Computing at scale: From laptop to cloud and HPC

Nirav Merchant
nirav@email.arizona.edu
University of Arizona

@CyVerseOrg

https://github.com/cyverse

Topic Coverage

- General Innovation Lifecycle
- Why "computational thinking"
- NSF Infrastructure
- Technology landscape (cloud and containers)
- Hands on

Simple Formula for Success

The Reality

Excel R PERL
Python (Jupyter)
Java Ruby
Fortran C C# C++
MATLAB
etc.

Your favorite ML methods and lots of glue.....

Amazon
Azure
Google Cloud
Campus HPC
XSEDE
Etc.

More demand on your time

- Open innovation, science and collaboration
- Complexity of infrastructure
- Evolving landscape of technology
- Do you know where your data (and metadata) is ?
- We are in the age of extreme information technology
- You have to be willing to change your computational platform every 3 years!

Infrastructure every where

- NSF XSEDE invests \$121M every 5 years
- UofA HPC invests \$2.4 M every 3 years
- What is common between these offerings?

We are data rich and knowledge poor How do we change that?

Computational thinking for Scalable Science

- Facilitating the 4A's of "Computational Thinking" approaches: Abstraction, Automation, Ability and Audacity
- Allowing researchers and educators to establish and manage data driven collaborations: Supporting distributed teams and virtual organizations (VO) at global scale
- Making efficient and coordinated use of CI resources from national, regional, institutional and commercial providers: NSF XSEDE, iPlant, campus HPC and high bandwidth connections to commercial cloud providers
- Adopting best practices from science domains where key Cl challenges have been solved: HEP, Life science etc.
- Community driven, self-provisioning, extensible and open source: Development and prioritization driven through community engagement, active engagement with CISE
 communities

XSEDE: Resources for Science and Engineering

Slides from: Jeremy Fischer – jeremy@iu.edu ORCID 0000-0001-7078-6609

What is XSEDE

- Virtual organization
- Distributed cyberinfrastructure
- Support
- Expertise
- Funded by the NSF

XSEDE supports a breadth of research

Some examples:

- Earthquake Science and Civil Engineering
- Molecular Dynamics
- Nanotechnology
- Plant Science
- Storm modeling
- Epidemiology
- Particle Physics
- Economic analysis of phone network patterns

- Brain science
- Analysis of large cosmological simulations
- DNA sequencing
- Computational Molecular Sciences
- Neutron Science
- International Collaboration in Cosmology and Plasma Physics
- Social Sciences
- Humanities

XSEDE supports thousands of such projects – these are sample domains.

XSEDE offers a variety of resources

- Leading-edge distributed memory systems
- Very large shared memory systems
- High throughput systems, e.g. OSG
- Visualization servers
- Accelerators and co-processors including NVIDIA GPUs and XEON Phi (MICs)
- Cloud services

Many scientific problems have components that call for use of more than one architecture.

Current XSEDE Compute Resources

- Stampede @ TACC (soon to be Stampede II!)
 - 10+ PFLOPS (PF) Dell Cluster w/ GPUs and Xeon PHIs
- Bridges @ PSC
 - Large memory, regular shared memory, GPUs
- Comet @ SDSC
 - 2 PFLOPS (PF) Dell Cluster
- Jetstream @ IU/TACC
 - .5 PF Distributed Cloud Compute Dell Cluster
- SuperMIC @ LSU, Xstream @ Stanford

https://www.xsede.org/web/xup/resource_monitor

Current XSEDE Visualization and Data Resources

- Visualization
 - Maverick @ TACC
 - 132 HP nodes, dual CPU,
 20 cores per node, 1 K40
 per node
 - 66 TB disk

- Storage
 - Pylon @ PSC
 - 4 PB disk
 - Wrangler @ TACC/IU
 - 10 PB disk per site
 - 4 TB FLASH @ TACC
 - Ranch @ TACC
 - 160 PB tape
 - Data Oasis @ SDSC
 - 4 PB disk

XSEDE User Services

XSEDE User Services are grouped into four main areas:

- Technical information
 - Always available via web site and XSEDE user portal
- Allocations
 - Request access to XSEDE systems
- Training
 - Sign up for classes to learn to use XSEDE resources
- User Engagement
 - Includes consulting support to answer questions
 - Also includes user interviews, focus groups, and surveys

Getting Started with XSEDE

It's easy to get started as an XSEDE user:

- 1.Go to the main web site: portal.xsede.org
- 2. Select 'Create account' on the left

XSEDE Allocations

- Resources at the right price...
 - HPC
 - High throughput computing
 - Remote visualization
 - Data storage
 - Etc.
- ECSS Extended Collaborative Support Services
- Single Sign-On for most resources

XSEDE Allocations (2)

- Request allocations through the XSEDE User Portal
- It's easy to get a Startup allocation—best way to get started
- Education allocations for classroom/workshop use
- Larger year-long research allocations can be requested 4 times/year, are peer reviewed, and have a longer lead-time
- Quarterly webinars on writing allocations

XSEDE Training

- XSEDE provides extensive training
 - Covering every major resource
 - From beginner to advanced classes
 - At locations across the country
 - Online via
 - asynchronous technologies
 - Webcasts
- Signing up is simple—in the XSEDE User Portal!

Getting Help

- Getting help is easy—again, via the XUP
 - XSEDE Knowledge Base
 - User Guides
 - Campus Champion directory for local help
 - You can also call the helpdesk 1-866-907-2383
 24x7 to request assistance

Community Engagement Activities

- Student Programs
- Under-represented Community Engagement
- Champions Program
- XSEDE Community Infrastructure (XCI)
- Campus Visits
- Annual XSEDE/PEARC Conference

Student Programs

- XSEDE Scholars
 - engaging undergraduates and graduates in yearlong series of webinars attend annual XSEDE Conference
- XSEDE/PEARC Annual Conference
 - travel support for students to attend the annual Conference
- HPC University
 - Lists other student engagement opportunities

Under-represented Community Engagement

- Outreach to faculty and students at Minority Serving institutions
- Assist faculty with conducting their research using XSEDE resources
- Assist faculty with incorporating computational tools, resources and methods into the curriculum
- Minority Research Committee faculty assisting one another
- Engaging students various programs

Campus Champions Role

- Raise awareness locally
- Provide training
- Get users started with access quickly
- Represent needs of local community
- Provide feedback to improve services
- Attend annual conference
- Share their training and education materials
- Build community among all Champions

Why and Why for Containers

What is Jetstream and why does it exist?

- NSF's first production cloud facility
- Based on project Atmosphere from CyVerse*
- Part of the NSF eXtreme Digital (XD) program
- Provides on-demand interactive computing and analysis
- Enables configurable environments and programmable cyberinfrastructure
- User-friendly, widely accessible cloud environment
- User-selectable library of preconfigured virtual machines

What is Jetstream, continued...

- Focus on ease-of-use, broad accessibility
- Command line access for those who want it and GUI access for those who don't
- Will support persistent gateways (SEAGrid, Galaxy, GenApp NAMDRunner, CIPRES and others)
- Reproducibility: Share VMs and then store, publish via IU Scholarworks (DOI)

Who uses Jetstream?

- The researcher needing a handful of cores (1 to 44/vCPU)
- Software creators and researchers needing to create their own customized virtual machines and workflows
- Science gateway creators using Jetstream as either the frontend or processor for scientific jobs
- STEM Educators teaching on a variety of subjects

21st Century Workforce Development

- Specialized virtual Linux desktops and applications to enable research and research education at small colleges and universities
- HBCUs (Historically Black Colleges and Universities)
- MSIs (Minority Serving Institutions)
- Tribal colleges
- Higher-education institutions in EPSCoR States

Jetstream System Overview

Platform Overview

Hardware and Instance "Flavors"

VM Host Configuration

- Dual Intel E-2680v3 "Haswell"
- 24 physical cores/node @ 2.5 GHz (Hyperthreading on)
- 128 GB RAM
- Dual 1 TB local disks
- 10GB dual uplink NIC
- Running KVM Hypervisor
- Short-term *ephemeral* storage comes as part of launched instance
- Long-term storage is XSEDE-allocated
- Implemented as OpenStack Volumes
- Each user can get 10 volumes up to 500GB total storage*

Flavor	vCPUs	RAM	Storage	Per Node
m1.tiny	1	2	8	46
m1.small	2	4	20	23
m1.medium	6	16	60	7
m1.large	10	30	60	4
m1.xlarge	24	60	60	2
m1.xxlarge	44	120	60	1
s1.large**	10	30	120	4
s1.xlarge**	24	60	240	2
s1.xxlarge**	44	120	480	1

^{**} s1.* based instances are not eligible to be saved into a customized image

The Jetstream Atmosphere web interface

The Jetstream Atmosphere web interface

Using Jetstream VMs

- Manipulating Jetstream VMs:
- Jetstream Atmosphere web interface
- Direct API access via OpenStack command line or Horizon access
- API access enables Science Gateways and other always on services or on demand use cases; e.g. elastic compute techniques
- Primary methods of logging into Jetstream VMs to work
- Interactive user access via web interface with VNC/SSH
- Direct VNC/SSH to individual instances

HPC vs Cloud

- Adapting to a different environment:
- No reservations, no queueing
- More interactive use and less/no batch queuing
- What? No parallel filesystem?!?
- Being your own admin hey, we have root!
- You really can have almost any (linux) software you want**
- Constantly getting new features (https://www.openstack.org/software/project-navigator/)
 - ** Here there be dragons...

Requesting access to Jetstream

- You can request startup allocations anytime. (Startups are simple!)
- You can request allocations for educational use anytime.
- We are happy to help you prepare a request and create a successful proposal.
- You do not have to have prior use of Jetstream to be successful.

Allocation types and docs needed for each

- Startup allocation (apply anytime)
- Current CV for Pl and any Co-Pis
- Brief abstract/description of work
- Education allocation (apply anytime)
- Current CV for Pl and any Co-Pls
- Syllabus/Class/Workshop description
- Description of use --> justification of SUs requested
- Research allocation (quarterly allocation window)
- Current CV for PI and any Co-PIs
- Main project description (up to 10 pages unless > 15M SUs, then 15 pages)
- Scaling doc (up to 5 pages)

Not just the usual suspects...

- Physics, chemistry, and other "usual" HPC suspects are represented, but Jetstream also is home to projects on:
- Financial analysis / Economics
- Political science
- Humanities / Text analysis
- Network analysis
- Computer Science / Machine learning
- Satellite data analysis

Getting help with JetStream

Wiki / Documentation: http://wiki.jetstream-cloud.org

User guides: https://portal.xsede.org/user-guides

XSEDE KB: https://portal.xsede.org/knowledge-base

Email: help@xsede.org

Campus Champions: https://www.xsede.org/campus-champions

My cloud toolbox

- Ansible for automation
- Docker for execution environment
- Makeflow workqueue for task distribution ccl.cse.nd.edu/software/

Hands On Part

- 1. Get the training login (paper is going around)
- 2. Go to: https://use.jetstream-cloud.org
- 3. Login and browse around choose the image
- 4. Launch Ubuntu 14.04.3 Dev w Docker CE
- 5. Open web shell and start playing with shell
- 6. Visit hub.docker.com (store.docker.com)
- 7. https://github.com/jupyter/docker-stacks/tree/master/datascience-notebook
- 8. Lets install and run Jupyter notebook and bring something in.
- 9. docker run -it --rm -p 8888:8888 -v /home/train**70**:/home/jovyan/work jupyter/ datascience-notebook

