A High-Order Low-Order Algorithm with Exponentially-Convergent Monte Carlo for Thermal Radiative Transfer

Simon Bolding and Jim Morel

4 August 2016

We are interested in modeling thermal radiation transport in the high energy density physics regime

Materials under extreme conditions Temperatures $\mathcal{O}(10^6)$ K or more

Photon radiation transports through a material Significant energy may be exchanged

We want to improve efficiency of calculations e.g., inertial confinement fusion, supernovae, et. al.

Our method has been applied to a simplified model: the 1D grey radiative transfer equations

Energy balance equations for radiation and material.

Radiation intensity $I(x, \mu, t)$, material temperature T(x, t)

$$\frac{1}{c}\frac{\partial I}{\partial t} + \mu \frac{\partial I}{\partial x} + \sigma_t I(x, \mu, t) = \frac{1}{4\pi} \sigma_a a c T^4,$$

$$C_v \frac{\partial T(x, t)}{\partial t} = \sigma_a \phi(x, t) - \sigma_a a c T^4$$

Equations are nonlinear and may be tightly coupled Absorption opacity (σ_a) can be a strong function of T

Implicit Monte Carlo (IMC) is the standard Monte Carlo transport method for TRT problems

The system is *linearized* over a time step $t \in [t^n, t^{n+1}]$ Opacities are evaluated with $T(t^n)$

- Produces a linear MC transport problem with effective emission and scattering terms
- Emission source is not fully implicit.
 Monte Carlo integration over Δt for intensity

Our high-order low-order (HOLO) method improves on several drawbacks of IMC

Standard IMC	HOLO Method
Large statistical noise possible	ECMC is very efficient for TRT problems
Effective scattering can make MC very expensive	MC solution has no scattering
Linearization can cause non-physical results (maximum principle violations)	Fully implicit time-discretization and LO solution resolves nonlinearities
Reconstruction of linear emission shape limits artificial energy propagation	Linear-discontinuous FE for $T(x)$ preserving equilibrium diffusion limit

A HOLO Algorithm for Thermal Radiative Transfer

Overview of algorithm

Derivation of the LO equations

Exponentially Convergent MC High-Order Solver

Computational Results

Ongoing Research

A HOLO Algorithm for Thermal Radiative Transfer

Overview of algorithm

Derivation of the LO equations

Exponentially Convergent MC High-Order Solver

Computational Results

Ongoing Research

Solve a non-linear low-order system with high-order angular correction from efficient MC simulations

The **LO** system is space-angle moment equations, on a fixed finite-element (FE) spatial mesh

- Reduced dimensionality in angle allows for solution with Newton's method
- ▶ Output: linear-discontinuous $\phi(x)$ and T(x)Construct LDFE scattering and emission source

The **HO** system is a pure-absorber transport problem

- Solved with exponentially-convergent MC (ECMC) for efficient reduction of statistical noise
- ► Output: consistency terms

Iterations between the HO and LO systems are performed each time step

A HOLO Algorithm for Thermal Radiative Transfer

Overview of algorithm

Derivation of the LO equations

Exponentially Convergent MC High-Order Solver

Computational Results

Ongoing Research

The LO equations are formed as *consistently* as possible with spatial and angular moments of TRT equations

The time discretization is backward Euler for both the HO and LO equations

FE basis functions weight spatial moments:

$$\langle \cdot \rangle_{L,i} = \frac{2}{h_i} \int_{x_{i-1/2}}^{x_{i+1/2}} b_{L,i}(x)(\cdot) dx$$

Half-range integrals reduce angular dimensionality

$$\phi^+(x) = 2\pi \int_0^1 I(x,\mu) \mathrm{d}\mu$$

Apply moments to the TRT equations and manipulate to form angular consistency terms

Ultimately, we get 4 radiation and 2 material equations for each spatial element $\it i$

The streaming terms are algebraically manipulated to form consistency terms (no approximation here)

For example, apply $\langle \cdot \rangle_{L,i}^+$ to a streaming term:

$$\begin{split} \left\langle \mu \frac{\partial I}{\partial x} \right\rangle_{L}^{+} &= -\frac{2}{h_{i}} \{ \mu I \}_{i-1/2}^{+} + \langle \mu I \rangle_{L,i}^{+} + \langle \mu I \rangle_{R,i}^{+} \\ &= -\frac{2}{h_{i}} \frac{\{ \mu I \}_{i-1/2}^{+}}{\phi_{i-1/2}^{+}} \phi_{i-1/2}^{+} + \frac{\langle \mu I \rangle_{L,i}^{+}}{\langle \phi \rangle_{L,i}^{+}} \langle \phi \rangle_{L,i}^{+} + \frac{\langle \mu I \rangle_{R,i}^{+}}{\langle \phi \rangle_{R,i}^{+}} \langle \phi \rangle_{R,i}^{+} \end{split}$$

We can close equations with HO angular information and a linear-discontinuous (LD) spatial discretization

- 1. Assume T(x) and $T^4(x)$ are LD
- 2. A lagged $\tilde{l}_{\text{HO}}^{n+1}$ is used to evaluate consistency terms
- 3. Eliminate $\phi_{i+1/2}^{\pm}$ with LD closure preserving equi. diff. limit

$$\phi_{i+1/2}^+ = 2\langle \phi \rangle_{R,i}^+ - \langle \phi \rangle_{L,i}^+$$

4. Global system solved with Newton's method and lagged **implicit opacities** Energy is always conserved

A HOLO Algorithm for Thermal Radiative Transfer

Overview of algorithm

Derivation of the LO equations

Exponentially Convergent MC High-Order Solver

Computational Results

Ongoing Research

Exponentially Convergent Monte Carlo can efficiently reduce noise globally

Each MC batch tallies the error in the solution

- standard MC particle transport, but a complex source
- ▶ ECMC requires a functional representation of $I(x, \mu)$

Can reduce solution error globally $\propto e^{-\alpha N}$ Adaptive *h*-refinement can help represent error

 $I^n(x,\mu)$ often provides an **excellent** estimate of $I^{n+1}(x,\mu)$ No MC sampling from thermal equilibrium regions

We use a projection $\tilde{I}(x,\mu)$ of the angular intensity onto a LDFE space-angle mesh

local volumetric tallies
$$\tilde{l}_{ij}(x,\mu) = \frac{2}{l_a} + \frac{2}{h_x} l_x(x-x_i) + \frac{2}{h_\mu} l_\mu(\mu-\mu_i)$$

We apply the ECMC algorithm to the pure-absorber HO transport equation

$$\left[\mu \frac{\partial}{\partial x} + \left(\sigma_t + \frac{1}{c\Delta t}\right)\right] I^{n+1} = \frac{1}{4\pi} \left[\sigma_a a c \left(T_{LO}^{n+1}\right)^4 + \sigma_s \phi_{LO}^{n+1}\right] + \frac{\tilde{I}^n}{c\Delta t}$$

$$\mathbf{L} I^{n+1} = q$$

For each batch m:

- ► Evaluate residual source: $r^{(m)} = q \mathbf{L}\tilde{I}^{n+1,(m)}$
- ► Estimate $\epsilon^{(m)} = \mathbf{L}^{-1} r^{(m)}$ via MC simulation
- ▶ Update solution: $\tilde{I}^{n+1,(m+1)} = \tilde{I}^{n+1,(m)} + \tilde{\epsilon}^{(m)}$

Our HO system allows for simple variance reduction methods

Histories stream without collision

along path s, weight reduces as $w(s) = w_0 e^{-\sigma_t s}$

Use cell-wise systematic sampling for $|r^{(m)}|$ source Particularly effective in thick cells

- ▶ Particles in each x- μ cell $\propto |r^{(m)}|$ in cell
- Set minimum n for cells except for cells in thermal equilibrium

A HOLO Algorithm for Thermal Radiative Transfer

Overview of algorithm

Derivation of the LO equations

Exponentially Convergent MC High-Order Solver

Computational Results

Ongoing Research

We will test our method with several standard **Marshak Wave** problems

Results show radiation temperature $T_r = \sqrt[4]{\phi/ac}$

Several specifics for most results shown:

- ▶ Initial Δt of 0.001 sh (0.01 ns), linearly increased to 0.01 sh by 15% per step
- One HO solve per time step (predictor-corrector)
 - each HO solve has 3 ECMC batches no mesh refinement
- ► FOM= $\frac{1}{\|s\|^2 N_{\text{total}}}$, normalized to IMC result

The HOLO method produces significantly less noise than IMC in a Marshak Wave test problem

- $ightharpoonup \sigma_a \propto T^{-3}$
- ► Transient solution after 5 shakes 200 x cells and 4 μ cells (for ECMC)

ECMC is more efficient than standard MC (SMC) as a HO solver

- ▶ Left half is optically thin (σ =0.2 cm⁻¹), right half is thick (σ_a =2000 cm⁻¹). 8 μ cells
- Different HO solvers: ECMC with 3 batches, standard MC (SMC), and an S₂ solution

The LDFE discretization for the LO equations preserves the equilibrium diffusion limit

▶ Large, constant σ_a and small c_v

Our HOLO method preserves the maximum principle with sufficient nonlinear convergence

- ▶ Material temperatures plotted; all simulations end at t=0.1 sh $\sigma_a \propto T^{-3}$, c_v small, $\Delta t \in [10^{-4}, 10^{-2}]$ sh
- ► LO Newton iterations required damping

A HOLO Algorithm for Thermal Radiative Transfer

Overview of algorithm

Derivation of the LO equations

Exponentially Convergent MC High-Order Solver

Computational Results

Ongoing Research

A doubly-discontinuous trial space in time allows for a MC temporal closure

Include $\frac{1}{c}\frac{\partial}{\partial t}(\cdot)$ in transport operator **L** with T(x) still implicit

Sample and track in time Tally error projection at t^{n+1}

In LO equations parameterize ϕ_{LO}^{n+1} in terms of **time-averaged** unknowns, e.g.,

$$\langle \phi \rangle_{L,i}^{\mathit{n}+1} = 2 \; \gamma_{\mathit{L},i}^{\mathit{HO}} \; \overline{\langle \phi \rangle}_{\mathit{L},i} - \langle \phi \rangle_{\mathit{L},i}^{\mathit{n}}$$

The time-closure parameters preserve the accuracy of MC time integration

► Material is near-void, so temperature uncouples take 3 large time steps and compare T_R^{n+1}

A few other topics are under investigation

Negative intensities can occur in optically thick cells Investigating artificial source with alternate trial space

Using HO solution to estimate spatial closure by including face tallies

Source iteration with diffusion synthetic acceleration for the LO equations

A HOLO Algorithm for Thermal Radiative Transfer

ECMC is very efficient for TRT simulations and fits well in HOLO context

The LO system can resolve nonlinearities with bounded angular consistency terms

The next step is to extend to higher dimensions main hurdle to overcome is infrastructure

Simulations of Neutron Multiplicity Experiments with Perturbations to Nuclear Data

Simon Bolding and C.J. Solomon

4 August 2016

Neutron multiplicity distributions provide passive multiplication information about a fissionable system

Multiplicity experiments were performed at LANL for validating subcritical simulations

*Not to scale

Experimental Parameters

- ▶ 94% ²³⁹Pu sphere
- ► 5 Different HDPE shells From none to 3.0 cm HDPE

Experiments repeated w/ ²⁵²Cf

MCNP5 multiplicity simulations showed discrepancy for Pu but not for ²⁵²Cf

Pu with 3.0-cm HDPE reflector

Previous work by Mattingly [2010]

- ► Caused by ²³⁹Pu nuclear data
- ► Adjusted energy-integrated \(\bar{\nu} \)

ENDF adjusted $\overline{\nu}$ for ²³⁹Pu to match $k_{\rm eff}$ benchmarks

 $\overline{
u}$ is $\sim 2\,\sigma$ above measured data for E < 1.5 MeV

Can we reduce discrepancy in multiplicity distributions without significantly altering k_{eff} ?

Perform energy-dependent perturbations of $\overline{\nu}(E)$ in ²³⁹Pu Random samples drawn from ENDF-VII.1 covariance data

Compare experimental and simulated multiplicity dist. and a $k_{\rm eff}$ benchmark (Jezebel)

Compare $\overline{\nu}(E)$ results to energy-independent shifts of microscopic cross sections

We used LANL NDVV Python tools to generate energy-dependent $\overline{\nu}$ samples

- 1. Generate correlated samples of $\overline{\nu}(E)$
 - Assumed multivariate Gaussian with group-averaged covariances

2. Modify $\overline{\nu}(E)$ data in **ACE** file

3. Perform all MCNP simulations with modified ACE data

A cost function provides a measure of inaccuracy for each data realization

Reduced χ^2 values for the 5 multiplicity experiments and criticality benchmark

$$\chi^{2}_{\text{red,mult},m} = \frac{1}{N_{bins} - 1} \sum_{i=1}^{N_{bins}} \frac{(P_{i}^{\text{exp}} - P_{i}^{\text{mcnp}})^{2}}{\sigma^{2}(P_{i}^{\text{exp}}) + \sigma^{2}(P_{i}^{\text{mcnp}})}$$

Equally weight χ^2 values in a cost function the lower the score the higher the accuracy

$$\mathsf{Cost} = \sum_{m=1}^{5} \chi^2_{\mathsf{red},\mathsf{mult},m} + \chi^2_{\mathsf{red},k_{\mathsf{eff}}}$$

Multiplicity and $k_{\rm eff}$ simulations were performed for 500 unique realizations of $\overline{\nu}$ data

Trial	Cost	$\chi^2_{k_{\mathrm{eff}}}$
$\overline{ u}$ -1.14%	164.24	33.66
303	197.07	4.18
55	267.9	0.01
Original	426.86	0.27

MCNP criticality test suite performed for best data which includes 39 criticality benchmarks w/ 239 Pu :

Trial	RMSD
$\overline{ u}$ -1.14%	1.23%
303	0.51%
Original	0.49%

Energy-dependent $\overline{\nu}$ perturbations improved all 5 multiplicity distributions

▶ Plots for best data realization and 3.0 cm HDPE case

▶ Best data set reduced bias in 1^{st} and 2^{nd} moments, averaged over all 5 simulations, by $\sim 35\%$

The best $\overline{\nu}$ data (trial 303)

Fractional shifts to cross sections were made for comparison

Adjusted single cross sections uniformly at all energies compensated with σ_{tot} or σ_{el}

Scaling capture cross section was not effective relative to variance in data

Scaling fission cross section 1.5% ($< 1\sigma$) improved multiplicity distributions

- Adjust elastic scattering (σ_{el}) to compensate change in σ_f , for E>1 keV
- lacktriangleright Better improvement that uniform scaling of $\overline{
 u}$

Adjusting the fission cross section showed good correction to multiplicity simulations

 σ_f decreased 1.5%

- ▶ High accuracy for all simulations: $\sum \chi^2_{red,mult,m} = 14.6$
- $k_{\rm eff}$ is not preserved: $\chi^2_{k_{\rm eff}} = 22.6$

Simulations of Multiplicity Experiments with Nuclear Data Perturbations

Energy-dependent $\overline{\nu}$ perturbations reduced inaccuracies in multiplicity while preserving $k_{\rm eff}$

- ▶ Majority of cross-correlation terms $\mathcal{O}(10^{-4})$ or less
- σ_f may need more investigation

Subcritical simulations should be considered in validation of nuclear data

Covariance sampling methodology was developed and demonstrated

- Ideally sample all cross sections and $\overline{
u}$ simultaneously

Backup Slides

S.R. Bolding¹, C.J. Solomon²

¹Texas A&M University, College station, TX ²Los Alamos National Laboratory, Los Alamos, NM

Exponential convergence can be maintained if the LDFE mesh resolves the solution reasonably

We need a way to resolve issues when the LDFE representation of the intensity is negative

Negative intensities can occur in optically thick cells Mesh refinement is of minimal use

 $\tilde{l}_{HO}(x,\mu)$ must be positive for consistency terms to produce a physical, stable LO solution

Independent fix up for LO solution E.g., lumping or preserving balance with floored $\phi(x)$

Can add source δ to produce a positive projection \tilde{I}_{pos} such that \tilde{I}_{pos} satisfies the latest residual equation

Produce \tilde{I}_{pos} by scaling $x-\mu$ moments equally, to estimate source for the next iteration

$$\begin{split} \mathbf{L}\widetilde{I}^{(m)} &= q - r^{(m)} \\ \mathbf{L}\widetilde{I}^{(m)}_{\mathsf{pos}} &= q - r^{(m)} + \delta^{(m+1)} \end{split} \qquad \delta^{(m+1)} = \mathbf{L}\left(\widetilde{I}^{(m)} - \widetilde{I}^{(m)}_{\mathsf{pos}}\right) \\ q \rightarrow q + \delta^{(m+1)} \end{split}$$

We can delay error stagnation
Investigating alternative positive projection of /

Solving LO System with Newton's Method

► Linearization:

$$\underline{B}(T^{n+1}) = \underline{B}(T^*) + (T^{n+1} - T^*) \frac{\partial \underline{B}}{\partial t} \Big|_{t=0}$$

► Modified system

$$\left[\mathbf{D}(\mu^{\pm}) - \sigma_{a}^{*}(1 - f^{*})\right] \underline{\Phi}^{n+1} = f^{*}\underline{B}(T^{*}) + \frac{\underline{\Phi}^{n}}{c\Delta t}$$
$$\left[\hat{\mathbf{D}}\Phi^{n+1} = \underline{Q}\right]$$

$$f = \left(1 + \sigma_a^* c \Delta t \frac{4aT^{*3}}{\rho c_V}\right)^{-1}$$
 $T_i^* = \frac{T_{L,i}^* + T_{R,i}^*}{2}$

- ▶ Equation for T^{n+1} based on linearization that is conservative
- ▶ Converge T^{n+1} and $\langle \phi \rangle$ with Newton Iterations

The angular flux for the two material problem is difficult to resolve near $\mu=\mathbf{0}$

Two Material Problem, comparison in optically thin region

▶ Plot of radiation temperature after 10 time steps

Backup slide with timing results

Derivation of LO System

► Taking moments of TE yields 4 equations, per cell i, e.g.

$$\begin{split} -2\mu_{i-1/2}^{n+1,+}\phi_{i-1/2}^{n+1,+} + \{\mu\}_{L,i}^{n+1,+} &\langle\phi\rangle_{L,i}^{n+1,+} + \{\mu\}_{R,i}^{n+1,+} &\langle\phi\rangle_{R,i}^{n+1,+} + \\ \left(\sigma_{t}^{n+1} + \frac{1}{c\Delta t}\right) h_{i}\langle\phi\rangle_{L,i}^{n+1,+} - \frac{\sigma_{s}h_{i}}{2} \left(\langle\phi\rangle_{L,i}^{n+1,+} + \langle\phi\rangle_{L,i}^{n+1,-}\right) \\ &= \frac{h_{i}}{2} \langle\sigma_{a}^{n+1} acT^{n+1,4}\rangle_{L,i} + \frac{h_{i}}{c\Delta t} \langle\phi\rangle_{L,i}^{n,+}, \quad (1) \end{split}$$

- ► Cell unknowns: $\langle \phi \rangle_{L,i}^+$, $\langle \phi \rangle_{R,i}^+$, $\langle \phi \rangle_{L,i}^-$, $\langle \phi \rangle_{R,i}^-$, $\langle \phi \rangle_{R,i}^-$, $\langle \phi \rangle_{R,i}^-$
- Need angular consistency terms and spatial closure (LD)

Energy-Integrated $\overline{\nu}$ Shift – 3.0 cm HDPE reflector

