- 1. Fie $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \frac{x^2}{x^2 + 1}$. Să se calculeze f'(1). (4 pct.)
 - a) $\frac{1}{2}$; b) $-\frac{1}{4}$; c) 0; d) $\frac{1}{4}$; e) $-\frac{1}{2}$; f) 1.

Soluție. Avem $f'(x) = \frac{2x(x^2+1)-2x^3}{(x^2+1)^2} = \frac{2x}{(x^2+1)^2}$ și deci $f'(1) = \frac{1}{2}$.

- 2. Să se determine $m, n \in \mathbb{R}$ astfel încât ecuația $x^4 + 3x^3 + mx^2 + nx 10 = 0$ să admită soluția $x_1 = i$. (4 pct.)
 - a) m = -10, n = 3; b) m = 1, n = -1; c) m = -9, n = 3; d) m = 0, n = 0; e) m = -3, n = 10; f) m = 3, n = -10.

Soluţie. Înlocuind x = i în ecuația $x^4 + 3x^3 + mx^2 + nx - 10 = 0$, obținem $1 - 3i - m + ni - 10 = 0 \Leftrightarrow -(m+9) + i(n-3) = 0$, de unde prin identificare deducem m+9=0 și n-3=0. Deci m=-9 și n=3.

- 3. Să se determine $m \in \mathbb{R}$ astfel încât funcția $f : \mathbb{R} \to \mathbb{R}$, $f(x) = \begin{cases} x^2 2x + m, & x \le 1 \\ e^x e, & x > 1 \end{cases}$ să fie continuă pe \mathbb{R} . (4 pct.)
 - a) m=3; b) m=1; c) m=4; d) m=0; e) nu există; f) m=3/2.

Soluție. Pe intervalele $(-\infty,1)$ si $(1,\infty)$ funcția este continuă, fiind sumă de funcții elementare. Condiția de continuitate în $x_0=1$ se scrie $\lim_{x \nearrow 1} f(x) = \lim_{x \searrow 1} f(x) = f(1) \Leftrightarrow m-1=0 \Leftrightarrow m=1$.

- 4. Să se rezolve inecuația $\sqrt{x} < 1$. (4 pct.)
 - a) [0,1); b) (0,1); c) [0,1]; d) (-1,1); e) nu are soluții; f) $[0,\infty)$.

Soluție. Condiția de existență este $x \ge 0$, iar din $\sqrt{x} < 1$ rezultă x < 1. Prin urmare, avem $x \in [0, 1)$.

- 5. Dacă (a,b) este o soluție a sistemului de ecuații $\left\{ \begin{array}{l} x+y=2\\ xy=1 \end{array} \right.$, atunci (4 pct.)
 - a) $a^2 + b^2 = 1$; b) $a^2 + b^2 = 2$; c) $a^2 + b^2 < 0$; d) $a \ne b$; e) $a^2b^2 = 2$; f) $a^2 + b^2 = 3$.

Soluție. Din a + b = 2 si ab = 1 deducem $a^2 + b^2 = (a + b)^2 - 2ab = 4 - 2 = 2$.

- 6. Să se calculeze termenul al zecelea al progresiei aritmetice cu primul termen $a_1 = 5$ și rația r = 2. (4 pct.)
 - a) 10; b) 25; c) 23; d) 20; e) 30; f) 18.

Soluție. Din relația $a_n = a_1 + (n-1)r$ rezultă $a_{10} = a_1 + 9r = 5 + 18 = 23$.

- 7. Să se calculeze $\int_{0}^{1} \frac{x^{2}}{x^{3}+1} dx$. (4 pct.)
 - a) $2 \ln 2$; b) $\frac{\ln 3}{4}$; c) $\frac{\ln 3}{2}$; d) $3 \ln 2$; e) $\ln 2$; f) $\frac{\ln 2}{3}$.

Soluţie. Avem $\int_0^1 \frac{x^2}{x^3+1} dx = \frac{1}{3} \int_0^1 \frac{(x^3+1)'}{x^3+1} dx = \frac{1}{3} \ln(x^3+1) \Big|_0^1 = \frac{1}{3} \ln 2.$

- 8. Soluțiile ecuației $9^x 4 \cdot 3^x + 3 = 0$ sunt (4 pct.)
 - a) $x_1 = 3$; b) $x_1 = 0$, $x_2 = 1$; c) nu există; d) $x_1 = 0$, $x_2 = 3$; e) $x_1 = 1$, $x_2 = 3$; f) $x_1 = -1$, $x_2 = -3$.

Soluție. Notând $3^x = y$, rezultă y > 0 și înlocuind în relație obținem $y^2 - 4y + 3 = 0$. Soluțiile ecuației sunt y = 1 și y = 3. Din $3^x = 1$, obținem x = 0 și din $3^x = 3$ rezultă x = 1; deci $x \in \{0, 1\}$.

9. Expresia
$$E = \frac{1}{\sqrt{3} + \sqrt{2}} + \frac{1}{\sqrt{3} - \sqrt{2}}$$
, are valoarea (4 pct.)

a)
$$3\sqrt{2}$$
; b) $3\sqrt{3}$; c) 2; d) $2\sqrt{2}$; e) $2\sqrt{3}$; f) 3.

Soluţie. Aducând la acelaşi numărător relaţia din enunţ obţinem: $E = \frac{1}{\sqrt{3} + \sqrt{2}} + \frac{1}{\sqrt{3} - \sqrt{2}} = \frac{2\sqrt{3}}{(\sqrt{3})^2 - (\sqrt{2})^2} = 2\sqrt{3}$.

10. Fie ecuația $x^2 - ax + 4 = 0$, unde $a \in \mathbb{R}$ este un parametru. Dacă soluțiile x_1 și x_2 ale ecuației verifică egalitatea $x_1 + x_2 = 5$, atunci (4 pct.)

a)
$$x_1 = x_2$$
; b) $a < 0$; c) $x_1, x_2 \notin \mathbb{R}$; d) $a = 0$; e) $a = 5$; f) $a = 4$.

Soluție. Din relațiile lui Viete $x_1 + x_2 = a$ deducem a = 5.

11. Să se calculeze
$$\lim_{n\to+\infty} (\sqrt{n^2+n} - \sqrt{n^2+1})$$
. (4 pct.)

a)
$$-\frac{1}{2};$$
b) $\frac{1}{2};$ c) $\infty;$ d) nu există; e) 1; f) $-1.$

Soluție. Amplificând cu conjugata, obținem:

$$\lim_{n \to +\infty} (\sqrt{n^2 + n} - \sqrt{n^2 + 1}) = \lim_{n \to +\infty} \frac{n - 1}{\sqrt{n^2 + n} + \sqrt{n^2 + 1}} = \lim_{n \to +\infty} \frac{(1 - \frac{1}{n})}{\sqrt{1 + \frac{1}{n}} + \sqrt{1 + \frac{1}{n^2}}} = \frac{1}{2}$$

12. Pe \mathbb{R} se definește legea de compoziție $x \star y = xy + 2ax + by$. Să se determine relația dintre a și b astfel încât legea de compoziție să fie comutativă. (4 pct.)

a)
$$a-b=2$$
; b) $a=2b$; c) nu există; d) $a=b$; e) $a=\frac{b}{2}$; f) $a+b=1$.

Soluţie. Pentru orice $x, y \in \mathbb{R}$ avem $x * y = y * x \Leftrightarrow xy + 2ax + by = yx + 2ay + bx \Leftrightarrow (2a - b)(x - y) = 0, \forall x, y \in \mathbb{R} \Leftrightarrow 2a = b \Leftrightarrow a = b/2.$

13. Se consideră funcția
$$f:[0,\infty)\to\mathbb{R}, f(x)=\int_x^{x+1}\frac{t^2}{\sqrt{t^4+t^2+1}}\ dt.$$
 Decideți: (6 pct.)

a) f este impară; b) f are două puncte de extrem; c) graficul lui f admite o asimptotă oblică; d) graficul lui f admite o asimptotă orizontală; e) f(0) = 0; f) f este convexă.

Soluție. Cum funcția $g(t) = \frac{t^2}{\sqrt{t^4 + t^2 + 1}}$ este continuă, aplicăm teorema de medie pe intervalul [x, x+1]

şi avem
$$f(x) = (x+1-x)f'(\theta_x)$$
 unde $\theta_x \in (x,x+1)$ şi deci $\lim_{x \to +\infty} f(x) = \lim_{\theta_x \to +\infty} \frac{\theta_x^2}{\sqrt{\theta_x^4 + \theta_x^2 + 1}} = 1$.

Deci graficul funcției f admite asimptota orizontală y = 1.

14. Să se calculeze limita șirului $a_n = \sum_{k=1}^n \frac{k(k+1)}{2x^{k-1}}$, unde |x| > 1. (6 pct.)

a)
$$\frac{x^3}{(x-1)^3}$$
; b) $\frac{x}{x-1}$; c) $\frac{1}{x}$; d) $\frac{1}{x-1}$; e) $\frac{x^2}{(x-1)^2}$; f) ∞ .

Soluție. Pentru $x \neq 1$ avem $x + x^2 + \ldots + x^{n+1} = \frac{x^{n+2} - x}{x-1} = S(x)$ Derivând această relație de 2 ori, avem

$$S'(x) = \sum_{k=0}^{n} (k+1)x^k = \frac{((n+2)x^{n+1} - 1)(x-1) - x^{n+2} + x}{(x-1)^2} = \frac{(n+1)x^{n+2} - (n+2)x^{n+1} + 1}{(x-1)^2}.$$

Derivând din nou în ambii membri, obținem

$$S''(x) = \sum_{k=1}^{n} k(k+1)x^{k-1} = \frac{x^{n+2}(n+1)n - 2(n+2)x^{n+1} + (n+2)(n+1)x^4 - 2}{(x-1)^3}.$$

Facând substituția $x \to \frac{1}{x}$ și ținând seama că $\lim_{x \to \infty} \frac{n^k}{x^n} = 0$, pentru $n \in \mathbb{N}$ și |x| > 1, avem

$$\lim_{n \to +\infty} \sum_{k=1}^{n} \frac{k(k+1)}{2x^{k-1}} = -\frac{2}{2(\frac{1}{x}-1)^3} = \frac{x^3}{(x-1)^3}.$$

15. Să se calculeze
$$\lim_{x\to 0} \frac{(x-1)^2 - 1}{x}$$
. (6 pct.)

a)
$$\infty$$
; b) 2; c) 1; d) nu există; e) -2 ; f) $-\infty$.

Soluţie. Avem
$$\lim_{x\to 0} \frac{(x-1)^2-1}{x} = \lim_{x\to 0} \frac{x(x-2)}{x} = \lim_{x\to 0} (x-2) = -2.$$

16. Să se calculeze valoarea minimă a funcției
$$f: \mathbb{R} \to \mathbb{R}, f(x) = \sqrt{4x^2 + 28x + 85} + \sqrt{4x^2 - 28x + 113}$$
. (8 pct.)

a)
$$14\sqrt{2}$$
; b) 20; c) $12\sqrt{3}$; d) 19; e) $9\sqrt{5}$; f) $8\sqrt{6}$.

Soluţie. Avem
$$f'(x) = \frac{8x + 28}{2\sqrt{4x^2 + 28x + 85}} + \frac{8x - 28}{2\sqrt{4x^2 - 28x + 113}}$$
. Deci
$$f'(x) = 0 \Leftrightarrow \frac{4x + 14}{\sqrt{4x^2 + 28x + 85}} + \frac{4x - 14}{\sqrt{4x^2 - 28x + 113}} = 0 \Leftrightarrow \\ \Leftrightarrow (2x + 7)\sqrt{(2x - 7)^2 + 64} = -(2x - 7)\sqrt{(2x + 7)^2 + 36}) \Rightarrow \\ \Rightarrow (2x + 7)^2(2x - 7)^2 + 64(2x + 7)^2 = (2x - 7)^2(2x + 7)^2 + 36(2x - 7)^2 \Leftrightarrow \\ \Leftrightarrow 16(2x + 7)^2 = 9(2x - 7)^2 \Leftrightarrow 4(2x + 7) = \pm 3(2x - 7) \Leftrightarrow x \in \{-\frac{49}{2}, -\frac{1}{2}\}.$$

Pentru $x \in (-\infty, -\frac{1}{2}) \setminus \{-\frac{49}{2}\}$, avem f'(x) < 0, deci funcția f fiind strict descrescătoare în $x = -\frac{49}{2}$, această valoare nu convine ca abcisă de punct de minim. De asemenea, pentru $x > -\frac{1}{2}$ avem f'(x) > 0, deci $x = -\frac{1}{2}$ este punct de minim. În final, obținem $f(-\frac{1}{2}) = 14\sqrt{2}$.

17. Să se rezolve ecuația
$$\begin{vmatrix} 2 & x & 0 \\ x & -1 & x \\ 2 & -5 & 4 \end{vmatrix} = 0$$
. (8 pct.)

a)
$$x_1 = 0$$
, $x_2 = 3$; b) $x_1 = -5/2$; c) $x_1 = 3$; d) $x_1 = 0$, $x_2 = 4$; e) $x_1 = 0$; f) $x_1 = 1$, $x_2 = 4$.

Soluţie. Avem
$$\begin{vmatrix} 2 & x & 0 \\ x & -1 & x \\ 2 & -5 & 4 \end{vmatrix} = 0 \Leftrightarrow x^2 - 5x + 4 = 0 \Leftrightarrow x \in \{1, 4\}.$$

18. Fie
$$f: \mathbb{C} \to \mathbb{C}$$
, $f(z) = z^2 + z + 1$. Să se calculeze $f\left(\frac{-1 + i\sqrt{3}}{2}\right)$. (8 pct.)

a)
$$-1$$
; b) i; c) $1 - i$; d) $1 + i$; e) $\sqrt{3}$; f) 0.

Soluție. Pentru
$$z=\frac{-1+i\sqrt{3}}{2}$$
, rezultă $(2z+1)^2=(i\sqrt{3})^2\Leftrightarrow 4z^2+4z+1=-3\Leftrightarrow z^2+z+1=0$, deci $f(z)=z^2+z+1=0$.