

Towards Commensal Activities Recognition

R. Niewiadomski, G. De Lucia, G. Grazzi, M. Mancini

contact: r.niewiadomski@unitn.it

More about computational commensality and artificial commensal companions

Annotation

Commensality

the practice of sharing food and eating together in a social group Ochs and Shohet, 2006

- important social activity
- one of the most frequent and common human experiences
- time for celebration, making business, and creation of new social bounds
- · food has a social and emotional meaning
- several impacts of commensality were observed

Aim

We aim to show the **feasibility** of using machine learning to **recognize a variety of commensal activities** from video data collected in a naturalistic setting

Interaction around the table is peculiar:

 partners shift their attention between the conversation and the food

Commensal activities include:

- actions related to food consumption (e.g., chewing, intaking, drinking)
- social signals (e.g., smiling, gazing, passing the food)

The previous works focus on a single activity recognition and/or different contexts

Data collection

Recordings of dyads eating in a video call:

- participants know each other well
- they eat at their home
- closeup framing including face and upper body
- 18 subjects

Videos:

- synchronized view
- 96 minutes of synchronized recordings
- average meal duration 9m 23s

| Length | Accuracy | F-score | Weigh. F-score

52.9

50.73

62.06 50.8

67.62

65.93 52.12

58.12

60.53 SVM

62.69

64.22 SVM

65.54 RF

65.3

Five activities annotated:

- speaking
- food/drink in-taking
- chewing
- smiling/laughing
- gaze

One expert:

Length | Accuracy | F-score | Weigh. F-score

64.81

63.54

65.71

70.01

72.14

68.03 61.66

71.62 63.27

annotated all videos

65.82

70.49

68.12

72.61

- used audio and video for annotation
- annotated each activity independently

Different activities may be performed simultaneously

Annotation results

- classes are imbalanced
- social activities are frequent
- interactions are smooth and rich
- nine social metrics computed, e.g.:
 - avg. overlapping speech is 1.6%
- avg. duration of mutual gaze is 27.85%
- differences between participants and dyads

Feature extraction

17 Action Units extracted with OpenFace

- three segment lengths: 10, 25, 50 frames
- only data segments with a single label
- six statistics computed for each AU: min, max, mean, standard deviation, skewness, kurtosis

| Length | Accuracy | F-score | Weigh. F-score

69.1 59.38

71.02 60.04

71.76 62.50

73.81

73.64 63.50

Classification

68.29

67.62 SVM

70.59 SVM 25 65.45 54.6

71.91

73.07

RF

- best accuracy 73.6% (SVM, 50 frames)
- better results for longer segments
- differences between SVM and RF are minor
- accuracy drops with leave-one-subject-out to 67.6%
- when balancing the dataset, the results are better only for RF (4.6% on average)

	Speaking	Intaking	Chewing	Smiling	Total
10 frames	7594	1920	5273	1741	16528
25 frames	2636	622	1978	621	5857
50 frames	987	158	882	253	2280

Discussion and next steps

The first attempt to classify commensal activities from a video:

- standard video processing and machine learning techniques
- low-resolution videos of naturalistic interactions

Future extensions:

- other modalities, e.g., hands, gaze
- temporal features
- multi-label classification
- fine-grained activity recognition

