Web-based Supplementary Materials for The Effect of Recycled Individuals in the Jolly-Seber Tag Loss Model by Emily Malcolm White and Laura Louise Elizabeth Cowen

Web Appendix A: The Jolly-Seber Tag Loss Model

Assumptions

Assumptions of the JSTL model with constant survival, capture, and tag retention probabilities and time-varying entry probabilities are as follows:

- The effect of recycled individuals is negligible
- All individuals (marked and unmarked) are equally catchable, and that capture probabilities for all individuals are the same for all individuals at all sample time
- All individuals (marked and unmarked) have equal survival probabilities between all sample times
- All individuals have equal entry (birth or immigration) probabilities, but entry probabilities can vary between sample times
- All marked individuals have equal tag retention probabilities between all sample times
- For double-tagged individuals, tag loss is independent between tags
- There is independence across all individuals
- The sampling period is relatively short compared to the interval between sampling times

Notation

We use the following notation to describe the statistics or model parameters discussed in this study.

- k = number of sample times
- $n_{\rm obs} = 1$ the total number of individuals captured with no tags and treated as new individuals; when no recycling is present, $n_{\rm obs}$ is the number of unique individuals observed throughout the study
- p = the probability that an individual is recaptured at a sample time given that the individual was alive at the previous sample time
- $\phi = -$ the probability that an individual survives and remain in the population between a sample time and the next sample time
- $b_j =$ the probability that an individual enters the system between sample times j and j + 1. j = 0, 1, ..., k 1. b_0 is the expected fraction of individuals alive just prior to the first sample time.
- v = the probability that an individual captured will be lost on capture
- T_d = the probability that an individual is marked with d tags. Note that the probability of marking with a single tag is one minus the probability of marking with a double tag: $T_1 = 1 T_2$
- $\lambda =$ the probability that an individual captured will retain its tag between time periods given that it remains alive
- N = super-population size, the total number of individuals ever present in population and available for capture during the study

Functions of Parameters:

 $b_i * =$ the expected fraction of the population remaining to enter the population that enters between sample times j and j + 1, j = 0, 1, ..., k - 1.

$$b_{j}* = \begin{cases} b_{0} & \text{if } j = 0\\ b_{j} / \sum_{u=j}^{k-1} b_{u} & \text{if } j = 1, ..., k-1\\ 1 & \text{if } j = k-1 \end{cases}$$

net births; the number of individuals who enter the population after sample time j and survive $B_i =$ to sample time j+1; j=0,1,...,k-1. B_0 is the number of individuals alive just before the first sample time. Note that $E(B_i|N) = Nb_i$.

the probability that the individual with capture history i is first seen at f_i and not seen after $\chi_{(f_i,l_i,nt)} =$ sample time l_i , with nt tags. This is a recursive function of ϕ , p, and λ . If $f_i = 0$, this indicates individuals not yet captured but alive at time l_i .

For individuals not yet captured:

$$\chi_{(0,j,0)} = \begin{cases} 1 - \phi + \phi(1-p)\chi_{(0,j+1,0)} & \text{if } j < k \\ 1 & \text{if } j = k \end{cases}$$

$$\chi_{(0,j,0)} = \begin{cases} 1 - \phi + \phi(1-p)\chi_{(0,j+1,0)} & \text{if } j < k \\ 1 & \text{if } j = k \end{cases}$$
 For single tagged individuals:
$$\chi_{(f_i,j,1)} = \begin{cases} 1 - \phi + \phi(1-p)\lambda\chi_{(f_i,j+1,1)} + \phi(1-\lambda) & \text{if } j < k \\ 1 & \text{if } j = k \end{cases}$$

For double tagged individuals:
$$\chi_{(f_i,j,2)} = \begin{cases} 1 - \phi + \phi(1-p)\lambda^2 \chi_{(f_i,j+1,2)} + \phi(1-\lambda)^2 + 2\phi(1-p)\lambda(1-\lambda)\chi_{(f_i,j+1,1)} & \text{if } j < k \\ 1 & \text{if } j = k \end{cases}$$

probability that an individual enters the population, is still alive and is not seen before time j; j = 1, 2, ..., k

 $N_i =$ population size at time j. $E(N_1|N) = B_0$, $E(N_{j+1}|N) = (N_j - N_j p v)\phi + B_j$, which is the number of individuals that survive from time j minus the number lost on capture plus the number of births.

Complete Likelihood

The complete likelihood for the Jolly-Seber tag loss model assuming no possibility of loss of capture and assuming homogeneous survival, capture, and tag retention probabilities is given below.

$$L = \binom{N}{n_{\text{obs}}} \left\{ \sum_{j=0}^{k-1} b_j (1-p) \chi_{(0,j+1,0)} \right\}^{(N-n_{\text{obs}})} \times \left\{ 1 - \sum_{j=0}^{k-1} b_j (1-p) \chi_{(0,j+1,0)} \right\}^{n_{\text{obs}}} \times \left\{ 1 - \sum_{j=0}^{k-1} b_j (1-p) \chi_{(0,j+1,0)} \right\}^{n_{\text{obs}}} \times \left\{ 1 - \sum_{j=0}^{k-1} b_j (1-p) \chi_{(0,j+1,0)} \right\}^{n_{\text{obs}}} \times \left\{ 1 - \sum_{j=0}^{k-1} b_j (1-p) \chi_{(0,j+1,0)} \right\}^{n_{\text{obs}}} \times \left\{ 1 - \sum_{j=0}^{k-1} b_j (1-p) \chi_{(0,j+1,0)} \right\}^{n_{\text{obs}}} \times \left\{ 1 - \sum_{j=0}^{k-1} b_j (1-p) \chi_{(0,j+1,0)} \right\}^{-n_{\text{obs}}}$$

Recycled Individuals

Web Table 1: Examples of the fraction of recycled individuals (number of recycled individuals captured / total number of individuals captured) at each sample occasion for a 10 occasion experiment with superpopulation size N=1000 with 100% double-tagging.

	Sampling Times									
	1	2	3	4	5	6	7	8	9	10
$\phi = 0.9, p = 0.9, \lambda = 0.2$	0.00	0.30	0.36	0.47	0.51	0.53	0.54	0.55	0.56	0.57
$\phi = 0.9, p = 0.9, \lambda = 0.5$	0.00	0.12	0.12	0.20	0.29	0.26	0.29	0.30	0.31	0.31
$\phi = 0.9, p = 0.9, \lambda = 0.9$	0.00	0.01	0.02	0.02	0.01	0.01	0.03	0.04	0.04	0.03
$\phi = 0.9, p = 0.5, \lambda = 0.2$	0.00	0.14	0.28	0.38	0.43	0.48	0.54	0.54	0.55	0.56
$\phi = 0.9, p = 0.5, \lambda = 0.5$	0.00	0.02	0.12	0.14	0.27	0.28	0.28	0.33	0.29	0.38
$\phi = 0.9, p = 0.5, \lambda = 0.9$	0.00	0.00	0.00	0.00	0.01	0.02	0.02	0.04	0.06	0.06
$\phi = 0.9, p = 0.2, \lambda = 0.2$	0.00	0.05	0.15	0.35	0.18	0.28	0.30	0.33	0.40	0.37
$\phi = 0.9, p = 0.2, \lambda = 0.5$	0.00	0.00	0.06	0.09	0.14	0.13	0.20	0.21	0.30	0.26
$\phi = 0.9, p = 0.2, \lambda = 0.9$	0.00	0.00	0.00	0.00	0.00	0.01	0.02	0.02	0.04	0.03
$\phi = 0.5, p = 0.9, \lambda = 0.2$	0.00	0.18	0.23	0.27	0.34	0.36	0.32	0.32	0.32	0.26
$\phi = 0.5, p = 0.9, \lambda = 0.5$	0.00	0.10	0.10	0.15	0.10	0.15	0.18	0.13	0.19	0.12
$\phi = 0.5, p = 0.9, \lambda = 0.9$	0.00	0.00	0.00	0.01	0.01	0.00	0.01	0.01	0.01	0.01
$\phi = 0.2, p = 0.9, \lambda = 0.2$	0.00	0.10	0.14	0.07	0.15	0.10	0.11	0.13	0.13	0.12
$\phi = 0.2, p = 0.9, \lambda = 0.5$	0.00	0.02	0.06	0.05	0.05	0.11	0.04	0.06	0.08	0.09
$\phi = 0.2, p = 0.9, \lambda = 0.9$	0.00	0.01	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00
$\phi = 0.5, p = 0.5, \lambda = 0.5$	0.00	0.01	0.07	0.06	0.12	0.13	0.14	0.16	0.13	0.14

Web Table 2: Examples of the fraction of recycled individuals (number of recycled individuals captured / total number of individuals captured) at each sample occasion for a 7 occasion experiment with superpopulation size N=1000 with 100% double-tagging.

	Sampling Times								
	1	2	3	4	5	6	7		
$\phi = 0.9, p = 0.9, \lambda = 0.2$	0.00	0.32	0.40	0.49	0.50	0.53	0.55		
$\phi = 0.9, p = 0.9, \lambda = 0.5$	0.00	0.10	0.18	0.21	0.22	0.29	0.29		
$\phi = 0.9, p = 0.9, \lambda = 0.9$	0.00	0.01	0.01	0.02	0.02	0.02	0.02		
$\phi = 0.9, p = 0.5, \lambda = 0.2$	0.00	0.12	0.30	0.35	0.42	0.47	0.50		
$\phi = 0.9, p = 0.5, \lambda = 0.5$	0.00	0.06	0.15	0.22	0.26	0.24	0.27		
$\phi = 0.9, p = 0.5, \lambda = 0.9$	0.00	0.01	0.00	0.02	0.02	0.03	0.04		
$\phi = 0.9, p = 0.2, \lambda = 0.2$	0.00	0.05	0.12	0.15	0.22	0.21	0.30		
$\phi = 0.9, p = 0.2, \lambda = 0.5$	0.00	0.00	0.06	0.10	0.15	0.20	0.20		
$\phi = 0.9, p = 0.2, \lambda = 0.9$	0.00	0.00	0.00	0.00	0.00	0.01	0.01		
$\phi = 0.5, p = 0.9, \lambda = 0.2$	0.00	0.19	0.30	0.32	0.30	0.34	0.38		
$\phi = 0.5, p = 0.9, \lambda = 0.5$	0.00	0.09	0.12	0.13	0.15	0.11	0.14		
$\phi = 0.5, p = 0.9, \lambda = 0.9$	0.00	0.00	0.00	0.02	0.00	0.00	0.01		
$\phi = 0.2, p = 0.9, \lambda = 0.2$	0.00	0.10	0.11	0.12	0.13	0.16	0.08		
$\phi = 0.2, p = 0.9, \lambda = 0.5$	0.00	0.04	0.05	0.07	0.07	0.03	0.02		
$\phi = 0.2, p = 0.9, \lambda = 0.2$	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
$\phi = 0.5, p = 0.5, \lambda = 0.5$	0.00	0.05	0.04	0.05	0.09	0.11	0.12		

Web Table 3: Examples of the fraction of recycled individuals (number of recycled individuals captured / total number of individuals captured) at each sample occasion for a 5 occasion experiment with superpopulation size N=1000 with 100% double-tagging.

	Sampling Times						
	1	2	3	4	5		
$\phi = 0.9, p = 0.9, \lambda = 0.2$	0.00	0.29	0.34	0.45	0.52		
$\phi = 0.9, p = 0.9, \lambda = 0.5$	0.00	0.08	0.22	0.23	0.28		
$\phi = 0.9, p = 0.9, \lambda = 0.9$	0.00	0.01	0.01	0.02	0.02		
$\phi = 0.9, p = 0.5, \lambda = 0.2$	0.00	0.14	0.27	0.33	0.38		
$\phi = 0.9, p = 0.5, \lambda = 0.5$	0.00	0.05	0.13	0.18	0.25		
$\phi = 0.9, p = 0.5, \lambda = 0.9$	0.00	0.00	0.01	0.01	0.02		
$\phi = 0.9, p = 0.2, \lambda = 0.2$	0.00	0.06	0.15	0.16	0.29		
$\phi = 0.9, p = 0.2, \lambda = 0.5$	0.00	0.03	0.06	0.08	0.12		
$\phi = 0.9, p = 0.2, \lambda = 0.9$	0.00	0.00	0.00	0.01	0.01		
$\phi = 0.5, p = 0.9, \lambda = 0.2$	0.00	0.14	0.25	0.30	0.33		
$\phi = 0.5, p = 0.9, \lambda = 0.5$	0.00	0.05	0.13	0.10	0.15		
$\phi = 0.5, p = 0.9, \lambda = 0.9$	0.00	0.00	0.01	0.01	0.00		
$\phi = 0.2, p = 0.9, \lambda = 0.2$	0.00	0.11	0.10	0.13	0.12		
$\phi = 0.2, p = 0.9, \lambda = 0.5$	0.00	0.02	0.03	0.05	0.04		
$\phi = 0.2, p = 0.9, \lambda = 0.9$	0.00	0.00	0.00	0.00	0.00		
$\phi = 0.5, p = 0.5, \lambda = 0.5$	0.00	0.03	0.09	0.10	0.12		

Survival Estimates

WEB FIGURE 1: Boxplots of survival estimates $(\hat{\phi})$ of 100 simulated datasets analyzed with and without the effect of recycled individuals for population size 1000 with $T_2 = 1$ with 10 time periods for varying survival $(\phi = 0.2, 0.5, 0.9)$, capture (p = 0.2, 0.5, 0.9), and tag retention $(\lambda = 0.2, 0.5, 0.9)$ probabilities. The black line indicates the true value of ϕ used to simulate the data for each model.

WEB FIGURE 2: Boxplots of survival estimates $(\hat{\phi})$ of 100 simulated datasets analyzed with and without the effect of recycled individuals for population size 100000 with $T_2 = 1$ with 10 time periods for varying survival $(\phi = 0.2, 0.5, 0.9)$, capture (p = 0.2, 0.5, 0.9), and tag retention $(\lambda = 0.2, 0.5, 0.9)$ probabilities. The black line indicates the true value of ϕ used to simulate the data for each model.

WEB FIGURE 3: Boxplots of survival estimates $(\hat{\phi})$ of 100 simulated datasets analyzed with and without the effect of recycled individuals for population size 1000 with $T_2 = 0.5$ with 10 time periods for varying survival $(\phi = 0.2, 0.5, 0.9)$, capture (p = 0.2, 0.5, 0.9), and tag retention $(\lambda = 0.2, 0.5, 0.9)$ probabilities. The black line indicates the true value of ϕ used to simulate the data for each model.

WEB FIGURE 4: Boxplots of survival estimates $(\hat{\phi})$ of 100 simulated datasets analyzed with and without the effect of recycled individuals for population size 100000 with $T_2 = 0.5$ with 10 time periods for varying survival $(\phi = 0.2, 0.5, 0.9)$, capture (p = 0.2, 0.5, 0.9), and tag retention $(\lambda = 0.2, 0.5, 0.9)$ probabilities. The black line indicates the true value of ϕ used to simulate the data for each model.

WEB FIGURE 5: Boxplots of survival estimates $(\hat{\phi})$ of 100 simulated datasets analyzed with and without the effect of recycled individuals for population size 1000 with $T_2 = 1$ with 5 time periods for varying survival $(\phi = 0.2, 0.5, 0.9)$, capture (p = 0.2, 0.5, 0.9), and tag retention $(\lambda = 0.2, 0.5, 0.9)$ probabilities. The black line indicates the true value of ϕ used to simulate the data for each model.

WEB FIGURE 6: Boxplots of survival estimates $(\hat{\phi})$ of 100 simulated datasets analyzed with and without the effect of recycled individuals for population size 1000 with $T_2 = 1$ with 7 time periods for varying survival $(\phi = 0.2, 0.5, 0.9)$, capture (p = 0.2, 0.5, 0.9), and tag retention $(\lambda = 0.2, 0.5, 0.9)$ probabilities. The black line indicates the true value of ϕ used to simulate the data for each model.

Capture Estimates

WEB FIGURE 7: Boxplots of capture estimates (\hat{p}) of 100 simulated datasets analyzed with and without the effect of recycled individuals for population size 1000 with $T_2 = 1$ with 10 time periods for varying survival $(\phi = 0.2, 0.5, 0.9)$, capture (p = 0.2, 0.5, 0.9), and tag retention $(\lambda = 0.2, 0.5, 0.9)$ probabilities. The black line indicates the true value of p used to simulate the data for each model.

WEB FIGURE 8: Boxplots of capture estimates (\hat{p}) of 100 simulated datasets analyzed with and without the effect of recycled individuals for population size 100000 with $T_2 = 1$ with 10 time periods for varying survival $(\phi = 0.2, 0.5, 0.9)$, capture (p = 0.2, 0.5, 0.9), and tag retention $(\lambda = 0.2, 0.5, 0.9)$ probabilities. The black line indicates the true value of p used to simulate the data for each model.

WEB FIGURE 9: Boxplots of capture estimates (\hat{p}) of 100 simulated datasets analyzed with and without the effect of recycled individuals for population size 1000 with $T_2 = 0.5$ with 10 time periods for varying survival $(\phi = 0.2, 0.5, 0.9)$, capture (p = 0.2, 0.5, 0.9), and tag retention $(\lambda = 0.2, 0.5, 0.9)$ probabilities. The black line indicates the true value of p used to simulate the data for each model.

WEB FIGURE 10: Boxplots of capture estimates (\hat{p}) of 100 simulated datasets analyzed with and without the effect of recycled individuals for population size 100000 with $T_2 = 0.5$ with 10 time periods for varying survival $(\phi = 0.2, 0.5, 0.9)$, capture (p = 0.2, 0.5, 0.9), and tag retention $(\lambda = 0.2, 0.5, 0.9)$ probabilities. The black line indicates the true value of p used to simulate the data for each model.

WEB FIGURE 11: Boxplots of capture estimates (\hat{p}) of 100 simulated datasets analyzed with and without the effect of recycled individuals for population size 1000 with $T_2 = 1$ for 5 time periods for varying survival $(\phi = 0.2, 0.5, 0.9)$, capture (p = 0.2, 0.5, 0.9), and tag retention $(\lambda = 0.2, 0.5, 0.9)$ probabilities. The black line indicates the true value of p used to simulate the data for each model.

WEB FIGURE 12: Boxplots of capture estimates (\hat{p}) of 100 simulated datasets analyzed with and without the effect of recycled individuals for population size 1000 with $T_2 = 1$ for 7 time periods for varying survival $(\phi = 0.2, 0.5, 0.9)$, capture (p = 0.2, 0.5, 0.9), and tag retention $(\lambda = 0.2, 0.5, 0.9)$ probabilities. The black line indicates the true value of p used to simulate the data for each model.

Tag Retention Estimates

WEB FIGURE 13: Boxplots of tag retention estimates $(\hat{\lambda})$ of 100 simulated datasets analyzed with and without the effect of recycled individuals for population size 1000 with $T_2 = 1$ with 10 time periods for varying survival $(\phi = 0.2, 0.5, 0.9)$, capture (p = 0.2, 0.5, 0.9), and tag retention $(\lambda = 0.2, 0.5, 0.9)$ probabilities. The black line indicates the true value of λ used to simulate the data for each model.

WEB FIGURE 14: Boxplots of tag retention estimates $(\hat{\lambda})$ of 100 simulated datasets analyzed with and without the effect of recycled individuals for population size 100000 with $T_2 = 1$ with 10 time periods for varying survival ($\phi = 0.2, 0.5, 0.9$), capture (p = 0.2, 0.5, 0.9), and tag retention ($\lambda = 0.2, 0.5, 0.9$) probabilities. The black line indicates the true value of λ used to simulate the data for each model.

WEB FIGURE 15: Boxplots of tag retention estimates $(\hat{\lambda})$ of 100 simulated datasets analyzed with and without the effect of recycled individuals for population size 1000 with $T_2 = 0.5$ with 10 time periods for varying survival $(\phi = 0.2, 0.5, 0.9)$, capture (p = 0.2, 0.5, 0.9), and tag retention $(\lambda = 0.2, 0.5, 0.9)$ probabilities. The black line indicates the true value of λ used to simulate the data for each model.

WEB FIGURE 16: Boxplots of tag retention estimates ($\hat{\lambda}$) of 100 simulated datasets analyzed with and without the effect of recycled individuals for population size 100000 with $T_2 = 0.5$ with 10 time periods for varying survival ($\phi = 0.2, 0.5, 0.9$), capture (p = 0.2, 0.5, 0.9), and tag retention ($\lambda = 0.2, 0.5, 0.9$) probabilities. The black line indicates the true value of λ used to simulate the data for each model.

WEB FIGURE 17: Boxplots of tag retention estimates $(\hat{\lambda})$ of 100 simulated datasets analyzed with and without the effect of recycled individuals for population size 1000 with $T_2 = 1$ for 5 time periods for varying survival $(\phi = 0.2, 0.5, 0.9)$, capture (p = 0.2, 0.5, 0.9), and tag retention $(\lambda = 0.2, 0.5, 0.9)$ probabilities. The black line indicates the true value of λ used to simulate the data for each model.

WEB FIGURE 18: Boxplots of tag retention estimates $(\hat{\lambda})$ of 100 simulated datasets analyzed with and without the effect of recycled individuals for population size 1000 with $T_2 = 1$ for 7 time periods for varying survival $(\phi = 0.2, 0.5, 0.9)$, capture (p = 0.2, 0.5, 0.9), and tag retention $(\lambda = 0.2, 0.5, 0.9)$ probabilities. The black line indicates the true value of λ used to simulate the data for each model.

Super-Population Size Estimates

WEB FIGURE 19: Boxplots of super-population size estimates (N) of 100 simulated datasets analyzed with and without the effect of recycled individuals for population size 1000 with $T_2 = 1$ with 10 time periods for varying survival $(\phi = 0.2, 0.5, 0.9)$, capture (p = 0.2, 0.5, 0.9), and tag retention $(\lambda = 0.2, 0.5, 0.9)$ probabilities. The black line indicates the true value of N used to simulate the data for each model.

WEB FIGURE 20: Boxplots of super-population size estimates (N) of 100 simulated datasets analyzed with and without the effect of recycled individuals for population size 100000 with $T_2 = 1$ with 10 time periods for varying survival $(\phi = 0.2, 0.5, 0.9)$, capture (p = 0.2, 0.5, 0.9), and tag retention $(\lambda = 0.2, 0.5, 0.9)$ probabilities. The black line indicates the true value of N used to simulate the data for each model.

WEB FIGURE 21: Boxplots of super-population size estimates (N) of 100 simulated datasets analyzed with and without the effect of recycled individuals for population size 1000 with $T_2 = 0.5$ with 10 time periods for varying survival ($\phi = 0.2, 0.5, 0.9$), capture (p = 0.2, 0.5, 0.9), and tag retention ($\lambda = 0.2, 0.5, 0.9$) probabilities. The black line indicates the true value of N used to simulate the data for each model.

WEB FIGURE 22: Boxplots of super-population size estimates (N) of 100 simulated datasets analyzed with and without the effect of recycled individuals for population size 100000 with $T_2 = 0.5$ with 10 time periods for varying survival ($\phi = 0.2, 0.5, 0.9$), capture (p = 0.2, 0.5, 0.9), and tag retention ($\lambda = 0.2, 0.5, 0.9$) probabilities. The black line indicates the true value of N used to simulate the data for each model.

WEB FIGURE 23: Boxplots of super-population size estimates (N) of 100 simulated datasets analyzed with and without the effect of recycled individuals for population size 1000 with $T_2 = 1$ for 5 time periods for varying survival ($\phi = 0.2, 0.5, 0.9$), capture (p = 0.2, 0.5, 0.9), and tag retention ($\lambda = 0.2, 0.5, 0.9$) probabilities. The black line indicates the true value of N used to simulate the data for each model.

WEB FIGURE 24: Boxplots of super-population size estimates (N) of 100 simulated datasets analyzed with and without the effect of recycled individuals for population size 1000 with $T_2 = 1$ for 7 time periods for varying survival ($\phi = 0.2, 0.5, 0.9$), capture (p = 0.2, 0.5, 0.9), and tag retention ($\lambda = 0.2, 0.5, 0.9$) probabilities. The black line indicates the true value of N used to simulate the data for each model.

Abundance Estimates

WEB FIGURE 25: Mean abundance estimates $(N_j$'s) for each sample time (k=10) between analysis with and without recycled individuals with population size N=1000 with $T_2=1$ with 10 time periods for low tag retention $(\lambda=0.2)$, varying survival probabilities $(\phi=0.2,0.5,0.9)$ and varying capture probabilities (p=0.2,0.5,0.9).

WEB FIGURE 26: Mean abundance estimates $(N_j$'s) for each sample time (k=10) between analysis with and without recycled individuals with population size N=100000 with $T_2=1$ with 10 time periods for low tag retention $(\lambda=0.2)$, varying survival probabilities $(\phi=0.2,0.5,0.9)$ and varying capture probabilities (p=0.2,0.5,0.9).

WEB FIGURE 27: Mean abundance estimates $(N_j$'s) for each sample time (k = 10) between analysis with and without recycled individuals with population size N = 1000 with $T_2 = 0.5$ with 10 time periods for low tag retention $(\lambda = 0.2)$, varying survival probabilities $(\phi = 0.2, 0.5, 0.9)$ and varying capture probabilities (p = 0.2, 0.5, 0.9).

WEB FIGURE 28: Mean abundance estimates $(N_j$'s) for each sample time (k=10) between analysis with and without recycled individuals with population size N=100000 with $T_2=0.5$ with 10 time periods for low tag retention $(\lambda=0.2)$, varying survival probabilities $(\phi=0.2,0.5,0.9)$ and varying capture probabilities (p=0.2,0.5,0.9).

WEB FIGURE 29: Mean abundance estimates (N_j) 's for each sample time (k = 5) between analysis with and without recycled individuals with population size N = 1000 with $T_2 = 1$ with 5 time periods for low tag retention $(\lambda = 0.2)$, varying survival probabilities $(\phi = 0.2, 0.5, 0.9)$ and varying capture probabilities (p = 0.2, 0.5, 0.9).

WEB FIGURE 30: Mean abundance estimates $(N_j$'s) for each sample time (k=7) between analysis with and without recycled individuals with population size N=1000 with $T_2=1$ with 7 time periods for low tag retention $(\lambda=0.2)$, varying survival probabilities $(\phi=0.2,0.5,0.9)$ and varying capture probabilities (p=0.2,0.5,0.9).

WEB FIGURE 31: Mean abundance estimates $(N_j$'s) for each sample time (k=10) between analysis with and without recycled individuals with population size N=1000 with $T_2=1$ with 10 time periods for medium tag retention $(\lambda=0.5)$, varying survival probabilities $(\phi=0.2,0.5,0.9)$ and varying capture probabilities (p=0.2,0.5,0.9).

WEB FIGURE 32: Mean abundance estimates $(N_j$'s) for each sample time (k=10) between analysis with and without recycled individuals with population size N=100000 with $T_2=1$ with 10 time periods for medium tag retention $(\lambda=0.5)$, varying survival probabilities $(\phi=0.2,0.5,0.9)$ and varying capture probabilities (p=0.2,0.5,0.9).

WEB FIGURE 33: Mean abundance estimates (N_j) 's for each sample time (k=10) between analysis with and without recycled individuals with population size N=1000 with $T_2=0.5$ with 10 time periods for medium tag retention $(\lambda=0.5)$, varying survival probabilities $(\phi=0.2,0.5,0.9)$ and varying capture probabilities (p=0.2,0.5,0.9).

WEB FIGURE 34: Mean abundance estimates $(N_j$'s) for each sample time (k=10) between analysis with and without recycled individuals with population size N=100000 with $T_2=0.5$ with 10 time periods for medium tag retention $(\lambda=0.5)$, varying survival probabilities $(\phi=0.2,0.5,0.9)$ and varying capture probabilities (p=0.2,0.5,0.9).

WEB FIGURE 35: Mean abundance estimates (N_j) 's for each sample time (k=5) between analysis with and without recycled individuals with population size N=1000 with $T_2=1$ with 5 time periods for medium tag retention $(\lambda=0.5)$, varying survival probabilities $(\phi=0.2,0.5,0.9)$ and varying capture probabilities (p=0.2,0.5,0.9).

WEB FIGURE 36: Mean abundance estimates $(N_j$'s) for each sample time (k=7) between analysis with and without recycled individuals with population size N=1000 with $T_2=1$ with 7 time periods for medium tag retention $(\lambda=0.5)$, varying survival probabilities $(\phi=0.2,0.5,0.9)$ and varying capture probabilities (p=0.2,0.5,0.9).

WEB FIGURE 37: Mean abundance estimates $(N_j$'s) for each sample time (k = 10) between analysis with and without recycled individuals with population size N = 1000 with $T_2 = 1$ with 10 time periods for high tag retention $(\lambda = 0.9)$, varying survival probabilities $(\phi = 0.2, 0.5, 0.9)$ and varying capture probabilities (p = 0.2, 0.5, 0.9).

WEB FIGURE 38: Mean abundance estimates $(N_j$'s) for each sample time (k=10) between analysis with and without recycled individuals with population size N=100000 with $T_2=1$ with 10 time periods for high tag retention $(\lambda=0.9)$, varying survival probabilities $(\phi=0.2,0.5,0.9)$ and varying capture probabilities (p=0.2,0.5,0.9).

WEB FIGURE 39: Mean abundance estimates $(N_j$'s) for each sample time (k = 10) between analysis with and without recycled individuals with population size N = 1000 with $T_2 = 0.5$ with 10 time periods for high tag retention $(\lambda = 0.9)$, varying survival probabilities $(\phi = 0.2, 0.5, 0.9)$ and varying capture probabilities (p = 0.2, 0.5, 0.9).

WEB FIGURE 40: Mean abundance estimates $(N_j$'s) for each sample time (k=10) between analysis with and without recycled individuals with population size N=100000 with $T_2=0.5$ with 10 time periods for high tag retention $(\lambda=0.9)$, varying survival probabilities $(\phi=0.2,0.5,0.9)$ and varying capture probabilities (p=0.2,0.5,0.9).

WEB FIGURE 41: Mean abundance estimates $(N_j$'s) for each sample time (k=5) between analysis with and without recycled individuals with population size N=1000 with $T_2=1$ with 5 time periods for high tag retention $(\lambda=0.9)$, varying survival probabilities $(\phi=0.2,0.5,0.9)$ and varying capture probabilities (p=0.2,0.5,0.9).

WEB FIGURE 42: Mean abundance estimates $(N_j$'s) for each sample time (k=7) between analysis with and without recycled individuals with population size N=1000 with $T_2=1$ with 5 time periods for high tag retention $(\lambda=0.9)$, varying survival probabilities $(\phi=0.2,0.5,0.9)$ and varying capture probabilities (p=0.2,0.5,0.9).