Comparison of the exponential distribution and the Central Limit Theorem

Cindy Chen Oct 20, 2015

Statistical Inference Project

Overview:

In this project we will investigate the exponential distribution in R and compare it with the Central Limit Theorem(CLT).

The exponential distribution can be simulated in R with 'rexp(n, λ)' where lambda λ is the rate parameter.

The mean of exponential distribution (μ) is $1/\lambda$ and the standard deviation (σ) is also $1/\lambda$.

According the CLT if a sample consists of at least 30 independent observations and the data are not strongly skewed, then the distribution of the sample mean is approximattely: $\bar{x}_n \sim N(\mu, \frac{\sigma}{\sqrt{n}})$.

In this analysis, we will show that the sampling distribution of the mean of an exponential distribution with n=40 observations and $\lambda=0.2$. The $Exp(\frac{1}{0.2},\frac{1}{0.2})$ distribution then is approximately $N(\frac{1}{0.2},\frac{\frac{1}{0.2}}{\sqrt{40}})$.

We will investigate the distribution of averages of 40 exponentials and we will need to do 1000 simulations.

Simulations:

Here is the R code for 1000 simulations:

```
set.seed(123)
# The distribution of 1000 averages of size 40 from the exponential distribution
exp_sample_means <- NULL
for(i in 1:1000) {
   exp_sample_means <- c(exp_sample_means, mean(rexp(40, 0.2)))
}</pre>
```

Sample Mean versus Theoretical Mean:

In the following we will draw 1000 samples of size 40 from an $Exp(\frac{1}{0.2}, \frac{1}{0.2})$ distribution. For each of the 1000 samples we will calculate the mean. (Then we will get 1000 means)

Theoretically, this is the same as drawing a single sample of size 1000 from the corresponding sampling distribution with $N(\frac{1}{0.2}, \frac{\frac{1}{0.2}}{\sqrt{40}})$.

 \bar{x} in our case is 5.0119113 which is very close to the mean of the theoretical distribution namely $\mu = \frac{1}{0.2} = 5$.

Sample Variance versus Theoretical Variance:

According to the CLT we would expect that the variance of the sample of the 1000 means is approximately $\frac{\frac{1}{0.2^2}}{40} = 0.625$.

```
var(exp_sample_means)
```

[1] 0.6004928

 s^2 in our case is 0.6004928, which is close to the variance of the theoretical distribution 0.625.

Showing the sample mean distribution is approximately normal:

In order to demonstrate that the sample distribution of the 1000 means is approximately normal, we will plot the histogram of the distribution of the sample mean \bar{x}_n , and overlay it with the density function from the theoretical sampling distribution which is approximately $N(\frac{1}{0.2}, \frac{1}{\sqrt{40}})$

Comparison of the distribution of sample mean and the theoretical distribution

Conclusions

In this analysis, we showed that the sampling distribution of the mean of an exponential distribution with n=40 observations and $\lambda=0.2$ is approximately $N(\frac{1}{0.2},\frac{\frac{1}{0.2}}{\sqrt{40}})$.

Thus, we showed:

- 1. The sample mean is close to the theoretical mean of the distribution.
- 2. The variable of the sample mean distribution is close to the theoretical variance of the distribution.
- 3. The sample mean distribution is approximately normal.