OpenCPI FSK App Guide

Version 1.3

Revision History

Revision	Description of Change	Date
v1.1	Initial Release	3/2017
v1.2	Updated for OpenCPI Release 1.2	8/2017
v1.3	Updated for OpenCPI Release 1.3	1/2018
v1.3.1	Updated for OpenCPI Release 1.3.1, including FMCOMMS2/3 support	3/2018

Table of Contents

1	Document Scope	4
2	Supported Hardware Setups	4
3	Description	4
4	Building the Application 4.1 Dependencies 4.2 FSK Mode Configurations 4.2.1 Common to all Hardware 4.2.2 Additional Dependencies for FMCOMMS2 4.2.3 Additional Dependencies for FMCOMMS3 4.2.4 Additional Dependencies for Matchstiq-Z1 4.3 Additional Dependencies for Zipper-related platforms (Zedboard, Stratix IV, ML605) 4.4 Performance and Resource Utilization 4.4.1 filerw 4.4.2 tx 4.4.3 rx 4.4.4 txrx/bbloopback 4.5 Executable	10
5	Testing the Application 5.1 Baud Synchronization 5.2 Sample test setup 5.3 make show 5.4 Artifacts 5.5 Arguments to executable 5.6 Library Path Requirements 5.7 Expected results 5.8 Known Issues	11 12 12 12 13 16
6	Appendix A: Worker Parameters	18
7	7.1 Zedboard/FMCOMMS2/3	21 22 23

1 Document Scope

This document describes the OpenCPI FSK demo application. It includes a description of the application, instructions to setup the hardware, build of bitstreams, and execution of the application itself on various platforms.

2 Supported Hardware Setups

This app is supported on the following hardware configurations:

- \bullet Zedboard/FMCOMMS2
- Zedboard/FMCOMMS3
- x86/ML605/FMCOMMS2 in FMC LPC slot
- x86/ML605/FMCOMMS3 in FMC LPC slot
- Matchstiq-Z1
- Zedboard/Zipper/MyriadRF
- x86/Stratix IV GX development kit (230 Edition)/Zipper/MyriadRF in HSMC A slot
- x86/Stratix IV GX development kit (230 Edition)/Zipper/MyriadRF in HSMC B slot
- x86/ML605/Zipper/MyriadRF in FMC LPC slot
- x86/ML605/Zipper/MyriadRF in FMC HPC slot

3 Description

The FSK App may be run in one of five available modes. The modes are *filerw*, rx, tx, txrx, and bbloopback. The *filerw* mode uses file_read and file_write workers to process the input using only application workers (platform agnostic) in a purely digital fashion. A block diagram of the FSK App *filerw* mode can be seen in Figure 1.

Figure 1: FSK App filerw mode Block Diagram

The rx mode inputs IQ data from the Lime ADC and processes the FSK signal down to bits that are written to file. A block diagram of the FSK App rx mode can be seen in Figure 2.

Figure 2: FSK App rx mode Block Diagram

The tx mode inputs a file from disk, modulates the input as a FSK signal, and transmits the input via the Lime DAC. A block diagram of the FSK App tx mode can be seen in Figure 3.

Figure 3: FSK App tx mode Block Diagram

The *txrx* mode is the full transceiver mode of the application which combines the functionality of Figures 2 and 3 into a single application. This mode transmits input file data as the radio RF TX output and inputs RF RX radio input that is written to file. The *bbloopback* mode utilizes the same HDL assembly and application XML as the *txrx* mode but utilizes a built-in test mode of the Lime transceiver to loopback analog data at baseband.

4 Building the Application

4.1 Dependencies

The tables below breakdown the workers used within the various platforms and modes of the FSK App. Appendix A shows the exact worker configurations used in the HDL assemblies. See the individual component data sheets for more information and build instructions. Similarly, the HDL platform worker and configurations for the intended radio must be compiled prior to building the various FSK bitstreams.

4.2 FSK Mode Configurations

4.2.1 Common to all Hardware

Application XML	filerw	rx	tx	txrx	bbloopback
app_fsk_filerw (dependency only, no build required)	X				
HDL Assemblies	filerw	rx	tx	txrx	bbloopback
fsk_filerw	X				
dc_offset_iq_imbalance_mixer_cic_dec_rp_cordic_fir_real		X			
mfsk2_zp16_fir_real_phase_to_amp_cordic_cic_int			X		
fsk_modem				X	X
RX Path Workers	filerw	rx	tx	txrx	bbloopback
dc_offset_filter.hdl		X		X	х
iq_imbalance_fixer.hdl		X		X	X
complex_mixer.hdl	х	X		X	X
cic_dec.hdl	X	Х		X	Х
rp_cordic.hdl	X	Х		X	Х
fir_real_sse.hdl	X	Х		X	Х
baudTracking.rcc	х	X		X	X
real_digitizer.rcc	х	X		X	X
file_write.rcc	X	Х		X	Х
TX Path Workers	filerw	rx	tx	txrx	bbloopback
file_read.rcc	х		X	X	X
mfsk_mapper.hdl	X		X	X	Х
zero_pad.hdl	X		X	X	х
fir_real_sse.hdl	X		X	X	х
phase_to_amp_cordic.hdl	X		X	X	X
cic_int.hdl	X		X	X	X

${\bf 4.2.2}\quad {\bf Additional\ Dependencies\ for\ FMCOMMS2}$

Application XML	filerw	rx	tx	txrx	bbloopback
app_fsk_rx_fmcomms2 (dependency only, no build required)		Х			
app_fsk_tx_fmcomms2 (dependency only, no build required)			X		
app_fsk_txrx_fmcomms2 (dependency only, no build required)				X	
RX or TX Path Workers	filerw	rx	tx	txrx	bbloopback
ad9361_data_sub.hdl		X	X	X	
RX Path Workers	filerw	rx	tx	txrx	bbloopback
ad9361_adc.hdl		X		X	
ad9361_adc_sub.hdl		х		X	
TX Path Workers	filerw	rx	tx	txrx	bbloopback
ad9361_dac.hdl			X	X	
ad9361_dac_sub.hdl			X	X	
Endpoint Proxies	filerw	rx	tx	txrx	bbloopback
fmcomms_2_3_rx.rcc		x		X	
fmcomms_2_3_tx.rcc			X	X	
SPI Command and Control	filerw	rx	tx	txrx	bbloopback
ad9361_config.hdl		х	X	X	
ad9361_config_proxy.rcc		х	X	X	
ad9361_spi.hdl		х	X	X	
I2C Command and Control	filerw	rx	tx	txrx	bbloopback
fmcomms_2_3_i2c.hdl		х	X	X	

4.2.3 Additional Dependencies for FMCOMMS3

Application XML	filerw	rx	tx	txrx	bbloopback
app_fsk_rx_fmcomms3 (dependency only, no build required)		X			
app_fsk_tx_fmcomms3 (dependency only, no build required)			X		
app_fsk_txrx_fmcomms3 (dependency only, no build required)				X	
RX or TX Path Workers	filerw	rx	tx	txrx	bbloopback
ad9361_data_sub.hdl		х	X	X	
RX Path Workers	filerw	rx	tx	txrx	bbloopback
ad9361_adc.hdl		X		X	
ad9361_adc_sub.hdl		х		X	
TX Path Workers	filerw	rx	tx	txrx	bbloopback
ad9361_dac.hdl			X	X	
ad9361_dac_sub.hdl			X	X	
Endpoint Proxies	filerw	rx	tx	txrx	bbloopback
fmcomms_2_3_rx.rcc		х		X	
fmcomms_2_3_tx.rcc			X	X	
SPI Command and Control	filerw	rx	tx	txrx	bbloopback
ad9361_config.hdl		х	X	X	
ad9361_config_proxy.rcc		х	X	X	
ad9361_spi.hdl		х	X	X	
I2C Command and Control	filerw	rx	tx	txrx	bbloopback
fmcomms_2_3_i2c.hdl		X	X	X	

4.2.4 Additional Dependencies for Matchstiq-Z1

Application XML	filerw	rx	tx	txrx	bbloopback
app_fsk_rx_matchstiq_z1 (dependency only, no build required)		X			
app_fsk_tx_matchstiq_z1 (dependency only, no build required)			X		
app_fsk_txrx_matchstiq_z1 (dependency only, no build required)				X	X
RX Path Workers	filerw	rx	tx	txrx	bbloopback
lime_adc.hdl		X		X	X
TX Path Workers	filerw	rx	tx	txrx	bbloopback
lime_dac.hdl			X	X	X
Endpoint Proxies	filerw	rx	tx	txrx	bbloopback
matchstiq_z1_rx.rcc		X		X	X
$\mathrm{matchstiq}_\mathrm{z1}_\mathrm{tx.rcc}$			X	X	X
SPI Command and Control	filerw	rx	tx	txrx	bbloopback
lime_rx_proxy.rcc		X		X	X
lime_rx.hdl		X		X	X
lime_tx_proxy.rcc			X	X	X
lime_tx.hdl			X	X	X
lime_spi.hdl		X	X	X	X
I2C Command and Control	filerw	rx	tx	txrx	bbloopback
si5338_proxy.rcc		X	X	X	X
si5338.hdl		X	X	X	X
matchstiq_z1_avr_proxy.rcc		X	X	X	X
matchstiq_z1_avr.hdl		X	X	X	X
${ m tmp}100_{ m proxy.rcc}$		X	X	X	X
tmp100.hdl		X	X	X	x
matchstiq_z1_pca9535_proxy.rcc		X	X	X	x
pca9535.hdl		X	X	X	x
matchstiq_z1_i2c.hdl		X	X	X	X

FSK App Guide

4.3 Additional Dependencies for Zipper-related platforms (Zedboard, Stratix IV, ML605)

Application XML	filerw	rx	tx	txrx	bbloopback
app_fsk_rx_zipper (dependency only, no build required)		X			
app_fsk_tx_zipper (dependency only, no build required)			X		
app_fsk_txrx_zipper (dependency only, no build required)				X	X
RX Path Workers	filerw	rx	tx	txrx	bbloopback
lime_adc.hdl		х		X	X
TX Path Workers	filerw	rx	tx	txrx	bbloopback
lime_dac.hdl			X	X	X
Endpoint Proxies	filerw	rx	tx	txrx	bbloopback
zipper_rx.rcc		X		X	X
zipper_tx.rcc			X	X	X
SPI Command and Control	filerw	rx	tx	txrx	bbloopback
lime_rx_proxy.rcc		Х		X	X
lime_rx.hdl		Х		X	x
lime_tx_proxy.rcc			X	X	x
lime_tx.hdl			X	X	x
lime_spi.hdl		х	х	X	X
I2C Command and Control	filerw	rx	tx	txrx	bbloopback
si5351_proxy.rcc		х	Х	X	X
si5351.hdl		х	х	х	Х

4.4 Performance and Resource Utilization

4.4.1 filerw

Platform	Tool	Version	Device	Registers (typ)	LUTs (typ)	Control Plane Clock Fmax (MHz) (typ)	Memory/Special Functions
alst4	Quartus	15.1.0	EP4SGX230KF40C2	72701	51,421	125	GXB Receiver PCSs=4 GXB Transmitter PCSs=4 GXB Transmitter PMAs=4 GXB Receiver PMAs=4 DSP18x18s=284 PLLs=1
matchstiq_z1	Vivado	2017.1	xc7z020clg484-1	24350	20624	100.000	BUFGs=1 DSP48E1s=139 RAMB36E1s=34 BUFGCTRLs=1
ml605	ISE	14.7	6vlx240tff1156-1	29,638	39,946	116.428	DSP48E1s=144 RAMB36E1s=29 BUFG/BUFGCTRLs=6 RAMB18E1s=1
zed	Vivado	2017.1	xc7z020clg484-1	23987	20431	100.000	BUFGs=1 DSP48E1s=139 RAMB36E1s=34 BUFGCTRLs=1
zed_ise	ISE	14.7	7z020clg484-1	19,264	25,450	100.080	DSP48E1s=144 RAMB36E1s=34 BUFG/BUFGCTRLs=1

4.4.2 tx

Platform	Tool	Version	Device	Registers (typ)	LUTs (typ)	Control Plane Clock Fmax (MHz) (typ)	Memory/Special Functions
alst4/Zipper HSMC(A/B)	Quartus	15.1.0	EP4SGX230KF40C2	45491	31,434	125	GXB Receiver PCSs=4 GXB Transmitter PCSs=4 GXB Transmitter PMAs=4 GXB Receiver PMAs=4 DSP18x18s=136 PLLs=1
matchstiq_z1	Vivado	2017.1	xc7z020clg484-1	13733	11428	100.000	BUFGs=2 DSP48E1s=66 RAMB36E1s=18 BUFGCTRLs=2
ml605/FMCOMMS2/3 LPC	ISE	14.7	6vlx240tff1156-1	17,329	22,361	125.141	DSP48E1s=68 RAMB36E1s=21 RAMB18E1s=1 BUFG/BUFGCTRLs=6
ml605/Zipper HPC	ISE	14.7	6vlx240tff1156-1	17,280	22,422	125.172	DSP48E1s=68 RAMB36E1s=21 BUFG/BUFGCTRLs=7
ml605/Zipper LPC	ISE	14.7	6vlx240tff1156-1	17,280	22,407	125.282	DSP48E1s=68 RAMB36E1s=21 BUFG/BUFGCTRLs=7
zed/FMCOMMS2/3	Vivado	2017.1	xc7z020clg484-1	12839	10451	100.000	BUFGs=1 DSP48E1s=66 RAMB36E1s=18 BUFGCTRLs=1
zed/Zipper	Vivado	2017.1	xc7z020clg484-1	12797	10527	100.000	BUFGs=2 DSP48E1s=66 RAMB36E1s=18 BUFGCTRLs=2
zed_ise/FMCOMMS2/3	ISE	14.7	7z020clg484-1	10,431	10,431	100.341	DSP48E1s=68 RAMB36E1s=18 BUFG/BUFGCTRLs=1
zed_ise/Zipper	ISE	14.7	7z020clg484-1	10,384	13,506	100.220	DSP48E1s=68 RAMB36E1s=18 BUFG/BUFGCTRLs=2

4.4.3 rx

Platform	Tool	Version	Device	Registers	LUTs	Control Plane	Memory/Special Functions
				(typ)	(typ)	Clock Fmax (MHz) (typ)	
alst4/Zipper HSMC(A/B)	Quartus	15.1.0	EP4SGX230KF40C2	47752	34,788	125	GXB Receiver PCSs=4 GXB Transmitter PCSs=4 GXB Transmitter PMAs=4 GXB Receiver PMAs=4 DSP18x18s=166 PLLs=1
matchstiq_z1	Vivado	2017.1	xc7z020clg484-1	16468	15747	100.000	BUFGs=2 DSP48E1s=82 RAMB36E1s=21 BUFGCTRLs=2
ml605/FMCOMMS2/3 HPC	ISE	14.7	6vlx240tff1156-1	19,604	25,605	125.360	DSP48E1s=85 RAMB36E1s=18 BUFG/BUFGCTRLs=6
ml605/FMCOMMS2/3 LPC	ISE	14.7	6vlx240tff1156-1	19,602	25,738	125.141	DSP48E1s=85 RAMB36E1s=18 BUFG/BUFGCTRLs=6
ml605/Zipper HPC	ISE	14.7	6vlx240tff1156-1	19,482	25,728	96.600	DSP48E1s=85 RAMB36E1s=21 BUFG/BUFGCTRLs=7
m ml605/Zipper~LPC	ISE	14.7	6vlx240tff1156-1	19,482	25,664	125.063	DSP48E1s=85 RAMB36E1s=21 BUFG/BUFGCTRLs=7
zed/FMCOMMS2/3	Vivado	2017.1	xc7z020clg484-1	15536	14682	100.000	BUFGs=1 DSP48E1s=82 RAMB36E1s=18 BUFGCTRLs=1
m zed/Zipper	Vivado	2017.1	xc7z020clg484-1	15413	14660	100.000	BUFGs=2 DSP48E1s=82 RAMB36E1s=21 BUFGCTRLs=2
zed_ise/FMCOMMS2/3	ISE	14.7	7z020clg484-1	13,111	17,716	100.140	DSP48E1s=85 RAMB36E1s=18 BUFG/BUFGCTRLs=1
zed_ise/Zipper	ISE	14.7	7z020clg484-1	12,990	17,772	100.462	DSP48E1s=85 RAMB36E1s=21 BUFG/BUFGCTRLs=2

4.4.4 txrx/bbloopback

Platform	Tool	Version	Device	Registers	LUTs	Control Plane	Memory/Special Functions
				(typ)	(typ)	Clock Fmax (MHz) (typ)	
alst4/Zipper HSMC(A/B)	Quartus	15.1.0	EP4SGX230KF40C2	75287	55,021	125	GXB Receiver PCSs=4 GXB Transmitter PCSs=4 GXB Transmitter PMAs=4 GXB Receiver PMAs=4 DSP18x18s=302 PLLs=1
matchstiq_z1	Vivado	2017.1	xc7z020clg484-1	27371	24079	100.000	BUFGs=3 DSP48E1s=148 RAMB36E1s=37 BUFGCTRLs=3
ml605/FMCOMMS2/3 LPC	ISE	14.7	6vlx240tff1156-1	32,042	42,905	125.094	DSP48E1s=153 RAMB36E1s=29 BUFG/BUFGCTRLs=6 RAMB18E1s=1
ml605/Zipper HPC	ISE	14.7	6vlx240tff1156-1	31,955	43,033	122.055	DSP48E1s=153 RAMB36E1s=32 BUFG/BUFGCTRLs=8 RAMB18E1s=1
ml605/Zipper LPC	ISE	14.7	6vlx240tff1156-1	31,972	43,393	106.293	DSP48E1s=153 RAMB36E1s=32 BUFG/BUFGCTRLs=8 RAMB18E1s=1
zed/FMCOMMS2/3	Vivado	2017.1	xc7z020clg484-1	26394	22973	125.000	BUFGs=1 DSP48E1s=148 RAMB36E1s=34 BUFGCTRLs=1
m zed/Zipper	Vivado	2017.1	xc7z020clg484-1	26318	23054	100.000	BUFGs=3 DSP48E1s=148 RAMB36E1s=37 BUFGCTRLs=3
zed_ise/FMCOMMS2/3	ISE	14.7	7z020clg484-1	21,649	28,536	100.231	DSP48E1s=153 RAMB36E1s=34 BUFG/BUFGCTRLs=1
${ m zed_ise/Zipper}$	ISE	14.7	7z020clg484-1	21,569	28,625	100.241	DSP48E1s=153 RAMB36E1s=37 BUFG/BUFGCTRLs=3

4.5 Executable

The software portion of the application consists of a C++ program written using the OpenCPI C++ API as well as RCC proxy workers for command and control functionality. The program references the appropriate application XML file for the requested hardware and mode. The app XML files contain all of the property settings for the components in each application, except for the configuration of the endpoint proxy(ies). These endpoint proxy-related settings are passed via command-line prompted values to the appropriate endpoint proxy workers.

To build for the host platform (which is the case if ML605 or Stratix IV platform is intended to be used), run the following commands from the FSK directory:

ocpidev build

To build for the Zedboard or Matchstiq-Z1 (which run the xilinx13_3 PetaLinux operating system), run the following command from the FSK directory:

ocpidev build --rcc-platform xilinx13_3

5 Testing the Application

5.1 Baud Synchronization

The input filename for the application is idata/Os.jpeg. It is modified from an original JPEG image (see Figure 4) with data prepended to it for baud synchronization purposes (240 bytes of an alternating 1-0 pattern followed by 2 bytes are the value 0xFACE). In the receive data stream, real_digitizer.rcc worker makes symbol/bit decisions and only sends out bits that occur after the first detecteed 0xFACE bit pattern (b1111101011001110).

5.2 Sample test setup

The test setup varies per mode of operation. The base test setup includes a hardware platform of choice and appropriate power and USB cables (Matchstiq-Z1 and Zedboard/Zipper use the USB cable to access the terminal via a program such as *screen* or over a USB-over-Ethernet connection; Stratix IV and ML605 require a USB cable for JTAG loading). All other test modes expand upon this base configuration, and may or may not include additional RF cabling or external equipment.

The *filerw* mode requires only the base test setup since no transceiver operations are actuated (data passes to and from the FPGA in a "loopback" fashion). Upon application execution, the expected result is written to odata/out_app_fsk_filerw.bin, which is a transmitted copy of the input file idata/Os.jpeg.

The bbloopback mode is similar to the filerw mode, but data goes beyond the FPGA through the radio's built-in analog baseband loopback, and back into the FPGA. Because the data never reaches the TX/RX connectors, no external RF cabling is required. The expected result is a transmitted copy of the idata/Os.jpeg file as the output odata/out_app_fsk_bbloopback.bin.

The next mode is the rx mode, which requires the base test setup with an RX antenna, as well as another transmitter (such as another platform running the tx mode) in order to broadcast a known FSK signal. Optionally, a spectrum analyzer may be connected to the transmitter to visually verify that the signal being fed into the radio's RX input is an FSK signal at the correct RF frequency and bandwidth. The output is written to the file odata/out_app_fsk_rx.bin.

The next mode is the tx mode, which requires the base test setup with a TX antenna, as well as some hardware to verify the transmission, such as a spectrum analyzer or an additional radio running in rx mode. In this mode the input file idata/Os.jpeg is transmitted out of the RF TX output of the radio.

The final mode is the *txrx* mode. This mode requires a base test setup with either a SMA loopback cable connecting the TX output of the radio to the RX input of the radio, or separate RX/TX antennas if RF usage is desired. An RF splitter can also be used to optionally connect a spectrum analyzer to the RF signal for visual verification. The default values for RF gain assume that an RF splitter is being used.

5.3 make show

In order to test the application using the various modes mentioned above, make show can be run from the applications/FSK directory. This provides instructions (for Zynq-Based Platforms) for setting OCPI_LIBRARY_PATH on the hardware platform and then running the application. Finally, it explains how to verify the output data on the development computer. The following sections provide further insight into these instructions.

5.4 Artifacts

Before running the application, the location of the required deployable artifacts must be specified in the OCPI_LIBRARY_PATH environment variable. Separate artifacts are needed for each RCC worker, and one artifact for the required FPGA image. Furthermore, artifacts differ depending on which mode the application is to be run in. Appendix B includes a list of the artifacts required for each platform and mode.

5.5 Arguments to executable

There is only one required initial argument to the FSK App executable, which defines the mode of execution. There is an optional initial argument to the FSK App executable that defines whether or not to run in debug mode. The app prompts the user at runtime for additional values, which vary depending upon the selected mode of operation. Running the application without any arguments prints the usage instructions. The non-initial optional arguments prompt the user to override the default value(s), and primarily configure the RF front end of the given platform using one or more endpoint proxies.

The arguments to the executable are summarized in the following table:

Argument	Mode	Description
mode	n/a	filerw, rx, tx, txrx, bbloopback
debug_mode	optional - 'd' or blank	enables initial and final dump of all properties

The prompts performed by the executable are summarized in the following table:

The prompts performed by the executable are summarized in the following table.		
Argument	Mode	Description
RF frontend (ML605 and zed only)	rx, txrx	zipper, FMCOMMS2, or FMCOMMS3
runtime	filerw, rx, tx, txrx, bbloopback	run time of application in seconds
rx_sample_rate	rx, txrx, bbloopback	RX RF sample rate in Msps
rx_rf_center_freq	rx, txrx, bbloopback	RX RF tuning frequency in MHz
rx_rf_bw	rx, txrx, bbloopback	RX RF bandwidth in MHz
rx_rf_gain	rx, txrx, bbloopback	RX RF gain in dB
rx_bb_bw	rx, txrx, bbloopback	RX baseband bandwidth in MHz
rx_bb_gain	rx, txrx, bbloopback	RX baseband gain in dB
rx_if_center_freq	rx, txrx, bbloopback	RX IF tuning frequency in MHz. 0 disables IF tuning
tx_sample_rate	tx, txrx, bbloopback	TX RF sample rate in Msps
tx_rf_center_freq	tx, txrx, bbloopback	TX RF tuning frequency in MHz
tx_rf_gain	tx, txrx, bbloopback	TX RF gain in dB
tx_bb_bw	tx, txrx, bbloopback	TX baseband bandwidth in MHz
tx_bb_gain	tx, txrx, bbloopback	TX baseband gain in dB

5.6 Library Path Requirements

Prior to running the application, the environment variable OCPI_LIBRARY_PATH must include the following directories:

Matchstiq-Z1

- ocpi.core component RCC library location
- ocpi.assets bitstream directory location
- ocpi.assets.devices library location
- ocpi.assets component RCC library location

Matchstiq-Z1 additionally requires the following:

ocpi.assets.platforms.matchstiq_z1.devices library location

Note that the Stratix IV GX230 and ML605 hardware setups require the intended slot-specific bitstream's file location to be first in OCPI_LIBRARY_PATH. This is necessary because ocpirun's aritifact compatibility test does not currently differentiate between slot-connected device workers for multiple bitstreams that contain the same device worker, in the scenario where what differentiates the bitstreams is the device worker's slot connectivity. Reference the OpenCPI Application Development Guide for more about OCPI_LIBRARY_PATH.

Examples of library paths that could be used can be seen below:

Note: All example paths are relative to the applications/FSK/ directory.

Recommended Library Path for Matchstiq-Z1 or Zedboard or ML605/FMCOMMS2/3-HPC OCPI_LIBRARY_PATH=\$0CPI_PROJECT_REGISTRY_DIR/ocpi.core/exports/lib:\$0CPI_PROJECT\
_REGISTRY_DIR/ocpi.assets/exports/lib

Recommended Library Path filerw mode

OCPI_LIBRARY_PATH=\$OCPI_PROJECT_REGISTRY_DIR/ocpi.core/exports/lib:\$OCPI_PROJECT\
_REGISTRY_DIR/ocpi.assets/exports/lib

Recommended Library Path for Stratix IV $\mathrm{GX230/Zipper}$ in HSMC A

OCPI_LIBRARY_PATH=\$0CPI_PROJECT_REGISTRY_DIR/ocpi.core/exports/lib:\$0CPI_PROJECT\
_REGISTRY_DIR/ocpi.assets/exports/lib:../../hdl/assemblies/dc_offset_iq_imbalanc\
e_mixer_cic_dec_rp_cordic_fir_real/container-dc_offset_iq_imbalance_mixer_cic_de\
c_rp_cordic_fir_real_alst4_alst4_zipper_hsmc_alst4_port_a_rx_cnt_1rx_0tx_thruasm\
_zipper_hsmc_a_alst4/

tx

rx

OCPI_LIBRARY_PATH=\$0CPI_PROJECT_REGISTRY_DIR/ocpi.core/exports/lib/:\$0CPI_PROJEC\
T_REGISTRY_DIR/ocpi.assets/exports/lib/:../../hdl/assemblies/mfsk2_zp16_fir_real\
_phase_to_amp_cordic_cic_int/container-mfsk2_zp16_fir_real_phase_to_amp_cordic_c\
ic_int_alst4_alst4_zipper_hsmc_alst4_port_a_tx_cnt_0rx_1tx_thruasm_zipper_hsmc_a\
_alst4/

txrx/bbloopback

OCPI_LIBRARY_PATH=\$0CPI_PROJECT_REGISTRY_DIR/ocpi.core/exports/lib/:\$0CPI_PROJEC\
T_REGISTRY_DIR/ocpi.assets/exports/lib/:../../hdl/assemblies/fsk_modem/container\
-fsk_modem_alst4_alst4_zipper_hsmc_alst4_port_a_rx_tx_cnt_1rx_1tx_thruasm_zipper\
_hsmc_a_alst4/

Recommended Library Path for Stratix IV GX230/Zipper in HSMC B

rx

OCPI_LIBRARY_PATH=\$0CPI_PROJECT_REGISTRY_DIR/ocpi.core/exports/lib:\$0CPI_PROJECT\
_REGISTRY_DIR/ocpi.assets/exports/lib:../../hdl/assemblies/dc_offset_iq_imbalanc\
e_mixer_cic_dec_rp_cordic_fir_real/container-dc_offset_iq_imbalance_mixer_cic_de\
c_rp_cordic_fir_real_alst4_alst4_zipper_hsmc_alst4_port_b_rx_cnt_1rx_0tx_thruasm\
_zipper_hsmc_b_alst4/

tx

OCPI_LIBRARY_PATH=\$0CPI_PROJECT_REGISTRY_DIR/ocpi.core/exports/lib/:\$0CPI_PROJEC\
T_REGISTRY_DIR/ocpi.assets/exports/lib/:../../hdl/assemblies/mfsk2_zp16_fir_real\
_phase_to_amp_cordic_cic_int/container-mfsk2_zp16_fir_real_phase_to_amp_cordic_c\
ic_int_alst4_alst4_zipper_hsmc_alst4_port_b_tx_cnt_0rx_1tx_thruasm_zipper_hsmc_b\
_alst4/

txrx/bbloopback

OCPI_LIBRARY_PATH=\$0CPI_PROJECT_REGISTRY_DIR/ocpi.core/exports/lib/:\$0CPI_PROJEC\
T_REGISTRY_DIR/ocpi.assets/exports/lib/:../../hdl/assemblies/fsk_modem/container\
-fsk_modem_alst4_alst4_zipper_hsmc_alst4_port_b_rx_tx_cnt_1rx_1tx_thruasm_zipper\
_hsmc_b_alst4/

Recommended Library Path for ML605/Zipper in FMC LPC

rx

OCPI_LIBRARY_PATH=\$0CPI_PROJECT_REGISTRY_DIR/ocpi.core/exports/lib:\$0CPI_PROJECT\
_REGISTRY_DIR/ocpi.assets/exports/lib:../../hdl/assemblies/dc_offset_iq_imbalanc\
e_mixer_cic_dec_rp_cordoc_fir_real/container-dc_offset_iq_imbalance_mixer_cic_de\
c_rp_cordic_fir_real_ml605_ml605_zipper_fmc_lpc_rx_cnt_1rx_0tx_thruasm_zipper_lp\
c_ml605/

tx

OCPI_LIBRARY_PATH=\$0CPI_PROJECT_REGISTRY_DIR/ocpi.core/exports/lib/:\$0CPI_PROJEC\
T_REGISTRY_DIR/ocpi.assets/exports/lib/:../../hdl/assemblies/mfsk2_zp16_fir_real\
_phase_to_amp_cordic_cic_int/container-mfsk2_zp16_fir_real_phase_to_amp_cordic_c\
ic_int_ml605_ml605_zipper_fmc_lpc_tx_cnt_0rx_1tx_thruasm_zipper_lpc_ml605/

txrx/bbloopback

OCPI_LIBRARY_PATH=\$0CPI_PROJECT_REGISTRY_DIR/ocpi.core/exports/lib/:\$0CPI_PROJEC\
T_REGISTRY_DIR/ocpi.assets/exports/lib/:../../hdl/assemblies/fsk_modem/container\
-fsk_modem_ml605_ml605_zipper_fmc_lpc_rx_tx_cnt_1rx_1tx_thruasm_zipper_lpc_ml605\
/

Example ML605/Zipper in FMC HPC

 $r_{\mathcal{I}}$

OCPI_LIBRARY_PATH=\$0CPI_PROJECT_REGISTRY_DIR/ocpi.core/exports/lib:\$0CPI_PROJECT\
_REGISTRY_DIR/ocpi.assets/exports/lib:../../hdl/assemblies/dc_offset_iq_imbalanc\
e_mixer_cic_dec_rp_cordic_fir_real/container-dc_offset_iq_imbalance_mixer_cic_de\
c_rp_cordic_fir_real_ml605_ml605_zipper_fmc_hpc_rx_cnt_1rx_0tx_thruasm_zipper_hp\
c_ml605/

tx

OCPI_LIBRARY_PATH=\$0CPI_PROJECT_REGISTRY_DIR/ocpi.core/exports/lib/:\$0CPI_PROJEC\
T_REGISTRY_DIR/ocpi.assets/exports/lib/:../../hdl/assemblies/mfsk2_zp16_fir_real\
_phase_to_amp_cordic_cic_int/container-mfsk2_zp16_fir_real_phase_to_amp_cordic_c\
ic_int_ml605_ml605_zipper_fmc_hpc_tx_cnt_0rx_1tx_thruasm_zipper_hpc_ml605/

txrx/bbloopback

OCPI_LIBRARY_PATH=\$OCPI_PROJECT_REGISTRY_DIR/ocpi.core/exports/lib/:\$OCPI_PROJEC\
T_REGISTRY_DIR/ocpi.assets/exports/lib/:../../hdl/assemblies/fsk_modem/container\
-fsk_modem_ml605_ml605_zipper_fmc_hpc_rx_tx_cnt_1rx_1tx_thruasm_zipper_hpc_ml605/

5.7 Expected results

In the case of the *filerw*, rx, txrx, and bbloopback modes, assuming transmission of the idata/Os.jpeg input file, the expected result is a transmitted copy of the JPEG file. A Linux program such as Eye of GNOME (eog) may be used to display the JPEG file. The file is shown in Figure 4.

In the case of the tx mode, verification is obtained by viewing the RF spectrum on a spectrum analyzer. An example of the transmitted spectrum may be seen in Figure 5.

Figure 5: Output of FSK App RF transmit

5.8 Known Issues

• The rx and tx modes suffer from limited carrier recovery ability. The requested center frequency may need to be adjusted to a value other than the exact expected nominal value.

- For more information on known limitations when using the Zipper-related platforms (Zedboard, Stratix IV, ML605), see the document Myriad-RF_1_Zipper_Limitations included with this project.
- On x86 host machines with more than one Stratix IV and/or ML605s plugged into PCIe slots, this app will assume that the first found Stratix IV/ML605 has a Zipper/MyriadRF plugged in. The first found Stratix IV/ML605 will be used during execution. While there are means to address this issue, they have not been implemented for the current release.

6 Appendix A: Worker Parameters

Common to all hardware

• dc_offset_filter.hdl

$$\begin{split} \mathrm{DATA_WIDTH_p} &= 16 \\ \mathrm{PEAK_MONITOR_p} &= \mathrm{true} \end{split}$$

• iq_imbalance_fixer.hdl

 $\begin{aligned} \text{DATA-WIDTH-p} &= 16 \\ \text{ACC-PREC-p} &= 38 \end{aligned}$

 $PEAK_MONITOR_p = true$

• complex_mixer.hdl

 $CHIPSCOPE_p = false$

 $NCO_DATA_WIDTH_p = 12$

 $INPUT_DATA_WIDTH_p = 12$

 $CORDIC_STAGES_p = 16$

 $PEAK_MONITOR_p = true$

• cic_dec.hdl

N = 3

M = 1

R = 16

 $DIN_WIDTH = 16$

 $ACC_WIDTH = 28$

 $DOUT_WIDTH = 16$

• rp_cordic.hdl

 $DATA_WIDTH = 16$

 $DATA_EXT = 6$

STAGES = 16

• fir_real_sse.hdl (rx_fir_real)

 $NUM_TAPS_p = 64$

 $DATA_WIDTH_p = 16$

 $COEFF_WIDTH_p = 16$

• mfsk_mapper.hdl

$$M_{-}p = 2$$

 \bullet zero_pad.hdl

 $DWIDTH_p = 16$

ML605 (with FMCOMMS2/3 card in FMC HPC slot)

• fmcomms_2_3_i2c.hdl

 $CP_CLK_FREQ_p = 125e6$

 $FMC_GA1 = 0$

 $FMC_GA0 = 0$

 \bullet ad9361_spi.hdl

 $CP_CLK_FREQ_HZ_p = 125e6$

 \bullet ad9361_data_sub.hdl

 $LVDS_p = true$

 $DATA_CLK_Delay = 2$

 $RX_Data_Delay = 0$

 $FB_CLK_Delay = 7$

 $TX_Data_Delay = 0$

ML605 (with FMCOMMS2/3 card in FMC LPC slot)

• $fmcomms_2_3_i2c.hdl$

 $CP_CLK_FREQ_p = 125e6$

 $FMC_GA1 = 1$

 $FMC_GA0 = 0$

 \bullet ad9361_spi.hdl

 $CP_CLK_FREQ_HZ_p = 125e6$

 \bullet ad9361_data_sub.hdl

 $LVDS_p = true$

 $DATA_CLK_Delay = 2$

 $RX_Data_Delay = 0$

 $FB_CLK_Delay = 7$

 $TX_Data_Delay = 0$

Zedboard FMCOMMS2/3 configurations)

• $fmcomms_2_3_i2c.hdl$

 $CP_CLK_FREQ_p = 100e6$

 $FMC_GA1 = 0$

 $FMC_GA0 = 0$

• ad9361_spi.hdl

 $CP_CLK_FREQ_HZ_p = 100e6$

 \bullet ad9361_data_sub.hdl

 $LVDS_p = true$

 $DATA_CLK_Delay = 2$

 $RX_Data_Delay = 0$

 $FB_CLK_Delay = 7$

 $TX_Data_Delay = 0$

Matchstiq-Z1 configurations

 \bullet lime_adc.hdl

 $DRIVE_CLK_p = false$

 $USE_CLK_IN_p = false$

 $USE_CTL_CLK_p = false$

 $USE_CLK_OUT_p = true$

• si5338.hdl

 $CLKIN_PRESENT_p = true$

 $CLKIN_FREQ_p = 3.072e7$

 $XTAL_PRESENT_p = false$

 $XTAL_FREQ_p = 0$

 $OUTPUTS_PRESENT_p = true$, false

 $INTR_CONNECTED_p = false$

 \bullet matchstiq_z1_i2c.hdl

 $NUSERS_p = 5$

 $SLAVE_ADDRESS_p =$

0x45, 0x71, 0x48, 0x21, 0x20

 $CLK_CNT_p = 199$

Zipper-related platforms (Zedboard, Stratix IV, ML605)

 \bullet lime_adc.hdl

 $DRIVE_CLK_p = false$

 $USE_CLK_IN_p = true$

 $USE_CTL_CLK_p = false$

 $USE_CLK_OUT_p = false$

• si5351.hdl

 $CLKIN_PRESENT = true$

 $CLKIN_FREQ = 3.072e7$

 $XTAL_PRESENT = false$

 $XTAL_FREQ = 0$

 $VC_PRESENT = false$

OUTPUTS_PRESENT = 0,0,1,1,1,1,0,0

 $OEB_MODE = low$

 $INTR_CONNECTED = false$

• zipper_i2c.hdl

 $NUSERS_p = 2$

7 Appendix B: Artifacts

7.1 Zedboard/FMCOMMS2/3

filerw (FMCOMMS2/3 not required)

- fsk_filerw_zed_base.bitz
- target-linux-x13_3-arm/file_read_s.so
- target-linux-x13_3-arm/Baudtracking_simple_s.so
- target-linux-x13_3-arm/real_digitizer_s.so
- target-linux-x13_3-arm/file_write_s.so

$\mathbf{r}\mathbf{x}$

- dc_offset_iq_imbalance_mixer_cic_dec_timestamper_zed_cfg_1rx_0 tx_fmcomms_2_3_lpc_lvds_cnt_1rx_0tx_thruasm_fmcomms_2_3_lpc_LVDS_zed.bitz
- target-linux-x13_3-arm/Baudtracking_simple_s.so
- target-linux-x13_3-arm/real_digitizer_s.so
- target-linux-x13_3-arm/file_write_s.so

- target-linux-x13_3-arm/zipper_rx_s.so
- $\bullet \ target\text{-}linux\text{-}x13\text{-}3\text{-}arm/lime\text{-}rx\text{-}proxy\text{-}s.so \\$
- target-linux-x13_3-arm/si5351_proxy_s.so

$\mathbf{t}\mathbf{x}$

- mfsk2_zp16_fir_real_phase_to_amp_cordic_cic_int_zed_cfg_0rx_ 1tx_fmcomms_2_3_lpc_lvds_cnt_0rx_1tx_thruasm_fmcomms_2_3_lpc_LVDS_zed.bitz
- target-linux-x13_3-arm/file_read_s.so
- target-linux-x13_3-arm/zipper_tx_s.so
- target-linux-x13_3-arm/lime_tx_proxy_s.so
- target-linux-x13_3-arm/si5351_proxy_s.so

txrx/bbloopback

- fsk_modem_zed_cfg_1rx_1tx_fmcomms_2_3_lpc_lvds_cnt_1rx_1tx_thruasm_fmcomms_2_3_lpc_LVDS_zed.bitz
- target-linux-x13_3-arm/file_read_s.so
- $\bullet \ target\text{-}linux\text{-}x13\text{-}3\text{-}arm/Baudtracking_simple_s.so$
- target-linux-x13_3-arm/real_digitizer_s.so
- target-linux-x13_3-arm/file_write_s.so

- \bullet target-linux-x13_3-arm/zipper_rx_s.so
- target-linux-x13_3-arm/zipper_tx_s.so
- target-linux-x13_3-arm/lime_rx_proxy_s.so
- target-linux-x13_3-arm/lime_tx_proxy_s.so
- target-linux-x13_3-arm/si5351_proxy_s.so

7.2 Matchstiq-Z1

filerw

- fsk_filerw_matchstiq_z1_base.bitz
- target-linux-x13_3-arm/file_read_s.so
- target-linux-x13_3-arm/Baudtracking_simple_s.so
- target-linux-x13_3-arm/real_digitizer_s.so
- \bullet target-linux-x13_3-arm/file_write_s.so

$\mathbf{r}\mathbf{x}$

- $\bullet \ dc_offset_iq_imbalance_mixer_cic_dec_rp_cordic_fir_real_matchstiq_z1_matchstiq_z1_rx_cnt_1rx_0tx_thruasm_matchstiq_z1.bitz \\$
- target-linux-x13_3-arm/Baudtracking_simple_s.so
- $\bullet \ \, {\rm target\text{-}linux\text{-}x13\text{-}3\text{-}arm/real_digitizer_s.so}$
- target-linux-x13_3-arm/file_write_s.so
- target-linux-x13_3-arm/matchstiq_z1_rx_s.so
- target-linux-x13_3-arm/lime_rx_proxy_s.so

- target-linux-x13_3-arm/si5338_proxy_s.so
- target-linux-x13_3-arm/matchstiq_z1_avr_proxy_s.so
- target-linux-x13_3-arm/tmp100_proxy_s.so
- $\bullet \ target-linux-x13_3-arm/matchstiq_z1_pca9535_proxy_s.so \\$

$\mathbf{t}\mathbf{x}$

- mfsk2_zp16_fir_real_phase_to_amp_cordic_cic_int_matchstiq_z1_matchstiq_z1_tx_cnt_0rx_1tx_thruasm_matchstiq_z1.bitz
- target-linux-x13_3-arm/file_read_s.so
- target-linux-x13_3-arm/matchstiq_z1_tx_s.so
- target-linux-x13_3-arm/lime_tx_proxy_s.so
- target-linux-x13_3-arm/si5338_proxy_s.so
- target-linux-x13_3-arm/matchstiq_z1_avr_proxy_s.so
- target-linux-x13_3-arm/tmp100_proxy_s.so
- target-linux-x13_3-arm/matchstiq_z1_pca9535_proxy_s.so

txrx/bbloopback

- $\bullet \ \, fsk_modem_matchstiq_z1_matchstiq_z1_rx_tx_cnt_1rx_1tx_thruasm_matchstiq_z1.bitz \\$
- target-linux-x13_3-arm/file_read_s.so
- target-linux-x13_3-arm/Baudtracking_simple_s.so
- target-linux-x13_3-arm/real_digitizer_s.so
- target-linux-x13_3-arm/file_write_s.so
- target-linux-x13_3-arm/matchstiq_z1_rx_s.so
- target-linux-x13_3-arm/matchstiq_z1_tx_s.so

- target-linux-x13_3-arm/lime_rx_proxy_s.so
- target-linux-x13_3-arm/lime_tx_proxy_s.so
- target-linux-x13_3-arm/si5338_proxy_s.so
- target-linux-x13_3-arm/matchstiq_z1_avr_proxy_s.so
- target-linux-x13_3-arm/tmp100_proxy_s.so
- target-linux-x13_3-arm/matchstiq_z1_pca9535_proxy_s.so

7.3 Zedboard/Zipper

filerw (zipper not required)

- \bullet fsk_filerw_zed_base.bitz
- target-linux-x13_3-arm/file_read_s.so
- \bullet target-linux-x13_3-arm/Baudtracking_simple_s.so
- target-linux-x13_3-arm/real_digitizer_s.so
- target-linux-x13_3-arm/file_write_s.so

 $\mathbf{r}\mathbf{x}$

- dc_offset_iq_imbalance_mixer_cic_dec_rp_cordic_fir_real_zed_base_cnt_1rx_0tx_thruasm_zipper_lpc_zed.bitz
- target-linux-x13_3-arm/Baudtracking_simple_s.so
- target-linux-x13_3-arm/real_digitizer_s.so
- target-linux-x13_3-arm/file_write_s.so

- target-linux-x13_3-arm/zipper_rx_s.so
- target-linux-x13_3-arm/lime_rx_proxy_s.so
- target-linux-x13_3-arm/si5351_proxy_s.so

 $\mathbf{t}\mathbf{x}$

- $\bullet \ \ \, mfsk2_zp16_fir_real_phase_to_amp_cordic_cic_int_zed_base_cnt_0rx_1tx_thruasm_zipper_lpc_zed.bitz$
- target-linux-x13_3-arm/file_read_s.so
- target-linux-x13_3-arm/zipper_tx_s.so

- \bullet target-linux-x13_3-arm/lime_tx_proxy_s.so
- target-linux-x13_3-arm/si5351_proxy_s.so

txrx/bbloopback

- $\bullet \ fsk_modem_zed_base_cnt_1rx_1tx_thruasm_zipper_lpc_zed.bitz \\$
- target-linux-x13_3-arm/file_read_s.so
- target-linux-x13_3-arm/Baudtracking_simple_s.so
- \bullet target-linux-x13_3-arm/real_digitizer_s.so
- $\bullet \ target\text{-}linux\text{-}x13\text{-}3\text{-}arm/file_write_s.so \\$

- target-linux-x13_3-arm/zipper_rx_s.so
- target-linux-x13_3-arm/zipper_tx_s.so
- target-linux-x13_3-arm/lime_rx_proxy_s.so
- target-linux-x13_3-arm/lime_tx_proxy_s.so
- target-linux-x13_3-arm/si5351_proxy_s.so

7.4 Stratix IV/Zipper

filerw (zipper not required)

- fsk_filerw_alst4_base.bitz
- target-linux-c7-x86_64/file_read_s.so
- \bullet target-linux-c7-x86_64/Baudtracking_simple_s.so

$\mathbf{r}\mathbf{x}$

- target-linux-c7-x86_64/file_read_s.so
- \bullet target-linux-c7-x86_64/Baudtracking_simple_s.so
- target-linux-c7-x86_64/real_digitizer_s.so

- target-linux-c7-x86_64/real_digitizer_s.so
- target-linux-c7-x86_64/file_write_s.so
- target-linux-c7-x86_64/zipper_rx_s.so
- target-linux-c7-x86_64/lime_rx_proxy_s.so
- target-linux-c7-x86_64/si5351_proxy_s.so

For Zipper plugged into HSMC Port A:

• dc_offset_iq_imbalance_mixer_cic_dec_rp_cordic_fir_real_alst4_alst4_zipper_hsmc_alst4_port_a_rx_cnt_1rx_0tx_thruasm_zipper_hsmc_a_alst4.bitz

For Zipper plugged into HSMC Port B:

• dc_offset_iq_imbalance_mixer_cic_dec_rp_cordic_fir_real_alst4_alst4_zipper_hsmc_alst4_port_b_rx_cnt_1rx_0tx_thruasm_zipper_hsmc_b_alst4.bitz

$\mathbf{t}\mathbf{x}$

- \bullet target-linux-c7-x86_64/file_read_s.so
- target-linux-c7-x86_64/zipper_tx_s.so

- \bullet target-linux-c7-x86_64/lime_tx_proxy_s.so
- target-linux-c7-x86_64/si5351_proxy_s.so

For Zipper plugged into HSMC Port A:

 $\bullet \ mfsk2_zp16_fir_real_phase_to_amp_cordic_cic_int_alst4_alst4_zipper_hsmc_alst4_port_a_txcnt_0rx_1tx_thruasm_zipper_hsmc_a_alst4.bitz$

For Zipper plugged into HSMC Port B:

• mfsk2_zp16_fir_real_phase_to_amp_cordic_cic_int_alst4_alst4_zipper_hsmc_alst4_port_b_tx_cnt_0rx_1tx_thruasm_zipper_hsmc_b_alst4.bitz

txrx/bbloopback

- \bullet target-linux-c7-x86_64/file_read_s.so
- target-linux-c7-x86_64/Baudtracking_simple_s.so
- target-linux-c7-x86_64/real_digitizer_s.so
- target-linux-c7-x86_64/zipper_rx_s.so

- target-linux-c7-x86_64/zipper_tx_s.so
- target-linux-c7-x86_64/lime_rx_proxy_s.so
- \bullet target-linux-c7-x86_64/lime_tx_proxy_s.so
- target-linux-c7-x86_64/si5351_proxy_s.so

For Zipper plugged into HSMC Port A:

 $\bullet \ \, fsk_modem_alst4_alst4_zipper_hsmc_alst4_port_a_rx_tx_cnt_1rx_1tx_thruasm_zipper_hsmc_a_alst4.bitz \\$

For Zipper plugged into HSMC Port B:

 $\bullet \ fsk_modem_alst4_alst4_zipper_hsmc_alst4_port_b_rx_tx_cnt_1rx_1tx_thruasm_zipper_hsmc_b_alst4.bitz \\$

7.5 ML605/FMCOMMS2/3

filerw (FMCOMMS2/3 not required)

- fsk_filerw_ml605_base.bitz
- target-linux-c7-x86_64/file_read_s.so
- target-linux-c7-x86_64/Baudtracking_simple_s.so
- $\mathbf{r}\mathbf{x}$
- \bullet target-linux-c7-x86_64/file_read_s.so
- $\bullet \ target\text{-}linux\text{-}c7\text{-}x86\text{-}64/Baudtracking_simple_s.so \\$
- target-linux-c7-x86_64/real_digitizer_s.so

- target-linux-c7-x86_64/real_digitizer_s.so
- \bullet target-linux-c7-x86_64/file_write_s.so
- target-linux-c7-x86_64/zipper_rx_s.so
- $\bullet \ target\text{-}linux\text{-}c7\text{-}x86\text{_}64/lime_rx_proxy_s.so$
- target-linux-c7-x86_64/si5351_proxy_s.so

For FMCOMMS2/3 plugged into FMC LPC:

• dc_offset_iq_imbalance_mixer_cic_dec_timestamper_ml605_cfg_1rx_0tx _fmcomms_2_3_lpc_lvds_cnt_1rx_0tx_thruasm_fmcomms_2_3_lpc_LVDS_ml605.bitz

For FMCOMMS2/3 plugged into FMC HPC:

• dc_offset_iq_imbalance_mixer_cic_dec_timestamper_ml605_cfg_1rx_0tx _fmcomms_2_3_hpc_lvds_cnt_1rx_0tx_thruasm_fmcomms_2_3_hpc_LVDS_ml605.bitz

$\mathbf{t}\mathbf{x}$

- \bullet target-linux-c7-x86_64/file_read_s.so
- target-linux-c7-x86_64/zipper_tx_s.so

- target-linux-c7-x86_64/lime_tx_proxy_s.so
- target-linux-c7-x86_64/si5351_proxy_s.so

For Zipper plugged into FMC LPC:

mfsk2_zp16_fir_real_phase_to_amp_cordic_cic_int_ml605_cfg_0rx
 _1tx_fmcomms_2_3_lpc_lvds_cnt_0rx_1tx_thruasm_fmcomms_2_3_lpc_LVDS_ml605.bitz

txrx/bbloopback

- \bullet target-linux-c7-x86_64/file_read_s.so
- \bullet target-linux-c7-x86_64/Baudtracking_simple_s.so
- target-linux-c7-x86_64/real_digitizer_s.so
- target-linux-c7-x86_64/zipper_rx_s.so

- target-linux-c7-x86_64/zipper_tx_s.so
- \bullet target-linux-c7-x86_64/lime_rx_proxy_s.so
- target-linux-c7-x86_64/lime_tx_proxy_s.so
- target-linux-c7-x86_64/si5351_proxy_s.so

For Zipper plugged into FMC LPC:

• fsk_modem_ml605_cfg_1rx_1tx_fmcomms_2_3_lpc_lvds_cnt_1rx_1tx _thruasm_fmcomms_2_3_lpc_LVDS_ml605.bitz

ML605/Zipper

filerw (zipper not required)

- fsk_filerw_ml605_base.bitz
- target-linux-c7-x86_64/file_read_s.so
- \bullet target-linux-c7-x86_64/Baudtracking_simple_s.so
- $\mathbf{r}\mathbf{x}$
- target-linux-c7-x86_64/file_read_s.so
- \bullet target-linux-c7-x86_64/Baudtracking_simple_s.so
- target-linux-c7-x86_64/real_digitizer_s.so

- target-linux-c7-x86_64/real_digitizer_s.so
- target-linux-c7-x86_64/file_write_s.so
- target-linux-c7-x86_64/zipper_rx_s.so
- target-linux-c7-x86_64/lime_rx_proxy_s.so
- target-linux-c7-x86_64/si5351_proxy_s.so

For Zipper plugged into FMC LPC:

• dc_offset_iq_imbalance_mixer_cic_dec_rp_cordic_fir_real_ml605_cfg_1rx_0tx_fmcomms_2_3_lpc_ $lvds_cnt_1rx_0tx_thruasm_fmcomms_2_3_lpc_LVDS_ml605.bitz$

For Zipper plugged into FMC HPC:

• dc_offset_iq_imbalance_mixer_cic_dec_rp_cordic_fir_real_ml605_cfg_1rx_0tx_fmcomms_2_3_hpc_ lvds_cnt_1rx_0tx_thruasm_fmcomms_2_3_hpc_LVDS_ml605.bitz

$\mathbf{t}\mathbf{x}$

- target-linux-c7-x86 $_{-}64/$ file $_{-}$ read $_{-}$ s.so
- target-linux-c7-x86_64/zipper_tx_s.so

- target-linux-c7-x86_64/lime_tx_proxy_s.so
- target-linux-c7-x86_64/si5351_proxy_s.so

For Zipper plugged into FMC LPC:

 mfsk2_zp16_fir_real_phase_to_amp_cordic_cic_int_ml605_ml605_zipper_fmc_lpc_ tx_cnt_0rx_1tx_thruasm_zipper_lpc_ml605.bitz

For Zipper plugged into FMC HPC:

 mfsk2_zp16_fir_real_phase_to_amp_cordic_cic_int_ml605_ml605_zipper_fmc_hpc_ tx_cnt_0rx_1tx_thruasm_zipper_hpc_ml605.bitz

txrx/bbloopback

- target-linux-c7-x86_64/file_read_s.so
- target-linux-c7-x86_64/Baudtracking_simple_s.so
- target-linux-c7-x86_64/real_digitizer_s.so
- target-linux-c7-x86_64/zipper_rx_s.so

- target-linux-c7-x86_64/zipper_tx_s.so
- target-linux-c7-x86_64/lime_rx_proxy_s.so
- $\bullet \ target\text{-}linux\text{-}c7\text{-}x86\text{_}64/lime\text{_}tx\text{_}proxy\text{_}s.so$
- target-linux-c7-x86_64/si5351_proxy_s.so

For Zipper plugged into FMC LPC:

• fsk_modem_ml605_ml605_zipper_fmc_hpc_rx_tx_cnt_1rx_1tx_thruasm_zipper_lpc_ml605.bitz

For Zipper plugged into FMC HPC:

• fsk_modem_ml605_ml605_zipper_fmc_hpc_rx_tx_cnt_1rx_1tx_thruasm_zipper_hpc_ml605.bitz