2.1. Множества и операции над ними. Булевы функции, КНФ, ДНФ. Базисы, теорема Поста.

Множества — это объекты, которые рассматриваются в контексте двуместного отношения принадлежности. Запись $(a \in A)$ является высказыванием (истинным или ложным) и означает (a) принадлежит (a) . Свойства отношения (a) устанавливаются аксиоматикой теории множеств. На основе отношения (a) можно строить другие конструкции.

Пример 1. « $\forall x: x \in A \Rightarrow x \in B$ » = « $A \subseteq B$ » — «A содержится в B».

При рассмотрении операций над множествами часто предполагают, что фиксирован некий универсум U, содержащий любое из множеств, с которыми имеют дело.

Функция $f:\{0;1\}^n \to \{0;1\}$ называется n-местной булевой. Класс всех таких функций обозначим через **B**. Элементы множества $\{0;1\}$ называют n-могозициональными n-местными.

Пусть $x_1, ..., x_n$ — пропозициональные переменные. Сопоставим каждой переменной x_i высказывание $(x \in X_i)$. Тогда про каждую булеву функцию f над переменными $x_1, ..., x_n$ можно сказать, что она задаёт операцию над множествами $X_1, ..., X_n$. Результатом этой операции считается такое множество Y, что $X_i \in Y \leftrightarrow f(X_i)$.

<u>Пример 2.</u> Конъюнкция $y = x_1 \land x_2$ задаёт операцию пересечения множеств \cap высказыванием вида $x \in Y \leftrightarrow x \in X_1 \land x \in X_2$.

<u>Пример 3.</u> Функция вида $f(x_1, x_2) = x_1 \land \neg x_2$ задаёт операцию вычитания множеств \. Тавтология соответствует универсуму U, а противоречие — пустому множеству.

<u>Def 1.</u> Литерал — это формула вида x или вида -x, где x — пропозициональная переменная.

<u>Def 2.</u> Конъюнктивная нормальная форма функции — это формула, задающая эту функцию в виде конъюнкции нескольких дизъюнкций литералов, причём операнды в дизъюнкциях и конъюнкции не повторяются. Дизъюнктивная нормальная форма функции — это формула, задающая эту функцию в виде дизъюнкции нескольких конъюнкций литералов, причём операнды в конъюнкциях и дизъюнкции не повторяются.

<u>Def 3.</u> Стандартная КНФ n-местной функции — это такая её КНФ, в которой каждая дизьюнкция содержит n литералов. Стандартная ДНФ n-местной функции — это такая её ДНФ, в которой каждая коньюнкция содержит n литералов.

Каждая булева функция единственным образом (с точностью до порядка операндов) представляется в виде СКНФ и в виде СДНФ. Построение выполняется по таблице истинности. Для СДНФ конъюнкции соответствуют выполняющим наборам, и в каждой конъюнкции отрицания стоят у тех переменных, которые являются ложными в наборе, которому эта конъюнкция сопоставлена. Для СКНФ наоборот: дизъюнкции соответствуют невыполняющим наборам, и в каждой из них отрицания стоят у тех переменных, которые являются истинными в наборе. ДНФ и КНФ являются двойственными друг другу относительно операции отрицания.

<u>Def 4.</u> Пусть $P \subseteq \mathbf{B}$ — некоторый класс булевых функций. Класс Q, состоящий из всех суперпозиций функций класса P, называют замыканием P и обозначают так: Q = [P]. При этом говорят, что P порождает Q. Класс называется (функционально) замкнутым или классом Поста, если он совпадает со своим замыканием. Класс P называют полным в Q, если любую функцию из Q можно выразить через суперпозиции функций из P.

Пример 4. $[\lor, \land, \neg] = \mathbf{B}$.

<u>Def 5.</u> Класс булевых функций P называется *независимым*, если ни одна функция f из класса P не содержится в $[P \setminus \{f\}]$, т. е. не выражается через суперпозиции всех остальных. Полный независимый класс называется *базисом*.

<u>Пример 5.</u> Все эти классы: $\{\lor, \neg\}, \{\land, \neg\}, \{\rightarrow, \neg\}, \{\rightarrow, 0\}, \{\mid\}, \{\uparrow\}, \{\lor, +, 1\}, \{\land, +, 1\}$ — являются базисами для класса **B**.

<u>Комментарий.</u> « | » — штрих Шеффера $(a \mid b = \neg (a \land b))$, «↑» — стрелка Пирса $(a \uparrow b = \neg (a \lor b))$. «+» — это хог, «→» — импликация. Малая теорема Поста рассмотрит пять важнейших замкнутых классов. В ней высказывание «класс полон» будет подразумевать, что он полон в **В**.

Большая теорема Поста. Каждый замкнутый класс имеет конечный базис.

Доказательство теоремы состоит в том, чтобы перечислить все существующие замкнутые классы (их около 50, включая несколько бесконечных регулярных семейств), предъявить конечный базис для каждого из них и доказать, что никаких других замкнутых классов не существует.

<u>Def 6.</u> Замкнутый класс P называется npednonным (максимальным), если $P \neq \mathbf{B}$ и P не содержится ни в каком другом замкнутом классе, отличном от \mathbf{B} .

 ${\bf B_0}$ — класс функций, удовлетворяющих условию f(0, 0, ..., 0) = 0 (сохраняющих нуль).

 B_1 — класс функций, удовлетворяющих условию f(1, 1, ..., 1) = 1 (сохраняющих единицу).

L — класс всех линейных функций, т. е. функций вида $a_1x_1 + ... + a_nx_n + a_0$, где $a_k \in \{0;1\}$ $(0 \le k \le n)$.

S — класс всех *самодвойственных* функций, т. е. таких, что $f(\neg x_1, ..., \neg x_n) = \neg f(x_1, ..., x_n)$.

М — класс всех *монотонных* функций: $x_1 \le y_1, ..., x_n \le y_n \Rightarrow f(x_1, ..., x_n) \le f(y_1, ..., y_n)$.

Классы B_0 , B_1 , L, S, M являются замкнутыми. Это проверяется непосредственно из определений.

<u>Малая теорема Поста.</u> Классы B_0 , B_1 , L, S, M являются предполными, и никаких других предполных классов не существует. Набор булевых функций является полным тогда и только тогда, когда он не содержится целиком ни в одном из этих пяти предполных классов.

<u>Доказательство.</u> Пусть $f(x_1, ..., x_n) \notin \mathbf{B_1}$. Тогда f(1, ..., 1) = 0 и → ∈ $\mathbf{B_1}$, а $[0, \to] = \mathbf{B}$ (см. пример 5), т. е. $\mathbf{B_1}$ — предполный класс. Далее, пусть $f(x_1, ..., x_n) \notin \mathbf{B_0}$. Тогда f(0, ..., 0) = 1 и +, ∨ ∈ $\mathbf{B_0}$, а $[1, +, \lor] = \mathbf{B}$ (см. там же), т. е. $\mathbf{B_0}$ — предполный. Предполнота классов \mathbf{L} , \mathbf{S} , \mathbf{M} будет показана ниже.

Рассмотрим вторую часть теоремы. Если набор содержится в одном из этих пяти классов, то он не является полным, т. к. все они отличаются от **B**. Докажем обратное утверждение. Пусть наш набор для каждого класса содержит функцию, в нём не лежащую. Убедимся, что с помощью комбинаций выбранных функций можно получить все булевы функции.

У нас есть функция, не сохраняющая нуль. Подставим вместо всех аргументов одну и ту же переменную. Получится функция одного аргумента, отображающая нуль в единицу, то есть либо константа 1, либо отрицание. Сделав то же самое с функцией, не сохраняющей единицу, получим либо константу нуль, либо отрицание. Таким образом, у нас либо есть отрицание, либо обе константы 0 и 1.

Если есть обе константы, то всё равно можно получить отрицание. Возьмём немонотонную функцию. Легко понять, что она должна менять значение с единицы на нуль при изменении какого-то одного аргумента с нуля на единицу (в самом деле, будем увеличивать аргументы по одному, в какой-то момент значение функции уменьшится). Зафиксировав значения остальных аргументов (ведь мы считаем, что константы есть), получаем отрицание. Попутно заметим: мы смогли получить отрицание из произвольной немонотонной функции и констант $0, 1 \in \mathbf{M}$. Заметим также, что \vee , $\wedge \in \mathbf{M}$. Это означает (см. пример 4), что \mathbf{M} — предполный класс.

Имея отрицание и несамодвойственную функцию, легко получить константы (если их не было). В самом деле, несамодвойственность означает, что $f(\neg x_1, ..., \neg x_n) = f(x_1, ..., x_n)$ для каких-то значений $x_1, ..., x_n \in \{0;1\}$. Вместо нулевых значений переменных $x_1, ..., x_n$ подставим p, вместо единиц подставим $\neg p$, легко видеть, что получается одна из констант. Вторая получается отрицанием. Т. е. константы можно получить из произвольной несамодвойственной функции и функции $\neg \in S$. Попутно заметим: функция h(x, y, z) = xy + xz + yz также принадлежит S. Тогда $h(x, y, 1) = x \lor y$. Ввиду того, что $[\neg, \lor] = B$ (пример S), класс S является предполным.

Теперь у нас есть константы, отрицание и нелинейная функция $f(x_1, ..., x_n)$. Нелинейность означает, что в её представлении в виде многочлена (полинома Жегалкина, см. пример 5 в конце) есть моном, состоящий более чем из одной переменной. Пусть, например, этот моном содержит переменные x_1 и x_2 . Сгруппируем члены по четырём группам и получим выражение: $x_1x_2A(x_3, ..., x_n) + x_1B(x_3, ..., x_n) + x_2C(x_3, ..., x_n) + D(x_3, ..., x_n)$. Здесь $A(x_3, ..., x_n)$ не является константой 0. Фиксируем $x_3, ..., x_n$ так, чтобы $A(x_3, ..., x_n) = 1$. Тогда $g(x_1, x_2) = f(x_1, x_2, x_3, ..., x_n) = x_1x_2 + ax_1 + bx_2 + c$ для некоторых a, b, c. Тогда $g(x_1 + b, x_2 + a) + ab + c = x_1 \wedge x_2$. Итак, $[\neg, \land] = \mathbf{B}$, и вторая часть теоремы доказана. Попутно заметим: мы получили \land по $\neg \in \mathbf{L}$ и произвольной нелинейной функции, т. е. класс \mathbf{L} предполон.

Если некоторый класс, отличный от B_0 , B_1 , L, S, M, содержится в одном из этих классов, то он не предполон (по определению), а если не содержится ни в одном из них, то он полон (по только что доказанному), следовательно, опять же, не предполон. Значит, других предполных классов (кроме B_0 , B_1 , L, S, M) нет, ч.т.д.

Следствие. Всякий базис для В содержит не более четырёх функций.

<u>Доказательство.</u> Из любого полного набора для **B** можно оставить не более пяти функций: $f_1 \notin \mathbf{B_0}$, $f_2 \notin \mathbf{B_1}$, $f_3 \notin \mathbf{L}$, $f_4 \notin \mathbf{S}$, $f_5 \notin \mathbf{M}$. Если $f_1(x, ..., x) = 1$, то $f_1 \notin \mathbf{S}$, и можно выбросить f_1 или f_4 . Если $f_2(x, ..., x) = 0$, то $f_2 \notin \mathbf{S}$, и можно выбросить f_2 или f_4 . Если $f_1(x, ..., x) = f_2(x, ..., x) = -x$, то можно выбросить f_1 или f_2 .