VLSI_Lab_1-2

SYNTHESIS

Environment

- > source Design Compiler
 - ≻tool 2
- ➤編輯 .synopsys_dc.setup

```
set company {NTUGIEE}
set designer {Student}

set search_path [concat [list ./opt/CAD/cell_lib/CBDK_IC_Contest_v2.1/SynopsysDC/db ... design] $search_path]
set link_library [list "dw_foundation.sldb" "typical.db" "slow.db" "fast.db"]
set target_library [list "typical.db" "slow.db" "fast.db"]
set symbol_library [list "generic.sdb"]
set synthetic_library [list "dw_foundation.sldb"]
set default_schematic_options {-size infinite}

set hdlin_translate_off_skip_text "TRUE"
set edifout_netlist_only "TRUE"
set verilogout_no_tri true
set plot_command {lpr -Plw}
set hdlin_auto_save_templates "TRUE"
set compile_fix_multiple_port_nets "TRUE"
```

Scripts

▶打開run_sv.tcl 或 run_all_v.tcl 理解裡面的內容

```
# Import Design
analyze -format sverilog -define OLD_VERILOG_STYLE Rgb888ToYuv422.sv
elaborate Rgb888ToYuv422
link
# You can only modify clock period
set cycle 10
set t_in [expr $cycle/2]
set t_out 0.5
# Constraint setting
# Clock constraints
create_clock -name clk -period $cycle [get_ports clk]
                                      [get_clocks clk]
set_fix_hold
set_dont_touch_network
                                      [get_clocks clk]
set_ideal_network
                                      [get_ports clk]
                                      [get_ports rst]
set_dont_touch_network
set_ideal_network
                                      [get_ports rst]
set_clock_uncertainty
                                 0.1 [get_clocks clk]
set_clock_latency
                                 0.5 [get_clocks clk]
```

Run Scripts

- ▶如果是寫System Verilog,執行
 - dv -f run_sv.tcl
- ▶如果是寫Verilog,執行
 - >dv -f run_all_v.tcl

Timing

➤確認slack是不是≥0

DP1/U25/Y (NAND2X1) DP1/U23/Y (NAND3X1) DP1/o_data_reg_4_/D (DFFRX1) data_arrival_time	0.00 0.10 0.10 0.00	10.06 f 10.16 r 10.26 f 10.26 f 10.26
<pre>clock clk (rise edge) clock network delay (ideal) clock uncertainty DP1/o_data_reg_4_/CK (DFFRX1) library setup time data required time</pre>	10.00 0.50 -0.10 0.00 -0.14	10.00 10.50 10.40 10.40 r 10.26 10.26
data required time data arrival time		10.26 -10.26
slack (MET)		0.00

Area

- >確認面積大小
 - ➤ Net Interconnect area 不準確,看Total cell area

```
Number of ports:
                                           1106
Number of nets:
                                           5517
Number of cells:
                                          4124
Number of combinational cells:
                                          3933
Number of sequential cells:
                                            161
Number of macros/black boxes:
Number of buf/inv:
                                            954
Number of references:
                                             13
Combinational area:
                                  46238.873217
Buf/Inv area:
                                   5973.150548
Noncombinational area:
                                   4766.299053
Macro/Black Box area:
                                      0.000000
Net Interconnect area:
                                 405628.717102
Total cell area:
                                  51005.172270
                                 400033.8893/2
rotal area:
```

Gate-level Simulation

- ▶進入sim資料夾,輸入指令
 - >make SYN=true top
- ▶看到PASS代表成功!可以進行APR繞線!

```
Scoreboard Reports

Status of [Y]: (correct/error): 1/0
Status of [U]: (correct/error): 1/0
Status of [V]: (correct/error): 1/0
PASS

Simulation complete via $finish(1) at time 533100 PS + 1
./Rgb888ToYuv422_test.sv:17 `WithFinish
ncsim> exit
```

ARP

春花秋月何時了,按鈕知多少 洛陽親友如相問,就說我在按按鈕 少壯不努力,老大按按鈕

開啟Innovus GUI介面

- >tool 19
- ▶進入apr資料夾
- ➤innovus (不用加&)

APR

▶請按照Lab1_APR.pdf的步驟完成

Post-layout Simulation

- ▶拿產生的Rgb888ToYuv422_pr.v做Post-layout simulation
- ➤改動 design/Rgb888ToYuv42.sv 下 include "Rgb888ToYuv42_syn.v"的路徑為" Rgb888ToYuv422_pr.v "
- >sim/Rgb888ToYuv422_test.sv 力日人 \$sdf_annotate("YOUR SDF", dut.u_old_style_verilog_wrapper);
- ➤ Makefile no timing check 那行換成 +ncmaxdelays
- ➤執行 make SYN=true top