(1) Veröffentlichungsnummer:

0 272 594 A1

(3)

EUROPÄISCHE PATENTANMELDUNG

- ② Anmeldenummer: 87118639.1
- (=) Anmeldetag: 16.12.87

(9) Int. Cl.⁴ C07D 471/04 , C07D 487/04 , C07D 498/04 , C07D 513/04 , A01N 43/90 , //(C07D471/04, 235:00,221:00)

Claims for the following Contracting State: ES.

- (3) Priorität: 20.12.86 DE 3643748
- (4) Veröffentlichungstag der Anmeldung: 29.06.88 Patentblatt 88/26
- Benannte Vertragsstaaten:
 AT BE CH DE ES FR GB GR IT LI LU NL SE
- 7) Anmelder: HOECHST AKTIENGESELLSCHAFT Postfach 80 03 20 D-6230 Frankfurt am Main 80(DE)
- ② Erfinder: Liebl, Rainer, Dr. An der Weinleite 5b D-8901 Todtenweis(DE) Erfinder: Frey, Michael, Dr. Meraner Strasse 26a D-8902 Neusäss(DE)

Erfinder: Mildenberger, Hilmar, Dr.

Fasanenstrasse 24

D-6233 Keikheim (Taunus)(DE) Erfinder: Bauer, Klaus, Dr. Doorner Strasse 53D D-6450 Hanau(DE)

Erfinder: Bieringer, Hermann, Dr.

Eichenweg 26

D-6239 Eppstein/Taunus(DE)

- Bicyclische Imide, Verfahren zu ihrer Herstellung sowie ihre Verwendung im Pflanzenschutz.
- Verbindungen der Formel I oder deren Salze

(I),

72 594 A1

worin Ar = einen gegebenenfalls substituierten Phenyl-, Naphthyl-, Pyridyl-, Chinolinyl-oder Isochinolinyl-Rest, R_1 = H. Alkyl oder (subst.) Phenyl; R_2 , R_3 = H. (subst.) Alkyl, (subst.) Phenyl, (subst.) Benzyl, Alkoxy, (subst.) Alkoxycarbonyl, Carboxy, -CONR₈R₉, -CONR₁-NR₁₀R₁₁, -C(R₁) = N-NR₁₀R₁₁, einen Rest

. $M = > CR_2R_3$, S, SO, SO₂, O oder NR₇; $Q = > CR_2R_3$, S oder O; $T = > CR_2R_3$, S, SO, SO₂ oder O; X = O oder S; Y = O. S oder NH; Z = O, S oder NR₆; m = 1, 2, 3; n = 1 oder 2 bedeuten, mit der Maßgabe, daß wenn Y = O; R₁, R₂, R₃ = H und Q, $T = CH_2$ bedeuten, M nicht CH₂, S, SO oder SO₂ sein darf, besitzen vorteilhafte herbizide Eigenschaften und eignen sich insbesondere für den Einsatz in der Landwirtschaft.

Bicyclische Imide, Verfahren zu ihrer Herstellung sowie ihre Verwendung im Pflanzenschutz

Bicyclische Imide mit herbizider Wirksamkeit sind in EP-A 70 389, EP-A 104 532 und US-PS 4 179 276 beschrieben.

Es wurden nun überraschenderweise neue bicyclische Imide gefunden, die eine deutlich bessere herbizide Wirksamkeit bei hervorragender Selektivität aufweisen.

Gegenstand der vorliegenden Erfindung sind daher Verbindungen der Formel I oder deren Salze

worir

5

10

15

25

30 .

40

45

Ar = Phenyl, Naphthyl, Pyridyl, Chinolinyl oder Isochinolinyl bedeuten, wobei diese Reste ein-bis vierfach, vorzugsweise ein-bis dreifach, durch gleiche oder verschiedene Reste der Gruppe Halogen, Hydroxy, C1-C4)Alkyl, Halo(C1-C4)Alkyl, (C1-C4)Alkoxy, (C3-C6)-Cycloalkoxy, (C3-C6)Alkenyloxy, (C3-C6)Alkinyloxy, (C1-C4)Alkoxy-(C1-C4)Alkoxy, Halo(C3-C6)Alkenyloxy, Halo(C3-C6)Alkinyloxy, (C1-C4)Alkylsulfinyl, (C1-C4)Alkylsulfonyl, NO2, -CN, -NHR1, Cyano(C1-C4)Alkyl, Phenoxy, Phenoxy(C1-C4)Alkyl, Phenyl(C1-C4)Alkoxy, Phenylthio, Phenylsulfinyl, Phenylsulfonyl, wobei die sechs letztgenannten Reste im Phenylring bis zu dreifach durch Halogen, (C1-C4)Alkyl, (C1-C4)Alkoxy, (C1-C4) Alkoxycarbonyl, -CN oder NO2 substituiert sein können, oder ferner durch einen Rest der Formeln

 $-C-Z-R_4$, $-O-P(XR_5)_2$ oder $-X \leftarrow \begin{pmatrix} R_5 \\ C \\ R_5 \end{pmatrix} \begin{pmatrix} X \\ C \\ R_5 \end{pmatrix} \begin{pmatrix} X \\ C \\ C \\ R_5 \end{pmatrix}$

substituiert sein können;

R₁ Wasserstoff, (C₁-C₄)Alkyl oder Phenyl, das bis zu zweifach durch Halogen, (C₁-C₄)Alkyl, (C₁-C₄)Alkoxy, NO₂, CN oder (C₁-C₄)Alkoxycarbonyl substituiert sein kann,

R₂,R₃ unabhängig voneinander Wasserstoff, (C₁-C₄)Alkyl, das durch Cyano, Hydroxy oder (C₁-C₄)Alkoxy substituiert sein kann. Phenyl oder Benzyl, die beide im Phenylring jeweils vorzugsweise bis zu 2-fach durch Halogen, (C₁-C₄)Alkyl, (C₁-C₄)Alkoxy, NO₂ oder -CN substituiert sein können;

(C₁-C₄)Alkoxy, (C₁-C₄)Alkoxycarbonyl, Halogen(C₁-C₄)alkoxycarbonyl, (C₁-C₄)-Alkoxy(C₁-C₄)alkoxycarbonyl, Carboxy, oder einen Rest der Formeln

R4 Wasserstoff. (C₁-C₄)Alkyl, das bis zu sechsfach durch Halogen und/oder bis zu zweifach durch (C₁-C₄)Alkoxy, (C₁-C₄)Alkoxy(C₁-C₄)Alkoxy, (C₁-C₄)Alkoxycarbonyl, (C₁-C₄)Alkylthio, (C₁-C₄)Alkylsulfinyl, (C₁-C₄)Alkylsulfinyl, (C₁-C₄)Alkylamino, -CN, Furyl, Tetrahydrofuryl, Benzofuryl, Phenyl, Phenoxy, Benzyloxy, wobei bei den sechs letztgenannten Resten jeweils der Phenylring oder der Heteroaromat bis zu dreifach durch Halogen, (C₁-C₄)Alkyl oder (C₁-C₄)Alkoxy substituiert sein kann, (C₃-C₆)Cycloalkyl, (C₃-C₆)Alkenyl, Cyclohexe-

nyl, (C₃-C₆)Alkinyl, Phenyl, das bis zu dreifach substituiert sein kann durch Halogen, (C₁-C₄)Alkyl, (C₁-C₄)-Alkoxy oder (C₁-C₄)Alkoxycarbonyl; oder einen Rest der Formel

wobei der letztgenannte Rest für Z = S ausgenommen ist,

R5 Wasserstoff oder (C1-C4)Alkyl.

5

20

R₆ Wasserstoff. (C₁-C₄)Alkyl oder zusammen mit R₄ und dem diese Reste verbindenden Stickstoffatom einen 5-bis 7-gliedrigen Heterocyclus, der als Ringglieder ein oder zwei Reste der Gruppe -O-, -S-, -NR₅-enthalten kann und bis zu 3-fach durch (C₁-C₄)Alkyl substituiert sein kann:

R7 Wasserstoff, (C₁-C₄)Alkyl, Phenyl oder Benzyl, wobei der Phenylring jeweils bis zu dreifach substituiert sein kann durch Halogen. (C₁-C₄)Alkyl, (C₁-C₄)Alkoxy, (C₁-C₄)Alkoxycarbonyl, -NO₂, CF₃, -CN oder einen Rest der Formeln

$$\begin{array}{ccc}
-S-R \\
(0)_n
\end{array}$$

R₈,R₉ unabhängig voneinander Wasserstoff oder (C₁-C₄)Alkyl oder beide Reste R₈, R₉ zusammen mit den sie verbindenden Stickstoffatom einen 5-bis 7-gliedrigen Heterocyclus, der als Ringglieder ein oder zwei Reste der Gruppe -O-, -SO, -NR₅-enthalten kann und der bis zu dreifach durch (C₁-C₄)Alkyl, Hydroxy, (C₁-C₄)-Alkoxy, Phenyl oder Benzyl, die beide im Phenylring, vorzugsweise bis zu dreifach, durch (C₁-C₄)Alkyl, (C₁-C₄)Alkoxy, Halogen oder (C₁-C₄)Alkoxycarbonyl substituiert sein können, substituiert sein kann,

R₁₀,R₁₁ unabhängig voneinander Wasserstoff, (C₁-C₄)Alkyl, Phenyl oder Benzyl, die beide jeweils im Phenylring, vorzugsweise bis zu dreifach, substituiert sein können durch Halogen, (C₁-C₄)Alkyl, (C₁-C₄)-Alkoxy, NO₂, -CN, CF₃ oder (C₁-C₄)Alkoxycarbonyl, oder R₁₀ und R₁₁ zusammen den Rest

R₁₂,R₁₃ unabhängig voneinander, (C₁-C₄)Alkyl, (C₁-C₄)Alkoxycarbonyl, Phenyl oder Benzyl, die beide im Phenylring, vorzugsweise bis zu dreifach, substituiert sein können durch Halogen, (C₁-C₄)Alkyl, (C₁-C₄)-Alkoxy, (C₁-C₄)Alkoxycarbonyl, CF₃, -CN oder NO₂,

50

40

55

$$M = C \xrightarrow{R_2} , -S_-, -S_-, -S_-, -O_- \text{ oder } NR_7;$$

Q = C
$$R_2$$
 , -S- oder -0-

T
$$R_2$$
, -s-, -s-, oder -0-, R_3

X = 0 oder S

30

40

45

50

55

Y = O, S oder NH.

Z = 0. S oder NR₆,

m = 1, 2, 3 und

n = 1 oder 2 bedeuten.

mit der Maßgabe, daß, wenn Y = O, R_1 , R_2 , $R_3 = H$ und Q, $T = CH_2$ bedeuten, M nicht CH_2 , S, SO oder SO_2 sein darf.

Die Verbindungen der Formel I können als reine Stereoisomere oder deren Gemische vorliegen. Alle diese Isomerenformen werden von der Erfindung erfaßt.

Die Salzbildung bei den Verbindungen der Formel I kann erfolgen, wenn R2 oder R3 = Carboxy oder wenn ZR2 = OH oder SH bedeutet. Als Salze kommen allgemein solche in Betracht, die in der Landwirtschaft einsetzbar sind. Hierzu zählen beispielsweise die Alkali-, Erdalkali-Salze insbesondere Na-, K-, Mg-, Ca-Salze, oder die Salze mit Ammonium, das ein-bis vierfach durch organische Reste, insbesondere Alkyl oder Hydroxyalkyl-Reste substituiert sein kann.

In der Definition von Formel I enthält Haloalkyl, Haloalkoxy, Haloalkenyloxy oder Haloalkinyloxy ein oder mehrere Halogenatome vorwiegend ein bis sechs F-, CI-oder Br-Atome. Hierzu zählen beispielsweise die Reste -CF₃, -C₂F₅, -CH₂CF₃, -CF₂CH₅, -CF₂CHF₂, -CF₂CHFCI, -CF₂CHFCI, -CF₂CHFCI, -CF₂CHFBr, -OCF₂-CHFBr, -OCF₂-CHFCI, -CF₂-CHFCI, -CF₂-CHFCI

Als heterocyclische Reste für die Gruppierung Re-N-R₄ oder R₂-N-R₃ kommen insbesondere infrage Piperidin, Pyrrolidin, Morpholin oder 2,6-Dimethylmorpholin.

Bevorzugt von den Verbindungen der Formel I sind solche Verbindungen bei denen Ar = Phenyl, das bis zu dreifach substituiert sein kann durch Fluor, Chlor oder Brom, (C₁-C₄)Alkyl, (C₁-C₄)-Alkoxy, (C₃-C₄)Alkenyloxy, (C₃-C₄)Alkinyloxy, Halo(C₁-C₄)alkyl, Halo(C₁-C₄)alkoxy, -NHR₁, (C₁-C₄)Alkylthio, (C₁-C₄)Alkylsulfonyl, NO₂ oder einen Rest der Formeln

$$-C-Z-R_4 \quad oder \quad -X \leftarrow \begin{pmatrix} R_5 \\ C \\ R_5 \end{pmatrix} \begin{pmatrix} X \\ C \\ -Z-R_4 \end{pmatrix}$$

R₁ = Wasserstoff, (C₁-C₄)Alkyl, (C₁-C₄)Alkoxycarbonyl

 R_2,R_3 = unabhängig voneinander Wasserstoff, (C₁-C₄)Alkyl, (C₁-C₄)Alkoxycarbonyl, (C₁-C₄)Alkoxycarbonyl, Halogen(C₁-C₄)alkoxycarbonyl, (C₁-C₄)Alkoxycarbonyl, -CN, Carboxy,

 $R_4 = (C_1 - C_4) Alkyl, \ Halogen(C_1 - C_4) alkyl, \ (C_1 - C_4) Alkoxyalkyl, \ (C_1 - C_4) Alkoxyarbonyl(C_1 - C_4) alkyl;$

R₅ = H oder (C₁-C₄)Alkyl,

5

10

15

20

25

30

35

R₇ = Wassestoff. (C₁-C₄)Alkyl,

-C-N R8

Phenyl oder Benzyl, die beide bis zu zweifach durch (C₁-C₄)Alkyl, (C₁-C₄)Alkoxy, Halogen, NO₂, oder -CF₃ substituiert sein können,

R₈,R₉ = Wasserstoff, (C₁-C₄)Alkyl, zusammen mit den sie verbindenden N-Atom einem 6-gliedrigen gesättigten Heterocyclus

$$M = C_{R_3}^{R_2}, -0 - oder - NR_7$$

 $Q = C R_2$

 $T = C R_2$ oder -S-

X = O oder S,

40 Y = O oder NH.

Z = O oder S und

m = 1 bedeuten.

Besonders bevorzugte Verbindungen der Formel I sind solche Verbindungen bei denen

Ar = Phenyl, das bis zu dreifach substituiert sein kann durch Fluor, Chlor, Brom, $(C_1-C_4)Alkyl$, $(C_1-C_4)Alkoxy$, 45 Halo $(C_1-C_4)Alkoxy$, $(C_3-C_4)Alkenyloxy$, $(C_3-C_4)Alkinyloxy$ oder $(C_1-C_4)Alkylthio$,

R₁ = Wasserstoff oder (C₁-C₄)Alkyl,

 R_{2} , R_{3} = unabhängig voneinander Wasserstoff oder (C₁-C₄)Alkyl,

M = > CR₂R₃ oder Sauerstoff,

Q. T = >CR2R3 und

50 X, Y = Sauerstoff bedeuten.

Ein weiterer Gegenstand der Erfindung sind Verfahren zur Herstellung von Verbindungen der Formel (I) oder deren Salze, dadurch gekennzeichnet, daß man

a) für Y = O, S eine Verbindung der Formel II mit einer Verbindung der Formel III,

55

worin R = H oder (C₁-C₄)Alkyl bedeutet, oder

b) eine Verbindung der Formel II mit einem Amin der Formel IV umsetzt

· oder

15

20

40

c) für Y = O eine unter b) erhaltene Verbindung der Formel I hydrolysiert und die erhaltenen Verbindungen gegebenenfalls in ihre Salze überführt.

Bei der Verfahrensvariante a) erfolgt die Umsetzung für R = Alkyl in einem inerten organische Lösungsmittel beispielsweise einem aromatischen Lösungsmittel wie Toluol, Chlorbenzol, einem halogenierten Kohlenwasserstoff wie Chloroform, einem Ether wie Di-isopropylether oder in Dimethylformamid, gegebenenfalls unter Basenkatalyse bei Temperaturen von 20 bis 120°C, vorzugsweise 60 bis 100°C. Als Basen werden vorzugsweise organische Basen beispielsweise organische Amine wie Triethylamin oder auch Pyridin eingesetzt.

Die Umsetzung für R = Wasserstoff kann auch in Wasser als Lösungsmittel durchgeführt werden oder vorzugsweise im 2-Phasen-System Wasser/organisches Lösungsmittel. Besonders bevorzugt wird dabei die Arbeitsweise, bei der die Verbindung der Formel III mit einer anorganischen Base, beispielsweise einem Alkali-oder Erdalkalihydroxid, -carbonat oder -hydrogencarbonat wie Natriumhydroxyd oder auch Kaliumcarbonat, oder einer organischen Base beispielsweise einem organischen Amin wie Triethylamin in das Anion überführt wird.

Zu der Lösung des Anions in Wasser wird dann das Isocyanat bzw. Isothiocyanat der Formel II, gelöst in einem inerten organischen Lösungsmittel wie z.B. Toluol, Chlorbenzol, Chloroform unter kräftigem Rühren zugetropft.

Die wäßrige Phase wird dann mit einer Säure, vorzugsweise mit einer Mineralsäure wie Salzsäure oder Schwefelsäure auf einen pH-Wert zwischen 1 und 3 gestellt und anschließend bei Temperaturen zwischen 50 und 100°C weiter umgesetzt.

Bei Verfahrensvariante b) erfolgt die Umsetzung in einem inerten organischen Lösungsmittel, beispielsweise einem aromatischen Lösungsmittel wie Toluol, Chlorbenzol, einem halogenierten Kohlenwasserstoff wie Chloroform oder in Dimethylformamid bei Temperaturen von 20 bis 120°C, vorzugsweise 60 bis 100°C.

Die Hydrolyse gemäß Verfahrensvariante c) erfolgt in Wasser, wäßriger Mineralsäure gegebenenfalls in Gegenwart eines inerten organischen Lösungsmittels bei Temperaturen zwischen 20 und 120°C, vorzugsweise 60 und 100°C. Äls organische Lösungsmittel kommen beispielsweise mit Wasser nicht mischbare Lösungsmittel wie aromatische Lösungsmittel (z.B. Toluol, Chlorbenzol) oder halogenierte Kohlenwasserstoffe (z.B. Chloroform) in Betracht.

Die Verbindungen der Formel (II) sind bekannt oder lassen sich in Analogie zu bekannten Verfahren herstellen, s. Houben-Weyl, Methoden der organischen Chemie, Bd VIII, S. 120 (1952), Houben-Weyl Bd IX, S. 875, 869 (1955).

Amine der Formel III sind teilweise bekannt. Sie lassen sich für Q, M, T = CR₂R₃ und Q, T = CR₂R₃ und M = NR₇ durch einfache katalytische Hydrierung der entsprechenden Pyridin-oder Pyrazin-Derivate erhalten. Amine der For mel III können auch aus Aminen der Formel IV durch Umwandlung der Nitrilgruppe nach üblichen Methoden, s. z.B. Org. Snyth. Coll. Vol. I, S. 321 (1941) oder Houben-Weyl Bd VIII, S. 536,

hergestellt werden.

Amine der allgemeinen Formel IV sind teilweise bekannt gemäß JP-A 3073-569 oder lassen sich in analoger Weise nach dem dort beschrieben Verfahren herstellen.

Die erfindungsgemäßen Verbindungen der Formel I weisen eine ausgezeichnete herbizide Wirksamkeit gegen ein breites Spektrum wirtschaftlich wichtiger mono-und dikotyler Schadpflanzen auf. Auch schwer bekämpfbare perennierende Unkräuter, die aus Rhizomen. Wurzelstöcken oder anderen Dauerorganen austreiben, werden durch die Wirkstoffe gut erfaßt. Dabei ist es gleichgültig, ob die Substanzen im Vorsaat-, Vorauflauf-oder Nachauflaufverfahren ausgebracht werden.

Beispielsweise können folgende Schadpflanzen bekämpft werden: Schadgräser wie Avena fatua, Alopecurus sp., Lolium sp., Setaria sp., Digitara sp., Sorghum halepense Echinochloa sp., Agropyron sp., Cynodon sp., Phalaris sp., dikotyle Pflanzen wie Lamium sp., Veronica sp. Galium sp., Stellaria sp., Matricaria sp., Papaver sp., Centauria sp., Amaranthus sp., Galinsoga sp., Mercurialis sp., Sida sp. Abutilon sp., Ambrosia sp., Xanthium sp., Cirsium sp., Artemisia sp., Rumex sp., Convolvulus sp., Ipomea sp., Sinapis sp..

Werden die erfindungsgemäßen Verbindungen vor dem Keimen auf die Erdoberfläche appliziert, so wird entweder das Auflaufen der Unkrautkeimlinge vollständig verhindert, oder dies Unkräuter wachsen bis zum Keimblattstadium heran, stellen jedoch dann ihr Wachstum ein und sterben schließlich nach Ablauf von drei bis fünf Wochen vollkommen ab. Bei Applikation der Wirkstoffe auf die grünen Pflanzenteile im Nachauflaufverfahren tritt ebenfalls sehr rasch nach der Behandlung ein drastischer Wachstumsstop ein, und die Unkrautpflanzen bleiben in dem zum Applikationszeitpunkt vorhandenen Wachstumsstadium stehen oder sterben nach einer gewissen Zeit mehr oder weniger schnell ganz ab, so daß auf diese Weise eine für die Kulturpflanzen schädliche Unkrautkonkurrenz sehr früh und nachhaltig durch den Einsatz der neuen erfindungsgemäßen Mittel beseitigt werden kann.

Obgleich die erfindungsgemäßen Verbindungen eine ausgezeichnete herbizide Aktivität gegenüber mono-und dikotylen Unkräutern aufweisen, werden Kulturpflanzen wirtschaftlich bedeutender Kulturen wie z.B. Weizen, Gerste, Roggen, Reis, Mais, Zuckerrübe, Baumwolle und Soja nur unwesentlich oder gar nicht geschädigt. Die vorliegenden Verbindungen eignen sich aus diesen Gründen sehr gut zur selektiven Bekämpfung von unerwünschtem Pflanzenwuchs in landwirtschaftlichen Nutzpflanzen.

Darüber hinaus weisen die erfindungsgemäßen Verbindungen wachstumsregulatorische Eigenschaften bei Kulturpflanzen auf. Sie greifen regulierend in den pflanzeneigenen Stoffwechsel ein und können damit zur Ernteerleichterung wie z.B. durch Auslösen von Desikkation. Abszission und Wuchsstauchung eingesetzt werden. Desweiteren eignen sie sich auch zur generellen Steuerung und Hemmung von unerwünschtem vegetativen Wachstum, ohne dabei die Pflanzen abzutöten. Eine Hemmung des vegetativen Wachstums spielt bei vielen mono-und dikotylen Kulturen eine große Rolle, da das Lagern hierdurch verringent oder völlig verhindert werden kann.

Die erfindungsgemäßen Verbindungen können, gegebenenfalls im Gemisch mit weiteren Wirkkomponenten, als Spritzpulver, emulgierbare Konzentrate, versprühbare Lösungen, Beizmittel, Stäubemittel, Dispersionen, Granulate oder Mikrogranulate in den üblichen Zugereitungen angewendet werden.

Spritzpulver sind in Wasser gleichmäßig dispergierbare Präparate, die neben dem (den) Wirkstoff(en) außer gegebenenfalls einem Verdünnungs-oder Inertstoff oder Netzmittel wie polyoxyethylierte Alkylphenole, polyoxethylierte Fettalkohole, Alkyl-oder Alkylphenylsulfonate und/oder Dispergierhilfsmittel wie ligninsulfonsaures Natrium, 2.2'-dinaphthylmethan-6,6'-disulfonsaures Natrium, dibutylnaphthalinsulfonsaures Natrium oder auch oleoylmethyltaurinsaures Natrium enthalten. Die Herstellung erfolgt in üblicher Weise, z.B. durch Mahlen und Vermischen der Komponenten.

Emulgierbare Konzentrate können z.B. durch Auflösen der Wirkstoffe in einem inerten organischen Lösemittel wie Butanol, Cyclohexanon, Dimethylformamid, Xylol oder auch höhersiedenden Aromaten oder aliphatischen oder cycloaliphatischen Kohlenwasserstoffen unter Zusatz von einem oder mehreren Emulgatoren hergestellt werden. Bei flüssigen Wirkstoffen kann der Lösemittelanteil auch ganz oder teilweise entfallen. Als Emulgatoren können beispielsweise verwendet werden: Alkylarylsulfonsaure Calciumsalze wie Ca-dodecylbenzolsulfonat oder nichtlonische Emulgatoren wie Fettsäurepolyglykolester. Alkylarylpolyglykolether, Fettalkoholpolyglykolether, Propylenoxid-Ethylenoxid-Kondensationsprodukte, Fettalkohol-Propylenoxid-Kondensationsprodukte, Alkylpolyglykolether, Sorbitanfettsäureester. Polyoxethylensorbitansäureester oder Polyoxethylensorbitester.

Stäubemittel kann man durch Vermahlen der Wirkstoffe mit feinverteilten, festen Stoffen, z.B. Talkum, natürlichen Tonen wie Kaolin, Bentonit, Pyrophillit oder Diatomeenerde erhalten.

Granulate können entweder durch Verdüsen der Wirkstoffe auf adsorptionsfähiges, granuliertes Inertmaterial hergestellt werden oder durch Aufbringen von Wirkstoffkonzentrationen mittels Bindemitteln, z.B. Polyvinylalkohol, polyacrylsaurem Natrium oder auch Mineralölen auf die Oberfläche von Trägerstoffen wie

Sand. Kaolinite oder von granuliertem Inertmaterial. Auch können geeignete Wirkstoffe in der für die Herstellung von Düngemittelgranulaten üblichen Weise - gewünschtenfalls in Mischung mit Düngemitteln -granuliert werden.

In Spritzpulvern beträgt die Wirkstoffkonzentration etwa 10 bis 90 Gew.-%, der Rest zu 100 Gew.-% besteht aus üblichen Formulierungsbestandteilen. Bei emulgierbaren Konzentraten kann die Wirkstoffkonzentration etwa 5 bis 80 Gew.-% betragen. Staubförmige Formulierungen enthalten meistens 0.05 bis 20 Gew.-% an Wirkstoff(en), versprühbare Lösungen etwa 2 bis 20 Gew.-%. Bei Granulaten hängt der Wirkstoffgehalt zum Teil davon-ab, ob die wirksame Verbindung flüssig oder fest vorliegt und welche Granulierhilfsmittel, Füllstoffe usw. verwendet werden.

Danebon enthalten die genannten Wirkstofformulierungen gegebenenfalls die jeweils üblichen Haft-, Netz-, Dispergier-, Emulgier-, Penetrations-, Lösemittel, Füll-oder Trägerstoffe.

Zur Anwendung werden die in handelsüblicher Form vorliegenden Konzentrate gegebenenfalls in üblicher Weise verdünnt, z.B. bei Spritzpulvern, emulgierbaren Konzentraten, Dispersionen und teilweise auch bei Mikrogranulaten mittels Wasser. Staubförmige und granulierte Zubereitungen sowie versprühbare Lösungen werden vor der Anwendung üblicherweise nicht mehr mit weiteren inerten Stoffen verdünnt.

Mit den äußeren Bedingungen wie Temperatur, Feuchtigkeit u.a. variiert die erforderliche Aufwandmenge. Sie kann innerhalb weiter Grenzen schwanken, z.B. zwischen 0,005 und 10,0 kg/ha oder mehr Aktivsubstanz, vorzugsweise liegt sie jedoch zwischen 0,01 und 2kg/ha.

Auch Mischungen der Mischformulierungen mit anderen Wirkstoffen, wie z.B. Insektiziden, Akariziden, Herbiziden, Düngemitteln, Wachstumsregulatoren oder Fungiziden sind gegebenenfalls möglich.

Die Erfindung wird durch nachstehende Beispiele erläutert.

A. Formulierungsbeispiele

25

Ein Stäubemittel wird erhalten, indem man 10 Gewichtsteile Wirkstoff und 90 Gewichtsteile Talkum oder Inertstoff mischt und in einer Schlagmühle zerkleinert.

Ein in Wasser leicht dispergierbares, benetzbares Pulver wird erhalten, indem man 25 Gewichsteile Wirkstoff, 64 Gewichtsteile kaolinhaltigen Quarz als Inertstoff, 10 Gewichtsteile ligninsulfonsaures Kalium und 1 Gewichtsteil oleoylmethyltaurinsaures Natrium als Netz-und Dispergiermittel mischt und in einer Stiftmühle mahlt.

Ein in Wasser leicht dispergierbares Dispersionskonzentrat wird erhalten, indem man 20 Gewichtsteile Wirkstoff mit 6 Gewichtsteilen Alkylphenolpolyglykolether (Triton X 207), 3 Gewichtsteilen Isotridecanolpolyglykolether (8 AeO) und 71 Gewichtsteilen paraffinischem Mineralöl (Siedebereich z.B. ca. 255 bis über 377 °C) mischt und in einer Reibkugelmühle auf eine Feinheit von unter 5 Mikron vermahlt.

Ein emulgierbares Konzentrat wird erhalten aus 15 Gewichtsteilen Wirkstoff, 75 Gewichtsteilen Cyclohexanon als Lösungsmittel und 10 Gewichtsteilen oxethyliertes Nonylphenol (10 AeO) als Emulgator.

40 Chemische Beispiele

Beispiel 1

8-(4-Chlor-3-ethoxycarbonyl-phenyl)-7.9-dioxo-1.8-diazabicyclo[4.3.0]nonan-2-carbonsäure-(1-ethoxycarbonyl-ethylester)

37.3 g (0.10 mol) Piperidin-2.6-bis-carbonsäure-bis(1-ethoxycarbonyl-ethyl-ester) wurden in 200 ml Toluol gelöst. Dazu wurden bei 20 - 30°C 22,6 g (0,10 mol) 4-Chlor-3-ethoxycarbonyl-phenylisocyanat, gelöst in 50 ml Toluol, zugetropft.

Nach 1 h Rühren bei Raumtemperatur wurde noch 3 h bei 80 °C gerührt. Nach Abdestillieren des Lösemittels wurde der verbleibende Feststoff aus Methanol umkristallisiert. Man erhielt 39,5 g (82 % d. Th.) 8-(4-Chlor-3-ethoxycarbonyl-phenyl)-7.9-dioxo-1.8-diaza-bicyclo-[4.3.0] nonan-2-carbonsäure-(1-ethoxycarbonyl-ethylester) in Form farbloser Kristalle mit Schmelzpunkt: 121 - 128°C.

55

Beispiel 2

Fp(^O C) Glas Sirup Glas Sirup Harz Glas Glas	Harz
R_1 R_2 R_3 R_4 R_5 R_4 R_5 R_5 R_6 R_7 R_7 R_8 R_8 R_9	+ +
R_1 R_2 R_3 R_4 R_5 R_4 R_5 R_5 R_6 R_7 R_8 R_8 R_9	d ₃ -сн ₂ он -н -н -н
	+ +
CH2- -CH2- -CH2- -CH2- -CH2- -CH2- -CH2- -CH2- -CH2-	-CH2-
1 -CH2- -CH2- -CH2- -CH2- -CH2- -CH2- -CH2- -CH2- -CH2-	-CH2-
<u>v</u>	ب ب
CH2- -CH2- -CH2- -CH2- -CH2- -CH2- -CH2- -CH2- -CH2- -CH2-	-CH2-
> 0 0 0 0 0	0 0
40 × 0 0 0 0 0 0 0	0 0
-0CH3-C ₆ H2 -0CH3-C ₆ H2 -0CH3-C ₆ H2	" 4-с1-2-F-5-0 СН(СН ₃) ₂ - -с ₆ Н ₂
Ar 4-C1-C ₆ H ₄ 4-C1-2-F-5-0CH ₃ -C ₆ H ₂ 4-C1-2-F-5-0CH ₃ -C ₆ H ₂ 4-C1-2-F-5-0CH ₃ -C ₆ H ₂	" 4-C1-2-F-5
25 4 4 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6	

	45 50 	. 10		<i>30</i>	25	20	15	10		5
Bsp.	Ar	×	>-	b	Σ	-	R ₁ R ₂	R ₃		Fp(⁰ C)
22	4-C1-2F-5-OCH ₃ -C ₆ H ₂	0	0	-CH ₂ -	-CH2-)) - H) -	н, н- _{[2} 4 ₅ 2 ₅ 03-н5	¬	=	Sirup
23		0	0	-CH ₂ -	-tн-со ₂ с2н ₅	-CH2-	-H -CO2C2H5	2H5 -	=	Glas
24	2,4 -F2 -5-C0 ₂ C ₂ H5-C ₆ H2-	0	0	-CH2-	-CH2-	-CH2-	-н -сн ₃	ī	=	Sirup
52	$4-Br-3-C0_2-CH(CH_3)_2-C_6H_3$	0	0	-cH ₂ -	-CH ₂ -	-CH2-	-н -сн ₃	1	=	Sirup
56	4-c1-3-თ ₂ თ(თ ₃)თ ₂ c ₂ ห ₃ -c ₆ ห ₂	0	0	-CH ₂	-сн ₂ -	-d-20202-	# 4 2 0 £	Ŧ		Gl a s
27	$4-c1-3-\omega_2$ CH(CH ₃) ₂	0	. 0	-сн-со ₂ сн ₃	-cH ₂ -	-cH2-	H- H-	7	=	Glas
28	4-C1-2-F-5-W2C245-C6H2	0	0	-cH2-	-CH ₂ -	-CH2-	-н -со ₂ сн ₃	- -	=	Sirup
5.9	3-c0 ₂ c ₂ H ₅ -4-0c ₂ H ₅ -c ₆ H ₃	0	0	-cH2-	-сн ₂ -	-CH2-	-H -CH3	•	Ŧ	Sirup
30	$3-c0_2c_2H_5-4-0cH_2cF_3-c_6H_3$ 0	0	0	-CH2-	-cH ₂ -	-cH2-	-н -co ₂ cн ₂ cF ₃	2CF3 -1	=	Glas
31	2-F-4-00F3-5-00H3-C6H2	0	0	-сн ₂ -	-CH ₂ -	-cH2-	-H -CH3	1	=	1 1
32	4-C1-2-F-5-0CH ₃ -C ₆ H ₂	S	0	-cH ₂ -	-CH2-	-CH2-	-H -CH ₃	•	I	Harz
33		S	0	-CH ₂ -	-CH2-	- ф-съ	H- H- 5	1	=	Harz
34		S	0	-b1-co2c245	-¢H2	-CH ₂	H- H-	7	Ŧ	Harz
35	=	S	0	-CH ₂ -	-ch-co ₂ ch ₃	-CH2-	#-	Ŧ	_	Glas

	50	45	40		35	30	²⁵ .	20	15	10	•	. 5
Bsp.	Ar		×	>	ð	E		⊢	R 1	R ₂	. R ₃	Fp(°C)
36	4-C1-2-F-5-OCH ₃ -C ₆ H ₂	3-C ₆ H ₂	S	0	-CH ₂ -	-CH2-		-CH2-	Ŧ	$-\omega_2$ ch(ch ₃) ₂	Ŧ	61 4 8
37	=	1	S	0	-сн ₂ -	-CH2-	1	-CH2-	Ŧ	-н - -	1 + €	Sirup
38	$4-8r-3-\omega_2$ CH(CH ₃) $_2$ -C ₆ H ₃	5-CH3	S	0	-dy-	-ਫੂ-		-CH2-	Ŧ	-cH ₃	Ŧ	Harz
39	$4-c1-3-\omega_2$ CH(CH3)\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	20,CH-CH3	S	0	-ch-	-CH2-	1	-a-c _H -	Ŧ	Ŧ	Ŧ	Sirup
40	4-C1-2-F-5-0CH2-CECH-C ₆ H2	2H2-FD=	0	0	-с́н-со ₂ с ₂ н ₅	-NH-		-CH2-	Ŧ	+	#	Harz
4 1	$4-C1-2-F-5-0CH(CH_3)_2-C_6H_2$	3)2-C6H2	0	0	-CH2-	- N-CH3	CH ₃	-CH2-	Ŧ	=	Ξ,	Harz
45	4-C1-2-F-5-OCH3-C6H2	CH3-CeH2	0	0	-CH2-	ა -₹		-CH2-	Ŧ	=	Ŧ	Glas
43	4-C1-2-F-5-OCH ₃ -C ₆ H ₂	сн ³ -с ^е н ²	0	0	->сн-со ₂ с2 ^н 5		M € C1	- ² न·	Ŧ	· Ŧ	Ŧ	Glas
44	=		0	0	-CH2-	-N-	-N-CO ₂ C ₂ H ₅	-CH2-	Ŧ	Ŧ	Ŧ	Sirup
45	=		0	0	-CH2-	-Z	-N-G-CH ₃	-CH2-	=	Ŧ	Ŧ	Harz
46	=		0	0	-сн-со ₂ с ₂ н ₅	-N-CH ₃	H3	-CH2-	Ŧ	=	Ŧ	Harz
. 47			0	0	- с́н-со ₂ с ₂ н ₅	•	-М-со ₂ сн ₃	-CH2-	=	· ·	Ŧ	Harz

••	- 55	50	4 5	40		35	30	25	20	15		10		5
Bsp.	Ar			×	>	0		Σ	-	R ₁ R	R2	R ₃		Fp(⁰ C)
48	. 4-Br	4-Br-5-C0 ₂ C ₂ H ₅ -C ₆ H ₃	5-C ₆ H3	0	0	- h-w ₂ c ₂ k	•	¥	- 2 -	÷	=	푸		Harz
49	4-01-5	4-c1-5-a ₂ an(ch ₃)a ₂ c ₂ k ₅ -c ₆ H ₃	CH2-CH3	0	0	-сн-со ₂ с ₂ н ₅	Ťc	-N-CH ₃	-CH2-	=	=	Ŧ	I	Harz
20	4-C1-	4-C1-2-F-5-0CH3-C6H2	с ⁶ Н ₂	v:	0	-с́н-со ₂ с ₂ н ₅	J.	HN-	-CH2-	<u>+</u>	Ŧ.	Ŧ	==	Glas
51	=	1	l s	S	0	-CH ₂ -		-N-CH ₃	-CH2-	÷	Ŧ.	Ŧ	-	Sirup
52	=	•		S	0	-CH-CO ₂ C ₂ H ₅	- 7 -	-'n-co ₂ cH ₃	-CH2-	÷	¥	Ŧ	-	Harz
53	=			S	0	-CH ₂ -		-'n-g-cH ₃	-CH ₂ -	÷	¥	Ŧ	=	Harz
54	2			0	0	-CH ₂ -	· .	o - o -	-CH ₂ -	÷.	=	Ŧ	T.	Sirup
55	4-01-	4-C1-C ₆ H ₄		0	,0	-CH ₂ -		-0-	-CH2-	Ŧ	Ŧ	Ŧ	×	121-125
99	4-Br-	4-Br-3-02/245-C6H3		0	0	-CH ₂ -		-0-	-CH ₂ -	÷	Ŧ	Ŧ	x	Sirup
57	4-C1-3	4-c1-3-a2d1(cH ₃)a2c2H ₃ -c _{H3}	CH-CH3	0	0	-92-		¢	-ch-	Ŧ	Ŧ	Ŧ		Harz
58	4-C1	4-C1-2-F-5-OCH3-C ₆ H ₂	H3-C6H2	S	0	-CH ₂		-0-	-CH2	÷	∓.	•	Ŧ	97-102
59	2			S	0	-CH-CH ₃		-0-	-сн-сн ₃ -н	3-H -	÷.	ī	=	Glas
09	4-C1	4-C1-C ₆ H ₄		0	0	-cH2-			-сн ₂ н -сн ₃	÷	CH ₃	1	Ŧ	Sirup
														•

33	 55	_. 50	45	40	35 ·	30	25	20	15	10	5	
Bsp.	Ar			×	b .		Σ	F	R ₁ R ₂	R ₃	1	Fp(⁰ C)
61	4-C1	4-C1-2-F-5-OCH ₃ -C ₆ H ₂	•	0	0 -сн-сн ₃		-8-	- Си-сн3-н	H-H-H-13/-H	Ŧ		Harz
62	2			S	0 -СН-СН3		-\$-	HD-HD-	сн-сн₃/-н -н	Ŧ		Harz
63	.=			0	NH -CH2-		-CH2-	-CH2-	¥ ¥	Ŧ		48-53
64	4-Br	4-Br-2F-5-0CH3-C ₆ H ₂	3-C6H2	0	NH -CH2-		-5H2-	-CH2-	H- H-	Ŧ		75-80
65	4-C1-	4-C1-3-20201(CH3)CD2C2H5-C6H3	CH2-CH3	0	NH -CH2-		-CH2-	-CH2-	H- H-	Ŧ		Sirup
99	3-5-(3-5-C1 ₂ -4-CF ₃ CHFCF ₂ 0-C ₆ H ₂	cF20-C6H2	0.	NH -CH2-		-CH2-	-CH2-	H- H-	Ξ-		102-106
, 19	4-C1	4-C1-2-F-5-OCH3-C6H2	н ₃ -с ₆ н ₂	0	NH -CH2-		-сн-сн3	-CH ₂	H- H-	7	9	G1 a s
68	=			0	NH -CH2-		-0-	-CH2-	-H- H-	=-		42-147
69	4-C1-	4-C1-2F-5-0CH ₂ C≡CH-C ₆ H ₂	сн-с ^е н ²	0	NH -CH2-		-сн ₂ -	-CH2-	H- H-	Ŧ		112-116
7.0	4-C1	-2F-5-0CH	4-с1-2F-5-ОСН(СН ₃) ₂ -С ₆ Н ₂ О	0	NH -CH2-		-0-	-CH2-	H- H-	¥-		Glas
7.1	4-Br	4-Br-3-CO ₂ CH(CH ₃) ₂ -C ₆ H ₃	сн3)2-с643	0	NH -CH2-		-CH2-	-CH2-	H- H-	•	в -	06-98
72	4-C1	4-C1-2-F-5-C0 ₂ C ₂ H ₅ -C ₆ H ₂	2492-6H2	0	NH -CH2-		0-	-CH2-	H- H-	₹.		Glas
73	4-0C	4-0CH3-3-CO2C2H5-C6H3	-c ₆ H ₃	0	NH -CH2-		-CH2-	-CH2-	H- H-	Ŧ		Harz
74	4-S-C	4-5-C ₂ 4 ₅ -3- ₂₂ CH(CH ₃) ₂ -C ₆ H ₃	3)2-C ₆ H3	0	NH -CH2-		-сн ₂ -	-CH2-	H - H -	Ŧ		Harz

55	45 50	40	35	30	25	20	. 15	10		5
Bsp.	Ar	*	y Q		Σ	-	R ₁ R ₂		R ₃	Fp(⁰ C)
75	4 - 0012 03 - 02 C2 15 - C6 H3	0	NH -CH2-			-CH2-	-снн	•	Ŧ	Harz
91	$4-C1-2-F-5-0CH_3-C_6H_2$	0	NH -CH ₂ -	•		-CH ₂ -	H- H-	•	Ŧ	Glas
11	=	0	NH -CH-CH ₃		-сн ₂ -	-сн-сн ₃	¥-			Glas
78	=	0	NH -CH2-			-CH2-	$c_{\rm H_3}$ - $c_{\rm H_3}$			Sirup
67	2	0	NH -CH2-			-cH2	-сн3-сн3	·	Ŧ	Sirup
80		0	NH -CH2-			-CH3-	-מאי-נאי	·	Ŧ	Harz
81	=	0	NH -CH ₂ -			-CH2-	, H- H-	-	Ξ-	Harz
85	,	0	NH -CH2-			-CH2-	H- H-	-	Ŧ	Sirup
83	=	0	NH -CH2-			-CH2-	H- H-	•	Ŧ	Harz
84	=	0	NH -CH ₂ -		- N-C-N-CH ₃	-сн ₂ -	H- H-	•	=	Harz
. 8 2		ت	NН -СН2-		-N-P=0 (0C ₂ H ₅) ₂	-CH2-	#- #-	·	=	Glas
86		S	NH -CH2-		-ch-ch ₃	-CH2-	#- #-	·	· -	Gals
87	4-C1-2-F-5-004,C=CH-C,H,	N.	NH -CH2-		-cH ₂ -	-CH2-	H- H-	•	Ξ,	Glas
88	4-C1-2-F-5-OCH(CH ₃) ₂ -C ₆ H ₂	S	NH -CH-CH ₃		-сн ₂ -	-сн-сн ³ -н	3-н -н	·	=	Harz

- 5	Fp(0c)	Glas	Glas	Sirup	Strup	Harz	Harz	Harz	Harz	Harz	Harz	Harz	Sirup	Harz	Harz	Harz	Sirup	Sinp	Harz
	R ₃	푸	Ŧ	Ŧ	Ŧ	Ŧ	푸	-H-	Ŧ	Ŧ	Ŧ	Ŧ,	Ŧ	Ŧ	Ŧ	Ŧ	=	Ŧ	Ŧ
																			•
	R ₂	Ŧ	Ŧ	Ŧ	Ŧ	I	푸	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ
15 -	R	Ŧ	Ŧ		Ŧ		Ŧ	Ŧ	푸	Ŧ	푸	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ.
20	-	-CH)-	-CH-CH,	, -CH)-	-CH,	-CH2-	-CH2-	·->-	-s-	-\$-	-S-	-\$-	-\$-	\$-	-S-	-Ş-	\$-	Ÿ	-5-
25	Σ	-0-	-0-	5-	-с́н-со ₂ с ₂ н ₅	-NH-	-'n-cH ₃	-cH ₂ -	-cH ₂ -	-CH ₂ -	-cH ₂ -	-cH ₂ -	-cH ₂ -	-CH2-	-CH ₂ -··	-cH ₂ -	-cH ₂ -	- д ,	-сн ₂ -
30											٠								
35	ð	-CH2-	-cH-CH ₃	-cH2-	-CH ₂ -	-сн ₂ -	-CH2-	-cH ₂ -	-CH2-	-CH2-	-сн ₂ -	-сн ₂ -	-сн ₂ -	-cH ₂ -	-сн ₂ -	-cH ₂ -	-сн ₂ -	-ਖ਼-	-сн ₂ -
,	>	¥	¥	¥	¥	¥	¥	볼	D	0	0	0	0	0	0	0	0	0	0
40	×	S	S	S	S		S	S	S	S	0	0	S	S	0.	0	0	S	0
45		4-C1-2-F-5-0CH3-C6H5								4-Br-2-F-5-0CH ₃ -C ₆ H ₂	4-Br-2F-5-0CH2C≡CH-C ₆ H2	4-C1-2F-50CH(CH ₃) ₂ -C ₆ H ₂	-5-0CH ₂ C≡CH-C ₆ H ₂	4-Br-5-CO ₂ CH(CH ₃) ₂ -C ₆ H ₃	,0 ₂ сн(сн ₃)со ₂ с ₂ н ₂ -с ₆ н	-3-00,C,H,-C,H3	\mathfrak{D}_{2} \mathfrak{A}_{3} \mathfrak{A}_{3} \mathfrak{A}_{5} \mathfrak{A}_{5}	-@^C,KC,K_3	4-5C2H5-3-CO2CH2CF3-C6H3
		1-2-1			:					r-2-f	r-2F.	1-2F.	1-2F.	r-5-(1-5-(H, G.	F,-54	- 7 -3	C2H5-
-	Ar	. 4-C	=	=	=	=	=	=	=	4-B	4-B	4-C	4 -C	4-B	4-C	4-0C	2,4-	4-00	4-S
55	Bsp.	89	0	11	2	3	4	5	96	97	98	66	100	101		103	104	105	901
	B	æ	5	9	5	5	9	9,	5	5	5	5	_	_	_		-	_	-

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
□ BLACK BORDERS
IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
Потивр

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.