

Edward Russell

VT Ecosystem Dynamics

Domain and Currency

- The model characterizes a cube of dimensions
 10m x 10m x 10m
- Each cube is 1m x 1m x 1m
- There are a total of 1000 spatial cells in the model
- The model currency is gC/m3
- The time step used = 1 day
- The duration of simulations = 30 to 400 days

Model Parameters

Table of Parameter Values and Units	
Parameter Values	Units
vp = .1	m/d
phyto_flux_top = 0	gC/m2/d
degRate = .15	m3/d/gC
maxUptake =2	gC/d
ksPAR =140	uEinst/m2/sec
light_extinction = 0.7	/gC/m
D_coeff = 0.2	m2/d
del_X = 1	m
del_Y = 1	m
del_Z =1	m
Norm_H = 1	unitless vector
Norm_L = -1	unitless vector
TopDownDiff = 0	gC/m2/d
SideInDiff1 = 0	gC/m2/d
SideInDiff2 = 0	gC/m2/d
SideInDiff3 = 0	gC/m2/d
SideInDiff4 = 0	gC/m2/d
BottomDownDiff =0	gC/m2/d
xz_area = del_X*del_Z = 1	m2
yz_area = del_Y*del_Z = 1	m2
xy_area = del_X*del_Y = 1	m2
volume = (del_X*del_Y*del_Z) = 1	m3
X_extent = 10/del_X = 10	boxes
Y_extent = 10/del_Y = 10	boxes
Z_extent = 10/del_Z = 10	boxes

Scientific Question Tested

- The objective was to examine the relationship between advection, diffusion, and light limited growth in space and through time
- Specifically I tested how varying the sinking rate affected the spatial distribution of phytoplankton over time
- Spoiler; there was a notable difference between 0.1 and 10 m/s sinking rates

Discretizing The A-D-R Equation

recall;
$$Flux|_{dispersion} = -D \frac{\partial C}{\partial x} Flux|_{advection} = u \cdot C$$

and generally;
$$\frac{\partial \mathbf{C}}{\partial t} = -\frac{1}{A} \cdot \frac{\partial A \cdot Flux}{\partial x} + g \cdot \mathbf{C}$$
 (6.16)

This formula is now discretized to represent the rate of change of the concentrations in each box i, C_i, as follows:

$$\frac{d\mathbf{C}_i}{dt} = -\frac{1}{A_i} \frac{\Delta_i (A \cdot Flux)}{\Delta x_i} + g \cdot \mathbf{C}_i \tag{6.17}$$

Where C_i is concentration in box i, Δx_i is the thickness of box i, A_i is the surface area in the middle of box i, and Δ_i denotes that the flux gradient is to be taken around box i.

Discretization Continued

Keeping this in mind, the flux gradient for box i is then defined as the difference of the fluxes at the interface with the next box (i,i+1) and with the previous box (i-1,i). Thus we write:

$$\frac{d\mathbf{C}_i}{dt} = -\frac{A_{i,i+1} \cdot Flux_{i,i+1} - A_{i-1,i} \cdot Flux_{i-1,i}}{A_i \cdot \Delta x_i} + g \cdot \mathbf{C}_i \tag{6.18}$$

Here $Flux_{i-1,i}$ is the flux on the interface between cell i-1 and i, and $A_{i-1,i}$ is the surface area on this interface.

Why We Can Reduce Space to 3 Axes Pt. A: The Gradient Function

Pt. B: The Directional Derivative and

It turns out that the relationship between the gradient and the directional derivative can be summarized by the equation

$$D_{\mathbf{u}} f(\mathbf{a}) = \nabla f(\mathbf{a}) \cdot \mathbf{u}$$

$$= \|\nabla f(\mathbf{a})\| \|\mathbf{u}\| \cos \theta$$

$$= \|\nabla f(\mathbf{a})\| \cos \theta$$

where θ is the angle between \mathbf{u} and the gradient. (Recall that \mathbf{u} is a unit vector, meaning that $\|\mathbf{u}\| = 1$.)

A Walk in the Equation Park (1)

Here is the general case:

#CALCULATE REACTION

```
PAR <- 0.5*(540+440*sin(2*pi*t/365-1.4));

layer_mid_depth <- (k-1)*del_Z + del_Z/2;

layer_PAR <- PAR*exp(-light_extinction*(layer_mid_depth));

C_Uptake <- maxUptake*(layer_PAR/(layer_PAR+ksPAR))*PHYTO.3d[k,i,j];

Degradation <- degRate*(PHYTO.3d[k,i,j])^2

Reaction <- -Degradation + C_Uptake;
```

#CALCULATE ADVECTION

A Walk in the Equation Park (2)

Continued from previous slide:

#CALCULATE DIFFUSION

```
flux_diffu_X_high = -D_coeff*((PHYTO.3d[k,i+1,j]-PHYTO.3d[k,i,j])/del_X)
    flux_diffu_X_low = -D_coeff*((PHYTO.3d[k,i,j]-PHYTO.3d[k,i-1,j])/del_X)
    flux_diffu_Y_high = -D_coeff*((PHYTO.3d[k,i,j+1]-PHYTO.3d[k,i,j])/del_Y)
    flux_diffu_Y_low = -D_coeff*((PHYTO.3d[k,i,j]-PHYTO.3d[k,i,j-1])/del_Y)
    flux_diffu_Z_high = -D_coeff*((PHYTO.3d[k+1,i,j]-PHYTO.3d[k,i,j])/del_Z)
    flux_diffu_Z_low = -D_coeff*((PHYTO.3d[k,i,j]-PHYTO.3d[k-1,i,j])/del_Z)

Diffusion = (Norm_H*flux_diffu_X_high*yz_area + Norm_L*flux_diffu_X_low*yz_area +
    Norm_H*flux_diffu_Y_high*xz_area + Norm_L*flux_diffu_Y_low*xz_area +
    Norm_H*flux_diffu_Z_high*xy_area + Norm_L*flux_diffu_Z_low*xy_area)/-volume};
```

dPHYTO.3d[k,i,j] <- Advection + Diffusion + Reaction

A Walk in the Equation Park (3)

A Set of Boundary Layer Conditions:

```
# calculate advection and diffusion for each box w.r.t. specific boundary layer conditions(27)
if(i==1 \& j==1 \& k==1){\{ > \}};
if(i==X_extent & i==1 & k==1){ };
if(i==X_extent & j==Y_extent & k==1){
if(i==1 & j==Y_extent & k==1){ > };
if(j==1 & k==1 & i!=1 & i!=X_extent){ > ;
if(i==X_extent & k==1 & j!=1 & j!=Y_extent){
if(j==Y_extent & k==1 & i!=1 & i!=X_extent){\bigsize \bigsize \bizeta \b
if(i==1 & k==1 & j!=Y_extent & j!=1){\bigsize \};
if(k==1 & i!=1 & i!=X_extent & j!=1 & j!=Y_extent){ > ; #End Of Top Boxes
if(i==1 & j==1 & k==Z_extent){ > };
if(i==X_extent & j==1 & k==Z_extent){ ==>};
if(i==X_extent & j==Y_extent & k==Z_extent){
if(i==1 & j==Y_extent & k==Z_extent){ ===};
if(j==1 & k==Z_extent & i!=1 & i!=X_extent){____};
if(j==Y_extent & k==Z_extent & i!=1 & i!=X_extent){
if(i==1 & k==Z_extent & j!=1 & j!=Y_extent){
if(k==Z_extent & i!=1 &i!=X_extent & j!=1 &j!=Y_extent){ > ;#End Of Bottom Boxes
if(i==1 & j==1 & k!=1 & k!=Z_extent){ ==>};
if(i==X_extent & j==1 & k!=1 & k!=Z_extent){
if(j==1 & i!=1 & i!=X_extent & j!=1 & j!=Y_extent)\{ = \}; #End of Front Side; where j==1
if(i==1 & j==Y_extent & k!=1 &k!=Z_extent){ == };
if(i==X_extent & j==Y_extent & k!=1 & k!=Z_extent){
if(j==Y_extent & i!=1 & i!=X_extent & k!=1 & k!=Z_extent){ }; # End Back Side; where j==Y_extent
if(\tilde{i}=1 \& j!=1 \& j!=Y_extent \& k!=1 \& k!=Z_extent)\{ = \}; # End Left Side; where i==1
if(i==X_extent & j!=1 & j!=Y_extent & k!=1 & k!=Z_extent){\big|}; # End Right Side; where i==X_extent
if(i!=1 & i!=X_extent & j!=1 & j!=Y_extent & k!=1 & k!=Z_extent){ > };
```

A Visualization of Early Spatial Dynamics

- I varied the sinking rate and examined the spatial distribution of phytoplankton over time
 - When the sinking rate is low enough that phytoplankton diffuses from subsurface up to an area of higher available light, a top down gradient develops
 - When the sinking rate is greater that ~4
 phytoplankton never make it to the surface and a subsurface population develops
 - What follows is a series where VP = 0.1 and D = .2

When Sinking Rate = 10 m/d

 Phytoplankton never make it to the surface, and remain sub-surface with concentrations cycling annually

Future Work and Areas of Uncertainty

- Elucidating effects of varying initial concentration fields
- Examining a larger range of diffusion coefficients
- Fine tuning degradation rate/formulation
- Work to characterize what factors affect sinking rate
- The inclusion of horizontal advection in the model
- The inclusion of turbulence considerations to the formulation of a vector field of advective speed

Questions, Comments, Thoughts or Concerns??

