

Devoir surveillé 4 - 10/12/24

- 1. On définit la suite de fonctions $(u_n)_{n\in\mathbb{N}^*}$ par $u_n(t)=-\frac{t^{n-1}\ln(t)}{n}$ pour tout $t\in]0,1]$. Calculer $\int_0^1 u_n(t)dt$ pour tout $n \in \mathbb{N}^*$.
- 2. Démontrer que $I = \sum_{n=1}^{+\infty} \frac{1}{n^3}$
- 3. (a) Pour tout $n \in \mathbb{N}^*$, on note $R_n = \sum_{k=n+1}^{+\infty} \frac{1}{k^3}$. Démontrer que $R_n \leq \frac{1}{2n^2}$
 - (b) En déduire que $\sum_{i=1}^{23} \frac{1}{n_s^2} \approx 1,20115$ est une valeur approchée de I à 10^{-3} près.

- \bullet Pour tout $n \in \mathbb{N}^*, F_n$ l'évènement "on obtient Face au $n\text{-}\mathrm{i\`eme}$ lancer"
- Pour tout $n \in \mathbb{N} \setminus \{0,1\}$, on dit qu'il y a apparition d'un Double Pile au rang n si on obtient Pile aux (n-1)-ème et n-ème lancers. On note D_n : "on obtient un Double pile pour la première fois au rang n"

 $v_n = \mathbb{P}(D_n)$ et par convention, $v_1 = 0$

- 1. Calculer v_2 et v_3 . Vérifier que $v_3 = \frac{1}{2}v_2 + \frac{2}{6}v_1$.
- 2. Soit $n \geq 2$, démontrer que $\mathbb{P}_{\overline{F_1}}(D_{n+2}) = \mathbb{P}_{\overline{F_1}}(D_{n+2} \cap F_2) = \mathbb{P}_{\overline{F_1}}(F_2)\mathbb{P}_{\overline{F_1} \cap F_2}(D_{n+2}) = \frac{1}{3}v_n$.
- 3. Soit $n \ge 2$, démontrer que $v_{n+2} = \frac{1}{2}v_{n+1} + \frac{2}{6}v_n$.
- 4. En déduire pour tout $n \in \mathbb{N}^*$ l'expression de $\mathbb{P}(D_n)$ en fonction de n.
- 5. Pour tout $n \geq 2$, on note E_n : " il n'y a pas eu deux Piles consécutifs au cours des n premiers lancers". Calculer $\mathbb{P}(E_n)$.
- 6. En déduire la probabilité de ne jamais obtenir de Double Pile.

Exercice 3 : Soit une urne contenant une proportion p (avec $p \in]0,1[$) de boules noires et q=1-p de boules blanches. On effectue un tirage successif et de manière indépendante d'une boule avec remise et on considère X_r le rang d'apparition de la r-ième boule noire (avec $r \in \mathbb{N}^*$). On note $\hat{\Omega}$ l'univers de l'expérience, à savoir le résultat des tirages.

- 1. (a) Donner $X_r(\Omega)$.
 - (b) Justifier que pour tout $k \in X_r(\Omega), \mathbb{P}(X_r = k) = \binom{k-1}{r-1} p^r q^{k-r}$.
- 2. Montrer que pour tous $x \in]-1,1[,r \in \mathbb{N}^*,\sum_{k=r-1}^{+\infty} \binom{k}{r-1}x^{k-r+1}=\frac{1}{(1-x)^r}.$
- 3. Déterminer l'espérance de X_r .

3.5

