CAPSTONE PROJECT

POWER SYSTEM FAULT DETECTION AND CLASSIFICATION USING MACHINE LEARNING

Presented By: Yuvraj Vilas Shete (E&TC)

College Name & Department : MIT Academy Of Engineering

OUTLINE

- Problem Statement
- Technology used
- Wow factor
- End users
- Result
- Conclusion
- Git-hub Link
- Future scope
- IBM Certifications

PROBLEM STATEMENT

Design a machine learning model to detect and classify different types of faults in a power distribution system. Using electrical measurement data (e.g., voltage and current phasors), the model should be able to distinguish between normal operating conditions and various fault conditions (such as line-to-ground, line-to-line, or three-phase faults). The objective is to enable rapid and accurate fault identification, which is crucial for maintaining power grid stability and reliability.

Proposed Solution:

The system trains a machine learning model for fault classification using IBM Watson Studio and AutoAI on IBM Cloud. To differentiate between different types of faults, it analyzes environmental data, voltage, and current. A real-time fault event classification for grid operators is the end result. Key components: Data Collection: Use the Kaggle dataset on power system faults. Preprocessing: Clean and normalize the dataset. Model Training: Train a classification model (e.g., Decision Tree, Random Forest, or SVM). Evaluation: Validate the model using accuracy, precision, recall, and F1-score.

TECHNOLOGY USED

System Requirements: 8 cpu & 32GB ram

IBM Cloud Lite account IBM Watson Studio Kaggle dataset

Technologies Used: IBM Watson AutoAl

IBM Cloud Object Storage

IBM CLOUD SERVICES USED

- IBM Cloud Watsonx Al Studio
- IBM Cloud Watsonx AI runtime
- IBM Cloud Agent Lab

ALGORITHM & DEVELOPMENT

Algorithm: Snap Random Forest Classifier

#Main Input Features: Voltage Current Power Load Temperature Wind Speed

#Process: Data cleaned and fed into AutoAl Best pipeline selected based on accuracy

#Deployment: Watson ML deployed endpoint used for real-time predictions

Pipeline leaderboard ▽

	Rank	Name	Algorithm	Specialization	Accuracy (Optimized) Cross Validation	Enhancements	Build time
*	1	Pipeline 9	Batched Tree Ensemble Classifier (Random Forest Classifier)	INCR	0.409	HPO-1 FE HPO-2 BATCH	00:00:39
	2	Pipeline 8	O Random Forest Classifier		0.409	HPO-1 FE HPO-2	00:00:36
	3	Pipeline 4	O Snap Logistic Regression		0.393	HPO-1 FE HPO-2	00:00:23
	4	Pipeline 3	O Snap Logistic Regression		0.393	HPO-1 FE	00:00:20

CONCLUSION

In this project, a machine learning model was developed to detect and classify power system faults using sensor and environmental data. After testing multiple pipelines, the best-performing model was the Batched Tree Ensemble Classifier (Random Forest) with an optimized accuracy of 40.9%. The model successfully classified faults into categories like Line Breakage and Transformer Failure using input features such as voltage, current, weather condition, and component health.

FUTURE SCOPE

- Add GPS-based fault location analysis
- Improve model accuracy with deep learning
- Integrate real-time sensor streaming
- Expand system to classify subtypes of each fault
- Add dashboard for visualization

IBM CERTIFICATIONS

In recognition of the commitment to achieve professional excellence

YUVRAJ SHETE

Has successfully satisfied the requirements for:

Getting Started with Artificial Intelligence

Issued on: Jul 16, 2025 Issued by: IBM SkillsBuild

Verify: https://www.credly.com/badges/a52fd55c-362b-43f6-b834-3e665cd367cc

IBM SkillsBuild

Completion Certificate

This certificate is presented to

Yuvraj shete

for the completion of

Lab: Retrieval Augmented Generation with LangChain

(ALM-COURSE_3824998)

According to the Adobe Learning Manager system of record

Completion date: 01 Aug 2025 (GMT)

Learning hours: 20 mins

In recognition of the commitment to achieve professional excellence

YUVRAJ SHETE

Has successfully satisfied the requirements for:

Journey to Cloud: Envisioning Your Solution

Issued on: Jul 19, 2025 Issued by: IBM SkillsBuild

Verify: https://www.credly.com/badges/98363115-71d5-42ef-90fe-ed9114d57591

GITHUB LINK

https://github.com/Yuvraj9600/-Machine-learning-project-

THANK YOU

