2023 年 3 月 26 日 微分几何 强基数学 002 吴天阳 2204210460

第四次作业

题目 1. 3.4 练习 1 证明**定义 3.7** 中 Jacobi 矩阵可逆这个条件不依赖于仿射坐标系的选取,也就是说如果 $\varphi_U \circ \varphi_A^{-1}$ 在 $\varphi_A(U)$ 上逐点可逆,那么在另一个仿射坐标系 A' 中, $\varphi_U \circ \varphi_{A'}^{-1}$ 在 $\varphi_{A'}(U)$ 上也逐点可逆.

证明. 设 $(\varphi_U \circ \varphi_A^{-1})' = J$ 可逆,由于 $\mathcal{A}, \mathcal{A}'$ 均为仿射坐标系,则存在正交阵 T 和常向量 $\mathbf{a} \in \mathbb{R}^n$ 使得 $\varphi_A \circ \varphi_A^{-1}(\mathbf{x}) = T\mathbf{x} + \mathbf{a}$,于是 $\forall \mathbf{x} \in \varphi_{A'}(U)$ 有

$$\varphi_{U} \circ \varphi_{\mathcal{A}'}^{-1}(\boldsymbol{x}) = (\varphi_{U} \circ \varphi_{\mathcal{A}}^{-1})(\varphi_{\mathcal{A}} \circ \varphi_{\mathcal{A}'}^{-1})(\boldsymbol{x})$$

$$\Rightarrow (\varphi_{U} \circ \varphi_{\mathcal{A}'}^{-1})'(\boldsymbol{x}) = ((\varphi_{\mathcal{A}} \circ \varphi_{\mathcal{A}'}^{-1})')^{T}[(\varphi_{U} \circ \varphi_{\mathcal{A}}^{-1})'(\varphi_{\mathcal{A}} \circ \varphi_{\mathcal{A}'}^{-1})](\boldsymbol{x})$$

$$\xrightarrow{\underline{T^{-1} = T^{T}}} T^{-1}J(T\boldsymbol{x} + \boldsymbol{a})$$

令 $F(\boldsymbol{x}) = T^{-1}(J^{-1}T\boldsymbol{x} - \boldsymbol{a}) = T^{-1}J^{-1}T\boldsymbol{x} - T^{-1}\boldsymbol{a}$,于是 $F[(\varphi_U \circ \varphi_{\mathcal{A}'}^{-1})'(\boldsymbol{x})] = I$,则 $\varphi_U \circ \varphi_{\mathcal{A}'}^{-1}$ 的 Jacobi 矩阵在 \boldsymbol{x} 处可逆,逆变换为 F,由 \boldsymbol{x} 的任意性可知 $\varphi_U \circ \varphi_{\mathcal{A}'}^{-1}$ 在 $\varphi_{\mathcal{A}'}(U)$ 上逐点可逆.

题目 2. 3.4 练习 4. 证明**命题 3.2**:设 U 为 \mathscr{A}^n 中的开区域,带有广义坐标系 $\{U, \varphi_U\}$,则:

- (1) U 中的开子集在 φ_U 下的像是 \mathbb{R}^n 中的开子集. 反之, \mathbb{R}^n 中的开子集在 φ_U 下的原像是 U 中的开子集.
 - (2) 设 f 为 U 上定义的标量场,则 f 连续等价于 $f \circ \varphi_U^{-1}$ 是 $\varphi_U(U)$ 上的连续函数.

证明. (1) 由于

$$\varphi_U \circ \varphi_{\mathcal{A}}^{-1} : \mathbb{R}^n \to \mathbb{R}^n$$

 $\mathbf{x} = (x^1, \dots, x^n) \mapsto (y^1(\mathbf{x}), \dots, y^n(\mathbf{x}))$

于是 $\varphi_U \circ \varphi_A^{-1}$ 对应的 Jacobi 矩阵为 $J = (\varphi_U \circ \varphi_A^{-1})' = [\partial_j y^i(x^1, \dots, x^n)]_{ij}$,下证多元函数可微可推出连续: $\forall \varphi_A(\boldsymbol{x}) \in U, \ \boldsymbol{h} \in \mathbb{R}^n$,由 J 的连续性和多元函数微分的定义可知:

$$|\varphi_U \circ \varphi_{\mathcal{A}}^{-1}(\boldsymbol{x} + \boldsymbol{h}) - \varphi_U \circ \varphi_{\mathcal{A}}^{-1}(\boldsymbol{x})| = \left| |\boldsymbol{h}| \frac{\varphi_U \circ \varphi_{\mathcal{A}}^{-1}(\boldsymbol{x} + \boldsymbol{h}) - \varphi_U \circ \varphi_{\mathcal{A}}^{-1}(\boldsymbol{x}) - J\boldsymbol{h}}{|\boldsymbol{h}|} + J\boldsymbol{h} \right| \to 0, \ (\boldsymbol{h} \to 0)$$

由 x 的任意性可知 $\varphi_U \circ \varphi_A^{-1}$ 在 U 上连续.

由于 $\varphi_U \circ \varphi_A^{-1}$ 的 Jacobi 矩阵可逆,等价于,逆映射 $\varphi_A \circ \varphi_U^{-1}$ 的 Jacobi 矩阵可逆,所以 $\varphi_A \circ \varphi_U^{-1}$ 连续可微. 设 V 为 U 中的开集,由于 $\varphi_U(V) = (\varphi_A \circ \varphi_U^{-1})^{-1}(\varphi_A(V))$,且 φ_A 是同胚映射,则 $\varphi_A(V)$ 是开集, $(\varphi_A \circ \varphi_U^{-1})^{-1}$ 将开集映射为开集,所以 $\varphi(V)$ 是开集,于是 φ_U^{-1} 连续.

由于 φ_U^{-1} 连续,又由广义坐标系性质可知 φ_U 可逆,于是 φ_U 连续,所以 φ_U^{-1} 将开集映射为开集. 综上, φ_U 是同胚映射.

(2) 设 W 为 $\varphi_U(U)$ 上的开子集.

"⇒"由于 $(f \circ \varphi_U^{-1})^{-1}(W) = \varphi_U(f^{-1}(W))$,由于 f 连续,则 $f^{-1}(W)$ 为开集,又由于 φ_U 为同胚映射,所以 $\varphi_U(f^{-1}(W))$ 为开集,所以 $f \circ \varphi_U^{-1}$ 连续.

" \leftarrow " 由于 $\varphi_U^{-1}((f\circ\varphi_U^{-1})^{-1}W)=f^{-1}(W)$,由于 φ_U 为同胚映射, $(f\circ\varphi_U^{-1})^{-1}(W)$ 为开集,所以 $f^{-1}(W)$ 为开集,故 f 连续.

下证明,上述命题中与 φ_U 的选取无关,任取广义坐标系 $\{U,\varphi_U'\}$,假设 $f\circ\varphi_U$ 连续,于是 $(f\circ\varphi_U^{-1})^{-1}(W)$ 为开集,由于

$$(f \circ \varphi_{U'}^{-1})^{-1}(W) = (f \circ \varphi_{U}^{-1} \circ \varphi_{U} \circ \varphi_{U'}^{-1})^{-1}(W) = (\varphi_{U} \circ \varphi_{U'}^{-1})^{-1}(f \circ \varphi_{U}^{-1})^{-1}(W)$$

由于 $(\varphi_U \circ \varphi_{U'}^{-1})$ 是同胚映射,所以 $(f \circ \varphi_{U'}^{-1})^{-1}(W)$ 为开集,故 $f \circ \varphi_{U'}^{-1}$ 连续.