Hello!

Here is some math.

$$\alpha\beta\gamma\delta\Gamma\Delta\Lambda\Theta$$
 abcdABCD

Now here are some symbols.

$$\int_{-\infty}^{\infty} \sin \theta = \sqrt{\frac{e^{i\pi}}{\sum_{i=0} \epsilon \Gamma \Lambda \cdot i}}$$

Here is a compatibility test. Lowercase letters:

 $\alpha a\beta b\gamma y\delta d\epsilon e\varepsilon \eta n\theta oiikk\lambda l\ell \mu u\nu v\rho p\sigma o\tau tv v\phi o\chi x\omega w$ 

Uppercase letters:

## ΓΕΔ ΑΘΟΛ ΑΤΞΕΣΧΥΥ ΟΦΙΨ UΩΟ

Large symbols, text-size:

$$\left[\left(\left\langle\left\{\int S\sum E\right\}\right\rangle\right)\right]$$

Display style:

$$\left[\left(\left\langle\left\{\int S\sum E\right\}\right\rangle\right)\right]$$

Common math symbols:

$$a + \frac{2}{\pi} \neq 15 \Longrightarrow A \in \Pi, \forall A \approx \nabla.$$

## **Unbound Orbits: Deflection of Light by the Sun**

Consider a particle or photon approaching the sun from very great distances. At infinity the metric is Minkowskian, that is,  $A(\infty) = B(\infty) = 1$ , and we expect motion on a straight line at constant velocity V

$$b \simeq r \sin(\phi - \phi_{\infty}) \simeq r(\phi - \phi_{\infty})$$
$$-V \simeq \frac{d}{dt}(r \cos(\phi - \phi_{\infty})) \simeq \frac{dr}{dt}$$

where b is the "impact parameter" and  $\phi_{\infty}$  is the incident direction. We see that they do satisfy the equations of motion at infinity, where A=B=1, and that the constants of motion are:

$$J = bV^2 \tag{1}$$

$$E = 1 - V^2 \tag{2}$$

(Of course a photon has V=1, and as we have already seen, this gives E=0.) It is often more convenient to express J in terms of the distance  $r_0$  of closest approach to the sun, rather than the impact parameter b. At  $r_0$ ,  $dr/d\phi$  vanishes, so our earlier equations give:

$$J = r_0 \left( \frac{1}{B(r_0)} - 1 + V^2 \right)^{1/2}$$

The orbit is then described by

$$\phi(r) = \phi_{\infty} + \int_{r}^{\infty} \left\{ \frac{A^{\frac{1}{2}}(r)dr}{r^{2} \left( \frac{1}{r_{0}^{2}} \left[ \frac{1}{B(r)-1+V^{2}} \right] \left[ \frac{1}{B(r)-1+V^{2}} \right]^{-1} - \frac{1}{r^{2}} \right)^{\frac{1}{2}}} \right\}.$$

The total change in  $\phi$  as r decreases from infinity to its minimum value  $r_0$  and then increases again to infinity is just twice its change from  $\infty$  to  $r_0$ , that is,  $2|\phi(r_0)-\phi'_\infty|$ . If the trajectory were a straight line, this would equal just  $\pi$ ;

$$\Delta \phi = 2|\phi(r_0) - \phi_{\infty}| - \pi.$$

If this is positive, then the angle  $\phi$  changes by more than 180°, that is, the trajectory is bent *toward* the sun; if  $\Delta \phi$  is negative then the trajectory is bent away from the sun.

The end.