Unabhängige Zufallsgrößen

Im Falle unabhängiger Zufallsgrößen ist die Situation besonders.

- ▶ zum Beispiel ist $V_{X,Y}(a,b) = \mathbb{P}(X \le a \text{ und } Y \le b) = \mathbb{P}(X \le a) \mathbb{P}(Y \le b) = V_X(a)V_Y(b).$
- Wie sieht es mit der Summe von zwei unabhängigen Zufallsvariablen aus?
- Wir betrachten dazu die Zufallsvariablen X und Y mit den Wahrscheinlichkeitsdichten ρ und η.
- Man erhält wegen der Unabhängigkeit durch das Produkt von ρ und η eine Dichte für (X, Y).
- ► Es ist also $\mathbb{P}((X,Y) \in A) = \int_A \rho(x)\eta(y)dxdy$.

Verteilungsfunktion

- Insbesondere ist in diesem Fall $V_{X+Y}(a) = \mathbb{P}(X+Y \leq a)$ gegeben durch $\int_{-\infty}^{\infty} \int_{-\infty}^{a-y} \rho(x) \eta(y) dx dy$
- ► Also ist $V_{X+Y}(a) = \mathbb{P}(X + Y \le a) = \int V_X(a-y)\eta(y)dy$
- ▶ Da die $V_X(a) = \int_{-\infty}^a \rho(x) dx$ ist die Dichte immer die Ableitung von V_X .
- ► X + Y hat daher an der Stelle a die Wahrscheinlichkeitsdichte $\int \rho(a-y)\eta(y)dy$.
- lacktriangle Den letzten Ausdruck nennt man auch die Faltung von ho mit η
- ► Schreibweise: $\rho \star \eta := \int \rho(a-y)\eta(y)dy = \int \eta(a-y)\rho(y)dy$