(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平7-85406

(43)公開日 平成7年(1995)3月31日

(51) Int.Cl. ⁸	
G11B	5/09

識別記号 庁内整理番号 301 Z 7520-5D

FΙ

技術表示箇所

5/012

5/82

7426-5D

9196-5D

審査請求 未請求 請求項の数10 OL (全 9 頁)

(01)	
(21)	出願番号
(-1/	HINE - /

(22)出顧日

特願平5-231145

平成5年(1993)9月17日

(71)出願人 000005108

Mark A AL III als All III al

株式会社日立製作所

東京都千代田区神田駿河台四丁目6番地

(72)発明者 鈴木 幹夫

東京都国分寺市東恋ケ檀1丁目280番地

株式会社日立製作所中央研究所内

(74)代理人 弁理士 有近 紳志郎

(54) 【発明の名称】 磁気ディスク装置

(57)【要約】

【目的】 ディスクリート・トラック方式の磁気ディスクを用いた磁気ディスク装置において、記録トラック密度を増加する。

【構成】 磁気ディスク1の記録トラック11の幅をW、ガードバンド12の幅をW。、磁気ヘッドの再生素子のトラック幅をW。、磁気ヘッドの位置決め精度(ずれ量)を±E、最高線記録密度の記録トラックにおける記録データの最長ビット長をb。・・・、再生時のクロストーク許容量を示す定数をaとしたとき、ガードバンド12の幅をW。の下限を W。≥W。−W、+a・b。・・となるように設定する。その上限をW。<4E+a・b。・・となるように設定する。

【効果】 クロストークを抑制しながら記録トラック密度を増加できる。

【特許請求の範囲】

【請求項1】 ディスクリート・トラック方式の記録ト ラックを有する磁気ディスクと、その磁気ディスクに情 報を記録する記録素子および記録した情報を再生する再 生素子を有する磁気ヘッドとを備えた磁気ディスク装置 において

前記磁気ディスクの記録トラックおよびガードバンドの 幅をそれぞれ₩、、₩。とし、前記再生素子のトラック幅 を₩、、最大線記録密度の記録トラックにおける記録デ ータの最長ビット長をbusk、再生時のクロストーク許 容量を示す定数をaとしたとき、それらが

 $W_a \ge W_b - W_t + a \cdot b_{aa}$

の関係を満たすことを特徴とする磁気ディスク装置。

【請求項2】 a=0.5である請求項1に記載の磁気 ディスク装置。

【請求項3】 a=0.9である請求項1に記載の磁気 ディスク装置。

【請求項4】 前記再生素子の最大位置ずれ量を±Eと したとき、前記磁気ディスクの記録トラック幅W、と前 記再生素子のトラック幅₩、とが、

 $W_h \ge W_t + 2 E$

の関係を満たしている請求項1~3のいずれかに記載の 磁気ディスク装置。

【請求項5】 前記再生素子の最大位置ずれ量を±Eと したとき、前記ガードバンド幅W。が、

 $W_q < 4E + a \cdot b_{eax}$

の関係を満たす請求項1~4のいずれかに記載の磁気デ ィスク装置。

【請求項6】 前記ガードパンド幅W。が、

 $W_q < 2 (W_h - W_t) + a \cdot b_{max}$

の関係を満たす請求項5に記載の磁気ディスク装置。

【請求項7】 a=0. 5である請求項5または6に記 載の磁気ディスク装置。

【請求項8】 a=0.9である請求項5または6に記 載の磁気ディスク装置。

【請求項9】 前記磁気ディスクが、表面の平坦な基板 の上に直接または下地層を介して形成された記録層を有 していると共に、前記各ガードバンドには溝が形成され ており、しかも、前記記録層は前記記録トラック上にの み存在し、前記溝の内部には存在していない請求項1~ 40 気ディスク装置を提供することにある。 8のいずれかに記載の磁気ディスク装置。

【請求項10】 前記磁気ディスクが、表面に凹凸を持 つ基板の上に直接または下地層を介して形成された記録 層を有していると共に、前記凹凸に対応するパターンで 前記ガードバンドに溝が形成されており、しかも、前記 記録層は前記記録トラック上および前記ガードバンドの 溝の内部に存在している請求項1~8のいずれかに記載 の磁気ディスク装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】この発明は、磁気ディスク装置に 関し、さらに詳しくいえば、ディスクリート・トラック を有する磁気ディスクを用いた磁気ディスク装置に関す

[0002]

【従来の技術】磁気ディスク装置において記録密度を増 大させるには、磁気ディスクの円周方向の情報密度すな わち「線記録密度」と半径方向の情報密度すなわち「ト ラック密度」との双方を増加させることが必要である。 10 しかし、トラック密度を増加させると、隣接する記録ト ラック間のガードバンド幅が狭くなるため、記録トラッ ク間の磁気的な干渉(クロストーク)が増大し、再生信 号のS/Nの確保が困難になることが指摘されている。 【0003】そこで、ガードバンドに溝や非磁性領域を 形成するなどして隣接する記録トラック間の磁気的な干 渉を抑制した「ディスクリート・トラック」方式が提案 されている。この方式によれば、記録トラックの端部か らのノイズの低減および磁気ヘッドの位置ずれの影響の 緩和が可能となる(例えば、アイ・イー・イー・イー、 20 トランザクションズ オン マグネティクス、エム エ - ジー23、第6巻(1987年)第3690頁から第3692頁 (IEEE Trans. Magn., MAG-23 (6) (1987) pp3690-369

2) 参照)。

[0004]

【発明が解決しようとする課題】前記文献では、ディス クリート・トラック方式を採用した磁気ディスクの記録 /再生の基本特性を把握するため、ガードバンドを20 Oμmの幅でエッチングして溝を形成しそれによって記 録トラック相互の磁気的干渉を抑制しているのみであ 30 り、記録トラックの高密度化については考慮されていな 67

【0005】そとで、との発明の目的は、ディスクリー ト・トラック方式の磁気ディスクを備えた磁気ディスク 装置において、従来よりも記録トラックの密度を向上す ることができる磁気ディスク装置を提供することにあ る。

【0006】この発明の他の目的は、ディスクリート・ トラック方式の磁気ディスクを備えた磁気ディスク装置 において、従来よりも信頼性を向上することができる磁

[0007]

【課題を解決するための手段】との発明の磁気ディスク 装置は、ディスクリート・トラック方式の記録トラック を有する磁気ディスクと、その磁気ディスクに情報を記 録する記録素子および記録した情報を再生する再生素子 を有する磁気ヘッドとを備えた磁気記録装置において、 前記磁気ディスクの記録トラックおよびガードバンドの 幅をそれぞれ♥t、♥。とし、前記再生素子のトラック幅 をW。、最大線記録密度の記録トラックにおける記録デ 50 ータの最長ビット長を bask、再生時のクロストーク許

容量を示す定数をaとしたとき、それらが $W_a \ge W_b - W_b + a \cdot b_{aa}$

の関係を満たすことを特徴とする。

【0008】この磁気ディスク装置では、好ましくはa = 0.5 とし、より好ましくはa = 0.9 とする。a = 0. 5とすると、例えば、再生時のクロストークを-2 6 d B以下に抑制することができる。 a = 0.9 とする と、例えば、再生時のクロストークを-30dB以下に 抑制するととができる。

3

【0009】好ましくは、前記再生素子の最大位置ずれ 10 量を±Eとしたとき、前記磁気ディスクの記録トラック 幅♥、と前記再生素子のトラック幅♥、とが、

 $W_h \ge W_t + 2E$

の関係を満たしているようにする。

【0010】とうすれば、目的とする記録トラックから 情報信号を最大強度で読み出すことが可能となる。 【0011】また、

 $W_a < 4E + a \cdot b_{aa}$

の関係を満たすように、前記ガードバンド幅W。の上限 を設定するのが好ましい。あるいは、

 $W_q < 2 (W_h - W_t) + a \cdot b_{max}$

の関係を満たすように上限を設定してもよい。

【0012】こうすれば、クロストークを抑制しながら 従来例よりもトラック密度を向上させることができる。 【0013】前記磁気ディスクは、好ましくは、表面の 平坦な基板の上に直接または下地層を介して形成された 記録層を有していると共に、前記各ガードバンドには溝 が形成されており、しかも、前記記録層は前記記録トラ ック上にのみ存在し、前記溝の内部には存在していない ものとする。

【0014】あるいは、表面に凹凸を持つ基板の上に直 接または下地層を介して形成された記録層を有している と共に、前記凹凸に対応するパターンで前記ガードバン ドに溝が形成されており、しかも、前記記録層は前記記 録トラック上および前記ガードバンドの溝の内部に存在 しているものとする。

【0015】しかし、ディスクリート・トラック方式で あれば、これら以外の構成の磁気ディスクも使用可能で

[0016]

【作用】この発明の磁気ディスク装置では、磁気ディス クの記録トラックの幅♥ょ、ガードバンドの♥。、前記再 生素子のトラック幅₩。、最大線記録密度の記録トラッ クにおける記録データの最長ビット長 b...、再生時の クロストーク許容量aが

 $W_a \ge W_b - W_t + a \cdot b_{max}$

の関係を満たすので、これら以外の磁気的性能が同じ従 来の磁気ディスク装置に比べて、隣接する記録トラック 間のクロストークが減少し、再生信号に十分なS/Nが 化が図れる。記録トラックの密度を従来と同じにした場 合は、信頼性が改善される。

[0017]

【実施例】以下、添付図面を参照しながらこの発明の実 施例について説明する。

【0018】[第1実施例] 図3は、この発明の第1実 施例の磁気ディスク装置の要部構成を示す。図3におい て、ディスクリート・トラック方式の磁気ディスク1 は、表面に同心円状に形成された複数の記録トラック1 1を有しており、隣接する記録トラック11の間のガー ドバンド12には溝が形成されている。この溝により、 隣接する記録トラック 1 1 間の磁気的な干渉 (クロスト ーク)が抑制される。磁気ディスク1はスピンドルに固 定されていて、図示しない磁気ディスク駆動手段により 回転せしめられる。

【0019】磁気ヘッド2は、図示しない磁気ヘッド駆 動手段によって制御・駆動され、目的とする記録トラッ ク11上に位置決めされる。磁気ヘッド2の先端には、 記録トラック11に記録された情報を再生する再生素子 20 21が取り付けてある。再生素子21は磁気抵抗効果 (MR)型である。また、再生素子21に隣接して、記 録トラック11に情報を記録するための記録素子(図示 せず)が取り付けてある。記録素子および再生素子21 は、記録時および再生時に、目的とする記録トラック1 1の上方でその表面に所定間隙で近接して位置決めされ る。

【0020】記録すべき情報は、当該磁気ディスク装置 の外部の情報処理手段から、図示しない記録/再生信号 処理手段を介して前記記録素子に送られ、その記録素子 30 によって磁気ディスク1の前記記録トラック11に記録 される。再生素子21により前記記録トラック11から 再生された情報は、その記録/再生信号処理手段を介し て外部の情報処理手段に送られる。

【0021】次に、図1を参照しながら、この磁気ディ スク装置における磁気ディスク1の記録トラック11お よびガードバンド12と、磁気ヘッド2の再生素子21 のトラック22との位置関係について説明する。とと で、記録トラック11の幅をWt、ガードバンド (溝) 12の幅を₩。、再生素子21のトラック22の幅を₩。 40 とする。したがって、トラックビッチは ($V_1 + V_2$) と なる。また、目的とする記録トラック11上に磁気へッ ド2を位置決めする場合の位置決め精度、換言すれば、 目的とする記録トラック11の中心からの再生素子21 のトラック22の最大位置ずれ量(トラック幅方向のず れ量)を±Eとする。

【0022】まず、再生トラック22の位置ずれ量が+ Eの時でも、その記録トラック11から情報信号を最大 強度で読み出せるようにするには、その時に記録トラッ ク11の全面にわたって再生トラック22が重なってい 得られる。その結果、記録トラックのいっそうの高密度 50 る必要がある。よって、再生トラック22の幅₩。は記

録トラック11の幅W、よりも最大位置ずれ量Eだけ大 きいことが必要である。

【0023】再生素子21が反対側に位置ずれした場 合、すなわち位置ずれ量が-Eの時もこれと同様であ *

$$W_b \ge W_t + 2 E$$

となる。

【0024】数式(1)において、トラック密度を向上 させるには、再生素子21のトラック22の幅W,が最 ※

$$W_h = W_t + 2 E$$

となる。

【0025】そこで、この実施例では、再生素子21の トラック幅♥,を数式(2)を満たすように設定してい る。このため、図1に示すように、最大位置ずれ時(ず れ量+E) において、ずれた向きとは反対側のトラック 22の端(図1では左端)が、その記録トラック11の 対応する一方の端 (図1では左端) に一致している。ま★

$$\mathbf{d} = \mathbf{W}_{\mathbf{t}} + \mathbf{W}_{\mathbf{q}} - \mathbf{W}_{\mathbf{h}}$$

で表わされる。

【0027】他方、隣接する記録トラック11からの磁 表わされる距離dと、記録ビット長(磁化反転間隔)b との比(d/b)によって決定される。この場合、記録 ビット長」は、動作マージンが最も狭くなる最大線記録☆

$$\mathbf{d} = \mathbf{W}_{t} + \mathbf{W}_{a} - \mathbf{W}_{b} = \mathbf{a} \cdot \mathbf{b}_{aa}$$

が成り立つから、数式(4)より、クロストークを所定 のクロストーク許容量以下に抑えるには、ガードバンド 幅W。を

$$W_a \ge W_b - W_b + a \cdot b_{aax}$$

の条件を満たすように設定することが必要である。

以下に抑えるには、ガードバンド幅W。の下限を数式

(5)を満たすように設定する必要があることが分か *

$$W_a \ge 2E + a \cdot b_{ax}$$

に設定すればよいことが分かる。

【0031】ところで、数式(5)または(6)を満た しながらガードバンド幅W。を大きくすれば、それだけ クロストークは低減されるが、反面、記録トラック11 の密度が減少する。そとで、クロストークを所定の許容 量以下に抑えながら記録トラック11の密度を従来より 向上させるためには、ガードバンド幅♥。に上限がある と考えられる。その上限は次のようにして求められる。 【0032】従来例として、ディスクリート・トラック 方式でない表面が平坦な従来の磁気ディスクを用いた磁 気ディスク装置を採り上げる。この種の装置では、磁気 ヘッドの位置ずれによって生じるS/Nの低下を防ぐた めに、記録素子と再生素子とを分離し記録素子のトラッ ク幅を再生素子のトラック幅よりも広くする方法が知ら れている。この方法を採用した従来の磁気ディスク装置 における記録トラックなどの位置関係を図4に示す。

【0033】図4では、記録素子のトラック42の幅

*る。したがって、再生素子21のトラック22の幅W。 は記録トラック11の幅W.よりも最大位置ずれ量Eの 2倍だけ大きいことが必要である。これを数式で表わせ ば、

(1)

※小であるのが好ましい。その場合のトラック22の幅₩ nは、

(2)

10★た、トラック22のずれた側の端(図1では右端)は、 その記録トラック11の対応する端(図1では右端)よ りガードバンド12側に距離2Eだけ突出している。 【0026】次に、再生素子21のトラック22のガー ドバンド12側に突出した部分の端と、その記録トラッ ク11に隣接する記録トラック11の端までの距離 d は、

(3)

☆密度の記録トラック11における最長ピット長(最長磁 化反転間隔) b...、で考えるべきである。そとで、(d 気的干渉の大きさを示すクロストークは、数式(3)で 20 /b arr) = a とおくと、 a はクロストーク許容量を示 す定数である。定数aが大きくなれば再生時のクロスト ークは小さくなる。

【0028】数式(3)より、

(4)

 $igoplus W_1 + W_2 - W_3 \ge a \cdot b_{33}$ したがって

(5)

* る。

【0029】このように、クロストークを所定の許容量 30 【0030】この実施例では、数式(2)よりW"ーW。 =2Eであるから、

(6)

は、磁気ディスク3に形成された記録トラック31の幅 に等しく、再生素子のトラック41の幅よりも大きくな っている。また、磁気ヘッドの位置決め精度は、図1の ディスクリート・トラック方式の磁気ディスク装置と同 様に±Eであるとする。

【0034】まず、図4の磁気ディスク装置において、 40 図1のディスクリート・トラック方式の磁気ディスク1 と同じ強度の再生出力を得るためには、再生素子のトラ ック41の幅は、図1の磁気ディスク1の記録トラック 11の幅♥、に一致する必要がある。 そとで、再生素子 のトラック41の幅はW, としてある。

【0035】次に、記録時の磁気ヘッドの位置ずれによ り、本来の中心位置から一方の側(図4では左側)に最 大位置ずれ量-Eで記録トラック31が形成されている とする。そして、再生時の磁気へっドの位置ずれによ り、再生素子のトラック41が前記中心位置から記録時 50 とは反対側 (図4では右側) に最大位置ずれ量+Eで記

(5)

録トラック31上を走行するとする。この場合に、その 記録トラック31から情報信号を最大強度で読み出せる ようにするには、再生素子のトラック41の幅W,の両 側に2Eの幅の余裕が必要なため(図1参照)、記録素 子のトラック42の幅、すなわち磁気ディスク3の記録 トラック31の幅は(W,+4E)に設定する必要があ る。こうすると、図4に示すように、再生素子のトラッ ク41のずれた側(図4では右側)の端は、記録トラッ ク31の対応する側の端と一致する。 さらに、目的の米

$$T_{r} = (W_{r} + 4E) + d$$

の関係を満たすことが必要である。

【0036】 ここで、隣接記録トラック32からの再生※

$$T_{\text{Pain}} = (W_t + 4E) + a \cdot b_{\text{max}}$$

【0037】図1のディスクリート・トラック方式の磁 気ディスク1では、トラックピッチは(W、+W。)で表 わされるから、磁気ディスク1のトラックピッチを磁気★

$$W_t + W_q < T_{Puin} = W_t + 4 E + a \cdot b_{uax}$$

つまり、ガードバンド幅W。を

$$W_q < 4E + a \cdot b_{max}$$

の関係を満たすように選べばよいことが分かる。 【0038】この実施例の磁気ディスク1では、記録ト ラック幅W、と再生素子21のトラック22の幅W。の関☆

$$W_q < 2 (W_h - W_t) + a \cdot b_{max}$$

を満たすように設定すればよいことが分かる。

【0039】以上述べたように、との第1実施例の磁気 ディスク装置では、ガードバンド幅W。を数式 (11) を満たすように設定すれば、再生クロストークを抑制し ながら図4の従来の磁気ディスク装置よりも記録トラッ ク11の密度を大きくすることが可能となる。

【0040】次に、(d/b...) = aの具体的な値を 適用した例について説明する。◆図2は、図1の磁気デ ィスク装置において、再生素子21のトラック幅W。= 2 μm、磁気ディスク1の記録トラック11の幅W.= 1. 5μmとした場合に、情報再生時に検出されるクロ ストークを (d/b_{***}) = aの値を種々変えて測定し ◆

$$W_a \ge W_b - W_t + 0$$
. $5 b_{aax}$

を満たすように設定する必要があることが分かる。同様 に、クロストークを-30dB以下に抑えるためには、*

$$W_a \ge W_b - W_t + 0$$
. 9 b...

を満たすように設定する必要があることが分かる。 【0043】他方、図4の従来の磁気ディスク装置で ※

$$T_{Pets} = W_t + 4 E + 0.5 b_{ex}$$

で表わされる。また、再生クロストークを-30dB以★ ★下に抑えるためには、

$$T_{enta} = W_{e} + 4 E + 0$$
. 9 b...

とすればよい。

【0044】よって、図1のディスクリート・トラック 方式の磁気ディスク1のトラックピッチ(W。+w。)を☆

$$W_t + W_o < W_t + 4E + 0.5b_{...}$$

*記録トラック31に隣接する記録トラック32が、本来 の中心位置から記録トラック31と同じ側(図4では左 側)に最大位置ずれ量-Eで形成されているとする。と の場合、その隣接記録トラック32の記録トラック31 側の端と、本来の中心位置から記録時とは反対側 (図4 では右側) に最大位置すれ量+Eで記録トラック31上

を走行する再生素子のトラック41の端との間の距離 を、図1の磁気ディスク装置における距離 d に等しくす るためには、トラックピッチT。は、

※ クロストークが所定値 a 以下に抑えられる最小のトラッ クピッチTpataは、数式(4)より

★ディスク3の最小トラックピッチTpminより狭くすれ ば、従来の磁気ディスク3よりも記録トラックの密度を \ 高くすることができる。したがって、

(9)

(10)

☆係は前記数式(2)のように選ばれているので、結局、 ガードバンド幅W。は、

(11)

◆た結果を示す。

【0041】一般に、磁気ディスク装置の動作に必要な S/Nを考慮すると、クロストークは-26dB以下に 抑えられ、いっそうの高信頼性が要求される場合は-3 0 d B以下に抑えられる。図2より、クロストークを一 30 26dB以下にするには (d/b...) = a ≥ 0.5 と すればよく、-30dB以下にするには(d/b_{***}) =a≥0.9とすればよいことが読み取れる。 【0042】したがって、クロストークを-26 d B以 下に抑えるためには、数式(5)より、ガードバンド幅 ₩.を

(12)

*ガードバンド幅W。を

(13)

※は、再生クロストークを-26dB以下に抑えるために は、最小のトラックピッチTpainは、数式(8)より (14)

(15)

☆ Tァaioより狭くし、再生クロストークを-26d B以下 に抑えながらトラック密度を大きくするには、数式(1 4) より

(16)

したがって、

 $W_a < 4E + 0.5b_{ax}$

*【0045】同様にして、

[0047]

の関係を満たすようにガードバンド幅♥。を選べばよい ととが分かる。

 $W_a < 4E + 0.9b_{ax}$

の関係を満たすようにガードバンド幅W。を選べば、再 生クロストークを-30dB以下に抑えながら従来より 髙い記録トラック密度が得られる。

【0046】この実施例では、前述のように、記録トラ※

 $W_a < 2 (W_b - W_t) + 0.5 b_{ax}$

(19)

の関係を満たすようにすれば、再生クロストーク-26 10★録トラック密度が得られる。

dB以下を確保しながら従来の磁気ディスクより高い記★

 $W_a < 2 (W_b - W_b) + 0.9 b_{a.a.}$

(20)

の関係を満たすようにすれば、再生クロストークー30 d B以下を確保しながら従来の磁気ディスクより高い記 録トラック密度が得られる。

【0048】次に、図5を参照しながら、この第1実施 例の磁気ディスク装置の具体例について説明する。◆図 5の磁気ディスク1は、表面が平坦な直径65mm

(2.5インチ) の非磁性基板51aと、基板51a上 52と、CoCrPt膜(厚さ30nm)からなる記録 層53と、カーボン膜(厚さ20nm)よりなる保護層 54とを順に積層した構成である。この磁気ディスク1 は次のようにして製作した。

【0049】まず、非磁性基板51aの上にCr膜(厚 さ150nm)からなる下地層52を形成し、次いで、 下地層52の上にCoCrPt膜(厚さ30nm)から なる記録層53を形成した。これらの工程はスパッタリ ングにより行なった。

トを塗布した後、その上にガードバンド12に形成する 溝のパターンを有する原盤マスクを密着して露光・現像 した。これにより、ガードバンド12の溝に対応する箇 所のフォトレジストが除去されたフォトレジスト膜を得 た。

【0051】その後、フォトレジスト膜の上からイオン ミリング等の方法でエッチングを行ない、ガードバンド 12の溝に対応する箇所の記録層53を選択的に除去し た。エッチング深さは記録層53の厚さより深い50n mとした。こうしてディスクリート・トラック方式の記 40 m 録トラック11を得た。最後に、記録層53の表面に残 っているフォトレジスト膜を除去してから、記録層53 の上にカーボン膜(厚さ20nm)よりなる保護層54 を形成した。

【0052】図5の磁気ディスクでは、エッチング深さ を記録層53の厚さより深くしているので、ガードパン ド12に記録層53は残っていない。ガードバンド12 では、エッチングにより選択的に除去された下地層52 の中に保護層54が形成されている。

【0053】図5の磁気ディスクを組み込む磁気ディス 50 mとした場合、トラック密度は10.6kTPIであ

ク装置の磁気ヘッドの位置決め精度は±0.2 μmであ った。そこで、これを考慮して、磁気ディスクの記録ト ラック11の幅W,を1.5μm、再生素子21のトラ ック幅W, を2. 0μmとした。ガードバンド12の幅 ₩。は0.6~2µmの範囲で各種作製した。磁気へッ ドは、記録素子として磁気誘導型の薄膜素子を用い、再 生素子21としてシールド型の磁気抵抗効果型 (MR) に形成されたCr膜(厚さ150nm)からなる下地層 20 素子を用いた、記録再生分離型とした。記録素子のトラ ック幅は2.0μmとした。

> 【0054】以上の条件の下、最大線記録密度を150 kBPIとして、最大位置ずれ時(ずれ量0.2 µm) の隣接トラックからのクロストークを測定した結果を図 6の曲線61に示す。図6の横軸はトラックピッチとし てある。したがって、図5の磁気ディスクでは、記録ト ラック11の幅W.とガードバンド12の幅W。の和(W $(+ W_a) = (1.5 + W_a) \mu m c 3.$

【0055】との測定では、信号処理にPRML (Part 【0050】次に、前記記録層53の上にフォトレジス 30 ial Response Maximum Likelihood)方式を用いること を仮定し、記録変調方式にデータ"0"の最大ラン長が 4である(8/9)変換符号を用いるとしているため、 最大線記録密度の記録トラック11における最長ビット 長(最長磁化反転間隔) b.xxを0.75 μmとした。

> 図6の曲線62は、図4に示す従来の磁気ディスク3 を用いた磁気ディスク装置のクロストーク測定結果を示 す。この測定では、この発明の磁気ディスク装置と同じ 位置決め精度(±0.2 μm)で同一の再生出力が得ら れるように、再生素子のトラック幅を磁気ディスク1の 記録トラック11の幅W₄に等しく1.5μmとし、ま た磁気ヘッドの記録素子のトラック幅を2.3 µmとし

【0056】曲線61および62から、この発明の磁気 ディスク装置によれば、従来例に比べて再生クロストー クを5~12dB改善できることが分かる。

【0057】曲線61から分かるように、この発明の磁 気ディスク装置では、磁気ディスク1のガードバンド1 2の幅W。を0. 9µmとした場合、すなわちトラック $U_{2} + V_{2} = (1.5 + 0.9) = 2.4 \mu$

10 (17)

(18)

※ック11の幅W,と再生素子21のトラック22の幅W。

とは数式(2)の関係にあるので、ガードバンド幅W。

り、このときのクロストークは-26dBであった。 【0058】同じクロストークー26dBを従来の磁気 ディスク装置で得るためには、曲線62から分かるよう に、トラックピッチを2. 75μmまで広げる(トラッ ク密度を9.2kTPlまで落とす)必要がある。 【0059】なお、この場合、数式(5)の左辺はW。 $=0.9 \mu$ mとなる。また、その右辺は $W_b = 2.0 \mu$

m, $W_t = 1$, $5 \mu m$, $b_{***} = 0$, $75 \mu m$ σ σ δ hら、a=0.5とすると、

 $W_h - W_t + a \cdot b_{max} = 2.0 - 1.5 + 0.5 \times 0.$ 75 = 0.875

となる。したがって、0.9≥0.875となり、数式 (5)を満たしていることが分かる。

【0060】また、E=0.2 µmであるから、数式 (10)の右辺は

 $4E + a \cdot b_{xx} = 4 \times 0. \ 2 + 0. \ 5 \times 0. \ 75 =$ 1. 175

したがって、0.9≦1.175となり、数式(1.0) を満たしていることが分かる。

aを1.2μmとした場合、すなわちトラックピッチを $(W_t + W_g) = (1.5 + 1.2) = 2.7 \mu \text{m} \ge 0.7$ 場合、トラック密度は9.4kTPIであり、このとき のクロストークは-30.5dBであった。

【0062】同じクロストーク-30.5dBを従来の 磁気ディスク装置で得るためには、曲線62から分かる ように、トラックピッチを3. 1 μmまで広げる (トラ ック密度を8.3 k T P I まで落とす) 必要がある。 【0063】 この場合、数式(5)の左辺は₩。=1. m、 $b_{max}=0$. 75 μ m であるから、a=0. 9とす

 $W_h - W_t + a \cdot b_{max} = 2.0 - 1.5 + 0.9 \times 0.$ 75=1.175となる。したがって、1.2≥1.1 75となり、この場合も数式(5)を満たしていること が分かる。

ると、

【0064】また、数式(10)の右辺は $4E + a \cdot b_{\bullet \bullet \bullet} = 4 \times 0. \ 2 + 0. \ 9 \times 0. \ 75 =$ 1. 475

したがって、1.2≦1.475となり、数式(10) を満たしていることが分かる。

【0065】[第2実施例]図7は、この発明の第2実 施例の磁気ディスク装置に用いる、ディスクリート・ト ラック方式の磁気ディスクを示す。第1実施例の磁気デ ィスク1は、記録層53のエッチングによりディスクリ ート・トラックを形成しているが、この第2実施例の磁 気ディスクは、表面にガードバンド12の溝のパターン が予め形成された基板を使用するものである。

【0066】直径65mm (2.5インチ) の非磁性基 板51bの表面の溝は、記録トラック11の幅W,が

1. 5 μm、ガードバンド12の深さが50 nmであ る。また、ガードバンド12の幅 \mathbb{W}_a は0.6~2 μ m の範囲で各種設定した。との溝パターンの形成は、第1 実施例の溝形成プロセスと同様に、フォトリソグラフィ ー法で行なった。

【0067】この基板51b上に、第1実施例と同様に して、Cr膜(厚さ150nm)からなる下地層52 と、CoCrPt膜(厚さ30nm)よりなる記録層5 3と、カーボン膜(厚さ20nm)よりなる保護層54 10 をこの順に積層し、図7に示す構成の磁気ディスクを得 た。この磁気ディスクは、第1実施例とほぼ同一の記録 トラック11とガードバンド12を有している。

【0068】図7の磁気ディスクでは、基板51bの全 表面を覆う下地層52の表面に、基板51bの表面の凹 凸を反映した凹凸が形成されている。下地層52の上に 形成された記録層53は、下地層52に比べて厚さが小 さいので、下地層52の凸部(記録トラック11)の表 面と凹部(ガードバンド12)の底面にほとんど分離し て形成されており、それら凸部の側面にはほとんど存在 【0061】磁気ディスク1のガードバンド12の幅W 20 していない。保護層54は、記録層53の全表面を覆っ ているが、これも記録層53と同様に、記録層53の凸 部の表面と凹部の底面にほとんど分離して形成されてお り、それら凸部の側面にはほとんど存在していない。

> 【0069】この磁気ディスクを第1実施例と同じ磁気 ヘッドと組み合わせて磁気ディスク装置を構成し、第1 実施例と同様にしてクロストークの測定を行なった。そ の結果を図6の曲線63に示す。図6より明らかなよう。 に、第1実施例とほぼ同等の結果が得られている。

【0070】との第2実施例の磁気ディスクを用いれ 2であり、その右辺はΨ。 = 2. 0 μ m 、Ψ。 = 1. 5 μ 30 ぱ、ガードバンド 1 2 の記録層 5 3 を取り除くことなく ほぼ同等の効果が得られるので、磁気ディスクの作製プ ロセスが簡略化される利点がある。また、ガードパンド 12の溝を形成するためのエッチング・プロセスが不要 となる利点もある。

> 【0071】との第2実施例では、基板51bの表面の 溝パターンをフォトリソグラフィー法で形成している が、スタンパ法などを用いれば基板51bの量産が可能 である。この場合、磁気ディスクの作製がいっそう容易 になる。

40 【0072】なお、前記磁気ディスクの記録トラック1 1の幅♥、およびガードバンド12の幅♥。は、図5およ び図7のようにその境界面がテーパ状になっている場合 は、その先端(表面)で測定する。

[0073]

【発明の効果】以上述べたように、この発明の磁気ディ スクおよび磁気ディスク装置によれば、従来よりも記録 トラック密度を向上することができる。例えば、従来と 同じ磁気性能の磁気ヘッドと従来と同じ精度の機構系を 用いて、記録トラックの密度を10%以上向上すること 50 が可能である。

13

【0074】また、記録トラック密度が同じ場合は、従 来よりも信頼性を向上することができる。

【図面の簡単な説明】

【図1】この発明の第1実施例の磁気ディスク装置にお いて、磁気ディスクの記録トラックおよびガードバンド と磁気ヘッドの再生素子のトラックとの位置関係を示す 説明図である。

【図2】この発明の第1実施例の磁気ディスク装置にお いて、再生素子のトラック端から隣接する記録トラック 端までの距離とビット長の比(d/b)に対する再生ク 10 3 従来の磁気ディスク ロストークの変化を示すグラフである。

【図3】との発明の第1実施例の磁気ディスク装置の要 部構成を示す図である。

【図4】従来の磁気ディスク装置における図1と同様の 図である。

【図5】この発明の第1実施例の磁気ディスク装置に用 いる磁気ディスクの半径方向断面図である。

【図8】 この発明の第1実施例および第2実施例の磁気 ディスク装置と従来の磁気ディスク装置において、トラ ックピッチおよびトラック密度に対する再生クロストー 20 62 従来例の再生クロストーク曲線 クの変化を示すグラフである。

*【図7】この発明の第2実施例の磁気ディスク装置に用 いる磁気ディスクの半径方向断面図である。

14

【符号の説明】

- 1 ディスクリート・トラック方式の磁気ディスク
- 11 磁気ディスクの記録トラック
- 12 磁気ディスクのガードバンド
- 2 磁気ヘッド
- 21 磁気ヘッドの再生素子
- 22 再生素子のトラック位置
- - 31 磁気ディスクの記録トラック
 - 32 磁気ディスクの記録トラック
 - 41 磁気ヘッドの再生素子のトラック位置
 - 42 磁気ヘッドの記録素子のトラック位置
 - 51a、51b 非磁性基板
 - 52 下地層
 - 53 記録層
 - 54 保護層
 - 61 第1実施例の再生クロストーク曲線

 - 63 第2実施例の再生クロストーク曲線

【図1】

【図4】

【図2】

【図5】

【図3】

【図6】

【図7】

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

07-085406

(43)Date of publication of application: 31.03.1995

(51)Int.Cl.

G11B 5/09 G11B 5/012 G11B 5/82

(21)Application number: 05-231145

(71)Applicant: HITACHI LTD

(22)Date of filing:

17.09.1993

(72)Inventor: SUZUKI MIKIO

(54) MAGNETIC DISK APPARATUS

(57)Abstract:

PURPOSE: To increase a recording track density in a magnetic disk apparatus using a magnetic disk of discrete track system.

CONSTITUTION: The width of a recording track 11 of a magnetic disk 1 is denoted by Wt, similarly, the width of a guard band 12 by Wg, the track width of a reproducing element of a magnetic head by Wh, the positioning accuracy (shifting amount) of the magnetic head by ±E, the maximum bit length of recording data in the recording track with the maximum track recording density by bmax, and the constant representing the allowance for crosstalks at a reproducing time by (a). The lowest limit of the width Wg of the guard band 12 is Wg≥Wh-Wt+a.bmax, while the uppermost limit of the width Wg is Wg<4E+ a.bmax. Accordingly, the recording track density is increased with crosstalks suppressed.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

JPO and NCIPI are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.*** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

CLAIMS

[Claim(s)]

[Claim 1] In the magnetic disk drive equipped with the magnetic disk which has the recording track of a discrete truck method, and the magnetic head which has the playback component which reproduces the record component which records information on the magnetic disk, and the recorded information The recording track of said magnetic disk, and the width of face of a guard band, respectively Wt, When it is referred to as Wg and the constant which shows bmax and the cross talk permissible dose at the time of playback for the longest bit length of record data [in / for the width of recording track of said playback component / the recording track of Wh and the maximum track recording density] is set to a, The magnetic disk drive characterized by their filling the relation of Wg>=Wh-Wt+a-bmax.

[Claim 2] The magnetic disk drive according to claim 1 which is a= 0.5.

[Claim 3] The magnetic disk drive according to claim 1 which is a= 0.9.

[Claim 4] The magnetic disk drive according to claim 1 to 3 with which the recording track width of face Wt of said magnetic disk and the width of recording track Wh of said playback component are filling the relation of Wh>=Wt+2E when the amount of maximum location gaps of said playback component is set to **E.

[Claim 5] The magnetic disk drive according to claim 1 to 4 with which said guard band width of face Wg fills the relation of Wg<4 E+a-bmax when the amount of maximum location gaps of said playback component is set to **E.

[Claim 6] The magnetic disk drive according to claim 5 with which said guard band width of face Wg fills the relation of Wg<2(Wh-Wt)+a-bmax.

[Claim 7] The magnetic disk drive according to claim 5 or 6 which is a= 0.5.

[Claim 8] The magnetic disk drive according to claim 5 or 6 which is a= 0.9.

[Claim 9] It is the magnetic disk drive according to claim 1 to 8 which said recording layer moreover exists only on said recording track, and does not exist in the interior of said slot by forming the slot in said each guard band while having the recording layer by which said magnetic disk was formed through the direct or substrate layer on the substrate with a flat front face. [Claim 10] It is the magnetic disk drive according to claim 1 to 8 with which the slot is formed in said guard band by the pattern corresponding to said irregularity, and said recording layer moreover exists in the interior of said recording track top and the slot of said guard band while having the recording layer formed through the direct or substrate layer on the substrate with which said magnetic disk has irregularity in a front face.

[Translation done.]

JPO and NCIPI are not responsible for any damages caused by the use of this translation.

1. This document has been translated by computer. So the translation may not reflect the original precisely.

2.**** shows the word which can not be translated.

3.In the drawings, any words are not translated.

DETAILED DESCRIPTION

[Detailed Description of the Invention] [0001]

[Industrial Application] This invention relates to the magnetic disk drive using the magnetic disk which has a discrete truck, if it says in more detail about a magnetic disk drive.
[0002]

[Description of the Prior Art] In order to increase recording density in a magnetic disk drive, it is required to make the both sides of the information density of the circumferencial direction of a magnetic disk, i.e., "track recording density", and radial information density, i.e., "track density", increase. However, if track density is made to increase, since the guard band width of face between adjoining recording tracks will become narrow, the magnetic interference between recording tracks (cross talk) increases, and it is pointed out that reservation of S/N of a regenerative signal becomes difficult.

[0003] Then, the "discrete truck" method which controlled the magnetic interference between the recording tracks which form a slot and a nonmagnetic field in a guard band, and adjoin it is proposed. According to this method, reduction of the noise from the edge of a recording track and relaxation of the effect of the magnetic head of a location gap are attained (for example, refer to the 3692nd page (IEEE Trans.Magn., MAG-23(6) (1987) pp 3690-3692) from IEEE, transactions ON MAGUNE tex, em A G 23, and the 3690th volume [6th] (1987) page). [0004]

[Problem(s) to be Solved by the Invention] By said reference, in order to grasp the basic property of record/playback of the magnetic disk which adopted the discrete truck method, a guard band is etched by width of face of 200 micrometers, and a slot is formed, and it is only having controlled the magnetic interference between recording tracks, and is not taken into consideration by it about the densification of a recording track.

[0005] Then, the object of this invention is in the magnetic disk drive equipped with the magnetic disk of a discrete truck method to offer the magnetic disk drive which can improve the consistency of a recording track conventionally.

[0006] Other objects of this invention are in the magnetic disk drive equipped with the magnetic disk of a discrete truck method to offer the magnetic disk drive which can improve dependability conventionally.

[0007]

[Means for Solving the Problem] The magnetic disk with which the magnetic disk drive of this invention has the recording track of a discrete truck method, In the magnetic recording medium equipped with the magnetic head which has the playback component which reproduces the record component which records information on the magnetic disk, and the recorded information The recording track of said magnetic disk, and the width of face of a guard band, respectively Wt, When it is referred to as Wg and the constant which shows bmax and the cross talk permissible dose at the time of playback for the longest bit length of record data [in / for the width of recording track of said playback component / the recording track of Wh and the maximum track recording density] is set to a, it is characterized by their filling the relation of Wg>=Wh-Wt+a-bmax.

[0008] In this magnetic disk drive, it is preferably referred to as a=0.5, and is more preferably referred to as a=0.9. If a=0.5, the cross talk at the time of playback can be controlled to -26dB or less, for example. If a=0.9, the cross talk at the time of playback can be controlled to -30dB or less, for example.

[0009] When the amount of maximum location gaps of said playback component is set to **E, it is made for the recording track width of face Wt of said magnetic disk and the width of recording track Wh of said playback component to fill the relation of Wh>=Wt+2E preferably.

[0010] If it carries out like this, it will become possible to read an information signal from the recording track made into the object by the maximum reinforcement.

[0011] Moreover, it is desirable to set up the upper limit of said guard band width of face Wg so that the relation of Wg<4 E+a-bmax may be filled. Or an upper limit may be set up so that the relation of Wg<2(Wh-Wt)+a-bmax may be filled.

[0012] If it carries out like this, track density can be raised rather than the conventional example, controlling a cross talk.

[0013] While said magnetic disk has the recording layer preferably formed through the direct or substrate layer on the substrate with a flat front face, the slot is formed in said each guard band, and moreover, said recording layer shall exist only on said recording track, and shall not exist in the interior of said slot.

[0014] Or while having the recording layer formed through the direct or substrate layer on the substrate which has irregularity in a front face, the slot shall be formed in said guard band by the pattern corresponding to said irregularity, and, moreover, said recording layer shall exist in the interior of said recording track top and the slot of said guard band.

[0015] However, if it is a discrete truck method, the magnetic disk of the configuration of those other than these is also usable.

[0016]

[Function] Since the cross talk permissible dose a at the time of longest bit length bmax of the record data in the recording track of the width of face Wt of the recording track of a magnetic disk, Wg of a guard band, the width of recording track Wh of said playback component, and the maximum track recording density and playback fills the relation of Wg>=Wh-Wt+a-bmax with the magnetic disk drive of this invention, the cross talk between the recording tracks with which magnetic engine performance other than these adjoins compared with the same conventional magnetic disk drive decreases, and sufficient S/N for a regenerative signal is obtained. Consequently, much more densification of a recording track can be attained. Dependability is improved when the consistency of a recording track is made the same as the former. [0017]

[Example] Hereafter, the example of this invention is explained, referring to an accompanying drawing.

[0018] [1st example] drawing 3 shows the important section configuration of the magnetic disk drive of the 1st example of this invention. In drawing 3, the magnetic disk 1 of a discrete truck method has two or more recording tracks 11 formed in the front face concentric circular, and the slot is formed in the guard band 12 between the adjoining recording tracks 11. The magnetic interference between the adjoining recording tracks 11 (cross talk) is controlled by this slot. It is fixed to the spindle and a magnetic disk 1 is made to rotate by the magnetic-disk driving means which is not illustrated.

[0019] The magnetic head 2 is controlled and driven by the magnetic-head driving means which is not illustrated, and is positioned on the recording track 11 made into the object. The playback component 21 which reproduces the information recorded on the recording track 11 is attached at the head of the magnetic head 2. The playback component 21 is a magneto-resistive effect (MR) mold. Moreover, the playback component 21 is adjoined and the record component (not shown) for recording information on a recording track 11 is attached. On the front face, in a predetermined gap, a record component and the playback component 21 approach at the time of record and playback, and are positioned in the upper part of the recording track 11 made into the object at it.

[0020] From the information processing means of the exterior of the magnetic disk drive

concerned, the information which should be recorded is sent to said record component through the record / regenerative-signal processing means which is not illustrated, and is recorded on said recording track 11 of a magnetic disk 1 by the record component. The information reproduced by the playback component 21 from said recording track 11 is sent to an external information processing means through its record / regenerative-signal processing means. [0021] Next, the physical relationship of the recording track 11 of the magnetic disk 1 in this magnetic disk drive and a guard band 12, and the truck 22 of the playback component 21 of the magnetic head 2 is explained, referring to drawing 1. Here, width of face of the truck 22 of Wg and the playback component 21 is set [the width of face of a recording track 11] to Wh for the width of face of Wt and a guard band (slot) 12. Therefore, a track pitch serves as (Wt+Wg). Moreover, the amount of maximum location gaps of the truck 22 of the playback component 21 from the core of the positioning accuracy in the case of positioning the magnetic head 2 on the target recording track 11 and the recording track 11 which will be made into the object if it puts in another way (the amount of gaps of the truck cross direction) is set to **E. [0022] First, even when the amount of location gaps of a regenerative track 22 is +E, in order to enable it to read an information signal from the recording track 11 by the maximum reinforcement, the regenerative track 22 needs to lap over the whole surface of a recording track 11 then. Therefore, the width of face Wh of a regenerative track 22 needs only for the amount E of maximum location gaps to be larger than the width of face Wt of a recording track 11.

[0023] When the playback component 21 carries out a location gap, the amount of location gaps to an opposite hand – When it is E, it is also the same as that of this. Therefore, the width of face Wh of the truck 22 of the playback component 21 needs only for the twice of the amount E of maximum location gaps to be larger than the width of face Wt of a recording track 11. If this is expressed with a formula Wh>=Wt+2E (1) It becomes.

[0024] In a formula (1), in order to raise track density, it is desirable that the width of face Wh of the truck 22 of the playback component 21 is min. Width of face Wh of the truck 22 in that case Wh=Wt+2E (2) It becomes.

[0025] So, in this example, the width of recording track Wh of the playback component 21 is set up so that a formula (2) may be filled. For this reason, as shown in <u>drawing 1</u>, in that recording track 11, while corresponds, and the edge (<u>drawing 1</u> left end) of the truck 22 of an opposite hand is in agreement with the sense shifted at the time of the maximum location gap (amount of gaps +E) at the edge (<u>drawing 1</u> left end). Moreover, as for the near edge (<u>drawing 1</u> right end) where the truck 22 shifted, only distance 2E projects in the guard band 12 side from the edge (<u>drawing 1</u> right end) where the recording track 11 corresponds.

[0026] Next, distance d to the edge of the part which projected in the guard band 12 side of the truck 22 of the playback component 21, and the edge of the recording track 11 contiguous to the recording track 11 d=Wt+Wg-Wh (3)

It is come out and expressed.

[0027] On the other hand, the cross talk which shows the magnitude of the magnetic interference from the adjoining recording track 11 is determined by the ratio (d/b) of the distance d expressed with a formula (3), and record bit length (flux reversal spacing) b. In this case, record bit length b should be considered by longest bit length (longest flux reversal spacing) bmax in the recording track 11 of the maximum track recording density with which a margin of operation becomes the narrowest. Then, when it sets with =(d/bmax) a, a is a constant which shows a cross talk permissible dose. If a constant a becomes large, the cross talk at the time of playback will become small.

[0028] Formula (3) d=Wt+Wg-Wh=a-bmax (4)

From ********, from a formula (4), in order to hold down a cross talk to below a predetermined cross talk permissible dose, the guard band width of face Wg is followed Wt+Wg-Wh>=a-bmax. Wg>=Wh-Wt+a-bmax (5)

It is required to set up so that ***** may be filled.

[0029] Thus, in order to hold down a cross talk to below a predetermined permissible dose, it

turns out that it is necessary to set up the minimum of the guard band width of face Wg so that a formula (5) may be filled.

[0030] Since it is Wh-Wt=2E from a formula (2) in this example Wg>=2 E+a-bmax (6) It turns out that what is necessary is for it to be alike and just to set up.

[0031] By the way, although a cross talk will be reduced so much if guard band width of face Wg is enlarged filling a formula (5) or (6), on the other hand, the consistency of a recording track 11 decreases. So, in order to raise the consistency of a recording track 11 conventionally, holding down a cross talk to below a predetermined permissible dose, it is thought that an upper limit is in the guard band width of face Wg. The upper limit is searched for as follows.

[0032] The magnetic disk drive using the conventional magnetic disk with the front face flat as a conventional example which is not a discrete truck method is taken up. In order to prevent lowering of S/N produced by location gap of the magnetic head, the approach of separating a record component and a playback component and making the width of recording track of a record component larger than the width of recording track of a playback component is learned for this kind of equipment. The physical relationship of the recording track in the conventional magnetic disk drive which adopted this approach etc. is shown in drawing 4.

[0033] In <u>drawing 4</u>, the width of face of the truck 42 of a record component is equal to the width of face of the recording track 31 formed in the magnetic disk 3, and larger than the width of face of the truck 41 of a playback component. Moreover, the positioning accuracy of the magnetic head presupposes that it is **E like the magnetic disk drive of the discrete truck method of <u>drawing 1</u>.

[0034] First, in the magnetic disk drive of $\underline{drawing 4}$, in order to obtain the playback output of the same reinforcement as the magnetic disk 1 of the discrete truck method of $\underline{drawing 1}$, the width of face of the truck 41 of a playback component needs to be in agreement with the width of face Wt of the recording track 11 of the magnetic disk 1 of $\underline{drawing 1}$. Then, width of face of the truck 41 of a playback component is set to Wt.

[0035] Next, suppose that the recording track 31 is formed in one side (drawing 4 left-hand side) by amount of maximum location gaps-E from the original center position by location gap of the magnetic head at the time of record. And the truck 41 of a playback component presupposes that it runs a recording track 31 top by amount of maximum location gaps +E to an opposite hand (drawing 4 right-hand side) with the time of record from said center position by location gap of the magnetic head at the time of playback. In this case, in order to enable it to read an information signal from that recording track 31 by the maximum reinforcement, since the allowances of the width of face of 2E are required (refer to drawing 1), it is necessary as the both sides of the width of face Wt of the truck 41 of a playback component to set the width of face of the truck 42 of a record component, i.e., the width of face of the recording track 31 of a magnetic disk 3, at (Wt+4E). If it carries out like this, as shown in drawing 4, the near (drawing 4 right-hand side) edge where the truck 41 of a playback component shifted is in agreement with the near edge where a recording track 31 corresponds. Furthermore, the recording track 32 contiguous to the target recording track 31 presupposes that it is formed in the same side (<u>drawing 4</u> left-hand side) as a recording track 31 by amount of maximum location gaps-E from the original center position. In this case, in order to make distance between the edges of the truck 41 of the playback component which runs a recording track 31 top by amount of maximum location gaps +E to an opposite hand (drawing 4 right-hand side) equal to the distance d in the magnetic disk drive of drawing 1 at the time of record from the edge by the side of the recording track 31 of that adjoining recording track 32, and an original center position, it is a track pitch TP. TP=(Wt+4E)+d(7)

It is required to fill *****.

[0036] Here, the minimum track pitch TPmin by which the playback cross talk from the adjoining recording track 32 is stopped below at the predetermined value a is a formula (4). TPmin= (Wt+4E)+a-bmax (8)

It becomes.

[0037] With the magnetic disk 1 of the discrete truck method of $\underline{\text{drawing 1}}$, since it is expressed with (Wt+Wg), a track pitch can make the consistency of a recording track higher than the

conventional magnetic disk 3, if the track pitch of a magnetic disk 1 is made narrower than the minimum track pitch TPmin of a magnetic disk 3. It follows. Wt+Wg<TPmin=Wt+4 E+a-bmax (9) That is, guard band width of face Wg Wg<4 E+a-bmax (10)

It turns out that what is necessary is just to choose so that ***** may be filled.

[0038] With the magnetic disk 1 of this example, since it is chosen like said formula (2), the relation between the recording track width of face Wt and the width of face Wh of the truck 22 of the playback component 21 is the guard band width of face Wg after all. Wg<2(Wh-Wt)+a-bmax (11)

****** -- it turns out that what is necessary is just to set up like.

[0039] As stated above, if the guard band width of face Wg is set up so that a formula (11) may be filled, with the magnetic disk drive of this 1st example, it will become possible from the conventional magnetic disk drive of <u>drawing 4</u> to enlarge the consistency of a recording track 11, controlling a playback cross talk.

[0040] Next, the example which applied the concrete value of =(d/bmax) a is explained. <> In the magnetic disk drive of drawing 1, drawing 2 shows the result of having changed various values of =(d/bmax) a and having measured the cross talk detected at the time of information playback, when referred to as width-of-recording-track Wh=2micrometer of the playback component 21, and width-of-face Wt=1.5micrometer of the recording track 11 of a magnetic disk 1. [0041] Generally, if S/N required for actuation of a magnetic disk drive is taken into consideration, a cross talk is stopped by -26dB or less, and when much more high-reliability is required, it will be stopped by -30dB or less. From drawing 2, =(d/bmax) a>=0.9, then a good thing can be read that what is necessary is just to set a cross talk to =(d/bmax) a>=0.5 for making it -26dB or less to make it -30dB or less.

[0042] Therefore, in order to hold down a cross talk to -26dB or less, it is the guard band width of face Wg from a formula (5). Wg>=Wh-Wt+0.5bmax (12)

******* — it turns out that it is necessary to set up like. Similarly, in order to hold down a cross talk to -30dB or less, it is the guard band width of face Wg. Wg>=Wh-Wt+0.9bmax (13) ****** — it turns out that it is necessary to set up like.

[0043] On the other hand, the minimum track pitch TPmin in order to hold down a playback cross talk to -26dB or less in the conventional magnetic disk drive of <u>drawing 4</u> is a formula (8). TPmin=Wt+4E+0.5bmax (14)

It is come out and expressed. Moreover, playback cross talk – In order to hold down to 30dB or less TPmin=Wt+4E+0.9bmax (15)

Then, it is good.

[0044] Therefore, it is a formula in order to make the track pitch (Wt+Wg) of the magnetic disk 1 of the discrete truck method of <u>drawing 1</u> narrower than TPmin, and to enlarge track density, holding down a playback cross talk to -26dB or less (14). Wt+Wg<Wt+4E+0.5bmax (16) It follows. Wg<4E+0.5bmax (17)

It turns out that what is necessary is just to choose the guard band width of face Wg so that ***** may be filled.

[0045] It is made the same. Wg<4E+0.9bmax (18)

If the guard band width of face Wg is chosen so that ***** may be filled, a recording track consistency higher than before will be obtained holding down a playback cross talk to -30dB or less.

[0046] At this example, as mentioned above, since it has the relation of a formula (2), the width of face Wt of a recording track 11 and the width of face Wh of the truck 22 of the playback component 21 are the guard band width of face Wg. Wg<2(Wh-Wt)+0.5bmax (19)

If it is made to fill ******, it will be a playback cross talk. – A recording track consistency higher than the conventional magnetic disk is obtained securing 26dB or less.

[0047]

Wg<2(Wh-Wt)+0.9bmax (20)

If it is made to fill ******, it will be a playback cross talk. – A recording track consistency higher than the conventional magnetic disk is obtained securing 30dB or less.

[0048] Next, the example of the magnetic disk drive of this 1st example is explained, referring to

drawing 5. <> The magnetic disk 1 of drawing 5 is the configuration which carried out the laminating of the substrate layer 52 which a front face becomes from Cr film (150nm in thickness) formed with a flat diameter of 65mm (2.5 inches) on nonmagnetic substrate 51a and substrate 51a, the recording layer 53 which consists of CoCrPt film (30nm in thickness), and the protective layer 54 which consists of carbon film (20nm in thickness) to order. This magnetic disk 1 was manufactured as follows.

[0049] First, the substrate layer 52 which consists of Cr film (150nm in thickness) was formed on nonmagnetic substrate 51a, and, subsequently to the substrate layer 52 top, the recording layer 53 which consists of CoCrPt film (30nm in thickness) was formed. Sputtering performed these processes.

[0050] Next, after applying a photoresist on said recording layer 53, the original recording mask which has the pattern of the slot formed in a guard band 12 was stuck on it, and exposure and development of were done. This obtained the photoresist film from which the photoresist of the part corresponding to the slot of a guard band 12 was removed.

[0051] Then, it etched by approaches, such as ion milling, and the recording layer 53 of the part corresponding to the slot of a guard band 12 was selectively removed from on the photoresist film. The etching depth was set to 50nm deeper than the thickness of a recording layer 53. In this way, the recording track 11 of a discrete truck method was obtained. After removing the photoresist film which remains in the front face of a recording layer 53 finally, the protective layer 54 which consists of carbon film (20nm in thickness) was formed on the recording layer 53. [0052] With the magnetic disk of drawing 5, since the etching depth is made deeper than the thickness of a recording layer 53, the recording layer 53 does not remain in a guard band 12. In the guard band 12, the protective layer 54 is formed in the substrate layer 52 selectively removed by etching.

[0053] The positioning accuracy of the magnetic head of the magnetic disk drive incorporating the magnetic disk of <u>drawing 5</u> was **0.2 micrometers. Then, in consideration of this, the width of recording track Wh of 1.5 micrometers and the playback component 21 was set to 2.0 micrometers for the width of face Wt of the recording track 11 of a magnetic disk. The width of face Wg of a guard band 12 carried out various production in 0.6–2 micrometers. The magnetic head was used as the record playback discrete type using the magneto-resistive effect mold (MR) component of a shielding mold as a playback component 21, using the thin film of a magnetic-induction mold as a record component. The width of recording track of a record component was set to 2.0 micrometers.

[0054] The result of having measured the cross talk from the adjoining truck at the time of the maximum location gap (the amount of gaps of 0.2 micrometers) is shown in the curve 61 of drawing 6 by setting the maximum track recording density to 150kBPI(s) under the above conditions. The axis of abscissa of drawing 6 is made into the track pitch. Therefore, it is set to sum (Wt+Wg)=(1.5+Wg) mum of the width of face Wt of a recording track 11, and the width of face Wg of a guard band 12 with the magnetic disk of drawing 5.

[0055] In this measurement, it assumed using a PRML (Partial Response Maximum Likelihood) method for signal processing, and in order that the maximum run length of data "0" might use for a record modulation technique the conversion sign which is 4 (8/9), longest bit length (longest flux reversal spacing) bmax in the recording track 11 of the maximum track recording density was set to 0.75 micrometers. The curve 62 of drawing 6 shows the cross talk measurement result of the magnetic disk drive using the conventional magnetic disk 3 shown in drawing 4. In this measurement, the width of recording track of a playback component was set to 1.5 micrometers equally to the width of face Wt of the recording track 11 of a magnetic disk 1, and the width of recording track of the record component of the magnetic head was set to 2.3 micrometers so that the same playback output might be obtained with the same positioning accuracy (**0.2 micrometers) as the magnetic disk drive of this invention.

[0056] According to the magnetic disk drive of this invention, curves 61 and 62 show that 5–12dB of playback cross talks is improvable compared with the conventional example.
[0057] As a curve 61 showed, when width of face Wg of the guard band 12 of a magnetic disk 1

was set to 0.9 micrometers in the magnetic disk drive of this invention (i.e., when a track pitch is

set to (Wt+Wg)=(1.5+0.9) = 2.4micrometer), track density was 10.6kTPI(s) and the cross talk at this time was -26dB.

[0058] The same cross talk – In order to obtain 26dB with the conventional magnetic disk drive, there is the need of extending a track pitch to 2.75 micrometers (track density being dropped to 9.2kTPI(s)) so that a curve 62 may show.

[0059] In addition, the left part of a formula (5) is set to Wg=0.9micrometer in this case. Moreover, since the right-hand side is Wh=2.0micrometer, Wt=1.5micrometer, and bmax=0.75micrometer, if it sets to a= 0.5, it will be set to Wh-Wt+a-bmax=2.0-1.5+0.5x0.75=0.875. Therefore, it turns out that it is set to 0.9>=0.875 and the formula (5) is filled.

[0060] Moreover, since it is E= 0.2 micrometers, it turns out that the right-hand side of a formula (10) is set to 4 E+a-bmax=4x0.2+0.5x0.75=1.175, therefore 0.9<=1.175, and the formula (10) is filled.

[0061] When width of face Wg of the guard band 12 of a magnetic disk 1 was set to 1.2 micrometers (i.e., when a track pitch is set to (Wt+Wg)=(1.5+1.2) =2.7micrometer), track density was 9.4kTPI(s) and the cross talk at this time was -30.5dB.

[0062] The same cross talk – In order to obtain 30.5dB with the conventional magnetic disk drive, there is the need of extending a track pitch to 3.1 micrometers (track density being dropped to 8.3kTPI(s)) so that a curve 62 may show.

[0063] In this case, the left part of a formula (5) is Wg=1.2, and since that right-hand side is Wh=2.0micrometer, Wt=1.5micrometer, and bmax=0.75micrometer, if it sets to a= 0.9, it will be set to Wh-Wt+a-bmax=2.0-1.5+0.9x0.75=1.175. Therefore, it turns out that it is set to 1.2>=1.175 and the formula (5) is filled also in this case.

[0064] Moreover, it turns out that the right-hand side of a formula (10) is set to 4 E+a-bmax= $4\times0.2+0.9\times0.75=1.475$, therefore $1.2\leq1.475$, and the formula (10) is filled.

[0065] [2nd example] drawing 7 shows the magnetic disk of a discrete truck method used for the magnetic disk drive of the 2nd example of this invention. Although the magnetic disk 1 of the 1st example forms the discrete truck by etching of a recording layer 53, the substrate with which the pattern of the slot of a guard band 12 was beforehand formed in the front face is used for the magnetic disk of this 2nd example.

[0066] The width of face Wt of a recording track 11 is [the depth of 1.5 micrometers and a guard band 12 of the slot of the front face with a diameter of 65mm (2.5 inches) of nonmagnetic substrate 51b] 50nm. Moreover, the width of face Wg of a guard band 12 carried out various setting out in 0.6–2 micrometers. Formation of this slot pattern was performed by the photolithography method like the slot formation process of the 1st example.

[0067] The laminating of the substrate layer 52 which consists of Cr film (150nm in thickness) like the 1st example on this substrate 51b, the recording layer 53 which consists of CoCrPt film (30nm in thickness), and the protective layer 54 which consists of carbon film (20nm in thickness) was carried out to this order, and the magnetic disk of a configuration of being shown in drawing 7 was obtained. This magnetic disk has almost same recording track 11 and guard band 12 as the 1st example.

[0068] With the magnetic disk of <u>drawing 7</u>, the irregularity reflecting the irregularity of the front face of substrate 51b is formed in the front face of the wrap substrate layer 52 in all the front faces of substrate 51b. Since thickness is small compared with the substrate layer 52, the recording layer 53 formed on the substrate layer 52 is separated and formed in the front face of the heights (recording track 11) of the substrate layer 52, and the base of a crevice (guard band 12), and almost exists in them hardly in the side face of these heights. Although the protective layer 54 has covered all the front faces of a recording layer 53, like [this] a recording layer 53, it is separated and formed in the front face of the heights of a recording layer 53, and the base of a crevice, and almost exists in them hardly in the side face of these heights.

[0069] The magnetic disk drive was constituted for this magnetic disk combining the same magnetic head as the 1st example, and the cross talk was measured like the 1st example. The result is shown in the curve 63 of <u>drawing 6</u>. The result almost equivalent to the 1st example is obtained so that more clearly than <u>drawing 6</u>.

[0070] If the magnetic disk of this 2nd example is used, since almost equivalent effectiveness will be acquired without removing the recording layer 53 of a guard band 12, there is an advantage by which the production process of a magnetic disk is simplified. Moreover, there is also an advantage from which the etching process for forming the slot of a guard band 12 becomes unnecessary.

[0071] Although the slot pattern of the front face of substrate 51b is formed by the photolithography method in this 2nd example, if a stamper etc. is used, the mass production of substrate 51b is possible. In this case, production of a magnetic disk becomes still easier. [0072] In addition, the width of face Wt of the recording track 11 of said magnetic disk and the width of face Wg of a guard band 12 are measured at the head (front face), when the interface has become taper-like like drawing 5 and drawing 7. [0073]

[Effect of the Invention] As stated above, according to the magnetic disk and magnetic disk drive of this invention, a recording track consistency can be improved conventionally. For example, it is possible to improve the consistency of a recording track 10% or more using the device system of the same precision as the magnetic head of the same magnetic engine performance as the former and the former.

[0074] Moreover, when a recording track consistency is the same, dependability can be improved conventionally.

[Translation done.]