

Recap and Goals

- Installed Python and Anaconda Environments
- Introduction to Python
 - Setting working directory
 - Adding comment lines
 - Docstrings
- Introduction to Pandas
 - Reading a csv
 - Extracting columns (attributes)
 - Extracting rows
 - Obtaining summary measures
- Basic graphing and charting in Python
 - Matplotlib package
- Scipy
 - Interpolation
 - Kernel Density Functions
 - Integration (1D)
 - Integration (2D)

- Control Statements
 - If, if-elif-else, if-else
 - For loop
 - While loop
 - Use of Boolean operators
- Functions
 - Passing inputs
 - Lambda functions
 - Pass by object reference
- Numpy
 - Matrix Calculations
 - Vectorization
- Optimization
 - Unconstrained optimization
 - Constrained linear programming

Goal of this module is to explore Solution of ODEs

Ordinary Differential Equations (ODEs) are common in many civil engineering applications

ODEs

First-Order ODEs describe the variations of a parameter with respect to either time or along an axis

Second-Order ODEs can be written as a system of 2 first-order ODEs

ODE Solution Methods

- A system of first-order ODEs can be solved using numerical methods
 - Runge-Kutta-Fahlberg Methods are very popular
- Numerical methods essentially approximate the ODE into a set of algebraic equations
 - Solution of algebraic equations is easier
 - The derivative is approximated using a linear slope in a piece-meal manner
- Stiffness is an issue when solving some ODEs
 - Over some ranges small variations in parameters can cause large variations in the differential equation
 - Algebraic approximation becomes untrustworthy
 - Needs special handling

There is a generalized algorithm called 'Isoda' that handles both stiff and non-stiff equations well

It is an adaptive method that changes the step-size and solution method when it encounters stiffness

While original 'Isoda' algorithm was programmed FORTRAN it is available in Python (as well as R)

ODE Solution

- We shall use the built-in Isoda implementation in scipy.integrate library
 - The function to solve
 ODE is called **odeint**
 - This solver can solve both a single and a system of ODEs

ODEs to solved must be in this form

$$\frac{dy}{dt} = af(y,t) + bf(t) + c$$

There can be multiple state variables (y)

$$y(t=0)=y_o$$
 Initial Condition

An initial condition must be specified for each state variable

Setting up to solve ODE

- The module must be imported from the scipy.integrate
 - Also import numpy
- We need to write a function for the RHS of ODE
 - This is called the model
- We need to specify initial conditions and time-steps where we need solution
 - Referred to as yo and t respectively
- We call odeint and solve the ODEs

Put y first
Put t next
Put other arguments

import numpy as np from scipy.integrate import odeint

Trailing comma for tuple

Illustrative Example 1

- Consider a simply supported beam with an uniformly increasing load
- Compute the deflection along the Yaxis

$$\begin{split} \frac{dy}{dx} &= \frac{w_o}{120EIL} \left(-5x^4 + 6L^2x^2 - L^4 \right) \\ \frac{dy}{dx} &= 0 \left(\forall \, x = 0 \, and \, x = L \right) \end{split}$$

Parameter	Value
I = Moment of Inetia (m ⁴)	0.0003
E = Elastic Modulus (N/m²)	200 x 10 ⁹
wo = Max Linear load (N/m)	2.5 x 10 ⁵
L = Maximum Length (m)	3.0

Illustrative Example

 The differential equation can be integrated by separation of variables to yield the following expression

Result from the numerical solution can be checked against this analytical solution

$$\frac{dy}{dx} = \frac{w_o}{120EIL} \left(-5x^4 + 6L^2x^2 - L^4 \right)$$

$$\frac{dy}{dx} = 0 \left(\forall x = 0 \text{ and } x = L \right)$$

Separating the Variables and Integrating

$$\int dy = \frac{w_o}{120EIL} \int \left(-5x^4 + 6x^2L^2 - L^4 \right) dx$$

Which yields the following solution

$$y = \frac{w_o}{120EIL} \left(-x^5 + 2x^3L^2 - L^4x \right)$$

Note constant of integration is zero; Which can be obtained from either substituting either y = 0 at x = 0 or y = 0 at x = L

Python Code

```
# Step 0: Document the code
# -*- coding: utf-8 -*-
Created on Mon Sep 7 22:06:21 2020
An example of ODE of beam deflection
@author: Venki
# Step 1: Import Libraries
import numpy as np # for numerical calculation
from scipy.integrate import odeint # to solve ODE
from matplotlib import pyplot as plt # for graphing
# Step 2: Write Functions
# function to compute dy/dx
def dydx(y,x,L,wo,E,I):
  num1x = (wo)/(120*L*E*I)
  num2x = -5*x**4+6*x**2*L**2-L**4
  dydx = num1x * num2x
  return dydx
# function to compute analytical solution
def yanal(x,L,wo,E,I):
  num1x = (wo)/(120*L*E*I)
  v = num1x * (-x**5+2*x**3*L**2-L**4*x)
  return y
```

```
# Step 3: Obtain all inputs
# Write input parameters
E = 200. * 10**9
I = 0.0003
L = 3.0
wo = 2.5 * 10**5
Nx = 101 # 100 spaces
x = np.linspace(0,L,Nx) # split the length into 100 points
yo = 0 # initial conditions
# Step 4: Call Functions to solve ODE
ynum = odeint(dydx,yo,x,args=(L,wo,E,I)) # solve using Isoda numerical
yana = yanal(x,L,wo,E,I)
# Step 5: Make plots
# Create plots with pre-defined labels.
fig, ax = plt.subplots()
ax.plot(x, ynum, color = 'blue', marker=".", markersize=6, label='Numerical')
ax.plot(x, yana, 'k-', label='Analytical')
plt.title('Distance-Deflection for Uniformly Varying Load')
plt.xlabel('Distance(m)')
plt.ylabel('Deflection (m)')
legend = ax.legend(loc='upper center', shadow=True)
plt.grid()
plt.show()
```

Results

- Exact match between analytical and numerical solutions
- 'Isoda' algorithm in odeint works well

Illustrative Example 2

 SEIR (susceptibleexposed-infectiousrecovered) is a epidemiological modeling approach used to study the transmission of infectious diseases such as COVID-19. The model is given the following system of ODEs

$$\frac{dS}{dt} = \mu N - \mu S - \beta \frac{SI}{N}$$

$$\frac{dE}{dt} = \beta \frac{SI}{N} - (\mu + \epsilon) E$$

$$\frac{dI}{dt} = \epsilon E - (\gamma + \mu + \alpha) I$$

$$\frac{dR}{dt} = \gamma I - \mu R$$

$$N = S + E + I + R$$

Deaths are implicitly calculated by the model

Assume:

Natural Birth rate ~ Natural Death Rate Everyone is susceptible to infection OK Assumption for places like Lubbock

Data

Table 1: Model Parameters

Parameter	Value	Remarks
μ (1/d)	3.81e- 05	Natural Death Rate; Based on life-expectancy of 72 years (Birth rate ~ Death Rate)
α (1/d);	0.006	Virus-induced fatality rate
β (1/d)	0.75	Probability of disease transmission per contact * Number of contacts / day (exposure rate)
ε (1/d)	1/3	Progression from exposed to infection (reciprocal of Average incubation time)
γ (1/d)	1/15	Recovery rate (reciprocal of average time of recovery)

Table 2: Initial Conditions

Param	Value	Remarks
N _o	225000	Initial Population
E _o	2250	1% Initial exposure
Io	1	Patient zero
S _o	222749	$S_o = N_o - E_o - I_o$
R _o	0	No initial recovery

Data is for illustrative purposes only

Python Code

```
# -*- coding: utf-8 -*-
"""

Created on Tue Sep 8 00:31:00 2020

SEIR Model for Covid-19 propogation
@author: Venki Uddameri
"""

# Step 1: Import libraries
import numby as no # for numerical calculation
```

import numpy as np # for numerical calculation from scipy.integrate import odeint # to solve ODE from matplotlib import pyplot as plt # for graphing

```
# Step 2: Define Function

def seir(y,t,alpha,beta,gamma,eps,mu):

S = y[0]

E = y[1]

I = y[2]

R = y[3]

N = S + E + I + R

dsdt = mu*N - mu*S - beta*(S*I)/N

dedt = beta*(S*I)/N - (mu + eps)*E

didt = eps*E - (gamma + mu + alpha)*I

drdt = gamma*I - mu*R

zz = [dsdt,dedt,didt,drdt]

return(zz)
```

Step 3 Define Model parameters mu = 3.81e-05 alpha = 0.006 beta = 0.75 gamma = 1/15 eps = 1/3

```
# Step 4 Define Initial conditions & timesteps
No = 225000
Eo = 2250
Io = 1
So = 222749
Ro = 0
yo = [So,Eo,Io,Ro]
t = np.linspace(0,365,366) # Time Step 1 day
```

```
# Step 6: Make plots
fig, ax = plt.subplots()
ax.plot(t, SEIR[:,0], 'k-', label='Susceptible')
ax.plot(t, SEIR[:,1], 'm-', label='Exposed')
ax.plot(t,SEIR[:,2],'r-',label='Infected')
ax.plot(t,SEIR[:,3],'b-',label='Recovered')
ax.plot(t,D,'r--',label='Deaths')
plt.title('SEIR Model Results')
plt.xlabel('Time (d)')
plt.ylabel('Persons (#)')
legend = ax.legend(loc='right', shadow=True)
plt.grid()
plt.show()
```

```
# Step 5: Solve the model

SEIR = odeint(seir,yo,t,args=(alpha,beta,gamma,eps,mu))

D = No - (SEIR[:,0] + SEIR[:,1] + SEIR[:,2] + SEIR[:,3])
```

Results

- Infection spreads early
- Nearly 50% of the people are infected at the peak (1 month)
- Death rate rise and become constant
- Recovered population increases

Use Pandas to get summary statistics or write a csv file to process in R

import pandas as pd
Create a pandas data frame
seir.pd = pd.DataFrame(SEIR,columns=('S','E','I','R'))
seir.pd['D'] = D # add deaths to the data-frame
seir.pd.describe() # get summary statistics
seir.pd.to_csv('seir.csv',index_label = 'Time') #write to csv

You Should Know

- How ODEs can be solved in Python
 - LSODA algorithm
- How to write the ODE function
- How to specify model parameters
- How to write the time/space steps
- How to call odeint
 - How to pass the function
 - How to pass the initial conditions
 - How to pass other arguments

How to make plots and summary statistics to analyze data