Programming Assignment #3

Alexander Powell

November 10, 2014

1

The natural cubic spline of the parametric curve was found using the following MATLAB commands. The functions *ncspline.m* and *splineeval.m* were used.

```
>> t = [0,1,2,3,4,5];

>> x = [1,1.5,2,2,2.5,2.5];

>> y = [1,0.5,1,1.5,1.5,1];

>> temp = 0:0.01:5;

>> [b1,c1,d1] = ncspline(t,x);

>> xx = splineeval(t,x,b1,c1,d1,temp);

>> [b2,c2,d2] = ncspline(t,y);

>> yy = splineeval(t,y,b2,c2,d2,temp);

>> figure

>> plot(xx,yy,x,y,'o'), axis equal, grid on

>> axis([.9,2.7,.4,1.65])
```

The following are tables of the natural cubic spline coefficients a, b, c, and d for t, x(t) and t, y(t).

 a_j, b_j, c_j and d_j values for x(t)

i	$ a_i $	b_i	c_i	$ d_i $
0	1	0.45215311	0	0.04784689
1	1.5	0.59569378	0.14354067	-0.23923445
2	2	0.16507177	-0.57416268	0.40909090
3	2	0.24401914	0.65311005	-0.39712918
4	2.5	0.35885167	-0.53827751	0.17942583

 a_j, b_j, c_j and d_j values for y(t)

i	$ a_i $	b_i	c_i	d_i
0	1	-0.76076555	0	0.26076555
1	0.5	0.02153110	0.78229665	-0.30382775
2	1	0.67464114	-0.12918660	-0.04545454
3	1.5	0.27990430	-0.26555023	-0.01435406
4	1.5	-0.29425837	-0.30861244	0.10287081

Newton's method was used to estimate the parameter values t_1 and t_2 where the curve intersects the line y = 1.2. The following MATLAB code was used to make the calculations:

```
t = [0,1,2,3,4,5];
x = [1, 1.5, 2, 2, 2.5, 2.5];
y = [1,0.5,1,1.5,1.5,1];
temp = 0:0.01:5;
[b1,c1,d1] = ncspline(t,x);
[b2,c2,d2] = ncspline(t,y);
CountMax = 100;
guess = 2; % 2 was the guess for the left, 5 for the right
x_p = guess;
tol = 1e-8;
for i = 1:CountMax
        guess = guess - (splineeval(t,y,b2,c2,d2,guess)-1.2) /
    diffsplineeval(t,y,b2,c2,d2,guess);
    % the above two lines are actually one line but
    % are separated for readability.
        if (splineeval(t,y,b2,c2,d2,guess) < tol & abs(guess-x_p) < tol)</pre>
            fprintf( 'x\%d_=_\%.15f\n', i, guess );
            disp(['It_took_' num2str(i) '_steps_to_converge.'])
            return;
        else
            fprintf( 'x\%d_=_\%.15f\n', i, guess );
            x_p = guess;
        end
end
disp('Reach_the_maximum_number_of_iterations!');
```

The above code generated the following values:

```
t_1 = 2.31798217, t_2 = 4.66164416
```

The following code computes the length of the curve by using the composite trapezoid rule with increasingly greater values of n.

```
ns = [16, 32, 64, 128, 10000];
t = [0,1,2,3,4,5];
x1 = [1,1.5,2,2,2.5,2.5];
y1 = [1,0.5,1,1.5,1.5,1];
[b1,c1,d1] = ncspline(t,x1);
[b2,c2,d2] = ncspline(t,y1);

f = @(x) sqrt(((diffsplineeval(t,x1,b1,c1,d1,x)).^2
+ ((diffsplineeval(t,y1,b2,c2,d2,x)).^2));
% ^these are one line in MATLAB but were separated for clarity

a = 2.31798217; b = 4.66164416;
for n = ns
    x = linspace(a, b, n+1);
    h = (b-a)/n;
    int = (h/2)*(2*sum(f(x)) -f(a) - f(b))
end
```

The following is a table displaying the different approximations:

L_{16}	1.16265486	
L_{32}	1.16178581	
L_{64}	1.16160475	
L_{128}	1.16155626	
L_{10000}	1.16154051	

The following is a log-log plot of the errors $|L_n - L|$ versus $h = (t_1 - t_2)/n$.

Applying the log-log plot changes the figure almost to a line. Using the ordered pairs $(10^{-3},10^{-0.9})$ and $(10^{-4},10^{-1.5})$ gives us:

$$\frac{10^{-1.5} - 10^{-0.9}}{10^{-4} - 10^{-3}} \approx 100$$

So, the slope of the log-log plot is approximately 100.