

Model Interpretability

Transparency

Explanations Causality

Trust

Easy to understand by humans

Interpretable decisions

Model Interpretability - Terms

Local vs. global explanations

Model-agnostic vs. Model-specific

Explanation coverage = region in input space where the explanation applies

Which of the following algorithms are interpretable?

K-nearest neighbour

Linear Regression

Neural Network

Decision tree classifier

Support Vector Machine

Focus of this talk

local model-agnostic

LIME – quick intro

"identify an **interpretable** model over the interpretable representation that is **locally faithful** to the classifier"

LIME – quick intro

Anchors – quick intro

rule that "anchors" a prediction locally such that in instances that the anchors holds, the prediction is consistent

Anchors vs. LIME

Practical uses

Data type	Perturbations	Interpretable representation
Tabular data	Fix some features and sample the rest of the row	Features in the dataset
Images	Turn Super-pixels on/off	Presence or absence of super-pixels
Text classification	Fix some tokens and replace the rest by random words	Presence/absence of tokens (words) in the sentence

Some actual examples ...

Practical tips

Model understanding

Pros & Cons

- Easy to use with existing models
- Give an intuition about the model behaviour locally
- Help model understanding before deployment
- Good model validation tools in addition to existing methods

- LIME builds a linear model (the local boundary can be highly non-linear)
- LIME does not return any coverage information
- In practice they don't work well for all examples
- No global understanding of what the model has learnt
- Need a perturbation distribution to be defined for every domain

Resources

- "The mythos of model interpretability", Zachary Lipton: https://arxiv.org/abs/1606.03490
- SHAP: http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf
- LIME github: https://github.com/marcotcr/lime
- Anchors github: https://github.com/marcotor/anchor
- Skater = open source unified framework for model interpretability: https://datascienceinc.github.io/Skater/index.html
- Interpretability resources list on github: https://github.com/lopusz/awesome-interpretable-machine-learning
- InterpretML is an open-source package for training interpretable models and explaining blackbox system: https://github.com/microsoft/interpret

