# BASIC ALGORITHMS

Algorithms for small problems

Diego Klabjan

Professor, Industrial Engineering and Management Sciences



#### **Outline**

- Enumeration
- Value iteration
- Policy iteration
  - Value of policy
- Hybrid

# ENUMERATION

#### **Bellman's Optimality Equation**

• 
$$V_t(s_t) = \max_{a_t \in \mathcal{A}} [r(s_t, a_t) + \gamma E_{s_{t+1} \sim p(s_{t+1}|s_t, a_t)} V_{t+1}(s_{t+1}|s_t)]$$

- Compute value functions recursively
  - Training (planning)
- Given computed value functions
  - 'Measure' state
  - Solve optimization problem

$$\max_{a \in \mathcal{A}} [r(s, a) + \gamma E_{\bar{s} \sim p(\bar{s}|s, a)} V(\bar{s}|s)]$$

- Often not many actions enumerate
- Often deterministic system no expectation

#### **Enumeration**

- For *t*=*T* down to 0
  - For each possible state s<sub>t</sub>
    - Compute

$$V_t(s_t) = \max_{a_t \in \mathcal{A}} [r(s_t, a_t) + \gamma E_{s_{t+1} \sim p(s_{t+1}|s_t, a_t)} V_{t+1}(s_{t+1}|s_t)]$$

- Works if
  - Small number of states
  - Small number of actions
  - Somehow cope with expectation
- Three courses of dimensionality

#### **Enumeration Example**

- 5 drones in a room of size 30 x 30 x 30 (feet)
  - Discretize by 6 inches
- Guide them to avoid collisions
  - Each one has its own destination
- Number of possible states  $(60 \cdot 60 \cdot 60)^5 \approx 4.7 \cdot 10^{26}$ 
  - Small room, imagine a warehouse
  - Not capturing angle
- Actions
  - $27^3 \approx 20,000$
  - Tractable



http://www.m759.net/wordpress/?s=galois+cube

# VALUE ITERATION

#### **Enumeration**

- Episode length vary or is infinite
  - Enumeration does not work
  - Vast majority of practical problems
- Recursively defined optimality equation

$$V(s) = \max_{a \in \mathcal{A}} [r(s, a) + \gamma E_{\bar{s} \sim p(\bar{s}|S, a)} V(\bar{s}|s)]$$

Can be shown

$$V_t^T(s_t) = \max_{a_t \in \mathcal{A}} [r(s_t, a_t) + \gamma E_{s_{t+1} \sim p(s_{t+1}|s_t, a_t)} V_{t+1}^T(s_{t+1}|s_t)]$$

$$V(s) = \lim_{T \to \infty} V_0^T(s)$$

#### Value Iteration

- $V(s) = \max_{a \in \mathcal{A}} [r(s, a) + \gamma E_{\bar{s} \sim p(\bar{s}|s, a)} V(\bar{s}|s)]$
- Assume right-hand side known
  - Use approximate V
  - Can compute left-hand side
    - Gives better approximation of V

#### Value Iteration

- For  $k = 0,1,2,\cdots$ 
  - For each possible state s
    - Compute

$$V_{k+1}(s) = \max_{a \in \mathcal{A}} [r(s, a) + \gamma E_{\bar{s} \sim p(\bar{s}|S, a)} V_k(\bar{s}|s)]$$

- If discount factor less than 1 and everything is finite
  - Convergence (pointwise) to optimal value function
- Same pitfalls as enumeration
- No explicit policy

#### Value Function and Policy

- $\pi(s) = \underset{a \in \mathcal{A}}{arg\max}[r(s, a) + \gamma E_{\bar{s} \sim p(\bar{s}|s, a)}V(\bar{s}|s)]$ 
  - If V optimal,  $\pi$  is optimal
- $V(s) = r(s, \pi(s)) + \gamma E_{\bar{s} \sim p(\bar{s}|s, a)} V^{\pi}(\bar{s}|s)$ 
  - Must know  $V^{\pi}$
  - If  $\pi$  is optimal, V is optimal

#### Value Iteration



$$V_{k+1}(s) = \max_{a \in \mathcal{A}} \left( R_s^a + \gamma \sum_{s' \in \mathcal{S}} P_{ss'}^a V_k(s') \right) \qquad R_s^a = r(s, a)$$

$$R^a = \left( r(s, a) \right)_{s \in \mathcal{S}}$$

$$V_{k+1} = \max_{a \in \mathcal{A}} \mathbf{R}^a + \gamma \mathbf{P}^a V_k$$

$$R_s^a = r(s, a)$$

$$R^a = (r(s, a))_{s \in S}$$

Apply for each state

#### **Example**



- Actions: up, down, left, or right.
  - 0.7 chance of going one step in the desired direction
  - 0.1 chance of going one step in any of the other three directions
- Bump into the outside wall
  - Penalty of 1 (reward of -1)
  - Agent does not actually move
- There are four rewarding states
  - In each of these states, the agent gets the reward after it carries out an action in that state
    - Not when it enters the state.

https://artint.info/html/ArtInt\_224.html#gridworld-ex

### Example

- 9 cells around +10
- Discount 0.9
- Start with value function of 0

| 0 | 0  | -0.1 |
|---|----|------|
| 0 | 10 | -0.1 |
| 0 | 0  | -0.1 |

| 0   | 6.3 | -0.1 |
|-----|-----|------|
| 6.3 | 9.8 | 6.2  |
| 0   | 6.3 | -0.1 |

| 4.5 | 6.2 | 4.4 |
|-----|-----|-----|
| 6.2 | 9.7 | 6.6 |
| 4.5 | 6.1 | 4.4 |

### **Demo of Example**

http://www.cs.ubc.ca/~poole/demos/mdp/vi.html

## **Example: Shortest Path**



Problem

| 0  | -1 | -2 | 3  |
|----|----|----|----|
| -1 | -2 | ფ  | -3 |
| -2 | -3 | -3 | -3 |
| -3 | -3 | -3 | -3 |

V

| 0 | 0 | 0 | 0 |
|---|---|---|---|
| 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 |

 $V_1$ 

| 0  | -1 | -2 | -3 |
|----|----|----|----|
| -1 | -2 | -3 | -4 |
| -2 | -3 | -4 | -4 |
| -3 | -4 | -4 | -4 |

 $V_5$ 



 $V_2$ 

| 0  | -1 | -2 | -3 |  |
|----|----|----|----|--|
| -1 | -2 | -3 | -4 |  |
| -2 | -3 | -4 | -5 |  |
| -3 | -4 | -5 | -5 |  |
|    |    |    |    |  |

 $V_6$ 

| 0  | -1 | -2 | -2 |
|----|----|----|----|
| -1 | -2 | -2 | -2 |
| -2 | -2 | -2 | -2 |
| -2 | -2 | -2 | -2 |

 $V_3$ 

| 0  | -1 | -2 | -3 |
|----|----|----|----|
| -1 | -2 | -3 | -4 |
| -2 | -3 | -4 | -5 |
| -3 | -4 | -5 | -6 |

V.

#### Other Applications of Value Iteration

- Shortest Path can be solved by value iteration
- Other algorithms
  - Levensthein distance
  - String algorithms
    - String alignment
    - Dynamic time warping
      - Generalization of Levensthein
  - Graphical models
    - Viterbi algorithm

# **POLICY ITERATION**

#### **Evaluating Policy**

• Given policy  $\pi$  find  $V^{\pi}$ 

$$V^{\pi}(s) = E_{\substack{a \sim \pi(a|s) \\ \bar{s} \sim p(\bar{s}|s,a)}} [r(s,a) + \gamma V^{\pi}(\bar{s}|s)]$$

- Can use similar idea to value iteration
- Given approximate right-hand side
  - Find better left-hand side by using the equation

### **Iterative Policy Evaluation**

- Problem
  - Evaluate given policy  $\pi$
- Solution: iterative application of Bellman expectation equation
- $v_1 \rightarrow v_2 \rightarrow \dots \rightarrow v_{\pi}$
- For  $k = 0,1,2,\cdots$ 
  - For each possible state s compute

$$v_{k+1}(s) = E_{a \sim \pi(a|s)} \left[ r(s,a) + \gamma v_k(\bar{s}|s) \right]$$
$$\bar{s} \sim p(\bar{s}|s,a)$$

• Convergence to  $V^{\pi}$  can be proven

#### Iterative Policy Evaluation



$$v_{k+1}(s) = \sum_{a \in \mathcal{A}} \pi(a|s) \left( R_s^a + \gamma \sum_{s' \in \mathcal{S}} P_{ss'}^a v_k(s') \right) \qquad \pi(a|s) = P[a = \pi(s)]$$

$$\pi(a|s) = P[a = \pi(s)]$$

$$\boldsymbol{v}_{k+1} = \boldsymbol{R}^{\boldsymbol{\pi}} + \gamma \boldsymbol{P}^{\boldsymbol{\pi}} \boldsymbol{v}_k$$

Apply for each state

#### **Evaluate Policy**

$$\boldsymbol{v}_{k+1} = \boldsymbol{R}^{\boldsymbol{\pi}} + \gamma \boldsymbol{P}^{\boldsymbol{\pi}} \boldsymbol{v}_k$$

• Limit  $k \to \infty$ 

$$v^{\pi} = R^{\pi} + \gamma P^{\pi} v^{\pi}$$

$$v^{\pi} = (I - \gamma P^{\pi})^{-1} R^{\pi}$$

- Algorithm is a way to compute the inverse
  - Inverse exists if discount less than 1

• 
$$\mathbf{R}^{\pi} = \left( E_{a \sim \pi(a|s)} r(s,a) \right)_{s} = \left( \sum_{a \in \mathcal{A}} \pi(a|s) r(s,a) \right)_{s}$$

• 
$$\mathbf{P}^{\pi} = \left(\sum_{a \in \mathcal{A}} \pi(a|s) P_{ss'}^{a}\right)_{s,s'}$$

#### **Example of Evaluating Random Policy**



r = -1 on all transitions

- Undiscounted episodic MDP ( $\gamma = 1$ )
- Nonterminal states 1, ..., 14
- Shaded squares terminal nodes
- Actions leading out of the grid leave state unchanged
- Reward is -1 until the terminal state is reached
- Agent follows uniform random policy
  - Each action selected with same probability

## **Example of Evaluating Random Policy**

k = 0

k = 1

k = 2

 $v_k$  for random policy

| 0.0 | 0.0 | 0.0 | 0.0 |
|-----|-----|-----|-----|
| 0.0 | 0.0 | 0.0 | 0.0 |
| 0.0 | 0.0 | 0.0 | 0.0 |
| 0.0 | 0.0 | 0.0 | 0.0 |

| 0.0  | -1.7 | -2.0 | -2.0 |
|------|------|------|------|
| -1.7 | -2.0 | -2.0 | -2.0 |
| -2.0 |      |      |      |
|      | -2.0 |      |      |

greedy policy with respect to  $v_k$ 







Northwestern | ENGINEERING

24

Reinforcement Learning

## **Example of Evaluating Random Policy**

k = 3

k = 10

 $k = \infty$ 

 $v_k$  for random policy

| 0.0  | -2.4 | -2.9 | -3.0 |
|------|------|------|------|
| -2.4 | -2.9 | -3.0 | -2.9 |
| -2.9 | -3.0 | -2.9 | -2.4 |
|      |      | -2.4 |      |

| 0.0  | -14. | -20. | -22. |
|------|------|------|------|
| -14. | -18. | -20. | -20. |
| -20. | -20. | -18. | -14. |
| -22. | -20. | -14. | 0.0  |

greedy policy with respect to  $v_k$ 







Northwestern | ENGINEERING

optimal policy

Reinforcement Learning

### **Policy Iteration**

- Given a policy  $\pi$ 
  - Evaluate policy π

$$V^{\pi}(s) = \mathbb{E}[r_t + \gamma r_{t+1} + \dots | S_t = s]$$

- Improve the policy by acting greedily with respect to  $V^{\pi}$  $\pi' = \operatorname{greedy}(V^{\pi})$
- This process of policy iteration always converges to  $\pi^*$  optimal policy
  - Finite cardinality assumptions

#### **Policy Iteration**



Policy Evaluation Estimate  $v_\pi$  Iterative policy evaluation Policy Improvement Generate  $\pi' \geq \pi$  Greedy policy improvement



### **Policy Improvement**

- Consider a deterministic policy,  $a = \pi(s)$
- We can improve the policy by acting greedily

$$\pi'(s) = \operatorname*{argmax}_{a \in \mathcal{A}} Q^{\pi}(s, a)$$

Improves the value from any state s over one step

$$Q^{\pi}(s, \pi'(s)) = \max_{a \in \mathcal{A}} Q^{\pi}(s, a) \ge Q^{\pi}(s, \pi(s)) = V^{\pi}(s)$$

• Improves the value function,  $V^{\pi'}(s) \ge V^{\pi}(s)$ 

$$V^{\pi}(s) \leq Q^{\pi}(s, \pi'(s)) = \mathbb{E}_{\pi'}[r_t + \gamma V^{\pi}(S_{t+1})|S_t = s]$$

$$\leq \mathbb{E}_{\pi'}[r_t + \gamma Q^{\pi}(S_{t+1}, \pi'(S_{t+1}))|S_t = s]$$

$$\leq \mathbb{E}_{\pi'}[r_t + \gamma r_{t+2} + \gamma^2 Q^{\pi}(S_{t+2}, \pi'(S_{t+2}))|S_t = s]$$

$$\leq \mathbb{E}_{\pi'}[r_t + \gamma r_{t+2} + \dots |S_t = s] = V^{\pi'}(s)$$

### **Policy Improvement**

If improvements stop

$$Q^{\pi}(s,\pi'(s)) = \max_{a \in \mathcal{A}} Q^{\pi}(s,a) = Q^{\pi}(s,\pi(s)) = V^{\pi}(s)$$

Bellman optimality equation has been satisfied

$$V^{\pi}(s) = \max_{a \in \mathcal{A}} Q^{\pi}(s, a)$$

- Conclusion  $V^{\pi}(s) = V^{*}(s)$  for all  $s \in S$
- $\pi$  is an optimal policy

#### **Modified Policy Iteration**

- Stopping criteria
  - $\epsilon$ -convergence of value function
  - Stop after K iterations evaluating the policy
- In the example, K = 3 was sufficient to achieve optimal policy

#### **Generalized Policy Iteration**

- Loop
  - For  $k = 0,1,2,\cdots$ , K // K iterations to evaluate the policy
    - For each possible state s compute

$$v_{k+1}(s) = E_{\substack{a \sim \pi(a|s) \\ \bar{s} \sim p(\bar{s}|s,a)}} [r(s,a) + \gamma v_k(\bar{s}|s)]$$

- Improve the policy by acting greedily with respect to  $v_{K+1}$  $\pi' = \operatorname{greedy}(v_{K+1})$
- The inner loop approximately computes the inverse of the matrix in  $v^{\pi}=(I-\gamma P^{\pi})^{-1}R^{\pi}$
- K=0
  - Value iteration

#### **Generalized Policy Iteration**



Policy Evaluation Estimate  $V^{\pi}$ Any policy evaluation algorithm Policy Improvement Generate  $\pi' \geq \pi$ Any policy improvement algorithm



- Value iteration
  - Per iteration time low
  - Needs more iterations

- Policy iteration
  - Per iteration time high
    - Controlled by K
  - Needs fewer iterations
  - More flexible

Weaker convergence assumptions for policy iteration

Trade-off

#### **Expectation**

- $v_{k+1}(s) = E_{\substack{a \sim \pi(a|s) \ \bar{s} \sim p(\bar{s}|s,a)}} [r(s,a) + \gamma v_k(\bar{s}|s)]$
- Number of actions large
  - Sample actions
- For every state s
  - For  $n = 1, 2, \dots, N$ 
    - Sample  $a_n \sim \pi(a_n|s)$
    - Sample  $s'_n \sim p(s'_n | s, a_n)$
  - $v_{k+1}(s) = \frac{1}{N} \sum_{n=1}^{N} [r(s, a_n) + \gamma v_k(s'_n)]$
- In practice *N*=1



 $V^{\pi}$ 

#### Large State Space and Value Iteration

- Tabular value function
  - One big array with one entry per state
  - Not scalable
- Approximate value function
  - Neural network function  $V: S \to \mathbb{R}$
  - Can be any parametric function
  - No softmax
  - Output a single value



### Functional Approximation of V

- Updating the value function approximation
- At state s
  - Have reward plus future based on approximate value function
    - Based on optimal action
  - Have value of approximate value function
- Match them
  - L2 loss

fitted value iteration algorithm:

1. set 
$$y_i \leftarrow \max_{a_i} (r(s_i, a_i) + \gamma E[V_{\phi}(s_i')])$$

2. set 
$$\phi \leftarrow \operatorname{argmin}_{\phi} \frac{1}{2} \sum_{i} ||V_{\phi}(s_{i}) - y_{i}||^{2}$$

### Putting it all Together

- For  $k = 1, 2, \cdots$ 
  - For  $n = 0, 1, 2, \dots, N$ 
    - Sample  $s_n$
  - For  $n = 0, 1, 2, \dots, N$ 
    - Compute  $y_n = \max_a (r(s_n, a) + \gamma E[V_{\phi}(s'_n|s_n)])$
  - Set  $\phi \leftarrow \operatorname{argmin}_{\phi} \frac{1}{2} \sum_{n} ||V_{\phi}(s_n) y_n||^2$
- Last step
  - Standard gradient optimization by back propagation
- Drawback
  - No policy improvement



#### Revised

- Value function as neural network
- Keep track of Q-factor at samples generated
- Compute  $Q^{\pi}(s, a)$  at generated samples
  - Samples generated based on incumbent policy
  - Use relationship between Q and V
- Update policy in greedy manner from Q



### **Algorithm**

- For  $k = 1, 2, \cdots$ 
  - For  $n = 0, 1, 2, \dots, N$ 
    - Sample  $s_n$ ,  $a_n \sim \pi(a_n | s_n)$
  - For  $n = 0, 1, 2, \dots, N$ 
    - $Q^{\pi}(s_n, a_n) \leftarrow r(s_n, a_n) + \gamma E_{s' \sim p(s'|s_n, a_n)} [V_{\phi}(s')]$
    - Compute  $y_n = \max_a (r(s_n, a) + \gamma E_{s' \sim p(s'|S_n, a_n)} [V_{\phi}(s')])$
  - Set  $\phi \leftarrow \operatorname{argmin}_{\phi} \frac{1}{2} \sum_{n} ||V_{\phi}(s_n) y_n||^2$
  - $\pi(s) \leftarrow \operatorname{argmax}_a Q^{\pi}(s, a)$

#### Issues

- How to generate samples from state space?
  - Uniformly at random unclear for large state space
- Episodes present
  - Sample from episodes
  - Never sample a new state
    - Yes as next state
- Why not parametric policy?
  - Update of parameters not clear
  - Needs further tricks

#### **Unknown Transition Function**

- Observe only episodes imitation learning
- Functional approximation of transition function not possible
  - Output state

fitted value iteration algorithm:



- 1.  $\operatorname{set} y_i \leftarrow \max_{a_i} (r(s_i, a_i) + \gamma E[V_{\phi}(s_i')])$ 2.  $\operatorname{set} \phi \leftarrow \operatorname{argmin}_{\phi} \frac{1}{2} \sum_i ||V_{\phi}(s_i) y_i||^2$

Need to know outcomes for different actions!

policy iteration algorithm



$$\pi'(a_t|s_t) = \begin{cases} 1 & \text{if } a_t = \operatorname{argmax}_{a_t} Q^{\pi}(s_t, a_t) \\ 0 & \text{otherwise} \end{cases}$$

policy evaluation:



$$Q^{\pi}(s,a) \leftarrow r(s,a) + \gamma E_{s' \sim p(s'|s,\pi(s))}[Q^{\pi}(s',\pi(s'))]$$

### Functional Approximation of Q

#### policy iteration:



- 1. evaluate  $V^{\pi}(s)$ 2. set  $\pi \leftarrow \pi'$

fitted value iteration algorithm:



- 1.  $\operatorname{set} y_i \leftarrow \max_{a_i} (r(s_i, a_i) + \gamma E[V_{\phi}(s_i')])$ 2.  $\operatorname{set} \phi \leftarrow \operatorname{argmin}_{\phi} \frac{1}{2} \sum_i ||V_{\phi}(s_i) y_i||^2$

fitted Q iteration algorithm:



- 1.  $\det y_i \leftarrow r(s_i, a_i) + \gamma E[V_{\phi}(s_i')]$  approximate  $E[V(s_i')] \approx \max_{a'} Q_{\phi}(s_i', a_i')$ 2.  $\det \phi \leftarrow \operatorname{argmin}_{\phi} \frac{1}{2} \sum_i \|Q_{\phi}(s_i, a_i) y_i\|^2$

Doesn't require simulation of actions!



parameters  $\phi$ 

#### Value Iteration with Fitted Q-factor

- Observed data are trajectories
  - Formally,  $U = \{(s_i, a_i, s_i', r_i) | i \in N\}$
- Loop
  - Sample  $S \subseteq U$
  - For  $i \in S$ 
    - $y_i \leftarrow r_i + \gamma \max_{a'_i} Q_{\phi}(s'_i, a'_i)$
  - Set  $\phi \leftarrow \operatorname{argmin}_{\phi} \frac{1}{2} \sum_{i \in S} \|Q_{\phi}(s_i, a_i) y_i\|^2$
- Only remaining drawback how to compute max

### **Analysis**

full fitted Q-iteration algorithm:



- - this max improves the policy (tabular case)
- 1. dataset  $\{(s_i, a_i, s_i', r_i)\}$ 2. set  $y_i \leftarrow r(s_i, a_i) + \gamma \max_{a_i'} Q_{\phi}(s_i', a_i')$ 3. set  $\phi \leftarrow \operatorname{argmin}_{\phi} \frac{1}{2} \sum_i \|Q_{\phi}(s_i, a_i) y_i\|^2$

$$\mathcal{E} = \frac{1}{2} E_{(s,a) \sim \beta} \left[ Q_{\phi}(s,a) - \left[ r(s,a) + \gamma \max_{a'} Q_{\phi}(s',a') \right] \right]$$

- error  $\varepsilon$ 

- If  $\mathcal{E} = 0$ , then  $Q_{\phi}(s, a) = r(s, a) + \gamma \max_{a'} Q_{\phi}(s', a')$ 
  - This is an *optimal* Q-function, corresponding to optimal policy  $\pi^*$ :

$$\pi^*(a_t|s_t) = \begin{cases} 1 & \text{if } a_t = \operatorname{argmax}_{a_t} Q_{\phi} (s_t, a_t) \\ 0 & \text{otherwise} \end{cases}$$

#### **Online Version**

#### full fitted Q-iteration algorithm:



collect dataset  $\{(s_i, a_i, s'_i, r_i)\}$  using some policy

2. set 
$$y_i \leftarrow r(s_i, a_i) + \gamma \max_{a'_i} Q_{\phi}(s'_i, a'_i)$$

2. set 
$$y_i \leftarrow r(s_i, a_i) + \gamma \max_{a_i'} Q_{\phi}(s_i', a_i')$$
  
3. set  $\phi \leftarrow \operatorname{argmin}_{\phi} \frac{1}{2} \sum_i \|Q_{\phi}(s_i, a_i) - y_i\|^2$ 

#### online Q iteration algorithm:



1. take some action 
$$a_i$$
 and observe  $(s_i, a_i, s_i', r_i)$   
2.  $y_i = r(s_i, a_i) + \gamma \max_{a'} Q_{\phi}(s_i', a_i')$   
3.  $\phi \leftarrow \phi - \alpha \frac{dQ_{\phi}}{d\phi}(s_i, a_i)(Q_{\phi}(s_i, a_i) - y_i)$ 

