MATH 4317 Homework 2

Homework guidelines:

- Each problem I assign, unless otherwise stated, is asking you to prove something. Give a full mathematical proof using only results from class or Wade.
- Submit a PDF or JPG to gradescope. The grader has ~ 250 proofs to grade: please make his job easier by submitting each problem on a different page.
- If you submit your homework in Latex, you get 2% extra credit.

Problems (5 total, 10 pts each)

Definition 1. Given two nonempty sets $A, B \subset \mathbb{R}$, define their *Minkowski sum* A + B to be

$$A + B = \{a + b : a \in A, b \in B\}.$$

Problem 1. Prove or disprove (provide a counterexample) for the following statement: For all nonempty, bounded sets $A, B \subset \mathbb{R}$, we have that

$$\sup(A+B) = \sup(A) + \sup(B).$$

Proof. Assume that we have two bounded sets A, B and assume that we have a third set C that is the Minkowski sum of A+B. That is to say that $C=A+B=\{a+b:a\in A,b\in B\}$. Let $\sup(A)=a_1,\sup(B)=b_1$. Let $a\in A,b\in B$ then we have that $a\le a_1,b\le b_1$ by the definition of a supremum. Therefore, we know that $a+b\le a_1+b_1$. We then know that C is bounded above and that a_1+b_1 is an upper bound of the set. We then need to prove that a_1+b_1 is not just the upper bound of the set C but that it is also $\sup(C)=a_1+b_1$. Let $\epsilon>0$ be an arbitrary number. Then there exists an element $a\in A$ such that $a_1-\frac{\epsilon}{2}< a\le a_1$ and similarly there is an element $b\in B$ such that $b_1-\frac{\epsilon}{2}< b\le b_1$. Therefore, if we add these two statements together we get $(a_1+b_1)-\epsilon< a+b\le (a_1+b_1)$. This then shows that $\sup C=a_1+b_1$.

Problem 2. Find the sup and inf of the set

$$E = \left\{ 2 + \frac{1}{n} : n \in \mathbb{N} \right\}.$$

Claim 1. sup(E) = 3

Proof. We first want to show that 3 is an upper bound of E. We want to show that $2+\frac{1}{n} \leq 3$: $\forall n \in \mathbb{N}$. We can say that $2+\frac{1}{n} \leq 3 \Rightarrow \frac{1}{n} \leq 1$. Then for all $n \in \mathbb{N}$ we have that $n \geq 1$, and further that $1 \geq \frac{1}{n}$. Therefore we have that $2+\frac{1}{n} \leq 3$. Now we want to show that 3 is the least upper bound of E. Let $\epsilon > 0$ if we then take that $3-\epsilon < 3$ we know that that $3-\epsilon$ is not an upper bound of the set E. Therefore, we know that $\sup(E) = 3$.

Claim 2. $\inf(E) = 2$

Proof. We first want to show that 2 is a lower bound of E. We want to show that $2+\frac{1}{n}\geq 2: \forall n\in\mathbb{N}$. We know that $2+\frac{1}{n}\geq 2\Rightarrow \frac{1}{n}\geq 0$, and if we take $1\geq 0$, then for all $n\in\mathbb{N}$ we know then that $\frac{1}{n}\geq 0$. Therefore, 2 is a lower bound on E. We now want to show that 2 is a greatest lower bound on E. Let $\epsilon>0$ then we have that $2+\epsilon>2$ we know that 2+epsilon is not a lower bound of the set E. Therefore, we then know that $\inf(E)=2$.

Problem 3. Prove that

$$\bigcap_{k\in\mathbb{N}}\left[\frac{k-1}{k},\frac{k+1}{k}\right]=\left\{1\right\}.$$

Proof. Let $E = \bigcap_{k \in \mathbb{N}} \left[\frac{k-1}{k}, \frac{k+1}{k}\right]$. We will first show that $\{1\} \subset E$. We will first manipulate the definition of E, we then have that $\left[\frac{k-1}{k}, \frac{k+1}{k}\right] = \left[\frac{k}{k} - \frac{1}{k}, \frac{k}{k} + \frac{1}{k}\right] = \left[1 - \frac{1}{k}, 1 + \frac{1}{k}\right]$. From examples in class we know that $\sup(\frac{1}{n}) = 1$, $\inf(\frac{1}{n}) = 0$ for $n \in \mathbb{N}$. Therefore we have that $1 - \frac{1}{n} \le 1 \le 1 + \frac{1}{n}$. Thus, we know that $\{1\} \in \left[\frac{k-1}{k}, \frac{k+1}{k}\right]$ and further that $\{1\} \subset E$. Next let $x \in E$, that is to say that $\frac{k-1}{k} \le x \le \frac{k+1}{k}$ for all $k \in \mathbb{N}$. We can then manipulate this as earlier to arrive at $1 - \frac{1}{k} \le x \le 1 + \frac{1}{k}$. If we again recall that $\sup(\frac{1}{n}) = 1$, $\inf(\frac{1}{n}) = 0$, then we need x such that $0 \le x \le 2 \cap 1 \le x \le 1 = \{1\}$. This implies that $E \subset \{1\}$. Since $\{1\} \subset E$, $E \subset \{1\}$ we then know that $E = \{1\}$

Definition 2. Let $f: \mathbb{R} \to \mathbb{R}$. We call f monotone increasing if $a \leq b$ implies $f(a) \leq f(b)$.

Problem 4. Let $E \subset \mathbb{R}$ be a bounded set (from above and below). Prove or disprove (provide a counterexample) each of the following statements:

- (i) If f is monotone increasing, then $\sup f(E) \leq f(\sup E)$.
- (ii) If f is monotone increasing, then $\sup f(E) = f(\sup E)$.

Hint: For (ii), consider a function f with a jump discontinuity.

- (i) Let $s = \sup(E)$. By definition of supremum we know that for $n \in \mathbb{N}$ that we can pick an $x_n \in E$ such that $s \frac{1}{n} < x_n \le s$. Then by the squeeze theorem we know that $x_n \to s$ as $n \to \infty$ and therefore, $f(x_n) \to f(s)$. Let $\epsilon > 0$ and pick N such that $n \ge N$ implies that $|f(x_n) f(s)| < \epsilon$. Then, $n \ge N$ implies that $f(s) = f(s) f(x_n) + f(x_n) \le |f(s) f(x_n)| + f(x_n) < \epsilon + f(x_n) \le \epsilon + \sup f(E)$. Since $\epsilon > 0$ was arbitrary we know that $f(\sup A) = f(y) \le \sup f(A)$.
- (ii) Let $f(x) = \begin{cases} x & x < 2 \\ x + 1 & 2 \le x \end{cases}$, and let E = (1,2). It is easy to see that $\sup(E) = 2$. Then $f(\sup(E)) = f(2) = 3$. Alternatively if we take $\sup(f(E))$ we get that $\sup(f(E)) = \sup((1,2)) = 2$. Since $3 \ne 2$ we have disproven this statement for monotone increasing function f that $\sup f(E) = f(\sup E)$.

Let \sim denote the relation on $\mathbb{Z} \times \mathbb{Z} \setminus \{0\}$ defined by

$$(p,q) \sim (m,n) \iff pn = mq.$$

Given $(p,q) \in \mathbb{Z} \times \mathbb{Z} \setminus \{0\}$, let [(p,q)] denote the equivalence class of (p,q), i.e.,

$$[(p,q)] = \{(m,n) \in \mathbb{Z} \times \mathbb{Z} \setminus \{0\} : (m,n) \sim (p,q)\}.$$

Recall from class that the set of equivalence classes $\{[(p,q)]\}$ can be identified with \mathbb{Q} , the set of rational numbers.

Problem 5. Prove that \mathbb{Q} is countable.

Hint: You may freely use the following facts about cardinality in your proof:

- (a) An infinite subset of a countable set is countable.
- (b) If A, B are two countable sets, then the Cartesian product $A \times B$ is also countable.
- (c) If A is countable, B is a set, and $f: A \to B$ is an onto mapping from A to B, then B is either finite or countable.

Proof. Given that we know that \mathbb{Z} is countable, if we take the Cartesian product of $\mathbb{Z} \times \mathbb{Z}$ we arrive at another countable set by (b). Let us consider the set of all equivalence classes of $\mathbb{Z} \times \mathbb{Z}$ as $E = \{[(p_1, q_1)], [(p_2, q_2)], ...\}$ with the definition of each equivalence class be as above. Since $|E| = \infty$ and $E \subset \mathbb{Z} \times \mathbb{Z}$ we know that E is countable by (a). Let $f: E \to \mathbb{Q}$ such that for $z = [(a_1, b_1)] \in E$ we have $f(z) = \frac{a_1}{b_1}$. We want to show that f is onto. Let $q = \frac{q_1}{q_2} \in \mathbb{Q}$ be reduced as much as possible; consider the element $x = [(q_1, q_2)] \in E$, then $f(x) = \frac{q_1}{q_2}$. Therefore since we can find an element of E that can map to an arbitrary element of \mathbb{Q} we know that f is onto. Therefore by (c) we know that \mathbb{Q} is either finite or countable. Since $\mathbb{Z} \subset \mathbb{Q}$ and \mathbb{Z} is infinite, we know that \mathbb{Q} is also infinite which further implies that \mathbb{Q} is countable.