What is $A \cup \emptyset$ and $A \cap \emptyset$?

Roshan Poudel

Instituto Politécnico de Bragança, Bragança, Portugal

Union and Intersection

Union

- ① The union of two sets is the set containing all of the elements from both of those sets. It is represented by the symbol \cup .

Intersection

- The intersection of two sets is the set containing just the elements that are in both of those sets. It is represented by the symbol ∩.
- **2** $A \cap B = \{x \mid x \in A \text{ or } x \in B\}$

Union and Intersection - Venn Diagram

Figure 1: $A \cup B$

Figure 2: $A \cap B$

Union and Intersection - Example

If
$$A = \{1, 3, 5, 7, 9, 11, 13, 15\}$$
 and $B = \{2, 3, 5, 7, 11, 13\}$, then:

•
$$A \cup B = \{1, 2, 3, 5, 7, 9, 11, 13, 15\}$$

•
$$A \cap B = \{3, 5, 7, 11, 13\}$$

What is $A \cup \emptyset$ and $A \cap \emptyset$?

Finding $A \cup \emptyset$.

The empty set is the set with no elements so, the union of any set A and the \emptyset is always going to be A.

$$A \cup \emptyset = A$$

Finding $A \cap \emptyset$.

An empty set is a set with no elements so, the intersection of any set A and \emptyset is always going to be \emptyset as there is no element simultaneously belonging to both the sets.

$$A \cap \emptyset = \emptyset$$

Other Set Operations

Difference

- The difference of any two sets A and B written as A B which is the set containing the elements that are in A but not in B.
- 3 For two disjoint sets A and B, A B = A and B A = B.

Compliment

- For a set A in a universe U, the compliment of A or \overline{A} is set of all the elements that are in the universe but not in A.

Difference and Compliment - Venn Diagram

Figure 3: *A* − *B*

Figure 4: \overline{A}

Difference - Example

Consider
$$A = \{a, e, i, o, u\}$$
 and $B = \{a, b, c, d, e\}$, and find $A - B$ and $B - A$.

•
$$A - B = \{i, o, u\}$$

•
$$B - A = \{b, c, d\}$$

Notice that $A - B \neq B - A$

Compliment - Example

If the universe U is the set of letters in the English alphabet and A is the set of the consonant letters of the same alphabet, what is \overline{A} ?

$$\bullet \ \overline{A} = \{a, e, i, o, u\}$$

ullet Also, $\overline{U}=\emptyset$ and $\overline{\emptyset}=U$

Properties of Set Operations

Commutative

- $A \cap B = B \cap A$

Associative

- $A \cap (B \cap C) = (A \cap B) \cap C$

Idempotent

- $A \cap A = A$

De Morgan's Laws

De Morgan's Law

- $\overline{(A \cap B)} = \overline{A} \cup \overline{B}$

Click here to check the proof here