2

WHAT IS CLAIMED IS:

1	1. A reconfigurable chip comprising:		
2	a multiplication block including at least one multiplication unit and a		
3	group of selectable adder units operably connected to the multiplication unit,		
4	wherein the adder units are selectively connectable in different configurations; and		
5	interconnect elements operably connected to the multiplication block, the		
6	interconnect elements adapted to selectively connect together the multiplication		
7	block with other reconfigurable units.		
1	2. The reconfigurable chip of Claim 1 wherein the multiplication		
2	block further comprises input multiplication multiplexers for the block.		
1	3. The reconfigurable chip of Claim 2, wherein there are fewer		
2	block input multiplexers than input multiplexers for the multiplication units.		
1	4. The reconfigurable chip of Claim 1 wherein the adder units		
2	include input multiplexers.		
1	5. The reconfigurable chip of Claim 1 wherein the multiplication		
2	units include input multiplexers.		
1	6. The reconfigurable chip of Claim 1 wherein there are multiple		
2	multiplication units in each block.		
1	7. The reconfigurable chip of Claim 1 wherein the instruction		

configures the multiplexers in the multiplication block.

3

units.

1	8.	The reconfigurable chip of Claim 1 wherein the multiplication
2	block includes	registers associated with the multiplication unit and adder units.
1	9.	The reconfigurable chip of Claim 1 wherein the other type of unit
2	is operably co	nnectable to the adder units and can be used instead of multiplier
3	units.	
1	10.	The reconfigurable chip of Claim 9 wherein the other type of unit
2	comprises the	despreader/correlator unit.
1	11.	The reconfigurable chip of Claim 1 wherein the adder units can
2	be connected t	together into chains.
1	12.	The reconfigurable chip of Claim 1 wherein the interconnect
2	elements are a	dapted to transfer word length data.
1	13.	The reconfigurable chip of Claim 1 wherein further comprising an
2	instruction me	emory storing multiple instructions for the reconfigurable functional
3	units.	
1	14.	The reconfigurable chip of Claim 13 wherein a state machine
2	addresses the	instruction memory.
1	15.	The reconfigurable chip of Claim 1 wherein the multiplication
2	block includes	a selectable output register for the multiplier units and the adder

1	16. The reconfigurable chip of Claim 1 wherein the multiplication		
2	block includes at least two multiplication units.		
1	17. The reconfigurable chip of Claim 1 wherein the multiplication		
2	block includes at least four multiplication units.		
	or 11 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
1	18. A reconfigurable chip including:		
2	a multiplication block including at least one input multiplexer, a		
3	multiplication unit operably connected to the input multiplexer, a group of		
4	selectable adder units operably connected to the multiplication unit, wherein the		
5	adder units are selectively connectable in different manners; and		
6	an instruction memory storing multiple instructions for the multiplication		
7	block.		
1	19. The reconfigurable chip of Claim 18 wherein there are input		
2	multiplexers for the block.		
1	20. The reconfigurable chip of Claim 18 wherein there are input		
2	multiplexers associated with the adder units.		
1	21. The reconfigurable chip of Claim 18 wherein there are input		
2	multiplexers for the multiplication unit.		
1	22. The reconfigurable chip of Claim 18 wherein there are fewer		
2	block input multiplexers and then input multiplexers for the multiplication units.		
1	23. The reconfigurable chip of Claim 18 wherein there are multiple		

multiplication units in each block.

2

1

2

32.

addressed by a state machine.

1	24.	The reconfigurable chip of Claim 23, wherein there are at least
2	four multiplicat	ion units in each multiplication block.
1	25.	The reconfigurable chip of Claim 18 wherein the multiplication
2	block includes a	a decoder to decode a portion of the instruction.
1	26.	The reconfigurable chip of Claim of 18 wherein the multiplication
2	block includes i	registers associated with the adders units and multiplication units.
1	27.	The reconfigurable chip of Claim 26 wherein the registers of
2	selectable outpu	at registers.
1	28.	The reconfigurable chip of Claim 18 wherein another type of unit
2	is operably com	nectable to the adders and can be used instead of the multiplier unit.
1	29.	The reconfigurable chip of Claim 28 wherein the other type of
2	unit is a desprea	ader/correlator unit.
1	30.	The reconfigurable chip of Claim 18 wherein the adder units can
2	be connectable	into a chains.
1	31.	The reconfigurable chip of Claim 18 further comprising
2	interconnect un	its operably connected to the multiplication block.

The system of Claim 18 wherein the instruction memory is

1	33. A reconfigurable chip including:
2	a multiplication block including at least one input multiplexer, a
3	multiplication unit operably connected to the input multiplexer, a group of
4	selectable adder units operably connected to the multiplication unit, wherein the
5	adder units are selectively connectable in different manners; and
6	an instruction memory storing multiple instructions for the multiplication
7	block.
1	34. The multiplication block of Claim 33 wherein there are fewer
2	block input multiplexers than input multiplexers for the multiplication units.
1	35. The multiplication block of Claim 33 wherein there are at least
2	four multiplication units in each multiplication block.
1	36. The reconfigurable chip of Claim 33, wherein there are four
2	multiplication units in each multiplication block.
1	37. The reconfigurable chip of Claim 33 wherein the multiplication
2	blocks are configured by an instruction.
1	38. The reconfigurable chip of Claim 37 wherein at least portions of
2	the instruction is sent to a decoder in the multiplication block.
1	39. The system of Claim 33 wherein the multiplication block includes
2	registers in the multiplication block to store output values.
1	40. The multiplication block of Claim 39 wherein the registers are

selectable output registers.

2

1	41. The multiplication block of Claim 33 wherein there is another	
2	type of unit operably connected to the adder units strictly used instead of the	
3	multiplier unit.	
1	42. The system of Claim 40 wherein the other type of unit comprises	
2	a despreader/correlator unit.	
1	43. The multiplication unit block of Claim 33 wherein the adder units	
2	can be arranged into a chain.	
1	44. The multiplication block of Claim 33 further associated with	
2	interconnect elements adapted to transfer data between the multiplication block and	
3	other local elements.	
1		
1	45. The multiplication block of Claim 33 further including an	
2	instruction memory storing multiple instructions for the reconfigurable functional	
3	units.	
1	46. The multiplication block of Claim 45 further comprising a state	
2	46. The multiplication block of Claim 45 further comprising a state machine addressing the instruction memory.	
2	machine addressing the histraction memory.	
1	47. A multiplication block on a reconfigurable chip, the multiplication	
2	block including:	
3	multiple block input multiplexers;	
4	at least two multiplication units, each multiplication unit associated with	
5	two multiplication input multiplexers, the multiplication input multiplexers	
6	operably connected to the multiple block input multiplexers; and	

7	a group of selectable adder units with associated adder input
8	multiplexers, the adder input multiplexers operably connected to the multiplication
9	units.
1	48. A reconfigurable chip comprising:
2	a multiplication block including at least one multiplication unit and a
3	group of selectable adder units operably connected to the multiplication unit,
4	wherein the adder units are selectively connectable in different configurations; and
5	reconfigurable functional units operably connectable to the multiplication
6	block, the reconfigurable functional units including an arithmetic logic unit and a
7	shifter unit units.