清华大学本科生考试试题专用纸

考试课程: 概率论与数理统计 考试时间: 2009 年 6 月 18 日

姓名	学号 200	班级
/ =	1 2 <u>= 2 2 </u>	·/— ·//

- 一、填空题(20分,每空2分)
- 1. 若事件 $A \times B$ 独立,则以下命题不正确的是。
 - (A) $A = \overline{B}$ 一定独立 (B) $\overline{A} = \overline{B}$ 一定独立 (C) $AB = \overline{AB}$ 一定独立
- 2. 若随机变量 X 的分布函数连续,则_____。

 - (A) X 一定为离散型 (B) X 一定为连续型 (C) 以上选项都不对
- 3. 如果随机变量 X 的期望存在, P(X < -2) = 0.3 , P(X > 4) = 0.4 ,则______。

- (A) |EX| = E|X| (B) |EX| > E|X| (C) |EX| < E|X| (D) 条件不足无法判断
- 4. $x_1, x_2, \mathbf{L}, x_n (n > 1)$ 是来自正态总体 $N(\mathbf{m}, \mathbf{s}^2)$ 的简单随机样本,

$$\bar{x} = \frac{x_1 + x_2 + \mathbf{L} x_n}{n}$$
, $s = \sqrt{\frac{1}{n-1} \sum_{k=1}^{n} (x_k - \bar{x})^2}$ 。则下列关系正确的是_____。

- (A) E(s) > s (B) E(s) < s (C) E(s) = s (D) 不确定

- 5. 随机变量 X 服从几何分布 Ge(0.25),则 $E(X|X \ge 4) =$ ______。
- 6. 二维随机变量 $(X,Y) \sim N(0,0,1,1/4,1/3)$,设U = X 2Y 和V = X + 2Y,则U,V______ (填"独立"或"不独立"), $E(U^2|V=0)=$ _____。
- 8. $x_1, x_2, \mathbf{L}, x_2, \mathbf{E}$ 是来自正态总体 $N(\mathbf{m}, 4)$ 的简单随机样本, \bar{x} 是样本均值。对假设检验问题 当 $\mathbf{m} = 1.91$ 时,该检验犯第二类错误(受伪)的概率=
- 二、(14分) 盒中共有5个乒乓球,都是新球,每场比赛从中任取1个使用,比赛后仍放回盒中。
- 1. 求第3场比赛用球在前两场比赛都未使用过的概率;
- 2. 如果已知第3场比赛用球在前两场比赛都未使用过,求第3场比赛前盒中恰有4个球尚未使用 过的概率。

三、(24 分)设X、Y独立同分布,都服从期望为 1 的指数分布。令 $U = \max(X,Y)$, $V = \min(X, Y)$

- 1. 求(U,V)的联合概率密度函数;
- 2. 求U、V的期望和相关系数;
- 3. 证明: U-V 和V 相互独立。

四、(18分)设 X_1, X_2, L, X_3 相互独立,且均服从均匀分布U(0,1),定义随机变量

$$Y_k = \begin{cases} 4, X_{2k-1}^2 + X_{2k}^2 < 1 \\ 0, 其他 \end{cases}$$
, $k = 1, 2, \mathbf{L}, n$.

- 1. 对于任意给定的正整数n, 证明随机变量 $\overline{Y} = \frac{Y_1 + Y_2 + \mathbf{L} + Y_n}{n}$ 是期望等于p;
- 2. 试用中心极限定理估计,当n=400时, \overline{Y} 与p的绝对误差 $|p-\overline{Y}|$ 不大于 0.1 的概率(结果用标准正态分布函数 $\Phi(\cdot)$ 表示);
- 3. 利用 Chebyshev 不等式估计,n 取多大时能够保证有 90% 以上的把握使 $\left| p \overline{Y} \right|$ 不超过 0.1?

五、(12 分) 设总体
$$X$$
 的概率密度函数为 $p(x; \mathbf{m}) = \begin{cases} 2(\mathbf{m} + 1 - x), & \mathbf{m} \le x \le \mathbf{m} + 1 \\ 0, & \text{其中 } \mathbf{m} \end{cases}$, 其中 \mathbf{m} 是未

知参数, $x_1, x_2, \mathbf{L}, x_n$ 是来自该总体的简单随机样本。

- 1. 求参数 \mathbf{m} 的矩估计量 \mathbf{h} 和极大似然估计量 \mathbf{h}_2 ;
- 2. 问 \mathbf{h} , 和 \mathbf{h} , 是否为参数 \mathbf{m} 的无偏估计量,如果估计量有偏,则将其修正为无偏估计量。

六、(12分)设某企业的每日赢利(单位:万元)服从正态分布 $N(\mathbf{m}, \mathbf{s}^2)$ 。

- 1. 如果方差 $s^2 = 9$,对期望作置信度 95%的双侧对称置信区间估计,欲使置信区间的长度不超过 2,至少应该取容量多大的样本?
- 2. 如果方差未知,随机抽测 9 日,得数据的均值和标准差分别为 40.5 万元和 1.2 万元. 依据抽 测数据. 试以 95%的把握估计最小平均赢利。

附表

	$c_{0.025}^{2}(n)$	$c_{0.05}^{2}(n)$	$c_{0.95}^{2}(n)$	$c_{0.975}^{2}(n)$	$t_{0.95}(n)$	$t_{0.975}(n)$
n = 8	2.180	2.733	15.507	17.535	1.8595	2.3060
n = 9	2.700	3.325	16.919	19.023	1.8331	2.2622

X	1.282	1.440	1.645	1.960	2.326
标准正态分布的分布函数 $\Phi(x)$	0.900	0.925	0.950	0.975	0.990