

DMA: Probability

Jurij Volčič Institut for Matematiske Fag

Plan for today

- Poker hands and their probabilities
- 2 Expected value of an experiment

Recap

In how many ways can we choose r elements from an n-element set?

	with repetitions	without repetitions
ordered	n ^r	$_{n}P_{r}$
unordered	n+r-1Cr	$_{n}C_{r}$

where

$$_{n}P_{r} = n \cdot (n-1) \cdots (n-r+1) = \frac{n!}{(n-r)!}$$

and

$$_{n}C_{r}=\binom{n}{r}=\frac{n\cdot(n-1)\cdots(n-r+1)}{r\cdot(r-1)\cdots1}=\frac{n!}{r!(n-r)!}$$

Poker hands

A **poker hand** consists of 5 unordered cards drawn **uniformly at random** from a standard deck of 52. There are

- 4 suits:
 - ♠ (spades) ♥ (hearts) ♣ (clubs) ♦ (diamonds)
- 13 ranks:

Question: How many different poker hands are there?

Answer:
$$_{52}C_5 = \frac{52!}{5!47!} = 2,598,960.$$

Special poker hands

Experiment: Draw a random poker hand

Sample space: $A = \{all \text{ possible hands } h\}$

Probability function: $p(h) = \frac{1}{|A|} = \frac{1}{5C_{52}}$ (equally likely outcomes)

Events E:

- Straight flush
- Pour of a kind
- Full house
- 4 Flush
- 6 Straight
- 6 Three of a kind
- Two pairs
- 8 A pair

Four of a kind

Four of a kind: 4 cards of the same rank and one other card.

Examples: $\{A \spadesuit, A \heartsuit, A \diamondsuit, A \clubsuit, 5 \clubsuit\}, \{7\heartsuit, 7\diamondsuit, 7 \spadesuit, 7 \clubsuit, K\heartsuit\}$

Task: Find the probability of drawing four of a kind.

Solution

- Event E = {hands, h, that are four of a kind}
- $p(E) = \frac{|E|}{|A|}$
- To choose a hand that is four of a kind:
 - Choose the rank for the 4 cards (task 1)
 - Choose the last card (task 2)
- $|E| = {}_{13}C_1 \cdot {}_{48}C_1 = 13 \cdot 48 = 624$
- $p(E) = \frac{|E|}{|A|} = \frac{624}{52C_5} \approx 0.00024$

Two pairs

Two pairs: 2 pairs of different ranks and a card of a third

rank (AABBC).

Example: $\{3\clubsuit, 3\heartsuit, 5\heartsuit, 5\spadesuit, K\clubsuit\}$

Task: Find the probability of drawing two pairs (event E) **Solution**

- To choose two pairs:
 - **1** Choose the ranks for the two pairs $(_{13}C_2)$ ways
 - 2 Choose the suits for the two pairs $({}_{4}C_{2} \cdot {}_{4}C_{2}$ ways)
 - 3 Choose the last card of another rank ($_{44}C_1$ ways)
- $|E| = {}_{13}C_2 \cdot {}_4C_2 \cdot {}_4C_2 \cdot {}_1C_{44} = 123,552$
- $p(E) = \frac{|E|}{|A|} = \frac{123,552}{52C_5} \approx 0.0475$

Two pairs

Two pairs: 2 pairs of different ranks and a card of a third

rank (AABBC).

Example: $\{3\clubsuit, 3\heartsuit, 5\heartsuit, 5\spadesuit, K\clubsuit\}$

Task: Find the probability of drawing two pairs (event E) **Solution**

- To choose two pairs:
 - **1** Choose the ranks for the two pairs $(_{13}C_2)$ ways
 - 2 Choose the suits for the two pairs $({}_{4}C_{2} \cdot {}_{4}C_{2}$ ways)
 - 3 Choose the last card of another rank $(_{44}C_1)$ ways
- Q: Could we perform (1) and (2) above as
 - a choose the 1st rank and its suites $(13 \cdot {}_{4}C_{2})$ ways)
 - **b** choose the 2nd rank and its suites $(12 \cdot {}_{4}C_{2})$ ways)

Two pairs

Two pairs: 2 pairs of different ranks and a card of a third

rank (AABBC).

Example: $\{3\clubsuit, 3\heartsuit, 5\heartsuit, 5\spadesuit, K\clubsuit\}$

Task: Find the probability of drawing two pairs (event E) **Solution**

- To choose two pairs:
 - **1** Choose the ranks for the two pairs $(_{13}C_2)$ ways
 - 2 Choose the suits for the two pairs $({}_{4}C_{2} \cdot {}_{4}C_{2}$ ways)
 - 3 Choose the last card of another rank ($_{44}C_1$ ways)
- Q: Could we perform (3) above as
 - (a) choose the 3rd rank $(_{11}C_1)$ ways)
 - **(b)** choose the suite for the 3rd rank $({}_{4}C_{1}$ ways)

Full house

Full house: three cards of one rank, and two cards of another rank (AAABB).

Example: $\{3\clubsuit, 3\heartsuit, K\heartsuit, K\spadesuit, K\clubsuit\}$

Task: Find the probability of drawing a full house.

Solution

- To choose full house: did you
 - 1 Choose the rank for the pair and choose their suites $(13 \cdot {}_{4}C_{2} = 13 \cdot 6 \text{ ways})$
 - 2 Choose the rank for the triple and choose their suites $(12 \cdot {}_{4}C_{3} = 12 \cdot 4 \text{ ways})$

or

- ① Choose the two ranks $\binom{13}{13} = 13.6$ ways)
- 2 Choose the suits for the triple and for the pair $\binom{4}{3} \cdot \binom{4}{4} = 6 \cdot 4$ ways)

Full house

Full house: three cards of one rank, and two cards of another rank (AAABB).

Example: $\{3\clubsuit, 3\heartsuit, K\heartsuit, K\spadesuit, K\clubsuit\}$

Task: Find the probability of drawing a full house.

Solution

- To choose full house:
 - 1 Choose the rank for the pair and choose their suites $(13 \cdot {}_{4}C_{2})$ ways
 - 2 Choose the rank for the triple and choose their suites $(12 \cdot {}_{4}C_{3} \text{ ways})$
- $|E| = 13 \cdot {}_{4}C_{2} \cdot 12 \cdot {}_{4}C_{3} = 13 \cdot 6 \cdot 12 \cdot 4 = 3,744$
- $p(E) = \frac{|E|}{|A|} = \frac{3,744}{52C_5} \approx 0.00144$

Probabilities of poker hands

Kind of hand	Count	Probability
Straight flush		
Four of a kind	624	0.00024
Full house	3,744	0.00144
Flush		
Straight		
Three of a kind		
Two pairs	123,552	0.0475
A pair		

Definition: Let $A = \{\alpha_1, \dots, \alpha_n\} \subseteq \mathbb{R}$ be the sample space for an experiment X. Let p_k be the probability of getting outcome α_k , for all $1 \leqslant k \leqslant n$. Then, the **expected value** of the experiment is

$$E[X] = a_1p_1 + a_2p_2 + \ldots + a_kp_k.$$

Observation: We have assumed that a_k is a real number.

Expected value represents the average of a large number of independent realizations of the experiment.

Example: Suppose we toss a coin and record a 0 in case of heads and 1 in case of tails. Our sample space is $A=\{0,1\}$. For a fair coin $p_0=p_1=\frac{1}{2}$ and the expected value is

$$E[X] = 0 \cdot \frac{1}{2} + 1 \cdot \frac{1}{2} = \frac{1}{2}$$

Observation: The expected value itself is not necessarily a valid outcome.

Example: Suppose we toss a coin and record a -1 in case of heads and 1 in case of tails. Our sample space is $A = \{-1, 1\}$. For a fair coin

$$E[X] = (-1) \cdot \frac{1}{2} + (1) \cdot \frac{1}{2} = 0$$

In contrast, if, for example, $p(-1) = \frac{1}{10}$ and $p(1) = \frac{9}{10}$, then

$$E[X] = (-1) \cdot \frac{1}{10} + (1) \cdot \frac{9}{10} = \frac{8}{10} = 0.8$$

Exercise 3.4.37. An array of length n is searched for a randomly placed keyword. On the average, how many steps will it take to find the key?

Solution: The number of steps that it can take to find a key is 1,2,...,n. Hence, sample space, $A = \{1,2,...,n\}$. The key is equally likely to be found at any position. Hence, $p_k = \frac{1}{n}$. Therefore, the expected value of steps is:

$$1 \cdot \frac{1}{n} + 2 \cdot \frac{1}{n} + \dots + n \cdot \frac{1}{n} = \frac{(1 + 2 + \dots + n)}{n}$$
$$= \frac{1}{n} \frac{n(n+1)}{2}$$
$$= \frac{n+1}{2} = \Theta(n)$$

