In [1]: print("Hello Universe")

Hello Universe

In [2]: import matplotlib.pyplot as plt

import numpy as np
import pandas as pd

In [3]: dataset = pd.read_csv("/Users/dhruvkumar/Desktop/exoplanet.eu_catal

In [6]: dataset

Out[6]:

	# name	planet_status	mass	mass_error_min	mass_error_max	mass_sini	mass_sini_e
0	11 Com b	Confirmed	NaN	NaN	NaN	16.1284	
1	11 Oph b	Confirmed	21.00	3.00	3.00	NaN	
2	11 UMi b	Confirmed	NaN	NaN	NaN	11.0873	
3	14 And b	Confirmed	NaN	NaN	NaN	4.6840	
4	14 Her b	Confirmed	9.10	NaN	NaN	5.2150	
4974	ups And c	Confirmed	9.10	2.93	5.04	1.8000	
4975	ups And d	Confirmed	23.58	2.29	2.93	10.1900	
4976	ups And e	Confirmed	NaN	NaN	NaN	1.0590	
4977	ups Leo b	Confirmed	NaN	NaN	NaN	0.5100	
4978	zet Del B	Confirmed	40.00	5.00	15.00	NaN	

4979 rows × 98 columns

```
In [8]: e = dataset.eccentricity
In [30]: dataset.eccentricity
Out[30]: 0
                   0.23100
          1
                       NaN
          2
                   0.08000
          3
                   0.00000
                   0.36900
                   0.24450
          4974
          4975
                   0.31600
          4976
                   0.00536
          4977
                   0.32000
          4978
                       NaN
          Name: eccentricity, Length: 4979, dtype: float64
In [87]: plt.hist(e) # ecentricity
          plt.xlabel("e")
          plt.ylabel("Number of Planets")
Out[87]: Text(0, 0.5, 'Number of Planets')
             1600
             1400
             1200
           Number of Planets
             1000
              800
              600
              400
              200
                0
                                                   2.5
                  0.0
                         0.5
                               1.0
                                      1.5
                                            2.0
                                                         3.0
In [88]: import scipy
In [89]: from scipy.stats import boxcox
```

```
In [90]: data = e[e > 0]
    fig = plt.figure()
    ax1 = fig.add_subplot(211)
    e = dataset.eccentricity
    prob = stats.probplot(data,dist=stats.norm,plot=ax1)
    ax1.set_xlabel('y $\lambda$(e)')
    ax1.set_ylabel('dN')
```

Out[90]: Text(0, 0.5, 'dN')

In [105]: #load necessary packages

import numpy as np
from scipy.stats import boxcox
import seaborn as sns

#make this example reproducible
np.random.seed(42)

#generate dataset

#plot the distribution of data values
sns.distplot(data, hist=True, kde=True)

/opt/anaconda3/lib/python3.8/site-packages/seaborn/distributions.p y:2557: FutureWarning: `distplot` is a deprecated function and wil l be removed in a future version. Please adapt your code to use ei ther `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms). warnings.warn(msg, FutureWarning)

Out[105]: <AxesSubplot:xlabel='eccentricity', ylabel='Density'>

In [103]: #perform Box-Cox transformation on original data transformed_data, best_lambda = boxcox(data)

#plot the distribution of the transformed data values
sns.distplot(transformed_data, hist=True, kde=True)

/opt/anaconda3/lib/python3.8/site-packages/seaborn/distributions.p y:2557: FutureWarning: `distplot` is a deprecated function and wil l be removed in a future version. Please adapt your code to use ei ther `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[103]: <AxesSubplot:ylabel='Density'>

In [101]: #display optimal lambda value print(best_lambda)

0.24271536730189142

In []: