### MATH 142A: Introduction to Analysis

math-old.ucsd.edu/~ynemish/teaching/142a

Today: Derivative of the inverse. L'Hôpital's rule > Q&A: March 2

Next: Ross § 31

- Homework 8 (due Sunday, March 6)
- CAPE at www.cape.ucsd.edu

Derivative of the inverse

 $f: I \rightarrow J$ ,  $f: J \rightarrow I$ ,  $\forall x \in I$   $f \circ f(x) = x$ ,  $\forall y \in J$   $f \circ f'(y) = y$ If  $f \in D(I)$ ,  $f \in D(J)$ , then differentiating both sides gives  $\forall x \in I$   $(f \circ f)'(x) = I$   $\forall y \in J$   $(f \circ f')'(y) = I$ 

 $\forall x \in I$   $(f^{-1} \circ f)'(x) = I$ ,  $\forall y \in J$   $(f \circ f^{-1})'(y) = I$ By the chain rule  $(f \circ f^{-1})'(y) = f'(f^{-1}(y)) \cdot (f^{-1})'(y) = I$ 

(f')' is given by (\*). Suppose  $f: I \rightarrow J$ ,  $f: J \rightarrow I$  exists and f is differentiable at  $x \in I$ . Does this imply that f' is differentiable at  $y = f(x \circ)$ ? Derivative of the inverse

Thm. 29.9. Let f: I - J be one-to-one and continuous on I.

(i) 
$$f$$
 is differentiable at  $x_0$  |  $f$  is differentiable at  $y_0 = f(x_0)$  |  $\Rightarrow$  and  $(f)'(y_0) = \frac{1}{f'(x_0)}$ 

Proof. Need to show that  $\lim_{y \to y_0} \frac{f'(y) - f'(y_0)}{y - y_0} \in \mathbb{R}$ . Fix  $\mathcal{E} > 0$ .

 $() f'(x_0) \neq 0 \Leftrightarrow \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} \neq 0 \Rightarrow \exists \delta' \forall x \in (x_0 - \delta', x_0 + \delta') \setminus \{x_0\} f(x) \neq f(x_0)$ 

$$\begin{array}{c|c}
\hline
\hline
 f(x_0) \neq 0 \Leftrightarrow \lim_{x \to x_0} \frac{+(x_0) + (x_0)}{x - x_0} \neq 0 \Rightarrow \exists \delta' \forall x \in (x_0 - \delta, x_0 + \delta') \setminus \{x_0\} f(x) \neq f(x_0) \\
\hline
 \lim_{x \to x_0} \frac{x - x_0}{f(x) - f(x_0)} = \exists \delta \forall x \in (x_0 - \delta, x_0 + \delta) \\
\hline
 \lim_{x \to x_0} \frac{x - x_0}{f(x) - f(x_0)} = \exists \delta \forall x \in (x_0 - \delta, x_0 + \delta) \\
\hline
 Consider q := f', q: J \to I.
\end{array}$$

Consider 
$$g := f', g : J \to I$$
.

2 Thms 18.6, 18.4  $\Rightarrow$   $g \in C(J) \Rightarrow \exists \eta > 0$   $\forall y \in (y_0 - \eta, y_0 + \eta) |g(y) - g(y_0)| < \delta$ 

3  $\forall y \in (y_0 - \eta, y_0 + \eta) \setminus (y_0) |f(g(y_0)) - f(g(y_0))| - f(g(y_0)) |f(g(y_0))| = |f'(x_0)| = |f'(y_0) - f'(y_0)| < \delta$ 

## Examples

Examples

1. 
$$\arcsin = \sin^{2} \left( \arctan \left( \frac{1}{1} \right) \right) \left( \arcsin \left( \frac{1}{2} \right) \right) = \frac{1}{\sqrt{1 \cdot y^{2}}}$$





















 $\forall x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \quad \sin'(x) = \cos(x) \neq 0$ 

2. log: (0,+∞) → IR is the inverse of x → ex

 $e^{x} \in D(IR), (e^{x})' = e^{x}, e^{x} > 0$ 

and  $(\log y)' = \frac{1}{e^x} = \frac{y}{y}$ 

sin: (-\(\frac{\pi}{2}\), \(\frac{\pi}{2}\)) → (-1,1) is a bijection (strictly increasing)

by Thm 29.9 arcsin is differtiable at y and

 $\arcsin'(y) = \frac{1}{(\sin(x))'} = \frac{1}{\cos x} = \frac{1}{\sqrt{1-\sin^2 x}} = \frac{1}{\sqrt{1-y^2}}$ 

⇒ y y ∈ (0,+∞) log is differentiable at y

Let  $y \in (-1,1)$  and let  $x \in (-\frac{\pi}{2}, \frac{\pi}{2})$  s.t.  $\sin x = y$ 

# L'Hôpital's rule

Consider the limit  $\lim_{x\to a} \frac{f(x)}{g(x)}$ ,  $a \in \mathbb{R} \cup \{+\infty, -\infty\}$ ,  $S \in \mathbb{R}$ 

• if 
$$\lim_{S \ni x \to a} f(x) = F \in \mathbb{R}$$
,  $\lim_{S \ni x \to a} g(x) = G \in \mathbb{R} \setminus \{0\}$ , then
$$\lim_{S \ni x \to a} \frac{f(x)}{g(x)} = \frac{F}{G}$$

$$F=0$$
 and  $G=0$   $\frac{0}{0}$ 

Generalized mean value theorem (Cauchy's Thm) Thm 30.1  $f, g \in C([a,b])$   $\Rightarrow f, g \in D((a,b))$   $\Rightarrow (f(b)-f(a))g'(z) - (g(b)-g(a))f'(z) = 0$ Proof Consider h(x) = (f(b)-f(a)) g(x) - (g(b)-g(a)) f(x) he C([a,b]) Rolle's Thm  $\Rightarrow$   $\exists x \in (a,b) \text{ s.t. } h'(x) = 0$  $h \in D((a,b))$ h(a) = f(b)g(a) - g(b)f(a) (f(b)-f(a)) g'(x) - (g(b)-g(a))f'(x) = 0h(b) = - f(a)q(b) + f(b)g(a) = h(a)

If 
$$g(b) \neq g(a)$$
,  $g'(x) \neq 0$ , then  $\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(x)}{g'(x)}$ 

## L'Hôpital's Rule

Thm 30.2 Let a & R and s signify a, at, at, to or - ...

Suppose that f and g are differentiable (on appropriately Chosen intervals) and that  $\lim_{x\to s} \frac{f'(z)}{g'(x)} = L$  exists.

Proof Only for s= a and for s=+00 (other cases: exercise)

Then if

 $\frac{OR}{(ii)} \lim_{x \to s} |g(x)| = \infty$ 

(i)  $\lim_{x \to s} f(x) = \lim_{x \to s} g(x) = 0$ 

 $=) \lim_{x \to s} \frac{f(x)}{g(x)} = \lim_{x \to s} \frac{f'(x)}{g'(x)} = L$ 

If (i) holds, take

 $\lim_{x \to s} \frac{f'(x)}{g'(x)} = xists \Rightarrow \exists c < s \ s.t. \ f, g \in D((c,s)), \forall x \in (c,s) \ g'(x) \neq 0$ 

By Darboux's thm. either 
$$\forall x \in (c,s) \ g'(x) > 0 \ or \ \forall x \in (c,s) \ g'(x) < 0$$

$$\Rightarrow \{x \in (c,s) : g(x)\} \text{ has at most one point}$$

By Cauchy's thm 
$$\forall [x,y] \subset (d,s) \exists z \in (x,y) s.t.$$

$$(f(y)-f(x))g'(z) = (g(y)-g(x))f'(z) \Rightarrow \frac{f(y)-f(x)}{g(y)-g(x)} = \frac{f'(z)}{g'(z)} > K$$
If (i) holds, take  $\lim_{y\to s} \frac{f(y)-f(x)}{g(y)-g(x)} = \frac{f(x)}{g(x)} \geq K > L_1 \quad \forall x \in (A,s)$ 

⇒ 3 c'e (c,s) y xe (c',s) g(x) ≠0 Take  $K \in (L_1, L)$ .  $\lim_{x \to s} \frac{f'(z)}{g'(x)} = L > K \Rightarrow \exists a > c' \forall x \in (a, s) \frac{f'(x)}{g'(x)} > K$ By Cauchy's thm \(\frac{1}{2}(x,y) \) \( \lambda \, (x,y) \) \( \lam

If (ii) holds, then 
$$\exists \ d_1 \in (\alpha, s) \ s.t. \ \forall \ [x,y] \in (\alpha_1, s) \ \frac{g(y) - g(z)}{g(y)} > 0$$

$$\Rightarrow \ \forall \ [x,y] \in (\alpha_1, s) \ \frac{f(y) - f(z)}{g(y) - g(z)} \cdot \frac{g(y) - g(z)}{g(y)} > K \cdot \frac{g(y) - g(z)}{g(y)}$$

$$\Rightarrow \ \frac{f(y)}{g(y)} = \frac{f(x)}{g(y)} + \frac{f(y) - f(x)}{g(y)} > \frac{f(x)}{g(y)} + K \cdot \frac{g(y) - g(x)}{g(y)} = K + \frac{f(z) - Kg(z)}{g(y)}$$

Take the limit (for any fixed  $x \in (\alpha_1, s)$ )

$$\lim_{y \to s} \frac{f(x) - Kg(x)}{g(y)} = 0 \Rightarrow \exists \ d_2 \in (\alpha_1, s) \ s.t. \ \forall \ y \in (\alpha_2, s)$$

$$\frac{f(x) - Kg(x)}{g(y)} > \frac{L_1 - K}{2} \Rightarrow \frac{f(y)}{g(y)} > K + \frac{L_1 - K}{2} = \frac{K + L}{2} > L_1$$

Proof of L'Hôpital's rule

 $\frac{f(x)-kg(x)}{g(y)} > \frac{L_1-k}{2} \Rightarrow \frac{f(y)}{g(y)} > k + \frac{L_1-k}{2} \Rightarrow \frac{k+L_1}{2} > L_1$ Conclusion:  $\forall L_1 \leq L \Rightarrow d_2 \leq d_2$ 

Proof of L'Hôpital's rule

2) If 
$$-\infty \le L < +\infty$$
, then

 $\forall L_2 > L \exists \beta_2 z s \forall x \in (\beta_2 s) \frac{f(x)}{g(x)} < L_2$  (B)

$$(A) \Rightarrow \exists d_{2} \angle S \quad \forall x \in (d_{2}, S) \quad \frac{f(x)}{g(x)} - L > L_{1} - L = -\varepsilon$$

$$(B) \Rightarrow \exists \beta_{2} \angle S \quad \forall x \in (\beta_{2}, S) \quad \frac{f(x)}{g(x)} - L < L_{2} - L = \varepsilon$$

$$\Rightarrow \forall x \in (\max \{d_{2}, \beta_{3}, S)) \quad |\frac{f(x)}{g(x)} - L| \angle \varepsilon = |\lim_{x \to S} \frac{f(x)}{g(x)} = L$$

 $(A) \Rightarrow \exists d_2 < S \quad \forall x \in (d_2, s) \quad \frac{f(x)}{g(x)} > M \Rightarrow \lim_{x \to s} \frac{f(x)}{g(x)} = + \infty = L$ 

Suppose  $L=-\infty$ . Fix M>0. Take  $L_2=-M=$   $\lim_{x\to s} \frac{f(x)}{g(2)}=-\infty$ 

Suppose L=+ . Fix M>0. Take L1= M.

3 Suppose LER. Fix E>O. Take L1= L-E, L2= L+E

1. For any 
$$d>0$$

$$\lim_{x\to\infty} \frac{\log x}{x^{\alpha}} = \lim_{x\to\infty} \frac{1}{x^{\alpha-1}} = \lim_{x\to\infty} \frac{1}{x^{\alpha}} = 0$$

$$\lim_{x\to +\infty} \frac{x^{\alpha}}{\alpha^{x}} = \lim_{x\to +\infty} \frac{x^{\alpha-1}}{\log \alpha \cdot \alpha^{x}} = \lim_{x\to +\infty} \frac{x^{\alpha-2}}{(\log \alpha)^{2}} = \lim_{x\to +\infty} \frac{x^{\alpha-1}}{(\log \alpha)^{2}} = \lim_{x\to +\infty} \frac{x^{\alpha}}{(\log \alpha)^{2}} = \lim_{x\to +\infty} \frac{x^{\alpha-1}}{(\log \alpha)^{2}} = \lim_{x\to +\infty} \frac{x^{\alpha}}{(\log \alpha)^{2}} = \lim_{x\to +\infty} \frac{x^{\alpha}}{(\log \alpha)^{2}} = \lim_{x\to +\infty} \frac{x^$$

3.  $\lim_{x\to 0} \frac{\sin x}{x} = \lim_{x\to 0} \frac{\cos x}{1} = \lim_{x\to 0} \frac{\cos x}{1}$ 

$$\frac{\chi^{\alpha}}{\alpha^{\alpha}} = \lim_{\chi \to +\infty} \frac{\chi^{\alpha^{-1}}}{\log \alpha \cdot \alpha^{\alpha}}$$

$$\frac{1}{100} \frac{1}{100} = \frac{1}{100} \frac{1}{100} \frac{1}{100} = \frac{1}{100} \frac{1}{100} = \frac{1}{100} =$$

$$\frac{\chi^{4}}{\Omega^{2}} = \lim_{N \to \infty} \frac{\chi^{4}}{\log \alpha \cdot \Omega^{2}}$$

$$\frac{dX}{\log a \cdot \alpha^2} = \lim_{\chi \to r}$$

$$\log a \cdot \alpha^{2}$$
  $\chi \rightarrow \epsilon_{0}$ 







3. 
$$f: \mathbb{R} \to (0, +\infty)$$
,  $f(x) = \alpha^{x}$   $(\alpha > 0, \alpha \neq 1)$ 

$$f(x) = e^{\log \alpha^{x}} \xrightarrow{x \cdot \log \alpha} \Rightarrow \forall x \in \mathbb{R} \quad f(x) = e^{x \cdot \log \alpha} \cdot \log \alpha = \alpha^{x} \cdot \log \alpha$$

4. 
$$\log_a : (0, +\infty) \to \mathbb{R}$$
 is the inverse of  $x \mapsto a^x$ ,  $\forall x \in \mathbb{R}$   $a^2 > 0$ ,

. 
$$\log_a : (0, +\infty) \to \mathbb{R}$$
 is the inverse of  $x \mapsto \alpha$ ,  $\forall x \in \mathbb{R}$ 

So  $\log_a \in D((0, +\infty))$  and
$$(\log_a y) = \frac{\alpha^x = y}{\log_a \cdot \alpha^x} = \frac{1}{\log_a \cdot y}$$