Architecting for a Greener Future

- SARA BERGMAN -

I want to talk about solutions

About me

Sara Bergman

Senior Software Engineer @ Microsoft

Speaker and advocate for green software practices at Microsoft and externally

Author of O'Reilly book "Building Green Software"

Where are you now?

Green Software Foundation

We are building a trusted ecosystem of people, standards, tooling and best practices for green software

Green Software Maturity Matrix

\\	ASPIRING	AWARE	ACTING	AWESOME	INSPIRING
commitments					
footprint					
metrics					
carbon ops				-	
energy					
devices					
utilization					
products					
training					

Going up the ladder!

Where do we begin?

Code efficiency?

Code efficiency

Developer efficiency

Data center efficiency?

Yes, but cloud users are still responsible for sustainability IN the cloud

Architecting for green - Operational efficiency

What makes software green?

Carbon efficiency

Emit the least amount of carbon possible.

What makes software green?

Carbon efficiency Hardware efficiency

Energy proportionality

Energy market

Carbon intensity of electricity generation, 2023

Our World in Data

Carbon intensity is measured in grams of carbon dioxide-equivalents emitted per kilowatt-hour of electricity generated.

0 gCO₂ 200 gCO₂ 400 gCO₂ 600 gCO₂ 800 gCO₂ No data 100 gCO₂ 300 gCO₂ 500 gCO₂ 700 gCO₂

Data source: Ember (2024); Energy Institute - Statistical Review of World Energy (2023)

OurWorldInData.org/energy | CC BY

Source: Nord Pool

What can you do?

Green Software Maturity Matrix

{ ₩}	ASPIRING	AWARE	ACTING	AWESOME	INSPIRING
commitments					
footprint					
metrics					
carbon ops	none	manual	lightswitch ops	auto-rightsizing	carbon SRE
energy	none	green hosting	dynamic management	demand shaping	Electricity
devices				,	
utilization					
products					
training					

I read all the cloud providers Well Architected Framework's sustainability sections, so you didn't have to!

Cloud Native Computing Foundation

Carbon Ops

Server resource management

Don't be Smaug

Avoid hoarding!

Delete:

- Unused or idle resources
- Old logs
- Unused data

LightSwitchOps

Decouple compute and storage

Use services that decouple compute and storage for data processing and analytics.

Google Cloud examples: Spanner, BigQuery or Dataproc

Use the most suited tech

Use storage technologies that best support how your data is accessed and stored to minimize the resources provisioned.

AWS examples: Amazon S3 Glacier for archive, Amazon DynamoDB for key-value database

Backup

Only store what is relevant. Storing backups indefinitely can quickly allocate much unnecessary disk space.

Azure example: Use Microsoft Purview to label data and add timebased purging

Right sizing

Right sizing

Auto-scaling

Serverless containers

Software without the infrastructure

Examples: Google Cloud Run, Google Cloud Function, AWS Fargate, AWS Lamda, Azure Container Apps or Azure Kubernetes Service

Use the most efficient hardware

Examples: AWS Graviton, Azure's Ampere Altra Arm-based VMs, Googles
Tensor Processing Unit (TPU)

A note on the Jevons Paradox

Lawrencekhoo - Own work. CC BY-SA 4.0

Energy

Carbon aware energy resource management

Greenhouse Gas Protocol Scope 2 emission

Market-based

Location-based

Location shift

Market-based

AWS Renewable energy projects

Google Cloud Region
picker

AWS or Azure emissions impact tooling

Location-based

Google emissions impact tooling

ElectricityMaps

WattTime API

Cloud Carbon Footprint tool

Time shift

Move to a greener time

Use burstable / flexible / spot instances when applicable

Location shift

Move to a greener place

Suitable when network cost is minimal and privacy allows for it

Where does this take us?

Cost

Resilience

Key learnings

Software will benefit from carbon efficiency

Building green is cheaper, more performant, and more resilient

Resources

https://maturity-matrix.greensoftware.foundation/
https://cloud.google.com/architecture/framework/systemdesign/sustainability
https://cloud.google.com/architecture/reduce-carbon-footprint
https://docs.aws.amazon.com/wellarchitected/latest/sustainabil
ity-pillar/best-practices-for-sustainability-in-the-cloud.html
https://learn.microsoft.com/en-us/azure/wellarchitected/sustainability/

