qconnect Protocol

Definitions

PS: Public key (for signing)

SS: Secret key (for signing)

 $PK: \mbox{Public key (for KEM)}$

SK : Secret key (for KEM)

K: Symmetric encryption key

N: List of used nonces

B: Contact book

 $\operatorname{Sign}_{SS}(M) = S$ Signs message M using private key SS creating signature S.

 $\operatorname{Sign}_{PS}^{-1}(S,M) = \{0,1\} \quad \text{Verifies message M matches signature S using public key PS.}$

Outputs 1 when signature matches.

 $KEM_{PK}(K) = C$ Encrypts the given key K using public key PK.

 $\text{KEM}_{SK}^{-1}(C) = K$ Decrypts the given encrypted key C using secret key SK.

KEM stands for Key Encapsulation Mechanism.

 $\operatorname{Enc}_K(M) = C$ Encrypts the given message using symmetric key K.

 $\operatorname{Enc}_K^{-1}(C) = M$ Decrypts the given ciphertext using symmetric key K.

Now() = T Outputs the current timestamp.

Registration

Bob registers his keys with the server.

Bob has:
$$PS_{Bob}$$
, SS_{Bob} , PK_{Bob} , SK_{Bob}

Bob sends to server : PS_{Bob} , PK_{Bob}

Server calculates:

$$\begin{split} M &= \{0,1\}^{128} & \text{Generate signing challenge.} \\ K &= \{0,1\}^{128} & \text{Generate KEM challenge.} \\ C &= \text{KEM}_{PK_{\text{Bob}}}(K) & \text{Encapsulate KEM challenge.} \end{split}$$

Server sends to Bob : M, C

Bob calculates:

$$S = \mathrm{Sign}_{SS_{\mathrm{Bob}}}(M)$$
 Sign the signing challenge.
$$K' = \mathrm{KEM}_{SK_{\mathrm{Bob}}}^{-1}(C)$$
 Decapsulate the KEM challenge.

Bob sends to Server : S, K'

Server calculates:

$$S_{\mathrm{Verify}} = \mathrm{Sign}_{PS_{\mathrm{Bob}}}^{-1}(S, M)$$
 Verify the signature of the signing challenge.
 $K = K'$ Verify the KEM challenge response is correct.
Once verified, Server records Bob's keys.

Contact Request and Accept

Bob adds Alice as a contact.

Bob has: SS_{Bob} , PS_{Alice} , $T_{\text{Threshold}}$, B, NServer has: PS_{Bob} , PS_{Alice} , $T_{\text{Threshold}}$, B, NAlice has: SS_{Alice} , PS_{Bob} , $T_{\text{Threshold}}$, B, N

Bob calculates:

$$\begin{split} T &= \text{Now}() & \text{Get current timestamp.} \\ n &= \{0,1\}^{128} \text{ s.t. } (n, PS_{\text{Bob}}) \notin N & \text{Generate nonce.} \\ N &= N \cup \{(n, PS_{\text{Bob}})\} & \text{Add nonce to list.} \\ S &= \text{Sign}_{SS_{\text{Bob}}}(T||n||PS_{\text{Alice}}) & \text{Sign contact request.} \\ B &= B \cup \{(PS_{\text{Alice}}, PS_{\text{Bob}})\} & \text{Mark Alice as able to send messages to Bob.} \end{split}$$

Bob sends to server: S, T, n, PS_{Alice}

Server calculates:

$$\begin{split} S_{\text{Verify}} &= \text{Sign}_{PS_{\text{Bob}}}^{-1}(S, T || n || PS_{\text{Alice}}) & \text{Verify contact request is from Bob.} \\ T &> \text{Now}() - T_{\text{Threshold}} & \text{Verify contact request is recent.} \\ (n, PS_{\text{Bob}}) \notin N & \text{Verify nonce is new.} \\ N &= N \cup \{(n, PS_{\text{Bob}})\} & \text{Add old nonce to list.} \\ B &= B \cup \{(PS_{\text{Alice}}, PS_{\text{Bob}})\} & \text{Mark Alice as able to send messages to Bob.} \end{split}$$

Server sends to Alice : S, T, n

Alice calculates:

$$S_{\text{Verify}} = \operatorname{Sign}_{PS_{\text{Bob}}}^{-1}(S, T || n || PS_{\text{Alice}}) \qquad \text{Verify contact request is from Bob.}$$

$$If \ S_{\text{Verify}} = 0, \ \text{reject.}$$

$$T > \operatorname{Now}() - T_{\text{Threshold}} \qquad \text{Verify contact request is recent.}$$

$$(n, PS_{\text{Bob}}) \notin N \qquad \qquad \text{Verify nonce is new.}$$

$$N = N \cup \{(n, PS_{\text{Bob}})\} \qquad \qquad \text{Add old nonce to list.}$$

$$B = B \cup \{(PS_{\text{Alice}}, PS_{\text{Bob}})\} \qquad \qquad \text{Mark Alice as able to send messages to Bob.}$$

$$\begin{split} T &= \operatorname{Now}() & \text{Get current timestamp.} \\ n &= \{0,1\}^{128} \text{ s.t. } (n, PS_{\text{Alice}}) \notin N & \text{Generate nonce.} \\ N &= N \cup \{(n, PS_{\text{Alice}})\} & \text{Add nonce to list.} \\ S &= \operatorname{Sign}_{SS_{\text{Alice}}}(T||n||PS_{\text{Bob}}) & \text{Sign contact request.} \\ B &= B \cup \{(PS_{\text{Bob}}, PS_{\text{Alice}})\} & \text{Mark Bob as able to send messages to Alice.} \end{split}$$

Alice sends to server: S, T, n, PS_{Bob}

Server calculates:

$$\begin{split} S_{\text{Verify}} &= \text{Sign}_{PS_{\text{Alice}}}^{-1}(S, T||n||PS_{\text{Bob}}) & \text{Verify contact request is from Alice.} \\ & & If \ S_{\text{Verify}} = 0, \ \text{reject.} \\ & T > \text{Now}() - T_{\text{Threshold}} & \text{Verify contact request is recent.} \\ & (n, PS_{\text{Alice}}) \notin N & \text{Verify nonce is new.} \\ & N = N \cup \{(n, PS_{\text{Alice}})\} & \text{Add old nonce to list.} \\ & B = B \cup (PS_{\text{Bob}}, PS_{\text{Alice}}) & \text{Mark Bob as able to send messages to Alice.} \end{split}$$

Server sends to Bob: S, T, n

Bob calculates:

$$\begin{split} S_{\text{Verify}} &= \text{Sign}_{PS_{\text{Alice}}}^{-1}(S, T||n||PS_{\text{Bob}}) & \text{Verify contact request is from Alice.} \\ & & If \ S_{\text{Verify}} = 0, \ \text{reject.} \\ & T > \text{Now}() - T_{\text{Threshold}} & \text{Verify contact request is recent.} \\ & (n, PS_{\text{Alice}}) \notin N & \text{Verify nonce is new.} \\ & N = N \cup \{(n, PS_{\text{Alice}})\} & \text{Add old nonce to list.} \\ & B = B \cup (PS_{\text{Bob}}, PS_{\text{Alice}}) & \text{Mark Bob as able to send messages to Alice.} \end{split}$$

Public Key (for KEM) Distribution

Alice sends a public key (for KEM) PK_{Alice} to Bob.

Alice has : SS_{Alice} , PK_{Alice}

Server has : PS_{Alice} Bob has : PS_{Alice}

Alice calculates :

$$S = \operatorname{Sign}_{SS_{\operatorname{Alice}}}(PK_{\operatorname{Alice}}) \qquad \operatorname{Signs public key}.$$

Alice sends to Server : S, PK_{Alice}

Server calculates:

$$S_{\rm Verify} = {\rm Sign}_{PS_{\rm Alice}}^{-1}(S, PK_{\rm Alice}) \quad {\rm Verify\ message\ is\ from\ Alice}.$$
 If $S_{\rm Verify}=0, {\rm reject}.$

Server sends to Bob: S, PK_{Alice}

Bob calculates:

$$S_{ ext{Verify}} = ext{Sign}_{PS_{ ext{Alice}}}^{-1}(S, PK_{ ext{Alice}})$$
 Verify message is from Alice.
If $S_{ ext{Verify}} = 0$, reject.

Bob sends message to Alice

Bob sends a given message M to Alice.

Bob has: SS_{Bob} , PK_{Alice} , NServer has: PS_{Bob} , $T_{\text{Threshold}}$, B, N

Alice has: SK_{Alice} , PS_{Bob} , $T_{Threshold}$, B, N

Bob calculates:

$$\begin{split} K &= \{0,1\}^n & \text{Generates key of length } n. \\ C_K &= \text{KEM}_{PK_{\text{Alice}}}(K) & \text{Encrypts key.} \\ C_M &= \text{Enc}_K(M) & \text{Encrypts message.} \\ T &= \text{Now}() & \text{Get current timestamp.} \\ n &= \{0,1\}^{128} \text{ s.t. } (n,PS_{\text{Bob}}) \notin N & \text{Generate nonce.} \\ N &= N \cup \{(n,PS_{\text{Bob}})\} & \text{Add nonce to list.} \\ S &= \text{Sign}_{SS_{\text{Bob}}}(T||n||C_K||C_M) & \text{Sign message.} \end{split}$$

Bob sends to server: S, T, n, C_K, C_M

Server calculates:

$$S_{\text{Verify}} = \operatorname{Sign}_{PS_{\text{Bob}}}^{-1}(S,T||n||C_K||C_M) \qquad \text{Verify message is from Bob.}$$

$$If \ S_{\text{Verify}} = 0, \ \text{reject.}$$

$$T > \operatorname{Now}() - T_{\text{Threshold}} \qquad \text{Verify message is recent.}$$

$$(n,PS_{\text{Bob}}) \notin N \qquad \qquad \text{Verify nonce is new.}$$

$$N = N \cup \{(n,PS_{\text{Bob}})\} \qquad \qquad \text{Add old nonce to list.}$$

$$(PS_{\text{Bob}},PS_{\text{Alice}}) \in B \qquad \qquad \text{Verify Bob can message Alice.}$$

Server sends to Alice: S, T, n, C_K, C_M

Alice calculates:

 $M = \operatorname{Enc}_K^{-1}(C_M)$

$$S_{\text{Verify}} = \operatorname{Sign}_{PS_{\text{Bob}}}^{-1}(S,T||n||C_K||C_M) \qquad \text{Verify message is from Bob.}$$

$$If \ S_{\text{Verify}} = 0, \ \text{reject.}$$

$$T > \operatorname{Now}() - T_{\text{Threshold}} \qquad \text{Verify message is recent.}$$

$$(n,PS_{\text{Bob}}) \notin N \qquad \qquad \text{Verify nonce is new.}$$

$$N = N \cup \{(n,PS_{\text{Bob}})\} \qquad \text{Add old nonce to list.}$$

$$(PS_{\text{Bob}},PS_{\text{Alice}}) \in B \qquad \qquad \text{Verify Bob can message Alice.}$$

$$K = \operatorname{KEM}_{SK_{\text{Alice}}}^{-1}(C_K) \qquad \text{Decrypt key.}$$

Decrypt message.