Universidad Nacional de Río Negro - Profesorado de Física

Física 3B+4A 2018 Guía 01: Gases

Asorey

29 de marzo de 2018

1. Goma de auto

Un neumático de auto tiene una sobrepresión, respecto de la presión atmosférica (p = 1 atm), de 2000 hPa.

- *a*) ¿Cuánto vale esa sobrepresión en las unidades técnicas usuales en Argentina? ¿y en bares? ¿y en p.s.i.¹?
- b) La superficie total de contacto entre los cuatro neumáticos y el pavimento es de 0,05 m². ¿Cual es la masa del automóvil?

2. No desinfle lo inflado

En una fría mañana invernal (temperatura $= 0^{\circ}$ C) la presión en un neumático es de 2000 hPa. Luego de un viaje a alta velocidad la temperatura del aire en el interior del neumático es de 323 K.

- a) ¿Qué tipo de transformación experimentó el gas?
- b) ¿Cuál es la sobrepresión a esa temperatura?
- c) Si en ese momento, el propietario del auto desinfla las gomas sin esperar a que éstas se enfríen, ¿cuál será la presión final cuando las cubiertas vuelvan a la temperatura del ambiente en ese momento?

3. El tubo

Un tubo cilíndrico de acero con un diámetro interior de 0,2 m y un altura de 1 m contiene nitrógeno a una presión de 10^5 hPa y T=273 K.

- a) ¿Cuál es la masa total del gas? La masa molar del nitrógeno es 0,028 kg mol⁻¹
- b) ¿Qué fuerza ejerce el gas sobre la superficie interior del tubo?
- c) ¿Qué presión habrá en el interior del tubo si, a temperatura constante, se dejara escapar la mitad del gas por un válvula?

4. Conectando recipientes

Un recipiente de 1 L (0,001 m³) lleno de un gas ideal a una presión de 100 kPa se conecta con otro recipiente de 0,003 m³ conteniendo un gas ideal a una presión de 50 kPa. Suponiendo que ambos recipientes están en contacto con un baño térmico, calcule la presión final del sistema una vez que los recipientes se conectan.

¹p.s.i. es una unidad imperial de presión y es la abreviatura de libras por pulgada cuadrada, por sus siglas en inglés para *pounds per square inch*

5. Conectando recipientes distintos

Dos recipientes están unidos por un tubo de volumen despreciable con una válvula en el tubo y que inicialmente se encuentra abierta. Uno de ellos tiene un volumen cinco veces mayor que el otro. Todo el sistema está lleno de aire (masa molar $M=29\,\mathrm{g\,mol^{-1}}$) a una presión de 1866,5 hPa y una temperatura de 293 K. Luego se cierra la válvula y se procede a calentar el recipiente grande hasta una temperatura de 373 K, manteniendo el recipiente pequeño a la temperatura inicial. ¿Cuál es la presión final del sistema luego de abrirse la válvula y conectar ambos recipientes?

6. Globo meteorológico

Un balón meteorológico esférico es rellenado con Helio al nivel del mar $(CNPT)^2$. Cuando está listo para iniciar su ascenso, tiene un radio de 2 m. Sabiendo que la presión atmosférica p (medida en hPa) como función de la altura h obedece la siguiente ley,

$$p = 1013,2 \exp\left(-\frac{mgh}{RT}\right),\,$$

donde M es la masa molar media del aire ($m=29\,\mathrm{g\,mol^{-1}}$). A medida que asciende, el globo aumenta su volumen hasta que alcanza un tamaño máximo y luego estalla.

- a) Calcule la cantidad de Helio en moles que se usó para llenar el globo.
- b) Calcule el empuje (en newtons) que tendrá el globo al iniciar su ascenso.
- c) Calcule la altura a la que se encuentra el globo cuando su radio es de r = 3 m.
- *d*) Calcule el radio del globo justo antes de estallar a h = 27 km de altura.

7. Teoría cinética

Consideremos una determinada cantidad de Helio contenido en un recipiente esférico y rígido en CNPT.

- a) ¿Qué cantidad de moles y de átomos hay en 1 m³ de helio en estas condiciones?
- b) Suponiendo que el radio de un átomo de Helio puede aproximarse por una esfera de $r = 2a_0$, donde a_0 es el radio de Bohr, calcule el volumen total ocupado por los átomos en el gas y la fracción de volumen que estos ocupan del volumen total.
- c) Calcule la energía cinética media y la velocidad media de un átomo de Helio en esas condiciones.
- *d*) Estime la cantidad media de colisiones por segundo que se producen en las paredes del recipiente.

8. Alta presión

Un recipiente contiene 201,8 kg de Neón a una presión de 500 bares.

- a) ¿Cuál debería ser el volumen del recipiente para que la velocidad media de las moléculas sea igual a la velocidad de escape terrestre?
- b) En esas condiciones, calcule la energía cinética media y el número de colisiones por segundo que se produce con las paredes del recipiente suponiendo que el mismo es esférico.
- c) ¿Dependerá el resultado anterior de la forma del recipiente? Justifique

 $^{^2}$ CNPT es la abreviatura para *Condiciones Normales de Presión y Temperatura* y corresponde a la presión atmosférica de referencia, P = 101325 Pa, a una temperatura de T = 273,15 K. Verifique que en estas condiciones, el volumen ocupado por 1 mol de un gas ideal es 0,0224 m 3 (22,4 L).