実解析第2同演習・演習第6回

2022年12月2日

問 A-1

 (X,\mathcal{M}) を可測空間, Φ_1,Φ_2 をその上の有限測度とする。 $\alpha,\beta\in\mathbb{R}$ に対し $\Psi:\mathcal{M}\to[-\infty,\infty]$ を $\nu=\alpha\Phi_1+\beta\Phi_2$ で定めるとき, Ψ は加法的集合関数であることを示せ.

問 A-2

 (X,\mathcal{B},μ) を測度空間とする. 関数 $f:X\to\mathbb{R}$ が μ に関して可積分であるとき、以下を示せ.

- (1) 各 $E \in \mathcal{B}$ に対し $\Phi(E) := \int_E f d\mu$ と定めると、 Φ は加法的集合関数.
- (2) Φ の上変動 \overline{V} , 下変動 \underline{V} はそれぞれ

$$\overline{V}(E) = \int_{E} f^{+} d\mu$$
$$\underline{V}(E) = \int_{E} f^{-} d\mu$$

で与えられる. ただし, $f^+ = \max\{f, 0\}$, $f^- = \max\{-f, 0\}$ である.

問 A-3

 $X = \{1, 2, 3, 4, 5\}$ を考える.

- (1) $\Phi(\{1\}) = -2$, $\Phi(\{2\}) = -1$, $\Phi(\{3\}) = 0$, $\Phi(\{4\}) = 1$, $\Phi(\{5\}) = 2$ となる加法的集合関数 $\Phi: \mathcal{P}(X) \to \mathbb{R}$ が一意的に定まることを示せ.
- (2) Φ の上変動,下変動はどのように表されるか.
- (3) Φの Hahn 分解を(ひとつ) 求めよ.

問 A-4

 $X = \{1, 2, 3\}$ とする. $(X, \mathcal{P}(X))$ 上の測度 μ を次のように定める.

$$\mu(\{1\}):=1,\ \mu(\{2\})\ =1,\ \mu(\{3\}):=0$$

また、加法的集合関数 Φ_1, Φ_2, Φ_3 を次のように定める.

$$\begin{split} &\Phi_1(\{1\}) := 1, \ \Phi_1(\{2\}) \ = 2, \ \Phi_1(\{3\}) := 0 \\ &\Phi_2(\{1\}) := 1, \ \Phi_2(\{2\}) \ = -1, \ \Phi_2(\{3\}) := 1 \\ &\Phi_3(\{1\}) := 1, \ \Phi_3(\{2\}) \ = -1, \ \Phi_3(\{3\}) := 0 \end{split}$$

- (1) これらのうち, μ に対して絶対連続となるのはどれか?また, その理由も述べよ.
- (2) 絶対連続となるものについて、 μ に関する Radon-Nikodym derivative を求めよ.

問 B-1

 (X, \mathcal{M}) を可測空間, Φ をその上の加法的集合関数とする. Φ の Hahn 分解が $A \in \mathcal{M}$ で与えられるとき,以下を示せ.

- (1) 各 $E \in \mathcal{M}$ に対し $\Phi^+(E) := \Phi(E \cap A)$, $\Phi^-(E) := -\Phi(E \setminus A)$ で $\Phi^+, \Phi^- : \mathcal{M} \to [0, \infty]$ を 定義すると,これらは測度であり, $\Phi = \Phi^+ \Phi^-$ が成り立つ.また, $|\Phi| := \Phi^+ + \Phi^-$ も 測度である.
- (2) (X, \mathcal{M}) 上の測度 μ_1, μ_2 について $\Phi = \mu_1 \mu_2$ が成り立つとき,任意の $E \in \mathcal{M}$ に対し

$$|\Phi|(E) \le \mu_1(E) + \mu_2(E)$$

が成り立つ.

問 B-2

実数列 $\{p_i\}_{i=1}^\infty$ が $\sum_{i=1}^\infty |p_i| < \infty$ をみたすとする. $\Phi: \mathcal{P}(\mathbb{N}) \to [-\infty, \infty]$ を

$$\Phi(E) := \sum_{i \in E} p_i$$

と定める.

(1) Φ は signed measure であることを示せ.

- (2) Φの Hahn 分解を(ひとつ) 求めよ.
- (3) $\{p_i\}$ が $\sum_{i=1}^\infty |p_i| < \infty$ を満たさないとき、すなわち級数 $\sum_{i=1}^\infty p_i$ が条件収束の場合にも同様に Φ を定められるか?

問 B-3

 (X, \mathcal{M}) を可測空間とする.

(1) (X, \mathcal{M}) 上の測度 μ_1, μ_2 と非負値関数 $f: X \to \mathbb{R}$ について

$$\int_{X} f \, d(\mu_1 + \mu_2) = \int_{X} f \, d\mu_1 + \int_{X} f \, d\mu_2$$

を示せ. また, 任意の $E \in \mathcal{M}$ について $\mu_1(E) \leq \mu_2(E)$ となるとき,

$$\int_X f \, \mathrm{d}\mu_1 \le \int_X f \, \mathrm{d}\mu_2$$

であることを示せ.

(2) 任意の $g \in L^1(X, \mu_1 + \mu_2)$ について $g \in L^1(X, \mu_1) \cap L^1(X, \mu_2)$ であり,

$$\int_{X} g \, d(\mu_1 + \mu_2) = \int_{X} g \, d\mu_1 + \int_{X} g \, d\mu_2$$

となることを示せ.

(3) μ_1 , μ_2 が有限測度のとき, $\nu=\mu_1-\mu_2$ は加法的集合関数になる. この ν と任意の $g\in L^1(X,\mu_1+\mu_2)$ について,

$$\int_X g \, \mathrm{d}\nu = \int_X g \, \mathrm{d}\mu_1 - \int_X g \, \mathrm{d}\mu_2$$

となることを示せ. (ヒント: $g \in L^1(X, |\nu|)$ は問 B-1(2) を用いて示せる.)