BIGTREE TECH

TMC5160T Pro V1.0

用户手册

修订历史

版本	日期	修改说明	
v1.00	2024/10/18	初稿	

目录

一、	产品简介	4
	1.1 产品特点	4
	1.2 产品参数	4
	1.3 外设接口	5
	1.3.1尺寸图	5
	1.3.2接口示意图	6
二、	接口介绍	7
	2.1 安装方式及接口	7
三、	固件设置	8
	3.1 Marlin 固件设置	8
四、	注意事项 1	3

一、产品简介

TMC5160 是一款大功率的步进电机驱动控制芯片,外扩功率 MOS 管,最大电压可达 56V,支持的步进电机范围更广,适配性更高。

1.1 产品特点

- · 采用外部功率 MOS 管,可支持更高电压和更大的电流;
- · 发热远远低于 2209、2130 等驱动;
- · 更大的扭力能防止电机抖动,减少丢步发生的可能;
- · 可驱动 57 步进电机;
- · 采用普通驱动的板框,兼容性高,应用面广;
- · 采用齿片更多的散热片,增强散热能力;
- · 预留拓展接口,增强 DIY 的可能性。

1.2 产品参数

- · 外观尺寸: 20.4mmx15.3mmx23.2mm
- · 驱动芯片: TMC5160-TA
- · 输入电压(VM): 8V-56V(TMC5160T Pro)、8V-24V(TMC5160T)
- · 最大电流: RMS-3.1A,峰值 4.4A(座子的能承受的最大电流为 3A)
- · 最大细分: 256
- · 工作模式: SPI

1.3 外设接口

1.3.1尺寸图

1.3.2接口示意图

Ј1	功能	Ј2	功能
1	(EN) 使能	1	(VM) 电机供电电压
2	(SDI/CFG1) 数据	2	(GND) 接地
3	(SCK/CFG2) 时钟	3	(A2) A 相
4	(CSN/CFG3) 片选	4	(A1) A 相
5	(SDO/CFGO) 数据	5	(B2) B 相
6	(CLK) 外部时钟输入	6	(B1) B 相
7	(STEP) 脉冲输入	7	(VIO) 逻辑电压
8	(DIR) 方向输入	8	(GND) 接地

ENCA_DCIN_ CFG5	24	24	DI (pd)	Encoder A-channel input (when using internal ramp generator) or DcStep gating input for axis synchronization (SD_MODE=1, SPI_MODE=1) or Configuration input (SPI_MODE=0)
ENCN_DCO_ CFG6	25	26	DIO	Encoder N-channel input (SD_MODE=0) or DcStep ready output (SD_MODE=1). With SD_MODE=0, pull to GND or VCC_IO, if the pin is not used for an encoder.
DIAGO_SWN	26	27	DIO (pu+ pd)	Diagnostics output DIAGO. Interrupt or STEP output for motion controller (SD_MODE=0, SPI_MODE=1). Use external pullup resistor with 47k or less in open drain mode. Single wire I/O (negative) (only with SD_MODE=0 and SPI_MODE=0)
DIAG1_SWP	27	28	DIO (pd)	Diagnostics output DIAG1. Position compare or DIR output for motion controller (SD_MODE=0, SPI_MODE=1). Use external pullup resistor with 47k or less in open drain mode. Single wire I/O (positive) (only with SD_MODE=0 and SPI_MODE=0)

二、接口介绍

2.1 安装方式及接口

驱动上有白色方框的引脚为使能(EN)引脚如下图红色方框所示:

三、固件设置

3.1 Marlin 固件设置

特别注意*: 目前只有 Marlin2.0 及以上的固件支持 TMC5160 的 SPI 模式。

步骤一:在 marlin 2.0 固件里找到并打开 "Configuration.h" 文件,然后找到 "#define MOTHERBOARD XXXXXX" "XXXXX" 代表所使用板子的型号。确认自己所使用的主板。

步骤二:在 Marlin\src\pins 目录下找到自己板子所对应的"pins_xxxxxx.h"文件(xxxx 代表板子型号),然后在该文件下找到"X_CS_PIN""Y_CS_PIN""Z_CS_PIN""EO_CS_PIN"等,修改后面的引脚名为自己所使用的引脚。

步骤三:在步骤二的文件下找到 "#define TMC_SW_MOSI XXX" "#define TMC_SW_MISO XXX" "#define TMC_SW_SCK XXX" 将 "XXX" 修改为自己所要使用的引脚。

```
// Software SPI pins for TMC2130 stepper drivers
     #if ENABLED(TMC USE SW SPI)
       #define TMC_SW_MOSI P4_28
       #define TMC_SW_MISO
96
                              P0_05
       #define TMC SW SCK
                             P0_04
     #endif
100
     /* #define TMC SW MISO
                                  P4 28
       #define TMC SW SCK
                                PØ 05
103
       #define TMC SW MOSI
                                P0 04
```

步骤四:找到并打开 "Configuration_adv.h",然后找到 "#define TMC_USE_SW_SPI" 去掉屏蔽符 "//"

```
C pins BIGTREE SKR V1.3.h ● C Configuration_adv.h ● C Configuration.h
1486 //#define E0 CS PIN
1487
        //#define E1 CS PIN
        //#define E2 CS PIN
        //#define E3 CS PIN
        //#define E4 CS PIN
        //#define E5 CS PIN
1492
1494
         * Use software SPI for TMC2130.

    Software option for SPI driven drivers (TMC2130, TMC21

1496
          * The default SW SPI pins are defined the respective pin
          * but you can override or define them here.
1497
1499
         #define TMC USE SW SPI
```

步骤五: 在 "Configuration_adv.h" 文件下,找到 "#define X_CURRENT" "#define X_MICROSTEPS" "#define X_RSENSE" 修改后面的参数(所使用到的轴都需要修改),所使用到的轴的 RSENSE 都应改为 "0.075"

```
C Conf
C pins_BIGTREE_SKR_V1.3.h •
                          Configuration_adv.h
1391
1392
       #if HAS_TRINAMIC
1393
1394
         #define HOLD_MULTIPLIER
                                   0.5 // Scales dow
1395
         #define INTERPOLATE
                                   true // Interpolat
1396
        #if AXIS_IS_TMC(X)
1397
           #define X_CURRENT
                                1000 // (nA) RMS cur
1398
                                 64 // 0. 256
           #define X MICROSTEPS
1399
           #define X_RSENSE 0.075
1400
         #endif
1403
         #if AXIS_IS_TMC(X2)
           #define X2_CURRENT
                                 800
1405
           #define X2_MICROSTEPS 16
           #define X2_RSENSE 0.11
1406
         #endif
1408
         #if AXIS_IS_TMC(Y)
                                1000
          #define Y_CURRENT
1410
           #define Y_MICROSTEPS
1411
                                 64
           #define Y_RSENSE 0.075
         #endif
1414
1415
         #if AXIS_IS_TMC(Y2)
           #define Y2_CURRENT
                                800
           #define Y2_MICROSTEPS 16
1417
           #define Y2_RSENSE 0.11
1418
         #endif
1420
         #if AXIS_IS_TMC(Z)
1421
           #define Z_CURRENT
#define Z_MICROSTEPS
                                 1000
                                 64
           #define Z_RSENSE 0.075
         #endif
         #if AXIS_IS_TMC(Z2)
1427
           #define Z2_CURRENT
                                800
           #define Z2_MICROSTEPS 16
           #define Z2_RSENSE
1430
                              0.11
         #endif
1432
```

步骤六: 步骤五的修改完成后,找到并打开"Configuration.h"然后找到"#define DEFAULT_AXIS_STEPS_PER_UNIT"修改后面的参数来设置细分,该地方的细分必须与步骤五的细分对应。

细分计算方法,"80,80,400,96"代表 16 细分,如果修改为 32 细分就为"80*(32/16),80*(32/16),400*(32/16),96*(32/16)"

本产品使用的采样电阻为 0.075R, 因此本产品驱动电流的最大有效值为 3.1A。

CHOICE OF R _{SENSE} AND RESULTING MAX. MOTOR CURRENT WITH GLOBALSCALER=255			
R _{SENSE} [Ω]	RMS current [A] (CS=31)	Sine wave peak current [A] (CS=31)	
0.22	1.1	1.5	
0.15	1.6	2.2	
0.12	2.0	2.8	
0.10	2.3	3.3	
0.075	3.1	4.4	
0.066	3.5	5.0	
0.050	4.7	6.6	
0.033	7.1	10.0	
0.022	10.6	15.0	

如果需要使用更大的电流,则需要自行更换采样电阻的大小(需自己准备元件和焊接)。更换的电阻不要小于 0.066R(受模块大小限制)。

注* 不建议更换电阻,如果一定要更换,在更换过程中造成驱动的损坏,需自行承担后果。

更换的的元件位置如下图红色方框所示:

四、注意事项

- 1. 安装驱动前一定要断开电源,防止驱动烧毁;
- 2. 安装驱动前一定要确认驱动的方向,防止反接导致驱动不工作;
- 3. 请不要带电插拔驱动模块,以免造成损坏。

如果您还需要此产品的其他资源,可以到 https://github.com/bigtreetech/ 上自行查找,如果无法找到您所需的资源,可以联系我们的售后支持(service005@biqu3d.com)。

若您使用中还遇到别的问题,欢迎您联系我们,我们定会细心为您解答;若您对我们的产品有什么好的意见或建议,也欢迎您回馈给我们,我们也会仔细斟酌您的意见或建议,感谢您选择BIGTREETECH制品,谢谢!