Skolornas Matematiktävling

Svenska Dagbladet Svenska Matematikersamfundet

Lösningar till kvalificeringstävlingen den 5 oktober 1989

1. Vänsterledet är delbart med 9 och därför måste siffersumman a+19 av talet i högerledet också vara delbart med 9. Detta ger siffran a=8 och $492a04=9\cdot54756=3^2\cdot234^2$ varav $230+t=\pm234$ dvs t=4 eller t=-464.

Alternativt kan man utnyttja olikheterna

$$701^2 < 492004 < 492a04 < 492904 < 703^2,$$

som ger $492a04 = 702^2$ varav a = 8.

Svar: t = 4 eller t = -464.

2. Till varje permutation $a\ b\ c\ d\ e\ f$ av talen 1 2 3 4 5 6 finns precis en permutation $A\ B\ C\ D\ E\ F$ sådan att a+A=b+B=c+C=d+D=e+E=f+F=7. Det finns 6! olika permutationer. Alltså blir summan

$$777777 \cdot \frac{6!}{2} = 279999720.$$

Svar: Summan är 279999720.

3. Enligt konstruktionen är |AP| = |AP'| = |AP''| och $\angle PAB = \angle P'AB$, $\angle PAC = \angle P''AC$. Alltså är $\triangle P'AP''$ likbent, $\angle P'AP'' = 2\angle BAC$ och $|P'P''| = 2|AP|\sin \angle BAC$, som är minimalt då A:s avstånd till sidan BC är minimalt, dvs då P är fotpunkten till höjden från A till sidan BC.

4. Sätt $x^y = y^z = z^x = e^t$ och logaritmera. Man får då

$$\ln x = \frac{t}{y}, \quad \ln y = \frac{t}{z}, \quad \ln z = \frac{t}{x}.$$

- (a) Om t = 0 så är x = y = z = 1.
- (b) Antag att t > 0 och att x < y. Vi får då följande motsägelse:

$$x < y \implies \ln x < \ln y \Rightarrow \frac{t}{y} < \frac{t}{z} \Rightarrow z < y$$

$$\Rightarrow \ln z < \ln y \Rightarrow \frac{t}{x} < \frac{t}{z} \Rightarrow z < x$$

$$\Rightarrow \ln z < \ln x \Rightarrow \frac{t}{x} < \frac{t}{y} \Rightarrow y < x.$$

Analogt ger antagandet x > y följande motsägelse:

$$x > y \implies \ln x > \ln y \Rightarrow \frac{t}{y} > \frac{t}{z} \Rightarrow z > y$$

$$\Rightarrow \ln z > \ln y \Rightarrow \frac{t}{x} > \frac{t}{z} \Rightarrow z > x$$

$$\Rightarrow \ln z > \ln x \Rightarrow \frac{t}{x} > \frac{t}{y} \Rightarrow y > x.$$

Alltså måste x=y och $\frac{t}{y}=\ln x=\ln y=\frac{t}{z}$ som ger y=z.

(c) Antag att t < 0 och att x < y. Vi får då följande motsägelse:

$$x < y \implies \ln x < \ln y \Rightarrow \frac{t}{y} < \frac{t}{z} \Rightarrow y < z$$

 $\Rightarrow \ln y < \ln z \Rightarrow \frac{t}{z} < \frac{t}{x} \Rightarrow z < x$
 $\Rightarrow x < y < z < x$.

Analogt ger antagandet x > y följande motsägelse:

$$x > y \implies \ln x > \ln y \Rightarrow \frac{t}{y} > \frac{t}{z} \Rightarrow y > z$$

 $\Rightarrow \ln y > \ln z \Rightarrow \frac{t}{z} > \frac{t}{x} \Rightarrow z > x$
 $\Rightarrow x > y > z > x.$

Alltså måste x=y och $\frac{t}{y}=\ln x=\ln y=\frac{t}{z}$ som ger y=z.

5. Enligt sambandet mellan rötter och koefficienter gäller

$$x_1 + x_2 = -p$$
, $x_1 x_2 = q$, $x_1 + \frac{1}{x_2} = -m$ och $\frac{x_1}{x_2} = \frac{1}{q}$,

som ger $x_1^2 = 1$ och

$$mp = (x_1 + x_2) \left(x_1 + \frac{1}{x_2} \right)$$

$$= x_1^2 + \frac{x_1}{x_2} + x_1 x_2 + 1$$

$$= 2 + q + \frac{1}{q}$$

$$= 4 + \frac{(q-1)^2}{q} \ge 4,$$

med likhet då och endast då q = 1.

 $\textbf{Svar} \colon mp \geq 4$ och likhet gäller då och endast då q=1.

6. Sätt

$$b_{2n-1} = a_n + a_n$$
, för $n = 1, 2, \dots, 995$

och

$$b_{2n} = a_n + a_{n+1}$$
, för $n = 1, 2, \dots, 994$.

Då är

$$b_{2n-1} = a_n + a_n < a_n + a_{n+1} = b_{2n} < a_{n+1} + a_{n+1} = b_{2n+1}$$
.

Alltså är alla $b_k, \, k=1,2,\ldots,1989$ olika.

Nu gäller också

$$b_{2n} = a_n + a_{n+1} < a_n + a_{n+2} < a_{n+1} + a_{n+2} = b_{2n+2}.$$

Om det finns precis 1989 element så är $b_{2n+1}=a_n+a_{n+2}$, dvs $a_{n+2}-a_{n+1}=a_{n+1}-a_n$, n=1 $1,2,\ldots,993$ som visar att $\{a_k\}_{j=1}^{995}$ är aritmetisk. Antag omvänt att $\{a_j\}_{j=1}^{995}$ är aritmetisk. Eftersom följden är växande kan den skrivas

$$a_j = a + jd$$
, a och $d > 0$ fixa, $j = 1, 2, ..., 995$.

Då är

$$a_i + a_j = 2a + (i+j)d, i, j = 1, 2, \dots 995.$$

Här antar i+j de olika värdena $2,3,\ldots,1990$, dvs det finns precis 1989 olika summor a_i+a_j .

Lösningarna hämtade, med författarens tillstånd, ur:

Matematiktävlingar Skolornas Matematiktävling 1988-1998 Nordiska Matematiktvlingen 1987-1998 av Åke H Samuelsson