Formelsammlung Lineare Systeme und Regelung

Mario Felder, Michi Fallegger

17. Februar 2014

Inhaltsverzeichnis

1	\mathbf{Ein}	leitung														5
	1.1	Regelkreis														5
	1.2	Systeme .														6

Kapitel 1

Einleitung

1.1 Regelkreis

Merkmale:

- $\bullet\,$ Erfassen der Regelgrösse y
- $\bullet\,$ Vergleich von Führungs- und Regelgrösse
- Angleichen der Regelgrösse an die Führungsgrösse in Wirkungskreis

1.2 Systeme

Signale sind rückwirkungsfrei, also eingeprägte Grössen.

Nr.	Bsp	Klassifikation
1	$y(t) = \cos t \cdot x(t)$	statisch
2	$\frac{dy(t)}{dt} = -\cos(y(t)) + x(t)$ $\frac{dy(t)}{dt} = -y(t) + x(t)$	dynamisch
3	$\frac{\mathrm{d}y(t)}{\mathrm{d}t} = -y(t) + x(t)$	zeitkontinierlich
4	$y((k+1)\tau) = -y(k \cdot \tau) + x(k \cdot \tau)$	zeitdiskret
5	$y(t) = \cos(x(t-\tau))$	kausal
6	$y(t) = \cos(x(t+\tau))$	nicht kausal
7	$\frac{\mathrm{d}y(t)}{\mathrm{d}t} = -3y(t) + x(t)$	zeitinvariant
8	$\frac{\frac{dy(t)}{dt}}{\frac{dt}{dt}} = -\cos t \cdot y(t) + x(t)$ $\frac{\frac{dy(t)}{dt}}{\frac{dt}{dt}} = -y(t) + x(t)$	zeitvariant
9	$\frac{\mathrm{d}y(t)}{\mathrm{d}t} = -y(t) + x(t)$	linear
_10	$\frac{\mathrm{d}y(t)}{\mathrm{d}t} = -y^2(t) + x(t)$	nicht linear
11	$\frac{\mathrm{d}y(t)}{\mathrm{d}t} = -y(t) + x(t)$	endlich-dimensional
_12	$\frac{\partial y(t)}{\partial t} = -\frac{\partial}{\partial x}y(x,t) + x(t)$	unendlich-dimensional
13	$y(t) = t \cdot \cos^2 t \cdot x(t)$	single input / single output
14	$\begin{bmatrix} y_1(t) \\ y_2(t) \end{bmatrix} = \begin{bmatrix} -3 & \sin(t) \\ t & -1 \end{bmatrix} \cdot \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix}$	multiple input / multiple output