Московский физико-технический институт (государственный университет) Факультет общей и прикладной физики

Лабораторная работа №4.1 (Общая физика: квантовая физика)

Работу выполнил: Иванов Кирилл, 625 группа

г. Долгопрудный 2018 год

Цель работы: Измерить пробег альфа-частиц в воздухе двумя способами: с помощью торцевого счетчика Гейгера и ионизационной камеры.

1. Теоретическое введение и описание установки

В качестве источника альфа-частиц используется 239 Pu с периодом полураспада $T_{1/2}=2,44\cdot 10^4$ лет. Альфа-частицы, испускаемые 239 Pu, состоят из трех моноэнергетических групп, различие между которы- ми лежит в пределах 50 кэВ. При той точности, которая достигается в наших опытах, их можно считать совпадающими по энергии, равной 5,15 МэВ.

1.1 Счетчик Гейгера

Рис. 1: Схема торцевого счетчика Гейгера

Для определения пробега альфа-частиц с помощью счетчика радиоактивный источник помещается на дно стальной цилиндрической бомбы (рис. 1), в которой может перемещаться торцевой счетчик Гейгера. Его чувствительный объем отделен от наружной среды тонким слюдяным окошком, сквозь которое могут проходить альфа-частицы. Рабочее напря- жение счетчика указано на установке.

Импульсы, возникающие в счетчике, усиливаются и регистрируются пересчетной схемой. Путь частиц в воздухе зависит от расстояния между источником и счетчиком. Перемещение счетчика производится путем вращения гайки, находящейся на крышке бомбы. Расстояние между счетчиком и препаратом измеряется по шкале, нанесенной на держатель счетчика. Счетчик не может быть придвинут к препарату ближе чем на 10 мм, т. к. между источником и счетчиком установлен коллиматор, изготовленный из плотно сжатых металлических трубок. Отверстия трубок пропускают к счетчику только те

альфа-частицы, которые вылетают из источника почти перпендикулярно его поверхности.

1.2 Ионизационная камера

Ионизационная камера — прибор для количественного измерения ионизации, произведенной заряженными частицами при прохождении через газ. Камера представляет собой наполненный газом сосуд с двумя электродами (схема камеры приведена на рис. 2). Сферическая стенка прибора служит одним из электродов, второй электрод вводится в газ через изолирующую пробку. К электродам подводится постоянное напряжение от источника ЭДС.

Заполняющий сосуд газ сам по себе не проводит электрический ток, возникает он только при прохождении быстрой заряженной частицы, которая рождает в газе на своем пути ионы.

Поместим на торец внутреннего электрода источник ионизирующего излучения (в нашем случае это источник альфа-частиц $^{239}_{94}$ Pu), заполним объем камеры воздухом и начнем постепенно увеличивать разность потенциалов между электродами. Ток, протекающий через камеру,

вначале будет резко возрастать, а затем, начиная с некоторого напряжения V_0 , станет постоянным, т. е. «выйдет на плато». Предельный ток I_0 будет равен $I_0 = n_0 e$, где n_0 — число пар ионов, образуемых в секунду в объеме камеры, а e — заряд электрона.

Рис. 2: Схема устройства ионизационной камера

Прохождение тока через камеру регистрируется посредством измерения напряжения на включенном в цепь камеры сопротивлении R. Так как средняя энергия ионизации атомов воздуха составляет около 30 эВ, то альфачастица с энергией 3 МэВ образует на своем пути около 10^5 электронов, им соответствует заряд $1,6\cdot 10^{-14}$ Кл. Чтобы столь малое количество заряда, создаваемое проходящей через камеру одной альфа-частицей, вызывало измеряемое напряжение, емкость C должна быть мала.

Так как подвижность электронов примерно в 1000 раз больше подвижности ионов, то подбором параметров RC-цепочки можно выделить импульсы тока, соответствующие только возникающей электронной компоненте. Реально регистрация электронной компоненты импульса тока обеспечивается при величине постоянной времени RC- цепочки в несколько микросекунд. Если число проходящих

через камеру альфа-частиц достаточно велико, то можно регистрировать не заряд, а величину возникающего тока, которая, естественно, пропорциональна интенсивности альфа-частиц. В токовом режиме величину постоянной времени RC-цепочки устанавливают равной нескольким секундам, а работающую в этом режиме камеру называют токовой.

При изменении давления в камере ионизационный ток меняется так, как это показано на рис. 3. При небольших давлениях газа альфа-частицы передают часть энергии стенкам камеры. По достижении давления P_0 все они заканчивают свой пробег внутри газа, и дальнейшее возрастание тока прекращается. Для определения давления P_0 чаще всего пользуются методом экстраполяции (полученная таким методом величина называется экстраполированным пробегом), продолжая наклонный и горизонтальный участки кривой до пересечения. Найденный таким образом пробег затем должен быть приведен к нормальному давлению и температуре $15^{\circ}C$.

В данной работе измерение пробега альфа-частицы проводится по величине тока ионизации в сферической камере. Внутренним электродом камеры служит диск диаметром 5 мм, на который нанесен тонкий слой ²³⁹₉₄Pu, покрытый сверху тонкой защитной пленкой. Вторым электродом служит внешняя оболочка кам

Рис. 3: Характерная кривая зависимости тока ионизационной камеры от давления. Ионизация создается α-

ной пленкой. Вторым электродом служит внешняя оболочка камеры полький шар с внутренним диаметром 100 мм. Оба электрода тщательно изолированы один от другого и от земли. Разность потенциалов между электродами составляет 300 В. Вакуумная установка содержит кран и манометр. Она позволяет изменять давление в камере от атмосферного до 10 мм рт. ст. Величина тока ионизации измеряется электрометром, состоящим из нескольких стандартных микросхем, по величине падения напряжения на сопротивлении R=100 MOm ($C=10^{-8} \text{ Фарад}$, так что RC=1 c). Значение измеряемого ионизационного тока (в пикоамперах) высвечивается

на цифровом табло.

2. Выполнение работы

2.1 Счетчик Гейгера

Включим счетчик Гейгера и дадим ему прогреться в течении 10 минут. Убедимся, что он регистрирует альфа-частицы. Затем проведем измерения зависимости скорости счета частиц N от расстояния между источником и счетчиком l, начиная с минимально допустимых 10 мм и до 40мм (по факту, уже после $l \gtrsim 25$ мм остается только фон).

Методика измерения счета и его погрешности стандартные: мы считаем число N' зарегистрированных частиц со статистической погрешностью $\sigma_{N'}=\sqrt{N'}$ и время регистрации t, откуда получаем скорость счета N=N'/t и ее погрешность

$$\sigma_N = N \cdot \frac{\sqrt{N'}}{N'} = \frac{\sqrt{N'}}{t}$$

Погрешность для l оценим как $\sigma_l = 0.5$ мм — погрешность цены деления. Результаты измерений величин и их погрешностей занесем в таблицу и построим график.

Таблица 1: Зависимость скорости счета частиц от расстояния между источником и счетчиком

№	l, cm	N	t, c	N', c^{-1}	$\sigma_{N'}, c^{-1}$
1	10	1104	74.9	14.74	0.44
2	13	1167	75.1	15.54	0.45
3	15	1175	75	15.67	0.46
4	16	1146	74.9	15.3	0.45
5	17	659	74.7	8.82	0.34
6	18	134	75	1.79	0.15
7	19	39	74.9	0.52	0.08
8	20	34	74.3	0.46	0.08
9	22	18	74.9	0.24	0.06
10	25	19	75.2	0.25	0.06
11	30	12	74.7	0.16	0.05
12	35	14	74.7	0.19	0.05
13	40	13	74.9	0.17	0.05

Профитируем линейный участок при $l \in [16,19]$ мм. Результаты фита сведем в таблицу.

Рис. 4: Зависимость скорости счета частиц от расстояния между источником и счетчиком

Таблица 2: Фит рис. 4 функцией y = ax + b

	Estimate	Standard Error
b	96,3	10,4
a	-5.14	0.34

Экстраполируем полученую прямую до пересечения с осью абсцисс. Отсюда получаем экстраполированную длину пробега

$$R_{\text{9}} = \frac{b}{a} \approx 18.9 \pm 1.9 \text{ mm} \implies R'_{\text{9}} = \rho R_{\text{9}} = (2.44 \pm 0.24) \cdot 10^{-3} \text{ r/cm}^2$$

Среднюю длину пробега оценим как $R_{\rm cp} \simeq 17.5 \pm 1.5$ мм $\Rightarrow R_{\rm c}' {\rm p} = \rho R_{\rm c} {\rm p} = (2.26 \pm 0.19) - x^{-3} {\rm r/cm}^2$

Энергию таких альфа-частицы можно оценить по эмпирической формуле

$$R = 0.32E^{3/2} \implies E_9 = \approx 3.26 \pm 0.22 \text{ M} \Rightarrow B, \quad E_{cp} = \approx 3.10 \pm 0.18 \text{ M} \Rightarrow B$$

2.2 Ионизационная камера

Включив питание установки, измерим при атмосферном давлении $P_{\rm a}=102,6$ к $\Pi {\rm a}=769,9$ Торр (измеренном барометром) ток $I_{\rm a}=820$ пА. Температура T=298 К. После этого откачаем воздух из камеры до давления порядка $\backsimeq 10$ Торр и снимем зависимость тока от давления.

Погрешность давления оценим как цену деления — $\sigma_P = 5$ Торр, погрешность $\sigma_I = 3$ пФ. Результаты измерения занесем в таблицу и построим график.

Таблица 3: Зависимость тока от давления

№	P, Topp	I , πA
1	16	6
2	56	63
3	101	112
4	121	155
5	171	230
6	211	285
7	241	348
8	281	411
9	321	482
10	361	549
11	416	658
12	471	760
13	491	792
14	511	822
15	516	823
16	536	850
17	546	862
18	561	859
19	581	858
20	601	859
21	611	861
22	631	854
23	641	860
24	651	857
25	671	860

Построим две прямых, соответствующих линейным участкам графика. Результаты фита сведем в таблицу:

Рис. 5: Зависимость тока от давления в ионизационной камере

Таблица 4: Фит рис. 5 функцией y = ax + b

Участок графика (по оси х)	a	b
$x \in [0, 511]$	$1,69 \pm 0,03$	-49 ± 8
$x \in [561, 671]$	0.00 ± 0.02	860 ± 15

Их пересечение дает нам значение

$$P_0 = \frac{b_2 - b_1}{a_1 - a_2} \approx (538 \pm 21) \text{ Topp}$$

Так как пробег $R_l=5$ см задается размером камеры, приведем его к н.у.:

$$R_9 = R_l \frac{\rho}{\rho_0} = R_l \frac{PT_0}{P_0 T} \approx (3.41 \pm 0.13) \text{ cm} \Rightarrow R_9' \approx (4.40 \pm 0.18) \cdot 10^{-3} \text{ r/cm}^2$$

Энергию такой альфа-частицы можно оценить по эмпирической формуле

$$R = 0.32E^{3/2} \implies E_{\text{9}} = \left(\frac{R_{\text{9}}}{0.32}\right)^2/3 \approx 4.84 \pm 0.09 \text{ M}{\text{9}B}$$

3. Вывод

В работе был измерен пробег альфа-частиц от 239 Рu двумя способами :с помощью торцевого счетчика Гейгера и ионизационной камеры. По полученным данным была определена энергия альфа - частиц.

При работе с ионизационной камерой пробег и энергия получились близкими к ожидаемым (из таблиц при $E=5\,$ МэВ получаем $R=3,29\,$ см для воздуха). При работе со счетчиком Гейгера значения пробега и энергий ниже табличных. Это можно объяснить тем, что часть энергии альфа-частиц тратится на прохождение слюдяной пластинки, прикрывающей счетчик, и пленки, закрывающей источник.

Если плотность бумаги равна 1.2 г/см^3 , следовательно, лист бумаги толщины $l \ge R'/\rho = 36.6 \text{ мкм}$ не пропустит альфа-частицы от ²³⁹Pu.