STAT 3690 Lecture 26

zhiyanggeezhou.github.io

Zhiyang Zhou (zhiyang.zhou@umanitoba.ca)

Apr 01, 2022

Factor scores

- Weighted least square (WLS) method
 - Given $\bar{\mathbf{Y}}$, $\hat{\mathbf{L}}$, and $\hat{\boldsymbol{\Psi}}$
 - For the *i*th observation \mathbf{Y}_i , to minimize $(\mathbf{Y}_i \bar{\mathbf{Y}} \hat{\mathbf{L}}\mathbf{F})^{\top}\widehat{\boldsymbol{\Psi}}^{-1}(\mathbf{Y}_i \bar{\mathbf{Y}} \hat{\mathbf{L}}\mathbf{F})$ with respect to \mathbf{F} $\widehat{\mathbf{F}}_i = (\widehat{\mathbf{L}}^{\top}\widehat{\boldsymbol{\Psi}}^{-1}\widehat{\mathbf{L}})^{-1}\widehat{\mathbf{L}}^{\top}\widehat{\boldsymbol{\Psi}}^{-1}(\mathbf{Y}_i \bar{\mathbf{Y}})$
- Regression method
 - Under normality $\mathbf{F} \sim MVN_p(\mathbf{0}, \mathbf{I})$ and $\mathbf{E} \sim MVN_p(\mathbf{0}, \boldsymbol{\Psi})$
 - * $[\mathbf{Y}^{\top} \boldsymbol{\mu}^{\top}, \mathbf{F}^{\top}]^{\top}$ is of zero mean and normally distributed with covariance matrix

$$\left[\begin{array}{cc} \mathbf{L}\mathbf{L}^\top + \Psi & \mathbf{L} \\ \mathbf{L}^\top & \mathbf{I} \end{array}\right]$$

- * Hence $\mathbf{F} \mid \mathbf{Y}$ is normally distributed with mean $\mathbf{L}^{\top}(\mathbf{L}\mathbf{L}^{\top} + \mathbf{\Psi})^{-1}(\mathbf{Y} \boldsymbol{\mu})$ and covariance $\mathrm{matrix}\;\mathbf{I} - \mathbf{L}^{\top}(\mathbf{L}\mathbf{L}^{\top} + \mathbf{\Psi})^{-1}\mathbf{L}$
- Given $\bar{\mathbf{Y}}$, $\hat{\mathbf{L}}$, and $\hat{\boldsymbol{\Psi}}$,

$$\widehat{\mathbf{F}}_i = \widehat{\mathbf{L}}^{\top} (\widehat{\mathbf{L}} \widehat{\mathbf{L}}^{\top} + \widehat{\mathbf{\Psi}})^{-1} (\mathbf{Y}_i - \bar{\mathbf{Y}})$$

- * Sometimes replace $\widehat{\mathbf{L}}\widehat{\mathbf{L}}^{\top} + \widehat{\boldsymbol{\Psi}}$ with \mathbf{S}
- Comments on factor scores
 - More methods available
 - No uniformly superior way

Summary on factor analysis

- What we discussed is "exploratory" factor analysis
 - "Confirmatory" factor analysis would make stronger assumptions about the nature of the latent factors and perform statistical inference.
 - There are choices to make at every stage of factor analysis: estimation method, number of factors, factor rotation, and score estimation.
 - * Too flexiable to be tracked
 - * Close to an "art"
- General strategy for factor analysis
 - 1. Perform a PC factor analysis
 - It may help you identify potential outliers
 - 2. Perform an ML factor analysis.

- Try a varimax rotation to see if it makes sense
- 3. Compare the solutions of both methods to see if they generally agree.
- 4. Repeat for different number of common factors q and check if adding more factors may improve the interpretation
- 5. For large datasets, you can split your data, run the same model on both subsets, and compare the loadings to see if they generally agree