Atomic swaps

Lorenzo Tucci

March 24, 2024

Parties U_0 and U_1 hold assets a on blockchain \mathbb{A} and assets b on chain \mathbb{B} respectively.

We define with $amnt_a$ and $amnt_b$ the amount of the assets the parties agreed to swap before starting the protocol.

In the protocol definition, variables and functions that are blockchain-specific (unless clear from context) are denoted with a subscript, example for a publick key on chain \mathbb{B} we denote $\mathsf{pk}_{(\mathbb{B})}$.

Informally, we want the atomicity security property: parties should either both end up with the original funds in a wallet they own (refund case) or they should own the agreed assets to swap on their respective target wallets.

We define the following oracles to interact with the blockchains.

- $PubTx_{(A)}(\sigma_{tx},tx)$ publish the transaction tx with signature σ_{tx} on chain A
- $InitTx_{(A)}(pk_{tx}, pk_{rx}, amnt)$ create an unsigned transaction paying amnt from pk_{tx} to pk_{rx} on chain A
- Watch $Tx_{(\mathbb{A})}(tx)$ wait for the transaction tx to be confirmed on chain \mathbb{A}
- GetBal_(A)(pk) get the balance of assets held by pk
- $\mathsf{GetSig}_{(\mathbb{A})}(\mathsf{pk})$ get the signature σ_{tx} of the latest transaction in pk 's record on chain \mathbb{A}

 U_1 starts counting the timeout from the moment they send the VTD commitment to U_0 , and respectively U_0 starts counting down from the moment they receive it.

```
U_0(pk(0), sk(0))
                                                                                                                                                      U_1(pk(1), sk(1))
                                                                                               \Gamma_{\mathsf{KeyGen}}(\mathbb{G},G,q)
                                                                                         \leftarrow (sk_0(01), pk(01))
                                                                                         (sk_1(01), pk(01)) \longrightarrow
                                                                                                                                                      (C,\pi) \leftarrow \Pi_{\mathsf{VTD}}.\mathsf{Commit}(sk_1,T)
                                                                                                        (C,\pi)
starts \mathsf{Timeout}(T-\Delta)
                                                                                                                                                      starts \mathsf{Timeout}(T - \Delta)
if \Pi_{\text{VTD}}.\text{Verify}(pk,C,\pi) \neq 1
         abort
tx_{\mathsf{frz}} \leftarrow \mathsf{InitTx}(pk(0), pk(01), \mathsf{swp}(\mathsf{a}), \mathbb{A})
\sigma_{\mathsf{frz}} \leftarrow \Pi_{\mathsf{DS}}.\mathsf{Sign}(sk(0), tx_{\mathsf{frz}})
\mathsf{PubTx}(\sigma_{\mathsf{frz}}, tx_{\mathsf{frz}}, \mathbb{A})
starts \Pi_{VTD}. Force Op(C)
                                                                                                                                                      do bal \leftarrow \mathsf{GetBal}(pk(01), \mathbb{A})
                                                                                                                                                      \mathsf{while}\:\mathsf{bal} \neq \mathsf{swp}(\mathsf{a})
                                                                                                        pk(1)
(pk(10), sk(10)) \leftarrow \Pi_{DS}.\mathsf{KeyGen}(1^{\lambda})
tx_{\mathsf{swp}} \leftarrow \mathsf{InitTx}(pk(1), pk(10), \mathsf{swp}(\mathsf{b}), \mathbb{A})
                                                                                                           \Gamma_{\mathsf{Swap}}
                                                                                          U_0 \longrightarrow (sk_0(01), tx_{\text{swp}})
                                                                                        (sk_1(01), sk(1)) \longleftarrow U_1
                                                                                  lk := \sigma_{swp}(10) \oplus sk_0(01) \xrightarrow{\longrightarrow}
                                                                                                 \leftarrow \sigma_{swp}(10)
\mathsf{PubTx}(\sigma_{\mathsf{swp}(\mathsf{10})}, tx_{\mathsf{frz}}, \mathbb{A})
                                                                                                                                                      do \sigma_{swp}(10) \leftarrow \mathsf{GetSig}(pk(1), \mathbb{B})
                                                                                                                                                                sk(01) \leftarrow (lk \oplus \sigma_{swp}(10)) + sk_1
                                                                                                                                                                \sigma_m \leftarrow \Pi_{\mathsf{DS}}.\mathsf{Sign}(sk(01),1)
                                                                                                                                                      while \Pi_{\mathsf{DS}}.\mathsf{Verify}(m,pk,\sigma_m) \neq 1
```

Figure 1: Protocol execution for a successful swap (old)

```
Global input (\mathbb{G}, [1], q, T, \mathsf{amnt}_{\mathsf{a}}, \mathsf{amnt}_{\mathsf{b}}, \mathbb{A}, \mathbb{B})
(\mathsf{sk}_{\mathsf{frz0}}, \mathsf{pk}_{\mathsf{frz}}) \leftarrow \mathbf{wait} \ \Gamma_{\mathsf{KeyGen}_{(\mathbb{A})}}(\mathbb{G}, [1], q)
(C, \pi) \leftarrow \mathbf{wait} \ \mathsf{receive}(U_1)
if \Pi_{VTD}. Verify([pk<sub>frz</sub>] - [sk<sub>frz0</sub>], C, \pi) \neq 1
      \operatorname{return} \bot
\mathsf{res} \leftarrow \mathbf{select} \ \{
      wait {
             \Pi_{VTD}.ForceOp(C)
      wait {
             (\mathsf{pk}_{\mathsf{swp}}, \mathsf{sk}_{\mathsf{swp}}) \leftarrow \Pi_{\mathsf{DS}}.\mathsf{KeyGen}_{(\mathbb{B})}(1^{\lambda})
            \mathsf{tx}_{\mathsf{frz}} \leftarrow \ \mathsf{InitTx}_{(\mathbb{A})}(\mathsf{pk}_{\mathsf{init}}, \mathsf{pk}_{\mathsf{frz}}, \mathsf{amnt}_{\mathsf{a}})
            \sigma_{\mathsf{frz}} \leftarrow \Pi_{\mathsf{DS}}.\mathsf{Sign}_{(\mathbb{A})}(\mathsf{sk}_{\mathsf{init}},\mathsf{tx}_{\mathsf{frz}})
             PubTx_{(A)}(\sigma_{frz}, tx_{frz})
             \mathsf{pk}_{\mathsf{init}(\mathbb{B})} \leftarrow \mathsf{receive}(U_1)
            \mathsf{tx}_{\mathsf{swp}} \leftarrow \mathsf{InitTx}_{(\mathbb{B})}(\mathsf{pk}_{\mathsf{init}}, \mathsf{pk}_{\mathsf{swp}}, \mathsf{amnt}_{\mathsf{b}})
             \sigma_{\mathsf{swp}(\mathbb{B})} \leftarrow \Gamma_{\mathsf{Swap}}(\mathsf{sk}_{\mathsf{frz0}}, \mathsf{tx}_{\mathsf{swp}})
             PubTx_{(\mathbb{B})}(\sigma_{swp}, tx_{swp})
             send(U_1)
      }
if res \neq 1
      \mathsf{sk}_{\mathsf{frz}} := \mathsf{sk}_{\mathsf{frz0}} + \mathsf{res}
      tx_{rfnd} \leftarrow \mathbf{wait} \ InitTx_{(\mathbb{A})}(pk_{frz}, pk_{init}, amnt_a)
      \sigma_{\mathsf{rfnd}} \leftarrow \Pi_{\mathsf{DS}}.\mathsf{Sign}_{(\mathbb{A})}(\mathsf{sk}_{\mathsf{frz}},\mathsf{tx}_{\mathsf{rfnd}})
      wait PubTx_{(A)}(\sigma_{rfnd}, tx_{rfnd}, A)
```

```
Global input (\mathbb{G}, G, q, T, \mathsf{amnt}_{\mathsf{a}}, \mathsf{amnt}_{\mathsf{b}}, \mathbb{A}, \mathbb{B})
 (\mathsf{sk}_{\mathsf{frz}1}, \mathsf{pk}_{\mathsf{frz}}) \leftarrow \mathbf{wait} \ \Gamma_{\mathsf{KeyGen}_{(\mathbb{A})}}(\mathbb{G}, [1], q)
 (C, \pi) \leftarrow \Pi_{\mathsf{VTD}}.\mathsf{Commit}(\mathsf{sk}_{\mathsf{frz1}}, T)
 send(U_0, (C, \pi))
res \leftarrow select  {
       wait {
             timeout(T/2)
       }
       wait {
             \mathbf{do} \ \mathsf{bal} \leftarrow \mathsf{GetBal}_{(\mathbb{A})}(\mathsf{pk}_{\mathsf{frz}})
             while bal \neq amnt<sub>a</sub>
             send(U_1, pk_{init})
             lk \leftarrow \Gamma_{\mathsf{Swap}}(\mathsf{sk}_{\mathsf{frz1}}, \mathsf{sk}_{\mathsf{init}(\mathbb{B})})
             receive(U_0)
             \sigma_{\mathsf{lk}} \leftarrow \mathsf{GetSig}_{(\mathbb{B})}(\mathsf{pk}_{\mathsf{init}})
             \mathsf{sk}_{\mathsf{frz}} \leftarrow (lk \oplus \sigma_{lk}) + \mathsf{sk}_{\mathsf{frz1}}
             \mathsf{tx}_{\mathsf{swp}} \leftarrow \mathsf{InitTx}_{(\mathbb{A})}(\mathsf{pk}_{\mathsf{frz}}, \mathsf{pk}_{\mathsf{swp}}, \mathsf{amnt}_{\mathsf{a}})
             \sigma_{\mathsf{swp}} \leftarrow \Pi_{\mathsf{DS}}.\mathsf{Sign}_{(\mathbb{A})}(\mathsf{sk}_{\mathsf{frz}},\mathsf{tx}_{\mathsf{rfnd}})
             PubTx_{(A)}(\sigma_{swp}, tx_{swp})
      }
if \operatorname{res} \neq 1 \wedge lk \neq \perp
       (\mathsf{pk}_{\mathsf{rfnd}}, \mathsf{sk}_{\mathsf{rfnd}}) \leftarrow \Pi_{\mathsf{DS}}.\mathsf{KeyGen}_{(\mathbb{B})}(1^{\lambda})
       tx_{rfnd} \leftarrow \mathbf{wait} \ InitTx_{(\mathbb{B})}(pk_{init}, pk_{rfnd}, amnt_b)
       \sigma_{\mathsf{rfnd}} \leftarrow \Pi_{\mathsf{DS}}.\mathsf{Sign}_{(\mathbb{R})}(\mathsf{sk}_{\mathsf{init}},\mathsf{tx}_{\mathsf{rfnd}})
       wait PubTx(\mathbb{B})(\sigma_{rfnd}, tx_{rfnd})
```

Figure 2: Full protocol execution for U_0 and U_1 , respectively left and right (alternative syntax)

Proof sketch

Party U_0

Informally, we want that the atomic property holds: after the protocol run either U_0 ends up with $\mathsf{amnt}_{\mathsf{b}}$ on $\mathsf{pk}_{\mathsf{swp}(\mathbb{B})}$ in case of a successful swap or with $\mathsf{amnt}_{\mathsf{a}}$ on $\mathsf{pk}_{\mathsf{init}(\mathbb{A})}$, in case the swap was aborted or refunded. We consider an active adversary over the communication channel with U_1 that can also corrupt U_1 . We assume liveness and correctness for the blockchains.

By general 2PC's privacy property, $\mathsf{sk}_{\mathsf{frz1}}$ is only known to U_0 . By the $\Pi_{\mathsf{VTD}}.\mathsf{Verify}$ algorithm we have that $\Pi_{\mathsf{VTD}}.\mathsf{Verify}(\mathsf{pk}_{\mathsf{frz}} - [\mathsf{sk}_{\mathsf{frz0}}], C, \pi) = 1$ if and only if the value embedded x in the commitment C satisfies $[x] = \mathsf{pk}_{\mathsf{frz}} - [\mathsf{sk}_{\mathsf{frz0}}]$. Assuming a group based Π_{DS} with $\mathsf{pk} := [\mathsf{sk}]$, we have that $\mathsf{sk}_{\mathsf{frz}} := \mathsf{sk}_{\mathsf{frz0}} + \mathsf{sk}_{\mathsf{frz1}}$ and thus $[\mathsf{sk}_{\mathsf{frz0}} + \mathsf{sk}_{\mathsf{frz1}}] - [\mathsf{sk}_{\mathsf{frz0}}] = [\mathsf{sk}_{\mathsf{frz1}}] = [x]$. Hence U_0 proceeds to swap the assets if and only if the value committed in C is $\mathsf{sk}_{\mathsf{frz1}}$ and $pk_{frz} = [sk_{frz0} + sk_{frz1}].$

Note that by the VTD's soundness property the ForceOp algorithm will produce the committed dlog value x in time T, thus U_0 will be able to retrieve $\mathsf{sk}_{\mathsf{frz}1}$ after time T and sign a refund transaction.

Now U_0 transfer the funds to $\mathsf{pk}_{\mathsf{frz}}$ and proceeds to generate a new keypair $(\mathsf{pk}_{\mathsf{swp}}, \mathsf{sk}_{\mathsf{swp}})$ secret to the outside world.

When calling the 2PC protocol $\Gamma_{Swap}(sk_{frz0},tx_{swp})$, note that the inputs are again secret by 2PC's privacy property.

If $\sigma_{\mathsf{swp}(\mathbb{B})}$ is invalid, $\mathsf{PubTx}_{(\mathbb{B})}(\sigma_{\mathsf{swp}},\mathsf{tx}_{\mathsf{swp}})$ will fail and U_0 will wait until ForceOp completes to compute $\mathsf{sk}_{\mathsf{frz}}$ and sign the refund transaction with it, ending up with $\mathsf{amnt}_{\mathsf{a}}$ on $\mathsf{pk}_{\mathsf{init}(\mathbb{A})}$.

Otherwise, the swap will complete successfully, and U_0 ends up with amnt_b on $\mathsf{pk}_{\mathsf{swp}(\mathbb{B})}$.

An adversary has no information about $\mathsf{sk}_\mathsf{frz0}$ and $(\mathsf{pk}_\mathsf{swp}, \mathsf{sk}_\mathsf{swp})$, thus it cannot sign transaction from pk_frz or compute a valid signature for pk_swp , and is thus unable to retrieve information about $\mathsf{sk}_\mathsf{frz0}$ from lk.

Party U_1

After the protocol run either U_1 ends up with $\mathsf{amnt}_{\mathsf{a}}$ on $\mathsf{pk}_{\mathsf{swp}(\mathbb{A})}$ in case of a successful swap, with $\mathsf{amnt}_{\mathsf{b}}$ on $\mathsf{pk}_{\mathsf{rind}(\mathbb{B})}$ in case the swap was refunded or $\mathsf{amnt}_{\mathsf{b}}$ on $\mathsf{pk}_{\mathsf{init}(\mathbb{B})}$ if the swap was aborted.

We consider an active adversary over the communication channel with U_0 that can also corrupt U_0 . We assume liveness and correctness for the blockchains.

Note that before calling $\Gamma_{\mathsf{Swap}}(\mathsf{sk}_{\mathsf{frz1}}, \mathsf{sk}_{\mathsf{init}(\mathbb{B})})$, U_1 is in control of their assets on $\mathsf{pk}_{\mathsf{init}(\mathbb{B})}$ if it were to abort, and by general 2PC's privacy property both inputs are private.

Also note that U_1 waits until the funds $\mathsf{amnt}_{\mathsf{a}}$ have been transferred to $\mathsf{pk}_{\mathsf{frz}}$ before proceeding with Γ_{Swap} . An adversary can only get the signature $\sigma_{swp(\mathbb{B})}$ if and only if it provided the correct $\mathsf{sk}_{\mathsf{frz0}}$ and thus U_1 has received by correctness of 2PC $lk := \sigma_{swp(\mathbb{B})} \oplus \mathsf{sk}_{\mathsf{frz0}}$.

If U_1 is unable to retrieve $\sigma_{swp(\mathbb{B})}$ before T/2, it proceeds to move the funds from $\mathsf{pk}_{\mathsf{init}}$ to a newly generated $\mathsf{pk}_{\mathsf{rfnd}}$, and thus an adversary holding $\sigma_{swp(\mathbb{B})}$ will be unable to get a transaction accepted by the correctness property of the blockchain (otherwise we occur in a double spending), so we end up with $\mathsf{amnt}_{\mathsf{b}}$ on $\mathsf{pk}_{\mathsf{rfnd}(\mathbb{B})}$.

If the transaction with signature $\sigma_{swp(\mathbb{B})}$ gets posted on \mathbb{B} , then U_1 will be able to retrieve $\mathsf{sk}_{\mathsf{frz}}$ by the above argument, and thus compute $\mathsf{sk}_{\mathsf{frz}}$ and sign the swap transaction with it, ending up with $\mathsf{amnt}_{\mathsf{a}}$ on $\mathsf{pk}_{\mathsf{swp}(\mathbb{A})}$.

```
\begin{split} & \frac{U_0(pk(0)\,,sk(0))}{sk(01) := sk_0(01) + sk_1(01)} \\ & sk_0(01) := sk_0(01) + sk_1(01) \\ & \sigma_{swp}(10) \leftarrow \Pi_{\text{DS}}.\text{Sign}(sk(1),tx_{\text{swp}}) \\ & lk := \sigma_{swp}(10) \oplus sk_0(01) \end{split}
```

Figure 3: Protocol definition of 2PC Γ_{Swap}