Kernel Machines

Alain Celisse

SAMM

Paris 1-Panthéon Sorbonne University

alain.celisse@univ-paris1.fr

Introduction to Kernel machines

Master 2 Data Science – Centrale Lille, Lille University Fall 2022

Kernel Machines

Alain Celisse

The Big Picture about kernel machines

Focus on the regression problem

Reproducing Kernel Hilbert Space

Outline of the lectures

Successive topics of the coming lectures:

- 1. Introduction to Kernel methods (Today!)
- 2. Support vector classifiers and Kernel methods
- 3. Extending classical strategies to high dimension
 - KRR/LS-SVMs
 - ► KPCA
- 4. Duality gap and KKT conditions
- 5. Designing reproducing kernels
- 6. Maximum Mean Discrepancy (MMD)
- 7. Change-point detection, KCP

Alain Celisse

The Big Picture about kernel machines

Focus on the regression problem

Reproducing

Kernel Hilbert Space

Alain Celisse

The Big Picture about kernel machines

Focus on the regression problem
Reproducing

Kernel Hilbert Space

- ► The Big picture about kernel machines
- ► Focus of the regression problem
- Reproducing Kernel Hilbert Spaces (RKHSs)
- ► Examples of iterative learning strategies

Kernel Machines

Alain Celisse

The Big Picture about kernel machines

Challenges of modern statistical learning

How to overcome all of this?

Remaining difficulties/open questions

Focus on the regression problem

Reproducing Kernel Hilbert Space

Iterative learning strategies

Main challenges of modern statistical learning

Kernel Machines

Alain Celisse

The Big Picture about kernel machines

Challenges of modern statistical learning

How to overcome all of this?

Remaining difficulties/open questions

Focus on the regression problem

Reproducing Kernel Hilbert Space

Iterative learning strategies

The Big Picture about kernel machines

The real world is not linear...

Modelizing remains difficult

- With classification/clustering tasks, classes are often overlapping
- ► Non linearly separable classes

Alain Celisse

The Big Picture about kernel machines

Challenges of modern

statistical learning How to overcome all of

Remaining difficulties/open questions

Focus on the regression problem

Reproducing Kernel Hilbert Space

The real world is not linear...

Modelizing remains difficult

- With classification/clustering tasks, classes are often overlapping
- ► Non linearly separable classes

Linear predictors: Limited performance!

Alain Celisse

The Big Picture about kernel machines

Challenges of modern

statistical learning

How to overcome all of

Remaining difficulties/open

Focus on the regression problem

Reproducing Kernel Hilbert Space

Observations are complex

Extracting information is difficult

- Individuals are described by complex covariates
- Covariates may be:
 - Qualitative/ categorical: Eye color, city names, . . .

Kernel Machines

Alain Celisse

The Big Picture about kernel machines

Challenges of modern statistical learning

How to overcome all of this?

Remaining difficulties/open questions

Focus on the regression problem

Reproducing Kernel Hilbert Space

Observations are complex

Extracting information is difficult

- Individuals are described by complex covariates
- Covariates may be:
 - Qualitative/ categorical: Eye color, city names, . . .
 - ► Structured: Graphs, Images, video streams,...

Alain Celisse

The Big Picture about kernel machines

Challenges of modern

How to overcome all of

Remaining difficulties/open questions

Focus on the regression problem

Reproducing Kernel Hilbert Space

Observations are complex

Extracting information is difficult

- Individuals are described by complex covariates
- Covariates may be:
 - Qualitative/ categorical: Eye color, city names, . . .
 - ► Structured: Graphs, Images, video streams,...

The Big Picture about kernel machines

Challenges of modern statistical learning

How to overcome all of this?

Remaining difficulties/open questions

Focus on the regression problem

Reproducing Kernel Hilbert Space

Combining structured covariates

Throwing away part of information is forbidden!

- In many applications, covariates are "heterogeneous"
- Individuals described by mixing several types of covariates:
 - ightharpoonup Vectors in \mathbb{R}^d (measurements)
 - ► Images (from social media)
 - Curves (expenses along a year)

..

Ex: Typically used by banks to "segment" its clients

Kernel Machines

Alain Celisse

The Big Picture about kernel machines

Challenges of modern statistical learning

How to overcome all of this?

Remaining difficulties/open questions

Focus on the regression problem

Reproducing Kernel Hilbert Space

Challenges of modern

How to overcome all of this?

Remaining difficulties/open questions

Focus on the regression problem

Reproducing Kernel Hilbert Space

Iterative learning strategies

Throwing away part of information is forbidden!

- In many applications, covariates are "heterogeneous"
- Individuals described by mixing several types of covariates:
 - ightharpoonup Vectors in \mathbb{R}^d (measurements)
 - Images (from social media)
 - Curves (expenses along a year)

..

Ex: Typically used by banks to "segment" its clients

Difficult challenge

questions

Reproducing Kernel Hilbert Space

Iterative learning strategies

Making meaningful comparisons. . .

- Numerous strategies rely on a similarity measure (kNN, K-means, Spectral clustering,...)
- ► A similarity measure quantifies the "closeness" of points
- \blacktriangleright When points are vectors in \mathbb{R}^d , the Euclidean norm seems a natural choice
- ▶ When points are structured objects (graphs), there is no such natural choice!

Kernel Machines

Alain Celisse

The Big Picture about kernel machines

Challenges of modern statistical learning

this? Remaining

difficulties/open questions

Focus on the regression problem

Reproducing Kernel Hilbert Space

Iterative learning strategies

Reproducing kernels help overcoming all of this!

Beyond linearity...

Kernels alleviate the limitation of linear classifiers

▶ "Kernels" are tools outperforming linear classifiers

(SVM)

- Original observations X_is are mapped into a "Feature space" of higher dimension
- The "new observations" $Y_i = \phi(X_i)$ s are vectors (The Feature space is a vector space!)
- ► The Input space not necessarily a Vector space

Alain Celisse

The Big Picture about kernel machines

Challenges of modern statistical learning How to overcome all of

Remaining difficulties/open

questions

Focus on the regression problem

Reproducing Kernel Hilbert Space

Capturing features of the probability distribution

General principle

- No longer look for changes among X_1, \ldots, X_n : Forget the Input space
- Rather look for changes among the new observations Y_1, \ldots, Y_n within the Feature space!

Kernel Machines

Alain Celisse

The Big Picture about kernel machines

Challenges of modern statistical learning

Remaining difficulties/open

Focus on the regression problem

Reproducing Kernel Hilbert Space

General principle

- No longer look for changes among X_1, \ldots, X_n : Forget the Input space
- ▶ Rather look for changes among the new observations Y_1, \ldots, Y_n within the Feature space!

Assets

▶ Detect changes between the probability distributions of the X_i s: P_{X_1}, \dots, P_{X_n} (see Mean embedding, MMD)

The Big Picture about kernel machines

Challenges of modern

statistical learning

How to overcome all of

Remaining difficulties/open

Focus on the regression problem

Reproducing Kernel Hilbert Space

The Big Picture about kernel machines Challenges of modern statistical learning How to overcome all of

Remaining difficulties/open questions

Focus on the regression problem

Reproducing Kernel Hilbert Space

Iterative learning strategies

General principle

- No longer look for changes among X_1, \ldots, X_n : Forget the Input space
- Rather look for changes among the new observations Y_1, \ldots, Y_n within the Feature space!

Assets

- Detect changes between the probability distributions of the X_i s: P_{X_1}, \dots, P_{X_n} (see Mean embedding, MMD)
- Yields new measures of dependence between the X_i:s No longer limited to covariance and linear dependence (see HSIC)

Kernels on "objects"

Kernels are a versatile tool

Defined for various types of objects:

(Kernel for structured data (2008), T. Gärtner)

Vectors

$$k(a,b) = e^{-\frac{(a-b)^2}{2h}}, \quad a,b \in \mathbb{R}$$

► Sets/Measurable sets

$$k(A, B) = \mu(A \cap B), \quad A, B \in \mathcal{P}(\mathbb{R})$$

► Histograms, Graphs, Curves,...

Alain Celisse

The Big Picture about kernel machines

Challenges of modern statistical learning

this?

difficulties/open questions

Focus on the regression problem

Reproducing Kernel Hilbert Space

Kernels on "objects"

Kernels are a versatile tool

Defined for various types of objects:

(Kernel for structured data (2008), T. Gärtner)

Vectors

$$k(a,b)=e^{-\frac{(a-b)^2}{2h}}, \qquad a,b\in\mathbb{R}$$

► Sets/Measurable sets

$$k(A, B) = \mu(A \cap B), \quad A, B \in \mathcal{P}(\mathbb{R})$$

► Histograms, Graphs, Curves,...

Designing new kernels

Simple mathematical rules allow for building new kernels:

- Sum
- Product
- ► Convex combination. . . .

Alain Celisse

The Big Picture about kernel machines Challenges of modern statistical learning

How to overcome all of this?

Remaining

difficulties/open questions

Focus on the regression problem

Reproducing Kernel Hilbert Space

Dealing with marginal information

Assume

$$X_i = \left(X_i^1, X_i^2, \dots, X_i^p\right)$$

with covariates

- $X_i^1 \in \mathcal{X}_1 = \mathbb{R}^d$: Measurements $\to k_1(\cdot, \cdot)$
- $X_i^2 \in \mathcal{X}_2$: Curves on $[0,1] \to k_2(\cdot,\cdot)$
- ▶ $X^3 \in \mathcal{X}_3$: Medical images of a patient $\rightarrow k_3(\cdot, \cdot)$

Alain Celisse

The Big Picture about kernel machines

Challenges of modern

statistical learning

How to overcome all of

Remaining difficulties/open questions

Focus on the regression problem

Reproducing Kernel Hilbert Space

Alain Celisse

The Big Picture about kernel

machines Challenges of modern statistical learning

> How to overcome all of Remaining

difficulties/open questions

Focus on the regression problem

Reproducing Kernel Hilbert Space

Iterative learning strategies

Dealing with marginal information

Assume

 $X_i = (X_i^1, X_i^2, \dots, X_i^p)$

with covariates

 $X_i^1 \in \mathcal{X}_1 = \mathbb{R}^d$: Measurements $\to k_1(\cdot, \cdot)$

 $X_i^2 \in \mathcal{X}_2$: Curves on $[0,1] \to k_2(\cdot,\cdot)$

▶ $X^3 \in \mathcal{X}_3$: Medical images of a patient $\rightarrow k_3(\cdot, \cdot)$

Gathering all these complementary information sources

$$k(X_i, X_j) = \sum_{\ell=1}^p \omega_\ell k_\ell(X_i^\ell, X_j^\ell), \qquad \omega_\ell \ge 0$$

 \rightarrow Individuals i and j are compared by means of all covariates

Kernel Machines

Alain Celisse

The Big Picture about kernel machines

Challenges of modern statistical learning How to overcome all of this?

Remaining

questions

Focus on the regression problem

Reproducing Kernel Hilbert Space

Iterative learning strategies

Remaining difficulties/open questions

this?

Remaining difficulties/ope questions

Focus on the regression problem

Reproducing Kernel Hilbert Space

- ► The practical performance depends on the kernel
 - Gaussian kernel: $k(a,b) = e^{-\frac{(a-b)^2}{2h}}$
 - ► Laplace kernel: $k(a, b) = e^{-\frac{|a-b|}{h}}$
 - ightarrow A bad choice leads to poor performances

Optimizing the kernel/metric . . .

- ▶ The practical performance depends on the kernel
 - Gaussian kernel: $k(a,b) = e^{-\frac{(a-b)^2}{2h}}$
 - ► Laplace kernel: $k(a, b) = e^{-\frac{|a-b|}{h}}$
 - \rightarrow A bad choice leads to poor performances
- ► Same problem as with the choice of the metric
 - \rightarrow Reweighting covariates . . .

Alain Celisse

The Big Picture about kernel machines

Challenges of modern statistical learning How to overcome all of

Remaining difficulties/open

this?

Focus on the regression problem

Reproducing Kernel Hilbert Space

Optimizing the kernel/metric ...

- ► The practical performance depends on the kernel
 - Gaussian kernel: $k(a,b) = e^{-\frac{(a-b)^2}{2h}}$
 - ► Laplace kernel: $k(a, b) = e^{-\frac{|a-b|}{h}}$
 - A bad choice leads to poor performances
- Same problem as with the choice of the metric
 - Reweighting covariates . . .

- ► A "Kernel" refers to a parametric family of functions
 - Gaussian kernel parametrized by h > 0

Alain Celisse

The Big Picture about kernel machines

Challenges of modern statistical learning How to overcome all of

Remaining difficulties/open

Focus on the regression problem

Reproducing Kernel Hilbert Space

Optimizing the kernel/metric . . .

- ▶ The practical performance depends on the kernel
 - Gaussian kernel: $k(a,b) = e^{-\frac{(a-b)^2}{2h}}$
 - ▶ Laplace kernel: $k(a,b) = e^{-\frac{|a-b|}{h}}$
 - → A bad choice leads to poor performances
- Same problem as with the choice of the metric
 - \rightarrow Reweighting covariates . . .

- A "Kernel" refers to a parametric family of functions
 - \rightarrow Gaussian kernel parametrized by h > 0
- ► Challenge: Optimizing the kernel remains widely open!

Alain Celisse

The Big Picture about kernel machines

Challenges of modern statistical learning

How to overcome all of thir?

Remaining difficulties/open

Focus on the regression problem

Reproducing Kernel Hilbert Space

The so-called Gram matrix

- ▶ A kernel $(a, b) \mapsto k(a, b)$
- From $X_1, ..., X_n$, compute the Gram matrix $K = \{K_{i,j}\}_{1 \le i,j \le n}$, where

$$K_{i,j} = k(X_i, X_j)$$

Alain Celisse

The Big Picture about kernel machines

Challenges of modern statistical learning How to overcome all of

this? Remaining

difficulties/oper

Focus on the regression problem

Reproducing Kernel Hilbert Space

Computational challenges

The so-called Gram matrix

- ▶ A kernel $(a, b) \mapsto k(a, b)$
- From $X_1, ..., X_n$, compute the Gram matrix $K = \{K_{i,j}\}_{1 \le i,j \le n}$, where

$$K_{i,j} = k(X_i, X_i)$$

- ▶ Gram matrix K: $n \times n$ matrix
- ► Most of kernel machines rely on computing K

Alain Celisse

The Big Picture about kernel machines

Challenges of modern statistical learning How to overcome all of this?

Remaining difficulties/open questions

Focus on the regression problem

Reproducing Kernel Hilbert Space

The so-called Gram matrix

- ▶ A kernel $(a, b) \mapsto k(a, b)$
- ► From $X_1, ..., X_n$, compute the Gram matrix $K = \{K_{i,j}\}_{1 \le i,j \le n}$, where

$$K_{i,j} = k(X_i, X_j)$$

- ightharpoonup Gram matrix K: $n \times n$ matrix
- ► Most of kernel machines rely on computing *K*

Computational issues

▶ Computing K: $O(n^2)$ time-complexity

Alain Celisse

The Big Picture about kernel machines

Challenges of modern statistical learning How to overcome all of this?

Remaining difficulties/open

Focus on the regression problem

Reproducing Kernel Hilbert Space

The so-called Gram matrix

- ▶ A kernel $(a, b) \mapsto k(a, b)$
- From X_1, \ldots, X_n , compute the Gram matrix $K = \{K_{i,j}\}_{1 \le i,j \le n}$, where

$$K_{i,j} = k(X_i, X_j)$$

- ▶ Gram matrix K: $n \times n$ matrix
- ► Most of kernel machines rely on computing *K*

Computational issues

- ▶ Computing K: $O(n^2)$ time-complexity
- ▶ Storing K: $O(n^2)$ space-complexity

Alain Celisse

The Big Picture about kernel machines

Challenges of modern statistical learning How to overcome all of this?

Remaining difficulties/open

Focus on the regression problem

Reproducing Kernel Hilbert Space

Computational challenges

The so-called Gram matrix

- ightharpoonup A kernel $(a,b) \mapsto k(a,b)$
- From $X_1, ..., X_n$, compute the Gram matrix $K = \{K_{i,j}\}_{1 \le i,j \le n}$, where

$$K_{i,j} = k(X_i, X_j)$$

- ▶ Gram matrix K: $n \times n$ matrix
- Most of kernel machines rely on computing K

Computational issues

- ▶ Computing K: $O(n^2)$ time-complexity
- ▶ Storing K: $O(n^2)$ space-complexity

Remarks:

- Requires cautious computations
- ▶ Approximation techniques to speed up computations

Alain Celisse

The Big Picture about kernel machines Challenges of modern statistical learning How to overcome all of

Remaining difficulties/open

Focus on the regression problem

Reproducing Kernel Hilbert Space

Kernel Machines

Alain Celisse

The Big Picture about kernel machines

Focus on the regression problem

Review of tentative solutions

Finally kernels come into play...

Reproducing Kernel Hilbert Space

Iterative learning strategies

Focus on the regression problem

Kernel Machines

Alain Celisse

The Big Picture about kernel machines

Focus on the regression problem

Regression task

Review of tentative solutions

Finally kernels come into play...

Reproducing Kernel Hilbert Space

Iterative learning strategies

19/47

Regression task

For $X \in \mathbb{R}^d$,

$$Y = f^*(X) + \epsilon \in \mathbb{R}$$

Assumptions:

- ▶ $f^*(x) = \mathbb{E}[Y \mid X = x]$ (regression function)
- $\triangleright \mathbb{E}[\epsilon \mid X = x] = 0$
- $ightharpoonup \operatorname{Var}\left[\epsilon \mid X = x\right] \le \sigma^2 < +\infty$

Remark:

Estimating f^* amounts to learning the link between X and Y

The Big Picture about kernel machines

Focus on the regression problem

Regression task
Review of tentative

solutions

Finally kernels come into play...

Reproducing Kernel Hilbert Space

The Big Picture about kernel machines

Focus on the regression problem

Regression task

Review of tentative solutions Finally kernels come into

play... Reproducing Kernel Hilbert

Iterative learning strategies

Space

Quadratic cost function:

 $c(f(x), y) = (f(x) - y)^2$

solutions Finally kernels come into

Reproducing Kernel Hilbert Space

play...

Iterative learning strategies

Quadratic cost function:

$$c(f(x),y) = (f(x) - y)^2$$

Prediction error (Loss):

$$PE(f) = \mathbb{E}_{(X,Y)\sim P} [c(f(X), Y)]$$
$$= \mathbb{E}_{(X,Y)\sim P} [(f(X) - Y)^{2}]$$

Remark: Note that

$$PE(f^*) = \inf_{h \in \mathcal{M}(\mathbb{R}^d)} PE(h)$$

Cost function, loss and risk

Quadratic cost function:

$$c(f(x),y) = (f(x) - y)^2$$

Prediction error (Loss):

$$PE(f) = \mathbb{E}_{(X,Y)\sim P} [c(f(X), Y)]$$
$$= \mathbb{E}_{(X,Y)\sim P} [(f(X) - Y)^{2}]$$

Remark: Note that

$$PE(f^*) = \inf_{h \in \mathcal{M}(\mathbb{R}^d)} PE(h)$$

Excess Loss:

$$\mathcal{E}(f) = PE(f) - \inf_{h \in \mathcal{M}} PE(h)$$

$$= \mathbb{E}_{X \sim P_X} \left[(f(X) - f^*(X))^2 \right]$$

$$= \|f - f^*\|_{L^2(P_X)}^2$$

Alain Celisse

The Big Picture about kernel machines

Focus on the regression problem

Regression task
Review of tentative

solutions

Finally kernels come into play...

Reproducing Kernel Hilbert Space

The functional perspective

Statistical model

$$Y = f(X) + \epsilon \in \mathbb{R}$$
, with $f \in \mathcal{F}$

- F: set of candidate functions
- ▶ The best estimator of f^* within \mathcal{F} :

$$f_{\mathcal{F}}^{\star} = Arg \min_{f \in \mathcal{F}} PE(f)$$

Alain Celisse

The Big Picture about kernel machines

Focus on the regression problem

Regression task

Review of tentative solutions
Finally kernels come into

play. . .

Reproducing Kernel Hilbert Space

The functional perspective

Statistical model

$$Y = f(X) + \epsilon \in \mathbb{R}$$
, with $f \in \mathcal{F}$

- F: set of candidate functions
- ▶ The best estimator of f^* within \mathcal{F} :

$$f_{\mathcal{F}}^{\star} = Arg \min_{f \in \mathcal{F}} PE(f)$$

Bias-Variance trade-off

For any estimator \hat{f} of f^*

$$\mathcal{E}(\widehat{f}) = PE(\widehat{f}) - PE(f^*)$$

$$= \underbrace{PE(\widehat{f}) - \inf_{f \in \mathcal{F}} PE(f)}_{= \text{Variance term}} + \underbrace{\inf_{f \in \mathcal{F}} PE(f) - PE(f^*)}_{= \text{Bias term}}$$

Alain Celisse

The Big Picture about kernel machines

Focus on the regression problem

Regression task
Review of tentative

solutions
Finally kernels come into

Reproducing Kernel Hilbert Space

play...

Kernel Machines

Alain Celisse

The Big Picture about kernel machines

Focus on the regression problem

Regression task

solutions

Finally kernels come into play...

Reproducing Kernel Hilbert Space

Iterative learning strategies

Review of tentative solutions

Focus on the regression problem

Review of tentative

Finally kernels come into play...

Reproducing Kernel Hilbert Space

Iterative learning

- $\mathcal{F} = \left\{ x \mapsto f(x) = \langle x, \beta \rangle_{\mathbb{R}^d} \mid \beta \in \mathbb{R}^d \right\}$
- ▶ Best approximation to f^* :

$$f_{\mathcal{F}}^{\star} = \langle \cdot, \beta^{\star} \rangle_{\mathbb{R}^d}$$

- ▶ The linear regression model is likely not the true one!
- ► This means that the bias satisfies

$$\inf_{f \in \mathcal{F}} PE(f) - PE(f^*) > 0$$

The Big Picture about kernel machines

Focus on the regression problem

Regression task
Review of tentative

solutions Finally kernels come into

Reproducing Kernel Hilbert

Space

Iterative learning

- $\mathcal{F} = \{ f(x) = g(Bx) \mid B \in \mathcal{M}_{m,d}(\mathbb{R}), \ g \text{ non-linear} \}$
- ▶ If m = 1, Single-Index Model (SIM)
- ▶ If $1 < m \le d$, Multi-Index Model (MIM)

$$\mathcal{F} = \{ f(x) = g(Bx) \mid B \in \mathcal{M}_{m,d}(\mathbb{R}), \ g \ \text{non-linear} \}$$

- ▶ If m = 1, Single-Index Model (SIM)
- ▶ If $1 < m \le d$, Multi-Index Model (MIM)

Difficulties

- ▶ The non-linear function $g: \mathbb{R}^m \to \mathbb{R}$ is unknown
- ▶ Since both g and B are unknown, difficult to estimate
- Often monotonicity assumptions added on g to make problem easier

Alain Celisse

The Big Picture about kernel machines

Focus on the regression problem

Regression task
Review of tentative

Finally kernels come into

Reproducing Kernel Hilbert Space

Activation function

 \triangleright σ : activation function

Ex: $\sigma(u) = \max\{0, u\}$ (ReLU)

Single-hidden layer DNN

$$\mathcal{F} = \left\{ f(x) = \underbrace{\sigma(B^1x + c^1)}_{=\phi_1(x)} \mid B^1 \in \mathcal{M}_{m,d}(\mathbb{R}), \ c^1 \in \mathbb{R}^m \right\}$$

The Big Picture about kernel machines

Focus on the regression problem

Regression task

Finally kernels come into

Reproducing Kernel Hilbert Space

 \triangleright σ : activation function

Ex: $\sigma(u) = \max\{0, u\}$ (ReLU)

Single-hidden layer DNN

$$\mathcal{F} = \left\{ f(x) = \underbrace{\sigma(B^1x + c^1)}_{=\phi_1(x)} \mid B^1 \in \mathcal{M}_{m,d}(\mathbb{R}), \ c^1 \in \mathbb{R}^m \right\}$$

Multi-layer DNN (MLP)

$$\mathcal{F} = \{ f(x) = \phi_{N} \circ \phi_{N-1} \circ \cdots \circ \phi_{1}(x) \}$$

where $\phi_i(u) = \sigma\left(B^j u + c^j\right)$ for all $1 \le j \le N$

The Big Picture about kernel machines

Focus on the regression problem

Regression task
Review of tentative

Finally kernels come into

Reproducing Kernel Hilbert Space

Focus on the regression problem

Regression task Review of tentative

Finally kernels come into

Reproducing Kernel Hilbert Space

Iterative learning strategies

Activation function

- \triangleright σ : activation function
- ightharpoonup Ex: $\sigma(u) = \max\{0, u\}$ (ReLU)

Single-hidden layer DNN

$$\mathcal{F} = \left\{ f(x) = \underbrace{\sigma(B^1x + c^1)}_{=\phi_1(x)} \mid B^1 \in \mathcal{M}_{m,d}(\mathbb{R}), \ c^1 \in \mathbb{R}^m \right\}$$

Multi-layer DNN (MLP)

$$\mathcal{F} = \{ f(x) = \phi_{N} \circ \phi_{N-1} \circ \cdots \circ \phi_{1}(x) \}$$

where $\phi_i(u) = \sigma\left(B^j u + c^j\right)$ for all $1 \leq j \leq N$ Problems:

- Not convex: Many local optima
- Difficult to understand

Kernel Machines

Alain Celisse

The Big Picture about kernel machines

Focus on the regression problem

Regression task

Review of tentative solutions

Finally kernels come int play. . .

Reproducing Kernel Hilbert Space

Iterative learning strategies

Finally kernels come into play. . .

The Big Picture about kernel machines

Focus on the regression problem

Regression task
Review of tentative
solutions

Finally kernels come into play. . .

Reproducing Kernel Hilbert Space

Iterative learning strategies

 \mathcal{F} can be chosen to be a Hilbert space with specific properties called Reproducing Kernel Hilbert Space (RKHS)

Definition (RKHS)

A Hilbert space $(\mathcal{H}, \langle \cdot, \cdot \rangle_{\mathcal{H}})$ is an RKHS if there exists a map $k: \mathcal{X}^2 \to \mathbb{R}$ such that

- $ightharpoonup x \mapsto k_x = k(x,\cdot) \in \mathcal{H}$
- ▶ For all $g \in \mathcal{H}$,

$$h(x) = \langle h, k_x \rangle_{\mathcal{H}}, \quad \forall x \in \mathcal{X}$$

Then, k is called a reproducing kernel

Ex: $\mathcal{X} = \mathbb{R}$, $k(x,y) = \langle x,y \rangle_{\mathbb{R}^d}$. Then $\mathcal{H} = \{x \mapsto f_{\beta}(x) = \langle \beta,x \rangle_{\mathbb{R}^d} \mid \beta \in \mathbb{R}^d \}$ is an RKHS

Kernel Machines

Alain Celisse

The Big Picture about kernel machines

Focus on the

regression problem

Kernel Hilbert Space From RKHS to

reproducing kernels

Iterative learning strategies

Reproducing Kernel Hilbert Space (RKHS)

Kernel Machines

Alain Celisse

The Big Picture about kernel machines

Focus on the regression problem

Reproducing Kernel Hilbert Space

From RKHS to

strategies

Iterative learning

From RKHS to reproducing kernels

Set $T_k: L^2(\rho) \to L^2(\rho)$ a linear operator

$$x \mapsto T_k(f)(x) = \int_{\mathcal{X}} k(x, u) f(u) d\rho(u), \quad \forall f \in \mathcal{H}$$

Theorem (Mercer's theorem)

If T_k is compact self-adjoint, then there exist:

- ightharpoonup an orthonormal family $\{\psi_\ell\}_{\ell>1}$ of eigenfunctions of T_k ,
- ▶ a non-increasing sequence $\lambda_1 \ge \cdots \ge \lambda_n \ge \cdots \ge 0$ of eigenvalues of T_k such that

$$k(x, y) = \sum_{\ell > 1} \lambda_{\ell} \psi_{\ell}(x) \psi_{\ell}(y) = \langle \phi(x), \phi(y) \rangle_{\ell^{2}}$$

with
$$\phi(x) = \left\{ \sqrt{\lambda_{\ell}} \psi_{\ell}(x) \right\}_{\ell > 1} \in \ell^{2}(\mathbb{R})$$

The Big Picture about kernel machines

Focus on the regression problem

Reproducing Kernel Hilbert Space From RKHS to reproducing kernels

Describing the RKHS

Alain Celisse

The Big Picture about kernel

machines

Focus on the regression problem

Reproducing Kernel Hilbert Space

From RKHS to reproducing kernels Iterative learning

strategies

Theorem

I et $H = \left\{ f \in L^2(
ho) \mid f = \sum_{\ell \geq 1} heta_\ell \psi_\ell, \; ext{and} \; \sum_{\ell \geq 1} rac{ heta_\ell^2}{\lambda_\ell} < + \infty
ight\}$ and

$$\langle f, g \rangle_{\mathcal{H}} = \sum_{\ell \geq 1} \frac{\theta_{\ell}^f \theta_{\ell}^g}{\lambda_{\ell}}$$

with

- $ightharpoonup f = \sum_{\ell > 1} \theta_{\ell}^{f} \psi_{\ell}$
- \triangleright $g = \sum_{\ell>1} \theta_{\ell}^{g} \psi_{\ell}$

Then, H is the RKHS associated with k

Remarks:

- $\triangleright \mathcal{H}$ is a space of functions
- ► Smoothness encoded by the decay rate of the λ_{ℓ} s
- ▶ The faster the λ_{ℓ} s to 0, the smoother the functions in \mathcal{H}

Classical examples

Linear kernel:

$$k(x,y) = \langle x,y \rangle_{\mathbb{R}^d}$$

Polynomial kernel:

$$(c \ge 0, d > 0)$$

$$k(x, y) = (\langle x, y \rangle_{\mathbb{R}^d} + c)^d$$

Gaussian (Radial Basis Function) kernel:

$$k(x,y) = e^{-\frac{(x-y)^2}{2}}$$

Exponential kernel:

$$k(x,y) = e^{\langle x,y \rangle_{\mathbb{R}^d}}$$

Alain Celisse

The Big Picture about kernel machines

Focus on the regression problem

Reproducing Kernel Hilbert Space

reproducing kernels

Kernel Machines

Alain Celisse

The Big Picture about kernel machines

Focus on the regression problem

Reproducing Kernel Hilbert Space

Iterative learning strategies

Gradient descent algorithm

Stochastic Gradient Descent algorithm

First examples of iterative learning strategies

Kernel Machines

Alain Celisse

The Big Picture about kernel machines

Focus on the regression problem

Reproducing Kernel Hilbert Space

strategies

Iterative learning Gradient descent algorithm

From training data

$$Y = F^* + \epsilon \in \mathbb{R}^n$$

where

$$ightharpoonup Y = (Y_1, \ldots, Y_n)^\top$$
,

$$\epsilon = (\epsilon_1, \ldots, \epsilon_n)^{\top}$$

$$F^* = (f^*(X_1), \dots, f^*(X_n))^{\top}$$

Empirical risk

$$PE(f) \approx \widehat{R}(f) = \frac{1}{n} \|Y - F\|_{2}^{2} = \|Y - F\|_{n}^{2}$$

with
$$F = (f(X_1), \ldots, f(X_n))^{\top}$$

Alain Celisse

The Big Picture about kernel machines

Focus on the regression problem
Reproducing

Kernel Hilbert Space Iterative learning

strategies

Gradient descent

$$Y = F^* + \epsilon \in \mathbb{R}^n$$

where

$$ightharpoonup Y = (Y_1, \ldots, Y_n)^{\top},$$

$$\epsilon = (\epsilon_1, \ldots, \epsilon_n)^{\top}$$

$$F^* = (f^*(X_1), \ldots, f^*(X_n))^\top$$

Empirical risk

$$PE(f) \approx \widehat{R}(f) = \frac{1}{n} \|Y - F\|_{2}^{2} = \|Y - F\|_{n}^{2}$$

with
$$F = (f(X_1), \ldots, f(X_n))^{\top}$$

Question

What if we were minimizing $\widehat{R}(f)$ over \mathcal{H} ?

The Big Picture about kernel machines

Focus on the regression problem

Reproducing Kernel Hilbert Space

Iterative learning strategies

Gradient descent

Theorem (Representer theorem)

 $\Psi: \mathbb{R}^n imes \mathbb{R}_+ o \mathbb{R}$, nondecreasing w.r.t. its n+1th argument

$$Arg \min_{g \in \mathcal{H}} \left\{ \Psi \left[g(x_1), \dots, g(x_n), \|g\|_{\mathcal{H}} \right] \right\}$$

Any solution \hat{g} to the above optimization problem can be written as

$$\widehat{g}(x) = \sum_{i=1}^{n} \widehat{\alpha}_{i} k(x_{i}, x), \quad \forall x \in \mathcal{X}$$

where $\widehat{\alpha}_i \in \mathbb{R}$, for all $1 \leq i \leq n$

The Big Picture about kernel machines

Focus on the regression problem

Reproducing Kernel Hilbert Space

Iterative learning strategies

Gradient descent algorithm

Theorem (Representer theorem)

 $\Psi:\mathbb{R}^n imes\mathbb{R}_+ o\mathbb{R}$, nondecreasing w.r.t. its n+1th argument

$$Arg \min_{g \in \mathcal{H}} \left\{ \Psi \left[g(x_1), \dots, g(x_n), \|g\|_{\mathcal{H}} \right] \right\}$$

Any solution \hat{g} to the above optimization problem can be written as

$$\widehat{g}(x) = \sum_{i=1}^{n} \widehat{\alpha}_{i} k(x_{i}, x), \quad \forall x \in \mathcal{X}$$

where $\widehat{\alpha}_i \in \mathbb{R}$, for all $1 \leq i \leq n$

Application:

Minimizing the empirical risk $\widehat{R}(f) = \|Y - F\|_n^2$ over \mathcal{H} ...

The Big Picture about kernel machines

Focus on the regression problem

Reproducing Kernel Hilbert Space

Iterative learning strategies

Gradient descent algorithm

Applying the representer theorem ...

(K: Gram matrix)

$$Arg \min_{f \in \mathcal{H}} \widehat{R}(f) = Arg \min_{f \in \mathcal{H}} \left\{ \frac{1}{n} \sum_{i=1}^{n} (Y_i - f(x_i))^2 \right\}$$

$$= Arg \min_{\alpha \in \mathbb{R}^n} \left\{ \frac{1}{n} \sum_{i=1}^{n} \left(Y_i - \sum_{j=1}^{n} \alpha_j k(x_j, x_i) \right)^2 \right\}$$

$$= Arg \min_{\alpha \in \mathbb{R}^n} \left\{ \frac{1}{n} \sum_{i=1}^{n} (Y_i - [K\alpha]_i)^2 \right\}$$

$$= Arg \min_{\alpha \in \mathbb{R}^n} \left\{ \|Y - K\alpha\|_n^2 \right\}$$

Alain Celisse

The Big Picture about kernel machines

Focus on the regression problem

Reproducing Kernel Hilbert Space Iterative learning

strategies

Gradient descent algorithm

Applying the representer theorem ...

(K: Gram matrix)

$$Arg \min_{f \in \mathcal{H}} \widehat{R}(f) = Arg \min_{f \in \mathcal{H}} \left\{ \frac{1}{n} \sum_{i=1}^{n} (Y_i - f(x_i))^2 \right\}$$

$$= Arg \min_{\alpha \in \mathbb{R}^n} \left\{ \frac{1}{n} \sum_{i=1}^{n} \left(Y_i - \sum_{j=1}^{n} \alpha_j k(x_j, x_i) \right)^2 \right\}$$

$$= Arg \min_{\alpha \in \mathbb{R}^n} \left\{ \frac{1}{n} \sum_{i=1}^{n} (Y_i - [K\alpha]_i)^2 \right\}$$

$$= Arg \min_{\alpha \in \mathbb{R}^n} \left\{ \|Y - K\alpha\|_n^2 \right\}$$

ightharpoonup K: full rank \longrightarrow unique solution $\widehat{\alpha} \in \mathbb{R}^n$ and $\widehat{R}(\widehat{f}) = 0!$

 \blacktriangleright K: finite rank \longrightarrow many solutions (but $\widehat{R}(\widehat{f}) \neq 0$)

Alain Celisse

The Big Picture about kernel machines

Focus on the regression problem

Reproducing Kernel Hilbert Space Iterative learning

strategies
Gradient descent

algorithm

The Big Picture about kernel machines

(K: Gram matrix)

Focus on the regression problem

Reproducing Kernel Hilbert Space

Iterative learning strategies Gradient descent

algorithm

Stochastic Gradient Descent algorithm

Applying the representer theorem ...

$$Arg \min_{f \in \mathcal{H}} \widehat{R}(f) = Arg \min_{f \in \mathcal{H}} \left\{ \frac{1}{n} \sum_{i=1}^{n} (Y_i - f(x_i))^2 \right\}$$

$$= Arg \min_{\alpha \in \mathbb{R}^n} \left\{ \frac{1}{n} \sum_{i=1}^{n} \left(Y_i - \sum_{j=1}^{n} \alpha_j k(x_j, x_i) \right)^2 \right\}$$

$$= Arg \min_{\alpha \in \mathbb{R}^n} \left\{ \frac{1}{n} \sum_{i=1}^{n} (Y_i - [K\alpha]_i)^2 \right\}$$

 $= Arg \min_{\alpha \in \mathbb{D}^n} \left\{ \|\mathbf{Y} - K\alpha\|_n^2 \right\}$

ightharpoonup K: full rank \longrightarrow unique solution $\widehat{\alpha} \in \mathbb{R}^n$ and $\widehat{R}(\widehat{f}) = 0!$

 \blacktriangleright K: finite rank \longrightarrow many solutions (but $\widehat{R}(\widehat{f}) \neq 0$)

Strategy:

Constrain the solutions to avoid overfitting!

Empirical risk

$$(F = (f(X_1), \ldots, f(X_n))^{\top})$$

$$\widehat{R}(f) = \|Y - F\|_n^2 = \frac{1}{n} \sum_{i=1}^n (Y_i - \langle f, k_{X_i} \rangle_{\mathcal{H}})^2$$

The Big Picture about kernel machines

Focus on the regression problem

Reproducing Kernel Hilbert Space

Iterative learning strategies

Gradient descent

Empirical risk

$$(F = (f(X_1), \ldots, f(X_n))^{\top})$$

$$\widehat{R}(f) = \|Y - F\|_n^2 = \frac{1}{n} \sum_{i=1}^n (Y_i - \langle f, k_{X_i} \rangle_{\mathcal{H}})^2$$

First order approx.

$$\widehat{R}(f) pprox \widehat{R}(f^t) + \left\langle \nabla_{f^t} \widehat{R}, f - f^t \right\rangle_{\mathcal{H}}$$

Alain Celisse

The Big Picture about kernel machines

Focus on the regression problem

Reproducing Kernel Hilbert Space

Iterative learning strategies

Gradient descent

Gradient descent (GD)

Empirical risk

$$(F = (f(X_1), \ldots, f(X_n))^{\top})$$

$$\widehat{R}(f) = \|Y - F\|_n^2 = \frac{1}{n} \sum_{i=1}^n (Y_i - \langle f, k_{X_i} \rangle_{\mathcal{H}})^2$$

First order approx.

$$\widehat{R}(f) pprox \widehat{R}(f^t) + \left\langle
abla_{f^t} \widehat{R}, f - f^t
ight
angle_{\mathcal{H}}$$

 \rightarrow Minimizing the above expression w.r.t. $f \in \mathcal{H}$ yields

$$f - f^t \propto_{>0} - \frac{\nabla_{f^t} \widehat{R}}{\left\| \nabla_{f^t} \widehat{R} \right\|_{\mathcal{H}}} \in \mathcal{H}$$

Alain Celisse

The Big Picture about kernel machines

Focus on the regression problem

Reproducing
Kernel Hilbert
Space
Iterative learning

strategies

Gradient descent

Empirical risk

$$(F = (f(X_1), \ldots, f(X_n))^{\top})$$

$$\widehat{R}(f) = \|\mathbf{Y} - F\|_n^2 = \frac{1}{n} \sum_{i=1}^n (Y_i - \langle f, k_{X_i} \rangle_{\mathcal{H}})^2$$

First order approx.

$$\widehat{R}(f) pprox \widehat{R}(f^t) + \left\langle \nabla_{f^t} \widehat{R}, f - f^t \right\rangle_{\mathcal{H}}$$

 \rightarrow Minimizing the above expression w.r.t. $f \in \mathcal{H}$ yields

$$f - f^t \propto_{>0} - \frac{\nabla_{f^t} \widehat{R}}{\left\| \nabla_{f^t} \widehat{R} \right\|_{\mathcal{U}}} \in \mathcal{H}$$

Gradient descent updates

For $0 < \alpha$ (small),

$$f^{0} = 0$$

$$f^{t+1} = f^{t} - \frac{\alpha}{2} \nabla_{f^{t}} \widehat{R} \in \mathcal{H}$$

Alain Celisse

The Big Picture about kernel machines

Focus on the regression problem

Reproducing Kernel Hilbert Space

Iterative learning strategies

Gradient descent algorithm

Sketch of proof

First step Minimizing $\widehat{R}(f)$ w.r.t. f amounts to minimizing

$$\widehat{R}(f^{t}) + \left\langle \nabla_{f^{t}} \widehat{R}, f - f^{t} \right\rangle_{\mathcal{H}} = \left\langle \nabla_{f^{t}} \widehat{R}, f - f^{t} \right\rangle_{\mathcal{H}}$$

Alain Celisse

The Big Picture about kernel machines

Focus on the regression problem

Reproducing

Kernel Hilbert Space Iterative learning

strategies
Gradient descent

algorithm

First step Minimizing $\widehat{R}(f)$ w.r.t. f amounts to minimizing

$$\widehat{R}(f^t) + \left\langle \nabla_{f^t} \widehat{R}, f - f^t \right\rangle_{\mathcal{H}} = \left\langle \nabla_{f^t} \widehat{R}, f - f^t \right\rangle_{\mathcal{H}}$$

Second step With $f = f^t + \delta g \in \mathcal{H}$ ($\|g\|_{\mathcal{H}} = 1$, $\delta > 0$), it amounts to minimize

$$\left\langle \nabla_{f^t} \widehat{R}, f - f^t \right\rangle_{\mathcal{H}} = \delta \left\langle \nabla_{f^t} \widehat{R}, g \right\rangle_{\mathcal{H}} \geq -\delta \left\| \nabla_{f^t} \widehat{R} \right\|_{\mathcal{H}} \cdot \left\| g \right\|_{\mathcal{H}}$$

Alain Celisse

The Big Picture about kernel machines

Focus on the regression problem

Reproducing Kernel Hilbert Space

strategies

Gradient descent

First step Minimizing $\widehat{R}(f)$ w.r.t. f amounts to minimizing

$$\widehat{R}(f^{t}) + \left\langle \nabla_{f^{t}} \widehat{R}, f - f^{t} \right\rangle_{\mathcal{H}} = \left\langle \nabla_{f^{t}} \widehat{R}, f - f^{t} \right\rangle_{\mathcal{H}}$$

Second step With $f = f^t + \delta g \in \mathcal{H}$ ($\|g\|_{\mathcal{H}} = 1$, $\delta > 0$), it amounts to minimize

$$\left\langle \nabla_{f^t} \widehat{R}, f - f^t \right\rangle_{\mathcal{H}} = \delta \left\langle \nabla_{f^t} \widehat{R}, g \right\rangle_{\mathcal{H}} \ge -\delta \left\| \nabla_{f^t} \widehat{R} \right\|_{\mathcal{H}} \cdot \|g\|_{\mathcal{H}}$$

Third step Achieved at $g = -
abla_{f^t} \widehat{R} / \left\|
abla_{f^t} \widehat{R} \right\|_{\mathcal{U}}$

$$\longrightarrow f^{t+1} = f^t - \delta \nabla_{f^t} \widehat{R} / \left\| \nabla_{f^t} \widehat{R} \right\|_{\mathcal{H}} = f^t - \frac{\alpha}{2} \nabla_{f^t} \widehat{R}$$

for a well-chosen step size $\alpha > 0$ (which can depend on t)

The Big Picture about kernel machines

Focus on the regression problem

Reproducing Kernel Hilbert Space

Iterative learning strategies

Gradient descent

Alain Celisse

The Big Picture about kernel machines

Focus on the regression problem

Reproducing Kernel Hilbert Space

Iterative learning strategies

Gradient descent

algorithm
Stochastic Gradient
Descent algorithm

db estimator. Closed form expression

For $0 < \alpha$,

$$f^{0} = 0$$

 $f^{t+1} = f^{t} - \frac{\alpha}{2} \nabla_{f^{t}} \widehat{R} \in \mathcal{H}$

Closed-form expression:

$$F^t = (f^t(X_1), \dots, f^t(X_n)) \in \mathbb{R}^n$$

For $0 < \alpha$.

$$f^{0} = 0$$

 $f^{t+1} = f^{t} - \frac{\alpha}{2} \nabla_{f^{t}} \widehat{R} \in \mathcal{H}$

Closed-form expression:

$$F^t = (f^t(X_1), \dots, f^t(X_n)) \in \mathbb{R}^n$$

$$\begin{cases} F^t &= [I_n - \prod_{s=1}^t (I_n - \alpha K_n)]Y, \quad t \ge 1 \\ F^0 &= 0 \end{cases}$$

with

- $ightharpoonup K_n = K/n$: normalized Gram matrix
- $\hat{\mu}_1 \geq \cdots \geq \hat{\mu}_n \geq 0$: nonincreasing eigenvalues of K_n
- $ightharpoonup \alpha$ such that $\alpha \hat{\mu}_1 < 1 \rightarrow Why?$

Alain Celisse

The Big Picture about kernel machines

Focus on the regression problem

Reproducing Kernel Hilbert Space

Iterative learning strategies

Gradient descent

Focus on the regression problem

Reproducing Kernel Hilbert Space Iterative learning

strategies

Gradient descent algorithm

Stochastic Gradient Descent algorithm

For $0 < \alpha$.

$$f^{0} = 0$$

 $f^{t+1} = f^{t} - \frac{\alpha}{2} \nabla_{f^{t}} \widehat{R} \in \mathcal{H}$

Closed-form expression:

$$F^t = (f^t(X_1), \ldots, f^t(X_n)) \in \mathbb{R}^n$$

$$\begin{cases} F^t = [I_n - \prod_{s=1}^t (I_n - \alpha K_n)]Y, & t \ge 1 \\ F^0 = 0 \end{cases}$$

with

- $K_n = K/n$: normalized Gram matrix
- $\hat{\mu}_1 \geq \cdots \geq \hat{\mu}_n \geq 0$: nonincreasing eigenvalues of K_n
- $ightharpoonup \alpha$ such that $\alpha \hat{\mu}_1 < 1 \rightarrow Why?$

Remark:

GD is a particular instance of the family of spectral filter learning strategies (KRR, spectral cut-off,...)

Proof of the previous result

Kernel Machines

Alain Celisse

The Big Picture about kernel machines

Focus on the regression problem

Reproducing Kernel Hilbert Space

Iterative learning strategies

Gradient descent

Stochastic Gradient Descent algorithm

Hints:

Calculate the gradient

Proof of the previous result

Kernel Machines

Alain Celisse

The Big Picture about kernel machines

Focus on the regression problem

Reproducing Kernel Hilbert Space

Iterative learning strategies

Gradient descent

- ► Calculate the gradient
- ► From functions to vectors . . .

Stochastic Gradient Descent algorithm

Hints:

- ► Calculate the gradient
- ► From functions to vectors . . .
- ► Prove that:

$$F^{t+1} - Y = (I - \alpha K_n) (F^t - Y)$$

The Big Picture about kernel machines

Focus on the regression problem

Reproducing Kernel Hilbert Space

Iterative learning strategies

Gradient descent

Hints:

- ► Calculate the gradient
- ► From functions to vectors ...
- ► Prove that:

$$F^{t+1} - Y = (I - \alpha K_n) (F^t - Y)$$

▶ Deduce that:

$$(F^t - Y) = (I - \alpha K_n)^t (F^0 - Y)$$

Alain Celisse

The Big Picture about kernel machines

Focus on the regression problem

Reproducing Kernel Hilbert Space

Iterative learning strategies

Gradient descent

machines

$\begin{cases} F^t &= [I_n - \prod_{s=1}^t (I_n - \alpha K_n)]Y, \\ F^0 &= 0 \end{cases}$

Computational aspects

- All the n observations are involved at each step of GD
- With large datasets, becomes no longer tractable
- ▶ Requires the use of a fast-to-compute substitute to GD

$$\begin{cases} F^t &= [I_n - \prod_{s=1}^t (I_n - \alpha K_n)]Y, \qquad t \ge 1 \\ F^0 &= 0 \end{cases}$$

Computational aspects

- ▶ All the *n* observations are involved at each step of GD
- ▶ With large datasets, becomes no longer tractable
- ▶ Requires the use of a fast-to-compute substitute to GD

$$\nabla_{f^t} \widehat{R} = \sum_{i=1}^n \left(\nabla_{f^t} \widehat{R} \right)_i = -\frac{2}{n} \sum_{i=1}^n k_{X_i} \left(Y_i - f^t(X_i) \right)$$

Alain Celisse

The Big Picture about kernel machines

Focus on the regression problem

Reproducing Kernel Hilbert Space Iterative learning

strategies

Gradient descent

Focus on the regression problem

Reproducing Kernel Hilbert Space Iterative learning

strategies

Gradient descent algorithm

Stochastic Gradient Descent algorithm

$$\begin{cases} F^t &= [I_n - \prod_{s=1}^t (I_n - \alpha K_n)]Y, \qquad t \ge 1 \\ F^0 &= 0 \end{cases}$$

Computational aspects

- All the n observations are involved at each step of GD
- With large datasets, becomes no longer tractable
- ▶ Requires the use of a fast-to-compute substitute to GD

$$\nabla_{f^t}\widehat{R} = \sum_{i=1}^n \left(\nabla_{f^t}\widehat{R}\right)_i = -\frac{2}{n}\sum_{i=1}^n k_{X_i}\left(Y_i - f^t(X_i)\right)$$

Remark:

ightarrow Stochastic Gradient Descent (SGD) overcomes this limitation

Kernel Machines

Alain Celisse

The Big Picture about kernel machines

Focus on the regression problem

Reproducing Kernel Hilbert Space

Iterative learning strategies

Gradient descent algorithm

Stochastic Gradient Descent algorithm

SGD derivation (1/2)

Prediction Error (PE)

$$PE(f) = \mathbb{E}_{(X,Y)} \left[(Y - f(X))^{2} \right]$$
$$= \mathbb{E}_{(X,Y)} \left[(Y - \langle f, k_{X} \rangle_{\mathcal{H}})^{2} \right]$$

Intuition At each step of the iterative algorithm,

$$PE(f) pprox PE(f^t) + \left\langle \nabla_{f^t} PE, f - f^t \right\rangle_{\mathcal{H}}$$

Alain Celisse

The Big Picture about kernel machines

Focus on the regression problem

Reproducing Kernel Hilbert Space

Iterative learning strategies

Gradient descent

algorithm
Stochastic Gradient

SGD derivation (1/2)

Prediction Error (PE)

$$PE(f) = \mathbb{E}_{(X,Y)} \left[(Y - f(X))^{2} \right]$$
$$= \mathbb{E}_{(X,Y)} \left[(Y - \langle f, k_{X} \rangle_{\mathcal{H}})^{2} \right]$$

Intuition At each step of the iterative algorithm,

$$PE(f) \approx PE(f^t) + \left\langle \nabla_{f^t} PE, f - f^t \right\rangle_{\mathcal{H}}$$

Computing the gradient

$$\nabla_{f^t} PE = \mathbb{E}_{(X,Y)} \left[-2 \left(Y - f(X) \right) k_X \right]$$

Alain Celisse

The Big Picture about kernel machines

Focus on the regression problem

Reproducing Kernel Hilbert Space

Iterative learning strategies Gradient descent

algorithm Stochastic Gradient Descent algorithm

Prediction Error (PE)

$$PE(f) = \mathbb{E}_{(X,Y)} \left[(Y - f(X))^{2} \right]$$
$$= \mathbb{E}_{(X,Y)} \left[(Y - \langle f, k_{X} \rangle_{\mathcal{H}})^{2} \right]$$

Intuition At each step of the iterative algorithm.

$$PE(f) \approx PE(f^t) + \left\langle \nabla_{f^t} PE, f - f^t \right\rangle_{\mathcal{H}}$$

Computing the gradient

$$\nabla_{f^t} PE = \mathbb{E}_{(X,Y)} \left[-2 \left(Y - f(X) \right) k_X \right]$$

Approximating the gradient

$$abla_{f^t}PE pprox -2\left(Y_{i_t} - f(X_{i_t})\right)k_{X_{i_t}} = \left(\nabla_{f^t}\widehat{R}\right)_{i_t}$$

with i_t : Index chosen at random independently of the data

The Big Picture about kernel machines

Focus on the regression problem

Reproducing Kernel Hilbert Space

Iterative learning strategies Gradient descent

algorithm Stochastic Gradient

Descent algorithm

From GD to SGD

GD
$$\longrightarrow f^{t+1} = f^t - \alpha \underbrace{\frac{1}{n} \sum_{i=1}^n (Y_i - f^t(X_i)) \cdot k_{X_i}}_{=1/2\nabla_{f^t} \widehat{R}}$$

The Big Picture about kernel machines

Focus on the regression problem

Reproducing Kernel Hilbert Space

Iterative learning strategies

Gradient descent algorithm

GD
$$\longrightarrow f^{t+1} = f^t - \alpha \underbrace{\frac{1}{n} \sum_{i=1}^n (Y_i - f^t(X_i)) \cdot k_{X_i}}_{=1/2\nabla_{f^t} \widehat{R}}$$

$$\mathsf{SGD} \longrightarrow f^{t+1} = f^t - \alpha \left(Y_{i_t} - f^t(X_{i_t}) \right) \cdot k_{X_{i_t}}$$

with $(i_t)_{t\in\mathbb{N}_+}$ sequence of random indices

The Big Picture

about kernel machines

Focus on the regression problem

Reproducing Kernel Hilbert Space

Iterative learning strategies

Gradient descent algorithm

The Big Picture about kernel machines

Focus on the regression problem

Reproducing Kernel Hilbert Space

Iterative learning strategies Gradient descent

algorithm Stochastic Gradient

Descent algorithm

From GD to SGD

GD
$$\longrightarrow$$
 $f^{t+1} = f^t - \alpha \underbrace{\frac{1}{n} \sum_{i=1}^n (Y_i - f^t(X_i)) \cdot k_{X_i}}_{=1/2\nabla_{f^t} \widehat{R}}$

SGD
$$\longrightarrow$$
 $f^{t+1} = f^t - \alpha \left(Y_{i_t} - f^t(X_{i_t}) \right) \cdot k_{X_{i_t}}$

with $(i_t)_{t\in\mathbb{N}_+}$ sequence of random indices

Theorem

With it chosen uniformly at random,

$$\mathbb{E}_{i_t}\left[\left(\nabla_{f^t}\widehat{R}\right)_{i_t}\right] = \frac{1}{n}\sum_{i=1}^n\left(Y_i - f^t(X_i)\right) \cdot k_{X_i} = \nabla_{f^t}\widehat{R}$$

SGD: unbiased estimator of GD at each step

Alain Celisse

The Big Picture about kernel machines

Focus on the regression problem

Reproducing Kernel Hilbert Space

Iterative learning strategies

Gradient descent

- ► Implement both GD and SGD algorithms
- ▶ Illustrate the behavior on a regression problem with d = 2 and $\mathcal{X} = [0, 1]^2$ (convex problem):
 - ▶ Nb of iterations until convergence
 - ► Total computation time until convergence
 - ► Influence of step size
 - ► Influence of initialization value
- Provide graphs for illustrating each aspect