Detecção de Objetos

(single-stage object detector)

Prof. Jefersson A. dos Santos

jefersson@dcc.ufmg.br

Roteiro

Aula anterior

- Bounding boxes
- Detecção de pontos de referências
- Detecção com janelas deslizantes
- CNNs baseadas em proposta de regiões
 - R-CNN
 - Fast R-CNN (com Rol pooling)
 - Faster R-CNN (com RPN)
- Instance Segmentation Mask R-CNN

Aula de hoje

- Implementação convolucional de janelas deslizantes
- Razão entre interseção e união (IoU)
- Non-max suppression
- Anchor boxes
- Juntando tudo: YOLO
 Algoritmo You Only Look Once

Implementação Convolucional de Janelas Deslizantes

Uma alternativa a janelas deslizantes

Relembrando: Sliding windows detection

Detecção por janelas deslizantes

- Começa com uma janela pequena que desliza da esquerda para a direita, de cima para baixo, de acordo com o stride escolhido. Para cada janela, usamos a ConvNet para retornar uma previsão.
- Recomeça o mesmo algoritmo, mas com janelas maiores.
- Problema: custo computacional
 - Podemos aumentar o stride, mas desempenho pode cair
 - Antigamente, quando as features eram hand-engineered, isso não era um problema
- Soluções alternativas:
 - não classificar todas as regiões (proposta de regiões)
 - implementação convolucional das janelas deslizantes

Detecção por janelas deslizantes

- Começa com uma janela pequena que desliza da esquerda para a direita, de cima para baixo, de acordo com o stride escolhido. Para cada janela, usamos a ConvNet para retornar uma previsão.
- Recomeça o mesmo algoritmo, mas com janelas maiores.
- Problema: custo computacional
 - Podemos aumentar o stride, mas desempenho pode cair
 - Antigamente, quando as features eram hand-engineered, isso não era um problema
- Soluções alternativas:
 - não classificar todas as regiões (proposta de regiões)
 - implementação convolucional das janelas deslizantes

Region-based methods (última aula)

Turning FC layer into convolutional layers

Tornando camada FC em camada convolucional

1a. camada FC:

- Camada 5x5x16 é achatada (flattened) resultando em 400 nós, que são ligados com outros 400 nós
- Cada um dos 400 nós da camada FC é uma combinação linear do volume 5x5x16 seguido de ativação

2a. camada FC:

 Cada um dos 400 nós da 2a camada FC é uma combinação dos 400 nós da 1a FC seguido de ativação

Última camada:

 Combina as ativações da camada anterior em 4 nós + ativação softmax

1a. camada convolucional 1x1x400:

- Cada um dos 400 filtros é 5x5x16
- Cada nó da camada convolucional é uma combinação linear do volume 5x5x16 seguido de ativação

2a. camada convolucional 1x1x400:

- Cada um dos 400 filtros é 1x1x400
- Cada um dos 400 nós da 2a camada conv. 1x1x400 é uma combinação dos 400 nós da 1a. camada conv. Seguido de ativação

Última camada:

- Cada um dos 4 filtros é 1x1x400
- Ativação softmax

Convolution implementation of sliding windows

[Sermanet et al., 2014, OverFeat: Integrated recognition, localization and detection using convolutional networks]

Implementação convolucional da janela deslizante

- Números pequenos e face frontal dos volumes para simplificar
- Tamanhos:
 - Imagem de treinamento: 14x14x3
 - Imagem de teste: 16x16x3
- Suponha uso de janelas deslizantes com stride 2 (4 janelas)
- Usar janelas deslizantes causa muita computação redundante
 - Resultado ao passar imagem de teste pela rede: 2x2x4
 - Cada volume 1x1x4 corresponde a uma janela na imagem original
- Quando teste é 28x28x3, resultado é 8x8x4
- O stride da janela na imagem original está relacionado ao max-pool 2x2

Convolution implementation of sliding windows

Razão entre interseção e união (Intersection over Union)

Razão entre interseção e união

- Como avaliar se o algoritmo de detecção de objetos está funcionando bem?
- Métrica IoU (intersection over union): razão entre interseção e união
 - o **0** indica sem sobreposição
 - 1 indica idênticos
 - É um caso especial do índice de Jaccard

Dados dois conjuntos A e B

$$J(A,B) = \frac{|A \cap B|}{|A \cup B|}$$

Também usado como componente de certos algoritmos de detecção

Avaliando a localização do objeto

Intersection over Union (IoU)

Mais genericamente, IoU é uma medida de sobreposição entre duas bounding boxes.

Avaliando a localização do objeto

- Região retornada: contorno roxo
- Região correta: contorno vermelho
- Na maioria das tarefas região retornada é correta se loU ≥ 0.5
 - o Em alguns casos o limiar é 0.6 ou 0.7
 - Raramente limiar fica abaixo de 0.5
- Pode ser usado para avaliar a qualidade do bounding box retornado
- De maneira mais geral, é uma medida de overlap entre regiões

Non-max suppression

Problema com algoritmos vistos até agora

- Pode encontrar múltiplas bounding boxes se referindo ao mesmo objeto
- Non-max suppression permite detectar o objeto uma única vez

Exemplo de non-max suppression

Exemplo de non-max suppression

- Non-max suppression tem como objetivo retornar apenas uma caixa por objeto
- Primeiro, avalia p_c para cada uma das bounding boxes
 - Pega a caixa com maior p_c
 - Todas as caixas com alto IoU são descartadas
- Continua pegando a bounding box com maior p_c dentre as restantes, até que cada caixa tenha sido selecionada ou removida
- No exemplo, as duas predições correspondem as caixas com $p_c = 0.9$ e 0.8

Algoritmo de non-max suppression

<u>Uma classe</u>

A saída de cada previsão é:

Descarte todas as caixas com $p_c \le 0.6$ Enquanto existirem caixas restando:

- Pegue a caixa B com maior p_c
 Retorne B como previsão
- Descarte qualquer caixa restante com IoU ≥ 0.5 com a caixa B retornada no passo anterior

Algoritmo de non-max suppression

- No exemplo anterior, estamos assumindo apenas uma classe por simplicidade
- Caso haja mais de uma classe,
 - o O vetor de saída y tem número de coordenadas igual a 5 + no. de classes
 - Cada classe deve ser avaliada de forma independente

Algoritmo de non-max suppression

3 classes

A saída de cada previsão é:

Prob. de existir um objeto da classe i é p_c . c_i Fazer para cada classe i de forma independente

Anchor boxes

Como detectar múltiplos objetos na mesma janela?

- Algoritmos de detecção de objetos normalmente amostram muitas regiões da imagem de entrada e ajustam as bordas para retornar bounding boxes precisas
- Diferentes modelos podem usar diferentes métodos para amostrar regiões
- Veremos como usar anchor boxes (caixas âncoras/caixas candidatas) para isso
- Anchor boxes são bounding boxes de múltiplos tamanhos e aspect ratios

Objetos sobrepostos

 c_3

Anchor box 2

•

[Redmon et al., 2015, You Only Look Once: Unified real-time object detection]

Objetos sobrepostos

[Redmon et al., 2015, You Only Look Once: Unified real-time object detection]

Objetos sobrepostos

- Não é possível retornar dois objetos usando o vetor y definido anteriormente
- Saída: usar anchor boxes com formatos diferentes
- Vimos exemplo com 2 anchor boxes, mas na prática são usadas ~5 a 10.
 No nosso exemplo:
 - Usamos a primeira para codificar o pedestre
 - Usamos a segunda para codificar o carro

Algoritmo Anchor Box

Antes (sem anchor boxes):

 Cada objeto na imagem de treino era associado à célula da grade que contém o ponto médio do objeto

Agora (com 2 anchor boxes por região):

- Cada região contendo múltiplas anchor boxes é um exemplo de treino
- Cada objeto na imagem de treino, delimitado por uma bounding box, é associado à anchor box com maior loU.

Saída y: 3 x 3 x 8

Saída y: 3 x 3 x 16 ou 3 x 3 x 2 x 8

Exemplo com anchor boxes

Exemplo com anchor boxes

Exemplo com anchor box

- A dimensão 8 em 3x3x2x8 tem a ver com o número de classes
 - E se fossem 6 classes?
- Na imagem anterior, tínhamos um carro e um pedestre
- Caso houvesse apenas um carro, apenas a 2a. metade do vetor seria preenchida
- E se tivéssemos 2 anchor boxes, mas 3 objetos?
 - Com sorte n\u00e3o acontece, caso contr\u00e1rio, regra para quebra de empates
- E se tivéssemos 2 objetos associados a mesma anchor box em uma célula?
 - Também não funcionaria perfeitamente
- Em geral esses problemas n\u00e3o acontecem com grids mais finos
- Como escolher anchor boxes?
 - Manualmente, de 5 a 10
 - Usando algoritmo k-means para agrupar objetos segundo forma e depois escolher anchor boxes representativos

Juntando tudo: algoritmo YOLO

Treinamento

[Redmon et al., 2015, You Only Look Once: Unified real-time object detection]

Treinamento

y é 3 x 3 x 2 x 8

E se

- ... grid mais fino? 19 x 19 x 16
- ... 5 anchor boxes? 19 x 19 x 40

Célula 1

 p_c

 c_1

 c_1

 c_3

y =

Célula 8

 b_h

[Redmon et al., 2015, You Only Look Once: Unified real-time object detection]

Fazendo previsões

YOLO

- No exemplo anterior
 - Treinamento:
 - Célula 1 não possui objeto
 - Célula 8 possui um carro, com loU maior com anchor box 1
 - Previsão:
 - Célula 1: espera-se que $p_c = 0$, outras entradas não importam (don't care)
 - Célula 8: espera-se que anchor box 2 corresponda ao carro

Retornando as saídas após non-max suppression

- Para cada célula, retorne 2 bounding boxes da previsão
- Elimine as previsões com baixa probabilidade
- Para cada classe (pedestre, carro, moto) use non-max suppression para gerar as predições finais

YOLO - Resumo

Yolo - Arquitetura (Pascal VOC)

Figure 3: The Architecture. Our detection network has 24 convolutional layers followed by 2 fully connected layers. Alternating 1×1 convolutional layers reduce the features space from preceding layers. We pretrain the convolutional layers on the ImageNet classification task at half the resolution (224×224 input image) and then double the resolution for detection.

YOLO vs Other methods

Redmon, J., & Farhadi, A. (2017). YOLO9000: better, faster, stronger. In *Proceedings of the IEEE conference on computer vision and pattern recognition* (pp. 7263-7271).

YOLO Architecture - V3

YOLO v3 network Architecture

YOLO vs Other methods

	backbone	AP	AP_{50}	AP ₇₅	AP_S	AP_M	AP_L
Two-stage methods							
Faster R-CNN+++ [5]	ResNet-101-C4	34.9	55.7	37.4	15.6	38.7	50.9
Faster R-CNN w FPN [8]	ResNet-101-FPN	36.2	59.1	39.0	18.2	39.0	48.2
Faster R-CNN by G-RMI [6]	Inception-ResNet-v2 [21]	34.7	55.5	36.7	13.5	38.1	52.0
Faster R-CNN w TDM [20]	Inception-ResNet-v2-TDM	36.8	57.7	39.2	16.2	39.8	52.1
One-stage methods							
YOLOv2 [15]	DarkNet-19 [15]	21.6	44.0	19.2	5.0	22.4	35.5
SSD513 [11, 3]	ResNet-101-SSD	31.2	50.4	33.3	10.2	34.5	49.8
DSSD513 [3]	ResNet-101-DSSD	33.2	53.3	35.2	13.0	35.4	51.1
RetinaNet [9]	ResNet-101-FPN	39.1	59.1	42.3	21.8	42.7	50.2
RetinaNet [9]	ResNeXt-101-FPN	40.8	61.1	44.1	24.1	44.2	51.2
YOLOv3 608×608	Darknet-53	33.0	57.9	34.4	18.3	35.4	41.9

YOLO

Vantagens:

- Velocidade (45 quadros por segundo)
- A rede entende a representação generalizada de objetos (isso permitiu que eles treinassem a rede em imagens do mundo real e as previsões sobre obras de arte ainda eram bastante precisas).
- Versão mais rápida 155 quadros por segundo, mas é menos precisa.

Desvantagem:

- Dificuldade de aproveitar features pré-treinadas de outras tarefas (backbone)
- Processa muitos bounding boxes desnecessários (background)
- Dificuldade de detectar objetos pequenos