Trees and Binary Trees

Tree Terminology

- Root: node without parent (A)
- · Siblings: nodes share the same parent
- Internal node: node with at least one child (A, B, C, F)
- External node (leaf): node without children (E, I, J, K, G, H, D)
- Ancestors of a node: parent, grandparent, grand-grandparent, etc.
- Descendant of a node: child, grandchild, grand-grandchild, etc.
- **Depth** of a node: number of ancestors
- Height of a tree: maximum depth of any node (3)
- Degree of a node: the number of its children
- Degree of a tree: the maximum degree of its node.

Subtree: tree consisting of a node and its descendants

5

Tree Properties Property Value Number of nodes Height Root Node Leaves Interior nodes Ancestors of H Descendants of B Siblings of E Right subtree of A Degree of this tree

Tree Properties

Property Value

Number of nodes: 9

Height : 4

Root Node : A

Leaves : 5

Interior nodes : 4

Ancestors of H : G, E,B, A

Descendants of B : E, G, H, I

Siblings of E : D, F

Right subtree of A : C

Degree of this tree : 3

7

Intuitive Representation of Tree Node

- List Representation
 - **5** (A(B(E(K,L),F),C(G),D(H(M),I,J)))
 - The root comes first, followed by a list of links to sub-trees

How many link fields are needed in such a representation?

Data Link 1 Link 2 ... Link n

TREE ADT: Operations

- Operations
 - Traversal
 - Insertion
 - Deletion
 - Search
 - Copy
 - **—**

Tree Traversal

- Two main methods:
 - Preorder
 - Postorder
- · Recursive definition
- Preorder:
 - visit the root
 - traverse in preorder the children (subtrees)
- Postorder
 - traverse in postorder the children (subtrees)
 - visit the root

13

Preorder Traversal

- A traversal visits the nodes of a tree in a systematic manner
- In a preorder traversal, a node is visited before its descendants
- · Application: print a structured document

Postorder Traversal

- In a postorder traversal, a node is visited after its descendants
- Application: compute space used by files in a directory and its subdirectories

Binary Trees

Binary Tree

- A binary tree is a tree with the following properties:
 - Each internal node has at most two children (degree of two)
 - The children of a node are an ordered pair
- We call the children of an internal node left child and right child
- Alternative recursive definition: a binary tree is either
 - a tree consisting of a single node, OR
 - a tree whose root has an ordered pair of children, each of which is a binary tree

- Applications:
 - arithmetic expressions
 - decision processes
 - searching

17

Examples of the Binary Tree

Difference Between A Tree and A Binary Tree

• The subtrees of a binary tree are ordered; those of a tree are not ordered.

- Are different when viewed as binary trees.
- Are the same when viewed as trees.

19

Arithmetic Expression Tree

- Binary tree associated with an arithmetic expression
 - internal nodes: operators
 - external nodes: operands
- Example: arithmetic expression tree for the expression $(2 \times (a 1) + (3 \times b))$

Decision Tree

- Binary tree associated with a decision process
 - internal nodes: questions with yes/no answer
 - external nodes: decisions
- · Example: dining decision

21

Binary Tree Traversal

- Traversal
 - Each node in a tree is processed exactly once in a systematic manner
- Three main ways of tree traversal
 - Preorder
 - Inorder
 - Postorder

Binary Tree Traversal...

- The easiest way to define each order is by using recursion
- Preorder traversal (RIr)
 - Process the root node
 - Traverse the left subtree in preorder
 - Traverse the right subtree in preorder
- Preorder traversal: ABCDEFG

23

Assignment: Preorder Traversal

Preorder: FBADCEGIH

Assignment: Preorder Traversal

Preorder: PFBHGSRYTWZ

25

Binary Tree Traversal...

- Inorder traversal (IRr)
 - Traverse the left subtree in Inorder
 - Process the root node
 - Traverse the right subtree in Inorder
- Inorder traversal: CBAEFDG

Assignment: Inorder Traversal

Inorder: ABCDEFGHI

27

Assignment: Inorder Traversal

Inorder: BFGHPRSTWYZ

Binary Tree Traversal...

- Postorder traversal (IrR)
 - Traverse the left subtree in postorder
 - Traverse the right subtree in postorder
 - Process the root node
- Postorder traversal:

CBFEGDA

29

Assignment: Postorder Traversal

Postorder: ACEDBHIGF

Assignment: Postorder Traversal

Postorder: BGHFRWTZYSP

31

Print Arithmetic Expressions

- · Specialization of an inorder traversal
 - print operand or operator when visiting node
 - print "(" before traversing left subtree
 - print ")" after traversing right subtree

 $\big((2\times(a-1))+(3\times b)\big)$

Tutorial: Algorithm to Print Arithmetic Expression using Binary Tree

Binary tree traversal: algorithms

- Recursive
- Iterative

Preorder traversal: iterative algorithm

```
Algorithm PREORDER(T)
Input: A binary tree whose root node address is given by a pointer variable T
Output: Preorder traversal of a tree
[Initialize]
if T=NULL then
   return false {Empty Tree}
else
   TOP← -1
   push(S, T)
[Process each stacked branch address]
Repeat while TOP>=0
[Get stored address and branch left]
    P \leftarrow pop(S)
    Repeat while P != NULL
       write DATA(P)
       if RPTR(P) != NULL then
         push(S,RPTR(P)) [Store address of nonempty right subtree]
         P \leftarrow LPTR(P) [branch left]
[Finished]
return
```

Preorder traversal: recursive algorithm

```
Algorithm RPREORDER(T)
Input: A binary tree whose root node address is given by a pointer variable T
Output: Preorder traversal of a tree
[Process the root node]
if T!= NULL then
   write DATA(T)
else
   return false {Empty Tree}
[Process the left subtree]
if LPTR(T) != NULL then
RPREORDER(LPTR(T))
[Process the right subtree]
if RPTR(T) != NULL then
RPREORDER(RPTR(T))
[Finished]
return
```

Postorder traversal: iterative algorithm

```
Algorithm POSTORDER(T)
Input: A binary tree whose root node address is given by a pointer variable T
Output: Postorder traversal of a tree
[Initialize]
if T=NULL then
    return false {Empty Tree}
else
    TOP← -1
    P\leftarrow T
[Traverse in postorder]
Repeat while true
[Descend left]
     Repeat while P != NULL
           push(S,P)
           P \leftarrow LPTR(P)
[Process a node whose left and right subtree have been traversed]
     Repeat while S[TOP] <0
           P \leftarrow POP(S)
           write DATA(P)
           if TOP = -1 then
           return
[Branch right and then mark node from which we branched]
     P \leftarrow RPTR(S[TOP])
     S[TOP] \leftarrow -S[TOP]
[Finished]
return
```

Postorder traversal: recursive algorithm

```
Algorithm RPOSTORDER(T)
Input: A binary tree whose root node address is given by a pointer variable T
Output: Postorder traversal of a tree
[Initialize]
if T=NULL then
   return false {Empty Tree}
[Traverse in postorder the left subtree]
if LPTR(T) != NULL then
    RPOSTORDER(LPTR(P))
[Traverse in postorder the left subtree]
if RPTR(T) != NULL then
    RPOSTORDER(RPTR(P))
[Process the root node]
write DATA(P)
[Finished]
return
```

Inorder traversal: iterative algorithm Algorithm INORDER(T) Input: A binary tree whose root node address is given by a pointer variable T Output: Inorder traversal of a tree

Inorder traversal: recursive algorithm

Algorithm RINORDER(T)
Input: A binary tree whose root node address is given by a pointer variable T
Output: Inorder traversal of a tree

Making a duplicate copy of a tree

```
Algorithm COPY(T)
Input: A binary tree whose root node address is given by a pointer variable T
Output: address of the root node of a new tree which is the copy of the tree with root T
[Null pointer?]
if T = NULL then
    return false {Empty tree}
[Create a new node]
    NEW ← NODE
[Copy information field]
    DATA(NEW)← DATA(T)
[Set structural links]
    LPTR(NEW) ← COPY(LPTR(T))
    RPTR(NEW) ← COPY(RPTR(T))
[Return address of a new node]
return NEW
```

44

Delete a node from Binary tree

- If a node to be deleted has no offspring, it can simply be deleted
- If a node has either a right or left empty subtree, the nonempty subtree can be appended to its grandparent node
- If the node has both a right and left subtree, the deletion strategy...

Delete a node from Binary tree...

- If the node has both a right and left subtree...
 - First obtain the inorder successor of the node to be deleted
 - Then the right subtree of this successor node is appended to its grandparent node
 - Then the node to be deleted is replaced by its inorder successor

```
Algorithm DELETE(HEAD,X)
Input: A binary tree whose root node address is given by a pointer variable HEAD, X is the
data value of the node marked for deletion
Output: address of the root node of a new tree in which node with data value X is deleted
[Initialize]
if LPTR(HEAD) != HEAD then
        CUR ← LPTR(HEAD)
        PARENT ← HEAD
else
        return false {node not found}
[Search for the node marked for deletion]
FOUND← false
Repeat while not FOUND and CUR != NULL
        if DATA(CUR)=X then
                 FOUND=true
        else
                 if X < DATA(CUR) then
                          PARENT← CUR
                          CUR ← LPTR(CUR)
                          D = L
                 else
                          PARENT← CUR
                          CUR ← RPTR(CUR)
                          D='R'
```

```
if FOUND = false then
         return false {node not found}
[perform the indicated deletion and restructure the tree] if LPTR(CUR) = NULL then
         Q← RPTR(CUR)
else
         if RPTR(CUR) = NULL then
                   Q← LPTR(CUR)
          else [check the right child of successor]
                   SUC ← RPTR(CUR)
                   if LPTR(SUC) = NULL then
                             LPTR(SUC) \leftarrow LPTR(CUR)
                             Q \leftarrow SUC
                   else [search for the successor of CUR]
                             PRED ← RPTR(CUR)
                             SUC ← LPTR(PRED)
                             Repeat while LPTR(SUC) != NULL
                                       \mathsf{PRED} \leftarrow \mathsf{SUC}
                                       SUC ← LPTR(PRED)
                             [connect successor]
                             LPTR(PRED) \leftarrow RPTR(SUC)
                             LPTR(SUC) \leftarrow LPTR(CUR)
                             RPTR(SUC) \leftarrow RPTR(CUR)
                             Q← SUC
```

Delete a node from Binary tree...

```
[connect parent of X to its replacement]

if D = ^{\circ}L^{\circ} then

LPTR(PARENT) \leftarrow Q

else

RPTR(PARENT) \leftarrow Q
```

Threaded Storage Representation for Binary Trees

- Binary trees have a lot of wasted space: the leaf nodes each have 2 null pointers
- We can use these pointers to help us in inorder traversals
- We have the pointers reference the next node in an inorder traversal; called threads
- We need to know if a pointer is an actual link or a thread, so we keep a boolean for each pointer

50

Threaded tree node structure

```
struct node
{
    struct node *lptr, *rptr;
    bool lthread, rthread;
};
```

Threaded Tree Example

52

Threaded Tree Traversal

- We start at the leftmost node in the tree, print it, and follow its right thread
- If we follow a thread to the right, we output the node and continue to its right
- If we follow a link to the right, we go to the leftmost node, print it, and continue

Start at leftmost node, print it

54

Threaded Tree Traversal

Follow thread to right, print node

Follow link to right, go to leftmost node and print

56

Threaded Tree Traversal

Follow thread to right, print node

Follow link to right, go to leftmost node and print

58

Threaded Tree Traversal

Follow thread to right, print node

Follow link to right, go to leftmost node and print

60

Threaded Tree Traversal

Follow thread to right, print node

Follow link to right, go to leftmost node and print

62

Threaded Tree modification

- We're still wasting pointers, since half of our leafs' pointers are still null
- We can add threads to the previous node in an inorder traversal as well, which we can use to traverse the tree backwards or even to do postorder traversals

Threaded Tree Modification

Amir Kamil 8/8/02 64

Find Inorder Successor

Algorithm INS(X)

Input: X, the address of a node in a threaded binary tree

Output: address of the inorder successor of X

[Return the right pointer of the given node if a thread]

 $P \leftarrow RPTR(X)$

if RTHREAD(X) = true

then return P

[Branch left repeatedly until a left thread]

repeat while LTHREAD(P) != true

 $P \leftarrow LPTR(P)$

[Return address of successor]

return P

Find Inorder Predecessor

Algorithm INP(X)

Input: X, the address of a node in a threaded binary tree

Output: address of the inorder predecessor of X

[Return the left pointer of the given node if a thread]

 $P \leftarrow LPTR(X)$

if LTHREAD = true

then return P

[Branch right repeatedly until a right thread]

repeat while RTHREAD(P) != false

 $P \leftarrow RPTR(P)$

[Return address of successor]

return P

66

Traverse Threaded Binary Tree in Inorder

Algorithm TINORDER(HEAD)

Input: address of a list head (HEAD) in a threaded binary

tree, a subalgorithm INS previously discussed

Output: inorder traversal of a tree

[Initialize]

P ← HEAD

[Traverse threaded tree in inorder]

repeat while true

 $P \leftarrow INS(P)$

if P=HEAD

then return

else Write(DATA(P))

Inserting a node into a Threaded Binary Tree

```
Algorithm LEFT(X, INFO)
Input: address of a designated node X in an inorder
threaded binary tree and the information associated with
the new node (INFO)
Output: Inserts a new node to the left of X
[Create a new node]
P ← NODE
DATA(P) \leftarrow INFO
[Adjust pointer fields]
       LPTR(P) \leftarrow LPTR(X)
       LPTR(X) \leftarrow P
       RPTR(P) \leftarrow -X
[Reset predecessor thread if required]
       if LPTR(P) > 0
       then RPTR(INP(P)) \leftarrow -P
       return
```

Threaded Binary Tree: Advantages

- Inorder traversal is somewhat faster than that of its unthreaded version
 - Because stack is not required in the former
- Efficient determination of the predecessor and successor nodes for any node P
- What are the disadvantages????

Conversion of General tree forest to Binary Tree

ALGORITHM CONVERT

[Given a forest of trees in preorder sequence, it is required to convert this forest into an equivalent binary tree with a list head (HEAD)].

1. [Initialize]

HEAD ← NODE LPTR(HEAD) ← NULL RPTR(HEAD) ← HEAD LEVEL[1] ← 0 LOCATION TOP ← 1

2. [Process the input]

Repeat thru step 6 while input is there.

3. [Input a node]

Read(LEVEL,INFO).

70

Conversion of General tree forest to Binary Tree

4. [Create a tree node] NEW <-- NODE LPTR(NEW) <-- RPTR(NEW) <-- NULL DATA(NEW) <-- INFO.

5. [Compare levels]

PRED_LEVEL ← LEVEL[TOP]
PRED_LOC ←LOCATION[TOP]
if LEVEL > PRED_LEVEL
then LPTR(PRED_LOC) ← NEW
else if LEVEL = PRED_LEVEL
RPTR(PRED_LOC) ← NEW
TOP ← TOP - 1
else
Repeat while LEVEL!= PRED_LEVEL
TOP ← TOP - 1
PRED_LEVEL ← LEVEL[TOP]
PRED_LOC ← LOCATION[TOP]
if PRED_LEVEL ← LEVEL
then write ("Invalid Input")
return

Conversion of General tree forest to Binary Tree

RPTR(PRED_LOC) <-- NEW TOP <-- TOP - 1.

6. [Pushing values in stack]

TOP <-- TOP + 1 LEVEL[TOP] <-- LEVEL LOCATION[TOP] <-- NEW.

7. [*FINISH*] return.