

NAVAL POSTGRADUATE SCHOOL

Monterey, California

THESIS

ANALYSIS OF A SEMI-TAILLESS AIRCRAFT DESIGN

by

Kurt W. Muller

March 2002

Thesis Advisor:

Conrad F. Newberry

Second Reader:

Richard M. Howard

Approved for public release; distribution is unlimited

THIS PAGE INTENTIONALLY LEFT BLANK

REPORT DOCUMENTATION PAGE			Form Approved OMB No. 0704-0188
<p>Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.</p>			
1. AGENCY USE ONLY (Leave blank)	2. REPORT DATE March 2002	3. REPORT TYPE AND DATES COVERED Master's Thesis	
4. TITLE AND SUBTITLE: Title (Mix case letters) Analysis of a Semi-Tailless Aircraft Design		5. FUNDING NUMBERS	
6. AUTHOR(S) LT Kurt Muller			
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Naval Postgraduate School Monterey, CA 93943-5000		8. PERFORMING ORGANIZATION REPORT NUMBER	
9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) N/A		10. SPONSORING / MONITORING AGENCY REPORT NUMBER	
11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of Defense or the U.S. Government.			
12a. DISTRIBUTION / AVAILABILITY STATEMENT Approved for public release; distribution is unlimited		12b. DISTRIBUTION CODE	
13. ABSTRACT (maximum 200 words) <p>Many unique aircraft configurations came out of Germany in World War II, one of these was the Blohm and Voss BV P 208. By using longitudinal and directional control surfaces located outboard of the wing tips they are removed from the downwash of the main wing. Additionally, the result is fewer component surfaces with less total surface area, thereby reducing both friction and interference drag and manufacturing cost.</p> <p>The configuration should lend itself well to low-observability, making it a good stealth candidate.</p> <p>The P 208, provided the author an opportunity to analyze an unconventional configuration with the conceptual NASA design codes RAM, VORVIEW, and ACSYNT. A lack of wind tunnel or flight data prevented the evaluation of the performance of these codes for this configuration. However, results are presented for future comparison and evaluation.</p> <p>Claims of aerodynamic benefits of the P 208 configuration appear largely to be verified. The P 208 suffers from poor natural short-period longitudinal stability and an unstable Dutch-roll, neither of which are beyond the means of artificial control. The most immediate need for future work is a structural analysis and determination as to the structural and dynamic feasibility of the configuration.</p>			
14. SUBJECT TERMS Semi-tailless, P 208, RAM, VORVIEW, ACSYNT			15. NUMBER OF PAGES 108
16. PRICE CODE			
17. SECURITY CLASSIFICATION OF REPORT Unclassified	18. SECURITY CLASSIFICATION OF THIS PAGE Unclassified	19. SECURITY CLASSIFICATION OF ABSTRACT Unclassified	20. LIMITATION OF ABSTRACT UL

THIS PAGE INTENTIONALLY LEFT BLANK

Approved for public release; distribution is unlimited

ANALYSIS OF A SEMI-TAILLESS AIRCRAFT DESIGN

Kurt W. Muller
Lieutenant, United States Navy
B.S., U.S. Naval Academy, 1993

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN AERONAUTICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
March 2002

Author: Kurt W. Muller

Approved by: Conrad F. Newberry, Thesis Advisor

Richard Howard, Second Reader

Max Platzer, Chairman
Department of Aeronautics and Astronautics

THIS PAGE INTENTIONALLY LEFT BLANK

ABSTRACT

Many unique aircraft configurations came out of Germany in World War II, one of these was the Blohm and Voss BV P 208. By using longitudinal and directional control surfaces located outboard of the wing tips they are removed from the downwash of the main wing. Additionally, the result is fewer component surfaces with less total surface area, thereby reducing both friction and interference drag and manufacturing cost.

The configuration should lend itself well to low-observability, making it a good stealth candidate.

The P 208 provided the author an opportunity to analyze an unconventional configuration with the conceptual NASA design codes RAM, VORVIEW, and ACSYNT. A lack of wind tunnel or flight data prevented the evaluation of the performance of these codes for this configuration. However, results are presented for future comparison and evaluation.

Claims of aerodynamic benefits of the P 208 configuration appear largely to be verified. The P 208 suffers from poor natural short-period longitudinal stability and an unstable Dutch-roll, neither of which are beyond the means of artificial control. The most immediate need for future work is a structural analysis and determination as to the structural and dynamic feasibility of the configuration.

THIS PAGE INTENTIONALLY LEFT BLANK

TABLE OF CONTENTS

I.	INTRODUCTION.....	1
A.	BACKGROUND	1
B.	PURPOSE OF THE STUDY	2
C.	NASA DESIGN CODES	2
D.	CONFIGURATION THEORY	5
II.	P 208 COMPUTER MODEL DEVELOPMENT	11
A.	P 208 MODEL DEVELOPMENT.....	11
1.	Basic P 208 Parameters	11
2.	Flight Conditions	17
III.	P208 PERFORMANCE.....	19
IV.	STABILITY AND CONTROL.....	25
A.	ELEVATOR TRIM	25
B.	LONGITUDINAL STABILITY	26
C.	LATERAL-DIRECTIONAL STABILITY	32
D.	FLYING QUALITIES	37
V.	CONCLUSIONS AND RECCOMENDATIONS.....	39
A.	CONCLUSIONS	39
1.	Configuration Suitability.....	39
2.	NASA codes	39
B.	RECOMMENDATIONS.....	41
	LIST OF REFERENCES	43
	APPENDIX A: WEIGHTS	45
	APPENDIX B: EXAMPLE BV PERFORMANCE DATA	47
	APPENDIX C: VORVIEW PRODUCTS	51
	APPENDIX D: DIMENSIONAL STABILITY DERIVATIVES	55
	APPENDIX E: MATLAB CODE.....	59
	APPENDIX F: RAM FILE	65
	APPENDIX G: ACSYNT	73
	INITIAL DISTRIBUTION LIST	89

THIS PAGE INTENTIONALLY LEFT BLANK

LIST OF FIGURES

Figure 1.	BV P 208.03 3-View [After: Ref. 2]	1
Figure 2.	Rapid Aircraft Modeler	3
Figure 3.	VORVIEW Example	4
Figure 4.	Outboard Horizontal Stabilizer Configuration [From: Ref. 7]	6
Figure 5.	Upwash Flow Angle Over Horizontal Stablizer [From: Ref. 10]	7
Figure 6.	Alliance I.....	8
Figure 7.	Example of Primary Blohm and Voss Data [From: Ref. 12].....	11
Figure 8.	Engine Power vs. Altitude [From: Ref. 12]	13
Figure 9.	Drag Polar Build Up [From: Ref. 12]	14
Figure 10.	Drag Study on the XP-41 [From: Ref. 15].....	16
Figure 11.	P 208 1 G Performance Envelope [After: Ref. 12].....	17
Figure 12.	Span Efficiency vs. Lift Coefficient	20
Figure 13.	P 208 Spanloading	20
Figure 14.	Spanloading with Aileron Deflection	21
Figure 15.	P 208 Lift Curve	22
Figure 16.	Drag Polar Comparison.....	23
Figure 17.	P 208 Drag Polar.....	23
Figure 18.	Coordinate Sign Convention [From: Ref. 17].....	27
Figure 19.	Static Stability.....	27
Figure 20.	Short-Period Response to Initial Condition.....	30
Figure 21.	Long-Period Response to Initial Condition	31
Figure 22.	Longitudinal Response to Elevator Step Input	32
Figure 23.	Dutch-Roll Response to Initial Condition.....	35
Figure 24.	Roll mode Response to Initial Condition.....	36
Figure 25.	Spiral mode Response to Initial Condition.....	37
Figure 26.	Original Weights Data [From: Ref. 12]	45

THIS PAGE INTENTIONALLY LEFT BLANK

LIST OF TABLES

Table 1.	Technical Data	12
Table 2.	Moments of Inertia (slug ft ²).....	14
Table 3.	Flight Conditions	17
Table 4.	P 208 L/D.....	24
Table 5.	Approach Configuration Trim	25
Table 6.	Trimmed Conditions	26
Table 7.	Longitudinal Roots.....	29
Table 8.	Lateral-Directional Roots.....	34
Table 9.	Sea-level Performance Data [From: Ref. 12].....	47
Table 10.	High Power Sea-level Performance [From: Ref. 12]	48
Table 11.	High Altitude Performance [From: Ref. 12]	49
Table 12.	High Altitude High Power Performance [From: Ref.12]	50
Table 13.	Dimensional Derivative Description [Ref. 17]	55
Table 14.	P 208 Dimensional Derivatives	56

THIS PAGE INTENTIONALLY LEFT BLANK

LIST OF SYMBOLS AND ABBREVIATIONS

a, AOA	Angle of Attack
β	Sideslip
d	Control deflection, subscript ‘e’ for elevator and ‘a’ for aileron
e	downwash angle (positive downwards)
?	Damping ratio
?	Pitch angle
?	Roots of quadratic equation (characteristic equation)
f	Roll angle
? _n	Natural frequency
AR	Aspect Ratio; b^2/S
AC	Aerodynamic Center
b	Wing span
c	Chord
C _D	Coefficient of drag
C _{Di}	Coefficient of induced drag
C _{Do}	Zero lift coefficient of drag
C _I	2-D wing coefficient of lift
C _L	Coefficient of lift for the aircraft
C _{LW}	3-D wing coefficient of lift
C _M	Coefficient of pitching moment
C _{Ht}	Horizontal tail volume coefficient
C _{Vt}	Vertical tail volume coefficient

D	Drag
e	Oswald span efficiency
h	Altitude
I_{XX}	Moment of inertia with respect to the X axis
I_{YY}	Moment of inertia with respect to the Y axis
I_{ZZ}	Moment of inertia with respect to the Z axis
I_{XZ}	Product of inertia with respect to the X and Z axes
L	Lift
M	Mach number
p	Roll rate
q	Pitch rate
r	Yaw rate
Re	Reynolds number
S	Wing area
u	Perturbation velocity
U,V	Freestream velocity
Y	$y/(b/2)$; where y = displacement from mid-span

ACKNOWLEDGMENTS

Even if written by a single author every thesis is a team effort. I would like to acknowledge and thank the team that made this effort possible. First I must thank Andy Hahn of the NASA Ames Research Center, his willingness to help and patience made the use of the NASA computer codes possible. I must, of course, thank my thesis advisor, Professor Newberry for filling that critical role. I would like to thank Professor Howard for being a consistent datum. His knowledge of aircraft design and stability and control was continually helpful. My greatest appreciation goes to my wife, Amy, and my children, Katrina and Alex, whose sacrifice and support was steady and unyielding.

“The fear of the LORD is the beginning
of wisdom;
all who follow his precepts have good understanding.
To him belongs eternal praise.
Psalm 111:10

THIS PAGE INTENTIONALLY LEFT BLANK

I. INTRODUCTION

A. BACKGROUND

Tremendous innovation permeated the German aircraft industry throughout World War II. Some of these innovations actually flew, e.g. the ME 262, ME 163, V-1 and V-2; however, many more never left the drawing board. Attracted by the advantages offered by a tailless design, Dr. Vogt and George Haag of the Blohm and Voss design bureau, spent over two years researching the concept which resulted in a unique semitailless configuration. Flight tests in the summer of 1944 on a modified Skoda SL-6 went well enough for the incorporation of the concept into future designs. [Ref. 1] The design, utilizing an outboard placement of the lateral-directional controls, was the central configuration theme in a series of Blohm and Voss's proposed fighter/ interceptors,

Figure 1. BV P 208.03 3-View [After: Ref. 2]

namely the P 208 (three versions), thru the P 215. [Ref. 3] In theory, the configuration has the advantage of removing the empennage from the region behind the main wing consisting of downwash and a velocity deficit due to skin friction. Rather, the empennage is in the upwash region of the wing-tip vortex with a corresponding dynamic

pressure of at least freestream magnitude. [Ref. 4] This theoretical advantage presents the option of having a smaller or a more effective stability and control surface.

B. PURPOSE OF THE STUDY

This unique semi-tailless configuration appears to have aerodynamic advantages over traditional configurations, including reduced parasite and induced drag, and simplifies production efforts and reduces cost with fewer surfaces. [Ref. 2] Additionally, though not investigated herein, the configuration appears to suit itself well to low observability, both visual and radar. These apparent advantages make the configuration suited for consideration in the burgeoning unmanned aerial vehicle (UAV) and combat UAV (UCAV) market. As such, it was considered desirable to further assess the concept's suitability.

As materials and robust controllers make many unconventional aircraft configurations more feasible than when they were first conceived, the need for quick, inexpensive and accurate analysis of such configurations at the conceptual level increases. It was the primary purpose of this study to establish a level of confidence in the ability of the NASA code, VORVIEW, to analyze an unconventional design. The original means of evaluation was to be against experimental data from wind tunnel test. In the absence of a wind tunnel model, the purpose became to develop an analytical “plant” or baseline of the P 208 aircraft. Such a baseline configuration would permit the future evaluation of VORVIEW, via wind tunnel data or higher order computer codes with which configuration changes and trade studies can be compared.

Additionally, it was desired to gain in-house experience with ACSYNT to permit its usage in NPS design classes. A discussion of the computer programs used for analysis follows.

C. NASA DESIGN CODES

Rapid Aircraft Modeler (RAM) and VORVIEW are aircraft conceptual design codes developed by the NASA Ames Research Center. These codes have been extensively used at the Naval Postgraduate School (NPS) in aircraft design classes. Both

codes are FORTRAN based and are run via graphical user interfaces (GUIs) on Silicon Graphics® machines with Unix operating systems. RAM 2.0 dated November 1998 was used herein. RAM is a geometry code that allows for quick development and manipulation of an aircraft's shape. An example of the RAM GUI is seen in Figure 2 with an “exploded” view of the P 208 model showing its components. RAM provides wetted surface area and volume data. It has an internal vortex-lattice code, which is less sophisticated than VORVIEW and therefore remains largely unused.

Figure 2. Rapid Aircraft Modeler

VORVIEW is an extensively modified form of Vorlax, a generalized vortex lattice (VL) program written by L.R. Miranda, R.D. Elliott and W.M. Baker of the Lockheed Corporation. [Ref. 4] Geometry inputs from RAM are modeled in VORVIEW as a series of “slices” with camber information used for boundary conditions. In VORVIEW a Trefftz-plane calculation for lift and induced drag was added as a check to the pressure integration values. Because Trefftz-plane analysis can't generate a moment

value, no comparison is possible for this value. [Ref. 5] Pressure integration values were used throughout this analysis. VORVIEW version 1.7.4, dated June 1999, was used herein. In addition to providing values for lift, induced drag and pitching moment, this version of VORVIEW will generate longitudinal and lateral/directional stability derivatives, control derivatives, and hinge moments. VORVIEW will also determine control deflection for trimmed conditions, aerodynamic center, and friction drag via the strip method. A further explanation of the strip method is found in Chapter II. Figure 3 shows the VORVIEW GUI. The box in the upper-right hand corner of the GUI shows some of the reference parameters of the particular run. This information is followed by the pressure integration calculation results, then the Trefftz-plane results, the strip method results and the number of iterations required to complete the computations. Evident in Figure 3 are the length-wise “slices” of the aircraft, created during the VORVIEW analysis.

Figure 3. VORVIEW Example

Aircraft Synthesis (ACSYNT), also developed at NASA Ames, is a conceptual design code that can perform aerodynamic and performance analysis on an aircraft configuration based on semi-empirical equations. Three analysis method types are available: simple analysis, sensitivity and optimization. The simple analysis method will analyze the design and output the performance details. The sensitivity method is useful for examining the effect one variable has on another. The optimization method will minimize or maximize a variable subject to constraints placed on the configuration by the designer. [Ref. 6] A simple analysis was made on the P 208. ACSYNT enables one to perform quick trade studies and therefore has tremendous potential use in the conceptual design stage of an aircraft

D. CONFIGURATION THEORY

Recently (1991-2001), extensive work has been done by John Kentfield of the University of Calgary on what he calls the outboard-horizontal-stabilizer (OHS) configuration, an example of which is seen in Figure 4. The OHS configuration differs from the P 208 configuration in that the main wing is unswept and the empennage is moved aft on wingtip-mounted booms of two to four chord lengths. Kentfield's configuration also utilizes vertical stabilizers. Though results obtained for the OHS configuration cannot be directly compared with the P 208 configuration, the theories presented would appear largely to apply as the dynamics are similar. Given that no alternate existing term more adequately describes the P 208's configuration, the OHS label will be applied to it. Kentfield states that OHS configurations should employ the tail as a lifting surface, thereby providing the advantage of a canard configuration. In fact, the OHS configuration does not have the canard's disadvantage of requiring the canard to stall first, thereby reducing the maximum lift capability of the main wing. Kentfield also suggests that the induced drag of tail lift is somewhat offset by a forward inclined lift

Figure 4. Outboard Horizontal Stabilizer Configuration [From: Ref. 7]

vector due to upwash at the tail. [Ref. 8] What appears to be a configuration lacking in roll performance, due to high moments of inertia, would be somewhat aided, Kentfield theorizes, by the flow field alteration caused by aileron deflection. An increase in lift on one side with a corresponding decrease on the other would create a beneficial change in the upwash flow field at the tail. [Ref. 9]

The outboard tail has the implication of greater pitch stability compared to a conventional configuration. Given a nose up perturbation, both the wing and tail see an increase in AOA. The tail's lift is further increased due to an increased effective angle-of-attack due to the increased upwash angle provided by the wing's lift increase. The preceding argument is born out in the conventional pitching moment relationship, Eq. 1 [Ref. 9]:

$$\frac{dC_m}{da} = -C_l \left(1 - \frac{de}{da} \right) \quad (1)$$

where C_l is a positive constant. A conventional configuration will generally have a positive value for de/da , due to the immersion of the tail in downwash of the main wing. An outboard tail configuration will typically have a negative de/da value. Figure 5 shows, for varying wing lift coefficients (C_{LW}), upwash flow angles, e_u , vs. displacement

Figure 5. Upwash Flow Angle Over Horizontal Stabilizer [From: Ref. 10]

outboard of the wing tip as multiples, n , of the chord of a rectangular planform wing. An analytical potential flow model of a wing tip vortex far downstream of an aircraft, specifically Eq. 2, [Ref 10]:

$$\frac{w}{U} = \frac{C_{LW}}{AR_w} \frac{4}{p^2} \left\{ \frac{1}{1 - \left[\left(\frac{4}{p} \right) Y \right]^2} \right\} \quad (2)$$

was empirically modified to arrive at Eq. 3 below. Equation 3 describes, in degrees, the upwash flow in the region from two to four chord lengths downstream of the wing tip.

[Ref. 10] This equation was used to generate the dotted line in Figure 5. For a complete discussion of assumptions incorporated the reader is directed to reference 10.

$$\epsilon_u = \left\{ \frac{3.871}{\left[\left(\frac{4}{n} \right) \left(1.0333 - \frac{n}{3} \right) \right]^2 - 1} \right\} \left(1.7667 - \frac{n}{3} \right) \quad (3)$$

Kentfield completed direct comparison studies between conventional and OHS configurations and arrived at the conclusion that an OHS configuration can generate the same value of C_{LW} as a conventional configuration, with a 15% smaller wing planform area, largely due to a lifting tail. Additionally, when comparing maximum L/D values, the OHS configuration's planform area is an additional 30% smaller than the conventional configuration. Kentfield also noted that the outboard tailplanes experience an effective washout due to the decreasing upwash moving outboard of the wingtip as noted in Figure 5 above.[Ref. 10] It was also determined that increased elevator effectiveness, due to upwash, resulted in elevator deflections required for level flight of approximately one-half those required for a conventional aircraft over the lift coefficient range, $0.2 \leq C_L \leq 1.2$ [Ref. 9]

Scaled Composites, Incorporated built, for NASA, an 18% scale model of a high altitude research aircraft, the Alliance 1, utilizing the OHS concept, Figure 6. A

Figure 6. Alliance I

VORVIEW analysis was performed on this aircraft by Andrew Hahn, of the NASA Ames Research Center. [Ref 5] Vortex lattice analysis will yield a known vortex position. This is an artificial characteristic, but it is sometimes useful. By moving the location of the tails, it was found that the Alliance 1 configuration was very sensitive to the placement of these surfaces with respect to the core of the wing tip vortex. The study showed that if the tails were off by 3.5 degrees (a one foot “miss” in the study cited) from the wingtip vortex core that the span efficiency dropped by 18%. Such a “miss” of the vortex core could likely result from the typical movement of the vortex, inboard and down as it moves aft.

Also stated in reference 5 was the assertion that for the Blohm and Voss design, with the leading edge of the horizontal tail at the trailing edge of the wing, “...the coring out of the tip vortex was virtually assured” meaning that no such miss of the vortex by the horizontal tail will occur.[Ref. 5]

Blohm and Voss anticipated the following benefits from their OHS configuration, [Refs. 3 and 11]:

- The simplest pusher engine arrangement without the need for a propellor extension shaft, i.e. lightweight, cheap, easy to maintain and reliable.
- Minimum total surface area, combining a short fuselage with small wings and control surfaces, to permit the highest possible maximum speed.
- Lowest overall weight, contingent upon a lighter engine installation, small wings and short fuselage.
- Simplest production, due to constant chord wing and deletion of fin and rudder; load bearing fuselage structure unbroken by integral engine compartment.
- Limited proportion of Duraluminum to overall weight by extensive use of sheet metal in easily manufactured thicknesses.

The previous list is quite interesting for a couple of reasons. First, it is interesting to note the preoccupation with ease of production and limited use of strategic materials which is a commentary on the state of Germany in 1944. Secondly, and more interesting, however, is the absence of any mention of the potential aerodynamic benefits of the design aside from minimized form drag. This apparent oversight could be explained by a couple of situations: 1) Blohm and Voss didn’t recognize the aerodynamic benefits,

which seems unlikely, or (2) Blohm and Voss didn't think that the above mentioned aerodynamic benefits existed. These possibilities seem unlikely since the P 208 is quite a drastic departure from convention to obtain the benefits listed above. A third possibility might be that the original reference from which the above list of benefits was taken may have been part of a proposal to an audience that cared nothing for aerodynamics but was concerned only about production.

II. P 208 COMPUTER MODEL DEVELOPMENT

A. P 208 MODEL DEVELOPMENT

1. Basic P 208 Parameters

Computer model results are, obviously, only as good as the initial data. Gathering sufficient data to build an accurate model of a German, World War II era, non-production aircraft presented obvious challenges. A limited amount of original data was available

BLOHM & VOSS Flugzeugbau HAMBURG		= 10 = Flugleistungen BT - P 208-05				
<u>Flugleistungen BT - P 208-05</u>						
<u>Otto-Jäger mit 1x DB 603 + L</u>						
<u>Abmessungen:</u>						
Flügelgröße $F = 19 \text{ m}^2$ Spannweite $b = 9,50 \text{ m}$ Seitenverhältnis $A = 4,75$						
<u>Gewichte:</u>						
Abfluggewicht $\delta_a = 5005 \text{ kg}$ Kraftstoffzuladung $\delta_k = 500 \text{ kg}$ Flächenbelastung $\delta_{A/F} = 264 \text{ kg/m}^2$						
<u>Motor:</u> DB 603 - L						
Die Motorleistungen sind auf Grund der DB-Angaben nach Blatt 9-603-2256 v. 5.5.44 und nach Blatt 9-603-6246 v. 11.7.44 zusammengestellt. Die Angaben für die Höchst-Sparleistung sind durch Vergleich mit früheren DB-Angaben extrapoliert. Abgaswirklust und Staumauernutzung sind bei Aufstellung der verfügbaren Leistungen berücksichtigt.						
P 208 - 63 nicht DB 603 : 03. 07 } " + - / 03. 02 } " + - / 03. 03 " + - / 03. 02 entgegengesetzt zu den "ausgew. Formen" der 03. 07 03. 02 wie 03. 07 03. 03 nicht passend - 03. 04						
Re-Na. 15.11.44						

Figure 7. Example of Primary Blohm and Voss Data [From: Ref. 12]

through the Captured German and Japanese Air Technical Documents holdings of the National Air and Space Museum Archives Division, [Refs 3 and 12], and through a 1976 German periodical, “Luftfahrt International”, reference 11. Three versions of the P 208 were considered by Blohm and Voss, only the third version with the Daimler-Benz DB

603-L engine, the BV P 208.03 is considered in this thesis and, for brevity, will be referred to as the P 208. One reason the third version was selected was because previous work had been completed on it at the University of Oklahoma, reference 4. Basic dimensions were available from primary documents, of which Figure 7 is an example. References 11 and 12 were used to compile a table of basic data, Table 1. All reference numbers used with respect to the wing are minus the tails. The 3-view of the P 208, shown in Figure 1, was scaled using the known data in Table 1 and used to generate data

Table 1. Technical Data

Geometry		Performance	
Wing Area	19.0 m ²	Wing Loading (GW)	264 kg/m ²
Span	9.58 m	Power Loading (GW)	2.4 kg/PS
Aspect Ratio	4.75	Takeoff Power	2100 PS
Span w/tails	12.08 m	Climb Power	1800 PS
Length	9.2 m	Max Continuous Pwr	1500 PS
Height	3.46 m	Reduction Gear	1:1.93
Prop Diameter	3.4 m	Time to Max Altitude	27 min
Wing Surface Area	34.4 m ²	Takeoff Distance	360 m
Fuselage Area	25.0 m ²	Flight Distance (h = 0 km)	1040 km
Tail Boom Area	2 x 2.5 m ²	Flight Distance (h = 9 km)	1230 km
Tail Surface Area	6.5 m ²	Flight Duration (h = 0 km)	1.79 h
Wing .25c sweep	30°	Flight Duration (h = 9 km)	1.85 h

*note, 1 PS = 0.986 HP

for use in the NASA computer codes. This data consisted primarily of body diameters, fineness ratios, control moment arms and locations for reference points. Because no anticipated changes to the design were anticipated, all longitudinal measurements were taken from a zero station defined at the nose of the aircraft. Lateral measurements were taken from the center line of the fuselage. The degree of accuracy of Figure 1 is unknown and therefore some uncertainty is introduced in numbers derived from it. The mean aerodynamic chord (mac) was easily enough determined since the wing is a constant chord of 2 meters (6.56 ft); the mac was then located at the geometric center of the wing, i.e., b/4. The only data available on the airfoil was that it was 12½ % thick. [Ref. 11] It is highly likely that the particular airfoil used was a Blohm and Voss

proprietary airfoil. A NACA 23012 airfoil was chosen for analysis since it is representative of the technology of the times and has good performance. No wing twist was used and an angle of incidence of two degrees was taken from reference 4. For the tail surfaces a NACA 0010 at minus three and a half degrees of incidence was used in accordance with reference 4. RAM has the capability to accept an airfoil coordinate file and apply it to the geometry of the aircraft under consideration. Lacking any information on location of the center of gravity (CG) of the aircraft, an estimate was made using the tip-back angle. Raymer states that the most aft CG location should be forward of a line that is defined by a 15 degree angle forward of a vertical line at the point where the main gear touch the ground. [Ref. 13] Using this methodology the P 208's CG was placed at

Figure 8. Engine Power vs. Altitude [From: Ref. 12]

32% mac. VORVIEW calculated the aerodynamic center (AC) of the aircraft to be at 50% mac. Sufficient engine data was available from Table 1 and Figure 8 to model the power plant in ACSYNT. Moments of inertia were estimated using the weight values

given in the table in Appendix A and approximating their point mass location. These estimates were within 10% of those given in reference 4 and so the values of reference 4 were used as shown in Table 2.

Table 2. Moments of Inertia (slug ft²)

$I_{XX} = 18,143$	$I_{YY} = 12,370$
$I_{ZZ} = 28,474$	$I_{XZ} = 200$

Determining a configuration's zero lift drag coefficient (C_{D0}) is a significant task since it is a major factor in determining the aircraft's performance. Primary data on a C_{D0} build-up was available as shown in Figure 9, and resulted in a C_{D0} equal to 0.0201. Reference 4 also performed a component build-up for C_{D0} determination resulting in a

Figure 9. Drag Polar Build Up [From: Ref. 12]

significantly lower value of 0.0152. Unfortunately, the Reynolds number at which each of the aforementioned C_{D_0} values was determined is unknown. ACSYNT also performs a component build up, based on geometry inputs, and estimated a C_{D_0} at each flight condition analyzed. For the P 208, ACSYNT estimated a C_{D_0} of 0.0166 in the cruise condition. Though it is an inviscid code, VORVIEW has the capability to estimate friction drag. The term ‘friction drag’ is used, as opposed to, C_{D_0} because the VORVIEW values are not restricted to the zero lift condition. VORVIEW can accept drag polar data files for specified Reynolds numbers. As the aircraft’s planform is ‘sliced’ chordwise the drag polar corresponding to the local characteristic length is applied to the slice. Due to the difficulty of obtaining drag polars for input, only a cursory look at this feature of VORVIEW was taken. Drag polars, provided by Andrew Hahn of NASA Ames Research Center, using MSES polar driver version 3.0, were entered for a NACA 0010 airfoil at $Re = 3.8510^6$ corresponding to the tail, a NACA 23012 airfoil at $Re = 13.8x10^6$ corresponding to the wing and a fuselage-like shape at $Re = 55.5x10^6$. These Reynolds numbers correspond to a mid-envelope flight condition of 21,000 feet and a flight Mach number of $M = 0.55$. The use of these three sectional drag polars resulted in an average friction drag estimate of 0.0199 that varied from a low value of 0.00958 at 2 degrees AOA to a high value of 0.048 at 15 degrees AOA.

EXCEL was used to program the USAF DATCOM equations for the P 208 component drag build up. The spreadsheet allows the computation of the P 208 C_{D_0} under any given flight condition, with the local Reynolds Number for each component calculated for the given condition. For a cruise condition of 29,500 ft at $M_a = 0.57$, a $C_{D_0} = 0.0168$ was calculated via this method; for the flight condition used for the VORVIEW analysis (above) $C_{D_0} = 0.162$.

Figure 10 illustrates the dependence of the C_{D_0} for the XP-41 on seemingly small factors. Because of this small factor dependence, and the fact that Blohm and Voss had more detailed information on the aircraft and likely expended more effort than anyone else, the Blohm and Voss value of C_{D_0} was used in this current analysis of the P 208, despite the lack of Reynolds number information on which it was based. A non-varying C_{D_0} should be accurate for a first order linear analysis.

The previous discussion of C_{D_0} should cast doubt on any attempt to directly compare various aircraft C_{D_0} values of unknown origin as a means of determining any relative aerodynamic benefits of a given configuration. For example it would be folly to attempt to compare the P 208's C_{D_0} , using any of the methods above, to that of the P-51

^a Percentages based on completely faired condition with long nose fairing.

Figure 10. Drag Study on the XP-41 [From: Ref. 15]

Mustang which reference 15, using none of the above methods, has as 0.0161. Furthermore, though it may be tempting to compare a unique configuration such as the P 208s against a very conventional configuration such as the P-51, Figure 10 indicates that any proposed configuration advantage/disadvantage may be masked by other factors. For example, the boundary layer diverter, on the radiator intake, that is widely accepted as a key feature leading to the P-51's outstanding performance, is not evident on the P 208; this one feature could mask any potential drag reduction of the OHS configuration. Though it looks like the P 208 should have a form drag advantage given the shortened fuselage and small vee-tail, a proper comparison would require developing a simple OHS model and a conventional configuration, with the wing parameters and tail volume coefficients held constant, and analyzing each with the same method. Such an analysis was not performed for this thesis.

2. Flight Conditions

Four flight conditions were chosen for performance and stability and control analysis, in accordance with reference 15. These flight conditions, summarized in Table 3, should adequately cover the flight envelope shown in Figure 11. Flight condition lift coefficients are based on unaccelerated flight at a weight of 10,300 pounds, corresponding to the weight on which the flight envelope was developed. Figure 11 depicts a clean (i.e. flaps and landing gear retracted), unaccelerated flight envelope and therefore the Approach configuration is not depicted. The sea level penetration condition is maximum velocity at sea level.

Table 3. Flight Conditions

	Flight Condition	Altitude	M	C_L
1	Approach (40° flaps)	0	0.17	1.2
2	Sea Level Penetration	0	0.52	0.125
3	Cruise	29,500 ft (9 km)	0.57	0.344
4	Maximum Velocity (Vmax)	31,000 ft (9.5 km)	0.73	0.225

Figure 11. P 208 1 G Performance Envelope [After: Ref. 12]

THIS PAGE INTENTIONALLY LEFT BLANK

III. P208 PERFORMANCE

A significant volume of German performance estimates for the P 208 is available for numerous altitudes and power settings, reference 3. However, its interpretation was beyond the author's capability. The interpretation was not merely a matter of language but variable definition. An example of the data available is included as Appendix B.

The primary analysis tool used to examine the performance of the P 208 was VORVIEW. Example VORVIEW summary output and stability and control derivative output files are included as Appendix C. As previously mentioned, VORVIEW is an inviscid code that uses a Trefftz-plane analysis as a check to the pressure integration method. VORVIEW computes both pressure integration and Trefftz-plane values for C_{D_i}/C_L^2 ; these values were checked for agreement. When a disagreement occurred in the C_{D_i}/C_L^2 values, it was always due to a pressure integration value that was too optimistic, often resulting in span efficiency factors greater than one. To remedy this situation, the leading edge suction/vortex lift multiplier (SPC), in the VORVIEW initial conditions file, was varied by iteration until agreement was reached between the two analyses.

The SPC variable is used to account for the presence of vortex lift using the Polhamus suction analogy and was therefore typically quite low for the P 208, about 0.2 for the cruise condition. The Polhamus suction analogy states that the extra normal force that is produced by a leading edge vortex on a highly swept wing at high angles of attack is equal to the loss of leading edge suction associated with the separated flow.

VORVIEW provides a value of span efficiency for every flight condition analyzed. Span efficiency as a function of C_L is shown in Figure 12. The large variation that occurs at low values of AOA is not unexpected as span efficiency is sensitive to C_L . The large negative AOAs, thought impractical, are included to show that the curve will tend to smooth out at larger absolute values of C_L . Figure 12 shows an average span efficiency of about 61% with a peak of 71% at lift coefficients corresponding to high airspeeds. A drag polar, for an unknown flight condition, is available from primary German data: $C_D = 0.0201 + 0.0960C_L^2$. A value of span efficiency, e , can be backed out

by solving for e in, $0.0960 = 1/(peAR)$, resulting in a value of 70%. Reference 4 uses an empirical method to arrive at a value of 74% for span efficiency, again for an unknown flight condition. VORVIEW is likely the most sophisticated and accurate of these results.

Figure 12. Span Efficiency vs. Lift Coefficient

Another, more revealing, method of analyzing span efficiency is to look at the span loading compared to an elliptic distribution as in Figure 13. A parabolic distribution is also shown as an elliptic lift distribution is not always “ideal”. Prandtl was the first to note that the spanload for minimum induced drag was not the “optimum” spanload when bending moment and structural weight are taken into consideration. [Ref. 17] With a

Figure 13. P 208 Spanloading

configuration like the P 208, it is likely that a more parabolic lift distribution would be desirable for structural reasons. Figure 13 shows that the P 208 lift distribution falls somewhere between the elliptic and parabolic ideals. The tail booms are at 15 ft. with the tails outboard of the booms. It should be noted that in the cruise condition, as shown in Figure 13, that the tails are in fact lifting surfaces.

Figure 14 show a comparative lift distribution with and without aileron deflection. This condition was examined to evaluate Kentfield's theory that the OHS configuration can aerodynamically offset some of the configuration's roll performance penalty due to its high moments of inertia. Figure 14 clearly shows that the increased lift due to a negative aileron deflection (down) results in increased lift on the adjacent tail, as predicted by Kentfield. The increased lift on the tail is due to the strengthened wing-tip vortex caused by the local lift increase resulting from the aileron deflection. For a positive aileron deflection (up) the opposite is true and lift is reduced. The coupling effect seen should assist the aircraft in its roll performance.

Figure 14. Spanloading with Aileron Deflection

The lift curve for the aircraft at Mach 0.57 is shown in Figure 15. Because it is an inviscid code, VORVIEW will not predict stall for the aircraft. The figure shows that the zero lift AOA for the aircraft is -2.7 degrees and that $C_{L\alpha} = 0.0824$. Additionally, the zero AOA $C_L = 0.216$ which roughly corresponds to the V_{max} flight condition. This could

mean that Blohm and Voss optimized the aircraft for top speed or that the angle of incidence of the main wing or the airfoil section chosen for this analysis was incorrect.

With the previous discussion of C_{D_0} , it would seem inevitable that drag polars from various sources or methods would differ somewhat. Four drag polars are shown in Figure 16. The first polar (square symbols) is VORVIEW generated with both form drag and span efficiency varying for each data point. The second polar (diamond symbols) is

Figure 15. P 208 Lift Curve

the Blohm and Voss drag polar. The third polar (triangle symbols) was generated by Tipton: $C_D=0.0152+0.906C_L^2$. [Ref. 4] The last polar (X symbols) represents a combination of a DATCOM C_{D_0} with VORVIEW C_{DfS} . The first polar shows a large variation in friction drag, explained in the previous discussion in Chapter II. While this variation is more realistic than a non-varying C_{D_0} , the magnitude of the change is

Figure 16. Drag Polar Comparison

questionable. The fourth polar provides for the greatest flexibility; a C_{D_0} for any given flight condition can be used and C_{D_i} variations can be captured with VORVIEW.

In all likelihood, the most accurate drag polar for the P 208 is one that incorporates the most accurate, Blohm and Voss derived, C_{D_0} with the C_{D_i} s from VORVIEW. This polar is plotted against the Blohm and Voss polar in Figure 17. VORVIEW C_{D_i} values are probably the most accurate because they are calculated at each flight condition and do not rely on a non-varying value of C_{D_i}/C_L^2 .

Figure 17. P 208 Drag Polar

Lift over drag ratios are given, in Table 4, for each flight condition using each of the drag polars in Figure 17. For the approach condition, a $C_{D_0} = 0.18$ from reference 4 was used to account for landing gear and flaps. A comparison of the results in Table 4 generally shows agreement within 5%. The composite polar resulted in the more conservative estimate.

Table 4. P 208 L/D

	Approach	SL Penetration	Cruise	Max Velocity
Blohm and Voss	3.8	5.8	10.9	9.0
BV + VORVIEW	3.5	5.6	10.6	8.8

IV. STABILITY AND CONTROL

A. ELEVATOR TRIM

With the CG at 32% mac and the neutral point at 50% mac, the P 208 has a rather large static margin (SM) of 18%. In the approach condition, strong wing tip vortices will be present due to high lift generation. This condition makes the tail surfaces effective at generating lift, but hinders their ability to counter the nose-down pitching moment due to the flaps. The above condition results in a large elevator deflection (δ_e) required to trim the approach condition, see Table 5. Because this is such a critical phase of flight, a few scenarios were examined to address the large control deflection requirement. A full-span flap configuration was also considered. It has been suggested that due to the increased effectiveness of the ailerons, or by using the outboard surfaces for roll control, larger or even full-span flaps could be utilized by the OHS configuration. Table 5 is a summary of

Table 5. Approach Configuration Trim

Condition	Configuration	CG/SM	AOA	δ_e
1	Standard (70% Span Flaps)	32%mac/18%	1.42°	-19.8°
2	Full-Span Flaps	32%mac/18%	-1.17°	-47.1°
3	All Moving Tail	32%mac/18%	1.23°	-17.0°
4	Reduced Static Margin	40%mac/10%	0.61°	-9.3°
5	Reduced Flaps (40% Span)	32%mac/18%	4.11°	-7.7°

Trimmed for $C_L=1.2$, 40° flap deflection

five conditions examined for an approach condition of $M_a = 0.17$ and a flap deflection, $d_F = 40^\circ$. Control surface deflections and AOAs were determined by VORVIEW. The first condition is for the standard configuration. Condition 1 assumed a flap size of 70% span (excluding the fuselage area) and an elevator surface of 30% of the chord of the stabilizer. Condition 1 resulted in a rather large control deflection of almost 20 degrees. Condition 2 looked at a configuration using full-span flaps. For the given static margin it is obvious that full-span flaps are not an option as the control deflection shown would result in control surface stall. Condition 3 was added to examine any increase in control power of an all-moving tail. An all-moving control surface does not appear to provide

the requisite control force at an acceptable deflection. Condition 4 looked at a reduced static margin. Reducing the static margin to 10% by moving the CG back to 40% mac resulted in an acceptable control deflection. The feasibility of the CG shift or its affect on stability and control was not considered by the author. Condition 5 looked at the result of reducing the flap span. The flaps were reduce to 40% span. Because the wings are swept, reducing the span of the flaps brings their center of pressure inboard and forward. This movement of the center of pressure reduces the nose down pitching moment created by the flaps and results in the lowest required control deflection to trim the approach configuration.

Trim conditions for the four flight conditions, defined in Chapter II, are shown in Table 6. The fact that the cruise condition control deflection for trim is negligible suggests that the assumed angle of incidence for the tail of -3.5° is probably correct.

Table 6. Trimmed Conditions

Flight Condition	CG/SM	AOA	d_e
Approach	0.32c/18%	1.42°	-19.8°
Sea Level Penetration	0.32c/18%	-0.6°	3.27°
Cruise	0.32c/18%	1.55°	0.04°
Maximum Velocity	0.32c/18%	-0.08°	2.15°

B. LONGITUDINAL STABILITY

The coordinate sign convention utilized for the trim and stability and control analysis is that shown in Figure 18.

A casual observation of the P208 may lead one to believe that the tails surfaces are too small. An examination of tail volume coefficients will support this observation. Dividing the P 208's vee-tail into projected vertical and horizontal areas allows an analysis of the tail volume coefficients. Using these areas as given in reference 4, the horizontal tail volume coefficient (C_{HT}) was found to be $C_{HT} = 0.326$. With a 5% reduction in required C_{HT} that Raymer suggests for a T-tail, due to the clean air seen by the horizontal, and a further arbitrary 5% reduction due to the proposed increased dynamic pressure from the wing tip vortex, a typical value of C_{HT} for this application

should be about $C_{HT} = 0.45$. [Ref. 14] This comparison suggests that the horizontal tail is approximately 28% too small.

Figure 18. Coordinate Sign Convention [From: Ref. 17]

Figure 19. Static Stability

Utilizing C_M values determined by VORVIEW, an initial look at static stability shows that, for the given flight conditions, the aircraft is longitudinally statically stable, that is its initial tendency upon being disturbed will be to return to its equilibrium position. This result was not surprising given the large static margin. Figure 19 shows that both criteria necessary for longitudinal static stability exist, namely that C_{M0} is positive, $C_{M0} = 0.0225$, and the slope of the curve is negative, $C_{Ma} = -0.0162$ per degree.

VORVIEW is an excellent tool for examining an aircraft's dynamic stability. The code will perturb the aircraft's initial conditions by one degree around each axis to determine dimensionless stability derivatives. Dimensionless derivatives were determined for a trimmed aircraft in each of the following flight conditions: Approach, Sea Level Penetration, Cruise and Maximum Velocity, as defined in Chapter II. The dimensionless derivatives were dimensionalized as shown in Appendix D and are given in the Appendix. The equations of motion, which have been linearized as described by Schmidt [Ref. 18], were grouped into longitudinal and lateral-directional and considered separately in the governing state space equation, $\{\dot{x}\} = [A]\{x\} + \{B\}d$. The longitudinal plant matrix, $[A]$, state vector, $\{x\}$, and control matrix, $\{B\}$ are shown below in equations 4, 5 and 6 respectively.

$$[A] = \begin{bmatrix} X_U & X_a/U & 0 & -g/U \cos \Theta_0 \\ UZ_a/(U-Z_a) & Z_a/(U-Z_a) & (V+Z_q)/(U-Z_a) & -g \sin \Theta_0/(U-Z_a) \\ UM_U + M_a UZ_a/(U-Z_a) & M_a + M_a Z_a/(U-Z_a) & M_q + M_a (U+Z_q)/(U-Z_a) & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad (4)$$

$$\{x\} = [u/U \quad \mathbf{a} \quad q \quad \mathbf{q}]^T \quad (5)$$

$$\{B\} = \left\{ X_d/U \quad Z_d/(U-Z_a) \quad M_d + M_a Z_d/(U-Z_a) \quad 0 \right\}^T \quad (6)$$

An aircraft's linearized longitudinal dynamics will normally consist of two pairs of complex conjugate roots corresponding to the short-period and long-period or phugoid modes. The real part of the root will indicate the modal damping, a negative value corresponds to positive damping. The imaginary part of the root is the mode's damped natural frequency. The state equation was coded in MATLAB; a code listing is given in Appendix E. Solving the corresponding longitudinal eigenvalue problem results in the information about the longitudinal dynamics of the system found in Table 7.

Table 7. Longitudinal Roots

		Approach	SL Penetration	Cruise	Max Velocity
Short- Period	Roots (λ)	$-0.7025 \pm 1.789i$	$-2.5182 \pm 6.284i$	$-0.9644 \pm 3.9415i$	$-1.2422 \pm 5.1247i$
	ω_n (rad/sec)	1.9223	6.7694	4.0578	5.2731
	ζ	0.3654	0.372	0.2377	0.2356
Long- Period	Roots (λ)	$-0.0200 \pm 0.2248i$	-0.0204 ± 0.0708	$-0.0365 \pm 0.0713i$	$-0.0107 \pm 0.0601i$
	ω_n (rad/sec)	0.2257	0.0737	0.0801	0.061
	ζ	0.0884	0.2768	0.0455	0.175

The MATLAB code allows one to excite a stability mode with its eigenvector, via the *initial* command, and for exciting the system with a simulated control input, via the *step* command. Although the aircraft's plant matrix contains information on all modes, the use of an initial condition corresponding to a mode's eigenvector will assure only that mode will respond. [Ref. 18]

The short-period roots for the cruise condition show the mode is positively damped. Likewise, Figure 20 shows that, in the cruise condition, the short period is stable and damped, evident from the decay of the oscillations. The eigenvector normalized to alpha gives clarifying information to the figure, namely it shows: that the velocity perturbation (u/U) is small, about 1.7% of the trim speed, pitch angle (θ) is close to the angle-of-attack (α) in magnitude (98.4%) and phase (lags by 12.6°), pitch rate (q) leads α by 91° and that q leads the θ by 103.5° all of which are normal short-period behavior. [Ref. 18] Each flight condition examined showed normal short-period behavior with the cruise and V_{max} conditions being relatively lightly damped.

Figure 20. Short-Period Response to Initial Condition

$$\begin{Bmatrix} \frac{u}{U} \\ \mathbf{a} \\ q \\ \mathbf{q} \end{Bmatrix} = \begin{Bmatrix} 0.0170 \angle 66.5^\circ \\ 1 \\ 3.992 \angle 90.9^\circ \\ 0.984 \angle -12.6^\circ \end{Bmatrix} \quad (7)$$

Figure 21 shows the long-period response to eigenvector excitation. The eigenvector, normalized to the velocity perturbation, is shown as equation 8 for amplification. In the cruise condition, the P208, demonstrates a typical long-period response. Light damping is evident with a 78 second period and a slow decay of the oscillation amplitude. Comparatively, the damping ratio, ?, for the long-period is an order of magnitude smaller than that for the short period, Table 7. Also typical of the long-period is that the α component of the eigenvector is much smaller than the u/U component, opposite of the short period. Again it is seen that the rate term, q , leads

Figure 21. Long-Period Response to Initial Condition

$$\begin{Bmatrix} \frac{u}{U} \\ \alpha \\ q \\ \theta \end{Bmatrix} = \begin{Bmatrix} 1 \\ 0.0168^\circ \\ 0.1140^\circ \\ 1.400^\circ \end{Bmatrix} \quad (8)$$

displacement term, θ , by 95° in this case. The P208 exhibited normal long-period behavior for the four flight conditions examined.

The complete system response for the P208, due to an elevator control step input, can be seen in Figure 22. For the given flight condition, the P208 exhibits a typical system response to the given input. Figure 22 shows that the short-period motion, characterized by α , is mostly damped by 5 seconds while the long-period motion, characterized by u/U , will continue to oscillate for a few minutes. A positive elevator step control input will result in a nose-down pitch attitude, after the short-period damps out, the long-period exhibits normal features. The α component maintains a nearly

constant negative value. Pitch rate, q , will oscillate and finally reach a zero value. Pitch angle, θ , will oscillate and finally reach a constant slightly negative value. The u/U component will oscillate and eventually reach a positive steady value. The P 208 exhibited typical longitudinal behavior to a step input for all flight conditions examined. [Ref. 18]

Figure 22. Longitudinal Response to Elevator Step Input

C. LATERAL-DIRECTIONAL STABILITY

Again using areas from reference 4, the vertical tail volume coefficient (C_{VT}) was found to be $C_{VT} = 0.0248$. Looking to Raymer [Ref. 14] once again for a representative C_{VT} and subtracting a nominal 5% for increased dynamic pressure due to the wing tip vortices results in a desired C_{VT} value of about 0.05. [Ref. 14] Thus, it appears that the vertical surface is perhaps 50% too small. This can indicate a directional stability problem with the design. Lateral stability increases with both wing sweep and dihedral.

Thus, with 30 degrees of sweep and six degrees of dihedral the design should be laterally stable.

VORVIEW and MATLAB, with the linearized equations of motion, were used to examine the P208's lateral-directional dynamic stability. Lateral-directional dimensional stability derivative values, computed from VORVIEW dimensionless derivatives, are given in Appendix D. The lateral-directional plant matrix, control vector (applied for rudder or aileron deflection as required) and state vector used in the governing state space equation are given below as equations 9, 10 and 11 respectively, with short-hand notation equations 12 – 14.

$$[A] = \begin{bmatrix} Y_b/U & Y_p/U & \left(g/U\right)\cos\Theta_0 & (Y_r - U)/U \\ L'_b & L'_p & 0 & L'_r \\ 0 & 0 & 0 & 1 \\ N'_b & N'_p & 0 & N'_r \end{bmatrix} \quad (9)$$

$$\{B\} = \left\{ \begin{bmatrix} Y_d/U & L'_d & 0 & N'_d \end{bmatrix}^T \right\}^T \quad (10)$$

$$\{x\} = \{\mathbf{b} \quad p \quad \mathbf{f} \quad r\}^T \quad (11)$$

where:

$$L'_n = G \left[L_n + N_n \left(\frac{I_{xz}}{I_x} \right) \right] \quad (12)$$

$$N'_n = G \left[N_n + L_n \left(\frac{I_{xz}}{I_x} \right) \right] \quad (13)$$

$$G = \frac{1}{\left[1 - \frac{(I_{xz})^2}{(I_x I_z)} \right]} \quad (14)$$

Solving the eigenvalue problem for the lateral-directional (4x4) plant will normally give a complex conjugate pair of roots that describe the Dutch-roll and two real roots; the faster of the real roots describes the roll response and the slower one describes the spiral. [Ref. 18] Table 8 gives the results of solving the eigenvalue problem for the lateral-directional plant matrix. It should be noted that only the sea level penetration condition has a complex conjugate pair of roots with a negative real part, thus only this condition is

Table 8. Lateral-Directional Roots

		Approach	SL Penetration	Cruise	Max Velocity
Dutch-	Roots (λ)	$0.2196 \pm 1.075i$	$-0.1537 \pm 0.4126i$	$0.0093 \pm 1.252i$	$0.0190 \pm 0.7750i$
Roll	ω_n (rad/sec)	1.0980	0.4403	1.2520	0.7752
	ζ	-0.2001	0.3491	-0.0075	-0.0245
Roll	Roots (λ)	-1.6040	-3.5549	-1.5390	-1.8732
	ω_n (rad/sec)	1.6040	3.5549	1.5390	1.8732
	ζ	1.0000	1.0000	1.0000	1.0000
Spiral	Roots (λ)	-0.0412	-0.0242	-0.0110	-0.0154
	ω_n (rad/sec)	0.0412	0.0242	0.0110	0.0154
	ζ	1.0000	1.0000	1.0000	1.0000

damped. Both the roll and spiral modes exhibit negative real roots, indicating that these modes are non-oscillatory and convergent.

Once again, for each of the four flight conditions, each lateral-directional mode was excited by its eigenvector. Figure 23 shows the Dutch-roll response to excitation by the eigenvector normalized to the sideslip angle, β . Although yaw angle (ψ) is not an eigenvector component, and not shown in Figure 22, it is useful when examining the Dutch-roll mode shape. For a typical Dutch-roll, the magnitudes of ψ and β will be nearly equal while their phase angles will be about 180 degrees out of phase. This relationship gives an aircraft's c.g. a nearly straight trajectory during a Dutch-roll oscillation, when viewed from overhead. [Ref. 18] The yaw angle perturbation was estimated by, $\mathbf{y} = \frac{1}{w_n} \dot{\mathbf{y}} e^{-if}$; where $\dot{\mathbf{y}} \perp r$, resulting in $\mathbf{y} = 0.93 \angle 93.2$. Figure 23 and the

Dutch-roll eigenvalue roots show that the Dutch-roll mode is undamped and slightly

Figure 23. Dutch-Roll Response to Initial Condition

$$\begin{Bmatrix} \mathbf{b} \\ p \\ \mathbf{f} \\ r \end{Bmatrix} = \begin{Bmatrix} 1 \\ 2.550 \\ 2.037 \\ 1.664 \end{Bmatrix}$$
(15)

unstable for the cruise condition of flight. As expected, only the sea-level penetration condition exhibited a stable Dutch-roll mode.

Figure 24 shows the roll response, as excited by the eigenvector normalized to p . The roll mode is, characteristically, dominated by roll angle, ϕ , and roll rate, p , with small β and yaw rate, r , components. All flight conditions exhibited similar roll characteristics.

Figure 24. Roll mode Response to Initial Condition

$$\begin{Bmatrix} \mathbf{b} \\ p \\ \mathbf{f} \\ r \end{Bmatrix} = \begin{Bmatrix} 0.0447 \\ 1 \\ 0.6498 \\ 0.0282 \end{Bmatrix} \quad (16)$$

Figure 25 shows the spiral mode as excited by the eigenvector normalized to ϕ . The cruise condition spiral shown is stable and is typical of all flight conditions examined. The spiral mode is, characteristically, dominated by the roll angle component, ϕ . [Ref. 18]

Figure 25. Spiral mode Response to Initial Condition

$$\begin{bmatrix} \mathbf{b} \\ p \\ \mathbf{f} \\ r \end{bmatrix} = \begin{bmatrix} 0.0031 \\ 0.0108 \\ 1 \\ 0.0564 \end{bmatrix} \quad (17)$$

D. FLYING QUALITIES

Using the previous stability and control data, the P 208's flying qualities were assessed in accordance with MIL-F-8785C, (Military Specification Flying Qualities of Piloted Airplanes). Each of the four flight conditions were assessed in the trimmed, stick-fixed mode. The P 208 was evaluated as a Class IV aircraft, that is, a high maneuverability aircraft. The three flight phase categories and three levels of flying qualities from MIL-F-8785C are discussed below. [Ref. 18]

Flight Phase Categories-

- A. Non-terminal Flight Phases that require rapid maneuvering, precision tracking, or precise flight-path control, i.e., air-to-air combat, ground attack, terrain following, ect.
- B. Non-terminal Flight Phases that are normally accomplished using gradual maneuvers and without precision tracking, i.e., climb, cruise, loiter, ect.
- C. Terminal Flight Phases normally accomplished using gradual maneuvers and usually require accurate flight-path control, i.e., takeoff, approach, landing, ect.

Levels of Flying Qualities-

- 1. Flying qualities clearly adequate for the mission Flight Phase.
- 2. Flying qualities adequate to accomplish the mission Flight Phase, but some increase in pilot workload or degradation in mission effectiveness, or both exists.
- 3. Flying qualities such that the airplane can be controlled safely, but pilot workload is excessive or mission effectiveness is inadequate, or both.

For the short-period motion, the P 208 has Level 1 flying qualities for category C Flight Phases and for category A at low altitude and high airspeed. At higher altitudes the short-period drops to Level 2 for category B Flight Phases and Level 3 for category A. The P 208's long-period is Level 1 across the board. The P 208 has unacceptable flying qualities in the Dutch-roll mode, except at low altitudes and high airspeeds where it exhibits Level 1 qualities for Flight Phases A and B, except for air-to-air combat and ground attack where it is Level 2. The P 208 is Level 1, for all flight conditions examined, in roll and spiral performance.

V. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

1. Configuration Suitability

It is, of course, the configuration and its applicability to future designs, and not the P 208 itself that is of primary interest. Some of Kentfield's conclusions on the OHS configuration have been observed in the analysis of the P 208. The tails are, in fact, lifting surfaces for most phases of flight, and therefore his claims of reduced main wing planform area versus a conventional configuration appear valid. Roll performance is adequate, as seen by the P 208's Level 1 roll performance. Again, Figure 14 appears to verify Kentfield's theory on increased roll performance as stated in Chapter I. Greater pitch stability, as theorized by Kentfield, did not materialize as the P 208 had Level 2 and 3 short period flying qualities at higher altitudes and airspeeds. This is likely due to the low lift coefficients and corresponding low circulations and weak wing tip vortices occurring at the cruise and V_{max} conditions in addition to the short coupling and small tail size of the P 208. Pitch control presented a problem in the approach configuration for the P 208 as analyzed herein. Reducing the static margin corrected the problem but no effort was made to examine how this would further affect stability and control, which may pose a problem since already small tail volume coefficients would be further reduced by an aft movement of the CG. Stability and control should present no major difficulties, even with the small tails, but require a pitch and a yaw damper at a minimum to bring the short-period and Dutch-roll up to Level 1. As far as performance is concerned, Blohm and Voss predicted a lower weight and surface area due to small wings, control surfaces and fuselage. Nothing in the analysis would appear to contradict these predictions.

2. NASA codes

RAM was an excellent tool for the analysis of the P 208. The code lends itself well to quick building and adjusting of concepts, though adding fine nuances, such as complex body shapes, requires much more skill and time. Despite its lack of documentation the code is quickly learned by sitting down and using it. For

reproducibility in future studies, a copy of the P 208 RAM input file is included as Appendix F.

VORVIEW allows for a very quick examination of a proposed configuration developed in RAM. The inputs to and execution of VORVIEW require a fraction of the time necessary to produce the same results by empirical methods. Unfortunately, a true evaluation of VORVIEW's accuracy in predicting an unconventional configuration's performance was not possible. Insufficient Blohm and Voss data was available to make such an evaluation. Also lacking any flight data or wind tunnel data it would be unwise to evaluate a modern design code against 1940s prediction methods. Some comparisons are, however, available. Span efficiency, as predicted by VORVIEW was apparently 13% lower than the German value and 18% lower than the value given in reference 4. Reference 4 also presented non-dimensional stability derivatives, derived using Roskam, reference 15, and longitudinal and lateral-directional roots for two flight conditions. Damping ratios and natural frequencies were calculated from the roots given and compared to those obtained from VORVIEW derivatives. Considering the fact that the flight conditions in reference 4 were no further defined than "Powered Approach" and "High-Speed Cruise" at a static margin of 5%, the agreement of the longitudinal characteristics was exceptional. All values of damping ratio and natural frequency for the longitudinal modes agreed within 28% except for long-period damping in the approach configuration which was 2.6 times greater in reference 4. Conversely, there was no agreement for the lateral-directional modes. VORVIEW showed an unstable Dutch-roll mode where reference 4 was stable, a stable spiral mode where reference 4 showed the mode as unstable and roll roots that were three times greater than found in reference 4. Unfortunately no useful conclusions can be drawn from these comparisons since no "correct" answer is available.

ACSYNT is a powerful tool. However, its utility was not ideally suited to the problem at hand. ACSYNT is not so much an analysis as it is a development tool. Through its sensitivity and optimization routines ACSYNT can quickly apply empirical equations drastically reducing man-hours required to perform trade studies. A working ACSYNT file for the P 208 has been created, Appendix G, and preliminary convergence to VORVIEW performance numbers completed. ACSYNT should be further used to

optimize the configuration for various defined missions. The requirements for its products occur early in the design process, before someone could learn the code and become proficient at its use.

The common weakness among the NASA codes, as far as their utilization at NPS is concerned, was the reliance on support from NASA personnel for their utilization. The minimal documentation, for RAM and VORVIEW, was the cause of much of this reliance.

B. RECOMMENDATIONS

1. If more than an academic interest exists in the OHS configuration, the next course of action should be a detailed structural analysis to determine if any structural penalties of the configuration will outweigh its benefits.
2. With a wind-tunnel model now available, experiments should be conducted to determine the accuracy of VORVIEW in the analysis of the configuration; thus giving a confidence level to any VORVIEW analysis of similar designs.
3. The P 208 ACSYNT model should be refined, and sensitivity and optimization analysis run to improve the configuration.
4. A direct RAM/VORVIEW comparison should be completed of a conventional and OHS configuration with wing planforms and tail volume coefficients held constant.
5. A radar cross-section analysis should be performed to determine the configuration's potential benefits in this area.

THIS PAGE INTENTIONALLY LEFT BLANK

LIST OF REFERENCES

1. Cowin, Hugh W., "Blohm und Voss Projects of World War II," *Air Pictorial*, pp. 312- 316, October, 1963.
2. Schick, Walter and Ingolf Meyer, *Luftwaffe Secret Projects: Fighters 1939-1945*, World Print Limited, Hong Kong, 1997.
3. Blohm & Voss "Performance data for various Blohm und Voss fighter airplanes," National Air and Space Museum, German/Japanese Captured Air Technical Documents Microfilms Hamburg, Germany, May-December 1944.
4. Tipton, Brian, "The Preliminary Design Analysis of a Unique Semi-tailless Aircraft Configuration," Masters Thesis, University of Oklahoma, Norman, OK, 1995.
5. Hahn, Andrew, "An Independent Assessment of Scaled Composites Incorporated's Model M287-9 (Alliance 1) Inviscid Aerodynamics Using a Vortex Lattice Code," NASA Ames Research Center, November 16, 1998.
6. "User Guide to Acsynt and Create," Naval Postgraduate School, Monterey, CA, No Date.
7. Kentfield, John, "Aircraft Configurations with Outboard Horizontal Stabilizers," *Journal of Aircraft*, vol. 28, no. 10, pp. 670-672, October, 1991.
8. Kentfield, John, "Case for Aircraft with Outboard horizontal Stabilizers," *Journal of Aircraft*, vol. 32, no. 2, pp. 398-403, March-April 1995.
9. Kentfield, John, "The Aspect-Ratio Equivalence of Conventional Aircraft with Configurations Featuring Outboard Horizontal Stabilizers," Paper 975591, 1997 SAE/AIAA World Aviation Congress, October 13-16, 1997.
10. Kentfield, John, "Influence of Aspect Ratio on the Performance of Outboard Horizontal-Stabilizer Aircraft," *Journal of Aircraft*, vol. 37, no. 1, pp. 62-67, January-February 2000.
11. "Blohm & Voss P 208," *Luftfahrt International*, vol. 15, pp. 2325-2339, May-June 1976.
12. Blohm & Voss "Blohm und Voss Jet Airplanes." National Air and Space Museum, German/Japanese Captured Air Technical Documents Microfilms Hamburg, Germany, 1944-45.

13. Hoak, D.E., *USAF Stability and Control DATCOM*, McDonnell Douglas Corporation Douglas Aircraft Division, April 1978.
14. Raymer, Daniel P., *Aircraft Design: A Conceptual Approach*, American Institute of Aeronautics and Astronautics, Washington, D.C., 1989.
15. Loftin, Laurence K., *Subsonic Aircraft: evolution and the matching of size to performance*, NASA RP 1060, August 1960.
16. Roskam, Jan, *Airplane Design*, Roskam Aviation & Engineering Corporation, Ottawa, KS, 1986.
17. Iglesias, S. and W.H. Mason, “Optimum Spanloads Incorporating Wing Structural Weight,” AIAA-2001-5234, First AIAA Aircraft Technology, Integration, and Operations Forum, Los Angeles, CA, October, 2001.
18. Schmidt, Louis V., *Introduction to Aircraft Flight Dynamics*, American Institute of Aeronautics and Astronautics, Washington, D.C., 1998.
19. MIL-F-8785C, Military Specification: Flying Qualities of Piloted Airplanes, November 1980.

APPENDIX A: WEIGHTS

A Weight statement for the P 208, from the Blohm and Voss data is given in Figure 26. An English units weight statement is also available in reference 4.

Blohm & Voss		Gewichtsaufstellung	P 208.03
		Jäger mit DB 603 L	
1. Flugwerk AIRCRAFT			
WING	a <u>Tragwerk</u>	Flügel 19 m ²	660 kg
FUSELAGE	b <u>Rumpfwerk</u>	Rumpf	360 kg
COCKPIT		Kabine	100 kg
TAILSURFACE		Leitwerksträger	70 kg
TAIL	c <u>Leitwerk</u> 4 m ²		70 kg
CONTROL SYS	d <u>Steuerwerk</u>		55 kg
HYDRAULICS	e <u>Hydraul. Anlage</u>		60 kg
LANDING GEAR	f <u>Fahrwerk</u> 740 x 210	140 kg	1715 kg
2. Triebwerk			
POWERPLANT	a Motor DB 603 L mit Ausrüstung	1100 kg	
	b Luftschraubenanlage	280 kg	
	c Abgasanlage	50 kg	
	d Bedienanlage	5 kg	
	e Betriebsstoffanlage	50 kg	
	f Kühlanlage	140 kg	
	g Schnierstoffbehälter	20 kg	
	h Lüftungsanlage	55 kg	1700 kg
EQUIPMENT / Ausrüstung			
ACCESSORIES	a Betriebsgeräte	8 kg	
	b Elkt. Ausrüstung	60 kg	
	c F-T - Ausrüstung	66 kg	
	d Sicherheits- und Rettungsgeräte	13 kg	
	e Triebwerkbrandabschaltung	30 kg	
	f Gerätshalterungen und Leitungen	48 kg	225 kg
ARMAMENT 4. Bewaffnung			
	3 MK 108	174 kg	
	Einbauten usw.	130 kg	
	Visieranlage und Knüppelgriff	18 kg	322 kg
ARMOR PLATE	Panzerung		140 kg
EXTRA / Zusatzausstattung			
ADDITIONAL		Rüstgewicht	4145 kg
6. Betriebsstoff			
FUEL	a Kraftstoff für 2 Std.	600 kg	
LUBE	b Schnierstoff	65 kg	665 kg
CREW 7. Besatzung			
		100 kg
8. Nutzlast			
	Munition		140 kg
		Startgewicht	5050 kg
Aufgest.: 10.11.44/Km. Ausfertigung: 8			PR 395/208

Figure 26. Original Weights Data [From: Ref. 12]

THIS PAGE INTENTIONALLY LEFT BLANK

APPENDIX B: EXAMPLE BV PERFORMANCE DATA

An example of the available Blohm and Voss data for the P 208 is shown in Tables 9 thru 12. Data sheets for various power settings at altitudes from sea level to 12 km are available. Low and high power settings for sea level and 9 km are presented.

Table 9. Sea-level Performance Data [From: Ref. 12]

BLOHM & VOSS Fliegengesellschaft B&V HAMBURG		Luftschraubenwirkungsgrade					
Baumuster : Projekt P 208, 03		mit Motor: DG 6031 mit 14W50 Leistungen nach Blatt 9-603-2256 vom 5.5.44					
Luftschraube			Flughöhe H = 0 km				
Durchmesser D	= 3,40 m		Leistung N _{Stunden}	= 1800 PS			
Blatzzahl z	= 4		Untersetzung i	= 1: 1,93			
Tiefenverhältnis T _d	= b/D = 0,09		Motordrehzahl n _M	= 2500 1/min			
Dickenverhältnis δ _r = (d/l) _r	= 0,04		Luftschr.-Drehzahl n _p	= 1045 1/min = 21,67 sek			
$l_d = T_d \cdot D = 0,906$ m		g = 9,8125	Polare: "M" (wirkt ein)				
$F_p = \frac{\pi \cdot D^2}{4} = 9,075$ m ²		$\frac{150}{g} = 1240$	+ 1,14 Einfluss				
$D^3 = 39,35$ m ³		$g \cdot z \cdot D^3 \cdot (\frac{n_p}{100})^2$ (1/min) = 3300	$\delta = 0,04$ unmittelbar wird				
$F_W = -$ (Fliehdruckwirkung w)	m ²	$C_1 = \frac{150}{g \cdot F_p \cdot v^3}$					
$\xi_d = 1 - (0,4 - \frac{z}{5}) \cdot \frac{F_W}{F_p}$		$C_{a,1} = (N_{PS}) / g \cdot z \cdot D^3 \cdot (\frac{v}{100}) \text{ km/h} \cdot (\frac{n_p}{100})^2 \text{ 1/min} \cdot B$					
(1) V	km/h	300	350	400	500	600	700
(2) V	m/s	83,3	97,2	111,1	139	164	194,5
(3) V ³	(m/s) ³ 10 ⁻⁶	0,580	0,620	1,34	2,68	4,63	4,35
(4) U	m/s	93,1	*	-	-	*	*
(5) λ	-	0,361	0,421	0,482	0,604	0,725	0,844
(6) Ma	-	0,425	0,485	0,45	0,78	0,23	0,88
(7) C ₁	-	0,412	0,2595	0,144	0,089	0,6516	0,0325
(8) γ geschätzt	-	0,80	0,84	0,88	0,85	0,89	0,85
(9) B	-	0,083	0,935	0,948	1,01	1,005	1,14
(10) Ca·1	-	0,195	0,1695	0,1448	0,108	0,0855	0,0664
(11) Ca	-	0,688	0,552	0,448	0,359	0,24005	0,018
(12) E _{ri} ^x	-	0,018	0,0189	0,020	0,0245	0,033	0,054
(13) C ₁ /C ₁₁	-	1,035	1,03	1,03	1,03	1,032	1,045
(14) C ₁₁	-	0,894	0,2519	0,169	0,0865	0,050	0,0311
(15) γ ₁	-	0,852	0,88	0,908	0,932	0,951	0,963
(16) α	°	4,00	3,92	2,65	1,950	1,40	1,06
(17) r	°	1,031	1,081	1,145	1,405	1,89	3,095
(18) a ₁₀₇	°	5,031	4,401	3,795	3,355	3,24	4,095
(19) γ _{rei}	-	0,818	0,846	0,84	0,89	0,89	0,862
(20) ε ₂	-						
(21) γ _{ges}	-						
(22) x _{DEP} λ, Ma Einfluss							
(23) M ₁ E _{TAEP}							
(24)							
(25)							

Table 10. High Power Sea-level Performance [From: Ref. 12]

BLOHM & VOSS Flugzeuge BOV HAMBURG		Luftschraubenwirkungsgrade					
Baumuster Projekt	P 208; 09-02	mit Motor: DB 603 L Leistungen nach Blatt 4-603-Q 2,56 vom 5.5.44					
Luftschraube		Flughöhe H = 0 km					
Durchmesser	$D = 9,40 \text{ m}$	Leistung $N_{\text{shm}} + \text{MW50} = 2100 \text{ PS}$					
Blattzahl	$z = 4$	Untersetzung $i = 1: 1,93$					
Tiefenverhältnis	$\tilde{\tau}_d = b/D = 0,09$	Motordrehzahl $n_M = 2400 \text{ 1/min}$					
Dickenverhältnis	$\delta_d = (a/l)_d = 0,04$	Luftschr.-Drehzahl $n_p = 1400 \text{ 1/min} = 0,34 \text{ sek}$					
$l_d = \tilde{\tau}_d \cdot D = 0,906 \text{ m}$		$\eta = 0,125$		Polare: „M“			
$F_p = \frac{\pi \cdot D^2}{4} = 9,045 \text{ m}^2$		$\frac{150}{\eta} = 1200$		τ, λ, M_a Einfluss β $\delta: 0,04$ zu berücksichtigen			
$D^3 = 39,35 \text{ m}^3$		$g \cdot z \cdot D^3 \cdot \left(\frac{n_p}{100} \right)^2 \text{ (1/min)} = 3855$					
$F_w = - (\text{Staudrucklinie}) \text{ m}^2$		$C_l = \frac{150}{\eta} \cdot \frac{N}{F_p \cdot V_3}$	$\lambda = \frac{\lambda}{\omega}$				
$\xi_p = 1 - (0,4 - \frac{2}{3}) \cdot \frac{F_w}{F_p}$		$C_{a,1} = N(\text{PS}) / g \cdot z \cdot D^3 \cdot \left(\frac{V}{100} \right) \text{ km/h} \cdot \left(\frac{n_p}{100} \right)^2 \text{ 1/min} \cdot B$					
(1) V	km/h	200	300	400	500	600	700
(2) V	m/s	55,6	83,3	111,1	139	164	194,5
(3) V^3	$(\text{m/s})^3 \cdot 10^{-6}$	0,142	0,580	1,84	2,68	4,63	7,35
(4) U	m/s	250	=	-	-	-	-
(5) λ	-	0,2293	0,333	0,445	0,556	0,669	0,789
(6) M_a	-	0,45	0,44	0,48	0,535	0,58	0,63
(7) C_l	-	1615	0,481	0,2025	0,1085	0,0660	0,0378
(8) $\eta_{\text{geschätz}}$	-	0,40	0,84	0,84	0,88	0,89	0,89
(9) B	-	1,005	0,89	0,93	0,96	1,03	1,13
(10) $C_{a,1}$	-	0,241	0,904	0,1469	0,1186	0,0882	0,0689
(11) C_a	-	0,886	0,668	0,480	0,341	0,288	0,255
(12) E_{xx}	-	0,003	0,019	0,020	0,025	0,034	0,046
(13) C_l/C_{l1}	-	1,068	1,04	1,03	1,032	1,035	1,035
(14) C_{l1}	-	1,516	0,469	0,1965	0,1001	0,058	0,0358
(15) η_{i}	-	0,46	0,848	0,90	0,932	0,95	0,962
(16) a	-	5,05	3,90	2,80	2,00	1,45	1,00
(17) r	-	1,918	1,089	1,145	1,46	2,24	3,56
(18) α_{EP}	-	6,368	4,989	3,945	3,46	3,69	4,56
(19) η_{EP}	-	0,41	0,81	0,862	0,883	0,88	0,85
(20) ξ_{EP}	-	-	-	-	x	-	-
(21) η_{EP}	-	-	-	-	-	-	-
(22) $\Delta \xi_{\text{EP}} = \lambda, M_a$ Einfluss β	-	-	-	-	-	-	-
(23) $\Delta \eta_{\text{EP}} = \lambda, M_a$ Einfluss β	-	-	-	-	-	-	-
(24)	-	-	-	-	-	-	-
(25)	-	-	-	-	-	-	-

Table 11. High Altitude Performance [From: Ref. 12]

BLOHM & VOSS Flugzeugbau BAV HAMBURG		Luftschraubenwirkungsgrade							
Baumuster : P 208; 03		mit Motor: DB 603L mit MW30 Leistungen nach Blatt 9-613-2256 vom 5.5.44							
Luftschraube		Flughöhe H = 9 km							
Durchmesser D = 3,40 m		Leistung N _{PS} = 1490 PS							
Blattzahl z = 4		Untersetzung i = 1: 1,93							
Tiefenverhältnis $\tau_d = b/D = 0,09$		Motordrehzahl $n_M = 2500 \text{ 1/min}$							
Dickenverhältnis $\delta_d = (\%) = 0,04$		Luftschra.-Drehzahl $n_p = 19,95 \text{ 1/min} = 21,6 \text{ 1/sec}$							
$l_d = \tau_d \cdot D = 0,306 \text{ m}$		$\eta = 0,0446$ Polare: "M"							
$F_p = \frac{\pi \cdot D^2}{4} = 9,015 \text{ m}^2$		$\frac{150}{9} = 16,67$ λ, Ma Einfluss $\delta = 0,07$ Einfluss wird							
$D^3 = 39,85 \text{ m}^3$		$\eta \cdot z \cdot D^3 \cdot \left(\frac{n_p}{100}\right)^2 (1/\text{min}) = 1250$							
$F_w = \text{--- (Reibungswiderstand) } - \text{m}^2$		$C_l = \frac{150}{9} \cdot \frac{N}{F_p \cdot V^3}$							
$\xi_p = 1 - \left(0,44 - \frac{\lambda}{\delta}\right) \cdot \frac{F_w}{F_p}$		$C_{a1} = N_{(PS)} / 9 \cdot z \cdot D^3 \cdot \left(\frac{V}{100}\right) \text{ km/h} \cdot \left(\frac{n_p}{100}\right)^2 \text{ 1/min} \cdot \beta$							
①	V	km/h	460	500	550	600	700	800	
②	V	m/s	111,1	134	152,9	164	174,5	182	
③	V^3	$(m/s)^3 \cdot 10^{-6}$	1,34	2,08	3,56	4,63	7,35	10,99	
④	U	m/s	281	-	-	-	-	-	
⑤	λ	-	0,482	0,604	0,663	0,495	0,844	0,904	
⑥	Ma	-	0,84	0,88	0,91	0,935	0,99	1,04	
⑦	C_l	-	0,348	0,193	0,1432	0,1118	0,0404	0,0442	
⑧	$\eta_{geschätz}$	-	0,44	0,82	0,83	0,84	0,79	0,64	
⑨	B	-	1,695	1,028	1,056	1,09	1,145	1,337	
⑩	$C_a \cdot \tau_d$	-	0,295	0,291	0,205	0,1815	0,1419	0,111	
⑪	C_a	-	0,965	0,754	0,67	0,594	0,464	0,368	
⑫	E^{x_2}	-	0,0865	0,082	0,0395	0,043	0,030	0,028	
⑬	C_l/C_{l1}	-	1,048	1,038	1,035	1,035	1,06	1,115	
⑭	C_{l1}	-	0,361	0,1862	0,1405	0,102	0,0664	0,0423	
⑮	η_i	-	0,83	0,844	0,84	0,90	0,921	0,935	
⑯	α	°	5,10	3,80	3,35	3,00	2,30	1,85	
⑰	r	°	9,09	1,835	1,42	0,24	4,24	9,42	
⑱	$\sin r$	°	7,19	5,635	0,24	5,29	6,54	11,24	
⑲	η_{frei}	-	0,442	0,82	0,88	0,83	0,488	0,634	
⑳	ξ_e	-							
㉑	η_{ges}	-							
㉒	x) $\Delta E_p = \lambda, \tau_d$ Einfluss								
㉓	x ₂) $\varepsilon + \Delta E_p$								
㉔									
㉕									
㉖	24.5.1944	Mach.							

Table 12. High Altitude High Power Performance [From: Ref.12]

BLOHM & VOSS Flugzeugbau B&V HAMBURG		Luftschraubenwirkungsgrade					
Baumuster : Projekt P 208; 03		mit Motor: DB 608 L mit MW 50 Leistungen nach Blatt 9-603-A256 vom 5.5.44					
Luftschraube		Flughöhe $H = 9 \text{ km}$					
Durchmesser $D = 9.40 \text{ m}$		Leistung $N_{\text{Stand+Luft}} = 1450 \text{ PS}$					
Blattzahl $z = 4$		Untersetzung $i = 1: 1.019$					
Tiefenverhältnis $\tau_d = b/D = 0.09$		Motordrehzahl $n_M = 2460 \text{ 1/min}$					
Dickenverhältnis $\delta_d = (d/l)_d = 0.04$		Luftschra.-Drehzahl $n_p = 1450 \text{ 1/min} = 28.4 \text{ 1/sec}$					
$l_d = \tau_d \cdot D = 0.806 \text{ m}$		$\eta = 0.0446$ Polare: 14°					
$F_p = \frac{\pi \cdot D^2}{4} = 9.045 \text{ m}^2$		$\frac{150}{9} = 9.151$ λ, Ma Einfluss $\delta: 0.04$ berücksichtigt wird					
$D^3 = 89.85 \text{ m}^3$		$g \cdot z \cdot D^3 \cdot (\frac{n_p}{100})^2 (1/\text{min}) = 1464$					
$F_w = -(\text{Zw. Punkt zu rechnen}) \text{ m}^2$		$C_l = \frac{150}{9 \cdot F_p \cdot v^3}$					
$\xi_c = 1 - (0.4 - \frac{\lambda}{3}) : \frac{F_w}{F_p}$		$C_{a \cdot i} = N_{(PS)} / g \cdot z \cdot D^3 \cdot (\frac{v}{100}) \text{ km/h} \cdot (\frac{n_p}{100})^2 \text{ 1/min} \cdot \beta$					
(1) v	km/h	460	560	554	600	480	800
(2) v	m/s	111.1	134	152.9	164	194.5	222
(3) v^3	$(\text{m/s})^3 \cdot 10^{-6}$	1.34	2.68	3.56	4.63	4.35	10.99
(4) U	m/s	250	-	-	-	-	-
(5) λ	-	0.445	0.556	0.611	0.669	0.749	0.888
(6) Ma	-	0.895	0.94	0.96	0.98	1.0	1.04
(7) C_l	-	0.444	0.296	0.1405	0.1310	0.6226	0.5554
(8) $\eta_{\text{geschätzt}}$	-	0.45	0.44	0.80	0.85	0.75	0.65
(9) B	-	1.003	1.02	1.04	1.05	1.14	1.28
(10) $C_{a \cdot i}$	-	0.2945	0.234	0.2085	0.1895	0.1455	0.1165
(11) C_a	-	0.912	0.466	0.682	0.619	0.446	0.381
(12) E_{xx}	-	0.030	0.008	0.013	0.038	0.016	0.056
(13) C_l/C_{l1}	-	1.045	1.055	1.05	1.055	1.08	1.115
(14) C_{l1}	-	0.413	0.214	0.1625	0.1241	0.0465	0.0496
(15) η_i	-	0.825	0.868	0.88	0.899	0.912	0.935
(16) a	-	5.15	4.10	3.65	3.35	2.40	1.90
(17) r	-	2.86	2.44	2.35	2.98	5.34	8.86
(18) $a_i + r$	-	8.01	6.54	6.20	6.33	4.44	10.46
(19) η_{frei}	-	0.445	0.493	0.802	0.88	0.458	0.66
(20) ξ_e	-	-	-	-	-	-	-
(21) η_{ges}	-	-	-	-	-	-	-
(22) x) $\Delta E_p = \lambda \cdot Ma$ Einfluss	-	-	-	-	-	-	-
(23) xx) $E + \Delta E_p$	-	-	-	-	-	-	-
(24)	-	-	-	-	-	-	-
(25)	-	-	-	-	-	-	-
94 X 1944 durch.							

APPENDIX C: VORVIEW PRODUCTS

Examples of VORVIEW output file, “P208_C.out”, and stability derivatives output, “P208_C.lon” are shown.

```
*****
*****      VORLAX/VORVIEW      *****
***** -    SUMMARY OUTPUT FILE   *****
*****                         *****
*****
```

FILE NAME: P208_C

*** SOLUTION INPUT PARAMETERS ***

LAX = 0 EQUAL CHORDWISE VORTICE SPACING
HAG = 0.000 HEIGHT ABOVE GROUND
ITRMAX = 200 MAX NUMBER OF ITERATIONS
NPAN = 78 NUMBER OF MAJOR PANELS
NAP = 20 NUMBER OF CAMBER POINTS
TOTPAN = 1950 NUMBER OF SUB-PANELS
SPC = 0.100 LEADING EDGE SUCTION MULT (SPC < 0.0 - POLHAMUS ANALOGY)

*** GEOMETRY PARAMETERS ***

SREF = 204.540 REF WING AREA
AR = 4.750 REF WING ASPECT RATIO
TAPER = 1.000 REF WING TAPER RATIO
WSPAN = 31.170 REF WING SPAN
CBAR = 6.560 PITCHING MOMENT REF LENGTH
XBAR = 14.930 X VALUE OF MOMENT REF POINT
ZBAR = 0.000 Z VALUE OF MOMENT REF POINT

*** FLIGHT CONDITION PARAMETERS ***

LATRAL = 0 SYMETRIC FLIGHT/CONFIG
PSI = 0.000 SIDESLIP ANGLE (DEGREES)
PITCHQ = 0.000 PITCH RATE (DEGS/SEC)
ROLLQ = 0.000 ROLL RATE (DEGS/SEC)
YAWQ = 0.000 YAW RATE (DEGS/SEC)
NMACH = 1 NUMBER OF MACH NOS
MACH NO = 0.730
NALPHA = 1 NUMBER OF ATTACK ANGLES
ALPHA = -0.083

*** RESULTS ***

CLTOT - TOTAL LIFT COEFFICIENT
CDTOT - TOTAL PRESSURE DRAG COEFFICIENT
CYTOT - TOTAL LATERAL FORCE COEFFICIENT
CMTOT - TOTAL PITCHING MOMENT COEFFICIENT
CRMTOT - TOTAL ROLLING MOMENT COEFFICIENT
CYMTOT - TOTAL YAWING MOMENT COEFFICIENT
E - OSWALDS EFFICIENCY FACTOR
ITER - NUMBER OF ITERATIONS TO CONVERGENCE

MACH NO	=	0.730			
ALPHA	CLTOT	CDTOT	CLTRF	CDTRF	CYTOT
CMTOT	CRMTOT	CYMTOT	CD/CL ²	E	(CD/CL ²)_TRF
E_TRF	ITER				
-0.08	0.22499	0.00468	0.22035	0.00533	0.00000
0.00000	0.00003	0.00000	0.09248	0.72459	0.10978
0.61044	53				

CONVERGED ON TRIM CONDITION!

CL AT TRIM POINT IS: 0.2249999

CM AT TRIM POINT IS: -5.4944127E-07

TRIM ALPHA IS: -8.2743317E-02

TRIM DELTA IS: 2.150649

***** LONGITUDINAL DERIVATIVES OUTPUT, .lon FILE *****

#####

MACH_o: 0.7300000
ALPHA_o: -8.3000004E-02
U_o: 1.000000

CLo: 0.22499
CDo: 0.01447
CYo: 0.00000
Clo: -0.00003
Cmo: 0.00000
Cno: 0.00000

CL_alpha: 5.96435
CL_beta: -0.00017
CL_mach: 0.17873
CL_p: 0.00970
CL_q: 7.44119
CL_r: 0.02858
CL_u: 0.13047
CL_alpha_2: -1.62546
CL_alpha_dot: 5.93396
CD_alpha: 0.19646
CD_beta: -0.58471
CD_mach: 0.10037
CD_p: -0.01154
CD_q: 0.21466
CD_r: -0.04337
CD_u: 0.07327
CD_alpha_2: 75.25758
CD_alpha_dot: 0.00000
CY_alpha: 0.00007
CY_beta: -0.11861
CY_mach: 0.00000
CY_p: 0.17894
CY_q: 0.00025
CY_r: 0.07042
CY_u: 0.00000
CY_alpha_2: 0.00595
CY_alpha_dot: 0.00000
Cl_alpha: -0.00062
Cl_beta: -0.03616
Cl_mach: 0.00000
Cl_p: -0.96391
Cl_q: -0.00199
Cl_r: -0.01365
Cl_u: 0.00000
Cl_alpha_2: 0.04811
Cl_alpha_dot: 0.00000
Cm_alpha: -1.12150
Cm_beta: 0.00007
Cm_mach: -0.03812

```
Cm_p:      -0.00640
Cm_q:      -6.60028
Cm_r:      -0.07526
Cm_u:      -0.02783
Cm_alpha_2: 0.20415
Cm_alpha_dot: -5.26338
Cn_alpha:   -0.00003
Cn_beta:    0.01719
Cn_mach:   0.00000
Cn_p:       -0.12378
Cn_q:       -0.00023
Cn_r:       -0.02608
Cn_u:       0.00000
Cn_alpha_2: 0.00365
Cn_alpha_dot: 0.00000
```

```
#####
name: elevator
```

```
MACH:      0.73000
ALPHA:     -0.08300
```

```
CL_delta:  0.41949
CD_delta: -0.01177
CY_delta:  0.00000
Cl_delta:  0.00001
Cm_delta: -0.75488
Cn_delta:  0.00000
```

```
#####
name: flap
```

```
MACH:      0.73000
ALPHA:     -0.08300
```

```
CL_delta:  1.51916
CD_delta:  0.60356
CY_delta:  -0.00002
Cl_delta:  0.00017
Cm_delta: -0.16041
Cn_delta:  0.00002
```

```
#####
name: aileron
```

```
MACH:      0.73000
ALPHA:     -0.08300
```

```
CL_delta:  0.50592
CD_delta:  0.56625
CY_delta:  0.00001
Cl_delta:  -0.00008
Cm_delta: -0.43908
Cn_delta:  -0.00001
```

APPENDIX D: DIMENSIONAL STABILITY DERIVATIVES

Table 13, from reference 17, shows the dimensionalization equations and units for the dimensional derivatives in Table 14. Table 14 list the values for the stability derivatives calculated for the P 208 by VOREVIEW in dimensionalized form.

Table 13. Dimensional Derivative Description [Ref. 17]

Term	Description	Units	Term	Description	Units
X_u	$-\frac{QS}{mV} (2C_D + M \frac{\partial C_D}{\partial M})$	s ⁻¹	Y_β	$\frac{QS}{m} \frac{\partial C_v}{\partial \beta}$	ft · s ⁻²
X_α	$\frac{QS}{m} (C_L - \frac{\partial C_D}{\partial \alpha})$	ft · s ⁻²	Y_p	$\frac{QS}{m} \left(\frac{b}{2V} \right) \frac{\partial C_v}{\partial (pb/2V)}$	ft · s ⁻¹
$X_{\dot{\alpha}}$	$-\frac{QS}{m} \left(\frac{c}{2V} \right) \frac{\partial C_D}{\partial (\dot{\alpha}c/2V)}$	ft · s ⁻¹	Y_r	$\frac{QS}{m} \left(\frac{b}{2V} \right) \frac{\partial C_v}{\partial (rb/2V)}$	ft · s ⁻¹
X_q	$-\frac{QS}{m} \left(\frac{c}{2V} \right) \frac{\partial C_D}{\partial qc/2V}$	ft · s ⁻¹	Y_δ	$\frac{QS}{m} \frac{\partial C_v}{\partial \delta}$	ft · s ⁻²
X_δ	$-\frac{QS}{m} \frac{\partial C_D}{\partial \delta}$	ft · s ⁻²	L_β	$\frac{QSb}{I_x} \frac{\partial C_t}{\partial \beta}$	s ⁻²
Z_u	$-\frac{QS}{mV} (2C_L + M \frac{\partial C_L}{\partial M})$	s ⁻¹	L_p	$\frac{QSb}{I_x} \left(\frac{b}{2V} \right) \frac{\partial C_t}{\partial (pb/2V)}$	s ⁻¹
Z_α	$-\frac{QS}{m} (C_D + \frac{\partial C_L}{\partial \alpha})$	ft · s ⁻²	L_r	$\frac{QSb}{I_x} \left(\frac{b}{2V} \right) \frac{\partial C_t}{\partial (rb/2V)}$	s ⁻¹
$Z_{\dot{\alpha}}$	$-\frac{QS}{m} \left(\frac{c}{2V} \right) \frac{\partial C_L}{\partial (\dot{\alpha}c/2V)}$	ft · s ⁻¹	L_δ	$\frac{QSb}{I_x} \frac{\partial C_t}{\partial \delta}$	s ⁻²
Z_q	$-\frac{QS}{m} \left(\frac{c}{2V} \right) \frac{\partial C_L}{\partial qc/2V}$	ft · s ⁻¹	N_β	$\frac{QSb}{I_z} \frac{\partial C_n}{\partial \beta}$	s ⁻²
Z_δ	$-\frac{QS}{m} \frac{\partial C_L}{\partial \delta}$	ft · s ⁻²	N_p	$\frac{QSb}{I_z} \left(\frac{b}{2V} \right) \frac{\partial C_n}{\partial (pb/2V)}$	s ⁻¹
M_u	$\frac{QS_c}{I_y V} M \frac{\partial C_m}{\partial M}$	ft ⁻¹ · s ⁻¹	N_r	$\frac{QSb}{I_z} \left(\frac{b}{2V} \right) \frac{\partial C_n}{\partial (rb/2V)}$	s ⁻¹
M_α	$\frac{QS_c}{I_y} \frac{\partial C_m}{\partial \alpha}$	s ⁻²	N_δ	$\frac{QSb}{I_z} \frac{\partial C_n}{\partial \delta}$	s ⁻²
$M_{\dot{\alpha}}$	$\frac{QS_c}{I_y} \left(\frac{c}{2V} \right) \frac{\partial C_m}{\partial (\dot{\alpha}c/2V)}$	s ⁻¹			
M_q	$\frac{QS_c}{I_y} \left(\frac{c}{2V} \right) \frac{\partial C_m}{\partial qc/2V}$	s ⁻¹			
M_δ	$\frac{QS_c}{I_y} \frac{\partial C_m}{\partial \delta}$	s ⁻²			

Table 14. P 208 Dimensional Derivatives

	Appr	SL pen	Cruise	Vmax
Xu, s-1	-0.0567	-0.0412	-0.0159	-0.0225
Xa, ft/s2	-1.9336	22.8578	-7.6871	4.0856
Mu, ft-1? s -1	-2.96E-04	-5.37E-04	-3.64E-04	-9.36E-04
Ma, s-2	-3.5536	-43.5811	-16.1411	-27.2726
Madot, s-1	-0.3549	-1.1944	-0.4514	-0.5809
Mq, s-1	-0.4451	-1.4977	-0.5661	-0.7285
Zu, s-1	-0.3194	-0.1218	-0.128	-0.1151
Za, ft/s2	-112.4707	-1.40E+03	-506.0536	-857.8977
Zadot, ft/s	-2.1722	-7.9257	-2.9555	-3.8608
Zq, ft/s	-2.724	-9.9389	-3.7062	-4.8414
Xde, ft/s2	-0.2415	2.694	-0.7908	1.6873
Mde, s-2	-2.8815	-30.1954	-11.0846	-18.3576
Zde, ft/s2	-9.047	-100.64	-36.2656	-60.1372
Y _B , ft/s ²	-14.6865	-95.0953	-57.1661	-55.8333
Y _p , ft/s	0.3286	1.0185	0.4246	0.4958
Y _r , ft/s	2.20E-05	5.88E-05	2.65E-05	2.78E-05
L _B , s ⁻²	-5.8041	-1.3831	-4.6904	-3.7639
L _p , s ⁻¹	-1.0294	-3.503	-1.3291	-1.6686
L _r , s ⁻¹	0.3129	-0.0488	0.008	-0.0084
N _B , s ⁻²	0.3576	0.0353	1.3073	0.2741
N _r , s ⁻¹	-0.0987	-0.216	-0.1003	-0.1031
N _p , s ⁻¹	-0.0983	-0.2875	-0.0881	-0.1317
Y _{dr} , ft/s ²	2.156	23.4442	8.4733	13.7298
Y _{da} , ft/s ²	-0.0794	-1.1416	-0.4754	-0.7418
L _{dr} , s ⁻²	0.0902	1.0647	0.3179	0.582
L _{da} , s ⁻²	2.5926	26.355	9.8276	15.0431
N _{dr} , s ⁻²	-0.2838	-2.8604	-1.0657	-1.6956
N _{da} , s ⁻²	-0.029	-0.4701	-0.0351	-0.0537
L' _B , s ⁻²	-5.8006	-1.3829	-4.6764	-3.7612
L' _p , s ⁻¹	-1.0306	-3.5064	-1.3302	-1.6702
L' _r , s ⁻¹	0.3118	-0.0512	0.0069	-0.0095
N' _B , s ⁻²	0.3169	0.0256	1.2745	0.2477

N_p, s^{-1}	-0.1055	-0.3122	-0.0975	-0.1434
N_r, s^{-1}	-0.0965	-0.2163	-0.1003	-0.1032
L_{dr}, s^{-2}	0.0871	1.0333	0.3062	0.5634
N_{dr}, s^{-2}	-0.2832	-2.8531	-1.0636	-1.6917
L_{da}, s^{-2}	2.5925	26.3519	9.828	15.0436
N_{da}, s^{-2}	-0.0108	-0.285	0.0339	0.052

THIS PAGE INTENTIONALLY LEFT BLANK

APPENDIX E: MATLAB CODE

The following is a listing of the MATLAB, Version 6.0, code used to determine the P 208's longitudinal and lateral-directional eigenvalues, roots, natural frequencies, damping ratios and mode response.

```
% Longitudinal Dimentional derivatives
% P208 Cruise Profile (M=.57, H=29500)
% Vorview generated dimensionless derivatives

Ix=18143;
Iy=12370;
Iz=28474;
Ixz=200;
G=1/(1-Ixz^2/(Ix*Iz));
Q=146.6;
U=568.28;
S=204.53;
b=31.43;
c=6.56;
m=10300/32.2;
M=.57;

Cl=0.35;
Cd=0.0201;
Clalpha=5.4834;
CIM=0.1598;
Clq=6.9833;
Clalphadot=5.5688;
Cdalpha=0.4336;
CdM=0.10195;
Cmalpha= -1.0151;
CmM=-0.0228;
Cmq=-6.1682;
Cmalphadot=-4.9188;

Clde=0.3944;
Cdde=0.0086;
Cmde=-0.6971;

Xu=-Q*S/(m*U)*(2*Cd+M*CdM)
Xalpha=Q*S*(Cl-Cdalpha)/m
Mu=Q*S*c*M*CmM/(Iy*U)
Malpha=Q*S*c*Cmalpha/Iy
Malphadot=Q*S*c^2*Cmalphadot/(2*U*Iy)
Mq=Q*S*c^2*Cmq/(2*U*Iy)
Zu=-Q*S/(m*U)*(2*Cl+M*CIM)
Zalpha=-Q*S*(Cd+Clalpha)/m
Zalphadot=-Q*S*c*Clalphadot/(2*U*m)
Zq=-Q*S*c*Clq/(2*U*m)
```

```

Xde=-Q*S*Cdde/m
Mde=Q*S*c*Cmde/Iy
Zde=-Q*S*Clde/m

A=[Xu Xalpha/U 0 -32.174/U;
   U*Zu/(U-Zalphadot) Zalpha/(U-Zalphadot) (U+Zq)/(U-Zalphadot) 0;
   U*Mu+Malphadot*U*Zu/(U-Zalphadot) Malpha+Malphadot*Zalpha/(U-Zalphadot)
   Mq+Malphadot*(U+Zq)/(U-Zalphadot) 0;
   0 0 1 0];

B=[Xde/U;Zde/(U-Zalphadot); Mde+Malphadot*Zde/(U-Zalphadot);0];
b=zeros(4,1);
d=zeros(4,1);
C=eye(4);
p=poly(A)
r=roots(p)
[Wn,Z]=damp(r)
[V,D]=eig(A)

%Short period magnitude and phasing

MAGshort=abs(V(:,1));PHshort=angle(V(:,1));
magnormalph=MAGshort'/MAGshort(2) % Magnitude relative to alpha
phasenormalph=PHshort'-PHshort(2) %Phase relative to alpha in radians
Wnshort=Wn(1);

%Long period magnatude and phasing

MAGlong=abs(V(:,3));PHlong=angle(V(:,3));
magnormu=MAGlong'/MAGlong(1) %Magnitude relative to u/V
phasenormu=PHlong'-PHlong(1) %Phase relative to u/V
Wnlong=Wn(3);

% INITIAL CONDITIONS
% Normalized to alpha for short period
% Normalized to u/V for long period

x0short=[magnormalph.*cos(phasenormalph)+i.*magnormalph.*sin(phasenormalph)]';
x0long=[magnormu.*cos(phasenormu)+i.*magnormu.*sin(phasenormu)]';

sysini=ss(A,B,C,d);

x0shortreal=real(x0short);
[yshort,tshort,xshort]=initial(sysini,x0shortreal,6);

figure
plot(tshort(:,1),xshort(:,1),':',tshort(:,1),xshort(:,2),'-',tshort(:,1),xshort(:,3),'-'
',tshort(:,1),xshort(:,4), '--')
legend('u/V','\alpha','q','\theta')
xlabel('Time, sec')
ylabel('Response')
grid on

figure
x0longreal=real(x0long);

```

```

[ylong,tlong,xlong]=initial(sysini,x0longreal,[0:1:200]);
plot(tlong,xlong)
plot(tlong(:,1),xlong(:,1),'-',tlong(:,1),xlong(:,2),'-',tlong(:,1),xlong(:,3),'-.',tlong(:,1),xlong(:,4),'--')
legend('u/V','\alpha','q','\theta')
xlabel('Time, sec')
ylabel('Response')
grid on

sysstep=ss(A,B,C,d);
[ystep,tstep,xstep]=step(sysstep,10);
figure
plot(tstep,ystep(:,2),tstep,ystep(:,3))
legend('\alpha','q')
xlabel('Time, sec')
ylabel('Response')
grid on

[ystep2,tstep2,xstep2]=step(sysstep,25);
figure
plot(tstep2,1*ystep2(:,1),'-',tstep2,ystep2(:,2),'-',tstep2,ystep2(:,3),'-.',tstep2,1*ystep2(:,4),'--')
legend('.1*u/V','\alpha','q','.1*\theta')
xlabel('Time, sec')
ylabel('Response')
grid on

```

LATERAL – DIRECTIONAL CODE

```

% Lateral-Directional
% P208 Cruise Profile (M=.57, H=29500')
% Vorview generated dimensionless derivatives

```

```

clear
Ix=18143;
Iy=12370;
Iz=28474;
Ixz=200;
G=1/(1-Ixz^2/(Ix*Iz));
Q=146.6;
U=568.28;
S=204.53;
b=31.43;
c=6.56;
m=10500/32.2;
M=.57;

```

```

Cyb=-0.6217;
Cyp=0.1670;
Cyr=0.2967;
Clb=-0.0903;
Clp=-0.9253;
Clr=0.00556;
Cnb=0.03950;
Cnp=0.09631;

```

Cnr=-0.1096;

Cydr=0.09215;
Cldr=0.00612;
Cndr=-0.0322;
Cyda=-0.00517;
Clda=0.1892;
Cnda=-0.00106;

Yb=Q*S*Cyb/m;
Yp=Q*S*b*Cyp/(2*U*m);
Yr=Q*S*b*Cyr/(2*U*m*Iz);
Lb=Q*S*b*Clb/(Ix);
Lp=Q*S*b^2*Clp/(2*U*Ix);
Lr=Q*S*b^2/(2*U*Ix)*Clr;
Nb=Q*S*b*Cnb/Iz;
Nr=Q*S*b^2*Cnr/(2*U*Iz);
Np=Q*S*b^2*Cnp/(2*U*Iz);

Ydr=Q*S*Cydr/m;
Yda=Q*S*Cyda/m;
Ldr=Q*S*b*Cldr/Ix;
Lda=Q*S*b*Clda/Ix;
Ndr=Q*S*b*Cndr/Iz;
Nda=Q*S*b*Cnda/Iz;

Lbpr=(Lb+Nb*(Ixz/Ix))*G;
Lppr=(Lp+Np*Ixz/Ix)*G;
Lrpr=(Lr+Nr*Ixz/Ix)*G;
Nbpr=(Nb+Lb*Ixz/Iz)*G;
Nppr=(Np+Lp*Ixz/Iz)*G;
Nrpr=(Nr+Lr*Ixz/Iz)*G;

Ldrpr=(Ldr+Ndr*Ixz/Ix)*G;
Ndrpr=(Ndr+Ldr*Ixz/Iz)*G;
Ldapr=(Lda+Nda*Ixz/Ix)*G;
Ndapr=(Nda+Lda*Ixz/Iz)*G;

A=[Yb/U Yp/U 32.2/U (Yr-U)/U;
Lbpr Lppr 0 Lrpr;
0 1 0 0;
Nbpr Nppr 0 Nrpr];

Bdr=[Ydr/U;Ldrpr;0;Ndrpr];
Bda=[Yda/U;Ldapr;0;Ndapr];
b=zeros(4,1);
d=zeros(4,1);
C=eye(4);
[V,D]=eig(A)
p=poly(A)
r=roots(p)
[Wn,Z]=damp(r)

%Dutch roll values

```

MAGdr=abs(V(:,3));PHdr=angle(V(:,3));
magnormbeta=MAGdr'/MAGdr(1) %Magnitude relative to beta
phasenormbeta=PHdr'-PHdr(1) %Phase relative to beta in radians
Wndr=Wn(3);

%Roll values

MAGroll=abs(V(:,1));PHroll=angle(V(:,1));
magnormp=MAGroll'/MAGroll(2) %Magnitude relative to roll rate
phasenormp=PHroll'-PHroll(2) %Phase relative to roll rate in radians
Wnroll=Wn(1);

%Spiral mode

MAGspiral=abs(V(:,4));PHspiral=angle(V(:,4));
magnormphi=MAGspiral'/MAGspiral(3) %Magnitude relative to roll angle
phasenormphi=PHspiral'-PHspiral(3) %Phase relative to roll angle in radians
Wnroll=Wn(4);

% Initial Conditions

x0dr=[magnormbeta.*cos(phasenormbeta)+i.*magnormbeta.*sin(phasenormbeta)]';
x0roll=[magnormp.*cos(phasenormp)+i.*magnormp.*sin(phasenormp)]';
x0spiral=[magnormphi.*cos(phasenormphi)+i.*magnormphi.*sin(phasenormphi)]';

x0drreal=real(x0dr);
x0rollreal=real(x0roll);
x0spiralreal=real(x0spiral);

sysini=ss(A,b,C,d);
syssteprudd=ss(A,Bdr,C,d);

figure
[ydr,tdr,xdr]=initial(sysini,x0drreal,[0:.01:20]);
plot(tdr,xdr(:,1),'-',tdr,xdr(:,2),':',tdr,xdr(:,3),'-.',tdr,xdr(:,4), '--')
legend('beta','p','phi','r')
grid on
xlabel('Time (sec)');
ylabel('Response')

figure
[yroll,troll,xroll]=initial(sysini,x0rollreal,[0:.01:6]);
plot(troll,xroll(:,1),'-',troll,xroll(:,2),':',troll,xroll(:,3),'-.',troll,xroll(:,4), '--')
legend('beta','p','phi','r')
grid on
xlabel('Time (sec)');
ylabel('Response')

figure
[yspiral,tspiral,xspiral]=initial(sysini,x0spiralreal,[0:.1:100]);
plot(tspiral,xspiral(:,1),'-',tspiral,xspiral(:,2),':',tspiral,xspiral(:,3),'-.',tspiral,xspiral(:,4), '--')
legend('beta','p','phi','r')
grid on
xlabel('Time (sec)');
ylabel('Response')

```

```

[time1,out1]=sim('rudderimp',[0:.1:20]);

figure
plot(time1,out1(:,1),'-',time1,out1(:,2),':',time1,out1(:,3),'-.',time1,out1(:,4),'--',time1,rudinput);
legend('\beta','p','\phi','r','input pulse')
grid on
xlabel('Time (sec)');
ylabel('Response')

[time2,out2]=sim('rudderimp',20);

figure
plot(time2,out2(:,1),time2,out2(:,3));
hold on
legend('\beta','\phi')
grid on
xlabel('Time (sec)');
ylabel('Response')

[time3,out3]=sim('ailimp',[0:.1:20]);

figure
plot(time3,out3(:,1),time3,out3(:,3),time3,input);
legend('\beta','\phi','Input pulse')
grid on
xlabel('Time (sec)');

```

APPENDIX F: RAM FILE

The following is a listing of the P 208 RAM file. This file should be of use in future studies.

RAM GEOMETRY FILE 1.05
7 Number Of Components

//***** WING COMPONENT *****//
//==== GeneralParms =====//
0 Wing Name Type
0 ID Number
0 ID String
4 Color
2 Symmetry Code
4.075 0.000 -0.594 Translation
0.000 2.000 0.000 Rotation
//==== WingParms =====//
7 Wing Driver Group
9.500000 Span
4.750000 Aspect Ratio
1.000000 Taper Ratio
19.000000 Area
2.000000 Root Chord
2.000000 Tip Chord
0.577350 Tan Sweep
0.250000 Sweep Loc
0.105104 Tan Dihedral
0.000000 Twist Loc
0.000000 Twist
0 Flap Type
0.000000 Flap Inboard Span
1.000000 Flap Outboard Span
0.200000 Flap Chord
0 Slat Type
0.000000 Slat Inboard Span
1.000000 Slat Outboard Span
0.200000 Slat Chord
0 All Move CS
//==== Root Airfoil =====//
33 Num of Airfoil Pnts
0.020000 Airfoil Camber
0.400000 Camber Loc
0.120000 Thickness
//==== Tip Airfoil =====//

33	Num of Airfoil Pnts	
0.020000	Airfoil Camber	
0.400000	Camber Loc	
0.120000	Thickness	
 ***** FUSE COMPONENT *****//		
===== GeneralParms =====//		
1	Type	
	prop	Name
1		ID Number
	467012626	ID String
0		Color
0		Symmetry Code
8.500	0.000	0.000 Translation
0.000	0.000	0.000 Rotation
 ===== FuseParms =====//		
0.200000	Fuse Length	
0.000000	Camber	
0.500000	Camber Location	
0.000000	Aft Offset	
0.000000	Nose Angle	
0.300000	Nose Strength	
0.790297	Nose Rho	
1.686500	Aft Rho	
3	Number of Xsecs	
 ===== Cross Section Number 0 =====//		
0	Fuse Xsec Type	
0.000000	Z_Offset	
0.000000	Location On Spine	
33	Number of Pnts Per Xsec	
 ===== Cross Section Number 1 =====//		
1	Fuse Xsec Type	
0.000000	Z_Offset	
0.500000	Location On Spine	
33	Number of Pnts Per Xsec	
3.750000	Height	
 ===== Cross Section Number 2 =====//		
0	Fuse Xsec Type	
0.000000	Z_Offset	
1.000000	Location On Spine	
33	Number of Pnts Per Xsec	
 ***** FUSE COMPONENT *****//		
===== GeneralParms =====//		
1	Type	
	cooler	Name
2		ID Number
	466757500	ID String
29		Color
0		Symmetry Code
4.123	0.000	-0.892 Translation

```

    0.000  0.000  0.000 Rotation
//===== Fuse parms =====/
4.419918          Fuse Length
0.000000          Camber
0.500000          Camber Location
0.000000          Aft Offset
0.000000          Nose Angle
0.300000          Nose Strength
0.640000          Nose Rho
0.809312          Aft Rho
3                  Number of Xsecs
//===== Cross Section Number 0 =====/
1                  Fuse Xsec Type
0.000000          Z_Offset
0.000000          Location On Spine
33                 Number of Pnts Per Xsec
0.700000          Height
//===== Cross Section Number 1 =====/
1                  Fuse Xsec Type
0.000000          Z_Offset
0.250000          Location On Spine
33                 Number of Pnts Per Xsec
0.850000          Height
//===== Cross Section Number 2 =====/
0                  Fuse Xsec Type
0.530000          Z_Offset
1.000000          Location On Spine
33                 Number of Pnts Per Xsec

```

//***** FUSE COMPONENT *****//

```

//===== General parms =====/
1                  Type
Fuselage          Name
3                  ID Number
415051778        ID String
62                 Color
0                  Symmetry Code

```

```

1.250  0.000  0.000 Translation
0.000  0.000  0.000 Rotation
//===== Fuse parms =====/

```

```

8.319942          Fuse Length
0.015000          Camber
0.500000          Camber Location
0.000000          Aft Offset
0.088224          Nose Angle
0.300000          Nose Strength
0.530000          Nose Rho
0.542341          Aft Rho
5                  Number of Xsecs
//===== Cross Section Number 0 =====/
0                  Fuse Xsec Type

```

0.000000	Z_Offset
0.000000	Location On Spine
33	Number of Pnts Per Xsec
//===== Cross Section Number 1 =====//	
4	Fuse Xsec Type
0.000000	Z_Offset
0.336314	Location On Spine
33	Number of Pnts Per Xsec
1.400000	Height
1.250000	Width
1.200000	Top Tan Strength
1.200000	Upper Tan Strength
1.200000	Lower Tan Strength
1.200000	Bottom Tan Strength
-0.646998	Max Width Location
0.500000	Corner Radius
1.570796	Top Tan Angle
1.570796	Bot Tan Angle
//===== Cross Section Number 2 =====//	
4	Fuse Xsec Type
0.000000	Z_Offset
0.500000	Location On Spine
33	Number of Pnts Per Xsec
1.400000	Height
1.250000	Width
1.200000	Top Tan Strength
1.200000	Upper Tan Strength
1.200000	Lower Tan Strength
1.200000	Bottom Tan Strength
-0.646998	Max Width Location
0.500000	Corner Radius
1.570796	Top Tan Angle
1.570796	Bot Tan Angle
//===== Cross Section Number 3 =====//	
4	Fuse Xsec Type
0.000000	Z_Offset
0.607037	Location On Spine
33	Number of Pnts Per Xsec
1.400000	Height
1.250000	Width
1.200000	Top Tan Strength
1.200000	Upper Tan Strength
1.200000	Lower Tan Strength
1.200000	Bottom Tan Strength
-0.646998	Max Width Location
0.500000	Corner Radius
1.570796	Top Tan Angle
1.570796	Bot Tan Angle
//===== Cross Section Number 4 =====//	
0	Fuse Xsec Type
0.000000	Z_Offset

```

1.000000          Location On Spine
33                Number of Pnts Per Xsec

//***** FUSE COMPONENT *****/
//==== GeneralParms =====//
1                  Type
      Canopy        Name
4                  ID Number
      415115782    ID String
22                 Color
0                  Symmetry Code
      3.750  0.000  0.530 Translation
      0.000 -3.523  0.000 Rotation
//==== FuseParms =====//
1.967343          Fuse Length
0.003814          Camber
0.225400          Camber Location
0.005210          Aft Offset
-0.128401         Nose Angle
0.191410          Nose Strength
0.752160          Nose Rho
0.694896          Aft Rho
3                  Number of Xsecs
//==== CrossSectionNumber 0 =====//
0                  Fuse Xsec Type
0.000000          Z_Offset
0.000000          Location On Spine
33                Number of Pnts Per Xsec
//==== CrossSectionNumber 1 =====//
2                  Fuse Xsec Type
0.000000          Z_Offset
0.342369          Location On Spine
33                Number of Pnts Per Xsec
0.962029          Height
0.808479          Width
//==== CrossSectionNumber 2 =====//
0                  Fuse Xsec Type
0.000000          Z_Offset
1.000000          Location On Spine
33                Number of Pnts Per Xsec

//***** FUSE COMPONENT *****/
//==== GeneralParms =====//
1                  Type
      pod           Name
5                  ID Number
      415328102    ID String
11                 Color
2                  Symmetry Code
      6.800  4.750 -0.170 Translation
      0.000  0.000  0.000 Rotation

```

```

//==== Fuse parms =====/
4.000000          Fuse Length
0.000000          Camber
0.500000          Camber Location
0.000000          Aft Offset
0.000000          Nose Angle
0.300000          Nose Strength
0.640000          Nose Rho
0.640000          Aft Rho
5                  Number of Xsecs
//==== Cross Section Number 0 =====/
0                  Fuse Xsec Type
0.000000          Z_Offset
0.000000          Location On Spine
33                 Number of Pnts Per Xsec
//==== Cross Section Number 1 =====/
1                  Fuse Xsec Type
0.000000          Z_Offset
0.250000          Location On Spine
33                 Number of Pnts Per Xsec
0.300000          Height
//==== Cross Section Number 2 =====/
1                  Fuse Xsec Type
0.000000          Z_Offset
0.500000          Location On Spine
33                 Number of Pnts Per Xsec
0.300000          Height
//==== Cross Section Number 3 =====/
1                  Fuse Xsec Type
0.000000          Z_Offset
0.750000          Location On Spine
33                 Number of Pnts Per Xsec
0.300000          Height
//==== Cross Section Number 4 =====/
0                  Fuse Xsec Type
0.000000          Z_Offset
1.000000          Location On Spine
33                 Number of Pnts Per Xsec

```

//***** WING COMPONENT *****//

```

//==== General parms =====/
0                  Type
      empennage    Name
6                  ID Number
      415366934   ID String
4                  Color
2                  Symmetry Code
      8.942 4.750 -0.180 Translation
      0.000 -3.500 0.000 Rotation
//==== Wing parms =====/
5                  Wing Driver Group

```

3.400000	Span	
3.238095	Aspect Ratio	
0.354839	Taper Ratio	
3.570000	Area	
1.550000	Root Chord	
0.550000	Tip Chord	
0.431289	Tan Sweep	
0.250000	Sweep Loc	
-0.363970	Tan Dihedral	
0.000000	Twist Loc	
0.000000	Twist	
0	Flap Type	
0.000000	Flap Inboard Span	
1.000000	Flap Outboard Span	
0.200000	Flap Chord	
0	Slat Type	
0.000000	Slat Inboard Span	
1.000000	Slat Outboard Span	
0.200000	Slat Chord	
0	All Move CS	
 //==== Root Airfoil =====//		
33	Num of Airfoil Pnts	
0.000000	Airfoil Camber	
0.000000	Camber Loc	
0.100000	Thickness	
 //==== Tip Airfoil =====//		
33	Num of Airfoil Pnts	
0.000000	Airfoil Camber	
0.000000	Camber Loc	
0.100000	Thickness	
 ***** AERO PARMS *****//		
0	Wing	Reference Component (ID #/Name)
1.000000		Reference Area
1.000000		Reference Span
1.000000		Reference Chord
5.947	0.000	0.000 C.G. Location
-1	None	Trimming Component (ID #/Name)

THIS PAGE INTENTIONALLY LEFT BLANK

APPENDIX G: ACSYNT

The P 208 ACSYNT file is given below with initial simple analysis results.

Started at: Fri Mar 8 15:35:47 P ST 2002

Engine Files:

/u/wk/ahahn/projects/erast/perseus/acsynt/matched/prop/Convert_to_new_acsynt/P208C copied to fort.3 (Lewis File)
/u/wk/ahahn/projects/erast/perseus/acsynt/matched/prop/Convert_to_new_acsynt/P208C copied to fort.9 (Ames File)

Note: The above link(s) do not necessarily indicated the engine file was used.
The type of engine used depends on the engine settings in the Trajectory
portion of the ACSYNT input file (MMPROP, IP).

```
#####
#          #
#      JOB TITLE      #
#          #
#####
$JOB
TITLE = 'p208A'
$END

#####
#          #
#      ACSYNT CONTROL      #
#          #
#####
A NEGATIVE NUMBER FOR AN MEXEC INPUT INDICATES THAT MODULE WILL ONLY BE
EXECUTED AFTER WEIGHT CONVERGENCE. CONVERGE SET TO .TRUE. INDICATES A
WEIGHT CONVERGENCE RUN, SET TO .FALSE. INDICATES A SINGLE PASS RUN.

$ACSYNT
CONVERGE = .FALSE.

MREAD = 5, NREAD = 1, 2, 3, 4, 6, 14, 7, 9,
MEXEC = 3, NEXEC = 1, 2, 6, 7, -14, -9,
MWRITE = 5, NWRITE = 1, 2, 3, 6, 4, 7, 14, 9,

TOL = 0.00010,
SLOPE = 0.75,
WGMAX = 25000.0,

IPSUM = 1, KGLOBP = 0, INIT = 0, IPDBG = 0,
IGPLT = 1, IRDDTR = 7, IPDTR = 0, MAXTHRUST = 0.,
G4FIXWOS = 0, EXTMAX = 0.2, NUMCON = 0,
$END

#####
#          #
#      GEOMETRY NAMELISTS      #
#          #
#####
$FUS BDMAX = 4.25, BODL = 26.4, FRAB = 2.5,
FRN = 3.7, FRATIO = 6.5, SFFACT = 1.18,
ITAIL = 1, OUTCOD = 3,
$END
$WING AR = 4.75, AREA = 204.53, DIHED = 6.0,
FDENWG = 43.0, LFLAPC = 0.00, SWEEP = 30.0,
SWFACT = 1.05, TAPER = 0.99, TCROOT = 0.18,
TCTIP = 0.12, TFLAPC = 0.25, WFFRAC = 0.9,
XWING = 0.346, ZROOT = -0.594, KSWEEP = 1,
```

```

$END
$HTAIL AR = 3.24, AREA = 38.39, SWEEP = 23.33,
SWFACT = 1.68, TAPER = 0.35, TCROOT = 0.10,
TCTIP = 0.10, XHTAIL = 1.103, ZROOT = -0.5,
KSWEET = 1, SIZIT = .FALSE., HTFRAC = -0.30,
CVHT = 1.0,
$END
$CREW NCREW = 1, $END
$FUEL DEN = 43.0, FRAC = 0.9, $END
$ENGINE N = 1, $END

#####
#          #
#      TRAJECTORY INPUTS          #
#          #
#####

$TRDATA CRMACH = 0.47, QMAX = 425.0, DESLF = 6.0, ULTLF = 9.0,
WFUEL = 1323.0, WFEXT = 0.0, WFTRAP = 50.0, FRFURE = 0.05,
IPSTO1 = 5, TIMTO1 = 5.0, IPSTO2 = 2, TIMTO2 = 1.0,
IPSLND = 5, MODLND = 7, VMRGLD = 1.2, WKLAND = 0.75,
RCTOC = 500., XDESC = 100.0, DECEL=0.25,
IBREG = 0, IENDUR = 0, WCOMBP = 0.6, MMPROP = 7,
NCODE = 0, NCRUSE = 2, RANGE = 820.0, LEGRES = 0,
NMISS = 1, JDPMIS = .FALSE., LENVEL = .FALSE.,
NLEGCL = 0, NLEGLO = 0, NLEGCR = 0,
IPSIZE = 0, IPRINT = 1, KERROR = 2, $END
1
MACH NO. ALTITUDE HORIZONTAL NO. VIND
PHASE START END START END DIST TIME TURN "G"S WKFUEL MIP IX W B A P
-----
CLIMB 0.18 0.20 0 29000 45.0 0.0 0.0 160.0 1.0000 1 3-1 0 0 0 0
ACCEL -1 0.55 -1 -1 0.0 5.0 0.0 0.0 1.0000 1 3 -1 0 0 0 0
CRUISE 0.55 0.55 -1 -1 -1.0 0.0 0.0 0.0 1.0000 1 4 -1 0 0 0 0
COMBAT 0.65 0.65 -1 15000 0.0 20.0 0.0 0.0 0.0300 1 2 0 0 0 0 0
CLIMB 0.20 0.18 0 29000 20.0 0.0 0.0 160.0 1.0000 1 3-1 0 0 0 0
CRUISE 0.55 0.55 -1 29000 -1.0 0.0 0.0 0.0 1.0000 1 4 -1 0 0 0 0
DESCENT -1 0.30 -1 0 0.0 0.0 0.0 0.0 1.0000 1 5 0 0 0 0 0
#####

#          #
#      AERODYNAMIC INPUTS          #
#          #
#####
$ACHAR ABOSB=0.0, ALMAX=15.0, AMC=40.0, BDNOSE= 4.25, ISMNDR=0,
CLO=0.00053,0.00053,0.00052,0.00052,0.0005,0.00047,0.00045,0.00043,0.00039,
0.00027,
CLOW=0.0812,0.0819,0.0831,0.0848,0.0872,0.0906,0.0954,0.1024,0.1141,0.1545,
CMO=0.0493,0.0496,0.0502,0.0507,0.0515,0.0525,0.0539,0.0558,0.0582,0.0604,
SMNSWP= 0.12, 0.17, 0.30, 0.47, 0.50, 0.57, 0.70, 0.80, 0.90, 1.00,
SFWF=-90,
ALELJ=2,$END
$AMULT ESSF=1.00, FCDF=1.00, FCDL=1.00,
FCDRA=10*1.00,
FCDO=1.00, FCDW=1.00, FCDWB=1.00, FENG=1.00, FINTF=1.00,
FLBCOR=1.00, FLD=1.00, FLECOR=1.00, FMDR=1.00,$END
$ATRIM FVCAM = 10*0.89,
FLDM = 10*1.072
FLAPI = 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
ITRIM = 1, 1, 1, 1, 1, 1, 1, 1, 1,
IT = -3.5, CGM=0.32, CFLAP=0.25, SPANF=0.64, IVCAM=1, ALFVC=5.0, $END
$ADET ALIN=-5.,-2.,0.,2.,4.,6.,8.,10.,12.,15.,
ALTV= 0.0,5000.0,10000.0,20000.0,25000.0,29500.0,29500.0,40000.0,
CLINPT=0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,
```

```

SMN=0.47,0.3,0.4,0.4,0.4,0.47,0.57,0.45,0.17,0.17,
ICOD=1, IPLOT=1,
ISTRS=0,0,0,0,0,0,0,0,0,
ITB=0,0,0,0,0,0,0,0,0,
ITS=0,0,0,0,0,0,0,0,0,
NALF=10, NMDTL=10, $END
$ADRAG CDBMB=10*0.0,
CDEXTR=10*0.0,
CDTNK=10*0.00,
$END
$ATAKE CLLAND =1.20, CLTO =1.20, DELFLD = 45.0,
DELFTO = 30.0, DELLED = 00.0, DELLTO = 00.0,
LDLAND =-1.0, LDTO = -1.0, ALFROT = 18.0, IFLAP=1, $END
$APRINT KERROR=2, $END

#####
#          PROPULSION INPUTS      #
#
#####

$PCONTR HNOUT = 0.,0.,29500.,29500.,40000.,
           SMNOUT= 0.17, 0.47, 0.47, 0.57, 0.5,
           NOUTPT= 5, $END
$PENGIN ENGNUM = 1, NTPENG = 3, ESZMCH = 0.00,
           ESZALT = 0.,XNMAX = 2700 , HPENG = 2071 ,
           SWTENG = 1.1 , HCRIT = 42000 , FSFC = 1.0, $END
$PROP AF = 124.5, BL = 4, CLI = 0.366,
       DPRP = 11.15, FPRW = 1.0, FTHR = 1.0,
       NTPPRP = 12, PSZMCH = 0.00, PSZALT = 0.,
       $END
$PGEAR GR = 1.93, ETR = 0.90, FGRW = 1.0, $END
$PENGNC XLENG = 8.42, RLENG = 1.08, DIA1 = 3.2,
           FT = 0.0, FRPN = 2.25, FRBT = 6,
           NBDFT = 3.82, ANACHP = 0., DQ = 1.0,
           $END

#####
#          WEIGHTS INPUTS      #
#
#####

WTYPE = TRANsport-->TRANSPORT
       = FIGHter --> FIGHTER
       = BOMBer --> BOMBER
       = GEAV --> GENERAL AVIATION

$OPTS WTYPE = 'FIGH',
WTITLE = 'P208 WEIGHTS',

WGTO = 11133.5, KERROR = 2,
IPRINT = 0, ITAIL = 0,

$END

$FIXW WTSUM = 11133.5,
WBODY = 1168.45, WHT = 154.32, WLG = 749.57, WWING = 1455.05,
WFEQ = 1153.02, WPS = 3891.16, WCREW = 220.46, WAMMUN = 308.65,
WARM = 709.89, $END

#####
# THE FOLLOWING NAMELISTS ARE FOR ADS. UNLESS YOU ARE DOING SENSITIVITY   #
# ANALYSES OR OPTIMIZATIONS, YOU MAY LEAVE THESE VARIABLES UNTouched.    #
#
#####

```

```
#####
#####
```

**** Sensitivity and Optimization variables not included, Output follows:

Output for Module # 1 -> GEOMETRY

```
*****
```

FUSELAGE CROSS SECTION SIZING TO ACCOMODATE PAYLOAD
 PAYLOAD WIDTH..... 0.0000E+00
 PAYLOAD HEIGHT..... 0.0000E+00
 THICKNESS OF WING ROOT..... 1.187
 MAX THICKNESS OF WING FOR FREE FIT..... 0.0000E+00
 DIAMETER REQUIRED FOR WIDTH OF EMBEDDED ENGINES.. 0.0000E+00
 DIAMETER REQUIRED FOR HEIGHT OF EMBEDDED ENGINES. 0.0000E+00
 DIAMETER REQUIRED TO ENCLOSE BOX..... 1.187
 REQUIRED DIAMETER..(MAX OF 3 ABOVE)..... 1.187

RADIUS OF ENGINE POD..... 0.0000E+00
 ANGLE OF ENGINE PLACEMENT (ABOVE HORIZONTAL).... 0.0000E+00
 STAND-OFF DISTANCE (NON-DIMENSIONAL)..... 0.0000E+00
 STAND-OFF DISTANCE (FT.) 0.0000E+00
 LOC. OF CENTER OF ENGINE..... 0.5935

AIRCRAFT INTERNAL ARRANGEMENT

ITEM	LENGTH	INITIAL	FINAL	ACTUAL	REQD
	STATION	STATION	DIAM	DIAM	
RADAR	0.000	0.000	0.000	0.000	0.000
CREW	3.500	8.227	11.727	3.500	3.500
FUEL	2.158	11.727	13.885	4.042	

NOSE LENGTH..... 15.73
 AFTERBODY BEGINS AT..... 15.77
 OVERALL LENGTH..... 26.40
 MAX. AFT FUEL LOCATION..... 21.09
 DELTAX DUE TO PAYLOAD AFTERBODY MISMATCH.... 1000.
 DELTAX DUE TO PAYLOAD-FUEL OVERLAP..... 1000.
 DELTAX DUE TO FINENESS RATIO REQ..... 0.5000E-01
 ACTUAL-REQUIRED CREW DIAMETER..... 0.7500
 ACTUAL-REQUIRED PAYLOAD DIAMETER..... 3.063
 ACTUAL-REQUIRED POWER PLANT DIAMETER..... 3.250
 WING ROOT THICKNESS IN BODY..... 1.187
 FUSELAGE WALL THICKNESS..... 0.0000E+00
 VOLUME OF FORWARD FUEL..... 27.69
 VOLUME OF REAR FUEL..... 0.0000E+00
 ACTUAL-REQUIRED FUEL VOLUME..... 31.66

Fuselage Definition (Type 2)

Nose Length..... 15.725
 Nose Fineness Ratio..... 3.700
 Constant Section Length..... 0.050
 Afterbody Length..... 10.625
 Afterbody Fineness Ratio.... 2.500
 Overall Length..... 26.400
 Maximum Diameter..... 4.250
 Body Planform Area..... 68.526

Fuselage Definition

X	R	Area
3.15	0.99	3.06
3.93	1.14	4.11
4.72	1.28	5.17
5.50	1.41	6.23
6.29	1.52	7.26
7.08	1.62	8.26
7.86	1.71	9.21
8.65	1.79	10.10

Fuselage

Max. Diameter..... 4.250

Fineness Ratio.....

Surface Area..... 387.844

Volume..... 200.543

Dimensions of Planar Surfaces (each)

Wing H.Tail V.Tail Canard Units

NUMBER OF SURFACES.	1.0	1.0	1.0	1.0
PLAN AREA.....	204.5	38.4	0.0	0.0 (SQ.FT.)
SURFACE AREA.....	386.5	73.1	0.0	0.0 (SQ.FT.)
VOLUME.....	137.8	6.9	0.0	0.0 (CU.FT.)
SPAN.....	31.169	11.153	0.000	0.000 (FT.)
L.E. SWEEP.....	30.045	30.109	0.000	0.000 (DEG.)
C/4 SWEEP.....	30.000	23.330	0.000	0.000 (DEG.)
T.E. SWEEP.....	29.863	-0.832	0.000	0.000 (DEG.)
ASPECT RATIO	4.750	3.240	0.000	0.000
ROOT CHORD.....	6.595	5.100	0.000	0.000 (FT.)
ROOT THICKNESS....	14.245	6.119	0.000	0.000 (IN.)
ROOT T/C	0.180	0.100	0.000	0.000
TIP CHORD.....	6.529	1.785	0.000	0.000 (FT.)
TIP THICKNESS.....	9.402	2.142	0.000	0.000 (IN.)
TIP T/C	0.120	0.100	0.000	0.000
TAPER RATIO	0.990	0.350	0.000	0.000
MEAN AERO CHORD....	6.562	3.708	0.000	0.000 (FT.)

LE ROOT AT..... 7.486 24.020 0.000 0.000 (FT.)
 C/4 ROOT AT..... 9.134 25.295 0.000 0.000 (FT.)

TE ROOT AT..... 14.081 29.119 0.000 0.000 (FT.)
 LE M.A.C. AT..... 11.985 25.377 0.000 0.000 (FT.)
 C/4 M.A.C. AT..... 13.626 26.304 0.000 0.000 (FT.)
 TE M.A.C. AT..... 18.547 29.085 0.000 0.000 (FT.)
 Y M.A.C. AT..... 7.779 2.341 0.000 0.000
 LE TIP AT..... 16.500 27.253 0.000 0.000 (FT.)
 C/4 TIP AT..... 18.132 27.700 0.000 0.000 (FT.)
 TE TIP AT..... 23.029 29.038 0.000 0.000 (FT.)
 ELEVATION..... -1.262 -1.062 0.000 0.000 (FT.)

GEOMETRIC TOTAL VOLUME COEFF 0.410 0.000 0.000
 REQUESTED TOTAL VOLUME COEFF 0.410 0.000 0.000
 ACTUAL TOTAL VOLUME COEFF 0.410 0.000 0.000

E X T E N S I O N S

Strake Rear Extension

Centroid location at.....	0.00	0.00
Area.....	0.00	0.00
Sweep Angle.....	0.00	0.00
Wetted Area.....	0.00	0.00
Volume.....	0.00	0.00

Total Wing Area..... 204.53
 Total Wetted Area..... 847.36

F U E L T A N K S

Tank	Volume	Weight	Density
Wing	62.	2685.	43.00
Fus#1	0.	0.	43.00
Fus#2	0.	0.	50.00
Total		2685.	

Mission Fuel Required = 1323. lbs.
 Extra Fuel Carrying Capability = 1362. lbs.
 Available Fuel Volume in Wing = 62. cu.ft.

Aircraft Weight = 11133.500 lbs.
 Aircraft Volume = 345.190 cu.ft.
 Aircraft Density = 32.253 lbs./cu.ft.
 Actual - Required Fuel Volume = 31.665 cu.ft.

ICASE = 8 (Fineness Ratio Method)

Output for Module # 2 -> TRAJECTORY

Trajectory Output

Mission 1 (PAYLOAD = 1019. LB)

PHASE	M	H	CL	ALPHA	WFUEL	TIME	VEL
SFC(I)	THRUST(I)	CD	GAMMA	W	WA	Q	
SFC(U)	THRUST(U)	CDINST	L/D	THR/THA	PR	X	

WARM-UP 0. 15.6 5.00
 0.13 1443.

TAKEOFF 0.14 0. 2.0812 21.76 13.6 1.00 153.
 -0.02 -53631. 0.4949 90.00 11117.9 0.00 28.
 -0.02 -53631. 0.0000 4.21 0.45 1.00 1350.

2ND SEG 0.14 400. 2.0812 21.76 153.
 -0.02 0. 0.4949 14.76 11117.9 0.00 28.
 -0.02 -53631. 0.0000 4.21 0.45 1.00

CLIMB 0.00 0. 0.0000 0.00 0.0 0.00 0.

0.00 0. 0.0000 0.00 0.0 0.00 0.
Cycle 0.00 0. 0.0000 0.00nan 0.00 0.

LANDING 0.00 0. 0.0000 0.00 0.
0.00 0. 0.0000 0.00 0.0 0.00 0.
0.00 0. 0.0000 0.00 0.00 1.00 0.

Fuel Summary

Total Fuel = 1323. Takeoff Fuel: Fuel Load:
Mission Fuel = 0. Warmup = 16. External = 0.
Reserve Fuel = 0. Takeoff = 14. Internal = 1323.
Trapped Fuel = 50.

Block Time = 0.100 hrs
Block Range = 0.0 n.m.
Block Fuel = 0.0 lb.

FAR Takeoff Field Length = 1350. ft Factor = 1.00
Landing Field Length (total run) = 0. ft Decel @ .250 Gs
Landing Field Length (ground run) = 0. ft Field Length Factor = 0.600
Weight for Landing calculation = 0. lbs
Landing Thrust to Weight ratio = 0.000
Takeoff Weight = 11134. lbs
Landing Weight = 11104. lbs

Output for Module # 3 -> AERODYNAMICS

Mach = 0.17 C.G. Location = 14.1 ft, 0.32 cbar Q = 42.8 Cj = 0.00 per engine
Altitude = 0. Takeoff Configuration: Flaps and Slats Thrust = 0. per engine

Parasite Drag	Induced Drag												
Friction	.0142	Alpha	Cl	Cd	L/D	PF	e	Zone	Cm	Cdtrim	Deltrim	St	Mrg
Body	.0055	-6.0	0.324	0.0187	17.4	9.9	2.22	2	0.000	-0.0067	8.1	0.055	
Wing	.0072	-2.9	0.570	0.0390	14.6	11.0	0.93	2	0.000	-0.0084	7.3	0.048	
Strakes	.0000	-0.8	0.745	0.0687	10.8	9.4	0.70	2	0.000	-0.0093	6.7	0.049	
H. Tail	.0015	1.2	0.887	0.0986	9.0	8.5	0.63	2	0.000	-0.0095	6.0	0.058	
V. Tail	.0000	3.3	1.025	0.1301	7.9	8.0	0.61	2	0.000	-0.0093	5.3	0.069	
Canard	.0000	5.4	1.158	0.1651	7.0	7.6	0.60	2	0.000	-0.0086	4.4	0.081	
Interference	.0020	7.5	1.288	0.2011	6.4	7.3	0.60	2	0.000	-0.0076	3.6	0.093	
Base	.0000	9.6	1.414	0.2379	5.9	7.1	0.60	2	0.000	-0.0063	2.8	0.107	
Wing-Body	.0009	11.7	1.537	0.2753	5.6	6.9	0.61	2	0.000	-0.0049	2.0	0.121	
Wing-Nacelle	.0000	14.9	1.718	0.3355	5.1	6.7	0.62	2	0.000	-0.0022	0.9	0.141	
Excressence	.0011												
Wave	.0000												
External	.0000												
Tanks	.0000												
Bombs	.0000												
Stores	.0000												
Extra	.0000												
Camber	.0007												
		Flap	Setting							30.			
		Slat	Setting							0.			
Cdmin	.0170		Flap	Type	Single					26. sq. ft			

Mach = 0.17 C.G. Location = 14.1 ft, 0.32 cbar Q = 42.8 Cj = 0.00 per engine
Altitude = 0. Landing Configuration: Flaps and Slats Thrust = 0. per engine

Detailed Aerodynamics Output

Mach = 0.47 C.G. Location = 14.1 ft, 0.32 cbar
 Altitude = 0. Reynolds Number per foot = 3.336x10^6

Parasite Drag	Induced Drag											
Friction .0139	Alpha Cl Cd L/D PF e Zone Cm Cdtrim Deltrim StMrg											
Body .0054	-6.2 -.361 0.0378 -9.6 5.7 0.39 2 0.000 0.0024	9.0	0.090									
Wing .0070	-3.1 -.114 0.0227 -5.0 nan 0.11 2 0.000 -.0003	8.0	0.091									
Strakes .0000	-1.0 0.061 0.0186 3.3 0.8 0.07 2 0.000 -.0019	7.3	0.093									
H. Tail .0015	1.1 0.238 0.0198 12.0 5.9 0.81 2 0.000 -.0031	6.5	0.101									
V. Tail .0000	3.2 0.407 0.0266 15.3 9.8 0.97 2 0.000 -.0039	5.6	0.110									
Canard .0000	5.3 0.571 0.0381 15.0 11.3 0.95 2 0.000 -.0043	4.8	0.119									
Interference .0020	7.4 0.729 0.0530 13.8 11.8 0.94 2 0.000 -.0042	3.9	0.129									
Base .0000	9.6 0.883 0.0729 12.1 11.4 0.90 2 0.000 -.0038	3.0	0.139									
Wing-Body .0009	11.7 1.032 0.0971 10.6 10.8 0.87 2 0.000 -.0029	2.1	0.149									
Wing-Nacelle .0000	14.9 1.250 0.1409 8.9 9.9 0.83 2 0.000 -.0008	0.5	0.163									
Excessence .0011												
Wave .0000												
External .0000		Slope Factors										
Tanks .0000		Cl/Alpha (per radian)	4.3697									
Bombs .0000		Cdl/Cl^2	0.0806									
Stores .0000		Alpha Transition Zone 2-3	16.064									
Extra .0000												
Camber .0008		Programmed Flap Setting	0.									

Cdmin .0167 Flap Type Single 26. sq. ft

Mach = 0.30 C.G. Location = 14.1 ft, 0.32 cbar
 Altitude = 5000. Reynolds Number per foot = 1.853x10^6

Parasite Drag	Induced Drag											
Friction .0141	Alpha Cl Cd L/D PF e Zone Cm Cdtrim Deltrim StMrg											
Body .0055	-6.2 -.347 0.0369 -9.4 5.5 0.37 2 0.000 0.0021	8.5	0.079									
Wing .0071	-3.1 -.109 0.0227 -4.8 nan 0.11 2 0.000 -.0003	7.7	0.080									
Strakes .0000	-1.0 0.059 0.0187 3.2 0.8 0.07 2 0.000 -.0018	7.2	0.082									
H. Tail .0015	1.1 0.229 0.0197 11.6 5.6 0.81 2 0.000 -.0030	6.5	0.090									
V. Tail .0000	3.2 0.392 0.0259 15.2 9.5 0.98 2 0.000 -.0039	5.8	0.099									
Canard .0000	5.3 0.549 0.0364 15.1 11.2 0.96 2 0.000 -.0044	5.1	0.109									
Interference .0020	7.4 0.702 0.0500 14.0 11.8 0.95 2 0.000 -.0045	4.4	0.119									
Base .0000	9.5 0.850 0.0685 12.4 11.4 0.91 2 0.000 -.0043	3.6	0.129									
Wing-Body .0009	11.6 0.994 0.0909 10.9 10.9 0.88 2 0.000 -.0037	2.7	0.140									
Wing-Nacelle .0000	14.8 1.204 0.1318 9.1 10.0 0.83 2 0.000 -.0021	1.4	0.154									
Excessence .0011												
Wave .0000												
External .0000		Slope Factors										
Tanks .0000		Cl/Alpha (per radian)	4.2381									
Bombs .0000		Cdl/Cl^2	0.0803									
Stores .0000		Alpha Transition Zone 2-3	26.129									
Extra .0000												
Camber .0008		Programmed Flap Setting	0.									

Cdmin .0169 Flap Type Single 26. sq. ft

Detailed Aerodynamics Output

Mach = 0.40 C.G. Location = 14.1 ft, 0.32 cbar
 Altitude = 10000. Reynolds Number per foot = 2.140x10^6

Parasite Drag	Induced Drag											
Friction .0140	Alpha Cl Cd L/D PF e Zone Cm Cdtrim Deltrim StMrg											
Body .0055	-6.2 -.353 0.0373 -9.5 5.6 0.38 2 0.000 0.0023	8.7	0.086									
Wing .0071	-3.1 -.111 0.0227 -4.9 nan 0.11 2 0.000 -.0003	7.9	0.087									
Strakes .0000	-1.0 0.061 0.0187 3.3 0.8 0.07 2 0.000 -.0019	7.3	0.089									
H. Tail .0015	1.1 0.234 0.0198 11.9 5.7 0.81 2 0.000 -.0031	6.5	0.097									
V. Tail .0000	3.2 0.401 0.0263 15.2 9.6 0.97 2 0.000 -.0039	5.7	0.106									
Canard .0000	5.3 0.561 0.0374 15.0 11.3 0.95 2 0.000 -.0043	4.9	0.115									
Interference .0020	7.4 0.717 0.0516 13.9 11.8 0.95 2 0.000 -.0044	4.1	0.125									
Base .0000	9.5 0.868 0.0709 12.2 11.4 0.91 2 0.000 -.0040	3.3	0.135									
Wing-Body .0009	11.7 1.014 0.0942 10.8 10.8 0.87 2 0.000 -.0032	2.3	0.145									
Wing-Nacelle .0000	14.9 1.228 0.1366 9.0 10.0 0.83 2 0.000 -.0013	0.9	0.160									
Excessence .0011												
Wave .0000												
External .0000		Slope Factors										
Tanks .0000		Cl/Alpha (per radian)	4.3021									
Bombs .0000		Cdl/Cl^2	0.0805									
Stores .0000		Alpha Transition Zone	2-3	19.206								
Extra .0000												
Camber .0008		Programmed Flap Setting	0.									
Cdmin .0168		Flap Type	Single	26. sq. ft								

Mach = 0.40 C.G. Location = 14.1 ft, 0.32 cbar
 Altitude = 20000. Reynolds Number per foot = 1.581x10^6

Parasite Drag	Induced Drag											
Friction .0140	Alpha Cl Cd L/D PF e Zone Cm Cdtrim Deltrim StMrg											
Body .0055	-6.2 -.355 0.0374 -9.5 5.7 0.38 2 0.000 0.0023	8.7	0.086									
Wing .0071	-3.1 -.112 0.0227 -4.9 nan 0.11 2 0.000 -.0003	7.9	0.087									
Strakes .0000	-1.0 0.060 0.0186 3.2 0.8 0.07 2 0.000 -.0019	7.3	0.089									
H. Tail .0015	1.1 0.233 0.0197 11.8 5.7 0.81 2 0.000 -.0031	6.5	0.097									
V. Tail .0000	3.2 0.400 0.0262 15.2 9.6 0.97 2 0.000 -.0039	5.7	0.106									
Canard .0000	5.3 0.560 0.0373 15.0 11.3 0.95 2 0.000 -.0043	4.9	0.115									
Interference .0020	7.4 0.716 0.0515 13.9 11.8 0.95 2 0.000 -.0044	4.1	0.125									
Base .0000	9.5 0.866 0.0707 12.3 11.4 0.91 2 0.000 -.0040	3.3	0.135									
Wing-Body .0009	11.7 1.013 0.0940 10.8 10.9 0.87 2 0.000 -.0032	2.3	0.145									
Wing-Nacelle .0000	14.9 1.226 0.1362 9.0 10.0 0.83 2 0.000 -.0014	0.9	0.160									
Excessence .0011												
Wave .0000												
External .0000		Slope Factors										
Tanks .0000		Cl/Alpha (per radian)	4.3021									
Bombs .0000		Cdl/Cl^2	0.0804									
Stores .0000		Alpha Transition Zone	2-3	19.213								
Extra .0000												
Camber .0008		Programmed Flap Setting	0.									
Cdmin .0168		Flap Type	Single	26. sq. ft								

Detailed Aerodynamics Output

Mach = 0.40 C.G. Location = 14.1 ft, 0.32 cbar
 Altitude = 25000. Reynolds Number per foot = 1.347x10^6

Parasite Drag	Induced Drag											
Friction .0140	Alpha Cl Cd L/D PF e Zone Cm Cdtrim Deltrim StMrg											
Body .0055	-6.2 -.354 0.0374 -9.5 5.6 0.38 2 0.000 0.0023	8.7	0.086									
Wing .0071	-3.1 -.112 0.0227 -4.9 nan 0.11 2 0.000 -.0003	7.9	0.087									
Strakes .0000	-1.0 0.061 0.0187 3.2 0.8 0.07 2 0.000 -.0019	7.3	0.089									
H. Tail .0015	1.1 0.234 0.0197 11.8 5.7 0.81 2 0.000 -.0031	6.5	0.097									
V. Tail .0000	3.2 0.400 0.0263 15.2 9.6 0.97 2 0.000 -.0039	5.7	0.106									
Canard .0000	5.3 0.561 0.0373 15.0 11.3 0.95 2 0.000 -.0043	4.9	0.115									
Interference .0020	7.4 0.716 0.0515 13.9 11.8 0.95 2 0.000 -.0044	4.1	0.125									
Base .0000	9.5 0.867 0.0708 12.2 11.4 0.91 2 0.000 -.0040	3.3	0.135									
Wing-Body .0009	11.6 1.014 0.0940 10.8 10.9 0.87 2 0.000 -.0032	2.4	0.145									
Wing-Nacelle .0000	14.9 1.227 0.1363 9.0 10.0 0.83 2 0.000 -.0014	0.9	0.160									
Excessence .0011												
Wave .0000												
External .0000		Slope Factors										
Tanks .0000		Cl/Alpha (per radian)	4.3026									
Bombs .0000		Cdl/Cl^2	0.0804									
Stores .0000		Alpha Transition Zone 2-3	19.210									
Extra .0000												
Camber .0008		Programmed Flap Setting	0.									
Cdmin .0168		Flap Type	Single	26. sq. ft								

Mach = 0.47 C.G. Location = 14.1 ft, 0.32 cbar
 Altitude = 29500. Reynolds Number per foot = 1.363x10^6

Parasite Drag	Induced Drag											
Friction .0139	Alpha Cl Cd L/D PF e Zone Cm Cdtrim Deltrim StMrg											
Body .0054	-6.2 -.361 0.0378 -9.6 5.8 0.39 2 0.000 0.0024	8.9	0.090									
Wing .0070	-3.1 -.114 0.0227 -5.0 nan 0.11 2 0.000 -.0003	8.0	0.091									
Strakes .0000	-1.0 0.061 0.0186 3.3 0.8 0.07 2 0.000 -.0019	7.3	0.093									
H. Tail .0015	1.1 0.238 0.0198 12.0 5.9 0.81 2 0.000 -.0031	6.5	0.101									
V. Tail .0000	3.2 0.408 0.0266 15.3 9.8 0.97 2 0.000 -.0039	5.7	0.110									
Canard .0000	5.3 0.571 0.0381 15.0 11.3 0.95 2 0.000 -.0043	4.8	0.119									
Interference .0020	7.4 0.729 0.0529 13.8 11.8 0.94 2 0.000 -.0043	3.9	0.129									
Base .0000	9.6 0.882 0.0728 12.1 11.4 0.90 2 0.000 -.0038	3.0	0.139									
Wing-Body .0009	11.7 1.031 0.0969 10.6 10.8 0.87 2 0.000 -.0029	2.1	0.149									
Wing-Nacelle .0000	14.9 1.248 0.1404 8.9 9.9 0.83 2 0.000 -.0008	0.5	0.163									
Excessence .0011												
Wave .0000												
External .0000		Slope Factors										
Tanks .0000		Cl/Alpha (per radian)	4.3657									
Bombs .0000		Cdl/Cl^2	0.0805									
Stores .0000		Alpha Transition Zone 2-3	16.064									
Extra .0000												
Camber .0008		Programmed Flap Setting	0.									
Cdmin .0167		Flap Type	Single	26. sq. ft								

Detailed Aerodynamics Output

Mach = 0.57 C.G. Location = 14.1 ft, 0.32 cbar
 Altitude = 29500. Reynolds Number per foot = 1.653x10^6

Parasite Drag	Induced Drag											
Friction .0138	Alpha Cl Cd L/D PF e Zone Cm Cdtrim Deltrim StMrg											
Body .0054	-6.2 -.369 0.0383 -9.6 5.8 0.39 2 0.000 0.0026	9.4	0.096									
Wing .0069	-3.1 -.113 0.0226 -5.0 nan 0.11 2 0.000 -.0003	8.3	0.097									
Strakes .0000	-0.9 0.069 0.0185 3.7 1.0 0.09 2 0.000 -.0021	7.5	0.098									
H. Tail .0015	1.1 0.252 0.0201 12.5 6.3 0.81 2 0.000 -.0033	6.6	0.106									
V. Tail .0000	3.2 0.427 0.0276 15.5 10.1 0.96 2 0.000 -.0041	5.7	0.114									
Canard .0000	5.4 0.596 0.0401 14.9 11.5 0.94 2 0.000 -.0044	4.7	0.124									
Interference .0020	7.5 0.759 0.0560 13.5 11.8 0.94 2 0.000 -.0042	3.8	0.133									
Base .0000	9.6 0.917 0.0773 11.9 11.4 0.90 2 0.000 -.0036	2.8	0.143									
Wing-Body .0009	11.8 1.070 0.1029 10.4 10.8 0.87 2 0.000 -.0025	1.7	0.153									
Wing-Nacelle .0000	15.1 1.202 0.2273 5.3 5.8 0.46 3 0.000 -.0001	-0.4	0.256									
Excessence .0011												
Wave .0000												
External .0000		Slope Factors										
Tanks .0000		Cl/Alpha (per radian)	4.2278									
Bombs .0000		Cdl/Cl^2	0.1471									
Stores .0000		Alpha Transition Zone 2-3	12.804									
Extra .0000												
Camber .0009		Programmed Flap Setting	0.									

Cdmin .0166 Flap Type Single 26. sq. ft

Mach = 0.45 C.G. Location = 14.1 ft, 0.32 cbar
 Altitude = 40000. Reynolds Number per foot = 0.861x10^6

Parasite Drag	Induced Drag											
Friction .0139	Alpha Cl Cd L/D PF e Zone Cm Cdtrim Deltrim StMrg											
Body .0054	-6.2 -.360 0.0377 -9.5 5.7 0.38 2 0.000 0.0024	8.9	0.089									
Wing .0070	-3.1 -.113 0.0227 -5.0 nan 0.11 2 0.000 -.0003	8.0	0.090									
Strakes .0000	-1.0 0.061 0.0186 3.3 0.8 0.07 2 0.000 -.0019	7.3	0.092									
H. Tail .0015	1.1 0.237 0.0198 12.0 5.8 0.81 2 0.000 -.0031	6.5	0.100									
V. Tail .0000	3.2 0.406 0.0265 15.3 9.7 0.97 2 0.000 -.0039	5.7	0.108									
Canard .0000	5.3 0.569 0.0380 15.0 11.3 0.95 2 0.000 -.0043	4.9	0.118									
Interference .0020	7.4 0.726 0.0526 13.8 11.8 0.94 2 0.000 -.0043	4.0	0.128									
Base .0000	9.5 0.878 0.0722 12.2 11.4 0.91 2 0.000 -.0039	3.1	0.138									
Wing-Body .0009	11.7 1.026 0.0960 10.7 10.8 0.87 2 0.000 -.0030	2.2	0.148									
Wing-Nacelle .0000	14.9 1.241 0.1390 8.9 9.9 0.83 2 0.000 -.0010	0.6	0.162									
Excessence .0011												
Wave .0000												
External .0000		Slope Factors										
Tanks .0000		Cl/Alpha (per radian)	4.3476									
Bombs .0000		Cdl/Cl^2	0.0804									
Stores .0000		Alpha Transition Zone 2-3	16.868									
Extra .0000												
Camber .0008		Programmed Flap Setting	0.									

Cdmin .0167 Flap Type Single 26. sq. ft

Output for Module # 6 -> WEIGHTS

Weight Statement- Fighter
P208 WEIGHTS

Qmax: 425.
Design Load Factor: 6.00
Ultimate Load Factor: 9.00
Structure and Material: Aluminum Skin, Stringer
Wing Equation: Fixed or Structural Method
Body Equation: Fixed or Structural Method

Component	Pounds	Kilograms	Percent	Slope	Tech	Fixed
Airframe Structure	3340.1	1515.0	30.00		No	
Wing	1455.1	660.0	13.07	1.00	1.00	Yes
Fuselage	1168.4	530.0	10.49	1.00	1.00	Yes
Horizontal Tail (Low)	154.3	70.0	1.39	1.00	1.00	Yes
Vertical Tail	111.3	50.5	1.00	1.00	1.00	No
Nacelles	111.3	50.5	1.00	1.00	1.00	No
Landing Gear	749.6	340.0	6.73	1.00	1.00	Yes
Propulsion	3891.2	1765.0	34.95		Yes	
Engines (1)	1224.7	555.5	11.00	1.00	1.00	No
Fuel System	311.7	141.4	2.80	1.00	1.00	No
Fixed Equipment	1153.0	523.0	10.36	1.00	Yes	
Hyd & Pneumatic	133.6	60.6	1.20	1.00		No
Electrical	278.3	126.3	2.50	1.00		No
Avionics	445.3	202.0	4.00	1.00		No
Instrumentation	122.5	55.6	1.10	1.00		No
De-ice & Air Cond	111.3	50.5	1.00	1.00		No
Auxiliary Gear	33.4	15.2	0.30			No
Furnish & Eqpt	311.7	141.4	2.80	1.00		No
Flight Controls	334.0	151.5	3.00	1.00		No
Empty Weight	0.0	0.0	0.00			
Operating Items	0.0	0.0	0.00		No	
Flight Crew (1)	220.5	100.0	1.98		Yes	
Crew Baggage and Provisions	0.0	0.0	0.00		No	
Unusable Fuel and Oil	50.0	22.7	0.45		No	
Operating Weight Empty	0.0	0.0	0.00			
Fuel	1273.0	577.4	11.43			
Payload	1018.5	462.0	9.15		No	
Armament	709.9	322.0	6.38		Yes	
Ammunition	308.6	140.0	2.77		Yes	
Missiles	0.0	0.0	0.00		No	
Bombs	0.0	0.0	0.00		No	
External Tanks	0.0	0.0	0.00		No	
Adv Weapons 1	0.0	0.0	0.00		No	
Adv Weapons 2	0.0	0.0	0.00		No	

Calculated Weight	11133.5	5050.2	86.39		Yes	
Estimated Weight	11133.5	5050.2				
Percent Error			0.00			

Calculated Weight does not equal 100% because a group weight is being fixed.

Output for Module # 4 -> PROPULSION

Propulsion Output: Engine and Propeller

Engine Type:Reciprocating	Turbocharged to:	42000.0
Sea Level Static HP (each)	2071.0	
Max. Shaft Speed (RPM)	2700.00	
Multiplier for sfc	1.0000	
Specific D/Q (sq-ft/HP)	1.0000	
Weight (lbs)	2278.1	

Propeller Type	HS Constant Speed
Number of Blades	4.
Diameter (ft)	11.15
Chord (ft)	0.89
Activity Factor	124.50
Integ. Lift Coef.	0.3660
Solidity	0.2030
Tip Speed (ft/sec)	816.72
Power Loading (HP/ft**2)	19.09
Disk Loading (lb/ft**2)	50.79
Torque (ft lbs)	6997.82
Velocity Slipstream (ft/sec)	206.73
Multiplier for thrust	1.0000
Weight Scale Factor	1.0000
Weight (lbs)	284.2

Gear Reduction	Propeller Extrapolation Errors
Engine/Propeller RPM Ratio	1.9300
Transmission Efficiency	0.9000
Auto. Trans. Shift Alt.	0.
Weight Scale Factor	1.0000
Weight (lbs)	440.1

Propulsion System Weight/Engine	3002.4
Engine and Propeller Noise (PNdb)	98.704

Mach Number = 0.17 Altitude = 0. Maximum RPM = 2700.

Percent HP/Eng	Gear	ThrustU	ThrustI	Bsfc	Tsfcl	FFLOW	Tip	Advance	Prop	Cp	Ct	Blade	E
Power	Loss						Mach	Ratio	effU			X	
100.0%	2071.0-207.1	3859.	-84803.	0.486	-0.012	1007.5	0.73	0.7322	0.716	0.1975	0.1932	27.50	0
95.0%	1967.4-196.7	3723.	-84939.	0.498	-0.012	979.6	0.73	0.7322	0.727	0.1876	0.1864	26.99	0
90.0%	1863.9-186.4	3576.	-85086.	0.508	-0.011	947.1	0.73	0.7322	0.737	0.1777	0.1790	26.47	0
80.0%	1656.8-165.7	3273.	-85389.	0.528	-0.010	874.2	0.73	0.7322	0.759	0.1580	0.1639	25.38	0
70.0%	1449.7-145.0	2950.	-85712.	0.551	-0.009	798.6	0.73	0.7322	0.782	0.1382	0.1477	24.24	0
60.0%	1242.6-124.3	2598.	-86064.	0.583	-0.008	725.0	0.73	0.7322	0.804	0.1185	0.1301	23.00	0
50.0%	1035.5-103.6	2216.	-86446.	0.631	-0.008	653.5	0.73	0.7322	0.822	0.0987	0.1110	21.73	0

Mach Number = 0.47 Altitude = 0. Maximum RPM = 2700.

Percent HP/Eng	Gear	ThrustU	ThrustI	Bsfc	Tsfcl	FFLOW	Tip	Advance	Prop	Cp	Ct	Blade	E
Power	Loss						Mach	Ratio	effU			X	
100.0%	2071.0-207.1	1762.	-675932.	0.486	-0.001	1007.5	0.73	2.0243	0.904	0.1975	0.0882	41.90	3
95.0%	1967.4-196.7	1672.	-676022.	0.498	-0.001	979.6	0.73	2.0243	0.903	0.1876	0.0837	41.70	3
90.0%	1863.9-186.4	1583.	-676111.	0.508	-0.001	947.1	0.73	2.0243	0.903	0.1777	0.0793	41.49	3
80.0%	1656.8-165.7	1400.	-676294.	0.528	-0.001	874.2	0.73	2.0243	0.898	0.1580	0.0701	41.08	3
70.0%	1449.7-145.0	1206.	-676488.	0.551	-0.001	798.6	0.73	2.0243	0.884	0.1382	0.0604	40.65	3
60.0%	1242.6-124.3	1017.	-676678.	0.583	-0.001	725.0	0.73	2.0243	0.869	0.1185	0.0509	40.21	3
50.0%	1035.5-103.6	792.	-676902.	0.631	-0.001	653.5	0.73	2.0243	0.813	0.0987	0.0397	39.79	3

Mach Number = 0.47 Altitude = 29500. Maximum RPM = 2700.

Percent HP/Eng	Gear	ThrustU	ThrustI	Bsfc	Tsfcl	FFLOW	Tip	Advance	Prop	Cp	Ct	Blade	E

Power	Loss	Mach	Ratio	effU	Angle X								
100.0%	2071.0-207.1	1763.	-204498.	0.486 -0.005	1007.5	0.82	1.8077	0.808	0.5174	0.2313	46.72	0	
95.0%	1967.4-196.7	1693.	-204569.	0.498 -0.005	979.6	0.82	1.8077	0.816	0.4915	0.2221	46.17	0	
90.0%	1863.9-186.4	1622.	-204639.	0.508 -0.005	947.1	0.82	1.8077	0.826	0.4657	0.2128	45.62	0	
80.0%	1656.8-165.7	1473.	-204788.	0.528 -0.004	874.2	0.82	1.8077	0.844	0.4139	0.1933	44.48	0	
70.0%	1449.7-145.0	1319.	-204942.	0.551 -0.004	798.6	0.82	1.8077	0.863	0.3622	0.1730	43.31	0	
60.0%	1242.6-124.3	1156.	-205105.	0.583 -0.004	725.0	0.82	1.8077	0.883	0.3104	0.1517	42.13	0	
50.0%	1035.5-103.6	978.	-205283.	0.631 -0.003	653.5	0.82	1.8077	0.896	0.2587	0.1283	40.93	0	

Mach Number = 0.57 Altitude = 29500. Maximum RPM = 2700.

Percent Power	HP/Eng Loss	Gear	ThrustU	ThrustI	Bsfc	TsfcI	FFLOW	Tip Mach	Advance Ratio	Prop effU	Cp	Ct	Blade Angle X	E
100.0%	2071.0-207.1	1549.	-301821.	0.486 -0.003	1007.5	0.82	2.1923	0.861	0.5174	0.2032	49.26	0		
95.0%	1967.4-196.7	1482.	-301887.	0.498 -0.003	979.6	0.82	2.1923	0.867	0.4915	0.1945	48.82	0		
90.0%	1863.9-186.4	1416.	-301954.	0.508 -0.003	947.1	0.82	2.1923	0.874	0.4657	0.1858	48.36	0		
80.0%	1656.8-165.7	1272.	-302098.	0.528 -0.003	874.2	0.82	2.1923	0.884	0.4139	0.1669	47.44	0		
70.0%	1449.7-145.0	1115.	-302255.	0.551 -0.003	798.6	0.82	2.1923	0.885	0.3622	0.1463	46.49	0		
60.0%	1242.6-124.3	961.	-302408.	0.583 -0.002	725.0	0.82	2.1923	0.890	0.3104	0.1261	45.59	0		
50.0%	1035.5-103.6	807.	-302563.	0.631 -0.002	653.5	0.82	2.1923	0.896	0.2587	0.1058	44.69	0		

Mach Number = 0.50 Altitude = 40000. Maximum RPM = 2700.

Percent Power	HP/Eng Loss	Gear	ThrustU	ThrustI	Bsfc	TsfcI	FFLOW	Tip Mach	Advance Ratio	Prop effU	Cp	Ct	Blade Angle X	E
100.0%	2071.0-207.1	1497.	-140982.	0.486 -0.007	1007.5	0.84	1.8673	0.709	0.7992	0.3034	52.76	0		
95.0%	1967.4-196.7	1457.	-141023.	0.498 -0.007	979.6	0.84	1.8673	0.726	0.7593	0.2952	51.91	0		
90.0%	1863.9-186.4	1411.	-141068.	0.508 -0.007	947.1	0.84	1.8673	0.742	0.7193	0.2860	51.09	0		
80.0%	1656.8-165.7	1308.	-141171.	0.528 -0.006	874.2	0.84	1.8673	0.774	0.6394	0.2651	49.53	0		
70.0%	1449.7-145.0	1188.	-141291.	0.551 -0.006	798.6	0.84	1.8673	0.803	0.5595	0.2408	47.97	0		
60.0%	1242.6-124.3	1053.	-141427.	0.583 -0.005	725.0	0.84	1.8673	0.830	0.4795	0.2133	46.35	0		
50.0%	1035.5-103.6	906.	-141574.	0.631 -0.005	653.5	0.84	1.8673	0.857	0.3996	0.1835	44.64	0		

Propulsion was called 24 times.
Engin routine was called 59 times.

Output for Module # 11 -> SUMMARY OUTPUT

SUMMARY --- ACSYNT OUTPUT: p208A

GENERAL	FUSELAGE	WING	HTAIL	VTAIL
WG	11134. LENGTH	26.4 AREA	204.5	38.4 0.0
W/S	0.0 DIAMETER	4.2 WETTED AREA	386.5	73.1 0.0
T/W	0.00 VOLUME	200.5 SPAN	31.2	11.2 0.0
N(Z)	ULT 9.0 WETTED AREA	387.8 L.E. SWEEP	30.0	30.1 90.0
CREW	1. FINENESS RATIO	6.2 C/4 SWEEP	30.0	23.3 0.0
PASENGERS	0. ASPECT RATIO	4.75	3.24	0.00
	TAPER RATIO	0.99	0.35	0.00
ENGINE	WEIGHTS	T/C ROOT	0.18	0.10 0.00
		T/C TIP	0.12	0.10 0.00
NUMBER	1. W WG ROOT CHORD	6.6	5.1	0.0
LENGTH	8.4 STRUCT.	3340.30.0 TIP CHORD	6.5	1.8 0.0
DIAM.	3.2 PROPUL.	3891.35.0 M.A. CHORD	6.6	3.7 0.0
WEIGHT	3002.4 FIX. EQ.	1153.10.4 LOC. OF L.E.	7.5	24.0 0.0
TSLS	4959. FUEL	1323.11.9		
SFCCLS	0.00 PAYLOAD	1019.9.1		
ESF	0.000 OPER IT	0.0.0		

MISSION SUMMARY

PHASE	MACH	ALT	FUEL	TIME	DIST	L/D	THRUST	SFC	Q
TAKEOFF	0.00	0.	29.	6.0	1349.6				
CLIMB	0.00	0.	0.	0.0	0.0	0.0	0.000	0.0	
LANDING					0.0				

Block Time = 0.100 hr

Block Range = 0.0 nm

1 PROGRAM CALLS TO ANALIZ

ICALC	CALLS
1	1
2	1
3	1

Finished at:

Fri Mar 8 15:35:51 PST 2002

Output for Module:

- Output for Module # 1 -> GEOMETRY
- Output for Module # 2 -> TRAJECTORY
- Output for Module # 3 -> AERODYNAMICS
- Output for Module # 4 -> PROPULSION
- Output for Module # 6 -> WEIGHTS
- Output for Module # 11 -> SUMMARY OUTPUT

Warnings and Errors:

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
8725 John J. Kingman Rd., STE 0944
Ft. Belvoir, VA 22060-6218
2. Dudley Knox Library
Naval Postgraduate School
411 Dyer Rd.
Monterey, CA 93943-5000
3. Dr. Max F. Platzer, AA/PL
Naval Postgraduate School
Monterey, CA 93943-5106
4. LT Kurt W. Muller
7787 C Street
Chesapeake Beach, MD 20732
5. Dr. Conrad F. Newberry
AA/Ne
Naval Postgraduate School
Monterey, CA 93943-5106
6. Dr. Richard M. Howard
AA/Ho
Naval Postgraduate School
Monterey, CA 93943-5106
7. Dr. Louis V. Schmidt
AA/Sc
Naval Postgraduate School
Monterey, CA 93943-5106
8. Mr. Andrew S. Hahn
Systems Analysis Branch
MS 237-11
NASA Ames Research Center
Moffett Field, CA 94035-1000

9. Dr. J.A.C. Kentfield
Department of Mechanical Engineering
The University of Calgary
Calgary, Alberta, Canada T2N 1N4
10. Mr. Paul Gelhausen
System Analysis Branch
MS 348
NASA Langley Research Center
Hampton, VA 23681-2199