Cours de Base de Données Cours n.3 Algèbre relationnelle L2 Informatique - Portail Sciences et Technologies

Elisabetta De Maria - http://www.i3s.unice.fr/~edemaria/

DS4H et Laboratoire I3S, CNRS

2023-2024 Université Côte d'Azur

Algèbre relationnelle

- Langage procédural : indique comment construire une nouvelle relation à partir d'une ou plusieurs relations existantes
- Langage abstrait, avec des opérations qui travaillent sur une (ou plusieurs) relation(s) pour définir une nouvelle relation sans changer la (ou les) relation(s) originale(s)
- le résultat de toute opération est une relation (propriété de fermeture)

Les opérations de l'algèbre relationnelle

Les cinq opérations fondamentales

- sélection
- projection
- produit cartésien
- union
- différence

Autres opérations

- jointure
- intersection
- division

• ..

Opérateurs algébriques

Opérateurs ensemblistes

- union
- intersection
- difference
- produit

Opérateurs relationnels spécifiques

- sélection
- projection
- jointure
- division

Tables d'exemple

- CLIENT(numéro, nom, adresse, téléphone)
- PRODUIT (référence, marque, prix)
- VENTE(<u>numéro</u>, ref_produit#, no_client#, date)

Client				
<u>numéro</u>	nom	adresse	téléphone	
101	Durand	Nice	0493939393	
106	Fabre	Paris	NULL	
110	Prosper	Paris	NULL	
125	Antonin	Marseille	0491919191	

<u>référence</u>	marque	prix
153	BMW	8 000 €
589	Peugeot	7 450 €
158	Toyota	6 725 €
589	Citroën	7 000 €

Vente					
<u>numéro</u>	ref_produit#	no_client#	date		
102	153	101	12/10/2004		
809	589	108	20/01/2005		
11005	158	108	15/03/2005		
12005	589	125	30/03/2005		

Opérations unaires

Soit $R(a_1, a_2, ..., a_N)$ une relation.

Sélection : $\sigma_{predicat}(R)$

La sélection travaille sur R et définit une relation qui ne contient que les tuples de R qui satisfont à la condition (ou prédicat) spécifiée.

Projection : $\pi_{a_1,...,a_k}(R)$

La projection travaille sur R et définit une relation restreinte à un sous-ensemble des attributs de R, en extrayant les valeurs des attributs spécifiés et en supprimant les doublons.

Opérateur SELECTION

La sélection : opérateur SELECT - sélection d'un sous-ensemble de

tuples d'une relation qui vérifient une condition

exemple: oadresse=PARIS (Client)

<u>Client</u> relation résultante

	numéro	nom	adresse	téléphone
	101	Durand	NICE	0493942613
Г	106	Fabre	PARIS	
	110	Prosper	PARIS	
	125	Antonin	MARSEILLE	0491258472

<u>La relation résultante</u>: même schéma que la relation sur laquelle porte la sélection

Exercice

- 1. Afficher les clients qui habitent Paris ou Nice
- 2. Afficher les ventes du client n° 120 du 20 oct 04
- 3. Afficher les clients qui n'habitent pas Nice

```
(Client)
Q1: σ
        adresse = PARIS or adresse = Nice
```

Q2 :
$$\sigma_{\text{num\'ero_client}} = 120 \text{ and date} = 20 \text{ oct } 04$$
 (Vente)

Q3:
$$\sigma_{\text{adresse} \neq \text{Nice}}$$
 (Client)

Vente

numéro	référence_produit	numéro_client	date
00102	153	101	12/10/04
00809	589	108	20/01/05
11005	158	108	15/03/05
12005	589	125	30/03/05

Opérateur PROJECTION

La projection : opérateur PROJECT – sélection de certaines colonnes d'une relation

exemple: π nom, téléphone (Client)

	15.	1
C	пe	nτ

numéro	nom	adresse	téléphone
101	Durand	NICE	0493942613
106	Fabre	PARIS	NULL
110	Prosper	PARIS	NULL
125	Antonin	MARSEILLE	0491258472

Fabre à la place de Propser?

Relation résultante

Exercice

- Afficher la référence du produit et numéro de client
- Afficher le nom et l'adresse des clients de Nice

```
Q1 : π Référence_produit, numéro_client
                                           (Vente)
```

```
Q2: \pi nom. adresse
```

Vente

numéro	référence_produit	numéro_client	date
00102	153	101	12/10/04
00809	589	108	20/01/05
11005	158	108	15/03/05
12005	589	125	30/03/05

Opérations ensemblistes (1)

Soient $R(a_1,...,a_N)$ et $S(b_1,...,b_M)$ deux relations.

Union: $R \cup S$

L'union de deux relations R et S définit une relation qui contient tous les tuples de R, de S ou à la fois de R et S, les tuples en double étant éliminés.

Différence d'ensembles : R - S

La différence d'ensemble définit une relation qui comporte les tuples qui existent dans la relation R et non dans la relation S.

Intersection : $R \cap S$

L'intersection définit une relation constituée de l'ensemble de tous les tuples présents à la fois dans R et dans S.

Opérations ensemblistes (2)

Produit cartésien : $R \times S$

Le produit cartésien définit une relation constituée de la concatenation de tous les tuples de la relation R avec tous ceux de la relation S

Relations de schemas quelconques

Opérateur UNION

Soit deux relations R1 et R2 de même schéma

R1 ∪ R2 est la relation contenant les tuples appartenant à R1 ou à R2

R1	A1	A2	A3
	a1	a2	a3
	b1	b2	b3
	c1	c2	c3
	d1	d2	d3

2	A1	A2	A3	
-	a1	a2	a3	4
	e1	e2	e3	
	b1	b2	b3	*

U	I	Ŧ	U	
R1	.U	R	2	

Relation temporaire

	,,_	7
a1	a2	a3
b1	b2	b3
c1	c2	c3
d1	d2	d3
e1	e2	e3

Suppression des lignes identiques

commutatif: $[R1 \cup R2] = [R2 \cup R1]$ associatif: $[(R1 \cup R2) \cup R3] = [R2 \cup (R1 \cup R3)]$

Opérateur INTERSECTION

Soit deux relations R1 et R2 de même schéma

R1 ∩ R2 est la relation contenant les tuples appartenant à R1 et à R2

R1	A1	A2	A 3	
	a1	a2	a3	*
	b1	b2	b3	*
	c1	c2	c3	
	d1	d2	d3	

R2	A1	A2	A3	
K2	a1	a2	a3	*
	e1	e2	e3	
	b1	b2	b3	*

INTERSECTION

R1∩R2

A1	A2	А3
a1	a2	a3
h1	h2	h3

Relation temporaire

On garde que les lignes identiques

commutatif: $[R1 \cap R2] = [R2 \cap R1]$ associatif: $[(R1 \cap R2) \cap R3] = [R2 \cap (R1 \cap R3)]$

Opérateur DIFFERENCE

Soit deux relations R1 et R2 de même schéma

R1 - R2 est la relation contenant les tuples de R1 n'appartenant pas à R2

R1	A1	A2	A3	
	a1	a2	a3	*
	b1	b2	b3	*
	c1	c2	c3	
	d1	d2	d3	

D2	A1	A2	A3	
K2	a1	a2	a3	,
	e1	e2	e3	
	b1	b2	b3	,

DIFFERENCE

R1-R2

Relation temporaire

A1	A2	А3
c1	c2	c3
d1	d2	d3

Non commutatif: [R1 - R2] ≠ [R2 - R1]

Non associatif: $[(R1 - R2) - R3] \neq [R2 - (R1 - R3)]$

Opérateur Produit cartésien

Soient les relations R(A₁, ..., A_n) et S(B₁, ..., B_n) avec $\{A_1, ..., A_n\} \cap \{B_1, ..., B_n\}$ éventuellement vide

Le *produit cartésien* de S et de R noté R x S est défini par la relation Q(A₁, ..., A_n, B₁, ..., B_p) telle que :

$$(a_1,\,...,\,a_n,\,b_1,\,...,\,b_p)\in Q\;\underline{ssi}\;\;(a_1,\,...,\,a_n)\!\in\! R \quad \ \, \text{et}\;(b_1,\,...,\,b_p)\in S$$

R1	Α	В	С
	a1	b1	c1
	a2	b2	c2
	a3	b3	c3

2	X	Y
_	x1	y1
	x2	y2

PRODUIT CARTESIEN

R1XR2

utatif:	[R1	x R2]	= [R2	x R1]	

1920	commutatif: [R1 x R2] = [R2 x R1]
UNIVER	associatif: [(R1 x R2) x R3] = [R2 x (R1 x R3)]

Α	В	С	Х	Υ
a1	b1	c1	x1	y1
a2	b2	c2	x1	у1
a3	b3	c3	x1	у1
a1	b1	c1	x2	y2
a2	b2	c2	x2	y2
a3	b3	c3	x2	y2

Propriétés de la structure

Même schéma

$$degré(R1 \cup R2) = degré(R1) = degré(R2)$$

$$degré(R1 \cap R2) = degré(R1) = degré(R2)$$

$$degré(R1 - R2) = degré(R1) = degré(R2)$$

Schéma quelconque

$$degré(R1 \times R2) = degré(R1) + degré(R2)$$

Opérations de jointure

Jointure thêta (θ -join) : $R \bowtie_P S$

La thêta-jointure définit une relation qui contient les tuples qui satisfont le prédicat P du produit cartésien de R et S. Le prédicat P est de la forme $R.a_i\theta S.b_j$ où θ est l'un des opérateurs de comparaison $(<,\leq,>,\geq,=,\neq)$.

Si le prédicat P est l'égalité (=), on parle d'équijointure

Jointure naturelle : R * S

La jointure naturelle est une équijointure des relations R et S sur tous les attributs communs en retirant les occurrences multiples d'attributs.

Opérateur JOINTURE / Theta-JOINTURE

de deux relations en un seul tuple

> Client Vente

> > numéro = no client Critère de sélection:

 $= | \neq | \leq | < | > | \geq$

numéro	nom	adresse	téléphone	numéro	ref_produit	no_client	date
101	Durand	NICE	0493942613	00102	AF153	101	12/10/04
106	Fabre	PARIS	NULL	00809	BG589	106	18/10/04
106	Fabre	PARIS	NULL	11005	VF158	106	05/10/04
125	Antonin	MARSEILLE	0491258472	12005	BG589	125	25/10/04

Client

- autant d'attributs que le produit cartésien (degré(R1) + degré(R2))
- moins de tuples

Exercice

- Afficher le nom des clients avec les dates de leurs achats
- Afficher, pour le client numéro 125, le numéro de vente et la marque des produits achetés

```
Q1 : π (Client Vente)
Client.nom, Vente.date Client.numéro = Vente.no_client
```

```
Q2: V1= σ (Vente)

Vente.no_client = 125

R1 = V1 Produit

Vente.ref_produit = Produit.référence

Res = π (R1)

Vente.numéro, Produit.marque
```


Exercice (suite)

 Afficher la référence des produits dont le prix est supérieur au produit qui a pour référence 153.

PRODUIT				. PRODUIT			
référence	marque	prix	1		référence	marque	prix
153	BMW	1000	4	<u>curseurs</u> -	153	BMW	1000
589	PEUGEOT	1800			589	PEUGEOT	1800
158	TOYOTA	1500	1		158	TOYOTA	1500

Q3 P1 =
$$\rho$$
 (Produit) opérateur de renommage

P2 = σ (P1)
P1.référence = 153

Res = π (Produit P2)
Produit.référence Produit.prix > P1.prix

Opérateur Equijointure / Jointure naturelle

- Théta-jointure avec opérateur =
- Equijointure la condition fait appel à l'opérateur =
- Jointure naturelle noté *:
 équijointure dont la condition porte sur des attributs
 identiques (de même domaine et même nom)
 un seul des deux attributs est conservé dans le résultat

Equivalent

	no_cii	ent			\		,
Client				Vente	\		
numéro	nom	adresse	téléphone	numéro	ref_produit	no_client	date
101	Durand	NICE	0493942613	00102	AF153	101	12/10/04
106	Fabre	PARIS		00809	BG589	10	18/10/04
106	Fabre	PARIS		11005	VF158	1/06	05/10/04
125	Antonin	MARSEILLE	0491258472	12005	BG589	125	25/10/04
	•			,			$\overline{}$

Exemple de jointure naturelle

Afficher le nom des clients avec les dates de leurs achats

 π (Client \searrow Vente)
Client.nom, Vente.date Client.numéro = Vente.no_client

<u>ou</u>

Renommage Client.numéro en Client.no_client

 π (Client * Vente)

Client.nom, Vente.date

no_client	nom	adresse	téléphone	numéro	ref_produit	date
101	Durand	NICE	0493942613	00102	AF153	12/10/04
106	Fabre	PARIS		00809	BG589	18/10/04
106	Fabre	PARIS		11005	VF158	05/10/04
125	Carré	MARSEILLE	0491258472	12005	BG589	25/10/04

Opération de division

Supposons que la relation R soit définie sur l'ensemble d'attributs A et que la relation S soit définie sur l'ensemble d'attributs B, de telle sorte que $B \subseteq A$. Soit C = A - B.

Division $R \div S$

La division définit une relation sur les attributs C. constituée de l'ensemble des tuples de R qui correspondent à la combinaison de **tous les** tuples de S.

- $T_1 = \pi_C(R)$
- $T_2 = \pi_C((S \times T_1) R)$
- $T = T_1 T_2$

Opérateur DIVISION

La division : opérateur **DIVIDE**, noté ÷, utilisé pour répondre à des requête du type : "quels sont les reférences des produits achetés par <u>tous</u> les clients?"

11	_ A	В
_	a1	x1
	a2	x2
	a3	x1
	a1	x2
	a2	x1

R2	X
	x1
	x2

	Α
I	a1
I	a2

DIVISION R1÷R2

R1 =
$$\pi$$

Vente.ref_produit,Vente.no-client (Vente)
R2 = π
Client.numéro (Client)
RES = R1 ÷ R2

Autres opérateurs

```
Opérateur renommer noté α

Changer le nom d'un (ou plusieurs) attribut d'une relation R:
α [nom_attr1: nouveau_nom_pour_attr1, ...] R

Utile avant les jointures (homonymie, synonymie), ou avant les opérations ensemblistes (même nom requis).
```

Opérateurs dérivés

- ☐ Jointure externe
- ☐ Semi-jointure gauche, droite

Autres jointures

Jointure externe (gauche) entre R et S

La jointure externe gauche est une jointure dans laquelle les tuples de la relation R qui n'ont pas nécessairement de valeur correspondente dans S parmi les attributs communs de R et S, sont également inclus dans la relation résultante. Les valeurs manquantes dans la seconde relation sont mises à nul.

- Jointure externe droite : le résultat conserve tous les tuples de la relation de droite
- Jointure externe complete : le résultat reprend tous les tuples de deux relations et remplit de nuls les attributs absents pour tous les cas de non-correspondence

Semi-jointure entre R et S

La semi-jointure définit une relation qui contient les tuples de R qui participent à la jointure de R avec S.

Operateur JOINTURE EXTERNE

La jointure externe entre les relations S et R notée S R :

- ✓ la jointure S 🔀 R
- ✓ les tuples de S et R ne participant pas à la jointure

CLIEINI NEINIE	CLIENT		VENTE
----------------	--------	--	-------

no_client	nom	adresse	téléphone	numéro	ref_produit	date
101	Durand	NICE	0493942613	00102	AF153	12/10/04
106	Fabre	PARIS	NULL	00809	BG589	18/10/04
106	Fabre	PARIS	NULL	11005	VF158	05/10/04
110	Prosper	PARIS	0491258472	12005	BG589	25/10/04
125	Antonin	MARSEILLE	NULL 🤇	NULL	NULL	NULL

A droite et à gauche

Pas d'informations

Opérateurs déduits

Intersection:

 $R \cap S = R - (R - S) = S - (S - R)$ ou

 $R \cap S = (R \cup S) - ((R - S) \cup (S - R))$

Jointure naturelle :

Soient R (X,Y) et S (Y,Z)

 $R * S = \pi [X,Y,Z] \sigma [Y = Y'] (R \times \alpha [Y : Y']S)$

Thêta jointure:

Soient R (X,Y) et S (U,V)

 $R *[p] S = \sigma [p] (R \times S)$

Division:

Soient R (X,Y) et S (Y)

 $R/S = \pi [X] R - \pi [X] (((\pi [X]R) \times S) - R)$

Complexité des opérateurs

Sélection : σ [condition] R

- Au plus: balayer la relation + tester la condition sur chaque tuple.
- Complexité = card (R).
- Taille du résultat : [0 : card (R)].

Projection: π [Ai, Ak...] R

- Balayer la relation + élimination doublons
- Complexité = card (R). 0 si inclut dans une sélection
- Taille du résultat : [1 : card (R)].

Jointure (naturelle ou thêta) entre R et S

- Balayer R et pour chaque tuple de R faire :
 Balayer S et comparer chaque tuple de S avec celui de R.
- Complexité = card (R) x card (S).
- Taille du résultat : [0 : card (R) x card (S)].

Fonctions des opérateurs

Les opérations de sélection et de projection sont des opérations :

Exercice

Relations:

- Journal (<u>code-i</u>, titre, prix, type, périodicité)
- Dépôt (<u>no-dépôt</u>, nom-dépôt, adresse)
- Livraison (<u>no-dépôt</u>, <u>code-i</u>, <u>date-liv</u>, quantité-livrée)

Requêtes:

- Quel est le prix des journaux ?
- Donnez tous les renseignements connus sur les hebdomadaires.
- Donnez les codes des journaux livrés à Nice.
- Donnez les numéros des dépôts qui reçoivent tous les journaux.

