

On Usable Location Privacy for Android with Crowd-Recommendations

Benjamin Henne[#], Christian Kater[#] and Matthew Smith ^b

#Distributed Computing and Security Group Leibniz Universität Hannover, Germany henne@dcsec.uni-hannover.de

Usable Security and Privacy Group, Universität Bonn, Germany smith@cs.uni-bonn.de

Massive use of location-based services on mobile devices

- Still rising adoption of smartphones and tablets entails an increasing use of location-based services ranging from <u>location sharing</u> to the retrieval of location-based information
 - "74 % of US smartphone owners use their phone to get real-time locationbased information"
 - "18% of US smartphone owners use a geosocial service to check in to certain locations or share their locations with friends"

(Pew Internet & American Life Project, May 2012, http://pewinternet.org/Reports/2012/Location-based-services.aspx)

- Very different apps adapt location today
 - Navigation, location sharing, geo-tagging photos, local news and weather, local radio stations, find a café nearby or cheapest gas station in range, get schedule of next bus stop, local game high scores, fitness, ..., and ads.

Location use of Android Apps

In June 2013, 27.2 % of 20,681 Android top apps found at the Google Play Store on the Web required access to location data

Surveillance Threat by Apps

- If users reveal their location to an app, they always reveal it with full precision even to those that do not need high accuracy
 - ✓ Navigation software needs full precision
 - ! Weather forecast services for instance do not!
 - example: Clock widget cLock

 HTTP GET

 http://query.yahooapis.com/v1/public/yql?
 q=select woeid from geo.placefinder
 where text="35.337201 25.386001"

and gflags="R"

Android Location Features

- Android users just can enable/disable location use for all apps at once
- Android distinguishes between exact (GPS) and broad (Wi-Fi) location
 - developers define permissions required by an app to be installed
 - ⇒ developers determine precision of disclosed data
 - users just control location sources
 - ! even "broad" Wi-Fi location create threats to privacy

Apple iOS Location Features

- iOS allows users to enable/disable location use for all apps at once
- Additionally features per-app configuration
- On first location request of an app, a dialog asks the user about the per-app location privacy setting
 - + including optional purpose of location request

How can we preserve location privacy?

- Many apps that request location, but do not need it to function as expected by the users – preventing access is ok here if possible
 - Apple iOS; research: AppFence, MockDroid; Android Cyanogenmod: Privacy Guard
- ! However, there are many <u>location-based apps users want to use</u>, but they still have privacy concerns!
- ⇒ Since many apps would work equally or similarly well with a more rough positioning, we can improve privacy by only disclosing location only in such detail as needed by an app to function as requested
 - Nothing new to research in general, but <u>still missing</u> in real world systems
 - No mobile system allows any kind of location obfuscation up-to-now

One reason for missing adoption: Usability!

- Many obfuscation techniques might be hard to understand for users
- Users might not be able to appropriately configure parameters
 - Hard to realize what k=20 means in daily life k-anonymity
 - Even hard to realize the effect of randomly shifting location up to 500m
- Users might not be willing to think about technical details at all
 - Rather interested in obfuscation results
 - but independently of any algorithm concept?
- For users, it might be hard to determine what exactness an app needs to function as expected

Focus Group Study: What do users really want or need?

- Identify users' experiences, requirements, worries and wished towards location privacy and current systems
- Invited 1,510 people from university study mailing list for group discussion on "daily use of mobile apps"
 - Guided discussion to location use and finally to privacy for avoiding bias
- Compiled 3 balanced discussion groups from 98 answers
 - Each discussion took about 90 minutes; 20 € compensation per person
 - 11 female, 8 male; aged 24±4 years; from 14 fields of study
 - 12 Android users, 7 iOS users
 - 9 privacy fundamentalists, 10 pragmatists (Westin's privacy segmentation)
 - diverging technical expertise

FGs: Usage Habits of Location-aware Apps

- All participants reported to use some kind of location-aware apps
 - Navigation, maps, weather report, public transport timetables, ...
 - 6 of 19 reported to share location occasionally
- Most participants use location services selectively
 - iPhone users utilize per-app configuration
 - Some Android users resorted to turning services on/off prior to app usage
- 4 participants reported not using location services
 - 3 did not want to be observed by "others" or apps
 - 1 iPhone user was annoyed of location request pop-ups
- Battery drain was second most common reason for selectively enabling
- Convenience was major factor for using although feeling being observed

FGs: Experiences and Requests

- Most iOS users stated to be fairly satisfied
 - One user requested to get to know each app's <u>last location usage</u>
 - Feature exists, however only reports rough "recently"/in last 24h use
 - One user requested apps to specify <u>purpose</u> of location use
 - Other participants rejected: They would not trust developers
- Android users requested transparency of information usage
 - Even if not regularly checking
 - 1. They stated to presumably feel better to be able to
 - This "should make developers use location more prudently"
 - Over half of them request per-app settings
 - Most of them liked direct feedback of pop-up dialog
 - Android's Settings app was felt to be very complex

FGs: Inaccuracy of Location

- FG#1: One participant of herself suggest the reduction of accuracy
 - Finding the next bus justifiably needs her exact location, while "her current city would be entirely enough when looking for local shopping coupons"
 - FG#1 discussed two levels of detail: precise and imprecise
 - Just 1 participant worried about complex settings
- In discussions, FG#2/3 appreciated an imprecise option as well
- Most participants stated to prefer using the imprecise option where possible
- There were different opinions on what would be a good level of imprecision
 - Depending on use case (search restaurant nearby, geo-tagging Facebook posts)
 - City, district, 1 kilometer, ...

FGs: Obfuscation Mechanisms

- a briefly discussion in the end
- Fixed (self-determined) locations were perceived as inadequate but for "tricking others concerning their whereabouts"

- Random Shifting was criticized, because of its "random" nature; disclosed location "could be at an absolutely unrelated" or "even inadequate place"
 - also applies to rounding or cutting decimal places
- Participants were interested in the concept of k-anonymity, BUT clearly disliked that obfuscation of their location depends on other users' location
 - + effective obfuscation "in meter" is hard to predict

FGs: Obfuscation Mechanisms (2)

- a briefly discussion in the end
- Participants mostly liked Mapping to Geographic Objects, at which their current location is mapped to center of the next street or urban district

- perceived as most intuitive and easy to grasp
- parts of them fully accepted to share their real location with a single online map service
- while others rejected using any external service

Conclusions

- Users <u>want</u> to be able to <u>control</u> location accuracy
- Disclosed location should be inaccurate, BUT
 Inaccuracy should be <u>predictable</u> and <u>understandable</u> to them

Usable Location Privacy for Android

- Based on findings from focus group discussions
- Built on top of Location Privacy Framework for Android¹
 - Henne et al.: Selective Cloaking: Need-to-know for Location-based Apps. 11th Annual Conference on Privacy, Security and Trust (PST), July 2013.
- Per-app location privacy settings
 - Allow access to exact location
 - Deny access to location data
 - Select from 3 different levels of location detail (obfuscation)
- Two alternative obfuscation mechanisms
- Statistics about location usage creates transparency
- Uncertain users are supported in configuration by "what others chose"

1 http://bhenne.github.io/android-location-privacy/

Obfuscation: Geo-data based mapping

- Maps real location of user to center of nearest geographic object of user selected type of objects
 - Using Android's Geocoder API, alternatively any other free map service
 - Shares location with a single service, but apps get obfuscated locations
- Implemented levels of detail: city, city district (village), street
 - Users just select the level of detail for an app

Obfuscation: Random Shifting - "Offline mode"

- Alternative mechanisms that completely operates on the device
- Approximating Geo-data based mapping?
 - Geo-data size and algorithm complexity does not fit on mobile devices
- Decided for Random Shifting in random direction
- Specifying minimal/maximum distance
 - Metaphors like "city block" or "playing field" differ across cities, countries, sports and even sport associations – does not fit
 - Decided to re-use the 3 levels city, district and street (keep it simple!)
 - User could enter corresponding values manually
 - Configure distances using a configuration wizard
 - Select representative city, pin some locations on a map
 - Learn values from mean obfuscation after having used geo-data mechanism for some time

Usable Location Privacy for Android – Ul

- iOS-like pop-up dialog asks for location accuracy when an app request location data the first time
 - Select one of 5 levels of location detail
- If users cancels (e.g. via home button), no data is disclosed to app until configuration was made
 - Android notifications remind user to configure

Settings App

- Configuration via Android app Settings
 - App overview instantly shows configured accuracy for each app
 - Advanced Settings
 - Switch online/offline obfuscation
 - Configure offline obfuscation
 - Configure Recommendations/ Sharing of settings

Statistics – Transparency of Location Usage

- Main view shows last location access of all apps having requested location data
 - Ordering by last access shows latest tracking by apps
 - Ordering by access count identifies data-hungry apps
- No information about disclosed location itself
 - would create additional threats to privacy

Transparency of Location Usage – App Details

- Detailed view allows for investigating an app's tracking behavior
 - past usage: 24 hours, last 4 weeks
 - how often
 - how regular
- Mean obfuscation deviation shows mean distance between real locations and locations given to the app
 - Shows effect of configured level of detail

FGs: Supporting Configuration / Decision Making

- Users have to decide which level of detail fits best to their privacy needs while being able to appropriately use location-based features of apps
- Nobody else should make privacy decision for the participants, but they confirmed to ask others if they were not able to decide

Discussed Ideas

- Recommendations based on <u>privacy profiles</u> like "concerned", "post privacy" – hard to create due to few levels and diversity of users/apps
- App categories like "games" rather complicates configuration efforts
- Online communities are mistrusted, being manipulated by app developers
- Recommendations by <u>public non-profit organizations</u>
 - Consumer advice centers, IT security associations
- ! Any Central service could just give advice for a subset of all app
 - Like recommendation for top-1000 apps

Supporting Decision Making by "what others chose"

- Crowd-based social service shows users what other users chose for an app as privacy setting
 - most adaptive to changing landscape of apps
 - covers any app that is used by some people

Implementation

- If a user is asked to configure a new app, the most common selections of others are displayed
- User MUST select own option
- If users configures app, his configuration is anonymously shared with others
- In offline mode numeric values of levels are used to map others' levels to own levels

Conclusion

- Based on focus group results we implemented location obfuscation for Android
 - https://github.com/bhenne/android-usable-location-privacy
 - It implements simple but sufficient obfuscation that fits users' needs
 - ! Study participants rejected—from their point of view—complex or unpredictable algorithms like k-anonymity
 - The obfuscation configuration is simple as well
 - Once decide to allow the use of an online map service or not
 - Just select one of five options of detail for each app
 - Users that are undecided about what level of detail an app should receive are supported by information about what the crowd chose
 - Location access statistics create transparency about the potential surveillance threat raised by different apps

"Offline Mode" - Configuration Wizard

Crowd Service

- If a user is asked to configure a new app, service is queried
- 2. Configuration pop-up displays most common selections of others
 - No pre-selection
 - Information is not displayed besides items to minimize influence
- 3. User selects his own configuration
- 4. His configuration is anonymously shared with service
 - Users are differentiated based on Google accounts
 - Google Play Services OAuth
- Current basic service implementation assumes users as equally skilled
 - > Future work