Problem 1

1. $\Theta(n) = n$

# of iterations	n
0	0
1	1
2	2
3	3
4	4

2. $\Theta(n) = \lg(\lg n)$

# of iterations	n	$\lg(n)$	$\lg(\lg(n))$
0	2^{1}	1	0
1	2^{2}	2	1
2	2^{4}	4	2
3	2^{8}	8	3
4	2^{16}	16	4

3. $\Theta(n) = 4^n$

Tree level	# of calls	Input number
0	4^0	n
1	4^1	n-1
:	<u>:</u>	:
n-2	$4^{n-87506055}3^{87506055-2}$	2
n-1	$4^{n-87506055}3^{87506055}$	1

$$4^{n-87506055}3^{87506055} = \Theta(n) \implies 4^n = \Theta(n)$$

4. True.

Obviously f + g itself belongs to the set $\Theta(f + g)$,

- $\implies (f+g)c_2 \le f+g \le (f+g)c_1$, where c_1 and c_2 are positive constants.
- $\implies c_2 \max(f,g) \le c_2(f+g) \le f+g \le c_1(f+g) \le 2c_1 \max(f,g)$
- $\implies c_2 \max(f, g) \le f + g \le c'_1 \max(f, g), \text{ where } c'_1 = 2c_1$
- $\implies f + g = \Theta(\max(f, g)).$

5. True.

$$f = O(i)$$
 and $g = O(j)$

- \implies There are two positive constants such that $0 \le f \le c_1 i$ and $0 \le g \le c_2 j$.
- $\implies 0 \le fg \le c_1c_2ij \implies fg = O(ij).$

6. False.

If
$$f = 2 \lg n$$
 then $g = \lg n$
 $\implies 2^f = 2^{2 \lg n} = 2^{\lg n^2} = n^2$
On the other hand, $2^g = 2^{\lg n} = n$
 $\implies 2^f = O(n^2) \neq O(n) = 2^g$

7. True.

As shown in the left figure, the total area of the red rectangulars is obviously smaller than that under the curve 1/x (blue line) between 1 < x < n. Hence, we obtain the upper bound as follows:

$$\sum_{k=1}^{n} \frac{1}{k} < 1 + \int_{1}^{n} \frac{1}{x} dx = 1 + \log n \tag{1}$$

Similarly, the lower bound can be obtained from the right figure:

$$\sum_{k=1}^{n} \frac{1}{k} > \int_{1}^{n+1} \frac{1}{x} dx = \log(n+1)$$
 (2)

Finally, since both lower and upper bounds have the asymptotic form $\log n$, we have $\sum_{k=1}^{n} \frac{1}{k} =$

 $\Theta(\lg n)$.

8. True.

On the basis of approximation as follows:

$$\lg n! = \sum_{k=1}^{n} \lg k \sim \int_{1}^{n} \lg x dx = n \lg n - n + 1, \tag{3}$$

we have $\lg n! = \Theta(n \lg n)$.

9. $f(n) = \Theta(n(\lg n)^2)$.

$$f(n) = 2f\left(\frac{n}{2}\right) + n\lg n$$
$$= 2\left[2f\left(\frac{n}{2^2}\right) + \frac{n}{2}\lg\left(\frac{n}{2}\right)\right] + n\lg n$$

:

$$\sim 2^{\lg n \text{ times}}$$

$$\sim n + n \left(\frac{n \ln n}{2^{\lg n + \dots + 2 + 1}} \right)$$

$$\sim n + n \left(\frac{n \ln n}{2^{\lg n + \dots + 2 + 1}} \right)$$

$$\sim n + n \left(\frac{n \ln n}{2^{\lg n + \dots + 2 + 1}} \right)$$

$$\sim n + n \left(\frac{n \ln n}{2^{\lg n + \dots + 2 + 1}} \right)$$

$$\sim n + n \left(\frac{n \ln n}{2^{\lg n + \dots + 2 + 1}} \right)$$

$$\sim n + n \left(\frac{n \ln n}{2^{\lg n + \dots + 2 + 1}} \right)$$

$$\sim n + n \left(\frac{n \ln n}{2^{\lg n + \dots + 2 + 1}} \right)$$

$$\sim n + n \left(\frac{n \ln n}{2^{\lg n + \dots + 2 + 1}} \right)$$

$$\sim n + n \left(\frac{n \ln n}{2^{\lg n + \dots + 2 + 1}} \right)$$

$$\sim n + n \left(\frac{n \ln n}{2^{\lg n + \dots + 2 + 1}} \right)$$

$$\sim n + n \left(\frac{n \ln n}{2^{\lg n + \dots + 2 + 1}} \right)$$

$$\sim n + n \left(\frac{n \ln n}{2^{\lg n + \dots + 2 + 1}} \right)$$

$$\sim n + n \left(\frac{n \ln n}{2^{\lg n + \dots + 2 + 1}} \right)$$

$$\sim n + n \left(\frac{n \ln n}{2^{\lg n + \dots + 2 + 1}} \right)$$

$$\sim n + n \left(\frac{n \ln n}{2^{\lg n + \dots + 2 + 1}} \right)$$

$$\sim n + n \left(\frac{n \ln n}{2^{\lg n + \dots + 2 + 1}} \right)$$

$$\sim n + n \left(\frac{n \ln n}{2^{\lg n + \dots + 2 + 1}} \right)$$

$$\sim n + n \left(\frac{n \ln n}{2^{\lg n + \dots + 2 + 1}} \right)$$

$$\sim n + n \left(\frac{n \ln n}{2^{\lg n + \dots + 2 + 1}} \right)$$

$$\sim n + n \left(\frac{n \ln n}{2^{\lg n + \dots + 2 + 1}} \right)$$

$$\sim n + n \left(\frac{n \ln n}{2^{\lg n + \dots + 2 + 1}} \right)$$

$$\sim n + n \left(\frac{n \ln n}{2^{\lg n + \dots + 2 + 1}} \right)$$

$$\sim n + n \left(\frac{n \ln n}{2^{\lg n + \dots + 2 + 1}} \right)$$

$$\sim n + n \left(\frac{n \ln n}{2^{\lg n + \dots + 2 + 1}} \right)$$

$$\sim n + n \left(\frac{n \ln n}{2^{\lg n + \dots + 2 + 1}} \right)$$

$$\sim n + n \left(\frac{n \ln n}{2^{\lg n + \dots + 2 + 1}} \right)$$

$$\sim n + n \left(\frac{n \ln n}{2^{\lg n + \dots + 2 + 1}} \right)$$

$$\sim n + n \left(\frac{n \ln n}{2^{\lg n + \dots + 2 + 1}} \right)$$

$$\sim n + n \left(\frac{n \ln n}{2^{\lg n + \dots + 2 + 1}} \right)$$

$$\sim n + n \left(\frac{n \ln n}{2^{\lg n + 1}} \right)$$

$$\sim n + n \left(\frac{n \ln n}{2^{\lg n + 1}} \right)$$

$$\sim n + n \left(\frac{n \ln n}{2^{\lg n + 1}} \right)$$

$$\sim n + n \left(\frac{n \ln n}{2^{\lg n + 1}} \right)$$

$$\sim n + n \left(\frac{n \ln n}{2^{\lg n + 1}} \right)$$

$$\sim n + n \left(\frac{n \ln n}{2^{\lg n + 1}} \right)$$

$$\sim n + n \left(\frac{n \ln n}{2^{\lg n + 1}} \right)$$

$$\sim n + n \left(\frac{n \ln n}{2^{\lg n + 1}} \right)$$

$$\sim n + n \left(\frac{n \ln n}{2^{\lg n + 1}} \right)$$

$$\sim n + n \left(\frac{n \ln n}{2^{\lg n + 1}} \right)$$

$$\sim n + n \left(\frac{n \ln n}{2^{\lg n + 1}} \right)$$

$$\sim n + n \left(\frac{n \ln n}{2^{\lg n + 1}} \right)$$

$$\sim n + n \left(\frac{n \ln n}{2^{\lg n + 1}} \right)$$

$$\sim n + n \left(\frac{$$

Hence, $f(n) = \Theta(n(\lg n)^2)$.

Problem 2

1. Reverse queue with another empty queue

```
Input: 1,2,3,4,5
Output: 5,4,3,2,1
Q1 = InitQueue (1,2,3,4,5);
Q2 = InitQueue ();
while GetSize(Q1) is greater than zero do

while the last element is at the front of Q1 do

Q1 = EnQueue(DeQueue(Q1));
Q2 = EnQueue(DeQueue(Q1));
```

2. The # of iterations of outer loop: the size of initial queue, n.

The # of iterations of inner loop: n - k, where k is the # of iterations of the outer loop at k-th times.

Hence, the time complexity is $n + (n-1) + \cdots + 1 = 0.5n(n+1) = O(n^2) - \text{time}$. How about O(1)-extra space?

3. Illustration

a. push_front(int x)

b. push_back(int x)

c. pop_front()

d. pop_back()

4. push_front(): $O(n^2) - time$

Pop all elements from the left stack n times, and push all elements, including x, back n+1 times. Hence, we have $O(n^2)$ -time.

5. $push_back(): O(1) - time$

No matter how many elements in the stack are, we only have to push one time. Hecce, O(1)-time.

6. pop_front(): $O(n^2) - time$

Pop all elements from the left stack n times, push the front element, and then push all elements, including x, back n times. Hence, we have $O(n^2)$ -time.

7. $pop_back(): O(1) - time$

No matter how many elements in the stack are, we only have to pop one time. Hecce, O(1)-time.

8. Dynamic stack

Assuming a is the size of initial stack, and q is the number of enlarge() calls. We have $a3^q = n$ or $q = \log_3(n/a)$. On the other hand, If $t = c_0 m$ is the time required for single enlarge() calls with m elements, then the total time required for all reallocations is

$$c_0 a + c_0 a 3^1 + c_0 a 3^2 + \dots + c_0 a 3^{q-1} = 0.5 c_0 a \left(3^{q+1} - 1\right) = \Theta(3^q).$$
 (5)

Substituting $q = \log_3(n/a)$ into Eq.(5) yields the time $\Theta(n)$ required for n consecutive push operations into dynamic stack.

Problem 3

1. Pseudo code:

```
Input: A is the array containing n integers \in \{0, 1, \dots, n-1\}
Input: i_0 is the index where the frog is initially located.

List = initalList(A[i_0]);

/* initialize the list with the single node A[i_0] */

for (i = 0; i < A.Length; i + +) do

if i == List.End then

/* List.End is the the last element of List */

return [Finite jumps!]

List = AppendEnd(List, A[List.End]);

/* append the node A[List.End] to the end of List */

return [Infinite jumps!]
```

- Time complexity: The time complexity of loop itself is $\Theta(n)$ but List.End, which is $\Theta(n)$, is inside the loop. Thus, the effective time complexity is $\Theta(n^2)$.
- Space complexity: $\Theta(n)$ (Why?).

2. Pseudo code:

```
Input: A is the array containing n integers \in \{0, 1, \dots, n-1\}.

Input: i_0 is the index where the frog is initially located.

Output: j is the length of the jumping loop.

List = initalList(A[i_0]);

/* initialize the list with the single node A[i_0] */

for (i = 0; i < A.Length; i + +) do

List = AppendEnd(List, A[List.End]);

/* append the node A[List.End] to the end of List */

for (j = List.Length - 2; j >= 0; j - -) do

if List(j) == List.End then

/* List(j) is the j<sup>th</sup> element of List */

return j
```

• Time complexity: The time complexity of loop itself is $\Theta(n)$ but List.End, which is $\Theta(n)$, is inside the loop. Thus, the effective time complexity is $\Theta(n^2)$.

- Space complexity: $\Theta(n)$ (Why?).
- 3. Given that the array A is a strictly increasing array, $\max(M_{0,i}, M_{i,j}, M_{j,n})$ and $\min(M_{0,i}, M_{i,j}, M_{j,n})$ must be equal to $M_{j,n}$ and $M_{0,i}$, respectively. Moreover, the two elements A[i-1] and A[j] must be as close as possible to make $f(i,j) = M_{j,n} M_{0,i}$ reach the minimum. We thus simplify the original question as follows: find a index k, such that $M_{k+1,n} M_{0,k-1}$ is minimized, where i = k and j = k+1.

- Time complexity: The time complexity of loop itself is $\Theta(n)$ but List.End, which is $\Theta(n)$, is inside the loop. Thus, the effective time complexity is $\Theta(n^2)$.
- Space complexity: $\Theta(n)$ (Why?).

4.

```
/* Step 1: Get the length of list */
    /*=======*/
2
    Ptr = Head;
    Length = 1
5
    while ( Ptr->Next != Head )
6
       Ptr = Ptr->Next;
8
       Length++;
9
    }
10
11
    /* Step 2: Sorting list with bubble sort */
12
    /*=======*/
13
    itr_out = 0; /*iteration number of the outer loop*/
14
    Swap = true; /*Do not enter the outer loop if Swap=false,
15
    which can help the time complexity in the worst case down to O(n)*/
16
    Ptr = Head;
17
18
    while( Ptr->Next != Head && Swap )
19
20
    {
       Ptr_in = Head;
21
       Swap = false;
       itr_in = 0; /*iteration number of the inner loop*/
23
24
       while( Ptr_in->Next != Head && itr_in < Length - itr_out - 1 )</pre>
25
26
```

```
27
        {
28
          swap( Ptr_in->Next->Data, Ptr_in->Data );
29
          Swap = true;
30
31
        Ptr_in = Ptr_in -> Next;
        itr_in++;
35
     Ptr = Ptr->Next;
36
     itr_out++;
37
38
```