

STATISTICS

Hanung N. Prasetyo
Week 11

REGRESI DAN KORELASI

PENDAHULUAN

Regresi dan korelasi digunakan untuk mengetahui hubungan dua atau lebih kejadian (variabel) yang dapat diukur secara matematis.

Ada dua hal yang diukur atau dianalisis, yaitu :

- Hubungan fungsional (persamaan matematis)
- 2. Kekuatan atau keeratan hubungan

ANALISIS REGRESI

PENGERTIAN

• Jenis uji statistika yang dipakai untuk melihat daya prediksi variabel independen (prediktor) terhadap variabel dependen (kriterium)

JENIS ANALISIS REGRESI

- Regresi Linier. Memprediksi peranan prediktor dalam persamaan linier
- Regresi Non Linier. Memprediksi peranan prediktor dalam persamaan nonlinier yang dibuat oleh peneliti sendiri

PRASYARAT ANALISIS REGRESI

- Variabel dependen terdistribusi normal
- Korelasi antar prediktor yang rendah (tidak ada multikolinieritas)
- Hubungan antara prediktor dan kriterium adalah linier
- Homokedastisitas
- Jika data prediktor bersifat kualitatif (jender, agama, dsb) maka perlu ditransformasi menjadi variabel dummy

Tujuan Regresi

- 1. Mengestimasi nilai rata-rata variabel tak bebas dan nilai rata-rata variabel bebas
- Menguji hipotesis mengenai sifat alamiah ketergantungan
- 3. Memprediksi atau meramalkan nilai rata-rata variabel tak bebas dan nilai rata-rata variabel bebas tertentu

Analisis Regresi

- Analisis regresi pada dasarnya merupakan kajian yang bertujuan untuk menemukan sampai seberapa besar pengaruh perubahan variabel independen terhadap variabel dependen.
- Analisis regresi linier sederhana berkiatan dengan kajian untuk mengetahui pengaruh satu variabel independen terhadap satu variabel independen
- Besarnya pengaruh variabel independen terhadap variabel dependen dapat dilihat melalui koefisien regresinya

Perbedaan dengan korelasi Perbedaan dengan korelasi

Korelasi: mengukur kekuatan atau tingkat hubungan antara dua variabel (simple correlation) dan tiga variabel (multiple correlation)

Dalam analisis regresi, ada asimetris antara variabel tak bebas dan variabel bebas. variabel tak bebas bersifat acak atau stokastik dimana variabel bebas diasumsikan mempunyai nilai yang tetap dalam pengambilan sampel berulang

Dalam Korelasi, ada simetris variabel tak bebas dan variabel bebas.

Jika terdapat 2 variabel, misalkan X dan Y yang datadatanya diplot seperti gambar dibawah

X

Definisi Pengaruh

Maka plot data yang membentuk suatu pola tertentu menunjukkan bahwa variabel X dan Y membentuk suatu <u>hubungan</u>

Regresi Linier Y Terhadap X

Jika pola yang membentuk hubungan X dan Y membentuk suatu garis lurus, maka disebut **Pengaruh Linier**

Dimana:

variabel X → variabel bebas (independent)

variabel Y → variabel terikat (dependent)

Nilai-nilai Y ditentukan oleh nilai-nilai X

Variabel Y dipengaruhi oleh variabel X

Variabel X mempengaruhi variabel Y

Perbedaan dengan korelasi

Korelasi: mengukur kekuatan atau tingkat hubungan antara dua variabel (simple correlation) dan tiga variabel (multiple correlation)

Dalam analisis regresi, ada asimetris antara variabel tak bebas dan variabel bebas. variabel tak bebas bersifat acak atau stokastik dimana variabel bebas diasumsikan mempunyai nilai yang tetap dalam pengambilan sampel berulang

Dalam Korelasi, ada simetris variabel tak bebas dan variabel bebas.

Regresi Linier Y Terhadap X

• Plot antara X dan Y

Garis lurus tersebut membentuk persamaan :

$$Y = a + bX$$

a disebut intersep b disebut slope

Intersep

Bila X = o maka Y = a

Bila a = 0 maka garis akan melalui titik (0,0)

Slope Slope = kemiringan

$$Y = a + bX$$

Perubahan 1 satuan pada X mengakibatkan perubahan b satuan pada Y, sehingga Y mengukur kemiringan/slope garis tersebut.

Slope

Bila b positif

Bertambahnya nilai X mengakibatkan bertambahnya nilai Y

Bila b negatif

Bertambahnya nilai X mengakibatkan berkurangnya nilai Y

Regresi Linier Sederhana

Model regresi linier yang hanya melibatkan satu variabel bebas (X). Model regresinya sbb:

$$Y = \alpha + \beta X$$

```
Dimana :

Y = variabel terikat

X = variable bebas
```

 α , β = parameter regresi

Model Regresi Sederhana

- Variabel Y disebut dengan variabel dependen. Variabel ini disebut pula dengan beberapa nama yang serupa seperti variabel terikat, variabel regressand, dan variabel endogen. Perilaku atau variasi dari variabel Y akan dijelaskan oleh model/fungsi regresi sederhana.
- notasi X mewakili variabel independen. Nama yang ekuivalen untuk X adalah variabel bebas, variabel regressor, dan variabel eksogen. Secara keseluruhan, variabel X akan menjelaskan variasi dalam variabel Y
- Notasi a dan b keduanya disebut dengan parameter model. Secara lebih spesifik, a adalah konstanta dan b adalah koefisien regresi.

Metode Pendugaan Parameter Regresi

- Nilai dugaan a dan b diperoleh dari proses Metode Kuadrat terkecil sbb :
 - 1. Dilakukan turunan pertama terhadap a dan b

$$\frac{\partial (\sum e_i^2)}{\partial a} = -2\sum_{i=1}^n (Y_i - a - bX_i)$$

$$\frac{\partial (\sum e_i^2)}{\partial b} = -2\sum_{i=1}^n (Y_i - a - bX_i)X_i$$

2. Kedua persamaan hasil penurunan disamakan dengan nol

$$na + b \sum_{i=1}^{n} X_{i} = \sum_{i=1}^{n} Y_{i}$$

$$a \sum_{i=1}^{n} X_{i} + b \sum_{i=1}^{n} X_{i}^{2} = \sum_{i=1}^{n} X_{i} Y_{i}$$

$$b = \frac{n \sum_{i=1}^{n} X_{i} Y_{i} - \left(\sum_{i=1}^{n} X_{i}\right) \left(\sum_{i=1}^{n} Y_{i}\right)}{n \sum_{i=1}^{n} X_{i}^{2} - \left(\sum_{i=1}^{n} X_{i}\right)} \qquad a = \overline{Y} - b\overline{X}$$

Atau bila di rangkum

Persamaan garis regresi : Y = a + b X

$$\hat{Y} = a + b X$$

Dimana:

$$a = \frac{\sum Y \sum X^{2} - \sum X \sum XY}{n \sum X^{2} - (\sum X)^{2}}$$

$$b = \frac{n\Sigma XY - \Sigma X \Sigma Y}{n\Sigma X^{2} - (\Sigma X)^{2}}$$

Atau:

$$b = \frac{n\Sigma XY - \Sigma X \Sigma Y}{n\Sigma X^{2} - (\Sigma X)^{2}}$$

$$a = \frac{\sum Y}{n} - b \left(\frac{\sum X}{n} \right)$$

TELKOM POLTECH/HANUNG NP

Persamaan Regresi Sederhana

Contoh 1

 Manajemen musik ingin mengetahui hubungan fungsional antara nilai penjualan album (Y) dengan biaya promosi (X) yang diyakini bahwa biaya biaya promosi dapat mempengaruhi nilai penjualan. Buatlah persamaan regresi linear yang menunjukkan hubungan antara nilai penjualan album (Y) dengan biaya promosi (X) menggunakan data berikut dengan metode kuadrat terkecil

Data nilai penjualan dan biaya promosi

Nilai penjualan (Y)	Biaya promosi (X)
64 61 84 70 88 92 72 77	20 16 34 23 27 32 18 22

Penyelesąjannya

eiesaianin	/ d		
Y	X	XY	X ²
64	20	1280	400
61	16	976	256
84	34	2856	1156
70	23	1610	529
88	27	2376	729
92	32	2944	1024
72	18	1296	324
<u>77</u>	<u>22</u>	<u>1694</u>	<u>4843</u>
608	192	15032	4902

Mencari nilai a dan b

$$a = \overline{Y} - b \overline{X}$$

$$\overline{Y} = \frac{\sum Y}{n} = \frac{608}{8} = 76$$

$$\overline{X} = \frac{\sum X}{n} = \frac{192}{8} = 24$$

$$a = 76 - 1,5 (24) = 40$$

$$\hat{Y} = 40 + 1,5X$$

KESALAHAN BAKU

Persamaan regresi mempunyai total kuadrat

error sebesar: $\Sigma e^2 = \Sigma \left(Y - Y \right)^2$

Maka kesalahan bakunya:

$$S_{\hat{Y}.X} = \sqrt{\frac{\Sigma \left(Y - \hat{Y}\right)^2}{n}} \text{ atau } S_{\hat{Y}.X} = \sqrt{\frac{\Sigma Y^2 - a\Sigma Y - b\Sigma XY}{n}}$$

Contoh 2

Tabel berikut menunjukkan tinggi badan (in) dan berat badan (lb) dari 12 mahasiswa.

Tinggi Badan (X)	70	63	72	60	66	70	74	65	62	67	65	68
Berat Badan (Y)	155	150	180	135	156	168	178	160	132	145	139	152

- a. Tentukan persamaan regresi dari data tersebut!
- b. Hitung kesalahan baku penaksiran Y

JAWAB

Tinggi badan (X)	70	63	72	60	66	70	74	65	62	67	65	68	802
Berat badan (Y)	155	150	180	135	156	168	178	160	132	145	139	152	1850
X ²	4900	3969	5184	3600	4356	4900	5476	4225	3844	4489	4225	4624	53792
Y ²	24025	22500	32400	18225	24336	28224	31684	25600	17424	21025	19321	23104	287868
XY	10850	9450	12960	8100	10296	11760	13172	10400	8184	9715	9035	10336	124258

$$b = \frac{n\Sigma XY - \Sigma X \Sigma Y}{n\Sigma X^2 - (\Sigma X)^2} = \frac{12(124258) - (805)(1850)}{12(53792) - (802)} = 3,22$$

$$a = \frac{\Sigma Y}{n} - b \left(\frac{\Sigma X}{n}\right) = \frac{1850}{12} - (3,22) \left(\frac{802}{12}\right) = -61,04$$

Jadi persamaan regresinga $Y_{NP} = -61,04 + 3,22 \text{ X}$

JAWAB (lanjutan)

Tinggi badan (X)	70	63	72	60	66	70	74	65	62	67	65	68	802
Berat badan (Y)	155	150	180	135	156	168	178	160	132	145	139	152	1850
X ²	4900	3969	5184	3600	4356	4900	5476	4225	3844	4489	4225	4624	53792
Y ²	24025	22500	32400	18225	24336	28224	31684	25600	17424	21025	19321	23104	287868
XY	10850	9450	12960	8100	10296	11760	13172	10400	8184	9715	9035	10336	124258
Ŷ	164,4	141,8	170,8	132,2	151,5	164,4	177,2	148,3	138,6	154,7	148,3	157,9	
$\left(\hat{\mathbf{Y}} - \hat{\mathbf{Y}} \right)^2$	88,4	67,2	84,6	7,8	20,3	13	0,6	136,9	43,6	94,1	86,5	34,8	677,8

$$S_{\stackrel{\cdot}{Y.X}} = \sqrt{\frac{\Sigma \left(\stackrel{\cdot}{Y} - \stackrel{\cdot}{Y}\right)^2}{n}} = \sqrt{\frac{677.8}{12}} = 7.52$$

KOEFISIEN KORELASI

Variasi total adalah
$$\Sigma (Y - \overline{Y})^2$$

Dimana $\Sigma (Y - \overline{Y})^2 = \Sigma (Y - Y)^2 + \Sigma (Y - \overline{Y})^2$

Perbandingan antara variasi yang dijelaskan dengan variasi total adalah koefisien determinasi, yaitu :

$$\mathbf{r}^{2} = \frac{\Sigma \left(\mathbf{\hat{Y}} - \overline{\mathbf{Y}} \right)^{2}}{\Sigma \left(\mathbf{\hat{Y}} - \overline{\mathbf{Y}} \right)^{2}}$$

Dimana $0 < r^2 < 1$

Jadi koefisien korelasinya adalah:

$$r = \pm \sqrt{\frac{\sum (\hat{Y} - \overline{Y})^2}{\sum (Y - \overline{Y})^2}}$$

Dimana -1 < r < 1 dan jika :

- 1. r = -1 maka disebut korelasi linear negatif
- 2. r = 1 maka disebut korelasi linear positif
- r = 0 maka disebut tidak berkorelasi secara linear

Koefisien korelasi juga dapat dinyatakan dengan rumus :

$$r = \sqrt{1 - \frac{S^2 \hat{Y}.X}{S^2 Y}}$$

Dimana:

$$S^{2}_{Y.X} = \frac{\Sigma Y^2 - a\Sigma Y - b\Sigma XY}{n}$$
 (kuadrat dari kesalahan baku)

$$S^{2}_{Y} = \frac{\Sigma(Y - \overline{Y})^{2}}{n}$$
 (variansi Y)

Bila hubungan antara variable X dan Y linear, maka koefisien korelasinya disebut koefisien korelasi produk momen:

$$r = \frac{\sum xy}{\sqrt{\left(\sum x^2\right)\left(\sum y^2\right)}}$$

Dimana:

$$x = X - \overline{X}$$

$$y = Y - \overline{Y}$$

TELKOM POLTECH/HANUNG NP

Koefisien korelasi produk momen juga dapat dihitung dengan rumus :

 $r = \frac{S_{XY}}{S_X S_Y}$

Dimana:

$$S_{XY} = \frac{\Sigma XY}{n}$$
; $S_X = \sqrt{\frac{\Sigma X^2}{n}}$; $S_Y = \sqrt{\frac{\Sigma Y^2}{n}}$

Atau bentuk yang lebih sederhana:

$$r = \frac{n\Sigma XY - \Sigma X\Sigma Y}{\sqrt{\left\{n\Sigma X^{2} - (\Sigma X)^{2}\right\} \left\{n\Sigma Y^{2} - (\Sigma Y)^{2}\right\}}}$$

Bila nilai r:

- 1. 0.9 < r < 1.0 atau -1.0 < r < -0.9 (hubungan yang sangat kuat)
- 2. 0.7 < r < 0.9 atau -0.9 < r < -0.7 (hubungan kuat)
- 3. 0.5 < r < 0.7 atau -0.7 < r < -0.5 (hubungan moderat)
- 4. o,3 < r < 0,5 atau -0,5 < r < -0,3 (hubungan lemah)
- 5. o,o < r < o,3 atau -o,3 < r < o,o (hubungan yang sangat lemah)

Bila data variabel X dan variabel Y merupakan data yang dikelompokkan dalam bentuk distribusi frekuensi, maka koefisienkorelasinya dihitung dengan rumus :

$$r = \frac{n(\Sigma fXY) - (\Sigma fX)(\Sigma fY)}{\sqrt{\{n\Sigma fX^2 - (\Sigma fX)^2\} \{n\Sigma fY^2 - (\Sigma fY)^2\}}}$$

CONTOH 3

Dari contoh 2, tentukan :

- a. Koefisien korelasi r dan artinya!
- b. Koefisien determinasi r² dan artinya!

JAWAB

Tinggi badan (X)	70	63	72	60	66	70	74	65	62	67	65	68	802
Berat badan (Y)	155	150	180	135	156	168	178	160	132	145	139	152	1850
X ²	4900	3969	5184	3600	4356	4900	5476	4225	3844	4489	4225	4624	53792
Y ²	24025	22500	32400	18225	24336	28224	31684	25600	17424	21025	19321	23104	287868
XY	10850	9450	12960	8100	10296	11760	13172	10400	8184	9715	9035	10336	124258

$$r = \frac{12(124258) - (802)(1850)}{\sqrt{\{12(53792) - (802)^2\} \{12(287868) - (1850)^2\}}} = 0,86$$

Karena r terletak antara 0,7 dan 0,9, maka terdapat hubungan positif yang kuat antara tinggi badan dan berat badan mahasiswa.

Koefisien Determinasi(KD)

Koefisien Determinasi adalah analisis untuk memperlihatkan besar pengaruh variabel X terhadap variabel Y.

$$KD = T^2 X 100 \%$$

Berdasarkan contoh sebelumnya dapat dihitung

Koefisien Determinasinya

$$r^2 = (0.86)^2 = 0.7396 = 73.96 \%$$

Artinya variasi berat badan yang dapat dijelaskan oleh variasi tinggi badan mahasiswa (X) oleh persamaan regresi

Y = -61,04 + 3,22 X adalah sebesar 73,96 %. Sisanya sebesar 26,04 % dijelaskan oleh faktor lain di luar variabel pada persamaan regresi tersebut.

LATIHAN 1

Berikut disajikan data tinggi badan ayah dan tinggi badan putra yang diperoleh dari suatu survei dengan sampel 12 orang ayah dan putra (dalam in).

Tinggi badan ayah	65	63	67	64	68	62	70	66	68	67	69	71
Tinggi badan putra	68	66	68	65	69	66	68	65	71	67	68	70

- a. Tentukan persamaan regresinya!
- b. Bila tinggi seorang ayah 7,4 in, berapa kira-kira tinggi badan putranya?
- c. Tentukan kesalahan baku penaksir Y
- d. Tentukan koefisien korelasi dan artinya!
- e. Tentukan koefisien determinasi dan artinya!