Формат

В экзамене будет 6 задач: четыре задачи по темам второго семестра и две — по темам первого. В демо версиях сделан акцент на темы второго семестра. Задачи имеют равный вес. Продолжительность работы 120 минут. Можно будет использовать в качестве разрешенной шпаргалки один лист A4 со всех шести его сторон.

Вариант «Лискевич»

- 1. Рассмотрим стандартный винеровский процесс (W_t) .
 - а) Найдите $\mathbb{E}(W_4 \mid W_5)$, $\mathbb{E}(W_5 \mid W_4)$, $\mathbb{V}ar(W_4 \mid W_5)$, $\mathbb{V}ar(W_5 \mid W_4)$.
 - б) При каком α процесс $\exp(6W_t + \alpha t)$ будет мартингалом?
- 2. Процессы (W_t) и (V_t) стандартные винеровский процессы, независимые между собой. Если возможно, найдите все такие α и β , чтобы процессы (X_t) и (Y_t) были стандартными винеровскими

$$X_t = \alpha W_t + (1 - \alpha)V_t, \quad Y_t = \cos(42)W_t + \sin(\beta)V_t.$$

- 3. На первом шаге мы случайно выбираем X по равномерному закону на отрезке [0;2]. На втором шаге мы случайно выбираем Y по Пуассону с интенсивностью $\lambda = X$.
 - а) Найдите $\mathbb{E}(Y)$ и \mathbb{V} ar(Y).
 - б) Найдите функцию плотности случайной величины $\mathbb{V}\mathrm{ar}(Y\mid X)$.
- 4. Илон Маск каждый день зарабатывает случайное количество DOGE-койнов Y_t , экспоненициально распределённое с интенсивностью $1/10^6$. Заработки за разные дни независимы.

Обозначим за τ тот день, когда его заработок впервые превысит 10^6 DOGE, а суммарный заработок — за $S=Y_1+Y_2+\cdots+Y_{\tau}$.

- а) Как распределена величина au? Найдите $\mathbb{E}(au)$.
- б) Найдите α , чтобы процесс $M_t = \sum_{k=1}^t Y_k \alpha t$ был мартингалом.
- в) Найдите $\mathbb{E}(S)$.
- 5. Неправильная монетка выпадает орлом с вероятностью p=0.3. При выпадении орла игрок зарабатывает $X_t=+1$, а при выпадении решки $X_t=-1$. Обозначим суммарный выигрыш игрока как $S_t=X_1+X_2+\cdots+X_t$ и τ первый момент времени, когда S_t достигнет 100 или -50.
 - а) Найдите α такое, что процесс $M_t = S_t \alpha t$ мартингал.
 - б) Найдите β такое, что процесс $Y_t = \exp(\beta S_t)$ мартингал.
 - в) Найдите $\mathbb{P}(S_{\tau} = 100)$.
 - г) Найдите $\mathbb{E}(au)$.

Подсказка: достаточно применить теорему Дуба к M_t и Y_t .

- 6. В одной корзине лежат бильярдные шары с номерами от 3 до 9, во второй с номерами от 1 до 7. Мы выбираем случайно равновероятно один шар из первой корзины и один шар из второй. Из полученных двух шаров мы равновероятно один называем X, а второй Y.
 - а) Найдите $\mathbb{E}(Y \mid X)$.
 - б) Найдите $\mathbb{V}ar(Y \mid X)$.

Вариант «Рафаэль»

1. Рассмотрим дискретное время t, фильтрацию (\mathcal{F}_t) и некую случайную величину τ , принимающую значения из множества $\{0,1,2,\dots\} \cup \{\infty\}$.

Какие из приведённых условий эквивалентны, какие являются следствием других?

```
A: \forall t \in \{0, 1, 2, \dots\} : \{\tau \le t\} \in \mathcal{F}_t
```

B:
$$\forall t \in \{0, 1, 2, \dots\} : \{\tau = t\} \in \mathcal{F}_t$$

C:
$$\forall t \in \{0, 1, 2, \dots\} : \{\tau < t\} \in \mathcal{F}_t$$

- 2. Макака снова нажимает равновероятно кнопки от A до Я на печатающей машинке. Конец света наступает, когда макака впервые напечатает слово «АБРАКАДАБРА», обозначим этот момент величиной τ .
 - а) Сконструируйте мартингал, позволяющий найти $\mathbb{E}(au^2)$.
 - б) Найдите $\mathbb{E}(\tau^2)$.

Подсказка: если в момент t добавлять в казино $t^2-(t-1)^2$ рублей, то к моменту t в казино окажется t^2 рублей, https://www.jeremykun.com/2014/03/03/martingales-and-the-optional-stopping-theorem/.

- 3. Величины $X_1, X_2, ..., X_n$ независимы и равномерно распределены на отрезке [0,a], рассмотрим величину $Y = \max\{X_1, \ldots, X_n\}$ и её ожидание $h(a) = \mathbb{E}(Y)$.
 - а) Выпишите уравнение, связывающее h(a+h) и h(a), с точнотью до o(h).
 - б) Выпишите дифференциальное уравнение, которому удовлетворяет функция h(a).
 - в) Укажите начальное условие, которому удовлетворяет функция h(a).
- 4. Величины $X_1, X_2, ..., X_n$ независимы и имеют гамма-распределение $Gamma(\alpha, \lambda)$. Мы складываем случайное количество слагаемых N, где N независима от (X_i) и имеет пуассоновское распределение $Pois(\mu)$. Получаемую сумму обозначим $S = \sum_{k=1}^{N} X_k$.
 - а) Найдите $\mathbb{E}(\exp(uS) \mid N)$.
 - б) Найдите функцию, производяющую моменты величины S.

Комментарий: функцию, производящую моменты гамма-распределения можно считать известной.

- 5. Величины X_1 и X_2 независимы и экспоненциально распределены с параметром λ .
 - а) Найдите закон распреления $Y_1 = \exp(-X_1)$.

- б) Найдите функцию плотности величины $X_1 X_2$.
- в) Найдите функцию плотности величины $|X_1|$.
- 6. Аня, Бэлла, Вова и Дима учатся в одной группе. Два студента в любой паре общаются друг с другом с вероятностью p независимо от других пар. Если студенты общаются, то любой слух, известный одному, будет известен другому.
 - а) Какова вероятность того, что слух дойдёт до Димы, если Аня только что узнала новый слух?
 - б) Какова вероятность того, что слух дойдёт до Димы, если Аня только что узнала новый слух и не общается с Бэллой?
 - в) Какова вероятность того, что слух дойдёт до Димы, если Аня только что узнала новый слух и Бэлла не общается с Вовой?