1. Ejemplos matemáticos

 0^0 es una expresión indefinida. 0^0 es una expresión indefinida. Si a>0 entonces $a^0=1$ pero $0^a=0$. Sin embargo, convenir en que $0^0=1$ es adecuado para que algunas fórmulas se puedan expresar de manera sencilla, sin recurrir a casos especiales, por ejemplo

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$

$$(x+a)^n = \sum_{k=0}^n \binom{n}{k} x^k a^{n-k}$$

$$\underbrace{(x_{i}-1)}_{K_{i}} f(x) + \underbrace{(x_{i}-1)}_{K_{i}} g(x) = K_{i}(f(x)+g(x))$$

 $\cos(x + 2\pi) = \cos x$

$$\log_2(xy) = \log_2 x + \log_2 y \tag{1}$$

Media muestral: $\frac{1}{n-1}\sum_{i=1}^{n}(X_i-\bar{X_n})^2$

Varianza muestral: $\frac{1}{n-1}\sum_{i=1}^{n}(X_i-\bar{X_n})^2$

Momentos muestrales: $\frac{1}{n} \sum_{i=1}^{n} X_{i}^{k}$

2. Listas

- a) Uno_____Tiempo: 2:45 hrs
- c) tres Tiempo: 2:45 hrs

Idea (a) De nuevo Uno

Idea (b) Dos

- 1. Procedimiento Aprendizaje
- 2. comienzo

- I) Primer nivel (en Romanos)
- II) Nivel uno
 - 1) Segundo nivel (en numeración arábiga)
 - 2) Nivel dos
 - a) Tercer nivel (numeración alfabética)
 - b) Nivel tres
 - •) Cuarto nivel (usamos bullet)
 - •) Nivel máximo

3. Color en tablas

x_{n+1}	$ x_{n+1} - x_n $
1.20499955540054	0.295000445
1.17678931926590	0.028210236
1.17650193990183	3.004×10^{-8}
1.17650193990183	4.440×10^{-16}

Tabla 1: Iteración de Newton para $x^2 - \cos(x) - 1 = 0$ con $x_0 = 1.5$.

x_{n+1}	$ x_{n+1} - x_n $
1.20499955540054	0.295000445
1.17678931926590	0.028210236
1.17650196994274	0.000287349
1.17650193990183	3.004×10^{-8}
1.17650193990183	4.440×10^{-16}

4. Teoremas

Definición 4.1 Sean a,b enteros con $b \neq 0$. Decimos que b divide a a si existe un entero c tal que a = bc.

Teorema 4.1 $Si \ a,b \in Z \ y \ si \ a|b \ y \ b|a \ entonces \ |a|=|b|$