MICRO CREDIT DEFAULTER PROJECT

By
Vishnu vardhan reddy

Data Preparation

- With the help of Pandas Library We will upload our data to Jupyter Notebook.
- Once our data is uploaded with the help of predefined method (i.e. read_csv) we can read data for further processing.
- We have two type of variables in the data:-
 - 1. Dependent Variable
 - 2. Independent Variable

	▼		Jx																	
Α	В	С	D	Е	F	G	н		J	K	L	М	N	0	P	Q	R	S	T	
	label	msisdn	aon	daily_deci	daily_deci	rental30	rental90	last_rech_	last_rech_	last_rech_	cnt_ma_ref	r_ma_rec	sumamnt	medianan r	nedianm: c	nt_ma_ref	fr_ma_rec	sumamnt	medianan	m
1		0 214081707	272	3055.05	3065.15	220.13	260.13	2	0	1539	2	21	3078	1539	7.5	2	21	3078	1539	
2		1 764621703	712	12122	12124.75	3691.26	3691.26	20	0	5787	1	0	5787	5787	61.04	1	0	5787	5787	
3		1 179431703	535	1398	1398	900.13	900.13	3	0	1539	1	0	1539	1539	66.32	1	0	1539	1539	
4		1 557731707	241	21.228	21.228	159.42	159.42	41	0	947	0	0	0	0	0	1	0	947	947	
5		1 038131827	947	150.6193	150.6193	1098.9	1098.9	4	0	2309	7	2	20029	2309	29	8	2	23496	2888	
6		1 358191707	568	2257.363	2261.46	368.13	380.13	2	0	1539	4	10	6156	1539	15.4	8	0	11744	1539	
7		1 967591844	545	2876.642	2883.97	335.75	402.9	13	0	5787	1	0	5787	5787	277.8	1	0	5787	5787	
8		1 098321908	768	12905	17804.15	900.35	2549.11	4	55	3178	3	3	10404	3178	36	9	3	26095	3178	
9		1 597721844	1191	90.695	90.695	2287.5	2287.5	1	0	1539	4	1	6164	1539	39.9	4	1	6164	1539	
10		1 563311707	536	29.35733	29.35733	612.96	612.96	11	0	773	1	0	773	773	86.8	1	0	773	773	
11		1 328931827	1511	12.896	12.896	790.44	790.44	8	0	1539	2	5	2312	1156	16.83	2	5	2312	1156	
12		0 824171908	82	65.16667	65.16667	326.2	326.2	17	0	7526	2	0	9065	4532.5	489	2	0	9065	4532.5	
13		1 114351892	154	227.041	227.041	240.41	240.41	2	0	1547	4	2	19086	4773.5	63	7	30	28979	1720	
14		1 665801976	887	55.90933	55.90933	208.8	208.8	2	0	1539	5	5	7703	1539	20.9	7	5	8649	1539	
15		1 631391703	707	8919	10317.35	399.25	2453.78	3	0	770	3	6	3079	770	66	8	10	19185	1539	
16		0 240751892	1037	12	12	1216.8	1216.8	0	0	0	0	0	0	0	0	0	0	0	0	
17		0 820531853	1583	1000	1000	1000.8	1087.88	0	0	0	0	0	0	0	0	0	0	0	0	
18		1 372041844	929	10.688	10.688	40	40	0	0	0	0	0	0	0	0	0	0	0	0	
19		1 442171904	832	14.4	14.4	1660.96	1660.96	1	0	2309	3	26	4618	1539	88.8	3	26	4618	1539	
20		1 196111908	450	48.935	48.935	726.3	726.3	1	0	1539	2	8	9539	4769.5	12	2	8	9539	4769.5	
21		1 678131905	100	769.614	777.46	1050.57	1167.3	6	0	770	5	20	8867	770	168	8	31	14380	771.5	
22		0 755221707	378	514.6933	515.2	56.26	58.2	2	0	773	1	0	773	773	542	2	64	1546	773	

Dataset in CSV format

Info shows the datatypes, count and not null values.
 Label is an independent variable where as all of the other element are dependent variable.

```
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 209593 entries, 0 to 209592
Data columns (total 36 columns):
# Column
                        Non-Null Count
                       209593 non-null int64
@ label
    msisdn
                        209593 non-null object
    aon
                        209593 non-null
    daily_decr30
                        209593 non-null float64
 4 daily_decr90
                      209593 non-null float64
                        209593 non-null float64
 5 rental30
    rental90
                        209593 non-null float64
    last_rech_date_ma
                        209593 non-null float64
 8 last_rech_date_da
                        209593 non-null float64
 9 last_rech_amt_ma
                         209593 non-null int64
10 cnt_ma_rech30
                         209593 non-null int64
 11 fr_ma_rech30
                         209593 non-null
 12 sumamnt_ma_rech30
                         209593 non-null
                                        float64
13 medianamnt_ma_rech30 209593 non-null float64
 14 medianmarechprebal30 209593 non-null float64
15 cnt_ma_rech90
                         209593 non-null int64
 16 fr_ma_rech90
                         209593 non-null
17 sumamnt_ma_rech90
                        209593 non-null int64
 18 medianamnt ma_rech90 209593 non-null float64
 19 medianmarechprebal90 209593 non-null float64
 20 cnt_da_rech30
                        209593 non-null float64
 21 fr_da_rech30
                         209593 non-null
 22 cnt_da_rech90
                        209593 non-null int64
 23 fr_da_rech90
                        209593 non-null int64
                        209593 non-null
 24 cnt_loans30
 25 amnt loans30
                        209593 non-null
 26 maxamnt_loans30
                         209593 non-null float64
27 medianamnt_loans30 209593 non-null float64
 28 cnt_loans90
                         209593 non-null float64
 29 amnt_loans90
                         209593 non-null int64
    maxamnt_loans90
                         209593 non-null
                                         int64
 31 medianamnt_loans90
                        209593 non-null
                                        float64
 32 payback30
                         209593 non-null float64
 33 payback90
                         209593 non-null float64
 34 pcircle
                         209593 non-null object
                         209593 non-null object
```

In the label value 0 represent the failure of the payment and 1
Represents the successor who had paid credit successfully.
Based on the given data following are the our initial findings:-

 The average payback time is less for the defaulter cases as compare to other category in both of the scenarios.

 From the above graphical chart we can easily understand that out of 200K subscribers on 25K did not paid the credit back.

- From the above graphical chart following is our finding:-
- The subscriber who have not paid the credit is less the 10% of the total who have taken credit.

Median of amounts of loan taken by the user in last 90 days.

Data Preprocessing

- The Complete data is divided in the ration of 70:30 for train and test respectively
- I have dropped the Pcircle column since for the current processing it was not used

 There is null value in the dataset and there are some outliers present in the dataset which has been removed with the help of predefine methods

 Once our data is ready categorical variables are converted into the other form, which we can apply further on algorithms

Evaluation Process

Evaluation Matrices:

- Accuracy it determines how often a model predicts default and non default correctly.
- **Precision**-it calculates whenever our models predicts it is default how often it is correct.
- Recall- Recall regulate the actual default that the model is actually predict.
- Precision Recall Curve PRC will display the tradeoff between Precision and Recall threshold.

Cross Validations:

• K Fold cross validations , K = 5

It's About Training

Machine Learning is about using data to train a model

Gaussian NB AUC

Logistic Regression AUC

Decision Tree AUC

KNN Neighbours AUC

Result

• From the details in the below table it is clearly understandable that we are getting best result with the help of KNeighborsClassifier so we save this model with the help of joblib Library.

Out[90]:		Model	Accuracy_score	Cross_val_score	Roc_auc_curve
	0	KNeighborsClassifier	96.763006	96.904593	89.675366
	1	LogisticRegression	94.031792	94.011706	82.759118
	2	DecisionTreeClassifier	95.656482	95.776174	90.830687
	3	GaussianNB	82.947977	83.213085	80.238295

Conclusion

- I checked the data first and uploaded the data in jupyter notebook
- I visualized the features, Performed the preprocessing in the data and understood the relationship between different features
- I used both train-validation split and the cross validation to evaluate the model effectiveness to predict the target values
- At the end I applied four predictive models in the data
- I started with KNeighboursClassifier, Logistic Regression, Decision Tree Classifier, GaussianNB and based on the best result I decided to go ahead with KNeighboursClassifier