Proof. From

$$\langle f^{\top}(\varphi), u \rangle = \langle \varphi, f(u) \rangle$$

for all $\varphi \in F^*$ and all $u \in E$, we see that if $u \in \text{Ker}(f)$, then $\langle f^{\top}(\varphi), u \rangle = \langle \varphi, 0 \rangle = 0$, which means that $f^{\top}(\varphi) \in (\text{Ker}(f))^0$, and thus, $\text{Im } f^{\top} \subseteq (\text{Ker}(f))^0$. For the converse, since $\dim(E)$ is finite, we have

$$\dim((\operatorname{Ker}(f))^0) = \dim(E) - \dim(\operatorname{Ker}(f)) = \dim(\operatorname{Im} f),$$

but we just proved that $\dim(\operatorname{Im} f^{\top}) = \dim(\operatorname{Im} f)$, so we get

$$\dim((\operatorname{Ker}(f))^0) = \dim(\operatorname{Im} f^\top),$$

and since $\operatorname{Im} f^{\top} \subseteq (\operatorname{Ker}(f))^{0}$, we obtain

$$\operatorname{Im} f^{\top} = (\operatorname{Ker}(f))^{0},$$

as claimed.

Remarks:

1. By the duality theorem, since $(\text{Ker}(f))^{00} = \text{Ker}(f)$, the above equation yields another proof of the fact that

$$\operatorname{Ker}(f) = (\operatorname{Im} f^{\top})^{0},$$

when E is finite-dimensional.

2. The equation

$$\operatorname{Im} f^{\top} = (\operatorname{Ker}(f))^{0}$$

is actually valid even if when E if infinite-dimensional, but we will not prove this here.

11.8 The Four Fundamental Subspaces

Given a linear map $f \colon E \to F$ (where E and F are finite-dimensional), Proposition 11.11 revealed that the four spaces

$$\operatorname{Im} f$$
, $\operatorname{Im} f^{\top}$, $\operatorname{Ker} f$, $\operatorname{Ker} f^{\top}$

play a special role. They are often called the $fundamental \ subspaces$ associated with f. These spaces are related in an intimate manner, since Proposition 11.11 shows that

$$\operatorname{Ker} f = (\operatorname{Im} f^{\top})^{0}$$
$$\operatorname{Ker} f^{\top} = (\operatorname{Im} f)^{0}.$$