Optimizing a Finite-state controller

Goal: Optimize	a	policy	TL.	to	maximize	average	rewards
----------------	---	--------	-----	----	----------	---------	---------

POLICY/STRATEGY : The (param	etrized by 0)	
	de: Pi(O,M,M ^e A))
i.e. pi[0,:,:]	m, a	for y=0
M=2	\$	401 900
markov chain	البيسين	M ₂
illustration B	m, w	
Ω. Ο		93 94
	1= 1	•
「か、とーーーライン	1=0	
(memory state transition	(mlu)	
The transfer of	s on p	
*To couple w/ state action	s, above the o	mow,
add the dominant act		,
e.g. Prob(a=1, m= m, 1 m). &
· ~ . * 0.8		
m)		
	Lx	size:
ENVIRON MENT SET-WP	Att	ly x lx
		•
target: (L%o, Lyo)		
information/signal: in	code: PObs	(0, 14x Lx)
Prob(y1s) 2		σ
Compute from partic	e counts from part	1
Options: (1) time-averaged		THRESHOLD!
(2) time-averaged, Syn		P(y=115)=1
(3) snapshot at certai	n time: /cmax	if C(s) > th

Some detection model we could use : in conical distribution (w/ tanh functions) (2) From paper of infotoxis C(5150) = cmax - 115-50/12 - 440 115-50/12+0-01 where $\lambda = \int \frac{DT}{1 + v^2 t}$ Rewards function in our set-up i reward = 0 if target found reward = v if target not -(1-8) found Average reward given state s,m: $r(s,m) = -(1-8) \sum_{\alpha,s',y} p(s'|s,\alpha) f(y|s) Te(\alpha'',m'|m,y) ||(x+x_s)$ n(s,m) => Eccupancy of state-memory pair $\eta = (1 - 8T) \rho \qquad T: SXM \rightarrow SXM$ T(S', m' | 1S, m)V(s,m) => value of the policy VT=rT(1-8T)

expected return: G=rTn=Vp G~-(1-8)

av. time

Optimization: NPG (Natural Policy Gradient)
pseudocode:

init Θ [0,M,M*A]

pi = coftmax (Θ) -) Boltzman param

Value _ pred = 0

Value _ new = (

until value_new-value prev > tol:

calculate N, Q

grad = f x N x Q

0 = 0 + (learning_rate) grad