Particle spectrograph

Wave operator and propagator

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{\sqrt{2} (t_1 - 2t_2)}{3(1 + k^2)t_1t_2}$	2 5	$\frac{t_1 + 4t_2}{3(1+k^2)^2 t_1 t_2}$	$\frac{i k (t_1 + 4t_2)}{3(1+k^2)^2 t_1 t_2}$	0		0	0	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{i\sqrt{2}k(t_1\!-\!2t_2)}{3(1\!+\!k^2)t_1t_2} - \frac{ik(t_1\!+\!4t_2)}{3(1\!+\!k^2)^2t_1t_2}$	i		$\frac{k^2 (t_1 + 4t_2)}{3 (1 + k^2)^2 t_1 t_2}$	0		0	0	0
$\frac{\sqrt{2}}{t_1 + 2k^2 t_1} = \frac{2k^2 r_1 + t_1}{(t_1 + 2k^2 t_1)^2} = 0$ $0 0 0 0$ $-\frac{2ik}{t_1 + 2k^2 t_1} - \frac{i\sqrt{2}k(2k^2 r_1 + t_1)}{(t_1 + 2k^2 t_1)^2} = 0$ $0 0 0 0 0$ $0 0 0 0$ $-k^2 r_1 - \frac{t_1}{2} \frac{t_1}{\sqrt{2}} 0 ikt_1$ $0 0 0 0 ikt_1$ $0 0 0 0 0$ $-ikt_1 0 0 0$	0 0	0		0	0	+ 17	$\frac{\sqrt{2}}{-2k^2t_1}$	0	$\frac{2ik}{t_1 + 2k^2t_1}$
$ \frac{2ik}{t_1 + 2k^2 t_1} - \frac{i\sqrt{2}k(2k^2 r_1 + t_1)}{(t_1 + 2k^2 t_1)^2} = 0 $ $ \omega_{1}^{\#1} \alpha \qquad \omega_{1}^{\#2} \alpha f_{1}^{\#1} \alpha f_{1}^{\#2} \alpha $ $ 0 \qquad 0 \qquad 0 \qquad 0 $ $ 0 \qquad 0 \qquad 0 \qquad 0 $ $ 0 \qquad 0 \qquad 0 \qquad 0 $ $ -k^2 r_1 - \frac{t_1}{2} \qquad \frac{t_1}{\sqrt{2}} \qquad 0 \qquad ikt_1 $ $ \frac{t_1}{\sqrt{2}} \qquad 0 \qquad 0 \qquad 0 $ $ 0 \qquad 0 \qquad 0 \qquad 0 $ $ -ikt_1 \qquad 0 \qquad 0 \qquad 0 $	0 0	0		0	$\frac{\sqrt{2}}{t_1 + 2k^2t_1}$	$\frac{2k^2}{(t_1+t_1)}$	$\frac{2r_1+t_1}{2k^2t_1)^2}$	0	$\frac{i\sqrt{2} k(2k^2 r_1 + t_1)}{(t_1 + 2k^2 t_1)^2}$
$\frac{2ik}{t_1 + 2k^2 t_1} = \frac{i \sqrt{2} k(2k^2 r_1 + t_1)}{(t_1 + 2k^2 t_1)^2} = 0$ $\omega_1^{\#1}_{\alpha} = \omega_1^{\#2}_{\alpha} f_1^{\#1}_{\alpha} f_1^{\#2}_{\alpha}$ $0 = 0 = 0 = 0$ $0 = 0 = 0$ $-k^2 r_1 - \frac{t_1}{2} = 0$ $0 = 0 = 0$ $0 = 0 = 0$ $-i k t_1 = 0 = 0$ $0 = 0 = 0$	0 0	0		0	0		0	0	0
$\omega_{1}^{\#1}\alpha$ 0 0 $-k^{2}r_{1} - \frac{t_{1}}{2}$ $\frac{t_{1}}{\sqrt{2}}$ 0 0 0	0 0	0		0	$-\frac{2ik}{t_1+2k^2t_1}$		$(2k^2r_1+t_1-t_2+t_2)^2$		$\frac{2k^2(2k^2r_1+t_1)}{(t_1+2k^2t_1)^2}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\omega_{1}^{\#1}$ $\omega_{1}^{\#2}$	$\omega_{1}^{\#2}_{\alpha\beta}$		$f_{1}^{\#1}_{\alpha\beta}$	$\omega_{1^{\text{-}}\alpha}^{\#1}$	$\omega_{1}^{\#2}{}_{lpha}$)	$f_{1^{-}\alpha}^{\#1}f_{1}^{st}$	#2 [- α	
$\begin{array}{c cccc} 0 & 0 & 0 \\ 0 & 0 & 0 \\ -k^2 r_1 - \frac{t_1}{2} & \frac{t_1}{\sqrt{2}} & 0 \\ \frac{t_1}{\sqrt{2}} & 0 & 0 \\ 0 & 0 & 0 \\ -i k t_1 & 0 & 0 \end{array}$	$\frac{1}{6}(t_1+4t_2)$ $-\frac{t_1-2t_2}{3\sqrt{2}}$	$-\frac{t_1-2t_2}{3\sqrt{2}}$		$-\frac{ik(t_1-2t_2)}{3\sqrt{2}}$	0	0	0	0	
$ \begin{array}{c cccc} 0 & 0 & 0 \\ -k^2 r_1 - \frac{t_1}{2} & \frac{t_1}{\sqrt{2}} & 0 \\ \frac{t_1}{\sqrt{2}} & 0 & 0 \\ 0 & 0 & 0 \\ -i k t_1 & 0 & 0 \end{array} $	$-\frac{t_1-2t_2}{3\sqrt{2}} \qquad \frac{t_1+t_2}{3} \qquad \frac{1}{3}$		- I (:)	$\frac{1}{3}\tilde{l}k(t_1+t_2)$	0	0	0	0	
$ \begin{array}{c ccccc} -k^2 r_1 - \frac{t_1}{2} & \frac{t_1}{\sqrt{2}} & 0 \\ & & & \frac{t_1}{\sqrt{2}} & 0 & 0 \\ 0 & 0 & 0 & 0 \\ -i k t_1 & 0 & 0 \end{array} $	$\frac{ik(t_1-2t_2)}{3\sqrt{2}} \left -\frac{1}{3}\bar{l}k(t_1+t_2) \right = 0$	$-\frac{1}{3}\bar{l}k(t_1+t_2)$	1 11 1.7	$\frac{1}{3}k^{2}(t_{1}+t_{2})$	0	0	0	0	
$\begin{array}{c cccc} \frac{t_1}{\sqrt{2}} & 0 & 0 & \\ 0 & 0 & 0 & \\ -i k t_1 & 0 & 0 & \\ \end{array}$	0 0	0			$-k^2 r_1 - \frac{t_1}{2}$	$\frac{t_1}{\sqrt{2}}$		kt_1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 0	0		0	$\frac{t_1}{\sqrt{2}}$	0	0	0	
$-i k t_1$ 0 0	0 0	0		0	0	0	0	0	
	0 0	0		0	$-\bar{l}kt_1$	0	0	0	

$\omega_2^{\#1}_+ lpha_\beta f_2^{\#1}_+ lpha_eta \omega_2^{\#1} lpha_eta_\lambda$	0	0	$k^2 r_1 + \frac{t}{2}$				
$f_{2}^{\#1}$	$-\frac{ikt_1}{\sqrt{2}}$	$k^2 t_1$	0				
$\omega_2^{\#1}$	<u>t1</u> 2	$\frac{ikt_1}{\sqrt{2}}$	0				$\sigma_{2}^{\#1}$
	$\omega_2^{\#1} + ^{lphaeta}$	$f_2^{*+} + \alpha \beta$	$\omega_2^{*1} + ^{\alpha \beta \chi}$	c#1	c#2	#1	$ au_{2}^{\#1}_{2}$
$\omega_{0^+}^{\#1}$		$\omega_{0}^{\#1}$ $-t_{1}$		2 kt	$f_{0}^{#2}$	$\omega_0^{\#1}$	8,0
-		$\sqrt{2} kt$		$k^2 t_1$	0	0	$\sigma_{2}^{\#1}$
$f_{0}^{#2}$	†	0		0	0	0	
$\omega_0^{\#1}$	†	0		0	0	t_2	
	ource O(3) ir	const	raint	1	uge g Multip		 $\sigma_{0}^{\#1}$
	² ₊ == 0	•			1		τ#2 τ ₀ +
$\tau_0^{\#}$	1 - 2 <i>i k</i>	$\kappa \sigma_{0}^{\#1} =$	= 0		1		- +
$ au_1^{\#}$	$2^{\alpha} + 2^{\alpha}$	2 ik σ	#2α 1-	= 0	3		t#1
$\overline{ au_1^{\#}}$	1 ^α ==	0			3		
$\overline{ au_1^{\#}}$	$+^{1\alpha\beta}$ +	$i k \sigma_1^*$	÷2 αβ =	= 0	3		$\sigma_{0}^{\#1}$
$\tau_2^{\#}$	$\frac{1}{+}^{\alpha\beta}$ - 2	2 ik σ	#1 <i>αβ</i> 2 ⁺	== 0	5		
To	tal co	nstra	ints:		16		

<u>t1</u> 2

	- (1	[-1-5]		
$\sigma_{2}^{\#_{1}}$	$\frac{2}{(1+2k^2)^2t_1}$	$\tau_2^{\#1} + \alpha \beta \frac{2i\sqrt{2}k}{(1+2k^2)^2 t_1}$	0	
	$\sigma_2^{\#1} + \alpha \beta $	$\tau_{2}^{\#1} + \alpha^{\beta}$	$\sigma_{2^{-}}^{\#1} +^{\alpha \beta \chi}$	ı
$ au_0^{\# 2} \sigma_0^{\# 1}$	0	0	0	$\frac{1}{t_2}$
$\tau_{0}^{\#7}$	0	0	0	0
$ au_0^{\#1}$	$\frac{1}{2}$ $\frac{i\sqrt{2}k}{(1+2k^2)^2t_1}$	$\frac{2k}{2^{2}t_{1}} \left -\frac{2k^{2}}{(1+2k^{2})^{2}t_{1}} \right $	0	0

 $\tau_{0}^{\#1}$ †

 $\tau_{0}^{\#2}$ †

Massive and massless spectra

(No massless particles)

Unitarity conditions