Where Do You Think You're Going?: Inferring Beliefs about Dynamics from Behavior

Siddharth Reddy, Anca D. Dragan, Sergey Levine

{sgr,anca,svlevine}@berkeley.edu

Explaining Demonstrated Actions

Learning the Internal Dynamics Model

In an MDP with a discrete action space A, the human demonstrator is assumed to follow a policy π that maximizes an entropy-regularized reward R(s,a,s') under dynamics T(s'|s,a). Equivalently,

$$\pi(a|s) \triangleq \frac{\exp(Q(s,a))}{\sum_{a' \in \mathcal{A}} \exp(Q(s,a'))},\tag{1}$$

where Q is the soft Q function, which satisfies the soft Bellman equation,

$$Q(s,a) = \mathbb{E}_{s' \sim T(\cdot|s,a)} \left[R(s,a,s') + \gamma V(s') \right], \tag{2}$$

with V the soft value function,

$$V(s) \triangleq \log \left(\sum_{a \in \mathcal{A}} \exp(Q(s, a)) \right).$$
 (3)

Soft Bellman error:

$$\delta_i(s, a) \triangleq Q_i(s, a) - \int_{s' \in \mathcal{S}} T(s'|s, a) \left(R_i(s, a, s') + \gamma V_i(s') \right) ds'. \tag{4}$$

Constrained optimization problem:

$$\underset{\{\boldsymbol{\theta_i}\}_{i=1}^n, \boldsymbol{\phi}}{\text{minimize}} \sum_{i=1}^n \sum_{(s,a) \in \mathcal{D}_i^{\text{demo}}} -\log \pi_{\boldsymbol{\theta_i}}(a|s) \tag{5}$$

subject to $\delta_{\boldsymbol{\theta_i}, \boldsymbol{\phi}}(s, a) = 0 \ \forall i \in \{1, 2, ..., n\}, s \in \mathcal{S}, a \in \mathcal{A}.$

Loss function for unconstrained optimization problem:

$$c(\boldsymbol{\theta}, \boldsymbol{\phi}) \triangleq \sum_{i=1}^{n} \sum_{(s,a) \in \mathcal{D}_{i}^{\mathsf{demo}}} -\log \pi_{\boldsymbol{\theta_{i}}}(a|s) + \frac{\rho}{2} \sum_{i=1}^{n} \int_{s \in \mathcal{S}} \sum_{a \in \mathcal{A}} (\delta_{\boldsymbol{\theta_{i}}, \boldsymbol{\phi}}(s, a))^{2} ds.$$
 (6)

Regularization: multiple training tasks, and the action intent prior,

$$T_{\phi}(s'|s,a) \triangleq \sum_{a^{\mathsf{int}} \in \mathcal{A}} T^{\mathsf{real}}(s'|s,a^{\mathsf{int}}) f_{\phi}(a^{\mathsf{int}}|s,a). \tag{7}$$

User Study

We asked 12 participants to play the **Lunar Lander game** without and with **internal-to-real dynamics transfer** assistance.

Means reported below for responses on a 7-point Likert scale, where $1=\mathsf{Strongly}$ Disagree, $4=\mathsf{Neither}$ Disagree nor Agree, and $7=\mathsf{Strongly}$ Agree.

	p-value	Unassisted	Assisted
I enjoyed playing the game	< .001	3.92	5.92
I improved over time	< .0001	3.08	5.83
l didn't crash	< .001	1.17	3.00
I didn't fly out of bounds	< .05	1.67	3.08
I didn't run out of time	> .05	5.17	6.17
I landed between the flags	< .001	1.92	4.00
I understood how to complete the task	< .05	6.42	6.75
I intuitively understood the physics of the game	e < .01	4.58	6.00
My actions were carried out	> .05	4.83	5.50
My intended actions were carried out	< .01	2.75	5.25

