Lectures 14, 15 and 16: Transportation Model and Its Variants

1. Transportation Model

- A special class of linear programs that deals with shipping a commodity from source (e.g., factories) to destinations (e.g., warehouses).
- The objective is to minimize the total shipping cost while satisfying supply and demand limits.
- More applications like inventory control, employment scheduling, personnel assignment etc.
- Steps of transportation model are precisely those of the simplex method.

Definition of The Transportation model

Sources

Supply

- Sources: m
- Destinations: n
 - Both are represented by nodes
- Arc (i, j)
 - Transportation cost, c_{ij} ,
 - Amount shipped, x_{ij} .
- The amount of supply at source i is a_i .
- The amount of demand at destination j is b_j .
- The objective of the model is to determine the unknowns that will minimize the transportation cost while satisfying all the supply and demand restrictions.

Destinations

Demand

Example

MG Auto has three plants in Los Angeles, Detroit, and New Orleans, and two major distribution centers in Denver and Miami. The capacities of the three plants during the next quarter are 1000, 1500, and 1200 cars. The quarterly demands at the two distribution centers are 2300 and 1400 cars. The mileage chart between the plants and the distribution centers is given in Table 5.1.

The trucking company in charge of transporting the cars charges 8 cents per mile per car. The transportation costs per car on the different routes, rounded to the closest dollar, are given in Table 5.2.

TABLE 5.1 Mileage Chart					
	Denver	Miami			
Los Angeles	1000	2690			
Detroit	1250	1350			
New Orleans	1275	850			

LP Model

Minimize
$$z = 80x_{11} + 215x_{12} + 100x_{21} + 108x_{22} + 102x_{31} + 68x_{32}$$

$$x_{11} + x_{12} = 1000 \text{ (Los Angeles)}$$

$$x_{21} + x_{22} = 1500 \text{ (Detroit)}$$

$$+ x_{31} + x_{32} = 1200 \text{ (New Oreleans)}$$

$$x_{11} + x_{21} + x_{31} = 2300 \text{ (Denver)}$$

$$x_{12} + x_{22} + x_{32} = 1400 \text{ (Miami)}$$

$$x_{ij} \ge 0, i = 1, 2, 3, j = 1, 2$$

- Problem can be solved using the simplex method
- More conveniently can be solved using transportation tableau.

Example

TABLE 5.3 MG Transportation Model				
	Denver	Mi	ami	Supply
Los Angeles	8	30	215	
	x_{11}	x ₁₂		1000
Detroit	10	00	108	
	x ₂₁	x ₂₂		1500
New Orleans	10)2	68	
	x ₃₁	x ₃₂		1200
Demand	2300	140	00	

- The optimal solution using simplex method.
 - Min. transportation cost is \$313,200

Balancing the Transportation Model

- The transportation algorithm is based on the assumption that the model is balanced.
 - Total supply = total demand
- If model is unbalanced, we can add dummy source or dummy destination

Example

- In the MG model, suppose that the Detroit's plant capacity is 1300 cars (instead of 1500).
 - Total supply is 3500 cars and total demand is 3700 cars
 - Unbalanced model
- Balanced model with the optimal solution

TABLE 5.4 MG Model with Dummy Plant				
	Denver	Miami	Supply	
	80	215		
Los Angeles	1000		1000	
	1000		1000	
Detroit	100	108		
Detroit	1300		1300	
	102	68		
New Orleans				
		1200	1200	
Dummy Plant	0	0 0	200	
Demand	2300	1400	200	

Demand at Denver is now 1900 cars only.

	Denver	Miami	Dummy	
Los Angeles	80	215	0	
	1000			1000
Detroit	100	108	0	1000
	900	200	400	1500
	102	68	0	1300
New Orleans		1200		1200
Demand	1900	1400	400	1200

2. Nontraditional Transportation Models

Production-Inventory Control

Boralis manufactures backpacks for serious hikers. The demand for its product occurs during March to June of each year. Boralis estimates the demand for the four months to be 100, 200, 180, and 300 units, respectively. The company uses part-time labor to manufacture the backpacks and, accordingly, its production capacity varies monthly. It is estimated that Boralis can produce 50, 180, 280, and 270 units in March through June. Because the production capacity and demand for the different months do not match, a current month's demand may be satisfied in one of three ways.

- 1. Current month's production.
- 2. Surplus production in an earlier month.
- 3. Surplus production in a later month (backordering).

In the first case, the production cost per backpack is \$40. The second case incurs an additional holding cost of \$.50 per backpack per month. In the third case, an additional penalty cost of \$2.00 per backpack is incurred for each month delay. Boralis wishes to determine the optimal production schedule for the four months.

Production-Inventory Control

Transportation	Production-inventory		
1. Source i	1. Production period i		
2. Destination j	2. Demand period j		
3. Supply amount at source i	3. Production capacity of period i		
4. Demand at destination j	4. Demand for period j		
 Unit transportation cost from source i to destination j 	 Unit cost (production + inventory + penalty) in period i for period j 		

• Transportation cost from period *i* to period *j*:

$$c_{ij} = \begin{cases} \text{Production cost in } i, i = j \\ \text{Production cost in } i + \text{holding cost from } i \text{ to } j, i < j \\ \text{Production cost in } i + \text{penaty cost from } i \text{ to } j, i > j \end{cases}$$

$$c_{11} = $40.00$$

Example

$$c_{24} = \$40.00 + (\$.50 + \$.50) = \$41.00$$

$$c_{41} = \$40.00 + (\$2.00 + \$2.00 + \$2.00) = \$46.00$$

Production-Inventory Control

TABLE 5.12 Transportation Model for Example 5.2-1					
	1	2	3	4	Capacity
1 2 3	\$40.00 \$42.00 \$44.00	\$40.50 \$40.00 \$42.00	\$41.00 \$40.50 \$40.00	\$41.50 \$41.00 \$40.50	50 180 280
4 Demand	\$46.00 100	200	\$42.00 180	\$40.00 300	270

Production-Inventory Control

• The optimal solution is \$31, 455.

