T.D. X - Réduction

I - Diagonalisation

Exercice 1. Sans effectuer de calcul, déterminer si les matrices suivantes sont diagonalisables:

$$\mathbf{1.} \ A_1 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}.$$

1.
$$A_1 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$
.
2. $A_2 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & -1 & 4 \\ 3 & 4 & 0 \end{pmatrix}$.
3. $A_3 = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 2 & -5 \\ 0 & 0 & 3 \end{pmatrix}$.
4. $A_4 = \begin{pmatrix} 2 & 1 & 3 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix}$.

2.
$$A_2 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & -1 & 4 \\ 3 & 4 & 0 \end{pmatrix}$$
.

4.
$$A_4 = \begin{pmatrix} 2 & 1 & 3 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix}$$
.

Exercice 2. Soit
$$A = \begin{pmatrix} 1 & 3 \\ 2 & 2 \end{pmatrix}$$
.

- 1. Déterminer les réels λ tels que $A \lambda I_2$ ne soit pas inversible.
- **2.** La matrice A est-elle diagonalisable?
- 3. Déterminer une matrice P inversible et une D diagonale telles que $A = PDP^{-1}$.

Exercice 3. Soit
$$A = \begin{pmatrix} 2 & -1 \\ 1 & 0 \end{pmatrix}$$
.

- 1. Déterminer les réels λ tels que $A \lambda I_2$ ne soit pas inversible.
- **2.** La matrice A est-elle diagonalisable?

Exercice 4. Soit $\lambda_0 \in \mathbb{R}$. Déterminer l'ensemble des matrices diagonalisables qui ont pour unique valeur propre λ_0 .

Exercice 5. Soit
$$A = \begin{pmatrix} 0 & 0 & 2 \\ 0 & 2 & 2 \\ 2 & 2 & 1 \end{pmatrix}$$
, $X_1 = \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}$, $X_2 = \begin{pmatrix} 2 \\ 1 \\ -2 \end{pmatrix}$ et

$$X_3 = \begin{pmatrix} -2\\2\\-1 \end{pmatrix}.$$

1. Montrer que X_1 , X_2 et X_3 sont des vecteurs propres de A.

2. Montrer que A est diagonalisable puis déterminer une matrice Pinversible et une matrice D diagonale telles que $A = PDP^{-1}$.

Exercice 6. Soit
$$A = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$
.

- 1. Montrer sans calculs que A est diagonalisable.
- **2.** Diagonaliser la matrice A.

II - Réduction & Application

Exercice 7. Soit
$$A = \begin{pmatrix} 3 & -1 & 1 \\ 1 & 2 & 0 \\ 0 & 1 & 1 \end{pmatrix}$$
.

- 1. Montrer que A admet une unique valeur propre. La matrice A est-elle diagonalisable?
- 2. Déterminer une base du sous-espace propre de A associé à son unique valeur propre.

Soit
$$f$$
 l'endomorphisme canoniquement associé à A et $T = \begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix}$.

- 3. Recherche d'une base adaptée.
 - a) Déterminer un vecteur e_1 tel que $f(e_1) = 2e_1$.
 - **b)** Déterminer un vecteur $e_2 = (a, b, -1)$ tel que $f(e_2) = e_1 + 2e_2$.
 - c) Déterminer un vecteur $e_3 = (c, d, 2)$ tel que $f(e_3) = e_2 + 2e_3$.
- **d)** Montrer que $\mathscr{B} = (e_1, e_2, e_3)$ est une base de \mathbb{R}^3 puis déterminer $\mathrm{Mat}_{\mathscr{B}}(f)$.

On note P la matrice de passage de la base canonique à la base \mathscr{B} .

4. Déterminer P^{-1} .

5. En utilisant la formule du binôme de Newton, pour tout n entier naturel, déterminer \mathbb{T}^n .

6. En déduire les coefficients de A^n .

Exercice 8. Soit (u_n) , (v_n) et (w_n) trois suites définies par $u_0 = 1$, $v_0 = -1$, $w_0 = 2$ et

$$\forall n \in \mathbb{N}, \begin{cases} u_{n+1} & = -3u_n + 4v_n - w_n \\ v_{n+1} & = 2v_n \\ w_{n+1} & = -4v_n + 2w_n \end{cases}.$$

1. Pour tout n entier naturel, exprimer v_n en fonction de n.

On pose
$$A = \begin{pmatrix} -3 & 4 & -1 \\ 0 & 2 & 0 \\ 0 & -4 & -2 \end{pmatrix}$$
.

2. Déterminer les réels λ tels que $A - \lambda I_3$ ne soit pas inversible.

3. Montrer que A est diagonalisable et déterminer une matrice inversible P et une matrice diagonale D telle que $A = PDP^{-1}$. Soit $n \in \mathbb{N}$.

4. En déduire par récurrence que, une expression de A^n en fonction de D^n, P^{-1} et P.

5. Déterminer D^n et en déduire les 9 coefficients de A^n .

Pour tout n entier naturel, on pose $U_n = \begin{pmatrix} u_n \\ v_n \\ w_n \end{pmatrix}$.

- **6.** Montrer que, pour tout n entier naturel, $U_{n+1} = AU_n$.
- 7. Montrer par récurrence que, pour tout n entier naturel, $U_n = A^n U_0$.
- **8.** En déduire les expressions de u_n , v_n et w_n .

Exercice 9. Soit $A = \begin{pmatrix} -5 & 1 & -8 \\ 0 & 2 & 0 \\ 4 & -1 & 7 \end{pmatrix}$ et $R(X) = X^3 - 4X^2 + X + 6$.

- 1. Montrer que $A^3 4A^2 + A + 6I_3 = 0_3$.
- **2.** En déduire que A est inversible et déterminer A^{-1} .
- **3.** Calculer R(2) puis déteminer un polynôme Q tel que R(X) = (X-2)Q(X).

- **4.** En déduire les valeurs propres possibles de la matrice A.
- ${f 5.}$ Déterminer les valeurs propres de A ainsi que les sous-espaces propres associés.
- **6.** En déduire que A est diagonalisable.