微介實驗十二 繼電器與光耦合器

報告者:蕭力文

- 實驗內容
- 學習重點
- 實驗器材
- 繼電器介紹
- 光耦合器介紹
- 實驗電路
- •程式設計

- 實驗內容
- 學習重點
- 實驗器材
- 繼電器介紹
- 光耦合器介紹
- 實驗電路
- •程式設計

實驗內容

• 使用8051經過光耦合器,再透過NPN-電晶體9013放大電流,控制一顆5VDC的繼電器,並用它來使一顆 LED閃爍。

- 實驗內容
- 學習重點
- 實驗器材
- 繼電器介紹
- 光耦合器介紹
- 實驗電路
- •程式設計

學習重點

熟悉繼電器以及光耦合器的接腳、運作原理以及應用時機。

- 實驗內容
- 學習重點
- 實驗器材
- 繼電器介紹
- 光耦合器介紹
- 實驗電路
- •程式設計

實驗器材

器材	名稱	數量
AT89S51		1
12MHz 石英震盪器		1
LED極體		1
按壓開關		1
繼電器 BS-102B		1
光耦合器 PC817		1
NPN 電晶體 9013		1
1N4001 <u></u> 極體		1
	1kΩ	2
電阻	10 kΩ	1
	470Ω	1
	20pF	2
電容	10uF	1

- 實驗內容
- 學習重點
- 實驗器材
- 繼電器介紹
- 光耦合器介紹
- 實驗電路
- •程式設計

繼電器(Relay) – 主要用途

- 1. 達成用小電流控制大電流
- 2. 減少手動開關的次數(自動化)

繼電器-原理

- 公共端(COM, Common):共接點
- 常閉點(NC, Normal Close):當 relay 未通電時,COM會接到NC腳
- 常開點(NO, Normal Open):當 relay 通電時,COM會接到NO腳

繼電器-原理

本次實驗用到的繼電器(BS-102B)↓

繼電器-規格

BS-102B繼電器線圈參數↓

- Pick-up voltage(吸合電壓), 約為額定電壓的70%
- Drop-out voltage(釋放電壓), 約為額定電壓的10%

COIL RATING (at 20°C)

Туре	Nominal Voltage (VDC)	Coil Resistance (Ω±10%)	Nominal Current (mA)	Pick-Up Voltage (VDC)	Drop-Out Voltage (VDC)	Nominal Power (mW) Consumption
	3	45 66.7 2.25	2.25	0.3		
	5	120	44.7	3.75	0.5	200
BS-102B 6 9 12	6	180	33.3	4.50	0.6	
	9	400	22.5	6.75	0.9	
	12	700	17.1	9.00	1.2	
	24	2800	8.6	18.00	2.4	

繼電器-規格

BS-102B 繼電器規格↓

■ SPECIFICATIONS

Model No.	BS-102	BS-102B	
Contact Arrangement	1 Form C		
Contact Material	Silver Alloy		
Contact Rating (at Resistive Load)	2A 24VDC		
	1A 120VAC		

負載規格: 2A 24VDC / 1A 120VAC

繼電器-開關種類

- 單刀單擲 Single Pole Single Throw (SPST)
- 單刀雙擲 Single Pole Double Throw (SPDT)
- 雙刀單擲 Double Pole Single Throw (DPST)
- 雙刀雙擲 Double Pole Double Throw (DPDT)

繼電器-驅動

- 因為8051輸出的電流無法驅動繼電器的線圈, 故需要一個電流放大的電路來推動。
- 此實驗選用常見的NPN 電晶體 9013
- 計算線圈的驅動參數:
 - 5VDC 的 BS-102B 繼電器線圈電阻是 120 Ω
 - 驅動電流為 5V/120Ω = 41.67mA

繼電器-驅動

• 本實驗的9013為NPN電晶體, 右圖為其腳位以及細部電路圖

繼電器-驅動

•繼電器線圈端反向需並聯(續流) 二極體

用途:

- 1. 防止電路中電壓、電流突變
- 2. 保護元件

3. 為反向電動勢(斷電瞬間產生)提供耗電通路

選用:

- 二極體的耐壓值須高於線圈加的電壓
- 此實驗選用常見的二極體 1N4001

繼電器-實際應用

- 1. 家用電器(e.g.微波爐、電視)
- 2. 運輸領域(e.g.機車、汽車)
- 3. 工業電器(e.g.機械手臂等控制裝置)
- 4. 電力領域(e.g.發電廠、大樓管理用的控制面板)

- 實驗內容
- 學習重點
- 實驗器材
- 繼電器介紹
- 光耦合器介紹
- 實驗電路
- •程式設計

光耦合器 - 原理

以光為媒介來傳遞信息。(包含可見光、紅外線) 當輸入端加電訊號時,發光器發出光線照射在受光器上,受光器接收 光線後導通,產生光電流從輸出端輸出,從而實現「電-光-電」轉換。

- 1. Anode (陽極)
- 2. Cathode (陰極)
- 4. Collector (集極)
- 3. Emitter (射極)

光耦合器(Optical Coupler) – 用途

1. 隔離:

當控制電路(弱電)與驅動電路(強電)共地時,會造成耦合干擾,可能對MCU產生不良影響。所以使用光耦合器來進行隔離。

2. 電位轉換:

MCU的輸出電位和外部元件的操作電壓不同。

光耦合器 - 驅動

光耦合器内LED燈亮,腳位3、4導通

光耦合器 - 特色

- 1. 抗干擾(輸入端與輸出端隔離),防止電氣雜訊破壞靈敏訊號。
- 2. 無機械式觸點,無接點氧化問題,壽命較長。
- 3. 響應速度快、體積小、重量輕。
- 4. 隔離電壓等級高,輸入和輸出兩端之間的電壓差可達數萬伏, 可有效保護電子控制設備與操作人員的安全。

- 實驗內容
- 學習重點
- 實驗器材
- 繼電器介紹
- 光耦合器介紹
- ●實驗電路
- •程式設計

實驗電路

RL1 BS102B

- 實驗內容
- 學習重點
- 實驗器材
- 繼電器介紹
- 光耦合器介紹
- 實驗電路
- •程式設計

程式設計-軟體流程圖

程式設計

```
1 #include <regx51.h>
    void delay(unsigned int);
 3
    void main()
 5
       while(1)
 6
 8
         P2_0 = 0;
                                //relay & LED switch on
         delay(50000);
                                //relay & LED switch off
10
         P2_0 = 1;
         delay(50000);
11
12
13
    void delay(unsigned int t)
15
       while (t--);
16
17
```

Q&A