Artificial Intelligence

Fall 2024

Problem Set #3

Problem #1:

다음은 클로즈의 집합(set of clauses) 이다.

- (1) $\sim P \vee \sim Q \vee R$
- (2) $\sim P \vee Q \vee \sim R$
- (3) \sim Q \vee \sim R \vee \sim W
- (4) $Q \vee R$
- (5) $Q \vee W$
- (6) P ∨ ~Q
- (7) \sim O \vee W

효율적인 DPLL 알고리즘을 적용하여, 위 논리표현 전부를 참으로 만드는 모델(진리 값: truth assignment)이 있는지, 혹은 없는지를 판단해 보라.

Problem #2:

A. 다음의 논리식을 CNF 형태로 변형하라. (여기서, "~" 은 negation 의미)

 $P \iff (Q \land R).$

 $W \Rightarrow P$.

 $R \ll S$.

 $S \Rightarrow P$.

 $P \Longrightarrow (\sim (Q \lor W) \lor S).$

B. 효율적인 DPLL 알고리즘을 적용하여 satisfiable 한지 아닌지를 판단하라.

Problem #3:

KB 에 있는 아래 룰들을 사용하여 \sim P_{1,2}가 TRUE 임을 증명해 보자. (여기서, \sim 은 negation; ⇔ 는 iff 의미하며 두개의 룰로 나누어도 됨.)

Rule 1: ~P_{1.1}

Rule 2: $B_{1,1} \Leftrightarrow P_{1,2} \vee P_{2,1}$

Rule 3: $B_{2,1} \Leftrightarrow P_{1,1} \vee P_{2,2} \vee P_{3,1}$

Rule 4: ~B_{1.1}

Rule 5: B_{2.1}

- A. Forward chaining 방법으로 "~P_{1,2}가 TRUE" 임을 추론해 보라.
- B. Backward chaining 방법으로 "~P_{1,2}가 TRUE " 임을 추론해 보라.
- C. Resolution 방법으로 "~P_{1.2}가 TRUE " 임을 추론해 보라.