Некоторые методы решения задачи о максимальном независимом множестве. Учебная презентация

Т. С. Синяк Е. А. Максименко

Южный федеральный университет

30 ноября 2007 г.

Основные определения и формулировка

Неориентированный граф, смежность Определение независимого множества Формулировка задачи и пример

Точные методы решения

Алгоритм Брона-Кербоша Метод ветвей и границ

Неточные методы решения

Расширение и урезание Генетический алгоритм

Эффективность различных методов

Алгоритм Брона-Кербоша Метод ветвей и границ Генетический алгоритм

План доклада

Основные определения и формулировка

Неориентированный граф, смежность Определение независимого множества Формулировка задачи и пример

Точные методы решения

Алгоритм Брона-Кербоша Метод ветвей и границ

Неточные методы решения

Расширение и урезание Генетический алгоритм

Эффективность различных методов

Алгоритм Брона-Кербоша Метод ветвей и границ Генетический алгоритм

Пусть G=(V,E) — неориентированный граф с множеством вершин $V(\neq\varnothing)$ и множеством рёбер $E(\subset C_V^2)$, где $C_V^2=\{\{u,v\}\colon u,v\in V,\ u\neq v\}$ — множество двухэлементных подмножеств множества V.

Пусть G=(V,E) — неориентированный граф с множеством вершин $V(\neq\varnothing)$ и множеством рёбер $E(\subset C_V^2)$, где $C_V^2=\{\{u,v\}\colon u,v\in V,\ u\neq v\}$ — множество двухэлементных подмножеств множества V.

Вершины u и v называют *смежными* (соседними) в графе G, если $\{u,v\}\in E$.

Пусть G=(V,E) — неориентированный граф с множеством вершин $V(\neq\varnothing)$ и множеством рёбер $E(\subset C_V^2)$, где $C_V^2=\{\{u,v\}\colon u,v\in V,\ u\neq v\}$ — множество двухэлементных подмножеств множества V.

Вершины u и v называют *смежными* (соседними) в графе G, если $\{u,v\}\in E$.

 $\Gamma(u)$ — множество всех вершин, смежных с вершиной u.

Пусть G=(V,E) — неориентированный граф с множеством вершин $V(\neq\varnothing)$ и множеством рёбер $E(\subset C_V^2)$, где $C_V^2=\{\{u,v\}\colon u,v\in V,\ u\neq v\}$ — множество двухэлементных подмножеств множества V.

Вершины u и v называют *смежными* (соседними) в графе G, если $\{u,v\}\in E$.

 $\Gamma(u)$ — множество всех вершин, смежных с вершиной u.

 $\Gamma(V')$ $(V' \subset V)$ — множество всех вершин, соседних с вершинами из V':

$$\Gamma(V') = \cup \{\Gamma(v) \colon v \in V'\}$$

Пусть G = (V, E) — неориентированный граф.

Множество $M \subset V$ называют независимым множеством в графе G, если $\forall u, v \in M \quad \{u, v\} \notin E$.

Другими словами, если $M \cap \Gamma(M) = \varnothing$.

Пусть G = (V, E) — неориентированный граф.

Множество $M \subset V$ называют независимым множеством в графе G, если $\forall u, v \in M \quad \{u, v\} \notin E$.

Другими словами, если $M \cap \Gamma(M) = \varnothing$.

Множество всех независимых множеств в графе G обозначим через $\operatorname{IndSets}(G)$.

Пусть G = (V, E) — неориентированный граф.

Множество $M \subset V$ называют независимым множеством в графе G, если $\forall u,v \in M \quad \{u,v\} \notin E$.

Другими словами, если $M \cap \Gamma(M) = \varnothing$.

Множество всех независимых множеств в графе G обозначим через IndSets(G).

Рассмотрим пример.

Пусть G = (V, E) — неориентированный граф.

Множество $M\subset V$ называют независимым множеством в графе G, если $\forall u,v\in M\quad \{u,v\}\notin E.$

Другими словами, если $M \cap \Gamma(M) = \varnothing$.

Множество всех независимых множеств в графе G обозначим через IndSets(G).

$$\{1,3,4\} \in \mathsf{IndSets}(G)$$

 $\{2,5\} \in \mathsf{IndSets}(G)$

Пусть G = (V, E) — неориентированный граф.

Множество $M \subset V$ называют независимым множеством в графе G, если $\forall u, v \in M \quad \{u, v\} \notin E$.

Другими словами, если $M \cap \Gamma(M) = \varnothing$.

Множество всех независимых множеств в графе G обозначим через IndSets(G).

$$\{1,3,4\} \in \mathsf{IndSets}(G)$$

 $\{2,5\} \in \mathsf{IndSets}(G)$
 $\{2,5,6\} \in \mathsf{IndSets}(G)$

Пусть G = (V, E) — неориентированный граф.

Множество $M \subset V$ называют независимым множеством в графе G, если $\forall u, v \in M \quad \{u, v\} \notin E$.

Другими словами, если $M \cap \Gamma(M) = \varnothing$.

Множество всех независимых множеств в графе G обозначим через IndSets(G).

Независимые множества можно сравнивать по числу элементов: $\#\{2,5\} < \#\{1,3,4\}$ и по включению: $\{2,5\} \subset \{2,5,6\}$.

Формулировка задачи

Дано: неориентированный граф G(V, E).

Задача: найти максимальное по числу элементов независимое множество в графе G.

Максимальное независимое множество: $\{1,4,6,7\}$

Формулировка задачи

Дано: неориентированный граф G(V, E).

Задача: найти максимальное по числу элементов независимое множество в графе G.

Максимальное независимое множество: $\{1,4,6,7\}$

Есть и другие максимальные независимые множества:

 $\{5,6,7,8\}$

Формулировка задачи

Дано: неориентированный граф G(V, E).

Задача: найти максимальное по числу элементов независимое множество в графе G.

Максимальное независимое множество: $\{1,4,6,7\}$

Есть и другие максимальные независимые множества:

{5,6,7,8} {2,3,5,8}

План доклада

Основные определения и формулировка

Неориентированный граф, смежность Определение независимого множества Формулировка задачи и пример

Точные методы решения Алгоритм Брона-Кербоша Метод ветвей и границ

Неточные методы решения

Расширение и урезание Генетический алгоритм

Эффективность различных методов

Алгоритм Брона-Кербоша Метод ветвей и границ Генетический алгоритм

Находит все максимальные по включению независимые множества.

На каждом шаге алгоритма множество V разбито на четыре части:

Μ

 $\Gamma(M)$

K

Ρ

Находит все максимальные по включению независимые множества.

На каждом шаге алгоритма множество V разбито на четыре части:

M — текущее независимое множество;

 $\Gamma(M)$

Κ

P

Находит все максимальные по включению независимые множества.

На каждом шаге алгоритма множество V разбито на четыре части:

```
M — текущее независимое множество;
```

```
\Gamma(M) — множество вершин, смежных с M;
```

Κ

Р

Находит все максимальные по включению независимые множества.

На каждом шаге алгоритма множество V разбито на четыре части:

М — текущее независимое множество;

 $\Gamma(M)$ — множество вершин, смежных с M;

K — множество кандидатов, т. е. вершин, каждая из которых может быть добавлена в M;

Р

Находит все максимальные по включению независимые множества.

На каждом шаге алгоритма множество V разбито на четыре части:

М — текущее независимое множество;

 $\Gamma(M)$ — множество вершин, смежных с M;

K — множество кандидатов, т. е. вершин, каждая из которых может быть добавлена в M;

P — множество просмотренных вершин, каждая из которых не может быть добавлена в текущее M, так как уже добавлялась ранее.

М	K	Р	v
Ø	1, 2, 3, 4	Ø	


```
while K != \emptyset or M != \emptyset:
  if K != \varnothing:
     v = K.first
      push M, K, P, v
     M = M + \{v\}
     K = K - \Gamma(v) - \{v\}
     P = P - \Gamma(v)
   else:
     if P == \emptyset: вывод M
      pop v, P, K, M
     K = K - \{v\}
     P = P + \{v\}
```

Μ	K	Р	v
Ø	1, 2, 3, 4	Ø	1


```
while K != \emptyset or M != \emptyset:
  if K = \emptyset
     v = K.first
     push M, K, P, v
     M = M + \{v\}
     K = K - \Gamma(v) - \{v\}
     P = P - \Gamma(v)
  else:
     if P == \emptyset: вывод M
     pop v, P, K, M
     K = K - \{v\}
     P = P + \{v\}
```

М	K	Р	v
Ø	1, 2, 3, 4	Ø	1


```
while K != \emptyset or M != \emptyset:
  if K != \varnothing:
     v = K.first
      push M, K, P, v
     M = M + \{v\}
     K = K - \Gamma(v) - \{v\}
     P = P - \Gamma(v)
   else:
     if P == \emptyset: вывод M
      pop v, P, K, M
     K = K - \{v\}
     P = P + \{v\}
```

М	K	Р	v
Ø	1, 2, 3, 4	Ø	1
1			


```
while K != \emptyset or M != \emptyset:
  if K != \varnothing:
     v = K.first
     push M, K, P, v
     M = M + \{v\}
     K = K - \Gamma(v) - \{v\}
     P = P - \Gamma(v)
   else:
     if P == \emptyset: вывод M
      pop v, P, K, M
     K = K - \{v\}
     P = P + \{v\}
```

М	K	P	v
Ø	1, 2, 3, 4	Ø	1
1	2		


```
while K != \emptyset or M != \emptyset:
  if K != \varnothing:
     v = K.first
     push M, K, P, v
     M = M + \{v\}
     K = K - \Gamma(v) - \{v\}
     P = P - \Gamma(v)
   else:
     if P == \emptyset: вывод M
      pop v, P, K, M
     K = K - \{v\}
     P = P + \{v\}
```

М	K	P	v
Ø	1, 2, 3, 4	Ø	1
1	2	Ø	


```
while K != \emptyset or M != \emptyset:
  if K != \varnothing:
     v = K.first
     push M, K, P, v
     M = M + \{v\}
     K = K - \Gamma(v) - \{v\}
     P = P - \Gamma(v)
   else:
     if P == \emptyset: вывод M
      pop v, P, K, M
     K = K - \{v\}
     P = P + \{v\}
```

М	K	P	v
Ø	1, 2, 3, 4	Ø	1
1	2	Ø	


```
while K = \emptyset or M = \emptyset:
  if K != \varnothing:
     v = K.first
     push M, K, P, v
     M = M + \{v\}
     K = K - \Gamma(v) - \{v\}
     P = P - \Gamma(v)
  else:
     if P == \emptyset: вывод M
     pop v, P, K, M
     K = K - \{v\}
     P = P + \{v\}
```

М	K	P	v
Ø	1, 2, 3, 4	Ø	1
1	2	Ø	2


```
while K != \emptyset or M != \emptyset:
  if K != \varnothing:
     v = K.first
     push M, K, P, v
     M = M + \{v\}
     K = K - \Gamma(v) - \{v\}
     P = P - \Gamma(v)
   else:
     if P == \emptyset: вывод M
      pop v, P, K, M
     K = K - \{v\}
     P = P + \{v\}
```

М	K	P	v
Ø	1, 2, 3, 4	Ø	1
1	2	Ø	2


```
while K != \emptyset or M != \emptyset:
  if K != \varnothing:
     v = K.first
      push M, K, P, v
     M = M + \{v\}
     K = K - \Gamma(v) - \{v\}
     P = P - \Gamma(v)
   else:
     if P == \emptyset: вывод M
      pop v, P, K, M
     K = K - \{v\}
     P = P + \{v\}
```

М	K	P	V
Ø	1, 2, 3, 4	Ø	1
1	2	Ø	2
1, 2			


```
while K != \emptyset or M != \emptyset:
  if K != \varnothing:
     v = K.first
     push M, K, P, v
     M = M + \{v\}
     K = K - \Gamma(v) - \{v\}
     P = P - \Gamma(v)
   else:
     if P == \emptyset: вывод M
      pop v, P, K, M
     K = K - \{v\}
     P = P + \{v\}
```

М	K	P	v
Ø	1, 2, 3, 4	Ø	1
1	2	Ø	2
1, 2	Ø		

 $M = M + \{v\}$ $K = K - \Gamma(v) - \{v\}$ $P = P - \Gamma(v)$ else:
if $P == \emptyset$: вывод Mpop v, P, K, M $K = K - \{v\}$

 $P = P + \{v\}$

М	K	P	v
Ø	1, 2, 3, 4	Ø	1
1	2	Ø	2
1, 2	Ø	Ø	

 $K = K - \Gamma(v) - \{v\}$ $P = P - \Gamma(v)$

$$K = K - \{v\}$$
$$P = P + \{v\}$$

М	K	P	v
Ø	1, 2, 3, 4	Ø	1
1	2	Ø	2
1, 2	Ø	Ø	

else:

se:
if
$$P == \emptyset$$
: вывод M
pop v , P , K , M
 $K = K - \{v\}$
 $P = P + \{v\}$

 $P = P - \Gamma(v)$

	М	K	l P	l v
	Ø	1, 2, 3, 4	Ø	1
	1	2	Ø	2
>	1, 2	Ø	Ø	


```
while K != \emptyset or M != \emptyset:
  if K != \varnothing:
     v = K.first
     push M, K, P, v
     M = M + \{v\}
     K = K - \Gamma(v) - \{v\}
     P = P - \Gamma(v)
   else:
     if P == \emptyset: вывод M
      pop v, P, K, M
     K = K - \{v\}
     P = P + \{v\}
```

Вывод: {1,2}

	М	K	P	v
	Ø	1, 2, 3, 4	Ø	1
\longrightarrow	1	2	Ø	2
>	1, 2	Ø	Ø	
	1			


```
while K != \emptyset or M != \emptyset:
  if K = \emptyset
     v = K.first
     push M, K, P, v
     M = M + \{v\}
     K = K - \Gamma(v) - \{v\}
     P = P - \Gamma(v)
  else:
     if P == \emptyset: вывод M
     pop v, P, K, M
     K = K - \{v\}
     P = P + \{v\}
```

	М	K	P	v
	Ø	1, 2, 3, 4	Ø	1
\longrightarrow	1	2	Ø	2
>	1, 2	Ø	Ø	
	1	Ø		


```
while K != \emptyset or M != \emptyset:
  if K = \emptyset
     v = K.first
     push M, K, P, v
     M = M + \{v\}
     K = K - \Gamma(v) - \{v\}
     P = P - \Gamma(v)
  else:
     if P == \emptyset: вывод M
     pop v, P, K, M
     K = K - \{v\}
     P = P + \{v\}
```

	М	K	P	v
	Ø	1, 2, 3, 4	Ø	1
\longrightarrow	1	2	Ø	2
>	1, 2	Ø	Ø	
	1	Ø	2	


```
while K != \emptyset or M != \emptyset:
  if K = \emptyset
     v = K.first
     push M, K, P, v
     M = M + \{v\}
     K = K - \Gamma(v) - \{v\}
     P = P - \Gamma(v)
  else:
     if P == \emptyset: вывод M
     pop v, P, K, M
     K = K - \{v\}
     P = P + \{v\}
```

	М	K	P	v
	Ø	1, 2, 3, 4	Ø	1
	1	2	Ø	2
>	1, 2	Ø	Ø	
	1	Ø	2	


```
while K != \emptyset or M != \emptyset:
  if K != \varnothing:
     v = K.first
      push M, K, P, v
     M = M + \{v\}
     K = K - \Gamma(v) - \{v\}
     P = P - \Gamma(v)
   else:
     if P == \emptyset: вывод M
      pop v, P, K, M
     K = K - \{v\}
     P = P + \{v\}
```

	М	K	P	v
\rightarrow	Ø	1, 2, 3, 4	Ø	1
	1	2	Ø	2
>	1, 2	Ø	Ø	
	1	Ø	2	
	Ø			


```
while K != \emptyset or M != \emptyset:
  if K = \emptyset
     v = K.first
     push M, K, P, v
     M = M + \{v\}
     K = K - \Gamma(v) - \{v\}
     P = P - \Gamma(v)
  else:
     if P == \emptyset: вывод M
     pop v, P, K, M
     K = K - \{v\}
     P = P + \{v\}
```

	М	K	P	v
\rightarrow	Ø	1, 2, 3, 4	Ø	1
	1	2	Ø	2
>	1, 2	Ø	Ø	
	1	Ø	2	
	Ø	2, 3, 4		


```
while K != \emptyset or M != \emptyset:
  if K = \emptyset
     v = K.first
     push M, K, P, v
     M = M + \{v\}
     K = K - \Gamma(v) - \{v\}
     P = P - \Gamma(v)
  else:
     if P == \emptyset: вывод M
     pop v, P, K, M
     K = K - \{v\}
     P = P + \{v\}
```

	М	K	P	v
\longrightarrow	Ø	1, 2, 3, 4	Ø	1
	1	2	Ø	2
>	1, 2	Ø	Ø	
	1	Ø	2	
	Ø	2, 3, 4	1	


```
while K != \emptyset or M != \emptyset:
  if K != \varnothing:
     v = K.first
      push M, K, P, v
     M = M + \{v\}
     K = K - \Gamma(v) - \{v\}
     P = P - \Gamma(v)
   else:
     if P == \emptyset: вывод M
      pop v, P, K, M
     K = K - \{v\}
     P = P + \{v\}
```

	М	K	P	v
	Ø	1, 2, 3, 4	Ø	1
	1	2	Ø	2
▶	1, 2	Ø	Ø	
	1	Ø	2	
	Ø	2, 3, 4	1	


```
while K != \emptyset or M != \emptyset:
  if K != \varnothing:
     v = K.first
      push M, K, P, v
     M = M + \{v\}
     K = K - \Gamma(v) - \{v\}
     P = P - \Gamma(v)
   else:
     if P == \emptyset: вывод M
      pop v, P, K, M
     K = K - \{v\}
     P = P + \{v\}
```

	Μ	K	Р	v
	Ø	1, 2, 3, 4	Ø	1
	1	2	Ø	2
▶	1, 2	Ø	Ø	
	1	Ø	2	
	Ø	2, 3, 4	1	2


```
while K != \emptyset or M != \emptyset:
  if K != \varnothing:
     v = K.first
      push M, K, P, v
     M = M + \{v\}
     K = K - \Gamma(v) - \{v\}
     P = P - \Gamma(v)
   else:
     if P == \emptyset: вывод M
      pop v, P, K, M
     K = K - \{v\}
     P = P + \{v\}
```

	М	K	Р	v
	Ø	1, 2, 3, 4	Ø	1
	1	2	Ø	2
▶	1, 2	Ø	Ø	
	1	Ø	2	
	Ø	2, 3, 4	1	2


```
while K != \emptyset or M != \emptyset:
  if K = \emptyset
     v = K.first
     push M, K, P, v
     M = M + \{v\}
     K = K - \Gamma(v) - \{v\}
     P = P - \Gamma(v)
  else:
     if P == \emptyset: вывод M
     pop v, P, K, M
     K = K - \{v\}
     P = P + \{v\}
```

	М	K	Р	v
	Ø	1, 2, 3, 4	Ø	1
	1	2	Ø	2
•	1, 2	Ø	Ø	
	1	Ø	2	
	Ø	2, 3, 4	1	2
	2	3	1	3


```
while K := \emptyset or M := \emptyset:

if K := \emptyset:

v = K.first

push M, K, P, v

M = M + \{v\}

K = K - \Gamma(v) - \{v\}

P = P - \Gamma(v)

else:
```

if
$$P == \emptyset$$
: вывод M pop v , P , K , M $K = K - \{v\}$ $P = P + \{v\}$

	М	K	Р	v
	Ø	1, 2, 3, 4	Ø	1
	1	2	Ø	2
▶	1, 2	Ø	Ø	
	1	Ø	2	
	Ø	2, 3, 4	1	2
	2	3	1	3
▶	2, 3	Ø	Ø	


```
if K := \emptyset or M := \emptyset

if K != \emptyset:

v = K.first

push M, K, P, v

M = M + \{v\}

K = K - \Gamma(v) - \{v\}

P = P - \Gamma(v)

else:
```

	M	K	P	v
	Ø	1, 2, 3, 4	Ø	1
	1	2	Ø	2
>	1, 2	Ø	Ø	
	1	Ø	2	
	Ø	2, 3, 4	1	2
\rightarrow	2	3	1	3
>	2, 3	Ø	Ø	
	2	Ø	1, 3	


```
while K \stackrel{!}{=} \varnothing or M \stackrel{!}{=} \varnothing:

if K \stackrel{!}{=} \varnothing:

v = K.first

push M, K, P, v

M = M + \{v\}

K = K - \Gamma(v) - \{v\}

P = P - \Gamma(v)
```

else:

if
$$P == \emptyset$$
: вывод M pop v , P , K , M $K = K - \{v\}$ $P = P + \{v\}$

	Μ	K	P	v
	Ø	1, 2, 3, 4	Ø	1
	1	2	Ø	2
>	1, 2	Ø	Ø	
	1	Ø	2	
\longrightarrow	Ø	2, 3, 4	1	2
	2	3	1	3
•	2, 3	Ø	Ø	
	2	Ø	1, 3	
	Ø	3, 4	1, 2	3

while K !=
$$\varnothing$$
 or M != \varnothing :
if K != \varnothing :
 $v = K.first$
push M, K, P, v
 $M = M + \{v\}$
 $K = K - \Gamma(v) - \{v\}$
 $P = P - \Gamma(v)$

else:

if
$$P == \emptyset$$
: вывод M pop v , P , K , M $K = K - \{v\}$ $P = P + \{v\}$

	М	K	P	l v
	Ø	1, 2, 3, 4	Ø	1
	1	2	Ø	2
>	1, 2	Ø	Ø	
	1	Ø	2	
	Ø 2	2, 3, 4	1	2
	2	3	1	3
>	2, 3	Ø	Ø	
	2	Ø	1, 3	
	Ø	3, 4	1, 2	3
	3	Ø	2	

while
$$K := \emptyset$$
 or $M := \emptyset$:
if $K := \emptyset$:
 $v = K$.first
push M , K , P , v
 $M = M + \{v\}$
 $K = K - \Gamma(v) - \{v\}$
 $P = P - \Gamma(v)$
else:

if
$$P == \emptyset$$
: вывод M pop v , P , K , M $K = K - \{v\}$ $P = P + \{v\}$

Μ	K	P	v
Ø	1, 2, 3, 4	Ø	1
1	2	Ø	2
1, 2	Ø	Ø	
1	Ø	2	
Ø	2, 3, 4	1	2
2	3	1	3
2, 3	Ø	Ø	
2	Ø	1, 3	
Ø	3, 4	1, 2	3
3	Ø	2	
Ø	4	1, 2, 3	4
	Ø 1 1, 2 1 Ø 2 2, 3 2 Ø 3	Ø 1, 2, 3, 4 1 2 1, 2 Ø 1 Ø Ø 2, 3, 4 2 3 2, 3 Ø Ø 3, 4 3 Ø	Ø 1, 2, 3, 4 Ø 1 2 Ø 1, 2 Ø Ø 1 Ø 2 Ø 2, 3, 4 1 2 3 1 2, 3 Ø Ø 2 Ø 1, 3 Ø 3, 4 1, 2 3 Ø 2

while $K != \emptyset$ or $M != \emptyset$: if $K = \emptyset$ v = K.firstpush M, K, P, v $M = M + \{v\}$ $K = K - \Gamma(v) - \{v\}$ $P = P - \Gamma(v)$ else: if $P == \emptyset$: вывод Mpop v, P, K, M

 $K = K - \{v\}$

 $P = P + \{v\}$

	Μ	K	P	v
	Ø	1, 2, 3, 4	Ø	1
	1	2	Ø	2
>	1, 2	Ø	Ø	
	1	Ø	2	
	Ø	2, 3, 4	1	2
	2	3	1	3
>	2, 3	Ø	Ø	
	2	Ø	1, 3	
	Ø	3, 4	1, 2	3
	3	Ø	2	
	Ø	4	1, 2, 3	4
>	4	Ø	Ø	

while K
$$!=\varnothing$$
 or M $!=\varnothing$:

if K $!=\varnothing$:

 $v=K.$ first

push M, K, P, v
 $M=M+\{v\}$
 $K=K-\Gamma(v)-\{v\}$
 $P=P-\Gamma(v)$

else:

if $P==\varnothing$: вывод M

pop v , P, K, M

 $K=K-\{v\}$

 $P = P + \{v\}$

Вывод: {1,2}, {2,3}, {4}

	Μ	K	P	v
	Ø	1, 2, 3, 4	Ø	1
	1	2	Ø	2
>	1, 2	Ø	Ø	
	1	Ø	2	
	Ø	2, 3, 4	1	2
	2	3	1	3
>	2, 3	Ø	Ø	
	2	Ø	1, 3	
	Ø	3, 4	1, 2	3
	3	Ø	2	
\rightarrow	Ø	4	1, 2, 3	4
•	4	Ø	Ø	
	Ø	Ø	1, 2, 3, 4	

Вывод: {1,2}, {2,3}, {4}

while
$$K \mathrel{!=} \varnothing$$
 or $M \mathrel{!=} \varnothing$:

if $K \mathrel{!=} \varnothing$:

 $v = K.$ first

push M, K, P, v
 $M = M + \{v\}$
 $K = K - \Gamma(v) - \{v\}$
 $P = P - \Gamma(v)$

else:

if $P == \varnothing$: вывод M

pop v, P, K, M
 $K = K - \{v\}$
 $P = P + \{v\}$

Метод ветвей и границ: описание

static G, record = 0, $M_rec = \emptyset$

procedure MaxIndSet(M, K):

Находит максимальное независимое множество в графе G.

```
while K != \varnothing:
    v = K.first
    if \#M + \#(K - \Gamma(v)) > \text{record}:
      MaxIndSet(M + v, K - v - \Gamma(v))
    K _= v
  if #M > record:
    record = #M
    M_rec = M
Обозначения: М — текущее независимое множество;
                 К — множество кандидатов;
                 record — максимальное число элементов
                 среди просмотренных М;
                 X.first — первый элемент в X.
```

$$record = 0$$
, $M_rec = \emptyset$

$$M=\varnothing,\quad K=\{1,2,3,4,5\}$$

$$record = 0$$
, $M_rec = \emptyset$

$$M = \varnothing$$
, $K = \{1, 2, 3, 4, 5\}$

$$v = K.first$$

 $\#M + \#(K - \Gamma(v)) > record:$
 $K - \Gamma(v) = \{1, 2, 4, 5\}$
 $0 + 4 > 0$

$$record = 0$$
, $M_rec = \emptyset$

$$\label{eq:Markov} \begin{array}{ll} M = \varnothing, & K = \{1, 2, 3, 4, 5\} \\ M = \{1\}, & K = \{2, 4, 5\} \end{array}$$

$$M = M + \{v\}$$

$$K = K - \{v\} - \Gamma(v)$$

$$record = 0$$
, $M_rec = \emptyset$

$$\label{eq:Markov} \begin{array}{ll} M = \varnothing, & K = \{1, 2, 3, 4, 5\} \\ M = \{1\}, & K = \{2, 4, 5\} \end{array}$$

$$v = K.first$$

 $\#M + \#(K - \Gamma(v)) > record:$
 $K - \Gamma(v) = \{2\}$
 $1 + 1 > 0$

$$record = 0$$
, $M_rec = \emptyset$

$$\begin{array}{ll} M=\varnothing, & K=\{1,2,3,4,5\} \\ M=\{1\}, & K=\{2,4,5\} \\ M=\{1,2\}, & K=\varnothing \end{array}$$

$$M = M + \{v\}$$

$$K = K - \{v\} - \Gamma(v)$$

$$\mathsf{record} = \mathsf{2}, \qquad \mathsf{M}_{\mathsf{rec}} = \{\mathsf{1},\mathsf{2}\}$$

$$M = \varnothing$$
, $K = \{1, 2, 3, 4, 5\}$
 $M = \{1\}$, $K = \{2, 4, 5\}$
 $M = \{1, 2\}$, $M = \{1, 2\}$

$$K = K - \{v\}$$

$$\mathsf{record} = \mathsf{2}, \qquad \mathsf{M}_{\mathsf{rec}} = \{\mathsf{1},\mathsf{2}\}$$

$$M = \emptyset$$
, $K = \{1, 2, 3, 4, 5\}$
 $M = \{1\}$, $K = \{4, 5\}$

$$\mathsf{record} = \mathsf{2}, \qquad \mathsf{M}_{\mathsf{rec}} = \{\mathsf{1},\mathsf{2}\}$$

$$M = \emptyset$$
, $K = \{1, 2, 3, 4, 5\}$
 $M = \{1\}$, $K = \{4, 5\}$

$$v = K.first$$

 $\#M + \#(K - \Gamma(v)) > record:$
 $K - \Gamma(v) = \{4, 5\}$
 $1 + 2 > 2$

$$\mathsf{record} = \mathsf{2}, \qquad \mathsf{M}_{\mathsf{rec}} = \{\mathsf{1},\mathsf{2}\}$$

$$\begin{aligned} \mathsf{M} &= \varnothing, \quad \mathsf{K} &= \{1, 2, 3, 4, 5\} \\ \mathsf{M} &= \{1\}, \quad \mathsf{K} &= \{4, 5\} \\ \mathsf{M} &= \{1, 4\}, \quad \mathsf{K} &= \{5\} \end{aligned}$$

$$M = M + \{v\}$$

$$K = K - \{v\} - \Gamma(v)$$

$$\mathsf{record} = \mathsf{2}, \qquad \mathsf{M}_{\mathsf{rec}} = \{\mathsf{1},\mathsf{2}\}$$

$$\begin{aligned} \mathsf{M} &= \varnothing, \quad \mathsf{K} &= \{1,2,3,4,5\} \\ \mathsf{M} &= \{1\}, \quad \mathsf{K} &= \{4,5\} \\ \mathsf{M} &= \{1,4\}, \quad \mathsf{K} &= \{\textcolor{red}{5}\} \end{aligned}$$

$$v = K.first$$

 $\#M + \#(K - \Gamma(v)) > record:$
 $K - \Gamma(v) = \{5\}$
 $2 + 1 > 2$

$$\mathsf{record} = \mathsf{2}, \qquad \mathsf{M}_{\mathsf{rec}} = \{\mathsf{1},\mathsf{2}\}$$

$$\begin{split} \mathsf{M} &= \varnothing, \quad \mathsf{K} = \{1, 2, 3, 4, 5\} \\ \mathsf{M} &= \{1\}, \quad \mathsf{K} = \{4, 5\} \\ \mathsf{M} &= \{1, 4\}, \quad \mathsf{K} = \{5\} \\ \mathsf{M} &= \{1, 4, 5\}, \quad \mathsf{K} = \varnothing \end{split}$$

$$M = M + \{v\}$$

$$K = K - \{v\} - \Gamma(v)$$

$$\mathsf{record} = \mathsf{3}, \qquad \mathsf{M_rec} = \{\mathsf{1},\mathsf{4},\mathsf{5}\}$$

$$\begin{split} M &= \varnothing, \quad K = \{1,2,3,4,5\} \\ M &= \{1\}, \quad K = \{4,5\} \\ M &= \{1,4\}, \quad K = \{5\} \\ & \searrow M = \{1,4,5\}, \quad K = \varnothing \end{split}$$

$$\mathsf{K} = \mathsf{K} - \{v\}$$

$$\mathsf{record} = \mathsf{3}, \qquad \mathsf{M}_\mathsf{rec} = \{1,4,5\}$$

$$\mathsf{record} = \mathsf{3}, \qquad \mathsf{M}_{\mathsf{rec}} = \{\mathsf{1},\mathsf{4},\mathsf{5}\}$$

$$\begin{array}{ll} M = \varnothing, & K = \{1, 2, 3, 4, 5\} \\ M = \{1\}, & K = \{4, 5\} \\ & M = \{1, 4\}, & K = \varnothing \end{array}$$

$$K = K - \{v\}$$

$$\mathsf{record} = \mathsf{3}, \qquad \mathsf{M}_{\mathsf{rec}} = \{\mathsf{1},\mathsf{4},\mathsf{5}\}$$

$$\label{eq:Markov} \begin{array}{ll} M = \varnothing, & K = \{1, 2, 3, 4, 5\} \\ M = \{1\}, & K = \{5\} \end{array}$$

$$\mathsf{record} = \mathsf{3}, \qquad \mathsf{M}_{\mathsf{rec}} = \{\mathsf{1},\mathsf{4},\mathsf{5}\}$$

$$\label{eq:Markov} \begin{array}{ll} M = \varnothing, & K = \{1, 2, 3, 4, 5\} \\ M = \{1\}, & K = \{{\color{red}5}\} \end{array}$$

$$v = K.first$$

 $\#M + \#(K - \Gamma(v)) > record:$
 $K - \Gamma(v) = \{5\}$
 $1 + 1 \not> 3$
 $K = K - \{v\}$

$$\mathsf{record} = \mathsf{3}, \qquad \mathsf{M}_{\mathsf{rec}} = \{1, \mathsf{4}, \mathsf{5}\}$$

$$\label{eq:mass_mass_mass} \begin{array}{ll} M = \varnothing, & K = \{1, 2, 3, 4, 5\} \\ M = \{1\}, & K = \varnothing \end{array}$$

$$\mathsf{record} = \mathsf{3}, \qquad \mathsf{M}_{\mathsf{rec}} = \{\mathsf{1},\mathsf{4},\mathsf{5}\}$$

$$M = \emptyset$$
, $K = \{1, 2, 3, 4, 5\}$
 $M = \{1\}$, $M = \{1\}$

$$K = K - \{v\}$$

$$\mathsf{record} = \mathsf{3}, \qquad \mathsf{M}_{\mathsf{rec}} = \{\mathsf{1},\mathsf{4},\mathsf{5}\}$$

$$M = \emptyset$$
, $K = \{2, 3, 4, 5\}$

record = 3,
$$M_rec = \{1, 4, 5\}$$

$$M = \varnothing$$
, $K = \{2, 3, 4, 5\}$

$$v = K.first$$

 $\#M + \#(K - \Gamma(v)) > record:$
 $K - \Gamma(v) = \{2\}$
 $0 + 1 \not> 3$
 $K = K - \{v\}$

$$\mathsf{record} = \mathsf{3}, \qquad \mathsf{M}_{\mathsf{rec}} = \{\mathsf{1},\mathsf{4},\mathsf{5}\}$$

$$\mathsf{M}=\varnothing\text{, }\mathsf{K}=\{3,4,5\}$$

$$\mathsf{record} = \mathsf{3}, \qquad \mathsf{M}_{\mathsf{rec}} = \{\mathsf{1},\mathsf{4},\mathsf{5}\}$$

$$\mathsf{M}=\varnothing,\quad \mathsf{K}=\{\textcolor{red}{3},4,5\}$$

v = K.first
#M + #(K -
$$\Gamma(v)$$
) > record:
K - $\Gamma(v)$ = {3, 4, 5}
0 + 3 $\not>$ 3
K = K - { v }

$$\mathsf{record} = \mathsf{3}, \qquad \mathsf{M}_\mathsf{rec} = \{\mathsf{1},\mathsf{4},\mathsf{5}\}$$

$$\mathsf{M}=\varnothing,\quad \mathsf{K}=\{4,5\}$$

$$\mathsf{record} = \mathsf{3}, \qquad \mathsf{M_rec} = \{\mathsf{1},\mathsf{4},\mathsf{5}\}$$

$$\mathsf{M}=\varnothing,\quad \mathsf{K}=\{\textcolor{red}{4},5\}$$

v = K.first
#M + #(K -
$$\Gamma(v)$$
) > record:
K - $\Gamma(v)$ = {4,5}
0 + 2 $\not>$ 3
K = K - { v }

$$\mathsf{record} = \mathsf{3}, \qquad \mathsf{M}_{\mathsf{rec}} = \{\mathsf{1},\mathsf{4},\mathsf{5}\}$$

$$M=\varnothing, \quad K=\{5\}$$

$$\mathsf{record} = \mathsf{3}, \qquad \mathsf{M}_\mathsf{rec} = \{\mathsf{1},\mathsf{4},\mathsf{5}\}$$

$$\mathsf{M}=\varnothing,\quad \mathsf{K}=\{\textcolor{red}{5}\}$$

$$v = K.first$$

 $\#M + \#(K - \Gamma(v)) > record:$
 $K - \Gamma(v) = \{5\}$
 $0 + 1 \not> 3$
 $K = K - \{v\}$

$$\mathsf{record} = \mathsf{3}, \qquad \mathsf{M}_\mathsf{rec} = \{\mathsf{1},\mathsf{4},\mathsf{5}\}$$

$$M = \emptyset$$
, $K = \emptyset$

Вывод: {1, 4, 5}.

$$\mathsf{record} = \mathsf{3}, \qquad \mathsf{M}_{\mathsf{rec}} = \{\mathsf{1},\mathsf{4},\mathsf{5}\}$$

$$M = \varnothing$$
, $K = \varnothing$

Вывод: {1, 4, 5}.

В этом примере показана типичная ситуация для МВГ: в конце работы алгоритма большинство ветвей отсекается.

Некоторые способы оптимизации МВГ

- Сделать М статической переменной (перед вызовом рекурсивной процедуры добавляем в М выбранную вершину, после выхода удаляем её из М).
- ▶ Вместо локальной переменной К хранить массив К[], где К[i] соответствуют i-му уровню рекурсии. Экономим на выделении и освобождении памяти.
- ▶ На каждом уровне рекурсии элементы множества К упорядочивать по числу соседей и выбирать их по очереди. Оказывается, выгоднее упорядочивать по убыванию числа соседей. При таком подходе придётся постоянно пересчитывать для каждой вершины из К число её соседей в К.

План доклада

Основные определения и формулировка

Неориентированный граф, смежность Определение независимого множества Формулировка задачи и пример

Точные методы решения

Алгоритм Брона-Кербоша Метод ветвей и границ

Неточные методы решения Расширение и урезание Генетический алгоритм

Эффективность различных методов

Алгоритм Брона-Кербоша Метод ветвей и границ Генетический алгоритм

Дано: граф G(V; E), M — независимое множество.

Цель: расширить M до какого-нибудь максимального по включению независимого множества.

Метод: пока $K \neq \varnothing$, добавлять в M случайную вершину из K.

Здесь K — множество вершин, не принадлежащих M и несмежных с M: $K = V \setminus (M \cup \Gamma(M))$.

Дано: граф G(V; E), M — независимое множество.

Цель: расширить M до какого-нибудь максимального по включению независимого множества.

Метод: пока $K \neq \varnothing$, добавлять в M случайную вершину из K.

Здесь K — множество вершин, не принадлежащих M и несмежных с M: $K = V \setminus (M \cup \Gamma(M))$.

Рассмотрим пример.

Дано: граф G(V; E), M — независимое множество.

Цель: расширить M до какого-нибудь максимального по включению независимого множества.

Метод: пока $K \neq \varnothing$, добавлять в M случайную вершину из K.

Здесь K — множество вершин, не принадлежащих M и несмежных с M: $K = V \setminus (M \cup \Gamma(M))$.

Формируем множество кандидатов.

Дано: граф G(V; E), M — независимое множество.

Цель: расширить M до какого-нибудь максимального по включению независимого множества.

Метод: пока $K \neq \varnothing$, добавлять в M случайную вершину из K.

Здесь K — множество вершин, не принадлежащих M и несмежных с M: $K = V \setminus (M \cup \Gamma(M))$.

Случайно выбираем вершину из K.

Дано: граф G(V; E), M — независимое множество.

Цель: расширить M до какого-нибудь максимального по включению независимого множества.

Метод: пока $K \neq \varnothing$, добавлять в M случайную вершину из K.

Здесь K — множество вершин, не принадлежащих M и несмежных с M: $K = V \setminus (M \cup \Gamma(M))$.

Добавляем выбранную вершину в M.

Дано: граф G(V; E), M — независимое множество.

Цель: расширить M до какого-нибудь максимального по включению независимого множества.

Метод: пока $K \neq \varnothing$, добавлять в M случайную вершину из K.

Здесь K — множество вершин, не принадлежащих M и несмежных с M: $K = V \setminus (M \cup \Gamma(M))$.

Vдаляем из K выбранную вершину и вершины, смежные с ней.

Дано: граф G(V; E), M — независимое множество.

Цель: расширить M до какого-нибудь максимального по включению независимого множества.

Метод: пока $K \neq \varnothing$, добавлять в M случайную вершину из K.

Здесь K — множество вершин, не принадлежащих M и несмежных с M: $K = V \setminus (M \cup \Gamma(M))$.

Случайно выбираем вершину из K.

Дано: граф G(V; E), M — независимое множество.

Цель: расширить M до какого-нибудь максимального по включению независимого множества.

Метод: пока $K \neq \varnothing$, добавлять в M случайную вершину из K.

Здесь K — множество вершин, не принадлежащих M и несмежных с M: $K = V \setminus (M \cup \Gamma(M))$.

Добавляем выбранную вершину в M.

Дано: граф G(V; E), M — независимое множество.

Цель: расширить M до какого-нибудь максимального по включению независимого множества.

Метод: пока $K \neq \varnothing$, добавлять в M случайную вершину из K.

Здесь K — множество вершин, не принадлежащих M и несмежных с M: $K = V \setminus (M \cup \Gamma(M))$.

Vдаляем из K выбранную вершину и вершины, смежные с ней.

Дано: граф G(V; E), M — независимое множество.

Цель: расширить M до какого-нибудь максимального по включению независимого множества.

Метод: пока $K \neq \varnothing$, добавлять в M случайную вершину из K.

Здесь K — множество вершин, не принадлежащих M и несмежных с M: $K = V \setminus (M \cup \Gamma(M))$.

Оставшуюся вершину в K добавляем в M.

Дано: граф G(V; E), M — независимое множество.

Цель: расширить M до какого-нибудь максимального по включению независимого множества.

Метод: пока $K \neq \varnothing$, добавлять в M случайную вершину из K.

Здесь K — множество вершин, не принадлежащих M и несмежных с M: $K = V \setminus (M \cup \Gamma(M))$.

Ответ: {1, 4, 6, 7, 8}.

Дано: граф G = (V, E), M — независимое множество.

Цель: расширить M до какого-нибудь максимального по включению независимого множества.

Метод: пока $K \neq \emptyset$, добавлять в M ту вершину из K, которая имеет наименьшее число соседей среди вершин множества K.

Дано: граф G = (V, E), M — независимое множество.

Цель: расширить M до какого-нибудь максимального по включению независимого множества.

Метод: пока $K \neq \emptyset$, добавлять в M ту вершину из K, которая имеет наименьшее число соседей среди вершин множества K.

Рассмотрим на примере.

Дано: граф G = (V, E), M — независимое множество.

Цель: расширить M до какого-нибудь максимального по включению независимого множества.

Метод: пока $K \neq \emptyset$, добавлять в M ту вершину из K, которая имеет наименьшее число соседей среди вершин множества K.

Формируем множество кандидатов K.

Дано: граф G = (V, E), M — независимое множество.

Цель: расширить M до какого-нибудь максимального по включению независимого множества.

Метод: пока $K \neq \emptyset$, добавлять в M ту вершину из K, которая имеет наименьшее число соседей среди вершин множества K.

Выбираем вершину из K с наименьшим числом соседей среди вершин этого множества.

Дано: граф G = (V, E), M — независимое множество.

Цель: расширить M до какого-нибудь максимального по включению независимого множества.

Метод: пока $K \neq \emptyset$, добавлять в M ту вершину из K, которая имеет наименьшее число соседей среди вершин множества K.

Добавляем выбранную вершину в M.

Дано: граф G = (V, E), M — независимое множество.

Цель: расширить M до какого-нибудь максимального по включению независимого множества.

Метод: пока $K \neq \emptyset$, добавлять в M ту вершину из K, которая имеет наименьшее число соседей среди вершин множества K.

Vдаляем из K выбранную вершину и смежные с ней вершины.

Дано: граф G = (V, E), M — независимое множество.

Цель: расширить M до какого-нибудь максимального по включению независимого множества.

Метод: пока $K \neq \emptyset$, добавлять в M ту вершину из K, которая имеет наименьшее число соседей среди вершин множества K.

Выбираем вершину из K с наименьшим числом соседей среди вершин этого множества.

Дано: граф G = (V, E), M — независимое множество.

Цель: расширить M до какого-нибудь максимального по включению независимого множества.

Метод: пока $K \neq \emptyset$, добавлять в M ту вершину из K, которая имеет наименьшее число соседей среди вершин множества K.

Добавляем выбранную вершину в M.

Дано: граф G = (V, E), M — независимое множество.

Цель: расширить M до какого-нибудь максимального по включению независимого множества.

Метод: пока $K \neq \emptyset$, добавлять в M ту вершину из K, которая имеет наименьшее число соседей среди вершин множества K.

Vдаляем из K выбранную вершину и смежные с ней вершины.

Дано: граф G = (V, E), M — независимое множество.

Цель: расширить M до какого-нибудь максимального по включению независимого множества.

Метод: пока $K \neq \emptyset$, добавлять в M ту вершину из K, которая имеет наименьшее число соседей среди вершин множества K.

Выбираем вершину из K с наименьшим числом соседей среди вершин этого множества.

Дано: граф G = (V, E), M — независимое множество.

Цель: расширить M до какого-нибудь максимального по включению независимого множества.

Метод: пока $K \neq \emptyset$, добавлять в M ту вершину из K, которая имеет наименьшее число соседей среди вершин множества K.

Добавляем выбранную вершину в M.

Дано: граф G = (V, E), M — независимое множество.

Цель: расширить M до какого-нибудь максимального по включению независимого множества.

Метод: пока $K \neq \emptyset$, добавлять в M ту вершину из K, которая имеет наименьшее число соседей среди вершин множества K.

Vдаляем из K выбранную вершину и смежные с ней вершины.

Жадное расширение

Дано: граф G = (V, E), M — независимое множество.

Цель: расширить M до какого-нибудь максимального по включению независимого множества.

Метод: пока $K \neq \emptyset$, добавлять в M ту вершину из K, которая имеет наименьшее число соседей среди вершин множества K.

Ответ: $\{1, 6, 7, 8, 9\}$

Дано: граф G = (V, E), множество M ($M \subset V$).

Цель: урезать M до независимого множества.

Метод: пока $M \notin \operatorname{IndSets}(G)$, удалять из множества M вершину, имеющую наибольшее число соседей в M.

Дано: граф G=(V,E), множество M ($M\subset V$).

Цель: урезать M до независимого множества.

Метод: пока $M \notin IndSets(G)$, удалять из множества M вершину, имеющую наибольшее число соседей в M.

Рассмотрим пример.

Дано: граф G = (V, E), множество M ($M \subset V$).

Цель: урезать M до независимого множества.

Метод: пока $M \notin IndSets(G)$, удалять из множества M вершину, имеющую наибольшее число соседей в M.

Выбираем вершину с наибольшим числом соседей в M.

Дано: граф G=(V,E), множество M ($M\subset V$).

Цель: урезать M до независимого множества.

Метод: пока $M \notin IndSets(G)$, удалять из множества M вершину, имеющую наибольшее число соседей в M.

Удаляем из M выбранную вершину.

Дано: граф G = (V, E), множество M ($M \subset V$).

Цель: урезать M до независимого множества.

Метод: пока $M \notin IndSets(G)$, удалять из множества M вершину, имеющую наибольшее число соседей в M.

Выбираем вершину с наибольшим числом соседей в M.

Дано: граф G = (V, E), множество M ($M \subset V$).

Цель: урезать M до независимого множества.

Метод: пока $M \notin \operatorname{IndSets}(G)$, удалять из множества M вершину, имеющую наибольшее число соседей в M.

Удаляем из M выбранную вершину.

Дано: граф G = (V, E), множество M ($M \subset V$).

Цель: урезать M до независимого множества.

Метод: пока $M \notin IndSets(G)$, удалять из множества M вершину, имеющую наибольшее число соседей в M.

У вершин из M нет соседей среди элементов этого множества.

Дано: граф G = (V, E), множество M ($M \subset V$).

Цель: урезать M до независимого множества.

Метод: пока $M \notin IndSets(G)$, удалять из множества M вершину, имеющую наибольшее число соседей в M.

Ответ: ${3,7,8}$.

Генетический алгоритм: основные объекты

Хромосома (особь) — независимое множество вершин графа; хранится в виде двоичного вектора, длина которого равна числу вершин графа (на i-ом месте стоит 1, если i-ая вершина принадлежит множеству).

Приспособленность хромосомы — число вершин в независимом множестве.

Популяция хранится как упорядоченный массив хромосом. Хромосомы упорядочены по приспособленности, а хромосомы с одинаковой приспособленностью — лексикографически. Обеспечивается уникальность хромосом.

Генетический алгоритм: схема алгоритма

```
Создать начальную популяцию
Для t = 1...T (T — число поколений):
    Для i = 1 \dots NP/2 (NP — число особей):
        Случайно выбрать две особи
        Скрестить выбранные особи
        Применить к потомкам метод урезания и расширения
        Поместить потомков во множество потомков
    Для i = 1 ... NP:
        Мутировать i-ую особь
        Применить к мутанту метод урезания и расширения
        Поместить мутанта во множество мутантов
    Добавить всех потомков и мутантов в популяцию
    Отсортировать популяцию и удалить дубликаты
    Провести отбор усечением
```

1-й способ. Мутация случайного числа генов.

Дана максимальная доля μ инвертируемых генов.

Случайно генерируем число m (0 \leq m < n \cdot μ).

1-й способ. Мутация случайного числа генов.

Дана максимальная доля μ инвертируемых генов.

Случайно генерируем число m (0 \leq m < n \cdot μ).

$$\{2,4,5,8\} \rightleftharpoons 01011001$$

1-й способ. Мутация случайного числа генов.

Дана максимальная доля μ инвертируемых генов.

Случайно генерируем число m (0 \leqslant m < n \cdot μ).

$$\{2,4,5,8\} \rightleftharpoons 01011001$$

m = 3, k = 6, 3, 6

1-й способ. Мутация случайного числа генов.

Дана максимальная доля μ инвертируемых генов.

Случайно генерируем число m (0 \leqslant m < n \cdot μ).

$$\{2,4,5,8\} \rightleftharpoons 01\overline{0}11\overline{0}01$$

 $m = 3, k = 6, 3, 6$

1-й способ. Мутация случайного числа генов.

Дана максимальная доля μ инвертируемых генов.

Случайно генерируем число $m \ (0 \leqslant m < n \cdot \mu)$.

1-й способ. Мутация случайного числа генов.

Дана максимальная доля μ инвертируемых генов.

Случайно генерируем число $m \ (0 \leqslant m < n \cdot \mu)$.

Случайно выбираем и инвертируем m генов.

$$\{2,4,5,8\} \rightleftharpoons 01\overline{0}11\overline{0}01 \quad \mapsto \quad 01111001 \leftrightharpoons \{2,3,4,5,8\}$$

$$m=3, \quad k=6, \, 3, \, 6$$

2-й способ. Однородная мутация.

1-й способ. Мутация случайного числа генов.

Дана максимальная доля μ инвертируемых генов.

Случайно генерируем число m (0 \leqslant m < n \cdot μ).

Случайно выбираем и инвертируем m генов.

$$\{2,4,5,8\} \rightleftharpoons 01\overline{0}11\overline{0}01 \quad \mapsto \quad 01111001 \leftrightharpoons \{2,3,4,5,8\}$$

$$m=3, \quad k=6, 3, 6$$

2-й способ. Однородная мутация.

$$\{2,4,5,8\} \rightleftharpoons 01011001$$

1-й способ. Мутация случайного числа генов.

Дана максимальная доля μ инвертируемых генов.

Случайно генерируем число m (0 \leqslant m < n \cdot μ).

Случайно выбираем и инвертируем m генов.

$$\{2,4,5,8\} \rightleftharpoons 01\overline{0}11\overline{0}01 \quad \mapsto \quad 01111001 \leftrightharpoons \{2,3,4,5,8\}$$

$$m=3, \quad k=6, 3, 6$$

2-й способ. Однородная мутация.

$$\{2,4,5,8\} \rightleftharpoons 0\overline{1}011\overline{0}01$$
 инвертируем? FTFFTFF

1-й способ. Мутация случайного числа генов.

Дана максимальная доля μ инвертируемых генов.

Случайно генерируем число \mathtt{m} (0 \leqslant \mathtt{m} < $\mathtt{n} \cdot \mu$).

Случайно выбираем и инвертируем m генов.

$$\{2,4,5,8\} \rightleftharpoons 01\overline{0}11\overline{0}01 \quad \mapsto \quad 01111001 \leftrightharpoons \{2,3,4,5,8\}$$

$$m=3, \quad k=6, 3, 6$$

2-й способ. Однородная мутация.

$$\{2,4,5,8\} \rightleftharpoons 0\overline{1}011\overline{0}01 \mapsto 00011101 \leftrightarrows \{4,5,6,8\}$$
 инвертируем? FTFFTFF

1-й способ. Мутация случайного числа генов.

Дана максимальная доля μ инвертируемых генов.

Случайно генерируем число m (0 \leqslant m < n \cdot μ).

Случайно выбираем и инвертируем m генов.

$$\{2,4,5,8\} \rightleftharpoons 01\overline{0}11\overline{0}01 \mapsto 01111001 \leftrightharpoons \{2,3,4,5,8\}$$

m = 3, k = 6, 3, 6

2-й способ. Однородная мутация.

Каждый ген инвертируем с заданной вероятностью р.

$$\{2,4,5,8\} \rightleftharpoons 0\overline{1}011\overline{0}01 \mapsto 00011101 \leftrightarrows \{4,5,6,8\}$$
 инвертируем? FTFFTFF

Урезаем каждого мутанта жадным алгоритмом до независимого множества и дополняем его до максимального по включению независимого множества.

Одноточечное скрещивание

$$\{1,3,4,6\} \leftrightharpoons 10110100$$

$$\{1,2,5,7,8\} \leftrightharpoons 11001011$$

Одноточечное скрещивание

```
\{1,3,4,6\} \iff 10110100

k = 5

\{1,2,5,7,8\} \iff 11001011
```

Одноточечное скрещивание

$$\{1,3,4,6\} \leftrightharpoons 10110100$$

 $k = 5$ \mapsto
 $\{1,2,5,7,8\} \leftrightharpoons 11001011$

Одноточечное скрещивание

$$\{1,3,4,6\} \leftrightharpoons 10110100$$
 $10110011 \rightleftharpoons \{1,3,4,7,8\}$ $k = 5$ \mapsto $\{1,2,5,7,8\} \leftrightharpoons 11001011$ $11001100 \rightleftharpoons \{1,2,5,6\}$

Одноточечное скрещивание

Случайная точка разрыва, обмен концами:

$$\{1,3,4,6\} \leftrightharpoons 10110100$$
 $10110011 \rightleftharpoons \{1,3,4,7,8\}$ $k = 5$ \mapsto $\{1,2,5,7,8\} \leftrightharpoons 11001011$ $11001100 \rightleftharpoons \{1,2,5,6\}$

Двухточечное скрещивание

$$\{1,3,4,6\} \leftrightharpoons 10110100$$

$$\{1,2,5,7,8\} \rightleftharpoons 11001011$$

Одноточечное скрещивание

Случайная точка разрыва, обмен концами:

$$\{1,3,4,6\} \leftrightharpoons 10110100$$
 $10110011 \rightleftharpoons \{1,3,4,7,8\}$ $k = 5$ \mapsto $\{1,2,5,7,8\} \leftrightharpoons 11001011$ $11001100 \rightleftharpoons \{1,2,5,6\}$

Двухточечное скрещивание

$$\{1,3,4,6\} \iff 10110100$$

 $k_1 = 2, k_2 = 5$
 $\{1,2,5,7,8\} \iff 11001011$

Одноточечное скрещивание

Случайная точка разрыва, обмен концами:

$$\{1,3,4,6\} \leftrightharpoons 10110100$$
 $10110011 \rightleftharpoons \{1,3,4,7,8\}$ $k = 5$ \mapsto $\{1,2,5,7,8\} \leftrightharpoons 11001011$ $11001100 \rightleftharpoons \{1,2,5,6\}$

Двухточечное скрещивание

$$\{1,3,4,6\} \leftrightharpoons 10110100$$
 $k_1 = 2, k_2 = 5 \qquad \uparrow \qquad \mapsto \{1,2,5,7,8\} \rightleftharpoons 11001011$

Одноточечное скрещивание

Случайная точка разрыва, обмен концами:

$$\{1,3,4,6\} \leftrightharpoons 10110100$$
 $10110011 \rightleftharpoons \{1,3,4,7,8\}$ $k = 5$ \mapsto $\{1,2,5,7,8\} \leftrightharpoons 11001011$ $11001100 \rightleftharpoons \{1,2,5,6\}$

Двухточечное скрещивание

```
\{1,3,4,6\} \leftrightharpoons 10110100 10001100 \rightleftharpoons \{1,5,6\} k_1 = 2, k_2 = 5 \Rightarrow \{1,2,5,7,8\} \rightleftharpoons 11001011 11110011 \rightleftharpoons \{1,2,3,4,7,8\}
```

Одноточечное скрещивание

Случайная точка разрыва, обмен концами:

$$\{1,3,4,6\} \leftrightharpoons 10110100$$
 $10110011 \rightleftharpoons \{1,3,4,7,8\}$ $k = 5$ \mapsto $\{1,2,5,7,8\} \leftrightharpoons 11001011$ $11001100 \rightleftharpoons \{1,2,5,6\}$

Двухточечное скрещивание

Две случайные точки разрыва, обмен серединами:

$$\{1,3,4,6\} \leftrightharpoons 10110100$$
 $10001100 \rightleftharpoons \{1,5,6\}$ $k_1 = 2, k_2 = 5$ \Rightarrow $\{1,2,5,7,8\} \rightleftharpoons 11001011$ $11110011 \rightleftharpoons \{1,2,3,4,7,8\}$

Однородное скрещивание

$$\{1,3,4,6\} \leftrightharpoons 10110100$$

 $\{1,2,5,7,8\} \rightleftharpoons 11001011$

Одноточечное скрещивание

Случайная точка разрыва, обмен концами:

$$\{1,3,4,6\} \leftrightharpoons 10110100$$
 $10110011 \rightleftharpoons \{1,3,4,7,8\}$ $k = 5$ \mapsto $\{1,2,5,7,8\} \leftrightharpoons 11001011$ $11001100 \rightleftharpoons \{1,2,5,6\}$

Двухточечное скрещивание

Две случайные точки разрыва, обмен серединами:

$$\{1,3,4,6\} \leftrightharpoons 10110100$$
 $10001100 \rightleftharpoons \{1,5,6\}$ $k_1 = 2, k_2 = 5$ \mapsto $\{1,2,5,7,8\} \rightleftharpoons 11001011$ $11110011 \rightleftharpoons \{1,2,3,4,7,8\}$

Однородное скрещивание

```
\{1,3,4,6\} \leftrightharpoons 10110100
обмен? TFTFFTTF
\{1,2,5,7,8\} \leftrightharpoons 11001011
```

Одноточечное скрещивание

Случайная точка разрыва, обмен концами:

$$\{1,3,4,6\} \leftrightharpoons 10110100$$
 $10110011 \rightleftharpoons \{1,3,4,7,8\}$ $k = 5$ \mapsto $\{1,2,5,7,8\} \leftrightharpoons 11001011$ $11001100 \rightleftharpoons \{1,2,5,6\}$

Двухточечное скрещивание

Две случайные точки разрыва, обмен серединами:

Однородное скрещивание

$$\{1,3,4,6\} \leftrightharpoons 10110100$$

$$\downarrow \downarrow \uparrow \downarrow \uparrow \downarrow$$

$$\{1,2,5,7,8\} \rightleftharpoons 11001011$$

Одноточечное скрещивание

Случайная точка разрыва, обмен концами:

$$\{1,3,4,6\} \leftrightharpoons 10110100$$
 $10110011 \rightleftharpoons \{1,3,4,7,8\}$ $k = 5$ \mapsto $\{1,2,5,7,8\} \leftrightharpoons 11001011$ $11001100 \rightleftharpoons \{1,2,5,6\}$

Двухточечное скрещивание

Две случайные точки разрыва, обмен серединами:

$$\{1,3,4,6\} \leftrightharpoons 10110100$$
 $10001100 \rightleftharpoons \{1,5,6\}$ $k_1 = 2, k_2 = 5$ \Rightarrow $\{1,2,5,7,8\} \rightleftharpoons 11001011$ $11110011 \rightleftharpoons \{1,2,3,4,7,8\}$

Однородное скрещивание

$$\{1,3,4,6\} \leftrightharpoons \frac{10110100}{\uparrow \uparrow \uparrow \uparrow \uparrow} \mapsto 10010010 \rightleftharpoons \{1,4,7\} \\ \{1,2,5,7,8\} \rightleftharpoons \frac{11001011}{\uparrow \uparrow \uparrow \uparrow} \mapsto 11101101 \rightleftharpoons \{1,2,3,5,6,8\}$$

Входные данные:

$$G = (V, E)$$

$V = 100$
density = 50%

$$NP = 70$$

 $P_{\text{mutation}} = 0.1$

 $P_{crossover} = 0.2$

Входные данные:

$$G = (V, E)$$

$V = 100$
density = 50%

$$NP = 70$$
 $P_{mutation} = 0.1$
 $P_{crossover} = 0.2$

Входные данные:

$$G = (V, E)$$

$V = 100$
density = 50%

$$NP = 70$$
 $P_{mutation} = 0.1$
 $P_{crossover} = 0.2$

Входные данные:

$$G = (V, E)$$

$V = 100$
density = 50%

$$NP = 70$$

 $P_{\rm mutation} = 0.1$

 $\mathrm{P}_{\mathrm{crossover}} = 0.2$

Входные данные:

$$G = (V, E)$$

$V = 100$
density = 50%

$$\begin{aligned} &\text{NP} = 70 \\ &\text{P}_{\text{mutation}} = 0.1 \\ &\text{P}_{\text{crossover}} = 0.2 \end{aligned}$$

Входные данные:

$$G = (V, E)$$

$V = 100$
density = 50%

$$\begin{aligned} &\text{NP} = 70 \\ &\text{P}_{\text{mutation}} = 0.1 \\ &\text{P}_{\text{crossover}} = 0.2 \end{aligned}$$

Входные данные:

$$G = (V, E)$$

$V = 100$
density = 50%

$$NP = 70$$

 $P_{\rm mutation} = 0.1$

 $\mathrm{P}_{\mathrm{crossover}} = 0.2$

Входные данные:

$$G = (V, E)$$

$V = 100$
density = 50%

$$NP = 70$$

 $P_{\text{mutation}} = 0.1$

 $P_{\rm crossover} = 0.2$

9 вершин в максимальном независимом множестве.

План доклада

Основные определения и формулировка

Неориентированный граф, смежность Определение независимого множества Формулировка задачи и пример

Точные методы решения

Алгоритм Брона-Кербоша Метод ветвей и границ

Неточные методы решения

Расширение и урезание Генетический алгоритм

Эффективность различных методов

Алгоритм Брона-Кербоша Метод ветвей и границ Генетический алгоритм

Эффективность алгоритма Брона-Кербоша

Случайный граф	с плотнос	тью 70%.
Число вершин	Размер	Время
50	5	0.03 сек
100	6	$0.3~{ m cek}$
150	6	$1.5~{ m cek}$
Случайный граф	с плотнос	тью 50%.
Число вершин	Размер	Время
50	11	3.6 сек
100	15	7.2 мин
150	17	> 1 ч
Случайный граф	с плотнос	тью 20%.
Число вершин	Размер	Время
50	16	$50.5 \ \mathrm{cek}$
100	20	> 1 ч
150	23	> 1 प

Эффективность метода ветвей и границ

Случайный граф с плотностью 70%.						
Число вершин	Размер	Время				
50	5	0 сек				
100	6	0 сек				
150	6	$0.03 \ \mathrm{cek}$				
Случайный граф с плотностью 50%.						
Число вершин	Размер	Время				
50	11	$0.02 \ \mathrm{cek}$				
100	15	$0.4~{ m cek}$				
150	17	10 сек				
Случайный граф с плотностью 20%.						
Число вершин	Размер	Время				
50	16	$0.02 \ \mathrm{cek}$				
100	20	$3.6~{ m cek}$				
150	23	2.5 мин				

Эффективность генетического алгоритма

Случайный граф G = (V, E) с плотностью 50%.

#V	Τ	NP	P_{mutation}	$P_{crossover}$	Размер	Время
150	60	150	0.07	0.2	17(17)	20 сек
200	60	200	0.06	0.2	16 (17)	$40 \ \mathrm{cek}$

Случайный граф G = (V, E) с плотностью 30%.

#V	Τ	NP	$P_{mutation}$	$P_{crossover}$	Размер	Время
150	60	150	0.06	0.2	16 (16)	19 сек
200	60	200	0.07	0.2	17 (19)	$46 \ \mathrm{cek}$

Тестовый граф frb30-15-1.mis в DIMACS формате.

#V	Τ	NP	$P_{mutation}$	$P_{crossover}$	Размер	Время
450	10	600	0.1	0.2	24 (30)	2.6 мин

Спасибо за внимание!