Feuille d'exercices nº 5

CALCUL DIFFÉRENTIEL

I. Dérivées directionnelles et classe C^1 :

Exercice 1. Étudier l'existence de la dérivée de la fonction $f:(x,y) \mapsto xy^2$ suivant le vecteur v=(1,-2) au point a=(2,1). Déterminer sa valeur si elle existe.

Exercice 2. Soit $G: \mathbb{R}^3 \to \mathbb{R}^3$ l'application définie par $G(x, y, z) = (x \sin y, y \sin x, z)$. Justifier l'existence et calculer $\operatorname{div}(G)$, $\operatorname{rot}(G)$ et $\operatorname{grad} \circ \operatorname{div}(G)$.

Exercice 3. Justifier que les fonctions de \mathbb{R}^2 ou \mathbb{R}^3 suivantes sont de classe \mathcal{C}^1 , et calculer leur matrices Jacobiennes en $(x,y) \in \mathbb{R}^2$ (resp. $(x,y,z) \in \mathbb{R}^3$):

$$f:(x,y)\longmapsto e^{xy}(x+y),\quad g:(x,y,z)\longmapsto xy+yz+zx,\quad h:(x,y)\longmapsto (y\sin x,\cos x)$$

Exercice 4. Soit $f: \mathbb{R}^2 \to \mathbb{R}$ la fonction définie par

$$f(x,y) = \frac{xy^2}{x^2 + y^2}$$
 pour $(x,y) \neq (0,0)$ et $f(0,0) = 0$.

Montrer que f admet des dérivées directionnelles dans toutes les directions en (0,0) mais n'est pas de classe \mathcal{C}^1 au voisinage de (0,0).

Exercice 5. On considère l'application $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$

$$(x,y) \longmapsto f(x,y) = \begin{cases} xy\sin\left(\frac{1}{\sqrt{x^2 + y^2}}\right) & \text{si } (x,y) \neq (0,0) \\ 0 & \text{si } (x,y) = (0,0) \end{cases}$$

- 1. Montrer que f admet des dérivées partielles en tout point de \mathbb{R}^2 et les calculer.
- 2. Montrer que f n'est pas de classe C^1 sur \mathbb{R}^2 .

Exercice 6. Soit $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ l'application définie par $f(x,y) = 3 + \frac{x^2}{16} + \frac{y^2}{9}$.

- 1. Justifier l'existence et donner le développement limité à l'ordre 1 de f au point (-4,3).
- 2. Donner une valeur approchée de f(-4.01, 3.01).

Exercice 7. Soit $f: (\mathbb{R}_+)^2 \longrightarrow \mathbb{R}$ définie par $f(x,y) = 2x + 5y + x^2(\sqrt{y} + \sqrt{x})$. Déterminer l'ensemble des points où

- 1. f est continue,
- 2. f admet des dérivées partielles,
- 3. f est de classe C^1 ,
- 4. f admet des dérivées directionnelles.

II. Fonctions composées

Exercice 8. On considère les fonctions $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ et $g: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ définies par $f(x,y) = x^2 - y^2$ et g(x,y,z) = (x+y+z,x-y+z).

- 1. Expliciter $h = f \circ g$.
- 2. Justifier que les fonctions f, g et h sont de classe C^1 et écrire leurs matrices Jacobiennes (en un point de \mathbb{R}^2 et \mathbb{R}^3 respectivement).
- 3. Vérifier l'égalité $J_h(x,y,z) = J_f(g(x,y,z)) \times J_q(x,y,z)$ pour tout $(x,y,z) \in \mathbb{R}^3$.
- 4. Écrire le développement limité de f, g et h à l'ordre 1 à l'origine.

Exercice 9. Soit f une fonction définie sur $\mathbb{R}^* \times \mathbb{R}^*$ de classe \mathcal{C}^1 sur $\mathbb{R}^* \times \mathbb{R}^*$ données par :

$$\frac{\partial f}{\partial x}(x,y) = \frac{1}{x}, \ \frac{\partial f}{\partial y}(x,y) = \frac{1}{y} \quad \forall (x,y) \in \mathbb{R}^* \times \mathbb{R}^*.$$

Pour $(x,y) \in \mathbb{R}^* \times \mathbb{R}^*$, on pose $x = r\cos\theta$, $y = r\sin\theta$ avec r > 0 et $\theta \in]0, 2\pi[\setminus \{\pm\pi/2, \pi\}]$. Notons $g: (r,\theta) \in]0; +\infty[\times(]0; 2\pi[\setminus \{\pm\pi/2, \pi\}) \longmapsto f(r\cos\theta, r\sin\theta)$. Justifier l'existence et donner l'expression de $\frac{\partial g}{\partial \theta}$ et $\frac{\partial g}{\partial r}$.

Exercice 10. Soit $\gamma: t \longmapsto (x(t), y(t))$ une courbe paramétrée de \mathbb{R}^2 (une application d'un intervalle $I \subset \mathbb{R}$ dans \mathbb{R}^2) de classe \mathcal{C}^1 . Soit $f: (x,y) \in \mathbb{R}^2 \longmapsto e^{xy}$. En sachant que $\gamma(0) = (1,2)$, et $\gamma'(0) = (3,4)$. Justifier la dérivabilité de $f \circ \gamma$ et trouver la valeur de $(f \circ \gamma)'(0)$.

Exercice 11. Soit $\varphi : \mathbb{R} \longrightarrow \mathbb{R}$ une fonction de classe \mathcal{C}^1 . On pose $f : \mathbb{R}^* \times \mathbb{R} \longrightarrow \mathbb{R}$ définie par $f(x,y) = \varphi\left(\frac{y}{x}\right)$. Calculer pour $(x,y) \in \mathbb{R}^* \times \mathbb{R}$ la quantité $x \frac{\partial f}{\partial x}(x,y) + y \frac{\partial f}{\partial y}(x,y)$ en justifiant son existence.

III. C^1 -difféomorphimes :

Exercice 12. Soit $k \in \mathbb{R}^*$ et $\varphi : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ l'application définie par $\varphi(x,y) = (x,x+ky)$. Montrer que φ est un \mathcal{C}^1 difféomorphisme de \mathbb{R}^2 dans lui-même.

Exercice 13. Soit $k \in \mathbb{R}^*$. On cherche les applications $f : \mathbb{R}^2 \longrightarrow \mathbb{R}$ de classe C^1 solutions du système (S):

$$\begin{cases} \forall (x,y) \in \mathbb{R}^2, & k \frac{\partial f}{\partial x}(x,y) - \frac{\partial f}{\partial y}(x,y) = 0 \\ \forall y \in \mathbb{R}, & f(0,y) = \sin y \end{cases}$$

Pour cela, on substitue à cette relation une relation plus simple portant sur une application F, déduite de f par le changement de variable φ de l'exercice 12. Autrement dit, on considère l'application $F: \mathbb{R}^2 \longrightarrow \mathbb{R}$ définie par $f = F \circ \varphi$.

- 1. Montrer que f est de classe \mathcal{C}^1 sur \mathbb{R}^2 si et seulement si F est de classe \mathcal{C}^1 sur \mathbb{R}^2 .
- 2. On suppose que f est de classe \mathcal{C}^1 sur \mathbb{R}^2 . Exprimer les dérivées partielles d'ordre 1 de f en fonction de celles de F.

3. Vérifier que f est solution de (S) si et seulement si F vérifie (S'):

$$\left\{ \begin{array}{lll} \forall (u,v) \in \mathbb{R}^2, & \frac{\partial F}{\partial u}(u,v) & = & 0 \\ \forall v \in \mathbb{R}, & F(0,v) & = & \sin\left(\frac{v}{k}\right) \end{array} \right.$$

- 4. Déterminer les solutions de (S').
- 5. Conclure.

Exercice 14. Soient $D = \{(u,v) \in \mathbb{R}^2 \mid u > 0, \ v > 0\}$ et l'application $\varphi : D \longrightarrow D$ définie par $\varphi(u,v) = (\sqrt[3]{uv},v)$.

- 1. Montrer que D est un ouvert de \mathbb{R}^2 .
- 2. Montrer que l'application φ est un \mathcal{C}^1 -difféomorphisme de D dans D.
- 3. À l'aide du changement de variables $(x,y) = \varphi(u,v)$, résoudre l'équation aux dérivées partielles :

$$\forall (x,y) \in D, \ x \frac{\partial f}{\partial x}(x,y) + 3y \frac{\partial f}{\partial y}(x,y) = 4\frac{y^2}{x^2},$$

d'inconnue $f: D \longrightarrow \mathbb{R}$ de classe \mathcal{C}^1 .

Exercice 15. Soit $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ l'application définie par $f(x, y, z) = (e^{2y} + e^{2z}, e^{2x} - e^{2z}, x - y)$. Montrer que f est un \mathcal{C}^1 -difféomorphisme de \mathbb{R}^3 sur son image $f(\mathbb{R}^3)$, et que $f(\mathbb{R}^3)$ est un ouvert strictement inclus dans \mathbb{R}^3 .

IV. Dérivées partielles d'ordres supérieurs

Exercice 16. Soit $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ l'application définie par $f(x,y) = \begin{cases} \frac{x^3y - xy^3}{x^2 + y^2} & \text{si} \quad (x,y) \neq (0,0) \\ 0 & \text{si} \quad (x,y) = (0,0) \end{cases}$

- 1. Montrer que f est de classe C^1 sur \mathbb{R}^2 .
- 2. Vérifier que f est de classe C^2 sur $\mathbb{R}^2 \setminus \{(0,0)\}$.
- 3. Montrer que f admet des dérivées partielles d'ordre 2 sur \mathbb{R}^2 et calculer $\frac{\partial^2 f}{\partial y \partial x}$ et $\frac{\partial^2 f}{\partial x \partial y}$ en tout point de \mathbb{R}^2 .

3

4. Que peut-on en conclure?

Exercice 17. Soit $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ la fonction définie par $f(x,y) = \begin{cases} x^2 \sin\left(\frac{y}{x}\right) & \text{si} & x \neq 0 \\ 0 & \text{si} & x = 0 \end{cases}$

- 1. Montrer que f est continue sur \mathbb{R}^2 .
- 2. Montrer que f possède des dérivées partielles premières en tout point de \mathbb{R}^2 .
- 3. La fonction f est-elle de classe C^1 sur \mathbb{R}^2 ?
- 4. Montrer que $\frac{\partial^2 f}{\partial x \partial y}$ et $\frac{\partial^2 f}{\partial y \partial x}$ existent à l'origine et les calculer.
- 5. La fonction f est-elle de classe C^2 au voisinage de (0,0)?