Homework 4 for MATH 435

Due: Friday Sep 24

Problem 1

- (a) Show that $(\mathbb{Q}, +)$ is not cyclic.
- (b) Does there exist finite $X \subseteq \mathbb{Q}$ such that $\langle X \rangle = \mathbb{Q}$ (as an additive group)?

Problem 2

Let G be a group and H a subgroup. Let $x \in G$. Let xHx^{-1} be the subset of G consisting of all elements xyx, $y \in H$.

Show that xHx^{-1} is a subgroup of G

Problem 3

Let G be a finite group, and suppose H is a subgroup of G such that [G:H]=2. Show that for all $x \in G$, $xHx^{-1}=H$.

Problem 4

Book, p. 158, Exercise 2.62

Problem 5

Recall that the alternating group of order n, A_n , is defined as

$$A_n = {\alpha \in S_n : sgn(\alpha) = 1}.$$

Show that A_n is generated by the (n-2)-many 3-cycles $(1\ 2\ 3), (1\ 2\ 4), \ldots, (1\ 2\ n),$ i.e.

$$A_{\mathfrak{n}} = <(1\ 2\ 3), (1\ 2\ 4), \ldots, (1\ 2\ \mathfrak{n})>.$$