CP451: ADVANCED OPERATING SYSTEMS CREDITS = 5 (L=3, T=0, P=2)

Objectives: To impart knowledge of operating system design issues and the latest trends in advanced operating systems

Teaching and Evaluation Scheme:

Teaching Scheme			Credits	Examination Marks				
L	Т	P	С	Theory Marks		Practical Marks		Total Marks
				ESE	CE	ESE	CE	TVI WITES
3	0	2	5	70	30	30	20	150

Course Contents:

Sr. No	Topics	Teaching Hours
1	<u>Introduction:</u>	
	Block diagram of Unix/Linux kernel, Kernel & its Data structures, Design Structures, Consistency of global data structures.	05
2	<u>File System Implementations :</u>	
	Buffer cache, File System related system calls and algorithms, Unix/Linux file system implementation, Issues related to file system performance, Vnode/Vfs architecture.	06
3	Process:	
	States & transitions, Context, Creation & termination, System boot & init, Unix/Linux scheduling algorithm, Clocks, System calls & algorithms.	06
4	Signals and Session Management :	
	Signal generation and handling, Unreliable signals, Reliable signals, Signals in SVR4, Signals implementation, Exceptions.	03
5	Memory management:	
	Swapping, Demand paging, Hybrid systems.	05

6 **I/O Subsystems**:

	Driver interfaces, Disk drivers, Terminal Drivers, Streams.	03
7	<u>Interprocess communication:</u>	
	Shared memory and message passing mechanisms.	03
8	Multi Processor Systems:	
	Design concepts of Multi-processor Operating systems, Scheduling algorithms and Case study.	05
9	<u>Distributed Operating Systems:</u>	
	System Architectures, Design issues, Distributed scheduling, Distributed file systems.	05

TOTAL

45

Reference books:

- 1. Maurice J. Back, The design of the Unix operating system, PHI
- 2. Uresh Vahalia ,UNIX Internals,Pearson Education
- 3. Stevens ,Advanced Programming in the UNIX Environment, Addison Wesley
- 4. Tannenbaum , Modern operating Systems, , PHI
- 5. Distributed Systems: Principles and Paradigms, Taunenbaum

Outcome:

After learning the course students should be able to

- 1. Understand different design structures of operating systems
- 2. Implement OS commands using system calls
- 3. Design own Scheduling algorithms, Memory management algorithms and File system management algorithms
- 4. Do advanced operating system programming
- 5. Develop kernel modules and insert into Kernel
- **6.**Differentiate scheduling algorithms used for uniprocessor operating systems and multiprocessor operating systems.