MATH 425b ASSIGNMENT 5 SOLUTIONS SPRING 2009 Prof. Alexander

Chapter 9:

(I)(a) If $y \in T(U)$, $y \neq 0$, then y = Tx for some $x \in U$ with $x \neq 0$, so $|y| = |Tx| \leq |Tx|/|x| \leq ||T||$, meaning $y \in B(0, ||T||)$. Thus $T(U) \subset \overline{B}(0, ||T||)$. On the other hand, if r < ||T||, then there exists $x \neq 0$ with |Tx|/|x| > r, so for z = x/|x| we have $z \in U$ but $Tz \notin \overline{B}(0, r)$. This shows $T(U) \not\subset \overline{B}(0, r)$, meaning $\overline{B}(0, ||T||)$ is the smallest ball containing T(U).

For the conorm, since $\mathfrak{m}(T) > 0$ we cannot have $x \neq 0, Tx = 0$. Therefore T is one-to-one, and thus onto (since m = n.) Suppose $y \in \overline{B}(0, \mathfrak{m}(T)), y \neq 0$. Since T is onto, we have y = Tz for some $z \in \mathbb{R}^n, z \neq 0$. Then

$$\mathfrak{m}(T) \ge |y| = |Tz| \ge \mathfrak{m}(T)|z|,$$

where the last inequality is from the definition of $\mathfrak{m}(T)$, so $|z| \leq 1$, that is, $z \in U$, meaning $y \in T(U)$. This shows $\overline{B}(0,\mathfrak{m}(T)) \subset T(U)$. On the other hand, if $r > \mathfrak{m}(T)$, then by definition of infimum there exists $x \neq 0$ with |Tx|/|x| < r. This means we can find c > 1 with c|Tx|/|x| < r. Let w = cx/|x|, so |w| = c > 1, that is, $w \notin U$. Since T is one-to-one, this means $Tw \notin T(U)$. But we have |Tw| = c|Tx|/|x| < r, so $Tw \in \overline{B}(0,r)$. This shows $\overline{B}(0,r) \not\subset T(U)$. It follows that $\mathfrak{m}(T)$ is the radius of the largest ball contained in T(U).

(b) We prove the contrapositive: if T is not invertible then Tx = 0 for some $x \neq 0$, so |Tx|/|x| = 0, which shows that $\mathfrak{m}(T) = 0$.

(II)(a) Given $\epsilon > 0$ we have

$$|y-x| < \frac{\epsilon}{||T||}$$
 implies $|Ty-Tx| = |T(y-x)| \le ||T|| |y-x| < \epsilon$.

Thus T is uniformly continuous.

(b) Let $f_n(x) = \frac{1}{n} \sin nx$, $x \in (a, b)$. Then $f_n \to 0$ uniformly and T(0) = 0, but we claim that $T(f_n) \not\to T(0) = 0$, which means T is not continuous. In fact $(Tf_n)(x) = f'_n(x) = \cos nx$, and for sufficiently large n there exist points of form $2\pi k/n$ in (a, b) with k an integer (such points exists provided $2\pi/n < b-a$.) At these points, $f'_n(2\pi k/n) = \cos 2\pi k = 1$. This shows $T(f_n)$ does not converge to 0 in C(a, b), i.e. it does not converge uniformly to 0. Thus as claimed, T is not continuous.

But T is linear since (cf + g)' = cf' + g'.

(III)(a) We have $|\mathbf{u}|^2 = x^2 + y^2 = 1$, so $y^2 = 1 - x^2$, and $|A\mathbf{u}|^2 = (2x + 3y)^2 + (x - 6y)^2 = 5x^2 + 45y^2 = 5x^2 + 45(1 - x^2) = 45 - 40x^2$. This is maximized when x^2 is as small as possible,

that is, x = 0, and $y = \pm 1$, giving $|A\mathbf{u}|^2 = 45$. Thus $||A|| = \sup_{|\mathbf{u}|=1} |A\mathbf{u}| = \sqrt{45}$, and this is achieved by $\mathbf{u} = (0, \pm 1)$.

- (b) $|A\mathbf{u}|/|\mathbf{u}|$ is not changed if \mathbf{u} is multiplied by a nonzero constant, so the maximizing vectors are all nonzero multiples of the vectors $\mathbf{u} = (0, \pm 1)$ found in part (a), that is, all vectors (0, y) with $y \neq 0$.
 - (c) $1/\|A\| = 1/\sqrt{45}$ and $\|A^{-1}\| = 1/\sqrt{5}$, so they are not equal.
- (IV)(a) By the Cauchy-Schwarz inequality, $|Ax \cdot y| \leq |Ax| |y|$, so

$$\sup_{x,y\neq 0} \frac{|Ax \cdot y|}{|x| |y|} \le \sup_{x,y\neq 0} \frac{|Ax| |y|}{|x| |y|} = \sup_{x\neq 0} \frac{|Ax|}{|x|} = ||A||.$$

(b) Considering only x with $Ax \neq 0$ and only y = Ax we get

$$\sup_{x,y\neq 0} \frac{|Ax \cdot y|}{|x| |y|} \ge \sup_{x:x\neq 0 \text{ and } Ax\neq 0} \frac{|Ax \cdot Ax|}{|x| |Ax|} = \sup_{x:x\neq 0 \text{ and } Ax\neq 0} \frac{|Ax|}{|x|}.$$

But including also vectors $x \neq 0$ with Ax = 0 does not change the last sup, since the value of |Ax|/|x| is 0 for these x anyway, and thus the last sup is the same as

$$\sup_{x \neq 0} \frac{|Ax|}{|x|} = ||A||.$$

(V) If $T\mathbf{x}_1 \neq T\mathbf{x}_2$ then $T(\mathbf{x}_1 - \mathbf{x}_2) \neq 0$ so by assumption $\mathbf{x}_1 - \mathbf{x}_2 \neq 0$, that is, $\mathbf{x}_1 \neq \mathbf{x}_2$. This shows T is one-to-one.