Листок №31 07.08.2020

Cчёm

Задача 31.1. Найдите предел последовательности: (a) $1 + 0.1^n$; (б) $\frac{5n+4}{6n+15}$; (в) $\frac{2^n-3^n}{2^n+3^n}$; (г) $1 + q + q^2 + \cdots + q^n$; (д) $\sqrt[n]{2}$.

Задача 31.2. Вычислите пределы (при $n \to +\infty$) или докажите расходимость по-

следовательностей: (a)
$$\frac{(2n-3)^{20}(3n+2)^{30}}{(2n+1)^{50}}$$
, (б) $\frac{\sqrt[3]{n^2\sin n!}}{2n-3}$, (в) $\frac{\sqrt{1+2n}-3}{\sqrt{n}-2}$, (г) $\sqrt{n+1}-\sqrt{n-1}$, (д) $\sqrt{n^2+3n}-\sqrt{n^2-5n}$, (е) $\sqrt{2}\sqrt[4]{2}\sqrt[8]{2}\dots$ $\sqrt[2n]{2}$, (ж) $\sqrt{2}\sqrt{2\sqrt{\dots\sqrt{2}}}$, (з) $\sqrt{2}+\sqrt{2}+\sqrt{2}+\sqrt{2}+\dots+\sqrt{2}}$,

Задача 31.3(y). Докажите, что любая ограниченная последовательность содержит сходящуюся подпоследовательность.

Задача 31.4. (a) Верно ли, что последовательность $a_n = \frac{\cos 2}{2} + \frac{\cos 2^2}{2^2} + \dots + \frac{\cos 2^n}{2^n}$ монотонна при n > 1? (6) Докажите, что данная последовательность имеет предел.

Задача 31.5. Последовательность $\{a_n\}$ задана рекуррентно: $a_1=4,\ a_{n+1}=\frac{a_n+3}{5}$. (a) Докажите, что данная последовательность имеет предел и (б) найдите этот предел.

Задача 31.6 (Итерационная формула Герона). Пусть x_1 — произвольное положительное число, $x_{n+1} = \frac{1}{2} \left(x_n + \frac{a}{x_n} \right)$, где a > 0. Докажите, что тогда при $n \geqslant 2$ последовательность $\{x_n\}$ (а) убывающая, (б) ограниченная снизу числом \sqrt{a} , (в) имеет предел, (г) причём $\lim_{n\to +\infty} x_n = \sqrt{a}$. (д) Для $a=10, x_1=1$ найдите такое n, что $|x_n-\sqrt{a}|<10^{-5}$.

Задача 31.7 (*Теорема Штольца*). Пусть последовательность $\{a_n\}$ является возрастающей бесконечно большой последовательностью с положительными членами, а последовательность $\{b_n\}$ такова, что $\lim_{n\to +\infty} \frac{b_{n+1}-b_n}{a_{n+1}-a_n} = L$. Докажите, что тогда существует предел $\lim_{n\to +\infty} \frac{b_n}{a_n} = L$.

Задача 31.8. Пусть $P(n)=a_kn^k+\cdots+a_1n+a_0$ и $Q(n)=b_ln^l+\cdots+b_1n+b_0$ два многочлена степеней k и l соответственно, причём $\forall n \in \mathbb{N}$ $Q(n) \neq 0$. Докажите, что*

$$\lim_{n \to +\infty} \frac{P(n)}{Q(n)} = \begin{cases} 0, & \text{если } l > k, \\ \frac{a_k}{b_l}, & \text{если } l = k, \\ +\infty, & \text{если } l < k. \end{cases}$$

Задача 31.9. Докажите, что $\lim_{n \to +\infty} \frac{1^k + 2^k + \dots + n^k}{n^{k+1}} = \frac{1}{k+1}$

Задача 31.10 (Уравнение Кеплера). \dagger Для решения уравнения $x-\alpha\sin x=C$, где $0<\alpha<1$, строят последовательность $\{x_n\}$ следующим образом: $x_1 = C, x_{n+1} = C + \alpha \sin x_n$. Докажите, что (a) уравнение Кеплера имеет не более одного корня; (б) последовательность $\{x_n\}$ имеет предел; (в) $\lim_{n\to+\infty} x_n$ является решением уравнения Кеплера.

Задача 31.11([:||:]). Докажите равенства: (a) $\lim_{n\to +\infty} \frac{n^k}{a^n} = 0$, a > 1, $k \in \mathbb{N}$; (б) $\lim_{n\to +\infty} \frac{a^n}{n!} = 0$;

(B)
$$\lim_{n \to +\infty} n^k q^n = 0, \ q < 1, \ k \in \mathbb{N}; \ (\mathbf{r}) \lim_{n \to +\infty} \sqrt[n]{a} = 1, \ a > 0; \ (\mathbf{A}) \lim_{n \to +\infty} \sqrt[n]{n} = 1; \ (\mathbf{e}) \lim_{n \to +\infty} \frac{1}{\sqrt[n]{n!}} = 0;$$

^{*}Последнее надо понимать в том смысле, что $\frac{P(n)}{Q(n)}$ — бесконечно большая.

[†]Данное уравнение появилось в работах И. Кеплера (1571–1630) при изучении движения планет по эллиптическим орбитам (т.н. задача двух тел).

Листок №31 07.08.2020

Число Непера

Определение. Введём несколько обозначений:

$$a_n = \left(1 + \frac{1}{n}\right)^n$$
 $b_n = \left(1 + \frac{1}{n}\right)^{n+1}$ $c_n = 1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{n!}$

Задача 31.12. (a) Докажите, что при фиксированном i > 0 последовательность $\frac{n-i}{n}$ возрастает. (б) Докажите, что a_n возрастает ‡ . (в) Докажите, что b_n убывает § . (г) Докажите, что a_n и b_n ограничены. (д) Докажите, что $\lim_{n\to+\infty} a_n = \lim_{n\to+\infty} b_n$.

Определение. Пределом последовательностей a_n и b_n является число $e=2,7182818284590\ldots$ которое называется числом Непера.

Задача 31.13. Докажите, что последовательность c_n (a) имеет предел и (б) этот предел равен e.

Задача 31.14*. (a) Докажите, что для последовательности c_n верно неравенство $0 < e - c_n < \frac{1}{n \cdot n!}$. (б) С помощью данного неравенства докажите, что число e является иррациональным.

Задача 31.15. Найдите пределы (а) $\lim_{n \to +\infty} \left(1 + \frac{1}{n}\right)^{3n}$; (б) $\lim_{n \to +\infty} \left(1 + \frac{3}{n}\right)^{n}$; (в) $\lim_{n \to +\infty} \left(1 - \frac{1}{n}\right)^{n}$. Задача 31.16. Докажите неравенства: (а) $\left(\frac{n}{e}\right)^{n} < n! < e\left(\frac{n}{2}\right)^{n}$; (б) $\forall \alpha \in \mathbb{R}$ $e^{\alpha} > 1 + \alpha$.

Простые предельные теоремы

Задача 31.17 (*Теорема Бернулли*). Пусть $A_{m,n,p}$ — событие, что среди n испытаний Бернулли с вероятностью успеха p ровно m закончились успешно. Докажите, что для любого $\varepsilon > 0$ существует предел

$$\lim_{n \to +\infty} \mathbb{P}\left[A_{m,n,p} \mid \left| \frac{m}{n} - p \right| < \varepsilon \right] = 1.$$

Задача 31.18 (Закон Больших Чисел). Пусть X_1, \ldots, X_n, \ldots — последовательность попарно независимых случайных величин, для всех $i \mathbb{E} X_i^2$ — конечно, $m = \mathbb{E} X_i$, $\sigma^2 = \mathbb{E} X_i^2 - (\mathbb{E} X_i)^2$. Рассмотрим выборочное среднее:

$$\overline{X}^{(n)} = \frac{1}{n} \sum_{i=1}^{n} X_i.$$

Докажите, что для любого $\varepsilon > 0$ существует предел

$$\lim_{n \to +\infty} \mathbb{P}\left[|\overline{X}^{(n)} - m| \ge 0 \right] = 0.$$

^{‡«}В чём сила, брат?»

[§]Почему летают самолёты?