Assessment No. 3

Student: Ryan Baldwin, rbaldwi2@swarthmore.edu

Professor: Dr. Hsu

Due Date: April 20th, 2025

Question 1:

(a) We note that the set contains the additive identity element (0,0), as $0 \equiv 0 \mod 3$.

Let $a \equiv b \mod 3$ and $c \equiv d \mod 3$. Then we see that (a,b)+(c,d)=(a+c,b+d) and claim that $a+c \equiv b+d \mod 3$. Because $a \equiv b \mod 3$, a=b+3n for some integer n. Similarly, $c \equiv d \mod 3$ implies that c=d+3m for some integer m. Adding these two equations gives us a+c=b+d+3(n+m). Thus, $a+c \equiv b+d \mod 3$. Therefore, the set is closed under addition.

Let $a \equiv b \mod 3$ so that (a, b) is an element in S. Since modularity is preserved under multiplication, $-a \equiv -b \mod 3$ and (-a, -b) is also in S. Adding these two elements yields (a, b) + (-a, -b) = (0, 0), and thus the set contains additive inverses.

Thus, the set S is a subgroup of $\mathbb{Z} \times \mathbb{Z}$ under addition. And since the elements of S are integers, it is an abelian group.

Since $1 \equiv 1 \mod 3$, the multiplicative identity (1,1) is in S.

Let $a \equiv b \mod 3$ and $c \equiv d \mod 3$ be two elements in the set. Then we see that (a,b)(c,d)=(ac,bd) and we claim that $ac \equiv bd \mod 3$. Multiplying $a \equiv b \mod 3$ by $c \pmod 3$ will $ac \equiv bc \mod 3$. Multiplying $c \equiv d \mod 3$ by $b \pmod 3$. Thus, by transitivity, $ac \equiv bd \mod 3$. Therefore, the set is closed under multiplication.

Since the components of the elements in S are integers, the set is inherently abelian under multiplication.

Therefore, the set S is a subring of $\mathbb{Z} \times \mathbb{Z}$.

However, the set is not an ideal. For example, the element (1,1) in S multiplied by (1,0) in the ring yields (1,0), which is not in S. Thus, the set cannot be an ideal.

(b) Since $0 \equiv 0 \equiv 0 \mod 3$, we see that (0,0) is in S, and thus the set contains the additive identity.

Let $a \equiv b \equiv 0 \mod 3$ and $c \equiv d \equiv 0 \mod 3$ be two elements in the set. Then we see that (a,b)+(c,d)=(a+c,b+d) and we claim that $a+c \equiv b+d \equiv 0 \mod 3$. Notice that $a \equiv b \equiv 0 \mod 3$, a=b+3n for some integer n Similarly, $c \equiv d \equiv 0 \mod 3$ implies that c=d+3m for some integer m. Adding these two equations gives us a+c=b+d+3(n+m), which is another element in S. Thus, $a+c \equiv b+d \equiv 0 \mod 3$ is in S and the set is closed under addition.

Let $a \equiv b \equiv 0 \mod 3$ so that (a, b) is an element in S. Since modularity is preserved under multiplication, $-a \equiv -b \equiv 0 \mod 3$ and (-a, -b) is also in S. Adding these two elements yields (a, b) + (-a, -b) = (0, 0), which implies $0 \equiv 0 \mod 3$. Thus, the set contains additivity inverses.

Therefore, the set S must be an abelian subgroup of $\mathbb{Z} \times \mathbb{Z}$ under addition.

Let $a \equiv b \equiv 0 \mod 3$ and $c \equiv d \equiv 0 \mod 3$ be two elements in the set. Then we see that (a,b)(c,d)=(ac,bd) and we want to show that $ac \equiv bd \equiv 0 \mod 3$ is in the set. Multiplying $a \equiv b \equiv 0 \mod 3$ by c yields $ac \equiv bc \equiv 0 \mod 3$. Multiplying $c \equiv d \equiv 0 \mod 3$ by b yields $bc \equiv bd \equiv 0 \mod 3$. Thus, by transitivity, $ac \equiv bd \equiv 0 \mod 3$. Therefore, the set is closed under multiplication.

However, (1,1) cannot be in the set, as $1 \equiv 1 \equiv 0 \mod 3$ is not true. Thus, the set does not contain the multiplicative identity.

Therefore, the set S is NOT a subring of $\mathbb{Z} \times \mathbb{Z}$.

(a) This statement is false, as per Theorem 11.4.3 Correspondence Theorem, the ideal must be contained within the kernel of the map.

Counter Example:

We shall disprove this claim via a counter-example. Let φ be the map defined by $\varphi: \mathbb{Z} \to \mathbb{Q}$ where $\varphi(1) = 1$ and let I be an ideal in the domain $I = 2\mathbb{Z}$. Consider the element $2 \in I$ and $\frac{1}{3}$ in \mathbb{Q} . We see that $\frac{1}{3}2 = \frac{2}{3} \notin \varphi(I)$. Thus, the claim is false.

Question 2: (b) This statement is true, and we shall prove it directly.

Since φ is a ring homomorphism, $\varphi(0) = 0$ and consequently $0 \in \varphi^{-1}(J)$. Thus, $\varphi^{-1}(J)$ is non-empty and contains the additive identity.

Let $x, y \in \varphi^{-1}(J)$, then $\varphi(x) \in J$ and $\varphi(y) \in J$. Since φ is a ring homomorphism, we see that $\varphi(x) + \varphi(y) = \varphi(x+y) \in J$. Thus, $x+y \in \varphi^{-1}(J)$ and the set is closed under addition.

Let $r \in R$ and $a \in \varphi^{-1}(J)$, then $\varphi(a) \in J$. Since φ is a ring homomorphism, we see that $\varphi(r)\varphi(a) = \varphi(ra) \in J$. Thus, $ra \in \varphi^{-1}(J)$ and the set is closed under multiplication with elements of the ring.

Therefore, the set $\varphi^{-1}(J)$ is an ideal of R.

(a) Is
$$\mathbb{Z} \cong \frac{\mathbb{Z}[x]}{(x^2-3x+2)}$$
?

We note that $(x^2-3x+2)=(x-1)(x-2)$, and thus the ideal is generated by the two elements I=x-1 and J=x-2. Per Artin's Chapter 11.6.8 (c), since IJ=0, we see that $\frac{\mathbb{Z}[x]}{(x^2-3x+2)}\cong \frac{\mathbb{Z}[x]}{(x-1)}\times \frac{\mathbb{Z}[x]}{(x-2)}$.

Given that the image of $\frac{\mathbb{Z}[x]}{(x-1)}$ is in \mathbb{Z} and the image of $\frac{\mathbb{Z}[x]}{(x-2)}$ is in \mathbb{Z} , by the first isomorphism theorem, we see that $\frac{\mathbb{Z}[x]}{(x^2-3x+2)} \cong \mathbb{Z} \times \mathbb{Z}$.

Thus, we want to show whether or not $\mathbb{Z} \cong \mathbb{Z} \times \mathbb{Z}$.

This is true for a mariad of reasons, one such reason is that both objects differ in the number of idempotent elements. The only idempotent elements in \mathbb{Z} are 0 and 1, while the idempotent elements in $\mathbb{Z} \times \mathbb{Z}$ are (0,0), (1,1), (0,1) and (1,0).

Thus, the two rings CANNOT be isomorphic.

(b) Is
$$\mathbb{Z} \cong \frac{\mathbb{Z}[x]}{(2x-1)}$$
?

Let us assume, for the sack of a contradiction, that they are isomorphic. Then we have a ring homomorphism $\varphi: \frac{\mathbb{Z}[x]}{(2x-1)} \to \mathbb{Z}$ such that $\varphi(1) = 1$.

Note that the kernel of our of our domain is then $\overline{2x-1}=\overline{0}$, which implies that $\overline{2x}=\overline{1}$. Under the map φ , we see that $\varphi(\overline{2x})=\varphi(\overline{2})\varphi(\overline{x})=2\varphi(\overline{x})=1$, since φ s bijective and $\varphi(1)=1$. However, we arrive at a contradiction, as there exist no integer solutions to the equation 2n=1 for $n\in\mathbb{Z}$. Thus, we see that φ cannot be a ring homomorphism.

Therefore, we conclude that the two rings are NOT isomorphic.

(c) Is
$$\frac{F_3[x]}{(x^2+x+1)} \cong \frac{F_3[x]}{(x^2+2x+2)}$$
?

Consider the first ring $\frac{F_3[x]}{(x^2+x+1)}$. Notice that x^2+x+1 is reducible over F_3 , with the factorization $x^2+x+1=(x-1)(x+2)$. In the quotient ring, this implies $\overline{(x-1)(x+2)}=\overline{x^2+x+1}=\overline{0}$. Since $\overline{x-1}$ and $\overline{x+2}$ are non-zero elements in $\frac{F_3[x]}{(x^2+x+1)}$, this ring has non-zero zero divisors. Therefore, $\frac{F_3[x]}{(x^2+x+1)}$ is not a field.

Now consider the second ring $\frac{F_3[x]}{(x^2+2x+2)}$. Notice that x^2+2x+2 is irreducible over F_3 . In a field, if the product of two elements is zero, then at least one of the elements must be zero. Thus, the ideal generated by x^2+2x+2 does not result in a non-zero zero divisor in the quotient ring.

Since one of the rings, $\frac{F_3[x]}{(x^2+x+1)}$, is not a field (because it has non-zero zero divisors), and the other ring, $\frac{F_3[x]}{(x^2+2x+2)}$ is a field, they cannot be isomorphic.

Therefore, the two quotient rings are NOT isomorphic.

(d) Is
$$\frac{\mathbb{R}[x]}{(x^2+1)} \cong \frac{\mathbb{R}[x]}{(3x^2+5)}$$
?

We note that the solutions to the ideal of the first ring generated by $(x^2 + 1)$ are $\pm i$. Thus, we can recognize the first ring as $\mathbb{R}[i]$.

Similarly, the solutions to the ideal of the second ring generated by $(3x^2 + 5)$ are $\pm i\sqrt{\frac{5}{3}}$. And letting $\alpha = \sqrt{\frac{5}{3}}$, we can recognize the second ring as $\mathbb{R}[\alpha i]$.

Thus, we want to show whether $\mathbb{R}[i] \cong \mathbb{R}[\alpha i]$.

Per Artin's Chapter 11 Section 3, evaluating real polynomials at a complex number yields ring homomorphims to the complex numbers. Thus, $R[i] \cong \mathbb{C}$ and $R[\alpha i] \cong \mathbb{C}$.

Indeed, since both rings can be recognized as \mathbb{C} , we see that they ARE isomorphic.

(a)

Suppose that $p(t) \equiv q(t) \mod f(t)$, then p(t) - q(t) = h(t)f(t) for some polynomial h(t) in $\mathbb{C}[t]$.

Under ϕ_f , we see that $\phi_f(p(t)-q(t))=\phi_f(p(t))-\phi_f(q(t))=\phi_f(h(t)f(t))$. Since f(t) is in the kernel of ϕ_f , we see that $\phi_f(h(t)f(t))=h(t)f(t)\in (f(t))$. Thus, we see that $\phi_f(p(t))-\phi_f(q(t))\in (f(t))$, or equivalently, $\phi_f(p(t))\equiv \phi_f(q(t))\mod (f(t))$. Thus, the map is well-defined.

(b) No. I

Let f(t) = t. Since t can generate all powers of t, we notice that if we quotient C[t] by t, we are left with the ring of constant polynomials, which is isomorphic to \mathbb{C} .

Similarly, quotienting C[[t]] by t yields the ring of a constant series, which is also isomorphic to \mathbb{C} .

Thus, by the first isomorphism theorem, we see that ϕ_f can be recognized as the map $\phi_f: \mathbb{C} \to \mathbb{C}$, which is the identity map of \mathbb{C} .

Because $1 \mapsto 1$ and $0 \mapsto 0$, the map is indeed injective.

Furthermore, since the image is the entirety of \mathbb{C} , we see that the map is surjective.

(b) No. II

Let f(t) = t + 1. Since t + 1 can generate all powers of t, we notice that if we quotient C[t] by t + 1, we are left with the ring of constant polynomials evaluated at -1, which is isomorphic to \mathbb{C} .

Furthermore, under C[[t]], (t+1) is a unit as the inverse $(t+1)^{-1}$ is the formal power series $\sum_{n=0}^{\infty} (-t)^n$. Thus, the resulting quotient of C[[t]]/(t+1) is $\{0\}$, as that is the only coset remaining.

Therefore, we can recognize that the map ϕ_f as a map from \mathbb{C} to $\{0\}$, which is the zero map.

Thus, the map is NOT injective, as the kernel is the entirety of \mathbb{C} . And since the image is $\{0\}$, we see that the map IS surjective.