IP Datagram format

นาย วัฒชัย เตชะลือ Sec53 65015137

IP fragmentation/reassembly

	Hosts	Netmask	Amount of a Class C
/30	4	255.255.255.252	1/64
/29	8	255.255.255.248	1/32
/28	16	255.255.255.240	1/16
/27	32	255.255.255.224	1/8
/26	64	255.255.255.192	1/4
/25	128	255.255.255.128	1/2
/24	256	255.255.255.0	1
/23	512	255.255.254.0	2
/22	1024	255.255.252.0	4
/21	2048	255.255.248.0	8
/20	4096	255.255.240.0	16
/19	8192	255.255.224.0	32
/18	16384	255.255.192.0	64
/17	32768	255.255.128.0	128
/16	65536	255.255.0.0	256

		I			_	
V	lo	Network Addr	Subnet ^2	start IP	Last IP	Broadcast
)	192.168.240.0	255,255.232.0	192 168.240.1	192,168,243,254	19 2.168, 249, 255
is	2	192.166,244.0	255.255.252.0	192. 168.244.1	192.168.249.254	192 168,244.255
	3	192 168, 848,0	255.255.254.0	. 248.]	. 249.254	. 234 . 255
4	9	192 168, 250,0	255 254.0	2 51 , 1	251,254	251.255
2	5	252,0	254,0	252,1	253.254	251.255
1	ь	254.0	255.0	254]	254 . 254	254,255
7	1	255.0	255.192	265.7	255.62	2 55, 63
	9	255.64	255.192	255,65	126	127
(9	128	142	129	190	191
1	D	197	79.2	[93	254	285

Bellman-Ford Example

Suppose that u's neighboring nodes, x,v,w, know that for destination z:

Bellman-Ford equation says:

$$D_{u}(z) = \min \left\{ \begin{array}{l} c_{u,v} + D_{v}(z), \\ c_{u,x} + D_{x}(z), \\ c_{u,w} + D_{w}(z) \end{array} \right\}$$

$$= \min \left\{ 2 + 5, \\ 1 + 3, \\ 5 + 3 \right\} = 4$$

node achieving minimum (x) is next hop on estimated leastcost path to destination (z)

 Subnet 1 request 300+1 host
 Subnet 2 request 300+1 host
 Subnet 3 request 100+1 host

 Start: 202.107.16.0/23
 Start: 202.107.18.0/23
 Start: 202.107.20.0/25

 End: 202.107.17.255/23
 End: 202.107.19.255/23
 End: 202.107.20.127/

 Subnet 4 request 100+1 host
 Subnet 5 request 100+1 host
 Subnet 6 request 50+1 host

 Start : 202.107.20.128/25
 Start : 202.107.21.0/25
 Start : 202.107.21.128/26

 End : 202.107.20.255/25
 End : 202.107.21.127/25
 End : 202.107.21.129/26

 Can use : 202.107.20.129-202.107.20.254
 Can use : 202.107.21.120
 Can use : 202.107.21.129-202.107.21.129

 Subnet 7 request 50+1 host
 Subnet 8 request 50+1 host
 Subnet 9 request 50+1 host

 Start : 202.107.21.192/26
 Start : 202.107.22.0/26
 Start : 202.107.22.64/26

 End : 202.107.21.255/26
 End : 202.107.22.63/26
 End : 202.107.22.127/26

 Subnet 10 request 30+1 host
 Subnet 11 request 30+1 host
 Subnet 12 request 30+1 host

 Start : 202.107.22.128/26
 Start : 202.107.22.192/26
 Start : 202.107.23.0/26

 End : 202.107.22.191/26
 End : 202.107.22.255/23
 End : 202.107.23.63/26

Subnet 13 request 16+1 host Start : 202.107.23.64/27 End : 202.107.23.95/27

Can use: 202.107.23.65-202.107.23.94

Subnet 15 request 16+1 host S tart : 202.107.23.128/27 End : 202.107.23.159/27

Can use: 202.107.23.129-202.107.23.158

Subnet 14 request 16+1 host Start : 202.107.23.96/27 End : 202.107.23.127/27 Can use : 202.107.23.97

Subnet 16 request 16+1 host Start: 202.107.23.160/27 End: 202.107.23.191/27

Can use: 202.107.23.161 -202.107.23.160

Can use: 202.107.22.65-202.107.22.126

นาย วัฒชัย เทชะถือ Sec53 65015137

TCP slow start and congestion avoidance

RTO expiration

Slow start

Tahoe จะเริม 1 ใหม่

18

Congestion avoidance

ssthresh(new)

22

20

24

40

36

32

28

24

16

12

8

ssthresh

Slow start

Congestion window (cwnd)

No. Network Address Subnet Mask IP address แรกที่ host หรือ router สามารถนำไปใช้ได้ IP

Address สุดท้ายที่ host หรือ router สามารถนำไปใช้ได้

1 192.168.240.0 /22 192.168.240.1 192.168.243.254

2 192.168.244.0 /22 192.168.244.1 192.168.247.254

3 192.168.248.0 /23 192.168.248.1 192.168.249.254

4 192.168.250.0 /24 192.168.250.1 192.168.250.254

5 192.168.251.0 /24 192.168.251.1 192.168.251.254

6 192.168.252.0 /26 192.168.252.1 192.168.252.62

7 192.168.252.64 /26 192.168.252.65 192.168.252.126

8 192.168.252.128 /27 192.168.252.129 192.168.252.158

9 192,168,252,160 /27 192,168,252,161 192,168,252,190

10 192.168.252.192 /27 192.168.252.193 192.168.252.222

stra's algorithm: an example

east-cost-path tree from u:

 $\{z\}$

(V)

resulting forwarding table in u:

route from u to all other destinations via x

route from u to v directly

jkstra's algorithm: an example

cwnd(new

12

Round-trip time (RTT)

Congestion

			V	W	X	У	(Z)
St	ер	N'	D(v),p(v)	D(w),p(w)	D(x),p(x)	D(y),p(y)	D(z),p(z)
	0	u	2,u	5,u	1,u	8	00
	1	ux	2,u	4,x		2,x	œ
	2	uxy	2,u	3,y			4,y
	3	uxyv		3,y			4,y
	4	uxyvw					(4,y)
	5	uxyvvz					

กำหนด IP address 131.237.39.76 ให้หา Network ID สำ

10000011

137.0.0.0 กรณี /ชู	
137.924.0.0 nsal/12	nsn 18
137. 237.32 .0 กรณี /20	715ณี / 12 กรณี /20
137. 937 36.0 ns 1 /22	กรณี /99

Dijkstra's algorithm: another example

Ste	o <i>N'</i>	v D(v), p(v)	w D(w), p(w)	х D(х), p(х)	у D(у), p(у)	D(z), p(z)
0	u	7,u	(3,u)	5,u	∞	∞
1	uw	6,w		(5,u)	11,w	∞
2	uwx	6,w			11,w	14,x
3	uwxv				(10,v)	14,x
4	uwxvy					12,y
5	uwxvyz					

18 /12 /20 /22

10000011 111 01101 . 00 | 00111 01001100 J

1000001,1110101,0010000,00000000

128 64 32 16 8 4 2 1

ICMP: internet control message protocol

 $D_b(f) = \min\{c_{b,a} + D_a(f), c_{b,c} + D_c(f), c_{b,e} + D_e(f)\} = \min\{\infty, \infty, 2\} = 2$

 $D_{b}(g) = \min\{c_{b,a} + D_{a}(g), c_{b,c} + D_{c}(g), c_{b,e} + D_{e}(g)\} = \min\{\infty, \infty, \infty\} = \infty$

$$\begin{split} &D_b(h) = min\{c_{b,a} + D_a(h), \ c_{b,c} + D_c(h), \ c_{b,e} + D_e(h)\} \ = min\{\infty, \infty, \ 2\} = 2 \\ &D_b(i) = min\{c_{b,a} + D_a(i), \ c_{b,c} + D_c(i), \ c_{b,e} + D_e(i)\} \ = min\{\infty, \infty, \ \infty\} = \infty \end{split}$$

- used by hosts and routers to communicate network-level information
 - error reporting: unreachable host, network, port, protocol
 - echo request/reply (used by ping)
- network-layer "above" IP:
 - ICMP messages carried in IP datagrams
- ICMP message: type, code plus first 8 bytes of IP datagram causing error

Type	Code	description
0	0	echo reply (ping)
3	0	dest. network unreachable
3	1	dest host unreachable
3	2	dest protocol unreachable
3	3	dest port unreachable
3	6	dest network unknown
3	7	dest host unknown
4	0	source quench (congestion
		control - not used)
8	0	echo request (ping)
9	0	route advertisement
10	0	router discovery
11	0	TTL expired

bad IP header

Hierarchical addressing: route aggregation

"Send me anything with addresses

"Send me anything

hierarchical addressing allows efficient advertisement of routing information:

Fly-By-Night-ISP

ISPs-R-Us

Hierarchical addressing: more specific routes

12

- Organization 1 moves from Fly-By-Night-ISP to ISPs-R-Us
- ISPs-R-Us now advertises a more specific route to Organization 1

DHCP client-server scenario

Organization 0 200.23.16.0/23 Organization 1 200.23.18.0/23

Organization 7

200.23.30.0/23

 $D_e(i) = \infty$

Closing a TCP conne

MAC addresses

each interface on LAN

- has unique 48-bit MAC address
- has a locally unique 32-bit IP address (as we've seen)

MAC addresses

- 32-bit IP address:
 - network-layer address for interface
 - · used for layer 3 (network layer) forwarding
 - e.g.: 128.119.40.136
- MAC (or LAN or physical or Ethernet) address:
 - function: used "locally" to get frame from one interface to another physically-connected interface (same subnet, in IP-addressing sense)
 - 48-bit MAC address (for most LANs) burned in NIC ROM, also sometimes software settable
 - e.g.: 1A-2F-BB-76-09-AD hexadecimal (base 16) notation (each "numeral" represents 4 bits)

BGP path advertisement (more)

gateway router may learn about multiple paths to destination:

- AS1 gateway router 1c learns path AS2,AS3,X from 2a
- AS1 gateway router 1c learns path AS3,X from 3a
- based on policy, AS1 gateway router 1c chooses path AS3,X and advertises path within AS1 via iBGP

ΙP Eth ΙP Phy Eth Phy 111.111.111.111 222.222.222.222 74-29-9C-E8-FF-55 49-BD-D2-C7-56-2A 222.222.222.220 1A-23-F9-CD-06-9B 111.111.111.112 111.111.111.110 CC-49-DE-D0-AB-7D 222.222.222.221 E6-E9-00-17-BB-4B 88-B2-2F-54-1A-0F

IP src: 111.111.111.111 IP dest: 222.222.222.222

ARP protocol in action

example: A wants to send datagram to B

. B's MAC address not in A's ARP table, so A uses ARP to find B's MAC address

