Practice Dataset

EmpID	EmpName	Gender	Salary	City
1	Arjun	М	75000	Pune
2	Ekadanta	M	125000	Bangalore
3	Lalita	F	150000	Mathura
4	Madhav	M	250000	Delhi
5	Visakha	F	120000	Mathura

EmpID	Project	EmpPosition	DOJ
1	P1	Executive	26-01-2019
2	P2	Executive	04-05-2020
3	P1	Lead	21-10-2021
4	Р3	Manager	29-11-2018
5	P2	Manager	01-08-2020

Q1(a): Find the list of employees whose salary ranges between 2L to 3L.

SELECT*

FROM employee

WHERE salary BETWEEN 200000 AND 300000;

Q1(b): Write a query to retrieve the list of employees from the same city.

SELECT a.empid, a.empname, a.city, a.salary

FROM employee as a

JOIN employee as b ON a.empid != b.empid

WHERE a.city = b.city;

Q1(c): Query to find the null values in the employee table.

SELECT *

FROM employee

WHERE empid IS NULL;

Q2(a): Query to find the cumulative sum of employee's salary.

SELECT EmpID, Salary, SUM(Salary) OVER (ORDER BY EmpID) AS CumulativeSum FROM Employee;

Q2(b): What's the male and female employees ratio?

SELECT

(COUNT(*) FILTER (WHERE Gender = 'M') * 100.0 / COUNT(*)) AS Male, (COUNT(*) FILTER (WHERE Gender = 'F') * 100.0 / COUNT(*)) AS Female FROM Employee;

Q2(c): Write a query to fetch 50% records from the Employee table.

SELECT * FROM Employee

WHERE EmpID <= (SELECT COUNT(EmpID)/2 from Employee);

Q3: Show the employee with the highest salary for each project.

```
WITH cte AS (
SELECT *, ROW_NUMBER() OVER (PARTITION BY ed.project ORDER BY e.salary DESC) AS row_no
FROM employee as e
JOIN employeedetail as ed ON e.empid = ed.empid
)
SELECT project, salary, empname
FROM cte
WHERE row_no <=1;
```

Q4: Query to find the total count of employees joined each year.

SELECT EXTRACT(year from doj) AS joining_year, COUNT(empid)

FROM employeedetail

GROUP BY 1

ORDER BY 1 ASC;

Q5: Create 3 groups based on salary columns, salary less than 1 Lakh is low, between 1 to 2 lakh is medium and above 2 lakh is high.

```
SELECT *,
CASE
WHEN salary > 200000 THEN 'High'
WHEN salary BETWEEN 100000 AND 200000 THEN 'Medium'
WHEN salary < 100000 THEN 'Low'
END
FROM employee;
```

Q6: query to retrieve the list of employees working in same project.

```
WITH cte AS (
SELECT e.empid, e.empname, ed.project
FROM employee as e
INNER JOIN employeedetail as ed ON ed.empid = e.empid
)
SELECT a.empid, a.empname, b.empid, b.empname, a.project
FROM cte as a
JOIN cte as b ON a.empid != b.empid
WHERE a.empid < b.empid AND a.project = b.project
```

Q7: Write a query to fetch even and odd rows from the employee table.

```
--for even rows--
SELECT *
FROM employee
WHERE empid % 2 = 0;
--for odd rows--
SELECT *
FROM employee
WHERE empid % 2 = 1;
```