UNIVERSIDADE FEDERAL DE MINAS GERAIS DEPARTAMENTO DE ENGENHARIA ELÉTRICA ELE075 - SISTEMAS NEBULOSOS

Trabalho Computacional II - Inferência Nebulosa

Prof. Cristiano Leite de Castro 23 de outubro de 2018

1 Tarefas

- 1. Para resolver o Exercício 2 recomenda-se a leitura do Capítulo 4 do livro texto: Jyh-Shing Roger Jang and Chuen-Tsai Sun. 1996. Neuro-Fuzzy and Soft Computing: A Computational Approach to Learning and Machine Intelligence. Para resolver o Exercício 3, que se refere a um problema de classificação de padrões, recomenda-se a leitura do artigo "Effect of Rule Weights in Fuzzy Rule-Based Classification Systems" que pode ser obtido neste link: https://ieeexplore.ieee.org/document/940964
- 2. Seja a função y=cosseno(x), para x definido no intervalo de $[-\pi/2,3\pi/2]$, conforme ilustra a Figura 2. Pede-se:
 - (a) Empregue o mecanismo de inferência de Sugeno com consequentes de ordem 1 e obtenha uma expressão analítica para aproximar esta função. Dica: use funções de pertinência do tipo triangular para "fuzzificação" da variável x.
 - (b) Mostrar o gráficos da aproximação (regressão) e calcular o Erro Quadrático Médio $EQM = \frac{1}{N} \sum_{i=1}^{N} (y_i \hat{y}_i)^2$, onde y_i é a saída real da função e \hat{y}_i é a saída obtida pelo sistema nebuloso.
- 3. Projete um classificador binário (duas classes) baseado em regras nebulosas. O número de regras (K) e as funções de pertinência para os antecedentes e consequentes das regras devem ser definidas com base no algoritmo de agrupamento Fuzzy K-Means, da seguinte forma:

Figura 1.1: Função y = cosseno(x) no intervalo de $[-\pi/2, 3\pi/2]$.

- Dado o conjunto de dados formado por uma matriz X com dimensões $n \times d$ (onde n é o número de padrões e d é a dimensão do espaço de entrada) e uma matriz Y com dimensões $n \times 1$ (indicando os rótulos para os padrões), divida (X,Y) em duas partições: 70% dos padrões para treinamento (X_t,Y_t) e o restante (30%) para validação (X_v,Y_v) .
- Aplique o algoritmo Fuzzy K-Means sobre X_t . O centróide do j-ésimo grupo (cluster) deve corresponder a uma regra do tipo: regra j: se x_1 é A_{1j} e x_2 é A_{2j} e . . . e x_d é A_{dj} então $y_j = c$ com $c \in \{0, 1\}$.
- Defina o antecedente A_{ij} como uma função de pertinência Gaussiana com centro c_{ij} igual à projeção do centróide do grupo j na variável de entrada i.
- Proponha uma forma de calcular a dispersão (σ_{ij}) de A_{ij} a partir dos valores de pertinência para o grupo j obtidos com o algoritmo Fuzzy K-Means (coluna j da matriz U).
- O valor c para o consequente (y_j) deve ser definido como a classe (0 ou 1) que fornece o valor máximo para a soma dos valores de pertinência do grupo j. Para isso, some todos os valores de pertinência do grupo j por classe. Use a matriz Y_t para descobrir qual é a classe de cada padrão.
- A saída do classificador nebuloso para um dado padrão de entrada $\mathbf{x} = \{x_1, x_2, \dots, x_d\}$ deve ser calculada por:
 - para cada regra j, calcule os valores de pertinência $\mu_{A_{ij}}(x_i)$ para cada variável de entrada x_i .
 - para cada regra j, obtenha o grau de ativação: $\omega_j = \prod_{i=1}^d \mu_{A_{ij}}(x_i)$.
 - agregue os graus de ativação das regras que possuem o mesmo consequente (mesma classe) utilizando o operador soma probabilística (snorma) e escolha como saída para o padrão ${\bf x}$ a classe que fornece o maior valor agregado.
- Calcule a acurácia do classificador nebuloso para o conjunto de validação

- (X_v,Y_v) , considerando diferentes valores para $K=2,3,\ldots,8$ (número de regras). Mostre um gráfico da acurácia em função de K.
- Mostre a superfície de separação gerada pelo classificador no espaço de entrada para 3 diferentes valores de K.
- Descreva a estratégia proposta por você para calcular σ_{ij} .
- Teste seu algoritmo de classificação utilizando as seguintes bases de dados:
 - a) dataset_2d.mat: base de dados sintética que está disponível no moodle. Neste arquivo x se refere aos dados de entrada e y as respectivas saídas (classes).
 - b) Pima Diabetes: base de dados real que pode ser obtida neste link: https://www.kaggle.com/uciml/pima-indians-diabetes-database