

Cookies

Cookies erlauben

- Authentifikation
- Einkaufswagen
- Empfehlungen
- Sitzungs-Status des Benutzers (Web Mail)
- Wie man den Status unterhält
 - speichert Zustand zwischen verschiedenen Transaktionen
 - Cookies: HTTP Nachrichten transportieren den Status
- Cookies und Privatsphäre
 - Cookies übergeben der Web-Site eine Menge von Informationen
 - z.B. Name, E-Mail, Kaufverhalten, etc.

Web Caches (Proxy Server)

Ziel:

- Client-Anfragen erfüllen ohne den Original-Server zu verwenden
- Benutzer greift auf das Web per Cache zu
 - Hierfür wird Browser konfiguriert
- Browser sendet alle HTTP-Anfragen zum Cache
 - Ist das Objekt im Cache, dann wird das Objekt geliefert
 - ansonsten liefert der Original-Server an den Proxy-Server
 - dieser liefert dann das Objekt an den Client

Web-Caching

- Cache fungiert als Client und Server
 - typisch wird der Cache vom ISP (Internet Service Provider) bereit gestellt
- Warum
 - reduziert Antwortzeit für Client-Anfragen
 - reduziert den Verkehr über die Leitungen zu anderen ISPs
 - ermöglicht "kleinen" Web-Servern effizient Inhalte zu verteilen

Conditional GET

- Ziel: Objekt soll nicht gesendet werden, falls der Cache die aktuelle Version hat
- Cache: gibt den
 Zeitsempel der
 gecachten Kopie einer
 HTTP-Anfrage
 - If-modified-since: <date>
- Server: Antwort enthält kein Objekt, falls, die gecachte Kopie aktuell ist
 - HTTP/1.0 304 Not Modified

Server-Farm

- Um die Leistungsfähigkeit auf der Server-Seite zu erhöhen
 - wird eine Reihe von Web-Servern eingesetzt
- Front end
 - nimmt Anfragen an
 - reicht sie an separaten Host zur Weiterbearbeitung weiter

Web-Servers und Datenbanken

- Web-Server stellen nicht nur statische Web-Seiten zur Verfügung
 - Web-Seiten werden auch automatisch erzeugt
 - Hierzu wird auf eine Datenbank zurückgegriffen
 - Diese ist nicht statisch und kann durch Interaktionen verändert werden
- Problem:
 - Konsistenz
- Lösung

Beispiel: Google Data Centers

- Kosten eines Daten-Centers: 600 Mio US\$
- Google investierte 2007 2,4 Mrd. US\$ in Daten-Center
- Jedes Daten-Center verbraucht 50-100 MW

Content Distribution Networks (CDN)

- Eine koordinierte Menge von Caches
 - Die Last großer Web-Sites wird verteilt auf global verteilte Server-Farmen
 - Diese übernehmen Web-Seiten möglichst verschiedener Organisationen
 - z.B. News, Software-Hersteller, Regierungen
 - Beispiele: Akamai, Digital Island
 - Cache-Anfragen werden auf die regional und lastmäßig bestgeeigneten Server umgeleitet
- Beispiel Akamai:
 - Durch verteilte Hash-Tabellen ist die Verteilung effizient und lokal möglich

WWW-Lastbalancierung

- Für Surfen im Web typisch:
 - Web-Server bieten Web-Seiten an
 - Web-Clients fordern Web-Seiten an
- In der Regel sind diese Mengen disjunkt
- Eingehende Anforderungen belasten Web-Server hinsichtlich:
 - Übertragungsbandbreite
 - Rechenaufwand (Zeit, Speicher)

Lastanforderungen

- Einige Web-Server haben immer hohe Lastanforderungen
 - Z.B. Nachrichten-Sites, Suchmaschinen, Web-verzeichnisse
 - Für permanente Anforderungen müssen Server entsprechen ausgelegt werden

- Andere leiden unter hohen Fluktuationen
 - z. B. bei besonderen Ereignissen:
 - fifa.com (Fussball-EM)
 - t-mobile.de (iPhone 6 Einführung)
 - Server-Erweiterung nicht sinnvoll
 - Bedienung der Anfragen aber erwünscht

Montag

Lastbalancierung im WWW

 Fluktuationen betreffen meistens einzelne Server

- (Kommerzielle) Lösung
 - Dienstleister bieten Ausweich-(Cache-)Server an
 - Viele Anforderungen werden auf diese Server verteilt
- Aber wie?

Web-Caching

- Leighton, Lewin, et al. STOC 97
 - Consistent Hashing and Random Trees: Distributed Caching Protocols for Relieving Hot Spots on the World Wide Web
 - Passen bestehende Verfahren für dynamische Hash-Funktionen an WWW-Anforderungen an
- Leighton und Lewin (MIT) gründen Akamai 1997

Ausgangssituation

Ohne Lastbalancierung:

Jeder Browser (Web-Client)
 belegt
 einen Web-Server für eine
 Web-Site

Vorteil:

- Einfach

Nachteil:

 Der Server muss immer für den Worst-Case ausgelegt werden

Web-Clients

Site Caching

- Ganze Web-Site wird auf verschiedene Web-Caches kopiert
- Browser fragt bei Web-Server nach Seite
- Web-Server leitet Anfrage auf Web-Cache um (redirect)
- Web-Cache liefert Web-Seite aus
- Vorteil:
 - Gute Lastbalancierung für Seitenverteilung
- Nachteil:
 - Bottleneck: Redirect
 - Großer Overhead durch vollständige Web-Site-Replikationen

Proxy Caching

- Jede Web-Seite wird auf einige (wenige) Web-Caches verteilt
- Nur Startanfrage erreicht Web-Server
- Links referenzieren auf Seiten im Web-Cache
- Dann surft der Web-Client nur noch auf den Web-Cache
- Vorteil:
 - Kein Bottleneck
- Nachteil:
 - Lastbalancierung nur implizit möglich
 - Hohe Anforderung an Caching-Algorithmus

Anforderungen an Caching-Algorithmus

Balance Gleichmäßige Verteilung der Seiten

Dynamik
Effizientes Einfügen/Löschen von neuen
Web-Cache-Servern

Views
Web-Clients "sehen"
unterschiedliche Menge
von Web-Caches

Ranged Hash-Funktionen oder Verteilte Hash-Funktionen

Gegeben:

- Elemente (Items)
- Caches (Buckets)
- Views: Menge von Caches
- Ranged Hash-Funktion:
 - Zuordnung eines Elements zu einem Cache in einem View

Distributed Hash Table

Anforderungen an Ranged Hash-Funktionen

Monotonie

 nach dem Hinzufügen neuer Caches (Buckets) sollten keine Seiten (Items) zwischen alten Caches verschoben werden

Balance

- Alle Caches sollten gleichmäßig ausgelastet werden
- Spread (Verbreitung, Streuung)
 - Eine Seite sollte auf eine beschränkte Anzahl von Caches verteilt werden

Load

 Kein Cache sollte wesentlich mehr als die durchschnittliche Anzahl von Seiten enthalten

Distributed Hash Tables als Lösung

Electronic Mail

Hauptkomponenten

- user agents
- mail servers
- simple mail transfer protocol: SMTP

User Agent

- Mail Client
- Erstellen, ändern und lesen von E-Mail-Nachrichten
- z.B. Eudora, Outlook, pine, Mozilla Thunderbird
- abgehende und ankommende Nachrichten werden auf dem Server gespeichert

Mail-Servers

- Mailbox speichert eingehende Nachrichten für den User
- Nachrichten-Warteschlange (queue) der zu versendenden Nachrichten
- SMTP-Protocol zwischen Mail-Servern um E-Mail-Nachrichten zu schicken

Electronic Mail: SMTP [RFC 2821]

- verwendet TCP um zuverlässig E-Mail-Nachrichten vom Client auf Port 25 zu verschicken
- Direkte Übertragung von Absender-Server zum Empfangs-Server
- 3 Phasen in der Übertragung
 - Handshake
 - Transfer der Nachricht
 - Abschluss
- Befehle und Antwort
 - Befehle als ASCII text
 - Antwort: Status-Code und Kurzbeschreibung
- Nachrichten sind in 7-bit ASCII

Beispiel: Alice sendet eine Nachricht an Bob

- 1) Alice verwendet UA um die Nachricht zu erzeugen mit Eintrag "to" bob@someschool.edu
- 2) Alice UA sendet die Nachricht zu ihren Mail-Server
 - Nachricht wird in der Nachrichtenwartenschlange platziert
- 3) Client-Seite des SMTP öffnet TCP-Verbindung mit Bobs Mail-Server
- 4) SMTP Client sendet Alice Nachricht über die TCP-Verbindung
- 5) Bobs Mail-Server schreibt die Nachricht in Bobs Mailbox
- 6) Bob ruft seinen User Agent auf, um die Nachricht zu lesen

Beispiel SMTP Interaktion

```
S: 220 hamburger.edu
C: HELO crepes.fr
S: 250
        Hello crepes.fr, pleased to meet you
C: MAIL FROM: <alice@crepes.fr>
S: 250 alice@crepes.fr... Sender ok
C: RCPT TO: <bob@hamburger.edu>
S: 250 bob@hamburger.edu ... Recipient ok
C: DATA
S: 354 Enter mail, end with "." on a line by itself
C: Do you like ketchup?
C: How about pickles?
C: .
S: 250 Message accepted for delivery
C: QUIT
S: 221 hamburger.edu closing connection
```


SMTP - Abschließende Bemerkungen

SMTP

- verwendet persistente Verbindungen
- verlangt Nachrichten (header & body) in 7-bit ASCII
- SMTP-Server verwenden "CRLF.CRLF" um das Ende einer Nachricht zu beschreiben

Vergleich mit HTTP:

- HTTP: pull
- SMTP: push
- beide haben ASCII Befehls- und Antwort-Interaktion und Status-Codes

HTTP

- jedes Objekt wird in eigener Nachricht verpackt

SMTP

- verschiedene Objekte werden in einer Multipart-Nachricht verschickt

Mail-Zugriffsprotokolle

- SMTP: Auslieferung und Speicher zum Server des Empfängers
- Mail-Zugriffsprotocol: E-Mail-Abruf vom Server
 - POP: Post Office Protocol [RFC 1939]
 - Authentifizierung (zwischen Agent und Server) und Download
 - IMAP: Internet Mail Access Protocol [RFC 1730]
 - mehr Features und komplexer
 - Bearbeitung von gespeicherten Nachrichten auf dem Server
 - HTTP: gmail, Hotmail, Yahoo! Mail, web.de, etc.

POP3 und IMAP

- POP3 (Post-Office-Protocol)
 - User kann im "download and delete" Modus E-Mails einmalig herunterladen
 - User kann E-Mails noch einmal lesen, wenn er den Client wechselt:
 - "Download-and-keep": Kopien der Nachricht auf verschiedenen Clients
 - POP3 ist zustandslos (stateless) von einer Sitzung zur nächsten
- IMAP (Internet Message Access Protocol)
 - hält alle Nachrichten an einem Ort: dem Server
 - erlaubt dem User die Nachrichten in Ordnern zu organisieren
 - IMAP speichert den Benutzer-Status zwischen Sitzungen
 - Namen der Ordner und Zuordnung zwischen Nachrichten-ID und Ordnernamen

Meilensteine P2P Systeme

- Napster 1999-2000
 - Filesharing, nur rudimentäres P2P
- Gnutella 2000
 - 1. echtes P2P-Netzwerk
- Edonkey 2000
 - Mehr Filesharing als P2P
- FreeNet 2000
 - Anonymisiertes P2P-Netzwerk
- FastTrack 2001
 - KaZaa, Morpheus, Grokster
- Bittorrent 2001
- Skype 2003
 - VoIP (voice over IP), Chat, Video

Milestones Theorie

- Distributed Hash-Tables (DHT) (1997)
 - Ziel: Lastbalancierung für Web-Server
- CAN (2001)
 - DHT-Netzwerk-Struktur
- Chord (2001)
 - Erstes effiziente P2P-Netzwerk
 - Logarithmische Suchzeit
- Pastry/Tapestry (2001)
 - Effizientes verteiltes P2P-Netzwerk unter Verwendung des Plaxton-Routing
- Und viele andere Ansätze
 - Viceroy, Distance-Halving, Koorde, Skip-Net, P-Grid, ...
- In den letzten fünf Jahren:
 - Network Coding for P2P
 - Game theory in P2P
 - Anonymity, Security

Was ist ein P2P-Netzwerk

- Was ist P2P NICHT?
 - Ein Client-Server network
- Etymologie: peer
 - lateinisch: par = gleich
 - Standesgleich
 - P2P, Peer-to-Peer: Beziehung zwischen gleichwertigen Partnern
- Definition
 - Ein Peer-to-Peer Network ist ein Kommunikationsnetzwerk im Internet
 - ohne zentrale Kontrolle
 - mit gleichwertigen, unzuverlässigen Partnern

Distributed Hash-Table (DHT)

Hash-Tabellen

- nicht praktikabel in P2P

Verteilte Hash-Tabellen

 Consistent Hashing and Random Trees: Distributed Caching Protocols for Relieving Hot Spots on the World Wide Web, Karger, Lehman, Leighton, Levine, Lewin, Panigrahy, STOC 1997

Daten

werden ge*hash*t und nach
 Bereich den Peers zugeordnet

Peers

 werden an eine Stelle gehasht und erhalten Bereiche des Wertebereichs der Hashfunktion zugeteilt

Peers

Zeiger-Struktur in Chord

