

Chapter 17 Binocular Stereo Vision

Lin ZHANG
School of Computer Science and Technology
Tongji University

- Rectified binocular system
- Calibration of a physical binocular system
- Stereo matching and disparity map computation
- 3D reconstruction based on the disparity map

- f_{rect} is the focal length (unit: pixel) of the intrinsics matrix
- δ is the physical length of each pixel (unit: mm/pixel)
- (c_{rect-x}, c_{rect-y}) is the position of the principal point on the imaging plane (unit: pixel)
- *b* (unit: *mm*) is the distance between the two camera centers

- Rectified binocular system is a "virtual" system; it can simplify the depth estimation
- By moving O_{l} -xyz b(mm) along the x-axis, we get the O_{r} -xyz coordinate system
- Cam_{rect-l} and Cam_{rect-r} have the same intrinsics matrix,

$$\mathbf{K}_{rect} = \begin{bmatrix} f_{rect} & 0 & c_{rect-x} \\ 0 & f_{rect} & c_{rect-y} \\ 0 & 0 & 1 \end{bmatrix}$$

The two images I_{rect-l} and I_{rect-r} of a rectified binocular system are row-aligned. That means, if $u_l(u_l, v_l)$ and $u_r(u_r, v_r)$ are the images of the same spatial point on I_{rect-l} and I_{rect-r} , we should have $v_l = v_r$

- Depth calculation under the rectified binocular system
 - With the rectified binocular system, given a spatial point p_w , it is easy to obtain its depth w.r.t to the left camera, i.e., p_w 's z-value with respect to the coordinate system $O_{\Gamma}xyz$
 - Suppose that p_w 's image on I_{rect-l} is (x_l, y) , and its image on I_{rect-r} is (x_r, y)
 - Projecting all the elements on the plane O_l -xz. On O_l -xz, the projection of p_w is p_w . Obviously, p_w 's z-value w.r.t to the coordinate system O_l -xz is p_w 's z-value with respect to the coordinate system O_l -xyz

The physical distance between two image pixels (x_l, y) and (x_r, y) is,

$$b - \left[\left(x_l - c_{rect-x} \right) + \left(c_{rect-x} - x_r \right) \right] \delta = b - \left(x_l - x_r \right) \delta$$

Then we have,

$$\frac{z - f_{rect}\delta}{b - (x_l - x_r)\delta} = \frac{z}{b} \implies z = \frac{f_{rect}b}{x_l - x_r}$$
Disparity of p_w

To get the depth map associated to I_{rect-l} , we need to get the disparity map of I_{rect-l}

With the rectified binocular system, to compute the depth of a 3D point with respect to the camera, only its disparity needs to be known

As we have said, the rectified binocular system is a "virtual" system

Given a real physical binocular system, is there any way to get its associated rectified version?

We need to perform calibration to the physical binocular system; with the extrinsics and the intrinsics known, its rectified version can be derived

- Rectified binocular system
- Calibration of a physical binocular system
- Stereo matching and disparity map computation
- 3D reconstruction based on the disparity map

Consider a physical binocular system. The left camera is cam_l , and its camera coordinate system is C_l ; the right camera is cam_r , and its camera coordinate system is C_r .

The extrinsics of such a physical binocular system are,

$$\mathbf{R} \in \mathbb{R}^{3 \times 3} \left(\mathbf{R} \mathbf{R}^T = \mathbf{I}, \det(\mathbf{R}) = 1 \right), \mathbf{t} \in \mathbb{R}^{3 \times 1}$$

For a 3D point, if its coordinate w.r.t. to C_l is p_l and its coordinate w.r.t. C_r is p_r , then p_l and p_r should satisfy,

$$p_r = Rp_l + t$$

By calibration, our purpose is to get R and t

For binocular system calibration, we also need to resort to the checkerboard Collect m pairs of binocular images

$$\left\{oldsymbol{I}_{li},oldsymbol{I}_{ri}
ight\}_{i=1}^{m}$$

the left image

the right image

A pair of binocular images

$$\mathbf{p}_{r} = \mathbf{R}_{ri} \left(\mathbf{R}_{li}^{-1} \left(\mathbf{p}_{l} - \mathbf{t}_{li} \right) \right) + \mathbf{t}_{ri}$$

$$= \mathbf{R}_{ri} \mathbf{R}_{li}^{-1} \mathbf{p}_{l} + \left(\mathbf{t}_{ri} - \mathbf{R}_{ri} \mathbf{R}_{li}^{-1} \mathbf{t}_{li} \right)$$
(5)

By comparing (3) and (5), we have

$$\mathbf{R} = \mathbf{R}_{ri} \mathbf{R}_{li}^{-1}$$
, $\mathbf{t} = \mathbf{t}_{ri} - \mathbf{R}_{ri} \mathbf{R}_{li}^{-1} \mathbf{t}_{li}$

$$\mathbf{R}_{ri} = \mathbf{R}\mathbf{R}_{li}, \quad \mathbf{t}_{ri} = \mathbf{R}\mathbf{t}_{li} + \mathbf{t}$$
 (6)

$$\boldsymbol{\theta}^* = \underset{\boldsymbol{\theta}}{\operatorname{arg\,min}} \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{n} \left\{ \left\| \boldsymbol{K}_{l} \mathcal{D}_{l} \left\{ \frac{1}{z_{clij}} \left[\boldsymbol{R}_{li} \ \boldsymbol{t}_{li} \right]_{3 \times 4} \boldsymbol{p}_{j} \right\} - \boldsymbol{u}_{lij} \right\|_{2}^{2} + \left\| \boldsymbol{K}_{r} \mathcal{D}_{r} \left\{ \frac{1}{z_{crij}} \left[\boldsymbol{R}_{ri} \ \boldsymbol{t}_{ri} \right]_{3 \times 4} \boldsymbol{p}_{j} \right\} - \boldsymbol{u}_{rij} \right\|_{2}^{2} \right\}$$

$$\boldsymbol{\theta}^* = \underset{\boldsymbol{\theta}}{\operatorname{arg min}} \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{n} \left\{ \left\| \boldsymbol{K}_{l} \mathcal{D}_{l} \left\{ \frac{1}{z_{clij}} \left[\mathcal{R}(\boldsymbol{d}_{li}) \ \boldsymbol{t}_{li} \right]_{3 \times 4} \ \boldsymbol{p}_{j} \right\} - \boldsymbol{u}_{lij} \right\|_{2}^{2} + \left\| \boldsymbol{K}_{r} \mathcal{D}_{r} \left\{ \frac{1}{z_{crij}} \left[\mathcal{R}(\boldsymbol{d}) \mathcal{R}(\boldsymbol{d}_{li}) \ \mathcal{R}(\boldsymbol{d}) \boldsymbol{t}_{li} + \boldsymbol{t} \right]_{3 \times 4} \ \boldsymbol{p}_{j} \right\} - \boldsymbol{u}_{rij} \right\|_{2}^{2} \right\}$$

where $\theta = (d, t, \{d_{li}\}_{i=1}^m, \{t_{li}\}_{i=1}^m)$ are the parameters that need to be optimized

 u_{lij} is the projection of p_i onto the left image of the *i*th binocular image pair

 u_{rij} is the projection of p_i onto the right image of the *i*th binocular image pair

 $(\mathcal{R}(d_{li}), t_{li})$ are the extrinsics of the left camera w.r.t. to the world coordinate system when taking the *i*th binocular image pair

$$f_{ij}(\boldsymbol{\theta}) \triangleq \begin{pmatrix} \mathbf{K}_{l} \mathcal{D}_{l} \left\{ \frac{1}{z_{clij}} \left[\mathcal{R}(\boldsymbol{d}_{li}) \ \boldsymbol{t}_{li} \right]_{3 \times 4} \ \boldsymbol{p}_{j} \right\} - \boldsymbol{u}_{lij} \\ \mathbf{K}_{r} \mathcal{D}_{r} \left\{ \frac{1}{z_{crij}} \left[\mathcal{R}(\boldsymbol{d}) \mathcal{R}(\boldsymbol{d}_{li}) \ \mathcal{R}(\boldsymbol{d}) \mathbf{t}_{li} + \boldsymbol{t} \right]_{3 \times 4} \ \boldsymbol{p}_{j} \right\} - \boldsymbol{u}_{rij} \end{pmatrix}_{4 \times 1}$$

$$\boldsymbol{\theta}^{*} = \arg \min_{\boldsymbol{\theta}} \left(\frac{1}{2} \boldsymbol{f}^{T}(\boldsymbol{\theta}) \boldsymbol{f}(\boldsymbol{\theta}) \right)$$

which is a typical nonlinear least-squares problem and can be used by using techniques introduced in Chapter 9

- Rectified binocular system
- Calibration of a physical binocular system
- Stereo matching and disparity map computation
- 3D reconstruction based on the disparity map

Stereo matching and disparity map computation

When the extrinsics and the intrinsics of a physical binocular system are known, its associated rectified binocular system can be constructed

To get the corresponding depth map to the left rectified image I_{rect-l} , we need to at first extract its disparity map

We need to know the matching relationships among pixels on I_{rect-l} and I_{rect-r}

For a point $u_l(x_l, y_0)$ on I_{rect-l} , how to find the matching pixel u_r on I_{rect-r} ?

Since I_{rect-l} and I_{rect-r} are row-aligned, u_r can only happen on the y_0 row of I_{rect-r}

Stereo matching and disparity map computation

On I_{rect-l} , take a patch A round u_l . Traverse each position of y_0 row on I_{rect-r} . For the position (x_i, y_0) on I_{rect-r} , take a patch B_i around (x_i, y_0)

Figuring out the position i^* whose local patch has the least distance to A,

$$i^* = \underset{i=1,2,\dots,n}{\operatorname{arg\,min}} d(A, B_i)$$

$$(x_{i^*}, y_0)$$
 is u_r we want to find, i.e., $u_r = (x_{i^*}, y_0)$

Note: in implementation, usually the matching is not conducted on the raw images but on the partial derivative images, for example, the results of Sobel operators; there are also some algorithms to postprocess the raw disparity map to make it more robust, such as the weighted least-squares method^[1]

[1] MIN D, CHOI S, LU J, et al. Fast global image smoothing based on weighted least squares[J]. IEEE Trans. Image Processing, 2014, 23(12): 5638-5653.

Stereo matching and disparity map computation

The raw disparity map

The disparity map with weighted least-squares postprocessing

Outline

- Rectified binocular system
- Calibration of a physical binocular system
- Stereo matching and disparity map computation
- 3D reconstruction based on the disparity map

With the rectified binocular system, suppose I_{rect-l} is its left image and u(x, y) is one pixel on I_{rect-l} and its disparity is known as d. The 3D point in space corresponding to u is p. Now let's compute the coordinate of p w.r.t. the coordinate system C_{rect-l}

Suppose $x_n = (x_n, y_n, 1)^T$ is the point on the normalized retinal plane of Cam_{rect-l} corresponding to

u. We can have

$$\begin{bmatrix} f_{rect} & 0 & c_{rect-x} \\ 0 & f_{rect} & c_{rect-y} \\ 0 & 0 & 1 \end{bmatrix} \begin{pmatrix} x_n \\ y_n \\ 1 \end{pmatrix} = \begin{pmatrix} x \\ y \\ 1 \end{pmatrix} \begin{pmatrix} x_n \\ y_n \\ 1 \end{pmatrix} = \begin{pmatrix} \frac{x - c_{rect-x}}{f_{rect}} \\ \frac{y - c_{rect-y}}{f_{rect}} \\ 1 \end{pmatrix}$$

p's depth value (z value) w.r.t. C_{rect-l} is $z = \frac{f_{rect}}{d}b$

p's coordinate w.r.t. C_{rect-l} is,

$$zx_{n} = \frac{f_{rect}b}{d} \cdot \begin{pmatrix} \frac{x - c_{rect - x}}{f_{rect}} \\ \frac{y - c_{rect - y}}{f_{rect}} \\ 1 \end{pmatrix} = \begin{pmatrix} (x - c_{rect - x})\frac{b}{d} \\ (y - c_{rect - y})\frac{b}{d} \\ f_{rect}\frac{b}{d} \end{pmatrix}$$

The homogeneous form of p's position w.r.t. C_{rect-l} is,

$$\left(\left(x-c_{rect-x}\right)\frac{b}{d},\left(y-c_{rect-y}\right)\frac{b}{d},\ f_{rect}\frac{b}{d},1\right)^{T} \quad \text{or} \quad \times \frac{d}{b}$$

$$\left(\left(x-c_{rect-x}\right),\left(y-c_{rect-y}\right),\ f_{rect},\frac{d}{b}\right)^{T}$$

$$\begin{pmatrix} x - c_{rect-x} \\ y - c_{rect-y} \\ f_{rect} \\ \frac{d}{b} \end{pmatrix} = \begin{bmatrix} 1 & 0 & 0 & -c_{rect-x} \\ 0 & 1 & 0 & -c_{rect-y} \\ 0 & 0 & 0 & f_{rect} \\ 0 & 0 & \frac{1}{b} & 0 \end{bmatrix} \begin{pmatrix} x \\ y \\ d \\ 1 \end{pmatrix}$$

Notice that,
$$\begin{pmatrix} x - c_{rect-x} \\ y - c_{rect-y} \\ f_{rect} \\ \frac{d}{h} \end{pmatrix} = \begin{bmatrix} 1 & 0 & 0 & -c_{rect-x} \\ 0 & 1 & 0 & -c_{rect-y} \\ 0 & 0 & 0 & f_{rect} \\ 0 & 0 & \frac{1}{h} & 0 \end{bmatrix} \begin{pmatrix} x \\ y \\ d \\ 1 \end{pmatrix}$$
 Denote $\mathbf{Q} \triangleq \begin{bmatrix} 1 & 0 & 0 & -c_{rect-x} \\ 0 & 1 & 0 & -c_{rect-x} \\ 0 & 1 & 0 & -c_{rect-y} \\ 0 & 0 & 0 & f_{rect} \\ 0 & 0 & \frac{1}{h} & 0 \end{bmatrix}$

$$\mathbf{Q} \begin{pmatrix} x \\ y \\ d \\ 1 \end{pmatrix} \triangleq \begin{pmatrix} x_h \\ y_h \\ z_h \\ w_h \end{pmatrix}$$

is the 3D point w.r.t C_{rect-l} corresponding to the pixel u of the left rectified image I_{rect-l}

Its normal 3D coordinate is,

$$\begin{pmatrix} \frac{x_h}{w_h} \\ \frac{y_h}{w_h} \\ \frac{z_h}{w_h} \end{pmatrix}$$

For any pixel u(x, y) on the left image I_{rect-l} of the rectified binocular system, if know its disparity d, then, the spatial point p (corresponding to u)'s coordinate w.r.t. the camera coordinate system of the left rectified camera is,

$$Q(x,y,d,1)^T$$

An example

Original image pair

Rectified image pair (they are row-aligned)

raw depth map

depth map with weighted least-squares postprocessing

An example

The RGB-D point cloud

