Computer Graphics - Line & Polygon Clipping

Junjie Cao @ DLUT Spring 2017

http://jjcao.github.io/ComputerGraphics/

The Graphics Pipeline, Revisited

- Must eliminate objects that are outside of viewing frustum
- Clipping: object space (eye coordinates)
- Scissoring: image space (pixels in frame buffer)
 - most often less efficient than clipping
- We will first discuss 2D clipping (for simplicity)
 - OpenGL uses 3D clipping

2D Clipping Problem

Clipping Against a Frustum

General case of frustum (truncated pyramid)

Perspective Normalization

- Solution:
 - Implement perspective projection by perspective normalization and orthographic projection
 - Perspective normalization is a homogeneous transformation

Clipping Against Rectangle in 2D

• Line-segment clipping: modify endpoints of lines to lie within clipping

rectangle

• The result (in red)

Clipping Against Rectangle in 2D

- Could calculate intersections of line segments with clipping rectangle
 - expensive, due to floating point multiplications and divisions
- Want to minimize the number of multiplications
 and divisions

Several practical algorithms for clipping

- Main motivation:
 - Avoid expensive line-rectangle intersections (which require floating point divisions)
- Cohen-Sutherland Clipping
- Liang-Barsky Clipping
- There are many more (but many only work in 2D)

Cohen-Sutherland Clipping

Clipping rectangle is an intersection of 4 half-planes

- Encode results of four half-plane tests
- Generalizes to 3 dimensions (6 half-planes)

Outcodes (Cohen-Sutherland)

- Divide space into 9 regions
- 4-bit outcode determined by comparisons (TBRL)

Cases for Outcodes

Outcomes: accept, reject, subdivide

Cohen-Sutherland Subdivision

- Pick outside endpoint (o ≠ 0000)
- Pick a crossed edge (o = b0b1b2b3 and bk ≠ 0)
- Compute intersection of this line and this edge
- Replace endpoint with intersection point
- Restart with new line segment
 - Outcodes of second point are unchanged
- This algorithms converges

Cohen-Sutherland Line-Clipping

Clip order: Left, Right, Bottom, Top

Cohen-Sutherland Line-Clipping

- Will do unnecessary clipping.
- Not the most efficient.

- Clipping and testing are done in fixed order.
- Efficient when most of the lines to be clipped are either rejected or accepted (not so many subdivisions).
- Easy to program.
- Parametric clipping are more efficient.

Parametric form - Liang-Barsky Clipping

A line segment with endpoints

$$(x_0, y_0)$$
 and (x_{end}, y_{end})

we can describe in the parametric form

$$x = x_0 + u\Delta x$$

$$y = x_0 + u\Delta y$$
 $0 \le u \le 1$

where

$$\Delta x = x_{end} - x_0$$
$$\Delta y = y_{end} - y_0$$

More efficient than Cohen-Sutherland

A line is inside the clipping region for values of u such that:

$$xw_{\min} \le x_0 + u\Delta x \le xw_{\max} \qquad \Delta x = x_{\text{end}} - x_0$$

$$yw_{\min} \le y_0 + u\Delta y \le yw_{\max} \qquad \Delta y = y_{\text{end}} - y_0$$

Can be described as

$$u p_k \le q_k$$
, $k = 1, 2, 3, 4$

The infinitely line intersects the clip region edges when:

$$u_k = \frac{q_k}{p_k}$$
 where $p_1 = -\Delta x$ $q_1 = x_0 - xw_{\min}$ Left boundary $q_1 = x_0 - xw_{\min}$ Right boundary $q_2 = xw_{\max} - x_0$ Right boundary $q_3 = -\Delta y$ $q_3 = y_0 - yw_{\min}$ Bottom boundary $q_4 = \Delta y$ $q_4 = yw_{\max} - y_0$ Top boundary

- When p_k < 0, as u increases
 - line goes from outside to inside entering
- When $p_k > 0$,
 - line goes from inside to outside exiting
- When $p_k = 0$,
 - line is parallel to an edge
- If there is a segment of the line inside the clip region, a sequence of infinite line intersections must go: entering, entering, exiting, exiting

- 1. Set $u_{min} = 0$ and $u_{max} = 1$.
- 2. Calculate the u values:
- If u < u_{min} or u > u_{max} ignore it.
 Otherwise classify the u values as entering or exiting.
- 4. If $u_{min} < u_{max}$ then draw a line from:

$$(x_0 + \Delta x \cdot u_{min}, y_0 + \Delta y \cdot u_{min})$$
 to
 $(x_0 + \Delta x \cdot u_{max}, y_0 + \Delta y \cdot u_{max})$

Example Liang-Barsky

$$u_{left} = \frac{q_1}{p_1} = \frac{x_0 - xw_{min}}{-\Delta x} = \frac{-5 - 0}{-(15 - (-5))} = \frac{1}{4}$$
 Entering $u_{min} = 1/4$

$$u_{right} = \frac{q_2}{p_2} = \frac{xw_{max} - x_0}{\Delta x} = \frac{10 - (-5)}{15 - (-5)} = \frac{3}{4}$$
 Exiting $u_{max} = 3/4$

$$u_{bottom} = \frac{q_3}{p_3} = \frac{y_0 - yw_{min}}{-\Delta y} = \frac{3 - 0}{-(9 - 3)} = -\frac{1}{2}$$
 u < 0 then ignore

$$u_{top} = \frac{q_4}{p_4} = \frac{yw_{max} - y_0}{\Delta y} = \frac{10 - 3}{9 - 3} = \frac{7}{6}$$

u > 1 then ignore

• We have $u_{min} = 1/4$ and $u_{max} = 3/4$

$$P_{\text{end}} - P_0 = (15+5,9-3) = (20,6)$$

 $\Delta x \Delta y$

- If u_{min} < u_{max}, there is a line segment
 - compute endpoints by substituting u values
- Draw a line from

$$(-5+(20)\cdot(1/4), 3+(6)\cdot(1/4))$$

to

$$(-5+(20)\cdot(3/4), 3+(6)\cdot(3/4))$$

Example **Liang-Barsky**

$$P_{end}(2,14)$$
 $P_{end}(2,14)$
 $P_{o}(-8,2)$
 $P_{o}(-8,2)$
 $0,0$
 $10,0$

$$u_{left} = \frac{q_1}{p_1} = \frac{x_0 - xw_{min}}{-\Delta x} = \frac{-8 - 0}{-(2 - (-8))} = \frac{4}{5}$$
 Entering $u_{min} = 4/5$

Entering
$$\square$$
 $u_{min} = 4/5$

$$u_{right} = \frac{q_2}{p_2} = \frac{xw_{max} - x_0}{\Delta x} = \frac{10 - (-8)}{2 - (-8)} = \frac{9}{5}$$
 $u > 1$ then ignore

$$u > 1$$
 then ignore

$$u_{bottom} = \frac{q_3}{p_3} = \frac{y_0 - yw_{min}}{-\Delta y} = \frac{2 - 0}{-(14 - 2)} = -\frac{1}{6}$$
 $u < 0$ then ignore

$$u < 0$$
 then ignore

$$u_{top} = \frac{q_4}{p_4} = \frac{yw_{max} - y_0}{\Delta y} = \frac{10 - 2}{14 - 2} = \frac{2}{3}$$
 Exiting $\Longrightarrow u_{max} = 2/3$

Exiting
$$\square \Rightarrow u_{\text{max}} = 2/3$$

• We have $u_{min} = 4/5$ and $u_{max} = 2/3$

$$P_{end} - P_0 = (2+8, 14-2) = (10, 12)$$

u_{min} > u_{max} ,
 there is no line segment do draw

Line-Segment Clipping Assessment

- Cohen-Sutherland
 - Works well if many lines can be rejected early
 - Recursive structure (multiple subdivisions) is a drawback
- Liang-Barsky
 - Avoids recursive calls
 - Many cases to consider (tedious, but not expensive)
 - In general much faster than Cohen-Sutherland

Outline

- Line-Segment Clipping
 - Cohen-Sutherland
 - Liang-Barsky
- Polygon Clipping
 - Sutherland-Hodgeman
 - Weiler-Atherton

Clipping in Three Dimensions

Polygon Clipping

- Convert a polygon into one or more polygons
- Their union is intersection with clip window
- Alternatively, we can first tesselate concave polygons (OpenGL supported)

Concave Polygons

- Approach 1: clip, and then join pieces to a single polygon
 - often difficult to manage

- Approach 2: tesselate and clip triangles
 - this is the common solution

Sutherland-Hodgeman (part 1)

- Subproblem:
 - Input: polygon (vertex list) and single clip plane
 - Output: new (clipped) polygon (vertex list)
- Apply once for each clip plane
 - 4 in two dimensions
 - 6 in three dimensions
 - Can arrange in pipeline

Sutherland-Hodgeman (part 2)

- To clip vertex list (polygon) against a half-plane:
 - Test first vertex. Output if inside, otherwise skip.
 - Then loop through list, testing transitions
 - In-to-in: output vertex
 - In-to-out: output intersection
 - out-to-in: output intersection and vertex
 - out-to-out: no output
 - Will output clipped polygon as vertex list

- Concave polygons may be displayed with extra lines => need some cleanup
- Can combine with Liang-Barsky idea

Weiler-Atherton Polygon Clipping

Clips concave polygons correctly.

 Instead of always going around the polygon edges, we also, want to follow window boundaries.

For an outside-to-inside pair of vertices, follow the polygon boundary.

• For an inside-to-outside pair of vertices, follow the window boundary in a clockwise direction.

Other Cases and Optimizations`

- Curves and surfaces
 - Do it analytically if possible
 - Otherwise, approximate curves / surfaces by lines and polygons
- Bounding boxes
 - Easy to calculate and maintain
 - Sometimes big savings

Outline

- Line-Segment Clipping
 - Cohen-Sutherland
 - Liang-Barsky
- Polygon Clipping
 - Sutherland-Hodgeman
 - Weiler-Atherton

Clipping in Three Dimensions

Clipping Against Cube

- Derived from earlier algorithms
- Can allow right parallelepiped

Cohen-Sutherland in 3D

Use 6 bits in outcode

- b4: Z > Zmax

- b5: Z < Zmin

 Other calculations as before

Liang-Barsky in 3D

- Add equation $z(\alpha) = (1 \alpha)z_1 + \alpha z_2$
- Solve, for p₀ in plane and normal n:

$$p(\alpha) = (1 - \alpha)p_1 + \alpha p_2$$
$$n \cdot (p(\alpha) - p_0) = 0$$

Yields

$$\alpha = \frac{n \cdot (p_0 - p_1)}{n \cdot (p_2 - p_1)}$$

Optimizations as for Liang-Barsky in 2D

Summary: Clipping

- Clipping line segments to rectangle or cube
 - Avoid expensive multiplications and divisions
 - Cohen-Sutherland or Liang-Barsky
- Polygon clipping
 - Sutherland-Hodgeman pipeline
- Clipping in 3D
 - essentially extensions of 2D algorithms