確率·統計 第7回 分散分析

兵庫県立大学 社会情報科学部 川嶋宏彰

kawashima@sis.u-hyogo.ac.jp

本日の講義内容

- ・テキスト
 - 「統計学入門」には本日の内容がありません
- 分散分析
 - ・ 3群以上の母平均の差の検定
- 連絡
 - ・ 12/2 中間テスト(30-40分ぐらい?) +解説+講義

今日のポイント (Webサイトより)

- F分布を用いたF検定の流れ
 - ・ 何の検定に用いられるか?
 - ・ 「等分散性の検定」: 2群の母分散が等しいか? (前回スライド)
 - 「分散分析」
 - F 分布の統計量は何か?:標本から得られた分散の比
- ・ 多重検定の問題(なぜ分散分析を行うのか?)
 - (例) 3群について2群ずつ有意水準5%の検定を3回行った場合、第一種の 過誤が起こる確率(つまり実質的な有意水準)は?
- 分散分析
 - ・ 何を検定しているのか? (帰無仮説や対立仮説)
 - ・ 大まかな考え方は?(群間の変動が群内の変動に対して…)
 - ・ 分散分析表を埋めることができるか? (中間テストでは一部でよい)

統計量の差に関する検定

- ・ 2群の標本に対する検定
 - ・対応のある2標本群の差の検定 (t 検定)
 - ・対応のない2標本群の差の検定
 - 母集団の平均に差があるか (t 検定)
 - ・母集団の分散に差があるか (F 検定) → 第6回のスライドを使用
- ・3群以上の標本に対する検定(分散分析)
 - ・ 分散分析 (一元配置法):複数の母集団の平均に差があるかを検定
 - ・ 分散分析後の多重比較: どの母集団の平均に差があるか
 - ・ 等分散性の検定
 - ・ 対応のある場合の一元配置(繰り返しのない二元配置)
 - 二元配置法

(復習) 2群の標本に対する検定

・二つの母集団からそれぞれ抽出された標本から 母数が等しいかどうかを検定

(復習) 対応のない2群の標本に対する検定

- 母集団の平均に差があるかどうかを検定したい
 - 例:AクラスとBクラスの成績に差があるか?

Aクラス	Bクラス
69	49
52	40
68	52
46	37
72	55
40	38
45	45
62	
53	

	Aクラス	Bクラス
標本サイズ n	$n_1 = 9$	$n_2 = 7$
標本平均 \bar{X}	$\bar{X}_1 = 56.33$	$\bar{X}_2 = 45.14$
標準偏差 s	$s_1 = 11.76$	$s_2 = 7.105$
不偏分散 s²	$s_1^2 = 138.3$	$s_2^2 = 50.48$
母平均	?	?
母分散	?	?

差があるか?

(前回) 対応のない2群の標本に対する平均の差の検定,

・仮説を設定

・ 帰無仮説:母平均は等しい $(\mu_1 = \mu_2)$

• 対立仮説:母平均は異なる $(\mu_1 \neq \mu_2)$ (片側検定なら $\mu_1 > \mu_2$ や $\mu_1 < \mu_2$)

• t 統計量を計算

・ 標本サイズ n_1, n_2 の2群の標本の母平均 μ_1, μ_2 が等しければ 標本平均の差は自由度 $n_1 + n_2 - 2$ の t 分布に従う

$$t = \frac{\bar{X}_1 - \bar{X}_2}{\sqrt{s^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}} \sim t(n_1 + n_2 - 2)$$

$$s^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}$$

等分散性が仮定できる場合

p値を計算

・ 帰無仮説の下で,標本から得られた $|t^*|$ の上側確率を求め,両側検定なので2倍する $p=2\,P(t\geq |t^*|;n_1+n_2-2)$

3群 (以上) の標本に対する検定

・三つの母集団からそれぞれ抽出された標本から 母数が等しいかどうかを検定

第一種の過誤

- 帰無仮説が正しいにも関わらず帰無仮説を棄却してしまう誤りを 第一種の過誤 (Type-I error) という
 - ・ 要するに,本当は差がないのに差があると言ってしまう
 - 例:(本当は効果がないのに)薬を飲む場合と飲まない場合で「差がある」(つまり薬に効果がある)と判定してしまう
- 問題(中間テストで出題される可能性が高い)
 - 第一種の過誤とは?
 - ・ 有意水準5%で検定を行ったときに、第一種の過誤が起きる確率は?
- 答え
 - 第一種の過誤が起きる確率は,実は有意水準そのもの(別名「危険率」)
 - ・ つまり「有意水準 lpha」とは,第一種の過誤をどれくらい許すかの水準
 - ・ 有意水準5% ($\alpha=0.05$)で検定したならば,差がないときに,100回に 5回は「差がある」と言ってしまう(第一種の過誤が起きる)のを許す

3群以上の標本に対する平均の差の検定

- ・ 3群以上の母集団の平均に差があるか調べたい
 - → 分散分析 (analysis of variance: ANOVA)

「群」を「水準」 と呼ぶことも多い (例:1要因3水準)

水準 要因(因子)

3種類の肥料それぞれで育てた スイカの重さの測定結果 (kg)

群1 (肥料1)	群2 (肥料2)	群3 (肥料3)
9.5	10.1	11.3
9.7	10.5	10.7
10.1	9.6	10.2
9.8	9.3	
9.3		

3群以上まとめて分散分析 ≠ 2群に対する t 検定の繰り返し

問題:3通りの2群(ペア)それぞれに対して有意 水準5%のt検定を行うことを考える.このとき 第一種の過誤が生じる確率は?(すべて等しいの に少なくとも1組に有意差を認めてしまう確率は?)

 $1-0.95 \times 0.95 \times 0.95 = 0.1426$ (引き算の項:どの2群比較でも誤らない確率)

→ 実質,有意水準14%の検定になってしまう!

標本平均 9.7

9.9

10.7

分散分析の考え方

- 群間で差はあるか?
 - ・標本平均の差(群2-群1): 0.86, (群3-群2): 0.36, (群3-群1): 1.22

分散分析の考え方

- 群間で差はあるか?
 - ・ 標本平均の差 (群2-群1): 0.38, (群3-群2): 0.58, (群3-群1): 0.96

データのばらつきを表す指標

- ・データ (観測値) $x_1, ..., x_n$ のばらつきを定量化したい
 - 偏差 (deviation)
 - $x_i \bar{x}$: 平均値からのずれ
 - ただし $\bar{x} = \frac{x_1 + \dots + x_n}{n} = \frac{1}{n} \sum_{i=1}^n x_i$ ばらつき大

554454: *Q* =

176328: Q =

- 変動 (variation) or 平方和 (sum of squares, SS)
 - $Q = (x_1 \bar{x})^2 + \dots + (x_n \bar{x})^2$:偏差の平方和 $= \sum_{i=1}^n (x_i \bar{x})^2$ (練習:変動の計算)
- 不偏分散 (unbiased variance)
 - Q/(n-1):不偏性のある標本分散
 - n-1:自由度 (平方和で独立に動かせる成分の数)

•
$$(x_1 - \bar{x}) + \dots + (x_n - \bar{x}) = 0 \iff \bar{x} = \frac{x_1 + \dots + x_n}{n}$$

分散分析の考え方

・データのずれを<u>要因の影響と偶然の影響</u>に分けて説明する

分散分析の考え方

・全体の変動 = 群間の変動(要因効果)+群内の変動(誤差)

各データの群間偏差・群内偏差を計算

・全体平均からの変動を二つの成分に分ける

ここに興味がある

- 群間の変動:全体平均と各群平均の差(群間偏差)の平方和
- ・ 群内の変動:各群内の平均からの差(群内偏差)の平方和

まず各データの偏差を求める

 $x_{ij} = \bar{x} + (\bar{x}_i - \bar{x}) + (x_{ij} - \bar{x}_i)$

これが大きいと 群間の変動が埋もれる

	元のデータ			
_		→ <i>i</i>		
	群1	群2	群3	
	9.50	10.10	11.30	
	9.70	10.50	10.70	
\downarrow	10.10	9.60	10.20	
i	9.80	9.30		
,	9.30			
7	9 68	9 88	10 73	

全体の平均 \bar{x}

群1	群2	群3
10.01	10.01	10.01
10.01	10.01	10.01
10.01	10.01	10.01
10.01	10.01	
10.01		

群間偏差

群1	群2	群3
-0.33	-0.13	0.73
-0.33	-0.13	0.73
-0.33	-0.13	0.73
-0.33	-0.13	
-0.33		

群内偏差

群1	群2	群3
-0.18	0.23	0.57
0.02	0.63	-0.03
0.42	-0.28	-0.53
0.12	-0.58	
-0.38		

|群1の平均9.68の全体平均10.01からの差|

群1の平均9.67からの差

変動(偏差平方和)を計算

元のデータ

群1	群2	群3
9.50	10.10	11.30
9.70	10.50	10.70
10.10	9.60	10.20
9.80	9.30	
9.30		

平均 9.68 9.88 10.73

全体の平均 \bar{x}

群1	群2	群3
10.01	10.01	10.01
10.01	10.01	10.01
10.01	10.01	10.01
10.01	10.01	
10.01		

群間偏差

君	¥1	群2	群3
-0	.33	-0.13	0.73
-0	.33	-0.13	0.73
-0	.33	-0.13	0.73
-0	.33	-0.13	
-0	.33		

群内偏差

群1	群2	群3
-0.18	0.23	0.57
0.02	0.63	-0.03
0.42	-0.28	-0.53
0.12	-0.58	
-0.38		

各セルが偏差の平方(二乗) (例)(-0.33)² = 0.11

総和を求める

群間偏差の平方

群1	群2	群3
0.11	0.02	0.53
0.11	0.02	0.53
0.11	0.02	0.53
0.11	0.02	
0.11		

群間の変動:2.19 (群間偏差の平方和)

群内偏差の平方

群1	群2	群3
0.03	0.05	0.32
0.00	0.39	0.00
0.18	0.08	0.28
0.01	0.33	
0.14		

群内の変動:1.82 (郡内偏差の平方和)

分散分析の考え方

- ・群間の差の大きさを測りたい
 - 適切な統計量を定義して、それが(帰無仮説の下で)何かの分布に 従うなら検定可能 → どのような統計量を定義すればよいだろうか?
 - F分布のことを思い出すと・・・不偏分散の比が従う分布
 - ・ 不偏分散は,変動 (平均からの差の平方和) を自由度で割ったもの
 - F分布に従う「群間の差の大きさの指標」が作れるかもしれない

分散分析が用いる統計量

帰無仮説の下で,この比は 自由度 (ϕ_A, ϕ_e) の F 分布に従う

$$F=rac{群間の変動/自由度 \phi_A (水準間の差異,要因効果)}{群内の変動/自由度 \phi_e (偶然性,誤差)$$

自由度とF値の計算

• 自由度 (実質的に自由に動かせる変数の数)

- 標本サイズ 5+4+3
- 群間自由度は 2 (= 3群-1平均), 群内自由度は 9 (= 12要素-3平均)
- 統計量Fの値を計算 (変動/自由度)を平均平方と呼ぶ
 - ・ 変動 (偏差平方和) を自由度で割るとそれぞれ $\frac{2.19}{2} = 1.09$ と $\frac{1.82}{9} = 0.21$
 - ・ この比が F = 1.09/0.21 = 5.40 → 自由度 (2,9) の F 分布で検定

群間の変動

群内の変動

(群間偏差の平方和): 2.19 (郡内偏差の平方和): 1.82

自由度2:
$(\bar{x}_1 - \bar{x}) \boldsymbol{\Sigma} (\bar{x}_2 - \bar{x})$
が決まると
$(\bar{x}_3 - \bar{x})$ は自動的
に決まる
$(\sum n_i(\bar{x}_i - \bar{x}) = 0)$

- 0			
	群1	群2	群3
	0.11	0.02	0.53
	0.11	0.02	0.53
	0.11	0.02	0.53
	0.11	0.02	
	0.11		

群1	群2	群3
0.03	0.05	0.32
0.00	0.39	0.00
0.18	0.08	0.28
0.01	0.33	
0.14		

自由度9: 各群の自由度の和 群1は5-1=4 群2は4-1=3 群3は3-1=2 (スライド13)

一元配置分散分析

・仮説を設定

- 群i の平均 $ar{x}_i = rac{1}{n_i} \sum_{i=1}^{n_i} x_{ij}$ • 帰無仮説:すべての母平均は等しい $(\mu_1 = \mu_2 = \cdots = \mu_I)$
- ・ 対立仮説:いずれかの母平均は異なる $(\mu_i \neq \mu_{i'} \text{ for some } i, i')$ $\bar{x} = \frac{1}{n} \sum_{i=1}^{l} \sum_{j=1}^{n_i} x_{ij}$ 全体平均
- 分散分析表 を計算 $(x_{ij}: 群iのデータ, j = 1, ..., n_i)$

変動要因 SV	平方和(変動) SS	自由度 df	平均平方MS	分散比 (F値)
グループ間 変動	$SS_A = \sum_{i=1}^{I} n_i (\bar{x}_i - \bar{x})^2$	$\phi_A = I - 1$	$MS_A = \frac{SS_A}{\phi_A}$	$F_{Ae} = \frac{MS_A}{MS_e}$
グループ内 変動	$SS_e = \sum_{i=1}^{I} \sum_{j=1}^{n_i} (x_{ij} - \bar{x}_i)^2$	$\phi_e = \sum_{i=1}^{I} (n_i - 1)$	$MS_e = \frac{SS_e}{\phi_e} \left(\right.$	自由度(ϕ_A, ϕ_e)の
合計	$SS_T = \sum_{i=1}^{I} \sum_{j=1}^{n_i} (x_{ij} - \bar{x})^2$	$\phi_T = \sum_{i=1}^I n_i - 1$		<i>F</i> 分布に従う

$$SS_A + SS_e = SS_T$$
 $\phi_A + \phi_e = \phi_T$

一元配置分散分析の実行例

・自由度(2,9)のF分布を用いて有意水準5%で検定

$$\bar{x}_1 = 9.680 \quad \bar{x}_2 = 9.875 \quad \bar{x}_3 = 10.73 \quad \bar{x} = 10.01$$

変動要因SV	平方和SS	自由度df	平均平方MS	分散比 (F値)
グループ間変動	2.187	2	1.094	5.401
グループ内変動	1.822	9	0.202	
合計	4.009	11		

一元配置分散分析の実行例 (Excel)

IJ∢

□□□ 100% (-)

コマンド ScrollLock

分散分析のまとめと補足

- ・分散分析とは3群以上の母平均の差の検定
 - 分散分析表を用いて, Fが大きければ (すべての群の母平均が等しい という帰無仮説を棄却し) 要因に効果があると判定

$$F = \frac{$$
群間の変動/自由度 ϕ_A (水準間の差異,要因効果)
群内の変動/自由度 ϕ_e (偶然性,誤差)

- 補足
 - 母集団は正規分布(正規母集団)を仮定(t 検定と同様)
 - ・ いずれの群の母分散も等しいことを仮定
 - ・実は,2群に対する分散分析 = 2群に対する両側 t 検定
 - ・群内,群間の「群(グループ)」は「水準」「級」とも呼ばれる
- ・第9回に t 検定や分散分析の演習(PC)を予定

復習の参考

- 「確率・統計」のウェブサイトで重要ポイントを列挙
 - ・ 中間テストは主にこのポイント + 宿題やレポートから出題
- 参考図書
 - ・ 教科書「統計学入門」(授業スライドで範囲を指定)
 - 第3~5回の内容:前期「統計学」や高校数学Bの教科書も参考になる
 - ・ 分散分析:涌井良幸,涌井貞美「統計解析がわかる」技術評論社など
- ・Rコマンダーの復習方法
 - 第1回からタイトルに[Rcmdr]があるスライドを順に行う
 - ・ 第1回のスライドで紹介したブルーバックスを参考にする

練習問題

表1は,それぞれ異なる薬a, b, c を投与した3群において,薬に対する反応を測定した数値とする(以下、単に反応と呼ぶ).これより3種類の薬に対する反応の差を検定したい.ただし,それぞれの薬に対する反応は,母分散の等しい正規分布を仮定できるものとする.

- 1. 各群の標本サイズ、平均、変動、不偏分散を求めよ.
- 2. 表1のデータで3群の一元配置分散分析を行うための分散分析表を作成せよ.
- 3. 分散分析に用いる分布とその自由度を述べよ.
- 4. 棄却域かp値を求めよ.両側と片側検定のどちらか?検定結果も述べよ.

表1.薬に対する反応

薬a	薬b	薬c
5	10	5
4	8	10
4	9	6
7	9	

各群の統計量,分散分析表

1. 各群の標本サイズ,平均,変動,不偏分散を求めよ.

	薬a	薬b	薬c
標本サイズ	n_a = 4	$n_b = 4$	$n_c = 3$
標本平均			
変動 (偏差平方和)			
不偏分散			

2. 表1のデータで3群の一元配置分散分析を行うための分散分析表を作成せよ.

	変動 (偏差平方和)	自由度	平均平方	分散比
群間変動				
群内変動				
全体	54	10		

多重検定で起こりうること

サイコロを振って ● がでたら、第1種過誤(α=0.167)と判断することにする。

・サイコロを振る回数が増えれば、1回でも ● がでる(第1

種過誤が起こる)可能性は増える。

有意水準

多重検定の問題

- 3群(A・B・C)での平均の差を比較するとき
 - A群 ⇔ B群、 B群 ⇔ C群、 C群 ⇔ A群の3回検定を行うと
 1-0.95³=0.14と第1種過誤が大きくなる
 - 例) 新薬A、新薬Bと同効既存薬Cの比較など

- ・4群(A・B・C・D)での平均の差を比較するとき
 - A群 ⇔ B群、 A群 ⇔ C群、 A群 ⇔ D群
 B群 ⇔ C群、 B群 ⇔ D群、 C群 ⇔ D群の6回検定を行うと
 1-0.95⁶=0.26 と第1種過誤が大きくなる
 - 例) 経過観察群A、手術実施群B、抗がん剤使用群C、手術・抗がん剤併用群Dの比較など

手術で体力が落ちて抗がん剤の副作用に 耐えられない人が多くなるかも?

多重検定の結果

・有意水準0.05の検定を繰り返した時に、1回でも第1種過誤 が起こる確率

分散分析の考え方

・全体の変動 = 群間の変動(要因効果)+群内の変動(誤差)

分散分析の考え方

・全体の変動 = 群間の変動(要因効果)+群内の変動(誤差)

3群以上の標本に対する検定

- ・標本群の性質によって使い分けが必要
 - 1. 母集団の分布が正規分布と仮定できるか
 - ・ 仮定できる → パラメトリック検定
 - ・ 仮定できない → ノンパラメトリック検♬

Bartlett検定の結果

2. 群間に対応があるか

標本群の分散が異なる場合にも

パラメトリック検定		ノンパラメト	・リック検定
対応なし	対応あり	対応なし	対応あり
一元配置 分散分析	二元配置 分散分析	Kruskal-Wallis 検定	Friedman検定

講義では扱わないが重要

事後検定(post-hoc test)

- ・分散分析(ANOVA)によって、帰無仮説「すべての母平均は等しい」が棄却され、「いずれか群の母平均が異なる」と分かったら?
 - 「どの群が異質なのか知りたい!」
 - 「でも、0.05のt検定を繰り返すのは危険そうだ・・・」

多重比較

・多重検定の問題を考慮した方法

- ・複数の2群間の差の検定を同時に行っても、一つ以上の2群間の差が 有意となる確率をあらかじめ定めた有意水準以内にする検定方法
 - Bonferroni法
 - ・全体として有意水準が満たされるよう有意水準を下げて すべての群間でそれぞれ個別に検定 改良手法:Holm法・Shaffer法
 - Tukey法
 - 母平均について群間ですべての対比較を同時に検定
 - Dunnett法
 - 1つの対照群と2つ以上の処理群があって、 母平均について対照群と処理群の対比較のみを同時に検定
 - 各処理群の母平均が対照群の母平均と比べ「異なるかどうか」だけでなく「小さいといえるか」または「大きいといえるか」を判定

Bonferroni修正法

- ・3群に対する多重検定→各群間に対してそれぞれ検定を行う
 - 有意水準 $\frac{\alpha}{3}$ として個別に検定 ($\alpha=0.05 \rightarrow p < 0.0167$ ならば有意差あり)
 - $1-(1-0.167)^3=0.049$ **E** ISIS 5% C

ある物質の血中濃度の測定結果

群1	群2	群3	
9.5	10.1	11.3	
9.7	10.5	10.7	
10.1	9.6	10.2	
9.8	9.3	有意差	あり
9.3 <		-	

例)ゲノム研究では何万という塩基配列の差をしらべる・・

3群以上の標本に対する検定

- 1. まずは分散分析で全群の母平均が等しいのかどうかをしらべる
- 2. 帰無仮説「すべての母平均は等しい」が棄却され、「いずれか群の母平均が異なる」と分かったら
- 3. 補正を加味した事後検定 (post-hoc test)で「どの群間に差があるの か」を調べる

(分散分析を省ける場合もあるが、分散分析を経た方が安全)

3群以上の標本に対する検定

- ・標本群の性質によって使い分けが必要
 - 1. 母集団の分布が正規分布と仮定できるか
 - ・ 仮定できる → パラメトリック検定
 - ・ 仮定できない → ノンパラメトリック村

Bartlett検定の結果

標本群の分散が異なる場合にも

2. 群間に対応があるか

パラメトリック検定		ノンパラメトリック検定	
対応なし	対応あり	対応なし	対応あり
一元配置 分散分析	二元配置 分散分析	Kruskal-Wallis 検定	Friedman検定

講義では扱わないが重要