SRM INSTITUTE OF SCIENCE AND TECHNOLOGY FACULTY OF ENGINEERING AND TECHNOLOGY SCHOOL OF COMPUTING

DEPARTMENT OF DATA SCIENCE AND BUSINESS SYSTEMS

18CSE392T - MACHINE LEARNING - I- 3 0 0 3

Course Auditor:

Course Coordinator:

Course Handling Faculties:

- 1. Dr.G.Vadivu, Professor/DSBS
- 2. Dr.E.Sasikala, Professor/DSBS

COURSE OUTCOMES (CO): At the end of this course, learners will be able to:			
CO-1	Understand the concepts of machine learning		
CO-2	Learn and understand machine tools and libraries of machine learning		
CO-3	Learn and understand the linear learning models and classification in machine		
	learning		
CO-4	Understand the clustering techniques and their utilization in machine learning		
CO-5	Study the tree-based machine learning techniques and to appreciate their		
	capability		

Syllabus:

Please find as separate file

Weekly Plan for Theory and Project

Week No.	Theory	Tutorial	
Week 1 Unit - I		Machine Learning: What and Why? Types of Machine Learning Supervised Learning Unsupervised Learning Reinforcement learning The Curse of dimensionality Over fitting and under fitting linear regression	
Week 2 Unit - I Bias and Variance tradeoff Testing – cross validation Regularization Learning Curve Classification Error and noise		Testing – cross validation Regularization Learning Curve Classification	

	Parametric vs. non-parametric models			
		Linear Algebra for machine learning		
		Project Review 1		
Week 3		Platform for machine learning		
		Machine learning python libraries		
		Scikit-learn		
	Unit - II	training data – testing data – validation data		
		k-fold cross validation		
		Features Performance metrics		
		MSE, accuracy, confusion matrix, precision		
		recall, F- score		
Week 4	Unit - II	Linear Regression with multiple variables		
		Logistic Regression		
*** 1.5	T TT	spam filtering with logistic regression		
Week 5	Unit - II	Naive Bayes with scikit-learn		
		Project Review 2		
		Ridge Regression		
Week 6	Unit - III	Maximum likeliwood estimation (least squares)		
		principal component analysis		
		Bayesian classifier		
		Support vector machine		
XX71 - 7	11	Support vector machine + kernels		
Week 7	Unit - III	Multi class classification		
		K nearest neighbour classification		
		Application: face recognition with PCA		
		Measuring (dis)similarity		
		Evaluating output of clustering methods		
Week 8	Unit - IV	Spectral clustering		
		Hierarchical clustering		
		Agglomerative clustering		
		Divisive clustering Chaosing the number of clusters		
		Choosing the number of clusters Clustering detengints and feetures		
Week 9	Unit - IV	Clustering datapoints and features		
		Bi-clustering Multi-view shortering		
		Multi-view clustering		
Wool, 10	IImit IV	K-Means clustering		
Week 10	Unit - IV	K-meloids clustering		
		Application: image segmentation using K- means clustering		
		Project Review 3		
		Decision tree representation Basic decision tree learning algorithm		
Week 11	Unit V	Inductive bias in decision tree		
WEEK 11	Unit - V	Decision tree construction		
		Issues in decision tree Classification and regression trees (CAPT)		
		Classification and regression trees (CART) Random Forest		
Week 12	Unit - V	Random Forest Random Forest with scikit-learn		
week 12				
		Multivariate adaptive regression trees (MART)		
		Introduction to Artificial Neural Networks		

	Perceptron learning
	Report and Viva

Course Assessment Plan

S. No.	Components		Marks	
1	CLA 1		5+5	
2	CLA 2	CT2 (Unit 2 & 3) + Assignment 2	7.5+7.5	
3	CLA 3	CT2 (Unit 4 & 5) + Assignment 3 + Certification 5+5+5		
4	CLA 4	Project Review - 1	2	
5	CLA 4 Project Review - 2		3	
6	CLA 4 Project Report Submission		5	
		Final Examinations	50	
	Total			

Table 1: Rubrics for Project

Regno:		Name:		
S. No.	Project Review 1: 2 Marks	Project Review 2: 3 Marks	Report and Viva: 5 Marks	
1	 Team formation Title submission: Idea/Objective Literature Review 	ML Algorithms Visualization Demo	Report submission: 5	

[•] All the students have to complete the project on time

Table 3: Rubrics for Assignments

Component (Performance Indicator)	Good	Satisfactory	Unsatisfactory
Program Execution - Coding Standard (8 Marks)	Proper naming and coding guidelines are followed. [8 Marks]	Proper naming and no coding guidelines are followed. [5 Marks]	No proper naming and coding guidelines are followed. [0 Mark]
Output & Viva (2 Marks)	Proper Output and Answered the questions [2 Marks]	Partial Output and Answered the questions [1 Mark]	Error and not answered the questions [0 Mark]
Total marks obtained:			

*Note: A student who does not secure a minimum of 4 marks should redo the experiment *Submit the Assignments through GCR

Name of the Faculty	
Signature of the Faculty	
Date	