# Probabilistic Dust Storm Prediction Presentation 2 – Methodology

Sean Flaherty

2017

## Overview

- ► Goal: Use data mining/machine learning to create a predictive model for dust events on a local scale.
- Previous research: Univariate predictor (500mB geopotential height) using image processing (ZNCC). Only good at predicting large events [1].
- ▶ Justification: Want an accurate predictor for meso- and micro-scale dust events.

# **Gathering Data**

- RAP/RUC forecast model NOMADS (NOAA Operational Model Archive and Distribution System).
- Forecasts available from NOAA online repository (HTTPS/FTP).
- ▶ Data downloaded using GNU wget utility [2].

#### Data Format

- GRIB GRIdded Binary (WMO standard for weather data).
- ▶ RAP/RUC models update forecasts hourly with 13 and 25.2 km resolutions. Each file contains forecast models for a single time.
- ► Each file has a number of weather parameters, each of which with a grid of data points corresponding to locations.

## **GRIB** Example



A single parameter's raster shown using NOAA Weather and Climate Tool. This image shows the 500mB geopotential height at 18:00GMT preceding a dust event on April 14, 2012 [3].



# Reading GRIB files

- pygrib Python library allows opening of .grb, .grb2 files in Python
- ▶ Opening a GRIB creates a file iterator, with each object in it a weather parameter [4].
- ► Each weather parameter has various attributes, including a raster of latitudes/longitudes and data for the parameter.
- Weather data gets stored into CSV files for easier lookup.

## **PCA**

- Principal component analysis reduces the dimensionality of the data.
- ► Transforms data into subspaces with the most spread between points explains most of the variance in the data.
- ▶ RUC dataset has 315 dimensions for each instance could make algorithms less effective (curse of dimensionality).

## PCA plots





Plots of principal components against each other. Left shows little no distinction between dust and non-dust events, while right shows some.

# **Algorithms**

- Feedforward NN
- Feedforward NN with PCA
- ► RNN/LSTM
- ► RNN/LSTM with PCA

Try each algorithm and see which one provides the best accuracy.



## Implementation of algorithms

- ► TensorFlow Python library
- Machine learning utility for creating computation graphs, doing lazy evaluations, using GPU for faster processing.
- Automates backpropagation and optimization algorithms
   [5].



### References

- [1] Armenta, Rebecca B. "Geopotential height patterns at 500mb associated with dust storms in the United States/Mexico border region during January-May of 2011-2014." May 2016 New Mexico State University. Access May 31 2017.
- [2] "GNU Wget 1.18 Manual." GNU Project. Web. Jun. 27 2017.
- [3] "Rapid Refresh (RAP)." National Centers for Environmental Information. NOAA. Web. Jun. 27. 2017.
- [4] "pygrib documentation." Github. Dec. 29 2014. Web. Jun. 14 2017.
- [5] "Getting Started with TensorFlow." TensorFlow. Web. Jul. 5 2017.

