			% P	% S		Typical UTS	Elong %	Typical
Grade	% C	% Mn	max.	max.	% Si	(5.5 mm dia)	Approx	end use
						N/mm²		
SWRH 27	0.24/0.31	0.30/0.60	0.030	0.030	0.15/0.30	565/695	16	Low Carbon PC wire
SWRH 32	0.29/0.36	0.30/0.60	0.030	0.030	0.15/0.30	600/715	15	
SWRH 37	0.34/0.41	0.30/0.60	0.030	0.030	0.15/0.30	620/745	15	Concrete nail
SWRH 42A	0.39/0.46	0.30/0.60	0.030	0.030	0.15/0.30	665/775	14	
SWRH 42B	0.39/0.46	0.60/0.90	0.030	0.030	0.15/0.30	685/815	14	Wire for umbrella rib,
SWRH 47A	0.44/0.51	0.30/0.60	0.030	0.030	0.15/0.30	735/855	13	Cycle spoke, Motor cycle spoke
SWRH 47B	0.44/0.51	0.60/0.90	0.030	0.030	0.15/0.30	755/875	13	2,23 5,500
SWRH 52A	0.49/0.56	0.30/0.60	0.030	0.030	0.15/0.30	825/945	13	Crimping wire for bed spring.
SWRH 52B	0.49/0.56	0.60/0.90	0.030	0.030	0.15/0.30	845/965	13	, opinig.
SWRH 57A	0.54/0.61	0.30/0.60	0.030	0.030	0.15/0.30	860/970	12	Spring wire, rope wire,
SWRH 57B	0.54/0.61	0.60/0.90	0.030	0.030	0.15/0.30	880/980	12	Tyre bead wire, ACSR wire, bale wire
SWRH 62A	0.59/0.66	0.30/0.60	0.030	0.030	0.15/0.30	920/1040	11	wire, bale wire
SWRH 62B	0.59/0.66	0.60/0.90	0.030	0.030	0.15/0.30	950/1070	11	
SWRH 67A	0.64/0.71	0.30/0.60	0.030	0.030	0.15/0.30	960/1080	10	
SWRH 67B	0.64/0.71	0.60/0.90	0.030	0.030	0.15/0.30	970/1090	10	
SWRH 72A	0.69/0.76	0.30/0.60	0.030	0.030	0.15/0.30	1030/1150	9	
SWRH 72B	0.69/0.76	0.60/0.90	0.030	0.030	0.15/0.30	1050/1170	9	Tire bead wire, spring
SWRH								wire, ropes PC wire, PC strand, etc.
77A SWRH	0.74/0.81	0.30/0.60	0.030	0.030	0.15/0.30	1090/1210	9	·
77B	0.74/0.81	0.60/0.90	0.030	0.030	0.15/0.30	1120/1250	8	

SWRH 82A	0.79/0.86	0.30/0.60	0.030	0.030	0.15/0.30	1140/1270	8	
SWRH 82B	0.79/0.86	0.60/0.90	0.030	0.030	0.15/0.30	1170/1290	8	
Similar grades of equivalent to SAE / AISI 1026, 1030, 1040, 1050, 1055, 1060, 1065, 1070, 1080 are also delivered.								

Grade /	% C	% Mn	% P	% S	% Si	UTS (Max)	Elong	Typical
Equivalent			max.	max.	max.	N/mm²	min. %	End Use
SWRM 6/1006	0.08 max.	0.60 max.	0.040	0.040	0.15	420	30	Binding wire, Annealed wire
SWRM 8/1008	0.10 max.	0.60 max.	0.040	0.040	0.15	440	25	Telegraph wire, nails
SWRM 10/1010	0.08/0.13	0.30/0.60	0.040	0.040	0.15	460	23	Galvanized wire, Barbed wire
SWRM 12/1012	0.10/0.15	0.30/0.60	0.040	0.040	0.15	510	22	Nail wire, Staple wire, wire mesh
SWRM 15/1015	0.13/0.18	0.30/0.60	0.040	0.040	0.20	520	21	Rivet wire
SWRM 17/1017	0.15/0.20	0.30/0.60	0.040	0.040	0.20	530	21	Rivet wire
SWRM 20/1020	0.18/0.23	0.30/0.60	0.040	0.040	0.20	550	21	Rivet wire
SWRM 22/1022	0.20/0.25	0.30/0.60	0.040	0.040	0.20	600	20	Concrete Reinforcement

Grade /	% C	% Mn	% P	% S	% Si	UTS (max.)	Elong
Equivalent	0.06 max	0.35 max	max. 0.040	max. 0.040	0.10	N/mm ² 400	min. %
1006 / SAE 1006	0.08 max	0.25 - 0.40	0.040	0.040	0.10	420	30

1008/ SAE 1008	0.10 max	0.30 - 0.50	0.040	0.040	0.10	440	25
1010 / SAE 1010	0.08 - 0.13	0.30 - 0.60	0.040	0.040	0.10	460	23
1012 / SAE 1012	0.10 - 0.15	0.30 - 0.60	0.040	0.040	0.10	510	22
1015 / SAE 1015	0.13 – 0.18	0.30 - 0.60	0.040	0.040	0.10	520	21
1018 / SAE 1018	0.15 - 0.20	0.60 - 0.90	0.040	0.040	0.10	550	21
1020 / SAE 1020	0.18 - 0.23	0.30 - 0.60	0.040	0.040	0.10	570	21

Grade	% C	% Mn	% P	% S	% Si	% Al	Typical End
	70 C	/0 IVIII	max.	max.	max.	min.	Use
SWRCH 6A CHQ6A	0.08 max	0.60 max	0.030	0.035	0.10	0.02	
SWRCH 8A CHQ8A	0.10 max	0.60 max	0.030	0.035	0.10	0.02	Fasteners
SWRCH 10A CHQ10A	0.08 – 0.13	0.30 - 0.60	0.030	0.035	0.10	0.02	rastellers
SWRCH 18A CHQ18A	0.15 – 0.20	0.60 - 0.90	0.030	0.035	0.10	0.02	
SWRCH 22A CHQ22A	0.18 – 0.23	0.70 – 1.0	0.030	0.035	0.10	0.02	

Grade	% C max.	% Mn	% P max.	% S max.	% Si max.	% Cu max.	Mechanical Properties	Typical End Use
SWRY 11	0.09	0.35/0.65	0.020	0.023	0.03	0.20	UTS-430 N/mm² max.	Stick electrodes

Grade	% C	% Mn	% P	% S	% Si	% Cu	Tensile Strength	Elongation
J. J. W. J.			max.	max.	70 OI	max.	N/mm² or Mpa	Min %
ER70S-4	0.06/0.15	1.00/1.50	0.025	0.035	0.65/0.85	0.20	480 min.	22
ER70S-6	0.06/0.15	1.40/1.85	0.025	0.035	0.80/1.10	0.20	480 min.	22
EM 12K	0.05/0.15	0.80/1.25	0.030	0.030	0.10/0.35	0.20	415 min.	22
EM 12	0.06/0.15	0.80/1.25	0.030	0.030	0.10 max.	0.20	415 min.	22

		Tensile Test			Bend Test	
Steel Grade	Yield Strength (YS) Tensile Strength (TS)		Elongation in 200 mm, Min.	Rounded Corner	Arch Diameter	Ratio TS/YS
	MPa	MPa	%		mm	
D:TD 000	Min. 280	Min. 250	11 (d ≤ 10 mm)	180°	3.5d (d ≤ 16 mm)	
BjTP 280	Maks. 405	Min. 350	12 (d ≥12 mm)	180°	5d (d ≥ 19 mm)	-
D:T0 000	Min. 280	M: 050	11 (d ≤ 10 mm)	180°	3.5d (d ≤ 16 mm)	
BjTS 280	Maks. 405	Min. 350	12 (d ≥13 mm)	180°	5d (d ≥ 19 mm)	
	Min. 420		9 (d ≤ 19 mm)	180°	3.5d (d ≤ 16 mm)	
	Maks. 545		8 (22 ≤ d ≤ 25 mm)	180°	5d (19 ≤ d ≤ 25 mm)	
BjTS 420A		Min. 525	= (1)	180°	7d (29 ≤ d ≤ 36 mm)	
			7 (d ≥ 29 mm)	90°	9d (d > 36 mm)	Min. 1.25
	Min. 420		14 (d ≤ 19 mm)	180°	3.5d (d ≤ 16 mm)	
	Maks. 545		12 (22 ≤ d ≤36 mm)	180°	5d (19 ≤ d ≤ 25 mm)	
BjTS 420B		Min. 525	10 (d > 36 mm)	180°	7d (29 ≤ d ≤ 36 mm)	
				90°	9d (d > 36 mm)	
BjTS 520	Min. 520	Min. 650	7 (d ≤ 25 mm)	180°	5d (d ≤ 25 mm)	

	Maks. 645		6 (d ≥ 29 mm)	180°	7d (29 ≤ d ≤ 36 mm)	
				90°	9d (d > 36 mm)	
	Min. 550		7 (d ≤ 25 mm)	180°	5d (d ≤ 25 mm)	
BjTS 550	Maks. 675	Min. 687,5	6 (d ≥ 29 mm)	180°	7d (29 ≤ d ≤ 36 mm)	
				90°	9d (d > 36 mm)	
	Min. 700		7 (d ≤ 25 mm)	180°	5d (d ≤ 25 mm)	
BjTS 700	Maks. 825	Min. 805	6 (d ≥ 29 mm)	180°	7d (29 ≤ d ≤ 36 mm)	Min. 1.15
				90°	9d (d > 36 mm)	

	COMPOSITION OF REINFORCING STEELS											
	Chemic	cal composition,	% max.		Carbon equivalen	t value (<i>Cou</i>) for standa	ord grades					
Type of analysis		All grades		Carbon equivalent value (Ceq) for standard grades								
	C	P	S	250N	500L	500N	300E					
Cast analysis	0.22	0.050	0.050	0.43	0.39	0.44	0.43					
Product analysis	0.24	0.055	0.055	0.45	0.41	0.46	0.45					
СНА	RACTERISTI	C MECHANI	ICAL PROPER	TIES OF REIN	NFORCING ST	EELS						
Duonauty	250N	500L	500N	300E	500E	Type of specific	ad volue					
Property	(Note 1)	(Note 2)		(Seismic)	(Seismic)	Type of specific	ed value					
Yield stress												
(MPa) $R_{ek.L}$	≥ 250	≥ 500	≥ 500	≥ 300	≥ 500	CvL: p = 0.95						
R ek.U	-	≤ 750	≤ 650	≤ 380	≤ 600	CvU: p = 0.05						
Ratio, $R_{\rm m}/R_{\rm e}$	≥ 1.08	≥ 1.03	≥ 1.08	≥ 1.15	≥ 1.15	CvL: p = 0.90						
,	-	-	-	≥ 1.50	≥ 1.4 0	CvU: p = 0.10						
Uniform elongation						1						
A gt(%)	≥ 5.0	≥ 1.5	≥ 5.0	≥ 15.0	≥ 10.0	CvL: p = 0.90	_					

		Tensile Test		Beng	d Test
	Yield	Tensile			
Steel Grade	Kgf / mm²	Kgf / mm ²	Elongation		
	(N/mm²)	(N/mm²)	(%)	Rounded Corner	Arch Diamete
BjTP 24	Minimum 24	Minimum 39	20	180°	3 x d
	(235)	(380)			
BjTP 30	Minimum 30	Minimum 45			
			18	180°	3 x d

		Tensile Test	Bend Test		
eel Grade	Yield	Tensile			
eel Glade	Kgf / mm² (N/mm²)	Kgf / mm² (N/mm²)	Elongation (%)	Rounded Corner	Arch Diameter
	(19/111111)	(10/111111)	(70)	Conner	
	Min. 280	Minimum 350	11 (d ≤ 10 mm)	180º	3,5d (d ≤ 16 mm)
BjTP 280	Max. 405		12 (d ≥12 mm)	180°	

	Cher	mical Co	mpositio	n (%)				Te	ensile Test				
							Yield Stren	igth (N/mm²)			Elongation		
Grade	C (max.)	Mn (max.)	P (max.)	S (max.)		Thickne	ess (mm)		Tensile Strength (N/mm²)	Thickness	Test	%	
	(max.) (max.) ((max.)	(max.)	t≤16	16 <t≤40< th=""><th>40<t≤100< th=""><th>t>100</th><th></th><th>(mm)</th><th>Piece</th><th>(min.)</th></t≤100<></th></t≤40<>	40 <t≤100< th=""><th>t>100</th><th></th><th>(mm)</th><th>Piece</th><th>(min.)</th></t≤100<>	t>100		(mm)	Piece	(min.)		
					245	005		205		6≤t≤16	No. 1A	17	
SS400	-	-	0.05	0.05	245 min.	235 min.	215 min.	205 min.	400 - 510	16 <t≤50< td=""><td>No. 1A</td><td>21</td></t≤50<>	No. 1A	21	
										40 <t< td=""><td>No.4</td><td>23</td></t<>	No.4	23	
SS540	0.30	1.60	0.04	0.04	400 min.	390 min.	-	1	540 min.	6≤t≤16	No. 1A	13	

									 16 <t≤₄< th=""><th>No.</th><th>17</th></t≤₄<>	No.	17
	Cher	mical Co	mpositio	n (%)			Те	Tensile Test			
Grade	C	Mn	P	S		Strength (N/mm²)	Tensile	Ek	ongation		
Crado	(max.)	(max.)	(max.)	(max.)		ckness mm)	Strength (N/mm²)	Thickness (mm)	Test Piece	% (min.)	
					t≤16	16 <t≤20< th=""><th></th><th></th><th></th><th></th><th></th></t≤20<>					
Вј Р								t≤t5	No. 5	26	
34	-	-	-	-	205	195	330 - 430	5 <t≤16< td=""><td>No. 1A</td><td>21</td><td></td></t≤16<>	No. 1A	21	
(SS41)								16≤t≤20	No.1A	26	
Вј Р								t≤t5	No. 5	21	
34	-	-	0.05	0.05	245	235	400 - 510	5 <t≤16< td=""><td>No. 1A</td><td>17</td><td></td></t≤16<>	No. 1A	17	
(SS41)								16≤t≤20	No.1A	21	
Вј Р								t≤t5	No. 5	19	
50	-	-	0.05	0.05	285	275	490 - 610	5 <t≤16< td=""><td>No. 1A</td><td>15</td><td></td></t≤16<>	No. 1A	15	
(SS50)								16≤t≤20	No.1A	19	
Вј Р								t≤t5	No. 5	16	
55	0.30	1.60	0.04	0.04	400	390	540 min.	5 <t≤16< td=""><td>No. 1A</td><td>13</td><td></td></t≤16<>	No. 1A	13	
(SS55)								16≤t≤20	No.1A	17	

	Standard Sectional Dimension (mm)								
Leg Length	Thickness		Kg/m						
a x b	t	r1	r1 r2						

	3	4.5	2	1.82
40X40	4	4.5	3	2.39
•	5	4.5	3	2.95
·	3	6.5	3	2.04
45X45	4	6.5	3	2.74
	5	6.5	3	3.38
·	3	6.5	3	2.27
•	4	6.5	3	3.06
50X50	5	6.5	3	3.77
	6	6.5	3	4.43
	8	6.5	4.5	5.68
55.55	4	6.5	4.5	3.33
55x55	5	6.5	4.5	4.16
	4	6.5	3	3.68
•	5	6.5	3	4.55
60X60	6	6.5	3	5.41
•	8	8	2.4	7.09
,	10	8	2.4	8.69
	4	8.5	3	3.94
	5	8.5	3	5.00
65X65	6	8.5	4	5.91
	8	8.5	6	7.66
,	10	6	3	9.02
	5	8.5	4	5.29
70X70	6	8.5	4	6.38
,	7	8.5	4	7.38
	5	8.5	4	5.67
•	6	8.5	4	6.85
75X75	7	8.5	4	7.94
•	8	8.5	6	9.00
,	9	8.5	6	9.96

	10	8	5	10.50
	12	8.5	6	13.00
	5	8.5	4	6.05
80X80	6	8.5	4	7.32
00/00	7	9	4.5	8.48
	8	9	4.5	9.61
	6	10	5	8.28
90X90	7	10	5	9.59
90/290	8	10	5	10.89
	9	10	5	12.17
	6	10	5	9.16
	7	10	5	10.58
100X100	8	10	7	12.06
	10	10	7	14.90
	12	10	7	18.14
	10	13	6.5	18.20
120X120	11	13	6.5	19.90
	12	13	6.5	21.60

UNEQUAL ANGLES							
Standard Sectional Dimension (mm) Unit Mass							
Leg Length	Thickness	Rac	lius	Kg/m			
axb	axb t r1 r2						
400\/75	7	10	5	9,32			
100X75	10	10	5	13,0			
125X75	7	10	5	10,7			
1258/5	10	10	7	14,9			

13	10	7	19,1

U CHANNEL							
Standard Section	Standard Sectional Dimension (mm) Unit Mass						
Leg Length	Thic	kness	Rac	lius	Kg/m		
a x b	t1	<i>t</i> 2	r1	r2			
U 80X45	6	8	8	4	8,8		
U 100X50	5	7,5	8	4	9,36		

Grade	Base Metal Test							
	Chemical Analysis	Sulphur Print	Ferrite Grain Size	Austenite Grain Size	Tensile Test	Bend Test	Charpy Impact Test	Weldability Test
KI-A	$\sqrt{}$	$\sqrt{}$	V	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	N/A
KI-A40							V	V

Nails & Nail Wire

Product specification

Supplied in cartons weighing 30 kg, 25kg, 20 kg, 50 lbs.

Flexible packaging available in smaller weights as per customer requirement and specification.

Commons Nails (Focused for domestic sale)

Size (L	ength)	Dia. ((mm)
Inches	mm	Shank	Head
1	25.4	1.65	3,60
1 1/4	31.7	1,85	4
1 1/2	38.1	2.1	4.8
1 3/4	44.4	2.41	5
2	50.8	2.87	6.2
2 1/2	63.5	3.05	6.5
2	76.2	3.41	7.2
3 1/2	88.9	3.77	8.5
4	101.6	4.11	9
5	127	5.15	9.5
6	152.4	5.58	10.5

Bright Common Nails (Focused for export sale)

Size	Size (L	ength)	Dia (Dia (mm)		
	Inches	mm	Shank	Head	per Lb	
2D	1	25.4	1.82	4.36	847	
3D	1.25	31.7	2.1	5.15	543	
4D	1.5	38.1	2.59	6.37	294	
5D	1.75	44.4	2.59	6.37	254	
6D	2	50.8	2.87	6.74	167	
7D	2.25	57.2	2.92	6.74	150	
8D	2.5	63.5	3.33	7.14	101	
9D	2.75	69.8	3.33	7.14	92	
10D	3	76.2	3.75	7.93	66	
12D	3.25	82.5	3.75	7.93	61	
16D	3.5	88.9	4.11	8.73	47	
20D	4	101.6	4.87	10	29	
30D	4.5	114.3	5.25	10.1	22	

40D	5	127	5.72	10.2	17
60D	6	152.4	6.66	11	10

Green Vinyl Sinkers

Size	Size (Length)		Dia (Approx Number	
	Inches	mm	Shank	Head	per Lb
2D	1	25.4	1.59	3.95	1084
3D	1.12	28.5	1.7	4.36	923
4D	1.37	34.9	2.03	5.15	527
5D	1.62	41.2	2.18	5.55	387
6D	1.87	47.6	2.32	5.95	293
7D	2.12	53.9	2.51	6.35	223
8D	2.37	60.3	2.87	6.7	153
10D	2.87	73	3.05	7.14	111
12D	3.12	79.3	3.42	7.9	81
16D	3.25	82.6	3.77	8.73	64

20D	3.75	95.2	4.49	9.52	40
30D	4.28	108.7	4.87	10.32	30

Wire Gauges

	ASWG		BV	BWG		SWG	
	Dia	Weight	Dia	Weight	Dia	Weight	
Gauge	mm	mm	mm	mm	mm	Mm	
4	5,723	20.1	6.045	22.5	5.892	21.4	
4 - 1/4	5.613	19.4	5.944	21.8	5.766	20.5	
4 - 1/2	5.486	18.5	5.817	20.9	5.639	19.6	
4 - 3/4	5.385	17.9	5.715	20.1	5.512	18,7	
5	5.258	17	5.588	19.3	5.384	17.9	
5 - 1/4	5.156	16.4	5.486	18,5	5.258	17	
5 - 1/2	5.08	15.9	5.385	17.9	5.131	16.2	
5 - 3/4	4.978	15.3	5.258	17	5.004	15.4	
6	4.877	14.7	5.156	16.4	4.877	14.7	
6 - 1/4	4.775	14	5.004	15.4	4.775	14	
6 - 1/2	4.699	13.6	4.877	14.7	4.674	13.5	
6 - 3/4	4.597	13	4.724	13.8	4.572	12.9	

7	4.496	12.5	4.572	12.9	4.47	12.3
7 - 1/4	4.394	11.9	4.47	12.3	4.369	11.8
7 - 1/2	4.318	11.5	4.394	11.9	4.267	11.2
7 - 3/4	4.216	11	4.293	11.4	4.166	10.7
8	4.115	10.4	4.191	10.8	4.064	10.2
8 - 1/4	4.039	10.1	4.086	10.3	3.962	9.67
8 - 1/2	3.937	9.55	3.988	9.8	3.861	9.19
8 - 3/4	3,861	9.19	3.861	9.19	3.759	8.71
9	3.767	8.74	3.759	8.71	3.657	8.24
9 - 1/4	3.683	8.36	3.683	8.36	3.556	7.79
9 - 1/2	3.607	8.02	3.581	7.9	3.454	7.35
9 - 3/4	3.505	7.57	3.505	7.57	3.353	6.93
10	3.429	7.25	3.404	7,14	3.251	6.51
10 - 1/4	3.327	6.82	3,327	6.82	3.175	6.21
10 - 1/2	3.251	6.51	3.226	6.41	3.099	5.93
10 - 3/4	3.15	6.11	3.15	6.11	3.023	5.63
11	3.061	5.77	3.048	5.73	2.946	5.35
11 - 1/4	2.972	5,44	2.972	5.44	2.87	5.08
11 - 1/2	2.87	5.08	2,921	5.26	2.794	4,81
11 - 3/4	2.769	4.72	2.845	4.99	2.718	4.55
12	2.68	4.43	2.769	4.73	2.641	4.3

12 - 1/4	2.591	4.14	2.692	4.47	2.565	4.05
12 - 1/2	2.515	3.9	2.591	4.14	2.489	3.82
12 - 3/4	2.413	3.59	2.515	3.9	2.413	3.59
13	2.324	3.33	2.413	3.59	2.336	3.36
13 - 1/4	2.261	3.15	2.337	3,37	2.261	3.15
13 - 1/2	2.184	2.94	2.261	3.15	2.184	2.94
13 - 3/4	2.108	2.74	2.184	2.94	2.108	2.74
14	2.032	2,54	2.108	2.74	2.032	2.54
14 - 1/4	1.981	2.42	2.032	2.54	1.981	2.42
14 - 1/2	1.93	2.3	1.981	2.42	1.93	2.3
14 - 3/4	1.88	2.18	1.905	2.24	1.88	2.18
15	1.829	2.06	1.829	2.06	1.829	2.06
15 - 1/4	1.778	1.95	1.778	1.95	1.778	1.95
15 - 1/2	1.702	1.79	1.753	1.89	1.727	1.84
15 - 3/4	1.651	1.68	1.702	1.79	1.676	1.73

Board of Directors

The below members of the board of directors are responsible for the strategic direction and oversight of the business.

Name Status

Name	Status
Philippe Darmayan	President Director
Praful Venugopal	Executive Director
Baldeo Prasad Banka	Non-Executive Director
Sanjay Shukla	Director Treasury
Nur Saidah (Ms.)	Director Compliance

Vision, Mission and Values Vision

Be a Steel Producer with outperforming benchmark in Safety, Human Relations, Costs and Value Creation & be responsible to the society.

Mission

Be the first choice of our Customers.

Core Values and Governance

Conduct our business with highest integrity, honesty, transparency, unity, sustainable excellence and commitment to the social development.

Highlights & Achievements

TIME (Years)	Highlights & Achievements
1976	PT. Ispat Indo established as a Greenfield Project. Indo is the mother Greenfield Project.
1978	Wire rod mills commissioned for 60,000 tons annual capacity.
1981	Steel melt shop commissioned with 70 tons capacity with Electric Arc Furnace (EAF) from NKK Japan and Casting Machine from Kobe Japan to supply billets for the wire rod mills
1984	The first company to export steel wire from Indonesia.
1986	Furnace converted to Eccentric Bottom Tapping (EBT) and new Ladle Furnace commissioned to improve product quality. Received the prestigious "UPAKARTI" Award from President Suharto for outstanding effort in helping to develop local small-scale industries.
1991	Adopted high-speed casting and total submerged and shrouded casting to improve quality in collaboration with Hamburger Stahlwerke (HSW) Germany.
1992	Modernized the steel plant with computer control and bottom stirring processing for quality improvement.
1994	Awarded the ISO 9002:1994 Certification of QMS from LRQA. Quality Control Circle activities started for upgrading quality and for eliminating root cause of defects.

	Updated and installed new dust extraction as per design & consultancy obtained from
1995	Nikko Industries Company, Japan in melting shop for clean sky. Signed contract with
	Kawasaki Japan for productivity & quality improvement.
1000	Approval from MITI for marking products as per JIS G 3505 for Low Carbon Wire Rod, JIS
1998	G 3506 for High Carbon Wire Rod and JIS G 3112 for Deformed Bar.
4000	Approval from MITI for marking products as per JIS G 3503 for Electrode Grade Wire
1999	Rod. Billet and wire rod production crossed over half-a-million tons.
2000	Added new Ferro Alloy Feeding System for quality improvement and customer
2000	satisfaction.
	Implementation of Bar Coded Identification Labels for control and inventory
2001	management of each coil.
2001	Morgan Water Cooling System for temperature control to achieve consistent
	metallurgical properties in wire rods.
	Upgraded the Quality Management System to the latest version of ISO 9001:2000.
2003	Addition of Carbjet for regulated Carbon Injection in furnace.
	Furnace upgraded with Water System in EAF.
2004	EAF upgraded with Oxyfuel Burners for productivity improvement in furnace.
2005	Extension of EAF Dust Collection System, installation of canopy and increase in capacity.
	Recertification of ISO 9000 : 2000.
2006	Best efforts (winner) in PLN – East Java for energy conservation.
	Acquisition of 60% shareholding in PT. Ispat Bukit Baja (IBB) producing steel angels and

	PT. Ispat Panca Putera (IPP) capable to produce round bars and debars.
	Installation of new Charging Crane in Steel Melt Shop for improvement in charge weight.
	Improvements in Electrode Regulation System for optimizing EAF power consumption.
	Introduction of dual fire in BRF for use of IDO / Barol with gas.
	First steel company in Indonesia to install Crusher for Slag processing.
	Golden award from Ministry of Manpower for efforts in safety.
	Certification of ISO 14001 : 2004.
	Recognition by PDAM for efficiency in water management.
2007	Completion of concreting for scrap storage area.
	Changing of withdrawal units at Billet Caster.
	Conversion of Finishing Area PLC from S5 to S7.
	Leading steel industry to develop commercial usage of steel slag, dust and sludge.
	Kick-Off for TPM Program implementation (under consultancy of JIPMs – Japan).
	Won 2nd Runner Up in Sidoarjo Regency for CSR.
2008	SMK3 surveillance with 95% compliance to retain Gold Award.
	Completion of 100% acquisition of PT. Ispat Bukit Baja and PT. Ispat Panca Putera with a total investment of US\$ 31 Millions.
	The first Indonesian company to get an export order for exporting steel angles from

	Indonesia (under execution).					
	Gas cutting torch system commissioned to replace CCM hydraulic shear system.					
	Progressing for OHSAS 18001 : 2007 certification.					
	Progressing for ISO/IEC 17025 certification.					
	Progressing for new CMMS to have integrated computerized management system.					
	Achieved SNI certification for production of bars in coil at PT. Ispat Indo.					
	Achieved SNI certification for production of d-bars at Ispat Panca Putera.					
	Achieved certificate new JIS mark scheme certified by Japan Quality Assurance Organization (JQA).					
	Achieved upgrade new version ISO 9001 : 2008 at PT. Ispat Indo and PT. Ispat Wire Products .					
2009	SIRIM Certification Products by SIRIM International Quality Assurance Malaysia Achieved 90% done and satisfy, (wait testing results including IPP,IWP and IBB).					
	Achieved zero Accident (Achieve) 1,826,850 man hours.					
	On Progress Blue grade on PROPER.					
	Achieved upgrade new version ISO 9001 : 2008 at PT. Ispat Bukit Baja.					
2010	Achieved upgrade new version ISO 9001 : 2008 at PT. Ispat Panca Putera.					
	Achieved Accreditation Laboratory ISO / IEC 17025.2005 by National Accreditation Committee of Indonesia (KAN).					

	On progress for "Award for TPM Excellence 2nd Category Challenge to WCM" (December 2010).
	Awarded for 5R Competition Eastern Java 2010 (for categories Production, Store and Office).
	Awarded Blue on PROPER 2010.
	On progress for "Master Plan for World Class Manufacturing (WCM)" (June 2011).
	On Progress to get Certificate ISO 14001:2004 at PT. Ispat Panca Putera.
	Achieved re-certification ISO 14001 for PT. Ispat Indo.
	Achieved certification ISO 14001 for PT. Ispat Bukit Baja.
2011	Achieved certification SNI for PT. Ispat Bukit Baja.
	Achieved for 5 R competition East Java 2011.
	1st Winner for CSR - Sidoarjo.
	Level 4 in Green Industry Implementation.
	Installation Electromagnetik Stirer System (EMS) in Continuous Casting Machine.
	Achieved zero accident 2012 for PT. Ispat Indo, PT. Ispat Wire Products, PT. Ispat Panca Putera and PT. Ispat Bukit Baja.
2012	
	New installation Thermo Mechanical Treatment in rolling process PT. Ispat Panca Putera.
	Achieved ISO 14001:2004 at PT. Ispat Panca Putera.

	Achieved gold flag SMK3 at PT. Ispat Bukit Baja.
	Achieved SNI recertification PT. Ispat Indo (SNI-07-2052-2002 and SNI-07-0954-2005).
	Awarded Green Flag Industrial level 5 from Industrial Ministry Indonesia.
	Preparation data and procedure for renewal audit JIS in 2014.
	Cooperation with BARISTAND (Industrial Research and standarization) for testing concrete reinforcing steel.
	Renewal certification SMK3 PT Ispat Indo.
2013	Zero Accident award for PT Ispat Indo and PT Ispat wire Products.
	Certification SMK3 PT Ispat Wire Products.
	Certification of inspection Ariana horizontal lifeline system.
	Climate Survey 2013.
	Successful install tranformer 100MVA.
	Complete trial in one ladle for IPV Porous Plug technology from Vesuvius.
	Installation of New 150/45 T Teeming Crane and Dismantling of 140/45 T Crane at Tapping Bay, Steel Melt Shop.
2014	Assessment KAN for Re-Accreditation Certification Laboratory base on ISO/IEC 17025.
	PT. Ispat Panca Putera achieved certificate from BLH (Badan Lingkungan Hidup).
	Golden Award SMK3 for PT. Ispat Indo.

PT. Ispat Indo Successful Maintained of Zero LTA.
Thispat mad saccessful maintained of Zero Em.
Compliance of all 122 recertification of operation machines & equipments.
PT. Ispat Wire Products successful to get SMK3 Certified (Achievement 90, 96%).
Zero Accident Award (PT. Ispat Indo, PT. Ispat Wire Products and Ispat Panca Putera).
Certification for ISO 50001:2011Energy Management System (EnMS).
Best Environment Management Reporting in East Java.
Awarded with Certification of ISO 9001:2008 for Ispat Indo and Ispat Wire Products .
Awarded with Certification product of SIRIM QAS Malaysia for Ispat Indo for product MS 16120-2:2008 (HC and LC) and MS 2319:2010 (Electrode grade) .
Awarded with Certification ACRS standard for Ispat Panca Putera to produce Reinforcement Steel (export quality to Australian Market) .
HIV – Aids gold award as care company by Ministry of Man Power & Transmigration .
Arcelor certification fatality prevention standard in level 3 by IRCA Global .
Zero accident award for Ispat Group.
Green Industry awarded set to level 5.
Awarded with Certification product of SIRIM QAS for Ispat Indo with product MS 16120-2:2008 and MS 2319:2010 .
Proficiency Testing with KS, Baristand and BBLM.

Ispat Indo Certification SNI 07-2052:2017 & SNI 07-0954.

Ispat Panca Putera Certification SNI 07-2052:2017.

ISO 17025:2017 Acreditation laboratory by KAN.

Certified ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 & ISO 50001:2018 Ispat Indo.

Certified ISO 9001:2015 & ISO 14001:2015 Ispat Panca Putera.

Certified ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 Ispat Bukit Baja.

Certified ISO 9001:2015 Ispat Iwire Products.

Certified product certification SIRIM MS 2319:2010 & MS ISO 16120-2:2008.

2017 -2020 Certified JIS Certification product JIS G3503, JISG3505 and JIS G3506 Ispat Indo.

Intermediate Proficiency Testing with KS, Baristand and BBLM.

Achieved certificate SMK3 Ispat Bukit Baja.

Achieved certificate SMK3 Ispat Panca Putera.

Achieved certificate SMK3 Ispat Indo.

Awarded Social Business Innovation Awards 2017, Category Metal & Allied Products From Warta Ekonomi.

Nominate Of ASEAN OSHNET Awards on Excellence Category by Ministry of Manpower.

Sustainable Business Awarded, Category for Cooling Efficiency & Energy Management from Global Initiative Singapore.

Zero Accident Awarded by Ministry of Man Power & Governer.

Awarded for best implementation for energy management system By Ministry of Energy & Mineral Resources

Compliance Regulation of Environmental Management by Ministry of Environment & Forest.

5R competition East Java gold & silver category by Governer East Java.

HIV-AIDS Platinum Awarded.

			% P	% S		Typical UTS	Elong %	Typical
Grade	% C	% Mn	max.	max.	% Si	(5.5 mm dia)	Approx	end use
						N/mm2		
SWRH								Low Carbon PC
27	0.24/0.31	0.30/0.60	0.030	0.030	0.15/0.30	565/695	16	wire
SWRH								
32	0.29/0.36	0.30/0.60	0.030	0.030	0.15/0.30	600/715	15	
SWRH								
37	0.34/0.41	0.30/0.60	0.030	0.030	0.15/0.30	620/745	15	Concrete nail
SWRH								
42A	0.39/0.46	0.30/0.60	0.030	0.030	0.15/0.30	665/775	14	Wire for
SWRH								umbrella rib,
42B	0.39/0.46	0.60/0.90	0.030	0.030	0.15/0.30	685/815	14	Cycle spoke,
SWRH								Motor cycle
47A	0.44/0.51	0.30/0.60	0.030	0.030	0.15/0.30	735/855	13	spoke
SWRH								
47B	0.44/0.51	0.60/0.90	0.030	0.030	0.15/0.30	755/875	13	
SWRH								Crimping wire
52A	0.49/0.56	0.30/0.60	0.030	0.030	0.15/0.30	825/945	13	for bed spring.
SWRH	0.49/0.56	0.60/0.90	0.030	0.030	0.15/0.30	845/965	13	Spring wire, rope

52B								wire, Tyre bead
SWRH								wire, ACSR
57A	0.54/0.61	0.30/0.60	0.030	0.030	0.15/0.30	860/970	12	wire, bale wire
SWRH								
57B	0.54/0.61	0.60/0.90	0.030	0.030	0.15/0.30	880/980	12	
SWRH								
62A	0.59/0.66	0.30/0.60	0.030	0.030	0.15/0.30	920/1040	11	
SWRH								
62B	0.59/0.66	0.60/0.90	0.030	0.030	0.15/0.30	950/1070	11	
SWRH								
67A	0.64/0.71	0.30/0.60	0.030	0.030	0.15/0.30	960/1080	10	
SWRH								
67B	0.64/0.71	0.60/0.90	0.030	0.030	0.15/0.30	970/1090	10	
SWRH								
72A	0.69/0.76	0.30/0.60	0.030	0.030	0.15/0.30	1030/1150	9	
SWRH								
72B	0.69/0.76	0.60/0.90	0.030	0.030	0.15/0.30	1050/1170	9	
SWRH								Tire bead wire,
77A	0.74/0.81	0.30/0.60	0.030	0.030	0.15/0.30	1090/1210	9	spring wire,
SWRH								ropes PC wire,
77B	0.74/0.81	0.60/0.90	0.030	0.030	0.15/0.30	1120/1250	8	PC strand, etc.
SWRH								
82A	0.79/0.86	0.30/0.60	0.030	0.030	0.15/0.30	1140/1270	8	
SWRH								
82B	0.79/0.86	0.60/0.90	0.030	0.030	0.15/0.30	1170/1290	8	

Similar grades of equivalent to SAE / AISI 1026, 1030, 1040, 1050, 1055, 1060, 1065, 1070, 1080 are also delivered.

Grade /	% C	% Mn	% P	% S	% Si	UTS (max.)	Elong
Equivalent			max.	max.	max.	N/mm ²	min. %
1005 / SAE 1005	0.06 max	0.35 max	0.040	0.040	0.10	400	35
1006 / SAE 1006	0.08 max	0.25 - 0.40	0.040	0.040	0.10	420	30
1008/ SAE 1008	0.10 max	0.30 - 0.50	0.040	0.040	0.10	440	25
1010 / SAE 1010	0.08 – 0.13	0.30 - 0.60	0.040	0.040	0.10	460	23
1012 / SAE 1012	0.10 - 0.15	0.30 - 0.60	0.040	0.040	0.10	510	22
1015 / SAE 1015	0.13 – 0.18	0.30 - 0.60	0.040	0.040	0.10	520	21
1018 / SAE 1018	0.15 – 0.20	0.60 - 0.90	0.040	0.040	0.10	550	21
1020 / SAE 1020	0.18 - 0.23	0.30 - 0.60	0.040	0.040	0.10	570	21

Grade			% P	% S	% Si	% Al	
	% C	% Mn	max.	max.	max.	min.	Typical End Use
SWRCH 6A CHQ6A	0.08 max	0.60 max	0.030	0.035	0.10	0.02	
SWRCH 8A CHQ8A	0.10 max	0.60 max	0.030	0.035	0.10	0.02	
SWRCH 10A CHQ10A	0.08 – 0.13	0.30 - 0.60	0.030	0.035	0.10	0.02	Fasteners
SWRCH 18A CHQ18A	0.15 – 0.20	0.60 - 0.90	0.030	0.035	0.10	0.02	
SWRCH 22A CHQ22A	0.18 – 0.23	0.70 – 1.0	0.030	0.035	0.10	0.02	

No.	Steel Grade	%C	%Mn	%P max.	%S max.	%Si	%Cr max.	%Cu max.	%Ni max.
1	C4D	0.06 max.	0.30 - 0.60	0.035	0.035	0.30 max.	0.20	0.30	0.25
2	C7D	0.05 - 0.09	0.30 - 0.60	0.035	0.035	0.30 max.	0.20	0.30	0.25
3	C9D	0.10 max.	0.60 max.	0.035	0.035	0.30 max.	0.25	0.30	0.25
4	C10D	0.08 - 0.13	0.30 - 0.60	0.035	0.035	0.30 max.	0.20	0.30	0.25
5	C12D	0.10 - 015	0.30 - 0.60	0.035	0.035	0.30 max.	0.20	0.30	0.25
6	C15D	0.12 - 0.17	0.30 - 0.60	0.035	0.035	0.30 max.	0.20	0.30	0.25
7	C18D	0.15 - 0.20	0.30 - 0.60	0.035	0.035	0.30 max.	0.20	0.30	0.25
8	C20D	0.18 - 0.23	0.30 - 0.60	0.035	0.035	0.30 max.	0.20	0.30	0.25
9	C26D	0.24 - 0.29	0.50 - 0.80	0.030	0.030	0.10 - 0.30	0.20	0.30	0.25
10	C32D	0.30 - 0.35	0.50 - 0.80	0.030	0.030	0.10 - 0.30	0.20	0.30	0.25
11	C38D	0.35 - 0.40	0.50 - 0.80	0.030	0.030	0.10 - 0.30	0.20	0.30	0.25
12	C42D	0.40 - 0.45	0.50 - 0.80	0.030	0.030	0.10 - 0.30	0.20	0.30	0.25
13	C48D	0.45 - 0.50	0.50 - 0.80	0.030	0.030	0.10 - 0.30	0.15	0.25	0.20
14	C50D	0.48 - 0.53	0.50 - 0.80	0.030	0.030	0.10 - 0.30	0.15	0.25	0.20

15	C52D	0.50 - 0.55	0.50 - 0.80	0.030	0.030	0.10 - 0.30	0.15	0.25	0.20
16	C56D	0.53 - 0.58	0.50 - 0.80	0.030	0.030	0.10 - 0.30	0.15	0.25	0.20
17	C58D	0.55 - 0.60	0.50 - 0.80	0.030	0.030	0.10 - 0.30	0.15	0.25	0.20
18	C60D	0.58 - 0.63	0.50 - 0.80	0.030	0.030	0.10 - 0.30	0.15	0.25	0.20
19	C62D	0.60 - 0.65	0.50 - 0.80	0.030	0.030	0.10 - 0.30	0.15	0.25	0.20
20	C66D	0.63 - 0.68	0.50 - 0.80	0.030	0.030	0.10 - 0.30	0.15	0.25	0.20
21	C68D	0.65 - 0.70	0.50 - 0.80	0.030	0.030	0.10 - 0.30	0.15	0.25	0.20
22	C70D	0.68 - 0.73	0.50 - 0.80	0.030	0.030	0.10 - 0.30	0.15	0.25	0.20
23	C72D	0.70 - 0.75	0.50 - 0.80	0.030	0.030	0.10 - 0.30	0.15	0.25	0.20
24	C76D	0.73 - 0.78	0.50 - 0.80	0.030	0.030	0.10 - 0.30	0.15	0.25	0.20
25	C78D	0.75 - 0.80	0.50 - 0.80	0.030	0.030	0.10 - 0.30	0.15	0.25	0.20
26	C80D	0.78 - 0.83	0.50 - 0.80	0.030	0.030	0.10 - 0.30	0.15	0.25	0.20
27	C82D	0.80 - 0.85	0.50 - 0.80	0.030	0.030	0.10 - 0.30	0.15	0.25	0.20

Grade	% C		% P	% S	% Si	% Cu	Mechanical	
		% Mn						Typical End Use
	max.		max.	max.	max.	max.	Properties	
SWRY 11	0.09	0.35/0.65	0.020	0.023	0.03	0.20	UTS-430 N/mm² max.	Stick electrodes

Grade	% C max.	% M n	% P max.	% S max.	% Si max.	% Cu max.	Mechanical Properties	Typical End Use
SWRY 11	0.09	0.35/0.65	0.020	0.023	0.03	0.20	UTS-430 N/mm² max. %EL = 30 min.	Stick electrodes

Grade	% C	% Mn	% P max.	% S max.	% Si	% Cu max.	Tensile Strength N/mm² or Mpa	Elongation Min %
ER70S-4	0.06/0.15	1.00/1.50	0.025	0.035	0.65/0.85	0.20	480 min.	22
ER70S-6	0.06/0.15	1.40/1.85	0.025	0.035	0.80/1.10	0.20	480 min.	22
EM 12K	0.05/0.15	0.80/1.25	0.030	0.030	0.10/0.35	0.20	415 min.	22
EM 12	0.06/0.15	0.80/1.25	0.030	0.030	0.10 max.	0.20	415 min.	22

		Tensile Test			Bend Test		
Steel Grade	Yield Strength Tensile Strength (YS) (TS)		Elongation in 200 mm, Min.	Rounded Corner	Arch Diameter	Ratio TS/YS	
	MPa	MPa	%		mm		
			11 (d ≤ 10 mm)	180°	3.5d (d ≤ 16 mm)		
BjTP 280	Min. 280	Min. 350	12 (d ≥12 mm) 180°		5d (d ≥ 19 mm)	_	
	Maks. 405						
			11 (d ≤ 10 mm)	180°	3.5d (d ≤ 16 mm)		
BjTS 280	Min. 280	Min. 350	12 (d ≥13 mm)	180°	5d (d ≥ 19 mm)		
	Maks. 405						
			9 (d ≤ 19 mm)	180°	3.5d (d ≤ 16 mm)		
			8 (22 ≤ d ≤ 25 mm)	180°	5d (19 ≤ d ≤ 25 mm)		
BjTS 420A	Min. 420	Min. 525		180°	7d (29 ≤ d ≤ 36 mm)		
	Maks. 545		7 (d ≥ 29 mm)	90°	9d (d > 36 mm)		
			14 (d ≤ 19 mm)	180°	3.5d (d ≤ 16 mm)	7	
5.55	Min. 420 Min. 525 Maks. 545		12 (22 ≤ d ≤36 mm)	180°	5d (19 ≤ d ≤ 25 mm)	Min. 1.25	
BjTS 420B		Min. 525	10 (d > 36 mm)	180°	7d (29 ≤ d ≤ 36 mm)		
			90°	9d (d > 36 mm)			
			7 (d ≤ 25 mm)	180°	5d (d ≤ 25 mm)		
BjTS 520	Min. 520	Min. 650	6 (d ≥ 29 mm)	180°	7d (29 ≤ d ≤ 36 mm)		
•	Maks. 645			90°	9d (d > 36 mm)		
	Wars. 040		7 (d ≤ 25 mm)	180°	5d (d ≤ 25 mm)		
BjTS 550	Min. 550	Min. 687,5	6 (d ≥ 29 mm)	180°	7d (29 ≤ d ≤ 36 mm)		
B) 13 330		WIII 1. 007,0		90°	9d (d > 36 mm)		
	Maks. 675		7 (d ≤ 25 mm)	180°	5d (d ≤ 25 mm)		
	Min. 700		6 (d ≥ 29 mm)	180°	7d (29 ≤ d ≤ 36 mm)	_	
BjTS 700	Min. 700	Min. 805	0 (a = 20 mm)	90°	9d (d > 36 mm)	Min. 1.15	
	Maks. 825				04 (4 ° 00 mm)		

COMPOSITION OF REINFORCING STEELS											
Type of analysis	Chemica	l compositio	n, % max.	Carbon equivalent value (Ceq) for standard grades							
Type of analysis		All grades									
	С	Р	S	250N	500L	500N	300E	500E			
Cast analysis											
	0.22	0.050	0.050	0.43	0.39	0.44	0.43	0.49			
Product analysis											
	0.24	0.055	0.055	0.45	0.41	0.46	0.45	0.51			

CHA	ARACTERISTIC	MECHANIC	CAL PRO	PERTIES	OF REINFORG	CING STEELS	
			500L		300E	500E	Type of
Property			(Note	500N			Type of specified value
		(Note 1)	2)		(Seismic)	(Seismic)	
Yield stress (MPa)	R ek.L						CvL: p = 0.95
		≥ 250	≥ 500	≥ 500	≥ 300	≥ 500	
							CvU: p = 0.05
						≤ 600	
R ek.U		-	≤ 750	≤ 650	≤ 380		
							CvL: p = 0.90
		≥ 1.08	≥ 1.03	≥ 1.08	≥ 1.15	≥ 1.15	
Ratio ,	$R_{ m m}/R_{ m e}$						CvU: p = 0.10
		-	-	-	≥ 1.50	≥ 1.4 0	
Uniform elongation							CvL: p = 0.90
A gt(%)		≥ 5.0	≥ 1.5	≥ 5.0	≥ 15.0	≥ 10.0	

		Tensile Test		Bend Test		
Steel Grade	Yield	Tensile				
	Kgf / mm²	Kgf / mm²	Elongation			
	(N/mm²)	(N/mm²)	(%)	Rounded Corner	Arch Diameter	
BjTP 24	Minimum 24	Minimum 39	20	180°	3 x d	
	(235)	(380)				
BjTP 30	Minimum 30	Minimum 45				
	(295)	(440)	18	180º	3 x d	

		Tensile Test		Bend Test		
Steel Grade	Yield Kgf / mm²	Tensile Kgf / mm²	Elongation			
	Kgi / IIIIII-	Kgi / IIIIII-	Eloligation	- Barradad		
	(N/mm²)	(N/mm²)	(%)	Rounded Corner	Arch Diameter	
	Min. 280	Minimum 350	11 (d ≤ 10 mm)	1800	3,5d (d ≤ 16 mm)	
BjTP 280					5,54 (4 = 10 11111)	
	Max. 405		12 (d ≥12 mm)	180º		

General Structure / Structural Steel

Product specification

These specifications for the used Transmission Tower, Communications Tower, Construction, etc.

These specifications covered:

- Equal Angle Bars (SNI 07-2054-2006 Equivalent to JIS G 3101 and JIS G 3192)
- Flat Bars (JIS G 3101 for structural steel)
- U-Channel (SNI 07-0052-2006 Equivalent to JIS G 3101 and JIS G 3192)
- Steel Strips

Led Length: 40mm x 40 mm; 50mm x 50mm; 60mm x 60mm; 70mm x 70mm; 80mm x 80mm; 90mm x 90mm; 100 mm x 100 mm; 120mm x 120mm; 130mm x 130mm

Thickness: 3 mm - 12 mm

	Chemical Composition (%)			n (%)					Tensile Test			
					•	Yield Stre	ngth (N/mm	1²)		Elongation		
Grade C		Mn	P	S	Thickness (mm)				Tensile	Thickness	Test	%
	(max.)	(max.)	(max.)	(max.)	t≤16	16 <t≤40< th=""><th>40<t≤100< th=""><th>t>100</th><th>Strength (N/mm²)</th><th>(mm)</th><th>Piece</th><th>(min.)</th></t≤100<></th></t≤40<>	40 <t≤100< th=""><th>t>100</th><th>Strength (N/mm²)</th><th>(mm)</th><th>Piece</th><th>(min.)</th></t≤100<>	t>100	Strength (N/mm²)	(mm)	Piece	(min.)
	245							No.	17			
				245	235		205		6≤t≤16	1A	17	
SS400	-	-	- 0.05	0.05	min.	min.	215 min.	min.	400 - 510		No.	21
					111111.					16 <t≤50< td=""><td>1A</td></t≤50<>	1A	
										40 <t< td=""><td>No.4</td><td>23</td></t<>	No.4	23
											No.	
22540	0.20	1.60	0.04	0.04	400	390			540 min.	6≤t≤16	1A	13
33340	SS540 0.30	1.60 0	1.60 0.04	0.04	min. min	min.	n. -	-			No.	
						16 <t≤40< td=""><td>1A</td><td>17</td></t≤40<>	1A	17				

	Chen	nical Co	mpositio	n (%)			Tensile Te	st		
Grade	C Mn		P (max.)	S	Strer (N	rield ngth min. /mm²) ckness	Tensile Strength (N/mm²)	Elongation Test %		
	(max.)	(max.)	(IIIax.)	(max.)	(mm)	Suengui (Willin)	Thickness	Piece	(min.)
					t≤16	16 <t≤20< th=""><th></th><th>(mm)</th><th></th><th></th></t≤20<>		(mm)		
Вј Р								t≤t5	No. 5	26
34	-	-	_	-	205	195	330 - 430	5 <t≤16< td=""><td>No. 1A</td><td>21</td></t≤16<>	No. 1A	21
(SS41)								16≤t≤20	No.1A	26
Вј Р								t≤t5	No. 5	21
ы Р 34	_	_	0.05	0.05	245	235	400 - 510		No.	
(SS41)	_	_	0.03	0.03	240	200	400 - 310	5 <t≤16< td=""><td>1A</td><td>17</td></t≤16<>	1A	17
(00+1)								16≤t≤20	No.1A	21
Вј Р								t≤t5	No. 5	19
ا رط 50	_	_	0.05	0.05	285	275	490 - 610		No.	
(SS50)	_	_	0.00	0.00	200	210	430 - 010	5 <t≤16< td=""><td>1A</td><td>15</td></t≤16<>	1A	15
(0000)								16≤t≤20	No.1A	19
Вј Р								t≤t5	No. 5	16
55	0.30	1.60	0.04	0.04	400	390	540 min.		No.	
(SS55)	0.00	1.00	0.07	0.07	700		340 11111.	5 <t≤16< td=""><td>1A</td><td>13</td></t≤16<>	1A	13
(3333)								16≤t≤20	No.1A	17

	E	EQUAL ANGLES		
5	itandard Section	al Dimension (mm)		Unit Mass
Leg Length	Thickness	Radius		Kg/m
axb	t	r1	r2	
	3	4.5	2	1.82
40X40	4	4.5	3	2.39
	5	4.5	3	2.95
	3	6.5	3	2.04
45X45	4	6.5	3	2.74
	5	6.5	3	3.38
	3	6.5	3	2.27
	4	6.5	3	3.06
50X50	5	6.5	3	3.77
	6	6.5	3	4.43
	8	6.5	4.5	5.68
55x55	4	6.5	4.5	3.33
33,33	5	6.5	4.5	4.16
	4	6.5	3	3.68
	5	6.5	3	4.55
60X60	6	6.5	3	5.41
	8	8	2.4	7.09
	10	8	2.4	8.69
	4	8.5	3	3.94
65X65	5	8.5	3	5.00
	6	8.5	4	5.91

	8	8.5	6	7.66
	10	6	3	9.02
	5	8.5	4	5.29
70X70	6	8.5	4	6.38
	7	8.5	4	7.38
	5	8.5	4	5.67
	6	8.5	4	6.85
	7	8.5	4	7.94
7 <i>5</i> X7 <i>5</i>	8	8.5	6	9.00
	9	8.5	6	9.96
	10	8	5	10.50
	12	8.5	6	13.00
	5	8.5	4	6.05
80X80	6	8.5	4	7.32
80/80	7	9	4.5	8.48
	8	9	4.5	9.61
	6	10	5	8.28
90X90	7	10	5	9.59
40//40	8	10	5	10.89
	9	10	5	12.17
	6	10	5	9.16
	7	10	5	10.58
100X100	8	10	7	12.06
	10	10	7	14.90
	12	10	7	18.14
120X120	10	13	6.5	18.20

11	13	6.5	19.90
12	13	6.5	21.60

	UNEQUAL ANGLES										
Standard S	Standard Sectional Dimension (mm) Unit Mass										
Leg Length	Thickness	R	adius	Kg/m							
axb	t	rI	r2								
100X75	7	10	5	9,32							
100 × 75	10	10	5	13,0							
	7	10	5	10,7							
125X75	10	10	7	14,9							
	13	10	7	19,1							

U CHANNEL								
Standard Sec	Unit Mass							
(1								
Leg Length	Thic	kness	Rad	dius	Kg/m			
axb	t1	t2	r1	r2				
U 80X45	6	8	8	4	8,8			
U 100X50	5	7,5	8	4	9,36			

Note:

Length: 6 m, 9 m

and 12 m

Standards : SNI 07-2054-2006, JIS G 3101 and JIS G

3192, AS/NZS3679.1 and BS EN10025

Steel Profile Manufacturers for Angel and Channel

For Biro Klasifikasi Indonesia

Grade	Base Metal Test								
	Chemical	Sulphur	Ferrite	Austenite	Tensile	Bend	Charpy	Weldability	
	Analysis	Print	Grain	Grain Size	Test	Test	Impact	Test	
			Size				Test		
KI-A	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$		$\sqrt{}$	N/A	
KI-A40	V	V	V	V	V	V	V	V	