

DIGITAL TALENT **SCHOLARSHIP** 2019

Classification: Intro dan KNN

Program Fresh Graduate Academy Digital Talent Scholarship 2019 | Machine Learning

Machine Learning: Classification

M. Ramli & M. Soleh

Apa itu Classification

- Dalam machine learning, classification termasuk pendekatan supervisedlearning.
- Tugasnya melakukan kategorisasi data yang tidak diketahui ke dalam kelompok class yang diskrit
- Target pengelompokkan data tersebut berupa kategori, contoh :
 - Kelompok A atau B
 - Warna merah atau biru
 - Ya atau tidak

Apa Tugasnya Classification?

Diberikan sebuah himpunan observasi berupa data tabel, lengkap dengan label class-nya,

age	ed	employ	address	income	debtinc	creddebt	othdebt	default	
41	3	17	12	176	9.3	11.359	5.009	1	
27	1	10	6	31	17.3	1.362	4.001	0	
40	1	15	14	55	5.5	0.856	2.169	0	
41	1	15	14	120	2.9	2.659	0.821	0	Data berupa
24	2	2	0	28	17.3	1.787	3.057	1	>
41	2	5	5	25	10.2	0.393	2.157	0	Kategori
39	1	20	9	67	30.6	3.834	16.668	0	
43	1	12	11	38	3.6	0.129	1.239	0	
24	1	3	4	19	24.4	1.358	3.278	1	
36	1	0	13	25	19.7	2.778	2.147	0	

 Classification harus menentukkan class dari observasi baru yang belum diberikan label class.

age	ed	employ	address	income	debtinc	creddebt	othdebt	default
37	2	16	10	130	9.3	10.23	3.21	

18/07/2019 Classification: Intro dan KNN

Contoh Kasus Classification

 Sebuah bank harus menentukan apakah salah satu nasabahnya yang ingin melakukan peminjaman uang dapat mengembalikan pinjamannya atau tidak.

age	ed	employ	address	income	debtinc	creddebt	othdebt	default
41	3	17	12	176	9.3	11.359	5.009	1
27	1	10	6	31	17.3	1.362	4.001	0
40	1	15	14	55	5.5	0.856	2.169	0
41	1	15	14	120	2.9	2.659	0.821	0
24	2	2	0	28	17.3	1.787	3.057	1
41	2	5	5	25	10.2	0.393	2.157	0
39	1	20	9	67	30.6	3.834	16.668	0
43	1	12	11	38	3.6	0.129	1.239	0
24	1	3	4	19	24.4	1.358	3.278	1
36	1	0	13	25	19.7	2.778	2.147	0

- Yang bisa dilakukan bank ialah menganalisa data nasabah sebelumnya, nasabah dengan ciri-ciri seperti apa yang kemungkinan memiliki masalah dalam melakukan pengembalian pinjaman.
- Ciri-ciri yang dimaksud adalah informasi yang dimiliki nasabah, seperti:
 - Umur, edukasi, lama bekerja, pendapatan, debit yang dimiliki, dll.

18/07/2019 Classification: Intro dan KNN

Contoh Kasus Classification

	default	othdebt	creddebt	debtinc	income	address	employ	ed	age
	1	5.009	11.359	9.3	176	12	17	3	41
	0	4.001	1.362	17.3	31	6	10	1	27
	0	2.169	0.856	5.5	55	14	15	1	40
Modelling	0	0.821	2.659	2.9	120	14	15	1	41
	1	3.057	1.787	17.3	28	0	2	2	24
	0	2.157	0.393	10.2	25	5	5	2	41
Classifier mo	0	16.668	3.834	30.6	67	9	20	1	39
Classifier file	0	1.239	0.129	3.6	38	11	12	1	43
	1	3.278	1.358	24.4	19	4	3	1	24
	0	2.147	2.778	19.7	25	13	0	1	36
Input									
	default	othdebt	creddebt	debtinc	income	address	employ	ed	age
**	U	3.21	10.23	9.3	130	10	16	2	37
Kategorisasi	1								

- Berdasarkan informasi-informasi tersebut, sebuah classifier model dapat dibuat yang akan digunakan untuk melakukan klasifikasi data baru!
- Jika nasabah baru muncul, classifier model dapat melakukan kategorisasi nasabah tersebut.

6

Target / Class dari Classification

- Dari contoh yang sebelumnya, kita bisa melihat bahwa target / class dari nasabah tersebut berupa binary.
 - Memungkinkan melakukan pinjaman (1)
 - Tidak memungkinkan melakukan pinjaman (0)
- Pada dasarnya, classification tidak hanya dapat melakukan binary classification tetapi juga multiclass classification.
- Sebagai contoh:
 - Kelompok A, atau B, atau C.
 - Kucing, Harimau, atau Macan
 - · Bunga anggrek, melati, atau bakung.

Contoh Multiclass Classification

Age	Sex	BP	Cholesterol	Na	K	Drug
23	F	HIGH	HIGH	0.793	0.031	drugY
47	М	LOW	HIGH	0.739	0.056	drugC
47	М	LOW	HIGH	0.697	0.069	drugC
28	F	NORMAL	HIGH	0.564	0.072	drugX
61	F	LOW	HIGH	0.559	0.031	drugY
22	F	NORMAL	HIGH	0.677	0.079	drugX
49	F	NORMAL	HIGH	0.79	0.049	drugY
41	M	LOW	HIGH	0.767	0.069	drugC
60	М	NORMAL	HIGH	0.777	0.051	drugY
43	M	LOW	NORMAL	0.526	0.027	drugY

- Terdapat data pasien yang mengalami sebuah penyakit yang sama.
- Namun karena kondisi tubuh pasien tersebut berbeda-beda, obat yang dianjurkan oleh dokterpun harus sesuai dengan kondisi tubuhnya.
- Ada tiga tipe obat yang tersedia: drugC, drugX, dan drugY.

18/07/2019 Classification: Intro dan KNN

Contoh Multiclass Classification

	Drug	K	Na	Cholesterol	BP	Sex	Age
	drugY	0.031	0.793	HIGH	HIGH	F	23
	drugC	0.056	0.739	HIGH	LOW	M	47
	drugC	0.069	0.697	HIGH	LOW	M	47
	drugX	0.072	0.564	HIGH	NORMAL	F	28
Modelling	drugY	0.031	0.559	HIGH	LOW	F	61
	drugX	0.079	0.677	HIGH	NORMAL	F	22
Classifian mand	drugY	0.049	0.79	HIGH	NORMAL	F	49
Classifier mode	drugC	0.069	0.767	HIGH	LOW	М	41
	drugY	0.051	0.777	HIGH	NORMAL	М	60
U M	drugY	0.027	0.526	NORMAL	LOW	М	43
Input	Drug	K	Na	Cholesterol	ВР	Sex	Age
		0.069	0.697	HIGH	LOW	F	36

- Kita bisa membuat classifier model berdasarkan data pasien yang tersedia.
- Jika pasien baru muncul, classifier model dapat melakukan kategorisasi, yang mana dari ketiga obat tersebut yang cocok untuk pasien tersebut.

9

Contoh Penggunaan Classification

Beberapa Algoritma Classification

- K-Nearest Neighbor
- Decision Tree

1 Hari (Hari ini)

- Logistic Regression
- Support Vector Machines

1 Hari (Hari berikutnya)

Neural Networks

2 Hari (Setelah Ujian Tengah)

Program Fresh Graduate Academy Digital Talent Scholarship 2019 | Machine Learning

Pengukuran Evaluasi dalam Classification

M. Ramli & M. Soleh

Bagian Satu

Memahami Pengukuran Evaluasi

Training dan Testing Data

- Pengukuran Evaluasi (Evaluation Metrics) mendeskripsikan performa dari model classifier kita.
- Untuk membuat Evaluation Metrics, data training dibagi menjadi dua:

	tenure	age	address	income	ed	employ	equip	callcard	wireless	churn	
0	11.0	33.0	7.0	136.0	5.0	5.0	0.0	1.0	1.0	1	
1	33.0	33.0	12.0	33.0	2.0	0.0	0.0	0.0	0.0	1	Training Dat
2	23.0	30.0	9.0	30.0	1.0	2.0	0.0	0.0	0.0	0	
3	38.0	35.0	5.0	76.0	2.0	10.0	1.0	1.0	1.0	0)
4	7.0	35.0	14.0	80.0	2.0	15.0	0.0	1.0	0.0	0	Testing Data
5	33.0	33.0	12.0	33.0	2.0	0.0	0.0	0.0	0.0	1	J

- Training data = Membuat *model classifier*.
- Testing data = Memeriksa akurasi dari classifier

18/07/2019 Classification: Intro dan KNN

Training dan Testing Data

Bagian Dua

Beberapa Evaluation Metrics yang Umum

Jaccard Index

- y = Label/Class yang sebenarnya
- $\hat{y} = \text{Label/Class yang diprediksi}$

•
$$J(y, \hat{y}) = \frac{|y \cap \hat{y}|}{|y \cup \hat{y}|} = \frac{|y \cap \hat{y}|}{|y| + |\hat{y}| - |y \cap \hat{y}|}$$

$$y = [0,0,0,0,1,1,1,1,1]$$

$$\hat{y} = [1,1,0,0,0,1,1,1,1,1]$$

$$J(y,\hat{y}) = \frac{8}{10 + 10 - 8} = 0.66$$

F1 Score

- Cara membaca Confusion Matrix
- True Positive:
 - Diprediksi *True*
 - Class sebenarnya True
- False Negative:
 - Diprediksi False
 - Class sebenarnya True
- False Positive:
 - Diprediksi *True*
 - Class sebenarnya False
- True Negative
 - Diprediksi False
 - Class sebenarnya False

F1 Score

Confusion Matrix Evaluation Metric:

• Precision =
$$\frac{TP}{(TP+FP)}$$

• Recall =
$$\frac{TP}{(TP+FN)}$$

		precision	recall
Churn =	0	0.73	0.96
Churn =	1	0.86	0.40

F1 Score

Confusion Matrix Evaluation Metric:

• Precision =
$$\frac{TP}{(TP+FP)}$$

• Recall =
$$\frac{TP}{(TP+FN)}$$

• F1-Score =
$$2 \times \frac{\text{Precision} \times \text{Recall}}{(\text{Precision} + \text{Recall})}$$

Harmonic Average dari Prec. & Rec.

	precision	recall	f1-score
Churn = 0	0.73	0.96	0.83
Churn = 1	0.86	0.40	0.55

Program Fresh Graduate Academy Digital Talent Scholarship 2019 | Machine Learning

Classification: K-Nearest Neighbor

M. Ramli & M. Soleh

Bagian Satu

Intuisi dibalik K-Nearest Neighbor

	region	age	marital	address	income	ed	employ	retire	gender	reside	custcat
0	2	44	1	9	64	4	5	0	0	2	1
1	3	33	1	7	136	5	5	0	0	6	4
2	3	52	1	24	116	1	29	0	1	2	3
3	2	33	0	12	33	2	0	0	1	1	1
4	2	30	1	9	30	1	2	0	0	4	3
5	2	39	0	17	78	2	16	0	1	1	3
6	3	22	1	2	19	2	4	0	1	5	2
7	2	35	0	5	76	2	10	0	0	3	4
8	3	50	1	7	166	4	31	0	0	5	?

Value	Label
1	Basic Service
2	E-Service
3	Plus Service
4	Total Service

- Bayangkan sebuah perusahaan provider telekomunikasi.
- Perusahaan tersebut mengumpulkan data pelanggannya lengkap dengan penggunaan layanan yang dipilihnya.

	region	age	marital	address	income	ed	employ	retire	gender	reside	custcat
0	2	44	1	9	64	4	5	0	0	2	1
1	3	33	1	7	136	5	5	0	0	6	4
2	3	52	1	24	116	1	29	0	1	2	3
3	2	33	0	12	33	2	0	0	1	1	1
4	2	30	1	9	30	1	2	0	0	4	3
5	2	39	0	17	78	2	16	0	1	1	3
6	3	22	1	2	19	2	4	0	1	5	2
7	2	35	0	5	76	2	10	0	0	3	4
8	3	50	1	7	166	4	31	0	0	5	?

Value	Label
1	Basic Service
2	E-Service
3	Plus Service
4	Total Service

- Berdasarkan data tersebut, perusahaan seharusnya dapat menemukan pola:
- Pelanggan seperti apa yang senang memilih basic, e-service, plus, dan total.

	region	age	marital	address	income	ed	employ	retire	gender	reside	custcat
0	2	44	1	9	64	4	5	0	0	2	1
1	3	33	1	7	136	5	5	0	0	6	4
2	3	52	1	24	116	1	29	0	1	2	3
3	2	33	0	12	33	2	0	0	1	1	1
4	2	30	1	9	30	1	2	0	0	4	3
5	2	39	0	17	78	2	16	0	1	1	3
6	3	22	1	2	19	2	4	0	1	5	2
7	2	35	0	5	76	2	10	0	0	3	4
8	3	50	1	7	166	4	31	0	0	5	?

Value	Label
1	Basic Service
2	E-Service
3	Plus Service
4	Total Service

- Ini merupakan permasalahan klasifikasi :
 - Diberikan sebuah dataset, lengkap dengan label yang telah ditentukan (layanan),
 - Kita harus membuat model yang dapat digunakan untuk melakukan klasifikasi,
 - Sebagai contoh: akan memilih layanan mana pelanggan baru ini?

	region	age	marital	address	income	ed	employ	retire	gender	reside	custcat	
0	2	44	1	9	64	4	5	0	0	2	1	
1	3	33	1	7	136	5	5	0	0	6	4	
2	3	52	1	24	116	1	29	0	1	2	3	
3	2	33	0	12	33	2	0	0	1	1	1	
4	2	30	1	9	30	1	2	0	0	4	3	
5	2	39	0	17	78	2	16	0	1	1	3	
6	3	22	1	2	19	2	4	0	1	5	2	
7	2	35	0	5	76	2	10	0	0	3	4	
8	3	50	1	7	166	4	31	0	0	5	?	

Value	Label
1	Basic Service
2	E-Service
3	Plus Service
4	Total Service

- Tujuan kita adalah membuat model classifier yang akan melakukan klasifikasi pelanggan baru tersebut.
- Kita akan gunakan salah satu algoritma machine learning: K-Nearest Neighbor

	region	age	marital	address	income	ed	employ	retire	gender	reside	custcat
0	2	44	1	9	64	4	5	0	0	2	1
1	3	33	1	7	136	5	5	0	0	6	4
2	3	52	1	24	116	1	29	0	1	2	3
3	2	33	0	12	33	2	0	0	1	1	1
4	2	30	1	9	30	1	2	0	0	4	3
5	2	39	0	17	78	2	16	0	1	1	3
6	3	22	1	2	19	2	4	0	1	5	2
7	2	35	0	5	76	2	10	0	0	3	4
8	3	50	1	7	166	4	31	0	0	5	?

- Untuk penyederhanaan, kita hanya akan menggunakan dua variable untuk melakukan klasifikasi.
- Income dan Age
- Kemudian kita plot kedua variable kedalam grafik.

	region	age	marital	address	income	ed	employ	retire	gender	reside	custcat
0	2	44	1	9	64	4	5	0	0	2	1
1	3	33	1	7	136	5	5	0	0	6	4
2	3	52	1	24	116	1	29	0	1	2	3
3	2	33	0	12	33	2	0	0	1	1	1
4	2	30	1	9	30	1	2	0	0	4	3
5	2	39	0	17	78	2	16	0	1	1	3
6	3	22	1	2	19	2	4	0	1	5	2
7	2	35	0	5	76	2	10	0	0	3	4
8	3	50	1	7	166	4	31	0	0	5	?

- Age = 50
- Income = 166
- Termasuk kategori manakah pelanggan baru ini?

	region	age	marital	address	income	ed	employ	retire	gender	reside	custcat
0	2	44	1	9	64	4	5	0	0	2	1
1	3	33	1	7	136	5	5	0	0	6	4
2	3	52	1	24	116	1	29	0	1	2	3
3	2	33	0	12	33	2	0	0	1	1	1
4	2	30	1	9	30	1	2	0	0	4	3
5	2	39	0	17	78	2	16	0	1	1	3
6	3	22	1	2	19	2	4	0	1	5	2
7	2	35	0	5	76	2	10	0	0	3	4
8	3	50	1	7	166	4	31	0	0	5	?

- Salah satu logika paling sederhana:
 - Data terdekat dengan kita memiliki ciri-ciri (umur dan pendapatan) yang serupa dengan kita.
- Mari kita lihat data yang terdekat dengan pelanggan baru.

	region	age	marital	address	income	ed	employ	retire	gender	reside	custcat
0	2	44	1	9	64	4	5	0	0	2	1
1	3	33	1	7	136	5	5	0	0	6	4
2	3	52	1	24	116	1	29	0	1	2	3
3	2	33	0	12	33	2	0	0	1	1	1
4	2	30	1	9	30	1	2	0	0	4	3
5	2	39	0	17	78	2	16	0	1	1	3
6	3	22	1	2	19	2	4	0	1	5	2
7	2	35	0	5	76	2	10	0	0	3	4
8	3	50	1	7	166	4	31	0	0	5	?

• Data terdekat (tetangga terdekat) memiliki umur ≈ 56 dan pendapatan ≈ 158 , berlangganan layanan <u>Total Service</u>.

	region	age	marital	address	income	ed	employ	retire	gender	reside	custcat
0	2	44	1	9	64	4	5	0	0	2	1
1	3	33	1	7	136	5	5	0	0	6	4
2	3	52	1	24	116	1	29	0	1	2	3
3	2	33	0	12	33	2	0	0	1	1	1
4	2	30	1	9	30	1	2	0	0	4	3
5	2	39	0	17	78	2	16	0	1	1	3
6	3	22	1	2	19	2	4	0	1	5	2
7	2	35	0	5	76	2	10	0	0	3	4
8	3	50	1	7	166	4	31	0	0	5	?

- Secara logika, pelanggan baru (umur ≈ 50 , pendapatan ≈ 166), mungkin juga akan berlangganan layanan <u>Total Service</u>.
- Maka kita klasifikasikan pelanggan baru dengan Total Service.

- Proses ini disebut dengan <u>1st KNN</u>.
- Melihat kecenderungan class data baru dari tetangga terdekat kita.
- Namun bagaimana jika tetangga terdekat kita ternyata salah memilih layanan?
 - Misalnya, secara tidak sengaja memilih layanan tersebut, dan sebetulnya tidak menginginkan layanan tersebut.
- Melakukan klasifikasi hanya dengan melihat satu tetangga terdekat saja <u>sangat</u> <u>rentan terjadi kesalahan klasifikasi</u>.

	region	age	marital	address	income	ed	employ	retire	gender	reside	custcat
0	2	44	1	9	64	4	5	0	0	2	1
1	3	33	1	7	136	5	5	0	0	6	4
2	3	52	1	24	116	1	29	0	1	2	3
3	2	33	0	12	33	2	0	0	1	1	1
4	2	30	1	9	30	1	2	0	0	4	3
5	2	39	0	17	78	2	16	0	1	1	3
6	3	22	1	2	19	2	4	0	1	5	2
7	2	35	0	5	76	2	10	0	0	3	4
8	3	50	1	7	166	4	31	0	0	5	?

- Sekarang, daripada hanya satu, bagaimana jika kita melihat 5 tetangga terdekat kita?
- Dan penentuan class, berdasarkan mayoritas class disekelilingnya?

	region	age	marital	address	income	ed	employ	retire	gender	reside	custcat
0	2	44	1	9	64	4	5	0	0	2	1
1	3	33	1	7	136	5	5	0	0	6	4
2	3	52	1	24	116	1	29	0	1	2	3
3	2	33	0	12	33	2	0	0	1	1	1
4	2	30	1	9	30	1	2	0	0	4	3
5	2	39	0	17	78	2	16	0	1	1	3
6	3	22	1	2	19	2	4	0	1	5	2
7	2	35	0	5	76	2	10	0	0	3	4
8	3	50	1	7	166	4	31	0	0	5	?

- 2 tetangga terdekat = Total Service
- Dari 5 ketetanggaan, pelanggan baru ternyata memiliki kecenderungan memilih <u>Plus Service</u>

	region	age	marital	address	income	ed	employ	retire	gender	reside	custcat
0	2	44	1	9	64	4	5	0	0	2	1
1	3	33	1	7	136	5	5	0	0	6	4
2	3	52	1	24	116	1	29	0	1	2	3
3	2	33	0	12	33	2	0	0	1	1	1
4	2	30	1	9	30	1	2	0	0	4	3
5	2	39	0	17	78	2	16	0	1	1	3
6	3	22	1	2	19	2	4	0	1	5	2
7	2	35	0	5	76	2	10	0	0	3	4
8	3	50	1	7	166	4	31	0	0	5	?

Ini merupakan intuisi dasar dari K-Nearest Neighbor

Bagian Dua

Algoritma K-Nearest Neighbor

Apa itu K-Nearest Neighbor

- Sebuah metode untuk melakukan klasifikasi berdasarkan similaritas terhadap data lainnya.
- Beberapa data terdekat disebut dengan "Tetangga" atau "Neighbors"
- Tetangga yang terdekat dianggap memiliki fitur yang serupa dengan data yang dimaksud.

Algoritma K-Nearest Neighbor

- 1. Diberikan sebuah data tidak terklasifikasi p, dan kumpulan data training \boldsymbol{P} yang telah dilengkapi label classnya .
- 2. Pilih nilai dari jumlah ketetanggan *K*.
- 3. Hitung jarak antara p ke seluruh data yang ada dalam P.
- 4. Ambil K observasi yang merupakan data terdekat dengan p.
- 5. Klasifikasikan data tersebut dengan mayoritas class dari K-Tetangga terdekatnya.

Mencari Jarak Antara 2 Titik di 2D

Mencari Jarak Antara 2 Titik di 2D

Menentukan Jumlah K

- Bagaimana menentukan jumlah K yang tepat?
 - Terlalu sedikit = rentan outlier
 - Terlalu banyak = tidak relevan

Training dan Testing Data

Bagi training data kita menjadi 2 :

	region	age	marital	address	income	ed	employ	retire	gender	reside	custcat	
0	2	44	1	9	64	4	5	0	0	2	1	
1	3	33	1	7	136	5	5	0	0	6	4	Training Data
2	3	52	1	24	116	1	29	0	1	2	3	Training Data
3	2	33	0	12	33	2	0	0	1	1	1	
4	2	30	1	9	30	1	2	0	0	4	3)
5	2	39	0	17	78	2	16	0	1	1	3	1
6	3	22	1	2	19	2	4	0	1	5	2	Testing Data
7	2	35	0	5	76	2	10	0	0	3	4	
												•

- Training data = Membuat model classifier.
- Testing data = Memeriksa akurasi dari classifier

Training dan Testing Data

Training Data

	region	age	marital	address	income	ed	employ	retire	gender	reside	custcat
0	2	44	1	9	64	4	5	0	0	2	1
1	3	33	1	7	136	5	5	0	0	6	4
2	3	52	1	24	116	1	29	0	1	2	3
3	2	33	0	12	33	2	0	0	1	1	1
4	2	30	1	9	30	1	2	0	0	4	3

Testing Data

5	2	39	0	17	78	2	16	0	1	1	3
			1								
7	2	35	0	5	76	2	10	0	0	3	4

Menentukan Jumlah K

- Kita gunakan testing data untuk memeriksa berapakah jumlah K yang tepat!
- Dari beberapa kali observasi, kita bisa menemukan jumlah K yang sesuai dengan data kita.

Bagian Tiga

Membuat Boundary Decision dengan KNN

- Diberikan data training seperti berikut
- Gunakan K=1.
- Untuk setiap titik yang ada dalam ruang, tentukan data terdekatnya.
- Setiap titik tersebut akan membentuk sepotong-sepotong bagian dalam ruang
 - Voronoi Constelation
 - Setiap titik yang jatuh dalam salah satu bagian Voronoi Constelation pasti memiliki jarak terdekat ke data yang bersangkutan.
- Boundary terbentuk.

- Diberikan data training sepertibe
- Gunakan K=1.
- Untuk setiap titik yang ada dalam ruang, tentukan data terdekatnya.
- Setiap titik tersebut akan membentuk sepotong-sepotong bagian dalam ruang
 - Voronoi Constelation
 - Setiap titik yang jatuh dalam salah satu bagian Voronoi Constelation pasti memiliki jarak terdekat ke data yang bersangkutan.
- Boundary terbentuk.

- Diberikan data training seperti be
- Gunakan K=1.
- Untuk setiap titik yang ada dalam ruang, tentukan data terdekatnya.
- Setiap titik tersebut akan membentuk sepotong-sepotong bagian dalam ruang
 - Voronoi Constelation
 - Setiap titik yang jatuh dalam salah satu bagian Voronoi Constelation pasti memiliki jarak terdekat ke data yang bersangkutan.
- Boundary terbentuk.

- Diberikan data training seperti ber
- Gunakan K=1.
- Untuk setiap titik yang ada dalam ruang, tentukan data terdekatnya.
- Setiap titik tersebut akan membentuk sepotong-sepotong bagian dalam ruang
 - Voronoi Constelation
 - Setiap titik yang jatuh dalam salah satu bagian Voronoi Constelation pasti memiliki jarak terdekat ke data yang bersangkutan.
- Boundary terbentuk.

Bagian 4

Praktikum Lab

ML0101EN-Clas-K-Nearest-neighbors-CustCat-py-v1.ipynb

IKUTI KAMI

- digitalent.kominfo
- digitalent.kominfo
- DTS_kominfo
- Digital Talent Scholarship 2019

Pusat Pengembangan Profesi dan Sertifikasi Badan Penelitian dan Pengembangan SDM Kementerian Komunikasi dan Informatika Jl. Medan Merdeka Barat No. 9 (Gd. Belakang Lt. 4 - 5) Jakarta Pusat, 10110

