Name:	

MASTERY QUIZ DAY 19

Math 237 – Linear Algebra

Version 5

Fall 2017

Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

S2. Determine if the set $\{x^3 - x, x^2 + x + 1, x^3 - x^2 + 2, 2x^2 - 1\}$ is a basis of \mathcal{P}_3

Solution:

$$RREF \left(\begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & -1 & 2 \\ -1 & 1 & 0 & 0 \\ 0 & 1 & 2 & -1 \end{bmatrix} \right) = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Since the resulting matrix is not the identity matrix, it is not a basis

A3. Determine if each of the following linear transformations is injective (one-to-one) and/or surjective (onto).

- (a) $S: \mathbb{R}^2 \to \mathbb{R}^4$ given by the matrix $\begin{vmatrix} 2 & 1 \\ 1 & 2 \\ 0 & 1 \\ 3 & -3 \end{vmatrix}$.
- (b) $T: \mathbb{R}^4 \to \mathbb{R}^3$ given by the matrix $\begin{bmatrix} 2 & 3 & -1 & 1 \\ -1 & 1 & 1 & 1 \\ 4 & 7 & -1 & 5 \end{bmatrix}$

Solution:

- (a) $\begin{bmatrix} 2 & 1 \\ 1 & 2 \\ 0 & 1 \\ 3 & -3 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}.$ Since each column is a pivot column, S is injective. Since there a no zero row, S
- (b) Since $\dim \mathbb{R}^4 > \dim \mathbb{R}^3$, T is not injective.

$$RREF\left(\begin{bmatrix} 2 & 3 & -1 & 1\\ -1 & 1 & 1 & 1\\ 4 & 7 & -1 & 5 \end{bmatrix}\right) = \begin{bmatrix} 1 & 0 & 0 & 2\\ 0 & 1 & 0 & 0\\ 0 & 0 & 1 & 3 \end{bmatrix}$$

Since there is not a zero row, T is surjective.

A4. Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be the linear transformation given by

$$T\left(\begin{bmatrix} x \\ y \\ z \end{bmatrix}\right) = \begin{bmatrix} -3x + y \\ -8x + 2y - z \\ 2y + 3z \end{bmatrix}$$

Compute the kernel and image of T.

Solution: Let
$$A = \begin{bmatrix} -3 & 1 & 0 \\ -8 & 2 & -1 \\ 0 & 2 & 3 \end{bmatrix}$$
, and compute $RREF(A) = \begin{bmatrix} 1 & 0 & \frac{1}{2} \\ 0 & 1 & \frac{3}{2} \\ 0 & 0 & 0 \end{bmatrix}$. Then the image is the span of

the (pivot) columns, so

$$\operatorname{Im} T = \operatorname{span} \left(\left\{ \begin{bmatrix} -3 \\ -8 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix} \right\} \right)$$

The kernel is the solution set of AX = 0, so

$$\ker T = \left\{ \begin{bmatrix} c \\ 3c \\ -2c \end{bmatrix} \mid c \in \mathbb{R} \right\} = \operatorname{span} \left(\left\{ \begin{bmatrix} 1 \\ 3 \\ -2 \end{bmatrix} \right\} \right)$$