Cavallaro, Jeffery Math 231b Homework #1

1.7.9

Prove: $1 \le p < q \implies \ell^p$ is a proper subspace of ℓ^q .

Assume $1 \le p < q$.

It was previously shown that ℓ^p and ℓ^q are both vector spaces, so it sufficies to show that $\ell^p \subset \ell^q$.

Assume $(a_n) \in \ell^p$.

By definition: $\sum_{n=1}^{\infty} |a_n|^p < \infty$.

By the convergence theorem, it must be the case that $|a_n|^p \to 0$, and thus $|a_n| \to 0$.

So $\exists N > 0$ such that $n > N \implies |a_n| < 1$.

Assume n > N.

Since $|a_n| < 1$ and $1 \le p < 1$, we have $|a_n|^q < |a_n|^p$.

And so by the comparison theorem: $\sum_{n>N} |a_n|^q < \infty$. And then by the tail convergence theorem: $\sum_{k=1}^{\infty} |a_n|^q < \infty$.

 $(a_n) \in \ell^q \text{ and } \ell^p \subseteq \ell^q.$

Now, consider $a_n = \left(\frac{1}{n}\right)^{\frac{1}{p}}$.

 $\sum_{n=1}^{\infty} \left[\left(\frac{1}{n} \right)^{\frac{1}{p}} \right]^p = \sum_{n=1}^{\infty} \frac{1}{n}$, which diverges (harmonic series).

 $\sum_{n=1}^{\infty} \left[\left(\frac{1}{n} \right)^{\frac{1}{p}} \right]^{\frac{1}{q}} = \sum_{n=1}^{\infty} \left(\frac{1}{n} \right)^{\frac{q}{p}}, \text{ which converges since } \frac{q}{p} > 1.$

Thus, $(a_n) \in \ell^q$ but $(a_n) \notin \ell^p$.

Therefore, ℓ^p is a proper subset of ℓ^q .

1.7.14

Prove: $\mathcal{C}(\Omega)$, $\mathcal{C}^k(\mathbb{R}^N)$, and $\mathcal{C}^{\infty}(\mathbb{R}^N)$ are infinite dimensional, where Ω is a open subset of \mathbb{R}^N .

Consider $\mathcal{P}(\Omega)$, the vector space of all polynomials in N variables over domain Ω .

Since polynomials are infinitely continuously differentiable, $\mathcal{P}(\Omega)$ is a subspace of $\mathcal{C}(\Omega)$, and $\mathcal{P}(\Omega)$ with $\Omega = \mathbb{R}$ is a subspace of both $\mathcal{C}^k(\mathbb{R}^N)$ and $\mathcal{C}^{\infty}(\mathbb{R}^N)$.

Claim: $\mathcal{P}(\Omega)$ is infinite dimensional, and thus so are the rest.

ABC: $\mathcal{P}(\Omega)$ is finite dimensional and let $\dim \mathcal{P}(\Omega) = n$.

Then every linearly independent set of n elements is a basis for $\mathcal{P}(\Omega)$.

Let $\{1, x, x^2, \dots, x^n\}$ be such a basis (i.e., the powers of the other n-1 variables are 0).

Consider $x^{n+1} \in \mathcal{P}(\Omega)$.

But $x^{n+1} \notin \text{Span}\{1, x, x^2, \dots, x^n\} \implies \text{CONTRADICTION!}$

Therefore, $\mathcal{P}(\Omega)$ is infinite dimensional.

1.7.15

Denote by ℓ_0 the space of all infinite sequences of complex numbers (z_n) such that $z_n=0$ for all but a finite number of indices n. Find a basis for ℓ_0 .

Let e_n be the sequence in ℓ_0 such that the n^{th} element is 1 and all other elements are 0.

Claim: $E = \{e_n \mid n \in \mathbb{N}\}$ is a basis for ℓ_0 .

Assume $S = \{e_{n_1}, e_{n_2}, \dots, e_{n_r}\}$ is a finite subset of E.

Assume $\sum_{k=1}^{r} \alpha_k e_{n_k} = (0)$. Consider the j^{th} element in the sequence:

$$z_j = a_j \cdot 1 + \sum_{j \neq k} (a_k \cdot 0) = 0$$

And so $a_i = 0$. This means that all of the $a_k = 0$ and so S is a linearly independent set. Thus, every finite subset of E is a linearly independent set.

Therefore, E is a linearly independent set.

Now, assume $(z_n) \in \ell_0$ such that the last non-zero element occurs in the r^{th} position. Consider $S = \{e_n \mid 1 \le n \le r\} \subset E$.

$$(z_n) = (z_1, z_2, \dots, z_r, 0, \dots)$$

$$= (z_1, 0, \dots) + (0, z_2, 0, \dots) + \dots + (0, \dots, 0, z_r, 0, \dots)$$

$$= \sum_{k=1}^r z_k e_k$$

And so $(z_n) \in \operatorname{Span} S$.

Thus, every element in ℓ_0 is in the span of some finite subset of ℓ_0 .

Therefore, E spans ℓ_0 .

Therefore, E is a basis for ℓ_0 .

1.7.44

Consider the space $\mathcal{C}[a,b]$ with the norm defined as:

$$||f|| = \int_{a}^{b} |f(t)| dt$$

Is this a Banach space?

Consider the following counterexample for C[0, 1]. Define:

$$f_n(t) = \begin{cases} 1 - nt, & 0 \le t \le \frac{1}{n} \\ 0, & \frac{1}{n} \le t \le 1 \end{cases}$$

Clearly (f_n) is a sequence in C[0,1].

Claim: (f_n) is Cauchy.

AWLOG: n < m. Since $\|f_n\|$ is simply the area under the triangle:

$$||f_n - f_m|| = \frac{1}{2n} - \frac{1}{2m} \to 0$$

Therefore, (f_n) is Cauchy.

Now, define:

$$f(t) = \begin{cases} 1, & t = 0 \\ 0, & 0 < t \le 1 \end{cases}$$

Claim: $f_n \to f$.

At
$$t = 0$$
: $f_n = f = 1$.

For
$$t \in (0,1]$$
: $||f_n - f|| = ||f_n|| = \frac{1}{2n} \to 0$

Therefore, $f_n \to f$.

But clearly, $f \notin \mathcal{C}[0,1]$ and therefore C[0,1] is not complete and thus is not Banach.

1.7.45

Show that $L(f)(x) = \int_0^x f(t)dt$ defines a continuous linear mapping from $\mathcal{C}[0,1]$ into itself. Claim: L is linear.

Assume $f, g \in \mathcal{C}[0, 1]$ and $\alpha, \beta \in \mathbb{F}$:

$$L(\alpha f + \beta g) = \int_0^x (\alpha f + \beta g) = \alpha \int_0^x f + \beta \int_0^x g = \alpha L f + \beta L g$$

Therefore, L is linear.

Furthermore, by the FTC, since $f \in \mathcal{C}[a,b]$, it must be the case that $Lf \in \mathcal{C}[a,b]$.

Claim: L is continuous.

Assume (f_n) is a sequence in $\mathcal{C}[a,b]$ such that $f_n \to f$. Note that $\mathcal{C}[a,b]$ need not be Banach. Thus $||f_n - f|| \to 0$.

$$||Lf_n - Lf|| = ||L(f_n - f)|| = ||\int_0^x (f_n - f)|| \le \int_0^x ||f_n - f|| \to 0$$
 (since $||f_n - f|| \to 0$).

Therefore, L is continuous.

1.7.46

Give an example of a linear mapping from a normed space into a normed space that is not continuous.

Let $E=\mathcal{C}^{\infty}[0,\pi]$ and let L=D (the differentiation operator) and let the norm be the uniform convergence norm:

$$||f(x)|| = ||f(x)||_{\infty} = \sup_{x \in [0,\pi]} |f(x)|$$

D is clearly linear:

$$D(\alpha f + \beta g) = \alpha Df + \beta Dg$$

Furthermore, by definition, $Df \in \mathcal{C}^{\infty}[0,\pi]$.

Claim: *D* is not continuous.

Consider the counterexample:

$$f_n(x) = \frac{\sin(nx)}{n}$$

Note that $||f_n(x)|| = \frac{1}{n} \to 0$, which occurs at $x = \frac{\pi}{2n} \in [0, \pi]$.

And thus f_n converges to the zero function.

$$||Df_n - Df|| = ||Df_n|| = \left\| \frac{n\cos(nx)}{n} \right\| = ||\cos(nx)|| = 1$$
, which occurs at $x = 0 \in [0, \pi]$.

Therefore, D is not continuous.

1.7.52

Let $E=\mathcal{C}^\infty[a,b]$ be the space of infinitly differentiable functions on the interval [a,b] with $\|f\|=\max_{x\in[a,b]}|f(x)|$. Is the differential operator $D=\frac{d}{dx}$ a contraction mapping?

Claim: D is not a contraction mapping.

Let $E = \mathcal{C}^{\infty}[0, \pi]$, $f(x) = \sin x$, and $g(x) = \cos x$.

$$\|\sin x - \cos x\| = \|\sqrt{2}\sin(x - \frac{\pi}{4})\| = \sqrt{2}$$
, which occurs at $x = \frac{3\pi}{4} \in [0, \pi]$.

 $||D\sin x - D\cos x|| = ||\cos x + \sin x|| = ||\sqrt{2}\sin(x + \frac{\pi}{4})|| = \sqrt{2}$, which occurs at $x = \frac{\pi}{4} \in [0, \pi]$.

And so there is no $\lambda \in (0,1)$ such that $\|D\sin x - D\cos x\| \le \lambda \|\sin x - \cos x\|$.

Therefore, D is not a contraction mapping.