

SEQUENCE LISTING

<110> CropDesign N.V.

<120> Plants having increased yield and method for making the same

<130> CD-106-PCT

<150> US 60/532,287

<151> 2003-12-22

<160> 5

<170> PatentIn version 3.3

<210> 1

<211> 1311

<212> DNA

<213> *Arabidopsis thaliana*

<220>

<221> misc_feature

<223> A variant of the coding sequence of the sequence deposited under accession number NM_121168 contains a G instead of C on position 851 and a T instead of C on position 1295

<400> 1

atgtatttgt	cttcttcgat	gcataccaaat	gcaaacaagaaa	aaaatatctc	tacttcagat	60
gtacaggaga	gttttgtacg	aataacgaga	tcacgagcta	aaaaagccat	gggaagagga	120
gtatcaatac	ctccaacaaa	accttccttt	aaacagcaaa	agagacgtgc	agtacttaag	180
gatgtgagta	ataccctctgc	agatattatt	tattcagaac	ttcgaaagg	aggcaacatc	240
aaggcaaca	gaaaatgtct	aaaagagcct	aaaaaagcag	caaaggaagg	tgctaacagt	300
gccatggata	ttctggtaga	tatgcataca	gaaaaatcaa	aatttagcaga	agatttgtcc	360
aagatcgaga	tggctgaagc	ccaagatgtc	tctctttcaa	actttaaaga	tgaagaaatt	420
actgagcaac	aagaagatgg	atcaggtgtc	atggagttac	ttcaagttgt	agatattgtat	480
tccaaacgtcg	aagatccaca	gtgttgccgc	ttgttatgtctg	ctgatata	tgacaacata	540
catgttgcag	agcttcaaca	acgacccttg	gctaattata	tggagcttgc	gcagcgagat	600
atcgaccac	acatgagaaa	gattctgtt	gactggcttg	tagaagtttc	tgacgactac	660
aagctgggtc	cagatacgct	ttacattaca	gtgaatctta	tcgaccgg	tctgtccaac	720
agttacattg	aaaggcaaa	actccagctc	cttgggtgtct	tttgcatgt	tatagcttca	780
aaatatgaag	agctttccgc	accaggggtg	gaggagttt	gcttcattac	ggccaacaca	840
tacacaagac	cagaagtgc	gagcatggag	attcaaattc	taaattttgt	gcacttttaga	900
ttatcggttc	ctaccaccaa	aacattctg	aggcggttca	ttaaagcagc	tcaagcttgc	960
tacaagggtgc	ctttcattga	actggagtat	ttagcaact	atctcgccga	attgacactg	1020
gtggaatata	gttccttaag	gttcctgcca	tcactaattt	ctgcttcagc	tgttttccta	1080
gcccgtatgg	cactcgacca	aactgaccat	ccttggaaacc	ctactctgc	acactacacc	1140
agatatgagg	tagctgagct	gaagaacaca	gttctcgcca	tggaggactt	gcagctcaac	1200
accagtggct	gtactctcgc	tgccacccgt	gagaaataca	accaaccaa	gtttaagagc	1260
gtggcaaa	tgacatctcc	caaacgagtc	acatcaactat	tctcaagatg	a	1311

<210> 2

<211> 436

<212> PRT

<213> *Arabidopsis thaliana*

<220>

<221> MISC_FEATURE

<223> A variant of the sequence deposited under accession number NP_568248 contains an arginine instead of a proline on position

284 and a phenylalanine instead of a serine on position 432

<400>	2														
Met	Tyr	Cys	Ser	Ser	Ser	Met	His	Pro	Asn	Ala	Asn	Lys	Glu	Asn	Ile
1															15
Ser	Thr	Ser	Asp	Val	Gln	Glu	Ser	Phe	Val	Arg	Ile	Thr	Arg	Ser	Arg
				20				25							30
Ala	Lys	Lys	Ala	Met	Gly	Arg	Gly	Val	Ser	Ile	Pro	Pro	Thr	Lys	Pro
				35				40							45
Ser	Phe	Lys	Gln	Gln	Lys	Arg	Arg	Ala	Val	Leu	Lys	Asp	Val	Ser	Asn
				50				55							60
Thr	Ser	Ala	Asp	Ile	Ile	Tyr	Ser	Glu	Leu	Arg	Lys	Gly	Gly	Asn	Ile
				65				70							80
Lys	Ala	Asn	Arg	Lys	Cys	Leu	Lys	Glu	Pro	Lys	Lys	Ala	Ala	Lys	Glu
				85				90							95
Gly	Ala	Asn	Ser	Ala	Met	Asp	Ile	Leu	Val	Asp	Met	His	Thr	Glu	Lys
				100				105							110
Ser	Lys	Leu	Ala	Glu	Asp	Leu	Ser	Lys	Ile	Arg	Met	Ala	Glu	Ala	Gln
				115				120							125
Asp	Val	Ser	Leu	Ser	Asn	Phe	Lys	Asp	Glu	Glu	Ile	Thr	Glu	Gln	Gln
				130				135							140
Glu	Asp	Gly	Ser	Gly	Val	Met	Glu	Leu	Leu	Gln	Val	Val	Asp	Ile	Asp
				145				150							160
Ser	Asn	Val	Glu	Asp	Pro	Gln	Cys	Cys	Ser	Leu	Tyr	Ala	Ala	Asp	Ile
				165				170							175
Tyr	Asp	Asn	Ile	His	Val	Ala	Glu	Leu	Gln	Gln	Arg	Pro	Leu	Ala	Asn
				180				185							190
Tyr	Met	Glu	Leu	Val	Gln	Arg	Asp	Ile	Asp	Pro	Asp	Met	Arg	Lys	Ile
				195				200							205
Leu	Ile	Asp	Trp	Leu	Val	Glu	Val	Ser	Asp	Asp	Tyr	Lys	Leu	Val	Pro
				210				215							220
Asp	Thr	Leu	Tyr	Leu	Thr	Val	Asn	Leu	Ile	Asp	Arg	Phe	Leu	Ser	Asn
				225				230							240
Ser	Tyr	Ile	Glu	Arg	Gln	Arg	Leu	Gln	Leu	Leu	Gly	Val	Ser	Cys	Met
				245				250							255
Leu	Ile	Ala	Ser	Lys	Tyr	Glu	Glu	Leu	Ser	Ala	Pro	Gly	Val	Glu	Glu
				260				265							270
Phe	Cys	Phe	Ile	Thr	Ala	Asn	Thr	Tyr	Thr	Arg	Pro	Glu	Val	Leu	Ser
				275				280							285
Met	Glu	Ile	Gln	Ile	Leu	Asn	Phe	Val	His	Phe	Arg	Leu	Ser	Val	Pro
				290				295							300

Thr Thr Lys Thr Phe Leu Arg Arg Phe Ile Lys Ala Ala Gln Ala Ser
305 310 315 320

Tyr Lys Val Pro Phe Ile Glu Leu Glu Tyr Leu Ala Asn Tyr Leu Ala
325 330 335

Glu Leu Thr Leu Val Glu Tyr Ser Phe Leu Arg Phe Leu Pro Ser Leu
 340 345 350

Ile Ala Ala Ser Ala Val Phe Leu Ala Arg Trp Thr Leu Asp Gln Thr
355 360 365

Asp	His	Pro	Trp	Asn	Pro	Thr	Leu	Gln	His	Tyr	Thr	Arg	Tyr	Glu	Val
370						375						380			

Ala Glu Leu Lys Asn Thr Val Leu Ala Met Glu Asp Leu Gln Leu Asn
385 390 395 400

Thr Ser Gly Cys Thr Leu Ala Ala Thr Arg Glu Lys Tyr Asn Gln Pro
405 410 415

Lys Phe Lys Ser Val Ala Lys Leu Thr Ser Pro Lys Arg Val Thr Ser
420 425 430

Leu Phe Ser Arg
435

<210> 3
<211> 654
<212> DNA
<213> Oryza sativa

<400> 3						
cttctacatc	ggcttaggtg	tagcaacacg	actttattat	tattattatt	attattatta	60
ttatTTtaca	aaaatataaa	atagatcagt	ccctcaccac	aagttagagca	agttggtag	120
ttattgtaaa	gttctacaaa	gctaatttaa	aagttattgc	attaacttat	ttcatattac	180
aaacaagagt	gtcaatggaa	caatgaaaac	catatgacat	actataattt	tgtttttatt	240
attgaaatta	tataattcaa	agagaataaa	tccacatgc	cgtaaagttc	tacatgttgt	300
gcattaccaa	aatatatata	gcttacaaaa	catgacaagg	ttagtttcaa	aaattgcaat	360
ccttatcaca	ttgacacata	aagttagtga	tgagtctaaa	tattatttc	tttgctaccc	420
atcatgtata	tatgatagcc	acaaaggtag	tttgatgtat	atataaaaga	acatttttag	480
gtgcacctaa	cagaatatcc	aaataatatg	actcacttag	atcataatag	agcatcaagt	540
aaaactaaca	ctctaaagca	accgatggga	aagcatctat	aaatagacaa	gcacaatgaa	600
aatcctcata	atccttcacc	acaattcaaa	tattatagtt	gaagcatagt	agta	654

```
<210> 4
<211> 56
<212> DNA
<213> Artificial sequence
```

<220>
<223> primer PRM582

<400> 4
ggggacaaqt ttgtacaaaa aagcaggctt cacaatgtat tgctcttctt cgatgc 56

<210> 5
<211> 52

<212> DNA
<213> Artificial sequence

<220>
<223> primer PRM583

<400> 5
ggggaccact ttgtacaaga aagctgggtg cttggtgtca tcttgagaat ag

52