Матлог 3.6

Докажем, что открытые множества топологического пространства по отношению \subset образуют импликативную решетку Необходимо установить, что $A\cdot B$ (инфимум) и A+B (супремум) корректно определены.

$$A \cdot B = A \cap B$$

$$A + B = A \cup B$$

Доказатель ство. $A \cup B$ есть наибольшая нижняя грань множеств A, B по включению. (если $X \subseteq A$ и $X \subseteq B$, то $X \subseteq A \cap B$). $A \cup B$ аналогично.

Докажем импилкативность. Необходимо найти $A \to B =$ наибольшее $\{C|A \cap C \subseteq B\}$. Видно, что C должно содержать B. Так же заметим, что C может содержать в себе все точки, которые не лежат в A. Тогда определим

$$A \to B = (B \cup \neg A)^{\circ}$$

Это искомое псевдодополнение. Докажем это. Пусть открытое C такое, что $A \cap C \subseteq B$. Покажем, что $C \subseteq B \cup \neg A$. Рассмотрим $c \in C$.

- 1. $c \in A$. Тогда $c \in B \subset B \cup \neg A$;
- 2. $c \in \neg A$. Тогда $c \in B \cup \neg A$.

ч.т.д.