Problem 1. Write programs to solve the advection equation

$$u_t + au_x = 0$$
,

on [0,1] with periodic boundary conditions using upwinding and Lax-Wendroff. For smooth solutions, we expect upwinding to be first-order accurate and Lax-Wendroff to be second-order accurate, but it is not clear what accuracy to expect for nonsmooth solutions.

(a) Let a=1 and solve the problem up to time t=1. Perform a refinement study for both upwinding and Lax-Wendroff with $\Delta t = 0.9a\Delta x$ with a smooth initial condition. Compute the rate of convergence in the 1-norm, 2-norm, and max-norm. Note that the exact solution at time t=1 is the initial condition, and so computing the error is easy.

I used the smooth initial condition $u(x,0) = \sin(\pi x)$ on [0,1]. I started with an initial number of grid points $N_x = 90$ and initial number of time steps $N_t = 100$ so that

$$\frac{\Delta t}{a\Delta x} = \frac{N_x}{N_t} = 0.9.$$

From there, I performed a refinement study on both upwinding and Lax-Wendroff methods by doubling N_x (and subsequently N_t). The results are tabulated as follows. As we double the number of grid points, we see that for the upwinding method, the error in the 1-norm and 2-norm are reduced by a factor of 2, so upwinding is indeed first-order in the 1-norm and 2-norm. For the max-norm however, the error is only reduced by a factor of 1.4, so the method is still convergent but less than first-order in the max-norm.

For Lax-Wendroff, we see that doubling the number of grid points reduces the error in the 1-norm and 2-norm by a factor of 4, so the method is indeed second-order in the 1-norm and 2-norm. For the max-norm, the error is only reduced by a factor of 2.8, so the method is still convergent but somewhere between first and second-order in the max-norm.

Table 1: Upwinding Refinement Study - Errors and Runtimes

N_x	$ u(x,0) - u(x,1) _1$	$ u(x,0) - u(x,1) _2$	$ u(x,0) - u(x,1) _{\infty}$	Runtime	Runtime Ratios
90	0.0138114	0.0153396	0.0216905	0.002116	0
180	0.00694327	0.00771191	0.0109058	0.003697	1.74716
360	0.00348112	0.00386653	0.00546805	0.007303	1.97539
720	0.00174294	0.00193592	0.00273779	0.015256	2.089
1440	0.000872067	0.000968623	0.00136984	0.034589	2.26724
2880	0.000436183	0.000484477	0.000685154	0.074314	2.14849
5760	0.000218129	0.00024228	0.000342636	0.24084	3.24084
11520	0.000109074	0.00012115	0.000171333	0.771567	3.20365
23040	5.45392 e- 05	6.05778e-05	8.567e-05	2.97792	3.85957
46080	2.72702e-05	3.02896e-05	4.28359e-05	11.749	3.94537

Table 2: Upwinding - 1-Norm Convergence

_		<u> </u>	
	N_x	$ u(x,0) - u(x,1) _1$	Ratios
	90	0.0138114	0
	180	0.00694327	1.98918
	360	0.00348112	1.99455
	720	0.00174294	1.99727
	1440	0.000872067	1.99863
	2880	0.000436183	1.99932
	5760	0.000218129	1.99966
	11520	0.000109074	1.99983
	23040	5.45392e-05	1.99991
	46080	2.72702e-05	1.99996

Table 3: Upwinding - 2-Norm Convergence

Nx	$ u(x,0) - u(x,1) _2$	Ratios
90	0.0153396	0
180	0.00771191	1.98908
360	0.00386653	1.99453
720	0.00193592	1.99726
1440	0.000968623	1.99863
2880	0.000484477	1.99931
5760	0.00024228	1.99966
11520	0.00012115	1.99983
23040	6.05778e-05	1.99991
46080	3.02896e-05	1.99996

Table 4: Upwinding - Max-Norm Convergence

Nx	$ u(x,0) - u(x,1) _{\infty}$	Ratios
90	0.0216905	0
180	0.0109058	1.40655
360	0.00546805	1.41036
720	0.00273779	1.41228
1440	0.00136984	1.41325
2880	0.000685154	1.41373
5760	0.000342636	1.41397
11520	0.000171333	1.41409
23040	8.567e-05	1.41415
46080	4.28359e-05	1.41418

Table 5: Upwinding- Runtimes

Nx	Runtimes	Runtime Ratios
90	0.002116	0
180	0.003697	1.74716
360	0.007303	1.97539
720	0.015256	2.089
1440	0.034589	2.26724
2880	0.074314	2.14849
5760	0.24084	3.24084
11520	0.771567	3.20365
23040	2.97792	3.85957
46080	11.749	3.94537

Table 6: Lax-Wendroff Refinement Study - Errors and Runtimes

N_x	$ u(x,0) - u(x,1) _1$	$ u(x,0) - u(x,1) _2$	$ u(x,0) - u(x,1) _{\infty}$	runtime	runtime ratios
90	0.000617121	0.000685479	0.000969175	0.001979	0
180	0.000154332	0.000171414	0.000242401	0.003954	1.99798
360	3.85844e-05	4.28562 e-05	6.06068e-05	0.008095	2.04729
720	9.64619e-06	1.07142e-05	1.51521e-05	0.017808	2.19988
1440	2.41155e-06	2.67856 e-06	3.78805 e-06	0.044824	2.51707
2880	6.02889e-07	6.69641 e-07	9.47015 e-07	0.106869	2.38419
5760	1.50722e-07	1.6741e-07	2.36754e-07	0.284315	2.66041
11520	3.76805e-08	4.18526e-08	5.91885e-08	0.939381	3.30401
23040	9.42014e-09	1.04631e-08	1.47971e-08	3.94602	4.20066
46080	2.35503e-09	2.61579e-09	3.69928e-09	15.9845	4.0508

Table 7: Lax-Wendroff - 1-Norm Convergence Table 8: Lax-Wendroff - 2-Norm Convergence

N_x	$ u(x,0) - u(x,1) _1$	Ratios
90	0.000617121	0
180	0.000154332	3.99867
360	3.85844e-05	3.99985
720	9.64619e-06	3.99996
1440	2.41155e-06	3.99999
2880	6.02889e-07	4
5760	1.50722e-07	4
11520	3.76805e-08	4
23040	9.42014e-09	4
46080	2.35503e-09	4

N_x	$ u(x,0) - u(x,1) _2$	Ratios
90	0.000685479	0
180	0.000171414	3.99897
360	4.28562e-05	3.99975
720	1.07142e-05	3.99994
1440	2.67856e-06	3.99998
2880	6.69641e-07	4
5760	1.6741e-07	4
11520	4.18526e-08	4
23040	1.04631e-08	4
46080	2.61579e-09	4

Table 9: LW - Max-Norm Convergence

N_x	$ u(x,0) - u(x,1) _{\infty}$	Ratios
90	0.000969175	0
180	0.000242401	2.82788
360	6.06068e-05	2.8283
720	1.51521e-05	2.8284
1440	3.78805e-06	2.82842
2880	9.47015e-07	2.82843
5760	2.36754e-07	2.82843
11520	5.91885e-08	2.82843
23040	1.47971e-08	2.82843
46080	3.69928e-09	2.82843

Table 10: Lax-Wendroff - Runtimes

N_x	Runtimes	Runtime Ratios
90	0.001979	0
180	0.003954	1.99798
360	0.008095	2.04729
720	0.017808	2.19988
1440	0.044824	2.51707
2880	0.106869	2.38419
5760	0.284315	2.66041
11520	0.939381	3.30401
23040	3.94602	4.20066
46080	15.9845	4.0508

(b) Repeat the previous problem with the discontinuous initial condition

$$u(x,0) = \begin{cases} 1 & \text{if } |x - 1/2| < 1/4 \\ 0 & \text{otherwise} \end{cases}.$$

Again, I started with an initial number of grid points $N_x = 90$ and initial number of time steps $N_t = 100$ so that

$$\frac{\Delta t}{a\Delta x} = \frac{N_x}{N_t} = 0.9.$$

From there, I performed a refinement study on both upwinding and Lax-Wendroff methods by doubling N_x (and subsequently N_t). The results are tabulated as follows. As we double the number of grid points, we see that for the upwinding method, the errors in the 1-norm is reduced by a factor of 1.4 and the errors in the 2-norm are reduced by a factor of 1.18, so upwinding is less than first-order in the 1-norm and 2-norm. For the max-norm however, the errors are actually growing, so it seems that the method is not convergent for discontinuous initial data in the max-norm.

For Lax-Wendroff, we see that doubling the number of grid points reduces the error in the 1-norm by a factor of 1.5 and and in the 2-norm by a factor of 1.24, so the method is less than

first-order in the 1-norm and 2-norm. For the max-norm, the error is growing so the method is not convergent for discontinuous initial data in the max-norm.

Table 11: Upwinding Refinement Study - Errors and Runtimes

N_x	$ u(x,0) - u(x,1) _1$	$ u(x,0) - u(x,1) _2$	$ u(x,0) - u(x,1) _{\infty}$	Runtime	Runtime Ratios
90	0.0527461	0.123893	0.45129	0.001942	0
180	0.0374545	0.104568	0.465538	0.00373	1.9207
360	0.0265402	0.0880948	0.475626	0.007954	2.13244
720	0.0187865	0.074148	0.482763	0.014647	1.84146
1440	0.0132911	0.06238	0.487811	0.034097	2.32792
2880	0.00940068	0.0524674	0.491381	0.096329	2.82515
5760	0.00664816	0.0441248	0.493905	0.237519	2.46571
11520	0.00470127	0.0371066	0.49569	0.863169	3.63411
23040	0.00332441	0.0312037	0.496953	4.11757	4.77029
46080	0.00235075	0.0262395	0.497845	19.8843	4.82914

Table 12: Upwinding - 1-Norm Convergence

_			
	N_x	$ u(x,0) - u(x,1) _1$	Ratios
	90	0.0527461	0
	180	0.0374545	1.40827
	360	0.0265402	1.41124
	720	0.0187865	1.41272
	1440	0.0132911	1.41347
	2880	0.00940068	1.41384
	5760	0.00664816	1.41403
	11520	0.00470127	1.41412
	23040	0.00332441	1.41417
	46080	0.00235075	1.41419
-			

Table 13: Upwinding - 2-Norm Convergence

	- I	
Nx	$ u(x,0) - u(x,1) _2$	Ratios
90	0.123893	0
180	0.104568	1.18481
360	0.0880948	1.18699
720	0.074148	1.18809
1440	0.06238	1.18865
2880	0.0524674	1.18893
5760	0.0441248	1.18907
11520	0.0371066	1.18914
23040	0.0312037	1.18917
46080	0.0262395	1.18919

Table 14: Upwinding - Max-Norm Convergence

N_x	$\ u(x,0) - u(x,1)\ _{\infty}$	Ratios
90	0.45129	0
180	0.465538	0.266128
360	0.475626	0.219853
720	0.482763	0.18248
1440	0.487811	0.152001
2880	0.491381	0.126948
5760	0.493905	0.10623
11520	0.49569	0.089017
23040	0.496953	0.0746683
46080	0.497845	0.0626776

Table 15: Upwinding- Runtimes

N_x	Runtimes	Runtime Ratios
90	0.001942	0
180	0.00373	1.9207
360	0.007954	2.13244
720	0.014647	1.84146
1440	0.034097	2.32792
2880	0.096329	2.82515
5760	0.237519	2.46571
11520	0.863169	3.63411
23040	4.11757	4.77029
46080	19.8843	4.82914

	${\bf Table}$	16:	Lax-	Wene	droff	Refine	ement	Study	y - E	rrors	and	Run	times	
7	0)	-	4 \ 11	TI	/ 0	\ /	4 \ 11	II /		\	1 1			

N_x	$ u(x,0) - u(x,1) _1$	$ u(x,0) - u(x,1) _2$	$ u(x,0) - u(x,1) _{\infty}$	runtime	runtime ratios
90	0.0418176	0.106137	0.519683	0.001815	0
180	0.0275851	0.0870176	0.553077	0.00379	2.08815
360	0.0183735	0.0709873	0.578605	0.008669	2.28734
720	0.0122411	0.0577062	0.598151	0.018017	2.07833
1440	0.00813114	0.0467847	0.613178	0.04204	2.33335
2880	0.00539299	0.0378493	0.624783	0.111989	2.66387
5760	0.003566	0.0305659	0.633786	0.445533	3.97836
11520	0.00235739	0.0246465	0.640799	2.24809	5.04583
23040	0.00155764	0.0198469	0.646281	11.868	5.27918
46080	0.0010277	0.0159631	0.650578	57.1154	4.81254

Table 17: Lax-Wendroff - 1-Norm Convergence Table 18: Lax-Wendroff - 2-Norm Convergence

N_x	$ u(x,0) - u(x,1) _1$	Ratios
90	0.0418176	0
180	0.0275851	1.51595
360	0.0183735	1.50135
720	0.0122411	1.50097
1440	0.00813114	1.50546
2880	0.00539299	1.50772
5760	0.003566	1.51234
11520	0.00235739	1.51269
23040	0.00155764	1.51344
46080	0.0010277	1.51567

N	V_x	$ u(x,0) - u(x,1) _2$	Ratios
6	00	0.106137	0
13	80	0.0870176	1.21972
30	60	0.0709873	1.22582
73	20	0.0577062	1.23015
14	40	0.0467847	1.23344
28	880	0.0378493	1.23608
57	60	0.0305659	1.23828
11	520	0.0246465	1.24017
230	040	0.0198469	1.24183
460	080	0.0159631	1.2433

Table 19: LW - Max-Norm Convergence

N_x	$ u(x,0) - u(x,1) _{\infty}$	Ratios
90	0.519683	0
180	0.553077	0.191903
360	0.578605	0.150392
720	0.598151	0.118678
1440	0.613178	0.09411
2880	0.624783	0.0748815
5760	0.633786	0.0597193
11520	0.640799	0.0476997
23040	0.646281	0.0381358
46080	0.650578	0.0305066

Table 20: Lax-Wendroff Runtimes

<u> </u>	Table 20. Lax-Welluron Runnings					
N_x	Runtimes	Runtime Ratios				
90	0.001815	0				
180	0.00379	2.08815				
360	0.008669	2.28734				
720	0.018017	2.07833				
1440	0.04204	2.33335				
2880	0.111989	2.66387				
5760	0.445533	3.97836				
11520	2.24809	5.04583				
23040	11.868	5.27918				
46080	57.1154	4.81254				

Problem 2. For solving the heat equation we frequently use Crank-Nicolson, which is trapezoidal rule time integration with a second-order space discretization. The analogous scheme for the linear advection equation is

$$u_{j+1}^{n+1} - u_j^n + \frac{\nu}{4} (u_{j+1}^n - u_{j-1}^n) + \frac{\nu}{4} (u_{j+1}^{n+1} - u_{j-1}^{n+1}) = 0,$$

where $\nu = a\Delta t/\Delta x$.

- (a) Use von Neumann analysis to show that this scheme is unconditionally stable and that $||u^n||_2 = ||u^0||_2$. This scheme is said to be nondissipative- i.e., there is no amplitude error. This seems reasonable because this is a property of the PDE.
- (b) Solve the advection equation on the periodic domain [0, 1] with the initial condition from problem 1(b). Show the solution and comment on your results.
- (c) Compute the relative phase error as $\arg(g(\theta))/(-\nu\theta)$, where g is the amplification factor and $\theta = \xi \Delta x$, and plot it for $\theta \in [0, \pi]$. How does the relative phase error and lack of amplitude error relate to the numerical solutions you observed in part (b).