

1 Allgemeines

Dreiecksungleichung $|x+y| \le |x| + |y|$ Cauchy-Schwarz-Ungleichung: $|\langle x, y \rangle| \le ||x|| \cdot ||y||$ K steht für ℝ und ℂ

2 Matrizen

Die Matrix $A = (a_{ij}) \in \mathbb{K}^{m \times n}$ hat m Zeilen mit Index i und nSpalten mit Index i.

2.1 Allgemeine Rechenregeln

Merke: Zeile vor Spalte! (Multiplikation, Indexreihenfolge, etc.)

$$\begin{array}{ll} \text{1) } A+0=A & \text{2) } 1\cdot A=A \\ \text{3) } A+B=B+A & \text{4) } A\cdot B\neq B\cdot A \text{ (im Allg.)} \\ \text{5) } (A+B)+C=A+(B+C) & \text{6) } \lambda(A+B)=\lambda A+\lambda B \\ \text{Multiplikation von } A\in \mathbb{K}^{m\times r} \text{ und } B\in \mathbb{K}^{r\times n} \cdot AB\in \mathbb{K}^{m\times n} \end{array}$$

2.2 Elementare Zeilenumformungen (EZF) (gilt äquiv. für Spalten)

 $A \in \mathbb{K}^{m imes n}$ hat m Zeilen $z_i \in \mathbb{K}^n$

- Vertauschen von Zeilen
- Multiplikation einer Zeile mit $\lambda \neq 0$
- Addition des λ -fachen der Zeile z_i zur Zeile z_i

2.3 Transponieren

$$\begin{array}{ll} A = (a_{ij}) \ \in \mathbb{K}^{m \times n} \ \text{gilt:} \ A^\top = (a_{ji}) \ \in \mathbb{K}^{n \times m} \\ \textbf{Regeln:} \\ (A + B)^\top = A^\top + B^\top \qquad (A \cdot B)^\top = B^\top \cdot A^\top \\ (\lambda A)^\top = \lambda A^\top \qquad (A^\top)^\top = A \end{array}$$

 $A \in \mathbb{K}^{n \times n}$ ist symmetrisch, falls $A = A^{\top}$ (\Rightarrow diagbar) $A \in \mathbb{K}^{n \times n}$ ist schiefsymmetrisch, falls A = -A $A \in \mathbb{K}^{n \times n}$ ist orthogonal (Spalten-/Zeilenvektoren=ONB), falls: $AA^{\top} = E_n \Leftrightarrow A^{\top} = A^{-1} \Leftrightarrow \det A = \pm 1$ $A \in \mathbb{C}^{n \times n}$ ist hermitesch, falls $A = \overline{A}^{\top}$ (kmplx. konj. u. transp.)

2.4 Inverse Matrix von $A \in \mathbb{K}^{n \times n}$

Für die inverse Matrix
$$A^{-1}$$
 von A gilt: $A^{-1}A = E_n$ $(A^{-1})^{-1} = A$ $(AB)^{-1} = B^{-1}A^{-1}$ $(A^\top)^{-1} = (A^{-1})^\top$

 $A \in \mathbb{K}^{n \times n}$ ist invertierbar, falls: $\det(A) \neq 0 \quad \lor \quad rg(A) = n$

$$\begin{array}{l} \text{Berechnen von } A^{-1} \text{ nach Gauß:} \\ AA^{-1} = E_n & \Rightarrow (A|E_n) \stackrel{EZF}{\longrightarrow} (E_n|A^{-1}) \\ \text{2x2-Matrix:} \begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} = \frac{1}{ad-bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \end{array}$$

2.5 Rang einer Matrix $A \in \mathbb{K}^{m \times n}$

(N0-Zeilen = Nicht-Null-Zeilen)

Bringe A auf ZSF

Rang (Zeilrang) rg(A): Anzahl N0-Zeilen Zeilenraum Z_A : Erzeugnis der Zeilen, Basis $(Z_A) = \{$ N0-Zeilen $\}$ $\mathsf{Kern} \colon \ker(A) = \{ x \in \mathbb{K}^n \mid Ax = 0 \}$

Dimensionsformel: rg(A) + dim(ker(A)) = n

Bringe A auf Spaltenstufenform (transponieren, ZSF)

Spaltenrang: Anzahl der NO-Spalten

 ${\it Spaltenraum}\,\,S_A \colon {\it Erzeugnis}\,\, {\it der}\,\, {\it Spalten},\, {\it Basis}(S_A) \, = \, \{\,\, {\it N0-Spalten}\,\,\}$ Bild = Spaltenraum: Erzeugnis der Spalten

2.6 Lineares Gleichungssystem LGS

Das LGS Ax=b kurz (A|b) mit $A\in\mathbb{K}^{m\times n}$, $x\in\mathbb{K}^n$, $b\in\mathbb{K}^m$ hat m Gleichungen und n Unbekannte.

Lösharkeitskriterium:

Ein LGS (A|b) ist genau dann lösbar, wenn: rg(A) = rg(A|b)Die Lösung des LGS (A|b) hat $\dim(\ker A) = n - \operatorname{rg}(A)$ frei wählbare

Das LGS hat eine Lsg. wenn $\det A \neq 0 \longrightarrow \exists A^{-1}$ Das homogene LGS: (A|0) hat stets die triviale Lösung 0Summen und Vielfache der Lösungen von (A|0) sind wieder Lösungen.

2.7 Determinante von $A \in \mathbb{K}^{n \times n}$: det(A) = |A|

$$\bullet \ \ |A| = \sum_{i=1}^n (-1)^{i+j} \cdot a_{ij} \cdot |A_{ij}| \qquad \text{ Entwicklung n. } j\text{-ter Spalte}$$

$$ullet$$
 $|A| = \sum\limits_{j=1}^n (-1)^{i+j} \cdot a_{ij} \cdot |A_{ij}|$ Entwicklung n. i -ter Zeile

$$\bullet \ \det \begin{pmatrix} A & 0 \\ C & D \end{pmatrix} = \det \begin{pmatrix} A & B \\ 0 & D \end{pmatrix} = \det(A) \cdot \det(D)$$

$$\bullet \begin{vmatrix} \lambda_1 & & * \\ & \ddots & \\ 0 & & \lambda_n \end{vmatrix} = \lambda_1 \cdot \ldots \cdot \lambda_n = \begin{vmatrix} \lambda_1 & & 0 \\ & \ddots & \\ * & & \lambda_n \end{vmatrix}$$

- $A = B \cdot C \Rightarrow |A| = |B| \cdot |C|$
- $det(A) = det(A^{\top})$
- Hat A zwei gleiche Zeilen/Spalten $\Rightarrow |A| = 0$
- $det(\lambda A) = \lambda^n det(A)$
- Ist A invertierbar, so gilt: $det(A^{-1}) = (det(A))^{-1}$
- det(AB) = det(A) det(B) = det(B) det(A) = det(BA)

Umformung Determinante

- ullet Vertauschen von Zeilen/Spalten ändert Vorzeichen von |A|
- Zeile/Spalte mit λ multiplizieren, |A| um Faktor λ größer
- ullet Addition des λ -fachen der Zeile X zur Zeile Y ändert |A| nicht

Positiv definite Matrix

$$\det(a_{11}) > 0 \wedge \det\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} > 0 \wedge \ldots \wedge \det(A) > 0$$

Vereinfachung für Spezialfall $A \in \mathbb{K}^{2 \times 2}$

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \Rightarrow \det(A) = |A| = ad - bc$$

2.8 Äquivalente Aussagen für $A \in \mathbb{K}^{n \times n}$

(Wenn eine der Aussagen gilt, gelten alle anderen)

- 1) A ist invertierbar
- 2) rg(A) = n
- 3) $\operatorname{Kern}(A) = 0$ 5) $det(A) \neq 0$

- 4) $\dim(S_A) = \dim(Z_A) = n$ 6) Zeilen/Spalten von A linear unabhängig

3 Vektoren

Ein Vektor ist ein n-Tupel reeller oder komplexer Zahlen, also ein Element aus dem \mathbb{K}^n

3.1 Skalarprodukt $\langle v, w \rangle : V \times V \to \mathbb{R}$

- 1. Linear: $\langle u, v + w \rangle = \langle u, v \rangle + \langle u, w \rangle \wedge \langle u, \lambda v \rangle = \lambda \langle u, v \rangle$
- 2. Symmetrisch: $\langle v, w \rangle = \langle w, v \rangle$
- 3. Positiv definit: $\langle v, v \rangle \geq 0$ $\langle v, v \rangle = 0 \Leftrightarrow v = 0$

Kanonisches Skalarprodukt

$$\langle v, w \rangle = v^{\top} w = v_1 w_1 + \cdots + v_n w_n$$

Skalarprodukt bzgl. sym., quadr. und positiv definiter Matrix $A \in \mathbb{K}^{n \times n}$ $\langle v, w \rangle_A = v^{\top} A w$

Skalarprodukt Polynome
$$\langle p(x), q(x) \rangle = \int\limits_0^1 p(x)q(x) \, dx$$

Norm von Vektoren
$$\|a\| = \sqrt{\langle a,a \rangle} = \sqrt[0]{a_1^2 + a_2^2 + \ldots + a_n^2}$$

Orthogonalität $\langle a,b \rangle = 0 \Leftrightarrow a \perp b$ Orthogonale Zerlegung eine Vektors v längs a:

$$v=v_a+v_{a\perp}$$
 mit $v_a=rac{\langle v,a \rangle}{\langle a,a \rangle} \cdot a$ und $v_{a\perp}=v-v_a$

Winkel
$$\cos \phi = \frac{\langle a, b \rangle}{\|a\| \|b\|}$$
 $\phi = \arccos\left(\frac{\langle a, b \rangle}{\|a\| \|b\|}\right)$

3.2 Kreuzprodukt (Vektorprodukt)

$$a \times b = \begin{pmatrix} a_2b_3 - a_3b_2 \\ a_3b_1 - a_1b_3 \\ a_1b_2 - a_2b_1 \end{pmatrix} \qquad a, b \in \mathbb{R}^3$$

 $a \times b \perp a, b$ (falls $a \times b = 0 \Leftrightarrow a, b$ linear abhängig) $a \times b = -b \times a$

 $||a \times b|| = ||a|| \cdot ||b|| \cdot \sin(\angle(a, b)) \stackrel{\frown}{=}$ Fläche des Parallelogramms Graßmann-Identität: $a \times (b \times c) \equiv b \cdot (a \cdot c) - c \cdot (a \cdot b)$

 $[a,b,c] := \langle a \times b,c \rangle = \det(a,b,c) \cong \text{Volumen des Spates}.$ $[a, b, c] > 0 \Leftrightarrow a, b, c$ bilden Rechtssystem $[a, b, c] = 0 \Leftrightarrow \{a, b, c\}$ linear abhängig

4 Vektorräume (VR)

Eine nichtleere Menge V mit zwei Verknüpfungen + und \cdot heißt K-Vektorraum über dem Körper K.

Bedingung
$$(u,v,w\in V \ \lambda,\mu\in\mathbb{R})$$

- 1. $v + w \in V$ $\lambda v \in V$ 2. u + (v + w) = (u + v) + w
- 3. $0 \in V : v + 0 = v$
- 4. $v' \in V : v + v' = 0$
- 5. v + w = w + v
- 6. $\lambda(v+w) = \lambda v + \lambda w$
- 7. $(\lambda + \mu)v = \lambda v + \mu v$
- 8. $(\lambda \mu)v = \lambda(\mu v)$
- 9. 1v = v

4.1 Untervektorraum (UVR) $U \subset V(u, v \in U \mid \lambda \in \mathbb{R})$

- 1. $U \neq \emptyset$ $(0 \in U)$
- $2. u + v \in U$
- 3. $\lambda u \in U$

4.2 Basis (Jeder VR und ieder UVR besitzt eine Basis!)

Eine Teilmenge $B \subset V$ heißt Basis von V, wenn gilt

- $\operatorname{span}(B) = V$, B erzeugt V
- B ist linear unabhängig

4.3 Dimension

 $n = \dim(V) = |B| = \mathsf{Mächtigkeit} \ \mathsf{von} \ B$ Mehr als n Vektoren aus V sind stets linear abhängig. Für jeden UVR $U \subset V$ gilt: $\dim(U) < \dim(V)$

4.4 Linearkombination

Jeder Vektor $v \in \mathbb{K}^n$ kann als Linearkombination einer Basis B = $\{b_1,\ldots,b_n\}\subset\mathbb{K}^n$ dargestellt werden

$$v = \lambda_1 b_1 + \dots + \lambda_n b_n \Rightarrow \mathsf{Gauß} \left(b_1 \ b_2 \ b_3 \mid v \
ight)$$

Linear Unabhängig: Vektoren heißen linear unabhängig, wenn aus: $\lambda_1 v_1 + \cdots + \lambda_n v_n = 0$ folgt, dass $\lambda_1 = \cdots = \lambda_n = 0$

4.5 Orthogonalität

 $B \subset V$ heißt

- Orthogonalsystem, wenn $\forall v, w \in B : v \perp w$
- \bullet Orthogonalbasis, wenn B Orthogonalsystem und Basis von V
- ullet Orthonormalsystem, wenn B Orthogonalssystem u. $\forall v \in B$:
- Orthonormalbasis(ONB), wenn B Orthonormalsystem u. Basis von

Matrix A heißt orthogonal, wenn $A^{\top}A = E_n$

- $A^{-1} = A^{\top}$
- $\det A = \pm 1$
- Spalten bilden ONB
- Zeilen bilden ONB
- ||Av|| = ||v||

Orthonormalisierungsvefahren einer Basis $\{v_1, \ldots, v_n\}$ nach Gram-

- 1. $b_1 = \frac{v_1}{\|v_1\|}$ (Vektor mit vielen 0en oder 1en)
- 2. $b_2 = \frac{c_2}{\|c_2\|}$ mit $c_2 = v_2 \langle v_2, b_1 \rangle \cdot b_1$
- 3. $b_3 = \frac{c_3}{\|c_3\|}$ mit $c_3 = v_3 \langle v_3, b_1 \rangle \cdot b_1 \langle v_3, b_2 \rangle \cdot b_2$

Orthogonale Projektion auf UVR

Gegeben: Vektorraum $V \in \mathbb{R}^n$, $v \in V$, Untervektorraum $U \subset V$

- 1. Basis von U bestimmen
- 2. Normiere Basis $\{b_1, b_2, b_3, \ldots\}$ von U
- 3. $v_{II} = \langle v, b_1 \rangle b_1 + \langle v, b_2 \rangle b_2 + \dots$
- 4. $v_{II} \perp = v v_{U}$
- 5. Abstand von v zu $U = ||v_{rr}||$

Alternative Methode

- 1. Basis $\{b_1, \ldots, b_r\}$ von U bestimmen
- 2. Setze $A = (b_1 \ b_2 \ \dots \ b_r) \in \mathbb{R}^{n \times r}$
- 3. Löse das LGS $A^{\top}Ax = A^{\top}v$ und erhalte den Lösungsvektor $x = (\lambda_1, \dots, \lambda_r)$
- 4. $v_{II} = \lambda_1 b_1 + \cdots + \lambda_r b_r$

5 Norm

Eine Abbildung $N:V
ightarrow \mathbb{R}$ eines reellen oder komplexen Vektorraums V heißt Norm auf V, falls $\forall v, w \in V$ und $\forall \lambda \in \mathbb{R}$ gilt:

- 1. N(v) > 0 und $N(v) = 0 \Leftrightarrow v = 0$
- 2. $N(\lambda v) = |\lambda| N(v)$
- 3. $N(v+w) \leq N(v) + N(w)$ (Dreiecksungleichung)

5.1 Vektornorm

Allgemeine l-Norm N_l eines Vektors $v = (v_1, \ldots, v_n) \in \mathbb{R}^n$

$$N_l(v) = \left(\sum_{i=1}^n |v_i|^l\right)^{\frac{1}{l}}$$

- $N_1(v) = \sum_{i=1}^{n} |v_i|$ 1-Norm (l^1 -Norm)

ullet $N_2(v) = \sqrt{\sum_{i=1}^n v_i^2}$ euklidische Norm $(l^2\text{-Norm})$ Maximumsnorm $(l^{\infty}$ -Norm)

• $N_{\infty}(v) = \max\{|v_i|\}$

Vektoren aus \mathbb{R}^n mit der Länge 1 bzgl. der Normen N_1 , N_2 und N_∞ Frobeniusnorm der Matrix $V=\mathbb{R}^{m\times n}$

$$N: \mathbb{R}^{m \times n} \to \mathbb{R} \text{ mit } N(A) = \sqrt{\sum_{i=1}^m \sum_{j=1}^n a_{ij}^2}$$

5.2 Induzierte Matrixnorm auf $\mathbb{R}^{n \times n}$

Eigenschaften:

 $\bullet \;$ verträglich mit Vektornorm: $\|Av\|_V = \|A\| \, \|v\|_V$

 \bullet submultiplikativ: $\|AB\| \le \|A\| \|B\|$

• $||E_n|| = 1$

 $\bullet \ |\lambda| < \|A\|$ für jeden Eigenwert λ von A

• $||A|| = 0 \Leftrightarrow A = 0$

Definition: Jede Vektornorm $\|ullet\|_V$ des \mathbb{R}^n definiert eine Matrixnorm $\|ullet\|$ auf $\mathbb{R}^{n \times n}$

$$||A|| = \sup_{\|v\|_V = 1} ||Av||_V$$

Wichtige induzierte Matrixnormen auf $A=(a_{ij})\in\mathbb{R}^{n\times n}$

• Die **Spaltensummennorm** induziert durch die l¹-Norm

$$||A||_1 = \max_{i=1,\dots,n} \{|a_{1i}| + \dots + |a_{ni}|\}$$

ist die betragsmäßig maximale Spaltensumme.

ullet Die **Zeilensummennorm** induziert durch die l^∞ -Norm

$$||A||_{\infty} = \max_{i=1,\dots,n} \{|a_{i1}| + \dots + |a_{in}|\}$$

ist die betragsmäßig maximale Zeilensumme.

Die Spektralnorm induziert durch die l²-Norm

$$||A||_2 = \max\{\sqrt{\lambda}|\lambda \text{ ist Eigenwert von } A^\top A\}$$

ist die Wurzel aus dem größten Eigenwert von $A^{\top}A$.

6 Lineare Abbildungen

Abbildung f:V o W ist linear, wenn

1.
$$f(0) = 0$$

2.
$$f(a + b) = f(a) + f(b)$$

3.
$$f(\lambda a) = \lambda f(a)$$

 \Rightarrow Abbildung als Matrix darstellbar

Injektiv, wenn aus $f(x_1) = f(x_2) \Rightarrow x_1 = x_2$ Surjektiv: $\forall y \in W \ \exists x \in V : f(x) = y$

(Alle Werte aus W werden angenommen.)

Bijektiv(Eineindeutig): f ist injektiv und surjektiv $\Rightarrow f$ umkehrbar.

6.1 Koordinatenvektor bezüglich einer Basis ${\cal B}$

 $B=(b_1,\dots,b_n)$ geordnete Basis des Vektorraums V, so kann jeder Vektor $v\in V$ als Linearkombination bzgl. B dargestellt werden: $v=\lambda_1b_1+\dots+\lambda_nb_n$, wobei $\lambda_1,\dots,\lambda_n\in\mathbb{R}\ (\Rightarrow \mathsf{GauB})$ $\Rightarrow v_B=(\lambda_1,\dots,\lambda_n)^\top$ ist der Koordinatenvektor bzgl. Basis B

6.2 Darstellungsmatrix

Lineare Abbildung $f: \mathbb{R}^n \to \mathbb{R}^m$ Darstellungsmatrix spaltenweise: $A = (f(e_1) \dots f(e_n))$

Allgemein $f: V \to W$ mit V, W Vektorräume $B = (b_1, \dots, b_n)$ ist eine Basis von V

 $\begin{array}{l} C=(c_1,\ldots,c_m) \text{ ist eine Basis von } W \\ \Rightarrow A=M(f)_B^C=\begin{pmatrix} & & & & \\ f(b_1)_C & f(b_2)_C & \cdots & f(b_n)_C \end{array}$

ist die Darstellungsmatrix von f bzgl. B und C.

"In der j-ten Spalte der Abbildungsmatrix stehen die Koordinaten des Bildes $f(b_j)$ bzgl. der Basis $C=(c_1,\ldots,c_m)$ "

Eigenschaften von f mit Hilfe von A

- f injektiv, wenn $ker(A) = \{0\}$
- ullet f surjektiv, wenn $\operatorname{Bild}(A)=\mathbb{R}^m$
- f bijektiv, wenn A invertierbar

6.3 Transformationsmatrix

Gegeben: Basen $\mathcal{B}=(v_1,\ldots,v_n)$ und $\mathcal{B}'=(v_1',\ldots,v_n')\in V$ Darstellung der Elemente aus \mathcal{B}' in der Basis \mathcal{B} :

 $v_j'=a_{1j}v_1+a_{2j}v_2+\cdots+a_{nj}v_n$ mit a_{ij} als Koeffizienten des Vektors v_i' bzgl. der Basis ${\cal B}$

 $\Rightarrow \mathsf{Transformationsmatix} \; T^{\mathcal{B}}_{\mathcal{B}'} = (a_{ij})$

Regeln und Berechnung (B ist Matrix der Basis \mathcal{B})

- $T_{B'}^{B} = B^{-1}B'$
- Falls \mathcal{B} Standardbasis \Rightarrow Matrix B = E und $T_{nl}^E = B'$
- $(T_{\mathcal{B}'}^{\mathcal{B}})^{-1} = T_{\mathcal{B}}^{\mathcal{B}'}$ $B' = BT_{\mathcal{B}'}^{\mathcal{B}}$
- Vektor v bzgl. Basis E_n soll bzgl. Basis \mathcal{B}' dargestellt werden: $v_{\mathcal{B}'} = T_E^{\mathcal{B}'} v$
- Abbildungsmatrix bzgl. Basis \mathcal{B} $M(f)_{\mathcal{B}}^{\mathcal{B}} = T_{E}^{\mathcal{B}} \cdot M(f)_{E}^{E} \cdot T_{\mathcal{B}}^{E}$

7 Diagonalisierung (Eigenwerte und Eigenvektoren)

Gegeben: Quadratische Matrix $A \in \mathbb{R}^{n \times n}$

Gilt $Av = \lambda v$ mit $v \neq 0$, so nennt man

- ullet $v\in V$ einen **Eigenvektor** von A zum **Eigenwert** $\lambda\in\mathbb{R}$ und
- ullet $\lambda \in \mathbb{R}$ einen **Eigenwert** von A zum **Eigenvektor** $v \in V$

Ist λ ein Eigenwert von A, so nennt man den Untervektorraum

- \bullet $\mathrm{Eig}_A(\lambda)=\{v\in\mathbb{R}^n|Av=\lambda v\}$ den Eigenraum von A zum Eigenwert λ und
- $\dim(\mathsf{Eig}_{A}(\lambda))$ die geometrische Vielfachheit des Eigenwerts λ
- $geo(\lambda) = dim(Eig_A(\lambda))$

Diagonalisieren von Matrizen

A ist diag.bar falls eine invertierbar Matrix B existiert, sodass

$$D = B^{-1}AB \Leftrightarrow A = BDB^{-1}$$

und D eine Diagonalmatrix ist.

- Eine Matrix ist genau dann diagonalisierbar wenn $\operatorname{alg}(\lambda) = \operatorname{geo}(\lambda)$ für jeden Eigenwert λ von A gilt.
- \bullet Jede Matrix $A \in \mathbb{R}^{n \times n}$ mit n verschiedenen Eigenwerten ist diagonalisierbar.
- Eine symmetrische Matrix hat nur reelle Eigenwerte und ist diagonalisierbar.
- Die Determinante einer Matrix ist gleich dem Produkt der Eigenwerte: $\det(A) = \lambda_1 \dots \lambda_n$

7.1 Rezept: Diagonalisieren

Gegeben: $A \in \mathbb{R}^{n \times n}$

1. Bestimme das charakteristische Polynom von A

$$p_A(\lambda) = \det(A - \lambda E_n)$$

2. Charakteristische Polynom p_A in Linearfaktoren zerlegen.

$$p_A(\lambda) = (\lambda_1 - \lambda)^{\nu_1} \dots (\lambda_r - \lambda)^{\nu_r}$$

Es gilt $\nu_1 + \cdots + \nu_r = n$

 $\lambda_1,\ldots,\lambda_r$ sind die Eigenwerte mit algebraischer Vielfachheit alg $(\lambda_i)=
u_i$

 $\operatorname{lst} p_A$ nicht vollständig in Linearfaktoren zerlegbar \Rightarrow A nicht diagonalisierbar!

3. Bestimme zu jeden Eigenwert λ_i den Eigenraum V_i

$$V_i = \ker(A - \lambda_i E_n) = \operatorname{span}(B_i)$$

Die Vektoren der Basis B_i sind die Eigenvektoren von λ_i .

Einfacher: Der Eigenvektor \boldsymbol{v}_i ist Lösung des homogenen LGS

$$(A - \lambda_i E_n)v_i = 0$$

 $\dim(V_i) = \operatorname{geo}(\lambda_i)$ geometr. Vielfachheit des Eigenwerts λ_i . Gilt $\operatorname{geo}(\lambda_i) \neq \operatorname{alg}(\lambda_i)$ für ein i, ist A nicht diagonalisierbar!

4. $B = (v_1 \dots v_n)$ setzt sich aus den Eigenvektoren zusammen. $D = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$ ist die Diagonalmatrix der Eigenwerte.

$$D = B^{-1}AB \Leftrightarrow A = BDB^{-1}$$

8 Schurzerlegung

Zu jeder quadratische Matrix $A\in\mathbb{R}^{n\times n}$ mit einem in Linearfaktoren zerfallendem charakteristischem Polynom $p_A(\lambda)$ gibt es eine orthogonale Matrix $Q\in\mathbb{R}^{n\times n},\,Q^{-1}=Q^{\mathsf{T}}$, mit

$$Q^{\top}AQ = R = \begin{pmatrix} \lambda_1 & \dots & * \\ & \ddots & \vdots \\ 0 & & \lambda_n \end{pmatrix}$$

R ist eine obere Dreiecksmatrix

8.1 Rezept: Schurzerlegung

Gegeben: $A \in \mathbb{R}^{n \times n}$

- 1. $A_1 = A$
- 2. Bestimme einen Eigenvektor v mit Norm $\|v\|=1$ zum Eigenwert λ_1 von A_1
- 3. Ergänze v zu einer ONB des $\mathbb{R}^n \Rightarrow$ orthogonale Matrix $B_1 = \begin{pmatrix} v & v_2 & \dots & v_n \end{pmatrix}$
- 4. Berechne

$$\boldsymbol{B}_1^\top \boldsymbol{A}_1 \boldsymbol{B}_1 = \begin{pmatrix} \lambda_1 & * \\ 0 & \boldsymbol{A}_2 \end{pmatrix} \text{ mit } \boldsymbol{A}_2 \in \mathbb{R}^{(n-1)\times (n-1)}$$

5. Setze $Q_1 = B_1$

Teil II (wiederhole (n-1) mal)

- 1. A_2 ist gegeben
- 2. Bestimme einen Eigenvektor v zum Eigenwert λ_2 von A_2
- 3. Ergänze v zu einer ONB des \mathbb{R}^{n-1} \Rightarrow orthogonale Matrix $B_2 = \begin{pmatrix} v & v_2 & \dots & v_{n-1} \end{pmatrix}$
- 4. Berechne

$$B_2^\top A_2 B_2 = \begin{pmatrix} \lambda_2 & * \\ 0 & A_3 \end{pmatrix} \text{ mit } A_3 \in \mathbb{R}^{(n-2)(n-2)}$$

5. Setze
$$Q_2=Q_1\begin{pmatrix}1&0\\0&B_2\end{pmatrix}$$

Setze $Q = Q_{n-1}.$ Es gilt $Q^{-1} = Q^{\top}$ und die Schurzerlegung von A lautet

$$Q^{\top}AQ = R = \begin{pmatrix} \lambda_1 & \dots & * \\ & \ddots & \vdots \\ 0 & & \lambda_n \end{pmatrix}$$

9 Singulärwertzerlegung

Bei der Singulärwertzerlegung wird eine beliebige Matrix $A \in \mathbb{R}^{m \times n}$ als Produkt dreier Matrizen U, S und V geschrieben

$$A = USV^{\top}$$

 $\text{mit } U \in \mathbb{R}^{m \times m}, \ S \in \mathbb{R}^{m \times n} \ \text{und } V \in \mathbb{R}^{n \times n}.$ $U \ \text{und } V \ \text{sind orthogonal}, \ S \ \text{ist eine Diagonalmatrix}.$

9.1 Rezept: Singulärwertzerlegung

Gegeben: $A \in \mathbb{R}^{m \times n}$

- 1. Bestimme alle Eigenwerte λ_j und Eigenvektoren v_j der Matrix $A^\top A \in \mathbb{R}^{n \times n}$ und ordne sie $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_r > \lambda_{r+1} = \cdots = \lambda_n = 0$ mit $r \leq n$
- 2. Bestimme eine ONB des \mathbb{R}^n aus den Eigenvektoren v_j und erhalte $V=\begin{pmatrix}v_1&\dots&v_n\end{pmatrix}\in\mathbb{R}^{n\times n}$

3. Die Singulärwerte sind $\sigma_i = \sqrt{\lambda_i}$ $j = 1, \dots, \min\{m, n\}$

$$S = \begin{pmatrix} \sigma_1 & & 0 & \dots & 0 \\ & \ddots & & \vdots & & \vdots \\ & & \sigma_m & 0 & \dots & 0 \end{pmatrix} \in \mathbb{R}^{m \times n} \qquad m < n$$

$$S = \begin{pmatrix} \sigma_1 & & & \\ & \ddots & & \\ & & \sigma_n \\ 0 & \dots & 0 \\ \vdots & & \vdots \\ 0 & \dots & 0 \end{pmatrix} \in \mathbb{R}^{m \times n} \quad m > n$$

- 4. Bestimme u_1,\ldots,u_r aus $u_i=rac{1}{\sigma_j}Av_j$ für alle $j=1,\ldots,r$ (alle $\sigma_j
 eq 0$)
- 5. Falls r < m ergänze u_1, \ldots, u_r zu einer ONB, bzw. zu $U = \begin{pmatrix} u_1 & \ldots & u_m \end{pmatrix}$ orthogonal.
- 6. $A = USV^{\top}$

10 Lineare Differentialgleichungen

Gegeben: $\dot{x}=Ax$ mit $x=x(t)\in\mathbb{R}^n$ und $A\in\mathbb{R}^{n\times n}$ A ist diagonal, diagonalisierbar oder ein Jordanblock. Allgemeine Lösung

$$x(t) = e^{tA} x_0 \text{ mit } x_0 = x(0)$$

10.1 Exponentialfunktion von Matrizen

$$e^{A} = \sum_{k=0}^{\infty} \frac{A^{k}}{k!} = I + A + \frac{A^{2}}{2!} + \frac{A^{3}}{3!} + \dots$$

$$AB = BA \Rightarrow e^{A+B} = e^{A}e^{B}$$

Diagonalmatrix $A \in \mathbb{R}^{n \times n}$

$$e^{tA} = \begin{pmatrix} e^{a_1t} & \dots & 0 \\ \vdots & \ddots & \vdots \\ \vdots & \ddots & \vdots \\ 0 & & e^{a_nt} \end{pmatrix} = \operatorname{diag}\left(e^{a_1t}, \dots, e^{a_nt}\right)$$

Diagonalisierbare Matrix $A \in \mathbb{R}^{n \times n}$

mit den Eigenwerten $\lambda_1, \ldots, \lambda_n$ und den Eigenwektoren v_1, \ldots, v_n mit $V = (v_1 \ldots v_n)$: $A = VDV^{-1}$

$$e^{tA} = Ve^{tD}V^{-1} = V\operatorname{diag}\left(e^{\lambda_1 t}, \dots, e^{\lambda_n t}\right)V^{-1}$$

$$\Rightarrow e^{At} = e^{Dt + Nt} = e^{Dt}e^{Nt}$$

$$= \operatorname{diag}\left(e^{a_1t}, \dots, e^{a_nt}\right) \left(E_n + tN + t^2 \frac{N^2}{2} + \dots\right)$$

Die Potenzreihe von e^{Nt} ist auf endliche Summanden begrenzt.