Lecture 2

Relational Databases and Normalisation

Bikesh Raj Upreti

E-mail: b.upreti@uq.edu.au

Room: 530 Joyce Ackroyd (37) Building

Recap: What is strategic information?

- Information that helps to make decisions on the formulation and execution of business strategies and objectives
- It is not!
 - Information for the daily business operations
 - Its not information to
 - Produce an invoice, Make a shipment, Settle a claim etc.

Characteristics

Integrated	A single view of the firm. An Enterprise wide view
Data Integrity	Accurate and conform to business rules
Accessible	Easily accessible, intuitive access, responsive analysis
Credible	Trusted values – every business value has ≡ 1 value
Timely	Must be available with the correct timeliness for the data

Recap: Business Analytics Framework

Learning Objectives

By the end of this class, you should be able to:

- Briefly explain the role of database management systems in transaction processing.
- Interpret and analyze a basic Entity Relationship Diagram (ERD) and validate its accuracy with respect to the description of a specific business process.
- Explain and identify database anomalies and motivations for normalization
- Write basic SQL queries

Data Modelling and Relational Databases

Organisational Memory

- Organisations need to remember things (or entities):
 - -Customers, Employees, Products, Stores, Suppliers
- Question 1: What do universities need to remember?
- Question 2: Where do universities store the data?

A Table...

Student Table

Student ID#	Student Name	Campus Address	Degree	Phone
A121	Joy Egbert	166 Grattan Street	B.Com.	555-7771
A123	Larry Mueller	302 Royal Parade	B.Com.	555-1235
A124	Mike Guon	224 Swanston St.	B.Eco.	555-2214
A126	Jackie Judson	85 Barry Street	B.Eco.	555-1245
			•••	

What does a Table Represent?

What does a Table Represent?

- A thing (or an entity)
- Columns represent attributes of an entity
- Rows represent instances of the entity
 - Records

Student Table

Student ID#	Student Name	Campus Address	Degree	Phone
A121	Joy Egbert	166 Grattan Street	B.Com.	555-7771
A123	Larry Mueller	302 Royal Parade	B.Com.	555-1235
A124	Mike Guon	224 Swanston St.	B.Eco.	555-2214
A126	Jackie Judson	85 Barry Street	B.Eco.	555-1245

More Entities (More Tables)...

Student Table

Student ID#	Student Name	Campus Address	Degree	Phone
A121	Joy Egbert	166 Grattan Street	B.Com.	555-7771
A123	Larry Mueller	302 Royal Parade	B.Com.	555-1235
A124	Mike Guon	224 Swanston St.	B.Eco.	555-2214
A126	Jackie Judson	85 Barry Street	B.Eco.	555-1245

Enrolled Table

Student ID#	Subject ID	Sem.	Grade
A121	ACC101	1-11	H1
A121	ECO101	1-11	H2B
A121	ECO104	1-11	H2B
A121	FIN101	1-11	H2A
A121	ACC103	1-11	НЗ
A123	ACC101	1-11	H1
A123	ECO101	1-11	H2B
A123	ECO104	1-11	H2A
A123	FIN101	1-11	НЗ
A124	ACC101	1-11	H2A
A124	ECO101	1-11	H2A
A124	ECO104	1-11	H2B
A124	ACC103	1-11	H2B
A126	ACC101	1-11	H1
A126	ECO101	1-11	H2B
A126	ECO104	1-11	H2B
A126	ACC103	1-11	H2A

Class Table

Subject	Subject
ID	Title
ACC101	Accounting
ECO101	Economics
ECO104	Quant. M.
FIN101	Finance.
ACC103	Processes

What is missing?

Relationships between Entities (or Tables)

Student Table

Student ID#	Student Name	Campus Address	Degree	Phone
A121	Joy Egbert	166 Grattan Street	B.Com.	555-7771
A123	Larry Mueller	302 Royal Parade	B.Com.	555-1235
A124	Mike Guon	224 Swanston St.	B.Eco.	555-2214
A126	Jackie Judson	85 Barry Street	B.Eco.	555-1245
		<u></u>		

Enrolled Table

Student ID#	Subject ID	Sem.	Grade
A121	ACC101	1-11	H1
A121	ECO101	1-11	H2B
A121	ECO104	1-11	H2B
A121	FIN101	1-11	H2A
A121	ACC103	1-11	НЗ
A123	ACC101	1-11	H1
A123	ECO101	1-11	H2B
A123	ECO104	1-11	H2A
A123	FIN101	1-11	НЗ
A124	ACC101	1-11	H2A
A124	ECO101	1-11	H2A
A124	ECO104	1-11	H2B
A124	ACC103	1-11	H2B
A126	ACC101	1-11	H1
A126	ECO101	1-11	H2B
A126	ECO104	1-11	H2B
A126	ACC103	1-11	H2A

Class Table

Subject ID	Subject Title
ACC101	Accounting
ECO101	Economics
ECO104	Quant. M.
FIN101	Finance.
ACC103	Processes

Organisational Memory- Continued

- Organisations also need to remember relationship between things (or entities):
 - What offerings are available for a subject in a given academic period?
 - Who is the lecturer for an offering of a subject?
 - What students are enrolled in an offering of a subject?

Relational Database

- Collection of tables and relationships between them
- A Data Base Management System (DBMS):
 - A software application with which you can create, store, organise and retrieve data from one or many databases
 - A Query Language (eg Structured Query Language SQL or Sequel)
 - In this course, you will learn to write queries in PostgreSQL

University Database: A Relational Database

Entities

Student, Lecturer, Subject, Offering, Enrolment

Relationships:

Lecturer subject offerings, Students enrolled in offerings, Offerings made for each subject

But how do we specify the entities and relationships?

What is Data Modelling?

- Data modelling is a technique for determining
 - What data
 - What relationships
- Should be stored in a database
- We use Data Models to conceptually design our data needs
 - Allow us to describe data, relationships, data semantics and data constraints
 - Powerful tool for expressing information requirements (business rules and business processes)
- In this subject we use
 - Entity Relationship Diagrams (for databases)
 - Star Schemas (for DW- next week)

Entity Relationship (ER) Diagram

What is it?

- A semantic, graphical data model.
- Picture of the people, places, objects, things, events, or concepts, their characteristics and relationships, for an organisation or business area.

Why do we care?

- It visually expresses business rules.
- A technology independent communication tool between business people and IT people.

ER Diagram- Example

ER Diagram Building Blocks

Entities

- Person, place, object, event, or concept (Nouns)
- Things about which we wish to collect data
- Entity type vs. Entity instance
 - (e.g., Lecturer vs. Michael Davern)

Attributes

Characteristics descriptive of an entity.

Relationships

- Association between entities
- (Verbs)
- Directional

Notation

Entities:

Relationships:

Identifying Business Rules and Entities

- Business rules are statements that define or constrain aspects of the business
- They can impact the structure and behaviour of a database
- (amongst all the other organisation systems)
- We usually express business rules as terms or facts!
 - A customer sets up at least one account (fact)
 - A customer (term)
 - Account (term)
- Entities can often by identified by the "terms" (or nouns) and relationships as "verbs"

ER Diagram- Example

ER Process: How to Develop ER Models?

- Identify entity types
 - Person, Place, Object, Event, Concept ...
 - Define attributes and primary key
- Identify relationships
 - Connect entity types that are related by a natural linkage or event occurrence
- Identify constraints
 - Include relationship cardinalities
- Iterate!

Identifying the Attributes

- Attributes: properties or characteristics of entities.
- Attributes that uniquely identify an entity instance (i.e., row, record) are "candidate" keys.
- Primary keys are the attributes we choose as the unique identifier we will use.
- How to choose:
 - should not change over time (age)
 - must have unique, non-null values
 - use as few attributes as possible
- Typically underlined.

Student

Student ID#

Name

Address

"Key" Terminology

- A Primary Key (or key) is an attribute, or group of attributes, that uniquely identifies a row in a relation.
 - Every record must have a key.
 - Often numeric.
- A Foreign Key is a non-key attribute in one relation that appears as the primary key in another relation.
- A Composite Key is a key that consists of two or more attributes.

Integrity Rules: Safeguarding Keys

Database Management Systems enforce two integrity rules:

1. Entity Integrity- Makes entities traceable

- Every table has column with unique values
- No duplicates or blanks allowed for primary key

2. Referential Integrity- Ensures validity of relationships

- The value entered in a foreign key attribute, must exist as a value in the corresponding relation's primary key
 - A student can't register for a course unless they already have a record in the student relation.
 - Can't remove a student from the student relation if they are currently registered for a course.

ER Review: Purpose

- To understand and describe data requirements (or assets)
- To communicate these requirements between various stakeholders
 - both IT people and business people
- To form a basis for database and IT system design

Quality of ER Models

1. Correct:

Conforms to ER syntax rules

2. Complete

Contains all required information

3. Simple

Contains minimum number of possible entities and relationships

4. Understandable

Concepts in model are easy to understand

Quality of ER Models- Continued

5. Flexible

Ease with which model copes with change

6. Integrity

Contains all required "business rules"

7. Integration

Consistency with other organisational data

8. Implementability

Ease with which model can be implemented

Normalization

What's wrong with the *organisation* of data in this table?

Student ID#	Student Name	Campus Address	Degree	Phone	Subject ID	Subject Title	Lecturer Name	Lecturer Office	Lecturer Phone	Sem.	Grade
A121	Joy Egbert	166 Grattan Street	B.Com.	555-7771	ACC101	Accounting	Davern	T240C	8344-1846	1-11	H1
A121	Joy Egbert	166 Grattan Street	B.Com.	555-7771	ECO101	Economics	Smyth	T240F	8344-1868	1-11	H2B
A121	Joy Egbert	166 Grattan Street	B.Com.	555-7771	ECO104	Quant. M.	Collier	T240D	8344-5716	1-11	H2B
A121	Joy Egbert	166 Grattan Street	B.Com.	555-7771	FIN101	Finance.	James	T240D	8344-5275	1-11	H2A
A121	Joy Egbert	166 Grattan Street	B.Com.	555-7771	ACC103	Processes	Wise	T240E	8344-5309	1-11	Н3
A123	Larry Mueller	302 Royal Parade	B.Com.	555-1235	ACC101	Accounting	Davern	T240C	8344-1846	1-11	H1
A123	Larry Mueller	302 Royal Parade	B.Com.	555-1235	ECO101	Economics	Smyth	T240F	8344-1868	1-11	H2B
A123	Larry Mueller	302 Royal Parade	B.Com.	555-1235	ECO104	Quant. M.	Collier	T240D	8344-5716	1-11	H2A
A123	Larry Mueller	302 Royal Parade	B.Com.	555-1235	FIN101	Finance.	James	T240D	8344-5275	1-11	Н3
A124	Mike Guon	224 Swanston St.	B.Eco.	555-2214	ACC101	Accounting	Davern	T240C	8344-1846	1-11	H2A
A124	Mike Guon	224 Swanston St.	B.Eco.	555-2214	ECO101	Economics	Smyth	T240F	8344-1868	1-11	H2A
A124	Mike Guon	224 Swanston St.	B.Eco.	555-2214	ECO104	Quant. M.	Collier	T240D	8344-5716	1-11	H2B
A124	Mike Guon	224 Swanston St.	B.Eco.	555-2214	ACC103	Processes	Wise	T240E	8344-5309	1-11	H2B
A126	Jackie Judson	85 Barry Street	B.Eco.	555-1245	ACC101	Accounting	Davern	T240C	8344-1846	1-11	H1
A126	Jackie Judson	85 Barry Street	B.Eco.	555-1245	ECO101	Economics	Smyth	T240F	8344-1868	1-11	H2B
A126	Jackie Judson	85 Barry Street	B.Eco.	555-1245	ECO104	Quant. M.	Collier	T240D	8344-5716	1-11	H2B
A126	Jackie Judson	85 Barry Street	B.Eco.	555-1245	ACC103	Processes	Wise	T240E	8344-5309	1-11	H2A

"Normalized" Data

Student Table

Student ID#	Student Name	Campus Address	Degree	Phone
A121	Joy Egbert	166 Grattan Street	B.Com.	555-7771
A123	Larry Mueller	302 Royal Parade	B.Com.	555-1235
A124	Mike Guon	224 Swanston St.	B.Eco.	555-2214
A126	Jackie Judson	85 Barry Street	B.Eco.	555-1245
•••	•••	•••		•••

Class Table

Subject ID	Subject Title
ACC101	Accounting
ECO101	Economics
ECO104	Quant. M.
FIN101	Finance.
ACC103	Processes
•••	•••

Teaching Assignment

Subject ID	Sem.	Lecturer Name
ACC101	1-11	Davern
ECO101	1-11	Smyth
ECO104	1-11	Collier
FIN101	1-11	James
ACC103	1-11	Wise
		•••

Lecturer Table

Lecturer Name	Lecturer	Lecturer Phone
Collier	T240D	8344-5716
	T240E	8344-5309

Enrolled Table

Student ID#	Subject ID	Sem.	Grade	
A121	ACC101	1-11	H1	
A121	ECO101	1-11	H2B	
A121	ECO104	1-11	H2B	
A121	FIN101	1-11	H2A	
A121	ACC103	1-11	H3	
A123	ACC101	1-11	H1	
A123	ECO101	1-11	H2B	
A123	ECO104	1-11	H2A	
A123	FIN101	1-11	H3	
A124	ACC101	1-11	H2A	
A124	ECO101	1-11	H2A	
A124	ECO104	1-11	H2B	
A124	ACC103	1-11	H2B	
A126	ACC101	1-11	H1	
A126	ECO101	1-11	H2B	
A126	ECO104	1-11	H2B	
A126	ACC103	1-11	H2A	

ER Diagram- Example

Anomalies in Unnormalised Data

- Consider the following unnormalised table (relation):
- Insertion Anomaly: A new course cannot be added until at least one student has enrolled (which comes first student or course?)
- Deletion Anomaly: If student 425 withdraws, we lose all record of course C400 and its fee!
- *Update Anomaly:* If the fee for course C200 changes, we have to change it in multiple records (rows), else the data will be inconsistent.

Student-ID	Course-ID	Fee
130	C200	75
200	C300	100
250	C200	75
425	C400	150
500	C300	100
575	C500	50
• • •	• • •	• • •

Your turn: ER Exercise

Bill To

John
Synex Inc

128 AA Juanita Ave
Glendora
CA 91740 US

Ship To

John
Synex Inc
128 AA Juanita Ave
Glendora
CA 91740 US

Date 14-Aug-2009		Order No	5	Sales Person	Charles	Wooten	
Shipping Date	13-Aug-2009	3-Aug-2009 Shipping Terms		Terms		COD	
ID	SKU / Descripti	ion	Unit Price (USD)		Qty	Amount (USD)	
PS.V860.005	AMD Athlon X2 2.4GHz/1GB/16	DC-7450, 80GB/SMP-DVD/VB	580	0.00	0	3,480.00	
PS.V880.037	PDC-E5300 - 2.6GHz/1@B/33	20GB/SMP-DVD/FDD/VB	648	5.00 4.0	0	2,580.00	
LC.V890.002	LG 18.5" WLC		230	0.00	0	2,300.00	
HP.Q754.071	HP LaserJet 52	200	1,100	3.00	0	1,103.00	

Querying a Database (Introduction to SQL)

What is SQL?

- Structured Query Language
- A high-level declarative programming language for
- accessing databases
- Highly optimised for manipulating data
- Multiple similar standards every vendor is slightly different

Four Primary Operations of SQL:

Operation	SQL Command
Create	INSERT
Read	SELECT
Update	UPDATE
Delete	DELETE

SQL Overview

```
• CREATE TABLE <name> ( <field> <domain>, ... )
```

- INSERT INTO <name> (<field names>)
 VALUES (<field values>)
- DELETE FROM <name>
 WHERE <condition>
- UPDATE <name>
 SET <field name> = <value>
 WHERE <condition>
- SELECT <fields>
 FROM <name>
 WHERE <condition>

SELECT statement

```
SELECT [ALL | DISTINCT] select expr [, select expr ...]
  List the columns (and expressions) that are returned from the query
[FROM table references
  Indicate the table(s) or view(s) from where the data is obtained
[WHERE where condition]
  Indicate the conditions on whether a particular row will be in the result
GROUP BY {col name | expr } [ASC | DESC], ...]
  Indicate categorisation of results
HAVING where condition]
  Indicate the conditions under which a particular category (group) is included in the
  result
ORDER BY {col name | expr | position} [ASC | DESC], ...]
  Sort the result based on the criteria
[LIMIT { [offset, ] row count | row count OFFSET offset} ]
  Limit which rows are returned by their return order (ie 5 rows, 5 rows from row 2)]
```

An SQL Primer: SELECT

In order to get data from the database (from a table) we send a SQL command **SELECT** to the database

The simplest query takes the form:

```
select column(s)
from table(s)
where condition(s)
```

SELECT Example 1

The TABLE (name) we want to query

SELECT Example 2

Customer					
PK	PK <u>CustomerID</u>				
	CustFirstName CustMiddleName CustLastName BusinessName CustType				

SELECT * FROM Customer;					
€ Edit 🕜 🏗 🖶 Export 📮 Autosize: 🗷					
CustomerID	CustFirstName	CustMiddleName	CustLastName	BusinessName	CustType
1	Peter	NULL	Smith	NULL	Personal
2	James	NULL	Jones	JJ Enterprises	Company
3	Akin	NULL	Smithies	Bay Wart	Company
4	Julie	Anne	Smythe	Konks	Company
5	Jen	NULL	Smart	BRU	Company
6	Lim	NULL	Lam	NULL	Personal
7	Kîm	NULL	Unila	Saps	Company
8	James	Jay	Jones	JJ's	Company
9	Keith	NULL	Samson	NULL	Personal
NULL	NULL	NULL	NULL	NULL	NULL

SELECT Example 3

	Customer				
PK	PK <u>CustomerID</u>				
	CustFirstName CustMiddleName CustLastName BusinessName CustType				

An SQL Primer: SELECT WHERE

The result of each SELECT statement so far has included every row in the table (for the specified attribute). WHERE clause filters unwanted rows from the result.

An SQL Primer: GROUP BY

Aggregating data by particular attribute

Logic: Count (Customer ID) will return the number of customers, Group BY CustType will group the result based on CustType

An SQL Primer: GROUP BY and ORDER BY

	Customer				
PK	CustomerID				
	CustFirstName CustMiddleName CustLastName BusinessName CustType				

SQL -

RESULT ----

An SQL Primer: LIMIT rows

A SQL Primer: JOINS

A JOIN statement create a 'virtual' table which displays the fields from both tables under a condition.

The join condition tells the database how it should match the records from one table to the other.

- What fields should it use
- What should happen if records are found in one table and not the other

More than One Entity

- We looked at Customer
 - A customer can have a number of Accounts
 - The tables get linked through a foreign key

	Customer		Gastib
PK	<u>CustomerID</u>		1
	CustFirstName CustMiddleName CustLastName BusinessName CustType		2
	!		Account
	i has — — — — — — — — — — — — — — — — — — —	PK	<u>AccountID</u>
			AccountName OutstandingBalance

CustID		CustomerFir stName	CustMiddleN ame	CustLastN ame	BusinessNa me	CustType
1		Peter		Smith		Personal
2		James		Jones	JJ Enterprises	Company

Accounting	AccountName	OutstandingBa lance	CustID
01	Peter Smith	245.25	1
05	JJ Ent.	552.39	2
06	JJ Ent. Mgr	10.25	2

SQL Joins – Natural JOIN

 Natural Join: Join the tables with foreign keys where the primary key and foreign key have the same name

SQL Joins – Inner JOIN

Inner Join the tables with foreign keys!

Summary of what we learned

- Role of databases in transaction processing
- ER Models and Normalisation
- SQL for querying a database

What is Examinable:

- This lecture was the backbone for learning about business analytics
- You will not be asked to develop an ER model
- You need to analyse and interpret ER models including entities, attributes, different types of keys and relationships
- You need to explain SQL SELECT, Aggregate functions and JOIN Statements

Next Seminar

Next Seminar

Dimensional Modelling

