Criterio di convergenza assoluta. Sia $(a_n)_n$ una successione in \mathbb{R} tale che la serie $\sum_{n=0}^{\infty} |a_n|$ converge. Allora la serie $\sum_{n=0}^{\infty} a_n$ converge.

Dim. Qualunque sia il segno di a_n risulta certamente $a_n \leq |a_n|$ e quindi la differenza $|a_n| - a_n$ è ≥ 0 . Inoltre $|a_n| - a_n \leq 2|a_n|$ per ogni $n \in \mathbb{N}$. Quindi la serie a termini positivi $\sum_{n=0}^{\infty} (|a_n| - a_n)$ converge per il Criterio del Confronto.

Scrivendo $a_n = |a_n| - (|a_n| - a_n)$ la serie $\sum_{n=0}^{\infty} a_n$ diviene differenza di due serie a termini positivi, entrambe convergenti; per linearità la serie converge.

Se converge la serie $\sum_{n=0}^{\infty} |a_n|$ si dice che la serie $\sum_{n=0}^{\infty} a_n$ converge assolutamente. Quindi il Teorema dice che se una serie converge assolutamente, **necessariamente** converge

(semplicemente).

La condizione non è invece sufficiente, in altre parole una serie può convergere, ma non convergere assolutamente, ovvero divergere assolutamente, dato che la serie $\sum_{n=0}^{\infty} |a_n|$ non può essere indeterminata (Sai spiegare perchè?).

Per assicurarci di questo fatto, mostriamo un controesempio, cioè una serie convergente che però diverge assolutamente: basta allo scopo considerare la serie a termini di segno alternato $\sum_{n=0}^{\infty} (-1)^n \frac{1}{n}$ che converge, in virtù del Criterio di Leibnitz, mentre la serie dei valori assoluti diviene la serie armonica che diverge.