

FACULTAD DE CIENCIAS EXACTAS, INGENIERÍA Y AGRIMENSURA ESCUELA DE CIENCIAS EXACTAS Y NATURALES DEPARTAMENTO DE CIENCIAS DE LA COMPUTACIÓN LÓGICA

Práctica 6: Lógica de predicados - Deducción natural

- 1. Probar la validez de los siguientes secuentes usando, entre otras, las reglas de introducción y eliminación de la igualdad. El símbolo + es un símbolo de función de aridad 2, mientras que < es un símbolo de predicado también de aridad 2.
- a) $(y = 0) \land (y = x) \vdash 0 = x$
- b) $t_1 = t_2 \vdash (t + t_2) = (t + t_1)$

c)
$$(x = 0) \lor ((x + x) > 0) \vdash (y = (x + x)) \to ((y > 0) \lor (y = (0 + x)))$$

Solución:

Antes de resolver los ejercicios planteados, veamos 3 propiedades básicas de la igualdad que podremos dar por conocidas y usar en el resto de la práctica.

La igualdad es una Relación de equivalencia:

■ $\vdash x = x$ (Reflexividad):

1.
$$x = x$$
 $i_=$

• $x = y \vdash y = x$ (Simetría):

1. x = y Premisa

 $2. \quad x = x \quad i_{=}$

3. y = x $e_{=}(1)(2)$ $[\phi \equiv z = x]$ (reemplazando z)

• $x = y, y = z \vdash x = z$ (Transitividad):

1. x = y Premisa

2. y = z Premisa

3. y = x Simetría (1)

4. x = z $e_{=}(3)(2)$ $[\phi \equiv w = z]$ (reemplazando w)

a) $(y = 0) \land (y = x) \vdash 0 = x$:

1. $(y=0) \land (y=x)$ Premisa

2. y = 0 $e_{\wedge 1}(1)$

3. y = x $e_{\wedge 2}(1)$

4. 0 = y Simetría (2)

5. 0 = x Transitividad (4)(3)

b) $t_1 = t_2 \vdash (t + t_2) = (t + t_1)$:

1.
$$t_1=t_2$$
 Premisa
2. $(t+t_1)=(t+t_1)$ $i_=$
3. $(t+t_2)=(t+t_1)$ $e_=(1)(2)$ $[\phi\equiv(t+z)=(t+t_1)]$ (reemplazando z)

c)
$$(x = 0) \lor ((x + x) > 0) \vdash (y = (x + x)) \to ((y > 0) \lor (y = (0 + x)))$$
:

1.	$(x=0) \lor ((x+x) > 0)$	Premisa
2.	y = (x+x)	Hipótesis
3.	x = 0	Hipótesis
4.	y = (0+x)	$e_{=}(3)(2)[\phi \equiv y = z + x]$
5.	$((y>0)\vee(y=(0+x))$	$i_{\vee 2}(4)$
6.	x + x > 0	Hipótesis
7.	(x+x)=y	Simetría (2)
8.	y > 0	$e_{=}(7)(6)[\phi \equiv z > 0]$
9.	$((y>0) \lor (y=(0+x))$	$i_{\vee 1}(8)$
10.	$((y > 0) \lor (y = (0 + x))$	$e_{\vee}(1)(3-5)(6-9)$
11.	$(y = (x + x) \to ((y > 0) \lor (y = (0 + x)))$	$i_{\rightarrow}(2-10)$

2. Las pruebas de los secuentes que hay a continuación combinan las reglas para la igualdad y los cuantificadores. Escribimos $\phi \leftrightarrow \psi$ como abreviación de $(\phi \rightarrow \psi) \land (\psi \rightarrow \phi)$. Encuentre pruebas para:

a)
$$P(b) \vdash \forall x(x = b \rightarrow P(x))$$

b)
$$P(b), \forall x \forall y (P(x) \land P(y) \rightarrow x = y) \vdash \forall x (P(x) \leftrightarrow x = b)$$

c)
$$\exists x \exists y (H(x,y) \lor H(y,x)), \neg \exists x H(x,x) \vdash \exists x \exists y \neg (x=y)$$

d)
$$\forall x (P(x) \leftrightarrow x = b) \vdash P(b) \land \forall x \forall y (P(x) \land P(y) \rightarrow x = y)$$

a)
$$P(b) \vdash \forall x(x = b \rightarrow P(x))$$
:

1.
$$P(b)$$
 Premisa
2. $x_0 = b$ Hipótesis
4. $b = x_0$ Simetría (3)
5. $P(x_0)$ $e_{=}(4)(1)[\phi \equiv P(x)]$
6. $x_0 = b \rightarrow P(x_0)$ $i_{\Rightarrow}(3-5)$
7. $\forall x(x = b \rightarrow P(x))$ $i_{\forall}(2-6)$

b) $P(b), \forall x \forall y (P(x) \land P(y) \rightarrow x = y) \vdash \forall x (P(x) \leftrightarrow x = b)$:

1.	P(b)	Premisa
2.	$\forall x \forall y (P(x) \land P(y) \to x = y)$	Premisa
3.	[x_0
4.	$P(x_0)$	Hipótesis
5.	$ \forall y (P(x_0) \land P(y) \to x_0 = y) $	$e_{\forall}(2)$
6.	$P(x_0) \land P(b) \to x_0 = b$	$e_{\forall}(5)$
7.	$P(x_0) \wedge P(b)$	$i_{\wedge}(4)(1)$
8.	$x_0 = b$	$e_{\rightarrow}(7)(6)$
9.	$P(x_0) \to x_0 = b$	$i_{\rightarrow}(4-8)$
10.	$x_0 = b$	Hipótesis
11.	$b = x_0$	Simetría (10)
12.	$P(x_0)$	$e_{=}(11)(1)[\phi \equiv P(x)]$
13.	$x_0 = b \to P(x_0)$	$i_{\to}(10-12)$
14.	$P(x_0) \leftrightarrow x_0 = b$	$i_{\leftrightarrow}(9)(13)$
15.	$\forall x (P(x) \leftrightarrow x = b)$	$i_{\forall}(3-14)$

c) $\exists x \exists y (H(x,y) \lor H(y,x)), \neg \exists x H(x,x) \vdash \exists x \exists y \neg (x=y)$:

d)
$$\forall x (P(x) \leftrightarrow x = b) \vdash P(b) \land \forall x \forall y (P(x) \land P(y) \rightarrow x = y)$$
:

3. Pruebe los siguientes secuentes:

a)
$$\forall x (P(x) \to Q(x)) \vdash (\forall x \neg Q(x)) \to (\forall x \neg P(x))$$

b)
$$\forall x (P(x) \rightarrow \neg Q(x)) \vdash \neg (\exists x (P(x) \land Q(x)))$$

c)
$$\neg \exists x \phi \vdash \forall x \neg \phi$$

d)
$$(\forall x\phi) \land (\forall x\psi) \dashv \vdash \forall x(\phi \land \psi)$$

a)
$$\forall x (P(x) \to Q(x)) \vdash (\forall x \neg Q(x)) \to (\forall x \neg P(x))$$
:

b)
$$\forall x (P(x) \rightarrow \neg Q(x)) \vdash \neg (\exists x (P(x) \land Q(x)))$$
:

c)
$$\neg \exists x \phi \vdash \forall x \neg \phi$$
:

1.
$$\neg \exists x \phi$$
 premisa
2. x_0
3. $\phi[x_0/x]$ hipótesis
4. $\exists x \phi$ $i_{\exists}(3)$
5. \bot $i_{\bot}(4)(1)$
6. $\neg (\phi[x_0/x])$ $i_{\neg}(3-5)$
7. $\neg (\phi[x_0/x])$ trivial (6)
8. $\forall x \neg \phi$ $i_{\forall}(2-7)$

d) $(\forall x\phi) \land (\forall x\psi) \dashv \vdash \forall x(\phi \land \psi)$:

4. Demostrar la validez de los siguientes secuentes, donde ar(f) = 2, ar(F) = ar(G) = ar(P) = ar(Q) = 1 y ar(S) = 0:

a)
$$\exists x(S \to Q(x)) \vdash S \to \exists xQ(x)$$

b)
$$\forall x P(x) \to S \vdash \exists x (P(x) \to S)$$

c)
$$\forall x (P(x) \lor Q(x)) \vdash \forall x P(x) \lor \exists x Q(x)$$

d)
$$\forall x(\neg P(x) \land Q(x)) \vdash \forall x(P(x) \rightarrow Q(x))$$

e)
$$\exists x (\neg P(x) \lor Q(x)) \vdash \exists x (\neg (P(x) \land \neg Q(x)))$$

f)
$$\forall x (P(x) \land Q(x)) \vdash \forall x P(x) \land \forall x Q(x)$$

g)
$$\exists x (P(x) \land Q(x)) \vdash \exists x P(x) \land \exists x Q(x)$$

h)
$$\forall x \forall y (G(y) \to F(x)) \vdash \exists y G(y) \to \forall x F(x)$$

i)
$$\forall x \neg P(x) \vdash \neg \exists x P(x)$$

j)
$$\forall x (f(x,c) = x), \forall x (f(c,x) = x) \vdash \forall y (\forall x (f(x,y) = x)) \rightarrow y = c)$$

a)
$$\exists x(S \to Q(x)) \vdash S \to \exists x Q(x)$$
:

1.
$$\exists x(S \to Q(x))$$
 Premisa
2. S Hipótesis
3. 4. $S \to Q(x_0)$ Hipótesis
5. $Q(x_0)$ $e_{\to}(2)(4)$
6. $Q(x_0)$ $e_{\exists}(1)(3-5)$
8. $\exists xQ(x)$ $i_{\exists}(7)$
9. $S \to \exists xQ(x)$ $i_{\to}(2-8)$

b) $\forall x P(x) \to S \vdash \exists x (P(x) \to S)$:

De Huth & Ryan (notar que usa otra notación para las reglas):

1	$\forall x P(x) \to S$	prem
2	$\neg \exists x (P(x) \to S)$	assum
3	x_0	
4	$\neg P(x_0)$	assum
5	$P(x_0)$	assum
6		$\neg e 5, 4$
7	S	⊥e 6
8	$P(x_0) o S$	\rightarrow i 5 -7
9	$\exists x (P(x) \to S)$	∃ <i>x</i> i 8
10	上	$\neg e 9, 2$
11	$\neg \neg P(x_0)$	¬i 4—10
12	$P(x_0)$	¬¬e 11
13	$\forall x P(x)$	$\forall x \: \mathrm{i} \: 3\mathrm{-}12$
14	S	ightarrow e 1, 13
15	P(t)	assum
16	S	copy 14
17	P(t) ightarrow S	\rightarrow i 15 $-$ 16
18	$\exists x (P(x) \to S)$	$\exists x \text{ i } 17$
19	Τ	$\neg e 18, 2$
20	$\neg\neg\exists x(P(x)\to S)$	$\neg i \ 2{-}19$
21	$\exists x (P(x)\to S)$	$\neg \neg e \ 20$

- c) $\forall x (P(x) \lor Q(x)) \vdash \forall x P(x) \lor \exists x Q(x)$:
- d) $\forall x (\neg P(x) \land Q(x)) \vdash \forall x (P(x) \rightarrow Q(x))$:
- e) $\exists x (\neg P(x) \lor Q(x)) \vdash \exists x (\neg (P(x) \land \neg Q(x)))$:

f) $\forall x (P(x) \land Q(x)) \vdash \forall x P(x) \land \forall x Q(x)$:

De Huth & Ryan (notar que usa otra notación para las reglas):

g) $\exists x (P(x) \land Q(x)) \vdash \exists x P(x) \land \exists x Q(x)$:

De Huth & Ryan (notar que usa otra notación para las reglas):

1		$\exists x (P(x) \land Q(x))$	prem
2	x_0		
3		$P(x_0) \wedge Q(x_0)$	assum
4		$P(x_0)$	$\wedge e_1$ 3
5		$\exists x P(x)$	$\exists x$ i 4
6		$Q(x_0)$	$\wedge e_2$ 3
7		$\exists x Q(x)$	∃ <i>x</i> i 6
8		$\exists x P(x) \wedge \exists x Q(x)$	∧i 5, 7
9		$\exists x P(x) \land \exists x Q(x)$	$\exists x e 1, 2-8$

h)
$$\forall x \forall y (G(y) \rightarrow F(x)) \vdash \exists y G(y) \rightarrow \forall x F(x)$$
:

i)
$$\forall x \neg P(x) \vdash \neg \exists x P(x)$$
:

1.
$$\forall x \neg P(x)$$
 premisa
2. $\exists x P(x)$ hipótesis
3. 4. $P(x)[x_0/x]$ hipótesis
5. $(\neg P(x))[x_0/x]$ $e_{\forall}(1)$
6. $\neg P(x)[x_0/x]$ trivial(5)
7. \bot $i_{\bot}(4)(6)$
8. \bot $e_{\exists}(2)(3-8)$
9. $\neg \exists x P(x)$ $i_{\neg}(2-9)$

j)
$$\forall x (f(x,c) = x), \forall x (f(c,x) = x) \vdash \forall y (\forall x (f(x,y) = x)) \rightarrow y = c)$$
:

5. Sean ϕ y ψ fórmulas de la lógica de predicados. Demostrar las siguientes equivalencias deductivas, asumiendo que $x \notin FV(\psi)$:

a)
$$\forall x \phi \lor \psi \dashv \vdash \forall x (\phi \lor \psi)$$

b)
$$\exists x(\phi \to \psi) \dashv \vdash \forall x\phi \to \psi$$

c)
$$\forall x(\phi \to \psi) \dashv \vdash \exists x\phi \to \psi$$

a)
$$\forall x \phi \lor \psi \dashv \vdash \forall x (\phi \lor \psi)$$
:

c) $\forall x(\phi \to \psi) \dashv \vdash \exists x\phi \to \psi$:

6. Pruebe la validez de los siguientes secuentes:

a)
$$\forall x \forall y P(x, y) \vdash \forall u \forall v P(u, v)$$

b)
$$\exists x \exists y F(x,y) \vdash \exists u \exists v F(u,v)$$

Solución:

a) $\forall x \forall y P(x,y) \vdash \forall u \forall v P(u,v)$:

1.
$$\forall x \forall y P(x,y)$$
 Premisa
2. x_0
3. y_0
4. $\forall y P(x_0,y)$ e_{\forall} (1)
5. $P(x_0,y_0)$ e_{\forall} (4)
6. $\forall v P(x_0,v)$ $i_{\forall}(3-5)$
7. $\forall u \forall v P(u,v)$ $i_{\forall}(2-6)$

- b) $\exists x \exists y F(x,y) \vdash \exists u \exists v F(u,v)$:
- 7. En la Práctica 5 se pedía dar un conjunto de fórmulas Γ que caracterice la estructura de grupo.
- a) Demuestre que $\Gamma \vdash e = e^{-1}$
- b) Exprese, mediante una fórmula ϕ , la siguiente propiedad:

"Existe un único elemento neutro para la operación binaria"

c) Demuestre que $\Gamma \vdash \phi$

Solución:

- 8. En el ejercicio 6 de la Práctica 5 se pedía caracterizar a los grafos simples bipartitos mediante un conjunto Γ de fórmulas de la lógica de predicados. Utilizando dicha formalización, demuestre:
- a) $\Gamma \vdash \forall x \forall y \forall z (U(x) \land R(x,y) \land R(y,z) \rightarrow U(z))$
- b) $\Gamma \vdash \forall x \forall y \forall z (R(x,y) \land R(x,z) \land W(y) \rightarrow W(z))$