Modélisation et validation formelle d'architectures logicielles basées sur les patrons de sécurité

Philippe Dhaussy

Univ. Bretagne Loire
Lab-STICC
UMR CNRS 6285
ENSTA-Bretagne, Brest.
philippe.dhaussy@ensta-bretagne.fr

fichier: valid_ArchiSecu_ACID_<data>.ppt

Modélisation et validation formelle d'architectures logicielles sécurisées

- Contexte, motivations
- Patterns de sécurité
- Formalisation
- Processus d'intégration dans une architecture et validation
- Perspectives

Propriétés de sécurité

Intégrité : Pas d'altération ou de destruction (volontaire ou accidentelle) des données, lors de leur traitement, conservation ou transmission,. Conservation du format permettant leur utilisation.

Confidentialité: non divulgation d'information aux entités non autorisées.

Disponibilité: « être prêt à l'utilisation »

Associé à la sûreté de fonctionnement. Liée au contexte et prend en compte les temps de réponses et les modèles de fautes (pannes franches, fautes d'omissions, temporelles, byzantines).

Autres propriétés: Intimité (privacy), Authenticité / non-répudiation, Responsabilité, Pérennité, Exclusivité, Protection de la propriété intellectuelle, ... [TCSEC, 1985, ITSEC 1991, Bishop, 2003, Clemente 2010, Rouzaud Cornabas 2010].

Modèle : abstraction de l'architecture

Modèle : abstraction de l'architecture

Processus de sécurisation et validation

Modélisation et validation formelle d'architectures logicielles sécurisées

- Contexte, motivations
- Patterns de sécurité
- Formalisation
- Processus d'intégration dans une architecture et validation
- Perspectives

Patrons de sécurité

Solution générale pour des problèmes de sécurité répertoriés

- [Yoder & Barcalow, Proc of 4th Pattern Language of programs, 1997]
- [Schumacher, Roedig, 2001]
- [Schumacher, Fernandez, Hybertson, Buschmann. Wiley & Sons, 2005]
- [Fernandez, 2006]
- [Heyman, Yskout, Scandariato, Joosen. Proc. of 3rd International Workshop on Software
- Engineering for Secure Systems, 2007]
- [Yoshioka, Washizaki, Maruyma. Progress in Informatics, 2008]
- https://en.wikipedia.org/wiki/Security_Patterns
- [Washizaki, Fernandez, Maruyama, Kubo, Yoshioka. Int Conf on Database and Expert Systems Applications, 2009.]
- [Hafiz, Adamczyk, Johnson. IEEE Software, 2007]
- Hafiz, Johnson. Tech report, 2006]
- http://www.munawarhafiz.com/securitypatterncatalog/index.php

Exemple: Single Access Point

SingleAccess Point Authorization_Information Access_log

access ()

Single Access Point : fonctionnalités

Exemple: Authorization

SAP : exemple d'architecture

Hypothèses

- H1 : l'attaquant peut insérer des messages sur n'importe quel canal de communication.
- H2: l'attaquant ne peut pas supprimer un message sur un canal.
- H3: l'attaquant ne peut pas modifier un message signé par un SAP, ni un message ayant pour source une autre entité que lui.

SAP: exemple d'architecture

att1 : stopée par sap_net_ensi1

att2: non stopée

SAP: exemple d'architecture

att2 : intégration de sap_c1 et sap_c2

Composition de patterns

Sécurisation de l'architecture

16

Etude de comportement face aux attaques

17

Questions de recherche abordées

[Thèse Fadi Obeid, Lab-STICC, Ensta Bretagne, mai 2018]

- 1. Comment spécifier formellement les patrons de sécurité (conformance avec la politique de sécurité souhaitée) ?
- 2. Comment les intégrer dans un modèle d'architecture (composition) ?
- 3. Comment valider le modèle résultant sécurisé (vérifier des propriétés ?)

Modélisation et validation formelle d'architectures logicielles sécurisées

- Contexte, motivations
- Patterns de sécurité
- Formalisation
- Processus d'intégration dans une architecture et validation
- Perspectives

Modèles d'architecture

Validatio

Formalisation des propriétés de sécurité (SAP)

Confidentialité:

Tout message échangé en interne d'un ensemble protégé de composants ne doit pas être vu à l'extérieur de cet ensemble.

```
prt_sap_net_4:

\forall m \in \mathcal{M}ess, \ \forall e \in \mathcal{E}nt, \ \forall c_s \in \mathcal{S}ap\_Net,

\Box [evt\_receive (e, m) \land (m.comInfo.source \in c_s.subs \land m.comInfo.target \in c_s.subs) \Rightarrow e \in c_s.subs]
(3.10)
```

Formalisation des propriétés de sécurité (SAP)

Authenticité:

Tout message, provenant de l'extérieur d'un ensemble de composants protégés par un SAP, doit être contrôlé avant d'être transmis aux composants internes à l'ensemble.

```
prt_sap_net_1.a:

\forall m \in \mathcal{M}ess, \ \forall c_s \in \mathcal{S}ap\_Net, \ \forall c \in c_s.subs,

\Box [pre\_receive (c, m) \land m.comInfo.source \notin c_s.subs \Rightarrow pre\_check (c_s, FrwReq(m))]
(3.6)
```

Formalisation des propriétés de sécurité (SAP)

Disponibilité:

Tout requête de transfert de message par un SAP_NET, doit être contrôlée.

prt_sap_net_3:

$$\forall req \in \mathcal{F}rwReq, \ \forall \ c_s \in \mathcal{S}ap_Net,$$

 $\Box [evt_request \ (c_s, \ req)]$ (3.9)
 $\Diamond evt \ check \ (c_s, \ req)]$

Autres patrons formalisés

- CheckPoint
- Authorization
- Firewall

Propriétés de sécurité (mécanisme de type SAP)

Table 5.7: Propriétés de sécurité vérifiées de type SAP.

Propriétés	Localisations	Types de propriétés
$prt_sap_1_loc$	avec $loc \in \{gcs_i, net_i \ (i \in \{1, 2\}),\$	Disponibilité (vivacité)
	$plc_j \ (j \in \{1 \dots 4\})\}$	
$prt_sap_net_1.a_loc$	avec $loc \in \{gcs_i, net_i \ (i \in \{1, 2\})\}$	Authenticité (invariant)
$prt_sap_net_1.b_loc$	avec $loc \in \{gcs_i, net_i \ (i \in \{1, 2\})\}$	Authenticité (invariant)
$prt_sap_net_2_loc$	avec $loc \in \{gcs_i, net_i \ (i \in \{1, 2\})\}$	Disponibilité (vivacité)
$prt_sap_net_3_loc$	avec $loc \in \{gcs_i, net_i \ (i \in \{1, 2\})\}$	Disponibilité (vivacité)
$prt_sap_net_4_loc$	avec $loc \in \{gcs_i, net_i \ (i \in \{1, 2\})\}$	Confidentialité (invariant)
$prt_sap_c_1_loc$	avec $loc \in \{gcs_i \ (i \in \{1, 2\}),\$	Authenticité (invariant)
	$plc_j \ (j \in \{1 \dots 4\})\}$	
$prt_sap_c_2_loc$	avec $loc \in \{gcs_i \ (i \in \{1, 2\}),\$	Disponibilité (vivacité)
	$plc_j \ (j \in \{1 \dots 4\})\}$	E 21 E 22
$prt_sap_c_3_loc$	avec $loc \in \{gcs_i \ (i \in \{1, 2\}),\$	Disponibilité (vivacité)
	$plc_j \ (j \in \{1 \dots 4\})\}$	

Modélisation et validation formelle d'architectures logicielles sécurisées

- Contexte, motivations
- Patterns de sécurité
- Formalisation
- Processus d'intégration dans une architecture et validation
- Perspectives

Processus: Composition et Validation

Une approche

Fonctionnalité de sécurité : intégrée dans un composant

Approche : Automate d'une d'entité sécurisée : cas type NET

Approche : Automate d'une d'entité sécurisée : cas type ACCESS

Simulation OBP: mode attaque

Simulation OBP : mode attaque

Simulation OBP: mode attaque

Simulation OBP : mode attaque

Propriétés de sécurité (mécanisme de type SAP)

Sureté: Invariant

prt_sap_c_1:
$$\forall$$
 c ∈ Sap_*C*, \forall *e* ∈ Ent, \forall opRes ∈ OpRes,

[] [evt_access (c, e, opRes)) => pre_check (c, AccReq (e, opRes))]

Vivacité : SE-LTL

$$prt_sap_c_3 : \forall c \in Sap_C, \forall req \in AccReq,$$

[] [
$$evt_request(c, req) => \Diamond evt_check(c, req)$$
]

Propriétés de sécurité (mécanisme de type SAP) Expression en CDL

Sureté: Invariant ou observateur de rejet

prt_sap_c_1 : Invariant

assert [not evt_access (c, e, opRes)) or pre_check (c, AccReq (e, opRes))]]

Vivacité: Observateur

prt_sap_c_3:

Vérification sous OBP

Sureté: Invariant: analyse d'atteignabilité

Vivacité:

Cas Traces finies :

Pour tous les états finaux du graphe :

L'observateur ne reste pas dans Wait

Cas Traces non finies :

Extension d'OBP : Plug (model-checking LTL, ...bientôt SE-LTL)

[] [*Obs.Wait* => ♦ not *Obs.Wait*]

Modélisation et validation formelle d'architectures logicielles sécurisées

- Contexte, motivations
- Patterns de sécurité
- Formalisation
- Processus d'intégration dans une architecture et validation
- Perspectives

Processus

Prototype en cours de développement

ProcessusPrototype en cours de développement

Perspectives

- Intégration des patrons
 - → Evaluation des stratégies (critères)
- Politiques de sécurité complexes (dynamiques)
 - → Composition de patrons
 - → génération des propriétés à vérifier
- Prise en compte des types d'architecture
 - → communication synchrones, modèles temporisés, ...
- Composition de patrons
 - → composition (incrémentale ?) d'automates
 - → Preuves

Merci pour vos questions

http://www.obpcdl.org

Analyse de la complexité

Souhait : la complexité dédiée à la sécurité : non proportionnelle au traffic

Long. des exécutions (mode sécurisé) / Long. des exécutions (mode non sécurisé)

Nb interactions avec l'environnement

Modèles d'architecture

