

EXAMENUL DE BACALAUREAT – 2007 Proba scrisă la MATEMATICĂ PROBA D

Varianta017

 $Profilul: Filiera\ Teoretică: sp.:\ matematică-informatică, Filiera\ Vocațională, profil\ Militar, Specializarea: specializarea\ matematică-informatică and profil\ Militar, Specializarea\ matematică-informatică and profil\ Militar, Specializarea\ matematică-informatică and profil\ Militar, Specializarea\ matematică and profil\ Militar and profil\ Militar\ matematică and profil\ matematică and profil\ Militar\ matematică and profil\ matematică$

Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu. Timpul efectiv de lucru este de 3 ore. La toate subiectele se cer rezolvări cu soluții complete

SUBIECTUL I (20p)

- (4p) a) Să se calculeze modulul numărului complex $\cos 2 + i \sin 2$.
- (4p) b) Să se calculeze distanța de la punctul D(1, 2) la punctul C(0, 1).
- (4p) c) Să se calculeze coordonatele punctului de intersecție dintre cercul $x^2 + y^2 = 25$ și dreapta 3x + 4y 25 = 0.
- (4p) d) Să se arate că punctele L(4,1), M(6,3) și N(7,4) sunt coliniare.
- (2p) e) Să se calculeze volumul tetraedrului cu vârfurile în punctele A(0, 0, 2), B(0, 2, 4), C(2, 4, 0) și D(1, 2, 3).
- (2p) | f) Să se determine $a,b \in \mathbf{R}$ astfel încât să avem egalitatea de numere complexe $\left(-1+i\sqrt{3}\right)^4 = a+bi$.

SUBIECTUL II (30p)

1.

- (3p) a) Să se verifice identitatea $(x y)^2 + (y z)^2 + (z x)^2 = 2(x^2 + y^2 + z^2 xy yz xz)$, $\forall x, y, z \in \mathbb{R}$.
- (3p) b) Să se arate că, dacă $x^2 + y^2 + z^2 = xy + yz + xz$, unde $x, y, z \in \mathbb{R}$, atunci x = y = z.
- (3p) c) Să se rezolve în mulțimea numerelor reale ecuația $4^x + 9^x + 49^x = 6^x + 14^x + 21^x$.
- (3p) d) Să se calculeze probabilitatea ca un element $\hat{x} \in \mathbb{Z}_6$ să verifice relația $\hat{x}^3 = \hat{x}$.
- (3p) e) Să se calculeze suma rădăcinilor polinomului $f = X^4 X^3 X^2 + 1$.
 - **2.** Se consideră funcția $f: \mathbf{R} \to \mathbf{R}$, $f(x) = x \cdot \sin x$.
- (3p) a) Să se calculeze f'(x), $x \in \mathbb{R}$.
- (3p) b) Să se calculeze $\int_{0}^{1} f(x)dx$.
- (3p) c) Să se arate că funcția f este monoton crescătoare pe intervalul $\left[0, \frac{\pi}{2}\right]$.
- (3p) d) Să se calculeze $\lim_{x\to 0} \frac{f(x)-f(0)}{x}$.
- (3p) e) Să se calculeze $\lim_{x\to 0} \frac{f(x)}{x^2}$.

Ministerul Educației și Cercetării - Serviciul Național de Evaluare și Examinare

SUBIECTUL III (20p)

Pentru fiecare matrice $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_2(\mathbf{R})$ notăm cu S(A) suma elementelor sale,

cu $A^T = \begin{pmatrix} a & c \\ b & d \end{pmatrix}$ transpusa ei și cu det A determinantul matricei A.

(4p) a) Să se arate că
$$S(A^{T}) = S(A) = a + b + c + d$$
.

(4p) b) Să se arate că
$$S(x \cdot P + y \cdot Q) = x \cdot S(P) + y \cdot S(Q), \forall P, Q \in M_2(\mathbf{R}), \forall x, y \in \mathbf{R}$$
.

(4p) c) Să se arate că
$$S(A \cdot A^T) = (a+c)^2 + (b+d)^2$$
.

(2p) d) Să se arate că, dacă
$$S(A \cdot A^T) = 0$$
, atunci det $A = 0$.

(2p) e) Să se arate că
$$\forall x \in \mathbf{R}, \forall P, Q \in M_2(\mathbf{R})$$
,
$$S((P+xQ) \cdot (P^T + x \cdot Q^T)) = S(P \cdot P^T) + x(S(P \cdot Q^T) + S(Q \cdot P^T)) + x^2 \cdot S(Q \cdot Q^T).$$

(2p) **f**) Să se arate că, dacă
$$P, Q \in M_2(\mathbf{R})$$
 și det $Q \neq 0$ atunci funcția $f : \mathbf{R} \to \mathbf{R}$, $f(x) = S((P + xQ)(P^T + xQ^T))$ are gradul egal cu 2.

(2p) g) Să se arate că
$$S(P \cdot P^T) \cdot S(Q \cdot Q^T) \ge S(P \cdot Q^T) \cdot S(Q \cdot P^T), \forall P, Q \in M_2(\mathbf{R}).$$

SUBIECTUL IV (20p)

Pentru $n \in \mathbb{N}$ se consideră funcțiile $f_n:(0,\infty) \to \mathbb{R}$ definite prin $f_n(x) = x^n + \ln x$.

(4p) a) Să se calculeze
$$f'_n(x)$$
, $x > 0$.

(4p) b) Să se arate că funcția
$$f_n$$
 este monoton crescătoare, $\forall n \in \mathbb{N}$.

(4p) c) Să se calculeze
$$\lim_{x\to 0} f_n(x)$$
 și $\lim_{x\to \infty} f_n(x)$.

(2p) d) Să se arate că funcția
$$f_n$$
 este bijectivă, $\forall n \in \mathbb{N}$.

(2p) e) Să se arate că
$$\forall n \in \mathbb{N}$$
, ecuația $f_n(x) = 0$ are o unică soluție $x_n \in (0,1)$.

(2p) f) Să se arate că șirul
$$(x_n)_{n\geq 0}$$
 este crescător.

(2p) g) Să se arate că
$$\lim_{n\to\infty} x_n = 1$$
.