

Computer Sciences Faculty University of Murcia

Data driven modeling for energy consumption prediction in smart buildings

Big Data 2017. BDA-IoT Workshop

Aurora González-Vidal, Alfonso P. Ramallo-González, Fernando Terroso-Sáenz, Antonio F. Skarmeta {aurora.gonzalez2, alfonsop.ramallo, fterroso, skarmeta}@um.es

Content

Introduction

Objective Smart environments

Related work

Methodology

Inputs consideration Grey box approach Black box approach Metrics

Use case

Description Results

Discussion and conclusions

Introduction

Objective

- ➤ To develop a methodology in order to generate predictive models related to the **energy efficiency** in smart buildings.
- ► Application: evaluation (testing the effectiveness) of an efficiency plan (EM&V)
- Comparison of two approaches: black box (data driven) and grey box

Smart environments

The Internet of Things (IoT) has provided a great scenario where large amounts of data can be collected and analysed using big data analytic techniques allowing the emergence of:

- Smart cities,
- Smart buildings

Related work

Related work

Methodology

The considered inputs are goal dependent

Thermal network model

Resistor-capacitor network

State-space model

$$\begin{cases} x'(t) = Ax(t) + Bu(t) \\ y(t) = Cx(t) + Du(t) \end{cases}$$

Black box

Our process includes:

- Cleaning and description of the data
- ▶ Model definition: time series as input
- Preprocessing
- Validation and training
 - 1. Support Vector Regressor (SVR)
 - 2. Regression Forest (RF)
 - 3. Extreme Gradient Boosting (XGB)
- Evaluation

Baseline black box

- Time of Week and Temperature (TWT): time of the week effect + piecewise continuous temperature effect
 - Accuracy
 - Low complexity
 - Low computational cost

T	$T_{c,1}$	$T_{c,2}$	$T_{c,3}$	$T_{c,4}$	$T_{c,5}$	$T_{c,6}$
2	2	0	0	0	0	0
18	10	8	0	0	0	0
32	10	10	10	2	0	0
47	10	10	10	10	7	0
58	10	10	10	10	10	8

$$load(i) = \alpha_i + \sum_{j=1}^{6} \beta_j T_{c,j}(i)$$

- ► Gaussian Process modelling
 - High flexibility: it uses the covariance matrix rather than the algebraic structure of the input—output
 - Bayesian setting: quantify uncertainty

Metrics

► Model accuracy

$$\begin{aligned} \textit{MAPE} &= \frac{1}{n} \sum_{i=1}^{n} |\frac{y_{i} - \bar{y}_{i}}{y_{i}}| \times 100, \\ \textit{CVRMSE} &= \frac{\sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (y_{i} - \bar{y}_{i})^{2}}}{\bar{y}_{i}} \times 100, \end{aligned}$$

Saving metricsWhole building metering

Use case

Building and data

Chemistry Faculty

1 year of time series

(hourly temperature in a day) -> (Daily consumption Wh)

2676
2545
2504
2727

Table of results

		Models						
		SVR	RF	XGB	TWT	Gauss	Grey	
Daily	CVRMSE	12.4	9	11	14.9	17.45	33.57	
	MAPE	7.2	6	7.3	12.3	15.01	43.02	
Weekly	CVRMSE	6.4	5	6.2	11.1	16.3	19.53	
	MAPE	5.2	4.5	5.5	9.4	12.3	15.48	

Weekly predictions graph

Random Forest

Discussion and conclusions

Discussion and conclusions

- Black box models outperform the rest
- ▶ Behavioural patterns are out of the scope of grey-box models
- ► The use of time series for energy prediction compared to the use of instantaneous measurements provides a better result.

Future Work

- Using more frequent measurements and comparing
- Applying feature transformation to the series
- Use a transfer learning approach for scaling the deployment of EM&V