MODULAR LATTICE FOR C_o -OPERATORS.

YUN-SU KIM.

ABSTRACT. We study modularity of the lattice $\mathtt{Lat}(T)$ of closed invariant subspaces for a C_0 -operator T and find a condition such that $\mathtt{Lat}(T)$ is a modular. Furthermore, we provide a quasiaffinity preserving modularity.

Introduction

A partially ordered set is said to be a *lattice* if any two elements \mathbf{M} and \mathbf{N} of it have a least upper bound or supremum denoted by $\mathbf{M} \vee \mathbf{N}$ and a greatest lower bound or infimum denoted by $\mathbf{M} \cap \mathbf{N}$. For a Hilbert space H, L(H) denotes the set of all bounded linear operators from H into H. For an operator T in L(H), the set $\mathsf{Lat}(T)$ of all closed invariant subspaces for T is a lattice. For \mathbf{L} , \mathbf{M} , and \mathbf{N} in $\mathsf{Lat}(T)$ such that $\mathbf{N} \subset \mathbf{L}$, if following identity is satisfied:

$$L \cap (M \vee N) = (L \cap M) \vee N,$$

then Lat(T) is called *modular*. We study Lat(T) where T is a C_0 -operator which were first studied in detail by B.Sz.-Nagy and C. Foias [4]. In this paper **D** denotes the open unit disk in the complex plane.

This paper is organized as follows. Section 1 contains preliminaries about operators of class C_0 and the Jordan model of C_0 -operators.

For operators $T_1 \in L(H_1)$ and $T_2 \in L(H_2)$, if $X \in \{A \in L(H) : AT_1 = T_2A\}$, then we define a function $X_* : \text{Lat}(T_1) \to \text{Lat}(T_2)$ as following:

$$X_*(M) = (XM)^-.$$

In Theorem 2.14, we provide a quasiaffinity Y such that Y_* preserves modularity. Furthermore, in section 2, we provide a definition and prove some fundamental results of *property* (P) which was introduced by H. Bercovici [2].

In Theorem 3.5, we prove that if $T \in L(H)$ is an operator of class C_0 with property (P), then Lat(T) is a modular lattice.

The author would like to express her gratitude to her thesis advisor, Professor Hari Bercovici.

Key words and phrases. Functional Calculus; Jordan Operator; Modular Lattice; Property (P); Quasiaffinity.

1. C_0 -Operators Relative to D

1.1. A Functional Calculus. It is well-known that for every linear operator A on a finite dimensional vector space V over the field F, there is a minimal polynomial for A which is the (unique) monic generator of the ideal of polynomials over F which annihilate A. If the dimension of F is not finite, then generally there is no such a polynomial. However, to provide a function similar to a minimal polynomial, B. Sz.-Nagy and C. Foias focused on a contraction $T \in L(H)$ which is called to be completely nonunitary, i.e. there is no invariant subspace M for T such that the restriction T|M of T to the space M is a unitary operator.

Let H be a subspace of a Hilbert space K and P_H be the orthogonal projection from K onto H. We recall that if $A \in L(K)$, and $T \in L(H)$, then A is said to be a dilation of T provided that for n = 1, 2, ...,

$$(1.1) T^n = P_H A^n | H.$$

If A is an isometry (unitary operator) then A will be called an *isometric* (unitary) dilation of T. An isometric (unitary) dilation A of T is said to be minimal if no restriction of A to an invariant subspace is an isometric (unitary) dilation of T. B. Sz.-Nagy proved the following interesting result:

Proposition 1.1. [4] Every contraction has a unitary dilation.

Let $T \in L(H)$ be a completely nonunitary contraction with minimal unitary dilation $U \in L(K)$. For every polynomial $p(z) = \sum_{j=0}^{n} a_j z^j$ we have

$$p(T) = P_H p(U)|H,$$

and so this formula suggests that the functional calculus $p \to p(T)$ might be extended to more general functions p. Since the mapping $p \to p(T)$ is a homomorphism from the algebra of polynomials to the algebra of operators, we will extend it to a mapping which is also a homomorphism from an algebra to the algebra of operators. By Spectral Theorem, since $U \in L(H)$ is a normal operator, there is a unique spectral measure E on the Borel subsets of the spectrum of U denoted as usual by $\sigma(U)$ such that

(1.3)
$$U = \int_{\sigma(U)} z dE(z).$$

Since the spectral measure E of U is absolutely continuous with respect to Lebesgue measure on $\partial \mathbf{D}$, for $g \in L^{\infty}(\sigma(U), E)$, g(U) can be defined as follows:

(1.4)
$$g(U) = \int_{\sigma(U)} g(z)dE(z).$$

It is clear that if g is a polynomial, then this definition agrees with the preceding one. Since the spectral measure of U is absolutely continuous with respect to Lebesgue measure on $\partial \mathbf{D}$, the expression g(U) makes sense for every $g \in L^{\infty} = L^{\infty}(\partial \mathbf{D})$. We generalize formula (1.2), and so for $g \in L^{\infty}$, define g(T) by

$$(1.5) g(T) = P_H g(U)|H.$$

While the mapping $g \to g(T)$ is obviously linear, it is not generally multiplicative, i.e. it is not a homomorphism. Evidently it is convenient to find a subalgebra in L^{∞} on which the functional calculus is multiplicative. Recall that H^{∞} is the Banach

space of all (complex-valued) bounded analytic functions on the open unit disk **D** with supremum norm [4]. It turns out that H^{∞} is the unique maximal algebra making the map a homomorphism between algebras. We know that H^{∞} can be regarded as a subalgebra of $L^{\infty}(\partial \mathbf{D})$ [1].

We note that the functional calculus with H^{∞} functions can be defined in terms of independent of the minimal unitary dilation. Indeed, if $u(z) = \sum_{n=0}^{\infty} a_n z^n$ is in H^{∞} , then

(1.6)
$$u(T) = \lim_{r \to 1} u(rT) = \lim_{r \to 1} \sum_{n=0}^{\infty} a_n r^n T^n,$$

where the limit exists in the strong operator topology.

B. Sz.-Nagy and C. Foias introduced this important functional calculus for completely nonunitary contractions.

Proposition 1.2. Let $T \in L(H)$ be a completely nonunitary contraction. Then there is a unique algebra representation Φ_T from H^{∞} into L(H) such that:

- (i) $\Phi_T(1) = I_H$, where $I_H \in L(H)$ is the identity operator;
- (ii) $\Phi_T(g) = T$, if g(z) = z for all $z \in \mathbf{D}$;
- (iii) Φ_T is continuous when H^{∞} and L(H) are given the weak*-topology.
- (iv) Φ_T is contractive, i.e. $\|\Phi_T(u)\| \leq \|u\|$ for all $u \in H^{\infty}$.

We simply denote by u(T) the operator $\Phi_T(u)$.

B.Sz.- Nagy and C. Foias [4] defined the *class* C_0 relative to the open unit disk **D** consisting of completely nonunitary contractions T on H such that the kernel of Φ_T is not trivial. If $T \in L(H)$ is an operator of class C_0 , then

$$\ker \Phi_T = \{ u \in H^\infty : u(T) = 0 \}$$

is a weak*-closed ideal of H^{∞} , and hence there is an inner function generating ker Φ_T . The minimal function m_T of an operator of class C_0 is the generator of ker Φ_T , and it seems as a substitute for the minimal polynomial. Also, m_T is uniquely determined up to a constant scalar factor of absolute value one [1]. The theory of class C_0 relative to the open unit disk has been developed by B.Sz.- Nagy, C. Foias ([4]) and H. Bercovici ([1]).

1.2. **Jordan Operator.** We know that every $n \times n$ matrix over an algebraically closed field F is similar to a unique Jordan canonical form. To extend that theory to the C_0 operator $T \in L(H)$, B.Sz.- Nagy and C. Foias [4] introduced a weaker notion of equivalence. They defined a *quasiaffine transform* of T which is bounded operator T' defined on a Hilbert space H' such that there exists an injective operator $X \in L(H, H')$ with dense range in H' satisfying T'X = XT. We write

$$T \prec T'$$

if T is a quasiaffine transform of T'. Instead of similarity, they introduced quasisimilarity of two operators, namely, T and T' are quasisimilar, denoted by

$$T \sim T'$$

if $T \prec T'$ and $T' \prec T$.

Given an inner function $\theta \in H^{\infty}$, the *Jordan block* $S(\theta)$ is the operator acting on $H(\theta) = H^2 \ominus \theta H^2$, which means the orthogonal complement of θH^2 in the Hardy space H^2 , as follows:

(1.7)
$$S(\theta) = P_{H(\theta)}S|H(\theta)$$

where $S \in L(H^2)$ is the unilateral shift operator defined by

$$(Sf)(z) = zf(z)$$

and $P_{H(\theta)} \in L(H^2)$ denotes the orthogonal projection of H^2 onto $H(\theta)$.

Proposition 1.3. [1] For every inner function θ in H^{∞} , the operator $S(\theta)$ is of class C_0 and its minimal function is θ .

Let θ and θ' be two inner functions in H^{∞} . We say that θ divides θ' (or $\theta|\theta'$) if θ' can be written as $\theta' = \theta \cdot \phi$ for some $\phi \in H^{\infty}$. It is clear that $\phi \in H^{\infty}$ is also inner. We will use the notation $\theta \equiv \theta'$ if $\theta|\theta'$ and $\theta'|\theta$.

Proposition 1.4. [1] Let $T_1 \in L(H)$ and $T_2 \in L(H)$ be two completely nonunitary contactions of class C_0 . If T_1 and T_2 are quasisimilar, then $m_{T_1} \equiv m_{T_2}$.

From Proposition 1.3 and Proposition 1.4, we can easily see that for every inner functions θ_1 and θ_2 in H^{∞} , if $S(\theta_1)$ and $S(\theta_2)$ are quasisimilar, then $\theta_1 \equiv \theta_2$. Conversely,

Proposition 1.5. [1] Let θ_1 and θ_2 be inner functions in H^{∞} . If $\theta_1 \equiv \theta_2$, then $S(\theta_1)$ and $S(\theta_2)$ are quasisimilar.

Let γ be a cardinal number and

$$\Theta = \{ \theta_{\alpha} \in H^{\infty} : \alpha < \gamma \}$$

be a family of inner functions. Then Θ is called a model function if $\theta_{\alpha}|\theta_{\beta}$ whenever $\operatorname{card}(\beta) \leq \operatorname{card}(\alpha) < \gamma$. The Jordan operator $S(\Theta)$ determined by the model function Θ is the C_0 operator defined as

$$S(\Theta) = \bigoplus_{\alpha < \gamma'} S(\theta_{\alpha})$$

where $\gamma' = \min\{\beta : \theta_{\beta} \equiv 1\}.$

We will call $S(\Theta)$ the Jordan model of the operator T if

$$S(\Theta) \sim T$$

and in the sequel $\bigoplus_{i<\gamma'} S(\theta_i)$ always means a *Jordan operator* determined by a model function.

By using Jordan blocks, C_0 -operators relative to the open unit disk **D** can be classified ([1] Theorem 5.1):

Theorem 1.6. Any C_0 -operator T relative to the open unit disk D acting on a Hilbert space is quasisimilar to a unique Jordan operator.

Theorem 1.7. If Θ and Θ' are two model functions and $S(\Theta) \prec S(\Theta')$, then $\Theta \equiv \Theta'$ and hence $S(\Theta) = S(\Theta')$.

From Theorem 1.6 and Theorem 1.7, we can conclude that " \prec " is an equivalence relation on the set of C_0 -operators.

2. Lattice of subspaces

2.1. **Modular Lattice.** Let H be a Hilbert space. If $F_i (i \in I)$ is a subset of H, then the closed linear span of $\bigcup_i F_i$ will be denoted by $\bigvee_i F_i$. The collection of all subspaces of a Hilbert space is a *lattice*. This means that the collection is partially ordered (by inclusion), and that any two elements \mathbf{M} and \mathbf{N} of it have a least

upper bound or supremum (namely the span $\mathbf{M} \vee \mathbf{N}$) and a greatest lower bound or infimum (namely the intersection $\mathbf{M} \cap \mathbf{N}$). A lattice is called *distributive* if

(2.1)
$$\mathbf{L} \cap (\mathbf{M} \vee \mathbf{N}) = (\mathbf{L} \cap \mathbf{M}) \vee (\mathbf{L} \cap \mathbf{N})$$

for any element L, M, and N in the lattice.

In the equation (2.1), if $\mathbf{N} \subset \mathbf{L}$, then $\mathbf{L} \cap \mathbf{N} = \mathbf{N}$, and so the identity becomes

(2.2)
$$\mathbf{L} \cap (\mathbf{M} \vee \mathbf{N}) = (\mathbf{L} \cap \mathbf{M}) \vee \mathbf{N}$$

If the identity (2.2) is satisfied whenever $\mathbf{N} \subset \mathbf{L}$, then the lattice is called *modular*.

For an arbitrary operator $T \in L(H)$, Lat(T) denotes the collection of all closed invariant subspaces for T. The following fact is well-known [3].

Proposition 2.1. The lattice of subspaces of a Hilbert space H is modular if and only if dim H is finite.

We will think about Lat(T) for a C_0 -operator T.

Definition 2.2. The cyclic multiplicity μ_T of an operator $T \in L(H)$ is the smallest cardinal of a subset $A \subset H$ with the property that $\bigvee_{n=0}^{\infty} T^n A = H$. The operator T is said to be multiplicity-free if $\mu_T = 1$.

Thus μ_T is the smallest number of cyclic subspaces for T that are needed to generate H, and T is multiplicity-free if and only if it has a cyclic vector.

2.2. **Property** (P). Let H be a Hilbert space and for an operator $T \in L(H)$, T^* denote the adjoint of T. It is well known that H is finite-dimensional if and only if every operator $X \in L(H)$, with the property $\ker(X) = \{0\}$, also satisfies $\ker(X^*) = \{0\}$. The following definition is a natural extension of finite dimensionality.

Definition 2.3. An operator $T \in L(H)$ is said to have property (P) if every operator $X \in \{T\}'$ with the property that $\ker(X) = \{0\}$ is a quasiaffinity, i.e., $\ker(X^*) = \ker(X) = \{0\}$.

From the fact that the commutant $\{0\}'$ of zero operator on H coincides with L(H), we can see that H is finite-dimensional if and only if the zero operator on H has property (P).

Let T_1 and T_2 be operators in L(H). Suppose that

$$X \in \{A \in L(H) : AT_1 = T_2A\}.$$

If M is in $Lat(T_1)$, then $(XM)^-$ is in $Lat(T_2)$. By using these facts, we define a function X_* from $Lat(T_1)$ to $Lat(T_2)$ as following:

$$(2.3) X_*(M) = (XM)^-.$$

The operator X is said to be a (T_1, T_2) -lattice-isomorphism if X_* is a bijection of $Lat(T_1)$ onto $Lat(T_2)$. We will use the name lattice-isomorphism instead of (T_1, T_2) -lattice-isomorphism if no confusion may arise.

If $X \in \{A \in L(H) : AT_1 = T_2A\}$, then $X^*T_2^* = T_1^*X^*$. Thus $(X^*)_* : \text{Lat}(T_2^*) \to \text{Lat}(T_1^*)$ is well-defined by

$$(X^*)_*(M') = (X^*M')^-.$$

Proposition 2.4. [1] (Theorem 7.1.9) Suppose that $T \in L(H)$ is an operator of class C_0 with Jordan model $\bigoplus_{\alpha} S(\theta_{\alpha})$. Then T has property (P) if and only if

$$\bigwedge_{i<\omega}\theta_j\equiv 1.$$

Thus, if T has property (P), then H is separable and T^* also has property (P).

Proposition 2.5. [1] An operator T of class C_0 fails to have property (P) if and only if T is quasisimilar to T|N, where N is a proper invariant subspace for T.

Proposition 2.6. [1](Lemma 7.1.20) Assume that $T_1 \in L(H_1)$ and $T_2 \in L(H_2)$ are two operators, and $X \in \{A \in L(H_1, H_2) : AT_1 = T_2A\}$. If the mapping X_* is onto Lat(T_2) if and only if $(X^*)_*$ is one-to-one on Lat(T_2^*).

Corollary 2.7. Assume that $T_1 \in L(H_1)$ and $T_2 \in L(H_2)$ are two operators, and $X \in \{A \in L(H_1, H_2) : AT_1 = T_2A\}$. The mapping X_* is one-to-one on $Lat(T_1)$ if and only if $(X^*)_*$ is onto $Lat(T_1^*)$.

Proof. Since $XT_1 = T_2X$, $T_1^*X^* = X^*T_2^*$. By Proposition 2.6, $(X^*)_*$ is onto $Lat(T_1^*)$ if and only if $(X^{**})_* = X_*$ is one-to-one on $Lat(T_1)$.

From Proposition 2.6 and Corollary 2.7, we obtain the following result.

Corollary 2.8. If $T_1 \in L(H_1)$ and $T_2 \in L(H_2)$ are two operators, and $X \in \{A \in L(H_1, H_2) : AT_1 = T_2A\}$, then X is a lattice-isomorphism if and only if X^* is a lattice-isomorphism.

Proposition 2.9. [1] (Proposition 7.1.21) Assume that $T_1 \in L(H_1)$ and $T_2 \in L(H_2)$ are two quasisimilar operators of class C_0 , and $X \in \{A \in L(H_1, H_2) : AT_1 = T_2A\}$ is an injection. If T_1 has property (P), then X is a lattice-isomorphism.

Recall that if T is an operator on a Hilbert space, then ker $T = (\operatorname{ran} T^*)^{\perp}$ and ker $T^* = (\operatorname{ran} T)^{\perp}$.

Corollary 2.10. Assume that $T_1 \in L(H_1)$ and $T_2 \in L(H_2)$ are two quasisimilar operators of class C_0 , and $X \in \{A \in L(H_1, H_2) : AT_1 = T_2A\}$ has dense range. If T_2 has property (P), then X is a lattice-isomorphism.

Proof. Since $XT_1 = T_2X$, $T_1^*X^* = X^*T_2^*$. Let $Y = X^*$ and so

$$(2.4) YT_2^* = T_1^*Y.$$

From the fact that $\ker Y = \ker(X^*) = (\operatorname{ran} X)^{\perp} = \{0\}$, we conclude that Y is injective. Since T_2 has property (P), so does T_2^* by Proposition 2.4. By Proposition 2.9 and equation (2.4), $Y = X^*$ ia a lattice-isomorphism. From Corollary 2.8, it is proven that X is a lattice-isomorphism.

Corollary 2.11. Suppose that $T_i \in L(H_i)(i = 1, 2)$ is a C_0 -operator and T_1 has property (P). If $X \in \{A \in L(H_1, H_2) : AT_1 = T_2A\}$ and X is an injection, then X is a lattice-isomorphism.

Proof. Define $Y: H_1 \to (XH_1)^-$ by

$$Yh = Xh$$
 for any $h \in H_1$.

Since X is an injection, so is Y. Clearly, Y has dense range. Note that $(XH_1)^-$ is invariant for T_2 . By definition of Y,

$$(2.5) YT_1 = (T_2|(XH_1)^-)Y.$$

It follows that $T_1 \prec (T_2|(XH_1)^-)$ and so $T_1 \sim (T_2|(XH_1)^-)$. By Proposition 2.9, it is proven.

Corollary 2.12. Suppose that $T_i \in L(H_i)(i = 1, 2)$ is a C_0 -operator and T_2 has property (P). If $X \in \{A \in L(H_1, H_2) : AT_1 = T_2A\}$ and X has a dense range, then X is a lattice-isomorphism.

Proof. By assumption, $X^*T_2^* = T_1^*X^*$. Since T_2 has property (P), by Proposition 2.4, so does T_2^* .

Because X has dense range, $X^*: H_2 \to H_1$ is an injection. By Corollary 2.11, X^* is a lattice isomorphism. From Corollary 2.8, X is also a lattice isomorphism. \square

2.3. Quasi-Affinity and Modular Lattice. For operators $T_1 \in L(H_1)$ and $T_2 \in L(H_2)$, if $Y \in \{B \in L(H_1, H_2) : BT_1 = T_2B\}$, then we define a function

$$Y_*: \mathtt{Lat}(T_1) o \mathtt{Lat}(T_2)$$

the same way as equation (2.3). For any $N \in \text{Lat}(T_2)$, if $M = Y^{-1}(N)$, then $YT_1(M) = T_2Y(M) \subset T_2N \subset N$ and so $T_1(M) \subset M$. It follows that

$$M=Y^{-1}(N)\in \mathrm{Lat}(T_1)$$

for any $N \in \text{Lat}(T_2)$. If Y is invertible, that is, T_1 and T_2 are similar, and $\text{Lat}(T_1)$ is modular, then clearly, $\text{Lat}(T_2)$ is also modular. In this section, we consider when T_1 and T_2 are quasi-similar instead of similar, and find an assumption in Theorem 2.14 such that $\text{Lat}(T_2)$ is modular, whenever $\text{Lat}(T_1)$ is modular.

Proposition 2.13. Let $T_1 \in L(H_1)$ and $T_2 \in L(H_2)$. Suppose that $Y \in \{B \in L(H_1, H_2) : BT_1 = T_2B\}$ and for any $N \in Lat(T_2)$, the condition $M = Y^{-1}(N)$ implies that $Y_*(M) = N$.

Then for any
$$M_i = Y^{-1}(N_i)$$
 with $N_i \in Lat(T_2)$ $(i = 1, 2)$,

$$Y_*(M_1 \cap M_2) = Y_*(M_1) \cap Y_*(M_2).$$

Proof. Assume that $N_i \in \text{Lat}(T_2)$ and $M_i = Y^{-1}(N_i)$ for i = 1, 2. Then by assumption, we obtain

$$(2.6) Y_*(M_i) = N_i.$$

Since $Y^{-1}(N_1 \cap N_2) = Y^{-1}(N_1) \cap Y^{-1}(N_2) = M_1 \cap M_2$, by assumption,

$$Y_*(M_1 \cap M_2) = N_1 \cap N_2$$

which proves that $Y_*(M_1 \cap M_2) = Y_*(M_1) \cap Y_*(M_2)$ by equation (2.6).

Theorem 2.14. Let $T_1 \in L(H_1)$ be a quasiaffine transform of $T_2 \in L(H_2)$ and $Y \in \{B \in L(H_1, H_2) : BT_1 = T_2B\}$ be a quasiaffinity.

If $Y_* : Lat(T_1) \to Lat(T_2)$ is onto and $Lat(T_1)$ is modular, then $Lat(T_2)$ is also modular.

Proof. Suppose that $Lat(T_2)$ is not modular. Then there are invariant subspaces $N_i(i=1,2,3)$ for T_2 such that

$$(2.7) N_3 \subset N_1,$$

and

$$(N_1 \cap N_2) \vee N_3 \neq N_1 \cap (N_2 \vee N_3).$$

Let

$$(2.8) M_i = Y^{-1}(N_i),$$

for i = 1, 2, 3. Since $YT_1 = T_2Y$, definition (2.8) of M_i implies that for i = 1, 2, 3,

$$YT_1(M_i) = T_2Y(M_i) \subset T_2N_i \subset N_i$$
.

It follows that $T_1M_i \subset Y^{-1}(N_i) = M_i$ for i = 1, 2, 3. Thus M_i is a closed invariant subspace for T_1 . Condition (2.7) implies that

$$M_3 \subset M_1$$
.

Since $Y(M_i) \subset N_i$, for i = 1, 2, 3,

$$(2.9) Y_*(M_i) = (Y(M_i))^- \subset N_i.$$

Since Y_* is onto, there is a function $\phi : \mathtt{Lat}(T_2) \to \mathtt{Lat}(T_1)$ such that $Y_* \circ \phi$ is the identity mapping on $\mathtt{Lat}(T_2)$. Hence for i = 1, 2, 3,

$$Y_*(\phi(N_i)) = Y(\phi(N_i))^- = N_i.$$

It follows that for i = 1, 2, 3,

$$\phi(N_i) \subset M_i.$$

Since $Y_* \circ \phi$ is the identity mapping on Lat (T_2) , (2.10) implies that for i = 1, 2, 3, 3

$$(2.11) N_i = Y_*(\phi(N_i)) \subset Y_*(M_i).$$

By (2.9) and (2.11), we get

$$(2.12) Y_*(M_i) = N_i,$$

for i = 1, 2, 3. Hence we can easily see that function Y satisfies the assumptions of Proposition 2.13.

Thus by Proposition 2.13 and equation (2.12),

$$(2.13) Y_*[M_1 \cap (M_2 \vee M_3)] = Y_*(M_1) \cap Y_*(M_2 \vee M_3) = N_1 \cap (N_2 \vee N_3).$$

Since $M_1 \cap M_2 = Y^{-1}(N_1) \cap Y^{-1}(N_2) = Y^{-1}(N_1 \cap N_2)$, by the same way as above, we obtain

$$(2.14) Y_*(M_1 \cap M_2) = N_1 \cap N_2.$$

By equations (2.12) and (2.14), we obtain

$$(2.15) Y_*[(M_1 \cap M_2) \vee M_3] = (N_1 \cap N_2) \vee N_3.$$

Since $(N_1 \cap N_2) \vee N_3 \neq N_1 \cap (N_2 \vee N_3)$, from equations (2.13) and (2.15), we can conclude that

$$(M_1 \cap M_2) \vee M_3 \neq M_1 \cap (M_2 \vee M_3).$$

Therefore $Lat(T_1)$ is not modular.

3. Modular Lattice for C_0 -Operators with Property (P)

We provide some operators, say T, of class C_0 such that Lat(T) is modular.

Proposition 3.1. [1] Let θ be a nonconstant inner function in H^{∞} . Then every invariant subspace M of $S(\theta)$ has the form

$$\phi H^2 \ominus \theta H^2$$

for some inner devisor ϕ of θ .

We can easily check that if $\mathbf{M}_1 = \theta_1 H^2 \ominus \theta H^2$ and $\mathbf{M}_2 = \theta_2 H^2 \ominus \theta H^2$ where θ_i (i = 1, 2) is an inner inner devisor of θ , then

(3.1)
$$\mathbf{M}_1 \cap \mathbf{M}_2 = (\theta_1 \vee \theta_2)H^2 \ominus \theta H^2$$

and

(3.2)
$$\mathbf{M}_1 \vee \mathbf{M}_2 = (\theta_1 \wedge \theta_2)H^2 \ominus \theta H^2$$

where $\theta_1 \wedge \theta_2$ and $\theta_1 \vee \theta_2$ denote the greatest common inner divisor and least common inner multiple of θ_1 and θ_2 , respectively. Note that if $\mathbf{M}_1 \subset \mathbf{M}_2$, then

Lemma 3.2. If θ is an inner function in H^{∞} , then $Lat(S(\theta))$ is distributive.

Proof. Let \mathbf{M}_1 , \mathbf{M}_2 , and \mathbf{M}_3 be invariant subspaces for $S(\theta)$. Then by Proposition 3.1, there are nonconstant inner functions θ_1 , θ_2 , and θ_3 in H^{∞} such that

$$\mathbf{M}_i = \theta_i H^2 \ominus \theta H^2 \text{ for } i = 1, 2, 3.$$

From equations (3.1) and (3.2), we obtain that

(3.4)
$$\mathbf{M}_1 \cap (\mathbf{M}_2 \vee \mathbf{M}_3) = (\theta_1 \vee (\theta_2 \wedge \theta_3))H^2 \ominus \theta H^2,$$

and

$$(3.5) (\mathbf{M}_1 \cap \mathbf{M}_2) \vee (\mathbf{M}_1 \cap \mathbf{M}_3) = ((\theta_1 \vee \theta_2) \wedge (\theta_1 \vee \theta_3) H^2 \ominus \theta H^2.$$

Since $\theta_1 \vee (\theta_2 \wedge \theta_3) = (\theta_1 \vee \theta_2) \wedge (\theta_1 \vee \theta_3)$, by equations (3.4) and (3.5), this lemma is proven.

In this section, we will consider a sufficient condition for Lat(T) of a C_0 -operator T to be modular.

Proposition 3.3. [1] (Proposition 2.4.3) Let $T \in L(H)$ be a completely nonunitary contraction, and M be an invariant subspace for T. If

$$(3.6) T = \begin{pmatrix} T_1 & X \\ 0 & T_2 \end{pmatrix}$$

is the triangularization of T with respect to the decomposition $H = M \oplus (H \ominus M)$, then T is of class C_0 if and only if T_1 and T_2 are operators of class C_0 .

Proposition 3.4. [1] (Corollary 7.1.17) Let $T \in L(H)$ is an operator of class C_0 , M be an invariant subspace for T, and

$$(3.7) T = \begin{pmatrix} T_1 & X \\ 0 & T_2 \end{pmatrix}$$

be the triangularization of T with respect to the decomposition $H = M \oplus (H \ominus M)$. Then T has property (P) if and only if T_1 and T_2 have property (P).

Let H and K be Hilbert spaces and $H \oplus K$ denote the algebraic direct sum. Recall that $H \oplus K$ is also a Hilbert space with an inner product

$$(\langle h_1, k_1 \rangle, \langle h_2, k_2 \rangle) = (h_1, h_2) + (k_1, k_2)$$

Theorem 3.5. Let $T \in L(H)$ be an operator of class C_0 with property (P). Then Lat(T) is a modular lattice.

Proof. Suppose that T has property (P) and let M_i (i = 1, 2, 3) be an invariant subspace for T such that $M_3 \subset M_1$. Then evidently,

$$(3.8) (M_1 \cap M_2) \vee M_3 \subset M_1 \cap (M_2 \vee M_3).$$

Let $T_i=T|M_i$ (i=1,2,3). Define a linear transformation $X:M_2\oplus M_3\to M_2\vee M_3$ by

$$X(a_2 \oplus a_3) = a_2 + a_3$$

for $a_2 \in M_2$ and $a_3 \in M_3$.

Then for $a_2 \oplus a_3 \in M_2 \oplus M_3$ with $||a_2 \oplus a_3|| \le 1$, $||X(a_2 \oplus a_3)|| = ||a_2 + a_3|| \le ||a_2|| + ||a_3|| \le 2$. It follows that $||X|| \le 2$ and so X is bounded.

Since $M_2 \vee M_3$ is generated by $\{a_2 + a_3 : a_2 \in M_2 \text{ and } a_3 \in M_3\}$, X has dense range. By definition of T_i (i = 1, 2, 3),

$$X(T_2 \oplus T_3)(a_2 \oplus a_3) = Ta_2 + Ta_3$$

and

$$(T|M_2 \vee M_3)X(a_2 \oplus a_3) = Ta_2 + Ta_3.$$

Thus

$$X(T_2 \oplus T_3) = (T|M_2 \vee M_3)X.$$

By Proposition 3.3, $T_2 \oplus T_3$ and $T|M_2 \vee M_3$ are of class C_0 and since T has property (P), by Proposition 3.4, we conclude that $T|M_2 \vee M_3$ also has Property (P). By Corollary 2.12, X is a lattice-isomorphism.

Thus $X_* : \text{Lat}(T_2 \oplus T_3) \to \text{Lat}(T|M_2 \vee M_3)$ is onto. Let

$$(3.9) M = \{a_2 \oplus a_3 \in M_2 \oplus M_3 : a_2 + a_3 \in M_1\}.$$

Since $M = X^{-1}(M_1)$, M is a closed subspace of $M_2 \oplus M_3$. Evidently, M is invariant for $T_2 \oplus T_3$. From the equation (3.9), we conclude that

$$(3.10) M = (M_1 \cap M_2) \oplus M_3.$$

Since $X^{-1}(M_1 \cap (M_2 \vee M_3)) = \{a_2 \oplus a_3 \in M_2 \oplus M_3 : a_2 + a_3 \in M_1 \cap (M_2 \vee M_3)\} = \{a_2 \oplus a_3 \in M_2 \oplus M_3 : a_2 + a_3 \in M_1\},$

$$X^{-1}(M_1 \cap (M_2 \vee M_3)) = M$$

Since X is a lattice-isomorphism,

$$(3.11) X_*M = (XM)^- = M_1 \cap (M_2 \vee M_3).$$

By equation (3.10) and definition of X,

$$(3.12) X_*M = (XM)^- \subset (M_1 \cap M_2) \vee M_3.$$

From (3.11) and (3.12), we conclude that

$$(3.13) M_1 \cap (M_2 \vee M_3) \subset (M_1 \cap M_2) \vee M_3.$$

Thus if T has property (P), then by (3.8) and (3.13), we obtain that

$$M_1\cap (M_2\vee M_3)=(M_1\cap M_2)\vee M_3.$$

12 YUN-SU KIM.

References

- [1] H. Bercovici, Operator theory and arithmetic in H^{∞} , Amer. Math. Soc., Providence, Rhode island (1988).
- [2] H. Bercovici, C_0 -Fredholm operators, II, Acta Sci. Math. (Szeged) **42**(1980), 3-42.
- [3] P.R. Halmos, A Hilbert Space Problem Book, D. Van Nostrand Company, Princeton, N.Y., 1967
- [4] B. Sz.-Nagy and C. Foias, Harmonic analysis of operators on Hilbert space, North-Holland, Amsterdam(1970).

Department of Mathematics, Indiana University, Bloomington, Indiana, U.S.A. $E\text{-}mail\ address$: kimys@indiana.edu