

Construcción de un sistema que integra los exploradores de energía solar y de biomasa residual agrícola desarrollados para Colombia y Chile

Informe 1 - Producto A: Base de datos de las comunidades y territorios de estudio

Proyecto Cooperación Triangular

Entregado a: Agencia GIZ Colombia

Bogotá D.C., Octubre 2022

Índice general

1	Introducción	2
2		3
	2.1 El Atlas Solar Colombiano	3
	2.2 Proyecto de Desarrollo con Enfoque Territorial - PDET	3
3	Fuentes de datos	5
	3.1 Cobertura de acueducto	5
	3.2 Índice de Cobertura de Energía Eléctrica - ICEE	5
	3.3 Rendimiento promedio de cultivos	
	3.4 Tasa de deserción intra-anual del sector oficial	
	3.5 Índice de Informalidad	
	3.6 Biomasa sobre el suelo	
	3.7 Índice de vegetación NDVI	
	3.8 Porcentaje de nubosidad	
	3.9 Irradiación solar	
4	Metodología	8
5	Resultados y conclusiones	10

1. Introducción

Una breve Introducción.

2. Antecedentes

2.1. El Atlas Solar Colombiano

Colombia recibe abundante irradiación solar con una media de 4.5 kWh/m², por encima de la media mundial de 3.9 kWh/m². Esta radiación solar media se mantiene casi constante durante todo el año, lo que convierte a Colombia en un lugar ideal para implementar proyectos solares fotovoltaicos (Sofia Orjuela, Leon; Mendoza, 2021 [Pendiente]). El gobierno colombiano ha puesto en marcha una ley para estimular la implantación de sistemas fotovoltaicos a pequeña y gran escala mediante la concesión de incentivos fiscales (Ministerio de Minas y Energía, y Unidad de Planeación Minero Energética (UPME, 2014 [Pendiente]). Sin embargo, a pesar de los esfuerzos del gobierno por promover las instalaciones fotovoltaicas, la falta de una base de datos de información meteorológica sólida y de fácil acceso dificulta la realización de análisis de viabilidad de las instalaciones fotovoltaicas y la evaluación de su capacidad energética.

En Colombia, el Instituto de Hidrología, Meteorología y Estudios Ambientales (IDEAM) proporciona mediciones in situ de datos meteorológicos. Sin embargo, hay pocas estaciones meteorológicas en el territorio colombiano y la calidad de los datos se ve afectada por la falta de mantenimiento y calibración de los sensores. Aunque algunos sitios web intentan proporcionar estimaciones de la producción fotovoltaica, no existe una herramienta especializada que tenga en cuenta las necesidades del país, los requisitos del usuario y el idioma nativo de éste. Por lo tanto, una herramienta que tenga en cuenta estos requisitos podría impulsar los proyectos de energía solar fotovoltaica en el país.

Para resolver este problema, se creó una herramienta web interactiva que permite visualizar datos meteorológicos y evaluar el potencial actual y futuro de generación fotovoltaica en todo el territorio colombiano. Esta herramienta, llamada Atlas Solar Colombiano (http://162.240.212.193:3000), se basa en dos bases de datos meteorológicos: una con datos históricos extraídos de la información de imágenes satelitales y otra con datos de modelos de proyección del cambio climático. Además, el Atlas cuenta con dos modelos de generación fotovoltaica, uno básico y uno avanzado, que permite estimar la generación de una instalación solar fotovoltaica, de acuerdo con las necesidades del usuario. El Atlas proporciona un mapa interactivo que muestra:

- Datos históricos para el periodo comprendido entre 1998 y 2019 obtenidos del National Renewable Energy Laboratory: irradiación global horizontal, irradiación normal directa, irradiación difusa horizontal, ángulo cenital solar, velocidad del viento y temperatura ambiente. Esta base de datos fue validada con mediciones in situ proporcionadas por el IDEAM.
- Datos de escenarios de cambio climático a escala regional para el periodo 2070-2099 obtenidos del Coordinated Regional Downscaling Experiment: irradiación global horizontal, velocidad del viento y temperatura ambiente bajo dos escenarios de cambio climático.
- Una calculadora de generación fotovoltaica que permite a los usuarios estimar la posible potencia fotovoltaica generada por un sistema fotovoltaico personalizado en una ubicación específica. Un modelo básico proporciona parámetros por defecto para el sistema fotovoltaico, y todos los parámetros fotovoltaicos pueden personalizarse a través del modelo avanzado.

Esta herramienta interactiva permitirá a los inversores evaluar el potencial actual y futuro de generación fotovoltaica en cualquier lugar de Colombia. Se trata de la primera herramienta interactiva en línea que permite a los usuarios estudiar el potencial de energía fotovoltaica en Colombia a partir de una sólida base de datos y teniendo en cuenta las proyecciones del cambio climático.

2.2. Proyecto de Desarrollo con Enfoque Territorial - PDET

Como apoyo al fortalecimiento del Programa Colombia Sostenible con los Proyectos de Desarrollo con Enfoque Territorial -PDET el investigador Iván Carrol, de la Facultad de Ingeniería de la Universidad de los Andes, realizó 1260 mapas utilizando imágenes Sentinel 2 del Programa Copernicus de la Agencia Espacial Europea por medio de

la aplicación de índices de cobertura con los cuales se creó una línea base del año 2020 que posteriormente en el año 2025 se comparará para determinar los efectos de la implementación de los proyectos de desarrollo en subregiones del país donde se ubican los PDET. Este proyecto fue realizado en conjunto con la Facultad de Economía de la Universidad de los Andes y la Universidad de Antioquia.

Adicionalmente, atendiendo el Objetivo de Desarrollo Sostenible – ODS 11 sobre ciudades y comunidades sostenibles, Carroll aplicó un índice de funcionalidad ecológica del suelo mediante inteligencia artificial en imágenes Sentinel 2 para alertar a tomadores de decisiones, principalmente alcaldes, de 50 ciudades de América Latina y el Caribe sobre la baja calidad de vida, el crecimiento acelerado y la reducción en el acceso a zonas verdes de algunas urbes. Esta investigación está en curso de ser publicada y presentada.

3. Fuentes de datos

3.1. Cobertura de acueducto

La cobertura del servicio de acueducto corresponde al porcentaje de predios residenciales con acceso al servicio de acueducto; entendiéndose como predios residenciales aquellos con estratos 1, 2, 3, 4, 5, 6 y los predios aún no estratificados pero reconocidos por la alcaldía como residenciales. Esta cobertura se obtiene a través de la información consignada por los alcaldes en el "Reporte de Estratificación y Coberturas", dispuesto en el Sistema Único de Información del módulo alcaldes. La información fue recopilada desde el portal de Terridata¹, una aplicación proveida por el Departamento Nacional de Planeación de Colombia para la consulta estadística por parte de entes territoriales de de indicadores sobre diversos sectores y temáticas.

3.2. Índice de Cobertura de Energía Eléctrica - ICEE

Este índice es calculado por la Unidad de Planeación Minero Energética (UPME) que mide la tasa de viviendas en sector residencial que tienen infraestructura eléctrica disponible y es proveido por el Sistema Interconectado Nacional o mediante soluciones aisladas dentro de las zonas nacionales de interconexión (ZNI). El índice fue calculado con vigencia al 2018. El conjunto de datos fue recopilado desde la página web de la entidad².

3.3. Rendimiento promedio de cultivos

El rendimiento de cultivos es un indicador de la cantidad de toneladas producidas por hectárea para un cultivo particular. Esta información se obtiene a partir de las Evaluaciones agropecuarias municipales³, que consisten en la recolección de información a través de formularios diseñados e implementados con un aplicativo web, con módulos para los cultivos transitorios, anuales o permanentes.

Esta operación fue desarrollada durante los meses de octubre a diciembre de 2020, recolectando información de 1099 municipios y 197 cultivos. En cuanto al procesamiento de datos, se obtuvo el rendimiento promedio para todos los tipos de cultivos presentes en cada municipio, priorizando el valor más reciente para cultivos transitorios y utilizando el valor anual para cultivos permanentes. Con respecto a los valores nulos, se utilizó el valor de -1 para aquellos municipios en los que no se tuviera información disponible. Los datos puedes ser descargados desde la aplicación web⁴ proveida por la entidad.

3.4. Tasa de deserción intra-anual del sector oficial

La tasa de deserción intra-anual del sector oficial corresponde al porcentaje de estudiantes de educación básica y media (transición a once) que abandonan el sistema educativo antes de finalizar el año lectivo con respecto a la cantidad total de estudiantes matriculados a inicio del año. Esta información es recopilada por el Ministerio de Educación y disponible en Terridata, una herramienta para fortalecer la gestión pública a partir de datos a nivel municipal, presentando indicadores estandarizados. Con respecto a los valores nulos, se utilizó el valor de -1 para aquellos municipios en los que no se tuviera información disponible.

3.5. Índice de Informalidad

El índice se calcula como el porcentaje de personas desocupadas informalmente con respecto a la población total. Este indicador también se encuentra disponible en Terridata y representa el porcentaje de personas que no cuentan

¹https://terridata.dnp.gov.co/

²https://tinyurl.com/5hduxcnw

³https://www.upra.gov.co/web/guest/eva-2020

⁴https://tinyurl.com/yp4jmv9n

con un trabajo formal en cada una de las entidades territoriales con respecto a la población total de cada municipio mismo. Esta tasa calculada con información de la FILCO (Ministerio del Trabajo) y resulta como el complemento del indicador "Porcentaje de personas ocupadas formalmente con respecto a la población total" (P. Formal) y se define de tal manera según la entidad citada:

$$P.Informal = 1 - P.Formal$$

3.6. Biomasa sobre el suelo

El proyecto GlobBiomass [1, 2] de la Agencia Espacial Europea ha recopilado datos y provee conjuntos de libre descarga con información referente al volumen de biomasa en bosques y la métrica de biomasa por encima del suelo, conocida como AGB, para el año 2018. El AGB se refiere a la masa expresada como peso seco de las partes arbóreas de toda especie vegetal viva a excepción de sus raíces. Sus unidades se miden en toneladas por hectárea (Mg/ha) y la resolución espacial de este conjunto es de 1 Km².

Se descargaron dos conjuntos de datos que cubrían el área de Colombia. Usando los polígonos correspondientes para el país se recortaron las áreas necesarias de cada conjunto y se unieron posteriormente para conformar un referente de AGB para todo el territorio nacional.

3.7. Índice de vegetación NDVI

El índice de diferencia normalizada de la vegetación (NDVI) es un indicador de la vitalidad de la flora presente en un área determinada. Este se calcula a partir de las bandas infrarrojas y el espectro correspondiente al rojo que suministran diversos sensores de satélite. El rango de valores oscila entre 0 y 1 donde los valores más altos indican vegetación más saludable. El programa Copérnico de la Unión Europea, a través del portal Copernicus Global Land Service⁵, provee imágenes globales de NDVI para todos los meses del año después de promediar diferentes muestras tomadas por el satélite PROBA-V durante el periodo de 2015 al 2019. La resolución espacial de los conjuntos de datos es de 1 Km².

Para este estudio se tomaron una imagen para cada mes del producto Short Term Statistics Versión 3. Las imágenes se recortaron de acuerdo a la zona de estudio y se promediaron las 12 imágenes resultantes para obtener un promedio anual representativo del índice NDVI para el territorio Colombiano. El portal para la descarga de imágenes y conjuntos de datos se puede acceder a través de su sitio web⁶.

3.8. Porcentaje de nubosidad

El proyecto EarthEnv [3] es un esfuerzo colaborativo entre diversos expertos para desarrollar un conjunto de datos de escala global con capas de resolución de 1 Km² para monitorear y modelar los ecosistemas, biodiversidad y clima. El trabajo fue soportado por NCEAS, NASA, NSF y la Universidad de Yale.

Para el caso del porcentaje de nubosidad se promediaron las frecuencias mensuales dentro de un periodo de 15 años (2001-16) de dos muestras diarias de los satélites MODIS. Del conjunto global se extrajo el área correspondiente a Colombia con valores entre 4000 y 10000 unidades. Estos valores deben ser divididos por 100 para indicar el valor porcentual del número de días con nubosidad al año. El conjunto de datos global puede ser descargado desde la página web del proyecto⁷.

3.9. Irradiación solar

El Banco Mundial a través de su catálogo de datos⁸ distribuye diferentes capas alusivas a variables de energía solar, entre ellas el índice de irradiación global horizontal (GHI). Este recurso fue desarrollado por SolarGIS (solar-

⁵https://land.copernicus.eu/global/products/ndvi

⁶https://tinyurl.com/ekzekr4d

⁷http://www.earthenv.org/cloud.html

⁸https://datacatalog.worldbank.org/search/dataset/0038645

gis.com) y se provee por medio del Atlas Solar Global 9 . Los valores de GHI se miden en kWh/m 2 con una resolución espacial nominal de 250m. A través del portal web del atlas global se permite descargar conjuntos específicos para cada país por lo que solo fue necesario ajustar los límites y tamaño de píxel de este conjunto para coincidir con aquellos de los demás indicadores.

 $^{^9 {\}tt https://globalsolaratlas.info/download/colombia}$

4. Metodología

Para la selección de un conjunto de ubicaciones idóneas para la implementacion de las soluciones propuestas se decidió seguir un enfoque de selección multicriterio soportado en operaciones de lógica difusa. El diagrama 4.1 ilustra esquemáticamente los pasos de la metodología propuesta. Esta metodología puede dividirse en tres partes para su explicación. Primero, un conjunto de capas son preparadas a partir de una serie de indicadores socio-económicos y físicos. Luego, dichas capas son transformadas para estandarizar su magnitud y dimensiones. Finalmente, se asigna un peso a cada capa de acuerdo a su importancia y se aplica una operación de agregación sobre todas las capas para consolidar un único resultado. A continuación se explica en más detalle los pasos seguidos en cada parte de la metodología.

Figura 4.1: Diagrama esquemático de la metodología propuesta.

En la selección 3 se establecieron las fuentes de datos de los indicadores tenidos en cuenta dentro de la metodología. En la primera parte de la metodología se hizo necesario hacer cierto tratamiento en cada una de ellas. En particular, todas las capas referentes a indicadores socio-económicos se obtuvieron en un esquema tabular, esto es una tabla donde aparecia el valor de cada indicador junto con otras variables relacionadas al fenómeno a nivel de los municipios de Colombia. Se tuvó en cuenta el código DANE de cada municipio junto con el valor relacionado a la variable en cuestión. Posteriormente, se ejecutó un cruce de datos entre la información extraida y el mapa oficial DANE para georreferenciar los datos y generar una vista de la distribución geográfica del indicador. De esta manera se obtienen una serie de mapas que ilustran la composición del indicador para cada municipio.

Para las variables física también se hizó necesario aplicar ciertas operaciones espaciales para ajustar los conjuntos de datos iniciales a las condiciones del área de estudio. Por lo general, para estos casos, los estudios son de caracter global, por lo que se requeria extraer los datos solo para el territorio Colombiano. Según el caso fue necesario aplicar operaciones de agregación espacial, si los datos para Colombia se presentaban en más de una fuente, o temporales, si se proveian datos a nivel mensual y lo requerido eran promedios anuales.

Para la segunda parte de la metodología, se requiere que todas las capas se encuentren en una version raster

de idénticas dimensiones (esto es una imagen con igual número filas y columnas donde el valor de cada pixel sea el valor del indicador que representa). En esta etapa, se aplicaron operaciones espaciales a las capas de indicadores socio-económicos para convertir su version vectorial (polígonos representando cada municipio) a capas raster. Como dimensiones específicas se seleccionó un área de 1666 columnas por 1972 filas que cubre la extensión del mapa oficial DANE usando un sistemas de coordenadas EPSG:3857 (Pseudo-Mercator). La resolución espacial obtenida fue de aproximadamente 1 Km². Se reprojectaron y se ajustaron todas las capas (incluyendo las variables físicas) a dichas dimensiones y al sistema de coordenadas mencionado para permitir su análisis en unidades de metros.

Para permitir la aplicación de una función de agregación todas las capas deben ser tratadas para transformar sus valores y rango de datos a un estandar común. La lógica difusa provee una serie de funciones de membresía que permiten escalar los datos de 0 a 1 donde el usuario puede especificar valores a priorizar y diversas clases de curvas para transformar los datos. La membresía lineal es la más sencilla de las funciones y se corresponde a una normalización típica. Los valores para cada variable se escalan, de acuerdo a las caracteristicas de la variable, dandole un valor de 0 al valor con menor prioridad y un valor de 1 al más alto, los valores intermedios se obtienen a travéz de una interpolación directa.

En la última parte de la metodología, contamos con una serie de capas raster ponderadas y unificadas. Cada píxel en las imágenes se corresponde uno a uno por lo que cualquier operación de agregación es valida. La operación de agregación tomará cada píxel de las capas en la misma ubicación y los agregará de acuerdo a su función, el resultado sera el valor del píxel en dicha ubicación para el mapa final. De nuevo, la lógica difusa provee diferentes funciones de agregación pero dadas las caracteristicas del estudio se decidió utilizar una sumatoria simple. Cabe aclarar que previo a la operación de agregación se asignaron pesos distintivos a cada capa. Esto es, un valor por el cual se multiplica el valor de cada píxel antes de operarlo con los demas. La asignación de pesos a cada capa se hace de manera coordinada entre los interesados y expertos y puede ser facilmente editada en el modelo final para su posterior ejecución.

El mapa obtenido en esta estapa es finalmente escalado, entre 0 y el máximo valor posible de acuerdo a los pesos asignados, obteniendo una capa raster con valores entre 0 y 1 para cada ubicación en el mapa a manera de un índice. Para obtener un indicador a nivel de municipio, se utiliza una capa adicional para agregar por zonas y calcular el promedio de todos los píxeles contenidos en un respectivo municipio. Esto entrega una capa vectorial, con cada municipio relacionado con su valor promedio de acuerdo al puntaje obtendio en el índice anterior. Esta lista de municipios y su valor promedio se utiliza como un ranking para la selección de los municipios con mayor potencial para la implementación de las soluciones propuestas en las posteriores etapas de la investigación.

5. Resultados y conclusiones

Presentacion de resultados y conclusiones.

Bibliografía

- [1] Maurizio Santoro. GlobBiomass global datasets of forest biomass. September 2018. Publisher: PANGAEA Type: dataset.
- [2] Maurizio Santoro, Oliver Cartus, Stephane Mermoz, Alexandre Bouvet, Thuy Le Toan, Nuno Carvalhais, Danae Rozendaal, Martin Herold, Valerio Avitabile, Shaun Quegan, Joao Carreiras, Yrjö Rauste, Heiko Balzter, Christiane Schmullius, and Frank Martin Seifert. A detailed portrait of the forest aboveground biomass pool for the year 2010 obtained from multiple remote sensing observations. page 18932, April 2018. Conference Name: EGU General Assembly Conference Abstracts ADS Bibcode: 2018EGUGA..2018932S.
- [3] Adam M. Wilson and Walter Jetz. Remotely Sensed High-Resolution Global Cloud Dynamics for Predicting Ecosystem and Biodiversity Distributions. *PLOS Biology*, 14(3):e1002415, March 2016. Publisher: Public Library of Science.