Efektywne obliczanie sumy szeregu

$$\sum\limits_{k=1}^{\infty} \ rac{(-1)^{k+1}}{k^2+1}$$
 wraz z uogólnieniem

na szeregi postaci
$$\sum\limits_{k=1}^{\infty} \, rac{(-1)^{k+1}}{k^n+1}$$

Sprawozdanie do zadania P.1.12

Filip Marcinek 282905

Wrocław, 12 listopada 2017

1 Wstęp

Zadanie polega na wyznaczeniu wartości sumy szeregu naprzemiennego $\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k^2+1}$ z dokładnością do 10 i 16 cyfr ułamkowych dziesiętnych za pomocą sum częściowych tego szeregu, a także na zauważeniu pewnych zależności arytmetycznych pozwalających nam przyspieszyć wyznaczanie przybliżonej sumy tego szeregu. W dalszej części zadania uogólnię efektywniejszy sposób (stosujący wspomniane zależności) na obliczanie sumy szeregu dla szeregów postaci $\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k^n+1}$ dla $n=(2,4,6,8\dots).$

Dla ułatwienia zapisu przyjmiemy oznaczenie $S_n:=\sum_{k=1}^\infty\frac{(-1)^{k+1}}{k^n+1}$, w szczególności $S_2:=\sum_{k=1}^\infty\frac{(-1)^{k+1}}{k^2+1}$.

Wszystkie obliczenia wykonane zostały przy użyciu języka programowania **Julia** w wersji **0.6.0** na standardowych 64-bitowych zmiennopozycyjnych liczbach maszynowych.

Kod źródłowy, który został użyty do obliczeń w pliku o rozszerzeniu .ipynb, znajduje się w pliku o rozszerzeniu .jl.

2 Wyznaczenie przybliżonej sumy szeregu S_2

2.1 Wniosek z kryterium Leibniza

Moim zadaniem będzie wyznaczenie wartości nieskończonej sumy szeregu S_2 z dokładnością do 10 i 16 cyfr ułamkowych dziesiętnych. Na początek podam prosty fakt będący wnioskiem z kryterium Leibniza dla szeregów naprzemiennych, który istotnie ułatwi obliczenia:

Fakt 1. Dla szeregu naprzemiennego $L := \sum_{k=1}^{\infty} (-1)^{k+1} a_k$ spełniającego warunki kryterium Leibniza bląd bezwzględny przybliżenia wartości jego nieskończonej sumy przez n-tą sumę częściową jest opisany następującą zależnością:

$$|L - L_n| \leqslant a_{n+1}. (1)$$

Dowód. Dowód pomijamy, ponieważ jest prosty i ogólnie dostępny [1].

Wniosek 1. Zauważmy, że nierówność (1) z Faktu 1. daje nam możliwość latwego sprawdzenia, ile elementów szeregu S_2 trzeba wysumować, aby otrzymać zadaną dokładność wyniku.

Niech ε oznacza pożądaną przez nas dokładność, zaś L – szereg, którego sumę wyznaczamy. Chcemy znaleźć n takie, że $|L-L_n|\leqslant \varepsilon$. Zatem – korzystając z nierówności (1) – otrzymujemy nierówność $|L-L_n|\leqslant a_{n+1}\leqslant \varepsilon$, z której w oczywisty sposób wynika, że wystarczy nam znaleźć n, dla którego zachodzi $a_{n+1}\leqslant \varepsilon$. Fakt 1. gwarantuje nam wtedy, że suma częściowa L_n będzie przybliżać wartość sumy L z dokładnością $\leqslant \varepsilon$.

2.2 Obliczanie sumy S_2 za pomocą sum częściowych

Zgodnie z definicją cyfr dokładnych dziesiętnych ułamkowych[2] dla pewnego przybliżenia \tilde{S} warunkami wystarczającymi dla uzyskania 10 i 16 cyfr dokładnych jest spełnienie nierówności odpowiednio: $|S_2-\tilde{S}|\leqslant \frac{1}{2}\cdot 10^{-10}$ oraz $|S_2-\tilde{S}|\leqslant \frac{1}{2}\cdot 10^{-16}$. Zatem z Wniosku z Faktu 1. wystarczy znaleźć a_{k+1} takie, że $a_{k+1}\leqslant \frac{1}{2}\cdot 10^{-10}$ (oraz odpowiednio $\frac{1}{2}\cdot 10^{-16}$), a wtedy k-ta suma częściowa S_2 jest szukanym przybliżeniem \tilde{S} .

"Liczba kroków" oznacza, ile kroków będzie musiał wykonać algorytm sumowania elementów szeregu, żeby otrzymać odpowiednią dokładność.

Liczba kroków dla 10 cyfr dokładnych S_n : 141421. Wartość sumy S_n : 0.3639854725. Błąd bezwzględny: 2.499995e-11.

Liczba kroków dla 16 cyfr dkoładnych S_n : 141421356. Wartość sumy S_n : 0.3639854725089334.

Błąd bezwzględny: 5.551115e-17.

n-ta suma częściowa	błąd bezwzględny (a_{n+1})
10000	9.998000e-09
20000	1.111037e-09
30000	6.249688e-10
40000	3.999840e-10
50000	2.777685e-10
:	:
110000	8.264313e-11
120000	6.944329e-11
130000	5.917069e-11
141421	4.999954e-11
:	:
<u>:</u>	<u>:</u>
141421356	5.000000e-17

Tabela 1: Błędy bezwzględne przy obliczaniu kolejnych sum częściowych szeregu $S_2. \label{eq:S2}$

2.3 Zależności przyspieszające obliczenia

Można znacznie przyspieszyć obliczanie sumy S_n , wykorzystując arytmetyczne zależności, które udowodnię poniżej oraz przedstawię ich zastosowanie do zagadnienia z zadania.

Będę korzystać z następującego wzoru[3]:

$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{2k}} = (-1)^{k+1} \frac{\pi^{2k} (2^{2k-1} - 1)}{(2k)!} B_{2k}, \tag{2}$$

gdzie B_{2k} to 2k-ta liczba Bernoulliego [3].

Fakt 2. Zauważmy, że zachodzi następująca zależność:

$$\frac{\pi^2}{12} - S_2 = \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k^2(k^2+1)}.$$
 (3)

Dowód. Wykonujemy proste przekształcenia szeregów:

$$S_2 + \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k^2(k^2+1)} = \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k^2+1} + \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k^2(k^2+1)} =$$

$$= \sum_{k=1}^{\infty} \left(\frac{(-1)^{k+1}}{k^2+1} \cdot \left(1 + \frac{1}{k^2} \right) \right) =$$

$$= \sum_{k=1}^{\infty} \left(\frac{(-1)^{k+1}}{k^2+1} \cdot \frac{k^2+1}{k^2} \right) = \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k^2}.$$

Korzystając ze wzoru (2) dla n = 1 mamy:

$$S_2 + \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k^2(k^2+1)} = \frac{\pi^2}{12}.$$

Skąd natychmiast wynika (3).

Czy teraz poprawny wynik zostanie uzyskany mniejszą liczbą kroków algorytmu sumowania szeregu? Tym razem liczone są sumy częściowe szeregu $\sum_{k=1}^{\infty}\frac{(-1)^{k+1}}{k^2(k^2+1)}.$

n-ta suma częściowa	błąd bezwzględny (a_{n+1})
100	9.608861e-09
141	2.459377e-09
173	1.090909e-09
200	6.126395e-10
223	3.971909e-10
:	:
331	8.230832e-11
346	6.897290e-11
360	5.888001e-11
376	4.950300e-11
i :	:
:	:
11892	4.998438e-17

Tabela 2: Błędy bezwzględne przy obliczaniu kolejnych sum częściowych szeregu $\sum_{k=1}^{\infty}\frac{(-1)^{k+1}}{k^2(k^2+1)}$

Liczba kroków dla 10 cyfr dokładnych: 376. Wartość sumy S_n : 0.3639854725. Błąd bezwzględny: 2.488287e-11.

Liczba kroków dla 16 cyfr dokładnych: 11892. Wartość sumy $S_n\colon 0.3639854725089334.$

Błąd bezwzględny: 0.000000e+00.

Widzimy więc, że szybkość obliczeń znacznie się zwiększyła.

Fakt 3. Możemy udowodnić następującą zależność:

$$S_2 - \frac{\pi^2}{12} + \frac{7\pi^4}{720} = \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k^4(k^2+1)}.$$
 (4)

Dowód. Z Faktu 1. wiemy, że $S_2 - \frac{\pi^2}{12} = -\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k^2(k^2+1)}$.

Zatem:

$$\begin{split} &\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k^2+1} + \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k^2(k^2+1)} = \sum_{k=1}^{\infty} \left(\frac{(-1)^{k+1}}{k^2(k^2+1)} \cdot \left(1 + \frac{1}{k^2} \right) \right) = \\ &= \sum_{k=1}^{\infty} \left(\frac{(-1)^{k+1}}{k^2(k^2+1)} \cdot \frac{k^2+1}{k^2} \right) = \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k^4}. \end{split}$$

Korzystając ze wzoru (2) dla n=2 otrzymujemy:

$$\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k^2(k^2+1)} + \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k^4(k^2+1)} = \frac{7\pi^4}{720},$$

a stosując podstawienie z Faktu 2. i odejmowanie stronami mamy (4).

Czy liczbę kroków sumowania można jeszcze zmniejszyć? Zobaczmy, ile kroków potrzeba, by uzyskać dokładny wynik, licząc częściowe sumy szeregu $\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k^2(k^2+1)}$.

Liczba kroków dla 10 cyfr dokładnych: 52. Wartość sumy S_n : 0.3639854725. Błąd bezwzględny: 2.382478e-11.

Liczba kroków dla 16 cyfr dokładnych: 521. Wartość sumy S_n : 0.3639854725089336.

Błąd bezwzględny: 1.665335e-16.

n-ta suma częściowa	błąd bezwzględny (a_{n+1})
10	5.598471e-07
20	1.163324e-08
30	1.125585e-09
40	2.103965e-10
50	5.680833e-11
52	4.510142e-11
:	:
<u>.</u>	·
521	4.942827e-17

Tabela 3: Błędy bezwzględne przy obliczaniu kolejnych sum częściowych szeregu $\sum_{k=1}^{\infty}\frac{(-1)^{k+1}}{k^4(k^2+1)}$

Uogólnienie 3

Postaram się uogólnić efektywny sposób wyznaczania sumy S_2 na szeregi postaci

 S_n oraz (być może) przyspieszyć obliczanie sumy S_2 . Niech $K_{(n,m)}=\sum_{k=1}^{\infty}\frac{(-1)^{k+1}}{k^{n\cdot m}(k^n+1)}$. Na początek uogólnię zależność, którą można zauważyć dla szeregu S_2 w Faktach 2. i 3.:

Lemat 1.
$$K_{(n,m-1)} + K_{(n,m)} = \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k^{n \cdot m}} dla \ n, m \in \mathbb{N}^+.$$

Dowód. Ustalmy n i m. Wykonujemy proste przekształcenia szeregów:

$$K_{(n,m-1)} + K_{(n,m)} = \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k^{n(m-1)}(k^n + 1)} + \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k^{n \cdot m}(k^n + 1)} =$$

$$= \sum_{k=1}^{\infty} \left(\frac{(-1)^{k+1}}{k^{n(m-1)}(k^n + 1)} \cdot \left(1 + \frac{1}{k^n} \right) \right) =$$

$$= \sum_{k=1}^{\infty} \left(\frac{(-1)^{k+1}}{k^{n(m-1)}(k^n + 1)} \cdot \frac{k^n + 1}{k^n} \right) =$$

$$= \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k^{n(m-1)}} \cdot \frac{1}{k^n} = \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k^{n \cdot m}}.$$

Twierdzenie 1.

$$S_n = \sum_{i=1}^m (-1)^{j+1} \sum_{k=1}^\infty \frac{(-1)^{k+1}}{k^{j \cdot n}} + (-1)^m \cdot K_{(n,m)}.$$
 (5)

Dowód. Zauważmy, że $K_{(n,0)} = S_n$. Dla dowodu wystarczy zatem pokazać, że

$$K_{(n,0)} = \sum_{j=1}^{m} (-1)^{j+1} \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k^{j \cdot n}} + (-1)^m \cdot K_{(n,m)}.$$

Ustalmy $n \in \mathbb{N}$. Indukcja po m.

• m = 0:

$$(-1)^0 \cdot K_{(n,0)} = K_{(n,0)}.$$

• Załóżmy, że równość (5) zachodzi dla wszystkich l < m. Pokażemy, że w takim razie równość (5) jest spełniona dla m.

$$\sum_{j=1}^{m} (-1)^{j+1} \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k^{j \cdot n}} + (-1)^{m} \cdot K_{(n,m)} = \sum_{j=1}^{m-1} (-1)^{j+1} \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k^{j \cdot n}} + (-1)^{m+1} \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k^{m \cdot n}} + (-1)^{m+1} \cdot K_{(n,m-1)} - (-1)^{m-1} \cdot K_{(n,m-1)} + (-1)^{m} \cdot K_{(n,m)} \stackrel{ind.}{=} K_{(n,0)} + (-1)^{m+1} \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k^{m \cdot n}} + (-1)^{m} \cdot K_{(n,m-1)} + (-1)^{m} \cdot K_{(n,m)} \stackrel{z \ lematu \ 1}{=} K_{(n,0)} + (-1)^{m+1} \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k^{m \cdot n}} + (-1)^{m} \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k^{m \cdot n}} = K_{(n,0)} - (-1)^{m} \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k^{m \cdot n}} + (-1)^{m} \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k^{m \cdot n}} = K_{(n,0)}.$$

4 Wnioski

Po rozważeniu trzech metod obliczania wartości sumy szeregu S_2 stwierdzam, iż każda kolejna metoda była coraz szybsza. Zauważyłem, że druga metoda (z wykorzystaniem równości (3)) była kwadratowo szybsza od pierwszej (która była zwykłym sumowaniem szeregu S_n) oraz zwróciła dokładniejsze wyniki. Trzecia metoda (z wykorzystaniem równości (4)) była natomiast szybsza niż druga, ale wyniki były mniej dokładne.

Przyspieszanie metody obliczania sumy szeregu S_n polegało na zamianie S_n na sumę stałej oraz sszeregu, którego sumy częściowe zbiegały szybciej do sumy nieskończonej szeregu. Jak mogliśmy zauważyć, skorzystanie z tego faktu znacznie przyspieszyło obliczenia (nie wpływając wcale lub w bardzo małym stopniu na poprawność wyników).

Uogólniłem także metodę na szeregi S_n . Dla coraz większych n zauważamy coraz mniejszą różnicę pomiędzy zwykłym sumowaniem szeregu S_n a zastosowaniem zaproponowanej przeze mnie efektywnej metody, ponieważ im większe n, tym szybciej sumy szeregu postaci S_n zbiegają do sumy nieskończonej.

Literatura

- [1] https://en.wikipedia.org/wiki/Alternating_series_test (ostatni dostęp 12 listopada 2017)
- [2] https://skos.ii.uni.wroc.pl/mod/resource/view.php?id=4061 (ostatni dostęp 12 listopada 2017)
- [3] https://en.wikipedia.org/wiki/Bernoulli_number (ostatni dostęp 12 listopada 2017)