Operating Systems COEN-283 FALL 2015

Assignment 3- Deadlocks

Questions 1-4 are 15 points each

- 1) Local Area Networks utilize a media access method called CSMA/CD, in which stations sharing a bus can sense the medium and detect transmissions as well as collisions. In the Ethernet protocol, stations requesting the shared channel do not transmit frames if they sense the medium is busy. When such transmission has terminated, waiting stations each transmit their frames. Two frames that are transmitted at the same time will collide. If stations immediately and repeatedly retransmit after collision detection, they will continue to collide indefinitely.
- (a) Is this a resource deadlock or a livelock?
- (b) Can you suggest a solution to this anomaly?
- (c) Can starvation occur with this scenario?
- 2) Suppose four cars each approach an intersection from four different directions simultaneously. Each corner of the intersection has a stop sign. Assume that traffic regulations require that when two cars approach adjacent stop signs at the same time, the car on the left must yield to the car on the right. Thus, as four cars each drive up to their individual stop signs, each waits (indefinitely) for the car on the left to proceed. Is this anomaly a communication deadlock? Is it a resource deadlock?
- **3)** Consider the following state of a system with four processes, *P1*, *P2*, *P3*, and *P4*, and five types of resources, *RS1*, *RS2*, *RS3*, *RS4*, and *RS5*:

Show that there is a deadlock in the system. Identify the processes that are deadlocked.

4) A system has four processes and five allocatable resources. The current allocation and maximum needs are as follows:

	Allocated	Maximum	Available
Process A	10211	11213	00x11
Process B	20110	22210	
Process C	11010	21310	
Process D	11110	11221	

What is the smallest value of *x* for which this is a safe state?

PROGRAMMING QUESTION- 40 points

5) Program a simulation of the banker's algorithm. Your program should cycle through each of the bank clients asking for a request and evaluating whether it is safe or unsafe. Output a log of requests and decisions to a file.