Q9) Consider the construction of the Fat Cantor set,

$$\mathcal{C} = \bigcap_{n=1}^{\infty} \bigcup_{\sigma \in {}^{n}} I_{\sigma}$$

At level k, we take out 2^{k-1} intervals of length $\left(\frac{1}{4}\right)^k$. The sets we remove are countable and denote them \mathcal{O}_i . We take the union of all of them

$$\mathcal{O} = \bigcup \mathcal{O}_i$$
.

The measure of \mathcal{O} is

$$\sum_{k=1}^{\infty} 2^{k-1} \left(\frac{1}{4}\right)^k = \frac{1}{2} \sum_{k=1}^{\infty} \left(\frac{1}{2}\right)^k$$
$$= \frac{1}{2} \left\{ \frac{1}{1 - \frac{1}{2}} - 1 \right\}$$
$$= \frac{1}{2}$$

This implies that the measure of the Fat Cantor Set

$$m(\mathcal{C}) = \frac{1}{2}$$

But $\partial \mathcal{C} = \mathcal{C}$ and $\partial \mathcal{C} = \partial \mathcal{O}$. Therefore,

$$m\left(\mathcal{O}\right) = \frac{1}{2}.$$

Q10) Consider the Cantor set in the previous problem. At level k, we remove 2^{k-1} intervals

$$\{R_{k1},R_{k2},\ldots\}$$

Now define continuous piecewise functions F_k , where $F_k(x) = 0$ is x is at the center of the removed interval. $F_k(x) = 1$ if x is in not in any of the removed intervals. And $0 \le F_k(x) \le 1$ for all $x \in [0, 1]$.

Define
$$f_n = \prod_{k=1}^n F_1 \dots F_n$$
.

(a) I believe it is clear that $\forall x \in [0,1], 0 \le f_n(x) \le 1$. Since $0 \le F_{n+1} \le 1$,

$$f_{n+1} = F_{n+1} \cdot f_n(x) \le 1.$$

$$f_n(x) \ge f_{n+1}(x)$$

Since $f_n(x)$ is bounded and monotonic, $f_n(x)$ converges pointwise to f(x).

(b) Let $x \in \mathcal{C}$ so that f(x) = 1. We can construct a sequence $\{x_n\} \longrightarrow x$ s.t. $f(x_n) = 0$. Let $\varepsilon > 0$. Then there is a interval small enough contained in an ε neighborhood of x. i.e. $\exists N, \sigma \in \Sigma^N$ such that

$$x \in I_{\sigma} \subset B_{\varepsilon}(x)$$

Take x_i to be the center of a removed interval in the path taken. We then have

$$f(x_n) = 0 \ \forall \ n$$

Thus f(x) is not continuous on C.

- (c) The function is discontinuous on \mathcal{C} which has a non-zero measure of $\frac{1}{2}$. This implies that f is not Reimann integrable.
- Q19) (a) Show that if either A or B is open, then A+B is open. Suppose WLOG that A is open. Then since $A+\{b\}$ is open, we have that

$$A + B = \bigcup_{b \in B} A + \{b\}$$

is open.

(b) If A and B are closed, then A^c and B^c are open, so that

$$A^c + B^c = (A + B)^c$$

is in G_{σ} . Consequently $A + B \in F_{\sigma}$ and is therefore measureable.

(c) Let $A = \{-n : n \in \mathbb{N}\}$ and $B = \{n + \frac{1}{n} : n \in \mathbb{N}\}$. Then A, B both closed but

$$A + B = \{1/n : n \in \mathbb{N}\}$$

is not closed.