

Spis treści

1	Wyz	znaczanie parametrów silnika	2
	1.1	Parametry z tabliczki znamionowej	2
		Szacowanie pozostałych parametrów	2
		Korekta modelu	5
		1.3.1 Korekta szacunków	6
2	Prz	ekształtnik trójfazowy	7
	2.1	Analiza trójfazowego przekształtnika	7
		2.1.1 Analiza przebiegów	7
			8
	2.2	Silnik zasilany z falownika	10
3	Imp	olementacja sterowania skalarnego:	11
	3.1	Dobór saturacji	12
		3.1.1 Przybliżenie charakterystyki	12
			13
	3.2	Wpływ sterowania na pracę silnika	13
		3.2.1 Zadawanie prędkości liniowo zmiennej	15

Część 1

Wyznaczanie parametrów silnika

1.1 Parametry z tabliczki znamionowej

Wartości znane oraz przyjęte w dalszej części sprawozdania jako 'pewniki' w modelu:

- $J = 0.0034 \text{ kgm}^2$
- p = 2
- $U_N = 400V$
- $I_N = 2.50 \text{ A}$
- $\eta = 81.4$
- $\cos \phi = 0.77$
- $T_N = 7.4 \text{ Nm}$
- $n_0 = 1425 \text{ obr/min}$

1.2 Szacowanie pozostałych parametrów

Tabliczka znamionowa pozwala zasadniczo na zweryfikowanie czy parametry silnika zostały dobrane prawidłowo, jednak nie dają pełnej informacji o modelu.

Rys. 1.1: Uproszczony model zastępczy silnika indukcyjnego trójfazowego

Widoczne jest, że brakuje wartości prawie każdego z elementów. Zatem w pierwszej kolejności należy je oszacować a następnie sprawdzić czy w warunkach znamionowych silnik zachowuje się zgodnie z oczekiwaniami.

Indukcyjności rozproszenia uzwojenia stojana \mathbf{L}_{Ls} oraz wirnika \mathbf{L}_{Lr}

$$L_{Ls} = L_{Lr}' = \frac{X_{\sigma}}{2\pi f_N} = \frac{U_N}{2\sqrt{3}f_N I_N} \left(\sqrt{1 - \cos^2 \phi_N} - \frac{I_{sdN} cos\phi_N}{I_{sqN}} \right)$$

Z kolei należy obliczyć jeszcze składowe czynną i bierną prądu znamionowego stojana:

$$I_{sdN} = \sqrt{2}I_N\sqrt{1 - \cos\phi_N} = \sqrt{2} \cdot 2, 5 \cdot \sqrt{1 - 0,77} = 1,70A$$
 (1.1)

$$I_{sqN} = \sqrt{2I_N^2 - I_{sdN}^2} = \sqrt{2 \cdot 2, 5^2 - 1,695583^2} A = 3,10 A$$
 (1.2)

Co pozwala na obliczenie indukcyjności:

$$L_{Ls} = L_{Lr}' = \frac{X_{\sigma}}{2\pi f_{N}} = \frac{U_{N}}{2\sqrt{3} f_{N} I_{N}} \left(\sqrt{1 - \cos^{2} \phi_{N}} - \frac{I_{sdN} \cos \phi_{N}}{I_{sqN}} \right)$$
(1.3)

$$=\frac{400}{2\sqrt{3}\cdot 50\cdot 2.5} \left(\sqrt{1-0.77^2} - \frac{1.6955\cdot 0.77}{3.1024}\right) \tag{1.4}$$

$$=63.9 \ mH$$
 (1.5)

Szacowanie wartości indukcyjności magnesującej \mathbf{L}_m W pierwszej kolejności wyliczono impedancję X_M

$$X_m = \frac{U_N}{\sqrt{3}} \left(\frac{\sqrt{2}}{I_{sdN}} - \frac{\sqrt{1 - \cos^2 \phi_N}}{I_N} + \frac{I_{sdN} \cos \phi_N}{I_{sqN} I_N} \right)$$
(1.6)

$$= \frac{400}{\sqrt{3}} \left(\frac{\sqrt{2}}{1,6955} - \frac{\sqrt{1 - 0,77^2}}{2,5} + \frac{1,6955 \cdot 0,77}{3,1024 \cdot 2,5} \right) \tag{1.7}$$

$$=155\,\Omega\tag{1.8}$$

Obliczenie indukcyjności L_m z zależności:

$$L_m = \frac{X_m}{2\pi f_n} = \frac{155}{2\pi \cdot 50} = 494 \ mH$$

Szacowanie wartości rezystancji stojana R_s

$$R_s = \frac{\omega_{slipN} \cdot I_{sdN} \cdot X_m}{2\pi f_N I_{sdN}}$$

Potrzebujemy zatem pulsacji poślizgu ω_{slip} :

$$\omega_{slip} = 2\pi \left(f_N - \frac{n_N p}{60} \right) = 2\pi \left(50 - \frac{1425 \cdot 2}{60} \right) = 15.7 \frac{rad}{s}$$

Podstawiając:

$$R_s = \frac{\omega_{slipN} \cdot I_{sdN} \cdot X_m}{2\pi f_N I_{sdN}} \tag{1.9}$$

$$=\frac{15.7\cdot 1,7\cdot 155}{2\pi\cdot 50\cdot 3,10}\tag{1.10}$$

$$=4.24\,\Omega\tag{1.11}$$

Szacowanie wartości rezystancji wirnika R_r

$$R_r' = s_N \frac{U_N}{\sqrt{3}I_N}$$

Z kolei s_N (poślizg znamionowy) dany jest:

$$s_N = \frac{n_S - n_N}{n_S} = \frac{1500 - 1425}{1500} = 0.050$$

a w takim razie R_r :

$$R_r = s_N \frac{U_N}{\sqrt{3}I_N} = 0,050 \cdot \frac{400}{\sqrt{3} \cdot 2,5} = 4.62\Omega$$

Szacowanie wartości współczynnika tarcia wiskotycznego F Tarcie wiskotyczne może zostać oszacowane za pomocą bilansu mocy maszyny wzorem:

$$F = \frac{\sqrt{3}U_N I_N cos\phi_N - T_N \omega_N - c_l I_N^2 R_s}{\omega^2_N}$$

W pierwszej kolejności należy wyznaczyć ω_N :

$$\omega_N = n_N \cdot \frac{2\pi}{60} = 1424 \cdot \frac{\pi}{30} = 149 \frac{rad}{s}$$

Podstawiając:

$$F = \frac{\sqrt{3}U_N I_N \cos\phi_N - T_N \omega_N - c_l I_N^2 R_s}{\omega^2_N}$$
(1.12)

$$=\frac{\sqrt{3}\cdot 400\cdot 2,5\cdot 0,77-7,4\cdot 149-2\cdot 2,5^2\cdot 4.62}{149^2} \tag{1.13}$$

$$= 0.0079 \, Nms \tag{1.14}$$

Podsumowanie oszacowanych wartości:

- $L_{Ls} = L_{Lr} = 63.9 \text{ mH}$
- $L_m = 494 \text{ mH}$
- $R_s = 4.24 \Omega$
- $R_r = 4.62 \Omega$
- F = 0.0079 Nms

1.3 Korekta modelu

Obliczone parametry wstawiono do bloku reprezentującego silnik, a następnie zasymulowano jego pracę w warunkach znamionowych by dokonać poprawność otrzymanego modelu

Rys. 1.2: Przebiegi podczas sprawdzania modelu

Następnie zmierzono wartości $\cos\phi,\eta,I_N,n_N$ oraz wyliczono błędy względne δ w porównaniu do danych z tabliczki znamionowej

	$\cos\phi$	η	I_N [A]	n_N [obr/min]
Pomiar	0.691	0.733	3.09	1390
δ	10.3 %	10.0 %	23.6 %	2.5%

Widoczne jest, że parametry odbiegają dość znacznie od wartości znamionowych.

1.3.1 Korekta szacunków

Wymaganiem zadania jest aby parametry oszacowane zostały skorygowane tak, by podczas pracy w warunkach znamionowych praca silnika nie odbiegała od swoich wartości znamionowych o więcej niż 1%. Metodą prób i błędów doprowadzono do następujących ustawień silnika:

Rys. 1.3: Ustawienia parametrów silnika dające oczekiwane rezultaty

Poniżej zestawienie zmierzonych wartości wraz z widełkami oraz błędem względnym Wszyst-

Parametr	Min	Faktyczna	Max	δ [%]
$\cos \phi$	0.7623	0.7769	0.7777	0.896
η [%]	80.59	82.13	82.21	0.897
I_N [A]	2.475	2.511	2.520	0.440
n [obr/min]	1411	1426	1439	0.070

kie z parametrów mają błąd δ < 1%, co oznacza że udało się prawidłowo wymodelować silnik.

Część 2

Przekształtnik trójfazowy

Docelowo silnik będzie sterowany skalarnie. By to umożliwić potrzebny jest odpowiedni układ zasilający, który pozwoli na taką implementację.

2.1 Analiza trójfazowego przekształtnika

Rys. 2.1: Skonstruowany schemat falownika trójfazowego

2.1.1 Analiza przebiegów

- U_{a0} przyjmuje wartości U_{a0}
 $\left\{-\frac{U_{IN}}{2},\,\frac{U_{IN}}{2}\right\}$. Analiza wartości U_{a0}:
 - Kiedy załączony jest tranzystor T1 różnica potencjałów między punktami będzie wynosiła $U_u = \frac{U_{IN}}{2}$
 - Kiedy załączony jest tranzystor T2, potencjał A zwarty jest z masą co oznacza że różnica potencjałów wyniesie $U_d=-\frac{U_{IN}}{2}$

Przebieg ma charakter prostokątny o modulowanym wypełnieniu.

• U_{ab} przyjmuje wartości $U_{ab} \in \{-U_{IN}, 0, U_{IN}\}$. Analiza wartości U_{ab} :

- Kiedy załączone będą T1 oraz T3 lub T2 oraz T4, potencjały obu gałęzi będą takie same zatem $\mathbf{U}_{ab}=\mathbf{0}$
- Kiedy załączone będą T1 oraz T4, potencjał $V_{A0}=U_U$ natomiast $V_{B0}=-U_D$ zatem $U_{AB}=V_{A0}-V_{B0}=U_u+U_D=U_{IN}$. Analogiczna sytuacja będzie miała miejsca gdy załączone będzie T2 oraz T3, wówczas $U_{AB}=-U_{IN}$

Jeżeli zaś chodzi o kształt to tak jak w poprzednim wypadku jest to przebieg prostokątny z modulacją, jednak tym razem amplituda okresowo zmienia znak.

- U_{an} przyjmuje wartości $U_{an} \in \left\{-\frac{2}{3}U_{IN}, -\frac{1}{3}U_{IN}, 0, \frac{1}{3}U_{IN}, \frac{2}{3}U_{IN}\right\}$. Analiza wartości U_{an} :
 - Gdy wszystkie górne bądź wszystkie dolne tranzystory są włączone między gałęziami nie występuje różnica potencjałów dlatego ${\bf U}_{an}=0$
 - Gdy załączony będzie T1 napięcie U_{an} będzie dodatnie, natomiast jego wartość zależy od stanu pozostałych tranzystorów tworzących swoisty dzielnik napięcia. Gdy T1 będzie jedynym załączonym tranzystorem górnym otrzymamy $U_{an} = U_{IN} \frac{Z}{\frac{3}{3}Z} = \frac{2}{3}U_{IN}$.

Natomiast gdy załączone będzie jeszcze T3 lub T5 to $U_{an} = U_{IN} \frac{\frac{1}{2}Z}{\frac{3}{2}Z} = \frac{1}{3}U_{IN}$

– Gdy załączony będzie T2 napięcie U_{an} będzie ujemne. Konkretne wielkości można wyliczyć analogicznie do poprzedniego podpunktu.

Napięcie również ma kształt modulowanego przebiegu prostokątnego.

- Wyjściowy prąd mostka I_{out} to przebieg widocznie sinusoidalny, jednak zawierający tętnienia.
- Tetnienia zależą od dobranych częstotliwości oraz wartości elementów odbiornika RL.

2.1.2 Analiza parametrów wyjściowych

Jaka powinna być minimalna wartość napięcia w obwodzie napięcia stałego (napięcia zasilającego przekształtnik $U_{DC}=U_u+U_d$), aby uzyskać wartość podstawowej harmonicznej napięcia międzyfazowego ($\mathbf{U}_AB(1)=\mathbf{400V}$) .

Wzór ogólny na amplitudę napięcia wyjściowego:

$$U_{OUT} = \frac{\sqrt{3}}{2}U_{IN} \cdot M$$

Wówczas wartość skuteczna przy M = 1:

$$U_{ABsk} = \frac{\sqrt{3}}{2 \cdot \sqrt{2}} \approx 0.612 U_{IN}$$

$$U_{DCmin} = \frac{U_{ABsk}}{0.612}$$

$$U_{DCmin} \approx 653.6 [V]$$

A zatem należy zastosować łączne napięcie około 653.6V. Wynik ten potwierdził rozkład Fouriera w PLECS.

Rys. 2.2: Wynik transformaty Fouriera przebiegu

Widoczny jest peak dla amplitudy przebiegu (f = 100Hz), wynosi on $U_{AB(1)}$ = 564 [V]. Oznacza to, że $U_{AB_RMS(1)}$ = 400 [V]. Co zgadza się z teoretycznymi wyliczeniami.

Wpływ rodzaju obciążenia na przebiegi Poniżej widoczne przebiegi przy obciążeniu rezystancyjnym oraz obciążeniu RL. Widoczne jest, że cewka zgodnie z oczekiwaniami wygładza pulsacje przebiegu wyjściowego.

2.2 Silnik zasilany z falownika

Zastępując obciążenie RL modelem silnika trójfazowego, należy zwrócić uwagę na to, aby był zasilany napięciem o odpowiedniej częstotliwości f = 50Hz oraz amplitudzie U = 400V. W związku z tym zmieniono częstotliwość sygnałów sinusoidalnych podawanych na komparator oraz wyliczone wcześniej napięcie stałe U_{DCmin} = 653,3V

Rys. 2.4: Odbiornik RL zamieniony na model silnika

Część 3

Implementacja sterowania skalarnego:

Kolejny krok to budowa układu regulacji. Zbudowany układ najpierw został przetestowany zadając prędkość n_{ref} za pomocą skokowego źródła. Zaobserwowano przebiegi przy obciążeniu znamionowym dla $n=n_{ref}$ oraz n=0.5 n_0 .

Rys. 3.1: Układ do wstępnego sterowania skalarnego.

3.1 Dobór saturacji

3.1.1 Przybliżenie charakterystyki

Charakter impedancji silnika trójfazowego zmienia się wraz z częstotliwością. Oznacza to, że należy wymodelować sterowanie tak by niezależnie od częstotliwości prąd wyjściowy był równy znamionowemu. Charakterystyka tych zmian jest nieliniowa jednak można ją uznać za odcinkowo liniową - tak jak pokazano na ilustracji. Górne ograniczenie jest znane - powinno wynosić 1 dla

Rys. 3.3: Poglądowa aproksymacja

 $f=f_N=50$ [Hz]. Jednocześnie można dla tego punktu wyznaczyć początkowe parametry funkcji liniowej:

$$U(f) = \frac{1}{50} \cdot f + 0$$

Jedyną nieznaną jest wówczas dolne ograniczenie, które można wyznaczyć dla przypadku gdy obciążenie jest wyłącznie rezystancyjne - dla f=0. Z prawa Ohma:

$$U(0) = I_N \sqrt{2} \cdot R_s$$

 $U(0) = 10.82 [V]$

By otrzymać takie napięcie wyjściowe:

$$U(0) = M \cdot U_{IN} \tag{3.1}$$

$$M = \frac{U(0)}{U_{IN}} \tag{3.2}$$

$$M \approx 0.034 \tag{3.3}$$

3.1.2 Weryfikacja i korekcja

Założeniem było by w przedziale częstotliwości $f \in <5,50>$ [Hz] prąd wyjściowy nie różnił się od znamionowego o więcej niż 10%. By zweryfikować czy wcześniej zamodelowana funkcja była właściwa wykonano pomiary dla różnych częstotliwości.

Począt	kowe p	arametry	Po korekcji		
f [Hz]	I [A]	δ [%]	f [Hz]	I [A]	δ [%]
50	2.54	-1.4	50	2.54	-1.4
40	2.46	1.8	40	2.46	1.8
30	2.43	2.8	30	2.43	2.8
20	2.43	2.8	20	2.43	2.8
15	2.46	1.6	15	2.46	1.6
10	2.58	-3.2	10	2.42	3.2
5	5.38	-115.2	5	2.27	9.2

Pierwszą dokonaną obserwacją było zauważenie, że dobrany współczynnik kierunkowy wydaje się być dostatecznie dobry. Jedynym parametrem, który wymagał korekty to dolna granica saturacji - metodą prób i błędów uzyskano wartość 0.21. Ostatecznie wszystkie punkty pomiarowe dały wyniki mieszczące się we wcześniej nałożonych widełkach.

Parametr	Wartość
a	$\frac{1}{50}$
b	0
Dolna granica	0,21

3.2 Wpływ sterowania na pracę silnika

Jak zmieni się częstotliwość napięcia stojana \mathbf{f}_s , wartość skuteczna napięcia stojana \mathbf{U}_s^{RMS} , prędkość n oraz wartość skuteczna prądu \mathbf{I}_s^{RMS} przy sterowaniu skalarnym wskutek zmiany momentu obciążenia \mathbf{T}_L ? Próby przeprowadzone dla \mathbf{n}_0 :

Zgodnie z przewidywaniem, prąd zachowuje się analogicznie do momentu obciążającego. Logicznym też jest, że dostarczona energia nie starczy i na utrzymanie prędkości i na pokonanie

Parametr	T_L rośnie	T_L maleje	
f_s	nie zmienia się	nie zmienia się	
U_S^{RMS}	nie zmienia się	nie zmienia się	
n	maleje	rośnie	
I_S^{RMS}	rośnie	maleje	

momentu, zatem wytworzenie większego momentu dzieje się kosztem prędkości. Jako że w obu wypadkach nie zaobserwowano zmiany wartości skutecznej napięcia stojana, realizując strategię zasilania $\frac{U}{f}$ = const, częstotliwość zachowa się identycznie.

3.2.1 Zadawanie prędkości liniowo zmiennej

Zmieniono wymuszenie prędkości na narastające liniowo.

 $T = T_N$. Widoczny wzrost częstotliwości napięcia i prądu w miarę narastania prędkości.