23IT3304: ADVANCED DATA STRUCTURES AND ALGORITHMS

Course		Programme Core							Credits:						3	
Category:																
Course Type:		Theory							Lecture-Tutorial-Practice:						2-1-0	
Prerequisites:		Data Structures							Cont	inuo	us Ev	valua	tion:		30	
								Semester end Evaluation:					70			
									Total Marks:						100	
Course	Upon	successful completion of the course, the student will be able to:														
Outcomes	CO1	Design an Algorithm and estimate the asymptotic performance of algorithms														
	CO2	Synthesize design techniques and choose appropriate technique to solve														
		problems.														
	CO3	Analyze algorithm design techniques to provide optimal solution for given														
		problem.														
	CO4	Understand various operations on advanced tree data structures and														
		asymptotic performance of algorithms.														
Contribut		PO	PO	PO	P	P	P	P	P	P	P	P	P	PS	O	PSO2
ion of		1	2	3	О	О	О	О	О	О	О	О	О	1		
Course		_		_	4	5	6	7	8	9	10	11	12			
Outcomes	CO1	2	1	3										2		1
towards	CO2	1	2	3	2									1		1
achievem ent of	CO3	1	2	3	2									1		3
ent of Program	CO4		3	2										3		2
Outcomes																
(1-Low,																
2-																
Medium,																
3- High)																
Course	UNIT															
Content	Introduction: What is an algorithm, Algorithm Specification: Pseudo code															
	Conventions, Performance Analysis: Space Complexity, Time Complexity,															
	Asymptotic Notation (Big —oh, Omega, Theta, Little —oh).															
	Divide and Conquer: General method, Binary search, Finding the Maximum and Minimum, Merge sort, Quick sort, Strassen's matrix multiplication.															
	UNIT II:															
	Greedy method: General method, knapsack problem, Job Sequencing with deadlines,															
	Minimum cost spanning trees: Prim's and Kruskal's algorithms, Single source shortest path problem.															
	paur problem.															
	Dynamic Programming: General method, All pairs shortest Path problem, Single-source shortest paths: general weights, String Editing, 0/1 knapsack problem, Travelling salesperson problem.															

	UNIT III: Backtracking: General method, 8-queens problem, sum of subsets, graph coloring, Hamiltonian cycles.
	Branch and Bound: The General method, 0/1knapsack problem, Travelling Salesperson Problem
	UNIT IV: Trees: AVL trees: Creation, insertion and deletion operations and Applications. B-Trees: Creation, insertion and deletion operations and Applications. Splay trees: A simple idea, splaying, Top-Down splay trees. Red-Black trees: Definition and Properties, Searching a Red-Black Tree, Top-Down Insertion, Bottom-Up Insertion, Deletion operations. Heap Trees(Priority queues): Min and Max Heaps, Operations and Applications
	NP-Hard and NP-Complete problems: Basic concepts, non-deterministic algorithms, the classes NP Hard and NP Complete.
Text books and Reference	Text Book(s): [1]. Ellis Horowitz, Sartaj Sahni, Dinesh Mehta, "FUNDAMENTALS OF DATA STRUCTURES in C++", 2 nd edition, University Press.
books	[2] Ellis. Horowitz, Sartaj Sahani, Sanguthevar Rajasekharan, "FUNDAMENTALS OF COMPUTER ALGORITHMS", 2 nd edition, University Press.
	Reference Books: [1]. Thomas H Cormen, Charles E Leiserson, Ronald L Rivest and Clifford Stein, "Introduction to Algorithms", PHI learning Pvt.Ltd., New Delhi, 2010. [2]. Lee, Kent D., Hubbard, Steve, "Data Structures and Algorithms with Python", 1st edition, Springer International Publishing, 2015.
E-	[1] SudarshanIyengar, AssistantProfessor, CSE department, IIT Ropar,
resources and other	Programming, Data Structures and Algorithms [NPTEL], (26, May, 2021)
digital material	Available: https://nptel.ac.in/noc/courses/noc18/SEM1/noc18-cs25/ [2] Erik Demaine, professor of Computer Science at the Massachusetts Institute of Technology, Advanced Data Structures [MIT- Open Course Ware], (26, May, 2021) Available: http://ocw.mit.edu/
	[3] https://www.tutorialpoint.com/advanceddata_structures/index.asp [4] http://peterindia.net/Algorithms.html