三角圏の ∞ 増強

よの

2023年10月8日

概要

目次

1 ∞ 增強 1

$1 \propto 增強$

定義 1.1 (∞ 増強を持つ). $\mathcal T$ を三角圏とする. ある安定 ∞ 圏 $\mathcal C$ が存在して、三角圏同値 $h\mathcal C\cong\mathcal T$ が成立するとき、 $\mathcal T$ は ∞ 増強を持つ (admits an ∞ -categorical enhancement) という.

このような $\mathcal C$ が ∞ 圏同値を除いて一意に定まるとき, $\mathcal T$ は一意な ∞ 増強を持つ (admits a unique ∞ -categorical enhancement) という.

∞ 圏の表現可能性の定義だけ書いておく.

定義 1.2 (表現可能).

三角圏のコンパクト生成について復習する.

定義 1.3 (生成する). $\mathcal T$ は有限余直積を持つとする. $\{X_i\}$ を $\mathcal T$ の対象の集まりとする. $Y\in\mathcal T$ が任意の X_i と n に対して $\mathrm{Hom}_{\mathcal T}(X_i,Y[n])$ ならば $Y\cong 0$ であるとき, $\{X_i\}$ は $\mathcal T$ を生成する (generate) という.

定義 1.4 (コンパクト). $\mathcal T$ は有限余直積を持つとする. $\mathcal T$ の対象 X に対して, $\operatorname{Hom}_{\mathcal T}(X,-)$ が余直積を保つとき, X はコンパクト (compact) であるという.

定義 1.5 (コンパクト生成). T は有限余直積を持つとする. コンパクト対象のなす T の充満部分圏を T^ω と表す. T が T^ω で生成されるとき, T はコンパクト生成 (compactly generated) であるという.

定理 1.6 (HA 1.4.4.2, 1.4.4.3). $\mathcal T$ はコンパクト生成かつ ∞ 増強 $\mathcal C$ を持つとする. このとき, $\mathcal C$ は表現可能である.

三角圏の t 構造と安定 ∞ 圏の t 構造について復習する.

定義 1.7 (三角圏の t 構造).

定義 1.8 (安定 ∞ 圏の t 構造).

特別な性質を持つ t 構造を定義する. $(\mathcal{T}_{\geq 0},\mathcal{T}_{\leq 0})$ を三角圏の t 構造, $(\mathcal{C}_{\geq 0},\mathcal{C}_{\leq 0})$ を安定 ∞ 圏の t 構造とする.

定義 1.9 (分離的). \mathcal{T} 上の t 構造 $(\mathcal{T}_{\geq 0}, \mathcal{T}_{\leq 0})$ に対して、

$$\bigcap_{n\in\mathbb{Z}}\mathcal{T}_{\geq n}=0$$

であるとき、 $(\mathcal{T}_{\geq 0},\mathcal{T}_{\leq 0})$ は左分離的 (left separated) であるという。 双対的に、 \mathcal{T} 上の t 構造 $(\mathcal{T}_{\geq 0},\mathcal{T}_{\leq 0})$ に対して、

$$\bigcap_{n\in\mathbb{Z}}\mathcal{T}_{\leq n}=0$$

であるとき, $(\mathcal{T}_{\geq 0}, \mathcal{T}_{\leq 0})$ は右分離的 (right separated) であるという.

定義 1.10 (完備). C 上の t 構造 ($C_{>0}$, $C_{<0}$) に対して, 自然な射

$$\mathcal{C} \to \lim (\cdots \mathcal{C}_{\leq 2} \xrightarrow{\tau_{\leq 1}} \mathcal{C}_{\leq 1} \xrightarrow{\tau_{\leq 0}} \mathcal{C}_{\leq 0})$$

が圏同値であるとき、 $(C_{>0}, C_{<0})$ は左完備 (left complete) であるという.

双対的に, C 上の t 構造 $(C_{>0}, C_{<0})$ に対して, 自然な射

$$\mathcal{C} \to \lim(\cdots \mathcal{C}_{\geq -2} \xrightarrow{\tau_{\geq -1}} \mathcal{C}_{\geq -1} \xrightarrow{\tau_{\geq 0}} \mathcal{C}_{\geq 0})$$

が圏同値であるとき、 $(C_{>0}, C_{<0})$ は右完備 (right complete) であるという.

補題 1.11. $\mathcal T$ 上の t 構造 $(\mathcal T_{\geq 0},\mathcal T_{\leq 0})$ が左分離的であるとする. 対象 $X\in\mathcal T$ が任意の n に対して $\mathcal T_{\leq n}X\cong 0$ であるとき, $X\cong 0$ である.

Proof. 条件を満たす X に対して完全三角を考えると、任意の n に対して $au_{\leq n}X\cong 0$ なので、任意の n に対して $au_{\geq n+1}X\cong X$ である. $(\mathcal{T}_{\geq 0},\mathcal{T}_{\leq 0})$ は左分離的なので、

$$X = \bigcap_{n \in \mathbb{Z}} \tau_{\geq n+1} X \in \bigcap_{n \in \mathbb{Z}} \tau_{\geq n} = 0$$

となる.

補題 1.12. C が左 (右) 完備であるとき, C は左 (右) 分離的である.