

REPASO DE PROBABILIDAD Y ESTADÍSTICA I

ALAN REYES-FIGUEROA
ELEMENTS OF MACHINE LEARNING

(AULA 03) 12.ENERO.2023

- 1. Calcula la probabilidad que en un grupo de *n* personas hay al menos una que cumple años el 12 de enero.
- 2. Calcula la probabilidad que en un grupo de *n* personas hay al menos dos personas que cumplen en el mismo día.

n	probabilidad 1 persona 12.enero	probabilidad 2 personas mismo día		
0	0	0		
1	0.002739	0		
5	0.013623	0.027135		
10	0.027061	0.116948		
20	0.053391	0.411438		
30	0.079008	0.706316		
40	0.103932	0.891231		
50	0.128181	0.970373		
60	0.151774	0.994122		
70	0.174729	0.999159		

Solución:

$$\mathbb{P}(\text{alguien cumple años 12.enero}) = 1 - \left(\frac{364}{365}\right)^{n-1}, \quad n \ge 1.$$

$$\mathbb{P}(\text{dos personas cumplen años mismo día}) = 1 - \frac{365}{365} \cdot \frac{364}{365} \cdot \dots \cdot \frac{365 - (n-1)}{365}, \quad n \ge 2.$$

$\overline{\mathsf{Caso}\;\Omega\subseteq\mathbb{R}^d}$

Distribución uniforme:

Experimento: Elegir un número al azar de [0, 2].

Distribución uniforme:

Experimento: Elegir un número al azar de [0,2].

Tenemos $\Omega = [0, 2]$.

$$A = [0, 1]$$
 $\mathbb{P}(A) = 1/2$.

Distribución uniforme:

Experimento: Elegir un número al azar de [0,2].

Tenemos $\Omega = [0, 2]$.

$$A = [0, 1]$$
 $\mathbb{P}(A) = 1/2$.

$$B = [0.4, 1]$$
 $\mathbb{P}(B) = 0.6/2 = 0.3.$

Distribución uniforme:

Experimento: Elegir un número al azar de [0,2].

Tenemos $\Omega = [0, 2]$.

$$A = [0, 1]$$
 $P(A) = 1/2$.

$$B = [0.4, 1]$$
 $\mathbb{P}(B) = 0.6/2 = 0.3.$

En general, para $A \subseteq \Omega$

$$\mathbb{P}(A) = \frac{\int_A dx}{\int_{\Omega} dx}.$$

Distribución uniforme:

Experimento: Elegir un número al azar de [0,2].

Tenemos $\Omega = [0, 2]$.

$$A = [0, 1]$$
 $P(A) = 1/2$.

$$B = [0.4, 1]$$
 $\mathbb{P}(B) = 0.6/2 = 0.3.$

En general, para $A \subseteq \Omega$

$$\mathbb{P}(A) = \frac{\int_A dx}{\int_{\Omega} dx}.$$

¿Se puede calcular \mathbb{P} siempre? No.

- Se requiere que $\int_{\Omega} dx < \infty$.
- Tenemos que limitarnos a conjuntos donde $\int_{A} dx$ existe.

 Se elige al azar un punto en un cuadrado con lado 4 cm. Calcula la probabilidad de que esté a una distancia menor de uno cm. de alguna de las esquinas.

- Se elige al azar un punto en un cuadrado con lado 4 cm. Calcula la probabilidad de que esté a una distancia menor de uno cm. de alguna de las esquinas.
- 2. Dos estudiantes quieren ir a comer juntos. Se citan entre las 7 y las 8 de la noche y están dispuestos a esperar a lo más 10 minutos. ¿Cuál es la probabilidad de que puedan ir a comer si sus horas de llegada son uniformes entre las 7 y las 8?

• A partir del experimento elegir algo al azar.

- A partir del experimento elegir algo al azar.
- Probabilidades como límite de frecuencias relativas de ocurrencia (enfoque frequentista)

- A partir del experimento elegir algo al azar.
- Probabilidades como límite de frecuencias relativas de ocurrencia (enfoque frequentista)
- Por medio de apuestas: probabilidades como creencias (base del enfoque bayesiano)

- A partir del experimento elegir algo al azar.
- Probabilidades como límite de frecuencias relativas de ocurrencia (enfoque frequentista)
- Por medio de apuestas: probabilidades como creencias (base del enfoque bayesiano)
- Sistema axiomático (Kolmogorov, 1933).

- A partir del experimento elegir algo al azar.
- Probabilidades como límite de frecuencias relativas de ocurrencia (enfoque frequentista)
- Por medio de apuestas: probabilidades como creencias (base del enfoque bayesiano)
- Sistema axiomático (Kolmogorov, 1933).

En áreas como computación e inteligencia artificial, se han elaborado otros sistemas axiomáticos (fuzzy sets, Dempster-Shaffer, . . .)

Se elige una persona al azar. ¿Cuál es la probabilidad que sea una persona con lentes? $\frac{6}{13}$.

Se elige una persona al azar. ¿Cuál es la probabilidad que sea una persona con lentes? $\frac{6}{13}$.

Alguien dice que es un hombre: ¿cuál es ahora la probabilidad que sea una persona con lentes? $\frac{2}{3}$.

Se elige una persona al azar. ¿Cuál es la probabilidad que sea una persona con lentes? $\frac{6}{13}$.

Alguien dice que es un hombre: ¿cuál es ahora la probabilidad que sea una persona con lentes? $\frac{2}{3}$.

Definición

Si $\mathbb{P}(B) > 0$, entonces la probabilidad condicional de A dado B se define como

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}.$$

Observaciones:

• $\mathbb{P}(\cdot|B)$ define una nueva función de probabilidad sobre el espacio $\Omega' = B$.

- $\mathbb{P}(\cdot|B)$ define una nueva función de probabilidad sobre el espacio $\Omega' = B$.
- En consecuencia, $\mathbb{P}(A^c|B) = 1 \mathbb{P}(A|B)$.

- $\mathbb{P}(\cdot|B)$ define una nueva función de probabilidad sobre el espacio $\Omega' = B$.
- En consecuencia, $\mathbb{P}(A^c|B) = 1 \mathbb{P}(A|B)$.
- Observar que no hay ninguna relación directa entre $\mathbb{P}(A|B)$ y $\mathbb{P}(A|B^c)$.

- $\mathbb{P}(\cdot|B)$ define una nueva función de probabilidad sobre el espacio $\Omega' = B$.
- En consecuencia, $\mathbb{P}(A^c|B) = 1 \mathbb{P}(A|B)$.
- Observar que no hay ninguna relación directa entre $\mathbb{P}(A|B)$ y $\mathbb{P}(A|B^c)$.
- Siempre podemos escribir $\mathbb{P}(A \cap B) = \mathbb{P}(A|B)\mathbb{P}(B)$.

- $\mathbb{P}(\cdot|B)$ define una nueva función de probabilidad sobre el espacio $\Omega' = B$.
- En consecuencia, $\mathbb{P}(A^c|B) = 1 \mathbb{P}(A|B)$.
- Observar que no hay ninguna relación directa entre $\mathbb{P}(A|B)$ y $\mathbb{P}(A|B^c)$.
- Siempre podemos escribir $\mathbb{P}(A \cap B) = \mathbb{P}(A|B) \mathbb{P}(B)$. (Esto no requiere el supuesto que $\mathbb{P}(B) > 0$) ¿Por qué?

Experimento: Elegir al azar dos letras consecutivas de alguna palabra con alfabeto $T = \{a, b, c, d, e\}$.

Suponemos la siguiente distribución:

		b		d	е
a	0.10	0.05	0.10	0.04	0
b	0.01	0.01	0.10 0.10 0.05 0.01	0.01	0.04
С	0.02	0.05	0.05	0.10	0.01
d	0.04	0.10	0.01	0.01	0.02
е	0	0.10	Ο	0.01	0.02

¿Cuál es la probabilidad que la segunda letra seleccionada sea la "b" dado que sabemos que la anterior fue una vocal?

Solución: Queremos calcular $\mathbb{P}(B|A)$, donde $B = \{primera \ letra \ es \ vocal\} \ y A = \{ letra \ es \ b \}.$

Solución: Queremos calcular $\mathbb{P}(B|A)$, donde $B = \{primera \ letra \ es \ vocal\}$ y $A = \{ letra \ es \ b \}$.

Entonces, de la definición de probabilidad condicional, tenemos

$$\mathbb{P}(B|A) = \frac{\mathbb{P}(B \cap A)}{\mathbb{P}(A)}.$$

Solución: Queremos calcular $\mathbb{P}(B|A)$, donde $B = \{primera \ letra \ es \ vocal\}$ y $A = \{ letra \ es \ b \}.$

Entonces, de la definición de probabilidad condicional, tenemos

$$\mathbb{P}(B|A) = \frac{\mathbb{P}(B\cap A)}{\mathbb{P}(A)}.$$

Pero,
$$\mathbb{P}(B\cap A)=\mathbb{P}(\{ab,eb\})=\mathbb{P}(ab)+\mathbb{P}(eb)=$$
 0.05 $+$ 0.10 $=$ 0.15,

Solución: Queremos calcular $\mathbb{P}(B|A)$, donde $B = \{primera \ letra \ es \ vocal\}$ y $A = \{ letra \ es \ b \}.$

Entonces, de la definición de probabilidad condicional, tenemos

$$\mathbb{P}(B|A) = \frac{\mathbb{P}(B\cap A)}{\mathbb{P}(A)}.$$

Pero,
$$\mathbb{P}(B \cap A) = \mathbb{P}(\{ab, eb\}) = \mathbb{P}(ab) + \mathbb{P}(eb) = 0.05 + 0.10 = 0.15$$
, y $\mathbb{P}(A) = \mathbb{P}(\{ab, bb, cb, db, eb\}) = 0.05 + 0.01 + 0.05 + 0.10 + 0.10 = 0.31$.

Solución: Queremos calcular $\mathbb{P}(B|A)$, donde $B = \{primera \ letra \ es \ vocal\}$ y $A = \{ letra \ es \ b \}.$

Entonces, de la definición de probabilidad condicional, tenemos

$$\mathbb{P}(B|A) = \frac{\mathbb{P}(B\cap A)}{\mathbb{P}(A)}.$$

Pero,
$$\mathbb{P}(B \cap A) = \mathbb{P}(\{ab, eb\}) = \mathbb{P}(ab) + \mathbb{P}(eb) = 0.05 + 0.10 = 0.15$$
, y $\mathbb{P}(A) = \mathbb{P}(\{ab, bb, cb, db, eb\}) = 0.05 + 0.01 + 0.05 + 0.10 + 0.10 = 0.31$.

De allí que

$$\mathbb{P}(B|A) = \frac{\mathbb{P}(B \cap A)}{\mathbb{P}(B)} = \frac{0.15}{0.31} = 0.48387$$

