

Preludio

- La maggior parte delle comuni tecniche statistiche volte ad individuare le relazioni fra variabili, quali Correlazioni, Regressione, ANOVA, ANCOVA, sono riconducibili al Modello Lineare Generale (GLM)
- Il GLM ci permette di studia gli effetti di variabili indipendenti di vario tipo su variabili quantitative (variabili dipendenti continue)
- La ricerca empirica è disseminata di variabili dipendenti qualitative (scelte dicotomiche, scelte multiple, frequenze di eventi, classificazioni, etc)
- I Modelli Lineari Generalizzati ci consentono di studiare gli effetti di variabili indipendenti su variabili dipendenti qualitative

Modello Lineare Generale

Modello Lineare Generalizzato

Assunzioni GLM

Modello Lineare Generale

$$y_i = a + e_i$$

$$corr(e_i, e_j) = 0$$

Le variazioni casuali sono indipendenti l'una dall'altra

Assunzioni GLM

Modello Lineare Generale

Generalizzazioni

Useremo il Modello Lineare Generalizzato quando le assunzioni di normalità dei residui non può essere rispettata (variabili dipendenti categoriche)

GzLM

Generalized Linear Model

Modelli lineari generalizzati

Il modello lineare si adatta ad una vasta gamma di tipologia di variabili dipendenti mediante due scelte: link function e distribuzione

$$f(Y) = a + b_{x,w} x_i + b_{w,x} w_i + e_i$$

Tipo di variabile	Link function	Distribuzione	
Continue	indentità	Normale	
Dicotomiche	Logit dell'odd	Binomiale	
categoriche	Logit del relative risk	Multinomiale	
Ordinali	Logit cumulato	Multinomiale	
Frequenze	LN delle frequenze	Poisson	

GzLM

Tecniche volte a studiare e quantificare gli effetti di una o più variabili indipendenti continue o nominali su una variabile dipendente nominale (qualitativa)

Tecniche statistiche:

- La regressione logistica: Variabile dipendente dicotomica
- ◆ La regressione ordinale: Variabile dipendente ordinabile
- ◆ La regressione multinomiale: Variabile dipendente politomica
- La regressione di Poisson: Variabile dipendente basata su frequenze
- Tutto ciò, anche a misure ripetute

Violazioni assunzioni

- Quando le assunzioni non sono soddisfatte, i risultati sono da considerarsi dubbi
- ◆ Se la violazione delle assunzioni è grave, la regressione/ANOVA non può essere applicata
- ◆ Nella pratica, con variabili dipendenti continue normalmente distribuite, queste assunzioni sono abbastanza semplici da soddisfare
- ◆ Ma cosa succede se volessimo usare una variabile dipendente dicotomica?

Il modello logistico

Il modello logistico

◆ Il modello logistico (regressione logistica) si propone di studiare e quantificare le relazioni tra una o più variabili indipendenti quantitative (es. età, salario, atteggiamenti, personalità) e una variabile dipendente dicotomica (es. stato civile, voto al referendum, appartenenza ad un gruppo, etc.)

VD dicotomica

VD dicotomica

Assunzione 1: Linearità

- Come visto precedentemente la relazione che riusciamo a catturare con la regressione è una relazione lineare
- Se la regressione è condotta con una variabile dipendente dicotomica, l'assunzione di linearità non può essere soddisfatta, creando problemi sia nella bontà della predizione, che nella sua interpretazione
- •Dunque l'assunzione di linearità è <u>sicuramente</u> violata

VD Categorica

Quando abbiamo una variabile dipendente dicotomca, ogni soggetto ha o 1
 o 0 come valore della variabile dipendente

VD=sesso (Maschi=0, Femmine=1), VD=acquisto (Si=1, No=0), voto al referendum (Si=1, No=0)

La media della variabile dipendente è la probabilità di ottenere il valore 1

$$\bar{Y} = \frac{n_1}{n_{tot}}$$

Ciò che prediciamo è la probabilità *p* di appartenere al gruppo con valore 1
 (e 1-p sarà la probabilità di appartenere al gruppo 0).

Soluzione

- Necessitiamo dunque di un tipo di regressione che:
- Risolva il problema della omoschedasticità, linearità e normalità degli errori
- Ammetta valori non assurdi
- Ci esprima le relazioni sulla base di probabilità o qualcosa di comparabile
- Cioè dobbiamo usare un modello che trasformi la variabile dipendente tale da linearizzare la relazione, rendere la variabile dipendente continua, e farla variare su tutto l'asse (valori positivi e negativi)

Soluzione: parte 1

- Intanto decidiamo di non cercare di predire la probabilità, ma il rapporto tra probabilità
- Tale rapporto è detto odd (rapporto di probabilita')

$$P_i = a + b_{yx} x_i \qquad \qquad \boxed{\frac{P_i}{1 - P_i}} = a + b_{yx} x_i$$

Odd

• L'odd è il rapporto tra la probabilità di un evento (appartenere ad un gruppo) rispetto alla probabilità del non evento (appartenere all'altro gruppo)

$$Odd = \frac{P_i}{1 - P_i}$$

Esempi: se la probabilità di avere una figlia femmina è .50

$$Odd = \frac{.5}{1 - .5} = 1$$

• se la probabilità di votare Si ad un referendum è .70

$$Odd = \frac{.7}{1 - .7} = 2.33$$

Odd

L'odd indica quanto più probabile è un evento rispetto al suo complemento

$$\frac{P_i}{1 - P_j}$$

• Esempi: Una figlia femmina è tanto probabile quanto un maschio

$$Odd = \frac{.5}{1 - .5} = 1$$

● Il voto Si è 2.33 volte più probabile del No

$$Odd = \frac{.7}{1 - .7} = 2.33$$

Odd: Interpretazione

• L'odd consente di esprimere la probabilità mediante valori che variano da 0 ad infinito

Odd: Interpretazione

L'odd varia da 0 ad infinito

Se gli eventi sono equiprobabili

$$p = .5 \rightarrow or = \frac{.5}{1 - .5} = 1$$

É maggiore di 1 se l'evento è più probabile del contrario

$$p = .7 \rightarrow or = \frac{.7}{1 - .7} = 2.33 > 1$$

É minore di 1 se l'evento è meno probabile del contrario

$$p = .2 \rightarrow or = \frac{.2}{1 - .2} = .25 < 1$$

Problema con odd

• Se usassimo gli odd come variabile dipendente, potremmo ottenere predizioni impossibili, come predizioni di valori negativi

$$\frac{P_i}{1 - P_i} = a + b_{yx} X_i$$

Se a=1, b=3 e x=-2

$$\frac{P_i}{1 - P_i} = 1 + 3*(-2) = -5$$

Soluzione: parte 2

Decidiamo di non cercare di predire l'odd, ma il logaritmo dell'odd

$$\frac{P_i}{1 - P_i} = a + b_{yx} x_i \Longrightarrow \ln(\frac{P_i}{1 - P_i}) = a + b_{yx} x_i$$

La trasformazione con il logaritmo si chiama **logit**

$$\log it = \ln(\frac{P_i}{1 - P_i})$$

La regressione che cerca di predire il **logit** si chiama regressione **logistica**

Logaritmo

Il logaritmo in base A di B è quel numero a cui dobbiamo elevare A per ottenere B.

$$Log_{10} 100 = 2$$

•Spesso si usa il logaritmo naturale, cioè il logaritmo con base ${\bf e}$ o numero neperiano (da Napier – Giovanni Nepero - che lo scoprì) o di Eulerio (che lo formulò nei termini che lo conosciamo) e=2.718281828459045235360287471352662497757...

$$Ln(100) = 4.605$$
 $e^{4.605} = 100$

Vantaggi del Logaritmo

- La logistica usa il logaritmo in quanto:
 - Trasforma una variabile positiva (odd ratio) in negativi e positivi
 - É positivo se l'argomento è maggiore di 1 (es., Ln (**5**) = **1.6** 2.718^{1.6} = 5)
 - É negativo se l'argomento è minore di 1 (es., Ln (**0.2**) = **-1.6** 2.718^{-1.6} = 0.2)
 - É zero se l'argomento è uguale ad 1 (Ln (1) = 0 2.718 $^{\circ}$ = 1)

Perché il logaritmo?

• Il logaritmo di una variabile che varia da 0 ad infinito (come gli odd), varia per tutti i valori possibili, da negativi a positivi.

Il logaritmo dell'Odd permette di esprimere la probabilità mediante valori sia positivi che negativi

$$\log it = \ln(\frac{p}{1 - p})$$

Perché il logaritmo?

• Il logaritmo di una variabile che varia da 0 ad infinito (come gli odd ratio), varia per tutti i valori possibili, da negativi a positivi

Linearizzazione della relazione

• Grazie al fatto che il **logit** sta in rapporto sigmoidale con la probabilità, il logit sarà in rapporto lineare con le variabili dipendenti

Se X predice P grazie ad una sigmoidale

X predirrà LOGIT grazie ad una retta

Linearizzazione della relazione II

Trasformazione Logit

•Per ovviare a ciò, la regressione logistica non predice la variabile dipendente così come è, ma la trasforma

Variabile Originale

Odd

Logit

Probabilità

Rapporto di probabilità

Logaritmo del Odd

$$P_i(Y = 1)$$

1- $P_i(Y = 0)$

$$OR = \frac{P_i}{1 - P_i}$$

 $\ln(\frac{P_i}{1 - P_i})$

Appartenenza ad un gruppo

Quanto è più (o meno) probabile un gruppo rispetto all'altro

Variabile continua definita su tutto l'asse delle Y

Regressione logistica

La regressione logistica è una regressione in cui la variabile dipendente è dicotomica, e dunque si predice mediante una regressione lineare il logaritmo del rapporto tra la probabilità di essere in un gruppo piuttosto che l'altro

$$\ln(\frac{P_i}{1 - P_i}) = a + b_{yx} x_i$$

Modello logistico

Il modello lineare si adatta ad una vasta gamma di tipologia di variabili dipendenti mediante due scelte: link function e distribuzione

$$f(Y) = a + b_{x,w} x_i + b_{w,x} w_i + e_i$$

Tipo di variabile

Link function

Distribuzione

Dicotomiche

Logit dell'odd

Binomiale

Regressione Logistica

- Dato che la variabile è stata trasformata, la regressione ora è possibile
- Rispetto alla regressione che già conosciamo, cambierà:
 - Come interpretare i coefficienti
 - Il test di significatività:
 - R/jamovi: Chi-quadro e z-test
 - SPSS F-test e Wald test
 - Come interpretare l'R²

Logistica in pratica

- •Ci proponiamo di studiare in un campione di 100 studenti soggetti, la relazione tra la carriera dello studente e le probabilità di essere promosso all'esame di statistica
- La variabile dipendente è:
 - 0 bocciato
 - 1 promosso
- La variabile indipendente è:
 - la media agli esami precedenti

Descriptives

Descriptives		
	promosso	votip
N	100	100
Missing	0	0
Mean		22.7
Median		22.8
Minimum		18.0
Maximum		26.9

Frequencies of promosso

Frequencies

requestioned of profitodoo				
Levels	Counts	% of Total	Cumulative %	
0	32	32.0 %	32.0 %	
1	68	68.0 %	100.0 %	

Logistica in pratica

GAMLj

	Clipboard	Variables		Kows
		🧽 ostudio	₽ promosso	votip18
1	22.112	1.477	1	4.112
2	21.059	1.312	0	3.059
3	21.819	1.518	0	3.819
4	25.042	1.631	0	7.042
5	22.506	1.574	0	4.506
5	23.377	1.574	1	5.377
7	24.665	1.629	0	6.665
8	21.802	1.322	1	3.802
9	25.592	1.723	1	7.592
0	23.386	1.650	1	5.386
1	22.006	1.348	0	4.006
2	23.322	1.645	1	5.322
3	18.000	0.942	0	0.000
4	22.082	1.477	1	4.082
_	04 040	4 400	-	0.040

Scelta del modello

Linear Models: Generalized linear model

Scegliamo prima quale tipo di modello stimare

Output: Risultati

•Recap del modello e R-quadro

Generalized Linear Models

McFadden's R squared:
Proporzione di errore
ridotto dal modello

Model Info

	Info	Value	Comment
	Model Type	Logistic	Model for binary y
	Link function	logit	log odd of promosso=1
	Distribution	Binomial	Dichotomous event distribution of y
۷	R-squared	0.158	Proportion of reduction of error
	AIC	109.512	Less is better
	Deviance	105.512	Less is better
	Residual DF	98	
	Converged	yes	A solution was found
_			

Output: Risultati

• Come in GLM abbiamo I test sugli effetti generali (Chi-quadro) e la stima dei coefficienti

Analysis of Deviance: Omnibus Tests

	X²	df	р
votip	19.9	1	< .001

Model Coefficients (Parameter Estimates)

				95% Confide	ence Interval			
	Contrast	Estimate	SE	Lower	Upper	exp(B)	Z	р
(Intercept)	Intercept	0.923	0.249	0.453	1.437	2.52	3.70	< .001
votip	votip	0.629	0.165	0.331	0.983	1.88	3.82	< .001

Il coefficiente è espresso nella scala logit!!

Interpretazione

 Essendo una regressione, possiamo interpretare i coefficiente come al solito

Valore atteso nel logaritmo di Odd, quando la VI è zero

Model Coefficients (Parameter Estimates)

				95% Confidence Interval				
	Contrast	Estimate	SE	Lower	Upper	exp(B)	Z	р
(Intercept)	Intercept	0.923	0.249	0.453	1.437	2.52	3.70	< .001
votip	votip	0.629	0.165	0.331	0.983	1.88	3.82	< .001

Cambiamento atteso nel logaritmo di Odd, per uno spostamento nella di una unità nella VI

Significatività (valore-p): se minore di 0.05, rifiutiamo l'ipotesi nulla di B=0

Interpretazione: Problema

- Il problema sta nel fatto che tutte le informazioni (come in ogni regressione) sono espresse nell'unità di misura della VD
- Nel caso del logaritmo di Odd, questa unità è non intuitiva e poco informativa

Model Coefficients (Parameter Estimates)

				95% Confide	ence Interval			
	Contrast	Estimate	SE	Lower	Upper	exp(B)	Z	р
(Intercept)	Intercept	0.923	0.249	0.453	1.437	2.52	3.70	< .001
votip	votip	0.629	0.165	0.331	0.983	1.88	3.82	< .001

Per ogni voto medio in più, ci aspettiamo un aumento del logaritmo di Odd di .629! Ma è tanto o poco?

Svantaggi del Logaritmo

- Il problema del logaritmo è che la sua unità di misura non è intuitivamente interpretabile
 - Una differenza di .629 nella scala logaritmica è tanto o poco in termini di probabilità?
- Per ovviare a ciò, le quantità espresse su scala logaritmiche possono essere riportate all'unità originale mediante la funzione esponenziale

Unità più comprensibili

- Dato che nella logistica le informazioni sono ottenute sulla base di una VD logaritmica, la funzione esponenziale le riporta all'unità precedente (funzione inversa)
- L'unità precedente è l'odd ratio

L'esponenziale

•La funzione esponenziale di un logaritmo ci da l'argomento orginale del logaritmo

Relazioni tra unità di misure

- •Al fine interpretativo è importante ricordare che:
- •La somma tra due logaritmi, equivale al prodotto tra gli argomenti

Logit

Odd ratio

$$q = Ln(a) + Ln(b)$$
 $\exp(q) = a * b$
 $Ln(2) + Ln(3) = 1.79$ $\exp(1.79) = 3 \times 2 = 6$
 $B = Ln(Odd_1) + Ln(Odd_2)$ $\exp(B) = Odd_1 * Odd_2$

B espresso come OR

Per facilitare l'interpretazione, il legame tra VD e VI si esprime mediante
 l'esponenziale di B

Exp(B) trasforma il B espresso in scala logaritmica in un B expresso in termini di odd ratio

B espresso come OR

Per facilitare l'interpretazione, il legame tra VD e VI si esprime mediante
 l'esponenziale di B

				95% Confide	ence Interval			
	Contrast	Estimate	SE	Lower	Upper	exp(B)	z	р
(Intercept)	Intercept	0.923	0.249	0.453	1,437	2.52	3.70	< .001
votip	votip	0.629	0.165	0.331	0.983	1.88	3.82	< .001

Per ogni unità in più di *votip*, il rapporto di probabilità tra votare promosso e bocciato (odd) aumenta di 1.88 volte

Relazioni tra unità di misure

•Ma la somma di due logaritmi equivale alla esponenziale dei prodotti degli argomenti

Logit

Odd ratio

$$q = Ln(a) + Ln(b)$$

$$\exp(q) = a * b$$

Interpretazione di exp(B)

- •Aumentando X di 1, aumento in termini di logaritmo di .629
- ●L'esponenziale di .629 è 1.88

Model Coefficients (Parameter Estimates)

				95% Confide	ence Interval			
	Contrast	Estimate	SE	Lower	Upper	exp(B)	Z	р
(Intercept)	Intercept	0.923	0.249	0.453	1.437	2.52	3.70	< .001
votip	votip	0.629	0.165	0.331	0.983	1.88	3.82	< .001

- Dunque in termini di Odd c'è un aumento di 1.88
- Cioè per ogni voto in più in media l'odd di essere promosso aumenta di
 1.88 volte

Interpretazione del grafico

• Possiamo sempre chiedere il grafico dei valori predetti dal modello. In GAMLj il grafico è espresso in probabilità (del gruppo 1)

Ricordiamoci che GAMLj centra la X

Interpretazione del grafico

Se settiamo il "covariates scaling" to "none", otteniamo un grafico più

Effetti standardizzati

 Notiamo che nella regressione logistica non è previsto il coefficiente di regressione standardizzato

 Ma noi sappiamo che per standardizzare i coefficienti basta standardizzare le variabili

 Il logit non lo possiamo standardizzare, ma la variabile indipendente si

Effetti standardizzati

• GAMLj:

Model Coefficients (Parameter Estimates)

				95% Confide	ence Interval			
	Contrast	Estimate	SE	Lower	Upper	exp(B)	Z	р
(Intercept) votip	Intercept votip	0.923 1.112	0.249 0.291	0.453 0.586	1.44 1.74	2.52 3.04	3.70 3.82	< .001 < .001

Per ogni **deviazione standard** in più di *votip*, il rapporto di probabilità tra votare promosso e bocciato (odd) aumenta di 3.04 volte

Morale

 Tutto cio' che sappiamo sulla regressione lineare (interazione, effetti parziali, mediazione, path analysis) rimane concettualmente equivalente per la logistica

Cambia cosa si predice ed il calcolo dei coefficienti

Regressione logistica multipla

 Aggiungiamo al modello di prima la variabile predittrice "ore di studio a settimana" otteniamo un modello logistico multiplo

Logistica multipla

 Aggiungiamo al modello di prima la variabile predittrice "ore di studio a settimana" otteniamo un modello logistico multiplo

Recap del modello

R-squared

Generalized Linear Models

Model Info

Info	Value	Comment
Model Type	Logistic	Model for binary y
Link function	logit	log odd of promosso=1
Distribution	Binomial	Dichotomous event distribution of y
R-squared	0.173	Proportion of reduction of error
AIC	109.631	Less is better
Deviance	103.631	Less is better
Residual DF	97	
Converged	yes	A solution was found

Analysis of Deviance: Omnibus Tests

	X ²	df	р
votip	5.31	1	0.021
ostudio	1.88	1	0.170

Coefficienti

• I coefficienti sono espressi nella scala logaritmica [**B**] e nella scala dei rapporti di probabilita' o odd ratio [**exp(B)**]

Analysis of Deviance: Omnibus Tests

	X²	df	р
votip	5.31	1	0.021
ostudio	1.88	1	0.170

Model Coefficients (Parameter Estimates)

				95% Confide	nce Interval			
	Contrast	Estimate	SE	Lower	Upper	exp(B)	Z	р
(Intercept)	Intercept	0.939	0.253	0.4637	1.463	2.56	3.71	< .001
votip	votip	0.452	0.204	0.0661	0.879	1.57	2.21	0.027
ostudio	ostudio	1.767	1.302	-0.7553	4.402	5.86	1.36	0.175

Interpretati come prima, ma aggiungendo "al netto di ..."

Moderazione

 Ovviamente possiamo inserire anche una interazione, come in qualunque altro modello lineare

Le variabili indipendenti sono già centrate in GAMLj

Moderazione

 Ovviamente possiamo inserire anche una interazione, come in qualunque altro modello lineare

Analysis of Deviance: Omnibus Tests

	X²	df	р
votip	5.078	1	0.024
ostudio	1.299	1	0.254
votip * ostudio	0.725	1	0.395

Model Coefficients (Parameter Estimates)

	95% Confidence Interval							
	Contrast	Estimate	SE	Lower	Upper	exp(B)	Z	р
(Intercept)	Intercept	1.031	0.276	0.5092	1.599	2.803	3.731	< .001
votip	votip	0.446	0.205	0.0571	0.875	1.562	2.172	0.030
ostudio	ostudio	1.504	1.329	-1.0811	4.190	4.499	1.132	0.258
votip * ostudio	votip ≭ ostudio	-0.497	0.589	-1.6709	0.632	0.608	-0.843	0.399

Effetti principali e interazione

Moderazione

Volendo possiamo plottare le simple slopes (espresse in probabilità)

In questo caso non è significativa, ma in geneale nel grafico vediamo come l'andamento delle probabilità associate a X cambiano per diversi valori del moderatore

Morale

- La Regressione Logistica e' una regressione con una VD binaria
- Si focalizza sulla probabilita' di appartenza al gruppo
- I coefficienti sono espressi in scala logaritmica (B) come Odd Ratio exp(B)
- Il exp(B) e' la quantita' per la quale OR viene moltiplicato quando muoviamo la VI di 1 unita'
- La bonta' dell'equazione complessiva e' espressa con R²
- logica di fondo e' come per la Regressione Lineare Multipla
- •E' comprensibile come un caso particolare di Modello Lineare Generalizzato

Il modello multinomiale

Il modello multinomiale

- ◆ Il modello multinomiale (regressione multinomiale) si propone di studiare e quantificare le relazioni tra una o più variabili indipendenti quantitative (es. età, salario, atteggiamenti, personalità) e una variabile dipendente categorica (con più di due gruppi)
- ◆ Sostanzialmente generalizza la logistica predicendo delle dummy che deconpongono la variabile dipendente categorica

Esempio

- ◆ Un campione di studenti (USA) può scegliere tra tre curricula scolastici: Accademic, general, vocational.
- ◆ Il ricercatore ha a disposizione un test di performance scolastica per ogni soggetto, capacità di scrittura (*write*), e lo stato socio economico (*ses*) del soggetto
- ◆ Vogliamo capire come e se queste variabili predicono la scelta del curriculum scolastico

Esempio

◆ Un campione di studenti (USA) può scegliere tra tre curricula scolastici: Accademic, general, vocational.

Contingency Tables

		- 11
Conti	ngency '	lahles
COLLUI	IUCIICY	IdDICS

prog	high	low	middle	Total	
academic	42	19	44	105	
general	9	16	20	45	
vocation	7	12	31	50	
Total	58	47	95	200	

◆ Write è un test di performance con punteggio continuo

Descriptives

_								
n	Δ	c	0	ri	n	Φi	u	es
u	c	a	•	11	ν	ш	¥	ರಾ

	write
N	200
Missing	0
Mean	52.8
Median	54.0
Minimum	31
Maximum	67

Multinomiale

 La regressione multinomiale equivale a G-1 regressioni che cercano di predire la variabile dipendente decomposta in G-1 dummy

Frequencies

Nuove variabili dipendenti

Var Indip	Categoria	Dip1	Dip2
	academic	0	0
Programma	general	1	0
	vocation	0	1

Frequencies of prog

*	-
Levels	Counts
academic	105
general	45
vocation	50

Logica della multinomiale

 Utilizzando usa serie di (pseudo) logistiche, prediciamo le dummies che decompongono la categorica

Logica della multinomiale

 Utilizzando usa serie di (pseudo) logistiche, prediciamo le dummies che decompongono la categorica

Logica della multinomiale

 Interpreteremo i risultati come abbiamo fatto per la regressione logistica, ricordando che la predizione è sulle dummies della dipendente

Relative risk

 La regressione multinomiale la probabilità di essere in un gruppo rispetto al gruppo reference è detta relative risk (una sorta di odd)

Modello multinomiale

Il modello lineare si adatta ad una vasta gamma di tipologia di variabili dipendenti mediante due scelte: link function e distribuzione

$$f(Y) = a + b_{x,w} x_i + b_{w,x} w_i + e_i$$

Tipo di variabile

Link function

Distribuzione

categoriche

Logit del relative risk

Multinomiale

•Selezioniamo tipo di modello "multinomial" e procediamo a settare le variabili

Recap e R-quadro

Generalized Linear Models

Model Info

Info	Value	Comment
Model Type	Multinomial	Model for categorical y
Link function	logit	Log of the odd of each category over y=0
Distribution	Multinomial	Multi-event distribution of y
R-squared	0.0911	Proportion of reduction of error
AIC	379.0217	Less is better
Deviance	371.0217	Less is better
Residual DF	4.0000	
Converged	yes	A solution was found

Tests e coefficienti

Test onmibus: Effetto principale di "write" sulla categorica (in generale)

Analysis of Deviance: Omnibus Tests

	X²	df	р
write	37.2	2	< .001

Model Coefficients (Parameter Estimates)

		95% Confidence Interval							
Response Groups		Contrast	Estimate	SE	Lower	Upper	exp(B)	Z	р
general - academic	(Intercept)	Intercept	-0.7711	0.1849	-1.134	-0.4086	0.463	-4.17	<.001
	write	write	-0.0660	0.0210	-0.107	-0.0248	0.936	-3.14	0.002
vocation - academic	(Intercept)	Intercept	-0.8584	0.1995	-1.249	-0.4673	0.424	-4.30	< .001
	write	write	-0.1178	0.0216	-0.160	-0.0754	0.889	-5.45	< .001

Tests e coefficienti

Analysis of Deviance: Omnibus Tests

	X²	df	р
write	37.2	2	< .001

Effetto (in logit) di "write" sulla scelta "general vs academic"

Model Coefficients (Parameter Estimates)

					95% Confide	ence Interval			
Response Groups		Contrast	Estimate	SE	Lower	Upper	exp(B)	Z	p
general - academic	(Intercept)	Intercept	-0.7711	0.1849	-1.134	-0.4086	0.463	-4.17	< .001
	write	write	-0.0660	0.0210	-0.107	-0.0248	0.936	-3.14	0.002
vocation - academic	(Intercept)	Intercept	-0.8584	0.1995	-1.249	-0.4673	0.424	-4.30	< .001
	write	write	-0.1178	0.0216	-0.160	-0.0754	0.889	-5.45	< .001

Effetto (in logit) di "write" sulla scelta "vocation vs academic"

Tests e coefficienti

Analysis of Deviance: Omnibus Tests

	X²	df	р
write	37.2	2	< .001

Effetto (in odd) di "write" sulla scelta "general vs academic"

Model Coefficients (Parameter Estimates)

					95% Confide	ence Interval	_		
Response Groups		Contrast	Estimate	SE	Lower	Upper	exp(B)	Z	p
general - academic	(Intercept)	Intercept	-0.7711	0.1849	-1.134	-0.4086	0.463	-4.17	< .001
	write	write	-0.0660	0.0210	-0.107	-0.0248	0.936	-3.14	0.002
vocation - academic	(Intercept)	Intercept	-0.8584	0.1995	-1.249	-0.4673	0.424	-4.30	< .001
	write	write	-0.1178	0.0216	-0.160	-0.0754	0.889	-5.45	< .001

Effetto (in odd) di "write" sulla scelta "vocation vs academic"

Esempio di interpretazione

Analysis of Deviance: Omnibus Tests

	X²	df	р
write	37.2	2	< .001

All'aumentare dello score "write" di una unità, l'odd di scegliere general rispetto a academic aumenta di .936 volte, dunque diminuisce

Model Coefficients (Parameter Estimates)

					95% Confide	ence Interval			
Response Groups		Contrast	Estimate	SE	Lower	Upper	exp(B)	Z	р
general - academic	(Intercept)	Intercept	-0.7711	0.1849	-1.134	-0.4086	0.463	-4.17	<.001
	write	write	-0.0660	0.0210	-0.107	-0.0248	0.936	-3.14	0.002
vocation - academic	(Intercept)	Intercept	-0.8584	0.1995	-1.249	-0.4673	0.424	-4.30	< .001
	write	write	-0.1178	0.0216	-0.160	-0.0754	0.889	-5.45	< .001

Grafico

• Il grafico degli effetti è espresso in probabilità di appartenere ad un gruppo (fare un scelta di curriculum) in funzione della X

 Per una (o più) indipendenti categoriche procediamo come in tutti i modello lineari

• Interpreteremo i coefficienti ricordando che l'effetto associato ad una VI categorica è sempre dato dalla differenza fra gruppi definiti dalla VI

Analysis of	Deviance:	Omnibus	Tests
-------------	-----------	---------	-------

	X²	df	р
ses	16.8	4	0.002

Model Coefficients (Parameter Estimates)

					95% Confide	nce Interval			
Response Groups		Contrast	Estimate	SE	Lower	Upper	exp(B)	Z	р
general - academic	(Intercept)	Intercept	-0.8336	0.189	-1.2048	-0.462	0.434	-4.402	< .001
	ses1	low - (high, low, middle)	0.6617	0.272	0.1277	1.196	1.938	2.429	0.015
	ses2	middle - (high, low, middle)	0.0451	0.245	-0.4354	0.526	1.046	0.184	0.854
vocation - academic	(Intercept)	Intercept	-0.8672	0.199	-1.2579	-0.476	0.420	-4.350	< .001
	ses1	low - (high, low, middle)	0.4076	0.292	-0.1640	0.979	1.503	1.398	0.162
	ses2	middle - (high, low, middle)	0.5170	0.241	0.0447	0.989	1.677	2.145	0.032

• Interpreteremo il grafico in termini di probabilità

Modello di Poisson

(variabili dipendenti a frequenze)

Modelli lineari generalizzati

 Il modello lineare si adatta ad una vasta gamma di tipologia di variabili dipendenti mediante due scelte: link function e distribuzione

$$f(Y) = a + b_{x,w} x_i + b_{w,x} w_i + e_i$$

Tipo di variabile

Link function

Distribuzione

Frequenze

LN delle frequenze

Poisson

Variabili dipendenti a frequenza

Un campione di bambini viene misurato mediante un test di aggressività basato sulla valutazione delle maestre dell'asilo o della scuola. Per capire la validità della misura vengono predisposte delle osservazioni sui bambini durante le ore di gioco libero a scuola o all'asilo. Le registrazioni della sessione di gioco vengono visionate da un esperto che conta il numero di atti aggressivi compiuti da ogni singolo bambino. La variabile che viene prodotta è dunque il numero (la frequenza) di atti aggressivi nelle sessioni per ogni bambino.

			numero_atti		
		Frequenza	Percentuale	Percentuale valida	Percentuale cumulata
Validi	0	33	66.0	66.0	66.0
	1	7	14.0	14.0	80.0
	2	5	10.0	10.0	90.0
	3	2	4.0	4.0	94.0
	4	1	2.0	2.0	96.0
	5	1	2.0	2.0	98.0
	6	1	2.0	2.0	100.0
	Totale	50	100.0	100.0	

Variabili dipendenti a frequenza

La variabile dipendente è chiaramente non normale!
Segue invece un'altra distribuzione nota detta **distribuzione di Poisson**

Distribuzione Variabili "counts"

• La distribuzione di Poisson indica la probabilità di osservare un evento con differenti frequenze, data un certo tasso (λ) di incidenza dell'evento

Più l'evento è raro, meno la distribuzione assomiglia ad una normale

Variabili "counts"

Sono raramente in relazione lineare con le VI

Distribuzione Variabili "counts"

- Le variabili a frequenza tendono ad avere una distribuzione di Poisson
- La distribuzione di Poisson indica la probabilità di osservare un evento con differenti frequenze, data un certo tasso (λ) di incidenza dell'evento

$$y = Poisson(\lambda)$$

Frequenza media attesa dell'evento

Trasformazione dei "counts"

Per catturare la relazione non lineare tra la X e la frequenza di Y usiamo la trasformazione logartimica delle frequenze, rende la forma della relazione come segue:

Regressione di Poisson

Il modello lineare diventa una regressioni di Poisson che stima
 l'effetto delle VI sul logaritmo delle frequenze dell'evento della VD

La trasformazioni è il *logaritmo* delle frequenze

La distribuzione degli errori è Poisson

$$\ln(y) = a + b_x x_i + b_w w_i + e_i$$

Regressione di Poisson

 Per ottenere il modello in SPSS useremo "Modelli Lineari Generalizzati" (come per la logistica) ma selezioneremo il modello opportuno

Regressione di Poisson

 Per il resto faremo come per la logistica: settiamo la variabile dipendente e indipendente

Esempio in SPSS

Risultati: Controllo che il modello sia giusto

Risultati: Test sull'effetto dei predittori (corrispondente al test F dell'ANOVA/Regression)

Risultati:
Coefficienti

Info	Value	Comment
Model Type	Poisson	Model for count data
Link function	log	Coefficients are in the log(y) scale
Distribution	Poisson	Rare events distribution of y
R-squared	0.613	Proportion of reduction of error
AIC	58.129	Less is better
Deviance	10.673	Less is better
Residual DF	48	
Value/DF	0.195	Close to 1 is better
Converged	yes	A solution was found

Analysis of Deviance: Omnibus Tests

	X ²	df	р
test_agg	85.9	1	< .001

Model Coefficients (Parameter Estimates)

				95% Confide	ence Interval			
	Contrast	Estimate	SE	Lower	Upper	exp(B)	Z	р
(Intercept) test_agg	Intercept test_agg	-2.349 0.168	0.5492 0.0275	-3.575 0.119	-1.408 0.228	0.0955 1.1832	-4.28 6.11	< .001 < .001

Esempio in SPSS

Model Coefficients (Parameter Estimates)

				95% Confide	nce Interval			
	Contrast	Estimate	SE	Lower	Upper	exp(B)	Z	р
(Intercept)	Intercept	-2.349	0.5492	-3.575	-1.408	0.0955	-4.28	< .001
test_agg	test_agg	0.168	0.0275	0.119	0.228	1.1832	6.11	< .001

Coefficienti in scala logaritmica

Per ogni unità in più di x il logaritmo della frequenza aumenta di .115 unità

Esempio in SPSS

 Notiamo che la dipendente è ln(Y), dunque exp(B) – che toglie il logaritmo al coefficiente – è nell'unità di misura di Y

Model Coefficients (Parameter Estimates)

			95% Confidence Interval					
	Contrast	Estimate	SE	Lower	Upper	exp(B)	Z	р
(Intercept)	Intercept	-2.349	0.5492	-3.575	-1.408	0.0955	-4.28	< .001
test_agg	test_agg	0.168	0.0275	0.119	0.228	1.1832	6.11	< .001

Coefficienti exp(B)

Per ogni unità in più di X, la frequenza degli atti aumenta di 1.183 **volte**

Interpretazione

 Se al logaritmo della frequenza rimuovo il logaritmo (mediante exp(B)), mi ritrova la scala di frequenza originale

$$\exp(\ln(y)) = y$$

Rimuovendo il logaritmo, ciò che si sommava ora si moltiplica

Esempio

Plot: espresso in frequenza (dipendente)

Secondo il modello questa è come cambia la frequenza degli atti aggressivi in funzione del

punteggio al test

Effects Plots

Esempio

 Considerando i valori osservati e quelli predetti, il fit è molto buono

