

SEQUENCE LISTING

<110> Japan Science And Technology Agency
<110> Japan as represented by President of the National Cardiovascular Center

<120> A New Peptide Having Production Activity of cAMP

<130> JA905066

<140> PCT/JP03/06641
<141> 2003-05-28

<150> JP2002-162797
<151> 2002-06-04

<160> 22

<170> PatentIn Ver. 2.1

<210> 1
<211> 38
<212> PRT
<213> Swine

<220>
<221> modified amino acid
<222> (38)
<223> glycine amide

<220>
<223> CRSP

<400> 1
Ser Cys Asn Thr Ala Thr Cys Met Thr His Arg Leu Val Gly Leu Leu
1 5 10 15

Ser Arg Ser Gly Ser Met Val Arg Ser Asn Leu Leu Pro Thr Lys Met
20 25 30

Gly Phe Lys Val Phe Gly
35

<210> 2
<211> 39
<212> PRT
<213> Swine

<220>
<223> CRSP-Gly

<400> 2
Ser Cys Asn Thr Ala Thr Cys Met Thr His Arg Leu Val Gly Leu Leu
1 5 10 15

Ser Arg Ser Gly Ser Met Val Arg Ser Asn Leu Leu Pro Thr Lys Met
20 25 30

Gly Phe Lys Val Phe Gly Gly

<210> 3
 <211> 679
 <212> DNA
 <213> Swine

<220>
 <223> CRSP cDNA

<400> 3

tcaagtgtct ctgccgcctc ttccacagtgc ccatgcctg acgccaacgc tgctgcctct 60
 gctccctcct ctgtccagt ccacctgggtt cctgctgccc gaggggcacc atgggcttct 120
 ggaaatttcc gcccctccctg gttctcagca tcctggctct gtaccaggca ggcatgttcc 180
 acacagcacc aatgagggtct gcctttggga gcccctttga tcctgctacc ctctctgagg 240
 aggaatcacc cctccctttg gctgcaatgg tgaatgacta tgagcagatg aaggccctgt 300
 agatgcagaa gcagagggca cagggctccg gcatcagtgt ccagaagaga tcctgcaaca 360
 ctgccccctg catgaccat cggctgggtt gcttgcctag cagatctggg agcatggtga 420
 ggagcaacccct gttgcccacc aagatgggtt tcaaagtctt tggtggggcgc cgcaggact 480
 ttggatctg agcagtggga tgattccagg aggaaggta ctatgactct gaactctatt 540
 cgttaattt acaatgaaag caacctacta aaaaatagca tggaaagacat ccatgttatgc 600
 atgcttctgg aaactgaaaaa cactctttc cttgaaataa actaaaacta aatgcaaaat 660
 aaaatcaatg catcaatgc

679

<210> 4
 <211> 126
 <212> PRT
 <213> Swine

<220>

<223> precursor peptide of CRSP

<400> 4

Met Gly Phe Trp Lys Phe Pro Pro Phe Leu Val Leu Ser Ile Leu Val
 1 5 10 15

Leu Tyr Gln Ala Gly Met Phe His Thr Ala Pro Met Arg Ser Ala Phe
 20 25 30

Gly Ser Pro Phe Asp Pro Ala Thr Leu Ser Glu Glu Ser Arg Leu
 35 40 45

Leu Leu Ala Ala Met Val Asn Asp Tyr Glu Gln Met Lys Ala Arg Glu
 50 55 60

Met Gln Lys Gln Arg Ala Gln Gly Ser Gly Ile Ser Val Gln Lys Arg
 65 70 75 80

Ser Cys Asn Thr Ala Thr Cys Met Thr His Arg Leu Val Gly Leu Leu
 85 90 95

Ser Arg Ser Gly Ser Met Val Arg Ser Asn Leu Leu Pro Thr Lys Met
 100 105 110

Gly Phe Lys Val Phe Gly Gly Arg Arg Asn Phe Trp Ile
 115 120 125

<210> 5
 <211> 3796
 <212> DNA

<213> Swine

<220>

<223> gene CRSP

<400> 5

ctcgaggatc ctgccttgc ttccacaa atcctgcctt cctgtgttgc attccagctg 60
cctgaatcag accccctgct tgggcacaga atcatcaacc tgctgcgcataacccctt 120
aaccgcactt ggacatggta gtccttaggg accggggatg cttgtatgc ctggactctg 180
ctctacaatgc atcacatagc tggggatggaa gagggatgtg agcctgcgaa accgaacagg 240
taaagttac catgacgtca aactgtcctt aatttcctgc tcactttgc tggttttc 300
gttggtgcacc accaacctcc ccacccctcc ccaccccccgc catcaatgac ctcaatgca 360
atacaagtgg ggtggcctg ttggatgctc caggttctgg acgcaagtag tgacacaatc 420
ctggggctca ggatcttcc ttcattgtt tgcctgggac tctgggacca cccagattc 480
agagcggcgg gaataagagc agctgtggt gggggaaagg gttagaggca ctacccaccc 540
caagtgtctc tgccgcttcc tccacagtgc catgcctga cggcaacgc gtcgccttgc 600
ctccctctc tgctccagtc cacctgggtt ctgctgccc gtaagcccg agattctgc 660
taagctgtgg ttctgttct ctctcccttcc ctcccttcc ctctctcttcc attggattt 720
cttagctgtat ctctttccc gtctcaaagt tccgtccac ttctctctgg gtccttcat 780
cctgtatataat gccttactgc gcaattcattt ctaggcttcc ttcacaggta actctggatg 840
gtctcaggcc ggggattccc tgctctactc ttccctgagct gagctggctt ccagcttgc 900
ccccgcagca gacgtgotta ggtccgtgtt gggattttgg agctctccag gcacttcagg 960
gagaggagga tgcaggaata gcttggca gaagaaactt tcatggatcc catccctct 1020
tacctacaag gatcgtggaa aatggggtcg ggacctggga cagtgcataat gggggcaaa 1080
taggtgcaat gactgaggggaa aagtagctttaaaacgcaaa gccccagttt aaggttctgg 1140
gaactcccccc tcccgcacccg ccacccattttaatcttggg tcccaatttaa aggtgttacc 1200
agcttgcgttcc ttacagggtt ctcttgcac gaggatggag cagctggaca gtaaaatttgc 1260
gttcttcaatg ttcctcaggaa ttccaaactgc agagatatgt cctcccaactt ccccttcccc 1320
ccagccaggataaagcaaaaatcaggcatacaggagatg ctgtgggtt gcaatgtgg 1380
aaaagctgtg gtgacaggta ctgcgagttt gtcctccagg agtccggcc aacagggttga 1440
aggtgaggt gtgggtgtgc tggcaggggg gatgtggac gggacccctt caccaggatttgc 1500
tccctgtttagg cttctttgttcaatccaaaca tggcagggttccacttgc ttcacaggatg 1560
ccacttgcgtt gaggaggaaa tggatgttgc agggaaaggac acggcagcc tgaagccagg 1620
aagccaggaa gttggaggca gggcaggag cagagccca gtcgtgggc tcaatgttact 1680
tggaaactgtt acagggttgc acattgttcttcccttgcag aggggcacca tggggttctg 1740
gaaatttccg cccttccctgg ttctcagcat cctggctctg taccaggcag gcatgttcca 1800
cacagcacca atgaggtaag acagccctgc caacaagcac actacttgc tggaaatgtt 1860
atataaactgtt gtatataat tattataat gttgttctgtt agaacaatgg atatgttctt 1920
gcgccttcat aagtttatca taagtttat gttgtacacaa agttgtaaa tagacataag 1980
atatacagta ctcatgattttaattttataacttataaaacccatca gcatgtttttt 2040
ttgttttccat caaatatttgc tacctttagc acacgttatgtt gtcataatttccatataattt 2100
agaaatggat tttatccat tggcaataat ttttgcgtatgaaatgtttaatgttgc 2160
tatggatctt acacatcttccat ttttccatcttgcatttgcacaa tgcattaaagc taaaattttt 2220
ttcccttcatca aactatcaga aaccaggca cctggctgtt tatcctgggg agggcaggcc 2280
aggagatcag aacccttttgc taggtttgc tccctcccttgc acgttgcctt tgggagcc 2340
ttttgcatttgc ttttcccttgc acacatcttgc ttttgcgttgcatgttgc 2400
tgactatgttgc cttttccat ttttccatcttgcatttgcacaa tgcattaaagc taaaattttt 2460
aggttccctg cccaggacacacccatccat ttttccatcttgc acatgttgc ttttgcgttgc 2520
catatatttttgc acgttgcatttgc ttttccatcttgc acatgttgc ttttgcgttgc 2580
tggcatttcc cctgcaggcc tagattttgc ttttccatcttgc acatgttgc ttttgcgttgc 2640
tcaagggttca ctggccttgc ttttccatcttgc acatgttgc ttttgcgttgc 2700
ctgcacttca cctctctacttgc acacatcttgc ttttccatcttgc acatgttgc ttttgcgttgc 2760
gtcccaaggaa gatccttgc ttttccatcttgc acatgttgc ttttgcgttgc 2820
agcagatctg ggagcatgttgc ttttccatcttgc acatgttgc ttttgcgttgc 2880
tttggggc gccggcaggaa cttttggatc ttttgcgttgc ttttgcgttgc 2940
gacttgcctt ttttgcgttgc ttttgcgttgc ttttgcgttgc 3000
tccacacccat ttttgcgttgc ttttgcgttgc ttttgcgttgc 3060
caccaggatc ttttgcgttgc ttttgcgttgc ttttgcgttgc 3120
ctgtttcttgc ttttgcgttgc ttttgcgttgc ttttgcgttgc 3180
ttacttttttgc ttttgcgttgc ttttgcgttgc ttttgcgttgc 3240
aaggtaatgttgc ttttgcgttgc ttttgcgttgc ttttgcgttgc 3300
ctggcatttca aactatgttgc ttttgcgttgc ttttgcgttgc 3360
gaggccttgc ttttgcgttgc ttttgcgttgc ttttgcgttgc 3420

ttagtataac atatgacaag agcctgttaa ctaagaatta ataacattct gttactttt 3480
tccctcttag gttactatga ctctgaactc tacttcgtt aattacaat gaaagcaacc 3540
tactaaaaaa tagcatggaa gacatccatg tatgcatgct tctggaaact gaaaacactc 3600
tttcccttga aataaaactaa aactaaatgc aaaataaaat caatgcatca atgcagttac 3660
cttgcgtgca tctttgtgt atatgattct ataatatgtat gcatgtctca ttagttaa 3720
tggtagcaaa tctggccct gtcagccaac ctgttgggg gggcagctct gctaaacactc 3780
agggtcacat gaattc 3796

<210> 6
<211> 40
<212> PRT
<213> Bos sp.

<220>
<223> BosCRSP

<400> 6
Ala Cys Asn Thr Ala Thr Cys Met Thr His Arg Leu Ala Gly Trp Leu
1 5 10 15

Ser Arg Ser Gly Ser Met Val Arg Ser Asn Leu Leu Pro Thr Lys Met
20 25 30

Gly Phe Lys Ile Phe Asn Gly Pro
35 40

<210> 7
<211> 649
<212> DNA
<213> Bos sp.

<220>
<223> BosCRSP cDNA

<400> 7
tgtctctgcc acttctgcc aactgccact gcctgctgcc aaagctactg ctgctgctcc 60
ttcctctgtccc cccagccacc tggccggc tgcagagag gtgcatggg cttctggaaag 120
ttccccccat tctttgtctt cagcatctg gtctgtacc aggcaggcat gttcatgca 180
gcaccattca ggtctgtctt tgatggcggt tttgatctg ctaccctgga tgaggaggaa 240
tcgcgcctcc tactggctgc gatggtaat gactacgagc agatggggc cggggatcg 300
gagaaggctc agaagaccga gggctccgc atccagaaga gaggctgcaa cactgccacc 360
tgcattgaccc atgcctggc aggctggctg agcagatctg ggatgtatggt gaggagcaac 420
ttgctggcga ccaagatggg ttcaagatc ttcaatgggc cccgcaggaa ctccctggttt 480
taaacagtga aatgacgctg ggaataaggt caccaggaaat ctgaactcta ctttttagttt 540
gcatgaaggc accttacaaa aaaagaaaaat agcatgaaag ataccatgt atgcatgctt 600
ctcgatattt gaaatcttctt gaaataactt aatgcaga 649

<210> 8
<211> 125
<212> PRT
<213> Bos sp.

<220>
<223> precursor peptide of BosCRSP

<400> 8
Met Gly Phe Trp Lys Phe Pro Pro Phe Leu Val Leu Ser Ile Leu Val
1 5 10 15

Leu Tyr Gln Ala Gly Met Phe His Ala Ala Pro Phe Arg Ser Val Phe
(4)

20 25 30

Asp Gly Arg Phe Asp Pro Ala Thr Leu Asp Glu Glu Glu Ser Arg Leu
35 40 45

Leu Leu Ala Ala Met Val Asn Asp Tyr Glu Gln Met Arg Ala Arg Glu
50 55 60

Ser Glu Lys Ala Gln Lys Thr Glu Gly Ser Arg Ile Gln Lys Arg Ala
65 70 75 80

Cys Asn Thr Ala Thr Cys Met Thr His Arg Leu Ala Gly Trp Leu Ser
85 90 95

Arg Ser Gly Ser Met Val Arg Ser Asn Leu Leu Pro Thr Lys Met Gly
100 105 110

Phe Lys Ile Phe Asn Gly Pro Arg Arg Asn Ser Trp Phe
115 120 125

<210> 9

<211> 38

<212> PRT

<213> Canis sp.

<220>

<223> CanisCRSP

<400> 9

Ser Cys Asn Ser Ala Thr Cys Val Ala His Trp Leu Gly Gly Leu Leu
1 5 10 15

Ser Arg Ala Gly Ser Val Ala Asn Thr Asn Leu Leu Pro Thr Ser Met
20 25 30

Gly Phe Lys Val Tyr Asn
35

<210> 10

<211> 686

<212> DNA

<213> Canis sp.

<220>

<223> CanisCRSP cDNA

<400> 10

tctgccacat ccacggtgcc atcgccctgac atcggacgcc aacactgcc aagctgccgc 60
cgcctgtct ccgagccacc ggctgcctgc agacagagaa gcgtcatggg cttctggaaag 120
ttctccctt tcctggttct cggcatcctg ggcgtgtacc aggtggctt cctccaggca 180
gcaccattca ggtctgctt gggaaatctt ccagactctg gtgtgcgcaa tgaggaggaa 240
ttgcgcctcc tcctggctgc agtgatgaag gactatatgc agatgaagac tcatgagctg 300
gaggcaggagc aggagactga gggctccagg gttgctgtcc agaagagatc ctgcaactct 360
gccacctgtg tggccattg gctgggaggc ttgctgagca gagccggaaatg tggccaaac 420
accaacttgc tgcaccatcg catgggcttc aaggcttaca atcgacgccg caggaaactt 480
aaggcttaag cagtgcacatg accccaggaa gaagggtcacc atgaagtgaa ctctacttct 540
cttaacttct aataaaaaca acttataaaaaa tgcagagatc ggaagacaca tacatatgca 600
tgcttactat taaaacattg tgtcttgaaaat gaaataaaatg aaaactaaat aaagagaata 660
aaatcataaa aaaaaaaaaaaaaaa aaaaaaa 686

<210> 11
<211> 127
<212> PRT
<213> Canis sp.

<220>
<223> precursor peptide of CanisCRSP

<400> 11
Met Gly Phe Trp Lys Phe Ser Pro Phe Leu Val Leu Gly Ile Leu Ala
1 5 10 15

Leu Tyr Gln Val Gly Phe Leu Gln Ala Ala Pro Phe Arg Ser Ala Leu
20 25 30

Glu Asn Pro Pro Asp Ser Gly Val Arg Asn Glu Glu Glu Leu Arg Leu
35 40 45

Leu Leu Ala Ala Val Met Lys Asp Tyr Met Gln Met Lys Thr His Glu
50 55 60

Leu Glu Gln Glu Gln Glu Thr Glu Gly Ser Arg Val Ala Val Gln Lys
65 70 75 80

Arg Ser Cys Asn Ser Ala Thr Cys Val Ala His Trp Leu Gly Leu
85 90 95

Leu Ser Arg Ala Gly Ser Val Ala Asn Thr Asn Leu Leu Pro Thr Ser
100 105 110

Met Gly Phe Lys Val Tyr Asn Arg Arg Arg Glu Leu Lys Ala
115 120 125

<210> 12
<211> 37
<212> PRT
<213> Swine

<220>
<221> modified amino acid
<222> (37)
<223> Leucine amide

<220>
<223> CRSP-2

<400> 12
Ser Cys Asn Thr Ala Ser Cys Val Thr His Lys Met Thr Gly Trp Leu
1 5 10 15

Ser Arg Ser Gly Ser Val Ala Lys Asn Asn Phe Met Pro Thr Asn Val
20 25 30

Asp Ser Lys Ile Leu
35

<210> 13
<211> 690
<212> DNA
<213> Swine

<220>

<223> CRSP-2 cDNA

<400> 13

ctcaagtgtc tctgccgctt ottccacagt gccatcgctt gacgccaaacg ctgctgcctc 60
tgctccctcc tctgctccag tccacctggt tcctgctgcc cgagggcac catgggcttc 120
tggaatttc cgcccttcctt ggttctcagc atcctggtcc tgtaccaggc aggcatagttc 180
cacacagcac cctgtgagatt gcctttggag agcagcttg attctgccc ttcacagag 240
gaggaagtgt cccttctact ggttgcataatg gtgaaggatt atgtgcagat gaaggccact 300
gtgctggagc aggagtcaaga ggacttcagc atcactgccc aggagaaaatc ctgcaacact 360
gtctagctgt tgacccacaa gatgacaggc tggctgagca gatctggag cgtggctaag 420
aacaacttca tgcccaccaa tgtggactcc aaaatcttgg gctgacgccc cagagagcct 480
caggcctgag ctgtgaaatg actccacaaa gaaggtcacc aaggaactga actctatttc 540
tttaatctg caatgaaagc aatttatttg aaaaatagca tggaaaacac acatatatgc 600
atgcttcctg ctgaaatac agcttttagc ttgaaataaa ctaaaactaa atgcagaata 660
aatcattgc agtacactga aaaaaaaaaa 690

<210> 14

<211> 117

<212> PRT

<213> Swine

<220>

<223> precursor peptide of CRSP-2

<400> 14

Met Gly Phe Trp Lys Phe Pro Pro Phe Leu Val Leu Ser Ile Leu Val
1 5 10 15

Leu Tyr Gln Ala Gly Met Phe His Thr Ala Pro Val Arg Leu Pro Leu
20 25 30

Glu Ser Ser Phe Asp Ser Ala Thr Leu Thr Glu Glu Glu Val Ser Leu
35 40 45

Leu Leu Val Ala Met Val Lys Asp Tyr Val Gln Met Lys Ala Thr Val
50 55 60

Leu Glu Gln Glu Ser Glu Asp Phe Ser Ile Thr Ala Gln Glu Lys Ser
65 70 75 80

Cys Asn Thr Ala Ser Cys Val Thr His Lys Met Thr Gly Trp Leu Ser
85 90 95

Arg Ser Gly Ser Val Ala Lys Asn Asn Phe Met Pro Thr Asn Val Asp
100 105 110

Ser Lys Ile Leu Gly
115

<210> 15

<211> 7673

<212> DNA

<213> Swine

<220>

<223> gene CRSP-2

<400> 15

ggatccacta gttcttagata aaatggacaa ataccttagaa acagaagacc taccaagatg 60
gaaggatgaa gaaatagaaa attcaaatac acctatgact aggaaggaga atgaagcatt 120

aatccaaaat cttccaacaa agaaaagccc tggatacgat ggcctcattt gtgaatagta 180
ccagacatt aaagaaaacg aataccaatc cttgtcaaac tttccaaaaa acctgaagag 240
aaaggacaca ccctaaccctt ttctatgagg caggcaaca ttactctgat accaaagatg 300
gagaaagatt ctgcaaggag aaaaccccta cagacaaaat ctttatgac atggatgtgg 360
aaaccctcaa cagtagctt gggatttgc ttccagaacg tattaaaagg atccataac 420
atgaccaagt gggatgatt tcttgcattc aaggatgatt caaaatatga aaatttgatca 480
aagtgtata tcacaataat ggaatgtagg gaaaaacaca cctgattttt tccactgata 540
cagaaaattt tttagaaaa ttcaataacctt ttccaggatt aaaaacaaaa actaggata 600
gaaggagact gcctcagcac aatacaacta tatatgaaaa accaacaacca acaccataat 660
ccagggggaa aaactgaaag ctttccctt aagatctgga agaaaatggaa aaaaaattttt 720
taagaattttt cagacagatt tgggtctctg gtacactctg agaaatcatc ttttagattt 780
ttttttttt aaaaataagc acaagaattt cattttaaag aagggaaata acatgcctt 840
cagagttttt cagggagggtt aattttttt tccacactag atttggctt cctgtatgta 900
attttgaggt taaaacataa taaaataaga ttgtacagcc aagtgcacg tagtcatgga 960
acttttaccc ttagtactgtt tagtgcctca gtcctaaagaa gtttcaggga gggctgcgtt 1020
caatacaagt aatcggtact tgcgttgggtt cttttttttt gaggactt ggtttttttt 1080
ggatgggcgc agaggagact ggttgcgtt ctcagactag tgaacccctt aattttttttt 1140
gggtactttt gtgtccaaag cttttttttt aatccatgtt tttttttttt taggtccaaa tgctctgcgtt 1200
gtgttagttt gggccctctc atagcaggga gactgcctt gttttttttt taggtccaaa tgctctgcgtt 1260
gaattttccat tcacattcat tcaacaaaca ttggcggagt gccacccatc gtgtttttttt 1320
ttgtgtttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 1380
gacttcttgg aaagtccatc gacttcttgg aaggatgttcat ctcagccctt cccttacttgg 1440
agagacttgc tttttttttt aatccatgtt tttttttttt taggtccaaa tgctctgcgtt 1500
ctggggcggc accctgttcc tttttttttt tttttttttt tttttttttt tttttttttt 1560
attttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 1620
gttagatgtt gggccatcaaa attaacatag ttccaaatattt tttttttttt tttttttttt 1680
tttagccata gtgcagccac ctttgcattt tttttttttt tttttttttt tttttttttt 1740
gacatccccca gacacacata cttaacaaatg tttttttttt tttttttttt tttttttttt 1800
agggttttggaa tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 1860
ttttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 1920
gcttaggggtt taataggcgc catagccacc ggcctacccc agagactactg caacgcttgc 1980
tccgagccgc atcttgcacc tacaccacaa cttttttttt tttttttttt tttttttttt 2040
gagcaaggcc acccttgcacc cccgcacccctt catgggtttt actcagattt gttttttttt 2100
ggccacacac ggcctacttcc acccttccatc ctcttattttt taggtccaaa tgctctgcgtt 2160
atgcccacc accatgtttt ccccgaggta gcaacttgcgtt tttttttttt tttttttttt 2220
ggaaagccaa gccgacttccatcattttt tttttttttt tttttttttt tttttttttt 2280
gtgcacccaa tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 2340
tccctttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 2400
ccagttttttt cttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 2460
aaggccacca ggcctacttccatcattttt tttttttttt tttttttttt tttttttttt 2520
gggtatctt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 2580
tggccggcga ggcctacttccatcattttt tttttttttt tttttttttt tttttttttt 2640
cagggtttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 2700
ctgggggtttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 2760
gggtatctt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 2820
catccgaact ggtttttttt tttttttttt tttttttttt tttttttttt tttttttttt 2880
tcttggccaa cagcagccgg aaggccatcattttt tttttttttt tttttttttt tttttttttt 2940
gggtttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 3000
ccgtgcacgtt cccttccatcattttt tttttttttt tttttttttt tttttttttt tttttttttt 3060
caccctggccgc gacttccatcattttt tttttttttt tttttttttt tttttttttt tttttttttt 3120
gcacagaatc cccttgcacc tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 3180
gcaggttacat ggtttttttt tttttttttt tttttttttt tttttttttt tttttttttt 3240
aaaaatattttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 3300
ggcacagttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 3360
caaatcttc tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 3420
agaatcatca acctgttgcgtt cttttttttt tttttttttt tttttttttt tttttttttt 3480
gggacccgggg atgtttttt tttttttttt tttttttttt tttttttttt tttttttttt 3540
ggagaggat tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 3600
ttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 3660
ctttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 3720
ctttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 3780
ttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 3840
ttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 3900

<210> 16
<211> 37
<212> PRT
<213> Swine

<220>
<221> modified amino acid
<222> (37)
<223> Leucine amide

<220>
<223> CRSP-3

<400> 16
Ser Cys Asn Thr Ala Ile Cys Val Thr His Lys Met Ala Gly Trp Leu
1 5 10 15

Ser Arg Ser Gly Ser Val Val Lys Asn Asn Phe Met Pro Ile Asn Met
20 25 30

Gly Ser Lys Val Leu
35

<210> 17
<211> 685
<212> DNA
<213> Swine

<220>
<223> CRSP-3 cDNA

<400> 17
ggccagctta cgtctccctt ctccgccagt gccatcacct gccaccagcg cggttggc 60
ttctcccaact tgggctccaa gtcacgttgc ttctgcaccc agagggcac catgggcttc 120
tggaaagtcc cccccccttctt gatccctcagc atcctggtcc tgcaccaagc aggaatgctc 180
catgcccgcgc cattcaggat ggcttggga agcagcttg attctgcac actcacggaa 240
gaggaaatgt ccctcctact ggttgcataat gtgaaggatt atgtgcagat gaaggccact 300
gtgctggagc aggagacaga ggacttcagc atcaccaccc aggagagatc ctgcaacact 360
gcccattctgtg tgacccacaa gatggcaggc tggctgagca gatctggagc cgtggtaag 420
aacaacttca tgcccatcaa catggctcc aaagtcttgg gcccggccgc cagacagcct 480
caggcctgag ctgtaaaatg actctaaaaa gaagttaaac tcaagttgtt ttcactgcaa 540
atgtgcattt cctgcattt aaaaagaacca atttggaaaaa tagcatgaa gacacacata 600
tatgcattgt tcttgcataat aatacaactt ttgcattgaa acaaaactaaa cctaaatgca 660
gaataaaaatc attgcagttt cctgtt 685

<210> 18
<211> 125
<212> PRT
<213> Swine

<220>
<223> precursor peptide of CRSP-3

<400> 18
Met Gly Phe Trp Lys Phe Pro Pro Phe Leu Ile Leu Ser Ile Leu Val
1 5 10 15

Leu Tyr Gln Ala Gly Met Leu His Ala Ala Pro Phe Arg Met Ala Leu
20 25 30

Gly Ser Ser Phe Asp Ser Ala Thr Leu Thr Glu Glu Glu Met Ser Leu
35 40 45

Leu Leu Val Ala Met Val Lys Asp Tyr Val Gln Met Lys Ala Thr Val
50 55 60

Leu Glu Gln Glu Thr Glu Asp Phe Ser Ile Thr Thr Gln Glu Arg Ser
65 70 75 80

Cys Asn Thr Ala Ile Cys Val Thr His Lys Met Ala Gly Trp Leu Ser
85 90 95

Arg Ser Gly Ser Val Val Lys Asn Asn Phe Met Pro Ile Asn Met Gly
100 105 110

Ser Lys Val Leu Gly Arg Arg Arg Gln Pro Gln Ala
115 120 125

<210> 19

<211> 33

<212> PRT

<213> Swine

<220>

<221> modified amino acid

<222> (33)

<223> Serine amide

<220>

<221> modified amino acid

<222> (1)

<223> pyroglutamic acid

<220>

<223> CT-2

<400> 19

Glu Cys Asn Asn Leu Ser Thr Cys Val Leu Gly Thr Tyr Thr Trp Asp
1 5 10 15

Val Asn Lys Phe Tyr Ala Phe Pro Leu Thr Thr Thr Gly Ile Arg Val
20 25 30

Ser

<210> 20

<211> 802

<212> DNA

<213> Swine

<220>

<223> CT-2 cDNA

<400> 20

gcccagctta cgtctccctt ctccgcccagt gccatcacct gccaccagcg cgggttgtgc 60
ttctccact tgggtctcaa gctaccctgtt tcctgcattc agaggggcac catgggcttc 120
tggaagttcc ccccttcct gatcctcagc atcctggtcc tgtaccaagc aggaatgctc 180
catgccgcgc cattcaggat ggctttggga agcagcttg attctgccac actcacggaa 240
gaggaaatgt ccctctact ggttgcataat gtgaaggatt atgtgcagat gaaggccact 300

gtgctgggc aggagacaga ggacttcagc ctggacagct ccagagctaa gcagtcaat 360
aatctgagta cctgtgtctt gggAACATAT acatgggacg tcaacaagtt ttatgcattc 420
cccttaacta caactggat tagagtatctt ggcaagaaat gggcaggcc cagagtctca 480
gagaaagtcc attatccctc aaggcagcat accctaaggt gcttaagaag gccccccacc 540
ctccctctt ctatgtctc tcctagaatt tgcattgtttt cttctctggg tgctctctga 600
gctgctatca gcagcttcc ttgtggccat ggatgtctgg aatatcagag aggagggtggg 660
gggtgggggc aggaggcca gaagaaaatc actcaggaat agattaggag agaatggca 720
gccctgttag tgcctgtgga tttcacagca gagcttctca gtcctgcttc tgaacatgct 780
tttcaactagg gaataaaagt at 802

<210> 21
<211> 162
<212> PRT
<213> Swine

<220>
<223> precursor peptide of CT-2

<400> 21
Met Gly Phe Trp Lys Phe Pro Pro Phe Leu Ile Leu Ser Ile Leu Val
1 5 10 15

Leu Tyr Gln Ala Gly Met Leu His Ala Ala Pro Phe Arg Met Ala Leu
20 25 30

Gly Ser Ser Phe Asp Ser Ala Thr Leu Thr Glu Glu Glu Met Ser Leu
35 40 45

Leu Leu Val Ala Met Val Lys Asp Tyr Val Gln Met Lys Ala Thr Val
50 55 60

Leu Glu Gln Glu Thr Glu Asp Phe Ser Leu Asp Ser Ser Arg Ala Lys
65 70 75 80

Gln Cys Asn Asn Leu Ser Thr Cys Val Leu Gly Thr Tyr Thr Trp Asp
85 90 95

Val Asn Lys Phe Tyr Ala Phe Pro Leu Thr Thr Thr Gly Ile Arg Val
100 105 110

Ser Gly Lys Lys Trp Val Arg Ala Arg Val Ser Glu Lys Val His Tyr
115 120 125

Pro Ser Arg Gln His Thr Leu Arg Cys Leu Arg Arg Pro Pro Pro Leu
130 135 140

Leu Leu Ser Ser Ser Pro Arg Ile Cys Met Cys Ser Ser Leu Val
145 150 155 160

Ala Leu

<210> 22
<211> 7142
<212> DNA
<213> Swine

<220>
<223> gene of CRSP-3 and CT-2

<400> 22

