

厦门大学《大学物理B(上)》课程 期末试卷 (A 卷) 参考答案

(考试时间: 2018 年 6 月)

- 一、**选择题:** 本题共 10 小题,每小题 2 分,共 20 分。请将每题答案写在答题纸的对应位置。每小题给出 的四个选项中只有一个选项正确。错选、多选或未选的得0分。
- 1. 根据天体物理学的观测和推算,宇宙正在膨胀,太空中的天体都离开我们的星球而去。假定在地球上观 察到一颗脉冲星(看来发出周期性脉冲无线电波的星)的脉冲周期为 0.5s,且这颗星正以运行速度 0.8c离我们而去,那么这颗星的固有脉冲周期应是:(
- A. 0.10s
- B. 0.30s
- C. 0.50sD. 0.83s

答案: B

- 2. 粒子的动能等于它本身的静止能量,这时该粒子的速度为
- A. $\frac{\sqrt{3}}{2}c$
- B. $\frac{3}{4}c$ C. $\frac{1}{2}c$
- D. $\frac{4}{5}c$

答案: A

- 3. 某种气体系统中,分子速率分布函数为 f(v),则此系统中,速率在 $v_1 \sim v_2$ 区间内的分子平均速率为()
 - A. $\int_{v}^{v_2} v f(v) dv$

- B. $v \int_{v_1}^{v_2} v f(v) dv$
- C. $\int_{v_1}^{v_2} v f(v) dv / \int_{v_1}^{v_2} f(v) dv$ D. $\int_{v_1}^{v_2} f(v) dv / \int_{0}^{\infty} f(v) dv$

答案: C

- 4. 体积为 30L 的容器内装有 1.5×10^{24} 个氢气分子,又通入 2mol 氦气,混合气体的温度为 27℃,若系统 可视为理想气体,则容器壁受到的压强为()。
 - A. 2.04atm

B. 1.73 atm

C. 3.68atm

D. 4.36 atm

答案: C

5. 体积为 50L 的容器内装有某种理想气体, 若压强为 1atm 时内能为 $7.6 \times 10^3 J$, 则它可能是以下哪种气体? ()

C. 甲烷	D. 一氧化碳				
答案: A					
6. 一定量的理想气体,体积不变,温度升高时	力,分子的平均碰撞次数 Z 和平均自由程λ的变化情况为()。				
A. Z不变, λ增大	B. Z 增大, λ 不变				
C. Z增大, λ增大	D. Z不变, λ 不变				
答案: B					
7. "理想气体和单一热源接触作等温膨胀时,	吸收的热量可以全部用作对外做功。"对此说法,有如下几种				
评论,哪种是正确的?答()					
A. 不违反热力学第一定律,但违反热力	力学第二定律				
B. 不违反热力学第二定律, 但违反热力学第一定律					
C.不违反热力学第一定律,也不违反热力学第二定律					
D.违反热力学第一定律,也违反热力学	第二定律				
答案: C					
0 对于理相复体 下列哪么过程诉吗你的为	··量,内能的增量和对外做的功均为正值? ()				
A. 等体增压过程	B. 等压膨胀过程				
C. 绝热膨胀过程	D. 等温膨胀过程				
答案: B					
9. 对于室温下的双原子分子理想气体,在等	压膨胀情况下,系统对外所做的功与从外界吸收的热量之比等				
于()					
A. 1/3	B. 1/4				
C. 2/5	D.2/7				
答案: D					
10. 用下列两种方法: (1) 使高温热源的温	度 T_1 升高 ΔT ;(2)使低温热源的温度 T_2 降低同样的 ΔT 值,				
分别可使卡诺循环的效率升高 $\Delta\eta_1$ 和 $\Delta\eta_2$,	两者相比结果为()				

B. 氮气

A. 氩气

A. $\Delta \eta_1 > \Delta \eta_2$	B. $\Delta \eta_2 > \Delta \eta_1$	C. $\Delta \eta_1 = \Delta \eta_2$	D. 无法确定	
答案: B				
一、 填空颙 • 本大题	[共 10 空,每空 2 分	· 共 20 分。请将每题	[答案写在答题纸的对应位置	⁷ 。错填、不填均
无分。	3/(10 ±) 4±2/3	,) (20) 1 ° 11 11 4/6		Lo MISAN FORM
1. 一列高速火车以逐	速度 u 驶过火车站时,	固定在站台上的两只	以机械手在车厢上同时划出两	5个痕迹,静止在
站台上的观察者同时	测出两痕迹之间的距	E离为 <i>l</i> ,则在车厢上	的观察者应测出这两个痕迹	之间的距离为:
·				
答案: $\frac{l}{\sqrt{1-u^2/c^2}}$				
2. 狭义相对论的两条	《基本原理,除了光速	5与光源及运动状态无	关外,还包括	c
答案:物理规律	在一切惯性系中具有	相同的形式。		
3.若一定量的理想气	体经历一个等温膨胀	注过程,气体系统的熵	将(填入	.:增加、减少或
不变)。				
答案:增加。				
4. 在一个具有活塞的	的容器中盛有一定的 I	理想气体,初始压强为	y P。。如果压缩气体并对它加	口热,使它的温度
从 27 ℃ 升到 177 ℃	,体积减少三分之一	·,则此时气体压强 P	=,这时气体	分子的平均平动
动能变化	o			
答案: $\frac{9}{4}P_o$, 3.11×1	$10^{-21}J$			
6. 热力学第二定律的	为开尔文表述:			
克劳修斯表述:				,
答案: 不可能制成过	这样一种热机,它只点	人单一热源吸取热量,	并将其完全转变为有用的功	。]而不产生其他影

B(上)期末 3/9 【B1001201806 答案】

响。

不可能把热从低温物体传到高温物体而不产生其他影响(或热量不能自发地从低温热源向高温热源传递)。

7. 测得某单原子分子理想气体在某热力学过程中的摩尔热容为 $C_m=3R$ (R 为摩尔气体常数),设该热力学过程可用关于压强 p 和体积V 的过程方程 $pV^n=C$ (常数)来描述,则可求得 n=_____。

答案:
$$n = \frac{1}{3}$$

8. 已知一理想气体循环过程如图。,其中 ac 为绝热线,ab 是等容线,bc 是等压 线。设 $a \rightarrow b$ 和 $b \rightarrow c$ 过程,气体吸放热的绝对值分别为 Q_1 和 Q_2 ,则绝对值大的是_____。

答案: Q₁

9. 一个做可逆卡诺循环的热机,其效率为 η ,它的逆过程的致冷机致冷系数 e,则 η 与 e 的关系为

答案:
$$\eta = \frac{1}{e+1}$$
或 $e = \frac{1}{\eta} - 1$

- 三、计算题:本大题共5小题,每小题12分,共60分。请在答题纸上按题序作答,并标明题号。
- 1. 两相同粒子 A、B,静止质量均为 m_0 ,分别以速度 4c/5 和 3c/5 相向运动,两粒子碰撞后粘合在一起组成一复合粒子。求复合粒子的速度和动能。

解:

$$M = \frac{m_0}{\sqrt{1 - 0.8^2}} + \frac{m_0}{\sqrt{1 - 0.6^2}} = \frac{35}{12}m_0$$

$$P = \frac{m_0 \cdot 0.8c}{\sqrt{1 - 0.8^2}} - \frac{m_0 \cdot 0.6c}{\sqrt{1 - 0.6^2}} = \frac{7}{12} m_0 c$$
 3 \(\frac{1}{2}\)

$$P = MV \Rightarrow V = \frac{P}{M} = \frac{1}{5}c$$
 2 \(\frac{1}{2}\)

$$M_0 = M\sqrt{1 - V^2/c^2} = \frac{7\sqrt{6}}{6}m_0$$
 2 $\%$

$$E_k = Mc^2 - M_0c^2 = \frac{35 - 14\sqrt{6}}{12}m_0c^2 \qquad 2 \text{ }\%$$

2. 设有 N 个气体分子, 其速率分布函数为

$$f(v) = \begin{cases} av(v_0 - v) & 0 \le v \le v_0 \\ 0 & v_0 \le v \end{cases}$$

求: (1) 常数 a; (2) 最可几速率,平均速率和方均根速率; (3) 速率介于 $0\sim v_0/3$ 之间的分子数; (4) 速率介于 $0\sim v_0/3$ 之间的气体分子的平均速率。

解:

(1) 3分

气体分子的分布曲线如图;

由归一化条件得: $\int_0^\infty f(v)dv = 1 \to \int_0^\infty av(v_0 - v)dv = \frac{a}{6}v_0^3 = 1 \to a = \frac{6}{v_0^3}$

(2) 3分

最可几速率:
$$\frac{df(v)}{dv} | v_p = a(v_o - 2v) | v_p = 0 \rightarrow v_p = \frac{v_o}{2}$$

平均速率:
$$\bar{v} = \int_0^\infty v f(v) dv = \int_0^{v_0} \frac{6}{v_0^3} v^2 (v_0 - v) dv \rightarrow \bar{v} = \frac{v_0}{2}$$

方均根速率:
$$\overline{v^2} = \int_0^\infty v^2 f(v) dv = \int_0^{v_0} \frac{6}{v_0^3} v^3 (v_0 - v) dv \rightarrow \sqrt{\overline{v^2}} = \sqrt{\frac{3}{10}} v_0$$

(3) 3分

速率介于 $0\sim\nu_0/3$ 之间的分子数为:

$$\Delta N = \int dN = \int_0^{\frac{v_o}{3}} N f(v) dv = \int_0^{\frac{v_o}{3}} N \frac{6}{v_o^3} v(v_o - v) dv = \frac{7N}{27} \quad (3 \%)$$

(4) 3分

速率介于 $0\sim v_0/3$ 之间的气体分子的平均速率为:

$$\bar{v}_{0 \sim v_{o/3}} = \frac{\int_{0}^{\frac{v_{o}}{3}} v dN}{\int_{0}^{\frac{v_{o}}{3}} dN} = \frac{\int_{0}^{\frac{v_{o}}{3}} N \frac{6}{v_{o}^{3}} v^{2}(v_{o} - v) dv}{7N/27} = \frac{3v_{o}}{14} \quad (3 \%)$$

3. 如图,封闭气缸内部被导热的不漏气的可移动活塞隔成两部分。初始时,活塞位于气缸中间位置,气缸两侧的长度均为L。初始时固定活塞位置,两侧分别充以 T_1 , p_1 和 T_2 , p_2 的同种气体。试求松开活塞后,气体再次达到平衡时活塞两侧的长度比 L_1/L_2 。

参考解答:

设活塞横截面积为 S。当气缸两部分处于初始平衡状态时,状态方程为

$$p_1 LS = \frac{m_1}{M} RT_1$$

$$p_2 LS = \frac{m_2}{M} RT_2$$

①②式左右分别相除,得

$$\frac{p_1}{p_2} = \frac{m_1 T_1}{m_2 T_2}$$
 3 β

松开活塞后, 体再次达到平衡时

力学平衡: $p'_1 = p'_2$

热学平衡:
$$T'_1 = T'_2$$
 3分

状态方程为

$$p'_1 L_1 S = \frac{m_1}{M} R T'_1$$

$$p'_2 L_2 S = \frac{m_2}{M} R T'_2$$
 3 分

⑥⑦式左右分别相除,得

$$\frac{p_{1}L_{1}}{p_{2}L_{2}} = \frac{m_{1}T_{1}}{m_{2}T_{2}}$$
3 \(\frac{\gamma}{2}\)

代入③45得

$$\frac{L_1}{L_2} = \frac{m_1}{m_2} = \frac{p_1 T_2}{p_2 T_1}$$
 3 \(\frac{\(\frac{1}{2}\)}{\(\frac{1}{2}\)}\)

- 4. 一宇宙飞船沿x方向离开地球(S 系,原点地心),以速率u=0.80c 航行,宇航员发现在自己参考系(S' 系,原点飞船)中,在时刻 $t'=-6.0\times10^8s$, $x'=1.8\times10^{17}m$, $y'=1.2\times10^{17}m$,z'=0 处有一超新星爆发,他把这一观测通过无线电发回地球。假定飞船飞过地球时两地钟同时拨为零。
 - (1) 在地球系中这一超新星爆发事件时空坐标如何?

- (2) 飞船系中何时刻超新星爆发的光到达飞船?
- (3)假设宇航员在第一时间看到超新星爆发并同时向地球发报,地球上观察者收到报告是地球上的什么时刻?
- (4) 地球上观察者能够看到超新星爆发是地球上的什么时刻?

解: (1) 4分

由洛伦兹变换,地球系中超新星爆发的时空坐标为:

$$\begin{cases} x = \frac{x' + vt'}{\sqrt{1 - v^2 / c^2}} = \frac{1.8 \times 10^{17} m + 0.8c \times (-6.0 \times 10^8 s)}{\sqrt{1 - 0.8^2}} = 6.0 \times 10^{16} m \\ y = y' = 1.2 \times 10^{17} m \\ z = z' = 0m \\ t = \frac{t' + vx' / c^2}{\sqrt{1 - v^2 / c^2}} = \frac{-6.0 \times 10^8 s + 0.8c \times 1.8 \times 10^{17} m / c^2}{\sqrt{1 - 0.8^2}} = -2 \times 10^8 s \end{cases}$$

(2) 2分

飞船系中,光到达飞船时间为:

$$t_1' = t' + \sqrt{x'^2 + y'^2} / c = 1.21 \times 10^8 s$$

(3) 3分

地球上看,光到达飞船时间是:

$$t_1 = \frac{t_1' + vx_1'/c^2}{\sqrt{1 - v^2/c^2}} = \frac{1.21 \times 10^8 \, s + 0.8c \times 0m/c^2}{\sqrt{1 - 0.8^2}} = 2.01 \times 10^8 \, s$$

收到报告时间:

$$t_2 = t_1 + x_1'/c = 2.01 \times 10^8 \, s + 0.8c \times 2.01 \times 10^8 \, s/c = 3.62 \times 10^8 \, s$$

(4) 3分

地球系中,光到达地球时间为:

$$t_3 = t + \sqrt{x^2 + y^2} / c = 2.47 \times 10^8 s$$

5. 1mol 双原子分子理想气体作如图 ABCA 热机循环。已知理想气体初始状态 A 为标准状态, $A \to B$ 为等温过程, $B \to C$ 为延长线过原点 O 的直线过程, $C \to A$ 为绝热过程。若 B 状态体积为 A 状态体积的 2 倍,即 $V_B = 2V_0$ 。求:

- (1) $A \rightarrow B$, $B \rightarrow C$, $C \rightarrow A$ 各过程对外做功分别为多少?
- (2) $A \rightarrow B$ 和 $B \rightarrow C$ 过程传递的热量以及循环 ABCA 的效率 n?

解:

(1) 6分

设 A 的状态参量为 (p_0,V_0,T_0) 。 $A \rightarrow B$ 为等温过程,由理想气体状态方程得

$$p_B V_B = p_0 V_0 \Rightarrow p_B = \frac{p_0}{2}, V_B = 2V_0, T_B = T_0$$
 (1)

$$B \to C$$
 为直线过程,有
$$\begin{cases} p_B = kV_B \\ p_C = kV_C \end{cases}$$
 ②

 $C \rightarrow A$ 为绝热过程,有 $p_c V_c^{\ \gamma} = p_0 V_0^{\ \gamma}$ 3

由①②③可解得
$$k = \frac{p_0}{4V_0}$$
 , $V_C = 4^{1/(\gamma+1)}V_0 \approx 1.78V_0$, $p_C = 4^{1/(\gamma+1)}/4p_0 \approx 0.445\,p_0$, $T_C = \frac{p_cV_c}{p_0v_0}T_0 \approx 0.792T_0$ 。

[其中双原子分子理想气体
$$\gamma = (\frac{5}{2} + 1)/(\frac{5}{2}) = 1.4$$
]

固 B 的状态参量为 $(\frac{p_0}{2}, 2V_0, T_0)$, C 的状态参量为 $(0.445\,p_0, 1.78V_0, 0.792T_0)$

 $A \rightarrow B$ 等温过程做功:

$$W_{A\to B} = \int_{V_0}^{2V_0} p dV = RT_0 \int_{V_0}^{2V_0} \frac{dV}{V} = RT_0 \ln 2 \approx 1572 \text{ J}$$

 $B \to C$ 直线过程做功:

$$W_{B\to C} = \frac{1}{2} (p_B + p_C) (V_C - V_B) = \frac{1}{2} k (V_C^2 - V_B^2) \simeq -0.104 RT_0 \simeq -236 \text{ J}$$

 $C \to A$ 绝热过程做功:

$$W_{C \to A} = -\Delta E_{C \to A} = -\frac{5}{2}R(T_0 - T_C) \simeq -0.52RT_0 \simeq -1180 \text{ J}$$

或:
$$W_{C\to A} = \frac{p_C V_C - p_0 V_0}{\gamma - 1} \approx -0.52 p_0 V_0 \approx -1180 \text{ J}$$

(2) 6分

 $A \to B$ 等温过程 $\Delta E_{A \to B} = 0$,由热力学第一定律

$$Q_{A\to B} = \Delta E_{A\to B} + W_{A\to B} = W_{A\to B} \simeq 1572 \text{ J}$$
 (吸热)

$$B \to C$$
 直线过程 $\Delta E_{B \to C} = \frac{5}{2} R (T_C - T_B) \approx -0.52 RT_0 \approx -1180 J$

$$Q_{B\to C} = \Delta E_{B\to C} + W_{B\to C} \approx -1180 - 236 = -1416 \text{ J}$$
 (放热)

循环
$$ABCA$$
 的效率 $\eta = 1 - \frac{|Q_{B \to C}|}{Q_{A \to B}} \approx 9.9\%$

或
$$\eta = \frac{W_{A \to B} + W_{B \to C} + W_{C \to A}}{Q_{A \to B}} \approx 9.9\%$$