Улучшение качества ReID моделей с помощью дополнительной информации

Швейкин Денис Александрович Выпускная квалификационная работа Кафедра анализа данных, ФПМИ МФТИ 25.06.2024

Содержание

- Введение. Задача Re-Id
- Анализ подходов к решению задачи Re-Id
- 3 Система поиска пропавших домашних животных
- Исследование влияния дополнительной информации в Re-Id
- 3аключение

Задача Person Re-Identification

Рис. 1: Пример изображений из набора PRID2011

Математическая постановка

- ① Даны два множества Query и Search
- $oldsymbol{\odot}$ Построить отображение $Query o S_{|Search|}$, где S_n группа перестановок чисел от 1 до n
- f 3 To есть $orall q_i \in Query: q_i \mapsto r_i \in S_{|Search|}$

Рис. 2: Пример ранжированного списка для одного запроса

Метрики качества

Cumulated Matching Characteristics (CMC):

$$CMC@k = \frac{1}{|Query|} \sum_{i=1}^{|Query|} \mathbb{I}[r_i[:k] \cap T_i \neq \varnothing]$$

k - пороговая длина списка r_i [: k] - первые k элементов списка T_i - множество истинных объектов

Mean Average Precision (mAP):

$$AP_i = rac{1}{|T_i|} \sum_{k=1}^{|Search|} P_i(k)$$

 $P_i(k)$ - доля истинных объектов среди первых k элементов списка

Общий пайплайн решения задачи

- Обучение представлений признаков
- Метрическое обучение
- Оптимизация ранжирования

Обучение представлений признаков

- Глобальное представление
- 2 Локальное представление
- 3 Использование дополнительной информации
- 4 Обработка видео как последовательности

Рис. 3: Варианты работы системы на этапе обучения представлению признаков

Метрическое обучение

Примеры функций потерь метрического обучения:

Рис. 4: Identity-loss

$$\mathcal{L}_{id} = -\frac{1}{n} \sum_{i=1}^{n} \log (p(y_i|x_i))$$

 x_i - эмбеддинг y_i - идентификатор

 $p(y_i|x_i)$ - предсказанная вероятность

Puc. 5: Verification-loss

$$\begin{split} \mathcal{L}_{\textit{very}}(i,j) &= -\delta_{ij} \log \left(p(\delta_{ij} | x_{ij}) \right) - \\ &- (\mathbf{1} - \delta_{ij}) \log \left(\mathbf{1} - p(\delta_{ij} | x_{ij}) \right) \end{split}$$

 x_{ij} - общий эмбеддинг δ_{ij} - индикатор совпадения id $p(\delta_{ij}|x_{ij})$ - предсказанная вероятность

Рис. 6: Triplet-loss

$$\mathcal{L}_{tri}(a, p, n) = \max(\rho + d_{ap} - d_{an}, \mathbf{0})$$

 d_{ap} - расстояние от якоря до позитивного объекта d_{an} - расстояние от якоря до негативного объекта ho - порог

Оптимизация ранжирования

Ре-ранкинг:

Рис. 7: k-reciprocal re-ranking

Система поиска пропавших домашних животных

- Поиск по базе на основе визуального соответствия
- Уточнение с помощью дополнительной информации текстового описания, классификации

Рис. 8: Схема работы системы поиска

Датасеты

- Был составлен собственный датасет из 50 000 кадров
- Имеются категории классификации: цвет, размер, длина лап, форма морды, тип ушей, тип шерсти

Рис. 9: Пример изображений из датасета

Решение с помощью классификации

C помощью модели Multi-Task классификации получены результаты:

Таблица 1: Качество классификации собак по 6 признакам

Признак	Balanced Accuracy, %	ROC AUC, %	
Цвет	72,2	97,2	
Размер	73,7	91,2	
Длина лап	86,0	94,4	
Тип ушей	69,4	92,2	
Тип морды	82,1	91,3	
Тип шерсти	74,1	95,0	

Решение с помощью метрического обучения

В режиме Re-Id позволяет работать метрическая модель Unicom:

Рис. 10: Ранжированные списки, даваемые моделью метрического обучения

Анализ результатов

- Метрическое обучение показывает визуально хорошие результаты
- 9 В некоторых случаях возникает необходимость дополнительной информации

Рис. 11: Пример сложного случая. Слева - самоед, справа - чихуахуа

Метод CLIP-ReID

Первая стадия обучения:

$$\begin{split} \mathcal{L}_{\mathbf{t2}i}(y_{j}) &= \frac{-\mathbf{1}}{|P(y_{j})|} \sum_{p \in P(y_{j})} \log \frac{\exp \left(\mathbf{sim}(V_{p}, T_{y_{i}}) \right)}{\sum_{j=\mathbf{1}}^{B} \exp \left(\mathbf{sim}(V_{j}, T_{y_{i}}) \right)} \\ \mathcal{L}_{i\mathbf{2}t}(i) &= -\log \frac{\exp \left(\mathbf{sim}(V_{j}, T_{i}) \right)}{\sum_{j=\mathbf{1}}^{B} \exp \left(\mathbf{sim}(V_{j}, T_{i}) \right)} \end{split}$$

 V_i , T_i - визуальный и текстовый эмбеддинги $P(v_i)$ - множество кадров с тем же id

Вторая стадия обучения:

$$\mathcal{L}_{tri} = \max \left(d_p - d_n + \rho, \mathbf{0} \right)$$

$$\mathcal{L}_{id} = \sum_{k=1}^{N} q_k \log(p_k)$$

$$\mathcal{L}_{i\mathbf{2}tce}(i) = \sum_{k=\mathbf{1}}^{N} -q_{k} \log \frac{\exp \left(\mathbf{sim}(V_{i}, T_{y_{k}}) \right)}{\sum_{Y_{i}=\mathbf{1}}^{N} \exp \left(\mathbf{sim}(V_{i}, T_{y_{i}}) \right)}$$

Рис. 12: Схема работы метода CLIP-ReID

 $d_{
m p}$ - расстояние от якоря до поизитивного примера $d_{
m n}$ - расстояние от якоря до негативного примера

 q_k - сглаженный индикатор совпадения id

Предложенные модификации

Использование информации об атрибутах:

- Составление промптов на основе атрибутов
- 2 Label smoothing на основе атрибутов на первой стадии
- 3 Label smoothing на основе атрибутов на обеих стадиях

Использование информации о ключевых точках:

- Регуляризация обучаемым энкодером ключевых точек
- 2 Регуляризация эмбеддингом модели pose estimation

Сравнение качества методов

Таблица 2: Сравнение результатов экспериментов

Тип метода	Эксперимент	#эпох	mAP	CMC@1
CLIP-ReID	Настройка визуальной модели CLIP без первой стадии	120	88,1	94,7
	CLIP-ReID с обеими стадиями	120	89,8	95,7
	Повторение процесса обучения CLIP-ReID 2 раза	120	89,7	95,4
Модификации	Промпты по атрибутам вместо первой стадии	120	85,5	94,2
	Label smoothing по атрибутам на первой стадии	120	88,9	95,6
	Label smoothing по атрибутам на обеих стадиях	120	16,7	29,8
	Регуляризация эмбеддингом ключевых точек, без нормализации	120	87,5	94,3
	Регуляризация эмбеддингом ключевых точек, нормировка	360	88,1	94,9
	Регуляризация эмбеддингом ключевых точек, нормализация средней нормой вектора	480	88,9	95,3
	Регуляризация эмбеддингом HRNet, нормализация средней нормой вектора	480	88,1	95,1

Анализ обученных моделей

Рис. 13: Распределение весов проектора в общее пространство. Слева - случай обучаемого эмбеддинга, справа - случай эмбеддинга HRNet

Заключение

Таким образом, в данной работе рассмотрена задача Person Re-Identification, ее научная теория, практические аспекты и приложения:

- Приведена математическая постановка задачи
- Приведен обширный анализ методов ее решения и областей их применимости
- Реализована система поиска пропавших домашних животных практическое приложение технологий Re-Id
- Выявлены пути развития применяемых методов и мотивация использования этих путей
- Приведен анализ базового решения адресованной проблемы, предложены его модификации
- Проведены эксперименты по внедрению данных модификаций и анализ их результатов

Перспективы

Пути развития:

- Собрать Re-Id-датасет для собак
- Применить подход с ключевыми точками для собак их размер и форма тела более разнообразны
- **3** Воспроизвести процесс обучения СLIP с дополнительной ветвью

Спасибо за внимание!