Riduzioni di K e \overline{K} a EXT

Luca De Paulis

6 novembre 2021

Risultati preliminari

Prima di mostrare le riduzioni $K \leq_{\mathsf{rec}} \mathsf{EXT}$ e $\overline{K} \leq_{\mathsf{rec}} \mathsf{EXT}$ introduciamo per comodità la funzione $\nu : \mathbb{N} \to \mathbb{N}$ tale che

- se $n \in K$, v(n) è il minimo numero intero positivo tale che la computazione $\phi_n(n)$ converge in v(n) passi,
- se $n \notin K$, v(n) è indefinito.

La funzione ν è calcolabile: si esegue il calcolo di $\varphi_n(n)$; se converge in un numero finito di passi si prende come risultato il numero minimo di passi per cui la funzione converge, altrimenti si continua all'infinito e quindi $\nu(n)$ diverge.

Lemma 1.1 La funzione $\psi : \mathbb{N} \to \mathbb{N}$ definita da

$$\psi(n) := \begin{cases} v(n), & n \in K \\ indef., & altrimenti \end{cases}$$

non è estendibile ad una funzione calcolabile totale.

Dimostrazione. Supponiamo per assurdo che esista $g : \mathbb{N} \to \mathbb{N}$ calcolabile totale tale che g(n) = v(n) per ogni $n \in K$. Dato che g è totale, per ogni $n \notin K$ il calcolo di g(n) dovrà convergere ad un numero naturale, e dunque necessariamente $g \neq v$ al di fuori di K.

Possiamo allora costruire la funzione $f : \mathbb{N} \to \{0,1\}$ definita da

$$f(n) \coloneqq \begin{cases} 1, & \text{se } \phi_n(n) \text{ converge in } g(n) \text{ passi} \\ 0, & \text{se } \phi_n(n) \text{ non converge in } g(n) \text{ passi.} \end{cases}$$

Tale funzione è certamente calcolabile: basta eseguire il calcolo di $\phi_n(n)$ per g(n) passi e controllare se si è arrivati alla convergenza oppure no. Notiamo inoltre che la prima condizione equivale a chiedere che g(n) sia uguale a v(n), la seconda invece equivale a chiedere che siano diversi.

Tuttavia g(n) = v(n) se e solo se $n \in K$, dunque f vale 1 se $n \in K$ e 0 altrimenti, cioè f è la funzione caratteristica di K, che però non è calcolabile. Segue l'assurdo.

2 Riduzioni

Usando il Lemma 1.1 possiamo mostrare l'esistenza di riduzioni di K e \overline{K} a EXT.

Riduzione di K **a** EXT. Consideriamo la funzione $\psi : \mathbb{N}^2 \to \mathbb{N}$ definita da

$$\psi(x,y) \coloneqq \begin{cases} \min\{\, \nu(x), \nu(y) \,\}, & \text{se } x \in K \text{ oppure } y \in K \\ \text{indef.} & \text{altrimenti} \end{cases}$$

dove min{ $\nu(x)$, $\nu(y)$ } è $\nu(x)$ se $\nu(y)$ è indefinito, e viceversa.

Tale funzione è intuitivamente calcolabile: eseguiamo contemporaneamente la computazione di $\varphi_x(x)$ e $\varphi_y(y)$. Se una delle due si ferma prima dell'altra diamo come risultato il numero di passi impiegati per il calcolo della computazione terminante; altrimenti il calcolo di ψ non termina.

Per la Tesi di Church-Turing insieme al Teorema del Parametro segue che esiste una funzione calcolabile totale $f: \mathbb{N} \to \mathbb{N}$ tale che

$$\varphi_{f(x)}(y) = \psi(x, y)$$

per ogni $y \in \mathbb{N}$. Mostriamo che $K \leq_f \mathsf{EXT}$.

• Se $x \in K$ allora

$$\varphi_{f(x)}(y) = \min\{ v(x), v(y) \}$$

e dunque è quantomeno totale. In particolare è banalmente estendibile ad una funzione calcolabile totale, e quindi $f(x) \in \mathsf{EXT}$.

Se x ∉ K allora

$$\varphi_{f(x)}(y) = \begin{cases} \nu(y), & \text{se } y \in K \\ \text{indef.} & \text{altrimenti.} \end{cases}$$

Per il Lemma 1.1 questa funzione non è estendibile ad una funzione calcolabile totale, e dunque $f(x) \notin EXT$.

Riduzione di \overline{K} **a** EXT. Consideriamo la funzione $\psi : \mathbb{N}^2 \to \mathbb{N}$ definita da

$$\psi(x,y) := \begin{cases} \nu(y), & \text{se } x \in K \text{ e } y \in K \\ \text{indef.} & \text{altrimenti.} \end{cases}$$

Tale funzione è intuitivamente calcolabile: eseguiamo in sequenza il calcolo di $\phi_x(x)$ e poi quello di $\phi_y(y)$, misurando il numero di passi necessari per la terminazione del calcolo della seconda. Se entrambe le computazioni terminano restituiamo come risultato $\nu(y)$, altrimenti ψ è indefinita.

Per la Tesi di Church-Turing insieme al Teorema del Parametro segue che esiste una funzione calcolabile totale $f: \mathbb{N} \to \mathbb{N}$ tale che

$$\varphi_{f(x)}(y) = \psi(x, y)$$

per ogni $y \in \mathbb{N}$. Mostriamo che $\overline{K} \leq_f \mathsf{EXT}$.

• Se $x \in \overline{K}$ allora $\phi_{f(x)}(y)$ è la funzione costantemente indefinita, che è estendibile ad esempio ad una qualunque funzione costante.

• Se $x \notin \overline{K}$ allora

$$\phi_{f(x)}(y) = \begin{cases} \nu(y), & \text{se } y \in K \\ \text{indef.} & \text{altrimenti.} \end{cases}$$

Per il Lemma 1.1 questa funzione non è estendibile ad una funzione calcolabile totale, e dunque $f(x) \notin \mathsf{EXT}.$