

Universidade Federal da Paraíba
Centro de Tecnologia
Departamento de Engenharia Civil e Ambiental
Disciplina de Hidrologia
Prof.^a Dr.^a Ana Cristina Souza da Silva
Colaboradores Monitores: Emanuel Gomes Soares

Discente:	
Matrícula:	Data://

ESTUDO DIRIGIDO - UNIDADE 3 - PERÍODO 2023. 2

ORIENTAÇÕES: Escrever em letra legível e colocar nome e matrícula nas folhas de rascunho/cálculo.

CHUVA EFETIVA

Questão 01 - Qual é a chuva efetiva durante um evento de chuva de precipitação total P = 50 mm numa bacia com o CN = 74.

Questão 02 - Qual é a chuva efetiva durante o evento de chuva dado na tabela abaixo numa bacia com solos com média capacidade de infiltração e cobertura de plantação de cereais (CN = 71)?

Tabela 1 - Evento de chuva.

Tempo (min)	Precipitação (em mm)			
10	2			
20	8			
30	25			
40	15			
50	5			

Questão 03 - Qual é o valor do coeficiente CN de uma bacia em que 30% da área é rural (CN = 85) e em que 70% é urbanizada (CN = 93)?

Fórmulas:
$$S=\frac{25400}{CN}-254$$
 ; $Ia=0,2*S$; $Q=\frac{(P-Ia)^2}{(P-Ia+S)}$ quando $P>Ia$ e $Q=0$ quando $P\leq Ia$.

HIDROGRAMA UNITÁRIO

Questão 04 - Construa um hidrograma unitário para a chuva de duração de 10 minutos para a bacia do Rio Marés, cujo sua nascente está situada no Bairro dos Municípios em Santa Rita-PB, o Rio também faz a delimitação entre os 3 munícipios: Bayeux, Santa Rita e João Pessoa, além de abastecer uma parte de João Pessoa, ele possui uma área de drenagem

de aproximadamente 39,0 km², comprimento do talvegue (rio) de 10800 m, ao longo do qual existe uma diferença de altitude de 64 m.

- Para o tempo de concentração utilize a equação de Kirpich

Equação de Kirpich:
$$T_c = 57*\left(\frac{L^3}{\Delta h}\right)^{0.385}$$

Em que T_c é o tempo de concentração em minutos;

L é o comprimento do talvegue em (km)

 Δh é a diferença de altitude em metros ao longo do curso d'água principal.

*Precisa converter T_c para horas!

Questão 05 - Dada uma pequena bacia cujo hidrograma unitário é conhecido para uma chuva efetiva de 10 mm e 10 minutos de duração, conforme a Tabela 2. Calcule qual é a resposta da bacia aos eventos de chuva da Tabela 3.

Tabela 2 - Hidrograma unitário da questão.

Tempo (minutos)	Vazão (m³/s)		
0	0		
10	0,05		
20	0,1		
30	0,2		
40	0,15		
50	0,1		
60	0		

Tabela 3 - Eventos de chuva

Evento	Tempo (minutos)	Precipitação efetiva (mm)
1	0	5
2	10	8
3	20	12
4	30	14

^{*}Faça os gráficos, para facilitar preencha a tabela abaixo.

Tabela 4 - Cálculo da resposta da bacia.

Tempo (minutos)	Resposta evento 1 (m³/s)	Resposta evento 2 (m³/s)	Resposta evento 3 (m³/s)	Resposta evento 4 (m³/s)	Soma
0					
10					
20					

Tempo (minutos)	Resposta evento 1 (m³/s)	Resposta evento 2 (m³/s)	Resposta evento 3 (m³/s)	Resposta evento 4 (m³/s)	Soma
30					
40					
50					
60					
70					
80					
90					

Fórmulas:

$$t_p = 0$$
, $6 * t_c$ (tempo de pico)

$$oldsymbol{t_p} = oldsymbol{0}, oldsymbol{6} * oldsymbol{t_c}$$
 (tempo de pico) $oldsymbol{T_p} = oldsymbol{t_p} + rac{d}{2}$ (Tempo de subida)

$$t_b = T_p + 1$$
, $67 * T_p \;\;$ (Tempo de base)

$$Q_p = \frac{0.208*A}{T_p}$$

*Para não confundir, usar Tempo de subida = $m{T}_{\mathcal{S}}$

Assim sendo:

$$T_S=t_p+\frac{d}{2}$$

$$t_b = T_s + 1,67 * T_s$$

$$T_S = t_p + \frac{d}{2}$$

$$t_b = T_s + 1,67 * T_s$$

$$Q_p = \frac{0,208 * A}{T_s}$$

Em que:

 $T_p\left(T_S\right)$ é o tempo de subida (horas), a área da bacia (A) é dada em km^2 , e o resultado Q_p é a vazão de pico ($m^3 * s^{-1}$) por mm de chuva efetiva.

HU (m³/s)

Hidrograma unitário triangular

Tr

Tempo (em minutos)

Gráfico 1 – Modelo do hidrograma unitário triangular.

MEDIÇÃO DE VAZÃO

Questão 06 – Calcule a vazão no vertedor retangular de soleira delgada, conforme mostra a Figura 1. $Q=1,84*L*H^{1,5}$

Figura 1 - Vertedor retangular de soleira delgada e variáveis para estimativa de vazão.

Fonte: Autores, 2023.

^{*}unidades estão em metros.

Questão 07 – O molinete é um aparelho que permite calcular a velocidade instantânea da água no ponto, através da medida de rotações de uma hélice em determinado tempo. Cada molinete tem uma equação que transforma o número de rotações da hélice em velocidade, do tipo:

$$V = A_1 + B_1 * N \ para \ N \ge 86,4$$

Ε

$$V = A_2 + B_2 * N \ para \ N < 86,4$$

Em que para o molinete:

A e B são constantes (calibração em laboratório para cada molinete);

$A_1 = 0.001728$	$B_1 = 0.0206$
$A_2 = 0.00157$	$B_2 = 0.0343$

 $N = \frac{n \text{\'amero de rotações}}{tempo\ em\ segundos}$ (nesse caso o tempo foi de 30 segundos).

Tabela 5 – Dados da batimetria.

Seção	1	2	3	4	5	6	TOTAL
Posição na trena (m)	0,5	0,7	0,9	1,1	1,3	1,5	-
Distância margem (m)	0	0,2	0,4	0,6	0,8	1	-
Profundidade (m)	0	0,7	0,99	0,85	0,4	0	-
Área da sub-seção (m²) Ai							-
Rotação a 0,6*P (rotações)	0	20	28	32	15	0	-
Rotação a 0,6*P (rotações)	0	21	27	35	12	0	-
Velocidade a 0,6*P (m/s)							-
Vazão na subseção (m³/s)							

Preencha os dados faltantes e diga qual a vazão total do rio e a velocidade média do rio em que foi realizada a medição.

ESCOAMENTO SUBTERRÂNEO

Questão 08 - Considere um aquífero confinado entre duas camadas impermeáveis, os engenheiros instalaram 2 piezômetros, instalados a uma distância dL de 2000 metros mostram níveis de 52,1 (A) e 38,3 (B) metros. A espessura do aquífero em metros é de 15,2 metros, e a condutividade hidráulica é de 83,7 $m*dia^{-1}$. Você foi contratado para calcular a transmissividade do aquífero e a vazão através do aquífero, por unidade de largura, em $m^3*dia^{-1}*m^{-1}$.

Figura 2 – Esquema de instalação dos piezômetros.

Fonte: Autores, 2023.

CONHECIMENTO TEÓRICO

Questão 09 - Quais são os métodos utilizados para medir a vazão em rio e canais? Explique o funcionamento de 2 deles.

Questão 10 - Qual a importância de se obter um hidrograma unitário?

Questão 11 - O que é um aquífero?

Questão 12 - Como se origina o escoamento superficial em uma bacia durante as chuvas?

Questão 13 - Em que parte de uma bacia hidrográfica ocorre preferencialmente a geração de escoamento superficial?

Questão 14 - O que é a chuva efetiva?