Lemmes de Borel-Cantelli

Limite supérieure, limite inférieure d'événements

 $\limsup_{n\to\infty}A_n=\bigcup_{n\geq 1}\bigcap_{k\geq n}A_k=\text{« l'ensemble des }\omega\text{ qui appartiennent à une infinité de }A_n\text{ »}$ $=\text{« presque sûrement, }A_n\text{ infiniment souvent »}$

 $\overline{\limsup_{n\to\infty}A_n}=\bigcap_{n\geq 1}\bigcup_{k\geq n}\overline{A_k}=\liminf_{n\to\infty}\overline{A_n}=\text{``ensemble des ω qui n'appartiennent qu'à un nombre fini de A_n ">= " presque sûrement, A_n seulement un nombre fini de fois ">= " presque jamais, A_n infiniment souvent" ">= " presque jamais, A_n infinime$

$$\overline{\liminf_{n\to\infty}A_n}=\bigcup_{n\geq 1}\bigcap_{k\geq n}\overline{A_k}=\text{ ``l'ensemble des ω qui sont hors d'au moins une sous-suite de A_n ``}\\ =\text{ ``where presque jamais, tous les A_n apor $$\Rightarrow$ $\supseteq\overline{\limsup_{n\to\infty}A_n}$}$$

Premier lemme de Borel-Cantelli

Si $\sum P(A_n) < \infty$, alors presque sûrement, A_n un nombre fini de fois (et presque jamais, tous les A_n à partir d'un certain rang).

Second lemme de Borel-Cantelli (« Cantelli-Borel »)

Si A_n sont mutuellement indépendants et $\sum P(A_n) = \infty$, alors presque sûrement, A_n infiniment souvent (et c'est tout).

<u>Rappels</u>

$$\begin{split} P(\liminf_{n\to\infty}A_n) & \leq \liminf_{n\to\infty}P(A_n) \; (\textit{Th\'eor\`eme de L\'eon}) \\ & \limsup_{n\to\infty}P(A_n) \leq P\left(\limsup_{n\to\infty}A_n\right) \end{split}$$

Technique classique

Montrons que liminf $X_n \le 1$ presque sûrement.

Il faut souvent montrer plutôt $\liminf X_n \le 1 - \epsilon$ p. s. pour tout ϵ et l'on conclut par intersection dénombrable de presque certains

Autrement dit, montrer que $P(\liminf X_n \le 1 - \epsilon)$.

On étudie $A_n = \{X_n > 1 - \epsilon\}$. Si $P(A_n)$ est le t. g. d'une série CV, par B.-C.,

« presque sûrement, A_n seulement un nombre fini de fois ».

Donc àper $X_n \le 1 - \epsilon$ presque sûrement d'où le résultat par croissante de la limite inférieure.