NAMA: RADEN JVIRGIAWAN ALBASYA ARIYANDONO

NIM: A11.2022.14070

KELOMPOK: A11.4509

TUGAS 2

1. Pemahaman Proses Business (Business Understanding)

Masalah:

- Pada Tahun 2024. Bencana alam semakin sering terjadi dan berdampak pada berbagai wilayah . sehingga sulit untuk memprediksi pola kerugian yang disebabkan oleh bencana tersebut
- Data menunjukan variasi dalam pola dampak bencana mulai dari jenis bencana, lokasi, Magnitude, Tanggal terjadinya, Korban, dan Kerugian Ekonomi yang dialami
- Pemerintah dan organisasi bencana menghadapi tantangan dalam mengidentifikasi dan memprediksi risiko bencana
- Dengan pemahaman yang lebih baik, diharapkan dapat dioptimalkan upaya mitigasi, penanganan darurat, dan penyusunan strategi pemulihan yang lebih efektif untuk berbagai tingkat dampak bencana.

Objektif:

- Menemukan pola risiko bencana berdasarkan data dampak bencana sebelumnya dan kondisi lingkungan terkini.
- Mengklasifikasikan wilayah terdampak berdasarkan intensitas bencana dan tingkat kerusakan.
- Mampu memberikan rekomendasi mitigasi dan respons yang lebih tepat, meningkatkan ketahanan masyarakat, serta mempercepat pemulihan wilayah yang terdampak dengan lebih efektif.
- 2. Pemahaman Data Bencana (Disaster Data Understanding)
 - Untuk menyelesaikan masalah ini, lembaga penanggulangan bencana mengumpulkan data dari berbagai sumber pemantauan kondisi cuaca, geologis, serta kerusakan infrastruktur yang ada.
 - Data-data ini dikumpulkan berdasarkan pola bencana alam yang terjadi dan dianalisis sebagai berikut:
 - 1. Jenis Bencana : Tipe Bencana yang terjadi (Kebakaran hutan , Hurricane, Tornado , Banjir , Gempa)
 - 2. Lokasi Bencana: Wilayah terdampak bencana
 - 3. Waktu: Waktu Terjadinya bencana dimulai dari awal mulai bencana
 - 4. Korban : Jumlah korban jiwa yang terdampak Bencana
 - 5. Kerugian : Kerugian ekonomi yang dialami

3. Persiapan Data (Data Preparation)

→ Data set: <u>natural_disasters_2024.csv</u>

Row No.	Disaster_ID	Disaster_Ty	Location	Magnitude	Date	Fatalities	Economic_L
1	1	Wildfire	Brazil	6.267	Jan 1, 2024 1	9706	650979004
2	2	Hurricane	Indonesia	6.649	Jan 1, 2024 1	2233	553835715
3	3	Tornado	China	9.724	Jan 1, 2024 2	478	69109975.550
4	4	Flood	India	1.703	Jan 1, 2024 3	2867	847488044.2
5	5	Flood	Brazil	7.918	Jan 1, 2024 4	776	644929746
6	6	Tornado	China	2.717	Jan 1, 2024 5	3534	574465547.8
7	7	Hurricane	India	6.492	Jan 1, 2024 6	8220	342428649.4
8	8	Earthquake	China	2.653	Jan 1, 2024 7	2261	697554915.1
9	9	Flood	Brazil	8.158	Jan 1, 2024 8	5016	720960902.8
10	10	Flood	India	1.024	Jan 1, 2024 9	5135	998583347.3
11	11	Earthquake	Indonesia	8.405	Jan 1, 2024 1	8636	301620439.6
12	12	Flood	USA	9.466	Jan 1, 2024 1	439	350737478.4
13	13	Earthquake	USA	6.144	Jan 1, 2024 1	206	570378176.7
14	14	Earthquake	China	8.949	Jan 1, 2024 1	2176	452037092.5
15	15	Earthquake	Indonesia	8.299	Jan 1, 2024 2	3512	688364608.4
16	16	Hurricane	Japan	6.850	Jan 1, 2024 3	5423	720480066.3
17	17	Tornado	Indonesia	8.369	Jan 1, 2024 4	4682	365297720.1
18	18	Wildfire	India	4.814	Jan 1, 2024 5	1720	183142032.7
19	19	Earthquake	Japan	4.590	Jan 1, 2024 6	3615	841308023.5
20	20	Earthquake	Japan	9.546	Jan 1, 2024 7	142	470365410.5
21	21	Earthquake	India	6.230	Jan 1, 2024 8	8823	243134578.9
22	22	Hurricane	USA	5.672	Jan 1, 2024 9	593	884922999.8
າາ	າາ	Hurricana	Indonocio	0 000	lan 1 2024 1	7054	160101606

ExampleSet (1,999 examples,0 special attributes,7 regular attributes)

- → Terdapat 1999 data bencana dengan 7 atribut.
- ightarrow Tidak ada missing value , dan tidak terdapat data noise.

4. Pemodelan (Modeling)

- → Modelkan dataset dengan decision tree
- → Pola yang dihasilkan bisa berbentuk tree atau if then

→ Hasil pola dari data beruba decision tree

5. Evaluasi (evaluation)

Hasil pola dari data beruba peraturan if-then

```
Economic_Loss($) > 2334263.999
| Magnitude > 1.012
| Magnitude > 1.023: Hurricane (Wildfire=375, Hurricane=417, Tornado=405, Flood=386, Earthquake=409)
| Magnitude ≤ 1.023: Tornado (Wildfire=0, Hurricane=0, Tornado=2, Flood=0, Earthquake=0)
| Magnitude ≤ 1.012: Flood (Wildfire=0, Hurricane=0, Tornado=0, Flood=2, Earthquake=0)
| Economic_Loss($) ≤ 2334263.999: Tornado (Wildfire=0, Hurricane=0, Tornado=3, Flood=0, Earthquake=0)
```

- → Atribut atau factor yang paling berpengaruh adalah magnitude dari kejadian bencana dan jenis bencana Hurricane , Tornado , Flood
- → Atribut atau factor yang tidak berpengaruh adalah wild fire , dan earthquake

6. Penerapan (Deployment)

- → Pemerintah ataupun organisasi bencana membuat system peringatan dini yang dapat diimplementasikan untuk mengirim peringatan pada Lembaga terkait seperti Pemerintah daerah setempat dan tim penanggulangan bencana Ketika magnitude bencana diperkirakan tinggi antara (1.012 atau 1.023). Dengan adanya peringatan ini, tindakan evakuasi atau perlindungan terhadap infrastruktur penting dapat dilakukan lebih cepat untuk meminimalisir dampak.
- → Mitigasi dipioritaskan pada daerah yang beresiko tinggi terkena Hurricane (badai), Tornado, dan Flood (banjir). jadi sumberdaya bisa dipioritaskan kepada daerah yang lebih rentan
- → Pemerintah dapat menyusun **rencana tanggap darurat** khusus untuk bencana dengan Magnitude tinggi yang berisiko menimbulkan kerugian ekonomi besar.
 - Langkah-langkah mitigasi fisik, seperti memperkuat bangunan atau membangun infrastruktur perlindungan (misalnya tanggul untuk Flood) di wilayah yang sering terdampak, dapat dilakukan lebih awal.