5

The term "polymorphic locus" is a locus present in a population which shows variation between members of the population (*i.e.*, the most common allele has a frequency of less than 0.95). In contrast, a "monomorphic locus" is a genetic locus at little or no variations seen between members of the population (generally taken to be a locus at which the most common allele exceeds a frequency of 0.95 in the gene pool of the population).

The term "microorganism" as used herein means an organism too small to be observed with the unaided eye and includes, but is not limited to bacteria, virus, protozoans, fungi, and ciliates.

The term "microbial gene sequences" refers to gene sequences derived from a microorganism.

The term "bacteria" refers to any bacterial species including eubacterial and archaebacterial species.

The term "virus" refers to obligate, ultramicroscopic, intracellular parasites incapable of autonomous replication (i.e., replication requires the use of the host cell's machinery).

The term "multi-drug resistant" or multiple-drug resistant" refers to a microorganism which is resistant to more than one of the antibiotics or antimicrobial agents used in the treatment of said microorganism.

The term "sample" in the present specification and claims is used in its broadest sense. On the one hand it is meant to include a specimen or culture (e.g., microbiological cultures). On the other hand, it is meant to include both biological and environmental samples.

Biological samples may be animal, including human, fluid, solid (e.g., stool) or tissue, as well as liquid and solid food and feed products and ingredients such as dairy items, vegetables, meat and meat by-products, and waste. Biological samples may be obtained from all of the various families of domestic animals, as well as feral or wild animals, including, but not limited to, such animals as ungulates, bear, fish, lagamorphs, rodents, etc.

20

25

20

25

5

Environmental samples include environmental material such as surface matter, soil, water and industrial samples, as well as samples obtained from food and dairy processing instruments, apparatus, equipment, utensils, disposable and non-disposable items. These examples are not to be construed as limiting the sample types applicable to the present invention.

The term "source of target nucleic acid" refers to any sample which contains nucleic acids (RNA or DNA). Particularly preferred sources of target nucleic acids are biological samples including, but not limited to blood, saliva, cerebral spinal fluid, pleural fluid, milk, lymph, sputum and semen.

An oligonucleotide is said to be present in "excess" relative to another oligonucleotide (or target nucleic acid sequence) if that oligonucleotide is present at a higher molar concentration that the other oligonucleotide (or target nucleic acid sequence). When an oligonucleotide such as a probe oligonucleotide is present in a cleavage reaction in excess relative to the concentration of the complementary target nucleic acid sequence, the reaction may be used to indicate the amount of the target nucleic acid present. Typically, when present in excess, the probe oligonucleotide will be present at least a 100-fold molar excess; typically at least 1 pmole of each probe oligonucleotide would be used when the target nucleic acid sequence was present at about 10 fmoles or less.

A sample "suspected of containing" a first and a second target nucleic acid may contain either, both or neither target nucleic acid molecule.

The term "charge-balanced" oligonucleotide refers to an olignucleotide (the input oligonucleotide in a reaction) which has been modified such that the modified oligonucleotide bears a charge, such that when the modified oligonucleotide is either cleaved (i.e., shortened) or elongated, a resulting product bears a charge different from the input oligonucleotide (the "charge-unbalanced" oligonucleotide) thereby permitting separation of the input and reacted oligonucleotides on the basis of charge. The term "charge-balanced" does not imply that the modified or balanced oligonucleotide has a net neutral charge (although this can be the case). Charge-balancing refers to the design and modification of an oligonucleotide such that a specific reaction product

30

20

25

5

generated from this input oligonucleotide can be separated on the basis of charge from the input oligonuceotide.

For example, in an invader-directed cleavage assay in which the probe oligonucleotide bears the sequence: 5'-TTCTTTTCACCAGCGAGACGGG-3' (i.e., SEQ ID NO:61 without the modified bases) and cleavage of the probe occurs between the second and third residues, one possible charge-balanced version of this oligonuceotide would be: 5'-Cy3-AminoT-Amino-TCTTTTCACCAGCGAGAC GGG-3'. This modified oligonucleotide bears a net negative charge. After cleavage, the following oligonucleotides are generated: 5'-Cy3-AminoT-Amino-T-3'and 5'-CTTTTCACCAGCGAGACGGG-3' (residues 3-22of SEQ ID NO:61). 5'-Cy3-AminoT-Amino-T-3'bears a detectable moeity (the positively-charged Cy3 dye) and two amino-modified bases. The amino-modified bases and the Cy3 dye contribute positive charges in excess of the negative charges contributed by the phosphate groups and thus the 5'-Cy3-AminoT-Amino-T-3'oligonucleotide has a net positive charge. The other, longer cleavage fragment, like the input probe, bears a net negative charge. Because the 5'-Cy3-AminoT-Amino-T-3' fragment is separable on the basis of charge from the input probe (the charge-balanced oligonucleotide), it is referred to as a charge-unbalanced oligonucleotide. The longer cleavage product cannot be separated on the basis of charge from the input oligonucleotide as both oligonucleotides bear a net negative charge; thus, the longer cleavage product is not a charge-unbalanced oligonucleotide.

The term "net neutral charge" when used in reference to an oligonucletide, including modified oligonucleotides, indicates that the sum of the charges present (i.e, R-NH³⁺ groups on thymidines, the N3 nitrogen of cytosine, presence or absence or phosphate groups, etc.) under the desired reaction conditions is essentially zero. An oligonucletide having a net neutral charge would not migrate in an electrical field.

The term "net positive charge" when used in reference to an oligonucletide, including modified oligonucleotides, indicates that the sum of the charges present (*i.e.*, R-NH³⁺ groups on thymidines, the N3 nitrogen of cytosine, presence or absence or phosphate groups, etc.) under the desired reaction conditions is +1 or greater. An

30