Algoritmos Genéticos

Revisão dos conceitos

Sumário

- Representação
- Operadores
- Seleção
- Algoritmos
- Atividade
- Aplicação I
- Aplicação II

Representação do Indivíduo

- Definir qual será a representação do indivíduo é uma das primeiras decisões que se deve tomar no desenvolvimento de um AG.
- Codificação x Decodificação

Representação Binária

Representação Binária (32 bits)

Representação Binária

cromossomo com 2 variáveis

cromossomo com 3 variáveis

Representação Binária

- Duas importantes questões na representação de números reais em binários são:
 - Intervalo de domínio de cada uma das variáveis
 - Precisão desejada

Exemplo - Decodificação

$$f(x) = x \operatorname{sen}(10\pi x) + 1$$
 $-1 \le x \le 2$.

 $s_1 = 1000101110110101000111$

$$b_{10} = (10001011101101101000111)_2 = 2288967$$

$$x = \min + (\max - \min) \frac{b_{10}}{2^l - 1}$$
 $x_1 = -1 + (2+1) \frac{2.288.967}{(2^{22} - 1)} = 0,637197$

Representação Real

Representação Binária x Real

- Binária
 - ↑ Tradicional e fácil de utilizar
 - ↓ Cromossomos longos para representar parâmetros contínuos com boa precisão.
 - ↓ Longas cadeias podem levar a uma convergência lenta do método.
 - ↓ Não uniformidade dos operadores. Por exemplo, mutação nos primeiro bits tem mais impacto que nos últimos.

- Real
 - ↑ Cadeias menores
 - ↑ Compreendida mais naturalmente.
 - ↑ Facilidade para criar novos operadores.

Operadores

Crossover de um ponto Representação Binária

Crossover de dois pontos Representação Binária

Crossover uniforme Representação Binária

Números sorteados (0, 1, 0, 0, 0, 1, 1, 1)

Mutação Representação Binária

Mutação

Antes: 0 0 1

Depois: 1 0 1 0 0 1 1

Crossovers Representação Real

Pais

Filho

$$\mathbf{p}_{1} = (p_{11}, p_{12}, ..., p_{1l})$$

 $\mathbf{p}_{2} = (p_{21}, p_{22}, ..., p_{2l})$

$$\mathbf{c} = (c_1, c_2, \dots, c_l).$$

Crossover média (Davis, 1991) $c = (\mathbf{p}_1 + \mathbf{p}_2)/2$

$$c = (p_1 + p_2)/2$$

Crossover média geométrica, $c_i = \sqrt{p_{1i}p_{2i}}$

$$c_i = \sqrt{p_{1i} p_{2i}}$$

Crossovers - Representação Real

Crossover BLX- α

$$\mathbf{c} = \mathbf{p}_1 + \beta(\mathbf{p}_2 - \mathbf{p}_1)$$
 $\beta \in U(-\alpha, 1 + \alpha).$

(Eshelman e Shaffer, 1993)

$$p_1 = (30,173; 85,342)$$
 $c_1 = 30,173 + 1,262(75,989 - 30,173) = 87,993$

$$p_2 = (75,989; 10,162)$$
 $c_2 = 85,342 + 1,262(10,162 - 85,342) = -9,535$

Crossovers - Representação Real

$$\mathbf{c}_1 = 0.5\mathbf{p}_1 + 0.5\mathbf{p}_2$$

Crossover linear (Wright, 1991):

$$\mathbf{c}_2 = 1.5\mathbf{p}_1 - 0.5\mathbf{p}_2$$

$$\mathbf{c}_3 = -0.5\mathbf{p}_1 + 1.5\mathbf{p}_2$$

Crossover aritmético (Michalewicz, 1994)

$$\mathbf{c}_1 = \beta \mathbf{p}_1 + (1 - \beta) \mathbf{p}_2$$

$$\beta \in U(0, 1)$$

$$\mathbf{c}_2 = (1 - \beta) \mathbf{p}_1 + \beta \mathbf{p}_2$$

Crossover heurístico (Michalewicz, 1994)
$$c = \mathbf{p}_1 + r(\mathbf{p}_1 - \mathbf{p}_2)$$
, onde $f(\mathbf{p}_1) > f(\mathbf{p}_2)$
 $r \in U(0,1)$

Mutação Representação Real

Mutação uniforme:

$$c_i = \begin{cases} U(a_i, b_i), & \text{se } i = j \\ p_i & \text{caso contrário} \end{cases}$$

Mutação gaussiana:

$$c_i = \begin{cases} N(p_i, \sigma), & \text{se } i = j \\ p_i & \text{caso contrário} \end{cases}$$

Mutação creep:

Mutação Representação Real

Mutação limite (Michalewicz, 1994)
$$c_i = \begin{cases} a_i & \text{se } r < 0.5 \text{ e } i = j \\ b_i & \text{se } r \ge 0.5 \text{ e } i = j \end{cases}$$
 $r \in U(0,1)$

Mutação não-uniforme (Michalewicz, 1994):

$$c_{i} = \begin{cases} p_{i} + (b_{i} - p_{i})f(G) & \text{se } r_{1} < 0.5 \text{ e } i = j \\ p_{i} - (p_{i} - a_{i})f(G) & \text{se } r_{1} \ge 0.5 \text{ e } i = j \\ p_{i} & \text{caso contrário} \end{cases}$$

$$f(G) = \left(r_{2}\left(1 - \frac{G}{G_{\text{max}}}\right)\right)^{b}$$

$$r_{1} \text{ e } r_{2} \in U(0, 1),$$

$$b = 6$$

Torneio

- Proposto por Goldberg e Deb em Goldberg and Deb (1991).
- Seleciona aleatoriamente um número fixo de indivíduos Q e o melhor entre esses indivíduos é escolhido para cruzamento.

Truncamento

- Truncamento foi proposto por Mühlenbein e Schlierkamp-Voose em Mühlenbein and Schlierkamp-Voosen (1993).
- Um número M ≥ N de indivíduos é gerado e os melhores N indivíduos são selecionados para formar a próxima população.

disputa	indivíduo	cromossomo	fitness	vencedor
1	1	110111	5	1
	4	011001	3	1
2	6	010100	2	8
	8	111011	5	0
3	9	101101	4	Q
	11	010001	2	9
4	13	111000	3	13
	15	000001	1	1.0

Roleta

Algoritmo 3.2: Roda da Roleta

```
\begin{array}{l} \operatorname{total} \leftarrow \sum_{i=1}^{N} f_{i} \quad / \text{* a soma das aptidões de todos os cromossomos da} \\ \operatorname{populaçã} \overline{b}^{1*} / \\ \operatorname{rand} \leftarrow \operatorname{rand\^{o}mico}(0, \operatorname{total}) \\ \operatorname{total parcial} \leftarrow 0 \\ i \leftarrow 0 \\ \operatorname{repetir} \\ i \leftarrow i + 1 \\ \operatorname{total parcial} \leftarrow \operatorname{total parcial} + f_{i} \\ \operatorname{at\'{e}} \operatorname{total parcial} \geq \operatorname{rand} \\ \operatorname{retornar} o \operatorname{cromossomo} \mathbf{s}_{i} \end{array}
```

Mais chance para os mais aptos

 Problemas com valores negativos

$$f_i = 2(N-i)/(N-1)$$

Figura 3.3 - Crossover

Figura 3.4 - Mutação

Índice Original	População Intermediária (Mating pool)	<i>Crossover</i> e Mutação	Primeira Geração (o sublinhado indica mutação)	Ponto de Corte
1	1101000000011110110111		1101000000011000011100	12
5	1001110110111000011100		1001110110111110110111	12
12	0001101001100010101111		000110100110 <u>0</u> 010010110	12
6	0000110011111010010110		00 <u>1</u> 01100111100 <u>0</u> 0101111	12
19	0010001101001100101100		0 <u>1</u> 10001101000100011101	9
17	0100011001000100011101	•	0100011001001100101100	9
15	1000100011110001000011	•	1000100011110001010010	17
7	0011000000100111010010	•	00 <u>0</u> 1000000100111000011	17

$$s_1 = 1000101110110101000111$$
 $b_{10} = (1000101110110101000111)_2 = 2288967$

$$x = \min + (\max - \min) \frac{b_{10}}{2^l - 1}$$
 $x_1 = -1 + (2+1) \frac{2.288.967}{(2^{22} - 1)} = 0,637197$

E tem mais....

- Elitismo
- Reinicialização
- Migração

Algoritmo Genético - I

```
1: procedure Algoritmo Genético
 2.
        t \leftarrow 0
 3:
        Gerar População Inicial P(t)
       Avaliar P(t)
 4:
       while not criteriodeparada do
 5:
 6:
           for i \leftarrow 1 to N/2 do
               Selecionar dois indivíduos de P(t).
 7:
 8:
               Aplicar crossover aos dois indivíduos com probabilidade p_c.
9:
               Mutar os novos indivíduos gerados com probabilidade p_m.
                Inserir os novos indivíduos em P(t+1).
10:
            end for
11:
12:
            t \leftarrow t + 1
13:
        end while
14: end procedure
```

Figure: Pseudocódigo para AG.

Algoritmo Genético - II

Algoritmo 3.1: Algoritmo Genético típico

```
Seja S(t) a população de cromossomos na geração t.
t \leftarrow 0
inicializ ar S(t)
avaliar S(t)
enquanto o critério de parada não for satisfeito faça
        t \leftarrow t+1
        selecionar S(t) a partir de S(t-1)
        aplicar crossover sobre S(t)
        aplicar mutação sobre S(t)
        avaliar S(t)
fim enquanto
```

Algoritmo Genético - III

```
Método AG
Inicio
 repita
   inicializaPopulações();
   repita
     para i = 1 até numeroDePopulações faça
         crossoverPop(i);
         mutacaoPop(i);
         estruturaPop(i);
   até convergir;
   migração();
 até critério de parada;
fim
```

Atividade

Funções Goldstein & Price

$$GP(x_1, x_2) = [1 + (x_1 + x_2 + 1)^2 \times (19 - 14x_1 + 3x_1^2 - 14x_2 + 6x_1x_2 + 3x_2^2)] \times [30 + (2x_1 - 3x_2)^2 \times (18 - 32x_1 + 12x_1^2 + 48x_2 - 36x_1x_2 + 27x_2^2)]$$

domínio [-2,2]
4 mínimos locais
1 mínimo Global GP(0,-1) = 3.

Funções Bohachevsky

$$B2(x_1, x_2) = x_1^2 + 2x_2^2 - 0.3\cos(3\pi x_1) - 0.4\cos(4\pi x_2) + 0.7$$

domínio [-50,50] 1 ótimo global B2(0,0) = 0.

Funções Rosenbrock

$$R_n(x) = \sum_{j=1}^{n-1} [(1-x_j)^2 + 100(x_{j+1} - x_j^2)^2]$$

domínio [-30,30] R2(1,1) = 0

Resultados

- Métricas para comparação:
 - Número de funções avaliadas
 - Quantidade de fitness determinado até que o critério de parada seja atendido.
 - Critério de parada definido pelo método. Qual devo utilizar???
 - Taxa de sucesso após 10 (se possível 100) execuções.
 - Melhor indivíduo e ótimo devem satisfazer: /fBest – fOtimo/<0.01
- Definir pelo menos um tipo de AG.
 - Implementar com representação real, se possível, binária.
- Avaliar os AGs em todas as funções apresentadas.

Referências

- Davis, L. (1991). *Handbook of Genetic Algorithm s. Van* Nostrand Reinhold.
- Eshelman, L. J.; Shaffer, D. J. (1992). Real- co ded genetic algorithms and interval- schemata. In: WHIT LEY, D. L. (ed). *Foundations of Genetic Algorithms 3. San Mateo, CA: Morgan* Kaufman, p.187- 203.
- Michalewicz, Z. (1994). Genetic Algorithms + Data Structures = Evolution Programs. 3.ed. Springer-Verlag.
- Goldberg, D. and Deb, K. (1991). A comparative analysis of selection schemes used in genetic Algorithms. Morgan Kaufmann.