Лабораторная работа №2 «Дискретное и дискретное во времени преобразования Фурье (ДВПФ, ДПФ)»

Модуль 3. Связь между ДВПФ и ДПФ.

- ДПФ для последовательностей отсчетов конечной длительности.
 - о Форма записи ДПФ
 - \circ Связь между ДПФ и ДВПФ в точках v = n / N.
 - о Интерполяция ДВПФ добавлением нулевых отсчетов сигнал (Zero Padding)

- \circ Интерполяционная формула восстановления ДВПФ по коэффициентам ДПФ в точках $v \neq n / N$
- ДПФ периодических последовательностей
 - о Форма записи ДПФ
 - о Связь между ДПФ и ДВПФ для периодических последовательностей.
- Частотная ось ДПФ

ДПФ для последовательностей отсчетов конечной длительности.

Форма записи ДПФ

Пусть x[k] — последовательность отсчетов сигнала длиной в N отсчетов $k=0,1,\ldots,N-1$. Тогда прямое и обратное дискретное преобразование Фурье (ДПФ) определяется следующим образом

$$X[n] = \sum_{k=0}^{N-1} x[k] \exp\left(-j\frac{2\pi}{N}nk\right),$$

$$x[k] = \frac{1}{N} \sum_{n=0}^{N-1} X[n] \exp\left(j\frac{2\pi}{N}nk\right), \quad k = 0, 1, \dots, N-1.$$

Функцию X[n] обычно рассматривают только для значений $n=0,1,\dots,N-1$, при этом она является периодической с периодом N , $n\in Z$.

В обратном преобразовании необходимо ограничить длительность восстанавливаемой последовательности отсчетов сигнала, т.е. рассматривать x[k] для значений

k = 0, 1, ..., N-1. Если длительность не ограничить, то будет восстановлена последовательность, являющаяся периодическим продолжением x[k].

Связь между ДПФ и ДВПФ в точках v = n / N.

Рассмотрим N- точечную последовательность x[k]. Ее ДВПФ

$$X(v) = \sum_{k=0}^{N-1} x[k] \exp(-j2\pi vk).$$

ДПФ для последовательности x[k], имеет следующий вид:

$$X[n] = \sum_{k=0}^{N-1} x[k] \exp\left(-j2\pi \frac{n}{N}k\right).$$

Сравнивая формулы, в точках v = n / N получаем равенство

$$X(\mathbf{v})\big|_{\mathbf{v}=n/N} = X[n]$$

Это означает, что коэффициенты ДПФ X[n] равны отсчетам функции X(v), взятым в точках v=n/N (с шагом $\Delta v=1/N$).

Пример.

Рассмотрим для N = 20 последовательность отсчетов

$$x[k] = \begin{cases} \sin\left(2\pi \frac{4,5}{20}k\right) + \sin\left(2\pi \frac{7,5}{20}k\right), 0 \le k < N, \\ 0, \{k < 0\} \cup \{k \ge N\}. \end{cases}$$

ДПФ и ДВПФ этой последовательности для частот $v \in [0;1]$ изображены по модулю на рисунке. Заметим, что в точках v = n/20

$$X(\mathbf{v})\big|_{\mathbf{v}=n/20}=X[n],$$

т.е. значения ДВПФ и ДПФ (с точностью до использованной нормировки) совпадают. Расстояние между соседними отсчетами по оси частот $\Delta v = 1/N = 1/20 = 0.05$.

Заметим, что частоты синусоид в ней не совпадают с бинами ДПФ (1 бин соответствует 1/N):

$$v_1 = \frac{4.5}{20} = 0.225$$
, $v_2 = \frac{7.5}{20} = 0.375$.

В ДВПФ вблизи 1 этих частот мы наблюдаем максимумы.

Вопрос. Как улучшить качество визуализации этих максимумов с помощью ДПФ?

¹ Вопрос о смещении максимумов будет рассмотрен в весеннем семестре.

Интерполяция ДВПФ добавлением нулевых отсчетов в сигнал (Zero Padding)

Улучшим качество визуализации ДВПФ при помощи отсчетов ДПФ. Получим M — точечную последовательность. Добавим в исходную последовательность x[k] M-N отсчетов, равных нулю:

$$y[k] = \begin{cases} x[k], 0 \le k \le N - 1; \\ 0, N \le k \le M - 1. \end{cases}$$

Ее ДПФ M — точечное и определяется формулой

$$Y[n] = \sum_{k=0}^{M-1} y[k] \exp\left(-j\frac{2\pi}{M}nk\right) = \sum_{k=0}^{N-1} x[k] \exp\left(-j\frac{2\pi}{M}nk\right).$$

При этом ДВПФ не изменяется:

$$Y(v) = \sum_{k=0}^{M-1} x[k] \exp(-j2\pi vk) = \sum_{k=0}^{N-1} x[k] \exp(-j2\pi vk).$$

С помощью добавления нулевых отсчетов улучшено качество визуализации ДВПФ, поскольку число точек $\mathbf{v}_n = n \, / \, M$ на одном периоде больше, чем $\mathbf{v}_n = n \, / \, N$.

Возврат к примеру.

Теперь дополним рассматриваемый в ДПФ участок сигнала нулевыми отсчетами до длины 50. Отсчетов ДПФ на одном периоде станет больше, расстояние между ними $\Delta v = 1/50$.

Интерполяционная формула восстановления ДВПФ по коэффициентам ДПФ в точках $v \neq n / N$

Рассмотрим N- точечную последовательность x[k]. Ее ДВПФ

$$X(v) = \sum_{k=0}^{N-1} x[k] \exp(-j2\pi vk).$$

Обратное ДПФ для последовательности x[k]

$$x[k] = \frac{1}{N} \sum_{n=0}^{N-1} X[n] \exp\left(j \frac{2\pi}{N} nk\right).$$

$$X(v) = \frac{1}{N} \sum_{k=0}^{N-1} \left(\sum_{n=0}^{N-1} X[n] \exp\left(j\frac{2\pi}{N}nk\right) \right) \exp\left(-j2\pi vk\right) =$$

$$= \frac{1}{N} \sum_{n=0}^{N-1} X[n] \sum_{k=0}^{N-1} \exp\left(-j2\pi \left(v - \frac{n}{N}\right)k\right).$$

Рассмотрим отдельно множитель $\sum\limits_{k=0}^{N-1} \exp \left(-j2\pi \left(v-n/N\right)k\right)$.

Это сумма N членов геометрической прогрессии с первым членом $b_1=1$, и знаменателем $q=\exp \left(-j2\pi (v-n/N)\right)$.

В точках $v \neq n/N$, где $q \neq 1$, получаем (используя известные формулы $S_N = b_1(1-q^N)/(1-q)$ и $\sin \varphi = (e^{j\varphi} - e^{-j\varphi})/(2j)$):

$$\sum_{k=0}^{N-1} \exp\left(-j2\pi\left(\nu - \frac{n}{N}\right)k\right) = \frac{1 - \exp\left(-j2\pi\left(\nu - n/N\right)N\right)}{1 - \exp\left(-j2\pi\left(\nu - n/N\right)\right)} =$$

$$= \frac{e^{-j\pi(\nu - n/N)N} \left\{\exp\left(j\pi\left(\nu - n/N\right)N\right) - \exp\left(-j\pi\left(\nu - n/N\right)N\right)\right\}}{e^{-j\pi(\nu - n/N)} \left\{\exp\left(j\pi\left(\nu - n/N\right)\right) - \exp\left(-j\pi\left(\nu - n/N\right)N\right)\right\}} =$$

$$= \exp\left(-j\pi\left(\nu - n/N\right)(N-1)\right) \frac{\sin\left(\pi(\nu - n/N)N\right)}{\sin\left(\pi(\nu - n/N)\right)}$$

Подставив формулу для суммы в связь, получаем интерполяционную формулу восстановления континуальной функции X(v) по коэффициентам ДПФ X[n]:

$$X(v) = \frac{1}{N} \sum_{n=0}^{N-1} X[n] \frac{\sin(\pi(v-n/N)N)}{\sin(\pi(v-n/N))} \exp(-j\pi(v-n/N)(N-1)).$$

Заметим, что для последовательностей конечной длительности ДВПФ непрерывно, а значит для интерполяционной формулы выполняется

$$\lim_{v\to n/N} X(v) = X[n].$$

ДПФ периодических последовательностей Форма записи ДПФ

Пусть x[k], $k \in \mathbb{Z}$ — периодическая последовательность отсчетов сигнала с периодом N. Тогда прямое и обратное дискретное преобразование Фурье (ДПФ) последовательности x[k] определяется следующим образом

$$\tilde{X}[n] = \frac{1}{N} \sum_{k=0}^{N-1} x[k] \exp\left(-j\frac{2\pi}{N}nk\right),$$

$$x[k] = \sum_{n=0}^{N-1} \tilde{X}[n] \exp\left(j\frac{2\pi}{N}nk\right).$$

 $ilde{X}[n]$ может рассматриваться как N- точечная последовательность коэффициентов ДПФ (отсчетов ДПФ), где $n=0,1,\dots,N-1$. $ilde{X}[n]$ может также рассматриваться как периодическая последовательность с периодом $N,\ n\in Z$. В обратном преобразовании последовательность x[k] также получится периодической.

Связь между ДПФ и ДВПФ для периодических последовательностей.

Пусть аналоговый периодический сигнал x(t) с периодом T дискретизован с шагом $\Delta t = T/N$. Тогда на одном периоде x(t) будет содержаться N отсчетов (если крайний правый отсчет попадает на границу периода, то будем считать его относящимся к следующему периоду). Выделим для последовательности отсчетов x[k] один период

$$x_N[k] = \begin{cases} x[k], 0 \le k \le N - 1; \\ 0, \{k < 0\} \cup \{k \ge N\}. \end{cases}$$

Пусть $x_N[k] \leftrightarrow X_N(v)$. Последовательность x[k] может быть представлена в виде дискретной сверки

$$x_N[k] \otimes \sum_{m=-\infty}^{\infty} \mathbf{1}[k-mN].$$

Причем

$$\sum_{m=-\infty}^{\infty} \mathbf{1} [k - mN] \overset{DTFT}{\longleftrightarrow} \frac{1}{N} \sum_{n=-\infty}^{\infty} \delta \left(v - \frac{n}{N} \right).$$

Тогда

$$X(v) = \frac{1}{N} X_N(v) \sum_{n=-\infty}^{\infty} \delta\left(v - \frac{n}{N}\right).$$

Последовательность $x_N[k]$ имеет конечную длительность, является абсолютно суммируемой. $X_N(v)$ непрерывна.

$$X(v) = \frac{1}{N} X_N(v) \sum_{n=-\infty}^{\infty} \delta\left(v - \frac{n}{N}\right).$$

При этом X(v) (ДВПФ периодической последовательности x[k]) имеет дискретную структуру, которой в континуальной записи соответствует некоторый периодический набор δ -функции. Заметим, что для каждого слагаемого в сумме по свойствам δ -функции выполняется равенство

$$\frac{1}{N}X_N(\nu)\delta\left(\nu-\frac{n}{N}\right) = \frac{1}{N}X_N\left(\frac{n}{N}\right)\delta\left(\nu-\frac{n}{N}\right).$$

Введем периодическую функцию дискретного аргумента $\tilde{X}[n]$, значения которой будут соответствовать площадям дельта-функций в X(v) в точках v=n/N:

$$X(v) = \sum_{n=-\infty}^{\infty} \tilde{X}[n] \, \delta\left(v - \frac{n}{N}\right).$$

При этом

$$\tilde{X}[n] = \frac{1}{N} X_N \left(\frac{n}{N} \right) = \frac{1}{N} \sum_{k=0}^{N-1} x[k] \exp(-j2\pi \frac{n}{N} k).$$

$$x[k] = \int_{-1/2}^{1/2} X(v) \exp(j2\pi vk) dv = \int_{0}^{1} X(v) \exp(j2\pi vk) dv =$$

$$= \int_{0}^{1} X_{N}(v) \frac{1}{N} \sum_{n=-\infty}^{\infty} \delta\left(v - \frac{n}{N}\right) \exp(j2\pi vk) dv =$$

$$= \frac{1}{N} \sum_{n=0}^{N-1} X_{N}(\frac{n}{N}) \exp(j2\pi \frac{n}{N}k).$$

$$x[k] = \sum_{n=0}^{N-1} \tilde{X}[n] \exp(j2\pi \frac{n}{N}k).$$

Получаем следующую пару формул

$$\tilde{X}[n] = \frac{1}{N} \sum_{k=0}^{N-1} x[k] \exp(-j2\pi \frac{n}{N}k),$$

$$x[k] = \sum_{n=0}^{N-1} \tilde{X}[n] \exp(j2\pi \frac{n}{N}k),$$

определяющую прямое и обратное дискретное преобразование Фурье (ДПФ). В ДПФ частотная (n) и временная (k) переменная дискретны, функция $\tilde{X}[n]$ периодична с периодом N, а в качестве главного периода для отсчетов ДПФ выбирают такой, на котором $n=0,\ldots,N-1$.

Пример. Предположим, что имеется периодическая последовательность ($\infty < k < +\infty$)

$$x[k] = \cos(2\pi \frac{3}{16}k).$$

Учитывая, что

$$\cos(2\pi \frac{3}{16}k) = \frac{1}{2}\exp(j2\pi \frac{3}{16}k) + \frac{1}{2}\exp(-j2\pi \frac{3}{16}k),$$

получаем для ДВПФ этой последовательности

$$X(v) = \sum_{n=-\infty}^{\infty} \frac{1}{2} \delta(v - \frac{3}{16} - n) + \frac{1}{2} \delta(v + \frac{3}{16} - n).$$

X(v) содержит две δ -функции с площадями 1/2 на каждом периоде. Рассмотрим период $0 \le v < 1$ (правую крайнюю точку можем не включать из-за периодичности X(v)). На нем содержится две δ -функции в точках $v_1 = \frac{3}{16}$ и $v_2 = \frac{13}{16}$. Последовательность имеет период N = 16 точек. Это означает, что можно установить значения 16-точечного ДПФ $\tilde{X}[3] = 1/2$, $\tilde{X}[13] = 1/2$, а в остальных точках главного периода $\tilde{X}[n] = 0$.

Пример. ДВПФ и окна

Пример.

Предположим, что нужно вычислить ДВПФ последовательности отсчетов y[k] = x[k]w[k], где

$$x[k] = \cos(2\pi \frac{3}{16}k),$$

w[k] — прямоугольное окно длиной N = 16 отсчетов:

$$w[k] = \sum_{m=0}^{15} \mathbf{1}[k-m].$$

Решение. Заметим, что

$$W(v) = e^{-j(N-1)\pi v} \frac{\sin(N\pi v)}{\sin(\pi v)},$$

$$X(v) = 0.5 \sum_{m=-\infty}^{\infty} \delta(v - \frac{3}{16} - m) + 0.5 \sum_{m=-\infty}^{\infty} \delta(v + \frac{3}{16} - m).$$

Способ 1. ДВПФ последовательности Y(v) может быть представлено в виде циклической свертки

$$Y(\mathbf{v}) = \int_{-1/2}^{1/2} X(\tilde{\mathbf{v}}) W(\mathbf{v} - \tilde{\mathbf{v}}) d\tilde{\mathbf{v}} = \int_{-1/2}^{1/2} W(\tilde{\mathbf{v}}) X(\mathbf{v} - \tilde{\mathbf{v}}) d\tilde{\mathbf{v}}$$

Используя фильтрующее свойство дельта-функции

$$\int_{a}^{b} W(v)\delta(v-v_{1})dv = \begin{cases}
W(v_{1}), a < v_{1} < b, \\
0.5W(v_{1}), (v_{1} = a) \cup (v_{1} = b), \\
0, (v_{1} < a) \cup (v_{1} > b),
\end{cases}$$

получаем, что

$$Y(v) = 0.5W(v - \frac{3}{16}) + 0.5W(v + \frac{3}{16}).$$

Пример. ДВПФ и окна

Способ 2. Аналогично через теорему смещения

$$y[k] = \left(\frac{1}{2}\exp(j2\pi k\frac{3}{16}) + \frac{1}{2}\exp(-j2\pi k\frac{3}{16})\right)w[k],$$
$$Y(v) = 0.5W(v - \frac{3}{16}) + 0.5W(v + \frac{3}{16}).$$

ДПВФ последовательности y[k]

$$Y(v) = \frac{1}{2} \exp\left(-j(N-1)\pi(v - \frac{3}{16})\right) \frac{\sin(N\pi(v - \frac{3}{16}))}{\sin(\pi(v - \frac{3}{16}))} +$$

$$+\frac{1}{2}\exp\left(-j(N-1)\pi(\nu+\frac{3}{16})\right)\frac{\sin(N\pi(\nu+\frac{3}{16}))}{\sin(\pi(\nu+\frac{3}{16}))}.$$

Частотная ось ДПФ

Частотная ось ДПФ

Отчету N- точечного ДПФ с номером n в случае сигнала конечной длительности соответствует значение ДВПФ в точке v=n/N по оси нормированных частот:

$$X(\mathbf{v})\big|_{\mathbf{v}=n/N} = X[n].$$

Если рассматривается периодическая последовательность отсчетов, и коэффициенты ДПФ вычисляются по периоду последовательности, то весам дельта-функций в точках v=n/N в ДВПФ соответствуют отсчеты ДПФ с номерами n:

$$X(v) = \sum_{n=-\infty}^{\infty} \tilde{X}[n] \,\delta\left(v - \frac{n}{N}\right).$$

Эти два обстоятельства позволяют сопоставить отсчётам ДПФ частоты в спектре дискретизованного сигнала. Учитывая, что $v=f/f_{\pi}=f\Delta t$, где f_{π} — частота дискретизации, Δt — шаг дискретизации, получаем, что отсчету с номером n соответствует частота $f=nf_{\pi}/N=n/(N\Delta t)$ Гц. Разрешение по оси частот при ДПФ анализе составляет f_{π}/N Гц.

Частотная	Связь	Разрешение	Диапазон
переменная и	частотной	по частоте	изменения
ee	переменной		частоты,
размерность	с номером		соответствующий
	отсчета ДПФ		отсчетам $[0,N)$
f , [Гц]	$f = \frac{nf_{\pi}}{N}$	$\Delta f = \frac{f_{\pi}}{N}$	$[0,f_{_{ m I\!\! I}})$
ω, [рад/с]	$\omega = \frac{n\omega_{\rm d}}{N}$	$\Delta \omega = \frac{\omega_{_{\rm I\! I}}}{N}$	$[0,\omega_{_{ m I\!\! I}})$
v, безразмерная	$v = \frac{n}{N}$	$\Delta v = \frac{1}{N}$	[0,1)
θ, [рад]	$\theta = 2\pi \frac{n}{N}$	$\Delta\theta = \frac{2\pi}{N}$	$[0,2\pi)$

В таблице ниже рассмотрены основные способы введения частотной оси для отсчетов ДПФ.

Частотная ось ДПФ

Заметим, что $f=nf_{\pi}/N$ Гц — это частота в спектре дискредитированного сигнала, который при отсутствии наложения спектров образуется путем периодического продолжения (повторения) спектра исходного аналогово сигнала с периодом, равным частоте дискретизации (f_{π} в случае оси в Гц или 1 в случае оси нормированных частот). Это означает, что отсчет ДПФ с номером n будет соответствовать в спектре аналогового сигнала частоте $f \in [-f_{\pi}/2; f_{\pi}/2]$, такой, что $f = (n+mN)f_{\pi}/N$, где m — целое число.

Пример.

Частотная ось ДПФ

Пояснения к примеру.

Рассмотрим для $f_0 = 5$ Γ ц сигнал длительностью 1 с вида $x_a(t) = \sin \left(2\pi f_0 t \right), \ 0 \le t < 1.$

Выберем частоту дискретизации $f_{\pi}=20~\Gamma$ ц ($\Delta t=0.05~\mathrm{c}$)

Последовательность отсчетов дискретизованного сигнала

$$x[k] = x_a(k\Delta t) = \sin\left(2\pi \frac{f_0}{f_{\pi}}k\right).$$

Спектр $X_{{\scriptscriptstyle
m I}}(f)$ дискретизованного сигнала связан со спектром $X_a(f)$ аналогового сигнала соотношением

$$X_{\mathrm{I}}(f) = \frac{\mathrm{T}}{\Delta t} \sum_{m=-\infty}^{\infty} X_{\mathrm{a}}(f - mf_{\mathrm{I}}).$$

где T определено соотношением $x[k]=\mathrm{T}x_a(k\Delta t)$. Если бы эффекта наложения не было, то $X_{_{\mathrm{I\! I}}}(f)$ и $X_a(f)$ совпадали бы на интервале $\left[-f_{_{\mathrm{I\! I}}}/2,f_{_{\mathrm{I\! I\! I}}}/2\right]$, т.е. от $-10~\mathrm{\Gamma I\! I\! I}$ до $10~\mathrm{\Gamma I\! I\! I}$.

Заметим, что отсчеты ДПФ размерности N=32 для n=0,1,...,N-1 находятся на полуинтервале $[0,f_{\pi})$.

