

Data Driven Engineering II: Advaced Topics

Genetic algorithms: towards data driven control

Institute of Thermal Turbomachinery Prof. Dr.-Ing. Hans-Jörg Bauer

DDE: Dynamical Systems

Discovery // Characterization // Simulation

Science , := interpret of observations ...in a systematic way

organized "book keeping"

Scientific
$$\Rightarrow$$
 Discovery \Rightarrow management Optimization of Soverning eqns.

Engineering,

DDE: Dynamical Systems

Discovery // Characterization // Simulation

Data-Driver Model Discovery

DDE: Dynamical Systems

Discovery // Characterization // Simulation

Process
Controller

linked &

Tasks:

- 1) Create a phy. model I DDE-I
- 2 Create a controller model
 3 Coupled optimization

Closed-loop Control System:

DDE > Optimization

- Optimization landscape
- Evolutionary algorithms
- Genetic algorithms Genetic programing

- □ Single/multiple variable
- D State / dynamic
- D Discrete / Continuous
- D Contramted / UC
- D Function / Data

Evolutionary Algorithms

Rechenberg 1965, 1973
Airfuil optimization " Evolutionsstrategie,

Genetic algorithm: 60s, 70s

a

John Holland

"Adaptation in Natural and Artificial Systems,

Genetic Algorithms:

> no rigorous definition on BA

population of chromosomes

selection via a fitness

offsprings -> Crossover & mutations

The 2006 NASA ST5 spacecraft antenna. The shape was found by EA

Genetic Algorithms:

Selection: a measure of fitness => stress over population

V

> not all parents have offsprings (hyperparameter)

individuals not fitting => eliminated (hp.)

Crossover: allow to exchange info among members (hp.)

Mutations: Change a single elevent in an individual (hp.)

Algorithm of GA:

- 1. Initialize populatron
- 2. Get curent fitness (+filtering)
- 73. create offsprings crossover
- 1 9 4. Mutations
 - 5. "Survival of the fittest,, update the population

Challenges:

- Define a fitness function
- D Problem representation
- □ Early convergence
- □ Cally fitness fine may times
- 1 Hyperparameter tuning

Gene Encoding

- ? how to represent individual genes
- □ Blowy encoding (1101000H010)
- \square Octal encoding $[0,7] \rightarrow 157124613$
- O Hexadecimal enc. [0-9, A-F] + 9CE7
- ☐ Value encoding [1,16 5.24 2.41 2.54]
 [NNSWE]

□ Tree en woding

Breeding

(i) Select parents (ii) Create offsprings (iii) update population

Selection

- ~ higher the fitness; higher the chance ~
 - * affects the conversion rate
- (a) proportionate-broad ~ relative fitness
- (b) ordinal-based ~ rank within population

~ higher the fitness; higher the chance ~

Roulette - Wheel

Rotate N times for N parents

« Parent Pool >>>

* Not a strong selection

* Noisy

~ higher the fitness; higher the chance ~

Rank Selection

Roulette ⇒ biased

> less chance for potential solutions

- * Rock population 1 -> N (best)
- Slow convergence

 Diversity preserved

randon selection

pairs

tournament

~ higher the fitness; higher the chance ~

Boltzmann Selection

$$P = \exp \left[-\left(f_{\text{max}} - f_{i}\right)/T\right]$$

$$T_0 = [5, los]$$

Gradually
Narrow Jown
Search
space

Stochastic Universal Sampling

~ higher the fitness; higher the chance ~

Random Selection

* Rondomly select N parents. * Much wore noisy

Elitism

* Best & chronosomes are directly passed to parent pool.

* For the rest; other nethods one used.

Crossover <=> Recombination

* 2 Parents => 1 offspring * applied to the parent pool.

Single point crossover

Crossover => Recombination

* 2 Parents => 1 offspring * applied to the parent pool.

Two points crossover

Crossover <=> Recombination

* 2 Parents => 1 offspring * applied to the parent pool.

Uniform Crossover

- Parent I * * * * * *
- Parent 11 ** * * * *
- Child I N/2 + N/2 = N gores
- Child := 1 Child]

Others)

- > Three parent crossover
- => Shuffle Crossover
- = Custon f.

- * Typically after breeding
- * Remedy to exit from local minimum

extending search space

socreong diversity

Mutation:

Flipping

- * Broy; 0=>1,1=>0
- * Randon punbers => # events /indices

Reversing

Interchanging

* Two rondon genes one exchanged.

6A -> Random search

Population Update => Replacement

* [Population] [Parents] [Offsprings]

which ones are kept?

Both Parents

* Children >> Parents

Random Replacement

* Children => randomly chosen individuals

Weak Parent Replacement

* Child -> weaker parent

Convergence

- * Max. generation
- * Elapsed time

* Track fitness Sest individual worst individual I fi or fi

- 1. Initialize population
- 2. Get current fitness (+filtering)
- 7 3. create offsprings -> crossover
- 9 4. Mutations
- 5. "Survival of the fittest,, update the population

Examples

- 8 Queens

- 1) Password guessing
 - i) String matching ⇒ Fitness Score
 ii) Gene pool ⇒ abc -- 2

Fitness score, 4 lines; 32 \$ \$

Gronosones;

"Ny Queer Problem

Examples

3 Solving system of Inea egs.

$$2x + y - 2z = 3$$

$$x - y - z = 0$$

$$x + y + 3z = 12$$

$$\begin{cases} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = ?$$

PyGAD => Tran a NN via GA

- * Regression => Airfoil Noise Problem
- * Chronosomes >> Weights of NN model
- * fitness > MSE/MAE

colab

