Introduction to Group Theory - Notes

Dom Hutchinson

March 20, 2018

Contents

1	Symmetries	2
2	Groups	3
3	Elementary Consequences of the Definition	3
4	Dihedral Groups	4
5	Subgroups	5
6	Order of Elements	5
7	Cyclic Groups & Cyclic Subgroups	6
8	Groups from Modular Arithmetic	6

1 Symmetries

Definition 1.01 - Permutation

A permutation of a set, G, is a bijection $f: G \to G$.

 $\underline{\text{N.B.}}$ - Since the composition of two bijections is also a bijection, then the composition of two permutations is a permutation.

Definition 1.02 - Symmetries of a Polygon

A symmetry of an n-sided polygon is a permutation of the vertices which preserves adjacency. So if the vertices, u, v, are adjacent then the permutation f is a symmetry if f(u) & f(v) are adjacent.

Remark 1.03 - Symmetries

When dealing with symmetries of a shape then they can only be rotations or reflections.

Definition 1.04 - *Identity*

The trivial symmetry, which maps an element to itself, is known as the identity.

Remark 1.05 - Multiple Composition

Let R, S & T be permutations. Then (RS)T means do T, then S, then R. So

$$(RS)T = R(ST)$$

Remark 1.06 - One-Line Notation

Let $S = \{a_1, \ldots, a_n\}$ be a set and $\sigma : S \to S$ be a permutation.

One-Line notation denotes the result of σ by

$$(\sigma(a_1) \ldots \sigma(a_n))$$

So if σ maps $1 \to 2, 2 \to 3, \dots, n \to 1$ then it can be denoted by

$$(2 \quad 3 \quad \dots \quad n \quad 1)$$

Remark 1.07 - Two-Line Notation

Let $S = \{a_1, \ldots, a_n\}$ be a set and $\sigma: S \to S$ be a permutation.

Two-Line notation denotes the result of σ by

$$\begin{pmatrix} a_1 & \dots & a_n \\ \sigma(a_1) & \dots & \sigma(a_n) \end{pmatrix}$$

So if σ maps $1 \to 2, 2 \to 3, \dots, n \to 1$ then it can be denoted by

$$\begin{pmatrix} 1 & 2 & \dots & n-1 & n \\ 2 & 3 & \dots & n & 1 \end{pmatrix}$$

Remark 1.08 - Cycle Decomposition Notation

Let $S = \{a_1, \ldots, a_n\}$ be a set and $\sigma : S \to S$ be a permutation.

Cycle Decomposition Notation denotes σ as the product of disjoint cycles.

Each element in a cycle goes the position of the element after it in the list, the last element goes to the position of the first.

() denotes no variation. The operation of σ is denoted by

$$(a_1 \quad \sigma(a_1) \quad \sigma(\sigma(a_1)) \quad \dots \quad \sigma(\dots \sigma(a_1) \dots))$$

2 Groups

Definition 2.01 - Binary Operation

A binary operation on a set X is a function from $X \times X \to X$.

Remark 2.02 - Asteriks Notation

Binary operations are general denoted by an *.

$$f(x,y) = x * y$$

Remark 2.03 - Set of Permutations

A set of permutations have a binary operation for composition.

Let f, g, h be permutations of a set X and $x \in X$

$$f(x) \times g(x) \to h(x)$$

Definition 2.04 - Commutative

A binary operation, *, on a set X is commutative if order of input doesn't affected the outcome.

$$x * y = y * x, \forall x, y \in X$$

Defintion 2.05 - *Group*

A group is a set, G, with an associated binary operation, *, such that

- i) It is associative, $(x * y) * z = x * (y * z) \forall x, y, z \in G$;
- ii) It as an identity element, $\exists e \in G$ such that x * e = x = e * x;
- iii) For all $x \in G \exists x^{-1} \in G \text{ st } xx^{-1} = e = x^{-1}x$.

Remark 2.06 - Group Notation

The group of set G and binary operation * is denoted by (G,*).

Definition 2.07 - Abelian Group

An Abelian group, (G, *) is one where * is commutative.

Definition 2.08 - Commute

If $x, y \in G$ satisfy x * y = y * x then it is said that x & y commute.

Remark 2.08 - Multiplicty Notation

Multiplicity notation is used to simplify equations with a single binary operator, by not writting *.

$$x * y = xy$$

3 Elementary Consequences of the Definition

Proposition 3.1 - Right Cancellation

If $a, b, x \in G$ and

$$ax = bx => a = b$$

Proposition 3.2 - Left Cancellation

If $a, b, x \in G$ and

$$xa = xb \Longrightarrow a = b$$

Proposition 3.3 - *Uniqueness of Identity*

If $a, x, e \in G$ with e as the identity of G then

$$ax = a \Longrightarrow e = x$$

Proposition 3.4 - *Uniqueness of Inverses*

If $x, y, e \in G$ with e as the identity of G then

$$xy = e \implies x = y^{-1} \& y = x^{-1}$$

Proposition 3.5 - Inverse of Inverse

Let $x \in G$ then

$$(x^{-1})^{-1} = x$$

Proposition 3.6 - Composite Inverses

Let $x, y \in G$ then

$$(xy)^{-1} = y^{-1}x^{-1}$$

Definition 3.7 - Caley Table

Let e, x, y be all the elements of G then the result of all compositions can be displayed in a Caley Table.

The operation of the column is done first, then the operation of the row.

N.B. - All values in any given column or row are unique, so all elements of G appear exactly once.

Definition 3.8 - Powers of Elements

If n > 0 then x^n means $x * \cdots * x n$ times.

$$x^{-n} = (x^n)^{-1} = (x^{-1})^n, \quad x^0 = e$$

Definition 3.9 - Composition of Powers

For $m, n \in \mathbb{Z}$

$$x^m x^n = x^{m+n}$$

4 Dihedral Groups

Definition 4.01 - Order

The *order* of a group G is the number of elements in G.

N.B. - Order of G is denoted by |G|.

Definition 4.02 - Dihedral Groups

The dihedral group D_{2n} is the group of symmetries of a regular n-sided polygon, with $n \geq 3$. N.B. - $|D_{2n}| = 2n$.

Proposition 4.03 - Elements of Dihedral Group

Let a describe a rotation by $\frac{2\pi}{n}$ and b a reflection then An External

$$D_{2n} = \{e, a, a^2, \dots, a^{n-1}, b, ab, \dots, a^{n-1}b\}$$

N.B. -
$$a^n = e = b^2$$
, $a^{-1} = a^{n-1}$, $b = b^{-1}$.

Proposition 4.04 - Reflections & Rotations

Let a denote a rotation and b denoted a reflection then

$$ab = ba^{-1}$$

5 Subgroups

Definition 5.01 - Subgroup

A subgroup of a group G is a group formed of a subset of G with the same associated operation. N.B. - H being a subgroup of G is denoted by $H \leq G$.

Definition 5.02 - Non-Trivial Subgroup

A subgroup H of G is non-trivial if $H \neq \{e\}$.

Definition 5.03 - Proper Subgroup

A subgroup H of G is a proper subgroup if $H \neq G$.

Theorem 5.04 - Subgroup

A subset H of a group G is a subgroup iff

- i) It is closed under binary operation $x, y \in H => xy \in H$;
- ii) It has an identity element $\exists e \in H \text{ st } xe = x \ \forall x \in H$;
- iii) All elements have an inverse $\forall x \in H \exists x^{-1} \in H \text{ st } xx^{-1} = e$.

Proposition 5.05 - Pairs of Subgroups

Let G, H, K be groups with $H \leq G \& K \leq G$ then $H \cap K \leq G$.

6 Order of Elements

Definition 6.01 - Order of an Element

Let $x \in G$ such that $x^n = e$, then the order of x is the smallest such n.

$$ord(x) = n$$

<u>N.B.</u> - If there is no such n then $ord(x) = \infty$.

Proposition 6.02 - *Uniqueness of Powers*

Let $x \in G$ with $ord(x) = \infty$ then

$$x^i \neq x^j \ \forall \ i \neq j$$

Theorem 6.03 - Order Elements in a Finite Group

Every element of a finite group has finite order.

Theorem 6.04 - Properties of Order of an Element

Let $x \in G$ such that $ord(x) = n < \infty$ then if

- i) $x^i = e \iff n|i;$
- ii) $x^i = x^j \iff i \equiv j(modn);$
- iii) $x^{-1} = x^{n-1}$;
- iv) The powers of x less than n are all distinct.

Proposition 6.05 - Order of Powers of Elements

let $x \in G, i \in \mathbb{Z}$.

- i) If $ord(x) = \infty$ then $ord(x^i) = \infty$ if $i \neq 0$;
- ii) If $ord(x) = n < \infty$ then $ord(x^i) = \frac{n}{\gcd(n, i)}$.

7 Cyclic Groups & Cyclic Subgroups

Definition 7.01 - Generating Cyclic Groups

Let G be a group and $x \in G$.

We define a cyclic group generated by x

$$\langle x \rangle = \{ x^i : i \in \mathbb{Z} \} \le G$$

Theorem 7.02 - Cyclic Subgroup

Let $x \in G$ then $\langle x \rangle$ is a subgroup of G.

Definition 7.03 - Cyclic Group

A group G is cyclic if $G = \langle x \rangle$ for some $x \in G$.

N.B. - Here x is called the generator of G.

Theorem 7.04 - Abelian Cyclic Groups

Every cyclic group is abelian.

Theorem 7.05 - Finding Cyclic Groups

Let G be a group with $|G| = n < \infty$.

G is cyclic iff $\exists x \in G$ such that ord(x) = n.

Theorem 7.06 - Subgroups of Cyclic Groups

Every subgroup of a cyclic group is also a cyclic group.

8 Groups from Modular Arithmetic

Definition 8.01 - Conqueence Class

Let $n \in \mathbb{N}$ then $a \equiv b \pmod{n}$ means n|a-b.

There are n congurence classes $[0], [1], \ldots, [n-1]$ where every integer is in exactly one of these classes.

$$[x] = \{ y \in \mathbb{Z} : x \equiv y \pmod{n} = \{ \dots, a - n, a, a + n, a + 2n, \dots \}$$

Definition 8.02 - Congurence groups

Let $n \in \mathbb{N}$ then we denoted a congurence group of n by

$$\frac{\mathbb{Z}}{n\mathbb{Z}} = [0], [1], \dots, [n-2], [n-1]$$

<u>N.B.</u> - Addition and multiplication are valid binary operations for congurence groups.

Definition 8.03 - Properties of Congurence Groups

Let $[a], [b] \in \frac{\mathbb{Z}}{n\mathbb{Z}}$ for some $n \in \mathbb{N}$ then

$$[a] + [b] = [a+b], [a].[b] = [a.b]$$

Theorem 8.04 - Abelian Congurence Groups Let $n \in \mathbb{N}$ then $\frac{\mathbb{Z}}{n\mathbb{Z}}$ is an abelian group.

Theorem 8.05 - Cyclic Abelian Congurence Groups The group $\left(\frac{\mathbb{Z}}{n\mathbb{Z}},+\right)=\langle[1]\rangle$, so it is a cyclic group. The group $\left(\frac{\mathbb{Z}}{n\mathbb{Z}},\cdot\right)$ is never a group for n>1 as $[0][x]=[0]\neq[1]=e$.