Arbres aléatoires

GAGNAIRE Jules, TRONCH Alix

26 avril 2025

- 1 Notion d'arbre
- 2 Arbre de Galton Watson
- 3 Arbres réels

- Notion d'arbre
 - Définition
 Fonction de contour et de hauteur
 Chemin de Lukasiewicz
- 2 Arbre de Galton Watson
- 3 Arbres réels

- Notion d'arbre
 Définition
 - Fonction de contour et de hauteur Chemin de Lukasiewicz
- 2 Arbre de Galton Watson
- 3 Arbres réels

Définition d'un arbre

Définition

Un **arbre enraciné t** est un sous-ensemble fini de $\mathscr{U} := \bigcup_{k=0}^{\infty} \mathbb{N}^k$ tel que :

- $\emptyset \in \mathbf{t}$.
- 2 $u \in \mathbf{t} \setminus \{\emptyset\} \Rightarrow \pi(u) \in \mathbf{t}$. Où $\pi(u)$ est le parent de u.
- 3 Pour chaque $u \in \mathbf{t}$, il existe un entier $k_u(\mathbf{t}) \ge 0$ tel que, pour chaque $j \in \mathbb{N}$, $uj \in \mathbf{t}$ si et seulement si $1 \le j \le k_u(\mathbf{t})$.

Figure 1 – Arbre (Ø, 1, (1, 1), (1, 2), (1, 2, 1), (1, 2, 2), (1, 3), 2).

5 / 45

- 1 Notion d'arbre
 - Définition
 - Fonction de contour et de hauteur

Chemin de Lukasiewicz

- 2 Arbre de Galton Watson
- 3 Arbres réels

Fonction de contour

Figure 2 – Illustration de la **fonction de contour** ζ (**t**) := 2(#(**t**) – 1).

7 / 45

Fonction de hauteur

Figure 3 – Illustration de la fonction de hauteur.

- 1 Notion d'arbre
 - Définition

Fonction de contour et de hauteur

Chemin de Lukasiewicz

- 2 Arbre de Galton Watson
- 3 Arbres réels

Les **fonctions de contour et de hauteur caractérisent un arbre**, nous allons voir une autre caractérisation possible :

Notation

On note \mathcal{S} l'ensemble de toutes les suites finies d'entiers positifs m_1, \ldots, m_p telles que :

- $m_1 + m_2 + \cdots + m_i \ge i$, pour i < p
- $m_1 + m_2 + \cdots + m_p = p 1$.

Proposition

L'application

$$\Phi: \mathbf{t} \longrightarrow (k_{u_0}(\mathbf{t}), k_{u_1}(\mathbf{t}), \dots, k_{u_{H(\mathbf{t})-1}}(\mathbf{t}))$$

définit une bijection de $A = \{arbres ordonnés enracinés\}$ sur \mathcal{S} .

Un exemple

Regardons cette propriété sur un exemple, reprenons l'arbre $(\emptyset, 1, (1, 1), (1, 2), (1, 2, 1), (1, 2, 2), (1, 3), 2)$:

$$\Phi(\mathbf{t}) = (2, 3, 0, 2, 0, 0, 0, 0)$$

Figure 4 – Reconstruction de l'arbre.

Chemin de Lukasiewicz

Définition

Soit $\mathbf{t} \in \mathbf{A}$ et $p = \#(\mathbf{t})$. Soit $(m_1, \dots, m_p) = \Phi(\mathbf{t})$, considérons

$$x_n = \sum_{i=1}^n (m_i - 1), \quad 0 \le n \le p$$

qui satisfait les propriétés suivantes :

- $x_0 = 0$ et $x_p = -1$.
- $x_n \ge 0$ pour tout $0 \le n \le p-1$.
- $x_i x_{i-1} \ge -1$ pour tout $1 \le i \le p$.

Une telle suite est appelée un chemin de Lukasiewicz.

Chemin de Lukasiewicz et fonction de hauteur

Proposition

La fonction hauteur $h_{\mathbf{t}}$ d'un arbre \mathbf{t} est liée au chemin de Lukasiewicz de \mathbf{t} par

$$h_{\mathbf{t}}(n) = \# \left\{ j \in \{0, 1, \dots, n-1\} : x_j = \inf_{j \le \ell \le n} x_\ell \right\}$$

pour tout $n \in \{0, 1, ..., \#(\mathbf{t}) - 1\}$.

Un exemple

Reprenons le même arbre, $\Phi(\mathbf{t}) = (2, 3, 0, 2, 0, 0, 0, 0)$, le chemin de Lukasiewicz est alors (0, 1, 3, 2, 3, 2, 1, 0, -1).

Et par exemple :

$$h_{\mathbf{t}}(4) = \# \left\{ j \in \{0, 1, 2, 3\} : x_j = \inf_{j \le \ell \le 4} x_\ell \right\} = 2$$

- Notion d'arbre
- 2 Arbre de Galton Watson Définitions et propriétés Convergence vers un mouvement Brownier

3 Arbres réels

- 1 Notion d'arbre
- 2 Arbre de Galton Watson Définitions et propriétés

Convergence vers un mouvement Brownien Arbre de Galton Watson à progéniture fixé

3 Arbres réels

Rappel de la définition d'un processus de Galton Watson

Définition

Un **processus de Galton-Watson** est un processus stochastique discret $\{Z_n\}_{n\geq 0}$ défini par :

$$Z_{n+1}=\sum_{i=1}^{Z_n}X_{n,i}, \quad n\geq 0,$$

où:

- Z_n représente le nombre d'individus à la n-ième génération.
- Z_0 est égal au nombre d'individus de la génération initiale.
- Les $X_{n,i}$ sont des v.a. i.i.d., représentant le nombre de descendants produits par l'individu i de la génération n.
- La distribution des $X_{n,i}$, appelée **loi de reproduction**, est notée μ .

Le processus se termine lorsque $Z_n = 0$.

Définition d'un arbre de Galton Watson

- μ mesure de probabilité sur $\mathbb N$ critique ou sous critique (i.e. $\sum_{k=0}^{\infty} k\mu(k) \le 1$).
- $\{K_u | u \in \mathcal{U}\}$ une collection de v.a. i.i.d. .

$$\theta := \left\{ u = (u^1, ..., u^n) \in \mathcal{U} \mid u^j < K_{(u^1, ..., u^{j-1})}, \forall j \in \{1, ..., n\} \right\}$$

Proposition

 θ est presque sûrement un arbre. De plus, si

$$Z_n = \#\{u \in \theta : |u| = n\}$$

alors $\{Z_n, n \ge 0\}$ est un processus de Galton-Watson avec loi de reproduction μ et une valeur initiale $Z_0 = 1$. Un tel arbre est appelé **arbre de Galton Watson**.

18 / 45

Proposition

Soit θ un arbre de Galton-Watson associé à la loi μ . Alors

$$\Phi(\theta) \stackrel{\text{(d)}}{=} (M_1, M_2, \dots, M_T)$$

où les variables aléatoires M_1, M_2, \dots sont indépendantes et suivent la loi μ , et

$$T = \inf\{n \geq 1 : M_1 + \cdots + M_n < n\}.$$

Remarque

- $k_{\mu}(\theta) = K_{\mu}$.
- Si on écrit $\theta = \{U_0, ..., U_{\theta-1}\}$ on a $\phi(\theta) = (K_{U_0}, ..., K_{U_{\theta-1}})$

Corollaire

Soit $\{S_n, n \ge 0\}$ une marche aléatoire sur \mathbb{Z} avec une valeur initiale S_0 et une distribution de sauts $v(k) = \mu(k+1)$ pour $k \ge -1$. On pose

$$T = \inf\{n \ge 1 : S_n = -1\}$$

Alors, le chemin de Lukasiewicz d'un μ -arbre de Galton-Watson θ a la même distribution que $(S_0, S_1, ..., S_T)$. En particulier, $\#(\theta)$ et T ont la même distribution.

- Notion d'arbre
- 2 Arbre de Galton Watson

Définitions et propriétés

Convergence vers un mouvement Brownien

Arbre de Galton Watson à progéniture fixé

3 Arbres réels

Processus de hauteur

- Fixons une loi de reproduction critique μ avec une variance finie $\sigma^2 > 0$.
- $\theta_1, \theta_2, \dots$ une suite de μ -arbres de Galton-Watson indépendants. À chaque θ_i , nous associons sa fonction de hauteur $(h_{\theta_i}(n), 0 \le n \le \#(\theta_i) 1)$.

Définition

On définie le **processus de hauteur** $(H_n, n \ge 0)$ en concaténant les fonctions $h_{\theta_1}, h_{\theta_2}, \dots$

Proposition

Pour tout $n \ge 0$, nous avons

$$H_n = \# \left\{ k \in \{0, 1, \dots, n-1\} : S_k = \inf_{k \le j \le n} S_j \right\}$$
 (1)

où $(S_n, n \ge 0)$ est une marche aléatoire avec la distribution décrite dans le corollaire.

Idées de la démonstration

- Utiliser le corollaire précédent.
- Utiliser la proposition reliant la hauteur et le chemin de Lukasiewicz.

Définition

Un **mouvement Brownien réfléchi** (partant de l'origine) est la valeur absolue d'un mouvement brownien standard partant de l'origine.

Figure 5 – Mouvement Brownien réfléchi.

Le gros théorème!

Théorème

Nous avons

$$\left(\frac{1}{\sqrt{p}}H_{[pt]}, t \ge 0\right) \xrightarrow[p \to \infty]{\text{(d)}} \left(\frac{2}{\sigma}\gamma_t, t \ge 0\right)$$

où γ est un mouvement Brownien réfléchi.

Corollaire

Nous avons

$$\left(\frac{1}{\sqrt{p}}C_{2pt}, t \ge 0\right) \xrightarrow[p \to \infty]{(d)} \left(\frac{2}{\sigma} \left|\beta_t\right|, t \ge 0\right).$$

Idées de la démonstration

Notons

$$M_n = \sup_{0 \le k \le n} S_k$$
, $I_n = \inf_{0 \le k \le n} S_k$.

Deux étapes principales :

- 1 La convergence des finis-dimensionels
- 2 La convergence fonctionelle

Pour le premier point on aura besoin de :

Lemme

Nous avons

$$\frac{H_n}{S_n - I_n} \xrightarrow[n \to \infty]{\mathbb{P}} \frac{2}{\sigma^2},$$

Convergence des finis-dimensionels

• Théorème de donsker donne

$$\left(\frac{1}{\sqrt{p}}S_{[pt]}, t \ge 0\right) \xrightarrow[p \to \infty]{(d)} (\sigma B_t, t \ge 0). \tag{2}$$

• D'après (2), nous avons, pour tout choix de $0 \le t_1 \le t_2 \le \cdots \le t_m$,

$$\frac{1}{\sqrt{p}} \left(S_{[pt_1]} - I_{[pt_1]}, \dots, S_{[pt_m]} - I_{[pt_m]} \right) \xrightarrow[p \to \infty]{\text{(d)}} \sigma \left(B_{t_1} - \inf_{0 \le s \le t_1} B_s, \dots, B_{t_m} - \inf_{0 \le s \le t_m} B_s \right).$$

• Par le lemme on a :

$$\frac{1}{\sqrt{p}}\left(H_{[pt_1]},\ldots,H_{[pt_m]}\right)\xrightarrow[p\to\infty]{(\mathrm{d})}\frac{2}{\sigma}\left(B_{t_1}-\inf_{0\leq s\leq t_1}B_s,\ldots,B_{t_m}-\inf_{0\leq s\leq t_m}B_s\right)$$

Un théorème de Lévy énonce que le processus

$$\gamma_t = B_t - \inf_{0 \le s \le t} B_s$$

est un mouvement brownien réfléchi.

Convergence fonctionelle

On va supposer que μ a un petit moment exponentiel (i.e. $\sum_{k=0}^{\infty} e^{\lambda k} \mu(k) < \infty$).

- (M_n, K_n) a la même distribution que $(S_n I_n, H_n)$
- Soit $A \ge 1$ un entier fixé. On peut montrer que pour p suffisamment grand,

$$P\left[\sup_{0 \le t \le A} \left| S_{[pt]} - I_{[pt]} - \frac{\sigma^2}{2} H_{[pt]} \right| > (Ap)^{\frac{3}{8}} \right] < Ap \exp\left(-(Ap)^{\varepsilon'}\right).$$
 TENSION!!

• Ce qui permet d'obtenir le théorème.

- 1 Notion d'arbre
- 2 Arbre de Galton Watson Définitions et propriétés Convergence vers un mouvement Brownier Arbre de Galton Watson à progéniture fixé
- 3 Arbres réels

Notations et conventions

- Nous supposons que μ a un petit moment exponentiel.
- Pour chaque $p \ge 1$, nous désignons par $\theta^{(p)}$ un arbre de Galton-Watson μ conditionné pour avoir exactement p éléments.
- Nous désignons par $\left(H_k^{(p)}\right)_{0 \le k \le p}$ le processus de hauteur de $\theta^{(p)}$.

Convergence des fonctions de hauteurs conditionnées

Définition

Une **excursion Brownienne normalisée** $(\mathbf{e}_t)_{0 \le t \le 1}$ est une excursion Brownienne conditionnée pour avoir une longueur égale à 1.

Théorème

Nous avons:

$$\left(\frac{1}{\sqrt{p}}H_{[pt]}^{(p)}, 0 \le t \le 1\right) \xrightarrow[p \to \infty]{\text{(d)}} \left(\frac{2}{\sigma}\mathbf{e}_t, 0 \le t \le 1\right).$$

Idées de la démonstration

- $T_1 := \inf\{n \ge 1 : H_n = 0\} = \inf\{n \ge 0 : S_n = -1\}.$
- On peut montrer que $P(T_1 = p) \sim \frac{1}{\sigma \sqrt{2\pi p^3}}$.
- $P\left[\sup_{0 \le t \le 1} \left| \frac{H_{[pt]}}{\sqrt{p}} \frac{2}{\sigma^2} \frac{S_{[pt]} I_{[pt]}}{\sqrt{p}} \right| > p^{-1/8} \right| T_1 = p \right] < \exp\left(-p^{\varepsilon'}\right).$
- $(H_k^{(p)}, 0 \le k \le p)$ a la même distribution que $(H_k, 0 \le k \le p)$ sous $P(\cdot | T_1 = p)$.
- Le théorème découle de l'innégalité précédente et du lemme suivant :

Lemme

La distribution du processus $\left(\frac{1}{\sigma \sqrt{p}}S_{[pt]}, 0 \le t \le 1\right)$ sous la probabilité conditionnelle $P(\cdot \mid T_1 = p)$ converge lorsque $p \to \infty$ vers la loi de l'excursion Brownienne normalisée. TENSION!!

32 / 45

- Notion d'arbre
- 2 Arbre de Galton Watson
- 3 Arbres réels

Arbre réel enraciné

Définition

Un espace métrique compact (\mathcal{T}, d, ρ) est un **arbre réel** s'il vérifie les deux conditions suivantes : pour $a, b \in \mathcal{T}$

- Il existe une unique isométrie $f_{a,b}$ de [0,d(a,b)] dans \mathcal{T} tel que $f_{a,b}(0)=a$ et $f_{a,b}(d(a,b))=b$.
- Si q est une application continue et injective de [0,1] dans \mathcal{T} , tel q(0) = a et q(1) = b, alors on a :

$$q([0,1]) = f_{a,b}([0,d(a,b)]).$$

• $\rho = \rho(\mathcal{T})$ est appelé **racine**, un élément de \mathcal{T} .

ascendants et descendants

Définition

- $[[a,b]] := f_{a,b}([0,d(a,b)])$ est le **segment de l'arbre** reliant a à b.
- [[ρ, a]] est le **chemin reliant la racine à** a, et est interprété comme la ligne des ascendants de a.
- $a \le b$ (a est un **ascendant** de b) si et seulement si $a \in [[\rho, b]]$.

Distance de Haussdorf

Pour étudier la convergence d'arbres réels, il nous faut une distance

Définition

Soit (E, δ) un espace métrique. La **distance de Hausdorff** est définie par :

$$\delta_{\text{Haus}}(K, K') = \inf\{\varepsilon > 0 : K \subset U_{\varepsilon}(K') \text{ and } K' \subset U_{\varepsilon}(K)\}$$

Distance de Gromov-Haussdorf

Définition

 \mathcal{T} et \mathcal{T}' deux espaces métriques compacts de racines ρ et ρ' . On définit : $d_{GH}(\mathcal{T},\mathcal{T}')$ par :

$$d_{GH}(\mathcal{T},\mathcal{T}') = \inf \left\{ \delta_{Haus} \left(\varphi(\mathcal{T}), \varphi'(\mathcal{T}') \right) \vee \delta \left(\varphi(\rho), \varphi'(\rho') \right) \right\},\,$$

où l'infininum est choisi sur tous les choix d'espaces métriques (E, δ) et toutes les isométries $\varphi : \mathcal{T} \longrightarrow E$ et $\varphi' : \mathcal{T}' \longrightarrow E$.

Arbres équivalents

Définition

Deux arbres réels enracinés \mathcal{T}_1 et \mathcal{T}_2 sont équivalents si et seulement s'il existe une isométrie bijective et racine-invariante de \mathcal{T}_1 sur \mathcal{T}_2 .

 $d_{GH}(\mathcal{T}, \mathcal{T}')$ dépend seulement des classes d'équivalences de \mathcal{T} et \mathcal{T}' .

On note \mathbb{T} l'ensemble des classes d'équivalences d'arbres réels et on a que d_{GH} induit une distance sur \mathbb{T} .

Théorème

L'espace métrique (\mathbb{T} , d_{GH}) est complet et séparable.

Encodage

Soit $g:[0,\infty[\longrightarrow [0,\infty[$ à support compact tel que g(0)=0. Pour $s,t\geq 0$, on définit :

$$m_g(s, t) = \inf_{r \in [s \land t, s \lor t]} g(r)$$
 et $d_g(s, t) = g(s) + g(t) - 2m_g(s, t)$

- $s \sim t$ si et seulement si $d_g(s, t) = 0$ si et seulement si g(s) = g(t).
- $\mathcal{T}_g = [0, \infty[/ \sim \text{et } d_g(s, t) \text{ induit une distance sur } \mathcal{T}_g]$.
- Notons $p_g: [0, \infty] \longrightarrow \mathcal{T}_g$ la surjection canonique, continue.
- $\mathcal{T}_g = p_g([0,\zeta])$ est compact.

Théorème

L'espace métrique (\mathcal{T}_g, d_g) est un arbre réel de racine $\rho = p_g(0)$.

Remarque : Tout arbre réel enraciné peut être codé par une fonction g et se représente de la forme \mathcal{T}_g .

Distortion

Définition

Soit (\mathcal{T}_1, d_1) et (\mathcal{T}_2, d_2) deux espaces métriques compact.

Une **correspondance** entre \mathcal{T}_1 and \mathcal{T}_2 est un sous-ensemble \mathcal{R} de $\mathcal{T}_1 \times \mathcal{T}_2$ tel que :

- pour tout $x_1 \in \mathcal{T}_1$ il existe $x_2 \in \mathcal{T}_2$ tel que $(x_1, x_2) \in \mathcal{R}$
- pour tout $y_2 \in \mathcal{T}_2$ il existe $y_1 \in \mathcal{T}_1$ tel $(y_1, y_2) \in \mathcal{R}$.

La **distortion** de la correspondance \mathcal{R} est définie par :

$$dis(\mathcal{R}) = \sup \{ |d_1(x_1, y_1) - d_2(x_2, y_2)| : (x_1, x_2), (y_1, y_2) \in \mathcal{R} \}$$

Distortion

Proposition

$$d_{GH}(\mathcal{T},\mathcal{T}') = \frac{1}{2} \inf_{\mathcal{R} \in \mathcal{C}(\mathcal{T},\mathcal{T}'), (\rho,\rho') \in \mathcal{R}} \operatorname{dis}(\mathcal{R}).$$

Lemme

Soit g et f deux fonctions à support compact de $[0,\infty[dans[0,\infty[$ tel que g(0)=f(0)=0, alors :

$$d_{GH}\left(\mathcal{T}_g,\mathcal{T}_f\right)\leq 2\|g-f\|_{\infty}.$$

L'arbre continu aléatoire

Définition

L'arbre (**CRT**) est l'arbre réel $\mathcal{T}_{\mathbf{e}}$ codé par l'excursion brownienne normalisée.

• Le CRT $\mathcal{T}_{\mathbf{e}}$ est une variable aléatoire prenant ses valeurs dans l'ensemble \mathbb{T}

Convergence

Théorème

Pour tout $n \ge 1$, soit $\mathcal{T}_{(n)}$ un arbre fini aléatoire choisi uniformément dans \mathbf{A}_n . Alors $(2n)^{-1/2}\mathcal{T}_{(n)}$ converge en distribution vers le CRT $\mathcal{T}_{\mathbf{e}}$, dans l'espace \mathbb{T} .

Démonstration

- θ un arbre de Galton-Watson de distribution $\mu(k) = 2^{-k-1}$, $\sigma^2 = 2$
- θ_n choisi sous θ conditionné à avoir n branches.
- θ_n et $\mathcal{T}_{(n)}$ ont même distribution.
- $(C_t^n, t \ge 0)$ fonction contour de θ_n
- $\widetilde{C}_t^n = (2n)^{-1/2} C_{2nt}^n$, $t \ge 0$
- $(\widetilde{C}_t^n, t \ge 0) \xrightarrow[p \to \infty]{(d)} (e_t, t \ge 0)$

Merci pour votre écoute!

Référence:

Random Trees and Applications, Jean-Francois LE GALL