Оптимизация параметров стимулирующего импульса для повышения передаточной функции вестибулярного импланта

A. Т. Суюндукова¹, В. П. Демкин², С. В. Мельничук³ Национальный исследовательский Томский государственный университет ¹almagul.suyundukova@mail.ru, ²demkin@ido.tsu.ru, ³osbereg@yandex.ru

Аннотация. В работе проведено теоретическое и экспериментальное исследование частотной зависимости характеристик гармонического сигнала при прохождении от ампул вестибулярного аппарата морской свинки до вестибулярного нерва. Показано, что суммарный сигнал, приходящий в ганглию Скарпа на вестибулярный нерв, зависит от трех сигналов стимулирующих электродов. Амплитудно-фазовые характеристики ЭТОГО определяются векторной суммой амплитуд трех сигналов. Причиной этого эффекта является наличие токов утечки, возникающих в электропроводящей ткани вестибулярного лабиринта.

Ключевые слова: вестибулярный имплант; вестибулярный лабиринт; передаточная функция; стимулирующий импульс

І. Введение

Вестибулярная система человека представляет собой сложную биологическую сенсорную систему, отвечающую за генерацию и передачу в мозг информации о положении тела в пространстве и его движении.

Вестибулярный орган, расположенный во внутреннем ухе, обеспечивает вход в нервную систему для движения головы и ориентации, чтобы поддерживать равновесие тела и устойчивое зрение. Эта система состоит из трех полукружных каналов, заполненных жидкостью, для определения углового движения головы, отолитовых органов, которые позволяют определять горизонтальные и вертикальные линейные ускорения. Все эти органы имеют сенсорные устройства - волосковые которые генерируют последовательность электрических импульсов, частота и амплитуда которых зависит от величины линейных и угловых ускорений. Эти импульсы через синаптическую связь по нервам поступают в вестибулярные ядра продолговатого мозга и формирования обрабатываются для обеспечивающих стабилизацию глаз и тела. Таким образом, рецепторы волосковых клеток конвертируют энергию механических стимулов в серию потенциалов действия, поступающих в центральную нервную систему.

Исследование выполнено за счет гранта Российского научного фонда (проект № 17-15-01249).

Дисфункция вестибулярной постуральную нестабильность, нарушение зрения во время движения головы и хроническое нарушение равновесия [1, 2]. Эти симптомы оказывают влияние на качество уровня жизни человека, поскольку приводят значительному снижению физической активности, его социальной функции и жизненной силы [3]. В случае потери сенсорной функции вестибулярного органа необходима его замена искусственным аналогом вестибулярным имплантом. В вестибулярном импланте генерация электрических импульсов тока происходит искусственно с помощью гироскопических датчиков ускорений и поступает к соответствующему нерву через электроды. Генератор импульсов генерирует импульсы напряжения пропорциональные ускорениям, которые затем в стимуляторе преобразуются в последовательности импульсов тока, частота которых определяется из направления и величины ускорения [4, 5]. Для стимуляции вестибулярного нерва импульсами тока используются платиновые электроды, окончания которых располагаются вблизи вестибулярного нерва в полости (ампуле), заполненной перилимфой.

Имеющиеся сегодня образцы вестибулярных имплантов пока еще далеки от совершенства [6, 7]. Одной из причин этого является несовершенство передаточной функции, которая отражает качество электрического сигнала, поступающего в вестибулярный нерв от стимулирующего электрода [8, 9]. Стимулирующий электрический импульс от электрода, проходя через ткани вестибулярного органа, испытывает влияние импеданса биологической ткани, что приводит к изменению его амплитудно-частотных характеристик.

II. Физико-математическая модель

Для электрической стимуляции вестибулярных нервов внутрь ампул в непосредственной близости от крист полукружных каналов и соответственно вблизи окончаний вестибулярных нервов при проведении протезирования вводятся стимулирующие электроды [10].

На рис. 1 приведена схема расположения трех ампул (A) полукружных каналов вестибулярного органа и, соответственно, расположение трех стимулирующих

электродов, а также положение ганглии Скарпа (Н), где находятся вестибулярные нервы.

Рис. 1. Схема расположения ампул (A) и окончаний вестибулярных нервов (H)

На рисунке обозначены: (A1) — ампула верхнего полукружного канала, (A2) — ампула горизонтального полукружного канала, (A3) — ампула заднего полукружного канала. Электрическая стимуляция одного из вестибулярных нервов соответствует наличию поворотов головы в одной из трех плоскостей. Поскольку электроды окружены токопроводящими биологическими тканями, на соседних электродах возникают токи утечки, приводящие к появлению нежелательной стимуляции всех вестибулярных нервов.

Для выяснения влияния токов утечки и расположения стимулирующих электродов на характеристики сигнала, приходящего на вестибулярный нерв нами разработана физико-математическая модель протекания электрических процессов.

На стимулирующий электрод подается напряжение, изменяющееся по гармоническому закону: $U(t) = U_0 e^{i\alpha t}$, где U_0 – амплитуда напряжения, ω – частота сигнала. На окончании вестибулярного нерва образуется напряжение выходного сигнала и, соответственно, определенная величина тока $I(t) = I_0 e^{(i\omega t + \varphi)}$, где φ – фазовое смещение тока относительно напряжения, I_0 – амплитуда тока, определяемая как $I_0 = \frac{U_0}{Z+R}$, где Z – импеданс.

Рассчитаем форму сигнала, принимаемого в точке (H), при подаче на стимулирующий электрод в ампуле (A1) синусоидального напряжения $U(t) = U_0 e^{i\alpha t}$, с учетом токов

утечки с электрода в ампуле (A1) на два соседних электрода в ампулах (A2) и (A3). В этом случае в точку (H) будут одновременно поступать три сигнала: прямой стимулирующий сигнал от электрода в ампуле (A1) и вторичные сигналы с электродов в ампулах (A2) и (A3), имеющие фазовые сдвиги по отношению к прямому сигналу. В итоге результирующий сигнал будет равен векторной сумме трех сигналов с разными амплитудами и фазовыми смещениями, определяющими направления векторов вторичных сигналов к прямому.

$$I_{\Sigma} = I_1 + I_2 + I_3 \,, \tag{1}$$

где

$$I_1 = I_1^0 e^{i(\alpha t + \varphi_1)}, (2)$$

$$I_2 = I_2^0 e^{i(\omega t + \varphi_2)},\tag{3}$$

$$I_3 = I_3^0 e^{i(\alpha t + \varphi_3)}. (4)$$

Здесь, I_1^0 , I_2^0 , I_3^0 — амплитуды прямого тока с электрода в ампуле (A1) и токов утечки с электродов в ампуле (A2) и (A3), φ_1 , φ_2 , φ_3 — соответствующие фазовые смещения по отношению к стимулирующему напряжению на электроде в ампуле (A1).

Из формул (1)–(4) следует, что наряду с прямым стимулирующим импульсом амплитудой I_1^0 на регистрирующий электрод за счет токов утечки приходят еще два импульса амплитудой I_2^0 и I_3^0 и фазовыми смещениями φ_2 , φ_3 . Таким образом, результирующая амплитуда импульса на принимающем электроде будет равна:

$$I_{\Sigma}^{1} = I_{1}^{0} + I_{2}^{0} \cos \varphi_{2} + I_{3}^{0} \cos \varphi_{3}.$$
 (5)

Для стимуляции нерва с электродов ампул (A2) и (A3) получаем аналогичные формулы:

$$I_{\Sigma}^{2} = I_{2}^{0} + I_{1}^{0} \cos \varphi_{1} + I_{3}^{0} \cos \varphi_{3}, \tag{6}$$

$$I_{\Sigma}^{3} = I_{3}^{0} + I_{1}^{0} \cos \varphi_{1} + I_{2}^{0} \cos \varphi_{2}. \tag{7}$$

III. РЕЗУЛЬТАТЫ РАСЧЕТОВ

В таблице приведены значения результирующих амплитуд импульсов в ганглии Скарпы, рассчитанные по формулам (5)–(7) с учетом токов наводки при стимуляции вестибулярного нерва с электродов ампул (A1), (A2), (A3).

ТАБЛИЦА І ЗНАЧЕНИЯ РЕЗУЛЬТИРУЮЩИХ АМПЛИТУД ИМПУЛЬСОВ В ГАНГЛИИ СКАРПЫ

Частота, кГц	(A1)		(A2)		(A3)	
	I_{Σ}^{0} , отн. ед.					
	прямая	с учетом токов	прямая	с учетом токов	прямая	с учетом токов
	стимуляция	наводки	стимуляция	наводки	стимуляция	наводки
0.5	6.43	10.76	3.83	10.90	3.16	5.79
1.0	8.48	15.12	5.13	14.57	4.04	7.87
1.5	9.33	17.94	5.94	17.04	4.41	8.65

Как следует из таблицы амплитуды сигналов на регистрирующем электроде в точке (Н) растут с ростом частоты, что объясняется уменьшением импеданса тканей вестибулярного органа. Наименьшая стимулирующего импульса и влияние токов наводки наблюдается для электрода в ампуле (А3), установленного в ампуле заднего полукружного канала. Это объясняется тем, что эта ампула этого полукружного канала расположена далеко от ампул (А1) и (А2), что уменьшает амплитуды токов утечки с электрода в ампуле (А3). Во всех трех случаях стимуляции вестибулярного нерва сигналами от электродов в ампулах (А1), (А2) и (А3) влияние токов утечки на амплитуду сигнала на регистрирующем электроде значительно. Уменьшение влияния токов утечки возможно только их компенсацией при прямой подаче сигналов на соседние электроды, находящихся в противофазе с токами утечки.

IV. ЗАКЛЮЧЕНИЕ

Разработанная физико-математическая молепь вестибулярного органа и протекающих в его тканях электрических процессов на основе экспериментальных электрофизических и анатомических данных об вестибулярного характеристиках тканей лабиринта морской свинки позволили выяснить влияние токов утечки изменение стимулирующего импульса приходящего от электродов, в окончании вестибулярных нервов. Анализ значений результирующих амплитуд сигналов с учетом токов наводки при стимуляции вестибулярного нерва со всех трех электродов показал, что влияние токов утечки на амплитуду сигнала на регистрирующем электроде значительно во всем рассмотренном частотном диапазоне.

V. Список литературы

- [1] Fawzy M., Khater A.// Egypt J Otolaryngol. 2016. Vol. 32. P. 83–92.
- [2] Straka H., Zwergal A., Kathleen E. Cullen K.E. // Journal of Neurology. 2016. Vol. 263. P. 10–23.
- [3] Asadi H., Mohamed S., Chee Peng Lim C.P., et al. // Behavioural Brain Research. 2016. Vol. 309. P. 67–76.
- [4] Ward B.K, Sun D.Q, Santina C.C.D., et al.// The 7th International Symposium on Meniere's Disease and Inner Ear Disorders, At Rome, Italy. October 2015. P. 343–347.
- [5] Fornos A.P., Guinand N., van de Berg R., et al. // Frontiers in Neurology. 2014. Vol. 5. P. 1–10.
- [6] Shkel A.M. // Proceedings of SPIE. 2006. Vol. 6174. P. 617414.
- [7] Jiang D., Demosthenous A., Perkins T.A., et al. // IEEE transactions on biomedical circuits and systems. 2011. Vol. 5. №. 2. P. 147–159.
- [8] Dale E.S., Edgar T.F., Duncan A.Process Dynamics and Control. 2nd Edition By Mellichamp, Wiley, Hoboken, NJ. 2003. 736 pp.
- [9] Momani A., Cardullo F.// AIAA Modeling and Simulation Technologies Conference. 2018. P. 1–35.
- [10] Van de Berg R., Guinand N., Nguyen T.A.K. //Frontiers in System Neyrosciense. 2012. Vol. 8. P. 1–12.