Shoroing that lim sin & does not exist.

Such that
$$x \in \mathbb{R}^+$$

$$x \in (-5, 5) \Rightarrow \sin \frac{1}{x} \in (L-\epsilon, L+\epsilon).$$

quen any E>0, we must be

able to show emistence of 8 > 0

Loto say him smil erish and

equals L & [0,1]. For the to exist,

So,
$$-\delta < x < \delta$$

$$\begin{array}{c}
(-\delta, \delta) \longrightarrow (-\omega, -\frac{1}{\delta}) \vee (\frac{1}{\delta}, \omega) \longrightarrow [0, 1] \\
\chi \longmapsto \frac{1}{\chi} \longmapsto \sin \frac{1}{\chi}
\end{array}$$

$$\Rightarrow -\delta < \chi \le 0 \Rightarrow \frac{4}{\chi} < -\frac{1}{\delta}$$

$$0 \leqslant x \leqslant \delta \Rightarrow \frac{1}{x} > \frac{1}{\delta}$$

So,
$$\varphi(x) = \frac{1}{\pi}$$
 sends segment $(-5, 0]$ to vay $(-\omega, -\frac{1}{8})$ and $(0, 8)$ to $(\frac{1}{8}, \infty)$.

and
$$\sin \frac{1}{x}$$
 for $x \in [-5,0]$ amounts to sin y for $y \in (-\infty, \frac{1}{5})$
and $\sin \frac{1}{x}$ for $x \in [0,5)$ amounts to sin y for $y \in (\frac{1}{5},\infty)$.

But sine function is periodic and in $(-\infty, \frac{1}{5}) \cup (\frac{1}{5}, \infty)$, that has infinite length, takes every value in [0,1], and does not like within (L-E, L+E). So, $\lim_{n\to 0} A_n \frac{1}{n} does not exist.$ (This holds for any 8>0)