TCC - Apresentação de Progresso 1

Lucas Keiler

Ideia geral para os algoritmos

Escrita: Apresentação do algoritmo, provas de corretude e complexidade e desafios de implementação

Corretude

Desafio: Impossível provar corretude empiricamente.

- 1. **Casos de teste:** Criar conjunto de grafos de teste para cada algoritmo e garantir execução correta para estes casos.
 - ▶ É limitado e depende de um grande número de casos.

Corretude

Exemplo: Casos de teste de grafos com $\Delta \leq 3$

Corretude

- Grafos Randômicos + Testador Força-Bruta: Criar um gerador de grafos randômicos e testar saída com a de um algoritmo força bruta.
 - Criar grafos randômicos com restrições é não-trivial.

Complexidade

1. **Grafos determinísticos redimensionáveis:** Estruturas fixas de tamanho maleável.

Exemplo:

$$k = \frac{n}{4} + 1.$$

Complexidade

Resultado:

OBS: Comentar complexidade do teorema 2.3 - Maximum Infection Time P_3 Convexity

Complexidade

 Grafos randômicos de topologia fixa: Como exemplo, um solid grid de tamanho n que consiste em um caminho que cada vértice tem probabilidade 0.5 de estar em uma escada. Resultado:

Visualização

Input para solidGrids

Desenhe seu grafo