Reticular Action Model (RAM) Notation

Ivan Jacob Agaloos Pesigan

2021-01-08

Contents

1	Des	cription	5		
2	Ret	icular Action Model (RAM) Matrix Notation	7		
3	Simple Regression				
	3.1	Specification 1 - Includes Error Term as a Latent Variable	9		
	3.2	Specification 2 - Observed Variables	14		

4 CONTENTS

Chapter 1

Description

This is a collection of my personal notes on the Reticular Action Model (RAM) notation that accompanies the ram package. You can install the released version of ram from GitHub with:

remotes::install_github("jeksterslab/ram")

See GitHub Pages for the html deployment.

Chapter 2

Reticular Action Model (RAM) Matrix Notation

The model-implied mean vector $\mu(\theta)$ as a function of Reticular Action Model (RAM) matrices is given by

$$\mu\left(\theta\right) = \mathbf{F} \left(\mathbf{I} - \mathbf{A}\right)^{-1} \mathbf{m}. \tag{2.1}$$

The ram::mutheta() function can be used to derive the model-implied mean vector

The model-implied variance-covariance matrix $\Sigma(\theta)$ as a function of Reticular Action Model (RAM) matrices is given by

$$\Sigma(\theta) = \mathbf{F} \left(\mathbf{I} - \mathbf{A} \right)^{-1} \Omega \left[\left(\mathbf{I} - \mathbf{A} \right)^{-1} \right]^{\mathsf{T}} \mathbf{F}^{\mathsf{T}}. \tag{2.2}$$

The ram::Sigmatheta() function can be used to derive the model-implied variance-covariance matrix.

$8 CHAPTER\ 2.\ RETICULAR\ ACTION\ MODEL\ (RAM)\ MATRIX\ NOTATION$

Chapter 3

Simple Regression

Let v_1 , v_2 , and u be random variables whose associations are given by the regression equation

$$\begin{split} v_1 &= m_1 + a_{1,2} v_2 + u \\ &= -3.951208 + 1.269259 \cdot v_2 + u. \end{split} \tag{3.1}$$

 v_1 and v_2 are observed variables and u is a stochastic error term which is normally distributed around zero with constant variance across values of v_2

$$u \sim \mathcal{N}\left(m_3 = 0, \omega_{3,3} = 47.659854\right).$$
 (3.2)

 v_2 has a mean of $m_2=13.038328$ and a variance of $\omega_{2,2}=7.151261.$

Below are two ways of specifying this model. The first specification includes the error term u as a latent variable. The second specification only includes the observed variables.

3.1 Specification 1 - Includes Error Term as a Latent Variable

3.1.1 Matrix Notation

$$\text{variables} = \begin{bmatrix} v_1 \\ v_2 \\ u \end{bmatrix} \tag{3.3}$$

$$\mathbf{A} = \begin{bmatrix} 0 & a_{1,2} & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1.269259 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
 (3.4)

$$\Omega = \begin{bmatrix} 0 & 0 & 0 \\ 0 & \omega_{2,2} & 0 \\ 0 & 0 & \omega_{3,3} \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 7.151261 & 0 \\ 0 & 0 & 47.659854 \end{bmatrix}$$
(3.5)

$$\mathbf{m} = \begin{bmatrix} m_1 \\ m_2 \\ m_3 \end{bmatrix} = \begin{bmatrix} -3.951208 \\ 13.038328 \\ 0 \end{bmatrix}$$
 (3.6)

To filter the observed variables, use the following filter matrix

$$\mathbf{F} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}. \tag{3.7}$$

To include all variables, use the following filter matrix

$$\mathbf{F} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} . \tag{3.8}$$

3.1.2 Expectations

$$\mathbb{E}\left(u\right) = m_3 = 0\tag{3.9}$$

$$\mathbb{E}\left(v_{2}\right)=m_{2}=13.038328\tag{3.10}$$

$$\begin{split} \mathbb{E}\left(v_{1}\right) &= \mathbb{E}\left(m_{1} + a_{1,2}v_{2} + u\right) \\ &= \mathbb{E}\left(m_{1}\right) + \mathbb{E}\left(a_{1,2}v_{2}\right) + \mathbb{E}\left(u\right) \\ &= m_{1} + a_{1,2}\mathbb{E}\left(v_{2}\right) + 0 \\ &= m_{1} + a_{1,2}m_{2} \\ &= -3.951208 + 1.269259 \times 13.038328 \\ &= 12.5978072 \end{split} \tag{3.11}$$

3.1. SPECIFICATION 1 - INCLUDES ERROR TERM AS A LATENT VARIABLE11

Figure 3.1: The Simple Linear Regression Model (with u)

$$\mathbb{E}\left(\begin{bmatrix} v_1 \\ v_2 \\ u \end{bmatrix}\right) = \begin{bmatrix} m_1 + a_{1,2} m_2 \\ m_2 \\ m_3 \end{bmatrix} \\
= \begin{bmatrix} 12.5978072 \\ 13.038328 \\ 0 \end{bmatrix}$$
(3.12)

$$\begin{aligned} \operatorname{Cov}\left(u,u\right) &= \operatorname{Var}\left(u\right) \\ &= \omega_{3,3} \\ &= 47.659854 \end{aligned} \tag{3.13}$$

$$\begin{aligned} &\operatorname{Cov}\left(v_{1},u\right) = \operatorname{Cov}\left(a_{1,2}v_{2} + u, u\right) \\ &= \operatorname{Cov}\left(a_{1,2}v_{2}, u\right) + \operatorname{Cov}\left(u, u\right) \\ &= a_{1,2}^{2}\operatorname{Cov}\left(v_{2}, u\right) + \operatorname{Var}\left(u\right) \\ &= a_{1,2}^{2} \cdot 0 + \omega_{3,3} \\ &= 0 + \omega_{3,3} \\ &= \omega_{3,3} \\ &= 47.659854 \end{aligned} \tag{3.14}$$

$$Cov\left(v_{2}, u\right) = 0\tag{3.15}$$

$$\begin{split} &\operatorname{Cov}\left(v_{1},v_{1}\right) = \operatorname{Cov}\left(a_{1,2}v_{2} + u, a_{1,2}v_{2} + u\right) \\ &= \operatorname{Cov}\left(a_{1,2}v_{2}, a_{1,2}v_{2}\right) + \operatorname{Cov}\left(a_{1,2}v_{2}, u\right) + \operatorname{Cov}\left(a_{1,2}v_{2}, u\right) + \operatorname{Cov}\left(u, u\right) \\ &= a_{1,2}^{2}\operatorname{Cov}\left(v_{2}, v_{2}\right) + a_{1,2}\operatorname{Cov}\left(v_{2}, u\right) + a_{1,2}\operatorname{Cov}\left(v_{2}, u\right) + \operatorname{Var}\left(u\right) \\ &= a_{1,2}^{2}\operatorname{Var}\left(v_{2}\right) + a_{1,2} \cdot 0 + a_{1,2} \cdot 0 + \omega_{3,3} \\ &= a_{1,2}^{2}\operatorname{Var}\left(v_{2}\right) + 0 + 0 + \omega_{3,3} \\ &= a_{1,2}^{2}\omega_{2,2} + \omega_{3,3} \\ &= 1.269259^{2} \times 7.151261 + 47.659854 \\ &= 59.1806671 \end{split} \tag{3.16}$$

$$\begin{split} &\operatorname{Cov}\left(v_{2},v_{1}\right) = \operatorname{Cov}\left(v_{2},a_{1,2}v_{2} + u\right) \\ &= \operatorname{Cov}\left(v_{2},a_{1,2}v_{2}\right) + \operatorname{Cov}\left(v_{2},u\right) \\ &= a_{1,2}\operatorname{Cov}\left(v_{2},v_{2}\right) + 0 \\ &= a_{1,2}\operatorname{Var}\left(v_{2}\right) \\ &= a_{1,2}\omega_{2,2} \\ &= 1.269259 \times 7.151261 \\ &= 9.0768024 \end{split} \tag{3.17}$$

$$\begin{split} \operatorname{Cov}\left(v_{2},v_{2}\right) &= \operatorname{Var}\left(v_{2}\right) \\ &= \omega_{2,2} \\ &= 7.151261 \end{split} \tag{3.18}$$

3.1. SPECIFICATION 1 - INCLUDES ERROR TERM AS A LATENT VARIABLE13

Table 3.1: $\mu(\theta)$

	μ
$\overline{v_1}$	12.59781
v_2	13.03833
\overline{u}	0.00000

$$\operatorname{Cov}\left(\begin{bmatrix} v_1 \\ v_2 \\ u \end{bmatrix}\right) = \begin{bmatrix} a_{1,2}^2 \omega_{2,2} + \omega_{3,3} & a_{1,2} \omega_{2,2} & \omega_{3,3} \\ a_{1,2} \omega_{2,2} & \omega_{2,2} & 0 \\ \omega_{3,3} & 0 & \omega_{3,3} \end{bmatrix} \\
= \begin{bmatrix} 59.1806671 & 9.0768024 & 47.659854 \\ 9.0768024 & 7.151261 & 0 \\ 47.659854 & 0 & 47.659854 \end{bmatrix}$$
(3.19)

3.1.2.1 Using the ram() Package

```
knitr::kable(
  ram::mutheta(
    m,
    A = A,
    filter = filter
),
  col.names = "$\\boldsymbol{\\mu}$",
  caption = "$\\boldsymbol{\\mu} \\left( \\boldsymbol{\\theta} \\right)$",
  escape = FALSE
)
```

```
knitr::kable(
  ram::Sigmatheta(
    A = A,
    Omega = Omega,
    filter = filter
),
  caption = "$\\boldsymbol{\\Sigma} \\left( \\boldsymbol{\\theta} \\right)$",
  escape = FALSE
)
```

Table 3.2: $\Sigma(\theta)$

	v_1	v_2	u
v_1	59.180667	9.076802	47.65985
v_2	9.076802	7.151261	0.00000
\overline{u}	47.659854	0.000000	47.65985

3.2 Specification 2 - Observed Variables

3.2.1 Matrix Notation

$$variables = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$$
 (3.20)

$$\mathbf{A} = \begin{bmatrix} 0 & a_{1,2} \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1.269259 \\ 0 & 0 \end{bmatrix}$$
 (3.21)

$$\Omega = \begin{bmatrix} \omega_{1,1} & 0 \\ 0 & \omega_{2,2} \end{bmatrix} = \begin{bmatrix} 47.659854 & 0 \\ 0 & 7.151261 \end{bmatrix}$$
 (3.22)

$$\mathbf{m} = \begin{bmatrix} m_1 \\ m_2 \end{bmatrix} = \begin{bmatrix} -3.951208 \\ 13.038328 \end{bmatrix} \tag{3.23}$$

$$\mathbf{F} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \tag{3.24}$$

Figure 3.2: The Simple Linear Regression Model (without u)

Table 3.3: $\mu(\theta)$

	μ
$\overline{v_1}$	12.59781
v_2	13.03833

Table 3.4: $\Sigma(\theta)$

	v_1	v_2
v_1	59.180667	9.076802
v_2	9.076802	7.151261

3.2.1.1 Using the ram() Package

```
knitr::kable(
  ram::mutheta(
    m,
    A = A,
    filter = filter
),
  col.names = "$\\boldsymbol{\\mu}$",
  caption = "$\\boldsymbol{\\mu} \\left( \\boldsymbol{\\theta} \\right)$",
  escape = FALSE
)
```

```
knitr::kable(
  ram::Sigmatheta(
    A = A,
    Omega = Omega,
    filter = filter
),
  caption = "$\\boldsymbol{\\Sigma} \\left( \\boldsymbol{\\theta} \\right)$",
  escape = FALSE
)
```