Data and Uncertainty Assignment I

Please submit by Wed, 8th Nov 2017 EOB.

1 Cofinite sets in \mathbb{N}

In this exercise, we find an algebra and a set function μ which satisfies normalisation and additivity from Definition 2.2 but not the continuity at \emptyset . This shows that this requirement is not redundant. Let $\Omega = \mathbb{N}$, the natural numbers. A set $A \subset \mathbb{N}$ is called *cofinite* if either A or A^c is finite.

1. Show that the cofinite subsets of \mathbb{N} form an algebra. (3 points)

Now we let A =the algebra of cofinite sets, and define the set function

$$\mu(A) = 1$$
 if A is infinite and $\mu(A) = 0$ else.

- 2. Show that μ is normalised and additive.
- 3. Show that μ is *not* continuous at the empty set by finding a sequence of cofinite sets $\{A_k, k \in \mathbb{N}\}$ such that $A_1 \supset A_2 \supset \ldots$ with $\bigcap_{k \in \mathbb{N}} A_k = \emptyset$ but $\mu(A_k)$ does not converge to zero. (4 **points**)

(3 points)

2 The concept of densities

Solve exercise 3.5 from the lecture notes. Item 1: 3 points, Item 2: 3 points, Item 3: 4 points.

3 A continuity property of the integral

Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space and $f: \Omega \to \mathbb{R}_{\geq 0}$ be a nonnegative random variable with $\int_{\Omega} f d\mathbb{P} < \infty$. For any set $A \in \mathcal{A}$, we define $\int_{A} f d\mathbb{P} := \int_{\Omega} f \mathbb{1}_{A} d\mathbb{P}$. The aim of this exercise is to prove that if $\{A_k\}$ is a sequence of measurable sets with $\mathbb{P}(A_k) \to 0$ for $k \to \infty$, then also $\int_{A_k} f d\mathbb{P} \to 0$. We do this in a couple of steps.

- 1. Show that if A_1, A_2, \ldots are sets in \mathcal{A} with $A_1 \supset A_2 \supset \ldots$ and $\mathbb{P}(A_k) \to 0$ for $k \to \infty$, then $\int_{A_k} f d\mathbb{P} \to 0$ for $k \to \infty$. (Hint: Show that $f \cdot \mathbb{1}_{A_k} \to 0$ almost surely, then use the Bounded Convergence Theorem.) (3 points)
- 2. Show that if A_1, A_2, \ldots are sets in \mathcal{A} (not necessarily nested!) so that $\sum_{k=1}^{\infty} \mathbb{P}(A_k) < \infty$, then $\mathbb{P}(\bigcup_{k=l}^{\infty} A_l) \to 0$ for $k \to \infty$. (3 points)

To finally prove our assertion, we argue by contradiction. If the statement is false, then there is an $\epsilon > 0$ and a subsequence A_{n_1}, A_{n_2}, \ldots so that $\int_{A_{n_k}} f d\mathbb{P} \geq \epsilon$ for all k.

3. Show that this is in contradiction with the previous two items. (Hint: argue that the subsequence can be chosen so that $\sum_{k=1}^{\infty} \mathbb{P}(A_{n_k}) < \infty$.) (4 points)