Assignment 18.2: Problem Statement

Using the following data, perform a oneway analysis of variance using α =.05. Write up the results in APA format.

[Group1: 51, 45, 33, 45, 67] [Group2: 23, 43, 23, 43, 45] [Group3: 56, 76, 74, 87, 56]

Solution

Sample means (\overline{x}) for the groups: = 48.2, 35.4, 69.8

Intermediate steps in calculating the group variances:

```
[[1]]
  value mean deviations sq deviations
1
    51 48.2
                  2.8
                                7.84
2
    45 48.2
                  -3.2
                               10.24
3
    33 48.2
                  -15.2
                               231.04
4
    45 48.2
                  -3.2
                               10.24
    67 48.2
                  18.8
                               353.44
5
[[2]]
  value mean deviations sq deviations
    23 35.4
                  -12.4
                              153.76
    43 35.4
                   7.6
                               57.76
2
3
    23 35.4
                  -12.4
                              153.76
4
    43 35.4
                   7.6
                                57.76
    45 35.4
                    9.6
5
                                92.16
[[3]]
  value mean deviations sq deviations
    56 69.8
                  -13.8
                              190.44
1
2
    76 69.8
                    6.2
                                38.44
    74 69.8
                    4.2
                                17.64
    87 69.8
                  17.2
                               295.84
4
5
    56 69.8
                  -13.8
                               190.44
Sum of squared deviations from the mean (SS) for the groups:
612.8 515.2 732.8
```

```
Var1 = [612.8 / (5-1)] = 153.2

Var2 = [515.2 / (5-1)] = 128.8

Var3 = [732.8 / (5-1)] = 183.2
```

MSerror = [(153.2+128.8+183.2)/3] = 155.07

Note: this is just the average within-group variance; it is not sensitive to group mean differences! Calculating the remaining *error* (or *within*) terms for the ANOVA table:

Dferror =
$$15-3 = 12$$

$$SSerror = (155.07)(15-3) = 1860.8$$

Intermediate steps in calculating the variance of the sample means:

Grand mean (\overline{X}) = 48.2+35.4+69.83 = 51.13

group mean	grand mean	deviations	sq deviations	
48.2	51.13	-2.93	8.58	
35.4	51.13	-15.73	247.43	
69.8	51.13	18.67	348.57	

Sum of squares (SSmeans) = 604.58

$$Var_{means} = [604.58/(3-1)] = 302.29$$

$$MS$$
between = (302.29)(5) = 1511.45

Note: This method of estimating the variance IS sensitive to group mean differences!

Calculating the remaining between (or group) terms of the ANOVA table:

$$Dfgroups = 3 - 1 = 2$$

 $SSgroup = (1511.45)(3-1) = 3022.9$

Test statistic and critical value

$$F = (1511.45 / 155.07) = 9.75$$

Feritical(2,12) = 3.89

Decision: reject H0

ANOVA table

source	SS	df	MS	F
group	3022.9	2	1511.45	9.75
error	1860.8	12	155.07	
total	4883.7			

Effect size

$$\eta^2 = [3022.9 / 4883.7] = 0.62$$

APA writeup

$$F(2, 12) = 9.75, p < 0.05, \eta^2 = 0.62$$