Part 1

Roots

ROOT1.tex

Exercise 1 How many solutions are there to $5 = x^2$? 2

Exercise 1.1 What are the solutions (from smaller to larger)?

$$x = \boxed{-\sqrt{5}}$$
 and $x = \boxed{\sqrt{5}}$

Exercise 2 How many solutions are there to $-243 = x^3$?

Exercise 2.1 What is the solution? (Enter your root as an exponent. Recall that $\sqrt[n]{x} = x^{\frac{1}{n}}$.)

$$x = \boxed{-(243)^{1/3}}$$

Exercise 3 How many solutions are there to $1 = x^{14}$? 2

Exercise 3.1 What are the solutions (from smaller to larger)?

$$x = \boxed{-1}$$
 and $x = \boxed{1}$

Exercise 4 How many solutions are there to $0 = x^{32}$?

Exercise 4.1 What is the solution?

$$x = \boxed{0}$$

ROOT2.tex

Exercise 5 How many solutions are there to $5 + \sqrt{2+x} = -4$?

Exercise 6 How many solutions are there to $2x^5 - 1 = 0$?

Exercise 6.1 What is the solution?

$$x = (0.5)^{.2}$$

Exercise 7 How many solutions are there to $3x^4 + 4 = 7$?

Exercise 7.1 What are the solutions (from smaller to larger)?

$$x = \boxed{-1}$$
 and $x = \boxed{1}$

ROOT3.tex

Exercise 8 Select all invertible functions below.

Select All Correct Answers:

(a)
$$f(x) = x^3 \checkmark$$

(b)
$$f(x) = x^3 - 9$$
 \checkmark

(c)
$$f(x) = 5x^5$$
 \checkmark

(d)
$$f(x) = x^2 - 2$$

(e)
$$f(x) = x^4$$

$$(f) f(x) = 2x^6$$

(g)
$$f(x) = 3x^7 - 7$$
 \checkmark

(h)
$$f(x) = x^{24} - 9$$

ROOT4.tex

Exercise 9 How many solutions are there to $x^3 = 0$?

Exercise 9.1 What is the solution?

$$x = \boxed{0}$$

Exercise 10 How many solutions are there to $x^3 - 9 = 0$?

Exercise 10.1 What is the solution?

$$x = \boxed{\sqrt[3]{9}}$$

Exercise 11 How many solutions are there to $5x^5 = 1$?

Exercise 11.1 What is the solution?

$$x = \sqrt[5]{\frac{1}{5}}$$

Exercise 12 How many solutions are there to $x^2 - 2 = 0$?

Exercise 12.1 What are the solutions (from smaller to larger)?

$$x = \boxed{-\sqrt{2}}$$
 and $x = \boxed{\sqrt{2}}$

Exercise 13 How many solutions are there to $x^4 = 0$? 1

Exercise 13.1 What is the solution?

$$x = \boxed{0}$$

Exercise 14 How many solutions are there to $2x^6 = 1? \boxed{2}$

Exercise 14.1 What are the solutions (from smaller to larger)?

$$x = \boxed{-\sqrt[6]{rac{1}{2}}}$$
 and $x = \boxed{\sqrt[6]{rac{1}{2}}}$

Exercise 15 How many solutions are there to $3x^7 - 7 = 0$?

Exercise 15.1 What is the solution?

$$x = \sqrt[7]{\frac{7}{3}}$$

Exercise 16 How many solutions are there to $x^{24} - 9 = -10$?

ROOT5.tex

Exercise 17 Consider the function f defined by $f(x) = \sqrt{x+2}$.

- (a) What is the x-intercept of f(x)? (-2, 0)
- (b) What is the y-intercept of f(x)? $(0, \sqrt{2})$
- (c) What is the domain of f(x)? $[-2, \infty]$
- (d) What is the range of f(x)? $\boxed{0}$, $\boxed{\infty}$
- (e) $As \ x \to \infty, \ y \to \boxed{\infty}$

Exercise 18 Consider the function g defined by $g(x) = x^2 - 2$.

(a) What are the x-intercepts of g(x) (from left to right)? $(-\sqrt{2}, 0)$ and $(\sqrt{2}, 0)$

- (b) What is the y-intercept of g(x)? (0, -2)
- (c) What is the domain of g(x)? $(-\infty, \infty)$
- (d) What is the range of g(x)? [-2], $[\infty]$
- (e) As $x \to \infty$, $y \to \boxed{\infty}$

ROOT6.tex

Exercise 19 How many solutions are there to $x^3 = -1$?

Exercise 19.1 What is the solution?

$$x = \sqrt[3]{-1}$$

Exercise 20 How many solutions are there to $x^2 = -1$?

Exercise 21 How many solutions are there to $\frac{1}{5}x^4 + 2 = 7$?

Exercise 21.1 What are the solutions (from smaller to larger)?

$$x = -\sqrt[4]{25}$$
 and $x = \sqrt[4]{25}$

Exercise 22 How many solutions are there to $x^{22} = 0$? 1

Exercise 22.1 What is the solution?

$$x = \boxed{0}$$

Exercise 23 How many solutions are there to $x^4 - 16 = 0$?

Exercise 23.1 What are the solutions (from smaller to larger)?

$$x = \boxed{-2}$$
 and $x = \boxed{2}$

Exercise 24 How many solutions are there to $7x^8 = 5$? 2

Exercise 24.1 What are the solutions (from smaller to larger)?

$$x = \boxed{-\sqrt[8]{\frac{5}{7}}}$$
 and $x = \boxed{\sqrt[8]{\frac{5}{7}}}$

Exercise 25 How many solutions are there to $44x^{19} + 14 = 28$? 1

Exercise 25.1 What is the solution?

$$x = \sqrt[19]{\frac{14}{44}}$$

Exercise 26 How many solutions are there to $x^{23} - 9 = -10$?

Exercise 26.1 What is the solution?

$$x = \sqrt[23]{-1}$$

ROOT7.tex

Exercise 27 Consider the function f defined by $f(x) = \sqrt[7]{x}$.

- (a) What is the x-intercept of f(x)? (0, 0)
- (b) What is the y-intercept of f(x)? (0, 0)

- (c) What is the domain of f(x)? $[-\infty]$, $[\infty]$
- (d) What is the range of f(x)? $[-\infty]$, $[\infty]$
- (e) As $x \to \infty$, $y \to \boxed{\infty}$.
- (f) $As \ x \to -\infty, \ y \to \boxed{-\infty}$

Exercise 28 Consider the function g defined by $g(x) = -\sqrt[7]{x}$.

- (a) What is the x-intercept of g(x)? (0, 0).
- (b) What is the y-intercept of g(x)? (0, 0)
- (c) What is the domain of g(x)? $(-\infty)$
- (d) What is the range of g(x)? $[-\infty]$
- (e) $As \ x \to \infty, \ y \to \boxed{-\infty}$.
- (f) $As \ x \to -\infty, \ y \to \boxed{\infty}$

Exercise 29 Consider the function g defined by $g(x) = \sqrt[7]{-x}$.

- (a) What is the x-intercept of g(x)? (0,0).
- (b) What is the y-intercept of g(x)? ($\boxed{0}$, $\boxed{0}$)
- (c) What is the domain of g(x)? $(-\infty)$,
- (d) What is the range of g(x)? $[-\infty]$, $[\infty]$
- (e) $As \ x \to \infty, \ y \to \boxed{-\infty}$
- (f) $As \ x \to -\infty, \ y \to \boxed{\infty}$

ROOT8.tex

Use completing the square to find the x-intercepts of the following function.

$$f(x) = x^2 - 6x - 7$$

Fill in the missing blanks below.

$$x^{2} - 6x - 7 = (x - 3)^{2} + -16$$

$$(x-3)^2 - (4)^2 = 0$$

$$(x-3)^2 - (4)^2 = 0$$
$$(x+1)(x-7) = 0$$

Smaller x intercept (-1,0)

Larger x intercept (7,0)

ROOT9.tex

Exercise 31 Use completing the square to find the x-intercepts of the following function.

$$f(x) = x^2 + 14x + 38$$

Fill in the missing blanks below.

$$x^{2} + 14x + 38 = (x + 7)^{2} + -11$$

$$(x+7)^2 - (\sqrt{11})^2 = 0$$

$$(x + \sqrt{11})(x + \sqrt{11}) = 0$$
 (Input the smaller value first).

Smaller x intercept $(-(7+\sqrt{11}),0)$

Larger x intercept $\left(-(7-\sqrt{11}) \right|, 0$

ROOT10.tex

Exercise 32 Use completing the square to find the x-intercepts of the following function.

$$f(x) = x^2 + 5x - 30$$

Fill in the missing blanks below.

$$x^{2} + 5x - 30 = \left(x + \left[\frac{5}{2}\right]\right)^{2} + \left[-\frac{145}{4}\right]$$

$$\left(x + \left[\frac{5}{2}\right]\right)^2 - \left(\sqrt{\frac{145}{4}}\right)^2 = 0$$

$$\left(x + \left\lceil \frac{5 - \sqrt{145}}{2} \right\rceil\right) \left(x + \left\lceil \frac{5 + \sqrt{145}}{2} \right\rceil\right) = 0 \text{ (Input the smaller value first)}.$$
 Smaller x intercept
$$\left(-\left(\frac{5 + \sqrt{145}}{2}\right)\right), 0\right)$$
 Larger x intercept
$$\left(-\left(\frac{5 - \sqrt{145}}{2}\right)\right), 0$$