Space-Efficient B Trees via Load-Balancing

Tomohiro I Department of Artificial Intelligence Kyushu Institute of Technology Japan

Dominik Köppl
Tokyo Medical and Dental University
Japan

setting

want to store *n* keys, each of *k* bits in a data structure with the operations

- predecessor
- insert
- delete
 (not in this talk: done by symmetry)

related work

space in bits	author(s)	year
2nk + 2n lg lg n + o(n)	Prezza	'17
nk + O(nk / lg ^{0.5} n)	González, Navarro	'09
nk + O(nk / lg ^{0.5} n)	He, Munro	'10
nk + O(lg n)	Franceschini, Grossi	'06
nk + O(nk / lg n)	this work	
	$2nk + 2n \lg \lg n + o(n)$ $nk + O(nk / \lg^{0.5} n)$ $nk + O(nk / \lg^{0.5} n)$ $nk + O(\lg n)$	$2nk + 2n \lg \lg n$ Prezza + o(n) González, Navarro $nk + O(nk / \lg^{0.5} n)$ He, Munro $nk + O(\lg n)$ Franceschini, Grossi

all in word RAM model

* assuming realloc in O(1) time

goal

 $nk + O(nk / \lg n)$ bits, $O(\lg n)$ operation time (arXiv: $O(\lg n / \lg \lg n)$ time)

note:

nk + o(nk) considered as succinct if keys are incompressible, e.g., keys are pointers: store two keys k_1 and k_2 in the order $k_1^* < k_2^*$

B tree

idea: use B trees!

- standard data structure in database systems
- practically more efficient than binary search trees due to data locality

B tree: brief review

- occupancy = #stored keys
- occupancy of a node is in [[t/2]...t], where t : constant
- if occupancy violated: split / merge
- tree variations:
 - B tree
 - B+ tree

- B* tree

combination used in

this talk

B tree example

- t = 3
- each internal node has [2..3] children
- each leaf stores [2..3] keys

comparison

B tree

keys are the numbers [0..9]

B+ tree

- internal nodes store comparators (not necessarily keys)
- all keys are stored in the leaves

to keep things small: consider filling instead of actual numbers

insert into non-full leaf

insert into full leaf

insert with recursive split

insert with recursive split

insert with recursive split

occupancy

- not space efficient: can be just 50% full
- worst case:
 - 2nk bits for the leaves
 - #leaves: $n \cdot t/2 \Rightarrow$ #internal nodes: O(n / t^2)
- internal nodes: O(n lg n / t) bits
- aim: nk + o(nk) bits

B* tree

each leaf has a designated sibling called buddy

B* tree: insert

- on insert:
 - if leaf is full but buddy not:
 - move key to its buddy
 - update information in ancestor nodes

B* tree

- on insert:
 - if leaf is full but buddy not:
 - move key to its buddy
 - update information in ancestor nodes
 - if both are full \Rightarrow split
- occupation after split ≥ 2/3

can idea be generalized?

our tricks

- 1) generalize B^* tree technique from one buddy to $\Theta(\lg n)$ buddies
- 2) let a leaf store $b := w \lg n / k keys$ w : machine word size in bits with
- k = O(w) and
- $n = O(2^w) \cap \Omega(w \lg^2 n / k)$

we need a different data structure for fewer keys

invariant

obey the following invariant for a $c \ge 1$ among *c* lg *n* assigned buddies (neighboring leaves) of every non-full leaf, there is at most another non-full leaf c lg n buddies

insert

if leaf is not full: just insert

insert

if leaf is full & a buddy is not full: shift key to buddy

insert

if leaf is full & all buddies are full: split leaf

leaves : space

- occupation rate is \geq (c lg n 1) / (c lg n)
- a leaf stores [t/2..t] keys, but within c lg n consecutive leaves, only two can store less than t keys
- full occupation: *t c* lg *n*
- achieved:

$$\geq t (c \lg n - 2)$$

+ 2 \cdot t/2

leaves: space

- occupation rate is \geq (c lg n 1) / (c lg n)
- leaves use at most

$$nk (c \lg n) / (c \lg n - 1)$$
 bits
= $nk (1 + 1 / (c \lg n - 1))$ bits
= $nk + O(nk / \lg n)$ bits

$$\frac{x}{x-1} = 1 + \frac{1}{x-1}$$

total space

- let a leaf store [b/2..b] keys with
 b := w lg n / k
- then there are at most $O(n / (t b)) = O(nk / (t w \lg n))$ internal nodes
- each internal node stores $O(t \lg n)$ bits $\Rightarrow O(nk \mid w)$ bits total for internal nodes
- leaves: nk + O(nk / lg n) bits
- total: *nk* + O(*nk* / lg *n*) bits

shifting in large leaves

shifting a key can take O(b) time from one leaf to another $\Rightarrow O(b \mid g \mid n)$ time for insertion!

Shift key

array representation

ring buffer

use ring buffer instead of array tail/head insertion/removal in O(1) time

word packing

- shift: O(1) time
- save time by packing w/k keys into a machine word
- insert: O(lg n) time since ring buffer size
 is b = w lg n / k keys
- total: $O(\lg n) + c \lg n \cdot O(1)$ time
 - $= O(\lg n)$ time

full paper on arXiv

- augmentation with aggregated values like prefix-sum / minimum / maximum key in the internal nodes
- O($\lg n / \lg \lg n$) operation time by dynamic fusion trees [Patrascu, Thorup '14]
- $n ext{ O}(\lg 2^k / n) + ext{ O}(n)$ bits by compression [Blandford and Blelloch '04] if $w = \Theta(\lg n)$
- works in external memory with the same
 Θ(log_B n) I/Os as classic B trees

summary

succinct B+ tree variant

- generalize B* tree technique from one buddy to Θ(lg n) buddies
- leaves store large number of keys
- shift keys among ring buffers representing leaves

result:

- $nk + O(nk / \lg n)$ bits
- O(lg n) operation time