國立虎尾科技大學機械與機電工程研究所

期末報告

系統整合設計

System Integration Design

研究生:李玠廷

指導教授:嚴家銘

目錄

- 24K	••••••	-
圖目錄		ii
作者簡介		iv
前言		V
第一章	使用工具	1
第二章	範例與結果比較	2
第三章	CMSimple 展示······	
第四章	心得討論	20
第五章	參考文獻	22
第六章	附錄	2.2

圖目錄

圖	1	機電光資控制整合	V
圖	2.	Scicos 類比計算方法模擬 Rossler attractor	3
圖	3.	ScicosLab 數值分析方法模擬 Rossler attractor	3
圖	4.	C+gnuplot 數值分析方法模擬 Rossler attractor	4
圖	5.	Dynamic system - example1 ·····	5
圖	6.	自由體圖:Dynamic system - examplel	5
圖	7.	cicos 類比計算方法模擬 examplel 之 M1 位移曲線圖	5
圖	8.	Scicos 類比計算方法模擬 examplel 之 M2 位移曲線圖	5
圖	9.	Scicos 類比計算方法模擬 examplel 之 M3 位移曲線圖	6
圖	10.	Scicos 類比計算方法模擬 examplel······	7
圖	11.	ScicosLab 數值分析方法模擬 example1 ·······	7
圖	12.	C+gnuplot 數值分析方法模擬 example1 ····································	7
圖	13.	20-sim 鍵結圖法模擬 example1·······	8
圖	14.	Dynamic system - example2	8
圖	15.	自由體圖:Dynamic system - example2 ·····	8
圖	16.	Scicos 類比計算方法模擬 example2·····	9
圖	17.	ScicosLab 數值分析方法模擬 example2······	9
圖	18.	C+gnuplot 數值分析方法模擬 example2······	9
圖	19.	20-sim 鍵結圖法模擬 example2······	10
圖	20.	Dynamic system - example3	10
圖	21.	自由體圖:Dynamic system - example3·····	10
圖	22.	Scicos 類比計算方法模擬 example3······	11
圖	23.	ScicosLab 數值分析方法模擬 example3······	11
圖	24.	C+gnuplot 數值分析方法模擬 example3······	11
圖	25.	20-sim 鍵結圖法模擬 example3······	12
圖	26.	Dynamic system - example4·····	12
圖	27.	自由體圖:Dynamic system - example4·····	12
圖	28.	Scicos 類比計算方法模擬 example4······	13
圖	29.	ScicosLab 數值分析方法模擬 example4······	13
圖	30.	C+gnuplot 數值分析方法模擬 example4······	13
圖	31.	20-sim 鍵結圖法模擬 example4······	14
圖	32.	Dynamic system - example5	14
圖	33.	自由體圖:Dynamic system - example5·····	14
圖	34.	Scicos 類比計算方法模擬 example5······	15

圖	35.	ScicosLab 數值分析方法模擬 example5 ······	15
圖	36.	C+gnuplot 數值分析方法模擬 example5······	15
圖	37.	20-sim 鍵結圖法模擬 example5······	16
圖	38.	Dynamic system - example6	16
圖	39.	自由體圖:Dynamic system - example6	16
圖	40.	Scicos 類比計算方法模擬 example6 ······	17
圖	41.	ScicosLab 數值分析方法模擬 example6 ······	17
圖	42.	C+gnuplot 數值分析方法模擬 example6 ····································	18
圖	43.	20-sim 鍵結圖法模擬 example6······	18
圖	44.	Dynamic system - example7·····	19
圖	45.	自由體圖:Dynamic system - example7	19
圖	46.	Scicos 類比計算方法模擬 example7······	20
圖	47.	ScicosLab 數值分析方法模擬 example7······	20
圖	48.	C+gnuplot 數值分析方法模擬 example7······	21
圖	49.	20-sim 鍵結圖法模擬 example7······	21
圖	50.	CMSimple 整合 MyPhysicsLab······	22
圖	51.	CMSimple-single spring	23
圖	52.	CMSimple-double spring	23
圖	53.	CMSimple-pendulum·····	23
圖	54.	CMSimple-chaotic pendulum······	23
圖	55.	CMSimple-double pendulum·····	23
圖	56.	CMSimple-2D spring	23
圖	57.	CMSimple-double 2D spring	24
圖	58.	CMSimple-colliding blocks	24
圖	59.	CMSimple-cart with pendulum······	24
圖	60.	CMSimple-dangling stick	24
圖	61.		24
圖	62.	CMSimple-sumo wrestling game	24
圖	63.	CMSimple-roller coaster with spring	25
圖	64.	CMSimple-roller coaster with 2 balls	25
圖	65.	CMSimple-roller coaster with flight	25
圖	66.	CMSimple-molecule 6······	25
圖	67.	20sim-2.3 之 examplel 邊界位修正圖形輸出············	27
昌	68.	20sim-2.3 之 examplel 邊界修正圖形輸出	27

作者簡介

姓 名		李玠廷	性別		男	
E-Mail		ting911111@gmail.com				
最高學歷		國立虎尾科技大學機械設計工程系				
次高學歷		私立大同高級中學機械科				
最高學歷:國立虎尾科技大學機械設計工程系						
次高學歷:私立大同高級中學機械科						
休閒興	趣	閱讀書籍、打籃球、音樂賞析				
個 性 樂觀積極向上			句上			
参加過的技能檢定名稱 :						
全國技能檢定	鉗工丙級					考取

前言

現今許多系統是由諸多領域技術之結合,在整合部分更是所面臨難題之一,由不同領域之整合可創造出不同之系統或產品,如圖 1.機電光資控整合所示,圖中包括了機電工程、軟體工程、電機工程、控制工程等領域,而將各個領域做整合則可開發出新式電動車、綠色環保大樓等產品。

開發產品時盡可能擴大所涵蓋之範圍,納入各領域之考量,在系統所包覆之 範圍內依序相互支援,減少損耗功率,並使資源可重複使用,期系統永續運作, 以延長產品生命週期。

課程中使用了四種工具來模擬系統狀態,包括了 Scicos 類比法、 Scicoslab 數值分析法、C + Runge-kutta 數值分析法、和 20sim-鍵結圖法,利用此四種工具來解課堂範例,並觀察其結果與比對。

圖 1. 機電光資控整合

第一章 使用工具

ScicosLab:

一套自由開源的軟體,是由 Scilab 改名而來。改名是爲了避免與 Scilab 中混淆而做的決定,因爲 INRIA1 不在對其進行開發。早期是由 INRIA1 和 ENPC2的研發人員來發展 Scilab 。 ScicosLab 是 Metalau 團隊特別開發出來的新軟體,如 Scicos (Scicos 4.3 in ScicosLab 4.3) 和 Maxplus algebra toolbox。

Scicos:

是一個圖形化模組和動態模擬系統。用於 signal processing, systems control, queuing systems,和研究 physical 與 biological systems。使用者以方塊圖來建立動態模擬系統模組,透過編譯模組轉成可執行碼。

With Scicos you can:

- 圖形化模組,編譯,和動態模擬系統
- 在同模組下結合連續時間和離散時間
- 可從模板選取標準模塊
- 用 C、Fortran、或 Scilab 語言來創建新模塊
- 在 Scilab 環境中以 batch mode 來模擬
- 從 Scicos 模組使用程式碼產生器來生成 C 程式碼
- 使用 Scicos-HIL3 設備來進行即時模擬
- 使用 Scicos-RTAI4 和 Scicos-FLEX 產牛即時硬體控制文件
- 在 Modelica 語言中使用 implicit blocks 發展
- 使用 toolboxes 探索 Scicos 性能

Bond Graph:

是使用圖示表示物理動態系統之方法,它類似知名的方塊圖和信號流圖,最主要的區別在於鍵結圖裡的箭頭是雙向交流之物理能量,而方塊圖和信號流圖是單向的信息流。

在 Bond Graph 模擬法中,共定義了 C (儲位能元件) , I (儲動能元件) , R (阻尼元件) , TF (轉能結) , GY (迴能結) , 1 (共流結) , 0 (共勢結) , Se (勢源) , Sf (流源) 等九種基本的動態系統模擬元件。

¹ Institut National de Recherche en Informatique et en Automatique (法國國立計算機及自動化研究院)

² Ecole Nationale des Ponts et des Chauss'ees (法國國立路橋大學校)

³ Scicos-HIL: Scicos Hardware In The Loop (Scicos硬體迴路)

⁴ Scicos-RTAI: Scicos code generation for hard real time Linux (Scicos產生實時硬體之編碼)

第二章 範例與結果比較

Rossler attractor (羅斯勒吸引子)

Chaotic Dynamics of a Rössler Attractor

The Rössler system [54] given below has chaotic behavior for certain values of the parameters a, b and c:

$$\begin{split} \dot{x} &= -(y+z),\\ \dot{y} &= x+ay,\\ \dot{z} &= b+z(x-c). \end{split}$$

This system is modeled in Figure 7.11 with a=b=0.2 and c=5.7. The initial conditions are set to zero. The 2D scope is used to plot y against x. The result is given in Figure 7.12.

Figure 7.11. Scicos implementation of the Rössler attractor.

[54] O. E. Rössler. An equation for continuous chaos. Phys. Lett., 35A:397–398, 1976.

圖 2. Scicos 類比計算方法模擬 Rossler attractor

採數值分析方法,以 ScicosLab 進行模擬:

圖 3. ScicosLab 數值分析方法模擬 Rossler attractor

採數値分析方法,以 C + gnuplot 進行模擬:

圖 4. C+gnuplot 數值分析方法模擬 Rossler attractor

數值比較

	0.	1 secends	
Scicoslab:	-0.0008335	-0.0000292	0.0152444
c+gnuplot:	-0.000836	-0.000029	0.015228
	50	secends	
Scicoslab:	1.973471	3.5839556	0.0718811
c+gnuplot:	1.973563	3.583796	0.071883
	10	0 secends	
Scicoslab:	-0.1897332	-4.012947	0.0310638
c+gnuplot:	-0.193913	-4.021986	0.031040
	15	0 secends	
Scicoslab:	3.3290181	-1.1480765	1.5227024
c+gnuplot:	3.336053	-1.134580	1.552359
	20	0 secends	
Scicoslab:	-6.2190893	0.8197600	0.0344729
c+gnuplot:	-7.415289	-1.005381	0.026466
	25	0 secends	
Scicoslab:	5.7340037	-2.8270102	0.0264671
c+gnuplot:	6.686500	0.092775	0.070616
	30	00 secends	
Scicoslab:	-7.5932533	4.0071396	0.0588139
c+gnuplot:	-10.115570	-0.167372	0.028255

Dynamic system

Example 1:

根據下列的動態系統 (所有質量與對應係數皆設為 1)

圖 5. Dynamic system – example1

自由體圖

圖 6. 自由體圖: Dynamic system – example1

若 fa(0)=0,在 x2=-1,x1=x3=0 的起始條件下,試利用類比計算器與數值分析的方法,模擬系統的動態運動結果。

圖 7. Scicos 類比計算方法模擬 examplel 之 M_1 位移曲線圖

圖 8. Scicos 類比計算方法模擬 example1 之 M_2 位移曲線圖

圖 9. Scicos 類比計算方法模擬 example1 之 M_3 位移曲線圖

圖 10. Scicos 類比計算方法模擬 example1

採數值分析方法,以 ScicosLab 進行模擬:

圖 11. ScicosLab 數值分析方法模擬 example1

採數值分析方法,以C+Gnuplot 進行模擬:

採 Bond Graph,以 20-sim 進行模擬:

圖 13. 20-sim 鍵結圖法模擬 example1

Example 2:

根據下列的動態系統 (所有質量與對應係數皆設爲1)

圖 14. Dynamic system – example2

自由體圖

圖 15. 自由體圖: Dynamic system – example2

若 fa(0)=0,x1=-3 的起始條件下,試利用類比計算器、數值分析的方法、與 鍵結圖模擬法,模擬系統的動態運動結果。

圖 16. Scicos 類比計算方法模擬 example2

採數值分析方法,以 ScicosLab 進行模擬:

圖 17. ScicosLab 數值分析方法模擬 example2

採數值分析方法,以C+Gnuplot 進行模擬:

圖 18. C+GnuPlt 數值分析方法模擬 example2

採 Bond Graph,以 20-sim 進行模擬:

圖 19. 20-sim 鍵結圖法模擬 example2

Example 3:

根據下列的動態系統 (所有質量與對應係數皆設為1)

圖 20. Dynamic system – example3

自由體圖

圖 21. 自由體圖: Dynamic system – example3

若 fa(0)=0,x1=1 的起始條件下,試利用類比計算器、數值分析的方法、與鍵結圖模擬法,模擬系統的動態運動結果。

圖 22. Scicos 類比計算方法模擬 example3

採數值分析方法,以 ScicosLab 進行模擬:

圖 23. ScicosLab 數值分析方法模擬 example3

採數值分析方法,以C+Gnuplot 進行模擬:

圖 24. C+GnuPlt 數值分析方法模擬 example3

採 Bond Graph,以 20-sim 進行模擬:

圖 25. 20-sim 鍵結圖法模擬 example3

Example 4:

根據下列的動態系統 (所有質量與對應係數皆設為1)

圖 26. Dynamic system – example4

自由體圖

圖 27. 自由體圖: Dynamic system – example4

若 fa(t) = Sine wave,x = 0 的起始條件下,試利用類比計算器、數值分析的方法、與鍵結圖模擬法,模擬系統的動態運動結果。

圖 28. Scicos 類比計算方法模擬 example4

採數值分析方法,以 ScicosLab 進行模擬:

圖 29. ScicosLab 數值分析方法模擬 example4

採數值分析方法,以C+Gnuplot 進行模擬:

圖 30. C+GnuPlt 數值分析方法模擬 example4

採 Bond Graph,以 20-sim 進行模擬:

圖 31. 20-sim 鍵結圖法模擬 example4

Example 5:

根據下列的動態系統 (除了彈簧係數為 2 以外,所有質量與對應係數皆設為 1)

圖 32. Dynamic system – example5

自由體圖

圖 33. 自由體圖: Dynamic system – example5

若 fa(t) = Sine wave, x_1 = 0 , x_2 = 0 的起始條件下,試利用類比計算器、數值分析的方法、與鍵結圖模擬法,模擬系統的動態運動結果。

圖 34. Scicos 類比計算方法模擬 example5

採數值分析方法,以 ScicosLab 進行模擬:

圖 35. ScicosLab 數值分析方法模擬 example5

採數值分析方法,以C+Gnuplot 進行模擬:

圖 36. C+GnuPlt 數值分析方法模擬 example5

採 Bond Graph,以 20-sim 進行模擬:

圖 37. 20-sim 鍵結圖法模擬 example5

Example 6:

根據下列的動態系統 (所有質量與對應係數皆設爲1)

圖 38. Dynamic system – example6

自由體圖

圖 39. 自由體圖 Dynamic system – example6

若 fa(t) = Sine wave, x_1 = 0 , x_2 = 0 的起始條件下,試利用類比計算器、數值分析的方法、與鍵結圖模擬法,模擬系統的動態運動結果。

採類比計算方法,以 Scicos 進行模擬:

圖 40. Scicos 類比計算方法模擬 example6

採數值分析方法,以 ScicosLab 進行模擬:

圖 41. ScicosLab 數值分析方法模擬 example6

採數值分析方法,以C+Gnuplot 進行模擬:

圖 42. C+GnuPlt 數值分析方法模擬 example6

採 Bond Graph,以 20-sim 進行模擬:

圖 43. 20-sim 鍵結圖法模擬 example6

Example 7:

根據下列的動態系統 (所有質量與對應係數皆設為1)

圖 44. Dynamic system – example7

自由體圖

圖 45. 自由體圖: Dynamic system – example7

若 fa(t) = Sine wave, x_1 = 0 的起始條件下,試利用類比計算器、數值分析的方法、與鍵結圖模擬法,模擬系統的動態運動結果。

採類比計算方法,以 Scicos 進行模擬:

圖 46. Scicos 類比計算方法模擬 example7

採數值分析方法,以 ScicosLab 進行模擬:

圖 47. ScicosLab 數值分析方法模擬 example7

採數值分析方法,以C+Gnuplot 進行模擬:

圖 48. C+GnuPlt 數值分析方法模擬 example7

採 Bond Graph,以 20-sim 進行模擬:

圖 49. 20-sim 鍵結圖法模擬 example7

第三章 CMSimple 展示

使用 CMSimple 整理模擬物理的 java applet。

這些物理模擬可使用於:

- 娛樂,可用滑鼠常是拖動或改變參數設定來觀察期作動方式
- 了解如何運用物理學來建立一個物理模擬系統
- 了解用數值方法來求解方程式
- 了解解微分方程式和求解
- 學習程式語言
- 增強下一個遊戲專案編寫能力

在許多領域模擬是必要的。當問題變的更加複雜時很難用簡單的數學來預測會有什麼結果。所以就有科學家和工程師建立一個數學模組,透過使用參數來運行模組。

使用 CMSimple 當作框架來展示 MyPhysicsLab 模擬程式,撰寫 PHP 程式透過下拉式表單來呼叫 Java Applet 來秀出指定之模擬系統。

圖 50. CMSimple 整合 MyPhysicsLab

圖 51. CMSimple-single spring

圖 52. CMSimple-double spring

圖 53. CMSimple-pendulum

圖 54. CMSimple-chaotic pendulum

圖 55. CMSimple-double pendulum

圖 56. CMSimple-2D spring

圖 57. CMSimple-double 2D spring

圖 58. CMSimple-colliding blocks

圖 59. CMSimple-cart with pendulum

圖 60. CMSimple-dangling stick

圖 61. CMSimple-rigid body collisions

圖 62. CMSimple-sumo wrestling game

圖 63. CMSimple-roller coaster with spring

圖 64. CMSimple-roller coaster with 2 balls

圖 65. CMSimple-roller coaster with flight

圖 51. CMSimple-molecule 6

第四章 心得討論

在練習範例 Rossler attractor 時使用方塊圖法與數值分析法來做解題,比較結果發現三張結果皆有些許差異性,其中 Scicos 與 ScicosLab 圖形線段較為疏散,而使用 C 語言數值方法解微分方程式之圖形線段較為密集,接著去比較其數值可發現大約在 200 秒左右數值的精確度已低於個位數。

重新設定 ScicosLab 爲分方法,將其設定爲與 C 語言數値解一樣,使用 Ru ng-kutta 4 階微分方程,觀察其數值發現 C 語言數値解精確度只到小數點第六位,而 ScicosLab 精確度到小數點第七位,所以判斷因其原應該是誤差累加。

解自由體圖時必須定義系統方向,方向容易搞混必須注意。在相對座標上加速度必須疊加在相對物體上,如動態系統第一題爲例第一個物體的加速度爲 F=m(x1ddot+x3ddot),因爲第一物體在第三物體上做動,所以必須疊加其加速度,最後將其移項來求得第一物體的加速度 x1ddot。

在練習範例 Dynamic system 時使用類比模擬法、數值分析法、與鍵結圖法來做解題,主要比較其物體之位移量,並將各方法求得之結果做比對。鍵結圖法與方塊圖主要不同之一在於傳遞物理能量,鍵結圖法是雙向性傳遞,方塊圖法則是單向性傳遞,所以須考量到鍵結圖法方向與動態系統方向要爲一致。鍵結圖法繪出之圖形是採用絕對座標,而數值分析法則是相對座標,所以爲了使圖形相輔,鍵結圖法做了信號加減之處理,以達到圖形之一致性。

在練習此些範例中理解到不同系統中某些原件有共通之處,如電容與彈簧、電阻與摩擦等關係,使用鍵結圖法模擬系統時可視爲同一能量,並利用能量鍵定義出「勢」與「流」,來模擬物理系統。

求解課堂範例時使用鍵結圖法比其它方法來的直覺,可以依題目圖形來建構 鍵結圖,不用推倒運動方程式,是用起來也比其他方法方便很多,但也因爲這原 因,在建構鍵結圖時要注意能量的方向,也必滿足能量守恆。

在使用 20sim 軟體繪製 Example 1 之圖形,且建構之鍵結圖完全一樣,發現 20sim-2.3 版繪製出來的圖形有誤,檢查其值時 M_1 與 M_3 值都為 0.3,但繪製出圖形卻不在同一直線上,且 M_2 值為 0.6 卻比 0.3 還來的低,育霖發現 20sim-2.3 版時圖形的邊界範圍不對,將其調整後圖形顯示會跟數值解一樣。

感謝孟恭與育霖幫忙完成本報告中的 Scicos 類比計算模擬、20-sim 模擬。

圖 67. 20sim-2.3 之 example1 邊界位修正圖形輸出

圖 68. 20sim-2.3 之 example1 邊界修正圖形輸出

第五章 参考資料

KMOL Blog: http://blog.kmol.info/

ScicosLab Homepage: http://www.scicoslab.org/ Scicos Homepage: http://www-rocq.inria.fr/scicos/

Scilab manual: http://help.scilab.org/docs/5.3.0/en_US/section_4834819644bddf2de

deef2520b2ca171.html

Wikipedia: http://en.wikipedia.org/

myphysicslab: http://www.myphysicslab.com/

第六章 附錄

範例檔案:

 $\underline{\text{http://www.mde.tw/2011data/index.php?Student_data\&act=download\&wid=495\&file} \\ \underline{\text{order=0}}$