Решение СЛАУ методом LDU-разложения

Николай Жидков

15 марта 2018 г.

1 Структура программы

Программа разделена на функции, записанные в файле solve.py. Основных функций 3, остальные должны быть понятны из названий

- read(filename), функция чтения:
 - Принимает название файла для чтения данных
 - Возвращает размерность n, матрицу A и столбец b.
- solve(n, A, b, full mode), pemaerCЛAУ:
 - Принимает размерность n, матрицу A, столбец b, включен ли режим подробного вывода
 - Возвращает решение системы Ax = b.
- $noise(n,A,b,x,noise_experiments,full_mode)$, проводит численный эксперимент:
 - Принимает размерность n, матрицу A, столбец b, столбец решений x, количество повторений эксперимента, включен ли режим подробного вывола
 - Выписывает все результаты в *stdout*.

2 Структура файлов исходных данных

Исходные данные вводятся из файла, состоящего их n строк, числа на строках разделяются пробелами. Строка і имеет следующую структуру: $A_{i,0}, A_{i,1}, ..., A_{i,n}, b_i$. Пример содержимого файла для системы третьего порядка:

Пример содержимого файла для системы третьего порядка:

3 Примеры вызова из командной строки

• Решение СЛАУ, выводится только ответ (файл с входными данными обязательно указывать первым параметром!)

python3 solve.py input.txt

- Решение СЛАУ, выводится вся дебаг информация python3 solve.py input.txt –full
- Численный эксперимент (в примере проводятся 10) python3 solve.py input.txt -noise10
- Численный эксперимент со всей дебаг информацией python3 solve.py input.txt –noise10 –full

4 Тесты

- Файл вида nxn.txt тест нормального выполнения алгоритма, все условия применимости выполнены (выданы преподавателем).
- Файл det0.txt тест аварийного завершения (определитель системы 0)
- Файл swap.txt тест проверки работы алгоритма при необходимости перестановок

5 Численный эксперимент

5.1 Результаты на СЛАУ 6х6

Решение:

X = [-0.3, -0.6, 0.8, -1, 0.1, 0.1]

Число проведенных расчетов: 100

	Возмущение матрицы	Возмущение вектора	Чувствительность
	(%)	(%)	решения
максимальное	1.94037	36206.79105	20474.26305
среднее	1.22290	1317.72694	1063.74436
минимальное	0.21984	95.66139	68.31059

5.2 Результаты на СЛАУ 7х7

Решение:

X = [0, 1.1, 0.8, -1, 0, -0.1, 1.3]

Число проведенных расчетов: 100

	Возмущение матрицы	Возмущение вектора	Чувствительность
	(%)	(%)	решения
максимальное	1.84549	19.75074	14.48756
среднее	1.36498	6.32435	4.70873
минимальное	0.96996	1.24472	0.95089

5.3 Выводы

• Решение СЛАУ 1 мало сильно чувствительна к возмущениям.

Матрица имеет слишком большое число обусловленности, надо с помощью методов с пары привести систему к эквивалентной с меньшим числом обусловленности

• Решение СЛАУ 2 слабо чувствительно к возмущениям.

Рекомендации

6 Замечание

Данный алгоритм LDR-разложения был адаптирован с алгоритма LU-разложения, рассказанного на паре, вместе с перестановкой строк при необходимости. Получилось, что в худшем случае, если на каждом шаге $d_{i,i}=0$ и мы будем пытаться ставить каждую строку на место i-ой, то время работы будет $O(n^4)$. В реальности такой контртест подобрать сложно, поэтому почти всегда алгоритм работает нужные $O(n^3)$. Если все-таки нужен алгоритм за $O(n^4)$ в любом случае, то напишите, я подумаю, можно ли все-таки оптмизировать.