Seat No

King Mongkut's University of Technology Thonburi

Final Examination Semester 1 Academic Year 2014

CYE 338: Structural Analysis II

Date: 28th November 2014

Time 9:00 -12:00

Instructions:

- 1. The exam has 4 questions in 12 pages. Total points are 40 points with each question not of equal points.
- 2. Read the questions carefully and strictly follow instruction.
- 3. Textbooks and written materials are not allowed in the examination room.
- 4. A calculator is allowed.
- 5. Write your name on every page.
- 6. Perform your work in the examination paper.

Examiner: Assistant Professor Dr. Aphinat Ashakul Tel. 02-470-9148

This examination paper has been approved by the Department of Civil Engineering

Associate Professor Dr. Sutat Leelataviwat Head of the Civil Engineering Department

Student Name & I.D.

- 1. From the two frames with constant EI shown (Total 10 Points):
- a) Draw bending moment diagram of Frame A by using the moment distribution method
- b) Draw bending moment diagram of Frame B by using any method of your choice and discuss the difference between bending moment of the two structures.
- d) If both structures have a lateral load, explain the difference between the behavior of the two frames (Draw bending moment diagrams if you think it helps)

Student Name & I.D	

Student Name & I.D		
	3	
	3	

2. Assemble the global stiffness and force matrices of the truss system shown. EA is constant. Use the member numbers and local node system as noted, a failure to comply with these numbers might result in half of total points punishment. (14 Points)

Student Name	& I.D	 _	
		6	

Student Name & I.D	
•	
	7

3. Draw bending moment of the frame shown by using the moment distribution method. A good suggestion for fixed end moment due to sidesway is 20 t.m. (10 Points)

24 tons

Student Name &	I.D				
-					
		ç)		

Student Name & I				

4. Draw the shape of IL of the forces in the truss members **A** and **B**. Also, develop equations you need to calculate values in those lines. (6 Points)

Selected Fixed End Moments

Load Characteristics	FEM _{AB}	FEM _{BA}
+	$-\frac{PL}{8}$	$\frac{PL}{8}$
<u>a </u>	$\frac{a + b}{L^2}$	
W= wL	$-\frac{wL^2}{12} = -\frac{WL}{12}$	$\frac{wL^2}{12} = \frac{WL}{12}$
V= wc	$-\frac{Wa}{12L^2}[12a^2b + c^2(L - 3b)]$	$\frac{Wa}{12L^2}[12ab^2 + c^2(L - 3a)]$
W= wa	$-\frac{Wa}{12L^2}(6L^2 - 8aL + 3a^2)$	$\frac{Wa^2}{12L^2}(4L-3a)$
If a = L/2 in the case above	$-\frac{11wL^2}{192}$	$\frac{5wL^2}{192}$
M b	$\frac{Mb}{L^2}(3a-L)$	$\frac{Ma}{L^2}(3b-L)$
Δ	$\frac{6EI\Delta}{L^2}$	$\frac{6EI\Delta}{L^2}$

Slope-Deflection Equations

$$M_{ij} = 2E(K)_{relative} (2\theta_i + \theta_j - 3\psi_{ij}) + FEM_{ij}$$

Modification for Simple End Support (When i is the simple end)

$$M_{ji} = 3E(K)_{relative} (\theta_j - \psi_{ij}) + FEM_{ji} - FEM_{ij}/2$$

Element Global Stiffness Matrix

$$[K^{i}] = \frac{EA_{i}}{L_{i}} \begin{bmatrix} c^{2} & cs & -c^{2} & -cs \\ cs & s^{2} & -cs & -s^{2} \\ -c^{2} & -cs & c^{2} & cs \\ -cs & -s^{2} & cs & s^{2} \end{bmatrix}$$