FIRST ROBOTICS DRIVE SYSTEMS

By Andy Baker President

AndyMark, Inc.

Topics

- Importance
- Basics
- Drive Types
- Resources
- Traction
- Mobility
- Speed
- Timing
- Importance

Importance

The best drive train...

- is more important than anything else on the robot
- meets your strategy goals
- can be built with your resources
- rarely needs maintenance
- can be fixed within 4 minutes
- is more important than anything else on the robot

Basics

- Know your resources
- Decide after kickoff:
 - > Speed, power, shifting, mobility
- Use most powerful motors on drivetrain
- Don't drive ½ of your robot... WEIGH IT DOWN!
- Break it early
- Give software team TIME to work
- Give drivers TIME to drive

Drive Types: 2 wheel drive

Drive Types: 4 wheel drive, 2 gearboxes

Resource:

Chris Hibner
white paper on
ChiefDelphi.com
Proves that a
wide 4wd drive
base can turn
easily

Drive Types: 4 wheel drive, 4 gearboxes

Drive Types: 6 wheel drive, 2 gearboxes

*2 ways to be agile

- A) Lower contact point on center wheel
- B) Omni wheels on front or back or both

This is the GOLD STANDARD in FRC

- + simple
- + easy
- + fast and powerful
- + agile

Drive Types: N wheel drive, 2 gearboxes

Sole benefit: Ability to go over things

- *2 ways to be agile
- A) Lower contact point on center wheel
- B) Omni wheels on front or back or both

Drive Types: Tank tread drive, 2 gearboxes

Sole benefit: Ability to go over things

For turning, lower the contact point on center of track wheel

Will NOT push more than a wellcontrolled 6wd

Drive Types: 3 wheel

- Various types
- Lightweight
- Fast
- Non-standard
 - > (design intensive)
- Examples:
 - > 16 in 2008
 - > 67 in 2005

Drive Types: Holonomic - Killough

- 4 wheel drive or 3 wheel drive
- Stephen Killough, 1994
- + Simple Mechanics
- + Immediate Turning
- + Simple Control 4 wheel independent
- No brake
- Minimal pushing power
- Jittery ride, unless w/ dualies
- Incline difficulty

Drive Types: Mecanum

- + Simple mechanisms
- + Immediate turn
- + Simple control 4 wheel independent
- Minimal brake
- OK pushing power
- Needs a suspension
- Difficulty on inclines

Mecanum wheel chair, team 357

Drive Type: Swerve or crab steering

- High-traction wheels
- Each wheel rotates to steer
- + No friction losses in wheel-floor interface
- + Ability to push or hold position
- + Simple wheels
- Complex system to control and program
- Mechanical and control issues
- Difficult to drive
- Wheel turning delay
- Omnidirectional drive systems presentation: http://first.wpi.edu/Workshops/2008C ON.html

Resources

- Design
 - Difficult: swerve
- Machining
 - Difficult: swerve
 - Moderate: non-kit frame
- Money
 - Kit wheels have been cheap
- Time
 - 6 weeks, long hours, multiple shifts?

Traction

- Static vs Dynamic (←10% lower)
 - > Once you slip, you will get pushed
 - > Design encoders into your system
 - > Dynamic breaking & traction control
- \odot Pushing force = Weight * μ
 - > μ = friction coefficient

Static friction coefficients $\mu = 0.1 = caster \ (free \ spinning)$ $\mu = 0.3 = hard \ plastic$ $\mu = 0.8 = smooth \ rubber, \ 80A \ durometer$ $\mu = 1.0 = sticky \ rubber, \ 70A \ durometer$ $\mu = 1.1 = conveyor \ treads$

More on Traction

You can determine μ

Mobility

- Move +/- 1 foot in any direction in under 1 second
- Generally speaking, the more mobile your robot is, the less it can resist a push

More mobile

less mobile

Center of gravity (Cg)

- Robot mass is represented at one point
- Mobility increases when Cg is low and centered
- High parts = light weight
- Low parts = heavy (within reason

Speed

- Game dependent, however... this increases every year
- 2008 max: 20 ft/sec
- Controllable top speed: 15 ft/sec
- Average 1-speed rate: 9 ft/sec
- Good pushing speed: 5 ft/sec

Worksheet example

Timing

- Get something driving early
 - End of week 2
 - Practice for operators
 - Lessons learned for electrical
 - Strategy lessons
- Continuously improve
 - Good enough is not good enough
- Finish final drivetrain by week 4

Importance

- Boat anchor = any heavy mass that does not move
- A non-reliable or non-repairable drive base will turn your robot into a boat anchor
- Good drive bases win consistently
- Reliable drive bases win awards
- Well-controlled, robust drive bases win <u>Championships</u>

More info

- Ken Patton and Paul Copioli
 - Robot Drive System Fundamentals
 - http://first.wpi.edu/Images/CMS/First/2007CON_Drive_Systems_C opioli.pdf
- Ian Mackenzie and Andy Baker
 - Omni Directional drive trains
 - http://first.wpi.edu/Workshops/2008CON.htm