Huarongdao

Huarongdao is a well-known game in China. The purpose of this game is to move the Cao Cao block out of the board.

Acme is interested in this game, and he invents a similar game. There is a N*M board. Some blocks in this board are movable, while some are fixed. There is only one empty position. In one step, you can move a block to the empty position, and it will take you one second. The purpose of this game is to move the Cao Cao block to a given position. Acme wants to finish the game as fast as possible.

But he finds it hard, so he cheats sometimes. When he cheats, he spends K seconds to pick a block and put it in an empty position. However, he is not allowed to pick the Cao Cao block out of the board .

Note

- 1. Immovable blocks cannot be moved while cheating.
- 2. A block can be moved only in the directions UP, DOWN, LEFT or RIGHT.

Input Format

The first line contains four integers N, M, K, Q separated by a single space. N lines follow. Each line contains M integers 0 or 1 separated by a single space. If the j_{th} integer is 1, then the block in i_{th} row and j_{th} column is movable. If the j_{th} integer is 0 then the block in i_{th} row and j_{th} column is fixed. Then Q lines follows, each line contains six integers EX_i , EY_i , SX_i , SY_i , TX_i , TY_i separated by a single space. The i_{th} query is the Cao Cao block is in row SX_i column SY_i , the exit is in TX_i , TY_i , and the empty position is in row EX_i column EY_i . It is guaranteed that the blocks in these positions are movable. Find the minimum seconds Acme needs to finish the game. If it is impossible to finish the game, you should answer -1.

Constraints

```
\begin{split} &\mathsf{N},\mathsf{M} \leq 200 \\ &1 \leq \mathsf{Q} \leq 250 \\ &10 \leq \mathsf{K} \leq 15 \\ &1 \leq \mathsf{EX}_{\mathsf{i}},\,\mathsf{SX}_{\mathsf{i}},\,\mathsf{TX}_{\mathsf{i}} \leq \mathsf{N} \\ &1 \leq \mathsf{EY}_{\mathsf{i}},\,\mathsf{SY}_{\mathsf{i}},\mathsf{TY}_{\mathsf{j}} \leq \mathsf{M} \end{split}
```

Output Format

You should output Q lines, i-th line contains an integer which is the answer to i-th query.

Sample Input

Sample Output

```
20
```

Explanation

```
Move the block in (1, 4) to (1, 5);
Move the block in (1, 3) to (1, 4);
```

```
Move the block in (1, 2) to (1, 3);
Move the block in (2, 2) to (1, 2);
Move the block in (3, 2) to (2, 2);
Move the block in (4, 2) to (3, 2);
Move the block in (4, 3) to (4, 2);
Move the block in (4, 1) to (4, 3) by cheating;
Move the block in (4, 2) to (4, 1).
So, 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 = 20.
```