9 класс

- **1. Песнь льда и воды.** Смесь льда и воды общей массой m поместили в морозильную камеру, заметив, что часы в этот момент показывали время 12:00. Затем провели два измерения температуры смеси: в 13:55 термометр показал $t_1 = -5$ °C, а в 14:05 $t_2 = -15$ °C. Определите:
 - 1) Массовую долю льда в исходной смеси;
 - 2) Определите показания часов в момент, когда вся вода кристаллизовалась.

Удельная теплота плавления льда $\lambda = 330 \text{ кДж/кг}$, удельная теплоёмкость воды $c_{\rm B} = 4.2 \text{ кДж/(кг} \cdot {\rm °C})$, удельная теплоёмкость льда $c_{\rm \pi} = 2.1 \text{ кДж/(кг} \cdot {\rm °C})$, температура плавления льда $t_0 = 0 \text{ °C}$. Количество теплоты, отбираемое у смеси в единицу времени морозильной камерой, считайте постоянной.

Возможное решение:

Считая мощность морозильной камеры постоянной, мы можем утверждать, что график зависимости температуры содержимого от времени — линейный.

Восстановим участок графика по имеющимся двум точкам и найдем время, которое потребовалось для кристаллизации всей воды в смеси.

110 минут с момента начала эксперимента соответствует времени на часах 13:50.

На первый вопрос можно ответить иначе:

Поскольку обе измеренные температуры ниже нуля, значит все содержимое было в твердом агрегатном состоянии (лед).

Количество теплоты, которое было отведено от содержимого камеры с момента полного замерзания до первого измерения температуры ($\tau_1 = 115$ мин):

$$P \cdot (\tau_1 - \tau_0) = m \cdot c_{\pi} \cdot (t_1 - 0)$$

Количество теплоты, которое было отведено от содержимого камеры с момента полного замерзания до второго измерения температуры ($\tau_2 = 125$ мин):

$$P \cdot (\tau_2 - \tau_0) = m \cdot c_{\pi} \cdot (t_2 - 0)$$

Решая совместно два последних уравнения, получим

$$au_0 = rac{ au_2 au_1 - au_1 au_2}{ au_1 - au_2} = 110$$
 мин

Массовую долю льда в смеси обозначим как ϕ . Смесь льда и воды долгое время может находиться в термодинамическом равновесии только при температуре плавления льда, то есть при 0 °C. При помещении смеси в морозильную камеру в первую очередь происходит кристаллизация воды, масса доля которой $(1-\phi)$:

9 класс

$$P \cdot \tau_0 = -m \cdot (1 - \varphi) \cdot \lambda$$

 $P \cdot \tau_0 = -m \cdot (1-\phi) \cdot \lambda$ Возьмём любое из ранее записанных выражений и поделим на последнее:

$$\frac{\tau_2 - \tau_0}{\tau_0} = \frac{c_{\pi} \cdot (t_2 - 0)}{-\lambda \cdot (1 - \phi)}$$

откуда выразим массовую долю:

$$\phi=1-\frac{c_\pi t_2}{-\lambda}\cdot\frac{\tau_0}{\tau_2-\tau_0}=\text{0,3}.$$

Критерии оценивания.

No	критерий	баллы
1.	Понимание значения начальной температуры смеси	1
2.	Указана линейность зависимости $t(\tau)$ или $Q(\tau)$ в процессе охлаждения	1
3.	Построены две точки на графике или записаны два уравнения для	2
	охлаждения льда	
4.	Получено численное значение $ au_0$	1
5.	Указано постоянство температуры смеси при кристаллизации воды	1
6.	Записано выражение для количества теплоты, отводимой при	1
	кристаллизации	
7.	Решена система уравнений и получено выражение для массовой доли	2
8.	Получено правильное численное значение массовой доли льда	1
итого:		10

9 класс

2. R-звезда. Определите эквивалентное сопротивление проволочной сетки, изображённой на рисунке. Сопротивление каждого отрезка (вне зависимости от длины) равно R.

Возможное решение:

Способ 1

Рассмотрим отдельный фрагмент проволочной сетки:

Изобразим эквивалентную схему этого участка:

Применяя формулы последовательного и параллельного соединений, найдем общее сопротивление R_1 выделенного участка:

$$R_1 = \frac{4}{7}R.$$

Можно заметить, что всю сетку можно преобразовать к виду:

Применяя формулы последовательного и параллельного соединений, найдем эквивалентное сопротивление все проволочной сетки:

$$R_9 = \frac{3}{7}R \approx 0.43R.$$

Критерии оценивания 1.

No	критерий	баллы
1.	Изображение эквивалентной схемы для фрагмента	3
2.	Общее сопротивление выделенного фрагмента	2
3.	Эквивалентная схема для всей цепи	2
4.	Эквивалентное сопротивление всей цепи	3
итого:		10

9 класс

Способ 2 Расставим токи в цепи с учетом симметрии и первого правила Кирхгофа.

Общий ток I_0 в цепи равен: $I_0 = 28I$; $\phi_A - \phi_B = 12IR$. Эквивалентное сопротивление R_9 вычисли с помощью закона Ома:

$$R_{9} = \frac{\varphi_{A} - \varphi_{B}}{I_{0}} = \frac{12IR}{28I} = \frac{3}{7}R \approx 0.43R.$$

Критерии опенивания 2

Khn	критерии оценивания 2.		
No	критерий	баллы	
1.	Расставлены токи во всех участках цепи	3	
2.	Пояснения для каждого соотношения токов	2	
3.	Найден общий ток	1	
4.	Найдена разность потенциалов между узлами А и В	1	
5.	Найдено эквивалентное сопротивление	3	
итого:		10	

3. Куб. Сосуд представляет собой куб с длиной ребра *а*. Его внутренняя полость также имеет форму куба с длиной ребра 3a/5. Толщина всех стенок одинакова. Плотность материала сосуда 3ρ . На уровне дна полости и в её потолке имеются сквозные отверстия малого диаметра. Нижнее отверстие закрыто пробкой. Куб заполнили водой плотностью ρ , поместили в цилиндр с площадью шероховатого дна $3a^2$ и вынули пробку из отверстия. Во сколько раз отличаются силы давления сосуда на дно цилиндра до извлечения пробки и после прекращения вытекания жидкости?

Возможное решение:

Возможны два сценария развития событий. Либо вода полностью выльется из полости и ее уровень окажется ниже отверстия в стенке сосуда, либо уровень воды окажется выше уровня отверстия и, следовательно, в полости останется некоторое количество воды. Второй случай сложнее для вычислений. Проверим сначала первый вариант. Используем равенство начального объема воды и объема воды, вылившейся в стакан.

 $\frac{27}{125}a^3 = (3a^2 - a^2)h$, где h – искомая высота уровня воды. После вычислений получаем:

$$\frac{27}{125}a^3 = 2a^2h, \quad h = \frac{27}{250}a$$

Это меньше толщины стенки сосуда d, которая в нашем случае равна

 $d = \frac{a - \frac{3}{5}a}{2} = \frac{1}{5}a$. Значит, реализуется первый вариант, когда воды в полости сосуда не остается, а уровень воды в стакане $h = \frac{27}{250}a$.

Сила давления сосуда на дле сосуда и массой заполняющей его воды $F_1 = \left(a^3 - \frac{27}{125}a^3\right) 3\rho g + \frac{27}{125}a^3\rho g = \frac{321}{125}a^3\rho g$ Сила давления сосуда на дно стакана до открытия отверстия F_1 определяется массой самого

$$F_1 = \left(a^3 - \frac{27}{125}a^3\right)3\rho g + \frac{27}{125}a^3\rho g = \frac{321}{125}a^3\rho g$$

Сила давления сосуда во втором случае F_2 определяется массой самого сосуда минус сила Архимеда, действующая на него

$$F_2 = \left(a^3 - \frac{27}{125}a^3\right)3\rho g - a^2 \frac{27}{250}a\rho g = \frac{561}{250}a^3\rho g$$

Найдем отношение $\frac{F_1}{F_2} = \frac{321}{125} \cdot \frac{250}{561} = \frac{642}{561} = \frac{214}{187} \approx 1,14$

Критерии опенивания.

No	критерий	баллы
1.	Проверка реализации первого сценария (в сосуде не остается воды)	1
2.	Правильно записан объем воды до выливания	1
3.	Правильно записан объем воды после выливания	1
4.	Получен уровень воды в сосуде после вынимания пробки	1
5.	Вычисление силы давления F_1 (до открытия отверстия) (Если использована	2
	правильная формула для вычисления, но из-за	
	арифметических ошибок, результат не верный, то 1 балл)	
6.	Вычисление силы давления F_2 (после открытия отверстия) (Если использована	3
	правильная формула для вычисления, но из-за	
	арифметических ошибок, результат не верный, то 1 балл)	
7.	Получено правильное отношение $\frac{F_1}{F_2}$	1
итого:		10

9 класс

4. Перемещённый путь. Тело двигалось с постоянной скоростью v. В момент времени t_0 у него появилось постоянное ускорение. Через некоторое время после появления ускорения скорость тела оказалась в 2 раза меньше v. Определите отношение модуля перемещения к пути от начала ускоренного движения до этого момента. Считайте, что тело двигалось вдоль одной прямой.

Возможное решение:

Построим качественный график зависимости проекции скорости тела от времени. В качестве направления оси x выберем направление начальной скорости v.

Можно заметить, что скорость тела может быть меньше начальной в 2 момента времени: до $(t = t_1)$ и после $(t = 3t_1)$ разворота $(t = 2t_1)$.

На данном графике перемещение (его проекция) и пройденный путь пропорциональны площади под/над графиком. Разница лишь в том, что для вычисления проекции перемещения площадь над графиком считается отрицательной.

Путь к моменту t_1 : $S_1 = \frac{3}{4} \nu t_1$

Модуль перемещения к моменту t_1 : $S_{x1} = \frac{3}{4} v t_1$

Отношение $\frac{S_{x1}}{S_1} = 1$

Путь к моменту $3t_1$: $S_2 = \frac{5}{4} \upsilon t_1$

Модуль перемещения к моменту $3t_1$: $S_{x2} = \frac{3}{4} v t_1$

Отношение $\frac{S_{x2}}{S_2} = \frac{3}{5}$

9 класс

Критерии оценивания.

No	критерий	баллы
1.	Построен качественный график зависимости скорости от времени	1
2.	Указан способ нахождения пути по графику	1
3.	Указан способ нахождения проекции перемещения по графику	1
4.	H айден S_1	0,5
5.	Найден S_{x1}	0,5
6.	Найдено отношение $\frac{S_{x1}}{S_1} = 1$. Если сразу указано, что до разворота искомое отношение равно 1, то пп. 1, 4 и 5 засчитываются автоматически	1
7.	Найден S2	2
8.	Найден S_{x2}	2
9.	Найдено отношение $\frac{S_{x2}}{S_2} = \frac{3}{5}$.	1
итого:		10

Критерии оценивания для аналитического решения.

No	критерий	баллы
1.	Записано уравнение равноускоренного движения	1
2.	Записана связь t_1 (или времени разворота), a и v	1
3.	Указано, что до разворота искомое отношение равно 1 (даже без 1 и 2 пунктов)	3
4.	Найден S2	2
5.	H айден S_{x2}	2
6.	Найдено отношение $\frac{S_{x2}}{S_2} = \frac{3}{5}$.	1
итого:		10

9 класс

- **5. Как, жёстко?** Две параллельные лёгкие пружины соединены с закреплённым в шарнире лёгким рычагом. Коэффициенты жёсткости пружин равны k и 4k. Определите:
 - k_0 4k 0
- 1) какой эквивалентный коэффициент жёсткости системы k_0 определит тянущий за нить экспериментатор;
- 2) чему будет равна сила Q, действующая на рычаг со стороны шарнира, если тянуть за нить силой F;
 - 3) куда направлена сила Q?

Точки крепления нити и пружин делят рычаг на три равные части. Угол α отклонения рычага от вертикали можно считать малым (α <<1), нить и пружины горизонтальны.

Возможное решение:

Эквивалентной жёсткостью называют отношение внешней силы F (с которой тянет мальчик) к малому смещению точки приложения этой силы.

На невесомый рычаг действуют две силы упругости F_1 и F_2 , сила натяжения нити F и сила реакции шарнира Q. Если угол поворота рычага мал, то силы F_1 , F_2 и F_2 горизонтальные. Следовательно, сила Q тоже направлена горизонтально.

Обозначим малое смещение точки приложения силы F_2 за Δx . Малое смещение точки приложения силы F будет $2\Delta x$, а малое смещение точки приложения силы F_1 будет $3\Delta x$. Запишем правило моментов относительно оси проходящей через шарнир:

$$F_1 3l + F_2 l = F2l$$

$$k(3\Delta x)3l + 4k\Delta x l = F2l$$

$$F = \frac{13}{2}k\Delta x$$

Тогда эффективная жесткость системы

$$k_0 = \frac{F}{2\Delta x} = \frac{13}{4}k$$

Выразим силы упругости через F:

$$F_1 = \frac{6}{13}F$$

$$F_2 = \frac{8}{13}F$$

Из условия равновесия для сил находим, что $Q = \frac{1}{13}F$ и сонаправлена с F.

Критерии оценивания.

No	критерий	баллы
1.	Использована связь силы упругости с удлинением	1
2.	Верно определено соотношение растяжений пружин	1
3.	Правильно записано правило моментов	2
4.	Сила F выражена через удлинения пружин	1
5.	Найден эффективный коэффициент жёсткости	2
6.	Указана горизонтальность силы Q	0,5
7.	F_1 выражена через F	0,5
8.	F_2 выражена через F	0,5
9.	Указана сонаправленность F и Q	0,5
10.	Найден модуль Q	1
итого:		10