

FIXED INCOME SECURITIES

FRE: 6411

Sassan Alizadeh, PhD

Tandon School of Engineering

NYU

2023

4 Period Tree With Two Assets

Risk Neutral Pricing

- Consider the above 4 period Economy, where there are two traded assets in each state s_t , a risk free asset $r_f(s_t)$ and 4 period zero coupon bond $p(t, 4, s_t)$. Assume the actual probability of moving from state s_t to state $s_t u$, is 0.5
- $\pi_{s_t}(s_t u) = \pi_{s_t}(s_t d) = \frac{1}{2}$

Risk Neutral Pricing

- Assume the following six bonds with maturity and coupon rate of T_i and C_i , respectively are actively traded in this economy.
 - \bullet 1) $T_1 = 4$ $C_1 = 5\%$
 - \bullet 2) $T_2 = 4$ $C_2 = 2.5\%$
 - \bullet 3) $T_3 = 4$ $C_3 = 7.5\%$
 - \bullet 4) $T_4 = 3$ $C_4 = 0\%$
 - \bullet 5) $T_5 = 3$ $C_5 = 1.5\%$
 - 6) $T_6 = 3$ $C_6 = 5.5\%$
- For each of the above bonds, calculated the time 0, price, duration and convexity.

Bond	T_i	C_i	$P(0,T_i,C_i)$	D_i	MD_i	C_{xi}
1						
2						
3						
4						
5						
6						

- Single Bond Future Contract (SBF):
- Consider Future Contract, expiring on period 2, written ONLY on Bond 1 ($T_1 = 4$ $C_1 = 5\%$). Find Future Price and cash flow of this contract in periods 0,1 and 2.

s_t	$F_{SBF}(s_t)$	$CF_{SBF}(s_t)$
0		
U		
D		
UU		
UD		
DU		
DD		

Single Bond Future (SBF)

- Find the Actual and risk adjusted discounted expected value of the above cash flows:
- $E_0\left[\sum_{i=1}^2 \frac{cF_{SBF}(s_i)}{B(s_i,s_{i-1})}\right] \quad \text{and} \quad \tilde{E}_0\left[\sum_{i=1}^2 \frac{cF_{SBF}(s_i)}{B(s_i,s_{i-1})}\right]$

Future Contract w Delivery Option

- Bond Future Contract with Delivery (BF):
- Consider a Future Contract, expiring on period 2. Any Bond with maturity equal or greater than 3 $(T_i \ge 3)$ is deliverable against this Futures contract.
- Let Bond 1 ($T_1 = 4$ $C_1 = 5\%$) be the reference Bond. (conversion factor of 1, $\eta_1 = 1$.)
- Find the conversion factor for all bonds deliverable against this contract η_i .

Future Contract w Delivery Option

 Find Future Price and cash flow of this contract in periods 0,1 and 2, and identify which bond will be deliver in period 2 in all state

s_t	$F_{BF}(s_t)$	$CF_{BF}(s_t)$	B _i Deliver
0			
U			
D			
UU			
UD			
DU			
DD			

Future Contract w Delivery Option

- Find the Actual and risk adjusted discounted expected value of the above cash flows :
- $E_0\left[\sum_{i=1}^2 \frac{cF_{BF}(s_i)}{B(s_i,s_{i-1})}\right] \quad \text{and} \quad \tilde{E}_0\left[\sum_{i=1}^2 \frac{cF_{BF}(s_i)}{B(s_i,s_{i-1})}\right]$
- Fill the table in the next page
- Describe a brief step by step methodology that you followed.

s_t	$F_{BF}(s_t)$	$F_{SBF}(s_t)$	$CF_{BF}(s_t)$	$CF_{SBF}(s_t)$	B _i Deliver
0					
U					
D					
UU					
UD					
DU					
DD					

Risk Neutral Pricing Example

- To summarize, define $B(t+1,s_t)$ as the value of MM account.
 - $B(t+1,s_t) = B(t,s_{t-1}) r_f(s_t)$
- Define :
- Then:
- Or $A(t, s_t)$ is a Martingale :
 - $A(0) = \tilde{E}_0[A(1, s_1)] = \tilde{E}_0[A(2, s_2)] = \dots = \tilde{E}_0[A(t, s_t)]$
 - $A(t, s_t) = \tilde{E}_{t, s_t}[A(t+1, s_{t+1})] = \tilde{E}_{t, s_t}[A(t+n, s_{t+n})]$

 Using the Bond Future Contract with Delivery (BF) and Money Market Account, find a mimicking portfolio for a 2 period 6% coupon bond in period 0,1,2 in every state.