FACULTE DES SCIENCES DE MONASTIR
DEPARTEMENT DE PHYSIQUE
LEEA2

Série N°1 Signaux et systèmes continus

2012/2013

Exercice 1 : Calcul d'énergie

Calculer l'énergie des signaux suivants :

- $x(t) = e^{-at} \cdot \epsilon(t) \ a \in \mathbb{R}_+^*$
- $x(t) = te^{-at} \cdot \epsilon(t) \ a \in \mathbb{R}_+^*$
- $-x(t)=e^{-\frac{t^2}{2a^2}}.\epsilon(t) \ a \in \mathbb{R}_+^*$

Exercice 2 : Calcul de puissance

- 1. Calculer la puissance moyenne des signaux :
 - $-x(t) = x_0 \exp(2j\pi f_0 t)$
 - $-x(t) = x_0 cos(2\pi f_0 t)$
 - x(t) = U(t)
- 2. Calculer la puissance moyenne d'interaction des signaux :

$$x_1(t) = x_1 \exp(2j\pi f_1 t)$$
 et $x_2(t) = x_2 \exp(2j\pi f_2 t)$

En déduire la puissance moyenne des signaux :

- $x_1(t) = x_1 \exp(2j\pi f_1 t) + x_2(t) = x_2 \exp(2j\pi f_2 t)$, $f_1 \neq f_2$
- $-x(t) = x_0 cos(2\pi f_0 t)$
- 3. Calculer la puissance moyenne d'interaction des signaux :

$$x_1(t) = U(t)$$
 et $x_2(t)$, signal périodique $x_1(t) = sgn(t)$ et $x_2(t)$, signal périodique

Exercice 3 : fonction rectangle

- a) Donner l'équation d'une fonction rectangle d'amplitude A, de largeur 2T centrée au point $t=\tau$.
- b) Montrer que rect(t) = $\varepsilon(t + 1/2) \varepsilon(t 1/2)$.
- c) Montrer que $rect(t/T) = \epsilon(t + T/2) \epsilon(t T/2)$.
- d) Exprimer à l'aide de seules fonctions sgn la fonction $x(t) = A.rect(\frac{t-t_0-\frac{T}{2}}{\Delta})$.

Exercice 4 : fonction triangle

On défini la fonction tri(t) par :

$$tri(t) = \begin{cases} 1 - |t| & si |t| < 1\\ 0 & si |t| > 1 \end{cases}$$

- a) Tracer $y_1(t) = tri(t)$.
- b) Tracer $y_2(t) = tri(\frac{t-\tau}{T})$ (forme généralisée).
- c) Calculer l'intégrale entre $-\infty < t < +\infty$ des fonctions :

 $X1(t)=A.rect(t/\Delta).$

 $Y1(t)=A.tri(t/\Delta)$.

- d) Calculer la transformée de Fourier de rect(t).
- e) Calculer la transformée de Fourier de tri(t).

Exercice 5: Fonction cosinus

Soit le signal
$$x(t) = \begin{cases} A\cos(2\pi f_0) & pour - \frac{T}{2} < t < -\frac{T}{2} \\ 0 & sinon \end{cases}$$

Le représenter dans l'espace de temps $(T > \frac{1}{f_0})$. Est-ce un signal d'énergie finie ou de puissance finie ?

Quel est le spectre en amplitude de ce signal ? Le représenter.

Calculer selon le cas, son énergie ou sa puissance pour la valeur particulière $T=T_0=1/f_0$

Exercice 6 : Transformée de Fourier

Pour le signal analogique $x(t) = e^{-at}$. $\epsilon(t)$

- a) Calculer sa transformée de Fourier.
- b) Son spectre d'amplitude et sa phase. Soit $y(t) = \cos(2\pi f_0 t)$
- c) Calculer Z(f) sachant que z(t) = x(t).y(t).

Exercice 7: Produit de convolution

A- Propriétés des produits de convolution

Montrer les propriétés suivantes :

$$-x(t)*\delta(t)=\delta(t)*x(t)=x(t)$$

-
$$x(t) * \delta(t - t_0) = x(t - t_0)$$

-
$$x(t-t_1) * \delta(t-t_2) = x(t-t_1-t_2)$$

$$- \delta(at) = \frac{\delta(t)}{a}$$

B- Calcul de produits de convolution

1. Calculer et tracer les produits de convolution des fonctions x(t) et y(t) suivantes :

$$-x(t) = A \left[\delta (t + t_0) + \delta (t - t_0) \right] \text{ et } y(t) = B(\delta (t) + \frac{1}{2} \left[\delta (t + t_1) + \delta (t - t_1) \right])$$

$$-x(t) = \cos\left(\frac{\pi t}{T}\right) rect\left(\frac{t}{T}\right) \text{ et } y(t) = A \delta_T(t).$$

2. Calculer le produit de convolution de

$$x(t) = A.\epsilon(t)$$
 avec le filtre $h(t) = \frac{1}{\tau} exp(-t/\tau).\epsilon(t)$.

- 3. Calculer le produit de convolution rect(t/T) * rect(t/T).
- 4. Calculer le produit de convolution $rect(t/T_1) * rect(t/T_2)$, avec $T_1 > T_2$.
- 5. Calculer le produit de convolution $x(t) = \sin(2\pi t/T)$ et de $y(t) = \text{rect}(t/\theta)$.
- 6. Calculer le produit de convolution x(t) = tri(t/T) et de y(t) = rect(t/T).

Calculer et représenter sur une courbe amplitude-temps le produit de convolution suivant: y(t) = x(t) * x(t) avec x(t) = rect(t/T)

Exercice 8:

A. Classification de signaux

Soient x(t) un signal déterministe et b(t) un signal aléatoire. Préciser la nature déterministe ou aléatoire des signaux suivants.

1.
$$x_1(t) = A.x(t)$$
, où A est un gain réel

- 2. $x_2(t) = x(t).\sin \omega t$
- 3. $x_3(t) = x(-t).\varepsilon(t)$
- 4. $x_4(t) = x(t) + b(t)$
- 5. $x_5(t) = |b(t)|$
- 6. $x_6(t) = x(t).b(t)$
- 7. $x_7(t) = x(t).b(t)/|b(t)|$

B. Classification énergétique de signaux simples

Déterminer si les signaux suivants sont à énergie finie ou à puissance finie. Calculer pour chacun l'énergie et la puissance moyenne totale.

- 1. $x_1(t) = A.rect(t)$
- 2. $x_2(t) = A.\sin\omega t$ A et $\omega > 0$.
- 3. $x_3(t) = AU(t) \sin \omega t$, A et $\omega > 0$.
- 4. $x_4(t) = U(t)$
- 5. $x_5(t) = A U(t) \exp(-at)$, où A et a > 0,
- 6. $x_6(t) = A \exp(-at), a>0$
- 7. $x_7(t) = Atri(t/T), T > 0.$
- 8. $x_8(t) = A rect(t/T), T > 0.$

C. Puissance moyenne d'un signal périodique

On considère le signal périodique $x(t) = A \sin(2\pi t/T_0)$.

- 1. Calculer la puissance moyenne, P(t,T), du signal sur un intervalle de mesure T.
- 2. Montrer que la puissance moyenne, lorsque $T \to +\infty$, est égale à celle calculée sur une période T_0 .
- 3. Pour quelles autres valeurs de l'intervalle de mesure, obtient-on le même résultat ?