Spring 2023 EEE/ETE 141L

Electrical Circuits-I Lab (Sec-19)

Faculty: Mr. Saif Ahmed (SfA)
Instructor: Md. Rabiul Karim Khan

Lab Report 05: Verification of Superposition Theorem.

Group no.: 05

Date of Performance: 02 April 2023

Date of Submission: 09 April 2023

1. Md. Mehedi Hossain - 1922225642

2. Sarith Chowdhury - 2212551642

3. Anindita Das Mishi - 2211364642

4. Joy Kumar Ghosh – 2211424642

5. Anisa Akter Meem - 2212538042

Experiment Name: Veribication of Supercosition Theonem.

Objectives: To verity Superposition Theorem.

Appanotus: -

- -> Breaboand
- -> Resistane (1x 3.3K2, 1x 4.7K2, 1x1K2)
- -> Digital multimeter
- -> De power Supply
- -> wine.

Cincuit Diagnam:

Table 1:

ables				-111
	I.	I'a	J"2	1'2+1"2
measured Data	2.780	2:040	0.740	2.780
	2.761	2.043	07-19	2.762
Dara		1	2024	0.654
Ennon	0,0	0.10	2	

Table 2

V	'RI	vk,	VIIRI -	V/R, + V/1R,
measured	2.360	8.010	-0.722	7.288
Theorbical				7.310
	0.15%		2.08%	0.304

Table 3

	VRZ	VRZ	V "RZ	V/R1+ V//R1
measured	2.728	2.013	0.723	2.736
Theoretical	2.720	2.012	8.708'	2720
Ennon	0.204.	0.05uil.	2'12'	0.5-9%

		/	//	1.6 1.1/10-
	VR3	VR3	Veg	VR3 + V"R3
meanured	2.975	, 2.014		
Theonetical	The second secon	-2.012		070/
Ennon	2.81%	0.10 %	2.04%	3.12

From cincuit 1:

recineuit 1:-

RI

RI

$$31235$$
 4.600
 10.03
 10.03
 10.03
 10.03
 10.03
 10.03
 10.03
 10.03
 10.03
 10.03
 10.03
 10.03
 10.03

$$\frac{10091}{10093} = \frac{200985}{10093} = \frac{10093}{10093} = \frac{10093}{10093} = \frac{100985}{10093} = \frac{100985}{100$$

Using colculator

$$IQ = 0.501$$

 $IQ = (2.260 + 0.501) \text{ mA} = 2.761 \text{ mA}$
 $VQ = 2.260 \times 3.235 = 7.34 \text{ V}$
 $VQ = 2.761 \times 0.985 = 2.720 \text{ V}$
 $VQ = 2.761 \times 0.985 = 2.720 \text{ V}$
 $VQ = 0.501 \times 4.610 = 2.310 \text{ V}$

cincuit 2:-

$$R_{7} = R_{1} + (R_{2} | R_{3})$$

$$= R_{1} + (\frac{1}{0.985} + \frac{1}{9.610})^{-1}$$

$$= R_{1} + 0.812$$

$$= 3.235 + 0.812$$

$$= 4.047$$

$$T_{5} = \frac{10.03}{4.047} = 2.478 \text{ mA}$$

$$V_{R} = \frac{3.235}{4.047} \times 10.03 = 8.018V$$

$$V_{R} = \frac{0.812}{4.047} \times 10.03 = 2.012V$$

$$T'_{1} = \frac{0.812}{0.985} \times 2.478 = 2.043 \text{ mA}.$$

$$R_{T} = R_{3} + (R_{1} | 1| R_{2})$$

$$= R_{3} + (\frac{1}{3.235} + \frac{1}{0.985})^{-1})$$

$$= R_{3} + 0.755$$

$$I_{5} = \frac{5.03}{5.365} = 0.988 \text{ mA} \quad V^{11}R_{3} = \frac{4.600}{5.865} \times 5.03 = 4.322N$$

$$V^{12}R_{2} = \frac{0.755}{5.365} \times 5.03 = 0.708V \quad V^{1}R_{1} = -V^{11}R_{1} = -0.708V$$

$$I_{1}^{1} = \frac{0.755}{6.985} \times 0.933 = 0.719 \text{ mA}.$$

$$T_2 = \left| \frac{2.76 - 2.780}{2.761} \right| \times 180$$

$$= 0.69 \times$$

$$VR2 = \int \frac{2.720 - 2.728}{2.720} | \times 100 | R_3 = \frac{2.310 - 2.375}{2.310} | \times 160$$

$$= 0.29\%$$

$$= 2.81$$

Result Analysis: - we measured the current 12 whe two Source were contred and when only one source was connected at atime. After meanuring we found value 12 in the same as the algebraic 1'2 and I"2. That means our current superposition theore.

Quention:

The current through on voltage across any clement of network in equal to the algebric sum of the current on voltage produced independently by each current on voltage produced independently by each source.

on Alnowy stowed in Dota. Table seedin.

08. In our expriment cincult we bound Iz won 2.78 mA when two source were conneted , we found I'z of 2.04 we removed the second source. After reconcering the second source and removing the first source we think 2:04 +0.74 = 2.78 mA.

VRI + VRI = 8.01 r (-0.722 V)= 7.288 V = VRI

VR2 + VR2 = 2:013v +0:723v = 2:736v = 0:728v=VR2

VR3 + VR3" = - 2.014 + 4.410 V = 2.375= VR3 04. Already should in Data Table.

Discussion: After completing their experiment we Succentrally verify the Superposition Theorem. That means ca now find a solution for a acument on voltage using only, one source at a time, we need to combine the result to find the final solution. In this expeniment we don't tome any severe difficulty me con counted a problem with De power supply it was continously. Finally we completed the expensiment with in the time. not by Legend_T.JOY

NORTH SOUTH UNIVERSITY

DEPARTMENT OF ELECTRICAL & COMPUTER ENGINEERING

Electrical Circuit I Lab

Lab 5: Verification of Superposition Theorem

Objective:

• To verify Superposition Theorem.

List of Equipment

- Trainer Board
- DMM
- 1 x 3.3kΩ resistor
- 1 x 4.7kΩ resistor
- 1 x 1KΩ resistor

Circuit Diagram

Procedure:

- 1. Set up Circuit 1.
- 2. Mark the polarities of each resistor.
- 3. With both the voltage source connected to the circuit, measure l_2 , V_{R1} , V_{R2} , V_{R3} and record the values in appropriate tables.
- 4. Setup Circuit 2. Measure and record I'_2 , V'_{R1} , V'_{R2} , V'_{R3} .
- 5. Setup Circuit 3. Measure and record I''_2 , V''_{R1} , V''_{R2} , V''_{R3} .

NORTH SOUTH UNIVERSITY

DEPARTMENT OF ELECTRICAL & COMPUTER ENGINEERING

Electrical Circuit I Lab

Data Collection fo	or Lab 5:		
Group No			
Table 1:		2 19X	
	1000000	69.	
I_2	I'2	I"2	I'2 + I"2
2.78	2.04	0.74	2.04 + 0174
Table 2:			
VRI	V'RI	V''R1	V' _{R1} + V'' _{R1}
7.30	8.01	- 0.7.22	7.288
Table 3:			
VR2 2-728	V'R2	V''R2	V' _{R2} + V'' _{R2}
2'728	2.013	0.723	2:736
Table 4:			,
V _{R3}	V'R3	V"R3	V' _{R3} + V'' _{R3}
2.375	-2.014	+4.41	2/396

Report:

- What is Superposition Theorem?
 Theoretically Calculate all values of Table 1 to Table 4. Show all the steps in details.
- 3. Using measured data, show that your circuit followed superposition theorem.
- 4. Find the % Error between your theoretical and experimental values.