

الأول

في

الرياضيات

ليلة الامتحان في الهندسة

الفصل الدراسي الثاني

للسنة الثالثة الاعدادي

إعداد

٩ / إبراهيم ميكائيل

معلم أول الرياضيات

١ - محور التمايز للوتر المشترك ب لدائرتين متتقاطعتين

٢ - إذا كانت م دائرة طول قطرها ٧ سم ، ب نقطة في مستوى الدائرة وكان م = ٤ سم فان موضع نقطة ب بالنسبة للدائرة خارج

٣ - دائرة طول قطرها ٨ سم ، فإذا كان المستقيم ل يبعد عن مركزها ٣ سم ، فإن المستقيم ل قاطع

٤ - الممسان المرسومان من هرأتى قطري دائرة متوازيان

إعداد ٩ / إبراهيم ميكائيل معلم أول الرياضيات

- ٥ - في الشكل المقابل :
-
- إذا كان ب ، ج مماسان ، و (٢٧) = ٩٠ $^{\circ}$ فإذا كان طول ب = ٤ سم ، فإن طول ج ب بالسنتيمترات = ٤ سـم
- ٦ - في الشكل المقابل :
-
- إذا كان ج : ب : ه = { } ه ، ه = ٣ سـم ، ه = ٢ سـم ، ه = ج ، ه = ١٥ سـم فإن ب = ه
- ٧ - إذا كانت ب قطعة مستقيمة فإن عدد الدوائر التي يمكن رسمها لك تمر بال نقطتين ب ، ج تساوى **عدد لا نهائي**
- ٨ - إذا كان المستقيم ل الدائرة م = \emptyset فإن المستقيم ل يكون **خارج الدائرة**
- ٩ - في الشكل المقابل :
-
- م دائرة ، إذا كان : و (٢٧) - و (٢٨) = ٥٠ $^{\circ}$ فإن و (٢٨) = ٥٠
- ١٠ - في الشكل المقابل :
-
- ب مماس للدائرة م ، فإذا كان م ب = ٥ سـم ، ج = ٨ سـم فإن ب = ١٢ سـم
- ١١ - مراكز الدوائر التي تمر بال نقطتين ب ، ج تقع جميعاً على محور ب
- ١٢ - قوس من دائرة طوله $\frac{1}{3}$ ط نو فـ إنه يقابل زاوية مرئية قياسها يساوى ٦٠
- ١٣ - النسبة بين قياس الزاوية المحيطية إلى قياس الزاوية المركزية المشتركة معها في القوس = ٢ : ١
- ١٤ - قياس القوس الذي يمثل ثلث قياس الدائرة = ١٢٠
- ١٥ - إذا كان طولاً نصف قطرى الدائرتين م ، نـ هـ مـ نـ هـ ، نـ هـ بـ كـ مـ نـ > نـ هـ + نـ هـ بـ فإن الدائرتين م ، نـ هـ تكونان متباعدةتان

٢٥ - في الشكل المقابل:
إذا كان: م دائرة ،

$$\text{فـ}(\angle B \text{ جـ}) = 130^\circ$$

فـإن: $\text{فـ}(\angle B \text{ مـ}) = 100^\circ$

٢٦ - عدد المماسات المشتركة لدائرتين متباينتين هو ٤

صفر

٢٧ - في الشكل المقابل:
إذا كان: ب ، ج ، ه وتران متوازيان :

$$\text{فـإن: } \text{فـ}(\angle B \text{ جـ}) = 30^\circ$$

فـإن: $\text{فـ}(\angle B \text{ هـ}) = 15^\circ$

٢٨ - في الشكل المقابل:
إذا كان: ب ، ج ، ه مماس للدائرة م عند ب

$$\text{فـإن: } \text{فـ}(\angle B \text{ جـ}) = 110^\circ$$

فـإن: $\text{فـ}(\angle B \text{ هـ}) = 55^\circ$

٣٠ - في الشكل المقابل:
إذا كان طول نصف قطر
الدائرة الصغرى ٧ سم ،
وطول نصف قطر الدائرة الكبرى ١٤ سم .

فـإن مساحة الجزء المظلل يساوى ٤٦٢ سم

$$\text{فـ}(\angle B \text{ M}) = 140^\circ$$

(حيث ط = $\frac{22}{7}$)

٣١ - في الشكل المقابل:

$$\text{فـ}(\angle B \text{ جـ}) = 140^\circ$$

$$\text{فـإن: } \text{فـ}(\angle B \text{ جـ}) = 60^\circ$$

٣٢ - القطعتان المماستان المرسمتان من نقطة خارج دائرة

متتساويتان في الطول

٣٣ - الزاوية المماسية هي زاوية محصورة بين وتر ومماس

٣٤ - عدد المماسات التي يمكن رسمها من إحدى نقاط دائرة

تساوي ١

٣٥ - عدد المماسات المشتركة لدائرتين متتسامتين من الداخل

تساوي ١

٣٦ - في الشكل الرباعي الدائري كل زاويتين متقابلتين

متكمالتان

٣٧ - مركز الدائرة الداخلية للمثلث هو نقطة تقاطع **منصفات**

زواياه الداخلية

١٦ - إذا كانت الدائرتان ممتاستين من الخارج وطول
نصف قطر أحدهما ٣ سم ، م = ٧ سم فإن طول نصف
قطر الأخرى يساوى **٤ سم**

١٧ - وتر طوله ٨ سم مرسم داخل دائرة طول قطرها ١٠ سم ،

فـإن بعد الوتر عن مركز الدائرة = **٣ سم**

١٨ - في الشكل المقابل:

$$\text{فـ}(\angle B \text{ جـ}) = 40^\circ$$

١٩ - في الشكل المقابل:

إذا كان ج = ٨ سم

، ب = ٣ سـم

فـإن ب = ج = **٧ سم**

٢٠ - في الشكل المقابل:

ب ج م مستطيل مرسم في رباع دائرة

م ه = ٤ سم ، ج = ١ سم

فـإن: م ج = **١ سم**

٢١ - في الشكل المقابل:

إذا كان فـ(م ب ج) = ٤٠^\circ

فـإن :

فـ(لـ ب جـ) = **٥٠^\circ**

٢٢ - في الشكل المقابل:

إذا كان فـ(لـ ب جـ) = ٦٠^\circ

فـإن :

فـ(لـ ب جـ) = **٦٠^\circ**

٢٣ - في الشكل الم مقابل:

إذا كان ب قطيفي الدائرة م

، فـ(لـ ب جـ) = ٤٠^\circ

، فـ(ب جـ) = فـ(ب جـ)

فـإن: فـ(لـ ب جـ) = ٢٠^\circ

٢٤ - في الشكل الم مقابل:

إذا كان: فـ(لـ م ب جـ) = ٥٥^\circ

فـإن: فـ(لـ ب جـ) = **٣٥^\circ**

- ٢ - مساحة المربع الذي طول قطره ٦ سم = **١٨ سم**
- ٣ - مساحة المعين الذي طولاً قطره ٦ سم ، سماً = **٢٤ سم**
- ٤ - شبه منحرف طولاً قاعده المتوازيتين ٣ سم ، سماً ٥ سم
وارتفاعه ٢ سم فإن مساحته تساوى **٨ سم**
- ٥ - شبه منحرف طول قاعده المتواسطة ٧ سم وارتفاعه ٣ سم
فإن مساحته = **٢١ سم**
- ٦ - معين طول ضلعه ٥ سم وارتفاعه ٤ سم فإن مساحته = **٢٠ سم**
- ٧ - معين طولاً قطرية ١٢ سم ، ١٦ سم فإن طول ضلعه = **١٠ سم**
- ٨ - مستطيل بعدها ٣ سم ، ٤ سم فإن طول قطره **٥ سم**
- ٩ - مساحة متوازي الأضلاع الذي طول قاعده ٥ سم
وارتفاعه ٣ سم تساوى **١٥ سم**
- ١٠ - مثلث مساحته ٣٠ سم وارتفاعه ٦ سم فإن طول قاعده = **١٠ سم**
- ١١ - القطران متساويان في الطول ومتعاددان في **المربع**
- ١٢ - القطران متعاددان فقط وغير متساويان في **المعين**
- ١٣ - القطران متساويان وغير متعاددان في **المستطيل**
- ١٤ - المضلعان المشابهان لثالث **متشابهان**
- ١٥ - إذا كانت نسبة التكبيريين مثليثين = ١ فإن المثلثين **متطابقان**
- ١٦ - إذا كان مسقط قطعة مستقيمة على مستقيم هو نقطة فإن القطعة المستقيمة تكون **المستقيم**
- ١٧ - إذا كان $b // c$ فإن مسقط a على c يساوى **طول a**
- ١٨ - في $\triangle ABC$ إذا كان $(a + b)^\circ = (c + b)^\circ$
فإن **$a = c$**
- ١٩ - في $\triangle ABC$ إذا كان : $(a + b)^\circ < (c + b)^\circ$
فإن زاوية C تكون **منفرجة**
- ٢٠ - إذا كان $\triangle ABC$ فيه : $(a + b)^\circ = (c + b)^\circ - (c + a)^\circ$
فإن **$A = C$**
- ٢١ - الأطوال ٦ سم ، ٨ سم ، ١١ سم تصلح أن تكون أطوال **أضلاع مثلث منفرج الزاوية**

- ٢٨ - الزاوية المحيطية التي تقابل قوساً أصغر في الدائرة **حادية**
- ٢٩ - إذا كان a, b نقطتين في المستوى بحيث $a \parallel b$ فإن طول نصف قطر أصغر دائرة تمر بالنقطتين a, b يساوى **٢ سم**
- ٣٠ - إذا كان a, b نقطتين ، $a \parallel b$ = ٦ سم فإن عدد الدوائر التي طول نصف قطر كل منها ٥ سم وتمر بالنقطتين a, b يساوى **دائرتان**
- ٣١ - m ، n دائرتان متقاتعتان وطول نصف قطرهما **٧ ، ٣ سم**
- ٣٢ - عدد الدوائر التي تمر بثلاث نقاط على استقامة واحدة يساوى **صفر**
- ٣٣ - عدد الدوائر التي تمر بثلاث نقاط ليست على استقامة واحدة يساوى **١**
- ٣٤ - مركز الدائرة الخارجة للمثلث هو نقطة **تقاطع الأعمدة**
المقامة على أضلاعه من منتصفاتها
- ٣٥ - عدد الدوائر التي يمكن رسمها وتمر بطرفين القطعة المستقيمة b يساوى **عدد لا نهائي**
- ٣٦ - إذا كانت سطح الدائرة m سطح الدائرة n
{ } فإن الدائرتين m, n ، n تكونان **متلمسان من الخارج**
- ٣٧ - إذا كانت الدائرة m الدائرة n = { } ، b فإن الدائرتين m, n **متقاطعتان**
- ٣٨ - إذا كانت الدائرتان m, n متلمسان من الداخل وطول نصف قطر أحدهما ٥ سم ، $m = n$ سم فإن طول نصف قطر الدائرة الأخرى يساوى **١٤ سم**
- ٣٩ - يمكن رسم دائرة تمر ببؤوس (معين ، **مستطيل** ، شبه منحرف ، متوازي أضلاع)
- ٤٠ - دائرة محيطها ٦ ط سم ، والمستقيم l يبعد عن مركزها ٣ سم فإن المستقيم l يكون **مماساً للدائرة**
-
- الترافقى :**
- ١ - **في الشكل المقابل :**
 $a = 4$ ج ، $b = 2$ س - ١ ، $c = 2$ س + ٢ ، $b = 7$ - س ، $a = 4$ ب ج = **١٤ سم**
-

٢٢ - يتشابه المثلثان إذا كانت الأضلاع المتناظرة متناسبة،
الزوايا المتناظرة متساوية في القياس

الأسئلة المقالية :

١ في الشكل المقابل :

دائرتان متحدة المركز في M ، M' بـ ج قطعتان

مماستان

لدائرة الصغرى ، M' بـ ج = 70

أولاً : أوجد M' بـ ج

ثانياً : أثبت أن M' بـ ج = 35

، M' بـ ج قطعتان مماستان لدائرة الصغرى .:

M' بـ ج = M' B

M' B = 90

M' B = 90 + 90 + 360

= 110

، M' بـ ج = 90 + 360 = 450

في الدائرة الصغرى

M' بـ ج = 45

، M' بـ ج ← المطلوب ثانياً

٢ في الشكل المقابل :

إذا كان M بـ قطر في الدائرة M

، ج ∈ للدائرة ، M' بـ ج = 30

، M' بـ ج = 90

أولاً : أوجد M' بـ ج ، M' بـ ج

ثانياً : أثبت أن M' بـ ج = M' بـ ج ← المطلوب ثانياً

، M' بـ ج ، M' بـ ج زاويتان محيطيتان مشتركتان

في بـ ج .: M' بـ ج = M' بـ ج

M' بـ ج = 30

، M' بـ قطر .: M' بـ ج = 90

M' بـ ج = 90 + 30 - 180

، M' منتصف M' ج .: M' بـ ج = M' بـ ج

M' بـ ج = 30

.: M' بـ ج = M' بـ ج ← المطلوب أولاً

٤ اذكر ثلاث حالات يكون فيها الشكل الرباعي دائرياً

(١) إذا وجدت فيه زاويتان مرسومتان على قاعدة واحدة

وفي جهة واحدة منها متساويتان في القياس .

(٢) إذا وجدت فيه زاويتان متقابلتان ومتكمالتان .

(٣) إذا وجدت فيه زاوية خارجة عند أحد رؤوسه
تساوي المقابلة للمجاورة لها من الداخل .

٥ M بـ ج ، M' بـ ج وتران في دائرة متعامدان ومتقاطعان

في هـ ، رسم بـ و M' ج فقطه في وـ ، و M' ج

أثبت أن :

أولاً : الشكل وـ جـ هـ بـ رباعي دائري

ثانياً : M' بـ جـ هـ = M' بـ جـ هـ

أولاً : M' بـ جـ هـ ،

M' جـ هـ = 90

، M' بـ جـ هـ

M' جـ هـ = 90

M' جـ هـ + M' جـ هـ = 90

وـ هـ مـ تـ كـ مـ الـ تـ

وـ هـ مـ تـ كـ مـ الـ تـ

∴ الشكل و جهة ب رباعي دائري ← المطلوب أولاً

$$\therefore \text{و}(\Delta \text{بـهـ}) = \text{و}(\Delta \text{بـجـ}) \leftarrow (1)$$

مرسومتان على قاعدة بهـ وفي جهة واحدة منها

$$\therefore \text{و}(\Delta \text{بـجـهـ}) = \text{و}(\Delta \text{بـجـهـ}) \leftarrow (2)$$

محيطيان مشتركتان في بـهـ

من (1) ، (2) ينبع أن :

$$\text{و}(\Delta \text{بـهـ}) = \text{و}(\Delta \text{بـجـهـ}) \leftarrow \text{المطلوب ثانياً}$$

6 ارسم الدائرة التي تمر برؤوس المثلث الذي فيه

$$\text{بـ}^3\text{سم} ، \text{بـجـ} = \text{بـجـهـ} = \text{بـجـهـ}^5\text{سم}$$

7 في الشكل المقابل :

$$\text{، هـ منتصف بـجـ ، بـهـ \cap \text{الدائرة} = \{ \text{بـ} \}$$

أثبت أن : أولاً : بـ // بـهـ

ثانياً : النقطـهـ بـ ، هـ ، جـ ، هـ يمر بها دائرة واحدة

∴ هـ منتصف بـجـ ، هـ منتصف بـجـ . ∴ بـ // بـهـ

$$\therefore \text{بـ} // \text{بـهـ} . \text{و}(\Delta \text{بـجـهـ}) = \text{و}(\Delta \text{بـهـ})$$

بالتبادل ← (1)

$$\therefore \text{بـ} // \text{بـهـ} . \text{و}(\Delta \text{بـجـهـ}) = \text{و}(\Delta \text{بـجـهـ})$$

ماصية ومحيطية مشتركتان في (بـهـ) ← (2)

$$\text{من (1) ، (2) . . . } \text{و}(\Delta \text{بـهـ}) = \text{و}(\Delta \text{هـجـهـ})$$

وهما مرسومتان على قاعدة واحدة هـ وفي جهة واحدة منها

∴ النقطـهـ بـ ، هـ ، جـ ، هـ يمر بها دائرة واحدة

8 بـ جـ وتران في دائرة مركزها مـ ،

$$\text{و}(\Delta \text{بـجـ}) = 120^\circ \text{، سـ ، صـ منتصفـ بـ جـ ،}$$

رسم سـ مـ فقطـ الدائرة في ءـ ، رسم سـ مـ فقطـ الدائرة في

هـ . أثبتـ أنـ : هـ = نـ

∴ سـ ، صـ منتصفـ بـ جـ

$$\therefore \text{مـ سـ} \perp \text{بـ جـ}$$

$$\therefore \text{و}(\Delta \text{بـجـ}) = 90^\circ$$

$$\text{، مـ سـ} \perp \text{بـ جـ} . \text{و}(\Delta \text{بـجـ}) = 90^\circ$$

$$\therefore \text{و}(\Delta \text{سـ مـ}) = (\text{و}(\Delta \text{بـجـ}) + \text{و}(\Delta \text{صـ مـ})) - 180^\circ$$

$$\therefore \text{و}(\Delta \text{سـ مـ}) = 60^\circ$$

بالتقابـلـ بالـرـأـسـ

، ∴ مـ هـ = نـ . ∴ Δ هـ مـ مـتسـاوـيـ الأـضـلاـعـ

∴ هـ = نـ

9 في الشـكـلـ المـقاـبـلـ :

إذا كان سـ صـ ، سـ عـ

ممـاسـانـ للـدـائـرـةـ منـ نـقـطـةـ سـ

$$\text{و}(\Delta \text{سـ}) = 110^\circ , \text{و}(\Delta \text{عـ}) = 40^\circ$$

أثبتـ أنـ : و(عـ هـ) = و(عـ صـ)

∴ الشـكـلـ عـ صـ هـ ربـاعـيـ دـائـرـيـ

$$\text{و}(\Delta \text{هـ}) + \text{و}(\Delta \text{عـ هـ}) = 180^\circ$$

$$\therefore \text{و}(\Delta \text{عـ هـ}) = 110^\circ - 180^\circ = 70^\circ \leftarrow (1)$$

∴ سـ صـ ، سـ عـ مـمـاسـانـ للـدـائـرـةـ . . . و(Δ سـ صـ)

$$\text{و}(\Delta \text{سـ صـ}) = \frac{180^\circ - 40^\circ}{2} = 70^\circ \leftarrow (2)$$

∴ هـ صـ مـحـيـطـيـةـ ، سـ صـ مـمـاسـيـةـ مشـتـرـكـاتـانـ فيـ

عـ صـ . . . و(Δ عـ هـ) = و(Δ سـ صـ) = 70^\circ \leftarrow (3)

من (1) ، (2) ، (3) ينبعـ أنـ :

$$\text{و}(\Delta \text{عـ هـ}) = \text{و}(\Delta \text{عـ هـ}) = 70^\circ$$

$$\therefore \text{عـ صـ} = \text{عـ هـ} . \therefore (\text{عـ هـ}) = \text{و}(\Delta \text{عـ})$$

فی ۴۰، ب، منتصف ۴۰ ب، ف(جہ ۶) = ۴۰، ب، منتصف ۴۰ ب، ف(جہ ۶) =
أوجد بالبرهان: ف(جہ ۶)

$\therefore \Delta B \cong \Delta G$ (لأن $B \cong G$ و Δ هو مترابط)

$\therefore \angle B = \angle G$ (لأن $\Delta B \cong \Delta G$)

$\therefore \angle B = 50^\circ$ (لأن $\angle G = 50^\circ$)

حالات المثلث المتساوي الساقين:

- الحالات المترافقه
- الحالات المتشابهة
- الحالات المتطابقة

أولاً: الشكل م هب ء رباعي دائري
ثانياً: $\angle BMS = \angle B$

$$^{\circ}180 = (\text{س ب م د})\text{و} + (\text{س ه م د})\text{و}$$

وهما متقابلتان ومتكمالتان . . . الشكل م ه ب ء رباعي دائري رباعي دائري

$$\therefore f(b^m) = f(b^n) \leftarrow (1)$$

من (١) ، (٢) ينبع أن :

١١

إذا كان: $\angle B = 90^\circ$ ج وتران في الدائرة \odot

$$\begin{aligned}
 & \text{م} \text{ن} \text{ت} \text{ص} \text{ف} \text{ب} \text{ا} \text{م} \text{س} \text{و} \text{ب} \text{ا} \text{ب} \text{ا} \text{ب} \text{ا} \\
 & \leftarrow ^{\circ 90} = (150 \Delta) \dots \\
 & \text{م} \text{ن} \text{ت} \text{ص} \text{ف} \text{ب} \text{ا} \text{م} \text{س} \text{و} \text{ب} \text{ا} \text{ب} \text{ا} \text{ب} \text{ا} \\
 & \leftarrow ^{\circ 90} = (150 \Delta) \dots \\
 & = (50 \Delta) \dots \\
 & 120 = (50 + 90 + 90) - 360
 \end{aligned}$$

$$\begin{aligned} \therefore \text{و}(بـ) = & \frac{1}{2} [\text{و}(هـجـ) - \text{و}(بـجـ)] \\ & [\frac{1}{2} [\text{و}(هـجـ) - 60^\circ] = 40^\circ \\ & 60^\circ - \text{و}(هـجـ) = 80^\circ \therefore \\ (1) \quad & \therefore \text{و}(هـجـ) = 60^\circ + 80^\circ = 140^\circ \leftarrow \\ & \text{و}(بـجـ) = \text{و}(هـجـ) \\ (2) \quad & \therefore \text{و}(بـجـ) = \frac{(60^\circ + 140^\circ) - 360^\circ}{2} = 80^\circ \leftarrow \end{aligned}$$

$$\therefore \Delta هـس \equiv \Delta هـص \text{ وينتج أن: } مـس = مـص \therefore$$

$$بـ = جـ$$

$$\begin{aligned} \therefore \text{و}(بـجـ) &= 90^\circ \therefore \text{و}(بـجـ) = 90^\circ \\ \therefore \angle B \text{ قطوفي الدائرة} &\therefore \text{و}(بـجـ) = 90^\circ \\ &(\text{محيطية مرسمة في نصف دائرة}) \\ \therefore \text{و}(بـجـ) + \text{و}(بـهـ) &= 180^\circ \\ &\text{وهما متقابلتان ومتكمالتان} \\ \therefore \text{الشكل } ـ B \text{ جـ رباعي دائري أولـ} & \\ \text{ـ } B \text{ وجـ خارجة عن الشكل الرباعي الدائري} & \\ \therefore \text{و}(بـجـ) = \text{و}(بـجـ) & \leftarrow (1) \\ \text{و}(بـجـ) = \text{و}(بـجـ) & \leftarrow (2) \\ &(\text{مماسية ومحيطية مشتركتان في } B\text{ جـ}) \\ \text{من (1) ، (2) ينبع أن: } \text{و}(بـجـ) = \text{و}(بـهـ) & \\ \therefore \text{و}(بـجـ) = \text{و}(بـهـ) & \end{aligned}$$

$$\begin{aligned} \therefore \text{الشكل من } L \text{ هـ رباعي دائري} & \\ \therefore \text{و}(ـ لـ هـ) + \text{و}(ـ هـ) &= 180^\circ \therefore \text{و}(ـ هـ) = 70^\circ \\ \therefore \text{ـ } L \text{ قطوفي الدائرة} &\therefore \text{و}(ـ لـ هـ) = 90^\circ = \text{و}(ـ هـ) \\ \therefore \text{و}(ـ مـ لـ هـ) &= (90^\circ + 70^\circ) - 180^\circ = 20^\circ \end{aligned}$$

٢٣ في الشكل المقابل:

إذا كان $\overset{\frown}{B}$ ج تمس الدائرة عند ب
، إذا كانت ه منتصف $\overset{\frown}{B}$ و
أثبت أن: الشكل $\triangle BGD$ رباعي دائري

\therefore ه منتصف $\overset{\frown}{B}$ و $\therefore \overset{\frown}{B} = \overset{\frown}{H}$ (١)
 $\therefore \overset{\frown}{B} = \overset{\frown}{H}$ (٢)
 \therefore ب ج مماس للدائرة $\therefore \overset{\frown}{B} \perp \overset{\frown}{H}$ (٣)
 مماسية ومحيطية مشتركتان في ب ه \leftarrow (٤)
 من (١) ، (٢) ينبع أن: $\overset{\frown}{B} \perp \overset{\frown}{H}$ (٤)
 وهذا مرسومتان على قاعدة واحدة ج ه وفي جهة واحدة منها
 \therefore الشكل $\triangle BGD$ رباعي دائري

٤ أثبت أن "القطعتين المرسومتين من نقطة خارج دائرة

متتساويتان في الطول"

المعطيات: ب ج مماسان
للدائرة م عند ب ، ج

المطلوب: أثبت أن: $\overset{\frown}{B} = \overset{\frown}{C}$
العمل: نرسم $\overset{\frown}{B}$ ، $\overset{\frown}{C}$ ، $\overset{\frown}{M}$

البرهان: ب ج مماسان للدائرة م عند ب ، ج
 $\therefore \overset{\frown}{B} = \overset{\frown}{C}$ (١)
 $\therefore \overset{\frown}{B} = \overset{\frown}{C}$ (٢)
 في $\triangle BAC$
 $\overset{\frown}{B} = \overset{\frown}{C}$ (٣)
 فـ $\overset{\frown}{B} = \overset{\frown}{C}$ (٤)
 فيما $\overset{\frown}{B} = \overset{\frown}{C}$ (٥)
 ٢٣ ضلع مشترك
 $\therefore \overset{\frown}{B} = \overset{\frown}{C}$ (٦)
 وينبع أن $\triangle BAC$ متساوية في الطول

٢٥ في الشكل المقابل:

إذا كان: ب ج مماسان للدائرة م
عند ب ، ج ، $\overset{\frown}{B} = \overset{\frown}{C}$ (١)
 $\therefore \overset{\frown}{B} = \overset{\frown}{C}$ (٢)

أثبت أن: أولاً: ج // ب ه
ثانياً: أوجد $\overset{\frown}{B}$

\therefore الشكل ج ب ه رباعي دائري $\therefore \overset{\frown}{B} = \overset{\frown}{C}$ (٣)

٢٠ أثبت أن: "إذا كان الشكل الرباعي دائرياً فإن كل زاويتين متقابلتين متكمالتين"

المعطيات: ب ج رباعي دائري
 المطلوب: $\overset{\frown}{B} + \overset{\frown}{D} = 180^\circ$
 $\overset{\frown}{A} + \overset{\frown}{C} = 180^\circ$
 البرهان: $\therefore \overset{\frown}{B} + \overset{\frown}{D} = \frac{1}{2} \text{ ق}(ب ج د) \leftarrow$ (١)
 $\overset{\frown}{A} + \overset{\frown}{C} = \frac{1}{2} \text{ ق}(ب ج C) \leftarrow$ (٢) بالجمع
 $\therefore \overset{\frown}{B} + \overset{\frown}{D} + \overset{\frown}{A} + \overset{\frown}{C} = \frac{1}{2} [ق(ب ج د) + ق(ب ج C)]$
 $\therefore \overset{\frown}{B} + \overset{\frown}{D} + \overset{\frown}{A} + \overset{\frown}{C} = \frac{1}{2} \times 360^\circ = 180^\circ$
 وبالمثل $\overset{\frown}{B} + \overset{\frown}{D} = 180^\circ$

٢١ في الشكل المقابل:

إذا كان ب ج قطرى الدائرة م
، ج مماس لها عند ج

فإذا كان: ب ج = ٩ سم ، ب ج = ٦ سم
أوجد طول كل من: ب ج ، ب ج

$\therefore \triangle BAC$ قائم الزاوية في ج من نظرية فيثاغورث

$225 = 144 + 81 = 12^2 + 9^2$
 $\therefore \text{ب ج} = 15 \text{ سم} \leftarrow$ (١)

$\therefore \text{ب ج} = 90^\circ$ قطرى الدائرة م $\therefore \overset{\frown}{B} = \overset{\frown}{C}$ (٢)
 (محيطية مرسومة في نصف دائرة)

$\therefore \text{ب ج} = \frac{12 \times 9}{15} = 7.2 \text{ سم}$

٢٢ أوجد قياس القوس الذي يمثل $\frac{1}{3}$ الدائرة، ثم احسب

طول هذا القوس إذا كان طول نصف قطر الدائرة ٧ سم

$$\left(\text{ط} = \frac{22}{7}\right)$$

قياس القوس = $\frac{1}{3} \times 360^\circ = 120^\circ$

طول القوس = $\frac{1}{3} \times 2 \times \frac{22}{7} \times 7 = \frac{44}{3} \text{ سم}$

في الشكل المقابل:

٢٨

$\angle B$ ، $\angle C$ وتران في الدائرة M التي طول نصف قطرها ٥ سم ،

$\angle E$ يقطع $\angle B$ في C ويقطع الدائرة M في H

، نصف $\angle B = 28^\circ$ ،

$\angle B = 56^\circ$

أولاً: $\angle E$ (م)

ثانياً: طول EH

$\therefore \angle E$ \perp AB $\angle E = 90^\circ$

نصف $\angle B$ $\angle M = 90^\circ$

$\therefore \angle E = 56^\circ + 90^\circ + 90^\circ = 240^\circ$

أولاً ← المطلوب أولاً

العمل: نرسم $OM = 5$ سم

من نظرية فيثاغورث: $(OM)^2 = (OE)^2 - (EM)^2$

$25 = 25 - 2^2$ $EM = 2$ سم

في الشكل المقابل:

٢٩

\therefore B مماس للدائرة M عند A

M \cap الدائرة $M = \{J\}$

إذا كان $AM = 8$ سم ، $BG = 5$ سم

أولاً: محيط المثلث ABG

$\therefore BG = 8$ سم = NE $NE = 5$ سم

$AB = 13$ سم = $5 + 8$ $AB = 13$ سم

\therefore من نظرية فيثاغورث $(AB)^2 = (BG)^2 + (AG)^2$

$169 = 25 + AG^2$

\therefore محيط المثلث ABG = $5 + 12 + 13 = 30$ سم

في الشكل المقابل:

٣٠

\therefore B مماس للدائرة M في G

قطع الدائرة M في B ، G

، EH نصف $\angle B$ $\angle B = 56^\circ$

أولاً: $\angle E$ (م)

$\therefore B$ ، C جماسان للدائرة M عند B ، C

$\therefore B = C = 55^\circ$ $\angle B = \angle C$

$\therefore \angle B = \angle C = 55^\circ$ (وهما في وضع تبادل)

$\therefore B // EH$ ← المطلوب أولاً

$70 = (55 + 55) - 180$ ← ثانياً

$\therefore EH$ محاطية $\angle B$ معاشرة مشتركتان في

B ، G

$\therefore \angle B = \angle E = 55^\circ$

$\therefore \angle B = \angle E = 55^\circ$ $EB = EB$

في الشكل المقابل:

٣١

أثبت أن: $EH // BG$ إذا كان:

$BG = 8$ سم فأوجد طول EH

$\therefore EH$ \perp AB EH نصف $\angle B$

EH منتصف B

$\therefore EH // BG$ ← نتيجة ،

$$EH = \frac{1}{2} BG = 4 \text{ سم}$$

في الشكل المقابل:

٣١

أولاً: طول MG

ثانياً: مساحة $(\triangle ABG)$

$\therefore MG$ منتصف AB $MG \perp AB$

١٢ سم من نظرية فيثاغورث

$$(BG)^2 = (12)^2 - (13)^2 = 144 - 169 = 25$$

$MG = 5$ سم

$\therefore BG = 13$ سم $NE = 5 - 13 = 8$ سم

\therefore مساحة المثلث $= \frac{1}{2} \times \text{طول قاعدته} \times \text{ارتفاعه}$

$$\therefore \text{مساحة المثلث } = \frac{1}{2} \times 12 \times 8 = 48 \text{ سم}^2$$

$$\frac{14}{ب ج} = \frac{٩}{ب ج} \therefore \text{طاج} = \text{طاج} = ٩٠^\circ$$

$$\therefore ب ج = \frac{١٤}{٦٠} \approx ٢,٠٨ \text{ سم}$$

(٢) أوجد $\text{طاج}(هـ)$ (ب) أثبت أن: $سـ = صـ$

٣٤ في الشكل المقابل:

بـ، جـ وتران متساويان
في الطول في الدائرة مـ
، سـ منتصف بـ

صـ مننصف جـ، طاج(بـ)

(٢) أثبت أن: $سـ = صـ$

$\therefore سـ مننصف بـ \therefore مـ سـ \perp بـ$

$\therefore طاج(سـ مـ) = ٩٠^\circ$

$\therefore صـ مننصف جـ \therefore مـ صـ \perp جـ$

$\therefore طاج(صـ مـ) = ٩٠^\circ$

$\therefore طاج(هـ) = (٧٠ + ٩٠ + ٩٠) - ٣٦٠ = ١١٠^\circ$

المطلوب أولاً

بـ = جـ (وتر=وتر)، مـ سـ \perp بـ، مـ صـ \perp جـ

$\therefore مـ سـ = مـ صـ \leftarrow (١) ، مـ هـ = نـ \leftarrow (٢)$

بطرح (١) من (٢)

$\therefore مـ هـ - مـ سـ = مـ هـ - مـ صـ \therefore سـ = صـ$ ثانياً

٣٥ في الشكل المقابل:

بـ، جـ وتران في الدائرة مـ

$\therefore مـ سـ \perp بـ$

ويقطع الدائرة في جـ، مـ صـ \perp جـ ويقطع الدائرة في هـ

، وـ سـ = هـ صـ أثبت أن:

أولاً: بـ = جـ ثانياً: هـ = جـ هـ

$\therefore وـ سـ = هـ صـ \leftarrow (١) ، وـ هـ = مـ هـ \leftarrow (٢)$

بـ طرح (١) من (٢)

$\therefore مـ وـ - وـ سـ = مـ هـ - هـ صـ \therefore مـ سـ = مـ صـ$

$\therefore مـ سـ \perp بـ ، مـ صـ \perp جـ \therefore بـ = جـ$

المطلوب أولاً

٤ مماس للدائرة مـ $\therefore نـ = ٩٠^\circ$

منتصف بـ جـ $\therefore هـ \perp بـ جـ$

$\therefore طاج(هـ) = (٥٦ + ٩٠ + ٩٠) - ٣٦٠ = ١٢٤^\circ$

٣٦ في الشكل المقابل:

جـ، هـ للدائرة نـ،

$١٢٥^\circ = طاج(نـ)$

$٥٥^\circ = طاج(هـ)$

أثبت أن: جـ مماس للدائرة نـ عند هـ

$\therefore هـ خط المركزين ، بـ الوتر المشترك \therefore بـ \perp نـ$

$٩٠^\circ = طاج(هـ)$

$٣٦٠ = (٩٠ + ٥٥ + ١٢٥) - ١٢٥^\circ$

$\therefore طاج(جـ) = ١٢٤^\circ$

٣٧ في الشكل المقابل: نـ دائرتان متتقاطعتان في بـ،

$\{ جـ \} = بـ نـ$

$٣٩ = مـ نـ$

أوجد طول بـ

$٩٠^\circ = طاج(نـ) \therefore ٩٠^\circ$ من نظرية فيثاغورث

$٦٤ + ٣٦ = ١٠٠ \therefore ١٠٠ = ٤٠$

$٤٠ = \frac{٨ \times ٦}{١٠} \therefore ٨مـ جـ = ٤٠$

جـ مننصف بـ $\therefore طول بـ = ٤٠ \times ٢ = ٩٦$

٣٩ في الشكل المقابل: دائرة مـ محيطةها ٤٤ سم

بـ قطر فيها، بـ جـ مماس

للدائرة عند بـ، طاج(جـ) = ٦٠^\circ

أوجد طول بـ جـ $(طـ = \frac{٢٢}{٧})$

محيط الدائرة = $٢\pi r$ $\therefore ٢\pi r = ٤٤ \therefore r = ٧$

$\frac{٤}{٧} \times ٧ = ٤$ $\therefore نـ = ٧$ سم ومنها بـ = ١٤ سم

$\therefore طاج(جـ) = ٦٠^\circ$ ، بـ جـ مماس للدائرة عند بـ

.. المثلث م س ص متساوی الساقین \leftarrow المطلوب اولاً
 .. $\therefore \text{م}(\Delta M\text{S}) = 30^\circ \therefore \text{م}(\Delta M\text{S}) = 60^\circ$
 .. م س = م ص .. $\therefore \text{م}(\Delta M\text{S}) = 60^\circ$
 .. $\therefore \text{م}(\Delta S\text{M}) = 60^\circ \therefore \text{المثلث } M\text{S ص}$
 متساوی الأضلاع \leftarrow المطلوب ثانياً

٣٩

أ) أثبت أن ΔABC متساوٍ جانبياً إذا وفِي المثلث ABC نظرية جوهرة الدائرة، أي إذا كان $\angle A = \angle B = \angle C$.

٤. في الشكل المقابل: ب ج ء شكل رباعي مرسوم

داخـل دائـرة م ٤ س ينـصـفـ لـ ب ج

٤ ص ينـصـفـ لـ ب ء ج

أثـبـتـ أـنـ : أـولـاـ: الشـكـلـ ٤ سـ صـ ء رـبـاعـيـ دـائـرـىـ

ثـانـيـاـ: سـ صـ // بـ جـ

الشكل $\triangle ABC$ مرسوم على قاعدة BC في جهة واحدة منها

.. مس تا ب ، مص تا ج . م منتصف ا ب ،
 ص منتصف ا ب ،
 ب = ج ، م س = ج ص
 فى $\Delta\Delta$ ا و س ، ج ه ص
 م س = ج ص
 و س = ه ص
 فيهما
 و (ا س و) = و (ج ه ص)
 .. Δ م و س \equiv ج ه ص وينتج من التطابق أن :
 و = ج ه \leftarrow المطلوب ثانياً

م ب خط المركزين ، م ب الوتر المشترك .. م ب
 محور تمايل م ب ، م ب م ب م ب = م ب
 م ب م ب م ب م ب م ب م ب = م ص

م م س ج ب . . . م م س ج ب . . . م م س ج ب . . . م م س ج ب

٣٨ ج وتران متساویان فی الطول فی الدائرة م ب ، م منتصفا ب ، ج ، ف (م س ص) = ٣٠ س ، ص منتصفا ب ، ج ، ف (م س ص) =

أثبت أن : أولاً: المثلث م س ص متساوی الساقین

ثانياً : المثلث م س ص متساوی الأضلاع

$\therefore \Delta ABC$ محيطية، $\angle M$ بمركزية مشتركتان في B و C

$$\therefore \angle A = \frac{1}{2} \angle M = 60^\circ$$

$$\therefore BC \parallel AB \therefore \angle C = \angle B = 60^\circ$$

$$\therefore \angle A = 60^\circ = \angle B = \angle C$$

$\therefore \Delta ABC$ متساوي الأضلاع

$\therefore S$ مماس للدائرة، BG وتر التمسك

$$\therefore \angle M = \angle B \leftarrow (1)$$

$$S \parallel BG \leftarrow (2)$$

$$\therefore \angle M = \angle S \leftarrow (3)$$

من (1)، (2) ينتج أن: $\angle M = \angle S$ $\leftarrow (4)$

$\therefore S$ مماس للدائرة المارة بالنقطة G ، S ، Ch

$\therefore \angle M = \angle B \therefore \angle M = \angle G \leftarrow (1)$

 $\therefore \angle M = 130^\circ \therefore \angle B = 130^\circ \leftarrow (2)$
 $\therefore \angle M = \angle G \leftarrow (3)$

$\therefore S$ مماس للدائرة التي تمربؤوس المثلث ABC

$\therefore \angle M = \angle B + \angle G = 120^\circ \leftarrow (1)$

 $\therefore 3S + 5G = 120^\circ \therefore S = 120^\circ - 5G \leftarrow (2)$
 $\therefore 75^\circ = 15 \times 5 \leftarrow (3)$

$\therefore S$ ينصف BG ، S ص ينصف BG

$$\therefore \frac{1}{2} \angle M = \frac{1}{2} \angle B \leftarrow (4)$$

$$\therefore \angle M = \angle S \leftarrow (5)$$

على قاعدة S ص وفي جهة واحدة منها

\therefore الشكل $\triangle ABC$ ص رباعي دائري \leftarrow أولاً

الشكل $\triangle ABC$ ص رباعي دائري

$$\therefore \angle M = \angle S \leftarrow (6)$$

$$\angle M = \angle B \leftarrow (7)$$

من (1)، (2) $\therefore \angle S = \angle B$ \leftarrow ق {لاء ب ج} = ق {لاء س ص} وهذا في وضع تناظر $\therefore S$ ص // BG

$\therefore BG \perp S \therefore \angle M = 90^\circ$

$$\therefore S \perp BG \therefore \angle N = 90^\circ$$

$$\therefore \angle M = \angle N \leftarrow (1)$$

على قاعدة S ص وفي جهة واحدة منها

\therefore الشكل $\triangle ABC$ ص رباعي دائري \leftarrow أولاً

الشكل $\triangle ABC$ ص رباعي دائري

$\therefore \angle M = \angle S \leftarrow (2)$

مرسومتان على قاعدة S ص وفي جهة واحدة منها

$\therefore \angle M = \angle G \leftarrow (3)$

محيطيتان مشتركتان في G من (1)، (2) ينتج أن:

$\therefore BG \perp S \leftarrow (4)$ $\therefore BG$ ينصف SB

، $\angle B = \angle G$ $\angle B + \angle G = 40^\circ$ وهذا

مرسومتان على قاعدة BG . الشكل ABG رباعي دائري

٥٥ في الشكل المقابل :

دائرتان M ، N متماستان من الخارج في P

، BG مماس لهما عند P ، G

أثبت أن :

$$\angle B = 90^\circ$$

في الدائرة M $\angle B = \angle G$

$$\therefore \angle B = \angle G \leftarrow (1)$$

في الدائرة N $\angle B = \angle G$

$$\therefore \angle B = \angle G \leftarrow (2)$$

بجمع (1) ، (2) ينبع أن :

$$\angle B = \angle B + \angle G$$

$$\therefore \angle B = 90^\circ$$

٥٦ في الشكل المقابل : M بـ G قطعتان مماستان

للدائرة عند B ، G ، $\angle B = 50^\circ$

، $\angle G = 115^\circ$

أثبت أن : أولاً: BG ينصف GH

ثانياً: $\angle B = \angle G$

: الشكل BG رباعي دائري

$$\therefore \angle B + \angle G = 180^\circ$$

$$\therefore \angle B + \angle G = 115^\circ - 65^\circ \leftarrow (1)$$

، BG قطعتان مماستان للدائرة عند B ، G

$$\therefore B = G \therefore \angle B = \angle G$$

$$65^\circ \leftarrow (2)$$

من (1) ، (2) ينبع أن : $\angle B = \angle G = \angle B = \angle G$

$\therefore G$ ينصف AB ← المطلوب أولاً

$\therefore BG$ محجوبة ، BG مماسية مشتركتان في B ، G

$$\therefore \angle B = 65^\circ$$

$$\therefore \angle B = \angle G \therefore \angle B = \angle H$$

٥١ في الشكل المقابل :

BG مستطيل مرسوم داخل دائرة

، رسم الوتر GH بحيث $G = H$

$$\therefore H = B = G$$

$\therefore B = G$ من خواص المستطيل $\leftarrow (1\right)$

$$\therefore G = H \leftarrow (2) \therefore B = G$$

$\therefore C(GH) = Q(GH)$ وبإضافة $Q(BH)$ للطرفين

$$\therefore Q(BH) = Q(GH) \therefore H = B$$

٥٢ BG متوازي أضلاع فيه $G = B$ أثبت أن : $G = B$

مماس للدائرة الخارجية للمثلث BG

$$\therefore B = G \therefore \angle B = \angle G \leftarrow (1)$$

\therefore الشكل BG متوازي أضلاع

$$\therefore G // BG \therefore \angle B = \angle G \leftarrow (2)$$

بالتبادل (2)

$$\therefore \angle B = \angle G \leftarrow (3)$$

$\therefore G$ مماس للدائرة الخارجية للمثلث BG

٥٣ BG متوازي أضلاع . أثبت أن : $H = E$

\therefore الشكل BG متوازي أضلاع

$$\therefore \angle B = \angle G \leftarrow (1)$$

\therefore الشكل EH بـ G رباعي دائري

$\therefore H$ خارجة عن الشكل الرباعي الدائري

$$\therefore \angle B = \angle H \leftarrow (2)$$

من (1) ، (2) ينبع أن : $\angle B = \angle H$

$$\therefore E = H$$

٥٤ في الشكل المقابل :

$$\angle B = 40^\circ$$

$$\angle B = 55^\circ$$

$$\angle H = 95^\circ$$

أثبت أن : الشكل BG رباعي دائري

$\therefore H$ خارجة عن المثلث BG

$$\therefore \angle B = 95^\circ - 55^\circ = 40^\circ$$

