Solution of Math 2033 Find Exam (Spring 2015)

1) $2^{x} = \pi^{y} \iff r = \sqrt[3]{\frac{\pi^{y}}{2^{x}}}$ the set $S = \left\{\sqrt[3]{\frac{\pi^{y}}{2^{x}}} : x, y \in Q\right\} = \int_{\mathbb{R}^{3}} \sqrt[3]{\frac{\pi^{y}}{2^{x}}}$ is Countable. Then $(0, +\infty) \setminus S$ is uncountable. So there are countable \Rightarrow countable infinitely many such $r \in (0, +\infty) \setminus S$.

2) Sketch $|y_n-y_m|=|(x_{2n}-x_{2m})-(\frac{x_n}{x_{n+1}}-\frac{x_m}{x_{n+1}})|\leq |x_{2n}-x_{2m}|+|\frac{x_n}{x_{n+1}}-\frac{x_m}{x_{m+1}}|$ $\leq |x_{2n}-x_{2m}|+\frac{|x_n-x_m|}{(x_n+1)(x_m+1)}\leq |x_{2n}-x_{2m}|+\frac{|x_n-x_m|}{(x_n+1)(n+1)}$ For every $\epsilon>0$, Since $|x_1,x_2,x_3,...|$ 75 Cauchy in $[1,+\infty)$, there exists $|x_n-x_m|$ 4 $[x_n-x_m]$ 6 $[x_n-$

Desince $f: [0,1] \rightarrow [0,1]$ is continuous injective, f is strictly monotone. Since $f(0) \leftarrow f(1)$, f is strictly increasing. Cross-multiplying $\frac{1-f(x)}{1+f(x)} = \frac{x^2}{2-x^2}$ and suplifying, we get $f(x) = 1-x^2$. Now $g(x) = (-x^2)$ is strictly decreasing and continuous on [0,1]. So $h(x) = f(x) - (1-x^2)$ is strictly increasing and continuous. Using $0 \leq f(0) < f(1) \leq 1$, we have f(0) = f(0) - 1 < 0 and f(1) = f(1) > 0. By the intermediate value theorem, f(x) = 0 for some f(0) = f(0) = 1. Since f(0) = 1 is strictly increasing, there is exactly 1 solution.

By Taylor's theorem, $\exists a \in (0,2)$ such that $f(z) = f(0) + f'(0)(z-0) + \frac{f'(0)}{2}(z-0) + \frac{f'(0)}{6}(z-0)$ and $\exists b \in (0,1)$ such that $f(1) = f(0) + f(0)(1-0) + \frac{f''(b)}{2}(1-0)^2$. Subtracting these, we get $f(z) - f(1) = f'(0) + 2f''(0) - \frac{f''(b)}{2} + \frac{4}{3}f''(a)$. Since f(z) - f(1) = 2 = 2f''(0), we have $\frac{4}{3}f''(a) - \frac{1}{2}f''(b) + f'(0) = 0$. Let c = 0, then 8f''(a) - 3f''(b) + 6f'(c) = 0.

