# Инфраструктура открытых ключей в TLS/SSL

Компьютерные сети

#### Аутентификация в TLS/SSL

TLS/SSL – протоколы безопасной передачи данных по небезопасной сети:

- Приватность
- Целостность
- Аутентификация



#### Асимметричное шифрование















# Кому принадлежит открытый ключ?



# Инфраструктура открытых ключей







#### Удостоверяющий









# Андрей Созыкин

Занимаюсь образованием в области информационных технологий и машинного обучения. Работаю в Уральском федеральном университете.





#### Инфраструктура открытых ключей



# Путь сертификации



#### Хранилище сертификатов



Chrome -> Настройки -> Конфиденциальность и безопасность -> Ещё -> Настроить сертификаты

# Самоподписанный сертификат





# Самоподписанный сертификат





#### Набор шифров TLS/SSL

#### Алгоритм цифровой подписи в сертификате:

- RSA
- DSA (Digital Signature Algorithm)

#### Алгоритм обмена ключами:

- RSA
- Диффи-Хеллмана

#### Алгоритм симметричного шифрования:

- AES
- 3DES

#### Хэш-функция для вычисления МАС:

- MD5 (Message Digest 5)
- SHA-1, SHA-224, SHA-256, SHA-384, SHA-512

#### Итоги

#### Аутентификация в TLS/SSL:

• Подтверждение подлинности сервера/клиента

#### Электронная подпись:

• Шифрование с помощью закрытого ключа

# Инфраструктура открытого ключа (public key infrastructure):

• Система распространения открытых ключей с помощью удостоверяющих центров (certification authority)

#### Сертификат:

- Файл с открытым ключом и информацией о сервере, подписанный удостоверяющим центром
- Формат сертификата X.509