Raport AiSD lista 1

Amelia Dorożko

13 listopada 2024

Do analizy poszczególnych algorytmów sortujących, bazowałam na przykładowo 8 wygenerowanych listach o zadanych długościach oraz elementach z zakresu od 0 do 999.

1 Sortowanie przez wstawianie

1.1 INSERTION_SORT

W tej metodzie każda kolejna liczba z tablicy jest porównywana z elementami po jej lewej stronie i wstawiana na odpowiednie miejsce.

Długość tablicy (n)	Liczba porównań	Liczba przypisań
5	4	12
10	22	40
100	2615	2813
200	10045	10443
400	37341	38139
600	86800	87998
800	163804	165402
1000	249193	251191

Tabela 1: INSERTION_SORT

1.2 MODIFIED_INSERTION_SORT

Sortowanie przez wstawianie oraz jego zmodyfikowana wersja, jest algorytmem o złożoności czasowej $O(n^2)$ w najgorszym z możliwych wypadków.

MODIFIED_INSERTION_SORT, gdy przesuwamy większy element, równocześnie "za darmo" przesuwamy też mniejszy element pary, który będzie potrzebował tej samej serii operacji. Główna pętla przechodzi przez listę co dwa indeksy, co zmniejsza liczbę iteracji pętli o połowę. Przy dużych tablicach ta zmiana znacznie obniża czas wykonania.

```
void MODIFIED_INSERTION_SORT(int A[], int n) {
for (int i = 1; i < n - 1; i += 2) {
   int pierwszy = A[i - 1];
}</pre>
```

```
int drugi = A[i];
4
            liczbaPrzypisan += 2;
           if (pierwszy > drugi) {
                liczbaPorownan++;
                swap(pierwszy, drugi);
                liczbaPrzypisan += 2;
           }
           int j = i - 2;
11
            while (j >= 0 && A[j] > drugi) {
13
                liczbaPorownan++;
                A[j + 2] = A[j];
14
                liczbaPrzypisan++;
15
16
           }
           A[j + 2] = drugi;
18
            while (j \ge 0 \&\& A[j] > pierwszy) {
19
20
                liczbaPorownan++;
                A[j + 1] = A[j];
21
                liczbaPrzypisan++;
                j --;
            }
            A[j + 1] = pierwszy;
            liczbaPrzypisan += 2;
26
27
```

W celu uzyskania pełnej poprawności algorytmu, należało rozważyć przypadek dla tablic o nieparzystej ilości elementów,

```
if (n % 2!= 0) {
           liczbaPorownan++;
           int ostatni = A[n - 1];
           liczbaPrzypisan++;
           int j = n - 2;
           while (j >= 0 && A[j] > ostatni) {
               liczbaPorownan++;
               A[j + 1] = A[j];
               liczbaPrzypisan++;
9
               j--;
11
           A[j + 1] = ostatni;
           liczbaPrzypisan++;
13
14
```

2 Sortowanie przez scalanie

2.1 MERGE_SORT

Klasyczny MERGE_SORT dzieli tablicę na dwie części, sortuje je rekurencyjnie, a następnie scala dwie posortowane części, co daje całkowitą złożoność $O(n \log(n))$.

Długość tablicy (n)	Liczba porównań	Liczba przypisań
5	5	14
10	12	29
100	1606	1826
200	6666	7116
400	25417	26320
600	56965	58307
800	108414	110217
1000	164210	166450

Tabela 2: MODIFIED_INSERTION_SORT

Długość tablicy (n)	Liczba porównań	Liczba przypisań
5	16	32
10	43	86
100	771	1542
200	1743	3486
400	3887	7774
600	6175	12350
800	8575	17150
1000	10975	21950

Tabela 3: $MERGE_SORT$

2.2 MODIFIED_MERGE_SORT

W przypadku zmodyfikowanego MERGE_SORT, dzielimy tablicę na trzy części zamiast dwóch. Mimo że scalanie trzech tablic wymaga więcej porównań, mniejsza liczba poziomów rekurencyjnych sprawia, że całkowity koszt operacji może być niższy. Tutaj mamy więcej segmentów, co może prowadzić do lepszej wydajności, zwłaszcza dla dużych danych.

```
int s1 = p + (k - p) / 3;
int s2 = p + 2 * (k - p) / 3;
MODIFIED_MERGE_SORT(A, p, s1);
MODIFIED_MERGE_SORT(A, s1 + 1, s2);
MODIFIED_MERGE_SORT(A, s2 + 1, k);
MODIFIED_MERGE(A, p, s1, s2, k);
```

Również należy zwrócić uwagę poniższy fragment kodu:

```
L[n1] = INT_MAX;
M[n2] = INT_MAX;
P[n3] = INT_MAX;
```

Umożliwia on algorytmowi efektywne zakończenie procesu łączenia, gdy wszystkie elementy zostały już przetworzone.

Długość tablicy (n)	Liczba porównań	Liczba przypisań
5	12	27
10	27	59
100	497	1053
200	1121	2363
400	2592	5462
600	3964	8292
800	5377	11189
1000	7177	14989

Tabela 4: MODIFIED MERGE SORT

3 Sortowanie przez kopcowanie

3.1 HEAP_SORT

HEAP_SORT tworzy kopiec binarny z tablicy, a następnie wielokrotnie usuwa największy element, który umieszcza na końcu tablicy, odbudowując kopiec dla pozostałych elementów, co łącznie daje złożoność $O(n\log(n))$.

Długość tablicy (n)	Liczba porównań	Liczba przypisań
5	13	27
10	47	86
100	1146	1823
200	2828	4403
400	6608	10131
600	10740	16362
800	15132	22936
1000	19751	29817

Tabela 5: HEAP SORT

3.2 MODIFIED_HEAP_SORT

Modyfikacja algorytmu HEAP_SORT polega na wprowadzeniu kopca ternarnego.Mniejsza "głębokość" kopca oznacza, że operacje przesiewania MODIFIED_HEAPIFY muszą być wykonywane rzadziej, ponieważ mniejsze jest "drzewo", które algorytm musi przetworzyć. Warto wyróżnić sposób modyfikacji funkcji HEAPIFY, która obsługuje dodatkowych potomków:

```
if (1 < n && A[1] > A[largest]) {
    liczbaPorownan++;
    liczbaPrzypisan++;
    largest = 1;
}
if (m < n && A[m] > A[largest]) {
    liczbaPorownan++;
    liczbaPrzypisan++;
}
```

```
largest = m;
       }
       if (r < n && A[r] > A[largest]) {
12
           liczbaPorownan++;
13
           liczbaPrzypisan++;
14
           largest = r;
15
       if (largest != i) {
17
           swap(A[i], A[largest]);
18
           liczbaPorownan++;
19
           liczbaPrzypisan += 2;
20
           MODIFIED_HEAPIFY(A, n, largest);
21
22
```

Długość tablicy (n)	Liczba porównań	Liczba przypisań
5	10	22
10	32	63
100	849	1365
200	2039	3216
400	4655	7196
600	7728	11831
800	10903	16558
1000	14248	21504

Tabela 6: MODIFIED_HEAP_SORT

Porównanie klasycznych i zmodyfikowanych algorytmów sortowania

1. Przyrównując obie wersje algorytmu INSERTON_MERGE, po wprowadzeniu niewielkich zmian zauważamy, że zmodyfikowany algorytm jest znacznie wydatniejszy od swojej zwykłej wersji.

 $2.\,$ Kolejne dwie wersje modyfikacji, są korzystniejszym rozwiązaniem.

3. Zarówno klasyczny INSERTION_SORT, jak i jego modyfikacja są najmniej korzystnym rozwiązaniem.

Poprzez porównanie poprzednio opisanych algorytmów sortujących, w przypadku danych o dużej objętości lub nieprzewidywalnych zestawów danych, algorytmy MERGE_SORT i HEAP_SORT będą bardziej optymalne, podczas gdy INSERTION_SORT będzie miał sens głównie dla niewielkich zbiorów, lub w pewnej części uporządkowanych.