Three Phase Systems

$$v_a(t) = V_m \sin(\omega t + \alpha) \quad v_b(t) = V_m \sin(\omega t + \alpha - 120^\circ) \quad v_c(t) = V_m \sin(\omega t + \alpha - 240^\circ)$$
V

$$v_a(t) = V_m \sin(\omega t + \alpha)$$
 $v_b(t) = V_m \sin(\omega t + \alpha - 120^\circ)$ $v_c(t) = V_m \sin(\omega t + \alpha - 240^\circ)$ V

Balanced sets of three phase voltages.

$$v_a(t) = V_m \sin(\omega t + \alpha)$$
 $v_b(t) = V_m \sin(\omega t + \alpha - 120^\circ)$ $v_c(t) = V_m \sin(\omega t + \alpha - 240^\circ)$ V

 N_a , N_b and N_c are three linear element network.

 $i_a(t)$

 $i_b(t)$

$$v_a(t) = V_m \sin(\omega t + \alpha) \quad v_b(t) = V_m \sin(\omega t + \alpha - 120^\circ) \quad v_c(t) = V_m \sin(\omega t + \alpha - 240^\circ)$$
V

 N_a , N_b and N_c are three linear element network.

If they are identical, then load is **balanced** and currents are given as:

 $i_{c}(t)$

$$v_a(t) = V_m \sin(\omega t + \alpha) \quad v_b(t) = V_m \sin(\omega t + \alpha - 120^\circ) \quad v_c(t) = V_m \sin(\omega t + \alpha - 240^\circ)$$
V

 N_a , N_b and N_c are three linear element network.

If they are identical, then load is **balanced** and currents are given as:

$$i_a(t) = I_m \sin(\omega t + \alpha - \phi) \quad i_b(t) = I_m \sin(\omega t + \alpha - \phi - 120^\circ) \quad i_c(t) = I_m \sin(\omega t + \alpha - \phi - 240^\circ)$$
A

Balanced system in phasor domain

Balanced system in phasor domain

Balanced system in phasor domain

If
$$Z_a = Z_b = Z_c$$
 and $\phi = \angle Z_a = \angle Z_b = \angle Z_c$, the currents are given as.

$$\bar{I}_{a} = \frac{\bar{V}_{a}}{Z_{a}} = \frac{I_{m}}{\sqrt{2}} \angle (\alpha - \phi)^{\circ} \quad \bar{I}_{b} = \frac{\bar{V}_{b}}{Z_{b}} = \frac{I_{m}}{\sqrt{2}} \angle (\alpha - 120 - \phi)^{\circ} \quad \bar{I}_{c} = \frac{\bar{V}_{c}}{Z_{c}} = \frac{I_{m}}{\sqrt{2}} \angle (\alpha - 240 - \phi)^{\circ} \quad \bar{I}_{c} = \frac{\bar{V}_{c}}{Z_{c}} = \frac{I_{m}}{\sqrt{2}} \angle (\alpha - 240 - \phi)^{\circ} \quad \bar{I}_{c} = \frac{\bar{V}_{c}}{Z_{c}} = \frac{I_{m}}{\sqrt{2}} \angle (\alpha - 240 - \phi)^{\circ} \quad \bar{I}_{c} = \frac{\bar{V}_{c}}{Z_{c}} = \frac{I_{m}}{\sqrt{2}} \angle (\alpha - 240 - \phi)^{\circ} \quad \bar{I}_{c} = \frac{\bar{V}_{c}}{Z_{c}} = \frac{I_{m}}{\sqrt{2}} \angle (\alpha - 240 - \phi)^{\circ} \quad \bar{I}_{c} = \frac{\bar{V}_{c}}{Z_{c}} = \frac{I_{m}}{\sqrt{2}} \angle (\alpha - 240 - \phi)^{\circ} \quad \bar{I}_{c} = \frac{\bar{V}_{c}}{Z_{c}} = \frac{I_{m}}{\sqrt{2}} \angle (\alpha - 240 - \phi)^{\circ} \quad \bar{I}_{c} = \frac{\bar{V}_{c}}{Z_{c}} = \frac{\bar{V}_{c}}{\sqrt{2}} \angle (\alpha - 240 - \phi)^{\circ} \quad \bar{I}_{c} = \frac{\bar{V}_{c}}{Z_{c}} = \frac{\bar{V}_{c}}{\sqrt{2}} \angle (\alpha - 240 - \phi)^{\circ} \quad \bar{I}_{c} = \frac{\bar{V}_{c}}{Z_{c}} = \frac{\bar{V}_{c}}{\sqrt{2}} \angle (\alpha - 240 - \phi)^{\circ} \quad \bar{I}_{c} = \frac{\bar{V}_{c}}{Z_{c}} = \frac{\bar{V}_{c}}{\sqrt{2}} \angle (\alpha - 240 - \phi)^{\circ} \quad \bar{I}_{c} = \frac{\bar{V}_{c}}{Z_{c}} = \frac{\bar{V}_{c}}{\sqrt{2}} \angle (\alpha - 240 - \phi)^{\circ} \quad \bar{I}_{c} = \frac{\bar{V}_{c}}{Z_{c}} = \frac{\bar{V}_{c}}{\sqrt{2}} \angle (\alpha - 240 - \phi)^{\circ} \quad \bar{I}_{c} = \frac{\bar{V}_{c}}{Z_{c}} = \frac{\bar{V}_{c}}{\sqrt{2}} \angle (\alpha - 240 - \phi)^{\circ} \quad \bar{I}_{c} = \frac{\bar{V}_{c}}{Z_{c}} = \frac{\bar{V}_{c}}{\sqrt{2}} \angle (\alpha - 240 - \phi)^{\circ} \quad \bar{I}_{c} = \frac{\bar{V}_{c}}{Z_{c}} = \frac{\bar{V}_{c}}{\sqrt{2}} \angle (\alpha - 240 - \phi)^{\circ} \quad \bar{I}_{c} = \frac{\bar{V}_{c}}{Z_{c}} = \frac{\bar{V}_{c}}{\sqrt{2}} \angle (\alpha - 240 - \phi)^{\circ} \quad \bar{I}_{c} = \frac{\bar{V}_{c}}{Z_{c}} = \frac{\bar{V}_{c}}{\sqrt{2}} \angle (\alpha - 240 - \phi)^{\circ} \quad \bar{I}_{c} = \frac{\bar{V}_{c}}{Z_{c}} = \frac{\bar{V}_{c}}{\sqrt{2}} \angle (\alpha - 240 - \phi)^{\circ} \quad \bar{I}_{c} = \frac{\bar{V}_{c}}{Z_{c}} = \frac{\bar{V}_{c}}{\sqrt{2}} \angle (\alpha - 240 - \phi)^{\circ} \quad \bar{I}_{c} = \frac{\bar{V}_{c}}{Z_{c}} =$$

Conditions for three-phase system to be **balanced**:

Conditions for three-phase system to be **balanced**:

- 1. The **input voltages** should be balanced.
 - $\bullet |\bar{V}_a| = |\bar{V}_b| = |\bar{V}_c|$
 - Voltages are 120° apart from each other.

Conditions for three-phase system to be **balanced**:

- 1. The **input voltages** should be balanced.
 - $\bullet |\bar{V}_a| = |\bar{V}_b| = |\bar{V}_c|$
 - Voltages are 120° apart from each other.
- 2. The **linear network elements** should be identical.

i.e.
$$(Z_a = Z_b = Z_c)$$
.

Conditions for three-phase system to be **balanced**:

- 1. The **input voltages** should be balanced.
 - $\bullet |\bar{V}_a| = |\bar{V}_b| = |\bar{V}_c|$
 - Voltages are 120° apart from each other.
- 2. The **linear network elements** should be identical.

i.e.
$$(Z_a = Z_b = Z_c)$$
.

Note:

The convention used for voltage phasor: \bar{V}_b lags \bar{V}_a and \bar{V}_c lags \bar{V}_b .

Consider a three single-phase balanced system with a common neutral (N).

System in phasor domain (balanced) case:

System in phasor domain (balanced) case:

System in phasor domain (balanced) case:

System in phasor domain (unbalanced) case:

System in phasor domain (unbalanced) case:

In time-domain:

$$p(t) = v_a(t) \times i_a(t) + v_b(t) \times i_b(t) + v_c(t) \times i_c(t)$$

In time-domain:

$$p(t) = v_a(t) \times i_a(t) + v_b(t) \times i_b(t) + v_c(t) \times i_c(t)$$

$$= V_m \sin(\omega t + \alpha) \times I_m \sin(\omega t + \alpha - \phi) +$$

$$V_m \sin(\omega t + \alpha - 120^\circ) \times I_m \sin(\omega t + \alpha - 120^\circ - \phi) +$$

$$V_m \sin(\omega t + \alpha - 240^\circ) \times I_m \sin(\omega t + \alpha - 240^\circ - \phi)$$

In time-domain:

$$p(t) = v_a(t) \times i_a(t) + v_b(t) \times i_b(t) + v_c(t) \times i_c(t)$$

$$= V_m \sin(\omega t + \alpha) \times I_m \sin(\omega t + \alpha - \phi) + V_m \sin(\omega t + \alpha - 120^\circ) \times I_m \sin(\omega t + \alpha - 120^\circ - \phi) + V_m \sin(\omega t + \alpha - 240^\circ) \times I_m \sin(\omega t + \alpha - 240^\circ - \phi)$$

$$= 3 \times \frac{V_m I_m}{2} \cos \phi$$

$$= 3 \times V_{rms} I_{rms} \cos \phi$$

In time-domain:

$$p(t) = v_a(t) \times i_a(t) + v_b(t) \times i_b(t) + v_c(t) \times i_c(t)$$

$$= V_m \sin(\omega t + \alpha) \times I_m \sin(\omega t + \alpha - \phi) + V_m \sin(\omega t + \alpha - 120^\circ) \times I_m \sin(\omega t + \alpha - 120^\circ - \phi) + V_m \sin(\omega t + \alpha - 240^\circ) \times I_m \sin(\omega t + \alpha - 240^\circ - \phi)$$

$$= 3 \times \frac{V_m I_m}{2} \cos \phi$$

$$= 3 \times V_{rms} I_{rms} \cos \phi$$

Note: V_{rms} :" phase-to neutral rms voltage".

In time-domain:

$$p(t) = v_a(t) \times i_a(t) + v_b(t) \times i_b(t) + v_c(t) \times i_c(t)$$

$$= V_m \sin(\omega t + \alpha) \times I_m \sin(\omega t + \alpha - \phi) + V_m \sin(\omega t + \alpha - 120^\circ) \times I_m \sin(\omega t + \alpha - 120^\circ - \phi) + V_m \sin(\omega t + \alpha - 240^\circ) \times I_m \sin(\omega t + \alpha - 240^\circ - \phi)$$

$$= 3 \times \frac{V_m I_m}{2} \cos \phi$$

$$= 3 \times V_{rms} I_{rms} \cos \phi$$

Note: V_{rms} :" phase-to neutral rms voltage".

In phasor domain: $P = 3 * Real\{\bar{V}_a \times \bar{I}_a^*\}$ (in W)

Balanced n-phase systems

Phase voltages:

$$v_k(t) = V_m \sin\left(\omega t + \alpha - \frac{2\pi}{n}(k-1)\right)$$

Phase currents:

$$i_k(t) = I_m \sin\left(\omega t + \alpha - \phi - \frac{2\pi}{n}(k-1)\right)$$
 where, $k = 1 \cdots n$

Sum of phase voltages: $\sum_{k=1}^{n} v_k(t) = 0$ for $k \geq 2$.

Sum of phase currents: $\sum_{k=1}^{n} i_k(t) = 0$ for $k \geq 2$.

 $p(t) = \sum_{k=1}^{n} v_k(t)i_k(t)$ = constant for $k \ge 3$.

Thus, p(t) is time-independent except for a two-phase (180° phase shift) system.

Mechanical equivalent for three phase system

 \bar{V}_a , \bar{V}_a , \bar{V}_a : phase voltages.

 \bar{V}_a , \bar{V}_a , \bar{V}_a : phase voltages.

 $|\bar{V}_{ab}|$: line to line voltage.

 \bar{V}_a , \bar{V}_a , \bar{V}_a : phase voltages.

 $|\bar{V}_{ab}|$: line to line voltage.

$$\bar{V}_{ab} = \bar{V}_a - \bar{V}_b = V_{rms} \angle \alpha - V_{rms} \angle (\alpha - 120^\circ)$$

 \bar{V}_a , \bar{V}_a , \bar{V}_a : phase voltages.

 $|\bar{V}_{ab}|$: line to line voltage.

$$\bar{V}_{ab} = \bar{V}_a - \bar{V}_b = V_{rms} \angle \alpha - V_{rms} \angle (\alpha - 120^\circ)$$

$$\bar{V}_{ab} = \sqrt{3} \times V_{rms} \angle (\alpha + 30)^{\circ} \text{ V}.$$

Load configurations ...

Star connected three wire system

Load configurations ...

Star connected four wire system

Load configurations ...

Delta connected three wire system

