Stand: 27.03.20 (Bak)

TM2-P4: Flächenträgheitsmomente

Mit folgenden Formeln können der Flächeninhalt A, die Statischen Momente S_y , S_z sowie die Flächenträgheitsmomente I_y , I_z , I_{yz} (FTM) von beliebigen geradlinig berandeten Flächen aus den Koordinaten (y_i, z_i) der Eckpunkte berechnet werden:

$$A = \frac{1}{2} \sum_{k=1}^{n} (y_k \ z_{k+1} - y_{k+1} \ z_k)$$

$$S_y = \frac{1}{6} \sum_{k=1}^{n} (y_k z_{k+1} - y_{k+1} z_k)(z_k + z_{k+1})$$

$$S_z = \frac{1}{6} \sum_{k=1}^{n} (y_k z_{k+1} - y_{k+1} z_k) (y_k + y_{k+1})$$

$$I_y = \frac{1}{12} \sum_{k=1}^{n} (y_k z_{k+1} - y_{k+1} z_k) ((z_k + z_{k+1})^2 - z_k z_{k+1})$$

$$I_z = \frac{1}{12} \sum_{k=1}^{n} (y_k z_{k+1} - y_{k+1} z_k) ((y_k + y_{k+1})^2 - y_k y_{k+1})$$

$$I_{yz} = -\frac{1}{12} \sum_{k=1}^{n} (y_k z_{k+1} - y_{k+1} z_k) \left((y_k + y_{k+1})(z_k + z_{k+1}) - \frac{1}{2} (y_k z_{k+1} - y_{k+1} z_k) \right)$$

Enthält die Fläche Ausschnitte, wird die Fläche gedanklich geschnitten (siehe Skizze).

Ergänzen Sie Ihre Funktion SPEckenformel.m aus TM1-P3 um die Berechnung der Flächenträgheitsmomente nach obigen Formeln und überprüfen Sie die korrekte Implementierung der Formeln anhand einfacher Geometrien!

Berechnen Sie außerdem die Haupt-FTM sowie die Hauptachsenrichtung innerhalb der Funktion und zeichnen Sie die Hauptrichtungen in eine grafische Darstellung der untersuchten Fläche ein!

1. Matlab-Lernziele

- Wiederholung: Matlab-Funktionen
- Wiederholung: for-Schleife
- Testen von Programmen

2. Vorbereitung (handschriftlich, zu Hause)

- 2.1. Was sind zentrale Flächenträgheitsmomente (FTM)? Geben Sie die zentralen FTM für ein Rechteck der Breite a und der Höhe b an!
- 2.2. Wie werden
 - Flächenträgheitsmomente bezüglich parallel verschobener Achsen sowie
 - die Hauptachsenrichtung und die Haupt-Flächenträgheitsmomente berechnet?
- 2.3. Gegeben ist eine Matrix A der Größe $[m \times n]$ in Matlab. Mit welchem Befehl können Sie auf die Matrixelemente der 1. Spalte zugreifen?
- 2.4. Wie lautet die korrekte Syntax für den Matlab-Befehl subs ()? Was macht dieser Befehl?

2.5. Kopieren Sie die Funktion "SPEckenformel.m" aus TM1-P3 in Ihr aktuelles Arbeitsverzeichnis für diese Aufgabe oder implementieren Sie diese Funktion entsprechend der Anleitung TM1-P3, damit Sie sie im Praktikumstermin ergänzen können! Benennen Sie sie um in "TM2 Eckenformel.m"!

3. Berechnungen für ein Rechteck im Hauptprogramm

- 3.1. Löschen Sie den Arbeitsspeicher, schließen Sie alle Grafikausgaben und führen Sie zwei symbolische Variablen für die Seitenlängen a, b eines Rechtecks ein!
- 3.2. Implementieren Sie die Eckpunkte eines Rechtecks so, dass die Ecken im Gegen-Uhrzeigersinn durchlaufen werden und die Koordinaten des Startpunktes am Ende wiederholt werden (um den Kurvenzug zu schließen):

```
Ecken = [0, 0;
a, 0;
a, b;
0, b;
0, 0];
```

3.3. Überprüfen Sie Ihre programmierte Figur grafisch, indem Sie den Seitenlängen Werte zuweisen. Damit die symbolischen Variablen weiterhin zur Verfügung stehen, werden neue Variablen für die Zahlenwerte eingeführt:

```
awert = 2;
bwert = 1;
Ecken_num = subs(Ecken, [a, b], [awert, bwert]);
Y = Ecken_num(:,1);
Z = Ecken_num(:,2);
```

- → Hinweise: axis equal ... gleiche Achsskalierung im Plot axis off ... Achsen ausblenden
- 3.4. Berechnen Sie den Schwerpunkt Ihres Rechtecks mit der Matlab Funktion "SPEckenformel.m" analog zum Praktikumstermin TM1-P3 und überprüfen Sie das Ergebnis!
 - → Dies dient dem Test der schon vorhandenen Funktion.

4. Ergänzung der Funktion TM2_Eckenformel.m

Im Termin TM1-P3 lag die untersuchte Fläche in der x-y-Ebene; für TM2 werden üblicherweise Querschnittsflächen in der y-z-Ebene senkrecht zur Balkenachse x betrachtet. Um Konsistenz zu erreichen, werden zunächst die schon vorhandenen Berechnungen in die y-z-Ebene überführt:

- 4.1. Ersetzen Sie beim ersten Auftreten die Variable y durch z und bestätigen Sie mit Umschalt+Eingabe, dass die Variable überall geändert werden soll!
- 4.2. Ersetzen Sie nun x durch y an allen Stellen!
- 4.3. Ändern Sie gleichermaßen S_v in S_z sowie S_x in S_v und y_S in z_S und x_S in y_S !
- 4.4. Überprüfen Sie, ob Ihre Funktion noch richtig arbeitet, indem Sie das Hauptprogramm erneut ablaufen lassen!

Nun kann die Funktion um die Berechnungen für die FTM ergänzt werden:

4.5. Initialisieren Sie die Variablen für I_{v} , I_{z} , I_{vz} .

- 4.6. Ergänzen Sie in der for-Schleife die Summenbildung aus obigen Formeln!
- 4.7. Multiplizieren Sie die Ergebnisse der Summenbildung mit den erforderlichen Vorfaktoren aus den obigen Formeln!
- 4.8. Berechnen Sie die zentralen FTM aus den berechneten FTM I_y , I_z , I_{yz} und den Schwerpunktskoordinaten y_S , z_S !
- 4.9. Berechnen Sie die Hauptrichtung sowie die Haupt-FTM aus den zentralen FTM! Beachten Sie dabei, dass $I_{ys} I_{zs} = 0$ auftreten kann und die Hauptachsen dann unter 45° zu finden sind:

```
if IyS-IzS == 0
    phi = pi/4
else
    phi = atan((2 * IyzS)/(IyS - IzS))/2
end
```

4.10. Ergänzen Sie in der Funktionsdeklaration (Zeile 1) die berechneten FTM als Ausgabegrößen!

5. Weitere Berechnungen für das Rechteck im Hauptprogramm

- 5.1. Überprüfen Sie Ihre Funktion durch Aufruf aus dem Hauptprogramm! Weisen Sie alle Ausgabegrößen aus der Funktion geeigneten Variablen zu! Sind die Berechnungsergebnisse richtig?
- 5.2. Setzen Sie mit subs () die gegebenen Zahlenwerte für die Seitenlängen ein und ergänzen Sie zu Kontrollzwecken die Hauptachsen in der Grafik mit dem Befehl quiver () (vgl. TM1-P2)!

6. Weitere Kontrolle für ein Dreieck

6.1. Testen Sie Ihr Programm, indem Sie in der Eingabe die Koordinaten eines Punktes löschen, sodass ein Dreieck entsteht! Kontrollieren Sie ihre Berechnung!

7. Hausaufgabe

7.1. Beenden Sie die Berechnung für das Rechteck und das Dreieck.