Geometría Diferencial

Ejercicios para Entregar - Práctica 3

Guido Arnone

Sobre los Ejercicios

Elejí resolver los ejercicios (2), (8) y (9).

Recuerdo primero el siguiente resultado,

Observación. Sea M una variedad y $v \in T_pM$ una derivación en un punto $p \in M$. Entonces, existe una curva suave $c : (-\varepsilon, \varepsilon) \to M$ tal que c(0) = p y c'(0) = v.

En efecto, consideremos primero una carta (U,φ) con $\mathfrak{p}\in U\subset \mathbb{R}^n$. Componiendo con una traslación (que es un difeomorfismo de \mathbb{R}^n) si es necesario, podemos suponer que $\varphi(\mathfrak{p})=0$. Ahora, como los *ganchos* de φ en \mathfrak{p} son una base para $T_\mathfrak{p}M$, existen únicos coeficientes $\mathfrak{a}_1,\ldots,\mathfrak{a}_n\in\mathbb{R}$ tales que $\mathfrak{v}=\sum_{i=1}^n\mathfrak{a}_i\frac{\partial}{\partial\varphi^i}|_\mathfrak{p}$.

Ahora, tomando $\varepsilon > 0$ suficientemente pequeño como para que $B_{\varepsilon}(0) \subset \varphi(U)$, afirmo que la curva $c: t \in (-\varepsilon, \varepsilon) \mapsto \varphi^{-1}(tv) \in M$ cumple lo pedido. En primer lugar tenemos que $c(0) = \varphi^{-1}(0) = p$. Observemos también que c es suave, pues es la composición de φ^{-1} que es suave (pues φ es una carta de M) y la curva $\gamma: t \in \mathbb{R} \mapsto t(\alpha_1, \ldots, \alpha_n) \in \mathbb{R}^n$ que también lo es.

Por último si $g \in C^{\infty}(M)$, entonces

$$\begin{split} d_0c\left(\frac{d}{dt}\Big|_0\right)(g) &= \frac{d}{dt}\Big|_0(gc) = \frac{d}{dt}\Big|_0(g\varphi^{-1}\gamma) = \sum_{i=1}^n \frac{\partial g\varphi^{-1}}{\partial x_i}\Big|_{c(0)} \cdot \gamma_i'(0) \\ &= \sum_{i=1}^n \frac{\partial g\varphi^{-1}}{\partial x_i}\Big|_p \cdot \alpha_i = \sum_{i=1}^n \alpha_i \frac{\partial}{\partial \varphi^i}\Big|_p(g) \\ &= \left(\sum_{i=1}^n \alpha_i \frac{\partial}{\partial \varphi^i}\Big|_p\right)(g) = \nu(g). \end{split}$$

de forma que c'(0) = v.

Ejercicio 2. Sean M una variedad y $f \in C^{\infty}(M)$. Si f tiene un máximo local en $p \in M$, entonces $d_p f = 0$.

Demostración. Como p es un máximo local de f, existe un abierto $U \ni p$ tal que $f(q) \le f(p)$ para cada $q \in U$. Fijemos $v \in T_pM$. Por la observación anterior, tenemos una curva $c : (-\epsilon, \epsilon) \to M$

Guido Arnone Práctica 3

tal que c(0) = p y $c'(0) = \nu$. Además por como construimos la curva en la observación anterior, tomando un carta (V, φ) con $p \in V \subset U$ podemos más aún suponer que im $c \subset U$. En consecuencia es $fc(t) \leq f(0) = f(p)$ para cada $t \in (-\epsilon, \epsilon)$. Esto es, 0 resulta un máximo local de la curva suave $fc: (-\epsilon, \epsilon) \to \mathbb{R}$ y entonces (fc)'(0) = 0. Esto dice que

$$0 = d_0(f \circ c) \left(\frac{d}{dt} \Big|_0 \right) = d_p f \left(d_0 c \left(\frac{d}{dt} \Big|_0 \right) \right) = d_p f(c'(0)) = d_p f(v).$$

Como $d_p f(v) = 0$ para cada $v \in T_p M$, en efecto $d_p f = 0$.

Probamos ahora la sugerencia del ejercicio (8).

Proposición 2. Sea G un grupo de Lie, \mathfrak{g} su álgebra de Lie y X $\in \mathfrak{g}$ un campo vectorial invariante a izquierda. Si g, h \in G y γ : $(\mathfrak{a},\mathfrak{b}) \to G$ es una curva integral de X que arranca en $g = \gamma(0)$ entonces la curva \mathfrak{g} : $\mathfrak{g$

Demostración. Como $\eta(0) = h\gamma(0) = hg$, la curva η comienza en hg. Resta ver que es una curva integral. Fijemos ahora $s \in (a, b)$. Observando que por definición $\eta = L_h \circ \gamma$, es

$$\begin{split} d_s \eta \left(\frac{d}{dt} \bigg|_s \right) &= (d_{\gamma(s)} L_h \circ d_s \gamma) \left(\frac{d}{dt} \bigg|_s \right) = d_{\gamma(s)} L_h \left(d_s \gamma \left(\frac{d}{dt} \bigg|_s \right) \right) \\ &= d_{\gamma(s)} L_h (X_{\gamma(s)}) \stackrel{(X \in \mathfrak{g})}{=} X_{h \gamma(s)} = X_{\eta(s)}. \end{split}$$

Esto es precisamente que η sea integral.

Ejercicio 8. Sea G un grupo de Lie, \mathfrak{g} su álgebra de Lie y $X \in \mathfrak{g}$ un campo vectorial invariante a izquierda. Pruebe que X es *completo* y describa el flujo asociado.

Demostración. Notemos que por la proposición anterior, alcanza probar que existe una curva integral definida en toda la recta $\gamma : \mathbb{R} \to G$ tal que $\gamma(0) = e$. En tal caso, para cada $h \in G$ la curva $h\gamma : \mathbb{R} \to G$ resultará integral, definida en toda la recta, y comenzará en $h\gamma(0) = he = h$, probando que X es completo. [FALTA VER QUE HAY UNA CURVA INTEGRAL POR LA IDENTIDAD] □

A continuación, pruebo un resultado auxiliar para el ejercicio siguiente.

Lema 3. Si $v \in T_eG$ es un vector tangente a G en e y $X^v \in \mathfrak{g}$ es el único campo vectorial invariante a izquierda tal que $X_e^v = v$, sea $\gamma_v : \mathbb{R} \to G$ la única curva integral de X tal que $\gamma_v(0) = e$. Entonces, para cada $t, s \in \mathbb{R}$ es $\gamma_{tv}(s) = \gamma_v(ts)$.

Demostración. Fijtemos $t \in \mathbb{R}$. Notemos que tX resulta un campo invariante a izquierda pues para cada $g,h \in G$ tenemos $d_hL_g(tX_h)=td_hL_g(X_h)=tX_h$. Como además es $tX_e=t\nu$, concluimos así que $X^{t\nu}=tX^{\nu}$.

Ahora, por unicidad de las curvas integrales maximales, para ver que $\eta(s) := \gamma_{\nu}(t \cdot s) = \gamma_{t\nu}(s)$ alcanza probar que η es una curva integral de $X^{t\nu}$ que comienza en e. Esto último es claro pues $\gamma_{\nu}(t \cdot 0) = \gamma_{\nu}(0) = e$. Para terminar, veamos que η es integral. Si notamos $l_t : s \in \mathbb{R} \mapsto ts \in \mathbb{R}$ entonces $\eta = \gamma_{\nu} \circ l_t$. Finalmente,

$$d_s \eta \left(\left. \frac{d}{dt} \right|_s \right) = \left(d_{l_t(s)} \gamma_{\nu} \circ d_s l_t \right) \left(\left. \frac{d}{dt} \right|_s \right) = d_{ts} \gamma_{\nu} \circ l_t'(s) \text{ARREGLARCUENTA}$$

Guido Arnone Práctica 3

Ejercicio 9. Sea G un grupo de Lie, e su elemento neutro y g su álgebra de Lie. Probar que:

a) Si $v \in T_eG$ es un vector tangente a G en e y $X \in \mathfrak{g}$ es el único campo vectorial invariante a izquierda tal que $X_e = v$, sea $\gamma_v : \mathbb{R} \to G$ la única curva integral de X tal que $\gamma_v(0) = e$. Entonces γ_v es un homomorfismo de grupos, esto es,

$$\gamma_{\nu}(t+s) = \gamma_{\nu}(t) \cdot \gamma_{\nu}(s), \quad \forall t, s \in \mathbb{R}.$$

b) Definimos una función exp : $T_eG \to G$ poniendo, para cada $v \in T_eG$,

$$\exp(v) = \gamma_v(1)$$
.

Determine la diferencial $\exp_{*0}: T_eG \to T_eG$ y muestre que exp es localmente un difeomorfismo alrededor de 0.

c) Muestre que si $v, w \in T_eG$ son tales que [v, w] = 0, entonces

$$\exp(v + w) = \exp(v) \cdot \exp(w)$$
.

Demostración. Hacemos cada inciso por separado.

a) Fijemos $t \in \mathbb{R}$ y sea $g = \gamma_{\nu}(t)$. Por la Proposición 2, sabemos que

$$\eta(s) := g\gamma_{\nu}(s) = \gamma_{\nu}(t) \cdot \gamma_{\nu}(s)$$

es la curva integral maximal que comienza en $g \cdot e = g$. Por lo tanto, para probar la igualdad del enunciado, alcanza con mostrar que la curva $\xi : s \in \mathbb{R} \mapsto \gamma_{\nu}(t+s) \in G$ comienza en g y es integral. En tal caso, como ésta también es una curva definida en todo \mathbb{R} , por unicidad de las curvas integrales maximales deberá coincidir con η .

En primer lugar, notemos que ξ comienza efectivamente en q ya que

$$\xi(0) = \gamma_{\nu}(t+0) = \gamma_{\nu}(t) = q.$$

Si notamos ahora $T_t: s \in \mathbb{R} \mapsto t+s \in \mathbb{R}$ y tomamos $h \in C^{\infty}(\mathbb{R})$, para cada $s_0 \in \mathbb{R}$ es

$$d_{s_0}T_t\left(\frac{d}{ds}\Big|_{s_0}\right)(h) = \frac{dT_th}{ds}\Big|_{s_0} = h'(t+s_0) = \frac{d}{ds}\Big|_{t+s_0}(h).$$

Como $\xi = \gamma_{\nu} \circ T_t$, obtenemos finalmente que

$$\begin{aligned} d_{s_0}\xi\Big(\frac{d}{ds}\Big|_{s_0}\Big) &= (d_{s_0+t}\gamma_{\nu} \circ d_{s_0}\mathsf{T}_t)\Big(\frac{d}{ds}\Big|_{s_0}\Big) = d_{s_0+t}\gamma_{\nu}\Big(\frac{d}{ds}\Big|_{s_0+t}\Big) \\ &= \gamma_{\nu}'(s_0+t) = \mathsf{X}_{\gamma_{\nu}(s_0+t)} = \mathsf{X}_{\xi(s_0)}. \end{aligned}$$

Esto termina de probar que ξ es integral, y por tanto la igualdad.

b) Veamos primero que exp es diferenciable. FALTA VER DIFERENCIABILIDAD, EN CERO AL MENOS.

Ahora, sea $v \in T_eG$ y calculemos $\exp_{*0}(v)$. Consideremos la curva $c: t \in \mathbb{R} \mapsto tv \in T_eG$ que satisface c(0) = 0 y c'(0) = v. Por el Lema 3, es

$$\exp(c(t)) = \exp(tv) = \gamma_{tv}(1) = \gamma_{v}(t \cdot 1)$$

Guido Arnone Práctica 3

para cada $t \in \mathbb{R}$, de forma que

$$exp_{*0}(\nu) = d_0 \exp \circ c = d_0 \gamma = \nu$$

 $y \text{ entonces } exp_{*0} \equiv id_{T_eG}.$

Por último, como el diferencial de la exponencial en 0 resulta inversible, por el teorema de la función inversa exp es un difeomorfismo local alrededor de 0.