=-wissen:

Wenn wir t = s wissen, dann darf überall t durch s ersetzt werden und umgekehrt.

⇒ -beweisen:

Um eine Aussage $A \Rightarrow B$ zu beweisen, darf A als wahr angenommen werden. Unter dieser zusätzlichen Annahme ist dann B zu beweisen.

⇒ -wissen, Modus Ponens:

Wenn sowohl A als auch $A \Rightarrow B$ wahr sind, dann muss auch B wahr sein.

⇔ -beweisen:

Um eine Aussage $A \iff B$ zu beweisen, beweist man zuerst $A \Rightarrow B$ und dann $B \Rightarrow A$.

⇔ -wissen:

Wenn eine Aussage $A \iff B$ als wahr bekannt ist, dann darf überall A durch B ersetzt werden.

∀-beweisen:

Um eine Aussage ∀x

A zu beweisen, genügt es, eine beliebige aber fixe Konstante x0 zu wählen, und die Aussage A unter der Belegung $x \rightarrow x0$ zu beweisen.

∃-beweisen:

Um zu zeigen, dass eine Existenzaussage ∃x

A wahr ist, reicht es, einen konkreten Term t anzugeben (man nennt t eine Instanz), sodass A unter der Belegung $x \rightarrow t$ wahr wird.

Die Regeln für All- und Existenzaussagen im Grundwissen sind ähnlich, allerdings sind die Rollen von ∀ und ∃ genau vertauscht:

∀-wissen

Wenn man weiß $\forall x A$, dann darf man die Aussage A unter der Belegung $x \rightarrow t$ (für jede konkrete Instanz t) ebenfalls als wahr annehmen.

∃-wissen:

Wenn man weiß $\exists xA$, dann darf man die Aussage A für eine neu gewählte Belegung $x \rightarrow x0$ ebenfalls als wahr annehmen.

Eigenschaft	$\text{ für alle } x,y,z\in M$
reflexiv	xRx
irreflexiv	$\neg(xRx)$
symmetrisch	$xRy \Rightarrow yRx$
asymmetrisch	$xRy \Rightarrow \neg(yRx)$
antisymmetrisch	$xRy \wedge yRx \Rightarrow x = y$
transitiv	$xRy \wedge yRz \Rightarrow xRz$

Äquivalenzrelationen

reflexiv, symmetrisch, transitiv

Ordnungsrelationen

reflexiv, antisymmetrisch, transitiv

Strenge Ordnungsrelationen

irreflexiv, transitiv, asymmetrisch

Induktionsbeweis

Anfang => Aussage mit n = 1 Annahme => beliebiges aber fixes n Schluss => Aussage mit n+1 beweisen

Definition	Schreibweise	Bezeichnung
R	\rightarrow	gegebene Relation
$R^0 := Id_M$	\rightarrow^0	identische Relation
$R^0 \cup R$	$\rightarrow^0 \cup \rightarrow$	reflexive Hülle
R^{-1}	\leftarrow	Umkehrrelation
$R \cup R^{-1}$	\leftrightarrow	symmetrische Hülle
R^+	\rightarrow^+	transitive Hülle
$R^* := \bigcup R^n$	\rightarrow^*	reflexiv-transitive Hülle
$(R \cup R^{-1})^*$	\leftrightarrow^*	reflexiv-symmetrisch-trans. Hülle