Mais detalhes

SA21: Valor de π

Tópicos: Probabilidade e Modelos, Medidas resumo

Recursos: Molde círculo inscrito no quadrado (anexo) e bolinhas (miçangas ou isopor)

Nível de Ensino: Médio, Superior.

Duração: 2 horas-aula.

Nesta atividade os estudantes vão usar os conceitos de Geometria e Estatística para fazer uma estimativa para o valor do número irracional π . No portal Wikipédia, um cálculo indica o valor de π como sendo 3,1415926535, com 10 casas decimais (ver https://pt.wikipedia.org/wiki/Pi#.E2.80.9CHist.C3.B3ria.E2.80.9D do .CF.80).

Considere um quadrado de lado ℓ e com um círculo inscrito de raio $\ell/2$ (ver figura ao lado). A área do quadrado é ℓ^2 , enquanto que a área do círculo é $\pi \ell^2/4$. Dessa forma, escolhendo um ponto ao acaso nessa figura, a probabilidade¹ desse ponto cair dentro do círculo é o quociente das áreas acima (círculo por quadrado), resultando em $\pi/4$.

Uma forma simples de obter uma estimativa, para essa probabilidade, seria escolher pontos aleatórios dentro deste quadrado, como ilustrado ao lado. Então, contamos quantos desses pontos ficam dentro do círculo. O quociente entre o número de pontos no círculo e o número de pontos gerados é uma estimativa da probabilidade $\pi/4$. Esse valor multiplicado por 4, fornece uma estimativa para π .

O experimento

Peça para os estudantes se organizarem em duplas para simular a escolha de pontos aleatórios no quadrado. Isto será feito jogando bolinhas na figura disponível em anexo. Cada dupla deverá lançar a bolinha 30 vezes (ou outro número à escolha do professor) e anotar em uma tabela todos os lançamentos, como mostra o exemplo abaixo:

Lançamentos	
Fora do círculo	Dentro do círculo
(6)	□□□□ (24)

Valor de π

Depois de obter os pontos e preencher a tabela, cada dupla irá calcular o valor estimado de π , fazendo a divisão do número de pontos dentro do círculo pelo total de lançamentos e multiplicando o resultado por quatro:

$$\frac{Quantidade\ de\ lançamentos\ dentro\ do\ c\'irculo}{Quantidade\ total\ de\ lançamentos}\times 4$$

Como no exemplo de 30 lançamentos acima, vamos obter: $(24/30) \times 4 = 0.8 \times 4 = 3.2$.

Discutindo o experimento

O professor solicita a cada dupla que apresente o valor que obtiveram e promove uma discussão geral sobre os valores encontrados. Entre as conclusões da discussão, o professor deve apontar que as diferenças são devidas à aleatoriedade envolvida no processo. Note que existem diferenças entre os resultados dos estudantes e, também, destes resultados para o valor "real" de π .

Aprofundando a discussão

Haveria alguma maneira de melhorar o valor dessa aproximação? Uma sugestão é aumentar o número de lançamentos, que deve resultar em valor mais próximo de π . Nessa discussão sobre a qualidade da aproximação, vale lembrar que o aleatório está sempre presente e não há garantias de melhor resultado, apenas "maior probabilidade" de um melhor resultado!

Veja também a atividade de planilha PL05: Valor de π que, com argumentos geométricos idênticos, utiliza recursos computacionais para desenvolver uma aproximação para π .

^{1.} A probabilidade calculada é denominada algumas vezes *probabilidade geométrica*. Ela corresponde a uma versão geométrica da definição clássica de probabilidade que é dada pelo quociente entre o número de casos favoráveis e o número de casos possíveis. Na probabilidade geométrica o quociente se dá entre medidas de comprimento, área ou volume.

