Упражнение 7 - Задачи, решения

EK, MC

07.04.2021

1 Условия на задачите от Упражнение 7

Пример 1.1. Нека $X \in G(p)$ е с теглова функция:

a)
$$k \mapsto (1-p)^k p, \ k = 0, 1, ...;$$

$$6) \ k \longmapsto (1-p)^{k-1}p, \ k=1,2,\dots$$

Да се докаже, че $\mathbf{E}X=\frac{1-p}{p},\ \mathbf{D}X=\frac{1-p}{p^2}$ за подточка а); $\mathbf{E}X=\frac{1}{p},\ \mathbf{D}X=\frac{1-p}{p^2}$ за подточка б).

Пример 1.2. (Многомерно хипергеометрично разпределение): Нека $n, k, m_1, m_2, \ldots, m_k, N$ са естествени числа. Дадени са N обекта, като точно m_1 от тях имат свойство P_1 , точно m_2 от тях имат свойство $P_2, \ldots,$ точно m_k от тях имат свойство P_k , като $m_1 + \cdots + m_k = N$ и всеки обект има точно едно свойство. Избираме произволни n обекта измежду дадените N. Вероятността на събитието - точно s_1 измежду избраните n имат свойство P_1 , точно s_2 имат свойство $P_2, \ldots,$ точно s_k имат свойство P_k , като $s_1 + \cdots + s_k = n$ - e равна на

$$\frac{\binom{m_1}{s_1}\binom{m_2}{s_2}\cdots\binom{m_k}{s_k}}{\binom{N}{n}}.$$

Задача 1 Хвърлят се два зара. Нека случайната величина X е сумата от падналите се точки. Да се намери разпределението, очакването и дисперсията на X, ако заровете са:

- а) правилни:
- б) неправилни с $\mathbf{P}(1) = \mathbf{P}(6) = 1/4$, $\mathbf{P}(2) = \mathbf{P}(3) = \mathbf{P}(4) = \mathbf{P}(5) = 1/8$.

Ще бъде ли необичайно, ако при хвърлянето на 1000 зара сумата е била повече от 3700?

Задача 2 От урна съдържаща 5 бели и 3 черни топки се избират последователно, една по една топки докато се появи бяла. Да се намери разпределението на случайната величина - "брой на изтеглените черни топки" и да се пресметне математическото очакване и дисперсията и, при извадка:

- а) без връщане;
- б) с връщане.

Опитът се повтаря 1000 пъти. Да се оцени вероятността да са извадени повече от 900 черни топки.

Задача 3 Вероятността за улучване на цел при един изстрел е 0,001. За поразяване на са необходими поне две попадения. Каква е вероятността за поразяване на целта, ако са направени 5000 изстрела?

Задача 4 В кутия има 7 лампи от които 3 са дефектни. По случаен начин се избират за проверка 4 лампи. Да се намери разпределението на случайната величина "брой на изпробваните качествени лампи" и да се пресметне нейното очакване.

Задача 5 В Патагония на месец се регистрират средно две слаби земетресения. Каква е вероятността за три месеца да има по-малко от четири слаби земетресения?

Задача 6 80% от принтерите за домашна употреба работят добре при инсталирането им, а останалите имат нужда от допълнителни настройки. Фирма продава 10 принтера за една седмица. Намерете вероятността поне 9 от тях да работят без нужда от допълнителни настройки. Каква е съответната вероятност това да се случи за пет поредни месеца? Каква е вероятността, първата седмица за която това не се случва да е точно 21-та?

Задача 7 Двама умници стрелят по мишена. Първият улучва с вероятност 0.2, а вторият с вероятност 0.3. Умниците стрелят едновременно, ако никой не улучи - стрелят пак. Да се пресметне вероятността първия да улучи, а втория не. Какъв е средния брой изстрели необходими за уцелване на мишената?

Задача 8 А и В играят последователно партии, А печели една партия с вероятност 2/3, а В с вероятност 1/3. Равни партии не са възможни. Играта продължава докато някой спечели две последователни партии. Нека X е случайната величина "брой на изиграните парти". Да се определи разпределението и математическото очакване на X.

Задача 9 В урна има 5 бели, 7 зелени и 3 червени топки. На всеки опит вадим от урната едновременно две топки, записваме цвета им, след което връщаме топките обратно в урната. Дефинираме събитие $A = \{$ Изтеглени са една бяла и една зелена топка $\}$.

- а) Да се определи вероятността на A при извършване на един опит. Каква е вероятността на A, ако топките се вадят последователно, без връщане?
- б) Нека X е броят на сбъдванията на събитието A при провеждане на 5 опита. Да се пресметнат $\mathbf{P}(X=3)$, математическото очакване $\mathbf{E}X$ и дисперсията $\mathbf{D}X$.
- в) Нека белите топки са 5, зелените 7, но броят на червените е Z. Каква трябва да бъде стойността на Z, така че средният брой на неуспешните опити до първото сбъдване на събитието да бъде точно пет? Отговорът да се обоснове.

Задача 10 Нека n, k, r са естествени числа, като $n \ge k \ge r$. В урна има n топки, оцветени в k-цвята: a_1 топки в първи цвят, a_2 топки във втори цвят, ..., и a_k топки в k-ти цвят. Изтегляме от урната едновременно r топки. Да се намери вероятността на събитие A, ако

- а) $A = \{$ Изтеглените топки са разноцветни, в r фиксирани различни цвята $\}$.
- б) $A = \{$ Изтеглените топки са разноцветни $\}$.
- в) $A = \{$ Изтеглените топки са от тип $(s_1, s_2, \dots, s_k)\}$, като $s_1 + s_2 + \dots + s_k = r$ и $0 \le s_i \le a_i$.
- г) Да се пресметна вероятността на A от подточки a), b), b), ако r-те топки са извадени последователно, без връщане.

2 Решения на задачите от упражнение 7

Задача 1 Нека $X_i,\ i=1,2$ са случайните величини - брой точки паднали се на i-тия зар.

а) Тегловата функция на
$$X=X_1+X_2$$
 е $P(X=k)=\left\{ egin{array}{ll} \frac{k-1}{36} & \mbox{за} & 2\leq k\leq 7; \\ \frac{13-k}{36} & \mbox{за} & 8\leq k\leq 12. \end{array} \right.$

 $\mathbf{E}X = \sum_{k=2}^{12} k P(X=k) = \sum_{k=2}^{7} \frac{k(k-1)}{36} + \sum_{k=8}^{13} \frac{k(13-k)}{36} = 7$. Имаме $\mathbf{E}X_1 = \mathbf{E}X_2 = \frac{\sum_{k=1}^6 k}{6} = 3.5$ От $X = X_1 + X_2$ и от линейността на \mathbf{E} получаваме $\mathbf{E}X = \mathbf{E}(X_1 + X_2) = \mathbf{E}X_1 + \mathbf{E}X_2 = 7$. Понеже X_1 и X_2 са независими и $DX_1 = DX_2 = \frac{\sum_{k=1}^6 k^2}{6} - 3.5^2 = \frac{35}{12}$, то $DX = D(X_1 + X_2) = DX_1 + DX_2 = 2DX_1 = \frac{35}{6}$.

b) Означаваме $p_k = P(X = k), \ k = 2, 3, \dots, 12$. Тогава за разпределението на X получаваме:

$$p_k = p_{14-k}, \quad p_2 = p_3 = \frac{1}{16}, \quad p_4 = \frac{5}{64}, \quad p_5 = \frac{3}{32}, \quad p_6 = \frac{7}{64}, \quad p_7 = \frac{3}{16}.$$

 $\mathbf{E} X_1 = \mathbf{E} X_2 = \frac{1+6}{4} + \frac{2+3+4+5}{8} = \frac{7}{2}$ и $DX_1 = DX_2 = \frac{1^2+6^2}{4} + \frac{2^2+3^2+4^2+5^2}{8} - 3.5^2 = \frac{15}{4}$ следователно $\mathbf{E} X = 7$ и DX = 7.5

Нека $X,~X_i,~i=1,2,\dots 1000$ са случайните величини - сума на падналите се точки при 1 хвърляне на 1000 зара; брой точки паднали се на i-тия зар . Тогава $X=\sum_{k=1}^{1000}X_k$ и $\mathbf{E}X_1=\dots=\mathbf{E}X_{1000}=3.5$ откъдето $\mathbf{E}X=\mathbf{E}\left(\sum_{k=1}^{1000}X_k\right)=\sum_{k=1}^{1000}\mathbf{E}X_k=1000\mathbf{E}X_1=3500$. Понеже $X_i,~i=1,2,\dots 1000$ са независими и $DX_1=\dots=DX_{1000}=\frac{35}{12}$ за а) и $DX_1=\dots=DX_{1000}=\frac{15}{4}$ за b), то $DX=D\left(\sum_{k=1}^{1000}X_k\right)=\sum_{k=1}^{1000}DX_k=1000DX_1=\begin{cases} 2916.6 & \text{за a};\\ 3750 & \text{за b} \end{cases}$.

Прилагаме неравенството на Чебишев $P(|X - \mathbf{E}X| \ge k) \le \frac{DX}{k^2}$ за k = 201: $P(X > 3700) \le P(|X - \mathbf{E}X| \ge 201) \le \frac{DX}{201^2} = \begin{cases} 0.07 & \text{за a}; \\ 0.09 & \text{зa b}, \end{cases}$

което означава, че е събитито $\{X > 3700\}$ е малко вероятно.

 ${f 3}$ адача ${f 2}$ Нека X е случайната величина - брой изтеглени черни топки.

- а) Тегловата функция $k \mapsto p_k$ на X е : $p_0 = \frac{5}{8}$, $p_1 = \frac{3}{8} \times \frac{5}{7}$, $p_2 = \frac{3}{8} \times \frac{2}{7} \times \frac{5}{6}$, $p_3 = \frac{3}{8} \times \frac{2}{7} \times \frac{1}{6}$. Тогава $\mathbf{E}X = \sum_{k=0}^3 kp_k = 1 \times \frac{3}{8} \times \frac{5}{7} + 2 \times \frac{3}{8} \times \frac{2}{7} \times \frac{5}{6} + 3 \times \frac{3}{8} \times \frac{2}{7} \times \frac{1}{6} = \frac{1}{2}$ и $DX = \mathbf{E}X^2 (\mathbf{E}X)^2 = \sum_{k=0}^3 k^2 p_k \frac{1}{4} = \frac{15}{28}$.

 $pq^2\left(\frac{d^2}{dx^2}(\sum_{k=1}^{\infty}x^k)|_{x=q}+\frac{1}{q}\frac{d}{dx}(\sum_{k=1}^{\infty}x^k)|_{x=q}\right)-\frac{q^2}{p^2}=\frac{1-p}{p^2}$. Следователно $\mathbf{E}X=\frac{q}{p}=\frac{3}{5},\ \mathrm{D}X=\frac{1-p}{2}$

 $\frac{1-p}{p^2}=\frac{24}{25}$. Нека $X,~X_i,~i=1,2,\dots 1000$ са случайните величини - брой изтеглени черни топки при 1000независими опита; брой изтеглени черни топки при i-тия опит. Тогава $X=\sum_{i=1}^{1000} X_i$

$$\mathbf{E}X = 1000\mathbf{E}X_1 = \begin{cases} 500 & \text{3a a} \\ 600 & \text{3a b} \end{cases}$$
$$\mathbf{D}X = 1000\mathbf{D}X_1 = \begin{cases} 535.7 & \text{3a a} \\ 960 & \text{3a b} \end{cases}$$

Прилагаме неравенството на Чебишев
$$P(X>900) \leq P(|X-\mathbf{E}X| \geq 400) \leq \frac{DX}{400^2} = \frac{535.7}{400^2} = 0.003 \text{ за a}),$$

$$\mathbf{P}(X>900) \leq \mathbf{P}(|X-\mathbf{E}X| \geq 300) \leq \frac{DX}{300^2} = \frac{960}{300^2} = 0.01 \text{ за b}).$$

Задача 3 Нека $X\in \mathrm{Bi}(5000,\ \frac{1}{1000})$, то търсената вероятност е $\mathbf{P}=\mathbf{P}(X\geq 2)=1-\mathbf{P}(X<2)=1-\mathbf{P}(\{X=0\}\cup\{X=1\})=1-\mathbf{P}(X=0)-\mathbf{P}(X=1)=1-(1-\frac{1}{1000})^{5000}-\binom{5000}{1}\frac{1}{1000}\times(1-\frac{1}{1000})^{4999}\approx 1-e^{-5}-5e^{-5}=1-6e^{-5}\approx 0.959$

 ${f 3}$ адача ${f 4}$ Нека X е случайната величина - брой изпробвани качествени лампи. Тогава $X \in$ HG(n,M,N), където $n=M=4,\ N=7$, тоест X е с хипегеометрично разпределение и теглова функция $k\longmapsto p_k=rac{\binom{M}{k}\binom{N-M}{n-k}}{\binom{N}{n}},\ k=0,1,\ldots,\min(n,M)$. Пресмятаме $\mathbf{E}X=\ldots=rac{nM}{N}$ и в частност при n = M = 4, N = 7 имаме $EX = \frac{16}{7}$

Задача 5 Нека $X_i, i=1,2,3$ са случайните величини - брой земетресения за i-тия месец. По условие $X_i \in \text{Po}(2)$ са независими. Търсим вероятността $\mathbf{P}(X_1 + X_2 + X_3 < 4)$. Ще докажем, че ако $Y_j \in Po(\lambda_j), \ j=1,\dots,n$ са независими, то случайната величина $Y=\sum_{j=1}^n Y_j$ е поасоново разпределена с параметър $\sum_{j=1}^n \lambda_j$. При n=2 имаме $\mathbf{P}(Y_1+Y_2=k)=\mathbf{P}(\cup_{j=0}^k \{Y_1=k\})$ $j,\ Y_2=k-j\})=\sum_{j=0}^k\mathbf{P}(\{Y_1=j,\ Y_2=k-j\})=\sum_{j=0}^k\mathbf{P}(\{Y_1=j\}\cap\{Y_2=k-j\})=\sum_{j=0}^k\mathbf{P}(\{Y_1=j\}\cap\{Y_2=k-j\})=\sum_{j=0}^k\mathbf{P}(Y_1=j)$ $\sum_{j=0}^k\mathbf{P}(Y_1=j)$ $\sum_{j=0}^k\mathbf{P}(Y_1=j)$ $\sum_{j=0}^k\frac{e^{-(\lambda_1+\lambda_2)}\lambda_1^j\lambda_2^{k-j}}{j!(k-j)!}=\frac{e^{-(\lambda_1+\lambda_2)}}{k!}\sum_{j=0}^k\frac{k!}{j!(k-j)!}\times\lambda_1^j\lambda_2^{k-j}=\frac{e^{-(\lambda_1+\lambda_2)}}{k!}\sum_{j=0}^k\binom{n}{j}\lambda_1^j\lambda_2^{k-j}=\frac{e^{-(\lambda_1+\lambda_2)}(\lambda_1+\lambda_2)^k}{k!}$... (е базата на индукцията)... - (ще го докажем с пораждащи функции).

В частност
$$X=X_1+X_2+X_3\in Po(6)$$
 и $\mathbf{P}(X<4)=\sum_{k=0}^3 \frac{e^{-6}6^k}{k!}=61e^{-6}\approx 0.1512$

Задача 6 Нека $X\in \mathrm{Bi}(10,\frac{4}{5})$ и $A_i,\ i=1,\dots,20$ са събитията - поне 9 от 10-те продадени принтера за i—тата седмица работят. Тогава $\mathbf{P}(A_1) = \mathbf{P}(X \ge 9) = \mathbf{P}(\{X = 9\} \cup \{X = 10\}) = \mathbf{P}(X = 9) + \mathbf{P}(X = 10) = \binom{10}{9} \left(\frac{4}{5}\right)^9 \times \frac{1}{5} + \left(\frac{4}{5}\right)^{10} \approx 0.3758$ Ще приемем, че разглежданите 5 месеца се състоят от точно 20 седмици. Тогава търсената вероятност е $\mathbf{P}(\cap_{i=1}^{20} A_i) = \prod_{i=1}^{20} \mathbf{P}(A_i) = \mathbf{P}(A_1)^{20} \approx 0.3758^{20}$.

Задача 7 Нека A_k , $k=1,2,\ldots$ са съответно събитията - първия успява (за първи път) на k-ти ход, а втория не успява във всичките k хода. Считаме че всички ходове преди k-тия са неуспешни. Нека $X\in \mathrm{Ge}(0.2),\ Y_k=\{$ брой неуспехи на втория за k хода $\}$. Тогава $A_k=\{X=k-1,\ Y=k\}=\{X=k-1\}\cap \{Y_k=k\}$. Вероятността първия да успее, а втория не е

$$\mathbf{P}(\cup_{k=1}^{\infty} A_k) = \sum_{k=1}^{\infty} \mathbf{P}(A_k) = \sum_{k=1}^{\infty} \mathbf{P}(\{X = k - 1\} \cap \{Y_k = k\}) = \sum_{k=1}^{\infty} \mathbf{P}(\{X = k - 1\}) \mathbf{P}(\{Y_k = k\})$$

$$= \sum_{k=1}^{\infty} (0.8)^{k-1} \times 0.2 \times (0.7)^k = \sum_{k=1}^{\infty} (0.56)^{k-1} \times 0.14 = \frac{7}{22} \approx 0.318$$

Вероятността за неуспех при един опит (това са 2 хода - един за първия и един за втория) на двамата играчи е $0.8 \times 0.7 = 0.56$ Нека $Z \in \text{Ge}(0.44)$ с теглова функция $k \longmapsto (1-p)^{k-1}p$, тогава очаквания брой ходове е $\text{E2}Z = 2\text{E}Z = 2 \times \frac{1}{p} = 2 \times \frac{1}{0.44} = \frac{50}{11} \approx 4.54$

Задача 8 Нека A_i , A(i), $i=1,2,\ldots$ са събитията - i—тата партия е спечелена от първия играч (съответно $\overline{A_i}$ за победа на втория играч); играта е приключила след точно i партии. По условие $\mathbf{P}(A_i)=\frac{2}{3}$, $\mathbf{P}(\overline{A_i})=\frac{1}{3}$. Събитията $A_1,\ A_2,\ldots,A_n,\ldots$ са независими и

$$A(2k+1) = (A_1\overline{A_2}A_3\overline{A_4}\dots A_{2k-1}\overline{A_{2k}})\overline{A_{2k+1}} \cup \overline{A_1}A_2\overline{A_3}A_4\dots \overline{A_{2k-1}}A_{2k}A_{2k+1}, \ k \ge 1$$

$$A(2k+2) = A_1 \overline{A_2} A_3 \overline{A_4} \dots A_{2k-1} \overline{A_{2k}} A_{2k+1} A_{2k+2} \cup (\overline{A_1} A_2 \overline{A_3} A_4 \dots A_{2k} \overline{A_{2k+1}}) \overline{A_{2k+2}}, \ k \ge 0.$$

Следователно $\mathbf{P}(A(2k+1))=(\frac{2}{9})^k, \ \mathbf{P}(A(2k+2))=\frac{5}{9}(\frac{2}{9})^k$ и тегловата функция $k\longmapsto p_k$ на X има вида $p_1=0,\ p_{2k+1}=(\frac{2}{9})^k\ k\geq 1,\ p_{2k+2}=\frac{5}{9}(\frac{2}{9})^k\ k\geq 0.$ Пресмятаме $\mathbf{E}X=\sum_{i\geq 0}ip_i=\sum_{k\geq 1}(2k+1)(\frac{2}{9})^k+\frac{5}{9}\sum_{k\geq 0}(2k+2)(\frac{2}{9})^k=\frac{10}{9}+\frac{19}{9}\sum_{k\geq 1}(\frac{2}{9})^k+\frac{28}{9}\sum_{k\geq 1}k(\frac{2}{9})^k=\frac{20}{7}\approx 2.857$

Задача 9 Ако изтеглянето на 2-те топки е последователно, то $A = A_1 \cup A_2$, където $A_1 = \{(w,g)\}$ и $A_2 = \{(g,w)\}$, тоест:

 $A_1 = \{$ първо е извадена бяла, след това зелена топка $\},$

 $A_2 = \{$ първо е извадена зелена, след това бяла топка $\}.$

Ако изтеглянето на 2-те топки е едновременно, то $A = \{g, w\}$.

а) При последователно теглене без връщане, получаваме

$$\mathbf{P}(A) = \mathbf{P}(A_1 \cup A_2) = \mathbf{P}(A_1) + \mathbf{P}(A_2) = \frac{5}{15} \times \frac{7}{14} + \frac{7}{15} \times \frac{5}{14} = \frac{1}{3}.$$

При едновременно теглене, съгласно пример 1.2 получаваме $\mathbf{P}(A) = \frac{\binom{5}{1}\binom{7}{1}\binom{3}{0}}{\binom{15}{2}} = \frac{1}{3}$.

б) По условие $X \in \text{Bi}\left(5, \frac{1}{3}\right)$. Следователно $\mathbf{P}(X=3) = \binom{5}{3} \left(\frac{1}{3}\right)^3 \left(\frac{2}{3}\right)^2$ и съгласно формулите за средна стойност и дисперсия, намираме $\mathbf{E}X = \frac{5}{3}, \ \mathbf{D}X = \frac{10}{9}$.

в) Нека Y е случайната величина: брой неуспешни опити до първи успех (тоест до първото настъпване на събитието A). Следователно $Y \in Ge(p)$ с теглова функция $k \longmapsto (1-p)^k p$, където

$$p = \mathbf{P}(A) = \mathbf{P}(A_1) + \mathbf{P}(A_2) = \frac{5}{12 + Z} \times \frac{7}{11 + Z} + \frac{7}{12 + Z} \times \frac{5}{11 + Z} = \frac{70}{(11 + Z)(12 + Z)},$$

или еквивалентно (за случая на едновременно теглене на 2-те топки)

$$p = \mathbf{P}(A) = \frac{\binom{5}{1}\binom{7}{1}}{\binom{12+Z}{2}} = \frac{70}{(11+Z)(12+Z)}.$$

По условие $\mathbf{E}Y=5$ и съгласно формулата $\mathbf{E}Y=\frac{1-p}{p}$ намираме

$$5 = \mathbf{E}Y = \frac{1}{p} - 1 = \frac{(11+z)(12+z)}{70} - 1 \Rightarrow Z = 9.$$

Забележка 2.1. Едновременното изтегляне на няколко топки от урна е еквивалентно на последователното им изтегляне, без връщане. Тоест, вероятността на кое да е събитие за този експеримент не зависи от това дали изтегленянето на топките е едновременно или последователно, без връщане. Доказателство на това твърдение е дадено в следващата задача.

Задача 10 Решение:

а) Без ограничение, нека изтеглените топки са от първи, втори,..., r-ти цвят. От пример 1.2

$$\mathbf{P}(A) = \frac{\binom{a_1}{1}\binom{a_2}{1}\cdots\binom{a_r}{1}}{\binom{n}{r}} = \frac{a_1a_2\dots a_r}{\binom{n}{r}}.$$

б) За всяко множество $\{i_1,\ldots,i_r\}\subset\{1,\ldots,k\}$, означаваме с A_{i_1,\ldots,i_r} събитието: изтеглените r топки са в цветове i_1,i_2,\ldots,i_r . Тогава е в сила представянето

$$A = \bigcup_{\{i_1,\dots,i_r\}\subset\{1,\dots,k\}} A_{i_1,\dots,i_r}.$$

Следователно

$$\mathbf{P}(A) = \mathbf{P}\left(\bigcup_{\{i_1, \dots, i_r\} \subset \{1, \dots, k\}} A_{i_1, \dots, i_r}\right)$$

$$= \sum_{\{i_1, \dots, i_r\} \subset \{1, \dots, k\}} \mathbf{P}(A_{i_1, \dots, i_r}) = \sum_{\{i_1, \dots, i_r\} \subset \{1, \dots, k\}} \frac{a_{i_1} a_{i_2} \dots a_{i_r}}{\binom{n}{r}}.$$

в) Съгласно пример 1.2 получаваме

$$\mathbf{P}(A) = \frac{\binom{a_1}{s_1}\binom{a_2}{s_2}\cdots\binom{a_k}{s_k}}{\binom{n}{r}}.$$

От в) следва подточка а), чрез полагането $s_1 = s_2 = \cdots = s_r = 1, \ s_{r+1} = \cdots = s_k = 0.$

- г) Преминаваме към случая на последователно теглене без връщане, като съответните подточки означаваме чрез а1), б1), в1):
- а1) Без ограничение, нека изтеглените топки са от първи, втори,..., r-ти цвят. За всяка пермутация $\sigma \in \mathbf{S}_r$, означаваме с $A_{\sigma(1),\sigma(2),...,\sigma(r)}$ събитието: първата изтеглена топка е в цвят $\sigma(1)$, втората изтеглена топка е в цвят $\sigma(2),...,r$ -тата изтеглена топка е в цвят $\sigma(r)$. Тогава A има вида

$$\begin{split} A &= \bigcup_{\sigma \in \mathbf{S}_r} A_{\sigma(1),\sigma(2),\dots,\sigma(r)} \\ \Rightarrow \mathbf{P}(A) &= \mathbf{P}\left(\bigcup_{\sigma \in \mathbf{S}_r} A_{\sigma(1),\sigma(2),\dots,\sigma(r)}\right) \\ \sum_{\sigma \in \mathbf{S}_r} \mathbf{P}\left(A_{\sigma(1),\sigma(2),\dots,\sigma(r)}\right) &= \sum_{\sigma \in \mathbf{S}_r} \frac{a_{\sigma(1)}a_{\sigma(2)}\dots a_{\sigma(r)}}{n(n-1)\cdots(n-r+1)} \\ &= r! \frac{a_1a_2\dots a_r}{n(n-1)\cdots(n-r+1)} = \frac{a_1a_2\dots a_r}{\binom{n}{r}}. \end{split}$$

б1) За всяко множество $\{i_1,\ldots,i_r\}\subset\{1,\ldots,k\}$, означаваме с $A_{\{i_1,\ldots,i_r\}}$ събитието: изтеглените r топки са в цветове i_1,i_2,\ldots,i_r . Тогава е в сила представянето

(*)
$$A = \bigcup_{\{i_1,\dots,i_r\}\subset\{1,\dots,k\}} A_{\{i_1,\dots,i_r\}}.$$

Съгласно подточка а1) са в сила равенствата:

$$A_{\{i_1,\dots,i_r\}} = \bigcup_{\sigma \in \mathbf{Perm}\{i_1,\dots,i_r\}} A_{\sigma(i_1),\sigma(i_2),\dots,\sigma(i_r)},$$
$$\mathbf{P}(A_{\{i_1,\dots,i_r\}}) = \frac{a_{i_1}a_{i_2}\dots a_{i_r}}{\binom{n}{r}}.$$

От (*) следва

$$\mathbf{P}(A) = \frac{1}{\binom{n}{r}} \sum_{\{i_1, \dots, i_r\} \subset \{1, \dots, k\}} a_{i_1} a_{i_2} \dots a_{i_r}.$$

в1) Да напомним, че с $P(r; s_1, s_2, \ldots, s_k)$ означаваме пермутациите от тип (s_1, s_2, \ldots, s_k) на елементите на множеството $\{1, 2, \ldots, k\}$. За всяка пермутация $\tau \in P(r; s_1, s_2, \ldots, s_k)$ да означим с A_{τ} събитието: изтеглените топки са в цветове, съответстващи на пермутацията τ . Тоест, i-тата изтеглена топка е в цвят определен от i-тия елемент на τ , за $i=1,2,\ldots,r$. Следователно:

$$A = \bigcup_{\tau \in P(r; s_1, s_2, \dots, s_k)} A_{\tau},$$

$$\mathbf{P}(A_{\tau}) = \frac{\prod_{l=1}^k a_l(a_l - 1) \cdots (a_l - s_l + 1)}{n(n-1) \dots (n-r+1)}, \quad \forall \tau \in P(r; s_1, s_2, \dots, s_k).$$

От тези две равенства получаваме:

$$\mathbf{P}(A) = \mathbf{P}\left(\bigcup_{\tau \in P(r; s_{1}, s_{2}, \dots, s_{k})} A_{\tau}\right) = \sum_{\tau \in P(r; s_{1}, s_{2}, \dots, s_{k})} \mathbf{P}(A_{\tau})$$

$$= \sum_{\tau \in P(r; s_{1}, s_{2}, \dots, s_{k})} \frac{\prod_{l=1}^{k} a_{l}(a_{l} - 1) \cdots (a_{l} - s_{l} + 1)}{n(n - 1) \dots (n - r + 1)}$$

$$= \frac{(s_{1} + s_{2} + \dots + s_{k})!}{s_{1}! s_{2}! \cdots s_{k}!} \frac{\prod_{l=1}^{k} a_{l}(a_{l} - 1) \cdots (a_{l} - s_{l} + 1)}{n(n - 1) \dots (n - r + 1)}$$

$$= \frac{r!}{n(n - 1) \dots (n - r + 1)} \prod_{l=1}^{k} \frac{a_{l}(a_{l} - 1) \cdots (a_{l} - s_{l} + 1)}{s_{l}!}$$

$$= \frac{\binom{a_{1}}{s_{1}} \binom{a_{2}}{s_{2}} \cdots \binom{a_{k}}{s_{k}}}{\binom{n}{r}}.$$