GREEN, STOKES, GAUSS

Curso 2019-2020

1777-1855

G. Green 1793-1841

G.G. Stokes 1819-1903

Consideremos $\Omega \subset \mathbb{R}^n$ un abierto no vacío (habitualmente, n=2,3).

- Un campo escalar en Ω es una aplicación $u \colon \Omega \longrightarrow \mathbb{R}$. El campo u se denomina de clase $\mathcal{C}^k(\Omega)$, $k \geq 0$, si u es de clase $\mathcal{C}^k(\Omega)$. Los campos escalares serán habitualmente denotados por u, v, f, g.
- **②** Un campo vectorial en Ω es una aplicación $f : \Omega \longrightarrow \mathbb{R}^n$.

Como $f(x) = (f_1(x), \dots, f_n(x))$, a los campos escalares o funciones $f_j : \Omega \longrightarrow \mathbb{R}^n$, $j = 1, \dots, n$, se las denomina componentes del campo f.

El campo f se denomina de clase $C^k(\Omega; \mathbb{R}^n)$, $k \geq 0$ si f es de clase $C^k(\Omega; \mathbb{R}^n)$; es decir, si para cada $j = 1, \ldots, n$, $f_j \in C^k(\Omega)$.

Los campos vectoriales serán denotados por f, g, u, F.

Consideremos $\Omega \subset \mathbb{R}^n$ un abierto no vacío (habitualmente, n=2,3).

- Un campo escalar en Ω es una aplicación $u \colon \Omega \longrightarrow \mathbb{R}$. El campo u se denomina de clase $\mathcal{C}^k(\Omega)$, $k \geq 0$, si u es de clase $\mathcal{C}^k(\Omega)$.
- ② Un campo vectorial en Ω es una aplicación $f \colon \Omega \longrightarrow \mathbb{R}^n$. El campo f se denomina de clase $\mathcal{C}^k(\Omega;\mathbb{R}^n)$, $k \geq 0$ si $f \in \mathcal{C}^k(\Omega;\mathbb{R}^n)$.
- \leadsto El campo $r \colon \mathbb{R}^n \longrightarrow \mathbb{R}^n$ definido como $r(x) = (x_1, \dots, x_n)$ se denomina campo radial de \mathbb{R}^n . La componente j-ésima del campo radial es $r_j(x) = x_j$. Claramente, $r \in \mathcal{C}^\infty(\mathbb{R}^n, \mathbb{R}^n)$.

Consideremos $\Omega \subset \mathbb{R}^n$ un abierto no vacío (habitualmente, n=2,3).

- Un campo escalar en Ω es una aplicación $u \colon \Omega \longrightarrow \mathbb{R}$. El campo u se denomina de clase $\mathcal{C}^k(\Omega)$, $k \geq 0$, si u es de clase $\mathcal{C}^k(\Omega)$.
- ② Un campo vectorial en Ω es una aplicación $f \colon \Omega \longrightarrow \mathbb{R}^n$. El campo f se denomina de clase $\mathcal{C}^k(\Omega;\mathbb{R}^n)$, $k \geq 0$ si $f \in \mathcal{C}^k(\Omega;\mathbb{R}^n)$.
- \leadsto El campo $\mathbf{r} \colon \mathbb{R}^n \longrightarrow \mathbb{R}^n$ definido como $\mathbf{r}(x) = (x_1, \dots, x_n)$ se denomina campo radial de \mathbb{R}^n . La componente j-ésima del campo radial es $\mathbf{r}_j(x) = x_j$. Claramente, $\mathbf{r} \in \mathcal{C}^\infty(\mathbb{R}^n, \mathbb{R}^n)$.
- \leadsto La norma del campo radial, es el campo escalar $r\colon \mathbb{R}^n \longrightarrow \mathbb{R}$ definido como $r(x) = |\mathsf{r}(x)| = \sqrt{x_1^2 + \dots + x_n^2} \Longrightarrow r \in \mathcal{C}^\infty(\mathbb{R}^n \setminus \{\mathbf{0}\}).$

Consideremos $\Omega \subset \mathbb{R}^n$ un abierto no vacío (habitualmente, n=2,3).

- Un campo escalar en Ω es una aplicación $u \colon \Omega \longrightarrow \mathbb{R}$. El campo u se denomina de clase $\mathcal{C}^k(\Omega)$, $k \geq 0$, si u es de clase $\mathcal{C}^k(\Omega)$.
- ② Un campo vectorial en Ω es una aplicación $f \colon \Omega \longrightarrow \mathbb{R}^n$. El campo f se denomina de clase $\mathcal{C}^k(\Omega;\mathbb{R}^n)$, $k \geq 0$ si $f \in \mathcal{C}^k(\Omega;\mathbb{R}^n)$.
- \leadsto El campo $r \colon \mathbb{R}^n \longrightarrow \mathbb{R}^n$ definido como $r(x) = (x_1, \dots, x_n)$ se denomina campo radial de \mathbb{R}^n . La componente j-ésima del campo radial es $r_j(x) = x_j$. Claramente, $r \in \mathcal{C}^\infty(\mathbb{R}^n, \mathbb{R}^n)$.
- \leadsto La norma del campo radial, es el campo escalar $r \colon \mathbb{R}^n \longrightarrow \mathbb{R}$ definido como $r(x) = |\mathsf{r}(x)| = \sqrt{x_1^2 + \dots + x_n^2} \Longrightarrow r \in \mathcal{C}^\infty(\mathbb{R}^n \setminus \{\mathbf{0}\}).$
- ▶ Un campo escalar $u : \mathbb{R}^n \setminus \{0\} \longrightarrow \mathbb{R}$ se denomina radial si existe $h : (0, +\infty) \longrightarrow \mathbb{R}$ con u(x) = h(r(x)).

 Claramente $u \in \mathcal{C}^k(\mathbb{R}^n \setminus \{0\})$ sii $h \in \mathcal{C}^k((0, +\infty))$.

Gradiente, Divergencia, Laplaciano

Sean un abierto $\Omega \subset \mathbb{R}^n$, el campo escalar $u \colon \Omega \longrightarrow \mathbb{R}$ y el campo vectorial $f \colon \Omega \longrightarrow \mathbb{R}^n$ cuyas componentes son f_1, \ldots, f_n .

• Si $u \in \mathcal{C}^1(\Omega)$, el gradiente de u es el campo

$$\nabla u = \left(\frac{\partial u}{\partial x_1}, \dots, \frac{\partial u}{\partial x_n}\right)^\top.$$

② Si $\mathbf{f} = (f_1, \dots, f_n)^{\top} \in \mathcal{C}^1(\Omega; \mathbb{R}^n)$, la divergencia de \mathbf{f} es la función

$$\operatorname{div}(f) = \frac{\partial f_1}{\partial x_1} + \dots + \frac{\partial f_n}{\partial x_n}.$$

3 Si $u \in \mathcal{C}^2(\Omega)$, el laplaciano de u es la función

$$\Delta(u) = \operatorname{div}(\nabla u) = \frac{\partial^2 u}{\partial x_1^2} + \dots + \frac{\partial^2 u}{\partial x_n^2}.$$

Sean $p,q\in\mathbb{N}$, $k,m,n\in\mathbb{N}^*$ y $\Omega\subset\mathbb{R}^n$ abierto. Denominaremos operador diferencial a $T\colon\mathcal{C}^p(\Omega;\mathbb{R}^k)\longrightarrow\mathcal{C}^q(\Omega;\mathbb{R}^m)$ que sea lineal.

Sean $p,q\in\mathbb{N}$, $k,m,n\in\mathbb{N}^*$ y $\Omega\subset\mathbb{R}^n$ abierto. Denominaremos operador diferencial a $T\colon\mathcal{C}^p(\Omega;\mathbb{R}^k)\longrightarrow\mathcal{C}^q(\Omega;\mathbb{R}^m)$ que sea lineal.

① Gradiente: Si $p \geq 1$, $\nabla : \mathcal{C}^p(\Omega) \longrightarrow \mathcal{C}^{p-1}(\Omega; \mathbb{R}^n)$

$$\nabla u = \left(\frac{\partial u}{\partial x_1}, \dots, \frac{\partial u}{\partial x_n}\right)^\top.$$

2 Divergencia: Si $p \ge 1$, div: $C^p(\Omega; \mathbb{R}^n) \longrightarrow C^{p-1}(\Omega)$

$$\operatorname{div}(\mathsf{f}) = \frac{\partial f_1}{\partial x_1} + \dots + \frac{\partial f_n}{\partial x_n}.$$

3 Laplaciano: Si $p \geq 2$, $\Delta : \mathcal{C}^p(\Omega) \longrightarrow \mathcal{C}^{p-2}(\Omega)$, $\Delta = \operatorname{div} \circ \nabla$,

$$\Delta(u) = \frac{\partial^2 u}{\partial x_1^2} + \dots + \frac{\partial^2 u}{\partial x_n^2}.$$

Sean $p,q\in\mathbb{N}$, $k,m,n\in\mathbb{N}^*$ y $\Omega\subset\mathbb{R}^n$ abierto. Denominaremos operador diferencial a $T\colon\mathcal{C}^p(\Omega;\mathbb{R}^k)\longrightarrow\mathcal{C}^q(\Omega;\mathbb{R}^m)$ que sea lineal.

- Gradiente: Si $p \geq 1$, $\nabla \colon \mathcal{C}^p(\Omega) \longrightarrow \mathcal{C}^{p-1}(\Omega; \mathbb{R}^n)$ El campo vectorial f se denomina gradiente si existe una función $u \in \mathcal{C}^1(\Omega)$, denominada potencial (escalar) de f, tal que $f = \nabla u$.
- ② Divergencia: Si $p \geq 1$, $\operatorname{div}: \mathcal{C}^p(\Omega; \mathbb{R}^n) \longrightarrow \mathcal{C}^{p-1}(\Omega)$ El campo $f \in \mathcal{C}^1(\Omega, \mathbb{R}^n)$ se denomina solenoidal o incompresible si $\operatorname{div} f = 0$; es decir si $f \in \ker(\operatorname{div})$. A veces se denota $\operatorname{div}(f) = \nabla \cdot f$.
- **3** Laplaciano: Si $p \ge 2$, Δ : $C^p(\Omega)$ → $C^{p-2}(\Omega)$, $\Delta = \text{div} \circ \nabla$, El campo escalar $u \in C^2(\Omega)$ se denomina armónico si $\Delta u = 0$; es decir si $u \in \text{ker}(\Delta)$.

Sean $p,q\in\mathbb{N}$, $k,m,n\in\mathbb{N}^*$ y $\Omega\subset\mathbb{R}^n$ abierto. Denominaremos operador diferencial a $T\colon\mathcal{C}^p(\Omega;\mathbb{R}^k)\longrightarrow\mathcal{C}^q(\Omega;\mathbb{R}^m)$ que sea lineal.

- **①** Gradiente: Si $p \geq 1$, $\nabla : \mathcal{C}^p(\Omega) \longrightarrow \mathcal{C}^{p-1}(\Omega; \mathbb{R}^n)$
- **2** Divergencia: Si $p \geq 1$, div: $C^p(\Omega; \mathbb{R}^n) \longrightarrow C^{p-1}(\Omega)$
- **3** Laplaciano: Si $p \geq 2$ div: $C^p(\Omega) \longrightarrow C^{p-2}(\Omega)$
- **1** Laplaciano de campos: Si $p \geq 2$, $\Delta \colon \mathcal{C}^p(\Omega; \mathbb{R}^n) \longrightarrow \mathcal{C}^{p-2}(\Omega; \mathbb{R}^n)$

$$\Delta(f) = (\Delta f_1, \dots, \Delta f_n)^{\top}.$$

El campo vectorial $f \in C^2(\Omega, \mathbb{R}^n)$ se denomina armónico si $\Delta f = 0$; es decir si $f \in \ker(\Delta)$.

- ▶ Si $\nabla u = \nabla v \Longrightarrow u v$ es constante en cada componente conexa de Ω .

- ▶ Si $\nabla u = \nabla v \Longrightarrow u v$ es constante en cada componente conexa de Ω .
- ▶ Un abierto $\Omega \subset \mathbb{R}^n$ no es conexo sii $\Omega = \Omega_1 \cup \Omega_2$ donde Ω_1 y Ω_2 son abiertos no vacíos de \mathbb{R}^n tales que $\Omega_1 \cap \Omega_2 = \emptyset$.

- ▶ Si $\nabla u = \nabla v \Longrightarrow u v$ es constante en cada componente conexa de Ω .
- ▶ Un abierto $\Omega \subset \mathbb{R}^n$ no es conexo sii $\Omega = \Omega_1 \cup \Omega_2$ donde Ω_1 y Ω_2 son abiertos no vacíos de \mathbb{R}^n tales que $\Omega_1 \cap \Omega_2 = \emptyset$.
- ▶ Cada abierto $\Omega \subset \mathbb{R}^n$ puede expresarse como unión disjunta de abiertos conexos no vacíos, las componentes conexas de Ω .

- ▶ Si $\nabla u = \nabla v \Longrightarrow u v$ es constante en cada componente conexa de Ω .
- ▶ Un abierto $\Omega \subset \mathbb{R}^n$ no es conexo sii $\Omega = \Omega_1 \cup \Omega_2$ donde Ω_1 y Ω_2 son abiertos no vacíos de \mathbb{R}^n tales que $\Omega_1 \cap \Omega_2 = \emptyset$.
- ▶ Cada abierto $\Omega \subset \mathbb{R}^n$ puede expresarse como unión disjunta de abiertos conexos no vacíos, las componentes conexas de Ω .
- ▶ Si $\Omega \subset \mathbb{R}^n$ es un abierto conexo, cualesquiera dos puntos de Ω pueden conectarse por una curva poligonal cuyos tramos son paralelos a los ejes coordenados.

- ▶ Si $\nabla u = \nabla v \Longrightarrow u v$ es constante en cada componente conexa de Ω .
- ▶ Un abierto $\Omega \subset \mathbb{R}^n$ no es conexo sii $\Omega = \Omega_1 \cup \Omega_2$ donde Ω_1 y Ω_2 son abiertos no vacíos de \mathbb{R}^n tales que $\Omega_1 \cap \Omega_2 = \emptyset$.
- ▶ Cada abierto $\Omega \subset \mathbb{R}^n$ puede expresarse como unión disjunta de abiertos conexos no vacíos, las componentes conexas de Ω .
- ▶ Si $\Omega \subset \mathbb{R}^n$ es un abierto conexo, cualesquiera dos puntos de Ω pueden conectarse por una curva poligonal cuyos tramos son paralelos a los ejes coordenados $\Longrightarrow u \in \mathcal{C}^1(\Omega), \nabla u = 0$ en Ω sii u es constante.

Dados $\Omega\subset\mathbb{R}^n$ abierto, funciones $u,v\in\mathcal{C}^1(\Omega)$ y $\mathbf{f}\in\mathcal{C}^1(\Omega,\mathbb{R}^n)$ un campo vectorial, entonces

La siguiente propiedad de los campos gradientes se basa en la igualdad de derivadas cruzadas de funciones de clase $\mathcal{C}^2(\Omega)$:

Dados $\Omega \subset \mathbb{R}^n$ abierto y f: $\Omega \longrightarrow \mathbb{R}^n$ un campo con f = (f_1, \dots, f_n) ,

ightharpoonup Si $\mathbf{f}=\nabla u$ y $u\in\mathcal{C}^2(\Omega)$, entonces $\dfrac{\partial f_i}{\partial x_j}=\dfrac{\partial f_j}{\partial x_i}$, $i,j=1,\ldots,n$

Dados $\Omega\subset\mathbb{R}^n$ abierto, funciones $u,v\in\mathcal{C}^1(\Omega)$ y $\mathbf{f}\in\mathcal{C}^1(\Omega,\mathbb{R}^n)$ un campo vectorial, entonces

La siguiente propiedad de los campos gradientes se basa en la igualdad de derivadas cruzadas de funciones de clase $\mathcal{C}^2(\Omega)$:

Dados $\Omega \subset \mathbb{R}^n$ abierto y f: $\Omega \longrightarrow \mathbb{R}^n$ un campo con f = (f_1, \dots, f_n) ,

- ightharpoonup Si $\mathbf{f}=
 abla u$ y $u\in\mathcal{C}^2(\Omega)$, entonces $\dfrac{\partial f_i}{\partial x_j}=\dfrac{\partial f_j}{\partial x_i}$, $i,j=1,\ldots,n$
- ► El recíproco no es cierto: Ejemplo: $f \in C^1(\mathbb{R}^2 \setminus \{(0,0)\})$,

$$f(x,y) = \left(\frac{-y}{x^2 + y^2}, \frac{x}{x^2 + y^2}\right).$$

Campos Conservativos

Los campos gradiente en un abierto $\Omega \subset \mathbb{R}^n$ pueden ser caracterizados en términos de su circulación sobre curvas parametrizadas

Campos Conservativos

▶ Los campos gradiente en un abierto $\Omega \subset \mathbb{R}^n$ pueden ser caracterizados en términos de su circulación sobre curvas parametrizadas

El campo vectorial $\mathbf{f} \in \mathcal{C}(\Omega; \mathbb{R}^n)$ se denomina conservativo si para cualquier curva parametrizada $\alpha \colon [a,b] \longrightarrow \mathbb{R}^n$ de clase $\mathcal{C}^1_s([a,b])$ tal que $C_\alpha \subset \Omega$, la circulación de f a lo largo de α , depende sólo de los valores de f en los extremos de la curva $\alpha(a)$ y $\alpha(b)$

Campos Conservativos

▶ Los campos gradiente en un abierto $\Omega \subset \mathbb{R}^n$ pueden ser caracterizados en términos de su circulación sobre curvas parametrizadas

El campo vectorial $\mathbf{f} \in \mathcal{C}(\Omega; \mathbb{R}^n)$ se denomina conservativo si para cualquier curva parametrizada $\alpha \colon [a,b] \longrightarrow \mathbb{R}^n$ de clase $\mathcal{C}^1_s([a,b])$ tal que $C_\alpha \subset \Omega$, la circulación de f a lo largo de α , depende sólo de los valores de f en los extremos de la curva $\alpha(a)$ y $\alpha(b)$

Dado $f \in \mathcal{C}(\Omega; \mathbb{R}^n)$ donde $f = (f_1, \dots, f_n)$, son equivalentes:

- f es conservativo.
- ② Si $\alpha \colon [a,b] \longrightarrow \mathbb{R}^n$ es una curva parametrizada de clase $\mathcal{C}^1_s([a,b])$ con $C_\alpha \subset \Omega$ y <u>cerrada</u>; es decir $\alpha(a) = \alpha(b)$, entonces $\oint_\alpha \mathrm{f} d\boldsymbol{\ell} = 0$.
- f es gradiente.

El Rotacional de campos vectoriales en \mathbb{R}^3

Consideremos un abierto $\Omega \subset \mathbb{R}^3$ y $f = (f_1, f_2, f_3) \in \mathcal{C}^1(\Omega; \mathbb{R}^3)$.

1 Definimos el rotacional (curl) de f como el campo dado por

$$\operatorname{rot} f = \nabla \times f = \det \begin{bmatrix} i & j & k \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ f_1 & f_2 & f_3 \end{bmatrix}$$
$$= \left(\frac{\partial f_3}{\partial y} - \frac{\partial f_2}{\partial z}, \frac{\partial f_1}{\partial z} - \frac{\partial f_3}{\partial x}, \frac{\partial f_2}{\partial x} - \frac{\partial f_1}{\partial y} \right)$$

- ② Si dado $g \in \mathcal{C}(\Omega; \mathbb{R}^3)$, existe $f \in \mathcal{C}^1(\Omega; \mathbb{R}^3)$ con $g = \operatorname{rot} f$, entonces f se denomina potencial vector de g.
- **3** Si $\Omega \subset \mathbb{R}^2$ y f: $\Omega \longrightarrow \mathbb{R}^2$ con f = (f_1, f_2) , podemos identificar f con un campo en \mathbb{R}^3 considerando f = $(f_1, f_2, 0)$. Entonces,

$$\operatorname{rot} f = \left(0, 0, \frac{\partial f_2}{\partial x} - \frac{\partial f_1}{\partial y}\right)$$

▶ Si $p \ge 1$, $\operatorname{rot}: \mathcal{C}^p(\Omega; \mathbb{R}^3) \longrightarrow \mathcal{C}^{p-1}(\Omega; \mathbb{R}^3)$ es un operador diferencial

▶ Si $p \ge 1$, $\operatorname{rot}: \mathcal{C}^p(\Omega; \mathbb{R}^3) \longrightarrow \mathcal{C}^{p-1}(\Omega; \mathbb{R}^3)$ es un operador diferencial

Dados $\Omega\subset\mathbb{R}^3$ abierto, $u\in\mathcal{C}^1(\Omega)$ y f, $\mathbf{g}\in\mathcal{C}^1(\Omega;\mathbb{R}^3)$, entonces

▶ Si $p \ge 1$, $\operatorname{rot}: \mathcal{C}^p(\Omega; \mathbb{R}^3) \longrightarrow \mathcal{C}^{p-1}(\Omega; \mathbb{R}^3)$ es un operador diferencial

Dados $\Omega\subset\mathbb{R}^3$ abierto, $u\in\mathcal{C}^1(\Omega)$ y f, g $\in\mathcal{C}^1(\Omega;\mathbb{R}^3)$, entonces

- Si $f = \nabla u$, entonces $\operatorname{rot} f = 0$; es decir el gradiente es irrotacional.
- ② Si f = rot g, entonces div f = 0; es decir, f es solenoidal.

▶ Si $p \ge 1$, $\operatorname{rot}: \mathcal{C}^p(\Omega; \mathbb{R}^3) \longrightarrow \mathcal{C}^{p-1}(\Omega; \mathbb{R}^3)$ es un operador diferencial

Dados $\Omega\subset\mathbb{R}^3$ abierto, $u\in\mathcal{C}^1(\Omega)$ y f, $\mathbf{g}\in\mathcal{C}^1(\Omega;\mathbb{R}^3)$, entonces

- Si $f = \nabla u$, entonces $\operatorname{rot} f = 0$; es decir el gradiente es irrotacional.
- ② Si f = rot g, entonces div f = 0; es decir, f es solenoidal.

- ▶ Si $p \ge 1$, $\operatorname{rot}: \mathcal{C}^p(\Omega; \mathbb{R}^3) \longrightarrow \mathcal{C}^{p-1}(\Omega; \mathbb{R}^3)$ es un operador diferencial
 - Si $f = \nabla u$, entonces $\operatorname{rot} f = 0$; es decir el gradiente es irrotacional.
 - ② Si f = rot g, entonces div f = 0; es decir, f es solenoidal.
- ► ¿Es cierto el recíproco?

- ▶ Si $p \ge 1$, $\operatorname{rot}: \mathcal{C}^p(\Omega; \mathbb{R}^3) \longrightarrow \mathcal{C}^{p-1}(\Omega; \mathbb{R}^3)$ es un operador diferencial
 - Si $f = \nabla u$, entonces $\operatorname{rot} f = 0$; es decir el gradiente es irrotacional.
 - $oldsymbol{2}$ Si f = rot g, entonces div f = 0; es decir, f es solenoidal.
- ▶ ¿Es cierto el recíproco?
- ightharpoonup Si $\frac{\partial f_i}{\partial x_j} = \frac{\partial f_j}{\partial x_i}$, $i, j = 1, \dots, n$ (en \mathbb{R}^3 si $\mathrm{rot}(\mathsf{f}) = 0$)
 - u es solución del sistema de EDP, $f_j=rac{\partial u}{\partial x_j}$, $j=1,\dots,n$

- ▶ Si $p \ge 1$, $\operatorname{rot}: \mathcal{C}^p(\Omega; \mathbb{R}^3) \longrightarrow \mathcal{C}^{p-1}(\Omega; \mathbb{R}^3)$ es un operador diferencial
 - Si $f = \nabla u$, entonces $\operatorname{rot} f = 0$; es decir el gradiente es irrotacional.
 - \bigcirc Si f = rot g, entonces div f = 0; es decir, f es solenoidal.
- ▶¿Es cierto el recíproco?
- ▶ Si $\frac{\partial f_i}{\partial x_j} = \frac{\partial f_j}{\partial x_i}$, $i, j = 1, \dots, n$ (en \mathbb{R}^3 si $\mathrm{rot}(\mathbf{f}) = 0$) $u \text{ es solución del sistema de EDP, } f_j = \frac{\partial u}{\partial x_j}, \ j = 1, \dots, n$
- ▶ Si $\operatorname{div}(\mathbf{f}) = \mathbf{0}$, $\mathbf{g} = (g_1, g_2, g_3)^{\top}$ debe ser solución del sistema de EDP

$$f_1 = \frac{\partial g_3}{\partial x} - \frac{\partial g_2}{\partial z}, \quad f_2 = \frac{\partial g_1}{\partial z} - \frac{\partial g_3}{\partial x}, \quad f_3 = \frac{\partial g_2}{\partial x} - \frac{\partial g_1}{\partial y}$$

 \longrightarrow Podemos suponer que $g_1=0$, o que $g_2=0$ o que $g_3=0$

- Si $f = \nabla u$, entonces $\operatorname{rot} f = 0$; es decir el gradiente es irrotacional.
- ② Si f = rot g, entonces div f = 0; es decir, f es solenoidal.
- ► ¿Es cierto el recíproco?

- Si $f = \nabla u$, entonces $\operatorname{rot} f = 0$; es decir el gradiente es irrotacional.
- ② Si f = rot g, entonces div f = 0; es decir, f es solenoidal.
- ► ¿Es cierto el recíproco?

 $\blacktriangleright \quad \Omega \text{ es convexo si } x,y \in \Omega \Longrightarrow (1-t)x + ty \in \Omega \text{, para cada } t \in [0,1].$

- Si $f = \nabla u$, entonces $\operatorname{rot} f = 0$; es decir el gradiente es irrotacional.
- ② Si f = rot g, entonces div f = 0; es decir, f es solenoidal.
- ▶ ¿Es cierto el recíproco?
- $lack \Omega$ es convexo si $x,y\in\Omega\Longrightarrow (1-t)x+ty\in\Omega$, para cada $t\in[0,1]$.

- Si $f = \nabla u$, entonces $\operatorname{rot} f = 0$; es decir el gradiente es irrotacional.
- ② Si f = rot g, entonces div f = 0; es decir, f es solenoidal.
- ▶ ¿Es cierto el recíproco?

 Ω tiene forma de estrella si existe x_0 , el centro de la estrella, tal que $(1-t)x_0+tx\in\Omega$, para cada $x\in\Omega$ y cada $t\in[0,1]$.

- Si $f = \nabla u$, entonces $\operatorname{rot} f = 0$; es decir el gradiente es irrotacional.
- ② Si f = rot g, entonces div f = 0; es decir, f es solenoidal.
- ▶ ¿Es cierto el recíproco?

 Ω tiene forma de estrella si existe x_0 , el centro de la estrella, tal que $(1-t)x_0+tx\in\Omega$, para cada $x\in\Omega$ y cada $t\in[0,1]$.

- Si $f = \nabla u$, entonces $\operatorname{rot} f = 0$; es decir el gradiente es irrotacional.
- ② Si f = rot g, entonces div f = 0; es decir, f es solenoidal.
- ► ¿Es cierto el recíproco?

 Ω tiene forma de estrella si existe x_0 , el centro de la estrella, tal que $(1-t)x_0+tx\in\Omega$, para cada $x\in\Omega$ y cada $t\in[0,1]$.

Lema de Poincaré

Supongamos que $\Omega \subset \mathbb{R}^3$ es un abierto con forma de estrella y que $f \colon \Omega \longrightarrow \mathbb{R}^3$ es un campo de clase $\mathcal{C}^1(\Omega, \mathbb{R}^3)$.

- Si f es irrotacional, es decir tal que $\operatorname{rot} f = 0$, entonces es conservativo, es decir existe $u \in C^1(\Omega)$ tal que $f = \nabla u$.
- ② Si f es solenoidal, es decir $\operatorname{div} f = 0$, entonces f tiene un potencial vector; es decir, existe $g \in \mathcal{C}^1(\Omega)$ tal que $f = \operatorname{rot} g$.

- **①** Si $f = \nabla u$, entonces $\operatorname{rot} f = 0$; es decir el gradiente es irrotacional.
- ② Si f = rot g, entonces div f = 0; es decir, f es solenoidal.

Lema de Poincaré

Supongamos que $\Omega \subset \mathbb{R}^3$ es un abierto con forma de estrella y que $f \colon \Omega \longrightarrow \mathbb{R}^3$ es un campo de clase $\mathcal{C}^1(\Omega, \mathbb{R}^3)$.

- Si f es irrotacional, es decir tal que $\operatorname{rot} f = 0$, entonces es conservativo, es decir existe $u \in C^1(\Omega)$ tal que $f = \nabla u$.
- ② Si f es solenoidal, es decir $\operatorname{div} f = 0$, entonces f tiene un potencial vector; es decir, existe $g \in \mathcal{C}^1(\Omega)$ tal que $f = \operatorname{rot} g$.
- ▶ Ejemplo 1: Determínese $h \in \mathcal{C}^1(\mathbb{R}^3)$ para que el campo

$$f(x, y, z) = (h(x, y, z), 2x - 3zy^{2}, 2xz - y^{3})$$

sea conservativo y en ese caso obtener un potencial escalar.

- Si $f = \nabla u$, entonces $\operatorname{rot} f = 0$; es decir el gradiente es irrotacional.
- ② Si f = rot g, entonces div f = 0; es decir, f es solenoidal.

Lema de Poincaré

Supongamos que $\Omega \subset \mathbb{R}^3$ es un abierto con forma de estrella y que $f \colon \Omega \longrightarrow \mathbb{R}^3$ es un campo de clase $\mathcal{C}^1(\Omega, \mathbb{R}^3)$.

- **①** Si f es irrotacional, es decir tal que $\operatorname{rot} f = 0$, entonces es conservativo, es decir existe $u \in \mathcal{C}^1(\Omega)$ tal que $f = \nabla u$.
- ② Si f es solenoidal, es decir $\operatorname{div} f = 0$, entonces f tiene un potencial vector; es decir, existe $g \in \mathcal{C}^1(\Omega)$ tal que $f = \operatorname{rot} g$.
- ▶ Ejemplo 2: Demostrar que el campo f(x, y, z) = (-x, -y, 2z) es solenoidal y hallar un potencial vector.

▶ Regla de Leibniz:
$$u(x) = \int_a^b k(x,s)ds \Rightarrow \frac{\partial u}{\partial x_j} = \int_a^b \Big(\frac{\partial k}{\partial x_j}\Big)(x,s)ds$$

▶ Regla de Leibniz:
$$u(x) = \int_a^b k(x,s) ds \Rightarrow \frac{\partial u}{\partial x_j} = \int_a^b \Big(\frac{\partial k}{\partial x_j}\Big)(x,s) ds$$

Si $\Omega \in \mathbb{R}^n$ tiene forma de estrella con centro en x_0 y $\mathbf{f} \colon \Omega \longrightarrow \mathbb{R}^n$ es un campo tal que $\frac{\partial f_i}{\partial x_i} = \frac{\partial f_j}{\partial x_i}$, $i,j=1,\dots,n$, entonces

$$u(x) = \int_0^1 \left\langle f(tx + (1-t)x_0), r(x-x_0) \right\rangle dt$$

es un potencial escalar de f.

ightharpoonup Si $x_0 = (a_1, \ldots, a_n)$ y $f = (f_1, \ldots, f_n)$, se tiene que

$$u(x_1, \dots, x_n) = \sum_{j=1}^n (x_j - a_j) \int_0^1 f_j (t(x_1 - a_1) + a_1, \dots, t(x_n - a_n) + a_n) dt$$

▶ Regla de Leibniz:
$$u(x) = \int_a^b k(x,s)ds \Rightarrow \frac{\partial u}{\partial x_j} = \int_a^b \Big(\frac{\partial k}{\partial x_j}\Big)(x,s)ds$$

Si $\Omega \in \mathbb{R}^n$ tiene forma de estrella con centro en x_0 y $\mathbf{f} \colon \Omega \longrightarrow \mathbb{R}^n$ es un campo tal que $\frac{\partial f_i}{\partial x_i} = \frac{\partial f_j}{\partial x_i}$, $i,j=1,\dots,n$, entonces

$$u(x) = \int_0^1 \left\langle f(tx + (1-t)x_0), r(x-x_0) \right\rangle dt$$

es un potencial escalar de f.

▶ Si $x_0 = (0, ..., 0)$, entonces

$$u(x_1,\ldots,x_n) = \int_0^1 \left\langle \mathsf{f}(tx),\mathsf{r}(x)\right\rangle dt = \sum_{j=1}^n x_j \int_0^1 f_j(tx_1,\ldots,tx_n) dt$$

▶ Regla de Leibniz:
$$u(x) = \int_a^b k(x,s)ds \Rightarrow \frac{\partial u}{\partial x_j} = \int_a^b \Big(\frac{\partial k}{\partial x_j}\Big)(x,s)ds$$

Si $\Omega \in \mathbb{R}^n$ tiene forma de estrella con centro en x_0 y $\mathbf{f} \colon \Omega \longrightarrow \mathbb{R}^n$ es un campo tal que $\frac{\partial f_i}{\partial x_i} = \frac{\partial f_j}{\partial x_i}$, $i,j=1,\dots,n$, entonces

$$u(x) = \int_0^1 \left\langle f(tx + (1-t)x_0), r(x-x_0) \right\rangle dt$$

es un potencial escalar de f.

Determínese $h \in \mathcal{C}^1(\mathbb{R}^3)$ para que el campo

$$f(x, y, z) = (h(x, y, z), 2x - 3zy^{2}, 2xz - y^{3})$$

sea conservativo y en ese caso obtener un potencial escalar.

▶ Regla de Leibniz:
$$u(x) = \int_a^b k(x,s)ds \Rightarrow \frac{\partial u}{\partial x_j} = \int_a^b \Big(\frac{\partial k}{\partial x_j}\Big)(x,s)ds$$

Si $\Omega \in \mathbb{R}^3$ tiene forma de estrella con centro en x_0 y f: $\Omega \longrightarrow \mathbb{R}^3$ es un campo solenoidal, es decir $\operatorname{div} f = 0$, entonces

$$g(x,y,z) = \int_0^1 t \Big(f(tx + (1-t)x_0) \times r(x-x_0) \Big) dt$$

es un potencial vector de f.

▶ Regla de Leibniz:
$$u(x) = \int_a^b k(x,s)ds \Rightarrow \frac{\partial u}{\partial x_j} = \int_a^b \Big(\frac{\partial k}{\partial x_j}\Big)(x,s)ds$$

Si $\Omega \in \mathbb{R}^3$ tiene forma de estrella con centro en x_0 y $f \colon \Omega \longrightarrow \mathbb{R}^3$ es un campo solenoidal, es decir $\operatorname{div} f = 0$, entonces

$$g(x,y,z) = \int_0^1 t \Big(f(tx + (1-t)x_0) \times r(x-x_0) \Big) dt$$

es un potencial vector de f.

- $\blacktriangleright x_0 = (0,0,0)$, entonces $g(x,y,z) = \int_0^1 t(f(tx) \times r(x))dt$
- Hallar un potencial vector del campo f(x, y, z) = (-x, -y, 2z).

G. Green, 1793-1841

 $\Omega, \widehat{\Omega} \subset \mathbb{R}^2$ abiertos tales que $\overline{\Omega} \subset \widehat{\Omega}$ y $\partial \Omega$ es la traza de una curva positivamente orientada. Si $\mathbf{f} = (f_1, f_2) \in \mathcal{C}^1(\widehat{\Omega})$, entonces

$$\oint_{\partial \Omega} f d\boldsymbol{\ell} = \int_{\Omega} \left(\frac{\partial f_2}{\partial x} - \frac{\partial f_1}{\partial y} \right) dx dy$$

G. Green, 1793-1841

 $\Omega, \widehat{\Omega} \subset \mathbb{R}^2$ abiertos tales que $\overline{\Omega} \subset \widehat{\Omega}$ y $\partial \Omega$ es la traza de una curva positivamente orientada. Si $\mathbf{f} = (f_1, f_2) \in \mathcal{C}^1(\widehat{\Omega})$, entonces

$$\oint_{\partial\Omega} f d\boldsymbol{\ell} = \int_{\Omega} \left(\frac{\partial f_2}{\partial x} - \frac{\partial f_1}{\partial y} \right) dx dy$$

1828

caminar sobre $\partial\Omega$ con Ω a la izquierda

 $\Omega, \widehat{\Omega} \subset \mathbb{R}^2$ abiertos tales que $\overline{\Omega} \subset \widehat{\Omega}$ y $\partial \Omega$ es la traza de una curva positivamente orientada. Si $\mathbf{f} = (f_1, f_2) \in \mathcal{C}^1(\widehat{\Omega})$, entonces

$$\oint_{\partial\Omega} f d\boldsymbol{\ell} = \int_{\Omega} \left(\frac{\partial f_2}{\partial x} - \frac{\partial f_1}{\partial y} \right) \, dx dy$$

1828

G. Green, 1793-1841

 Ω ∂S

G. Green, 1793-1841

 $\Omega, \widehat{\Omega} \subset \mathbb{R}^2$ abiertos tales que $\overline{\Omega} \subset \widehat{\Omega}$ y $\partial \Omega$ es la traza de una curva positivamente orientada. Si $\mathbf{f} = (f_1, f_2) \in \mathcal{C}^1(\widehat{\Omega})$, entonces

$$\oint_{\partial\Omega} f d\boldsymbol{\ell} = \int_{\Omega} \left(\frac{\partial f_2}{\partial x} - \frac{\partial f_1}{\partial y} \right) dx dy$$

► Si f =
$$(f_1, f_2)$$
 es tal que $\frac{\partial f_2}{\partial x} - \frac{\partial f_1}{\partial y} = 1 \Longrightarrow$ $a(\Omega) = \oint_{\partial \Omega} f d\boldsymbol{\ell}$

 $\Omega, \widehat{\Omega} \subset \mathbb{R}^2$ abiertos tales que $\overline{\Omega} \subset \widehat{\Omega}$ y $\partial \Omega$ es la traza de una curva positivamente orientada. Si $\mathbf{f} = (f_1, f_2) \in \mathcal{C}^1(\widehat{\Omega})$, entonces

$$\oint_{\partial\Omega} f d\boldsymbol{\ell} = \int_{\Omega} \left(\frac{\partial f_2}{\partial x} - \frac{\partial f_1}{\partial y} \right) \, dx dy$$

G. Green, 1793-1841

▶ Si
$$f = \frac{1}{2}(-y, x)$$
, o $f = (-y, 0)$, o $f = (0, x)$,

$$\mathsf{a}(\Omega) = \frac{1}{2} \oint_{\partial \Omega} (-y,x) \, d\pmb{\ell} = \oint_{\partial \Omega} (-y,0) \, d\pmb{\ell} = \oint_{\partial \Omega} (x,0) \, d\pmb{\ell}$$

G. Green, 1793-1841

 $\Omega, \widehat{\Omega} \subset \mathbb{R}^2$ abiertos tales que $\overline{\Omega} \subset \widehat{\Omega}$ y $\partial \Omega$ es la traza de una curva positivamente orientada. Si $\mathbf{f} = (f_1, f_2) \in \mathcal{C}^1(\widehat{\Omega})$, entonces

$$\oint_{\partial\Omega} f d\boldsymbol{\ell} = \int_{\Omega} \left(\frac{\partial f_2}{\partial x} - \frac{\partial f_1}{\partial y} \right) dx dy$$

$$rot(f) = \left(0, 0, \frac{\partial f_2}{\partial x} - \frac{\partial f_1}{\partial y}\right) \Longrightarrow \oint_{\partial \Omega} f d\boldsymbol{\ell} = \int_{\Omega} rot(f) d\boldsymbol{S} = \int_{\Omega} rot(f) dx dy$$

G. Green, 1793-1841

 $\Omega, \widehat{\Omega} \subset \mathbb{R}^2$ abiertos tales que $\overline{\Omega} \subset \widehat{\Omega}$ y $\partial \Omega$ es la traza de una curva positivamente orientada. Si $\mathbf{f} = (f_1, f_2) \in \mathcal{C}^1(\widehat{\Omega})$, entonces

$$\oint_{\partial\Omega} f d\boldsymbol{\ell} = \int_{\Omega} \left(\frac{\partial f_2}{\partial x} - \frac{\partial f_1}{\partial y} \right) \, dx dy$$

1828

$$rot(f) = \left(0, 0, \frac{\partial f_2}{\partial x} - \frac{\partial f_1}{\partial y}\right) \Longrightarrow \oint_{\partial \Omega} f d\boldsymbol{\ell} = \int_{\Omega} rot(f) d\boldsymbol{S} = \int_{\Omega} rot(f) dx dy$$

▶ Como $\Omega \subset \mathbb{R}^2$, $\sigma \colon \Omega \longrightarrow \mathbb{R}^3$ dada por $\sigma(x,y) = (x,y,0)$ es una parametrización $\Longrightarrow \sigma_x = (1,0,0)^\top$, $\sigma_y = (0,1,0)^\top$ \Longrightarrow su campo normal unitario es $\mathbf{n} = (0,0,1)^\top$

G. Green, 1793-1841

 $\Omega, \widehat{\Omega} \subset \mathbb{R}^2$ abiertos tales que $\overline{\Omega} \subset \widehat{\Omega}$ y $\partial \Omega$ es la traza de una curva positivamente orientada. Si $\mathbf{f} = (f_1, f_2) \in \mathcal{C}^1(\widehat{\Omega})$, entonces

$$\oint_{\partial\Omega} f d\boldsymbol{\ell} = \int_{\Omega} \left(\frac{\partial f_2}{\partial x} - \frac{\partial f_1}{\partial y} \right) dx dy$$

1828

► Si g =
$$(f_2, -f_1)$$
 \Longrightarrow div(g) = $\frac{\partial f_2}{\partial x} - \frac{\partial f_1}{\partial y}$

▶ Si $t = (t_1, t_2)$ es el tangente unitario a $\partial \Omega \Longrightarrow n = (t_2, -t_1)$ es el normal unitario exterior a $\partial \Omega$ y $\{-t, n\}$ está positivamente orientada.

G. Green, 1793-1841

 $\Omega, \widehat{\Omega} \subset \mathbb{R}^2$ abiertos tales que $\overline{\Omega} \subset \widehat{\Omega}$ y $\partial \Omega$ es la traza de una curva positivamente orientada. Si $\mathbf{f} = (f_1, f_2) \in \mathcal{C}^1(\widehat{\Omega})$, entonces

$$\oint_{\partial\Omega} f d\boldsymbol{\ell} = \int_{\Omega} \left(\frac{\partial f_2}{\partial x} - \frac{\partial f_1}{\partial y} \right) dx dy$$

► Si g =
$$(f_2, -f_1) \Longrightarrow \operatorname{div}(\mathbf{g}) = \frac{\partial f_2}{\partial x} - \frac{\partial f_1}{\partial y}$$

- ▶ Si $\mathbf{t}=(t_1,t_2)$ es el tangente unitario a $\partial\Omega\Longrightarrow\mathbf{n}=(t_2,-t_1)$ es el normal unitario exterior a $\partial\Omega$ y $\{-\mathbf{t},\mathbf{n}\}$ está positivamente orientada.
- $ightharpoonup \langle f, t \rangle = f_1 t_1 + f_2 t_2 = -g_2 t_1 + g_1 t_2 = \langle g, n \rangle$

G. Green. 1793-1841

 $\Omega, \widehat{\Omega} \subset \mathbb{R}^2$ abiertos tales que $\overline{\Omega} \subset \widehat{\Omega}$ y $\partial\Omega$ es la traza de una curva positivamente orientada. Si $f = (f_1, f_2) \in C^1(\widehat{\Omega})$, entonces

$$\oint_{\partial\Omega} f d\boldsymbol{\ell} = \int_{\Omega} \left(\frac{\partial f_2}{\partial x} - \frac{\partial f_1}{\partial y} \right) \, dx dy$$

► Si
$$g = (f_2, -f_1) \Longrightarrow \operatorname{div}(g) = \frac{\partial f_2}{\partial x} - \frac{\partial f_1}{\partial y}$$

$$ightharpoonup \langle f, t \rangle = f_1 t_1 + f_2 t_2 = -g_2 t_1 + g_1 t_2 = \langle g, n \rangle$$

G. Green, 1793-1841

 $\Omega, \widehat{\Omega} \subset \mathbb{R}^2$ abiertos tales que $\overline{\Omega} \subset \widehat{\Omega}$ y $\partial \Omega$ es la traza de una curva positivamente orientada. Si $\mathbf{f} = (f_1, f_2) \in \mathcal{C}^1(\widehat{\Omega})$, entonces

$$\oint_{\partial\Omega} f d\boldsymbol{\ell} = \int_{\Omega} \left(\frac{\partial f_2}{\partial x} - \frac{\partial f_1}{\partial y} \right) dx dy$$

- ► Calcular las circulaciones siguientes, aplicando el teorema de Green:
 - $\oint_C \left(-2xye^{-x^2}dx + (e^{-x^2} + 3x)dy\right)$, $C = \{x^2 + y^2 2x + 4y = 0\}$.
 - $\oint_{C_1} f d\mathbf{\ell} \oint_{C_2} f d\mathbf{\ell} \text{ con } f = \left(e^x \cos(y) y, -e^x \sin(y)\right)$ $C_1 = \{x^2 + y^2 = 4\} \text{ y } C_2 = \{x^2 - 2x + y^2 = 0\}, \text{ orientadas posit.}$

G.G. Stokes, 1819-1903

 $S\subset\mathbb{R}^3$ es una superficie orientada cuya frontera ∂S es una curva regular con la orientación inducida por S. Si $\mathbf{f}\in\mathcal{C}^1(\Omega;\mathbb{R}^3)$, con Ω abierto tal que $\overline{S}\subset\Omega$, entonces

$$\oint_{\partial S} f \, d\boldsymbol{\ell} = \int_{S} \operatorname{rot} f \, d\boldsymbol{S}$$

G.G. Stokes, 1819-1903

 $S\subset\mathbb{R}^3$ es una superficie orientada cuya frontera ∂S es una curva regular con la orientación inducida por S. Si $\mathbf{f}\in\mathcal{C}^1(\Omega;\mathbb{R}^3)$, con Ω abierto tal que $\overline{S}\subset\Omega$, entonces

$$\oint_{\partial S} f \, d\boldsymbol{\ell} = \int_{S} \operatorname{rot} f \, d\boldsymbol{S}$$

G.G. Stokes, 1819-1903

 $S\subset\mathbb{R}^3$ es una superficie orientada cuya frontera ∂S es una curva regular con la orientación inducida por S. Si $\mathbf{f}\in\mathcal{C}^1(\Omega;\mathbb{R}^3)$, con Ω abierto tal que $\overline{S}\subset\Omega$, entonces

$$\oint_{\partial S} f \, d\boldsymbol{\ell} = \int_{S} \operatorname{rot} f \, d\boldsymbol{S}$$

G.G. Stokes. 1819-1903

 $S\subset\mathbb{R}^3$ es una superficie orientada cuya frontera ∂S es una curva regular con la orientación inducida por S. Si $\mathbf{f}\in\mathcal{C}^1(\Omega;\mathbb{R}^3)$, con Ω abierto tal que $\overline{S}\subset\Omega$, entonces

$$\oint_{\partial S} f \, d\boldsymbol{\ell} = \int_{S} \operatorname{rot} f \, d\boldsymbol{S}$$

- ▶ Si el campo f es irrotacional; es decir $\operatorname{rot} f = 0$, entonces $\int_{\partial S} f d\boldsymbol{\ell} = 0$,
- ▶ Si la superficie S es cerrada; es decir, $\partial S = \emptyset$, entonces $\int_S \operatorname{rot} f d\mathbf{S} = 0$

G.G. Stokes, 1819-1903

 $S\subset\mathbb{R}^3$ es una superficie orientada cuya frontera ∂S es una curva regular con la orientación inducida por S. Si $\mathbf{f}\in\mathcal{C}^1(\Omega;\mathbb{R}^3)$, con Ω abierto tal que $\overline{S}\subset\Omega$, entonces

$$\oint_{\partial S} f \, d\boldsymbol{\ell} = \int_{S} \operatorname{rot} f \, d\boldsymbol{S}$$

- ▶ Si el campo f es irrotacional; es decir $\operatorname{rot} f = 0$, entonces $\int_{\partial S} f \, d\boldsymbol{\ell} = 0$,
- ▶ Si la superficie S es cerrada; es decir, $\partial S = \emptyset$, entonces $\int_S \operatorname{rot} f \, d\mathbf{S} = 0$
- ▶ El Teorema de Green es un caso particular del Teorema de Stokes

G.G. Stokes, 1819-1903

 $S\subset\mathbb{R}^3$ es una superficie orientada cuya frontera ∂S es una curva regular con la orientación inducida por S. Si $\mathbf{f}\in\mathcal{C}^1(\Omega;\mathbb{R}^3)$, con Ω abierto tal que $\overline{S}\subset\Omega$, entonces

$$\oint_{\partial S} f \, d\boldsymbol{\ell} = \int_{S} \operatorname{rot} f \, d\boldsymbol{S}$$

c. 1850

▶ Calcular \oint_C fd ℓ donde $f(x,y,z)=(ye^{xy},xe^{xy},xyz)$ y C es la curva del primer octante, obtenida cortando el cono $x^2+y^2=(z-1)^2$ con los planos coordenados y recorrida de manera que desde el origen se vea en el sentido de las agujas del reloj.

G.G. Stokes, 1819-1903

 $S\subset\mathbb{R}^3$ es una superficie orientada cuya frontera ∂S es una curva regular con la orientación inducida por S. Si $\mathbf{f}\in\mathcal{C}^1(\Omega;\mathbb{R}^3)$, con Ω abierto tal que $\overline{S}\subset\Omega$, entonces

$$\oint_{\partial S} f \, d\boldsymbol{\ell} = \int_{S} \operatorname{rot} f \, d\boldsymbol{S}$$

c. 1850

▶ Calcular el flujo del rotacional del campo vectorial f = (y, xz, xyz) a través de la superficie $S = \{x^2 + y^2 + z^2 = 1, z \ge 0\}$, orientada con el vector normal $hacia\ arriba$.

G.F. Gauss, 1777-1855

$$\Omega, \widehat{\Omega} \subset \mathbb{R}^3$$
 abiertos tales que $\overline{\Omega} \subset \widehat{\Omega}$ y $\partial \Omega$ es una superficie regular. Si $\mathbf{f} \in \mathcal{C}^1(\widehat{\Omega}; \mathbb{R}^3)$, entonces

$$\int_{\partial\Omega}\langle \mathsf{f},\mathsf{n}
angle\,dm{S}=\int_{\partial\Omega}\mathsf{f}\,dm{S}=\int_{\Omega}\mathrm{div}(\mathsf{f})\,dm{V}$$

 $\Omega, \widehat{\Omega} \subset \mathbb{R}^3$ abiertos tales que $\overline{\Omega} \subset \widehat{\Omega}$ y $\partial\Omega$ es una superficie regular. Si $f \in C^1(\widehat{\Omega}; \mathbb{R}^3)$, entonces

$$\int_{\partial\Omega}\langle \mathsf{f},\mathsf{n}\rangle\,d\boldsymbol{S} = \int_{\partial\Omega}\mathsf{f}\,d\boldsymbol{S} = \int_{\Omega}\operatorname{div}(\mathsf{f})\,d\boldsymbol{V}$$

G.F. Gauss, 1777-1855

 $\Omega, \widehat{\Omega} \subset \mathbb{R}^3$ abiertos tales que $\overline{\Omega} \subset \widehat{\Omega}$ y $\partial\Omega$ es una superficie regular. Si $f \in C^1(\widehat{\Omega}; \mathbb{R}^3)$, entonces

$$\int_{\partial\Omega}\langle\mathsf{f},\mathsf{n}
angle\,doldsymbol{g}=\int_{\partial\Omega}\mathsf{f}\,doldsymbol{g}=\int_{\Omega}\mathrm{div}(\mathsf{f})\,doldsymbol{V}$$

G.F. Gauss, 1777-1855

 $\Omega, \widehat{\Omega} \subset \mathbb{R}^3$ abiertos tales que $\overline{\Omega} \subset \widehat{\Omega}$ y $\partial \Omega$ es una superficie regular. Si $f \in \mathcal{C}^1(\widehat{\Omega}; \mathbb{R}^3)$, entonces

$$\int_{\partial\Omega}\langle \mathsf{f},\mathsf{n}\rangle\,d\boldsymbol{S} = \int_{\partial\Omega}\mathsf{f}\,d\boldsymbol{S} = \int_{\Omega}\operatorname{div}(\mathsf{f})\,d\boldsymbol{V}$$

1813

▶ Si f es solenoidal; es decir $\operatorname{div} f = 0$, entonces $\int_{\partial\Omega} f \, d\boldsymbol{S} = 0$.

G.F. Gauss, 1777-1855

 $\Omega, \widehat{\Omega} \subset \mathbb{R}^3$ abiertos tales que $\overline{\Omega} \subset \widehat{\Omega}$ y $\partial\Omega$ es una superficie regular. Si $f \in \mathcal{C}^1(\widehat{\Omega}; \mathbb{R}^3)$, entonces

$$\int_{\partial\Omega}\langle \mathsf{f},\mathsf{n}\rangle\,d\boldsymbol{S} = \int_{\partial\Omega}\mathsf{f}\,d\boldsymbol{S} = \int_{\Omega}\operatorname{div}(\mathsf{f})\,d\boldsymbol{V}$$

1813

▶ Si f = (f_1, f_2, f_3) es tal que div f = 1,

$$\longrightarrow$$
 f = $\frac{1}{3}$ r o bien f₁ = $(x,0,0)$, f₂ = $(0,y,0)$ o f₃ = $(0,0,z)$

$$\mathsf{v}(\Omega) = rac{1}{3} \int_{\partial \Omega} \mathsf{r} \, d \boldsymbol{S} = \int_{\partial \Omega} \mathsf{f}_j \, d \boldsymbol{S}, \ j=1,2,3.$$

 $\Omega, \widehat{\Omega} \subset \mathbb{R}^3$ abiertos tales que $\overline{\Omega} \subset \widehat{\Omega}$ y $\partial\Omega$ es una superficie regular. Si $f \in C^1(\widehat{\Omega}; \mathbb{R}^3)$, entonces

$$\int_{\partial\Omega}\langle \mathsf{f},\mathsf{n}\rangle\,d\boldsymbol{\mathcal{S}} = \int_{\partial\Omega}\mathsf{f}\,d\boldsymbol{\mathcal{S}} = \int_{\Omega}\mathrm{div}(\mathsf{f})\,d\boldsymbol{\mathcal{V}}$$

1813

► Calcular $\int_{S} \mathbf{F} \cdot d\mathbf{S}$, donde $\mathbf{F}(x,y,z) = (x^3,x^2y,x^2z)$ y S es la frontera

de $\Omega = \{x^2 + y^2 < a^2, \ 0 < z < b\}$, orientada hacia el exterior.

G. Green, 1793-1841

 $\Omega, \widehat{\Omega} \subset \mathbb{R}^2$ abiertos tales que $\overline{\Omega} \subset \widehat{\Omega}$ y $\partial \Omega$ es la traza de una curva positivamente orientada. Si $\mathbf{f} = (f_1, f_2) \in \mathcal{C}^1(\widehat{\Omega})$, entonces

$$\oint_{\partial\Omega} f d\boldsymbol{\ell} = \int_{\Omega} \left(\frac{\partial f_2}{\partial x} - \frac{\partial f_1}{\partial y} \right) dx dy$$

 $lack lpha \in \mathcal{C}([a,b];\mathbb{R}^2)$ es una curva de Jordan si es cerrada y simple.

 $\alpha \in \mathcal{C}([a,b];\mathbb{R}^2)$ es una curva de Jordan si es cerrada y simple.

Teorema de la curva de Jordan

Si $\alpha \in \mathcal{C}([a,b];\mathbb{R}^2)$ es una curva de Jordan, $\mathbb{R}^2 \setminus C_\alpha = \Omega_a \cup \Omega_e$ tiene dos componentes conexas, una acotada, Ω_a , su interior y otra no acotada, Ω_e , su exterior cuya frontera común es C_α .

 $lack lpha \in \mathcal{C}([a,b];\mathbb{R}^2)$ es una curva de Jordan si es cerrada y simple.

Teorema de la curva de Jordan

Si $\alpha \in \mathcal{C}([a,b];\mathbb{R}^2)$ es una curva de Jordan, $\mathbb{R}^2 \setminus C_\alpha = \Omega_a \cup \Omega_e$ tiene dos componentes conexas, una acotada, Ω_a , su interior y otra no acotada, Ω_e , su exterior cuya frontera común es C_α .

 $\alpha \in \mathcal{C}([a,b];\mathbb{R}^2)$ es una curva de Jordan si es cerrada y simple.

Teorema de la curva de Jordan

Si $\alpha \in \mathcal{C}([a,b];\mathbb{R}^2)$ es una curva de Jordan, $\mathbb{R}^2 \setminus C_\alpha = \Omega_a \cup \Omega_e$ tiene dos componentes conexas, una acotada, Ω_a , su interior y otra no acotada, Ω_e , su exterior cuya frontera común es C_α .

Teorema de la curva de Jordan

 $\alpha \in \mathcal{C}([a,b];\mathbb{R}^2)$ es una curva de Jordan si es cerrada y simple.

Teorema de la curva de Jordan

 $\alpha \in \mathcal{C}([a,b];\mathbb{R}^2)$ es una curva de Jordan si es cerrada y simple.

Teorema de la curva de Jordan

 $\alpha \in \mathcal{C}([a,b];\mathbb{R}^2)$ es una curva de Jordan si es cerrada y simple.

Teorema de la curva de Jordan

 $\alpha \in \mathcal{C}([a,b];\mathbb{R}^2)$ es una curva de Jordan si es cerrada y simple.

Teorema de la curva de Jordan

 $\alpha \in \mathcal{C}([a,b];\mathbb{R}^2)$ es una curva de Jordan si es cerrada y simple.

Teorema de la curva de Jordan

 $lpha \in \mathcal{C}([a,b];\mathbb{R}^2)$ es una curva de Jordan si es cerrada y simple.

Teorema de la curva de Jordan

Si $\alpha \in \mathcal{C}([a,b];\mathbb{R}^2)$ es una curva de Jordan, $\mathbb{R}^2 \setminus C_\alpha = \Omega_a \cup \Omega_e$ tiene dos componentes conexas, una acotada, Ω_a , su interior y otra no acotada, Ω_e , su exterior cuya frontera común es C_α .

 $\Omega \subset \mathbb{R}^2$ es un dominio de Jordan si es abierto, conexo, acotado y $\partial \Omega = C_{\alpha}$ donde $\alpha \in \mathcal{C}([a,b];\mathbb{R}^2)$ es una curva de Jordan.

 $\alpha \in \mathcal{C}([a,b];\mathbb{R}^2)$ es una curva de Jordan si es cerrada y simple.

Teorema de la curva de Jordan

- $\begin{array}{|c|c|c|c|c|c|} \hline \Omega \subset \mathbb{R}^2 \text{ es un dominio de Jordan si es abierto, conexo, acotado} \\ \text{y } \partial \Omega = C_\alpha \text{ donde } \alpha \in \mathcal{C}([a,b];\mathbb{R}^2) \text{ es una curva de Jordan.} \end{array}$
- $lackbox{} \Omega\subset\mathbb{R}^2$ dominio de Jordan $\Rightarrow\Omega$ es la componente acotada de $\mathbb{R}^2\setminus\partial\Omega$

 $lack lpha \in \mathcal{C}([a,b];\mathbb{R}^2)$ es una curva de Jordan si es cerrada y simple.

Teorema de la curva de Jordan

- $\Omega \subset \mathbb{R}^2$ es un dominio de Jordan si es abierto, conexo, acotado y $\partial \Omega = C_{\alpha}$ donde $\alpha \in \mathcal{C}([a,b];\mathbb{R}^2)$ es una curva de Jordan.
- $lackbox{} \Omega\subset\mathbb{R}^2$ dominio de Jordan $\Rightarrow\Omega$ es la componente acotada de $\mathbb{R}^2\setminus\partial\Omega$
- Toda curva de Jordan es homeomorfa a una circunferencia

 $\alpha \in \mathcal{C}([a,b];\mathbb{R}^2)$ es una curva de Jordan si es cerrada y simple.

Teorema de la curva de Jordan

Si $\alpha \in \mathcal{C}([a,b];\mathbb{R}^2)$ es una curva de Jordan, $\mathbb{R}^2 \setminus C_\alpha = \Omega_a \cup \Omega_e$ tiene dos componentes conexas, una acotada, Ω_a , su interior y otra no acotada, Ω_e , su exterior cuya frontera común es C_α .

 $\Omega \subset \mathbb{R}^2$ es un abierto de Jordan si es abierto, conexo, acotado y $\partial \Omega = \bigcup_{j=1}^m C_{\alpha_j}$ es unión disjunta de trazas de curvas de Jordan.

 $\alpha \in \mathcal{C}([a,b];\mathbb{R}^2)$ es una curva de Jordan si es cerrada y simple.

Teorema de la curva de Jordan

 $lack lpha \in \mathcal{C}([a,b];\mathbb{R}^2)$ es una curva de Jordan si es cerrada y simple.

Teorema de la curva de Jordan

Si $\alpha \in \mathcal{C}([a,b];\mathbb{R}^2)$ es una curva de Jordan, $\mathbb{R}^2 \setminus C_\alpha = \Omega_a \cup \Omega_e$ tiene dos componentes conexas, una acotada, Ω_a , su interior y otra no acotada, Ω_e , su exterior cuya frontera común es C_α .

▶ Los abiertos Elementales de \mathbb{R}^2 son dominios de Jordan:

$$\leadsto$$
 Existen $[a,b]\subset\mathbb{R}$ y $\varphi_1,\varphi_2\in\mathscr{C}([a,b])$ tales que $\varphi_1<\varphi_2$.

TIPO I:
$$E = \{(x, y) \in \mathbb{R}^2 : a < x < b, \ \varphi_1(x) < y < \varphi_2(x)\}$$

TIPO II:
$$F = \{(x, y) \in \mathbb{R}^2 : a < y < b, \ \varphi_1(y) < x < \varphi_2(y)\}$$

 $\alpha \in \mathcal{C}([a,b];\mathbb{R}^2)$ es una curva de Jordan si es cerrada y simple.

Teorema de la curva de Jordan

Si $\alpha \in \mathcal{C}([a,b];\mathbb{R}^2)$ es una curva de Jordan, $\mathbb{R}^2 \setminus C_\alpha = \Omega_a \cup \Omega_e$ tiene dos componentes conexas, una acotada, Ω_a , su interior y otra no acotada, Ω_e , su exterior cuya frontera común es C_α .

▶ Los abiertos Elementales de \mathbb{R}^2 son dominios de Jordan:

 $lack lpha \in \mathcal{C}([a,b];\mathbb{R}^2)$ es una curva de Jordan si es cerrada y simple.

Teorema de la curva de Jordan

Si $\alpha \in \mathcal{C}([a,b];\mathbb{R}^2)$ es una curva de Jordan, $\mathbb{R}^2 \setminus C_\alpha = \Omega_a \cup \Omega_e$ tiene dos componentes conexas, una acotada, Ω_a , su interior y otra no acotada, Ω_e , su exterior cuya frontera común es C_α .

▶ Los abiertos Elementales de \mathbb{R}^2 son dominios de Jordan:

Sean $\Omega, \widehat{\Omega} \subset \mathbb{R}^2$ tales que $\overline{\Omega} \subset \widehat{\Omega}$ y Ω es elemental de TIPO I y II con $\partial \Omega$ de clase \mathcal{C}^1_s . Si $\mathbf{f} = (f_1, f_2) \in \mathcal{C}^1(\widehat{\Omega}, \mathbb{R}^2)$, entonces

$$\oint_{\partial\Omega} f d\boldsymbol{\ell} = \int_{\Omega} \left(\frac{\partial f_2}{\partial x} - \frac{\partial f_1}{\partial y} \right) dx dy$$

G. Green, 1793-1841

Sean $\Omega, \widehat{\Omega} \subset \mathbb{R}^2$ tales que $\overline{\Omega} \subset \widehat{\Omega}$ y Ω es elemental de TIPO I y II con $\partial \Omega$ de clase \mathcal{C}^1_s . Si $\mathbf{f} = (f_1, f_2) \in \mathcal{C}^1(\widehat{\Omega}, \mathbb{R}^2)$, entonces

$$\oint_{\partial\Omega}\mathrm{f}d\pmb{\ell}=\int_{\Omega}\Big(\frac{\partial f_2}{\partial x}-\frac{\partial f_1}{\partial y}\Big)dxdy$$

G. Green, 1793-1841

1828

 $ightharpoonup \partial \Omega$ se considera con la orientación positiva

Sean $\Omega, \widehat{\Omega} \subset \mathbb{R}^2$ tales que $\overline{\Omega} \subset \widehat{\Omega}$ y Ω es elemental de TIPO I y II con $\partial \Omega$ de clase \mathcal{C}^1_s . Si $\mathbf{f} = (f_1, f_2) \in \mathcal{C}^1(\widehat{\Omega}, \mathbb{R}^2)$, entonces

$$\oint_{\partial\Omega}\mathrm{f}d\pmb{\ell}=\int_{\Omega}\Big(\frac{\partial f_2}{\partial x}-\frac{\partial f_1}{\partial y}\Big)dxdy$$

G. Green, 1793-1841

- $ightharpoonup \partial \Omega$ se considera con la orientación positiva
- ▶ El Teorema es equivalente a las identidades

$$\oint_{\partial\Omega} f_1 dx = -\int_{\Omega} \frac{\partial f_1}{\partial y} \, dx dy \quad \text{e} \quad \oint_{\partial\Omega} f_2 dy = \int_{\Omega} \frac{\partial f_2}{\partial x} \, dx dy$$

Sean $\Omega, \widehat{\Omega} \subset \mathbb{R}^2$ tales que $\overline{\Omega} \subset \widehat{\Omega}$ y Ω es elemental de TIPO I y II con $\partial \Omega$ de clase \mathcal{C}^1_s . Si $\mathbf{f} = (f_1, f_2) \in \mathcal{C}^1(\widehat{\Omega}, \mathbb{R}^2)$, entonces

$$\oint_{\partial\Omega}\mathrm{f}d\pmb{\ell}=\int_{\Omega}\Big(\frac{\partial f_2}{\partial x}-\frac{\partial f_1}{\partial y}\Big)dxdy$$

G. Green, 1793-1841

1828

- $ightharpoonup \partial \Omega$ se considera con la orientación positiva
- ▶ El Teorema es equivalente a las identidades

$$\oint_{\partial\Omega} f_1 dx = -\int_{\Omega} \frac{\partial f_1}{\partial y} \, dx dy \quad \text{e} \quad \oint_{\partial\Omega} f_2 dy = \int_{\Omega} \frac{\partial f_2}{\partial x} \, dx dy$$

▶ Aplicar el Teorema de Fubini

Sean $\Omega, \widehat{\Omega} \subset \mathbb{R}^2$ tales que $\overline{\Omega} \subset \widehat{\Omega}$ y Ω es elemental de TIPO I y II con $\partial \Omega$ de clase \mathcal{C}^1_s . Si $\mathbf{f} = (f_1, f_2) \in \mathcal{C}^1(\widehat{\Omega}, \mathbb{R}^2)$, entonces

$$\oint_{\partial\Omega}\mathrm{f}d\pmb\ell=\int_{\Omega}\Big(\frac{\partial f_2}{\partial x}-\frac{\partial f_1}{\partial y}\Big)dxdy$$

G. Green, 1793-1841

$$\oint_{\partial\Omega} f_1 dx = -\int_{\Omega} \frac{\partial f_1}{\partial y} dx dy$$

$$\Omega = \left\{ a < x < b, \varphi_1(x) < y < \varphi_2(x) \right\}$$

$$\int_{\Omega} \frac{\partial f_1}{\partial y} dx dy = \int_a^b \int_{\varphi_1(x)}^{\varphi_2(x)} \frac{\partial f_1}{\partial y} dx dy$$

Sean $\Omega, \widehat{\Omega} \subset \mathbb{R}^2$ tales que $\overline{\Omega} \subset \widehat{\Omega}$ y Ω es elemental de TIPO I y II con $\partial \Omega$ de clase \mathcal{C}^1_s . Si $f = (f_1, f_2) \in \mathcal{C}^1(\widehat{\Omega}, \mathbb{R}^2)$, entonces

$$\oint_{\partial\Omega}\mathrm{f}d\pmb\ell=\int_{\Omega}\Big(\frac{\partial f_2}{\partial x}-\frac{\partial f_1}{\partial y}\Big)dxdy$$

G. Green, 1793-1841

$$\oint_{\partial\Omega} f_2 dx = \int_{\Omega} \frac{\partial f_2}{\partial x} dx dy$$

$$\Omega = \left\{ c < y < d, \varphi_1(y) < x < \varphi_2(y) \right\}$$

$$\int_{\Omega} \frac{\partial f_2}{\partial x} dx dy = \int_c^d \int_{\varphi_1(y)}^{\varphi_2(y)} \frac{\partial f_2}{\partial x} dx dy$$

TEOREMA DE STOKES

 $S\subset\mathbb{R}^3$ es una superficie orientada cuya frontera ∂S es una curva regular con la orientación inducida por S. Si $\mathbf{f}\in\mathcal{C}^1(\Omega;\mathbb{R}^3)$, con Ω abierto tal que $\overline{S}\subset\Omega$, entonces

$$\oint_{\partial S} f \, d\boldsymbol{\ell} = \int_{S} \operatorname{rot} f \, d\boldsymbol{S}$$

G.G. Stokes, 1819-1903

TEOREMA DE STOKES

G.G. Stokes, 1819-1903

 $S\subset\mathbb{R}^3$ es una superficie orientada cuya frontera ∂S es una curva regular con la orientación inducida por S. Si $\mathbf{f}\in\mathcal{C}^1(\Omega;\mathbb{R}^3)$, con Ω abierto tal que $\overline{S}\subset\Omega$, entonces

$$\oint_{\partial S} f \, d\boldsymbol{\ell} = \int_{S} \operatorname{rot} f \, d\boldsymbol{S}$$

1828

 $\widehat{\Omega}\subset\mathbb{R}^2$ abierto, $\sigma\in\mathcal{C}^2(\widehat{\Omega};\mathbb{R}^3)$ inyectiva y regular Sea $D\subset\widehat{\Omega}$ abierto de Jordan $S=\sigma(),\;\;\partial S=\sigma(\partial D)$

G.F. Gauss, 1777-1855

$$\Omega, \widehat{\Omega} \subset \mathbb{R}^3$$
 abiertos tales que $\overline{\Omega} \subset \widehat{\Omega}$ y $\partial \Omega$ es una superficie regular. Si $\mathbf{f} \in \mathcal{C}^1(\widehat{\Omega}; \mathbb{R}^3)$, entonces

$$\int_{\partial\Omega}\langle \mathsf{f},\mathsf{n}\rangle\,dm{S}=\int_{\partial\Omega}\mathsf{f}\,dm{S}=\int_{\Omega}\mathrm{div}(\mathsf{f})\,dm{V}$$

 $\Omega, \widehat{\Omega} \subset \mathbb{R}^3$ abiertos tales que $\overline{\Omega} \subset \widehat{\Omega}$ y $\partial\Omega$ es una superficie regular. Si $f \in C^1(\widehat{\Omega}; \mathbb{R}^3)$, entonces

$$\int_{\partial\Omega}\langle \mathsf{f},\mathsf{n}\rangle\,d\boldsymbol{S} = \int_{\partial\Omega}\mathsf{f}\,d\boldsymbol{S} = \int_{\Omega}\operatorname{div}(\mathsf{f})\,d\boldsymbol{V}$$

G.F. Gauss. 1777-1855

1813

 $\triangleright \Omega$ es elemental expresable como

$$\Omega = \left\{ (x, y, z) : a < x < b, \ \varphi(x) < y < \psi(x), \ \phi(x, y) < z < \rho(x, y) \right\}$$

$$\Omega = \left\{ (x, y, z) : a < y < b, \ \varphi(y) < z < \psi(y), \ \phi(y, z) < x < \rho(y, z) \right\}$$

$$\Omega = \left\{ (x, y, z) : a < x < b, \ \varphi(x) < z < \psi(x), \ \phi(z, x) < y < \rho(z, x) \right\}$$

G.F. Gauss, 1777-1855

 $\Omega,\widehat{\Omega}\subset\mathbb{R}^3$ abiertos tales que $\overline{\Omega}\subset\widehat{\Omega}$ y $\partial\Omega$ es una superficie regular. Si $f \in \mathcal{C}^1(\widehat{\Omega}; \mathbb{R}^3)$, entonces

$$\int_{\partial\Omega}\langle \mathsf{f},\mathsf{n}\rangle\,d\boldsymbol{S} = \int_{\partial\Omega}\mathsf{f}\,d\boldsymbol{S} = \int_{\Omega}\operatorname{div}(\mathsf{f})\,d\boldsymbol{V}$$

1813

ightharpoonup Si f = (f_1, f_2, f_3) y f₁ = $(f_1, 0, 0)$, f₂ = $(0, f_2, 0)$, f₃ = $(0, 0, f_3)$, el Teorema es equivalente a las identidades

$$\int_{\partial\Omega}\mathsf{f}_1d\boldsymbol{\mathcal{S}} = \int_{\Omega}\frac{\partial f_1}{\partial x}\,d\boldsymbol{V},\ \int_{\partial\Omega}\mathsf{f}_2d\boldsymbol{\mathcal{S}} = \int_{\Omega}\frac{\partial f_2}{\partial y}\,d\boldsymbol{V},\ \int_{\partial\Omega}\mathsf{f}_3d\boldsymbol{\mathcal{S}} = \int_{\Omega}\frac{\partial f_3}{\partial z}\,d\boldsymbol{V}$$

G.F. Gauss, 1777-1855

 $\Omega,\widehat{\Omega}\subset\mathbb{R}^3$ abiertos tales que $\overline{\Omega}\subset\widehat{\Omega}$ y $\partial\Omega$ es una superficie regular. Si $f \in \mathcal{C}^1(\widehat{\Omega}; \mathbb{R}^3)$, entonces

$$\int_{\partial\Omega}\langle \mathsf{f},\mathsf{n}\rangle\,d\boldsymbol{S} = \int_{\partial\Omega}\mathsf{f}\,d\boldsymbol{S} = \int_{\Omega}\mathrm{div}(\mathsf{f})\,d\boldsymbol{V}$$

1813

▶ Si f = (f_1, f_2, f_3) y f₁ = $(f_1, 0, 0)$, f₂ = $(0, f_2, 0)$, f₃ = $(0, 0, f_3)$, el Teorema es equivalente a las identidades

$$\int_{\partial\Omega}\mathsf{f}_1d\boldsymbol{\mathcal{S}} = \int_{\Omega}\frac{\partial f_1}{\partial x}\,d\boldsymbol{V},\ \int_{\partial\Omega}\mathsf{f}_2d\boldsymbol{\mathcal{S}} = \int_{\Omega}\frac{\partial f_2}{\partial y}\,d\boldsymbol{V},\ \int_{\partial\Omega}\mathsf{f}_3d\boldsymbol{\mathcal{S}} = \int_{\Omega}\frac{\partial f_3}{\partial z}\,d\boldsymbol{V}$$

Aplicar el Teorema de Fubini