144 Racines d'un polynôme. Fonctions symétriques élémentaires. Exemples et applications.

Soient \mathbb{K} un corps commutatif et \mathscr{A} une algèbre sur \mathbb{K} . À tout polynôme $P = \sum_{i=0}^{n} a_i X^i$ de $\mathscr{K}[X]$, on associe l'application

$$\widetilde{P}: \begin{array}{ccc} \mathscr{A} & \to & \mathscr{A} \\ x & \mapsto & \sum_{i=0}^{n} a_i x^i \end{array}$$

L'application $P \mapsto \widetilde{P}$ est un morphisme d'algèbres. On notera abusivement $P = \widetilde{P}$ par la suite s'il n'y a pas d'ambiguïté.

I - Polynômes

1. Racines

Soit $P \in \mathbb{K}[X]$.

[GOU21]

Définition 1. Soit \mathbb{L} une extension de \mathbb{K} (cf. Section II). On dit que $a \in \mathbb{L}$ est une **racine** de P si P(a) = 0.

Proposition 2. $a \in \mathbb{K}$ est racine de P si et seulement si $X - a \mid P$.

Application 3 (Polynômes d'interpolation de Lagrange). Soient $a_1, ..., a_n \in \mathbb{K}$ deux à deux distincts et $b_1, ..., b_n \in \mathbb{K}$. Alors

$$\exists ! L \in \mathbb{K}[X]$$
 tel que $\forall i \in [1, n], L(a_i) = b_i$

Définition 4. Soient $a \in \mathbb{K}$ et $h \in \mathbb{N}^*$. On dit que a est **racine de** P **d'ordre** h si $(X - a)^h \mid P$ mais $(X - a)^{h+1} \nmid P$.

Proposition 5. Soient $a_1, ..., a_r \in \mathbb{K}$ des racines de P distinctes deux à deux et d'ordre $h_1, ..., h_r$. Alors, $\exists Q \in \mathbb{K}[X]$ tel que

$$P = (X - a_1)^{h_1} \dots (X - a_r)^{h_r} Q(X) \quad \text{ et } \quad Q(a_i) \neq 0 \, \forall \, i \in \llbracket 1, n \rrbracket$$

Corollaire 6. Si $P \in \mathbb{K}[X]$ est de degré $n \ge 1$, alors P a au plus n racines (comptées avec leur ordre de multiplicité).

Contre-exemple 7. C'est faux en général dans un anneau. Par exemple, si $P = \overline{4}X \in \mathbb{Z}/8\mathbb{Z}[X]$, alors P a trois racines : $\overline{0}$, $\overline{1}$ et $\overline{4}$, mais $\deg(P) = 1$.

Proposition 8. Si \mathbb{K} est infini et P(x) = 0 pour tout $x \in \mathbb{K}$, alors P = 0.

Contre-exemple 9. Si $\mathbb{K} = \{a_1, \dots, a_n\}$, le polynôme $(X - a_1) \dots (X - a_n)$ est non nul, mais son évaluation en tout élément de \mathbb{K} vaut 0.

Définition 10. P est dit **scindé sur** \mathbb{K} si on peut écrire

$$P = \lambda (X - a_1)^{h_1} \dots (X - a_r)^{h_r}$$

avec $\lambda \in \mathbb{K}$ et pour tout $i \in [1, n]$, $a_i \in \mathbb{K}$ et $h_i \in \mathbb{N}^*$.

Définition 11. On appelle **polynôme dérivé** de *P* le polynôme

$$P' = a_1 + 2a_2X + \dots + na_nX^{n-1}$$

Remarque 12. L'application $P \to P'$ est linéaire, et les règles de dérivation coïncident avec les règles usuelles.

Théorème 13 (Formule de Taylor). On suppose \mathbb{K} de caractéristique nulle. Alors tout polynôme F de degré inférieur ou égal à n vérifie

$$\forall a \in \mathbb{K}, F(X) = \sum_{i=0}^{n} \frac{(X-a)^{i}}{i!} F^{(i)}(a)$$

Corollaire 14. On suppose \mathbb{K} de caractéristique nulle et $P \neq 0$. Alors $a \in \mathbb{K}$ est racine d'ordre h de P si et seulement si

$$\forall i \in [1, h-1], P^{(i)}(a) = 0$$
 et $P^{(h)}(a) \neq 0$

Exemple 15. Le polynôme $P_n = \sum_{i=0}^n \frac{1}{i!} X^i$ n'a que des racines simples dans \mathbb{C} .

Remarque 16. C'est encore vrai en caractéristique non nulle pour h = 1.

2. Polynômes symétriques

Soit *A* un anneau commutatif unitaire.

Définition 17. Soit $P \in A[X_1, ..., X_n]$. On dit que P est **symétrique** si

 $\forall \sigma \in S_n, P(X_{\sigma(1)}, \dots, X_{\sigma(n)}) = P(X_1, \dots, X_n)$

Exemple 18. Dans $\mathbb{R}[X]$, le polynôme XY + YZ + ZX est symétrique.

Définition 19. On appelle polynômes symétriques élémentaires de $A[X_1, ..., X_n]$ les polynômes noté Σ_p où $p \in [1, n]$ définis par

$$\Sigma_p = \sum_{1 \leq i_1 < \dots < i_p \leq n} X_{i_1} \dots X_{i_p}$$

$$-- \Sigma_2 = \sum_{1 \le i < j \le n} X_i X_j$$

$$--\Sigma_n=X_1\ldots X_n.$$

Remarque 21. Si $P \in A[X_1, ..., X_n]$, alors $P(\Sigma_1(X_1, ..., X_n), ..., \Sigma_n(X_1, ..., X_n))$ est symétrique. Et la réciproque est vraie.

Théorème 22 (Théorème fondamental des polynômes symétriques). Soit $P \in A[X_1, ..., X_n]$ un polynôme symétrique. Alors,

$$\exists ! \Phi \in A[X_1, \dots, X_n]$$
 tel que $\Phi(\Sigma_1, \dots, \Sigma_n)$

Exemple 23. $P = X^3 + Y^3 + Z^3$ s'écrit $P = \Sigma_1^3 - 3\Sigma_1\Sigma_2 + 3\Sigma_3$.

Application 24 (Relations coefficients - racines). Soit $P = a_0 X^n + \dots + a_n \in \mathbb{K}[X]$ avec $a_0 \neq 0$ scindé sur \mathbb{K} , dont les racines (comptées avec leur ordre de multiplicité) sont x_1, \dots, x_n . Alors

$$\forall p \in [1, n], \ \Sigma_p(x_1, \dots, x_n) = (-1)^p \frac{a_p}{a_0}$$

En particulier,

p. 83

p. 64

[DEV]

Application 25 (Théorème de Kronecker). Soit $P \in \mathbb{Z}[X]$ unitaire tel que toutes ses racines complexes appartiennent au disque unité épointé en l'origine (que l'on note D). Alors toutes

Corollaire 26. Soit $P \in \mathbb{Z}[X]$ unitaire et irréductible sur \mathbb{Q} tel que toutes ses racines complexes soient de module inférieur ou égal à 1. Alors P = X ou P est un polynôme cyclotomique.

Définition 27. On appelle identités de Newton les polynômes

ses racines sont des racines de l'unité.

[C-G]

p. 356

$$S_p = \sum_{i=1}^n X_i^p \in \mathbb{R}[X]$$

Proposition 28.
$$= \forall k \in [1, n-1], S_k = (-1)^{k+1} k \Sigma_k + \sum_{i=1}^{k-1} (-1)^{i+1} \Sigma_i S_{n-k+i}.$$

$$= \forall p \in \mathbb{N}, S_{p+n} = \sum_{i=1}^n \Sigma_i S_{p+n-i}.$$

[DEV]

Application 29 (Formes de Hankel). On suppose $\mathbb{K} = \mathbb{R}$ et on note x_1, \dots, x_t les racines complexes de P de multiplicités respectives m_1, \dots, m_t . On pose

$$s_0 = n \text{ et } \forall k \ge 1, s_k = \sum_{i=1}^t m_i x_i^k$$

Alors:

- (i) $\sigma = \sum_{i,j \in [\![0,n-1]\!]} s_{i+j} X_i X_j$ définit une forme quadratique sur \mathbb{C}^n ainsi qu'une forme quadratique $\sigma_{\mathbb{R}}$ sur \mathbb{R}^n .
- (ii) Si on note (p,q) la signature de $\sigma_{\mathbb{R}}$, on a :
 - -t=p+q.
 - Le nombre de racines réelles distinctes de P est p-q.

II - Adjonction de racines

Définition 30. On appelle **extension** de \mathbb{K} tout corps \mathbb{L} tel qu'il existe un morphisme de corps de \mathbb{K} dans \mathbb{L} . On notera \mathbb{L}/\mathbb{K} pour signifier que \mathbb{L} est une extension de \mathbb{K} par la suite.

[**GOZ**] p. 21

Remarque 31. — Si \mathbb{K} est un sous-corps de \mathbb{L} , alors \mathbb{L} est une extension de \mathbb{K} .

— Un morphisme de corps est forcément injectif, donc on peut identifier $\mathbb K$ à son image

p. 57

et dire que $\mathbb{K} \subseteq \mathbb{L}$ de manière abusive.

Exemple 32. \mathbb{C} est une extension de \mathbb{R} .

L'idée dans la suite va être de chercher comment "rajouter" des racines à des polynômes pourtant irréductibles sur un corps.

1. Corps de rupture

Définition 33. Soient \mathbb{L} une extension de \mathbb{K} et $P \in \mathbb{K}[X]$ irréductible. On dit que \mathbb{L} est un **corps de rupture** de P si $\mathbb{L} = \mathbb{K}[\alpha]$ où $\alpha \in \mathbb{L}$ est une racine de P.

Exemple 34. — Avec les notations précédentes, si deg(P) = 1, \mathbb{K} est un corps de rupture de P.

- \mathbb{C} est un corps de rupture de $X^2 + 1$ sur \mathbb{R} .
- \mathbb{F}_4 est un corps de rupture de $X^2 + X + 1$ sur \mathbb{F}_2 .

Théorème 35. Soit $P \in \mathbb{K}[X]$ un polynôme irréductible sur \mathbb{K} .

- Il existe un corps de rupture de *P*.
- Si $\mathbb{L} = \mathbb{K}[\alpha]$ et $\mathbb{L}' = \mathbb{K}[\beta]$ sont deux corps de rupture de P, alors il existe un unique \mathbb{K} -isomorphisme $\varphi : \mathbb{L} \to \mathbb{L}'$ tel que $\varphi(\alpha) = \beta$.

2. Corps de décomposition

Définition 36. Soit $P \in \mathbb{K}[X]$ de degré $n \ge 1$. On dit que \mathbb{L} est un **corps de décomposition** de P si :

- Il existe $a \in \mathbb{L}$ et $\alpha_1, \dots, \alpha_n \in \mathbb{L}$ tels que $P = a(X \alpha_1) \dots (X \alpha_n)$.
- $-\mathbb{L} = \mathbb{K}[\alpha_1, \dots, \alpha_n].$

Exemple 37. — \mathbb{K} est un corps de décomposition de tout polynôme de degré 1 sur \mathbb{K} .

- \mathbb{C} est un corps de décomposition de $X^2 + 1$ sur \mathbb{R} .
- Soit $\xi \in \mu_n^*$, alors $\mathbb{Q}[\xi]$ est un corps de décomposition de Φ_n (le n-ième polynôme cyclotomique) sur \mathbb{Q} .

Théorème 38. Soit $P \in \mathbb{K}[X]$ un polynôme de degré supérieur ou égal à 1.

— Il existe un corps de décomposition de *P*.

— Deux corps de décomposition de P sont \mathbb{K} -isomorphes.

3. Clôture algébrique

Définition 39. \mathbb{K} est **algébriquement clos** si tout polynôme de $\mathbb{K}[X]$ de degré supérieur ou égal à 1 admet au moins une racine dans \mathbb{K} .

Exemple 40. — \mathbb{Q} n'est pas algébriquement clos.

— \mathbb{R} non plus.

Proposition 41. Tout corps algébriquement clos est infini.

Théorème 42 (D'Alembert-Gauss). ℂ est algébriquement clos.

Définition 43. On dit que \mathbb{L} est une **clôture algébrique** de \mathbb{K} si \mathbb{L} est une extension de \mathbb{K} algébriquement close et si

$$\forall x \in \mathbb{L}, \exists P \in \mathbb{K}[X] \text{ tel que } P(x) = 0$$

Exemple 44. — \mathbb{C} est une clôture algébrique de \mathbb{R} .

 $\overline{\mathbb{Q}} = \{\alpha \in \mathbb{C} \mid \exists P \in \mathbb{Q}[X] \setminus \{0\} \text{ tel que } P(\alpha) = 0\} \text{ est une clôture algébrique de } \mathbb{Q}.$

Théorème 45 (Steinitz). (i) Il existe une clôture algébrique de K.

(ii) Deux clôtures algébriques de K sont K-isomorphes.

III - Application en algèbre linéaire

Définition 46. Soit $A \in \mathcal{M}_n(\mathbb{K})$. On appelle :

[**GOU21**] p. 171

- **Polynôme caractéristique** de *A* le polynôme $\chi_A = \det(A XI_n)$.
- **Polynôme minimal** de *A* l'unique polynôme unitaire π_A qui engendre l'idéal Ann $(A) = \{Q \in \mathbb{K}[X] \mid Q(A) = 0\}.$

p. 186

p. 172

Proposition 47.

 λ est valeur propre de $A \iff \chi_A(\lambda) = 0 \iff \pi_A(\lambda) = 0$

agreg.skyost.eu

p. 171

p. 185

Proposition 48. — A est trigonalisable si et seulement si χ_A est scindé sur \mathbb{K} .

— A est diagonalisable si et seulement si π_A est scindé à racines simples sur \mathbb{K} .

Corollaire 49. Si $\mathbb{K} = \mathbb{F}_q$, A est diagonalisable si et seulement si $A^q = A$.

Bibliographie

Nouvelles histoires hédonistes de groupes et de géométries

[C-G]

Philippe Caldero et Jérôme Germoni. *Nouvelles histoires hédonistes de groupes et de géométries. Tome 1.* Calvage & Mounet, 13 mai 2017.

http://www.calvage-et-mounet.fr/2022/05/09/nouvelles-histoires-hedoniste-de-groupes-et-de-geometrie/.

Les maths en tête [GOU21]

Xavier Gourdon. Les maths en tête. Algèbre et probabilités. 3e éd. Ellipses, 13 juill. 2021.

https://www.editions-ellipses.fr/accueil/13722-25266-les-maths-en-tete-algebre-et-probabilites-3e-edition-9782340056763.html.

Théorie de Galois [GOZ]

Ivan Gozard. *Théorie de Galois. Niveau L3-M1*. 2^e éd. Ellipses, 1^{er} avr. 2009.

https://www.editions-ellipses.fr/accueil/4897-15223-theorie-de-galois-niveau-13-m1-2e-edition-9782729842772.html.

L'oral à l'agrégation de mathématiques

[I-P]

Lucas Isenmann et Timothée Pecatte. *L'oral à l'agrégation de mathématiques. Une sélection de développements.* 2^e éd. Ellipses, 26 mars 2024.

 $\label{lipses.fr} https://www.editions-ellipses.fr/accueil/15218-28346-loral-a-lagregation-de-mathematiques-une-selection-de-developpements-2e-edition-9782340086487.html.$