RWorksheet 5a

Jalando-on, Nandin, Palabrica

2024-11-27

IMDB

```
library(rvest)
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
##
       filter, lag
## The following objects are masked from 'package:base':
       intersect, setdiff, setequal, union
##
library(stringr)
library(polite)
library(kableExtra)
##
## Attaching package: 'kableExtra'
## The following object is masked from 'package:dplyr':
##
##
       group_rows
library(knitr)
library(tidyverse)
## -- Attaching core tidyverse packages ----- tidyverse 2.0.0 --
## v forcats 1.0.0
                        v readr
                                     2.1.5
## v ggplot2
               3.5.1
                         v tibble
                                     3.2.1
## v lubridate 1.9.3
                         v tidyr
                                     1.3.1
## v purrr
              1.0.2
## -- Conflicts ----- tidyverse_conflicts() --
## x dplyr::filter()
                             masks stats::filter()
## x kableExtra::group_rows() masks dplyr::group_rows()
## x readr::guess_encoding() masks rvest::guess_encoding()
## x dplyr::lag()
                             masks stats::lag()
## i Use the conflicted package (<a href="http://conflicted.r-lib.org/">http://conflicted.r-lib.org/</a>) to force all conflicts to become error
link = "https://www.imdb.com/chart/toptv/"
page = read_html(link)
session <- bow(link, user_agent = "Educational")</pre>
       session
```

```
## <polite session> https://www.imdb.com/chart/toptv/
##
       User-agent: Educational
       robots.txt: 35 rules are defined for 3 bots
##
##
      Crawl delay: 5 sec
    The path is scrapable for this user-agent
nam <- page %>% html_nodes(".ipc-title__text") %>% html_text()
name <- nam[!grepl("Top 250 TV Shows|IMDb Charts|Recently viewed|More to explore", nam, ignore.case = T.
   [1] "1. Breaking Bad"
   [2] "2. Planet Earth II"
   [3] "3. Planet Earth"
## [4] "4. Band of Brothers"
## [5] "5. Chernobyl"
## [6] "6. The Wire"
   [7] "7. Avatar: The Last Airbender"
## [8] "8. Blue Planet II"
## [9] "9. The Sopranos"
## [10] "10. Cosmos: A Spacetime Odyssey"
## [11] "11. Cosmos"
## [12] "12. Our Planet"
## [13] "13. Game of Thrones"
## [14] "14. Bluey"
## [15] "15. The World at War"
## [16] "16. Fullmetal Alchemist: Brotherhood"
## [17] "17. Rick and Morty"
## [18] "18. Life"
## [19] "19. The Last Dance"
## [20] "20. The Twilight Zone"
## [21] "21. The Vietnam War"
## [22] "22. Sherlock"
## [23] "23. Attack on Titan"
## [24] "24. Batman: The Animated Series"
## [25] "25. Arcane"
rank <- str_extract(name, "^\\d+\\.")</pre>
## [1] "1." "2." "3." "4." "5." "6." "7." "8." "9." "10." "11." "12."
## [13] "13." "14." "15." "16." "17." "18." "19." "20." "21." "22." "23." "24."
## [25] "25."
title <- str_replace(name, "^\\d+\\.", "")
title
## [1] " Breaking Bad"
                                            " Planet Earth II"
## [3] " Planet Earth"
                                            " Band of Brothers"
## [5] " Chernobyl"
                                            " The Wire"
## [7] " Avatar: The Last Airbender"
                                            " Blue Planet II"
## [9] " The Sopranos"
                                            " Cosmos: A Spacetime Odyssey"
## [11] " Cosmos"
                                            " Our Planet"
## [13] " Game of Thrones"
                                            " Bluey"
## [15] " The World at War"
                                            " Fullmetal Alchemist: Brotherhood"
## [17] " Rick and Morty"
                                            " Life"
## [19] " The Last Dance"
                                            " The Twilight Zone"
## [21] " The Vietnam War"
                                            " Sherlock"
```

```
## [23] " Attack on Titan"
                                            " Batman: The Animated Series"
## [25] " Arcane"
yea = page %>% html_nodes(".sc-5bc66c50-6.00dsw.cli-title-metadata-item") %>% html_text()
year <- str_extract_all(yea, "\\b\\d{4}(?:-\\d{4})?\\b") %>% unlist()
year
## NULL
rating = page %>% html_nodes(".ipc-rating-star--rating") %>% html_text()
## [1] "9.5" "9.5" "9.4" "9.4" "9.3" "9.3" "9.3" "9.3" "9.2" "9.2" "9.2" "9.3" "9.2"
## [13] "9.2" "9.3" "9.2" "9.1" "9.1" "9.1" "9.0" "9.0" "9.1" "9.1" "9.1" "9.0"
## [25] "9.0"
episode <- page %% html_nodes(".sc-5bc66c50-6.00dsw.cli-title-metadata-item") %%
html text()
episodes <- str_extract_all(episode, "\\b\\d+ eps\\b") %>% unlist()
episodes
## NULL
vote = page %>% html_nodes(".ipc-rating-star--voteCount") %>% html_text()
vote
## [1] " (2.2M)" " (163K)" " (224K)" " (547K)" " (910K)" " (392K)" " (391K)"
   [8] " (49K)" " (500K)" " (132K)" " (46K)" " (54K)" " (2.4M)" " (34K)"
## [15] " (31K)" " (210K)" " (629K)" " (44K)" " (160K)" " (97K)" " (30K)"
## [22] " (1M)" " (565K)" " (123K)" " (332K)"
urls <- c("https://www.imdb.com/title/tt0903747/?ref =chttvtp i 1",</pre>
          "https://www.imdb.com/title/tt5491994/?ref =chttvtp i 2",
          "https://www.imdb.com/title/tt0795176/?ref_=chttvtp_i_3",
          "https://www.imdb.com/title/tt0185906/?ref_=chttvtp_i_4",
          "https://www.imdb.com/title/tt7366338/?ref_=chttvtp_i_5",
          "https://www.imdb.com/title/tt0306414/?ref_=chttvtp_i_6",
          "https://www.imdb.com/title/tt0417299/?ref_=chttvtp_i_7",
          "https://www.imdb.com/title/tt6769208/?ref_=chttvtp_i_8",
          "https://www.imdb.com/title/tt0141842/?ref_=chttvtp_i_9",
          "https://www.imdb.com/title/tt2395695/?ref_=chttvtp_i_10",
          "https://www.imdb.com/title/tt0081846/?ref_=chttvtp_i_11",
          "https://www.imdb.com/title/tt9253866/?ref =chttvtp i 12",
          "https://www.imdb.com/title/tt0944947/?ref_=chttvtp_i_13",
          "https://www.imdb.com/title/tt7678620/?ref =chttvtp i 14",
          "https://www.imdb.com/title/tt0071075/?ref_=chttvtp_i_15",
          "https://www.imdb.com/title/tt1355642/?ref_=chttvtp_i_16",
          "https://www.imdb.com/title/tt2861424/?ref =chttvtp i 17",
          "https://www.imdb.com/title/tt1533395/?ref =chttvtp i 18",
          "https://www.imdb.com/title/tt8420184/?ref =chttvtp i 19",
          "https://www.imdb.com/title/tt0052520/?ref_=chttvtp_i_20",
          "https://www.imdb.com/title/tt1877514/?ref_=chttvtp_i_21",
          "https://www.imdb.com/title/tt1475582/?ref_=chttvtp_i_22",
          "https://www.imdb.com/title/tt2560140/?ref_=chttvtp_i_23",
          "https://www.imdb.com/title/tt0103359/?ref_=chttvtp_i_24",
          "https://www.imdb.com/title/tt0386676/?ref_=chttvtp_i_25")
```

```
user_reviews <- vector("numeric", length(urls))</pre>
critic_reviews <- vector("numeric", length(urls))</pre>
for (i in seq_along(urls)) {
  session <- bow(urls[i], user_agent = "Educational")</pre>
  webpage <- scrape(session)</pre>
  reviewz <- webpage %>% html_nodes(".score") %>% html_text()
  if (length(reviewz) >= 2) {
   user_reviews[i] <- ifelse(grepl("K", reviewz[1]),</pre>
                              as.numeric(gsub("K", "", reviewz[1])) * 1000,
                              as.numeric(reviewz[1]))
   critic_reviews[i] <- as.numeric(reviewz[2])</pre>
  } else {
   user_reviews[i] <- NA
    critic_reviews[i] <- NA</pre>
  }
}
user_reviews
## [1] 5100 158 111 1000 3500 787 1000
                                              53 966
                                                       205
                                                             80 245 5900 369 126
                   12 542 214 175 1000 2300
## [16] 468 910
                                                  219 1700
critic_reviews
             6 10 34 88 77 57
                                       9 93 12 8 15 368
                                                              4
                                                                   5 16 94
                                                                                9
                                                                                  28
## [1] 175
## [20] 85 13 121 64 25 76
max_length <- max(length(rank), length(title), length(year), length(rating), length(episodes), length(v
rank <- c(rank, rep(NA, max_length - length(rank)))</pre>
title <- c(title, rep(NA, max_length - length(title)))
year <- c(year, rep(NA, max_length - length(year)))</pre>
rating <- c(rating, rep(NA, max_length - length(rating)))
episodes <- c(episodes, rep(NA, max_length - length(episodes)))
vote <- c(vote, rep(NA, max_length - length(vote)))</pre>
user_reviews <- c(user_reviews, rep(NA, max_length - length(user_reviews)))
critic_reviews <- c(critic_reviews, rep(NA, max_length - length(critic_reviews)))</pre>
max_length
## [1] 25
movies = data.frame(rank, title, year, rating, episodes, vote, user_reviews, critic_reviews, stringsAsF
write.csv(movies, "movies.csv")
print(head(movies))
##
    rank
                      title year rating episodes
                                                     vote user_reviews
## 1
                                    9.5
       1.
               Breaking Bad
                              NA
                                               NA (2.2M)
                                                                   5100
## 2
       2.
            Planet Earth II
                              NA
                                    9.5
                                               NA (163K)
                                                                   158
                                    9.4
## 3
       3.
               Planet Earth
                              NA
                                               NA
                                                   (224K)
                                                                   111
## 4
       4. Band of Brothers
                              NA
                                    9.4
                                               NA (547K)
                                                                   1000
## 5
       5.
                  Chernobyl
                              NA
                                    9.3
                                               NA (910K)
                                                                   3500
                   The Wire
                                                                   787
## 6
       6.
                              NA
                                    9.3
                                               NA (392K)
```

rank	title	year	rating	episodes	vote	user_reviews	critic_reviews
1.	Breaking Bad	NA	9.5	NA	(2.2M)	5100	175
2.	Planet Earth II	NA	9.5	NA	(163K)	158	6
3.	Planet Earth	NA	9.4	NA	(224K)	111	10
4.	Band of Brothers	NA	9.4	NA	(547K)	1000	34
5.	Chernobyl	NA	9.3	NA	(910K)	3500	88
6.	The Wire	NA	9.3	NA	(392K)	787	77
7.	Avatar: The Last Airbender	NA	9.3	NA	(391K)	1000	57
8.	Blue Planet II	NA	9.3	NA	(49K)	53	9
9.	The Sopranos	NA	9.2	NA	(500K)	966	93
10.	Cosmos: A Spacetime Odyssey	NA	9.2	NA	(132K)	205	12
11.	Cosmos	NA	9.3	NA	(46K)	80	8
12.	Our Planet	NA	9.2	NA	(54K)	245	15
13.	Game of Thrones	NA	9.2	NA	(2.4M)	5900	368
14.	Bluey	NA	9.3	NA	(34K)	369	4
15.	The World at War	NA	9.2	NA	(31K)	126	5
16.	Fullmetal Alchemist: Brotherhood	NA	9.1	NA	(210K)	468	16
17.	Rick and Morty	NA	9.1	NA	(629K)	910	94
18.	Life	NA	9.1	NA	(44K)	12	9
19.	The Last Dance	NA	9.0	NA	(160K)	542	28
20.	The Twilight Zone	NA	9.0	NA	(97K)	214	85
21.	The Vietnam War	NA	9.1	NA	(30K)	175	13
22.	Sherlock	NA	9.1	NA	(1M)	1000	121
23.	Attack on Titan	NA	9.1	NA	(565K)	2300	64
24.	Batman: The Animated Series	NA	9.0	NA	(123K)	219	25
25.	Arcane	NA	9.0	NA	(332K)	1700	76

```
##
     critic_reviews
## 1
                175
## 2
                  6
## 3
                 10
## 4
                 34
## 5
                 88
## 6
                 77
movies %>%
  kable("latex", booktabs = TRUE) %>%
  kable_styling(latex_options = "scale_down")
link2 = "https://www.imdb.com/title/tt0903747/reviews/?ref_=tt_ov_ql_2"
page2 = read_html(link)
session2 <- bow(link, user_agent = "Educational")</pre>
        session2
## <polite session> https://www.imdb.com/chart/toptv/
##
       User-agent: Educational
##
       robots.txt: 35 rules are defined for 3 bots
##
      Crawl delay: 5 sec
     The path is scrapable for this user-agent
reviews <- page2 %>% html_nodes(".ipc-link--base") %>%
  html_text()
reviews
```

[1] "Learn more about how list ranking is determined."

```
date <- page2 %>% html_nodes(".ipc-inline-list__item.review-date") %>%
  html_text()
date
## character(0)
user_rating <- page2 %>% html_nodes(".sc-a2ac93e5-4.gyib0i") %>%
 html text()
user_rating
## character(0)
link1 = "https://www.imdb.com/chart/toptv/"
page1 = read_html(link)
session1 <- bow(link1, user_agent = "Educational")</pre>
        session1
## <polite session> https://www.imdb.com/chart/toptv/
       User-agent: Educational
##
##
       robots.txt: 35 rules are defined for 3 bots
##
      Crawl delay: 5 sec
     The path is scrapable for this user-agent
user_review = page %>% html_nodes(".score") %>% html_text()
user_review
## character(0)
library(ggplot2)
movies$year <- as.numeric(movies$year)</pre>
year_counts <- movies %>%
 filter(!is.na(year)) %>%
  count(year)
ggplot(year_counts, aes(x = year, y = n)) +
  geom_line(color = "blue") +
  geom_point(color = "red") +
  labs(title = "Number of TV Shows Released by Year",
       x = "Year",
       y = "Number of TV Shows") +
  theme_minimal()
```

Number of TV Shows

Number of TV Shows Released by Year

Year

```
most_releases <- year_counts[which.max(year_counts$n), ]
print(most_releases)

## [1] year n
## <0 rows> (or 0-length row.names)
```