Godkjent SB Pring 2 tysikk Onskor Lilbakemelding) Boa! Oppgave 1 dD = 0 = W er inkelfarten På én periode T vil vinkelen O nøgaktig en runde, Siden vinkelfarten ev W, tiden er T, og én runde sværer til 271 får vi W.T=2TT L=) W = 2T/F R

b) Vinkelfarten er ...

u(t) 2TT T(t)

huor T(t) = 0,033 S+1,26.10 Sp. t [=]=ar

Siden vinkelakselvasjonen a er gitt ved a - w, får vi

 $\alpha(t) = \dot{w}(t)$

 $= -\frac{2\pi \cdot T(t)}{T(t)^2}$

t=0 starentil idag så

 $a = -2\pi \cdot 1,26.10^5.5$

 $\alpha = -0.073 \, \bar{s}^{1}(an)^{-1} \, R$

$$w(0) = \frac{2\pi}{T(0)} = \frac{190,4}{T(0)}$$

Siden a = -0,023 s'anj' og vi antar Kanstant aksebrasjon har vi:

=)
$$t_{slepp} = \frac{190.4}{0.073}$$
 ar

d) Siden t=0 or 2016 vil 2, 1054 tilsure 0 t=-(2016-1054) =-962 n

Periodan T var da $T(-962) = 0.033 + 1.26.10^{5}(-962)$ = 0.021 s

· Periodon var 0,021 s da

paque 2 Vi får vite at væl 8=30° står kulen stille, så det gir (Newtons første bv) (1) S'sin 0 = F 5.450 = mg Sattinn i (1): F = mg siso = mg tano = 0,100 kg · 9,81 m/62 · tan (30°) = 0.566 NFina vove 0,566 N.

Det er kun 5. sino som gir notto kraft så

$$= m \frac{v^2}{r} = m \frac{w^2}{v^2}$$

Setter inn (x) og får

$$(=) T = 2\pi \sqrt{\frac{1}{9}}$$

	Perioden må vore 1,32.5
M	oppgave 3
	a) Et forenklet like er
	v o mg
	Total Total
	Tripy 1
	For at my skil bli hengende i ro ma
	Summen av de vertikde kreftere på my (og my) Hi pull. Det gir
	$m_2g - m_1g\cos\theta = 0$
	$(=) cos\theta = \frac{m_2}{m_1}$
	$(=) \theta = cg^{-1}\left(\frac{m_2}{m_1}\right) \theta$
	b) $L = r \sin\theta$, $V_i = \sin\theta$ at $\sum_{i=1}^{n} f_i = m_i g \cdot \sin\theta$ g(N2) = gir da $g(N2) = m_1 = m_2 = m_2 = m_1 = m_2 = m$
	og (N2) gir da
	m, 95/100 = m2 = m2000
	$V = \frac{m_0}{m_2 \omega^2 \sin \phi} = \frac{g \Gamma^2 m_1}{4 \Pi^2 m_2 \sin \phi}, \text{ forch } \omega = 2 \pi \chi$
	mzW2sino 4112m 2sino
	The state of the s
	and the state of t

c)
$$m_1 = 4.0 \text{ kg}, m_2 = 2.00 \text{ kg}, T = 1.00 \text{ s}$$

Delte gir $\theta = 45^{\circ} \left(\frac{2}{4}\right) = 60^{\circ} \text{ R}$

$$L = 4.0 \text{ kg}, 9.81 \% \cdot (1.00 \text{ s})^{?}.$$

$$= 2.0 \text{ kg}, 4.11^{?}$$

$$= 2.50 \text{ R}$$

d. Hvis snorløgden er lengre vil m, løtes opp fordi

EF = mx² = mx²r og r øker mens mz og w er

konstænte. Det er denne kraften som via snora hodeler m,

opp. Møgs sør
Hvis snorløgden er kortere ut my falle. Dette

er altså et ustabilt likevekts punkt.

Dersom det er fritsjon vil gistemet miste enorgi til omgivelene så da vil det ikke finnes næ likeveltspænkt hvor magsan klossen roterer.

Hvis L. pker vil det hreves høyer morkraft for å holde massene på plass. nen mordræget er konst. lik m.g. Hvis L. minker blir morkrafter for stor og nassene vil da heller ikke være på plass – urtabilt, nen friksjon vil øke stabiliteter

my see my cose Den tangentielle bevegeter er påvirket av mg case som virter mot fartsretningen. Allså Eftergent = mg cost (=) matagent = mg coep (=) · d(Rw) = -gcoso (=) R iv = - 9000 Siden W=W(0)=W(0(4)) har vi W=dw.do = dw.w

(1) gir
$$\dot{w} = -g \cos\theta$$

Som sattinni(2.) gir:
$$-g \cos\theta = dw d\theta$$

$$d\theta dt$$
(=) $-g \cos\theta d\theta = w \cdot dw$

$$\dot{w} = \dot{w} \cot\theta = 0$$

$$\dot{w} = \dot{w} \cot\theta = 0$$

$$(=) - \frac{q \sin \theta}{R} = \frac{1}{2} \left[\sqrt{2} \right]_{w_0}^{w_0}$$

$$(=) -2g \sin\theta = W^2 - W_0^2$$

$$(=) W^2 = W_0^2 - 2g \sin\theta R$$

Seleta dete inn i Irkningen for W(0) med 0=I: W= W3 - 28 sind g = w2-29 $=) W_0 = \sqrt{\frac{39}{5}}$ No må minst vone 139/2 for at snora s var stram. Ingnører det jeg for shrev. Oppgaven er løst ja en god for mate : Oppgave 5