In []:

In [230]:

```
# IMPORT LIBRARIES
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

In [231]:

```
a=pd.read_csv(r"C:\Users\user\Downloads\14_Iris.csv")
a
```

Out[231]:

	ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
0	1	5.1	3.5	1.4	0.2	Iris-setosa
1	2	4.9	3.0	1.4	0.2	Iris-setosa
2	3	4.7	3.2	1.3	0.2	Iris-setosa
3	4	4.6	3.1	1.5	0.2	Iris-setosa
4	5	5.0	3.6	1.4	0.2	Iris-setosa
145	146	6.7	3.0	5.2	2.3	Iris-virginica
146	147	6.3	2.5	5.0	1.9	Iris-virginica
147	148	6.5	3.0	5.2	2.0	Iris-virginica
148	149	6.2	3.4	5.4	2.3	Iris-virginica
149	150	5.9	3.0	5.1	1.8	Iris-virginica

150 rows × 6 columns

In [232]:

```
a=a.head(10)
a
```

Out[232]:

	ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
0	1	5.1	3.5	1.4	0.2	Iris-setosa
1	2	4.9	3.0	1.4	0.2	Iris-setosa
2	3	4.7	3.2	1.3	0.2	Iris-setosa
3	4	4.6	3.1	1.5	0.2	Iris-setosa
4	5	5.0	3.6	1.4	0.2	Iris-setosa
5	6	5.4	3.9	1.7	0.4	Iris-setosa
6	7	4.6	3.4	1.4	0.3	Iris-setosa
7	8	5.0	3.4	1.5	0.2	Iris-setosa
8	9	4.4	2.9	1.4	0.2	Iris-setosa
9	10	4.9	3.1	1.5	0.1	Iris-setosa

In [233]:

```
# to find
a.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10 entries, 0 to 9
Data columns (total 6 columns):
Column Non-Null Count D

#	Column	Non-Null Count	Dtype
0	Id	10 non-null	int64
1	SepalLengthCm	10 non-null	float64
2	SepalWidthCm	10 non-null	float64
3	PetalLengthCm	10 non-null	float64
4	PetalWidthCm	10 non-null	float64
5	Species	10 non-null	object
1.	(1 (4/4)		. / 4 \

dtypes: float64(4), int64(1), object(1)

memory usage: 608.0+ bytes

In [234]:

```
# to display summary of statastic
a.describe()
```

Out[234]:

	ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm
count	10.00000	10.000000	10.000000	10.000000	10.000000
mean	5.50000	4.860000	3.310000	1.450000	0.220000
std	3.02765	0.291357	0.307137	0.108012	0.078881
min	1.00000	4.400000	2.900000	1.300000	0.100000
25%	3.25000	4.625000	3.100000	1.400000	0.200000
50%	5.50000	4.900000	3.300000	1.400000	0.200000
75%	7.75000	5.000000	3.475000	1.500000	0.200000
max	10.00000	5.400000	3.900000	1.700000	0.400000

In [235]:

```
# to display colum heading
a.columns
```

Out[235]:

In [236]:

sns.pairplot(a)

Out[236]:

<seaborn.axisgrid.PairGrid at 0x198d38dd250>

In [237]:

sns.displot(a["SepalLengthCm"])

Out[237]:

<seaborn.axisgrid.FacetGrid at 0x198d38f87f0>

In [238]:

b=a[['SepalLengthCm', 'SepalWidthCm', 'PetalLengthCm', 'PetalWidthCm']]
b

Out[238]:

	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm
0	5.1	3.5	1.4	0.2
1	4.9	3.0	1.4	0.2
2	4.7	3.2	1.3	0.2
3	4.6	3.1	1.5	0.2
4	5.0	3.6	1.4	0.2
5	5.4	3.9	1.7	0.4
6	4.6	3.4	1.4	0.3
7	5.0	3.4	1.5	0.2
8	4.4	2.9	1.4	0.2
9	4.9	3.1	1.5	0.1

In [239]:

```
sns.heatmap(b.corr())
```

Out[239]:

<AxesSubplot:>

In [241]:

```
x=a[['SepalLengthCm', 'SepalWidthCm', 'PetalLengthCm', 'PetalWidthCm']]
y=a['SepalLengthCm']
```

In [242]:

```
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.3)
```

In [243]:

```
from sklearn.linear_model import LinearRegression
lr=LinearRegression()
lr.fit(x_train,y_train)
```

Out[243]:

LinearRegression()

In [244]:

```
lr.intercept_
```

Out[244]:

-2.6645352591003757e-15

In [245]:

```
coeff=pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
coeff
```

Out[245]:

Co-efficient

 SepalLengthCm
 1.000000e+00

 SepalWidthCm
 -6.196248e-16

 PetalLengthCm
 -1.300470e-16

 PetalWidthCm
 -3.648064e-17

In [246]:

```
prediction = lr.predict(x_test)
plt.scatter(y_test,prediction)
```

Out[246]:

<matplotlib.collections.PathCollection at 0x198d58c4310>

In [247]:

```
lr.score(x_test,y_test)
```

Out[247]:

1.0

In [248]:

```
lr.score(x_train,y_train)
```

Out[248]:

1.0

```
In [249]:
from sklearn.linear_model import Ridge,Lasso
In [250]:
rr=Ridge(alpha=10)
rr.fit(x_test,y_test)
Out[250]:
Ridge(alpha=10)
In [251]:
rr.score(x_test,y_test)
Out[251]:
0.02651347184492392
In [252]:
la=Lasso(alpha=10)
la.fit(x_test,y_test)
Out[252]:
Lasso(alpha=10)
In [253]:
la.score(x_test,y_test)
Out[253]:
0.0
In [254]:
from sklearn.linear_model import ElasticNet
en=ElasticNet()
en.fit(x_train,y_train)
Out[254]:
ElasticNet()
In [255]:
en.coef_
Out[255]:
array([0., 0., 0., 0.])
```

```
In [256]:
en.intercept_
Out[256]:
4.857142857142857
In [257]:
prediction=en.predict(x_test)
prediction
Out[257]:
array([4.85714286, 4.85714286, 4.85714286])
In [258]:
en.score(x_test,y_test)
Out[258]:
-0.0021482277121378512
EVALUATION METRICS
In [259]:
from sklearn import metrics
In [260]:
print("Mean Absolute Error:", metrics.mean_absolute_error(y_test, prediction))
Mean Absolute Error: 0.1809523809523812
In [261]:
print("Mean Squared Error", metrics.mean_squared_error(y_test, prediction))
Mean Squared Error 0.04231292517006805
In [262]:
print("Root Mean Squared Error",np.sqrt(metrics.mean_squared_error(y_test,prediction)))
Root Mean Squared Error 0.20570105777576364
In [ ]:
```