Cálculo Numérico Terceira lista de exercícios Prof. Dr. Rogério Galante Negri

- 1. Escreva uma função em MATLAB para resolução de Sistemas Lineares Triangulares Inferiores.
- 2. Resolva manualmente via MEG: $\begin{cases} 2x_1 & +2x_2 & +x_3 & +x_4 & = 7 \\ x_1 & -x_2 & +2x_3 & -x_4 & = 1 \\ 3x_1 & +2x_2 & -3x_3 & -2x_4 & = 4 \\ 4x_1 & +3x_2 & +2x_3 & +x_4 & = 12 \end{cases}$
- 3. O cálculo de determinantes pode ser feito com auxílio do MEG. Dessa forma:
 - a) Deduza e implemente o método;
 - b) Aplique a implementação na matriz dos coeficiente do exercício anterior.
- 4. Se possível, realize a fatoração LU de $\mathbf{A} = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 1 & -1 \\ 3 & 2 & 0 \end{pmatrix}$.
- 5. Resolver $\mathbf{A}\mathbf{X} = \mathbf{B}$ onde $\mathbf{A} \in \mathbb{R}^{n \times n}$ e $\mathbf{X}, \mathbf{B} \in \mathbb{R}^{n \times m}$ equivale a resolver m sistemas $\mathbf{A}\mathbf{x} = \mathbf{b}$ com \mathbf{x} e \mathbf{b} vetores provenientes das colunas de \mathbf{X} e \mathbf{B} , respectivamente. Baseado neste comportamento:
 - a) Verifique que \mathbf{A}^{-1} pode ser obtido do comportamento discutido acima;
 - b) Entre MEG e fatoração LU, qual é mais adequado para computar A^{-1} ?
 - c) Implemente uma função, baseada no comportamento discutido, para inversão de matrizes $n \times n$ quaisquer. Inclua a documentação em sua implementação;
 - d) Aplique a função implementada na inversão de

$$\mathbf{A} = \begin{pmatrix} 4 & -1 & 0 & -1 & 0 & 0 \\ -1 & 4 & -1 & 0 & -1 & 0 \\ 0 & -1 & 4 & 0 & 0 & -1 \\ -1 & 0 & 0 & 4 & -1 & 0 \\ 0 & -1 & 0 & -1 & 4 & -1 \\ 0 & 0 & -1 & 0 & -1 & 4 \end{pmatrix};$$

- e) Verifique, com uso do MATLAB, que o resultado está correto.
- 6. a) Se \mathbf{A} não singular logo podemos obter $\mathbf{A} = \mathbf{L}\mathbf{U}$. Verifique que podemos escrever por sua vez $\mathbf{A} = \mathbf{L}\mathbf{D}\bar{\mathbf{U}}$, onde \mathbf{D} é diagonal, e $\bar{\mathbf{U}}$ é triangular superior com diagonal unitária.
 - b) Sendo $\mathbf{A} = \mathbf{L}\mathbf{D}\mathbf{\bar{U}}$, como poderia ser resolvido $\mathbf{A}\mathbf{x} = \mathbf{b}$?