Module 1

Introduction and Complexity Analysis

Data Structure

 A data structure is a format for data organization, management, and storage to enable efficient access and modification

OR

 A logical or mathematical model to organize, manage, and store the data efficiently

Abstract Data Type (ADT)

Types of Data Structures

- Linear Data Structures: Data elements form a sequence or a linear list. The data is arranged in a linear fashion although the way they are stored in the memory need not to be sequential
 - Array
 - Linked List
 - Stack
 - Queue
- Non-linear Data Structures: Data elements is not arranged in sequence
 - Tree
 - Graph

Example

Integer Array of Size 100 vs. 100 Integer Variables

- Efficiently locate, retrieve, update information
- Understand logical relationship among data elements

Story Time!

Once Upon a Time in a Land Far Away

There Lived a Mathematician

Archimedes

<u>Algorithms</u>

What are Algorithms and why it is important to study about them?

An algorithm is any **well-defined computational procedure** that takes some value(s), as **input** and produces some value(s), as **output**

OR

An algorithm is a sequence of computational steps that transform the input into the output

Hence,

An algorithm can be viewed as a tool for solving a well-defined *Computational Problem*

Algorithm vs. Program

An algorithms is an abstract computation procedure,

Can be expressed in many ways

while a program is an expression of an algorithm

 A program follows a strict syntax, while an algorithm can be written in a human-understandable high level language

Pseudocode

An algorithm is a step by step procedure to solve a given problem while a pseudocode is a **method** of writing an algorithm

Pseudocode Conventions

- Indentation indicates block structure: for, while, if-else
 - May use { } occasionally
 - begin and end statements are not used
- while, for, repeat-until and if-else conditional construct have interpretations similar to C, C++, Java, and Python
 - The loop counter retains its value after exiting the loop
 - The loop counter's value is the value that first exceeded the for loop bound
- The symbol "//" indicates a comment
- Variables are local to the given procedure
 - Global variables are explicitly declared

Pseudocode Conventions

- A[i] indicates the i^{th} element of the array A
 - Array index starts with 1 (not 0 as in C, C++, and Java)
 - A[1..j] indicates the subarray of A i.e., A[1], A[2],...,A[j]
- By default, we pass parameters to a procedure by value
- A return statement immediately transfers control back to the point of call in the calling procedure
- The Boolean operators "and" and "or" are short circuiting
- The keyword error indicates that an error occurred
- '==' for equality and '=' for assignment

Problem: Linear Search

- Input: A sequence of n numbers A[1..n] and a value v
- Output: Index i such that v==A[i] or NULL if value does not appear in A
- Pseudocode

```
SEARCH(A, v)
1 for i = 1 to A.length
2    if A[i] == v
3     return i
4 return NULL
i=6
```

• Input sequence (instance): <5,2,6,8,9,4,3,2>, Value v = 4

Problem: Finding Largest Element

- **Input:** A sequence of n numbers A[1..n]
- Output: Largest element in A
- Pseudocode

• Input sequence (instance): <5,2,6,8,9,4,3,2>

Problem: Sum of Elements

- **Input:** A sequence of n numbers A[1..n]
- Output: Sum of elements of A
- Pseudocode

```
SUM(A)
1  sum = 0
2  for i = 1 to A.length
3     sum = sum + A[i]
4  return sum
```

- Input sequence (instance): <5,2,6,8,9,4,3,2>
- Output: 39

Design and Analysis

- Design and Analysis
 - Algorithm should be Correct: For every input instance, it halts with the correct output
 - Incorrect algorithms: Useful sometimes, if we can control their error rate
 - Algorithm should be Efficient
 - Running/Execution Time: Time Complexity
 - Space Requirement: Space Complexity
 - Other Factors:
 - Network (web or cloud based application)
 - Power consumption (laptop/tablet/pc/mobile)
 - CPU registers

Priori and Posteriori Analysis

- Running time depends on
 - Single vs Multi processor
 - Read or Write speed to Memory
 - 16 bit vs 32 bit vs 64 bit
 - Input size and type

YES/NO??

PRIORI ANALYSIS	POSTERIORI ANALYSIS
Priori analysis is an absolute analysis.	Posteriori analysis is a relative analysis.
It is independent of language of compiler and types of hardware.	It is dependent on language of compiler and type of hardware.
It will give approximate answer.	It will give exact answer.

Time and Space Analysis

• Example 1: Swap two numbers

• Input: Two numbers a and b to be swapped

• Output: Values of a and b swapped

SWAP(a,b)		<u>Ti</u>	<u>Time*</u>			Space*		
1	temp =	a	1	Unit	a:	1	Unit	
2	a=b		1	Unit	b:	1	Unit	
3	b=temp		<u>1</u>	Unit	temp:	<u>1</u>	Unit	
	•	Total	3	Units	Total	3	Units	

Frequency Count Method

Frequency Count Method

Example 2: Sum of the numbers of an array

- Input: An array A[1..n] of size n
- Output: Sum of elements of A

```
SUM(A)
1     S = 0
2     for i = 1 to A.length
3           S = S + A[i]
```

Frequency Count Method

Example 3: Sum of two n-dimensional matrices

- Input: Two array A and B of size nxn
- Output: Sum of matrices stored in matrix C

```
SUM(A, B)
1  for i = 1 to A.length
2  for j = 1 to B.length
3  C[i][j] = A[i][j] + B[i][j]
```

Frequency Count Method

Example 3: Multiplication of two n-dimensional matrices

- Input: Two array A and B of size nxn
- Output: Multiplication of matrices stored in matrix C

```
SUM(A, B)
1   for i = 1 to A.length
2    for j = 1 to B.length
3        C[i][j] = 0
4        for k = 1 to A.length
5        C[i][j] + A[i][k] × B[k][j]
```

Exercises

```
    Calculate Time Complexity: Degree of the Polynomial

for (i=1; i <= n; i++)
         a statement
for (i=n; i >=1; i--)
         a statement
for (i=1; i <= n; i++)
        for (j=1; j <= n; j++)
                 a statement
for (i=1; i <= n; i++)
        for (j=1; j <= i; j++)
                 a statement
```

Exercises

```
x = 0
for (i=1; x \le n; i++)
       x = x + i
for (i=1; i < n; i = i\times2)
       a statement
for (i=n; i > 1; i = i/2)
       a statement
```

Exercises

```
for (i=0; i < n; i++)

a statement

for (j=0; j < n; j++)

a statement
```

$$x = 0$$

for (i=1; i \le n; i = i\times 2)
 $x = x+1$
for (j=1; j \le x; j = j\times 2)
a statement

for (i=0; i < n; i++)
for (j=1; j < n; j = j
$$\times$$
2)
a statement

Classes of Functions

•
$$f(n) = 2$$

•
$$f(n) = 200$$

•
$$f(n) = 2000$$

•
$$f(n) = n$$

• f (n) =
$$n^2$$

• f (n) =
$$n^3$$

•
$$f(n) = 2^n$$

Constant

Constant

Constant

Logarithmic

Linear

Quadratic

Cubic

Exponential

Compare classes of functions

$$1 < \log n < \sqrt{n} < n < n \log n < n^2 < n^3 < ... < 2^n < 3^n < n^n$$

Input Size(n)	log n	n	nlogn	n^2	n^3	2 ⁿ
5	3	5	15	25	125	32
10	4	10	40	100	10^{3}	10^{3}
100	7	100	700	10 ⁴	10 ⁶	10 ³⁰
1000	10	10 ³	10 ⁴	10 ⁶	10 ⁹	10 ³⁰⁰

Asymptotic Notations

- Mathematical notations to represent the time function (complexity) of an algorithm.
- Used to define the growth rate of an algorithm as the input size is increased.
- Performance of an algorithm in-terms of the input size
- Three standard asymptotic notations:
 - Big-Oh $O \rightarrow upper bound$
 - Big-Omega Ω \rightarrow lower bound
 - Theta θ \rightarrow lower and upper bound

Big-Oh O

Definition

The function f(n) = O(g(n))

there exists **positive** constants c > 0 and n_0 such that $f(n) \le c g(n)$

 $\forall n \geq n_0 \text{ where } n_0 \geq 1$

Example

$$f(n) = 3n + 2$$

Select a value of c and n_0 such that f (n) is always lesser than or equal to the g(n)

Graphical Representation Big-Oh O

Big-Omega Ω

Definition

The function $f(n) = \Omega(g(n))$

there exists **positive** constants c > 0 and n_0 such that $f(n) \ge c g(n)$

 $\forall n \geq n_0 \text{ where } n_0 \geq 1$

Example

$$f(n) = 3n + 2$$

Select a value of c and n_0 such that f (n) is always lesser than or equal to the g(n)

Graphical Representation Big-Omega Ω

Big-Theta ⊕

Definition

```
The function f(n) = \Theta(g(n)) there exists constants c_1, c_2 > 0 and n_0 such that c_1 g(n) \le f(n) \le c_2 g(n) \forall n \ge n_0 where n_0 \ge 1
```

- Primarily used when both upper bound and lower bound functions are equal
- Example

$$f(n) = 2n + 3$$

g(n) = n for lower bound and g(n) = 5n for upper bound $\forall n \geq 1$

$$n \le 2n + 3 \le 5n$$

$$f(n) = \Theta(g(n))$$

Graphical Representation Big-Theta ©

Recap

- While computing the time function of any algorithm, always select the highest degree of polynomial
 - constant1
 - linear n
 - quadratic n^2
 - cubic n^3
 - exponential 2^n and n^n
- While computing the bound, always select the closest value

Example: Array Search

• Given an array [5, 4, 3, 2, 1, 9, 8, 7, 6] Search for element x

```
SEARCH(A, n, v)
1  for i = 1 to n
2     if A[i] == v
3         return i
4  return NULL
```

- Lower Bound $\Omega(1)$ BEST Case
- Upper Bound O(n) WORST Case

Will it be $\Theta(n)$?

Case vs. Bound

Average Case

• Element to search (x) is equally likely to occur any position in the array $\rightarrow x$ can occur at any array index with probability 1/n

$$f(n) = 1.\frac{1}{n} + 2.\frac{1}{n} + 3.\frac{1}{n} + \dots + n.\frac{1}{n}$$

$$=\frac{n(n+1)}{2}\cdot\frac{1}{n}=\frac{n+1}{2}$$

Hence,

$$f(n) = \Theta(n)$$

Is this better than the worst case?

Tricky Stuff!!

- Algo 1: $f(n) = \log_2 n + 3$
- Algo 2: $f(n) = 5\log_6 n + 1$
- $f(n) = n^2 8n$

Comparing two functions

$$f(n) = n^2 + 8n$$
 $g(n) = 4n^3 + 2$
 $f(n) = O(g(n))$?
 $f(n) = \Omega(g(n))$?
 $f(n) = \Theta(g(n))$?

 $f(n) = \Omega(n^2)$

Little-oh o

Definition

The function f(n) = o(g(n))

For all **positive** constants c > 0, there exists a constant n_0 such that $f(n) < c \ g(n) \ \forall n \ge n_0$ where $n_0 \ge 1$

Examples

$$f(n) = 3n + 2$$
 $f(n) = o(n^2)$
 $f(n) = 4n^3 + 5$ $f(n) = o(n^4)$

Little-oh o

• Intuitively, in o-notation, the function f(n) becomes insignificant relative to g(n) as n approaches infinity

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$$

<u>Little-oh</u>: An upper bound that is not asymptotically tight

Little-omega ω

Definition

The function
$$f(n) = \omega(g(n))$$

For all **positive** constants c > 0, there exists a constant n_0 such that $f(n) > c g(n) \forall n \geq n_0$ where $n_0 \geq 1$

Examples

$$f(n) = 3n + 2$$
 $f(n) = \omega(1)$
 $f(n) = 4n^3 + 5$ $f(n) = \omega(n^2)$

Little-omega ω

• Intuitively, in ω -notation, the function f(n) becomes arbitrarily large relative to g(n) as n approaches infinity

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty$$

Little-omega: A lower bound that is not asymptotically tight

Comparing functions

• Transitivity:

```
f(n) = \Theta(g(n)) and g(n) = \Theta(h(n)) imply f(n) = \Theta(h(n))

f(n) = O(g(n)) and g(n) = O(h(n)) imply f(n) = O(h(n))

f(n) = \Omega(g(n)) and g(n) = \Omega(h(n)) imply f(n) = \Omega(h(n))

f(n) = o(g(n)) and g(n) = o(h(n)) imply f(n) = o(h(n))

f(n) = \omega(g(n)) and g(n) = \omega(h(n)) imply f(n) = \omega(h(n))
```

• Reflexivity:

$$f(n) = \Theta(f(n))$$

 $f(n) = O(f(n))$
 $f(n) = \Omega(f(n))$

Comparing functions

Symmetry:

$$f(n) = \Theta(g(n))$$
 if and only if $g(n) = \Theta(f(n))$.

Transpose symmetry:

$$f(n) = O(g(n))$$
 if and only if $g(n) = \Omega(f(n))$
 $f(n) = o(g(n))$ if and only if $g(n) = \omega(f(n))$

Comparing functions

 Comparing asymptotic complexities of two functions as two real numbers a and b

$$f(n) = O(g(n))$$
 is like $a \le b$
 $f(n) = \Omega(g(n))$ is like $a \ge b$
 $f(n) = \Theta(g(n))$ is like $a = b$
 $f(n) = o(g(n))$ is like $a < b$
 $f(n) = \omega(g(n))$ is like $a < b$

<u>References</u>

- Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein, "Introduction to Algorithms", The MIT Press
- Sahni, S., "Data Structures, Algorithms, and Applications in C++", WCB/McGraw-Hill
- Algorithms, Video Lectures by Abdul Bari, 1.1-1.12

https://www.youtube.com/playlist?list=PLDN4rrl48XKpZkf03iYFl-O29szjTrs O