Ejercicio: 7 tema 1

Demuestra que la propiedad de estabilidad de una ecuación lineal es independiente del instante fijado t_0 .

Sea $\varphi: (\alpha, +\infty) \to \mathbb{R}^d$ una solución estable en $t_0 \in (\alpha, +\infty)$ de la ecuación lineal x' = A(t)x + b(t) (*).

La definición dada en teoría de estabilidad es la siguiente:

Para todo $\epsilon>0$ existirá un $\delta>0$ tal que para cualquier otra solución $\mathcal{X}:(\alpha,+\infty)\to\mathbb{R}^d$ de la ecuación (*) que cumpla que $\|\varphi(t_o)-\mathcal{X}(t_0)\|<\delta$, se tendrá entonces que $\|\varphi(t)-\mathcal{X}(t)\|<\epsilon$ para $t>t_0$.

Nótese que con dicha definición, a priori la estabilidad depende de t_0 , vemos ahora que es independiente.

En virtud de una de las equivalencias de caracterización de estabilidad, sabemos que si $\varphi: (\alpha, +\infty) \to \mathbb{R}^d$ es solución estable para $t_0 \in (\alpha, +\infty)$ entonces para cualquier solución $y: (\alpha, +\infty) \to \mathbb{R}^d$ de la ecuación homogénea y' = A(t)y se cumple que está acotada en $[t_0, \infty)$. Veamos ahora que para un instante $t_1 \in (\alpha, +\infty)$ arbitario existirá $M \in \mathbb{R}$ cumpliendo que $\|y(s)\| < M$ para cualquier $s \in [t_1, +\infty)$, es decir que está acotada y por ende es estable para t_1 . Distingamos los siguientes casos:

- 1. Si $t_0 \le t_1$ se tiene que $[t_1, +\infty) \subseteq [t_0, +\infty)$ para el cual está acotada por hipótesis, luego no habría nada que probar.
- 2. Si $t_1 < t_0$ entonces por el razonamiento anterior sabríamos que está acotado en $[t_0, +\infty)$, faltando por comprabar que también lo está en el compacto $[t_1, t_0]$.

Conocemos además que y es continua, la norma también y la composición de continuas es continua.

Toda función continua tiene máximo dentro de un compacto, es decir existe $M \in \mathbb{R}$ para el cual ||y(s)|| < M sea cual sea $s \in [t_1, t_0]$.

Concluímos por tanto que estaría acotada en $[t_1, t_0]$ por compacidad y en $[t_0, +\infty)$ por la hipótesis de estabilidad en t_0 , probando con esto la estabilidad en t_1 .

Como t_1 era arbitrario queda demostrado que la estabilida no depende del instante inicial de la demostración.