Name: Caleb McWhorter — Solutions

MATH 308 Fall 2022

HW 8: Due 10/13

"The difference between mathematicians and physicists is that after physicists prove a big result they think it is fantastic but after mathematicians prove a big result they think it is trivial."

-Lucien Szpiro

Problem 1. (10pt) Consider the relation f(x) given below.

- (a) Explain why f(x) is not a function.
- (b) Add an arrow to the diagram so that f(x) is a surjective function.
- (c) Identify the domain, codomain, and range for f(x).
- (d) Is f(x) an injective function? Explain why or why not.

Solution.

- (a) A function must be defined on its entire domain. Because the domain of f(x) is the set $\{1, 2, 3, 4, 5\}$, f(4) need be defined for f(x) to be a function.
- (b) For f(x) to be a surjective function, we first need assure that f(x) is a function, i.e. we need to define f(4). We can choose any one of $\{a,b,c,d\}$, i.e. $f(4) \in \{a,b,c,d\}$. For f(x) to be surjective, we need im $f = \{a,b,c,d\}$. As defined above, im $f = \{a,b,c,d\}$. But then defining f(4) to be in $\{a,b,c,d\} \setminus \text{im } f = \{c\}$, i.e. f(4) := c (given by the red arrow in the diagram above), f(x) is then a surjective function.
- (c) The domain of f(x) is $\{1, 2, 3, 4, 5\}$. The codomain of f(x) is $\{a, b, c, d\}$. The range of the original 'function' was $\{a, b, d\}$, while the range of the f(x) defined is $\{a, b, c, d\}$.
- (d) The function f(x) is not injective as f(1) = b = f(5) but $1 \neq 5$.

Problem 2. (10pt) Complete the proof of the proposition stated below by filling in the blanks. **Proposition.** Let $f: X \to Y$ be a function and $B \subseteq Y$. Then $X \setminus f^{-1}(B) \subseteq f^{-1}(Y \setminus B)$. *Proof.* We know that if $X \setminus f^{-1}(B) = \varnothing$, then $X \setminus f^{-1}(B) \subseteq f^{-1}(Y \setminus B)$. Assume that $X \setminus f^{-1}(B) \neq \varnothing$. To show that $X \setminus f^{-1}(B) \subseteq f^{-1}(Y \setminus B)$, we need to show that if $x \in X \setminus f^{-1}(B) = (x \in X \setminus f^{-1}(B) = x)$, then $x \in f^{-1}(Y \setminus B) = (x \in X \setminus f^{-1}(B) = x)$. Because $x \notin f^{-1}(B) = x$, we know that $f(x) \notin f^{-1}(B) = x$. It is clear that $f(x) \in Y$. But then $f(x) \in Y = x$ and $f(x) \notin f^{-1}(B) = x$. This shows that $f(x) \in f^{-1}(Y \setminus B) = x$.
This shows that f(x) is in the preimage of $f(x) \in f^{-1}(Y \setminus B) = x$.
But then if $f(x) \in f^{-1}(A) = x$, then $f(x) \in f^{-1}(A) = x$. Therefore, $f(x) \in f^{-1}(A) = x$.

Problem 3. (10pt) Let $f: \mathbb{R} \to \mathbb{R}$ be the function given by $x \mapsto x^2 + 3x - 7$.

- (a) Without referencing the graph of f, use the definition of decreasing to show that f(x) is not a decreasing function on \mathbb{R} by giving a counterexample.
- (b) Determine whether or not $3 \in \text{im } f$. If $3 \in \text{im } f$, find an element in the preimage of 3. If $3 \notin \text{im } f$, explain why.
- (c) Is $f^{-1}(x)$ a function? Explain why or why not by referencing the graph of f(x). Give an additional explanation of why or why not using your response in (b).

Solution.

- (a) A function is decreasing if $f(x_2) \le f(x_1)$ whenever $x_1 < x_2$. Observe that 0 < 1 but f(1) = -3 < -7 = f(0). Therefore, f(x) is not decreasing. [Note: We can write $f(x) = x^2 + 3x 7 = (x + \frac{3}{2})^2 \frac{37}{4}$. Therefore, f(x) is decreasing on $(-\infty, -\frac{3}{2})$ and increasing on $(\frac{3}{2}, \infty)$.]
- (b) If $3 \in \text{im } f$, then there exists $x_0 \in \mathbb{R}$ such that $f(x_0) = 3$, i.e. $x \in f^{-1}(3)$. But then we would have...

$$f(x_0) = 3$$

$$x_0^2 + 3x_0 - 7 = 3$$

$$x_0^2 + 3x_0 - 10 = 0$$

$$(x_0 + 5)(x_0 - 2) = 0$$

Then $x_0 = -5$ or $x_0 = 2$. One can easily verify that f(-5) = f(2) = 3. Therefore, $3 \in \text{im } f$.

(c) If $f^{-1}(x)$ is a function, then given $y \in \text{im } f$, there is a unique x such that f(x) = y. From (b), observe that given $3 \in \text{im } f$, f(-5) = f(2) = 3. Therefore, $f^{-1}(3) \in \{-5, 2\}$ so that, as a function, $f^{-1}(3)$ is not well defined. Therefore, $f^{-1}(x)$ is not a function.