Estimation distribuée d'une espérance conditionnelle

Igor Colin

1er juillet 2014

Rappels

Estimation de fonction

Objectif et formulation

- Objectif : regrouper les utilisateurs par centres d'intérêts communs
- Notations :
 - ▶ $(X_i)_{1 \le i \le n}$: caractéristiques des utilisateurs (musiques, historique des conversations, etc.)
 - ▶ $D:(X,Y)\mapsto D(X,Y)$: fonction de dissimilarité entre deux vecteurs de caractéristiques
 - ▶ P : partition des utilisateurs
 - $ightharpoonup \Phi_P$: fonction d'appartenance au même *cluster*

Problème

Nouvel objectif : trouver la solution du problème

$$\min_{P} w(P) = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{1}{n} \sum_{j=1}^{n} D(X_{i}, X_{j}) \Phi_{P}(X_{i}, X_{j}) \right)$$

- ▶ Idée : estimer $f : x \mapsto \mathbb{E}[D(x, X)\Phi_P(x, X)]$
- ► Contrainte : les $(X_i)_{1 \le i \le n}$ ne sont pas simultanément accessibles

Rappels

Estimation de fonction

- ▶ Notations :
 - ▶ *f* : fonction à estimer

- ▶ Notations :
 - ▶ *f* : fonction à estimer
 - $\{(x_i, f(x_i))\}_{1 \le i \le n}$: observations

- ▶ Notations :
 - ▶ *f* : fonction à estimer
 - $\{(x_i, f(x_i))\}_{1 \le i \le n}$: observations
 - $\hat{f}:(x;\theta)\mapsto \widehat{\hat{f}}(x;\theta)$: estimateur

Notations:

- f : fonction à estimer
- $\{(x_i, f(x_i))\}_{1 \le i \le n}$: observations
- $\hat{f}: (x; \theta) \mapsto \overline{\hat{f}(x; \theta)}$: estimateur $\hat{R}: \theta \mapsto \hat{R}(\theta)$: risque empirique

- ▶ Notations :
 - ▶ *f* : fonction à estimer
 - $\{(x_i, f(x_i))\}_{1 \le i \le n}$: observations
 - $\hat{f}:(x;\theta)\mapsto \widehat{\hat{f}}(x;\theta)$: estimateur
 - $\hat{R}: \theta \mapsto \hat{R}(\theta)$: risque empirique

$$\min_{\theta \in \Theta} \hat{R}\left(\theta\right)$$

Exemple

- Exemple : estimation polynomiale
 - $\hat{f}:(x;\theta)\mapsto\theta_0+\theta_1x+\theta_2x^2,$
 - $\hat{R}(\theta) = \frac{1}{2n} \sum_{i=1}^{n} \left(\hat{f}(x_i) f(x_i) \right)^2$
- lacktriangle Qualité dépendante du choix de \hat{f}

FIGURE: \hat{f} adaptée.

FIGURE: \hat{f} non adaptée.

Application au problème initial

- ▶ Fonction à estimer : $f : x \mapsto \mathbb{E}[D(x,X)\Phi_P(x,X)]$
- ► Risque empirique : moindres carrés
- Estimateur à noyaux :

$$\hat{f}(x; \theta, \mathbf{w}, a) = a + \sum_{j=1}^{m} w_j K(x - \theta_j)$$

où K est un noyau gaussien.

Résultats

- Application :
 - ▶ $D: (x, y) \mapsto ||x y||_2$
 - ▶ $(X_i)_{1 \le i \le n}$: n tirages d'un mélange de gaussiennes 2D
 - Observations empiriques $\tilde{f}(x_i) = \frac{1}{n} \sum_{i=1}^{n} D(x_i, x_j) \Phi_p(x_i, x_j)$
- Objectif:

$$\min_{\theta,w,a} \hat{R}(\theta,w,a) = \frac{1}{2n} \sum_{i=1}^{n} \left(\hat{f}(x;\theta,w,a) - \tilde{f}(x_i) \right)^2$$

Résultats optimisation globale

FIGURE: Fonction *f*

FIGURE: Estimation $\hat{f}(\cdot, \theta^*)$

Résultats optimisation globale (2)

FIGURE: Fonction *f*

FIGURE: Estimation $\hat{f}(\cdot, \theta^*)$

Contrainte supplémentaire

- $ightharpoonup \tilde{f}(X_i)$ non accessible
- ▶ Idée : si l'agent i a accès aux caractéristiques $(X_j)_{j \in A_i}$ $(i \in A_i)$, il peut :
 - estimer la distribution des X à partir des observations accessibles

$$\mu_i(x) = \frac{1}{|\mathcal{A}_i|} \sum_{i \in A} \frac{1}{h} K\left(\frac{x - x_j}{h}\right)$$

▶ utiliser le risque R_i :

$$R_i: (\theta, w, a) \mapsto \mathbb{E}_{\mu_i} \left[\left(\hat{f}(x; \theta, w, a) - \mathbb{E}_{\mu_i} [D(x, X) \Phi_P(x, X)] \right)^2 \right]$$

Le problème devient alors

$$\min_{\theta,w,a} \frac{1}{n} \sum_{i=1}^{n} R_i(\theta, w, a)$$

Résultats