Relatório

Atividade 04: Integração Numérica com Regras de Simpson

Rebeca Amorim Penha

14 de julho de 2025

Objetivo

O objetivo desta atividade é aplicar as regras de integração numérica de Simpson $\frac{1}{3}$ e $\frac{3}{8}$ para aproximar integrais definidas de diferentes funções e analisar o erro em relação a um valor de referência obtido com alta precisão.

Funções Utilizadas

- $f_1(x) = x^4 2x^2 + 1$
- $f_2(x) = \sin(x)$
- $f_3(x) = e^x$

Intervalo de integração: [0, 1]

Descrição do Código

- Calcula as integrais reais com alta precisão usando a função integral;
- Para $n=2,4,6,\ldots,100$, aplica a regra de Simpson $\frac{1}{3}$ e calcula o erro absoluto;
- Para valores de n múltiplos de 3, aplica também a regra de Simpson $\frac{3}{8}$;
- Plota gráficos com o erro em escala logarítmica para cada função e método.

Resultados

Os gráficos gerados mostram o comportamento do erro à medida que o número de subintervalos aumenta. O erro decresce de forma significativa, especialmente para funções suaves como $f_1(x)$. A análise permite comparar a eficiência das duas regras de Simpson em diferentes contextos.

Conclusão

As regras de Simpson são métodos eficazes para integração numérica, apresentando alta precisão com poucos subintervalos para funções bem comportadas. O código desenvolvido permite comparar os métodos em diferentes cenários e quantificar a convergência por meio de gráficos de erro.