Using, Choosing and Abusing Transistors

Ray Crampton, Feb 2019

Add more practical examples

Rules of thumb, assumptions and mixed-quality analogies to come!

JUST BECAUSE ONE ARGUMENT RESEMBLES ANOTHER, DOESN'T MEAN THAT CATS CAN FLY IN SPACE.

Two major types of transistors <u>Current</u> controlled & <u>Voltage</u> controlled

But, voltage drive can be converted into current drive

Each major type has *complementary* versions

n-type is low side p-type is high side

"Common Emitter/Source" Inverts

Complementary Bipolar Output

Complementary MOSFET Output

BJT Motor or LED Driver Example

Why is a transistor used here?

BJT Photodiode Example

Why is a transistor used here?

High voltage motor control

Why is a transistor used here?

Two transistor oscillator

If they're the same, why choose one over the other?

BJTs are generally easier to select and use but... not always

MOSFET Examples

MOSFET, Body Diode Can be Useful

Normal operation is through body diode.

During reverse polarity, FET is off and diode blocks current flow

Key Bipolar Transistor Specs

Collector-emitter Breakdown Voltage

Maximum operating C-E should be 20-50% lower

Collector Current - Continuous	Ic	200	mAdc

Maximum continuous collector current

You should be below this with some margin ~20%

SMALL-SIGNAL CHARACTERISTICS			
Current – Gain – Bandwidth Product (I _C = 10 mAdc, V _{CE} = 20 Vdc, f = 100 MHz) 2N3903 2N3904	f _T	250 300	 MHz

- f_T frequency at which gain falls to 1
- Should be > 100x your operating frequency
- Avoid super high frequency transistors (1GHz!)

Key MOSFET Specs

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS					
Drain-Source Breakdown Voltage	$(V_{GS} = 0, I_D = 10 \mu Adc)$	V _{(BR)DSS}	60	-	Vdc

Drain-Source Breakdown Voltage

Maximum operating D-S should be 20-50% lower

ON CHARACTERISTICS (Note 1)					
Gate Threshold Voltage	$(V_{DS} = V_{GS}, I_D = 1.0 \text{ mAdc})$	V _{GS(th)}	0.8	3.0	Vdc

Gate threshold voltage

You should be well above/below this

Static Drain-Source On-Resistance	$(V_{GS} = 10 \text{ Vdc}, I_D = 0.5 \text{ Adc})$ $(V_{GS} = 4.5 \text{ Vdc}, I_D = 75 \text{ mAdc})$			5.0 6.0	Ω
Drain-Source On-Voltage	$(V_{GS} = 10 \text{ Vdc}, I_D = 0.5 \text{ Adc})$ $(V_{GS} = 4.5 \text{ Vdc}, I_D = 75 \text{ mAdc})$	V _{DS(on)}	1 1	2.5 0.45	Vdc

On-Voltage (or On-Resistance)

Should be low enough

MOSFET vs Bipolar Pros/Cons

Bipolar

- Easier to drive voltage-wise
- Rugged

MOSFET

- Can be more efficient
- Can switch faster
- Gate easier to drive currentwise
- Poor selection for 3.3V circuits
- Can be difficult to select proper Vt

Very application dependent: Switching power supplies Audio Amplifiers GPIO LED bias

Practical guidance/tendencies:

- Low power, low voltage -> bipolar
- High current -> FET
- High efficiency switching supplies -> FET

Go-to Transistors

Bipolar – the workhorse for enthusiasts

- 2N3904 NPN, 40V, 200mA, 300MHz f_T
- 2N3906 PNP, -40V. 200mA, 250MHz f_T
- TIP120 NPN, 60V, 5A

MOSFETs

- Probably don't want to stock FETs
- Wanna play? 2N7000, 2N7002 NMOS

Common Bipolar Pinouts

Typical Breadboard Application

MOSFET Schematic Symbols

- There are many, many variations on these
- FETs of the same type (P vs N) behave similar to each other
- Be aware but don't fret over it too much

Transistors as Amplifiers

A Linear Amplifier

Not a good design

Problems

- Gain will vary too much with β (h_{fe}) variation
- Linearity isn't very good
- Input dynamic range is poor
- Circuit needs fine-tuning per transistor used

A Better Design

- Gain ~= -Rc/Re
- Improved distortion
- Improved dynamic range
- Less sensitive to individual transistor characteristics

Common Configurations

V and I gain Low input R Low output R

V gain Low input R High output R

I gain High input R Low output R

Darlington Pair

Gain is squared (100 becomes 10,000)

Differential Pair

Simple Op-Amp

Simple Op-Amp Usage

Simple circuit Near ideal performance

