Meta-Learning — an idiosyncratic tutorial

Yee Whye Teh

Statistics @ Oxford

DeepMind

http://csml.stats.ox.ac.uk/people/teh/

• Few Shot Learning

Training terrier beagle labrador cat poodle

Training ? ? ? ? ? ?

• Recommender Systems

?

Robotics

• Artificial General Intelligence

Machine Learning with Big Data

Machine Learning with Small Data

Meta-Learning, Learning-to-Learn

Meta-Learning: an idiosyncratic tutorial

- Optimisation perspective on meta-learning
 - Optimisation-based meta-learning
 - Black-box meta-learning
- Probabilistic perspective on meta-learning
 - Stochastic processes
 - Neural processes
 - Uncertainty in meta-learning
- Probabilistic symmetries and neural architectures
- Note: no meta reinforcement learning (meta-RL)

Meta-Learning: an idiosyncratic tutorial

- Optimisation perspective on meta-learning
 - Optimisation-based meta-learning
 - Black-box meta-learning
- Probabilistic perspective on meta-learning
 - Stochastic processes
 - Neural processes
 - Uncertainty in meta-learning
- Probabilistic symmetries and neural architectures
- Note: no meta reinforcement learning (meta-RL)

Single-Task Learning

Empirical Risk Minimisation
$$\arg\min_{\theta} \sum_{i=1}^{n} \text{Loss}(f_{\eta,\theta}(x_i), y_i) + \text{Regulariser}(\theta)$$

Multi-Task Learning

Meta-Learning and Learning-to-Learn

- Is it possible to learn to generalise from training to test data?
- Learn:

$$\theta_j = \arg\min_{\theta_j} \sum_{i=1}^n \mathsf{Loss}(f_{\eta,\theta_j}(x_{ji}), y_{ji}) =: \mathsf{Learner}(\eta, \mathsf{TrainData}_j)$$

• Test performance:

$$\sum_{i=n+1}^{n+m} \mathsf{Loss}(f_{\eta,\theta_j}(x_{ji}),y_{ji}) =: \mathscr{L}(\eta,\theta_j,\mathsf{TestData}_j)$$

• Optimise shared parameters for test performance:

$$\arg\min_{\eta} \sum_{i=1}^{T} \mathcal{L}(\eta, \theta_j, \mathsf{TestData}_j) = \arg\min_{\eta} \sum_{i=1}^{T} \sum_{i=n+1}^{n+m} \mathsf{Loss}(f_{\eta, \mathsf{Learner}(\eta, \mathsf{TrainData}_j)}(x_{ji}), y_{ji})$$

• "Our training procedure is based on a simple machine learning principle: test and train conditions must match" — [Vinyals et al NeurIPS 2016]

Meta-Learning

Yee Whye Teh

Meta-Learning

- For each iteration:
 - Pick (minibatch of) training task *j*:
 - Base learner:

$$\theta_j = \text{Learner}(\eta, \text{TrainData}_j) = \arg\min_{\theta_j} \sum_{i=1}^n L(f_{\eta, \theta_j}(x_{ji}), y_{ji})$$

Test performance:

$$\mathcal{L}(\eta, \theta_j, \mathsf{TestData}_j) = \sum_{i=n+1}^{n+m} \mathsf{Loss}(f_{\eta, \theta_j}(x_{ji}), y_{ji})$$

• Meta-learner: optimise shared parameters for test performance:

$$\eta \leftarrow \eta - \epsilon \frac{d}{d\eta} \sum_{i=n+1}^{n+m} \mathsf{Loss}(f_{\eta, \mathsf{Learner}(\eta, \mathsf{TrainData}_j)}(x_{ji}), y_{ji})$$

Image Datasets

Omniglot

mini-ImageNet

Meta Dataset

ilsvrc_2012 (ImageNet, ILSVRC) [instructions]

omniglot [instructions]

aircraft (FGVC-Aircraft) [instructions]

cu_birds (Birds, CUB-200-2011) [instructions]

dtd (Describable Textures, DTD) [instructions]

quickdraw (Quick, Draw!) [instructions]

fungi (FGVCx Fungi) [instructions]

vgg_flower (VGG Flower) [instructions]

traffic_sign (Traffic Signs, German Traffic Sign Recognition Benchmark, GTSRB) [instructions]

mscoco (Common Objects in Context, COCO)
[instructions]

Different Kinds of Meta-Learning Methods

- Different choices of Learner and function class f lead to different methods.
 - Optimisation-based
 - black-box
 - metric-based
 - memory-based
 - o Bayesian...
- Different choices correspond to different **inductive biases**.
 - Psychological theories
 - Symmetries, invariances and equivariances
 - Computational and learnability constraints
 - Intuitions and experimental findings

Optimisation-based Meta-Learning

Optimisation-based base learner.

$$\begin{array}{l} \theta_0 \\ \theta_1 \leftarrow \theta_0 + \mathsf{Update}_{\eta}(\nabla_{\theta_0} L(f_{\theta_0}(X_1), Y_1)) \\ \theta_2 \leftarrow \theta_1 + \mathsf{Update}_{\eta}(\nabla_{\theta_1} L(f_{\theta_1}(X_2), Y_2)) \\ \vdots \end{array}$$

• Meta-learn meta-parameters θ_0 , η .

Learning to Learn by Gradient Descent by Gradient Descent & LSTM Meta-Learner

$$f_t = f_{\theta_t}(X_t)$$

$$\nabla_t = \frac{d}{d\theta_t} L(f_t, Y_t)$$

 X_t : training inputs in iter t

 Y_t : training targets in iter t

$$\begin{aligned} \mu_t &= \beta_1 \mu_{t-1} + (1-\beta_1) \, \nabla_t \\ \nabla_t &= \beta_2 V_{t-1} + (1-\beta_2) \, \nabla_t^2 \\ g_t &= -\frac{\epsilon}{\sqrt{V_t} + \delta} \mu_t \end{aligned} \qquad \theta_{t+1} = \theta_t + g_t$$

Model-Agnostic Meta-Learning (MAML)

Single (or few) step gradient descent learner:

$$\theta_j = \eta - \epsilon \nabla_{\eta} L(f_{\eta}(X_j), Y_j)$$

Meta-learn shared initialisation η :

$$\eta \leftarrow \eta - \epsilon_0 \frac{d}{d\eta} \sum_{j} L(f_{\theta_j}(X_{jt}), Y_{jt})$$

Compute gradient through learner gradient step.

Model-Agnostic Meta-Learning (MAML)

$$\begin{aligned} \theta_j &= \eta - \epsilon \, \nabla_{\eta} L(f_{\eta}(X_j), Y_j) \\ \frac{d}{d\eta} L(f_{\theta_j}(X_{jt}), Y_{jt}) &= \nabla_{\theta_j} L(f_{\theta_j}(X_{jt}), Y_{jt}) \frac{d\theta_j}{d\eta} \\ &= \nabla_{\theta_j} L(f_{\theta_j}(X_{jt}), Y_{jt}) \Big(I - \epsilon \, \nabla_{\eta}^2 L(f_{\eta}(X_{jt}), Y_{jt}) \Big) \end{aligned}$$

- Difficulty is in computing $\nabla_{\theta_i} L(f_{\theta_i}(X_{jt}), Y_{jt}) \nabla^2_{\eta} L(f_{\eta}(X_{jt}), Y_{jt})$.
- Vector-Hessian products can be automatically computed in linear time.

Optimisation-based Meta-Learning

- Two level optimisation problem
 - Flexible and applicable to wide range of neural architectures
 - Positive inductive bias
- Challenges
 - sensitive to neural architectures
 - o can be expensive and unstable
- Difficulties of back-propagating through many base learner iterations.
 - If base learner optimisation can be analytically solved, gradients can be computed exactly [Harrison et al WAFC 2018, Lee et al CVPR 2019].
 - Alternatively, use implicit function theorem [Rajeswaran et al NeurIPS 2019].

Black-box Meta-Learning

- So far, the base learner is an **optimisation-based** learner.
- Not all learning algorithms are optimisation-based.
- For example, in *k*-nearest neighbour, learner simply "memorises" training data, and matches test inputs with memory to make predictions.
- Black-box meta-learning: Implement the base learner using a differentiable programming framework.

Matching Networks

- Embed each train input $x_i \mapsto g_{\eta}(x_i)$.
- Embed test input $x_i \mapsto f_{\eta}(x_i)$
- "Softened" 1-NN classifier:

$$p(\cdot | x_{n+j}, \text{TrainData}) = \sum_{i=1}^{n} \frac{e^{g_{\eta}(x_i)^{\mathsf{T}} f_{\eta}(x_{n+j})}}{\sum_{l=1}^{n} e^{g_{\eta}(x_l)^{\mathsf{T}} f_{\eta}(x_{n+j})}} y_i$$

- Memory-based meta-learning
- Metric-based meta-learning

Prototypical Networks

- Embed each input $x_i \mapsto f_{\eta}(x_i)$.
- Form "prototypes":

$$c_{k} = \frac{\sum_{i:y_{i}=k} f_{\eta}(x_{i})}{\sum_{i:y_{i}=k} 1}$$

• Predict:

$$p(y_{n_j} = k \mid x_{n+j}, \text{TrainData}) = \frac{e^{-\|f_{\eta}(x_{n+j}) - c_k\|^2 / \sigma^2}}{\sum_{l=1}^{K} e^{-\|f_{\eta}(x_{n+j}) - c_l\|^2 / \sigma^2}}$$

Memory-Augmented Neural Networks (MANNs)

Each task: sequence of input/ output pairs $(x_1, y_1), (x_2, y_2), ...$

Base learner directly predicts $p_{\eta}(y_t | (x_i, y_i)_{i=1}^{t-1}, x_t)$

Neural Turing machine with external memory.

Simple Neural Attentive Learner (SNAIL)

$$p_{\eta}(y_t | (x_i, y_i)_{i=1}^{t-1}, x_t)$$

Simple:

- treats base learner problem as sequential prediction
- Use (causal) convolution and attention layers.

Base Learner Architecture and Task Representation

Black-box Meta-Learning

- Learn a differentiable function to map from training data to test predictions.
 - Simple: reduces meta-learning back to supervised learning.
 - Broad and flexible framework.
- Challenges:
 - Harder to learn as no inductive bias for base learner to optimise on training data.
 - Less able to generalise out of meta-training distribution.

Base Learner Architecture and Task Representation

Permutation Invariance

- Assumed that data items within each task are iid.
- Learner function should be invariant to permutations of the training data:

Learner(
$$\eta, \{(x_1, y_1), ..., (x_n, y_n)\}) = \text{Learner}(\eta, \{(x_{\pi(1)}, y_{\pi(1)}), ..., (x_{\pi(n)}, y_{\pi(n)})\})$$

- MAML, Prototypical Nets (and simpler version of Matching Nets) are.
- LSTM meta-learner, MANN, SNAIL (and a version of Matching Nets) are not permutation invariant.
- Permutation invariance is an inductive bias.
- How to design neural architectures for permutation invariance? [more later]

Conditional Neural Processes

Embed input/output pairs

$$(x_i, y_i) \mapsto f_{\eta}(x_i, y_i)$$

Aggregate embeddings

$$\theta = \frac{1}{n} \sum_{i=1}^{n} f_{\eta}(x_i, y_i)$$

- Permutation invariant.
- Interpret θ as a task representation.

Meta-Learning: an idiosyncratic tutorial

- Optimisation perspective on meta-learning
 - Optimisation-based meta-learning
 - Black-box meta-learning
- Probabilistic perspective on meta-learning
 - Stochastic processes
 - Neural processes
 - Uncertainty in meta-learning
- Probabilistic symmetries and neural architectures
- Note: no meta reinforcement learning (meta-RL)

Probabilistic Perspective on Meta-Learning

Generative Process

Specifying Stochastic Processes

• Gaussian processes are typically described via marginal distributions:

$$\begin{pmatrix} f(x_1) \\ f(x_2) \\ \vdots \\ f(x_t) \end{pmatrix} \sim \mathcal{N} \begin{pmatrix} \begin{pmatrix} \mu(x_1) \\ \mu(x_2) \\ \vdots \\ \mu(x_t) \end{pmatrix}, \begin{pmatrix} K(x_1, x_1) & K(x_1, x_2) & \cdots & K(x_1, x_t) \\ K(x_2, x_1) & K(x_2, x_2) & \cdots & K(x_2, x_t) \\ \vdots & & \ddots & \vdots \\ K(x_t, x_1) & K(x_t, x_2) & \cdots & K(x_t, x_t) \end{pmatrix} \end{pmatrix}$$

Specifying a Stochastic Process

- A stochastic process is a joint distribution over an infinite collection of random variables $(f(x))_{x \in \mathcal{X}}$.
- Kolmogorov Extension Theorem:
 - Constructs a stochastic process by specifying its finite dimensional marginal distributions.
 - Family of finite dimensional joint distributions $\rho_{x_{1:n}}$, one for each $n \in \mathbb{N}$ and finite sequence $x_{1:n} \in \mathcal{X}$. We will want these to form the marginals:

$$\rho_{x_{1:n}}(y_{1:n}) = p(f(x_1) = y_1, ..., f(x_n) = y_n)$$

Exchangeability and Consistency

• Exchangeability: for each $n, x_{1:n}$, and permutation π of $\{1, ..., n\}$

$$\rho_{x_1,...,x_n}(y_1,...,y_n) = \rho_{x_{\pi(1)},...,x_{\pi(n)}}(y_{\pi(1)},...,y_{\pi(n)})$$

• Consistency: for each $n, m, x_{1:n+m}$

$$\rho_{x_1,...,x_n}(y_1,...,y_n) = \int \rho_{x_{1:n+m}}(y_{1:n+m})dy_{n+1:n+m}$$

Bayesian nonparametrics

- Gaussian processes: regression, classification [Neal 1994, Rasmussen & Williams 2006]
- Dirichlet processes: infinite mixture models, clustering [Neal JCGS 1999, Rasmussen NeurIPS 2000]
- Hierarchical Dirichlet processes: topic models and HMMs [<u>Teh et al JASA</u>
 2006]
- Pitman-Yor and Poisson-Kingman processes: power laws and language models [<u>Teh ACL 2006</u>], species discovery problems [<u>Favaro et al Biometrics</u> <u>2015</u>]
- Sparse networks models and power-law structures [Caron & Fox JRSSB 2017]

Specifying Stochastic Processes

• Gaussian processes are typically described via marginal distributions:

$$\begin{pmatrix} f(x_1) \\ f(x_2) \\ \vdots \\ f(x_t) \end{pmatrix} \sim \mathcal{N} \begin{pmatrix} \begin{pmatrix} \mu(x_1) \\ \mu(x_2) \\ \vdots \\ \mu(x_t) \end{pmatrix}, \begin{pmatrix} K(x_1, x_1) & K(x_1, x_2) & \cdots & K(x_1, x_t) \\ K(x_2, x_1) & K(x_2, x_2) & \cdots & K(x_2, x_t) \\ \vdots & & \ddots & \vdots \\ K(x_t, x_1) & K(x_t, x_2) & \cdots & K(x_t, x_t) \end{pmatrix} \end{pmatrix}$$

Specifying Stochastic Processes

• Gaussian processes can equivalently be described via its conditional distributions:

$$f(x_{t+1})|f(x_1) = y_1, \dots, f(x_t) = y_t$$

$$\sim \mathcal{N}\left(\mu(x_{t+1}) + K_{t+1,1:t}K_{1:t,1:t}^{-1}y_{1:t}, K_{t+1,t+1} - K_{t+1,1:t}K_{1:t,1:t}^{-1}K_{1:t,t+1}\right)$$

• In general, stochastic processes can also be described using a consistent family of conditional distributions:

$$p(f(x_{n+i}) = y_{n+i} | f(x_1) = y_1, ..., f(x_n) = y_n)$$

for training dataset $\{(x_i, y_i)\}_{i=1}^n$ and test data (x_{n+i}, y_{n+i}) .

Conditional Neural Processes

Meta-learning learns the stochastic process!

Conditional Neural Processes

Task = Function on 1D space.

Given training points, use neural processes to predict mean and std of function values at other locations.

Image Completion and Super-resolution

Task = Image = Function on 2D space.

Bottom half prediction

Super-resolution

Image Super-resolution

Conditional Neural Processes

Embed input/output pairs

$$(x_i, y_i) \mapsto f_{\eta}(x_i, y_i)$$

Aggregate embeddings

$$\theta = \frac{1}{n} \sum_{i=1}^{n} f_{\eta}(x_i, y_i)$$

• Predict

$$p_{\eta}(y_{n+j} | x_{n+j}, (x_i, y_i)_{i=1}^n) = \mathcal{N}(y_{n+j}; g_{\eta}(\theta, x_{n+j}))$$

 But: architecture cannot model dependence among test outputs!

Generative Process

Latent Variable Model

• Generative **model**:

$$p_{\eta}(z, y_{1:n+m} | x_{1:n+m}) = p_{\eta}(z) \prod_{i=1}^{n+m} p_{\eta}(y_i | z, x_i)$$

$$p_{\eta}(z) = \mathcal{N}(z; 0, I)$$

$$p_{\eta}(y_i | z, x_i) = \mathcal{N}(y_i; g_{\eta}(z, x_i))$$

• Variational learning objective:

$$\log p(y_{1:n+m} | x_{1:n+m})$$

$$\geq \mathbb{E}_{q(z|x_{1:n+m},y_{1:n+m})} \left[\sum_{i=1}^{n+m} \log p_{\eta}(y_i | z, x_i) + \log p(z) - \log q(z | x_{1:n+m}, y_{1:n+m}) \right]$$

$$q(z | x_{1:t}, y_{1:t}) = \mathcal{N} \left(z; s_{\eta} \left(\frac{1}{t} \sum_{i=1}^{t} f_{\eta}(x_i, y_i) \right) \right)$$

Yee Whye Teh

Alternative Learning Objective

- "our training procedure is based on a simple machine learning principle: test and train conditions must match" — [Vinyals et al NeurIPS 2016]
- Alternative objective:

$$\log p(y_{n+n+m} | x_{1:n}, y_{1:n}, x_{n+1:n+m})$$

$$\geq \mathbb{E}_{q(z|x_{1:n+m},y_{1:n+m})} \left[\sum_{i=1}^{n+m} \log p_{\eta}(y_i|z,x_i) + \log p(z|x_{1:n},y_{1:n}) - \log q(z|x_{1:n+m},y_{1:n+m}) \right]$$

$$\approx \mathbb{E}_{q(z|x_{1:n+m},y_{1:n+m})} \left[\sum_{i=1}^{n+m} \log p_{\eta}(y_i|z,x_i) + \log q(z|x_{1:n},y_{1:n}) - \log q(z|x_{1:n+m},y_{1:n+m}) \right]$$

$$q(z \mid x_{1:t}, y_{1:t}) = \mathcal{N}\left(z; s_{\eta}\left(\frac{1}{t}\sum_{i=1}^{t} f_{\eta}(x_{i}, y_{i})\right)\right)$$
Yee Whye Teh

[Kim et al ICLR 2019, Le et al NeurlPS BDL 2018]

Probabilistic Perspective on Meta-Learning

- Meta-learning as learning a stochastic process:
 - Meta-learning a prior over functions -> meta-learning inductive biases from meta-training set!
 - Base learner can be thought of as **amortized learning**.
- Uncertainties are important in meta-learning applications:
 - Active learning
 - Bayesian optimisation
 - Reinforcement learning

Uncertainty in Meta-Learning

- Small training sets in meta-learning → uncertainty in task inference!
- Important for:
 - o active learning,
 - Bayesian optimisation,
 - reinforcement learning

Yee Whye Teh

Efficient Model-based Reinforcement Learning

Cart Pole

Adversarial Testing of RL Agents

Adversarial Testing of RL Agents

 $(M,p_s,p_q,A) \sim p(\mathcal{T})$ - training & holdout samples (agents, mazes, positions)

Yee Whye Teh

Adversarial Testing of RL Agents

Bayesian optimisation iterations

Meta-Learning: an idiosyncratic tutorial

- Optimisation perspective on meta-learning
 - Optimisation-based meta-learning
 - Black-box meta-learning
- Probabilistic perspective on meta-learning
 - Stochastic processes
 - Neural processes
 - Uncertainty in meta-learning
- Probabilistic symmetries and neural architectures
- Note: no meta reinforcement learning (meta-RL)

Permutation-Invariance in Neural Processes

Embed input/output pairs

$$(x_i, y_i) \mapsto f_n(x_i, y_i)$$

Aggregate embeddings

$$\theta = \frac{1}{n} \sum_{i=1}^{n} f_{\eta}(x_i, y_i)$$

Predict

$$p_{\eta}(y_{n+j} | x_{n+j}, (x_i, y_i)_{i=1}^n) = \mathcal{N}(y_{n+j}; g_{\eta}(\theta, x_{n+j}))$$

Characterising Permutation-Invariant Functions

• Function $h: \mathcal{X}^n \to \mathcal{Y}$ is permutation-invariant,

$$h(\pi \cdot (x_1, ..., x_n)) = h(x_{\pi(1)}, ..., x_{\pi(n)}) = h(x_1, ..., x_n)$$

- Can we characterise the class of permutation-invariant functions?
- If we use neural networks to parameterise permutation-invariant functions, how should we choose the architecture?
- Given an architecture choice, can the neural network approximate well any arbitrary permutation-invariant function?

Characterising Permutation-Invariant Functions

Characterising Permutation-Invariant Functions

Functional Symmetry Properties

• Function $h: \mathcal{X}^n \to \mathcal{Y}^n$ is **permutation-equivariant**,

$$h(x_1, ..., x_n) = (y_1, ..., y_n)$$

$$h(\pi \cdot (x_1, ..., x_n)) = \pi \cdot (y_1, ..., y_n) = \pi \cdot h(x_1, ..., x_n)$$

- Group G acting on input space \mathcal{X} and output space \mathcal{Y} .
 - G-invariant:

$$h(g \cdot x) = h(x)$$

• G-equivariant:

$$h(g \cdot x) = g \cdot h(x)$$

Probabilistic Symmetries

• A distribution P for a random sequence $X_n = (X_1, ..., X_n)$ is **exchangeable** if

$$P(X_1, ..., X_n) = P(\pi \cdot (X_1, ..., X_n))$$

$$P(X_1 \in B_1, ..., X_n \in B_n) = P(X_{\pi(1)} \in B_1, ..., X_{\pi(n)} \in B_n))$$

- Exchangeability is permutation-invariance of *P*.
- X_N is infinitely exchangeable if all length n prefixes are exchangeable.
- de Finetti's Theorem:

 $\mathbf{X}_{\mathbb{N}}$ is infinitely exchangeable $\Leftrightarrow X_i \mid Q \sim_{iid} Q$ for some random Q.

Probabilistic Symmetries for Conditional Distributions

- A conditional distribution P(Y|X) is a stochastic relaxation for a function Y = h(X).
- P(Y|X) is *G*-invariant if:

$$P(Y|X) = P(Y|g \cdot X)$$

$$P(Y \in B \mid X \in A) = P(Y \in B \mid g \cdot X \in A)$$

• P(Y|X) is G-equivariant if:

$$P(Y|X) = P(g \cdot Y | g \cdot X)$$

 Can we characterise the class of permutation-invariant conditional distributions?

Empirical Measure

- de Finetti's Theorem may fail for finitely exchangeable sequences.
- The **empirical measure** of X_n is

$$\mathbb{M}_{\mathbf{X}_n}(\,\cdot\,) = \sum_{i=1}^n \delta_{X_i}(\,\cdot\,)$$

• The empirical measure is a **sufficient statistic**: *P* is exchangeable iff

$$P(\mathbf{X}_n \in \cdot \mid \mathbb{M}_{\mathbf{X}_n} = m) = \mathbb{U}_m(\cdot)$$

where \mathbb{U}_m is the uniform distribution over all sequences $(x_1, ..., x_n)$ with empirical measure m.

Noise Outsourcing

• If X and Y are random variables in "nice" (e.g. Borel) spaces \mathcal{X} and \mathcal{Y} , then there are a random variable $\eta \sim U[0,1]$ with $\eta \perp X$ and a function $h:[0,1]\times\mathcal{X}\mapsto\mathcal{Y}$ such that

$$(X,Y) =_{a.s.} (X,h(\eta,X))$$

• Furthermore, if there is an **adequate statistic** S(X) with $X \perp \!\!\! \perp Y \mid S(X)$, then

$$(X,Y) =_{a.s.} (X,h(\eta,S(X)))$$

Probabilistic Permutation-Invariance

- Now suppose we have random variables X_n and Y.
 - \circ *Y* is conditionally permutation-invariant given \mathbf{X}_n .
 - \circ **X**_n is marginally permutation-invariant (exchangeable).
- The empirical measure is a sufficient statistic for X_n .
- It is also an adequate statistic for Y given X_n :

$$P(Y | \mathbf{X}_n = \mathbf{x}_n) = P(Y | \mathbf{M}_{\mathbf{X}_n} = \mathbf{M}_{\mathbf{x}_n})$$

We have the conditional independence $X_n \perp Y \mid M_{X_n}$.

• Noise outsourcing...

$$(\mathbf{X}_n, Y) =_{a.s.} (\mathbf{X}_n, h(\eta, \mathbb{M}_{\mathbf{X}_n}))$$

Probabilistic Permutation-Invariance

Probabilistic Permutation-Invariance

Functional Permutation-Invariance

Probabilistic Permutation-Equivariance

- Now suppose we have random sequences \mathbf{X}_n and \mathbf{Y}_n .
 - \circ \mathbf{Y}_n is conditionally permutation-equivariant given \mathbf{X}_n .
 - \circ \mathbf{X}_n is marginally permutation-invariant (exchangeable).
- Also suppose that $Y_i \perp \!\!\!\perp Y_n \setminus Y_i \mid X_n$ for each i.

• Then:

$$(\mathbf{X}_n, (Y_1, ..., Y_n)) =_{a.s.} (\mathbf{X}_n, (h(\eta_1, X_1, \mathbb{M}_{\mathbf{X}_n}), ..., h(\eta_n, X_n, \mathbb{M}_{\mathbf{X}_n}))$$

for outsourced noise (η_i) that are identical, mutually independent and independent of \mathbf{X}_n .

Probabilistic Permutation-Equivariance

Attentive Neural Processes

Maximal Invariant and Maximal Equivariant

- Let *G* be a compact group.
- A maximal invariant is a statistic $M: \mathcal{X} \mapsto \mathcal{S}$ such that

$$M(g \cdot x) = M(x) \,\forall g \in G, x \in \mathcal{X}$$
$$M(x_1) = M(x_2) \Rightarrow \exists g \in G : x_1 = g \cdot x_2$$

• A maximal equivariant $\tau: \mathcal{X} \mapsto G$ satisfies

$$\tau(g \cdot x) = g \cdot \tau(x)$$

Probabilistic and Functional Symmetries

- Let *G* be a compact group and *X* be marginally *G*-invariant.
- Let M be a maximal invariant, then Y is conditionally G-invariant given $X \Leftrightarrow (X, Y) =_{a.s.} (X, h(\eta, M(X)))$ for outsourced noise η independent of X and a function h.
- If a maximal equivariant τ exists and $G_X \subset G_Y$ a.s., then Y is conditionally G-equivariant given $X \Leftrightarrow (X,Y) =_{a.s.} (X,h(\eta,X))$ for outsourced noise η independent of X and a function h that is G-equivariant in its second argument.

Probabilistic Symmetries

- Tools from probabilistic symmetry, sufficiency and adequacy allowed us to answer questions about neural architectures under symmetry.
 - Framework extends to graph and array structured data with node exchangeability.
 - Continuous groups?
 - How to relax assumptions of conditional independence of outputs?

Meta-Learning: an idiosyncratic tutorial

- Optimisation perspective on meta-learning
 - Optimisation-based meta-learning
 - Black-box meta-learning
- Probabilistic perspective on meta-learning
 - Stochastic processes
 - Neural processes
 - Uncertainty in meta-learning
- Probabilistic symmetries and neural architectures
- Note: no meta reinforcement learning (meta-RL)

Yee Whye Teh

Some Recent Developments

- Recent Developments:
 - [Learning to Continually Learn]
 - [MetaFun: Meta-Learning with Iterative Functional Updates]
 - [Meta-Gradient Reinforcement Learning]
 - [Modular Meta-Learning with Shrinkage]
 - [Rapid Learning or Feature Reuse? Towards Understanding the Effectiveness of MAML]
 - [Meta-Learning with Warped Gradient Descent]
- Meta-learning for continual learning
 - [Learning to Continually Learn]
 - [Meta-Learning Representations for Continual Learning]
 - o [Task Agnostic Continual Learning via Meta Learning]
- Meta-learning theory
 - [Theoretical Models of Learning to Learn]
 - [A Model of Inductive Bias Learning]
 - [Provably Meta-Learning of Linear Representations]

Thank You!

• Collaborators, colleagues, mentors

• You!

http://csml.stats.ox.ac.uk/people/teh

