# **6SENG002W** Concurrent Programming

## FSP Process Composition Analysis & Design Form

| Name       | H.K.J.N.Gunaweera            |
|------------|------------------------------|
| Student ID | IIT-20200003<br>UOW-w1810567 |
| Date       | 31st of December 2023        |

## 1. FSP Composition Process Attributes

| Attribute                | Value                                                            |
|--------------------------|------------------------------------------------------------------|
| Name                     | TICKETING_SYSTEM                                                 |
|                          |                                                                  |
| Description              | This depicts a composite process model for a ticketing system,   |
|                          | encompassing two passenger processes and a technician process.   |
|                          |                                                                  |
| Alphabet                 | {{p2, p3}.{acquirePrint, acquireRefill, print, refill, release}, |
| (Use LTSA's compressed   | t. {acquirePrint, acquireRefill, print, refill, release, wait}}  |
| notation, if alphabet is |                                                                  |
| large.)                  |                                                                  |
| Sub-processes            | TICKET_MACHINE, p1: PASSENGER, p2: PASSENGER,                    |
| (List them.)             | TECHNICIAN                                                       |
|                          |                                                                  |
| Number of States         | 55                                                               |
| Deadlocks                | No                                                               |
| (yes/no)                 |                                                                  |
| Deadlock Trace(s)        | Not applicable                                                   |
| (If applicable)          |                                                                  |

6SENG006W: FSP Process Composition Form 1 [ 19/10/2022]

### 2. FSP "main" Program Code

The code for the parallel composition of all of the sub-processes and the definitions of any constants, ranges & process labelling sets used. (Do not include the code for the other sub-processes.)

```
FSP Program:

ITS Analyser

File Edit Check Build Window Help Options

Const MAX_PAPER_SHEETS = 3 // Maximum paper count permitted for a ticket machine const MIN_PAPER_SHEETS = 1 // Minimum paper count permitted for a ticket machine range PAPER_TRAT_RANGE = 0. MAX_PAPER_SHEETS // Range of valid paper counts accepted by the paper tray const MIN_DOCUMENT = 1 // Minimum document (ticket) count necessary for a passenger

// Set of actions that a ticket machine can perform

set TICKET_MACHINE_ACTIONS = { print, refill, release, acquirePrint, acquireRefill }

// Composition of the Ticketing System

|| TICKETING_SYSTEM = ( s3: PASSENGER(3) || s2: PASSENGER(2) || t: TECHNICIAN || {s3,s2,t} :: TICKET_MACHINE).
```

#### 3. Combined Sub-processes

(Add rows as necessary.)

| Process        | Description                                                                   |
|----------------|-------------------------------------------------------------------------------|
| P2: PASSENGER  | This sub-process models the behaviour of a passenger who uses the ticket      |
|                | machine to print ticket documents. This instance of a passenger process is    |
|                | wished to print 3 ticket documents.                                           |
| P3: PASSENGER  | This sub-process models the behaviour of a passenger who uses the ticket      |
|                | machine to print ticket documents. This instance of a passenger process is    |
|                | wished to print 3 ticket documents.                                           |
| TECHNICIAN     | This sub-process models the behaviour of a technician who refills the printer |
|                | with paper when it needs to be refilled.                                      |
| TICKET_MACHINE | This sub process models the behaviour of the ticket machine.                  |

### 4. Analysis of Combined Process Actions

- Synchronous actions are performed by at least two sub-process in the combination.
- **Blocked Synchronous** actions cannot be performed, since at least one of the sub-processes cannot perform them, because they were added to their alphabet using alphabet extension.
- Asynchronous actions are preformed independently by a single sub-process.

Group actions together if appropriate, for example if they include indexes, e.g. in[0], in[1], ..., in[5] as in[1...5].

| Synchronous Actions       | Synchronised by Sub-Processes (List)          |
|---------------------------|-----------------------------------------------|
| p2.acquirePrint, p2.print | P2:PASSENGER(2), TICKET_MACHINE               |
| p3.acquirePrint, p3.print | P3:PASSENGER(3), TICKET_MACHINE               |
| p2.release, t.release     | t:TECHNICIAN, P3:PASSENGER(3), TICKET_MACHINE |
| p3.release, t.release     | t:TECHNICIAN, P2:PASSENGER(2), TICKET_MACHINE |
| t.acquireRefil, t.refill  | t:TECHNICIAN,TICKET_MACHINE                   |

| <b>Blocked Synchronous</b>  | Synchronizing Sub  | <b>Blocking sub-process</b> |
|-----------------------------|--------------------|-----------------------------|
| Actions                     | process (List)     |                             |
| p2.acquireRefill, p2.refill | P2: PASSENGER (2), | P2: PASSENGER (2)           |
|                             | TICKET_MACHINE     |                             |
| p3.acquireRefil, p3.refill  | P3: PASSENGER (3), | P3: PASSENGER (3)           |
|                             | TICKET_MACHINE     |                             |
| t.acquirePrint, t.print     | t.TECHNICIAN,      | t.TECHNICIAN                |
|                             | TICKET_MACHINE     |                             |

| Sub-Process       | Asynchronous Actions (List) |
|-------------------|-----------------------------|
| P2: PASSENGER (2) | Not applicable              |
| P3: PASSENGER (3) | Not applicable              |
| TICKET_MACHINE    | Not applicable              |
| t.TECHNICIAN      | t.wait                      |

## **5. Parallel Composition Structure Diagram**

The structure diagram for the parallel composition.

