VERSUCH NUMMER

TITEL

AUTOR A authorA@udo.edu

AUTOR B authorB@udo.edu

Durchführung: DATUM

Abgabe: DATUM

TU Dortmund – Fakultät Physik

Inhaltsverzeichnis

1	Zielsetzung	3	
2	Theorie 2.1 Die allgemine Relaxationsgleichung	3 4	
3	Durchführung		
4	Auswertung4.1 Bestimmung des RC-Glieds		
5	Diskussion	8	

1 Zielsetzung

Im allgeminen soll das Relaxationsverhalten eines RC-Schwingkreises untersucht werden. Dabei wird die Phasenabhängigkeit des Schwingkreises beobachtet und überprüft ob der RC-Schwingkreis als Integrator fungieren kann.

2 Theorie

2.1 Die allgemine Relaxationsgleichung

Wenn ein System ausgelenkt wird und nicht oszillatorisch in seinen Anfangszustand zurückkehrt, treten Relaxationserscheinungen auf. Die Geschwindigkeit der Rückkehr ist dabei proportional zu der Auslenkung:

$$\frac{dA}{dt} = c[A(t) - A(\infty)] \tag{1}$$

Durch Integration von 0 bis t ergibt sich:

$$\ln \frac{A(t) - A(\infty)}{A(0) - A(\infty)} = ct \tag{2}$$

Wird die e-Funktion auf die Gleichung anngewendet ergibt sich:

$$A(t) = A(\infty) + [A(0) - A(\infty)] \exp(ct)$$
(3)

Wobei c < 0 sein muss, damit A beschränkt ist.

2.2 Anwendung auf den Auf- und Entladevorgag des RC-Schwingkreises

Der in Abbildung befindliche Kondensator soll aufgeladen sein, dann liegt zwischen den Platten eine Spanung

$$U_C = \frac{Q}{C} \tag{4}$$

an. Nach dem ohmschen Gesetz lässt sich der Strom durch

$$I = \frac{U_C}{R} \tag{5}$$

ausdrücken. Damit findet sich für den zeitlichen Verlauf der Ladung folgende Dgl.:

$$\frac{dQ}{dt} = \frac{1}{RC}Q(t) \tag{6}$$

Mit $Q(\infty) = 0$ ergibt sich analog zu der Gleichung(3):

$$Q(t) = Q(0) \exp(\frac{-t}{RC}) \tag{7}$$

Für den Aufladevorgang gelten die Randbedingungen

$$Q(0) = 0 (8)$$

und

$$Q(\infty) = CU_0. (9)$$

Damit folgt für den Zeitlichhen Verlauf der Ladung:

$$Q(t) = CU_0 \exp(\frac{-t}{RC}) \tag{10}$$

Die Zeitkonstante ist ein Maß für die Geschwindigkeit der Relaxation des Systems. Hier ist diese $\frac{1}{RC}$.

2.3 Auf- und Entladevorgag mit periodischer Anregung

Liegt eine Wechselspannung

$$U(t) = U_0 cos(\omega t) \tag{11}$$

an, so lässt sich mit folgendem Ansatz eine Lösung für das Problem finden:

$$U_c(t) = A(\omega)\cos(\omega t + \phi(\omega)) \tag{12}$$

Damit gilt für den Stromkreis, unter einbezug des zweiten Kirchhoffschen Gesetzes:

$$U_0 \cos(\omega t) = A\omega RC \sin(\omega t + \phi) + A(\omega) \cos(\omega t + \phi)$$
(13)

Gleichung (13) muss für alle tgelten. Mit $\omega t = \frac{\pi}{2}$ ergibt sich dann:

$$0 = -\omega RC \sin\left(\frac{\pi}{2} + \phi\right) + \cos\left(\frac{\pi}{2} + \phi\right) \tag{14}$$

Durch umformung ergibt sich dann folgende Beziehung für die Phasenverschiebung:

$$\phi(\omega) = \arctan\left(-\omega RC\right) \tag{15}$$

Mit $\omega + \phi = \frac{\pi}{2}$ ergibt sich für die Generatorspannung:

$$A(\omega) = \frac{U_0}{\sqrt{1 + \omega^2 R^2 C^2}}$$
 (16)

Es ist durch Gleichung(16) erkennbar, dass das RC-Glied ein Tiefpass ist.

2.4 Der RC-Kreis als Integrator

Es gilt:

$$U(t) = RC\frac{dU_c}{dt} + U_c(t)$$
(17)

Unter der Voraussetzung $\omega >> \frac{1}{RC}$ ist $|U_C| << |U|$. Somit lässt sich näherungsweise

$$U(t) = RC \frac{dU_C}{dt} \tag{18}$$

schreiben. Anders lässt sich dies als

$$U_C(t) = \int_0^t U(t')dt \tag{19}$$

schreiben. Die am Kondensator anliegende Spannung ist also proportional zu dem Integral der Generatorspannung.

3 Durchführung

4 Auswertung

4.1 Bestimmung des RC-Glieds

Die Messung wird wie in der Duchtführung beschrieben durchgeführt. Die so erhaltenen Messwerte befinden sich in Tabelle1 :

Tabelle 1: Kondensatorspannung bei fester Frequenz.

t/ms	$U_C/{ m V}$
0,2	14,00
0,4	11,10
0,6	8,64
0,8	6,72
1,0	$5,\!36$
1,2	4,08
1,4	3,20
1,6	2,48
1,8	1,92
2,0	1,60
2,2	1,28
2,4	0,96

Die Messwerte werden in der halblogarithmischen Abbildung aufgetragen. Es wird eine lineare Ausgleichsrechnung, mit Python, durchgeführt und aufgetragen. Diese hat eine Steigung von $m=(-1.03\pm0.14)/\mathrm{ms}$ und einen y-Achsenabschnitt von $b=(2.75\pm0.19)$.

Abbildung 1: Messwerte und Ausgleichsgerade.

Die Steigung ist hier $\frac{1}{RC}$. Damit ist RC der Kehrwert der Steigung.

$$RC = (0.97 \pm 0.14) \, \mathrm{ms}$$

4.2 Frequenzabhängigkeit der Kondensatorspannung

Die Messung wird wie in der Durchführung beschrieben ausgeführt. Die so erhaltenen Messwerte befinden sich in Tabelle2:

 ${\bf Tabelle~2:}~{\bf Kondensatorspannung~bei~variabler~Frequenz}.$

f/Hz	$U_C/{\bf V}$
10,00	12,670
12,08	12,670
14,94	12,750
17,96	12,830
20,01	12,830
30,00	12,860
50,00	$12,\!510$
80,50	11,960
100,00	11,480
200,36	9,110
300,00	7,290
500,00	4,790
799,36	$3,\!170$
1000,00	2,530
2000,00	1,290
3004,00	0,879
$3500,\!00$	0,768
5000,00	0,522
8000,00	0,327
$10000,\!00$	0,263
$20000,\!00$	0,131
50 000,00	0,053

Die Werte werden in Abbildung aufgetragen. Durch diese wird eine nichtlineare Ausgleichskurve,
mit Gleichung (16), gezogen. $\,$

Abbildung 2: Messwerte.

5 Diskussion