12/4/24, 12:53 AM 8015.html

NASA-GLENN CHEMICAL EQUILIBRIUM PROGRAM CEA2, FEBRUARY 5, 2004 BY BONNIE MCBRIDE AND SANFORD GORDON

REFS: NASA RP-1311, PART I, 1994 AND NASA RP-1311, PART II, 1996

```
### CEA analysis performed on Wed 04-Dec-2024 03:53:03
# Problem Type: "Rocket" (Infinite Area Combustor)
prob case=_____8015 ro equilibrium
# Pressure (1 value):
p,atm = 47.62
# Chamber/Exit Pressure Ratio (1 value):
pi/p= 180
# Oxidizer/Fuel Wt. ratio (1 value):
o/f=2
# You selected the following fuels and oxidizers:
fuel C8H16,1-octene
                      wt%=100.0000 rho,g/cc= 888.000
oxid O2(L)
                      wt%=100.0000
# You selected these options for output:
# short version of output
output short
# Proportions of any products will be expressed as Mass Fractions.
output massf
# Heat will be expressed as siunits
output siunits
# Input prepared by this script:/var/www/sites/cearun.grc.nasa.gov/cgi-bin/CEARU
N/prepareInputFile.cgi
### IMPORTANT: The following line is the end of your CEA input file!
end
             THEORETICAL ROCKET PERFORMANCE ASSUMING EQUILIBRIUM
          COMPOSITION DURING EXPANSION FROM INFINITE AREA COMBUSTOR
Pin = 699.8 PSIA
CASE = _
           REACTANT
                                                                    TEMP
                                       WT FRACTION
                                                        ENERGY
                                        (SEE NOTE)
                                                       KJ/KG-MOL
                                                                      Κ
FUEL
           C8H16,1-octene
                                        1.0000000
                                                          0.000
                                                                     0.000
OXIDANT
           02(L)
                                        1.0000000
                                                    -12979.000
                                                                    90.170
0/F=
        2.00000 %FUEL= 33.333333 R,EQ.RATIO= 1.710973 PHI,EQ.RATIO= 1.710973
               CHAMBER
                         THROAT
                                    EXIT
Pinf/P
                 1.0000
                         1.7533
                                   180.00
P, BAR
                 48.251
                         27.521 0.26806
```

T, K

RHO, KG/CU M

H, KJ/KG

U, KJ/KG

3448.22 3214.09 1458.92

3.4319 0 2.1210 0 4.6495-2

-270.41 -1029.10 -5233.78 -1676.37 -2326.67 -5810.31 12/4/24, 12:53 AM ____8015.html

14/24, 12.33 AIVI				
G, KJ/KG S, KJ/(KG)(K)	-42511.8 12.2502	-40402.4 12.2502	-23105.8 12.2502	
<i>5</i> ,, (, ()				
M, (1/n) (dLV/dLP)t	20.392	20.595	21.040	
(dLV/dLP)t	-1.01663	-1.01123	-1.00000	
(dLV/dLT)p Cp, KJ/(KG)(K) GAMMAs	1.2935	1.2115	1.0001	
Cp, KJ/(KG)(K)	4.3185	3.7957	2.0561	
GAMMAs	1.1646	1.1694	1.2380	
SON VEL,M/SEC				
MACH NUMBER	0.000	1.000	3.729	
PERFORMANCE PAR	AMETERS			
Ae/At			17.835	
CSTAR, M/SEC			1846.8	
CF			1.7060	
Ivac, M/SEC Isp, M/SEC		2285.2	3333.7	
Isp, M/SEC		1231.8	3150.7	
MASS FRACTIONS				
*C0	0.56794	0.56276	0.48255	
	0.15341			
	0.00002			
	0.00163			
	0.00005			
	0.00001			
	0.01875			
1120	0 22620	0 24472	0 20470	

0.23620 0.24172 0.20478

0.00165 0.00079 0.00000

0.01855 0.01206 0.00000

0.00179 0.00089 0.00000

NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

H20

*0

*0H

*02

^{*} THERMODYNAMIC PROPERTIES FITTED TO 20000.K