

The University of Georgia

Programming for Computational & Systems Biology

Instructor: Paul Xie

Tue. & Thr. 9:35~10:50

Course Format

- Computer labs + lectures (3 hours/week)
- Coding concepts (some knowledge about biological data)
- 6-8 assignments, published on eLC, (30-40%)
 - Please upload them by the due days
- Paper review (10-20%)
- 1 term paper (50-60%)

Docking/Simulation

Instructor: Paul Xie (9)

Last Week

- Protein
- List & List Operation

This Week

- Molecular docking
 - Virtual drug discovery
- List Operation → Modeling

Drug (Medicine) Discovery

The University of Georgia

- How to discover a drug?
 - Identify Targets
 - Proteins (or DNA/RNA)
 - Screen Drugs
 - Molecules can bind and regulate the activity of the target protein

Conventional vs. Computational Drug Discovery

- Challenges of new drug discovery
- Comparison

	Conventional	Computational
Venue	Labs	CPUs
Target Proteins	Culture, purify,	Download
Millions of	Purchase, deliver,	Download
compounds	store,	
Drug binding	Bio-essays	Software
Operators	Labors or machine	CPU & software

- Advantages of Computational Drug Discovery
 - Faster
 - Cheaper
 - More

Docking

- To predict whether and how well one molecule bound to a second one to form a stable complex
- Application on medicinal chemistry & molecular biology
- Virtual screening

Basic Concept

The University of Georgia

Shape complementarity

- Thermodynamic equilibrium $K_a = \frac{[A][B]}{[AB]} = \frac{[Protein][Ligand]}{[Complex]}$
- Affinity: $\Delta G = -RT \ln K_a$

Scaring Functions of Georgia Scaring Functions of Georgia Docking Docking?

- Two components: Sampling and Scoring
 - 1. Generates a large number of poses of a molecule in the binding site
 - 2. Calculates a score or binding affinity for a particular pose
- Energy-based scoring functions:
 - 1. Physics-based: force-field or empirical
 - 2. Knowledge-based: statistical data to approximate binding energy

Genetic Algorithm

- Optimization
- To mimic evolution process
- Genes, individuals, and population
- Pose: location, orientation, conformation

Dihedral angles are translated in genes (binary) 1010010101010010110011001110101010

Force Field

- Force-Field
 - a physical- or statistical model describing the interaction energy

• $E_{total} = E_{bonded} + E_{nonbonded}$

$$E_{
m bonded} = E_{
m bond} + E_{
m angle} + E_{
m dihedral}$$

 $E_{
m nonbonded} = E_{
m electrostatic} + E_{
m van\ der\ Waals}$

New Scoring Functions

- How to create a new docking scoring function?
 - New approach
 - > Overcome the difficulties, e.g. structure flexibility

From 3D Structures to Interaction Motifs

The University of Georgia

MotifScore

tom Typ	e Description	Example
C2N	C, SP2, normal/non-polar	-C=C-
C2P	C, SP2, polar	-C=O
C3N	C, SP3, normal/non-polar	-c-c-
СЗР	C, SP3, polar	−с–он
CRN	C, aromatic, normal/non-polar	Conco
CRP	C, aromatic, polar	
O2A	O, SP2, hydrogen bond acceptor	>C=0
03A	O, SP3, hydrogen bond acceptor	c-o-c
03В	O, SP3, both	-OH
OLC	O, aliphatic, charge	COO-
ORA	O, aromatic, hydrogen bond acceptor	3
NLA	N, aliphatic, hydrogen bond acceptor	-NR.
NLB	N, aliphatic, both	-NH _{1 or}
NLC	N, aliphatic, charge	-NH3+
NRA	N, aromatic, hydrogen bond acceptor	0" 1
NRD	N, aromatic, hydrogen bond donor	0
NRE	N, aromatic, either H.B. donor or accep	otor
S3N	S, SP2, normal/non-polar	-SH
SEN	S, aromatic, hydrogen bond acceptor	()
SLC	S, aliphatic, charge	-\$0 ₄ -2
P	P	
ME	metal	
HAL	F, Cl, Br, I	

- Automatic atom type assignment, graph converting, motif searching, & scoring
- > Significant motifs

- 1st code: atom name (e.g., C, N, O, ME, HAL...)
- 2nd code: 2-SP2; 3-SP3; 1-SP; R-aromatic; L-aliphatic
- 3rd code: A-HB acceptor; D-HB donor; B-Both; N-normal/neither, E-either, C-charge P-polar

Scoring Function

Motif Gain Relative abundance of a specific motif

$$SG_i = \log \left(\frac{OM_i/N_i}{\frac{5}{\prod\limits_{j=1}^{} (OA_j/M_j)}} \right)$$

$$Gain = \sum_{k=1}^{n} SG_k$$

SG: Gain score

OM, OA: occurrence of motif/atom

N, M: number of specific type of motifs/atoms

Penalty Function

$$Penalty = W \times NC$$

W: weight; NC: number of clash

Overall Scoring Function

$$MotifScore = \frac{Gain}{Penalty+1}$$

Comparison with Other Scoring Functions

Scoring function	Success rates (%) under different rmsd criteria		
	≦1 Å	≦ 2 Å	≦3 Å
DrugScore ^{CSD}	83	87	*p
MotifScore	72	84	86
Cerius2/PLP	63	76	80
SYBYL/F-Score	56	74	77
Cerius2/LigScore	64	74	76
DrugScore ^{PDB}	63	72	74
Cerius2/LUDI	43	67	67
X-Score	37	66	74
AutoDock	34	62	72
Cerius2/PMF	40	52	57
SYBYL/G-Score	24	42	56
SYBYL/ChemScore	12	35	40

- Comparable to the best success rate of energy-based scoring functions
- To use the small molecule structure database, CSD
- Potential of Improvement

New Scoring Function

- Created a new docking scoring function
 - The first scoring function using network approach
 - More tolerant to structural flexibility
 - Good results compared with conventional approaches
 - Complementary with energy-based scoring functions

Has been applied to a study of drug resistance of

HIV

Before Docking

- Where is the binding site?
- Binding (Active) Site Prediction
 - To reduce computation load, and narrow down searching area on the protein
 - To predict protein functions

- From an observation
 - Small compounds
 often bind to largest
 cavities
 - New assumption
 - Geometry-based binding site prediction: to identify largest cavities
- Limitation: This assumption is often, but not always true

The University POCASA of Georgia

- Pocket: between protein & probe surfaces
- Diff. spheres create diff. cavities
- SPF: single point flag to remove noise Yu, J. et al., Bioinformatics 2010

The University Limitation of Geometry-based Wethod

Table 3: Numbers of protein in each class for 210 bound structures.

Class	No. of proteins (as %)	Avg no. pocket points	Stdev	
Class 1: Binding site in largest pocket	141/210 = 67%	209	185	
Class 2: Binding site in second largest pocket	28/210 = 13%	66	64	
Class 3: Binding site in third largest pocket	14/210 = 7%	40	41	
Class 4: Binding site in none of above	27/210 = 13%			

Challenge

- How to create a new binding site prediction method?
 - New approach
 - Overcome the limitation

Using Graphs

- Enriched in Motifs
- Side length thresholds (10, 10, 13 angstrom)
- Propensities of triangles

$$P_i = \frac{n_i / \sum_{i=1}^k n_i}{N_i / \sum_{i=1}^k N_i}$$

My Algorithm: LISE

- Statistical data: Propensities
- Identify protein triangles and assign the scores
- Cluster high scored grids

Rank	Triangle	F_b
1	NLC-NLC-NLC	70.6
2	CRP-CRP-CRP	61.9
3	CRP-NLC-NLC	47.2
4	CRP-CRP-NLC	44.3
5	CRP-CRP-OLC	38.1
6	NLC-NLC-NRE	32.8
7	CRP-CRP-NRE	31.7
8	CRP-CRP-O3B	29.8
9	NLC-NLC-O3B	29.6
10	CRP-CRP-NLB	26.2
11	CRN-CRP-CRP	26.2
12	CRP-OLC-OLC	25.8
13	NLB-NLC-NLC	24.6
14	CRP-NRE-OLC	23.5
15	CRP-NLC-O3B	23.5
16	CRP-NLC-NRE	23.0
17	NRE-OLC-OLC	19.9
18	CRP-NRE-NRE	19.7
19	CRP-NLB-NLC	19.2
20	NLC-O3B-O3B	18.6

Results & Comparison Georgia (the Best Results So Far)

Methods	Bound		Unbound	
	Top1 (%)	Top3 (%)	Top1 (%)	Top3 (%)
LISE (this work) ^b	92	96	81	92
MPK2 (Zhang et al., 2011)	85	07	00	0.4
VICE (Tripathi and Kellogg, 2010) ^c	85		M	
MPK1 (Huang, 2009)	83	V		
DoGSite (Volkamer et al., 2010)	83			7
Fpocket (Le Guilloux et al., 2009)	83		100	
LIGSITE ^{cs} (Huang and Schroeder, 2006)	81	1/200		
LIGSITE ^{csc} (Huang and Schroeder, 2006)	79			
MSPocket (Zhu and Pisabarro, 2010)	77	1	A CONTRACTOR OF THE PARTY OF TH	
POCASA (Yu et al., 2010)	77	US	Top1	
Q-SiteFinder (Laurie and Jackson, 2005) ^c	75			X A
PocketPicker (Weisel et al., 2007)	72	130		
CAST (Liang et al., 1998) ^c	67		VAID	
PASS (Brady and Stouten, 2000) ^c	63		2	
SURFNET (Laskowski, 1995) ^c	54			

| ← 0 Normalized Sq

"LISE" Web Server Georgia

- A web server established and published on NAR 2013
- http://lise.ibms.sinica.edu.tw

Summary

- Created a new docking scoring function
 - The first scoring function using network approach
 - More tolerant to structural flexibility
 - Good results compared with conventional approaches
 - Complementary with energy-based scoring functions
 - Has been applied to a study of drug resistance of HIV

Monte Hall Problem of Georgia

- What is the best strategy?
- Python simulation model

Python Time

Rotation

2D rotation

$$x' = x \cos \theta + y \sin \theta$$

 $y' = -x \sin \theta + y \cos \theta$.[7]

Equations (5) and (6) can be represented in matrix form as

$$\left(egin{array}{c} x' \ y' \end{array}
ight) = \left(egin{array}{cc} \cos heta & \sin heta \ -\sin heta & \cos heta \end{array}
ight) \left(egin{array}{c} x \ y \end{array}
ight),$$

3D rotation

$$R = egin{bmatrix} \cos lpha \cos eta & \cos lpha \sin eta - \sin lpha \cos \gamma \ \sin lpha \cos eta & \sin lpha \sin eta + \cos lpha \cos \gamma \ -\sin eta & \cos eta \sin \gamma \end{pmatrix}$$

 $\sin lpha \sin eta \cos \gamma - \cos lpha \sin \gamma \ \cos eta \cos \gamma$

 $\cos \alpha \sin \beta \cos \gamma + \sin \alpha \sin \gamma$

Group Discussion

NON-CONSERVED AMINO ACIDS

