CS142: Machine Learning

Spring 2017

Lecture 1

Instructor: Pedro Felzenszwalb Scribes: Dan Xiang, Tyler Dae Devlin

Introduction

Some logistical details

- Prerequisites: Linear algebra (MATH 0520), probability & statistics (APMA 1650), and introductory computer science (CSCI 0150, 0160).
- This course focuses on the mathematical foundations of machine learning. An alternative, more practically oriented course is CS1951A: Data Science.
- This course's website is http://cs.brown.edu/~pff/engn2520/.
- The class Piazza page is www.piazza.com/brown/spring2017/cs142.

Supervised learning

The goal of supervised learning is to estimate a function $f: X \to Y$ where X is the "feature space" and Y is the "label space". The function f is estimated using a set of labeled training data

$$T = \{(x_1, y_1), \dots, (x_n, y_n)\}$$

with $\{x_i\} \subset X$ and $\{y_i\} \subset Y$, where each $y_i = f(x_i)$ is the true label for the corresponding x_i .

Contrast this to unsupervised learning, in which examples don't come with a set of know labels, i.e. we don't specify an output space. Instead of trying to estimate a target function f, we just wish to analyze the structure of the data $\{x_1, \ldots, x_n\}$.

Example. Let the input space be $X = \mathbb{R}^2$, let the output space be $Y = \{\text{Bass, Salmon}\}$, and suppose each example $(x_1, x_2) \in X$ represents the length and weight of a fish. Given training data, we can estimate $f: X \to Y$, the function that determines whether a fish is a bass or salmon based on its length and weight. We can then use this estimate of f to classify new fish after weighing and measuring them.

Suppose we have some training data T, consisting of the lengths and weights of a bunch of fish along with their true species label. Define the classifier

$$g(x_1, x_2) = \begin{cases} \text{Salmon} & x_1 \ge t \\ \text{Bass} & x_1 < t \end{cases}$$

The classifier g is an estimate of the target function f. Note that this is probably a poor estimate, since g classifies fish based only on their length, even though the training data also includes information about weight.

Nevertheless, to fully specify the classifier g we need to select the threshold t. Intuitively, we should select t to minimize the number of mistakes the classifier makes on the examples in the training data set, i.e. the **training error**. What we are really interested in, however, is the number of mistakes our function would make on a new set of unseen data, i.e. the **test error**. In general, it is easy to devise a classifier that has low (or even zero) training error; this is called *memorizing*. It is much harder to construct a classifier that generalizes to new data; this is called *learning*.

Theorem: If the number of samples n is large enough, then the training error \approx test error with high probability. (We will make this precise later in the course.)

Leaving the fish classification example aside for the moment, let us examine a different kind of classifier. Suppose we have a training set $T = \{(x_1, y_1), \dots, (x_n, y_n)\}$. Define the classifier

$$g(x) = \begin{cases} y_j & x = x_j \text{ for some } j \in \{1, \dots, n\} \\ 0 & x \neq x_j \text{ for all } j \in \{1, \dots, n\} \end{cases}.$$

In words, this classifier checks if the feature x was observed in the training data. If it was, then it assigns the corresponding observed y_j label. Otherwise, g = 0.

Example. Classification is a very common task. A classic example is spam detection. In this case,

$$X = \text{set of all possible emails},$$

 $Y = \{\text{spam, not spam}\}.$

We assume there is some true function f that associates to each email a label of either "spam" or "not spam". Our goal is to use labeled training examples to construct an estimate g of f so that we can classify new emails and place them in the appropriate folders in your mail client.

Formalizing the problem

Given a feature space X and a label space Y, there is some distribution/density p(x,y) over $X \times Y$ (the Cartesian product of X and Y). We define a loss function $L: Y \times Y \to \mathbb{R}$ by

$$L(y, \hat{y}) = \text{cost of predicting } \hat{y} \text{ if the true label is } y.$$

A quantity of interest is the expected loss of predictions using our learend classifier q, denoted

$$E[L(y, g(x))] \tag{1}$$

where y is the true label, g(x) is our predicted label, and $(x,y) \sim p(x,y)$,.

We can define a particular loss function

$$L(y, \hat{y}) = \begin{cases} 0 & y = \hat{y} \\ 1 & y \neq \hat{y} \end{cases}.$$

Then equation (1) is the probability of error (since the expectation of an indicator of an event is precisely the probability of that event).

We typically assume that a training set T is a collection of iid samples drawn according the joint distribution p(x, y). Then we have that expression (1) is roughly equal to

$$\frac{1}{n}\sum_{i=1}^{n}L(y_i,g(x_i)),$$

i.e. the sample mean of L, also known as the empirical loss.

Given the underlying distribution p(x, y), we compute using the definition of expected value

$$E[L(y,g(x))] = \int_X \sum_{y \in Y} p(x,y)L(y,g(x)) dx$$

For each x, we define the classifier

$$g(x) = \underset{\hat{y} \in Y}{\operatorname{argmin}} \sum_{y \in Y} p(x, y) L(y, \hat{y}).$$

In this case we can use the training data T to estimate the joint distribution p(x,y). We can write

$$p(x, y) = p(y)p(x \mid y).$$

We can estimate p(y) by observing how many instances of each class $y \in Y$ occur in T. For the $p(x \mid y)$ term, we can estimate $p(x \mid \text{Salmon})$ and $p(x \mid \text{Bass})$ as Gaussians (for example) using parameters inferred from the training data.