Assignment #2 STA355H1S

student number: 1003942326Yulin WANG 2020-02-13

Question1

(a)

Plots of density estimates for bandwidths 0.003904 (the default value for parameter bw), 0.01, 0.0026, 0.002 are shown below with black, blue, red and green lines respectively.

Plots of density estimates for various bandwidths

- Thus, the local modes become somewhat more evident as the bandwidth decreases, that is, the smaller bandwidth, the more local modes.
- When bandwidth is about 0.0026, the density estimate has 5 modes. When bandwidth is about 0.002, the density estimate has 7 modes.

(b)(i)

Since we don't know whether $X_1, ..., X_n$ are distinct or not, so we need to divide this question in to two parts. For the first part, $X_1, ..., X_n$ are distinct, that is $X_i \neq X_j$ for different i, j = 1, ...n, then $X_i - X_j \neq 0$. Since for $X_i - X_j \neq 0$,

$$h^{-1}w(\frac{X_i - X_j}{h}) \to 0$$
 as $h \downarrow 0$

So

$$\frac{1}{h} \sum_{i=1}^{n} w(\frac{X_i - X_j}{h}) \to 0$$

Then

$$ln\{\frac{1}{nh}\sum_{i=1}^{n}w(\frac{X_{i}-X_{j}}{h})\} \to -\infty$$

Thus

$$\mathcal{L}(h) = \frac{1}{n} \sum_{i=1}^{n} \ln\left\{\frac{1}{nh} \sum_{i=1}^{n} w\left(\frac{X_i - X_j}{h}\right)\right\} \to -\infty$$

For the second part, some of $X_1, ..., X_n$ are equal, that is $X_i = X_j$ for some different i, j = 1, ...n. Since $X_i - X_j = 0$ and w(0) > 0, so

$$\sum_{j=1}^{n} w(\frac{X_i - X_j}{h}) = \sum_{j=1}^{n} w(0) > 0$$

Since $h \downarrow 0$, so $\frac{1}{nh} \to \infty$, then we have

$$\frac{1}{nh}\sum_{j=1}^{n}w(\frac{X_{i}-X_{j}}{h})\to\infty$$

Thus

$$ln\{\frac{1}{nh}\sum_{i=1}^{n}w(\frac{X_{i}-X_{j}}{h})\}\to\infty$$

Therefore

$$\mathcal{L}(h) = \frac{1}{n} \sum_{i=1}^{n} ln\{\frac{1}{nh} \sum_{j=1}^{n} w(\frac{X_i - X_j}{h})\} \to \infty$$

In conclusion, after combining these two parts we get that $\mathcal{L}(h) \uparrow \infty$ as $h \downarrow 0$

(b)(ii)

Note that $X_1, ..., X_n$ are distinct, that is $X_i \neq X_j$ for different i, j = 1, ...n, then $X_i - X_j \neq 0$

1) Show that $CV(h) \to -\infty$ as $h \downarrow 0$

Since for $X_i - X_j \neq 0$,

$$h^{-1}w(\frac{X_i - X_j}{h}) \to 0$$
 as $h \downarrow 0$

So

$$\frac{1}{h} \sum_{j \neq i} w(\frac{X_i - X_j}{h}) \to 0$$

Then

$$\ln\{\frac{1}{(n-1)h}\sum_{j\neq i}w(\frac{X_i-X_j}{h})\}\to -\infty$$

Thus

$$CV(h) = \frac{1}{n} \sum_{i=1}^{n} ln\{\frac{1}{(n-1)h} \sum_{j \neq i} w(\frac{X_i - X_j}{h})\} \to -\infty$$

2) Show that $CV(h) \to -\infty$ as $h \uparrow \infty$

As $h \uparrow \infty$, since $X_i - X_j \neq 0$, then $\frac{X_i - X_j}{h} \to 0$, so $w(\frac{X_i - X_j}{h}) \to w(0)$ Since w(0) > 0, then $w(\frac{X_i - X_j}{h}) > 0$, so $\sum_{j \neq i} w(\frac{X_i - X_j}{h}) > 0$ And since $h \uparrow \infty$, then $\frac{1}{(n-1)h} \to 0$, so we have:

$$\frac{1}{(n-1)h} \sum_{j \neq i} w(\frac{X_i - X_j}{h}) \to 0$$

Thus

$$\ln\{\frac{1}{(n-1)h}\sum_{j\neq i}w(\frac{X_i-X_j}{h})\}\to -\infty$$

Therefore

$$CV(h) = \frac{1}{n} \sum_{i=1}^{n} ln\{\frac{1}{(n-1)h} \sum_{i \neq i} w(\frac{X_i - X_j}{h})\} \to -\infty$$

In conclusion, we've proved that $CV(h) \to -\infty$ as $h \downarrow 0$ and $h \uparrow \infty$

(c)

```
cv <- c(cv,cvj/n)</pre>
                   }
                r <- list(bw=h,cv=cv)
}
```

Use above function to:

1) plot CV versus bandwidth

```
r <- kde.cv(stamp)
plot(r$bw,r$cv) # plot of CV versus bandwidth
```


2) get the optimal value of bandwidth that maximizes CV

```
bw_optimal <- r$bw[r$cv==max(r$cv)] # bandwidth maximizing CV</pre>
bw_optimal
```

[1] 0.001151797

And then use the optimal bandwidth value to estimate the density of the Hidalgo stamp data.

```
plot(density(stamp, bw=bw_optimal), lwd=2)
```

density.default(x = stamp, bw = bw_optimal)

Thus, this density has about 7 modes.

Question2

(a)

```
Since \mathcal{L}_F(t) = \frac{1}{\mu(F)} \int_0^t F^{-1}(s) ds, so \mathcal{L}_F'(t) = \frac{1}{\mu(F)} \cdot F^{-1}(t)

Set \mathcal{L}_F'(t) = 1, then \frac{1}{\mu(F)} \cdot F^{-1}(t) = 1, so F^{-1}(t) = \mu(F)

Then we have t = F(\mu(F))
= F(\mu(F) -) \quad \text{; since F is a continuous distribution function}
= MPS(F)
```

Thus, $\mathcal{L}'_F(MPS(F)) = 1$

(b)

Since $\mathcal{L}_{F}(t) = t^{\alpha+1}$, so $\mathcal{L}_{F}'(t) = (\alpha+1)t^{\alpha}$ And since from part (a) we have $\mathcal{L}_{F}'(MPS(F)) = 1$, so

$$(\alpha+1)\cdot (MPS(F))^{\alpha} = 1$$

$$(MPS(F))^{\alpha} = \frac{1}{\alpha+1}$$

$$MPS(F) = (\frac{1}{\alpha+1})^{\frac{1}{\alpha}}$$

Thus,

$$MIS(F) = \mathcal{L}_F(MPS(F)) = \mathcal{L}_F[(\frac{1}{\alpha+1})^{\frac{1}{\alpha}}] = (\frac{1}{\alpha+1})^{\frac{\alpha+1}{\alpha}}$$

(c)

Implement the function for computing MPS:

```
# function MPS
MPS <- function(x) {
  sum(x < mean(x)) / length(x)
}</pre>
```

Compute an estimate of MPS(F):

```
income <- scan("incomes.txt") # load data incomes.txt
MPS(income)</pre>
```

[1] 0.69

The jackknife standard error for estimating MPS(F) can be evaluated as follows:

```
mps <- NULL
for (i in 1:200){
    x_i <- income[-i] # data with income[i] deleted
    mps <- c(mps, MPS(x_i))
}
mps_se <- sqrt(199*sum((mps-mean(mps))^2)/200) # jackknife standard error formula
mps_se</pre>
```

[1] 0.07811778

(d)

Since we have $MIS(F) = \mathcal{L}_F(MPS(F))$ and $\hat{\mathcal{L}}_F(t) = \frac{1}{nX} \sum_{i=1}^{\lceil nt \rceil} X_{(i)}$, so:

$$\begin{split} MI\hat{S}(F) &= \frac{1}{n\bar{X}} \cdot \sum_{i=1}^{\lceil n \cdot MPS(F) \rceil} X_{(i)} \\ &= \frac{1}{n\bar{X}} \cdot \sum_{i=1}^{\lceil n \cdot \frac{1}{n} \sum_{i=1}^{n} I(X_i < \bar{X}) \rceil} X_{(i)} \\ &= \frac{1}{n\bar{X}} \cdot \sum_{i=1}^{r} I(X_i < \bar{X}) \rceil} X_{(i)} \end{split}$$

Then we can implement the function for computing MIS:

```
# function MIS
MIS <- function(x){
  x <- sort(x) # sort the data to get order statistics
  n <- sum(x < mean(x))
  sum(x[1:n]) / (length(x)*mean(x))
}</pre>
```

Compute an estimate of MIS(F):

```
MIS(income)
```

[1] 0.3480396

The jackknife standard error for estimating MIS(F) can be evaluated as follows:

```
mis <- NULL
for (i in 1:200){
    x_i <- income[-i] # data with income[i] deleted
    mis <- c(mis, MIS(x_i))
}
mis_se <- sqrt(199*sum((mis-mean(mis))^2)/200) # jackknife standard error formula
mis_se</pre>
```

[1] 0.08170359