DIGITAL DESIGN PROJECT

- NAME SHASHI PRAKASH
- ROLL NO- B19EE076

PROJECT TOPIC

 4-way Traffic Light Controller with Red Green and Yellow lights

TRAFFIC LIGHT WORKING

- There are three lights such as green, yellow, red.
- Green signal allows movement of vehicles.
- Yellow signal represents that signal is going to change from green to red.
- Red signal stop the movement of vehicles.

STATE DESCRIPTION

STATE	LIGHT1	LIGHT2	LIGHT3	LIGHT4
S0	GREEN	RED	RED	RED
S1	YELLOW	RED	RED	RED
S2	RED	GREEN	RED	RED
S3	RED	YELLOW	RED	RED
S4	RED	RED	GREEN	RED
S 5	RED	RED	YELLOW	RED
S6	RED	RED	RED	GREEN
S7	RED	RED	RED	YELLOW

STATE DIAGRAM

- We have three light signal.
- Let green signal = 001, yellow signal = 010, and red signal = 100.
- We have two input clock and reset.
- We have four output Light1, Light2, Light3 and Light4.

clk

light1(2:0)

rst)

light2(2:0)

light3(2:0)

light4(2:0)

- The above figure denotes the flowchart for states S0, S1 and S2.
- Similarly we can draw flowchart for states S3, S4, S5, S6 and S7.
- At the end again the flowchart start from SO states and counter start from O.

VERILOG CODE

```
module waytrafficlight(
  clk,
        rst,
        light1,
        light2,
        light3,
        light4,
        count,
        state
 );
input clk, rst;
output reg[2:0] light1,light2,light3,light4;
output reg[3:0] count;
output reg[2:0] state;
parameter S0=0, S1=1, S2=2, S3=3, S4=4,
S5=5, S6=6, S7=7;
```

```
always@(posedge(clk) or posedge(rst))
begin
if(rst == 1)
begin
state<=S0;</pre>
```

count<=0;

end

IMPORTANT BLOCK OF CODE

```
S0:
                                       S1:
     begin
                                             begin
     if(count<15)
                                             if(count<6)
       begin
                                              begin
       state<=S0;
                                              state<=S1;
       count<=count + 1;</pre>
                                              count<=count + 1;</pre>
       end
                                              end
                                             else
     else
       begin
                                              begin
       state<=S1;
                                              state<=S2;
       count<=0;</pre>
                                              count<=0;
       end
                                              end
     end
                                             end
```

IMPORTANT BLOCK OF CODE

```
always@(state)
 begin
         case(state)
                   S0:
                     begin
                     light1 = 3'b001; light2 = 3'b100; light3 = 3'b100; light4 = 3'b100;
                     end
                   S1:
                     begin
                     light1 = 3'b010; light2 = 3'b100; light3 = 3'b100; light4 = 3'b100;
                     end
                    S2:
                     begin
                     light1 = 3'b100; light2 = 3'b001; light3 = 3'b100; light4 = 3'b100;
                     end
                   S3:
                     begin
                     light1 = 3'b100; light2 = 3'b010; light3 = 3'b100; light4 = 3'b100;
                     end
```

IMPORTANT BLOCK OF CODE

```
S4:
                       begin
                       light1 = 3'b100; light2 = 3'b100; light3 = 3'b001; light4 = 3'b100;
                       end
   S5:
                       begin
                       light1 = 3'b100; light2 = 3'b100; light3 = 3'b010; light4 = 3'b100;
                       end
   S6:
                       begin
                       light1 = 3'b100; light2 = 3'b100; light3 = 3'b100; light4 = 3'b001;
                       end
   S7:
                       begin
                       light1 = 3'b100; light2 = 3'b100; light3 = 3'b100; light4 = 3'b010;
                       end
   endcase
end
```

endmodule

TESTBENCH CODE

clk = 0;

rst = 1;

```
module testbench;
                                                           initial begin
        reg clk;
        reg rst;
        wire [2:0] light1;
        wire [2:0] light2;
                                                                   #10 rst=0;
        wire [2:0] light3;
        wire [2:0] light4;
                                                                   end
                                                            always #5 clk = ^{\sim}clk;
        wire [3:0] count;
                                                            initial #1000 $finish;
        wire [2:0] state;
        waytrafficlight uut (
                                                           endmodule
                     .clk(clk),
                     .rst(rst),
                     .light1(light1),
                     .light2(light2),
                     .light3(light3),
                     .light4(light4),
                     .count(count),
                     .state(state)
        );
```

SIMULATED WAVEFORM

CONCLUSION

- As we can see in simulated waveform when counter start from 0 to 14 then the state is in SO(green signal) state after that again counter start from 0 to 5 then the state is in S1(yellow signal) state and so on.
- When rst = 1 then it initializes the state = \$0.

THANK YOU