BCAM & UPV/EHU Course

Regression

Introduction to Machine Learning

Carlos Cernuda

Carmen Ana Domínguez-Bravo

Introduction

Simple regression: parametric and non-parametric

Linear regression K Nearest Neighbour

Multiple regression

MR non-additive

MR non-linear

Polynomial regression Splines regression Generalized Additive Model

MR fitting procedures

Lasso regression

Outline

Intro

Introduction

Simple regression: parametric and non-parametric

Linear regression

K Nearest Neighbour

Wattiple regression

MR non-additive

MR non-linear

Polynomial regression
Splines regression
Generalized Additive Mode

MR fitting procedures

What is regression?

Now we are interested on predicting a **quantitative** response variable. Similar to classification but where the response is continuous.

We want to build a model from observed data to predict a quantitative response Y on the basis of one or some predictor variables X.

Intro

Now we are interested on predicting a **quantitative** response variable. Similar to classification but where the response is continuous.

We want to build a model from observed data to predict a quantitative response Y on the basis of one or some predictor variables X.

- Y Response (e.g. sales) (variable to be predicted) It can take any real (continuous) value, quantitative.
- **X** Predictors (e.g. advertising budget)

Intro

We assume that the true relationship between predictors and response is

$$Y = f(X) + \epsilon$$
 $Y \sim f(X)$

- f unknown function (regression model),
- ϵ mean-zero random noise.

Intro

Given observed data
$$(\mathbf{x}_i, y_i)$$
 for $i = 1, \dots, N$

Given observed data
$$(\mathbf{x}_i, y_i)$$
 for $i = 1, ..., N$

$$(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \dots, (\mathbf{x}_n, y_n), (\mathbf{x}_{n+1}, y_{n+1}), \dots, (\mathbf{x}_{N-n}, y_{N-n})$$

How to obtain the model that best describe them in order to make a good prediction at x_0 ?

Intro

Given observed data (\mathbf{x}_i, y_i) for $i = 1, \dots, N$

$$(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \dots, (\mathbf{x}_n, y_n), (\mathbf{x}_{n+1}, y_{n+1}), \dots, (\mathbf{x}_{N-n}, y_{N-n})$$

How to obtain the model that best describe them in order to make a good prediction at x_0 ?

Select:

- 1. structure of the model.
- 2. fitting method to build the model,
- 3. train (build the model),
- 4. test (measure the accuracy of the model).

- **1. Structure of the model:** $Y = f(X) + \epsilon$
 - Parametric approach (assumptions over the shape of f)
 - Non-parametric approach (does not assume a form over f)

Intro

■ E.g. linear regression:

$$Y_{\beta} = \beta_0 + \beta_1 X + \epsilon$$

Parametric regression

■ E.g. linear regression:

$$Y_{\beta} = \beta_0 + \beta_1 X + \epsilon$$

Simplify the model function to a known form.

MR non-linear

Simple regression

■ E.g. linear regression:

$$Y_{\beta} = \beta_0 + \beta_1 X + \epsilon$$

- Simplify the model function to a known form.
- The model requires the estimation of a finite number of parameters.

E.g. linear regression:

$$Y_{\beta} = \beta_0 + \beta_1 X + \epsilon$$

- Simplify the model function to a known form.
- The model requires the estimation of a finite number of parameters.
- No matter how much data you use, the model will not change its mind about the parameters it needs.

■ E.g. K nearest neighbour (KNN regression)

Non-parametric regression

- **■** E.g. K nearest neighbour (KNN regression)
- Do not make strong assumptions about the form of the function.

MR non-linear

Intro

Non-parametric regression

- E.g. K nearest neighbour (KNN regression)
- Do not make strong assumptions about the form of the function.
- Free to learn "any functional form" from the training data.

- E.g. K nearest neighbour (KNN regression)
- Do not make strong assumptions about the form of the function.
- Free to learn "any functional form" from the training data.
- Good when you have a lot of data and no prior knowledge.

Fitting procedures

Intro

2. Fitting method to determine the model parameters: Y_{β}

- Given data (\mathbf{x}_i, y_i) for $i = 1, \ldots, n$,
- Determine the model parameters by minimizing a cost function.
- Example:
 - Error or residual value at \mathbf{x}_i : $e_i = y_i y_{\beta,i}$
 - Cost function: Squared Error or Residual Sum of Squares

$$RSS = \sum_{i=1}^{n} e_i^2$$

- Select $\widehat{\beta}$ that minimizes the cost function.
- Model obtained: $\widehat{Y} = Y_{\widehat{\beta}}$

Outline

Simple regression: parametric and non-parametric Linear regression K Nearest Neighbour

MR non-linear

Linear regression model

$$Y = f(X) + \epsilon = \beta_0 + \beta_1 X + \epsilon$$

- It assumes that there is approximately a linear relationship between a predictor X and the response Y.
- Model parameters or coefficients: β_0 and β_1 .
- Valid for some practical problems and used as base by other more sophisticated models.

Given data
$$(\mathbf{x}_i, y_i)$$
 for $i = 1, \dots, n$,

How to calculate the model parameters ?

Estimate the parameters from the data such that at each point x_i the model predicted value is similar to the true response value observed.

Given data
$$(\mathbf{x}_i, \mathbf{y}_i)$$
 for $i = 1, \dots, n$,

How to calculate the model parameters ?

Estimate the parameters from the data such that at each point x_i the model predicted value is similar to the true response value observed.

Example:

Simple regression

$$\widehat{\beta}_0, \widehat{\beta}_1 = \arg\min_{\beta} \sum_{i=1}^n e_i^2 = \arg\min_{\beta_0, \beta_1} \sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_i)^2$$

Choose β_0, β_1 that minimize RSS (Least Squares Fitting).

Example: Simple Linear regression course_regression_1_SimpleLinear.ipynb

Given data (y_i, \mathbf{x}_i) for i = 1, ..., n, Predict at point \mathbf{x}_0 (unobserved) the response value y_0 .

Given data (y_i, \mathbf{x}_i) for i = 1, ..., n, Predict at point \mathbf{x}_0 (unobserved) the response value y_0 .

The method works as follows:

1. Identify the K data point closest to \mathbf{x}_0 , that is, the local neighbourhood $\{(y_i, \mathbf{x}_i)\}_{i \in I_0}$ with $|I_0| = K$

Given data (y_i, \mathbf{x}_i) for i = 1, ..., n, Predict at point \mathbf{x}_0 (unobserved) the response value y_0 .

- 1. Identify the K data point closest to \mathbf{x}_0 , that is, the local neighbourhood $\{(y_i, \mathbf{x}_i)\}_{i \in I_0}$ with $|I_0| = K$
- 2. Estimate the response value y_0 at \mathbf{x}_0 by using the average of the neighbours: $y_0 = \frac{1}{K} \sum_{i \in I} y_i$

Given data (y_i, \mathbf{x}_i) for i = 1, ..., n, Predict at point \mathbf{x}_0 (unobserved) the response value y_0 .

- 1. Identify the K data point closest to \mathbf{x}_0 , that is, the local neighbourhood $\{(y_i, \mathbf{x}_i)\}_{i \in I_0}$ with $|I_0| = K$
- 2. Estimate the response value y_0 at \mathbf{x}_0 by using the average of the neighbours: $y_0 = \frac{1}{K} \sum_{i \in I} y_i$

Given data (y_i, \mathbf{x}_i) for i = 1, ..., n, Predict at point \mathbf{x}_0 (unobserved) the response value y_0 .

- 1. Identify the K data point closest to \mathbf{x}_0 , that is, the local neighbourhood $\{(y_i, \mathbf{x}_i)\}_{i \in I_0}$ with $|I_0| = K$
- 2. Estimate the response value y_0 at \mathbf{x}_0 by using the average of the neighbours: $y_0 = \frac{1}{K} \sum_{i \in L} y_i$
 - non-parametric regression method,
 - it is a piecewise constant approximation,
 - the model is smoother as the number of neighbours increases,
 - there are methods to identify the optimal value for K.

Possible variants ...

Simple regression

- KNN (basic or uniform): all the points in the local neighbourhood has the same weight.
- KNN (distance): the points in the neighbourhood have a weight proportional to the inverse of the distance from \mathbf{x}_0 .
- KNN (radius): the neighbours are the points within a fixed radius of the input point.
- More ...

Example: K Nearest Neighbour regression

course_regression_2_KNN.ipynb

Outline

Introduction

Simple regression: parametric and non-parametric

Linear regression

K Nearest Neighbour

Multiple regression

MR non-additive

MR non-linear

Polynomial regression
Splines regression
Generalized Additive Mode

MR fitting procedures

Multiple linear regression

In practice, p predictor variables! Extend the linear model to accommodate multiple predictors.

$$Y = \beta_0 + \beta_1 \mathbf{X}_1 + \ldots + \beta_p \mathbf{X}_p + \epsilon$$
$$= \beta_0 + \sum_{j=1}^p \beta_j \mathbf{X}_j + \epsilon$$

Coefficient β_i : measure the average effect on the response y when the predictor variable x_i increase one unit and all the other predictors are fixed.

Multiple Linear regression $Y = \beta_0 + \beta_1 X_1 + \ldots + \beta_n X_n + \epsilon$

Given *n* data with *p* predictors and one response values:

$$\mathbf{x}_{ij}$$
 for $i=1,\ldots,n$ and $j=1,\ldots,p$

$$y_i$$
 for $i=1,\ldots,n$

the design matrix will look like

$$\begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix} \sim \begin{bmatrix} 1 & x_{11} & x_{12} & \dots & x_{1p} \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & x_{n1} & x_{n2} & \dots & x_{np} \end{bmatrix} \begin{bmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \\ \vdots \\ \beta_n \end{bmatrix}$$

Multiple Linear regression $Y = \beta_0 + \beta_1 X_1 + \ldots + \beta_p X_p + \epsilon$

Given the data (\mathbf{x}_{ij}, y_i) , estimate the regression coefficients from the data.

Choose the $\beta = (\beta_1, \dots, \beta_p)$ that minimizes the RSS:

$$\widehat{\beta} = \arg\min_{\beta} \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 \mathbf{x}_{i1} - \dots - \beta_p \mathbf{x}_{ip})^2$$

Obtain the model to make new predictions $\widehat{Y} = \widehat{\beta}_0 + \widehat{\beta}_1 X_1 + \ldots + \widehat{\beta}_n X_n$.

niapan ibukan pikudon sapan iliku

Outline

Introduction

Simple regression: parametric and non-parametric

Linear regression

K Nearest Neighbour

Multiple regression

MR non-additive

MR non-linear

Polynomial regression
Splines regression
Generalized Additive Mode

Regression (ML Intro)

BCAM & UPV/EHU Course

MR fitting procedures

Fitting procedures

Simple regression

Linear model two main restrictive assumptions: additive and linear.

Additive assumption: the effect of changes in a predictor X_j on the response Y is independent on the values of the other predictors.

$$Y = \beta_0 + \beta_1 \boldsymbol{X}_1 + \beta_2 \boldsymbol{X}_2 + \epsilon$$

Remove additive assumption: introduce an interaction term to allow interactions.

Fitting procedures

Linear regression but non-additive

Simple regression

Linear model two main restrictive assumptions: additive and linear.

Additive assumption: the effect of changes in a predictor X_i on the response Y is independent on the values of the other predictors.

$$Y = \beta_0 + \beta_1 \boldsymbol{X}_1 + \beta_2 \boldsymbol{X}_2 + \epsilon$$

Remove additive assumption: introduce an interaction term to allow interactions.

$$Y = \beta_0 + \beta_1 \mathbf{X}_1 + \beta_3 \mathbf{X}_1 \mathbf{X}_2 + \beta_2 \mathbf{X}_2 + \epsilon$$

= $\beta_0 + (\beta_1 + \beta_3 \mathbf{X}_2) \mathbf{X}_1 + \beta_2 \mathbf{X}_2 + \epsilon$

The effect on X_1 is no longer constant, adjusting X_2 will change the impact of X_1 on Y.

Example: Multiple Linear regression course_regression_3_MultipleLinear.ipynb

MR non-linear

Introduction

Simple regression: parametric and non-parametric

Linear regression

K Nearest Neighbour

Multiple regression

MR non-additive

MR non-linear

Polynomial regression
Splines regression
Generalized Additive Model

MR fitting procedures

Non-linear regression but still additive

Linear model two main restrictive assumptions: additive and linear.

Linear assumption: the change in the response Y due to one-unit change in **X** is constant, independently of the **X** value.

$$Y = \beta_0 + \beta_1 X + \epsilon$$

Remove linear assumption: introduce non-linear relationships.

Linear model two main restrictive assumptions: additive and linear.

Linear assumption: the change in the response Y due to one-unit change in **X** is constant, independently of the **X** value.

$$Y = \beta_0 + \beta_1 X + \epsilon$$

Remove linear assumption: introduce non-linear relationships.

$$Y = \beta_0 + \beta_1 \mathbf{X} + \beta_2 \mathbf{X}^2 + \epsilon$$

The effect on X over Y is now quadratic (polynomial regression).

Fitting procedures

Non-linear regression but additive

Simple regression

Remove linear assumption: introduce non-linear relationships by using a family of transformations that can be applied to the predictor variable Χ.

$$Y \sim \beta_0 + \beta_1 b_1(\mathbf{X}) + \beta_2 b_2(\mathbf{X}) + \ldots + \beta_K b_K(\mathbf{X})$$

We choose the basis functions $b_k(\cdot)$ and given the data we can estimate the vector of coefficients.

E.g. In the polynomial case $Y \sim \beta_0 + \beta_1 X + \beta_2 X^2$, the basis functions are $\{X, X^2\}$.

Fitting procedures

Non-linear regression but additive

Possible models to relax linearity assumptions and maintain at the same time interpretability:

Polynomial

Simple regression

- Splines
- Generalized Additive Models

Polynomial regression

For polynomial regression,

$$Y = \beta_0 + \beta_1 \mathbf{X} + \beta_2 \mathbf{X}^2 + \beta_3 \mathbf{X}^3 + \ldots + \beta_d \mathbf{X}^d + \epsilon$$

the basis functions are:

$$b_k(\boldsymbol{X}) = \boldsymbol{X}^k$$

We can produce non-linear curves (polynomial of d-degrees).

Example: Polynomial regression course_regression_4_polynomial.ipynb

Splines regression

Simple regression

Instead of fitting a high-degree polynomial over the entire predictor space, fit low-degree polynomials over different regions of the predictor space.

Instead of fitting a high-degree polynomial over the entire predictor space, fit low-degree polynomials over different regions of the predictor space.

- Regions are determined by some points (called knots) where we want to change the fitting model.
- For instance, a piecewise cubic polynomial with a single knot at point c,

$$Y = \begin{cases} \beta_{01} + \beta_{11} \mathbf{X} + \beta_{21} \mathbf{X}^2 + \beta_{31} \mathbf{X}^3 + \epsilon & \text{if } \mathbf{X} < c \\ \beta_{02} + \beta_{12} \mathbf{X} + \beta_{22} \mathbf{X}^2 + \beta_{32} \mathbf{X}^3 + \epsilon & \text{if } \mathbf{X} \text{points} \ge c \end{cases}$$

Cubic spline regression

$$Y \sim \beta_0 + \beta_1 X + \beta_2 X^2 + \beta_3 X^3 + \beta_{3+1} h(X, c_1) + \dots + \beta_{3+k} h(X, c_k)$$

where h(X, c) are truncated power basis,

$$h(\mathbf{X},c) = \begin{cases} (\mathbf{X}-c)^3 & \text{if } \mathbf{X} > c \\ 0 & \text{if } \mathbf{X} \le c \end{cases}$$

Cubic spline regression

$$Y \sim \beta_0 + \beta_1 X + \beta_2 X^2 + \beta_3 X^3 + \beta_{3+1} h(X, c_1) + \ldots + \beta_{3+k} h(X, c_k)$$

where h(X, c) are truncated power basis,

$$h(\mathbf{X},c) = \begin{cases} (\mathbf{X}-c)^3 & \text{if } \mathbf{X} > c \\ 0 & \text{if } \mathbf{X} \le c \end{cases}$$

- Piecewise polynomials of degree d = 3 continuous and smooth!
- Impose some constraints at the knots (up to degree d-1): continuous, 1st and 2nd derivatives continuous.
- Number of coefficients: $1(\beta_0) + 3(\text{degree}) + k(\text{knots})$

Splines regression

Cubic splines: lowest order for which the discontinuity at the knots cannot be noticed by the human eye.

Spline vs polynomial: With polynomials higher degrees are needed to obtain better fitting in some cases and there are also problems at the edges of the data.

Spline vs polynomial: Using splines we can introduce flexibility by increasing the number of knots but keeping the degree fixed.

MR non-linear

0000

Example: Splines regression

 $course_regression_5_Splines.ipynb$

Extend to multiple linear regression model

$$Y \sim \beta_0 + \beta_1 \boldsymbol{X}_1 + \ldots + \beta_p \boldsymbol{X}_p$$

to allow for non-linear relationships between each predictor and the response, for instance, replace each linear component with a smooth non-linear function

$$Y \sim \beta_0 + f_1(\boldsymbol{X}_1) + \ldots + f_p(\boldsymbol{X}_p)$$

A different function f_i for each predictor X_i , and then add all the contributions.

Outline

Introduction

Simple regression: parametric and non-parametric

Linear regression

K Nearest Neighbour

Multiple regression

MR non-additive

MR non-linear

Polynomial regression
Splines regression
Generalized Additive Mode

MR fitting procedures

Alternative fitting procedures

Fitting a multiple linear regression model:

$$Y = \beta_0 + \beta_1 \boldsymbol{X}_1 + \ldots + \beta_p \boldsymbol{X}_p + \epsilon$$

$$(\widehat{\beta}_0, \dots, \widehat{\beta}_p) = \arg\min_{\beta} \sum_{i=1}^n e_i^2 \longrightarrow \widehat{Y} = \widehat{\beta}_0 + \widehat{\beta}_1 X_1 + \dots + \widehat{\beta}_p X_p$$

In order to estimate the model parameters given a data set, replace the least squares fitting with some alternative fitting procedures. Why?

Obtain better prediction accuracy.

Improve model interpretability.

Alternative fitting procedures

Simple regression

Alternatives to improve the fitting technique:

- **Subset selection**; identify the subset of predictors that we believe to be related with the response.
- Dimension reduction; projecting the predictors into a M-dimensional subespace, where M < p, and use these projections as predictors (PCA).
- **Shrinkage**; fitting the model with all the predictors and shrink the estimated coefficients towards zero.

Example: Lasso

Fitting a multiple linear regression model

$$Y = \beta_0 + \beta_1 \boldsymbol{X}_1 + \ldots + \beta_p \boldsymbol{X}_p + \epsilon$$

Given data (\mathbf{x}_i, y_{ij}) estimate the model coefficients that:

$$(\widehat{\beta}_0,\ldots,\widehat{\beta}_p) = \arg\min_{\beta} \sum_{i=1}^n e_i^2 + \alpha \sum_{i=1}^p |\beta_i|$$

Lasso regression

Fitting a multiple linear regression model

$$Y = \beta_0 + \beta_1 \boldsymbol{X}_1 + \ldots + \beta_p \boldsymbol{X}_p + \epsilon$$

Given data (\mathbf{x}_i, y_{ij}) estimate the model coefficients that:

$$(\widehat{\beta}_0,\ldots,\widehat{\beta}_p) = \arg\min_{\beta} \sum_{i=1}^n e_i^2 + \alpha \sum_{j=1}^p |\beta_j|$$

- the penalty term uses the norm l_1 of the coefficient vector $\beta = (\beta_1, \ldots, \beta_n).$
- when α is large, some coefficients are forced to be zero.

magazi Sakara Abbada an kapan Pa

How good is the model obtained?

$$(\widehat{\beta}_0, \dots, \widehat{\beta}_p) = \arg\min_{\beta} \sum_{i=1}^n e_i^2 + \alpha \sum_{j=1}^p |\beta_j| \longrightarrow \widehat{Y} = \widehat{\beta}_0 + \sum_{j=1}^p \widehat{\beta}_j X_j$$

Quantify if the response value predicted by the model Y is close to the true model Y.

Example: mean squared prediction error

$$MSE = \frac{1}{n} \sum_{i=1}^{n} e_i^2 = \frac{1}{n} \sum_{i=1}^{n} (y_i - \widehat{y}_i)^2$$

Example: Lasso regression

course_regression_6_Lasso.ipynb

