Asymptotic Notations

Adapted from the CLRS book slides

OVERVIEW

How to evaluate the efficiency of an algorithm?

- A function from inputs to running times
- Needs a way to compare "sizes" of functions

Asymptotic Notation

- A way to describe behavior of functions in the limit.
- Describe growth of functions.
- Focus on what's important by abstracting away low-order terms and constant factors.

O-notation

O-notation characterizes an *upper bound* on the asymptotic behavior of a function: it says that a function grows *no faster* than a certain rate. This rate is based on the highest order term.

For example:

 $f(n) = 7n^3 + 100n^2 - 20n + 6$ is $O(n^3)$, since the highest order term is $7n^3$, and therefore the function grows no faster than n^3 .

The function f(n) is also $O(n^5)$, $O(n^6)$, and $O(n^c)$ for any constant $c \ge 3$.

Ω -notation

 Ω -notation characterizes a *lower bound* on the asymptotic behavior of a function.

For example:

 $f(n) = 7n^3 + 100n^2 - 20n + 6$ is $\Omega(n^3)$, since the highest-order term, n^3 , grows at least as fast as n^3 .

The function f(n) is also $\Omega(n^2)$, $\Omega(n)$ and $\Omega(n^c)$ for any constant $c \leq 3$.

O-notation

 Θ -notation characterizes a **tight bound** on the asymptotic behavior of a function: it says that a function grows **precisely** at a certain rate, again based on the highest-order term.

If a function is is both O(f(n)) and $\Omega(f(n))$, then a function is $\Theta(f(n))$.