коэффициентов A_{ℓ}^{ℓ} , подсчитанных в момент поступления $(\dot{\iota}-1)$ -го отсчета, при которой для всех отсчетов условие (4.11) было выполнено, вместе с величной $\dot{\ell}_{\ell}$ заносятся на носитель, предназначенный для хранения результатов сжатия. Примем $(\dot{\ell}-1)$ -й отсчет за первый и перейдем к п. 2, учитывая, что отсчета необходимо рассматривать уже поступивший $\dot{\ell}$ -й

4. На вход блока сжатия в момент времени t_i^2 поступает отсчет f_i^2 . Поступает отсчет f_i^2 . Проксимация по МНК набора отсчетов t_i , t_i , t_i , t_i , t_i , при помощи аппроксимирующей функции, использовавшейся на предыдущем шаге, и проверяется полнено для всех отсчетов, входящих в набор. Если условие (4.11) высчетов, то и п. 4 повторяется для вновь поступающих отсчетов. В противном случае осуществляется переход к п. 3.

По окончании поступления данных необходимо занести на итоговый носитель коэффициенты $A_{\mathcal{L}}$, рассчитанные в момент поступления последнего

Алгоритмы сжатия данных по пространству

Общие представления о характере нейтронно-физических и тепловых процессов, происходящих в активной зоне реактора, дают основание для пространственного описания наблюдаемых зависимостей в следующем виде [2]:

$$\varphi(\vec{r}) \approx \hat{\varphi}_1(\vec{r}) = \sum_{k=1}^m B_k \, \psi_k(\vec{r}) \,. \tag{4.14}$$

Здесь $\psi_{k}(\vec{r})$ — детерминированные и заранее известные пространственные гармоники, \mathcal{B}_{k} — коэффициенты, определяемые отдельно в каждый момент ная координата.

В настоящей лабораторной работе будет рассматриваться лишь метод, в ратический критерий — метод наименьших квадратов B_{k} используется среднеквадопределения вектора неизвестных коэффициентов B_{k} по МНК записывается в матричном виде спедующим образом:

3десь $\vec{\mathcal{C}}$ — вектор наблюдаемого параметра, \mathcal{S} — матрица значений функций $\mathcal{W}_{k}(\vec{r})$, рассчитанных в тех точках активной зоны реактора, где имеется воз-

можность наблюдения параметра $\psi(\vec{r})$

В качестве наблюдаемого параметра могут рассматриваться экспериментую зависимость в объеме активной зоны реактора. Это могут быть, например, АЗ ЯР, расчетные значения параметра.

АЗ ЯР, расчетные значения параметров, характеризующих работу ТВС, и т.д. Существо сжатия по МНК заключается в том, что в итоге удается предкомпонентами вектора коэффициентов. При этом коэффициент сжатия опредственной зависимости $\varphi(\vec{r})$ не M компонентами вектора коэффициентов. При этом коэффициент сжатия опредственной зависимости $\varphi(\vec{r})$ выражением (4.14) в отдельных точках ее наблюмарактером среднеквадратического критерия. В принципе наряду с минимизаравномерного приближения типа (4.7), регулируя количество слагаемых в выражении (4.14).

Одним из существенных вопросов при аппроксимации пространственно Распределенных зависимостей является выбор вида базисных функций $\psi_k(\vec{r})$, Мсследователи, как правило, руководствуются априорными сведениями о форме пространственных распределений, а также знанием их физической природы. Так, например, естественно в качестве базисных функций для аппроксимации распределения плотности потока нейтронов в объеме АЗ ЯР выбрать собственные функции соответствующего приближенного его описания. В настоящей работе проводится сравнительный анализ качества аппроксимации по МНК при помощи различных наборов базисных функций. Перечень и характеристика предлагаемых типов базисных функций приводятся в табл, 4.1.

Перечень и характеристика базисных функций, используемых для ца 4,1 аппроксимации одномерных пространственных распреленных

растренных распределений	ета Нормировка	аргумента	8			The State Assemble men	THE PERSON NAMED AND PARTY OF THE PARTY OF T
Talmad	Формулы для расч	$\psi_{\gamma}(x) = \sin x$	$\psi_2(x) = \sin 2x$		•	$\psi_{k}(x)=sinkx$	
Harmanna	Формулы для расчета	Тригонометрические функ- ции (голько синусы)		THE PERSON OF TH	Children or Control	TO SHARE WATER	The second secon