EE115B-Digital Circuits 2nd semester AY 2021/2022 HW3 Due on June 12, 2022

Write down your name on this page, and name your submission file as HW3-"your name", otherwise your submission will not be marked.

1. Based on the circuit of the priority encoder 74HC138, write down the expression of Y_2 , Y_1 , Y_0 ,

 $Y_{\rm EX}^{'}$, $Y_{\rm S}^{'}$, and check if they are identical to those on the lecture notes. (6 marks)

2. Based on the circuit of 3–8 decoder, write down the expression of Y_7 to Y_0 , and check if they are identical to those on the lecture notes. (6 marks)

3. Based on the circuit of 3–8 decoder 74HC138, write down the expression of Y'_7 to Y'_0 , and check if they are identical to those on the lecture notes. (6 marks)

4. Based on the circuit of Binary-Decimal Decoder, write down the expression of Y'_9 to Y'_0 , and check if they are identical to those on the lecture notes. (6 marks)

- 5. For the BCD to 7-Segment Decoder
- (a) Based on the truth table, write down the expression of Y_g to Y_a , using the Karnaugh map, check if they are identical to those on the lecture notes. (10 marks)

		输出						输入				
字形	$Y_{_{\parallel}}$	Y_{i}	Y.,	$Y_{\rm d}$	Y_{e}	$Y_{\rm h}$	Y_{a}	A_{n}	A_1	A_2	A_3	数字
0	0	1	1	1	1	1	1	0	0	0	0	0
1	0	0	0	0	1	1	0	1	0	0	0	1
3	1	0	1	1	0	1	1	0	1	0	0	2
3	1	0	0	1	1	1	1	1	1	0	0	3
4	1	1	0	0	1	1	0	0	0	1	0	4
5	1	1	θ	1	1.	0	1	1	0	1	0	5
Ь	1	1.	1	1	1	0	0	0	1	1	0	6
Ĭ	0	0	0	0	1	1	1	1	1	1	0	7
8	1	1	1	1	1	1	1	0	0	0	1	8
q	1	1	0	0	1	1	1	1	0	0	1	9
c	1	0	1	1	0	0	0	0	1	0	1	10
0	1	0	0	1	1	0	0	1	1	0	1	11
-	1	1	0	0	0	1	0	0	0	1	1	12
č	1	1	0	1	0	0	1	1	0	1	1	13
-	1	1	1	1	0	0	0	0	1	1	1	14
1:	0	0	0	0	0	0	0	1	1	1	1	15

(b) Based on the circuit, write down the expression of Y_g to Y_a , check if they are identical to those on the lecture notes. (6 marks)

6. Based on the circuit of 4 bits comparators (74HC85), write down the expression of $Y_{(A>B)}$, $Y_{(A=B)}$ and $Y_{(A<B)}$, and check if they are identical to those on the lecture notes. (6 marks)

7. Plot the waveform of Q and Q' (6 marks)

8. Plot the waveform of Q and Q', assume the initial Q is 0. (6 marks)

9. Plot the waveform of Q and Q', assume the initial Q is 0. (6 marks)

10. Plot the waveform of Q and Q', assume the initial Q and Q_1 are 0. (6 marks)

11. Plot the waveform of Q and Q', assume the initial Q and the output of the master stage are 0. (6 marks)

12. Plot the waveform of Q and Q', assume the initial Q and the output of the master stage are 0. (6 marks)

13. Plot the waveform of Q and Q', assume the initial Q is 0. (6 marks)

14. Analyze how does FF₂ realize the shift left, shift right, parallel load and hold functions. (6 marks)

15. Based on the 4-bits Up Synchronous Binary Counter, design the Up Synchronous Decimal Counter. (Don't look at the lecture notes) (6 marks)

