Test Report of FCC CFR 47 Part 15 Subpart C

On Behalf of

MioStar Corp.

FCC ID: 2AA6PMH-100

Product Description: Bluetooth headsets

Model No.: MH-100

Supplementary Model: MH-150, MH-160, MH-180, MH-200

Brand Name: N/A

Prepared for: MioStar Corp.

8F., No.145, Lane 5, Tzu-Chiang Str., Pei-Tou District, Taipei,

11289 Taiwan(TW), ROC

Prepared by: Bontek Compliance Testing Laboratory Co., Ltd

1/F, Block East H-3, OCT Eastern Ind. Zone, Qiaocheng East

Road, Nanshan, Shenzhen, China

Tel: 86-755-86337020 Fax: 86-755-86337028

Report No.: BCT13IR311E

Issue Date: October10, 2013

Test Date: September 24- October 10, 2013

Tested by: / Reviewed by:

Lion Cai

Approved by:

(endy/Wang

TABLE OF CONTENTS

1. GENERAL INFORMATION	4
1.1 PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	5
2. SYSTEM TEST CONFIGURATION	
2.1 EUT CONFIGURATION 2.2 SUPPORT EQUIPMENT 2.3 GENERAL TEST PROCEDURES 2.4 MEASUREMENT UNCERTAINTY	
2.5 LIST OF MEASURING EQUIPMENTS USED	
4. TEST OF AC POWER LINE CONDUCTED EMISSION 4.1 APPLICABLE STANDARD. 4.2 TEST SETUP DIAGRAM 4.3 TEST RESULT	10 10
5. TEST OF HOPPING CHANNEL BANDWIDTH	11
5.1 APPLICABLE STANDARD	11 11 11
6. TEST OF HOPPING CHANNEL SEPARATION	17
6.1 APPLICABLE STANDARD	17 17 17
7. TEST OF NUMBER OF HOPPING FREQUENCY	18
7.1 APPLICABLE STANDARD	23 23 23
8. TEST OF DWELL TIME OF EACH FREQUENCY	24
8.1 APPLICABLE STANDARD	26 26 26
9. TEST OF MAXIMUM PEAK OUTPUT POWER	29
9.1 APPLICABLE STANDARD	43 43
10. TEST OF BAND EDGES EMISSION	50
10.1 APPLICABLE STANDARD	

11. TEST OF SPURIOUS RADIATED EMISSION	
11.1 APPLICABLE STANDARD	55
11.2 EUT SETUP	55
11.3 TEST EQUIPMENT LIST AND DETAILS	56
11.4 Test Procedure	56
11.5 TEST RESULT	57
12. ANTENNA REQUIREMENT	67
12.1 STANDARD APPLICABLE	
12.2 ANTENNA CONNECTED CONSTRUCTION	67

1. GENERAL INFORMATION

1.1 Product Description for Equipment Under Test (EUT)

Client Information

Applicant:	MioStar Corp.
Address of Applicant:	8F., No.145, Lane 5, Tzu-Chiang Str., Pei-Tou District, Taipei, 11289
	Taiwan(TW), ROC
Manufacturer:	MioStar Corp.
Address of Manufacturer:	3F., No. 19, Hai Bin Rd. 6th Industrial Area, Wu Sha, Chang An
	Town, Dong Guan, Guang Dong Province, China, 523859

General Description of E.U.T

Items	Description
EUT Description:	Bluetooth headsets
Model No.:	MH-100
Supplementary Model:	MH-150, MH-160, MH-180, MH-200
Trade Name:	N/A
Frequency Band:	2402 MHz ~ 2480 MHz
Channel Spacing:	1 MHz
Number of Channels:	79
Modulation Technique:	FHSS
Type of Modulation:	GFSK, Pi/4 DQPSK, 8-DPSK
Antenna Type:	Built-in Antenna
Antenna Gain:	0dBi
Power Supply:	DC3.7V 320mA from Battery
Adapter Information:	N/A

Remark: * The test data gathered are from the production sample provided by the manufacturer. * Supplementary models have the same circuit, but with different appearance

Report No.: BCT13IR311E Page 4 of 67 FCC ID: 2AA6PMH-100

1.2 Test Standards

The tests were performed based on the Electromagnetic Interference (EMI) tests performed on the EUT. Both conducted and radiated testing were performed according to the procedures in ANSI C63.4 - 2003 Radiated testing was performed at an antenna to EUT distance 3 meters.

The tests were performed in order to determine compliance with FCC Part 15, Subpart C, and section 15.203, 15.207, 15.209 and 15.247 rules. Test was carried out according to the above mentioned FCC rules and the FCC publication notice DA 00-705: Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems

1.3 Test Facility

All measurement required was performed at laboratory of Bontek Compliance Testing Laboratory Ltd at 1/F, Block East H-3, OCT Eastern Ind. Zone, Qiaocheng East Road, Nanshan, Shenzhen, China.

The test facility is recognized, certified, or accredited by the following organizations:

FCC - Registration No.: 338263

BONTEK COMPLIANCE TESTING LABORATORY LTD. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 338263, March 03, 2011.

IC Registration No.: 7631A

The 3m alternate test site of BONTEK COMPLIANCE TESTING LABORATORY LTD. EMC Laboratory has been registered by Certification and Engineer Bureau of Industry Canada for the performance of with Registration NO.: 7631A on January 25, 2011.

CNAS - Registration No.: L3923

BONTEK COMPLIANCE TESTING LABORATORY LTD. to ISO/IEC 17025:25 General Requirements for the Competence of Testing and Calibration Laboratories(CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing. The acceptance letter from the CNAS is maintained in our files: Registration: L3923,March 22,2012.

TUV - Registration No.: UA 50242657-0001

BONTEK COMPLIANCE TESTING LABORATORY LTD. An assessment of the laboratory was conducted according to the "Procedures and Conditions for EMC Test Laboratories" with reference to EN ISO/IEC 17025 by a TUV Rheinland auditor. Audit Report NO. 17010783-002.

Report No.: BCT13IR311E Page 5 of 67 FCC ID: 2AA6PMH-100

2. SYSTEM TEST CONFIGURATION

2.1 EUT Configuration

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

2.2 Support Equipment

The calibrated antennas used to sample the radiated field strength are mounted on a non-conductive, motorized antenna mast 3 or 10 meters from the leading edge of the turntable.

Support equipments or special accessories in test configuration:

AUX Description:	Manufacturer	Model No.	Certificate	CABLE
Host Computer	Dell	78MD82X	CE, FCC	1.5m Unshielded Power Cord
Monitor	Dell	E178Pc	CE, FCC	1.5m Unshielded Power Cord 1.8m shielded data Cable with core
Keyboard	Dell	L100	CE, FCC	1.8m shielded data Cable with core
LCD Colour TV	SHARP	LCD- 32Z330A	CE, FCC	1.2m Unshielded Power Cord 1.5m shielded data Cable with core

2.3 General Test Procedures

Conducted Emissions:The EUT is placed on the turntable, which is 0.8 m above ground plane. According to the requirements in Section 7.1 of ANSI C63.4-2003 Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using CISPR Quasi-Peak detector mode.

Radiated Emissions: The EUT is a placed on as turntable, which is 0.8 m above ground plane. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3m away from the receiving antenna, which varied from 1m to 4m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the maximum emissions, exploratory radiated emission measurements were made according to the requirements in Section 13.1.4.1 of ANSI C63.4-2003.

2.4 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Parameter	Uncertainty
Power Line Conducted Emission	+/- 2.3 dB
Radiated Emission	+/- 3.4 dB

Uncertainty figures are valid to a confidence level of 95%.

Report No.: BCT13IR311E Page 6 of 67 FCC ID: 2AA6PMH-100

2.5 List of Measuring Equipments Used

Test equipments list of Shenzhen Bontek Compliance Testing Laboratory Co., Ltd.

No.	Instrument no.	Equipment	Manufacturer	Model No.	S/N	Last Calculator	Due Calculator
1	BCT-EMC001	EMI Test Receiver	R&S	ESCI	100687	2013-4-25	2014-4-25
2	BCT-EMC002	EMI Test Receiver	R&S	ESPI	100097	2012-11-1	2013-10-31
3	BCT-EMC003	Amplifier	HP	8447D	1937A02492	2013-4-25	2014-4-25
4	BCT-EMC004	Single Power Conductor Module	R&S	NNBM 8124	242	2013-4-25	2014-4-25
5	BCT-EMC005	Single Power Conductor Module	R&S	NNBM 8124	243	2013-4-25	2014-4-25
6	BCT-EMC006	Power Clamp	SCHWARZBECK	MDS-21	3812	2012-11-5	2013-11-4
7	BCT-EMC007	Positioning Controller	C&C	CC-C-1F	MF7802113	N/A	N/A
8	BCT-EMC008	`Electrostatic DisCharging Simulator	TESEQ	NSG437	125	2012-11-2	2013-11-1
9	BCT-EMC009	Fast Transient Burst Generator	SCHAFFNER	MODULA615 0	34572	2013-4-25	2014-4-25
10	BCT-EMC010	Fast Transient Noise Simulator	Noiseken	FNS-105AX	10501	2013-6-26	2014-6-25
11	BCT-EMC011	Color TV Pattern Genenator	PHILIPS	PM5418	TM209947	N/A	N/A
12	BCT-EMC012	Power Frequency Magnetic Field Generator	EVERFINE	EMS61000- 8K	608002	2013-4-25	2014-4-25
14	BCT-EMC014	Capacitive Coupling Clamp	TESEQ	CDN8014	25096	2013-4-25	2014-4-25
15	BCT-EMC015	High Field Biconical Antenna	ELECTRO- METRICS	EM-6913	166	2012-11-28	2013-11-27
16	BCT-EMC016	Log Periodic Antenna	ELECTRO- METRICS	EM-6950	811	2012-11-28	2013-11-27
17	BCT-EMC017	Remote Active Vertical Antenna	ELECTRO- METRICS	EM-6892	304	2012-11-28	2013-11-27
18	BCT-EMC018	TRILOG Broadband Test-Antenna	SCHWARZBECK	VULB9163	9163-324	2013-4-25	2014-4-25
19	BCT-EMC019	Horn Antenna	SCHWARZBECK	BBHA9120A	0499	2012-11-28	2013-11-27
20	BCT-EMC020	Teo Line Single Phase Module	SCHWARZBECK	NSLK8128	8128247	2012-11-1	2013-10-31
21	BCT-EMC021	Triple-Loop Antenna	EVERFINE	LLA-2	711002	2012-11-15	2013-11-14
22	BCT-EMC022	Electric bridge	Jhai	JK2812C	803024	N/A	N/A
23	BCT-EMC026	RF POWER AMPLIFIER	FRANKONIA	FLL-75	1020A1109	2013-4-25	2014-4-25
24	BCT-EMC027	CDN	FRANKONIA	CDN M2+M3	A3027019	2013-4-25	2014-4-25

25	BCT-EMC029	6DB Attenuator	FRANKONIA	N/A	1001698	2013-4-25	2014-4-25
26	BCT-EMC030	EM Injection clamp	FCC	F-203I-23mm	091536	2013-4-25	2014-4-25
27	BCT-EMC031	9kHz-2.4GHz signal generator 2024	MARCONI	10S/6625-99- 457-8730	112260/042	2013-4-25	2014-4-25
28	BCT-EMC032	10dB attenuator	ELECTRO- METRICS	EM-7600	836	2013-4-25	2014-4-25
29	BCT-EMC033	ISN	TESEQ	ISN-T800	30301	2012-11-15	2013-11-14
30	BCT-EMC034	10KV surge generator	SANKI	SKS-0510M	048110003E 321	2012-11-01	2013-10-31
31	BCT-EMC035	HRMONICS&FLICK RE ANALYSER	VOLTECH	PM6000	200006700433	2012-11-20	2013-11-19
32	BCT-EMC036	Spectrum Analyzer	R&S	FSP	100397	2012-11-1	2013-10-31
33	BCT-EMC037	Broadband preamplifier	SCH WARZBECK	BBV9718	9718-182	2013-4-25	2014-4-25

3. SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
FCC §15.207	AC Power Line Conducted Emission	Pass
FCC §15.247(a)(1)	Hopping Channel Bandwidth	Pass
FCC §15.247(a)(1)	Hopping Channel Separation	Pass
FCC §15.247(a)(1)	Number of Hopping Frequency Used	Pass
FCC §15.247(a)(1)(iii)	Dwell Time of Each Frequency	Pass
FCC §15.247(b)(1)	Maximum Peak Output Power	Pass
FCC §15.247(d)	Band Edges Emission	Pass
FCC §15.247(d)	Spurious Radiated Emission	Pass
FCC §15.203/15.247(b)/(c)	Antenna Requirement	Pass

4. TEST OF AC POWER LINE CONDUCTED EMISSION

4.1 Applicable Standard

Refer to FCC §15.207.

For a Low-power Radio-frequency Device is designed to be connected to the AC power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed below limits table.

Frequency Range (MHz)	Limits	(dBuV)
Frequency Kange (WITZ)	Quasi-Peak	Average
0.150~0.500	66∼56	56∼46
0.500~5.000	56	46
5.000~30.00	60	50

4.2 Test Setup Diagram

Remark: The EUT was connected to a 120 VAC/ 60Hz power source.

4.3 Test Result

Temperature (°C) : 23~25	EUT: Bluetooth headsets
Humidity (%RH): 45~58	M/N: MH-100
Barometric Pressure (mbar): 950~1000	Operation Condition: Normal operation

No require test, battery power supply.

5. Test of Hopping Channel Bandwidth

5.1 Applicable Standard

Section 15.247(a)(1): Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

5.2 EUT Setup

Spectrum Analyzer

5.3 Test Equipment List and Details

See section 2.5.

5.4 Test Procedure

- 1. The transmitter output was connected to the spectrum analyzer through an attenuator.
- 2. Use the following spectrum analyzer settings:

Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel RBW \geq 1% of the 20 dB bandwidth, VBW \geq RBW

Sweep = auto

Detector function = peak

Trace = max hold

- 3. The spectrum width with level higher than 20dB below the peak level.
- 4. Repeat above 1~3 points for the middle and highest channel of the EUT.

5.5 Test Result

Temperature (°C) : 22~23	EUT: Bluetooth headsets
Humidity (%RH): 50~54	M/N: MH-100
Barometric Pressure (mbar): 950~1000	Operation Condition: Tx Mode

BDR 1M

Modulation Type	Channel No.	Frequency (MHz)	20dB Bandwidth (kHz)	Min. Limit (kHz)
GFSK	Low	2402.00	996	>25
GFSK	Middle	2441.00	990	>25
GFSK	High	2480.00	990	>25

EDR 2M

Modulation Type	Channel No.	Frequency (MHz)	20dB Bandwidth (kHz)	Min. Limit (kHz)
Pi/4 DQPSK	Low	2402.00	1284	>25
Pi/4 DQPSK	Middle	2441.00	1284	>25
Pi/4 DQPSK	High	2480.00	1284	>25

EDR 3M

Modulation Type	Channel No.	Frequency (MHz)	20dB Bandwidth (kHz)	Min. Limit (kHz)
8-DPSK	Low	2402.00	1308	>25
8-DPSK	Middle	2441.00	1308	>25
8-DPSK	High	2480.00	1314	>25

BDR 1M Channel Low

EDR 2M Channel Low

Channel Middle

EDR 3M Channel Low

6. Test of Hopping Channel Separation

6.1 Applicable Standard

Section 15.247(a)(1): Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

6.2 EUT Setup

Spectrum Analyzer

6.3 Test Equipment List and Details

See section 2.5.

6.4 Test Procedure

- 1. The transmitter output was connected to the spectrum analyzer through an attenuator.
- Use the following spectrum analyzer settings:
 Span = wide enough to capture the peaks of two adjacent channels
 RBW ≥ 1% of the span, VBW ≥ RBW
 Sweep = auto
 Detector function = peak
 - Trace = max hold
- 3. The Hopping Channel Separation is defined as the separation between 2 neighboring hopping frequencies.
- 4. Repeat above 1~3 points for the middle and highest channel of the EUT.

6.5 Test Result

Temperature ($^{\circ}\!$	EUT: Bluetooth headsets
Humidity (%RH): 50~54	M/N: MH-100
Barometric Pressure (mbar): 950~1000	Operation Condition: Tx Mode

BDR 1M

Modulation Type	Frequency (MHz)	Channel Separation (MHz)	Min. Limit (kHz)
GFSK	2402~2403	1.023	>25
GFSK	2441~2442	1.004	>25
GFSK	2479~2480	1.008	>25

EDR 2M

Modulation Type	Frequency (MHz)	Channel Separation (MHz)	Min. Limit (kHz)
Pi/4 DQPSK	2402~2403	1.004	>25
Pi/4 DQPSK	2441~2442	1.004	>25
Pi/4 DQPSK	2479~2480	1.012	>25

EDR 3M

Modulation Type	Frequency (MHz)	Channel Separation (MHz)	Min. Limit (kHz)
8-DPSK	2402~2403	1.016	>25
8-DPSK	2441~2442	1.004	>25
8-DPSK	2479~2480	1.012	>25

EDR 2M Channel Low

Channel Middle

EDR 3M Channel Low

Channel Middle

7. Test of Number of Hopping Frequency

7.1 Applicable Standard

Section 15.247(a)(1)(iii): For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 15 non-overlapping hopping channels. Frequency hopping system which use fewer than 75 hopping frequencies may employ intelligent hopping techniques to avoid interference to other transmissions. Frequency hopping system may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 non-overlapping channels are used.

7.2 EUT Setup

7.3 Test Equipment List and Details

See section 2.5.

7.4 Test Procedure

- 1. The transmitter output was connected to the spectrum analyzer through an attenuator.
- 2. Use the following spectrum analyzer settings:

Span = the frequency band of operation

RBW ≥ 1% of the span, VBW ≥ RBW

Sweep = auto

Detector function = peak

Trace = max hold

- 3. Observe frequency hopping in 2400MHz~2483.5MHz, there are at least 32 non-overlapping channels.
- 4. Repeat above 1~3 points for the middle and highest channel of the EUT.

7.5 Test Result

Temperature ($^{\circ}\mathrm{C}$) : 22~23	EUT: Bluetooth headsets
Humidity (%RH): 50~54	M/N: MH-100
Barometric Pressure (mbar): 950~1000	Operation Condition: Tx Mode

Modulation Type	Frequency (MHz)	Number of Hopping Channels	Min. Limit (kHz)
GFSK	2402.0~2480.0	79	>15
Pi/4 DQPSK	2402.0~2480.0	79	>15
8-DPSK	2402.0~2480.0	79	>15

BDR-1M

EDR-2M

EDR-3M

8. Test of Dwell Time of Each Frequency

8.1 Applicable Standard

Section 15.247(a)(1)(iii): For frequency hopping systems operating in the 2400-2483.5 MHz band The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4seconds multiplied by the number of hopping channels employed.

8.2 EUT Setup

Spectrum Analyzer

8.3 Test Equipment List and Details

See section 2.5.

8.4 Test Procedure

- 1. The transmitter output was connected to the spectrum analyzer through an attenuator.
- Use the following spectrum analyzer settings:
 Span = zero span, centered on a hopping channel
 RBW = 1 MHz, VBW ≥ RBW
 Sweep = as necessary to capture the entire dwell time per hopping channel

Detector function = peak

Trace = max hold

- 3. Set the center frequency on any frequency would be measure and set the frequency span to zero span.
- 4. Measure the maximum time duration of one single pulse.

8.5 Test Result

Temperature (°C) : 22~23	EUT: Bluetooth headsets
Humidity (%RH): 50~54	M/N: MH-100
Barometric Pressure (mbar): 950~1000	Operation Condition: Tx Mode

DH1

Dwell time= t*(1.6/2/79)*31.6

DH3

Dwell time= t*(1.6/4/79)*31.6

DH5

Dwell time= t*(1.6/6/79)*31.6

BDR 1M Low Channel

Modulation Type		Reading (ms)	Dwell Time (ms)	Limit (ms)
GFSK	DH1	0.384	122.88	400
GFSK	DH3	1.640	262.40	400
GFSK	DH5	2.896	308.91	400

Middle Channel

Modulation Type		Reading (ms)	Dwell Time (ms)	Limit (ms)
GFSK	DH1	0.388	124.16	400
GFSK	DH3	1.640	262.40	400
GFSK	DH5	2.896	308.91	400

High Channel

Modulation Type		Reading (ms)	Dwell Time (ms)	Limit (ms)
GFSK	DH1	0.388	124.16	400
GFSK	DH3	1.640	262.40	400
GFSK	DH5	2.896	308.91	400

EDR 2M Low Channel

Modulation Type		Reading (ms)	Dwell Time (ms)	Limit (ms)
Pi/4 DQPSK	2DH1	0.388	124.16	400
Pi/4 DQPSK	2DH3	1.652	264.32	400
Pi/4 DQPSK	2DH5	2.896	308.91	400

Middle Channel

Modulation Type		Reading (ms)	Dwell Time (ms)	Limit (ms)
Pi/4 DQPSK	2DH1	0.388	124.16	400
Pi/4 DQPSK	2DH3	1.652	264.32	400
Pi/4 DQPSK	2DH5	2.896	308.91	400

High Channel

Modulation Type		Reading (ms)	Dwell Time (ms)	Limit (ms)
Pi/4 DQPSK	2DH1	0.388	124.16	400
Pi/4 DQPSK	2DH3	1.642	262.72	400
Pi/4 DQPSK	2DH5	2.896	308.91	400

EDR 3M Low Channel

Modulation Type		Reading (ms)	Dwell Time (ms)	Limit (ms)
8-DPSK	3DH1	0.392	125.44	400
8-DPSK	3DH3	1.638	262.08	400
8-DPSK	3DH5	2.848	303.79	400

Middle Channel

Modulation Type		Reading (ms)	Dwell Time (ms)	Limit (ms)
8-DPSK	3DH1	0.388	124.16	400
8-DPSK	3DH3	1.648	263.68	400
8-DPSK	3DH5	2.848	303.79	400

High Channel

Modulation Type		Reading (ms)	Dwell Time (ms)	Limit (ms)
8-DPSK	3DH1	0.392	125.44	400
8-DPSK	3DH3	1.638	262.08	400
8-DPSK	3DH5	2.832	302.08	400

BDR 1M DH1 Channel Low

Channel Middle

BDR 1M DH3 Channel Low

Channel Middle

BDR 1M DH5 Channel Low

Channel Middle

EDR 2M 2DH1 Channel Low

EDR 2M 2DH3 Channel Low

Channel Middle

EDR 2M 2DH5 Channel Low

EDR 3M 3DH1 Channel Low

Channel Middle

EDR 3M 3DH3 Channel Low

Channel Middle

