Algolab 2016 Winter Games

Michael Hoffmann, Antonis Thomas

November 23, 2016

Objective

Learn how to solve a problem given by a textual description.

This includes:

- appropriate problem modeling
- choice of suitable (combinatorial) algorithms, and
- implementation.

Your Task:

- read the 3 problem descriptions
- sketch your approach (modeling, algorithms)

Use them all!

Observations

- $2 \le n \le 90'000$
- no overlap
- maximize radius

probably not looking for $\Omega(n^2)$ only "close neighbors" matter optimization problem?

Key ideas

- for a fixed cannon, the nearest neighbor determines an upper bound on the operation range
- only the closest cannon pair matters

Use them all! - Solution

Try them all!

• Compute $\binom{n}{2}$ pairwise distances

$$ightarrow \Theta(\mathit{n}^2)$$

Check only the distance to the nearest neighbor for each cannon

Compute the Delaunay triangulation

 $\to \Theta(n\log n)$

• Iterate over the edges of the triangulation

$$\rightarrow \Theta(n)$$

Implementation details

• the distance fits into a double radius $\leq \sqrt{2^{50} + 2^{50}} < 2^{50}$

Downhill course

Observations

ullet $1 \leq n \leq 10'000$ probably $\Omega(n^2)$ is fine

• no overlap 2 options for every cannon (on/off)

• each cannon has at most 2 neighbors graph problem?

Key ideas

 graph problem: cannons are vertices, put an edge whenever two ranges overlap
 still need to find/construct the graph

find maximum independent set

in general

bipartite graphs

special cases

NP-complete

König's Theorem, Matching

trivial

Downhill course - Solution

Construct a graph G to model the dependencies: vertices are cannons and there is an edge between two vertices if the repective operation ranges overlap

- Compute $\binom{n}{2}$ pairwise distances $\rightarrow \Theta(n^2)$
- It suffices to consider the nearest neighbor $o \Theta(n \log n)$ the second nearest neighbor $o \Theta(n \log n)$

Lemma

Let v_1 be a nearest neighbor and v_2 be a second nearest neighbor of v. Then at least one of vv_2 or v_1v_2 is an edge of the Delaunay triangulation.

maximal degree 2

Software update

Observations

- $2 \le n \le 50$ tiny...
- minimal radius need solution of Exercise 2
 no overlap radii are bounded from above
- maximize sum of the radii optimization problem?

Key ideas

- optimization problem find a larger radius for each cannon
 - the improvement is linear in the radius
 - lower bounds for the radii
 - implicit upper bounds: no overlap

Software update – Solution

Linear program with *n* variables and $n + \binom{n}{2}$ constraints:

• Variables: Operation range (radius) of every snow cannon

$$r_i \geq \frac{\texttt{closest_pair_dist}}{2} \,, \quad i = 1, \dots, n$$

• Constraints: Operation ranges are not overlapping

$$r_i + r_j \leq \operatorname{dist}(i,j), \quad 1 \leq i, j \leq n$$

Objective: Maximize the sum of the radii

$$\max \sum_{i} r_{i}$$

Implementation details

• **IT**: Exact type with sqrt

ET: Exact type with sqrt