Note

Wayne Zheng intuitionofmind@gmail.com

November 15, 2018

1 Basic Construction

The Hamiltonian for t-J model is $H_{t-J} = H_t + H_J$ where

$$H_{t} = -t \sum_{\langle ij \rangle, \sigma} (c_{i\sigma}^{\dagger} c_{j\sigma} + h.c.),$$

$$H_{J} = J \sum_{\langle ij \rangle} \left(\mathbf{S}_{i} \cdot \mathbf{S}_{j} - \frac{1}{4} n_{i} n_{j} \right).$$
(1)

Suppose the square lattice is formed with $N_x \cdot N_y = N$ sites and they have been numbered as $0, \dots, N-1$ in a certain way, for instance, a *snake*. With consideration of one hole doped case, a generic basis can be defined in such a one-dimensional way

$$c_{0\sigma_0}^{\dagger}\cdots c_{h-1\sigma_{h-1}}^{\dagger}c_{h+1\sigma_{h+1}}^{\dagger}\cdots c_{N-1\sigma_{N-1}}^{\dagger}|0\rangle = (-)^h c_{h\sigma_h}|s\rangle \equiv |h;s\rangle, \qquad (2)$$

where $|s\rangle \equiv c_{0\sigma_0}^\dagger \cdots c_{N-1\sigma_{N-1}}^\dagger |0\rangle$ is the half-filled spin background created by ordered fermionic operators. $|h;s\rangle$ thus can be represented as a bosonic configuration in computational program. Here our major task is to compute the vector multiplication required by the package ARPACKPP[Reuter et al.()Reuter, Gomes, and Sorensen]. H_J can be evaluated as same as the bosonic Heisenberg spin model as one diagonal block of the H_{t-J} matrix in our representation. For H_t , we would like to compute the hole's hopping term from site h to site h' (electron's hopping frome h' to h)

$$\sum_{\sigma} (c_{h\sigma}^{\dagger} c_{h'\sigma}) |h; s\rangle$$

$$= c_{h\sigma_{h'}}^{\dagger} c_{h'\sigma_{h'}} (-)^{h} c_{h\sigma_{h}} |s\rangle = c_{h'\sigma_{h'}} (-)^{h+1} (c_{h\sigma_{h'}}^{\dagger} c_{h\sigma_{h}}) |s\rangle$$

$$= (-)^{h-h'+1} (-)^{h'} c_{h'\sigma_{h'}} |s'\rangle,$$
(3)

where spin summation $\sum_{\sigma} c_{h'\sigma}$ should match $\sigma_{h'}$ of which $c_{h'\sigma_{h'}}^{\dagger}$ in $|s\rangle$ otherwise leads to zero. Note that what $|s'\rangle$ differs from $|s\rangle$ is that the fermionic creation

operator $c_{h\sigma_h}^{\dagger}$ in $|s\rangle$ is replaced by $c_{h\sigma_{h'}}^{\dagger}$ at site h. Its Hermatian conjugate part is similar. That is to say, in order to evaluate the non-zero matrix elements in terms of H_t which connects different bosonic Heisenberg sub-blocks of the total Hilbert space, despite considering the change of bosonic configuration in $|h';s'\rangle$, an extra fermionic sign $(-)^{h-h'+1}$ should be taken in to consideration.

2 Translational operation

Suppose the square lattice is formed with $N_x \cdot N_y = N$ sites and they have been numbered as $k = 0, \dots, N-1$ in a certain way, for instance, a *snake*. Here we choose the convention to label the number of fermionic opertors as $k = j \cdot N_x + i$, where integer pair (i, j) denotes the lattice coordinates with respect to x- and y-directions. With consideration of one hole doped case, a generic basis can be defined in such a one-dimensional way

$$c_{0\sigma_0}^{\dagger} \cdots c_{h-1\sigma_{h-1}}^{\dagger} c_{h+1\sigma_{h+1}}^{\dagger} \cdots c_{N-1\sigma_{N-1}}^{\dagger} |0\rangle = (-)^h c_{h\sigma_h} |s\rangle \equiv |h; s\rangle, \tag{4}$$

where $|s\rangle\equiv c_{0\sigma_0}^\dagger\cdots c_{N-1\sigma_{N-1}}^\dagger|0\rangle$ is the half-filled spin background created by ordered fermionic operators. In periodic boundary condition, translational operator can be defined as

$$\mathcal{T}_x c_{k\sigma_k}^{\dagger} \mathcal{T}_x^{-1} = c_{k'\sigma_k}^{\dagger}, \tag{5}$$

in which k and k' correspond to the coordinate (i, j) and (i + 1, j), respectively. Note that i + 1 certainly takes the modulus of N_x . We are going to find what a state transformed under the operation of \mathcal{T}_x . Consider a generic basis operated by \mathcal{T}_x

$$\mathcal{T}_x(-)^h c_{h\sigma_h} |s\rangle = (-)^h \mathcal{T}_x c_{h\sigma_h} \mathcal{T}_x^{-1} \mathcal{T}_x |s\rangle. \tag{6}$$

In the first place we compute

$$\mathcal{T}_{x}|s\rangle = \mathcal{T}_{x}c_{0\sigma_{0}}^{\dagger}\cdots c_{N-1\sigma_{N-1}}^{\dagger}|0\rangle
= \mathcal{T}_{x}c_{0\sigma_{0}}^{\dagger}\mathcal{T}_{x}^{-1}\cdots\mathcal{T}_{x}c_{N-1\sigma_{N-1}}^{\dagger}\mathcal{T}_{x}^{-1}\mathcal{T}_{x}|0\rangle
= (-)^{(N_{x}-1)\cdot N_{y}}|s'\rangle,$$
(7)

where the fermionic sign $(-)^{N_x-1}$ arises from the translational permutation of every horizontal row and there are N_y rows. $\mathcal{T}_x|0\rangle = |0\rangle$ is regarded as a basic assumption. $|s'\rangle$ is just the corresponding translated half-filled bosonic spin configuration. Then

$$\mathcal{T}_x(-)^h c_{h\sigma_h} |s\rangle = (-)^{h+(N_x-1)\cdot N_y} c_{h'\sigma_{h'}} |s'\rangle = \operatorname{sign} \cdot (-)^{h'} c_{h'\sigma_{h'}} |s'\rangle, \tag{8}$$

where an extra sign = $(-)^{h-h'+(N_x-1)\cdot N_y}$ must be multiplied in practical computer program. Note that \mathcal{T}_x although does not change the spin of $c_{h\sigma_h}$, in the new half-filled configuration $|s'\rangle$, $\sigma_{h'}$ indeed corresponds to σ_h in $|s\rangle$.

The case for \mathcal{T}_y is very similar to \mathcal{T}_x .

3 Ground state degeneracy

Numerical results turns out there is a f=6 fold degeneracy for t-J model on 4×4 square lattice with both periodic conditions. $(H, \mathcal{T}_x, \mathcal{T}_y)$ can be a complete set of commutating observables of which eigenvalue quantum numbers can represent only one specific ground state.

- Firstly diagonalize the matrix $\langle \psi_i | \mathcal{T}_x | \psi_j \rangle$, $i, j = 0, \dots, f-1$ and obtain the eigenvalues of \mathcal{T}_x in the subspace with the same eigenvalue of H namely the subspace of degenerate ground states.
- Then you find there are still a f'=2 fold degeneracy with eigenvalues of \mathcal{T}_x and at this moment you should further diagonalize $\langle \psi_i' | \mathcal{T}_y | \psi_j' \rangle, i, j = 0, \dots, f'-1$ in the subspace with same eigenvalue of \mathcal{T}_x .

References

[Reuter et al.()Reuter, Gomes, and Sorensen] M. Reuter, F. M. Gomes, and D. Sorensen, "BSD arpack++ package,".