Recursive definition

The principle of complete induction allows to define a quantity D for all $n \in \mathbb{Z}$, $n \ge n_0$:

- Define D_{n_0} .
- Assume D_k is known for k with $n_0 \le k \le n$. Thus we may state D_{n+1} by means of D_k , $n_0 \le k \le n$.

This is called a **recursive definition**.

Analysis 1

S - I Kimmerle

Introduction

Basics (sets, mappings, and numbers)

Proof techniques

Sequences and series

unctions

Differentiation in

Integration in 1d

Factorial

Analysis 1

S.-J. Kimmerle

Introduction

Basics (sets, mappings, and numbers)

Proof techniques Sequences and

series

Functions

Differentiation in 1d

Integration in 1d

Summary - outlook and review

Definition (Factorial)

For $n \in \mathbb{N}$ we define "n **factorial**" by

$$n! = n \cdot (n-1) \cdot \ldots \cdot 3 \cdot 2 \cdot 1$$

or recursively by

$$n! = n \cdot (n-1)!.$$

Formally we set

$$0! = 1$$
.

Remark: The factorial grows faster than any exponential function for sufficiently large *n*.

Permutation

Definition (Permutation)

A bijective mapping $f: A \rightarrow A$ of a set A onto itself is called a **permutation** of the set A.

If \boldsymbol{A} is finite with \boldsymbol{n} distinct elements,

e.g. $A = \{a_1, a_2, \dots, a_n\},\$

then we interpret a permutation of A as a mapping rule for the a_i to n different, numbered (from 1 to n) places, s.t. a place is occupied by exactly 1 element.

Introduction

Basics (sets, mappings, and numbers)

Proof techniques

Sequences and series

unctions

Differentiation in 1d

Integration in 1d

Number of permutations

Theorem (Number of permutations)

For any $n \in \mathbb{N}$ there holds:

Any set with n distinct elements has exactly n! different permutations.

Proof: By complete induction.

Analysis 1

S.-J. Kimmerle

Introduction

Basics (sets, mappings, and numbers)

Proof techniques

Sequences and series

Functions

oifferentiation in

Integration in 1d

Sum and product symbols

For the sum or the product, resp., of the numbers

$$a_m, a_{m+1}, \ldots, a_n \in \mathbb{R}, \quad n, m \in \mathbb{Z}, n \geq m,$$

we write

$$a_m + a_{m+1} + \ldots + a_n = \sum_{k=m}^n a_k,$$

 $a_m \cdot a_{m+1} \cdot \ldots \cdot a_n = \prod_{k=m}^n a_k,$

By a recursive definition we may avoid the dots:

$$\sum_{k=m}^{m} a_k := a_m, \qquad \sum_{k=m}^{n+1} a_k := \left(\sum_{k=m}^{n} a_k\right) + a_{n+1},$$

$$\prod_{k=m}^{m} a_k := a_m, \qquad \prod_{k=m}^{n+1} a_k := \left(\prod_{k=m}^{n} a_k\right) \cdot a_{n+1}.$$

Analysis 1

S.-J. Kimmerle

Introduction

Basics (sets, mappings, and

numbers)
Proof techniques

Sequences and

Functions

series

Differentiation in

Integration in 1d

Properties of sums and products

Please note that sums (as well as products) are independent of the summation index, i.e.

$$\sum_{k=m}^{m} a_k = \sum_{i=m}^{n} a_i.$$

Moreover (also for products):

$$\sum_{k=m}^{n} a_{k} = \sum_{k=m}^{l} a_{k} + \sum_{k=l+1}^{n} a_{k}, \quad m \leq l \leq n.$$

For n < m $(n, m \in \mathbb{Z})$ we define:

$$\sum_{k=m}^{n} a_k = 0,$$

$$\prod_{k=m}^{n} a_k = 1.$$

Analysis 1

S.-J. Kimmerle

Introduction

Basics (sets, mappings, and numbers)

Proof techniques

Sequences and series

Functions

Differentiation in

Integration in 1d

Binomial coefficients

Definition (Binomial coefficients)

Let $n, k \in \mathbb{N}_0$. We set

$$\binom{n}{k} := \frac{n!}{k! (n-k)!} \quad \text{for } 0 \le k \le n,$$

$$\binom{n}{k} := 0 \quad \text{for } k > n.$$

We say: "n choose k".

Moreover, for $1 \le k \le n$ there holds

$$\binom{n}{k} = \frac{n \cdot (n-1) \cdot \ldots \cdot (n-k+1)}{k \cdot (k-1) \cdot \ldots \cdot 1}$$
 (1).

Introduction

Basics (sets, mappings, and numbers)

Proof techniques

Sequences and series

Functions

Differentiation in

Integration in 1d

Binomial coefficient: examples

Example: 5 gear wheels with 3 large and 2 small gear wheels (identical), how many possibilities to arrange them?

$$\binom{5}{3}$$
 =

Analysis 1

S.-J. Kimmerle

Introduction

Basics (sets, mappings, and numbers)

Proof techniques
Sequences and

series

Functions

Differentiation in 1d

Integration in 1d

Binomial coefficient: examples

Example: 5 gear wheels with 3 large and 2 small gear wheels (identical), how many possibilities to arrange them?

$$\binom{5}{3} =$$

Example: a German lottery

$$\binom{49}{6}$$

= 13 983 816

Analysis 1

S - I Kimmerle

Introduction

Basics (sets, mappings, and numbers)

Proof techniques
Sequences and

series

Functions

Differentiation in 1d

Integration in 1d

Binomial coefficients: properties

Symmetry

$$\binom{n}{k} = \binom{n}{n-k}$$

0th and 1st coefficient

$$\binom{n}{0} = \binom{n}{n} = 1,$$
$$\binom{n}{1} = \binom{n}{n-1} = n$$

Within the representation (1) all numerators and denominators are products with k factors.

The numerator start with n, any neyt factor is smaller by 1. The denominator is the product of the k first natural numbers.

Analysis 1

S.-J. Kimmerle

Introduction

Basics (sets, mappings, and numbers)

Proof techniques

Sequences and series

Functions

Differentiation in 1d

Integration in 1d

Binomial coefficients: arithmetics

Analysis 1

S - I Kimmerle

We have:

Since we compute:

$$\binom{n}{k-1} + \binom{n}{k}$$

$$= \frac{\frac{k \cdot n \cdot (n-1) \cdot \dots (n-k+2)}{k \cdot (k-1) \cdot \dots \cdot 1} + \frac{n \cdot (n-1) \cdot \dots (n-k+2) \cdot (n-k+1)}{k \cdot (k-1) \cdot \dots \cdot 1}$$

$$= \frac{(k+n-k+1) \cdot n \cdot (n-1) \cdot \dots (n+1-k+1)}{k \cdot (k-1) \cdot \dots \cdot 1} = \binom{n+1}{k}$$

(Could be demonstrated by combinatorics as well.)

Introduction

Introduction
Basics (sets,

mappings, and numbers)

Proof techniques

Sequences and series

unctions

Differentiation in d

Integration in 1d

Pascal's triangle

Pascal's triangle (Gerdts: Mathematik I)

 $\binom{n}{k}$ appears in the *n*-th row in the *k*-th columns (starting with row and column 0)

Analysis 1

S - I Kimmerle

Introduction

Basics (sets, mappings, and numbers)

Proof techniques

Sequences and series

Functions

Differentiation in 1d

Integration in 1d

a + b is called a **binomial** (a special case of a polynomial)

I suppose most of you know

$$(a+b)^2 = a^2 + 2ab + b^2,$$

 $(a-b)^2 = a^2 - 2ab + b^2,$
 $(a+b)(a-b) = a^2 - b^2$

Analysis 1

S.-J. Kimmerle

Introduction

Basics (sets, mappings, and numbers)

Proof techniques
Sequences and

series

Functions

Differentiation in 1d

Integration in 1d

a + b is called a **binomial** (a special case of a polynomial)

I suppose most of you know

$$(a+b)^2 = a^2 + 2ab + b^2,$$

 $(a-b)^2 = a^2 - 2ab + b^2,$
 $(a+b)(a-b) = a^2 - b^2$

and maybe also

$$(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3,$$

 $(a-b)^3 = a^3 - 3a^2b + 3ab^2 - b^3.$

Analysis 1

S.-J. Kimmerle

Introduction

Basics (sets, mappings, and numbers)

Proof techniques
Sequences and

series

Functions

Differentiation in 1d

Integration in 1d

a + b is called a **binomial** (a special case of a polynomial)

I suppose most of you know

$$(a+b)^2 = a^2 + 2ab + b^2,$$

 $(a-b)^2 = a^2 - 2ab + b^2,$
 $(a+b)(a-b) = a^2 - b^2$

and maybe also

$$(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3,$$

 $(a-b)^3 = a^3 - 3a^2b + 3ab^2 - b^3.$

But what about, e.g., $(a+b)^{100}$?

Analysis 1

S.-J. Kimmerle

Introduction

Basics (sets, mappings, and numbers)

Proof techniques
Sequences and

series

Functions

Differentiation in 1d

Integration in 1d

Basics (sets. mappings, and numbers)

Proof techniques Sequences and

series

and review

Integration in 1d

Summary - outlook

a + b is called a binomial (a special case of a polynomial)

I suppose most of you know

$$(a + b)^2 = a^2 + 2ab + b^2,$$

 $(a - b)^2 = a^2 - 2ab + b^2,$
 $(a + b)(a - b) = a^2 - b^2$

and maybe also

$$(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3,$$

 $(a-b)^3 = a^3 - 3a^2b + 3ab^2 - b^3.$

But what about, e.g., $(a+b)^{100}$?

The coefficients on the r.h.s. are the binomial coefficients.

Binomial theorem: our aim

Wanted:

A general formula for a "hypervolume"

$$(a+b)^n = a^n + \dots ??? \dots + b^n$$

without explicitly multiplying out

Analysis 1

S - J Kimmerle

Introduction

Basics (sets, mappings, and numbers)

Proof techniques
Sequences and

series

Functions

Differentiation in

Integration in 1d

Binomial theorem

and review

Theorem (Binomial theorem)

For $a, b \in \mathbb{R}$ and $n \in \mathbb{N}_0$ we have

$$\boxed{(a+b)^{n}} = a^{n} + \binom{n}{1}a^{n-1}b^{1} + \binom{n}{2}a^{n-2}b^{2} + \binom{n}{3}a^{n-3}b^{3} + \dots
\dots + \binom{n}{n-2}a^{2}b^{n-2} + \binom{n}{n-1}a^{1}b^{n-1} + b^{n}$$

$$= \sum_{k=0}^{n} \binom{n}{k}a^{n-k}b^{k}$$

Remark: The sum of the exponents in any sum is *n*.

Since
$$a+b=b+a$$
, also $(a+b)^n=\sum_{k=0}^n\binom{n}{k}a^kb^{n-k}$.

For $(a-b)^n$ we replace b by -b within the formula.

For odd powers we observe a change of sign.

Binomial theorem: proof

Analysis 1

S - I Kimmerle

Proof.

By induction ...

Induction principle (Gerdts: Mathematik I)

or by combinatorics:

$$(a+b)^n = (a_1 + b_1) \cdot (a_2 + b_2) \cdot \ldots \cdot (a_n + b_n)$$

with $a_i = a$ and $b_i = b$.

The term $a^k b^{n-k}$ appears in the expansion, iff in k brackets a_i and in n-k brackets b_i is chosen, i.e. in $\binom{n}{k}$ cases.

Introduction

numbers)

Basics (sets, mappings, and

Proof techniques

Sequences and series

Functions

Differentiation in 1d

Integration in 1d

Binomial theorem: visualization

Geometrical interpretation of the binomial theorem (for 1d - 4d). Source: By Cmglee - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=39642544

Analysis 1

S - I Kimmerle

Introduction

Basics (sets, mappings, and numbers)

Proof techniques

Sequences and series

Functions

Differentiation in 1d

Integration in 1d

Binomial theorem: number of subsets

Theorem (Number of subsets)

Let $n \in \mathbb{N}_0$ and S a set with |S| = n elements.

Then there exist exactly $\binom{n}{k}$ different subsets of S with exactly k elements.

All in all, M has 2ⁿ different subsets.

Analysis 1

S - I Kimmerle

Introduction

Basics (sets, mappings, and numbers)

Proof techniques

Sequences and series

Functions

Differentiation in Id

Integration in 1d

Sum formulas

$$\sum_{k=0}^{n} \binom{n}{k} = (1+1)^{n} = 2^{n}$$
$$\sum_{k=0}^{n} \binom{n}{k} (-1)^{k} = (1-1)^{n} = 0$$

• Expansion of the binomial $(a + 2x)^4$ w.r.t. (increasing) powers of x

$$(a+2x)^4 = a^4 + 4a^3 \cdot 2x + 6a^2 \cdot 2^2x^2 + 4a \cdot 2^3x^3 + 2^4x^4$$
$$= a^4 + 8a^3x + 24a^2x^2 + 32ax^3 + 16x^4$$

 Binomial coefficient play a big role in combinatoris, statistics, etc.: binomial distribution, hypergeometric distribution, . . . Introduction

Basics (sets,

mappings, and numbers)

Proof techniques
Sequences and

series

Functions

Differentiation in 1d

Integration in 1d

Binomial theorem etc.: outlook

- Bernoulli experiments
- Binomial coefficient, generalized for $n \in \mathbb{R}, k \in \mathbb{N}$

$$\binom{n}{k} = \frac{n \cdot (n-1) \cdot \ldots \cdot (n-k+1)}{k \cdot (k-1) \cdot \ldots \cdot 1}$$

- Leibniz' rule for derivatives (later!)
- Trigonometric summation formulas for sinⁿ(x), cosⁿ(x)
- Taylor expansions of a binomial with real exponents
 General binomial series

$$(a\pm x)^n = a^n \pm \binom{n}{1} a^{n-1} x^1 \pm \binom{n}{2} a^{n-2} x^2 \pm \binom{n}{3} a^{n-3} x^3 + \dots$$

• ...

Galton board (Wikipedia)

Analysis 1

S - J Kimmerle

Introduction

Basics (sets, mappings, and numbers)

Proof techniques

Sequences and series

Functions

Differentiation in

Integration in 1d

Binomial theorem etc.: summary

- Terms: Binomial, factorial, binomial coefficient
- Properties of binomial coefficients
- Pascal's triangle (with calculation rule)
- Binomial theorem

Analysis 1

S - I Kimmerle

Introduction

Basics (sets, mappings, and numbers)

Proof techniques

Sequences and series

Functions

Differentiation in

Integration in 1d

Binomial theorem etc.: Exercises

Analysis 1

S.-J. Kimmerle

Calculate

a) $\binom{13}{11}$, b) $\binom{7}{4}$, c) $\binom{13}{4}$, d) $\binom{67890}{12345}$, e) $\binom{9102}{2019}$, f) $\binom{2019}{9102}$.

For d) and e) you should use Matlab, Maple, or Mathematica etc.

- 3. Compute $\binom{n+k}{k+1}$?
- 4. Compute
 - a) $101^4 = (100 + 1)^4$, b) 98^5 , c) $1,03^{12}$ (4 digits) .
- 5. Expand the following powers of binomials: a) $(x+4)^5$, b) $(1-5y)^4$, c) $(1-4x)^8$ (up to x^5).

Introduction

Introduction

Basics (sets, mappings, and numbers)

Proof techniques
Sequences and

series

Functions

Differentiation in

Integration in 1d

