be overtopped for 9.8 hours to a maximum depth of 1.4 feet under half-PMF conditions. It is estimated that the spillway can pass the inflow from a storm about 11 percent the size of the half-PMF without overtopping the dam; thus, the spillway is considered inadequate.

e. Draw-down Capacity. It is estimated that the lake can be drained down to elevation 41.1 feet in approximately 2.5 days assuming no significant inflow. This time period is considered adequate for draining the reservoir in an emergency situation. However, some water probably would remain in the pond, as the low-level outlet is believed not to be at or near the bottom of the reservoir.

SECTION 6 STRUCTURAL STABILITY

6.1 Evaluation of Structural Stability

a. Visual Observations. The soft, wet area and seepage at the downstream toe of the dam is indicative of seepage through and under the dam, which, if not properly controlled, could lead to failure of the dam by piping and sloughing of the downstream slope. Serious erosion on the upstream slope of the dam at the waterline, if allowed to continue, could result in eventual breaching of the embankment. Most of the crest of the dam which is bare of vegetation would be susceptible to erosion if the dam were overtopped, which might, in turn, lead to breaching of the dam. Trees growing on the upstream and downstream slopes may cause seepage and erosion problems if the tree blows over and pulls out its roots, or if a tree dies or its roots rot.

The crest of the dam is uneven. Although the cause of the unevenness cannot be determined on the basis of the visual inspection alone, it may be a sign of a potential stability problem. The presence of several large depressions at the upstream edge of the crest and on the upstream slope may be a result of internal erosion of the embankment which, if not stopped, could lead to breaching of the dam.

Continued deterioration of the concrete spillway and steel plates over the outlet pipe could lead to a sudden release of water.

6.2 Design and Construction Data. No design or construction data pertinent to the structural stability of the dam are available.

6.3 Operating Records. No operating records pertinent to the structural stability of the dam were available.

6.4 Post-Construction Changes. No record of post-construction changes was available.

6.5 Seismic Stability - This dam is in Seismic Zone 1. According to the Recommended Guidelines, dams located in Seismic Zone 1 "may be assumed to present no hazard from earthquake, provided static stability conditions are satisfactory and conventional safety margins exist". The visual observations made during the inspection are possible indicators of unstable embankments as mentioned in Section 6.1. However, because no data are available concerning the engineering properties of the embankment and foundation materials for this dam, it is not possible to make an engineering evaluation of the stability of the slopes or the factor of safety under static conditions.

SECTION 7
ASSESSMENT, RECOMMENDATIONS/REMEDIAL MEASURES

7.1 Dam Assessment

a. Condition. Helmetta Pond Dam is estimated to be at least 70 years old and is in poor condition.

b. Adequacy of Information. The information available is such that the assessment of the dam must be based on the results of the visual inspection.

c. Urgency. The recommendations made in 7.2.a and 7.2.b should be implemented by the owner as prescribed.

d. Necessity for Additional Data/Evaluation. The information available from the visual inspection is adequate to identify the potential problems which are listed in 7.2.a. These problems require the attention of a professional engineer who will have to make additional engineering studies to design or specify remedial measures to rectify the problems. If left unattended, the problems could lead to failure of the dam.

7.2 Recommendation/Remedial Measures

a. Recommendations. The owner should engage a professional engineer qualified in the design and construction of dams to accomplish the following very soon:

- (1) Evaluate further the inadequate spillway capacity and also consider the hydraulic conveyance downstream.
- (2) Investigate the cause of the seepage and wet, soft areas at the downstream toe of the dam.
- (3) Design and oversee procedures for the removal of trees, from the upstream and downstream slopes and the one tree near the center of the dam which is approximately 15 ft. downstream from the toe.
- (4) Design and oversee repairs for the erosion of the upstream slope of the dam and design and specify erosion protection for the upstream slope of the dam.
- (5) Design and oversee repairs for the eroded areas on the downstream slope adjacent to the spillway.
- (6) Investigate the reasons for the uneven surface of the crest, and design remedial measures as needed.

- (7) Oversee the repair of animal burrows on the embankment slope.
- (8) Design and oversee repairs to the concrete spillway and walls.
- (9) Design and oversee reconstruction of the outlet works.

b. Alternatives. None recommended if fire protection remains high priority purpose.

c. Operating and Maintenance Procedures. The owner should accomplish the following in the time periods specified:

Beginning very soon:

- (1) Start a program of checking the condition of the dam periodically and monitoring the seepage and wet areas along the toe of the downstream slope.
- (2) Start a program for maintaining the embankment free of weeds, brush, and filling animal burrows (add to brief assessment) as they occur.
- (3) Control trespassing on dam.

Starting soon:

- (1) Develop an emergency action plan which outlines actions taken by the owner to minimize downstream effects of an emergency at the dam.
- (2) After repair of eroded areas on the dam, re-establish and maintain grassy vegetation on the dam.
- (3) Repair deteriorated portions of service bridge.

In the near Future:

Develop written operating procedures and a periodic maintenance plan to ensure the safety of the dam.

Anderson-Nichols & Co., Inc BOSTON MASSACHUSETTS	U.S. ARMY ENGINEER DIST PHILADELPHIA CORPS OF ENGINEERS PHILADELPHIA, PA
NATIONAL PROGRAM OF INSPECTION OF NON-FED.DAMS	
HELMETTA POND DAM PLAN	
TRIB. TO MANALAPAN BROOK	NEW JERSEY
SCALE: NOT TO SCALE	
DATE: JUNE 1981	

FIGURE -1

Top of Spillway 43.7'

670'

Toe of Slope

PROFILE

OUTLET ELEVATION

Anderson-Nichols & Co., Inc. BOSTON	U.S. ARMY ENGINEER DIST. PHILADELPHIA CORPS OF ENGINEERS PHILADELPHIA, PA. MASSACHUSETTS
NATIONAL PROGRAM OF INSPECTION OF NON-FED.DAMS	
HELMETTA POND DAM PROFILE & ELEVATION	
TRIB. TO MANALAPAN BROOK	
NEW JERSEY	
SCALE NOT TO SCALE	
DATE: JUNE 1981	

FIGURE-2

Anderson-Nichols & Co., Inc.

U.S. ARMY ENGINEER DIST. PHILADELPHIA
CORPS OF ENGINEERS
PHILADELPHIA, PA.

NATIONAL PROGRAM OF INSPECTION OF NON-FED.DAMS

HELMETTA DAM
LOCATION MAP

TRIB. TO MANALAPAN BROOK

NEW JERSEY

SCALE: 1" = 4 Miles Approx.

DATE: JUNE 1981

MAP BASED ON STATE OF NEW JERSEY
OFFICIAL MAP & GUIDE.

SCALE IN MILES
0 4 8

FIGURE -

APPENDIX 1
CHECK LIST
VISUAL INSPECTION

HELMETTA POND DAM

Check List
Visual Inspection
Phase 1

Name	Dam	Helmetta Pond Dam	County	Middlesex	State	NJ (00794)	Coordinators	NJDEP
Date(s)	Inspection	2/19/81 4/20/81	Weather	Overcast, warm Clear	Temperature	40° 45°		
Pool Elevation at Time of Inspection			43	NGVD	Tailwater at Time of Inspection	39.6	NGVD	

Inspection Personnel:

Guinan	Stuart
Gilman	Deane
Murdock	

Stuart/Gilman/Murdock

Recorder

VISUAL EXAMINATION OF EMBANKMENT	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
UNUSUAL MOVEMENT OR CRACKING AT OR BEYOND THE TOE	None observed	Repair erosion and provide adequate erosion protection
SURFACE CRACKS	None	
SLoughing or Erosion of embankment and abutment slopes	Significant erosion and sloughing along upstream face	
Vertical and horizontal alignment of the crest	Horizontal alignment - good vertical alignment - crest exhibits a slight undulation in elevation	
RIPRAP FAILURES	No riprap evident above water level. Small trees and brush growing on upstream face.	Remove trees and brush and provide adequate erosion protection on upstream face.

EMBANKMENT

VISUAL EXAMINATION OF

REMARKS OR RECOMMENDATIONS

RAILINGS

None

JUNCTION OF EMBANKMENT
AND ABUTMENT, SPILLWAY
AND DAMErosion evident on either side
of spillway structure

ANY NOTICEABLE SEEPAGE

Ground is wet and soggy down-
stream of the dam. Seepage
and standing water evident
in many locations along the
toe.

Investigate origin of seepage

STAFF GAGE AND RECORDER

None

DRAINS

None observed

UNGATED SPILLWAY

VISUAL EXAMINATION OF

CONCRETE WEIR

Poor condition - Substantial spalling and erosion on u/s face, approximately 8' below weir. D/s face has evidence of surface erosion. Much debris.

REMARKS OR RECOMMENDATIONS

Repair eroded and deteriorated concrete. Clean inlet area.

OBSERVATIONS

Poor condition - Substantial spalling and erosion on u/s face, approximately 8' below weir. D/s face has evidence of surface erosion. Much debris.

APPROACH CHANNEL

Clear of brush or weeds. Much trash debris. Mortared cinder block training wall on left side in good condition.

-4

DISCHARGE CHANNEL

Defined channel. Weeds and trash.

Clear trash

BRIDGE AND PIERS OVER SPILLWAY

Evidence of deterioration of wood. Some planks show rot. Wooden footbridge with railing on d/s side only. Deck in fair condition. Railing well painted.

Add railing on u/s side.
Repair deteriorated plank and paint.

OUTLET WORKS (Located at Ungated Spillway)
See Ungated Spillway

VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
CRACKING AND SPALLING OF CONCRETE SURFACES IN OUTLET CONDUIT	See outlet channel. See outlet pipe.	
INTAKE STRUCTURE	U/s face of spillway wall. Considerable surface erosion and spalling of concrete. Concrete block wall has minor cracking.	Repair concrete and concrete block wall.
OUTLET PIPE	3 ft smooth clay pipe exits face of spillway. Invert 4 ft below spillway crest.	
OUTLET CHANNEL	Poor condition. Substantial erosion and deterioration of concrete wall at base.	Repair or rebuild channel.
EMERGENCY GATE	Gate appears to be 2 steel plates which together cover, outlet pipe and may be held in place by water pressure from u/s. Some leakage. Steel plates are rusting.	Refit with new gate and stop logs.

DOWNSTREAM CHANNEL

VISUAL EXAMINATION OF CONDITION (OBSTRUCTIONS, DEBRIS, ETC.)	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
Stream flows perpendicular to spillway crest for approx. 100 yards then takes right angle towards factory. It then flows: approx. 50 yards d/s; under the loading dock driveway 15-foot long, 48-inch diameter BCCNP; 20+ feet more d/s; into a 42-inch concrete pipe; and then under the mill to Manalapan Brook across the street.		Failure of this dam could cause flooding to the basements of two warehouses.
SLOPES	Gentle	

APPROXIMATE NO.
OF HOMES AND
POPULATION

RESERVOIR	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
SLOPES	Slightly wooded, gradual slopes, some homes situated adjacent to reservoir.	
SEDIMENTATION	No evidence of significant sedimentation observed.	

CHECK LIST
 ENGINEERING DATA
 DESIGN, CONSTRUCTION, OPERATION

ITEM	REMARKS
PLAN OF DAM	None found.
REGIONAL VICINITY MAP	Prepared for this report
CONSTRUCTION HISTORY	None found
TYPICAL SECTIONS OF DAM	None found
HYDROLOGIC/HYDRAULIC DATA	None found
OUTLETS - PLAN	
- DETAILS	None found
- CONSTRAINTS	
- DISCHARGE RATINGS	
RAINFALL/RESERVOIR RECORDS	None found

ITEM	REMARKS
DESIGN REPORTS	None found
GEOLOGY REPORTS	None found
DESIGN COMPUTATIONS HYDROLOGY & HYDRAULICS DAM STABILITY SEEPAGE STUDIES	None found
MATERIALS INVESTIGATIONS BORING RECORDS LABORATORY FIELD	None found
POST-CONSTRUCTION SURVEYS OF DAM	None found
BORROW SOURCES	Unknown

ITEM	REMARKS
MONITORING SYSTEMS	None found
MODIFICATIONS	None found
HIGH POOL RECORDS	None found
POST CONSTRUCTION ENGINEERING STUDIES AND REPORTS	None found
PRIOR ACCIDENTS OR FAILURE OF DAM DESCRIPTION REPORTS	None found
MAINTENANCE OPERATION RECORDS	None found

ITEMS	REMARKS
SPILLWAY PLAN	
SECTIONS	None found
DETAILS	
OPERATING EQUIPMENT PLANS & DETAILS	None found

CHECK LIST
HYDROLOGIC AND HYDRAULIC DATA
ENGINEERING DATA

DRAINAGE AREA CHARACTERISTICS: .69 square miles, gentle slope,
wooded area, and wet lands

ELEVATION TOP NORMAL POOL (STORAGE CAPACITY): 43.7 NGVD (64
acre-feet)

ELEVATION TOP FLOOD CONTROL POOL (STORAGE CAPACITY)
Not applicable

ELEVATION MAXIMUM TEST FLOOD POOL: 46.6 feet NGVD

ELEVATION TOP DAM: 45.2 feet NGVD (142 acre-feet)

SPILLWAY CREST: free overflow concrete spillway

a. Elevation 43.7 feet NGVD

b. Type flat

c. Width 8 inches

d. Length 7.2 feet

e. Location Spillover left dam abutment

f. Number and Type of Gates None

OUTLET WORKS: One 36 inches pipe with upstream steelplate
covers (gate)

a. Type clay pipe

b. Location Directly below spillway through wall

c. Entrance Invert 41.1 feet NGVD

d. Exit Invert 41.1 feet NGVD

HYDROMETEOROLOGICAL GAGES: None

MAXIMUM NON-DAMAGING DISCHARGE: 41 cfs

APPENDIX 2

PHOTOGRAPHS

HELMETTA POND DAM

February 19, 1981

View from u/s looking into overflow channel at u/s end of pipe section spillway on left bank (circular cover at u/s end of pipe.)

February 19, 1981

Looking u/s at d/s end of circular pipe spillway - note debris.

April 20, 1981

View of left training wall. Note deteriorated and eroded, spalled concrete along left training wall and debris in channel.

February 19, 1981

View looking across dam d/s face. Very large tree growing on dam crest.

April 20, 1981

View from location of large concrete block on upstream face looking toward left side of dam. Note extensive erosion along upstream face.

April 20, 1981

View of animal burrow on crest, 8-inches in diameter, 2.5 feet deep, surface depression 2-feet in diameter, and 1 foot deep.

April 20, 1981

View of seepage area across most of the dam face. Flow estimated at 1-2 gal/min.

February 19, 1981

View looking d/s at retreat channel from bridge over spillway.

April 20, 1981

View of pipe outlet from retreat channel looking d/s at second pipe that carries normal flows beyond buildings but beneath them.

APPENDIX 3

HYDROLOGIC COMPUTATIONS

HELMETTA POND DAM

NATIONAL PROGRAM OF INSPECTION OF
NON-FED. DAMS

HELMETTA POND DAM
BRUNSWICK TOWNSHIP, NEW JERSEY
REGIONAL VICINITY MAP

DEPARTMENT OF THE ARMY
PHILADELPHIA DISTRICT, CORPS OF ENGINEERS
PHILADELPHIA, PENNSYLVANIA

SCALE IN MILES

MAP BASED ON U.S.G.S. 7.5 MINUTE QUADRANGLE
SHEET NEW BRUNSWICK, N.J. 1954, AND
JAMESBURG, N.J. 1953, REVISED 1954.

JOB NO.

SQUARES 1/4 IN. SCALE	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
--------------------------	---	---	---	---	---	---	---	---	---	---	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----

TIME OF CONCENTRATION① Texas Highway Method

all overland - longest flowpath = 4,700 ft.

$$\text{Slope} = \frac{130 - 43}{4700} = 0.019 = 1.9\%$$

Velocity = 1.0 fps for woodlands

$$\text{TIME} = \text{Overland} = \frac{4700}{1.0} = 4700 \text{ sec} = 1.31 \text{ hours}$$

② Soil & Water Conservation

$$L = 0.6 T_C = \frac{l^{0.8} (s+1)^{1.67}}{9,000 y^{0.5}}$$

$$S = \frac{1000}{CN} - 10$$

$$y = 1.9\%$$

$$l = 4,700$$

CN = 70 for good condition woods class C

$$S = \frac{1000}{70} - 10 = 4.3$$

$$T_C = \frac{L}{0.6} = \frac{4700^{0.8} (5.3)^{1.67}}{9000 (1.9)^{0.5} (0.6)} = 1.89 \text{ hours}$$

③ Weston or SCS T.R. #55

all overland:

slope = 1.9%, length = 4700 feet

from T.R. 55 graph, V = 0.33 fps

$$\text{Time} = \frac{4,700}{0.33} = 14,240 \text{ seconds} = 3.96 \text{ hours}$$

Anderson-Nichols & Company, Inc.

Subject HELMETTA DAMSheet No. 2 of 16Date 6/19/81Computed 7/7/81Checked C.E.D.

JOB NO.

SQUARES $\frac{1}{4}$ IN. SCALE 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30(4) Kerby

Overland $T_c = 0.83 \left(\frac{N \cdot L}{S} \right)^{0.467}$

N = 0.7 (timber land), S = 0.019, L = 4,700 feet

$$T_c = 0.83 \left(\frac{0.7 \cdot 4,700}{\sqrt{0.019}} \right)^{0.467} = 91.94 \text{ min} = 1.53 \text{ hours}$$

Average of 4 methods = $\frac{1.31 + 1.89 + 3.96 + 1.53}{4} = 2.17 \text{ hours}$

Lag = 0.6 $T_c = 1.30 \text{ hours}$

JOB NO.

SQUARES 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
1/4 IN. SCALE

1

2

3

Stage-Discharge Curve

4 A hydraulic profile of Helmetta dam is given on page 4. E = water
 5 surface elevation (ft.msl).

6
 7 for the spillway, $Q = 3.1 (7.2) (E - 43.7)^{3/2}$
 8

9

10

11 for the top of dam, assume each section (1) through (1) is a
 12 broad-crested weir ($C = 2.6$) with its crest at the average elevation
 13 of the section. Thus:

$$16 \quad Q_{TOP} = 2.6 (10) (E - 45.9)^{3/2} + 2.6 (32.8) (E - 46.1)^{3/2} + 2.6 (50) (E - 46.05)^{3/2} \\ 17 \quad + 2.6 (100) (E - 46.4)^{3/2} + 2.6 (100) (E - 46.6)^{3/2} + 2.6 (100) (E - 46.3)^{3/2} \\ 18 \quad + 2.6 (100) (E - 46.0)^{3/2} + 2.6 (100) (E - 45.75)^{3/2} + 2.6 (70) (E - 45.45)^{3/2}$$

23

24

25

for side slopes, use sloping weir equation ($Q = CL H_{avg}^{3/2}$) with
 26 $C = 2.5$

27

28

29

30

31

32

33

34

35

36

37

38

39

40

$$Q_{sides} = 2.5 (5(E - 45.7)) [0.5(E - 45.7)]^{3/2} + 2.5 (10(E - 45.2)) [0.5(E - 45.2)]^{3/2}$$

ANDERSON-NICHOLS

VERNON	BOSTON	CONCORD	
HYDRAULIC PROFILE			
1/18 MICHNA DRAWS			

DATE	SCALE	JOB NO.	SHEET NO.
6/18/81	1:100' H	V	P-4Cf-15

726

Anderson-Nichols & Company, Inc.

Subject: HELMETTA DAM

Sheet No. 5 of 15
 Date 6/18/81
 Computed TCT
 Checked GRP

JOB NO.

SQUARES 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
 1/4 IN. SCALE

1

2

3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
ELEVATION (ft. above T.G.V.D.)	H (ft. above s/w crest)	Q _{spillway} (cfs)	Q _{top of dam} (cfs)	Q _{sidewalls} (cfs)	Q _{TOTAL} (cfs)																						
39.6	-	0	0	0	0																						
43.7	0	0	0	0	0																						
44	0.3	4	0	0	4																						
44.5	0.8	16	0	0	16																						
45	1.3	33	0	0	33																						
45.2	1.5	41	0	0	41																						
46	2.3	78	108	5	191																						
46.5	2.8	105	561	20	686																						
47	3.3	134	1,537	47	1,718																						
47.5	3.8	165	2,898	90	3,153																						
48	4.3	199	4,544	151	4,894																						

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

JOB NO.

 SQUARES 1/4 IN. SCALE 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

 1
 2 Stage Storage Determination
 3

 4 The surface area at normal pool, 43.7 ft. above NGVD, is 32 acres.
 5

 6 At 50 ft above NGVD, Area is about 200 acres. Assume a linear
 7

 8 increase in surface area with elevation. Also assume 0 storage at
 9

 10 39.6 ft msl, and 64 acre-feet storage at 43.7 ft msl (Avg. Sept
 11

12 = 2 feet).
 13

ELEVATION (Ft. above NGVD)	ΔH (Ft.)	SURFACE AREA (ACRES)	AVG. S.A. (Acres)	INCREMENTAL STORAGE (Ac-ft.)	CUMULATIVE STORAGE (Ac-ft.)
39.6	4.1	-	-	-	0
43.7	0.3	32	36	10.8	64
44	0.5	40	46.5	23.3	74.8
44.5	0.5	53	59.85	29.9	94.1
45	0.2	66.7	69.35	13.9	128.0
45.2	0.8	72	82.65	66.1	141.9
46	0.5	93.3	100.15	50.1	208
46.5	0.5	107	113.5	56.8	258.1
47	0.5	120	126.5	63.2	314.9
47.5	0.5	133	140	70	378.1
48	0.5	147			448.1

JOB NO.

SQUARES
1/4 IN. SCALE 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

1

2

3

4

5

6

OVERTOPPING ANALYSIS

Done using HEC-1, dam top at 45.2, HEC-1 output attached

OVERTOPPING POTENTIAL

JOB NO.

 SQUARES 1/4 IN. SCALE
 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
DRAWDOWN TIME

Use 36" clay pipe with steel covers. (1) Above 43.1, the pipe has pressure

— 43.7

$$\text{flow. Say } Q = C A \sqrt{2g} \sqrt{E - 41.6}$$

$$C = 0.61, A = \pi(1.5)^2 = 7.1. \text{ So,}$$

$$Q = 0.61 (7.1) (\sqrt{64.4}) \sqrt{E - 41.6} = 34.76 \sqrt{E - 41.6}$$

(2) Below 43.1, use manning's formula

for open channel flow. Get a at 41.6,

$$Q = A V = A \frac{1.49}{n} \left(\frac{A}{W.P.} \right)^{2/3} S^{1/2}$$

$$A: \text{Area} = \frac{\pi r^2}{4} = 3.55 \text{ ft}^2$$

$$n: 0.015$$

$$W.P.: \text{W.R.} = \pi R = 4.71 \text{ ft}$$

$$S: 0.001$$

$$Q = 3.55 \left(\frac{1.49}{0.015} \right) \left(\frac{3.55}{4.71} \right)^{2/3} (0.001)^{1/2} = 9.2 \text{ cfs}$$

(2) Storage Elev.

64 AF 43.7

47 AF 43.1

20 AF 41.6

4 AF 40.1

0 AF 39.6

$$(3) Ac - FV/day = 1.99 \times Q_{AVG}$$

$$(4) \text{Days} = \Delta \text{Storage} / Ac - FV/day$$

Anderson-Nichols & Company, Inc.

Subject HELME ITA

Sheet No. 1 of 15
 Date 6/18/81
 Computed ---
 Checked C.R.P.

JOB NO.

SQUARES 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
 1/4 IN. SCALE

1	2 ELEV. (Ft. above NGVD)	3 STORAGE (Ac.-Ft.)	4 Δ Storage (Ac.-Ft.)	5 Q (cfs)	6 Q _{Avg} (cfs)	7 Ac.-Ft./Day	8 DAYS
5	43.7	64	17	50.4			
6					46.5	92.1	0.18
7	43.1	47	27	42.6			
8					26.9	51.3	0.53
9	41.6	20	16	9.2			
10					4.6	9.1	1.76
11	40.1	4		0			
12							
13							

$$\Sigma = 2.47 \text{ Days}$$

Note - Some storage left in pond below pipe is not shown.

JOB NO.

SQUARES
1/4 IN. SCALE

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

Breach Analysis

Immediately downstream of Helmetta Dam there is a large depression, with warehouses and factory buildings on its edges. The depression shows to have an area of 6 acres below 40 feet NGVD on the USGS quad. The only outlet below 43 feet NGVD or so is a 42" rcp leading under the factory, etc. Its invert is at about 34 feet MSL.

Immediately prior to overtopping, Helmetta Dam would have a stage of 45.2 feet and an outflow of 41 cfs. This outflow would cause pooling but no appreciable damage downstream.

Upon dam failure, water stored from Helmetta Pond would fill the depression downstream, causing still-water flooding and damage to factories and warehouses. There would be some threat to the lives of workers in basements. The ground floor of one building downstream is at about 38 feet msl, another at about 41', and the main factory and warehouse buildings are at 43'.

See the sketch on p.13

JOB NO.

SQUARES
1/4 IN. SCALE

To estimate the impact of a breach to Helmetta Dam,
 assume the storage available at failure (141.9 acre-feet)
 spreads over the depression, thus lowering the stage in the pond
 while raising that downstream until they are equal and they store
 a combined total of 141.9 acre-feet. This assumes:

- ① negligible outflow during breach development from the depression. A reasonable assumption given only a 42" rcp outlet.
- ② All flooding due to breach - effects of higher later inflows not considered.

The stage-storage relationship for Helmetta Pond is given on page 7.
 For the depression, surface area = 0 at 34 feet, 6 acres at 40 feet

J 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Assume a linear relationship, $SA = (E - 34) \left(1 \frac{\text{Ac}}{\text{ft.}} \right)$

Storage at E_{current} = $\int_{34}^{E_{\text{current}}} (E - 34) dE$

$$= \frac{E^2}{2} - 34E + C$$

at 34, $\frac{E^2}{2} - 34E + C = 0$

$$\frac{34^2}{2} - 34(34) + C = 0$$

$$C = \frac{34(34)}{2} = 578$$

So Storage at $E = \frac{E^2}{2} - 34E + 578$

elevation (Ft. above M.G.D.)	Helmetta ¹ Storage(Ac-Ft)	Depression Storage(Ac-Ft)	Total Storage (Ac-Ft)
39.6	0	15.7	15.7
43.7	64	47.0	111
44	74.8	50.0	124.8
44.5	98.1	55.1	153.2
45	128.0	60.5	188.5
45.2	141.9	62.7	204.6

From our assumptions the final stage would be that yielding a total storage of 141.9 ac-ft, which is 44.3 feet msl. This would cause 1-1/2 feet of flooding at the main buildings downstream, 3-3/4 feet.

1. from p. 7

JOB NO.

SQUARES
1/4 IN. SCALE 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

building ⑥, and 6-6½ feet at building ⑤. In reality, stages would be somewhat less due to outflow during breach development. However serious economic damage would result from dam failure. Due to low velocities, there would be no serious threat to lives.

APPENDIX 4
HEC 1 OUTPUT
HELMETTA POND DAM

PAGE 1.

HFC-1 INPUT

LINE	ID.....1.....2.....3.....4.....5.....6.....7.....8.....9.....10
1	HELMETTA DAM INFLUX ANALYSIS - TOM GOODCH
2	IN JRP, Y DAM NO. 79% - MICHIGAN COUNTY - ANCO
3	ID 0.1, 0.2, 0.5 MULTIPLS OF PMP FROM 24-HOUR PMP
4	ID 0.1, 0.2, 0.5
5	ID 0.1, 0.2, 0.5
6	JR FLOW 0.1 C.25 0.5
7	KK ALL HELMETTA POND INFLOW HYDROGRAPH
8	KK INFLOW FROM SCS UNIT GRAPH COMPUTATIONS
9	KA 0.69 0 1
10	SF 2.1
11	PM 22.9
12	LU 0.1
13	UD 1.30
14	KK R2 ROUTE INFLOW HYDROGRAPH THROUGH HELMETTA POND
15	R2 1 STUR 6.0
16	SY 39.0 64.7 74.8 98.1 128. 141.9 208. 258.1 314.9 378.1
17	SF 39.0 43.7 44.5 45. 33. 45.2 46. 46.5 47. 47.5
18	SE 39.0 43.7 44.5 45. 33. 45.2 46. 46.5 47. 47.5
19	SE 39.0 43.7 44.5 45. 33. 45.2 46. 46.5 47. 47.5
20	SW 43.7 47.2 51.2 51. 41. 45.2 46. 46.5 47. 47.5
21	SW 43.7 47.2 51.2 51. 41. 45.2 46. 46.5 47. 47.5
22	SW 43.7 47.2 51.2 51. 41. 45.2 46. 46.5 47. 47.5

FLOOD HYDROGRAPH PLOTACE (HICR-1)
FEBRUARY 1981
RUN DATE 06/24/81 TIME 10.06.37

HELMETTA DAM OVERTOPPING ANALYSIS - TOM GOODCH ANC
NEW JERSEY DAM NO 794 - MIDDLESEX COUNTY - HELMETTA BOROUGH
C.1.025, 0.4 MULTIPLES OF PMF FROM 24-HOUR PMP

5 10

OUTPUT CONTROL VARIABLES

INPUT 1 PRINT CONTROL

1 FLOW 1 HYDROGRAPH

0 CAL 1 SCALE

0 MSG 1 PRINT DIAGNOSTIC MESSAGES

11

HYDROGRAPH TIME DATA

MINUTES IN COMPUTATION INTERVAL
1 TIME 1 0 STARTING DATE
1 TIME 0000 STARTING TIME
0 NO 300 NUMBER OF HYDROGRAPH ORDINATES
1 DATE 2 0055 ENDING DATE
1 TIME 2 0055 ENDING TIME

COMPUTATION INTERVAL 0.05 HOURS

TOTAL TIME BASE 24.92 HOURS

ENGLISH UNITS
DRAINAGE AREA SQUARE MILES
PRECIPITATION DEPTH INCHES

LENGTH ELEVATION FEET

FLOW CUBIC FEET PER SECOND

STORAGE VOLUME ACRE-FEET

SURFACE AREA ACRES

TEMPERATURE DEGREES FAHRENHEIT

JP

MULTI-PLAN OPTION 1 NUMBER OF PLANS

MULTI-RATIO OPTION C.10

RATIO OF RUNOFF 0.25

0.50

7 KK
A1
HELMETTA POND INFLOW HYDROGRAPH
INFLOW FROM SCS UNIT GRAPH COMPUTATIONS

SUBBASIN RUNOFF DATA

9 RA
SUBBASIN CHARACTERISTICS
AREA 0.69 SUBBASIN AREA

10 RF
SUBBASIN CHARACTERISTICS
INITIAL FLOW 1.10 INITIAL FLOW
RATE 2.10 RISING RATE FLOW RECESSION
PLOT 1.0000 RECESSION CONSTANT

PRECIPITATION DATA
PROACT FIVE MAXIMUM STORM INDEX PRECIPITATION:
11 PM

PRECIPITATION DATA	PROBABLY MAXIMUM STORM FWS TSPC TREC TRCA	INDEMNIFICATION: PRO TRANSPOSITION OF TRANSPOSITION TO TRANSPOSITION TO
--------------------	---	--

PERCENT OF INDEX PRECIPITATION OCCURRING IN GIVEN TIME	6-HR	12-HR	24-HR	48-HR	72-HR	96-HR	0-C
113.0	123.0	137.0	149.0	154.0	158.0	161.0	0.0
113.0	123.0	137.0	149.0	154.0	158.0	161.0	0.0

UNIFORM LOSS RATE	INITIAL LOSS RATE	INITIAL LOSS RATE	INITIAL LOSS RATE	INITIAL LOSS RATE
STAN	1.0	0.0	0.0	0.0
CASTL	0.0	0.0	0.0	0.0
FTIMP	0.0	0.0	0.0	0.0
SCS DIMENSIONLESS UNIT GRAPH TIAQ	1.0	1.0	1.0	1.0

卷之三

卷之三

UNI HYDROGRAPH

12	12	12
200	200	200
271	271	271
26	26	26
20	20	20
3	3	3

HYDROGRAPH AT STATION A1

A decorative horizontal border at the bottom of the page. It consists of a repeating pattern of small circles and dots arranged in a grid-like fashion, creating a textured and decorative effect.

1767-1770
1770-1773
1773-1776
1776-1779
1779-1782
1782-1785
1785-1788
1788-1791
1791-1794
1794-1797
1797-1800
1800-1803
1803-1806
1806-1809
1809-1812
1812-1815
1815-1818
1818-1821
1821-1824
1824-1827
1827-1830
1830-1833
1833-1836
1836-1839
1839-1842
1842-1845
1845-1848
1848-1851
1851-1854
1854-1857
1857-1860
1860-1863
1863-1866
1866-1869
1869-1872
1872-1875
1875-1878
1878-1881
1881-1884
1884-1887
1887-1890
1890-1893
1893-1896
1896-1900
1900-1903
1903-1906
1906-1909
1909-1912
1912-1915
1915-1918
1918-1921
1921-1924
1924-1927
1927-1930
1930-1933
1933-1936
1936-1939
1939-1942
1942-1945
1945-1948
1948-1951
1951-1954
1954-1957
1957-1960
1960-1963
1963-1966
1966-1969
1969-1972
1972-1975
1975-1978
1978-1981
1981-1984
1984-1987
1987-1990
1990-1993
1993-1996
1996-1999
1999-2002
2002-2005
2005-2008
2008-2011
2011-2014
2014-2017
2017-2020
2020-2023
2023-2026
2026-2029
2029-2032
2032-2035
2035-2038
2038-2041
2041-2044
2044-2047
2047-2050
2050-2053
2053-2056
2056-2059
2059-2062
2062-2065
2065-2068
2068-2071
2071-2074
2074-2077
2077-2080
2080-2083
2083-2086
2086-2089
2089-2092
2092-2095
2095-2098
2098-2101
2101-2104
2104-2107
2107-2110
2110-2113
2113-2116
2116-2119
2119-2122
2122-2125
2125-2128
2128-2131
2131-2134
2134-2137
2137-2140
2140-2143
2143-2146
2146-2149
2149-2152
2152-2155
2155-2158
2158-2161
2161-2164
2164-2167
2167-2170
2170-2173
2173-2176
2176-2179
2179-2182
2182-2185
2185-2188
2188-2191
2191-2194
2194-2197
2197-2200
2200-2203
2203-2206
2206-2209
2209-2212
2212-2215
2215-2218
2218-2221
2221-2224
2224-2227
2227-2230
2230-2233
2233-2236
2236-2239
2239-2242
2242-2245
2245-2248
2248-2251
2251-2254
2254-2257
2257-2260
2260-2263
2263-2266
2266-2269
2269-2272
2272-2275
2275-2278
2278-2281
2281-2284
2284-2287
2287-2290
2290-2293
2293-2296
2296-2299
2299-2302
2302-2305
2305-2308
2308-2311
2311-2314
2314-2317
2317-2320
2320-2323
2323-2326
2326-2329
2329-2332
2332-2335
2335-2338
2338-2341
2341-2344
2344-2347
2347-2350
2350-2353
2353-2356
2356-2359
2359-2362
2362-2365
2365-2368
2368-2371
2371-2374
2374-2377
2377-2380
2380-2383
2383-2386
2386-2389
2389-2392
2392-2395
2395-2398
2398-2401
2401-2404
2404-2407
2407-2410
2410-2413
2413-2416
2416-2419
2419-2422
2422-2425
2425-2428
2428-2431
2431-2434
2434-2437
2437-2440
2440-2443
2443-2446
2446-2449
2449-2452
2452-2455
2455-2458
2458-2461
2461-2464
2464-2467
2467-2470
2470-2473
2473-2476
2476-2479
2479-2482
2482-2485
2485-2488
2488-2491
2491-2494
2494-2497
2497-2500
2500-2503
2503-2506
2506-2509
2509-2512
2512-2515
2515-2518
2518-2521
2521-2524
2524-2527
2527-2530
2530-2533
2533-2536
2536-2539
2539-2542
2542-2545
2545-2548
2548-2551
2551-2554
2554-2557
2557-2560
2560-2563
2563-2566
2566-2569
2569-2572
2572-2575
2575-2578
2578-2581
2581-2584
2584-2587
2587-2590
2590-2593
2593-2596
2596-2599
2599-2602
2602-2605
2605-2608
2608-2611
2611-2614
2614-2617
2617-2620
2620-2623
2623-2626
2626-2629
2629-2632
2632-2635
2635-2638
2638-2641
2641-2644
2644-2647
2647-2650
2650-2653
2653-2656
2656-2659
2659-2662
2662-2665
2665-2668
2668-2671
2671-2674
2674-2677
2677-2680
2680-2683
2683-2686
2686-2689
2689-2692
2692-2695
2695-2698
2698-2701
2701-2704
2704-2707
2707-2710
2710-2713
2713-2716
2716-2719
2719-2722
2722-2725
2725-2728
2728-2731
2731-2734
2734-2737
2737-2740
2740-2743
2743-2746
2746-2749
2749-2752
2752-2755
2755-2758
2758-2761
2761-2764
2764-2767
2767-2770
2770-2773
2773-2776
2776-2779
2779-2782
2782-2785
2785-2788
2788-2791
2791-2794
2794-2797
2797-2800
2800-2803
2803-2806
2806-2809
2809-2812
2812-2815
2815-2818
2818-2821
2821-2824
2824-2827
2827-2830
2830-2833
2833-2836
2836-2839
2839-2842
2842-2845
2845-2848
2848-2851
2851-2854
2854-2857
2857-2860
2860-2863
2863-2866
2866-2869
2869-2872
2872-2875
2875-2878
2878-2881
2881-2884
2884-2887
2887-2890
2890-2893
2893-2896
2896-2899
2899-2902
2902-2905
2905-2908
2908-2911
2911-2914
2914-2917
2917-2920
2920-2923
2923-2926
2926-2929
2929-2932
2932-2935
2935-2938
2938-2941
2941-2944
2944-2947
2947-2950
2950-2953
2953-2956
2956-2959
2959-2962
2962-2965
2965-2968
2968-2971
2971-2974
2974-2977
2977-2980
2980-2983
2983-2986
2986-2989
2989-2992
2992-2995
2995-2998
2998-2001
2001-2004
2004-2007
2007-2010
2010-2013
2013-2016
2016-2019
2019-2022
2022-2025
2025-2028
2028-2031
2031-2034
2034-2037
2037-2040
2040-2043
2043-2046
2046-2049
2049-2052
2052-2055
2055-2058
2058-2061
2061-2064
2064-2067
2067-2070
2070-2073
2073-2076
2076-2079
2079-2082
2082-2085
2085-2088
2088-2091
2091-2094
2094-2097
2097-2098
2098-2099
2099-2100
2100-2101
2101-2102
2102-2103
2103-2104
2104-2105
2105-2106
2106-2107
2107-2108
2108-2109
2109-2110
2110-2111
2111-2112
2112-2113
2113-2114
2114-2115
2115-2116
2116-2117
2117-2118
2118-2119
2119-2120
2120-2121
2121-2122
2122-2123
2123-2124
2124-2125
2125-2126
2126-2127
2127-2128
2128-2129
2129-2130
2130-2131
2131-2132
2132-2133
2133-2134
2134-2135
2135-2136
2136-2137
2137-2138
2138-2139
2139-2140
2140-2141
2141-2142
2142-2143
2143-2144
2144-2145
2145-2146
2146-2147
2147-2148
2148-2149
2149-2150
2150-2151
2151-2152
2152-2153
2153-2154
2154-2155
2155-2156
2156-2157
2157-2158
2158-2159
2159-2160
2160-2161
2161-2162
2162-2163
2163-2164
2164-2165
2165-2166
2166-2167
2167-2168
2168-2169
2169-2170
2170-2171
2171-2172
2172-2173
2173-2174
2174-2175
2175-2176
2176-2177
2177-2178
2178-2179
2179-2180
2180-2181
2181-2182
2182-2183
2183-2184
2184-2185
2185-2186
2186-2187
2187-2188
2188-2189
2189-2190
2190-2191
2191-2192
2192-2193
2193-2194
2194-2195
2195-2196
2196-2197
2197-2198
2198-2199
2199-2199

www.english-test.net

Digitized by srujanika@gmail.com

A decorative horizontal border consisting of a repeating pattern of small circles and dots.

然后他开始向我解释，说他要给我讲一个故事，这个故事和我以前听过的所有故事都不一样。

၁၈၁၂ ခုနှစ်၊ မြန်မာနိုင်ငံ၊ ရန်ကုန်တောင်၊ အနောက် ၁၃၀၀။

A decorative horizontal border at the bottom of the page, consisting of a repeating pattern of small circles and dots.

၁၈၂၅ ခုနှစ်၊ မြန်မာနိုင်ငံ၊ ရန်ကုန်တောင်၊ အနောက် ၁၃၀၀။

PC-X FLUN (CFS)	TIME (HR) 16.03	CRF (INCHES) 1.16 1.16 6.17	MIN. 1.16 0.00 0.00	MAXIMUM AVI RACE 72-HR 305 21.55 793.	FLOW 24-hr-HR 305 21.55 793.
CURR ALIVE AREA	0.62	50.01			

HYDROGRAPH AT STATION 1, AT RATIO = C.50 A1

0.54	64	1105	218	15
0.54	69	1110	219	15
0.54	70	1115	219	15
0.54	71	1120	220	15
0.54	72	1125	221	15
0.54	73	1130	222	15
0.60	74	1135	223	15
0.60	75	1140	224	15
0.60	76	1145	225	15
0.61	77	1150	225	15
0.61	78	1155	225	15
0.61	79	1160	225	15
0.61	80	1165	225	15
0.61	81	1170	225	15
0.61	82	1175	225	15
0.61	83	1180	225	15
0.61	84	1185	225	15
0.61	85	1190	225	15
0.61	86	1195	225	15
0.61	87	1200	225	15
0.61	88	1205	225	15
0.61	89	1210	225	15
0.61	90	1215	225	15
0.61	91	1220	225	15
0.61	92	1225	225	15
0.61	93	1230	225	15
0.61	94	1235	225	15
0.61	95	1240	225	15
0.61	96	1245	225	15
0.61	97	1250	225	15
0.61	98	1255	225	15
0.61	99	1260	225	15
0.61	100	1265	225	15
0.61	101	1270	225	15
0.61	102	1275	225	15
0.61	103	1280	225	15
0.61	104	1285	225	15
0.61	105	1290	225	15
0.61	106	1295	225	15
0.61	107	1300	225	15
0.61	108	1305	225	15
0.61	109	1310	225	15
0.61	110	1315	225	15
0.61	111	1320	225	15
0.61	112	1325	225	15
0.61	113	1330	225	15
0.61	114	1335	225	15
0.61	115	1340	225	15
0.61	116	1345	225	15
0.61	117	1350	225	15
0.61	118	1355	225	15
0.61	119	1360	225	15
0.61	120	1365	225	15
0.61	121	1370	225	15
0.61	122	1375	225	15
0.61	123	1380	225	15
0.61	124	1385	225	15
0.61	125	1390	225	15
0.61	126	1395	225	15
0.61	127	1400	225	15
0.61	128	1405	225	15
0.61	129	1410	225	15
0.61	130	1415	225	15
0.61	131	1420	225	15
0.61	132	1425	225	15
0.61	133	1430	225	15
0.61	134	1435	225	15
0.61	135	1440	225	15
0.61	136	1445	225	15
0.61	137	1450	225	15
0.61	138	1455	225	15
0.61	139	1460	225	15
0.61	140	1465	225	15
0.61	141	1470	225	15
0.61	142	1475	225	15
0.61	143	1480	225	15
0.61	144	1485	225	15
0.61	145	1490	225	15
0.61	146	1495	225	15
0.61	147	1500	225	15
0.61	148	1505	225	15
0.61	149	1510	225	15
0.61	150	1515	225	15
0.61	151	1520	225	15
0.61	152	1525	225	15
0.61	153	1530	225	15
0.61	154	1535	225	15
0.61	155	1540	225	15
0.61	156	1545	225	15
0.61	157	1550	225	15
0.61	158	1555	225	15
0.61	159	1560	225	15
0.61	160	1565	225	15
0.61	161	1570	225	15
0.61	162	1575	225	15
0.61	163	1580	225	15
0.61	164	1585	225	15
0.61	165	1590	225	15
0.61	166	1595	225	15
0.61	167	1600	225	15
0.61	168	1605	225	15
0.61	169	1610	225	15
0.61	170	1615	225	15
0.61	171	1620	225	15
0.61	172	1625	225	15
0.61	173	1630	225	15
0.61	174	1635	225	15
0.61	175	1640	225	15
0.61	176	1645	225	15
0.61	177	1650	225	15
0.61	178	1655	225	15
0.61	179	1660	225	15
0.61	180	1665	225	15
0.61	181	1670	225	15
0.61	182	1675	225	15
0.61	183	1680	225	15
0.61	184	1685	225	15
0.61	185	1690	225	15
0.61	186	1695	225	15
0.61	187	1700	225	15
0.61	188	1705	225	15
0.61	189	1710	225	15
0.61	190	1715	225	15
0.61	191	1720	225	15
0.61	192	1725	225	15
0.61	193	1730	225	15
0.61	194	1735	225	15
0.61	195	1740	225	15
0.61	196	1745	225	15
0.61	197	1750	225	15
0.61	198	1755	225	15
0.61	199	1760	225	15
0.61	200	1765	225	15
0.61	201	1770	225	15
0.61	202	1775	225	15
0.61	203	1780	225	15
0.61	204	1785	225	15
0.61	205	1790	225	15
0.61	206	1795	225	15
0.61	207	1800	225	15
0.61	208	1805	225	15
0.61	209	1810	225	15
0.61	210	1815	225	15
0.61	211	1820	225	15
0.61	212	1825	225	15
0.61	213	1830	225	15
0.61	214	1835	225	15
0.61	215	1840	225	15
0.61	216	1845	225	15
0.61	217	1850	225	15
0.61	218	1855	225	15
0.61	219	1860	225	15
0.61	220	1865	225	15
0.61	221	1870	225	15
0.61	222	1875	225	15
0.61	223	1880	225	15
0.61	224	1885	225	15
0.61	225	1890	225	15
0.61	226	1895	225	15
0.61	227	1900	225	15
0.61	228	1905	225	15
0.61	229	1910	225	15
0.61	230	1915	225	15
0.61	231	1920	225	15
0.61	232	1925	225	15
0.61	233	1930	225	15
0.61	234	1935	225	15
0.61	235	1940	225	15
0.61	236	1945	225	15
0.61	237	1950	225	15
0.61	238	1955	225	15
0.61	239	1960	225	15
0.61	240	1965	225	15
0.61	241	1970	225	15
0.61	242	1975	225	15
0.61	243	1980	225	15
0.61	244	1985	225	15
0.61	245	1990	225	15
0.61	246	1995	225	15
0.61	247	2000	225	15
0.61	248	2005	225	15
0.61	249	2010	225	15
0.61	250	2015	225	15
0.61	251	2020	225	15
0.61	252	2025	225	15
0.61	253	2030	225	15
0.61	254	2035	225	15
0.61	255	2040	225	15
0.61	256	2045	225	15
0.61	257	2050	225	15
0.61	258	2055	225	15
0.61	259	2060	225	15
0.61	260	2065	225	15
0.61	261	2070	225	15
0.61	262	2075	225	15
0.61	263	2080	225	15
0.61	264	2085	225	15
0.61	265	2090	225	15
0.61	266	2095	225	15
0.61	267	2100	225	15
0.61	268	2105	225	15
0.61	269	2110	225	15
0.61	270	2115	225	15
0.61	271	2120	225	15
0.61	272	2125	225	15
0.61	273	2130	225	15
0.61	274	2135	225	15
0.61	275	2140	225	15
0.61	276	2145	225	15
0.61	277	2150	225	15
0.61	278	2155	225	15
0.61	279	2160	225	15
0.61	280	2165	225	15
0.61	281	2170	225	15
0.61	282	2175	225	15
0.61	283	2180	225	15
0.61	284	2185	225	15
0.61	285	2190	225	15
0.61	286	2195	225	15
0.61	287	2200	225	15
0.61	288	2205	225	15
0.61	289	2210	225	15
0.61	290	2215	225	15
0.61	291	2220	225	15
0.61	292	2225	225	15
0.61	293	2230	225	15
0.61	294	2235	225	15
0.61	295	2240	225	15
0.61	296	2245	225	15
0.61	297	2250	225	15
0.61	298	2255	225	15
0.61	299	2260	225	15
0.61	300	2265	225	15

TIME [HR]	MAXIMUM FLOW	AVERAGE FLOW	24-HR FLOWS
16.83	(CFS)	6-112	24.92-HR
	(INC-FT)	65.5	72-HR
	(AC-FT)	9,351	1.02
		393.	1.92
			10.77
			10.77
			10.77
			397.
			397.

卷之三

HYDRAULIC RATING DATA									
15 RS	STORAGE		NUMBER OF SUBFACIES		TYPE OF INITIAL CONDITION		INITIAL CLOUD COEFFICIENT		378.1
	1,000 CFS/AC	TYPE	STOCK	64.00	INITIAL	WORKING & ARO	COEFFICIENT		
16 SV	STORAGE	0.0	64.0	74.8	98.1	128.0	141.9	208.0	314.9
17 SE	ELEVATION	39.60	43.70	44.00	44.50	45.00	45.20	46.50	47.50
18 SO	DISCHARGE	0.	0.	4.	16.	33.	41.	686.	1718.
19 SE	ELEVATION	39.60	43.70	44.00	44.50	45.00	45.20	46.50	47.50
20 SS	SPILLWAY	CPRF SWR CCW EXPW	43.70 7.20 3.10 1.50	SPILLWAY CREST ELEVATION WIDTH COEFFICIENT EXPIANT OF HEAD					
21 ST	TOP OF TAW	TROP D. W. CRR EXP	45.20 66.10 0.0 1.50	ELEVATION AT TOP OF DAM DAW WIDTH WEIR COEFFICIENT EXPONENTIAL OF HEAD					

HYDROGRAPH AT STATION 1

PEAK CUTOFFLOW IS 849. AT TIME 17:02 HOURS

PEAK FLOW AND STAGE (END-OF-PERIOD) SUMMARY FOR MULTIPLE PLANT-NATIONAL ECONOMIC COMPUTATIONS
 FLIGHTS IN CLOUD FEET PER SECOND, AREA IN SQUARE MILES
 TIME TO PEAK IN HOURS

OPERATION	STATION	AREA	PLAN	RATIO APPLIED TO FLOWS		
				RATIO 1	RATIO 2	RATIO 3
HYDROGRAPH AT	A1	0.69	1	FLG	245	61.3
ROUTED TO	A2	0.69	1	FLCN	16.63	16.83
				TIME	20.08	19.33
				** PEAK STAGES IN FEET	** 45.03	46.58
				1 STAGE	19.33	17.92
				TIME	20.08	

SUMMARY OF DAY OVERTOPPING/AREACH ANALYSIS FOR STATION

A2

PLAN 1	ELEVATION STOPPAGE SATELLON	INITIAL VALUE	SPILLWAY CREST	TOP OF DAM		
		43.70 64. 0.	43.70 64. 0.	45:26 142: 41:		
RATIO OF RESERVOIR W.S. ELEV	MAXIMUM DEPTH OVER DAM	MAXIMUM STORAGE AC-FT	MAXIMUM OUTFLOW CFS	DURATION OVER TOP HOURS	DURATION OVER BOTTOM HOURS	TIME OF FAILURE HOURS
0.10	45.03	0.00	130.	34:	0.0	29.98
0.25	46.00	0.80	208.	190:	8.62	19.33
0.50	46.58	1.38	267.	249:	9.75	17.92

*** NORMAL END OF JOE ***

APPENDIX 5
REFERENCES
HELMETTA POND DAM

APPENDIX 5
REFERENCES

HELMETTA POND DAM

Chow, Ven-Te, Open Channel Hydraulics, McGraw Hill Book Company, New York, 1959.

King, H.W. and E.F. Brater, Handbook of Hydraulics, McGraw Hill Book Company, New York, Fifth Edition 1963.

Lewis, J.V. and H.B. Kummel (1910-1912) Geologic Map of New Jersey, revised by H.B. Kummel, 1931, and by M.E. Johnson, 1950. New Jersey Department of Conservation of Economic Development Atlas.

Schway, G.O., R.K. Frevert, T.W. Edmister, and K.K. Barnes, Soil and Water Conservation Engineering, The Ferguson Foundation Agricultural Engineering Series, John Wiley and Sons, Inc., New York, 1966, 683 pp.

U.S. Army Corps of Engineers, Hydrologic Engineering Center, Flood Hydrograph Package (HEC-1) Users Manual Preliminary, Davis, California, March 1981.

U.S. Department of Agriculture, Soil Conservation Service, Urban Hydrology for Small Watersheds, Technical Release No. 55, Washington, 1975.

U.S. Department of Commerce, Weather Bureau, "Seasonal Variation of the Probable Maximum Precipitation East of the 105th Meridian for Areas from 10 to 1000 Square Miles and Durations of 6, 12, 24, and 48 Hours", Hydrometeorological Report No. 33, Washington, 1977, 816 pp.

United States Department of Interior, Bureau of Reclamation, Design of Small Dams, U.S. Government Printing Office, Washington, 1977, 816 pp..

U.S. Department of Interior, Geological Survey, 7.5-Minute Series (topographic) maps, scale 1:24000, Contour Interval 10 feet: New Brunswick, New Jersey, (1954), Photorevised 1970.

Viessman, Warren, Jr., J.W. Knapp, G.L. Lewis, T.E. Harbaugh, Introduction to Hydrology, Harper and Row, Publishers, New York, Second Edition 1977, 704 pp.

