core-periphery structure

introduction to network analysis (ina)

Lovro Šubelj University of Ljubljana spring 2024/25

core-periphery block model

^{*}origin of core-periphery structure in international relations

core-periphery structure

- core/periphery nodes have higher/lower degrees k
- $\mathit{core/periphery\ nodes}$ are on $\mathit{shorter/longer\ distances}\ \ell$
- core/periphery nodes have higher/lower clustering C^{μ}

core-periphery *stochastic*

- $G(\{C_1, C_2\}, \{p_{11}, p_{12}, p_{22}\})$ stochastic block model [HLL83] — n_i is size of cluster C_i & p_{ij} is link density between C_i and C_j
- density-based core-periphery structure when $p_{11} \gg p_{12} \gg p_{22}$
- lookalike core-periph. when $n_1p_{11}\gg 1$, $n_1p_{12}\ll 1$, $n_2p_{22}\approx 1$

non-corrected block model $p_{11} > p_{12} > p_{22}$

degree-corrected block model $p_{11} \approx p_{22} > p_{12}$

core-periphery discrete/continuos

- discrete core-periphery division $\delta \in \{0,1\}$ [BE00]
 - $-\delta_i=1$ for core nodes i & $\delta_i=0$ for peripheral nodes i

$$\rho_{\{0,1\}} = \sum_{ij} A_{ij} \Delta_{ij}^{\alpha} \qquad \Delta_{ij} = \begin{cases} 1 & \text{if } \delta_i = \delta_j = 1 \\ 0 & \text{if } \delta_i = \delta_j = 0 \\ \alpha \in [0,1] & \text{if } \delta_i - \delta_j \neq 0 \end{cases}$$

- continuos core-periphery centrality $\delta \in [0, 1]$
 - $-\delta_i \approx 1$ for core nodes $i \& \delta_i \approx 0$ for peripheral nodes i

$$\rho_{[0,1]} = \sum_{ij} A_{ij} \delta_i \delta_j$$

$$\Delta^{1} = \begin{bmatrix} 0 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \end{bmatrix} \quad \Delta^{\alpha} = \begin{bmatrix} 0 & 1 & 1 & \alpha & \alpha & \alpha & \alpha \\ 1 & 0 & 1 & \alpha & \alpha & \alpha & \alpha \\ \frac{1}{\alpha} & 1 & 0 & \alpha & \alpha & \alpha & \alpha \\ \alpha & \alpha & \alpha & 0 & 0 & 0 & 0 \\ \alpha & \alpha & \alpha & \alpha & 0 & 0 & 0 & 0 \end{bmatrix} \quad \delta = \begin{bmatrix} 1 \\ 0.8 \\ 0.7 \\ 0.4 \\ 0.2 \\ 0.1 \end{bmatrix}$$

core-periphery *k-cores*

- k-cores are subgraphs of nodes with $\geq k$ neighbors [Sei83] remove nodes with degree < k until no such node remains [BZ11]
- k-shells are nodes of k-cores that are not in k+1-cores
- *k-cores* are *nested* while *k-shells* form *decomposition*

1-cores are connected components w/o isolates & k-cores can be disconnected

core-periphery *nestedness*

nested cores & whiskers communities [LLDM09, YL13]

core-periphery references

A.-L. Barabási.

Network Science.

Cambridge University Press, Cambridge, 2016.

Stephen P. Borgatti and Martin G. Everett.

Models of core/periphery structures. Soc. Networks, 21(4):375–395, 2000.

V. Batagelj and M. Zaveršnik.

An O(m) algorithm for cores decomposition of networks.

Adv. Data Anal. Classif., 5(2):129-145, 2011.

Wouter de Nooy, Andrej Mrvar, and Vladimir Batagelj.

Exploratory Social Network Analysis with Pajek: Expanded and Revised Second Edition.

Cambridge University Press. Cambridge, 2011.

David Easley and Jon Kleinberg.

Networks, Crowds, and Markets: Reasoning About a Highly Connected World.

Cambridge University Press, Cambridge, 2010.

Ernesto Estrada and Philip A. Knight.

A First Course in Network Theory. Oxford University Press, 2015.

P. Erdős and A. Rényi.

On random graphs I. Publ. Math. Debrecen. 6:290-297, 1959.

M. Girvan and M. E. J Newman.

Community structure in social and biological networks.

P. Natl. Acad. Sci. USA, 99(12):7821-7826, 2002.

core-periphery references

Paul W. Holland, Kathryn Blackmond Laskey, and Samuel Leinhardt.

Stochastic blockmodels: First steps. Soc. Networks, 5(2):109–137, 1983.

Petter Holme.

Core-periphery organization of complex networks.

Phys. Rev. E, 72(4):046111, 2005.

Jure Leskovec, Kevin J Lang, Anirban Dasgupta, and Michael W Mahoney.

Community structure in large networks: Natural cluster sizes and the absence of large well-defined clusters. Internet Math., 6(1):29–123, 2009.

Tilen Marc and Lovro Šubelj.

Convexity in complex networks. Netw. Sci., 6(2):176–203, 2018.

Mark E. J. Newman.

Networks.

Oxford University Press, Oxford, 2nd edition, 2018.

M. E. J Newman and E. A Leicht.

Mixture models and exploratory analysis in networks. P. Natl. Acad. Sci. USA, 104(23):9564–9569, 2007.

Stephen B. Seidman.

Network structure and minimum degree.

Soc. Networks, 5(3):269-287, 1983.

core-periphery *references*

J. Yang and Jure Leskovec.

Overlapping community detection at scale: A nonnegative matrix factorization approach. In Proceedings of the ACM International Conference on Web Search and Data Mining, pages 587–596, Rome, Italy, 2013.