A Book of Abstract Algebra (2nd Edition)

		_	
	Chapter 27, Problem 4EF	Bookmark	Show all steps: ON
	Pro	oblem	
	Let F be a finite field, and F^* the multiplicative group of nonzero elements of F . Obviously $H = \{x^2 : x \in F^*\}$ is a subgroup of F^* ; since every square x^2 in F^* is the square of only two different elements, namely $\pm x$, exactly half the elements of F^* are in H . Thus, H has exactly two cosets: H itself, containing all the squares, and aH (where $a \notin H$), containing all the nonsquares. If a and b are nonsquares, then by Chapter 15, Theorem 5(i), $ab^{-1} = \frac{a}{b} \in H$ Thus: if a and b are nonsquares, a/b is a square. Use these remarks in the following: If the minimum polynomial of a over F has degree 2, we call $F(a)$ a quadratic extension of F .		
	Use part 3 to prove: Any two quadratic extension	ns of a finite field are i	somorphic.
	Step-by-step solution		
	Step 1 of 3		
	Objective is to prove that any two quadratic extensions of a finite field are isomorphic.		
	Consider the finite field F and let $a,b\in F$. Assume that $p(x),\ q(x)$ are arbitrary quadratic		
	irreducible polynomials in $F[x]$ and \sqrt{a} , \sqrt{b} are the roots of these polynomials in some extension of F .		
Then a/b is a square and \sqrt{b} will be a root of $p(cx)$ for some c in F .			
	Since $p(x) \in F[x]$ is an irreducible polynomial and \sqrt{b} is a root of $p(cx)$. Therefore, it follows, from the above result, that $\frac{F[x]}{\langle p(cx)\rangle} \cong F(\sqrt{b}).$		
	Comment		
	Step 2 of 3 ^		
	Next, objective is to prove that $F(\sqrt{a}) \cong F(\sqrt{b})$ a root of $p(cx)$. Thus,	. It is known that \sqrt{a} i	s a root of $p(x)$ and \sqrt{b} is
	$\frac{F[x]}{\langle p(x)\rangle} \cong F(\sqrt{a}), \frac{F[x]}{\langle p(cx)\rangle} \cong F(\sqrt{b}).$		
	Since $F[x]/\langle p(cx)\rangle \cong F[x]/\langle p(x)\rangle$, therefore		
	$F(\sqrt{a}) \cong F(\sqrt{b})$		
	Comment		
	Step 3 of 3 A		
	Since polynomials $p(x)$ and $q(x)$ are arbitrary irreducibles in $F[x]$ of degree 2, therefore it can conclude that any two quadratic extensions of a finite field are isomorphic.		
	Comment		

2 4 B