The Shape of Space [1]

Topology vs Geometry

Topology of a surface: the aspect of a surface's nature that is unaffected by deformation.

Geometry of a surface: consists of the properties that DO change when the surface is deformed.

Geometrical properties: curvature (most important), areas, distances, angles...

Intrinsic vs Extrinsic properties

Intrinsic topology: same intrinsic topology if inside the surface one cannot tell them apart.

Extrinsic topology: same extrinsic topology if one can be deformed within a higher-dimensional space to look like the other.

Intrinsic geometry: properties of the surface.

Extrinsic geometry: only to be appreciated from higher dimensions.

Geodesic: intrinsically straight line.

Local vs Global properties

Local properties are those observable within a small region of the manifold.

Global properties require consideration of the manifold as a whole.

Homogeneous manifold: one whose local geometry is the same at all points.

Remark: most often used in " $\underline{local\ geometry}$ " and " $\underline{global\ topology}$ ".

Examples:

- a two-dimensional manifold (surface) is a space with local topology of a plane. All two-manifolds have the same local topology.
- a three-dimensional manifold is a space with local topology of "ordinary" 3D space; they all have the same local topology.

Close vs Open

Intuitively, <u>closed</u> means finite and <u>open</u> means infinite. **Remark 1:** <u>Edges:</u> anything with edges is NOT EVEN a manifold (manifold-with-boundary; terms closed and open imply manifold has NO edges).

Remark 2: <u>Area</u>: there are surfaces that are infinitely long, yet only have a finite area (cusp).

— By convention, a surface is classified as closed or open accordingly to its distance across rather than its area (cusp = open).

Orientability

Manifolds that do not contain orientation-reversing paths are called orientable.

	orientable	non-orientable
curved local geometry	sphere	projective plane
flat local geometry	torus	klein-bottle

Common Manifolds

Most simple manifolds have shorthand names:

one-dim	surfaces	three-manifolds
\mathbf{E}^1 The line	\mathbf{E}^2 Euclidean plane	\mathbf{E}^3 Euclidean space
S^1 The circle	\mathbf{S}^2 The sphere	
I The interval	\mathbf{T}^2 The torus	\mathbf{T}^3 The three-torus
	\mathbf{K}^2 Klein bottle	
	\mathbf{P}^2 Projective plane	\mathbf{P}^3 Projective 3-space
	\mathbf{D}^2 The disk	\mathbf{D}^3 A solid ball

Connected Sums

— # (connect sum) operation

<u>Remark</u>: every conceivable surface is a connected sum of tori and/or projective planes!

— a sphere is a connected sum of zero tori and zero projective planes.

<u>Remark</u>: every surface is a connected sum of either tori **only** or projective planes **only**!

- a surface written as a connected sum of both tori and projective planes can ALWAYS be written as a connected sum of projective planes only.
- without changing the surface's global topology, tori can be converted to Klein bottles, and Klein bottles to projective planes.

Products

-- × (cross) operation

Remark: the torus \mathbf{T}^2 is the only closed surface (with no edges) that is a product.

— $\mathbf{T}^2 = \mathbf{S}^1 \times \mathbf{S}^1$ is the only two-dimensional product having neither an edge nor an infinite area.

Geometrical product must satisfy the following 3 conditions:

- 1. All elements of first term are the same size
- 2. All elements of second term are the same size
- 3. Each element of first term is perpendicular to each element of second term

Isotropic

An **isotropic** manifold is one in which the geometry is the same in all directions.

References

[1] J. R. Weeks, The shape of space. CRC press, 2001.