

강사 소개

- · 양승준: 아이디케이스퀘어드(IDK² I Don't Know What I Don't Know) 대표
- · 서비스: HEARTCOUNT, Augmented Analytics for Enterprise (SaaS)
- . 경력

강의에서 다룰 내용

BASIC SKILL

데이터 분석 과정

데이터 분석 과정 (*CRISP-DM)

<u>*강의 범위</u>

가. 비지니스 이해 나. 데이터 이해 비지니스 요구사항 수집 (collection & blending) 분석 목표 수립 기술 (descriptive analysis) Non-Obvious & Useful 탐험 (exploratory analysis; data viz.) 품질 (outliers & missing values) Pattern 문제(질문) 정의 가공 (feature engineering) 다. Modeling 및 해석 라. 활용 (Deployment) 보고; 인사이트 공유 ML 알고리즘 선택 (설명 vs. 예측) 의사결정 자동화 모형 수립 및 성능 평가 Technical & procedural 모형 해석 integration Statistical significance 주기적 성능 모니터링 Practical significance

데이터 분석 목표: A Successful Data Analysis

데이터가 답할 수 있는 **질문:** 적절한 **데이터**와 **분석**방법 Frame Real-World Problem into Data Problem

> 뻔하지 않은 쓸모있는 **패턴** Non-Obvious & Useful Pattern

> > 피보고자가 분석결과 수용(활용) Audience Accepts the Results

데이터에 답이 없는 질문

Machine Learning is not a Magic, but a Math

주어진 데이터(번지수, 지붕 색상)가 문제(집값 예측)를 해결하는데 사람에게 소용없다면 기계에게도 마찬가지

사람이 풀 수도 있는 문제를 기계가 더 빠르고 다양한 관점으로 냉정하게 풀게하자.

Training Data Set

번지수 끝자리	지붕 색상	가격(억)		
3	빨강	9.5		
7	주황	3.5	Machine Learning	Model ???
2	노랑	3.2	Algorithm	Wodel :::
1	빨강	3.5		
4	파랑	4.7		
		•		

데이터만으로 답할 수 없는 질문

폭력적 게임을 하면 더 폭력적이 되나?

- ① 개념(Concept)을 정량화하는 일의 주관성
 - 폭력적 게임을 정의할 수 있나?
 - 현실에서의 폭력성을 어떻게 계량화하나?
- ② 인과성을 증명할 수 있나?
 - 공격적 성향의 아이가 폭력적 게임에 더 끌림?

폭력적 게임

- 통계적 상관관계로 인과성에 대해 주장할 수 없음
- 숫자로 환원된 분석 결과는 복잡한 진실에 대한 단면적 요약

정보량이 큰(뻔하지 않은) 분석결과

- A. 작년 여자 영업사원의 평균 매출이 남자 영업사원 평균 매출의 80% 정도였다.
- B. 작년에 신규 출시한 탈모 치료제의 경우 연구소 출신 여자 영업사원의 매출이 평균 매출의 350%에 달했다.
- A. 평균 직원 나이가 상위 10%에 속하는 매장들의 평균 인건비 지출이 전체 매장 평균 인건비 지출액보다 20% 높았다.
- B. 55세 이상인 직원이 한 명 이상 근무하는 매장은 그렇지 않은 매장과 비교해 매출은 15%, 고객 만족도는 25% 높았다.
- A. 내일 아침에 동쪽에서 해가 뜰 것이다. = 정보량 빵임

정보 = 특정 질문에 대한 답변

- 뻔한 질문(예, 남녀 영업직원 간 매출 차이가 나는가?)에 대한 답변은 정보량도 낮음
- **엔트로피(불확실성)가 높은 불확실성이 큰 사안에 대한 질문**(예, 탈모 치료제를 많이 판매한 직원들의 공통된 특성은 무엇인가?')에 대한 답변은 정보량이 큼

Good Data Problem

- 작고 구체적인, 덜 뻔한(엔트로피가 큰) 질문
- 이미 확보하고 있거나 쉽게 수집 가능한 데이터에서 답을 찾을 수 있는 문제
 - 신뢰할 수 있고 익숙한 데이터에서 시작
 - 확보 가능한 데이터에 대한 이해 없이 문제부터 정하면 필요한 데이터를 추가로 수집, 준비하느라 프로젝트 일정이 지연되거나 나쁜 분석 결과가 나오기 쉬움
- 바람직한 답변이 없고 너무 민감하지는 않은 문제
 - 바람직한 답변이 이미 마음 속이나 조직 내에 정해져 있는 경우
 - 특정한 분석 결과가 조직 내에서 너무 큰 반향과 혼돈을 불러올 수 있다면 분석 및 결과 해석 과정에서 객관성이 흔들릴 수 있음
- 본인 문제(내 호기심) 말고 비즈니스 문제
 - Business Top-Line(매출, 이익, 고객수, NPS, 생산성 등) Alignment

데이터에서 유용한 답을 찾을 수 있는 문제

856명에게 전화걸어 르완다 전체 지역별 소득수준 분포 확인하기

빅데이터와 스몰 데이터의 결합 맹목적으로 쌓인 빅데이터 + 목적을 갖고 수집한 스몰 데이터 Ready-made(Exhaust) Data + Custom-made(Captured) Data CDR(가입자 통화내역) + Survey(소득수준 전화설문) Data Science + Social Science Kigali

CDR(백오십만명 통화 내역) + Survey(856명 설문으로 소득수준 조사)
→ 통화내역(X)만으로 소득수준(Y)을 예측하는 모형 생성

기업 내 데이터 분석 목표

본인 부서 Impact → Business Impact

강의 목표 & 목차

목표: 데이터 분석, 어렵지 않다. 유용하다.

From Data Literacy to Data Fluency

- Module I Data Literacy
- Module II Data Understanding
- Module III ML and Decision-Making
- Module IV Linear Regression Analysis
- Module V Decision Tree Algorithm
- My Two Cents 참고자료

*혼자서 공부할 내용

The Linda Problem

린다는 올해 31살로 아직 싱글이며 매우 솔직하고 총명한 여성이다. **철학**을 전공했으며 학창시절 소수자 차별과 사회정의 문제에 깊은 관심을 가졌으며 비핵화 운동에도 활발하게 참여하였다.

Q. 아래 두가지 문장 중 개연성이 더 높은 것은?

- 1) 린다는 은행원이다.
- 2) 린다는 은행원이며 페미니스트 활동가로 활약하고 있다.

The Linda Problem – Human Intelligence

The Linda Problem Plausibility vs. Probability

린다는 올해 31살로 아직 싱글이며 매우 솔직하고 총명한 여성이다. 철학을 전공했으며 학창시절 소수자 차별과 사 회정의 문제에 깊은 관심을 가졌으며 비핵화 운동에도.

Q. 아래 두가지 문장 중 개연성이 더 높은 것은?

- 1) 린다는 은행원이다.
- 2) 린다는 은행원이며 페미니스트 활동가로 활약하고 있다.

Irrational Human Intelligence

합리성(Rationality)

효용(Utility)을 고려 최선의 방법을 선택 완전한 정보 + 모든 가능성 고려

의사결정 잘 하고 있나요?

제한된 합리성 최적의 결정 vs. 만족스러운 결정

From Literacy to Data Literacy

Data Literacy: 추상에서 구체로의 이행

- 관습적 믿음/직관(Literacy)에 대한 회의에서 출발
- 데이터를 통해 세상을 보는 안목: 날것의 기록에서 패턴을 찾아 세상에 대한 더 좋은(실용적인) 설명을 찾는 일

현실

직접 본 것 · 한 것

Literacy

추상 · 개념 · 관념의 탄생 "사냥해서 짐승을 잡았다. 사냥의 꽃은 들소 잡기"

현실의 기록

들소: 0마리 물고기: 35마리 들소: 0마리 물고기: 65마리 들소: 0마리 물고기: 71마리 물고기: 15마리 들소: 1마리

Data Literacy

들소보다 물고기를 잡는 게 1.7배 더 생산적

	사냥횟수	마릿수	kg	kg/사냥
들소	25	2	300	12kg
물고기	35	900	700	20kg

Data Literacy: Fixing Last Mile Problem

Last Mile Problem

기업이 데이터에서 쓸모있는 패턴을 발견하여 더 좋은 의사결정에 활용하지 못하는 문제

원인

- 분석 부재: 엑셀보고; 대쉬보드
- **분석 분리:** 현업과 분석가의 분리; [질문→분석→활용] 선순환 X

해결책

- 현업 스스로 데이터에 질문,
 리; 패턴 발견·해석·활용
 - Data Literacy + Right Tool

Data: A New Language of Business

현업이 똑똑한 데이터 소비자가 되려면

Data Literacy 데이터 안목 도메인 지식 활용 데이터에 질문, 분석결과를 실용적으로 활용 Right Tool 닭**잡는 칼** 데이터의 특성 분석 역량·목적에 맞는 도구

Data Literacy(Fluency) Framework

데이터 분석은 생산자와 소비자 간의 사회적 · 상호적 활동

분석 결과를 소비하는 사람이 있어야 분석하는 사람이 존재할 수 있고 좋은 분석을 생산하는 사람이 있어야 또 결과를 소비(활용)하는 사람이 존재

Our First Data Literacy: One Hump vs. Two Humps

Our First Data Literacy: BIMODAL DISTRIBUTION (쌍봉분포)

African Seedcracker

자연선택에 의해 작고 부드러운 씨앗을 먹는 작은 부리의 새와 크고 단단한 씨앗을 먹는 큰 부리의 새로 나뉨

lower bill 12 mm wide

lower bill 15 mm wide

Data → It's Funny → Data Literacy -> Insight

데이터를 읽을 수 있어야 새로운 해석도 가능

• Reality: 복잡계; 실제 작동방식 100% 알 수 없음

• Belief: 세상의 작동방식에 대한 최선의(만족스러운) 설명

• Data: 세상의 작동방식에 대한 기록; 세상의 샘플링

• Insight: 세상에 대한 더 나은 설명, 새로운 해석

Data → **It's Funny** → **Data Literacy** -> **Insight**

1962년과 1979년에 태어난 남자들은 왜 Mets구단 팬이 되었나?

Hint: 1969년과 1986년에 모두 8세가 되었음

출생년도에 따른 NY Mets 팬들 비율 [대상: 뉴욕 거주하는 남자 야구 팬들]

분석하는 이유

- 궁금한 것(Y)을 데이터(X)로 더 잘 설명(예측)
- X를 바꾸어서 Y를 개선하기 위해서

엑셀 (대쉬보드)

- 성과지표(Y)를 익숙한 관점(범주; X)으로 요약
- 과거에 대한 집계

데이터 시각화

- X와 Y를 점, 선, 크기, 색상으로 표현 (탐험분석)
- X와 Y 사이의 패턴(관계) 시각적 발견; 가설 수립

통계

- 데이터의 특성과 모양 요약 (기술 분석)
- 독립변수(통제가능; X)와 종속변수(Y) 간 가설 검증

기계학습

- 데이터 학습, Feature(X)로 Target(Y)을 예측·설명
- 의사결정 자동화 vs. 더 좋은 의사결정

데이터 분석 주요기술

- DESCRIBE (기술 분석) 엑셀
 - 데이터 특성과 모양을 (수치적으로) 요약
- EXPLORE (탐험적 분석) 데이터 시각화 도구
 - 가설수립-데이터 감 잡기 위해 패턴 탐험

미래

Forward

- PREDICT/INFER (예측·추론 분석) 통계/ML
 - 패턴(모형)을 통해 주어진 문제를 예측 설명

Data Analysis Maturity Model

데이터 수집 → 데이터 기술(묘사) → 패턴 발견 → 예측 → 활용 우측으로 갈수록 성숙해진다기보다는 자기에게 필요한 단계를 잘 하면 됨

Source: Booz Allen Hamilton

EDA(Exploratory Data Analysis) = DESCRIBE (기술 분석) + EXPLORE (탐험 분석)

EDA, 데이터와 함께 떠나는 창의적 여행 (생고생)

- inspect data structure
- data quality
- summarize
- visualize data
- hypothesis generation
- != modeling

데이터에 대해 사실적으로 묘사하는 법

Description 요약

변수의 대표값과 모양이 어떻나?

개별 변수(Y)의 통계값과 분포 확인 Comparison 비교

변수값의 차이가 어디서 얼마나 나나?

서로 다른 범주(X) 간 Y의 특성·모양 비교 Relationship 관계

변수(Y)의 변화와 관계를 갖는 다른 변수(X)는?

> X와 Y 사이의 상관관계 파악

Analysis-Ready Dataset

분석하기 좋은 데이터셋

- 국가별로 1999/2000년에 결핵으로 사망한 환자수(Cases)와 전체인구 (Population)를 정리한 데이터셋들
- 국가별 연도별 인구 10,000명당 결핵 사망률을 계산하기 가장 좋은 데이터는?

NOT SO GREAT

country	year	key	value
Afghanistan	1999	cases	745
Afghanistan	1999	population	19987071
Afghanistan	2000	cases	2666
Afghanistan	2000	population	20595360
Brazil	1999	cases	37737
Brazil	1999	population	172006362
Brazil	2000	cases	80488
Brazil	2000	population	174504898
China	1999	cases	212258
China	1999	population	1272915272
China	2000	cases	213766
China	2000	population	1280428583

country	1999	2000
Afghanistan	745	2666
Brazil	37737	80488
China	212258	213766
country	1999	2000
Afghanistan	19987071	20595360
Brazil	172006362	174504898
China	1272915272	1280428583

country	year	population
Afghanistan	1999	745 / 19987071
Afghanistan	2000	2666 / 20595360
Brazil	1999	37737 / 172006362
Brazil	2000	80488 / 174504898
China	1999	212258 / 1272915272
China	2000	213766 / 1280428583

GREAT

4			
country	year	cases	population
Afghanistan	1999	745	19987071
Afghanistan	2000	2666	20595360
Brazil	1999	37737	172006362
Brazil	2000	80488	174504898
China	1999	212258	1272915272
China	2000	213766	1280428583

rectangular data data frame data table tidy dataset

Rectangular Dataset and Key Terms

분석하기 좋은 데이터셋

- Dataset: 값(Values)들의 집합으로 숫자 또는 범주로 구성
- Values: 변수(Variable)와 관측점(Observation)으로 구성
- Variable: 동일한 속성(나이, 매출)에 대한 측정값들로 행(Column)을 구성
- Observation: 동일한 대상(사람, 매장)에 대한 측정값들로 열(Row)를 구성

Raw vs. Aggregated Dataset

Raw Data

	Name	Gender	Coffee
	Bob Smith	М	Regular
	Jane Doe	F	Regular
	Dale Cooper	М	Mocha
	Mary Brewer	F	Decaf
E	Betty Kona	E	Regular
	John Java	М	Regular
E	Bill Bean	М	Regular
	Jake Beatnik	М	Mocha
E	Bob Smith	М	Regular
	Jane Doe	F	Regular
[Dale Cooper	М	Mocha
1	Mary Brewer	F	Regular
	John Java	М	Decaf
E	Bill Bean	М	Regular

Aggregated Data

Year	2000	2001	2002
Total sales	19,795	23,005	31,711
Male	12,534	16,452	19,362
Female	7,261	6,553	12,349
Regular	9,929	14,021	17,364
Decaf	6,744	6,833	10,201
Mocha	3,122	2,151	4,146

Q. 2001년 남녀 구매 비율은?

추가 질문

- Q. 2001년 Regular Coffee 구매한 여자 고객수? Q. 남자 고객이 선호하는 커피 종류는?

Raw Data: Zoom-in(새로운 질문) 가능

Non-Rectangular Data Structures

Rectangular 구조가 아닌 데이터도 있음; 각 구조에 맞는 별도의 처리 및 분석 기법이 존재

TIME-SERIES

- 동일 변수 연속적 기록
- Seasonality; Event

SPATIAL

- Object에 대한 위치좌표
- Location Analytics; Geo-Statistics

GRAPH

- Physical, Social, Abstract 관계
- Social Graph

Social Graph	From	То	Weight
Dominark Belgians Letes Heagany Jordan Nearth Belgians Control	Russia	China	10
Sweden Switzerland	USA-	Korea	7
Germany South Kores Chin	Trobus Sriber Birghdesh byse a Ukraine		
Spain Approach plans Israel Egypt India Russia Spain Approach plans Israel India Russia Approach Hoseop Hoseop Person Italy India Russia Russia Approach Message Person Person India Russia Approach I		udan Hirus Tellen	
Polispines Brikes Quint Pers Augments New Zinford Turkes			

Features / Attributes / X

Feature: Y(Output/Target)를 설명하거나 분류(예측)하는데 사용되는 속성 <u>좋은 Feature</u>를 발굴하는 것이 참 중요함.

Ripeness	# of Seeds	Weight (g)	Color	Fruit
0.56	5	320	Orange	Orange
0.61	6	280	Red	Apple

Features Engineering

Feature Engineering: From Raw Variable to Derived Variable

Y를 더 잘 설명하거나 분류(예측)할 수 있도록 기존 변수를 창의적으로 가공하여 새로운 변수를 만드는 일

당뇨병 위험도와 상관관계가 높은 변수

- 같은 몸무게라도 비만도는 키에 좌우됨
- 비만도를 더 잘 반영할 수 있는(키와 몸무게의 상호작용을 잡아낼 수 있는) 새로운 변수 가공
- *BMI(Body Mass Index) = kg/m²

*발명한 사람의 이름을 따서 Quetelet Index라고도 함

숫자형(Quantitative)과 범주형(Qualitative)

분석: 숫자와 숫자 사이의 연관성, 숫자의 차이를 가져오는 범주를 발견하는 것

- 숫자형 자료는 이산형(discrete)이나 연속형(continuous)으로 나뉨
- 범주형 자료는 명목형(nominal)이나 순서형(ordinal)으로 나뉨

Data Type에 따른 시각화 방법

변수 유형에 따라 분석 방법과 효과적 시각화 방법이 달라짐

Alcohol(%): 와인 알코올 함량, Quality: 소비자가 매긴 점수

숫자 x 숫자 = Scatterplot Overplotting(점이 겹침)!

Jittering 기법으로 Noise 추가 Jittering(인위적으로 퍼지게)!

Quality를 범주로 처리 Boxplotting(분포 시각화)!

Data Type에 따른 시각화 방법 – 그 때 알았더라면

순서형(Ordinal) 변수는 범주(Category)로 다루는 게 좋다.

Y: 리더십 점수, X: 평가 점수(등급)

Data Type에 따른 시각화 방법

순서형x 순서형 변수 간 관계 시각화 서베이(설문) 데이터

개별 레코드의 Density(밀도)를 표현해서 Overplotting 문제를 해결

밀도가 높을수록 진하고 크게 표현

숫자형 변수를 나누는 또 다른 기준: Interval vs. Ratio

절대적 원점(True Zero)이 있으면 Ratio, 없으면 Interval

시간 = 00:00 : 시간이 없다(빵시)? 나이 = 0살 : 나이가 없다(빵살)

Q. 나누거나(Ratio) 곱해도 말이 되는 것은? 온도 vs. 몸무게

Interval (구간 자료) 10도 + 10도 = 20도 20도 / 10도 = 2배? Ratio (비율 자료) 50kg + 50kg = 100kg 100kg / 50kg = 2배?

데이터의 특성과 모양을 요약하여 기술하는 방법

Central Tendency 중심 경향

- 평균(Mean)
- 중앙값(Median)
- 최빈값(Mode)

Dispersion 퍼진 정도

- 범위(Range)
- 분산(Variance)
- 표준편차(SD)
- Percentile

Shape of Distribution 퍼진 모양(대칭)

• 왜도 (Skewness)

The Philosophy of Statistics [19th Century]

초기의 통계학 - 결정론적 세계관에 바탕을 둔 이데아/본질의 추구

평균값이 대상이 보유한 이상적인 속성이고(Idealized Mean) Variation(차이)은 제거해야 할 오류라는 생각이 지배적이었음

Darwin and Statistical Population [Late 19th~Early 20th Century]

다윈의 등장: Type/Essence(본질) → Variation(차이)

차이(변이)의 점진적 누적에 의해 진화가 이루어진다는 발견 개별 개체에 존재하는 의미있는 차이(변이)에 관심을 갖기 시작

Vital Statistics vs. Mathematical Statistics

Average: 집단을 요약 → Variation: 개인(개체)들에 존재하는 차이에 관심

Florence Nightingale, the Lady with the Lamp

"신의 생각을 이해하기 위해 우리는 통계를 공부해야 해요. 통계를 통해 신이 목적하신 바를 측정할 수 있다구요."

- 크림 전쟁에 여성 최초로 영국군 보건위생장교로 참여
- 표준화되지 않은 질병 분류체계; 주먹구구 사망 데이터 관리
- 전사자 데이터 정리 후, 보고 방식 고민 (테이블? 파이차트?)
- Data Storytelling: 파이차트를 변형하여 데이터를 시각화

3 Types of Average: Mean, Median, Mode

성벽의 벽돌 갯수를 병사들이 측정한 값들

병-1	병-2	병-3	병-4	병-5	병-6	병-7	병-8	병-9
13	18	13	15	13	16	14	21	13

Q. 어떤 값을 대표값으로 선택할까?

A. 평균 (13+18+13+14+13+16+14+21+13) ÷ 9 = **15**

B. 중앙값 13, 13, 13, 13, **14**, 14, 16, 18, 21

C. 최빈값 **13** (3번 측정; 다른 값들은 1번씩만 측정됨)

D. 선호값 **16** (병-6)

Histogram vs. Frequency Distribution Table

히스토그램과 도수분포표

Histogram vs. Density Plot

1 Histogram – Bin Size: 4시간

- 히스토그램: 도수(빈도)의 분포[도수분포표] 를 차트로 표현한 것
- 계급: X축에 표현된 변수의 구간[4시간]

2 Histogram – Bin Size: 1시간

■ X축 변수 구간의 크기(Bin Size)를 4시간에 서 1시간으로 조정하였음

Probability Density Curve

- 확률밀도: X가 연속형 변수일 경우 X값과 이에 대응하는 확률을 나타낸 그래프
- 좌측에서 X가 10~20시간 사이의 값을 가 질 확률은 해당 구간의 면적과 동일함

Histogram vs. Density Plot: 서로 다른 두 집단의 분포를 비교

Learn by Doing

Let's Find Out Mean and Median on Density Curve 밀도함수에서 평균과 중앙값 찾아봅시다.

Source: https://www.khanacademy.org/math/statistics-probability

Learn by Doing

Let's Find Out Mean and Median on Density Curve

중앙값: 면적을 분할 평균: 무게 중심

Source: https://www.khanacademy.org/math/statistics-probability

Larger Variation, Greater Sampling Error

- 신규 캠페인에 노출된 고객: 1인당 10,000원 소비
- 기존 캠페인에 노출된 고객: 1인당 **8,000원** 소비

Q. 기존 고객들의 소비액 분포가 A와 B 두가지가 있다고 가정했을 때, 둘 중 신규 캠페인이 더 효과적이라고 주장(일반화)하기에 좋은 분포는?

변화의 폭 🖊 샘플 데이터 신뢰도 🔍 평균값에 대한 확신 📡

SOURCE THOMAS C. REDMAN

다른 관측(측정)값들을 크기의 분포를 고려했을 때 특정값의 상대적 위치

Original Value	Ordered Value	Ranking	Percentile	Quartile (사분위)
32	29	1	8%	
54	32	2	17%	1 st Qu. [~25 th] (최하위 25%)
74	38	3	25%	(1 1 11 = 2 7 3)
99	41	4	33%	
38	53	5	42%	2 nd Qu. [~50 th] (차하위 25%)
55	54	6	50%	(1 1 11 = 2 7 3)
29	55	7	58%	
41	74	8	67%	3 rd Qu. [~75 th] (차상위 25%)
134	93	9	75%	(1011=373)
53	99	10	83%	
209	134	11	92%	4 th Qu. [~100 th] (최상위 25%)
93	209	12	100%	(13.11=270)

Binning (Feature Engineering)

Binning: 연속된 숫자형 변수를 범주형 변수로 변환하는 것

• _bin: 변수(나이)값의 범위(20~59)를 기준으로 최대한 균등하게 10개 구간을 생성

• _percentile: 레코드 갯수가 최대한 균등하게 안분되도록 5개 구간을 생성

Ranking	나이	나이_bin	나이_percentile
1	20	20~23	
2	24	24~27	~20 th (하위 20%) 3개의 레코드
3	25	24~27	3 11-11 11
4	29	28~31	
5	33	31~34	~40 th 3개의 레코드
6	33	31~34	3.11—1 -11—
7	39	38~41	
8	40	38~41	~60 th 3개의 레코드
9	41	38~41	3.11—1 -11—
10	42	42~45	
11	43	42~45	~80 th 3개의 레코드
12	43	42~45	3, 11-11-11-11-11
13	44	42~45	
14	51	50~53	~100 th (상위 20%) 3개의 레코드
15	60	58~60	3.11—1 —11—

Percentile 활용하여 주성분(Principal Component) 찾기

비타민, 지방, 섬유질 변수로 채소와 고기 분류하기

- 비타민 빼기 지방: Percentile 값으로 바꾸면 해당 변수를 정규화하는 효과 가 있어서 서로 다른 단위를 갖는 변수들 간 연산이 가능해짐
- PCA: 데이터 분류를 용이하게 하는 (=데이터가 최대한 퍼지게 하는) 주성 분(Principal Component; 이 경우 Vitamin C + Fiber – Fat)을 찾는 일.

Finding Secret Feature

Percentile과 남들은 모르는 좋은 Feature로 돈 번 사례

American Pharoah: 2015년도에 37년 만에 Triple Crow 달성 (삼관마) Jeff Seder: "Sell your house. But, do NOT sell this horse."

Variable	Percentile
Height	56%
Weight	61%
Pedigree	70%
Left Ventricle (좌심실)	99.61%

Summary Statistics and Visualization

Distribution (boxplot)

Box-and-whiskers plot (예시)

Box-and-whiskers plot 해석

중심 경향

■ 중앙값(median) 파악

² 특이값(Outlier)

- 특이값(outlier): 중앙값에서 편차가 큰 값
- IQR(Inter Quartile Range)의 1.5배 이상 벗어나 있는 값들을 Outlier로 정의

대칭성 및 분포

■ 대칭성(symmetry): 최대값과 최소값까지의 수 염 길이 비교

SK 내부 강의자료 참고

Distribution (boxplot)

Q. 아마 아닐꺼야(Probably Not)에 대해

- Range를 구해보세요. 중앙값을 구해보세요.
- 평균을 가늠해보세요.
- 1Q(하위 25%)의 답변의 범위를 구해 보세요.
- 응답자의 75%는 최소 몇%(X축) 이 상으로 답변했나요?

Q. 분산(퍼진 정도)이 가장 큰(작은) Phrase는 무언가요?

Q. 음(-)의 왜도(비대칭성)가 가장 큰 Phrase는 무엇인가요?

데이터의 특성과 모양을 시각화하는 방법

데이터 분석 주요기술

과거
Looking
Backward
Looking

■ DESCRIBE (기술 분석) - 엑셀, 대쉬보드

- 데이터 특성과 모양을 요약
- EXPLORE (탐험적 분석) 데이터 시각화 도구
 - 가설수립-데이터 감 잡기 위해 패턴 탐험

Forward

- PREDICT/INFER (예측·추론 분석) 통계/ML
 - 패턴(모형)을 통해 주어진 문제를 예측 설명

평균의 문제 - Data Aggregation

Average Man – Galton's Composite Portraits

The Problems with Average: Not Robust!

평균의 문제 - Linear Thinking vs. Non-Linear Relationship

Q. 친환경 제품을 출시하려 한다. 어떤 세그먼트에 프로모션해야 하나?

고객 세그먼트	평균 점수
А	4
В	3

$$A = [4, 4, 4, 4, 4, 4, 4, 4]$$

$$B = [1, 1, 1, 1, 5, 5, 5, 5]$$

제한된·익숙한 관점 - Simpson's Paradox

심슨의 역설

뭉뚱그린 수치는 현실을 왜곡할 수 있음 쪼개보는 일(Segmentation; Drill-Down; Dimensions)의 중요성

남녀 지원자 합격률

	지원자 수	합격자 수	합격률
여자	1,000	150	15%
남자	1,000	250	25%

문과대 합결률

	지원자 수	합격자 수	합격률
여자	800	80	10%
남자	200	10	5%

이공대 합격률

	지원자 수	합격자 수	합격률
여자	200	70	35%
남자	800	240	30%

제한된·익숙한 관점 - Simpson's Paradox

새로운 관점(Dimension) 연봉과 까칠함과의 관계 → 직급별 연봉과 까칠함과의 관계

제한된·익숙한 관점 - Simpson's Paradox

Story, not Data, should dictate our choice

Phone 전환률이 중요한 경우 유료 전환 사용자수가 중요한 경우

Mobile App Conversion Rate: 5.00%

	iOS	Android
Devices	5000	10000
Conversinos	200	550
Conversion Rate	4.00%%	<u>5.50%</u>

	iC	S	And	Iroid
	Tablet	Phone	Tablet	Phone
Devices	1500	3500	8000	2000
Conversinos	100	100	500	50
Conversion Rate	<u>6.67%</u>	<u>2.86%</u>	<u>6.25%</u>	<u>2.50%</u>

The Curse of Dimensionality

차원의 저주

"If you test enough things, just by random chance, one of them will be statistically significant."

	S&P 지수	Coin 1	Coin 2	Coin 3	Coin 4	Coin 5	••••	••••	Coin 1217	••••	••••	Coin 1999	Coin 2000
1	상승	앞	뒤	앞	앞	뒤			앞			앞	뒤
2	하락	뒤	뒤	앞	앞	뒤			앞			뒤	뒤
3	상승	뒤	앞	뒤	앞	뒤			앞			뒤	앞
4	상승	앞	뒤	앞	뒤	뒤			앞			앞	뒤
5	하락	뒤	앞	뒤	앞	앞			뒤			뒤	뒤
•••													
248	상승	앞	뒤	뒤	뒤	앞			앞			뒤	뒤
249	하락	뒤	앞	뒤	뒤	뒤			뒤			뒤	앞
250	하락	앞	뒤	앞	앞	앞			뒤			뒤	뒤

Data Visualization 101

1 Dimension

Bar Chart

- 서로 다른 범주(사업부)간 평균값(매출 평균)의 차이를 비교하는데 효과적
- 시계열에 따른 변화를 표현하기에는 부적절

Pie Chart

- 서로 다른 범주가 전체(매출 총합)에서 차지하는 비율을 대비하는데 효과적
- 범주의 갯수가 많거나 비율이 비슷한 경우 부적절

Data Visualization 101

2 Dimensions

Line Chart

- 시계열에 따른 추세를 보는데 효과적
- 너무 많은 범주(4~5개 이상)가 함께 표현되는 경우 헤깔림

Stacked Area Chart

- 시간의 흐름에 따른 개별 범주의 전체 크기 내에서의 상대적 크기 변화를 표현하는데 효과적
- 범주가 너무 많으면 역시 헤깔림

Scatter Plot

- 두개의 숫자형 변수 간 관계를 파악하는데 효과적
- Outlier를 발견하는데도 효과적
- 원 크기/색상으로 4 Dimensions 표현

Data Visualization 101

Hierarchical Data

GENRE	SUB-GENRE	TOPIC	REVENUE		
ARTS & PHOTOGRAPHY	How-to Crafts	How-to Crafts	5	2,711	
ARTS & PHOTOGRAPHY	Coffee-table	Photography	\$	2,309	
CHILDREN'S BOOKS	Baby Books	Baby Books	\$	16,092	
CHILDREN'S BOOKS	Age 3-5	1st Readers	\$	24,514	
CHILDREN'S BOOKS	Age 3-5	ABCs	\$	17,771	
CHILDREN'S BOOKS	Age 3-5	Tolstoy for Tots	\$	13,295	
CHILDREN'S BOOKS	Age 6-8	Age 6-8	\$	14,046	
CHILDREN'S BOOKS	Pre-Teen & Teen	Pre-Teen & Teen	\$	18,046	
COMPUTERS & INTERNET	Troubleshooting	Troubleshooting	\$	4,527	
MYSTERY	Crime	Fiction	\$	11,186	
MYSTERY	Crime	True Crime	5	8,790	
MYSTERY	Spy	Spy	S S	6,516	
MYSTERY	Spy	True Spy	S S	3,809	
NONFICTION	Health	Diet	S	3,293	
NONFICTION	Health	Fitness	5	6,891	
NONFICTION	History	History	\$	1,131	
MAGAZINE	Fashion	Women's	\$	7,315	
MAGAZINE	Fashion	Men's	\$	2,222	
MAGAZINE	Home	Home	\$	2,612	
MAGAZINE	Other	Other	\$	3,140	
MAGAZINE	Sports	Sport's Illustrated	S	8,009	
MAGAZINE	Sports	MMA	S	4,257	
ROMANCE	Break up	Teen	5	6,205	
ROMANCE	Break up	Young Adult	\$	25,193	
ROMANCE	Break up	Audiobooks	\$	3,045	
ROMANCE	Make Up	Make Up	\$	15,050	
SCIENCE FICTION & FANTASY	Apocalyptic	Apocalyptic	\$	10,200	
SCIENCE FICTION & FANTASY	Comics	Comic	\$	3,456	

Treemap

Sunburst

Data Visualization 101 - 기본 문법 숙지

Data Storytelling – Pre-attentive Processing

전주의 처리 (Pre-attentive Processing) 주의를 기울이지 않고도 핵심 정보를 인지

Data Storytelling – Pre-attentive Processing

전주의 처리 (Pre-attentive Processing)

주의를 기울이지 않고도 핵심 정보를 인지하도록 적절히 강조

차트를 볼 때 사람의 눈동자가 어떤 순서로 어디로 향할지 알 수 없음

Data Storytelling – Before and After

Before

After: Call to Action

Correlation and Scatter Plot (source: WHY)

Figure 3-2. Without variation in both variables, we cannot find a correlation.

"정치적 관심도"와 "정칙적 성향(보수-진보)" 간 관계 해석

데이터 요약 & 시각화

동일한 평균, 분산, 상관계수

		I	I	I	I	II	IV		
	Х	Υ	Х	Υ	Х	Υ	Х	Υ	
평균	9	7.5	9	7.5	9	7.5	9	7.5	
분산	11	4.1	11	4.1	11	4.1	11	4.1	
상관계수	0.82		0.82		0.82		0.82		

1		11		m		IV	
×	ÿ	×	У	×	У	×	У
10.0	8.04	10.0	9.14	10.0	7.46	8.0	6.58
8.0	6.95	8.0	8.14	8.0	6.77	8.0	5.76
13.0	7.58	13.0	8.74	13.0	12.74	0.8	7.71
9.0	8.81	9.0	8.77	9.0	7.11	8.0	8.84
11.0	8.33	11.0	9.26	11.0	7.81	8.0	8.47
14.0	9.96	14.0	8.10	14.0	8.84	8.0	7.04
6.0	7.24	6.0	6.13	6.0	6.08	8.0	5.25
4.0	4,26	4.0	3.10	4.0	5.39	19.0	12.50
12.0	10.84	12.0	9.13	12.0	8.15	8.0	5.56
7.0	4.82	7.0	7.26	7.0	6.42	8.0	7.91
5.0	5.68	5.0	4.74	5.0	5.73	8.0	6.89

시각화를 통해 현실의 복잡성이 드러남

Data Visualization - Seeing is Believing

통계치와 시각화 결과를 함께 확인

Data Viz: Understand and Explain Data

Data: A New Language of Business Data Viz: A Medium of Data Communication

목적에 맞는 데이터 시각화 방법 선택

Visual Confirmation 가설을 시각적으로 검증

Visual Exploration 뭐라도 하나 걸렸으면

Visual Affirmation 검증된 사실을 주장/보고

Spurious Correlation (허위상관)

마요네즈 덜 먹으면 이혼을 덜 할까? 참고) http://www.tylervigen.com/spurious-correlations

Divorce rate in Maine

correlates with

Per capita consumption of margarine

◆ Margarine consumed ◆ Divorce rate in Maine

tylervigen.com

85

Correlation vs. Causation

Correlation helps you predict the future; Causality lets you change the future.

- Correlation: X의 변화로 Y의 변화 예측 가능
- Causation: X에 개입해서 Y를 바꿀 수 있음

대표적인 오류

교통비 Correlation 백반 가격 인상 인상

데이터 분석 주요기술

■ DESCRIBE (기술 분석) - 엑셀, 대쉬보드

• 데이터 특성과 모양을 요약

Looking Backward

EXPLORE (탐험적 분석) - 데이터 시각화 도구

Looking **Forward**

• 가설수립-데이터 감 잡기 위해 패턴 탐험

- PREDICT/INFER (예측·추론 분석) 통계/ML
 - 패턴(모형)을 통해 주어진 문제를 예측 설명

Machine Learning and Decision Making

Machine Learning: Decision Making Technology

- 인공지능의 한 분야로 사람으로부터 아주 제한된 지시만 받고 데이터를 학습하여 패턴을 추출, 의사결정에 활용하는 기술
- 기계에게 언어로 기술(codify)하기 힘든 것을 정답(Label)을 알고 있는 과거 데이터를 제공하여 학습하도록 함
- <u>폴라니의 역설</u>: 언어의 해상도가 인식의 해상도보다 낮다. (할 줄은 아는데 어떻게 하는지 말 못함)

Machine Learning and Enterprise Decision Making

Are You in Prediction Business or Explanation Business?

빈번한 덜 중요한 결정

빅 데이터 → 기계학습 → 예측 통한 의사결정 자동화

덜 빈번한 중요한 결정

스몰 데이터 → 기계학습 → 사실·증거 기반 더 좋은 결정

Explanation

Machine Learning

Supervised Machine Learning (지도 학습)

설명/예측하고 싶은 문제에 관련하여 정답을 알고 있는 데이터가 충분히 있는 경우 X로부터 Y를 유추하는 패턴을 찾는 것

X (Input)	Y (Output)	APPLICATION
Voice recording	Transcript	Speech recognition
Transaction records	Fraudulent (yes/no)	Fraud detection
Emails	Spam (yes/no)	Spam filtering
Ad + User Profile	Click (yes/no)	Personalized AD
Faces	Names	Face recognition
Korean	English	Language Translation

Supervised Machine Learning

Supervised Machine Learning (지도 학습)

모형이 투명한 경우(White Box), 설명·예측 둘 다 활용 가능

선형회귀 알고리즘 Y = a + b X₁ + c X₂ + d X₃

Ashenfelter's Wine Formula

Price = 12 + 0.001 겨울강수량 + 0.06 평 균온도 - 0.004 수확철강수량

Training Data Set

X ₁	X ₂	X ₃	Υ
겨울 강수량	수확철 강수량	평균 온도	와인 가격
13	35	35	9.5
22	25	25	3.5
25	21	21	3.2
11	18	18	3.5
47	45	45	4.7
	•	•	•

Black Box: 더 정확할지언정 인간이 이해하기 힘들다.

Trade Off Between Interpretability and Accuracy

Model Interpretability

정확함 vs. 올바름

Model should be Accurate for the Right Reason

Predictive Analytics for Complex Business Decision-Making

비지니스 의사결정에 예측모형을 활용하는 것이 힘들고 조심스러운 이유

Model Validity

데이터에 담기 어려운 현실세계의 우발성, 복잡성으로 모델의 정확도가 낮음

Model Diversity

데이터 속에 내재된 편견이 모델에 반영될 경우 현실이 오히려 강화/공고화됨

Statistics vs. Machine Learning

"Machine Learning is essentially a form of **applied statistics**" "Machine Learning is statistics scaled up to **big data**"

- **연역적 추론**(Deductive Reasoning): 가설수립 → 가설검증
- **모형의 타당성**: 가설 일반화를 위한 모형의 타당성·재현성이 중요

- **귀납적 추론**(Inductive Reasoning): 데이터 → 패턴
- 모형의 유용성: 의사결정에 활용하기 위한 모형의 유용성이 중요

결국 둘다 데이터를 통해 문제를 해결하는 데 사용됨 기술과 방법의 차이라기 보다는 분석 목표의 차이

features

데이터 분석 주요기술

- DESCRIBE (기술 분석) 엑셀, 대쉬보드
 - 데이터 특성과 모양을 요약
- EXPLORE (탐험적 분석) 데이터 시각화 도구
 - 가설수립-데이터 감 잡기 위해 패턴 탐험

- PREDICT/INFER (예측·추론 분석) 통계/ML
 - 패턴(모형)을 통해 주어진 문제를 예측 설명

Regression toward the Mean

우연(Chance)의 영향으로 평균(평범함)으로의 회귀

- 왕겨(Bran) 먹은 후 배변에 걸리는 시간(Oral-Anal Transit Time)이
 - 평균(48시간)보다 오래걸렸던 사람은 더 빨라졌고
 - 평균(48시간)보다 짧았던 사람은 더 길어졌고
 - 평균이었던 사람은 큰 변화가 없었다.

REGRESSION towards MEDIOCRITY in HEREDITARY STATURE. By Francis Galton, F.R.S., &c.

Heights of the Mid-		Heights of the Adult Children.											Total Number of		Medians.		
parents in inches.	Below	62:2	63.2	642	65-2	66:2	67:2	68-2	69-2	70-2	71.2	72:2	73-2	Above	Adult Children.	Mid- parents.	III OLLIANIS
Above 72-5 71-5 70-5 69-5 68-5 68-5 64-5 Below	:: :: :: :: :: :: :: ::	 3 3	1 1 7 5 3 9 4 2	 16 11 14 5 5 4 4	1 1 4 16 15 2 7 1	3 1 17 25 36 17 11 5	3 37 31 38 17 11 5	1 3 12 20 34 28 14 7	2 5 18 33 48 38 13 7 2 1	1 10 14 25 21 19 4 5	2 4 7 20 18 11 2	1 7 9 4 11 4 4 	3 2 3 4 3	4 2 3 5	4 19 43 68 183 219 211 78 66 23 14	5 6 11 22 41 40 33 20 12 5	72-2 69-9 69-5 68-9 68-2 67-6 66-7 65-8
Totals	5	7	32	59	48	117	138	120	167	99	64	41	17	14	928	205	
Medians		1	66.3	67.8	67:9	67.7	67:9	68-3	68-5	69-0	69-0	70-0					

Note.—In calculating the Medians, the entries have been taken as referring to the middle of the squares in which they stand. The reason why the headings run 62°2, 63°2, &c., instead of 62°5, 63°5, &c., is that the observations are unequally distributed between 63 and 63, 63 and 64, &c., there being a strong bias in favour of integral inches. After careful consideration, I concluded that the beadings, as adopted, best satisfied the conditions. This inequality was not apparent in the case of the Mid-parents.

선형회귀분석 (Linear Regression Analysis)

Supervised Machine-Learning

Regression Model: Y가 숫자형 변수(매출)인 경우

Classification Model: Y가 범주형 변수(성별)인 경우

Linear Regression

- 가장 오래되고, 널리 쓰이고, 결과를 이해하기 쉬운 지도학습 알고리즘
- 독립변수(X)를 가지고 숫자형 종속변수(Y)를 가장 잘 설명·예측(Best Fit)하는 선형 관계(Linear Relationship)를 찾는 방법 중 하나
- X가 범주형 변수(성별)인 경후, 집단(남·녀) 간 Y값의 차이를 분석

계산방법 (Least Squares)

X와 Y 사이에 선형적 관계가 있다는 가정하에 실제 Y값과 예측한 Y값의 차이를 최소화하는 방정식을 계산

$$Y = b_0 + b_1X + error$$

- b₀: Y축 절편(Intercept); 예측변수가 0일 때 기대 점수를 나타냄
- b₁: 기울기로 X가 한 단위 증가했을 때의 Y의 평균적 변화값을 나타냄

*참고: http://students.brown.edu/seeing-theory/regression/index.html

선형회귀분석 (Linear Regression Analysis)

P-Value (Probability-Values)

Q. X와 Y 사이에 통계적으로 유의미한 관계가 있나?

- Statistical Significance (통계적 유의성)
- 데이터를 통해 확인한 관계가 우연히 나왔을 확률
- P값이 0.03: 데이터에서 발견한 관계가 운일 확률 3%
- <u>관계의 세기(Size of an Effect)</u>를 나타내는 것은 아님

R² (R-SQUARED; 결정계수)

Q. X가 Y를 얼마나 잘 설명/예측하는가?

• Goodness of Fit: X로 설명할 수 있는 Y 변화량의 크기

Statistical Significance and P-Value(Probability-Values)

Outcome	Campaign A	Campaign B
Conversion	200	182
No Conversion	23539	22406
Conversion Rate	0.8425%	0.8057%

- 캠페인 A의 전환률이 0.0368% 높음; 차이가 의미가 있나?
- 2. 통계적 유의성 검증이 꼭 필요한가? (이 정도면 작은 샘플을 사용하여 일반화하는 일을 걱정할 필요없는 빅데이터 아닌가?)
- 3. 두 캠페인 사이의 전환율 차이가 우연은 아닌가?
 - 둘 간 전환율 차이가 없다고 가정(H_0)하고 두 캠페인 결과를 하나로 섞는다
 - 섞은 데이터에서 23739, 22588개를 Resampling하여 두 캠페인 간 전환율 차이를 기록 (1,000번 반복)
 - 차이(test statistic; 검정통계량)가 > 0.0368%보다 큰 경우의 확률을 계산: 30.8% (P-Value: 0.308)

Conversion rate (percent)

선형회귀분석: P-Value (Probability-Values)

P값: (선형적) 관계가 우연히 나왔을 확률

작은 P값: 데이터에서 발견한 관계가 우연이 아니다 (=통계적으로 유의미)

귀무 가설(H₀; Null Hypothesis): X와 Y 사이에 관계가 없다고 가정 P = 0.03: 관계가 없단 가정 하에 데이터에서 발견한 관계 혹은 더 극단적인 관계가 관측될 확률 = 3%

정상적인(앞뒷면 확률이 동일한) 동전을 20번 던져 앞면이 나온 횟수에 대한 확률 분포

선형회귀분석 (Linear Regression Analysis)

R² = 설명한 Y 변화량 / 총 Y 변화량 = (총 Y 변화량 - 설명 못 한 Y 변화량) / 총 Y 변화량 = 1 - (설명 못 한 Y 변화량 / 총 Y 변화량)

총 Y 변화량

선형회귀분석: 결정계수(R²: R-SQUARED)

낮은 결정계수가 반드시 나쁜 (Inherently Bad) 것은 아님

- 동일한 회귀방정식: Y = 44 + 2*X; P < 0.001
- 우측 모형이 좌측 모형보다 예측 정확도(R²)는 매우 높음
- 변수 간 경향성은 동일: X 1단위 증가 → Y 2단위 증가

Binning: 선형회귀분석으로 비선형적 관계 찾기

Binning: 숫자형 변수를 범주형 변수로 변형

- 이익(Y)과 운송비용(X; 숫자)간에는 선형적 관계 없음
- 운송비용을 범주형 변수로 변형하면 비선형적 관계 발견
- 해석, 서로 다른 운송비용 구간별로 이익의 차이가 존재

No.	변수명	R² ⊕	Adjusted R ² 🕕	P-Value 🛈	레코드 갯수 🕡
3	Shipping_Cost_bin	0.078	0.075	0.00000 (< 0.001 ***)	3,319
4	Product_Sub_Category	0.064	0.059	0.00000 (< 0.001 ***)	3,319

Simple Linear Regression Analysis – Advertisement

매출에 미치는 매체 영향에 상호작용이 없다고 가정하였을 때

- 1. TV, Radio, 신문 중 Sales를 가장 정확하게 예측하는 매체는?
- 2. TV, Radio, 신문 중 Sales 증가에 가장 큰 효과가 있는 매체는?

이번에는 변수 2개[TV, Radio]를 사용하여 Sales와의 관계를 설명·예측하는 회귀모형을 만들어 봅시다.

$$Y = b_0 + b_1 X_1 + b_2 X_2$$

Sales = 2.9 + 0.045 x TV + 0.187 x Radio

SUMMARY OUTPUT				
Regression St	atistics			
Multiple R	0.94720339			
R Square	0.897194261			
Adjusted R Square	0.896150548			
Standard Error	1.681360913			
Observations	200			
ANOVA				
	df	SS	MS	F
Regression	2	4860.2348	2430.1174	859.6177183
Residual	197	556.91398	2.8269745	
Total	199	5417.1488		
	Coefficients	tandard Errc	t Stat	P-value
Intercept	2.921099912	0.2944897	9.9191929	4.56556E-19
X Variable 1	0.045754815	0.0013904	32.908708	5.43698E-82
X Variable 2	0.187994227	0.00804	23.382446	9.77697E-59

데이터 분석 주요기술

■ DESCRIBE (기술 분석) - 엑셀, 대쉬보드

• 데이터 특성과 모양을 요약

- EXPLORE (탐험적 분석) 데이터 시각화 도구
 - 가설수립-데이터 감 잡기 위해 패턴 탐험

- PREDICT/INFER (예측·추론 분석) 통계/ML
 - 패턴(모형)을 통해 주어진 문제를 예측 설명

Decision Tree and Classification

Supervised Machine-Learning

Regression Model: Y가 숫자형 변수(매출)인 경우

Classification Model: Y가 범주형 변수(성별)인 경우

• **Decision Tree:** 의사결정트리; 대표적 Classification Model

• Classification: 서로 다른 집단을 구분하는 규칙(경계) 찾기

Data-Driven Farmer

Linear Classifier

Decision Tree - Minimizing Entropy

엔트로피(Entropy): Measure of Impurity

- Purity: 엔트로피를 최소화하도록(= 끼리끼리 모이도록) 공간을 구획하는 문제 Homogeneity: 특정 집단이 밀집한 세그먼트의 논리적 규칙을 찾는 문제

Decision Tree - Minimizing Entropy

분류규칙

규칙 (Rule Set)	확률 (Probability)
IF (동아리경험 < 0.8년) and (인내력역량 < 87) then Class = 저성과 신입사원	100% (12/12)
IF (동아리경험 < 0.8년) and (인내력역량 >= 87) then Class = 고성과 신입사원	67% (2/3)
IF (동아리경험 >= 0.8년) and (인내력역량 < 74) then Class = 저성과 신입사원	57% (4/7)
IF (동아리경험 >= 0.8년) and (인내력역량 >= 74) then Class = 고성과 신입사원	100% (10/10)

Decision Tree – Terminology

Decision Tree – Titanic Dataset

Variable Definition		Key
survival	Survival	0 = No, 1 = Yes
pclass	Ticket class	1 = 1st, 2 = 2nd, 3 = 3rd
sex	Sex	
Age	Age in years	
sibsp	# of siblings / spouses aboard the Titanic	Sibling = brother, sister, stepbrother, stepsister Spouse = husband, wife (mistresses and fiancés were ignored)
parch	# of parents / children aboard the Titanic	Parent = mother, father Child = daughter, son, stepdaughter, stepson
ticket	Ticket number	
fare	Passenger fare	
cabin	Cabin number	
embarked	Port of Embarkation	C = Cherbourg, Q = Queenstown, S = Southampton

Decision Tree – Titanic Dataset

Decision Tree – Titanic Dataset

Confusion Matrix: 분류 모형의 성능을 평가하는 방법 이해하기는 쉬운데 용어가 어려움

- True Positive: 맞는 걸 맞다고 하는 것
- True Negative: 아닌 걸 아니라고 하는 것
- False Positive (I형 오류): 아닌데 맞다고 하는 것 (거짓을 믿는 것)
- False Negative (II형 오류): 긴데 아니다고 하는 것 (참을 거부하는 것)

Confusion Matrix	Yes (Predicted)	No (Predicted)					
Yes (Actual)	227 True Positive	115 False Negative TYPE II Error	재	Recall(Y) 재현률 = 66%		227 227 + 115	66.4%
No (Actual)	28 False Positive TYPE I Error	521 True Negative					
Precision(Y) 정밀도 = 227 89% 227 + 28		28		Accuracy 모형 정확도 = 227 + 521 227 + 115 + 28 84%		227 + 521 115 + 28 + 521	

Closing Remarks

데이터 분석 (Data + Data Literacy) / 방해물 = 유용한 패턴

Data Literacy

데이터에서 발견한 유용한 사실을 공감할 수 있는 형식으로 표현, 이롭게 활용되도록 하는 것

Data Literacy: from Data Phobia to Data Fluency

Data Phobia

Data Fluency

개별 레코드에 담긴 패턴(효과/시그널)이 클수록 패턴 발견을 위해 적은 데이터가 필요

Bigger Data [Liability]

Smaller Data [Asset; 독점]

Finding the Right Angle: 땅볼(Ground Ball) vs. 뜬볼(Fly Ball)

Model Transparency

기계의 예측을 맹목적으로 따를 것이 아니라 현실에 직접 개입하려 한다면 모형의 투명성(설명력)이 예측력보다 중요 *Right to Explanation (EU GDPR)

Black Box 모형 - Random Forest 높은 예측정확도, 낮은 설명력

Linear Thinking vs. Non-Linear Relationship (source: нвк 2017.05월호)

당신 회사에 다음과 같이 두가지 모델의 차량이 있다. 모든 자동차는 일년에 10,000 마일을 주행한다.

Fleet A
10 MPG SUV

Fleet B20 MPG Sedan

Q. OPEX(기름값)을 줄이기 위한 당신의 선택은?

- A. 10 MPG 차량을 20 MPG 차량으로 교체
- B. 20 MPG 차량을 50 MPG 차량으로 교체

Linear Thinking vs. Non-Linear Relationship (source: HBR 2017.05월호)

10,000 마일당 사용한 기름 (Gallons)

	현재	차량 업그레이드 후	절감분
A.	1,000 (@10 MPG)	500 (@20 MPG)	500
B.	500 (@20 MPG)	200 (@50 MPG)	300

Correlation vs. Causation

바람이 많이 불면 나무통 가게가 돈을 번다.

Two Types of Causality Problems

Omitted Variable Bias

- 교육 받아서 성과가 좋아 졌나?
- (경기 탓으로) 성과가 안 좋아서 교육 받았나?

Reverse Causality

- 한 업무에 오래 있어서 성과가 낮나?
- 성과가 낮아서 한자리에 오래 있었나?

Correlation을 언제 의사결정에 활용해야 하나?

데이터를 통해 [소고기와 우유]를 구매한 고객들의 자동차 사고 발생률이 [라면과 소주]를 구매한 고객보다 높은 걸 확인했다. 보험회사가 취할 행동은?

가. 구매패턴에 따른 보험료 차등 적용 나. 저위험군 고객들 타겟 마켓팅

Correlation을 언제 의사결정에 활용해야 하나?

데이터를 통해 [소고기와 우유]를 구매한 고객들의 자동차 사고 발생률이 [라면과 소주]를 구매한 고객보다 높은 걸 확인했다. 보험회사가 취할 행동은?

나. 저 점 고객들 타 네 마키팅

관계에 대한 높은 확신 (인과관계)

Act

가. 구매패턴에 따른 보험료 차등 적용

나. 저위험군 고객들 타겟 마켓팅

Don't Act

관계에 대한 낮은 확신

> 실<**득** 실>득

Why Model Transparency Matters!

결핵 치사율 예측모형

결핵환자 중 천식을 앓고 있는 사람은 집으로 돌려 보내세요.

<u>투명한 모형과 사람의 판단이</u> 환자를 살렸습니다.

Insight Matrix

X(입력변수)와 Y(목표변수) 간의 관계

기존 믿음(가설)을 정량적으로 검증

△ 관

관계 없음

몰랐던 사실 발견 (Unknown Unknown)

관계 있는 줄 알았는데 없음 (Myth Busting)

example) 임직원 성과

1				1	
	X (In	put Variables; F	eatures)		
		성격			
	Hiring	학력/인지능력			
		채용 경로			
		리더쉽			Y: 성과
	Culture / Management	보상			
		육성			
		근태			
	Behavior	협업			
		만족도			

Change: Targeting vs. Optimization

Targeting

특정 대상 선정 후 개입

Optimization

X를 바꾸어서 Y를 개선

Y(퇴사?)	X1	부서	지역	X4	회의 참여	X5	••••
No		재무	서울		32		
No		R&D	부산		14		
No		총무	서울		9		
No		인사	부산		26		
No		R&D	서울		43		
Yes		마케팅	서울		78		
Yes		인사	일본		63		
Yes		인사	일본		51		
Yes		인사	일본		103		

Noise와 Signal을 어떻게 구분할까?

기량의 역설 (Paradox of Skill)

기량↗ 기량의 변량↘ 운(Chance)↗

Compare The Extremes

Data → **Insight** → **Belief**

①믿음은 어디에서 오는가? ②새로운 사실은 믿음을 바꾸는가?

Data → **Insight** → **Belief** → **Change**

믿음을 바꿔 세상을 바꾸기

[1990 베트남, 빈곤 아동들의 영양실조 문제] "6개월 안에 변화를 만들지 못하면 떠나시오!"

구조적 문제들

위생설비, 깨끗한 물, 무지함

TBU: True But Useless

