

EXAMINATIONS – 2016 TRIMESTER 1

COMP 261 ALGORITHMS and DATA STRUCTURES

Time Allowed: TWO HOURS

CLOSED BOOK

Permitted materials: Only silent non-programmable calculators or silent programmable calcula-

tors with their memories cleared are permitted in this examination.

Instructions: Attempt ALL Questions.

Answer in the appropriate boxes if possible — if you write your answer

elsewhere, make it clear where your answer can be found.

The exam will be marked out of 120 marks.

Non-electronic foreign to English language dictionaries are permitted.

Alphabetic order: A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Q	uestions	Marks
1.	MST	[5]
2.	Articulation Points	[20]
3.	Parsing	[20]
4.	Tries and String Search	[25]
5.	B+ Trees	[15]
6.	Compression	[15]
7.	Flood Fill	[20]

Question 1. MST [5 mark	(s]
(a) [2 marks] Give an example of a smallest graph such that Kruskal's algorithm and Prinal gorithm will add edges to the MST in a different order (but the final trees may be to same). Show the order in which the trees are constructed.	
(b) [3 marks] Give an example of a smallest graph such that the two MSTs resulting fro the two algorithms are different. Show the order in which the trees are constructed.	m

Question 2. Articulation Points

[20 marks]

(a) [4 marks] Circle the articulation points in the following graph.

(b) [6 marks] Give two examples of applications or problems where the Articulation Points algorithm would be useful that are not covered by assignment 2 (i.e. identifying critical intersections in a city).

(Question 2 continued)

(c) [10 marks] Show how the recursive depth-first-search articulation points algorithm would find the articulation points in the following graph, assuming that the search starts with node A and considers neighbours of nodes in alphabetical order. Mark on the graph

- the depth ("d:") and the reach-back ("rb:") of each node (node A is done for you),
- the return values from each recursive call,
- the nodes that are articulation points, indicating why they were marked.

The algorithm is given on the facing page for your reference.

(Question 2 continued)

```
FindArticulationPoints (graph, start):
    for each node: node.depth \leftarrow \infty, articulationPoints \leftarrow \{ \}
    start .depth \leftarrow 0, numSubtrees \leftarrow 0
    for each neighbour of start
         if neighbour.depth = \infty then
            RecursiveArtPts( neighbour, 1, start)
            numSubtrees ++
    if numSubtrees > 1 then add start to articulationPoints
RecursiveArtPts(node, depth, fromNode):
    node.depth \leftarrow depth, reachBack \leftarrow depth,
    for each neighbour of node other than fromNode
         \textbf{if} \ \ \text{neighbour.depth} < \infty \ \text{then}
             reachBack ← min(neighbour.depth, reachBack)
        else
             childReach ← RecursiveArtPts(neighbour, depth +1, node)
             reachBack ← min(childReach, reachBack)
             if childReach \ge depth then add node to articulationPoints
    return reachBack
```

Question 3. Parsing

[20 marks]

(a) [10 marks] Consider the following grammar, where terminals are always enclosed in quotation marks and nonterminals are always in capitals. Assume each nonterminal and terminal is separated with a space to form separate tokens for simplicity:

```
FOO ::= BAR FEND

FEND ::= "start" BAZ | BAZ "end" | "mid" BAZ

BAR ::= [d-z0-9]+ | BAZ

BAZ ::= a*b*c+
```

In the following list put a tick next to sentences that belong to the language defined by this grammar and a cross next to sentences that don't:

- i. abc start c
- ii. ccc ccc end
- iii. ac start aaabbb
- iv. dddd09 mid c
- v. d mid ab

(Question 3 continued)

(b) [10 marks] Write a parser that returns true or false and follows the grammar below. Assume each nonterminal and terminal is separated with a space to form separate tokens for simplicity:

```
QUERY ::= "SELECT" "*" ["FROM" NAME] ["WHERE" NAME "=" DATA] ";" NAME ::= [A-Za-z]+ DATA ::= [A-za-z0-9]*
```

public boolean parseQuery(Scanner s) {							
public boolean parsequery (Scarnier's) {							

			Student ID:						
Questic	on 4. Tries a	nd String Sea	rch			[25 marks]			
(a) [4 marks] Draw the Trie containing the following set of strings. (Note: label the links of the Trie, not the nodes.)									
	baby bait			butt apple		body			

Juestion 4 o	continued)						
) [6 marks] nplementati ficient.	Give an ex ion of a set o	cample of a of strings th	problem w an a HashS	vhere using Set, and exp	g a Trie wo plain why	ould be a n the Trie wo	nore effici ould be m

(Question 4 continued)

(c) [8 marks] Show the table that the following KMP table building algorithm would construct given the string "fgrkffgfgren":

```
computeKMPTable(string)
    initialise table to an array of integers, same length as string
    table [0] \leftarrow -1
    table [1] \leftarrow 0;
    pos \leftarrow 2;
    j \leftarrow 0;
    while pos < string.length
         if string[pos-1] = string[j]
             table [pos] \leftarrow j+1
             pos++
             j++
         else if j > 0
             j ← table[j]
         else
             table [pos] \leftarrow 0
             pos++
    return table
```

string: table:	f	g	r	k	f	f	g	f	g	r	e	n
index:	0	1	2	3	4	5	6	7	8	9	10	11

(Question 4 continued)
(d) [4 marks] Explain, using an example, how the table built in part (c) would help you find the string in a large body of text? What string would you be searching for?
(e) [3 marks] What improvement over the brute force algorithm would KMP be able to make because of this table?

Question 5. B+ Trees

[15 marks]

The following two subquestions concern a B+ tree that has internal nodes holding up to 3 keys, and leaf nodes holding up to 4 key-value pairs. The keys are letters; the values are numbers.

(a) [5 marks] Show how the B+ tree below would be changed if the following key-value pairs were added to it:

State any assumptions you make.

Alphabet: A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

(Question 5 continued)

(b) [5 marks] Show how the B+ tree below would be changed if the following key-value pair was added to it:

State any assumptions you make.

(Question 5 continued)
(c) [5 marks] Suppose the internal nodes of a B+ tree have at most 6 children (<i>i.e.</i> , 5 keys) and the leaves contain at most 4 key-value pairs. The maximum number of key-value pairs that can be in a tree is 4×6^h where the height of the tree is h . What is the minimum number of key-value pairs that can be in tree of height h ? Assume that $h \ge 1$. Show your working Note: the height of a tree is the number of edges (= number of internal nodes) on a longest path from the root to a leaf.

Student ID:																
-------------	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--

SPARE PAGE FOR EXTRA ANSWERS

Cross out rough working that you do not want marked. Specify the question number for work that you do want marked.

Student ID:							
Question 6. Compression	[15 marks]						
(a) [5 marks] Construct a trie that can be used to encode the fulffman Encoding. (Note: label the links of the Trie, not the node							
WHERE WHERE DID WHY WHAT WHEN GO							

(Question 6 continued)	
(b) [5 marks] Show the resulting encoding and state how many bits will be required to store the message from part (a):	
WHERE WHERE DID WHY WHAT WHEN GO	

(Question 6 continued)	
(c) [5 marks] What is the key idea of the Lempel-Ziv 77 compression algorithm? If explain using an example.	Please

Student ID:																	
-------------	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--

SPARE PAGE FOR EXTRA ANSWERS

Cross out rough working that you do not want marked. Specify the question number for work that you do want marked.

Question 7. Flood fill

[20 marks]

(a) [10 marks] You are given a black and white image as a matrix. The matrix is filled with boolean values (0 - white, 1 - black) that correspond to a drawing of triangle edges. Outline an algorithm (pseudo code) to fill the triangle with ones.

(Question 7 continued)

(b) [10 marks] You are given an image as before, but now with more than one shape which can be arbitrary polygons. You are given the location (row and column) of a point inside a shape *S*. Outline an algorithm (pseudo code) to fill *S* (and only *S*).

Hint: A matrix can be viewed as a graph, where each cell is connected to 4 neighbours.

* * * * * * * * * * * * * * * *

Student ID:																								
-------------	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--

SPARE PAGE FOR EXTRA ANSWERS

Cross out rough working that you do not want marked. Specify the question number for work that you do want marked.