MIEEC Computer Networks Lecture note 5

Delay models for queuing

Delay models

Types of delay

- Processing delay
- Queuing delay
- Transmission delay
- Propagation delay

- Connection establishment delay
- End-to-end delay

TO THINK

Where do you apply queuing delay model?

Statistical multiplexing

What do you need multiplexing for?

What is multiplexing?

Multiplexing

- N² connectivty
 - No need for multiplexing

Direct channel between all nodes

- Network
 - Shared channels

- Multiplex data into/out of channels

Time Division Multiplexing

Time slots

- Assign slots to separate channels
 - Route time slots through the network
- Transmission on a link
 - m slots
 - Link capacity C

 $-T_{trans}$ = Lm/C , L >> slot size

Frequency Division Multiplexing

Frequency slots

- Assign slots to separate channels
 - Route time slots through the network
- Transmission on a link
 - m slots
 - Link capacity C
 - Channel line capacity C/m
 - $-T_{trans}$ = Lm/C , L >> slot size

Statistical Multiplexing

No slots

- First-come first-served
- Don't drop:
 - Put in the queue if not served immediately

TO THINK

Why are there no queues in the TDM/FDM pictures?

What's the nature of the traffic?

Single or multiple queues?

Queue model for delay

- Where can it be used?
 - Any circumstance where packets have to wait on a queue before being sent/received/processed/...

Model:

- Packets arrive at random time
- Need to be served, i.e. sent through link
- Service time :: packet transmission time L/C
- Waiting time in queue :: queuing delay
- Average delay per packet (waiting+service)
- Average number of packets in the network

Queue models for computer networks

TO THINK

"Packets arrive at random time"

If deterministic arrivals then no point in statistical multiplexing

How random is random?

$$\sum_{x} p(x) \log_2 p(x)$$

Which randomness?

Poisson Distribution and Process

Poisson distribution

$$P[N=n] = p_n = \frac{m^n e^{-m}}{n!}, n \in \mathbb{N}_0$$

 $E_P[N] = Var_P[N] = m$

Poisson process

$$-\lambda T = m$$
 (e.g. λ arrivals/s)

$$-P[n \ arrivals \ in \ T] = p_n(T) = \frac{(\lambda T)^n e^{-\lambda T}}{n!}$$

$$-E_P[N] = Var_P[N] = \lambda T$$

Poisson Distribution and Process

The other side of Poisson: Packet inter-arrival time

Packet arrival

•
$$F_A(t) = P[A \le t] =$$

= $1 - P[A > t] =$
= $1 - p_0(t) = 1 - e^{-\lambda t}$

•
$$E_P[A] = \frac{1}{\lambda}$$
; $Var_P[A] = \frac{1}{\lambda^2}$

Poisson Process Properties

Merging property

- If $A_1, A_2, ..., A_k$ are independent Poisson processes with rates $\lambda_1, \lambda_2, ..., \lambda_k$
- Then $A = \sum_{i=1}^{k} A_i$ is still Poisson
- With rate $\lambda = \sum_{i=1}^k \lambda_i$
- Splitting property

- Incoming Poisson packets
- Split randomly with p and (1-p) to output
- Both outputs are still random processes
- With rates $p\lambda$ and $(1-p)\lambda$

TO THINK

How many processes are there in a queue?

Queue model

Model for:

- Customers waiting in queue
- Packets in network

Used to determine:

- N, average number of clients (packets) in the system (network, node)
- T, average delay experienced by client (packet)

Queue model

- Queue characterized by:
 - λ , arrival rate of customers (placed in the queue)
 - μ , service rate (taken out of the queue and sent)
 - $-\rho = \lambda/\mu$, traffic intensity, occupation of the server
- Kendall notation A/S/s/K
 - A: statistical process for the arrivals
 - S: statistical process for the service
 - s: number of servers
 - K: system buffer capacity / queue size

Warning

- Queue analysis is always:
 - On the long run
 - In steady state
 - In equilibrium
 - Not instantaneous
- λ
- μ
- p

TO THINK

How's the waiting time (**delay**) in the queue related to the number of clients in the queue?

Little's Theorem

- $N = \lambda T$
 - N: average number of clients in the system
 - T: average time client spends in the system
 - λ : arrival rate of clients in the system
- Queue (w) and service (s) time / number of customers

$$-T = T_w + T_s$$

$$-N = N_w + N_s$$

•
$$N_w = \lambda T_w$$

Little's Theorem

Can be applied to single queue

Or to a complex system

TO THINK

$$N_w = \lambda T_w$$

The mean time a customer has to wait depends only on:

- the number of customers in the queue
- the arrival rate

What about service time?

M/M/1 Queue

- M/M/1
 - A/S/s/K
 - Poisson arrival, Exponential service time
 - 1 server, infinite queue length
- Goals
 - What's the average queue size?
 - What's the average waiting time?
- Underlying model
 - Markov chain

M/M/1 Markov chain

- Markov chain
 - state sequence and transition probability
- State k
 - k clients in the queue
- p(i,j)
 - transition probability from state i to j
- In the limit, when $\delta \rightarrow 0$:
 - $p(i, i + 1) = \delta \lambda$: new customer in the queue
 - $p(i, i 1) = \delta \mu$: customer served from queue
 - $p(i,i) = 1 \delta\lambda \delta\mu$: nothing happens
 - $p(0,0) = 1 \delta\lambda$: nothing happens at state 0
 - p(i,j) = 0, other (i,j): only allow +1/-1 change in k

- Transition probabilities known
 - p(i,i+1), etc.
- What's the probability queue in state j?
 - P(j)
- Equilibrium condition
 - Global balance equations for the Markov Chain

$$-P(j)\sum_{\substack{i=0\\j\neq i}}^{+\infty}p(j,i) = \sum_{\substack{i=0\\j\neq i}}^{+\infty}P(i)\,p(j,i)$$

In the case of M/M/1 this leads to:

$$-P(0)\lambda\delta = P(1)\mu\delta \Rightarrow P(1) = \rho P(0)$$

$$-P(2) = \rho P(1) = \rho^2 P(0)$$

$$-P(n) = \rho^n P(0);$$

$$-\sum P_i = 1 \Rightarrow \sum_{i=0}^{+\infty} \rho^i P(0) = 1 \Rightarrow P(0) = 1 - \rho$$

$$-P(n) = \rho^n (1 - \rho)$$

- Goals
 - What's the average queue size?
 - What's the average waiting time?

•
$$N = \sum_{n=0}^{\infty} nP(n) = \sum_{n=0}^{\infty} n\rho^n (1-\rho) = \rho/(1-\rho)$$

•
$$N = \frac{\rho}{1-\rho} = \frac{\frac{\lambda}{\mu}}{1-\frac{\lambda}{\mu}} = \lambda/(\mu-\lambda)$$

Is N really the average queue size?

- Goals
 - What's the average queue size?
 - What's the average waiting time?
- Get T from N using Little's formula

•
$$N = \frac{\lambda}{\mu - \lambda} = \lambda T \Rightarrow T = 1/(\mu - \lambda)$$

Average waiting time

$$-T_{w} = T - T_{s} = \frac{1}{\mu - \lambda} - \frac{1}{\mu} = \frac{\rho}{\mu(1 - \rho)}$$

- Goals
 - What's the average queue size?
 - What's the average waiting time?
- Average number of clients waiting in queue

$$-N_{w} = \lambda T_{w} = \lambda (T - T_{s}) = \lambda \left(\frac{1}{\mu - \lambda} - \frac{1}{\mu}\right) = N - \rho$$

M/M/1

$N = f(\rho)$

Figure 3.6 The average number in the system versus the utilization factor in the M/M/1 system. As $\rho \to 1$, $N \to \infty$.

M/M/1

$$N = f(\rho)$$

• M/M/1 with $\rho = 0.9 \Rightarrow N = 9$

• Why should customers have to wait if server is busy only 90% of the time (ρ) ?

• What would happen for D/D/1, $\rho = 0.9$? (D::deterministic)

M/M/1 for computer networks: the more the merrier

Example

- 100 packets/s transmitted through link
- Poisson process arrival
- Packet lengths exponentially distributed
 - $E[L] = 10^4 \text{ bit / packet}$
- Link capacity C=10 Mbit/s
- Then
 - $\lambda = 100 \ packets/s$; $\mu = \frac{C}{E[L]} = \frac{10^7}{10^4} = 10^3 \ packets/s$
 - $\rho = \frac{\lambda}{\mu} = 0.1$; $N = \frac{\rho}{1-\rho} = 1/9$; $T = \frac{N}{\lambda} = 1/900s$
- Now assume increased packets and link capacity

$$-\lambda' = 10\lambda, \ C' = 10C \Rightarrow \mu' = \frac{10C}{E[L]} = 10\mu$$

- Then $\rho' = \rho$, N' = N but $T' = \frac{N'}{\lambda'} = T/10$
- The average delay decreases => statistical multiplexing

Other queue models

M/M/1/B Queue size

- This is an M/M/1 queue with limited capacity B (queue size)
 - Packets can be lost
 - Packet lost probability, queue full :: P(B)
- Similar equilibrium analysis to M/M/1

$$-P(n) = \rho^n P(0); P(0) = \frac{1-\rho}{1-\rho^{B+1}} \Rightarrow P(B) = \frac{(1-\rho)\rho^B}{1-\rho^{B+1}}$$

Particular cases

$$-\rho = 1 \Rightarrow P(B) = \frac{1}{B+1}$$
$$-\rho \gg 1 \Rightarrow P(B) \sim \frac{\rho - 1}{B+1} = 0$$

$$-\rho \gg 1 \Rightarrow P(B) \sim \frac{\rho - 1}{\rho} = (\lambda - \mu)/\mu$$

M/G/1 Generic service

- Poisson arrivals
- Service time has arbitrary distribution
 - With given E[X] and E[X²]
 - Assume IID (independent, identically distributed)
 - $E[service time] = E[X] = 1/\mu$
 - Single server queue

M/G/1

P-K Formula

P-K :: Pollaczek-Khinchin

$$T_w = \frac{\lambda E[X^2]}{2(1-\rho)}$$

$$-\rho = \frac{\lambda}{\mu} = \lambda E[X]$$
 is the line utilization

• From Little's Theorem

$$-N_{w} = \lambda T_{w}$$
; $T = T_{w} + E[X] = T_{w} + 1/\mu$

$$-N = \lambda T = \lambda \left(T_w + \frac{1}{\mu} \right) = N_w + \rho$$

TO THINK

Assume queue 1 is M/M/1.

Is the arrival at queue 2 Poisson?

Networks of transmission lines

- Case 1
 - Arrival to Q1 is Poisson λ
 - Assume constant packet length
 - Q1 is M/D/1
 - Arrival rate is **not** Poisson
 - If $\lambda_2 < \mu_2 \Rightarrow$ no waiting at Q2

Networks of transmission lines

- Case 2
 - Q1 is M/M/1
 - Arrival at Q2 strongly related to packet length
 - longer packets require longer service
 - shorter packets catch up longer packets
 - inter-arrival time distribution changes
 - Cannot be modeled as M/M/1 (not independent!)

Kleinrock Independence Approximation

Queuing destroys inter-arrival time (ITA) independence

• Kleinrock:

- Merge several packet streams into same line
- Streams are independent =>restore ITA independence
- M/M/1 can be used to model each link

Good approximation for:

- Poisson streams at entry points
- Packets length ~ exponential distribution
- Densely connected networks
- Moderate to heavy traffic

Kleinrock Independence Approximation

- Paths and links
- Definitions
 - x_p : arrival rate along path p
 - λ_{ij} : arrival rate to link (i,j)
 - μ_{ij} : service rate in link (i,j)
- What's independent? Link queues, M/M/1

$$- \lambda_{ij} = \sum_{all\ p\ in\ link\ (i,j)} x_p \; ; \; \rho_{ij} = \lambda_{ij}/\mu_{ij} \; ; \; N_{ij} = \frac{\rho_{ij}}{1-\rho_{ij}}$$

$$- N = \sum_{i,j} N_{ij}$$

-
$$\lambda = \sum_{all\ paths\ p} x_p = total\ external\ arrival\ rate$$
, $T = N/\lambda$

Jackson networks

Arrivals at j

$$- \lambda_j = r_j + \sum_{i=1}^K \lambda_i P_{ij}$$

- Ingress rate r_i
- Routing P_{ij}
 - Independent routing
 - Packet leaves i to go to j with probability P_{ij}
 - Loops are possible
 - Packet egress probability at j $P=1-\sum_{i=1}^K P_{j1}$

Node j

Faculdade de Engenharia da Universidade do Porto

Jackson networks

- System state is defined by $n = (n_1, n_2, ..., n_k)$
 - n_j is the number of clients in Q_j
- Jackson's theorem

$$-P(n) = \prod_{j=1}^{K} P_j(n_j) = \prod_{j=1}^{K} \rho_j^{n_j} (1 - \rho_j) \text{ with } \rho_j = \frac{\lambda_j}{\mu_j}$$

- State of Q_j is independent of state of other queues
- Similar to M/M/1 queues and Kleinroch's independence
- By Little's theorem:

$$-N_{j} = \frac{\rho_{j}}{1-\rho_{j}}$$
; $N = \sum_{j=1}^{K} N_{j}$; $\lambda = \sum_{j=1}^{K} r_{j}$; $T = N/\lambda$

Jackson Networks - example

$$\lambda = \sum_{i=1}^{6} r_i = 9 \text{ s}^{-1}$$

$$N = \sum_{i=1}^{6} N_i = 5.08$$

Queue i	$\mathbf{r_i} \ \left(s^{-1} \right)$	$\lambda_i \ \left(s^{-1}\right)$	$\mu_i \left(s^{-1} \right)$	$\rho_i = \lambda_i/\mu_i$	$\mathbf{N_i} = \rho_i/(1-\rho_i)$
1	5	5	20	0.25	0.33
2	4	4	10	0.40	0.67
3	-	3	9	0.33	0.50
4	-	2	10	0.20	0.25
5	-	7	10	0.70	2.33
6	-	9	18	0.50	1

$$T = \frac{N}{\lambda} = \frac{5.08}{9} = 0.56 \,\mathrm{s}$$

HOMEWORK

Review slides

- Read:
 - Bertsekas 3.1, 3.2, 3.3, 3.5, 3.6, 3.8
- Do your Moodle homework