ПЕРВИЧНЫЕ ИЗМЕРИТЕЛЬНЫЕ ПРЕОБРАЗОВАТЕЛИ

Первичный измерительный преобразователь (ПИП) является первым в измерительной цепи и включается в себя чувствительный элемент и другие необходимые элементы для преобразования входной неэлектрической величины в выходную электрическую.

Классификация ПИП:

- 1. По виду выходной величины: генераторные и параметрические.
- 2. По **принципу действия**: резистивные, электромагнитные, емкостные, пьезоэлектрические, гальваномагнитные, термоэлектрические, оптикоэлектронные.

Резистивные ИП

Принцип действия основан на изменении их электрического сопротивления при изменении входной величины.

Реостатные ИП

Реостатные преобразователи представляют собой регулируемые омические сопротивления специального изготовления. Входной величиной является перемещение (линейное или угловое), выходной – сопротивление.

По конструкции выделяют:

- 1) реохордные ИП;
- 2) ИП со ступенчатой характеристикой;
- 3) нелинейные ИП.

$$1$$
 – провод, 2 – каркас, 3 – щетка

Зависимость выходного сопротивления R от перемещения движка X:

$$R = \int_0^X R_1 n_0 p dx ,$$

где R_1 - сопротивление одного метра провода; n_0 - число витков на единицу длины преобразователя; р - периметр каркаса.

Применяются для измерения линейных и угловых перемещений и величин с ними связанных (давлений, сил, уровней и т. д.).

Тензрезистивные ИП

Принцип действия заключается в изменении электрического сопротивления проводников и полупроводников при их деформации.

Уравнения преобразования:

$$R = R_0 \left(1 + K \varepsilon_1 \right),\,$$

где R_0 - начальное сопротивление, K – коэффициент тензочувствительности, ε_l - деформация. K=2 для металлов и жидкостей, K=120 и более для полупроводниковых материалов достигает значения.

В зависимости от фазового состояния материала чувствительного элемента различают твердотельные (проволочные, фольговые, пленочные) и жидкостные тензорезистивные ИП.

Характеристики: коэффициент тензочувствительности, измерительная база, начальное сопротивление, погрешности.

Применяются для измерения статические и динамические деформации, а также для измерения величин, преобразуемых в деформацию (механических сил; давлений; ускорений).

Терморезистивные ИП

Принцип действия основан на изменении удельного сопротивления материалов под действием температуры.

В качестве материалов для терморезисторов используют:

- 1. Проводники: платину, медь, никель, вольфрам и др.
- 2. Полупроводниковые соединения: медно-марганцевые и др.
- 3. Мононокристаллические полупроводники: Ge и др.
- 4. Диэлектрики тугоплавкие окислы: BeO, MgO, ZrO₂, SiO₂ и др.

Сопротивление металлического проводника определяется

$$R = R_0 \left(1 + \alpha_1 \Delta t + \alpha_2 \Delta t^2 + \alpha_3 \Delta t^3 + \alpha_4 \Delta t^4 \right) \approx R_0 \left(1 + \alpha \Delta t \right).$$

где R_0 - сопротивление образца при $t=t_0, (0$ или 20^0 C); $\alpha_1, \alpha_2, \alpha_3$... - степенные температурные коэффициенты сопротивления материала.

Сопротивление **полупроводникового терморезистора** (термистора) определяется

$$R = Ae^{\frac{B}{T}}$$
.

где A - коэффициент, характеризующий материал и конструкцию терморезистора;

В - коэффициент, характеризующий материал.

Характеристики: уравнение преобразования, чувствительность, номинальное сопротивление, тепловая постоянная времени, погрешности.

Применяются для измерения: температуры; скорости жидкости или газа (в термоанемометрах); перемещений; для анализа состава и плотности газов.

Фоторезистивные ИП

Принцип действия заключается в изменении удельного сопротивления полупроводников и диэлектриков под действием оптического излучения.

Оптический коэффициент электрического сопротивления определяется

$$\alpha_{Eonm} = \frac{d\rho/dE_{OIIT}}{\rho_0},$$

где Еонт - интенсивность оптического излучения;

 ρ_0 - значение удельного сопротивления при $E_{\text{ont}}=0$.

Характеристики: функция преобразования; темновое сопротивление; кратность изменения сопротивления; монохроматическая чувствительность; спектральная характеристика; световая характеристика; вольтамперная характеристика; постоянная времени и др.

Термоэлектрические ИП

Принцип действия основан на эффекте Зеебека. При соединении двух разнородных проводников или полупроводников концами и различной температуре концов в цепи возникает термоЭДС.

Термоэлектрический ИП обычно называется термопарой, и он используется для измерения (преобразования) температуры.

ТермоЭДС определяется выражением:

$$E_T = \alpha_1 (T_1 - T_0) + \alpha_2 (T_1 - T_0)^2 + ... + \alpha_n (T_1 - T_0)^n$$
.

где $\alpha_1, \alpha_2, ..., \alpha_n$ - постоянные, зависящие от материалов термоэлектродов.

В качестве материалов для термопар используются металлы (платина, медь, родий, рений, иридий и др.) и сплавы (хромель, алюмель, копель, медноникеливые сплавы, платинородий, вольфрамрений и др.).

Характеристики: градуировочная характеристика; чувствительность; погрешность; показатель тепловой инерции (постоянная времени).

По назначению и условиям эксплуатации бывают: погружаемые и поверхностные; без арматуры и с арматурой; герметичные и негерметичные и др.

Емкостные ИП

Действие основано на преобразовании входной величины в изменение емкости конденсатора. Используются для измерения перемещений, силы, давления, температуры, концентраций, геометрических размеров - толщины, уровня и др.

ЕИП состоит из диэлектрика, электродов, между которыми располагается диэлектрический материал, выводов и различных конструктивных элементов. Диэлектрик может находиться в жидком, твердом и газообразном состоянии. Электроды могут выполняться в виде плоскопараллельных пластин, коаксиальных цилиндров и других конструкций и форм.

Емкость конденсатора с плоскими параллельными пластинами:

$$C = \frac{\varepsilon \varepsilon_0 A}{d}$$
,

где d - расстояние между электродами,

А - площади электродов;

ε - диэлектрической проницаемости диэлектрика между электродами;

 $\varepsilon_0 = 8,854*10^{-12} \ \Phi/\text{M} -$ электрическая постоянная.

Электромагнитные ИП

Электромагнитные ИП состоят из одной или нескольких катушек. Применяются индуктивные, трансформаторные, индукционные и магнитоупругие ИП.

Индуктивные ИП

Принцип действия **индуктивных ИП** основан изменении собственной индуктивности катушки. *Индуктивный ИП* состоит из катушки индуктивности, магнитопровода и подвижного ферромагнитного сердечника (якоря). Входная величина X изменяет взаимное расположение катушки и якоря, или отдельных частей магнитопровода. При этом изменяется индуктивность катушки и ее полное сопротивление.

На рис. представлены различные варианты конструктивного исполнения индуктивных ИП: с переменной длиной воздушного зазора; с переменной площадью воздушного зазора ; соленоидальный ; с распределенными параметрами.

1 – катушка, 2 – якорь, 3 - магнитопровод

Для преобразователей с переменной длиной воздушного зазора входная неэлектрическая величина X изменяет взаимное расположение катушки 1, намотанной на магнитопровод 3 и подвижного якоря 2. При этом изменяется длина воздушного зазора δ и магнитное сопротивление системы, что приводит к изменению индуктивности катушки 1.

Применяются для измерения линейных и угловых перемещений, размеров, толщины изделий, уровня и толщины различных покрытий, сил и крутящих моментов, ускорений и параметров вибраций.

В дифференциальных преобразователях при перемещении подвижного якоря под действием входной величины индуктивность одной катушки, например L_1 , возрастает, а второй L_2 уменьшается. При включении в измерительную цепь выходной сигнал пропорционален разности выходных сигналов каждого преобразователя.

Дифференциальные преобразователи позволяют существенно уменьшить погрешности, повысить чувствительность и увеличить линейный участок характеристики.

Трансформаторные ИП

Принцип действия трансформаторных ИП основан на изменении взаимной индуктивности между двумя обмотками под действием входного сигнала. Одна из обмоток является намагничивающей, а с другой снимается напряжение.

Конструкции магнитной цепи трансформаторных и индуктивных ИП одинаковы, отличаются они числом обмоток.

1 — магнитопровод, 2 — обмотка возбуждения, 3 — вторичная обмотка, 4 — подвижный якорь, 5 — дополнительная обмотка

Магнитоупругие ИП

Основаны на *магнитоупругом* эффекте - изменении магнитной проницаемости ферромагнитного материала под действием упругих деформаций.

При воздействии механической силы F в чувствительном элементе 1 возникают механические напряжения σ , которые обусловливают изменение магнитной проницаемости μ чувствительного элемента и магнитного сопротивление R_M преобразователя. При этом изменяется индуктивность L обмотки 2 или взаимная индуктивность M между обмотками 2 и 3.

Применяются для измерения крутящих моментов, больших сил до 10 МН и давлений 50 МПа.

Пьезоэлектрические ИП

Принцип действия **пьезоэлектрические ИП** основан на возникновении электрических зарядов на поверхности кристаллических диэлектриков, подверженных механическим деформациям (*прямой пьезоэффект*).

На рисунке схематично показано устройство преобразователя давления.

Преобразователь состоит из двух пьезоэлектрических пластин 1, соединенных параллельно. Заряд q, возникающий на гранях пластин 1, пропорционален приложенной силе давления F. Сигнал с пластин снимается при помощи электродов 2, выполненных из фольги. Пластины помещаются в корпус 3.

Выходной величиной преобразователя является напряжение. Функция преобразования преобразователя имеет вид:

$$U = \frac{dP\delta}{2\varepsilon\varepsilon_0}.$$

где d - пьезомодуль;

 δ - расстояние межу электродами;

Q - площадь электродов;

ε - относительная диэлектрическая проницаемость пьезоэлектрика;

Р - давление.

При измерении статических величин (сил, давлений и т. п.) на выходе пьезоэлектрического ИП появляется постоянное напряжение, которое из-за утечки заряда через конечное объемное сопротивление и по поверхности ИП быстро падает. Пьезоэлектрические ИП применяются для измерения динамических величин.

Пьезоэлектрические преобразователи применяются для измерения сил до 10^5 H, давлений до 100 H/мм 2 , ускорений до $2\cdot 10^4$ g в частотном диапазоне от единиц герц до 100 кГц.