Lecture 03

§8 Lists

- A *list* is an ordered sequence of objects. The number of elements in a list is called its *length*. A list of length 2 is also called an *ordered pair*. A list of length 0 is called the *empty list*.
- Note that in a list an element might repeat. And two lists are equal provided they have the same length and elements in the corresponding positions on the two lists are equal.
- One basic method to count the number of lists satisfying certain conditions: *multiplication* principle.
- Examples:
 - (1) (a) How many 2-digit numbers are there including 10 and 99?
 - (b) How many 2-digit numbers are even?
 - (c) How many 2-digit numbers are formed by two different digits?
 - (d) How many 2-digit numbers are even and are formed by two different digits?
 - (2) Airports have names, but they also have three-letter codes. How many different airport codes are possible?
 - (3) How many ways can we arrange 5 people in 7 seats?
- The number of lists of length k whose elements are chosen from a pool of n possible elements is n^k if repetitions are permitted, or $n(n-1)\cdots(n-k+1)$ if repetitions are forbidden.
- Falling factorial: $(n)_k = n(n-1)\cdots(n-k+1)$.
- Sometimes we also need the addition principle or other techniques. Examples:
 - (4) How many 8-digit numbers have exact one 8?
 - (5) A class contains ten boys and five girls. In how many different ways can they stand in a line if no two girls are standing next to one another?

§9 Factorial

- $(n)_n$ is also called *n factorial* and is written n!.
- Production notation: $\Pi_{i=a}^b f(i) = f(a)f(a+1)\cdots f(b)$ for all integers a and b satisfying $a \leq b$, where f is an function of a.
- For convenience we define $\Pi_{k=a}^b g(k) = 1$ if a > b. Compare it with the summation $\sum_{k=a}^b h(k) = 0$ if a > b.
- Examples:
 - (6) Prove the following inequality: $1 \frac{1}{\sqrt{n}} < \left(\frac{1}{n}\right)^{\frac{1}{n}} < 1 + \frac{1}{\sqrt{n}}$. This fact suggests $0^0 = 1$.
 - (7) Prove the following identity:

$$\Pi_{k=1}^n k! = \Pi_{k=1}^n k^{n+1-k}. (1)$$

HW2(a) (Due 2/8/2016)

- 8.12 (b), (d), (g)
- 8.15
- 9.10