Projects 2022

- You send me the results on okulicka@mini.pw.edu.pl.
- The files must have names: pr_1_<student_name>,pr_2_<student_name>, pr_3_<student_name>
- Dates are in the table.

1	21/02/24		
2	28/02/24		Program 1 – 5 points
3	06/03/24		Program 2 – 5 points
4	13/03/24		
5	20/03/24		Matrix-vector implementation
6	27/03/24		
7	03/04/24		
8	10/04/24		
9	17/04/24		Point 4 -theory
10	24/04/24		
	01/05/24	free	
11	08/05/24		Point 5 – implementation
	15/05/24		Friday
12	22/05/24		final report
13	29/05/24		
14	05/06/24		
15	12/06/24	-	test

Small programs – 5 points

Control points: theory, implementation, final report - 15 points each

sum=50

One week after deadline = - 5 points

Final report is presented during lecture using slides

FINAL TEST – 12.06 during lecture

Points 4,5

- 1. Parallel ILU for banded matrix divided by columns. We remember only band as the rectangular matrix. (lecture 11)
- 2. CG for dense symmetric matrix. We remember only half of the matrix. (lecture 10)
- 3. parallel gauss for dense matrix divided by columns (lecture 4)
- 4. parallel gauss for banded matrix divided by columns (lecture 4)
- 5. parallel shortest path algorithm (graph algorithms) using matrix representation of the graph (lecture 8)
- 6. parallel shortest path algorithm (graph algorithms) using matrix representation of the graph and matrix multiplication (lecture 8)
- 7. parallel 1D matrix-matrix multiplication with matrices divided by columns (lecture 6 parallel processing)
- 8. Parallel LU for dense matrix divided by columns (lecture 6)
- 9. Parallel ILU for sparse matrix divided by columns (lecture 11)
- 10. parallel gauss for dense symmetric matrix divided by columns (lecture 4)
- 11. parallel gauss for banded symmetric matrix divided and columns (lecture 4)
- 12. Parallel LU for banded matrix divided by columns. We remember only band as the rectangular matrix. (lecture 11)
- 13. CG algorithm for sparse symmetric matrix. We remember the nonzeros of the matrix only. (lecture 10)
- 14. Parallel LLT for dense symmetric matrix divided by columns (lecture 11)
- 15. Parallel LLT for banded symmetric matrix divided by columns. We remember only band as the rectangular matrix. (lecture 11)
- 16. Parallel ILLT for banded symmetric matrix divided by columns. We remember only band as the rectangular matrix. (lecture 11)
- 17. Parallel ILLT for sparse symmetric matrix divided by columns. We remember only non-zeros of the matrix. (lecture 11)
- 18. Parallel spanning tree algorithm using matrix representation of the graph (lecture 8)
- 19. Parallel iterative methods (Jacobi, Gauss-Seidel, SOR) for dense matrix (lecture 10)
- 20. Parallel iterative methods (Jacobi, Gauss-Seidel, SOR) for sparse matrix (lecture 10)

Additional remark:

Data should be in the Matrix Market format. Other format = -5 points