These are theorems that I proved in class that, I think, cover the material in Section 5.3 much more efficiently. These theorems immediately imply Theorem 5.17-5.29 in the textbook.

Theorem 1 If A is an infinite subset of \mathbb{N} , then $A \simeq \mathbb{N}$.

Proof Since $A \neq \emptyset$, and $A \subseteq \mathbb{N}$, the Well-Ordering Principle says there is a <u>smallest</u> member $a_1 \in A$.

Since A is not finite, $A - \{a_1\} \neq \emptyset$. Let a_2 be the smallest member of $A - \{a_1\}$

Since A is not finite, we can always continue this process another step. We inductively define a_{n+1} to be the smallest member of $A - \{a_1, ..., a_n\}$.

The sequence $a_1, a_2, ..., a_n, ...$ contains <u>every</u> member of A (why?), and the mapping $f: A \to \mathbb{N}$ defined by $f(a_n) = n$ is one-to-one and onto \mathbb{N} . Therefore $A \simeq \mathbb{N}$.

Corollary 2 A set A is countable iff there exists a one-to-one function $f: A \to \mathbb{N}$ (not necessarily onto!)

Proof If such a function exists, then $A \simeq \operatorname{range}(f) \subseteq \mathbb{N}$. Therefore A is finite or, by Theorem 1, $A \simeq \mathbb{N}$. Therefore A is countable.

If A is countable, then A is either finite or denumerable so <u>either</u> there is a one-to-one function $f:A\to\mathbb{N}_k\subseteq\mathbb{N}$ <u>or</u> there is a bijection $f:A\to\mathbb{N}$. Either way, we have a one-to-one function from A to \mathbb{N} so A is countable. \bullet

Corollary 3 A subset of a countable set is countable.

Proof Suppose $B \subseteq A$ where A is countable. By Corollary 2, there is a one-to-one function $f: A \to \mathbb{N}$. Then g = f | B is a one-to-one function from B into \mathbb{N} — so B is countable.

Theorem 4 If A and B are countable, then $A \times B$ is countable.

Proof By assumption, there exist one-to-one functions $f: A \to \mathbb{N}$ and $g: B \to \mathbb{N}$.

For each ordered pair $(a, b) \in A \times B$, define $h(a, b) = 2^{f(a)} 3^{g(b)} \in \mathbb{N}$. Then $h : A \times B \to \mathbb{N}$.

(Example: if, say, f(a) = 27 and g(b) = 113, then $h((a,b)) = 2^{27}3^{113}$.)

We claim that h is one-to-one: Suppose $(a, b) \neq (c, d) \in A \times B$. Then either $a \neq c$ or $b \neq d$.

If $a \neq c$, then $f(a) \neq f(c)$ since f is one-to-one. So $2^{f(a)}3^{g(b)} \neq 2^{f(c)}3^{g(d)}$ by the Fundamental Theorem of Arithmetic.

If $b \neq d$, then $g(b) \neq g(d)$ since g is one-to-one. So $2^{f(a)}3^{g(b)} \neq 2^{f(c)}3^{g(d)}$

Either way, $h(a, b) \neq h(c, d)$, so h is one-to-one.

Therefore, by Corollary 2, $A \times B$ is countable. •

Note: If A,B,C are countable then $A \times B$ is countable so, by Theorem 4, $(A \times B) \times C$ is also countable. But $(A \times B) \times C \simeq A \times B \times C$, so $A \times B \times C$ is countable. Continuing in this way, we can prove by induction that a product of finitely many countable sets is countable.)

Theorem 5 Suppose, for each $n \in \mathbb{N}$, that A_n is countable. Then $\bigcup_{n=1}^{\infty} A_n$ is countable. (The union of a countable collection $\{A_1, ..., A_n, ...\}$ of countable sets is countable.)

Proof To show $\bigcup_{n=1}^{\infty} A_n$ is countable, it is sufficient, by to produce a one-to-one map $f: \bigcup_{n=1}^{\infty} A_n \to \mathbb{N}$ (by Corollary 2).

1) We begin by showing that we can find <u>pairwise disjoint</u> countable sets B_n such that $\bigcup_{n=1}^{\infty} B_n = \bigcup_{n=1}^{\infty} A_n$. (Then we will just need to show that $\bigcup_{n=1}^{\infty} B_n$ is countable.)

Define
$$B_1 = A_1$$

 $B_2 = A_2 - A_1$
 $B_3 = A_3 - (A_1 \cup A_2)$
 \vdots
 $B_n = A_n - (A_1 \cup ... \cup A_{n-1})$
 \vdots

To see that the B_n 's are pairwise disjoint:

Consider
$$B_m$$
 and B_n where, say, $m < n$. If $s \in B_m$
= $A_m - (A_1 \cup ... \cup A_{m-1})$, then $x \in A_m$. But that implies $x \notin B_n = A_n - (A_1 \cup ... \cup A_m \cup ... \cup A_{n-1})$. So $B_m \cap B_n = \emptyset$.

To see that $\bigcup_{n=1}^{\infty} B_n = \bigcup_{n=1}^{\infty} A_n$:

Since $B_n \subseteq A_n$, certainly we have $\bigcup_{n=1}^{\infty} B_n \subseteq \bigcup_{n=1}^{\infty} A_n$.

Conversely, if $x \in \bigcup_{n=1}^{\infty} A_n$, then x is in at least one of the A_n 's. Pick the <u>smallest</u> n_0 such that $x \in A_{n_0}$. Then $x \in B_{n_0}$ because x is <u>not</u> in $A_1 \cup ... \cup A_{n_0-1}$, the set "discarded" in the definition of B_{n_0} . Therefore $x \in \bigcup_{n=1}^{\infty} B_n$, so $\bigcup_{n=1}^{\infty} B_n = \bigcup_{n=1}^{\infty} A_n$.

2) Since each B_n is a subset of a countable set A_n , Corollary 3 tells us that each B_n is countable. We want to show that $\bigcup_{n=1}^{\infty} B_n$ is countable.

There is a one-to-one function $f_n: B_n \to \mathbb{N}$, for each n (since B_n is countable).

List the prime numbers as $p_1 = 2$, $p_2 = 3$, $p_3 = 5$, ..., p_n ,

Define $f: \bigcup_{n=1}^{\infty} B_n \to \mathbb{N}$ as follows: if $x \in B_n$, then $f(x) = p_n^{f(x)} \in \mathbb{N}$

For example, if $x \in B_3$, then $f_3 : B_3 \to \mathbb{N}$ and $f_3(x)$ is some natural number. Suppose, to illustrate, that $f_3(x) = 64$. Then $f(x) = p_3^{f_3(x)} = p_3^{64} = 5^{64}$.

Notice that for each $x \in \bigcup_{n=1}^{\infty} B_n$, there is <u>exactly one</u> n for which $x \in B_n$ because the B_n 's are pairwise disjoint. This means there's no ambiguity in how f is being defined.

We claim that f is one-to-one. Suppose $x, y \in \bigcup_{n=1}^{\infty} B_n$ and $x \neq y$.

i) if $x \in B_n$ and $y \in B_m$, where $m \neq n$, then

$$f(x) = p_n^{f_n(x)} \neq p_m^{f_m(y)} = f(y)$$
 because $p_n \neq p_m$

Fundamental Theorem of Arithmetic: $p_n^{f_n(x)}$ can't be factored as a product of p_m 's.

ii) if x and y are both in the same B_n , then $f_n(x) \neq f_n(y)$ because the function $f_n : B_n \to \mathbb{N}$ is one-to-one. Therefore

$$f(x) = p_n^{f_n(x)} \neq p_n^{f_n(y)} = f(y)$$

Fundamental Theorem of Arithmetic again: $p_n^{f_n(x)}$ and $p_n^{f_n(y)}$ have different <u>numbers of</u> p_n 's in their prime factorizations, so they can't be equal.

Therefore h is one-to-one.

Therefore $\bigcup_{n=1}^{\infty} B_n$ is countable. \bullet

Corollary 6 A union of a finite number of countable sets is countable. (In particular, the union of two countable sets is countable.)

(This corollary is just a minor "fussy" step from Theorem 5. The way Theorem 5 is stated, it applies to an infinite collection of countable sets $A_1, ..., A_n, ...$ If we have only finitely many, we artificially create the others using \emptyset .)

Proof Suppose $A_1, A_2, ..., A_k$ are countable sets. In order to apply Theorem 5, we define $A_{k+1} = A_{k+2} = A_{k+3} + ... = \emptyset$.

Then $A_1 \cup ... \cup A_k = A_1 \cup ... \cup A_k \cup \emptyset \cup \emptyset \cup ... = \bigcup_{n=1}^{\infty} A_n$, which is countable. •

Examples i) We proved earlier that the set \mathbb{Q}^+ of <u>positive</u> rationals is countable. The set \mathbb{Q}^- of <u>negative</u> rationals is countable since $\mathbb{Q}^- \simeq \mathbb{Q}^+$ (using, for example, the function f(x) = -x). The finite set $\{0\}$ is countable.

Therefore $\mathbb{Q} = \mathbb{Q}^- \cup \{0\} \cup \mathbb{Q}^+$ is countable, by Corollary 6.

ii) If $B \subseteq A$, and B is uncountable, then A must be uncountable. (If A were countable, then Corollary 3 would say that B must be countable.)

For example, $\mathbb R$ is uncountable because $(0,1)\subseteq\mathbb R$ (in fact, we already knew $\mathbb R$ is uncountable – we proved $\mathbb R\simeq (0,1)$.

 $\mathbb{R} \times \{0\} \times \{0\}$ is uncountable (it's clearly equivalent to \mathbb{R}), and $\mathbb{R} \times \{0\} \times \{0\}$ $\subseteq \mathbb{R}^3$. Therefore \mathbb{R}^3 is uncountable.

A similar argument shows that \mathbb{R}^n is uncountable for any integer n > 1.

- iii) Let \mathbb{P} be the set of irrational numbers. If \mathbb{P} were countable, then $\mathbb{R} = \mathbb{P} \cup \mathbb{Q}$ would be countable (by Corollary 6). Therefore \mathbb{P} is uncountable so there are "more" irrational numbers than there are rational numbers!!
- iv) A harder example: suppose $A=\{a_1,a_2,\ldots,a_n,\ldots\}\subseteq\mathbb{R}$ and let ϵ be an arbitrary positive number. Let I_n denote the open interval centered at a_n with length $\frac{\epsilon}{2^{n+1}}$, that is $I_n=(a_n-\frac{\epsilon}{2^{n+2}},\,a_n+\frac{\epsilon}{2^{n+2}})$. Then $A\subseteq\bigcup_{n=1}^\infty I_n$ (because each a_n is in the corresponding I_n); but the total length of all the intervals I_n is $\sum_{n=1}^\infty \frac{\epsilon}{2^{n+1}}<\epsilon$.

This says, informally, that any countable subset of \mathbb{R} can be "covered" by a countable collection of open intervals whose total length is $< \epsilon$, where the positive number ϵ can be chosen as small as you like.

So – for a dramatic and counterintuitive example – you can cover the set $\mathbb Q$ of all rational numbers with a countable collection of open intervals whose <u>total length</u> is $< 10^{-10}$!!