# Label Space A Coupled Multi-Shape Representation

James Malcolm<sup>1</sup> Yogesh Rathi<sup>2</sup>
Martha E. Shenton<sup>2</sup> Allen Tannenbaum<sup>1</sup>

Georgia Tech, Atlanta, GA Brigham and Women's Hospital, Boston, MA





# Implicit maps



# Signed distance maps (SDMs)



[Leventon et al. CVPR 2000]

### Layered signed distance maps



[Tsai et al. MIA, TMI 2003], [El Munim and Farag CVPR 2007]

# SDM Addition



#### **SDM Variation**



### Label maps



### Label maps



#### Label maps













Binary vector bias

































**Label Space** 

13/22

**Label Space** 

13/22

# Recap

- SDMs: interpolation error, excessive variation
- Binary vectors: bias affected smoothing, registration



**Label Space** 











Label space

**Smoothing** 

Binary vectors



Probabilistically speaking...



Probabilistically speaking...



# Probabilistically speaking...



$$P(A) = e^{-a}/Z$$
  $P(B) = e^{-b}/Z$   $P(C) = e^{-c}/Z$ 

$$Z = e^{-a} + e^{-b} + e^{-c}$$

#### **Probabilities**

#### Binary vectors



#### Label space



#### **Probabilities**

#### Binary vectors



Label space



#### **Probabilities**

#### Binary vectors



Label space



#### Patient data



Provided by Brigham and Women's Hospital (n = 31) Registered:  $d^2 = \sum \|m_i - \mu\|^2$ 

# Conditional probabilities



Pohl 2007

Dice coefficient between image and preimage Leave-one-out strategy

21/22

# Principle component analysis

Dice coefficient between image and preimage Leave-one-out strategy SDMs Binary vectors Label space  $0.783 \pm 0.0031$   $0.825 \pm 0.0014$ Amy.  $0.855 \pm 0.0004$ 

# Principle component analysis

Dice coefficient between image and preimage Leave-one-out strategy

SDMs

Binary vectors

 $0.825 \pm 0.0014$ 

Label space  $0.855 \pm 0.0004$ 

 $0.783 \pm 0.0031$ 

 $0.843 \pm 0.0003$ 

Hipp.  $0.782 \pm 0.0016$   $0.819 \pm 0.0006$ 

Amy.

$$0.819 \pm 0.0006$$
  $0.843$ 

# Principle component analysis

Dice coefficient between image and preimage

Leave-one-out strategy SDMs

Binary vectors

Label space

 $0.825 \pm 0.0014$ 

 $0.855 \pm 0.0004$ 

Amy.  $0.783 \pm 0.0031$ Hipp.  $0.782 \pm 0.0016$   $0.819 \pm 0.0006$ 

$$0.825 \pm 0.0014$$
  
 $0.819 \pm 0.0006$ 

James Malcolm - www.ece.gatech.edu/~malcolm

$$0.843 \pm 0.0003$$
  
 $0.773 \pm 0.0003$ 

$$0.016 \quad 0.819 \pm 0.0006$$
  
 $0.0033 \quad 0.561 \pm 0.0017$ 

Para. 
$$0.494 \pm 0.0033$$

Captures uncertainty

Label Space