Data Science Take Home Assignment

Niklas Hansson

August 26, 2018

Abstract

This is my solution to the Data Science Take Home Assignment. The state problem is to classify the gender based upon sampled of speech. The assignment involves the following steps: webscraping, feature extraction, visualization, modeling and presentation. In this report I will present my report and argue for my solution and also present future improvements. The best results in terms of accuracy was achieve using random forest, 91.4% on a balanced test set. To increase performance further work should be put on preprocessing, sampling and utilizing the text features.

1 Problem

Predict a given person's gender using vocal features.

2 Approach and solution architecture

Figure 1: Figure illustration the approach to the problem.

The following main steps was identified in the problem and illustrated as seperate boxes in figure 1:

- Web scrapping automate the collection of the files.
- Prepare the files(unzip) and extract the text information before the feature extraction from wav files.
- Feature extraction form the vaw files
- Visualize and understand the extracted information.

- Build models to predict the gender
- Build interactive visualization of the data

2.1 Web scraping

The structure of the web site was investigated using the console in the web browser. Then a simple python script was design in order to automate the download. The files was unpacked using python and the text features about the files was extracted. The following features was extracted from the text files:

- Gender
- Age group(called age range in the code)
- Dialect of the speaker
- Language

The output of this step was the data downloaded and extracted and a csv file with the following structure:

path	gender	language	age_range	dialect
/home/niklas_sven_hansson/test /extracted_data/	Male	EN	Adult	British English
/home/niklas_sven_hansson/test /extracted_data/	Male	EN	Adult	British English
/home/niklas_sven_hansson/test /extracted_data/	Male	EN	Adult	British English

Table 1: Illustration of how the output from the web scraping

2.2 Feature extraction

In order to extract information for the raw data. Several options where considered they all had in common that the goal was to extract information about the frequencies in the voice files. Women naturally have higher pitch voiced than men. Thus the feature extraction process was focused on extracting features about the frequency in the voice files. Initially python libraries where considered but in the end the best option was available in R, I ended up using seewave and tuneR. The files where processed sequentially resulting in very low memory usage since only one file at the time where processed, however the downside where that it took quite some time to run. This could be improved if the feature process could be done for several files at once, utilizing multiprocessing. Currently I only used one of 8 cores and thus could have reduced the computation time with $\approx x8$. This could have been done either through separating the files and running in parallel. However due to the limited amount of time this where not done. The following features where extracted:

- Mean frequency
- Standard deviation of the mean
- Median frequency
- Mode frequency The dominant frequency
- First quartile
- Third quartile
- Interquartile range
- Centroid
- Skewness Measure of asymmetry

- Kurtosis Measure of peakedness
- Spectral flatness measure
- Spectral entropy
- Mean fundamental frequency
- Minimum fundamental frequency
- Max fundamental frequency
- Mean dominant frequency
- Min dominant frequency
- Max dominant frequency
- Drange Which was calculated as Max dominant frequency Min dominant frequency (the same max since min dominant frequency is almost always zero in the extracted features)
- Duration The length in seconds

These features were extracted after looking at the recommended features and also comparing to other open source data sets available and which features they had used https://www.kaggle.com/primaryobjects/voicegender while achieving very promising results.

2.3 Initial visualization and preprocessing

From the heat map over the correlation between the features, see figure 2 we can see that several of the features are very correlated with each other. One example is Max dom and dfrange. The reason for the strong correlation between these two features is because dfrange is calculated as Max dom minus Min dom and Min dom is almost always zero for all the observations. This could be a problem in the feature extraction for min dom. The strong correlation between multiple features indicate that several could be removed since they seam to carry the same information. Removing correlated features can improve the performance of a model both in terms of score and computational burden. No initial features where removed due to the correlation instead recursive feature elimination where later used in order to evaluate the best number of features (and which features to use).

Figure 2: Heat map over the correlation for the different features.

Especially interesting distribution of the features can be seen in the figure 3. After the initial visual observation the mean fundamental frequency seamed to be the best feature for classifying the gender.

When investing the text features it was found that they where not distributed even among the genders. Some of the dialects where only had observation from one of the genders and could thus lead to over fitting in the model. This could be a problem for example if the model learned that for a specific dialect always was linked to one gender. Therefore the dialects was dropped. This could have been improved by keepning some of the dialects where both genders where represented. Similar problem where found with the age groups and the same approach was taken. I belie that having age group would be a very good feature since the voice change over age for humans. However this might be a feature that is hard to collect when the model is used for real depending upon application.

I believe that the best way to improve the result in this problem is to further improve the feature extraction. Both by spending more time on extracting more features but also to further validate the feature extraction process.

Duration was also dropped since it was assumed that it was not a feature that would generalize well. Depending on the application it could be that the sentences/ audio files are of different length depending on interest.

Figure 3: Box plot over the mean fundamental frequency and label. There is a separation between male and female when looking at the fundamental frequency.

Gender Nbr of observations

Male 54677 Female 3958

Table 2: The number of observations for the different genders

2.4 Modeling

The data set was heavily imbalanced see table 2

To handle this problem several options is possible:

- Upsampling
- Downsampling
- Using classweights for the classifier
- Adjusting the cost function

For this project there is a limited amount of time. Therefore I have decided to downsample the male observations. I will do this in an aggresive way by making the dataset balanced. Downsampling have the advantages of reducing the data set (which have a cost) and thus allowing for faster iterations. The drawback is that I might loose important information and in general adding more data for a model to train on increase the performance. Looking back this was maybe done to quickly and I could have elaborate more with different sampling rates.

The sampling resulted in a dataset with 3958 observations of each gender. The sampling process was done by selecting all female observations and then selecting male observations by random. This is also a process that could be improved togheter with the number of sampled examples.

The data was split in 20% for test and 80% for training. During model tuning and feature elimination 3 fold cross validation was used.

The following models where evaluated:

• KNN

- Logistic regerssion
- Random Forest
- Gradient Boosting

These models have been selected to represent some of the most commonly used models. They represent some of the models that usually performs well on many classification problems when structured features have been extracted from the data. They also represent models that are easy to tune and are stable to use. Compare to neural networks that requires more tuning and are more prune to over fitting. Thus making the selected models more suitable for a quick proof of concept.

The goal is to classify gender based up on voice. To be fair I will aim for being equally good on both female and male voices in terms of Recall and Precision. The reason for this is that I don't want to have a classifier that have a bias towards male or female.

The feature importance was evaluated using recursive feature elimination. This method of feature elimination could not be used for KNN in the Sklearn implementation. The results are presented in table 3.

	accuracy	auc	${\rm f1_score}$	recall	precison
dummy	0.506313	0.490764	0.518289	0.506799	0.520566
Logistic Regression	0.878788	0.931256	0.882209	0.888752	0.875761
KNN	0.912247	0.955587	0.912853	0.899876	0.926209
Random Forest	0.914141	0.966858	0.915000	0.904821	0.925411
XGB	0.913510	0.970925	0.914428	0.904821	0.924242

Table 3:

Using the feature importance and weights for logistic regression as a proxy for feature importance the mean fundamental frequency where the most important feature for all of the models. For KNN the feature importance where not investigated (this is left for future work). This was also assumed when visualizing the data. As metric accuracy is selected since the data is balanced. However for later improve upon the sampling and utilize more of the data recall and precision would be better. If comparing accuracy it will be hard to compare models with these results without rerunning the models. Based upon this the best model is the Random Forest model. It could be noted that using only the mean fundamental frequency for logistic re gave a accuracy of 0.872394 %. It could be noted that to get the true feature importance further work might be need since some studies have shown that the feature importance using random forest might give to high weight on continuous features, see http://explained.ai/rf-importance/index.html. Instead permutation importance could be used with the cost of extra computation. Permutation importance is model agnostic.

2.5 Interactive visualization of the data

In order to use the interactive plot the **bokeh** libary needs to be installed. **bokeh** is part of the anaconda distribution(Anaconda 3.6.5). For installation instructions see https://bokeh.pydata.org/en/latest/docs/installation.html

The interactive plots can be accessed through running the following command in the terminal from within the **Sandvik DataScience TakeHome** folder.

\$bokeh serve --show bokeh_app

The webbrowser should then open automatically on http://localhost:5006/bokeh_app. In the repository there is also a short movie demonstrating how to start and use the interactive plots.

3 Conclusion

Relatively simple models where choose for this investigation. This is usually to prefer for initially investigations in order to set up a baseline. Then later if the results are not good enough investigating more complex solutions could be done. More advanced/complex model could be investigate for

this problem in order to push the result and or decrease the amount of feature engineering. However simpler models have an advantage in terms of the possibility to explain the model and shorter time to put them in production. Depending on the problem, starting with more complex models could be reasonable, e.g working with images, to reduce the feature engineering. To further increase performance more attention should be put on the feature extraction and further attempts on using the text features. After the initial investigation I believe that this would be the most suiting step to continue on this work. Also sampling more of the data to utilize the potential of as much data as possible. Depending on where the model would be applied explaining the predictions could be of interest using tools are tree interpreter https://github.com/andosa/treeinterpreter and Lime https://github.com/marcotcr/lime. Extending the preprocessing to focusing more on outliers and imputing the missing text features could also improve upon the results. Predicting the gender could be used in applications for marketing purposes.