Листок 5. Предикатные формулы.

DM-ML 1. Пусть сигнатура содержит предикат равенства и трехместный предикат S. Интерпретация: точки на плоскости, S(X,Y,Z) означает, что |XZ| = |YZ|. Выразите предикаты:

- (a) A, B, C лежат на одной прямой;
- (б) A, B, C, D суть вершины параллелограмма;
- (B) |AB| = |CD|;
- (Γ) OA < OB;
- (д) равенство треугольников;
- (е) равенство углов;
- (ж) свойство угла быть прямым.

DM-ML 2. Рассмотрим естественную интерпретацию сигнатуры (=,<) на множестве целых чисел. Как выразить предикат y=x+1?

DM-ML 3. Рассмотрим естественную интерпретацию сигнатуры $(=, +, y = x^2)$ на множестве вещественных чисел. Как выразить предикат xy = z?

DM-ML 4. Рассмотрим множество целых положительных чисел как интерпретацию сигнатуры, содержащей предикат равенства и предикат «x делит y».

- (a) Как выразить предикат x = 1?
- (б) Как выразить предикат x простое число?
- (в) Если добавить к этой сигнатуре константу 2, то как выразить предикат $\exists n \ x = 2^n$?

DM-ML 5. Рассмотрим плоскость как интерпретацию сигнатуры, содержащей предикат равенства (совпадения точек) и двухместный предикат «находиться на расстоянии 1». Как выразить предикаты «находиться на расстоянии 2» и «находиться на расстоянии не более 2»?

DM-ML 6. Приведите пример замкнутой формулы в сигнатуре $\mathfrak{P} = \{=\}, \mathfrak{F} = \{+, \times, 1\}$, которая истинна в естественной интерпретации на множестве рациональных чисел, но ложна в естественной интерпретации на множестве вещественных чисел.

DM-ML 7. На множестве \mathcal{N} задайте формулу в сигнатуре (S, =), которая выражает предикат x = y + N, где S — это функция прибавления 1, N — конкретное натуральное число. Длина такой формулы должна быть $O(\log_2 N)$.

DM-ML 3.6. По формуле в 2-КНФ построим ориентированный граф. Вершинами графа будут множество переменных и отрицаний переменных. Для каждого дизъюнкта $(l_1 \lor l_2)$ в графе проводится два ребра из $\neg l_1$ в l_2 и из $\neg l_2$ в l_1 . Докажите, что формула выполнима тогда и только тогда, когда для каждой переменной x вершины x и $\neg x$ находятся в разных компонентах сильной связности (т.е. либо из x нет пути в x, либо из x нет пути в x).

DM-ML 4.1. Правило ослабление позволяет вывести из дизъюнкта A дизъюнкта $A \vee B$ для любого дизъюнкта B. Покажите, что если из дизъюнктов D_1, D_2, \ldots, D_n семантически следует дизъюнкт C (это значит, что любой набор значений переменных, который выполняет все дизъюнкты D_i , выполняет также и C), то C можно вывести из D_i с помощью применений правил резолюции и ослабления.

DM-ML 4.2.

- (а) Докажите, что при суммировании двоичных чисел $\overline{a_n a_{n-1} \dots a_1}$ и $\overline{b_n b_{n-1} \dots b_1}$ перенос в i-м разряде происходит тогда и только тогда, когда число $\overline{a_i a_{i-1} \dots a_1}$ больше числа $\overline{b_i' b_{i-1}' \dots b_1'}$, где $b_k' = 1 b_k$ для всех k от 1 до n. Далее считаем, что $n = 2^m$.
- (б) Постройте схему размера O(n) и глубины $O(\log n)$, которая вычислит результаты сравнений чисел $\overline{a_j a_{j-1} \dots a_{j-2^k+1}}$ с $\overline{b'_j b'_{j-1} \dots b'_{j-2^k+1}}$ для всех $k \leq m$ и всех j, кратных 2^k (при этом $j \leq n$). Результат сравнения можно хранить в двух битах: 00, если первое число меньше, 11, если первое число больше и 10, если числа равны.
- (в) Постройте схему размера O(n) и глубины $O(\log n)$, которая вычислит результаты сравнений чисел $\overline{a_i a_{i-1} \dots a_1}$ и $\overline{b_i' b_{i-1}' \dots b_1'}$ для всех i от 1 до n.
- (г) Покажите, что существует схема для сложения двух n-битных чисел размера O(n) и глубины $O(\log n)$.

DM-ML 4.3. Пользуясь результатом предыдущей задачи, покажите, что существует схема для умножения двух n-битных чисел размера $O(n^2)$ и глубины $O(\log n)$.

DM-ML 4.4. Покажите, что если булева функция вычисляется с помощью схемы полиномиального от числа входов размера и глубиной $O(\log n)$, то она вычисляется и формулой полиномиального от числа переменных размера.

DM-ML 4.5. Докажите, что схема, вычисляющая булеву функцию $f: \{0,1\}^n \to \{0,1\}$, которая зависит от всех n аргументов, имеет размер не меньше cn и глубину не меньше $c\log n$, где c>0 — некоторая константа, которая зависит только от базиса схемы.

DM-ML 4.6. Функция голосования $Maj_{2k+1}: \{0,1\}^{2k+1} \to \{0,1\}$ равняется 1 тогда и только тогда, когда хотя бы k+1 битов входа равняется единице. Покажите, что существует схема, вычисляющая функцию голосования, размера O(k).