Mathematical Logic Homework 05

Qiu Yihang

Dec.2-5, 2022

1 Provability in Sentential Logic

1.1 $(A \wedge B) \vee (\neg A \vee \neg B)$ is Provable

Proof. We can construct the following proof tree.

$$\underbrace{\frac{[A] \quad [B]}{A \wedge B} \wedge \text{-I}}_{\{A \vee \neg A\}} \quad \underbrace{\frac{[\neg B]}{\neg A \vee \neg B} \vee \text{-I2}}_{\{A \wedge B\} \vee (\neg A \vee \neg B)} \quad \forall \text{-I2} \quad \underbrace{\frac{[\neg A]}{\neg A \vee \neg B} \vee \text{-I1}}_{\neg A \vee \neg B} \quad \forall \text{-I2} \quad \underbrace{\frac{[\neg A]}{\neg A \vee \neg B} \vee \text{-I1}}_{\neg A \vee \neg B} \quad \forall \text{-I2} \quad \underbrace{\frac{[\neg A]}{\neg A \vee \neg B} \vee \text{-I1}}_{(A \wedge B) \vee (\neg A \vee \neg B)} \quad \forall \text{-I2} \quad \underbrace{(A \wedge B) \vee (\neg A \vee \neg B)}_{\forall \neg A \vee \neg B} \quad \forall \text{-I2} \quad \underbrace{(A \wedge B) \vee (\neg A \vee \neg B)}_{\forall \neg A \vee \neg B} \quad \forall \text{-I2} \quad \underbrace{(A \wedge B) \vee (\neg A \vee \neg B)}_{\forall \neg A \vee \neg B} \quad \forall \text{-I2} \quad \underbrace{(A \wedge B) \vee (\neg A \vee \neg B)}_{\forall \neg A \vee \neg B} \quad \forall \text{-I2} \quad \underbrace{(A \wedge B) \vee (\neg A \vee \neg B)}_{\forall \neg A \vee \neg B} \quad \forall \text{-I2} \quad \underbrace{(A \wedge B) \vee (\neg A \vee \neg B)}_{\forall \neg A \vee \neg B} \quad \forall \text{-I2} \quad \underbrace{(A \wedge B) \vee (\neg A \vee \neg B)}_{\forall \neg A \vee \neg B} \quad \forall \text{-I2} \quad \underbrace{(A \wedge B) \vee (\neg A \vee \neg B)}_{\forall \neg A \vee \neg B} \quad \forall \text{-I2} \quad \underbrace{(A \wedge B) \vee (\neg A \vee \neg B)}_{\forall \neg A \vee \neg B} \quad \forall \text{-I2} \quad \underbrace{(A \wedge B) \vee (\neg A \vee \neg B)}_{\forall \neg A \vee \neg B} \quad \forall \text{-I2} \quad \underbrace{(A \wedge B) \vee (\neg A \vee \neg B)}_{\forall \neg A \vee \neg B} \quad \forall \text{-I2} \quad \underbrace{(A \wedge B) \vee (\neg A \vee \neg B)}_{\forall \neg A \vee \neg B} \quad \forall \text{-I2} \quad \underbrace{(A \wedge B) \vee (\neg A \vee \neg B)}_{\forall \neg A \vee \neg B} \quad \forall \text{-I2} \quad \underbrace{(A \wedge B) \vee (\neg A \vee \neg B)}_{\forall \neg A \vee \neg B} \quad \forall \text{-I2} \quad \underbrace{(A \wedge B) \vee (\neg A \vee \neg B)}_{\forall \neg A \vee \neg B} \quad \forall \text{-I2} \quad \underbrace{(A \wedge B) \vee (\neg A \vee \neg B)}_{\forall \neg A \vee \neg B} \quad \forall \text{-I2} \quad \underbrace{(A \wedge B) \vee (\neg A \vee \neg B)}_{\forall \neg A \vee \neg B} \quad \underbrace{(A \wedge B) \vee (\neg A \vee \neg B)}_{\forall \neg A \vee \neg B} \quad \underbrace{(A \wedge B) \vee (\neg A \vee \neg B)}_{\forall \neg A \vee \neg B} \quad \underbrace{(A \wedge B) \vee (\neg A \vee \neg B)}_{\forall \neg A \vee \neg B} \quad \underbrace{(A \wedge B) \vee (\neg A \vee \neg B)}_{\forall \neg A \vee \neg B} \quad \underbrace{(A \wedge B) \vee (\neg A \vee \neg B)}_{\forall \neg A \vee \neg B} \quad \underbrace{(A \wedge B) \vee (\neg A \vee \neg B)}_{\forall \neg A \vee \neg B} \quad \underbrace{(A \wedge B) \vee (\neg A \vee \neg B)}_{\forall \neg A \vee \neg B} \quad \underbrace{(A \wedge B) \vee (\neg A \vee \neg B)}_{\forall \neg A \vee \neg B} \quad \underbrace{(A \wedge B) \vee (\neg A \vee \neg B)}_{\forall \neg A \vee \neg B} \quad \underbrace{(A \wedge B) \vee (\neg A \vee \neg B)}_{\forall \neg A \vee \neg B} \quad \underbrace{(A \wedge B) \vee (\neg A \vee \neg B)}_{\forall \neg A \vee \neg B} \quad \underbrace{(A \wedge B) \vee (\neg A \vee \neg B)}_{\forall \neg A \vee \neg B} \quad \underbrace{(A \wedge B) \vee (\neg A \vee \neg B)}_{\forall \neg A \vee \neg B} \quad \underbrace{(A \wedge B) \vee (\neg A \vee \neg B)}_{\forall \neg A \vee \neg B} \quad \underbrace{(A \wedge B) \vee (\neg A \vee \neg B)}_{\forall \neg A \vee \neg B} \quad \underbrace{(A \wedge B) \vee (\neg A \vee \neg B)}_{\forall \neg A \vee \neg B} \quad \underbrace{(A \wedge B) \vee (\neg A \vee \neg B)}_{\forall \neg A \vee \neg B} \quad \underbrace{(A \wedge B) \vee (\neg A \vee \neg B)}_{\forall \neg A \vee \neg B} \quad \underbrace{(A \wedge B) \vee (\neg A \vee \neg B)}_{\forall \neg A \vee \neg B} \quad \underbrace{(A \wedge B) \vee (\neg A \vee \neg B)}_{\forall \neg A \vee \neg B} \quad \underbrace{(A \wedge B) \vee (\neg A \vee \neg B)}_{\forall \neg A \vee \neg B} \quad \underbrace{(A \wedge B) \vee ($$

Thus, exists a proof tree of $(A \wedge B) \vee (\neg A \vee \neg B)$ without any undischarged assumptions.

i.e.
$$\vdash (A \land B) \lor (\neg A \lor \neg B)$$
,

i.e.
$$(A \wedge B) \vee (\neg A \vee \neg B)$$
 is provable.

1.2 $(A \wedge B) \vee (\neg A \wedge \neg B)$ is Not Provable

Proof. The truth table of $(A \wedge B) \vee (\neg A \wedge \neg B)$ is as follows.

B	$(A \land B) \lor (\neg A \land \neg B)$
True	True
False	False
True	False
False	True
	True False True

Therefore, $\nvDash (A \land B) \lor (\neg A \land \neg B)$.

By Soundness Thm., for any wff $\alpha, \vdash \alpha \Longrightarrow \vdash \alpha$, i.e. $\nvDash \alpha \Longrightarrow \nvdash \alpha$.

Therefore, $(A \wedge B) \vee (\neg A \wedge \neg B)$ is not provable.

2 Translation into wffs in First-Order Logic

2.1 There is No Such A Set that Every Set is Its Member

Solution. There is no such a set that every set is its member.

 $(\neg \text{ there is such a set that every set is its member}).$

 $(\neg \exists x \text{ such that every set is its member}).$

 $(\neg \exists x \forall y, y \text{ is a member of } x).$

 $(\neg \exists x \ \forall y \quad y \in x).$

2.2 Problem 2.2

Solution. Every farmer who owns a donkey needs hay, and every farmer who owns a donkey beats it.

(Every farmer who owns a donkey needs hay ∧ every farmer who owns a donkey beats it)

 $(\forall x \ (x \text{ is a farmer and owns a donkey} \to x \text{ needs hay}) \land \forall x \ (x \text{ is a farmer and owns a donkey})$

 $(\forall x \ ((F \ x \land \exists y, y \text{ is a donkey and } x \text{ owns } y) \rightarrow H \ x)) \land (\forall x \ ((F \ x \land \exists y, y \text{ is a donkey and } x \text{ owns } y) \rightarrow x \text{ beats } y))$

$$(\forall x \ ((F \ x \land \exists y \ (D \ y \ \land \ O \ x \ y)) \rightarrow H \ x) \land (\forall x \ (F \ x \land \exists y \ (D \ y \ \land \ O \ x \ y)) \rightarrow B \ x \ y)) \blacksquare$$

3 Variables Occurring Free

Solution.

free
$$\frac{\forall y \ (Pxy \to \forall x \ Px \ y)}{x \cdot y} = \frac{\forall x \ (Qy \to \exists y \ Px \ z)}{x \cdot z}$$

$$\frac{x \cdot y}{x \cdot y \cdot z}$$

$$\frac{x \cdot y \cdot z}{y \cdot z}$$

Thus, variables occurring free in each wff are as follows.

wff	variables occurring free
$\forall y \ (P \ x \ y \to \forall x \ P \ x \ y)$	x
$\forall x (Qx \to \exists y \ P \ x \ z)$	y, z
$(\neg \exists y \ R(f \ y \ z)) \land (\forall x \forall y \ R(f \ y \ z))$	z

4 Problem 4

$4.1 \models_{\mathfrak{N}} \exists v_0, \ v_0 \dot{+} v_0 \dot{=} v_1[s]$

Solution. There exists an assignment $s(v_0|1)$ s.t. $\overline{s(v_0|1)}(v_0) + \overline{s(v_0|1)}(v_0) = 1 + 1 = \overline{s(v_0|1)}(v_1) = 2$, i.e. $\models_{\mathfrak{A}} v_0 \dotplus v_0 \doteq v_1[s(v_0|1)]$.

Thus, $\vDash_{\mathfrak{N}} \exists v_0, \ v_0 \dot{+} v_0 \dot{=} v_1[s].$

$4.2 \not\vDash_{\mathfrak{N}} \exists v_0, \ v_0 \dot{\times} v_0 \dot{=} v_1[s]$

Solution. Assume $\vDash_{\mathfrak{N}} \exists v_0, \ v_0 \dot{\times} v_0 \dot{=} v_1[s]$.

Then Exists an assignment $s(v_0|a)$ s.t. $\overline{s(v_0|a)}(v_0) \times \overline{s(v_0|a)}(v_0) = \overline{s(v_0|a)}(v_1) = a \times a = 2$,

i.e. $a = \sqrt{2} \notin |\mathfrak{N}| = \mathbb{N}$. Contradiction.

Thus, $\nvDash_{\mathfrak{N}} \exists v_0, \ v_0 \dot{\times} v_0 \dot{=} v_1[s].$

$4.3 \models_{\mathfrak{N}} \forall v_0 \exists v_1 \ v_0 \doteq v_1[s]$

Solution. For any $a \in |\mathfrak{N}| = \mathbb{N}$, exists an assignment $s(v_0|a)(v_1|b)$ where b = a

s.t.
$$\overline{s(v_0|a)(v_1|b)}(v_0) = \overline{s(v_0|a)(v_1|b)}(v_1) = a$$
.

i.e. for any $a \in |\mathfrak{N}| = \mathbb{N}$, exists b = a s.t. $\models_{\mathfrak{A}} v_0 \doteq v_1[s(v_0|a)(v_1|b)]$.

i.e. for any $a \in |\mathfrak{N}| = \mathbb{N}, \models_{\mathfrak{A}} \exists v_1 \ v_0 \doteq v_1[s(v_0|a)].$

Thus, $\vDash_{\mathfrak{N}} \forall v_0 \exists v_1 \ v_0 \doteq v_1[s]$.

$4.4 \quad \vDash_{\mathfrak{N}} \forall v_0 \forall v_1 \ v_0 \dotplus \dot{1} \dot{<} v_1 \rightarrow \exists v_2 \ v_0 \dot{<} v_2 \land v_2 \dot{<} v_1[s]$

Solution. For any $a, b \in |\mathfrak{N}| = \mathbb{N}$,

CASE 1. When a+1 < b. In this case, $\models_{\mathfrak{A}} v_0 \dotplus \dot{1} \dot{<} v_1 [s(v_0|a)(v_1|b)]$.

There exists an assignment $\hat{s} = s(v_0|a)(v_1|b)(v_2|c)$ where c = a + 1

s.t.
$$\models_{\mathfrak{A}} v_0 \dot{<} v_2 \wedge v_2 \dot{<} v_1 [\hat{s}].$$

CASE 2. When $a+1 \ge b$. In this case, $\nvDash_{\mathfrak{A}} v_0 \dotplus \dot{1} \dot{<} v_1 [s(v_0|a)(v_1|b)]$.

Thus, for any $a, b \in |\mathfrak{N}| = \mathbb{N}$, we have

$$\models_{\mathfrak{A}} v_0 \dotplus \dot{1} \dot{<} v_1 [s(v_0|a)(v_1|b)] \Longrightarrow \models_{\mathfrak{A}} \exists v_2 \ v_0 \dot{<} v_2 \land v_2 \dot{<} v_1 [s(v_0|a)(v_1|b)]$$

i.e. for any $a, b \in |\mathfrak{N}| = \mathbb{N}, \models_{\mathfrak{A}} v_0 + \dot{1} < v_1 \to \exists v_2 \ v_0 < v_2 \land v_2 < v_1 [s(v_0|a)(v_1|b)].$

Therefore, $\vDash_{\mathfrak{N}} \forall v_0 \forall v_1 \ v_0 \dotplus \dot{1} \dot{<} v_1 \rightarrow \exists v_2 \ v_0 \dot{<} v_2 \land v_2 \dot{<} v_1[s].$

$4.5 \not\vDash_{\mathfrak{N}} \forall v_0 \forall v_1 \ v_0 \dot{<} v_2 \land v_2 \dot{<} v_1[s]$

Solution. Exists $a = 80 \in |\mathfrak{N}| = \mathbb{N}, \ b = 1 \in |\mathfrak{N}| = \mathbb{N}$

s.t.
$$\overline{s(v_0|a)(v_1|b)}(v_0) = 80 \ge \overline{s(v_0|a)(v_1|b)}(v_2) = 4$$
 and $\overline{s(v_0|a)(v_1|b)}(v_2) = 4 \ge \overline{s(v_0|a)(v_1|b)}(v_1) = 1$.

i.e. $\nvDash_{\mathfrak{A}} v_0 \dot{<} v_2 \wedge v_2 \dot{<} v_1 [s(v_0|a)(v_1|b)].$

Thus, $\nvDash_{\mathfrak{N}} \forall v_0 \forall v_1 \ v_0 \dot{<} v_2 \wedge v_2 \dot{<} v_1[s].$

5 $\models_{\mathfrak{A}} (\alpha \to \forall x \ \alpha) [s]$ If x Does Not Occur Free In α

Proof. Recall the following theorem.

Thm. Let \mathfrak{A} be a structure for \mathbb{L} , s_1 and s_2 be two assignments for \mathfrak{A} and ϕ be a wff for \mathbb{L} . If $s_1(y) = s_2(y)$ for every y that occurs free in ϕ , then

$$\models_{\mathfrak{A}} \phi[s_1] \iff \models_{\mathfrak{A}} \phi[s_2]$$

The proof of the proposition that $\vDash_{\mathfrak{A}} (\alpha \to \forall x \ \alpha)[s]$ if x does not occur free in α is as follows.

Since x does not occur free in α , we know for any $a \in |\mathfrak{A}|$, s(x|a)(y) = s(y) for any variable y occurring free in α (since $y \neq x$).

Thus, by **Theorem**, we have $\vDash_{\mathfrak{A}} \alpha[s] \iff \vDash_{\mathfrak{A}} \alpha[s(x|a)]$ for any $a \in |\mathfrak{A}|$.

Thus, when $\vDash_{\mathfrak{A}} \alpha[s]$, we have $\vDash_{\mathfrak{A}} \alpha[s(x|a)]$ for any $a \in |\mathfrak{A}|$.

i.e. When $\vDash_{\mathfrak{A}} \alpha[s]$, we have $\vDash_{\mathfrak{A}} \forall x \ \alpha[s]$.

Therefore, $\vDash_{\mathfrak{A}} (\alpha \to \forall x \ \alpha) [s].$

6 Sufficient and Necessary Condition for Monoid

Solution. The sentence σ should be

$$(\forall x \ (x \circ \dot{e} \doteq x \land \dot{e} \circ x \doteq x) \land \forall x \forall y \forall z \ (x \circ y) \circ z \doteq x \circ (y \circ z))$$

Now we prove that for any structure \mathfrak{A} , $|\mathfrak{A}|$ is a monoid with $\dot{e}^{\mathfrak{A}}$ as the identity and $\dot{\circ}^{\mathfrak{A}}$ as the associative operator <u>iff.</u> $\models_{\mathfrak{A}} \sigma$.

Sufficiency. Suppose $\vDash_{\mathfrak{A}} \sigma$.

Then
$$\vDash_{\mathfrak{A}} \forall x \ (x \circ \dot{e} \doteq x \wedge \dot{e} \circ x \doteq x)$$
 and $\vDash_{\mathfrak{A}} \forall x \forall y \forall z \ (x \circ y) \circ z \doteq x \circ (y \circ z)$. i.e. for any $a \in |\mathfrak{A}|, \ a \circ e = e \circ a = a$.

For any
$$a, b, c \in |\mathfrak{A}|, (a \circ b) \circ c \doteq a \circ (b \circ c).$$

Thus, $|\mathfrak{A}|$ is a monoid with $\dot{e}^{\mathfrak{A}}$ as the identity and $\dot{\circ}^{\mathfrak{A}}$ as the associative operator.

Necessity. Assume $|\mathfrak{A}|$ is a monoid with $\dot{e}^{\mathfrak{A}}$ as the identity and $\dot{\circ}^{\mathfrak{A}}$ as the associative operator.

Then for any
$$a \in |\mathfrak{A}|$$
, $a \circ e = e \circ a = a$.

For any
$$a, b, c \in |\mathfrak{A}|$$
, $(a \circ b) \circ c \doteq a \circ (b \circ c)$.

Since $\overline{s(w|d)}(w) = d$ for any assignment s for $\mathfrak A$ and any $d \in |\mathfrak A|$, we know

For any assignment s for \mathfrak{A} and any $a \in |\mathfrak{A}|$,

$$\models_{\mathfrak{A}} (x \circ \dot{e} \doteq x \land \dot{e} \circ x \doteq x)[s(x|a)].$$

For any assignment s for \mathfrak{A} and any $a, b, c \in |\mathfrak{A}|$,

$$\vDash_{\mathfrak{A}} (x \circ y) \circ z \doteq x \circ (y \circ z) [s(x|a)(y|b)(z|c)].$$

i.e. for any assignment s for \mathfrak{A} ,

$$\vDash_{\mathfrak{A}} \forall x \ (x \circ \dot{e} \doteq x \land \dot{e} \circ x \doteq x)[s] \text{ and } \vDash_{\mathfrak{A}} \forall x \forall y \forall z \ (x \circ y) \circ z \doteq x \circ (y \circ z)[s].$$

i.e. for any assignment s for \mathfrak{A} ,

$$\models_{\mathfrak{A}} \forall x \ (x \circ \dot{e} \doteq x \land \dot{e} \circ x \doteq x) \land \models_{\mathfrak{A}} \forall x \forall y \forall z \ (x \circ y) \circ z \doteq x \circ (y \circ z) [s].$$

i.e.
$$\vDash_{\mathfrak{A}} \forall x \ (x \circ \dot{e} \doteq x \land \dot{e} \circ x \doteq x) \land \vDash_{\mathfrak{A}} \forall x \forall y \forall z \ (x \circ y) \circ z \doteq x \circ (y \circ z).$$

i.e.
$$\vdash_{\mathfrak{A}} \sigma$$
.

In conclusion, for any structure \mathfrak{A} , $|\mathfrak{A}|$ is a monoid with $\dot{e}^{\mathfrak{A}}$ as the identity and $\dot{\circ}^{\mathfrak{A}}$ as the associative operator iff. $\models_{\mathfrak{A}} \sigma$.