腾讯深度学习并行化实践

腾讯数据平台部高级工程师 金泽

2015中国数据库技术大会

DATABASE TECHNOLOGY CONFERENCE CHINA 2015 大数据技术探索和价值发现

提纲

- ●深度学习概述
- Mariana 腾讯深度学习平台
 - ●Mariana DNN: DNN的GPU数据并行框架
 - ●Mariana CNN: CNN的GPU模型并行和数据并行框架
 - ●Mariana Cluster: DNN的CPU集群框架
- ●Mariana Cluster演进
- ●GPU Cluster的探索
- ●深度学习并行化:系统和算法的双重视角

深度学习概况

- ●深层网络是基于多层神经网络的复杂模型□
 - ●模型远复杂于当前的浅层模型
 - •是一定程度模拟人脑的模型

- ●深度学习是近年机器学习中备受瞩目的分支
 - ●端到端的学习
 - ●在语音识别、图像识别等持续取得突破
 - ●E.g. ImageNet 1000类图像分类问题:准确率72%→85%→89%→93%
 - ●各公司持续发力, Google, Microsoft, Facebook, 百度, 腾讯, 阿里
- ●深度学习的发展机遇
 - ●海量的数据
 - ●高速增长的计算能力
 - ●算法改进

深度学习平台的挑战

- ●大数据
 - ●大数据时代,可获取的数据量大大增加
 - ●可达数十亿样本
- ●大模型
 - ●在大数据的支持下,更深更宽的网络能获得更好的结果
 - ●模型复杂:可达数万神经元,几千万至上亿参数。
 - ●以图像识别为例,增加卷积层filter数量,加深模型都有改善
 - ●内存消耗大
- ●大计算量,耗时
 - ◆大模型需要大计算量
 - ◆大数据需要大计算量
- ●非凸优化问题,超参数多,需要反复多次实验
 - ●非凸模型,倚重技巧和经验
 - ●超参数敏感:模型结构、输入数据处理方式、权重初始化方案、激活函数选择、参数配置等

Mariana: 腾讯深度学习平台概述

●目标

通过并行加速计算

通过模型拆分支持大模型

通过框架简化应用代码

●三个框架

Mariana DNN: 深度神经网络的GPU数据并行框架

Mariana CNN: 深度卷积神经网络的GPU模型并行和数据并行框架

Mariana Cluster: 深度神经网络的CPU集群框架

●主要应用

深度学习模型训练的并行方法

- ●数据并行
 - ●划分训练数据
 - 各Worker 独自训练
 - ●交换参数

●模型并行

- ●模型拆分
- ●多个Worker作为1组
- ●同组Worker训练一个模型

模型

GPU高性能计算

●体系结构: CPU vs GPU

DRAM

- Multi-core
- ●巨大的缓存
- ●复杂的控制逻辑
- ●数十GB以上的内存

- Many-coreGPU
- ●数干流处理器,更多寄存器
- 轻量级线程共享控制逻辑
- ●数GB的内存
- •GPGPU (General Purpose GPU)
 - ●从图形处理(桌面级)到通用计算(专业级)

GPU高性能计算应用领域

■适合GPU计算的应用类型

- ■用同一计算方法对很大量的数据进行并行计算
- ■数据相关度低
- ■计算密度大,计算所花的时间比数据存储的时间大得多

Mariana的设计选择

●CPU并行 vs GPU并行

●CPU并行:适合稀疏连接模型 ●GPU并行:适合稠密连接模型

●数据并行 vs 模型并行

●数据并行:适合参数交换相对较少的情况

●模型并行:适合输出值/残差交换相对较少的情况

●同步SGD vs 异步SGD

●Worker间参数更新方式:有同步点 vs 独立地进行

●Worker的规模和计算/通信的同步性

Mariana三个框架的设计选择

框架	目标业务	计算单元	数据并行	模型并行	SGD模式
Mariana DNN	语音识别	GPU	支持	不支持	同步
Mariana CNN	图像识别	GPU	支持	支持	同步
Mariana Cluster	广告推荐	CPU	支持	支持	异步

Mariana DNN的多GPU数据并行:性能模型

Mariana DNN的多GPU数据并行:参数交换架构

多GPU间参数交换: 基于PCIe互联的架构

多GPU卡通信性能模型

- ●读取远程GPU内存计算(Unified Virtual Addressing),对小数据能简化编程;但对大块数据访问,其性能不如将数据Copy到GPU本地内存再计算。
- ●GPU计算和GPU间通信会产生干扰,单个GPU的多个通信也会产生干扰,任意一对GPU卡间的双向通信会干扰。除了引入不同的流隔离上述操作,在适当的地方加入同步点也可以提升效率。
- ●任意两组GPU卡(如GPU1 GPU3和GPU2 GPU4)组间读写没有干扰,可并行,和GPU卡的位置无关,即使跨IOH也没有显著差别。

Mariana DNN:参数交换的线性拓扑结构

时间线

线形拓扑的性能及可扩展性分析

GP U数	带宽	模型大小	模型复制时间	模型 分片	收集 周期 数	收集通信用时	单次参数交换通 信用时(收集+ 分发)	Cache交换通信用时 (MBS=2048)	Cache交 换用时 (实测, 独占)
N	BW	MS	T ₀ =MS/BW	n/2	n-1	$2T_0(\frac{n-1}{n})$	$4T_0(\frac{n-1}{n})$	交换次数 * 单 次参数交换用 时	
4	6.6GB/s	186MB	28.2ms	2	3	42.3ms	84.6ms	1.35s	
6	4.5GB/s	186MB	41.3ms	3	5	68.8ms	137.7ms	2.2s	2.7s
8	4.5GB/s	186MB	41.3ms	4	7	72.3ms	144.6ms	2.3s	

- ●理论交换时间中的通信时间和实测时间差距不大,基本吻合。实测时间还包括了计算时间、同步时间等。
- ●线形拓扑可以容易的扩展到偶数个GPU的参数交换(n=2,4,6,8...)。
- ●线形拓扑收集用时随GPU数增长缓慢,且有上界2T_{0,} 这说明线形拓扑 非常适用于更多GPU卡做数据并行。

实测性能:语音识别的声学模型训练

- ●超过10,000小时训练数据
- ●超过4,000,000,000样本
- ●超过50,000,000参数
- ●6 GPU数据并行相对单GPU取得了4.6倍 加速比

Mariana CNN的多GPU并行架构

多GPU并行架构: Transfer Layer, IO/CPU/GPU pipeline

Mariana CNN: 执行引擎

- ●每个GPU配有一个独立的执行引擎
- ●Minibatch开始时,每个GPU的执行引擎同时启动
- ●执行引擎在Layer具备执行前向或后向的条件时执行
- ●执行引擎逐个Layer完成前向和后向计算的传递

Mariana CNN:三阶段流水线加速

任务:从磁盘读取样本 类型:IO密集型作业

方案:硬件RAID5提供单机6磁盘并行读

任务:图片预处理

类型:CPU密集型作业

方案: 2路CPU multi-core提供多线程并行能力

任务:CNN网络计算 <u>类型</u>:GPU密集型

方案:4GPU数据并行和模型并行计算

Mariana CNN的应用: 图像识别

- ●ImageNet数据, AlexNet 2012
 - ●超过1,000,000样本
 - ●超过50,000,000参数
- ●4 GPU模型并行+数据并行相对单GPU取得了2.5倍加速比

●可支持更大模型

Mariana Cluster

- DNNJob有多轮迭代 -训练、验证、测试模式
- 划分训练数据,多组节点并行 -数据并行
- 每个模型实例用组内多节点模型并行
- 应用开发
 - -Vertex抽象:Compute方法
 - -应用写参数:序列化/反序列化
 - -框架完成DNNJob并行训练

Mariana Cluster 架构: CPU集群框架

Mariana Cluster的高可扩展、高可靠和高性能

高可扩展

- 每个Master进程管理一个DNNJob
- 数据并行+模型并行
- 可水平扩展的参数服务器

高可靠

- 借助分布式文件系统和资源管理系统做容错
- 框架设计容错
- 实现容错

高性能

- Worker计算性能调优
- 参数交换性能调优
- 支持Downpour SGD模式并行

Mariana Cluster演进:支持广点通广告

●支持广点通广告的点击率预估模型训练

点击率 Y2

走向实用的挑战:

每天百亿级点击率预估请求 每个请求延迟小于50 ms

方式1: CNN/DNN提取特征 抽取图片中的用户点击相关特征 输出给Logistic Regression等浅层模型

方式2:DNN用于模型训练和预测 构造深层模型

Mariana Cluster演进:针对广告的单机性能极致追求:方法

- ●单机内性能优化
 - ●C++版极简稀疏DNN网络内核实现,大幅砍掉开销
 - ●对象池,去除内存分配释放的开销
 - ●细节的持续tuning
- ●单机内Hogwild! 模式的多线程并行
 - ●单机仅持有1份模型
 - ●多线程并行做稀疏计算
 - ●多线程并发的更新模型参数,每个样本仅更新少量参数,更新时不加锁

GPU集群建设目标

- ●目标
 - ●建立多业务共享的GPU集群
 - ●灵活管理和调度多个业务作业
 - ●支持大规模机器学习模型训练

- ●集群建设:硬件
 - ●定型GPU服务器,实现性能、成本、功耗的平衡
 - ●构建高速网络,连接GPU服务器
- ●集群建设: 软件
 - ●统一资源管理和调度,灵活部署应用框架和软件库
 - ●实现Mariana GPU Cluster框架支持多机多卡并行

GPU Cluster软件栈

- ●深度学习应用
- ●深度学习并行框架
 - ●通过Docker images预置常见深度学习并行框架
 - ●多机多卡并行框架的定制与优化
- Gaia
 - ●GPU集群资源管理和调度
- CUDA-aware MPI library
 - MVAPICH-GDR v2.0
- Docker container
 - ●支持通过Docker container运行应用
 - ●已测试GPU和高速网络无性能损失
- ●基础软件
 - ●基于CentOS 6.5
 - ●基于CUDA 6.5
 - ●基于恰当的网卡OFED驱动

DL Applications

DL frameworksIn Docker images

Gaia

CUDA-aware MPI

Docker container

基础软件 OS/CUDA/OFED

GPU Cluster的Docker image仓库

- ●构建共享的Docker images仓库
 - ●一键部署深度学习并行框架,简化应用部署
 - ●完美支持单机多个版本的库并存
 - ●images共享,持续扩充可用images
 - ●单个image支持千兆/万兆/RoCE和CPU/GPU等环境

- ●通过Gaia Portal & API完成基于Docker image的作业提交和管理
- ●主要Docker images一览
 - cuda-convnet & cuda-convnet 2
 - Caffe
 - Petuum v0.9 & Petuum v1.0
 - Minerva
 - Mariana DNN
 - Mariana CNN
 - Mariana Cluster

深度学习并行化:系统视角

- ●系统视角:并行计算的层级 ("parallel hierarchy")
 - ●CPU指令级并行: SIMD指令, CPU L1/L2 cache
 - ●GPU并行: many-core的GPU架构,扩展的SIMD
 - ●多线程并行: multi-core的CPU
 - ●单机多GPU卡并行:利用PCI-e通信
 - ●多CPU服务器并行:利用干兆以太网通信
 - ●多GPU服务器并行:利用RoCE 40Ge通信
- ●系统视角:高性能计算问题,非大数据处理问题
 - ●性能远重于扩展性
 - ◆关注通信时的网络拓扑
 - ●RPC vs MPI: 从编程易用性到性能
 - ●RoCE高速网络,而非干兆以太网

深度学习并行化:算法视角

- ●算法视角:算法对系统的影响
 - ●数据并行 vs 模型并行:两种的有机组合
 - ●Hogwild! vs 异步SGD vs 同步SGD:不同应用的选择
 - ●Scalability有多重要?并行度与收敛性
 - ●可以容忍的失败:允许简化系统可靠性设计
- ●算法视角:算法本身的改进
 - ●近似算法的作用:E.g. Mariana DNN中的近似AdaGrad算法,Hogwild!的无锁参数更新
 - ●非精确的计算: Double or Float?
 - ●结果的非唯一性:爬山过程的N种路径

InnoDE

