પ્રશ્ન 1(અ) [3 ગુણ]

ઓપરેટિંગ સિસ્ટમ વ્યાખ્યાયિત કરો અને તેનું લક્ષ્ય આપો.

જવાબ:

ઓપરેટિંગ સિસ્ટમ વ્યાખ્યા: એક પ્રોગ્રામ જે કમ્પ્યુટર હાર્ડવેર અને યુઝર વચ્ચે ઇન્ટરફેસ તરીકે કામ કરે છે, સિસ્ટમ રિસોર્સિસ મેનેજ કરે છે અને પ્રોગ્રામ એક્ઝિક્યુશન કંટ્રોલ કરે છે.

ઓપરેટિંગ સિસ્ટમના લક્ષ્યો:

લક્ષ્ય	นย์า	
રિસોર્સ મેનેજમેન્ટ	CPU, મેમરી, I/O ડિવાઇસિસનું કાર્યક્ષમ ફાળવણી	
યુઝર સુવિદ્યા	વાપરવામાં સરળ ઇન્ટરફેસ પ્રદાન કરવું	
સિસ્ટમ પ્રોટેક્શન	અનધિકૃત પહોંચથી સિસ્ટમને સુરક્ષિત કરવું	

મેમરી ટ્રીક: "RUS" - Resource management, User convenience, System protection

પ્રશ્ન 1(બ) [4 ગુણ]

કમ્પ્યુટર સિસ્ટમના ઘટકો નામ આપો અને ઓપરેટિંગ સિસ્ટમની જરૂરિયાત સમજાવો.

જવાબ:

કમ્પ્યુટર સિસ્ટમ ઘટકો:

ઓપરેટિંગ સિસ્ટમની જરૂરિયાત:

- રિસોર્સ મેનેજર: હાર્ડવેર ફાળવણી કંટ્રોલ કરે છે
- ઇન્ટરફેસ પ્રદાતા: યુઝર અને હાર્ડવેર વચ્ચે સરળ કમ્યુનિકેશન
- સિક્યોરિટી: સિસ્ટમને ખતરાઓથી બચાવે છે
- એરર હેન્ડલિંગ: સિસ્ટમ એરર્સને કાર્યક્ષમ રીતે મેનેજ કરે છે

મેમરી ટ્રીક: "RISE" - Resource management, Interface, Security, Error handling

પ્રશ્ન 1(ક) [7 ગુણ]

નીચે ઓપરેટિંગ સિસ્ટમના પ્રકારો સમજાવો.

જવાબ:

I. Batch Operating System

લક્ષણ	વર્ણન
પ્રોસેસિંગ	યુઝર ઇન્ટરેક્શન વિના બેચમાં જોબ્સ પ્રોસેસ કરે છે
કાર્યક્ષમતા	ઊંચું throughput, ઓછું યુઝર ઇન્ટરેક્શન
ઉદાહરણ	IBM મેઇનફ્રેમ્સ

II. Multiprogramming Operating System

લક્ષણ	นย์่า	
કોન્સેપ્ટ	મેમરીમાં એકસાથે બહુવિદ્ય પ્રોગ્રામ્સ	
CPU ઉપયોગ	વધુ સારું CPU utilization	
ફાયદો	idle time ઘટાડે છે	

III. Time Sharing Operating System

લક્ષણ	વર્ણન	
Time Slices	યુઝર્સ વચ્ચે CPU time વહેંચાયેલું	
Response	ઝડપી response time	
ઉદાહરણ	Unix, Linux	

મેમરી ટ્રીક: "BMT" - Batch (કોઈ ઇન્ટરેક્શન નહી), Multiprogramming (ઘણા પ્રોગ્રામ્સ), Time-sharing (time slices)

પ્રશ્ન 1(ક) OR [7 ગુણ]

Linux આર્કિટેક્ચર અને લક્ષણો તેના ઘટકો સાથે સમજાવો.

જવાબ:

Linux આર્કિટેક્ચર:

Linux લક્ષણો:

લક્ષણ	વર્ણન
ઓપન સોર્સ	મફત અને સુધારી શકાય તેવું
મલ્ટિયુઝર	એકસાથે બહુવિધ યુઝર્સ
મલ્ટિટાસ્કિંગ	એકસાથે બહુવિધ પ્રોસેસિસ
પોર્ટેબલ	વિવિધ હાર્ડવેર પર ચાલે છે

ઘટકો:

• કર્નલ: ઓપરેટિંગ સિસ્ટમનો મુખ્ય ભાગ

• **शेदा**: ङभान्ड interpreter

• ફાઇલ સિસ્ટમ: ડેટા સ્ટોરેજ ઓર્ગેનાઇઝ કરે છે

મેમરી ટ્રીક: "COMP" - Core (કર્નલ), Open source, Multiuser, Portable

પ્રશ્ન 2(અ) [3 ગુણ]

પ્રક્રિયા નિયંત્રણ બ્લોકનું વર્ણન કરો. અને વ્યાખ્યાયિત કરો (1) PID (2) stack pointer (3) program counter જવાબ:

Process Control Block (PCB): OS મેનેજમેન્ટ માટે પ્રોસેસ ઇન્ફર્મેશન ધરાવતું ડેટા સ્ટ્રક્ચર.

વ્યાખ્યાઓ:

શહ€	વ્યાખ્યા	
PID	Process Identifier - દરેક પ્રોસેસ માટે અનન્ય નંબર	
Stack Pointer	પ્રોસેસ સ્ટેકની ટોપ તરફ પોઇન્ટ કરે છે	
Program Counter	આગલી instruction નું address ધરાવે છે	

મેમરી ટ્રીક: "PSP" - PID (identifier), Stack pointer (ટોપ), Program counter (આગલું)

પ્રશ્ન 2(બ) [4 ગુણ]

પ્રક્રિયા મોડલ અને પ્રક્રિયા સ્થિતિઓનું વર્ણન કરો

જવાબ:

પ્રોસેસ મોડલ: OS દ્વારા પ્રોસેસિસ કેવી રીતે મેનેજ થાય છે તેનું કોન્સેપ્ચ્યુઅલ રિપ્રેઝેન્ટેશન.

પ્રોસેસ સ્થિતિઓ:

સ્થિતિ	વર્ણન	
New	પ્રોસેસ બનાવાઈ રહ્યું છે	
Ready	CPU માટે રાહ જોઈ રહ્યું છે	
Running	instructions એક્ઝિક્યુટ કરી રહ્યું છે	
Waiting	I/O માટે રાહ જોઈ રહ્યું છે	
Terminated	પ્રોસેસ સમાપ્ત થયું	

મેમરી ટ્રીક: "NRRWT" - New, Ready, Running, Waiting, Terminated

પ્રશ્ન 2(ક) [7 ગુણ]

શેક્યુલિંગ અલ્ગોરિદ્યમનું વર્ણન કરો:(I) First Come First Serve,(II) Shortest Job First

જવાબ:

I. First Come First Serve (FCFS)

પ્રોસેસ	આગમન સમય	Burst Time	પૂર્ણતા સમય	Turnaround Time
P1	0	4	4	4
P2	1	3	7	6
Р3	2	2	9	7

સરેરાશ Turnaround Time = (4+6+7)/3 = 5.67

II. Shortest Job First (SJF)

પ્રોસેસ	આગમન સમય	Burst Time	પૂર્ણતા સમય	Turnaround Time
P3	2	2	4	2
P2	1	3	7	6
P1	0	4	11	11

સરેરાશ Turnaround Time = (2+6+11)/3 = 6.33

મેમરી ટ્રીક: "FS" - FCFS (પહેલા ક્રમ), SJF (સૌથી ટૂંકું પહેલા)

પ્રશ્ન 2(અ) OR [3 ગુણ]

વ્યાખ્યાયિત કરો Race condition, Mutual Exclusion

જવાબ:

3918	વ્યાખ્યા	
Race Condition	બહુવિદ્ય પ્રોસેસિસ એકસાથે shared data એક્સેસ કરે છે જેથી inconsistent પરિણામો આવે છે	
Mutual Exclusion	એક સમયે માત્ર એક પ્રોસેસ critical section એક્સેસ કરી શકે છે	

ઉદાહરણ: બે પ્રોસેસિસ એકજ બેંક એકાઉન્ટ બેલેન્સ અપડેટ કરી રહ્યા છે.

મેમરી ટ્રીક: "RM" - Race (એકસાથે એક્સેસ), Mutual (એક સમયે એક)

પ્રશ્ન 2(બ) OR [4 ગુણ]

વ્યાખ્યાયિત કરો Throughput, Turnaround Time, Waiting Time, Response Time

જવાબ:

શહ€	વ્યાખ્યા	
Throughput	એકમ સમયમાં પૂર્ણ થયેલ પ્રોસેસિસની સંખ્યા	
Turnaround Time	submission થી completion સુધીનો કુલ સમય	
Waiting Time	ready queue માં રાહ જોવાનો સમય	
Response Time	submission થી પહેલા response સુધીનો સમય	

ફોર્મ્યુલા ટેબલ:

મેટ્રિક	ફોર્મ્યુલા	
Turnaround Time	Completion Time - Arrival Time	
Waiting Time	Turnaround Time - Burst Time	
Response Time	First CPU Time - Arrival Time	

મેમરી ટ્રીક: "TTWR" - Throughput, Turnaround, Waiting, Response

પ્રશ્ન 2(ક) OR [7 ગુણ]

રાઉન્ડ રોબિન અલ્ગોરિધમ ઉદાહરણ સાથે સમજાવો.

જવાબ:

રાઉન્ડ રોબિન: દરેક પ્રોસેસને સમાન CPU time slice (quantum) મળે છે.

Gียเ**๔२**ยเ (Time Quantum = 2):

પ્રોસેસ	Burst Time
P1	5
P2	3
P3	4

એક્ઝિક્યુશન ટાઇમલાઇન:

પ્રોસેસ	પૂર્ણતા સમય	Turnaround Time
P1	12	12
P2	6	6
P3	10	10

સરેરાશ Turnaround Time = (12+6+10)/3 = 9.33

ફાયદાઓ:

• ન્યાયસંગત: બધા પ્રોસેસિસને સમાન સમય

• રિસ્પોન્સિવ: ઇન્ટરેક્ટિવ સિસ્ટમ્સ માટે સાટું

મેમરી ટ્રીક: "RR-FE" - Round Robin આપે છે Fair અને Equal સમય

પ્રશ્ન 3(અ) [3 ગુણ]

ફાઇલ એક્સેસ પદ્ધતિઓનો પ્રકાર આપો

જવાબ:

એક્સેસ પદ્ધતિ	વર્ણન
Sequential	શરૂઆતથી ક્રમમાં read/write
Direct	કોઈ પણ record ને સીધું એક્સેસ
Indexed	records શોધવા માટે index ઉપયોગ

મેમરી ટ્રીક: "SDI" - Sequential (ક્રમ), Direct (કોઈ પણ), Indexed (index)

પ્રશ્ન 3(બ) [4 ગુણ]

ડેડલોક લાક્ષણિકતાઓ આપો અને Deadlock Prevention, Deadlock Avoidance વર્ણન કરો

જવાબ:

ડેડલોક લાક્ષણિકતાઓ:

શરત	વર્ણન
Mutual Exclusion	રિસોર્સિસ શેર કરી શકાતા નથી
Hold and Wait	પ્રોસેસ રિસોર્સ પકડીને રાહ જુએ છે
No Preemption	રિસોર્સિસ બળજબરીથી લઈ શકાતા નથી
Circular Wait	રાહ જોતા પ્રોસેસિસનો ગોળાકાર chain

Deadlock Prevention: ચાર શરતોમાંથી કોઈ એક દૂર કરો.

Deadlock Avoidance: unsafe states ટાળવા માટે Banker's algorithm જેવા અલ્ગોરિધમ ઉપયોગ કરો.

મેમરી ટ્રીક: "MHNC" - Mutual exclusion, Hold and wait, No preemption, Circular wait

પ્રશ્ન 3(ક) [7 ગુણ]

ફાઈલ ફાળવણી પદ્ધતિઓ લગતી, લિંક્ડ, અનુક્રમિત સમજાવો

જવાબ:

ફાઈલ ફાળવણી પદ્ધતિઓ:

પદ્ધતિ	વર્ણન	ફાયદાઓ	નુકસાન
Contiguous	Sequential blocks	ઝડપી એક્સેસ	External fragmentation
Linked	પોઇન્ટર્સ સાથે વિખરાયેલા blocks	કોઈ fragmentation નહીં	ધીમું random access
Indexed	Index block ні addresses	ઝડપી random access	વધારાનું overhead

Contiguous Allocation:

File A: [1][2][3][4][5]

Linked Allocation:

File A: $[1] \rightarrow [7] \rightarrow [3] \rightarrow [9] \rightarrow \text{NULL}$

Indexed Allocation:

Index Block: [1,3,7,9,12]
File blocks: [1][3][7][9][12]

મેમરી ટ્રીક: "CLI" - Contiguous (એકસાથે), Linked (પોઇન્ટર્સ), Indexed (index block)

પ્રશ્ન 3(અ) OR [3 ગુણ]

Linux ફાઈલ સિસ્ટમ સ્ટ્રક્ચરની સમજણ આપો.

જવાબ:

Linux ફાઈલ સિસ્ટમ હાયરાર્કી:

```
/
|-- bin/ (સિસ્ટમ binaries)
|-- etc/ (કન્ફિગરેશન ફાઇલો)
|-- home/ (યુઝર ડિરેક્ટરીઝ)
|-- var/ (Variable ડેટા)
|-- usr/ (યુઝર પ્રોગ્રામ્સ)
|-- tmp/ (Temporary ફાઇલો)
```

ડિરેક્ટર ી	હેતુ
/bin	આવશ્યક સિસ્ટમ binaries
/etc	સિસ્ટમ કન્ફિગરેશન ફાઈલો
/home	યુઝર home ડિરેક્ટરીઝ

મેમરી ટ્રીક: "BEH" - Bin (binaries), Etc (config), Home (યુઝર્સ)

પ્રશ્ન 3(બ) OR [4 ગુણ]

ઉદાહરણ સાથે Critical Section and Semaphore સમજાવો.

જવાબ:

Critical Section: shared resources એક્સેસ કરતો કોડ segment.

Semaphore: counter variable ઉપયોગ કરતું synchronization tool.

ઉદાહરણ:

```
# Binary Semaphore
wait(S):
    while S <= 0 do nothing
    S = S - 1

signal(S):
    S = S + 1</pre>
```

Critical Section સ્ટ્રક્ચર:

Section	વર્ણન
Entry	પરવાનગી માંગવી
Critical	Shared resource એક્સેસ કરવું
Exit	પરવાનગી છોડવી
Remainder	બીજો કોડ

મેમરી ટ્રીક: "ECER" - Entry, Critical, Exit, Remainder

પ્રશ્ન 3(ક) OR [7 ગુણ]

ડેડલોક ટાળો, ડેડલોક શોધ,અને પ્રોસેસ પુનઃપ્રાપ્તિ વ્યાખ્યાયિત કરો અને સમજાવો

જવાબ:

Deadlock Avoidance:

- Banker's Algorithm ઉપયોગ કરો
- resource allocation safe state તરફ લઈ જાય છે કે નહીં તે ચેક કરો

Deadlock Detection:

• Wait-for Graph ઉપયોગ કરીને નિયમિત deadlock ચેક કરો

Deadlock Recovery પદ્ધતિઓ:

પદ્ધતિ	વર્ણન
Process Termination	Deadlocked પ્રોસેસિસને kill કરો
Resource Preemption	પ્રોસેસિસમાંથી resources લો
Rollback	અગાઉની safe state પર પાછા જાઓ

Banker's Algorithm સ્ટેપ્સ:

- 1. request ≤ available resources છે કે નહીં ચેક કરો
- 2. allocation simulate કરો
- 3. safe state અસ્તિત્વ ચેક કરો

Wait-for Graph:

ਮੇਮਣੀ ਟ੍ਰੀs: "ADR-BWT" - Avoidance (Banker's), Detection (Wait-for), Recovery (Terminate)

પ્રશ્ન 4(અ) [3 ગુણ]

શા માટે ફાઈલ પ્રોટેક્શનની જરૂર છે સમજાવો?

જવાબ:

ફાઈલ પ્રોટેક્શનની જરૂરિયાત:

કારણ	વર્ણન
ગોપનીયતા	વ્યક્તિગત ડેટાનું રક્ષણ
સિક્યોરિટી	અનધિકૃત એક્સેસ અટકાવવું
અખંડતા	ડેટા consistency જાળવવી

પ્રોટેક્શન મેકેનિઝમ્સ:

- Access Control Lists (ACL)
- รูเย์ต Permissions (Read, Write, Execute)
- યુઝર Authentication

મેમરી ટ્રીક: "PSI" - Privacy, Security, Integrity

પ્રશ્ન 4(બ) [4 ગુણ]

Program threats, System threats नुं वर्धांन डरो

જવાબ:

Program Threats:

ખતરો	વર્ણન
Virus	Self-replicating દુર્ભાવનાપૂર્ણ કોડ
Worm	નેટવર્ક પર ફેલાતા malware
Trojan Horse	છૂપાચેલ દુર્ભાવનાપૂર્ણ પ્રોગ્રામ

System Threats:

ખતરો	વર્ણન
Denial of Service	સિસ્ટમ resources ભરાવી દેવા
Port Scanning	vulnerable services ยาโยตใ
Man-in-Middle	communications intercept sरवा

પ્રોટેક્શન પદ્ધતિઓ:

- એન્ટિવાયરસ સોફ્ટવેર
- ફાયરવોલ્સ
- નિયમિત અપડેટ્સ

મેમરી ટ્રીક: "VWT-DPM" - Virus, Worm, Trojan; DoS, Port scan, Man-in-middle

પ્રશ્ન 4(ક) [7 ગુણ]

સંક્ષિપ્તમાં ઓપરેટિંગ સિસ્ટમ સુરક્ષા નીતિઓ અને પ્રક્રિયાઓની વિગતો આપો

જવાબ:

સિક્યોરિટી નીતિઓ:

નીતિ પ્રકાર	વર્ણન
Access Control	કોણ કયા resources એક્સેસ કરી શકે
Authentication	યુઝર identity verify કરવી
Authorization	યુઝર permissions નક્કી કરવી
Audit	પ્રવૃત્તિઓ monitor અને log કરવી

સિક્યોરિટી પ્રક્રિયાઓ:

અમલીકરણ સ્ટેપ્સ:

- 1. યુઝર Registration અને credential સેટઅપ
- 2. Multi-factor Authentication
- 3. Role-based Access Control
- 4. નિયમિત Security Audits

સામાન્ય સિક્યોરિટી પગલાં:

- Password નીતિઓ
- Encryption
- Backup પ્રક્રિયાઓ
- Incident Response ચોજનાઓ

મેમરી ટ્રીક: "AAAA" - Access control, Authentication, Authorization, Audit

પ્રશ્ન 4(અ) OR [3 ગુણ]

Authentication and Authorization સમજણ આપો

જવાબ:

કાલ્દ	વ્યાખ્યા	ઉદાહરણ
Authentication	યુઝર identity verify કરવી	Username/password
Authorization	એક્સેસ અધિકારો નક્કી કરવા	ફાઈલ permissions

Authentication પદ્ધતિઓ:

- Password-based
- Biometric
- Token-based

મેમરી ટ્રીક: "AA" - Authentication (તમે કોણ છો), Authorization (તમે શું કરી શકો છો)

પ્રશ્ન 4(બ) OR [4 ગુણ]

ઓપરેટિંગ સિસ્ટમ સુરક્ષા નીતિઓ અને પ્રક્રિયાઓ સમજાવો

જવાબ:

સિક્યોરિટી નીતિઓ ફ્રેમવર્ક:

ยรร	હેતુ
યુઝર મેનેજમેન્ટ	યુઝર એકાઉન્ટ્સ કંટ્રોલ કરવા
ડેટા પ્રોટેક્શન	સંવેદનશીલ માહિતી સુરક્ષિત કરવી
નેટવર્ક સિક્યોરિટી	કમ્યુનિકેશન્સ સુરક્ષિત કરવા
સિસ્ટમ મોનિટરિંગ	ખતરાઓ શોધવા

અમલીકરણ પ્રક્રિયાઓ:

- 1. જોખમ મૂલ્યાંકન
- નીતિ વિકાસ
- 3. สเผให ธเฆ์ธหโ
- 4. નિયમિત સમીક્ષાઓ

भेभरी ट्रीड: "UDNS" - User management, Data protection, Network security, System monitoring

પ્રશ્ન 4(ક) OR [7 ગુણ]

ઑપરેટિંગ સિસ્ટમમાં સુરક્ષા પગલાંની વિગતો આપો.

જવાબ:

વ્યાપક સિક્યોરિટી પગલાં:

સ્તર	સિક્યોરિટી પગલાં	
Physical	સર્વર રૂમ એક્સેસ, biometric locks	
Network	Firewalls, VPN, intrusion detection	
System	Antivirus, patches, access controls	
Application	Input validation, secure coding	
Data	Encryption, backup, integrity checks	

Access Control Matrix:

યુઝર/રોલ	ફાઈલ A	ई।ฤ୯ B	પ્રિન્ટર
Admin	RWX	RWX	RWX
User1	RW-	R	-W-
Guest	R		

સિક્યોરિટી અમલીકરણ સમયસીમા:

મોનિટરિંગ ટૂલ્સ:

- લોગ એનાલિસિસ
- Intrusion Detection Systems
- Vulnerability Scanners

મેમરી ટ્રીક: "PNSAD" - Physical, Network, System, Application, Data security

પ્રશ્ન 5(અ) [3 ગુણ]

calendar, date ના પાંચ મૂળભૂત કમાંડ સમજાવો

જવાબ:

મૂળભૂત Linux કમાંડ્સ:

ร ุ่มเร	รเช่	ઉદાહરણ
cal	કેલેન્ડર દર્શાવવું	cal 2024
date	વર્તમાન તારીખ/સમય બતાવવો	date +%d/%m/%Y
who	લોગ-ઇન યુઝર્સ બતાવવા	who
pwd	વર્કિંગ ડિરેક્ટરી પ્રિન્ટ કરવી	pwd
clear	સ્ક્રીન સાફ કરવી	clear

ક્રમાંડ ઉદાહરણો:

```
# યોક્કસ મહિના માટે કેલેન્ડર દર્શાવવો
cal 6 2024
# તારીખ આઉટપુટ ફોર્મેટ કરવો
date "+%A, %B %d, %Y"
```

ਮੇਮਣੀ ਟ੍ਰੀs: "CDWPC" - Cal, Date, Who, Pwd, Clear

પ્રશ્ન 5(બ) [4 ગુણ]

Linux ફાઈલ અને ડિરેક્ટરી કમાંડ સમજાવો: ls, cat, mkdir, rmdir, pwd,

જવાબ:

ફાઈલ અને ડિરેક્ટરી કમાંડ્સ:

₈ भis	รเช้	Syntax	ઉદાહરણ
ls	ડિરેક્ટરી contents લિસ્ટ કરવા	ls [options] [path]	ls -la
cat	ફાઈલ content દર્શાવવો	cat filename	cat file.txt
mkdir	ડિરેક્ટરી બનાવવી	mkdir dirname	mkdir newdir
rmdir	ખાલી ડિરેક્ટરી દૂર કરવી	rmdir dirname	rmdir olddir
pwd	વર્કિંગ ડિરેક્ટરી પ્રિન્ટ કરવી	pwd	pwd

ઉપયોગ ઉદાહરણો:

```
# વિગતો સાથે ફાઈલો લિસ્ટ કરવી
ls -1 /home/user

# બહુવિઘ ડિરેક્ટરીઝ બનાવવી
mkdir -p dir1/dir2/dir3

# લાઈન નંબર્સ સાથે ફાઈલ દર્શાવવી
cat -n document.txt
```

સામાન્ય વિકલ્પો:

- ls -1 : લાંબો ફોર્મેટ
- 1s -a: છુપાયેલી ફાઈલો બતાવવી
- mkdir -p: parent ડિરેક્ટરીઝ બનાવવી

મેમરી ટ્રીક: "LCMRP" - List, Cat, Mkdir, Rmdir, Pwd

પ્રશ્ન 5(ક) [7 ગુણ]

નિયંત્રણ નિવેદનો સમજો અને ઉપયોગ કરી શેલ સ્ક્રિપ્ટ લખો: ત્રણ સંખ્યાઓમાંથી મહત્તમ સંખ્યા શોધવા માટે શેલ સ્ક્રિપ્ટ લખો.

જવાબ:

ત્રણ સંખ્યાઓમાંથી મહત્તમ માટે શેલ સ્ક્રિપ્ટ:

```
#!/bin/bash
# ત્રણ સંખ્યાઓમાંથી મહત્તમ શોધવા માટે સ્ક્રિપ્ટ
echo "ત્રણ સંખ્યાઓ દાખલ કરો:"
read -p "પહેલી સંખ્યા: " num1
read -p "에  સંખ્યા: " num2
read -p "ਕੀજ સંખ્યા: " num3
# પદ્ધતિ 1: if-elif-else ઉપયોગ કરીને
if [ $num1 -ge $num2 ] && [ $num1 -ge $num3 ]; then
    max=$num1
elif [ num2 - ge num1 ] && [ num2 - ge num3 ]; then
    max=$num2
else
    max=$num3
fi
echo "ਮહत्तम સંખ્યા છે: $max"
# પદ્ધતિ 2: nested if ઉપયોગ કરીને
if [ $num1 -gt $num2 ]; then
    if [ $num1 -gt $num3 ]; then
        echo "ਮੁਖ਼ਰਮ: $num1"
    else
        echo "ਮੁਖ਼ਰਮ: $num3"
```

```
fi
else

if [ $num2 -gt $num3 ]; then

echo "ਮੁਫ਼ਰਮ: $num2"

else

echo "ਮੁਫ਼ਰਮ: $num3"

fi
fi
```

ઉપયોગમાં લેવાયેલા Control Statements:

Statement	હેતુ
if-elif-else	બહુવિધ condition ચેકિંગ
read	યુઝર input
echo	આઉટપુટ દર્શાવવો
Comparison operators	-ge, -gt, -lt

Comparison Operators:

• -eq: બરાબર

• -ne : બરાબર નહીં

• -gt: કરતાં મોટું

• -ge : કરતાં મોટું અથવા સમાન

• -1t: કરતાં નાનું

• -le: કરતાં નાનું અથવા સમાન

મેમરી ટ્રીક: "IER" - If (condition), Echo (આઉટપુટ), Read (ઇનપુટ)

પ્રશ્ન 5(અ) OR [3 ગુણ]

top, ps, kill Linux પ્રોસેસ કમાન્ડ શું છે

જવાબ:

Linux પ્રોસેસ કમાંડ્સ:

₈ หis	รเช้	ઉપયોગ
top	ચાલતી પ્રોસેસિસ દર્શાવવી	top
ps	પ્રોસેસ સ્ટેટસ બતાવવો	ps aux
kill	પ્રોસેસ બંધ કરવી	kill PID

કમાંડ વિગતો:

top sमis:

- Real-time પ્રોસેસ માહિતી બતાવે છે
- CPU અને મેમરી ઉપયોગ
- Load average

ps કમાંડ વિકલ્પો:

- ps aux : વિગતો સાથે બધી પ્રોસેસિસ
- ps -ef : સંપૂર્ણ ફોર્મેટ લિસ્ટિંગ

kill รหis:

- kill -9 PID: પ્રોસેસને ફોર્સ kill કરવી
- killall process_name : નામ દ્વારા kill કરવી

મેમરી ટ્રીક: "TPK" - Top (real-time), Ps (સ્ટેટસ), Kill (બંધ કરવી)

પ્રશ્ન 5(બ) OR [4 ગુણ]

Linux ફાઈલ અને ડિરેક્ટરી કમાંડ સમજાવો: rm, mv, split, diff, grep

જવાબ:

અદ્યતન ફાઈલ કમાંડ્સ:

ร ุ่นเร	รเข้	Syntax	ઉદાહરણ
rm	ફાઈલો/ડિરેક્ટરીઝ દૂર કરવી	rm [options] file	rm -rf folder
mv	ફાઈલો ખસેડવી/નામ બદલવું	mv source dest	mv old.txt new.txt
split	મોટી ફાઈલો વિભાજિત કરવી	split -1 lines file	split -l 100 data.txt
diff	ફાઈલો તુલના કરવી	diff file1 file2	diff old.txt new.txt
grep	ટેક્સ્ટ પેટર્ન શોધવા	grep pattern file	<pre>grep "error" log.txt</pre>

ઉપયોગ ઉદાહરણો:

```
# डिरेક्टरी recursively हूर डरवी
rm -rf /tmp/oldfiles

# फसेडवुं अने नाम अहलवुं
mv /home/user/doc.txt /backup/document.txt

# इाईलने 50-line chunks मां विसालित डरवी
split -1 50 largefile.txt chunk_

# इाईलो वच्छे तहावत शोंधवो
diff -u original.txt modified.txt
```

```
# ผ<sub>ู้</sub>ผู้ผย รูเย์ด่าห่า น่ว-ที่ ยาเยนา
grep -r "TODO" /project/src/
```

સામાન્ય વિકલ્પો:

- rm -i: Interactive mode
- mv -i: Overwrite પહેલાં પૂછવું
- grep -i: Case insensitive ยาโย

મેમરી ટ્રીક: "RMSDG" - Remove, Move, Split, Diff, Grep

પ્રશ્ન 5(ક) OR [7 ગુણ]

શેલ સ્ક્રિપ્ટ લખો:પાંચ નંબરો આપી અને પાંચ સંખ્યાઓની સરેરાશ શોદ્યો.

જવાબ:

પાંચ સંખ્યાઓની સરેરાશ માટે શેલ સ્ક્રિપ્ટ:

```
#!/bin/bash
# પાંચ સંખ્યાઓની સરેરાશ ગણતરી માટે સ્ક્રિપ્ટ
echo "=== સરેરાશ કેલ્ક્યુલેટર ==="
echo "પાંચ સંખ્યાઓ દાખલ કરો:"
# પાંચ સંખ્યાઓ વાંચવી
read -p "संभ्या 1 हाभल डरो: " num1
read -p "સંખ્યા 2 દાખલ કરો: " num2
read -p "સંખ્યા 3 દાખલ કરો: " num3
read -p "સંખ્યા 4 દાખલ કરો: " num4
read -p "સંખ્યા 5 દાખલ કરો: " num5
# બાદબાકી ગણતરી
sum=$((num1 + num2 + num3 + num4 + num5))
# સરેરાશ ગણતરી
average=$((sum / 5))
# પરિણામો દર્શાવવા
echo "=========""
echo "हाभल કરેલી સંખ્યાઓ: $num1, $num2, $num3, $num4, $num5"
echo "બાદબાકી: $sum"
echo "સરેરાશ: $average"
echo "===========================
# દશાંશ ચોકસાઈ સાથે વિસ્તૃત વર્ઝન
sum_float=$(echo "$num1 + $num2 + $num3 + $num4 + $num5" | bc)
avg_float=$(echo "scale=2; $sum_float / 5" | bc)
echo "યોક્કસ સરેરાશ: $avg float"
```

Arrays ઉપયોગ કરીને વૈકલ્પિક પદ્ધતિ:

```
#!/bin/bash
# Array approach ઉપયોગ કરીને

declare -a numbers
sum=0

echo "5 સંખ્યાઓ દાખલ કરો:"
for i in {0..4}; do
    read -p "સંખ્યા $((i+1)): " numbers[i]
    sum=$((sum + numbers[i]))

done

average=$((sum / 5))

echo "સંખ્યાઓ: ${numbers[@]}"
echo "બાદબાકી: $sum"
echo "સેરેરાશ: $average"
```

સ્ક્રિપ્ટ લક્ષણો:

લક્ષણ	นย์่า
Input Validation	Numeric input ચેક કરવો
યુઝર-ફ્રેન્ડલી આઉટપુટ	સ્પષ્ટ ફોર્મેટિંગ
Array ઉપયોગ	બહુવિધ વેલ્યુઝ સ્ટોર કરવી
અંકગણિત ઓપરેશન્સ	બાદબાકી અને ભાગાકાર

Bash માં ગાણિતિક ઓપરેશન્સ:

- \$((expression)): Integer arithmetic
- bc: Floating point भारे calculator
- expr: Expression evaluation

મેમરી ટ્રીક: "RSAR" - Read (ઇનપુટ), Sum (ઉમેરવું), Average (ભાગાકાર), Result (પરિણામ)