DroneMOM

Drone Model Output Machine

Taylor Nelms, John Marcao, Eric Micallef

Problem Statement

Collecting 3D object datasets involves a large amount of manual work and is time consuming. Can we build a system that is more automated?

Classification

Accomplished

- Figured out how to get position accurately for point cloud (Thanks shadow team)
- Started gluing components together for merge
- Time synchronized all ROS messages in pipeline
- Added Streams and zero copy memory to Image Classification
- ~50ms to do inference (~20FPS)

Challenges

- Integrating
- Likes to classify the chair as a bed (is it really wrong though?)

Next Week

Start integrating

Point Cloud Generation

- Accomplished
 - Switched to depth map interpretation of input data rather than fighting stereo photogrammetry
 - Achieved single-frame point cloud generation

Point Cloud Generation

Point Cloud Generation - Next Steps

- Accurate per-frame world space transformations
- Point culling in subsequent frames to reduce workload

GLTF Mesh Construction

Accomplished

 GLTF files generated from PCL PolygonMesh.

Issues

- Still too many holes and too much geometry.
- Some GLTF verification problems.
 - Normals
 - Floating-point precision

Next Week

o Improve Mesh Quality.

End

Questions?

EXTRA SLIDES

GLTF Mesh Construction

- 1. Remove Statistical Outliers
- 2. Downsample using a Voxel grid
- 3. Smoothing through Moving Least Squares
- 4. Point Normal Estimation
- 5. Mesh Construction

