Collision Avoidance Report

Prepared For: Learn In Depth

Prepared By: Sherif Ashraf Khedr

Table Of Content

Description	3
Requirement	3
Requirement Diagram	5
System Class Diagram	5
CA State Machine	6
DC Motor State Machine	7
Ultrasonic Sensor State Machine	8
System Activity Diagram	9
System Use Case Diagram	10
System Sequence Diagram	11
Design Result In Simulation	12
Design Result In Code	13

Description

Collision_Avoidance is a smart system that helps robots and self-driving vehicles avoid crashes. It uses advanced ultrasonic sensors to quickly spot obstacles and navigate around them, making it a crucial tool for safe and precise movement in various applications.

Requirement

- 1. Objective: The system must utilise an ultrasonic sensor to detect obstacles at a distance of 50 cm or less.
- 2. Speed Control Condition: When the ultrasonic sensor detects an obstacle at a distance below or equal to 50 cm, the vehicle speed must be set to 0.
- 3. Normal Operation Speed: In the absence of obstacles, the default speed of the vehicle should be 30.

Requirement Diagram

System Class Diagram

CA State Machine

DC Motor State Machine

Ultrasonic Sensor State Machine

System Activity Diagram

System Use Case Diagram

System Sequence Diagram

Design Result In Simulation

Design Result In Code

```
DC Init
DC Init
CA Waiting State: distance = 0 speed = 0
DC IDLE State : Speed = 0
US BUSY State : Distance = 53
US -----> CA: distance = 53 speed = 0
                       DC motor()
CA -> -> -> DC
CA Driving State: distance = 53 speed = 30
DC Busy State : speed = 30
US BUSY State : Distance = 54
US -----> CA: distance = 54 speed = 30
                      DC motor()
CA -> -> -> DC
CA Driving State: distance = 54 speed = 30
DC Busy State : speed = 30
US BUSY State : Distance = 54
US -----> CA: distance = 54 speed = 30
CA -> -> -> DC
                DC motor()
CA_Driving State: distance = 54 speed = 30
DC_Busy State : speed = 30
```