Project 1 - FYS3150

René Ask and Benedicte Nyheim (Dated: August 25, 2019)

METHOD

We're going to solve the differential equation

$$-u''(x) = f(x), \quad x \in (0,1), \quad u(0) = u(1) = 0. \tag{1}$$

We'll approximate this differential equation by a function $v(x) \approx u(x)$ by the approximation scheme

$$-\frac{-v_{i+1} + v_{i-1} - 2v_i}{h^2} = f_i, \quad i = 1, 2, ..., n,$$
(2)

which may be rearranged into

$$2v_i - v_{i+1} - v_{i-1} = f_i h^2 \equiv \tilde{b_i}. \tag{3}$$

From (3) we can write

$$\begin{pmatrix} 2v_1 - v_2 \\ -v_1 + 2v_2 - v_3 \\ \vdots \\ 2v_n - v_{n-1} \end{pmatrix} = \begin{pmatrix} 2 & -1 & 0 & \cdots & 0 \\ -1 & 2 & -1 & \cdots & 0 \\ \vdots & & & & \\ 0 & \cdots & 0 & -1 & 2 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix} = \begin{pmatrix} \tilde{b_1} \\ \tilde{b_2} \\ \vdots \\ \tilde{b_n} \end{pmatrix}$$
(4)

To this end we will develop an algorithm based on the LU-decomposition A = LU:

$$A = \begin{pmatrix} b_1 & c_1 & 0 & \cdots & \cdots & \cdots \\ a_1 & b_2 & c_2 & 0 & \cdots & \cdots \\ 0 & a_2 & b_3 & 0 & \cdots & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{n-2} & b_{n-1} & c_{n-1} \\ 0 & 0 & \cdots & 0 & a_{n-1} & b_n \end{pmatrix} = \begin{pmatrix} 1 & 0 & \cdots & \cdots & \cdots & 0 \\ \ell_2 & 1 & \cdots & \cdots & \cdots & 0 \\ 0 & \ell_3 & 1 & \cdots & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & \ell_{n-1} & 1 & 0 \\ 0 & 0 & \cdots & \ell_{n-1} & 1 & 0 \\ 0 & 0 & \cdots & \cdots & \ell_{n-1} & u_{n-1} \\ 0 & 0 & \cdots & \cdots & 0 & d_n \end{pmatrix} = LU, \quad (5)$$

and performing matrix multiplication we get

$$LU = \begin{pmatrix} d_1 & u_1 & \cdots & \cdots & \cdots & 0 \\ \ell_2 d_1 & \ell_2 u_1 + d_2 & u_2 & \cdots & \cdots & 0 \\ 0 & \ell_3 d_2 & \ell_3 u_2 + d_3 & u_3 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & \ell_{n-1} d_{n-2} & \ell_{n-1} u_{n-2} + d_{n-1} & u_{n-1} \\ 0 & 0 & \cdots & \ell_n d_{n-1} & \ell_n u_{n-1} + d_n \end{pmatrix},$$
(6)

which yields the following general relations:

$$b_i = d_i, \qquad c_i = u_i, \qquad \text{for} \qquad i = 1, \tag{7}$$

$$\ell_i = \frac{a_{i-1}}{d_{i-1}}, \quad \text{for} \quad 1 < i < n, \tag{8}$$

$$d_i = b_i - \ell_i u_{i-1}, \qquad \text{for} \qquad 1 < i < n, \tag{9}$$

$$b_{i} = d_{i}, \quad c_{i} = u_{i}, \quad \text{for} \quad i = 1,$$

$$\ell_{i} = \frac{a_{i-1}}{d_{i-1}}, \quad \text{for} \quad 1 < i < n,$$

$$d_{i} = b_{i} - \ell_{i} u_{i-1}, \quad \text{for} \quad 1 < i < n,$$

$$\ell_{n} = \frac{a_{n-1}}{d_{n-1}}, \quad d_{n} = b_{n} - \ell_{n} u_{n-1}, \quad \text{for} \quad i = n.$$

$$(10)$$

requiring 2n multiplications and n additions. In other words, the total floating point operations involved in finding LU is 3n.

We can then write $A\mathbf{v} = LU\mathbf{v} = L\mathbf{y} = \tilde{\mathbf{b}}$ where $\mathbf{y} \equiv U\mathbf{v}$. Explicitly, we can write this as

$$L\mathbf{y} = \begin{pmatrix} 1 & 0 & \cdots & \cdots & 0 \\ \ell_{2} & 1 & \cdots & \cdots & 0 \\ 0 & \ell_{3} & 1 & \cdots & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \ell_{n-1} & 1 & 0 \\ 0 & 0 & \cdots & \cdots & \ell_{n} & 1 \end{pmatrix} \begin{pmatrix} y_{1} \\ y_{2} \\ \vdots \\ y_{n} \end{pmatrix} = \begin{pmatrix} y_{1} \\ \ell_{2}y_{1} + y_{2} \\ \ell_{3}y_{2} + y_{3} \\ \vdots \\ \ell_{n-1}y_{n-2} + y_{n-1} \\ \ell_{n}y_{n-1} + y_{n} \end{pmatrix} = \begin{pmatrix} \tilde{b_{1}} \\ \tilde{b_{2}} \\ \vdots \\ \tilde{b_{n}} \end{pmatrix}$$

$$(11)$$

which yields the following procedure:

$$y_1 = \tilde{b_1},\tag{12}$$

$$y_1 = \tilde{b_1},$$
 (12)
 $y_i = \tilde{b_i} - \ell_i y_{i-1}, \quad \text{for} \quad i = 2, 3, ..., n.$ (13)

giving n-1 multiplications and n-1 additions. Thus the added computational cost is 2(n-1).

Finally, to determine v, we perform back-substitution by solving Uv = y. Writing it out explicitly yields

$$\begin{pmatrix}
d_1 & u_1 & \cdots & \cdots & 0 \\
0 & d_2 & u_2 & \cdots & \cdots & 0 \\
0 & 0 & d_3 & u_3 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & \cdots & d_{n-1} & u_{n-1} \\
0 & 0 & \cdots & \cdots & 0 & d_n
\end{pmatrix}
\begin{pmatrix}
v_1 \\
v_2 \\
\vdots \\
\vdots \\
v_n
\end{pmatrix} =
\begin{pmatrix}
d_1v_1 + u_1v_2 \\
d_2v_2 + u_2v_3 \\
\vdots \\
\vdots \\
d_{n-1}v_{n-1} + u_{n-1}v_n \\
d_nv_n
\end{pmatrix} =
\begin{pmatrix}
y_1 \\
y_2 \\
\vdots \\
\vdots \\
y_{n-1} \\
y_n
\end{pmatrix},$$
(14)

which yields the following procedure:

$$v_n = \frac{y_n}{d_n},\tag{15}$$

$$v_n = \frac{y_n}{d_n},$$

$$v_i = \frac{y_i - u_i v_{i+1}}{d_i}, \quad \text{for} \quad i = n - 1, n - 2, ..., 1.$$
(15)

Here we got 2n-1 multiplications and n-1 additions, so the number of floating point operations are 3n-2. Putting all of these together we get $4(2n-1) \approx 8n$ floating point operations.

Now, assuming that $b_1 = b_2 = \cdots = b_n \equiv b$ and $a_1 = c_1$, $a_2 = c_2, \cdots, a_{n-1} = c_{n-1}$. Furthermore, assume $a_1 = a_2 = \cdots = a_n \equiv a$ and $c_1 = c_2 = \cdots = c_n \equiv c$. But since a = c, we can ignore the last assumption. These assumptions implies certain simplifications of the algorithm for LU-decomposition:

$$d_1 = b, u_1 = c = a,$$
 (17)

$$u_i = c_i = a, \qquad \text{for} \qquad 1 < i \le n, \tag{18}$$

$$\ell_i = \frac{a_{i-1}}{d_{i-1}} = \frac{a}{d_{i-1}}, \quad \text{for} \quad 1 < i \le n,$$
 (19)

$$d_{1} = b, u_{1} = c = a, (17)$$

$$u_{i} = c_{i} = a, \text{for} 1 < i \le n, (18)$$

$$\ell_{i} = \frac{a_{i-1}}{d_{i-1}} = \frac{a}{d_{i-1}}, \text{for} 1 < i \le n, (19)$$

$$d_{i} = b_{i} - \ell_{i}u_{i} = b - \ell_{i}a = b - \frac{a^{2}}{d_{i-1}} \text{for} 1 < i \le n. (20)$$