UNIVERSITÉ LAVAL ÉCOLE D'ACTUARIAT

ACT 2003

Notes de cours Modèles linéaires en actuariat

David Beauchemin

Automne 2017

© 2017 David Beauchemin

Cette création est mise à disposition selon le contrat Attribution-Partage dans les mêmes conditions 4.0 International de Creative Commons. En vertu de ce contrat, vous êtes libre de :

- partager reproduire, distribuer et communiquer l'œuvre;
- remixer adapter l'œuvre;
- utiliser cette œuvre à des fins commerciales.

Selon les conditions suivantes :

Attribution — Vous devez créditer l'œuvre, intégrer un lien vers le contrat et indiquer si des modifications ont été effectuées à l'œuvre. Vous devez indiquer ces informations par tous les moyens possibles, mais vous ne pouvez suggérer que l'offrant vous soutient ou soutient la façon dont vous avez utilisé son œuvre.

Partage dans les mêmes conditions — Dans le cas où vous modifiez, transformez ou créez à partir du matériel composant l'œuvre originale, vous devez diffuser l'œuvre modifiée dans les mêmes conditions, c'est-à-dire avec le même contrat avec lequel l'œuvre originale a été diffusée.

Résumé

abstrat

Remerciements

Le document a été bâti à partir des notes de cours ACT-2003 manuscrites rédigées par Frédérick Guillot. Ce document est une reproduction améliorée de celle-ci. Je suis grandement reconnaissant de la confiance de Frédérick Guillot pour l'exécution de cette initiative de ma part.

Je remercie Thomas Landry de m'avoir laissé utiliser ses notes pour l'utilisation et l'explication de certains concepts du cours ACT-2000. De plus, je remercie Samuel Cabral Cruz pour le code LaTeX des bulles d'informations qui à mon avis améliore la beauté de ce document. Finalement, je remercie Kaesey-Andrew Lépine qui a pris le temps de relire le document et de trouver de nombreuses erreurs typographiques.

Table des matières

1	Intr	oduct	ion 4
2	Rég	ressio	n linéaire simple 5
	2.1	Introd	$oxed{luction}$
		2.1.1	Regression linéaire simple 6
		2.1.2	Régression linéaire multiple 6
		2.1.3	Régression exponentielle
		2.1.4	Régression quadratique
	2.2	Le mo	odèle de régression linéaire simple
		2.2.1	Coefficients de régression
		2.2.2	Caractéristiques du terme d'erreur
	2.3	Propr	iétés de l'estimateur des moindres carrés (EMC) 21
		2.3.1	Estimateur sans biais
		2.3.2	Variances et covariances des estimateurs
		2.3.3	Optimalité
	2.4	Régre	ssion passant par l'origine
	2.5	Analy	se de la variance
		2.5.1	Notions préliminaires : Somme des carrés
		2.5.2	Notions préliminaires : Degrés de liberté
		2.5.3	Tableau d'analyse de la variance
	2.6	Interv	alles de confiance (I.C.) et test d'hypothèses
		2.6.1	Distribution des variables aléatoires
		2.6.2	Intervalle de confiance pour β_1
		2.6.3	Intervalle de confiance pour β_0
		2.6.4	Test d'hypothèses sur les paramètres
		2.6.5	Test de la validité globale de la régression
	2.7	Prévis	sions et intervalles de confiance
		2.7.1	I.C. pour la prévision de type I (Valeur moyenne) 44
		2.7.2	I.C. pour la prévision de type II (Vraie valeur) 46
3	Rég	ressio	n multiple 49
	3.1	Le mo	odèle sous forme matricielle
		3.1.1	Estimateur des moindes carrés (EMC)

		3.1.2	Résidus et tableau ANOVA	55
		3.1.3	Estimateur de σ^2	56
		3.1.4	Intervalles de confiance et tests d'hypothèses	56
		3.1.5	Test de Student sur un seul paramètre	57
		3.1.6	Test de Fisher pour la validité globale de la régression	58
		3.1.7	Test de Fisher partiel	58
	3.2	Sélect	ion d'un modèle optimal	59
		3.2.1	Technique 1 : Essai de tous les modèles	60
		3.2.2	Technique 2 : Élimination régressive (Backward elimination)	61
		3.2.3	Technique 3 : Sélection progressive (forward selection)	62
		3.2.4	Technique 4 : Régression pas à pas (stepwise regression)	62
	3.3	Régres	ssion avec variables indicatrices	66
	3.4	Analy	se qualitative des résidus	68
		3.4.1	Problèmes possibles dans la distribution des résidus	68
		3.4.2	Quantiles normaux	71
		3.4.3	Exemple complet	72
4	Les	modè	les linéaires généralisés	80
	4.1		luction	80
	4.2		as préliminaires : La famille exponentielle	81
A	Coc	le sour	cce de l'exemple chapitre 3	82

Chapitre 1

Introduction

L'établissement de prévisions joue un rôle central dans notre vie de tous les jours (prévisions météorologiques, horoscope, etc.), et plus particulièrement dans celle des actuaires.

Objectifs de la régression

Régulièrement en actuariat, on se questionne sur les effets de différentes variables sur d'autres. Par exemple,

- Quel est l'effet de l'âge sur la fréquence des sinistres automobiles?
- Quel est l'effet du sexe sur la mortalité? On cherche à étudier et déterminer les relations entre des variables mesurables à partir de données.

Deux grandes classes de variables mesurables :

- Qualitatives : basées sur des opinions et/ou des intuitions.
- Quantitatives : basées sur des observations, un modèle et des arguments mathématiques.

Deux grandes étapes pour établir des prévisions quantitatives

- 1. Bâtir le modèle et estimer les paramètres :
 - ex : $F = M \times a$ Qui représente un modèle déterministe
 - ex : $Y = 3 \times X + 6 + \epsilon_t$; où $\epsilon_t \sim N(0, 10)$ Qui représente un modèle probabiliste
- 2. Calculer les prévisions à partir du modèle.

Dans le cadre du cours, seulement les modèles probabilistes linéaires seront étudiés.

Chapitre 2

Régression linéaire simple

2.1 Introduction

De façon générale, en régression, nous avons :

Y Variable dépendante, ou de réponse					
$X_1, X_2,, X_n$	Soit n variables indépendantes ou explicatives, ou	Input			
	exogènes ¹				
$\beta_0, \beta_1, \beta_n$	Les paramètres à estimer				

Voici une illustration du concept de régression linéaire

^{1.} Les variables X_i sont indépendantes par rapport à y, mais pas nécessairement entre elles.

2.1.1 Regression linéaire simple

On cherche à prédire l'âge des passagers du Titanic selon le prix du billet à l'aide du modèle linéaire suivant,

Âge prédit des passagers du Titanic

2.1.2 Régression linéaire multiple

On cherche à prédire l'âge des passagers du Titanic selon le prix du billet et son sexe à l'aide du modèle linéaire suivant,

Âge prédit des passagers du Titanic

Voici la régression sous un autre angle, on voit la surface plane de régression.

Âge prédit des passagers du Titanic

2.1.3 Régression exponentielle

On cherche à prédire la sévérité d'un sinistre automobile en fonction du temps à l'aide du modèle exponentiel suivant,

Modèle de prédiction de la sévérité des sinistres

Note

On remarque que la régression exponentielle est similaire à une régression linéaire simple.

$$\ln(Y) = \ln(\beta_0) + \beta_1 \times X + \ln(\varepsilon)$$
$$Y^* = \beta_0^* + \beta_1 \times X + \varepsilon^*$$

Qu'on appelle aussi une régression multiplicative ou log linéaire.

2.1.4 Régression quadratique

On cherche à prédire la sévérité d'un sinistre automobile en fonction du temps et du temps au carré à l'aide du modèle quadratique suivant,

$$Y = \beta_0 + \beta_1 \times X + \beta_2 \times X^2 + \varepsilon$$

 \uparrow
Sévérité du Erreur aléa-
sinistre Temps toire

Modèle de prédiction de la sévérité des sinistres

Note

On remarque que la régression quadratique est similaire à une régression linéaire multiple. En posant $X_1=X$ et $X_2=X^2$

$$Y = \beta_0 + \beta_1 \times X_1 + \beta_2 \times X_2 + \varepsilon$$

Soit une régression linéaire multiple.

Dans le cadre du cours, seulement les modèles linéaires seront à l'étude pour les différentes raisons suivantes

- Plus simples
- Plusieurs modèles peuvent se ramener à un modèle linéaire simple ou multiple. (voir 2.1.3 et 2.1.4)
- Constituent souvent une très bonne approximation de la réalité qui peut être très complexe, telle que l'assurance.
- Se généralisent facilement, tels que les Generalized Linear Models. Le principal problème de la modélisation linéaire est de trouver les différents paramètres $\beta_0, \beta_1, ..., \beta_n$ de telle sorte que

$$\varepsilon = Y - f(X_1, ..., X_n; \beta_0, \beta_1, ..., \beta_n)$$
(2.1)

soit minimisé.

Il existe plusieurs méthodes pour calcul l'erreur. Soit les erreurs suivantes :

- Erreur totale
- Erreur absolue
- Erreur quadratique Quel type d'erreur est suffisante pour déterminer ε ?

2.1.4.1 Erreur totale

$$\sum_{t=1}^{n} \varepsilon_t = \sum_{t=1}^{n} \left(Y_t - (\beta_0 + \beta_1 \times X_t) \right) \tag{2.2}$$

- Facile à mettre à 0
- Manque de fiabilité à cause de la mise à zéro

2.1.4.2 Erreur absolue

$$\sum_{t=1}^{n} |\varepsilon_t| = \sum_{t=1}^{n} \left| Y_t - (\beta_0 + \beta_1 \times X_t) \right|$$
 (2.3)

- Très robuste
- Très compliquée mathématiquement, pour minimiser $\sum_{t=1}^n |\varepsilon_t|$ cela implique de dériver la fonction.

2.1.4.3 Erreur quadratique

$$\sum_{t=1}^{n} \varepsilon_t^2 = \sum_{t=1}^{n} \left[Y_t - (\beta_0 + \beta_1 \times X_t) \right]^2$$
 (2.4)

- Mathématiquement plus simple que l'erreur absolue
- Donne beaucoup de poids aux grandes erreurs

L'erreur quadratique semble donc l'option la plus simple due à la facilité mathématique et sa fiabilité.

2.2 Le modèle de régression linéaire simple

Le modèle de régression linéaire simple tente d'expliquer le mieux possible la variable dépendante 2 Y à l'aide d'une variable indépendante 3 X . Si on dispose de n paires d'observations $(X_1, Y_1), (X_2, Y_2), ..., (X_n, Y_n)$ alors, le modèle s'exprime comme suit :

$$Y_i = \beta_0 + \beta_1 \times X_i + \varepsilon_i, i = 1, ..., n.$$
(2.5)

Où β_0 est le paramètre associé à l'ordonnée à l'origine du modèle; β_1 est le paramètre associé à la pente de la droite; et ε est le terme d'erreur.

Quelques remarques sur le modèle

Dans l'équation 2.5 du modèle, on remarque que :

- Les observations de Y_i son tirées d'une variable aléatoire;
- Les observations de X_i sont considérées comme des valeurs connues et non aléatoires;
- Les paramètres β_0 et β_1 sont inconnus au départ. Ils doivent être estimés;
- ε_i sont des réalisations inconnues d'une variable aléatoire.

Exemple d'un modèle de régression

 X_t : Nombre d'années de scolarité de l'actuairet

 Y_t : Salaire de l'actuairet

^{2.} On appelle parfois la variable dépendante une variable endogène. Qui s'interprète comme étant une variable qui est due à une cause interne.

^{3.} On appelle parfois les variables dépendantes des variables exogène. Qui s'intreprète comme étant extérieur à un système.

Comment résoudre le modèle pour prédire les salaires des actuaires en fonction du nombre d'années de scolarité?

Raisonnement:

- Pour $X_t = 0$; on a $Y_t = \beta_0$. Autrement dit, le salaire avec un nombre d'années nulle de scolarité est en moyenne de β_0 . Par exemple, β_0 serait le salaire moyen d'un stagiaire.
- Par la suite, pour chaque année additionnelle de scolarité, le salaire augmente en moyenne de β_1 unitées.

Ainsi, en moyenne on a

$$E[Y_t|X_t] = \beta_0 + \beta_1 \times X_t$$

Habituellement, la relation n'est pas parfaitement exacte dans la réalité. On se retrouve ainsi avec une différence dans notre variable exogène prédite. L'erreur est notée ε_t et est telle que mentionnée plus tôt, assumée aléatoire.

$$\varepsilon_t = Y_t - E[Y_t | X_t]$$

= $Y_t - (\beta_0 + \beta_1 \times X_t)$

En réorganisant, on retrouve l'équation 2.5.

On doit maintenant trouver les paramètres β_0 et β_1 de manière à minimiser l'erreur ε_t .

Si ε_t est minimal, cela veut dire que $Y_t \approx \beta_0 + \beta_1 \times X_t$. Ce qui signifie que la droite de régression est une bonne approximation de Y_t .

i

En résumé

En résumé, on cherche à minimiser nos résidus en optimisant les paramètres β_i .

2.2.1 Coefficients de régression

Les paramètres β_0 et β_1 sont déterminés en minimisant l'erreur quadratique à l'aide de la méthode des moindres carrés.

$$S(\beta_0, \beta_1) = \sum_{t=1}^{n} \varepsilon_t^2$$

$$= \sum_{t=1}^{n} (Y_t - (\beta_0 + \beta_1 \times X_t))^2$$

$$= \sum_{t=1}^{n} (Y_t - \beta_0 - \beta_1 \times X_t)^2$$

Où $S(\psi)$ peut être considérée comme une mesure de la distance entre les données observées et le modèle théorique qui prédit ces données ⁴.

Afin de minimiser la fonction $S(\beta_0, \beta_1)$, on dérive la fonction partiellement en fonction de chacun des paramètres.

Minimisation de β_0

$$\frac{\partial S(\hat{\beta}_0, \hat{\beta}_1)}{\partial \beta_0} = 0$$

$$\frac{\partial}{\partial \beta_0} \sum_{t=1}^n (Y_t - \hat{\beta}_0 - \hat{\beta}_1 \times X_t)^2 = 0$$

$$-2 \sum_{t=1}^n (Y_t - \hat{\beta}_0 - \hat{\beta}_1 \times X_t) = 0$$

$$\sum_{t=1}^{n} Y_t - n \times \hat{\beta}_0 - \hat{\beta}_1 \sum_{t=1}^{n} X_t = 0$$
 (2.6)

^{4.} Pour de plus amples informations sur la méthode des moindres carrés et la fonction de distance, la page Wikipédia contient une bonne explication sur le sujet.

Minimisation de β_1

$$\frac{\partial S(\hat{\beta}_0, \hat{\beta}_1)}{\partial \beta_1} = 0$$

$$\frac{\partial}{\partial \beta_1} \sum_{t=1}^n (Y_t - \hat{\beta}_0 - \hat{\beta}_1 \times X_t)^2 = 0$$

$$-2 \sum_{t=1}^n (Y_t - \hat{\beta}_0 - \hat{\beta}_1 \times X_t) \times X_t = 0$$

$$\sum_{t=1}^{n} Y_t \times X_t - \hat{\beta}_0 \sum_{t=1}^{n} X_t - \hat{\beta}_1 \sum_{t=1}^{n} X_t^2 = 0$$
 (2.7)

À l'aide des équations 2.6 et 2.7, on peut trouver les deux inconnus β_0 et β_1 . À partir de 2.6 :

$$\begin{split} \sum_{t=1}^{n} Y_{t} - n \times \hat{\beta}_{0} - \hat{\beta}_{1} \sum_{t=1}^{n} X_{t} &= 0 \\ \sum_{t=1}^{n} Y_{t} - \hat{\beta}_{1} \sum_{t=1}^{n} X_{t} &= n \times \hat{\beta}_{0} \\ \frac{\sum_{t=1}^{n} Y_{t}}{n} - \hat{\beta}_{1} \frac{\sum_{t=1}^{n} X_{t}}{n} &= \hat{\beta}_{0} \end{split}$$

$$\hat{\beta_0} = \overline{Y} - \hat{\beta_1} \overline{X} \tag{2.8}$$

Et à partir de 2.7:

$$\sum_{t=1}^{n} Y_t \times X_t - \hat{\beta}_0 \sum_{t=1}^{n} X_t - \hat{\beta}_1 \sum_{t=1}^{n} X_t^2 = 0$$
$$\sum_{t=1}^{n} Y_t \times X_t - \hat{\beta}_0 \sum_{t=1}^{n} X_t = \hat{\beta}_1 \sum_{t=1}^{n} X_t^2$$

$$\hat{\beta}_1 = \frac{\sum_{t=1}^n Y_t \times X_t - \hat{\beta}_0 \sum_{t=1}^n X_t}{\sum_{t=1}^n X_t^2}$$
 (2.9)

On utilise l'équation 2.8 de $\hat{\beta}_0$ avec l'équation 2.9 de $\hat{\beta}_1$, on développe l'équation résultante afin d'isoler $\hat{\beta}_1$.

$$\begin{split} \hat{\beta_1} &= \frac{\sum_{t=1}^n Y_t \times X_t - (\overline{Y} - \hat{\beta_1} \overline{X}) \sum_{t=1}^n X_t}{\sum_{t=1}^n X_t^2} \\ &= \frac{\sum_{t=1}^n Y_t \times X_t - (\overline{Y} - \hat{\beta_1} \overline{X}) \times n \overline{X}}{\sum_{t=1}^n X_t^2} \\ &= \frac{\sum_{t=1}^n Y_t X_t - n \overline{Y} \overline{X} + \hat{\beta_1} \times \overline{X}^2 \times n}{\sum_{t=1}^n X_t^2} \end{split}$$

En isolant $\hat{\beta}_1$, on obtient la définition suivante

$$\hat{\beta}_1 = \frac{\sum_{t=1}^n Y_t X_t - n\overline{Y}\overline{X}}{\sum_{t=1}^n X_t^2 - n\overline{X}^2}$$
 (2.10)

Remarques

1. On note $\hat{\varepsilon}_t$ les résidus générés par le modèle estimé :

$$\begin{split} \hat{\varepsilon}_t &= Y_t - \hat{Y}_t \\ \hat{\varepsilon}_t &= Y_t - (\hat{\beta}_0 - \hat{\beta}_1 X_t); \text{ pour } t = 1, 2, ..., n \end{split}$$

Si on illustre graphiquement les résidus, il s'agit du segment le plus court entre la droite de régression et la donnée observée.

Si on reprend le graphique de la section 2.1.1, on observe facilement les résidus sur cette représentation graphique :

Âge prédit des passagers du Titanic

2. Le $centre\ de\ gravité^5$ des données $(\overline{X},\overline{Y})$ se trouvent exactement sur la droite de régression.

On peut facilement effectuer cette preuve à partir de l'équation 2.8,

$$\hat{\beta}_0 = \overline{Y} - \hat{\beta}_1 \overline{X}$$

$$\overline{Y} = \hat{\beta}_0 + \hat{\beta}_1 \overline{X} + 0$$

On note ainsi une absence de résidus pour le centre de masse.

Si on reprend (encore) le graphique de la section 2.1.1, on observe facilement le centre de masse sur le graphique.

^{5.} Qu'on appelle parfois le centre de masse.

centre de masse Âge du passager Prix du billet (\$)

Représentation du

3. La somme des résidus de tout modèle de régression linéaire est nulle.

$$\sum_{t=1}^{n} \hat{\varepsilon}_{t} = \sum_{t=1}^{n} \left(Y_{t} - (\hat{\beta}_{0} + \hat{\beta}_{1} X_{t}) \right)$$

$$\stackrel{2.8}{=} \sum_{t=1}^{n} \left(Y_{t} - (\overline{Y} - \hat{\beta}_{1} \overline{X}) \right)$$

$$= \sum_{t=1}^{n} Y_{t} - \sum_{t=1}^{n} \overline{Y} + \hat{\beta}_{1} \sum_{t=1}^{n} \overline{X} - \hat{\beta}_{1} \sum_{t=1}^{n} X_{t}$$

$$= n\overline{Y} - n\overline{Y} + \hat{\beta}_{1} + n\overline{X} - \hat{\beta}_{1} + n\overline{X}$$

$$= 0$$

Notation

Afin de faciliter l'écriture, on intègre la notation suivante; S_{xx} et S_{xy} . Les expressions précédantes sont appelées respectivement : la somme des carrés corrigée de x et la somme des produits croisés corrigée de x et de y. Voici le développement pour

 S_{xx} ,

$$S_{xx} = \sum_{t=1}^{n} (X_t - \overline{X})^2$$

$$= \sum_{t=1}^{n} (X_t - \overline{X})^2$$

$$= \sum_{t=1}^{n} (X_t^2 - 2X_t \overline{X} + \overline{X}^2)$$

$$= \sum_{t=1}^{n} X_t^2 - 2\overline{X} \sum_{t=1}^{n} X_t + n\overline{X}^2$$

$$= \sum_{t=1}^{n} X_t^2 - 2\overline{X}n\overline{X} + n\overline{X}^2$$

$$= \sum_{t=1}^{n} X_t^2 - n\overline{X}^2$$

On effectue le même type de développement pour $S_{xy},\,$

$$S_{xy} = \sum_{t=1}^{n} (X_t - \overline{X})(Y_t - \overline{Y})$$

$$\vdots$$

$$= \sum_{t=1}^{n} X_t Y_t - n \overline{XY}$$

À l'aide des sommes de carrés corrigés, on peut réécrire la définition de $\hat{\beta}_1$

$$\hat{\beta}_1 = \frac{S_{xy}}{S_{xx}} \tag{2.11}$$

Exemple

On poursuit avec un exemple pour assimiler l'information.

• On dispose des cinq observations suivantes du couple (X_t, Y_t) dans le tableau de gauche ainsi que les éléments calculés nécessaires pour trouver les paramètres dans le tableau de droite.

t	X_t	Y_t
1	2	2
2	3	5
3	6	3
4	9	6
5	12	5
Totaux:	32	21

t	X_t^2	X_tY_t
1	4	4
2	9	15
3	36	18
4	81	54
5	144	60
Totaux:	274	151

À partir des définitions 2.8 et 2.10, on trouve facilement la valeur de $\hat{\beta}_0$ et de $\hat{\beta}_1$.

$$\hat{\beta}_1 = \frac{\sum_{t=1}^n Y_t X_t - n \overline{YX}}{\sum_{t=1}^n X_t^2 - n \overline{X}^2}$$

$$= \frac{151 - (5)(\frac{21}{5})(\frac{32}{5})}{274 - (5)(\frac{32}{5})^2}$$

$$= \frac{83}{346}$$

$$\approx 0.2399$$

$$\hat{\beta}_0 = \overline{Y} - \hat{\beta}_1 \overline{X}$$

$$= \frac{21}{5} - (\frac{83}{346}) \times (\frac{32}{5})$$

$$\approx 2.6647$$

On obtient ainsi le modèle de régression suivant :

$$Y_t = 2.6647 + 0.2399X_t + \varepsilon_t$$

t	$Y_t = \hat{\beta}_0 + \hat{\beta}_1 X_t$	$\hat{arepsilon}_t$
1	3.1445	-1.1445
2	3.3844	1.6156
3	4.1041	-1.1041
4	4.8238	1.1762
5	5.5435	-0.5435

Exécution en R

```
3 > # Dataset
4 > x \leftarrow c(2,3,6,9,12); y \leftarrow c(2,5,3,6,5)
5 > # Estimations des parametres
6 > \text{reg} \leftarrow \text{lm}(y \ \tilde{x})
 7 > # Resume de l'estimation
 8 > summary(reg)
9 > # Valeurs de Yt
10 > fitted (reg)
11 > # Residus
12 > residuals (reg)
```

Listing 2.1 – Code source en R pour l'exemple

Astuce calculatrice

La calculatrice TI-30XS Multiview permet de créer un tableau de donnée et de sortir rapidement et facilement différentes informations sur une régression à partir des données.

Tel que:

- \overline{X} et \overline{Y} ; $\sum_{t=1}^{n} X_t$, $\sum_{t=1}^{n} X_t^2$, $\sum_{t=1}^{n} Y_t$, $\sum_{t=1}^{n} Y_t^2$ et $\sum_{t=1}^{n} X_t Y_t$; $\hat{\beta}_0$ et $\hat{\beta}_1$

Pour de plus ample information, consulter le guide sur les calculatrices.

2.2.2Caractéristiques du terme d'erreur

On rappelle que l'équation du modèle de régression correspond à

$$Y_t = \beta_0 + \beta_1 \times X_t + \varepsilon_t \tag{2.5}$$

De plus, on sait qu'il s'agit des valeurs moyennes de Y_t en sachant X_t , soit

$$Y_t = E[Y_t|X_t] + \varepsilon_t$$

On peut ainsi formuler les trois postulats ⁶ suivants,

^{6.} Le postulat est un principe non démontré, mais utilisé dans la construction d'une théorie mathématique.

- 1. $E[\varepsilon_t] = 0$, par définition pour que $E[Y_t] = E[Y_t|X_t]$. Il s'agit de l'hypothèse de linéarité de la variable explicative. On dit qu'elle est exogène si elle n'est pas corrélée au terme d'erreur.
- 2. $Var(\varepsilon_t) = \sigma^2$, la variance des termes d'erreurs est supposée constante. Il s'agit de l'hypothèse d'homoscédasticité.
- 3. $Cov(\varepsilon_t, \varepsilon_s) = 0$, pour $t \neq s$, il n'y a pas de corrélation entre les termes d'erreurs. Il s'agit de l'hypothèse d'indépendance des erreurs.

1 Quatrième postulat

Les hypothèses de linéarité et d'homoscédasticité sont très intéressantes, si on observe leurs définitions ensemble on remarque qu'il s'agit d'une distribution avec une espérance nulle et une variabilité supposée constante. Ce qui nous amène à une quatrième hypothèse, les résidus sont distribués selon une loi normale.

$$\hat{\varepsilon}_t | x_i \sim N(0, \sigma^2)$$

2.3 Propriétés de l'estimateur des moindres carrés (EMC)

2.3.1 Estimateur sans biais

On rappelle qu'un estimateur est dit sans biais lorsque son espérance est égale à la valeur vraie du paramètre, soit $E[\hat{\theta}] = \theta \Leftrightarrow b(\hat{\theta}) = 0^7$.

$$\begin{split} E[\hat{\beta}_{1}] &= E\left[\frac{\sum_{t=1}^{n}(X_{t} - \overline{X})(Y_{t} - \overline{Y})}{\sum_{t=1}^{n}(X_{t} - \overline{X})^{2}}\right] \\ &= \frac{\sum_{t=1}^{n}(X_{t} - \overline{X})E[Y_{t} - \overline{Y}]}{\sum_{t=1}^{n}(X_{t} - \overline{X})^{2}} \\ &= \frac{\sum_{t=1}^{n}(X_{t} - \overline{X})(E[Y_{t}] - E[\overline{Y}])}{\sum_{t=1}^{n}(X_{t} - \overline{X})^{2}} \end{split}$$

^{7.} Notes de cours ACT-2000, chapitre 3, Thomas Landry, Hiver 2017.

De l'équation 2.5, et avec le postulat 1, on sait que,

$$Y_t = \beta_0 + \beta_1 \times X_t + \varepsilon_t$$

$$E[Y_t] = E[\beta_0 + \beta_1 \times X_t] + E[\varepsilon_t]$$

$$\stackrel{1}{=} \beta_0 + \beta_1 \times X_t + 0$$

On applique le même raisonnement pour l'espérance de \overline{Y} .

$$\begin{split} E[\hat{\beta}_{1}] &= \frac{\sum_{t=1}^{n} (X_{t} - \overline{X})(E[Y_{t}] - E[\overline{Y}])}{\sum_{t=1}^{n} (X_{t} - \overline{X})^{2}} \\ &= \frac{\sum_{t=1}^{n} (X_{t} - \overline{X})(\beta_{0} + \beta_{1} \times X_{t} - \beta_{0} - \beta_{1} \overline{X_{t}})}{\sum_{t=1}^{n} (X_{t} - \overline{X})^{2}} \\ &= \frac{\sum_{t=1}^{n} (X_{t} - \overline{X})\beta_{1}(X_{t} - \overline{X_{t}})}{\sum_{t=1}^{n} (X_{t} - \overline{X})^{2}} \\ &= \beta_{1} \frac{\sum_{t=1}^{n} (X_{t} - \overline{X})^{2}}{\sum_{t=1}^{n} (X_{t} - \overline{X})^{2}} \\ E[\hat{\beta}_{1}] &= \beta_{1} \end{split}$$

Par conséquent,

$$\begin{split} E[\hat{\beta}_0] &= E[\overline{Y} - \hat{\beta}_1 \overline{X}] \\ &= E[\overline{Y}] - \overline{X} E[\hat{\beta}_1] \\ &= \beta_0 + \beta_1 \overline{X} - \overline{X} \beta_1 \\ E[\hat{\beta}_0] &= \beta_0 \end{split}$$

On peut ainsi conclure que les deux estimateurs des paramètres sont sans biais.

2.3.2 Variances et covariances des estimateurs

On s'intéresse aux variances et aux covariances des estimateurs, cette deuxième propriété ainsi que la première nous permettera de déduire une conclusion en lien avec le quatrième postulat.

$$Var(\hat{\beta}_{1}) = Var\left(\frac{\sum_{t=1}^{n}(X_{t} - \overline{X})(Y_{t} - \overline{Y})}{\sum_{t=1}^{n}(X_{t} - \overline{X})^{2}}\right)$$

$$= \frac{Var\left(\sum_{t=1}^{n}(X_{t} - \overline{X})Y_{t} - \sum_{t=1}^{n}(X_{t} - \overline{X})\overline{Y}\right)}{\left(\sum_{t=1}^{n}(X_{t} - \overline{X})^{2}\right)^{2}}$$

$$= \frac{Var\left(\sum_{t=1}^{n}(X_{t} - \overline{X})Y_{t}\right) + Var\left(\sum_{t=1}^{n}(X_{t} - \overline{X})\overline{Y}\right)}{\left(\sum_{t=1}^{n}(X_{t} - \overline{X})^{2}\right)^{2}}$$

$$= \frac{\sum_{t=1}^{n}(X_{t} - \overline{X})^{2}Var(Y_{t}) + Var\left(\overline{Y}(n\overline{X} - n\overline{X})\right)}{\left(\sum_{t=1}^{n}(X_{t} - \overline{X})^{2}\right)^{2}}$$

$$= \frac{\sum_{t=1}^{n}(X_{t} - \overline{X})^{2}Var(\beta_{0} + \beta_{1}X_{t} + \varepsilon_{t}) + 0}{\left(\sum_{t=1}^{n}(X_{t} - \overline{X})^{2}\right)^{2}}$$

Non aléatoire
$$Var(\beta_0 + \beta_1 X_t + \varepsilon_t)$$
Variable aléatoire
$$Variable aléatoire$$

$$= \frac{\sum_{t=1}^{n} (X_t - \overline{X})^2 Var(\varepsilon_t)}{\left(\sum_{t=1}^{n} (X_t - \overline{X})^2\right)^2}$$
$$\frac{2}{\sum_{t=1}^{n} (X_t - \overline{X})^2 \sigma^2}{\left(\sum_{t=1}^{n} (X_t - \overline{X})^2\right)^2}$$

$$Var(\hat{\beta}_1) = \frac{\sigma^2}{\sum_{t=1}^n (X_t - \overline{X})^2}$$
 (2.12)

$$\begin{split} Var(\hat{\beta}_0) &= Var(\overline{Y} - \hat{\beta}_1 \overline{X}) \\ &= Var(\overline{Y}) + Var(\hat{\beta}_1 \overline{X}) - 2Cov(\overline{Y}, \hat{\beta}_1 \overline{X}) \\ &= Var\Big(\frac{\sum_{t=1}^n Y_t}{n}\Big) + \overline{X}^2 Var(\hat{\beta}_1) - 2\overline{X}Cov(\overline{Y}, \hat{\beta}_1) \\ &= \frac{n \times Var(Y_t)}{n^2} + \overline{X}^2 \left(\frac{\sigma^2}{\sum_{t=1}^n (X_t - \overline{X})^2}\right) - 2\overline{X}Cov(\overline{Y}, \hat{\beta}_1) \end{split}$$

$$Cov(\overline{Y}, \hat{\beta}_{1}) = Cov\left(\frac{\sum_{t=1}^{n} Y_{t}}{n}, \frac{\sum_{s=1}^{n} (X_{s} - \overline{X})(Y_{s} - \overline{Y})}{\sum_{s=1}^{n} (X_{s} - \overline{X})^{2}}\right)$$

$$= \frac{1}{n} \frac{1}{\sum_{s=1}^{n} (X_{s} - \overline{X})^{2}} Cov\left(\sum_{t=1}^{n} Y_{t}, \sum_{s=1}^{n} (X_{s} - \overline{X})Y_{s} - \overline{Y}\sum_{s=1}^{n} (X_{s} - \overline{X})\right)$$

$$= \frac{1}{n} \frac{1}{\sum_{s=1}^{n} (X_{s} - \overline{X})^{2}} \sum_{t=1}^{n} \sum_{s=1}^{n} (X_{s} - \overline{X}) Cov(Y_{t}, Y_{s})$$

$$= \frac{1}{n} \frac{1}{\sum_{s=1}^{n} (X_{s} - \overline{X})^{2}} \left(\sum_{t=1}^{n} \sum_{s=1}^{n} (X_{s} - \overline{X}) \times 0 + \sum_{t=1}^{n} \sum_{s=1}^{n} (X_{s} - \overline{X})\sigma^{2}\right)$$

$$= \frac{1}{n} \frac{1}{\sum_{s=1}^{n} (X_{s} - \overline{X})^{2}} \sigma^{2} \left(\sum_{t=1}^{n} (X_{t} - \overline{X})\right)$$

$$= \frac{1}{n} \frac{1}{\sum_{s=1}^{n} (X_{s} - \overline{X})^{2}} \sigma^{2} (n\overline{X} - n\overline{X})$$

$$Var(\hat{\beta}_0) = \frac{\sigma^2}{n} + \overline{X}^2 \left(\frac{\sigma^2}{\sum_{t=1}^n (X_t - \overline{X})^2} \right)$$
 (2.13)

Finalement, pour la covariance entre $\hat{\beta}_0$ et $\hat{\beta}_1$

$$Cov(\hat{\beta}_0, \hat{\beta}_1) = Cov(\overline{Y} - \hat{\beta}_1 \overline{X}, \hat{\beta}_1)$$

$$= Cov(\overline{Y}, \hat{\beta}_1) - \overline{X} Var(\hat{\beta}_1)$$

$$= 0 - \overline{X} \frac{\sigma^2}{\sum_{t=1}^n (X_t - \overline{X})^2}$$

$$Cov(\hat{\beta}_0, \hat{\beta}_1) = -\overline{X} \frac{\sigma^2}{\sum_{t=1}^n (X_t - \overline{X})^2}$$
(2.14)

Résumé des propriétés des estimateurs

Les équations 2.13 et 2.12 ainsi que le postulat 4 à la section 2.2.2 nous permettent de conclure que

$$\hat{\beta}_0 \sim N \left(\beta_0, \frac{\sigma^2}{n} + \overline{X}^2 \left(\frac{\sigma^2}{\sum_{t=1}^n (X_t - \overline{X})^2} \right) \right)$$

$$\hat{\beta}_1 \sim N \left(\beta_1, \frac{\sigma^2}{\sum_{t=1}^n (X_t - \overline{X})^2} \right)$$

2.3.3 Optimalité

Le théorème de Gauss-Markor nous permet d'établit que l'estimateur des moindres carrés est l'estimateur non biaisé à variance minimale.

Notions importantes à retenir du théorème :

- 1. Considérer l'estimateur $\Theta^* = \sum_{t=1}^n C_t \times Y_t$
- 2. Minimiser $Var(\Theta^*)$ sous la contrainte que $E[\Theta^*] = \beta$; où

$$\beta = \begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix}$$

2.4 Régression passant par l'origine

Dans certaines situations, il est possible que l'on souhaite forcer la droite de régression à passer par l'origine. Voici un exemple de situation où il est plus logique de forcer le modèle,

 X_t : Nombre de Km parcourut

 Y_t : Consommation d'essence en L d'une voituret

Il est plus logique d'avoir une consommation de 0 L pour une distance de 0 Km.

Dans ce cas, on peut postuler le modèle suivant :

$$Y_t = \beta \times X_t + \varepsilon_t \tag{2.15}$$

On peut démontrer par le même raisonnement qu'à la section 2.2.1 que de minimisation du paramètre β correspond à :

$$\hat{\beta} = \frac{\sum_{t=1}^{n} X_t Y_t}{\sum_{t=1}^{n} X_t^2}$$
 (2.16)

On reprend l'exemple énoncer plus haut, voici le modèle représenter graphiquement :

Modèle d'analyse de la consommation d'essence

Code R

Voici le code R permettant de créer un modèle linéaire simple avec une droite passant par l'origine.

```
3 > # dataset
4 > # X Km parcourus
5 > # Y consommation essence en L
6 > simul <- 500
7 > alpha <- 1
8 > beta <- alpha/5.1
9 > y <- rgamma(simul, alpha, beta)
10 > x <- runif(simul, 0, 550)</pre>
```

Listing 2.2 – Code source en R pour l'exemple

2.5 Analyse de la variance

Un tableau d'analyse de la variance permet d'évaluer la qualité de l'ajustement du modèle aux observations.

Idée

- 1. Si on décide de modéliser Y_t sans la régression, autrement dit de l'analyse statistique⁸, alors Y est vue comme une variable aléatoire avec une certaine variance, soit Var(y).
- 2. En utilisant la régression pour modéliser Y_t en fonction de X_t une partie de la variance de Y_t est expliquée par la variance de X_t , alors que l'autre partie reste inexpliquée.
- 3. L'utilité de la régression est de trouver la proportion de la variance de Y_t qui est expliquée par la variance de X_t .

8. Cours ACT-2000

On voit que les résidus de l'échantillon 1 sont très mal expliqués par notre modèle, les résidus sont très élevés. Tandis que les résidus de l'échantillon 2 sont parfaitement expliqués par notre modèle.

\$residusMauvaisFit

1 2 3 4 5 6 7 8 2.009273 2.009212 2.009152 2.009091 2.009030 2.008970 2.008909 2.008848 9 10 2.008788 2.008727

\$residusBonFit

Il y a peu d'intérêt de construire un modèle avec les données de l'échantillon 1 car,

$$Var(Y_t) \approx 0\% \times Var(X_t) + 100\% \times Var(\varepsilon_t)$$

$$\uparrow \qquad \qquad \uparrow$$
Expliquée
Inexpliquée

Il est préférable dans ce cas-ci d'utiliser les modèles statistiques vus dans le cours ${\rm ACT\text{-}2000}.$

Par contre, il y a un intérêt à utiliser un modèle avec les données de l'échantillon 2 car.

$$Var(Y_t) = Var(X_t)$$

Autrement dit, la variable X explique bien la variable Y.

Note

Noter que les modèles précédents ont été ajustés pour mieux représenter le concept, un modèle avec un fit parfait n'est pas réaliste dans la réalité.

2.5.1 Notions préliminaires : Somme des carrés

La variance totale de Y_t est décomposable sous le modèle de régression linéaire, cette décomposition permet d'analyser l'ajustement du modèle. On la représente ainsi :

$$SST = \sum_{t=1}^{n} (Y_t - \overline{Y})^2$$

Décomposition

$$(Y_t - \overline{Y}) = Y_t - \hat{Y}_t + \hat{Y}_t - \overline{Y}$$

$$(Y_t - \overline{Y}) = (Y_t - \hat{Y}_t) + (\hat{Y}_t - \overline{Y})$$

$$\underbrace{(Y_t - \overline{Y}) =}_{\text{Variation totale de } Y_t}$$

$$\underbrace{ (Y_t - \hat{Y}_t) \ +}_{ \mbox{Variation de } Y_t }$$
 Variation expliquée par la régression

$$\underbrace{(\hat{Y}_t - \overline{Y})}_{\mbox{R\'esidu}}$$
 Variation in
expliquée par la régression

Par conséquent, on a que

$$SST = \sum_{t=1}^{n} \left[(\hat{Y}_t - \overline{Y}) + (Y_t - \hat{Y}_t) \right]^2$$
$$= \sum_{t=1}^{n} (\hat{Y}_t - \overline{Y})^2 + \sum_{t=1}^{n} (Y_t - \hat{Y}_t)^2 + 2\sum_{t=1}^{n} (\hat{Y}_t - \overline{Y})(Y_t - \hat{Y}_t)$$

$$= \underbrace{\sum_{t=1}^{n} (\hat{Y}_{t} - \overline{Y})^{2} + \sum_{t=1}^{n} (Y_{t} - \hat{Y}_{t})^{2} + 2\sum_{t=1}^{n} (\hat{Y}_{t} - \overline{Y})(Y_{t} - \hat{Y}_{t})}_{SSR}$$

$$\underbrace{\sum_{t=1}^{n} (\hat{Y}_{t} - \overline{Y})^{2} + 2\sum_{t=1}^{n} (\hat{Y}_{t} - \overline{Y})(Y_{t} - \hat{Y}_{t})}_{\psi}$$
Régression
Erreur

Développement de ψ

$$\begin{split} 2\sum_{t=1}^{n}(\hat{Y}_{t}-\overline{Y})(Y_{t}-\hat{Y}_{t}) &\Rightarrow 2\sum_{t=1}^{n}(\hat{\beta}_{0}+\hat{\beta}_{1}X_{t}-\hat{\beta}_{0}-\hat{\beta}_{1}\overline{X})(Y_{t}-\overline{Y}+\overline{Y}-\hat{Y}_{t}) \\ &= 2\sum_{t=1}^{n}\hat{\beta}_{1}(\hat{X}_{t}-\overline{X})(Y_{t}-\overline{Y}+\hat{\beta}_{0}+\hat{\beta}_{1}\overline{X}-\hat{\beta}_{0}-\hat{\beta}_{1}X_{t}) \\ &= 2\sum_{t=1}^{n}\hat{\beta}_{1}(\hat{X}_{t}-\overline{X})\bigg((Y_{t}-\overline{Y})-\hat{\beta}_{1}(X_{t}-\overline{X})\bigg) \\ &= 2\hat{\beta}_{1}\sum_{t=1}^{n}(\hat{X}_{t}-\overline{X})(Y_{t}-\overline{Y})-2\hat{\beta}_{1}^{2}\sum_{t=1}^{n}(X_{t}-\overline{X})^{2} \\ &= 2\hat{\beta}_{1}(S_{xy}-\hat{\beta}_{1}S_{xx}) \\ &= 2\hat{\beta}_{1}(S_{xy}-\frac{S_{xy}}{S_{xx}}S_{xx}) \\ &= 2\hat{\beta}_{1}(S_{xy}-S_{xy}) \\ &= 0 \end{split}$$

Ainsi,

$$SST = SSR + SSE \tag{2.17}$$

Où SSR est la variation expliquée par le modèle de régression linéaire et SSE signifie la variation inexpliquée, ou résiduelle du modèle de régression linéaire.

Intuitivement,

- Dans un bon modèle de régression, on aimerait que $-SST \approx SSR$, soit que $Var(Y_t) \approx Var(X_t)$
- 011
- $-SSE \approx 0$, soit que la variation résiduelle soit très faible
- On définit le coefficient de détermination par

$$R^2 = Corr^2(Y, \hat{Y}) = \frac{SSR}{SST} \Leftrightarrow 1 - \frac{SSE}{SST}$$
 (2.18)

Par rapport au ratio, $\frac{\text{SSR}}{\text{SST}}$ signifie le pour centage de la variance dans Y_t expliqué par la régression et $1-\frac{\text{SSR}}{\text{SST}}$ signifie le pour centage de la variance dans Y_t qui n'est pas expliquée par la régression.

- $-R^2 \in [0,1]$ Si $R^2 = 100\%$, la régression est parfaite et utile; si $R^2 = 0\%$, la régression n'est pas parfaite et est inutile.

Notions préliminaires : Degrés de liberté

Le nombre de degrés de liberté 9 d'une somme de carrés est :

- Le nombre de composants indépendants dans la somme;
- \bullet Le nombre minimal de fonctions de $Y_1,...,Y_n$ qu'il faut connaitre pour obtenir la somme;

ullet Pour SST et SSE seulement

d.l. = (Nombre de termes dans la somme) - (Nombre de paramètres estimés dans cette somme)

Ainsi.

- $SST = \sum_{t=1}^{n} (Y_t \overline{Y})^2 \to \text{n termes} (1 \text{ paramètre estimé}^{10}) = (n-1)d.l.$
- $SSE = \sum_{t=1}^{n} (Y_t \hat{Y}_t)^2$

$$\sum_{t=1}^n (Y_t - \hat{Y}_t)^2 = \sum_{t=1}^n (Y_t - \hat{\beta}_0 - \hat{\beta}_1 X_t)^2 \to \text{ n termes } -(2 \text{ paramètres estimé}^{11}) = \boxed{(n-2)d.l.}$$

• $SSR = \sum_{t=1}^{n} (\hat{Y}_t - \overline{Y})^2$

$$\sum_{t=1}^{n} (\hat{Y}_t - \overline{Y})^2 = \sum_{t=1}^{n} (\hat{\beta}_0 + \hat{\beta}_1 X_t - \hat{\beta}_0 - \hat{\beta}_1 \overline{X})^2$$
$$= \underbrace{\hat{\beta}_1^2}_{f(y_1, \dots, y_n)} \times \underbrace{\sum_{t=1}^{n} (X_t - \overline{X})^2}_{f(x_1, \dots, x_n)}$$

Soit une seule fonction des $Y_1, ..., Y_n$ doit être connue pour obtenir $SSR \rightarrow 1$ d.l.

^{9.} Couramment l'abréviation d.l. sera utiliser pour signifié degrés de liberté.

^{10.} \overline{Y}

^{11.} $\hat{\beta}_0$ et $\hat{\beta}_1$

Remarque

On sait que:

$$SST = SSE + SSR$$

On note aussi que

$$d.l.(SST) = d.l.(SSE) + d.l.(SSR)$$

 $(n-1) = (n-2) + (1)$

On aurait donc pu retrouver d.l.(SST) = d.l.(SSE) + d.l.(SSR)

2.5.3 Tableau d'analyse de la variance

On appelle couramment le tableau d'analyse de la variance le tableau ANOVA. Ce type de tableau est utilisé dans tous les logiciels de régression pour évaluer la qualité d'un modèle.

Source de la	Somme des	Degrés de li-	Carrés	Ratio de Fi-
variance	carrés (SS)	berté $(d.l.)$	moyens	sher (F)
			(MS)	
Régression	SSR	1	$MSR = \frac{SSR}{1}$	$F = \frac{MSR}{MSE}$
Erreur	SSE	n - 2	$MSE = \frac{S\dot{S}E}{n-2}$	
Total	SST	n - 1		

Exemple

On pour suit avec un exemple pour assimiler l'information, on reprend l'exemple de la section 2.2.1.

t	X_t	Y_t	$\hat{Y}_t = \hat{\beta}_0 + \hat{\beta}_1 X_t$	$\hat{arepsilon}_t$
1	2	2	3.1445	-1.1445
2	3	5	3.3844	1.6156
3	6	3	4.1041	-1.1041
4	9	6	4.8238	1.1762
5	12	5	5.5435	-0.5435
Totaux:	32	21		

$$SSE = \sum_{t=1}^{n} (Y_t - \hat{Y}_t)^2 = \sum_{t=1}^{n} \varepsilon_t^2 = 6.8179$$

$$SSR = \sum_{t=1}^{n} (\hat{Y}_t - \overline{Y})^2 = 3.9821$$

$$SST = SSE + SSR = 6.8179 + 3.9821 = 10.8000$$

ANOVA

Source	SS	d.l.	MS	F
Régression	3.9821	1	3.9821	1.7522
Erreur	6.8179	3	2.2726	
Totaux	10.8000	4		

 \mathbb{R}^2

$$R^{2} = \frac{SSR}{SST} = \frac{3.9821}{10.8000} = 36.87\%$$

$$R^{2} = 1 - \frac{SSE}{SST} = 1 - \frac{6.8179}{10.8000} = 36.87\%$$

Autrement dit, seulement 36.87 % de la variabilité des Y_t est expliquée par la variabilité des X_t . La régression n'est pas très efficace et utile.

Code R

Voici le code R permettant de créer un modèle linéaire simple avec une droite passant par l'origine.

```
3 > # Dataset

4 > y <- c(2, 5, 3, 6, 5); x <- c(2, 3, 6, 9, 12)

5 > # Estimation des betas

6 > reg <- lm(y ~ x)

7 > anova(reg)
```

Listing 2.3 – Code source en R pour l'exemple

2.6 Intervalles de confiance (I.C.) et test d'hypothèses

On pour suit l'objectif des sections 2.3 et $2.5\mathrm{m}$ soit de valider la qualité du modèle de régression.

2.6.1 Distribution des variables aléatoires

On rappel qu'avec le postulat 4 (2.2.2), on suppose que les résidus suivent une loi normale d'espérance nulle et de variance de σ^2 .

$$\hat{\varepsilon}_t | x_i \overset{i.i.d.}{\sim} N(0, \sigma^2)$$

Les conséquences de ce postulat sont les suivantes :

- 1. $(Y_t = \beta_0 + \beta_1 X_t + \varepsilon_t) \sim N(\beta_0 + \beta_1 X_t, \sigma^2)$ (Postulat 1)
- 2. Les propriétés de l'estimateur des moindres carrés avaient permis de démontrer que (section 2.3) :

$$\hat{\beta}_0 \sim N\left(\beta_0, \frac{\sigma^2}{n} + \overline{X}^2 \left(\frac{\sigma^2}{\sum_{t=1}^n (X_t - \overline{X})^2}\right)\right)$$
$$\hat{\beta}_1 \sim N\left(\beta_1, \frac{\sigma^2}{\sum_{t=1}^n (X_t - \overline{X})^2}\right)$$

$oldsymbol{A} lternative$

On peut tirer la même conclusion à partir de la propriété des fonctions linéaires de $\hat{\beta}_0$ et $\hat{\beta}_1$.

3. L'estimateur sans biais pour σ^2 est :

$$\sigma^2 = S^2 = MSE$$

$$MSE = \frac{SSE}{d.l.(SSE)}$$

$$\frac{SSE}{d.l.(SSE)} = \frac{\sum_{t=1}^{n} (Y_t - \hat{Y}_t)^2}{n-2}$$

$$\sigma^2 = \frac{\sum_{t=1}^n \varepsilon_t^2}{n-2} \tag{2.19}$$

4. On peut montrer que

$$\left| \left(\frac{SSE}{\sigma^2} \right) \sim \chi^2(n-2) \right| \tag{2.20}$$

2.6.2 Intervalle de confiance pour β_1

Attention de ne pas confondre avec $\hat{\beta}_1$. Puisque $\hat{\beta}_1 \sim N(\beta_1, Var(\hat{\beta}_1))$, on a que

$$\left(\frac{\hat{\beta}_1 - \beta_1}{\sqrt{Var(\hat{\beta}_1)}}\right) \sim N(0, 1)$$

Si σ^2 était connu, l'intervalle de confiance serait de la forme suivante

$$\left[\hat{\beta}_1 \pm Z_{\alpha/2} \times \sqrt{Var(\hat{\beta}_1)}\right]$$

Par contre, σ^2 n'est souvent pas connu et il est nécessaire de l'estimer. Tel que mentionné plus haut, l'estimateur non biaisé correspond à l'équation 2.19. Mais cet estimateur ne suit pas une distribution normale. À l'aide des notions acquises en ACT-2000, il est possible de démontrer que si on utilise l'estimateur de σ^2 , soit S^2 , dans la formule de $Var(\hat{\beta}_1)$, c'est-à-dire :

$$\widehat{Var}(\hat{\beta}_1) = \frac{S^2}{\sum_{t=1}^n (X_t - \overline{X})^2}$$

Alors, on peut conclure que:

$$\left(\frac{\hat{\beta}_1 - \beta_1}{\sqrt{Var(\hat{\beta}_1)}}\right) \sim t(n-2)$$

On obtient ainsi l'intervalle de confiance suivant au niveau $100 \times (1-\alpha)\%$ pour β_1

$$\hat{\beta}_1 \pm t_{\frac{\alpha}{2}}(n-2) \times \sqrt{\frac{S^2}{\sum_{t=1}^n (X_t - \overline{X})^2}}$$
 (2.21)

2.6.3 Intervalle de confiance pour β_0

De manière similaire, un intervalle de confiance au niveau $100 \times (1-\alpha)\%$ pour β_0 est.

$$\hat{\beta}_0 \pm t_{\frac{\alpha}{2}}(n-2) \times \sqrt{\frac{S^2}{n} + \frac{S^2 \overline{X}^2}{\sum_{t=1}^n (X_t - \overline{X})^2}}$$
 (2.22)

2.6.4 Test d'hypothèses sur les paramètres

Principales questions auxquelles on aimerait répondre :

- 1. L'ordonnée à l'origine (β_0) est-elle significativement différente de 0? Sinon, on considère le modèle $Y_t = \beta_1 \times X_t + \varepsilon_t$.
- 2. La pente (β_1) est-elle significativement différente de 0? Sinon, on considère le modèle $Y_t = \beta_0 + \varepsilon_t$.

Pour tester la question 1:

$$H_0: \beta_0 = 0$$

$$H_1:\beta_0\neq 0$$

On utilise la statistique suivante,

$$t = \frac{\hat{\beta}_0 - 0}{\sqrt{\widehat{Var}(\hat{\beta}_0)}}$$

Pour tester la question 2 :

$$H_0: \beta_1 = 0$$

$$H_1:\beta_1\neq 0$$

On utilise la statistique suivante,

$$t = \frac{\hat{\beta}_1 - 0}{\sqrt{\widehat{Var}(\hat{\beta}_1)}}$$

On rejette H_0 au niveau de confiance $100 \times (1-\alpha)\%$ pour β_0 si :

$$|t| > t_{\frac{\alpha}{2}(n-2)}$$

Voici une représentation graphique de la zone de rejet bilatéral :

Qui correspond à la probabilité de $se\ tromper$ en rejetant H_0 .

Remarques

De manière générale, on utilise plutôt les tests d'hypothèses suivants pour nos deux questions :

Pour tester la question 1 :

$$H_0: \beta_0 = \beta_0^*$$

$$H_1: \beta_0 \neq \beta_0^*$$

On utilise la statistique suivante,

$$t = \frac{\hat{\beta}_0 - \beta_0^*}{\sqrt{\widehat{Var}(\hat{\beta}_0)}}$$

Pour tester la question 2 :

$$H_0: \beta_1 = \beta_1^*$$

$$H_1: \beta_1 \neq \beta_1^*$$

On utilise la statistique suivante,

$$t = \frac{\hat{\beta}_1 - \beta_1^*}{\sqrt{\widehat{Var}(\hat{\beta}_1)}}$$

On rejette H_0 au niveau de confiance $100 \times (1-\alpha)\%$ pour β_0 si :

$$|t| > t_{\frac{\alpha}{2}(n-2)}$$

On poursuit avec un exemple pour assimiler l'information.

Exemple

Dans une régression sur un ensemble de 14 observations, on a obtenu :

$$\hat{Y}_t = 68.494 - 0.468X_t$$

ainsi que

$$\begin{split} \widehat{Var}(\hat{\beta}) &= \widehat{Var} \left(\begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix} \right) \\ &= \begin{bmatrix} \widehat{Var}(\hat{\beta}_0) & \widehat{Cov}(\hat{\beta}_0, \hat{\beta}_1) \\ \widehat{Cov}(\hat{\beta}_0, \hat{\beta}_1) & \widehat{Var}(\hat{\beta}_1) \end{bmatrix} \\ &= \begin{bmatrix} 66.8511 & 1.2544 \\ 1.2544 & 0.0237 \end{bmatrix} \end{split}$$

Question 1

Tester si β_0 est significativement différent de 0 à un taux de confiance de 95 %.

 $H_0: \beta_0 = 0$ Hypothèse nulle

 $H_1: \beta_0 \neq 0$

On utilise la statistique suivante,

$$t = \frac{\hat{\beta}_0 - 0}{\sqrt{\widehat{Var}(\hat{\beta}_0)}}$$
$$= \frac{68.494 - 0}{\sqrt{66.8511}}$$
$$= 8.38$$
$$t_{\frac{0.05}{20.05}(14-2)} = 2.18$$

Étant donné que |8.38| > 2.18, on rejette H_0 au niveau de confiance de 95 %. Autrement dit, l'ordonnée à l'origine est significative.

Question 2

Tester si β_1 est significativement différent de 0 à un taux de confiance de 95 %.

$$H_0: \beta_1 = 0$$

$$H_1: \beta_1 \neq 0$$

On utilise la statistique suivante,

$$t = \frac{\hat{\beta}_1 - 0}{\sqrt{\widehat{Var}(\hat{\beta}_1)}}$$

$$= \frac{-0.468 - 0}{\sqrt{0.0237}}$$

$$= -3.040$$

$$t_{\frac{0.05}{2}(14-2)} = 2.18$$

Étant donné que |-3.040|>2.18, on rejette H_0 au niveau de confiance de 95 %. Autrement dit, il y a 96 % de chance que la régression soit utile.

Question 2

Tester si β_1 est significativement différent de 0 à un taux de confiance de 95 %.

$$H_0: \beta_1 = 0$$

$$H_1: \beta_1 \neq 0$$
On utilise la statistique suivante,
$$t = \frac{\hat{\beta}_1 - 0}{\sqrt{\widehat{Var}(\hat{\beta}_1)}}$$

$$= \frac{-0.468 - 0}{\sqrt{0.0237}}$$

$$= -3.040$$

$$t_{\frac{0.05}{2}(14-2)} = 2.18$$

Étant donné que |-3.040|>2.18, on rejette H_0 au niveau de confiance de 95 %. Autrement dit, il y a 95 % de chance que la régression soit utile.

Question 3

Tester si β_1 est significativement négatif à un taux de confiance de 95 %.

$$H_0: \beta_1 = 0$$

$$H_1: \beta_1 < 0$$
On utilise la statistique suivante,
$$t = \frac{\hat{\beta}_1 - 0}{\sqrt{\widehat{Var}(\hat{\beta}_1)}}$$

$$= \frac{-0.468 - 0}{\sqrt{0.0237}}$$

$$= -3.040$$

$$-t_{\frac{0.05}{2}(14-2)} = -1.78$$

Il s'agit d'un test unilatéral, la zone de rejet est la suivante

Étant donné que |-3.040| < -1.78, on rejette H_0 au niveau de confiance de 95 %. Autrement dit, la pente de la droite est significativement négative.

Question 4

Obtenir un I.C. au niveau de confiance de 95 % pour β_0 .

$$\beta_0 \in \hat{\beta}_0 \pm t_{\frac{0.05}{2}} (14 - 2) \sqrt{\widehat{Var}(\hat{\beta}_0)}$$

$$\in 68.494 \pm 2.18 \times \sqrt{66.8511}$$

$$\in]50.670, 86.318[$$

L' I.C. permet de valider le test d'hypothèse de la question 1, car il ne comprend pas la valeur zéro.

Question 5

Obtenir un I.C. au niveau de confiance de 95 % pour β_1 .

$$\beta_1 \in \hat{\beta}_1 \pm t_{\frac{0.05}{2}} (14 - 2) \sqrt{\widehat{Var}(\hat{\beta}_1)}$$

$$\in -0.468 \pm 2.18 \times \sqrt{0.0237}$$

$$\in] -0.804, -0.132[$$

L'I.C. permet de valider le test d'hypothèse de la question 2 et 3, il ne comprend pas la valeur zéro et est strictement négatif.

2.6.5 Test de la validité globale de la régression

Une régression linéaire simple est valide, ou significative si $\beta_1 \neq 0$. Le tableau ANOVA obtenue en 2.5.3 peut être utilisé pour tester les hypothèses :

$$H_0: \beta_1 = 0$$

 $H_1: \beta_1 < 0$

avec la statistique de Fisher,

$$F = \frac{MSR}{MSE}$$
$$= \frac{\frac{SSR}{1}}{\frac{SSE}{(n-2)}}$$

Sous H_0 , on a que $F \sim F(1, n-2)$. On rejette donc H_0 au niveau $100 \times (1-\alpha)\%$ si

$$F > F_{\alpha}(1, n-2) \tag{2.23}$$

Équivalent

En régression linéaire simple **seulement**, le test F est équivalent au test t pour $\beta_1=0$

$$F = \frac{\frac{SSR}{1}}{\frac{SSE}{(n-2)}} = \frac{SSR}{\sigma^2} = \frac{SSR}{S^2} = \frac{\sum_{t=1}^n (\hat{Y}_t - \overline{Y})^2}{S^2}$$

$$= \frac{\sum_{t=1}^n (\hat{\beta}_0 + \hat{\beta}_1 X_t - \hat{\beta}_0 - \hat{\beta}_1 \overline{X})^2}{S^2} = \frac{\hat{\beta}_1^2 \times \sum_{t=1}^n (X_t - \overline{X})^2}{S^2}$$

$$= \frac{\hat{\beta}_1^2}{\frac{S^2}{\sum_{t=1}^n (X_t - \overline{X})^2}}$$

$$= \frac{(\hat{\beta}_1 - 0)^2}{\widehat{Var}(\hat{\beta}_1)}$$

$$= t^2$$

On poursuit avec un exemple pour assimiler l'information.

Exemple

Soit le tableau ANOVA suivant :

Source	SS	d.l.	MS	F
Régression	48.845	1	48.845	9.249
Erreur	63.374	12	5.281	
Total	112.219	13		

On cherche a vérifier la validité de la régression à l'aide du test F.

On a que F = 9.249, par contre $F_{0.05}(1, 12) = 4.75$

Puisque $F > F_{0.05}(1, 12)$; on rejette H_0 . La régression est significative au niveau de confiance de 95 %.

2.7 Prévisions et intervalles de confiance

On peut utiliser la droite de régression pour faire des types de prévisions de Y^* en sachant X^* :

Type 1

Prévision pour la valeur moyenne de Y^*

$$E[Y^*] = \beta_0 + \beta_1 X^*$$

Type 2

Prévision pour la $vraie\ valeur\ de\ Y^*$

$$Y^* = \beta_0 + \beta_1 X^* + \varepsilon$$

Remarques

1. Dans les deux types, la prévision est le point sur la droite de régression

$$\widehat{E}[Y^*] = \widehat{Y}^*$$

$$\widehat{Y}^* = \widehat{\beta}_0 + \widehat{\beta}_1 X^*$$

2. La prévision est sans biais

$$E[\hat{\beta}_0 + \hat{\beta}_1 X^*] = E[\hat{\beta}_0] + E[\hat{\beta}_1] X^*$$

= $\beta_0 + \beta_1 X^*$

3. Il y a deux sources d'erreur dans les prévisions,

• Parameter risk : Incertitude sur les estimateurs. Autrement dit, la variance des estimateurs des paramètres.

• Process risk : Fluctuations autour de la droite de régression. Autrement dit, la variance des résidus.

Effet combiner des deux sources d'erreur dans les prévisions,

2.7.1 I.C. pour la prévision de type I (Valeur moyenne)

Aussi appelé intervalle de confiance pour la droite de régression.

Tel que vue à la section 2.6.1, on a que

$$(\hat{E}[Y^*] = \hat{\beta}_0 + \hat{\beta}_1 X^*) \sim N(\beta_0 + \beta_1 X^*; Var(\hat{\beta}_0 + \hat{\beta}_1 X^*))$$

Par conséquent,

$$\frac{(\hat{\beta}_0 + \hat{\beta}_1 X^*) - (\beta_0 + \beta_1 X^*)}{\sqrt{Var(\hat{\beta}_0 + \hat{\beta}_1 X^*)}} \sim N(0, 1)$$

En substituant σ^2 par S^2 dans la $Var(\hat{\beta}_0 + \hat{\beta}_1 X^*)$; on a

$$\frac{(\hat{\beta}_0 + \hat{\beta}_1 X^*) - (\beta_0 + \beta_1 X^*)}{\sqrt{\widehat{Var}(\hat{\beta}_0 + \hat{\beta}_1 X^*)}} \sim t(n-2)$$

Ainsi, un I.C. au niveau $100 \times (1 - \alpha)\%$ pour la valeur moyenne est

$$(\hat{\beta}_0 + \hat{\beta}_1 X^*) \pm t_{\frac{\alpha}{2}}(n-2) \times \sqrt{\widehat{Var}(\hat{\beta}_0 + \hat{\beta}_1 X^*)}$$
(2.24)

On rappelle que comme σ^2 n'est souvent pas connu, il est nécessaire d'utiliser son estimateur S^2 .

Or,

$$\begin{split} Var(\hat{\beta}_0 + \hat{\beta}_1 X^*) &= Var(\overline{Y} - \overline{Y} + \hat{\beta}_0 + \hat{\beta}_1 X^*) \\ &= Var(\overline{Y} - (\hat{\beta}_0 + \hat{\beta}_1 \overline{X}) + \hat{\beta}_0 + \hat{\beta}_1 X^*) \\ &= Var(\overline{Y} + \hat{\beta}_1 (X^* - \overline{X})) \\ &= Var(\overline{Y}) + Var(\hat{\beta}_1) (X^* - \overline{X})^2 \\ &= \frac{\sigma^2}{n} + \frac{\sigma^2}{\sum_{t=1}^n (X_t - \overline{X})^2} (X^* - \overline{X})^2 \\ &= \sigma^2 \left(\frac{1}{n} + \frac{(X^* - \overline{X})^2}{\sum_{t=1}^n (X_t - \overline{X})^2} \right) \end{split}$$

Et ainsi, on obtient,

$$\widehat{Var}(\hat{\beta}_0 + \hat{\beta}_1 X^*) = S^2 \left(\frac{1}{n} + \frac{(X^* - \overline{X})^2}{\sum_{t=1}^n (X_t - \overline{X})^2} \right)$$
 (2.25)

L'I.C. est donc,

$$\left| (\hat{\beta}_0 + \hat{\beta}_1 X^*) \pm t_{\frac{\alpha}{2}}(n-2) \times \sqrt{S^2 \left(\frac{1}{n} + \frac{(X^* - \overline{X})^2}{\sum_{t=1}^n (X_t - \overline{X})^2} \right)} \right|$$
 (2.26)

Remarque

- 1. Plus X^* s'éloigne de \overline{X} , plus l'I.C. est large, parce que l'incertitude augmente.
- 2. Les limites de l'intervalle sont des hyperboles centrées en $(\overline{X}, \overline{Y})$
- 3. Cet I.C. peut être appelé :
 - I.C. pour la valeur moyenne;
 - I.C. pour la droite de régression;
 - I.C. pour la tendance.
- 4. Dans ce type d' I.C., on tient seulement compte du risque de paramètre.

2.7.2 I.C. pour la prévision de type II (Vraie valeur)

Aussi appelé I.C. pour les points de Y^* . Pour obtenir un I.C. pour la vraie valeur de

 Y^* , il faut tenir compte du parameter risk $(Var(\hat{\beta}_i))$ ET du process risk $(Var(\varepsilon_t))$. On considère donc de manière équivalente à la section 2.7.1,

$$\frac{Y^*-\hat{Y}^*}{\sqrt{Var(Y^*-\hat{Y}^*)}}\sim N(0,1)$$

En substituant σ^2 par S^2 dans $Var(Y^* - \hat{Y}^*)$, on a

$$\frac{Y^* - \hat{Y}^*}{\sqrt{\widehat{Var}(Y^* - \hat{Y}^*)}} \sim t(n-2)$$

Ainsi, un I.C. au niveau $100 \times (1 - \alpha)\%$ pour β_1 pour la vraie valeur de Y^* est,

$$\hat{Y}^* \pm t_{\frac{\alpha}{2}}(n-2) \times \sqrt{\widehat{Var}(Y^* - \hat{Y}^*)}$$

Or par hypothèse on a

$$Var(Y^* - \hat{Y}^*) = Var(Y^*) + Var(\hat{Y}^*)$$

$$= \underbrace{\sigma^2}_{t=1} + \underbrace{\sigma^2 \left(\frac{1}{n} + \frac{(X^* - \overline{X}^*)^2}{\sum_{t=1}^n (X_t - \overline{X}^*)^2}\right)}_{t=1}$$

Process risk Parameter risk

D'où

$$\widehat{Var}(Y^* - \hat{Y}^*) = S^2 \left(1 + \frac{1}{n} + \frac{(X^* - \overline{X}^*)^2}{\sum_{t=1}^n (X_t - \overline{X}^*)^2} \right)$$
 (2.27)

L'I.C. est donc,

$$(\hat{\beta}_0 + \hat{\beta}_1 X^*) \pm t_{\frac{\alpha}{2}}(n-2) \times \sqrt{S^2 \left(1 + \frac{1}{n} + \frac{(X^* - \overline{X}^*)^2}{\sum_{t=1}^n (X_t - \overline{X}^*)^2}\right)}$$
 (2.28)

Exemple en R

Il est possible d'obtenir le résultat des formules des sections 2.7.1 et 2.7.2.

I.C. de type I pour tous les X dans les observations

	fit	lwr	upr
1	0.2976408	-0.2114559	0.8067376
2	0.9660814	0.2381737	1.6939890
3	0.2179559	-0.2766808	0.7125925
4	0.8036262	0.1406114	1.4666410
5	-1.1900871	-1.9723959	-0.4077784

I.C. de type I pour un vecteur X^*

```
fit lwr upr

1 -0.12109949 -0.59563924 0.3534403

2 0.05605478 -0.42020540 0.5323150

3 0.23320904 -0.26393382 0.7303519

4 0.41036330 -0.12458509 0.9453117

5 0.58751757 0.00110472 1.1739304
```

I.C. de type II pour un vecteur X^*

lwr

fit

```
1 -0.12109949 -2.012965 1.770766
  2 0.05605478 -1.836243 1.948353
  3 0.23320904 -1.664452 2.130870
  4 0.41036330 -1.497551 2.318278
  5 0.58751757 -1.335461 2.510496
3 > # dataset
4 > x < - rnorm(15)
5 > y < -x + rnorm(15)
6 > xStar \leftarrow data.frame(x = seq(0, 2, by = 0.2))
7 > # Modele de regression
8 > \text{ fit } \leftarrow \text{lm}(y \tilde{x})
9 > # I.C. de type 1
predict(fit, interval = "confidence") # I.C. pour tous les X
      dans les observations
predict(fit, interval = "confidence", newdata = xStar) # I.C.
      pour un vecteur de X^*
12 > # I.C. de type 2
predict(fit, interval = "prediction", newdata = xStar) # I.C.
  pour un vecteur de x^*
```

upr

Listing 2.4 – Code source en R pour l'exemple

Chapitre 3

Régression multiple

Il n'est pas rare que plus d'une variable soit nécessaire pour expliquer un phénomène. Tel que vue à la section 2.1.2, voici un exemple de modèle de régression multiple :

De manière générale, la régression multiple considère le modèle général suivant :

$$Y_t = \beta_0 + \beta_1 X_{t,1} + \beta_2 X_{t,2} + ... + \beta_p X_{t,p} + \varepsilon_t$$
 , pour $t=1,...,n$

- n observations
- p variables exogènes $(X_1, ..., X_p)$
- (p+1) paramètres à estimer $(\beta_0, \beta_1, ..., \beta_p)$

Quelques éléments d'algèbre matricielle pour les vecteurs et matrices aléatoires

Soient $X_1,...X_n$ des variables aléatoires, on définit le vecteur aléatoire X suivant

$$\mathbb{X} = \begin{bmatrix} X_1 \\ X_2 \\ \vdots \\ X_n \end{bmatrix}_{n \times 1}$$

On définit le vecteur espérance de la façon suivante

$$E[X] = \begin{bmatrix} E[X_1] \\ E[X_2] \\ \vdots \\ E[X_n] \end{bmatrix}_{n \times 1}$$

et la matrice de variance-covariance

$$Var(X) = \underbrace{E\Big[(X - E[X])(X - E[X])^{\mathsf{T}}\Big]}_{Cov(X_n, X_1)} = \begin{bmatrix} Var(X_1) & \cdots & Cov(X_1, X_n) \\ \vdots & & & \\ Cov(X_n, X_1) & \cdots & Var(X_n) \end{bmatrix}_{n \times 1}$$

Produit matriciel

Théorème

Soit \mathbb{X} , un vecteur aléatoire et \mathbb{A} une matrice de constantes telle que :

$$\mathbb{X} = \mathbb{X}_{n \times 1}$$
 et $\mathbb{A} = \mathbb{A}_{p \times n}$

Alors,

$$E[\mathbb{AX}] = \mathbb{A}E[\mathbb{X}]$$
$$Var(\mathbb{AX}) = \mathbb{A}Var(\mathbb{X})\mathbb{A}^{\mathsf{T}}$$

Exemple

$$\mathbb{A} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}_{2\times 1}^{\mathsf{T}} = \begin{bmatrix} 1 & 1 \end{bmatrix}_{1\times 2}$$
$$\mathbb{X} = \begin{bmatrix} X_1 \\ X_2 \end{bmatrix}_{2\times 1}$$

Intuitivement,

$$\begin{split} \mathbb{A} \mathbb{X} &= X_1 + X_2 \\ \Rightarrow & E[\mathbb{A} \mathbb{X}] = E[X_1 + X_2] = E[X_1] + E[X_2] \\ \Rightarrow & Var(\mathbb{A} \mathbb{X}) = Var(X_1 + X_2) = Var(X_1) + Var(X_2) + 2cov(X_1, X_2) \end{split}$$

En calcul matriciel,

$$\begin{split} E[\mathbb{AX}] &= \mathbb{A}E[\mathbb{X}] \\ &= \begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} E[X_1] \\ E[X_2] \end{bmatrix} \\ &= E[X_1] + E[X_2] \\ Var(\mathbb{AX}) &= \mathbb{A}Var(\mathbb{X})\mathbb{A}^{\mathsf{T}} \\ &= \begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} Var(X_1) & Cov(X_1, X_2) \\ Cov(X_1, X_2) & Var(X_2) \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \\ &= \left[\left(Var(X_1) + Cov(X_1, X_2) \right) & \left(Cov(X_1, X_2) + Var(X_2) \right) \right] \begin{bmatrix} 1 \\ 1 \end{bmatrix} \\ &= Var(X_1) + Var(X_2) + 2cov(X_1, X_2) \end{split}$$

3.1 Le modèle sous forme matricielle

À partir du modèle général suivant,

$$Y_t = \beta_0 + \beta_1 X_{t,1} + \beta_2 X_{t,2} + \dots + \beta_p X_{t,p} + \varepsilon_t, t = 1, \dots, n$$

On représente les n formules suivantes

$$\begin{split} Y_1 &= \beta_0 + \beta_1 X_{1,1} + \ldots + \beta_p X_{1,p} + \varepsilon_1 \\ Y_2 &= \beta_0 + \beta_1 X_{2,1} + \ldots + \beta_p X_{2,p} + \varepsilon_2 \\ &\vdots \\ Y_n &= \beta_0 + \beta_1 X_{n,1} + \ldots + \beta_p X_{n,p} + \varepsilon_n \end{split}$$

Qu'il est possible de réécrire sous forme matricielle,

$$\begin{bmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_n \end{bmatrix}_{n \times 1} = \begin{bmatrix} \beta_0 + \beta_1 X_{1,1} + \dots + \beta_p X_{1,p} \\ \beta_0 + \beta_1 X_{2,1} + \dots + \beta_p X_{2,p} \\ \vdots \\ \beta_0 + \beta_1 X_{n,1} + \dots + \beta_p X_{n,p} \end{bmatrix}_{n \times 1} + \begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \vdots \\ \varepsilon_n \end{bmatrix}_{n \times 1}$$

Ou encore de la façon suivante,

$$\begin{bmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_n \end{bmatrix}_{n \times 1} = \begin{bmatrix} 1 & X_{1,1} & \dots & X_{1,p} \\ 1 & X_{2,1} & \dots & X_{2,p} \\ \vdots & \vdots & \vdots & \vdots \\ 1 & X_{n,1} & \dots & X_{n,p} \end{bmatrix}_{n \times (p+1)} \begin{bmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_p \end{bmatrix}_{(p+1) \times 1} + \begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \vdots \\ \varepsilon_n \end{bmatrix}_{n \times 1}$$

De manière plus compacte, on utilise la notation suivante

$$\mathbb{Y} = \mathbb{X}\beta + \varepsilon$$

, avec :

- $\bullet\,$ Y est un vecteur de de dimension $n\times 1$ des variables réponses.
- X est une matrice schéma de dimension $n \times (p+1)$ qui correspond au variables explicatives.
- β est un vecteur de dimension $(p+1) \times 1$ des coefficients à estimer.
- ε est un vecteur de dimension $n \times 1$ des erreurs de telle sorte que
- $-\ E[\varepsilon]=\mathbb{O}_{n\times 1},$ où \mathbb{O} correspond à une matrice nulle.
- $-Var(\varepsilon) = \sigma^2 \mathbb{I}_{n \times n}$, où \mathbb{I} correspond à une matrice identité.

Remarques

- 1. On suppose que $(\mathbb{X}^{\intercal}\mathbb{X})^{-1}$ existe, que \mathbb{X} est de rang complet et que $\left((\mathbb{X}^{\intercal}\mathbb{X})^{-1}\right)^{\intercal} = (\mathbb{X}^{\intercal}\mathbb{X})^{-1}$
- 2. Pour un modèle de régression linéaire simple, il suffit de définir la matrice schéma de la façon suivante :

$$\mathbb{X} = \begin{bmatrix} 1 & X_1 \\ 1 & X_2 \\ \vdots & \vdots \\ 1 & X_n \end{bmatrix}_{n \times 2}$$

3. Pour un modèle passant par l'origine, il n'y a pas de colonne de 1 dans la matrice schéma :

$$\mathbb{X} = \begin{bmatrix} X_{1,1} & \dots & X_{1,p} \\ X_{2,1} & \dots & X_{2,p} \\ \vdots & \vdots & \vdots \\ X_{n,1} & \dots & X_{n,p} \end{bmatrix}_{n \times (p)}$$

4. Pour un modèle du type $Y_t = \beta_0 + \beta_1 X_t + \beta_2 X_t^2 + \varepsilon_t$, il ne suffit que de définir la matrice schéma telle que :

$$\mathbb{X} = \begin{bmatrix} 1 & X_1 & \dots & X_1^2 \\ \vdots & \vdots & \vdots & \vdots \\ 1 & X_n & \dots & X_n^2 \end{bmatrix}_{n \times (p)}$$
$$X_{t,1} = X_t$$
$$X_{t,2} = X_t^2$$

3.1.1 Estimateur des moindes carrés (EMC)

On peut démontrer que l'estimateur $\hat{\beta}$ de $\hat{\beta}$ qui minimise la somme résiduelle des carrés correspond à l'équation suviante :

$$S(\beta) = \sum_{t=1}^{n} (Y_t - \hat{Y}_t)^2$$
$$= \sum_{t=1}^{n} \varepsilon_t^2$$
$$= \varepsilon^{\mathsf{T}} \varepsilon$$
$$= (\mathbb{Y} - \mathbb{X}\beta)^{\mathsf{T}} (\mathbb{Y} - \mathbb{X}\beta)$$

est donné par

$$\hat{\beta} = (\mathbb{X}^{\mathsf{T}}\mathbb{X})^{-1}\mathbb{X}^{\mathsf{T}}\mathbb{Y} \tag{3.1}$$

Exemple

On poursuit avec un exemple en régression linéaire simple pour assimiler l'information.

À l'aide des matrices suivantes, déterminer les paramètres de la droite de régression.

$$\mathbb{Y} = \begin{bmatrix} Y_1 \\ \vdots \\ Y_n \end{bmatrix}; \mathbb{X} = \begin{bmatrix} 1 & X_1 \\ \vdots & \vdots \\ 1 & X_n \end{bmatrix}; \mathbb{X}^\intercal = \begin{bmatrix} 1 & \cdots & 1 \\ X_1 & \cdots & X_n \end{bmatrix}$$

$$\mathbb{X}^{\mathsf{T}}\mathbb{X} = \begin{bmatrix} 1 & \cdots & 1 \\ X_1 & \cdots & X_n \end{bmatrix} \begin{bmatrix} 1 & X_1 \\ \vdots & \vdots \\ 1 & X_n \end{bmatrix}$$
$$= \begin{bmatrix} n & \sum_{t=1}^n X_t \\ \sum_{t=1}^n X_t & \sum_{t=1}^n X_t^2 \end{bmatrix}$$

$$(\mathbb{X}^\intercal\mathbb{X})^{-1} = \frac{1}{nX_t^2 - (n\overline{X})^2} \begin{bmatrix} \sum_{t=1}^n X_t^2 & n\overline{X} \\ n\overline{X} & n \end{bmatrix}$$

$$\mathbb{X}^{\mathsf{T}}\mathbb{Y} = \begin{bmatrix} 1 & \cdots & 1 \\ X_1 & \cdots & X_n \end{bmatrix} \begin{bmatrix} Y_1 \\ \vdots \\ Y_n \end{bmatrix}$$
$$= \begin{bmatrix} \sum_{t=1}^n Y_t \\ \sum_{t=1}^n X_t Y_t \end{bmatrix}$$
$$= \begin{bmatrix} n\overline{Y} \\ \sum_{t=1}^n X_t Y_t \end{bmatrix}$$

Ainsi,

$$\begin{split} \hat{\beta} &= \begin{bmatrix} \hat{\beta}_0 \\ \hat{\beta}_1 \end{bmatrix} \\ &= (\mathbb{X}^{\intercal} \mathbb{X})^{-1} \mathbb{X}^{\intercal} \mathbb{Y} \\ &= \begin{bmatrix} \frac{n\overline{Y} \sum_{t=1}^n X_t^2 - n\overline{X} \sum_{t=1}^n X_t Y_t}{n \sum_{t=1}^n X_t^2 - (n\overline{X})^2} \\ \frac{n \sum_{t=1}^n X_t Y_t - (n\overline{Y})(n\overline{X})}{n \sum_{t=1}^n X_t^2 - (n\overline{X})^2} \end{bmatrix} \\ &= \begin{bmatrix} \overline{Y} \sum_{t=1}^n X_t^2 - \overline{X} \sum_{t=1}^n X_t Y_t + n\overline{X}^2 \overline{Y} - n\overline{X}^2 \overline{Y} \\ \frac{n \sum_{t=1}^n X_t^2 - (n\overline{X})^2}{\sum_{t=1}^n X_t Y_t - n\overline{Y} X} \\ \sum_{t=1}^n X_t Y_t - n\overline{Y} X \end{bmatrix} \\ &= \begin{bmatrix} \overline{Y} - \hat{\beta}_1 \overline{X} \\ \hat{\beta}_1 \end{bmatrix} \end{split}$$

Qui corresponde bien aux estimateurs de $\hat{\beta}_0$ (2.8) et $\hat{\beta}_1$ (2.10) trouver précédament.

Propriétés des estimateurs

1. Sans biais

$$\begin{split} E[\hat{\beta}] &= E\left[(\mathbb{X}^{\mathsf{T}}\mathbb{X})^{-1}\mathbb{X}^{\mathsf{T}}\mathbb{Y}\right] \\ &\stackrel{3}{=} (\mathbb{X}^{\mathsf{T}}\mathbb{X})^{-1}\mathbb{X}^{\mathsf{T}}E[\mathbb{Y}] \\ &= (\mathbb{X}^{\mathsf{T}}\mathbb{X})^{-1}\mathbb{X}^{\mathsf{T}}(\mathbb{X}\beta) \\ &= (\mathbb{X}^{\mathsf{T}}\mathbb{X})^{-1}(\mathbb{X}^{\mathsf{T}}\mathbb{X})\beta \\ &= \mathbb{I}\beta \\ &= \beta \end{split}$$

2. Variance-covariance

$$\begin{split} Var\hat{\beta}) &= Var\big((\mathbb{X}^{\mathsf{T}}\mathbb{X})^{-1}\mathbb{X}^{\mathsf{T}}\mathbb{Y}\big) \\ &\stackrel{3}{=} (\mathbb{X}^{\mathsf{T}}\mathbb{X})^{-1}\mathbb{X}^{\mathsf{T}}Var(\mathbb{Y})\big[(\mathbb{X}^{\mathsf{T}}\mathbb{X})^{-1}\mathbb{X}^{\mathsf{T}}\big]^{\mathsf{T}} \\ &= (\mathbb{X}^{\mathsf{T}}\mathbb{X})^{-1}\mathbb{X}^{\mathsf{T}}\sigma^{2}\mathbb{I}\bigg[\mathbb{X}\big[(\mathbb{X}^{\mathsf{T}}\mathbb{X})^{-1}\big]^{\mathsf{T}}\bigg] \\ &\stackrel{1}{=} \sigma^{2}(\mathbb{X}^{\mathsf{T}}\mathbb{X})^{-1}\mathbb{X}^{\mathsf{T}}\bigg[\mathbb{X}\big[(\mathbb{X}^{\mathsf{T}}\mathbb{X})^{-1}\big]\bigg] \\ &= \sigma^{2}(\mathbb{X}^{\mathsf{T}}\mathbb{X})^{-1}(\mathbb{X}^{\mathsf{T}}\mathbb{X})(\mathbb{X}^{\mathsf{T}}\mathbb{X})^{-1} \\ &= \sigma^{2}\mathbb{I}(\mathbb{X}^{\mathsf{T}}\mathbb{X})^{-1} \\ &= \sigma^{2}(\mathbb{X}^{\mathsf{T}}\mathbb{X})^{-1} \end{split}$$

3.1.2 Résidus et tableau ANOVA

On définit les résidus comme ceci,

$$\varepsilon_{n \times 1} = \mathbb{Y} - \hat{\mathbb{Y}}$$

$$= \mathbb{Y} - \mathbb{X}\hat{\beta}$$

$$= \mathbb{Y} - \mathbb{X}(\mathbb{X}^{\mathsf{T}}\mathbb{X})^{-1}\mathbb{X}^{\mathsf{T}}\mathbb{Y}$$

$$= \mathbb{Y}(\mathbb{I} - \mathbb{X}(\mathbb{X}^{\mathsf{T}}\mathbb{X})^{-1}\mathbb{X}^{\mathsf{T}})$$

$$= \mathbb{Y}(\mathbb{I} - \mathbb{H})$$

Où H correspond à la matrice de projection (Hat matrix).

Les sommes des carrés du tableau ANOVA sont données par les expressions suivantes :

$$\bullet SST = \sum_{t=1}^{n} (Y_t - \overline{Y})^2$$

$$= \sum_{t=1}^{n} Y_t^2 - n \overline{Y}^2$$

$$= \mathbb{Y}^{\mathsf{T}} \mathbb{Y} - n \overline{Y}^2$$

$$Avec (n-1) \text{ degr\'e de libert\'e}$$

$$\bullet SSE = \sum_{t=1}^{n} (Y_t - \hat{Y})^2$$

$$= \sum_{t=1}^{n} \varepsilon_t^2$$

$$= \varepsilon^{\mathsf{T}} \varepsilon$$

$$\text{Avec } (n - (p+1)) \text{ degr\'e de libert\'e}$$

$$\bullet SSR = \sum_{t=1}^{n} (\hat{Y}_t - \hat{Y})^2$$

$$= \sum_{t=1}^{n} \hat{Y}_t^2 - n\overline{Y}^2$$

$$= \hat{\mathbb{Y}}^{\mathsf{T}} \hat{\mathbb{Y}} - n\overline{Y}^2$$

$$\text{Avec } (p) \text{ degr\'e de libert\'e}$$

Dans le cas de régression multiple, le tableau ANOVA est le suivant :

Source de la	Somme des	Degrés de li-	Carrés	Ratio de Fi-
variance	carrés (SS)	berté $(d.l.)$	moyens	sher (F)
			(MS)	
Régression	SSR	р	$\frac{SSR}{p}$	$\frac{MSR}{MSE}$
Erreur	SSE	n - (p+1)	$\frac{{}^{p}_{SSE}}{n-(p+1)}$	
Total	SST	n - 1		

3.1.3 Estimateur de σ^2

Dans le cas de la régression multiple, on peut démontrer qu'un bon estimateur sans biaais de σ^2 est S^2 sous la forme suivante :

$$S^2 = MSE$$

$$= \frac{SSE}{n - (p+1)}$$

3.1.4 Intervalles de confiance et tests d'hypothèses

Essentiellement, on a la même chose qu'au chapitre 2 pour les tests t et F, sauf qu'il faut adapter les degrés de liberté.

On rappel qu'avec le postulat 4 (2.2.2), on suppose que les résidus suivent une loi

normale d'espérance nulle et de variance de σ^2 .

$$\varepsilon_t \overset{i.i.d.}{\sim} N(0, \sigma^2)$$

$$\varepsilon_{n \times 1} \sim N(\mathbb{O}, \sigma^2 \mathbb{I}_{n \times n})$$

Ainsi on a que $(\mathbb{Y} = \mathbb{X}\beta + \varepsilon) \sim N_n(\mathbb{X}\beta; \sigma^2 \mathbb{I}_{n \times n})$ et que $\hat{\beta} \sim N_n(\beta; (\mathbb{X}^\intercal \mathbb{X})^{-1} \sigma^2)$.

3.1.5 Test de Student sur un seul paramètre

On effectue le test suivant,

$$H_0: \beta_i = \beta_i^*$$

$$H_1: \beta_i \neq \beta_i^*$$

Où β_i^* est une constante.

On teste l'hypothèse à l'aide de la statistique suivante,

$$t = \frac{\hat{\beta}_i - \beta_i^*}{\sqrt{[Var(\hat{\beta})]_{i+1 \times i+1}}} \sim N(0, 1)$$

et en remplacant σ^2 par S^2 dans la matrice de la variance, on obtient

$$t = \frac{\hat{\beta}_i - \beta_i^*}{\sqrt{[\widehat{Var}(\hat{\beta})]_{i+1 \times i+1}}} \sim t(n - (p+1))$$

On rejette H_0 au niveau de confiance $100 \times (1 - \alpha)\%$ pour si :

$$|t| > t_{\frac{\alpha}{2}(n-(p+1))}$$

Or, on a que $Var((\hat{\beta})) = (\mathbb{X}^\intercal \mathbb{X})^{-1} \sigma^2$ Ainsi

$$\widehat{Var}((\hat{\beta})) = (\mathbb{X}^{\mathsf{T}}\mathbb{X})^{-1}S^2$$
(3.2)

Avec un peu d'algèbre, on transforme ce test d'hypothèse en un intervalle de confiance pour β_i . L'I.C. marginal est donc le suivant :

$$\hat{\beta}_i \pm t_{\frac{\alpha}{n}}(n - (p+1)) \times \sqrt{\left[\left(\mathbb{X}^{\mathsf{T}}\mathbb{X}\right)^{-1}S^2\right]}_{i+1 \times i+1}$$
(3.3)

3.1.6 Test de Fisher pour la validité globale de la régression

Dans le cas de la régression multiple, on teste

$$H_0: \beta_1 = \beta_2 = \dots = \beta_p = 0$$

 H_1 : Au moins un coefficient parmi $\beta_1,...,\beta_p$ est $\neq 0$.

On teste l'hypothèse à l'aide de la statistique suivante,

$$F = \frac{MSR}{MSE} \sim F(\text{d.l. de SSR, d.l. de SSE})$$

$$F = \frac{MSR}{MSE} \sim F(p, n - (p + 1))$$

On rejette H_0 au niveau de confiance $100 \times (1 - \alpha)\%$ pour si :

$$F > F_{\alpha}(p, n - (p+1))$$

Remarque importante

De manière générale, avec p variables explicatives, on a que :

$$F \neq t^2$$

L'égalité ne survient que lorsque p=1 (Voir la section 2.6.5).

3.1.7 Test de Fisher partiel

À la section 3.1.6 on a testé si tous les $\beta_1, \beta_2, ..., \beta_p$ étaient nuls.

Dans cette section, on teste simultanément si certains β_i parmi $\beta_1, \beta_2, ..., \beta_p$ sont nuls.

On teste donc:

 H_0 : Un modèle *réduit*, noté M_0 dont certains $\beta_i = 0$ parmi $\beta_1, \beta_2, ..., \beta_p$ est acceptable.

 H_1 : On doit utiliser le modèle *complet*, noté M_1 avec les p variables.

On utilise la statistique de Fisher partielle suivante,

$$F^* = \frac{\frac{[SSE(M_0) - SSE(M_1)]}{[d.l.(SSE(M_0)) - d.l.(SSE(M_1))]}}{\frac{SSE(M_1)}{d.l.(SSE(M_1))}}$$
(3.4)

On rejette H_0 au niveau de confiance $100 \times (1 - \alpha)\%$ si :

$$F^* > F_{\alpha} \Big(d.l.(SSE(M_0)) - d.l.(SSE(M_1)); d.l.(SSE(M_1)) \Big)$$

Remarque

Si le modèle réduit de H_0 ne consiste qu'à $\beta_i = 0$, autrement dit un seul paramètre, alors on aura que $F^* = t^2$. Dans ce cas **seulement**, le test Fisher partiel est équivalent au test de Student.

Exemple

On poursuit avec un exemple pour assimiler l'information.

Soit le modèle de régression multiple suivant :

$$Y_t = \beta_0 + \beta_1 X_{t,1} + \beta_2 X_{t,2} + \beta_3 X_{t,3} + \beta_4 X_{t,4} + \varepsilon_t$$

On teste donc:

$$H_0: \beta_2 = \beta_3 = 0$$

 $H_1: \beta_2 \neq 0 \text{ et/ou } \beta_3 \neq 0$

Afin d'effectuer le test, on effectue les étapes suivantes :

Étape 1 Obtenir le tableau ANOVA pour le modèle sous le modèle complet M_0 . Extraire $SSE(M_0)$ et $d.l.(SSE(M_0)) \Rightarrow n-3$

Étape 2 Obtenir le tableau ANOVA pour le modèle sous le modèle complet M_1 . Extraire $SSE(M_1)$ et $d.l.(SSE(M_1)) \Rightarrow n-5$

Étape 3 Calculer la valeur de la statistique de Fisher partielle.

$$F^* = \frac{\frac{[SSE(M_0) - SSE(M_1)]}{[(n-3) - (n-5)]}}{\frac{SSE(M_1)}{(n-5)}}$$

Puis rejeter H_0 au niveau de confiance $100 \times (1-\alpha)\%$ si :

$$F^* > F_{\alpha}(2; n-5)$$

3.2 Sélection d'un modèle optimal

Lorsque l'on dispose de plusieurs variables explicatives $(X_1, X_2, ..., X_p)$, un modèle optimal est tel que :

- 1. Pouvoir prédictif maximal
- 2. Avec un nombre de variables minimal

En régression, il existe plusieurs algorithmes pou obtenir un modèle optimal.

3.2.1 Technique 1 : Essai de tous les modèles

La stratégie la plus simple consiste à examiner tous les modèles possibles, soit les 2^p combinaisons existantes.

On choisi le modèle ayant le plus grand R^2_{adj} , qui correspond à l'une des expresions suivantes :

$$R_{adj}^{2} = 1 - \frac{\frac{SSE}{(n-p-1)}}{\frac{SST}{(n-1)}}$$
 (3.5)

$$R_{adj}^2 = 1 - (1 - R^2) \left(\frac{n-1}{n-p-1}\right)$$
(3.6)

On note que contrairement au \mathbb{R}^2 , le \mathbb{R}^2_{adj} pénalise pour l'ajout de variables dans le modèle.

Exemple

Si on dispose de X_1, X_2 et X_3 , on ajuste les 2^3 modèles possibles :

- 1. $Y = \beta_0 + \varepsilon$
- $2. Y = \beta_0 + \beta_1 X_1 + \varepsilon$
- 3. $Y = \beta_0 + \beta_1 X_2 + \varepsilon$
- 4. $Y = \beta_0 + \beta_1 X_3 + \varepsilon$
- 5. $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \varepsilon$
- 6. $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_3 + \varepsilon$
- 7. $Y = \beta_0 + \beta_1 X_2 + \beta_2 X_3 + \varepsilon$
- 8. $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \varepsilon$

On fait le calcul du R_{adj}^2 pour chaque modèle et on choisit le modèle avec le plus grand R_{adj}^2 .

Remarque

En pratique cette méthode n'est pas efficiente, car le temps d'exécution devient énorme lorsque p augmente :

p	2^p
1	2
2	4
3	8
:	
10	1024
:	
25	33554432
:	
100	1.26×10^{30}

3.2.2 Technique 2 : Élimination régressive ($Backward\ elimination$)

Étape 1 Débuter avec toutes les variables disponibles dans le modèle.

Étape 2 Chercher la variable qui génère la plus faible augmentation de SSE lorsqu'exclue du modèle. Autrement dit, la pire variable.

Étape 3 Utiliser les test Fisher partiels (3.1.7) pour tester s'il est possible d'exclure la variable de l'étape 2.

Étape 4 Continuer les étapes 2 et 3 jusqu'à ce qu'il n'y ait plus de variables à éliminer selon les tests Fisher partiels.

Voici une illustrations de l'élimination régressive.

Remarque

Le principal inconvénient de cette technique est qu'une variable éliminée ne peut jamais être réintégrée.

3.2.3 Technique 3 : Sélection progressive (forward selection)

Étape 1 Débuter avec le modèle $Y = \beta_0 + \varepsilon$

Étape 2 Chercher la variable qui génère la plus grande diminution de SSE lorsqu'incluse dans le modèle. Autrement dit, la meilleure variable.

Étape 3 Utiliser les test Fisher partiels (3.1.7) pour tester s'il est possible d'inclure la variable de l'étape 2.

Étape 4 Continuer les étapes 2 et 3 jusqu'à ce qu'il n'y ait plus de variables à inclures selon les tests Fisher partiels.

Remarque

Le principal inconvénient de cette technique est qu'une variable incluse ne peut jamais être éliminée par la suite.

3.2.4 Technique 4 : Régression pas à pas ($stepwise\ regression$)

Il s'agit d'une combinaison de l'élimination régressive et de la sélection progressive. Étape 1 Débuter avec le modèle $Y = \beta_0 + \varepsilon$

Étape 2 Chercher la variable qui génère la plus grande diminution de SSE si incluse dans le modèle. Autrement dit, la meilleure variable.

Étape 3 Utiliser les test Fisher partiels (3.1.7) pour tester s'il est possible d'inclure la variable de l'étape 2.

Étape 4 Chercher la variable qui génère la plus faible diminution de SSE si incluse dans le modèle. Autrement dit, la pire variable.

Étape 5 Utiliser les test Fisher partiels (3.1.7) pour tester s'il est possible d'exclure la variable de l'étape 4.

Étape 6 Continuer les étapes 2 à 5 jusqu'à ce que l'algorithme élimine la variable qui vient d'entrer.

Exemple

On poursuit avec un exemple pour assimiler l'information.

À partir des informations suivantes on cherche à trouver le meilleur modèle de régression des 20 observations.

Variables dans le modèle	SSE	SSR	SST	R_{adj}^2
ϕ	10	0	10	0 %
X_1	5	5	10	47.2 %
X_2	9	1	10	5 %
X_3	8	2	10	15.5 %
X_1, X_2	4	6	10	55.3 %
X_1, X_3	3.9	6.1	10	56.4 %
X_2, X_3	8.5	1.5	10	5 %
X_1, X_2, X_3	3.8	6.2	10	54.9 %

Technique 1

Avec la technique 1 (3.2.1), on trouve le modèle suivant :

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \varepsilon$$

Technique 2

Avec la technique 2 (3.2.2), on débute avec le modèle initial suivant :

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + + \beta_3 X_3 + \varepsilon$$

La pire variable est X_2 , on effectue le test de Fisher partiel (3.4) avec modèle M_0 sans la variable X_2 et M_1 avec le modèle complet.

 H_0 : Modèle avec X_1 et X_3 H_1 : Modèle avec X_1 , X_2 et X_3

$$F = \frac{\frac{3.9 - 3.8}{1}}{\frac{3.8}{16}}$$

$$= 0.4211$$

$$F_{5\%}(1.16) = 4.49$$

$$0.4211 < 4.49$$

On accepte H_0 et on exclut X_2 . La prochaine pire variable est la variable X_1 .

> H_0 : Modèle avec X_3 H_1 : Modèle avec X_1 et X_3

$$F = \frac{\frac{5-3.9}{1}}{\frac{3.9}{17}}$$

$$= 4.79$$

$$F_{5\%}(1.17) = 4.49$$

$$4.79 > 4.45$$

On rejette H_0 et on n'exclut pas X_3 . On trouve le modèle suivant :

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_3 + \varepsilon$$

Exemple en R

À l'aide du jeu de donnée $mtcars^1$ de R, construise un modèle pour prédire la consomation en gallon par miles à l'aide de la technique de régression pas à pas.

^{1.} Voici les informations sur les données.

```
Df Sum of Sq
                         RSS
                                AIC
                3.974 174.10 64.205
 - disp 1
                      170.13 65.466
 <none>
 - hp
               11.886 182.01 65.627
 - qsec
        1
               12.708 182.84 65.772
 - drat
               15.506 185.63 66.258
         1
               81.394 251.52 75.978
 Step: AIC=64.21
 mpg ~ wt + drat + qsec + hp
        Df Sum of Sq
                         RSS
                                AIC
                9.418 183.52 63.891
 - hp
                9.578 183.68 63.919
 - qsec 1
 <none>
                      174.10 64.205
 - drat 1
              11.956 186.06 64.331
 + disp 1
                3.974 170.13 65.466
              113.882 287.99 78.310
 - wt
 Step: AIC=63.89
 mpg ~ wt + drat + qsec
        Df Sum of Sq
                         RSS
                                AIC
                      183.52 63.891
 <none>
 - drat 1
              11.942 195.46 63.908
 + hp
         1
               9.418 174.10 64.205
 + disp 1
               1.506 182.02 65.627
 - qsec 1
              85.720 269.24 74.156
 - wt
             275.686 459.21 91.241
 Call:
 lm(formula = mpg ~ wt + drat + qsec, data = mtcars)
 Coefficients:
 (Intercept)
                                   drat
                                                 qsec
     11.3945
                   -4.3978
                                 1.6561
                                               0.9462
 On remarque que la variable disp et hp n'on pas été retenue dans le modèle.
3 > step(lm(mpg~wt+drat+disp+qsec+hp, data=mtcars), direction="both"
```

Listing 3.1 – Code source en R pour l'exemple

Technique de sélection & R

Toutes les techniques présentées à la section 3.2 sont intégrer dans le système de base de R. Cette vignette sur la sélection des variables comprends les différentes méthodes ainsi que des exemples utile.

3.3 Régression avec variables indicatrices

Permettent de traiter des variables explicatives catégoriques dans les modèles.

Exemples

- Couleur des yeux (bleu, brun, vert et autres)
- Type de véhicule (sport et autres)
- emploi (ACT, ETUm RTR, GOU et autres) Pour inclure une variable catégorique ayant r valeurs possibles, on doit créér (r-1) variables indicatrices.

Exemple

• Couleur des yeux :

$$\begin{split} X_{t,1} &= \mathbbm{1}_{\{Couleur_t = Bleu\}} \\ X_{t,2} &= \mathbbm{1}_{\{Couleur_t = Brun\}} \\ X_{t,3} &= \mathbbm{1}_{\{Couleur_t = Vert\}} \end{split}$$

• Type de véhicule :

$$X_{t,4} = 1_{\{Type_t = Sport\}}$$

• Emploi:

$$\begin{split} X_{t,5} &= \mathbbm{1}_{\{Emploi_t = ACT\}} \\ X_{t,6} &= \mathbbm{1}_{\{Emploi_t = ETU\}} \\ X_{t,7} &= \mathbbm{1}_{\{Emploi_t = RTR\}} \\ X_{t,8} &= \mathbbm{1}_{\{Emploi_t = GOU\}} \end{split}$$

; où

$$1_{\{A\}} = \left\{ \begin{array}{ll} 1 & , \text{si A vrai} \\ 0 & , \text{sinon} \end{array} \right.$$

Exemple

À partir des 5 observations suivantes, définir la matrice des variables réponses et la matrice schéma.

Y_t	$Couleur_t$	$Type_t$	$Emploi_t$
70	Bleu	Autres	ETU
75	Brun	Sport	GOU
50	Vert	Autres	Autres
55	Autres	Autres	Autres
85	Brun	Sport	ACT

On utilise le modèle de régression multiple à partir du modèle d'indicatrice précédent. On obtient le modèle de régression suivant :

$$Y_{t} = \beta_{0} + \beta_{1}X_{t,1} + \beta_{2}X_{t,2} + \beta_{3}X_{t,3} + \beta_{4}X_{t,4} + \beta_{5}X_{t,5} + \beta_{6}X_{t,6} + \beta_{7}X_{t,7} + \beta_{8}X_{t,8} + \varepsilon_{t}$$

$$\mathbb{Y} = \mathbb{X}\beta + \varepsilon$$

La matrice des variables réponses correspond à :

$$\mathbb{Y} = \begin{bmatrix} 70\\75\\50\\55\\85 \end{bmatrix}$$

La matrice schéma correspond à :

$$\mathbb{X} = \begin{pmatrix} X_1 & X_2 & X_3 & X_4 & X_5 & X_6 & X_7 & X_8 \\ 1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 \end{pmatrix}$$

3.4 Analyse qualitative des résidus

Même si les test t et F sont concluents, le modèle choisi peut ne pas être adéquat. En effet, l'analyse qualitative des résidus est la principale façon de valider un modèle sélectionné.

Distribution uniforme

On remarque que les résidus sont uniformément distribués autour de l'axe des x. Il s'agit d'une situation idéal.

3.4.1 Problèmes possibles dans la distribution des résidus

Plusieurs problèmes de distribution des résidus peuvent être observés, voici leurs représentations graphiques et leurs possibles significations :

3.4.1.1 Distribution *uniforme* avec rotation

Cette distribution des résidus est très similaire à la distribution uniforme, par contre les résidus ne sont pas distribués autour de l'axe des x. La distribution semble avoir effectué une rotation. Il manque probalement un terme linéaire dans X.

${\bf 3.4.1.2}\quad {\bf Distribution}\ quadratique$

Cette distribution des résidus semble suivre une distribution quadratique. Il manue probablement une variable quadratique dans X.

${\bf 3.4.1.3}\quad {\bf Distribution}\ conique$

Cette distribution des résidus semble suivre être distribuer dans un cone. La variance n'est probablement pas constante. Il y a violation de l'hypothèse 2.

3.4.2 Quantiles normaux

On appel parfois le diagramme Quantile-Quantile ou Q-Q plot. Il s'agit d'un outil permettant d'évaluer la pertinence de l'ajustement d'une distribution.

On ajuste selon une loi normale la fonction empirique des résidus par rapport aux résidus.

On cherche à avoir une droite à 45°. Dans cette situation, cela signifie $\varepsilon_t \sim N(0,1)$.

3.4.3 Exemple complet

On pour suit avec un exemple complet pour synthétiser l'information du chapitre $3.\,$

On reprend le scénario du Titanic de la section 2.1.2, cette fois on va utiliser un modèle complet avec des catégories et déterminer le meilleur modèle avec la technique de régression pas à pas 2 .

Tout d'abord, voici la signification des variables :

^{2.} Le code source complet de l'exemple est disponible à l'annexe A

Variable	Définition
Survival	Survie du passager au naufrage du Ti-
	tanic
Pclass	Catégorie du billet
Sex	Sexe
Age	$\hat{ ext{A}} ext{ge}$
sibsp	Nombre se frères et sœurs / époux à
	bord du Titanic
parch	Nombre de parents / enfants à bord du
	Titanic
ticket	Numéro du billet
fare	Prix du billet
cabin	Numéro de la cabine
embarked	Port d'embarquement

L'étape suivante consiste à analyser notre jeu de donnée et de retirer les variables inutiles :

PassengerId		Surv	ived	Pclass		
Min. :	1.0	Min.	:0.0000	Min.	:1.000	
1st Qu.:	223.5	1st Qu.	:0.0000	1st Qu.	:2.000	
Median :	446.0	Median	:0.0000	Median	:3.000	
Mean :	446.0	Mean	:0.3838	Mean	:2.309	
3rd Qu.:	668.5	3rd Qu.	:1.0000	3rd Qu.	:3.000	
Max. :	891.0	Max.	:1.0000	Max.	:3.000	

Na	ame		Se	ex	Ag	ge
Abbing, Mr. Anthony	:	1	female	e:314	Min.	: 0.42
Abbott, Mr. Rossmore Edward	:	1	male	:577	1st Qu.	:20.12
Abbott, Mrs. Stanton (Rosa Hunt)	:	1			Median	:28.00
Abelson, Mr. Samuel	:	1			Mean	:29.70
Abelson, Mrs. Samuel (Hannah Wizosky)):	1			3rd Qu.	:38.00
Adahl, Mr. Mauritz Nils Martin	:	1			Max.	:80.00
(Other)	:8	85			NA's	:177
SibSp Parch	T	icke	t	Fare	3	

DIDDP	1 011	1101100	1 41 0
Min. :0.000	Min. :0.0000	1601 : 7	Min. : 0.00
1st Qu.:0.000	1st Qu.:0.0000	347082 : 7	1st Qu.: 7.91
Median:0.000	Median :0.0000	CA. 2343: 7	Median : 14.45
Mean :0.523	Mean :0.3816	3101295 : 6	Mean : 32.20
3rd Qu.:1.000	3rd Qu.:0.0000	347088 : 6	3rd Qu.: 31.00
Max. :8.000	Max. :6.0000	CA 2144 : 6	Max. :512.33
		(Other) :852	

Cabin Embarked: 687 : 2

B96 B98 : 4 C:168 C23 C25 C27: 4 Q: 77 G6 : 4 S:644

C22 C26 : 3 D : 3 (Other) :186

Certaine variable ne son d'auncun intérêt pour estimer l'âge d'un passager, tel que :

- PassengerId, car il s'agit d'un numéro unique pour chaque passager. (Max. : 891 pour 891 observations)
- Name, dans son étât actuel le nom du passager n'est pas très utile car il s'agit d'observation unique.
- Ticket, car il s'agit d'un numéro unique pour chaque passager.
- SibSP, Parch et Cabin sont retirer pour de fins de simplification.

On cherche maintenant à transformer une donnée pour en tirer de l'information. On observe que le nom du passager est unique dans son format actuel, mais avec un peu de manipulation de donnée, il est très facile d'extraire son nom de famille.

> # Visualiser les 6 premières observations par catégorie

> head(summary(data\$Surname))

On obtient ainsi le modèle complet suivant :

 $\hat{A}ge_t = \beta_0 + \beta_1 \times Survived_t + \beta_2 \times Pclass_t + \beta_3 \times Sex_t + \beta_4 \times Fare_t + \beta_5 \times Embarked_t + \beta_6 \times Surname_t + \varepsilon_t$

On peut maintenant trouver le meilleur modèle,

Start: AIC=3796.05

Age ~ Survived + Pclass + Sex + Fare + Embarked + Surname

		Df	Sum	of	Sq	RSS	AIC
-	Surname	533		877	709	119664	3672.8
-	Pclass	1			3	31958	3794.1
-	Fare	1			43	31997	3795.0
<1	none>					31955	3796.0
-	Embarked	2		3	336	32291	3799.5
-	Sex	1		3	379	32334	3802.5
_	Survived	1		26	316	34571	3850.2

Step: AIC=3672.79

Age ~ Survived + Pclass + Sex + Fare + Embarked

```
Df Sum of Sq
                            RSS
                                   AIC
                     664 120328 3670.7
- Embarked
             3
- Sex
                     187 119851 3671.9
             1
<none>
                         119664 3672.8
- Fare
                    1574 121238 3680.1
- Survived
                    4062 123726 3694.6
             1
                   87709 31955 3796.0
+ Surname 533
                   25962 145626 3811.0
- Pclass
Step: AIC=3670.74
Age ~ Survived + Pclass + Sex + Fare
            Df Sum of Sq
                            RSS
                     145 120473 3669.6
- Sex
                         120328 3670.7
<none>
+ Embarked
             3
                     664 119664 3672.8
- Fare
             1
                    1747 122075 3679.0
- Survived
                    4200 124528 3693.2
             1
+ Surname 534
                   88037 32291 3799.5
- Pclass
                   26337 146664 3810.1
Step: AIC=3669.61
Age ~ Survived + Pclass + Fare
            Df Sum of Sq
                            RSS
                                   AIC
<none>
                         120473 3669.6
+ Sex
             1
                     145 120328 3670.7
+ Embarked
           3
                    623 119851 3671.9
                    1850 122323 3678.5
- Fare
             1
- Survived
            1
                    6913 127386 3707.4
                   87812 32662 3805.7
+ Surname 534
- Pclass
                   26875 147349 3811.4
> fit
Call:
lm(formula = Age ~ Survived + Pclass + Fare, data = data)
Coefficients:
(Intercept)
                                              Fare
                Survived
                               Pclass
```

On observe que le Q-Q plot suivant pour le modèle

-6.81709

54.14124

-9.12040

-0.03671

```
> # Q-Q plot
> plot(fit, which=2)
```


Notre modèle prédit assez bien l'âge, par contre pour des valeurs extrêmes notre prédiction est moins précise.

On va maintenant tester une variable modifier, le log-Fare. En appliquant un log à une valeur numérique, on réduit l'échelle d'écart entre les variables et certaines peuvent mieux prédire après avoir être transformer.

Start: AIC=3796.92
Age ~ Survived + Pclass + Sex + Fare + Embarked + Surname + LogFare

	Df	Sum	of	Sq	RSS	AIC
- Surname	533		842	253	116157	3653.6
- Pclass	1			6	31910	3795.0
- LogFare	1			51	31955	3796.0
<none></none>					31904	3796.9
- Fare	1			93	31997	3797.0
- Embarked	2		3	374	32278	3801.2

```
- Sex
            1
                    409 32313 3804.0
- Survived
            1
                   2614 34518 3851.1
Step: AIC=3653.56
Age ~ Survived + Pclass + Sex + Fare + Embarked + LogFare
           Df Sum of Sq
                         RSS
                                  AIC
                     6 116163 3651.6
- Sex
- Embarked
           3
                    682 116839 3651.7
- Fare
                    116 116274 3652.3
            1
<none>
                        116157 3653.6
                   3507 119664 3672.8
- LogFare
            1
- Survived 1
                   4214 120372 3677.0
+ Surname 533
                  84253 31904 3796.9
                  28085 144242 3806.2
- Pclass
            1
Step: AIC=3651.59
Age ~ Survived + Pclass + Fare + Embarked + LogFare
           Df Sum of Sq
                           RSS
                                  AIC
- Embarked
                    677 116840 3649.7
                    120 116283 3650.3
- Fare
            1
<none>
                        116163 3651.6
+ Sex
                      6 116157 3653.6
            1
- LogFare
                   3687 119851 3671.9
            1
- Survived 1
                   5931 122094 3685.1
+ Surname 533
                  83850 32313 3804.0
                  29036 145199 3808.9
- Pclass
            1
Step: AIC=3649.74
Age ~ Survived + Pclass + Fare + LogFare
           Df Sum of Sq
                           RSS
- Fare
                     99 116939 3648.3
<none>
                        116840 3649.7
```

677 116163 3651.6 1 116839 3651.7

3633 120473 3669.6

5953 122794 3683.2

29179 146019 3806.9

84180 32660 3807.6

Step: AIC=3648.35

3

1

1

1

1

+ Embarked

- LogFare

- Pclass

- Survived

+ Surname 534

+ Sex

Age ~ Survived + Pclass + LogFare

```
Df Sum of Sq
                              {\tt RSS}
                                      AIC
<none>
                           116939 3648.3
+ Fare
                        99 116840 3649.7
              1
+ Embarked
              3
                       656 116283 3650.3
+ Sex
              1
                         2 116937 3650.3
  LogFare
                      5384 122323 3678.5
- Survived
              1
                     5953 122892 3681.8
- Pclass
              1
                    29081 146021 3804.9
+ Surname
           534
                    84275
                           32664 3805.7
```

Call:

lm(formula = Age ~ Survived + Pclass + LogFare, data = data)

Coefficients:

(Intercept) Survived Pclass LogFare 69.419 -6.354 -11.201 -4.060

On obtient une légère amélioration de notre modèle et on retient ce modèle.

On cherche maintenant à prédire à partir d'un autre échantillon des données.

> head(predict(fitL, dataTest))

Segmentation des données

En analyse des données, il est primordial de fragmenter les données. On utilise habituellement réduit l'algorithme suivant :

- 1. 80 % des données pour l'entraı̂nement (training) et 20 % pour le test (testing);
- 2. 80 % des données de test pour l'entraı̂nement (training) et 20 % pour la validation (validation).

On segmente les données afin d'éviter le surapprentissage (overfitting). Il s'agit de la situation ou toutes les situations possibles sont incluses dans le modèle et celui-ci perd de la qualité prédictive. Dans le cadre du cours, seulement l'étape 1 est suffisante.

Des méthodes plus élaborée et complexe existent pour les données massives et l'apprentissage automatique.

Chapitre 4

Les modèles linéaires généralisés

4.1 Introduction

Le modèle de régression linéaire multiple étudié lors des derniers chapitres peut parfois avoir certaines limitations :

- On suppose une distribution normale. Dans la plupart des contextes, cette distribution est innaproprié car elle permet des valeurs négatives. On comprend qu'en actuariat, cette situation n'est pas désirable.
- Hypothèse contraignante de variance constante.
- Le domaine des variables réponses permet des valeurs entre $-\infty$ et ∞ . Plusieurs contexte ne se retrouve que dans un domaine non négatifs. De plus, certaine situation pourrait être une variable réponse discrète.

Le modèle linéaire généralisé, parfois appeler GLM pour *Generalized Linear Models*, est une généralisation de la régression linéaire multiple dont l'objectif est de palier aux limitations précédentes.

Reformulation

Le modèle linéaire généralisé (MLG) est une généralisation souple de la régression linéaire. Le GLM généralise la régression linéaire en permettant au modèle linéaire d'être relié à la variable réponse via une fonction lien et en autorisant l'amplitude de la variance de chaque mesure d'être une fonction de sa valeur prévue.

4.2 Notions préliminaires : La famille exponentielle

De manière générale, une variable aléatoire y obéit à une distribution faisant partie de la famille exponentielle si :

$$f_Y(y) = exp\left\{\frac{y \times \theta - b(\theta)}{a(\phi)} - c(y, \phi)\right\}$$

Annexe A

Code source de l'exemple chapitre 3

```
(Section 3.4.3)
3 > # Import data
4 > data <- read.csv('data/Titanic/train.csv', stringsAsFactors =
      T)
5 > summary(data)
6 > # Ajout de la variable nom de famille
7 > data$Surname <- as.factor(sapply(as.character(data$Name),
                             function(x) strsplit(x, split = '[,]')
      [[1]][1]))
9 > # Modele de regression stepwise
10 > fit <- step (lm (Age ~ Survived + Pclass + Sex + Fare + Embarked
       + Surname, data), direction = "both")
11 > fit
12 > # Q-Q plot
13 > plot(fit, which=2)
14 > # Ajout de la variable Log - Fare
15 > data$LogFare <- log(data$Fare)</pre>
_{16} > \frac{data}{LogFare} [\frac{data}{LogFare} = -Inf] < 0
_{17} > fitL \leftarrow step(lm(Age ~ Survived + Pclass + Sex + Fare +
      Embarked + Surname + LogFare, data), direction = "both")
18 > fitL
19 > # Import data
20 > dataTest <- read.csv('data/Titanic/test.csv', stringsAsFactors
21 > head(predict(fitL, dataTest))
```

Listing A.1 – Code source en R pour l'exemple