Executive Summary

From Checkout to Forecast: A Retail Data Deep Dive

This project aimed to improve inventory and promotion planning by forecasting daily unit sales per store-item-date for a large Ecuadorian grocery retailer.

To address this challenge, we engineered time-based features, handled a large and sparse dataset with over 3.3 million rows, and compared three forecasting approaches: a tree-based machine learning model (XGBoost), a deep learning model (LSTM), and a classical statistical model (SARIMA).

XGBoost delivered the best overall performance, achieving the lowest RMSE and bias. A forecasting app was deployed using Streamlit to make predictions easily accessible. It features user input controls, a 10-day forecast output, and a download option.

This end-to-end pipeline demonstrates the power of combining advanced modeling techniques with practical tools for decision support in retail.

Data Preparation	Features	EDA	Models	App
Missing values and dates	Lags Rolling Windows	Time Series Behavior Analysis	XGBoost	Streamlit App Deployment
Outliers and anomalies	Time based Features	Seasonal, holiday, promotion, oil, store and location	ARIMA and SARIMA	Live Forecast Output
				10-Day Forecast and download

Detailed Report

Business Context

- Client: Ecuadorian supermarket chain
- **Goal**: Support demand planning and promotions by forecasting daily unit sales for store-item-date combinations.
- **Challenge**: Highly granular and sparse data (47% zero sales), seasonality, holiday effects, and store heterogeneity.

Data Overview

- Dataset source: Kaggle Corporación Favorita
- Data merged: Items, stores, holidays, oil prices, transactions
- Final dataset: 3.39M rows × 41 columns
- **Time**: Jan 2013 Mar 2014
- Focus: Guayas region and top 3 item families

Preprocessing and Feature Engineering

- **Cleaning**: Removed anomalies, filled missing dates, handled nulls
- Feature creation:
 - o **Time features**: day_of_week, is_weekend, day_of_year, month, etc.
 - o Lag features: lag_1, lag_7, lag_14, lag_28
 - o Rolling windows: 7d, 14d, 30d averages and std
 - o Holiday indicators: national, local, transferred

EDA Highlights

- Time series decomposition revealed strong seasonality and trend components
- Sales peak around local holidays and promotions
- Zero-inflation and variance across stores and item types
- Top families: Grocery I, Beverages, Cleaning

Modeling

XGBoost (ML)

- Performed best (RMSE: 7.77, Bias: 0.173)
- Strengths: Handles sparse/tabular data, strong with lag features
- Top features: unit_sales_14d_avg, unit_sales_30d_avg, unit_sales_7d_avg, unit_sales_7d std

LSTM (DL)

- Performed similarly (RMSE: 7.80), best MAD & SMAPE
- Captured trend/seasonality well, but more sensitive to tuning and data size

SARIMA (Statistical)

- Captured seasonal components effectively
- Performance slightly worse (RMSE: 7.89), but highly interpretable

Evaluation Metrics

Model	RMSE	MAD	SMAPE	Bias
XGBoost	7.77 🗸	3.52	120.69%	0.173 🗸
LSTM	7.80	3.49 🗸	121.55% 🗸	0.195
SARIMA	7.89	3.53	122.40%	0.189

Forecast App

- Built with: Streamlit
- Functionality:
 - o User selects store, item, and date
 - Displays forecasted sales
 - 10-day forecast with download option
 - o Historical trend visualization
- Backend: Preprocessed data + trained XGBoost model

Key Takeaways

- Time-based engineered features significantly boosted performance
- ML models outperform classical methods on sparse tabular data
- XGBoost offers a solid tradeoff: accuracy + interpretability + speed
- LSTM potential grows with larger data + hyperparameter tuning

Recommendations

- Deploy the app for operational planning
- Automate data refresh and model retraining
- Explore advanced DL models (Transformers, N-BEATS)
- Expand to multi-step and regional forecasts