Лабораторная работа № 1 «Интерполяция алгебраическими многочленами»

На отрезке [a, b] заданы функции $f_1(x)$ и $f_2(x)$. Постройте интерполяционные многочлены в форме Ньютона степени n, интерполирующие каждую из них

- 1) на сетке равноотстоящих узлов;
- 2) на сетке чебышёвских узлов.

В дальнейшем интерполяционный многочлен степени n, построенный к функции $f_1(x)$ на сетке равноотстоящих узлов будем обозначать $P_{1,n}$, а на сетке чебышёвских узлов — $C_{1,n}$. Интерполяционный многочлен степени n, построенный к функции $f_2(x)$ на сетке равноотстоящих узлов будем обозначать $P_{2,n}$, а на сетке чебышёвских узлов — $C_{2,n}$.

По результатам лабораторной работы оформляется отчет. *В содержание отчета должна быть включена следующая информация:*

- Способ выбора узлов.
- Представление, использованное при построении интерполяционных многочленов.
- Три пары графиков: график $P_{1,n}$ и график $C_{1,n}$ для n=3, 10, 20. Каждый из этих графиков должен для сравнения быть совмещён с графиком интерполируемой функции $f_1(x)$.

Построение графиков: График $P_{1,n}$ строится по массиву точек, сгенерированному вашей программой. В файл необходимо вывести набор точек вида $(\overline{x}_i, P_{1,n}(\overline{x}_i))$, где $\overline{x}_i = a + i(b-a)/100$, i = 0..100. Для построения графика по данным из файла можно использовать всё, что угодно. К построению других графиков требования такие же.

• Таблицу вида (погрешность интерполяции)

n	$\left \max_{i=\overline{0,100}} \left P_{1,n}\left(\overline{x}_i\right) - f_1\left(\overline{x}_i\right) \right \right $	$\max_{i=\overline{0,100}} \left C_{1,n}\left(\overline{x}_i\right) - f_1\left(\overline{x}_i\right) \right $
:	:	:

для n от 3 до 30.

- Три пары графиков: график $P_{2,n}$ и график $C_{2,n}$ для $n=3,\ 10,\ 20$. Каждый из этих графиков должен для сравнения быть совмещён с графиком интерполируемой функции $f_2(x)$.
 - Таблицу вида (погрешность интерполяции)

n	$\max_{i=0,100} \left P_{2,n}\left(\overline{x}_i\right) - f_2\left(\overline{x}_i\right) \right $	$\max_{i=\overline{0,100}} \left C_{2,n}\left(\overline{x}_i\right) - f_2\left(\overline{x}_i\right) \right $
	•	•

для n от 3 до 30.

- Выводы о сходимости интерполяционного процесса по равноотстоящим и чебышёвским узлам.
 - Листинг программы с комментариями.

Варианты заданий

Номер варианта	Функции
1	$f_1(x) = e^{\cos x}, f_2(x) = x x -1 , [a,b] = [-3,3].$
2	$f_1(x) = x^3 \cos(3x-1), f_2(x) = 5\cos 3x + 3 , [a,b] = [-2,2].$

3	$f_1(x) = e^{\sin x}$, $f_2(x) = 2\sin 2x - 1 $, $[a,b] = [-3,3]$.
4	$f_1(x) = \sin x \cos x$, $f_2(x) = \frac{1}{1+12x^4}$, $[a,b] = [-3,3]$.
5	$f_1(x) = x\cos(x+5), f_2(x) = \frac{1}{1+25x^2}, [a,b] = [-5,5].$
6	$f_1(x) = \sin(\cos x), f_2(x) = x -1 , [a,b] = [-3,3].$
7	$f_1(x) = x^2 \cos 2x$, $f_2(x) = \frac{1}{1+5x^2}$, $[a,b] = [-3,3]$.
8	$f_1(x) = \sin 2x \ln(x+5), f_2(x) = \sqrt{2 x +x^2}, [a,b] = [-2,2].$
9	$f_1(x) = \sin x$, $f_2(x) = \sqrt{ x +4}$, $[a,b] = [-3,3]$.
10	$f_1(x) = x^3 \sin 2x$, $f_2(x) = x - 1$, $[a,b] = [-2,2]$.