Desempenho em Aceleração

$$M a_X = \frac{W}{g} a_X = F_X - R_X - D_A - R_{hx} - W \sin \Theta$$

Desempenho em Aceleração (Aceleração Máxima)

$$M a_X = \frac{W}{g} a_X = F_X - R_X - D_A - R_{hx} - W \sin \Theta$$

Considerando apenas a força trativa

$$Ma_{x} = F_{x}$$

$$a_{x,m\acute{a}x} = \frac{F_{x,m\acute{a}x}}{M} = \frac{F_{x,m\acute{a}x}v}{Mv} = \frac{P_{x,m\acute{a}x}}{Mv}$$

Atrito de Resistência ao Rolamento

$$R_x = R_{xf} + R_{xr} = f_r W$$

onde:

- R_x força de resistência ao rolamento
- R_{xf} força de resistência ao rolamento no pneu dianteiro
- R_{xr} força de resistência ao rolamento no pneu traseiro
- f_r coeficiente de resistência ao rolamento (típico: aprox. 0,01 0,02)
- W peso do veículo

Fatores que influenciam o coeficiente de atrito de rolamento:

- temperatura
- pressão de inflação
- aspectos construtivos do pneu
- complacência do pavimento
- Velocidade (praticamente constante até aprox. 80-100 km/h)

Arrasto Aerodinâmico

$$D_A = 1/2 \rho V^2 C_D A$$

onde:

- D_A arrasto aerodinâmico
- ρ densidade do ar
- C_D coeficiente de arrasto aerodinâmico
- A área frontal

DRAG COEFFICIENT	TYPICAL		
COMPONENT	VALUE		
Forebody	0.05		
Afterbody	0.14		
Underbody	0.06		
Skin Friction	0.025		
Total Body Drag	0.275		
Wheels and wheel wells	0.09		
Drip rails	0.01		
Window recesses	0.01		
External mirrors	0.01		
Total Protuberance Drag	0.12		
Cooling system	0.025		
Total Internal Drag	0.025		
Overall Total Drag	0.421		
VEHICLE OF THE 1980s			
Cars	0.30 - 0.35		
Vans	0.33 - 0.35		
Pickup trucks	0.42 - 0.46		

Powertrain (Trem de Força)

Balanço de Energia Cinética

$$E_{c} = \frac{J_{2}\omega_{2}^{2}}{2} + \frac{J_{1}\omega_{1}^{2}}{2} + \frac{J_{motor}\omega_{1}^{2}}{2} \qquad E_{c} = \frac{J_{eq}\omega_{2}^{2}}{2}$$

$$J_{eq} = J_{2} + N^{2} \left(\mathbf{J}_{1} + J_{motor} \right)$$

$$J_{1,eq} = N^2 J_1$$

$$J_{motor,eq} = N^2 J_{motor}$$

Balanço de Energia Potencial

$$E_{p} = \frac{k_{t1}\theta_{1}^{2}}{2} \qquad E_{p} = \frac{k_{t,eq}\theta_{2}^{2}}{2}$$

$$k_{t,eq} = N^{2}k_{t1}$$

Engine -> clutch

$$T_c = T_e - I_e \alpha_e$$

Clutch -> driveshaft

$$T_d = (T_c - I_t \alpha_e) N_t$$

Driveshaft -> axles -> wheels

$$T_a = F_x r + I_w \alpha_w = (T_d - I_d \alpha_d) N_f$$

Reduções (transmissão e diferencial)

$$\alpha_d = N_f \alpha_w$$
 and $\alpha_e = N_t \alpha_d = N_t N_f \alpha_w$

Força trativa em função do torque do motor e aceleração longitudinal

$$F_{x} = \frac{T_{e}N_{tf}}{r} - \{(I_{e} + I_{t})N_{tf}^{2} + I_{d}N_{f}^{2} + I_{w}\} \frac{a_{x}}{r^{2}}$$

Força trativa considerando eficiência na transmissão e diferencial

$$F_{x} = \frac{T_{e}N_{tf}\eta_{tf}}{r} - \{(I_{e} + I_{t})N_{tf}^{2} + I_{d}N_{f}^{2} + I_{w}\}\frac{a_{x}}{r^{2}}$$

Aceleração longitudinal

$$M a_X = \frac{W}{g} a_X = F_X - R_X - D_A - R_{hx} - W \sin \Theta$$

Massa equivalente dos elementos rotativos do powertrain

$$(M + M_r) a_x = \frac{W + W_r}{g} a_x = \frac{T_e N_{tf} \eta_{tf}}{r} - R_x - D_A - R_{hx} - W \sin \Theta$$

Fator de massa $(M + M_r)/M$

**		Mass Factor				
<u>Vehicle</u>	Gear:	<u>High</u>	Second	<u>First</u>	Low	
Small Car		1.11	1.20	1.50	2.4	
Large Car		1.09	1.14	1.30		
Truck		1.09	1.20	1.60	2.5	

Curvas do Motor

Curvas do Motor

Exercício (aceleração longitudinal)

EXAMPLE PROBLEMS

1) We are given the following information about the engine and drivetrain components for a passenger car:

Engine inerti	ia	0.8 in-lb-sec^2					
RPM/Torq	ue (ft-lb)	800	120	2400	175	4000	200
		1200	132	2800	181	4400	201
		1600	145	3200	190	4800	198
		2000	160	3600	198	5200	180
Transmission	Data - Gea	ar 1	2	. 3	4	5	
Inertias		1.3	0.9	0.7	0.5	0.3 in	-lb-sec ²
Ratios		4.2	28 2.7	79 1.8	3 1.36	1.00	
Efficiencie	es	0.9	66 0.9	967 0.9	72 0.97	3 0.970	
Final drive -	Inertia	1.2 in-lb-sec^2					
	Ratio	2.	.92				
	Efficience	су О.	99				

Wheel inertias Drive 11.0 in-lb-sec² Non-drive 11.0 in-lb-sec²
Wheel size 801 rev/mile \Rightarrow 6.59 ft circumference \Rightarrow 12.59 inch radius

Pede-se:

- a) Entender código de referência, aceleração.m
- b) Incorporar perdas por arrasto (pág. 97, Gillespie, utilizar Eq. 4-2 e adotar Cd e A razoáveis).
- c) Incorporar perdas por atrito de rolamento (pág.110-..., Gillespie, utilizar valores na tabela da pág. 117 ou Eq. 4-15).
- d) Determinar influência destas perdas sobre o desempenho em aceleração do veículo (em particular, sobre tempo para aceleração de 0 a 100 km/h). Plotar curvas de velocidade em função do tempo para cada caso.
- e) Agora considere a força trativa máxima para que não haja derrapagem das rodas trativas. Qual seria a influência disto no tempo de aceleração de 0-100km/h?
- f) Encontrar velocidade máxima atingida pelo automóvel considerando as perdas adicionadas acima.

Limite de Aceleração (Tração Máxima)

Atrito de Coulomb

$$F_x = \mu F_z$$

Transferência de carga longitudinal (aceleração longitudinal)

$$W_f = W(\frac{c}{L} - \frac{a_x}{g}\frac{h}{L}) = W_{fs} - W\frac{a_x}{g}\frac{h}{L}$$

$$W_r = W(\frac{b}{L} + \frac{a_X}{g}\frac{h}{L}) = W_{rs} + W\frac{a_X}{g}\frac{h}{L}$$

Transferência de carga lateral (diferencial)

Transferência Lateral de Carga

Eixo traseiro sólido com diferencial "destravado"

$$\Sigma T_o = (W_r / 2 + W_y - W_r / 2 + W_y) t / 2 + T_s - T_d = 0$$

 $W_y = (T_d - T_s) / t$

$$T_d = F_x r/N_f$$

$$\phi = T_d / K_{\phi} = T_d / (K_{\phi f} + K_{\phi r})$$

$$T_{sr} = K_{\phi r} T_d / (K_{\phi f} + K_{\phi r})$$

$$W_{y} = \frac{F_{x} r}{N_{f} t} \left[1 - \frac{K_{\phi r}}{K_{\phi r} + K_{\phi f}} \right] \qquad W_{y} = \frac{F_{x} r}{N_{f} t} \frac{K_{\phi f}}{K_{\phi}}$$

$$W_r = W(\frac{b}{L} + \frac{a_X}{g} \frac{h}{L})$$

$$W_{rr} = \frac{Wb}{2L} + \frac{F_x}{2L} - \frac{F_xr}{N_ft} \frac{K_{\phi f}}{K_{\phi}}$$

$$F_x = 2 \mu W_{rr} = 2 \mu \left(\frac{Wb}{2L} + \frac{F_x h}{2L} - \frac{F_x r}{N_f t} \frac{K \phi f}{K \phi} \right)$$

Limite de Tração

Eixo traseiro sólido com diferencial "destravado"

$$F_{xmax} = \frac{\mu \frac{Wb}{L}}{1 - \frac{h}{L} \mu + \frac{2 \mu r}{N_f t} \frac{K \phi f}{K \phi}}$$

Eixo dianteiro sólido com diferencial "destravado"

$$F_{\text{xmax}} = \frac{\mu \frac{Wc}{L}}{1 + \frac{h}{L} \mu + \frac{2 \mu r}{N_{\text{f}} t} \frac{K_{\phi r}}{K_{\phi}}}$$

Eixo traseiro sólido com diferencial "travado" ou suspensão traseira independente

$$F_{xmax} = \frac{\mu \frac{Wb}{L}}{1 - \frac{h}{L}\mu}$$

Dianteira com

Dianteira com suspensão
$$F_{xmax} = \frac{\mu \frac{Wc}{L}}{1 + \frac{h}{L}\mu}$$

Desempenho em Frenagem

$$M a_X = -\frac{W}{g} D_X = -F_{Xf} - F_{Xr} - D_A - W \sin \Theta$$

Equações básicas (desaceleração constante)

$$D_X = \frac{F_{Xt}}{M} = -\frac{dV}{dt}$$

$$V_o - V_f = \frac{F_{xt}}{M} t_s$$

$$t_{S} = \frac{V_{O}}{\frac{F_{Xt}}{M}} = \frac{V_{O}}{D_{X}}$$

$$SD = \frac{V_0^2}{2\frac{F_{xt}}{M}} = \frac{V_0^2}{2D_x}$$

Desempenho em Frenagem

MANUAL DO ENSINO DA CONDUÇÃO

FT [13] [256] [34]

Cálculo de distâncias médias de paragem:

VELOCIDADE DE CIRCULAÇÃO	DR* (TR = 1S)	DT* (V2/200)	DP* (DR + DT)
30 kms/h	9 m	4.5 m	13.5 m
50 kms/h	15 m	12.5 m	27.5 m
70 kms/h	21 m	24.5 m	45.5 m
90 kms/h	27 m	40.5 m	67.5 m
120 kms/h	36 m	72 m	108 m
150 kms/h	45 m	112.5 m	157.5 m

DR = Distância de Reacção ; DT = Distância de Travagem ; DP = Distância de Paragem

Desempenho em Frenagem

Energia dissipada (energia cinética -> calor + vibração + ...)

Energy =
$$\frac{M}{2} (V_0^2 - V_f^2)$$

parada

massa: 1000 kg

velocidade inicial: 100 km/h

energia: 386 kJ

leva a fervura 1,15 kg de água

Power =
$$\frac{M}{2} \frac{V_o^2}{t_s}$$

massa: 1000 kg

velocidade inicial: 100 km/h potência **média**: 48 kW

tempo de parada: 8 segundos

Forças que Contribuem à Frenagem

Atrito de rolamento (ordem de magnitude: 0,01 g)

$$R_{xf} + R_{xr} = f_r (W_f + W_r) = f_r W$$

Arrasto aerodinâmico (ordem de magnitude, vel. estrada: 0,03 g)

$$D_A = 1/2 \rho V^2 C_D A$$

- Arrasto do driveline (balanço entre forças inerciais e dissipativas)
 - Inércia dos componentes do powertrain (influência negativa)
 - Freio motor (câmbio manual)
 - Atrito interno
- Plano inclinado (4% inclinação -> aprox. 0,04 g)

$$R_g = W \sin \Theta \cong W \Theta$$

Freios

freio a tambor

freio a disco

Freio a Tambor (fator de amplificação)

Atrito entre Pneu e Pavimento (escorregamento)

Adesão

- maior parcela (no seco)
- Diminui muito se contaminação com água

Histerese do material

- menor parcela (no seco)
- pavimento molhado

Travamento da Roda (Wheel Lockup)

$$Slip = \frac{V - \omega r}{V}$$

Estável

aumento do slip causa aumento de Fx, acelerando roda e diminuindo slip

Instável

aumento do slip causa diminuição em Fx, o que causa desaceleração da roda e aumento ainda maior do slip.

Travamento da Roda (Wheel Lockup)

Travamento das rodas dianteiras

- Perda na capacidade de controlar direção do veículo (manobrabilidade)
- Veículo continua em movimento retilíneo
- Sistema análogo: pêndulo

Travamento das rodas traseiras

- Sistema instável
- Sistema análogo: pêndulo invertido
- Qualquer perturbação causa divergência e "rodopio" do veículo
- Veículo rodopia até ficar de ré

Anti-Lock Braking System (ABS)

Componentes

- Sensor de velocidade da roda
- Solenóide (controle de válvulas e bomba)
- Unidade de controle

Distribuição dos Força de Frenagem

$$W_f = \frac{c}{L}W + \frac{h}{L}\frac{W}{g}D_x = W_{fs} + W_d$$

$$W_r = \frac{b}{L} W - \frac{h}{L} \frac{W}{g} D_x = W_{rs} - W_d$$

$$F_{xmf} = \mu_p W_f = \mu_p (W_{fs} + \frac{h}{L} \frac{W}{g} D_x)$$

$$F_{xmr} = \mu_p W_r = \mu_p (W_{rs} - \frac{h}{L} \frac{W}{g} D_x)$$

Distribuição das Força de Frenagem

Força de frenagem máxima (em cada eixo)

$$F_{xmf} = \mu_p W_f = \mu_p (W_{fs} + \frac{h}{L} \frac{W}{g} D_x)$$

$$D_X = \frac{(F_{xmf} + F_{xr})}{M}$$

$$F_{xmr} = \mu_p W_r = \mu_p (W_{rs} - \frac{h}{L} \frac{W}{g} D_x)$$

$$D_{X} = \frac{(F_{xmr} + F_{xf})}{M}$$

$$F_{xmf} = \frac{\mu_p(W_{fs} + \frac{h}{L}F_{xr})}{1 - \mu_p \frac{h}{L}}$$

$$F_{xmr} = \frac{\mu_p(W_{rs} - \frac{h}{L}F_{xf})}{1 + \mu_p \frac{h}{L}}$$

Distribuição dos Força de Frenagem

Projeto do sistema de distribuição de freios deve levar em conta:

- variações nas propriedades do pavimento (seco vs. molhado, concreto vs. asfalto, etc.)
- distribuição de carga entre eixo frontal e traseiro (plano inclinado, arrasto, aceleração, posição horizontal do CG, etc.)
- altura do CG
- diferentes requerimentos da norma

