Problem 1.

(i) (a) Suppose $a = (a_1, a_2, \ldots, a_n) \in V(J_1) \cup V(J_2)$. WLOG let $a \in V(J_1)$. This means that for any $P \in K[x_1, \ldots, x_n]$ we have P(a) = 0. Now for any $Q \in J_1 \cap J_2$, we have $Q \in J_1$, thus Q(a) = 0 which implies $a \in V(J_1 \cap J_2)$. This shows that :

$$V(J_1) \cup V(J_2) \subseteq V(J_1 \cap J_2)$$

Now let $a \in V(J_1 \cap J_2)$. And for the sake of contradiction suppose there exists $P \in J_1$ and $Q \in J_2$ such that $P(a) \neq 0$ and $Q(a) \neq 0$. Note that $PQ \in J_1$ and $PQ \in J_2$. Therefore $PQ \in J_1 \cap J_2$. Since $a \in V(J_1 \cap J - 2)$, then we have PQ(a) = P(a)Q(a) = 0. This shows that either P(a) = 0 or Q(a) = 0, which is a contradiction. Tehrefore at least for one of the J_1 and J_2 , a is a root for all polynomials in that ideal. Let that be J_1 , thus we have $a \in V(J_1) \subseteq V(J_1) \cup V(J_2)$. Now we have $V(J_1 \cap J_2) \subseteq V(J_1) \cup V(J_2)$, hence:

$$V(J_1) \cup V(J_2) = V(J_1 \cap J_2)$$

Again suppose $a \in V(J_1) \cup V(J_2)$, WLOG $a \in V(J_1)$. Consider a member of J_1J_2 :

$$P_{i} \in J_{1}, Q_{i} \in J_{2}$$

$$R = P_{1}Q_{1} + P_{2}Q_{2} + \dots P_{l}Q_{l} \in J_{1}J_{2}$$

$$\implies R(a) = P_{1}(a)Q_{1}(a) + \dots + P_{l}(a)Q_{l}(a)$$

$$= 0Q_{1}(a) + \dots + 0Q_{l}(a) = 0$$

And since R was an arbitrary member of J_1J_2 , then $a \in V(J_1J_2)$. Then $V(J_1) \cup V(J_2) \subseteq V(J_1J_2)$. Conversely suppose $a \in V(J_1J_2)$. And again for the sake of contradiction suppose $P \in J_1$ and $Q \in J_2$ such that $P(a) \neq 0$ and $Q(a) \neq 0$. Since $PQ \in J_1J_2$, then P(a)Q(a) = 0. Which is a contradiction. Therefore at least one of J_1 and J_2 have a as a root. Thus $a \in V(J_1)$ or $a \in V(J_2)$, which means $a \in V(J_1) \cup V(J_2)$. This shows that $V(J_1J_2) \subseteq V(J_1) \cup V(J_2)$. This proves that:

$$V(J_1) \cup V(J_2) = V(J_1J_2)$$

(b) Let $a \in V(\sum_{\lambda \in I} J_{\lambda})$. Now for any $P \in J_i$.