Clustered Multilevel Monte Carlo (C-MLMC)

May 31, 2025

1 Problem Setup and Notation

We aim to estimate $\mathbb{E}[P]$ for a path-dependent payoff P, evaluated under an SDE model. Using the Multilevel Monte Carlo (MLMC) framework, we define estimators:

$$\Delta P_{\ell} = \begin{cases} P_0, & \text{if } \ell = 0, \\ P_{\ell} - P_{\ell-1}, & \text{if } \ell \ge 1. \end{cases}$$

Let $V_{\ell} = \text{Var}[\Delta P_{\ell}]$, and C_{ℓ} be the average cost per sample on level ℓ . Classical MLMC chooses

$$N_\ell \propto \sqrt{rac{V_\ell}{C_\ell}}$$

to achieve RMSE ε , with:

$$\sum_{\ell=0}^{L} \frac{V_{\ell}}{N_{\ell}} \le (1-\theta)\varepsilon^{2}.$$

2 Motivation for Clustering

When the variance is highly concentrated in rare regions of the input space (e.g., digital or exotic options), naive sampling wastes budget on low-variance samples. The C-MLMC approach improves efficiency by:

- Extracting features from simulation metadata,
- Clustering samples to identify variance modes,
- Estimating per-cluster variance $V_{\ell,c}$ and probabilities $P_{\ell,c}$,
- Allocating samples in proportion to $\sqrt{P_{\ell,c}V_{\ell,c}}$.

3 C-MLMC Algorithm

Algorithm 1 Clustered MLMC Estimator

Require: Simulator $f(\ell, N, \texttt{return_details})$, feature extractor φ , tolerance ε , pilot size N_0 , clusters n_c

- 1: Initialize $L \leftarrow L_{\min}, \ \theta \in (0,1)$
- 2: for each level $\ell \leq L$ do
- 3: Run pilot: $\{(Y_i, d_i)\} \leftarrow f(\ell, N_0, \texttt{true})$
- 4: Compute features $\phi_i = \varphi(d_i)$
- 5: Cluster features using K-means into n_c clusters
- 6: Estimate cluster variances $V_{\ell,c}$ and probabilities $P_{\ell,c}$
- 7: end for
- 8: while not converged do
- 9: Compute level variances $V_{\ell} = \sum_{c} P_{\ell,c} V_{\ell,c}$
- 10: Estimate level costs C_{ℓ}
- 11: Allocate samples $N_{\ell} \propto \sqrt{V_{\ell}/C_{\ell}}$
- 12: Allocate cluster-wise $N_{\ell,c} \propto \sqrt{P_{\ell,c}V_{\ell,c}}$
- 13: **for** each cluster c **do**
- 14: Sample until $N_{\ell,c}$ accepted samples with cluster label c
- 15: Accumulate $\sum Y$, $\sum Y^2$, update cost
- 16: end for
- 17: Bias check via extrapolation; if too large, increment L
- 18: end while
- 19: Output estimate $\hat{P} = \sum_{\ell=0}^{L} \frac{1}{N_{\ell}} \sum_{i=1}^{N_{\ell}} Y_{\ell,i}$

4 Why $\sqrt{P_c V_c}$ Allocation?

To minimize estimator variance:

$$\mathrm{Var}(\hat{Y}) = \sum_{c} \frac{P_c^2 V_c}{N_c} \quad \text{subject to} \quad \sum_{c} N_c = N.$$

Using Lagrange multipliers, the optimal allocation satisfies:

$$N_c \propto P_c \sqrt{V_c} \quad \Rightarrow \quad \text{weights} \propto \sqrt{P_c V_c}.$$

5 Unbiasedness

Each level estimator:

$$\hat{Y}_{\ell} = \frac{1}{N_{\ell}} \sum_{i=1}^{N_{\ell}} Y_{\ell,i}$$

is an unbiased estimate of $\mathbb{E}[\Delta P_{\ell}]$, since stratified sampling preserves marginal distributions. The full estimator:

$$\hat{P} = \sum_{\ell=0}^{L} \hat{Y}_{\ell}$$

is unbiased for $\mathbb{E}[P_L]$, with bias $\mathbb{E}[P-P_L]$ controlled via extrapolation.

6 Conclusion

C-MLMC enhances classical MLMC by identifying and focusing computation on variance-dominant clusters. The allocation $\propto \sqrt{P_c V_c}$ provides a provably efficient strategy to reduce variance while retaining unbiasedness and convergence guarantees. The result is a more robust and scalable Monte Carlo estimator for path-dependent problems.