PROBABILIDAD II

Grado en Matemáticas

Tema 1 Repaso de teoría de la medida

Jesús Munárriz

Departamento de Matemáticas Universidad Autónoma de Madrid

jesus.munarriz@uam.es

Tema 1: Repaso de teoría de la medida

- 1. σ -álgebras
- 2. Espacios de medida
- 3. Teorema de extensión
- 4. Medida de Lebesgue y Borel-Stieljes
- 5. Funciones medibles
- 6. Integrales
- 7. Paso al límite bajo signo integral
- 8. Continuidad absoluta de medidas
- 9. El Teorema de Radon-Nikodym
- 10. Espacios L^p . Desigualdades importantes.

Sea Ω un conjunto no vacío. Una colección de conjuntos $\mathcal{F}\subset\mathcal{P}(\Omega)$ (partes de Ω) se dice que es una σ -álgebra si

- (1) $\Omega \in \mathcal{F}$.
- (2) \mathcal{F} es cerrada o estable para la complementación:

Si
$$A \in \mathcal{F}$$
, entonces $A^c \in \mathcal{F}$.

(3) \mathcal{F} es estable para la unión numerable:

Si
$$\{A_i\}_{i=1}^{\infty} \subset \mathcal{F}$$
, entonces $\bigcup_{i=1}^{\infty} A_i \in \mathcal{F}$.

El par (Ω, \mathcal{F}) se denomina **espacio medible** y los elementos de \mathcal{F} **conjuntos medibles**.

Si $\{\mathcal{F}_i\}_{i\in I}\subset\mathcal{P}(\Omega)$ es una colección de σ -álgebras, entonces $\bigcap_{i\in I}\mathcal{F}_i$ es σ -álgebra.

Dado $\mathcal{C} \subset \mathcal{P}(\Omega)$, se define

$$\sigma(\mathcal{C}) = \bigcap_{\mathcal{F}} \{ \mathcal{F} : \mathcal{F} \supset \mathcal{C} \text{ y } \mathcal{F} \text{ } \sigma\text{-algebra} \}.$$

El conjunto C se denomina **generador de la** σ -álgebra $\sigma(C)$.

Si (Ω, τ) es un espacio topológico, a la σ -álgebra $\sigma(\tau)$ se denomina σ -álgebra Boreliana o de Borel asociada a τ .

De interés especial para nosotros serán:

- $\Omega = \mathbb{R}$ o $\overline{\mathbb{R}}$, $\tau = \tau_u$ (topología usual).
- $\Omega = \mathbb{R}^k$ o $\overline{\mathbb{R}}^k$, $\tau = \tau_u$ (topología usual).

Sea (Ω, \mathcal{F}) un espacio medible. Se dice que μ es una **medida** (**positiva**) en Ω si $\mu : \mathcal{F} \longrightarrow [0, \infty]$ satisface:

- (1) $\mu(\emptyset) = 0$.
- (2) σ -aditividad o aditividad numerable: si $\{A_i\}_{i=1}^{\infty} \subset \mathcal{F}$ es una colección de conjuntos disjuntos dos a dos (i.e., $A_i \cap A_j = \emptyset$, $i \neq j$), entonces:

$$\mu\left(\bigcup_{i=1}^{\infty}A_{i}\right)=\sum_{i=1}^{\infty}\mu(A_{i}).$$

El triplete $(\Omega, \mathcal{F}, \mu)$ se llama **espacio de medida**.

 $(\Omega, \mathcal{F}, \mu)$ es un **espacio de medida finita** si $\mu(\Omega) < \infty$.

 $(\Omega, \mathcal{F}, \mu)$ es un **espacio de medida** σ -finita si existe $\{A_i\}_{i=1}^{\infty} \subset \mathcal{F}$ tal que $\Omega = \bigcup_{i=1}^{\infty} A_i$ y $\mu(A_i) < \infty$, para todo i.

Propiedades de la medida

- Si $\{A_i\}_{i=1}^{\infty} \subset \mathcal{F}$, decimos que A_n crece hasta A, $A_n \uparrow A$, si $A_1 \subset A_2 \subset A_3 \subset \cdots$ y $A = \bigcup_{i=1}^{\infty} A_i$.
- Si $\{A_i\}_{i=1}^{\infty} \subset \mathcal{F}$, decimos que A_n decrece hasta A, $A_n \downarrow A$, si $A_1 \supset A_2 \supset A_3 \supset \cdots$ y $A = \bigcap_{i=1}^{\infty} A_i$.

 - 2 $\{A_i\}_{i=1}^{\infty} \subset \mathcal{F} \text{ con } A_n \downarrow A \text{ y } \mu(A_1) < \infty$, entonces $\mu(A_n) \downarrow \mu(A)$.

Medidas sobre álgebras

Una colección $\mathcal{A}\subset\mathcal{P}(\Omega)$ se dice que es una **álgebra** si

- (1) $\Omega \in \mathcal{A}$.
- (2) Si $A \in \mathcal{A}$, entonces $A^c \in \mathcal{A}$.
- (3) Si $A, B \in \mathcal{A}$, entonces $A \cup B \in \mathcal{A}$.

Teorema de extensión

Teorema de extensión de Caratheodory (1948)

Sea $\mu_0: \mathcal{A} \longrightarrow [0,\infty]$ una medida sobre el álgebra \mathcal{A} . Existe una medida $\mu: \sigma(\mathcal{A}) \longrightarrow [0,\infty]$ que es una extensión de μ_0 , es decir, $\mu_{|\mathcal{A}} = \mu_0$.

Los conjuntos $B \in \mathcal{F}$ con $\mu(B) = 0$ se llaman **conjuntos** μ -nulos Un espacio de medida se dice **completo** si para todo conjunto μ -nulo B y para todo $A \subset B$, se tiene que $A \in \mathcal{F}$.

Teorema de completación

Sea $(\Omega, \mathcal{F}, \mu)$ un espacio de medida. Existe un espacio medida $(\Omega, \overline{\mathcal{F}}, \overline{\mu})$ completo tal que $\mathcal{F} \subset \overline{\mathcal{F}}$ y $\overline{\mu}$ es una extensión de μ .

Además, este espacio de medida $(\Omega, \overline{\mathcal{F}}, \overline{\mu})$ es único y se dice que es la **completación** de $(\Omega, \mathcal{F}, \mu)$.

Ejemplo: Medidas de Borel-Stieljes

Medida de Borel-Stieljes asociada a g

Sea $I \subset \mathbb{R}$ (intervalo) y $g:I \longrightarrow \mathbb{R}$ funcion no decreciente y continua por la derecha.

Existe una única medida $m_g: \mathcal{B}(I) \longrightarrow [0,\infty]$ tal que $m_g((a,b]) = g(b) - g(a)$. A m_g se le llama la **medida de Borel-Stieljes asociada a** g.

Nota: Se tiene $m_g(\{x_0\}) = g(x_0) - g(x_0^-)$.

Nota: Si g, h son dos funciones continuas por la derecha y no decrecientes tales que $m_g = m_h$, entonces g - h =constante.

Función de distribución de una medida

Dada $\mu: \mathcal{B}(I) \longrightarrow [0,\infty]$ medida finita, existe g no decreciente y continua por la derecha tal que $\mu = \mu_g$. Además, podemos tomar $g(x) = \mu(I \cap (-\infty, x])$ que se llama **función de distribución de** μ .

Funciones medibles y funciones simples

Sean (Ω, \mathcal{F}) , (Ω', \mathcal{F}') dos espacios medibles. Se dice que una función $f:(\Omega, \mathcal{F}) \longrightarrow (\Omega', \mathcal{F}')$ es $\mathcal{F} - \mathcal{F}'$ -medible si para todo $A \in \mathcal{F}'$, se tiene que $f^{-1}(A) \in \mathcal{F}$.

$$f^{-1}(A) = \{\omega \in \Omega : f(\omega) \in A\}$$
 (pre-imagen de A por f).

Si $f: \Omega \longrightarrow \Omega'$ es constante, entonces es medible.

Funciones medibles y funciones simples

Sea $\mathbb{K} = \mathbb{R}$ ó \mathbb{C} , con \mathcal{F}' los respectivos conjuntos de Borel.

Si $A\subset\Omega$, el **indicador** (o función indicatriz) de A es $\mathbf{1}_A:\Omega\longrightarrow\{0,1\}$, definida como $\mathbf{1}_A(\omega)=1$ si $\omega\in A$ y $\mathbf{1}_A(\omega)=0$ si $\omega\notin A$.

• ¿Cuándo es $\mathbf{1}_A$ una función medible?

Una función $f:(\Omega,\mathcal{F})\longrightarrow \mathbb{R}$ se dice **simple** si es medible y $f(\Omega)$ es finito.

Nota: $f:(\Omega,\mathcal{F})\longrightarrow \mathbb{R}$ es simple si y solo si $f=\sum_{i=1}^k a_i \mathbf{1}_{A_i}$, con $A_i\in \mathcal{F}$ disjuntos.

Sea $(\Omega, \mathcal{F}, \mu)$ un espacio de medida. Si $s = \sum_{i=1}^{n} a_i \mathbf{1}_{A_i}$ es función simple positiva (es decir, no no negativa), se define la **integral de** s **con respecto a la medida** μ como

$$\int_{\Omega} s \, d\mu := \sum_{i=1}^n a_i \mu(A_i).$$

Si $f:(\Omega,\mathcal{F})\longrightarrow [0,\infty]$ es medible, entonces existe una sucesión $\{s_n\}_{n=1}^\infty$ simples con $0\leq s_n\uparrow f$. Se define la **integral de** f **conrespecto a la medida** μ como

$$\int_{\Omega} f \ d\mu = \lim_{n \to \infty} \int_{\Omega} s_n \ d\mu = \sup_{0 \le s \le f, \ s \ \text{simple}} \int_{\Omega} s \ d\mu.$$

Si $f:(\Omega,\mathcal{F})\longrightarrow [-\infty,\infty]$ es medible, entonces podemos escribir $f=f^+-f^-$. Si $\int_\Omega f^+\,d\mu<\infty$ ó $\int_\Omega f^-\,d\mu<\infty$, definimos la **integral de** f como

$$\int_{\Omega} f \, d\mu := \int_{\Omega} f^+ \, d\mu - \int_{\Omega} f^- \, d\mu.$$

Si $f:(\Omega,\mathcal{F})\longrightarrow\mathbb{C}$ es medible, entonces podemos escribir $f=f_1+if_2$, donde $f_1,f_2:(\Omega,\mathcal{F})\longrightarrow\mathbb{R}$. Si $\int_\Omega f_1\,d\mu<\infty$ y $\int_\Omega f_2\,d\mu<\infty$, definimos

$$\int_{\Omega} f \ d\mu := \int_{\Omega} f_1 \ d\mu + i \int_{\Omega} f_2 \ d\mu.$$

Si $\int_{\Omega} |f| d\mu < \infty$, f se dice μ -integrable $(f \in \mathcal{L}^1(\mu))$.

Para $f, g \in \mathcal{L}^1(\mu)$, $a, b \in \mathbb{K}$, se tiene:

1 Linealidad: $af + bg \in \mathcal{L}^1(\mu)$ y

$$\int_{\Omega} (af + bg) d\mu = a \int_{\Omega} f d\mu + b \int_{\Omega} g d\mu.$$

2 Positividad: Si $f \ge 0$ entonces $\int_{\Omega} f \ d\mu \ge 0$; o equivalentemente, si $f \le g$ (luego f y g toman valores reales) entonces

$$\int_{\Omega} f \ d\mu \leq \int_{\Omega} g \ d\mu \quad \left(\text{en particular,} \quad \left| \int_{\Omega} f \ d\mu \right| \leq \int_{\Omega} |f| \ d\mu. \right).$$

- 3 $\int_{\Omega} |f| d\mu = 0$ si y solo si f = 0 en casi todo punto.
- 4 Si $f \ge 0$ y $\int_{\Omega} f \ d\mu < \infty$, entonces $\mu(\{\omega \in \Omega : f(\omega) = \infty\}) = 0$, es decir, $f \ne \infty$ c.s.

Dada f medible, para $A \in \mathcal{F}$ se define

$$\int_A f \, d\mu := \int_\Omega f \, \mathbf{1}_A \, d\mu.$$

Proposición: Sea $f:(\Omega,\mathcal{F})\longrightarrow [0,\infty]$ medible. La aplicación

$$\nu : \mathcal{F} \longrightarrow [0, \infty]$$

$$A \longmapsto \nu(A) = \int_A f \, d\mu,$$

es una medida sobre (Ω, \mathcal{F}) . Se denota $d\nu = f d\mu$.

Paso al límite bajo el signo integral

Teorema de la convergencia monótona

Hacia arriba: Si $f_n \uparrow f$ y existe k tal que $f_k^- \in \mathcal{L}^1(\mu)$, entonces

$$\int_{\Omega} f \ d\mu = \lim_{n \to \infty} \int_{\Omega} f_n \ d\mu.$$

Hacia abajo: Si $f_n \downarrow f$ y existe k tal que $f_k^+ \in \mathcal{L}^1(\mu)$, entonces

$$\int_{\Omega} f \, d\mu = \lim_{n \to \infty} \int_{\Omega} f_n \, d\mu.$$

Paso al límite bajo el signo integral

Lema de Fatou-Lebesgue

(a) Si $f_n \leq f$ y $f^+ \in \mathcal{L}^1(\mu)$, entonces

$$\int_{\Omega} \limsup_{n \to \infty} f_n \, d\mu \ge \limsup_{n \to \infty} \int_{\Omega} f_n \, d\mu.$$

(b) Si $f_n \geq f$ y $f^- \in \mathcal{L}^1(\mu)$, entonces

$$\int_{\Omega} \liminf_{n\to\infty} f_n \, d\mu \leq \liminf_{n\to\infty} \int_{\Omega} f_n \, d\mu.$$

Paso al límite bajo el signo integral

Teorema de la convergencia dominada

Si $f_n o f$ en casi todo punto, y existe $g \in \mathcal{L}^1(\mu)$ tal que $|f_n| \le g$ para todo n, entonces

$$\int_{\Omega} f \, d\mu = \lim_{n \to \infty} \int_{\Omega} f_n \, d\mu.$$

Continuidad absoluta de medidas

Sea (Ω, \mathcal{F}) un espacio medible y ν , μ dos medidas. Se dice que ν es **absolutamente continua con respecto a** μ y se denota $\nu << \mu$ si para todo $A \in \mathcal{F}$ tal que $\mu(A) = 0$, entonces $\nu(A) = 0$.

Una medida μ se dice que se **concentra** en un conjunto $A \in \mathcal{F}$ si $\mu(A^c) = 0$, o equivalentemente, si para todo $B \in \mathcal{F}$, se tiene que $\mu(B) = \mu(A \cap B)$.

Se dice que ν es **singular con respecto a** μ y se denota $\nu \perp \mu$ si existe $A \in \mathcal{F}$ tal que $\mu(A) = 0$ y ν se concentra en A.

Descomposición de medidas

Teorema de descomposición de Lebesgue

Sean ν , μ dos medidas σ -finitas sobre (Ω, \mathcal{F}) . Existen dos únicas medidas ν_a , ν_s tales que $\nu_a << \mu$ y $\nu_s \perp \mu$ con $\nu = \nu_a + \nu_s$. Esta descomposición se denomina **descomposición de Lebesgue** de la medida ν (con respecto a μ).

Medidas reales y complejas

Sean μ y ν dos medidas (positivas) finitas. Decimos que τ es una medida con valores reales o con signo si es de la forma $\tau = \mu - \nu$. Decimos que γ es una medida con valores complejos si es de la forma $\gamma = \tau_1 + i\tau_2$, donde τ_1 y τ_2 son medidas reales.

En el caso de las medidas con signo, se puede admitir que una de las medidas sea infinita.

El Teorema de Radon-Nikodym

Teorema de Radon-Nikodym

Sean ν , μ dos medidas σ -finitas con signo, sobre (Ω, \mathcal{F}) , tales que $\nu << \mu$. Existe una única función medible $f:(\Omega, \mathcal{F}) \longrightarrow [0, \infty]$ tal que

$$\nu(A) = \int_A f d\mu, \quad A \in \mathcal{F}.$$

Es decir, $d\nu = fd\mu$.

A la función $f=\frac{d\nu}{d\mu}$ se le llama la **derivada de Radon-Nikodym** de ν con respecto a μ (f es la μ -densidad de ν .)

Espacios \mathcal{L}_p , $1 \leq p \leq \infty$: Sea $(\Omega, \mathcal{F}, \mu)$ un espacio de medida. Definimos

$$\mathcal{L}_p = \left\{ f \text{ medible} : \Omega \longrightarrow \mathbb{K} : \int_{\Omega} |f|^p d\mu < \infty \right\}$$

si
$$1 \le p < \infty$$
, y

$$\mathcal{L}_{\infty} = \{ f \text{ medible} : \Omega \longrightarrow \mathbb{K} : \exists a \geq 0 \text{ tal que } \mu(|f|^{-1}(a,\infty)) = 0 \}.$$

Puede demostrarse que los espacios \mathcal{L}_p son espacios vectoriales.

Definimos, para $1 \le p < \infty$,

$$||f||_p = \left(\int_{\Omega} |f|^p d\mu\right)^{1/p},$$

У

$$||f||_{\infty} = \operatorname{ess sup} |f| := \min\{a \ge 0 \text{ tal que } \mu(|f|^{-1}(a, \infty)) = 0\}.$$

Como

- ① $||f+g||_p \le ||f||_p + ||g||_p$ (designaldad triangular o de Minkowski).
- $\|\lambda f\|_{p} = |\lambda| \|f\|_{p}.$

tenemos que $\|\cdot\|_p$ es una **seminorma**. No es una norma ya que $\|f\|_p=0$ cuando f=0 c. p. t.

Definiendo la relación de equivalencia " $f\sim g$ si y solo si f=g en casi todo punto", tenemos que $\mathcal{L}_p/\sim=L_p$ es un espacio vectorial normado y completo (toda sucesión de Cauchy es convergente). En otras palabras, los espacios L^p para $1\leq p\leq \infty$ son espacios de Banach.

Funciones convexas

Definición: Sea I un intervalo. Una función $f:I \longrightarrow \mathbb{R}$ se dice **convexa** si para todo $u,v \in I$, para todo $\lambda \in [0,1]$, se tiene que

$$f(\lambda u + (1 - \lambda)v) \le \lambda f(u) + (1 - \lambda)f(v).$$

Ejemplos: $f(x) = e^x$; $f(x) = |x|^{\alpha}$, $\alpha \ge 1$; f(x) = 1/x (x > 0).

Propiedades de las funciones convexas

- **1** Sea $f: I \longrightarrow \mathbb{R}$ derivable. f es convexa si y sólo si f' es no decreciente.
- 2 Sea $f: I \longrightarrow \mathbb{R}$ dos veces derivable. f es convexa si y sólo si f'' > 0.
- 3 Si f convexa, entonces f es continua salvo quizá en ∂I (extremos del intervalo I).
- 4 Si f es convexa, para todo (u, f(u)) tal que $u \in I^{\circ}$, existe (al menos) una recta que pasa por (u, f(u)) (recta soporte) tal que su gráfica está totalmente por debajo de f. Es decir,

$$\forall u \in I^{\circ}, \exists a \in \mathbb{R}$$
 : $a(x - u) + f(u) \leq f(x), \forall x \in I.$

Teorema: Desigualdad de Jensen

Sea I un intervalo, y sea $(\Omega, \mathcal{F}, \mu)$ un espacio de medida con $\mu(\Omega) = 1$. Si $f: \Omega \longrightarrow I$ pertenece a $L^1(\Omega, \mathcal{F}, \mu)$ y $\varphi: I \longrightarrow \mathbb{R}$ es convexa, entonces

$$\varphi\left(\int_{\Omega} f d\mu\right) \leq \int_{\Omega} \varphi(f) d\mu.$$

Consecuencia: φ es convexa si y sólo si para todos los puntos $u_1, \ldots, u_n \in I$, y para todos los pesos $\lambda_1, \ldots, \lambda_n \geq 0$ con $\lambda_1 + \cdots + \lambda_n = 1$, se tiene que

$$\varphi(\lambda_1 u_1 + \cdots + \lambda_n u_n) \leq \lambda_1 \varphi(u_1) + \cdots + \lambda_n \varphi(u_n).$$

Nota: Una función φ es **cóncava** si $-\varphi$ es convexa. La desigualdad de Jensen para funciones cóncavas es $\varphi\left(\int_{\Omega} f d\mu\right) \geq \int_{\Omega} \varphi(f) d\mu$.

Desigualdades de Hölder y Minkowski

Se dice que p y q son exponentes conjugados si 1/p+1/q=1, o equivalentemente, si q=p/(p-1). El conjugado de 1 es ∞ .

El siguiente lema es un caso especial de la desigualdad aritmético-geométrica; con frecuencia se le denomina "desigualdad de Young".

Lema: Sean p,q>1 tales que 1/p+1/q=1. Entonces para todo $a,b\geq 0$ se tiene que

$$a \cdot b \leq \frac{a^p}{p} + \frac{b^q}{q}.$$

En general, en las demostraciones los casos p=1 y $p=\infty$ deben tratarse aparte. Pero suelen ser triviales.

Desigualdad de Hölder

Teorema: Desigualdad de Hölder

Sean $p, q \ge 1$ tales que 1/p + 1/q = 1. Entonces

$$||fg||_1 \le ||f||_p ||g||_q$$
.

Por tanto, $fg \in \mathcal{L}_1$ si $f \in \mathcal{L}_p$ y $g \in \mathcal{L}_q$.

Corolario: Desigualdad de Cauchy-Schwarz

Si
$$f,g \in \mathcal{L}_2$$
 y , entonces $\|fg\|_1 \leq \|f\|_2 \|g\|_2$.

Desigualdad de Minkowski

Corolario

Si $f \in \mathcal{L}_p$, entonces $||f||_p = \sup_{\{g: ||g||_q = 1\}} \int fg$.

Teorema: Desigualdad de Minkowski

Sea
$$1 \leq p \leq \infty$$
. Si $f, g \in \mathcal{L}_p$, entonces $\|f + g\|_p \leq \|f\|_p + \|g\|_p$.

Dem: Por el corolario anterior.

Desigualdad Jensen o de Hölder, y espacios de probabilidad

• En espacios de probabilidad, y más generalmente en espacios de medida finita, la desigualdad de Jensen, o la de Hölder, implican que cuanto mayor es el exponente p, más pequeño es el espacio.

Teorema

Sean $0 < r < s \le \infty$, y sea (Ω, \mathcal{F}, P) un espacio de probabilidad. Entonces para toda variable aleatoria X se verifica que

$$||X||_r \leq ||X||_s.$$

Por tanto, $\mathcal{L}_s \subset \mathcal{L}_r$.

Desigualdad Jensen o de Hölder, y espacios de probabilidad

Dem: El caso $s=\infty$ es trivial. Si $s<\infty$, o bien escribimos 1=s/s y usamos Jensen, o bien escribimos $X=X\mathbf{1}_{\Omega}$, tomamos p=s/r>1, y sabiendo que $\mathbf{1}_{\Omega}\in\mathcal{L}_q$, usamos Hölder.

Comentario: cuando 0 < r < 1, $\|\cdot\|_r := (\int |\cdot|^r)^{1/r}$ no satisface la desigualdad triangular, luego no es una norma (puede demostrarse que es una cuasi norma).

Desigualdad de Markov

Teorema: Desigualdad de Markov

Sea (Ω,\mathcal{F},μ) un espacio de medida, y sea $f\geq 0$ medible. Entonces para todo t>0 se verifican las desigualdades

$$\mu\{f \geq t\} \leq rac{1}{t} \int_{\{f \geq t\}} \mathrm{f} \mathrm{d} \mu \leq rac{1}{t} \int_{\Omega} \mathrm{f} \mathrm{d} \mu.$$

Dem: trivial.