Chamblandes 2013 — Problème 1

Signe

Asymptotes

1.
$$\lim_{x \to \sqrt[3]{2}} \frac{x^4}{x^3 - 2} = \left(\frac{(\sqrt[3]{2})^4}{0} \right) = \left(\frac{(2^{\frac{1}{3}})^4}{0} \right) = \left(\frac{2^{\frac{4}{3}}}{0} \right) = \left(\frac{\sqrt[3]{2^4}}{0} \right) = \left(\frac{$$

y = x asymptote oblique

$$\delta(x) = \frac{2x}{x^3 - 2}$$

Croissance

$$f'(x) = \left(\frac{x^4}{x^3 - 2}\right)' = \frac{(x^4)'(x^3 - 2) - x^4(x^3 - 2)'}{(x^3 - 2)^2} = \frac{4x^3(x^3 - 2) - x^4(3x^2)}{(x^3 - 2)^2}$$
$$= \frac{4x^6 - 8x^3 - 3x^6}{(x^3 - 2)^2} = \frac{x^6 - 8x^3}{(x^3 - 2)^2} = \frac{x^3(x^3 - 8)}{(x^3 - 2)^2} = \frac{x^3(x - 2)(x^2 + 2x + 4)}{(x^3 - 2)^2}$$

	$0 \sqrt[3]{2} 2$			
x^3	- () +	+	+
x-2	ı		- () +
$x^2 + 2x + 4$	+	+	+	+
$(x^3-2)^2$	+	+	+	+
f'	+ () —	- () +
\overline{f}	7 m	ax 📐	\ m	in 7

$$\Delta = 2^2 - 4 \cdot 1 \cdot 4 = -12 < 0$$

Il nous reste encore à calculer les coordonnées des extremums :

$$f(0) = \frac{0^4}{0^3 - 2} = \frac{0}{-2} = 0$$

Le point (0;0) est un maximum local.

$$f(2) = \frac{2^4}{2^3 - 2} = \frac{16}{6} = \frac{8}{3}$$

 $f(2) = \frac{2^4}{2^3 - 2} = \frac{16}{6} = \frac{8}{3}$ Le point $(2; \frac{8}{3})$ est un minimum local.

