

Department of Physics

Optik Fisis dan Geometri

FIS1104: FISIKA SAINS DAN TEKNOLOGI

Tim Dosen Departemen Fisika IPB University 2023

Kemampuan Akhir Yang Diharapkan

- Mahasiswa diharapkan mampu:
- Memahami konsep pembentukan citra (bayangan) oleh berbagai instrumen optik dan memahami peran penting instrumen optik bagi kehidupan manusia.
- 2. Menganalisis pembentukan citra (bayangan) oleh berbagai instrumen optik

Prediksi Maxwell

Pada tahun 1865, James Clerk Maxwell menyampaikan teori matematik yang menunjukkan hubungan antara semua fenomena listrik dan magnet

Kesimpulan:

Maxwell menyatakan suatu **E** yang berubah-ubah menginduksikan **B** yang juga berubah-ubah.

Selanjutnya, **B** yang berubah-ubah ini menginduksikan kembali **E** yang berubah-ubah.

Gelombang elektromagnetik (GEM)

 Medan E dan B saling tegak lurus satu sama lain

Kedua medan tegak
lurus terhadap arah
gerak. Oleh karena itu,
gelombang elektromagnetik
adalah gelombang transversal

Kecepatan Gelombang EM

 Kecepatan gelombang elektromagnetik sama dengan kecepatan cahaya yang dirumuskan :

Maxwell memperoleh nilai kecepatan cahaya yaitu 3x108 m/s

$$c = \frac{1}{\sqrt{\varepsilon_{0}.\mu_{0}}}$$

$$\epsilon_{o}$$
 = permitivitas ruang hampa
 μ_{o} = permeabilitas ruang hampa
 ϵ_{o} = cepat rambat cahaya

$$\varepsilon_{o} = 8.85 \times 10^{-12} \text{ C}^{2}/\text{Nm}^{2}$$
 $\mu_{o} = 12.56 \times 10^{-7} \text{ wb/amp.m}$
 $c = 3 \times 10^{8} \text{ m/s}$

 Kecepatan gelombang elektromagnetik dinyatakan dengan panjang gelombang dan frekuensi :

$$c = \lambda f$$

```
c = cepat rambat gelombang elektromagnetik (3.10^8 m/s)

\lambda = panjang gelombang (m)

f = frekuensi (Hz)
```

Spektrum GEM

Bentuk dari gelombang elektromagnetik dapat dibedakan menurut frekuensi dan panjang gelombangnya

- Gelombang radio dan TV
- 2. Gelombang mikro
- 3. Sinar inframerah
- 4. Cahaya tampak
- 5. Sinar ultraviolet
- 5. Sinar–X
- 7. Sinar gamma

Sifat Gelombang Elektromagnetik

Cahaya adalah Gelombang Elektromagnetik

- Gelombang EM tidak membutuhkan medium perambatan
- Gelombang EM merupakan gelombang transversal
- Gelombang EM tidak dapat dibelokkan oleh medan listrik atau medan magnet
- Gelombang EM dapat mengalami pemantulan (refleksi), pembiasan (refraksi), perpaduan (interferensi), pelenturan (difraksi), pengutuban (polarisasi)
- Gelombang EM membawa energi ketika melintas melewati ruang, dan energi ini dapat ditransfer kepada benda yang berada dalam lintasannya

Muka Gelombang Cahaya

Sumber: Cutnell

Plane wavefront

Pada jarak yang sangat jauh dari sumber cahaya, muka gelombang cahaya menjadi datar.

Pemantulan Cahaya

Hukum Pemantulan

Sinar datang, sinar pantul, dan garis normal berada pada satu bidang datar.

$$\theta_i = \theta_f$$

Sinar datang = Sinar pantul

Sumber: <u>Cutnell</u>

Pemantulan Spekular dan Pemantulan Difusi

• Pemantulan spekular (pemantulan teratur): sinar-sinar yang dipantulkan bergerak ke arah yang sama.

 Pemantulan difusi (pemantulan baur): sinar-sinar yang dipantulkan menyebar ke segala arah

Pembiasan Cahaya

Table 26.1 Index of Refraction^a for Various Substances

 Kelajuan cahaya di ruang hampa: 	$c = 3 \times 10^8 \text{ m/s}$
---	---------------------------------

 Dalam bahan, kelajuan cahaya lebih kecil dibandingkan kelajuan cahaya di ruang hampa.

Definisi indeks bias

$$n = \frac{\text{kelajuan cahaya di ruang hampa}}{\text{kelajuan cahaya di dalam bahan}} = \frac{c}{v}$$

Substance	Index of Refraction, n
Solids at 20 °C	
Diamond	2.419
Glass, crown	1.523
Ice (0 °C)	1.309
Sodium chloride	1.544
Quartz	
Crystalline	1.544
Fused	1.458
Liquids at 20 °C	
Benzene	1.501
Carbon disulfide	1.632
Carbon tetrachloride	1.461
Ethyl alcohol	1.362
Water	1.333
Gases at 0 °C, 1 atm	
Air	1.000 293
Carbon dioxide	1.000 45
Oxygen, O ₂	1.000 271
Hydrogen, H ₂	1.000 139

^a Measured with light whose wavelength in a vacuum is 589 nm.

Pembiasan Cahaya

(b)

Hukum Ibn Sahl-Snellius

$$n_1 \sin \theta_1 = n_2 \sin \theta_2$$

Sumber: Cutnell

Reflected ray

Pemantulan Total Internal

Ketika cahaya menjalar dari medium yang rapat ke medium yang kurang rapat dapat terjadi pemantulan total.

Sudut kritis
$$\sin \theta_c = \frac{n_2}{n_1}$$

$$n_1 > n_2$$

Contoh aplikasi : serat optik

Kedalaman terlihat

- Ketika berkas cahaya yang dipantulkan oleh objek di dalam air merambat di udara maka berkas ini akan dibiaskan/dibelokkan menjauhi garis normal.
- Peristiwa pembiasan cahaya inilah yang menyebabkan objek yang terlihat di dalam air lebih kecil daripada kedalam sebenarnya

$$d' = d\left(\frac{n_2}{n_1}\right)$$

d': kedalaman objek teramati

d: kedalaman objek Sebenarnya

 n_1 : indeks bias air

 n_2 : indeks bias udara

Pembentukan Bayangan pada Cermin Datar

- ✓ Sinar dari benda dipantulkan oleh cermin ke mata. Sinar pantul ini seolah-olah datang dari belakang cermin.
- ✓ Bayangan yang terlihat berada di belakang cermin, disebut bayangan maya (virtual image)
- ✓ Jarak benda sama sama dengan jarak bayangan.
- ✓ Bayangannya bersifat tegak
- ✓ Terjadi keterbalikan posisi (kiri menjadi kanan dan sebaliknya

Cermin Sferis

- Bagian dalam permukaan sferis: cermin cekung (concave mirror)
- Bagian luar permukaan sferis: cermin cembung (convex mirror)
- Sumbu utama: garis lurus yang melalui pusat kelengkungan cermin dan titik tengah cermin

Cermin Cekung (titik fokus dan sinar istimewa)

- Sinar yang sejajar sumbu utama akan dipantulkan menuju titik fokus yang berjarak setengah dari jari-jari kelengkungan cermin Cekung
- Sinar istimewa Cermin Cekung
 - 1. Sinar datang sejajar sumbu utama akan dipantulkan ke titik focus
 - 2. Sinar datang dari titik fokus akan dipantulkan sejajar sumbu utama.
 - 3. Sinar datang dari pusat kelengkungan akan dipantulkan kembali ke jalan semula.

Sinar-sinar istimewa pembentuk bayangan

Aberasi Optik

Ilustrasi Aberasi optik pada cermin cekung

Aberasi optik (optical aberration) adalah degradasi kinerja suatu sistem optik.

Degradasi yang terjadi dapat disebabkan sifatsifat optik dari cahaya maupun dari sifat-sifat sistem optik sebagai medium terakhir yang dilalui sinar sebelum mencapai mata pengamatnya.

Sinar-sinar yang datang melalui cermin cekung tidak dapat diproyeksikan menuju ke titik fokus yang sama pada sumbu utama.

Sinar-sinar yang jauh dari sumbu utama tidak konvergen ke satu titik. Hal ini disebut **aberasi sferis** (*spherical abberation*).

Cermin Cembung (titik fokus dan sinar istimewa)

- Sinar yang sejajar sumbu utama akan dipantulkan seolah-olah berasal dari titik fokus yang berjarak setengah dari jari-jari kelengkungan cermin Cekung
- Sinar istimewa Cermin Cembung
 - Sinar datang sejajar sumbu utama, dipantulkan seolah-olah dari titik fokus.
 - Sinar datang menuju titik fokus, dipantulkan sejajar sumbu utama.
 - 3. Sinar datang menuju titik pusat kelengkungan cermin, dipantulkan kembali ke jalan semula.

Sinar-sinar istimewa pembentuk bayangan

Persamaan Cermin dan Perbesaran

$$\frac{1}{f} = \frac{1}{d_o} + \frac{1}{d_i}$$

$$m = \frac{h_i}{h_o} = -\frac{d_i}{d_o}$$

$$f : Jarak fokus$$

$$d_o : jarak benda$$

$$d_i : jarak bayang$$

$$m = \frac{h_i}{h_o} = -\frac{d_i}{d_o}$$

: Jarak fokus

: jarak bayangan

: perbesaran

Konversi Tanda pada Cermin Sferis (Lengkung)

f_o adalah (+)untuk cermin cekung

f_o adalah (–) untuk cermin cembung

d_o adalah (+)jika benda di depan cermin

d_o adalah (–)jika benda di belakang cermin

d_i adalah (+)jika bayangan di depan cermin

d_i adalah (–) jika bayangan dibelakang cermin

m adalah (+)untuk bayangan tegak

m adalah (—)untuk bayangan terbalik

Sifat bayangan pada cermin Cekung dan Cembung

$$\frac{1}{d_i} = \frac{1}{f} - \frac{1}{d_o} \dots (1) \qquad m = -\frac{d_i}{d_o} \dots (2)$$

$$m = -\frac{d_i}{d_o} \dots (2)$$

: Jarak fokus

: jarak benda

: jarak bayangan

: perbesaran

- \checkmark Dari persamaan (1), setiap objek yang diletakkan di depan cermin Cembung (-f) maka bayangan yang terbentuk akan selalu maya (-d_i)
- ✓ Dari persamaan (2), setiap objek yang diletakkan di depan cermin Cembung (-f) maka bayangan yang terbentuk akan selalu tegak (+m)
- \checkmark Pada cermin Cekung, terbentuknya bayangan nyata $(+d_i)$ atau maya $(-d_i)$ bergantung pada dimana posisi benda ditempatkan. Cek tanda hasil perhitungan (d_i) pada persamaan (1)
- \checkmark Pada cermin Cekung, terbentuknya bayangan tegak(-m) atau terbalik (+m) bergantung pada dimana posisi benda ditempatkan. Cek tanda hasil perhitungan (m) pada persamaan (2)
- ✓ Bayangan diperbesar atau diperkecil, periksa hasil perhitungan |m| (nilai mutlaknya) (|m| > 1 diperbesar, |m| < 1 diperkecil)

Lensa

Lensa Cembung/Positif

Converging lenses

Sumber: Cutnell

Ilustrasi geometeri sinar datang dan melewati lensa konvergen

Lensa Cekung/Negatif

Diverging lenses

Ilustrasi geometeri sinar datang dan melewati lensa divergen

Sinar-Sinar Istimewa pada Lensa Cembung dan Cekung

Pembentukan Bayangan pada Lensa Positif (Kamera)

Sumber: Cutnell

Kasus benda (objek) berada jauh dari lensa positif, $d_o > 2f$, bayangan yang terbentuk: nyata, terbalik, diperkecil

Pembentukan Bayangan pada Lensa Positif (Proyektor)

Kasus benda (objek) berada di $2f > d_o > f$, bayangan yang terbentuk: nyata, terbalik, diperbesar

Pembentukan Bayangan pada Lensa Positif (Kaca Pembesar)

Kasus benda (objek) berada di $d_o < f$, bayangan yang terbentuk: maya, tegak, diperbesar

Pembentukan Bayangan pada Lensa Negatif

Sumber: Cutnell

Kasus benda (objek) berada di $d_o > f$, bayangan yang terbentuk: maya, tegak, diperkecil

Persamaan Lensa dan Perbesaran

Ilustrasi geometri hubungan f, d dan d_i pada lensa cembung

$$\frac{1}{d_o} + \frac{1}{d_i} = \frac{1}{f}$$

$$m = \frac{h_i}{h_o} = -\frac{d_i}{d_o}$$

Sumber: <u>Cutnell</u>

SINAR DATANG DARI KIRI

f adalah (+) untuk lensa positif

f adalah (–) untuk lensa negative

d_o adalah (+) jika benda di sebelah kiri lensa

do adalah (-) jika benda di sebelah kanan lensa

d_i adalah (+) jika bayangan di sebelah kanan lensa (nyata)

d_i adalah (–) jika bayangan di sebelah kiri lensa (maya)

m adalah (+) untuk bayangan yang tegak

m adalah (–) untuk bayangan yang terbalik

Sifat bayangan pada cermin Cekung dan Cembung

$$\frac{1}{d_i} = \frac{1}{f} - \frac{1}{d_o} \dots (1) \qquad m = -\frac{d_i}{d_o} \dots (2)$$

$$m = -\frac{d_i}{d_o} \dots (2)$$

: Jarak fokus : jarak benda

: jarak bayangan

: perbesaran

- \checkmark Terbentuknya bayangan nyata $(+d_i)$ atau maya $(-d_i)$ bergantung pada dimana posisi benda ditempatkan. Cek tanda hasil perhitungan (d_i) pada persamaan (1)
- \checkmark Terbentuknya bayangan tegak(-m) atau terbalik (+m) bergantung pada dimana posisi benda ditempatkan. Cek tanda hasil perhitungan (m) pada persamaan (2)
- \checkmark Bayangan diperbesar atau diperkecil, periksa hasil perhitungan |m| (nilai mutlaknya) (|m| > 1 diperbesar, |m| < 1 diperkecil)

Mata manusia

- ✓ Jarak bayangan yang terbentuk di retina dari lensa mata selalu tetap.
- ✓ Lensa mata dapat menegang (lebih cembung) atau relaksasi yang disebut kemampuan mata berakomodasi
- ✓ Akomodasi lensa mata bertujuan mengubah fokus lensa mata agar bayang terbentuk tepat di retina untuk setiap objek yang dilihat pada jarak yang berbeda.
- ✓ Ganggungan pengelihatan pada mata (rabun dekat atau rabun jauh) dikarenakan lensa mata tidak mampu mengubah fokus lensanya dengan tepat sehingga bayangan dapat terbentuk tepat di retina.
- ✓ Jarak terdekat objek yang dapat dilihat oleh mata dengan jelas (tanpa membayang) disebut titik dekat (near point). Mata normal berjarak 25 cm
- ✓ Jarak terjauh objek yang dapat dilihat oleh mata dengan jelas (tanpa membayang) disebut titik jauh (far point).

Rabun Jauh/nearsighted/myopic

Ilustrasi mata membutuhkan bantuan lensa Cekung agar sinar datang dari objek menuju lensa mata terfokuskan tepat di retina

- ✓ Lensa mata tidak mampu mengubah fokus lensanya secara tepat agar sinar dari objek rapat jatuh di retina (gambar a)
- ✓ Lensa Cekung didepan mata membantu lensa mata memfokuskan sinar dari objek tepat di retina (gambar b)
- ✓ Objek yang dilihat oleh lensa mata bukan objek langsung, melainkan bayangan yang terbentuk oleh lensa Cekung yang ada didepan mata (gambar c)
- ✓ Bayangan yang dihasilkan lensa Cekung didepan mata menjadi objek bagi lensa mata.
- ✓ Peristiwa ini merupakan contoh dari penggabungan 2 lensa.

Rabun dekat/farsighted/hyperopic

Ilustrasi mata membutuhkan bantuan lensa Cembung agar sinar datang dari objek menuju lensa mata terfokuskan tepat di retina

- ✓ Lensa mata tidak mampu mengubah fokus lensanya secara tepat agar sinar dari objek rapat jatuh di retina (gambar a)
- ✓ Lensa cembung didepan mata membantu lensa mata memfokuskan sinar dari objek tepat di retina (gambar b)
- ✓ Objek yang dilihat oleh lensa mata bukan objek langsung, melainkan bayangan yang terbentuk oleh lensa cembung yang ada didepan mata (gambar c)
- Bayangan yang dihasilkan lensa cembung didepan mata menjadi objek bagi lensa mata.
- ✓ Peristiwa ini merupakan contoh dari penggabungan 2 lensa.

Difraksi Cahaya

- ✓ Difraksi adalah pembelokan arah rambat cahaya.
- ✓ Efek difraksi adalah karakteristik dari fenomena gelombang dimana mukamuka gelombangnya dibelokkan.
- \checkmark Jika panjang gelombang (λ) lebih besar dibandingkan dengan lebar celah (d), maka gelombang akan disebar keluar dengan sudut yang cukup besar.
- ✓ **Note:** Dalam beberapa kasus klasik, fenomena interferensi dan difraksi sulit dibedakan.

Difraksi celah tunggal

FIGURE 33-13 The distance y_1 measured along the screen from the central maximum to the first diffraction minimum is related to the angle θ_1 by $\tan \theta_1 = y_1/L$, where L is the distance to the screen.

Titik-titik minimum (gelap) terjadi ketika sudut $\boldsymbol{\theta}$ mengikuti persamaan

$$d \sin \theta = m\lambda$$
; $m = 1,2,...$

$$\lambda = \frac{d \times y_m}{m \times L}$$
; $m = 1,2,...$

Difraksi-interferensi celah ganda

Titik-titik maksimum (terang) terjadi ketika sudut θ mengikuti persamaan

$$d \sin \theta = m\lambda$$
; $m = 1,2,...$

$$\lambda = \frac{d \times y_m}{m \times L} ; m = 1,2,...$$

Difraksi Lubang Lingkaran

Titik minimum (gelap) pertama terjadi ketika sudut θ mengikuti persamaan

$$d \sin \theta = 1.22 \times \lambda$$

$$\lambda = \frac{a \times y}{1.22 \times L}$$

FIGURE 33-35 The diffraction patterns for a circular aperture and two incoherent point sources when (a) α is a factor of 2 or so greater than $\alpha_c = 1.22 \lambda/D$ and (b) when α is equal to the limit of resolution, $\alpha_c = 1.22 \lambda/D$. ((a) and (b) Courtesy of Michael Cagnet.)

Difraksi celah banyak/kisi

Jika jarak antar celah adalah D, sedangkan lebar celah adalah d dengan D≫d, maka titik-titik maksimum (terang) terjadi ketika sudut θ mengikuti persamaan:

D sin
$$\theta = m\lambda$$
; $m = 1,2,...$

$$\lambda = \frac{D \times y_m}{m \times L}$$
; $m = 1,2,...$

TERIMA KASIH

