Basic identities of matrix/vector ops	(orthogonal compliment)	lengths/angles/distances $\Rightarrow Ax _2 = x _2$, $AxAy = x\hat{y}$	Trick for proofs: "picking a vector"	$\boxed{\det(A) = \lambda \det\left(\left[a_1 \mid \dots \mid x_i \mid \dots \mid a_n \right] \right) + \mu \det\left(\left[a_1 \mid \dots \mid y_i \mid \dots \mid a_n \right] \right)}$	$\frac{1}{AC} = R^{-1}A' = $ useful for LU factorization	$-\mathbf{z} = [s_1, \dots, s_n]^T$ is vector of parameters	*Let $\mathbf{u}_i = \frac{1}{\sigma_i} A \mathbf{v}_i$ then $\underline{\mathbf{u}_1,, \mathbf{u}_r \in \mathbb{R}^m}$ are
$\frac{(A+B)^T = A^T + B^T}{(AB)^{-1} = B^{-1}A^{-1}} \frac{(AB)^T = B^TA^T}{(A^{-1})^T = (A^T)^{-1}}$	-Assume $a_{j+1} \notin U_j$ => unique decomposition $a_{j+1} = v_{j+1} + u_{j+1}$	*Therefore can be seen as a succession of reflections and planar rotations	Often times you might want to pick a vector to prove a bound : say the index M is special (e.g. maybe	-And the exact same linearity property for rows $A = [a_1;; a_n]$	Eigen-values/vectors	•Then we get equation Az = y => minimizing Az - y ₂ is the solution to Linear Regression	orthonormal (therefore linearly independent)
	$v_{j+1} = P_j (a_{j+1}) \in U_j = \text{discard it!!}$	$-\underline{\det(A)} = 1$ or $\underline{\det(A)} = -1$, and all eigenvalues of \underline{A} are	$\ A_{M\star}\ _1 = \max_i \ A_{i\star}\ _1$ - Then you could pick a vector	-Immediately leads to: $ A = A^T $, $ \lambda A = \lambda^n A $, and	 Consider <u>A ∈ R^{n×n}</u>, non-zero <u>x ∈ Cⁿ</u> is an eigenvector with eigenvalue <u>λ ∈ C</u> for <u>A</u> if <u>Ax = λx</u> 	-So applying LSM to Az = y is precisely what Linear	•The [[tutorial 1#Orthogonality concepts orthogonal
For $\underline{A \in \mathbb{R}^{m \times n}}$, $\underline{A_{ij}}$ is the i th ROW then j th COLUMN	$*\mathbf{u}_{j+1} = P_{\perp j} \left(\mathbf{a}_{j+1}\right) \in \left(U_{j}\right)^{\perp} \Longrightarrow \text{we're after this!!}$	s.t. $ \lambda = 1$ •A $\in \mathbb{R}^{m \times n}$ is semi-orthogonal iff $A^T A = I$ or $AA^T = I$	x_{M} based on a function of M - e.g. $(x_{M})_{j} = \text{sgn}(A_{Mj})$	$ AB = BA = A B for any B \in \mathbb{R}^{n \times n}•Alternating: if any two columns of Alare equal (or any$	-If $\underline{Ax = \lambda x}$ then $\underline{A(kx) = \lambda(kx)}$ for $\underline{k \neq 0}$, i.e. \underline{kx} is also an	Regression is -We can use normal equations for this =>	compliment]] of span $\{\mathbf{u}_1, \dots, \mathbf{u}_r\}$ => $\operatorname{span}\{\mathbf{u}_1, \dots, \mathbf{u}_r\}^{\perp} = \operatorname{span}\{\mathbf{u}_{r+1}, \dots, \mathbf{u}_m\}$
$(A^T)_{ij} = A_{ji}$ $(AB)_{ij} = A_{i\star} \cdot B_{\star j} = \sum_k A_{ik} B_{kj}$	-Let $\mathbf{q}_{j+1} = \hat{\mathbf{u}}_{j+1} \Rightarrow$ we have next ONB $\langle \mathbf{q}_1,, \mathbf{q}_{j+1} \rangle$	-If <u>n > m</u> then all <u>m</u> rows are orthonormal vectors	can help prove $x_M \cdot A_{M*} = A_{M*} _1$	two rows of A are equal), then A = 0 (its singular)	eigenvector -AJhas at most nJdistinct eigenvalues	$ Az-y _2$ is minimized $\iff A^TAz=A^Ty$	· Solve for unit-vector ur+1 s.t. it is orthogonal to
$(Ax)_i = A_{i\star} \cdot x = \sum_i A_{ij} x_j \left x^T y = y^T x = x \cdot y = \sum_i x_i y_i \right $	for U _{j+1} => start next iteration	$-\text{If } \underline{m > n}$ then all \underline{n} columns are orthonormal vectors $\underline{\cdot U \perp V \subset \mathbb{R}^n} \iff \underline{u \cdot v = 0}$ for all $\underline{u \in U, v \in V}$, i.e. they are	e.g. $(x_M)_j = \begin{cases} 1 & j = M, \\ 0 & j \neq M \end{cases}$ can help prove other properties	-Immediately from this (and multi-linearity) => if columns (or rows) are linearly-dependent (some are	•The set of all eigenvectors associated with eigenvalue	 Solution to normal equations unique iff Ajis full-rank, i.e. it has linearly-independent columns 	·Then solve for unit-vector \mathbf{u}_{r+2} s.t. it is orthogonal
	$*\mathbf{u}_{j+1} = (\mathbf{I}_m - Q_j Q_j^T) \mathbf{a}_{j+1} = \mathbf{a}_{j+1} - Q_j \mathbf{c}_j$ where	orthogonal subspaces		linear combinations of others) then A = 0	λ is called eigenspace E_{λ} of A $= E_{\lambda} = \ker(A - \lambda I)$	Back to basics: multinomial expansion	to u ₁ ,, u _{r+1}
$x^T A x = \sum_{i} \sum_{j} A_{ij} x_i x_j$	$\mathbf{c}_{j} = [\mathbf{q}_{1} \cdot \mathbf{a}_{j+1}, \dots, \mathbf{q}_{j} \cdot \mathbf{a}_{j+1}]^{T}$	•Orthogonal compliment of $\underline{U \subset \mathbb{R}^n}$ is the subspace $U^{\perp} = \{x \in \mathbb{R}^n \mid \forall y \in \mathbb{R}^n : x \perp y\} = \{x \in \mathbb{R}^n \mid \forall y \in \mathbb{R}^n : x \le 1\}$	Properties of matrices	-Stated in other terms \Rightarrow rk(A) < n \iff A = 0 \iff RREF(A) \neq I _n \iff A = 0 (reduced row-echelon-form)	-The geometric multiplicity of λ]is	+ manipulations on ∑ / ∏	·And so on [[#Tricks Computing orthonormal vector-set extensions see this for better methods]]
Scalar-multiplication + addition distributes over:	<u> </u>	$-\mathbb{R}^n = U \oplus U^{\perp}$ and $(U^{\perp})^{\perp} = U$ (because finite	•If Ax = x for all x then A = I	\Leftrightarrow C(A) \neq R ⁿ \Leftrightarrow A = 0 (column-space)	$\dim(E_{\lambda}) = \dim(\ker(A - \lambda I))$ •The spectrum $Sp(A) = \{\lambda_1,, \lambda_n\} \text{ of } \underline{A} \text{ J is the set of all }$	$(x_1 + x_2 + \cdots + x_m)^n = \sum_{\substack{k_1, k_2, \dots, k_m \\ k_1 \neq k_2, \dots, k_m}} {n \choose k_1 + k_2 + \cdots + k_m} x_1^{k_1}$	$\lim_{X_2} \frac{kU = [\mathbf{u}_1 \dots \mathbf{u}_m] \in \mathbb{R}^{m \times m}}{m} \text{ is [[tutorial }]}$
-column-blocks =>	*Notice: $Q_j c_j = \sum_{i=1}^{n} (\mathbf{q}_i \cdot \mathbf{a}_{j+1}) \mathbf{q}_i = \sum_{i=1}^{n} \operatorname{proj}_{\mathbf{q}_i} (\mathbf{a}_{j+1})$, so	dimensional) $-U \perp V \iff U^{\perp} = V \text{ and vice-versa (because finite}$	•A] is symmetric iff $A = A^{T}$ -A] is Hermitian, iff $A = A^{\dagger}$, i.e. its equal to its	-For more equivalence to the above, see invertible matrix theorem	eigenvalues of A •The characteristic polynomial of A J is	$k_1 + k_2 + \cdots + k_m = n \cdot (k_1, k_2, \dots, k_m)^{n-1}$ $k_1, k_2, \dots, k_m \ge 0$	1#Orthogonality concepts orthogonal]] so $U^T = U^{-1}$ *S = diag _{m×n} ($\sigma_1,, \sigma_n$) AND DONE!!!
$\begin{array}{l} \lambda A + B = \lambda [A_1 \mid \dots \mid A_C] + [B_1 \mid \dots \mid B_C] = [\lambda A_1 + B_1 \mid \dots \mid \lambda A_C + B_C] \\ - \overline{\text{row-blocks}} \Rightarrow \end{array}$	rewrite as	dimensional)	conjugate-transpose	•Interaction with EROs/ECOs:		/ n \ nl	-If $m < n$ then let $B = A^T$
$\lambda A + B = \lambda [A_1;; A_r] + [B_1;; B_r] = [\lambda A_1 + B_1;; \lambda A_r + B_r]$	$\mathbf{u}_{j+1} = \mathbf{a}_{j+1} - \sum_{i=1}^{n} (\mathbf{q}_i \cdot \mathbf{a}_{j+1}) \mathbf{q}_i = \mathbf{a}_{j+1} - \sum_{i=1}^{n} \operatorname{proj}_{\mathbf{q}_i} (\mathbf{a}_{j+1})$	$-Y \subseteq X \implies X^{\perp} \subseteq Y^{\perp}$ and $X \cap X^{\perp} = \{0\}$ $-\text{Any } X \in \mathbb{R}^{n}$ can be uniquely decomposed into	-AA ^T and A ^T A are symmetric (and positive semi-definite)	-Swapping rows/columns flips the sign, e.g. $det([a_1 a_i a_i a_n]) = -det([a_1 a_i $	$P(\lambda) = A - \lambda I = \sum_{i=0}^{n} a_i \lambda^i$	*where $(k_1, k_2,, k_m) = \frac{m!}{k_1! k_2! \cdots k_m!}$	*apply above method to $B = B = A^T = USV^T$ * $A = B^T = VS^T U^T$
Matrix-multiplication distributes over: •column-blocks \Rightarrow $AB = A[B_1 B_B] = [AB_1 AB_B]$	•Let $a_1,, a_n \in \mathbb{R}^m \mid (\underline{m \ge n})$ be linearly independent,	$\mathbf{x} = \mathbf{x}_i + \mathbf{x}_k$ where $\mathbf{x}_i \in U$ and $\mathbf{x}_k \in U^{\perp}$	 For real matrices, Hermitian/symmetric are equivalent conditions 	-Scaling a row/column by \(\lambda \neq 0\) will scale the	$\begin{array}{c c} a_0 = A & a_{n-1} = (-1)^{n-1} \operatorname{tr}(A) & a_n = (-1)^n \\ -\lambda \in \mathbb{C} \text{ is eigenvalue of } \underline{A} \text{ iff } \underline{\lambda} \text{ is a root of } P(\lambda) \end{array}$	•TODO: figure out wtf going on here ![[Pasted image 20250414122252.png 500]] in 2nd tutorial	Tricks: Computing orthonormal
-row-blocks \Rightarrow AB = $[A_1;; A_p]B = [A_1B;; A_pB]$	i.e. basis of \underline{n} -dim subspace $U_n = \text{span}\{a_1,, a_n\}$ —We apply Gram-Schmidt to build ONB	•For matrix $\underline{A \in \mathbb{R}^{m \times n}}$ and for row-space $\underline{R(A)}$, column-space $\underline{C(A)}$ and null space $\underline{ker(A)}$	-Every eigenvalue λ _i of Hermitian matrices is real	determinant by ∆](by multi-linearity) *Remember to scale by λ^{-1} to maintain equality,	-The algebraic multiplicity of λ is the number of	Express recursive sequence as non-	vector-set extensions
outer-product sum =>	$(\mathbf{q}_1,, \mathbf{q}_n) \in \mathbb{R}^m \mid \text{for } U_n \subset \mathbb{R}^m \mid$	$-R(A)^{\perp} = ker(A) and C(A)^{\perp} = ker(A^{T}) $	*and geometric multiplicity of λ _i = geometric multiplicity of	i.e. $det(A) = \lambda^{-1} det([a_1 \lambda a_i a_n])$	times it is repeated as root of $P(\lambda)$	recursive using eigenvalues •For x_n recursive (e.g. $x_{n+1} = x_n + x_{n-1} \mid x_0 = 0$) $x_1 = 1$	•You have orthonormal vectors $\mathbf{u}_1, \dots, \mathbf{u}_r \in \mathbb{R}^m$ => need to extend to orthonormal vectors
$AB = [A_1 A_p][B_1;; B_p] = \sum_{i=1}^{p} A_i B_i$	$-j=1 \Rightarrow \mathbf{u}_1 = \mathbf{a}_1$ and $\mathbf{q}_1 = \hat{\mathbf{u}}_1$ i.e. start of iteration	-Any $b ∈ Rm$ can be uniquely decomposed into	*and eigenvectors x ₁ , x ₂ associated to distinct	Addition of rows/columns does not change determinant	1≤ geometric multiplicity of λ≤ algebraic multiplicity of	Find A such that $[x_{n+1}, x_n,]^T = A[x_n, x_{n-1},]^T$	$\mathbf{u}_1, \dots, \mathbf{u}_m \in \mathbb{R}^m$
•e.g. for $A = [a_1 a_n]$ $B = [b_1;; b_n]$ $\Rightarrow AB = \sum_i a_i b_i$	$-j=2$ \Rightarrow $\mathbf{u}_2 = \mathbf{a}_2 - (\mathbf{q}_1 \cdot \mathbf{a}_2)\mathbf{q}_1$ and $\mathbf{q}_2 = \hat{\mathbf{u}}_2$ and so on -Linear independence guarantees that $\mathbf{a}_{j+1} \notin U_j$	$*b = b_i *b_k$ where $b_i \in C(A)$ and $b_k \in ker(A^T)$ $*b = b_i *b_k$ where $b_i \in R(A)$ and $b_k \in ker(A)$	eigenvalues λ_1 , λ_2 are orthogonal , i.e. $\mathbf{x}_1 \perp \mathbf{x}_2$ •AJis triangular iff all entries above (lower-triangular)	•Link to invertable matrices $\Rightarrow A^{-1} = A ^{-1}$ which	*Let 1,, 1 e c De (potentially non-district)	$(e.g. [x_{n+1}, x_n]^T = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} [x_n, x_{n-1}]^T$	•Special case \Rightarrow two 3D vectors \Rightarrow use cross-product $\Rightarrow a \times b \perp a, b$
What is a projection •A projection π: V → V Jis a endomorphism such that	-For exams: more efficient to compute as	Back-to-basics: revise a-levels	or below (<i>upper-triangular</i>) the main diagonal are	means A is invertible ⇔ A ≠ 0 (because division by zero undefined), i.e. singular matrices are not	eigenvalues of \underline{A} with $\underline{x_1,, x_n \in \mathbb{C}^n}$ their eigenvectors		•Extension via standard basis $I_m = [e_1 e_m]$ using
$\underline{\pi} \cdot \underline{\pi} = \underline{\pi}_j$ i.e. it leaves its image unchanged (its idempotent)	$\frac{\mathbf{u}_{j+1} = \mathbf{a}_{j+1} - Q_j \mathbf{c}_j}{\mathbf{u}_{j+1} = \mathbf{a}_{j+1} - Q_j \mathbf{c}_j}$	trigenometry	Triangular matrices \Rightarrow $ A = \prod a_{jj}$, i.e. the product	invertible	$-\operatorname{tr}(A) = \sum_{i} \lambda_{i}$ and $\operatorname{det}(A) = \prod_{i} \lambda_{ij}$	-Find initial vector $I = [, x_1, x_0]^T$ such that	[[tutorial 1#Gram-Schmidt method to generate orthonormal basis from any linearly independent
•A square matrix P such that P2 = P is called a	1) Gather $Q_j = [\mathbf{q}_1 \dots \mathbf{q}_j] \in \mathbb{R}^{m \times j}$ all-at-once	• $a^2 + b^2 = c^2$ (Pythagorean theorem) • $c = \sqrt{a^2 + b^2 - 2ab \cdot \cos y}$ (law of cosines)	<u>'i'</u>	•For block-matrices:	−A is diagonalisable iff there exist a basis of ℝ ⁿ	$ = \frac{[x_{n+1}, x_n, \dots]^T = A^n I}{-\text{Find eigenvalues/eigenvectors of } \underline{A}_I \text{ and use} } $	vectors (tweaked) GS]]:
projection matrix —It is called an orthogonal projection matrix if	2)Compute $c_j = [\mathbf{q}_1 \cdot \mathbf{a}_{j+1}, \dots, \mathbf{q}_j \cdot \mathbf{a}_{j+1}]^T \in \mathbb{R}^J$ all-at-once	$ \frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c} $ (law of sines)	of diagonal elements •AJis diagonal iff A _{ij} = 0, i ≠ j ¦, i.e. if all off-diagonal	$\begin{vmatrix} -\det \begin{pmatrix} A & B \\ 0 & D \end{pmatrix} = \det(A) \det(B) = \det \begin{pmatrix} A & 0 \\ C & D \end{pmatrix}$	consisting of $x_1,, x_n$ -Alis diagonalisable iff $r_i = g_i$, where	$A\mathbf{u} = \lambda \mathbf{u} \implies A^n \mathbf{u} = \lambda^n \mathbf{u}$ to write I as linear combination of eigenvectors	-Choose candidate vector: just work through e ₁ ,,e _m sequentially starting from e ₁ > denote
$P^2 = P = P^{\dagger}$ (conjugate-transpose)	3)Compute $Q_j \mathbf{c}_j \in \mathbb{R}^m$ and subtract from \mathbf{a}_{j+1}	•TODO: angles, triangles, identities, etc.	entries are zero	$\det \begin{pmatrix} A & B \\ C & D \end{pmatrix} = \det(A) \det(D - CA^{-1}B) = \det(D) \det(A - BD)$	1 r; = geometric multiplicity of λ; and	– Substitute that linear combination to get x_n as	the current candidate $\frac{\mathbf{e}_k}{\mathbf{e}_k}$ - Orthogonalize : Starting from $j=r$ going to $j=m$ with
-Eigenvalues of a projection matrix must be 0 or 1 •Because <u>π: V → V</u> Jis a linear map , its image space	all-at-once	Vector norms (beyond euclidean)	 Sometimes refers to rectangular matrices, but most often square matrices 	if AJor DJare invertible, respectively	g_i = geometric multiplicity of λ_i	function of <u>n</u> Jalone	each iteration => with current orthonormal vectors
$U = im(\pi)$ and null space $W = ker(\pi)$ are subspaces of V	Properties of dot product & (induced)	-vector norms are such that: x = 0 ⇔ x = 0 , \lambda x = \lambda x \rangle x + y \leq x + y	-Written as	Sylvester's determinant theorem:	-Eigenvalues of \underline{A}^{R} are $\lambda_{1},, \lambda_{n}$ •Let $P = [\mathbf{x}_{1} \mathbf{x}_{n}]$, then	Positive (semi-)definite symmetric matrices	u ₁ ,,u _j
$-\underline{\Pi}_{J}$ is the identity operator on \underline{U}_{J} $-\text{The linear map } \pi^* = I_V - \Pi$ is also a projection with	$\bullet x^T y = y^T x = x \cdot y = \sum_i x_i y_i$		$\operatorname{diag}_{m \times n}(\mathbf{a}) = \operatorname{diag}_{m \times n}(a_1, \dots, a_p), p = \min(m, n)$	det (I _m +AB) = det (I _n +BA) •Matrix determinant lemma:	$AP = [\lambda_1 \mathbf{x}_1 \mid \dots \mid \lambda_n \mathbf{x}_n] = [\mathbf{x}_1 \mid \dots \mid \mathbf{x}_n] \operatorname{diag}(\lambda_1, \dots, \lambda_n) = PD$	•Consider symmetric $\underline{A \in \mathbb{R}^{n \times n}}$ i.e. $\underline{A = A^T}$	*Notice (u ₁ ,,u _j) is
$W = \operatorname{im}(\pi^*) = \ker(\pi)$ and $U = \ker(\pi^*) = \operatorname{im}(\pi)$, i.e. they	$*x \cdot y = a b \cos x\hat{y}$	$ \frac{1}{P_p} \text{ norms: } x _p = \left(\sum_{i=1}^n x_i ^p \right)^{1/p} $	where $\mathbf{a} = [a_1,, a_p]^T \in \mathbb{R}^p$ diagonal entries of $\underline{\mathbf{A}}$ $-\text{For } \underline{\mathbf{x}} \in \mathbb{R}^n$	$-\det(\mathbf{A} + \mathbf{u}\mathbf{v}^T) = (1 + \mathbf{v}^T \mathbf{A}^{-1} \mathbf{u}) \det(\mathbf{A})$	⇒ if <u>P⁻¹</u> exists then - <u>A=PDP⁻¹</u> i.e. <u>A</u> Jis diagonalisable	 AJis positive-definite iff x^T Ax > 0 for all x ≠ 0 J AJis positive-definite iff all its eigenvalues are strictly 	*Compute $\mathbf{w}_{j+1} = \mathbf{e}_k - \sum_{i=1}^{J} (\mathbf{e}_k \cdot \mathbf{u}_i) \mathbf{u}_i = \mathbf{e}_k - \sum_{i=1}^{J} (\mathbf{u}_i)_k \mathbf{u}_i$
swapped *πJis a projection along <u>W</u> J onto <u>U</u> J	$ \begin{array}{c} \bullet x \cdot y = y \cdot x \\ \bullet x \cdot (y + z) = x \cdot y + x \cdot z \end{array} $	$-\underline{p=1} + \ \mathbf{x}\ _1 = \sum_{i=1}^{n} x_i $	$Ax = diag_{m \times n}(a_1,, a_p)[x_1 x_n]^T = [a_1 x_1 a_p x_p 0$	σ $\det(\mathbf{A} \cdot \mathbf{U}\mathbf{V}^T) = \det(\mathbf{I}_m \cdot \mathbf{V}^T \mathbf{A}^{-1} \mathbf{U}) \det(\mathbf{A})$	-P=I _{EB} is change-in-basis matrix for basis	positive	* i=1 i=1
π [] is a projection along U onto W	•ax·y=a(x·y)	$-\underline{p=1}$ $\ x\ _1 = \sum_{i=1}^{n} x_i $	(if p = m those tail-zeros don't exist)	$det(\mathbf{A} + \mathbf{U}\mathbf{W}\mathbf{V}^T) = det(\mathbf{W}^{-1} + \mathbf{V}^T\mathbf{A}^{-1}\mathbf{U}) det(\mathbf{W}) det(\mathbf{A})$	$ \frac{B = \langle x_1,, x_n \rangle}{-If A = F_{EE} \text{is transformation-matrix of linear map } f} $	-AJis positive-definite => all its diagonals are strictly positive	*NOTE: $\mathbf{e}_{k} \cdot \mathbf{u}_{i} = (\mathbf{u}_{i})_{k}$ i.e. \underline{k} th component of \mathbf{u}_{i}
 π is the identity operator on W -V can be decomposed as V = U • W meaning every 	$x \cdot x = x ^2 = 0 \iff x = 0$	$-p=2$: $ x _2 = \sqrt{\sum_{i=1}^{n} x_i^2} = \sqrt{x \cdot x}$	-Consider diag _{$m \times n$} (b) then diag _{$m \times n$} (a) + diag _{$m \times n$} (b) = diag _{$m \times n$} (a + b)	Tricks for computing determinant	then F _{EE} = I _{EB} F _{BB} I _{BE}	$-\underline{A}_{j}$ is positive-definite => max(A_{ij} , A_{jj}) > $ A_{ij} $	·Can rewrite as $\mathbf{w}_{j+1} = \mathbf{e}_k - U_j[(\mathbf{u}_1)_k,, (\mathbf{u}_j)_k]^T = \mathbf{e}_k - [\mathbf{u}_1 \mathbf{u}_j][(\mathbf{u}_1)_k,, (\mathbf{u}_j)_k]^T$
vector $\underline{x \in V}$ can be uniquely written as $\underline{x = u + w}$	•for $x \neq 0$], we have $x \cdot y = x \cdot z \implies x \cdot (y - z) = 0$ • $ x \cdot y \le x y $ (Cauchy-Schwartz inequality)	$-\underline{p=2}$; $ x _2 = \sqrt{\sum_{i=1}^{n} x_i^2} = \sqrt{x \cdot x}$	-Consider diag _{n×k} ($c_1,, c_q$), $q = \min(n, k)$, then	If block-triangular matrix then apply	•Spectral theorem: if A Jis Hermitian then P ⁻¹ exists,	i.e. strictly larger coefficient on the diagonals -Alis positive-definite => all upper-left submatrices	•The above matrix form can be more convenient to
* $\underline{u} \in U$ and $\underline{u} = \pi(x)$ * $\underline{w} \in W$ Jand $\underline{w} = x - \pi(x) = (I_V - \pi)(x) = \pi^*(x)$	$\ u+v\ ^2 + \ u-v\ ^2 = 2\ u\ ^2 + 2\ v\ ^2$ (parallelogram	$-\underline{p} = \infty \operatorname{E} \ x\ _{\infty} = \lim_{p \to \infty} \ x\ _{p} = \max_{1 \le i \le n} x_{i} $	$\operatorname{diag}_{m \times n}(a_1,, a_p)\operatorname{diag}_{n \times k}(c_1,, c_q) = \operatorname{diag}_{m \times k}(a_1 c_1)$	$\det \begin{pmatrix} A & B \\ 0 & D \end{pmatrix} = \det(A) \det(B)$	so: -If x _i , x _i associated to different eigenvalues then	are also positive-definite	calculate with $* f \mathbf{w}_{j+1} = 0 $ then $\mathbf{e}_k \in \text{span}\{\mathbf{u}_1,, \mathbf{u}_j\} \Rightarrow \text{discard}$
•An orthogonal projection further satisfies <u>U⊥W</u> i.e. the image and kernel of ∏are orthogonal	law) • u + v ≤ u + v (triangle inequality)	•Any two norms in Rn are equivalent, meaning there	*Where $\underline{r = \min(p, q) = \min(m, n, k)}$, and $\underline{s \in \mathbb{R}^S}$, $\underline{s = \min(m, k)}$	•If close to triangular matrix apply EROs/ECOs to get it	$\mathbf{x}_i \perp \mathbf{x}_j$	- Sylvester's criterion: Alis positive-definite iff all upper-left submatrices have strictly positive	\mathbf{w}_{j+1} choose next candidate \mathbf{e}_{k+1} try this step
subspaces	$u \perp v \iff u+v ^2 = u ^2 + v ^2$ (pythagorean	exist $r>0$, $s>0$ such that: $\forall x \in \mathbb{R}^n$, $r \ x\ _a \le \ x\ _b \le s \ x\ _a$	-Inverse of square-diagonals => diag $(a_1,, a_n)^{-1}$ = diag $(a_1^{-1},, a_n^{-1})$, i.e. diagonals	there, then its just product of diagonals •If Cholesky/LU/QR is possible and cheap then do it,	If associated to same eigenvalue $\underline{\lambda}$ then eigenspace $\underline{E}_{\underline{\lambda}}$ has spanning-set $\{\mathbf{x}_{\lambda_{j}},\}$	determinant	again
-infact they are eachother's orthogonal compliments , i.e. $U^{\perp} = W$, $W^{\perp} = U \mid (because finite-dimensional)$	theorem) • $\ c\ ^2 = \ a\ ^2 + \ b\ ^2 - 2\ a\ \ b\ \cos b\hat{a}$ (law of cosines)	$ x _{\infty} \le x _{2} \le x _{1}$	cannot be zero (division by zero undefined)	then apply AB = A B	*X4X. rare linearly independent => apply	 AJis positive semi-definite iff x¹ Ax≥0 for all x AJis positive semi-definite iff all its eigenvalues are 	-Normalize: w _{j+1} ≠0 so compute unit vector
vectorspaces)	Properties of linear independence	-Equivalence of ℓ_1, ℓ_2 and $\ell_\infty \Longrightarrow \ x\ _2 \le \sqrt{n} \ x\ _\infty$	-Determinant of square-diagonals => $ \text{diag}(a_1,, a_n) = \prod a_i \text{(since they are technically)} $	•If all else fails, try to find row/column with MOST zeros -Perform minimal EROs/ECOs to get that row/column	Gram-Schmidt \mathbf{q}_{λ_i} , $\cdots \leftarrow \mathbf{x}_{\lambda_i}$,	non-negative	$\frac{\mathbf{u}_{j+1} = \hat{\mathbf{w}}_{j+1}}{-\text{Repeat:}}$ keep repeating the above steps, now with
-so we have $\pi(x) \cdot y = \pi(x) \cdot \pi(y) = x \cdot \pi(y)$ -or equivalently, $\pi(x) \cdot (y - \pi(y)) = (x - \pi(x)) \cdot \pi(y) = 0$	•Let $v_1,, v_k \in \mathbb{R}^m$ be linearly independent	x ₁ ≤√n x ₂	<u> </u>	to be all-but-one zeros	*Then $\{q_{\lambda_j},\}$ is orthonormal basis (ONB) of E_{λ}	-AJis positive semi-definite => all its diagonals are non-negative	new orthonormal vectors $\mathbf{u}_1, \dots, \mathbf{u}_{j+1}$
Projection properties	•v _i ≠0](proof by contradiction)	Induce metric d(x, y) = y-x has additional	<pre>triangular matrices) •For square All the trace of All is the sum if its diagonals,</pre>	*Don't forget to keep track of sign-flipping & scaling-factors	$-Q = \langle \mathbf{q}_1, \dots, \mathbf{q}_n \rangle$ is an ONB of $\mathbb{R}^n \longrightarrow \mathbb{Q} = [\mathbf{q}_1 \dots \mathbf{q}_n]$ is	$-\underline{A}$ is positive semi-definite \Rightarrow $\max(A_{ij}, A_{jj}) \ge A_{ij} $	SVD Application: Principal Compo
•By Cauchy–Schwarz inequality we have ∥π(x)∥ ≤ ∥x∥	Transformation matrix of linear map w.r.t. bases	properties: -Translation invariance: $d(x+w, y+w) = d(x, y)$	i.e. tr(A)	-Do Laplace expansion along that row/column =>	orthogonal matrix i.e. $Q^{-1} = Q^{T}$ $-\mathbf{q}_{1},, \mathbf{q}_{n} \text{ are still eigenvectors of } \underline{A} = \underline{Q}\underline{D}\underline{Q}^{T}$	i.e. no coefficient larger than on the diagonals -AJis positive semi-definite => all upper-left	nent Analysis (PCA) •Assume A _{uncentered} ∈ ℝ ^{m×n} represent m samples
•The orthogonal projection onto the line containing vector <u>u</u> jis proj _u = $\hat{u}\hat{u}^T$, which can also be written as	•For linear map $f : \mathbb{R}^n \to \mathbb{R}^m$, ordered bases	-Scaling: $\underline{d}(\lambda x, \lambda y) = \lambda \underline{d}(x, y)$	 The (column) rank of A is number of linearly independent columns, i.e. rk(A) 	notice all-but-one minor matrix determinants go to zero	(spectral decomposition)	submatrices are also positive semi-definite	of <u>n</u> -dimensional data (with <u>m≥n</u>)
$\operatorname{proj}_{u}(v) = \frac{u \cdot v}{u \cdot u} u$	$(\mathbf{b}_1,, \mathbf{b}_n) \in \mathbb{R}^n$ and $(\mathbf{c}_1,, \mathbf{c}_m) \in \mathbb{R}^m$ $-A = \mathbf{F}_{CB} \in \mathbb{R}^{m \times n}$ is the transformation-matrix of f	Matrix norms	-I.e. its the number of pivots in row-echelon-form	Representing EROs/ECOs as transfor-	-A=QDQ ^T can be interpreted as scaling in direction of its eigenvectors:	-Alis positive semi-definite => it has a [[tutorial 4#Cholesky Decomposition Cholesky	Data centering: subtract mean of each column from that column's elements
û - U so û la unit wester en the line containing û l	matte bases Nigard Cl	•Matrix norms are such that: A = 0 ← A = 0 , \ A = \ A , A + B ≤ A + B	*I.e. its the dimension of the column-space rk(A) = dim(C(A))	mation matrices •For A∈ R ^{m×n} suppose a sequence of:	1)Perform a succession of reflections/planar rotations	Decomposition]]	-Let the resulting matrix be $\underline{A} \in \mathbb{R}^{m \times n}$, who's columns
-So we get	$-f(\mathbf{b}_{j}) = \sum_{i=1}^{m} A_{ij} \mathbf{c}_{i}$ -> each \mathbf{b}_{j} basis gets mapped to a	-Matrices Fm×n are a vector space so matrix norms	*I.e. its the dimension of the image-space	-EROs transform $A \rightsquigarrow_{EROs} A' \Longrightarrow$ there is matrix R Js.t.	to change coordinate-system 2)Apply scaling by λ_i to each dimension \mathbf{q}_i	•For any $M \in \mathbb{R}^{m \times n} \setminus MM^T$ and M^TM are symmetric and positive semi-definite	have mean zero •PCA is done on centered data-matrices like A!
$\operatorname{proj}_{u}(v) = \hat{u}\hat{u}^{T}v = \frac{1}{\ u\ \ u\ } uu^{T}v = \frac{1}{\ u\ ^{2}} u(u \cdot v) = \frac{u \cdot v}{u \cdot u} u$, <u>H</u> , T	 are vector norms, all results apply Sub-multiplicative matrix norm (assumed by default) 	$rk(A) = dim(im(f_A)) of linear map f_A(x) = Ax $ -The (row) rank of A is number of linearly	RA=A'	3)Undo those reflections/planar rotations	Singular Value Decomposition (SVD) &	-SVD exists i.e. A = USV ^T and r = rk(A)
-A special case of $\pi(x) \cdot (y - \pi(y)) = 0$ is $u \cdot (v - \text{proj}_{u} v) = 0$,	linear combination of $\sum_{i} a_i c_i$ bases	is also such that $ AB \le A B $. •Common matrix norms, for some $A \in \mathbb{R}^{m \times n}$.	independent rows	-ECOs transform A → ECOs A' => there is matrix C]s.t. AC = A'	Extension to \mathbb{C}^n Standard inner product: $\langle x, y \rangle = x^{\dagger} y = \sum_i \overline{x_i} y_i$	Singular Values	-Let $A = [\mathbf{r}_1;; \mathbf{r}_m]$ be rows $\overline{\mathbf{r}_1,, \mathbf{r}_m} \in \mathbb{R}^n$ \Rightarrow each row corresponds to a sample
since $\operatorname{proj}_{U}(u) = u$ •If $U \subseteq \mathbb{R}^{n}$ is a k -dimensional subspace with	-If $\underline{f^{-1}}$ exists (i.e. its bijective and $\underline{m} = \underline{n}$) then	-Common matrix norms, for some $A \in \mathbb{R}^{n-n-1}$: $-\ A\ _1 = \max_{i} \ A_{*i}\ _1$	-The row/column ranks are always the same, hence $rk(A) = dim(C(A)) = dim(R(A)) = dim(C(A^T)) = rk(A^T)$	-Both transform A → EROs+ECOs A' => there are	-Conjugate-symmetric: $\langle x, y \rangle = \overline{\langle y, x \rangle}$	*Singular Value Decomposition of $A \in \mathbb{R}^{m \times n}$ is any decomposition of the form $A = USV^{T}$, where	-Let $A = [c_1 c_n]$ be columns $c_1,, c_n \in \mathbb{R}^m$ \Rightarrow
orthonormal basis (ONB) $\langle \mathbf{u}_1, \dots, \mathbf{u}_k \rangle \in \mathbb{R}^m$	$(\mathbf{F}_{CB})^{-1} = \mathbf{F}^{-1}_{BC}$ (where \mathbf{F}^{-1}_{BC} is the transformation-matrix of f^{-1})	$-\ A\ _2 = \sigma_1(A)$ i.e. largest singular value of \underline{A}]	 AJis full-rank iff rk(A) = min(m, n), i.e. its as linearly independent as possible 	matrices R, C s.t. RAC = A' •FORWARD: to compute these transformation	•Standard (induced) norm: $ x = \sqrt{\langle x, y \rangle} = \sqrt{x^{\dagger} y}$	-[[tutorial 1#Orthogonality concepts Orthogonal]] $U = [\mathbf{u}_1 \dots \mathbf{u}_m] \in \mathbb{R}^{m \times m} \text{and } V = [\mathbf{v}_1 \dots \mathbf{v}_n] \in \mathbb{R}^{n \times n} $	each column corresponds to one dimension of the data
-Let $U = [\mathbf{u}_1 \mid \mid \mathbf{u}_k] \in \mathbb{R}^{m \times k}$ be the matrix of columns $\mathbf{u}_1,, \mathbf{u}_k$	•The transformation matrix of f the identity map is called	(square-root of [[tutorial 3#Singular Value Decomposition (SVD) & Singular Values largest	•Two matrices $\underline{A}, \widetilde{A} \in \mathbb{R}^{m \times n}$ are equivalent if there exist	matrices: -Start with [I _m A I _n] i.e. A and identity matrices	•We can [[tutorial 1#Eigen-values/vectors diagonalise]] real matrices in CJ which lets us diagonalise more	$-S = \operatorname{diag}_{m \times n}(\sigma_1,, \sigma_p)$ where $p = \min(m, n)$ and	•Let $X_1,, X_n$ be random variables where each X_i corresponds to column c_i
Then orthogonal projection onto the subspace U is	change-in-basis matrix -The identity matrix I _m represents id _R m w.r.t. the	eigenvalue]] of A ^T A or AA ^T	two invertible matrices $\underline{P \in \mathbb{R}^{m \times m}}$ and $\underline{Q \in \mathbb{R}^{n \times n}}$ such that $A = P\overline{A}Q^{-1}$	-For every ERO on Al do the same to LHS (i.e. I _m)	matrices than before	$\sigma_1 \ge \cdots \ge \sigma_p \ge 0$	-i.e. each X _i corresponds to i th component of data
$\pi_U = UU^T$	standard basis F = In a N=> in I = I	$-\ A\ _{\infty} = \max_{i} \ A_{i*}\ _{1}$, note that $\ A\ _{1} = \ A^{T}\ _{\infty}$	•Two matrices $\underline{A}, \widetilde{A} \in \mathbb{R}^{n \times n}$ are similar if there exists an	-For every ECO on A ₁ do the same to RHS (i.e. I_n) -Once done, you should get $[I_m \mid A \mid I_n] \Rightarrow [R \mid A' \mid C]$	Least Square Method •If we are solving Ax = b and b ∉ C(A) , i.e. no solution,	-σ ₁ ,,σ _p are singular values of <u>A</u>]. *(Positive) singular values are (positive) square-roots	-i.e. random vector $X = [X_1,, X_n]^T$ models the data
-Can be rewritten as $\pi_U(v) = \sum_i (\mathbf{u}_i \cdot v) \mathbf{u}_i$	-standard basis $\underline{m} = \{c_1, \dots, c_m\}^{m-1} \in \mathbb{R} : \underline{m} = \{E\}$ $-[B = \{b_1, \dots, b_m\}] \text{ is a basis of } \underline{R}^m \} \text{ then}$ $\underline{\mathbf{I}}_{EB} = [\underline{\mathbf{b}}_1 \mid \dots \mid \underline{\mathbf{b}}_m] \text{ is the transformation matrix from}$ $\underline{\mathbf{B}} \text{ Ito } \underline{\mathbf{E}}_1$	-Frobenius norm: $\ A\ _F = \sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n} A_{ij} ^2}$	invertible matrix $\underline{P \in J} \mathbb{R}^{n \times n}$ such that $\underline{A = P \tilde{A} P^{-1}}$ - Similar matrices are equivalent, with $\underline{Q = P}$	with RAC = A'	then Least Square Method is:	of eigenvalues of $\underline{AA^T}$ or $\underline{A^TA}$	r ₁ ,,r _m
-If $\langle \mathbf{u}_1, \dots, \mathbf{u}_k \rangle$ is not orthonormal , then "normalizing	BIto E	$ \sqrt{\sum_{i=1}^{n} \sum_{j=1}^{n} A_{ij} } $	•AJis diagonalisable iff AJis similar to some diagonal	•If the sequences of EROs and ECOs were $R_1,, R_{\lambda}$ and $C_1,, C_{\mu}$ respectively	-Finding \underline{x} J which minimizes $ Ax-b _2$ -Recall for $A \in \mathbb{R}^{m \times n}$ [[tutorial 1#Orthogonality	*i.e. $\sigma_1^2,, \sigma_p^2$ are eigenvalues of AA^T or A^TA	$-\text{Co-variance matrix of } \underbrace{X \text{is Cov}(A) = \frac{1}{m-1} A^T A}_{} = $ $(A^T A)_{ij} = (A^T A)_{ij} = \text{Cov}(X_i, X_j)$
factor" $(\mathbf{U}^T \mathbf{U})^{-1}$ is added => $\pi_U = \mathbf{U}(\mathbf{U}^T \mathbf{U})^{-1} \mathbf{U}^T$ *For line subspaces $U = \text{span}\{u\}$, we have	$-I_{BE} = (I_{EB})^{-1}$, so $\Rightarrow F_{CB} = I_{CE}F_{EE}I_{EB}$ •Dot-product uniquely determines a vector w.r.t. to	•A matrix norm $\ \cdot\ $ on $\mathbb{R}^{m \times n}$ is consistent with the	matrix D Properties of determinants	$-R = R_{\lambda} \cdots R_{1} \text{ and } C = C_{1} \cdots C_{\mu} \text{ so}$	concepts we have unique decomposition for any	* A 2 = 01 (link to [[tutorial 1#Matrix norms matrix norms]])	$(A^*A)_{ij} = (A^*A)_{ji} = Cov(X_i, X_j)$ $v_1,, v_r (columns of V) \text{ are principal axes of } A]$
$(\mathbf{U}^T \mathbf{U})^{-1} = (u^T u)^{-1} = 1/(u \cdot u) = 1/\ u\ $	basis	vector norms $\ \cdot\ _a$ on \mathbb{R}^n and $\ \cdot\ _b$ on \mathbb{R}^m if -for all $A \in \mathbb{R}^{m \times n}$ and $x \in \mathbb{R}^n$ \Longrightarrow $\ Ax\ _b \le \ A\ \ x\ _a$	•Consider $\underline{A \in \mathbb{R}^{n \times n}}$, then $A_{ij} \in \mathbb{R}^{(n-1) \times (n-1)}$ the	$R_{\lambda} \cdots R_{1} A(C_{1} \cdots C_{\mu}) = A'$	$\underbrace{\mathbf{b} \in \mathbb{R}^m}_{\mathbf{b}} : \underbrace{\mathbf{b} = \mathbf{b}_i + \mathbf{b}_k}_{\mathbf{b}}$	•Let $\underline{r = rk(A)}$, then number of strictly positive singular	•Let $\underline{w \in \mathbb{R}^n}$ be some unit-vector \Longrightarrow let $\alpha_j = r_j \cdot w_j$ be the
Gram-Schmidt method to generate or-	$-\operatorname{If} \underline{a_i} = x \cdot \underline{b_i}$ then $x = \sum_i a_i \underline{b_i}$, we call $\underline{a_i}$ the	-If $a = b$, $\ \cdot\ $ is compatible with $\ \cdot\ _a$	(i, j) minor matrix of A obtained by deleting i th row	$-R^{-1} = R_1^{-1} \cdots R_{\lambda}^{-1}$ and $C^{-1} = C_{\mu}^{-1} \cdots C_1^{-1}$, where	*where $\mathbf{b}_i \in C(A)$ and $\mathbf{b}_k \in \ker(A^T)$ $-\ \mathbf{A}\mathbf{x} - \mathbf{b}_i\ _2 \text{ is minimized} \iff \ \mathbf{A}\mathbf{x} - \mathbf{b}_i\ _2 = 0 \iff \mathbf{A}\mathbf{x} = \mathbf{b}_i$	values is \underline{r}_{1} -i.e. $\sigma_{1} \ge \cdots \ge \sigma_{r} > 0$ and $\sigma_{r+1} = \cdots = \sigma_{D} = 0$	projection/coordinate of sample rj onto w
thonormal basis from any linearly in- dependent vectors	coordinate-vector of xJw.r.t. to B	-Frobenius norm is consistent with ℓ_2 norm \Rightarrow $ Av _2 \le A _F v _2$	and j th column from \underline{A}] •Then we define determinant of \underline{A} , i.e. $det(A) = A $, as	R_i^{-1}, C_j^{-1} are inverse EROs/ECOs respectively	• $A^T Ax = A^T b$ is the normal equation which gives	A- T anut	-Variance (Bessel's correction) of $\alpha_1, \dots, \alpha_m$ is
•Gram-Schmidt is iterative [[#What is a	•Rank-nullity theorem: dim(im(f))+dim(ker(f))=rk(A)+dim(ker(A))=n	•For a vector norm $\ \cdot\ $ on \mathbb{R}^n , the subordinate matrix norm $\ \cdot\ $ on $\mathbb{R}^{m \times n}$ is	$-\det(A) = \sum_{i=1}^{n} (-1)^{i+k} A_{ik} \det(A_{ik}')$ i.e. expansion along	•BACKWARD: once $R_1,, R_{\lambda}$ and $C_1,, C_{\mu}$ for which	solution to least square problem: $\ Ax-b\ _2$ is minimized $\iff Ax=b_i \iff A^TAx=A^Tb$	$-A = \sum_{i=1}^{r} \sigma_i \mathbf{u}_i \mathbf{v}_i^T$	$Var_W = \frac{1}{m-1} \sum_i \alpha_j^2 = \frac{1}{m-1} w^T \left(\sum_i \mathbf{r}_j^T \mathbf{r}_j \right) w = \frac{1}{m-1} w^T$
projection projection]] => we use <i>current j</i> dim subspace, to get <i>next</i> (<i>j</i> +1) dim subspace	i.e. properties of transformation-matrices/liner maps	$norm \ \cdot \ on \mathbb{R}^{m \times n} $ is $\ A\ = max \{ \ Ax\ : x \in \mathbb{R}^n, \ x\ = 1 \} one \ Ax\ = 1 \}$	k=1	RAC = A' are known, starting with $[I_m \mid A \mid I_n]$	Linear Regression	SVD is similar to [[tutorial 1#Eigen-values/vectors spectral decomposition]],	First (principal) axis defined =>
-Assume orthonormal basis (ONB) $(\mathbf{q}_1,, \mathbf{q}_j) \in \mathbb{R}^m$	correspond •f is injective/monomorphism iff ker(f)={0} iff A is	-Alternative expressions:	i]-th row *(for any i])	-For $\underline{i=1 \rightarrow \lambda}$ perform $\underline{R_i}$ on \underline{A} , perform $\underline{R_{\lambda-i+1}^{-1}}$ on LHS (i.e. I_m)	n	except it always exists	$w_{(1)} = \arg \max_{\ w\ =1} w^T A^T A w = \arg \max_{\ w\ =1} (m-1) v$
for j dim subspace $U_j \subset \mathbb{R}^m$	full-rank	$ A = \max\{ Ax : x \in \mathbb{R}^n, x = 1\}$	$-\det(A) = \sum_{k=1}^{i} (-1)^{k+j} A_{kj} \det(A_{kj}')$, i.e. expansion along	$-\text{For } \underline{j=1} \rightarrow \mu \text{perform } C_j \text{on } \underline{A} \text{I, perform } C_{ll-j+1}^{-1} \text{on}$	•Let $y = f(t) = \sum_{j=1}^{n} s_j f_j(t)$ be a mathematical model,	$-\text{If } \underline{n \le m}$ then work with $\underline{A^T A \in \mathbb{R}^{n \times n}}$ *Obtain eigenvalues $\sigma_1^2 \ge \cdots \ge \sigma_n^2 \ge 0$ of $A^T A$	-i.e. w ₍₁₎ the direction that maximizes variance Var _w
*Let $Q_j = [\mathbf{q}_1 \dots \mathbf{q}_j] \in \mathbb{R}^{m \times j}$ be the matrix of columns	Orthogonality concepts • <u>u</u> ⊥ v ⇔ <u>u</u> ·v = 0 i.e. <u>u</u> and <u>v</u> are orthogonal	$= \max \left\{ \frac{\ Ax\ }{\ x\ } : x \in \mathbb{R}^n, x \neq 0 \right\}$	i th column (for any j)	RHS (i.e. I _n)	where f_j are basis functions and s_j are parameters	*Obtain eigenvalues $\sigma_1^2 \times \cdots \times \sigma_n^2 \geq 0$ of $A^i A$] *Obtain orthonormal eigenvectors $\mathbf{v}_1, \dots, \mathbf{v}_n \in \mathbb{R}^n$ of	i.e. maximizes variance of **projections on line Rw(1)
q_1, \dots, q_j	•ujand vjare orthonormal iff u ⊥ v, u = 1 = v	= max { Ax : x ∈ R ⁿ , x ≤ 1}	•When det(A) = 0] we call A] a singular matrix •Common determinants	-You should get $[I_m \mid A \mid I_n] \rightsquigarrow [R^{-1} \mid A' \mid C^{-1}]$ with	*Let $(t_i, \overline{y_i})$ $1 \le i \le m, m \gg n$ be a set of observations , and $t, y \in \mathbb{R}^m$ are vectors representing those	A ^T A (apply normalization e.g. Gram-Schmidt !!!! to	• $\sigma_1 \mathbf{u}_1,, \sigma_r \mathbf{u}_r$ (columns of <u>US</u>) are principal components/scores of <u>A</u>]
*P: =Ω:Ω' lis [[#Projection properties orthogonal	$\bullet A \in \mathbb{R}^{n \times n}$ is orthogonal iff $A^{-1} = A^T$	•Vector norms are compatible with their subordinate	-For n = 1 det(A) = A _{1.1}	$A = R^{-1}A'C^{-1}$	observations	eigenspaces E _{Oj})	-Recall: $A = \sum_{i=1}^{r} \sigma_{i} \mathbf{u}_{i} \mathbf{v}_{i}^{T}$ with $\sigma_{1} \ge \cdots \ge \sigma_{r} > 0$, so that
* $P_j = Q_j Q_j^T$ is [[#Projection properties orthogonal projection]] onto U_j	-Columns of A = [a1 an] lare orthonormal basis						
projection]] onto Uj	-Columns of $A = [a_1 a_n]$ are orthonormal basis (ONB) $C = (a_1,, a_n) \in \mathbb{R}^n$ so $A = \mathbf{I}_{EC}$ is	matrix norms	-For n = 21 det(A) = A ₁₁ A ₂₂ -A ₁₂ A ₂₁	You can mix-and-match the forward/backward modes i.e. inverse operations in inverse order for one, and	$-f_j(t) = [f_j(t_1), \dots, f_j(t_m)]^T$ is a vector transformed	* $V = [v_1 v_n] \in \mathbb{R}^{n \times n}$ is [[tutorial 1#Orthogonality	i=1 '
		matrix norms For $p=1,2,\infty$ matrix norm $\ \cdot\ _p$ is subordinate to the vector norm $\ \cdot\ _p$ (and \overline{thus} compatible with)			$-f_j(\mathbf{t}) = [f_j(\mathbf{t}_1), \dots, f_j(\mathbf{t}_m)]^T$ is a vector transformed $\boxed{\mathbf{under} \ f_j}$ $-A = [f_1(\mathbf{t})] \dots f_n(\mathbf{t})] \in \mathbb{R}^{m \times n} \text{is a matrix of columns}$	* $V = [v_1 v_n] \in \mathbb{R}^{n \times n}$ is [[tutorial 1#Orthogonality concepts orthogonal]] so $V^T = V^{-1}$ * $r = rk(A) = no$. of strictly +ve σ_i	relates principal axes and principal components Data compression: If $\sigma_1 \gg \sigma_2$ [then compress A] by

$A \approx \sigma_1 \mathbf{u}_1 \mathbf{v}_1^T$	<u>į</u>	Reflection w.r.t. hyperplanes and	•Computes at j th step:	-If <u>Ax = b</u>] problem of finding <u>x</u> given <u>b</u>] is just	*Holds for any arithmetic operation ☐ = ⊕, ⊖, ⊕, ⋄)	-![[Pasted image 20250420092322.png 450]]	-Sandwich theorem for limits in <u>R</u> J⇒ pick easy
Generalised Eigenvectors	-Can now rewrite $\mathbf{a}_j = \sum_{i=1}^{n} (\mathbf{q}_i \cdot \mathbf{a}_j) \mathbf{q}_i = Q_j \mathbf{c}_j$	Householder Maps	-Classical GS => j th column of Q and the j th column of R	$f_{A^{-1}}(b) = A^{-1}b$ $\implies \kappa = \ A^{-1}\ \frac{\ b\ }{\ x\ } \le \text{Cond}(A)$	-Complex floats implemented pairs of real floats, so above applies complex ops as-well	-Work required: $\sim \frac{2}{3} m^3$ flops $\sim O(m^3)$ results in	upper/lower bounds $-\lim_{n\to\infty} r^n = 0 \iff r < 1 \text{ and}$
•TODO: this seems low-priority, do when have time	•Choose $Q = Q_n = [q_1 q_n] \in \mathbb{R}^{m \times n}$ notice its	•Two points $x, y \in E^n$ are reflections w.r.t hyperplane $P = (Rn)^{\perp} + c$ if:	-Modified GS \Rightarrow j th column of Q and the j th row of	•For $\mathbf{b} \in \mathbb{C}^m$, the problem $f_{\mathbf{b}}(A) = A^{-1}\mathbf{b}$ (i.e. finding \underline{x} jin	*Caveat: $\epsilon_{\text{mach}} = \frac{1}{2} \beta^{1-t}$ must be scaled by factors	L _{ij} ≤1 so L = O(1)	
•gen-eigenvectors •jordan chains (common cases)	[[tutorial 1#Orthogonality concepts semi-orthogonal]] since Q ^T Q=I _n	1)The translation $\vec{xy} = y - x$ is parallel to normal n_y	*Both have flop (floating-point operation) count of	$\underline{Ax = \mathbf{b}}$ has $\kappa = A A^{-1} = \text{Cond}(A)$	on the order of 2 ^{3/2} , 2 ^{5/2} for *, * respectively	- Stability depends on growth-factor $\rho = \frac{\max_{i,j} u_{i,j} }{\max_{i,j} u_{i,j} }$	$\lim_{n \to \infty} \sum_{i=0}^{n} ar^{i} = \frac{a}{1-r} \iff r < 1$
https://www.youtube.com/watch?v=aTh6peJfAQQ&list=	PLIMX XIII KARMITI ONE RYCMNO5n1 I-	i.e. xỹ = λn	O(2mn ²)	Stability	$- (x_1 \oplus \cdots \oplus x_n) \approx (x_1 + \cdots + x_n) + \sum_{i=1}^n x_i \left(\sum_{j=i}^n \delta_j \right), \delta_j \le \epsilon_{ma}$	$\max_{i,j} a_{i,j} $	
gQ0RW5&index=3 •JNF, form	-Notice => $\mathbf{a}_j = Q_j \mathbf{c}_j = \mathbf{Q}[\mathbf{q}_1 \cdot \mathbf{a}_j,, \mathbf{q}_j \cdot \mathbf{a}_j, 0,, 0]^T = \mathbf{Q}\mathbf{r}_j$ -Let $R = [\mathbf{r}_1 \mid \mid \mathbf{r}_n] \in \mathbb{R}^{n \times n} \models$	2)Midpoint $m = 1/2(\mathbf{x} \cdot \mathbf{y}) \in P$ lies on P_{\perp} i.e. $\underline{m \cdot \mathbf{n} = \mathbf{c} \cdot \mathbf{n}}$ •Suppose $P_{\mathbf{u}} = (\mathbf{R}\mathbf{u})^{\perp}$ goes through the origin with unit	-NOTE: Householder method has $2(mn^2 - n^3/3)$ flop	•Given a problem $\underline{f}: X \to Y$ an algorithm for \underline{f} is $\underline{\tilde{f}}: X \to Y$	$\frac{(x_1 \otimes \cdots \otimes x_n) \times (x_1 \times \cdots \times x_n) + \sum_{i=1}^n x_i (\sum_{j=i}^n y_j) \cdot (y_j) \times y_i}{-(x_1 \otimes \cdots \otimes x_n) \times (x_1 \times \cdots \times x_n) (1 + \varepsilon), \varepsilon \le 1.06(n-1)\varepsilon_{\text{mach}}}$	$-\ U\ = O(\rho \ A\) = \sum_{i=0}^{\infty} \tilde{L}\tilde{U} = \tilde{P}A + \delta A$,	Eigenvalue Problems: Iterative Tech niques
some tips on how to solve common cases	$\begin{bmatrix} \mathbf{q}_1^T \mathbf{a}_1 & \dots & \mathbf{q}_1^T \mathbf{a}_n \end{bmatrix}$	normal $u \in \mathbb{R}^n$	count, but better numerical properties	-f is computer implementation , so inputs/outputs	$-\operatorname{fl}\left(\sum x_i y_i\right) = \sum x_i y_i (1 + \varepsilon_i) \text{ where}$	δA - α/ας Σορίν backwards stable if	•If A] is [[tutorial 1#Properties of
•JNF decomposition and basis of generalized	A = QR = Q · notice its	-Householder matrix $H_{ij} = I_{ij} - 2uu^{T}$ is reflection w.r.t.	•Recall: $Q^{\dagger}Q = I_n$ => check for loss of orthogonality with $\ I_n - Q^{\dagger}Q\ = loss$	are FP	$\frac{(\sum_{i=1}^{n})^{i}\sum_{j=1}^{n}\sum_{i=1}^{n}}{1+\epsilon_{i}=(1+\delta_{i})\times(1+\eta_{i})\cdots(1+\eta_{n})}$ and	p=O(1)	matrices diagonalizable]] then [[tutorial 1#Eigen-values/vectors eigen-decomposition]]
eigenvectors General: visualizing transformations	$\begin{bmatrix} 0 & \mathbf{q}_n^T \mathbf{a}_n \end{bmatrix}$	hyperplane P_{u} -Recall: let $L_{u} = Ru$	-Classical GS => $\ \mathbf{I}_n - Q^{\dagger}Q\ \approx \text{Cond}(A)^2 \epsilon_{\text{mach}}$	Input $\underline{x \in X}$ Jis first rounded to $f(x)$ J. i.e. $\hat{f}(x) = \hat{f}(f(x))$ $-\hat{f}(x) = \hat{f}(f(x))$	δ _j , η _i ≤ε _{mach}	•Full pivoting is PAQ = LU finds largest entry in	A=XAX ⁻¹
of matrices	[[tutorial 1#Properties of matrices upper-triangular]]	*proj $_{L_{u}} = uu^{T}$ and proj $_{P_{u}} = I_{n} - uu^{T}$ =>	-Modified GS => $\ I_n - Q^{\dagger}Q\ \approx \text{Cond}(A) \epsilon_{\text{mach}}$	$-$ Absolute error $\Rightarrow \ \tilde{f}(x) - f(x)\ $ relative error \Rightarrow	$*1+\epsilon_i \approx 1+\delta_i + (\eta_i + \dots + \eta_n)$	bottom-right submatrix - Makes it pivot with row/column swaps before normal	-Dominant λ_1 ; \mathbf{x}_1 are such that $ \lambda_1 $ is strictly largest for which $A\mathbf{x} = \lambda \mathbf{x}$
•TODO: do when have time -> where standard basis-vectors map to	Full QR Decomposition Consider full-rank $A = [a_1 a_n] \in \mathbb{R}^{m \times n} (\underline{m \ge n}),$	$H_U = \text{proj}_{P_U} - \text{proj}_{L_U}$	-NOTE: Householder method has $\ \mathbf{I}_n - Q^{\dagger}Q\ \approx \epsilon_{\text{mach}}$	$\frac{\ \bar{f}(x) - f(x)\ }{\ f(x)\ }$	$ * f(x^Ty)-x^Ty \le \sum x_iy_i \epsilon_i $ *Assuming $n\epsilon_{\text{mach}} \le 0.1 \Longrightarrow$	elimination	-Rayleigh quotient for Hermitian A=A† is
•TODO: rotations, reflections, scaling, shearing, etc	i.e. a ₁ ,,a _n ∈ R ^m are linearly independent	*Visualize as preserving component in P _{II} , then	Multivariate Calculus		$ f (x^Ty) - x^Ty \le \phi(n)\varepsilon_{mach} x ^T y $ where	-Very expensive O(m ³) search-ops, partial pivoting	$R_A(\mathbf{x}) = \frac{\mathbf{x}^{\dagger} A \mathbf{x}}{\mathbf{x}^{\dagger} \mathbf{x}}$
Cholesky Decomposition	Apply [[#Thin QR Decomposition w/ Gram-Schmidt (GS) thin QR decomposition]] to obtain:	flipping component in L,,	 Consider f: Rⁿ → R => when clear write i th component of input as i instead of x; 		$ x _i = x_i $ is vector and $\phi(n)$ is small function of n	only needs O(m ²) Systems of Equations: Iterative Tech	*Eigenvectors are stationary points of R _A
•Consider positive (semi-)definite $A \in \mathbb{R}^{n \times n}$] •Cholesky Decomposition is $A = LL^T$ where L is	$-ONB(\mathbf{q}_1,,\mathbf{q}_n) \in \mathbb{R}^m for C(A) $	$-\underline{H_U}$ is involutory, orthogonal and symmetric, i.e. $H_U = H_U^{-1} = H_U^{T}$	•Level curve w.r.t. to $c \in \mathbb{R}$ Jis all points s.t. $f(x) = c$	• f is stable if \(\frac{1}{2} \times \in X \), \(\frac{3}{2} \in X \), \(\frac{1}{2} \in X \) = \(\frac{1}{2} \in X \).	-Summing a series is more stable if terms added in order of increasing magnitude	niques	*R _A (x) is closest to being like eigenvalue of x,
lower-triangular	–Semi-orthogonal $Q_1 = [\mathbf{q}_1 \mid \mid \mathbf{q}_n] \in \mathbb{R}^{m \times n}$ and	Modified Gram-Schmidt	-Projecting level curves onto R ⁿ gives contour-map	$\frac{\ \tilde{f}(x) - f(\tilde{x})\ }{\ f(\tilde{x})\ } = O\left(\epsilon_{\text{mach}}\right) \text{ and } \frac{\ \tilde{x} - x\ }{\ x\ } = O\left(\epsilon_{\text{mach}}\right)$	•For FP matrices , let $ M _{ij} = M_{ij} $ i.e. matrix $ M $ of	•Let $A, R, G \in \mathbb{R}^{n \times n}$ where G^{-1} exists \Rightarrow splitting	i.e. $R_A(\mathbf{x}) = \underset{\alpha}{\operatorname{argmin}} \ A\mathbf{x} - \alpha\mathbf{x}\ _2$
-For positive semi-definite => always exists, but non-unique	upper-triangular $R_1 \in \mathbb{R}^{n \times n}$ where $A = Q_1 R_1$ •[[tutorial 3#Tricks Computing orthonormal vector-set	•Go check [[tutorial 1#Gram-Schmidt method to	of \underline{f} • n_k th order partial derivative w.r.t i_k of, of	-i.e. nearly the right answer to nearly the right question	absolute values of MJ	$\frac{A = G + R}{-Ax = b} \text{rewritten as } x = Mx + c \text{where}$	$*R_A(\mathbf{x})-R_A(\mathbf{v})=O(\ \mathbf{x}-\mathbf{v}\ ^2)$ as $\mathbf{x} \to \mathbf{v}$ where \mathbf{v} is eigenvector
-For positive-definite => always <i>uniquely</i> exists s.t.	extensions Compute basis extension]] to obtain	generate orthonormal basis from any linearly independent vectors Classical GM]] first, as this is just	n_1 th order partial derivative w.r.t i_1 of f is:	-outer-product is stable • \tilde{f} is backwards stable if $\forall x \in X$, $\exists \tilde{x} \in X$ s.t. $\tilde{f}(x) = f(\tilde{x})$	$-fl(\lambda \mathbf{A}) = \lambda \mathbf{A} + \mathcal{E}, \mathcal{E} _{ij} \leq \lambda \mathbf{A} _{ij} \epsilon_{mach}$ $-fl(\mathbf{A} + \mathbf{B}) = (\mathbf{A} + \mathbf{B}) + \mathcal{E}, \mathcal{E} _{ij} \leq \mathbf{A} + \mathbf{B} _{ij} \epsilon_{mach}$	M = -G ⁻¹ R; c = -G ⁻¹ b	•Power iteration: define sequence $\mathbf{b}^{(k+1)} = \frac{A\mathbf{b}^{(k)}}{\ \mathbf{a}\mathbf{b}^{(k)}\ }$
diagonals of LJare positive	remaining $\mathbf{q}_{n+1}, \dots, \mathbf{q}_m \in \mathbb{R}^m$, where $\langle \mathbf{q}_1, \dots, \mathbf{q}_m \rangle$ is	an alternative computation method	ank++n1 . nb .n1 . (n1,,nb) / (n1,,		l-	- Define f(x)=Mx+c and sequence	Ab(k)
Finding a Cholesky Decomposition: Compute <u>LL</u> and solve <u>A = LL</u> by matching terms	ONB for \mathbb{R}^{m} -Notice $(\mathbf{q}_{n+1},, \mathbf{q}_{m})$ is ONB for $\mathbb{C}(A)^{\perp} = \ker(A^{\top})$	•Let $P_{\perp q_j} = I_m - q_j q_j^T$ be projector onto [[tutorial]	$\frac{1}{\partial \mathbf{x}_{i}^{n} \mathbf{k} \cdots \partial \mathbf{x}_{i}^{n}} f = \partial_{ik}^{n} \cdots \partial_{i1}^{n} f = f_{i_{1} \cdots i_{k}}^{n} \cdots = (f_{i_{1} \cdots i_{k}}^{n})$	1-i.e. exactly the right answer to nearly the right	$fl(AB) = AB + E, E _{ij} \le n\epsilon_{mach}(A B)_{ij} + O(\epsilon_{mach}^2)$	$\frac{\mathbf{x}^{(k+1)} = f(\mathbf{x}^{(k)}) = M\mathbf{x}^{(k)} + \mathbf{c}}{-\mathbf{Limit} \text{ of } \langle \mathbf{x}_k \rangle \text{ is fixed point of } f \Rightarrow \text{ unique fixed point}}$	with initial $b^{(0)}$ s.t. $ b^{(0)} = 1$
-For square roots always pick positive	-Let $Q_2 = [\mathbf{q}_{n+1} \dots \mathbf{q}_m] \in \mathbb{R}^{m \times (m-n)}$, let	5#Lines and hyperplanes in Euclidean space \$	-Overall, its an N +th order partial derivative where	question, a subset of stability	• Taylor series about $a \in \mathbb{R}$] is $\frac{n}{n} f^{(k)}(a)$	of f is solution to Ax=b	-Assume dominant $\lambda_1; \mathbf{x}_1$ exist for \underline{A} , and that
-If there is exact solution then positive-definite -If there are free variables at the end, then positive	$Q = [Q_1 Q_2] \in \mathbb{R}^{m \times m}$, let $R = [R_1; 0_{m-n}] \in \mathbb{R}^{m \times n}$	mathbb{E} $\{n\}$ (= $\{n\}$ (= $\{n\}$)\$ hyperplane]] ($\{n\}$) $\{n\}$, i.e. [[tutorial 5#Lines and hyperplanes in	$N = \sum_{k} n_{k}$	-⊕, ⊕, ⊗, ⊘ inner-product, back-substitution w/ triangular systems, are backwards stable	$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^{k} + O((x-a)^{n+1}) \text{ as } \underline{x \to a}$	-If - is consistent norm and M < 1 then (x _k)	proj _{x1} (b ⁽⁰⁾) * 0
semi-definite	•Then full QR decomposition is	Euclidean space \$ mathbb{E} {n}({=} mathbb{R}		-If backwards stable f and f lhas condition number	-Need $\underline{a=0}$ => $f(x) = \sum_{k=0}^{n} \frac{f(k)(0)}{k!} x^k + O(x^{n+1})$ as	converges for any x ⁽⁰⁾ (because Cauchy-completeness)	-Under above assumptions, $b^{(k)} + b^{(k)} + Ab^{(k)}$
*i.e. the decomposition is a solution-set parameterized on free variables	$A = QR = [Q_1 Q_2] \begin{bmatrix} R_1 \\ 0_{m-n} \end{bmatrix} = Q_1 R_1$	{n})\$ orthogonal compliment]] of line Rqj	$-\nabla^T f = (\nabla f)^T$ is transpose of $\nabla f \downarrow$ i.e. $\nabla^T f$ is row vector	$\underline{\kappa(x)}$ then relative error $\frac{\ \tilde{f}(x) - f(x)\ }{\ f(x)\ } = O\left(\kappa(x)\varepsilon_{\text{mach}}\right)$	$-\text{Need } \underline{a=0} \Rightarrow f(x) = \sum_{k=0}^{\infty} \frac{1}{k!} x^{k} + O\left(x^{n+1}\right) \text{ as}$	*For splitting, we want MM < 1 and easy to compute	$\mu_{R} = R_{A} \left(\mathbf{b}^{(R)} \right) = \frac{\mathbf{b}^{(R)^{\dagger}} A \mathbf{b}^{(R)}}{\mathbf{b}^{(R)^{\dagger}} \mathbf{b}^{(R)}} $ converges to dominant
[1 1 1]	$-\underline{Q}$ jis orthogonal , i.e. $\underline{Q}^{-1} = \underline{Q}^T$, so its a basis	-Notice: $P_{\perp j} = \mathbf{I}_m - Q_j Q_j^T = \prod_{i=1}^{j} (\mathbf{I}_m - \mathbf{q}_i \mathbf{q}_i^T) = \prod_{i=1}^{j} P_{\perp} \mathbf{q}_i$	$\cdot D_{x} f(\mathbf{x}) = \lim_{x \to \infty} \frac{f(\mathbf{x} + \delta \mathbf{u}) - f(\mathbf{x})}{directional-derivative}$	Accuracy, stability, backwards stability are	<u>x → 0</u>]	M; c *Stopping criterion usually the relative residual *Stopping criterion usually the relative residual	h Vicenuarias to some deminant v cossociated
*e.g. 1 1 1 =LL ^T where	transformation $-\text{proj}_{C(A)} = Q_1 Q_1^T \mid \text{proj}_{C(A)} \perp = Q_2 Q_2^T \mid \text{are [[tutorial]}$	1=1 1=1	$\frac{\delta_{11}^{-1}/(4)^{-1}}{\delta \to 0} = \delta$	norm-independent for fin-dim X, Y	- (2 x)D \(\frac{n}{p} \) \(\frac{p}{k} \) \(\frac{n}{n+1} \) \(\frac{p}{p} \) \(\frac{p!}{k} \) \(\frac{n}{n+1} \) \(\frac{n}{p} \) \(\frac{p!}{k} \) \(\frac{n}{n+1} \) \(\frac{n}{k} \) \(\frac{n}{k	h+1 b-Ax ^(k)	$-(\overline{b_k})$ converges to some dominant $\underline{x_1}$ associated with $\lambda_1 = \ Ab^{(k)}\ $ converges to $ \lambda_1 $
[1 0 0]	1#Projection properties orthogonal projections]]	*[[tutorial 1#Column-wise & row-wise matrix/vector ops Outer-product sum equivalence]] =>	–It is rate-of-change in direction $\underline{\mathbf{u}}_{\mathbf{i}}$, where $\underline{\mathbf{u}} \in \mathbb{R}^{n}$ is	Big-O meaning for numerical analysis •In complexity analysis $f(n) = O(g(n)) as n \to \infty$	e.g. $(1+\epsilon)^p = \sum_{k=0}^n \binom{p}{k} \epsilon^k + O(\epsilon^{n+1}) = \sum_{k=0}^n \frac{p!}{k!(p-k)!} \epsilon^k + O(\epsilon^{n+1})$	E	-If $\text{proj}_{\mathbf{x}_1} \left(\mathbf{b}^{(0)} \right) = 0$ then $\left(\mathbf{b}_k \right)$; $\left(\mathbf{c}_k \right)$ converge to
L = 1 0 0 , c ∈ [0,1]	onto $C(A)$, $C(A)^{\perp} = \ker(A^{\top})$ respectively	<i>i</i> 1	unit-vector $-D_{\mathbf{u}}f(\mathbf{x}) = \nabla f(\mathbf{x}) \cdot \mathbf{u} = \nabla f(\mathbf{x}) \mathbf{u} \cos(\theta) \Rightarrow D_{\mathbf{u}}f(\mathbf{x}) $	 But in numerical analysis f(e) = O(g(e)) as e → 0 . 	as <u>€</u> → 0]	-Assume A's diagonal is non-zero (w.l.o.g. permute/change basis if isn't) then A = D+L+U	second dominant $\lambda_2; \mathbf{x}_2$ [instead]
$\begin{bmatrix} 1 & c & \sqrt{1-c^2} \end{bmatrix}$	-Notice: $QQ^T = \mathbf{I}_m = Q_1Q_1^T + Q_2Q_2^T$	$Q_j Q_j^T = [\mathbf{q}_1 \mathbf{q}_j][\mathbf{q}_1^T ; ; \mathbf{q}_j^T] = \sum_{i=1}^J \mathbf{q}_i \mathbf{q}_i^T$	$\frac{-b_{\mathbf{u}}f(x) - v_{\mathbf{u}}f(x) - v_{\mathbf{u}}f(x)}{\text{maximized when } \cos \theta = 1}$	i.e. $\limsup_{\epsilon \to 0} f(\epsilon) / g(\epsilon) < \infty$	Elementary Matrices •Identity $I_n = [e_1 e_n] = [e_1;; e_n]$ has elementary	-Where <u>D</u> is diagonal of <u>A</u>], <u>L</u> , <u>U</u> are strict lower/upper	-If no dominant ∆ (i.e. multiple eigenvalues of
 If <u>A = LL¹</u> you can use [[#Forward/backward substitution forward/backward substitution]] to solve 	•Generalizable to A∈C ^{m×n} by changing transpose to conjugate-transpose	*For <u>i * k</u>] _=>	-i.e. when \mathbf{x}, \mathbf{u} are parallel ⇒ hence $\nabla f(\mathbf{x})$ is direction	-i.e. $\exists C, \delta > 0 \mid \text{s.t. } \underline{\forall \epsilon} \mid \text{ we have}$ $0 < \ \epsilon\ < \delta \implies \ f(\epsilon)\ \le C \ g(\epsilon)\ $	vectors e ₁ ,,e _n for rows/columns	triangular parts of A -Jacobi Method: G = D; R = L + U =>	maximum [\lambda] then (bk) will converge to linear combination of their corresponding eigenvectors
equations	-Inner product $x^T y \Rightarrow x^{\dagger} y$	$\prod_{i=1}^{j} (\mathbf{I}_{m} - \mathbf{q}_{i} \mathbf{q}_{i}^{T}) = \mathbf{I}_{m} - \sum_{i=1}^{j} \mathbf{q}_{i} \mathbf{q}_{i}^{T} = \mathbf{I}_{m} - Q_{j} Q_{j}^{T}$	of max. rate-of-change • $\mathbf{H}(f) = \nabla^2 f = \mathbf{J}(\nabla f)^T$ is the Hessian of $f = \nabla$	-O(g) is set of functions	•Row/column switching: permutation matrix Pij	$M = -D^{-1}(L + U); c = D^{-1}b$	-Slow convergence if dominant λ_1 not "very
-For <u>Ax = b</u> ⇒ let y = L ^T x -Solve Ly = b by forward substitution to find y	$-$ Orthogonal matrix $U^{-1} = U^{T}$] ⇒ unitary matrix $U^{-1} = U^{\dagger}$	i=1	$\frac{\mathbf{H}(f)_{ij} = \frac{\partial^2 f}{\partial x_i \partial x_j}}{\mathbf{H}(f)_{ij} = \frac{\partial^2 f}{\partial x_i \partial x_j}}$	$\{f: \limsup_{\epsilon \to 0} \ f(\epsilon)\ / \ g(\epsilon)\ < \infty \}$	obtained by switching e j and e j in In (same for rows/columns)	$-x_i^{(k+1)} = \frac{1}{A_{ii}} \left(\mathbf{b}_i - \sum_{j \neq i} A_{ij} \mathbf{x}_j^{(k)} \right) = x_i^{(k+1)} \text{ only needs}$	dominant"
-Solve $L^T x = y$ by backward substitution to find x_1	*For orthogonal $U = [\mathbf{u}_1 \dots \mathbf{u}_k] \in \mathbb{R}^{m \times k} = >$	-Re-state: $\mathbf{u}_{j+1} = (\mathbf{I}_m - Q_j Q_j^T) \mathbf{a}_{j+1} = >$	(h) dx _i dx _j	•Smallness partial order $O(g_1) \boxtimes O(g_2)$ defined by set-inclusion $O(g_1) \subseteq O(g_2)$	-Applying P _{ij} from left will switch rows, from right	$-\mathbf{x}_{i}^{(k+1)} = \frac{1}{A_{ii}} \left(\mathbf{b}_{i} - \sum_{j \neq i} A_{ij} \mathbf{x}_{j}^{(k)} \right) = \mathbf{x}_{\underline{i}}^{(k+1)} \text{ only needs}$	$-\ \mathbf{b}^{(k)} - \alpha_k \mathbf{x}_1\ = O\left(\left\ \frac{\lambda_2}{\lambda_1}\right\ ^{\kappa}\right)$ for phase factor
[l ₁₁ 0 0]	$proj_U = UU^T projects onto C(U) $	(j . \	• f has local minimum at x_{loc} if there's radius $r > 0$ s.t. $\forall x \in B[r; x_{loc}]$ we have $f(x_{loc}) \le f(x)$	$-i.e.$ as $\epsilon \rightarrow 0$, $g_1(\epsilon)$ goes to zero faster than $g_2(\epsilon)$	will swap columns	b_i ; $\mathbf{x}^{(k)}$; $A_{i*} = \text{row-wise parallelization}$	$\alpha_k \in \{-1, 1\}$ it may alternate if $\lambda_1 < 0$
•For $\underline{n=3}$ => $L = \begin{bmatrix} l_{21} & l_{22} & 0 \\ l_{31} & l_{32} & l_{33} \end{bmatrix}$	*For unitary $U = [\mathbf{u}_1 \dots \mathbf{u}_k] \in \mathbb{C}^{m \times k}$ $\Longrightarrow \operatorname{proj}_U = UU^{\dagger}$	$\mathbf{u}_{j+1} = \left(\prod_{i=1}^{j} P_{\perp} \mathbf{q}_{i} \right) \mathbf{a}_{j+1} = \left(P_{\perp} \mathbf{q}_{j} \cdots P_{\perp} \mathbf{q}_{1} \right) \mathbf{a}_{j+1}$	$-f$ has global minimum \mathbf{x}_{glob} if $\forall \mathbf{x} \in \mathbb{R}^n$ we have	-Roughly same hierarchy as complexity analysis but flipped (some break pattern)	$-P_{ij} = P_{ij}^{-1} = P_{ij}^{-1}$ i.e. applying twice will undo it	•Gauss-Seidel (G-S) Method: G = D+L; R = U =>	$*\alpha_k = \frac{(\lambda_1)^k c_1}{\ \lambda_1\ ^k \ c_1\ }$ where $c_1 = \mathbf{x}_1^{\dagger} \mathbf{b}^{(0)}$ and assuming
[12.]	projects onto C(U) -And so on	-Projectors $P_{\perp q_1},, P_{\perp q_j}$ are iteratively applied to	$f(\mathbf{x}_{glob}) \le f(\mathbf{x})$	*e.g, $O(\varepsilon^3) < O(\varepsilon^2) < O(\varepsilon) < O(1)$	•Row/column scaling: $D_i(\lambda)$ obtained by scaling $\underline{e_i}$ by $\underline{\lambda}$ in $\underline{I_n}$ (same for rows/columns)	$M = -(D+L)^{-1}U$; $\mathbf{c} = (D+L)^{-1}\mathbf{b}$	
$LL^T = \begin{bmatrix} l_{11}l_{21} & l_{21}^2 + l_{22}^2 & l_{21}l_{31}^* + l_{22}l_{31} \end{bmatrix}$	Lines and hyperplanes in Euclidean	\mathbf{a}_{j+1} , removing its components along \mathbf{q}_1 , then along	-A local minimum satisfies optimality conditions: *∇f(x) = 0 e.g. for n = 1 its f'(x) = 0	-Maximum: $O(\max(g_1 , g_2)) = O(g_2) \iff O(g_1) \oplus O(g_2)$	-Applying P _{ij} from left will scale rows, from right will	$-x_i^{(k+1)} = \frac{1}{A_{ij}} \left(b_i - \sum_{j=1}^{i-1} A_{ij} x_j^{(k+1)} - \sum_{j=i+1}^{n} A_{ij} x_j^{(k)} \right)$	$b^{(k)}; x_1$ are normalized $-(A-\sigma I)$ has eigenvalues $\lambda - \sigma I \Rightarrow$ power-iteration on
	splice E ⁿ (=R ⁿ)	q ₂ , and so on	$*\nabla^2 f(\mathbf{x})$ is positive-definite, e.g. for $n=2$ [its $f''(\mathbf{x})>0$]	*e.g. $O(\max(\epsilon^{R}, \epsilon)) = O(\epsilon)$	scale columns $-D_j(\lambda) = \text{diag}(1,, \lambda,, 1) \text{so all diagonal properties}$	(k+1)	$(A-\sigma I)$ has $\frac{\lambda_2 - \sigma}{\lambda_1 - \sigma}$
Forward/backward substitution Forward substitution: for lower-triangular	•Consider standard Euclidean space $\mathbb{E}^n(=\mathbb{R}^n)$ -with standard basis $(\mathbf{e}_1,, \mathbf{e}_n) \in \mathbb{R}^n$	•Let $\mathbf{u}_{k}^{(j)} = \left(\prod_{i=1}^{J} P_{\perp} \mathbf{q}_{i}\right) \mathbf{a}_{k}$, i.e. $\underline{\mathbf{a}_{k}}$ without its	•Interpret $F: \mathbb{R}^n \to \mathbb{R}^m$ as m functions $F_i: \mathbb{R}^n \to \mathbb{R}$ (one per output-component)	•Using functions $f_1,, f_n$ let $\underline{\mathcal{D}}(f_1,, f_n)$ be formula defining some function	apply, e.g. $D_i(\lambda)^{-1} = D_i(\lambda^{-1})$	-Computing $\mathbf{x}_{i}^{(k+1)}$ needs \mathbf{b}_{i} ; $\mathbf{x}^{(k)}$; $\mathbf{A}_{i\star}$ and $\mathbf{x}_{j}^{(k+1)}$	-Eigenvector guess => estimated eigenvalue
	-with standard origin 0 ∈ R ⁿ	(r-i /	$-\mathbf{J}(F) = \begin{bmatrix} \nabla^T F_1;; \nabla^T F_m \end{bmatrix}$ is Jacobian matrix of $F_J = >$	Then $2(O(g_1),, O(g_n))$ is the class of functions	•Row addition: $L_{ij}(\lambda) = \mathbf{I}_n + \lambda \mathbf{e}_i \mathbf{e}_i^T$ performs	for j < i => lower storage requirements •Successive over-relaxation (SOR):	•Inverse (power-)iteration: perform power iteration
L= : \.	 A line L = Rn + c is characterized by direction n ∈ Rⁿ (n × 0) and offset from origin c ∈ L 	components along q ₁ ,,q _j	$J(F)_{ij} = \frac{\partial F_i}{\partial x_j}$	$[?(f_1,,f_n): f_1 \in O(g_1),,f_n \in O(g_n)]$	$R_i \leftarrow R_i + \lambda R_j$ when applying from left	$G = \omega^{-1}D + L; R = (1 - \omega^{-1})D + U$	on $(A-\sigma I)^{-1}$ to get $\lambda_{1,\sigma}$ closest to σ
	-It is customary that:	-Notice: $\mathbf{u}_j = \mathbf{u}_j^{(j-1)}$, thus $\mathbf{q}_j = \hat{\mathbf{u}}_j = \mathbf{u}_j^{(j-1)} / r_{jj}$ where		*e.g. $e^{O(1)} = \{e^{f(e)} : f \in O(1)\}$	$-\lambda e_i e_j^T$ is zeros except for $\lambda \ln (i,j) $ th entry	$M = -(\omega^{-1}D + L)^{-1}((1 - \omega^{-1})D + U); c = -(\omega^{-1}D + L)^{-1}b$	$-(A-\sigma I)^{-1}$ has eigenvalues $(\lambda-\sigma)^{-1}$ so power iteration
$\ell_{1,1} x_1 = b_1 \implies x_1 = \frac{b_1}{\ell_{1,1}}$ and substitute down	*njis a unit vector, i.e. n = n = 1	$r_{jj} = \left\ \mathbf{u}_{j}^{(j-1)} \right\ $	Conditioning •A problem is some f: X → Y where X, Y are normed	-General case:	$-L_{ij}(\lambda)^{-1} = L_{ij}(-\lambda)$ both triangular matrices	$(k+1)$ ω $\left(\begin{array}{cccccccccccccccccccccccccccccccccccc$	will yield largest $(\lambda_{1,\sigma} - \sigma)^{-1}$ $\chi^{(k)}$ i.e. will yield smallest $\lambda_{1,\sigma} - \sigma$ i.e. will yield $\lambda_{1,\sigma}$
Then solve the second row	$*c \in L$ is closest point to origin, i.e. $c \perp n$ - If $c \neq \lambda n$ => L not vector-subspace of \mathbb{R}^n	-Iterative step:	vector-spaces	$\overline{?}_1(O(f_1),\ldots,O(f_m))\subseteq\overline{?}_2(O(g_1),\ldots,O(g_n))$	LU factorization w/ Gaussian elimina-	$\mathbf{x}_{i}^{(k+1)} = \frac{\omega}{A_{ij}} \left(\mathbf{b}_{i} - \sum_{j=1}^{i-1} A_{ij} \mathbf{x}_{j}^{(k+1)} - \sum_{j=i+1}^{n} A_{ij} \mathbf{x}_{j}^{(k)} \right) * (1 - \omega).$	closest to g
$b_2 = \ell_{2,1} x_1$	*i.e. 0∉L i.e. L doesn't go through the origin	$\mathbf{u}_{k}^{(j)} = \left(P_{\perp \mathbf{q}_{j}}\right) \mathbf{u}_{k}^{(j-1)} = \mathbf{u}_{k}^{(j-1)} - \left(\mathbf{q}_{j} \cdot \mathbf{u}_{k}^{(j-1)}\right) \mathbf{q}_{j}$	–A problem instance is f with fixed input x ∈ X , shortened to just "problem" *(with x ∈ X implied)	*e.g. $e^{O(1)} = O(k^{\epsilon})$ means $\{e^{f(\epsilon)} : f \in O(1)\} \subseteq O(k^{\epsilon})$	tion	for relaxation factor <u>\omega > 1</u>	$-\ \mathbf{b}^{(k)} - \alpha_k \mathbf{x}_{1,\sigma}\ = O\left(\left \frac{\lambda_{1,\sigma} - \sigma}{\lambda_{2,\sigma} - \sigma}\right ^k\right) \text{ where } \mathbf{x}_{1,\sigma}$
$\ell_{2,1} x_1 + \ell_{2,2} x_2 = b_2 \implies x_2 = \frac{z_1 + z_2}{\ell_{2,2}}$ and	*LJis affine-subspace of \mathbb{R}^n -If $\mathbf{c} = \lambda \mathbf{n}$, i.e. $L = \mathbf{R} \mathbf{n}$] \Rightarrow LJis vector-subspace of \mathbb{R}^n	–i.e. each iteration j of MGS computes P _{⊥ qj} (and	$-\underline{\delta x}$ is small perturbation of $\underline{x} = \delta f = f(x + \delta x) - f(x)$	not necessarily true Special case: $f = [0](0(g_1),, 0(g_n))$ means	•[[tutorial 1#Representing EROs/ECOs as transformation matrices Recall that]] you can	If A Jis strictly row diagonally dominant then Jacobi/Gauss-Seidel methods converge	(1 2,0 1 /
substitute downand so on until all x; are solved	*i.e. 0∈L, i.e. L goes through the origin	projections under it) in one go •At start of iteration $j \in 1n$ we have ONB	-A problem (instance) is:	$f \in \mathbb{N}(O(g_1), \dots, O(g_n))$	represent EROs and ECOs as transformation matrices	-A is strictly row diagonally dominant if	corresponds to $\lambda_{1,\sigma}$ and $\lambda_{2,\sigma}$ is 2nd-closest to σ
•Backward substitution: for upper-triangular	*L has dim(L) = 1 and orthonormal basis (ONB) { n̂ } •A hyperplane _ is characterized by normal n∈ R ⁿ	$\mathbf{q}_1, \dots, \mathbf{q}_{j-1} \in \mathbb{R}^m$ and residual $\mathbf{u}_i^{(j-1)}, \dots, \mathbf{u}_n^{(j-1)} \in \mathbb{R}^m$	*Well-conditioned if all small $\underline{\delta x}$ lead to small $\underline{\delta f}$, i.e. if $\underline{\kappa}$ jis small $(e.g. 1 \underline{1} 10 \underline{1} 10^2)$	*e.g. $(\varepsilon+1)^2 = \varepsilon^2 + O(\varepsilon)$ means	R, C respectively -LU factorization => finds A = LU where L, U are	$ \overline{A}_{ii} > \sum_{j \neq i} A_{ij} $	-Efficiently compute eigenvectors for known eigenvalues <u>o</u>
U =	(<u>n ≠0</u>) and offset from origin <u>c ∈ P</u>]		*Ill-conditioned if some small δx lead to large δf .	$\underbrace{\epsilon \mapsto (\epsilon+1)^2 \in \{\epsilon^2 + f(\epsilon) : f \in O(\epsilon)\}}_{\bullet \text{ Let } f_1 = O(g_1), f_2 = O(g_2) \text{ and let } \underbrace{k * 0 \text{ be a constant}}_{\bullet \text{ Let } f_2 = O(g_2) \text{ and let } \underbrace{k * 0 \text{ be a constant}}_{\bullet \text{ Let } f_2 = O(g_2) \text{ and let } \underbrace{k * 0 \text{ be a constant}}_{\bullet \text{ Let } f_2 = O(g_2) \text{ and let } \underbrace{k * 0 \text{ be a constant}}_{\bullet \text{ Let } f_2 = O(g_2) \text{ and let } \underbrace{k * 0 \text{ be a constant}}_{\bullet \text{ Let } f_2 = O(g_2) \text{ and let } \underbrace{k * 0 \text{ be a constant}}_{\bullet \text{ Let } f_2 = O(g_2) \text{ and let } \underbrace{k * 0 \text{ be a constant}}_{\bullet \text{ Let } f_2 = O(g_2) \text{ and let } \underbrace{k * 0 \text{ be a constant}}_{\bullet \text{ Let } f_2 = O(g_2) \text{ and let } \underbrace{k * 0 \text{ be a constant}}_{\bullet \text{ Let } f_2 = O(g_2)}_{\bullet \text{ Let } f_2 = O(g_2)}$	lower/upper triangular respectively	•If A is positive-definite then G-S and SOR $(\underline{\omega} \in (0, 2))$	-Eigenvalue guess => estimated eigenvector -![[Pasted image 20250420131643.png[300]]
0 u _{n,n}	-It represents an (n-1) dimensional slice of the n dimensional space	-Compute $r_{jj} = \ \mathbf{u}_{j}^{(j-1)}\ \Rightarrow \mathbf{q}_{j} = \mathbf{u}_{j}^{(j-1)}/r_{jj}$	i.e. if $\underline{\kappa}_{j}$ is large *(e.g. $\underline{10^{6}}$, $\underline{10^{16}}$) •Absolute condition number $\operatorname{cond}(x) = \hat{\kappa}(x) = \hat{\kappa} \operatorname{of} f \operatorname{at}$	$-f_1 \overline{f_2} = O(g_1 g_2)$ and $f \cdot O(g) = O(fg)$	•Naive Gaussian Elimination performs $[I_m \mid A \mid I_n] \rightsquigarrow [R^{-1} \mid U \mid I_n] \text{ to get } AI_n = R^{-1} U \text{ using}$	converge	-:[[Pasted Image 20250420131645.phg 300]] -Can reduce matrix inversion $O(m^3)$ to $O(m^2)$ by
-For $\underline{Ux = b}$, just solve the last row b_n	*Points are hyperplanes for <u>n = 1</u>]	-For each $k \in (j+1)n$ compute $r_{jk} = \mathbf{q}_j \cdot \mathbf{u}_k^{(j-1)} = $	<u>x</u> jis	$\frac{-\overline{f_1 * f_2 = O(\max(g_1 , g_2))} \Rightarrow \text{if } g_1 = g = g_2 \text{then}}{\overline{f_1 * f_2 = O(g)} }$	only row addition	Break up matrices into (uneven blocks)	pre-factorization
$u_{n,n} x_n = b_n \implies x_n = \frac{b_n}{u_{n,n}}$ and substitute up	*Lines are hyperplanes for <u>n = 2</u>] *Planes are hyperplanes for <u>n = 3</u>]	$\mathbf{u}_{k}^{(j)} = \mathbf{u}_{k}^{(j-1)} - r_{jk}\mathbf{q}_{j}$	$-\hat{\kappa} = \lim_{\delta \to 0} \sup_{\ \delta x\ \le \delta} \frac{\ \delta f\ }{\ \delta x\ } \Longrightarrow \text{for most problems}$	$-\frac{J_1+J_2=O(g)}{O(k \cdot g)=O(g)}$	$-\frac{R^{-1}}{1}$ i.e. inverse EROs in reversed order, is lower-triangular so $L = R^{-1}$	•e.g. symmetric $\underline{A} \in \mathbb{R}^{n \times n}$ can become	Nonlinear Systems of Equations: Itera tive Techniques
-Then solve the second-to-last row $b_{n-1} - u_n$	–lt is customary that: ារូ <u>/ា</u> ព្រៃទ័ ខៈហារ៉ុt vector , i.e. [n] = [n̂] = 1	-We have next ONB (q ₁ ,,q _j) and next residual		Floating-point numbers	-![[Pasted image 20250419051217.png 400]]	$A = \begin{bmatrix} a_{1,1} & b \\ b^{\dagger} & C \end{bmatrix}$, then perform proofs on that	•[[tutorial 6#Multivariate Calculus Recall]] that ∇f(x) is
$u_{n-1,n-1}x_{n-1} + u_{n-1,n}x_n = b_{n-1} \implies x_{n-1} = \frac{b_{n-1} - a_n}{u_n}$	- ½ c ∈ P is closest point to origin, i.e. c = λn	$\begin{bmatrix} \mathbf{u}_{j+1}^{(j)}, \dots, \mathbf{u}_{n}^{(j)} \end{bmatrix}$	simplified to $\hat{\kappa} = \sup_{\delta x} \frac{\ \delta f\ }{\ \delta x\ }$	•Consider base/radix β≥2 (typically 2) and precision t≥1 (24) or 53 for IEEE single/double precisions)	-The pivot element is simply diagonal entry $u_{kk}^{(k-1)}$		direction of max, rate-of-change ∇f(x)
and substitute up	*With those $\Rightarrow P = \{x \in \mathbb{R}^n \mid x \cdot \mathbf{n} = \lambda\}$	-NOTE: for $j=1$ => $\mathbf{q}_1, \dots, \mathbf{q}_{j-1} = \emptyset$ i.e. we don't have	-If Jacobian $J_f(x)$ exists then $\hat{\kappa} = J_f(x) $ where	•Floating-point numbers are discrete subset	fails if $u_{kk}^{(k-1)} \approx 0$	Catchup: metric spaces and limits •Metrics obey these axioms	-Search for stationary point by gradient descent : $\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} - \alpha \nabla f(\mathbf{x}^{(k)})$ for step length $\underline{\mathbf{a}}$ -AJis positive-definite solving $\mathbf{A}\mathbf{x} = \mathbf{b}$ and
and so on until all x _i jare solved	-If $\underline{\mathbf{c} \cdot \mathbf{n} \neq 0}$ => $\underline{\mathbf{P}}$ not vector-subspace of $\underline{\mathbf{R}}^n$ *i.e. $\underline{0 \notin \mathbf{P}}$ i.e. $\underline{\mathbf{P}}$ doesn't go through the origin	any yet	matrix norm $\ -\ $ induced by norms on X and Y •Relative condition number $\kappa(x) = \kappa \text{of } f \text{at } x \text{is}$	$F = \left\{ (-1)^{S} \left(m/\beta^{t} \right) \beta^{e} \mid 1 \le m \le \beta^{t}, s \in \mathbb{B}, m, e \in \mathbb{Z} \right\}$	$-\underline{\tilde{L}\tilde{U}}=A+\delta A$, $\frac{\ \delta A\ }{\ L\ \cdot\ U\ }=O\left(\epsilon_{\text{mach}}\right)$; only backwards	-d(x,x)=0	•AJis positive-definite solving $Ax = b$ and
Thin QR Decomposition w/ Gram- Schmidt (GS)	*PJis affine-subspace of R ⁿ	•By end of iteration $j = n$ we have ONB $(\mathbf{q}_1,, \mathbf{q}_n) \in \mathbb{R}^m$ of \underline{n} dim subspace	$-\kappa = \lim_{\delta \to 0} \sup_{\ \delta x\ \le \delta} \left(\frac{\ \delta f\ }{\ f(x)\ } / \frac{\ \delta x\ }{\ x\ } \right) = \text{for most}$	- <u>s</u> jis sign-bit , <u>m/β^t</u> is mantissa , <u>e</u> jis exponent (<u>8</u>)-bit for single, <u>11</u> }-bit for double)	stable if L · U ≈ A	$ \begin{vmatrix} -x \neq y & \Longrightarrow d(x, y) > 0 \\ -d(x, y) = d(y, x) \end{vmatrix} $	$\min_{\mathbf{X}} f(\mathbf{x}) = \frac{1}{2} \mathbf{x}^{T} A \mathbf{x} - \mathbf{x}^{T} \mathbf{b} \text{ are equivalent}$
•Consider full-rank $A = [a_1 a_n] \in \mathbb{R}^{m \times n} (m \ge n),$	$- f_{\underline{\mathbf{c}}\cdot\underline{\mathbf{n}}=\underline{0} }$ i.e. $\underline{P}=(\underline{\mathbf{R}}\underline{\mathbf{n}})^{\perp} \Longrightarrow \underline{P} \mathbf{i}\mathbf{s} $ vector-subspace of	$U_n = \operatorname{span}\{\mathbf{a}_1, \dots, \mathbf{a}_n\}$	δ→0 δx ≤δ\ f(x) x /	-Equivalently, can restrict to β ^{t-1} ≤ m ≤ β ^t −1 for	-Work required: $\sim \frac{2}{3} m^3$ flops $\sim O(m^3)$	$-\overline{d(x,z)} \le d(x,y) + d(y,z)$	-Get iterative methods $\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} - \alpha^{(k)} \mathbf{p}^{(k)}$ for step
i.e. $\mathbf{a}_1,, \mathbf{a}_n \in \mathbb{R}^m$ are linearly independent	*i.e. 0∈PJ i.e. PJgoes through the origin	- [r ₁₁ r _{1n}]	problems simplified to $\kappa = \sup_{\delta x} \left(\frac{\ \delta f\ }{\ f(x)\ } / \frac{\ \delta x\ }{\ x\ } \right)$	unique m and e -F ⊂ R is idealized (ignores over/underflow), so is	-Solving $\underline{Ax = LUx}$ is $\sim \frac{2}{3} m^3$ flops (back substitution is	 For metric spaces, mix-and-match these infinite/finite limit definitions: 	length $\alpha^{(k)}$ and directions $\mathbf{p}^{(k)}$ •Conjugate gradient (CG) method: if $A \in \mathbb{R}^{n \times n}$ also
-Apply [[tutorial 1#Gram-Schmidt method to generate orthonormal basis from any linearly independent	*P_has dim(P) = n - 1	$A = [a_1 a_n] = [q_1 q_n]$. : $= QA$		countably infinite and self-similar (i.e. F = βF)	O(m ²)	$-\lim_{X\to +\infty} f(x) = +\infty \iff \forall r\in\mathbb{R}, \exists N\in\mathbb{N}, \forall x>N: \ f(x)>r$	symmetric then $(\mathbf{u}, \mathbf{v})_A = \mathbf{u}^T A \mathbf{v}$ is an inner-product
vectors[GS]] $\mathbf{q}_1, \dots, \mathbf{q}_n \leftarrow GS(\mathbf{a}_1, \dots, \mathbf{a}_n)$ to build ONB	•Notice <u>L = Rn</u> and <u>P = (Rn) </u> are orthogonal compliments, so:	corresponds to [[tutorial 5#Thin QR Decomposition w/	-If Jacobian $J_f(x)$ exists then $\kappa = \frac{\ J_f(x)\ }{\ f(x)\ /\ x\ }$	-For all x∈R] there exists fl(x)∈F] s.t. x-fl(x) ≤∈mach x	-NOTE: Householder triangularisation requires ~ $\frac{4}{3}$ m ³	$\lim_{X\to p} f(x) = L \iff \forall \varepsilon > 0, \exists \delta > 0, \forall x \in A : 0 < d_X(x, p) < \delta =$	-GC chooses $\mathbf{p}^{(k)}$ that are conjugate w.r.t. Algive. $(\mathbf{p}^{(i)})_{i.e.}(\mathbf{p}^{(i)})_{A} = 0$ for $i \neq j$
$(\mathbf{q}_1,, \mathbf{q}_n) \in \mathbb{R}^m$ for $C(A)$ For exams : more efficient to compute as	-proj _I = \hat{n}\hat{n}^T is orthogonal projection onto L](along	Gram-Schmidt (GS) thin QR decomposition]]	-More important than $\hat{\mathbf{k}}$ for numerical analysis •Matrix condition number Cond(A) = $\mathbf{k}(A) = A A^{-1} $	*Equivalently fl(x) = $x(1+\delta)$, $ \delta \le \epsilon_{mach}$	Partial pivoting computes PA = LU where P is a permutation matrix => PP ^T = I i.e. its orthogonal	-Cauchy sequences,	i.e. $\langle \mathbf{p}^{(i)}, \mathbf{p}^{(j)} \rangle_{A} = 0$ for $i \neq j$
$\mathbf{u}_{j+1} = \mathbf{a}_{j+1} - Q_j \mathbf{c}_j$	$-\text{proj}_{P} = \text{id}_{\mathbb{R}^{n}} - \text{proj}_{L} = \mathbf{I}_{n} - \hat{\mathbf{n}} \hat{\mathbf{n}}^{T}$ is orthogonal	-Where $\underline{A \in \mathbb{R}^{m \times n}}$ is full-rank, $\underline{Q} \in \mathbb{R}^{m \times n}$ is semi-orthogonal, and $\underline{R \in \mathbb{R}^{n \times n}}$ is upper-triangular	=> comes up so often that has its own name	•Machine epsilon $\epsilon_{\text{machine}} = \epsilon_{\text{mach}} = \frac{1}{2} \beta^{1-t}$ is	−For each column j finds largest entry and row-swaps	i.e. $\forall \varepsilon > 0, \exists N \in \mathbb{N}, \forall m, n \ge N : d(a_m, a_n) < \varepsilon$ converge	-And chooses $\alpha^{(k)}$ s.t. residuals $\mathbf{r}^{(k)} = -\nabla f(\mathbf{x}^{(k)}) = \mathbf{b} - A\mathbf{x}^{(k)}$ are orthogonal
1) Gather $Q_j = [\mathbf{q}_1 \dots \mathbf{q}_j] \in \mathbb{R}^{m \times j}$ all-at-once	projection onto PJ*(along LJ)	Classical vs. Modified Gram-Schmidt	- <u>A</u> ∈€ ^{m×m} is well-conditioned if <u>k(A)</u> is small , ill-conditioned if large	maximum relative gap between FPs	to make it new pivot => Pj -Then performs normal elimination on that column =>	in complete spaces •You can manipulate matrix limits much like in real	$\star \underline{k = 0} \Rightarrow \mathbf{p}(0) = -\nabla f(\mathbf{x}(0)) = \mathbf{r}(0)$
2) Compute $\mathbf{c}_j = [\mathbf{q}_1 \cdot \mathbf{a}_{j+1}, \dots, \mathbf{q}_j \cdot \mathbf{a}_{j+1}]^T \in \mathbb{R}^j$	$-L = im(proj_L) = ker(proj_P)$ and	(for thin QR)	$-\kappa(A) = \kappa(A^{-1})$ and $\kappa(A) = \kappa(\gamma A)$	-Half the gap between 1 and next largest FP $-2^{-24} \approx 5.96 \times 10^{-8}$ and $2^{-53} \approx 10^{-16}$ for	L _i	analysis, e.g. $\lim_{n\to\infty} (A^n B + C) = \left(\lim_{n\to\infty} A^n\right) B + C$	
all-at-once	$P = \ker(\operatorname{proj}_L) = \operatorname{im}(\operatorname{proj}_P)$	•These algorithms both compute [[tutorial 5#Thin QR Decomposition w/ Gram-Schmidt (GS) thin QR	$-\text{If } \underline{\ \cdot\ } = \ \cdot\ _2 \text{ then } \kappa(A) = \frac{\sigma_1}{\sigma_m}$	single/double	Result is $L_{m-1}P_{m-1}L_2P_2L_1P_1A=U$, where	•Turn metric limit $\lim_{n\to\infty} x_n = L$ into real limit	$\star \underline{k \ge 1} \longrightarrow \mathbf{p}^{(k)} = \mathbf{r}^{(k)} - \sum_{i < k} \frac{(\mathbf{p}^{(i)}, \mathbf{r}^{(k)})_A}{(\mathbf{p}^{(i)}, \mathbf{p}^{(i)})_A} \mathbf{p}^{(i)}$
3) Compute $Q_j c_j \in \mathbb{R}^m$ and subtract from a_{j+1} all-at-once	$-\mathbb{R}^n = \mathbb{R} \cdot \mathbb{R} \cdot \mathbb{R}^{n}$ i.e. all vectors $\underline{\mathbf{v} \in \mathbb{R}^n}$ uniquely decomposed into $\underline{\mathbf{v}} = \underline{\mathbf{v}}_L + \underline{\mathbf{v}}_P$	decomposition]] ![[Pasted image	•For $\underline{A \in \mathbb{C}^{m \times n}}$, the problem $f_A(x) = Ax$ has	•FP arithmetic: let ⋆, □ be real and floating counterparts of arithmetic operation	$L_{m-1}P_{m-1}L_2P_2L_1P_1 = L'_{m-1}L'_1P_{m-1}P_1$	$\lim_{n\to\infty} d(x_n, L) = 0 \text{ to leverage real analysis}$	$*\alpha^{(k)} = \operatorname{argmin}_{\alpha} f(\mathbf{x}^{(k)} + \alpha^{(k)} \mathbf{p}^{(k)}) = \frac{\mathbf{p}^{(k)} \cdot \mathbf{r}^{(k)}}{\mathbf{r}^{(k)} \cdot \mathbf{r}^{(k)}}$
an-ar-JIICE		20250418034701.png 400]] ![[Pasted image 20250418034855.png 400]]	$\kappa = A \frac{ x }{ Ax } \implies \text{if } \underline{A^{-1}} \text{ exists then } \underline{\kappa \leq \text{Cond}(A)}$	–For x, y ∈ F we have	- Setting $L = (L'_{m-1} L'_1)^{-1}$ $P = P_{m-1} P_1$ gives	n→∞	-Without rounding errors, CG converges in $\leq n$
		·	AA	$x \boxtimes y = fl(x * y) = (x * y)(1 * \epsilon), \delta \le \epsilon_{mach}$	PA = LU		I - WITHOUT FOUNDING EFFORS, CG converges in < n

*Similar to to [[tutorial 1#Gram-Schmidt method to generate orthonormal basis from any linearly independent vectors[Gram-Schmidt]] (different

iterations

 $\frac{[\mathit{nine-product})}{\mathbb{R}^n} \underbrace{ \left(\mathbf{r}^{(0)}, \dots, \mathbf{r}^{(n-1)} \right) |}_{\text{are bases for }} \text{ are bases for } \\ \frac{\mathbb{R}^n}{\mathbb{R}^n} \underbrace{ \left(\mathbf{r}^{(0)}, \dots, \mathbf{r}^{(n-1)} \right) |}_{\text{Ary } A \in \mathbb{C}^{mm}} \text{ has Schur decomposition } A = QUQ^{\dagger} \Big| \\ \underbrace{ \left(\mathbf{r}^{(0)}, \dots, \mathbf{r}^{(n-1)} \right) |}_{\text{Ary } A \in \mathbb{C}^{mm}} \text{ has Schur decomposition } A = QUQ^{\dagger} \Big| \\ \underbrace{ \left(\mathbf{r}^{(0)}, \dots, \mathbf{r}^{(n-1)} \right) |}_{\text{Ary } A \in \mathbb{C}^{mm}} \text{ has Schur decomposition } A = QUQ^{\dagger} \Big| \\ \underbrace{ \left(\mathbf{r}^{(0)}, \dots, \mathbf{r}^{(n-1)} \right) |}_{\text{Ary } A \in \mathbb{C}^{mm}} \text{ has Schur decomposition } A = QUQ^{\dagger} \Big| \\ \underbrace{ \left(\mathbf{r}^{(0)}, \dots, \mathbf{r}^{(n-1)} \right) |}_{\text{Ary } A \in \mathbb{C}^{mm}} \text{ has Schur decomposition } A = QUQ^{\dagger} \Big| \\ \underbrace{ \left(\mathbf{r}^{(0)}, \dots, \mathbf{r}^{(n-1)} \right) |}_{\text{Ary } A \in \mathbb{C}^{mm}} \text{ has Schur decomposition } A = QUQ^{\dagger} \Big| \\ \underbrace{ \left(\mathbf{r}^{(0)}, \dots, \mathbf{r}^{(n-1)} \right) |}_{\text{Ary } A \in \mathbb{C}^{mm}} \text{ has Schur decomposition } A = QUQ^{\dagger} \Big| \\ \underbrace{ \left(\mathbf{r}^{(0)}, \dots, \mathbf{r}^{(n-1)} \right) |}_{\text{Ary } A \in \mathbb{C}^{mm}} \text{ has Schur decomposition } A = QUQ^{\dagger} \Big| \\ \underbrace{ \left(\mathbf{r}^{(0)}, \dots, \mathbf{r}^{(n-1)} \right) |}_{\text{Ary } A \in \mathbb{C}^{mm}} \text{ has Schur decomposition } A = QUQ^{\dagger} \Big| \\ \underbrace{ \left(\mathbf{r}^{(0)}, \dots, \mathbf{r}^{(n-1)} \right) |}_{\text{Ary } A \in \mathbb{C}^{mm}} \text{ has Schur decomposition } A = QUQ^{\dagger} \Big| \\ \underbrace{ \left(\mathbf{r}^{(0)}, \dots, \mathbf{r}^{(n-1)} \right) |}_{\text{Ary } A \in \mathbb{C}^{mm}} \text{ has Schur decomposition } A = QUQ^{\dagger} \Big| \\ \underbrace{ \left(\mathbf{r}^{(0)}, \dots, \mathbf{r}^{(n-1)} \right) |}_{\text{Ary } A \in \mathbb{C}^{mm}} \text{ has } \mathbf{r}^{(0)} \Big| \\ \underbrace{ \left(\mathbf{r}^{(0)}, \dots, \mathbf{r}^{(n-1)} \right) |}_{\text{Ary } A \in \mathbb{C}^{mm}} \text{ has } \mathbf{r}^{(0)} \Big| \\ \underbrace{ \left(\mathbf{r}^{(0)}, \dots, \mathbf{r}^{(n-1)} \right) |}_{\text{Ary } A \in \mathbb{C}^{mm}} \text{ has } \mathbf{r}^{(0)} \Big| \\ \underbrace{ \left(\mathbf{r}^{(0)}, \dots, \mathbf{r}^{(n-1)} \right) |}_{\text{Ary } A \in \mathbb{C}^{mm}} \text{ has } \mathbf{r}^{(0)} \Big| \\ \underbrace{ \left(\mathbf{r}^{(0)}, \dots, \mathbf{r}^{(n-1)} \right) |}_{\text{Ary } A \in \mathbb{C}^{mm}} \text{ has } \mathbf{r}^{(0)} \Big| \\ \underbrace{ \left(\mathbf{r}^{(0)}, \dots, \mathbf{r}^{(n-1)} \right) |}_{\text{Ary } A \in \mathbb{C}^{mm}} \text{ has } \mathbf{r}^{(0)} \Big| \\ \underbrace{ \left(\mathbf{r}^{(0)}, \dots, \mathbf{r}^{(n-1)} \right) |}_{\text{Ary } A \in \mathbb{C}^{mm}} \text{ has } \mathbf{r}^{(0)} \Big| \\ \underbrace{ \left(\mathbf{r}^{(0)}, \dots, \mathbf{r}^{(0)} \right) |}_{\text{Ary } A \in \mathbb{C}^{mm}} \text{ has } \mathbf{r}^{(0)} \Big$ -Any $\underline{A} \in \mathbb{C}^{m \times m}$ has **Schur decomposition** $\underline{A} = \underline{Q} \underline{U} \underline{Q}^{\dagger}$ $\underline{-Q}$ is unitary, i.e. $\underline{Q}^{\dagger} = \underline{Q}^{-1}$ and upper-triangular \underline{U}

orthogonal $Q^{(k)}^T = Q^{(k)^{-1}}$

 $\begin{array}{l} \text{-So} \\ A^{(k+1)} = R^{(k)}Q^{(k)} = (Q^{(k)})^TQ^{(k)})R^{(k)}Q^{(k)} = Q^{(k)}^TA^{(k)}Q^{(k)} \\ A^{(k+1)} = R^{(k)}Q^{(k)} = A^{(k+1)} \text{ is similar to } A^{(k)} \\ -\text{Setting } A^{(0)} = A \text{ we get } A^{(k)} = \hat{G}^{(k)T}A\hat{Q}^{(k)} \text{ where} \\ \end{array} \\ \begin{array}{l} \text{Schur decomposition} \\ \text{-We can apply shift } \underline{\mu}^{(k)} \text{ act iteration } \underline{h} \Rightarrow \\ \end{array}$

 $\begin{array}{l} A(k)_{-\mu}(k)_{I=Q}(k)_{R}(k), \ A(k^{*+1}) = R(k)_{Q}(k)_{+\mu}(k)_{I} \\ -\text{If shifts} \ \text{are good eigenvalue estimates then last} \\ \text{column of } \underline{G(k)}_{I} \ \text{converges quickly to an eigenvector} \\ -\text{Estimate} \ \underline{\mu(k)}_{I} \ \text{with Rayleigh quotient} => \end{array}$

 $\frac{\mu^{(k)} = (A_k)_{mm} = \bar{\mathbf{q}}_m^{(k)} \mathsf{T} A \bar{\mathbf{q}}_m^{(k)}}{\mathsf{column of } \underline{\tilde{\mathbf{Q}}}_m^{(k)}} \text{ where } \underline{\tilde{\mathbf{q}}}_m^{(k)} \text{ is } \underline{m} \mathsf{P} \mathsf{th}$