Binary code assignment, more complicated FSMs

- 1. Optimal assignment of binary codes
 - a. Was implementing binary code checker last time
 - b. Drew naïve implementation of FSM, then minimized it

Present State	Next	State	Output		
	x = 0	x = 1	x = 0	x =1	
i	*	*	1	1	
*	0*	1*	1	1	
0*	00*	~(00*)	1	1	
1*	~(00*)	~(00*)	1	1	
00*	i	i	0	0	
~(00*)	i	i	0	1	

State table

- c. Can assign binary codes for states randomly
- d. Rule of thumb for state binary code assignments

e. Assign using the rules above

Binary Code		AB					
		00	01	11	10		
C	0						
L	1						

f. Note that there may potentially be more than one valid code assignment that minimizes distance

- 2. Debugging an FSM
 - a. Generally, much more efficient to put in effort to get it right to begin with
 - b. One good way of seeing if your FSM you drew was right
 - c. Examples
 - i. With the BCD checker
 - ii. With the vending machine below
- 3. More complicated FSMs
 - a. Design a vending machine
 - b. x₁, x₂
 - c. Will use a Mealy model
 - d. First, create state transition diagram

- e. Next, minimize the number of states using the Partition Minimization Procedure i.
 - ii. P_2
 - iii. Draw new state transition diagram

f. Assign code words next

Binary Code \boldsymbol{A} 1 0 0 B1

g. Next, create state transition table

Binary Code A

0 1

0 i 20+
1 10

Drocont Pinom		Present State		Inputs		Next State		0
Present State	•	Α	В	X ₁	X ₂	A'	B'	Output z
i	00	0	0	0	0			
i	00	0	0	0	1			
i	00	0	0	1	0			
		0	0	1	1			
10	01	0	1	0	0			
10	01	0	1	0	1			
10	01	0	1	1	0			
		0	1	1	1			
20+	10	1	0	0	0			
20+	10	1	0	0	1			
20+	10	1	0	1	0			
		1	0	1	1			
		1	1	0	0			
		1	1	0	1			
		1	1	1	0			
		1	1	1	1			

h. Finally, create K-maps from table above

Drosent Binery		Present State		Inputs		Next State		0
Present State		Α	В	X ₁	X ₂	A'	B'	Output z
i	00	0	0	0	0	0	0	0
i	00	0	0	0	1	0	1	0
i	00	0	0	1	0	1	0	0
		0	0	1	1	d	d	d
10	01	0	1	0	0	0	1	0
10	01	0	1	0	1	1	0	0
10	01	0	1	1	0	0	0	1
		0	1	1	1	d	d	d
20+	10	1	0	0	0	1	0	0
20+	10	1	0	0	1	0	0	1
20+	10	1	0	1	0	0	0	1
		1	0	1	1	d	d	d
		1	1	0	0	d	d	d
		1	1	0	1	d	d	d
		1	1	1	0	d	d	d
		1	1	1	1	d	d	d

A'		AB					
		00	01	11	10		
x_1x_2	00						
	01 11						
	11						
	10						

B'		AB					
		00	01	11	10		
x_1x_2	00						
	01						
	11						
	10						

\boldsymbol{Z}		AB					
		00 01 11 10					
x_1x_2	00						
	01						
	11						
	10						