## Astronomía General Práctica N° 1

## Repaso de trigonometría plana

- 1. Expresar los siguientes ángulos en:
  - a. Grados

i. 
$$\alpha = 18^{\circ} 15' 32'' = 18^{\circ} + (15/60)^{\circ} + (32/3600)^{\circ} = 18.2589^{\circ}$$

ii. 
$$t = 196^{\circ} 46' 6'' = 196^{\circ} + (46/60)^{\circ} + (6/3600)^{\circ} = 196.7683^{\circ}$$

Para pasar de [grados°, minutos' y segundos"] a [grados°] sumamos:

- Grados
- Minutos / 60
- Segundos / 3600
- b. Grados, minutos y segundos

i. 
$$B = 345.7^{\circ} = 345^{\circ} 42' 0''$$

- grados =  $345^{\circ}$
- minutos = 0.7 \* 60 = 42'
- segundos = 0 \* 60 = 0"

ii. 
$$\mu = 56.2^{\circ} = 56^{\circ} 12' 0''$$

- grados =  $56^{\circ}$
- minutos = 0.2 \* 60 = 12'
- segundos = 0 \* 60 = 0"

Para pasar de [grados°] a [grados°, minutos' y segundos"] extraemos:

- Grados = Parte entera y dejamos 0, ...
- Minutos = Parte entera de decimales de grados \* 60
- Segundos = Parte entera de decimales de min \* 60 y redondeamos

## 2. Completar la tabla con las equivalencias en los distintos sistemas de medidas

| 01"          | radianes | hs min seg          |
|--------------|----------|---------------------|
| 90° 0' 0"    | $\pi/2$  | 6 hs                |
| 300°         | 5.236    | 20 hs               |
| 45°          | $\pi/4$  | 3 hs                |
| 135°         | $3\pi/4$ | 9 hs                |
| 67° 34′ 29″  | 1.1794   | 4 hs 30 min 18 seg  |
| 191° 20' 45" | 3.3396   | 12 hs 45 min 23 seg |

Para pasar de [° '"] a [radianes] multiplicar por ( $\pi/180$ )

ej: 
$$67^{\circ}$$
 34' 29" =  $67.5747^{\circ} \rightarrow 67.5747 * (\pi/180) = 1.1794 rad$ 

Para pasar de [ $^{\circ}$ '"] a [hs min seg], primero convertir a [ $^{\circ}$ ] y multiplicar por (12/180), luego descomponer en hs, min (decimales de hs \* 60) y seg (decimales de min \* 60)

```
ej: 67^{\circ} 34' 29'' = 67.5747^{\circ} \rightarrow 67.5747 * (12/180) = 4.505 \text{ hs}
```

 $\rightarrow$  4hs.505; 0.505\*60 = 30'.3; 0.3 \* 60 = 18"  $\rightarrow$  4 hs 30 min 18 seg

Para pasar de [hs min seg] a [° ' "], primero convertir a [hs] y multiplicar por (180/12), luego descomponer en °, min (decimales de grados\*60) y seg (decimales de min\*60)

ej: 12hs 45min 23seg  $\rightarrow$  12.7564 hs \* (180/12) = 191.3458°

Para pasar de [hs min seg] a [radianes] multiplicar por  $(\pi/12)$ 

ej: 12hs 45min 23seg 
$$\rightarrow$$
 12.7564 hs \*  $(\pi/12)$  = 3.3396 rad

Para pasar de [radianes] a [° '"] multiplicar por  $(180/\pi)$  y descomponer en grados, min (decimales de grados\*60) y seg (decimales de min\*60)

ej: 
$$\pi/4 * (180/\pi) = 45^{\circ} 0' 0''$$

Para pasar de [radianes] a [hs min seg] multiplicar por  $(12/\pi)$  y descomponer en hs, min (decimales de hs\*60) y seg (decimales de min\*60)

ej: 
$$\pi/4 * (12/\pi) = 3 \text{ hs } 0 \text{ min } 0 \text{ seg}$$

3. Calcular el número de segundos de arco ["] que hay en un radián

1 radián = 
$$180/\pi$$
 =  $57.2959^{\circ}$  =  $\frac{57^{\circ}}{17}$  44.81"  $\rightarrow$  205200" + 1020" + 44.81" =  $\frac{206264.81}{100}$ 

- **4.** Sobre las funciones  $sen(\alpha)$ ,  $cos(\alpha)$  y  $tan(\alpha)$  para  $-2\pi < \alpha < 2\pi$ 
  - a. Graficarlas



- b. Valores máximos y mínimos que pueden tomar
  - i. Máx de sen( $\alpha$ ) = 1

Min de sen( $\alpha$ ) = -1

ii. Máx de  $cos(\alpha) = 1$ 

Min de  $cos(\alpha) = -1$ 

iii. Máx de tan( $\alpha$ ) = infinito

Min de  $tan(\alpha) = -infinito$ 

c. Marcar en el gráfico del seno, 2 ángulos entre 0 y  $\pi$  que tengan igual valor



5. Indicar en la circunferencia trigonométrica En rojo, la representación y signo del seno En azul, la representación y signo del coseno En negro, la representación y signo de la tangente



- a. Cuáles son las representaciones de:
  - i. θ
  - ii.  $sen(\theta)$
  - iii.  $cos(\theta)$
  - iv.  $tan(\theta)$
- b. Indicar sus signos en cada cuadrante
- 6. Determinar el signo de cada función sin usar la calculadora:
  - a.  $sen(160^{\circ}) \rightarrow negativo$
  - b.  $\cos(-20^{\circ}) \rightarrow \frac{\text{negativo}}{\text{negativo}}$
  - c.  $tan(200^\circ) \rightarrow positivo$
  - d.  $tan(6.5 hs) \rightarrow negativo$
  - e.  $sen(13 hs 45 min) \rightarrow negativo$
  - f.  $sec(8\pi/3) \rightarrow positivo$
  - g.  $\cot(9\pi/5) \rightarrow \frac{\text{negativo}}{1}$
  - h.  $sec(57 \text{ rad}) \rightarrow positivo$
  - i.  $sen(758^\circ) \rightarrow positivo$

La **secante** es el inverso multiplicativo del coseno tal que  $\sec(\alpha) = 1/\cos(\alpha)$ La **cosecante** es el inverso multiplicativo del seno tal que  $\csc(\alpha) = 1/\sin(\alpha)$ La **cotangente** es el inverso multiplicativo de la tangente tal que  $\cot(\alpha) = 1/\tan(\alpha)$ Los 3 casos mantienen los signos de sus funciones originales, pero hay casos especiales cuando el ángulo vale 0°, 90°, 180° o 270° dado que en algunos de ellos se dividiría por 0.



- $7 \boldsymbol{.}$  Encontrar en qué cuadrante está el ángulo  $\alpha$  para las siguientes condiciones:
  - a.  $sen(\alpha)$  y  $tan(\alpha)$  positivas  $\rightarrow$  **Primer cuadrante**
  - b.  $sen(\alpha)$  positivo y  $cos(\alpha)$  negativo  $\rightarrow$  Cuarto cuadrante
  - c.  $tan(\alpha)$  positivo y  $sec(\alpha)$  negativa  $\rightarrow$  **Tercer cuadrante**
  - d.  $cos(\alpha)$  y  $cotan(\alpha)$  negativa  $\rightarrow$  **Tercer cuadrante**
  - e.  $cos(\alpha)$  positivo y  $sen(\alpha)$  negativo  $\rightarrow$  **Segundo cuadrante**
- 8. Calcular (con calculadora) el valor del ángulo  $\alpha$  cuyo seno vale sen( $\alpha$ ) = 0.41 Para calcular el valor de un ángulo a partir de la función trigonométrica y su resultado, basta con calcular la inversa de tal función ingresando como parámetro el resultado.

$$sen(\alpha) = 0.41 \rightarrow (\alpha) = sen^{-1}(0.41) = 24.2^{\circ} = 24^{\circ} 12' 17.41''$$

- $\mathbf{9}_{\raisebox{-.6ex}{\text{\circle*{1.5}}}}$  Calcular los valores de  $\theta$  comprendidos entre 0 y  $2\pi$  que satisfacen las ecuaciones:
  - a.  $\csc(\theta) = 2\sqrt{3} / 3 \Rightarrow \sin(\theta) = 3/[2\sqrt{3}] = 0.866 \Rightarrow \sin^{-1}(0.866) \Rightarrow \theta = 60^{\circ}$
  - b.  $sen(\theta) = -\sqrt{(2)} / 2 = -0.7071 \rightarrow sen^{-1}(-0.7071) \rightarrow \theta = -45^{\circ}$
  - c.  $\cot an(\theta) + \sqrt{3} = 0 \Rightarrow \tan(\theta) = -1/\sqrt{3} = -0.5774 \Rightarrow \tan^{-1}(-0.5774) \Rightarrow \theta = -30^{\circ}$
  - d.  $\sqrt{(3)*\sec(\theta)} + 2 = 0 \rightarrow \cos(\theta) = -\sqrt{(3)}/2 = -0.866 \rightarrow \cos^{-1}(-0.866) \rightarrow \theta = 150^{\circ}$
  - e.  $cos(\theta) = 3.2 \rightarrow No$  se puede resolver porque el resultado es mayor a 1

Considerando la existencia de las raíces en todos los ejercicios, es necesario incluir a la raíz negativa de todos los casos, dándonos un segundo ángulo para cada función hallada

- a.  $\theta = 120^{\circ}$
- b.  $\theta = 225^{\circ}$
- c.  $\theta = 150^{\circ}$
- d.  $\theta = 210^{\circ}$
- $10 extbf{.}$  Un poste vertical de  $10 ext{ m}$  tiene una sombra de 7.5 m. Hallar el ángulo de elevación del sol.

Teniendo dos lados de un triángulo, podemos plantear una relación trigonométrica entre sus 2 catetos: El poste representa un cateto vertical (opuesto) y la sombra un cateto horizontal (adyacente) y ortogonal. La relación trigonométrica que relaciona estos 2 catetos es la tangente, resolviéndose como

 $tan(\theta)$  = cateto opuesto / cateto adyacente  $tan(\theta)$  = 10/7.5 = 1.3333  $\rightarrow \theta$  =  $tan^{-1}(1.3333)$ 

$$\rightarrow \theta = 53,13^{\circ} = 53^{\circ} 7' 48.37"$$

Las otras relaciones son:

 $sen(\theta) = opuesto / hipotenusa$  $cos(\theta) = adyacente / hipotenusa$ 



11. Se define cuerda como un segmento de recta que une dos puntos de la circunferencia sin pasar por el centro. Si una cuerda de 41.36 m subtiende un ángulo de 145° 37', ¿cuál es el radio del círculo?

Entendemos que la cuerda representa una línea recta que une dos puntos, los cuales forman en la circunferencia un ángulo de 145° 37'. Esta cuerda no nos proporciona un ángulo recto sobre el cual definir una propiedad trigonométrica sencilla, pero podemos descomponerlo en 2 triángulos rectángulos dividiendo a la mitad la cuerda y el ángulo. A partir de allí podemos calcular el valor del radio r (hipotenusa de cualquiera de los 2 nuevos triángulos) con la función seno.



0 su fórmula simplificada: 
$$C' = 2*r*sen(\theta/2) \rightarrow r = C' / 2*sen(\theta/2) = 41.36 / 2*0.96 = 21.5342$$

- 12. Para una circunferencia de radio unidad:
  - a. Determinar el valor del arco, de la cuerda, del seno y de la tang correspondiente a los ángulos 1", 1', 1°, 5°, 10° y 20°. Expresar también los valores de los ángulos dados en radianes. Comentar.
  - b. Comparar el valor de la tangente y del seno de 1" con el valor del ángulo de 1" en radianes. Observar que un ángulo pequeño es similar al valor de su seno y tang.

| ángulo | radianes   | arco      | cuerda    | seno       | tangente   |
|--------|------------|-----------|-----------|------------|------------|
| 1"     | 0.00000485 | 0.0000048 | 0.0000048 | 0.00000485 | 0.00000485 |
| 1'     | 0.00029089 | 0.00029   | 0.000291  | 0.00029089 | 0.00029089 |
| 1°     | 0.0174533  | 0.01745   | 0.017453  | 0.01745241 | 0.01745506 |
| 5°     | 0.0873     | 0.08727   | 0.08724   | 0.08715574 | 0.08748866 |
| 10°    | 0.1745     | 0.17453   | 0.17431   | 0.17364817 | 0.17632698 |
| 20°    | 0.3491     | 0.3491    | 0.3473    | 0.34202014 | 0.36397023 |

Para calcular el arco que produce el ángulo hacemos regla de 3 simple con  $\pi$  = 180° ej: si  $\pi$  = 180°  $\rightarrow$  1" \* ( $\pi$ /180°) = 0.0000048

Una forma casera para calcular la cuerda es hallar la hipotenusa que arman las distancias en x e y, pudiendo calcularse mediante desde el punto inicial (r,0) al punto ( $\cos(\alpha)$ ,  $\sin(\alpha)$ ) ej:  $20^{\circ} \rightarrow \sqrt{[(1 - \cos(\alpha))^2 + (0 - \sin(\alpha))^2]} = \sqrt{[(1 - 0.93)^2 + 0.342^2]} = \sqrt{0.1219} = 0.3473$ 

13. Dos embarcaciones se encuentran próximas a un faro. La distancia que separa a una de otra es de 500 m. Desde una de ellas se mide que el ángulo que forman la visual a la otra embarcación con la dirección en la que se encuentra el faro es de 50° 20'. En el mismo instante, desde la segunda embarcación, se mide el ángulo que forman la visual a la primera embarcación y la visual al faro, encontrándose que es 110° 40'. Calcular a qué distancia del faro se encuentra cada una de las embarcaciones en ese instante (tarea para la casa)