# SOTON-WAIS @ SED2013

Sparse Features and incremental density based clustering

Sina Samangooei















### SOCIAL EVENT DETECTION @ MEDIAEVAL 2013

- Event clustering of multimodal social media streams
- Specifically:
  - Given 500k Flickr images with
    - image, tags, (some) geo, (some) time taken, time posted etc.
  - Cluster into "events"















#### SOCIAL EVENTS

We define **social events** as events that are **planned** by people, **attended** by people and the media illustrating the events are **captured by people** 















### SED2013 EXAMPLES



<photo id="4302746429" photo\_url="http://
farm5.staticflickr.com/4068/4302746429\_f8cd7f2582.jpg"
username="at the foot of the hill" dateTaken="2010-01-23
21:36:05.0" dateUploaded="2010-01-25 10:43:34.0">
<title>Poo, Dead Voices on Air @ A4</title>
<description>whole set ...</description>
<tags>
 <tag>2/58</tag>
 <tag>58mm</tag>
 <tag>58mm</tag>
 <tag>concert</tag>
 <tag>F2</tag>
 <tag>Poo</tag>
</tags></tag>
</tag>></tag>></tag>></tag>></tag>></tag>></tag>></tag>></tag>></tag>></tag>></tag>></tag>></tag>></tag>></tag>></tag>></tag>></tag>></tag>></tag>></tag>





</photo>















### FEATURES

- Events potentially separable using:
  - Images: should look similar?
  - **Time**: should be temporally close?
  - Location: should be geographically close?
  - **Text**: should be described similarly?
- Our social media stream contains:
  - Time taken (potentially inaccurate)
  - Time posted (accurate, though may be event agnostic)
  - Geo (often inaccurate, sparse)
  - Tags, title, description(multi-tag, spelling etc.)















# EVENT SEPARATION WITH FEATURES

- January 2007 until February 2007
- Random color assigned to clusters

















# EVENT SEPARATION WITH FEATURES

Events like this could easily be confused

















# EVENT SEPARATION WITH FEATURES

• More may help separate events

















#### FEATURE WEIGHTS

- The features matter for different reasons
- Some are more important than others
  - This is a feature fusion problem
- Experiments with feature weights against cluster quality
  - **Time taken** is apparently most important
  - Time posted + geo seem to hold the same information
  - Tags beat titles and descriptions















#### ENFORCE SPARSITY

- Use a query a Lucene index to get a subset of similar images
- Distance measures of Time and Geo calculated using a log decay function
  - force sparsity beyond certain threshold
- Distance measures of tags are inherently sparse
  - TFIDF

















### CLUSTERING - FINDING EVENTS

- Challenges
  - The baseline is it self noisy
    - Hard to know if we're doing well!
  - The task is ill posed (is Christmas an event? Are all Christmases an event? application specific)
  - Cluster number hard to estimate
    - A parameter in many clustering algorithms
  - Many noise points
    - 2% clusters with 1 member
  - Long tail of cluster membership















#### SED2013 - DBSCAN

....the little baseline that could...

- DBSCAN is an old, well studied clustering algorithm
- Detects clusters and identify noise
- No knowledge of cluster count needed
- Requirements:
  - Neighborhood function (e.g. thresholded sparse similarity matrix)
  - Neighborhood density counts















# SED2013 - SPECTRAL CLUSTERING

- Theoretically appealing non-parametric clustering algorithm
  - Rooted in graph theory
  - Potentially auto detects cluster count
- Basic premise is:

Use the smallest (near zero) eigenvalued eigenvectors of the graph laplacian of the similarity matrix of some data as a space within which to apply another clustering algorithm















# SED2013 - INCREMENTAL CLUSTERING

- Practical restrictions of spectral clustering mean we can't apply it to the whole dataset
- Make an assumption about the data style
  - images likely to be clustered together will appear sequentially in terms of upload time
- Leverage this to cluster sub windows of data
  - Grow the window and see if a cluster changes
  - If not, tag those items as clustered, and remove them















## RESULTS!

| SETTING | TIME<br>TAKEN | TIME<br>POSTED | LOCATION | TEXT<br>DESC | TEXT<br>TITLE | TEXT<br>TAGS |
|---------|---------------|----------------|----------|--------------|---------------|--------------|
| BEST    | 2             | 0              | 1        | 1            | 0             | 3            |
| AVERAGE | 2.1           | 1.8            | 1.4      | 0.7          | 0.3           | 1.7          |
| WORST   | 0             | 1              | 1        | 3            | 3             | 0            |

|                 | F1    | NMI   | F1(DIV) | RB F1 | DIV F1 |
|-----------------|-------|-------|---------|-------|--------|
| DBSCAN (BEST)   | 0.945 | 0.985 | 0.935   | 0.059 | 0.887  |
| SPECTRAL (BEST) | 0.911 | 0.977 | 0.882   | 0.058 | 0.853  |
| DBSCAN (AVG)    | 0.946 | 0.985 | 0.936   | 0.060 | 0.886  |
| SPECTRAL (AVG)  | 0.902 | 0.974 | 0.866   | 0.057 | 0.846  |
| DBSCAN (WORST)  | 0.409 |       | 0.353   | 0.056 |        |

TEAM SOTON-WAIS (UNIVERSITY OF SOUTHAMPTON)













### RESULTS!

|   | SETTING | TIME<br>TAKEN | TIME<br>POSTED | LOCATION | TEXT<br>DESC | TEXT<br>TITLE | TEXT<br>TAGS |  |
|---|---------|---------------|----------------|----------|--------------|---------------|--------------|--|
| • | BEST    |               | 0              | 1        | 1            | 0             | 3            |  |
|   | AVERAGE | 2.1           | 1.8            | 1.4      | 0.7          | 0.3           | 1.7          |  |
|   | WORST   | 0             | 1              | 1        | 3            | 3             | 0            |  |

All configurations using incremental clustering

|                 |            | IIICI EII | ilelitai tiuste | illig |        |
|-----------------|------------|-----------|-----------------|-------|--------|
|                 | <i>F</i> 1 | NMI       | F1(DIV)         | RB F1 | DIV F1 |
| DBSCAN (BEST)   | 0.945      | 0.985     | 0.935           | 0.059 | 0.887  |
| SPECTRAL (BEST) | 0.911      | 0.977     | 0.882           | 0.058 | 0.853  |
| DBSCAN (AVG)    | 0.946      | 0.985     | 0.936           | 0.060 | 0.886  |
| SPECTRAL (AVG)  | 0.902      | 0.974     | 0.866           | 0.057 | 0.846  |
| DBSCAN (WORST)  | 0.409      |           | 0.353           | 0.056 |        |















# RESULTS!

| SETTING | TIME<br>TAKE | TIME<br>N POSTED | LOCATION | TEXT<br>DESC | TEXT<br>TITLE | TEXT<br>TAGS |  |
|---------|--------------|------------------|----------|--------------|---------------|--------------|--|
| BEST    | 2            | 0                | 1        | 1            | 0             | 3            |  |
| AVERAGE | 2.1          | 1.8              | 1.4      | 0.7          | 0.3           | 1.7          |  |
| WORST   | 0            | 1                | 1        | 3            | 3             | 0            |  |

#### Time Taken matters most!

|                 | F1    | NMI   | F1(DIV) | RB F1 | DIV F1 |
|-----------------|-------|-------|---------|-------|--------|
| DBSCAN (BEST)   | 0.945 | 0.985 | 0.935   | 0.059 | 0.887  |
| SPECTRAL (BEST) | 0.911 | 0.977 | 0.882   | 0.058 | 0.853  |
| DBSCAN (AVG)    | 0.946 | 0.985 | 0.936   | 0.060 | 0.886  |
| SPECTRAL (AVG)  | 0.902 | 0.974 | 0.866   | 0.057 | 0.846  |
| DBSCAN (WORST)  | 0.409 |       | 0.353   | 0.056 |        |















### WEIGHTS MATTER!

| SETTING | TIME<br>TAKEN | TIME<br>POSTED | LOCATION | TEXT<br>DESC | TEXT<br>TITLE | TEXT<br>TAGS |
|---------|---------------|----------------|----------|--------------|---------------|--------------|
| BEST    | 2             | 0              | 1        | 1            | 0             | 3            |
| AVERAGE | 2.1           | 1.8            | 1.4      | 0.7          | 0.3           | 1.7          |
| WORST   | 0             | 1              | 1        | 3            | 3             | 0            |

They matter quite a lot <

|          | 40        | F1    | NMI   | F1(DIV) | RB F1 | DIV F1 |
|----------|-----------|-------|-------|---------|-------|--------|
| DBSCAN   | (BEST)    | 0.945 | C 985 | 0.935   | 0.059 | 0.887  |
| SPECTRAL | . (BEST)  | 0.911 | 0.977 | 0.882   | 0.058 | 0.853  |
| DBSCA    | N (AVG)   | 0.946 | 0.985 | 0.936   | 0.060 | 0.886  |
| SPECTA   | PAL (AVG) | 0.902 | 0 974 | 0.863   | 0.057 | 0.846  |
| DBSCAN ( | (WORST)   | 0.409 |       | 0.353   | 0.056 |        |















#### ANY QUESTIONS OR COMMENTS?













