,	Grado en Matemáticas, UAM	Año 2018/2019 14 de marzo de 2019
Examen parcial 1 Apellidos y nombre:		D.N.I.:

- 1. (2 puntos) Definir un espacio de probabilidad. Demostrar las propiedades de subaditividad finita y numerable de toda medida de probabilidad, es decir, demostrar que si P es una probabilidad y $\{A_i\}_{i=1}^{\infty} \subset \mathcal{F}$ (elementos medibles), entonces $P(\bigcup_{i=1}^{n} A_i) \leq \sum_{i=1}^{n} P(A_i)$ y $P(\bigcup_{i=1}^{\infty} A_i) \leq \sum_{i=1}^{\infty} P(A_i)$.
- **2.** (2 puntos) Sea $I_n = \{1, 2, ..., n\}$. Para $A \subseteq \mathbb{N}$, consideramos

$$\mathcal{P}(A) = \lim_{n \to \infty} \frac{|A \cap I_n|}{n},$$

siempre que el límite anterior exista y donde |B| denota el cardinal del conjunto $B \subset \mathbb{N}$.

- (a) Calcular $\mathcal{P}(A)$ para $A = \{3\}$, $A = \mathbb{N}$, A = números pares, y A = números que son potencias de 2.
- (b) Demostrar que \mathcal{P} no es una probabilidad sobre \mathbb{N} .
- 3. (2 puntos) Una urna contiene 3 bolas azules y 3 rojas. Lanzamos un dado equilibrado una vez. Después, extraemos (sin reemplazamiento) tantas bolas de la urna como la puntuación que hayamos obtenido al lanzar el dado.
 - (a) ¿Cuál es la probabilidad de que todas las bolas que extraigamos sean azules?
 - (b) Si sabemos que todas las bolas que hemos extraído son azules, ¿cuál es la probabilidad de que la puntuación del dado sea r (r = 1, ..., 6)?
- **4.** (2 puntos) Sean X_1, X_2, \ldots variables aleatorias independientes con igual función de distribución F verificando F(y) < 1, para todo $y \in \mathbb{R}$. Consideremos $R(y) = \min\{k \geq 1 : X_k > y\}$ (valor récord). Calcular P(R(y) > k) ($k \geq 0$) y P(R(y) = k) ($k \geq 1$). ¿Puedes relacionar R(y) con alguna distribución conocida?
- 5. (2 puntos) Se hacen dos cortes en un bastón de longitud ℓ de la siguiente manera: primero, hacemos un corte al azar en la mitad derecha del bastón, a distancia X del inicio del mismo. A continuación, hacemos un segundo corte al azar en la parte más larga resultante, es decir, a distancia Z = XY del inicio del bastón, donde Y es una variable uniforme en (0,1). Hallar la probabilidad de que con los trozos resultantes se pueda construir un triángulo.