

Single Dell Data Analysis Course

Cluster-based cell type annotation

Lisa Buchauer

Professor of Systems Biology of Infectious Diseases
Department of Infectious Diseases and Intensive Care
Charité - Universitätsmedizin Berlin

Today

Heumos, L., Schaar, A.C., Lance, C. et al. Best practices for single-cell analysis across modalities. Nat Rev Genet 24, 550–572 (2023). https://doi.org/10.1038/s41576-023-00586-w

Recap: Where we stand after a whole lot of processing

Turning clusters into knowledge with annotation and differential expression analysis

Turning clusters into knowledge with annotation and differential expression analysis

Turning clusters into knowledge with annotation and differential expression analysis

What is a cell type?

What is a cell type?

A cellular phenotype that is

- robust across datasets
- Linked to specific functions
- Identifiable based on specific markers (most often proteins or transcripts)

What is a cell type?

A cellular phenotype that is

- robust across datasets
- Linked to specific functions
- Identifiable based on specific markers (most often proteins or transcripts)

cell state •----- cell type

Why do we need to give names to clusters?

...could we not analyse everything based on our computed embeddings, trajectories and clusters?

Why do we need to give names to clusters?

To speak about biology with others in established categories

To link sc omics based results to decades of immunological research

Why do we need to give names to clusters?

To speak about biology with others in established categories

To link sc omics based results to decades of immunological research

The "pure ML" view: We should not let ourselves be biased by old papers based on few markers, instead reanalyse biology from scratch

clusters

marker genes

Method A - PBMC annotation / ingredients

known marker genes

Cluster ID	Markers	Cell Type	
0	IL7R, CCR7	Naive CD4+ T	
1	CD14, LYZ	CD14+ Mono	
2	IL7R, S100A4	Memory CD4+	
3	MS4A1	В	
4	CD8A	CD8+T	
5	FCGR3A, MS4A7	FCGR3A+ Mono	
6	GNLY, NKG7	NK	
7	FCER1A, CST3	DC	
8	PPBP	Platelet	

Method A - PBMC annotation / UMAP inspection

Cluster ID	Markers	Cell Type	
0	IL7R, CCR7	Naive CD4+ T	
1	CD14, LYZ	CD14+ Mono	
2	IL7R, S100A4	Memory CD4+	
3	MS4A1	В	
4	CD8A	CD8+T	
5	FCGR3A, MS4A7	FCGR3A+ Mono	
6	GNLY, NKG7	NK	
7	FCER1A, CST3	DC	
8	PPBP	Platelet	

Method A - PBMC annotation / violin plots of marker genes

Cluster ID	Markers	Cell Type	
0	IL7R, CCR7	Naive CD4+ T	
1	CD14, LYZ	CD14+ Mono	
2	IL7R, S100A4	Memory CD4+	
3	MS4A1	В	
4	CD8A	CD8+T	
5	FCGR3A, MS4A7	FCGR3A+ Mono	
6	GNLY, NKG7	NK	
7	FCER1A, CST3	DC	
8	PPBP	Platelet	

Method A - PBMC annotation / results

Method B - PBMC annotation / ingredients

clusters

Method B - PBMC annotation / ingredients

clusters

Calculate markers for each cluster

Seurat

cluster0.markers <- FindMarkers(pbmc, ident.1 = 0, logfc.threshold = 0.25, test.use = "roc", onl
y.pos = TRUE)</pre>

scanpy

```
sc.tl.rank_genes_groups(
    adata, groupby="leiden_2", method="wilcoxon", key_added="dea_leiden_2"
)
```

https://satijalab.org/seurat/articles/pbmc3k_tutorial https://www.sc-bestpractices.org/cellular_structure/annotation.html#manual-annotation

 Select cluster for comparison
 (for marker gene detection we typically compare "cluster X" vs "all the rest")

- 1. Select cluster for comparison (X)
- 2. For each gene, perform statistical test that compares the expression distribution between X and rest

- 1. Select cluster for comparison (X)
- 2. For each gene, perform statistical test that compares the expression distribution between X and rest

Classical testing

t-test

Wilcoxon's test

Classifier-based

Logistic regression

ROC analysis

- 1. Select cluster for comparison (X)
- 2. For each gene, perform statistical test that compares the expression distribution between X and rest
- 3. Apply multiple testing correction to resulting p-values

p_val	avg_logFC	pct.1	pct.2	p_val_adj	cluster	gene
1.783378e-11	0.6126976	0.327	0.441	2.966472e-07	0	CAP1
1.111275e-05	0.5448506	0.201	0.277	1.848495e-01	0	NDUFA2
5.572391e-69	0.9152596	0.705	0.325	9.269115e-65	1	IL7R
1.834643e-44	0.7485499	0.308	0.086	3.051746e-40	1	MAL
0.000000e+00	4.4769283	0.968	0.207	0.000000e+00	2	S100A9
0.000000e+00	4.1251610	0.932	0.114	0.000000e+00	2	S100A8
1.124982e-304	4.1155861	0.992	0.192	1.871295e-300	3	NKG7
9.974215e-141	4.0851525	0.596	0.113	1.659111e-136	3	GNLY
0.000000e+00	2.7777043	0.934	0.043	0.000000e+00	4	CD79A
1.689832e-184	2.3696654	1.000	0.818	2.810866e-180	4	CD74
6.129817e-167	2.2891146	0.954	0.138	1.019634e-162	5	FCGR3A
1.497900e-118	2.3893744	1.000	0.316	2.491607e-114	5	LST1
8.448866e-05	0.6377758	1.000	0.956	1.000000e+00	6	RPL36
1.450393e-03	0.5964958	0.459	0.288	1.000000e+00	6	GYPC
2.002848e-181	7.1596296	1.000	0.011	3.331538e-177	7	PF4
6.022917e-101	8.5050281	1.000	0.025	1.001852e-96	7	PPBP

- 1. Select cluster for comparison (X)
- 2. For each gene, perform statistical test that compares the expression distribution between X and rest
- 3. Apply multiple testing correction to resulting p-values
- 4. Identify significant / most important marker genes by sorting + thresholding **fold changes** and **p-values**

Method B - PBMC annotation / marker heatmap

clusters

https://satijalab.org/seurat/articles/pbmc3k_tutorial https://www.sc-bestpractices.org/cellular_structure/annotation.html#manual-annotation calculated marker genes

Method B - PBMC annotation / marker dotplot

calculated marker genes

Method B - PBMC annotation / ingredients

Method B - PBMC annotation / ingredients

Where to find marker genes?

General literature

Annotated single-cell datasets

Dedicated marker gene resources

Outlook: Automated annotation methods

!

Automated annotation methods currently serve as a starting point for annotation, not as an endpoint. Quality depends on:

Annotation method

Quality of training data

Outlook: Automated annotation methods

!

Automated annotation methods currently serve as a starting point for annotation, not as an endpoint. Quality depends on:

Annotation method

Quality of training data

Similarity between training and query data

Outlook: Automated annotation methods

!

Automated annotation methods currently serve as a starting point for annotation, not as an endpoint. Quality depends on:

Annotation method

Quality of training data

Similarity between training and query data

- Marker gene-based methods (e.g. Garnett, CellAssign)
- Classifier trained on previous datasets/atlases (e.g. CellTypist, Clustifyr)
- Reference mapping (e.g. scArches, Symphony, Azimuth)

Finally, an annotated dataset.

