#### WOJCIECH PRATKOWIECKI

# EVALUATION OF SUITABILITY OF CONDITIONAL GENERATIVE MODELS FOR CLASSIFICATION









#### SCRIBBLELENS CLASSIFICATION WITH SEMI-SUPERVISED LEARNING



#### RECONSTRUCTOR'S ROLE

- Encoder E with parameters  $\Theta_E$
- Reconstructor R with parameters  $\Theta_R$
- ▶ line image *l*
- Reconstructor's loss function:

$$L_R(l, R(E(l; \Theta_E); \Theta_R))$$

#### RECONSTRUCTOR'S ROLE



#### RECONSTRUCTOR'S ROLE

- Preferred latent representation:
  - Easy to classify
  - Latent vectors related to represented characters
  - Could resemble one-hot vectors of letters written on the image
- We would like a reconstructor to demand such a latent representation
- Desired reconstructor would prefer line's transcript over any other conditioning
- We may pass the conditioning manually and train a reconstructor separately from any encoder

Reconstructor is a generative model. It captures:

$$P(X \mid Y)$$

- ► X ScribbleLens line
- ightharpoonup Y Conditioning. We may use sequence of one-hot vectors

Reconstructor is a generative model. It captures:

$$P(X \mid Y)$$

Bayes' theorem:

$$P(Y|X) = \frac{P(X|Y) \cdot P(Y)}{P(X)}$$

Bayes' theorem:

$$P(Y|X) = \frac{P(X|Y) \cdot P(Y)}{P(X)}$$

If we assume that each transcript is equally likely:

$$P(Y|X) = P(X|Y) \cdot \alpha$$



#### RECONSTRUCTORS COMPARISON

- For each reconstructor R we evaluated it on ScribbleLens lines containing 300 characters
- For each letter we computed the most likely character ( $P(y\{c_{i_j}\} \mid x)$ )
- Reconstructor's accuracy = how many of 300 letters classified correctly

#### RECONSTRUCTORS COMPARISON

We compared different reconstructor architectures this way

| $\operatorname{Model}$                                                                          | Accuracy | Average probability of the true character | Average probability of the most likely character when classified correctly | Average probability of the most likely character when classified wrongly |
|-------------------------------------------------------------------------------------------------|----------|-------------------------------------------|----------------------------------------------------------------------------|--------------------------------------------------------------------------|
| PixelCNN                                                                                        | 59%      | 55%                                       | 86%                                                                        | 53%                                                                      |
| PixelCNN Large                                                                                  | 55%      | 53%                                       | 88%                                                                        | 57%                                                                      |
| PixelCNN Lookahead various number of skipped columns                                            | 26.6%    | 24.2%                                     | 83.1%                                                                      | 71.9%                                                                    |
| PixelCNN Lookahead<br>fixed number of skipped columns                                           | 47%      | 43%                                       | 85%                                                                        | 52%                                                                      |
| PixelCNN right-to-left                                                                          | 48%      | 42%                                       | 81%                                                                        | 52%                                                                      |
| WaveNet                                                                                         | 39%      | 39.2%                                     | 94%                                                                        | 81.4%                                                                    |
| WaveNet Large                                                                                   | 32%      | 32%                                       | 92%                                                                        | 82%                                                                      |
| WaveNet lookahead various number of skipped columns                                             | 21%      | 20.9%                                     | 94.5%                                                                      | 86.7%                                                                    |
| WaveNet noisy labels                                                                            | 11.5%    |                                           |                                                                            |                                                                          |
| $\begin{array}{c} \textbf{Bidirectional:} \\ \textbf{PixelCNN} + \textbf{PixelCNN} \end{array}$ | 71%      | 68%                                       | 94%                                                                        | 66%                                                                      |

#### RECONSTRUCTORS COMPARISON

Most accurate model: Bidirectional PixelCNN (71%)

| Model                                                     | Accuracy | Average probability of the true character | Average probability of the most likely character when classified correctly | Average probability of the most likely character when classified wrongly |
|-----------------------------------------------------------|----------|-------------------------------------------|----------------------------------------------------------------------------|--------------------------------------------------------------------------|
| PixelCNN                                                  | 59%      | 55%                                       | 86%                                                                        | 53%                                                                      |
| PixelCNN Large                                            | 55%      | 53%                                       | 88%                                                                        | 57%                                                                      |
| PixelCNN Lookahead various number of skipped columns      | 26.6%    | 24.2%                                     | 83.1%                                                                      | 71.9%                                                                    |
| PixelCNN Lookahead<br>fixed number of skipped columns     | 47%      | 43%                                       | 85%                                                                        | 52%                                                                      |
| PixelCNN right-to-left                                    | 48%      | 42%                                       | 81%                                                                        | 52%                                                                      |
| WaveNet                                                   | 39%      | 39.2%                                     | 94%                                                                        | 81.4%                                                                    |
| WaveNet Large                                             | 32%      | 32%                                       | 92%                                                                        | 82%                                                                      |
| WaveNet lookahead various number of skipped columns       | 21%      | 20.9%                                     | 94.5%                                                                      | 86.7%                                                                    |
| WaveNet noisy labels                                      | 11.5%    |                                           |                                                                            |                                                                          |
| $egin{array}{c} & & & & & & \\ & & & & & & \\ & & & & & $ | 71%      | 68%                                       | 94%                                                                        | 66%                                                                      |

- We would like to improve reconstructor's performance
- A feature that strongly differentiates the pictures is author's handwriting style
- If we provide the style information to the reconstructor, it could demand more characters-related features from the latent representation



- We can use QMNIST dataset to simplify the computations
  - Pictures of handwritten digits
  - Each sample labeled with digit id and author id





- $\blacktriangleright$  A style vector is computed as a mean of k vectors
- A style model improves performance in the image reproduction task

| Model                              | Reconstruction loss |
|------------------------------------|---------------------|
| PixelCNN without style model       | 0,2785              |
| PixelCNN with $S_{16}$ style model | 0,2681              |

- We may use the reconstructors to classify the transcript (presented digit)
- Using the style model improves the model's performance

| Model                                                                         | Classification accuracy |
|-------------------------------------------------------------------------------|-------------------------|
| PixelCNN without style model                                                  | 98,03%                  |
| PixelCNN with $S_4$ style model                                               | 98,14%                  |
| PixelCNN with $S_1$ style model using all samples to compute the style vector | 98,41%                  |

We could notice a significant classification accuracy drop when "fake" author was used to compute a style vector

| Model                              | Classification accuracy | Classification accuracy when "fake author" style vector was used |
|------------------------------------|-------------------------|------------------------------------------------------------------|
| PixelCNN with $S_1$ style model    | 98,11%                  | 96,28%                                                           |
| PixelCNN with $S_8$ style model    | 98,18%                  | 89,17%                                                           |
| PixelCNN with $S_{32}$ style model | 98,1%                   | 85,81%                                                           |

By extending the style model with a layer mapping the output to a 3 dimensional vector we can visualize the style vectors



- So far we used manually passed conditioning in form of one-hot vectors
- We may wonder, whether a reconstructor would indeed produce such conditioning, if it was able to tune these values
- We can allow it to assign an individual vector e for each data sample, that would be used instead of one-hot vectors during the training
- If we were able to predict a digit presented on image assigned to embedding vector e, the e contains label-related features



• e vectors without significantly increase the reconstruction accuracy

| Model                                                           | Reconstruction loss |
|-----------------------------------------------------------------|---------------------|
| PixelCNN without conditioning                                   | 0,2936              |
| StylePixelCNN conditioned on one-hot vector                     | 0,2811              |
| StylePixelCNN conditioned on $e \in \mathbb{R}^{128}$ embedding | 0,2362              |

However we were not able to predict the digit presented on the corresponding image. Label-related features were not stored in the embedding vectors.

| Embedding type                              | Embedding classification accuracy |
|---------------------------------------------|-----------------------------------|
| $e \in \mathbb{R}^{10}$                     | 27%                               |
| $e \in \mathbb{R}^{10}$ with Softmax        | 28%                               |
| $e \in \mathbb{R}^{10}$ with Gumbel Softmax | 12%                               |

- We may initialize the embeddings as one-hot vectors and use a reconstructor trained on such conditioning.
- A reconstructor is allowed to modify the conditioning after the training.

- Embeddings are easy to classify this time. Also reconstruction result is much better.
- This shows That label-related features are beneficial for the reconstructor, however it is unable to model it in the embeddings.

| Metric                              | Score      |
|-------------------------------------|------------|
| reconstruction loss (nats/pix) with | 0,2821     |
| Softmaxed one-hot conditioning      | 0,2021     |
| reconstruction loss (nats/pix) with |            |
| learned Softmaxed embeddings        | $0,\!2640$ |
| initialized as one-hot vectors      |            |
| ${ m Embeddings}\ e_i$              | 99,99%     |
| classification                      | 99,9970    |

#### **SUMMARY**

- We evaluated the reconstructor in isolation from any encoder to get a better understanding of its performance.
- We proposed an approach based on the Bayes' theorem to compare different reconstructors.
- Introduced style model improved the reconstructor's performance. We might notice, that the model indeed captures author's style.
- Replacing conditioning vectors with learned embeddings showed the reconstructor's behaviour when it is able to tune latent vectors.

### THANK YOU FOR ATTENTION 💆

