

1^{ère} année Master MAS Méthode de Monte-Carlo et Simulation Année : 2019/2020

TP N°1

EXERCICE N° 1:

1. Écrire une fonction qui permet de générer les n premiers termes de la suite de nombres pseudo-aléatoires issu de la définition

$$x_i = (a \times x_{i-1} + c) \bmod m$$
.

- 2. Tester votre fonction pour n = 100,
 - (i) a = 5, c = 5, $x_0 = 1$ et m = 32.
 - (ii) a = 13, c = 3, $x_0 = 0$ et m = 1024.
 - (iii) a = 1664525, c = 1013904223, $x_0 = 0$ et $m = 2^{32}$.
 - (iv) a = 65539, c = 0, $x_0 = 1$ et $m = 2^{31}$.
- 3. Modifier la fonction précédente pour qu'elle donne comme sortie la suite $u_n = \frac{x_n}{m}$.
- 4. Après avoir généré un échantillon u_1, \ldots, u_n de taille n, représenter leurs histogramme.
- 5. Comparer graphiquement la fonction de répartition empirique avec la fonction de répartition théorique de la loi uniforme sur [0, 1].

EXERCICE N° 2:

- 1. Définir une fonction calculant la statistique de Kolmogorov-Smirnov associée à une suite de nombres x_1, \ldots, x_n et une fonction de répartition \mathbb{F} .
- 2. Utiliser cette fonction sur des petits échantillons obtenus par la méthode des congruences linéaires et censés se répartir uniformément sur [0,1]. Comparer les valeurs obtenues avec le ou les quantiles d'ordre $1-\alpha=0.95$ correspondants dans la table des quantiles des lois de Kolmogorov.

Exercice N° 3:

- 1. Définir une fonction calculant la statistique du χ^2 associée à une suite de nombres u_1, \ldots, u_N et la fonction de répartition de la loi uniforme sur [0,1]:
 - (i) On répartit les valeurs de l'échantillon (de taille N) dans k classes distinctes et on calcule les effectifs de ces classes. Appelons n_1, \ldots, n_k les effectifs observés et $n_{t,1}, \ldots, n_{t,k}$ les effectifs théoriques.
 - (ii) On calcule $\chi^2 = \sum_{i=1}^k \frac{(n_i n_{t,i})^2}{n_{t,i}}$
 - (iii) On compare ensuite cette valeur avec le quantile d'ordre $1-\alpha$ de la loi du Khi-deux à k-1 degrés de liberté, $\chi^2_{k-1,1-\alpha}$. On rejette l'hypothèse que l'échantillon est issu de la loi uniforme sur [0,1] si $\chi^2>\chi^2_{k-1,1-\alpha}$.
- 2. Utiliser cette fonction sur des petits échantillons obtenus par la méthode des congruences linéaires et censés se répartir uniformément sur [0,1].