July 20, 2013

Chapter 14: Numerical Differentiation

Uri M. Ascher and Chen Greif Department of Computer Science The University of British Columbia {ascher,greif}@cs.ubc.ca

Slides for the book A First Course in Numerical Methods (published by SIAM, 2011) http://www.ec-securehost.com/SIAM/CS07.html

Goals of this chapter

- To develop useful formulas for approximating derivatives of a function f(x) at a point $x=x_0$;
- to understand the mild stability limitations of numerical differentiation;
- *to see differentiation techniques in action in some more advanced applications.

Outline

- Deriving formulas using Taylor series
- Richardson extrapolation
- Deriving formulas using polynomial interpolation
- · Roundoff and data errors
- *Differentiation matrices
- *advanced

What is numerical differentiation

- Given a function f(x) that is differentiable in the vicinity of a point x_0 , it is often necessary to estimate the derivative f'(x) and higher derivatives using nearby values of f.
- Example 1.2 in Chapter 1 provides a simple instance of numerical differentiation. Here we consider the more complete picture. For instance, we ask
 - how to achieve more, higher order difference formulas in an easy and orderly fashion?
 - how to control or altogether avoid the strong cancellation error effect demonstrated in Example 1.3?

These and several other questions are considered here.

Why numerical differentiation?

- Numerical differentiation is a major tool in deriving methods for differential equations (see Chapter 16).
- Approximating derivatives is ubiquitous in continuous optimization and nonlinear equations (see Chapters 3 and 9).
- The need to estimate derivatives from discrete data often arises in applications.

Outline

- Deriving formulas using Taylor series
- Richardson extrapolation
- Deriving formulas using polynomial interpolation
- Roundoff and data errors
- *Differentiation matrices

Difference formulas using Taylor series

- This is the most convenient, ad hoc approach.
- Start from Taylor's expansion, generally written for a small h>0 as

$$f(x_0 \pm h) = f(x_0) \pm h f'(x_0) + \frac{h^2}{2} f''(x_0) \pm \frac{h^3}{6} f'''(x_0) + \frac{h^4}{24} f^{(iv)}(x_0) \pm \frac{h^5}{120} f^{(v)}(x_0) + \frac{h^6}{720} f^{(vi)}(x_0) + \mathcal{O}(h^7).$$

- Truncate this as needed and derive an expression for $f'(x_0)$.
- Simplest example is the forward difference of Example 1.2. Likewise, backward difference is obtained by writing $f(x_0-h)=f(x_0)-hf'(x_0)+\frac{h^2}{2}f''(\xi), \text{ hence } f'(x_0) \text{ is approximated by } \frac{f(x_0)-f(x_0-h)}{h} \text{ with truncation error } \frac{h}{2}f''(\xi) \text{ for some } x_0-h\leq \xi\leq x_0.$
- The forward and backward formulas are one-sided, two-point formulas with truncation error $\mathcal{O}(h)$, i.e., they are 1st order methods.

Higher order formulas

- We can easily derive 2nd order, three-point formulas.
 - Centered: subtract expressions for $f(x_0 + h)$ and $f(x_0 h)$:

$$f(x_0+h) - f(x_0-h) = 2hf'(x_0) + \frac{2h^3}{6}f'''(x_0) + \frac{2h^5}{120}f^{(v)}(x_0) + \mathcal{O}(h^7).$$

Thus, $f'(x_0)$ is approximated by $\frac{f(x_0+h)-f(x_0-h)}{2h}$ with truncation error $-\frac{h^2}{\epsilon}f'''(\xi)$.

- One-sided: Please verify that the approximation $\frac{1}{2h}\left(-3f(x_0)+4f(x_0+h)-f(x_0+2h)\right)$ has truncation error $\frac{h^2}{3}f'''(\xi)$ where $\xi\in[x_0,x_0+2h]$.
- Using five points we can derive 4th order formulas, e.g., the formula

$$f'(x_0) \approx \frac{1}{12h} \left(f(x_0 - 2h) - 8f(x_0 - h) + 8f(x_0 + h) - f(x_0 + 2h) \right),$$

has the truncation error $e(h) = \frac{h^4}{30} f^{(v)}(\xi)$.

 A similar approach may be used to eliminate for the 2nd derivative. For instance, the famous centred, three-point, 2nd order formula is

$$f''(x_0) = \frac{1}{h^2} \left(f(x_0 - h) - 2f(x_0) + f(x_0 + h) \right) - \frac{h^2}{12} f^{(iv)}(\xi)$$

Higher order formulas

- We can easily derive 2nd order, three-point formulas.
 - Centered: subtract expressions for $f(x_0 + h)$ and $f(x_0 h)$:

$$f(x_0+h)-f(x_0-h)=2hf'(x_0)+\frac{2h^3}{6}f'''(x_0)+\frac{2h^5}{120}f^{(v)}(x_0)+\mathcal{O}(h^7).$$

Thus, $f'(x_0)$ is approximated by $\frac{f(x_0+h)-f(x_0-h)}{2h}$ with truncation error $-\frac{h^2}{2}f'''(\xi)$.

- One-sided: Please verify that the approximation $\frac{1}{2h}\left(-3f(x_0)+4f(x_0+h)-f(x_0+2h)\right)$ has truncation error $\frac{h^2}{2}f'''(\xi)$ where $\xi \in [x_0, x_0 + 2h]$.
- Using five points we can derive 4th order formulas, e.g., the formula

$$f'(x_0) \approx \frac{1}{12h} \left(f(x_0 - 2h) - 8f(x_0 - h) + 8f(x_0 + h) - f(x_0 + 2h) \right),$$

has the truncation error $e(h) = \frac{h^4}{20} f^{(v)}(\xi)$.

 A similar approach may be used to eliminate for the 2nd derivative. For instance, the famous centred, three-point, 2nd order formula is

$$f''(x_0) = \frac{1}{h^2} \left(f(x_0 - h) - 2f(x_0) + f(x_0 + h) \right) - \frac{h^2}{12} f^{(iv)}(\xi).$$

Example

Approximate f'(0) for $f(x) = e^x$ using methods of order 1, 2 and 4. Record and plot errors for $h = 10^{-k}, \ k = 1, \dots, 5$.

h	$\frac{e^{h}-1}{h}-1$	$\frac{e^h - e^{-h}}{2h} - 1$	$\frac{-e^{2h}+8e^h-8e^{-h}+e^{-2h}}{12h}-1$
0.1	5.17e-2	1.67e-3	3.33e-6
0.01	5.02e-3	1.67e-5	3.33e-10
0.001	5.0e-4	1.67e-7	-4.54e-14
0.0001	5.0e-5	1.67e-9	-2.60e-13
0.00001	5.0e-6	1.21e-11	-3.63e-12

Difference formulas

Notation: $f_j = f(x_0 + jh), \ j = 0, \pm 1, \pm 2, ...$

Derivative	points	type	order	formula
$hf'(x_0)$	2	forward	1	$f_1 - f_0$
	2	backward	1	$f_0 - f_{-1}$
$2hf'(x_0)$	3	centred	2	$f_1 - f_{-1}$
	3	forward	2	$-3f_0 + 4f_1 - f_2$
$12hf'(x_0)$	5	centred	4	$f_{-2} - 8f_{-1} + 8f_1 - f_2$
$h^2 f''(x_0)$	3	centred	2	$f_{-1} - 2f_0 + f_1$
$12h^2f''(x_0)$	5	centred	4	$-f_{-2} + 16f_{-1} - 30f_0 + 16f_1 - f_2$

Taylor series approach assessment

- Simple and natural to use.
- Directly obtain both formula and its truncation error estimate.
- However, this approach is ad hoc and does not automatically generalize:
 - Sometimes we need to approximate with a non-uniform step size, e.g., approximate $f'(x_0)$ using $f(x_0)$, $f(x_0+h)$, $f(x_0-h/3)$. This would require an individual treatment.
 - Tedious work (and increased chances for human error) may be required for deriving high order formulas.

Outline

- Deriving formulas using Taylor series
- Richardson extrapolation
- Deriving formulas using polynomial interpolation
- Roundoff and data errors
- *Differentiation matrices

Richardson extrapolation

• This is a straightforward, favourite technique based on a simple yet general principle for deriving higher order formulas from lower order ones.

More limited than the general Taylor series approach, but methodical and

- easily applied.
- Can be applied repeatedly for generating methods of higher and higher order.
- Used in classical methods for numerical integration and differential equations (Chapters 15, 16).
- Basic idea: use lower order formula with more than one step size, and combine to eliminate the leading term of the truncation error.

Example of method derivation

Goal: Derive a centred, 4th order formula for the 2nd derivative.

• Write the centred 3-point formula for f_0 once for h and once for 2h,

$$f''(x_0) = \frac{1}{h^2} (f_{-1} - 2f_0 + f_1) - \frac{h^2}{12} f^{(iv)}(x_0) + \mathcal{O}(h^4)$$
$$= \frac{1}{(2h)^2} (f_{-2} - 2f_0 + f_2) - \frac{(2h)^2}{12} f^{(iv)}(x_0) + \mathcal{O}(h^4).$$

 The leading term of the truncation error in the second line is 4 times larger than in the first. So multiply the first line by 4 and subtract the 2nd line:

$$3f''(x_0) = \frac{4}{h^2} (f_{-1} - 2f_0 + f_1) - \frac{1}{(2h)^2} (f_{-2} - 2f_0 + f_2) + \mathcal{O}(h^4).$$

• Rearrange:

$$f''(x_0) = \frac{1}{12h^2} \left(-f_{-2} + 16f_{-1} - 30f_0 + 16f_1 - f_2 \right) + \mathcal{O}(h^4).$$

Outline

- Deriving formulas using Taylor series
- Richardson extrapolation
- Deriving formulas using polynomial interpolation
- Roundoff and data errors
- *Differentiation matrices

Deriving methods using polynomial interpolation

- This is a natural approach for Chapter 10 veterans: simply pass a polynomial of degree n, interpolating f and x_0 plus n of its neighbours; differentiate the polynomial; and evaluate at x_0 .
- Obtain a general formula for the first derivative.
- Approach handles also non-uniform step sizes (points can be arbitrarily spaced).
- Immediate corollary: for deriving a method of order r we need at least r+1 points! (Methods which require only r+1 points are called compact.)
- Very useful for specific purposes such as Chebyshev differentiation matrix (next section).
- However, the resulting formulas, while general, can also be complex-looking and ugly. The Taylor series approach, while more ad hoc, is often more natural to use.

Outline

- Deriving formulas using Taylor series
- Richardson extrapolation
- Deriving formulas using polynomial interpolation
- Roundoff and data errors
- *Differentiation matrices

Roundoff and data errors

- Recall Example 1.3: for very small h and smooth f we may encounter severe cancellation error amplified by h^{-1} when approximating the derivative f'. Then, roundoff error takes over, and it grows as h decreases.
- Clearly, this problem happens with all numerical differentiation methods we have seen thus far (e.g. see our table of difference formulas).
- In fact, for higher order methods roundoff error dominates sooner (i.e. for larger h) because truncation error decreases faster.

Example

Consider the 2nd order method $f'(x_0) \simeq D_h = \frac{f(x_0+h)-f(x_0-h)}{2h}$.

- Denote $\mathrm{fl}(f(x)) \equiv \overline{f}(x) = f(x) + e_r(x), \quad |e_r(x)| \leq \epsilon$, where ϵ depends on the **rounding unit**. Assuming exact arithmetic for simplicity, $\overline{D}_h = \frac{\overline{f}(x_0 + h) \overline{f}(x_0 h)}{2h}$.
- Obtain

$$|\overline{D}_h - D_h| = \left| \frac{\overline{f}(x_0 + h) - \overline{f}(x_0 - h)}{2h} - \frac{f(x_0 + h) - f(x_0 - h)}{2h} \right|$$

$$= \left| \frac{e_r(x_0 + h) - e_r(x_0 - h)}{2h} \right|$$

$$\leq \left| \frac{e_r(x_0 + h)}{2h} \right| + \left| \frac{e_r(x_0 - h)}{2h} \right| \leq \frac{\epsilon}{h}.$$

• So, if $|f'''(\xi)| \leq M$ then $|f'(x_0) - \overline{D}_h| = |(f'(x_0) - D_h) + (D_h - \overline{D}_h)|$ $\leq |f'(x_0) - D_h| + |D_h - \overline{D}_h| \leq \frac{h^2 M}{\epsilon} + \frac{\epsilon}{\iota}.$

• "Theoretically optimal" h is where this bound is minimized: $h_* = (3\epsilon/M)^{1/3}$.

How bad can this problem be, and what can we do?

- The answer highly depends on the application!
- For discretization of differential equations, can usually keep $h\gg\epsilon$ using IEEE standard "double precision" word (but not "single precision"); see Chapter 2.
- For calculating gradient and Hessian in a more controlled optimization context (also, constrained multibody simulations), it is usually fine to use h "not too small". An alternative is automatic differentiation methods, not covered here, which do not suffer from roundoff error problems.
- For applications involving numerical differentiation of measured data which
 may contain noise, it is easy to get stuck! A possible remedy is to smooth
 the data (i.e., approximate the data by a smooth function), and only then
 differentiate.

Example: differentiating noisy data

We create a function f(x) to be differentiated by first sampling $\sin(x)$ on $[0, 2\pi]$ with h=.01, and then adding 1% Gaussian noise to these 200π values. The result is in the left panel below.

Next, numerical differentiation approximately gives $\cos(x)$ plus the noise magnified by 1/h = 100. The (unacceptable) result is depicted in the right panel below.

Outline

- Deriving formulas using Taylor series
- Richardson extrapolation
- Deriving formulas using polynomial interpolation
- Roundoff and data errors
- *Differentiation matrices

Differentiation matrices

- Function differentiation at a point x is a local process, and our formulas use this to generate **local** derivative approximations.
- However, in many applications the differentiation process is applied for each point of an entire mesh: a sequence of points $x_0 < x_1 < \cdots < x_{n-1} < x_n$ which represents a discretization of an interval (see Chapters 11, 13, 16).
- Upon applying a numerical differentiation formula to each point of the mesh, a matrix operator is obtained.
- We'll see four differentiation matrices next: (i) centred differences, (ii) one-sided differences, (iii) polynomial interpolation at Chebyshev extremum points, and (iv) Fourier differentiation matrix.

Finite differences: centered

• Centered difference: $\mathbf{f}' = D\mathbf{f}$ where

$$\mathbf{f}' \approx \begin{pmatrix} f'(x_1) \\ f'(x_2) \\ \vdots \\ f'(x_{n-1}) \end{pmatrix}, D = \frac{1}{2h} \begin{pmatrix} -1 & 0 & 1 & & \\ & -1 & 0 & 1 & & \\ & & \ddots & \ddots & \ddots & \\ & & & -1 & 0 & 1 \end{pmatrix}, \mathbf{f} = \begin{pmatrix} f(x_0) \\ f(x_1) \\ f(x_2) \\ \vdots \\ f(x_{n-1}) \\ f(x_n) \end{pmatrix}.$$

The $(n-1) \times (n+1)$ matrix D is a simple instance of a differentiation matrix.

However, D is not square, let alone invertible

Finite differences: centered

• Centered difference: $\mathbf{f}' = D\mathbf{f}$ where

$$\mathbf{f}' \approx \begin{pmatrix} f'(x_1) \\ f'(x_2) \\ \vdots \\ f'(x_{n-1}) \end{pmatrix}, D = \frac{1}{2h} \begin{pmatrix} -1 & 0 & 1 & & \\ & -1 & 0 & 1 & & \\ & & \ddots & \ddots & \ddots & \\ & & & -1 & 0 & 1 \end{pmatrix}, \mathbf{f} = \begin{pmatrix} f(x_0) \\ f(x_1) \\ f(x_2) \\ \vdots \\ f(x_{n-1}) \\ f(x_n) \end{pmatrix}.$$

The $(n-1) \times (n+1)$ matrix D is a simple instance of a differentiation matrix.

However, D is not square, let alone invertible.

Finite differences: one-sided

• Assuming also $f(x_0) = 0$, can get a square, invertible D upon using a one-sided formula:

$$\begin{pmatrix} f'(x_1) \\ f'(x_2) \\ \vdots \\ f'(x_n) \end{pmatrix} = \frac{1}{h} \begin{pmatrix} 1 & & & \\ -1 & 1 & & \\ & \ddots & \ddots & \\ & & -1 & 1 \end{pmatrix} \begin{pmatrix} f_1 \\ f_2 \\ \vdots \\ f_n \end{pmatrix},$$

where the first row in the matrix corresponds to the initial condition $f_0 = f(x_0) = 0$.

- However, there is a bit of "cheating" involved here, as this is not a pure differentiation process and the assumption $f_0 = 0$ is arbitrary.
- On the other hand, interpolating mesh values by a polynomial and subsequently differentiating it naturally leads to a proper, square differentiation matrix!

Finite differences: one-sided

• Assuming also $f(x_0) = 0$, can get a square, invertible D upon using a one-sided formula:

$$\begin{pmatrix} f'(x_1) \\ f'(x_2) \\ \vdots \\ f'(x_n) \end{pmatrix} = \frac{1}{h} \begin{pmatrix} 1 & & & \\ -1 & 1 & & \\ & \ddots & \ddots & \\ & & -1 & 1 \end{pmatrix} \begin{pmatrix} f_1 \\ f_2 \\ \vdots \\ f_n \end{pmatrix},$$

where the first row in the matrix corresponds to the initial condition $f_0 = f(x_0) = 0$.

- However, there is a bit of "cheating" involved here, as this is not a pure differentiation process and the assumption $f_0 = 0$ is arbitrary.
- On the other hand, interpolating mesh values by a polynomial and subsequently differentiating it naturally leads to a proper, square differentiation matrix!

Finite differences: one-sided

• Assuming also $f(x_0) = 0$, can get a square, invertible D upon using a one-sided formula:

$$\begin{pmatrix} f'(x_1) \\ f'(x_2) \\ \vdots \\ f'(x_n) \end{pmatrix} = \frac{1}{h} \begin{pmatrix} 1 \\ -1 & 1 \\ & \ddots & \ddots \\ & & -1 & 1 \end{pmatrix} \begin{pmatrix} f_1 \\ f_2 \\ \vdots \\ f_n \end{pmatrix},$$

where the first row in the matrix corresponds to the initial condition $f_0 = f(x_0) = 0$.

- However, there is a bit of "cheating" involved here, as this is not a pure differentiation process and the assumption $f_0 = 0$ is arbitrary.
- On the other hand, interpolating mesh values by a polynomial and subsequently differentiating it naturally leads to a proper, square differentiation matrix!

Differentiating Chebyshev interpolant at extremum points

- Construct a polynomial interpolant, differentiate it and evaluate at the same interpolation abscissae.
- Choose the extremum points of the Chebyshev polynomial (Section 12.4)

$$x_i = \cos\left(\frac{i}{n}\pi\right), \quad i = 0, \dots, n.$$

Denote result $D_C \mathbf{f}$.

- Use Lagrange interpolation form (Section 10.3) because n may be large and maintaining stability is important.
- Can obtain highly accurate derivative values this way, without restrictions such as periodicity.

Example

$$f(x) = e^x \sin(10x)$$
 on $[0, \pi]$.

Fourier differentiation matrix

For equally spaced function values (see Section 13.3)

$$c_k = \frac{1}{m} \sum_{i=0}^{m-1} y_i e^{-ikx_i}, \quad -l \le k \le l-1,$$

$$p_n(x) = \sum_{k=-l}^{l-1} c_k e^{ikx}, \text{ hence}$$

$$y_i' = p_n'(x_i) = \sum_{k=-l}^{l-1} ikc_k e^{ikx_i}, \quad i = 0, 1, \dots, m-1.$$

- Hence differentiation matrix is diagonalized!
- Use FFT, of course:

$$D_F = \mathcal{F}^{-1} [i \operatorname{diag}\{-l, -l+1, \dots, l-1\}] \mathcal{F}.$$

In Matlab, FFT for rth derivative

Assume f is column array containing the values $f(x_i)$ on [a,b]Let m2 = 0 if r is odd. m2 = l otherwise. Use instructions:

```
fhat = fft(f);
ahat = (i)^r * ([0:l-1m2-l+1:-1])^r * fhat;
qhat = (2 * pi/(b-a))^r * qhat;
a = real(ifft(ahat)):
```

Obtain excellent accuracy if f(x) is (almost) periodic on [a, b].

Example

$$f(x) = e^{-5x^2}$$
 on $[-2\pi, 2\pi]$.

Here Fourier is much better than Chebyshev. (But for functions that are "far from periodic" the opposite is true.)

Solving a partial differential equation (PDE): splitting cubic NLS

Schrödinger equation with a cubic nonlinearity

$$\psi_t = i(\psi_{xx} + |\psi|^2 \psi).$$

- Here f_t is 1st derivative of f wrto time t, f_{xx} is 2nd derivative of f wrto space x.
- Assume periodic boundary conditions (BC) on ψ
- Norm preservation $\|\psi(t)\|^2 = \|\psi(0)\|^2$, $\forall t$
- Hamiltonian PDE $H(\psi, \bar{\psi}) = \psi_x \bar{\psi}_x \frac{1}{2} \psi^2 \bar{\psi}^2$: the spatial integral of this is preserved in time.

Solving a partial differential equation (PDE): splitting cubic NLS

Schrödinger equation with a cubic nonlinearity

$$\psi_t = i(\psi_{xx} + |\psi|^2 \psi).$$

- Here f_t is 1st derivative of f wrto time t, f_{xx} is 2nd derivative of f wrto space x.
- Assume periodic boundary conditions (BC) on ψ .
- Norm preservation $\|\psi(t)\|^2 = \|\psi(0)\|^2$, $\forall t$
- Hamiltonian PDE $H(\psi, \bar{\psi}) = \psi_x \bar{\psi}_x \frac{1}{2} \psi^2 \bar{\psi}^2$: the spatial integral of this is preserved in time.

Solving a partial differential equation (PDE): splitting cubic NLS

Schrödinger equation with a cubic nonlinearity

$$\psi_t = i(\psi_{xx} + |\psi|^2 \psi).$$

- Here f_t is 1st derivative of f wrto time t, f_{xx} is 2nd derivative of f wrto space x.
- Assume periodic boundary conditions (BC) on ψ .
- Norm preservation $\|\psi(t)\|^2 = \|\psi(0)\|^2$, $\forall t$
- Hamiltonian PDE $H(\psi, \bar{\psi}) = \psi_x \bar{\psi}_x \frac{1}{2} \psi^2 \bar{\psi}^2$: the spatial integral of this is preserved in time.

A splitting method

- Split the PDE to a linear part and an ordinary DE (ODE) part:
 - For the linear PDE

$$u_t = \imath u_{xx},$$

apply standard 3-point discretization in space and implicit midpoint in time.

Por the ODE

$$u_t = \imath |u|^2 u,$$

the exact ODE solution for each x is

$$u(t + \Delta t) = u(t) e^{i\Delta t|u|^2}.$$

- Composition: at each time step $t = t_k$, with the current solution u^k :
 - ① approximately solve the linear PDE problem from t_k to t_{k+1} , obtaining \hat{u}
 - ② solve the ODE at each mesh point $x = x_j$ from t_k to t_{k+1} , starting from \hat{u}_j and calling the result u^{k+1} .

A splitting method

- Split the PDE to a linear part and an ordinary DE (ODE) part:
 - For the linear PDE

$$u_t = \imath u_{xx},$$

apply standard 3-point discretization in space and implicit midpoint in time.

For the ODE

$$u_t = \imath |u|^2 u,$$

the exact ODE solution for each x is

$$u(t + \Delta t) = u(t) e^{i\Delta t|u|^2}.$$

- Composition: at each time step $t = t_k$, with the current solution u^k :
 - ① approximately solve the linear PDE problem from t_k to t_{k+1} , obtaining \hat{u}
 - ② solve the ODE at each mesh point $x = x_j$ from t_k to t_{k+1} , starting from \hat{u}_j and calling the result u^{k+1} .

A splitting method

- Split the PDE to a linear part and an ordinary DE (ODE) part:
 - For the linear PDE

$$u_t = \imath u_{xx},$$

apply standard 3-point discretization in space and implicit midpoint in time.

For the ODE

$$u_t = \imath |u|^2 u,$$

the exact ODE solution for each x is

$$u(t + \Delta t) = u(t) e^{i\Delta t|u|^2}.$$

- Composition: at each time step $t = t_k$, with the current solution u^k :
 - **1** approximately solve the linear PDE problem from t_k to t_{k+1} , obtaining \hat{u} ;
 - ② solve the ODE at each mesh point $x = x_j$ from t_k to t_{k+1} , starting from \hat{u}_j and calling the result u^{k+1} .

Example: solitons

Periodic BC on [-20, 80]. IC

$$\psi(0,x) = e^{\imath x/2} \mathrm{sech}(x/\sqrt{2}) + e^{\imath (x-25)/20} \mathrm{sech}((x-25)/\sqrt{2}).$$

t	Δt	Δx	Error-Ham	Error-norm
200	.1	.1	3.7e-5	4.3e-13
	.01	.01	3.9e-9	1.5e-11

Example: solitons

Periodic BC on [-20, 80]. IC

$$\psi(0,x) = e^{\imath x/2} \mathrm{sech}(x/\sqrt{2}) + e^{\imath (x-25)/20} \mathrm{sech}((x-25)/\sqrt{2}).$$

t	Δt	Δx	Error-Ham	Error-norm
200	.1	.1	3.7e-5	4.3e-13
	.01	.01	3.9e-9	1.5e-11

Soliton solution progress

Spectral splitting method

• Another method: same splitting of the differential equation to a linear PDE plus an ODE, but instead of the finite difference discretizations for the derivatives, solve $u_t = \imath u_{xx}$ using a spectral method in both space and time:

$$u(t + \Delta t) = \mathcal{F}^{-1}\left(e^{-i\xi^2\Delta t}\mathcal{F}(u(t))\right).$$

- Discretize: $u(t) \equiv u^n = (u_1^n, \dots, u_J^n)$, $u_j^n \approx u(j\Delta x, n\Delta t)$, $u(t + \Delta t) \equiv u^{n+1}$, and $\mathcal F$ is the fast Fourier transform (FFT).
- This works well, producing beautiful, accurate solitons using a very short program. The error due to splitting, however, is generally not better than in the finite difference case.