PH 534 Autumn 2024-2025 – Quantum information and computation Practice problems

(Dated: August 2024)

1. Consider the vectors:
$$|0\rangle = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$$
, $|1\rangle = \begin{pmatrix} 2 \\ 3 \\ 4 \end{pmatrix}$, and $|2\rangle = \begin{pmatrix} 2 \\ 1 \\ -2 \end{pmatrix}$.

Show that you can create an orthonormal basis, i.e. $\langle i|j\rangle=\delta_{ij}$, using these vectors.

2. Given a vector space, the choice of a basis is not unique. Consider the bases $B = \{u_1, u_2, u_3\}$ and $\tilde{B} = \{\tilde{u}_1, \tilde{u}_2, \tilde{u}_3\}$ for $V = \mathbb{R}^3$, where

$$u_{1} = \begin{pmatrix} -3 \\ 0 \\ -3 \end{pmatrix}, u_{2} = \begin{pmatrix} -3 \\ 2 \\ -1 \end{pmatrix}, u_{3} = \begin{pmatrix} 1 \\ 6 \\ -1 \end{pmatrix}, \tag{1}$$

$$\tilde{u}_1 = \begin{pmatrix} -6 \\ -6 \\ 0 \end{pmatrix}, \tilde{u}_2 = \begin{pmatrix} -2 \\ -6 \\ 4 \end{pmatrix}, \tilde{u}_3 = \begin{pmatrix} -2 \\ -3 \\ 7 \end{pmatrix}.$$
 (2)

(a) Find the matrix that does this basis transformation.

(b) Express the vector
$$\begin{pmatrix} -5 \\ 8 \\ -5 \end{pmatrix}$$
 in terms of both the bases, B and \tilde{B} .

- 3. As with Hermitian operators, an anti-Hermitian operator is defined as, $B^{\dagger} := -B$. Prove that the eigenvalues of non-degenerate (all eigenvalues are distinct), anti-Hermitian operator B are purely imaginary.
- 4. Consider the state $|\psi\rangle = \alpha|0\rangle + \beta|1\rangle$ where $|\alpha|^2 + |\beta|^2 = 1$.
 - (a) Find the expectation value of the observable $\sigma_x, \sigma_y, \sigma_z$.
 - (b) What are the expectation values for $\sigma_x, \sigma_y, \sigma_z$ for $\alpha = 1/\sqrt{2}$ and $\beta = 1/\sqrt{2}$.

- (c) When $\alpha = \cos \theta$ and $\beta = \sin \theta e^{i\phi}$, find the expectation value for the observable $\hat{O} = \sin \alpha \cos \beta \sigma_x + \sin \alpha \sin \beta \sigma_y + \cos \alpha \sigma_z$.
- 5. Consider the Pauli matrices σ_x , σ_y , and σ_z . Refer to the Notes to study similarity transformations that change basis.
 - (a) Write the Pauli matrices in the basis of σ_x .
 - (b) Write the Pauli matrices in the basis of σ_y .
- 6. Consider a two-qubit system in the state $|\psi\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$.
 - (a) Compute the expectation value of $\sigma_z \otimes \sigma_z$, $\sigma_x \otimes \sigma_x$ and $\sigma_y \otimes \sigma_x$.
 - (b) Compute $\rho = |\psi\rangle\langle\psi|$ and take a partial trace over the second qubit. Is the resulting matrix pure or mixed?
- 7. Consider the following three-qubit states
 - (a) $|GHZ\rangle_{123} = \frac{|000\rangle + |111\rangle}{\sqrt{2}}$.
 - (b) $|W\rangle_{123} = \frac{1}{\sqrt{3}}(|001\rangle + |010\rangle + |100\rangle).$

Find partial trace $\operatorname{Tr}_1\{ |GHZ\rangle \langle GHZ| \}$, $\operatorname{Tr}_{12}\{ |GHZ\rangle \langle GHZ| \}$, $\operatorname{Tr}_1\{ |W\rangle \langle W| \}$ and $\operatorname{Tr}_{12}\{ |W\rangle \langle W| \}$.

8. We know that the evolution of a pure state $|\psi\rangle$ is given by

$$\frac{d\left|\psi\right\rangle}{dt} = -iH\left|\psi\right\rangle,\tag{3}$$

where H is the system Hamiltonian. Using this, derive an evolution equation for a density matrix given by $\rho = \sum_i |\psi_i\rangle \langle \psi_i|$.

- 9. For a state evolving under a time-dependent Hamiltonian $H(t)=\omega(t)\sigma_z$,
 - (a) Suppose $\omega(t)=A$ is a constant for all times, determine the time evolution operator U(t) for a time t.
 - (b) find the expectation value of σ_x at time t.
 - (c) Compute the expectation value of σ_z for this state as a function of time.
 - (d) Compute the state $|\psi(t)\rangle$ if the initial state is $|\psi(0)\rangle = |0\rangle$.

10. Consider the Hadamard gate *H*, which allows for the following transformation:

$$H|0\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle); \ H|1\rangle = \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle)$$

- (a) Find the matrix form of *H* in the $\{|0\rangle, |1\rangle\}$ basis.
- (b) Find the sum of outerproduct form of H, i.e. $H = \sum_{i,j} h_{i,j} |i\rangle\langle j|$.
- (c) Show that H is unitary and preserves the norm of any arbitrary state $|\psi\rangle=\alpha\,|0\rangle+\beta\,|1\rangle$.
- 11. Imagine a Stern-Gerlach setup, however with an inbuilt "demon" that sorts $|0\rangle$ and $|+\rangle$ with probability 2/3 and 1/3 respectively.
 - (a) Write down the density matrix (ρ) for this system.
 - (b) Find the eigenvalues of ρ and prove that it is a valid quantum state.
 - (c) Is this a pure state or a mixed state?
 - (d) Find the expectation value of the operator σ_z for this state.
- 12. For $|\psi\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$, find out the range of p for which the sets of density matrices: $\rho = p |\psi\rangle \langle \psi| + (1-p)\mathbb{I}_2/4$ are valid density matrices. \mathbb{I}_2 is the identity operator in the two-dimensional Hilbert space.
- 13. An operator of the form $\rho = \frac{1}{2}(\mathbb{I}_2 + \vec{r}.\vec{\sigma})$ gives the position of a point in a unit ball. Here, \mathbb{I}_2 is the identity operator, $\vec{\sigma} = (\sigma_x, \sigma_y, \sigma_z)$ and $\vec{r} = (r_x, r_y, r_z)$, $|\vec{r}| \leq 1$.
 - (a) Show that this is a valid density operator.
 - (b) Find out where eigenstates of σ_x, σ_y and σ_z will lie on the sphere, sketch them.
 - (c) Check that the surface of the sphere is formed by all the pure states.
 - (d) Identify the position of a state $\rho = \cos^2 \delta |0\rangle \langle 0| + \sin^2 \delta |1\rangle \langle 1|$. (express answer in polar coordinates)
- 14. Let T be a linear operator acting on a space of complex $d \times d$ matrices such that $T(A) \to A^T$, where A^T is the transpose of A. Consider a state ρ such that $r = 1, \theta = \pi/4, \phi = \pi/4$. Where on the Bloch sphere does $T(\rho)$ lie? Is $T(\rho)$ a valid density matrix?

15. Consider a quantum system described by a two-dimensional Hilbert space. The Positive Operator-Valued Measure (POVM) elements are given by:

$$E_1 = (1-p)\mathbb{I}_2/2 + p|0\rangle\langle 0|,$$

$$E_2 = (1-p)\mathbb{I}_2/2 + p|1\rangle\langle 1|,$$

where p is a real parameter with $0 \le p \le 1$, and \mathbb{I}_2 is the identity operator in the two-dimensional Hilbert space.

- (a) Show that the POVM elements E_1 and E_2 can be written as projectors in a higher-dimensional Hilbert space.
- (b) Identify the higher-dimensional space and construct the explicit projectors corresponding to E_1 and E_2 .
- 16. Consider the two measurement schemes given below.
 - (a) The first scheme $\Pi = \{\Pi_0, \Pi_1\}$, where

$$\Pi_0 = |0\rangle \langle 0|; \qquad \Pi_1 = |1\rangle \langle 1|,$$

that measures the quantum state $\sigma = \frac{1}{2} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$.

- i. Show that $\boldsymbol{\Pi}$ obeys the conditions required to define a measurement.
- ii. What is the probability of obtaining a measurement outcome 0? What about 1?
- iii. What is the probability of obtaining the following outputs: (i) (0, 0), (ii) (0, 1), (iii) (1, 0), (iv) (1, 1) in a sequential measurement?
- (b) Consider a different measurement $\mathcal{M} = \{M_0, M_1, M_2\}$, where

$$M_{0} = \sqrt{\frac{2\cos\theta}{1+\cos\theta}} |0\rangle \langle 0|; \quad M_{1} = \sqrt{\frac{1}{1+\cos\theta}} |\psi_{+}\rangle \langle \psi_{+}|; \quad M_{2} = \sqrt{\frac{1}{1+\cos\theta}} |\psi_{-}\rangle \langle \psi_{-}|,$$

and $|\psi_{\pm}\rangle = \sin(\theta/2)|0\rangle \mp \cos(\theta/2)|1\rangle$, that measures the same state σ as above.

- i. Show that $\mathcal M$ obeys the conditions required to define a measurement.
- ii. What is the probability of obtaining a measurement outcome 0? What about 1?

- iii. What is the probability of obtaining the following outputs: (i) (0, 0), (ii) (0, 1), (iii) (1, 0), (iv) (1, 1) in a sequential measurement?
- 17. Check whether the operator forms a POVM measurement or not: $\mathcal{M}_i = p |\psi_i\rangle \langle \psi_i| + (1-p)\mathbb{I}_4/4$, where $|\psi_i\rangle$ are the four Bell states given by $|\psi_{1,2}\rangle = \frac{1}{\sqrt{2}}(|00\rangle \pm |11\rangle)$ and $|\psi_{3,4}\rangle = \frac{1}{\sqrt{2}}(|01\rangle \pm |10\rangle)$. \mathbb{I}_4 is the identity matrix in the two-qubit Hilbert space.
- 18. The exponential of a scalar λ times a matrix A (a representation of a linear operator, as we will learn later) is defined as $e^{\lambda A} = \sum_{k=0}^{\infty} \frac{\lambda^k}{k!} A^k$. Note here that 0! is defined as 1 and $A^0 = 1$, the identity matrix with the same dimensionality as A.
 - (a) Consider two matrices X and Y. Expand $(X + Y)^2$.
 - (b) Assume for a matrix P that $P^2 = P$. Evaluate $e^{\lambda P}$, where λ is a real scalar.
 - (c) Prove that: $e^{-i\theta\sigma_x/2} = \cos(\theta/2)\mathbb{I}_2 i\sin(\theta/2)\sigma_x$, where \mathbb{I}_2 is the identity matrix.
 - (d) Given a matrix B, the matrix logarithm of B is defined as the matrix A such that $e^A = B$. Prove that \log is a non-unique function (i.e., for every B, there are several A that satisfy the matrix formula given).
 - (e) Prove that for two matrices, if AB = BA, then $\log(AB) = \log(A) + \log(B)$.
- 19. Unitary operators are defined by the relation $UU^{\dagger} = U^{\dagger}U := \mathbb{I}$. Show that the eigenvalues of unitary operators are complex numbers with unit amplitude. (hint: Let S be a matrix that diagonalizes U. Show that S diagonalizes U^{\dagger} and use this information).
- 20. Consider the Bloch sphere representation:
 - (a) Consider two normalized states $|\psi_{1,2}\rangle=\cos\left(\frac{\theta_{1,2}}{2}\right)|0\rangle+e^{i\phi_{1,2}}\sin\left(\frac{\theta_{1,2}}{2}\right)|1\rangle$. Find the condition on the Bloch angles for $|\psi_1\rangle+|\psi_2\rangle$ to be a normalized state as well.
 - (b) Consider $|\psi_0\rangle=|0\rangle$, $|\psi_{1,2}\rangle=-\frac{1}{2}\,|0\rangle\pm\frac{\sqrt{3}}{2}\,|1\rangle$. Denote these three quantum states on the Bloch sphere.
 - (c) Represent the quantum state $\rho=\begin{pmatrix}1/3&0\\0&2/3\end{pmatrix}$ on the Bloch Sphere. What

about the state
$$\rho = \begin{pmatrix} \frac{1}{3} & \frac{\sqrt{2}}{3}e^{-i\pi/4} \\ \frac{\sqrt{2}}{3}e^{i\pi/4} & \frac{2}{3} \end{pmatrix}$$
?

- (d) Devise two separate experiments to produce the two states in the problem above. (For additional amusement, try to come up with a "dial" that goes from 0 to 1 with the following property: If the dial is set at 0, the machine produces the pure state and at 1 it produces the mixed state.).
- (e) Consider the state $\rho = \frac{p}{2} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + (1-p) \begin{pmatrix} \frac{1}{3} & \frac{\sqrt{2}}{3}e^{-i\pi/4} \\ \frac{\sqrt{2}}{3}e^{i\pi/4} & \frac{2}{3} \end{pmatrix}$, $0 \le p \le 1$. Prove that this is a good density matrix.
- (f) For the state in the previous problem, find where this state is on the Bloch sphere as a function of p.