

State of COVID-19 in the Philippines

Research on COVID-19 in the Philippines

Time-series Analysis

Compartmental Models

Agent-based Modeling

SEIR Model

- Transmission rate (β) , incubation period (σ) , and recovery period (γ) are inherent properties of the virus.
- All compartments are well-mixed and homogenous.

Q-SEIR Model (Bongolan, 2021a)

- Quarantine factor (Q(t)) controls the exposure between susceptible-infectious interactions.
 - ightharpoonup Q(t) = 0.2:80% success rate of quarantine

ASQ-SEIR Model (Rayo, 2020)

- Age-stratified Infection Probability (0 < U \leq l) = relative proportion of infected cases by age group

ASQ-SEIR-NLIR Model (Minoza, 2020)

- Behavioral (α) and disease-resistance (ε) factors are incorporated.
- While β , σ , γ are properties of the virus, α , ε are properties of the S and I population.

Governing ODEs of ASQ-SEIR-NLIR

$$\frac{dS}{dt} = -\frac{\beta Q(t) \frac{SI}{N}}{(1 + \alpha \frac{S}{N})(1 + \varepsilon \frac{I}{N})}$$

$$\frac{dE}{dt} = \frac{\beta Q(t) \frac{SI}{N}}{(1 + \alpha \frac{S}{N})(1 + \varepsilon \frac{I}{N})} - \sigma UE$$

$$\frac{dI}{dt} = \sigma UE - \gamma I$$

$$\frac{dR}{dt} = \gamma I$$

Genetic Algorithm

- A heuristic search or optimization technique that belongs to a larger class of evolutionary algorithms
- Relies on the randomness in the crossover and mutation of the highest quality (fitness) candidate to maximize (or minimize) an objective

Chromosome (Individual) Representation

- Each chromosome (Ω) is composed of individual *gene*, which refers to a single piece of data.
- Binary representation is commonly used in GA. Here, floating point representation is used.
- Ranges are defined based on available literature and author's assessment.

β	σ	γ	Q	U	α	${\cal E}$
[2, 3.2]	[0.15, 0.28]	[0.05, 0.33]	[0.2, 0.9]	(0, 1]	[0,1]	[0, 0.7]

Fitness Function

- Measures the quality or "fitness" of the chromosome
- $f(i) = \omega_c \|c_r c_m^{\Omega}\|_{L_2} + \omega_r \|r_r r_m^{\Omega}\|_{L_2}$
 - $\succ c_r c_m^{\Omega}$: difference between the reported cumulative active cases (c_r) and predicted cumulative active cases (c_m^{Ω})
 - $ightharpoonup r_r r_m^{\Omega}$: difference between the reported removed cases (r_r) and predicted removed cases (r_m)
 - $\triangleright \ \omega_c$: weight of objective function for active cases
 - $\triangleright \omega_r$: weight of objective function for removed cases
- Fitness Rank = 1 / Fitness Score = 1/f(i) => lower distance, higher rank, v.v.

Selection

- Get the top X chromosomes according to the fitness rank
- Select 2 random chromosomes from the set of top chromosomes via Roulette Wheel
 - ➤ Probabilities are computed by getting the relative rank of each chromosome.

Crossover

- When the crossover threshold is met, the 2 chromosomes are crossed over.
 - > Operator: average of the 2 parent chromosomes
 - > Since it will produce 2 identical child chromosome, only 1 is forwarded for mutation.
- If the crossover threshold is not met, the chromosome with the higher fitness rank is forwarded for mutation.

Mutation

- When the mutation threshold is met, the child chromosomes is mutated.
 - Randomly select gene/s to mutate
 - 1. Assign a random score to each gene.
 - 2. If a gene meets the random threshold, that gene is mutated.
 - 3. If no gene meets the random threshold, then a random gene is mutated.
 - ➤ The mutated chromosome is inserted back to the population.
- If the crossover threshold is not met:
 - ➤ If there is a child chromosome, the child chromosome is inserted back to the population.
 - > If there is no child chromosome, the parent with the higher fitness rank is inserted back to the population

GA Methodology

3.2	0.2	0.21	0.7	0.9	0.5	0.7
2.69	0.17	0.09	0.28	0.53	0.89	0.63

Experiment

- Population size = 70; Sample size (top chromosomes) = 5
- Generations = 2,500
- Runs = 5; Get the fittest chromosome for each run.
- The final chromosome is the fittest among the 5 runs.
- Regions of Interest: Philippines (country level) and Quezon City (city level)

FITNESS CURVES

RESULTS

FITNESS CURVES

RESULTS

TRAJECTORY RESULTS

OPTIMAL PARAMETERS

RESULTS

Insights:

- High resistance, low MHS compliance (PH & QC)
- Faster transmission in QC (βQ_{QC} > βQ_{PH})
 σU_{PH} > σU_{QC} == may be interpreted as more undetected cases in QC (needs validation)
- QC, same removal rate as PH

Optimal Parameter Values					
Parameter	Country	City			
Transmission/Contact Rate (β)	2	3.12			
Incubation Period (σ)	0.28	0.28			
Removal Rate (γ)	0.33	0.33			
Quarantine Factor (Q)	0.2	0.2			
Age-Stratified Infection Proba-	1	0.03			
bility (U)					
Behavioral Factor (α)	0.13	0.36			
Disease-resistance Factor (ϵ)	0.7	0.7			

INFECTION PEAK

RESULTS

<u>Insights</u>:

- PH: 0.0823% of population by Oct 2022
- QC: 0.01494% of population by Nov 2024

Conclusion

- Use of genetic algorithm for parameter estimation
- Average trajectory of ASQ-SEIR-NLIR model produced by the GA parameters
- Dynamics described by the GA parameters

Future Work:

- Using time-based parameters to capture specific peaks
- Using other types of fitness function
- Modification of compartments to capture other population

