"Stop - Roll - Go" Project Work

DHBW Automotive Software Engineering – Stuttgart, © Kai Pinnow 2022

1. Introduction and Overview

The project work focuses on how an automated drive – facilitating the known model from the lecture – should deal with traffic lights. Depending on the observed signals (green, orange, red, red&orange) the simulated car shall either break, roll out, or continue to go with an existing speed. Details are illustrated and described below.

The diagram on the left shows which modules defines which messages. They are assumed to provide one thread each to be scheduled in an ASCET application. The "color signals" red, yellow, green, and the flash one are assumed to be Boolean, proximity and position are distances with unit [m], velocity is a [kmh] quantity, and power and brake are Real types.

The term proximity shall denote here the distance to the next traffic light. Note, that you should distinguish traffic light position and its visibility in the sense of the named proximity (see below).

The road is assumed flat (slope zero).

2. Requirements and Deliverables

Please refer to "ID" column in your documentation. A * denotes extra tasks / requirements.

ID	Check
R1	Three traffic lights are placed at 300 m, 500 m, and 900 m on the 1000 m
	circular with timings for yellow: 3 s, red: 39 s, yellow&red: 2 s, green: 16 s.
R2	All traffic lights start (at time 0 s) with yellow and be visible only within 100 m.
R3	The car must start (at time 0 s) on the track at position 0 m and must not pass
	any red traffic light.
R4	Install a flashlight to detect running a red light.
R5	The car must cruise with 50 km/h and break with at most 2.5 m/s ² . The driver
	must not use traffic light positions or timings for optimizations but may use the
	relative distance to the traffic light in front for braking decision.
D1	Plan all necessary tasks based on three point estimates and monitor progress
	according to below requirements. Provide overall 95% estimate too. Deliver the
	Excel-Sheet used.
D2	Demonstrate the feasibility/limitations of the following tasks by simple
	arguments, calculation or simulation experiments.

Create a TrafficLight module in line with requirements R1 and R2.
Create Flashlight and automated Driver modules for requirements R3 to R5.
Setup and execute suitable unit tests for the used classes. Note, that there shall be
at least one class (e.g. modeling the traffic light) with test coverage 100 %.
Setup and execute a proper experiment environment for the system test
facilitating the automated Driver.
How should the yellow phase timing be engineered for different speed limits?
How should the relative timings of the traffic lights be chosen to realize a
constant (green phase) go while cruising at speeds of 45 to 50 km/h?
How could the situation be improved with a) when V2X allows more
information to be exchange between car and traffic lights or b) if R5 would be
relaxed such that positions and timing could be used in motion planning?
Document all tasks properly in a PDF document and provide documentation
and artefacts (i.e. ASCET export archive and estimation Excel sheet).
Reason about the impact of human perception/reaction or other delay times
for the case of manual drive.
Reflect: Which other observations or comments are in place concerning the
planning, the modeling, the requirements, the prescribed functions, or your
solution, the testing, and the selected graphical approach.

3. Documentation and Modeling Guidelines

For the project work please follow these rules:

- a. Simulations or mathematics motivate or prove all arguments. Simple solutions preferred (but don't oversimplify). Hint: You may change the above parameters for development purposes (to cut down waiting time).
- b. All design decisions (e.g. definition of classes, selection of BDE vs. ESDL, selection of parameter vs. literal or system constant, simulation settings like timing, data types including units, default values and ranges for variables and parameters) are motivated in writing. Use basic principles like encapsulation, minimize messages, classes (and functions therein), as well as other artifacts. Remove unused elements from classes.
- c. Every text is properly readable with a minimum font size of 10 pt and all screenshots have a proper legend and are referred in the text. Define and use proper naming convention with meaningful names.
- d. Graphical modeling is subject to best practice i.e. has been properly ordered and the named blocks have no or minimal overlaps and line crossings (minimize corners). All texts (e.g. of sequence calls) are clearly readable and allow a natural reading order (left top to right down). Add comments to highlight or explain important facts. Don's use Containers as they hide potentially important information e.g. sequence calls.
- e. Experiments contain all necessary data for the arguments to be made (and not more) suitably grouped. Screenshots have a white background. Scale, line thickness,

and color must allow clear distinction of what needs to be distinguished to underpin arguments.