Datenbanken I (T2INF2004) Foliensatz 4: Mengenlehre, Logik und Relationenalgebra

Uli Seelbach, DHBW Mannheim, 2023

Foliensatz freundlicherweise zur Verfügung gestellt von Mirko Schick

Hausaufgabe Foliensatz 3

DB-Entwurf mit UML, Lösungsvorschlag

Hausaufgabe Foliensatz 3

Schritt 1 ohne Zusammenfassen

```
ICE: {[ID: integer, ...]}
S-Bahn: {[ID: integer, ...]}
                                    RE: {[ID: integer, ...]}
Zug: {[ID: integer, Sitzplätze: integer]}
                     Zug geeignet fuer route: {[ZugID:integer, RouteID: integer]}
                                                          gefahren von: {[RouteID: integer, ZugID: Integer NOT NULL]}
Route: {[Routennummer: integer, Name: String ]}
                      Start_in: {[Routennummer: integer, Bahnhof: Integer]}
                     Ziel in: {[Routennummer: integer, Bahnhof: Integer]}
Hält in: {[Routennummer: integer, Bahnhof: Integer, Ankunftszeit: Date,
Ankunftsgleis: String, Abfahrtszeit: Date, Abfahrtsgleis: String]}
Bahnhof: {[ID: integer, Name: String, PLZ: String NOT NULL, Ort: String NOT NULL]}
 3
                             Ort: {[PLZ: String, Ort: String]}
```

Hausaufgabe Foliensatz 3

NOT NULL bei Route.Start_in bzw. Ziel_in schlechte Idee. Warum eigentlich?

Schritt 2 mit Zusammenfassen

Hält_in: {[Routennummer: integer, Bahnhof: Integer, Ankunftszeit: Date,

Ankunftsgleis: String, Abfahrtszeit: Date, Abfahrtsgleis: String]}

Wenn ein FK-Value (teilweise) NULL ist, dann muss der Wert in der Referenztabelle nicht vorkommen. In diesem Fall beziehen sich Route und Hält_in aufeinander... Wo also zuerst ein INSERT? Irgendwo wird immer ein Wert fehlen...

Bahnhof: {[ID: integer, Name: String, PLZ: String NOT NULL, Ort: String NOT NULL]}

Ort: {[PLZ: String, Ort: String]}

Datenbanken — in der Theorie Relationenalgebra

- Präsentiert 1970 von Edgar Codd
- Basiert auf der mathematischen Modellierung von Tabellen in Form von Relationen
- Um gewünschte Informationen aus einem Pool von Relationen zu extrahieren, bedarf es definierter Vorgehen → Relationenalgebra
- Dazu sollten aber ein paar Grundlagen aus der Mengenlehre und Logik wiederholt werden

Mengenlehre Definition einer Menge

"Unter einer Menge verstehen wir eine Zusammenfassung von bestimmten wohlunterschiedenen Objekten unserer Anschauung oder unseres Denkens zu einem Ganzen."

Georg Cantor (1845-1918), Begründer der Mengenlehre

- Eine **Menge** besteht aus **Elementen**
- e ∈ M bedeutet dann, dass e der Menge M angehört

Darstellung von Mengen

Generell auf zwei Wegen möglich		
Explizit durch Aufzählen der Elemente		
generisch	{x1, x2,}	
Beispiel	{2,3,5,7}	
Implizit durch Angeben eines Ausdrucks A zur Bildung der Menge		
generisch	{x A(X)}	
Beispiel	{x "x ist eine Primzahl kleiner 10"}	

Mengenlehre Besonderheiten

- Die Menge mit 0 Elementen wird "leere Menge" genannt
- Die Reihenfolge der Elemente einer Menge spielt keine Rolle
 - \rightarrow {1,2,3} \equiv {2,3,1}
 - → Wenn das eine Rolle spielen soll, benötigt man "Listen"
- Die Anzahl nicht unterscheidbarer Elemente ist irrelevant (eine Menge enthält jedes Element nur einmal)
 - \rightarrow {1,2,3,3,3,3} \equiv {2,3,1}
 - → Bei Bedarf: Multimengen, Notation z. B. mit Doppelklammer: {{1,2,3,3,3}}

Kardinalität

 Kardinalität oder Mächtigkeit drückt die Anzahl der Elemente einer Menge aus

• Geschrieben: |M|

• Leere Menge: Kardinalität 0

?

Kardinalität folgender Mengen?

- **{1,2,3,4,5}**
- **{1,2,33,4,55,55}**
- **-** {{1,2,3},{4,5}}

Operatoren

 A heißt Teilmenge von B, wenn jedes Element von A auch Element von B ist.

 Zwei Mengen A und B sind gleich, wenn A Teilmenge von B und B Teilmenge von A ist.

$$A = B$$

 A heißt echte Teilmenge von B, wenn A Teilmenge von B ist, aber wenn A nicht gleich B ist.

Operatoren

Durchstreichen eines Mengenvergleichsoperators bzw. des Elementoperators bedeutet Negieren der jeweiligen Beziehung:

Operatoren

 Die Mengenlehre kennt drei grundlegende Operationen, mit denen man zwei Mengen verknüpfen kann:

Vereinigung
$$A \cup B$$
 $=_{def}$ $\{e \mid e \in A \text{ oder } e \in B\}$ Durchschnitt $A \cap B$ $=_{def}$ $\{e \mid e \in A \text{ und } e \in B\}$ Differenz $A \setminus B$ $=_{def}$ $\{e \mid e \in A \text{ und } e \not\in B\}$

Beispiele dazu:

$$\{1, 2\} \cup \{2, 3\} = \{1, 2, 3\}$$

 $\{1, 2\} \cap \{2, 3\} = \{2\}$
 $\{1, 2\} \setminus \{2, 3\} = \{1\}$

Beispiel für Anwendung von Mengenoperatoren

Kartesisches Produkt / Tupelbegriff

weitere zweistellige Grundoperation der Mengenlehre:

$$A \times B = \{(a,b) | a \in A \text{ und } b \in B\}$$

(kartesisches) Produkt

verallgemeinerte Produktbildung f

ür n Mengen (n ≥ 2) :

$$A_1 \times ... \times A_n = \{(a_1, ..., a_n) \mid a_i \in A_i \}$$

- Elemente des Produkts von n Mengen heißen (n)-Tupel.
- spezielle Bezeichnungen für Tupel:
 - n = 2: Paare
 - n = 3: Tripel
 - n = 4: Quadrupel

Produktbildung zweier Mengen

Tupel und Relationen

- Mengen von Tupeln werden als Relationen bezeichnet
- Jede Teilmenge des kartesischen Produktes aus A × B × ... × Z ist eine Relation über A, B, ..., Z:

$$R \subseteq A \times B \times ... \times Z$$

 Relationen werden zur Veranschaulichung meist tabellenförmig dargestellt

Logik Geschichte

- Grundlegend sind die beiden Gebiete
 - Aussagenlogik (formalisiert von Boole, Mitte 19. Jhd.)
 - Lehre von Aussagen und deren Verknüpfungen
 - Aussage: wahr oder falsch.
 - Prädikatenlogik (formalisiert von Frege, Ende 19. Jhd.)

Logik

Aussagenlogik

- Einstellige und mehrstellige Junktoren
- Zweistellige Junktoren sind beispielsweise die Konjugation, Äquivalenz etc.
- Einstelliger Junktor zum Beispiel die Negation

Logik Junktoren

Zweistellige Junktoren der Aussagenlogik:

Einstelliger Junktor:

Logik

zusammengesetzte Aussagen

 Wahrheitswerte zusammengesetzter Aussagen lassen sich systematisch aus den Wahrheitswerten ihrer Teilaussagen herleiten, z.B.:

 Mit einer ganz analogen Konstruktion lässt sich aber auch <u>dieser</u> Aussage der Wahrheitswert 'wahr' zuordnen:

$$((5 < 6) \land (a \neq b)) \Rightarrow (5 < 7)$$

 <u>Fazit</u>: Teilaussagen (wahrer) zusammengesetzter Aussagen müssen nicht unbedingt "etwas miteinander zu tun" haben.

Logik

Wahrheitstafeln

- Junktoren sind also syntaktische "Werkzeuge", mit denen sich die Bedeutung ("Semantik") von zusammengesetzten Aussagen aus der Bedeutung der Teilaussagen herleiten lässt.
- Wie dies zu geschehen hat, wird i.a. durch sogenannte Wahrheitstafeln festgelegt:

 wie folgt zu lesen: Wenn A wahr ist und B falsch, dann hat die Aussage A A B den Wahrheitswert falsch.

Einführung

- Was ist eine "Algebra" oder algebraische Struktur?
 - System von Operatoren (korrekterweise "Verknüpfungen" genannt), die auf einer bestimmten (im Regelfall nichtleeren) Trägermenge operieren: Inputparameter stammen aus dieser Trägermenge, Resultat ebenfalls!
 - Daraus folgt: Operatoren können auf Resultate anderer Operatoren angewendet werden (Schachtelung)
 - Beispiele
 - x+2x=3x (elementare Algebra)
 - true OR false = true (Boolesche Algebra)
 - Mengenalgebra
 - Kennen Sie jQuery? Es gibt Parallelen!
 - Siehe auch: http://de.wikipedia.org/wiki/Algebraische Struktur
- Relationale Algebra weist viele Parallelen mit der Mengenalgebra auf, aber
 - es handelt sich um ganz besondere Mengen: Tupelmengen
- ²² Diese benötigen ein anderes Verhalten einiger Operatoren

Relationale Algebra Vergleich mit Mengenalgebra

• Da es sich bei Relationen um Mengen handelt, sind Operatoren der Mengenalgebra ebenfalls anwendbar:

Operator	Beispiel
Vereinigung	RUS
Differenz	R-S
Durchschnitt $R \cap S = R - (R - S)$	
Produkt	R×S

• Probleme in der Relationalen Algebra:

Operator	Problem
Vereinigung	Eventuell sind Relationen
Differenz	aufgrund der Tupel nicht
Durchschnitt	vereinbar / vergleichbar
Produkt	Attribute sind ggf. gleich benannt und werden somit mehrdeutig

Vereinigungsverträglichkeit

Problem: Alle Verknüpfungen von Relationen mit Mengenoperatoren sind wieder Mengen, aber nicht alle sind auch wieder Relationen!

⇒ nur Relationen "gleichen Typs" können vereinigt / geschnitten / subtrahiert werden

- a) gleiche Stelligkeit
- b) Namensgleichheit der entsprechenden Spalten
 - ggf. Umbenennung von Spalten erforderlich
 - Umbenennung mittels Hilfsoperator ρ (griech. rho), z.B.: $\rho_{A \leftarrow B}(R)$
- c) Typgleichheit der Spalten (gleiche Wertebereiche d_i)

Attributmehrdeutigkeite

bei Produktbildung:

RXS

Identische Attribute in beiden Operanden machen Umbenenung im Relationenschema erforderlich!

(meist systematisch durch "Vorschalten" des Relationsnamens: R.a)

Achtung!

Operation entspricht <u>nicht</u> exakt dem Produkt der Mengenalgebra!!

R x S für n- und m-stellige Relationen sollte eigentlich eine Menge von

(2)-Tupeln sein – hier <u>direkte Konkatenation</u> der Operanden zu (n+m)-Tupel.

Produktbildung

 Eigentlich ist das Produkt zweier Relationen <u>immer</u> eine zweistellige Relation, deren Elemente aber Tupel von Tupeln sind!

$$A \times B = \{(a,b) | a \in A \text{ und } b \in B\}$$

- Wenn z.B. das Tupel (a,b) Element der zweistelligen Relation A und das Tupel (1,2,3) Element der dreistelligen Relation B ist, dann enthält in der Mengenalgebra das Produkt von A und B das Paar ((a,b), (1,2,3)).
- In der Relationenalgebra ist die Produktbildung aber <u>anders</u> definiert als in der Mengenalgebra, denn hier werden die Tupelpaare der Operandenrelationen zusätzlich noch konkateniert, bevor sie ins Produkt aufgenommen werden:

$$(a,b)$$
 $(a,b,1,2,3)$ $(1,2,3)$

 In der RA ist also das Produkt einer n-stelligen und einer m-stelligen Relation eine (n+m)-stellige und nicht etwa eine 2-stellige Relation!

Join)

Operatoren

27

Auswahl σ (Selektion) Π Projektion Umbenennung U/N Differenz Vereinigung / **Durchschnitt Division** X Kreuzprodukt (Kartesisches Produkt, Cross- $\bowtie \theta$ Join) M a / a Theta-Join \bowtie / \bowtie Natural Join Left Semi-Join / Right Semi-Join \bowtie \triangleright Left Outer-Join / Right Outer-Join Full Outer-Join Left Anti-Join (Complement of Left Semi-

Professoren			
PERSNR	NAME	RANG	RAUM
2125	Sokrates	C4	226
2126	Russel	C4	232
2127	Kopernikus	C3	310
2133	Popper	C3	52
2134	Augustinus	C3	309
2136	Curie	C4	36
2137	Kant	C4	7

Studenten			
MATRNR	NAME	SEMESTER	
24002	Xenokrates	18	
25403	Jonas	12	
26120	Fichte	10	
26830	Aristoxenos	8	
27550	Schopenhauer	6	
28106	Carnap	3	
29120	Theophrastos	2	
29555	Feuerbach	2	

Assistenten			
PERSNR	NAME	FACHGEBIET	BOSS
3002	Platon	Ideenlehre	2125
3003	Aristoteles	Syllogistik	2125
3004	Wittgenstein	Sprachtheorie	2126
3005	Rhetikus	Planetenbewegung	2127
3006	Newton	Keplersche Gesetze	2127
3007	Spinoza	Gott und Natur	2126

Vorlesungen			
VORLNR	TITEL	SWS	GELESEN_VON
5001	Grundzüge	4	2137
5041	Ethik	4	2125
5043	Erkenntnistheorie	3	2126
5049	Mäeutik	2	2125
4052	Logik	4	2125
5052	Wissenschaftstheorie	3	2126
5216	Bioethik	2	2126
5259	Der Wiener Kreis	2	2133
5022	Glaube und Wissen	2	2134
4630	Die 3 Kritiken	4	2137

hören		
MATRNR	VORLNR	
25403	5022	
26120	5001	
27550	4052	
27550	5001	
28106	5041	
28106	5052	
28106	5216	
28106	5259	
29120	5001	
29120	5041	
29120	5049	
29555	5001	
29555	5022	

voraussetzen			
VORGÄNGER	NACHFOLGER		
5001	5041		
5001	5043		
5001	5049		
5041	5052		
5041	5216		
5043	5052		
5052	5259		

prüfen			
MATRNR	VORLNR	PERSNR	NOTE
28106	5001	2126	1
25403	5041	2125	2
27550	4630	2137	2

σ Auswahl (Selektion)

- Selektion (nicht mit "SELECT" in SQL zu verwechseln!)
 - Darum werden wir diesen Operator in Zukunft "Auswahl" nennen
 - Kann als Filter auf eine Relation betrachtet werden: Es werden die Tupel aus der Relation eliminiert, welche nicht der Bedingung genügen
- Allgemeine Anwendung:
 - $-\sigma_{cond}(R)$
 - Cond kommt hier aus der Aussagenlogik: genutzt werden können Attribute, Konstanten, zum Datentyp passende Vergleichsoperatoren, Operatoren der booleschen Algebra und ggf. selbst definierte Funktionen enthalten
- Beispiel
 - σAlter>21(Studenten)
 - σ ¬Geschlecht=,w' ∧ Alter >21(Studenten)

σ Auswahl (Selektion) :: BEISPIEL

Studenten			
MatrNr	Name	Semester	
24002	Xenokrates	18	
25403	Jonas	12	
26120	Fichte	10	
26830	Aristoxenos	8	
27550	Schopenhauer	6	
28106	Carnap	3	
29120	Theophrastos	2	
29555	Feuerbach	2	

$\sigma_{\text{Semester} > 10}$ (Studenten)			
MatrNr	Name	Semester	
24002	Xenokrates	18	
25403	Jonas	12	

π Projektion

- Operator zum Ausblenden von Attributen durch explizite Angabe der gewünschten Spalten
- Die Kardinalität der Ergebnis-Relation ist immer kleiner oder gleich groß wie die Relation, auf die die Projektion angewendet wird
- Allgemeine Anwendung:
 - $\pi_{A_1,...,A_k}(R)$
 - Eliminiert alle übrigen Attribute von R (alle außer A₁,..., A_k)
 - Eliminiert ggf. Duplikattupel
- Beispiel
 - π Alter (Studenten)
 - π Geschlecht, Alter (Studenten)

π Projektion :: BEISPIEL

Professoren			
PersNr	Name	Rang	Raum
2125	Sokrates	C4	226
2126	Russel	C4	232
2127	Kopernikus	C3	310
2133	Popper	C3	52
2134	2134 Augustinus C3 309		309
2136	Curie	C4	36
2137	Kant	C4	7

$\Pi_{Rang}(Professoren)$	
Rang	
C4	
C3	

ho Umbenennung

Operator zum Umbenennen von Attributen oder Relationen

Allgemeine Anwendung:

- $\rho_{\rm S}(R) \rightarrow$ Umbenennung der Relation
- "S" ist dann sozusagen ein Alias / eine temporäre Relation
- $\rho_{S(B_1, B_2, ...B_n)}(R) \rightarrow Umbenennung der Relation und aller Attribute$
- $\rho_{(B_1, B_2, ...B_n)}(R) \rightarrow Umbenennung aller Attribute$
- $\rho_{(A \leftarrow B_x, B \leftarrow B_y)}(R) \rightarrow Umbenennung zweier Attribute$

Beispiel:

- $\rho_{\text{Ergebnis}}(\sigma_{\text{Alter}>21}(\text{Studenten}))$
 - → Wir erinnern uns: Das Ergebnis jeder Operation ergibt wieder eine Relation (die auch 0 Tupel beinhalten kann)

 ρ Umbenennung :: BEISPIEL

Studenten		
MatrNr	Name	Semester
24002	Xenokrates	18
25403	Jonas	12
26120	Fichte	10
26830	Aristoxenos	8
27550	Schopenhauer	6
28106	Carnap	3
29120	Theophrastos	2
29555	Feuerbach	2

Ergebnis	
Langzeitstudent	
Xenokrates	
Jonas	

Mengenoperationen ∪ ∩ **–**

- Vereinigung R U S ergibt eine Relation mit allen Tupeln aus R und S, diese sind in der Ergebnisrelation paarweise verschiedenen
 - kommutativ und assoziativ
- Schnittmenge R ∩ S ergibt eine Relation mit allen Tupeln, die sowohl in R als auch in S vorhanden sind
 - kommutativ und assoziativ
- Differenz R S ergibt eine Relation mit allen Tupeln, die in R, jedoch nicht in S vorhanden sind

Mengenoperationen ∪ ∩ **–** :: **BEISPIEL**

Student	
Vorname	Nachname
Roy	Redmond
Farrah	Barnard
Phebe	Blackburn
Jay-Jay	Whitley
Rui	Rodriquez
Ivo	Coles
Darcie	Mercer
Mi	Chan

Lehrer	
Vorname Nachname	
Alena	Riley
Anna	Brock
Kendal	Needham
Farrah	Barnard
Phebe	Blackburn

Student U **Lehrer** = Lehrer ∪ Student Roy Redmond **Barnard Farrah** Phebe Blackburn Whitley Jay-Jay Rodriguez Rui Coles Ivo Darcie Mercer Mi Chan Alena Riley Anna **Brock** Kendal Needham

Student – Lehrer Student \ Lehrer	
Roy	Redmond
Jay-Jay	Whitley
Rui	Rodriquez
Ivo	Coles
Darcie	Mercer
Mi	Chan

Lehrer – Student	
Lehrer \ Student	
Alena	Riley
Anna	Brock
Kendal	Needham

Student ∩ Lehrer	
= Lehrer	∩ Student
Farrah	Barnard
Phebe	Blackburn

 $R \div S$

 m_1

Relationale Algebra, Operatoren

÷ Division

- Dividiert man eine Relation R mit zwei Attributen A und B durch eine Relation S mit dem Attribut A, so erhält man eine Relation T mit dem Attribut B
 - In T.B sind alle Werte enthalten, die mit <u>iedem</u> Wert aus in S.A ein Tupel in der Relation R bilden
- Allgemeine Anwendung:
 - $T \leftarrow R \div S$
- Beispiel

Prüfung		
Student Fach		
Horst	Mathe I	
Horst	Datenbanken	
Marie	Mathe I	
Marie	Datenbanken	
Marie	Informatik Grundlagen	
Peter	Peter Englisch	
Mae	Mathe I	
Mae	Informatik Grundlagen	

Pflichtprüfungen		
Fach		
Mathe I		
Informatik Grundlagen		

 V_2

V₃

 V_2

 m_1

 m_1

 m_1

 m_2

Prüfung ÷ Pflichtprüfungen			
Student			
Marie			
Mae			

÷ Division

• Kann aus anderen Operatoren abgeleitet werden:

$$R \div S := \pi_{R'}(R) - \pi_{R'}((\pi_{R'}(R) imes S) - R)$$

Beispiel: Lösen Sie folgende Fragen mit relationaler Algebra!

Welchen Rang haben die Professoren in den 200er-Räumen?

!

 $\pi_{Rang}(\sigma_{Raum \ge 200 \land Raum < 300}(Professoren))$

Übung: Lösen Sie folgende Fragen mit relationaler Algebra!

?

In welchen Räumen sind Sokrates, Russel oder Kopernikus? (*)

?

Wie sind die Titel der Vorlesungen mit 2 SWS?

?

Welche Vorlesungen (Nr) hat 28106 besucht, die 29120 nicht besucht hat?

Welche Matrikelnummern haben bereits die Vorlesungen 5041 und 5052 gehört?

Lösungen: 1 und 2

In welchen Räumen sind Sokrates, Russel oder Kopernikus?

ΠRaum(σName='Sokrates' V Name='Kopernikus' V Name='Russel' (Professoren))

Wie sind die Titel der Vorlesungen mit 2 SWS?

 $\pi_{\text{Titel}}(\sigma_{\text{SWS=2}}(\text{Vorlesungen}))$

Lösungen: 3

Welche Vorlesungen (Nr) hat 28106 besucht, die 29120 nicht besucht hat?

$$\pi_{\text{VorINr}}(\sigma_{\text{MatrNr}=281062}(\rho_{\text{h1}}\text{h\"{o}ren})) - \pi_{\text{VorINr}}(\sigma_{\text{MatrNr}=281062}(\rho_{\text{h1}}\text{h\"{o}ren}))$$

Lösungen: 4

Professoren			
PERSNR	NAME	RANG	RAUM
2125	Sokrates	C4	226
2126	Russel	C4	232
2127	Kopernikus	C3	310
2133	Popper	C3	52
2134	Augustinus	C3	309
2136	Curie	C4	36
2137	Kant	C4	7

Studenten			
MATRNR	NAME	SEMESTER	
24002	Xenokrates	18	
25403	Jonas	12	
26120	Fichte	10	
26830	Aristoxenos	8	
27550	Schopenhauer	6	
28106	Carnap	3	
29120	Theophrastos	2	
29555	Feuerbach	2	

Assistenten			
PERSNR	NAME	FACHGEBIET	BOSS
3002	Platon	Ideenlehre	2125
3003	Aristoteles	Syllogistik	2125
3004	Wittgenstein	Sprachtheorie	2126
3005	Rhetikus	Planetenbewegung	2127
3006	Newton	Keplersche Gesetze	2127
3007	Spinoza	Gott und Natur	2126

Vorlesungen			
VORLNR	TITEL	sws	GELESEN_VON
5001	Grundzüge	4	2137
5041	Ethik	4	2125
5043	Erkenntnistheorie	3	2126
5049	Mäeutik	2	2125
4052	Logik	4	2125
5052	Wissenschaftstheorie	3	2126
5216	Bioethik	2	2126
5259	Der Wiener Kreis	2	2133
5022	Glaube und Wissen	2	2134
4630	Die 3 Kritiken	4	2137

hören			
MATRNR	VORLNR		
25403	5022		
26120	5001		
27550	4052		
27550	5001		
28106	5041		
28106	5052		
28106	5216		
28106	5259		
29120	5001		
29120	5041		
29120	5049		
29555	5001		
29555	5022		

voraussetzen			
VORGÄNGER NACHFOLGER			
5001	5041		
5001	5043		
5001	5049		
5041	5052		
5041	5216		
5043	5052		
5052	5259		

prüfen			
MATRNR	VORLNR	PERSNR	NOTE
28106	5001	2126	1
25403	5041	2125	2
27550	4630	2137	2

Joins

- x Kreuzprodukt (Kartesisches Produkt, Cross-Join) Theta-

 $-\bowtie_{\theta}$, $\bowtie_{\theta,...}$ Join

- ⋈ Natural Join ("normaler")

– a⊳a Left Semi-Join / Right Semi-Join Left

- ⋈ / ⋈ Outer-Join / Right Outer-Join Full Outer-

- ⋈ Join

D Left Anti-Join (Complement of Left Semi-Join)

- Eine Relation R mit r-Tupeln & eine Rel. S mit s-Tupeln werden mit einer
 Join- Operation zu einer Rel. mit t-Tupeln kombiniert, wobei t >= min(r,s), t <=
- Im Alltag mit "SQL" haben vor allem die rot gekennzeichneten Joins Relevanz
 Persönliche Meinung des Dozenten…
- Alle Joins, die keine Outer-Joins sind, sind Inner-Joins
- Alle nicht-Theta-Joins (bis auf X), vergleichen gleichnamige Attribute und werden als Natural Joins bezeichnet

⁴⁶ • Achtung bei Reihenfolge der Join-Operationen!

Joins

×	Kreuzprodukt (Kartesisches Produkt, Cross-Join)
\bowtie_{θ} , \bowtie_{θ} ,	Theta-Join
\bowtie	Natural Join
a⊳a	Left semi-join
\bowtie / \bowtie	Left / right outer join
M	Full outer join
\triangleright	Left anti-join

- Eine Relation R mit r-Tupeln & eine Rel. S mit s-Tupeln werden mit einer Join-Operation zu einer Rel. mit t-Tupeln kombiniert, wobei t >= min(r,s), t <= r+s
- Im Alltag mit "SQL" haben vor allem die rot gekennzeichneten Joins Relevanz
- Alle Joins, die keine Outer-Joins sind, sind Inner-Joins
- Alle nicht-Theta-Joins (bis auf X), vergleichen gleichnamige Attribute und werden als Natural Joins bezeichnet
- Achtung bei Reihenfolge der Join-Operationen!

× Kreuzprodukt

- Ein Kreuzprodukt aus R und S enthält alle |R|*|S| möglichen Tupel-Kombinationen beider Relationen. Das Schema der Ergebnisrelation attr(RxS) entspricht attr(R) U attr(S), wobei allen Attributnamen der Relationsname bei Bedarf vorangestellt wird (wichtig bei identischen Namen)
- Allgemeine Anwendung:
 - $-R \times S$
- Beispiel
 - Studenten × schreibt_prüfung_in × Studienfach

× Kreuzprodukt :: BEISPIEL

Professoren			
PersNr	Name	Rang	Raum
2125	Sokrates	C4	226
2126	Russel	C4	232
2127	Kopernikus	C3	310
2133	Popper	C3	52
2134	Augustinus	C3	309
2136	Curie	C4	36
2137	Kant	C4	7

hören					
MatrNr	VorlNr				
26120	5001				
27550	5001				
27550	4052				
28106	5041				
28106	5052				
28106	5216				
28106	5259				
29120	5001				
29120	5041				
29120	5049				
29555	5022				
25403	5022				
29555	5001				

Professoren × hören

P	höı	ren			
PersNr	Name	Rang	Raum	MatrNr	VorlNr
2125	Sokrates	C4	226	26120	5001
				•••	•••
2125	Sokrates	C4	226	29555	5022
2137	Kant	C4	7	29555	5001

⋈θ Theta-Join

- Das Kreuzprodukt hat den Nachteil, dass sehr viele "unnötige" Tupel entstehen, obwohl eigentlich nur zueinander passende interessieren
 - Darum erfolgt in einem nächsten Schritt eine Selektion
- Ein Theta-Join aus R und S ist die verkürzte Schreibweise aus einem Kreuzprodukt mit anschließender Auswahl, die den "Joinpartner" spezifiziert
 - $R \bowtie_{\theta} S = \sigma_{\theta} (R \times S)$
- Allgemeine Anwendung:
 - $-R \bowtie \theta S$

R 🔀	S mit	$\Theta =$	$(A \leq C \land$	S.B >	0)
-----	-------	------------	-------------------	-------	----

R	Α	В
	1	a
	3	b
	2	a

A	R.B	S.B	C
1	a	5	2
1	a	1	1
2	a	5	2

M Natural Join

- Der Natural Join ist wie auch der Theta-Join eine ableitbare Operation der RA, denn derselbe Effekt ließe sich auch durch Kombination von Projektion, Selektion und Kreuzprodukt erreichen
- Im Gegensatz zu einem Theta-Join werden hier jedoch automatisch gleichnamige Attribute "gematched" (R.a=S.a) und doppelte Attributnamen in der Ergebnisrelation ausgeblendet
- Allgemeine Anwendung:
 - $-R\bowtie S$

$$R \bowtie S = \pi_{A_1, \dots, A_m, R.B_1, \dots, R.B_k, C_1, \dots, C_n} (\sigma_{R.B_1 = S.B_1 \wedge \dots \wedge R.B_k = S.B_k} (R \times S))$$

att	r(R) – at	tr(S)	att	r(R) ∩ att	r(S)	att	r(S) – attı	r(R)
A ₁	•••	Am	B ₁	•••	B _k	C ₁		Cn
				gemeinsan Attribute	7000000			

⋈ Natural Join :: BEISPIEL

Studenten					
MatrNr	Name	Semester			
24002	Xenokrates	18			
25403	Jonas	12			
26120	Fichte	10			
26830	Aristoxenos	8			
29555	Feuerbach	2			

hören				
MatrNr	VorlNr			
26120	5001			
25403	5022			
28106	4052			
29555	5001			

Vorlesungen					
VorINr	Titel	SWS	gelesen Von		
5001	Grundzüge	4	2137		
5041	Ethik	4	2125		
5022	Glaube und Wissen	2	2134		
4630	Die 3 Kritiken	4	2137		

(Studenten ⋈ hören) ⋈ Vorlesungen

	(Studenten ⋈ hören) ⋈ Vorlesungen						
MatrNr	Name	Semester	VorlNr	Titel	SWS	gelesenVon	
26120	Fichte	10	5001	Grundzüge	4	2137	
25403	Jonas	12	5022	Glaube und Wissen	2	2134	
28106	Carnap	3	4052	Wissenschftstheorie	3	2126	
				•••			

⋉ Left Semi-Join / ⋈ Right Semi-Join

- Semi-Join (lat. "semi": halb):
 - Teilrelationenbildung eines der beiden Join-Operanden
 - zwei Varianten: linker und rechter Semi-Join
 - Nur diejenigen Tupel des ausgewählten Joinoperanden werden ausgewählt, die "einen Joinpartner" besitzen.
 - symbolische Notation: R ➤ S (linker Semi-Join, rechter analog)
- Beispiel: (natürlicher) linker Semi-Join R ➤ S

Α	В
1	2
3	1
2	5

R

В	С
5	2
2	1
2	1

 $R \bowtie S$

Α	В
1	2
2	5

▶ Left Anti-Join (Complement of Left Semi-Join)

- Im Gegenteil zum Left Semi-Join werden hier nur die Tupel angezeigt, die keinen Join-Partner besitzen (wurde von Codd nicht eingeführt und ist deshalb in vielen Bücher nicht einmal erwähnt...).
 Wichtig für Fragen wie "welche Studenten haben noch keine Vorlesung besucht"
- Right Anti-Join analog
- Allgemeine Anwendung:
 - R ▼ S
 - R S (wenn als Komplement des Semi-Join verstanden)

Beispiel:

R	A	В
	1	2
	3	1
	2	5

S	В	C
	5	2
	2	1
	2	1

Α	В
3	1

- **⋈** Left Outer Join
- M Right Outer Join
- **⋈** Full Outer Join
- Ein Outer Join erweitert den schon bekannten Theta-Join so, dass zusätzlich zu allen Tupeln, die die Join-Bedingung erfüllen, auch jene enthalten sind, die sie nicht erfüllen. Die Attribute der jeweils anderen Input-Relation werden dann mit NULL-Werten aufgefüllt
- Das Wort "Left", "Right" oder "Full" gibt an, aus welcher Relation auf jeden Fall alle Werte enthalten sein müssen
 - Der Full Outer-Join ist die Vereinigungsmenge aus Left- und Right-Join
- Allgemeine Anwendung:
 - $-R\bowtie S$
- Wozu? Es gehen keine Tupel ohne entsprechenden Join-Partner "verloren"

⋈ / ⋈ Left / Right Outer Join :: BEISPIEL

Г			
Α	В	C	
a_1	b ₁	C_1	
a_2	b_2	C ₂	

M

	R	
С	D	Е
C_1	d_1	e_1
C ₃	d_2	e_2

=

Resultat				
A B C D E				
a_1	b_1	C_1	d_1	e_1
a ₂	b_2	C ₂	1	-

L			
Α	В	С	
a_1	b ₁	C ₁	
a ₂	b_2	C ₂	

M

	R	
C	D	Е
C_1	d_1	e_1
C ₃	d_2	e_2

=

Resultat				
A B C D E				
a_1	b_1	C ₁	d_1	e_1
-	-	C ₃	d_2	e_2

™ Full Outer-Join :: BEISPIEL

Г			
Α	В	С	
a_1	b_1	C_1	
a ₂	b ₂	C ₂	
		C3	

		R	
	U	D	Е
M	C_1	d_1	e_1
	C ₃	d_2	e_2

Resultat				
Α	В	C	D	Е
a_1	b_1	C ₁	d_1	e_1
a_2	b_2	C ₂	1	-
-	1	C ₃	d ₂	e ₂

Technisch "korrekter" wäre folgende Darstellung rechts mit vorangestellten Relationennamen, wie wir sie vom Theta-Join kennen. Warum haben wir bei allen NATURAL OUTER JOINS einen Informationsverlust, bei THETA OUTER JOINS jedoch nicht?

Resultat					
L.A	L.B	L.C	R.C	R.D	R.E
a_1	b_1	C_1	C_1	d_1	e_1
a_2	b_2	C ₂	ı	1	-
-	_	c3	C ₃	d_2	e_2

Outer-Joins auch mit Theta verwendbar:: BEISPIEL

 Vorweg: So wird das auch in SQL gemacht... NATURAL OUTER JOINS werden Sie in der Praxis nie sehen

- Falls das Theta bei einem Join auf Gleichheit (welcher Art auch immer) beruht (R.a=S.a ∧ R.b=S.b), spricht man von einem Equi-Join ("equals")
- Falls kein Theta angegeben wird, spricht man von einem Natural Join
- Alle Joins, die keine Outer-Joins sind, sind Inner-Joins (bei einem Outer-Join werden NULL-Werte hinzugefügt)
- Doppelte Attributnamen werden in der Regel ausgeblendet (außer beim Kreuzprodukt)
- Theta-Joins und Kreuzprodukt sind kommutativ und assoziativ
 - Outer-Joins, Semi-Joins und Anti-Joins sind nicht kommutativ!
- Das Kreuzprodukt wird in der Praxis ebenfalls als Join (Cross-Join) bezeichnet. So kann man das Kreuzprodukt auch als speziellen Theta-Join ansehen.

Wie kann man ein Kreuzprodukt als "Theta-Join" schreiben?

Relationale Algebra logische Optimierung

- Für die "praktische" Auswertung ist nicht jeder äquivalente komplexe algebraische Ausdruck "gleich teuer"
- In der RA gibt es einige Äquivalenzen, die man ausnutzen kann
 - Unnötige Projektionen löschen, Projektionen zu früh wie möglich anwenden, um "Datenmüll" zu vermeiden
 - Redundante Selektionen löschen / zusammenfassen
 - Für Join-Operationen möglichst kleine Tabellen oder möglichst selektive conditions verwenden (viele Operatoren assoziativ: Reihenfolge dort egal)
- Beispiel: In welchen Semestern sind Sokrates' Studenten?
 - Wir verwenden hier der Einfachheit halber nur die ersten Buchstaben der Relationen:
 - S ← Studenten
 - − H ← hören
 - V ← Vorlesungen
 - P ← Professoren

Relationale Algebra logische Optimierung, Beispiel

In welchen Semestern sind Sokrates' Studenten?

```
Semester

Op.Name = 'Sokrates' ∧

v.gelesenVon = p.PersNr ∧

v.VorlNr = h.VorlNr ∧

h.MatrNr = s.MatrNr

(p x v x h x s)
```

 Alternativ kann man das auch als Baum darstellen, bei komplexen Abfragen erhöht das die Übersichtlichkeit!!!

logische Optimierung, Beispiel

logische Optimierung, Beispiel

Aufspalten der Selektionsprädikate

logische Optimierung, Beispiel

Verschieben der Selektionsprädikate "Pushing Selections"

logische Optimierung, Beispiel

Zusammenfassung von Selektionen und Kreuzprodukten zu Joins

logische Optimierung, Beispiel

Optimierung der Joinreihenfolge

Kommutativität und Assoziativität ausnutzen

logische Optimierung, Beispiel

logische Optimierung, Beispiel

Einfügen von Projektionen

Relationale Algebra weitere Optimierungen

- Physische Optimierung
 - Indexstrukturen, Suchbäume
 - Daten vorsortiert auf der Festplatte ablegen
- Kostenmodelle
 - Heuristiken / Statistiken / Verteilungen

Relationale Algebra weitere Optimierungen

- Optimierung der Anwendungen
 - keine sinnlosen Anfragen
 - nicht unbedingt selbst den Algorithmus definieren, sondern der DB die Arbeit "überlassen" (muss nicht immer das beste Performance-Ergebnis bringen). Folgende häufig in der Webentwicklung anzutreffende "Technik" zwingt selbst high-end DB-Server in die Knie:

```
1 $result = mysql_query("some-query");
2 while($cur = mysql_fetch_object($result)) {
3     $secondResult = mysql_query("some-query that uses $cur->id");
4     while($result2 = mysql_fetch_object($secondResult)) {
5         echo $result2->name . "<br>";
6     }
7 } // AUTSCH! Was ist hier schief gelaufen?!
```

Übung: Lösen Sie folgende Fragen mit relationaler Algebra!

Tipp: Kürzen Sie jede Relation mit den Anfangsbuchstaben ab.

Zeige alle Studentennamen, die weniger Semester haben als Schopenhauer!

Zeige, welche Noten Professoren mit dem Rang C4 an die Studenten "Fichte" bzw "Jonas" vergeben haben

Welche Studenten (Namen) haben bereits Ethik und Wissenschaftstheorie gehört?

Professoren				
PERSNR	NAME	RANG	RAUM	
2125	Sokrates	C4	226	
2126	Russel	C4	232	
2127	Kopernikus	C3	310	
2133	Popper	C3	52	
2134	Augustinus	C3	309	
2136	Curie	C4	36	
2137	Kant	C4	7	

Studenten			
MATRNR	NAME	SEMESTER	
24002	Xenokrates	18	
25403	Jonas	12	
26120	Fichte	10	
26830	Aristoxenos	8	
27550	Schopenhauer	6	
28106	Carnap	3	
29120	Theophrastos	2	
29555	Feuerbach	2	

Assistenten				
PERSNR	NAME	FACHGEBIET	BOSS	
3002	Platon	Ideenlehre	2125	
3003	Aristoteles	Syllogistik	2125	
3004	Wittgenstein	Sprachtheorie	2126	
3005	Rhetikus	Planetenbewegung	2127	
3006	Newton	Keplersche Gesetze	2127	
3007	Spinoza	Gott und Natur	2126	

Vorlesungen			
VORLNR	TITEL	sws	GELESEN_VON
5001	Grundzüge	4	2137
5041	Ethik	4	2125
5043	Erkenntnistheorie	3	2126
5049	Mäeutik	2	2125
4052	Logik	4	2125
5052	Wissenschaftstheorie	3	2126
5216	Bioethik	2	2126
5259	Der Wiener Kreis	2	2133
5022	Glaube und Wissen	2	2134
4630	Die 3 Kritiken	4	2137

hören	
MATRNR	VORLNR
25403	5022
26120	5001
27550	4052
27550	5001
28106	5041
28106	5052
28106	5216
28106	5259
29120	5001
29120	5041
29120	5049
29555	5001
29555	5022

voraussetzen				
VORGÄNGER	NACHFOLGER			
5001	5041			
5001	5043			
5001	5049			
5041	5052			
5041	5216			
5043	5052			
5052	5259			

prüfen				
MATRNR	VORLNR	PERSNR	NOTE	
28106	5001	2126	1	
25403	5041	2125	2	
27550	4630	2137	2	

Lösungen: 1 (nur noch als Operatorbäume)

Zeige die Assistenten (Namen) von Sokrates, deren Fachgebiet mit "S" beginnt!

Lösungen: 2 (nur noch als Operatorbäume)

Zeige alle Studentennamen, die weniger Semester haben als Schopenhauer!

Lösungen: 3 (nur noch als Operatorbäume)

Zeige, welche Noten Professoren mit dem Rang C4 an die Studenten "Fichte" bzw "Jonas" vergeben haben

Lösungen: 4 (nur noch als Operatorbäume)

Welche Studenten (Namen) haben bereits Ethik und Wissenschaftstheorie gehört?

Das waren die "Grundlagen"... wie geht es ggf. im Masterstudium weiter?

- Alternative zur RA: Formulierung von Anfragen durch logische Terme und Formeln
- wesentlicher Unterschied: Logiksprachen sind "deskriptiver" als algebraische Sprachen; Abarbeitungsreihenfolge ist aus Formeln meist nicht ersichtlich.
- In Codd's grundlegender Arbeit wurden zwei logische Kalküle für relationale Datenbanken vorgeschlagen, die heute die Grundlage der meisten "konkreten" Anfragesprachen bilden:

Tupelkalkül

(engl.: "tuple relational calculus", TRC)

Bereichskalkül

(engl.: "domain relational calculus", DRC)
bei Kemper/Eickler daher auch: Domänenkalkül

Das waren die "Grundlagen"... wie geht es ggf. im Masterstudium weiter?

Welche Studenten studieren länger als 9 Semester?

Tupelkalkül:

- nicht-positionell
- Variablen f
 ür Tupel
- Attribute als Funktionssymbole
- Relationsnamen als Mengentypen

{ [s.Name] | Studenten(s) ^ s.Semester > 9 }

Bereichskalkül:

- positionell
- Variablen f
 ür Attributwerte
- keine Attribute
- DB-Relationsnamen als Relationssymbole des Kalküls

```
{ [n] | ∃ nr, sem:

Studenten(nr, n, sem) ∧

sem) > 9 }

Bereichsvariablen
```

Zusammenfassung

- Es gibt 6 Grundoperatoren, aus denen sich alle weiteren ableiten lassen:
 - Projektion, Auswahl (Selektion), Produkt, Vereinigung,
 Differenz, Umbenennung
 - Nun muss man sich bei der Definition des Produktes fragen, ob ein Outer- Join nicht auch dazugehört... siehe Hausaufgabe!
- Darüber hinaus viele abgeleitete Operatoren
- Eine Anfragesprache ist relational vollständig, wenn jeder Ausdruck der relationalen Algebra formuliert werden kann
 - Meist sind die Sprachen jedoch viel m\u00e4chtiger
- Bereichs,- oder Tupelkalkül ein wenig mächtiger als RA, jedoch können Ausdrücke unsicher sein (Antwortmenge unendlich groß)
 - $\{x \mid \neg R(x)\} \rightarrow$ Alle möglichen Tupel, die nicht in Relation R vorkommen...
- Diverse theoretische Erweiterungen (Aggregate [Summe, ...], Rekursion, ...)

Schwächen relational vollständiger Sprachen

- Es gibt trotzdem eine ganze Reihe sinnvoller Anfragen, die nicht in der RA
 formulierbar sind (und damit auch nicht in den sicheren Kalkülen).
- Um diese Fälle abzudecken, muss man die angeblich relational vollständigen Sprachen noch erweitern.
- Erweiterungen um arithmetische und Aggregatfunktionen (inklusive Gruppierungs- und Sortierungsoperatoren) sind in der Praxis unerlässlich.
- Boolesche Anfragen (Ja/Nein-Anfragen) lassen sich in der RA gar nicht formulieren: Dazu müsste man die RA z.B. um Vergleiche mit der leeren Menge erweitern.
- weiterer schwerwiegender Mangel: Rekursive Anfragen (wie z.B. nach der transitiven Hülle einer Relation) lassen sich ebenfalls nicht ausdrücken:

Dazu wurde für die RA ein "Hüllenoperator" * vorgeschlagen. (Analoge Erweiterungen sind für die Kalküle möglich.)

"Relational vollständige" Sprachen sind nicht so vollständig, wie es scheint . . . !

Hausaufgaben

bis zur nächsten Vorlesung

(a) Zeigen Sie, dass sich der Left-Outer-Join aus anderen nicht-Outer-Join-Operatoren ableiten lässt.

Beachten Sie dabei, dass Sie die Konstante {[NULL1, ..., NULLn]} für eine Relation mit n Attributen verwenden können, die nur NULL-Werte enthält.

(b)Ermitteln Sie alle Vorlesungstitel, die (direkte oder indirekte) Voraussetzung von "Der Wiener Kreis" sind. Beachten Sie: es können Daten hinzukommen!

(c)Finden Sie die Professoren P, die eine Vorlesung halten, bei der alle direkten Vorgängervorlesungen (Voraussetzungen) von der selben Person Q gehalten werden (P und Q können gleich sein)

(d) Für Studenten müssen mögliche Betreuer der Bachelorarbeiten gefunden werden. Dies sind Assistenten der Professoren, bei denen ein Student schon mal Unterricht hatte. Erstellen Sie eine Übersicht aller möglichen Betreuer je Student. Falls es keinen gibt, soll NULL angezeigt werden.