2024-2025 研究生抽象代数期末考试

Bob

2024年12月30日

本试卷出现的 ℝ, ℂ, Ⅲ 分别为实数域、复数域、四元数体.

-、A 是所有形如 $\begin{pmatrix} a_1 & & \\ a_4 & a_2 & \\ & & a_3 \end{pmatrix}$ 的矩阵构成的代数, 问 A 是不是半

单结合代数并证明之.

二、设半单结合代数 A 的模 $V_1,\,V_2$ 对应 A 的表示为 $\rho_1,\,\rho_2.$ 证明 V_1 与 V_2 同构当且仅当

$$\operatorname{tr}\rho_1(a) = \operatorname{tr}\rho_2(a), \quad \forall a \in \mathcal{A}$$

三、设 $Q_8 = \{\pm 1, \pm i, \pm j, \pm k\}$ 为四元数群, 它所有的共轭类分别为 $C_1 = \{1\}, C_2 = \{-1\}, C_3 = \{\pm i\}, C_4 = \{\pm j\}, C_5 = \{\pm k\}.$

- 1) 求 Q_8 的特征标表.
- 2) 将 \square 视为 4 维线性空间, ρ 为 Q_8 自然作用在 \square 上得到的表示. 问 ρ 视为一个复表示时是否可约? 若不可约, 将 ρ 分解为不可约表示的直和.

四、 $\mathcal{A}=\{v_1,v_2,v_3\,|\,v_1^2=v_2^2=v_3^2=1,\,v_iv_j=-v_jv_i,\,i\neq j\}$ 为 C 上的 Clifford 代数.

$$e_1 = \frac{1}{4}(1+v_1)(1+iv_2v_3)$$
 $e_2 = \frac{1}{4}(1+v_1)(1-iv_2v_3)$
 $e_3 = \frac{1}{4}(1-v_1)(1+iv_2v_3)$ $e_4 = \frac{1}{4}(1-v_1)(1-iv_2v_3)$

- 1) 证明: $e_1v_1 = e_1$, $e_1v_2v_3 = -ie_1$, $e_1v_2 = v_2e_4$, $e_1v_3 = v_3e_4$.
- 2) 证明: e_1 , e_2 , e_3 , e_4 是幂等元.
- 3) 求 A 的一组本原幂等元.
- 4) 求 A 的一组正交中心幂等元.
- 5) 将 A 写成矩阵代数的直和.

五、设 G 是有限群, $\mathbb{F}[G]$ 是域 \mathbb{F} 上由 G 生成的群代数, V 是由 $v = \sum_{g \in G} g$ 生成的子空间.

- 1) 证明: V 是 $\mathbb{F}[G]$ 的 G-不变子空间.
- 2) 证明: 若 ch $\mathbb{F}\,|\,|G|,\,\mathbb{M}$ 不存在 \mathbb{F} 的不变子空间 W 使得 $\mathbb{F}[G]=V\oplus W.$

六、证明 $\mathbb{C} \otimes_{\mathbb{R}} \mathbb{H}$ 作为结合代数同构于 $M^{2 \times 2}(\mathbb{C})$.

七、设 A 是含幺元 e 的结合代数, N 为 A 的幂零根基. 证明: $a \in N$ 当且仅当对任意的 $b \in \mathcal{A}, \ e-ab$ 可逆.