A Simple Beamer Template for WP Carey School Affiliated Researchers

Harish Guda 1 X^2 Y^2

¹W.P. Carey School of Business, Arizona State University.

> ²School, University.

An Important Field Conference, May 19, 2021

A Brief Summary

► A new idea: Idea 1.

A Brief Summary

► A new idea: Idea 1.

► We show surprising result.

Agenda

- Introduction
- 2 Model
- Results
- Managerial Implications

Introduction

► Customers buy bundles of resources in combination.

Introduction

- Customers buy bundles of resources in combination.
 - Example: Airline itinerary.

${\sf Agenda}$

- Introduction
- Model
- Results

Managerial Implications

▶ Nature chooses $\omega \sim p(\cdot)$.

▶ Nature chooses $\omega \sim p(\cdot)$.

▶ Nature chooses $\omega \sim p(\cdot)$.

For any ω :

▶ Nature chooses $\omega \sim p(\cdot)$.

For any ω :

 $\blacktriangleright \ \mbox{Key parameter of agent K: $\kappa \sim f_{\varpi}(\cdot)$.}$

▶ Nature chooses $\omega \sim p(\cdot)$.

For any ω :

- $\blacktriangleright \ \mbox{Key parameter of agent K: $\kappa \sim f_{\varpi}(\cdot)$.}$
- $\blacktriangleright \ \mbox{ Key parameter of agent } D \colon \ \delta \sim g_{\omega}(\cdot).$

▶ Nature chooses $\omega \sim p(\cdot)$.

For any ω :

- $\blacktriangleright \ \mbox{Key parameter of agent K: $\kappa \sim f_{\varpi}(\cdot)$.}$
- $\blacktriangleright \ \ \, \text{Key parameter of agent } D \colon \ \, \delta \sim g_{\omega}(\cdot).$

▶ Nature chooses $\omega \sim p(\cdot)$.

For any ω :

- $\blacktriangleright \ \mbox{ Key parameter of agent } K\colon \ \kappa \sim f_{\varpi}(\cdot).$
- $\blacktriangleright \ \mbox{ Key parameter of agent } D \colon \ \delta \sim g_{\omega}(\cdot).$

 $\text{Market Clears at all } \omega \colon \quad K \mathsf{f}_{\omega}(\kappa) = D \mathsf{g}_{\omega}(\delta).$

Agenda

- Introduction
- 2 Model
- Results
- Managerial Implications

A Result

A Result

Key Non-Existence Result

Suppose $\gamma>0.$ There does not exist an outcome where $\delta>0$ and $\Delta>0.$ That is,

$$\gamma>0\implies\delta\cdot\Delta<0.$$

A Result

Key Non-Existence Result

Suppose $\gamma>0.$ There does not exist an outcome where $\delta>0$ and $\Delta>0.$ That is,

$$\gamma>0\implies\delta\cdot\Delta<0.$$

Possible Misinterpretation

This is not to be misunderstood with $\delta < 0 \implies \Delta > 0$.

Agenda

- Introduction
- Model
- Results
- Managerial Implications

Thank You.

Paper available at harishguda.me/research.

