Algebra SS16

Prof Wedhorn, Mitschrift von Daniel Kallendorf

20. Dezember 2016

Inhaltsverzeichnis

1	Erii 1A	nnerung: Ringe und Ideale Ideale, Primideal, maximale Ideale und Ring-Homomorphismen .	2 2	
3	Ten	${f sorprodukte}$	5	
	3A	Erinnerung	5	
	3B	Multilineare Abbildungen	6	
	3C		6	
	3D	Basiswechsel von Tensorprodukten	8	
4	Lok	alisierung	12	
	4A	Lokalisierung von Ringen und Moduln	12	
	4B	Lokale Ringe und Restklassenkrper	15	
	4C	Spektren	16	
		4.23 Spielzeugmodell (der Funktionalanalysis)	17	
	4D	Lemma von Nokagama???	19	
5	Noethersche und Artinsche Ringe			
	5A	Noethersche und Artinsche Moduln	22	
	5B	Lnge von Moduln	24	
	5C	Noethersche Ringe	27	
	5D	Artin-Ringe	28	
6	Gar	nzheit	30	
	6A	Ganze Ring-Homomorphismen	30	
	6B	Ganzer Abschluss	32	
	6C	Going-Up	33	
7	Irre	${ m eduziblitt}$	34	
	7A	Satz von Gau	34	
	7B	Irreduziblittskriterien	37	
8	Alg	ebraische Krpererweiterungen	38	
	8A	Krpererweiterungen	38	
		8.18 Bestimmung von $\mu_{a,K}$ I	38	
	8E	Algebraische Erweiterungen	39	
	8F	Algebraischer Abschluss	40	
	8G	Fortsetzung von Krperhomomorphismen	40	

9	Normale und separable Krpererweiterungen		
	9A Zerfllungskrper	. 42	

1 Erinnerung: Ringe und Ideale

1A Ideale, Primideal, maximale Ideale und Ring-Homomorphismen

Definition 1.-9. Man nennt $(A, +, \cdot)$ einen **Ring**(in dieser VL=kommutativer Ring), wenn

- 1. (A, +) abelsch
- 2. Es gibt ein neutrales Element der Multiplikation $1 \in A: 1a = a \forall a \in A$
- 3. Die Multiplikation ist \cdot assoziativ und kommutativ
- 4. Distributivitt

Definition 1.-8. Seien A, B Ringe. Eine Abbildung $\varphi : A \to B$ heit **Ringhomomorphismus**, falls

- 1. $\varphi(a+a') = \varphi(a) + \varphi(a')$ fr alle $a, a' \in A$
- 2. $\varphi(aa') = \varphi(a)\varphi(a')$ fr alle $a, a' \in A$
- 3. $\varphi(1) = 1$

Definition 1.-7. Ein A-Modul mit A-bilinearer, kommutativer und assoziativer Multiplikation und neutralem Element heit A-Algebra

Korollar 1.-6. B ist A-Algebra genau dann wenn $\varphi: A \to B$ ein Ringhomomporhismus ist.

Definition 1.-5. Man nennt $\mathfrak{a} \subseteq A$ **Ideal**, falls

- 1. $\mathfrak{a} \subseteq (A, +)$ Untergruppe
- 2. $a \in A, b \in \mathfrak{a} \Rightarrow ab \in \mathfrak{a}$.

Sei $S \subseteq A$, dann ist

$$AS = SA = (S) := \left\{ \sum_{i=1}^{n} a_i S_i \mid n \in \mathbb{N}_0, a_i \in A, s \in S \right\}$$

das Kleinste Ideal von A das S enthlt.

Korollar 1.-4. Sei $\mathfrak{a} \subseteq A$. Es gilt $1 \in \mathfrak{a}$ genau dann wenn \mathfrak{A} .

Definition 1.-3. Sei A Ring. A heit **nullteilerfrei**, falls $A \neq \{0\}$ und fr $a, b \in A$ mit $a, b \neq 0$ auch $ab \neq 0$ gilt.

Beispiel 1.-2. • Krper sind Nullteilerfrei

- \bullet $\mathbb Z$ ist Nullteilerfrei
- Z ist HIR

Definition 1.-1. Sei A Ring. A heit **Hauptidealring**(HIR), falls A nullteilrefrei ist und jeds Ideal $\mathfrak{a} \subset A$ von einem Element erzeugt wird.

(d.h.
$$\mathfrak{a} = As = \{as \mid a \in A\}$$
 fr ein $s \in A$)

Beispiel 1.0.

Krper sind Hauptidealringe (Ideale in einem Krper K sind nur $(0)=\{0\}$ und (1)=K)

 $\mathbb{Z}, K[X] \text{ sind HIR}$

Z[X] ist nicht HIR (p, X) ist fr $p \in Prim$ nicht von einem Ideal erzeugt.

Erinnerung 1.1. Sei $\varphi: A \to B$ ein Homomorphismus von Ringen

- 1. $\varphi(A) \subset B$ ist Unterring. $(0,1 \in \varphi(A), \ a,a' \in \varphi(A) \Rightarrow a+a',aa' \in \varphi(A))$ $\operatorname{Ker}(\varphi) = \{a \in A \mid \varphi(A) = 0\} \subseteq A \text{ ist Ideal } A/\operatorname{Ker}(\varphi) \xrightarrow{\sim} \varphi(A), \overline{a} \mapsto \varphi(a) \text{ ist ein Ring Homomorphismus.}$
- 2. Sei $\mathfrak{b} \in B$ Ideal, dann $\varphi^{-1}(\mathfrak{b}) = \{y \in A \mid \varphi(a) \in b\} \subseteq A$ Ideal und φ induziert einene injektiven Ring-Homomorphismus:

$$\overline{\varphi}: A/\varphi^{-1}(\mathfrak{b}) \leftrightarrow B/\mathfrak{b}, \quad \overline{a} \mapsto \varphi(a)$$

(wende 1) an auf $A \to B \to B/\mathfrak{b}$)

Falls φ surjektiv ist, ist φ ein Ring-Homomorphismus.

3. Sei φ surjektiv. Dann sind die Abbildungen

$$\{\mathfrak{a}\subseteq A \text{ Ideal mit } \operatorname{Ker}(\varphi)\subseteq\mathfrak{a}\} \leftrightarrow \{\mathfrak{b}\in B \text{ Ideal}\}$$
$$\varphi^{-1(a)} \leftrightarrow \mathfrak{b}$$
$$\mathfrak{a} \leftrightarrow \varphi(a)$$

zueinander Inverse Bijketionen.

Definition 1.2. Sei A Ring

- 1. Das Ideal $\mathfrak{p} \subseteq A$ heit **Primideal** falls A/g Nullteilerfrei ist. (quivalent: $\mathfrak{p} \subsetneq A$ und fr alle $a, b \notin \mathfrak{p}$ gilt $ab \notin \mathfrak{p}$)
- 2. Das Ideal $m \subseteq A$ heit **maximales Ideal**, falls A/m ein Krper ist. (quivalent: Es gibt kein Ideal \mathfrak{a} , sodass $m \subsetneq \mathfrak{m} \subsetneq A$).

Jedes Maximale Ideal ist Primideal.

Satz 1.3. Sei A Ring, $\mathfrak{a} \subsetneq A$ Ideal.

Dann existiert ein maximales Ideal $m \subset A$ mit $\mathfrak{a} \subseteq m$.

Beweis. Sei $(I, \leq) = (\{\mathfrak{b} \subsetneq A \text{ Ideal } | \mathfrak{a} \subseteq b\}, \leq)$ Zu zeigen: (I, \leq) besitzt maximale Elemente:

- $\mathfrak{a} \in I \Rightarrow I \neq \emptyset$ erfllt.
- Sei $S \subseteq I$ total geordnet und sei $\mathfrak{a}_0 = \bigcup_{\mathfrak{b} \in S} \mathfrak{b} \subseteq A$. Seien $x, y \in \mathfrak{a}_0$, also existieren $\mathfrak{b}, \mathfrak{b}' \in S$, sodass $x \in \mathfrak{b}, y \in \mathfrak{b}'$. Sei O.E. $\mathfrak{b} \subseteq \mathfrak{b}'$, dann gilt, da S total geordnet ist, dass x, y

Lemma 1.4 (Lemma von Zorn). Sei (I, \leq) eine partielle geordnete Menge. Fr jede total geordnete Teilmenge $S \subseteq I$ eine obere Schranke $(d.h. \exists i \in I \text{ mit } s \leq i \forall s \in S)$.

Dann beseitzt (I, \leq) maximale Elemente (d.h. Elemente, sodass fr Elemente $i \in I$ gilt, dass $i_0 \leq i, i \neq i_0$).

Beispiel. ????

Bemerkung 2.8. $A[X_1,...,X_n]$ ist ein freier A-Modul, wobei die Monome eine Basis bilden.

Satz 2.9 (Universaleigenschaft des Polynomrings). Sei $\phi: A \to B$ eine A-Algebra und seine $b_1, ..., b_n \in B$ Elemente. Dann existiert genau ein A-Algebra-Homomorphismus $\psi: A[X_1, ..., X_n] \to B$, so dass $\psi(x_i) = b_i$ fr alle i = 1, ..., n, nmlich

$$\psi \underbrace{\left(\sum_{i_1, \dots, i_n \ge 0} a_{i_1, \dots, i_n} X_1^{i_1} \cdot \dots \cdot X_n^{i_1}\right)}_{=:f} = \underbrace{\sum_{i_1, \dots, i_n \ge 0} \phi(a_{i_1, \dots, i_n}) b_1^{i_1} \cdot \dots \cdot b_n^{i_n}}_{=f(b_1, \dots, b_n)}$$

Bemerkung 2.10.

$$\operatorname{Im}(\psi) = \text{kleinste } A\text{-Unteralgebra die } b_1,...,b_n \text{ enthlt}$$

= $A[b_1,...,b_n] \subset B$

Beispiel 2.11. Sei $\phi:A\to B$ eien A-Algebra, $b\in B$. Es existiere ein $g\in A[X]$ mit g(b)=0. Sei g nomriert. Dann gilt

$$A[b] = \{f(b)| f \in A[x], \deg(f) < \deg(g)\}$$

Beispiel 2.12. Sei $A = \mathbb{Q} \hookrightarrow \mathbb{C}, i \in \mathbb{C}$.

Dann gilt g(i) = 0 wobei $g = X^3 + X = X(X^2 + 1)$. Es folgt:

$$\mathbb{Q}[i] = \{a_0 + q_1 i + a_2 i^2 | a_0, a_1, a_2 \in \mathbb{Q}\}\$$

$$\mathbb{Q}[i] = \operatorname{Im}(\mathbb{Q}[X] \xrightarrow[X \mapsto i, f \mapsto f(i)]{\psi} \mathbb{C})$$

Dann $\tilde{g} \in \mathbb{Q}[X] : \psi(\tilde{g}) = 0 \Leftrightarrow \tilde{g}(i) = 0.$

Also $g \in \text{Ker}(\psi) \Rightarrow (g) \subseteq \text{Ker}(\psi)$.

In diesem Fall Ker $\psi = (X^2 + 1)$.

Begrndung von 2.8:

$$(g) \subseteq \operatorname{Ker}\left(A[X] \xrightarrow{\psi} B\right)$$

Also ψ faktorisiert:

$$A[X]/(g) \xrightarrow{\overline{\psi}} A[b] \subseteq B$$

mit $\overline{\psi}$ surjektiv.

Proposition 2.13. Sei $g \in A[X]$ normiert. Dann ist

$$\{f \in A[X], \deg(f) < \deg(g)\} \hookrightarrow A[X] \to A[X]/(g)$$

bijektiv.

Beweis. Gilt, da fr alle $f \in A[X]$ genau ein $r \in A[X]$ exitiert mit $\deg(r) < \deg(g)$ mit $f \in r + (g)$

3 Tensorprodukte

- (A) Tensorprodukte von Moduln
- (B) Tensorprodukte von Algebren und Basiswechsel
- (C) Exaktheitseigenschaften des Tensorprodukts

3A Erinnerung

Definition 3.1. A-Modul:= $(M, +, \cdot)$ wobei (M, +) abelsche Gruppe und \cdot : $A \times X \to M$ ein Skalarprodukt.

Bemerkung 3.2. Z-Modul=ablesche Gruppe

Beispiel 3.3. Sei I eine Menge

$$A^{(I)} = \{(a_i)_{i \in I} | a_i \in A, a_i = 0 \text{ fr fast alle } i \in I\}$$

A-Modul mit Addition und Skalarprodukt.

Fr $i \in I : e_i \in A^{(I)}$ mit

$$e_i = \begin{cases} 1 \text{ an der i-ten Stelle} \\ 0 \text{ sonst} \end{cases}$$

Definition 3.4. Ein A-Modul heit frei, falls $M \cong A^{(I)}$ fr eine Menge I

Definition 3.5. Sei M,N A-Modul. Dann heit $u:M\to N$ A-linear oder Homomorphismus von A-Moduln, falls

$$u(am + m') = au(m) + u(m') \forall a \in A, m, m' \in M$$

Bemerkung 3.6. Sei I eine Menge, M ein A-Modul $\underline{m} = (m_i)_{i \in I}$ ein Tupel von Elementen $m_i \in M$. Dann Existiert genau eine Abbildung:

$$A^{(I)} \xrightarrow{u_{\underline{m}}} M$$

 $mit \ u_m(e_i) = m_i.$

 $(m_i)_i = \underline{m}$ heit linear Unabhngig/ Erzeugende-System/ Basis, falls $u_{\underline{m}}$ injektiv/ surjektiv / bijektiv ist.

Bemerkung 3.7. Der A-Modul M ist endlich erzeugt, genau dann wenn ein $n\in\mathbb{N}$ und eine A-lineare Surjektion $A^m\to M$ existieren.

3B Multilineare Abbildungen

Definition 3.8. Sei $r \in \mathbb{N}_0, M_1, ..., M_r, P$ A-Moduln.

Eine Abbildung $\alpha: M_1 \times ... \times M_r \to P$ heit <u>r-multilinear</u>, falls sie in jeder Komponente linear ist, d.h. Fr alle i = 1, ..., r gilt:

$$\alpha(m_1, ..., am_i + m'_i, m_{i+1}, ..., m_r) = \alpha(m_1, ..., m_i, ..., m_r) + \alpha(m_1, ..., m'_i, ..., m_r)$$

Fr alle $m_i \in M_i, m_i \in M_i, a \in A$. (r = 1: linear, r = 2: bilinear)

3C .

Definition 3.9. Sei $r \geq 2, M_1, ..., M_r$ A-Moduln.

Dann existiert ein A-Modul $M_1 \otimes_A M_2 \otimes_A ... \otimes_A M_r$ und eine r-multilineare Abbildung $\tau: M_1 \times ... \times M_r \to M_1 \otimes_A M_2 \otimes_A ... \otimes_A M_r$, sodass fr jede r-multilineaer Abbildung:

$$\alpha M_1 \times ... \times M_r \to P$$

wobei P ein A-Modul, genau ein A-lineare Abbildung

$$\overline{\alpha}: M_1 \otimes_A ... \otimes_A M_r \to P$$

existiert.

$$M_1 \times ... \times M_r \xrightarrow{\forall \alpha : r\text{-multilinear}} P$$

$$M_1 \otimes_A M_2 \otimes_A ... \otimes_A M_r$$

Satz 3.10 (Eindeutigkeit des Tensorprodukts). Seien $(T, \tau: M_1 \times ... \times M_r \to T)$ und (T', τ') Tensorprodukte:

$$M_1 \times \dots \times M_r$$

$$\downarrow^{\tau} \qquad \qquad \downarrow^{\tau'} \qquad \qquad T'$$

u existiert aufgrund der universellen Eigenschaft von (T, τ) . v existiert aufgrund der universellen Eigenschaft von (T', τ') . Ferner kommutiert

Die Universelle Eigschaft von (T, τ) zeigt, dass $v \circ u = id_T$, genauso $u \circ v = id_T$.

Satz 3.11 (Existenz des Tensorprodukts). 1. Suche einen A-Modul N und eine Abbildung $c: M_1 \times ... \times M_r \to R$, sodass

$$\operatorname{Hom}_A(N,P) \xrightarrow[u \mapsto u \circ \tau]{} Abb(M_1 \times ... \times M_r, P)$$

Fr alle A-Moduln P.

2. Wir wollen, dass $(am_1 + m'_1, m_2, ..., m_r)$ und $a(m_1, ..., m_r) + (m'_1, ..., m_r)$ auf das gleiche Element abgebildet werden. Sei $Q \subseteq N$ der von

$$e_{(m_1,\ldots,m_{i-1},am_i+m_i',m_{i+1},\ldots,m_r)} - \left(ae_{(m_1,\ldots,m_i,\ldots,m_r)} + e_{(m_1,\ldots,m_i',\ldots,m_r)}\right)$$

fr alle i = 1, ..., r und $m_i, m'_i \in M_i$ und $a \in A$ erzeugt Untermodul. Dann setze T := N/Q. Dann gilt

$$\operatorname{Hom}_{A}(T, P) = \{ u \in \operatorname{Hom}(N, P) | u(Q) = 0 \}$$

= $L_{A}(M_{1}, ..., M_{r}, P)$

$$mit \ \tau: M_1 \times ... \times M_r \to N \to N/Q.$$

Bemerkung 3.12. 3.4

 $e_{(m_1,\ldots,m_r)} \in A^{(M_1 \times \ldots \times M_r)}$ bilden ein Erzeugndensystem.

Also bilden auch die $\tau(m_1,...,m_r)=:m_1\otimes...\otimes m_r$ eine Erzeugenden-System des $A-\text{Moduls }M_1\otimes...\otimes M_r$.

Aber: Nicht jedes Element von $M_1 \otimes ... \otimes M_r$ ist in dieser Form.

Also gent es eine lineare Abbildung $u: M_1 \otimes ... \otimes M_r \to P$ auf den erzeugdnesn $m_1 \otimes ... \otimes m_r$ mit $(m_i \in M_i)$ anzugeben.

Umgekehrt sei P ein A-mOdul und es seien elemente $u(m_1 \otimes ... \otimes m_r) \in P$ gegeben fr alle $m_i \in M_i$.

Genau dann existiert eine A-lineare Abbildung $u: M_1 \otimes ... \otimes M_r \to P$ mit $m_1 \otimes ... \otimes m_r \mapsto u(m_1 \otimes ... \otimes m_r)$, wenn fr alle $i = 1, ..., r, a \in A, m_j \in M_j$ und $m'_i \in M_i$ gilt:

$$u(m_1 \otimes ... \otimes am_i + m_i' \otimes ... \otimes m_r) = au(m_1 \otimes ... \otimes m_i \otimes ... \otimes m_r) + u(m_1 \otimes ... \otimes am_i' \otimes ... \otimes m_r)$$

Satz 3.13 (Tensorprodukt linearer Abbildungen). Seien M, M', N, n' A-Moduln, $u: M \to M', v: N \to N'$ A-lineare Abbildungen. Dann definiert

$$M \otimes_A N \to M' \otimes AN'$$

 $m \otimes n \mapsto u(m) \otimes u(n)$

eine A-lineare Abbildung bezglich $u \otimes v : M \otimes N \to M' \otimes N$.

Beweis. Zu zeigen: $u(am + m') \otimes v(n) = a(u(m) \otimes v(n)) + u(m') \otimes v(n)$ Es gilt da das Tensorprodukt r-linear ist.

$$u(am + m') \otimes v(n) = (au(m) + u(n)) \otimes v(n)$$
$$= (au(m) \otimes v(n)) + u(m') \otimes v(n)$$

Auerdem zu zeigen:
$$u(m) \otimes v(an+n') = a(u(m) \otimes v(n)) + u(m) \otimes v(n)$$
 $(\rightarrow$ Genauso.)

Bemerkung 3.14. 3.6

- 1. $A \otimes_A M \cong M$ $u: a \otimes m \mapsto am$ $v: 1 \otimes m....m$ Dabei ist u wohldefiniert, d.h. $(a, m) \to am$ ist bilinear.
- 2. $M\otimes_A N\xrightarrow{\sim} N\otimes_A M, m\otimes n\mapsto n\otimes m$ ist ... von A-Moduln. Zu zeigen: Wohldefineirtheit

3.
$$M \otimes_A N \otimes_A P \simeq (M \otimes_A N) \otimes_A P$$

 $m \otimes n \otimes p \mapsto (m \otimes n) \otimes p$
 $m \otimes n \otimes p \mapsto m \otimes (n \otimes p)$

Proposition 3.15. 3.7 Sei $(M_i)_{i \in I}$ eine Familie von A-Moduln, N ein A-Modul:

$$\left(\bigotimes_{i\in I} M_i\right) \otimes_A N \xrightarrow{\sim} \bigotimes_{i\in I} (M_1 \otimes_A N)$$
$$(m_i)_{i\in I} \otimes n \mapsto (m_i \otimes n)_{i\in I}$$

Beweis. Umkehrabbildung gegeben durch:

$$Inhalt..m_i \otimes n \mapsto (m_j)_{j \in I} \otimes n$$

3D Basiswechsel von Tensorprodukten

Satz 3.16. 1. Sei M ein A-Modul. Dann wird

$$\varphi^*(M) := B \otimes_A M$$

zu einerm B-Modul mit dem Skalarprodukt

$$B \times (B \otimes_A M) \to B \otimes_A M$$

 $(b, b' \otimes m) \mapsto bb' \otimes m$

2. Sei $U: M \to M'$ ein Homomorphismus von A-Moduln. Dann ist

$$id_B \otimes u : B \otimes M \to B \otimes_A M'$$

 $b \otimes m \mapsto b \otimes u(m)$

 $eine\ B$ -lineare Abbildung.S

Proposition 3.17. Sei $\varphi:A\to B$ eine A-Algebra. Sei M ein freier A-Modul. Dann ist $B\otimes_A M$ ein freier B-Modul und

$$\vartheta_A(M) = \vartheta_B(B \otimes_A M)$$

Beweis. Sei Mein freier A-Modul. Dazu ist quivalent, dass $M \simeq A^{(I)}.$ Daraus folgt, dass

$$B \otimes_A M \simeq B \otimes_A A^{(I)}$$

$$\simeq B \otimes_A \left(\bigoplus_{i \in I} A \right)$$

$$\simeq \left(\bigoplus_{i \in I} B \otimes_A A \right)$$

$$\simeq \bigoplus_{i \in I} B$$

$$= B^{(I)}$$

Also ist $B \otimes_A M$ frei.

Proposition 3.18. Sei $\mathfrak{a} \subseteq A$ ein Ideal, M ein A-Modul.Setze

$$\begin{split} \mathfrak{a} \cdot M &= \langle \{am | a \in \mathfrak{a}, m \in M \} \\ &= \left\{ \sum_{i=1}^{m} a_i m_i \mid n \in \mathbb{N}_0, a_i \in \mathfrak{a}, m_i \in M \right\} \\ &\subseteq M \quad \text{Untermodul} \end{split}$$

Dann ist

$$A/\mathfrak{a} \otimes_A M \xrightarrow{\sim} M/\mathfrak{a}M$$
$$\overline{a} \otimes m \mapsto \overline{am}$$

ein Homomorphismus von A/\mathfrak{a} -Moduln.

Beweis. $\overline{a} \oplus m \mapsto \overline{am}$ ist wohldefiniert: Zu zeigen:

1. Sei $a' \in A$ mit $\overline{a'} = \overline{a} \in A/\mathfrak{a}$. Dann ist $\overline{am} = \overline{a'm} \in M/\mathfrak{a}M$. Es gilt $\overline{a}' = \overline{a}$ gena dann wenn es ein $xi\mathfrak{a}$ gibt sodass a' = a + x.

Daruas folgt, dass a'm = am + xm, und da $xm \in \mathfrak{a}M$ folgt $\overline{a'm} = \overline{am}$.

2. \overline{am} is linear in a, d.h.

$$\overline{(ba+a')m} = b\overline{am} + a'\overline{m}$$
 fr $a, a' \in A, b \in A$

3. \overline{am} ist linear in m, d.h.

$$\overline{a(bm+m')} = b\overline{am} + \overline{am'}$$
 fr $m, m' \in M, b \in A$

Proposition 3.19. Eine Umkehrabbildung ist gegeben durch

$$v: M \to A/\mathfrak{a} \otimes_A M$$
$$m \mapsto 1 \otimes m$$

Beweis. Zu zeigen: $\mathfrak{a}M \subseteq Ker(v)$, also fr alle $x \in \mathfrak{a}, m \in M$ gilt v(xm) = 0.

$$v(xm) = 1 \otimes xm = \overline{x} \otimes m = 0$$

da $\overline{x} = \overline{0} \in A/\mathfrak{a}$.

Noch zu zeigen:: v ist Umkehrabbildung zu $\overline{a} \otimes m \mapsto \overline{am}$.

Definition 3.20 (Tensorprodukte von Algebren). Sei $A \to B_1$, $A \to B_2$ Algebren

Dann definieren wir auf dem A-Modul $B_1 \otimes_A B_2$ eine Multiplikation:

$$(B_1 \otimes B_2) \times (B_1 \otimes B_2) \to B_1 \otimes B_1 \otimes B_2$$
$$(a_1 \otimes b_2, b_1' \otimes b_2') \mapsto b_1 b_1' \otimes b_2 b_2'$$

und erhalten die A-Algebra $B_1 \otimes_A B_2$.

Beispiel 3.21. Sei $A \xrightarrow{\varphi} B$ eine A-Algebra und sei $C = A[X_1, ..., X_n]/(f_1, ..., f_r)$ und $f_i \in A[X-1, ..., X_n]$. Dann ist

$$B \otimes_A A[X-1,...,X_n]/(f_1,...,f_r) = B[X_1,...,X_n]/(\tilde{f}_1,...,\tilde{d}_r)$$

wobei

$$f_i = \sum_{j \in \mathbb{N}_0^n} a_{\underline{j}} X^{\underline{j}} \to \tilde{f}_i = \sum_j \varphi(a_j)$$

- 1. Sei $A = \mathbb{Q}$, $C = \mathbb{Q}[i] = \{a + b_i | a, b \in \mathbb{Q}\} = \mathbb{Q}[X]/(X^2 + 1)$
- 2. $\mathbb{R} \otimes_Q Q[i] = \mathbb{R}[X]/(X^2+1) = \mathbb{C}$
- 3. $C \otimes_Q Q[i] = C[X]/(X^2+1) = \mathbb{C}[X]/(X+i) \times \mathbb{C}[X]/(X-i) \simeq \mathbb{C} \times \mathbb{C}$

Beispiel 3.22. $A[X] \otimes_A A[Y] = (A[X])[Y] = A[X,Y]$ mit $f \otimes g \mapsto fg$. Dann ist die Umkehrabbildung

C) Exaktheitseigenschaften

Definition 3.23 (Homomorphismen-Funktor). Seien M, P A-Moduln. Wir Definiere auf $\operatorname{Hom}_A(M, P) := \{u : M \to P \text{A-linear}\}\$ die Struktur eines A-Moduls.

$$(u+v)(m) := u(m) + v(m) \qquad u, v \in \operatorname{Hom}_{A}(M, P)$$
$$(au)(m) := au(m) \qquad a \in A, m \in M$$

Sei $u: M \to M'$ eine A-lineare Abbildung. Wir erhalten die A-lineare Abbildung

$$\operatorname{Hom}_A(u,P): \operatorname{Hom}_A(M',P) \to \operatorname{Hom}_A(M,P)$$

 $w' \mapsto w' \cdot u$

Sei $v: P \to P'$ eine A-lineare Abbildung. Wir erhalten die A-lineare Abbildung

$$\operatorname{Hom}_A(M,v): \operatorname{Hom}_A(M,P) \to \operatorname{Hom}_A(M,P')$$

 $w' \mapsto v \cdot w$

Erinnerung 3.24. Eine Sequnez von A-lineare Abbildungen

$$\ldots \to M_{i-1} \xrightarrow{u_{i-1}} M_i \xrightarrow{u_{u_i}} M_{i+1} \to \ldots$$

heit exakt, falls $Ker(u_i) = Im(u_{i-1})$

Beispiel 3.25. $0 \to M* \xrightarrow{u} M$ ist exakt genau dann wenn u injektiv ist. $M \xrightarrow{v} M'' \to 0$ ist exakt genau dann wenn v surjektiv ist

Satz 3.26. 1. Sei $0 \to M' \xrightarrow{u} M \xrightarrow{v} M''(*)$ eine Sequenz von A-Moduln. Dann ist (*) genau dann exakt, wenn fr jeden A-Modul P die Sequenz

$$\operatorname{Hom}_A(P,(*)): 0 \to \operatorname{Hom}_A(P,M') \to \operatorname{Hom}_A(P,M) \longrightarrow \operatorname{Hom}_A(P,M'')$$

 $w' \mapsto u \circ w' \qquad w \mapsto v \circ w$

exakt ist.

2.

Beweis. Wir beweisen Schrittweise:

- 1. "(*) ist exakt $\Rightarrow \operatorname{Hom}_A(P,(*))$ ist exakt "
 - (a) $w' \mapsto u \circ w'$ injektiv: Sei $w \in \operatorname{Hom}_A(P, M')$ mit $u \circ w' = 0$. Dann ist (da u injektiv) w' = 0. Also ist $\operatorname{Ker}(w' \mapsto u \circ w') = 0$.
 - (b) $\operatorname{Im}(w' \mapsto u \circ w') \subseteq \operatorname{Ker}(w \mapsto v \circ w)$: Komposition: $w' \mapsto u \circ w' \mapsto \underbrace{(v \circ u)}_{=0} \circ w'$ ist Null.
 - (c) $\operatorname{Im}(w \mapsto v \circ w) \subseteq \operatorname{Ker}(w' \mapsto u \circ w')$: Sei $w \in \operatorname{Hom}_A(P, M)$ mit $v \circ w = 0$, sodass $\operatorname{Im}(w) \subseteq \operatorname{Ker}(v) = \operatorname{Im}(u)$.

"⇔"

(a) u injektiv: Sie $m' \in M$ mit u(m') = 0, $P := < m' >= Am' \subseteq M'$, $w' : P \to M'$ Inklusion. Dann ist...

Bemerkung 3.27. Seiene M, N, P A-Moduln. Dann ist

$$\operatorname{Hom}_{A}(M \otimes_{A} N, P) = L_{A}(M, N; P) \tag{*}$$

$$= \operatorname{Hom}_{A}(M, \operatorname{Hom}_{A}(N, P))$$

$$(\alpha : M \times N \to P) \mapsto (n \mapsto \alpha(m, n))$$

$$\operatorname{Sei} T_{N} : (\operatorname{A-Modul}) \to (\operatorname{A-Modul})$$

$$M \mapsto M \otimes_{A} N$$

$$(u : M \to M') \mapsto u \otimes id_{N}$$

$$N_{N} : (\operatorname{A-Modul}) \to (\operatorname{A-Modul})$$

$$P \mapsto \operatorname{Hom}_{A}(N, P)$$

Dann besagt (*):

$$\operatorname{Hom}(T_M(M), P) = \operatorname{Hom}(M, H_N(P))$$

d.h. T_N ist linksadjungiert zu H_N .

Dann ist T_N rechtsexakt und H_N ist linksexakt.

Proposition 3.28. Sei $M' \xrightarrow{u} M \xrightarrow{v} M'' \to 0$ eine exakte Sequenz von A-Moduln. Dann ist fr jeden A-Modul N die Sequenz

$$M'\otimes N\xrightarrow{u\otimes id_N} M\otimes_A N\xrightarrow{u\otimes id_N} M''\otimes_A N\to 0$$

exakt.

Beweis. Formal mit 3.27.

Sei $M' \to M \to M'' \to 0$ exakt.

Dann gilt mit $\ref{eq:property}$, dass fr alle A-Mdouln P:

$$0 \to \operatorname{Hom}_A(M'', H_N(P)) \to \operatorname{Hom}_A(M, H_N(P)) \to \operatorname{Hom}_A(M', H_N(P))$$

Ist jeweils gleich (3.27)

$$0 \to \operatorname{Hom}_A(T_N(M''), P) \to \operatorname{Hom}_A(T_N(M), P) \to \operatorname{Hom}_A(T_N(M'), P)$$

exakt, sodass mit??

$$T_N(M') \to \underbrace{T_N(M)}_{=M \otimes_A N} \to T_N(M'') \to 0$$

exakt ist.

Beispiel 3.29. Sei $A = \mathbb{Z}, \ u : \mathbb{Z} \xrightarrow{x \mapsto 2x} \mathbb{Z}.$ Dann ist $0 \to \mathbb{Z} \xrightarrow{u} \mathbb{Z}$ exakte und $A \otimes_A M = M.$

Aber

$$0 \to \mathbb{Z} \otimes \mathbb{Z}/2\mathbb{Z} \xrightarrow{u \otimes id_{\mathbb{Z}/2\mathbb{Z}}} \mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z}/2\mathbb{Z}$$
$$\mathbb{Z}/2\mathbb{Z} \xrightarrow{\cdot 2} \mathbb{Z}/2\mathbb{Z}$$

ist nicht injektiv.

4 Lokalisierung

Lokalisierung von Ringen und Moduln

Definition 4.1. Eine Teilmenge $S \subseteq A$ heit multiplikativ, falls $1 \in S$ uns $s, t \in S \Rightarrow st \in A$.

Beispiel 4.2. 1. $S = \mathbb{Z} \setminus \{0\} \subseteq A = \mathbb{Z}$

- 2. Sei $f \in A$, dann ist $S_f = \{1, f, f^2, ..., \}$ eine multiplikative Teilmenge.
- 3. Sei $y \subset A$ Primideal. Dann ist $A \setminus y \subset A$ eine multiplikative Teilmenge.

Definition 4.3. Sei A ein Ring, $S \subseteq A$ eine multiplikative Teilmenge. Definiere auf $A \times S$ eine quivalenzrelation durch

$$(a,s) \sim (b,t) :\Leftrightarrow at = bs$$

Beweis. Dies ist eine quivalenzrelation:

- Refelxivitt
- Symmetrie
- Transitiv: $(a, s) \sim (b, t), (b, t) \sim (c, u)$

$$\exists v, w \in S : vat = bvs , wba = wtc$$

Dann ist vbsw = !

Satz 4.4 (Universelle Eigenschaft). Sei $S \subseteq A$ eine multiplikative Teilmenge und sei $1:A\to S^{-1}$ kanonisch. Sei B ein Ring, $\varphi:A\to B$ ein Ring-Homomorphimsmus mit $\varphi(s)\in B^\times=\{b\in B\mid\exists c\in B:bc=1\}$ fr alle $s\in S$. Dann existiert ein eindeutiger RIngHomomorphismus $\tilde{\varphi}S^{-1A\to B}$ mit $\tilde{\varphi}\circ 1=\varphi:$

$$A \xrightarrow{\varphi : \varphi(s) \subseteq B^{\times}} B$$

$$\downarrow^{1} \xrightarrow{\exists ! \tilde{\varphi}} B$$

$$S^{-1}A$$

Beweis. Eindeutigkeit Fr $\frac{a}{s} - inS^{-1}A$ muss fr $\tilde{\varphi}$ gilt:

$$\tilde{\varphi}\left(\frac{a}{a}\right) = \tilde{\varphi}\left(\frac{a}{1}\left(\frac{s}{1}\right)^{-1}\right) = \tilde{\varphi}\left(\frac{a}{1}\right)\tilde{\varphi}\left(\frac{s}{1}\right)^{-1}$$

$$= \varphi(a)\varphi(s)^{-1}$$
(*)

Eindeutigkeit Definiere $\tilde{\varphi}$ durch (*) Z.z. $\tilde{\varphi}$ ist wohldefiniert.

Bemerkung 4.5. Sei $S \subseteq A$ eine multilineare Teilmenge. Dann gilt: $A \to S^{-1}A$ ist injektive \Leftrightarrow S enthlt keien Nullteiler.

Beweis.

1 ist injektiv

$$\Leftrightarrow \operatorname{Ker}(1) = 0$$

 $\Leftrightarrow (\forall a \in A: \frac{a}{1} = 1 \Rightarrow a = 0) \Leftrightarrow \quad (\forall a \in A: \exists s \in S: as = 0 \Rightarrow a = 0) \Leftrightarrow S \text{ enthlt eine Nullteiler}$

Satz 4.6 (Lokalisierung von Moduln). Sei $S \subseteq A$ ein multiplikative Teilmenge, M ein A-Modul. Definiere auf $M \times S$ eine quivalenz Relation:

$$(m,s) \sim (n,t) \Leftrightarrow \exists v \in S : vtm = vsm$$

Man erhlt den $S^{-1}A$ -Modul $S^{-1}M = (M \times S)/\sim$:

- Mit Addition: $\frac{m}{s} + \frac{n}{t} := \frac{tm + sn}{st}$
- Mit Skalarmultiplikation: $\frac{a}{s} \cdot \frac{m}{t} := \frac{am}{st}$

Satz 4.7 (Lokalisierung als Funktor). Sei $u: M \to N$ eine A-lineare Abbildung, $S \subseteq A$ ein multiplikative Teilgruppe. Dann ist

$$S^{-1}u: S^{-1}M \to S^{-1}N$$

$$\frac{m}{s} \mapsto \frac{u(m)}{s}$$

eine $S^{-1}A$ lineare Abbildung.

Satz 4.8 (Lokalisierung ist exakt). InhaltSei $M' \xrightarrow{u} M \xrightarrow{v} M''$ eine exakte Sequenz von A-Moduln, $S \subseteq eine multilineare Teilmenge. Dann ist$

$$S^{-1}M' \xrightarrow{S^{-1}u} S^{-1}M \xrightarrow{S^{-1}v} S^{-1}M''$$

eine exakte Sequnez von $S^{-1}A$ Moduln.

Beweis. $v \circ u = 0$. Also ist $S^{-1}v \circ S^{-1}u = 0$.

Noch zu zeigen: $\operatorname{Ker}(S^{-1}v) \subseteq \operatorname{Im}(S^{-1}u)$. Sei $\frac{m}{s} \in S^{-1}M$ mit $S^{-1}v\frac{v}{s} = \frac{v(m)}{s} = 0$. Also gibt es $t \in S : tv(m) = v(tm) = 0$.

Damit liegt $tm \in \text{Ker}(v) = \Im(u)$.

Also existiert $m \in M$: u(m' = tm). Dann ist $S^{-1}u\left(\frac{m'}{st}\right) = \frac{u(m')}{st} = \frac{m}{s}$ und damit $\frac{m}{s} \in \text{Im}(S^{-1}u)$

Proposition 4.9. Sei M ein A-Modul, $S \subseteq A$ eine multiplikative Teilmenge, dann ist

$$u: S^{-1}A \otimes_A M \xrightarrow{\sim} S^{-1M}$$
$$\frac{a}{s} \otimes m \mapsto \frac{am}{s}$$

ist Homomorphismus von $S^{-1}A$ -Moduln.

1. 1 ist wohldefiniert: z.Z: Beweis.

- (a) $\frac{a}{s} = \frac{b}{t} \Rightarrow \frac{am}{s} = \frac{bm}{t}$.
- (b) $\frac{am}{s}$ ist linear in $\frac{a}{s}$ und in m.

2.

Satz 4.10 (Ideal in $S^{-1}A$). Sei $S \subseteq A$ eine multilineare Teilmenge.

$$\{Ideale\ in\ A\} \xleftarrow[b\mapsto \iota^{-1}(b)]{a\mapsto S^{-1}a} \{Ideale\ in\ S^{-1}A\}$$

$$1: A \to S^{-1}A, a \mapsto \frac{a}{1}$$

Nicht zu einander invers.

- 1. Sei $\mathfrak{a} \subseteq A$ ein Ideal. Dann ist $S^{-1\mathfrak{a}} = S^{-1}A$ genau dann wenn $\mathfrak{a} \cap S \neq 0$. Dann folgt auch, dass $\mapsto S^{-1\mathfrak{a}}$ ist nur invertierbar, falls $S \subseteq A^{\times}$.
- 2. Fr $b \subseteq S^{-1}A$ Ideal gilt:

$$S^{-1}(\iota^{-1}(b)) = b$$

Dann folgt $b \mapsto \iota^{-1}(b)$ ist injektiv und jedes Ideal von $S^{-1}A$ ist von der Form $S^{-1}\mathfrak{a}$ fr einIdeal $\mathfrak{a} \subseteq A$.

3. Sei $\mathfrak{a} \subseteq A$ ein Ideal. Dann gilt: Es gibt ein Ideal $b \subseteq S^{-1}A$ mit $\mathfrak{a} = \iota^{-1(b)}$. Dies ist quivalent dazu, dass kein $s \in S$ ins A/\mathfrak{a} Nullteiler ist.

4. Man hat zueinander inverse Bijektionen:

Beweis. 1. $\frac{1}{1} - inS^{/1A}$ ist genau dann wenn es ein $a \in \mathfrak{a}, s \in S$ gibt, sodass $\frac{a}{s} = \frac{1}{1}$.

$$\Leftrightarrow \exists a \in \mathfrak{a}, s, t \in S : ta = ts$$
$$\Leftrightarrow \mathfrak{a} \cap S \neq 0$$

2. Sei $\frac{a}{s}\in S^{-1}(\iota^{-1(b)}).$ Ist quivalent zu $\exists t\in S$ und $b\in A$ mit $\frac{b}{1}\in b,$ so dass

$$\frac{a}{s} = \frac{b}{t} = \frac{b}{1} \frac{1}{t}$$

$$\Leftrightarrow \frac{a}{s} \in b$$

3. Sei $\mathfrak{a} = \iota^{-1}(b)$ fr ein Ideal $b \subseteq S^{-1}A$.

$$\Leftrightarrow \mathfrak{a} = \iota^{-1}(S^{-1}\mathfrak{a})$$
$$\Leftrightarrow A/\mathfrak{a} \xrightarrow{\overline{a} \mapsto \overline{\binom{a}{1}}} S^{-1}A/S^{-1}\mathfrak{a} = ?? S^{-1}A/\mathfrak{a} \quad \text{injektiv}$$

(Wende?? an auf die exakte Sequenz

$$0 \to \mathfrak{a} \to A \to A/\mathfrak{a} \to 0$$

Dann ist auch

$$0 \to S^{-1}\mathfrak{a} \to S^{-1}A \to S^{-1}(A/\mathfrak{a}) \to 0$$

exakt.) Mit ?? gilt quivalenz dazu, dass kein $s \in S$ ist Nullteiler in A/\mathfrak{a} .

4.

Satz 4.11 (Universelle Eigenschaft des Quotientenkrpers). $Sei \iota : A \to Quot(A)$ kanonisch und sei $\varphi: A \to K$ ein injektiver Ring-Homomorphismus wobei K ein Krper.

Dann existiert genau ein Homomorphismus von Krpern $\tilde{\varphi}$: Quot $(A) \to K$.

4BLokale Ringe und Restklassenkrper

Definition 4.12. Ein Ring A heit <u>lokal</u> wenn er genau ein Maximales Ideal besitzt.

Dann bezeichnet \mathfrak{m}_A dieses Maximales Ideal.

Der Krper $\kappa(A) := A/\mathfrak{m}_A$ heit Restklassenkrper von A.

Beispiel 4.13. • Jeder Krper ist ein lokaler Ring.

• Ein Hauptidealring A ist genau dann lokal, wenn bis auf Multiplikation mit Einheiten genau ein irreduzibles Element existiert.

Oder wenn A Krper ist

Definition 4.14. Ein lokaler Hauptideal Ring der kein Krper ist, heit diskreter Bewertungsring.

Beispiel 4.15. Sei $\mathfrak{p} \subset A$ Primideal, $S := A \setminus \mathfrak{p}$ multiplikative Teilmenge, $A_{\mathfrak{p}} := S^{-1}A$.

$$\{\text{Primideals in } A - \mathfrak{p}\} \leftrightarrow \{\text{Primideals } q \subset A \text{ mit } q \subseteq \mathfrak{p}\}$$

(mit 4).

Also ist $A_{\mathfrak{p}}$ ein lokaler Ring mit maximalem Ideal $S^{-1}\mathfrak{p}$.

Der Krper $\kappa(\mathfrak{p}) := A/S^{-1}\mathfrak{p}$ heit Restklassenkrper in \mathfrak{p} .

Bemerkung 4.16. Seien $q \subseteq \mathfrak{p} \subset A$ Primideale.

1.

{Primideale in $A_{\mathfrak{p}}$ } = {Primideale in A, die in \mathfrak{p} enthalten sind} {Primideal in A/q} = {Primideal in A, die q enthalten.}

- 2. Sei $S := S \backsim \mathfrak{p}$. Dann ist $S^{-1}(A/q) = S^{-1}A/S^{-1}q$ und {Primideal in $S^{-1}(A/q)$ } = {Primideals in A die zwischen q und \mathfrak{p} liegen}
- 3. Speziell fr $q = \mathfrak{p}$:

$$S^{-1}(A/\mathfrak{p}) = \kappa(\mathfrak{p})$$
$$= \operatorname{Quot}(A/\mathfrak{p})$$

4C Spektren

Erinnerung 4.17. Ein Topologischer Raum ist ein Paar $(X; \mathfrak{T})$ wobei X eine Menge, $\mathfrak{T} \subseteq \mathscr{P}(X)$, sodass gilt:

- 1. $\emptyset \in \mathfrak{T}, X \in \mathfrak{T}$
- 2. Sei $(U_i)_{i\in I}$ eine Familie von Mengen $U_i\in\mathfrak{T}$ dann gilt $\forall i\in I:\bigcup_{i\in I}U_i\in\mathfrak{T}$
- 3. $U, V \in \mathfrak{T}$, dann $U \cap V \in \mathfrak{T}$

Die Mengen in \mathfrak{T} heien offen.

Erinnerung 4.18. Seine X, Y topologische Rume. Eine Abbildung $f: X \to Y$ heit stetig, falls $f^{-1}(V) \subseteq X$ ist offen fr alle offenen $V \subseteq Y$.

Erinnerung 4.19. Sei (X, \mathfrak{T}) ein topologischer Raum $B \subseteq \mathfrak{T}$ heit Basis der Topologie, falls jeder offenen Teilmenge Vereinigung von Menge aus B ist.

Beispiel 4.20. Sei (X, d) eien metrischer Raum, dann heit $U \subseteq X$ offen, falls

$$\forall x \in U \exists \epsilon > 0 : B_{\epsilon}(x) \{ y \in X \mid M(x, y) < \epsilon \} \subseteq U$$

Basis der Topologie: $\{B_{\epsilon}(x) \mid \epsilon \in \mathbb{R}^{>0}, x \in X\}$

Definition 4.21. Sein topologischer Raum X heit <u>Hausdorffsch</u>, falls $\forall x,y \in X$ mit $x \neq y$ existieren $x \in U \subseteq X$, $y \in V \subseteq X$ offen, sodass $U \cap V = \emptyset$. Metrische Rume sind Hausdorffsch.

Definition 4.22. Ein topologischer Raum X heit <u>quasikompakt</u>, falls jede offene berdeckung $(U_i)_{i\in I}$ von X (d.h. $U_i\subseteq X$ offen fr alle $i\in I$ mit $\bigcup_{i\in I}U_i=X$) eine endliche Teilberdeckung besitzt. (d.h. $\exists J\subseteq I$ endliche Teilmenge, sodass $\bigcup_{i\in I}U_i=X$.)

4.23 Spielzeugmodell (der Funktionalanalysis)

Sei X ein kompakter topologischer Raum,

$$A := A_X := \xi(X, \mathbb{C}) := \{ f : X \to \mathbb{C} \text{ stetig} \}$$

Sei $x \in X$, dann betrachte

$$\mathfrak{M}_x := \{ f \in A \mid f(x) = 0 \} \subseteq A$$

Dies ist ein Minimales Ideal, denn

$$A/\mathfrak{M}_x \xrightarrow{\sim} \mathbb{C}, \overline{f} \mapsto f(x)$$

Satz 4.24. Die Abbildung

$$X \to \operatorname{Max}(A) := \{ \mathfrak{M} \subset A \mid maximales \ Ideal \}$$

 $x \mapsto \mathfrak{M}_x$

ist bijektiv.

Korollar 4.25. Sei $f \in A$ und $fr \mathfrak{M}_x \in \text{Max}(A)$ sie f(x) = Bild von f in $A/\mathfrak{M}_x = \mathbb{C}$.

$$\begin{split} D(f) &= \{\mathfrak{M} \in \operatorname{Max}(A) \mid \overline{f} \text{ in } A/\mathfrak{M} \text{ ist } \neq 0\} \\ &= \{\mathfrak{M} \in \operatorname{Max}(A) \mid f \notin \mathfrak{M}\} \\ &= \sigma(\{x \in X \mid f(x) \neq 0\}) \end{split}$$

Definition 4.26. $U \subseteq Max(A)$ heit **offen**, falls $\exists F \subseteq Max(A)$ mit

$$U = \bigcup_{f \in F} D(f)$$

Dies ist die Topologie uf Max(A). (Bemerke: $D(f) \cap D(g) = D(fg)$)

Satz 4.27. σ ist Homomorphismus

Seien X,Y kompakte topologische Rume, $F:X\to Y$ stetig. Mann erhlt den $\mathbb{C}-$ Algebra-Homomorphismus:

$$\varphi: A_Y \to A_x$$
$$f \mapsto f \circ F$$

Habe Kommutierendes Diagramm

$$\begin{array}{ccc} X & Y \\ \sigma \downarrow_{\mathcal{F}} & \sigma \downarrow \sim \\ \operatorname{Max}(A_x) & \xrightarrow{\mathfrak{M} \mapsto \varphi^{-1}(\mathfrak{M})} \operatorname{Max}(A_Y) \end{array}$$

Es folgt $\forall \mathfrak{M} \subset A_x$ maximal, sodass $\varphi^{-1}(\mathfrak{M}) \subset A$ maximal ist. Sei A ein Ring. Setze $X = \operatorname{Spec}(A) := \{y \subset A \mid \operatorname{Primideal con} A\}$ als das

Spektrum von A.

Fr $x \in X$ bezeichne $y_x \subset A$ das korrespondierene Primideal. Sei $f \in A$, $x \in X$. Dann definiere

$$f(x) := \text{Bild von } f \text{ unter } A \to A/y_x \hookrightarrow \text{Quot}(A/y_x) = \kappa(x)$$

Bemerkung 4.28. f ist keine Funktion $X \rightarrow ?$. Seetze

$$D(f) := \{ x \in X \mid f(x) \neq 0 \}$$

= \{ x \in X \ \ f \notin y_x \}

Definition 4.29. Eine Teilmenge $U \subseteq X = \operatorname{Spec}(A)$ heit offen, falls $F \subseteq A$ Teilmenge existiert, sodass $U = \bigcup_{f \in F} D(f)$.

Wir erhalten die sogenannte Zanski-Topologie. Dabie

$$D(f) \cap D(g) = D(fg)$$
$$\emptyset = D(0)$$
$$x = D(x)$$

Korollar 4.30 (D(f) als Spektrum). Sei $f \in A$ und sei $S_f := \{1, f, f^2, ..., \}$. Dann ist

$$\operatorname{Spec}(S_f^{-1}A) = \{ y \in \operatorname{Spec}(A) \mid y \cap S_f = \emptyset \}$$
$$\{ y \in \operatorname{Spec}(A) \mid f \notin y \}$$
$$= D(f)$$

Satz 4.31 (Abgeschlossenen Teilmengen). Sei $X = \operatorname{Spec}(A), Y \subseteq X$ Teilmenge. Dann

$$Y \subseteq X \ abgeschlossen \Leftrightarrow X \setminus Y \subseteq X \ offen \Leftrightarrow \exists F \subseteq A : X \setminus Y = \bigcup_{f \in f} D(f)$$

Genau dann wenn

$$\exists F \subseteq A \qquad \qquad Y = \bigcap_{f \in F} (X \setminus D(f))$$

$$= \bigcap_{f \in F} \{y \in A \mid f \in y\}$$

$$= \{y \in A \text{ Primideal} \mid (F) \subseteq y\}$$

$$\Leftrightarrow \exists \mathfrak{a} \subseteq A \text{ Ideal} \qquad Y = \{y \in A \text{ Primideal} \mid \mathfrak{a} \subseteq y\}$$

$$= \operatorname{Spec}(A/\mathfrak{a})$$

Satz 4.32 (Funktorialitt). Sei $\varphi A \to B$ ein Homomorphismus on Ringen. Dann ist φ Spec $B \to \operatorname{Spec}(A), q \mapsto \varphi^{-1}(q)$ stetig.

Beweis. Fr $f \in A$ gilt

$$\varphi^{-1}(D(f)) = \{ y \in \operatorname{Spec}(B) \mid \varphi(y) \in D(f) \}$$

$$= \{ q \subset B \text{ Primideal } \mid \varphi^{-1}(q) \in D(f) \}$$

$$= \{ q \subset B \text{ Primideal } \mid f \in \varphi^{-1}(q) \}$$

$$= \{ q \subset B \text{ Primideal } \mid \varphi(f) \notin q \}$$

$$= D(\varphi(f)) \subseteq \operatorname{Spec}(B) \text{ offen.}$$

4D Lemma von Nokagama???

Definition 4.33. Sei $u:M\to N$ ein Homomorphismus von A-Moduln und sei $(m_1,...,m_r)$ ein Erzeugendensystem von M und $(n_1,...,n_s)$ von N. Dann exitsiert

$$T = (t_{ij})_{\substack{1 \le i \le s \\ 1 \le j \le r}} \in M_{s \times r}(A)$$

sodass

$$n(m_j) = \sum_{i=1}^{s} t_{ij} n_i$$

Dann heit T eine Matrix von U bezglich $(m_1,...,m_r)$ und $(n_1,...,n_s)$.

Bemerkung 4.34. 1. T ist nicht eindeutig duch u bestimmt (es sei denn $(n_1, ..., n_s)$ ist Basis)

2. Nicht jede Matrix in $M_{s\times r}(A)$ ist eine Matrix von u bezglich $(m_1,...,m_r)$ und $(n_1,...,n_s)$.

(Es sei denn $m_1, ..., m_r$ ist Basis von M)

Erinnerung 4.35. Sei $T \in M_n(A) = A^{n \times m}, n \in \mathbb{N}.$

Dann existiert $S \in M_n(A)$, sodass $TS = ST = \det TI_m$. Dann ist $S = (s_{ij})$

$$s_{ij} = (-1)^{i+j} \det(T_{ji})$$

(T mit j-ter Spalte und i-ter Spalte gestrichen.)S heit die Adjunkte von T.

Satz 4.36 (Cayley-Hamilton). Sei M ein A-Modul, $(m_1, ..., m_n)$ ein Erzeugendensystem und sei $u: m \to M$ eine A-Lineare Abbildung. Sei $T \in M_r(A)$ eine Matrix von u bezglich $(m_1, ..., m_r)$. Setze

$$\chi_T := \det \underbrace{(XI_r - A)}_{\in M_r(A[x])} = X^r + a_1 X^{r-1} + \dots + a_{r-1} X + a_r$$

Dann gilt

$$\chi_T(u) = u^r + a_1 u^{r-1} + \dots + a_{r-1} + a_r \operatorname{Id}_M = 0 \in \operatorname{End}_A(M)$$

1. Seo $\mathfrak{a} \subseteq A$ Idela, sod ass $u(M) \subseteq \mathfrak{a}M$. Dann $a_i \in \mathfrak{a}^i \forall i = 1, ..., r$.

Beweis. $u(M) \subseteq \mathfrak{a}M$. Es folgt, dass die Koeffizienten von T in \mathfrak{a} liegen. a_i ist Summe von i-fachen Produkten von Koeffizienten von T.

Also $a \in \mathfrak{a}^i \forall i = 1, ..., r$.

Sei nun $T^T = (t_{ji})_{1 \le i, j \le r}$ aber $u(m_j) = \sum_i t_{ji} m_i$.

Dann gilt

$$\sum_{i} (u\delta_{ji}) - t_{ji}m_i = 0$$

Sei nun

$$C := (X\delta_{ii} - t_{ii})_{ii} \in M_r(A[X])$$

wobei $\chi_T = \det(C)$.

Sei

$$D := (d_{ik})_{ik}$$

Die Adjungte von C, also

$$CD = \chi_T I_r \in M_r(A[X]) \tag{**}$$

Betrachte den Homomorphismus $u \in \text{Hom}_A(A)$

$$A[X] \xrightarrow{f \mapsto f(u)} A[u] = \{f(u) \mid f \in A[x]\}$$

A[u] ist nun eine kommutative A-Algebra. Erhalte

$$C(u) = (u\delta_{ij} - t_{ji})_{i,j} \in M_r(A[u])$$

$$C(u) = (\delta_{kj}(u))_{k,i}$$

Multipliziere (\star) mit $\delta_{kj}(u)$.

$$0 = \sum_{i=1}^{r} \sum_{j=1}^{r} \delta_{kj}(u) (u\delta_{ji} - t_{ji}) m_{i}$$
k-te Koeffizienten von
$$DC(u) = \chi_{T}(u)\delta_{ki}$$

Also ...

Lemma 4.37 (Lemma von Nakogama (1. Version)). Sei M eine endlich erzeugter $A-Modul,\ \mathfrak{a}\subseteq A$ ein Ideal, sodass $M=\mathfrak{a}M$.

Dann existerit $f \in 1 + \mathfrak{a} = \{1 + x \mid x \in \mathfrak{a}\}, \text{ sodass } fM = 0$

Beweis. Wende 4.36 auf $u = id_M$: Mit 4.36.1 Gilt

$$u^{r} + a_{1}u^{r-1} + \dots + a_{r-1}u + a_{r} \operatorname{id} = 0$$

 $mit \ a_i \in \mathfrak{a}^i = \mathfrak{a}.$

Also ist $f \operatorname{id}_M = 0$, wobei

$$f = 1 + a_1 + a_2 + \dots + a_r \in 1 + \mathfrak{a}$$

sodass fM = 0

Bemerkung 4.38. (Einschrnkung von A auf Spec (A/\mathfrak{a}))

$$\dots = A/\mathfrak{a} \otimes_A M = M/\mathfrak{a}M = 0$$

Da $f \in 1 + \mathfrak{a}$ folgt

$$\operatorname{Spec}(A/\mathfrak{a}) \subseteq^{(\star)} D(f) = \operatorname{Spec}(S_q^{-1}A)$$

wobei $S_f = \{1, f, f^2, ...\}$, sodass

(Einschrnkung von M aus D_f) = $S_f^{-1}A \otimes_A M = S_f^{-1}M \stackrel{(\star\star)}{=} 0$

Zu (\star) : Sei $x \in \operatorname{Spec}(A)$.

$$x \in \operatorname{Spec}(A/\mathfrak{a}) \Leftrightarrow q(\lambda) = 0 \forall q \in \mathfrak{a}$$

Also gilt fr $f = 1 + g, g \in \mathfrak{a}$ und $x \in \operatorname{Spec}(A/\mathfrak{a})$:

$$f(x) = 1 + g(x) = 1 \neq 0$$

$$\Rightarrow \operatorname{Spec}(A/\mathfrak{a}) \subseteq \{x | f(x) \neq 0\} = D(f)$$

Zu $(\star\star)$: Sei M endlich erzeugt.

Dann $S_f^{-1}M = 0$ genau dann wenn $\exists g \in S_f : gM = 0$. $\Leftrightarrow \exists n \in \mathbb{N} : f^nM = 0 \Leftrightarrow fM = 0$

$$\Leftrightarrow \exists n \in \mathbb{N} : f^n M = 0 \Leftrightarrow fM = 0$$

Lemma 4.39 (Lemma von Nakagana (2. Version)). Sei M ein endlich erzeugter A-Modul, $\mathfrak{a} \subseteq \operatorname{Jac}(A)$ ein Ideal mit $M = \mathfrak{a}M$. Dann M = 0.

Beweis. Sei
$$\mathfrak{a} \subseteq \operatorname{Jac}(A) \stackrel{??}{\Rightarrow} 1\mathfrak{a} \subseteq A^{\times} \stackrel{4.37}{\Rightarrow} \dots$$

Beispiel 4.40. Sei $A=\mathbb{Z},\ M=\mathbb{Z}.$ Dann ist die \mathbb{Z} -lineare Abbildung $M\stackrel{\cdot 2}{\to} \mathbb{Z}$ injektiv aber nicht bijektiv.

Satz 4.41. Sei M ein endlich erzeugter A-Modul und sein $U: M \to M$ eine surjektive A-lineare Abbildung.

Dann ist u ein Isomorphismus.

Beweis. Fass (M, u) als A[X] Modul auf durch $X \cdot m := u(m)$ fr $m \in M$.

Dann ist u genau dann surjektiv, wenn $X \cdot M = M$ ist.

Es folgt durch 4.37 mit $\mathfrak{a} = (X)$, dass es ein $g \in A[X]$ gibt, sodass (a+gX)(M) =

Sei $m \in \text{Ker}(u)$, dann

$$u = (1 + gX)(m) = m + \underbrace{g(u)(m)u(m)}_{=0} = m$$

Also ist u injektiv.

5 Noethersche und Artinsche Ringe

5A Noethersche und Artinsche Moduln

Lemma 5.1. ...

Beweis. ... \Box

Definition 5.2. Ein A-Modul heit **noethersch**, falls die folgenden quivalenten Bedingungen erfllt sind:

1. Jede Aufsteigende Kette von Untermodul
n von ${\cal M}$

$$N_2 \subseteq N_2 \subseteq ... \subseteq M$$

wird stationr

2. Jede Nichtleere Menge von Untermodul
n von M beseitzt ein Maximales Element

Ein A-Modul heit **artinsch**, falls die folgenden quivalenten Bedingungen erfllt sind:

1. Jede absteigende Kette von Untermodul
n von M

$$N_2 \supseteq N_2 \supseteq \dots$$

wird stationr.

2. Jede Nichtleere Menge von Untermodul
n von M beseitzt ein minimales Element.

Definition 5.2. Der Ring A heit **noethersch**, wenn er als A-Modul noethersch ist. quivalent dazu sind:

- 1. Jede aufsteigende Kette von Idealen in A wird stationr.
- 2. Jede nichtleere Menge von Idealen in A besitzt eine maximales Element.

Der Ring A heit $\operatorname{artinsch}$, wenn er als A-Modul artinsch ist. quivalent dazu sind:

- 1. Jede absteigende Kette von Idealen in A wird stationr
- 2. Jede nichtleere Menge von Idealen in A besitzt eine minimales Element.

Beispiel 5.3. -1. 0 ist noethersch und artinsch.

- 0. Jeder Krper ist noethersch und artinsch.
- 1. \mathbb{Z} ist noethersch:

Sei $\mathfrak{a}_1 \subseteq \mathfrak{a}_2 \subseteq \dots$ (\star) eine aufsteigende Kette. Dann $\mathfrak{a}_1 = (x_1), \; x_1 = p_1^{l_1} \cdot \dots \cdot p_r^{l_r}.$

{Idealis die
$$\mathfrak{a}_1$$
 enthalten} $\underset{1:1}{\longleftrightarrow}$ {Teiler von x_1 }/{Einheiten}

Diese Mengen sind endlich also wird (\star) stationr.

 \mathbb{Z} ist nicht artinsch:

Sei $x \in \mathbb{Z}$ $x \neq 0, 1, -1$. Dann

$$(x) \supseteq (x^2) \supseteq (xs) \supseteq \dots$$

ist absteigenden Kette die nicht stationr wird.

2. Sei $p \in \mathbb{Z}$ eine Primzahl. Dann ist der \mathbb{Z} -Modul

$$\{x \in \mathbb{Q}/\mathbb{Z} \mid \exists n \in \mathbb{N} : p^n x = 0\}$$

artinsch aber nicht noethersch. (Wir werden zeigen: A artinscher Ring \Rightarrow noethersch)

3. Sei κ Krper, dann ist $\kappa[T_1, T_2, ...]$ neiht noethersch:

$$(T_1) \subsetneq (T_1, T_2) \subsetneq (T_1, T_2, T_3) \subsetneq \dots$$

Satz 5.4. Sei M ein A-Modul.

Dann ist M genau dann noethersch, wenn jeder A-Untermodul von M endlich erzeugt ist. (Dann ist auch M endlich erzeugt).

Insbesondere ist M genau dann noethersch, wenn jedes Ideal von A endlich erzeugt ist.

Korollar 5.5. Jeder Hauptidealring ist noethersch.

Proposition 5.6. Sei $0 \to M' \xrightarrow{u} M \xrightarrow{v} M'' \to 0$ eine Exakte Sequenz von A-Moduln.

Dann gilt

- 1. M ist genau dann noethersch, wenn M', M'' noethersch.
- 2. M ist genau dann artinsch, wenn M', M'' artinsch.

Beweis. 1. " \Rightarrow ": Es gilt $M' = u(M') \subseteq M$. Es folgt M' ist noethersch.

Sei $N_1 \subseteq N_2 \subseteq ... \subseteq M''$ eine aufsteigende Kette von Untermoduln von M''. Da M noethersch ist, gibt es ein $r \in \mathbb{N}$, sodass $v^{-1}(N_r) = v^{-1}(N_{r+1}) =$

Da v surjektiv ist gilt dann

$$n_r = v(v^{-1}(N_r)) = v(v^{-1}(N_{r+1})) = N_{r+1}$$

Also wird $N_1 \subseteq N_2 \subseteq ...$ stationr.

"
=": Sei $M_1\subseteq M_2\subseteq ...\subseteq M$ eine aufsteigende Kette von Untermoduln in M.

Dann sind auch $u^{-1}(M_1) \subseteq u^{-1}(M_2) \subseteq ... \subseteq M'$ und $v(M_1) \subseteq v(M_2) \subseteq ... \subseteq M''$ aufsteigende Ketten.

Da M, M'' gibt es $r \in \mathbb{N}$, sodass $u^{-1}(M_r) = u^{-1}(M_{r+1}) = \dots$ und $v(M_r) = v(M_{r+1}) = \dots$

Dies ist quivalent (*) dazu, dass $M_r = M_{r+1} = \dots$ Also ist M noethersch.

Beweis von (\star) :

Seien $P \subseteq Q \subseteq M$ Untermoduln mit $u^{-1}(P) = u^{-1}(Q)$ und v(P) = v(Q),

sei $q \in Q$.

Dann existiert ein $p \in P$ mir v(p) = v(q). Dann gilt v(p-q) = 0, also $p-q \in \text{Im}(u)$.

Dann existier auch $m' \in u^{-1}(Q) = u^{-1}(P)$ mit u(m') = p - q und es gilt $u(m') \in P$, also $q \in P$, also $q \in P - u(m')$.

Es folgt, dass P = Q.

2. analoge

Korollar 5.7. Seien $_1,...,M_r$ A-Moduln und sei $r \in \mathbb{N}$. Dann gilt

- 1. $\bigoplus_{i=1}^r M_r$ ist genau dann noethersch, wenn M_i noethersch fr alle i=1,...,r.
- 2. $\bigoplus_{i=1}^r M_r$ ist genau dann artinsch, wenn M_i artinsch fr alle i=1,...,r.

Beweis. Induktion nach r:

Der Fall r = 1 ist klar. Fr r > 1 betrachte die Sequenz

$$\begin{array}{ccc} 0 \rightarrow M_r & \rightarrow & \bigoplus_{i=1}^r M_i \rightarrow 0 \\ m_r & \mapsto & (0,...,0,m_r) \\ & & (m_1,...,m_r) \mapsto (m_1,...,m_{r-1}) \end{array}$$

Mit Proposition 5.6 folgt die Behauptung.

Korollar 5.8. Ein Ring A ist genau dann noethersch bzw artinsch, wenn jeder erzeugte A-Modul noethersch bzw. artinsch ist.

Beweis. Sei A noethersch bzw. artinsch und sei M ein endlich erzeugter A-Modul. Dann gilt $M = A^n/N$ fr $n \in \mathbb{N}$ und $N \subseteq A^n$ Untermodul. Dann ist die Sequnez $0 \to N \to A^n \to M \to 0$ exakt.

Mit 5.7 folgt daraus dass A noethersch ist auch dass A^n noethersch ist.

Mit 5.6 folgt dann dass auch M noethersch ist.

Korollar 5.9. Sei A noethersch bzw artinsch und $\mathfrak{a} \subseteq A$ ein Ideal, dann ist A/\mathfrak{a} noethersch bzw artinsch.

 $Bemerkung\ 5.10.$ Sei A noethersch bzw artinsch und S eine A multiplikative Teilmenge.

Dann ist $S^{-1}A$ noethersch bzw artinsch.

Beweis. Beweis in bung.

5B Lnge von Moduln

Definition 5.11. Sei G eine Gruppe und sei R ein (nicht notwendig kommutativer) Ring, sei M ein R-(links-)Modul.

1. Eine **Kompositionsreihe von** G (bzw **von** M) ist eine Folge $G = G_0 \supsetneq G_1 \supsetneq ... \supsetneq G_r = 1$ von Untergruppen, sodass fr alle i = 1, ..., r die Gruppe

G ein Normalteiler von G_{i-1} ist. (Analog fr die Folge $m=M_0 \supsetneq M_1 \supsetneq \dots \supsetneq M_r=0$ von R-Untermoduln) Dann heit $r \in \mathbb{N}_0$ die **Lnge der Kompositionsreihe**.

- 2. G heit **einfach** falls $G \neq \{0\}$ und falls $\{0\}$ und G die einzigen Normalteiler
 - M heit **einfach**, falls $M \neq 0$ und falls 0 und M die einzigen Untermoduln sind.
- 3. Eine Kompositionsreihe heit maximal oder Jordan-Hlder Reihe falls keine echten Normalteiler (bzw. Untermoduln) eingefgt werden knnen. (quivalent: G_{i+1}/G_1 bzw. m_{i+1}/M_i sind einfach fr alle i=1,...,r)

1. Normalerweise existiert keine Jordan-Hlder-Reihe Bemerkung 5.12.

- 2. Sei R = K Krper und sei V ein K-Vektorraum. Dann ist V genau dann einfach, wenn $\dim_K(v) = 0$. Sei $(v_1,...,v_r)$ eine Basis von V, dann ist $V=\langle v_1,...,v_r\rangle \supseteq \langle v_1,...,v_{r-1}\rangle \supseteq \langle v_1,...,v_r\rangle$... $\supseteq \langle v_1 \rangle \supseteq 0$ eine JH-Reihe.
- 3. Jede Endliche Gruppe besitzt eine JH-Reihe.

Beispiel 5.12. Sei $R = \mathbb{Z} = M$ dann kann man in jede Folge $\mathbb{Z} = n_o \mathbb{Z} \supseteq$ $n_1\mathbb{Z} \supseteq \dots \supseteq n_r\mathbb{Z} = 0$ mit $n_0 = 1, n_1 > 1, n_r = 0$ zwischen $n_{r-1}\mathbb{Z}$ und $n_r\mathbb{Z}$ die Untergruppe $2n_{r-1}\mathbb{Z}$ einfgen.

Proposition 5.13. Sei A kein kommutativer Ring, M ein A-Modul, dann gilt M ist genau dann ein einfacher A-Modul wenn M = A/m fr maximales Ideal $m \subset A$.

Beweis. " \Leftarrow ": gilt, da A/m Krper.

" \Rightarrow ": Sei M einfach $x \in M$, $x \neq 0$. Dann ist Ax = M also ist $u : A \to M$, $x \mapsto M$ ax surjektiv. Damit ist fr $\mathfrak{a} = \text{Ker}(u)$, dass $M = A/\mathfrak{a}$. Da

$$\{\text{Untermoduln von } A/\mathfrak{a}\} \underset{1:1}{\longleftrightarrow} \{\text{Ideale } b \subseteq A \text{ mit } b \supseteq \mathfrak{a}\}$$

muss a maximal sein.

Satz 5.14 (Satz von Jordan-Hilder (simple Variante)). Sei G eine Gruppe (bzw. R ein nicht notwendig kommutativer Ring und M ein R-Modul). Dann besitzen je zwei JH-Reihen von G bzw. M dieselbe Lnge.

In diesem Fall kann jede Kompositionsreihe zu einer JH-reihe ergnzt werden.

Bemerkung (Satz von Hlder (genaue Variante)). Seien $G = G_0 \supsetneq \supsetneq G_1 \supsetneq ... \supsetneq$ Dann ist r = s und es existieren Permutationen $\sigma \in S_r$, sodass $G_{i-1}/G_i = G'_{\sigma(i)-1}/G'_{\sigma(i)}$.

Definition 5.15. Sei G eine Gruppe. Dann heit

$$l(G) := \begin{cases} \infty & G \text{ beseitzt keine JH-Reihe} \\ r & G \text{ beseitzt eine JH-Reihe der Lnge } r \end{cases}$$

die Lnge von G.

Sei M eine R-Modul. Dann heit

$$l(M) := \begin{cases} \infty & M \text{ beseitzt keine JH-Reihe} \\ r & M \text{ beseitzt eine JH-Reihe der Lnge } r \end{cases}$$

die Lnge von M.

Bemerkung. Dabei ist l(M) = 1 genau dann wenn M einfach und l(M) = 0 genau dann wenn M = 0.

Beweis. (fr Moduln, fr Gruppen analog)

Sei M ein R-Modul.

Setze $l(M) := \inf\{\text{Lngen von JH-Reihene von } M\} \in \mathbb{N}_0 \cup \{\infty\}$

1. $N \subseteq M$ Untermodul $\Rightarrow l(N) \leq l(M)$. Falls $l(M) = \infty$.

Man kann also annehmen, dass M eine JH-Reihe $M=M_0 \supsetneq M_1 \supsetneq \dots \supsetneq M_r=0$ beitzt mit r=l(M).

Sei $N_i := N \cap M_i, \forall i = 0, ..., r.$

Die Einbettung $N_{i-1}/N_i \hookrightarrow M_{i-1}/M_i$ ist injektiv, da $M_i \cap N_{i-1} = N_i$. Daraus folgt (da M_{i-1}/M_i einfach ist), dass N_{i-1}/N_i entweder einfach oder = 0 ist.

Dann kann die Reihe $N=N_0\supseteq N_1\supseteq ...\supseteq N_r=0$ durch weglassen einger Terme zu einer JH-Reihe werden.

Dann gilt $l(N) \leq l(M)$.

- 2. Aus $N\subseteq M$ Untermodul mit $l(N)=l(M)<\infty$ folgt N=M: Wie in 1) gilt $M_{i-1}/M_i\tilde{=}N_{i-1}/N_i$, da l(N)=l(M). Aus $M_r=N_r=0$ folgt $M_{r-1}=N_{r-1}$ und da $N_{r-2}/N_{r-1}=M_{r-2}/M_{r-1}$ folgt auch $N_{r-2}=M_{r-2}$. Induktiv gilt damit $N_0=N=M_0=M$
- 3. Jede Kompositions Reihe von M besitzte Lnge $\leq l(M)$: $(\Rightarrow$ Alle JH-Riehen haben die selbe Lnge) Sei $M=M_0\supsetneq M_1\supsetneq \ldots \supsetneq M_r=0$ eine Kompositions-Reihe. Aus 1),2) folgt $l(M_i)\leq l(M_{i-1})$ fr alle i=1,...,r. Daraus folgt $s\leq l(M)$.
- 4. Sei $M = M_0 \supsetneq M_1 \supsetneq ... \supsetneq M_s = 0$ eine Kompositions-Reihe, $l(M) < \infty$: Wenn s = l(M), dann ist (M_i) JH-Reihe. Wenn s < l(M), dann ist (M_i) keine JH-Reihe und die Kompositions-Reihe kann ergnzt werden.

Satz 5.16. Sei $0 \to M' \xrightarrow{u} M \xrightarrow{v} M'' \to 0$ eine exakte Sequenz von R-Moduln. (Dabei ist R nicht notwendiger weise kommutativ) Dann ist l(M) = l(M') + l(M'').

(Insbesondere ist $l(M) < \infty$ genau dann wenn $l(M'), l(M'') < \infty$) Fr Gruppen ergibt sich ein anderes Resultat.

Beweis. Sei $M=M_0 \supsetneq M_1 \supsetneq ... \supsetneq M_r=0$ eine Kompositions-Reihe von M'. Dann ist $M \supsetneq u(M')=u(M'_0) \supsetneq ... \supsetneq u(M'_r)=0$ eine Kompositions-Reihe und (M''_i) ist eine Kompositionsreihe von M''. Dann folgt duch v^{-1} , dass es auch eine Kompositionsreihe von M.

Insbesondere folgt aus $l(M') = \infty$ oder l(M'') = 0, dass $l(M) = \infty$. Sei $l(M'), l(M'') < \infty$ und sei $M' = M'_0 \supsetneq M'_1 \supsetneq \dots \supsetneq M'_r = 0$ die JH-Reieh von M' und $M'' = M''_0 \supsetneq M''_1 \supsetneq \dots \supsetneq M''_r = 0$ von M''.

Dann ist

$$M=v^{-1}(M_0'')\supsetneqq\ldots\supsetneqq v^{-1}(M_s'')=\mathrm{Ker}(v)=u(M')\supsetneqq u(M_1')\supsetneqq\ldots\supsetneqq u(M_r')=0$$

eine Kompositions-Reihe mit einfachen Subquotienten, also eine JH-Reihe. Diese hat Lnge r + s = l(M') + l(M'').

Satz 5.17. Sei M ein A-Modul (A ist kommutativer Ring). Dann ist quivalent:

- 1. $l(M) < \infty$
- 2. M ist artinsch und noethersch.

Beweis. $1 \Rightarrow 2$:

 $\operatorname{Aus} l(My\infty)$ folgt , dass jede nicht stationre Kette endlich ist und damit 2. 2 \Rightarrow 1:

Sei o.E. $M \neq 0$, M noethersch.

Dann folgt, dass $\{N \subsetneq M$ Untermodul $\}$ besitzt maximale Elemente, etwas M_1 . Induktiv gilt $M = M_0 \subsetneq M_1 \subsetneq M_2 \subsetneq ...$, woebi M_{i-1}/M ist einfach. Da M artinsch ist folgt, dass es ein $r \in \mathbb{N}_0$ gibt, sodass $M_r = 0$.

Beispiel5.18. Sei KKrper, Vein K-Vektorraum. Dann sind quivalent:

- 1. $\dim_K(V)y\infty$
- 2. $l_k(V)y\infty$
- 3. V ist noethersch
- 4. V ist artinsch

Es folgt auch, dass dim V = l(V).

5C Noethersche Ringe

Wenn Anoethersch, so ist auch A/\mathfrak{a} noethersch fr alle $\mathfrak{a} \subseteq A$ Ideal und es auch $S^{-1}A$ noethersch fr alle $S \subseteq A$ multiplikativ.

Definition 5.19. Sei $\varphi: A \to B$ eine A-Algebra.

- 1. Die A-Algebra B heit **endlich erzeugt** oder **von endlichem Typ**(v.e.T.), wenn $b_1, ..., b_n \in B$ existierne, die B erzeugen. (quivalent: $B = A[X 1, ..., X_n]/\mathfrak{a}$ fr $\mathfrak{a} \subseteq A[X 1, ..., n]$ Ideal.)
- 2. Die A-Algebra B heit **endlich**, falls B als A-Modul endlich erzeugt ist.

Bemerkung 5.20. Sei $\varphi: A \to B$ eine A-Algebra

- 1. B endliche A-Algebra,s o folgt, dass B eine A-Algebra v.e.T.
- 2. Sei A=K Krper, dann ist K[X] eine K-Algebra v.e.T., aber K[X] ist nicht endliche K-Algebra, da $\dim_K(K[X])=\infty$.

Satz 5.21 (Hilbertscher Basissatz). Sei $\varphi:A\to B$ eine A-Algebra v.e.T. und sei A noethersch.

 $Dann\ ist\ B\ noethersch.$

Beweis. 1. Es gilt B ist genau dann v.e.T. wenn $B = A[X-1,...,X_n]/\mathfrak{a}$. Also ist o.E. $B = A[X-1,...,X_n] = (A[X-1,...,X_{n-1}])[X_n]$. Induktiv folgt o.E. B = A[X].

2. Sei $\mathfrak{a} \subseteq A[X]$ Ideal und sei

 $I = \{a \in A \mid \exists f \in \mathfrak{a} \text{ mit } f = aX^d + (\text{Terme niederen Grades})\}.$

Da \mathfrak{a} Ideal folgt, dass I Ideal und da A noethersch auch, dass I endlich erzeugt (etwa von $a_1, ..., a_n$).

Whle nun $f_1, ..., f_n \in \mathfrak{a}$, sodass $f_i = a_i X^{r_i} + (\text{Terme niederer Ordnung})$. Sei nun $\mathfrak{a}' := (f_1, ..., f_n) \subseteq \mathfrak{a}$ und $r := \max\{r_i \mid i = 1, ..., n\}$

3. Fr alle $f \in \mathfrak{a}$ existiert $g \in \mathfrak{a}'$, so dass $\deg(f - g) < r$: Sei $f = aX^m + (\text{Terme niedere Ordnung}), s \in I$.

Im Fall m < r folgt die Behauptung.

Falls $m \ge r$ Setze $a = b_1 a_+ ... + b_n a_n$ mit $b_i \in A$. Dann hat

$$f - \underbrace{\sum_{i=1}^{n} b_i f_i X^{m-r_r}}_{\in \mathfrak{a}}$$

Grad < m.

Induktiv folgt die Behauptung.

4. Sei $M = A + AX + ... + AX^{n-1}$ eine endlich erzeugter A-Modul. 3 bedeutet, dass $\mathfrak{a} = \mathfrak{a}' + (\mathfrak{a} \cap M)$, sodass (da A noethersch) $\mathfrak{a} \cap M$ als A-Modul endlich erzeugt von $g_1, ..., g_r$.

Dann ist $\mathfrak{a} = (f_1, ..., f_n, g_1, ..., g_r).$

Korollar 5.22. Sei K Krper. Dann ist $K[X_1,...,X_n]$ noethersch.

5D Artin-Ringe

Lemma 5.23. In einem Artinring A ist jedes Primideal ein maximales Ideal.

Beweis. Sei $\mathfrak{p} \subset A$ Primiedeal, dann ist $B := A/\mathfrak{p}$ eine nullteilerfreier Artinring. Behauptung: B ist Krper (\mathfrak{p} ist maximal).

Sei $x \in B, 0 \neq x$. Betraahte die Kette $(x) \supseteq (x^2) \supseteq \dots$

Da B Artinring ist gibt es ein $n \in \mathbb{N}$, sodass $(x^n) = x^{n+1}$, also $x^n = yx^{n+1}$ fr ein $y \in B$.

Daraus folgt (da x kein Nullteiler) dass 1 = xy, also $y \in B^{\times}$.

Satz 5.24. Jeder Artinring beseitzt nur endlich viele Primideale.

Beweis. Sei $\Sigma := \{ m_1 \cap ... \cap m_r \mid r \geq 0 m m_i \subset A \text{ maximale Ideale} \}$. Dann folgt aus $A \in \Sigma$, dass $\sigma \neq \emptyset$.

Da A artinsch folgt, dass Σ ein minimales Element beseitzt (etwa $m_1 \cap ... \cap m_n$). Sei $m \subset A$ ein maximales Ideal. Dann ist $m \cap m_1 \cap ... \cap m_n = m_1 \cap ... \cap m_n$.

Dann ist $m \supset m_1 \cap ... \cap m_n = m_1 \cdot ... \cdot m_n$. Dann gibt es mit ?? ein i, sodass $m \supseteq m_i$. Da m_i minimal folgt, dass es sogar ein i gibt mit $m = m_i$.

Also gilt $\{m \subset A \text{maximales Ideal}\} = \{m_1, ..., m_n\}.$

Dann folgt, mit 5.23 die Behauptung.

Lemma 5.25. Sei A Artinring, dann exitsiert $k \in N$, sodass $(Nil(A))^k = 0$.

Beweis. Da A artinsch, wird $Nil(A) \supseteq Nil(A)^2 \supseteq ...$ stationr.

Also exitsiert ein $k \in \mathbb{N}$, sodass $Nil(A)^k = Nil(A)^{k+1} = \dots =: \mathfrak{a}$.

Annahme: $\mathfrak{a} \neq 0$.

Sei $\Sigma = \{b \supseteq A \text{ Ideal } | b\mathfrak{a} \neq 0\}$. Dann g
til $A \in \Sigma$. DaA artinsch gibt es ein maximales elemet
n $b_0 \in \Sigma$.

Sei nun $x \in b_0$ mit $x\mathfrak{a} \neq 0$. Dann ist $(x)\mathfrak{a} \neq 0$ und es folgt $(da(x) \subseteq b_0)$, dass $(x) = b_0$.

Da auch $(x\mathfrak{a})\mathfrak{a} = x\mathfrak{a}^2 = x\mathfrak{a} \neq 0$ gilt $(da \ x\mathfrak{a} \subseteq (x))$, dass $x\mathfrak{a} = (x)$.

Also ist x = xy fr ein $y \in \mathfrak{a} = \text{Nil}(A)^k \subseteq \text{Nil}(A)$.

Aber mit $x = xy = xy^2 = \dots$ da y nilpotent folgt x = 0.

Theorem 5.26. Sei A ein Ring dann sind guivalent

- 1. A ist artinsch
- 2. A ist noethersch und jedes Primiedeal ist maximal
- 3. $l_A(A) < \infty$.

Beweis. 3) \Rightarrow 1): gilt mit 5.17

- $3) \Rightarrow 2)$: ???
- 1) \Rightarrow 3): Aus 5.24 folgt, dass es endlich viele maximale Ideale gibt, etwa $m_1 \cap \dots \cap m_n = m_1 \cdot \dots \cdot m_n$.

Mit 5.25 folgt, dass es ein $k \in \mathbb{N}$ gibt, sodass $m_1^k m_2^k \cdot ... \cdot m_n^k = \text{Nil}(A)^k = (0)$.

Schriebe $(0) = M_1 M_2 ... M_s$ mit $M_i \subset A$ maximal.

Behauptung: Fr j = 0, ..., s gilt $l_A(M_1M_1, ..., M_j) < \infty$:

Fr j = s gilt die Behauptung.

Fr $j \leq s$ ist

$$0 \to \underbrace{M_1...M_j M_{j+1}}_{\text{Lnge} < \infty} \to M_1...M_j \to \underbrace{\left(M_1...M_j / M_1...M_{j+1}\right)}_{A / M_{j+1} - VR} \to 0$$
ist artinsch
(?? hat endliche Lnge

Es folgt, dass $l_A(M_1...M_j) < \infty$.

2) \Rightarrow 3): Sei $l_A(A) = \infty$ und Sei $\Sigma := \{ \mathfrak{a} \subseteq A \mid l_A(A/\mathfrak{a}) = \infty \}$ mit $(0) \in \Sigma$.

Dann folgt, da A noethersch, dass Σ maximales Element \mathfrak{a}_0 besitzt.

Behauptung: \mathfrak{a}_0 ist Primideal.

Sei $a, b \in A : ab \in \mathfrak{a}_0, a \notin \mathfrak{a}_0$.

Betrachte nun die exakte Sequenz

$$0 \to A/\underbrace{\{x \in A \mid xa \in \mathfrak{a}_0\}}_{=:\mathfrak{a}'} \xrightarrow{\cdot a} A/\mathfrak{a}_0 \to \underbrace{A/(\mathfrak{a}_0 + (a))}_{l_A(\cdot) < \infty}$$

Dann folgt $l_A(A/\mathfrak{a}') = \infty$.

While $b \neq \mathfrak{a}_0$. $\geq \mathfrak{a}_0 + (b) \supseteq \mathfrak{a}_0$.

Dann folgt $l(A/\mathfrak{a}') < l(A/\mathfrak{a}_0 + (b)) < \infty$, da \mathfrak{a}_0 maximal mit $l(A/\mathfrak{a}_0) = \infty$.

Aus dem Wiederspuch folgt, dass \mathfrak{a}_0 ein maximales ideal ist,

sodass $l(A/\mathfrak{a}_0) = 1 \neq \infty$. Widerspruch!

Korollar 5.27. Sei A ein lokaler Artinring.

 $Dann \operatorname{Spec}(A) = \{m\} m \ m = \operatorname{Nil}(A) \ und \ es \ gibt \ ein \ k, \ sodass \ m^k = 0, \ A \backslash m = A^{\times}.$

Beispiel. Sei A ein lokaler noetherscher Ring und $m \subset A$ maximal.

Dann gilt fr alle $n \ge 1$, dass A/m^n ein lokaler Artinring ist.

Man kann zeigen, dass $\bigcap_{n\geq 1} m^n = \{0\}.$

Definiere eine Metrik auf \bar{A} : $0 < \rho 1, \rho \in \mathbb{R}$ mit $d(x,y) := \rho^n$, falls $x - y \in m^n \backslash m^{n+1}$.

Approximation von

 $\hat{A} := \text{Vervollstdnigung von } A \text{ bezglich } d \text{ durch } A/m^n$

Beispiel. Sei $\mathbb{Z}(p) := \{ \frac{a}{b} \in \mathbb{Q} \mid p \text{ teilt nicht } b \}$ fr p Primzahl.

Satz 5.28 (Struktursatz fr Artinringe). Jeder Artinring A ist Produkt von endlichen lokalen Artinringen.

Beweis. Seien $m_1, ..., m_n \subset A$ die maximalen Ideal.

Dann existier ein $k \in \mathbb{N}$, sodass $0=m_1^k...m_n^k=m_1^k\cap...\cap m_2^k$. Mit derm Chinisischen Restsatz folge, dass

$$A \xrightarrow{\sim} \prod_{i=1}^{n} \underbrace{A/m_i^k}_{\substack{\text{lokale} \\ \text{Artin-Ring}}}$$

ist ein Isomorphismus.

6 Ganzheit

6A Ganze Ring-Homomorphismen

Definition 6.1. Sei $\varphi: A \to B$ ein Ring Homomorphismus:

- 1. Ein Element $b \in B$ heit **ganz ber** $A(\text{bezglich } \varphi)$ falls ein normiertes Polynom $f \in A[X]$ exitsiert, sodass $f(b) = b^n + \varphi(a_{n-1})b^{n-1} + ... + \varphi(a_0) = 0$.
- 2. φ heit **ganz**, falls jedes Elemtn $b \in B$ ganz ber A ist.

Bemerkung 6.2. 1. Sei $\varphi: A \to B$ ein surjektiver Ring Homomorphismus.

Dann ist φ ganz:

Sei $b \in B$. While $a \in A$ mit $\varphi(a) = b$.

Dann f(b) = 0, wobei f = X - a.

2. Sei $\varphi: A \to B$ ein Ring-Homomorphismus, $b \in B$. Dann ist b ganz ber A genau dann wenn b ganz ber $\varphi(A)$.

Beispiel 6.3. Sei A ein faktorieller Ring, K = Quot(A). Dann ist $x \in K$ ganz ber A genau dann wenn $x \in A$.

Beweis. \Rightarrow Sei $x=\frac{1}{b}$ mit $a,b\in A,b\neq 0$, sodass kein Primielement a und b teilt.

Da x ganz ist folgt

$$\left(\frac{a}{b}\right)^n + a_{n-1} \left(\frac{a}{b}\right)^{n-1} + \dots + a_1 \frac{a}{b} + a_0 = 0$$

fr $a_0, ..., a_{n-1} \in A$: Multiplikaiton mit b^n ergibt:

$$a^{n} + ba_{n-1}a^{n-1} + \dots + b^{n-1}a_{1}a + b^{n}a_{0} = 0$$

Sei p ein Primteiler von b, also p teilt a^n . Dann teilt p auch a. Widerspruch! Also $b \in A^{\times}$, also $x \in A$.

Beispiel. Sei $A = \mathbb{Z}$, $x = \frac{1}{2}$, f(x) = 0 mit f = 2X - 1

Bemerkung (Anwendung). Sei $f = X^n + a_{n-1}X^{n-1} + ... + a_0 \in \mathbb{Z}[X]$. Falls f(x) = 0 fr $x \in \mathbb{Q}$, dann $x \in \mathbb{Z}$ und x Teiler von a_0 .

Satz 6.4. Sei $\varphi: A \to B$ ei Ring-Homomorphismus und $b \in B$. Dann ist quivalent:

- 1. b ist ganz ber A.
- 2. $A[b] = \{f(b) \mid f \in A[T]\} = \{\sum_{i=1}^{n} \varphi(a_i)b^i \mid a_i \in A, n \in \mathbb{N}\}$ ist eine endliche A-Algebra (d.h. A[b] ist als A-Modul endlich erzeugt)
- 3. A[b] ist in einem Unterring $C \subseteq B$ enthalten, sodass C eine endliche A-Algebra ist.

Beweis. • 1) \Rightarrow 2): b ist ganz ber A, also gibt es $a_i \in A$, sodass $b^n = -(\varphi(a_{n-1})b^{n-1} + \dots + \varphi(a_0))$. Dann auch

$$b^{n+r} = -(\varphi(a_{n-1})b^{n-1+r} + \dots + \varphi(a_0)b^r)$$

fr alle $r\geq 0.$ Dann ist A[b] der A-Modul, der von $1,b,...,b^{r-1}$ erzeugt wird.

- 2) \Rightarrow 3): C = A[b].
- 3) \Rightarrow 1): Sei $U: C \to C, c \mapsto bc$. Mit 4.36 folgt, dass es $a_i \in A$ gibt, sodass $u^n + a_{n-1}u^{n-1} + ... + a_0 = 0 \in \text{Hom}_A(C)$. Dann ist aber (mit b = u(1))

$$b^{n} + \varphi(a_{n-1})b^{n-1} + \dots + \varphi(a_{0}) = 0$$

Satz 6.5. Sei $\varphi: A \to B$ ein Ring Homomorphismus. Dann sind quivalent:

- 1. φ endlich
- 2. φ ist von endlichem Typ und ganz
- 3. Es gibt $b_1,...,b_n \in B$, sodass b_i ganz ber A ist und $B = A[b_1,...,b_n]$

Beweis. durch Ringschluss:

- 1) \Rightarrow 2): nach 6.4
- 2) \Rightarrow 3): Betrachte die Abbildung $A[T_1,...,T_n] \xrightarrow{\sim} B$, wobei $b_i := \psi(T)$.
- 3) \Rightarrow 1): Sei $B = A[b_1, ..., b_n]$ mit b_i ganz ber A. Wir wissen, dass $A[b_1]$ eine endliche A-Algebra ist. Sei nun $A_k := A[b_1, ..., b_k]$ fr $k \leq n$. Dann ist $A_k = A_{k-1}[b_k]$

Satz 6.6. Seien die Ring-Homomorphismen $\varphi: A \to B$, $\psi: B \to C$ ganz. Dann ist auch $\psi \circ \varphi$ ganz.

Beweis. OE (referenz auf bem) $A \subseteq B \subseteq C$. Sei $x \in C$, also existieren $b_0,...,b_{n-1} \in B$ sodass $x^n + b_{n-1}x^{n-1} + ... + b_0 = 0$.

Betrachte nun $B' = A[b_0, ..., b_{n-1}]$. Dann ist B' ein endlich erzeugter A-Modul und B'[x] ist ein endlich erzeugter B'-Modul.

(d.h. es gibt surjektive Abbildungen $A^r \to B', (B')^k \to B'[x]$, also auch surjektives $B^{rk} \to B'[x]$)

Also ist B'[x] ein endlich erzeugter A-Modul und damit ist nach 6.4 x ganz ber A.

6B Ganzer Abschluss

Korollar 6.7. Sei $\varphi: A \to B$ ein Ring-Homomorphismus. Dann ist

$$C := \{ b \in B \mid b \text{ ist ganu ber } A \} \tag{6.7.1}$$

ein Unterring von B.

Beweis. Sei $x, y \in C$. Betrachte A[x, y] (ist nach 6.5 endliche A-Algebra). Dann ist mit 6.5 die Abbildung $A \to A[x, y]$ ganz. Insbesondere sind $x \cdot y, x \pm y \in A[x, y]$ ganz ber A.

Definition 6.8. 1. Sei $\varphi A \to B$ ein Ring-Homomorphismus. Der Unterring C (aus 6.7.1) wird der **ganze Abschluss von** A **in** B genannt.

2. A heit ganz abgeschlossen, falls $C = \varphi(A)$.

Korollar 6.9. Sei $\varphi: A \to B$ ein Ring, Homomorphismus und sei C der ganze Abschluss von A in B, dann ist C ganz abgeschlossen.

Beweis. Sei $b \in B$ und b ganz ber C (bezglich der Inklusion $C \subseteq B$). Da C ganz ber Aist, ist auch b ganz ber A (vgl 6.6). Also ist $b \in C$.

Bemerkung6.10. Sei $\varphi:A\to B$ ein ganzer Ring-Homomorphismus, $\mathfrak{b}\subseteq B$ ein ideal. Dann ist

$$A/\varphi^{-1}(\mathfrak{b}) \to B/\mathfrak{b}$$

auch ganz.

Satz 6.11. Sei $\varphi: A \to B$ ein Ring-Homomorphismus, $C \subseteq B$ der Ganze Abschluss von A in B und sei $S \subseteq A$ ein multiplikative Teilmenge. Dann ist $\varphi(S)^{-1}C$ der ganze Abschluss von $S^{-1}A$ in $\varphi(S)^{-1}B$. Insbesondere ist $\varphi(S)^{-1}B$ ganz ber $S^{-1}A$, falls φ ganz ist.

Beweis. OE $A\subseteq B\subseteq C$. Wir zeigen zuerst, dass $S^{-1}C$ ganz ber $S^{-1}A$. Sei dazu $\frac{c}{s}\in S^{-1C}$. Es existieren a_i , sodass $c^na_{n-1}c^{n-1}+\ldots+a_0=0$. Dann ist

$$\left(\frac{c}{s}\right)^n + \left(\frac{c}{s}\right)^{n-1} \underbrace{\left(\frac{a_{n-1}}{s}\right)}_{\in S^{-1}A} + \dots + \frac{a_0}{s^n}$$

ist Ganzheitsgleichung fr $\frac{c}{s}$ ber $S^{-1}A,$ also ist $\frac{c}{s}$ ganz ber $S^{-1}A.$ Sei nun $\frac{b}{s}\sin S^{-1}B$ ganz ber $S^{-1}A,$ d.h. es gibt $a_i\in A, s_i\in S,$ sodass

$$\left(\frac{b}{s}\right)^n + \frac{a_{n-1}}{s_{n-1}} \left(\frac{b}{s}\right)^{n-1} + \dots + \frac{a_0}{s_0} = 0 \tag{*}$$

Sei $t = s_0 \cdot ... \cdot s_{n-1}$. Multipliziere (\star) mit $(ts)^n$, dann ist

$$(tb)^n + a_{n-1}x_1(tb)^{n-1} + \dots + x_n = 0$$

(wobei $x_1, ..., x_n \in A$)Ganzheitsgleichung von $t \cdot B$ ber A.

Definition 6.12. Ein Nullteiler freie Ring heit ganz Abgeschlossen(ohne Spezifizierung worin) oder **normal**, falls A ganz abegschlossen in Quot(A).

Satz 6.13. Jeder faktorielle Ring ist normal

Beweis. in Beispiel 6.3.

6CGoing-Up

Satz 6.14. Sei B ein nulltieiler freier Ring und $A \subseteq B$ ein Unterring und sei B ganz ber A.

Dann ist A genau dann ein Krper wenn B ein Krper ist.

• Sei A Krper und $y \in B$ mit $y \neq 0$. Nehem Ganzheitsgleichung von y ber A mit minimalem Grad:

$$y^n + a_{n-1}y^{n-1} + \dots + a_0 = 0$$

Da Bnullteilerfrei ist, gilt $a_0\neq 0.$ (Nehme an , dass $a_0=0,$ dann $y(y^{n-1+a_{n-1}y^{n-2}+\ldots+a_1})=0$ also Grad

Sei $\delta := -a_0^{-1}(y^{n-1} + a_{n-1}y^{n-2} + ... + a_1) \in B$ mit $\delta y = 1$. Also ist B

• Sei nun B Krper, $x \in A \setminus \{0\}$. Es gilt $x^{-1} \in B$, also ganz ber A. Also finden wir zur Gleichung $x^{-m} + a_{m-1}x^{-m+1} + ... + a_0 = 0$ durch Multiplikation mit x^{m-1}

$$x^{-1} + \underbrace{a_{m-1} + a_{m-2} + \dots + a_0 x^{m-1}}_{\in A} = 0$$

Also liegt $x^{-1} \in A$.

Korollar 6.15. Sei $\varphi: A \to B$ eine ganzer RIng-Homomorphismus. Sei $q \subseteq B$ Primideal, $p := \varphi^{-1}(q)$. Damit ist q maximal gdw p maximal.

Beweis. Es gilt $A/p \to B/q$ ist ganz. Satz 6.14 gibt uns, dass A/p genau dann Krper ist, wenn B/q Krper ist. Es folgt die Behauptung

Korollar 6.16. Sei $\varphi: A \to B$ ein ganzer Ring-Homomorphismus, seien $q \subseteq$ $q' \subset B$ Primideale, so dass $p := \varphi^{-1}(q) = \varphi^{-1}(q')$. Dann gilt q = q'

Beweis. In $A_p = S^{-1}A$, $S = A \setminus p$ ist pA_p maximal. Betrachte

$$\begin{array}{ccc}
A & \xrightarrow{\varphi} & B \\
\downarrow a \mapsto \frac{a}{1} & & \downarrow b \mapsto \frac{b}{1} \\
A_p & \xrightarrow{\psi = S^{-1}\varphi} & B_p
\end{array}$$

Wobei $pA_p \subset A_p$ und $qB_p \subseteq B_p = \varphi^{-1}SB$ und auch $qB_p \subseteq qB_p$ Primideal. Mit 6.11 folgt ψ ist ganz.

Also gilt OE $p \subset A$ ist maximal, sodass mit 6.15 folgt, dass q, q' maximal sind und da $q \subseteq q'$ gilt q = q'.

Satz 6.17. Sei $\varphi: A \to B$ ein injektiver ganzer Ring Homomorphismus. Dann existiert fr jedes Primideal $p \subset A$ ein Primideal $q \in B$ mit $\varphi^{-1}(q) = p$. (D.h. Spec $(B) \to \text{Spec}(A), q \mapsto \varphi^{-1}(q)$ ist surjektiv.)

Beweis. Ersetze A durch A_p , dann gilt OE, dass $p\subset A$ maximal und A lokal ist

Da φ injketiv ist folgt $B \neq 0$.

Also existiert ein maximales Ideal $q \subseteq B$ und mit 6.15 ist $\varphi^{-1}(q)$ maximal, also $\varphi^{-1}(q) = p$.

Theorem 6.18 (Going Up). Sei $\varphi: A \to B$ ein ganzer injektiver Ring-Homomorphismus und seien $n \geq m \geq 0$ ganze Zahlen. Sei $p_i \subsetneq \ldots \subsetneq p_m \subsetneq \ldots \subsetneq p_n \subset A$ eine Kette von Primidealen und sei $q_1 \subseteq \ldots \subseteq q_n \subset B$ eine Kette von Primidealen mit $\varphi(q_i) = p_i$ fr i = 1, ..., m.

Dann gilt $q_1 \subsetneq ... \subsetneq q_m$ und es existiert eine Kette von Primidealen $q_1 \subsetneq ... \subsetneq q_m \subsetneq q_{m+1} \subsetneq ... \subsetneq q_n \subset B$ mit $\varphi^{-1}(q) = p_i$ fr alle i = 1, ..., n.

Beweis. Sei OE n>m, $n_1=1,$ m=0. Dann folgt mit 6.17, dass $q_1 \subsetneq \ldots \subsetneq q_m$: Vollstndige Induktion: Sei OE m=1, n=2. Betrachte

$$\begin{array}{ccc}
A & \xrightarrow{\varphi} & B \\
\downarrow & & \downarrow \\
A/p_1 & \xrightarrow{\overline{\varphi}} & B/q
\end{array}$$

Wobei $\overline{\varphi}$ ganz und injektiv ist, da $\varphi^{-1}(q_i) = p_1$ und $p_2/p_1 \subseteq A/p_1$. Dann folgt mit 6.17, dass es das Primideal $\overline{q_2} \subset B/q_i$ gibt mit $\overline{\varphi}^{-1}(\overline{q_2}) = p_2/p_1$. Dass ist $\overline{q_2} = q_2 \subset B$, wobei q_2 Primideal mir $q_2 \supseteq q_1$ und $\varphi^{-1}(q_2)p_2$.

7 Irreduziblitt

7A Satz von Gau

Erinnerung 7.1. 1. Sei A ein nullteilerfreier Ring. Ein Element $p \in A$ heit

- (a) **irrefuzibel**, falls $0 \neq p \notin A^{\times}$ und falls p = ab mit $a, b \in A$, so gilt $a \in A^{\times}$ oder $b \in A^{\times}$.
- (b) **Primelelement**, falls $p \neq 0$ und (p) ist Primideal.

Es gilt, wenn p Primelement ist, so ist p irreduzibel.

- 2. A heit **faktoriell**, falls er die folgenden quivalenten Bedingung erfllt:
 - (a) Jedes $0 \neq a \notin A^{\times}$ ist Produkt von irreduziblen Elemente und diese Zerlegung ist eindeutig bis auf Reihenfolge und Multiplikation mit Einheiten.
 - (b) Jedes Elemente $o \neq a \notin A^{\times}$ ist Produkt von Primelemten.
 - (c) Jedes Irreduzible Element ist ein Primelement und jede aufsteigende Kette von Hauptidealen wird stationr.

Beweis. • b) \Rightarrow a): Einfhrung in die Algebra (Beweis HIR sind faktoriell)

- \bullet a) \Rightarrow c):
 - 1. Sei $p \in A$ irreduzibel. Seien $a, b \in A$ mit $ab \in (p)$. Setze ab = dp mit $d \in A$. Seien $a = p_1...p_r$, $b = q_1...q_s$ und $d = l_1...l_t$ irreduzible Zerlegungen. Dann

$$p_1..p_rq_1...q_s = pl_1...l_t$$

Aus der eindeutigkeit folg, dass es ein i gibt sodass $(p) = (p_i)$ oder ein j, sodass $(p) = (q_j)$.
Daraus folgt, p teilt a oder b.

2. gibt, dass jdese Elemente $\neq 0$ hat nur endlich viele Teiler. (Bis auf Multiplikation mit Einheiten).

Mit Anderen Worten: Fr jedes Hauptideal $\mathfrak{a} \neq 0$ existieren nur endlich viele Hauptideal, die \mathfrak{a} enthalten.

⇒ Jede aufsteigende Kette von Hauptidealen wird stationr.

• c) \Rightarrow b): Sei $\Sigma := \{(a) \mid 0 \neq a \in A^{\times} undaistnichtProduktvonirreduziblenElementen\}$. Angenommen $\Sigma \neq 0$: Dann folgt mit 5.1

Beispiel 7.2. Jeder Hauptidealring ist faktoriell. Insbesondere auch $\mathbb{Z}, K[X]$

Definition 7.3. Sei A ein Ring, $f = a_m X^m + ... + a_1 X + a_0 \in A[X]$ heit **primitiv**, falls $(a_1, ..., a_n) = A$.

Beispiel. 1. Sei A faktoriell. Dann ist f genau dann Primitiv, wenn kein Primelement alle a_i teilt.

2. Seien $f, g \in A[X]$. Dann sind f, g genau dann primity, falls fg primitiv.

Definition 7.3. Sei A faktoriell. Ein $c(f) \in A$ heit **Inhalt von** f, falls c(f) ein greer gemeinsammer Teiler von $a_1, ..., a_0$ ist.

Bemerkung. Also ist g genau dann primitav, falls $c(f) \in A^{\times}$. Fr $f \in A[X]$ gilt, dass $f = c(f)\tilde{f}$ mit \tilde{f} primitv.

Bemerkung. Sei $f = 3X^{1000} + 30X^7 + 21X + 27$, dann c(f) = 3 oder -3. Dann $f = 3\tilde{f}$, also $\tilde{f} = X^{1000} + 10X^7 + 7X + 9$.

Theorem 7.4 (Satz von Gau). Sei A ein faktorieller Ring. Dann ist auch A[X] faktoriell.

Die irreduziblen Elemente von A[X] sind:

- 1. $p \in A$ irreduzibel und
- 2. $f \in A[X]$ primity, sodass $f \in Quot(A)[X]$ irreduzibel ist.

Beispiel. Sei $A = \mathbb{Z}$,

- $2X + 4 \in \mathbb{Z}[X]$ ist reduzibel, da 2X + 4 = 2(X + 2)
- $X^3 5 \in \mathbb{Z}[X]$ ist primity und irreduzibel in $\mathbb{Q}[X]$

Beweis. 1. Seien $f, g \in K[X] \setminus \{0\}$. Schreibe $f = c(f)\tilde{f}, g = c(g)\tilde{g}$ mit \tilde{f}, \tilde{g} primitiv. Dann $fg = c(f)c(g)\tilde{g}\tilde{f}$, sodass c(fg) = c(f) = c(g) gilt.

2. Behauptung: $p \in A$ ist irreduzibel, dann ist $p \in A[X]$ Primelement:

$$A[X]/pA[X] = (A/p)[X]$$

ist nullteilerfrei (da A/p nullteilerfrei ist). Dann ist $p \in A$ prim.

- 3. Sei $q \in A[X]$ primitiv, $q \in K[X]$ irreduzibel. Behauptung: $qK[X] \cap A[X] = qA[X]$:
 - "⊇" ist klar
 - " \subseteq ": Sei $f \in K[X]$ mit $qf \in A[X]$, sei $f = c(f)\tilde{f}$ mit \tilde{f} primitv. Dann gilt $c(qf) \in A$ und c(qf) = c(q)c(f) wobei $c(q) \in A \times$. Dann folgt, dass c(q)c(f) = c(f) und damit $f \in A[X]$.

Die Behauptung gilt also genau dann wenn $A[X]/qA[X] \to K[X]/qK[X]$ injektiv ist.

Also ist $q \in A[X]$ Primelemnt.

4. Jedes $f \in A[X]$ mit $0 \neq f \notin A^{\times}$ ist Produkt der Primelemente von (a) und (b).

Schrieeb $f = c(f)\tilde{f}, c(f)$ ist Produkt von Primelementen in (a) und \tilde{f} ist primity.

Sei $\tilde{f} = g_1, ..., g_r$ mit $g_i \in K[X]$ irreduzibel, $g_i = c_i \tilde{g}_i, c_i \in K^{\times}, \tilde{g}_i$ primitiv. Es folgt, dass $\tilde{f} = c_1 ... c_r \tilde{g}_1 ... \tilde{g}_r$.

Da $c(\tilde{f}) \in A^{\times}$ und $c(\tilde{g}_1...\tilde{g}_r) \in A^{\times}$ ist auch $c_1...c_r \in A^{\times}$.

Mit 7.1 folgt die Aussage.

Korollar 7.5. Sei A ein faktorieller Ring. Dann ist $A[X_1,...,X_n]$ faktoriell. Insbesondere folgt dies wenn A Krper.

7B Irreduziblittskriterien

Sei K Krper, $f \in K[X]$, $f \neq 0$.

- 0. Sei $\deg(f) = 0$, dann f nicht irreduzibel in K[X], da $f \in K[X]^{\times} = K^{\times}$.
- 1. Sei deg(f) = 1, dann ist f immer irreduzibel in K[X].
- 2. Sei $\deg(f) = 2$ oder $\deg(f) = 3$, dann ist f genau dann reduzibel, wenn f eine Nullstelle hat.
- 3. Sei deg(f) > 1 und f habe eine Nullstelle, dann ist f reduzibel

Satz 7.6 (Reduziblittskriterium). Sei A ein faktorieller Ring, K = Quot(A), $f = a_n X^n + ... + a_1 X + a_0 \in A[X]$, $zu \ p \in A$ Primelement mit p teilt nicht a_n . Sei $\overline{f} \in A/p[X]$ das Bild von f.

Dann folgt aus \overline{f} irreduzibel in A/p[X], dass f in K[X] irreduzibel ist.

Beweis. Betrachte zuerst f primitiv:

Sei $f \in K[X]$ reduzibel, dann folgt mit 7.4, dass f in A[X] reduzibel ist.

Also gibt es $g, h \in A[X]$, mit $deg(g), deg(g) \ge 1$, sodass f = gh.

Da der Fhrende Koeffizient von f nach Voraussetzung nicht durch p teilbar ist, sind auch die Fhrenden Koeffizienten von g, h nicht durch p teilbar.

Da $\deg(\overline{g}) = \deg(g) \ge 1$ und $\deg(\overline{h}) = \deg(h) \ge 1$ folgt, dass $\overline{f} = \overline{g}\overline{h}$ reduzibel ist.

Allgemeiner Fall: Schriebe $f=c(f)\tilde{f}$ mit $c(f)\in A\setminus\{0\}$ und \tilde{f} primitiv. f ist genau dann in K[X] reduzibel, wenn \tilde{f} in K[X] reduzibel ist.

Im gezeigten Spezialfall folgt aus \tilde{f} ist reduzibel in A/p[X], dass $\overline{f} = \overline{c(f)}\overline{\tilde{f}}$ reduzibel ist.

Beispiel. 1. Sei $f = 3X^4 + 2X^2 + 7X^2 + X - 5 \in \mathbb{Z}[X]$. Dann gilt mod 2:

$$f = X^4 + X^3 + X^2 + X + 1 \in \mathbb{F}_2[X]$$

Betrachte nun die Reduziblen Polynome mit deg = 2: $\{X^2 + X + 1, X^2 + 1, X^2\}$, wobei deren Quadrate keien Teiler von f sind. Also ist f irreduzibel.

2. Sei $f = X + Y^2 + YX - 2Y + 3 \in \mathbb{Q}[X, Y]$ ist gleich $XY^2 + (X - 2)Y + 3 \in (\mathbb{Q}[X])[X]$ modulo X - 2 gilt: $2Y^2 + 3 \in Q[Y] = \mathbb{Q}[X, Y]/(X - 2)$ ist irreduzibel, also ist f irreduzibel.

Satz 7.7 (Eisensteinkriterium). Sei A faktoriell, $f = a_n X^n + ... + a_1 X + a_0 \in A[X]$ primitiv und es existiert ein Primelement $p \in A$, sodass

- 1. p teilt nicht a_n
- 2. $p \ teil \ a_i \ fr \ alle \ i = 0, ..., n-1$
- 3. p^2 teilt nicht a_0

Dann ist f irreduzibel in Quot(A)[X].

Beweis. Sei f reduzibel in A[X], f = gh fr $g, h \in A[X]$ mit $\deg(g), \deg(f) \ge 1$ (und < n).

Modulo p gilt: $\overline{a}_n X^n = \overline{f} = \overline{g} \overline{h} \in A/p[X]$ und $a_n \neq 0$.

Da die irreduzible Zerlegung Eindeutig in Quot(A/p)[X] ist:

 $\overline{g} = uX^m$, $\overline{h} = vX^r$, mit $u, v \neq 0$ und m, r > 0.

Dann sind die Absoluten Koeffizienten von g,h duch p Teilbar, was einen Widerspruch zu 3) darstellt.

Beispiel 7.8. Sei A faktorielle $p \in A$ prim, $n \ge 1$. Dann ist $X^n - p$ irreduzibel.

8 Algebraische Krpererweiterungen

8A Krpererweiterungen

Definition 8.1. Eine K-Algebra $\iota: K \leftarrow L$ heist **Krpererweiterung**, falls L Krper ist. (Also $K \rightarrow L$ injektiv).

Eine **Teilerweiterung** ist ein Unterkreher M von L, sodass $\iota(K) \subset M$.

Definition 8.17. Sei A eine K-Algebra, $a \in A$ algebraisch. Betrachte den K-Algebra Homomorphismus $\varphi : K[X] \to A, f \mapsto f(a)$. Dann ist $\mu_{a,K} \in K[X]$ das **Minimalpolynom von** a **ber** K, wenn $Ker(\varphi) = (\mu_{a,K})$.

Bemerkung. Sei A eine K-Algebra, $a \in A$. Betrachte den K-Algebra Homomorphismus $\varphi : K[X] \to A, f \mapsto f(a)$. Dann ist

$$\operatorname{Im} \varphi = \{ f(a) \in A \mid f \in K[X] \} = K[a]$$

und es sind quivalent:

- 1. a ist algebraisch
- 2. φ ist nicht injektiv
- 3. $Ker(\varphi) = (\mu_{a,K})$ fr ein eindeutiges, normiertes Polynom $\mu_{a,K} \in K[X]$.
- 4. $[K[a]:K] < \infty$. In diesem Fall gilt $[K[a]:K] = \deg(\mu_{a,K})$

Beweis. • $1)\Leftrightarrow 2)\Leftrightarrow 3$) ist klar.

• 3) \Rightarrow 4): Es gilt, 3) ist quivalent dazu, dass $K[a] = K[X]/(\mu_{a,K})$ fr normierte Polynome $\mu_{a,K}$. Es folgt, dass K[a] eine endliche K-Algebra ist mit $[K[a]:K] = \deg(\mu_{a,K})$.

• 4) \Rightarrow 2): gilt, da sonst K[a] = K[X].

8.18 Bestimmung von $\mu_{a,K}$ I

Sei A eine K-Algebra, $a \in A$ algebraisch. Sei $f \in K[X]$ mit f(a) = 0, dann ist $\mu_{a,K}$ ein Teiler von f. Also gilt fr $f \in K[X]$: $\mu_{a,K}$ ist genau dann gleich f, wenn f normiert f(a) = 0 und $\deg(f) \leq [K[a] : K]$.

Beispiel. Sei $A = K \times K$, (mit $x \mapsto (x,x)$), sei a = (1,0). Dann ist $\mu_{a,K} = X^2 - X = X(X-1)$.

Proposition 8.19. Sei $K \hookrightarrow K$ eine Krpererweiterung, $a \in L$. Dann ist a genau dann algebraisch ber K, wenn K[a] = K(a) ($\Leftrightarrow K[a]$ Krper).

Bestimmung von $\mu_{a,K}$ II

Fr $f \in K[X]$:

 $f = \mu_{a,K}$ genau dann wenn f normiert, f(a) = 0 und f irreduzibel ist.

Beweis. "⇒": Sei aalgebraisch, dann ist $K[a]\subseteq L$ nullteilerfrei und ganz ber K

Dann folgt mit ??, dass K[a] ein Krper ist, sodass K(a) = K[a].

Ferner gilt $K[a] = K[X]/(\mu_{a,K})$ ist genau dann Krper wenn $\mu_{a,K}$ eine maximales Ideal, was quivalent dazu ist, dass $\mu_{a,K}$ irreduzibel ist. " \Leftarrow ": Sei a transzendent, dann folgt mit ??, dass $K[X] \xrightarrow{\sim} K[a]$, dann ist K[a] kein Krper.

Beispiel 8.20. Sei $K = \mathbb{Q}$.

- 1. Sei $a=\sqrt{2}\in\mathbb{R}$, dann ist $\mu_{a,\mathbb{Q}}=X^2-2$ (da X^2-2 irreduzibel, normiert und $(\sqrt{2})^2-2=0$ ist.) Allgemein: Sei p Primzahl, $a=\sqrt[n]{p}\in\mathbb{C}$. Dann ist $\mu_{a,\mathbb{Q}}=X^n-p$ (da X^n-p mit 7.7 irreduzibel ist.)
- 2. Sei $a=\sqrt[4]{2}$, dann ist $\mu_{a,\mathbb{Q}[\sqrt{2}]}=X^2-\sqrt{2}\in\mathbb{Q}[\sqrt{2}][X]$.
- 3. Sei p Primzahl, $\zeta \in \mathbb{C}$, $\zeta \neq 1$ mit $\zeta^p = 1$. (Dann $\zeta = e^{\frac{2\pi i k}{p}}$ fr k = 1, ..., p - 1) Sei $f = X^p - 1$, dann $f(\zeta) = 0$ und $f = (X - 1)(X^{p-1} + ... + X + 1)$

ist irreduzible Zerlegung.

Da $\zeta \neq 1$, gilt $\mu_{a,K} = X^{p-1} + ... + X + 1$.

Also $[\mathbb{Q}[\zeta]:\mathbb{Q}]=p-1$.

8E Algebraische Erweiterungen

Definition 8.21. Eine K-Algebrau A heit **algebraisch ber** K, falls A eine ganze K-Algebra ist. (d.h. jedes $a \in A$ ist algebraisch ber K).

Proposition 8.22. Sei A eine K-Algebra. Dann sind quivalent:

- 1. $[A:K] < \inf$ (d.h. A ist endliche K-Algebra)
- 2. A ist algebraisch und endlich erzeugt K-Algebra.
- 3. Es gibt algebraische Elemente $a_1,...,a_n \in A$, sodass $A = K[a_1,...,a_n]$

Beweis. Siehe 6.4

Proposition 8.23. Sei $K \hookrightarrow L$ eine Kerpererweiterung und $L \hookrightarrow A$ ist L-Algebra, dann gilt:

A ist algebraisch ber K genau dann, wenn L algebraische Erweiterung von K und A algebraisch ber L.

Beweis. Siehe 6.6

8F Algebraischer Abschluss

Definition 8.24. Ein Krper K heit **algebraisch abgeschlossen**, falls die folgenden quivalenten Bedingungen erfllt sind:

- 1. Jedes Polynom $f \in K[X]$ mit $\deg(f) \geq 1$ besitzt eine Nullstelle in K.
- 2. Jedes Polynom $f \in K[X]$ mit $\deg(g) \geq 1$ ist Produkt von Polynomen vom Grad 1.
- 3. Jedes irreduzible Polynom in K[X] hat Grad 1.
- 4. Jede algebraische Krpererweiterung von K hat Grad 1.

Beweis. \bullet 1) \Leftrightarrow 2) \Leftrightarrow 3).

- 3) \Rightarrow 4): Sei $K \hookrightarrow L$ algebraische Krpererweiterung, $a \in L$. Dann folgt aus 3), dass $\mu_{a,K}$ Grad 1 hat, also $\mu_{a,K} = X - a \in K[X]$. Also $a \in K$.
- 4) \Rightarrow 3): Sei $f \in K[x]$ irreduzibel. Dann ist K[X]/(f) eine endliche Krpererweiterung mit $[K[X]/(f):f] = \deg(f)$. Es folgt mit 4), dass $\deg(f) = 1$.

Beispiel 8.25. \mathbb{C} ist Algebraisch abgeschlossen.

Definition 8.26. Sei K Krper. Eine Algebraische Erweiterung $K \hookrightarrow \overline{K}$ heit algebraischer Abschluss von K, wenn \overline{K} abgeschlossen ist.

Beispiel. 1. $\mathbb{R} \hookrightarrow \mathbb{C}$ ist algebraischer Abschluss.

2. $\mathbb{Q} \hookrightarrow \mathbb{C}$ ist kein algebraischer Abschluss.

Theorem 8.27. Sei K Krper.

Dann existiert ein algebraischer Abschluss von K.

8G Fortsetzung von Krperhomomorphismen

Bemerkung8.28. Seien $K \hookrightarrow A_1, \, K \hookrightarrow A_2$
 K-Algebren und sei

$$\operatorname{Hom}_{K-\operatorname{Alg}}(A_1A_2) = \{\varphi : A_1 \to A_2 | \varphi \text{ ist } K-\operatorname{Algebra-Homomorphismus} \}$$

Jedes $\varphi \in \text{Hom}_{K-\text{Algebra}}$ ist K-linear.

Falls A-1=L ein Krper, $A_2\neq 0$, dann ist φ injektiv und es gilt

- 1. $[L:K] \leq [A_2:K]$
- 2. Falls $[L:K]=[A_2:K]\leq \infty,$ dann ist φ ein Homomorphismus von K-Algebren.

Satz 8.29. Sei $K \hookrightarrow L$ und $K \hookrightarrow L'$ Krpererweiterungen. Sei $a \in L$ algebraisch ber K.

1. $Sei \ \varphi : K[a] \to L' \ ein \ K-Algebra-Homomorphismus.$ Dann $ist \ \varphi(a) \in L' \ algebra isch \ und \ \mu_{\varphi(a),K} = \mu_{a,K}.$

2. Es gibt die Bijektion

Inhalt
$$\operatorname{Hom}_{K-Algebra}(K[a], L') \to \{a' \in L' | \mu_{a,K} = 0\}$$

 $\varphi \mapsto \varphi(a)$

Insbesondere gilt

$$\deg(\mu_{a,K}) = [K[a] : K] \ge \# \operatorname{Hom}_{K-Algebra}(K[a], L')$$

mit Gleichheit genau dann wenn $\mu_{1,K}$ in L' vollstndig in Linearfaktoren zerfllt und alle Nullstellen von $\mu_{a,K}$ in L' paarweise verschieden sind.

Beweis. Sei $\varphi: K[a] \to L'$ ein K-Algebra-Homomorphismus.

Dann ist $\mu_{a,K} = 0$, denn:

Sei
$$\mu_{a,K} = X^+ \lambda_{n-1} X^{n-1} + \dots + \lambda_0 \in K[X].$$

$$\mu_{a,K}(\varphi(a)) = \varphi(a)^n + \lambda_{n-1}\varphi(a)^{n-1} + \dots + \lambda_0$$

$$= \varphi(a^n) + \varphi(\lambda_{n-1}a^{n-1}) + \dots + \lambda_0$$

$$= \varphi(a^n + \lambda_{n-1} + \dots + \lambda_0)$$

$$= \varphi(0) = 0$$

Also ist $\varphi(a)$ algebraisch und $\mu_{\varphi(a),K}$ teilt $\mu_{a,K}$.

Da $\mu_{a,K}$ irreduzibel ist folgt, dass $\mu_{\varphi(a),K} = \mu_{a,K}$.

Dies zeugt (1) und dass die Abbildung $\varphi \mapsto \varphi(a)$ in (2) wohldefiniert ist.

Sei $a' \in L'$ mit $\mu_{a,K}(a) = 0$, dann teilt $\mu_{a',K}$ das Polynom $\mu_{a,K}$, also $\mu_{a',K}\mu_{a,K}$.

$$K[a] = \text{Ker}[X]/(\mu_{a,K}) = K[X]/(\mu_{a',K}) = K[a'] \subseteq L$$

stellen K-Algebra Homomorphismen $\varphi: K[a] \to L'$ mit $\varphi(a) = a'$ dar. φ ist eindeutig, da die K-Algebra K[a] durch a erzeugt wird.

Satz 8.30. Sei $K \hookrightarrow L$ eine algebraische Erweiterung und sie L' eine algebraische abgeschlossene Erweiterung von K.

- 1. Dass existiert ein K-Algebra-Homomorphismus $\varphi: L \hookrightarrow L'$.
- 2. Falls L und L' algebraisch Abschlssen von K sind, ist φ ein Homomorphismus.

Korollar 8.31. Sei \overline{K} und \overline{K}' algebraische Abschlsse von K. Dann existiert ein K-Algebra-Homomorphismus $\overline{K}_1 \xrightarrow{\sim} \overline{K}_2$.

Beweis. Sei $\mathfrak{F} := \{(Z,\tau) \mid K \hookrightarrow Z \subseteq L \text{ Teilkrper und } \tau : Z \hookrightarrow L' \text{ K-Algebra-Homomorphismen} \}.$ Fr $(Z,\tau).(Z',\tau')$ schreibe

$$(Z,\tau) \leq (Z',\tau') :\Leftrightarrow Z \subset Z', \tau = \tau'|_Z$$

Also ist \leq eine partielle Ordnungn auf \mathfrak{F} .

Und da $(K, K \hookrightarrow L') \in \mathfrak{F}$ gilt $\mathfrak{F} \neq \emptyset$.

Sei nun $\xi \subseteq \mathfrak{F}$ eine total geordnete Teilmenge, dass ist

$$\left(\bigcup_{(Z,\tau_Z)\in\xi}Z,\tau\right)$$

mit $\tau | Z = \tau$ fr alle $(Z, \tau_Z) \in \xi$ eine obere Schranke in \mathfrak{F} . Mit 1.4 folgt, dass es ein maximales Element $(Z_0, \tau_0) \in \mathfrak{F}$ gibt.

Behauptung: $Z_0 = L$ (setze dann $\varphi := \tau_0$)

Angenommenes existert ein $a \in L \setminus Z_0$. Dann ist a algebraisch ber Z_0 und

$$\text{Hom}_{Z_0}(Z_0[a], L') \stackrel{\leftrightarrow}{??} \{a' \in L' \mid \mu_{a, Z_0}(a') = 0\} \neq \emptyset$$

Also existiert ...

9 Normale und separable Krpererweiterungen

9A Zerfllungskrper

Definition 9.1. Sei $\mathfrak{F} \subseteq K[x]$ eine Menge nicht konstanter Polynome. Eine Krpererweiterung $K \hookrightarrow L$ heit **Zerfllungskrper** von \mathfrak{F} , falls gilt

- 1. Jedes $f \in \mathfrak{F}$ zerfl
lt ber L vollstdnig ein Linearfaktoren
- 2. Fr $f \in \mathfrak{F}$ sei $R_f := \{a \in L | f(a) = 0\}$. Dann ist

$$L = K\left(\bigcup_{f \in \mathfrak{F}} R_f\right)$$

Bemerkung. Dann ist $L=K\left[\bigcup_{f\in\mathfrak{F}}R_f\right]$ eine algebraische Erweiterung von K.

Beispiel 9.2. Sei $f \in K[X], \deg(f) \geq 1$ und Sei \overline{K} ein algebraischer Abschluss von K.

Seien $a_1, ..., a_{\epsilon} \overline{K}$ die Nullstellen von F.

Dann ist $K[a_1,...,a_n] \subseteq \overline{K}$ ein Zerfllungskrper von f.

Proposition 9.3. Sei $\mathfrak{F} \subseteq K[X]$ eine Menge nicht konstanter Polynome.

- 1. Dann existiert ein Zerfllungskr
per von \mathfrak{F} .
- 2. Seien L_1 und L_2 Zerfllungskr
per von \mathfrak{F} , seien \overline{L}_1 und \overline{L}_2 algebraische Abschl
se von L_1 bzw L_2 und sei $\varphi: olL_1 \to \overline{L}_2$ ein K-Algebra-Homomorphismus.
Dann ist $\varphi(L_1) = L_2$

Beweis. 1. Sei \overline{K} ein algebraischer Abschluss und sei $S := \{a \in \overline{K} \mid \exists f \in \mathfrak{F} : f(a) = 0\}.$

Dann ist K(S) Zerfllungskrper von \mathfrak{F} .

2. Seien \overline{L}_1 und \overline{L}_2 bereits algebraische Abgeschlsse von K.

Dann folgt ??, dass φ Homomorphismus ist.

Sei $S_1 := \{ a \in L_1 \mid \exists f \in \mathfrak{F} : f(a) = 0 \}.$

Es folgt, dass $L_1 = K(S_1)$.

Zeige: $\varphi(S_1) \subseteq L_2$. Sei: $f \in \mathfrak{F}$, $a \in L_1$ Nullstelle von f.

Dann ist $f(\varphi(a)) = \varphi(f(a)) = 0$. Also $\varphi(a) \in \overline{L}_2$, also Nullstelle von f ist. Es folgt $\varphi(a) \in L_2$.

Also folgt $\varphi(S_1) \subseteq L_2$, dann ist $\varphi(L_1) \subseteq L_2$.

Analog fr $\varphi^{-1}: \varphi^{-1}(L_2) \subseteq L_1$.

Zusammen folgt, dass $\varphi(L_1) = L_2$.

Korollar 9.4. Sei $\mathfrak{F} \subseteq K[X]$ eine Menge nicht konstatnert Polyome, sei Ω Krpererweiterung von K und seien $L_1, L_2 \subseteq \Omega$ Zerfllngskrper von \mathfrak{F} . Dann ist $L_1 = L_2$.

Beweis. bergang zu einem algebraischen Abschluss von Ω :

Sei OE Ω ein algebraischer Abgeschlossen.

Dann folgt aus L_1, L_2 ist algebraisch ber K, dass $L_1, L_2 \subseteq \{q \in R \mid a \text{ algebraisch ber } K\}$.

Also ist OE Ω algebraischer Abschluss von K.

Dann ist Ω ein algerischer Abschluss von L_1 und von L_2 .

Wende nun ?? an auf $\overline{L}_1 = \overline{L}_2 \Omega$ und $\varphi = \mathrm{id}_{\Omega}$

Beispiel 9.5. Sei $p \in \mathbb{N}$ Primzahl, sei $f = X^3 - p$. (Es folgt f ist irreduzibel ber $K = \mathbb{Q}$) und sei $\alpha = \sqrt[3]{p} \in \mathbb{R}_{>0}$.

Sei $\zeta := e^{\frac{2\pi i}{3}}$. Dann sind $\alpha, \zeta \alpha, \zeta^2 \alpha \in \mathbb{C}$ die Nullstellen von f.

Der Zerfllungskr
per von f ist

$$\mathbb{Q}[\alpha, \zeta \alpha \zeta^2 \alpha] = \mathbb{Q}[\alpha, \zeta]$$