Experiment - 3

Title: Interfacing sensors to PIC.

Aim: To interface sensor (LM35) to PIC and display result on LCD.

Objectives:

- > To study concept of interfacing sensor (LM35).
- > To study MPLAB IDE software.
- > To study use of ADC to interface sensors.

Software Used: MPLAB IDE

Block Diagram:

Theory:

The LM35 series are precision integrated-circuit temperature devices with an output voltage linearly proportional to the Centigrade temperature. The LM35 device does not require any external calibration or trimming to provide typical accuracies of $\pm \frac{1}{4}$ °C at room temperature and $\pm \frac{3}{4}$ °C over a full -55°C to 150°C temperature range. Lower cost is assured by trimming and calibration at the wafer level. The low-output impedance, linear output, and precise inherent calibration of the LM35 device makes interfacing to readout or control circuitry especially easy. This sensor has sensitivity of $10 \text{mv}/^{\circ}\text{C}$, operates from 4 V to 30 V.

Pin Diagram of LM 35 Sensor

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0
ADCS1	ADCS0	CHS2	CHS1	CHS0	GO/DONE		ADON
it 7	5.		S	100	20 - 25		hit (

bit 7-6 ADCS1:ADCS0: A/D Conversion Clock Select bits

00 = Fosc/2

01 = Fosc/8

10 = Fosc/32

11 = FRc (clock derived from the internal A/D module RC oscillator)

bit 5-3 CHS2:CHS0: Analog Channel Select bits

000 = channel 0, (RA0/AN0)

001 = channel 1, (RA1/AN1)

010 = channel 2, (RA2/AN2)

011 = channel 3, (RA3/AN3)

100 = channel 4, (RA5/AN4)

101 = channel 5, (RE0/AN5)(1)

110 = channel 6, (RE1/AN6)(1)

111 = channel 7, (RE2/AN7)(1)

bit 2 GO/DONE: A/D Conversion Status bit

If ADON = 1:

1 = A/D conversion in progress (setting this bit starts the A/D conversion)

0 = A/D conversion not in progress (this bit is automatically cleared by hardware when the A/D conversion is complete)

bit 1 Unimplemented: Read as '0'

bit 0 ADON: A/D On bit

1 = A/D converter module is operating

0 = A/D converter module is shut-off and consumes no operating current

Figure: ADCON0 REGISTER

U-0	U-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
ADFM	_	-	-	PCFG3	PCFG2	PCFG1	PCFG0
bit 7	2.			•	12.		bit 0

bit 7 ADFM: A/D Result Format Select bit

1 = Right justified. 6 Most Significant bits of ADRESH are read as '0'.

o = Left justified. 6 Least Significant bits of ADRESL are read as '0'.

bit 6-4 Unimplemented: Read as '0'

bit 3-0 PCFG3:PCFG0: A/D Port Configuration Control bits:

PCFG3: PCFG0	AN7 ⁽¹⁾ RE2	AN6 ⁽¹⁾ RE1	AN5 ⁽¹⁾ RE0	AN4 RA5	AN3 RA3	AN2 RA2	AN1 RA1	AN0 RA0	VREF+	VREF-	CHAN/ Refs ⁽²⁾
0000	Α	Α	А	Α	Α	Α	Α	A	VDD	Vss	8/0
0001	Α	Α	Α	Α	VREF+	Α	Α	Α	RA3	Vss	7/1
0010	D	D	D	Α	Α	А	Α	Α	VDD	Vss	5/0
0011	D	D	D	Α	VREF+	Α	Α	A	RA3	Vss	4/1
0100	D	D	D	D	Α	D	Α	Α	VDD	Vss	3/0
0101	D	D	D	D	VREF+	D	Α	Α	RA3	Vss	2/1
011x	D	D	D	D	D	D	D	D	VDD	Vss	0/0
1000	Α	Α	Α	Α	VREF+	VREF-	Α	Α	RA3	RA2	6/2
1001	D	D	Α	Α	Α	Α	Α	Α	VDD	Vss	6/0
1010	D	D	Α	Α	VREF+	Α	Α	Α	RA3	Vss	5/1
1011	D	D	Α	Α	VREF+	VREF-	Α	Α	RA3	RA2	4/2
1100	D	D	D	Α	VREF+	VREF-	Α	Α	RA3	RA2	3/2
1101	D	D	D	D	VREF+	VREF-	Α	Α	RA3	RA2	2/2
1110	D	D	D	D	D	D	D	Α	VDD	Vss	1/0
1111	D	D	D	D	VREF+	VREF-	D	A	RA3	RA2	1/2

A = Analog input D = Digital I/O

Procedure:

- Make necessary connections to connect the LCD to PIC target board. Connect PORTD to the data pins of LCD and PORTB to the control pins. Also connect o/p of LM35 sensor to AN0 / RA0 pin.
- Switch on the power.
- Start MPLAB IDE software PC and write a program for sensor interfacing.
- Perform the configuration settings and build it.
- Connect the PICKit3 programmer to the Target board.
- Program the .hex file into the PIC.
- Reset the microcontroller and observe the output on LCD.

Program:

```
#define XTAL FREQ 16000000
#include <xc.h>
#define RS RB0
#define EN RB1
void ADC init(void);
unsigned int ADC READ(void);
void LCD init(void);
void lcd cmd(unsigned char value);
void lcd data(unsigned char value1);
void H2D(unsigned char hexdata);
unsigned char L,M,H;
void main(void)
unsigned int ADC result;
ADC_init();
LCD init();
while(1)
ADC result=ADC READ();
ADC result=ADC result*5;
                                  //resolution of ADC is 4.88mv
ADC result=ADC result/10;
                                   //LM35 sensitivity 10mV/C
H2D(ADC result);
lcd cmd(0x01);
lcd data('T');
```

```
lcd data('=');
lcd data(H \mid 0x30);
lcd data(M \mid 0x30);
lcd_data(L \mid 0x30);
 _delay_ms(500);
                               //500ms delay
void ADC init(void)
TRISAbits.TRISA0=1;
                        // AN0 set as analog i/p
TRISAbits.TRISA1=1;
                        // AN1 set as analog i/p
ADRESH=0;
ADRESL=0;
PIR1bits.ADIF=0;
                       //ADC flag clear
ADCON1=0X8E;
                      //MAKE AN0 as analog port
                      //Select Chanel 0, conversion clock = FOSC / 8
ADCON0=0x40;
}
unsigned int ADC READ()
ADCON0bits.ADON=1;
                              //ADC ON
delay ms(2);
                             //2ms delay
ADCON0bits.GO=1;
                             //start a/d conversion
delay us(1);
while(PIR1bits.ADIF==0);
delay us(1);
ADCON0bits.ADON=0;
                            //ADC Off
PIR1bits.ADIF=0;
return (((unsigned int)ADRESH)<<8)|(ADRESL);
}
void LCD init(void)
TRISD=0X00;
                                                               //make PORTD o/p
```

```
TRISB=0X00;
                                                               //make PORTD o/p
__delay_ms(100);
                                                               //delay
EN=1;
__delay_us(2);
EN=0;
\_delay_ms(3);
                                                               //2ms delay
lcd_cmd(0x38);
lcd cmd(0x0E);
lcd cmd(0x01);
__delay_ms(2);
                                                               //2ms delay
lcd cmd(0x06);
lcd_cmd(0x80);
}
void lcd_cmd(unsigned char value)
PORTD=value;
RS=0;
EN=1;
__delay_us(2);
EN=0;
__delay_ms(3);
                                                               //2ms delay
}
void lcd data(unsigned char value1)
PORTD=value1;
RS=1;
                                                               //Select data reg
EN=1;
__delay_us(2);
EN=0;
__delay_ms(3);
                                                               //2ms delay
}
void H2D(unsigned char hexdata)
```

```
unsigned char x;
x=hexdata/10;
L=hexdata%10;
M=x%10;
H=x/10;
}
```

Applications: (Write applications of Sensor interfacing here)

Result: Interfacing of sensor with PIC microcontroller is studied successfully and observed the result on LCD.

Teacher's Sign