Homework 2

Haukur Páll Jónsson NLP 2017

November 22, 2017

Question 1. Chomsky Normal Form (CNF)

Answer a): The converted grammar is:

 $S \to NP \ VP$

 $S \to I \ VP \ PP$. We make the rule binary

 $I VP \rightarrow IVP$

 $I \rightarrow i$. When we make terminal symbols we do not make non-terminal symbols

 $NP \rightarrow Det N$

 $VP \to V$ NP. We use the fact that $V \to ate$ instead of creating a new rule which does exactly the same

 $VP \rightarrow ate$. We eliminate unit rules

 $PP \rightarrow Pre NP$

 $V \rightarrow ate$

 $Det \rightarrow the \mid a$

 $N \rightarrow fork \mid salad$

 $Pre \rightarrow with$

Question 2. PCFGs and the CYK algorithm

Answer a): For any given parse, we compute the probability of that parse by; $p(rule) * p(element \ of \ rule) * p(element \ of \ rule)$ Lets start with the cell marked B:

 $VP \to V Obj Obj$, we get: 0.3*0.6*0.2*0.2=0.0072

 $VP \to VObj$, we get: 0.5*0.6*0.2=0.06

 $VP \to V \, small$, we get: 0.2*0.6*0.08=0.0096

As we have three rules representing VP we select the one which has the highest probability as the representative, namely $VP \to VObj$.

For the cell marked A we essentially get the probabilities of B times 0.3:

 $S \to Subj VP$, we get: 1.0*0.3*0.06=0,018

Answer b): The most probable parse:

Question 3. Dependency parsing /MST

Answer a): CLE

I denote each node as the first letter in the corresponding word, John = j, likes = l, plain = p and bagles = b and for the root, root = r. A directed edge from i to j is denoted by (i, j). An edge with weight k is denoted by w((i, j)) = k.

After applying the first step of the algorithm we are left with the edges:

 $E = \{(l, j), (p, l), (b, p), (l, b)\}\$

And corresonding weights:

w((l,j)) = 20, w((p,l)) = 20, w((b,p)) = 15, w((l,b)) = 30

There is clearly three node a circle: $C = \{(p, l), (l, b), (b, p)\}$

Answer b): Final step

The final result is:

 $E = \{(r, l), (l, j), (l, b), (b, p)\}$

And corresonding weights:

w((r,l)) = 15, w((l,j)) = 20, w((l,b)) = 30, w((b,p)) = 15Total span is 80.

Question 4. Dependency parsing / Transistion based

Answer a): Arc-standard system

Table 1: Configurations

Transition	Stack	Buffer	Arcs
/	[root]	[A koala eats leafs and barks]	$\emptyset = A$
SHIFT	[root A]	[koala eats leafs and barks]	A
SHIFT	[root A koala]	[eats leafs and barks]	A
LEFT-ARC (det)	[root koala]	[eats leafs and barks]	$A \cup \{koala \to A\}$
SHIFT	[root koala eats]	[leafs and barks]	A
LEFT-ARC (nsubj)	[root eats]	[leafs and barks]	$A \cup \{eats \rightarrow koala\}$
SHIFT	[root eats leafs]	[and barks]	A
SHIFT	[root eats leafs and]	[barks]	A
RIGHT-ARC (cc)	[root eats leafs]	[barks]	$A \cup \{leafs \rightarrow and\}$
SHIFT	[root eats leafs barks]		A
RIGHT-ARC (conj)	[root eats leafs]		$A \cup \{leafs \rightarrow barks\}$
RIGHT-ARC (dobj)	[root eats]		$A \cup \{eats \rightarrow leafs\}$
RIGHT-ARC (root)	[root]		$A \cup \{root \rightarrow eats\}$