- (1) Let $x, y \in \mathbb{R}$. The negation of the statement "If x and y are rational, then xy is rational" is "If x and y are rational, then xy is irrational".
- (2) If a sequence $\{a_n\}_{n=1}^{\infty}$ converges to 5, then for all natural numbers $n, a_n > 4$.
- (3) There is a set S of irrational numbers such that $\sup(S) = 2$.
- (4) The sequence $\left\{\frac{3n^2-4n+7}{6n^2+1}\right\}_{n=1}^{\infty}$ converges to 1/2.
- (5) The supremum of the set $\{1/n \mid n \in \mathbb{N}\}$ is 1.
- (6) If a sequence $\{a_n\}_{n=1}^{\infty}$ converges to L, then there is some $N \in \mathbb{R}$ such that for all natural numbers n > N, $a_n = L$.
- (7) Every increasing sequence is convergent.
- (8) If a sequence is not bounded below, then it diverges to $-\infty$.
- (9) If $\{a_n\}_{n=1}^{\infty}$ converges, then $\left\{\frac{a_n}{n}+2\right\}_{n=1}^{\infty}$ converges to 2.
- (10) There is a set S of real numbers such that $\sup(S)$ exists, but $\sup(S) \notin S$.
- (11) If a < b are real numbers, there is an integer $n \in \mathbb{Z}$ such that a < n < b.
- (12) Every set of real numbers that is bounded above has a supremum.
- (13) For every real number L there is a sequence $\{a_n\}_{n=1}^{\infty}$ such that $a_n \neq L$ for all $n \in \mathbb{N}$ and converges to L.
- (14) One can prove that $2^n \ge 1 + n$ for all natural numbers n by showing that $2^1 \ge 1 + 1$ then assuming $2^k \ge 1 + k$ and deducing $2^{k+1} \ge 2 + k$.
- (15) The negation of " $\{a_n\}_{n=1}^{\infty}$ is a monotone sequence" is "there exists $n \in \mathbb{N}$ such that $a_n > a_{n+1}$ and $a_n < a_{n+1}$ ".
- (16) If $\{a_n\}_{n=1}^{\infty}$ diverges to $+\infty$ and $\{b_n\}_{n=1}^{\infty}$ diverges to $-\infty$, then $\{a_n + b_n\}_{n=1}^{\infty}$ converges to 0.
- (17) If $\{a_n^2\}_{n=1}^{\infty}$ converges to 1, then $\{a_n\}_{n=1}^{\infty}$ converges.

T	(18)	If $\{a_n\}_{n=1}^{\infty}$ and $\{b_n\}_{n=1}^{\infty}$ are convergent sequences, then $\{a_n+b_n\}_{n=1}^{\infty}$ is a convergent sequence.
F	(19)	Every set of real numbers satisfies the property that "for all $x \in S$, there exists a real number y such that $y^2 < x$ ".
*	(20)	Every nonempty set of integers that is bounded below has a smallest element (i.e., a minimum element).
T	(21)	If $S \subseteq \mathbb{R}$ is bounded above, then there is a natural number b such that b is an upper bound for S .
F	(22)	The supremum of the set $\{-1/n \mid n \in \mathbb{N}\}$ is -1 .
F	(23)	Every convergent sequence is either increasing or decreasing.
F	(24)	A sequence of positive numbers can converge to a negative number.
T	(25)	If $\{a_n\}_{n=1}^{\infty}$ diverges to $+\infty$ and $\{b_n\}_{n=1}^{\infty}$ converges, then $\{a_n+b_n\}_{n=1}^{\infty}$ diverges to $+\infty$.
T	(26)	Let $x, y \in \mathbb{R}$. The contrapositive of the statement "If x and y are rational, then xy is rational" is "If xy is irrational, then x is irrational or y is irrational".
T	(27)	Every set of real numbers satisfies the property that "for all $x \in S$, there exists a real number y such that $x < y^2$ ".
F	(28)	The negation of the statement "for all $x \in S$, there exists a real number y such that $x < y^2$ " is "for all $x \in S$, there exists a real number y such that $x \ge y^2$ ".
F	(29)	To prove the formula $1 + \frac{1}{2} + \dots + \frac{1}{2^n} = 2 - \frac{1}{2^n}$ for all natural numbers n , it suffices to show that $1 + \frac{1}{2} + \dots + \frac{1}{2^k} = 2 - \frac{1}{2^k}$ implies $1 + \frac{1}{2} + \dots + \frac{1}{2^{k+1}} = 2 - \frac{1}{2^{k+1}}$.
	(30)	A sequence of positive numbers can converge to zero.
F	(31)	If $\{a_n\}_{n=1}^{\infty}$ diverges and $\{b_n\}_{n=1}^{\infty}$ converges, then $\{a_nb_n\}_{n=1}^{\infty}$ diverges.
F	(32)	Every nonempty set of real numbers has a smallest element (i.e., a minimum element).
T	(33)	A sequence of rational numbers can converge to an irrational number.
F	(34)	A sequence of integers can converge to an irrational number.