$$S(G) = \frac{3^{\frac{1}{2}}}{3^{2}}$$

$$S(G) = \frac{3^{\frac{1}{2}}}{3^{2}}$$

$$y = -\frac{3}{2}$$
 Aldrown at least out.

ALTHONATIVE
$$3^{9+2} \qquad M1$$

$$9+2=\frac{1}{2} \qquad M1$$

$$9=-\frac{3}{2} \qquad A1$$

2. a)
$$\frac{-11-k}{5} = -2$$
 o. ϵ
or $y+11 = -2(x+2)$

b)
$$a = 14, b = -1$$
 Bl Bl

c)
$$\sqrt{(c-7)^2 + (-3-(-7))^2} = \sqrt{17}$$
 MAY NOT HAY NOT

$$(2-7)^{2}+16=17$$

$$(c-7)^{2}+16=17$$
 0. E MI $C=14c+48=0$
 $C=-8$ AI $C=-8$

COPPRET SHAPE BI

TOUGHING AT (310), CROSSING AT (40) MI

(019) BI

(019)

- 4. a) 55 c.a.o A
 - b) 7×3×52 of 82 sten MI 27 c.a.o Al
 - 5. SIMPUFIED TO $(2k-5)2^2 + (1-k)2 + (k-2)$ o. E MAI SIGHT OF 2k-5 < 0 BI SIGHT OF $b^2 - 4uc < 0$ OR $(1-k)^2 - 4(2k-5)(k-2) < 0$ O. E MI $\pm 7k^2 \mp 34k \pm 39$ MI (7k-13)(k-3) MI $k = \frac{3}{37}$ Both AI $\frac{4}{37}$ OR SIMICAR MID der $k < \frac{13}{3}$ OR k > 3 (Both) AI D der $k < \frac{13}{3}$ OR k > 3 (Both) AI D der $k < \frac{13}{3}$ OR k > 3 (Both) AI D der $k < \frac{13}{3}$ OR k > 3 (Both) AI D der

FINAL ANSWER MUST BE L< 13 C.a.o Al

6.
$$3 = a \times 2 + b$$
 B1

$$2a+b=3$$

 $3a+b=7$ BOH MA

ATTIMPT SMITH SOUTTON MI

7.
$$\left(\frac{dy}{dx} = \right) 6x^2 - 10y$$
 B1

$$6x2^{2}-10x2=4$$

$$6x1^{2} - 10x1 = -4$$

$$2 \times 2^3 - 5 \times 2^2 + a = (q - 4)$$

$$2 \times 1^3 - 5 \times 1^2 + 9 = 9 - 3$$

 $6 \times 2^{2} - 10 \times 2 = 4$ $6 \times 1^{2} - 10 \times 1 = -4$ $2 \times 2^{3} - 5 \times 2^{2} + \alpha = 4 = 4$ $2 \times 1^{3} - 5 \times 1^{2} + \alpha = 4 = 4$ $2 \times 1^{3} - 5 \times 1^{2} + \alpha = 4 = 4$

$$y - (a-4) = (3(x-2))$$
 M

$$y - (a-3) = (4)(2-1)$$
 M1

$$4x + a = 12$$
) At GINGE

ATTHMPTS SOUTIAN. MI

$$a = \frac{8}{3}$$
 Al

8. a) 10 + 11x2 MI
32 AI
b)
$$\frac{12}{2} [2x|0+1|x2]$$
 or $\frac{12}{2} [10+32]$ of MI
252 AI
5 NAL ANSWIR 377 AI
9 INPUTS $a = 7$ BI
 $d = 2$ BI
 475 SEFAN BI
 $\frac{4}{2} [2x^{7} + (y-1)x^{9}] = 475$ MI
 $h(y+6) = 475$ or $y^{2} + 6y - 475$ MI

9.
$$y = A - Bx^2$$
 BI
 $y = 6 - Bx^2$ BI
USES (OH) INDO THERE $y = 6 - Bx^2$ MI
 $y = 6 - \frac{3}{8}x^2$ OR $B = \frac{3}{8}$ AI
SURS $x = 3$ INDO II $y = 6 - \frac{7}{8}x^2$ MI
OBTAIN $\frac{21}{8}$ AI
CONCUMBED CORRESPLY AI