Ex 1. 设 P 是数域, $A \in P^{m \times s}$, $B \in P^{s \times n}$, 记

$$W = \{B\alpha | \alpha \in P^n, AB\alpha = 0\}$$

试证明: $W \neq P$ 的子空间且 $\dim W = R(B) - R(AB)$.

证明. $\mathbf{B}\vec{x}=\vec{0}$ 之解空间 $\mathbf{V_1}$ 维数 $\dim V_1=n-R(B),$ $\mathbf{AB}\vec{x}=\vec{0}$ 之解空间 $\mathbf{V_2}$ 维数 $\dim V_2=n-R(AB).$

易知 $V_1 \subseteq V_2$. 对 V_1 进行基扩充.

$$V_1 = L(\vec{\gamma_1}, \cdots, \vec{\gamma_{n-R(B)}})$$

$$V_2 = L(\vec{\gamma_1}, \cdots, \vec{\gamma_{n-R(B)}}, \cdots, \vec{\gamma_{n-R(AB)}})$$

对 $\alpha \in V_2$, 有 $B\alpha \in W$. 对于 $B\vec{\gamma}$, 有 $B\vec{\gamma_k} = \vec{0}, k = 1, \dots, n - R(B)$, 且 $B\vec{\gamma_k} \neq \vec{0}, k = n - R(B) + 1, \dots, n - R(AB)$. 下证 $B\vec{\gamma_k}$ 线性无关. 若 $B\sum_{i=n-R(B)+1}^{n-R(AB)} \vec{k_i}\vec{\gamma_i} = \vec{0}$, 因为 $\vec{\gamma_i}$, $i=n-R(B)+1,\dots,n-R(AB)$ 线性无关

$$\Rightarrow \sum_{i=n-R(B)+1}^{n-R(AB)} k_i \vec{\gamma_i} \neq \vec{0}$$

$$\Rightarrow \sum_{i=n-R(B)+1}^{n-R(AB)} k_i \vec{\gamma_i} \Rightarrow B\vec{\alpha} = 0$$
的非零解
$$\Rightarrow \sum_{i=n-R(B)+1}^{n-R(AB)} k_i \vec{\gamma_i} \in V_1$$

$$\Rightarrow V_2 \subset V_1$$

矛盾.

由是
$$\dim W = (n - R(AB)) - (n - R(B)) = R(B) - R(AB)$$

¹该题利用基扩充来做.