HOUSE SALES

Analysis about house prices in northwestern country

SUMMARY

In this analysis, we used a set of data about house prices in Northwestern country to analyze what factors drives the house prices in that area which will be used by real estate agency to advice potential sellers.

OUTLINE

- & Business Problem
- **Data**
- **Methods**
- **Results**
- **Conclusions**

BUSINESS PROBLEM

To provide analysis on **what factors drives the house prices in Northwestern country** to Local Real estate Agency for them to advice potential sellers.

DATA

The analysis is based on a large data set of approximately **21500** housing sales. The data includes many different types of information about each houses. They were cataegorized in to two different types of data:

- 1. Continuous Data-Sqft Living, Sqft Lot, Price etc
- 2. Categorical Data –Bedrooms, Bathrooms, Grade, Condition, View etc.

METHODS

1.Data preparation and cleaning

- Understanding the available Data (Scatter plot)
- Dropping few Features as they are not highly related to house prices- (date, lat, long, zipcode, view)

2. Regression modelling

- A baseline model and two Iteration models after to find the best line of fit to predict the house prices in future
- Model Assumptions to Verify the model

2. Model Validation

Validate the model to see how well the model is generalizing to future cases

BASELINE MODEL

Dep. Variable:	price	R-squared:	0.661
Model:	OLS	Adj. R-squared:	0.660
Method:	Least Squares	F-statistic:	1439.
Date:	Sun, 09 Jul 2023	Prob (F-statistic):	0.00

	coef	std err	t	P> t	[0.025	0.975]	
Intercept	5.69e+06	3.67e+05	15.486	0.000	4.97e+06	6.41e+06	
bedrooms	-5281.1550	3722.058	-1.419	0.156	-1.26e+04	2015.140	
bathrooms	-1.342e+04	6208.230	-2.162	0.031	-2.56e+04	-1250.215	
sqft_living	-3.604e+06	2.35e+05	-15.370	0.000	-4.06e+06	-3.14e+06	
sqft_lot	-7.568e+05	4.34e+04	-17.448	0.000	-8.42e+05	-6.72e+05	
floors	-9.743e+04	1.01e+04	-9.636	0.000	-1.17e+05	-7.76e+04	
condition	8.424e+04	4557.942	18.482	0.000	7.53e+04	9.32e+04	
grade	1.381e+05	4524.620	30.531	0.000	1.29e+05	1.47e+05	
sqft_basement	1.041e+06	5.95e+04	17.478	0.000	9.24e+05	1.16e+06	
waterfront	8.686e+05	2.84e+04	30.538	0.000	8.13e+05	9.24e+05	
sqft_above	508.2250	12.398	40.992	0.000	483.921	532.529	

R-square is 0.66 which is good but Q-Q plot of the Residual is a curved line suggesting residuals have a non-normal distribution

MODEL ASSUMPTIONS

- Homoscedasticity Plot shows the dependent variable is unequal across the range of values of the independent variable. (Cone-like shape)
- Normality plots of the Model Residual shows that residual have non normal Distribution
- This suggests we will need to do log Transformation and remove outliers in the next Iteration

- Outliers removed
- Identifying Categorical Data using Scatter plots.(bedrooms, bathroom, waterfront, condition, grade)
- Created Dummies for Categorical data
- Derive new variables from dummies by adding them (Bedrooms2-3, Bedroom>5, Bath<2, Bath2-5, Grade>8)
- Checking Multicollinearity and dropping one of them

- Log Transformation on Continuous Variables
- The Variables were skewed as shown here
- After log Transformation, the skewness of distribution improved

	0.451	R-squared:	price	Dep. Variable:
	0.451	Adj. R-squared:	OLS	Model:
•	702.3	F-statistic:	Least Squares	Method:
	0.00	Prob (F-statistic):	Sun 09 Jul 2023	Date:

	coef	std err	t	P> t	[0.025	0.975]
Intercept	-4.374e+06	1.21e+05	-36.299	0.000	-4.61e+06	-4.14e+06
sqft_living	9.017e+06	2.16e+05	41.692	0.000	8.59e+06	9.44e+06
sqft_lot	-1.168e+06	6.73e+04	-17.350	0.000	-1.3e+06	-1.04e+06
sqft_basement	-9.884e+05	6.97e+04	-14.176	0.000	-1.13e+06	-8.52e+05
condition_4	3.747e+04	5568.255	6.729	0.000	2.66e+04	4.84e+04
condition_5	1.15e+05	8116.578	14.174	0.000	9.91e+04	1.31e+05
Bed4_6	-1.537e+04	5640.171	-2.724	0.006	-2.64e+04	-4309.061
bath2_5	-3.003e+04	5900.270	-5.089	0.000	-4.16e+04	-1.85e+04
grade8_11	1.196e+05	6140.500	19.475	0.000	1.08e+05	1.32e+05

Adjusted R-square is 0.451 which is less compared to baseline model but Q-Q plot of the Residual is better leaning towards the fit suggesting residuals have a better normal distribution suggesting the fit of the model is better.

- Apply Feature Scaling and Min-Max Scaling on the continuous Variable
- Very minor difference in Skewness but still better Distribution after Scaling
- Drop Variable(Sq.ft
 Basement) as it contains

 Nan Values and not very relevant

Before Scaling

After Scaling

#	Column	Non-Null Count	Dtype
0	sqft_living	6842 non-null	float64
1	sqft_lot	6842 non-null	float64
2	price	6842 non-null	float64
3	Bed4_6	6842 non-null	float64
4	bath2_5	6842 non-null	float64
5	grade8_11	6842 non-null	float64
6	condition4 5	6842 non-null	float64
dtyp	es: float64(7)		
memo	ry usage: 374.	3 KB	

Dep. Variable:	price	R-squared:	0.430
Model:	OLS	Adj. R-squared:	0.429
Method:	Least Squares	F-statistic:	858.2
Date:	Sun, 09 Jul 2023	Prob (F-statistic):	0.00

Adjusted R-square is 0.429 which is less compared to previous models but Q-Q plot of the Residual is the almost the same as Iteration 2

The coefficients are used from this model for predicting the house prices

RESULTS

Based on Iteration 3 Model Summary, following predictions are made:

- There is positive relation ship between
 Price and Sqft.living, Condition and Grade
- For each unit increase in Sq.ft living, there will 0.56 increase in price
- For each unit increase in condition, there will 0.08 increase in price
- For each unit increase in Grade, there will 0.25 increase in price
- There is negative relationship between Price and Sq.ft lot, bedrooms >4, and Bath>2

	coef	std err	t	P> t	[0.025	0.975]
Intercept	1.249e-16	0.009	1.37e-14	1.000	-0.018	0.018
sqft_living	0.5651	0.014	41.407	0.000	0.538	0.592
sqft_lot	-0.2014	0.010	-19.275	0.000	-0.222	-0.181
condition4_5	0.0881	0.009	9.404	0.000	0.070	0.106
Bed4_6	-0.0354	0.011	-3.345	0.001	-0.056	-0.015
bath2_5	-0.0399	0.011	-3.615	0.000	-0.062	-0.018
grade8_11	0.2539	0.011	22.595	0.000	0.232	0.276

MODEL VALIDATION

The model validation was done using Train/Split method where 70% of sample used for training and 30% for testing.

The Mean square error of the residuals of both the samples are below:

Train Mean Squared Error: 0.5732431710926651 Test Mean Squared Error: 0.5617337437752656

There does not seem to be a big difference between the train and test MSE! Thus we can say the model is generalizing well to future cases and is the best line of Fit.

THANK YOU!

EMAIL: e.gajanani9@gmail.com

GITHUB: @ Gajas9

LINKEDIN: LINKEDIN.COM/IN/GAJA-SANCHAYAN/

