

EP 1 857 242 A1 (11)

(12)

EUROPÄISCHE PATENTANMELDUNG

veröffentlicht nach Art. 158 Abs. 3 EPU

(43) Veröffentlichungstag: 21.11.2007 Patentblatt 2007/47

(51) Int Cl.: B29B 9/06 (2006.01) B29C 67/20 (2006.01)

B29C 44/34 (2006.01)

(21) Anmeldenummer: 06733211.4

(22) Anmeldetag: 15.02.2006

(86) Internationale Anmeldenummer: PCT/RU2006/000075

(87) Internationale Veröffentlichungsnummer: WO 2006/088392 (24.08.2006 Gazette 2006/34)

(84) Benannte Vertragsstaaten:

AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

(30) Priorität: 21.02.2005 RU 2005105495

(71) Anmelder:

- Obschestvo S Ogranichennoi Otvetstvennostju St. Petersburg, 198099 (RU)
- Otkrytoe Aktsionnernoe Obschestvo Salavatnefteorgs Salavat, 453256 (RU)
- (72) Erfinder:
 - GINZBURG, Leonid Isaakovich D-Duesseldorf, 40477 (DE)
 - TARKOVA, Eugenia Michailova St. Petersburg, 195427 (RU)

- ROGOV, Maxim Nikolaevich Salavat, 453250 (RU)
- RAHIMOV, Halyl Halafovichul, Mostova, 26 Salavat, 453250 (RU)
- ISHMIJAROV, Marat Hafisovich Salavat, 453250 (RU)
- MJACHIN, Sergei Ivanovich Salavat, 453250 (RU)
- PROKOPENKO, Alexej Vladimirovich Salavat, 453250 (RU)
- KRASHENINNIKOV, Alexandr Alexeevich St. Petersburg, 191040 (RU)
- MJASITSHEVA, Irina Vladimirovna St. Petersburg, 197002 (RU)
- (74) Vertreter: Jeck, Anton Jeck - Fleck - Hermann Klingengasse 2/1 71657 Vaihingen/Enz (DE)

VERFAHREN ZUM HERSTELLEN VON EXPANDIERFÄHIGEM STYROLKUNSTSTOFF- $(54) \cdot$ **GRANULAT**

- Das Verfahren gemäß der Erfindung umfasst folgende Schritte:
- Flüsse aus geschmolzenem Polymer und einem Expandiermittel werden einem Mischbereich zugeführt,
- das Expandiermittel wird mittels einer schnellen Verteilungsmischung in einem ersten statischen Mischer verteilt,
- die so gewonnene Mischung wird in einem zweiten statischen Mischer aufgenommen und intensiv teilungsgemischt,
- die Mischung wird während des Mischens in einem dritten statischen Mischer auf eine Zwischentemperatur gekühlt,
- die genannte Mischung wird auf eine Körnungstemperatur gekühlt,
- Polymerfäden werden extrudiert, und diese werden danach abgeschreckt und in Körner überführt.

Während des Prozessverlaufs beträgt das Gewichtsverhältnis zwischen dem Polymerschmelzfluss Gp und dem Expansionsmittelfluss GBA 13,0-19,0; die Temperatur im ersten statischen Mischer für die schnelle Teilungsmischung wird nach der Formel (I), die Temperatur im zweiten statischen Mischer und im dritten statischen Mischer wird nach der Formel (II) bzw. (III) berechnet, wobei G_{BA max} die Menge des maximal möglichen Expansionsmittelflusses und G_{Bct} die Menge des verwendeten Expansionsmittelflusses ist und wobei das Verhältnis zwischen dem Schmelzflussindex und der durchschnittlichen Molekulargewichtsmasse (Mw) im Bereich von (0,8-12,0)x10-5 liegt. Das Verfahren gemäß der Erfindung macht es möglich, Polystyren in Form von Expansionskörnern (-perlen) in einem weiten Bereich der Molekularmasse und stoßfestes Polystyren zu erzeugen.

$$\left[200 + 56 \cdot \left(1 - \frac{G_{BAmoment.}}{G_{BA \max}}\right)\right] C$$

$$\left[175 + 70 \cdot \left(1 - \frac{G_{BAmoment.}}{G_{BA \text{ max}}}\right)\right] C$$

$$\left[150 + 70 \cdot \left(1 - \frac{G_{BAmoment.}}{G_{BA max}}\right)\right] \circ C$$

Beschreibung

[0001] Die Erfindung betrifft das Gebiet der Polymerchemie, insbesondere das der Herstellung von expandierfähigem Polystyrol (EPS), wie etwa von Styrolpolymeren, welche ein Treibmittel (TM) einschließen. EPS ist zur Schaumbildung bei Erhitzung fähig. Dabei entsteht ein als Schaumpolystyrol (SPS) genannter poröser Werkstoff. SPS findet eine breite Anwendung in verschiedenen Industriezweigen. Beispielsweise werden Platten aus SPS im Bauwesen als Wärme- und Schallisolierung verwendet. Ebenso werden aus SPS Verpackungen für verschiedene Gebrauchszwecke hergestellt, wie etwa Vollverpackungen und Formprofile zur Beförderung von Geräten. SPS kann auch als Schienenpolster und dergleichen Verwendung finden.

[0002] Für jede Anwendung ist SPS mit bestimmten physikalisch-mechanischen Eigenschaften erforderlich. Für die physikalisch-mechanischen Eigenschaften ist die Schüttdichte des Schaumerzeugnisses maßgeblich. So sollen Platten, die als Schlenen- und Straßenbahnschienenpolster verwendet werden, eine Schüttdichte von mindestens 35 kg/m³, besser von mindestens 45 kg/m³ aufweisen. Platten, welche im Bauwesen Verwendung finden, weisen eine Schüttdichte von 25-35 kg/m³ auf. SPS-Verpackungen sind gewöhnlich sehr leicht, mit einer Schüttdichte von 12-20 kg/m³. Maßgebend ist somit für den Verbraucher die Schüttdichte der Schaumpolystyrolerzeugnisse, welche aus dem expandierfähigen Polystyrol hergestellt sind.

[0003] Es ist bekannt, SPS durch ein Strangpressverfahren herzustellen. Dabei wird das Polystyrol in einer Spritzmaschine geschmolzen. Das TM und andere Zusatzstoffe werden in den Schmelzfluss eingeführt und das Schaumerzeugnis extrudiert. Ein derartiges Strangpressverfahren von SPS ist aus EP 0445847 A2 bekannt. Dabei wird Polystyrol in einer Schmelzzone einer Spritzmaschine geschmolzen. Es wird ein TM verwendet aus der Gruppe modifizierter Kohlenwasserstoffe mit verschiedener Zusammensetzung, welche Grenzkohlenwasserstoffe mit einer Kettenlänge von C₂-C₃, Kohlensäuregas oder eine Mischung hieraus umfasst. Die Polymerschmelze wird mit dem TM in der Schmelzzone gemischt. In einer Kühlzone erfolgt eine Abkühlung der Mischung und anschließend durch Extrusion die Herstellung eines Schaumerzeugnisses. Die Oberflächenbeschaffenheit des Schaumerzeugnisses wird bei diesem Verfahren durch Aufrechterhaltung eines Druckunterschieds zwischen Eintritt in die Mischzone und Düsenloch der Spritzmaschine innerhalb eines bestimmten Bereichs kontrolliert.

[0004] Zum Herstellen von SPS mittels Strangpressverfahren sind nur bestimmte Polystyrole mit einer innerhalb eines engen Bereichs liegenden molekularen Masse mit einer kleinen Fließzahl bzw. geringen Viskosität des Schmelzgutes (FZS g/10 Minuten) geeignet. Derart enge, durch die Anforderungen des Strangpressverfahrens zur Schaumbildung bedingte Eigenschaften des verwendbaren Polystyrols schränken das Angebot der herstellbaren Schaumerzeugnisse ein und erhöhen deren Herstellungskosten. Insbesondere ist es praktisch nicht möglich, durch Strangpressverfahren leichte Schaumerzeugnisse mit einer Schüttdichte von weniger als 30 kg/m³ herzustellen. Eine weitere Einschränkung beim Strangpressverfahren besteht in der eingeschränkten Produktvariabilität. So können beispielsweise nur Erzeugnisse in Form von Folien, Blättern, Platten, Profile und dergleichen mit einer Stärke von höchstens 50 cm hergestellt werden.

[0005] Sollen leichte Schaumerzeugnisse anderer Form hergestellt werden, wird ein EPS benötigt, welches durch Kompolymerisation von Styrol unter Zusatz von Perlen eines Polymeres und TM in der Polymerisationsphase hergestellt worden ist. Solche als Suspensionsverfahren bekannte Verfahren zur Erzeugung von EPS sind beispielsweise durch JP 491141 US 5,240,967, RU 2087486 C1, FR 2725995 A1, US 5,616,413, DE 19548311 A1, DE19642658A1, FR2820427A1 bekannt. Dadurch können Polymere mit verhältnismäßig niedriger molekularer Masse von weniger als 200000 und mit einer Fließzahl bzw. Viskosität des Schmelzguts von 3 und höher hergestellt werden. Aus dem expandierfähigen Suspensionspolystyrol können Schaumerzeugnisse verschiedener Form mit einer Schüttdichte von 25 kg/m³ und weniger hergestellt werden.

[0006] Jedoch ist die Herstellung von Platten bzw. von Erzeugnissen mit hoher Dichte aus expandierfähigem Suspensionspolystyrol unverhältnismäßig aufwändig. Dies sowohl in Bezug auf den Werkstoffverbrauch an expandierfähigem Polystyrol, als auch in Bezug auf den Energieverbrauch für dessen Verarbeitung. Diese Unverhältnismä-ßigkeit wird dadurch verstärkt, dass es praktisch unmöglich ist, bei der Herstellung von Erzeugnissen aus expandierfähigem Suspensionspolystyrol die Qualität von durch Extrusion hergestelltem SPS zu erreichen.

[0007] Außerdem verursacht das Suspensionsverfahren große Mengen von zu reinigendem Abwasser. Die Perlen des durch ein Suspensionsverfahren hergestellten EPS weisen eine breite granulometrische Verteilung bzw. eine große Streuung ihres Durchmessers auf. Zur Herstellung von Schaumerzeugnissen werden jedoch nur Perlen aus EPS mit einer bestimmten granulometrischen Struktur bzw. mit bestimmten Durchmessern verwendet. Das setzt eine zusätzliche Aussiebung von Perlen mit Durchmessern bzw. Komgrößen von über 1,5 mm [siehe z. B., Chem.- Ing.Techn., 1996, v68, NR.10, p. 1200] sowie die Reinigung der als Endkörner bezeichenbaren Perlen von staubförmigen Rückständen voraus. Dies ist durch das Vorhandensein des TM erschwert.

[0008] In einem durch US 5000801 bekannten Verfahren zur Herstellung von Perlen bzw. Körnem aus EPS mit enger granulometrischen Verteilung werden durch ein Suspensionsverfahren hergestellte Perlen aus EPS mit einem nukleatierenden Mittel in einem Kneter gemischt. Die Perlen enthalten einen Massenanteil von 5,9 - 7,5 % TM. Das nuklea-

tierende Mittel ist eine Mischung aus Zitronensäure und Soda in einem Verhältnis von 0,25 bis 0,4 g je Kilogramm EPS. Dieses Gemisch wird in eine Spritzmaschine befördert. Das Polymer wird geschmolzen. Polymerstränge werden bei einer Temperatur von 115-125°C und einem Druck von 1800-2000 Pfund/Zoll 2 unter Bedingungen, die einer Schaumbildung vorbeugen, extrudiert. Diese Bedingungen umfassen ein Wasserbad mit einer Wassertemperatur von ca. 22° C (15-30° C), in welches die extrudierten Fäden mit einer um das 1,8-fache höheren Geschwindigkeit als die der Extrusionsgeschwindigkeit, gezogen werden. Die gestreckten Fäden aus TM enthaltendem Polystyrol werden auf die gewünschte Komgröße geschnitten.

[0009] Ein wesentlicher Nachteil dieses Verfahrens besteht darin, dass hierzu Polystyrol mit einer molekularen Masse (Mw) von weniger als 200000, genauer von 90000-150000, und mit einer Fließzahl bzw. Viskosität des Schmelzguts von 4,5-5,0, verwendet wird. Ein weiterer Nachteil ist, dass das Ausgangspolymer keine Additive, wie etwa Antistatikmittel, Gleitmittel, welche der Klumpenbildung von Tropfen vorbeugen, usw. enthalten darf. Dies schränkt die Anwendung des

[0010] Bei einem aus EP 0668139 A1 bekannten Verfahren zum Herstellen von expandierfähigem Styrolkunststoff-Granulat werden ein Materialfluss von Polystyrol und TM in eine Mischzone gefördert. Das TM wird in der Polymerschmelze unter intensiver Schneidmischung in einem ersten statischen Mischapparat dispergiert. Das so gebildete Gemisch wird unter intensiver Schneidmischung in einem zweiten statischen Mischer gehalten. Dieses Gemisch wird beim Mischen in einem dritten statischen Mischer bis zu einer Zwischentemperatur unter nachfolgender Kühlung des Gemischs bis zu einer zur Granulation erforderlichen Temperatur abgekühlt. Polymerstränge werden unter schockartiger Abkühlung durch eine Düse ausgepresst und in Granulat zerschnitten. Gemäß diesem Verfahren kann das Schmelzgut aus Polymer sowohl aus der Spritzmaschine, als auch aus einer Anlage, welche das Polystyrol durch Polymerisation in Masse produziert, in den statischen Mischer gefördert werden. Das Halten der Mischung fördert bei der Schneidmischung die Diffusion des TM im Polymerschmelz. In der Abkühlungsstufe wird das Schmelzgut ungefähr bis zu einer Temperatur von 120° C abgekühlt. Dabei fällt der Druck ungefähr bis auf 10 Mpa ab. An der Düse fällt der Druck bis zu 1 MPa ab. Die Polymerstränge werden in ein Wasserbad ausgepresst, dessen Temperatur bei ca. 10° C aufrechterhalten wird. Es entsteht das Granulat aus EPS, welches eine gleichmäßige Verteilung von TM und gleichmäßige Größe hat. [0011] Der Nachteil dieses bekannten Verfahrens besteht darin, dass es nur für Polymere einer Sorte geeignet ist, d. h. nur Polymere mit einer innerhalb eines engen Bereichs liegenden molekularen Masse zur Weiterverarbeitung zu einem EPS vorsieht.

[0012] Eine Aufgabe der Erfindung ist es, ein expandierfähiges Polystyrol mit einer in einem weiten Bereich liegenden bzw. auswählbaren oder veränderbaren molekularen Masse aus einer breiten Palette von Polystyrolsorten zu einem Granulat zu verarbeiten. Eine Aufgabe der Erfindung ist auch die Herstellung von Polystyrol mit breiter Verwendbarkeit. Die Aufgabe wird erfindungsgemäß gelöst durch ein Verfahren zum Herstellen von expandierfähigem Styrolkunststoff-Granulat. Das Verfahren sieht eine Zufuhr von geschmolzenem Polymer in einem Schmelzmaterialfluss und eine Zufuhr von Treibmittel in einem Treibmittelfluss in eine Mischzone vor. In einem ersten statischen Mischer findet eine Dispergierung des TM im Polymerschmelzgut unter intensiver Schneidmischung statt. In einem zweiten statischen Mischer wird das gebildete Gemisch unter intensiver Schneidmischung gehalten. In einem dritten statischen Mischer findet eine Abkühlung des Gemisches unter gleichzeitigem Mischen bis zu einer Zwischentemperatur unter nachfolgender Abkühlung des Gemisches bis zu einer zur Granulation erforderlichen Temperatur statt. Anschließend sieht das Verfahren ein Auspressen von Polymerstränge unter schockartiger Abkühlung und Granulation vor. Dabei werden folgende Bedingungen aufrechterhalten:

ein Gewichtsverhältnis bzw. Massenstromverhältnis zwischen Schmelzmaterialfluss Gp und Treibmittelfluss GRA in einem Bereich von 13-19. eine Temperatur im ersten statischen Mischer unter intensiver Schneidmischung, welche folgendermaßen berechnet

$$\left[200 + 56 \cdot \left(1 - \frac{G_{BAmoment.}}{G_{BA \text{ max}}}\right)\right] C$$

eine Temperatur im zweiten statischen Mischer, die wie folgt berechnet wird:

55

45

50

$$\left[175 + 70 \cdot \left(1 - \frac{G_{BAmoment.}}{G_{BA \max}}\right)\right] C$$

eine Temperatur im dritten statischen Mischer, die wie folgt berechnet wird:

10

15

5

$$\left[150 + 70 \cdot \left(1 - \frac{G_{BAmament.}}{G_{BA \max}}\right)\right] C$$

Dabei ist:

G_{BAmax} G_{BAmomentan} die Größe des maximal möglichen Treibmittelflusses und

die Größe des verwendeten Treibmittelflusses.

[0014] Erfindungsgemäß wird dabei ein Verhältnis der Fließzahl (FZS) des geschmolzenen Polymers zu seiner mittleren molekularen Masse (M_w) in einem Bereich von (0,8 bis 12,0)x 10⁻⁵ eingehalten.

[0015] Erfindungsgemäß kann der Schmelzmaterialfluss aus einem Entgaser einer vorzugsweise kontinuierlich arbeitenden Anlage zur Herstellung von Polymer durch Massenpolymerisation gespeist werden. Das Polymer kann auch in einer oder mehreren selbständigen Spritzmaschinen geschmolzen werden, wobei dieses Schmelzgut zum Mischen in den statischen Mischer gefördert werden kann.

[0016] Als Polymere kann Polystyrol mit einer molekularen Masse M_w von 90000 bis etwa 400000 verwendet werden. Ebenso kann ein mit Kautschuk modifiziertes schlagfestes Polystyrol mit einer M_w der Polystyrolmatrix von 150000 bis 300000 verwendet werden. Beim erfindungsgemäßen Verfahren kann der Kautschuk-Gehalt, etwa von Polybutadien, wie beispielsweise Styrolbutadienblockpolymere, im Polymer 5 bis 8 % der Masse betragen.

[0017] Erfindungsgemäß können als TM Grenzkohlenwasserstoffe mit einer Kettenlänge von C₄ - C₆ verwendet werden. Solche Grenzkohlenwasserstoffe sind beispielsweise Butan, Isobutan, Pentan, Isopentan oder Hexan. Vorzugsweise finden Pentan und Isopentan oder Mischungen hiervon Verwendung als TM.

[0018] In die Mischzone können zur Konfektion verschiedene Zuschläge chargenweise oder kontinuierlich eingebracht werden. Solche Zuschläge können beispielsweise eine Zersetzung durch Wärme und/oder Lichteinwirkung beeinflussende Stabilisatoren, Feuerschutzmittel in Form von die Brenn- oder Entflammbarkeit hemmenden Zuschlägen, Plastifizierungsmittel bzw. Gleitmittel, strukturbildende Zusatzmittel, so genannte Nukleatoren, oder Farbmittel sein.

[0019] Als zur Zersetzung durch Wärme und/oder Lichteinwirkung beeinflussende Stabilisatoren können solche verwendet werden, die mit Polystyrol zusammenarbeiten. Solche geeignete Stabilisatoren sind beispielsweise Pentaerythritäther β-(3,5-Ditretbutyl-4-Hydroxyphenyl) der Propionsäure (Irganox 1010 der schweizerischen Firma Ciba Speciality Chem.), 2,4-Bis-(4-Oktiltio)-6-(4-Hydroxy-3,5-Ditretbutilanilin)- 1,3,5- Triazin (Irganox 565 der Firma Ciba Speciality Chem.), eine Mischung von Tris-(2,4-Ditretbutylphenyl) Phosphit und von Oktadezyl-3-(3',5"-Ditretbutyl-4'-Hydroxyphenyl) Propionat im Verhältnis von 4:1 (Irganox B-900 der Firma Ciba Speciality Chem.) oder vergleichbare Substanzen. [0020] Als die Brenn- oder Entflammbarkeit hemmende Feuerschutzmittel können halogenierte Kohlenwasserstoffe, wie etwa Tetrabrombisphenol A (BE51 der amerikanischen Firma Great Lakes), Hexabromzyklododekan (SD75 und

SD75R derselben Firma) oder vergleichbare Substanzen in die Mischzone eingebracht werden.

45 [0021] Als Plastifizierungsmittel bzw. Gleitmittel kann Wachs verschiedener Art eingesetzt werden.

[0022] Als strukturbildende Zusatzmittel bzw. Nukleatoren können beispielsweise Talk, Aluminiumoxid, Magnesiumhydroxid, Hydrozerol, ein Gemisch von Natriumhydrogenkarbonat und Zitronensäure und dergleichen eingeführt werden. [0023] Farbmittel, vorzugsweise in Form von fettlöslichen Farbstoffen und/oder Phthalozyaninfarbstoffen, können in Form von Konzentraten eingebracht werden.

[0024] Die Zusatzmittel bzw. Zuschläge werden in die Mischzone eingebracht und verteilen sich unter intensiver Schneidmischung gleichmäßig im geschmolzenen Polymer bzw. Polymerschmelz zusammen mit dem TM.

[0025] Die Düsen, durch welche aus dem Schmelzgut die Polymerstränge ausgepresst werden, weisen vorzugsweise Öffnungen mit einem Durchmesser von 0,7 bis 2,0 mm auf. Der Durchmesser der Öffnungen der Düsen wird vorzugsweise auf solche Weise eingestellt, dass das Granulat des EPS eine beinahe kugelförmige Form mit einem für einen bestimmten Anwendungszweck erforderlichen Durchmesser aufweist.

[0026] Die schockartige Abkühlung der Polymerstränge erfolgt vorzugsweise dadurch, dass die Polymerstränge in ein Wasserbad ausgepresst werden.

Ausführungsbeispiele der Erfindung

[0027] Nachfolgend ist das Verfahren anhand von Ausführungsbeispielen beschrieben. Das Verfahren ist jedoch nicht auf diese Ausführungsbeispiele beschränkt.

Beispiel 1

15

20

25

35

45

50

[0028] Schmelzgut eines Allzweck-Polystyrols, welches ein Verhältnis FZS/M $_{\rm w}$ von 0,8 10-5 (FZS=3,0 g/10 Minunten, M $_{\rm w}$ =375000) aufweist, wird mit einer Temperatur von 210° C und einer Geschwindigkeit Gp=1330 kg/Stunde in eine Kaskade stufenweise nacheinander angeordneter statischer Mischer gefördert. Gleichzeitig werden in dieselbe Kaskade ein Treibmittelfluss mit einer Geschwindigkeit G $_{\rm BA}$ =70 Kilo/Stunde sowie 0, 1 % Massenanteil Talk gefördert. Bei dem TM handelt es sich um Pentan. Das Verhältnis G $_{\rm p}$ /G $_{\rm BA}$ beträgt 19,0, der maximal mögliche Treibmittelfluss G $_{\rm BAmax}$ =98 Kilo/Stunde.

[0029] Die Temperatur während der intensiven Schneidmischung im ersten statischen Mischer beträgt

$$\left[200 + 56 \cdot \left(1 - \frac{G_{BAmoment.}}{G_{BA \max}}\right)\right] \circ C$$

[0030] Im zweiten und dritten Mischer werden folgende Temperaturen aufrechterhalten:

$$\left[175 + 70 \cdot \left(1 - \frac{G_{BAmoment.}}{G_{BA \max}}\right)\right] C$$
 im zweiten und

$$\left[150 + 70 \cdot \left(1 - \frac{G_{BA\,\text{moment.}}}{G_{BA\,\text{max}}}\right)\right] C$$
 im dritten statischen Mischer.

[0031] Dann wird das Gemisch in eine zweite Abkühlungsstufe gefördert, wo es bis auf eine Temperatur von 120° C abgekühlt wird.

[0032] Die Polymerstränge werden durch eine Düse mit Öffnungen mit einem Durchmesser von 0,7-0,9 mm in ein Wasserbad mit einer Wasserbad eignet sich beispielsweise Steigbrunnenwasser.

[0033] Das fertige Granulat mit einem Durchmesser von 0,7-0,9 mm und mit einem Pentangehalt von 5,0 % Masseanteil wird zur Vorschaumbildung weitergeleitet.

[0034] Bei der Wahl der Bedingungen der Vorschaumbildung ist maßgebend, welcher Bereich der Schüttdichte des Schaumerzeugnisses hergestellt werden soll.

[0035] Nach der Vorschaumbildung wird das Granulat unter Normalbedingungen für 24 Stunden ruhen gelassen.
[0036] Durch ein auch als Thermosinterung bezeichnetes Verfahren werden Probestücke aus Schaumpolystyrol mit einer Größe von (50±2) x (50±2) x (40±2) cm durch Warmformen hergestellt. Die Ergebnisse der an diesen Probestücken bestimmten Schüttdichte sind in der Tabelle weiter unten zusammengefasst.

Beispiel 2

[0037] Der Versuch wurde wie im Beispiel 1 durchgeführt, wobei jedoch Polystyrol mit einem Verhältnis FZS/M $_{\rm w}=1,93\cdot10^{-5}$ (FZS =5,6 g/10 Minuten, M $_{\rm w}$ =290000) verwendet wurde. In das Schmelzgut wurde neben einem Massenanteil von 1,0 % Pentan zusätzlich ein Massenanteil von 0,1 % Hexabromzyklododekan, ein Massenanteil von 0,05% eines Thermostabilisators Irganox B-900, ein Massenanteil von 0,05 % eines Farbmittels und ein Massenanteil von 0,1 % Talks eingebracht. Das Verhältnis G_p/G_{BA} beträgt 17,2. Bei dem Farbmittel handelt es sich um hellgrüne Phthalozyanin-pigmente.

[0038] Die Temperaturen in den statischen Mischern und die Ergebnisse der Versuche sind in der Tabelle weiter.

unten zusammengefasst.

Beispiel 3

[0039] Der Versuch wurde wie im Beispiel 2 durchgeführt, wobei jedoch ein Verhältnis FZS/M_w = 2,96·10⁻⁵ (FZS =7,4 g/10 Minuten, M_w =250000) gewählt wurde. Außerdem betrug das Verhältnis Gp /G_{BA} 14,4. Der Massenanteil von Pentan im fertigen EPS betrug 6,5 %.

[0040] Die Temperaturen in den statischen Mischern und die Ergebnisse der Versuche sind in der Tabelle weiter unten angeführt.

Beispiel 4

10

20

25

[0041] Der Versuch wurde wie im Beispiel 2 durchgeführt, wobei als Treibmittel ein Gemisch aus Pentan und Isopentan im Verhältnis 7:3 verwendet wurde. Außerdem wurde Polystyrol mit einem Verhältnis FZS $/M_w = 4,49\cdot10^{-5}$ (FZS =9,2 g/10 Minuten, $M_w = 205000$) verwendet. Das Verhältnis Gp $/G_{BA} = 13,4$ wurde beibehalten. Die Polymerstränge wurden durch eine Düse mit Öffnungen mit einem Durchmesser von 0,9-1,4 mm ausgepresst. Das so hergestellte Erzeugnis enthält einen Massenanteil von 6,9 % an Treibmittel. Bei der Verarbeitung ist eine doppelte Vorschaumbildung zulässig. [0042] Die Temperaturen in den statischen Mischern und die Ergebnisse der Versuche sind in der Tabelle weiter unten zusammengefasst.

Beispiel 5

[0043] Der Versuch wurde wie im Beispiel 2 durchgeführt, wobei ein Allzweck-Polystyrol mit einem Verhältnis FZS $M_{\rm w}=6,82\cdot10^{-5}$ (FZS =12,0 g/10 Minuten, $M_{\rm w}=176000$) verwendet wurde. Das Verhältnis Gp $G_{\rm BA}=15,1$ wurde aufrechterhalten. Die Polymerstränge wurden durch eine Düse mit Öffnungen mit einem Durchmesser von 0,9-1,4 mm ausgepresst. Das Erzeugnis enthält einen Massenanteil von 6,2 % Treibmittel.

[0044] Die Temperaturen in den statischen Mischern und die Ergebnisse der Versuche sind in der Tabelle weiter unten zusammengefasst.

30 Beispiel 6

[0045] Der Versuch wurde wie im Beispiel 4 durchgeführt, wobei Polystyrol mit FZS $/M_w = 12,0\cdot10^{-5}$ (FZS =18,0 g/10 Minuten, $M_w = 150000$) verwendet und ein Verhältnis Gp $/G_{BA} = 13,3$ aufrechterhalten wurde. Das Erzeugnis enthält einen Massenanteil von 7,0 % Treibmittel.

95 [0046] Die Temperaturen in den statischen Mischern und die Ergebnisse der Versuche sind in der Tabelle weiter unten angeführt.

Beispiel 7

40 [0047] Der Versuch wurde wie im Beispiel 4 durchgeführt, wobei Polystyrol mit FZS /M_w = 8,75·10⁻⁵ (FZS =14,0 g/10 Minuten, M_w = 160000) verwendet wurde. Ein Verhältnis Gp /G_{BA} = 14,4 wurde aufrechterhalten. Das Erzeugnis enthält einen Massenanteil von 6,5 % Treibmittel.

[0048] Die Temperaturen in den statischen Mischern und die Ergebnisse der Versuche sind in der Tabelle weiter unten zusammengefasst.

Beispiel 8

45

[0049] Der Versuch wurde wie im Beispiel 2 durchgeführt, wobei ein schlagfestes Polystyrol, welches einen Massenanteil von 6,5 % Butadienkautschuk enthält, verwendet wurde. M_w der Polystyrolmatrix ist 260000. FZS des Polymers beträgt 5,8 g/10 Minuten. Das Verhältnis FZS/M_w ist FZS/M_w = 2,23 10⁻⁵. Das Verhältnis Gp /G_{BA}= 14,4 wird aufrechterhalten. Das Erzeugnis enthält einen Massenanteil von 6,5 % Treibmittel.

[0050] Die Temperaturen in den statischen Mischern und die Ergebnisse der Versuche sind in der Tabelle weiter unten zusammengefasst.

55 Bedingungen während der Herstellung sowie Eigenschaften der fertigen Erzeugnisse

[0051]

Nr	FZS/Mw·10 ⁻⁵	G _p /G _{BA}	Temperatur °C, in den statischen Mischern			TM-Gehalt im Fertigerzeugnis,	Korngröße	Schüttdichte des
			im ersten	im zweiten	im dritten	% (massenmäßig)		Erzeugnisses, kg/m ³
1.	0,80	19,0	216	195	175	5,0	0,7-0,9	30-55
2.	1,93	17,2	212	190	165	5,5	0,7-0,9	25-45
3.	2,96	14,4	204,5	181	156	6,5	1,4-2,0	15-35
4.	4,49	13,4	201	176	151	6,9	0,9-1,4	12-25
5.	6,82	15,1	206	183	158	6,2	0,9-1,4	25-35
6.	12,0	13,3	200	175	150	7,0	1,4-2,0	15-25
7.	8,75	14,4	204,5.	181	156	6,5	0,9-1,4	16-35
8.	2,23	14,4	204,5	181	156	6,5	0,7-0,9	25-40

[0052] Wie aus der Tabelle ersichtlich, kann durch das erfindungsgemäße Verfahren Polystyrol mit einer molekularen Masse und einer Fließzahl bzw. Viskosität aus einem weiten Bereich zu einem expandierfähigen Erzeugnis verarbeitet werden. So kann auch schlagfestes Polystyrol verarbeitet werden. Außerdem ermöglicht das erfindungsgemäße Verfahren eine Herstellung von Erzeugnissen, welche in Abhängigkelt von den Bedingungen bei der Vorschaumbildung und beim Warmformen des Schaumpolystyrols einen weiten Bereich der Schüttdichte aufweist.

[0053] Die Erfindung kann in der chemischen Industrie, insbesondere bei der Herstellung von Polystyrolkunststoffen verwendet werden. Die Erfindung kann auch zur Herstellung von Schaumpolystyrolfür Bau- und Wärmeisolationszwecke, sowie zur Herstellung von Verpackungsmitteln verschiedener Gebrauchszwecke eingesetzt werden.

30 Patentansprüche

5

15

20

35

40

45

1. Verfahren zum Herstellen von expandierfähigem Styrolkunststoff-Granulat durch Zufuhr von geschmolzenem Polymer in einem Schmelzmaterialfluss und Zufuhr von Treibmittel in einem Treibmittelfluss in eine Mischzone, Dispergierung des Treibmittels im geschmolzenen Polymer unter intensiver Schneidmischung in einem ersten statischen Mischer, Halten des gebildeten Gemisches unter intensiver Schneidmischung in einem zweiten statischen Mischer, Abkühlung des Gemischs unter Mischen in einem dritten statischen Mischer bis zu einer Zwischentemperatur unter nachfolgender Abkühlung des Gemisches bis zu einer zur Granulatbildung erforderlichen Temperatur, sowie Auspressen von Polymerstränge unter schockartiger Abkühlung und damit einhergehender Granulation, dadurch gekennzeichnet,

dass ein Gewichtsverhältnis zwischen dem Schmelzmaterialfluss Gp und dem Treibmittelfluss G_{BA} in einem Bereich von 13 bis 19 eingehalten wird und die Temperatur im ersten statischen Mischer

$$\left[200 + 56 \cdot \left(1 - \frac{G_{BAmoment.}}{G_{BAmax}}\right)\right] C$$

im zweiten statischen Mischer

$$\left[175 + 70 \cdot \left(1 - \frac{G_{BAmoment.}}{G_{BA \max}}\right)\right] C$$

und im dritten statischen Mischer

$$\left[150 + 70 \cdot \left(1 - \frac{G_{BAmumeni.}}{G_{BAmax}}\right)\right] \circ C$$

beträgt, wobei

G_{BAmax} die Größe des maximal möglichen Treibmittelflusses und

G_{BAmomentan} die Größe des verwendeten Treibmittelflusses ist,

10

15

20

25

30

35

40

45

50

55

5

wobei ein Verhältnis der Fließzahl (FZS) des geschmolzenen Polymers zu seiner mittleren molekularen Masse (M_w) in einem Bereich von (0,8 bis 12,0)x 10⁻⁵ eingehalten wird.

2. Verfahren nach Anspruch 1,

dadurch gekennzeichnet,

dass als Styrolpolymer ein Homopolystyrol eingesetzt wird.

3. Verfahren nach Anspruch 1,

dadurch gekennzeichnet,

dass als Styrolpolymer ein schlagfestes Polystyrol verwendet ist.

4. Verfahren nach Anspruch 1,

dadurch gekennzeichnet,

dass als Treibmittel Pentan und/oder Isopentan und/oder Mischungen hieraus eingesetzt werden.

5. Verfahren nach einem der vorhergehenden Ansprüche,

dadurch gekennzeichnet,

dass zur Konfektion des expandierfähigen Styrolkunststoff-Granulats in die Mischzone Zuschläge chargenweise oder kontinuierlich eingebracht werden.

6. Verfahren nach Anspruch 5,

dadurch gekennzeichnet,

dass es sich bei den Zuschlägen um eine Zersetzung durch Wärme und/oder Lichteinwirkung beeinflussende Stabilisatoren und/oder Feuerschutzmittel in Form von die Brenn- oder Entflammbarkeit hemmenden Zuschlägen und/oder Plastifizierungsmittel bzw. Gleitmittel und/oder strukturbildende Zusatzmittel und/oder Farbmittel handelt.

7. Verfahren nach einem der vorhergehenden Ansprüche,

dadurch gekennzeichnet,

dass die Polymerstränge durch Düsen aus dem Schmelzgut ausgepresst werden, welche Öffnungen aufweisen, deren Durchmesser auf solche Weise eingestellt ist, dass das Granulat eine zumindest annähemd kugelförmige Form mit einem für einen bestimmten Anwendungszweck erforderlichen Durchmesser aufweist.

8. Verfahren nach Anspruch 7,

dadurch gekennzelchnet,

dass die Düsen Öffnungen mit einem Durchmesser von 0,7 bis 2,0 mm aufweisen.

9. Verfahren nach einem der vorhergehenden Ansprüche,

dadurch gekennzeichnet,

dass die schockartige Abkühlung der Polymerstränge dadurch erfolgt, dass die Polymerstränge in ein Wasserbad ausgepresst werden.

10. Verfahren nach einem der vorhergehenden Ansprüche,

dadurch gekennzeichnet,

dass die Abkühlung des Gemisches des dritten statischen Mischers bis zu einer zur Granulatbildung erforderlichen Temperatur in einer zweiten Abkühlungsstufe erfolgt, in welche das Gemisch aus dem dritten statischen Mischer gefördert wird.

11. Verfahren nach Anspruch 10,

dadurch gekennzeichnet, dass die zur Granulatbildung erforderliche Temperatur 110° - 130° C beträgt.

INTERNATIONAL SEARCH REPORT International application No. PCT/RU 2006/000075 CLASSIFICATION OF SUBJECT MATTER B29B 9/06 (2006.01) B29C 44/34 (2006.01) B29C 67/20 (2006.01) According to International Patent Classification (IPC) or to both national classification and IPC FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) B29B 9/06, 9/00, 9/02, 7/74, 7/58, 7/00, B29C 44/34, 44/00, 44/02, 44/38, 44/44, 44/50, 47/00, 47/64, 47/80, 67/20 Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) RUPAT, RUABRU, RUABEN, esp@cenet C. DOCUMENTS CONSIDERED TO BE RELEVANT Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. EP 0668139 A1 (SULZER CHEMTECH AG) 23.08.1995 1-4 RU 2151153 CI (ENIKEM S. p.A.) 20.06.2000 A 1-4 A US 3817669 A (THE DOW CHEMICAL COMPANY) 18.06.1974 Α EP 0445847 A2 (THE DOW CHEMICAL COMPANY) 11.09.1991 1-4 Α GB 1062307 (SHELL INTERNATIONALE RESEARCH MAATSCHAPPIJ N.V.) 22.03.1967 Α SU 1381126 A1 (NAUCHNO-PROIZVODSTVENNOE OBIEDINENIE "POLIMERBYT") 15.03. 1988 Further documents are listed in the continuation of Box C. See patent family annex. Special categories of cited documents: later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention document defining the general state of the art which is not considered to be of panicular relevance earlier application or patent but published on or after the international "X" filing date document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art document referring to an oral disclosure, use, exhibition or other means document published prior to the international filing date but later than "%" document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 23 May 2006 (23.05.2006) 25 May 2006 (25.05,2006) Name and mailing address of the ISA/ Anthorized officer Telephone No. Form PCT/ISA/210 (second sheet) (July 1998)

IN DER BESCHREIBUNG AUFGEFÜHRTE DOKUMENTE

Diese Liste der vom Anmelder aufgeführten Dokumente wurde ausschließlich zur Information des Lesers aufgenommen und ist nicht Bestandteil des europäischen Patentdokumentes. Sie wurde mit größter Sorgfalt zusammengesteilt; das EPA übernimmt jedoch keinerlei Haftung für etwaige Fehler oder Auslassungen.

In der Beschreibung aufgeführte Patentdokumente

- EP 0445847 A2 [0003]
- JP 491141 A [0005]
- US 5240967 A [0005]
- RU 2087486 C1 [0005]
- FR 2725995 A1 [0005]
- US 5616413 A [0005]

- DE 19548311 A1 [0005]
- DE 19642658 A1 [0005]
- FR 2820427 A1 [0005]
- US 5000801 A [0008]
- EP 0668139 A1 [0010]