Упражнение (xcos)

Построение фигур Лиссажу

Дворкина Е. В.

14 февраля 2025

Российский университет дружбы народов, Москва, Россия

Докладчик

- Дворкина Ева Владимировна
- студентка
- · группа НФИбд-01-22
- Российский университет дружбы народов
- · 1132226447@rudn.ru
- https://github.com/evdvorkina

Цель работы

Цель данной лабораторной работы - выполнить упражнение по ознакомлению с инструментом xcos

Постройте с помощью хсоз фигуры Лиссажу со следующими параметрами:

1)
$$A = B = 1, a = 2, b = 2, \delta = 0; \pi/4; \pi/2; 3\pi/4; \pi;$$

2)
$$A=B=1, a=2, b=4, \ \delta=0; \ \pi/4; \ \pi/2; \ 3\pi/4; \ \pi;$$

3)
$$A = B = 1, a = 2, b = 6, \delta = 0; \pi/4; \pi/2; 3\pi/4; \pi;$$

4)
$$A=B=1, a=2, b=3, \ \delta=0; \ \pi/4; \ \pi/2; \ 3\pi/4; \ \pi.$$

Математическое выражение для кривой Лиссажу

$$\begin{cases} x(t) = Asin(at + \delta), \\ y(t) = Bsin(bt), \end{cases}$$

где A, B – амплитуды колебаний, a, b – частоты, δ – сдвиг фаз.

Блоки xcos

- · CLOCK_c запуск часов модельного времени;
- GENSIN_f блок генератора синусоидального сигнала;
- CANIMXY анимированное регистрирующее устройство для построения графика типа у = f(x);
- · TEXT_f задаёт текст примечаний.

Модель для построения фигур Лиссажу в хсоѕ

Рис. 1: Модель для построения фигуры Лиссажу в хсоз

Настройка параметров генератора синусоидальных колебаний

Настройка параметров генератора синусоидальных колебаний

Рис. 3: Ввод параметров для генератора синусоидальных колебаний

Настройка параметров CANIMXY

$A = B = 1, a = 2, b = 2, \delta = 0$

$A = B = 1, a = 2, b = 2, \delta = \pi/4$

$A = B = 1, a = 2, b = 2, \delta = \pi/2$

$A = B = 1, a = 2, b = 2, \delta = 3\pi/4$

$A = B = 1, a = 2, b = 2, \delta = \pi$

Изменение параметров на втором генераторе

Рис. 10: Ввод параметров для генератора синусоидальных колебаний

$A = B = 1, a = 2, b = 4, \delta = 0$

$A = B = 1, a = 2, b = 4, \delta = \pi/4$

$A = B = 1, a = 2, b = 4, \delta = \pi/2$

$A = B = 1, a = 2, b = 4, \delta = 3\pi/4$

$A = B = 1, a = 2, b = 4, \delta = \pi$

Изменение параметров на втором генераторе

$A = B = 1, a = 2, b = 6, \delta = 0$

$A = B = 1, a = 2, b = 6, \delta = \pi/4$

$A = B = 1, a = 2, b = 6, \delta = \pi/2$

$A = B = 1, a = 2, b = 6, \delta = 3\pi/4$

$A = B = 1, a = 2, b = 6, \delta = \pi$

Изменение параметров на втором генераторе

$A = B = 1, a = 2, b = 3, \delta = 0$

$A = B = 1, a = 2, b = 3, \delta = \pi/4$

$A = B = 1, a = 2, b = 3, \delta = \pi/2$

$A = B = 1, a = 2, b = 3, \delta = 3\pi/4$

$A = B = 1, a = 2, b = 3, \delta = \pi$

В результате выполнения данной лабораторной работы я выполнила упражнение по ознакомлению с программой *xcos*.

Спасибо за внимание!