

Klassifikation III

Praktikum Data Warehousing und Data Mining

Künstliche Neuronale Netze -Veranschaulichung

Weitere Klassifikationstechniken

Regelbasierte Klassifikatoren

- Klassifikation durch Regelsatz
 - Beispiel:
 - 1. petalwidth <= 0.6: Iris-setosa
 - 2. petalwidth <= 1.7 AND petallength <= 4.9: Iris-versicolor
 - 3. Sonst: Iris-virginica
- Übliches Vorgehen:
 - Entscheidungsbaum lernen
 - Deduktion der wichtigsten Regeln aus Baum
 - Nicht alle Tupel klassifiziert:
 - Default-Regel klassifiziert einige Tupel
 - Im Beispiel: Default-Regel: Iris-virginica
- Regelsätze oft einfacher als Entscheidungsbäume ⇒ Generalisierung

Assoziationsregeln zur Klassifikation - Beispiel

- Gegeben: Folgende Assoziationsregeln
 - Saft -> Cola; conf: 80%
 - Cola -> Saft; conf: 100%
 - Cola -> Bier; conf: 75%
 - Bier -> Cola; conf: 100%
- Vorhersageattribut:
 - Kauft Kunde Cola?
- Beispieltupel:
 - Kunde kauft Bier
 - ⇒ Kunde kauft Cola (4. Regel)

Assoziationsregeln zur Klassifikation -Vorgehen

- Eine Regel passt:
 - ⇒ Klassifikation eindeutig (mit Konfidenz der Regel)
- Keine Regel passt:
 - ⇒ Mehrheits-Klasse bzw. unklassifiziert
- Mehrere Regeln passen:
 - Berücksichtigung der Regel mit höchster Konfidenz
 - Regel entscheidet
 - Berücksichtigung der k Regeln mit höchster Konfidenz (oder auch aller Regeln)
 - · Häufigste auftretende Klasse
 - Klasse mit höchster durchschnittlicher Konfidenz der Regeln
 - •
- Hinweis: Verfahren eignet sich auch für sequentielle Regeln.

Kombinierte Klassifikatoren

Combined Classifiers / Multiple Classifier System / Classifier Fusion / Ensemble Techniques / Committee of Machines

Kombinierte Klassifikatoren - Motivation

- Im "banalen Leben"
 - Bei wichtiger Entscheidung
 - Konsultation mehrer Experten
 - Beispiel: Ärzte vor kritischer OP, Freunde vor Pferdewette
 - Entscheidungsfindung
 - Mehrheit der Experten oder
 - Vertrauenswürdigste Experten
- Im Data Mining
 - Bei wichtiger Entscheidung
 - Mehrere Klassifikatoren
 - Entscheidungsfindung
 - Kombination der Klassifikatoren oder
 - Classifier Selection
- Ziel: Erhöhung der Accuracy / anderer Maße

Kombinierte Klassifikatoren - Ansatzpunkte

Kombinations-Ebene:

Einsatz verschiedener Kombinationstechniken

Klassifikator-Ebene:

Einsatz verschiedener Klassifikatoren

Feature-Ebene:

Einsatz verschiedener Feature-Mengen

Daten-Ebene:

Einsatz verschiedener Teilmengen

Daten-Ebene: Bagging & Boosting

- Ursprünglicher Datensatz D, d = |D|
- Bagging
 - Zufällige Auswahl von k Lerndatensätzen
 - Vorgehen: Ziehen mit Zurücklegen von d Tupeln
 - Lernen je eines Klassifikators pro Lerndatensatz
 - Resultierende k Klassifikatoren oft erstaunlich unterschiedlich
- Boosting
 - Ähnlich Bagging
 - Ausnahme (i+1)ter Klassifikator:
 Fokus auf falsch klassifizierte Tupel in (i)tem Klassifikator
- Optionaler Schritt
 - Evaluation aller k Klassifikatoren
 - Ergebnisse gewichtet (z.B. mit Accuracy)

Feature-Ebene: Feature Selection

- Bekannt zur Dimensionsredukltion
- Bei Kombinierten Klassifikatoren:
 - Verschiedene Klassifikatoren durch verschiedene Attribut-Mengen von verschiedenen Feature-Selection-Strategien
- Es ist nicht nur erfolgsversprechend, nur besonders "gute" Attribute auszuwählen.
 - Verschiedene zufällige Teilmengen
 - Getrennt nach kategorischen/numerischen Attributen

Klassifikator-Ebene

Alternativen:

- Einsatz eines Klassifikators mit verschiedenen Parametern, z.B. maximale Baumhöhe, ...
- Verwendung verschiedener Klassifikatoren,
 z.B. Entscheidungsbaum, Neuronales Netzwerk,
 Naive Bayes, ...
- Ein Klassifikator für jede Klasse (bei mehr als 2 Klassen)

Ziel:

 Klassifikatoren mit möglichst unterschiedlichen Ergebnissen

Kombinations-Ebene: Strategien

- Problem:
 - Unterschiedliche Vorgehensweisen zur Wahl der Vorhersageklasse
- Alternativen
 - Majority Vote
 - Vorhersageklasse: Ergebnis der meisten Klassifikatoren
 - Weighted Majority Vote
 - Gewichtung mit Konfidenzwerten (z.B. von Entscheidungsbäumen, Nearest Neighbour)
 - Stacking
 - Ein weiterer Klassifikator zur Vorhersage der endgültigen Klasse
 - Scoring
 - Bei binären Entscheidungsproblemen, wenn Konfidenzen bekannt
 - score = confidence if class=pos
 score = 1-confidence if class=neg
 Gesamt-Score: Mittel der Scores aller Klassifikatoren
 - Setzen eines Schwellwertes zur Klassifikation
 - Weitere Strategien in der Literatur...

Statistische Techniken zur Regression (Klassifikation durch Schwellwertsetzung)

Regressionsprobleme

Idee

- Bestimmung eines unbekannten numerischen Attributwertes (oridinale und kategorische (zumindest binäre) Vorhersagen durch Schwellwertsetzung)
- Unter Benutzung beliebiger bekannter Attributwerte

• Beispiele:

- Vorhersage von Kundenverhalten wie ,Zeit bis Kündigung'
- Vorhersage von Kosten/Aufwand/Bedarf/Verkaufszahlen/...
- Berechnung von diversen Scores/Wahrscheinlichkeiten
- •
- Klassifikation: Durch Schwellwertsetzung

Einfache Lineare Regression

- Vorhersage der Zielvariable y durch eine Prediktorvariable x
- Gegeben: Lerndatensatz $D = \{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\}, n = |D|$
- Vermutung eines linearen Zusammenhangs
- Gesucht: Gerade

$$y = W_0 + W_1 X$$

Bestimmung von w₀, w₁
 (Regressionskoeffizienten)

$$w_0 = 23.6$$

 $w_1 = 3.5$

$$y = 23.6 + 3.5 x$$

Lerndatensatz D:

Lemuatensatz D.		
Х	у	
years experience	salary (in \$1000s)	
3	30	
8	57	
9	64	
13	72	
3	36	
6	43	
11	59	
21	90	
1	20	
16	02	

Berechnung der Regressionskoeffizienten

- Zunächst:
 - Bestimmung des Fehlers als Summe der quadratischen Abweichungen
 - $E = \Sigma_i (y_i (w_0 + w_1 x_i))^2$

euklidischer Abstand y-Abstand

 Aus der notwendigen Bedingung für ein Minimum der Fehlfunktion lassen sich unter Verwendung von partiellen Ableitungen w_0 und w_1 berechnen:

$$w_1 = \frac{\sum_{i=1}^{|D|} (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^{|D|} (x_i - \bar{x})^2} \qquad w_0 = \bar{y} - w_1 \bar{x}$$

 \bar{x}, \bar{y} : Durchschnitt aller x_1, x_2, \dots, x_n bzw. aller y_1, y_2, \dots, y_n (Rechenbeispiel: S. Data-Mining-Buch von J. Han, M. Kamber)

Lineare Regression – Fehlermaße

- Üblich ist:
 - Mittlerer quadratischer Abstand in y-Richtung
- Andere sinnvolle Fehlermaße:
 - Mittlerer absoluter Abstand in y-Richtung

y-Abstand

euklidischer Abstand

- Mittlerer euklidischer Abstand
- Maximaler absoluter/quadratischer Abstand in y-Richtung
- Maximaler euklidischer Abstand
- Diese Maße können jedoch nicht verwendet werden:
 - Betragsfunktion (absoluter Abstand) und Maximum sind nicht überall differenzierbar.
 - Die Ableitung beim euklidischen Abstand führt zu einem nichtlinearen Gleichungssystem; ist nicht analytisch lösbar.

Multivariate Lineare Regression

 Typischerweise steht nicht nur eine Prediktorvariable x zur Verfügung, sondern mehrere (p):

Vektor
$$X_i := X_{i,1}, X_{i,2,...}, X_{i,p}$$

- Lerndatensatz: $D = \{(X_1, y_1), (X_2, y_2), ..., (X_n, y_n)\}$
- Hyper-Ebene: $y = w_0 + w_1 x_1 + w_2 x_2 + ... + w_p x_p$
- Die Methode zur Minimierung der Fehler-Quadrate kann übertragen werden:

Es entsteht ein lineares Gleichungssystem.

- Lösbar mit linearer Algebra (Matrizen).
- · Lösung mit numerischen Methoden oft effizienter.

Lineare Regression – Bewertung

Eigenschaften

- Aufwand zum Lösen der Gleichungen: O(p³)
- Koeffizienten sind <u>eventuell</u> interpretierbar.

Vorteile

- Relativ simples Modell:
 p-dimensionale Hyperebene bei p Prediktorvariablen
- Dient als Baseline zum Vergleich von Regressionstechniken.

Nachteile

- Gleichungen sind eventuell nicht lösbar, wenn Prediktorvariablen (nahezu) linear abhängig voneinander sind.
- Alle Prediktorvariablen werden betrachtet, auch irrelevante.
- Anfällig für Outlier. (Ignorieren von Datenpunkten gefährlich!)
- Nicht alle Probleme sind linear...

Nichtlineare Regression

- Einige nichtlineare Probleme können als polynomielle Funktion modelliert werden. -> KNIME
- Polynomielle (u.a.) Funktionen können in lineare Regressionsmodelle transformiert werden, z.B.:

$$y = W_0 + W_1 X + W_2 X^2 + W_3 X^3$$

wird gemappt auf:
 $y = W_0 + W_1 X + W_2 X_2 + W_3 X_3$

- Die Methode zur Minimierung der Fehler-Quadrate mit Ableitungstechniken kann prinzipiell auf beliebige Funktionen übertragen werden.
 - Eventuell sehr hoher Rechenaufwand, aber oft nicht lösbar.
 - Hintergrundwissen kann helfen, einen Term zu finden.

Lokale Lineare Regression

- Idee:
 - Mehrere einfache Regressionsfunktionen (hier Geraden) für verschiedene Wertebereiche von *x*
- Problem:
 Brüche an Wertebereichsgrenzen
- Eine Lösung:
 Splines "glätten" die Übergänge
- Gut geeignet bei wenigen Prädiktorvariablen.
- Bestimmte Regressionsbäuzme greiften die Idee "lokale Regression" auf…

Weitere nichtlineare Verfahren

- Oft ist eine numerische Parameter-Bestimmung aus partiellen Ableitungen nicht möglich:
 - Parameter gehen nichtlinear in die Regressionsfunktion ein.
 - Ein alternatives Fehlermaß wird verwendet.
- Lösungsansatz: "Systematisches Trial and Error"
 - 1. Aufstellen einer (beliebigen) Regressionsfunktion.
 - 2. Suche nach geeigneten Parametern:
 - Random Search
 - Hillclimbing
 - Varianten um lokale Minima zu verhindern
 - Genetische Algorithmen
 - •

Generalisierung vs. Overfitting

Quellen

- J. Han und M. Kamber: "Data Mining: Concepts and Techniques", Morgan Kaufmann, 2006.
- I.H. Witten und E. Frank: "Data Mining Practical Machine Learning Tools and Techniques", Morgan Kaufmann, 2005.
- Hand, H. Mannila und P. Smyth: "Principles of Data Mining", MIT Press, 2001.
- T. M. Mitchell: "Machine Learning", Mc Graw Hill, 1997.
- L. I. Kuncheva: "Combining Pattern Classifiers", Wiley-Interscience, 2004.
- F. Klawonn: Folien zur Vorlesung "Data Mining", 2006.
- C. Borgelt: Folien zur Vorlesung "Intelligent Data Analysis", 2004.
 Vorlesungsskript verfügbar (120 Seiten): http://fuzzy.cs.uni-magdeburg.de/studium/ida/txt/idascript.pdf
- Pierre Geurts: Folien zur Vorlesung "Stochastic methods".
- SPSS: Clementine 12.0 Algorithms Guide. 2007.