УНИВЕРСИТЕТ ИТМО

Факультет программной инженерии и компьютерной техники Направление подготовки 09.03.04 Программная инженерия Дисциплина «Администрирование систем и сетей»

Лабораторная работа №2

«Адресация и маршрутизация IPv4»

Студенты:

Мальцева Ю. И. Черкас И. И. P34141 Желаемая оценка:3

Преподаватель:

Афанасьев Д. Б.

Оглавление

Цель работы:	3
Топология:	
Шаг 1. Настройка основных параметров устройств	4
Шаг 3. Настроим IP-адреса для физических интерфейсов	
Шаг 4. Создадим loopback-интерфейс	
Шаг 5. Настроим статические маршруты	
Шаг 6. Настроим маршрут от R1 к R2 через R3 в качестве резервного маршрута LoopBack0 R1 к LoopBack0 R2	а от
Шаг 7. Настроим маршруты по умолчанию для установления связи между интерфейсом LoopBack0	
маршрутизатора R2	14
Вывод:	16

Цель работы:

Лабораторная работа помогает получить практические навыки по изучению следующих тем:

- Процедура настройки IPv4-адреса на интерфейсе
- Функции и значение loopback-интерфейсов
- Принципы генерирования прямых маршрутов
- Процедура настройки статических маршрутов и условия, при которых используются статические маршруты
- Процедура проверки возможности установления соединения сетевого уровня с помощью инструмента ping
- Процедура настройки статических маршрутов и сценарии их применения

Топология:

Шаг 1. Настройка основных параметров устройств.

Задаем имена устройствам:

system-view [Huawei] sysname R1

system-view [Huawei] sysname R2

system-view [Huawei] sysname R3

Шаг 2. Выводим ІР-адрес текущего интерфейса и таблицу маршрутизации

Выводим статус интерфейса R1:

<R1>display ip interface brief

*down: administratively down

^down: standby (1): loopback

(s): spoofing

The number of interface that is UP in Physical is 3

The number of interface that is DOWN in Physical is 1

The number of interface that is UP in Protocol is 1

The number of interface that is DOWN in Protocol is 3

Interface	IP Address/Mask	Physical	Protocol
GigabitEthernet0/0/0	unassigned	up	down
GigabitEthernet0/0/1	unassigned	down	down
GigabitEthernet0/0/2	unassigned	up	down
NULL0	unassigned	up	up(s)

Выводим таблицу маршрутизации R1:

<R1>display ip routing-table

Route Flags: R - relay, D - download to fib

Routing Tables: Public

Destinations: 4 Routes: 4

Destination/Mask Proto Pre Cost	Flags NextHop	Interface
127.0.0.0/8 Direct 0 0	D 127.0.0.1	InLoopBack0
127.0.0.1/32 Direct 0 0	D 127.0.0.1	InLoopBack0
127.255.255.255/32 Direct 0 0	D 127.0.0.1	InLoopBack0
255.255.255.255/32 Direct 0 0	D 127.0.0.1	InLoopBack0

Шаг 3. Настроим IP-адреса для физических интерфейсов

[R1]interface GigabitEthernet0/0/0

[R1-GigabitEthernet0/0/0]ip address 10.0.13.1 24

[R1-GigabitEthernet0/0/0]

Oct 18 2024 02:15:47-08:00 R1 %%01IFNET/4/LINK_STATE(l)[0]:The line protocol IP on the interface GigabitEthernet0/0/0 has entered the UP state.

[R1-GigabitEthernet0/0/0]quit

[R1]interface GigabitEthernet0/0/2

[R1-GigabitEthernet0/0/2]ip address 10.0.12.1 24

Oct 18 2024 02:18:23-08:00 R1 %%01IFNET/4/LINK_STATE(l)[1]:The line protocol IP on the interface GigabitEthernet0/0/2 has entered the UP state.

 $[R1\hbox{-}GigabitEthernet 0/0/2] quit$

[R2]interface GigabitEthernet0/0/0

[R2-GigabitEthernet0/0/0]ip address 10.0.13.2 24

Oct 18 2024 15:00:35-08:00 R2 %%01IFNET/4/LINK_STATE(1)[2]:The line protocol IP on the interface GigabitEthernet0/0/0 has entered the UP state.

[R2-GigabitEthernet0/0/0]quit

[R2]interface GigabitEthernet0/0/1

[R2-GigabitEthernet0/0/1]ip address 10.0.23.2 24

Oct 18 2024 15:02:46-08:00 R2 %%01IFNET/4/LINK_STATE(1)[3]:The line protocol IP on the interface GigabitEthernet0/0/1 has entered the UP state.

 $[R2\hbox{-}GigabitEthernet 0/0/1] quit$

[R3-GigabitEthernet0/0/1]ip address 10.0.23.3 24

Oct 18 2024 15:03:58-08:00 R3 %%01IFNET/4/LINK_STATE(l)[0]:The line protocol IP on the interface GigabitEthernet0/0/1 has entered the UP state.

[R3-GigabitEthernet0/0/1]quit

[R3]interface GigabitEthernet0/0/2

[R3-GigabitEthernet0/0/2]ip address 10.0.12.3 24

Oct 18 2024 15:05:26-08:00 R3 %%01IFNET/4/LINK_STATE(l)[1]:The line protocol IP on the interface GigabitEthernet0/0/2 has entered the UP state.

[R3-GigabitEthernet0/0/2]quit

Проверка наличия связи с помощью инструмента ping

```
[R1]ping 10.0.12.1
 PING 10.0.12.1: 56 data bytes, press CTRL C to break
  Reply from 10.0.12.1: bytes=56 Sequence=1 ttl=255 time=20 ms
  Reply from 10.0.12.1: bytes=56 Sequence=2 ttl=255 time=1 ms
  Reply from 10.0.12.1: bytes=56 Sequence=3 ttl=255 time=1 ms
  Reply from 10.0.12.1: bytes=56 Sequence=4 ttl=255 time=1 ms
  Reply from 10.0.12.1: bytes=56 Sequence=5 ttl=255 time=1 ms
 --- 10.0.12.1 ping statistics ---
  5 packet(s) transmitted
  5 packet(s) received
  0.00% packet loss
  round-trip min/avg/max = 1/4/20 ms
[R1]ping 10.0.13.1
 PING 10.0.13.1: 56 data bytes, press CTRL C to break
  Reply from 10.0.13.1: bytes=56 Sequence=1 ttl=255 time=1 ms
  Reply from 10.0.13.1: bytes=56 Sequence=2 ttl=255 time=1 ms
  Reply from 10.0.13.1: bytes=56 Sequence=3 ttl=255 time=1 ms
  Reply from 10.0.13.1: bytes=56 Sequence=4 ttl=255 time=1 ms
  Reply from 10.0.13.1: bytes=56 Sequence=5 ttl=255 time=1 ms
 --- 10.0.13.1 ping statistics ---
  5 packet(s) transmitted
  5 packet(s) received
  0.00% packet loss
  round-trip min/avg/max = 1/1/1 ms
```

Выведем таблицу маршрутизации R1

[R1]display ip routing-table

Route Flags: R - relay, D - download to fib

Routing Tables: Public

Destinations: 10 Routes: 10

Destination/Mask Proto Pre Cos	t Flags NextHop In	terface
10.0.12.0/24 Direct 0 0	D 10.0.12.1 Gigal	bitEthernet0/0/2
10.0.12.1/32 Direct 0 0	D 127.0.0.1 Gigal	bitEthernet0/0/2
10.0.12.255/32 Direct 0 0	D 127.0.0.1 Gigal	bitEthernet0/0/2
10.0.13.0/24 Direct 0 0	D 10.0.13.1 Gigal	bitEthernet0/0/0
10.0.13.1/32 Direct 0 0	D 127.0.0.1 Gigal	bitEthernet0/0/0
10.0.13.255/32 Direct 0 0	D 127.0.0.1 Gigal	bitEthernet0/0/0
127.0.0.0/8 Direct 0 0	D 127.0.0.1 InLoc	opBack0
127.0.0.1/32 Direct 0 0	D 127.0.0.1 InLoc	opBack0
127.255.255.255/32 Direct 0 0	D 127.0.0.1 InLoc	opBack0
255.255.255.255/32 Direct 0 0	D 127.0.0.1 InLoc	opBack0

Шаг 4. Создадим loopback-интерфейс

[R1]interface LoopBack0

[R1-LoopBack0]ip address 10.0.1.1 32

[R1-LoopBack0]quit

[R2]interface LoopBack0

[R2-LoopBack0]ip address 10.0.1.2 32

[R2-LoopBack0]quit

[R3]interface LoopBack0

[R3-LoopBack0]ip address 10.0.1.3 32

[R3-LoopBack0]quit

Выведем таблицу маршрутизации R1

[R1]display ip routing-table

Route Flags: R - relay, D - download to fib

Routing Tables: Public

Destinations: 11 Routes: 11

Destination/Mask Proto Pre Co	st Flags NextHop Interface
10.0.1.1/32 Direct 0 0	D 127.0.0.1 LoopBack0
10.0.12.0/24 Direct 0 0	D 10.0.12.1 GigabitEthernet0/0/2
10.0.12.1/32 Direct 0 0	D 127.0.0.1 GigabitEthernet0/0/2
10.0.12.255/32 Direct 0 0	D 127.0.0.1 GigabitEthernet0/0/2
10.0.13.0/24 Direct 0 0	D 10.0.13.1 GigabitEthernet0/0/0
10.0.13.1/32 Direct 0 0	D 127.0.0.1 GigabitEthernet0/0/0
10.0.13.255/32 Direct 0 0	D 127.0.0.1 GigabitEthernet0/0/0

127.0.0.0/8 Direct 0	0	D	127.0.0.1	InLoopBack0
127.0.0.1/32 Direct 0	0	D	127.0.0.1	InLoopBack0
127.255.255.255/32 Direct 0	0	D	127.0.0.1	InLoopBack0
255.255.255.255/32 Direct 0	0	D	127.0.0.1	InLoopBack0

Проверим наличие связи между loopback-интерфейсами

[R1]ping -a 10.0.1.1 10.0.1.2

PING 10.0.1.2: 56 data bytes, press CTRL_C to break

Request time out

--- 10.0.1.2 ping statistics ---

5 packet(s) transmitted

0 packet(s) received

100.00% packet loss

Шаг 5. Настроим статические маршруты

<u>На маршрутизаторе R1 настройте маршрут к интерфейсам LoopBack0 маршрутизаторов R2 и R3.</u>

[R1]ip route-static 10.0.1.2 32 10.0.13.2

[R1]ip route-static 10.0.1.3 32 10.0.12.3

Выведем таблицу маршрутизации R1

[R1]display ip routing-table

Route Flags: R - relay, D - download to fib

Routing Tables: Public

Destinations: 13 Routes: 13

Destination/Mask Proto Pre Cost Flags NextHop Interface

10.0.1.1/32 Direct 0 0 10.0.1.2/32 Static 60 0 10.0.1.3/32 Static 60 0	D 127.0.0.1 RD 10.0.13.2 RD 10.0.12.3	LoopBack0 GigabitEthernet0/0/0 GigabitEthernet0/0/2
10.0.12.0/24 Direct 0 0	D 10.0.12.1	GigabitEthernet0/0/2
10.0.12.1/32 Direct 0 0	D 127.0.0.1	GigabitEthernet0/0/2
10.0.12.255/32 Direct 0 0	D 127.0.0.1	GigabitEthernet0/0/2
10.0.13.0/24 Direct 0 0	D 10.0.13.1	GigabitEthernet0/0/0
10.0.13.1/32 Direct 0 0	D 127.0.0.1	GigabitEthernet0/0/0
10.0.13.255/32 Direct 0 0	D 127.0.0.1	GigabitEthernet0/0/0

```
127.0.0.0/8 Direct 0 0 D 127.0.0.1 InLoopBack0
127.0.0.1/32 Direct 0 0 D 127.0.0.1 InLoopBack0
127.255.255.255/32 Direct 0 0 D 127.0.0.1 InLoopBack0
255.255.255.255/32 Direct 0 0 D 127.0.0.1 InLoopBack0
```

Проверим возможность установления связи

```
[R1]ping -a 10.0.1.1 10.0.1.2

PING 10.0.1.2: 56 data bytes, press CTRL_C to break
Request time out
--- 10.0.1.2 ping statistics ---
5 packet(s) transmitted
0 packet(s) received
100.00% packet loss
```

На R2 добавим маршрут к интерфейсу LoopBack0 маршрутизатора R1

[R2]ip route-static 10.0.1.1 32 10.0.13.1

Проверим возможность установления связи

```
[R1]ping -a 10.0.1.1 10.0.1.2
PING 10.0.1.2: 56 data bytes, press CTRL_C to break
Reply from 10.0.1.2: bytes=56 Sequence=1 ttl=255 time=60 ms
Reply from 10.0.1.2: bytes=56 Sequence=2 ttl=255 time=30 ms
Reply from 10.0.1.2: bytes=56 Sequence=3 ttl=255 time=20 ms
Reply from 10.0.1.2: bytes=56 Sequence=4 ttl=255 time=10 ms
Reply from 10.0.1.2: bytes=56 Sequence=5 ttl=255 time=10 ms
--- 10.0.1.2 ping statistics ---
5 packet(s) transmitted
5 packet(s) received
0.00% packet loss
round-trip min/avg/max = 10/26/60 ms
```

Настроим другие необходимые маршруты

```
[R2]ip route-static 10.0.1.3 32 10.0.23.3 [R3]ip route-static 10.0.1.1 32 10.0.12.1 [R3]ip route-static 10.0.1.2 32 10.0.23.2
```

Проверим возможность установления связи между интерфейсами LoopBack маршрутизаторов, следуя приведенной процедуре

```
[R1]ping -a 10.0.1.1 10.0.1.2
 PING 10.0.1.2: 56 data bytes, press CTRL C to break
  Reply from 10.0.1.2: bytes=56 Sequence=1 ttl=255 time=30 ms
  Reply from 10.0.1.2: bytes=56 Sequence=2 ttl=255 time=30 ms
  Reply from 10.0.1.2: bytes=56 Sequence=3 ttl=255 time=20 ms
  Reply from 10.0.1.2: bytes=56 Sequence=4 ttl=255 time=30 ms
  Reply from 10.0.1.2: bytes=56 Sequence=5 ttl=255 time=20 ms
 --- 10.0.1.2 ping statistics ---
  5 packet(s) transmitted
  5 packet(s) received
  0.00% packet loss
  round-trip min/avg/max = 20/26/30 ms
[R1]ping -a 10.0.1.1 10.0.1.3
 PING 10.0.1.3: 56 data bytes, press CTRL C to break
  Reply from 10.0.1.3: bytes=56 Sequence=1 ttl=255 time=110 ms
  Reply from 10.0.1.3: bytes=56 Sequence=2 ttl=255 time=30 ms
  Reply from 10.0.1.3: bytes=56 Sequence=3 ttl=255 time=30 ms
  Reply from 10.0.1.3: bytes=56 Sequence=4 ttl=255 time=30 ms
  Reply from 10.0.1.3: bytes=56 Sequence=5 ttl=255 time=20 ms
 --- 10.0.1.3 ping statistics ---
  5 packet(s) transmitted
  5 packet(s) received
  0.00% packet loss
  round-trip min/avg/max = 20/44/110 ms
[R2]ping -a 10.0.1.2 10.0.1.1
 PING 10.0.1.1: 56 data bytes, press CTRL C to break
  Reply from 10.0.1.1: bytes=56 Sequence=1 ttl=255 time=30 ms
  Reply from 10.0.1.1: bytes=56 Sequence=2 ttl=255 time=30 ms
  Reply from 10.0.1.1: bytes=56 Sequence=3 ttl=255 time=30 ms
  Reply from 10.0.1.1: bytes=56 Sequence=4 ttl=255 time=20 ms
  Reply from 10.0.1.1: bytes=56 Sequence=5 ttl=255 time=20 ms
 --- 10.0.1.1 ping statistics ---
  5 packet(s) transmitted
  5 packet(s) received
  0.00% packet loss
  round-trip min/avg/max = 20/26/30 ms
[R2]ping -a 10.0.1.2 10.0.1.3
 PING 10.0.1.3: 56 data bytes, press CTRL C to break
  Reply from 10.0.1.3: bytes=56 Sequence=1 ttl=255 time=70 ms
  Reply from 10.0.1.3: bytes=56 Sequence=2 ttl=255 time=30 ms
  Reply from 10.0.1.3: bytes=56 Sequence=3 ttl=255 time=30 ms
  Reply from 10.0.1.3: bytes=56 Sequence=4 ttl=255 time=20 ms
```

```
Reply from 10.0.1.3: bytes=56 Sequence=5 ttl=255 time=20 ms
 --- 10.0.1.3 ping statistics ---
  5 packet(s) transmitted
  5 packet(s) received
  0.00% packet loss
  round-trip min/avg/max = 20/34/70 ms
[R3]ping -a 10.0.1.3 10.0.1.1
 PING 10.0.1.1: 56 data bytes, press CTRL C to break
  Reply from 10.0.1.1: bytes=56 Sequence=1 ttl=255 time=40 ms
  Reply from 10.0.1.1: bytes=56 Sequence=2 ttl=255 time=20 ms
  Reply from 10.0.1.1: bytes=56 Sequence=3 ttl=255 time=20 ms
  Reply from 10.0.1.1: bytes=56 Sequence=4 ttl=255 time=40 ms
  Reply from 10.0.1.1: bytes=56 Sequence=5 ttl=255 time=30 ms
 --- 10.0.1.1 ping statistics ---
  5 packet(s) transmitted
  5 packet(s) received
  0.00% packet loss
  round-trip min/avg/max = 20/30/40 ms
[R3]ping -a 10.0.1.3 10.0.1.2
 PING 10.0.1.2: 56 data bytes, press CTRL C to break
  Reply from 10.0.1.2: bytes=56 Sequence=1 ttl=255 time=20 ms
  Reply from 10.0.1.2: bytes=56 Sequence=2 ttl=255 time=20 ms
  Reply from 10.0.1.2: bytes=56 Sequence=3 ttl=255 time=30 ms
  Reply from 10.0.1.2: bytes=56 Sequence=4 ttl=255 time=20 ms
  Reply from 10.0.1.2: bytes=56 Sequence=5 ttl=255 time=20 ms
 --- 10.0.1.2 ping statistics ---
  5 packet(s) transmitted
  5 packet(s) received
  0.00% packet loss
  round-trip min/avg/max = 20/22/30 ms
Шаг 6. Настроим маршрут от R1 к R2 через R3 в качестве резервного маршрута от
```

LoopBack0 R1 K LoopBack0 R2.

<u>Настроим статические маршруты на R1 и R2</u>

[R1]ip route-static 10.0.1.2 32 10.0.13.3 preference 100 [R2]ip route-static 10.0.1.1 32 10.0.23.3 preference 100

Выведем таблицы маршрутизации

[R1]display ip routing-table

Route Flags: R - relay, D - download to fib

Routing Tables: Public

Destinations: 13 Routes: 13

Destination/Mask Proto Pre	Cost	Flags NextHop	Interface
10.0.1.1/32 Direct 0	0	D 127.0.0.1	LoopBack0
10.0.1.2/32 Static 60	0	RD 10.0.13.2	GigabitEthernet0/0/0
10.0.1.3/32 Static 60	0	RD 10.0.12.3	GigabitEthernet0/0/2
10.0.12.0/24 Direct 0	0	D 10.0.12.1	GigabitEthernet0/0/2
10.0.12.1/32 Direct 0	0	D 127.0.0.1	GigabitEthernet0/0/2
10.0.12.255/32 Direct 0	0	D 127.0.0.1	GigabitEthernet0/0/2
10.0.13.0/24 Direct 0	0	D 10.0.13.1	GigabitEthernet0/0/0
10.0.13.1/32 Direct 0	0	D 127.0.0.1	GigabitEthernet0/0/0
10.0.13.255/32 Direct 0	0	D 127.0.0.1	GigabitEthernet0/0/0
127.0.0.0/8 Direct 0	0	D 127.0.0.1	InLoopBack0
127.0.0.1/32 Direct 0	0	D 127.0.0.1	InLoopBack0
127.255.255.255/32 Direct 0	0	D 127.0.0.1	InLoopBack0
255.255.255.255/32 Direct 0	0	D 127.0.0.1	InLoopBack0

[R2]display ip routing-table

Route Flags: R - relay, D - download to fib

Routing Tables: Public

Destinations: 13 Routes: 13

Destination/Mask	Proto Pre	Cost	Fla	gs NextHop	Interface
10.0.1.1/32	Static 60	0	RD	10.0.13.1	GigabitEthernet0/0/0
10.0.1.2/32	Direct 0	0	D	127.0.0.1	LoopBack0
10.0.1.3/32	Static 60	0	RD	10.0.23.3	GigabitEthernet0/0/1
10.0.13.0/24	Direct 0	0	D	10.0.13.2	GigabitEthernet0/0/0
10.0.13.2/32	Direct 0	0	D	127.0.0.1	GigabitEthernet0/0/0
10.0.13.255/32	Direct 0	0	D	127.0.0.1	GigabitEthernet0/0/0
10.0.23.0/24	Direct 0	0	D	10.0.23.2	GigabitEthernet0/0/1
10.0.23.2/32	Direct 0	0	D	127.0.0.1	GigabitEthernet0/0/1
10.0.23.255/32	Direct 0	0	D	127.0.0.1	GigabitEthernet0/0/1
127.0.0.0/8	Direct 0	0	D	127.0.0.1	InLoopBack0
127.0.0.1/32	Direct 0	0	D	127.0.0.1	InLoopBack0
127.255.255.255/32	Direct 0	0	D	127.0.0.1	InLoopBack0
255 255 255 255/32	Direct 0	0	D	127 0 0 1	InLoopBack0

Отключим интерфейс GigabitEthernet0/0/3 на маршрутизаторах R1 и R2, чтобы сделать недействительным маршрут с наивысшим приоритетом

[R1]interface GigabitEthernet0/0/0

[R1-GigabitEthernet0/0/1]shutdown

Oct 18 2024 16:05:37-08:00 R1 %%01IFPDT/4/IF_STATE(l)[0]:Interface GigabitEthern et0/0/1 has turned into DOWN state.

 $[R1\hbox{-}GigabitEthernet 0/0/1] quit$

Выведем на экран таблицы маршрутизации на R1 и R2. Из командного вывода видно, что маршруты с более низким приоритетом активируется, когда маршруты с более высоким приоритетом становится недействительными

[R1]display ip routing-table

Route Flags: R - relay, D - download to fib

Routing Tables: Public

Destinations: 9 Routes: 9

Destination/Mask Proto Pre Cost	Flags NextHop	Interface
10.0.1.1/22 D: 4.0.0	D 127 0 0 1	I D 10
10.0.1.1/32 Direct 0 0	D 127.0.0.1	LoopBack0
10.0.1.3/32 Static 60 0	RD 10.0.12.3	GigabitEthernet0/0/2
10.0.12.0/24 Direct 0 0	D 10.0.12.1	GigabitEthernet0/0/2
10.0.12.1/32 Direct 0 0	D 127.0.0.1	GigabitEthernet0/0/2
10.0.12.255/32 Direct 0 0	D 127.0.0.1	GigabitEthernet0/0/2
127.0.0.0/8 Direct 0 0	D 127.0.0.1	InLoopBack0
127.0.0.1/32 Direct 0 0	D 127.0.0.1	InLoopBack0
127.255.255.255/32 Direct 0 0	D 127.0.0.1	InLoopBack0
255.255.255.255/32 Direct 0 0	D 127.0.0.1	InLoopBack0

[R2]display ip routing-table

Route Flags: R - relay, D - download to fib

Routing Tables: Public

Destinations: 13 Routes: 13

Destination/Mask Proto	Pre C	ost	Flags NextH	Hop Interface
10.0.1.1/32 Static 00	0	RD	10.0.13.1 127.0.0.1	GigabitEthernet0/0/0
10.0.1.3/32 Static 60	•	RD	10.0.23.3	LoopBack0 GigabitEthernet0/0/1
10.0.13.0/24 Direct 0 10.0.13.2/32 Direct 0	$0 \\ 0$		10.0.13.2 127.0.0.1	GigabitEthernet0/0/0 GigabitEthernet0/0/0
10.0.13.255/32 Direct 0 10.0.23.0/24 Direct 0	0 0	D	127.0.0.1	GigabitEthernet0/0/0 GigabitEthernet0/0/1
10.0.23.2/32 Direct 0	0	D	127.0.0.1	GigabitEthernet0/0/1

10.0.23.255/32 Direct 0 0	D 127.0.0.1	GigabitEthernet0/0/1
127.0.0.0/8 Direct 0 0	D 127.0.0.1	InLoopBack0
127.0.0.1/32 Direct 0 0	D 127.0.0.1	InLoopBack0
127.255.255.255/32 Direct 0 0	D 127.0.0.	l InLoopBack0
255.255.255.255/32 Direct 0 0	D 127.0.0.	l InLoopBack0

Проверим возможность установления связи

```
[R1]ping -a 10.0.1.1 10.0.1.2
 PING 10.0.1.2: 56 data bytes, press CTRL C to break
  Reply from 10.0.1.2: bytes=56 Sequence=1 ttl=255 time=30 ms
  Reply from 10.0.1.2: bytes=56 Sequence=2 ttl=255 time=10 ms
  Reply from 10.0.1.2: bytes=56 Sequence=3 ttl=255 time=20 ms
  Reply from 10.0.1.2: bytes=56 Sequence=4 ttl=255 time=30 ms
  Reply from 10.0.1.2: bytes=56 Sequence=5 ttl=255 time=20 ms
 --- 10.0.1.2 ping statistics ---
  5 packet(s) transmitted
  5 packet(s) received
  0.00% packet loss
  round-trip min/avg/max = 10/22/30 ms
```

Выполним трассировку маршрута, по которому передаются пакеты данных

```
[R1]tracert -a 10.0.1.1 10.0.1.2
traceroute to 10.0.1.2(10.0.1.2), max hops: 30 ,packet length: 40,press CTRL C
to break
1 10.0.13.2 20 ms 1 ms 20 ms
```

Шаг 7. Настроим маршруты по умолчанию для установления связи между интерфейсом LoppBack0 маршрутизатора R1 и интерфейсом LoopBack0 маршрутизатора R2.

Включим интерфейсы и удалим настроенные маршруты.

```
[R1]interface GigabitEthernet0/0/1
[R1-GigabitEthernet0/0/1]undo shutdown
[R1-GigabitEthernet0/0/1]quit
[R1]undo ip route-static 10.0.1.2 255.255.255.255 10.0.13.2
[R1]undo ip route-static 10.0.1.2 255.255.255.255 10.0.12.3 preference 100
```

Выведем таблицу маршрутизации R1

```
[R1]display ip routing-table
Route Flags: R - relay, D - download to fib
```

Routing Tables: Public

Destinations: 9 Routes: 9

Destination/Mask Proto Pre Cost	Flags NextHop	Interface
10.0.1.1/32 Direct 0 0	D 127.0.0.1	LoopBack0
10.0.1.3/32 Static 60 0	RD 10.0.12.3	GigabitEthernet0/0/2
10.0.12.0/24 Direct 0 0	D 10.0.12.1	GigabitEthernet0/0/2
10.0.12.1/32 Direct 0 0	D 127.0.0.1	GigabitEthernet0/0/2
10.0.12.255/32 Direct 0 0	D 127.0.0.1	GigabitEthernet0/0/2
127.0.0.0/8 Direct 0 0	D 127.0.0.1	InLoopBack0
127.0.0.1/32 Direct 0 0	D 127.0.0.1	InLoopBack0
127.255.255.255/32 Direct 0 0	D 127.0.0.1	InLoopBack0
255.255.255.255/32 Direct 0 0	D 127.0.0.1	InLoopBack0

Настроим маршрут по умолчанию на R1

[R1]ip route-static 0.0.0.0 0 10.0.12.3

Выведем таблицу маршрутизации R1

[R1]display ip routing-table

Route Flags: R - relay, D - download to fib

Routing Tables: Public

Destinations: 10 Routes: 10

Destination/Mask Proto Pre Cost	Flags NextHop	Interface
0.0.0.0/0 Static 60 0	RD 10.0.12.3	GigabitEthernet0/0/2
10.0.1.1/32 Direct 0 0	D 127.0.0.1	LoopBack0
10.0.1.3/32 Static 60 0	RD 10.0.12.3	GigabitEthernet0/0/2
10.0.12.0/24 Direct 0 0	D 10.0.12.1	GigabitEthernet0/0/2
10.0.12.1/32 Direct 0 0	D 127.0.0.1	GigabitEthernet0/0/2
10.0.12.255/32 Direct 0 0	D 127.0.0.1	GigabitEthernet0/0/2
127.0.0.0/8 Direct 0 0	D 127.0.0.1	InLoopBack0
127.0.0.1/32 Direct 0 0	D 127.0.0.1	InLoopBack0
127.255.255.255/32 Direct 0 0	D 127.0.0.1	InLoopBack0
255.255.255.255/32 Direct 0 0	D 127.0.0.1	InLoopBack0

Проверим наличие связи между LoppBack0 маршрутизатора R1 и LoppBack0 маршрутизатора R2

```
[R1]ping -a 10.0.1.1 10.0.1.2
PING 10.0.1.2: 56 data bytes, press CTRL_C to break
Reply from 10.0.1.2: bytes=56 Sequence=1 ttl=254 time=20 ms
Reply from 10.0.1.2: bytes=56 Sequence=2 ttl=254 time=40 ms
Reply from 10.0.1.2: bytes=56 Sequence=3 ttl=254 time=30 ms
```

Reply from 10.0.1.2: bytes=56 Sequence=4 ttl=254 time=10 ms

Reply from 10.0.1.2: bytes=56 Sequence=5 ttl=254 time=40 ms

--- 10.0.1.2 ping statistics --5 packet(s) transmitted
5 packet(s) received
0.00% packet loss
round-trip min/avg/max = 10/28/40 ms

Вывод:

В ходе лабораторной работы нами были изучены и отработаны навыки настройки IPv4-адресов на интерфейсах, использования loopback-интерфейсов, а также генерации прямых и статических маршрутов. Было показано, как статические маршруты позволяют оптимизировать маршрутизацию и обеспечивать изоляцию трафика в сети. Закрепили навыки проверки сетевых соединений с помощью инструмента ping и настройки маршрутизации.