				0			
Q.1.1					RJ		
		$T = \frac{1}{2}m$	$v^2 =$	$\frac{1}{2}mR^2$	j 2	F	IJ
Q.1.1.1		V = - m		4			
		- "					
L = T - V Lagrangian forr		Where	. v = R	Θ			
$L = \frac{1}{2}mR^2\dot{\theta}^2 + mgR\cos\theta$	θ						
$\frac{d}{dt} \left(\frac{\partial L}{\partial \theta} \right) - \left(\frac{\partial L}{\partial \theta} \right) = 0$ Lagr	ange Formu	la					
$mR^2\ddot{\theta} + mgRsin\theta = 0$							
a							
$\ddot{\theta} + \frac{g}{R} \sin \theta = 0$ For sm:	all osscilatio	n sinθ	= 0				
$\ddot{\theta} + \frac{g}{R}\theta = 0$							
	_						
Thus the frequency is ω =	$\sqrt{\frac{g}{R}}$						
Q.1.1.2							
L = T - V				9 PM			
				nslational =			
$L = \frac{1}{2}mR^2\dot{\theta}^2 + \frac{1}{5}mR^2\dot{\theta}$	² + mgRcos	θ		ational = 1	•	$\frac{1}{5}mR^2$	θ ²
				$-mgRe$ $=\frac{2}{5}mR$			
$L = \frac{7}{10} mR^2 \dot{\theta}^2 + mgRcc$	osθ		Jball	= - m.k			
Q.1.1.3							
4021219							
$\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{\theta}}\right) - \left(\frac{\partial L}{\partial \theta}\right) = 0$							
$\frac{14}{10}mR^2\ddot{\theta} + mgRsin\theta =$	0						
$\ddot{\theta} + \frac{5g}{7R}\theta = 0$							
Thus the frequency is ω =	$\sqrt{\frac{5g}{7R}}$						

Q.1	.2	RJ					
Q.1.2.					RJ		
$M_r = \frac{1}{2}$	$\frac{4}{3}\pi r^3 \rho$						
F = -	$\frac{GM_rm}{r^2}$ =	$= -G \frac{4}{3} \pi r \rho r$	n				
Sub in	ı desnity	expression	$\rho = \frac{3N}{4\pi^2}$	1 03			
			4/1/				
r = -	GMmr R ³						
				I.			
Q.1.2.	2			RJ			
F = ma							
m <i>i</i> " + -	$\frac{GMmr}{R^3} = 0$)					
ω =	$\frac{GM}{R^3}$						
From,	$T = \frac{2\pi}{\omega}$						
	Ĩ	$is: T = 2\pi$	R ³ GM				
Q.1.2.	<u>3</u>						RJ
M =5.9	972x10^4	kg					
		s = 84.3 min					
v _{peak}	$=\frac{2\pi A}{T}v$	vhere A = R	where R	= 6.371 <i>x</i> 1	10 ⁶ m		
Thus u	sing peri	od from abo	ve: v _{peak} :	$=\frac{2\pi R}{T}=7.9$	91x10 ³ m/	s	

							R
Q.1.3.	Ĺ						
		tion: (Two R 2e ^{r2t} Gene	eal Roots) eral Solution				
$0 = C_1$	$e^{r1t} + C_2 e^r$	r2t					
C ₁ e ^{r1t}	$=-C_2e^{r2t}$	t					
C1	e ^{r2t}						
$\frac{1}{C_2} =$	e ^{r2t}						
(r2 –	$r1$) $\ln \left(-\frac{C_1}{C_2}\right)$) = t					
	, -D	/	hen $-\frac{c_1}{c_2}$ is g	reater than 1	to avoid unde	fined solution	۱.
Critica	lly Damned	Solution: (O	ne Real Roo	t)			
		rt General		9			
0 = (0	+tC2)ert						
C ₁							
$-\frac{c_1}{c_2}$	t						
			_		ecause they fo	_	+
-					atory trigonon ns can only cro		
most					,,	22 1112 11 2113	
Q.1.3.	<u>!</u>						
	Conditions:)	X(0) = x ₀ , X'(0) = v ₀				
Initial		itten as α —	- (c)				
	r can be wr						_
Where	r can be wr	_					
Where	(C ₁ +tC ₂)e	_					
x(t) = x(0) =	(C ₁ +tC ₂)e	rt		-tC-\ro ^{rt}			
Where $x(t) = x(0) = \frac{d}{dt}x(t)$	(C ₁ +tC ₂)e	$tC_2)e^{rt} = C$	$C_2e^{rt} + (C_1 +$	-tC ₂)re ^{rt}			
Where $x(t) = x(0) = \frac{d}{dt}x(t)$ $v_0 = v_0 = v_0$	$(C_1+tC_2)e$ $: C_1$ $: = \frac{d}{dt}(C_1+tC_2)e$	$tC_2)e^{rt} = C$		-tC ₂)re ^{rt}			

1.4.\					
under-damp	ed harmonic	Oscillator			
		χ(t) = χ, e	os (w	,t+φ)	
ω ₁ = √	ua- da				
For half-lif	દ ે:		6=0		
25	خ: -= 1 % e ^{−∝t} د ه	(wif+ a)			
1 2	= e-xtcos(1	ult)			
	lue for				
1 8	= e_a+				
	= 2 Ln(2)				
ŧ	= 2 ln(2)				

1.5.	1 = T = U T V = Vr + V0
In Pola	$L = T - U$ $L \cos \theta \int dt + r \frac{d\theta}{dt}$ $= \dot{l} + \dot{l} \dot{\theta}$
ナニュッ	
= \frac{1}{2} w	$((\dot{l}^2 + L^2\dot{\theta}^2)$ = -mglcos0 + $\frac{1}{2}$ k($l - L)^2$
	$L = \frac{1}{2} m (\dot{\ell}^2 + \dot{\ell}^2 \dot{\theta}) + mg L \cos \theta - \frac{1}{2} k (\dot{\ell} - \dot{\ell})^2$
	$L = \frac{1}{2}m\dot{\ell}^2 + \frac{1}{2}m\ell^2\dot{\theta}^2 + mg\ell\cos\theta - \frac{1}{2}\kappa(\ell-\ell)^2$
Vs. a	g toler-lagrange Formula J 2L = 2L and Jt 20 20
	It de de and It de de
For l	
	$\frac{\partial L}{\partial \lambda} = M\dot{L} \qquad \frac{\partial L}{\partial \lambda} = M\dot{L}\dot{\theta}^{3} + Mg\cos\theta - K(L-L_{0})$ $\frac{\partial}{\partial \lambda} \left[M\dot{L} \right] = M\dot{L}\dot{\theta}^{2} + Mg\cos\theta - K(L-L_{0})$
	$M\ddot{L} = ML\dot{\theta}^{2} + Mg\cos\theta - k(L\cdot I_{0})$
	1-102-gcos0-K(1-1.)=0
9 51	= ml3 b 2L = - mglsin0
	d [mlo] = -mgls:no
	2M L L D + M L D = - mg L sin 0 B L + D L D + g sin 0 = 0
	81 + 210 + 9 sin 0 = 0
°, The ⊥wo e	evations are 1 - 162-9 cost- 1 (1-10)=0
	$\ddot{\theta} - \frac{2}{L} \dot{L} \dot{\theta} + \frac{9}{L} \sin \theta = 0$

```
#!/usr/bin/env python
# coding: utf-8
# ENPH 211 / PHYS 212 2024W
# Student names:
# Submit your code, a pdf of the code, and pdfs of any figures you make. Ensure
your figures are labelled and titled.
# The following code solves the second order linear differential
equation $\ddot{\theta} + \ \omega_0^2 \ \sin \theta = 0$.
#%% Load libraries
import numpy as np
from scipy.integrate import odeint
import matplotlib.pyplot as plt
#%% Parameters
omega_0_rads = 1.0 # Natural angular frequency
theta0_rad, thetaDot0_rads = 0.7 * np.pi, 0.0 # Initial position and velocity
outpath = "./figure_" # Where figure goes
#%% Do the numerical integration
def dU dt(U, t):
    # Here U is a vector such that y=U[0] and z=U[1]. This function should return
[y', z']
    return [U[1], - omega_0_rads**2 * np.sin(U[0])]
U0 = [theta0 rad, thetaDot0 rads]
ts, tIncrement_s = np.linspace(0, 9 * np.pi / omega_0_rads, 300, retstep=True)
Us = odeint(dU_dt, U0, ts)
thetas = Us[:,0]
#%% Plot
plt.xlabel("t (s)")
```

```
plt.ylabel(r"$\theta $ (rad)")
plt.title("Oscillator")
plt.plot(ts, thetas, label='pos')
plt.show(); plt.clf()
# Q1) (3 pts) Numerically determine the period of the previous oscillator,
# for instance by identifying consecutive samples of opposite sign.
# Here's the cheater method of using an already nicely created scipy function
from scipy.signal import find_peaks
def scipyPeriod (thetas):
    peaksInd, _ = find_peaks(thetas)
    return ts[peaksInd[1]] - ts[peaksInd[0]]
print(f"Period of the given oscillator using Scipy is {scipyPeriod(thetas):.2f}
seconds")
def getApproxPeriod(thetas):
    currentState = None
    switchState = None
    switchIndices = []
    for i in range(len(thetas)):
        if thetas[i] < 0: currentState = False</pre>
        else: currentState = True # Checking +/- state of theta value
        if currentState != switchState: # we only care about +/- transition
points so check current state of function. True is pos, False is neg
            switchIndices.append(i)
            switchState = currentState
    return (switchIndices[2] - switchIndices[1])*2*tIncrement s # Taking index 3
and 1 because first switch index will always be zero the way that this has been
coded (because going from none to True or False is a state switch)
```

```
print(f"Period of the given oscillator using sign switching is
{getApproxPeriod(thetas):.2f} seconds")
# Q2 (3 pts) Reproduce the previous plot over roughly 2 periods with the harmonic
approximation overlayed.
def smallAngleApproxdU dt(U, t):
    \# Here U is a vector such that y=U[0] and z=U[1]. This function should return
[y', z']
    return [U[1], - omega_0_rads**2 * U[0]]
Us = odeint(dU_dt, U0, ts[:int((4/5)*300)])
Uthetas = Us[:, 0]
sAAUs = odeint(smallAngleApproxdU_dt, U0, ts[:int((4/5)*300)])
sAAThetas = sAAUs[:, 0]
plt.xlabel("t (s)")
plt.ylabel(r"$\theta $ (rad)")
plt.title("Oscillator")
plt.plot(ts[:int((4/5)*300)], Uthetas)
plt.plot(ts[:int((4/5)*300)], sAAThetas)
plt.show(); plt.clf()
# Q3 (3 pts) Determine the relative difference between the period and the
harmonic approximation ((true - harmonic) / true)
def getRelativeDiff(tru, approx):
    return 100*(tru-approx)/tru
truePeriod = getApproxPeriod(Uthetas)
approxPeriod = getApproxPeriod(sAAThetas)
print(f"The true period of the oscillator is {truePeriod:.2f}s")
```

```
print(f"The approximate harmonic period of the oscillator is
{approxPeriod:.2f}s")
print(f"\nThe relative difference in period is {getRelativeDiff(truePeriod,
approxPeriod):.2f}%")
# Q4 (4 pts) Scanning starting angles over angles from close to 0 to close to
$\pi$ radians, plot the period vs the starting angle, and the relative difference
with the harmonic approximation vs the starting angle.
startingAngles = np.delete(np.linspace(0, np.pi, 502), [0, -1]) # Creating a
linear space between 0 and pi, then dropping the 0, and pi elements
periods = []
for i in range(len(startingAngles)):
    periods.append(getApproxPeriod(odeint(dU dt, [startingAngles[i],
thetaDot0_rads], ts[:int((4/5*300))])[:, 0]))
periods = np.array(periods)
plt.xlabel("Starting Angle (rad)")
plt.ylabel("Period (s)")
plt.title("Period vs Starting angle")
plt.plot(startingAngles, periods)
plt.show()
plt.xlabel("Starting Angle (rad)")
plt.ylabel("Relative Difference")
plt.title("Accuracy of harmonic approximation")
plt.plot(startingAngles, getRelativeDiff(truePeriod, periods))
plt.show()
# %%
```


