Q2 Fourier Analysis

(Dr. Meyer-Baese; Spring 2014)

Part 2

Show that the Fourier Transform of the function $g(t)=sinc(\pi t)$ $e^{i10\omega}$ is $G(\omega)=rect\left(rac{\omega-10}{2\pi}
ight)$.

$$g(t)=(rac{1}{2\pi})\int_{-\infty}^{\infty}G(\omega)\;e^{i\omega t}d\omega$$
 , where i represents the imaginary number.

From the definition of the function sinc we have that $sinc(\pi t) = sin(\pi t)/(\pi t)$.

Starting with the equation
$$g(t) = (\frac{1}{2\pi}) \int_{-\infty}^{\infty} G(\omega) \, e^{i\omega t} d\omega$$

Insert the given $G(\omega)$ to obtain $g(t)=(rac{1}{2\pi})\int_{-\infty}^{\infty}rect\Big(rac{\omega-10}{2\pi}\Big)~e^{i\omega t}d\omega$

Consider the values of of ω from $\omega = -\pi + 10$ to $\omega = \pi + 10$:

The value of the $rect\left(\frac{\omega-10}{2\pi}\right)$ function equals **1** from $\omega=-\pi+10$ to $\omega=\pi+10$:

$$g(t) = (\frac{1}{2\pi}) \int_{-\pi+10}^{\pi+10} 1 e^{iwt} d\omega$$

Simplifying:

$$g(t) = (\frac{1}{2\pi}) \int_{-\pi+10}^{\pi+10} e^{w(it)} d\omega$$

Using standard integral formula:

$$g(t) = \left(\frac{1}{2\pi}\right)\left(\frac{1}{it}\right) e^{w(it)}$$

$$-\pi + 10$$

Completing integration process:

$$g(t) = \left(\frac{1}{2\pi}\right)\left(\frac{1}{it}\right) \left(e^{(\pi+10)(it)} - e^{(-\pi+10)(it)}\right)$$

Part 2 continued

From previous page:

$$g(t) = \left(\frac{1}{2\pi}\right)\left(\frac{1}{it}\right) \left(e^{(\pi+10)(it)} - e^{(-\pi+10)(it)}\right)$$

Rearranging terms:

$$g(t) = \left(\frac{1}{2\pi}\right)\left(\frac{1}{it}\right) \left(e^{i(\pi t)+i(10t)}-e^{-i(\pi t)+i(10t)}\right)$$

Factoring out an exponential:

$$g(t) = \left(\frac{1}{\pi t}\right) \left(\frac{1}{2i}\right) \left(e^{i(10t)}\right) \left(e^{i(\pi t)} - e^{-i(\pi t)}\right)$$

Rearranging terms:

$$g(t) = (e^{i(10t)})(\frac{1}{\pi t})(\frac{1}{2i})(e^{i(\pi t)} - e^{-i(\pi t)})$$

Exponential form of $sin(\theta)$ is:

$$sin(x) = \left(\frac{1}{2i}\right) (e^{i\theta} - e^{-i\theta})$$

$$sin(\pi t) = \left(\frac{1}{2i}\right) \left(e^{i(\pi t)} - e^{-i(\pi t)}\right)$$

Substitution of exponential form of $sin(\pi t)$:

$$g(t) = \left(e^{i(10t)}\right)\left(\frac{1}{\pi t}\right)sin(\pi t)$$

Rearranging terms:

$$g(t) = \left(\frac{1}{\pi t}\right) (\sin(\pi t)) \left(e^{i(10t)}\right)$$

Substitution of previous formula for $sinc(\pi t) = sin(\pi t)/(\pi t)$:

$$g(t) = (sinc(\pi t)) \ (\ e^{i(10t)})$$

The preceding shows that the Fourier Transform of the function $g(t) = (sinc(\pi t)) \; (\; e^{i(10t)})$

is
$$G(\omega)=rect\left(rac{\omega-10}{2\pi}
ight)$$
 for values of ω from $\omega=-\pi+10$ to $\omega=\pi+10$.