Visualización de datos

Outline

- Buenos gráficos el "lie factor"
- Representar datos en 1,2, y 3-D
- Representar datos en 4+ dimensiones
 - Parallel coordinates
 - Scatterplots
 - Stick figures

Rol de la visualización

- Soporte de la exploración interactiva
- Ayuda a la presentación de resultados

Contra: Puede llevar a confusiones, ser engañosas

Una buena figura

Figure 3. The contents of TFA, C, CG, GCG, EGC, EC, ECG, and quercetin in pu-erh teas, black teas, and green teas.

Malas figuras: Spreadsheet

Year	Sales
1999	2,110
2000	2,105
2001	2,120
2002	2,121
2003	2,124

Qué está mal en esta figura?

Malas figuras: Spreadsheet con eje vertical engañoso

Year	Sales
1999	2,110
2000	2,105
2001	2,120
2002	2,121
2003	2,124

La escala del eje Y da la impresión **INCORRECTA** de un gran efecto

Una mejor figura

Year	Sales
1999	2,110
2000	2,105
2001	2,120
2002	2,121
2003	2,124

La escala de 0 a 2000 da la correcta impresión de mínimo efecto

Lie Factor

$$Lie\ Factor = \frac{si}{si}$$

$$=\frac{\frac{(29-11)}{11}}{\frac{(2124-2105)}{}}$$

Requerido por Tufte: 0.95<Lie Factor<1.05

(E.R. Tufte, "The Visual Display of Quantitative Information", 2nd edition)

(E.R. Tufte, "The Visual Display of Quantitative Information", 2nd edition)

Tufte: Principios de las buenas visualizaciones

- Darle al observador
 - el mayor número de ideas
 - en el menor tiempo
 - con la menor cantidad de tinta y espacio.

Decir la verdad sobre los datos!

Métodos de Visualización

- Visualización en 1-D, 2-D y 3-D
 - Métodos simples y conocidos
- Visualización en más dimensiones
 - Parallel Coordinates
 - Símbolos
 - Otras ideas

Datos 1-D (Univariados)

Representaciones

R: ejemplos

```
x < -c(10, runif(99))
plot(x)
plot(x,rep(0,100))
hist(x)
# se ve el outlier, pero en muchos datos se puede perder
x < -c(10, rnorm(9999))
hist(x)
# con boxplot se ve el outlier siempre, pero se pierde informacion de la
  distribucion
boxplot(x)
boxplot(x,range=2)
```

Datos 2-D (Bivariados)

Scatter plot, ...

2-D: Saturación

A veces se necesitan otros métodos

2-D: Contornos

Apropriados para plots con alta densidad

R: ejemplos

```
#dos dimensiones
x<-runif(100)*2*pi
y < -jitter(sin(x), amo = 0.1)
y[c(1,100)] < -y[c(1,100)] * (-1)
hist(x)
hist(y)
boxplot(y)
plot(x,y)
```

Datos 3-D (proyecciones)

Datos 3-D (heat-map)

R: ejemplos

```
y < -x < -1:100*3.14/100
z < -\sin(x)\% *\% t(\sin(y))
image(x,y,z) #heatmap
library(graphics)
contour(x,y,z)
filled.contour(x,y,z)
persp(x,y,z)
```

Visualización en más dimensiones

- Scatterplots
- Parallel Coordinates
- Chernoff faces

• ...

Vistas múltiples

Mostrar cada variable por separado

	A	В	С	D	E	
1	4	1	8 4 2 3	3	5	
2	6	3	4	2	1	
3	5	7	2	4	3	
4	2	6	3	1	5	

Problema: no muestra correlaciones

Scatterplot

Muestra cada par de variables en un plot individual 2-D Ejemplo: car data

Ventaja:

Se ven facilmente las correlaciones

Problema:

No se ven los efectos multivariados

Parallel Coordinates

- •Pone cada variable en un valor distinto (fijo) del eje horizontal.
- •Los valores de ponen en la vertical, y se unen con líneas

Un dataset en coordenadas Cartesianas

El mismo dataset en parallel coordinates

Parallel Coordinates: ejemplo

```
Sepal
Length
```

sepal	sepal	petal	petal
length	width	length	width
5.1	3.5	1.4	0.2

Parallel Coordinates: 2 D

sepal	sepal	petal	petal
length	width	length	width
5.1	3.5	1.4	0.2

Parallel Coordinates: 4 D

Parallel Coordinates: Iris

Parallel coordinates: resumen

- Cada punto es una línea
- Puntos similares, líneas similares
- Las líneas que cruzan muestran atributos negativamente correlacionados

Problemas:

- el orden de los ejes es importante
- Límite de ~20 dimensiones

Chernoff Faces

Codifica las diferentes variables en características de la cara humana

Aprovecha la capacidad humana de encontrar facilmente pequeñas diferencias entre caras

Applets: http://www.cs.uchicago.edu/~wiseman/chernoff/ http://hesketh.com/schampeo/projects/Faces/chernoff.html

Chernoff faces, ejemplo

Chernoff-Faces [Che 73, Tuf 83]

Stars plots

 Cada variable va en una dirección angular diferente. Cada punto forma una "estrella"

R: ejemplos

data(iris)

summary(iris)

plot(iris[,-5],col=iris[,5])

library(denpro)

paracoor(iris[,-5],pal=iris[,5])

require(TeachingDemos)

faces(iris[,-5],ncol=25)

help(stars)

stars(iris[,-5],ncol=10, col.sta=iris[,5])

boxplot(iris[iris[,5]== "setosa",-5])

boxplot(iris[iris[,5]== "versicolor",5])

boxplot(iris[iris[,5]== "virginica",5])

Resumen

- Muchos métodos, distintas ventajas
- Se pueden visualizar datos en más de 3-D
- Buscar siempre:
 - Hacer buenas gráficas
 - Que muestren la mayor cantidad de información
 - Que no mientan sobre los datos