

Why Language is Hard: Structure and Predictions

Advanced Machine Learning for NLP

Jordan Boyd-Graber

SLIDES ADAPTED FROM LIANG HUANG

POS Tagging: Task Definition

- Annotate each word in a sentence with a part-of-speech marker.
- Lowest level of syntactic analysis.

John	saw	the	saw	and	decided	to	take	it	to	the	table
NNP	VRD	DT	NN	CC	VRD	TO	VR	PRP	IN	DT	NN

Assume K parts of speech, a lexicon size of V, a series of observations $\{x_1, \ldots, x_N\}$, and a series of unobserved states $\{z_1, \ldots, z_N\}$.

- π Start state scores (vector of length K): π_i
- heta Transition matrix (matrix of size K by K): $heta_{i,j}$
- β An emission matrix (matrix of size K by V): $\beta_{j,w}$

Assume K parts of speech, a lexicon size of V, a series of observations $\{x_1, \ldots, x_N\}$, and a series of unobserved states $\{z_1, \ldots, z_N\}$.

- π Start state scores (vector of length K): π_i
- θ Transition matrix (matrix of size K by K): $\theta_{i,j}$
- eta An emission matrix (matrix of size K by V): $eta_{j,w}$

Score

$$f(x,z) \equiv \sum_{i} w_{i} \phi_{i}(x,z) \tag{1}$$

Assume K parts of speech, a lexicon size of V, a series of observations $\{x_1, \ldots, x_N\}$, and a series of unobserved states $\{z_1, \ldots, z_N\}$.

- π Start state scores (vector of length K): π_i
- heta Transition matrix (matrix of size K by K): $heta_{i,j}$
- β An emission matrix (matrix of size K by V): $\beta_{j,w}$

Score

$$f(x,z) \equiv \sum_{i} w_{i} \phi_{i}(x,z) \tag{1}$$

Total score of hypothesis z given input x

Assume K parts of speech, a lexicon size of V, a series of observations $\{x_1, \ldots, x_N\}$, and a series of unobserved states $\{z_1, \ldots, z_N\}$.

- π Start state scores (vector of length K): π_i
- heta Transition matrix (matrix of size K by K): $heta_{i,i}$
- β An emission matrix (matrix of size K by V): $\beta_{j,w}$

Score

$$f(x,z) \equiv \sum_{i} \mathbf{w}_{i} \phi_{i}(x,z) \tag{1}$$

Feature weight

Assume K parts of speech, a lexicon size of V, a series of observations $\{x_1, \ldots, x_N\}$, and a series of unobserved states $\{z_1, \ldots, z_N\}$.

- π Start state scores (vector of length K): π_i
- θ Transition matrix (matrix of size K by K): $\theta_{i,j}$
- β An emission matrix (matrix of size K by V): $\beta_{j,w}$

Score

$$f(x,z) \equiv \sum_{i} w_{i} \phi_{i}(x,z)$$
 (1)

Feature present (binary)

Assume K parts of speech, a lexicon size of V, a series of observations $\{x_1, \ldots, x_N\}$, and a series of unobserved states $\{z_1, \ldots, z_N\}$.

- π Start state scores (vector of length K): π_i
- heta Transition matrix (matrix of size K by K): $heta_{i,j}$
- eta An emission matrix (matrix of size K by V): $eta_{\mathit{j,w}}$

Score

$$f(x,z) \equiv \sum_{i} w_{i} \phi_{i}(x,z) \tag{1}$$

Assume K parts of speech, a lexicon size of V, a series of observations $\{x_1, \ldots, x_N\}$, and a series of unobserved states $\{z_1, \ldots, z_N\}$.

- π Start state scores (vector of length K): π_i
- θ Transition matrix (matrix of size K by K): $\theta_{i,j}$
- eta An emission matrix (matrix of size K by V): $eta_{j,w}$

Score

$$f(x,z) \equiv \sum_{i} w_{i} \phi_{i}(x,z) \tag{1}$$

Assume K parts of speech, a lexicon size of V, a series of observations $\{x_1, \ldots, x_N\}$, and a series of unobserved states $\{z_1, \ldots, z_N\}$.

- π Start state scores (vector of length K): π_i
- θ Transition matrix (matrix of size K by K): $\theta_{i,j}$
- eta An emission matrix (matrix of size K by V): $eta_{j,w}$

Score

$$f(x,z) \equiv \sum_{i} w_{i} \phi_{i}(x,z) \tag{1}$$

Assume K parts of speech, a lexicon size of V, a series of observations $\{x_1, \ldots, x_N\}$, and a series of unobserved states $\{z_1, \ldots, z_N\}$.

- π Start state scores (vector of length K): $\pi_i = \log p(z_1 = i)$
- θ Transition matrix (matrix of size K by K): $\theta_{i,j}$
- β An emission matrix (matrix of size K by V): $\beta_{j,w}$

Score

$$f(x,z) \equiv \sum_{i} w_{i} \phi_{i}(x,z) \tag{1}$$

Assume K parts of speech, a lexicon size of V, a series of observations $\{x_1, \ldots, x_N\}$, and a series of unobserved states $\{z_1, \ldots, z_N\}$.

- π Start state scores (vector of length K): $\pi_i = \log p(z_1 = i)$
- θ Transition matrix (matrix of size K by K): $\theta_{i,j} = \log p(z_n = j | z_{n-1} = i)$
- eta An emission matrix (matrix of size K by V): $eta_{j,w}$

Score

$$f(x,z) \equiv \sum_{i} w_{i} \phi_{i}(x,z) \tag{1}$$

Assume K parts of speech, a lexicon size of V, a series of observations $\{x_1, \ldots, x_N\}$, and a series of unobserved states $\{z_1, \ldots, z_N\}$.

- π Start state scores (vector of length K): $\pi_i = \log p(z_1 = i)$
- θ Transition matrix (matrix of size K by K): $\theta_{i,j} = \log p(z_n = j | z_{n-1} = i)$
- β An emission matrix (matrix of size K by V): $\beta_{j,w} = \log p(x_n = w|z_n = j)$

Score

$$f(x,z) \equiv \sum_{i} w_{i} \phi_{i}(x,z) \tag{1}$$

• Given an unobserved sequence of length L, $\{x_1, ..., x_L\}$, we want to find a sequence $\{z_1 ... z_L\}$ with the highest score.

- Given an unobserved sequence of length L, $\{x_1, ..., x_L\}$, we want to find a sequence $\{z_1 ... z_L\}$ with the highest score.
- It's impossible to compute K^L possibilities.
- So, we use dynamic programming to compute most likely tags for each token subsequence from 0 to t that ends in state k.
- Memoization: fill a table of solutions of sub-problems
- Solve larger problems by composing sub-solutions
- · Base case:

$$f_1(k) = \pi_k + \beta_{k,x_i} \tag{2}$$

$$f_n(k) = \max_{j} (f_{n-1}(j) + \theta_{j,k}) + \beta_{k,x_n}$$
 (3)

- Given an unobserved sequence of length L, $\{x_1, ..., x_L\}$, we want to find a sequence $\{z_1 ... z_L\}$ with the highest score.
- It's impossible to compute K^L possibilities.
- So, we use dynamic programming to compute most likely tags for each token subsequence from 0 to t that ends in state k.
- Memoization: fill a table of solutions of sub-problems
- Solve larger problems by composing sub-solutions
- Base case:

$$f_1(k) = \pi_k + \beta_{k,x_i} \tag{2}$$

$$f_n(k) = \max_{j} (f_{n-1}(j) + \theta_{j,k}) + \beta_{k,x_n}$$
 (3)

- Given an unobserved sequence of length L, $\{x_1, ..., x_L\}$, we want to find a sequence $\{z_1 ... z_L\}$ with the highest score.
- It's impossible to compute K^L possibilities.
- So, we use dynamic programming to compute most likely tags for each token subsequence from 0 to t that ends in state k.
- Memoization: fill a table of solutions of sub-problems
- Solve larger problems by composing sub-solutions
- · Base case:

$$f_1(k) = \pi_k + \beta_{k,x_i} \tag{2}$$

$$f_n(k) = \max_{j} (f_{n-1}(j) + \theta_{j,k}) + \beta_{k,x_n}$$
 (3)

- Given an unobserved sequence of length L, $\{x_1, ..., x_L\}$, we want to find a sequence $\{z_1 ... z_L\}$ with the highest score.
- It's impossible to compute K^L possibilities.
- So, we use dynamic programming to compute most likely tags for each token subsequence from 0 to t that ends in state k.
- Memoization: fill a table of solutions of sub-problems
- Solve larger problems by composing sub-solutions
- · Base case:

$$f_1(k) = \pi_k + \beta_{k,x_i} \tag{2}$$

$$f_n(k) = \max_{j} (f_{n-1}(j) + \theta_{j,k}) + \beta_{k,x_n}$$
 (3)

- The complexity of this is now K²L.
- In class: example that shows why you need all O(KL) table cells (garden pathing)
- But just computing the max isn't enough. We also have to remember where we came from. (Breadcrumbs from best previous state.)

$$\Psi_n = \operatorname{argmax}_j f_{n-1}(j) \theta_{j,k} \tag{4}$$

- The complexity of this is now K²L.
- In class: example that shows why you need all O(KL) table cells (garden pathing)
- But just computing the max isn't enough. We also have to remember where we came from. (Breadcrumbs from best previous state.)

$$\Psi_n = \operatorname{argmax}_j f_{n-1}(j) \theta_{j,k}$$
 (4)

Let's do that for the sentence "come and get it"

POS	π_k	β_{k,x_1}	$f_1(k)$
MOD	log 0.234	log 0.024	-5.18
DET	log 0.234	log 0.032	-4.89
CONJ	log 0.234	log 0.024	-5.18
N	log 0.021	log 0.016	-7.99
PREP	log 0.021	log 0.024	-7.59
PRO	log 0.021	log 0.016	-7.99
V	log 0.234	log 0.121	-3.56

come and get it (with HMM probabilities)

Why logarithms?

- More interpretable than a float with lots of zeros.
- Underflow is less of an issue
- 3 Generalizes to linear models (next!)
- 4 Addition is cheaper than multiplication

$$log(ab) = log(a) + log(b)$$
 (5)

POS	$f_1(j)$	$f_2(CONJ)$
MOD	-5.18	
DET	-4.89	
CONJ	-5.18	
N	-7.99	
PREP	-7.59	
PRO	-7.99	
V	-3.56	

come and get it

POS	$f_1(j)$	$f_2(CONJ)$
MOD	-5.18	
DET	-4.89	
CONJ	-5.18	???
N	-7.99	
PREP	-7.59	
PRO	-7.99	
V	-3.56	

come and get it

Boyd-Graber

POS	$f_1(j)$	$f_1(j) + \theta_{j,CONJ}$	$f_2(CONJ)$
MOD	-5.18	_	
DET	-4.89		
CONJ	-5.18		???
N	-7.99		
PREP	-7.59		
PRO	-7.99		
V	-3.56		

come and get it

POS	$f_1(j)$	$f_1(j) + \theta_{j,CONJ}$	$f_2(CONJ)$
MOD	-5.18	_	
DET	-4.89		
CONJ	-5.18		???
N	-7.99		
PREP	-7.59		
PRO	-7.99		
V	-3.56		

come and get it

$$f_0(V) + \theta_{V, CONJ} = f_0(k) + \theta_{V, CONJ} = -3.56 + -1.65$$

POS	$f_1(j)$	$f_1(j) + \theta_{j,CONJ}$	$f_2(CONJ)$
MOD	-5.18	_	
DET	-4.89		
CONJ	-5.18		???
N	-7.99		
PREP	-7.59		
PRO	-7.99		
V	-3.56	-5.21	

come and get it

POS	$f_1(j)$	$f_1(j) + \theta_{j,CONJ}$	$f_2(CONJ)$
MOD	-5.18		
DET	-4.89		
CONJ	-5.18		???
N	-7.99	≤-7.99	
PREP	-7.59	≤ −7.59	
PRO	-7.99	≤-7.99	
V	-3.56	-5.21	

come and get it

POS	$f_1(j)$	$f_1(j) + \theta_{j,CONJ}$	$f_2(CONJ)$
MOD	-5.18	-8.48	
DET	-4.89	-7.72	
CONJ	-5.18	-8.47	???
N	-7.99	≤-7.99	
PREP	-7.59	≤ −7.59	
PRO	-7.99	≤-7.99	
V	-3.56	-5.21	

come and get it

POS	$f_1(j)$	$f_1(j) + \theta_{j,CONJ}$	$f_2(CONJ)$
MOD	-5.18	-8.48	
DET	-4.89	-7.72	
CONJ	-5.18	-8.47	???
N	-7.99	≤-7.99	
PREP	-7.59	≤ −7.59	
PRO	-7.99	≤-7.99	
V	-3.56	-5.21	

come and get it

POS	$f_1(j)$	$f_1(j) + \theta_{j,CONJ}$	$f_2(CONJ)$
MOD	-5.18	-8.48	
DET	-4.89	-7.72	
CONJ	-5.18	-8.47	
N	-7.99	≤-7.99	
PREP	-7.59	≤ −7.59	
PRO	-7.99	≤-7.99	
V	-3.56	-5.21	

come and get it

$$\log f_1(k) = -5.21 + \beta_{CONJ, and} =$$

POS	$f_1(j)$	$f_1(j) + \theta_{j,CONJ}$	$f_2(CONJ)$
MOD	-5.18	-8.48	
DET	-4.89	-7.72	
CONJ	-5.18	-8.47	
N	-7.99	≤-7.99	
PREP	-7.59	≤ −7.59	
PRO	-7.99	≤-7.99	
V	-3.56	-5.21	

come and get it

$$\log f_1(k) = -5.21 + \beta_{\text{CONJ, and}} = -5.21 - 0.64$$

POS	$f_1(j)$	$f_1(j) + \theta_{j,CONJ}$	$f_2(CONJ)$
MOD	-5.18	-8.48	
DET	-4.89	-7.72	
CONJ	-5.18	-8.47	-6.02
N	-7.99	≤-7.99	
PREP	-7.59	≤ −7.59	
PRO	-7.99	≤-7.99	
V	-3.56	-5.21	

come and get it

POS	$f_1(k)$	$f_2(k)$	<i>b</i> ₂	$f_3(k)$	<i>b</i> ₃	$f_4(k)$	b_4
MOD	-5.18						
DET	-4.89						
CONJ	-5.18	-6.02	V				
N	-7.99						
PREP	-7.59						
PRO	-7.99						
V	-3.56						
WORD	come	and		g	et	it	

POS	$f_1(k)$	$f_2(k)$	<i>b</i> ₂	$f_3(k)$	<i>b</i> ₃	$f_4(k)$	<i>b</i> ₄
MOD	-5.18	-0.00	Χ				
DET	-4.89	-0.00	Χ				
CONJ	-5.18	-6.02	V				
N	-7.99	-0.00	Χ				
PREP	-7.59	-0.00	Χ				
PRO	-7.99	-0.00	Χ				
V	-3.56	-0.00	Χ				
WORD	come	and		g	et	it	

POS	$f_1(k)$	$f_2(k)$	<i>b</i> ₂	$f_3(k)$	<i>b</i> ₃	$f_4(k)$	b_4
MOD	-5.18	-0.00	Χ	-0.00	Χ		
DET	-4.89	-0.00	Χ	-0.00	X		
CONJ	-5.18	-6.02	V	-0.00	X		
N	-7.99	-0.00	Χ	-0.00	X		
PREP	-7.59	-0.00	Χ	-0.00	Χ		
PRO	-7.99	-0.00	Χ	-0.00	X		
V	-3.56	-0.00	Χ	-9.03	CONJ		
WORD	come	and		g	jet	it	

POS	$f_1(k)$	$f_2(k)$	<i>b</i> ₂	$f_3(k)$	<i>b</i> ₃	$f_4(k)$	<i>b</i> ₄
MOD	-5.18	-0.00	Χ	-0.00	Χ	-0.00	Χ
DET	-4.89	-0.00	Χ	-0.00	X	-0.00	Χ
CONJ	-5.18	-6.02	V	-0.00	X	-0.00	Χ
N	-7.99	-0.00	Χ	-0.00	X	-0.00	Χ
PREP	-7.59	-0.00	Χ	-0.00	X	-0.00	Χ
PRO	-7.99	-0.00	Χ	-0.00	X	-14.6	V
V	-3.56	-0.00	Χ	-9.03	CONJ	-0.00	Χ
WORD	come	and		g	et	it	