3장. 그래픽 컬러처리

▶학습목표

- 색상, 명도, 채도의 정의를 명확히 이해한다.
- RGB, CMY, HSV 컬러 모델의 차이점을 이해한다.
- 컬러 프로파일과 컬러처리 시스템의 필요성을 이해한다.
- RGB 컬러모드와 인덱스 컬러모드의 차이점을 이해한다.
- 하프 토우닝 기법과 디더링 기법을 이해한다.
- 감마수정이 필요한 이유와 수정방법을 이해한다.

컬러 매칭 * 580 nm 황색 = 적색 광원(0.25) + 녹색광원(0.13) + 청색광원(0.0) * 500nm 근처에서 적색광원은 음의 값 • G, B를 합성한색상에서 적색 성분을 빼야 함. • 현실적으로 불가능 → RGB로 모든 자연색 표현 불가

CMYK 컬러모델

- ▶ K for Chromatic (회색농도)
 - C = 120, M = 80, Y = 200
 - C = 40, M = 0, Y = 120, K = 80

🔈 장점

- 잉크 건조시간, 잉크 비용
- 정밀한 회색농도를 표현(완벽한 보색차단)

YUV

♪ 컬러 TV의 흑백 TV 호환성

- Y = 0.213R + 0.715G + 0.072G
- Y' = 0.299R + 0.587G + 0.114B 명도
- U = 0.492 (B Y') V = 0.877 (R Y') 색(색상, 채도)

♪ 디지털 TV

- Y'CbCr
- Cb = (B Y')/1.772 + 0.5 Cr = (R Y')/0.402 + 0.5

♪ NTSC TV 표준

- I는 주황-청색(Orange -Blue), Q는 자주-녹색(Purple-Green)축
- Y, I, Q 순서대로 민감도가 낮아짐

컬러 보기표

- 🔈 한 화면에 보일 수 있는 컬러는 여전히 8가지
- ▶ 그 컬러가 어디서 왔는가의 문제

프레임버퍼 (RGB)	보기표 (R)	보기표 (G)	보기표 (G)
000(0)	00011100	11000000	10010011
001(1)	11001001	00010100	01011100
010(2)	10010000	10010011	00010101
011(3)	00110001	00111001	00110000
100(4)	11110101	01010011	11001111
101(5)	01011000	10110100	10110101
110(6)	00100011	01010101	01011100
111(7)	10111100	11111100	11111001

[표 3-3] 컬러 보기표의 예

디더링

- ▶ 해상도 감소 없음 (동일 해상도 유지)
 - 화소에서 화소로의 사상
 - Ex. 오류 확산(Error Diffusion Dither)

[그림 3-53] 오류 확산 방법

- Ex. 패턴 디더(Patterned Dither)
 - 모든 화소의 회색도를 최대 8로 정규화
 - 정규화 값이 행렬 값보다 크면 화소에 가장 가까운 색으로, 작으면 배경색으로

(3.17)

Dither Pattern =
$$\begin{bmatrix} 6 & 8 & 4 \\ 1 & 0 & 3 \\ 5 & 2 & 7 \end{bmatrix}$$

33

오류확산, 패턴 디더

- 🔈 디더링
 - 오류확산: 오류를 전파
 - 패턴디더: 인위적인 잡음 삽입

[그림 3-54] 원영상

[그림 3-55] 오류확산

[그림 3-56] 패턴 디더링

3.5 감마수정-감마수정

- ▶ 인점의 밝기는 전자빔의 밝기에 비 선형적으로 반응
 - (0..255)에서 128은 중간 회색도가 아님
 - 인점 밝기와 회색도와의 관계

$$B = \alpha \delta^{\gamma}$$
 (3.18)

• 알파: 비례상수, 델타: 정규화 회색도, 감마: 1이 아니고 (1.7-2.8)

[그림 3-57] 전자빔/회색도

[그림 3-58] 밝기/전자빔

감마수정의 필요성

- 🔈 프로그래머의 기대치 대 실제 밝기
 - 회색도 128은 실제로 더욱 어둡게 나타남

[그림 3-59] 기대값

[그림 3-60] 실제값

- $\bullet V_{\text{C}} V_{\text{S}}^{(1/\gamma)}$
- •인간 시각의 비선형성 ·CRT의 비선형성