

Mark Scheme (Results)

January 2016

Pearson Edexcel International A Level in Further Pure Mathematics 1 (WFM01/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2016
Publications Code IA043231
All the material in this publication is copyright
© Pearson Education Ltd 2016

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL IAL MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- d... or dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper or ag- answer given
- L or d... The second mark is dependent on gaining the first mark

- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

General Principles for Further Pure Mathematics Marking

(But note that specific mark schemes may sometimes override these general principles).

Method mark for solving 3 term quadratic:

1. Factorisation

$$(x^2 + bx + c) = (x + p)(x + q)$$
, where $|pq| = |c|$, leading to $x = ...$

$$(ax^2 + bx + c) = (mx + p)(nx + q)$$
, where $|pq| = |c|$ and $|mn| = |a|$, leading to $x = ...$

2. Formula

Attempt to use the correct formula (with values for a, b and c).

3. Completing the square

Solving
$$x^2 + bx + c = 0$$
:
$$\left(x \pm \frac{b}{2} \right)^2 \pm q \pm c = 0, \quad q \neq 0$$
, leading to $x = \dots$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. $(x^n \to x^{n-1})$

2. Integration

Power of at least one term increased by 1. $(x^n \to x^{n+1})$

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:

<u>Method mark</u> for quoting a correct formula and attempting to use it, even if there are small errors in the substitution of values.

Where the formula is <u>not</u> quoted, the method mark can be gained by implication from <u>correct</u> working with values, but may be lost if there is any mistake in the working.

Exact answers

Examiners' reports have emphasised that where, for example, an exact answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

January 2016 WFM01 Further Pure Mathematics F1 Mark Scheme

Question Number		Scheme	_		Notes	Marks	
1. (a)	(3+2i)	(1-i) = 3-3i+2i+2		At least 3 correct terms		M1	
		= 5 - i		(Correct	cao t answer only scores both marks)	A1	(2)
(b)		$w^* = 1 + i$			Understanding that $w^* = 1 + i$	B1	
		$\left\{ \frac{1}{w^*} \right\} = \int \frac{1+i}{1-i} \times \frac{1-i}{1-i}$		Multiplies top and bottom by the conjugate of the denominator	M1		
	$\left\{=\frac{3-1}{2}\right\}$	$\frac{3i+2i+2}{1+1} = \frac{5}{2} - \frac{1}{2}i$			$\frac{5}{2} - \frac{1}{2}i$ or $2.5 - 0.5i$	A1	
			0.1.		1 D 4 4	3.61	(3)
(c)	$\left\{ \left 3+2i\right \right\}$	$ 3+2i+k = \sqrt{53} \Rightarrow \left(3+k\right)^2 + 4 = 53$ Substitutes for		z and uses Pythagoras correctly. Correct equation in any form	M1;		
	($3+k)^{2}+4=53 \Rightarrow (3+k)^{2}=49 \Rightarrow k$	· _		Correct equation in any form	711	
	(-	$(3+k) + 4 = 33 \Rightarrow (3+k) = 49 \Rightarrow k$; =		1 1		
		or			dependent on the previous M mark	dM1	
	$(\hat{\cdot}$	$(3+k)^2 + 4 = 53 \Rightarrow k^2 + 6k - 40 = 0$			Attempt to solve for k		
		$\Rightarrow (k-4)(k+10) = 0$	$\Rightarrow k =$				
		$\{k=\}\ 4,\ -10$			Both $\{k = \}4, -10$	A1	
							(4)
			<u> </u>	4 37 4			9
			Questio				
1. (b)	Note	Alternative acceptable method:	$\left(\frac{z}{w^*}\right)$	$\left \frac{w}{w}\right = \frac{zv}{ w }$	$\left \frac{w}{2}\right ^2 = \frac{5-1}{2} = \frac{5}{2} - \frac{1}{2}i$		
(b)	Note	Give A0 for writing down $\frac{5-i}{2}$ w					
	Note	Give B0M0A0 for writing down	Give B0M0A0 for writing down $\frac{5}{2} - \frac{1}{2}i$ from no working in part (b).				
	Note	Give B0M1A0 for $\frac{3+2i}{1-i} \times \frac{1+i}{1+i}$					
	Note	Simplifying a correct $\frac{5}{2} - \frac{1}{2}i$ in J					
(c)	Note	Give final A0 if a candidate rejects	s one of	k = 4 or	k = -10		
(b)	ALT	$\frac{3+2i}{1+i} = a + bi$ B1 ;					
		$\Rightarrow 3 + 2i = (a + bi)(1 + i) \Rightarrow 3 = a$	<i>−b</i> , 2 =	$a+b \Rightarrow$	$a =, b =$ for M1 and $\frac{5}{2} - \frac{1}{2}$	i for A1	

Question Number		Scheme		Notes	Marks	
2.	$f(x) = x^2 - \frac{3}{\sqrt{x}} - \frac{4}{3x^2}$					
(a)	f(1.6) = -0.3325 f(1.7) = 0.1277			Attempts to evaluate $f(1.6)$ and $f(1.7)$ and $f(1.6) = awrt -0.3$ or $f(1.7) = awrt -0.3$	either M1	
	•	ange (positive, negative) (ar uous) therefore (a root) α is x = 1.6 and $x = 1.7$	` '	Both $f(1.6) = awrt -0$. f(1.7) = awrt 0.1, sign chang conclusion	e and A1 cso	
						(2)
(b)	f'(<i>x</i>	$ = 2x + \frac{3}{2}x^{-\frac{3}{2}} + \frac{8}{3}x^{-3} $	$x^2 \rightarrow \pm A$	At least one of a $x \text{ or } -\frac{3}{\sqrt{x}} \to \pm Bx^{-\frac{3}{2}} \text{ or } -\frac{4}{3x^2} \to \pm Bx^{-\frac{3}{2}}$	Cx^{-3} M1	
	where A, B and C			where A, B and C are non-zero cons		
	At least 2 differentiated terms are correct Correct differentiation					
	$\left\{\alpha \simeq 1.6 - \frac{f(1.6)}{f'(1.6)}\right\} \Rightarrow \alpha \simeq 1.6 - \frac{-0.332541}{4.592200}$ dependent on the previous M mark Valid attempt at Newton-Rapshon using their values of f(1.6) and f'(1.6)					
	$\left\{\alpha = 1.672414 \Rightarrow \right\} \alpha = 1.672$			dependent on all 4 previous n 1.672 on their first iter (Ignore any subsequent applica	ration A1 cso	cao
	Correct derivative followed by correct answer scores full marks in (b) Correct answer with no working scores no marks in (b)					
	Correct answer with <u>no</u> working scores no marks in (b)					
						(5)
			Quest	ion 2 Notes	<u>.</u>	
2. (a)	Candidate needs to state both $f(1.6) = \text{awrt } -0.3$ and $f(1.7) = \text{awrt } 0.1$ along with a reason and conclusion. Reference to change of sign or $f(1.6) \times f(1.7) < 0$ or a diagram or < 0 and > 0 or one positive, one negative are sufficient reasons. There must be a (minimal, not incorrect) conclusion, eg. root is in between 1.6 and 1.7, hence root is in interval, QED and a square are all acceptable. Ignore the presence or absence of any reference to continuity. A minimal acceptable reason and conclusion is "change of sign, hence root".					or or
(b)	Note Incorrect differentiation followed by their estimate of α with no evidence of apply the NR formula is final dM0A0.					
	Note			r that we must see evidence of both f	`	·
		being used in the Newton-	Raphson pro	ress. So that just $1.6 - \frac{f(1.6)}{f'(1.6)}$ with an	incorrect answe	er
		and no other evidence sco	res M0.	. ,		

Question Number		Scheme	Notes		Marks			
3.		$x^2 - 2x + 3$						
(a) (i)		$\alpha + \beta = 2$, $\alpha\beta = 3$	Both $\alpha + \beta = 2$, $\alpha\beta = 3$			B1		
(ii)	α^2	$+\beta^2 = (\alpha + \beta)^2 - 2\alpha\beta = \dots$	U		f a correct identity for $\alpha^2 + \beta^2$ (May be implied by their work)	M1		
		$=2^2-6=-2$ *			2 from a correct solution only	A1 *		
(iii)		$(\alpha + \beta)^{3} - 3\alpha\beta(\alpha + \beta) = \dots$ $(\alpha + \beta)(\alpha^{2} + \beta^{2} - \alpha\beta) = \dots$ $(3 - 3(3)(2) = -10$	U		f a correct identity for $\alpha^3 + \beta^3$ (May be implied by their work)	M1		
	= 8-3(3)(2) = -10 or $= 2(-2-3) = -10$		A1					
	01 2	(2 0, 10				(5)		
(b)(i)	$\left(\alpha^2 + \beta^2\right)^2$	$-2(\alpha\beta)^{2} = \alpha^{4} + 2(\alpha\beta)^{2} + \beta^{4} - 2(\alpha\beta)^{2}$	$=\alpha^4+\mu$	β^4	Correct algebraic proof	B1 *		
(ii)	$Sum = \alpha^3$	$+\beta^3 - (\alpha + \beta) = -10 - 2 = -12$	Correct working without using explicit roots leading to a correct sum.			B1		
	Product =	$(\alpha^3 - \beta)(\beta^3 - \alpha) = (\alpha\beta)^3 - (\alpha^4 + \beta^4) +$	$(-\alpha) = (\alpha\beta)^3 - (\alpha^4 + \beta^4) + \alpha\beta$ Attempts to expand giving at least one term		M1			
		$= (\alpha \beta)^3 - ((\alpha^2 + \beta^2)^2 - 2(\alpha \beta)^2) +$	$\alpha\beta$					
		=27-(4-18)+3=44	Correct product		A1			
	$\left\{x^2 - \text{sum}\right\}$	$x + \text{product} = 0 \Longrightarrow \begin{cases} x^2 + 12x + 44 = 0 \end{cases}$	O Applying $x^2 - (\operatorname{sum})x + \operatorname{product}$ $x^2 + 12x + 44 = 0$		M1 A1			
	x +12x+44 = 0					(6)		
		0	a4i am 2 l	To4o		11		
(a) (i)	1 st A1	$\alpha + \beta = -2, \alpha\beta = 3 \Rightarrow \alpha^2 + \beta^2 = -2$	stion 3 1					
(b) (ii)	1 st A1		$\alpha + \beta = -2$, $\alpha\beta = 3 \Rightarrow (\alpha\beta)^3 - (\alpha^4 + \beta^4) + \alpha\beta = 44$ is first M1A1					
(a)	Note	Applying $1+\sqrt{2}i$, $1-\sqrt{2}i$ explicitly in part (a) will score B0M0A0M0A0						
(b)	Note	Applying $1+\sqrt{2}i$, $1-\sqrt{2}i$ explicitly in part (b) will score a maximum of B1B0M0A0M1A0						
(a)	Note Finding $\alpha + \beta = 2$, $\alpha\beta = 3$ by writing down or applying $1 + \sqrt{2}i$, $1 - \sqrt{2}i$ but then writing							
		$\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta = 2^2 - 6 = -$	2 and a	$e^3 + \mu$	$\beta^3 = (\alpha + \beta)^3 - 3\alpha\beta(\alpha + \beta) = 8 - \beta$	3(3)(2) = -10		
	scores B0M1A0M1A0 in part (a). Such candidates will be able to score all marks they use the method as detailed on the scheme in part (b).							
(b)(ii)	Note	A correct method leading to a candida				ng a final		
		answer of $x^2 + 12x + 44 = 0$ is final N	M1A0					

Question Number		Scheme		Notes	Marks	
4. (a)	Rotation			Rotation	B1	
	225 degrees (anticlockwise)		225 degrees or $\frac{5\pi}{4}$ (anticlockwise) or 135 degrees clockwise	B1 o.e.		
	about (0, 0))		mark is dependent on at least one of the previous B marks being awarded. About (0, 0) or about O or about the origin	dB1	
	Note: Give	e 2 nd B0 for 225 degrees clock	wise			(3)
(b)		$\{n=\}$ 8		8	B1 cao	(4)
(0)						(1)
(c) Way 1	$\mathbf{A}^{-1} =$	$ \begin{pmatrix} -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix} \text{ or } \begin{pmatrix} -\frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \end{pmatrix} $	$\begin{pmatrix} -\frac{\sqrt{2}}{2} \\ -\frac{\sqrt{2}}{2} \end{pmatrix}$	Correct matrix	B1	
	${f B}={f C}{f A}$	$ \begin{vmatrix} -1 \\ -3 \end{vmatrix} = \begin{pmatrix} 2 & 4 \\ -3 & -5 \end{pmatrix} \begin{pmatrix} -\frac{1}{\sqrt{2}} & -\frac{1}$	$\begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix} = \dots$	Attempts CA ⁻¹ and finds at least one element of the matrix B	M1	
		$= \begin{pmatrix} \sqrt{2} & -3\sqrt{2} \\ \sqrt{2} & 4\sqrt{2} \end{pmatrix}$	d	lependent on the previous B1M1 marks At least 2 correct elements	A1	
	$=$ $\begin{pmatrix} -\sqrt{2} & 4\sqrt{2} \end{pmatrix}$			All elements are correct	A1	
				7 M elements are correct	711	(4)
(c) Way 2	${\mathbf B}{\mathbf A} =$	$ \begin{vmatrix} a & b \\ c & d \end{vmatrix} \begin{pmatrix} -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix} = \begin{pmatrix} -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix} $	2 4 -3 -5	Correct statement using 2×2 matrices. All 3 matrices must contain four elements. (Can be implied). (Allow one slip in copying down C)	B1	(*)
	-	$\frac{a}{\sqrt{2}} - \frac{b}{\sqrt{2}} = 2, \frac{a}{\sqrt{2}} - \frac{b}{\sqrt{2}} = 4$ $-\frac{c}{\sqrt{2}} - \frac{d}{\sqrt{2}} = -3, \frac{c}{\sqrt{2}} - \frac{d}{\sqrt{2}} = -4$ Is at least one of either a or b of a or b .	-5	Applies $\mathbf{BA} = \mathbf{C}$ and attempts simultaneous equations in a and b or c and d and finds at least one of either a or b or c or d	M1	
		=	d	lependent on the previous B1M1 marks At least 2 correct elements	A1	
	or $a = \sqrt{a}$	$\sqrt{2}$, $b = -3\sqrt{2}$, $c = -\sqrt{2}$, $d = 4\sqrt{2}$	$\sqrt{2}$	All elements are correct	A1	
						(4)
			0	tion 4 Notes		8
4 (c)	Note	Condone "Turn" for the 1 st l		tion 4 Notes		
4. (a) (c)	Note Note			or to a candidate finding CA ⁻¹		
	11016	(i.e. you can ignore the state				
	A1 A1	You can allow equivalent m		$\left(\begin{array}{cc} \frac{2}{\sqrt{2}} & -\frac{6}{\sqrt{2}} \end{array}\right)$		

Question Number		Scheme		Note	S	Marks
5. (a)	$\left\{\sum_{i=1}^{n} 8r^3 - \right.$	$-3r = 8\left(\frac{1}{4}n^{2}(n+1)^{2}\right) - 3\left(\frac{1}{2}n(n+1)^{2}\right)$		Attempt to substitute standard formulae	at least one of the ecorrectly into the given expression	M1
	(r=1	,		(Correct expression	A1
		$=\frac{1}{2}n(n+1)\left[4n(n+1)-3\right]$	Atte	dependent on the part to factorise at leasured both standard	ast $n(n+1)$ having	dM1
		$= \frac{1}{2} n(n+1) \Big[4n^2 + 4n - 3 \Big]$		{this step does not h	ave to be written}	
		$= \frac{1}{2} n(n+1)(2n+3)(2n-1)$		Correct comple	tion with no errors	A1 cso
						(4)
(b)	Let $f(n)$	$= \frac{1}{2}n(n+1)(2n+3)(2n-1), g(n) = \frac{8}{4}$	$n^2(n+1)$	$(n)^2 \& h(n) = \pm \frac{3}{2}n(n+1)$	1)	
	$\int \frac{10}{10}$ 0.3	2 1 1 (10)(11)(22)(10) 1 (4)(5)(1	1)/7)		mpts to find either	
	$\left \int_{r=5}^{\infty} 8r^{r} \right $	$-3r = \frac{1}{2}(10)(11)(23)(19) - \frac{1}{2}(4)(5)(19)$	1)(/)	• f(10)	and f(4) or f(5) and g(4) or g(5)	M1
		$\left\{ = 24035 - 770 = 23265 \right\}$			and g(4) or g(5) and h(4) or h(5)	
	$\sum_{k_1}^{10} k_1$	$r^{2} = k \left(\frac{1}{6} (10)(11)(21) - \frac{1}{6} (4)(5)(9) \right) \left\{ = \frac{1}{6} (4)(5)(9) \right\}$	- k(385	-30) - 355k	Correct attempt	
	r=5	· ·		30) = 333k _{	at $\sum_{i=1}^{10} kr^2$	M1
	Oi	$r = k \left(5^2 + 6^2 + 7^2 + 8^2 + 9^2 + 10^2 \right) \left\{ = 35^2 + 10^2 \right\}$	55k		r=5	
				ependent on both pi		
		497 7		es both previous meth n a linear equation in	ddM1	
	23265+3	$265 + 355k = 22768 \implies k = -\frac{497}{355} \text{ or } -\frac{7}{5}$		solves to give $k =$		
				$k = -\frac{497}{355}$ or $-\frac{7}{5}$ or -	A1 o.e.	
						(4)
			Duestion	n 5 Notes		8
5. (a)	Note	Applying eg. $n = 1$, $n = 2$ to the prin	•		g the standard form	ula
		to give $a = 2$, $b = -1$ is M0A0M0A	0			
	Alt	Alternative Method: Using $2n^4 + 4n^3 + \frac{1}{2}n^2 - \frac{3}{2}n \equiv an^4 + (b + \frac{5}{2}a)n^3 + (\frac{5}{2}b + \frac{3}{2}a)n^2$				
	dM1	Equating coefficients to give both				
	A1 cso	Demonstrates that the identity work				
(b)	Note	$f(10) - f(5) = \frac{1}{2}(10)(11)(23)(19) - \frac{1}{2}$	(5)(6)(1	(9) $= 24035 - 1755$	5 = 22280}	
	Note	Applying $\sum_{r=5}^{10} 8r^3 - \sum_{r=5}^{10} 3r + k \sum_{r=5}^{10} r^2$	gives e	either		
		• (24200 – 165 + 385k) – (8	00-30	+30k) = 22768		
		• $23400 - 135 + 355k = 2276$				
	Note	985 + 25k + 1710 + 36k + 2723 + 49				265 + 355k
		is fine for the first two M1M1 mark	s with the	ne final ddM1A1 lead	$\lim_{k \to \infty} to \ k = -1.4$	

Question Number	Scheme		Notes	Marks	
6. (a)	$y = \frac{c^2}{x} = c^2 x^{-1} \Rightarrow \frac{dy}{dx} = -c^2 x^{-2} = -\frac{c^2}{x^2}$ $xy = c^2 \Rightarrow x \frac{dy}{dx} + y = 0$		$\frac{\mathrm{d}y}{\mathrm{d}x} = k x^{-2}$		
	$xy = c^2 \Rightarrow x \frac{\mathrm{d}y}{\mathrm{d}x} + y = 0$		t use of product rule. The sum of vo terms, one of which is correct.	M1	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}p} \cdot \frac{\mathrm{d}p}{\mathrm{d}x} = -\frac{c}{p^2} \cdot \frac{1}{c}$		their $\frac{dy}{dp} \times \frac{1}{\text{their } \frac{dx}{dp}}$		
	$\frac{dy}{dx} = -c^2 x^{-2} \text{ or } x \frac{dy}{dx} + y = 0 \text{ or } \frac{dy}{dx} = -\frac{c}{p^2}.$	$\frac{1}{c}$	Correct differentiation	A1	
	$So, m_N = p^2$	P	Perpendicular gradient rule where n_T) is found from using calculus.	M1	
	$y - \frac{c}{p} = p^2(x - cp)$ or $y = p^2x + \frac{c}{p} - cp^3$		Correct line method m_N is found from using calculus.	M1	
	$py - p^3x = c(1-p^4)*$			A1*	
				(5)	
(b)	$y = \frac{c^2}{x} \Rightarrow p \frac{c^2}{x} - p^3 x = c \left(1 - p^4 \right) \text{ or } x = \frac{c^2}{y} \Rightarrow py - p^3 \frac{c^2}{y} = c \left(1 - p^4 \right)$ Substitutes $y = \frac{c^2}{p}$ or $x = \frac{c^2}{y}$ into the printed equation				
	to obtain an equation in either x, c and p only or in y, c and p only. $p^3x^2 + c(1-p^4)x - c^2p = 0 \text{or} py^2 - c(1-p^4)y - c^2p^3 = 0$				
	$(x-cp)(p^3x+c)=0 \Rightarrow x=$ or	$\frac{c}{\left(y-\frac{c}{p}\right)\left(yp\right)}$	$+cp^4$)=0 \Rightarrow y=	M1	
	Correct attempt of solving a 3TQ	to find the x or	y coordinate of Q		
	Correct attempt of solving a 3TQ $Q\left(-\frac{c}{p^3}, -cp^3\right)$ Can be	e simplified or	At least one correct coordinate.	A1	
				A1	
	Note: If Q is stated as coordinates then they	must be correc	et for the final A1 mark.	(4)	
(b) ALT	Let Q be $\left(cq, \frac{c}{q}\right)$ so $\frac{c}{q}p - p^3cq = c\left(1 - p^4\right)$				
	Substitutes $x = cq$ or $y = \frac{c}{q}$ into the printed eq	quation to obtain	n an equation in only p , c and q .		
	$cp - p^{3}cq^{2} = cq - cqp^{4} \Rightarrow p - q - p^{3}q^{2} + qp^{4} = 0$				
	$(p-q)(1+p^3q)=0 \Rightarrow q=\dots$				
	Correct attempt to find q in terms of p				
	$Q\left(-\frac{c}{p^3}, -cp^3\right)$ Can b	e simplified or	At least one correct coordinate	A1	
	$\mathcal{L}(p^3, \mathcal{L})$	un-simplified.	Both correct coordinates	A1	
				(4)	
				9	

Question Number	Scheme	Notes		Marks			
7.	f(x) =	$= x^4 - 3x^3 -$	$x^4 - 3x^3 - 15x^2 + 99x - 130$				
(a)	3 – 2i is also a root			3 – 2i	B1		
	or any			thod to establish the quadratic factor $3 \pm 2i \Rightarrow x - 3 = \pm 2i \Rightarrow x^2 - 6x + 9 = -4$	M1		
	-		0	r sum of roots 6, product of roots 13	A1		
	$f(x) = (x^2 - 6x + 13)(x^2 + 3x)$	-10)	Note:	$x^{2}-6x+13$ Attempt other quadratic factor. Using long division to get as far as $x^{2} \pm kx$ is fine for this mark.	M1		
				$x^2 + 3x - 10$	A1		
	${x^2 + 3x - 10} = (x+5)(x-2)$	$\Rightarrow x = \dots$		Correct method for solving a 3TQ on their 2 nd quadratic factor	M1		
	$x = -5, \ x = 2$			Both values correct	A1		
	Note: Writing down 2, -5, 3-	2: 2: 2:	with no	orleine in D1MOAOMOAOMOAO	(7)		
(a)			Factor Th				
(a)	3 – 2i	auve using	3 – 2i	B1			
				Attempts to find $f(2)$	M1		
	$\{1(2) = \}2^{3} - 3 \times 2^{3} - 15 \times 2^{2} + 9$	$\{f(2) = \}2^4 - 3 \times 2^3 - 15 \times 2^2 + 99 \times 2 - 130 = 0$			A1		
	${f(-5) = }(-5)^4 - 3(-5)^3 - 15(-5)^2 +$	99×(-5)-	-130 = 0	Attempts to find $f(-5)$	M1		
		()		Shows that $f(-5) = 0$	A1		
				ows that $f(2) = 0$ and states $x = 2$ ws that $f(-5) = 0$ and states $x = -5$	M1		
	x-2, x-3			A1			
				and states both $x = -5$, $x = 2$	(7)		
(b)	2 Im	<u></u>		 3±2i plotted correctly in quadrants 1 and 4 with some evidence of symmetry dependent on the final M mark being awarded in part (a). Their other two roots plotted correctly. 			
	₋₅	2 3	Re	Satisfies at least one of the criteria.	B1ft		
	-2	`		Satisfies both criteria with some indication of scale or coordinates stated. All points (arrows) must be in the correct positions relative to each other.	B1ft		
					(2)		
					9		

Question Number		Scheme			I	Notes	Marks
8.	S(a,0)	$\overline{B(q,r), C\left(-a, -\frac{2ar}{q-a}\right)}$ or	C(-a, -3)	Bar)			
(a)		$m = \frac{r - 0}{q - a}$			Correct gradien	at using $(a, 0)$ and (q, r) (Can be implied)	B1
	•	$y = \frac{r}{q - a}(x - a) \text{ or}$ $y - r = \frac{r}{q - a}(x - q)$ $0 = \frac{ra}{q - a} + "c" \Rightarrow "c" = -\frac{r}{q}$ $0 = \frac{ra}{q - a} + (x - a) *$	<u>ra</u> and a	$y = \frac{1}{q}$	$\frac{r}{-a}x - \frac{ra}{q-a}$	Correct straight line method	M1
	leading to	$(q-a)y = r(x-a)^*$				cso	A1*
	((3)
(b)	$C\Big(\Big\{-a\Big\}$	$\left(-\frac{2ar}{q-a} \right)$ or height $OCS =$	$\frac{2ar}{q-a}$			$-\frac{2ar}{q-a} \text{ or } \frac{2ar}{q-a}$	B1
	$\frac{2ar}{q-a} = 3$	$3r \text{or} \frac{1}{2}(a) \left(\frac{2ar}{q-a}\right) = 3\left(\frac{1}{2}\right)$	$\left(\frac{1}{2}\right)(a)(r)$	⇒	Area and rearra	at OCS = $3r$ or applies $h(OSC) = 3Area(OSB)$ anges to give $\lambda a = \mu q$ are numerical values.	M1
		$\Rightarrow 5a = 3q$				$5a = 3q \text{ or } a = \frac{3}{5}q$	A1
		$C(C) = 4\left(\frac{1}{2}\right)\left(\frac{3q}{5}\right)r$ or $= \left(\frac{1}{2}\right)\left(\frac{3q}{5}\right)r + \left(\frac{3}{2}\right)\left(\frac{3q}{5}\right)r$	r		Uses their $a = \frac{3}{5}$ meth	the previous M mark q and applies a correct and to find Area (OBC) on terms of only q and r	dM1
		$=\frac{6}{5}qr(*)$				$\frac{6}{5}qr$	A1* cso
							(5)
	A14. 49	Nr41 - 1 (C' '1 TD '	1	I			8
(b)	$\frac{3r}{2a} = \frac{r}{q}$	ive Method (Similar Triang) a	<u>(168)</u>		$\frac{3r}{2a}$	$\frac{1}{a} = \frac{r}{q - a}$ or equivalent	B1
	$\frac{3r}{2a} = \frac{r}{q}$			ive λa	2a q-a	uivalent and rearranges are numerical values.	M1
	then a	pply the original mark scho		4.	O.N. 4		
8. (a)	Note	The first two marks B1M1 to give $\frac{y-0}{r-0} = \frac{x-a}{q-a}$	can be gai	ned to	8 Notes gether by applying	the formula $\frac{y - y_1}{y_2 - y_1} = \frac{x}{x}$	$\frac{x-x_1}{x_2-x_1}$
(b)	Note	$\begin{array}{cc} r-0 & q-a \\ \hline \text{If a candidate uses either } \bot \\ \end{array}$	$-\frac{2ar}{q-a}$ or	-3r t	hey can get 1st M1	but not 2 nd M1 in (b).	

Question Number	Scheme		Notes	Marks				
9.	f(n) =	$f(n) = 4^{n+1} + 5^{2n-1}$						
	$f(1) = 4^2 + 5 = 21$		f(1) = 21 is the minimum	B1				
	$f(k+1) - f(k) = 4^{k+2} + 5^{2(k+1)-1} - (4^{k+1} + 5^{2k-1})$		Attempts $f(k+1) - f(k)$	M1				
	$f(k+1) - f(k) = 3(4^{k+1}) + 24(5^{2k-1})$							
	$= 3(4^{k+1} + 5^{2k-1}) + 21(5^{2k-1})$	T'45 an	$3(4^{k+1}+5^{2k-1})$ or $3f(k); 21(5^{2k-1})$					
	or = $24(4^{k+1} + 5^{2k-1}) - 21(4^{k+1})$	Either	$24(4^{k+1}+5^{2k-1})$ or $24f(k)$; $-21(4^{k+1})$	A1; A1				
	$f(k+1) = 3f(k) + 21(5^{2k-1}) + f(k)$	dep	pendent on at least one of the previous	13.61				
	or $f(k+1) = 24f(k) - 21(4^{k+1}) + f(k)$		accuracy marks being awarded. Makes $f(k+1)$ the subject	dM1				
	If the result is $\underline{\text{true for } n = k}$, then it is $\underline{\text{true for } n = k}$	for $n = k + 1$, As the result has been shown to be	11				
	true for $n = 1$, then the res	esult is is tr	tue for all $n \in \square^+$.	A1 cso				
				(6)				
WAY 2	General Method: Using $f(k+1) - mf(k)$							
	$f(1) = 4^2 + 5 = 21$		f(1) = 21 is the minimum	B1				
	$f(k+1) - mf(k) = 4^{k+2} + 5^{2(k+1)-1} - m(4^{k+1} + 5^{2k-1})$	-1)	Attempts $f(k+1) - f(k)$	M1				
	$f(k+1) - mf(k) = (4-m)(4^{k+1}) + (25-m)(5^{2k-1})$							
	$= (4-m)(4^{k+1}+5^{2k-1})+21(5^{2k-1})$	(4-1	$m)(4^{k+1}+5^{2k-1})$ or $(4-m)f(k)$; $21(5^{2k-1})$					
	or = $(25-m)(4^{k+1}+5^{2k-1})-21(4^{k+1})$		$n(4^{k+1} + 5^{2k-1})$ or $(25 - m)f(k)$; $-21(4^{k+1})$	A1; A1				
	$f(k+1) = (4-m)f(k) + 21(5^{2k-1}) + mf(k)$	dep	pendent on at least one of the previous					
	or $f(k+1) = (25-m)f(k) - 21(4^{k+1}) + mf(k)$		accuracy marks being awarded. Makes $f(k+1)$ the subject	dM1				
	If the result is $\underline{\text{true for } n = k}$, then it is $\underline{\text{true for } n = k}$	for n = k + 1	, As the result has been shown to be					
	true for $n = 1$, then the res	esult is is tr	rue for all $n \in \square^+$.	A1 cso				
WAY 3	$f(1) = 4^2 + 5 = 21$		f(1) = 21 is the minimum	B1				
	$f(k+1) = 4^{k+2} + 5^{2(k+1)-1}$		Attempts $f(k+1)$	M1				
	$f(k+1) = 4(4^{k+1}) + 25(5^{2k-1})$							
	$=4(4^{k+1}+5^{2k-1})+21(5^{2k-1})$		$4(4^{k+1}+5^{2k-1})$ or $4f(k)$; $21(5^{2k-1})$					
	or = $25(4^{k+1} + 5^{2k-1}) - 21(4^{k+1})$	Either –	$25(4^{k+1} + 5^{2k-1}) \text{ or } 25f(k); -21(4^{k+1})$	A1; A1				
	$f(k+1) = 4f(k) + 21(5^{2k-1})$	dep	pendent on at least one of the previous					
	or $f(k+1) = 25f(k) - 21(4^{k+1})$		accuracy marks being awarded. Makes $f(k+1)$ the subject	dM1				
	011(N+1)=231(N)-21(1-)	If the result is true for $n = k$, then it is true for $n = k + 1$, As the result has been shown to be						
		for $n = k + 1$,	, As the result has been shown to be	A1 cso				

•
$$\{f(k+1) = 4f(k) + 21(5^{2k-1})\} \Rightarrow f(k+1) = 84M + 21(5^{2k-1})$$

$$\{f(k+1) = 25f(k) - 21(4^{k+1})\} \Rightarrow f(k+1) = 525M - 21(4^{k+1})$$