FILO

A Fast and Scalable Heuristic for the Solution of Large-Scale Capacitated Vehicle Routing Problems

Luca Accorsi¹ and Daniele Vigo^{1,2}

¹ DEI «Guglielmo Marconi», University of Bologna ² CIRI ICT, University of Bologna

CAPACITATED VEHICLE ROUTING PROBLEM (CVRP) INSTANCE

CAPACITATED VEHICLE ROUTING PROBLEM (CVRP) SOLUTION

MOTIVATION

State-of-the-art (heuristic) CVRP algorithms often exhibit a quadratic growth

MOTIVATION

Others achieve a linear growth by fixing a maximum computing time

GOAL

Designing a fast, naturally scalable and effective heuristic approach

OUR RECIPE

- Local Search Acceleration Techniques
 - Static Move Descriptors
- **Pruning** Techniques
 - Granular Neighborhoods and Selective Vertex Caching
- Careful Design
- Careful Implementation
- Careful Parameters Tuning

FAST ILS LOCALIZED OPTIMIZATION (FILO)

Local search-based **iterative** and **randomized improvement procedures** built on the ILS paradigm

CONSTRUCTION

A variation of the **Savings algorithm** by Clarke and Wright (1964)

Adaptation proposed by Arnold, Gendrau, and Sörensen (2019)

For each i, compute s_{ij} only for $j \in Neighbors(i, 100)$ and i < j

$$O(n^2) \rightarrow O(n)$$

IMPROVEMENT PROCEDURES

IMPROVEMENT PROCEDURES

LOCAL SEARCH ENGINE

- Several operators explored in a VND fashion
 - Hierarchical Randomized Variable Neighborhood Descent
- Acceleration techniques for neighborhood exploration
 - Static Move Descriptors
- Pruning techniques
 - Granular Neighborhoods and Selective Vertex Caching

Computational complexity

HIERARCHICAL RANDOMIZED VARIABLE NEIGHBORHOOD DESCENT (HRVND)

An effective organization of several local search operators

HRVND

OUR HRVND

HRVND MOTIVATION

Combining the good parts of VND and RVND

From RVND

do not fix a possibly not ideal neighborhood exploration order within tiers

From VND

- more complex operators are executed after simpler ones in subsequent tiers
 - to further polish solutions and escape from local optima

Complex operators expected application time (as well as their improvement) is reduced because they are applied on already high-quality solutions

HRVND MOTIVATION EJECTION CHAIN

On Shaken Solution **78.71** %

On Tier1 LO **30.70** %

HRVND MOTIVATION

O = set of available LS operators

$$RNI(o, O) = 100 \frac{R(o)}{\sum_{o' \in O} R(o')}$$

$$R(o) = \frac{tot improvement of o}{successful application of o}$$

STATIC MOVE DESCRIPTORS (SMDs)

A data-oriented approach to local search

```
for (int i = 0; i < n; i++) {
    for (int j = 0; j < n; j++) {
        eval/apply(i, j)
    }
}</pre>
Move identifier
int i, int j

Move effect
float delta
```

BIBLIOGRAPHY FOR SMDs

- Emmanouil E. Zachariadis, Chris T. Kiranoudis, A strategy for reducing the computational complexity of local search-based methods for the vehicle routing problem, Computers & Operations Research, Volume 37, Issue 12, 2010, Pages 2089-2105
- Onne Beek, Birger Raa, Wout Dullaert, Daniele Vigo, An Efficient Implementation of a Static Move Descriptor-based Local Search Heuristic, Computers & Operations Research, Volume 94, 2018, Pages 1-10

SMD Procedures

Replace the "for-loop" neighborhood exploration with a more structured inspection of moves

SMD Initialization

SMD

Move identifier int i, int j

Move effect float delta

SMD

Move identifier int i, int j

Move effect float delta

SMD

Move identifier int i, int j

Move effect float delta

SMD

Move identifier int i, int j

Move effect float delta

SMD

Move identifier int i, int j

Move effect float delta

SMD

Move identifier int i, int j

Move effect float delta

SMD

Move identifier int i, int j

Move effect float delta

SMD

Move identifier int i, int j

Move effect float delta

SMD

Move identifier int i, int j

Move effect float delta

SMD

Move identifier int i, int j

Move effect float delta

SMD

Move identifier int i, int j

Move effect float delta

SMD

Move identifier int i, int j

Move effect float delta

 $O(single\ loop - based\ exploration)$

SMD SEARCH

SMD

Move identifier int i, int j

Move effect

float delta

SMD

Move identifier int i, int j

Move effect float delta SMD

Move identifier int i, int j

Move effect float delta

SMD

int i, int j

Move effect float delta SMD

Move identifier int i, int j

Move effect float del

SMD

Move identifier int i, int j

> Move effect del

SMD

Move identifier int i, int j

Move effect float delta **SMD**

Move identifier

int i, int j

Move effect float delta

Move identifier

SMD

Move iden int i, int

Move effect float delt

SMD

Move identifier int i, int j

Move effect float delta SMD

ve identifier int i, int j

effect

SMD

Move identifier int i, int j

Move effect float delta

Feasible and best (e.g. most improving) SMD

SMD SEARCH

Zachariadis and Kiranoudis (2010) suggest to store SMDs into a heap

- Retrieve in O(1), remove and restore heap property in $O(\log n)$
- If not feasible, store and reinsert later $O(\log n)$

OUR CHOICE

Beek et al. (2018) suggest to linearly scan the heap to avoid removal and reinsertion for each SMD not feasible

- No more guarantees of retrieving the best SMD
- The heap entries are roughly sorted

A move (i,j) of operator XYZ requires the update of the delta value of fixed set of SMDs

GRANULAR NEIGHBORHOODS (GNs)

Restricting local search move evaluations to promising ones only

Sparsification rule

For each vertex i consider only the moves (SMDs) generated by arcs (i, j) and (j, i) such that $j \in Neighbors(i, 25)$

$$T = \bigcup_{i} \{(i,j),(j,i): j \in Neighbors(i,25)\}$$
Set of move generators

BIBLIOGRAPHY FOR GNs

- Paolo Toth and Daniele Vigo, The Granular Tabu Search and Its Application to the Vehicle-Routing Problem, INFORMS Journal on Computing 2003 15:4, 333-346
- Michael Schneider, Fabian Schwahn, Daniele Vigo, Designing granular solution methods for routing problems with time windows, European Journal of Operational Research, Volume 263, Issue 2, 2017, Pages 493-509

DYNAMIC GNS

Ordered list of move generators

DYNAMIC GNS

May not capture scenarios with different densities of customers (when γ is low)

VERTEX-WISE DYNAMIC GNS

Let each vertex manage its own move generators

 γ_i sparsification factor (percentage $\gamma_i \in [0, 1]$ for each vertex i)

VERTEX-WISE DYNAMIC GNS

PRO

- A minimum number of move generators is guaranteed per vertex
- Tailored intensification: move generators are increased only for areas that more likely require a stronger intensification
- Intensification is globally increased at a slower rate
 - faster local search for more optimization iterations

CONS

- Management of a γ_i for each vertex i
- Intensification is globally increased at a slower rate:
 - more iterations are required for a globally stronger local search

GRANULAR SMD NEIGHBORHOODS

Only consider **SMDs** associated with **active move generators**

 $\forall i$

SMD

Move identifier int i, int j

Move effect float delta

SMD

Move identifier nt i, int j

Move effect float delta

SMD

Move identifier

Move effect float delta

SMD

Move identifier int i, int j

Move effect float delta

SMD

Move identifier

Move effect

SMD

Move identifier

Move effect

CNAD

Move identifier int i, int j

Move effect

SMD

Move identifier int i, int j

Move effect float delta

SMD

Move identifier int i, int j

Move effect

SMD

Move identifier int i, int j

Move effect float delta

SM

Move identifier int i, int j

Move effect

SMD

Move identifier int i, int j

Move effect float delta

SELECTIVE VERTEX CACHING (SVC)

A granular neighborhoods counterpart for vertices

Keep track of a set of interesting vertices $\overline{V_S}$ associated with solution S

INTERESTING

Vertices belonging to solution areas that recently underwent some change

RECENTLY

 $|\overline{V_S}| < C$ constant + LRU update policy

SVC TO RESTRICTED SMD INITIALIZATION

Initialize only SMDs associated with active move generators such that at least one of the endpoints belongs to the cache $\overline{V_S}$

 $\forall i$ SMD SMD Move identifier Move identifier int i, int j int i, int j Move effect Move effect float delta float delta SMD SMD SMD Move identifier Move identifier Move identifier Move identifier int i, int j int i, int j int i, int j Move effect Move effect Move effect float delta float delta float delta

 $\forall j$

Subsequent SMD Updates may incrementally include additional SMDs

SVC TO FOCUS LOCAL SEARCH APPLICATIONS

SVC TO UPDATE VERTEX-WISE MOVE GENERATORS

after HRVND execution

Update rule

$$set \gamma_i = \min\{2\gamma_i, 1\}$$

if several non improving iterations involving *i*

if new BKS is found by optimizing a solution area containing i

ROUTE MINIMIZATION

- Empirical correlation between number of routes and solution cost
- Optional polishing of the initial solution if it appears to be using more routes than necessary
 - ullet Greedy estimate k from solution of Bin Packing Problem
- Contrarily to standard route minimization procedures, it is still a qualityoriented procedure

ROUTE MINIMIZATION

Loop

1 Destroy a pair of close routes

Place the removed customers into a list L

 $\operatorname{Sort} L$

For each customer i in L

2

Find best insertion position of i in existing routes

If a position is found

Insert i

None of the routes can accomodate i

If |S| < k or U(0,1) > p

Create a route with *i*

Otherwise

Place i into a list \overline{L}

3 Set $L = \overline{L}$

4 Optimize the solution using the LS engine

Early stopping condition

5 If |L| = 0 and $(cost(S) < cost(S^*)$ or $cost(S) = cost(S^*)$ and $|S| < |S^*|$)

 $\operatorname{Set} S^* = S$

 $\text{If } |\mathcal{S}^*| \leq k$

Stop

 $6 \left[p = z \cdot p \right]$

7 If $cost(S) > cost(S^*)$

 $Set S = S^*$

ROUTE MINIMIZATION

IN ABOUT 3 SECONDS

CORE OPTIMIZATION

1 | Initialize shaking parameters $\overline{\omega}$

Initialize sparsification vector $\bar{\gamma}$

$$S^* = S$$

Loop

Perform a random walk ruin-and-recreate application on *S* to obtain *S'*

3 Optimize the S' using the LS engine

4 Update $\overline{\omega}$

4 $\left[\text{If } accept(S',t) \right] \left[S = S' \right]$

$$4 \quad \int t = c \cdot t$$

If $cost(S') < cost(S^*)$

 $S^* = S'$

Reset $\bar{\gamma}$

Otherwise

Update $\bar{\gamma}$

RANDOM WALK RUIN-AND-RECREATE

A DECLARATIVE SELECTION OF SHAKING PARAMETERS $\overline{\omega}$

A structure-aware and quality-oriented shaking meta-strategy

Random walk of length ω_s from a seed customer s

Compare S with S' and introduce a feedback to adjust the shaking intensity

A DECLARATIVE SELECTION OF SHAKING PARAMETERS $\overline{\omega}$

SVC TO UPDATE SHAKING PARAMETERS

Update rule

 $\omega_i = \omega_i \, -1$ if Shaking too **strong**

 $\omega_i = \omega_i + 1$ if Shaking too **mild**

Randomly increase if Shaking **ok**

or decrease ω_i

 $i \in \overline{V_{\hat{S}}}$

A DECLARATIVE SELECTION OF SHAKING PARAMETERS $\overline{\omega}$

COMPUTATIONAL RESULTS

- Two versions of FILO
 - FILO 100K core optimization iterations
 - FILO (long) 1M core optimization iterations
- On standard instances
 - X dataset by Uchoa et al. (2017)
- On very large-scale instances
 - B dataset by Arnold, Gendreau, and Sörensen (2019)
 - K dataset by Kytöjoky et al. (2007)
 - Z dataset by Zachariadis and Kiranoudis (2010)

XUCHOA ET AL. (2017)

VERY LARGE INSTANCES

B (3K – 30K) Arnold, Gendreau, and Sörensen (2019)

K (≈8K – 12K) Kytöjoky et al. (2007)

Z (3K)
Zachariadis and Kiranoudis (2010)

Algorithms

- KGLS, KGLS (long) Arnold, Gendreau, and Sörensen (2019)
- GVNS Kytöjoky et al. (2007)
- PSMDA Zachariadis and Kiranoudis (2010)

THANK YOU!

Report, slides and code https://github.com/acco93/filo