

The rationale for the course:

One of the crucial intellectual decisions facing young scientists today is determining the balance between interpretable and data-driven approaches when addressing a scientific problem.

Interpretable science

Variables have meaning

The relationship between the Variables are interpretable mechanisms

Data driven science

A complex "non interpretable" model (as a neural network) is trained with examples, and the model does not share with us the rationale behind its success

Dynamical systems (in the framework of this course)

$$\frac{d\mathbf{x}}{dt} = \mathbf{f}(\mathbf{x}) \qquad \mathbf{x} \in R^n$$

$$x(t=0) = x_0$$

Under smoothness conditions for f(x) and ${}^{df}/{}_{dx}$ in a neighborhood of x_0 , the solution of the system exists and is unique. This means that each point (state) has a unique future (in geometrical terms, no autointersection of trajectories.

Dado un campo vector, que es el resultado de traducir reglas en el lenguaje de las matematicas,

$$\frac{dx}{dt} = f(x, \mu) \qquad x(0) = x_0$$

Encontramos el flujo

$$\phi(0,x)=x_0$$

$$\phi(t_2, \phi(t_1, x)) = \phi(t_2 + t_1, x)$$

Asi se predice con sistemas dinamicos

$$\phi(dt, x_0) = x_0 + f(x_0, \mu) dt$$

Con la regla, computo el flujo (i.e., el conjunto de soluciones)

La IA, es un paradigma diferente, Un nuevo modo de predecir

Artificial intelligence,

¿Como se "construyen" estas funciones?

Teorema de la aproximacion universal

Una red neuronal feedforward, con una capa oculta constituida por un numero finito de neuronas, puede aproximar a cualquier funcion continua en un *rango finito del input*, con cualquier grado de precision, si la funcion de activacion es no lineal, acotada y continua

si la funcion de activacion es no lineal, acotada (en el intervalo de interes) y continua

Intentemos aproximar esta funcion

Intentemos aproximar esta funcion

rango finito del que habla el teorema

Un modo intuitivamente amigable de aproximar la funcion es pensar en un conjunto finito de rectas, con pendientes cercanas a las tangentes en algun conjunto de puntos del dominio.

Como generar esas rectas? (con funciones en todo el rango!)

Vamos a introducir la funcion ReLu (rectified unit), Y a trabajar con ella para poder lograr el ajuste deseado

R(x)=max(0,x)

Como construimos otra funcion, a partir de esta, con el "quiebre" en x=1 ?

$$R(x) = \max(0, x)$$

 $R(x) = \max(0, x)$ En x=0 tenemos el "quiebre"

Construyamos otra funcion, con el "quiebre" en *x=1*

$$f_1 = R(x - 1)$$

En x-1=0 tenemos el "quiebre"

Tambien podemos cambiar la pendiente de las Funciones, multiplicando a la ReLu por un factor

Cambiando el signo de la variable en el argumento, Que la funcion se planche en 0 despues del quiebre.

Sumando dos funciones con quiebres en dos puntos, armo una funcion de tres tramos

Intentemos aproximar esta funcion... con Relus

Empezamos con una funcion Que se planche a partir de Si x>-1, o sea, cuando x+1>0

Pero como la ReLu se hace Cero si el argumento es negativo

El argumento de ReLu Debe ser negativo si x+1>0

F= alfa ReLu(-(x+1))

Y como quiero que la pendiente Sea -20,

f1(x) = -20ReLu(-x-1)

Ahora bien: como representar a estas funciones como una red neuronal?

Ahora bien: como representar a estas funciones como una red neuronal?

Donde cada unidad se rige por estas reglas:

$$x \longrightarrow output(x) = R(x - b))$$

$$R(x) = \max(0, x),$$
 b se conoce como "bias")

$$Output(x) = 20 R(-x-1) + 5 R(x+1) - 5R(x) + 5 R(x-2) + 15 R(x-3)$$

$$Output(x) = 20 R(-x-1) + 5 R(x+1) - 5R(x) + 5 R(x-2) + 15 R(x-3)$$

Buena aproximacion en un rango dado!

Buena aproximacion en un rango dado!

Teorema de aproximacion universal

Una red neuronal feedforward, con una capa oculta constituida por un numero finito de neuronas, puede aproximar a cualquier funcion continua en un rango finito del input, con cualquier grado de precision, si la funcion de activacion es no lineal, acotada y continua

Con otras funciones no lineales puede argumentarse de modo similar.

$$S(x) = \frac{1}{1 + e^{-x}}$$

$$S(x+5) = \frac{1}{1+e^{-(x+5)}}$$

$$S(x) = \frac{1}{1+e^{-x}}$$

$$f(x) = S(x+5) - S(x)$$

$$f(x) = S(x + 2.5) - S(x)$$
 $g(x) = S(x - 2.5) - S(x - 5)$

$$S(x+5) = \frac{1}{1 + e^{-(x+5)}}$$

$$S(x) = \frac{1}{1 + e^{-(x+0)}}$$

$$S(x+5) = \frac{1}{1+e^{-(x+5)}}$$

$$S(x) = \frac{1}{1+e^{-(x+0)}}$$

$$S(x+5) = \frac{1}{1+e^{-(x+0)}}$$

$$S(x) = \frac{1}{1+e^{-(x+0)}}$$

$$S(x) = \frac{1}{1+e^{-(x-5)}}$$

Que se aprende cuando se aprende?

$$\dot{x} = \mu_j \left(-x + S \left(\rho_{x_{ij}} + ax - by \right) \right) 1.1$$

$$\dot{y} = \mu_j \left(-y + S \left(\rho_y + cx - dy \right) \right) + \kappa_{ij} \delta(t - T_{ij}), 1.2$$

Sugestiva similitud

$$\dot{x} = \mu_j \left(-x + S \left(\rho_{x_{ij}} + ax - by \right) \right) 1.1$$

$$\dot{y} = \mu_j \left(-y + S \left(\rho_y + cx - dy \right) \right) + \kappa_{ij} \delta(t - T_{ij}), 1.2$$

Aunque la historia fue distinta... La idea era reproducir puertas logicas

 McCulloch y Pitts: armar puertas lógicas, y mostrar que con neuronas se puede computar.

$$\frac{dx}{dt} = -x + S\left(\rho + \sum_{1}^{n} c_{j} x_{j}\right)$$

$$output = S\left(\rho + \sum_{1}^{n} c_{j} x_{j}\right).$$

Se puede, por ejemplo, armar una puerta lógica "AND", que dará un estado "encendido" cuando ambas entradas estén encendidas, si la entrada ρ es lo suficientemente negativa.

Si quisiéramos, en cambio, realizar una puerta "**OR inclusiva**", podríamos arreglar que el umbral fuera mas pequeño, de modo <u>que</u> con una sola entrada encendida, ya tuviésemos una salida encendida:

Es la figura vemos como basta con una entrada positiva para que ya la salida sea positiva.

Finalmente, una bastante sutil: x1 XNOR x2.

Esta red da 1 si ambas entradas son uno, o ambas son cero.

Si lo pensamos como un mecanismo de regresión logística, es bastante sutil:

x_1	x_2	a_1 (AND)	a_2 (Nx1 and Nx2)	Output (x1 or x2)
0	0	0	1	1
0	1	0	0	0
1	0	0	0	0
1	1	1	0	1

Este ejemplo, además de introducir una puerta lógica, pone en evidencia como con mas capas, se logran funciones no triviales de las entradas.

2. Rosenblatt: el perceptron.

Con la misma matemática, pero una concepción radicalmente diferente (y mucho mas cercana al actual proceso de Deep learning), Rosenblatt propuso el perceptron: una "red" de un elemento con una capa de entradas x_i , que apropiadamente sumadas, entran a una unidad no lineal (output tipo sigmoidea):

$$out(t) = S(\sum_{i=1}^{n} W_i x_i)$$

Lo interesante es que no diseñamos, como en el caso de las puertas lógicas, los pesos para tener una salida dada, si no que sometemos a la red a un aprendizaje, cuya regla es:

$$\delta w_i = \alpha \, \delta x_i$$

$$\delta = salida - maestro$$

(0 si es correcto, y +1 o -1 si no lo es)