Régimes Transitoires

I. Régime continu ou variable - Régime transitoire ou permanent

1) Régime continu ou variable

Dans un régime continu, les différentes grandeurs du circuit sont constantes au cours du temps.

À l'inverse, dans un régime variable, les différentes grandeurs du circuit peuvent varier au cours du temps.

2) Régime transitoire ou permanent

△ Warn:

Régime transitoire ≠ Régime permanent/stationnaire

Dans un régime permanent/stationnaire, les caractéristiques des grandeurs sont constantes.

Par exemple, un signal électrique sinusoïde (ou carré, ou triangle, ou sawtooth...) dans un circuit électrique peut-être considéré comme un régime stationnaire/permanent si ses caractéristiques (amplitude, fréquence, phase) sont constantes au cours du temps.

Dans un régime transitoire, le circuit finira par « disparaître ». Quelque chose devra tendre vers 0 (Ex: un capaciteur se décharge).

3) Limitation dans ce chapitre

Dans ce chapitre, on s'intéressera aux régimes continus comme régimes stationnaires.

C'est à dire aux cas où un régime continu passera vers un autre régime continu, avec un échelon de tension/intensité.

II. Régime transitoire d'un circuit R,C du $1^{\rm er}$ ordre - Charge et décharge d'un condensateur

1) Équation différentielle

Le circuit R,C de premier ordre correspond simplement à prendre un condensateur, une résistance et un générateur et à les mettre en série:

On a: (loi des mailles, loi des nœuds, caractéristique d'un condensateur et d'une résistance):

• Caractéristique d'une résistance:

$$u_R = Ri$$

• Caractéristique d'un condensateur:

$$i = C \frac{\mathrm{d}u}{\mathrm{d}t}$$

· Loi des mailles:

$$e = u_R + u \Leftrightarrow e = Ri + u$$

En substituant i:

$$e = RC\frac{\mathrm{d}u}{\mathrm{d}t} + u$$

On obtient une équation différentielle du premier ordre à coefficients constants avec second membre:

$$\frac{\mathrm{d}u}{\mathrm{d}t} + \frac{1}{RC}u = \frac{e}{RC}$$
 Eq. 1

On pose un échelon de tension:

$$e(t) = \begin{cases} 0 \text{ pour } t < 0 \\ E \text{ pour } t > 0 \end{cases}$$

On cherche u(t) pour t > 0.

2) Résolution

On a une équadiff du 1er ordre à coefficients constants et un 2nd membre non nul.

$$u(t) = u_H(t) + u_n(T)$$

Avec u_H la solution de l'équadiff homogène associée et u_p une solution particulière cherchée de la même forme que e(t) (qui ici est constante).

Ici, les solutions de l'équadiff homogène associée sont $(U \in \mathbb{R})$:

$$u_H(t) = U e^{\frac{-t}{RC}}$$

On cherche u_p sous la forme d'une constante:

$$u_p(t) = V$$

Donc:

$$\frac{\mathrm{d}u_p}{\mathrm{d}t} = 0$$

Donc d'apres Eq. 1:

$$0 + \frac{u_p}{RC} = \frac{E}{RC}$$

$$u_p(t)=E$$

D'où l'ensemble des solutions pour u:

$$u(t) = E + Ue^{-\frac{t}{RC}}$$

On cherche maintenant la tension initiale U, c'est à dire les conditions initiales du circuit:

$$u(0) = U_0$$

On utilise la continuité de la tension aux bornes de C. On sait que l'énergie stockée dans C est $\mathcal{E}=\frac{1}{2}Cu^2$.

Or C est une constante et l'énergie est continue, donc u(t) est continue.

On va faire l'hypothèse que C est déchargé au début. On a donc: $u(0^-)=0$.

Par continuité de u aux bornes de C, $u(0^+) = u(0^-) = 0$.

Or on a: $u(0^+) = E + U = 0$

D'où: U = -E

$$u(t) = E \Big(1 - e^{-\frac{t}{RC}} \Big)$$

3) Interprétation de la solution

$$u(t) = u_p(t) + u_H(t)$$

Avec
$$u_{p}(t)=E$$
 et $u_{H}(t)=-Ee^{-\frac{t}{RC}}$

On voit que u_p va rester constant, ce qui traduit un régime permanent, ici continu.

On voit que u_H va tendre vers zéro, ce qui traduit un régime transitoire.

Notre signal à donc une forme:

On pourra donc considérer:

- Un régime permanent au début
- Un régime transitoire de « transition »
- Un régime permanent jusqu'en $+\infty$

Comme notre exponentielle ne touche techniquement jamais le bout de la courbe, il faut déterminer à partir de quand on considère que on est passé en régime permanent.

4) Intensité du courant

On a:

$$u(t) = E \Big(1 - e^{-\frac{t}{RC}} \Big)$$

On dérive:

$$\begin{split} \frac{\mathrm{d}u}{\mathrm{d}t} &= -E \bigg(-\frac{1}{RC} e^{-\frac{t}{RC}} \bigg) \\ &= \frac{E}{RC} e^{-\frac{t}{RC}} \end{split}$$

On substitut dans:

$$i = C \frac{\mathrm{d}u}{\mathrm{d}t}$$

D'où:

$$i(t) = \frac{E}{R}e^{-\frac{t}{RC}}$$

Remarques:

- 1. L'homogénéité est vérifiée
- 2. On sait que l'intensité est nulle jusqu'a t=0 (par $i=C\frac{\mathrm{d}u}{\mathrm{d}t}$). On a une discontinuité en t=0, l'intensité saute jusqu'a $\frac{E}{R}$, puis décroit avec une exponentielle inverse.

!! Caution:

DISCONTINUITÉ DE L'INTENSITÉ POUR C

5) Cas de la décharge de C

On reprend le même circuit Fig. 2.

En t = 0, C est chargé sous une tension E. Donc:

$$e(t) = \begin{cases} E \text{ pour } t < 0\\ 0 \text{ pour } t > 0 \end{cases}$$

En t < 0, u(t) = E

$$\frac{\mathrm{d}u}{\mathrm{d}t} = 0 \Rightarrow i = C\frac{\mathrm{d}u}{\mathrm{d}t} = 0$$

$$Ri = 0 \Rightarrow e(t) = u(t)$$

Pour t > 0:

$$\frac{\mathrm{d}u}{\mathrm{d}t} + \frac{1}{RC}u = \frac{e(t)}{RC} = 0$$

Ici, on a pas de 2nd membre. On a donc:

$$u(t) = u_H(t) = U e^{-\frac{t}{RC}}$$

On doit déterminer la valeur de U, la constante d'intégration. De même, on utilise la continuite de u aux bornes de C:

$$u(0^+) = u(0^-) = E$$

par l'expression de la solution:

$$u(0^+)=U$$

Donc U = E

On a donc:

$$u(t) = E e^{-\frac{t}{RC}}$$

On peut tracer u:

Et pour l'intensité:

$$i = C\frac{\mathrm{d}u}{\mathrm{d}t} = CE\left(-\frac{1}{RC}e^{-\frac{t}{RC}}\right)$$

D'où:

$$i(t) = -\frac{E}{R}e^{-\frac{t}{RC}}$$

(On a la même chose, mais avec un signe moins devant)

On a toujours discontinuité de i.

6) Temps caractéristique au

Par homogénéité, l'exposant d'une exponentielle est toujours sans dimension. Ainsi, dans $e^{-\frac{t}{RC}}$, $-\frac{t}{RC}$ est une grandeure sans dimension. Donc [RC]=[T].

On nomme donc τ le temps caractéristique, défini par:

$$\tau = RC$$

En reprenant l'équadiff:

$$\frac{\mathrm{d}u}{\mathrm{d}t} + \frac{1}{RC}u = \frac{e(t)}{RC}$$

On a:

$$\left[\frac{\mathrm{d}u}{\mathrm{d}t}\right] = \frac{[U]}{[T]}$$

$$\left[\frac{u}{RC}\right] = \frac{[U]}{[T]}$$

Donc [RC] = [T], donc:

$$\frac{\mathrm{d}u}{\mathrm{d}t} + \frac{1}{\tau}u = \frac{e(t)}{\tau}$$

Pour résumer:

• Charge d'un condensateur:

•
$$u(t)=\frac{E\left(1-e^{-\frac{t}{\tau}}\right)}{i(t)=\frac{E}{R}e^{-\frac{t}{\tau}}}$$

• Décharge d'un condensateur:

$$i(t) = \frac{E}{R}e^{-\frac{t}{\tau}}$$

$$u(t) = Ee^{-\frac{t}{\tau}}$$

$$u(t) = Ee^{-\frac{t}{\tau}}$$

$$i(t) = -\frac{E}{R}e^{-\frac{t}{\tau}}$$

Obtention de la valeur de au expérimentalement:

On peut faire le même raisonnement pour chaque formule, mais on utilisera la décharge d'un condensateur.

On peut mesurer l'intersection de la tangente avec l'axe des abscisses directement:

On a l'asymptote pour $t \to +\infty$:

$$u = 0$$

La tangente à l'origine est:

$$y = u'(0)t + u(0)$$

$$u'(t) = -\frac{E}{\tau}e^{-\frac{t}{\tau}}$$

Donc:

$$y = -\frac{E}{\tau}t + E$$

D'où:

$$y(t) = 0$$

$$\Leftrightarrow -\frac{E}{\tau}t + E = 0$$

$$\Leftrightarrow -\frac{E}{\tau}t = -E$$

$$\Leftrightarrow \frac{1}{\tau}t = 1$$

$$\Leftrightarrow t = \tau$$

Donc l'intersection de la tangente à l'origine avec l'axe des abscisses est une bonne estimation expérimentale de τ .

Autre methode: temps de montée/descente.

On pose: $\Delta T = t_2 - t_1$

Φ Note:

En décharge, on partira de 90% et on ira à 10%

Φ Note:

Dans une situation où on part d'une tension arbitraire E_1 vers une autre tension E_2 , on devra partire d'une interpolation linéaire (10% et 90%) des deux.

On a:

$$u(t_1) = \frac{E}{10} = E\Big(1 - e^{-\frac{t_1}{\tau}}\Big)$$

D'où:

$$e^{-\frac{t_1}{\tau}} = \frac{9}{10}$$

$$t_1 = -\tau \ln\left(\frac{9}{10}\right)$$

Et:

$$u(t_2)=\frac{9}{10}E=E\Big(1-e^{-\frac{t_2}{\tau}}\Big)$$

$$e^{-\frac{t_2}{\tau}} = \frac{1}{10}$$

$$t_2 = -\tau \ln \frac{1}{10}$$

On a donc:

$$\Delta T = t_2 - t_1 = \tau \ln 10 + \tau \ln \frac{9}{10}$$

$$\Delta T = 2\tau \ln 3 \approx 2.2\tau \approx 2\tau$$

7) Aspects énergétique

On a:

$$e(t) = u + Ri = u + RC \frac{\mathrm{d}u}{\mathrm{d}t}$$

 $ei = ui + Ri^{2}$

On substitue le i:

$$ei = Cu\frac{\mathrm{d}u}{\mathrm{d}t} + Ri^2$$

$$ei = \frac{\mathrm{d}}{\mathrm{d}t} \frac{Cu^2}{2} + Ri^2$$

On va interpréter ei comme la puissance fournie par le générateur (notre source idéale de tension est en convention générateur).

La résistance est en convention récepteur, donc Ri^2 est la puissance dissipée par effet joule.

8) Réponse à un signal carré

Lorsque le temps caractéristique τ du système résistance-condensateur commence à approcher le temps caractéristique du circuit $(\frac{1}{f})$, on ne peut plus se placer dans l'ARQS: on observe la charge et la décharge du condensateur sur notre signal.

Fig. 10. - Charge et décharge d'un condensateur avec un signal crénau

9) Mesure de l'intensité

On peut se place aux bornes de la résistance et mesurer la tension pour obtenir l'intensité (\times une constante).

Problème de manipulation: la masse de l'oscilloscope nous fait ignorer le condensateur si on mesure la résistance. Il faut intervertir les bornes du GBF.

III. Régime transitoire d'un circuit R, L du premier ordre - Établissement et rupture du courant dans une bobine

On a:

$$\begin{split} e(t) &= u + u_R \\ &= L \frac{\mathrm{d}i}{\mathrm{d}t} + u_R \\ &= L \frac{\mathrm{d}i}{\mathrm{d}t} + Ri \\ \Leftrightarrow \frac{e(t)}{L} &= \frac{\mathrm{d}i}{\mathrm{d}t} + \frac{R}{L}i \\ \Leftrightarrow \frac{1}{\tau} \bigg(\frac{e(t)}{R} \bigg) &= \frac{\mathrm{d}i}{\mathrm{d}t} + \frac{i}{\tau} \end{split}$$

D'où:

$$\tau = \frac{L}{R}$$

Établissement:

$$e(t) = \begin{cases} 0 \text{ si } t < 0 \\ E \text{ (constante) si } t > 0 \end{cases}$$

On pose:

$$i(t) = i_H(t) + i_e(t)$$

Avec:

$$i_H(t) = I e^{-\frac{1}{\tau}}$$

Et:

$$i_P(t) = \frac{E}{R}$$

Donc

$$i(t) = Ie^{-\frac{t}{\tau}} + \frac{E}{R}$$

Comme l'énergie est une quantité continue, et que

$$\mathcal{E}_L = \frac{1}{2}Li^2$$

Avec L une constante, alors i est une quantite continue. On a:

$$i(0^+) = i(0^-)$$

On a i en 0^- qui est avant le basculement de e de 0 à E, donc on peut se placer dans un régime permanent avec i une constante. On a:

$$\frac{\mathrm{d}i}{\mathrm{d}t}(0^-) = 0$$

$$\frac{i(0^-)}{\tau} = \frac{0}{R\tau} \Rightarrow i(0^-) = 0$$

Et par continuité de *i*:

$$i(0^+) = 0$$

On a donc:

$$\begin{split} i(0^+) &= 0 = I + \frac{E}{R} \\ \Leftrightarrow I &= -\frac{E}{R} \\ i(t) &= \frac{E}{R} \Big(1 - e^{-\frac{t}{\tau}} \Big) \end{split}$$

On pose l'équation de la bobine:

$$\begin{split} u &= L \frac{\mathrm{d}i}{\mathrm{d}t} \\ i(t) &= \frac{E}{R} \Big(1 - e^{-\frac{t}{\tau}} \Big) \Rightarrow \frac{\mathrm{d}i}{\mathrm{d}t} = \frac{E}{R} \Big(\frac{1}{\tau} e^{-\frac{t}{\tau}} \Big) = \frac{E}{R\tau} e^{-\frac{t}{\tau}} \\ u &= L \frac{\mathrm{d}i}{\mathrm{d}t} = \frac{L}{R} E \frac{R}{L} e^{-\frac{t}{\tau}} \end{split}$$

D'où:

$$u=Ee^{-\frac{t}{\tau}}$$

On a donc une discontinuité de u en 0.

Le plus dur sera de déterminer les conditions initiales.

On va faire l'inverse: on va faire basculer e de E vers 0:

$$e(t) = \begin{cases} E \text{ si } t < 0 \\ 0 \text{ si } t > 0 \end{cases}$$

Par loi des mailles:

$$E = u_R + u_L = Ri + L\frac{\mathrm{d}i}{\mathrm{d}t}$$

On fait l'hypothèse que le régime permanent a été atteint et que ce régime permanent est

un régime continu. Cela implique que $\frac{di}{dt} = 0$

On a donc:

• Pour
$$t<0$$
, $E=Ri(t)\Leftrightarrow i(t)=\frac{E}{R}$
• $i(0^-)=\frac{E}{R}$

•
$$i(0^-) = \frac{E}{R}$$

Par continuité de
$$i$$
 dans L :
$$\underbrace{i(0^+) = i(0^-) = \frac{E}{R}}_{\text{condition initiale}}$$

On obtient donc l'équa-diff:

$$\frac{\mathrm{d}i}{\mathrm{d}t} + \frac{i}{\tau} = \frac{e(t \text{ (avec } t > 0))}{R\tau} = 0$$

$$\frac{\mathrm{d}i}{\mathrm{d}t} + \frac{i}{\tau} = 0$$

On résout l'équation homogène:

$$i(t)=i_H(t)=Ie^{-\frac{t}{\tau}}$$

On a
$$i(0) = I = \frac{E}{R}$$
, donc

$$i(t) = \frac{E}{R} e^{-\frac{t}{\tau}}$$

D'où:

Pour la tension:

$$\begin{split} u &= L \frac{\mathrm{d}i}{\mathrm{d}t} \\ &= L \frac{E}{R} \bigg(-\frac{1}{\tau} e^{-\frac{t}{\tau}} \bigg) \end{split}$$

D'où:

$$u = -Ee^{-\frac{t}{\tau}}$$

On peut poser le temps caractéristique $\tau = \frac{L}{R}$

1) Aspect énergétique

On a

$$e = Ri + L(di)(dt)$$

$$ei = Ri^{2} + Li\frac{di}{dt}$$

$$ei = Ri^{2} + \frac{d}{dt}\underbrace{\left(\frac{1}{2}Li^{2}\right)}_{\text{énergie stockée}}$$

On a:

- ei la puissance fournie par le générateur
- Ri^2 la puissance reçue par R et dissipée par effet Joule
- Ri^2 la puissance reçue par R et dissipée par chet joure

 $\frac{1}{2}Li^2$ la puissance « stockée » dans L• Si $\frac{\mathrm{d}}{\mathrm{d}t(\frac{1}{2}Li^2)} < 0$, alors L est génératrice (la bobine se « décharge »)

 Si $\frac{\mathrm{d}}{\mathrm{d}t(\frac{1}{2}Li^2)} > 0$, alors L est réceptrice (la bobine se « charge »)