Tries & Huffman Codes

CIS2520 - Data Structures Fall 2011, LAB 9 Tao Xu

1

Trie - Indexed Search Tree

- A trie (retrieval) is a special case of tree
- Applicable when
 - Key C can be decomposed into subkeys C₁,..., C_n
 - Redundancy (same prefix) exists between subkeys
- Approach
 - Store subkey at each node
 - Path through trie yields full key

Tries

- · Useful for string matching
 - String decomposed into sequence of letters
 - E.g.,
 - "ART" ⇒ "A" "R" "T"
- Can be very fast
 - Less overhead than hashing
- May reduce memory
 - Exploiting redundancy

3

Types of Tries

- Standard
 - Single character per node
- Compressed
 - Eliminating chains of nodes
- Compact
 - Stores indices into original string(s)

Standard Tries

- A standard trie for a set of strings S={S₁,S₂,...}
 - Each node (except root) is labeled with a character
 - Children of every node are ordered (alphabetically)
 - Paths from root to leaves yield all strings in S

5

Standard Trie Example

- For strings
 - { bear, bell, bid, bull, buy, sell, stock, stop }

Standard Trie (2)

- A standard trie uses O(n) space and supports searches, insertions and deletions in time O(dm), where:
 - n total length of all strings in S
 - *m* size of the string parameter of the operation

Word Matching Trie

 Insert words into trie

 Each leaf stores occurrences of word in the text

7

Compressed Trie

- Observation
 - Internal node v of T is redundant if v has one child and is not the root
- Approach
 - A chain of redundant nodes can be compressed
 - Replace chain with single node
 - Include concatenation of labels from chain
- Result
 - Internal nodes have at least 2 children
 - Some nodes have multiple characters

9

Compact Tries

- Compact representation of a compressed trie
- Approach
 - For an array of strings S = S[0], ... S[s-1]
 - Store ranges of indices at each node
 - Instead of substring
 - Represent as a triplet of integers (i, j, k)
 - Such that X = s[i][j..k]
 - Example: S[0] = "abcd", (0,1,2) = "bc"
- Properties
 - Uses O(s) space, where s = # of strings in the array
 - Serves as an auxiliary index structure

11

Compact Representation

Tries and its Applications

- Web search engine indexing
- Spelling check
- Computational biology
- ...

13

Huffman Encoding

- Compression
 - Typically, in files and messages,
 - Each character requires 1 byte or 8 bits
 - Already wasting 1 bit for most purposes!
- Question
 - What's the minimum number of bits that can be used to store an arbitrary piece of text?
- Idea
 - Find the frequency of occurrence of each character
 - Encode Frequent characters -- short bit strings
 - Rare characters -- long bit strings

Encoding – A Simple Example

A message of 5 symbols:

[▶♣♣♠⊜▶♣☼▶⊜]

Fix length code (e.g, ASCII)
 5 symbols → at least 3 bits each
 Total Length = 10*3=30 bits

	000	
.	001	
•	010	
±	011	
☆	100	

Huffman code
 Length varies depending on frequency
 Total Length = 3*2 +3*2+2*2+3+3=24bits

Symbol	Freq.	Code
	3	00
*	3	01
•	2	10
*	1	110
✡	1	111

15

Encoding Trie

- A code is a mapping each character of an alphabet to a binary code-word
- A prefix code is a binary code such that no code-word is the prefix of another code-word
- An encoding trie represents a prefix code
 - Each leaf stores a character

 The code word of a character is given by the path from the root to the leaf storing the character (0 for a left child and 1 for a right child)

00	010	011	10	11
а	b	С	d	е

Huffman Encoding

- Encoding
 - Use a tree
 - Encode by following tree to leaf
 - E.g.,
 - E is 00
 - S is 011
 - Frequent characters
 - E, T 2 bit encodings
 - Others

A, S, N, O 3 bit encodings

17

Huffman Encoding

- Greedy Approach
 - Sort characters by frequency
 - Form two lowest weight nodes into a sub-tree
 - Sub-tree weight = sum of weights of nodes
 - Move new tree to correct place
- Bottom-up (optimal)
 - Top-down (Shannon coding, suboptimal)
- Suboptimal to encode block data (e.g., 'cat')

Huffman Encoding - Operation

19

Huffman Encoding - Operation

After shifting sub-tree to its correct place ...

Combine next lowest pair

Move sub-tree to correct place

Huffman Encoding - Operation

21

Huffman Encoding - Operation

Huffman Encoding - Operation

23

Huffman's Algorithm

- Given a string X,
 Huffman's
 algorithm
 construct a prefix
 code the
 minimizes the size
 of the encoding of
 X
- A heap-based priority queue is used as an auxiliary structure

```
function HuffmanEncoding (X)
  Input: string X of size n
  Output: optimal encoding trie for X
       C = distinctCharacters(X)
       computeFrequencies(C, X)
       Q = \text{new empty heap}
       for all c in C
          T = (\text{new single-node tree storing } c)
          Q.insert(getFrequency(c), T)
       while Q.size() > 1
         f_1 = Q.minKey()
         T_1 = Q.removeMin()
         f_2 = Q.minKey()
          T_2 = Q.removeMin()
          T = join(T_1, T_2)
          Q.insert(f_1 + f_2, T);
       return Q.removeMin()
```

Huffman Encoding - Time Complexity

- Sort keys $O(n \log n)$
- Repeat *n* times
 - Form new sub-tree O(1)
 - Move sub-tree O(logn)
 - (binary search)
 - Total $O(n \log n)$
- Overall $O(n \log n)$

25

Huffman Encoding - Decoding

