ПРАКТИЧНЕ ЗАНЯТТЯ 4 ТЕМА 3. ЗАХИСТ ВІД ШУМУ, УЛЬТРАЗВУКУ ТА ІНФРАЗВУКУ У ВИРОБНИЧОМУ СЕРЕДОВИЩІ

Мета заняття

Вивчення дії на організм людини шуму, ультразвукових та інфразвукових коливань, які виникають у виробничих приміщеннях, нормування параметрів цих чинників, ознайомлення з основними заходами, спрямованими на захист працюючих від негативної дії шуму, ультра- та інфразвуку.

Матеріал для самостійного опрацювання

Частина 2.6. Захист від шуму у виробничому середовищі підручника [1], стор. 198...214.

ДСН 3.3.6.037-99. Санітарні норми виробничого шуму, ультразвуку та інфразвуку.

Витяг з ДСН 3.3.6.037-99. Санітарні норми виробничого шуму, ультразвуку та інфразвуку.

«2. Класифікація виробничих акустичних коливань

- 2.1. Класифікація шумів
- 2.1.1. За характером спектра шуми слід поділяти на:
- широкосмугові, з безперервним спектром шириною більш ніж одна октава;
- вузькосмужні або тональні, в спектрі яких ϵ виражені дискретні тони. Тональний характер шуму встановлюється вимірюванням випромінювання у третинооктавних смугах частот по перевищенню рівня шуму в одній смузі над сусідніми не менш ніж на $10~\mathrm{д}$ Б.
 - 2.1.2. За часовими характеристиками шуми слід поділяти на:
- постійні, рівень шуму яких за повний робочий день при роботі технологічного обладнання змінюється не більш ніж на 5 дБА при вимірюваннях на часовій характеристиці "повільно" шумоміра по шкалі "А";
- непостійні, рівень шуму яких за повний робочий день при роботі технологічного обладнання змінюється більш ніж на 5 дБА при вимірюваннях за часовою характеристикою "повільно" шумоміра по шкалі "А".

2.1.3. Непостійні шуми поділяються на:

- мінливі, рівень яких безперервно змінюється у часі;
- переривчасті, рівень шуму яких змінюється ступінчасто на 5 дБА і більше при вимірюваннях на часовій характеристиці "повільно" шумоміра по шкалі "А", при цьому довжина інтервалів, під час яких рівень залишається сталим, становить 1 с і більше;
- імпульсні, які складаються з одного або декількох звукових сигналів, кожен з яких довжиною менше 1 с, при цьому, рівні шуму у дБ(А1) і дБ(А),

виміряні на часових характеристиках "імпульс" та "повільно" шумоміра, відрізняються не менш ніж на 7 дБ.

- 2.2. Класифікація ультразвуку
- 2.2.1. За способом передачі від джерела до людини ультразвук поділяють на:
- повітряний, що передається через повітряне середовище;
- контактний, що передається на руки працюючої людини через тверде чи рідке середовище.
 - 2.2.2. За спектром ультразвук поділяють на:
- низькочастотний, коливання якого передаються людині повітряним та контактним шляхом (від 1,2 х 104 до 1,0 х 105 Гц);
- високочастотний, коливання якого передаються людині тільки контактним шляхом (від 1,0 x 105 до 1,0 x 109 Гц).
 - 2.3. Класифікація інфразвуку
 - 2.3.1. За часовими характеристиками інфразвук поділяють на:
- постійний, рівень звукового тиску якого по шкалі "Лінійна" на характеристиці "повільно" змінюється не більш ніж на 10 дБ за 1хв. спостереження;
- непостійний, рівень звукового тиску якого по шкалі "Лінійна" на характеристиці "повільно" змінюється більш ніж на 10 дБ за 1 хв. спостереження.

3. Акустичні параметри, що нормуються

- 3.1. Параметри шуму, що нормуються
- 3.1.1. Параметри постійного шуму на робочих місцях, що нормуються, є рівнями звукових тисків у октавних смугах з середньогеометричними частотами 31,5; 63; 125; 500; 1000; 2000; 4000; 8000 Γ ц в децибелах, які визначаються за формулою:

$$L = 20 \text{ Lg P/Po} \tag{1}$$

де: Р - середньоквадратичне значення звукового тиску у кожній октавній смузі, Па;

Ро - вихідне значення звукового тиску у повітрі, що дорівнює 2 $\,$ х10-5 Па.

3.1.2. При орієнтовній гігієнічній оцінці параметрів постійного широкосмужного шуму на робочих місцях, що нормуються, дозволяється застосовувати рівень шуму в дБА, виміряний по шкалі "А" часової характеристики "повільно" шумоміра та визначений за формулою:

$$LA = 20 Lg PA /Po$$
 (2)

де: РА - ефективне значення звукового тиску з урахуванням корекції "А" шумоміра, Па.

- 3.1.3. Середній рівень звуку або октавних рівнів звукового тиску визначається згідно з додатком 1.
- 3.1.4. Параметрами непостійного шуму (що коливається в часі та переривається) на робочих місцях, які нормуються, є інтегральний рівень еквівалентний (по енергії) та максимальний рівень шуму у дБА.

Для імпульсного шуму нормованим параметром ε еквівалентний рівень шуму у дБАекв. та максимальний рівень шуму - у дБА1.

Еквівалентний рівень - це рівень постійного шуму, дія якого відповідає дії фактичного шуму із змінними рівнями за той же час, виміряного по шкалі "А" шумоміра. Еквівалентний рівень визначається відповідно до додатків 2 та 3.

- 3.1.5. Допускається для характеристики виробничого шуму на робочих місцях застосовувати дозу шуму або відносну дозу шуму. Метод розрахунку дози наведено у додатку 4.
 - 3.2. Параметри інфразвуку, що нормуються.
- 3.2.1. Параметри постійного інфразвуку на робочих місцях, що нормуються, ϵ рівнями звукового тиску у октавних смугах частот з середньогеометричними частотами 2; 4; 8; 16 Γ ц у децибелах.
- 3.2.2. Для непостійного інфразвуку параметром, що нормується, є загальний еквівалентний рівень звукового тиску по шкалі "Лінійна" шумоміра у дБлін. Еквівалентний рівень визначають відповідно до додатків 2 та 3.
- 3.2.3. Для орієнтовної оцінки постійного інфразвуку допускається використовувати рівні звукового тиску по шкалі "Лінійна" та "А" шумоміра.
- а) Lлін. L <= 10 дБ, інфразвук практично відсутній;
- б) 10 дБ/Lлін. L /<= 20 дБ, інфразвук не виразний;
- в) Lлін. L > 20 дБ, виразний інфразвук.
 - 3.3. Параметри ультразвуку, що нормуються
- 3.3.1. Параметрами ультразвуку, що нормуються, утворюваного коливаннями повітряного середовища у робочій зоні, ϵ рівні звукового тиску в дБ у третинооктавних смугах з середньогеометричними частотами 12,5; 16,0; 20,0; 25,0; 31,5; 40,0; 63,0; 80,0; 100,0 кГц.
- 3.3.2. Параметром ультразвуку, що нормується і передається контактним шляхом, є пікове значення віброшвидкості (м/с) у частотному діапазоні від 0,1 МГц до 10 МГц, або його логарифмічний рівень у дБ, який визначається за формулою:

$$Lv = 20 lg V/Vo (3)$$

де: V -пікове значення віброшвидкості, м/с;

Vo - опорне значення віброшвидкості, що дорівнює 5 х 10 м/с.

Для ультразвуку при контактній передачі допускається застосовувати як параметр, що нормується, інтенсивність у ватах на квадратний сантиметр (Вт/кв. см).

3. Акустичні параметри, що нормуються

- 3.1. Параметри шуму, що нормуються
- 3.1.1. Параметри постійного шуму на робочих місцях, що нормуються, є рівнями звукових тисків у октавних смугах з середньогеометричними частотами 31,5; 63; 125; 500; 1000; 2000; 4000; 8000 Гц в децибелах, які визначаються за формулою:

$$L = 20 \text{ Lg P/Po} \tag{1}$$

де: Р - середньоквадратичне значення звукового тиску у кожній октавній смузі, Па;

Р о - вихідне значення звукового тиску у повітрі, що дорівнює 2×10 в ступ. - 5 Па.

3.1.2. При орієнтовній гігієнічній оцінці параметрів постійного широкосмужного шуму на робочих місцях, що нормуються, дозволяється застосовувати рівень шуму в дБА, виміряний по шкалі "А" часової характеристики "повільно" шумоміра та визначений за формулою:

$$LA = 20 Lg PA /Po$$
 (2)

- де: Р А ефективне значення звукового тиску з урахуванням корекції "А" шумоміра, Па.
- 3.1.3. Середній рівень звуку або октавних рівнів звукового тиску визначається згідно з додатком 1.
- 3.1.4. Параметрами непостійного шуму (що коливається в часі та переривається) на робочих місцях, які нормуються, є інтегральний рівень еквівалентний (по енергії) та максимальний рівень шуму у дБА.

Для імпульсного шуму нормованим параметром ϵ еквівалентний рівень шуму у дБАекв. та максимальний рівень шуму - у дБА1.

Еквівалентний рівень - це рівень постійного шуму, дія якого відповідає дії фактичного шуму із змінними рівнями за той же час, виміряного по шкалі "А" шумоміра. Еквівалентний рівень визначається відповідно до додатків 2 та 3.

- 3.1.5. Допускається для характеристики виробничого шуму на робочих місцях застосовувати дозу шуму або відносну дозу шуму. Метод розрахунку дози наведено у додатку 4.
 - 3.2. Параметри інфразвуку, що нормуються.
- 3.2.1. Параметри постійного інфразвуку на робочих місцях, що нормуються, ϵ рівнями звукового тиску у октавних смугах частот з середньогеометричними частотами 2; 4; 8; 16 Γ ц у децибелах.
- 3.2.2. Для непостійного інфразвуку параметром, що нормується, є загальний еквівалентний рівень звукового тиску по шкалі "Лінійна" шумоміра у дБлін. Еквівалентний рівень визначають відповідно до додатків 2 та 3.
- 3.2.3. Для орієнтовної оцінки постійного інфразвуку допускається використовувати рівні звукового тиску по шкалі "Лінійна" та "А" шумоміра.
 - а) Lлін. L < = 10 дБ, інфразвук практично відсутній;
 - б) 10 дБ/Lлін. L / < = 20 дБ, інфразвук не виразний;
 - в) Lлін. L > 20 дБ, виразний інфразвук.
 - 3.3. Параметри ультразвуку, що нормуються
- 3.3.1. Параметрами ультразвуку, що нормуються, утворюваного коливаннями повітряного середовища у робочій зоні, є рівні звукового тиску в дБ у третинооктавних смугах з середньогеометричними частотами 12,5; 16,0; 20,0; 25,0; 31,5; 40,0; 63,0; 80,0; 100,0 кГц.
- 3.3.2. Параметром ультразвуку, що нормується і передається контактним шляхом, є пікове значення віброшвидкості (м/с) у частотному діапазоні від 0,1 МГц до 10 МГц, або його логарифмічний рівень у дБ, який визначається за формулою:

$$Lv = 20 \lg V/Vo \tag{3}$$

де: V -пікове значення віброшвидкості, м/с;

V о - опорне значення віброшвидкості, що дорівнює 5х10 м/с.

Для ультразвуку при контактній передачі допускається застосовувати як параметр, що нормується, інтенсивність у ватах на квадратний сантиметр (Вт/кв. см).

4. Методи вимірювання шуму, інфразвуку та ультразвуку

- 4.1. Вимірювання шуму проводиться на постійних робочих місцях у приміщеннях, на території підприємств, на промислових спорудах та машинах (в кабінах, на пультах управління і т.п.).
- 4.1.1. Результати вимірювань повинні характеризувати шумовий вплив за час робочої зміни (робочого дня).
- 4.1.2. Встановлюється така тривалість вимірювання непостійного шуму:
- для переривчастого шуму, за час повного робочого циклу з урахуванням сумарної тривалості перерв з рівнем фонового шуму;
- для шуму, що коливається у часі, допускається загальна тривалість вимірювання 30 хвилин безперервно або вимірювання складається з трьох циклів, по 10 хв. кожний;
 - для імпульсного шуму тривалість вимірювання 30 хвилин.
- 4.1.3. Вимірювання шуму в октавних смугах або рівня шуму проводиться за допомогою шумоміра, який відповідає діючим вимогам Держстандарту України і має посвідчення про перевірку.

Вимірювання еквівалентних рівнів шуму слід проводити інтегруючими шумомірами та шумоінтеграторами.

Допускається використовувати індивідуальні дозиметри шуму з параметром еквівалентності q = 3 - число децибел, що додаються до рівня шуму, при зменшенні часу його дії у 2 рази для збереження тієї ж дози шуму.

Прилади повинні бути перевірені в органах Держстандарту.

- 4.1.4. До та після вимірювань проводять акустичну або електричну калібровку вимірювальних приладів. Різниця в калібровці не повинна перевищувати 1 дБ.
- 4.1.5. При проведенні вимірювань мікрофон слід розташовувати на висоті 1,5 м над рівнем підлоги чи робочого майданчика (якщо робота виконується стоячи) чи на висоті і відстані 15 см від вуха людини, на яку діє шум (якщо робота виконується сидячи чи лежачи). Мікрофон повинен бути зорієнтований у напрямку максимального рівня шуму та віддалений не менш ніж на 0,5 м від оператора, який проводить вимірювання.
- 4.1.6. При швидкості руху повітря більш ніж 1 м/с на місці, де проводяться виміри, мікрофон захищений протиповітряним пристроєм.
- 4.1.7. При проведенні вимірювань октавних рівнів звукового тиску перемикач частотної характеристики пристрою встановлюють в положенні "фільтр". Октавні рівні звукового тиску вимірюють у смугах з середньогеометричними частотами 31,5 8000 Гц.

При проведенні вимірювань рівнів звуку та еквівалентних рівнів звуку, дБА, дБАекв. перемикач частотної характеристики пристрою встановлюють у положенні "А" чи "Аекв".

- 4.1.8. При проведенні вимірювань рівнів шуму та октавних рівнів звукового тиску постійного шуму перемикач часової характеристики пристрою встановлюють в положення "повільно". Значення рівнів приймають за середніми показниками при коливанні стрілки пристрою.
- 4.1.9. Значення рівнів шуму та октавних рівнів звукового тиску зчитують зі шкали пристрою з точністю до 1 дБА, дБ.
- 4.1.10. Вимірювання рівнів шуму та октавних рівнів звукового тиску постійного шуму повинні бути проведені у кожній точці не менше трьох разів.
- 4.1.11. При проведенні вимірювань еквівалентних рівнів шуму, що коливаються в часі, для визначення еквівалентного (за енергією) рівня шуму перемикач часової характеристики пристрою встановлюють в положенні "повільно". Значення рівнів шуму приймають за показниками стрілки пристрою у момент відліку.
- 4.1.12. При проведенні вимірювань максимальних рівнів імпульсного шуму перемикач часової характеристики пристрою встановлюють в положенні "імпульс". Значення рівнів приймають за максимальним показником пристрою.
- 4.1.13. Інтервали відліку рівнів шуму, що коливається в часі, при вимірюваннях еквівалентного рівня тривалістю 30 хвилин становлять 5 6 с при загальній кількості відліків 360.
- 4.1.14. Для наочного графічного зображення розподілу рівнів шуму у виробничих приміщеннях рекомендується складати карти шуму.
- 4.2. Вимірювання інфразвуку проводять на постійних робочих місцях (біля органів керування машин, пультів, в кабінах і т. п.), або в робочих зонах обслуговування при роботі обладнання у характерному режимі.
- В кабінах самохідних та транспортно-технологічних машин вимірювання проводять при відчинених та зачинених вікнах, при цьому, мікрофон розміщують на відстані 15 см від вуха працюючого.
- 4.2.1. Вимірювання інфразвуку проводиться шумомірами 1 класу з частотною характеристикою від 1 Гц і октавними або третинооктавними фільтрами, а мікрофон повинен мати нижньочастотну межу 2 3 Гц. Дозволяється використання магнітографа з частотною характеристикою не менш ніж 2 Гц.
- 4.2.2. Для постійного інфразвуку вимірюють рівні звукового тиску у дБлін. та рівні шуму дБА, а також спектр у октавних смугах з відліком показників за середнім положенням стрілки шумовимірювача на характеристиці "повільно", або проводять магнітний запис інфразвуку, а для непостійного визначають їх відповідні еквівалентні рівні.

Для непостійного інфразвуку у вигляді піків, що повторюються, або імпульсів проводять додатково відлік за характеристикою "швидко" шумоміра по максимуму показника.

4.2.3. Час спостереження при вимірюванні октавних рівнів звукового тиску повинен відповідати величинам, вказаним у таблиці 1.

Таблиця 1 Мінімальний та рекомендований час вимірювання при частотному аналізі інфразвуку

Час вимірювання	Помилка	Час виміј	оювання (с) в октавни	х полосах
	оцінки рівнів,	серед	ньогеомет	ричних час	тот, Гц
	дБ	2	4	8	16
Мінімальний	+3	30	15	8	4
Рекомендований	+1	300	150	80	40

- 4.3. Вимірювання ультразвуку у повітряному середовищі проводиться згідно з пунктом 4.1.6 на відстані 0,5 м від контуру устаткування та не менш ніж 2 м від оточуючих поверхонь. Вимірювання потрібно проводити не менш ніж у 4 контрольних точках по контуру устаткування; при цьому, відстань між точками вимірювання не повинна перевищувати 1 м.
- 4.4. Вимірювання ультразвуку, який поширюється контактним шляхом, проводиться шляхом визначення пікового значення віброшвидкості на поверхнях, призначених для контакту з руками оператора.
- 4.4.1. Вимірювання повинно проводитися інтерферометром у точці максимального випромінювання. Рекомендований вимірювальний тракт повинен складатися з датчика з чутливістю, яка дозволяє реєструвати ультразвукові коливання з рівнем коливальної швидкості на поверхні не нижче 80 дБ, лазерного інтерферометра, схеми обробки сигналів, яка включає фільтри низької та високої частоти, мілівольтметра ВЗ-40, підсилювача частоти диференціального ланцюга та імпульсного мілівольтметра ВЧ-12.
- 4.4.2. Вимірювання рівнів ультразвуку слід проводити не менше трьох разів у кожній октавній смузі у кожній точці. При вимірюванні непостійних рівнів звукового тиску відліки проводять при максимальних значеннях.

5. Нормативи виробничого шуму, ультразвуку та інфразвуку

5.1. Допустимі рівні звукового тиску у октавних смугах частот, еквівалентні рівні звуку на робочих місцях наведені у таблиці 2.

Таблиця 2

N	Вид трудової		Рівні звукового тиску в дБ в октавних смугах з							3	Рівні
п/	діяльності, робоче		сер	едньо	геомтр	ичним	ли част	отами	, Гц		шуму та
п	місце	31,5	63	125	250	500	1000	2000	4000	8000	еквівален
											тні рівні
											ДБА,
											дБАекв.
1	2	3	4	5	6	7	8	9	10	11	12
		Під	цприєл	лства, ч	устано	ви, орг	ганізац	Ļiï			

1.	Творча діяльність,	86	71	61	54	49	45	42	40	38	50
1.	керівна робота з	80	, 1	01	54	43	45	42	40	30	30
	підвищеними										
	вимогами,										
	наукова діяльність,										
	конструювання та										
	проектування,										
	програмування,										
	викладання та										
	навчання,										
	лікарська										
	діяльність;										
	робочі місця у										
	приміщеннях -										
	дирекції, проектно-										
	конструкторських										
	бюро,										
	розраховувачів,										
	програмістів										
	обчислювальних										
	машин										
	у лабораторіях для										
	теоретичних робіт										
	та обробки даних,										
	прийому хворих у										
	медпунктах										
2.	Висококваліфікован	93	79	70	63	58	55	52	50	49	60
	а робота, що										
	вимагає										
	зосередження,										
	адміністративно-										
	керівна діяльність,										
	вимірювальні та										
	аналітичні роботи у										
	лабораторії:										
	робочі місця в										
	приміщеннях										
	цехового керівного										
	апарату, контор,										
	лабораторій										
3.	Робота, що	96	83	74	68	63	60	57	55	54	65
	виконується з										
	вказівками та										
	акустичними										
	сигналами, які										
	часто находять,										
	робота, що										
	потребує										
	постійного										

1 1	İ	İ	l 1	Ī	Ī	l	l	l	
слухового									
контролю,									
операторська									
робота заточним									
графіком									
зінструкцією,									
диспетчерська									
робота:									
робочі місця у									
приміщеннях									
диспетчерської									
служби,									
кабінетах та									
приміщеннях									
спостереження та									
дистанційного									
керування з									
мовним зв'язком									
по телефону,									
друкарських бюро,									
на дільницях									
точного складання,									
на телефонних та									
телеграфних									
станціях,									
у приміщеннях									
майстрів,									
у залах обробки									
інформації на									
обчислювальних									
машинах без									
дисплея та у									
приміщенняхопера									
торів-акустиків									

...)

Примітка. Таблиця 2 наведена у скороченому вигляді.

- «5.2. Допустимі рівні звукового тиску в октавних смугах частот, рівні шуму та еквівалентні рівні шуму на робочих місцях для тонального та імпульсного шуму слід приймати на 5 дБ менше за значення, що вказані у таблиці 2.
- 5.3. Для шуму, утворюваного у приміщенні установками кондиціонування повітря, вентиляції та повітряного опалення, допустимі рівні звукового тиску в октавних смугах частот, рівні шуму та еквівалентні рівні звукового тиску на робочих місцях встановлюються на 5 дБ менше ніж фактичні рівні шуму у приміщенні, якщо останні не перевищують значень таблиці 2. Поправка для тонального та імпульсного шуму, при цьому, не враховується.

- 5.4. Максимальний рівень шуму, що коливається в часі та переривається, не повинен перевищувати 110 дБА. Максимальний рівень для імпульсного шуму не повинен перевищувати 125 дБА.
- 5.5. При розробці відомчих нормативів допустимі рівні шуму для окремих видів трудової діяльності повинні встановлюватися з урахуванням важкості та напруженості праці згідно з таблицею 3.

Таблиця 3

	_									
Класи, умови	Допустима	Шкідлива та небезпечна важкість праці								
та характер	важкість	1 ступінь	2 ступінь	3 ступінь						
праці										
		Рівень шуму, дБА								
Допустима	80	до 80	75	до 75						
напруженість										
Шкідливість та										
небезпечність										
напруженості										
1 ступінь	70	до 70	65	до 65						
2 ступінь	60	до 60	-	-						
3 ступінь	50	до 50	-	-						

5.6. Допустимий рівень ультразвукового тиску в третинооктавних смугах з середньогеометричними частотами 12,5; 16; 25; 31,5 - 100 та вище кГц на робочих місцях від ультразвукових установок наведено у таблиці 4.

Таблиця 4

Середньогеометричні	12,5	16	20	25	31,5 -
частоти					
третинооктавних смуг,					
кГц					
Допустимі рівні тиску,	80	90	100	105	110
дБ					

Допустимий рівень ультразвукових тисків в октавних смугах з середньогеометричними частотами 16; 31,5; 63 та вище кГц наведено у таблиці 5.

Таблиця 5

Середньогеометричні	16	31,5	63 та вище
частота октавних смуг, кГц			
Допустимі рівні тиску, дБ	88	106	110

5.7. Максимальна величина ультразвуку у зонах, призначених для контакту рук оператора з робочими органами приладів та устаткування, протягом 8-годинного робочого дня не повинна перевищувати значень, вказаних у таблиці 6.

Параметр, що нормується	Допустима величина
Віброшвидкість	1,6 х 10 в ступ2 м/с
Логарифмічний рівень віброшвидкості	110 дБ
Інтенсивність	0,1 Вт/см

5.8. Характеристиками інфразвуку на робочих місцях, що нормуються, є рівні звукового тиску в октавних смугах частот з середньогеометричними частотами: 2; 4; 8; 16 Гц в дБ. Допустимі рівні наведені у таблиці 7.

Таблиця 7

Допустимі ріг	Загальний рівень			
з сере	дньогеометри	чними частота	ми, Гц	звукового тиску, дБлін.
2	4	16		
105	105	105	105	110

Додаток 1

Визначення середнього рівня шуму або октавних рівнів звукового тиску Середній рівень шуму LAсер. дБА та середні октавні рівні звукового тиску Lcep. дБ обчислюють за допомогою таблиці Д.1.1.

Таблиця Д.1.1.

Різниця двох	0	1	2	3	4	5	6	7	8	9	10	15	20
рівнів, що													
додаються, дБА													
або дБ													
Додаток до більш	3,0	2,5	2,0	1,8	1,5	1,2	1,0	0,8	0,6	0,5	0,4	0,2	0
високого рівня, дБ													

Додавання рівнів за таблицею проводять у такому порядку:

- 1) обчислюють різницю рівнів, що додаються;
- 2) визначають додаток до більш високого рівня відповідно до таблиці;
- 3) додають додаток до більш високого рівня;
- 4) аналогічні дії проводять з одержаною сумою та третім рівнем і т. д. Від одержаної суми "п" віднімають 10 lg n, одержуючи середній рівень. Якщо різниця між найбільшим та найменшим виміряними рівнями не перевищує 5 дБ, то середнє значення LAcep. Lcep. дорівнює середньому арифметичному значенню всіх виміряних рівнів.

Додаток 2

Обчислення еквівалентного рівня переривчастого шуму

Обчислення еквівалентного рівня шуму, дБА (рівня звукового тиску, дБ) проводиться у такій послідовності.

1. Визначають поправки LAi, дБA, Li, дБ до значень виміряних рівнів шуму LAi, або октавних рівнів звукового тиску Li в залежності від тривалості ступенів шуму відповідно до таблиці Д.2.1.

Тривалість ступенів	480	420	360	300	240	150	120	60	30	15	6
переривчастого шуму, хв./											
/ % за зміну	100	88	75	65	50	38	25	12	6	3	1
Поправка, LдБА, LдБ	0	0,6	1,2	2,0	3,0	4,2	6,0	9,0	12,0	15,1	19,1

- 2. Обчислюють різницю LAi LAi, Li Li для кожного ступеню шуму.
- 3. Додають енергетично одержані рівні шуму кожного ступеня за таблицею Д.1.1. Ця сума і є еквівалентним рівнем переривчастого шуму. Приклад розрахунку еквівалентного рівня переривчастого шуму:

Умова:L1A = 110 дБА протягом 30 хв.

L2A = 98 дБА протягом 130 хв.

L3A = 75 дБА протягом 320 хв.

За таблицею Д.2.1 визначаємо L А для кожного найближчого значення рівня.

L1A = 12,0 дBA

L2A = 6.0 дБA

L3A = 2,0 дBA

Визначаємо величини LAi - LAi для кожного рівня.

110 дБА - 12,0 дБА = 98,0 дБА

98 дБА - 6.0 дБА = 92.0 дБА

75 дБА - 2,0 дБА = 73,0 дБА

Визначаємо енергетичну суму рівнів за таблицею Д.1.1.

98 дБA - 92,0 дБA = 6,0 дБA

При різниці рівнів 6,0 дБА додаток LA = 1 дБА, яку додаємо до більшого рівня:

98,0 дБА + 1 дБА = 99,0 дБА

Визначаємо різницю між сумою двох перших рівнів та третім рівнем:

99,0 дБА - 73,0 дБА = 26,0 дБА

При різниці рівнів 26,0 дБА додаток LA = 0, який додаємо до більшого рівня:

99,0 дБА + 0 = 99,0 дБА

Еквівалентний рівень - 99 дБА.

Додаток 3

Обчислення еквівалентного рівня шуму, який коливається у часі

Обчислення проводиться у такій послідовності.

- 1. Діапазон рівнів шуму, які вимірюються, поділяють на наступні інтервали: від 38 до 42; від 43 до 47; від 48 до 52; від 53 до 57; від 58 до 62; від 63 до 67; від 68 до 72; від 73 до 77; від 78 до 82; від 83 до 87; від 88 до 92; від 93 до 97; від 98 до 102; від 103 до 107; від 108 до 112; від 113 до 117; від 118 до 122 дБА.
- 2. Вимірювані рівні шуму розподіляють по інтервалах, підраховують число відліків рівнів шуму у кожному інтервалі.

Результати відліків заносяться у графи 2 та 3 таблиці Д.З.1.

- 3. За таблицею Д.3.2 визначають часткові індекси в залежності від інтервалу та числа відліків у даному інтервалі рівнів шуму. Одержані значення записують у графу 4 табл. Д.3.1.
- 4. Записані у графу 4 часткові індекси додають, а результат записують у графу 5 табл. Д.З.1.
 - 5. Еквівалентний рівень шуму LAекв. = 30 + LAi, де LAi поправка, дБA, яка визначається за таблицею Д.3.3 в залежності від величини сумарного індексу.

Таблиця Д.**3.1** Шум, що коливається у часі (тривалість вимірювання 30 хв.)

Інтервали	Показники	Число відліків	Часткові	Сумарний
рівнів звуку,	відліків рівнів	рівнів шуму в	індекси	індекс
дБ	шуму в інтервалі	інтервалі		
від 38 до 42				
від 43 до 47				
від 48 до 52				
від 53 до 57				
від 58 до 62				
від 63 до 67				
від 68 до 72				
від 73 до 77				
від 78 до 82				
від 83 до 87				
від 88 до 92				
від 93 до 97				
від 98 до 102				
від 103 до				
107				
від 108 до				
112				
від 113 до				
117				
від 118 до				
122				
	дLАекв. =		дБА	
	LАекв. =		дБА	

Таблиця Д.3.2

Число				Інтер	овали рів	знів шум	у, дБА			
відліків	Від	Від	Від	Від	Від	Від	Від 68	Від 73	Від 78	Від 83
рівнів	38	43	48	53	58	63	до 72	до 77	до 82	до 87
шуму в інтервалі	до 42	до 47	до 52	До 57	до 62	до 67	H0 / -	H 0 / /	HO 02	досл
срзал.					Частков	зі індексі	И			I
1	0	0	0	1	3	9	28	88	278	878
2	0	0	1	2	6	18	56	176	556	1760
3	0	0	1	3	8	26	83	284	833	2640
4	0	0	1	4	11	35	111	350	1110	3500
5	0	0	1	4	14	44	138	439	1380	4390
6	0	1	2	5	17	52	166	527	1630	5270
7	0	1	2	6	19	61	194	615	1940	6150
8	0	1	2	7	22	70	222	703	2220	7030
9	0	1	3	8	25	79	250	790	2500	7900
10	0	1	3	9	28	88	278	880	2780	8800
11 - 12	0	1	3	10	33	105	330	1050	3300	10500
13 - 14	0	1	4	12	39	123	389	1230	3890	12300
15 - 16	0	1	4	14	44	141	444	1410	4440	14100
17 - 18	1	2	5	16	50	158	500	1580	5000	15800
19 - 20	1	2	6	18	56	176	560	1760	5600	17600
21 - 23	1	2	6	20	64	202	639	2020	6390	20200
24 - 26	1	2	7	23	72	228	722	2280	7220	22800
27 - 30	1	3	8	26	83	263	833	2630	8330	26300
31 - 34	1	3	9	30	94	299	944	2990	9440	29900
35 - 39	1	3	11	34	108	343	1080	3130	10800	34300
40 - 44	1	4	12	39	122	387	1220	3870	12200	38700
45 - 49	1	4	14	43	136	430	1360	4800	13600	48000
50 - 56	2	5	16	49	156	492	1560	4920	15600	49200
57 - 63	2	6	17	55	175	553	1750	5530	17500	55300
64 - 70	2	6	19	61	191	615	1940	6150	19400	61500
71 - 80	2	7	22	70	222	703	2220	7030	22200	70300
81 - 90	3	8	25	79	250	790	2500	7900	25000	79000
91 - 100	3	9	28	88	278	878	2780	8780	27800	87800
101 - 115	3	10	32	101	319	1010	3190	10100	31900	101000
116 - 130	4	11	36	114	361	1140	3610	11400	36100	114000
131 - 150	4	13	42	132	417	1320	4170	13200	41700	132000
151 - 170	5	15	47	149	472	1490	4720	14900	47200	149000
171 - 190	5	17	53	167	528	1670	5280	16700	52800	167000
191 - 220	6	19	61	193	611	1930	6110	19300	61100	193000
221 - 250	7	22	69	220	694	2200	6940	22000	69400	220000
251 - 280	8	25	78	246	778	2460	7780	24600	77800	246000
281 - 320	9	28	89	281	889	2810	8890	28100	88900	281000
321 - 360	10	32	100	316	1000	3160	10000	31600	100000	316000

Продовження таблиці Д.3.2

Число			Інтерв	али рівнів ш	уму, дБА		
відліків	Від 88	Від 93	Від 98	Від 103	Від 108	Від 113	Від 118
рівнів	до 92	до 97	до 102	до 107	до 112	до 117	до 122
шуму в			Ч	асткові інде	кси		
інтервалі							
1	2780	86780	27800	87800	278000	878000	2780000
2	5560	17600	55600	176000	556000	1760000	5560000
3	8330	26400	83300	264000	833000	2640000	8330000
4	11100	35000	111000	350000	1110000	3500000	11100000
5	13800	43900	138000	439000	1380000	4390000	13800000
6	16600	52700	166000	527000	1660000	5270000	16600000
7	19400	61500	194000	615000	1940000	6150000	19400000
8	22200	70300	222000	703000	2220000	7030000	22200000
9	25000	79000	250000	790000	2500000	7900000	25000000
10	27800	88000	278000	880000	2780000	8800000	27800000
11 - 12	33000	105000	330000	1050000	3300000	10500000	33000000
13 - 14	38900	123000	389000	1230000	3890000	12300000	38900000
15 - 16	44400	141000	444000	1410000	4440000	14100000	44400000
17 - 18	50000	158000	500000	1580000	5000000	15800000	50000000
19 - 20	56000	176000	560000	1760000	5600000	17600000	56000000
21 - 23	63900	202000	639000	2020000	6390000	20200000	63900000
24 - 26	72200	228000	272000	2280000	7220000	22800000	72200000
27 - 30	83300	263000	833000	2630000	8330000	26300000	83300000
31 - 34	94400	299000	944000	2990000	9440000	29900000	94400000
35 - 39	108000	343000	1080000	3430000	10800000	34300000	108000000
40 - 44	122000	387000	1220000	3870000	12200000	38700000	122000000
45 - 49	136000	430000	1360000	4300000	13600000	43000000	136000000
50 - 56	156000	492000	1560000	4920000	15600000	49200000	156000000
57 - 63	175000	553000	1750000	5530000	17500000	55300000	175000000
64 - 70	194000	615000	1940000	6150000	19400000	61500000	194000000
71 - 80	222000	703000	2220000	7030000	22200000	70300000	222000000
81 - 90	250000	790000	2500000	7900000	25000000	79000000	250000000
91 - 100	278000	878000	2780000	8780000	27800000	87800000	278000000
101 - 115	319000	1010000	3190000	10100000	31900000	101000000	319000000
116 - 130	361000	1140000	3610000	11400000	36100000	114000000	361000000
131 - 150	417000	1320000	4170000	13200000	41700000	132000000	417000000
151 - 170	472000	1490000	4720000	14900000	47200000	149000000	472000000
171 - 190	528000	1670000	5280000	16700000	52800000	167000000	528000000
191 - 220	611000	1930000	6110000	19300000	61100000	193000000	611000000
221 - 250	694000	2200000	6940000	22000000	69400000	220000000	694000000
251 - 280	778000	2460000	7780000	24600000	77800000	246000000	778000000
281 - 320	889000	2810000	8890000	28100000	88900000	281000000	889000000
321 - 360	1000000	3160000	10000000	31600000	100000000	316000000	1000000000

Таблиця Д.3.3

Сумарний	дБА	Сумарний	дБА	Сумарний	дБА	Сумарний	дБА
індекс		індекс		індекс		індекс	
6	8	794	29	100000	50	12500000	71
8	9	1000	30	125900	51	15850000	72
10	10	1259	34	158500	52	19950000	73
13	11	1585	32	199500	53	25120000	74
16	12	1995	33	251200	54	31620000	75
20	13	2512	34	316200	55	39810000	76
25	14	3162	35	398100	56	50120000	77
32	15	3981	36	501200	57	63100000	78
40	16	5012	37	631000	58	79430000	79
50	17	6310	38	794300	59	100000000	80
63	18	7943	39	1000000	60	125900000	81
79	19	10000	40	1259000	61	158500000	82
100	20	12590	41	1585000	62	199500000	83
126	21	15850	42	1995000	63	251200000	84
159	22	19950	43	2512000	64	310200000	85
200	23	25120	44	3162000	65	398100000	86
251	24	31620	45	3981000	66	501200000	87
316	25	39810	46	5012000	67	631000000	88
398	26	50120	47	6310000	68	794300000	89
501	27	63100	48	7943000	69	1000000000	90
631	28	79430	49	10000000	70		

Додаток 4

Методи розрахунку доз шуму

З фізичної точки зору, еквівалентний рівень та доза ϵ аналогами і можливий їх взаємний перерахунок, але у фізіолого-гігієнічному відношенні ці два параметри відрізняються принципово: еквівалентний рівень визначається по логарифмічній шкалі у децибелах від порога сприйняття, а доза - у частках від допустимої дози, яка ϵ порогом шкідливого впливу, та оцінюється у лінійних величинах. Еквівалентний рівень відображає середнє значення рівня шуму за зміну, а доза характеризує сумарну енергію шуму за зміну.

При гігієнічній оцінці за допомогою дози одержане фактичне значення порівнюємо з допустимим, а результат виражаємо у її кратності. Для логарифмічних рівнів фактичне їх значення порівнюємо з допустимим, а одержану різницю за таблицею Д.4.1 переводимо у рази.

Таблиця Д.4.1

Різниця рівнів, дБ	0	1	2	3	4	5	6	7	8	9	10	15	20
Відношення доз,	1	1,3	1,6	2	2,5	3,2	4	5	6,3	8	10	32	100
раз													

Якщо числове значення отриманої різниці рівнів у таблиці відсутнє, то по стрічці "Різниця рівнів" знаходимо значення. які у сумі відповідають отриманій різниці. Відповідно на стрічці "Відношення доз" знаходимо значення доз і їх перемножуємо.

Приклад:

Отримана різниця рівнів 12 дБА. 12 дБА можна отримати додаванням $10+2;\ 9+3$ і т.д. По стрічці "Різниця рівнів" знаходимо, що 10 дБА відповідає дозам $10;\ 2$ дБА - $1,6;\ 9$ дБА - $8;\ 3$ дБА - 2. Отримані дози перемножуємо 10 х $1,6=16;\ 8$ х 2=16.»

Питання для самоперевірки

- 1.Що таке шум, звук, ультразвук, інфразвук?
- 2.В чому полягає негативна дія шуму?
- 3.В чому полягає негативна дія ультразвуку?
- 4.В чому полягає негативна дія інфразвуку?
- 5.Що таке і в яких одиницях вимірюється інтенсивність звуку та рівень інтенсивності звуку?
- 6.Що таке і в яких одиницях вимірюється звуковий тиск та рівень звукового тиску?
- 7.Що таке рівень звуку (шуму)? В чому різниця між рівнем звуку (шуму) і рівнем звукового тиску?
- 8.Як визначається сумарний рівень інтенсивності звуку (звукового тиску) в деякій точці простору, якщо відомі рівні інтенсивності звуку (звукового тиску) в цій точці кількох джерел, від яких надходить звук?
 - 9.Що таке спектр шуму? Що таке граничний спектр?
- 10.9 жі непостійними, які непостійними, які імпульсними?
 - 11.Як нормується постійний шум на робочих місцях
 - 12.Як нормуються непостійні та імпульсні шуми?
 - 13.Які існують організаційні заходи боротьби з шумами?
- 14.В чому полягають основні заходи зниження шуму в джерелі виникнення?
 - 15.Що таке звукоізоляція і яким чином вона здійснюється?
 - 16.Що таке звукопоглинання і як воно реалізується?
- 17.В чому полягають основні заходи зниження шкідливого впливу ультразвуку та інфразвуку?

Задача 6.

Умова.

На робоче місце, що досліджується, водночає надходить шум від чотирьох джерел (1, 2, 3, 4). Характеристики джерел та відстані надаються викладачем.

Завдання.

1. Визначте рівень звукового тиску на робочому місці від окремих джерел, поопераційно виконавши всі необхідні розрахунки за формулами:

$$L_{r1} = L_1 - 10 \lg (0.5\pi r_1^2)$$

$$L_{r2} = L_2 - 10 \lg (2\pi r_2^2)$$

$$L_{r3,4} = L_{3,4} - 10 \lg (\pi r_{3,4}^2)$$

де $\mathbf{r_i}$ -відстань від джерела шуму до працівника згідно плану приміщення (рис.1);

L_i - рівень потужності окремого джерела шуму.

Рис.1. План приміщення, де 1- джерело шуму, розташоване у тригранному куті, 2- джерело шуму, розташоване на поверхні, 3 і 4- джерела шуму, розташовані у двогранному куті; $\mathbf{r_1}$, $\mathbf{r_2}$, $\mathbf{r_3}$, $\mathbf{r_4}$ — відстані до джерел шуму відповідно.

Примітка. В дійсності зниження рівня пов'язано не тільки з віддаленістю його від джерела. Впливають й інші фактори,які викликані, поглинанням *36*УКУ поверхнею полу, перепонами, зустрічаються та інші. Однак вплив таких факторів важко врахувати в метричній формі. Наведені вище рівні враховують лише геометричну складову – відстань від джерела шуму. При реальному встановлюванні обладнання в приміщенні, або біля відбиваючих поверхонь доводиться вводити відповідні коефіцієнти, які враховують акустичні характеристики приміщення і відбивання звуку від стін приміщення. Все це призводить до того, що рівень звукового тиску встановленого обладнання буде значно вище значень, що заміряні в лабораторних умовах і наведених у каталогах на обладнання. Наприклад, зниження тиску може складати всього 3-4 дБ.

2. Визначте сумарний рівень звукової потужності всіх груп джерел шуму для розрахункової точки двома способами:

- за допомогою формули $L_{\text{сум}} = 10 \text{ lg } (10^{0.1 \text{Lr}_1} + 10^{0.1 \text{Lr}_2} + 10^{0.1 \text{Lr}_3} + 10^{0.1 \text{Lr}_4});$
- за допомогою номограми для розрахунку суми рівнів інтенсивності звуку (табл. ПР4) через попарно-послідовне додавання до найбільшого рівня звукового тиску поправок відповідно до різниць рівнів від найбільшого L_6 до найменшого $L_{\rm M}$. Для цього спочатку визначають два найбільших значення з отриманих в п.1 рівнів звукового тиску, що становлять першу пару. Знаходять їх різницю та відповідно до отриманої цифри визначають ΔL_1 , яку додають до найбільшого з першої пари значення. Отримане значення і третє за потужністю значення звукового тиску становлять другу пару. Знайшовши між другою парою різницю, визначаємо ΔL_2 , яку додають до більшого в другій парі значення. Далі так само з останнім джерелом. Отримане значення й буде шуканою сумою.

Таблиця ПР4 Номограма для розрахунку суми рівня інтенсивності звуку (звукового тиску)

110111011	70011100	PO.	Spanj.	ing of	.,,,,,	D1171 111	1 0 11 0 11	DITOUT	I GDJ K	J (J	повот	0 11101	<i>`J)</i>
$L_6 - L_{\scriptscriptstyle M}$	0	1	2	3	4	5	6	7	8	9	10	15	20
$\Delta L_{1,2,3}$	3,0	2,5	2,0	1,8	1,5	1,2	1,0	0,8	0,6	0,5	0,4	0,2	0

Значення, що були розраховані обома способами, повинні бути практично рівними.

Розрахунки та результати записати у протокол (додаток ПР4).

Студент	групи
Варіант	

Формула	3 підставленими значеннями	Результат*
$L_{r1} = L_1 - 10 \lg (0.5\pi r_1^2) =$		
$L_{r2} = L_2 - 10 \lg (2\pi r_2^2)$		
$L_{r3} = L_3 - 10 \lg (\pi r_3^2) =$		
$L_{r4} = L_4 - 10 \lg (\pi r_4^2) =$		
$L_{\text{cym}} = 10 \text{lg} (10^{0.1 \text{Lr}_1} + + 10^{0.1 \text{Lr}_4}) =$		

^{*}Результат округлити до цілих значень.

$L_6 - L_{\scriptscriptstyle M} =$ (вказати значення)	P ізниця значень $L_6 - L_{\scriptscriptstyle M}$	ΔL_i^{**}
=		$\Delta L_1 =$
=		$\Delta L_2 =$
=		$\Delta L_3 =$
L _{cym} =		

^{**}Якщо число різниці потрапляє у проміжок чисел номограми, то треба брати приблизне значення, наприклад, якщо L_6 – $L_{\scriptscriptstyle M}$ =7,5, тоді ΔL =0,7, або якщо L_6 – $L_{\scriptscriptstyle M}$ =17, тоді ΔL =0,1

Номограма для розрахунку суми рівня інтенсивності звуку (звукового тиску)

$L_{\rm 6}$ $-L_{\rm m}$	0	1	2	3	4	5	6	7	8	9	10	15	20
$\Delta L_{1,2,3}$	3,0	2,5	2,0	1,8	1,5	1,2	1,0	0,8	0,6	0,5	0,4	0,2	0

Задача 6 Д (домашня)

Умова. На підприємстві працюють джерела переривчастого шуму, характеристики яких наведено у вихідних даних (табл. ПР4Д)

Завдання:

- за отриманими вихідними даними (варіанти по списку) визначити еквівалентний рівень шуму, якщо відомо час дії (ti, хв..) та відповідно виміряні значення рівнів шуму (LAi, дБA);
 - зробити перевірочний розрахунок;
- для логарифмічних рівнів фактичне їх значення порівняти з допустимим (для цієї задачі $LA_{\text{доп}} = 75 \text{дБA}$);
 - зробити висновок щодо відповідності виміряних значень нормі;
 - отримані результати записати у звіт за формою (додаток ПР4Д)

Таблиця ПР4Д

Фактичні	Перици	 й вимір	Другий	i BIAMIN	Тпотій	вимір		ий вимір
знач.	перши	n brimip	другии	ГВИМПР	трспи	Бинигр	тетверті	TIVI BUIMILE
Nº Shan.	t1, хв	LA1,	t2, хв	LA2,	t3, хв	LA3,	t4, хв	LA4,
варіанту	ιι, λυ	дБА	ιΖ, λυ	дБА	ισ, κυ	дБА	ιτ, πο	дБА
1	60	81	300	70	60	74	60	79
2	300	72	120	72	30	77	30	80
3	240	83	120	82	60	69	60	87
4	240	81	60	83	120	73	60	85
5	300	78	60	81	60	77	60	83
6	300	76	120	76	30	82	30	84
7	240	86	120	85	60	81	60	90
<u>8</u>	60	94	240	84	120	81	60	92
	30	97	300	83	120	86	30	95
10	240	86	60	88	120	74	60	90
11	120	79	240	72	60	77	60	80
12	240	83	120	82	60	79	60	87
13	120	89	240	82	60	74	60	90
14	120	76	30	78	300	68	30	80
15	240	79	60	81	120	69	60	83
16	60	94	60	90	300	75	60	92
17	240	86	60	88	60	85	120	87
18	300	67	30	73	120	66	30	75
19	300	70	30	76	30	75	120	72
20	120	86	240	79	60	82	60	87
21	240	76	60	78	120	71	60	80
22	240	78	60	80	60	69	120	79
23	240	75	120	74	60	74	60	79
24	120	86	30	88	30	79	300	80
25	300	66	30	72	120	61	30	74
26	120	76	30	78	300	57	30	80
27	240	78	60	80	120	68	60	82
28	120	84	30	86	300	70	30	88
29	120	74	60	73	240	61	60	75
30	300	74	30	80	120	66	30	82

Хід виконання роботи.

1. За таблицею Д.2.1 визначити LA для кожного найближчого значення рівня

(Примітка: див. приклад у додатку 2 теоретичних відомостей)

- 2. Визначити величини LAi LAi для кожного рівня.
- 3. Визначити енергетичну суму рівнів за таблицею Д.1.1. (додаток 1 теоретичних відомостей)

(Примітка: рахувати необхідно послідовно від найбільшого значення рівня шуму до найменшого)

4. Перевірити отримане значення можна за допомогою формули $LA_{\text{сум}}=10\ \text{lg}\ (10^{0,1\text{LA1}}+10^{0,1\text{LA2}}+10^{0,1\text{LA3}})$

(Примітка: похибка в значеннях має бути менше, ніж $1 \partial \mathcal{E} A$)

5. Зробити висновок щодо відповідності фактичного значення допустимим нормам.

Студент		групи	Варіант
Вихідні дані:			
LA1 =дБА прот	ЯГОМ XB.		
LA2 = дБА прог	ГЯГОМ XB.		
LA3 = дБА прог	ТЯГОМ XB.		
LA4 = дБА прог	ТЯГОМ XB.		
LАдоп			
1. За таблицею Д.2.1 визначаєм	10 LA для кожного	найближчого з	начення рівня.
1.1 LA1 = дБА			
1.2 LA2 = дБА			
1.3 LA3 =дБА			
1.4 LA4 = дБА			
2. Визначаємо величини LAi -	LAi для кожного р	івня.	
2.1 =			
2.2 =			
2.3 =			
2.4 =			
3. Визначаємо енергетичну сум	у рівнів за допомо	гою таблиці Д.	1.1.
3.1.1=_			
3.1.2			
3.2.1=_			
3.2.2+=	<u>.</u>		
3.3.1=			
3.3.2	, тобто ∑= _	дБА	
4 Розрахуємо суму за формуло	ою з точністю до ді	вох знаків після	коми
$LA_{cym} = 10 lg (10^{0.1LA1} + 10^{0.1LA2} + 10^{0.1LA2})$	$0^{0.1LA3}$) =		

5. Висновок: