データ構造とアルゴリズム

2019年4月 - 7月

教員名:松井くにお

研究室:67・106(やつかほ)内線:75-2206

E-mail: kmatsui@neptune.kanazawa-it.ac.jp

この授業について

■ 教室と時間

- ▶ 2EP2クラス:水曜1限@23.323
- ▶ 2EP3クラス:水曜2限@23.323

■ オフィスアワー

- ▶ 火曜5限、場所は 21.405室
- できるだけ事前にメールでアポをとって下さい。
- ▶ これ以外の時間帯:必ずメールでアポをとって下さい。

■ 教科書

▶ アルゴリズムとデータ構造 第2版[森北出版]

学習計画

データ構造とアルゴリズム(松井クラス)講義日程と内容(予定)				
2EP2、2EP3 @23.323				第 1 版 4月10日
日	付	曜日	講義回数	学習内容
4月	10日	(水)	第1回	授業のガイダンス,アルゴリズムの基礎,時間計算量
	17日	(水)	第2回	基本データ構造(配列とリスト、スタックとキュー)
	24日	(水)	第3回	アルゴリズムにおける基本概念(木、再帰)
5月	8日	(水)	第4回	データの探索
	15日	(水)	第5回	ソートアルゴリズム 1 (選択ソート, 挿入ソート)
	22日	(水)	第6回	ソートアルゴリズム 2 (クイックソート,マージソート)
	29日	(水)		休講
	3 1 日	(金) 4限	第7回	ソートアルゴリズムのまとめ 2クラス合同小テスト (教室は23・221)
6月	5日	(水)	第8回	グラフアルゴリズム 1 (グラフとそのデータ構造)
	12日	(水)	第9回	グラフアルゴリズム2(重み付きグラフ、最短経路探索)
	19日	(水)2EP2穴水	第10回	総合演習/アルゴリズム設計手法(2EP3)
	26日	(水) 2EP3穴水	第11回	アルゴリズム設計手法(2EP2)/総合演習
7月	3日	(水)	第12回	総復習
	10日	(水)	第13回	達成度確認試験の過去問
	19日	(金) 4限	第14回	2クラス合同達成度確認試験(教室は23・221) アルゴリズムの限界
	24日	(水)		休講
	3 1 日	(水)	第15回	試験の解答、総復習、自己点検

前回のおさらい

■ 基本データ構造

- ▶ 「配列とリスト」
- ▶ 「スタックとキュー」
- ▶ それぞれ2つを対比しながら理解する

■ キーワード

- > LIFO, push, pop
- > FIFO, enqueue, dequeue

今回の内容

- ■木
 - ➤ 木の構造
 - > 木の使用例
- 完全2分木
 - ▶ 2分探索木
 - > 探索の方法
- 再帰
 - > 再帰木

木

■ データの構造(「木」と言っても逆さま)

木の使用例

■ 住所の場合

- ▶ 階層構造や包含関係を持つデータに使用
- ▶ 根(root)からの深さ(いくつ辺(edge)をたどるか)に意味がある
- ▶ 階層が同じものは水平に並べる

完全2分木

■ 完全2分木の定義

- ▶ すべての葉のレベルが同じ
- ▶ すべての節点に2個の子を持つ
- ▶ 節点の数=木の高さをhとすると、2^h-1 = O(2^h)
- ▶ 木の高さ=節点の数をnとすると、log₂(n+1) = O(log n)

高さ5の完全2分木

2分探索木

- 2分探索木とは(完全2分木でなくてもよい)
 - ▶ 各節点の左子には、親より小さいデータ
 - 各節点の右子には、親より大きいデータ

2分探索木の探索

■ 探索

- ▶ 木の中に存在するデータに探しているもの(探索キー)と同じ データがあるかどうかを調べる問題
- ▶ 探索キー:31→成功
- ➤ 探索キー: 24→不成功

どちらも5回比較=O(木の高さ)=O(最悪の比較回数)

再帰

■ 再帰とは

- ▶ 関数の中で関数自身を呼ぶ アルゴリズム
- 状態が次々と変わっていく場合に用いる
- 教科書(p.29)の問題
 - ➤ ある細胞は,試験管中で1分経過すると分裂し,数が2倍になるが,分裂直後に全細胞のうち1つは死滅してしまう。最初に試験管に10個の細胞を入れたとき,細胞を入れてからn分後の試験管中の細胞の数はいくつか。

再帰木の例

- $c(n) = 2 \times c(n-1) -1$
- 時間計算量 *O*(n)

第3週出席課題

【出席課題】 学籍番号:

クラス・番号:

氏名:

- 1. この木に関して、以下のことを図示しながら答えよ.
 - (1)この木の高さは?
 - (2)節点2の深さ(教科書では「レベル」と呼ばれている)は?
 - 以下の問題は、図示とともに、節点についている番号で答えよ.
 - (3)この木の根はどれか?
 - (4)節点5の親は?
 - (5)節点1の子は?

2. 以下の文章の①~④について、それぞれ正しい記号を下から選べ. 正しい記号が複数存在する場合はすべて列挙せよ.

木とよばれるデータ構造は、(①) とくに、完全2分木とよばれる木は、節点数がnの場合は、(②)である.

- ①:a. データ間の順序や依存関係を表すことができる
 - b. 各節点のレベルはその親のレベルよりも小さい
 - c. 根とよばれる特別な節点が存在する
 - d. 葉は必ず子をもたない
- ②:a. 高さが O(log n)
 - b. 葉の数が*O*(log n)
 - c. n は2 のべき乗の数
 - d. すべての葉は同じレベル