

Improved Regularization and Robustness for Fine-tuning in Neural Networks

Northeastern University

Dongyue Li and Hongyang R. Zhang

MOTIVATION

Fine-tuning a pre-trained model on a target data set with limited labels has been successful.

However, fine-tuning is prone to overfitting. Regularization helps alleviate this issue.

Mystery around fine-tuning:

- Regularization may or may not help finetuning; not well-understood (Li et al., 2020).
- Applying adversarial training during pretraining leads to models with better transfer to downstream tasks (Salman et al., 2020).

Practical concern in fine-tuning:

• Label noise is common in transfer learning, for example, if labels are created via weak supervision (Ratner et al., 2016).

PROBLEM SETUP

Data.
$$(x_1^{(t)}, y_1^{(t)}), \dots, (x_{n^{(t)}}^{(t)}, y_{n^{(t)}}^{(t)}) \in P^{(t)}.$$

Model. L-layer feed-forward neural networks

$$f_W(x) = \phi_L \circ \phi_{L-1} \circ \cdots \phi_1(x)$$

where $\phi_i(z) = \psi_i(W_i z)$ and $W = [W_1, \dots, W_L]$.

Prediction error.

$$\mathcal{L}^{(t)}(f_W) = \mathbb{E}_{(x,y)\sim\mathcal{P}^{(t)}} \left[\ell(f_W(x), y) \right].$$

where $\ell(\cdot)$ is both convex and 1-Lipschitz.

Regularized fine-tuning problem (Gouk et al., 2021).

$$\hat{W} \leftarrow \arg\min \hat{\mathcal{L}}^{(t)}(f_W)$$
s.t. $\|W_i - \hat{W}_i^{(s)}\|_F \leq D_i, \ \forall i = 1, \dots, L.$

REGULARIZATION METHODS

Through a PAC-Bayesian analysis, we identify **two key components** to determine the fine-tuning generalization performance.

• Layer-wise Distances $\{D_i\}_{i=1,\dots,L}$. Fine-tuned distances are relatively small compared to the pre-trained network and grow with layers.

Implication. If we set the same value for D_i , only regularize top layers. Instead, set D_i proportional to fine-tuned distance.

• Perturbed Loss $\mathbb{E}_{\mathbf{U}}[\ell(\mathbf{f}_{\hat{\mathbf{W}}+\mathbf{U}}(\mathbf{x}),\mathbf{y})]$. Models fine-tuned from a pre-trained initialization (Fine-tune) are more stable than models trained from random initialization (Random).

Adversarial robustness. Fine-tuning from adversarial pretrained models incurs lower perturbed losses than fine-tuning from (standard) pre-trained initializations.

	CUB-200-2011		
σ	Random	Pre-trained	Adversarial
10^{-2}	3.77 ± 0.42	1.45 ± 0.13	1.76 ± 0.09
10^{-3}	0.82 ± 0.07	0.62 ± 0.03	$0.54 {\pm} 0.03$
10^{-4}	$0.81 {\pm} 0.04$	0.61 ± 0.03	0.61 ± 0.01
	Indoor		
		Indoor	
σ	Random	Indoor Pre-trained	Adversarial
$\frac{\sigma}{10^{-2}}$	Random 2.51±0.34		Adversarial 0.97±0.07
		Pre-trained	

ROBUSTNESS W.R.T. LABEL NOISE

Memorizing during fine-tuning.

- Test accuracy increases at first and ends up overfitting to noisy labels.
- Though regularization can improve performance, the generalization error is still large.
- The model picks up some discriminative power in the starting phase.

Implication. Leverage the model predictions to relabel the data.

• Self label-correction relabels the data point if the model is confident.

• Self label-removal down-weights the loss of large-loss data.

EXPERIMENTAL RESULTS

Regularized self-labeling (REGSL) combines both layer-wise regularization and self-labeling.

Comparing regularization methods.

Fine-tuning ResNet-101 on seven image classification data sets.

• Average 1.76% improvement compared to the constant regularization (Gouk et al., 2021).

Fine-tuning ResNet-18 on ChestX-ray14 data set (Wang et al., 2017; Rajpurkar et al., 2017).

Comparing robustness w.r.t. label noise.

Fine-tuning ResNet-18 on MIT-Indoor data set with both independent and correlated noises.

• Average 3.56% improvement over regularization methods and previous supervised training methods.

Fine-tuning Vision Transformer (Dosovitskiy et al., 2020) on noisy labels.

Key insight.

We identify a pipeline of applying regularization.

- 1. Run fine-tuning on the pre-trained network and plot the "fine-tuned" layer-wise distances.
- 2. Encode the layer-wise distance patterns using explicit regularization constraints.

Regularization and self-labeling complement each other during fine-tuning.

Methods	independent noise 20%	correlated noise 25.18%
REGSL (ours)	72.51 ± 0.46	70.12 ± 0.83
w/o regularization	71.94 ± 0.43	69.43 ± 0.36
w/o self-labeling	70.23 ± 0.25	69.05 ± 0.09

Extension to other settings.

Few-show image classification tasks (fine-tuning ResNet-12 over 600 meta-test splits of miniImageNet.);

Transfer learning in sentence classification tasks (training three-layer MLPs on SST, MR, CR, MPQA, SUBJ, and TREC).