Analysis of Algorithms, I CSOR W4246

$\begin{array}{c} {\bf Eleni~Drinea} \\ {\it Computer~Science~Department} \end{array}$

Columbia University

Thursday, January 21, 2016

Outline

1 Asymptotic notation

2 The divide & conquer principle; application: mergesort

3 Solving recurrences and running time of Mergesort

Review of the last lecture

- ▶ Introduced the problem of **sorting**.
- ► Analyzed insertion-sort.
 - ▶ Worst-case running time: $T(n) = \frac{3n^2}{2} + \frac{7n}{2} 4$
 - ► Space: in-place algorithm
- Worst-case running time analysis: a reasonable measure of algorithmic efficiency.
- ▶ Defined polynomial-time algorithms as "efficient".
- ▶ Argued that detailed characterizations of running times are not convenient for understanding scalability of algorithms.

Running time in terms of # primitive steps

We need a coarser classification of running times of algorithms; exact characterizations

- are too detailed;
- do not reveal similarities between running times in an immediate way as n grows large;
- ▶ are often **meaningless**: pseudocode steps will **expand** by a constant factor that depends on the hardware.

Today

1 Asymptotic notation

2 The divide & conquer principle; application: mergesort

3 Solving recurrences and running time of Mergesortt

Aymptotic analysis

A framework that will allow us to compare the rate of growth of different running times as the input size n grows.

- ▶ We will express the running time as a function of the number of primitive steps; the latter is a function of the size of the input n.
- ➤ To compare functions expressing running times, we will ignore their low-order terms and focus solely on the highest-order term.

Asymptotic upper bounds: Big-O notation

Definition 1(O).

We say that T(n) = O(f(n)) if there exist constants c > 0 and $n_0 \ge 0$ s.t. for all $n \ge n_0$, we have $T(n) \le c \cdot f(n)$.

Asymptotic upper bounds: Big-O notation

Definition 1 (O).

We say that T(n) = O(f(n)) if there exist constants c > 0 and $n_0 \ge 0$ s.t. for all $n \ge n_0$, we have $T(n) \le c \cdot f(n)$.

Examples:

- $ightharpoonup T(n) = an^2 + b, \ a, b > 0 \text{ constants and } f(n) = n^2.$
- $T(n) = an^2 + b, f(n) = n^3.$

Asymptotic lower bounds: Big- Ω notation

Definition 2 (Ω) .

We say that $T(n) = \Omega(f(n))$ if there exist constants c > 0 and $n_0 \ge 0$ s.t. for all $n \ge n_0$, we have $T(n) \ge c \cdot f(n)$.

Asymptotic lower bounds: Big- Ω notation

Definition 2 (Ω) .

We say that $T(n) = \Omega(f(n))$ if there exist constants c > 0 and $n_0 \ge 0$ s.t. for all $n \ge n_0$, we have $T(n) \ge c \cdot f(n)$.

Examples:

- $ightharpoonup T(n) = an^2 + b, \ a, b > 0 \text{ constants and } f(n) = n^2.$
- ► $T(n) = an^2 + b$, a, b > 0 constants and f(n) = n.

Asymptotic tight bounds: Θ notation

Definition 3 (Θ) .

We say that $T(n) = \Theta(f(n))$ if there exist constants $c_1, c_2 > 0$ and $n_0 \ge 0$ s.t. for all $n \ge n_0$, we have

$$c_1 \cdot f(n) \le T(n) \le c_2 \cdot f(n).$$

Asymptotic tight bounds: Θ notation

Definition 3 (Θ) .

We say that $T(n) = \Theta(f(n))$ if there exist constants $c_1, c_2 > 0$ and $n_0 \ge 0$ s.t. for all $n \ge n_0$, we have

$$c_1 \cdot f(n) \le T(n) \le c_2 \cdot f(n)$$
.

Equivalent definition

$$T(n) = \Theta(f(n))$$
 if $T(n) = O(f(n))$ and $T(n) = \Omega(f(n))$

Asymptotic tight bounds: Θ notation

Definition 3 (Θ) .

We say that $T(n) = \Theta(f(n))$ if there exist constants $c_1, c_2 > 0$ and $n_0 \ge 0$ s.t. for all $n \ge n_0$, we have

$$c_1 \cdot f(n) \le T(n) \le c_2 \cdot f(n)$$
.

Equivalent definition

$$T(n) = \Theta(f(n)) \quad \text{if} \quad T(n) = O(f(n)) \ \ and \ \ T(n) = \Omega(f(n))$$

Examples:

- ► $T(n) = an^2 + b$, a, b > 0 constants and $f(n) = n^2$.
- $ightharpoonup T(n) = n \log n + n$, and $f(n) = n \log n$.

Asymptotic upper bounds that are **not** tight: little-o

Definition 4(o).

We say that T(n) = o(f(n)) if, for any constant c > 0, there exists a constant $n_0 \ge 0$ such that for all $n \ge n_0$, we have $T(n) < c \cdot f(n)$.

Asymptotic upper bounds that are **not** tight: little-o

Definition 4 (o).

We say that T(n) = o(f(n)) if, for any constant c > 0, there exists a constant $n_0 \ge 0$ such that for all $n \ge n_0$, we have $T(n) < c \cdot f(n)$.

- ▶ Intuitively, T(n) becomes insignificant relative to f(n) as $n \to \infty$.
- ▶ Proof by showing that $\lim_{n\to\infty} \frac{T(n)}{f(n)} = 0$ (if the limit exists).

Asymptotic upper bounds that are **not** tight: little-o

Definition 4 (o).

We say that T(n) = o(f(n)) if, for any constant c > 0, there exists a constant $n_0 \ge 0$ such that for all $n \ge n_0$, we have $T(n) < c \cdot f(n)$.

- ▶ Intuitively, T(n) becomes insignificant relative to f(n) as $n \to \infty$.
- ▶ Proof by showing that $\lim_{n\to\infty} \frac{T(n)}{f(n)} = 0$ (if the limit exists).

Examples:

- ► $T(n) = an^2 + b$, a, b > 0 constants and $f(n) = n^3$.
- $ightharpoonup T(n) = n \log n \text{ and } f(n) = n^2.$

Asymptotic lower bounds that are **not** tight: little- ω

Definition 5 (ω).

We say that $T(n) = \omega(f(n))$ if, for any constant c > 0, there exists a constant $n_0 \ge 0$ such that for all $n \ge n_0$, we have $T(n) > c \cdot f(n)$.

Asymptotic lower bounds that are **not** tight: little- ω

Definition 5 (ω).

We say that $T(n) = \omega(f(n))$ if, for any constant c > 0, there exists a constant $n_0 \ge 0$ such that for all $n \ge n_0$, we have $T(n) > c \cdot f(n)$.

- ▶ Intuitively T(n) becomes arbitrarily large relative to f(n), as $n \to \infty$.
- ▶ $T(n) = \omega(f(n))$ implies that $\lim_{n\to\infty} \frac{T(n)}{f(n)} = \infty$, if the limit exists. Then f(n) = o(T(n)).

Asymptotic lower bounds that are **not** tight: little- ω

Definition 5 (ω).

We say that $T(n) = \omega(f(n))$ if, for any constant c > 0, there exists a constant $n_0 \ge 0$ such that for all $n \ge n_0$, we have $T(n) > c \cdot f(n)$.

- ▶ Intuitively T(n) becomes arbitrarily large relative to f(n), as $n \to \infty$.
- ▶ $T(n) = \omega(f(n))$ implies that $\lim_{n \to \infty} \frac{T(n)}{f(n)} = \infty$, if the limit exists. Then f(n) = o(T(n)).

Examples:

- $ightharpoonup T(n) = n^2 \text{ and } f(n) = n \log n.$
- ► $T(n) = 2^n$ and $f(n) = n^5$.

Basic rules for omitting low order terms from functions

- 1. Ignore **multiplicative** factors: e.g., $10n^3$ becomes n^3
- 2. n^a dominates n^b if a > b: e.g., n^2 dominates n
- 3. Exponentials dominate polynomials: e.g., 2^n dominates n^4
- 4. Polynomials dominate logarithms: e.g., n dominates $\log^3 n$
- \Rightarrow For large enough n,

$$\log n < n < n \log n < n^2 < 2^n < 3^n < n^n$$

Notation: $\log n$ stands for $\log_2 n$

Properties of asymptotic growth rates

1. Transitivity

- 1.1 If f = O(g) and g = O(h), then f = O(h).
- 1.2 If $f = \Omega(g)$ and $g = \Omega(h)$, then $f = \Omega(h)$.
- 1.3 If $f = \Theta(g)$ and $g = \Theta(h)$, then $f = \Theta(h)$.
- 2. **Sums** of (up to a constant number of) functions
 - 2.1 If f = O(h) and g = O(h), then f + g = O(h).
 - 2.2 Let k be a fixed constant, and let f_1, f_2, \ldots, f_k, h be functions such that for all $i, f_i = O(h)$. Then $f_1 + f_2 + \ldots + f_k = O(h)$.

3. Transpose symmetry

- f = O(g) if and only if $g = \Omega(f)$.
- f = o(g) if and only if $g = \omega(f)$.

Today

1 Asymptotic notation

2 The divide & conquer principle; application: mergesort

3 Solving recurrences and running time of Mergesort

The divide & conquer principle

▶ **Divide** the problem into a number of subproblems that are smaller instances of the same problem.

▶ Conquer the subproblems by solving them recursively.

▶ Combine the solutions to the subproblems into the solution for the original problem.

Divide & Conquer applied to sorting

- ▶ Divide the problem into a number of subproblems that are smaller instances of the same problem.
 Divide the input array into two lists of equal size.
- ► Conquer the subproblems by solving them recursively. Sort each list recursively. (Stop when lists have size 2.)
- ► Combine the solutions to the subproblems into the solution for the original problem.

 Merge the two sorted lists and output the sorted array.

Mergesort: pseudocode

```
\begin{aligned} & \textbf{Mergesort} \ (A, left, right) \\ & \textbf{if} \ right == left \ \textbf{then} \ \text{return} \\ & \textbf{end if} \\ & middle = left + \lfloor (right - left)/2 \rfloor \\ & \textbf{Mergesort} \ (A, left, mid) \\ & \textbf{Mergesort} \ (A, mid + 1, right) \\ & \textbf{Merge} \ (A, left, mid, right) \end{aligned}
```

Remarks

- ▶ Mergesort is a recursive procedure (why?)
- ▶ Initial call: Mergesort(A, 1, n)
- Subroutine Merge merges two sorted lists of sizes $\lfloor n/2 \rfloor$, $\lceil n/2 \rceil$ into one sorted list of size n. How can we accomplish this?

Merge: intuition

Intuition: To merge two sorted lists of size n/2 repeatedly

- compare the two items in the front of the two lists;
- extract the smaller item and append it to the output;
- ▶ update the front of the list from which the item was extracted.

Example: $n = 8, L = \{1, 3, 5, 7\}, R = \{2, 6, 8, 10\}$

Merge: pseudocode

 ${\tt Merge}\ (A, left, right, mid)$

L = A[left, mid]R = A[mid + 1, right]

Maintain two pointers p_L, p_R initialized to point to the first elements of L, R, respectively

while both lists are nonempty do

Let x, y be the elements pointed to by p_L, p_R

Compare x, y and append the smaller to the output

Advance the pointer in the list with the smaller of x, y

end while

Append the remainder of the non-empty list to the output.

Remark: the output is stored directly in A[left, right], thus the subarray A[left, right] is sorted after Merge(A, left, right, mid).

Merge: optional exercises

Exercise 1: write detailed pseudocode (or actual code) for Merge

Exercise 2: write a recursive Merge

Analysis of Merge

1. Correctness

2. Running time

3. Space

Analysis of Merge: correctness

1. Correctness: the smaller number in the input is L[1] or R[1] and it will be the first number in the output. The rest of the output is just the list obtained by $\mathtt{Merge}(L,R)$ after deleting the smallest element.

2. Running time

3. Space

Merge: pseudocode

```
Merge (A, left, right, mid)
  L = A[left, mid] \rightarrownot a primitive computational step!
  R = A[mid + 1, right] \rightarrow \mathbf{not} a primitive computational step!
  Maintain two pointers p_L, p_R initialized to point to the first
  elements of L, R, respectively
  while both lists are nonempty do
     Let x, y be the elements pointed to by p_L, p_R
      Compare x, y and append the smaller to the output
      Advance the pointer in the list with the smaller of x, y
  end while
  Append the remainder of the non-empty list to the output.
```

Remark: the output is stored directly in A[left, right], thus the subarray A[left, right] is sorted after Merge(A, left, right, mid).

Analysis of Merge: running time

1. Correctness: the smaller number in the input is L[1] or R[1] and it will be the first number in the output. The rest of the output is just the list obtained by Merge(L, R) after deleting the smallest element.

2. Running time:

- ▶ Suppose L, R have n/2 elements each
- ► How many iterations before all elements from both lists have been appended to the output?
- ▶ How much work within each iteration?

3. Space

Analysis of Merge: space

1. Correctness: the smaller number in the input is L[1] or R[1] and it will be the first number in the output. The rest of the output is just the list obtained by Merge(L,R) after deleting the smallest element.

2. Running time:

- ightharpoonup L, R have n/2 elements each
- ▶ How many iterations before all elements from both lists have been appended to the output? At most n-1.
- ▶ How much work within each iteration? Constant.
- \Rightarrow Merge takes O(n) time to merge L, R (why?).
- 3. **Space:** extra $\Theta(n)$ space to store L, R (the output of Merge is stored directly in A).

Mergesort: optional exercise

Refresh your memory on recursive algorithms by running Mergesort on **input:** 1,7,4,3,5,8,6,2

Analysis of Mergesort

1. Correctness

2. Running time

3. Space

Mergesort: correctness

For simplicity, assume $n = 2^k$, integer $k \ge 0$. We will use induction on k.

- ▶ Base case: For k = 0, the input consists of n = 1 item; Mergesort returns the item.
- ▶ Induction Hypothesis: For k > 0, assume that Mergesort correctly sorts any list of size 2^k .
- ▶ Induction Step: We will show that Mergesort correctly sorts any list of size 2^{k+1} .
 - ▶ The input list is split into two lists, each of size 2^k .
 - ▶ Mergesort recursively calls itself on each list. By the hypothesis, when the subroutines return, each list is sorted.
 - Since Merge is correct, it will merge these two sorted lists into one sorted output list of size $2 \cdot 2^k$.
 - ▶ Thus Mergesort correctly sorts any input of size 2^{k+1} .

Running time of Mergesort

The running time of Mergesort satisfies:

$$T(n) = 2T(n/2) + cn$$
, for $n \ge 2$, constant $c > 0$
 $T(1) = c$

This structure is typical of recurrence relations

- ▶ an **inequality** or **equation** bounds T(n) in terms of an expression involving T(m) for m < n
- ▶ a base case generally says that T(n) is constant for small constant n

Remarks

- ▶ We ignore floor and ceiling notations.
- ▶ A recurrence does **not** provide an asymptotic bound for T(n): to this end, we must **solve** the recurrence.

Today

1 Asymptotic notation

2 The divide & conquer principle; application: mergesort

3 Solving recurrences and running time of Mergesort

Solving recurrences, method 1: recursion trees

The technique consists of three steps

- 1. Analyze the first few levels of the tree of recursive calls
- 2. Identify a pattern
- 3. Sum over all levels of recursion

Example: analysis of running time of Mergesort

$$T(n) = 2T(n/2) + cn, n \ge 2$$

$$T(1) = c$$

A general recurrence and its solution

The running times of many recursive algorithms can be expressed by the following recurrence

$$T(n) = aT(n/b) + cn^k$$
, for $a, c > 0, b > 1, k \ge 0$

What is the recursion tree for this recurrence?

- \triangleright a is the branching factor
- \triangleright b is the factor by which the size of each subproblem shrinks
- \Rightarrow at level i, there are a^i subproblems, each of size n/b^i
- \Rightarrow each subproblem at level *i* requires $c(n/b^i)^k$ work
 - the height of the tree is $\log_b n$ levels
- \Rightarrow Total work: $\sum_{i=0}^{\log_b n} a^i c(n/b^i)^k = cn^k \sum_{i=0}^{\log_b n} \left(\frac{a}{b^k}\right)^i$

Solving recurrences, method 2: Master theorem

Theorem 6 (Master theorem).

If $T(n) = aT(\lceil n/b \rceil) + O(n^k)$ for some constants $a > 0, b > 1, k \ge 0$, then

$$T(n) = \begin{cases} O(n^{\log_b a}) & \text{, if } a > b^k \\ O(n^k \log n) & \text{, if } a = b^k \\ O(n^k) & \text{, if } a < b^k \end{cases}$$

Example: running time of Mergesort

►
$$T(n) = 2T(n/2) + cn$$
:
 $a = 2, b = 2, k = 1, b^k = 2 = a \Rightarrow T(n) = O(n \log n)$

Solving recurrences, method 3: the substitution method

The technique consists of two steps

- 1. Guess a bound
- 2. Use (strong) induction to prove that the guess is correct (See your textbook for more details.)

Remark 1 (simple vs strong induction).

- 1. Simple induction: the induction step at n requires that the inductive hypothesis holds at step n-1.
- 2. **Strong induction:** the induction step at n requires that the inductive hypothesis holds at all steps 1, 2, ..., n-1.

Exercise: show that Mergesort runs in time $O(n \log n)$.

What about...

1.
$$T(n) = 2T(n-1) + 1, T(1) = 2$$

2.
$$T(n) = 2T^2(n-1), T(1) = 4$$

3.
$$T(n) = T(2n/3) + T(n/3) + cn$$

Coming up...

More divide & conquer algorithms, including Quicksort, the state-of-the art algorithm for sorting.