Contrastive Learning for Speech Enhancement

黃仁鴻

Outline

- Introduction
- Method
- Experiment
- Conclusion

Introduction

Many tasks in daily life rely on voice as the medium of information transmission.

However, all kinds of noise interference in the real environment will seriously affect the performance of the speech task.

Therefore, the speech enhancement technology that removes these noises has become an important preprocessing unit.

Introduction

And speech enhancement means that no matter what kind of noise environment, the same speech should have the same features and can be restored to the same result.

This part of the idea coincides with the contrastive learning of self-supervised method.

Contrastive learning hopes that the features between positive samples are as similar as possible, while the feature difference between negative samples is the greater the better.

Introduction

I think learning speech features through CL method should have higher performance than common deep learning speech enhancement methods.

However, it is not easy to determine the negative sample of the frame level in the SE problem.

To this end, this study uses two methods, BYOL and SimSiam, which do not require negative samples, and compares them with models that do not use the CL method.

Introduction CL Methods Comparison

method	batch size	negative pairs	momentum encoder
SimCLR	4096	Υ	
MoCo v2	256	Υ	Υ
BYOL	256 ~4096		Υ
SwAV	4096		
SimSiam	256		

BYOL

Momentum Update

BYOL CL Loss

$$z' = E'(S + N)$$
$$p = P(E(S + N))$$

$$CL Loss$$

$$= -\frac{Sim(p_1, z_2') + Sim(p_2, z_1')}{2}$$

SimSiam

$$z = E(S + N)$$

 $p = P(z)$

$$\begin{array}{l}
CL Loss \\
= -\frac{Sim(p_1, z_2) + Sim(p_2, z_1)}{2}
\end{array}$$

Similarity

$$Sim(\vec{p}, \vec{z}) = \frac{\vec{p} \cdot SG(\vec{z})}{\|\vec{p}\|_2 \|SG(\vec{z})\|_2}$$

Loss

$$\hat{S} = D(p)$$

$$SE Loss = -\frac{SISNR(\hat{S}_1, S_1) + SISNR(\hat{S}_2, S_2)}{2}$$

$$Mix Loss = CL Loss + 0.1 * SE Loss$$


```
bz,1,(l 64)->bz,64,l
DSB(1,32)
DSB(32,64)
            Conv1d(64,128,3)
DSB(64,128)
           Concatenate()
  Conv1d(256,128,1)
Main
                           Main
Block(128,256,9,16,8)
                           Block(128,256,9,16,8)
Main
                           Main
Block(128,256,9,16,8)
                           Block(128,256,9,16,8)
Main
Block(128,256,9,16,8)
                          Conlv1d(128,64,3)
Main
                           bz,64,l->bz,1,(l 64)
Block(128,256,9,16,8)
```

Conv1d(C_i,C_o,5,group=g)

GELU()

Maxpool1d(4,4)

BatchNorm1d()

Down Sample Block(C_i,C_o,g)

 .					
BatchNorm1d()					
Conv1d(C _i ,N*2,5)					
GELU()					
Chunk(2)					
BatchNorm1d()					
Conv1d(N,N,d*2-1,					
group=g)					
GELU()					
Conv1d(N,N,k,					
<pre>dila=d,group=g)</pre>					
GELU()					
Add					
BatchNorm1d()					
Conv1d(N,C _i ,5)					
GELU()					
 Add					

Main Block(C_i,N,k,d,g)

Experiment

	Normal	BYOL	SimSiam
_	使用 SE loss	使用	Mix loss
Round	每 50 個 epoch 京 loss 與 SE loss		Z loss (Mix
Pretrain	前 50 個 epoch 你 都使用 SE loss	使用 Mix	loss,之後
Round (100 step)	每 100 個 epoch (Mix loss 與 SE		
Few	將 train data 與	l test d	ata 交換

Experiment

Data

	Train	Test		
Speech	TIMIT(4120)	TIMIT(500)		
Noise	Nonspeech(75)	Nonspeech(25)		
SNR(dB)	-10, -5, 0, 5, 10	-7.5, -2.5, 2.5, 7.5		

Hyperparameter

Optimizer:SGD	lr	momentum	weight decay
<u>optimizer.3db</u>	0.05	0.9	0.0001
Batch Size		$N_1 + N_2 =$	128+128
BYOL τ		0.	99

CL vs Normal

BYOL

SimSiam

Train Similarity

Experiment

Evaluation Metrics

Model -	Evaluation Metrics				
Mode t	PESQ	STOI	SI-SNR		
Noisy	1.813	0.764	0.001		
Normal	2.273	0.814	7.146		
BYOL	2.392	0.844	9.174		
BYOL round	2.461	0.858	9.378		
BYOL round(100 s)	2.474	0.861	9.526		
SimSiam	2.374	0.84	8.884		
SimSiam round	2.472	0.861	9.529		

PESQ

Model -	SNR:	-7.5	-2.5	2.5	7.5
		PESQ			
Noisy		1.337	1.644	1.971	2.3
Normal		1.826	2.138	2.438	2.688
BYOL		1.875	2.253	2.59	2.851
BYOL round	d	1.904	2.3	2.671	2.97
BYOL round	d(100 s)	1.913	2.308	2.683	2.991
SimSiam		1.873	2.24	2.563	2.82
SimSiam r	ound	1.937	2.317	2.672	2.962

STOI

Model -	SNR:	-7.5	-2.5	2.5	7.5
		STOI			
Noisy		0.643	0.728	0.809	0.878
Normal		0.702	0.793	0.859	0.904
BYOL		0.734	0.826	0.889	0.928
BYOL round		0.746	0.841	0.904	0.942
BYOL round	(100 s)	0.75	0.844	0.906	0.944
SimSiam		0.729	0.822	0.885	0.926
SimSiam ro	und	0.753	0.845	0.905	0.942

Experiment

SI-SNR

Model –	SNR:	-7.5	-2.5	2.5	7.5	
Mode t		SI-SNR				
Noisy		-7.497	-2.498	2.503	7.498	
Normal		2.611	6.065	8.972	10.935	
BYOL		3.677	7.785	11.281	13.951	
BYOL round		3.396	7.772	11.615	14.728	
BYOL round	(100 s)	3.457	7.859	11.784	15.004	
SimSiam		3.544	7.508	10.913	13.572	
SimSiam ro	und	3.583	7.935	11.751	14.847	

Few Data

10 ————

Conclusion

- 在訓練前期利用 CL Loss 對中間特徵進行約束能夠加速模型收 斂。
- 中後期使用 CL Loss 會降低模型的收斂速度與效能。
- 使用 CL Loss 能夠抑制 Overfitting 的問題。
- 與 SimSiam 相比,BYOL 的 CL Loss 需要更長一點的時間收斂。

Todo

- 測試不同比例混和的 Mix Loss 效果。
- 使用複數的噪音跟語音混和進行訓練。
- 研究 Mix Loss 的自適應混合權重。
- 區分噪音種類進行訓練。

Reference

- Bootstrap your own latent: A new approach to self-supervised learning. CoRR, abs/2006.07733, 2020.
- Exploring simple siamese representation learning. CoRR, abs/2011.10566, 2020.