A Secure Password Wallet based on the SEcube™ framework

Walter Gallego Gómez

Department of control and computer engineering
Politecnico di Torino

July 23, 2018

The need for a hardware-based password manager is justified answering these three questions:

The need for a hardware-based password manager is justified answering these three questions:

Are passwords still relevant?

The need for a hardware-based password manager is justified answering these three questions:

Are passwords still relevant?

Yes, they are the dominant form of authentication.

The need for a hardware-based password manager is justified answering these three questions:

Are passwords still relevant?

Yes, they are the dominant form of authentication.

Why should people use password managers?

The need for a hardware-based password manager is justified answering these three questions:

Are passwords still relevant?

Yes, they are the dominant form of authentication.

Why should people use password managers?

So they can use unique strong passwords.

The need for a hardware-based password manager is justified answering these three questions:

Are passwords still relevant?

Yes, they are the dominant form of authentication.

Why should people use password managers?

So they can use unique strong passwords.

Why are hardware-based approaches more reliable?

The need for a hardware-based password manager is justified answering these three questions:

Are passwords still relevant?

Yes, they are the dominant form of authentication.

Why should people use password managers?

So they can use unique strong passwords.

Why are hardware-based approaches more reliable?

To authenticate, Master password + Device are required

Outline

- 1. Introduction
- 2. Technologies used
 - ► Software libraries
 - ►The SEcube[™] Framework
- 3. Design
- 4. Demos
- 5. Conclusions
- 6. Future Work

Outline

- 1. Introduction
- 2. Technologies used
 - **▶**Software libraries
 - ►The SEcube[™] Framework
- 3. Design
- 4. Demos
- 5. Conclusions
- 6. Future Work

Introduction

Outline

- 1. Introduction
- 2. Technologies used
 - ► Software libraries
 - ►The SEcube[™] Framework
- 3. Design
- 4. Demos
- 5. Conclusions
- 6. Future Work

The following open source libraries were used:

The following open source libraries were used:

Qt: GUI and wrappers

The following open source libraries were used:

Qt: GUI and wrappers

C++ library, cross-platform, elegant design

The following open source libraries were used:

Qt: GUI and wrappers

C++ library, cross-platform, elegant design

SQLite: DataBase management

The following open source libraries were used:

Qt: GUI and wrappers

C++ library, cross-platform, elegant design

SQLite: DataBase management

Self-contained, written in C, Transactional

The following open source libraries were used:

Qt: GUI and wrappers

C++ library, cross-platform, elegant design

SQLite: DataBase management

Self-contained, written in C, Transactional

PwGen: Password generator

The following open source libraries were used:

Qt: GUI and wrappers

C++ library, cross-platform, elegant design

SQLite: DataBase management

Self-contained, written in C, Transactional

PwGen: Password generator

Configurable, random or readable

The following open source libraries were used:

Qt: GUI and wrappers

C++ library, cross-platform, elegant design

SQLite: DataBase management

Self-contained, written in C, Transactional

PwGen: Password generator

Configurable, random or readable

zxcvbn: Password strength estimator

The following open source libraries were used:

Qt: GUI and wrappers

C++ library, cross-platform, elegant design

SQLite: DataBase management

Self-contained, written in C, Transactional

PwGen: Password generator

Configurable, random or readable

zxcvbn: Password strength estimator

Dictionaries, keyboard patterns, sequences, years

Hardware

Software

Hardware

Software

Developed by the Blu5 Group

Hardware

Software

Developed by the Blu5 Group

Family

- SEcube[™] Chip
- SEcube™ DevKit
- USEcube™ Stick

Hardware

Software

Developed by the Blu5 Group

Family

- SEcube™ Chip
- SEcube™ DevKit
- USEcube™ Stick

SEcube™ Chip

- MCU: STM32F4 (STM)
- FPGA: MachXO2-7000 (Lattice)
- Smart Card: SLJ52G (infineon)

Hardware

Developed by the Blu5 Group

Family

- SEcube[™] Chip
- SEcube™ DevKit
- ► USEcube[™] Stick

SEcube™ Chip

- MCU: STM32F4 (STM)
- FPGA: MachXO2-7000 (Lattice)
- Smart Card: SLJ52G (infineon)

Software

Developed by European research institutions. Written in C using the Eclipse IDE.

Hardware

Developed by the Blu5 Group

Family

- SEcube[™] Chip
- SEcube™ DevKit
- ► USEcube[™] Stick

SEcube™ Chip

- MCU: STM32F4 (STM)
- FPGA: MachXO2-7000 (Lattice)
- Smart Card: SLJ52G (infineon)

Software

Developed by European research institutions. Written in C using the Eclipse IDE.

Firmware: Developers can customize the firmware to their needs, and load the updated version to the SEcube™ chip.

Hardware

Developed by the Blu5 Group

Family

- SEcube[™] Chip
- SEcube™ DevKit
- USEcube[™] Stick

SEcube™ Chip

- MCU: STM32F4 (STM)
- FPGA: MachXO2-7000 (Lattice)
- Smart Card: SLJ52G (infineon)

Software

Developed by European research institutions. Written in C using the Eclipse IDE.

Firmware: Developers can customize the firmware to their needs, and load the updated version to the SEcube™ chip.

Host libraries: Allow to experience the platform as a high-security black box.

Outline

- 1. Introduction
- 2. Technologies used
 - **▶**Software libraries
 - ►The SEcube[™] Framework
- 3. Design
- 4. Demos
- 5. Conclusions
- 6. Future Work

SEcubeWallet Application

Open device and authenticate

Create In-memory Wallet

Generate Password/Passphrase

Evaluate Strength

Encrypt and Save Wallet to disk

General Architecture

Outline

- 1. Introduction
- 2. Technologies used
 - **▶**Software libraries
 - ►The SEcube[™] Framework
- 3. Design
- 4. Demos
- 5. Conclusions
- 6. Future Work

Login and Open a Wallet

Generate and evaluate password

Outline

- 1. Introduction
- 2. Technologies used
 - **▶**Software libraries
 - ►The SEcube[™] Framework
- 3. Design
- 4. Demos
- 5. Conclusions
- 6. Future Work

Outline

- 1. Introduction
- 2. Technologies used
 - ► Software libraries
 - ►The SEcube[™] Framework
- 3. Design
- 4. Demos
- 5. Conclusions
- 6. Future Work