Resumen de Lógica

Uziel Ludueña

October 6, 2020

Contents

1	Rel	aciones binarias	3
	1.1	Propiedades notables de relaciones binarias	3
	1.2	Relaciones de equivalencia	3
	1.3	Correspondencia entre relaciones de equivalencia y particiones	4
2	Ord	lenes parciales	5
	2.1	Diagramas de Hasse	5
	2.2	Elementos maximales, maximos, minimales y minimos	6
	2.3	Supremos	6
	2.4	Infimos	7
	2.5	Homomorfismos de posets	7
	2.6	Isomorfismo de posets	7
	2.7	Reticulados	8
3	Ver	sion algebraica del concepto de reticulado	10
4	Ret	ciculados acotados	13
	4.1	Subreticulados acotados	13
	4.2	Homomorfismo de reticulados acotados	13
	4.3	Congruencias de reticulados acotados	14
5	Ret	ciculados complementados	15
	5 1	Subreticulados complementados	15

	5.2	Homomorfismo de reticulados complementados	15
	5.3	Congruencias de reticulados complementados	16
6	Alg	ebras de Boole	17
7	Teo	remas del filtro primo y de Rasiova Sikorski	18
8	Sint	taxis de la logica de primer orden	19
	8.1	Variables	19
	8.2	Tipos	20
	8.3	Terminos	20
		8.3.1 Unicidad de la lectura de terminos	21
	8.4	Ocurrencias	21
	8.5	Subterminos	22
	8.6	Formulas	22
	8.7	Unicidad de la lectura de formulas	23
	8.8	Subformulas	24

1 Relaciones binarias

Definición 1. Una relacion binaria sera un conjunto cuyos elementos son pares ordenados. Una relacion binaria sobre un conjunto A sera una relacion binaria, la cual es subconjunto de A^2 .

Notese que si R es una relacion binaria sobre A y $A \subseteq B$, entonces R es una relacion sobre B. Como es usual, cuando R sea una relacion binaria sobre un conjunto A, diremos aRb en lugar de $(a,b) \in R$

1.1 Propiedades notables de relaciones binarias

Algunas propiedades que puede cumplir una relacion binaria R sobre un conjunto A son:

- Reflexividad: xRx, cualesquiera sea $x \in A$
- Transitividad: xRy y yRz implica xRz, cualesquiera sean $x, y, z \in A$
- Simetria: xRy implica yRx, cualesquiera sean $x, y \in A$
- Antisimetria: xRy y yRx implica x = y, cualesquiera sean $x, y \in A$

1.2 Relaciones de equivalencia

Definición 2. Sea A un conjunto cualquiera. Por una relacion de equivalencia sobre A entenderemos una relacion binaria sobre A la cual es reflexiva, transitiva y simetrica, con respecto a A.

Definición 3. Dada una funcion $F: A \to B$, definimos:

$$\ker F = \{(x, y) \in A^2 : F(x) = F(y)\}\$$

Definición 4. Dada una relacion de equivalencia R sobre A y $a \in A$, definimos:

$$a/R = \{b \in A : aRb\}$$

El conjunto a/R sera llamado la clase de equivalencia de a, con respecto a R.

Observacion 1. $a \in a/R$, pues R es reflexiva, por lo tanto aRa.

Observacion 2. $aRb \iff a/R = b/R$, sencillo de demostrar con las propiedades

Observacion 3. $a/R \cap b/R = \emptyset$ o a/R = b/R, sencillo de demostrar viendo que pasa si aRb y si no aRb

Definición 5. Dada una relacion de equivalencia R sobre A, definimos:

$$A/R = \{a/R : a \in A\}$$

Diremos que A/R es el cociente de A por R. Notese que A/R es el conjunto de clases de equivalencia de cada elemento de A.

Observacion 4. Sea $F: A \to B$, entonces:

- 1. F es inyectiva \iff ker $F = \{(x, y) \in A^2 : x = y\}$
- 2. Si F es sobreyectiva, entonces hay una biyeccion entre $A/\ker F$

Definición 6. Si R es una relacion de equivalencia sobre A, definimos la funcion $\pi_R \colon A \to A/R$ por $\pi_R(a) = a/R$, para cada $a \in A$. Esta funcion es llamada la proyeccion canonica respecto de R.

Observacion 5. Sea R una relacion de equivalencia sobre A. Entonces ker $\pi_R = R$

1.3 Correspondencia entre relaciones de equivalencia y particiones

Definición 7. Dado un conjunto A, por una particion de A entenderemos a un conjunto \mathcal{P} tal que:

- ullet Cada elemento de $\mathcal P$ es un subconjunto no vacio de A
- Si $S_1, S_2 \in \mathcal{P}$ y $S_1 \neq S_2$, entonces $S_1 \cap S_2 = \emptyset$
- $\bullet \ \ A = \bigcup_{S \in \mathcal{P}} S$

Observacion 6. Si \mathcal{P} es una particion de A, entonces para cada $a \in A$ hay un unico $S \in \mathcal{P}$ tal que $a \in S$.

Definición 8. Dada una particion \mathcal{P} de un conjunto A, podemos definir una relacion binaria asociada a \mathcal{P} de la siguiente manera:

$$R_{\mathcal{P}} = \{(a, b) \in A^2 : a, b \in S, \text{ para algun } S \in \mathcal{P}\}$$

Teorema 1. Sea A un conjunto cualquiera. Sean

$$Part = \{particiones \ de \ A\}$$

 $ReEq = \{relaciones \ de \ equivalencia \ sobre \ A\}$

Entonces, las funciones:

$$f: Part \to ReEq$$
 $\mathcal{P} \to R_{\mathcal{P}}$

$$g:ReEq \rightarrow Part$$

$$R \rightarrow A/R$$

son biyecciones una de la otra

Proof. Se acepta sin demostracion

2 Ordenes parciales

Definición 9. Una relacion binaria sobre R sobre un conjunto A sera llamada un orden parcial sobre A, si es reflexiva, transitiva y antisimetrica respecto de A.

Muchas veces denotaremos con \leq a una relacion binaria que sea un orden parcial.

Ademas, si hemos denotado \leq a cierto orden parcial sobre un conjunto A, entonces:

- 1. Denotaremos con < a la relacion binaria $\{(a,b) \in A^2 : a \leq b \text{ y } a \neq b\}$. Cuando se de que a < b, diremos que a es menor que b, o que b es mayor que a
- 2. Denotaremos con \prec a la relacion binaria $\{(a,b) \in A^2 : a < b \text{ y no existe } z \text{ tal que } a < z < b\}$. Cuando se de que $a \prec b$, diremos que a es cubierto por b o que b cubre a a.

Definición 10. Un *conjunto* parcialmente ordenado o poset, es un par (P, \leq) , donde P es un conjunto no vacio cualquiera $y \leq e$ un orden parcial sobre P. Dado un poset (P, \leq) , el conjunto P sera llamado el *universo* de (P, \leq) .

2.1 Diagramas de Hasse

Dado un poset (P, \leq) . con P finito, podemos realizar un diagrama llamado diagrama de Hasse, siguiendo las siguientes instrucciones:

- 1. Asociar en forma inyectiva a cada $a \in P$ un punto p_a del plano
- 2. Trazar un segmento de recta uniendo los puntos p_a y p_b , cada vez que $a \prec b$

- 3. Realizar los antes dicho de tal forma que:
 - (a) Si $a \prec b$, entonces p_a esta por debajo de p_b
 - (b) Si un punto p_a ocurre en un segmento del diagrama, entonces lo hace en alguno de sus extremos

La relacion de \leq puede ser reconstruida facilmente apartir del diagrama. $a \leq b$ sucedera si y solo si $p_a = p_b$ p hay una sucesion de caminos ascendentes de segmentos desde p_a hasta p_b .

2.2 Elementos maximales, maximos, minimales y minimos

Definición 11. Sea (P, \leq) un poset.

Diremos que $a \in P$ es un elemento maximal de (P, \leq) , si no existe un $b \in P$ tal que a < b.

Diremos que $a \in P$ es un elemento maximo de (P, \leq) si $b \leq a$, para todo $b \in P$. En caso de existir, sera denotado como 1, y muchas veces diremos que (P, \leq) tiene un 1 para expresar que (P, \leq) tiene un maximo

Diremos que $a \in P$ es un elemento minimal de (P, \leq) , si no existe un $b \in P$ tal que b < a.

Diremos que $a \in P$ es un elemento minimo de (P, \leq) si $a \leq b$ para todo $b \in P$. En caso de existir, sera denotado como 0, y muchas veces diremos que (P, \leq) tiene un 0 para expresar que (P, \leq) tiene un minimo

Observacion 7. Un poset (P, \leq) tiene a lo sumo 1 maximo (resp. minimo)

Observacion 8. Todo elemento maximo (resp. minimo) de (P, \leq) es un elemento maximal (resp. minimal) de (P, \leq)

2.3 Supremos

Sea (P, \leq) un poset. Dado $S \subseteq P$, diremos que un elemento $a \in P$ es cota superior de S en (P, \leq) cuando $b \leq a$, para todo $b \in S$. Notese que todo elemento de P es cota superior de \emptyset en (P, \leq) . Un elemento $a \in P$ sera llamado supremo de S en (P, \leq) , cuando se den las siguientes propiedades:

- 1. a es cota superior de S en (P, \leq)
- 2. Para cada $b \in P$, si b es cota superior de S en (P, \leq) , entonces $a \leq b$

2.4 Infimos

Sea (P, \leq) un poset. Dado $S \subseteq P$, diremos que un elemento $a \in P$ es cota inferior de S en (P, \leq) cuando $a \leq b$, para todo $b \in S$. Notese que todo elemento de P es cota inferior de \emptyset en (P, \leq) . Un elemento $a \in P$ sera llamado infimo de S en (P, \leq) , cuando se den las siguientes propiedades:

- 1. a es cota inferior de S en (P, \leq)
- 2. Para cada $b \in P$, si b es cota inferior de S en (P, \leq) , entonces $b \leq a$

Observacion 9. Si a es supremo (resp. infimo) de S en (P, \leq) y a' es supremo (resp. infimo) de S en (P, \leq) , entonces a = a'

Observacion 10. a es supremo (resp. infimo) de P en $(P, \leq) \iff a$ es maximo (resp. minimo) de (P, \leq)

2.5 Homomorfismos de posets

Definición 12. Sea (P, \leq) y (P', \leq') posets. Una funcion $F: P \to P'$ sera llamada un homomorfismo de (P, \leq) en (P', \leq') si para todo $x, y \in P$ se cumple que $x \leq y$ implica $F(x) \leq' F(y)$. Escribiremos $F: (P, \leq) \to (P', \leq')$ para expresar que F es un homomorfismo de (P, \leq) en (P', \leq')

2.6 Isomorfismo de posets

Definición 13. Sea (P, \leq) y (P', \leq') posets. Una funcion $F: P \to P'$ sera llamada un *isomorfismo* $de(P, \leq)$ en (P', \leq') si F es biyectiva, F es un homomorfismo de (P, \leq) en (P', \leq') y F^{-1} es un homomorfismo de (P', \leq') en (P, \leq) . Escribiremos $(P, \leq) \cong (P', \leq')$ cuando exista un isomorfismo de (P, \leq) en (P', \leq') y en tal caso diremos que (P, \leq) y (P', \leq') son isomorfos.

Definición 14. Dada una funcion $F:A\to B$ y $S\subseteq A$, denotaremos con F(S) al conjunto $\{F(a):a\in S\}$

Lema 1. Sean (P, \leq) y (P', \leq') posets. Supongamos F es un isomorfismo de (P, \leq) y (P', \leq')

- 1. Para cada $S \subseteq P$ y cada $a \in P$, se tiene que a es cota superior (resp. cota inferior) de $S \iff F(a)$ es cota superior (resp. inferior) de F(S)
- 2. Para cada $S \subseteq P$ y cada $a \in P$, se tiene que existe $\sup(S) \iff existe \sup(F(S))$, y en el caso de que existan tales elementos, se tiene que $F(\sup(S)) = \sup(F(S))$

- 3. Para cada $S \subseteq P$ y cada $a \in P$, se tiene que existe $\inf(S) \iff existe \inf(F(S))$, y en el caso de que existan tales elementos, se tiene que $F(\inf(S)) = \inf(F(S))$
- 4. Para cada $a \in P$, a es maximo (resp. minimo) $\iff F(a)$ es maximo (resp. minimo)
- 5. Para cada $a \in P$, a es maximal (resp. minimal) \iff F(a) es maximal (resp. minimal)
- 6. Para $a, b \in P$, tenemos $a \prec b \iff F(a) \prec' F(b)$
- Proof. (a) Supongamos a es cota superior de S. Sea $s \in S$. Como $s \le a$, tenemos que $F(s) \le' F(a)$. Supongamos ahora que F(a) es cota superior de F(S). Sea $s \in S$. Como $F(s) \le' F(a)$, tenemos que $s = F^{-1}(F(s)) \le F^{-1}(F(a)) = a$.
- (b) Supongamos que existe $\sup(S)$. Entonces por (a) $F(\sup(S))$ es cota superior de F(S). Supongamos b es cota superior de F(S), entonces $F^{-1}(b)$ es cota superior de S. Por lo tanto, $\sup(S) \leq F^{-1}(b)$ y entonces $F(\sup(S)) \leq' b$. La vuelta es analoga.
 - (c) La prueba es analoga a (b)
- (d) Supongamos $a \in P$ es maximo. Pero entonces $a = \sup(P)$, y entonces $F(a) = \sup(F(P)) = \sup(P')$. La vuelta es analoga.
- (e) Supongamos $b \in P$ tal que no existe $a \in P$ tal que $b \le a \Rightarrow a = b$. Sea $c \in P$ tal que $F(b) \le' F(c)$, entonces $b \le c$, y entonces b = c, F(b) = F(c). Luego F(b) es maximal. La vuelta es analoga.
- (f) Sean $a, b \in P$ tal que $a \prec b$. Luego tenemos que $F(a) \leq' F(b)$. Supongamos existe $z \in P$ tal que $F(a) \leq' F(z) \leq' F(b)$, entonces tendriamos $a \leq z \leq b$. Como $a \prec b$, se sigue que z = a o z = b. Luego $F(a) \prec' F(b)$. La vuelta es analoga.

2.7 Reticulados

Definición 15. Diremos que un poset (P, \leq) es un *reticulado* si para todo $a, b \in P$, existen $\sup(\{a, b\})$ e $\inf(\{a, b\})$

Definición 16. Dado un reticulado (P, \leq) , definimos 2 operacion binarias:

$$s: P^2 \to P$$

$$(a,b) \to \sup(\{a,b\})$$

$$i: P^2 \to p$$

$$(a,b) \to \inf(\{a,b\})$$

Escribiremos a **s** b en lugar de s(a,b) y a **i** b en lugar de i(a,b)

Lema 2. Dado un reticulado (L, \leq) y elementos $x, y \in L$, se cumplen:

- 1. $x \leq x s y$
- $2. x i y \leq x$
- 3. $x \cdot s \cdot x = x \cdot i \cdot x = x$
- 4. $x \mathbf{s} y = y \mathbf{s} x$
- 5. x i y = y i x

Proof. TODO

Lema 3. Dado un reticulado (L, \leq) y elementos $x, y \in L$, son equivalentes:

- 1. $x \leq y$
- 2. $x \cdot s \cdot y = y$
- 3. x i y = x

Proof. TODO

Lema 4. Dado un reticulado (L, \leq) y elementos $x, y \in L$, se tiene que:

- 1. $x \ s \ (x \ i \ y) = x$
- 2. x i (x s y) = x

Proof. TODO

Lema 5. Dado un reticulado (L, \leq) y elementos $x, y, z \in L$, se tiene que:

- 1. (x s y) s z = x s (y s z)
- 2. (x i y) i z = x i (y i z)

Proof. TODO

Lema 6. Dado un reticulado (L, \leq) y elementos $x, y, z, w \in L$, se tiene que si $x \leq z$ y $y \leq w$, entonces

- 1. $x s y \leq z s w$
- 2. $x i y \leq z i w$

$$Proof.$$
 TODO

Lema 7. Dado un reticulado (L, \leq) y elementos $x, y, z \in L$, se tiene que

$$(x i y) s (x i z) \leq x i (y s z)$$

Lema 8. Sea (L, \leq) un reticulado. Dados elementos $x_1, \ldots, x_n \in L$, con $n \geq 2$, se tiene que:

$$(\dots(x_1 \ s \ x_2) \ s \dots) \ s \ x_n = \sup(\{x_1, \dots, x_n\})$$
 (1)

$$(\dots(x_1 \mathbf{i} x_2) \mathbf{i} \dots) \mathbf{i} x_n = \inf(\{x_1, \dots, x_n\})$$
 (2)

3 Version algebraica del concepto de reticulado

Definición 17. Una terna $(L, \mathbf{s}, \mathbf{i})$, donde L es un conjunto y \mathbf{s} , \mathbf{i} son dos operaciones binarias sobre L sera llamada reticulado cuando cumpla:

- 1. $x \mathbf{s} x = x \mathbf{i} x = x$, cualesquiera sea $x \in L$
- 2. $x \mathbf{s} y = y \mathbf{s} x$, cualesquiera sean $x, y \in L$
- 3. $x \mathbf{i} y = y \mathbf{i} x$, cualesquiera sean $x, y \in L$
- 4. $(x \mathbf{s} y) \mathbf{s} z = x \mathbf{s} (y \mathbf{s} z)$, cualesquiera sean $x, y, z \in L$
- 5. $(x\ \mathbf{i}\ y)\ \mathbf{i}\ z=x\ \mathbf{i}\ (y\ \mathbf{i}\ z),$ cualesquiera sean $x,y,z\in L$
- 6. $x \mathbf{s} (x \mathbf{i} y) = x$, cualesquiera sean $x, y \in L$
- 7. xi(xsy)=x,cualesquiera sean $x,y\in L$

En tal caso que $(L, \mathbf{s}, \mathbf{i})$ sea un reticulado, diremos que L es el universo del reticulado.

Teorema 2. Sea (L, s, i) un reticulado. La relacion binaria definida por:

$$x \le y \iff x \ \mathbf{s} \ y = y$$

es un orden parcial sobre L para el cual se cumple que:

$$\sup(\{x,y\}) = x \ \boldsymbol{s} \ y$$

$$\inf(\{x,y\}) = x i y$$

 $cualesquiera\ sean\ x,y\in L$

Definición 18. Dados reticulados $(L, \mathbf{s}, \mathbf{i})$ y $(L', \mathbf{s'}, \mathbf{i'})$ diremos que $(L, \mathbf{s}, \mathbf{i})$ es un *subreticulado de* $(L', \mathbf{s'}, \mathbf{i'})$ si se dan las siguientes condiciones:

- 1. $L \subseteq L'$
- 2. $\mathbf{s} = \mathbf{s}'|_{L \times L}$
- 3. $\mathbf{i} = \mathbf{i}'|_{L \times L}$

Definición 19. Sea $(L, \mathbf{s}, \mathbf{i})$ un reticulado. Un conjunto $S \subseteq L$ es llamado subuniverso de $(L, \mathbf{s}, \mathbf{i})$ si es no vacio y cerrado bajo las operaciones \mathbf{s} y \mathbf{i}

Observacion 11. Sea $(L, \mathbf{s}, \mathbf{i})$ un reticulado. S es subuniverso de $(L, \mathbf{s}, \mathbf{i}) \iff (S, \mathbf{s}|_{S \times S}, \mathbf{i}|_{S \times S})$ es un subreticulado de $(L, \mathbf{s}, \mathbf{i})$

Definición 20. Sean $(L, \mathbf{s}, \mathbf{i})$ y $(L', \mathbf{s'}, \mathbf{i'})$ reticulados. Una funcion $F: L \to L'$ sera llamada un homomorfismo de $(L, \mathbf{s}, \mathbf{i})$ en $(L', \mathbf{s'}, \mathbf{i'})$ si para todo $x, y \in L$ se cumple que:

$$F(x \mathbf{s} y) = F(x) \mathbf{s}' F(y)$$

$$F(x \mathbf{i} y) = F(x) \mathbf{i'} F(y)$$

Un homomorfismo de $(L, \mathbf{s}, \mathbf{i})$ en $(L', \mathbf{s'}, \mathbf{i'})$ sera llamada isomorfismo de $(L, \mathbf{s}, \mathbf{i})$ en $(L', \mathbf{s'}, \mathbf{i'})$ cuando sea biyectivo, y su inversa sea tambien un homomorfismo.

Escribiremos $F: (L, \mathbf{s}, \mathbf{i}) \to (L', \mathbf{s'}, \mathbf{i'})$ cuando F sea un homomorfismo de $(L, \mathbf{s}, \mathbf{i})$ en $(L', \mathbf{s'}, \mathbf{i'})$ Escribiremos $(L, \mathbf{s}, \mathbf{i}) \cong (L', \mathbf{s'}, \mathbf{i'})$ cuando exista un isomorfismo de $(L, \mathbf{s}, \mathbf{i})$ en $(L', \mathbf{s'}, \mathbf{i'})$

Lema 9. Si $F:(L, s, i) \rightarrow (L', s', i')$ es un homomorfismo biyectivo, entonces F es un isomorfismo

Proof. TODO □

Lema 10. Sean (L, s, i) y (L', s', i') reticulados y sea $F: (L, s, i) \to (L', s', i')$ un homomorfismo. Entonces I_F es un subuniverso de (L', s', i'). Es decir que F es tambien un homomorfismo de (L, s, i) en $(I_F, s'|_{I_F \times I_F}, i'|_{I_F \times I_F})$

Lema 11. Sean $(L, \mathbf{s}, \mathbf{i})$ y $(L', \mathbf{s}', \mathbf{i}')$ reticulados y sean (L, \leq) y (L', \leq') los posets asociados. Sea $F: L \to L'$ una funcion. Entonces F es un isomorfismo de $(L, \mathbf{s}, \mathbf{i})$ en $(L', \mathbf{s}', \mathbf{i}') \iff F$ es un isomorfismo de (L, \leq) en (L', \leq')

$$Proof.$$
 TODO

Definición 21. Sea $(L, \mathbf{s}, \mathbf{i})$ un reticulado. Una congruencia sobre $(L, \mathbf{s}, \mathbf{i})$ sera una relacion de equivalencia θ la cual cumpla:

$$x\theta x' y y\theta y' \Rightarrow (x \mathbf{s} y)\theta(x' \mathbf{s} y') y (x \mathbf{i} y)\theta(x' \mathbf{i} y')$$

Gracias a tal propiedad podemos definir sobre L/θ dos operaciones binarias $\stackrel{\sim}{\mathbf{s}}$ y $\stackrel{\sim}{\mathbf{i}}$

$$x/\theta \stackrel{\sim}{\mathbf{s}} y/\theta = (x \mathbf{s} y)/\theta$$

$$x/\theta \stackrel{\sim}{\mathbf{i}} y/\theta = (x \mathbf{i} y)/\theta$$

Definición 22. La terna $(L/\theta, \mathbf{s}, \mathbf{i})$ es llamada *cociente de* $(L, \mathbf{s}, \mathbf{i})$ sobre θ , y la denotaremos con $(L, \mathbf{s}, \mathbf{i})/\theta$

Lema 12. $(L/\theta, \tilde{s}, \tilde{i})$ es un reticulado. El orden parcial $\overset{\sim}{\leq}$ asociado a este reticulado cumple:

$$x/\theta \stackrel{\sim}{\leq} y/\theta \iff y\theta(x \ \boldsymbol{s} \ y)$$

Proof. TODO

Lema 13. Si $F:(L, \mathbf{s}, \mathbf{i}) \to (L', s', i')$ es un homomorfismo, entonces ker F es una congruencia sobre $(L, \mathbf{s}, \mathbf{i})$

Lema 14. Sea $(L, \mathbf{s}, \mathbf{i})$ un reticulado y sea θ una congruencia sobre $(L, \mathbf{s}, \mathbf{i})$. Entonces π_{θ} es un homomorfismo de $(L, \mathbf{s}, \mathbf{i})$ en $(L/\theta, \overset{\sim}{\mathbf{s}}, \overset{\sim}{\mathbf{i}})$. Ademas $\ker \pi_{\theta} = \theta$.

4 Reticulados acotados

Definición 23. Por un *reticulado acotado* entenderemos una 5-upla $(L, \mathbf{s}, \mathbf{i}, 0, 1)$, tal que $(L, \mathbf{s}, \mathbf{i})$ es un reticulado, $0, 1 \in L$, y ademas se cumplen las siguientes propiedades

- 1. 0 s x = x, para cada $x \in L$
- 2. 1 **s** x = 1, para cada $x \in L$

4.1 Subreticulados acotados

Definición 24. Dados reticulados acotados $(L, \mathbf{s}, \mathbf{i}, 0, 1)$ y (L', s', i', 0', 1') diremos que $(L, \mathbf{s}, \mathbf{i}, 0, 1)$ es un *subreticulado acotado de* (L', s', i', 0', 1') si se dan las siguientes condiciones:

- 1. $L \subseteq L'$
- 2. 0 = 0' y 1 = 1'
- 3. $s = s'|_{L \times L}$
- 4. $i = i'|_{L \times L}$

Sea $(L, \mathbf{s}, \mathbf{i}, 0, 1)$ un reticulado acotado. Un conjunto $S \subseteq L$ es llamado un *subuniverso* de $(L, \mathbf{s}, \mathbf{i}, 0, 1)$ si $0, 1 \in S$, y S es cerrado bajo las operaciones s e i.

4.2 Homomorfismo de reticulados acotados

Definición 25. Sean $(L, \mathbf{s}, \mathbf{i}, 0, 1)$ y (L', s', i', 0', 1') reticulados acotados. Una funcion $F: L \to L'$ sera llamada un homomorfismo de $(L, \mathbf{s}, \mathbf{i}, 0, 1)$ en (L', s', i', 0', 1') si para todo $x, y \in L$ se cumple que:

$$F(x \mathbf{s} y) = F(x)s'F(y)$$

$$F(x \mathbf{i} y) = F(x)i'F(y)$$

$$F(0) = 0'$$

$$F(1) = 1'$$

Un homomorfismo $(L, \mathbf{s}, \mathbf{i}, 0, 1)$ en (L', s', i', 0', 1') sera llamado *isomorfismo* cuando sea biyectivo y su inversa tambien sea un homomorfismo.

Escribiremos $F:(L, \mathbf{s}, \mathbf{i}, 0, 1) \to (L', s', i', 0', 1')$ cuando F sea un homomorfismo de $(L, \mathbf{s}, \mathbf{i}, 0, 1)$ en (L', s', i', 0', 1')

Escribiremos $(L, \mathbf{s}, \mathbf{i}, 0, 1) \stackrel{\simeq}{=} (L', s', i', 0', 1')$ cuando exista un isomorfismo de $(L, \mathbf{s}, \mathbf{i}, 0, 1)$ en (L', s', i', 0', 1')

Lema 15. Si $F: (L, s, i, 0, 1) \to (L', s', i', 0', 1')$ es un homomorfismo biyectivo, entonces F es un isomorfismo.

Proof. Se acepta sin demostracion

Lema 16. Sean (L, s, i, 0, 1) y (L', s', i', 0', 1') reticulados y sea $F: (L, s, i, 0, 1) \rightarrow (L', s', i', 0', 1')$ un homomorfismo. Entonces I_F es un subuniverso de (L', s', i', 0', 1'). Es decir que F es tambien un homomorfismo de (L, s, i, 0, 1) en $(I_F, s'|_{I_F \times I_F}, i'|_{I_F \times I_F}, 0', 1')$

Proof. Se acepta sin demostracion

4.3 Congruencias de reticulados acotados

Definición 26. Sea $(L, \mathbf{s}, \mathbf{i}, 0, 1)$ un reticulado acotado. Una congruencia sobre $(L, \mathbf{s}, \mathbf{i}, 0, 1)$ sera una relacion de equivalencia θ la cual sera una congruencia sobre $(L, \mathbf{s}, \mathbf{i})$. Tenemos definidas sobre L/θ dos operaciones binarias \mathbf{s} y \mathbf{i}

$$x/\theta \stackrel{\sim}{\mathbf{s}} y/\theta = (x \mathbf{s} y)/\theta$$

 $x/\theta \stackrel{\sim}{\mathbf{i}} y/\theta = (x \mathbf{i} y)/\theta$

La 5-upla $(L/\theta, \mathbf{\tilde{s}}, \mathbf{\tilde{i}}, 0/\theta, 1/\theta)$ es llamada cociente de $(L, \mathbf{s}, \mathbf{i}, 0, 1)$ sobre θ y la denotaremos con $(L, \mathbf{s}, \mathbf{i}, 0, 1)/\theta$

Lema 17. Sea $(L, \mathbf{s}, \mathbf{i}, 0, 1)$ un reticulado acotado $y \theta$ una congruencia sobre $(L, \mathbf{s}, \mathbf{i}, 0, 1)$.

1. $(L/\theta, \tilde{s}, \tilde{i}, 0/\theta, 1/\theta)$ es un reticulado acotado

2. π_{θ} es un homomorfismo de $(L, \mathbf{s}, \mathbf{i}, 0, 1)$ en $(L/\theta, \overset{\sim}{\mathbf{s}}, \overset{\sim}{\mathbf{i}}, 0/\theta, 1/\theta)$ cuyo nucleo es θ

Lema 18. Si $F: (L, s, i, 0, 1) \to (L', s', i', 0', 1')$ es un homomorfismo de reticulados acotados, entonces ker F es una congruencia sobre (L, s, i, 0, 1)

Proof. TODO □

5 Reticulados complementados

Definición 27. Sea $(L, \mathbf{s}, \mathbf{i}, 0, 1)$ un reticulado acotado. Dado $a \in L$, diremos que a es complementado cuando exista un elemento $b \in L$ (llamado complemento de a) tal que:

$$a \mathbf{s} b = 1$$

$$a \mathbf{i} b = 0$$

Definición 28. Entonderemos por reticulado complementado a una 6-upla $(L, \mathbf{s}, \mathbf{i}, {}^c, 0, 1)$ tal que $(L, \mathbf{s}, \mathbf{i}, 0, 1)$ es un reticulado acotado y c es una operación unaria sobre L tal que:

- 1. $x \mathbf{s} x^c = 1$, para cada $x \in L$
- 2. $x \mathbf{i} x^c = 0$, para cada $x \in L$

5.1 Subreticulados complementados

Definición 29. Dados reticulados complementados $(L, \mathbf{s}, \mathbf{i}, {}^c, 0, 1)$ y $(L', s', i', {}^c', 0', 1')$ diremos que $(L, \mathbf{s}, \mathbf{i}, {}^c, 0, 1)$ es un *subreticulado complementado de* $(L', s', i', {}^c', 0', 1')$ si se dan las siguientes condiciones:

- 1. $L \subseteq L'$
- 2. 0 = 0' y 1 = 1'
- 3. $s = s'|_{L \times L}$
- 4. $i = i'|_{L \times L}$
- 5. $c = c'|_{L}$

Sea $(L, \mathbf{s}, \mathbf{i}, {}^c, 0, 1)$ un reticulado complementado. Un conjunto $S \subseteq L$ es llamado un *subuniverso* de $(L, \mathbf{s}, \mathbf{i}, {}^c, 0, 1)$ si $0, 1 \in S$, y S es cerrado bajo las operaciones s, i y c .

5.2 Homomorfismo de reticulados complementados

Definición 30. Sean $(L, \mathbf{s}, \mathbf{i}, {}^c, 0, 1)$ y $(L', s', i', {}^{c'}, 0', 1')$ reticulados complementados. Una funcion $F: L \to L'$ sera llamada un homomorfismo de $(L, \mathbf{s}, \mathbf{i}, {}^c, 0, 1)$ en $(L', s', i', {}^{c'}, 0', 1')$ si para todo

 $x, y \in L$ se cumple que:

$$F(x \mathbf{s} y) = F(x)s'F(y)$$

$$F(x \mathbf{i} y) = F(x)i'F(y)$$

$$F(x^c) = F(x)^{c'}$$

$$F(0) = 0'$$

$$F(1) = 1'$$

Un homomorfismo $(L, \mathbf{s}, \mathbf{i}, {}^c, 0, 1)$ en $(L', s', i', {}^c, 0', 1')$ sera llamado *isomorfismo* cuando sea biyectivo y su inversa tambien sea un homomorfismo.

Escribiremos $F:(L,\mathbf{s},\mathbf{i},{}^c,0,1)\to (L',s',i',{}^{c'},0',1')$ cuando F sea un homomorfismo de $(L,\mathbf{s},\mathbf{i},{}^c,0,1)$ en $(L',s',i',{}^{c'},0',1')$

Escribiremos $(L, \mathbf{s}, \mathbf{i}, {}^c, 0, 1) \cong (L', s', i', {}^{c'}, 0', 1')$ cuando exista un isomorfismo de $(L, \mathbf{s}, \mathbf{i}, {}^c, 0, 1)$ en $(L', s', i', {}^{c'}, 0', 1')$

Lema 19. Si $F: (L, s, i, {}^c, 0, 1) \to (L', s', i', {}^{c'}, 0', 1')$ es un homomorfismo biyectivo, entonces F es un isomorfismo.

Proof. Se acepta sin demostracion

Lema 20. Sean $(L, s, i, {}^c, 0, 1)$ $y(L', s', i', {}^{c'}, 0', 1')$ reticulados y sea $F: (L, s, i, {}^c, 0, 1) \rightarrow (L', s', i', {}^{c'}, 0', 1')$ un homomorfismo. Entonces I_F es un subuniverso de $(L', s', i', {}^{c'}, 0', 1')$. Es decir que F es tambien un homomorfismo de $(L, s, i, {}^c, 0, 1)$ en $(I_F, s'|_{I_F \times I_F}, i'|_{I_F \times I_F}, {}^c|_{I_F}, 0', 1')$

Proof. Se acepta sin demostracion \Box

5.3 Congruencias de reticulados complementados

Definición 31. Sea $(L, \mathbf{s}, \mathbf{i}, {}^c, 0, 1)$ un reticulado complementado. Una congruencia sobre $(L, \mathbf{s}, \mathbf{i}, {}^c, 0, 1)$ sera una relacion de equivalencia θ sobre L la cual cumpla:

- 1. θ es una congruencia sobre $(L, \mathbf{s}, \mathbf{i}, 0, 1)$
- 2. $x/\theta = y/\theta$ implies $x^c/\theta = y^c/\theta$

Las condiciones anteriores nos permiten definir sobre L/θ dos operaciones binarias $\mathbf{\hat{s}}$ y $\mathbf{\hat{i}}$ y una operacion binaria $\mathbf{\hat{c}}$ de la siguiente manera:

$$x/\theta \stackrel{\sim}{\mathbf{s}} y/\theta = (x \mathbf{s} y)/\theta$$

 $x/\theta \stackrel{\sim}{\mathbf{i}} y/\theta = (x \mathbf{i} y)/\theta$
 $(x/\theta)^c = x^c/\theta$

La 6-upla $(L/\theta, \overset{\sim}{\mathbf{s}}, \overset{\sim}{\mathbf{i}}, \tilde{c}, 0/\theta, 1/\theta)$ es llamada *cociente de* $(L, \mathbf{s}, \mathbf{i}, {}^c, 0, 1)$ sobre θ y la denotaremos con $(L, \mathbf{s}, \mathbf{i}, {}^c, 0, 1)/\theta$

Lema 21. Sea $(L, \mathbf{s}, \mathbf{i}, {}^c, 0, 1)$ un reticulado complementado y θ una congruencia sobre $(L, \mathbf{s}, \mathbf{i}, {}^c, 0, 1)$.

1. $(L/\theta, \tilde{s}, \tilde{i}, \tilde{c}, 0/\theta, 1/\theta)$ es un reticulado complementado

2. π_{θ} es un homomorfismo de $(L, \boldsymbol{s}, \boldsymbol{i}, {}^{c}, 0, 1)$ en $(L/\theta, \overset{\sim}{\boldsymbol{s}}, \overset{\sim}{\boldsymbol{i}}, \tilde{c}, 0/\theta, 1/\theta)$ cuyo nucleo es θ

Lema 22. Si $F: (L, \mathbf{s}, \mathbf{i}, {}^c, 0, 1) \to (L', s', i', {}^{c'}, 0', 1')$ es un homomorfismo de reticulados complementados, entonces ker F es una congruencia sobre $(L, \mathbf{s}, \mathbf{i}, {}^c, 0, 1)$

Proof. Se acepta sin demostracion
$$\Box$$

6 Algebras de Boole

Definición 32. Un reticulado $(L, \mathbf{s}, \mathbf{i})$ se llamara distributivo cuando cumpla la siguiente propiedad

$$Dis_1 \quad x \mathbf{i} \ (y \mathbf{s} \ z) = (x \mathbf{i} \ y) \mathbf{s} \ (x \mathbf{i} \ z)$$
 cualesquiera sean $x, y, z \in L$

Diremos que un reticulado acotado $(L, \mathbf{s}, \mathbf{i}, 0, 1)$ (resp. complementado $(L, \mathbf{s}, \mathbf{i}, {}^c, 0, 1)$) es distributivo cuando $(L, \mathbf{s}, \mathbf{i})$ lo sea.

Consideremos la distributividad dual a Dis_1 , es decir:

$$Dis_2 \quad x \ \mathbf{s} \ (y \ \mathbf{i} \ z) = (x \ \mathbf{s} \ y) \ \mathbf{i} \ (x \ \mathbf{s} \ z)$$
cualesquiera sean $x,y,z \in L$

Lema 23. Sea (L, s, i) un reticulado. Entonces (L, s, i) satisface $Dis_1 \iff (L, s, i)$ satisface Dis_2

$$Proof.$$
 TODO

Definición 33. Por un Algebra de Boole entenderemos un reticulado complementado distributivo.

Lema 24. Si $(L, \mathbf{s}, \mathbf{i}, 0, 1)$ un reticulado acotado y distributivo, entonces todo elemento tiene a lo sumo un complemento.

Lema 25. Sea $(B, \mathbf{s}, \mathbf{i}, {}^c, 0, 1)$ un algebra de Boole, y sean $x, y \in B$. Se tiene que $y = (y \ \mathbf{i} \ x) \ \mathbf{s} \ (y \ \mathbf{i} \ x^c)$

Teorema 3. Sea (B, s, i, c, 0, 1) un algebra de Boole.

- 1. $(x i y)^c = x^c s y^c$
- 2. $(x \ s \ y)^c = x^c \ i \ y^c$
- 3. $x^{cc} = x$
- 4. $x i y = 0 \iff y \le x^c$
- 5. $x \le y \iff y^c \le x^c$

7 Teoremas del filtro primo y de Rasiova Sikorski

Definición 34. Un filtro de un reticulado $(L, \mathbf{s}, \mathbf{i})$ sera un subconjunto $F \subseteq L$ tal que:

- 1. $F \neq \emptyset$
- 2. $x, y \in F \Rightarrow x \mathbf{i} y \in F$
- $3. \ x \in F, x \le y \Rightarrow y \in F$

Definición 35. Dado un conjunto $S \subseteq L$, denotemos con [S) el siguiente conunto:

$$\{y \in L : y \ge s_1 \ \mathbf{i} \ \dots \ \mathbf{i} \ s_n, \text{ para algunos } s_1, \dots, s_n \in S, n \ge 1\}$$

Lema 26. Supongamos que S es no vacio. Entonces [S] es un filtro. Mas aun, si F es un filtro y $S \subseteq F$, entonces $[S] \subseteq F$. Es decir, [S] es el menor filtro que contiene a S.

Definición 36. Sea (P, \leq) un poset. Un subconjunto $C \subseteq P$ sera llamado una *cadena* si para cada $x, y \in C$ se tiene que $x \leq y$ o $y \leq x$

Lema 27 (Zorn). Sea (P, \leq) un poset y supogamos cada cadena de (P, \leq) tiene cota superior. Entonces hay un elemento maximal en (P, \leq)

Definición 37. Un filtro F de un reticulado $(L, \mathbf{s}, \mathbf{i})$ sera llamado primo cuando se cumplan:

- 1. $F \neq L$
- 2. $x \mathbf{s} y \in F \Rightarrow x \in F \text{ o } y \in F$

Teorema 4 (Teorema del Filtro Primo). Sea (L, s, i) un reticulado distributivo y F un filtro. Supongamos $x_0 \in L - F$. Entonces hay un filtro primo P tal que $x_0 \notin P$ $y F \subseteq P$

Teorema 5 (Rasiova y Sikorski). Sea $(B, \mathbf{s}, \mathbf{i}, {}^c, 0, 1)$ un algebra de Boole. Sea $x \in B, x \neq 0$. Supongamos que $(A_1, A_2, ...)$ es un infinitupla de subconjuntos de B tal que existe $\inf(A_j)$, para cada j = 1, 2, ... Entonces hay un filtro primo P el cual cumple:

1. $x \in P$

2. $A_j \subseteq P \Rightarrow inf(A_j) \in P$, para cada j = 1, 2, ...

Proof. Se acepta sin demostracion

8 Sintaxis de la logica de primer orden

8.1 Variables

Definición 38. Sea Var el siguiente conjunto de palabras del alfabeto $\{X, 0, 1, \dots, 9, 0, 1, \dots, 9\}$:

$$Var = \{X0, ..., X9, X10, ..., X20, ..., X100, ...\}$$

Es decir, el n-esimo elemento de Var sera la palabra de la forma $X\alpha$, donde α es el resultado de reemplazar en la representacion decimal de n su ultimo simbolo por el numeral en bold, y el resto por sus numerales en italics.

A los elementos de Var se los llamara variables.

Denotaremos con x_i al i-esimo elemento de Var, para cada $i \in \mathbf{N}$.

8.2 Tipos

Definición 39. Diremos que α es subpalabra (propia) de β cuando ($\alpha \notin \{\epsilon, \beta\}$ y) existan palabras δ, γ , tales que $\beta = \delta \alpha \gamma$

Definición 40. Por un tipo (de primer orden) entenderemos una 4-upla $\tau = (\mathcal{C}, \mathcal{F}, \mathcal{R}, a)$ tal que:

- 1. Hay alfabetos finitos $\Sigma_1, \Sigma_2, \Sigma_3$ tales:
 - (a) $\mathcal{C} \subseteq \Sigma_1^+, \mathcal{F} \subseteq \Sigma_2^+, \mathcal{R} \subseteq \Sigma_3^+$
 - (b) $\Sigma_1, \Sigma_2, \Sigma_3$ son disjuntos de a pares
 - (c) $\Sigma_1 \cup \Sigma_2 \cup \Sigma_3$ no contiene ningun simbolo de la lista: $\forall \exists \neg \lor \land \rightarrow \leftrightarrow$ () , \equiv X 0 1 ... 9 01 ... 9
- 2. $a: \mathcal{F} \cup \mathcal{R} \to \mathbf{N}$ es una funcion que a cada $p \in \mathcal{F} \cup \mathcal{R}$ le asocia un numero natural a(p), llamado la aridad de p
- 3. Ninguna palabra de \mathcal{C} (resp. \mathcal{F}, \mathcal{R}) es subpalabra propia de otra palabra de \mathcal{C} (resp. \mathcal{F}, \mathcal{R})

A los elementos de C (resp. \mathcal{F}, \mathcal{R}) los llamaremos nombres de constante (resp. nombres de funcion, nombres de relacion) de tipo τ

Dado $n \ge 1$, definamos

$$\mathcal{F}_n = \{ f \in \mathcal{F} : a(f) = n \}$$

$$\mathcal{R}_n = \{ r \in \mathcal{R} : a(r) = n \}$$

8.3 Terminos

Dado un tipo τ , definamos recursivamente los conjuntos de palabras T_k^{τ} , con $k \geq 0$, de la siguiente manera:

$$T_0^{\tau} = Var \cup \mathcal{C}$$

 $T_{k+1}^{\tau} = T_k^{\tau} \cup \{ f(t_1, \dots, t_n) : f \in \mathcal{F}_n, n \ge 1, t_1, \dots, t_n \in T_k^{\tau} \}$

Sea

$$T^\tau = \bigcup_{k \ge 0} T_k^\tau$$

Los elementos de T^{τ} seran llamados terminos de tipo τ . Un termino t es llamado cerrado si x_i no ocurre en t, para cada $i \in \mathbf{N}$.

Definimos tambien:

$$T_c^{\tau} = \{ t \in T^{\tau} : t \text{ es cerrado} \}$$

Lema 28. Supongamos $t \in T_k^{\tau}$, con $k \geq 1$. Entonces ya sea $t \in Var \cup \mathcal{C}$ o $t = f(t_1, \ldots, t_n)$, con $f \in \mathcal{F}_n, n \geq 1, t_1, \ldots, t_n \in T_{k-1}^{\tau}$

8.3.1 Unicidad de la lectura de terminos

Definición 41. Diremos que β es un tramo inicial (propio) de α si hay una palabra de γ tal que $\alpha = \beta \gamma$ (y $\beta \notin \{\epsilon, \alpha\}$). En forma similar se define tramo final (propio)

Lema 29 (Mordizqueo de Terminos). Sean $s, t \in T^{\tau}$ y supongamos que hay palabras x, y, z, con $y \neq \epsilon$ tales que s = xy y t = yz. Entonces $x = z = \epsilon$ o $s, t \in C$. En particular si un termino es tramo inicial o final de otro termino, entonces dichos terminos son iguales.

Proof. Se acepta sin demostracion
$$\Box$$

Teorema 6 (Lectura unica de terminos). Dado $t \in T^{\tau}$ se da una de las siguientes:

1. $t \in Var \cup C$

2. Hay unicos $n \geq 1, f \in \mathcal{F}_n, t_1, \ldots, t_n \in T^{\tau}$ tales que $t = f(t_1, \ldots, t_n)$

8.4 Ocurrencias

Definición 42. Dadas palabras $\alpha, \beta \in \Sigma^*$, con $|\alpha|, |\beta| \ge 1$, y un natural $i \in \{1, \dots, |\beta|\}$, se dice que α ocurre a partir de i en β cuandos se de que existan palabras δ, γ tales que $\beta = \delta \alpha \gamma$ y $|\delta| = i - 1$ Notese que una palabra α puede ocurrir en β a partir de i y tambien a partir de j, con $i \ne j$. Por ejemplo, aba ocurre dos veces en la palabra

abacaba

Cuando dos ocurrencias no se superpongan en alguna posicion, se las llamara disjuntas

A veces, diremos que una ocurrencia esta contenida o sucede dentro de otra. Por ejemplo, la segunda ocurrencia de b esta contenida en la segunda ocurrencia de aba

Tambien se podra hablar de *reemplazos* de ocurrencias por palabras. Por ejemplo, podriamos reemplazar las ocurrencias de *aca* por *abacaba*, dando como resultado

ababacababa

En algunos casos, se debera especificar que los reemplazos se haran simultaneamente en vez de secuencialmente. Por ejemplo, no es lo mismo primero reemplazar aca por d y luego d por bb

abbbba

Que hacerlo simultaneamente dando como resultado

abdba

8.5 Subterminos

Definición 43. Sean $s, t \in T^{\tau}$. Diremos que s es subtermino (propio) de t si (no es igual a t y) s es subpalabra de t.

Lema 30. Sean $r, s, t \in T^{\tau}$

- 1. Si $s \neq t = f(t_1, ..., t_n)$ y s ocurre en t, entonces dicha ocurrencia sucede dentro de algun $t_j, j = 1, ..., n$
- 2. Si r, s ocurren en t, entonces dichas ocurrencias son disjuntas o una ocurre dentro de otra. En particular las distintas ocurrencias de r en t son disjuntas
- 3. Si t' es el resultado de reemplazar una ocurrencia de s en t por r, entonces $t' \in T^{\tau}$

Proof. TODO

8.6 Formulas

Definición 44. Sea τ un tipo. Las palabras de alguna de las siguientes dos formas:

$$(t \equiv s)$$
, con $t, s \in T^{\tau}$
 $r(t_1, \dots, t_n)$, con $r \in \mathcal{R}_n, n \ge 1$, y $t_1, \dots, t_n \in T^{\tau}$

seran llamadas formulas atomicas de tipo τ

Definición 45. Dado un tipo τ definamos recursivamente los conjuntos de palabras F_k^{τ} , con $k \geq 0$, de la siguiente manera:

$$\begin{split} F_0^\tau &= \{\text{formulas atomicas}\} \\ F_{k+1}^\tau &= F_k^\tau \cup \{\neg \varphi : \varphi \in F_k^\tau\} \cup \{(\varphi \vee \psi) : \varphi, \psi \in F_k^\tau\} \cup \{(\varphi \wedge \psi) : \varphi, \psi \in F_k^\tau\} \\ &\quad \cup \{(\varphi \to \psi) : \varphi, \psi \in F_k^\tau\} \cup \{(\varphi \leftrightarrow \psi) : \varphi, \psi \in F_k^\tau\} \\ &\quad \cup \{\forall v\varphi : \varphi \in F_k^\tau, v \in Var\} \cup \{\exists v\varphi : \varphi \in F_k^\tau, v \in Var\} \end{split}$$

Sea

$$F^\tau = \bigcup_{k \geq 0} F_k^\tau$$

Los elementos de F^{τ} seran llamados formulas de tipo τ

Lema 31. Supongamos $\varphi \in F_k^{\tau}$, con $k \geq 1$. Entonces φ es de alguna de las siguientes formas:

- $(t \equiv s)$, $con \ t, s \in T^{\tau}$
- $r(t_1,\ldots,t_n)$, $con\ r\in\mathcal{R}_n,t_1,\ldots,t_n\in T^{\tau}$
- $(\varphi_1 \eta \varphi_2)$, $con \eta \in \{\land, \lor, \to, \leftrightarrow\}$, $\varphi_1, \varphi_2 \in F_{k-1}^{\tau}$
- $\neg \varphi_1, \ con \ \varphi_1 \in F_{k-1}^{\tau}$
- $Qv\varphi_1$, $con\ Q \in \{\forall, \exists\}, v \in Var\ y \varphi_1 \in F_{k-1}^{\tau}$

Proof. TODO

8.7 Unicidad de la lectura de formulas

Proposicion 1 (Mordizqueo de formulas). Si $\varphi, \psi \in F^{\tau}$ $y \ x, y, z$ son tales que $\varphi = xy$, $\psi = yz$ $y \neq \epsilon$, entonces $z = \epsilon$ $y \ x \in (\{\neg\} \cup \{Qv : Q \in \{\forall, \exists\} \ y \ v \in Var\})^*$. En particular ningun tramo inicial propio de una formula es una formula

Proof. Se acepta sin demostracion \Box

Teorema 7 (Lectura unica de formulas). Dada $\varphi \in F^{\tau}$ se da una y solo una de las siguientes:

- $(t \equiv s)$, $con \ t, s \in T^{\tau}$
- $r(t_1,\ldots,t_n)$, con $r \in \mathcal{R}_n, t_1,\ldots,t_n \in T^{\tau}$

- $(\varphi_1 \eta \varphi_2)$, $con \ \eta \in \{\land, \lor, \rightarrow, \leftrightarrow\}, \ \varphi_1, \varphi_2 \in F^{\tau}$
- $\neg \varphi_1, \ con \ \varphi_1 \in F^{\tau}$
- $Qv\varphi_1$, $con\ Q \in \{\forall, \exists\}, v \in Var\ y\ \varphi_1 \in F^{\tau}$

Proof. TODO □

8.8 Subformulas

Definición 46. Una formula φ sera llamada una *subformula (propia)* de una formula ψ , cuando φ (sea no igual a ψ y) tenga alguna ocurrencia en ψ .

Lema 32. $Sea \tau un tipo$

- 1. Las formulas atomicas no tienen subformulas propias
- 2. Si φ ocurre propiamente en $(\psi \eta \phi)$, entonces tal ocurrencia es en ψ o en ϕ
- 3. Si φ ocurre propiamente en $\neg \psi$, entonces tal ocurrencia es en ψ
- 4. Si φ ocurre propiamente en $Qx_k\psi$, entonces tal ocurrencia es en ψ
- 5. Si φ_1, φ_2 ocurren en φ , entonces dichas ocurrencias son disjuntas o una contiene a la otra
- 6. Si λ' es el resultado de reemplazar alguna ocurrencia de φ en λ por ψ , entonces $\lambda' \in F^{\tau}$

Proof. Se acepta sin demostracion \Box