1. Все величины (u_t) , v(0), v(1), v(2) независимы, одинаково распределены и равновероятно принимают значения +1 и (-1). Рассмотрим процесс

$$\begin{cases} r_t = t \bmod 3, \text{ (остаток от деления } t \text{ на 3)} \\ y_t = 100v(r_t) + u_t + 0.5u_{t-1}. \end{cases}$$

- (a) [2] Нарисуйте пару «типичных» траекторий процесса (y_t) .
- (b) [3] Является ли процесс (y_t) слабо стационарным?
- (c) [3] Представим ли данный процесс в виде $MA(\infty)$ процесса?
- (d) [2] Правда ли, что выборочная ковариации сходится к теоретической,

$$p\lim \sum_{t=2}^{T} y_{t} y_{t-1} / T = \mathbb{C}ov(y_{1}, y_{2})?$$

2. Динамика количества ежей в лесу (y_t) описывается полугодовым ETS(AAdA) процессом:

$$\begin{cases} u_t \sim \mathcal{N}(0,9) \\ s_t = s_{t-2} + 0.1u_t \\ b_t = 0.9b_{t-1} + 0.1u_t \\ \ell_t = \ell_{t-1} + 0.9b_{t-1} + 0.2u_t \\ y_t = \ell_{t-1} + 0.9b_{t-1} + s_{t-2} + u_t \end{cases}$$

Известно, что $s_{100}=2,\,s_{99}=-3,\,\ell_{100}=200,\,b_{100}=1.$

- (a) [6] Постройте 95%-й предиктивный интервал количества ежей y_{102} через год.
- (b) [4] Запишите эту модель в виде $A(L)y_t = B(L)u_t$, где A(L) и B(L) взаимно-простые лаговые многочлены.
- 3. Величины W_1, W_2 независимы и имеют функцию распределения f(w) = 2w на отрезке [0,1]. Определим $X_1 = \min\{W_1, W_2\}$ и $X_2 = \max\{W_1, W_2\}$.
 - (a) [3] Найдите функцию распределения F_1 величины X_1 и функцию распределения F_2 величины X_2 .
 - (b) [4] Найдите копулу $C(u_1, u_2)$ для пары (X_1, X_2) .
 - (c) [3] Найдите условную вероятность $\mathbb{P}(F_1(X_1) \leq u_1 \mid F_2(X_2) = u_2)$.

- 4. Рассмотрим разностное уравнение $y_t = 10 + 0.5y_{t-1} + u_t + 2u_{t-1}$, где (u_t) белый шум.
 - (а) [2] Сколько нестационарных решений у этого уравнения? Привидете в качестве примера хотя бы одно нестационарное решение.

Винни-Пух использует в качестве модели для численности пчёл единственное стационарное решение этого уравнения.

- (b) [3] Выпишите явно решение, которое использует Винни-Пух.
- (c) [3] Сможет ли Винни-Пух восстановить u_0 , если он знает весь бесконечный ряд y_0 , y_{-1} , y_{-2} , ...?
- (d) [2] Предложите уравнение, единственное стационарное решение которого имеет ожидание и автоковариационную функцию идентичные ожиданию и автоковариационной функции исходного процесса, но при этом по прошлым значениям нового процесса можно восстановить ненаблюдаемое значение случайного шока.
- 5. Строго стационарный процесс (u_t) описывается ARCH(1) моделью $\sigma_t^2=3+0.2u_{t-1}^2$, где $u_t=\sigma_t\nu_t$ и шумы $\nu_t\sim\mathcal{N}(0,1)$ независимы.
 - (a) [3] Найдите $\mathbb{E}(u_t)$, $\mathbb{V}ar(u_t)$.
 - (b) [5] Постройтие 95%-й предиктивный интервал для u_{101} если $u_{100}=-1$.
 - (c) [2] Верно ли, что условное распределение u_{102} при $u_{100}=-1$ является нормальным?
- 6. Рассмотрим двумерный слабо стационарный VAR(2) процесс $y_t = (y_{1t}, y_{2t})$, являющийся решением уравнения

$$y_t = \begin{pmatrix} 4 \\ 11 \end{pmatrix} + \begin{pmatrix} 0.2 & 0.1 \\ 0 & 0.2 \end{pmatrix} y_{t-1} + \begin{pmatrix} 0.2 & 0 \\ 0.1 & 0.2 \end{pmatrix} y_{t-2} + u_t,$$

где двумерный белый шум $u_t=(u_{1t},u_{2t})$ с $\mathbb{E}(u_t)=0$ и $\mathbb{V}\mathrm{ar}(u_t)=\begin{pmatrix} 4 & 0 \\ 0 & 9 \end{pmatrix}$.

- (a) [2] Найдите $\mathbb{E}(y_t)$.
- (b) [4] Найдите первые два значения кросс-ковариационной функции $\gamma_{12}(k)=\mathbb{C}\mathrm{ov}(y_{1,t},y_{2,t-k})$: $\gamma_{12}(1)$ и $\gamma_{12}(2)$.
- (c) [4] Перепишите данный процесс в виде VAR(1) процесса более высокой размерности, $w_t=c+Aw_{t-1}+v_t$. Явно укажите матрицу A, вектор c, выразите вектор w_t через вектор y_t , выпишите ковариационную матрицу белого шума $\mathbb{V}\mathrm{ar}(v_t)$.