Application des séries chronologiques sur les données Dataset_CB.csv

Ivanhoé & Youness

11 janvier 2024

Introduction

Voici une série chronologique de données pseudo-réelles issue d'une consommation EDF d'un foyer.

Problématique : Comment prédire à l'horizon de 7 jours la consommation électrique du foyer sur la première semaine de septembre 2023?

- Partie preprocessing
- Stationnarité et vérification
- Étude des corrélations
- Recherche de modèles significatifs
- Cross validation et évaluation
- Prédiction avec le meilleur modèle
- Conclusion

Renommer les colonnes et passer au format date

```
EDF = pd.read_csv(path)

EDF.columns = ["DATE", "CONSO"] # renommer col

EDF.DATE = pd.to_datetime(EDF.DATE,format='%d/%m/%y %H:%M')

print("shape = ",EDF.shape)

EDF.head(4)

shape = (744, 2)
```

Chargement des données

	DATE	CONSO
0	2023-08-01 00:00:00	522.646044
1	2023-08-01 01:00:00	142.889213
2	2023-08-01 02:00:00	497.052422
3	2023-08-01 03:00:00	110.082063

Dataset EDF

Consommation du foyer

Passage au log pour réduire la variabilité de la série

EDF['LOGCONSO']	=	np.log(EDF.CONSO)
EDF.head()		

	DATE	CONSO	LOGCONSO
0	2023-08-01 00:00:00	522.646044	6.258904
1	2023-08-01 01:00:00	142.889213	4.962070
2	2023-08-01 02:00:00	497.052422	6.208695
3	2023-08-01 03:00:00	110.082063	4.701226
4	2023-08-01 04:00:00	333.036926	5.808253

Dataset EDF

Log-consommation du foyer

Étude de la stationnarité de la log-consommation

Log-consommation du foyer

Sans différentier

```
# Testons la non-stationnarité
TestA = adfuller(EDF.LOGCONSO) # Test ADF rejeté
print("ADF p-val: ", TestA[1])
# Testons la stationnarité
TestK = kpss(EDF.LOGCONSO) # Test KPSS non rejeté
print("KPSS p-val: ", TestK[1])# Test non rejeté
ADF p-val: 0.0
KPSS p-val: 0.1
```

Tests ADF et KPSS

Étude de la stationnarité de la log-consommation avec une différentiation saisonnière

Différentielle saisonnière log-consommation du foyer

â Du va différentier une fois pour reparder les incréments à 24 heures près BEP[diff247] = BED.LOGOMS.diff(24) fig = px.line(EDF, x='DATE', y='diff24', labels='(DATE': 'Date', 'diff24': '')) fig.update layout(title='Différentiation saisonnière de la Log-consommation d'émergie du foyer') fig.show()

Différentiation D=24

Avec différentiation saisonnière s=24

KPSS p-val: 0.1

Testons la non-stationnarité
Testa adfuller(EDF,dif724.dropna()) # Test ADF rejeté au seuil de 5%
print(*ADF p-val : , [restall1)
Testons la stationnarité
Testim = kops (EDF,dif724.dropna()) # Test KPSS non rejeté
print(*KPSS p-val : ', TestK[1])# Test non rejeté
ADF p-val : 0.000211407230469844

Tests ADF et KPSS

Remarque

Attention avec les tests de stationnarité, l'hétéroscédasticité n'est pas toujours repérée.

Étude des corrélations sur la série passée au log

```
ACF = plot_acf(EDF.LOGCONSO, lags=70, alpha=0.05,title="ACF avec lags=70")
PACF = plot_pacf(EDF.LOGCONSO, lags=70, alpha=0.05,title="PACF avec lags=70")
ACF = plot_acf(EDF.LOGCONSO, lags=26, alpha=0.05,title="ACF avec lags=26")
PACF = plot_pacf(EDF.LOGCONSO, lags=26, alpha=0.05,title="ACF avec lags=26")
```


-0.75

-1.00

Recherche de modèles à l'aide de la fonction AUTO_ARIMA sous certaines contraintes

```
auto_arima(EDF.LOGCONSO, start_p=0, start_q=0, seasonal=True, start_P=0, start_0=0, m=24, d=0, D=0, with_intercept=True, stepwise=True, trace=True) #force D=d=0 # trace=True pour afficher # stepwise=True passe d'un modèle à l'autre
```

Best model: ARIMA(5,0,0)(1,0,2)[24] intercept

Best model: ARIMA(1,1,0)(1,0,0)[24]

Remarque

Commandes qui mettent beaucoup de temps à s'exécuter.

Modèle 1: SARIMAX(EDF.LOGCONSO, order=(5, 0, 0), seasonal_order=(1, 0, 2, 24), trend=None)

Modèle 2 : SARIMAX(EDF.LOGCONSO, order=(5, 0, 0), seasonal_order=(2, 0, 2, 24), trend=None)

Dep. Variable: Model: Date:	SARI	MAX(5, θ,		08 Jan 2024	Log Likeliho		-216.49 452.99
Time: Sample:				15:11:22 0 - 744	HQIC		498.378 470.549
Covariance Type	:			opg			
	coef	std err	z	P> z	[0.025	0.975]	
ar.L1 -	9.4634	0.036	-12.723	0.000	-0.535	-0.392	
ar.L2 (ar.L3 -	3.2922	0.041	7.124	0.000	0.212	0.373	
ar.L3 -1	9.2793	0.043	-6.479	0.000	-0.364	-0.195	
ar.L4 -	9.1498	0.039	-3.796	0.000	-B.227	-0.072	
ar.L5 (3.2477	0.036	6.869	0.000	0.177	0.318	
ar.S.L24 ar.S.L48 ma.S.L24	9.2925	0.077	3.778	0.000	0.141	0.444	
ar.S.L48	9.7074	0.077	9.138	0.000	0.556	0.859	
ma.S.L24 -1	9.5115	0.154	-3.314	0.001	-0.814	-0.209	
ma.S.L48 - 0	9.4687	0.126	-3.717	0.000	-0.716	-0.222	
					-0.716 0.072		
Liung-Box (L1)				Jarque-Bera		1.48	
Prob(0):	(4).		0.21		(50).	0.48	
Heteroskedastic	ity (H)		1.46	Skew:		0.40	
Prob(H) (two-si			0.00	Kurtosis:		2.82	
F10D(II) (two-31)							

Modèle 3 : SARIMAX(EDF.LOGCONSO, order=(7, 0, 0), seasonal_order=(2, 0, 2, 24), trend=None)

			SAR	IMAX Results			
Dep. Variable Model: Date: Time: Sample:	SARI	MAX(7, θ,		98 Jan 2024 15:18:24	No. Observat Log Likeliho AIC BIC HQIC		- 26 43 48 45
Covariance Ty	pe:			opg			
	coef	std err	Z	P> z	[0.025	0.975]	
ar.L1	-0.4379	0.039	-11.310	0.000	-0.514	-0.362	
	0.3091	0.842	7.433	0.000	0.228	0.391	
	-0.3397	0.844	-7.685	0.000	-0.426	-0.253	
	-0.1595	0.842	-3.816	0.000	-0.241		
		0.841					
		0.043		0.000			
	-0.1966	0.840	-4.898	0.000		-0.118	
	0.2652	0.069	3.832		0.130		
			10.617		0.599		
			-4.216	0.000			
			-4.389				
sigma2	0.0985	0.011	9.081	0.000	0.077	0.120	
Liung-Box (L1) (0):		0.13	Jarque-Bera	(JB):	1.	27
Prob(0):			0.72	Prob(JB):		θ.	53
Heteroskedast	icity (H):		1.34	Skew:		θ,	98
		Prob(H) (two-sided):				2.	87

Modèle 4 : SARIMAX(EDF.LOGCONSO, order=(8, 1, 0), seasonal_order=(2, 0, 1, 24), trend=None)

					J.	HNI	MAX Results				
Dep. Variab	le:						LOGCONSO		Observations:		
Model:		SAF	IMAX(8,	1,	θ)x(2,	θ,	[1], 24)	Log	Likelihood		-
Date:					Mon,		Jan 2024				
Time:							16:03:41	BIC			
Sample:							0	HQI	C		
	_						- 744				
Covariance	Type:						opg				
		coef	std	err			P> z		[0.025	0.975]	
ar.L1	;	.2711		027					-1.344	-1.198	
ar.L1 ar.L2	-1	7101	Θ.	056	- 34	. 25/	0.00	0	0 927	0 600	
ar.L3	-0	0057	۵.	050	15	20/	0.00	۵	-0.827 -1.022	0.009	
	-0	8004	Α.	678	- 12	883	0.00	A	-1.022	-0.762	
ar.15	- 0	3917	A.	A71	- 5	492	0.00	Ä	-0.531	-A. 252	
ar.16	- 0	4111	A.	863	-6	574	0.00	Ä	-0.531 -0.534 -0.552	-A. 288	
ar.L7	- 0	4329	0	861	-7	. 136	0.00	Ö	-0.552	-0.314	
ar.L8	- 0	1747	A	839	- 4	494	I A AA	Α	-0.251	-A A99	
ar.S.L24	Θ	.6477	Θ.	035	18	. 296	0.00	Θ	0.578	0.717	
ar.S.L48		. 3538	Θ.	035	10	.016	0.00	Θ	0.578 0.285	0.423	
ma.S.L24		. 9914	Θ.	232	-4	. 271	0.00	Θ	-1.446	-0.537	
sigma2							0.00		0.059	0.152	
Liung-Box (Jarque-B		(10).		0.77
Prob(0):	LL) (47.			Ä	72	Prob(JB)		(30).		0.68
Heteroskeda	stici	tv (H)					Skew:				0.01
Prob(H) (tw						. 03	Kurtosis				2.84

Log-consommation d'énergie du foyer avec superposition du modèle 2

Log-consommation d'énergie du foyer avec superposition du modèle 3

Log-consommation d'énergie du foyer avec superposition du modèle d2

Cross validation : une partie train et une partie test, entraînement sur les données train

Train_test_split

```
M = len(EDF) - int(np.floor(0.2*len(EDF)))
print(M)
#Construire une partie train et une partie test avec 20% des données
EDF Train = EDF.iloc[:M]
EDF_Test = EDF.iloc[M:]|
506
```

Test dataset correspondant à 20% des données

Entraînent de 4 modèles choisis

```
Mod1 = SARIMAX(EDF_Train.LOGCONSO, order=(5, 0, 0), seasonal order=(1, 0, 2, 24), Mod1 = Mod1.fit()

Mod2 = SARIMAX(EDF_Train.LOGCONSO, order=(5, 0, 0), seasonal order=(2, 0, 2, 24), Mod2 = SARIMAX(EDF_Train.LOGCONSO, order=(5, 0, 0), seasonal order=(2, 0, 2, 24), mod2 = Mod2.fit()

Mod3 = SARIMAX(EDF_Train.LOGCONSO, order=(7, 0, 0), seasonal order=(2, 0, 2, 24), enforce_stationarity=False, enforce_invertibility=False)

Mod3 = Mod3.fit()

Mod4 = SARIMAX(EDF_Train.LOGCONSO, order=(8, 1, 0), seasonal order=(2, 0, 2, 24), enforce_stationarity=False, enforce_invertibility=False)

Mod4 = SARIMAX(EDF_Train.LOGCONSO, order=(8, 1, 0), seasonal order=(2, 0, 1, 24), enforce_stationarity=False, enforce_invertibility=False)

## Stocker les modèles dans un dictionnaire

Mod = "Mod1":Mod1, "Mod2":Mod2,"Mod3":Mod3,"Mod4":Mod4 }
```

Prédiction sur la partie test et évaluation avec certaines métriques

```
def mean absolute percentage error(y true, y pred):
    """Renvoie un pourcentage moyen d'erreur entre les vraies valeurs et les prédictions """
   y true, y pred = np.array(y true), np.array(y pred) #convertir au format array
   return np.mean(np.abs((y true - y pred) / y true)) * 100
MAE = [] ## l'écart absolue moven
MSE = [] ## la norme2 au carré movenne
RMSE = [1]
MAPE = [1]
for i in range(1.5):
    """Rajoute une colonne prédiction pour chaque modèle et stock les métriques de validations"""
   EDF Test[f"val {i}"] = Mod[f"Mod{i}"].get forecast(steps=len(EDF Test)).summary frame(alpha=0.05)['mean']
   #mean représente la meilleure estimation de chaque période
   MAE.append(mean absolute error(EDF Test.LOGCONSO, EDF Test[f"val {i}"]) )
   MSE.append(mean squared error(EDF Test.LOGCONSO, EDF Test[f"val [i]"]))
   RMSE.append(mean squared error(EDF Test.LOGCONSO, EDF Test[f"val {i}"],squared=False) )
   MAPE.append(mean absolute percentage error(EDF Test.LOGCONSO, EDF Test[f"val {i}"]) )
```

Dataset test complété avec les prédictions sur la partie test "Forcast_test"

	DATE	CONSO	LOGCONSO	val_exp1	val_exp2	val_exp3	val_exp4	val_1	val_2	val_3	val_4
596	2023-08-25 20:00:00	2789.791163	7.933722	1624.389878	1629.588951	1665.508527	1614.771569	7.346593	7.348657	7.373237	7.335164
597	2023-08-25 21:00:00	3990.209681	8.291599	5233.517739	5005.995358	5020.073489	5037.519473	8.516545	8.470966	8.476551	8.472884
598	2023-08-25 22:00:00	1947.497008	7.574300	819.634774	850.045620	843.339294	856.909432	6.662565	6.697864	6.692721	6.701547
599	2023-08-25 23:00:00	420.785554	6.042123	756.884070	718.223462	663.115417	705.827171	6.582916	6.529355	6.452301	6.507585
600	2023-08-26 00:00:00	294.629097	5.685717	187.620215	176.405297	183.159721	194.259237	5.188126	5.125359	5.165710	5.217408

Remarque

Le meilleur modèle sera celui qui minimise les métriques telles que la MAE et la MSE dans notre cas. En réalité, une métrique différente pourrait être choisie selon la demande d'un métier spécialiste sur la consommation d'électricité.

Comparaison des métriques pour l'évaluation des différents modèles

Prédiction sur la partie test et évaluation avec certaines métriques

```
pred dates = pd.date range(start='2023-09-01 00:00:00', periods=7*24, freq='H') #Le temps futur
predictions = np.exp(Pred['mean'].values + Best Mod.params["sigma2"]/2) # les prédictions à venir
# Créer le graphique Plotly
fig = px.line(EDF, x='DATE', y='CONSO',
              labels={'CONSO': "Consommation d'électricité"})
# Ajouter les prédictions
fig.add scatter(x=pred dates, y=predictions, mode='lines',
                name='Prédictions', line=dict(color='green', dash='dot'))
# Ajouter la zone de confiance
##Zone supérieure
fig add scatter(x=pred dates, y=np.exp(Pred['mean ci lower']), fill='tonexty',
                mode='lines', line=dict(color='lightgrey'), showlegend=False)
##7one inférieure
fig.add scatter(x=pred dates, y=np.exp(Pred['mean ci upper']),
                fill='tonexty', mode='lines', line=dict(color='lightgrey'), showlegend=False)
# Mettre à iour le lavout
fig.update layout(title="Consommation d'électricité avec prédictions",
                  xaxis title='Temps (en heure)',
                  vaxis title='Consommation (en watt/heure)')
# Afficher le graphique
fig.show()
```

Représentation graphique des prédictions avec les intervalles de confiance à 95%

Consommation d'électricité avec prédictions

Conclusion

- La RMSE est relativement importante et l'indicateur MAPE sur les données réelle n'est pas non plus très bon (40% d'erreur en moyenne).
- Le traitement des températures, la nébulosité ainsi que la pression atmosphérique pourraient être intégrés dans notre modèle.
- Trouver le caractère saisonnier avec une méthode plus précise comme la transformée de Fourier.
- Tester d'autres méthodes pour traiter les données (ex : réseau de neurones RNN)