Shree K. Nayar Columbia University

Topic: Structure from Motion, Module: Reconstruction II

First Principles of Computer Vision

- {i, j} is linearly independent.
- $\{i, j, v_1\}$ is linearly dependent.
- $\{i, j, v_3\}$ is linearly dependent.

- {i, j} is linearly independent.
- $\{i, j, v_1\}$ is linearly dependent.
- $\{i, j, v_3\}$ is linearly dependent.

A set of vectors $\{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n\}$ is said to be linearly independent if no vector can be represented as a weighted linear sum of the others.

{i, j} is linearly independent.

 $\{i, j, v_1\}$ is linearly dependent.

 $\{i, j, v_3\}$ is linearly dependent.

 $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is linearly dependent.

A set of vectors $\{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n\}$ is said to be linearly independent if no vector can be represented as a weighted linear sum of the others.

{i, j} is linearly independent.

 $\{i, j, v_1\}$ is linearly dependent.

 $\{i, j, v_3\}$ is linearly dependent.

 $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is linearly dependent.

Column Rank: The number of linearly independent columns of the matrix.

Row Rank: The number of linearly independent rows of the matrix.

Column Rank: The number of linearly independent columns of the matrix.

Row Rank: The number of linearly independent rows of the matrix.

$$m \left[\begin{array}{c} A \end{array} \right] = \begin{bmatrix} \mathbf{c}_1 & \mathbf{c}_2 & ... & \mathbf{c}_n \end{bmatrix} = \begin{bmatrix} \mathbf{r}_1^T \\ \mathbf{r}_2^T \\ \vdots \\ \mathbf{r}_m^T & \mathbf{c}_m \end{bmatrix}$$

n

Column Rank: The number of linearly independent columns of the matrix.

Row Rank: The number of linearly independent rows of the matrix.

$$m \begin{bmatrix} A \end{bmatrix} = \begin{bmatrix} \mathbf{c}_1 & \mathbf{c}_2 & \dots & \mathbf{c}_n \end{bmatrix} = \begin{bmatrix} \mathbf{r}_1^T \\ \mathbf{r}_2^T \\ \vdots \\ \mathbf{r}_m^T \end{bmatrix}$$

n

Column Rank: The number of linearly independent columns of the matrix.

Row Rank: The number of linearly independent rows of the matrix.

$$m \begin{bmatrix} A \end{bmatrix} = \begin{bmatrix} \mathbf{c}_1 & \mathbf{c}_2 & \dots & \mathbf{c}_n \end{bmatrix} = \begin{bmatrix} \mathbf{r}_1^T \\ \mathbf{r}_2^T \\ \vdots \\ \mathbf{r}_m^T \end{bmatrix}$$

n

Column Rank: The number of linearly independent columns of the matrix.

Row Rank: The number of linearly independent rows of the matrix.

$$m \begin{bmatrix} A \end{bmatrix} = \begin{bmatrix} \mathbf{c}_1 & \mathbf{c}_2 & \dots & \mathbf{c}_n \end{bmatrix} = \begin{bmatrix} \mathbf{r}_1^T \\ \mathbf{r}_2^T \\ \vdots \\ \mathbf{r}_m^T \end{bmatrix}$$

 $ColumnRank(A) \le n$ $RowRank(A) \le m$

Column Rank: The number of linearly independent columns of the matrix.

Row Rank: The number of linearly independent rows of the matrix.

$$m \begin{bmatrix} A \end{bmatrix} = \begin{bmatrix} \mathbf{c}_1 & \mathbf{c}_2 & \dots & \mathbf{c}_n \end{bmatrix} = \begin{bmatrix} \mathbf{r}_1^T \\ \mathbf{r}_2^T \\ \vdots \\ \mathbf{r}_m^T \end{bmatrix}$$

 $ColumnRank(A) \le n$ $RowRank(A) \le m$

$$ColumnRank(A) = RowRank(A) = Rank(A)$$
$$Rank(A) \le \min(m, n)$$

$$A = \begin{bmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{bmatrix} = [\mathbf{a} \quad \mathbf{b} \quad \mathbf{c}]$$

$$Rank(A) = 1$$

$$A = \begin{bmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{bmatrix} = [\mathbf{a} \quad \mathbf{b} \quad \mathbf{c}]$$

$$Rank(A) = 1$$

$$A = \begin{bmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{bmatrix} = \begin{bmatrix} \mathbf{a} & \mathbf{b} & \mathbf{c} \end{bmatrix}$$

$$Rank(A) = 1$$

$$A = \begin{bmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{bmatrix} = [\mathbf{a} \quad \mathbf{b} \quad \mathbf{c}]$$

$$Rank(A) = 1$$

$$A = \begin{bmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{bmatrix} = [\mathbf{a} \quad \mathbf{b} \quad \mathbf{c}]$$

$$Rank(A) = \frac{2}{3}$$

$$A = \begin{bmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{bmatrix} = [\mathbf{a} \quad \mathbf{b} \quad \mathbf{c}]$$

$$Rank(A) = 2$$

$$A = \begin{bmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{bmatrix} = [\mathbf{a} \ \mathbf{b} \ \mathbf{c}]$$

$$Rank(A) = 3$$

$$A = \begin{bmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{bmatrix} = [\mathbf{a} \quad \mathbf{b} \quad \mathbf{c}]$$

$$Rank(A) = 3$$

•
$$Rank(A_{m \times n}B_{n \times p}) = \min(Rank(A_{m \times n}), Rank(B_{n \times p}))$$

 $\leq \min(m, n, p)$

•
$$Rank(A_{m \times n}B_{n \times p}) = \min(Rank(A_{m \times n}), Rank(B_{n \times p}))$$

 $\leq \min(m, n, p)$

•
$$Rank(A_{m \times n}B_{n \times p}) = \min(Rank(A_{m \times n}), Rank(B_{n \times p}))$$

 $\leq \min(m, n, p)$

•
$$Rank(A_{m \times n}B_{n \times p}) = \min(Rank(A_{m \times n}), Rank(B_{n \times p}))$$

 $\leq \min(m, n, p)$

• $Rank(A^T) = Rank(A)$

•
$$Rank(A_{m \times n}B_{n \times p}) = \min(Rank(A_{m \times n}), Rank(B_{n \times p}))$$

 $\leq \min(m, n, p)$

• $Rank(AA^T) = Rank(A^TA) = Rank(A^T) = Rank(A)$

• $Rank(A^T) = Rank(A)$

• $Rank(A_{m \times n}B_{n \times p}) = \min(Rank(A_{m \times n}), Rank(B_{n \times p}))$ $\leq \min(m, n, p)$

Rank (AA^T) = Rank (A^TA) = Rank (A^T) = Rank(A)

• $A_{n \times m}$ is invertible iff $Rank(A_{m \times m}) = m$

Feature Points (Known)

(Unknown)

Feature Points (Known)

(Unknown)

Feature Points (Known)

(Unknown)

$$W = M \times S$$

$$_{2F \times N} \quad _{2F \times 3} \quad _{3 \times N}$$

$$W = M \times S$$

$$_{2F \times N} \quad _{2F \times 3} \quad _{3 \times N}$$

$$W = M \times S$$

$$2F \times N \qquad 2F \times 3 \qquad 3 \times N$$

We know:

$$Rank(MS) \leq Rank(M)$$
 $\triangleright Rank(MS) \leq Rank(S)$

 $Rank(W) = Rank(MS) \le min(3, N, 2F)$

$$W = M \times S$$

$$2F \times N \qquad 2F \times 3 \qquad 3 \times N$$

We know:

 $Rank(MS) \le Rank(M)$ $Rank(MS) \le Rank(S)$

 $Arr Rank(W) = Rank(MS) \le min(3, N, 2F)$

$$W = M \times S$$

$$2F \times N \qquad 2F \times 3 \qquad 3 \times N$$

We know:

 $Rank(MS) \le Rank(M)$ $Rank(MS) \le Rank(S)$

 $Arr Rank(W) = Rank(MS) \le min(3, N, 2F)$

$$W = M \times S$$

$$2F \times N \qquad 2F \times 3 \qquad 3 \times N$$

We know:

 $Rank(MS) \le Rank(M)$ $Rank(MS) \le Rank(S)$

 $Rank(W) = Rank(MS) \le min(3, N, 2F)$

$$W = M \times S$$

$$_{2F \times N} \quad _{2F \times 3} \quad _{3 \times N}$$

We know:

$$Rank(MS) \le Rank(M)$$
 $Rank(MS) \le Rank(S)$

 $Rank(W) = Rank(MS) \le min(3, N, 2F)$

Rank Theorem: $Rank(W) \leq 3$

