

Arquiteturas Paralelas

Prof. Ms. Marcos José Brusso brusso@upf.br Universidade de Passo Fundo

Prof. Dr. César A. F. De Rose derose@inf.pucrs.br Pontificia Universidade Católica do Rio Grande do Sul

Apresentação - Prof. Marcos José Brusso

- Formação
 - Graduação: Ciência da Computação, UPF/1994
 - Mestrado: Ciência da Computação, UFRGS/2000
- Atividades
 - Professor Adjunto do ICEG/UPF
 - Coordenador da Especialização em Desenvolvimento de Software
 - Coordenador projeto Kelix

FRAD 2010 - Arquiteturas Paralelas

Apresentação - Prof. César De Rose

- Formação
 - Graduação em Ciência da Computação PUCRS (1990),
 - Mestrado em Ciência da Computação UFRGS (1993)
 - Doutorado em Ciência da Computação pela Universidade de Karlsruhe, Alemanha (1998)
- Atividades
 - Professor Adjunto da PUCRS
 - Coordena o Laboratório de Alto Desempenho da PUCRS (LAD-PUCRS)

ERAD 2010 - Arquiteturas Paralelas

Sumário

- Introdução
- Motivação
- Classificação de Máquinas Paralelas
- Tendências na Construção de Máquinas Paralelas
- Máquinas Agregadas
- Estudo de Casos
- Comparação Entre Modelos
- Tópicos Atuais
- Bibliografia

ERAD 2010 - Arquiteturas Paralelas

Introdução

Objetivo desta Evolução

- Acelerar o processamento dos dados pela CPU
 - Liberando CPU (delegando tarefas)
 - Controle do barramento
 - ■Tratamento de E/S
 - Acelerando a alimentação da CPU
 - Hierarquia de memória
 - Sobrepondo ciclos da CPU
 - Pipeline de instrução
- Acelerar o processamento dos dados construindo arquiteturas com múltiplas CPU's
 - Arquiteturas Paralelas

Motivação

Por Que Pesquisar AP?

- Contribui para o ganho de desempenho de arquiteturas "convencionais"
- Alternativa para quando limites físicos forem atingidos
- Alternativa para aplicações com demanda imediata por alto desempenho
 - Simulação (previsão do tempo, modelos físicos, biológicos)

■ Domínio da terminologia utilizada na especificação

■ Escolha / Construção da melhor arquitetura para o

■ No caso de PPD, conhecimento da arquitetura da

máquina influencia diretamente o desempenho da

■ Programação eficiente da máquina

- Computação gráfica

Por Que Estudar AP?

de arquiteturas

uso desejado

aplicação

Por Que Pesquisar AP?

- Solução de aplicações complexas (científicas, industriais e militares)
 - Meteorologia
 - Prospeção de petróleo
 - Análise de local para perfuração de poços de petróleo
 - Simulações físicas
 - Aerodinâmica; energia nuclear
 - Matemática computacional
 - Análise de algoritmos para criptografia
 - Bioinformática
 - Simulação computacional da dinâmica molecular de proteínas

Classificação de Máquinas Paralelas

ERAD 2010 - Arquiteturas Paralelas

Por Que Estudar Classificações ?

- Identificar o critério da classificação
 - Por que é importante
 - Quais as suas implicações
- Analisar todas as possibilidades
 - Mesmo as classes que não foram implementadas
 - Ou implementações que não deram certo
- Como ocorreu a evolução da área
 - Como pode evoluir

FRAD 2010 - Arquiteturas Paralelas

Classificação de Flynn

- Classificação genérica (1970)
- Diferencia se o fluxo de instruções (instruction stream) e o fluxo de dados (data stream) são múltiplos ou não

	Single Instruction	Multiple Instruction
Single Data	SISD	MISD
Multiple Data	SIMD	MIMD

ERAD 2010 - Arquiteturas Paralelas

Classe SISD

- <u>Single Instruction Stream, Single Data Stream</u>
 - Um único fluxo de instruções
 - Um único fluxo de dados
- Arquiteturas tradicionais não paralelas
 - Máquinas de von Neumann tradicionais

ERAD 2010 - Arquiteturas Paralelas

Classe MISD

- Multiple Instruction Stream, Single Data Stream
 - Múltiplos fluxos de instruções
 - Um único fluxo de dados
- Ainda sem implementação

ERAD 2010 Arquitoturas Paralolas

Classe SIMD

- <u>S</u>ingle <u>I</u>nstruction Stream, <u>M</u>ultiple <u>D</u>ata Stream
 - Um único fluxo de instruções
 - Múltiplos fluxos de dados
- Execução síncrona
- Arquiteturas Array
 - CM-2, MP-2

- <u>M</u>ultiple <u>Instruction Stream</u>, <u>M</u>ultiple <u>D</u>ata Stream
 - Múltiplos fluxos de instruções
 - Múltiplos fluxos de dados
- Vários programas sobre vários dados
- Arquiteturas Paralelas Modernas

ERAD 2010 - Arquiteturas Paralelas

Classificação segundo o Compartilhamento de Memória

- Dependendo da máquina paralela utilizar uma memória compartilhada por todos os processadores, pode-se diferenciar:
 - Multiprocessadores
 - Multicomputadores

FRAD 2010 - Arquiteturas Paralelas

Multiprocessador

- Compartilha uma memória central
 - Arquitetura tradicional com vários processadores
 - Um único espaço de endereçamento
 - Comunicação através da memória
 - Variáveis compartilhadas

ERAD 2010 - Arquiteturas Paralelas

Multiprocessador

- Em um multiprocessador a memória é disputada pelos processadores
 - Muitas vezes endereços são diferentes
 - Posso quebrar memória em diferentes módulos para permitir múltiplos acessos
 - Memória Entrelaçada (interleaved)

ERAD 2010 - Arquiteturas Paralelas

Multiprocessador

- Não adianta a memória suportar múltiplos acessos se o barramento suporta apenas uma transação por vez
- Ideal: rede não bloqueante com suporte a várias transações simultâneas
- Ex: Matriz de Chaveamento (*crossbar*)

RAD 2010 - Arquiteturas Paralelas

Multicomputador

- Não compartilha memória
 - Interligação de várias arquiteturas tradicionais
 - Cada uma possui sua memória local
 - Múltiplos espaços de endereçamento privados
 - Comunicação por troca de mensagens

MIMD Multiprocessadores (inito espaço de endereçamento) Multicomputadores (miltiplos espaços de endereçamento) Morria central) NUMA (memória central) NUMA (cC-NUMA (memória distribuída) NCC-NUMA - - - - - - - - | SC-NUMA

Redes de Interconexão

FRAD 2010 - Arquiteturas Paralelas

Redes de Interconexão

- Implementa comunicação N:N com redes estáticas ou dinâmicas
- Estática
 - Roteamento em hardware
 - Anel
 - Torus
- Dinâmica
 - Chaveadores (switches)

ERAD 2010 - Arquiteturas Paralelas

Redes Estáticas

- Interligadas através de ligações fixas
- Entre cada componente existe ligação direta dedicada
- Topologia (estrutura de interligação) determina características da rede
- No caso das máquinas paralelas são normalmente regulares

ERAD 2010 - Arquiteturas Paralelas

Anel Baixa escalabilidade (aumento um a um até 12) Problemas com Tolerância a Falhas Uni ou bidirecional Grau do nó: 2

Redes Dinâmicas ■ Não há topologia fixa ■ Rede adapta-se dinamicamente, por demanda ■ Barramento ■ Matriz de Chaveamento (Crossbar) ■ Redes Multinível

Matriz de Chaveamento ■ Crossbar ■ Baixa escalabilidade (limite é o número de portas) Alto custo Bidirecional ■ Grau do nó 1

Plataformas Tradicionais para PPD

EPAD 2010 Arquitoturas Baralolas

Plataformas Tradicionais para PPD

- PVP Processadores Vetoriais
- SMP Multiprocessadores Simétricos com memória compartilhada
- MPP Multicomputadores Maciçamente Paralelos com múltiplas memórias locais
- NOW Redes de Estações de Trabalho

Arquitetura e características bem diferentes !!!

FRAD 2010 - Arquiteturas Paralelas

PVP Parallel Vector Processor Memória compartilhada (UMA) Comunicação através da memória Matriz de chaveamento Permite acesso concorrente a memória Baixa escalabilidade (poucos processadores) Grandes registradores, sem caches Ex: Cray C90, Cray T-90, NEC SX-4

NOW Network of Workstations Múltiplas memórias locais Comunicação por troca de mensagens Interconectados por rede tradicional Difícil programação Ex: PCs interligadas por rede Ethernet

	PVP	SMP	MPP	NOW
Número de EPs	Baixo	Baixo	Alto	Médio
Escalabilidade	Baixa	Baixa	Alta	Média
Latência de Comunicação	Baixa	Média	Baixa	Alta
Programação	Média	Fácil	Difícil	Difícil
	PVP	SMP	MPP	NOW

■ Máquinas	5 5
Cluster	of Workstations (COW)
Redes de Paralelo	estações dedicadas ao Processamento
	tadas por novas tecnologias de redes xa latência)
Otimização	o de NOW
■ Procura al	iar vantagens das outras quatro classes

Máquinas Agregadas

- Baixo custo (NOW)
- Baixa latência na comunicação (MPP)
- Memória distribuída (MPP) e/ou compartilhada (SMP)
- Boa escalabilidade (MPP)

ERAD 2010 - Arquiteturas Paralelas

COW: Exemplos

Clusters Amazônia e Ombrófila CPAD-PUCRS/HP

ERAD 2010 - Arquiteturas Paralelas

COW: Exemplos

HP i-cluster

ERAD 2010 - Arquiteturas Paralelas

Construção de COW's

- Atualmente há duas tendências
- Interligadas por rede rápida
 - Impulsionada por fabricantes de placas de rede especiais
 - Alto custo por nó compromete escalabildade
 - Máquinas de pequeno e médio porte (dezenas de nós)
- Interligadas por rede Ethernet
 - Impulsionada por grandes fabricantes (HP, IBM)
 - Máquinas de grande porte (centenas de nós)

ERAD 2010 - Arquiteturas Paralelas

Como Obter Baixa Latência

- Placas de interconexão (rede) otimizadas
- Conexão ponto-a-ponto entre estações
- Interconexão por redes estáticas ou dinâmicas
- Implementação de protocolos de rede em HW

Myrinet

- Implementa troca de mensagens (NORMA)
- Latência em torno de 2μs
- Vazão 1.2 GBytes/s
- Interligação através de switch de alto desempenho

ERAD 2010 - Arquiteturas Paralelas

ERAD 2010 - Arquiteturas Paralelas

COW - Configuração Mínima

- Aproveitamento das máquinas mais rápidas como nós (homogêneo) - 8 nós
- Aproveitamento de uma máquina como hospedeira
 - Não participa do cluster (simétrico)
 - Bloqueia acesso direto ao cluster
 - Função de console
- Sistema Operacional Linux
- Rede de interconexão de baixa latência ou uso de switch Fast-Ethernet

ERAD 2010 - Arquiteturas Paralelas

Configuração Avançada

- Máquinas SMP como nós (dual) 16 nós
- Redes de interconexão primária e secundária
 - Rede primária para comunicação (rede rápida)
 - Rede secundária para gerência e monitoração

SMT - Simultaneous Multithreading

- Abordagem multi-thread
 - 2 ou mais threads podem executar simultaneamente no mesmo processador
 - Não há troca de contexto para execução dos threads
- Processador virtualmente duplicado
 - n processadores lógicos
- Objetivo: melhor utilização de recursos
- Intel comercializa como Hyper-Threading

ERAD 2010 - Arquiteturas Paralelas

SMT - Simultaneous multithreading

- Componentes replicados (< 5% da área do chip)
 - Contexto do processo em execução (pilha, regs de controle, etc)
 - Concorrência na execução dos processos
 - Controlador de interrupções
 - Gerência concorrente de interrupções
- Recursos compartilhados entre processos
 - Unidades de execução
 - Cache

ERAD 2010 - Arquiteturas Paralelas

Tecnologia Multicore ■ Múltiplos cores (nú

- Múltiplos cores (núcleos de execução) integrados em um único chip
- Multiplicação total dos recursos de processamento
- Vantagem: compatibilidade com código existente!

ERAD 2010 - Arquiteturas Paralelas

Tecnologia Multicore

■ Exemplo: Intel Core i7

■ Quad core

ERAD 2010 - Arquiteturas Paralelas

Tecnologia Multicore

Processador multi-core

ERAD 2010 Arquitoturas Paralolas

Bibliografia

- De Rose, C.; Navaux, P. Arquiteturas Paralelas Editora Sagra-Luzzatto
- Hwang, Kai; Xu Scalable parallel computing, 1998
- Culler, D.; Singh, J. Parallel Computer Architecture, 1999
- Seitz et. al. Myrinet, a gigabit-per-second Local Area Network. IEEE Micro, 15, 1995.
- IEEE:IEEE Standard for Scalable Cherent Interface (SCI). IEEE Standard 1596-1992