

28.11 Cluster Configuration Module (CCM)

28.11.1 Overview

As already mentioned in the chapter "GTM architecture", each submodule of the GTM is aligned explicitly to a cluster. The Cluster Configuration Module (CCM) enables the configuration of several cluster specific options namely

- · cluster's clock frequency,
- module clock gating,
- Status observation of the cluster's MCS bus master (AEM),
- · address range protection, and
- · global architecture configuration.

The register **CCM[i]_CFG** allows disabling the system clock signal for unused sub modules of the i-th cluster. The registers **CCM[i]_CMU_CLK_CFG** and **CCM[i]_CMU_FXCLK_CFG** allows the configuration of various cluster clock frequencies.

Figure 29 shows important details about the wiring of the cluster's local clock signals.

Figure 29 Cluster Clock Signal Wiring

The register **CCM[i]_AEIM_STA** captures the address and the reason of the first invalid AEIM bus master access of the cluster's MCS module.

The registers **CCM[i]_HW_CONF**, **CCM[i]_AUX_IN_SRC**, **CCM[i]_EXT_CAP_EN**, **CCM[i]_TOM_OUT**, and **CCM[i]_ATOM_OUT** are global status and configuration registers that are mirrored from the group of TOP-Level registers. The intention of these registers is to bring up cluster specific configuration registers into the address space of the bus master of the cluster's MCS module.

28.11.2 Address Range Protection

The CCM also provides up to NARP so called address range protectors (ARPs), where the number NARP depends on the actual device configuration (defined in device specific appendix). An ARP can be used to define a configurable write protected address range in order to support enhanced safety features. The address width of and ARP is also device dependent and it is determined by the parameter AAW as defined in device specific appendix.

The protected address range is mapped to the address range of the cluster's MCS RAM port.

Each ARP z (with z = 0...NARP-1) can be configured by the registers CCM[i]_ARP[z]_CTRL and CCM[i]_ARP[z]_PROT, where the register CCM[i]_ARP[z]_CTRL enables to configure the size and base address offset for an ARP and the register CCM[i]_ARP[z]_PROT configures, that an MCS channel x with a set bit field WPROTx cannot write to the corresponding z-th ARP. Whenever an MCS channel x is writing to an ARP that does not allow a write access from channel x by the configuration register CCM[i]_ARP[z]_PROT, the write access is discard. The bit field WPROT_AEI of register CCM[i]_ARP[z]_CTRL allows to configure if a CPU write access (via AEI slave interface) to the z-th ARP is protected. If the CPU wants to write to the z-th ARP while WPROT_AEI is set, the write access will be discard and the AEI status signal will signalize an invalid module access.

Considering the size and base address of an ARP, it should be noted that the configuration possibilities are limited. Details about the configuration can be found in the register description of MCS[i]_ARP[z]_CTRL.

The bit field **DIS_PROT** of register **CCM[i]_ARP[z]_CTRL** changes the meaning of an ARP configuration in a way that it explicitly allows an MCS channel x with a set bit field **WPROTx** to write to the z-th ARP. Accordingly, if the bit **DIS_PROT** is set while the bit **WPROT_AEI** is also set in the register **CCM[i]_ARP[z]_CTRL**, the z-th ARP explicitly allows a write access from the CPU to the z-th ARP. A meaningful application of an ARP z with a set bit field **DIS_PROT** for an MCS channel x has another ARP with a surrounding wider address range that is defining a write protection for MCS channel x and some other MCS channels.

Since the address range of an ARP can surround another ARP it is possible to configure contradictory conditions for MCS channels or the CPU within the overlapping area (e.g. if ARP y surrounds ARP z and ARP y allows a write access for an MCS channel x but ARP z prohibits a write access for MCS channel x). In order to resolve this ambiguity, the following rule is defined: A write protection for a specific address c concerning MCS channel x (the CPU) is active, if and only if, address c is covered by at least one ARP with a cleared bit **DIS_PROT** and a set bit **WPROT_AEI**) and there exists no ARP covering address c with a set bit field **DIS_PROT** and a set bit field **WPROT_AEI**).

28.11.3 CCM Configuration Register Overview

Table 26 CCM Configuration Register Overview

Register name	Description	see Page
CCM[i]_PROT	CCMi Protection Register	119
CCM[i]_CFG	CCMi Configuration Register	119
CCM[i]_CMU_CLK_CFG	CCMi CMU Clock Configuration Register	121
CCM[i]_CMU_FXCLK_CFG	CCMi CMU Fixed Clock Configuration Register	122
CCM[i]_AEIM_STA	CCMi MCS Bus Master Status Register	122
CCM[i]_ARP[z]_CTRL	CCMi Address Range Protector z Control Register	123
CCM[i]_ARP[z]_PROT	CCMi Address Range Protector z Protection Register	124
CCM[i]_HW_CONF	CCMi Hardware Configuration Register	125
CCM[i]_TIM_AUX_IN_SRC	CCMi TIM AUX input source Register.	128
CCM[i]_EXT_CAP_EN	CCMi External Capture Enable Register.	129
CCM[i]_TOM_OUT	CCMi TOM Output Register.	130
CCM[i]_ATOM_OUT	CCMi ATOM Output Register.	130

28.11.4 CCM Configuration Register description

28.11.4.1 Register CCM[i]_PROT

CCMi Protection Register

CCMi_I	-	-				(OE	21FC _H +	⊦i*200 _⊦	1)	Ар	plicati	on Res	et Valu	e: 000	0 0001 _H
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
								0							
1		II.						r		I					
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	1						0			1					CLS_P ROT
1	1	1	1	1		1	r	1	1	1	1	1	1		rw

Field	Bits	Туре	Description
CLS_PROT	0	rw	Cluster Protection
			 0_B Write protection of cluster configuration registers is disabled 1_B Write protection of cluster configuration registers is enabled
0	31:1	r	Reserved
			Read as zero, shall be written as zero.

28.11.4.2 Register CCM[i]_CFG

CCMi Configuration Register

NOTE: The module specific clock enable registers (bit field **EN_***) are only implemented if the corresponding module is available in the i-th cluster.

NOTE: For the Clusters greater than 4, (only 100MHz capable), the only allowed settings for the CLS_CLK_DIV are 00 and 10 (clock divider 2).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 TBU_D TBU_D IR1 r r 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 EN_C MP_M ON EN_PS EN_BR EN_DP LL_MA CS DTM SPE EN_TI M SPE EN_T	CCMi_C	•	•	Regist	er		(0E	21F8 _H ·	+i*200 _H	,)	App	olicatio	n Rese	t Value	e: XXXX	ххххн
IR2	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 EN_C MP_M ON EN_PS EN_BR CS EN_DP LL_MA CS DTM EN_TDT M									0						CLS_CI	.K_DIV
0 EN_C MP_M ON EN_PS EN_BR C EN_DP LL_MA CS EN_AT EN_TO M_SPE M_SPE M CS DTM M	r	r				I.	I.		r						r	•
O MP_M M C P C DTM ON C P OM_A M_SPE M_TDT M	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				•)	1	1	1 1	MP_M ON	M	C C	LL_MA P	CS	OM_A	M_SPE _TDT M	M

Field	Bits	Type	Description
EN_TIM	0	rw	Enable TIM This bit is only writable if bit field CLS_PROT of register CCM[i]_PROT is cleared. O _B Disable clock signal for sub module TIM 1 _B Enable clock signal for sub module TIM
EN_TOM_SPE _TDTM	1	rw	Enable TOM, SPE and TDTM This bit is only writable if bit field CLS_PROT of register CCM[i]_PROT is cleared. O _B Disable clock signal for modules TOM, SPE, and their related DTM modules 1 _B Enable clock signal for modules TOM, SPE, and their related DTM modules.
EN_ATOM_AD TM	2	rw	 Enable ATOM and ADTM This bit is only writable if bit field CLS_PROT of register CCM[i]_PROT is cleared. 0_B Disable clock signal for modules ATOM and their related DTM modules. 1_B Enable clock signal for modules ATOM and their related DTM modules.
EN_MCS	3	rw	Enable MCS This bit is only writable if bit field CLS_PROT of register CCM[i]_PROT is cleared. O _B Disable clock signal for module MCS 1 _B Enable clock signal for module MCS
EN_DPLL_MA P	4	rw	Enable DPLL and MAP This bit is only writable if bit field CLS_PROT of register CCM[i]_PROT is cleared. O _B Disable clock signal for modules DPLL and MAP 1 _B Enable clock signal for modules DPLL and MAP
EN_BRC	5	rw	Enable BRC This bit is only writable if bit field CLS_PROT of register CCM[i]_PROT is cleared. 0 _B Disable clock signal for module BRC 1 _B Enable clock signal for module BRC
EN_PSM	6	rw	Enable PSM This bit is only writable if bit field CLS_PROT of register CCM[i]_PROT is cleared. 0 _B Disable clock signal for module PSM 1 _B Enable clock signal for module PSM
EN_CMP_MON	7	rw	Enable CMP and MON This bit is only writable if bit field CLS_PROT of register CCM[i]_PROT is cleared. O _B Disable clock signal for modules CMP and MON 1 _B Enable clock signal for modules CMP and MON

Field	Bits	Туре	Description
CLS_CLK_DIV	17:16	r	Cluster Clock Divider
			The value of this bit field mirrors the bit field CLS[i]_CLK_DIV of register
			GTM_CLS_CLK_CFG, whereas i equals the cluster index.
			00 _B Cluster is disabled
			01 _B Cluster is enabled without clock divider
			10 _B Cluster is enabled with clock divider 2
			11 _B Reserved, do not use.
TBU_DIR1	30	r	DIR1 input signal of module TBU
			0 _B Indicating forward direction
			1 _B Indicating backward direction
TBU_DIR2	31	r	DIR2 input signal of module TBU
			0 _B Indicating forward direction
			1 _B Indicating backward direction
0	15:8,	r	Reserved
	29:18		Read as zero, shall be written as zero.

28.11.4.3 Register CCM[i]_CMU_CLK_CFG

CCMi CMU Clock Configuration Register

The bit fields of this register are only writable if bit field **CLS_PROT** of register **CCM[i]_PROT** is cleared.

CCMi_CMU_CLK_CFG (i=0-11)

CCMi C	MU Clo	ock Cor	nfigura	tion Re	egister	(OE:	21F0 _H +	·i*200 _H)	Ap	plication	on Res	et Valu	ie: 0000	0000 _H
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	0	CLK7	_SRC		D	CLK6	_SRC	(D	CLK5	_SRC		D	CLK4	_SRC
	r	r	W		r	r	W		r	r	W		r	r	W
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	0	CLK3	_SRC		0	CLK2	_SRC		D	CLK1	_SRC		, D	CLKO	_SRC
	r	r	W		r	r	W		r	r	N		r	r	W

Field	Bits	Type	Description
CLKx_SRC	4*x+1:4*x	rw	Clock x source signal selector
(x=0-7)			00 _B Use CMU_CLKx signal of CMU as CMU_CLKx signal within cluster
			01 _B Use CMU_CLK8 signal of CMU as CMU_CLKx signal within cluster
			10 _B Use TIM[i]_EXT_CAPTURE(x) signal as CMU_CLKx signal within
			cluster
			11 _B Reserved

Field	Bits	Туре	Description
0	31:30,	r	Reserved
	27:26,		Read as zero, shall be written as zero.
	23:22,		
	19:18,		
	15:14,		
	11:10, 7:6,		
	3:2		

28.11.4.4 Register CCM[i]_CMU_FXCLK_CFG

CCMi CMU Fixed Clock Configuration Register

CCMi_CMU_FXCLK_CFG (i=0-11)

ссмі с	_	ced Clo	•	•	tion Re	gister(0E21F	4 _H +i*20)0 _H)	Ар	plication	on Res	et Valu	e: 0000	0000 _H
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	1	ı	·	!	ı			0	"		1		!	,	'
	1	1	I	1	1		ı	r	1	1	1	1	1		
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	1	1	1	1	<u></u>		1	1	1		1		FXCLK	(0_SRC	1
1	1	1	1	1		•	1	1	1		1		r	W	

Field	Bits	Туре	Description
FXCLK0_SRC	3:0	rw	Fixed clock 0 source signal selector Bit field values that are not mentioned above are reserved. These bits are only writable if bit field CLS_PROT of register CCM[i]_PROT is cleared. 0 _H Use CMU_FXCLK0 signal of CMU as CMU_FXCLK0 signal within cluster 1 _H Use CMU_CLK8 signal of CMU as CMU_FXCLK0 signal within cluster
0	31:4	r	Reserved Read as zero, shall be written as zero.

28.11.4.5 Register CCM[i]_AEIM_STA

CCMi MCS Bus Master Status Register

Note:

Only the first invalid AEIM bus master access of the MCS is updating this register with the invalid AEIM address (bit field AEIM_XPT_ADDR) and the reason of the invalid access (bit field AEIM_XPT_STA). A write access to this register (independent of the written data) always resets the bit fields AEIM_XPT_STA and AEIM_XPT_ADDR, and the next invalid AEIM access is captured by this register, again.

Note: If the i-th cluster does not provide an MCS module, this register is not available.

Field	Bits	Туре	Description
AEIM_XPT_AD DR	15:0	rw	Exception Address Invalid bus master (AEIM) address of MCS module.
AEIM_XPT_ST A	25:24	rw	AEIM exception status 00 _B No invalid MCS bus master access occurred 01 _B Invalid byte addressing of MCS bus master access 10 _B Illegal module access of MCS bus master access 11 _B Invalid MCS bus master access to an unsupported address
0	23:16, 31:26	r	Reserved Read as zero, shall be written as zero.

28.11.4.6 Register CCM[i]_ARP[z]_CTRL

CCM0 Address Range Protector z Control Register

CCMi_ARPz_CTRL (i=0-9;z=0-9)

CCMi Address Range Protector z Control Register(0E2000_H+i*200_H+z*8) Application Reset Value: 0003 0000_H

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
WPRO T_AEI		1	'	0	I	ı	DIS_P ROT		()	ı		SI	ZE	'
rw		1	I	r	1	1	rw			r	l		r	W	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ADDR															
1							r۱	N							

Field	Bits	Туре	Description							
ADDR	15:0	rw	ARP base address Base address for address range protector z. Only the bits 5 to AAW-1 of this bit field are implemented as registers. The bits AAW to 15 are reserved bits and always read and written as zeros. The bits 0 and 1 are functionally used for the definition of an ARP but they are always read and written as zeros. The actual base address for a protected address range is only defined by the upper AAW-(SIZE+2) bits (bit position 2+SIZE to bit position AAW-1) of bit field ADDR. The lower SIZE+2 bits (bit 0 to SIZE+1) are ignored for the address calculation and assumed as zeros. This bit field is only writable if bit field CLS_PROT of register CCM[i]_PROT is cleared.							
SIZE	19:16	rw	Size of ARP Size of memory range protector z. The actual size of a protected memory range is defined as 2 ^{SIZE} address locations, whereas the bit field SIZE is interpreted as an unsigned integer number. This bit field is only writable if bit field CLS_PROT of register CCM[i]_PROT is cleared.							
DIS_PROT	24	rw	Disable ARP protection This bit field is only writable if bit field CLS_PROT of register CCM[i]_PROT is cleared. 0 _B Bit WPROTx (WPROT_AEI) defines write protection for selected address range 1 _B Bit WPROTx (WPROT_AEI) explicitly allows write access to selected address range							
WPROT_AEI	31	rw	AEI slave write protection The address range interval that is protected by this ARP can be calculated as [(ADDR AND NOT 4*(2 ^{SIZE} -1)); (ADDR AND NOT 4*(2 ^{SIZE} -1)) + 4*(2 ^{SIZE} -1)], assuming a byte-wise addressing, an unsigned integer representation for the bit fields SIZE and ADDR. NOT and AND are bitwise logical operators. The incrementation interval for neighboring memory locations is always 4. This bit field is only writable if bit field CLS_PROT of register CCM[i]_PROT is cleared. O _B Write protection to address range from AEI slave is disabled 1 _B Write protection to address range from AEI slave is enabled							
0	23:20, 30:25	r	Reserved Read as zero, shall be written as zero.							

28.11.4.7 Register CCM[i]_ARP[z]_PROT

CCM0 Address Range Protector z Protection Register

Only the first T bits of this register (bit 0 to T-1) are functionally implemented. The other bits (bit T to 31) are reserved bits. Parameter T reflects the number of available MCS channels in the cluster's MCS module. These bit fields of this register are only writable if bit field **CLS_PROT** of register **CCM[i]_PROT** is cleared.

The meaning of the bit fields WPROTx can be changed by the bit field DIS_PROT of register CCM[i] ARP[z] CTRL.

CCMi_ARPz_PROT (i=0-9;z=0-9)

CCMi Address Range Protector z Protection Register(0E2004_H+i*200_H+z*8) Application Reset Value: 0000 0000_H

Field	Bits	Туре	Description
WPROTy (y=0-7)	У	rw	Write Protection MCS channel y 0 _B Write protection to ARP's address range for MCS channel y is disabled 1 _B Write protection to ARP's address range for MCS channel y is enabled
0	31:8	r	Reserved Read as zero, shall be written as zero.

28.11.4.8 Register CCM[i]_HW_CONF

CCMi Hardware Configuration Register

CCMi_HW_CONF (i=0-11)

CCMil	Hardwa	re Con	figurat	ion Re	gister	(0E	21DC _H +	-i*200 _H	₁)	Ap	plicati	on Res	et Valu	e: 084F	022E _H
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	0	INT_C LK_EN _GEN		том_т	RIG_IN	TCHAIN	!	АТО	M_TRIC	G_INTC	HAIN	ODE_S INGLE	IRQ_M ODE_P ULSE_ NOTIF	ODE_P ULSE	IRQ_M ODE_L EVEL
	r	r	•		r	*				r	•	r	r	r	r
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	ARU_C ONNE CT_CO NFIG	ERM	RAM_I NIT_R ST	ТОМ	_TRIG_(CHAIN	TOM_ OUT_ RST	АТОМ	_TRIG_	CHAIN		CFG_C LOCK_ RATE	INPUT		GRSTE
r	r	r	r		r		r		r		r	r	r	r	r

Field	Bits	Type	Description
GRSTEN	0	r	Global Reset Enable 0 _B Global GTM reset register disabled 1 _B Global GTM reset register enabled
BRIDGE_MOD E_RST	1	r	Bridge mode after reset 0 _B Bridge starts in synchronous mode after reset 1 _B Bridge starts in asynchronous mode after reset
SYNC_INPUT_ REG	2	r	Additional pipelined stage in synchronous bridge mode Note: this register is only relevant (if existing) for synchronous bridge mode 0 _B No additional pipelined stage implemented. 1 _B Additional pipelined stage implemented. All accesses in synchronous mode will be increased by one clock cycle.
CFG_CLOCK_	3	r	Clocks per ARU transfer
RATE			Note: This value defines also the availability of configuration bits in register GTM_CLS_CLK_CFG.
			If CFG_CLOCK_RATE=0, only the values 00_B and 01_B are valid for bit fields CLS[x]x_CLK_DIV. If CFG_CLOCK_RATE=1, only the values 00_B , 01_B and 10_B are valid for bit fields CLS[x]x_CLK_DIV. 0_B Each system clock an ARU transfer is scheduled 1_B Each second system clock an ARU transfer is scheduled. ARU transfer rate is half the system clock frequency.
ATOM_OUT_R	4	r	ATOM_OUT reset level
ST			Note: This value represents the ATOM output level after reset. The inverse value of this bit is the reset value of bit SL in all ATOM channels.
			0 _B ATOM_OUT reset level is '0' 1 _B ATOM_OUT reset level is '1'
ATOM_TRIG_C HAIN	7:5	r	ATOM trigger chain length without synchronization register It defines after which ATOM instance count a synchronization register is introduced into trigger chain (after ATOM_TRIG_ <i> output if instance i and ATOM_TRIG_<i+1> input of instance i+1). Valid values are 1 to 7. 1 means that after each instance, a synchronization register is placed.</i+1></i>
TOM_OUT_RS	8	r	TOM_OUT reset level
Т			Note: This value represents the TOM output level after reset. The inverse value of this bit is the reset value of bit SL in all TOM channels.
			0 _B TOM_OUT reset level is '0' 1 _B TOM_OUT reset level is '1'

Field	Bits	Туре	Description
TOM_TRIG_C HAIN	11:9	r	TOM trigger chain length without synchronization register It defines after which TOM instance count a synchronization register is introduced into trigger chain (after TOM_TRIG_ <i> output if instance i and TOM_TRIG_<i+1> input of instance i+1). Valid values are 1 to 7. 1 means that after each instance, a synchronization register is placed.</i+1></i>
RAM_INIT_RS T	12	r	RAM initialization from reset 0 _B RAM is not initialized after reset 1 _B RAM is initialized after reset
ERM	13	r	Enable RAM1 MSB for available MCS modules Note: The bit reflects the state of the configuration parameter ERM mentioned in the specification of MCFG. O _B MSB of MCS RAM1 address not used 1 _B MSB of MCS RAM1 address used
ARU_CONNEC T_CONFIG	14	r	Defines number of parallel ARU ports 0 _B Two ARU ports available (two independent counter) 1 _B One ARU port available
IRQ_MODE_L EVEL	16	r	IRQ_MODE_LEVEL 0 _B Level mode not available 1 _B Level mode available
IRQ_MODE_P ULSE	17	r	IRQ_MODE_PULSE 0 _B Pulse mode not available 1 _B Pulse mode available
IRQ_MODE_P ULSE_NOTIFY	18	r	IRQ_MODE_PULSE_NOTIFY 0 _B Pulse notify mode not available 1 _B Pulse notify mode available
IRQ_MODE_SI NGLE_PULSE	19	r	IRQ_MODE_SINGLE_PULSE 0 _B Single pulse mode not available 1 _B Single pulse mode available
ATOM_TRIG_I NTCHAIN	23:20	r	ATOM internal trigger chain length without synchronization register ATOM internal trigger chain length without synchronization register It defines after which ATOM channel count a synchronization register is introduced into trigger chain. Valid values are 1 to 8. 4 means that in channel 4 of the atom instances a synchronization register is placed.
TOM_TRIG_IN TCHAIN	28:24	r	TOM internal trigger chain length without synchronization register It defines after which TOM channel count a synchronization register is introduced into trigger chain. Valid values are 1 to 16. 8 means that in channel 8 of the TOM instances, a synchronization register is placed.
INT_CLK_EN_ GEN	29	r	Internal clock enable generation 0 _B GTM external clock enable signals in use 1 _B GTM internal clock enable signals in use

Field	Bits	Туре	Description
0	15,	r	Reserved
	31:30		Read as zero, shall be written as zero.

28.11.4.9 Register CCM[i]_TIM_AUX_IN_SRC

CCMi TIM Module AUX_IN Source Selection Register

CCMi_TIM_AUX_IN_SRC (i=0-11)

CCMi TIM Module AUX_IN Source Selection Register(0E21E0_H+i*200_H) Application Reset Value: 0000 0000_H

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	!	ı	()	I	1	1	SEL_O UT_N_ CH7	_	_	SEL_O UT_N_ CH4	_	_	_	SEL_O UT_N_ CHO
		I		r	1		1	rw	rw	rw	rw	rw	rw	rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	1	1	')	1	1		SRC_C H7	SRC_C H6	SRC_C H5	SRC_C H4	SRC_C H3	SRC_C H2	SRC_C H1	SRC_C H0
				·				rw	rw	rw	rw	rw	rw	rw	rw

Field	Bits	Туре	Description							
SRC_CHz (z=0-7)	z	rw	Defines AUX_IN source of TIM[i] channel z SRC_CHz: Defines AUX_IN source of TIM[z] channel z SEL_OUT_N_CHz = 0 / SEL_OUT_N_CHz = 1: 0 _B Defines AUX_IN source of TIM[i] channel (smaller number) CDTM[z].DTMz Output DTM_OUTz selected / CDTM[z].DTMzOutp 1 _B Defines AUX_IN source of TIM[i] channel (higher number) CDTM[z].DTM4 Output DTM_OUT0 selected / CDTM[z].DTM4 Output DTM_OUT1_Nselected							
SEL_OUT_N_ CHz (z=0-7)	z+16	rw	Use DTM_OUT or DTM_OUT_N signals as AUX_IN source of TIM[i] channel z SEL_OUT_N_CHz: Use DTM_OUT or DTM_OUT_N signals as AUX_INsource of TIM[i] channel z 0 _B Use DTM_OUT signal as AUX_IN source of TIM[0] 1 _B Use DTM_OUT_N signal as AUX_IN source of TIM[0]							
0	15:8, 31:24	r	Reserved Read as zero, shall be written as zero.							

28.11.4.10Register CCM[i]_EXT_CAP_EN

CCMi External Capture Trigger Enable Register

CCMi_EXT_CAP_EN (i=0-11)

Field	Bits	Type	Description
TIM_I_EXT_CA P_EN	7:0	rw	TIM[i]_EXT_CAPTURE signal forwarding enable Note: The trigger event forwarding is possible from TIM[i] and TIM[i+1] to MCS[i]. 00 _H Disable forwarding of signal TIM[i]_EXT_CAPTURE to MCS[i] 01 _H Enable forwarding of signal TIM[i]_EXT_CAPTURE to MCS[i]
TIM_IP1_EXT_ CAP_EN	15:8	rw	TIM[i+1]_EXT_CAPTURE signal forwarding enable 00 _H Disable forwarding of signal TIM[i+1]_EXT_CAPTURE to MCS[i] 01 _H Enable forwarding of signal TIM[i+1]_EXT_CAPTURE to MCS[i]
0	31:16	r	Reserved Note: The trigger event forwarding is possible from TIM[i] and TIM[i+1] to MCS[i].

28.11.4.11Register CCM[i]_TOM_OUT

CCMi TOM Output Level Register

Field	Bits	Туре	Description
TOM_OUT	15:0	r	Output level snapshot of TOM[i]_OUT all channels
TOM_OUT_N	31:16	r	Output level snapshot of TOM[i]_OUT_N all channels

28.11.4.12Register CCM[i]_ATOM_OUT

CCMi ATOM Output Level Register

Note: Reset value depends on the hardware configuration chosen by silicon vendor. See **GTM_HW_CONF** for

chosen value.

CCMi_A	_	•	•	Registe	r	(0E	21EC _H +	⊦i*200 _∺	₁)	Ар	plicati	on Res	et Valu	e: 0000	0000 _H
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		A	ТОМ_ІР	1_0UT_	_N					ATOM_I	P1_0U	Т			
		1		r	1	1	1		1			r	1	1	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			ATOM_I	_TUO_!	N					ATOM	_I_OUT				
	1		1	r				1		Į.		r			

Field	Bits	Туре	Description
ATOM_I_OUT	7:0	r	Output level snapshot of ATOM[i]_OUT all channels
ATOM_I_OUT _N	15:8	r	Output level snapshot of ATOM[i]_OUT_N all channels
ATOM_IP1_O UT	23:16	r	Output level snapshot of ATOM[i+1]_OUT all channels
ATOM_IP1_O UT_N	31:24	r	Output level snapshot of ATOM[i+1]_OUT_N all channels