Énoncés : V. Gritsenko Corrections : J.-F. Barraud

Devoir à la maison et sujet de partiel

Exercice 1

Soit \sqrt{d} non rationel. Dans l'anneau

$$\mathbb{Z}[\sqrt{d}] = \{n + m\sqrt{d} \mid n, m \in \mathbb{Z}\}\$$

on definit la "conjugaison" \bar{z} :

si
$$z = n + m\sqrt{d}$$
, alors $\bar{z} = n - m\sqrt{d}$.

On peut aussi définir la norme $N_d: \mathbb{Z}[\sqrt{d}] \to \mathbb{Z}$ par $N_d(z) = z\overline{z} = (n + m\sqrt{d})(n - m\sqrt{d})$.

0. Montrer que les aplications \bar{z} et N(z) sont multiplicatives :

$$\overline{z_1 \cdot z_2} = \overline{z_1} \cdot \overline{z_2}, \qquad N_d(z_1 \cdot z_2) = N_d(z_1) \cdot N_d(z_2).$$

Correction ▼ [002309]

Exercice 2

- 1. Montrer que $z \in \mathbb{Z}[\sqrt{d}]$ est inversible ssi $N_d(z) = \pm 1$. Déterminer les éléments inversibles de $\mathbb{Z}[\sqrt{-5}]$.
- 2. Montrer que si $N_d(z) = \pm p$, où p est un premier, alors z est irréductible dans $\mathbb{Z}[\sqrt{d}]$. Donner quelques exemples d'éléments irreductibles dans $\mathbb{Z}[\sqrt{d}]$ pour d = -1, 2, -6, p, où p un premier.
- 3. On note $A = \mathbb{Z}[\sqrt{-5}]$. Montrer que 3 et $2 + \sqrt{-5}$ sont irréductibles dans A.
- 4. Trouver tous les irréductibles de *A* de norme 9.
- 5. Trouver tous les diviseurs de 9 et de $3(2+\sqrt{-5})$ dans l'anneau A à association près.
- 6. Trouver un $pgcd(3,2+\sqrt{-5})$, et montrer que 3 et $2+\sqrt{-5}$ n'ont pas de ppcm dans l'anneau A.
- 7. Montrer que l'idéal $I = (3, 2 + \sqrt{-5}) \subset A$ n'est pas principal. Donc l'anneau A n'est pas principal. Est-il factoriel ?
- 8. Montrer que 9 et $3(2+\sqrt{-5})$ n'ont pas de pgcd dans A. Possèdent-ils un ppcm?

Correction ▼ [002310]

Exercice 3

Soit $\mathbb{Z}_{36} = \mathbb{Z}/36\mathbb{Z}$ 1'anneau des entiers modulo 36.

- 1. Décrire tous les éléments inversibles, tous les diviseurs de zéro et tous les éléments nilpotents de l'anneau \mathbb{Z}_{36} . (*Un élément a d'un anneau A est dit nilpotent si il existe n tel que a*ⁿ = 0.)
- 2. Trouver tous les idéaux de l'anneau \mathbb{Z}_{36} .
- 3. Soit A un anneau arbitraire. Montrer que

$$(a \in A^{\times} \text{ et } b \in A^{\times}) \iff (a \cdot b) \in A^{\times}.$$

- 4. Donner un exemple d'un polynôme inversible de degré 1 sur \mathbb{Z}_{36} .
- 5. Décrire tous les éléments inversibles de l'anneau $\mathbb{Z}_{36}[x]$.

Correction ▼ [002311]

Exercice 4

Montrer que les polynômes suivantes sont irréductibles dans $\mathbb{Z}[x]$:

1. $P = x^{2004} + 4x^{2002} + 2000x^4 + 2002$;

2.
$$Q = x^6 + 6x^5 + 12x^4 + 12x^3 + 3x^2 + 6x + 25$$
.

Correction ▼ [002312]

Exercice 5

Soit p un nombre premier impair. Montrer que la congruence

 $x^2 \equiv -1 \mod p$ a une solution si et seulement si $p \equiv 1 \mod 4$.

Correction ▼ [002313]

Exercice 6

Soient $f = x^6 + x^5 + x^4 + x^3 + 1 \in \mathbb{Z}_2[x]$, $g = x^3 + x^2 + 1 \in \mathbb{Z}_2[x]$ deux polynômes sur le corps \mathbb{Z}_2 .

- 1. En utilisant l'algorithme d'Euclide trouver le p.g.c.d. de f et g et sa représentation linéaire.
- 2. Les polynômes f et g sont-ils irréductibles?
- 3. Soit (g) l'idéal principal engendré par g. Combien d'éléments contient l'anneau quotient $A = \mathbb{Z}_2[x]/(g)$?
- 4. Soit $\pi: \mathbb{Z}_2[x] \to A$ la projection canonique. On pose $\pi(x) = \bar{x} \in A$. Trouver l'inverse de l'élément $\pi(f)$ dans l'anneau quotient A.
- 5. L'anneau quotient $B = \mathbb{Z}_2[x]/(f)$ est-il un corps ? Justifier la réponse, i.e. donner une démonstration si B est un corps ou trouver un élément non-inversible dans B dans le cas contraire.

Correction ▼ [002314]

Soit $z = n + m\sqrt{d}$, $z' = n' + m'\sqrt{d} \in \mathbb{Z}[\sqrt{d}]$. Alors

$$\overline{zz'} = \overline{(n+m\sqrt{d})(n'+m'\sqrt{d})}$$

$$= \overline{(nn'+mm'd) + (nm'+n'm)\sqrt{d}}$$

$$= (nn'+mm'd) - (nm'+n'm)\sqrt{d}$$

$$= (n-m\sqrt{d})(n'-m'\sqrt{d})$$

$$= \overline{z}\overline{z}'$$

Donc $\forall z, z' \in \mathbb{Z}[\sqrt{d}], \overline{zz'} = \overline{z}\overline{z}'.$ On a alors $\forall z, z' \in \mathbb{Z}[\sqrt{d}], \ N(zz') = zz'\overline{zz'} = z\overline{z}z'\overline{z}' = N(z)N(z').$

Correction de l'exercice 2

- 1. Si $z \in \mathbb{Z}[\sqrt{d}]$ est inversible : Alors $zz^{-1} = 1$, donc $N(z)N(z^{-1}) = 1$. Comme $N(z) \in \mathbb{Z}$ et $N(z^{-1}) \in \mathbb{Z}$, on a donc $N(z) \in \{1, -1\}$. - Si $N(z = \pm 1)$: Alors $z\bar{z} = \pm 1$, donc $z(\pm \bar{z}) = 1$. Comme $\pm \bar{z} \in \mathbb{Z}[\sqrt{d}]$, z est inversible.
- 2. Soient $z_1, z_2 \in \mathbb{Z}[\sqrt{d}]$ tels que $z = z_1 z_2$. Alors $N(z_1)N(z_2) = \pm p$. Comme $\pm p$ est irréductible sur \mathbb{Z} , on en déduit que $N(z_1) = \pm 1$ ou $N(z_2) = \pm 1$. D'après la question précédente, on a $z_1 \in \mathbb{Z}[\sqrt{d}]^\times$ ou $z_2 \in \mathbb{Z}[\sqrt{d}]^\times$: on en déduit que z est irréductible dans $\mathbb{Z}[\sqrt{d}]$. (Attention : p est premier donc irréductible dans \mathbb{Z} , mais peut être réductible dans $\mathbb{Z}[\sqrt{d}]$! cf. 2 dans $\mathbb{Z}[i]$.)
- 3. On a $N(3) = N(2 + \sqrt{-5}) = 9$. On peut montrer en fait que tout élément z de norme 9 est irréductible : si $z = z_1 z_2$, alors $N(z_1)N(z_2) = 9$. Donc $\{N(z_1),N(z_2)\} = \{1,9\}$ ou $\{3,3\}$ (dans $\mathbb{Z}[\sqrt{-5}]$, la norme est toujours positive). Or pour tout $(n,m) \in \mathbb{Z}^2$, $n^2 + 5m^2 \neq 3$. En effet, si $|m| \geq 1$, $n^2 + 5m^2 \geq 5$ et pour m = 0, l'équation revient à $n^2 = 3$, qui n'a pas de solution entière. Ainsi, $N(z_1) = 1$ ou $N(z_2) = 1$, donc z_1 ou z_2 est inversible. z n'a donc pas de factorisation non triviale : z est irréductible dans $\mathbb{Z}[\sqrt{-5}]$. En particulier, z et z est irréductible dans z est
- 4. Tout élément de A de norme 9 est irréductible. Il suffit donc de trouver tous les éléments de norme 9. Soit $z = n + m\sqrt{-5} \in A$. Si $|m| \ge 2$ ou $|n| \ge 4$, alors N(z) > 9. On cherche donc les éléments de norme 9 parmi les éléments $z = n + m\sqrt{-5}$ avec $|n| \le 3$ et $|m| \le 1$. Pour m = 0, les seules solutions sont $n = \pm 3$, pour |m| = 1, les solutions sont obtenues pour |n| = 2. Ainsi :

$$\forall z \in A: \ N(z) = 9 \Leftrightarrow z \in \{\pm 3, \pm (2 \pm \sqrt{5})\}$$

5. On a N(9) = 81. Donc si $9 = z_1 z_2$ est une factorisation de 9 dans A, $N(z_1)N(z_2)$ est une factorisation de 81 (dans \mathbb{Z}), et plus précisément on a $\{N(z_1), N(z_2)\} \in \{\{1, 81\}, \{3, 27\}, \{9, 9\}\}$.

Si $N(z_1) = 1$ ou $N(z_2) = 1$, la factorisation est triviale.

A n'a pas d'élément de norme 3 donc la paire $\{3,27\}$ n'est pas réalisable.

Si enfin $N(z_1) = N(z_2) = 9$, alors $z_1, z_2 \in \{\pm 3, \pm (2 \pm \sqrt{5})\}$. Comme $9 = 3 \cdot 3 = (2 + \sqrt{-5})(2 - \sqrt{-5})$, tous ces éléments sont diviseurs de 9.

Les diviseurs de 9 sont donc $\{\pm 1, \pm 3, \pm (2 \pm \sqrt{-5}), \pm 9\}$.

Comme $N(3(2+\sqrt{-5}))=81$, le même raisonnement montre que si $d \in A$ divise $3(2+\sqrt{-5})$, alors $d \in \{\pm 1, \pm 3, \pm (2 \pm \sqrt{-5}), \pm 3(2 \pm \sqrt{-5})\}$.

Si $(2-\sqrt{-5})a=3(2+\sqrt{-5})$, alors N(a)=9, donc $a=\pm 3$ ou $\pm (2\pm \sqrt{-5})$. Comme A est intègre, si $a=\pm 3$, on obtient $2-\sqrt{-5}=\pm (2+\sqrt{-5})$, ce qui est faux. Si $a=\pm (2+\sqrt{-5})$, on obtient $2-\sqrt{-5}=\pm 3$, ce qui est faux. Si enfin $a=\pm (2-\sqrt{-5})$, on obtient $\pm (-1-4\sqrt{-5})=6+3\sqrt{-5})$, ce qui est encore faux. Donc $2-\sqrt{-5}$ ne divise pas $3(2+\sqrt{-5})$ dans A. Tous les autres éléments de norme 9 divisent $3(2+\sqrt{-5})$, donc, finalement :

Les diviseurs de $3(2+\sqrt{-5})$ sont $\{\pm 1, \pm 3, \pm (2+\sqrt{-5}), \pm 3(2+\sqrt{-5})\}$.

(Attention : Le seul fait que 3 et $2+\sqrt{-5}$ soient irréductibles ne permet pas de conclure ! Si l'anneau n'est pas factoriel, un produit d'irréductibles p_1p_2 peut avoir d'autres diviseurs (à association près) que p_1 et p_2 ... cf $3 \cdot 3 = (2+\sqrt{-5})(2-\sqrt{-5})$!)

- 6. On connaît la liste des diviseurs de 3 et de $2+\sqrt{-5}$. Les seuls qui soient communs sont 1 et -1. On en déduit que 1 est un pgcd de 3 et $2+\sqrt{-5}$.
 - 9 et $3(2+\sqrt{-5})$ sont des multiples communs de 3 et $2+\sqrt{-5}$, donc si ces deux éléments admettent un ppcm m, on a m|9 et $m|3(2+\sqrt{-5})$. On connaît la liste des diviseurs de 9 et $3(2+\sqrt{-5})$: à association près, on en déduit que $m \in \{1,3,2+\sqrt{-5}\}$. Comme 3|m, la seule possibilité est m=3, et comme $(2+\sqrt{-5})|m$, la seule possibilité est $m=2+\sqrt{-5}$. Il y a donc contradiction :
 - 3 et $2 + \sqrt{-5}$ n'ont pas de ppcm dans A.
- 7. Supposons *I* principal : soit $a \in A$ un générateur : I = (a). Alors a est un diviseur commun à 3 et $2 + \sqrt{-5}$, donc $a = \pm 1$. (En particulier, I = A). Soient $u = u_1 + u_2\sqrt{-5}$ et $v = v_1 + v_2\sqrt{-5}$ deux éléments de A. On a :

$$3u + (2 + \sqrt{-5})v = 1 \Leftrightarrow (3u_1 + 2v_1 - 5v_2) + (3u_2 + v_1 + 2v_2)\sqrt{-5} = 1$$

$$\Leftrightarrow \begin{cases} 3u_1 + 2v_1 - 5v_2 &= 1\\ 3u_2 + v_1 + 2v_2 &= 0 \end{cases}$$

$$\Rightarrow \begin{cases} -v_1 + v_2 &\equiv 1[3]\\ v_1 - v_2 &\equiv 0[3] \end{cases}$$

Donc $\forall u, v \in A$, $3u + (2 + \sqrt{-5})v \neq 1$. Donc $1 \notin I$, ce qui est une contradiction : I n'est pas principal. L'anneau A n'est pas principal puisqu'il a au moins un idéal non principal. Il n'est pas non plus factoriel, puisque $9 = 33 = (2 + \sqrt{-5})(2 - \sqrt{-5})$ admet deux factorisation en irréductibles non équivalentes à association près.

- 8. Les diviseurs communs de 9 et $3(2+\sqrt{-5})$ sont $\{\pm 1, \pm 3, \pm (2+\sqrt{-5})\}$. Si 9 et $3(2+\sqrt{-5})$ admettent un pgcd d, alors d est dans cette liste, et divisible par tous les membre de cette liste. Mais 3 n'est pas divisible par $2+\sqrt{-5}$ et $2+\sqrt{-5}$ ne divise pas 3:9 et $2+\sqrt{-5}$ n'ont pas de pgcd.
 - Supposons que 9 et $3(2+\sqrt{-5})$ admettent un ppcm M. Alors il existe des éléments $a,b \in A$ tels que $M=9a=3(2+\sqrt{-5})b$. Notons $m=3a=(2+\sqrt{-5})b$ (A est intègre). m est un multiple commun de A et A et A et A est un multiple commun de A et A et A est un multiple commun de A et A et A est un multiple commun de A est un multipl

Soit k un multiple commun de 3 et $2+\sqrt{-5}$. Alors 3k est un multiple commun de 9 et $3(2+\sqrt{-5})$, donc $M|3k: \exists c \in A, 3k = Mc = 3mc$. On en déduit que k = mc (A est intègre), donc m|k. On en déduit que m est un ppcm de 3 et $2+\sqrt{-5}$, ce qui est impossible.

Correction de l'exercice 3

- 1. \bar{n} est inversible ssi pgcd(n,36) = 1 (Bezout!), i.e. $\bar{n} \in \{\pm 1, \pm 5, \pm 7, \pm 11, \pm 13, \pm 17\}$. Les autres éléments sont tous des diviseurs de 0 puisque \bar{n} divise 0 ssi pgcd $(n,36) \neq 1$. Enfin, \bar{n} est nilpotent ssi 2|n et 3|n, donc ssi 6|n, soit $\bar{n} \in \{0, \pm 6, \pm 12, 18\}$.
- 2. Montrons que l'ensemble \mathscr{D} des idéaux de $\mathbb{Z}/36\mathbb{Z}$ est en bijection avec l'ensemble $\mathscr{D} = \{1, 2, 3, 4, 6, 9, 12, 18, 36\}$ des diviseurs (positifs) de 36.

Considérons l'application $\phi : \mathcal{D} \to \mathcal{I}$ définie par $\phi(d) = (\bar{d})$.

Injectivité : Si $\phi(d) = \phi(d')$, alors $\exists a, b \in \mathbb{Z}, d = d'a + 36b$. Comme $d \mid 36$, on en déduit que $d \mid d'$. De même, on a $d' \mid d$, et donc d = d'.

Surjectivité :Soit $I \in \mathcal{I}$. $\mathbb{Z}/36\mathbb{Z}$ est principal, donc $\exists a \in \mathbb{Z}, I = (\bar{a})$. Soit $d = \operatorname{pgcd}(a,36)$. Notons a = da': $\operatorname{pgcd}(a',36) = 1$. On en déduit que \bar{a}' est inversible dans $\mathbb{Z}/36\mathbb{Z}$. Alors $\bar{d} \sim \bar{a}$ dans $\mathbb{Z}/36\mathbb{Z}$. On en déduit que $I = (\bar{d}) = \phi(d)$.

Finalement, il y a donc 9 idéaux dans \mathbb{Z}_{36} :

- $(1) = \mathbb{Z}_{36},$
- $-(\overline{2}) = \{0, \pm 2, \pm 4, \pm 6, \pm 8, \pm 10, \pm 12, \pm 14, \pm 16, 18\},\$

$$- (\overline{3}) = \{0, \pm 3, \pm 6, \pm 9, \pm 12, \pm 15, 18\},\$$

$$- (\overline{4}) = \{0, \pm 4, \pm 8, \pm 12, \pm 16\},\$$

$$- (\overline{6}) = \{0, \pm 6, \pm 12\},\$$

$$- (\overline{9}) = \{0, \pm 9, 18\},\$$

$$- (\overline{12}) = \{0, \pm 12\},\$$

$$- (\overline{18}) = \{0, 18\},\$$

$$- (\overline{36}) = \{0\},\$$

- 3. Si $a, b \in A^{\times}$, alors $(ab)(b^{-1}a^{-1}) = 1$ donc $ab \in A^{\times}$. Si $ab \in A^{\times}$, soit $c = (ab)^{-1}$. Alors a(bc) = 1 donc $a \in A^{\times}$ et b(ac) = 1 donc $b \in A^{\times}$.
- 4. On a (6x+1)(-6x+1) = 1 dans $\mathbb{Z}_{36}[x]$, donc 18x+1 y est inversible.
- 5. Soit f un inversible de Z₃₆[x]. Choisissons P ∈ Z[x] tel que P̄ = f et Q ∈ Z[x] tel que Q̄ = f⁻¹. La projection Z → Z₂ se factorise par Z → Z₃₆ → Z₂. Ces projections sont bien définies, et sont des morphismes d'anneaux. Notons P_[2] la réduction de P modulo 2 : on a alors P_[2]Q_[2] = (PQ)_[2] = 1, et comme Z₂ est un corps, P_[2] = 1, Q_[2] = 1. On en déduit que 2 divise tous les coefficients de P, sauf celui de degré 0. De même, en considérant la réduction modulo 3, on obtient que 3 divise tous les coefficients de P, sauf celui de degré 0. Finalement, 6 divise tous les coefficients de P sauf celui de degré 0, qui est inversible modulo 36 : à association (dans Z₃₆) près, f est donc de la forme :

$$f = \sum_{i=1}^{d} 6a_i x^i + 1,$$
 $(a_i) \in \mathbb{Z}_{36}.$

Réciproquement, si f est de cette forme, c'est à dire $f = 1 + 6xf_1$, avec $f_1 \in \mathbb{Z}_{36}[x]$, alors :

$$(1+6xf_1)(1-6xf_1)=1$$

donc f est inversible.

Correction de l'exercice 4 A

- 1. Le critère d'Eisenstein avec 2 pour module donne directement le résultat.
- 2. La réduction modulo 2 de *Q* est *Q*_[2] = *x*⁶ + *x*² + 1, qui n'a pas de racine, et n'est pas divisible par *x*² + *x* + 1, le seul irréductible de degré 2 de ℤ₂[*x*]. Ainsi, *Q*_[2] est soit irréductible, auquel cas *Q* l'est aussi sur ℤ, soit le produit de deux irréductibles de degré 3.
 Si *Q*_[2] n'est pas irréductible, on considère la réduction modulo 3 de *Q* : *Q*_[3] = *x*⁶ + 1 = (*x*² + 1)³. *x*² + 1 est irréductible sur ℤ₃, car il est de degré 2 et n'a pas de racine. Soit *Q* = *RS* une factorisation non triviale de *Q* sur ℤ. On peut supposer *R* et *S* unitaires. Alors, en considérant la réduction modulo 2, on obtient que *R*_[2] et *S*_[2] sont deux irréductibles de degré 3 de ℤ₂[*x*]. En particulier deg(*R*) = deg(*R*_[2]) = 3 (car *R* est

de Q sur \mathbb{Z} . On peut supposer R et S unitaires. Alors, en considérant la réduction modulo S, on obtient que S et S sont deux irréductibles de degré S de $\mathbb{Z}_2[x]$. En particulier S degrée degrée S de $\mathbb{Z}_2[x]$ sont deux irréductibles de degrée S de $\mathbb{Z}_2[x]$. En particulier S degrée degrée S de S degrée S de S degrée S

Correction de l'exercice 5

Soit p un nombre premier impair. Notons p = 2m + 1. On a

$$(m!)^2 \equiv (-1)^{m+1}[p]$$

en effet, (modulo p):

$$(p-1)! = \prod_{k=1}^{2m} k = m! \prod_{k=1}^{m} (m+k)$$
$$= m! \prod_{k=1}^{m} (m+k-p) = m! \prod_{k=1}^{m} (-k)$$
$$= (-1)^{m} (m!)^{2}$$

Or, dans $\mathbb{Z}_p[x]$, $1^{-1} = 1$ et $(p-1)^{-1} = p-1$, donc $\forall k \in \{2,...,p-2\}$, $k^{-1} \in \{2,...,p-2\}$. Ainsi, $\prod_{k=2}^{p-1} k \equiv 1[p]$, et donc $(p-1)! \equiv -1[p]$. D'où le résultat.

- Si $p \equiv 1[4]$, $(-1)^{m+1} = -1$, et donc m! est une solution de $x^2 \equiv -1[p]$.
- Si cette équation a une solution, alors $x^{2m} \equiv 1[p]$, et comme $x^{p-1} \equiv 1[p]$, $1 \equiv (-1)^m[p]$. On en déduit que m est pair, donc $p \equiv 1[4]$.

Correction de l'exercice 6 A

1.

$$f = g(x^3 + x + 1) + (x^2 + x)$$

$$g = (x^2 + x)x + 1$$

donc $\operatorname{pgcd}(f,g) = 1$ et

$$1 = g - (x^2 + x)x = g - (f - g(x^3 + x + 1))x = (x^4 + x^2 + x + 1)g - xf$$

- 2. $f = (x^4 + x + 1)(x^2 + x + 1)$ donc f n'est pas irréductible. g est de degré 3 et n'a pas de racine, donc g est irréductible.
- 3. Les éléments de A sont en bijection avec les polynômes de $\mathbb{Z}_2[x]$ de degré < deg(g) = 3. Il y a 8 polynômes de degré au plus 2 sur \mathbb{Z}_2 , donc A a 8 éléments.
- 4. On utilise la représentation linéaire uf + vg = 1 de pgcd(f,g) obtenue plus haut. uf = 1 + vg, donc $\bar{u}\bar{f} = \bar{1} + \bar{0} = \bar{1}$. Donc $(\bar{f})^{-1} = \bar{u} = \bar{x}$.
- 5. Soit $f_1 = x^2 + x + 1$ et $f_2 = x^4 + x + 1$. Alors $f_1 f_2 = f$ donc $\bar{f}_1 \bar{f}_2 = \bar{0}$. Pourtant, f ne divise ni f_1 ni f_2 , donc $\bar{f}_1 \neq \bar{0}$ et $\bar{f}_2 \neq \bar{0}$: B n'est pas intègre, donc B n'est pas un corps.