

basic education

Department:
Basic Education
REPUBLIC OF SOUTH AFRICA

SENIOR CERTIFICATE EXAMINATIONS/ SENIORSERTIFIKAAT-EKSAMEN NATIONAL SENIOR CERTIFICATE EXAMINATIONS/ NASIONALE SENIORSERTIFIKAAT-EKSAMEN

MATHEMATICS P2/ WISKUNDE V2

MARKING GUIDELINES/NASIENRIGLYNE

2019

MARKS: 150 *PUNTE: 150*

These marking guidelines consist of 20 pages. *Hierdie nasienriglyne bestaan uit 20 bladsye.*.

NOTE:

- If a candidate answers a question TWICE, only mark the FIRST attempt.
- If a candidate has crossed out an attempt of a question and not redone the question, mark the crossed out version.
- Consistent accuracy applies in ALL aspects of the marking memorandum. Stop marking at the second calculation error.
- Assuming answers/values in order to solve a problem is NOT acceptable.

NOTA:

- As 'n kandidaat 'n vraag TWEE KEER beantwoord, sien slegs die EERSTE poging na.
- As 'n kandidaat 'n antwoord van 'n vraag doodtrek en nie oordoen nie, sien die doodgetrekte poging na.
- Volgehoue akkuraatheid word in ALLE aspekte van die nasienriglyne toegepas. Hou op nasien by die tweede berekeningsfout.
- Om antwoorde/waardes te aanvaar om 'n probleem op te los, word NIE toegelaat NIE.

GEOMETRY • MEETKUNDE		
S	A mark for a correct statement (A statement mark is independent of a reason)	
	'n Punt vir 'n korrekte bewering ('n Punt vir 'n bewering is onafhanklik van die rede)	
n	A mark for the correct reason (A reason mark may only be awarded if the statement is correct)	
R	'n Punt vir 'n korrekte rede ('n Punt word slegs vir die rede toegeken as die bewering korrek is)	
S/R	Award a mark if statement AND reason are both correct	
5/K	Ken 'n punt toe as die bewering EN rede beide korrek is	

1.1 45 ch	ldren	✓ answer
1.2 _		(1)
$x = \frac{2}{3}$	$\frac{\sum fx}{n} = \frac{(4 \times 2) + (8 \times 10) + (12 \times 9) + (16 \times 7) + (20 \times 8) + (24 \times 7) + (28 \times 2)}{45}$ $\frac{92}{45} \text{ OR } \bar{x} = 15,38 \text{ minutes}$ Answer only: full marks	(2) ✓ 692 ✓ answer
1.3	Time taken (t) Number of Cumulative	
	(in minutes) children frequency	
	$2 < t \le 6 \qquad \qquad 2 \qquad \qquad 2$	✓ first 4 cum free
	$6 < t \le 10$ 10 12	correct
	$10 < t \le 14$ 9 21	✓ last 3 cum freq correct
	$14 < t \le 18$ 7 28	
	$18 < t \le 22$ 8 36	
	$22 < t \le 26$ 7 43	
	$26 < t \le 30$ 2 45	(2
umulative Frequency	CUMULATIVE FREQUENCY GRAPH (OGIVE) 30 10 0 5 10 15 20 25 30	✓ plotting cum freq at upper limits correctly (all points) ✓ shape (smooth) ✓ grounding (2;0)
	Time in minutes	(3
	aph at the y-value of 22,5 or 23 an = \pm 15 minutes. Answer only: full marks	✓ graph ✓ answer
		[1

2.1	a = 12,44		✓ value of a	
	b = 0.98	Answer only: full marks	✓ value of b	
	y = 12,44 + 0.98x		✓ equation	
				(3)
2.2.1	Percentage = $\frac{15}{50} \times 100$			
	=30%		✓ answer	
	- 3070			(1)
2.2.2	$\hat{y} = 12,44 + 0,98x$		(1 .:. : : : : : : : : : : : : : : : : :	
	$\hat{y} = 12,44 + 0,98(30)$		✓ substitution of 30	
	$\hat{y} = 41,84$			
	= 42	Answer only: full marks	✓ answer as integer	
	OR	1 2116 (Q 1 0111) 1 Q 111 111 Q 2116	v answer as integer	(2)
	$\hat{y} = 41,87$ (if using c	alculator)	\checkmark value of y	(2)
	$\hat{y} = 42$		✓ answer as integer	
				(2)
				()
	OR			
	21			
	$\hat{y} = \frac{21}{50}$		✓ ✓ answer	
	30			(2)
2.3.1	standard deviation =13	3 88	✓ ✓ answer	
2.5.1		-,	WILD IT WI	(2)
2.3.2	x = 50,67 - 45,67		✓ 50,67-45,67	
	=5%	Answer only: full marks	✓ answer	
	570			(2)
				[10]

2)
2)
2)
3)
3)

2.2	
$\begin{bmatrix} 3.2 \\ B(0;1) \end{bmatrix}$	✓ coordinates of B
$m_{\rm BC} = \frac{1 - (-3)}{0 - 2}$ OR $m_{\rm BC} = \frac{(-3) - 1}{2 - 0}$	
0-2 2-0	
=-2 $=-2$	$\checkmark m_{\rm BC} = -2$
1	
$m_{\rm AB} \times m_{\rm BC} = \frac{1}{2} \times -2$	
_	✓ product of gradients = -1
=-1	
\therefore AB \perp BC	
	(3)
3.3.1 $\triangle ABC = 90^{\circ}$	
∴ EC is diameter [converse: ∠ in semi circle]	
$\therefore \text{ centre of circle} = \left(0; -\frac{3}{2}\right)$	✓ answer
(3, 2)	(1)
$3.3.2 \left (x-0)^2 + \left(y + \frac{3}{2} \right)^2 = r^2$	✓ substitution of centre
$\begin{pmatrix} x & 0 \end{pmatrix} \begin{pmatrix} y & 2 \end{pmatrix} = 7$	
$(2)^2$	\ \\ ²
$\left(-2-0\right)^2 + \left(0+\frac{3}{2}\right)^2 = r^2$ OR $(2-0)^2 + \left(-3-\left(\frac{-3}{2}\right)^2\right)^2 + \left(-3-\left(\frac{-3}{2}\right$	$ = r^2 $ $ \checkmark $ correct substitution of
	D(1,0), D(0,1)
$\left(-3\right)^{2}$	C(2; -3) to calculate
OR $(0-0)^2 + \left(1 - \left(\frac{-3}{2}\right)\right)^2 = r^2$	r^2 or r
EC $\sqrt{(-2-2)^2+(0-(-3))^2}$	
OR $r = \frac{EC}{2} = \frac{\sqrt{(-2-2)^2 + (0-(-3))^2}}{2}$	
OR $r = 1 - (-\frac{3}{2})$	\checkmark value of r^2 or r
<u></u>	
$\therefore r^2 = \frac{25}{4} \text{or } r = \frac{5}{2}$	
, 4 01, 7 = 2	
$(3)^2$ 25	
$x^2 + \left(y + \frac{3}{2}\right)^2 = \frac{25}{4}$	✓ equation
2) 4	(4)
	[18]
	[20]

4.1	$(x-2)^2 + (y-1)^2 = 25$ $(x-2)^2 + (y-1)^2 = 25$	✓ equation of the circle ✓ substitution of point T
	$(-2-2)^{2} + (b-1)^{2} = 25 (-2-2)^{2} + (b-1)^{2} = 25$ $(b-1)^{2} = 9 \mathbf{OF} 16 + b^{2} - 2b + 1 = 25$	
	$b-1 = \pm 3$ $b^2 - 2b - 8 = 0$	✓simplification
	$\therefore b = 4 \text{or} b \neq -2 \qquad \qquad \therefore b = 4 \text{or} b \neq -2$	✓ answer (4)
4.2.1	K(2; 1-5)	
	∴ K(2; -4) Answer only: full marks	$\checkmark x \text{ value } \checkmark y \text{ value}$ (2)
4.2.2	$m_{\rm MT} = \frac{4-1}{-2-2} = -\frac{3}{4}$	` '
	$m_{\rm PL} = \frac{4}{3}$ [radius \perp tangent]	$ \begin{array}{ccc} \checkmark & m_{\text{MT}} \\ \checkmark & m_{\text{PL}} = \frac{4}{3} \end{array} $
	$y = \frac{4}{3}x + c$	
	$4 = \frac{4}{3}(-2) + c$	✓ substitution of $m_{\rm PL}$ and the point T
	$c = \frac{20}{3}$ $y = \frac{4}{3}x + \frac{20}{3}$	and the point 1
	$y = \frac{4}{3}x + \frac{20}{3}$	✓ equation
		(4)

SC/SS/NSC/NSS – Marking Guidelines/Nasienriglyne	
OR A 1 2	
$m_{\rm MT} = \frac{4-1}{-2-2} = -\frac{3}{4}$	✓ m _{MT}
$m_{\rm PL} = \frac{4}{3}$ [radius \perp tangent]	$ \begin{array}{ccc} \checkmark & m_{\text{MT}} \\ \checkmark & m_{\text{PL}} = \frac{4}{3} \end{array} $
$y - y_1 = \frac{4}{3}(x - x_1)$	
$y - 4 = \frac{4}{3}(x+2)$	✓ substitution of $m_{\rm PL}$ and
$y = \frac{4}{3}x + \frac{20}{3}$	the point T
OR	✓ equation (4)
$P(-11; -8)$ $m_{\text{PL}} = \frac{4 - (-8)}{-2 - (-11)}$	✓ coordinates of P
$=\frac{4}{3}$	$\sqrt{m_{\rm PL}} = \frac{4}{3}$
$y = \frac{4}{3}x + c$	3
$-8 = \frac{4}{3}(-11) + c$	
$c = \frac{20}{3}$	✓ substitution of m_{PL} and the point P or T
$y = \frac{4}{3}x + \frac{20}{3}$	(aquation
	✓ equation (4)
$y_{\rm L} = \frac{4}{3}(2) + \frac{20}{3} = \frac{28}{3}$	$\checkmark y_{\rm L} = \frac{28}{3}$
L(2; $\frac{28}{3}$) and K(2; -4): LK = $\frac{28}{3}$ - (-4) = $\frac{40}{3}$	✓ length of LK
Coordinates of P: $\frac{x+2}{2} = -4\frac{1}{2} \text{ and } \frac{y-4}{2} = -6$ $L(2; \frac{28}{3})$	
$\therefore x = -11 \qquad y = -8$ $\therefore P(-11; -8)$	$\checkmark x_{\text{p}} \checkmark y_{\text{p}}$
\perp height (PH) = 2 - (-11) = 13	✓ length of ⊥ height
Area $\triangle PKL = \frac{1}{2}(LK)(PH)$	
$= \frac{1}{2} \left(\frac{40}{3}\right) (13) \qquad P(-11; -8) \qquad H(2; -8)$	✓ substitution into the area formula
$= \frac{260}{3} \mathbf{OR} 86,67 \text{ square units}$	✓ answer (7)

SC/SS/NSC/NSS – Marking Guidelines/Nasienriglyne

4.2.3	OR	
	$y_{\rm L} = \frac{4}{3}(2) + \frac{20}{3} = \frac{28}{3}$	$\checkmark y_{\rm L} = \frac{28}{3}$
	$L\left(2; \frac{28}{3}\right)$ and $K\left(2; -4\right)$: $LK = \frac{28}{3} - (-4) = \frac{40}{3}$	✓ length of LK
	Coordinates of P: $\frac{x+2}{2} = -4\frac{1}{2} \text{ and } \frac{y-4}{2} = -6$ $L(2; \frac{28}{3})$	
	$\therefore x = -11$ $\therefore P(-11; -8)$ $y = -8$	$\checkmark x_{p} \checkmark y_{p}$
	$PK^{2} = (-11-2)^{2} + (-8-(-4))^{2}$ $PK = \sqrt{185} \text{ units}$ $m_{PK} = \frac{-8-(-4)}{-11-2} = \frac{4}{13}$ $P(-11; -8) = \frac{1}{12}$ $P(-11; -8) = \frac{1}{12}$	
	$m_{\text{PK}} = \frac{1}{-11-2} = \frac{1}{13}$ $\tan \theta = \frac{4}{13} : \theta = 17,1027^{\circ}$	
	$\therefore P\hat{K}L = 90^{\circ} + 17,1027^{\circ} = 107,1^{\circ}$	✓ PK̂L
	Area $\triangle PKL = \frac{1}{2}(PK)(LK).\sin P\hat{K}L$	
	$= \frac{1}{2} \left(\sqrt{185} \right) \left(\frac{40}{3} \right) \sin 107,10^{\circ}$ $= 86,67 \text{ square units}$	✓ substitution into the area rule ✓ answer
	50,07 Square units	(7)
4.3	The centres of the two circles lie on the same vertical line $x = 2$. and the sum of the radii = 10	✓ correct method ✓ sum of radii = 10
	n-1 = 10 or $1-n = 10$ $n = -9$	$\checkmark n=11 \checkmark n=-9$
	Answer only: full marks	(4)
		[21]

5.1.1	sin191°	
3.1.1		√-sin11°
	$=-\sin 11^{\circ}$	(1)
5.1.2	cos 22°	(1)
3.1.2	$=\cos(2\times11^{\circ})$	
	$=1-2\sin^2 11^\circ$	✓ answer
5.2	(1000)	(1)
3.2	$\cos(x-180^{\circ}) + \sqrt{2}\sin(x+45^{\circ})$	
	$=-\cos x + \sqrt{2}(\sin x \cos 45^\circ + \cos x \sin 45^\circ)$	$\sqrt{-\cos x}$ $\sqrt{-\cos x}$ expansion
	r=(1, (1), (1))	
	$=-\cos x + \sqrt{2}\left(\sin x\left(\frac{1}{\sqrt{2}}\right) + \cos x\left(\frac{1}{\sqrt{2}}\right)\right)$	✓ special angle ratios
		✓ simplification of last
	$=-\cos x + \sin x + \cos x$	2 terms
	_ cin u	✓answer
	$=\sin x$	(5)
	OR	
	$\cos(x-180^\circ) + \sqrt{2}\sin(x+45^\circ)$	
	$= -\cos x + \sqrt{2} \left(\sin x \cos 45^\circ + \cos x \sin 45^\circ \right)$	$\sqrt{-\cos x}$ $\sqrt{-\cos x}$ expansion
	$= -\cos x + \sqrt{2} \left(\sin x \left(\frac{\sqrt{2}}{2} \right) + \cos x \left(\frac{\sqrt{2}}{2} \right) \right)$	✓ special angle ratios
	$=-\cos x + \sin x + \cos x$	✓ simplification of last
		2 terms
	$=\sin x$	√answer
		(5)
5.3	$\sin P + \sin Q = \sin P + \cos P$	$\checkmark \sin Q = \cos P$
	$(7)^2$	
	$\left(\sin P + \cos P\right)^2 = \left(\frac{7}{5}\right)^2$	✓ squaring
	$\sin^2 P + 2\sin P\cos P + \cos^2 P = \frac{49}{25}$	✓ expansion
	25	
	$2\sin P\cos P = \frac{49}{25} - 1$	$\sqrt{\sin^2 P + \cos^2 P} = 1$
	$\sin 2P = \left(\frac{49}{25} - \frac{25}{25}\right)$	
	24	√answer
	$=\frac{24}{25}$	(5)
		[12]

6.1	$\cos(x - 30^\circ) = 2\sin x$	
	$\cos x \cos 30^\circ + \sin x \sin 30^\circ = 2\sin x$	√ expansion
	$\frac{\sqrt{3}}{2}\cos x + \frac{1}{2}\sin x = 2\sin x$	✓ special ∠s
	$\frac{\sqrt{3}}{2}\cos x = \frac{3}{2}\sin x$	✓ simplification
	$\tan x = \frac{\sqrt{3}}{3}$	✓ equation in tan
	$x = 30^{\circ} + k.180^{\circ}; k \in \mathbb{Z}$	✓ 30° ✓ <i>k</i> .180°; <i>k</i> ∈ <i>Z</i>
	OR	OR
	$x = 30^{\circ} + k.360^{\circ} \text{ or } x = 210^{\circ} + k.360^{\circ}; k \in \mathbb{Z}$	\checkmark 30° and 210° \checkmark k.360°; k ∈ Z
		(6)

6.2.1(a)	A(120°; 0)	✓ answer
		(1)
6.2.1(b)	C(-150°; -1)	$\checkmark x$ value $\checkmark y$ value
		(2)
6.2.2(a)	$x \in (-90^{\circ}; 30^{\circ}) \text{ OR } -90^{\circ} < x < 30^{\circ}$	✓ endpoints
		✓ correct interval
		(2)
6.2.2(b)	$x \in (-160^{\circ}; 20^{\circ}) \text{ OR } -160^{\circ} < x < 20^{\circ}$	✓endpoints
		✓ correct interval
		(2)
6.2.3	$y = 2^{2\sin x + 3}$	
	Range of $y = 2\sin x$: $y \in [-2; 2]$ OR $-2 \le y \le 2$	
	Range of $y = 2\sin x + 3$: $y \in [1; 5]$ OR $1 \le y \le 5$	√ 1 √ 5
	Range: $y = 2^{2\sin x + 3}$: $y \in [2; 32]$ OR $2 \le y \le 32$	✓ 2 ✓ 32
	Answer only: full marks	✓ correct interval
	Allswei olliy. Tuli illaiks	(5)
		[18]

7.1.1	$\sin \theta = \frac{x}{AC}$ $AC = \frac{x}{\sin \theta}$ $AC = \frac{x}{\sin \theta}$ $AC = \frac{x}{\sin \theta}$	✓ trig ratio ✓ simplification (2)
7.1.2	$\cos 60^{\circ} = \frac{x+2}{\text{CE}}$ $CE = \frac{x+2}{\cos 60^{\circ}}$ $= \frac{x+2}{1} = 2(x+2)$ $\cos 60^{\circ} = \frac{\sin 30}{x+2} = \frac{\sin 90^{\circ}}{\text{CE}}$ $CE = \frac{x+2}{\sin 30^{\circ}}$ $= 2(x+2)$	✓ trig ratio✓ making CE the subject
7.2	Area $\triangle ACE = \frac{1}{2}AC.EC.\sin A\hat{C}E$ $= \frac{1}{2} \left(\frac{x}{\sin \theta}\right) (2(x+2))\sin 2\theta$ $= \frac{x(x+2) \times 2\sin \theta \cos \theta}{\sin \theta}$ $= 2x(x+2)\cos \theta$	(2) ✓ use area rule correctly ✓ substitution of $\frac{x}{\sin \theta}(2(x+2))$ ✓ substitution of $\sin 2\theta$ (3)

$SC/SS/NSC/NSS-Marking\ Guidelines/Nasienriglyne$

7.3	EC = 2(12 + 2) = 28 AE ² = AC ² + EC ² - 2(AC)(EC)cosAĈE = $\left(\frac{12}{\sin 55^{\circ}}\right)^{2} + 28^{2} - 2\left(\frac{12}{\sin 55^{\circ}}\right)(28)\cos 110^{\circ}$ AE = 35,77m	✓ EC ✓ use cosine rule correctly ✓ substitution ✓ answer (4)
		[11]

QUESTION/VRAAG 8

8.1.1(a)	$\hat{MOS} = 62^{\circ} $ [\angle at centre = $2 \times \angle$ at circumf/middelpts $\angle = 2$ omtreks \angle]	✓ S ✓ R	
			(2)
8.1.1(b)	$\hat{L}=31^{\circ}$ [equal chords; equal $\angle s /= koorde; = \angle e$]	✓ S ✓ R	
			(2)
8.1.2	LN = NP and $LO = OM$	✓ LO = OM	
	$\therefore ON = \frac{1}{2} PM \qquad [midpoint theorem/middelpuntstelling]$	✓ S ✓ R	
	$\therefore ON = \frac{1}{2}MS \qquad [PM = MS]$	✓ S	(4)
	OR		(.)
	$\hat{N}_1 = 90^{\circ}$ [line from centre to midpt chord/lyn v midpt na midpt kd]	✓ S R	
	$\hat{P} = 90^{\circ}$ [\(\neq \text{in semi-circle}/\(\neq \text{in halfsirkel}\)]		
	L is common/gemeen		
	\therefore \triangle NLO $\parallel \mid \triangle$ PLM $(\angle \angle \angle)$	✓ S/R	
	$\frac{NL}{PL} = \frac{NO}{PM} = \frac{1}{2}$	✓ S	
	1		
	$\therefore ON = \frac{1}{2} PM$		
	$\frac{1}{2}$		
	$\therefore ON = \frac{1}{2}MS \qquad [PM = MS]$	✓ S	
			(4)

 $SC/SS/NSC/NSS-Marking\ Guidelines/Nasienriglyne$

8.2.1	$\frac{AN}{AM} = \frac{AK}{AB}$ [line one side of Δ OR prop theorem; KN BM/	✓ R
	$ lyn $ sy van Δ OR eweredigheidst; $ lyn $ $ l$	
	$\frac{AN}{AM} = \frac{3y}{5y} = \frac{3}{5}$	✓ S (2)
8.2.2	$\frac{AM}{MG} = \frac{10x}{22}$ [given]	
	$\begin{array}{ll} MC & 23x \\ AM = 5y = 10x & \therefore & y = 2x \end{array}$	✓ S
	$\frac{LC}{KL} = \frac{MC}{NM}$ [line one side of Δ OR prop theorem; KN LM/	✓ R
	$lyn \mid\mid sy \ van \ \Delta \ \textbf{\textit{OR}} \ eweredigheidst; \ KN \mid\mid BM \mid$	
	$= \frac{23x}{2y} = \frac{23x}{4x} = \frac{23}{4}$	✓ S (3)
		(3)
	OR	
	$\frac{AM}{MC} = \frac{10x}{23x} [given]$	
	$\frac{AN}{MN} = \frac{3y}{2y} = \frac{6x}{4x}$	✓ S
	$\frac{LC}{KL} = \frac{MC}{NM}$ [line one side of Δ OR prop theorem; KN LM/	✓ R
	$lyn \mid\mid sy \ van \ \Delta \ \textbf{\textit{OR}} \ eweredigheidst; \ KN \mid\mid BM \mid$	
	$=\frac{23x}{2}=\frac{23x}{4}=\frac{23}{4}$	✓ S
	2y $4x$ 4	(3)
		[13]

SC/SS/NSC/NSS – Marking Guidelines/Nasienriglyne

9.1	$\hat{B}_1 = x$ [\(\angle 's \text{ opp} = \text{sides}/\(\angle e \text{ teenoor} = sye\)]	✓S	
	$\hat{\mathbf{M}}_2 = 2x$ [ext \angle of Δ] OR $\hat{\mathbf{M}}_1 = 180^{\circ} - 2x$ [\angle s of Δ]	✓S ✓R	
	BM = MN [2 tans from a common point/raaklyne vanuit dieselfde punt]	✓S ✓R	
	$\hat{N}_1 = \frac{180^\circ - 2x}{2} = 90^\circ - x [\angle \text{'s opp} = \text{sides}/\angle e \text{ teenoor} = sye]$	✓answer	(6)
	OR NM = BM [2 tans from a common point/raaklyne vanuit dieselfde punt]	✓S ✓R	
	$\hat{\mathbf{B}}_2 = \hat{\mathbf{N}}_1 \ [\angle \text{'s opp} = \text{sides}/\angle e \ teenoor = sye}]$	✓S ✓R	
	$\hat{B}_1 = x$ [\angle 's opp = sides/ \angle e teenoor = sye] In \triangle KBN:	✓S	
	$x + x + \hat{B}_2 + \hat{N}_1 = 180^{\circ} [\text{sum of } \angle \text{'s of } \Delta]$		
	$2x + 2\hat{N}_1 = 180^{\circ}$		
	$x + \hat{N}_1 = 90^{\circ}$		
	$\hat{N}_1 = 90^{\circ} - x$	✓answer	(6)
9.2	MBA = $\hat{B}_2 + \hat{B}_3 = 90^{\circ}$ [tangent⊥diameter/raaklyn⊥middellyn] $\hat{B}_3 = 90^{\circ} - \hat{B}_2$	✓S ✓ R	
	$=90^{\circ} - (90^{\circ} - x) = x$	✓ S	
	$\hat{\mathbf{B}}_3 = \hat{\mathbf{K}} = \mathbf{x}$	✓ S	
	.: AB is a tangent/raaklyn converse tan-chord theorem/ omgekeerde raakl koordst]]	✓ R	(5)

|--|

10.1	Constr: Let M and N lie on AB and AC respectively such that	✓Constr / Konstr
	AM = DE and $AN = DF$. Draw MN.	
	Konst: Merk M en N op AB en AC onderskeidelik af sodanig dat	
	$AM = DE \ en \ AN = DF. \ Verbind \ MN.$	
	Proof:	
	In \triangle AMN and \triangle DEF	
	AM = DE [Constr]	
	AN = DF [Constr]	
	$\hat{A} = \hat{D}$ [Given]	✓ ΔAMN≡ΔDEF
	$\therefore \Delta AMN \equiv \Delta DEF(SAS)$	
	$\therefore A\hat{M}N = \hat{E} = \hat{B}$	✓SAS
	MN BC [corresp \angle 's are equal/ooreenkomstige \angle e =]	✓MN BC and R
	$\frac{AB}{AM} = \frac{AC}{AN}$ [line one side of Δ OR prop theorem; MN BC]	$\checkmark \frac{AB}{AM} = \frac{AC}{AN} \checkmark R$
	$\therefore \frac{AB}{DE} = \frac{AC}{DF} \qquad [AM = DE \text{ and } AN = DF]$	AM AN
		(6)

10.2.1(a)	DÔB=90°	
	$D\hat{G}F = \hat{G}_3 + \hat{G}_4 = 90^\circ$ [\(\neq \text{in semi-circle}/\neq \text{in halfsirkel}\)]	✓ S ✓ R
	$D\hat{O}B + D\hat{G}F = 180^{\circ}$	
	∴ DGFO is a cyclic quad. [converse: opp ∠s of cyclic quad/ omgekeerde teenoorst ∠e v koordevh] OR	✓ R
	\angle s of quad = $180^{\circ}/\angle e$ van koordevh = 180°	(3)
	OR	
	EÔB=90°	
	$D\hat{G}F = \hat{G}_3 + \hat{G}_4 = 90^\circ$ [\(\neq \text{in semi-circle}/\neq \text{in halfsirkel}\)]	✓ S ✓ R
	$E\hat{O}B = D\hat{G}F$	
	∴ DGFO is a cyclic quad [converse: ext ∠ = opp int ∠/ omgekeerde buite∠ = teenoorst ∠] OR	✓ R
	$\operatorname{ext} \angle \operatorname{of quad} = \operatorname{opp int} \angle / \operatorname{buite} \angle \operatorname{v} \operatorname{vh} = \operatorname{teenoorst} \angle]$	(3)
10.2.1(b)	$\hat{F}_1 = \hat{D}$ [ext \angle of cyclic quad/buite \angle v koordevh]	✓ S ✓ R ✓ S ✓ R
	$\hat{G}_1 + \hat{G}_2 = \hat{D}$ [tan-chord theorem/raakl koordst]	VSVK
	$\therefore \hat{F}_1 = \hat{G}_1 + \hat{G}_2$	
	$\therefore GC = CF$ [sides opp equal \angle s/sye teenoor = \angle e]	✓ R
	[sides opp equal 25/syc techool – 26]	(5)

10.2.2(a) AB = DE = 14 [diameters/middellyne]	✓ S
∴ OB = 7 units	✓ S
$\therefore BC = OC - OB = 11 - 7$ Answer only: full marks	/ 5
= 4 units	✓ S (3)
10.2.2(b) In \triangle CGB and \triangle CAG	
$\hat{G}_1 = \hat{A} = x$ [tan-chord theorem/raakl koordst]	✓ S/R
$\hat{C} = \hat{C}$ [common]	5/K
$\Delta CGB \parallel \Delta CAG [\angle, \angle, \angle]$	4.0
	✓ S
$\frac{CG}{CA} = \frac{CB}{CG}$	✓ S
$\frac{\text{CG}}{18} = \frac{4}{\text{CG}}$	
$\frac{18}{18} - \frac{1}{CG}$	✓ CA = 18
$CG^2 = 72$	
$CG = \sqrt{72}$ or $6\sqrt{2}$ or 8,49 units	✓answer
	(5)
10.2.2(c) OF = OC – FC	
$=11-\sqrt{72}$	✓ OF
$\tan E = \frac{OF}{OE}$	
	✓ trig ratio
$=\frac{11-\sqrt{72}}{7}=0.36$	
	✓ substitution
Ê = 19,76°	✓ answer
O.D.	(4)
$ \begin{array}{c} \mathbf{OR} \\ \mathbf{OF} = \mathbf{OC} - \mathbf{FC} \end{array} $	
$=11-\sqrt{72}$	✓ OF
$FE^2 = OE^2 + OF^2$	
$= 7^2 + (11 - \sqrt{72})^2$	
FE = 7,437 = 7,44	
$\cos E = \frac{OE}{FE} \qquad OR \qquad \sin E = \frac{OF}{FE}$	✓ trig ratio
$=\frac{7}{7,44}=0.94 \qquad \qquad =\frac{11-\sqrt{72}}{7,44}=0.338$	✓ substitution
$\hat{E} = 19,76^{\circ}$ $\hat{E} = 19,76^{\circ}$	✓ answer
L - 17,70	(4)
	[26]

	TOTAL/TOTAAL:	150
--	---------------	-----