

Arquitetura de Computadores

Aula Prática #1

(3 de outubro de 2019)

Considere a Figura 1, que apresenta a microarquitetura do processador a 4 bits desenvolvido nas aulas teóricas, e que se pretende alterar para realizar duas novas instruções, conforme indicado na Tabela 1.

Figura 1 - Diagrama de blocos da microarquitetura do processador.

Instrução	Descrição		
add rd, ra, rb	Adiciona rb a ra e coloca o resultado em rd .	rd ← ra + rb	
sub rd, ra, rb	Subtrai rb a ra e coloca o resultado em rd. rd ← ra - rb		
inc rd, ra	Adiciona 1 a ra e coloca o resultado em rd .	rd ← ra + 1	
	Subtrai rb a ra e atualiza a <i>flag</i> C em conformidade com o resultado, que é descartado.	ra - rb	
mov rd, #imm4	Carrega o valor da constante const4 no registo rd .	rd ← const4	
mov rd, ra	Copia para o registo rd o valor do registo ra .	rd ← ra	
	Muda a execução para o endereço resultante da adição ao PC de offset6.	PC ← PC + offset6	
	Quando a <i>flag C</i> apresenta o valor 0, muda a execução para o endereço resultante da adição ao PC de offset6 .	PC ← PC + offset6 se C == 0	
	Quando a <i>flag C</i> apresenta o valor 1, muda a execução para o endereço resultante da adição ao PC de offset6 .	$PC \Leftarrow PC + offset6 se$ C == 1	

Tabela 1 – Conjunto de instruções do processador.

© 2014-9, Tiago Miguel Dias ISEL-ADEETC- AC

Licenciatura em Engenharia Informática e de Computadores Ano Letivo 2019/2020, Semestre de Inverno

Arquitetura de Computadores

Aula Prática #1

(3 de outubro de 2019)

1. Sabendo que as instruções originais foram recodificadas usando 10 bits no formato apresentado na Tabela 2, determine o valor lógico das saídas do subcircuito Descodificador de Instruções do processador para cada uma das instruções do novo conjunto de instruções. Explicite os casos de indiferença (don't care) e as saídas obtidas diretamente do código da instrução.

Instrucão	Codificação			
Instrução	b9 b8	b7 b6	b5 b4	b3 b0
add rd, ra, rb	ra	rb	rd	0000
inc rd, ra	ra		rd	0010
sub rd, ra, rb	ra	rb	rd	0001
cmp ra, rb	ra	rb		0011
mov rd, #imm4	imm	4	rd	0110
mov rd, ra	ra		rd	0111
ocs offset6 offset6		1000		
bcc offset6	offset6			1001
b offset6	offset6		1010	

Tabela 2 – Codificação das instruções.

- 2. Usando a aplicação Logisim, altere o subcircuito Descodificador de Instruções descrito no ficheiro processador4b_implementação_base.circ¹ para concretizar as definições do ponto anterior.
- 3. Usando o conjunto de instruções indicado na Tabela 1, implemente um programa que realiza a divisão de D por d usando o algoritmo das subtrações sucessivas. Considere que D e d são dois números naturais, codificados com 4 bits, que tomam dois valores à sua escolha guardados nos registos r0 e r1, respetivamente.
- 4. Complete a seguinte tabela, relativa à memória de código do processador, com a codificação em linguagem máquina do programa desenvolvido no ponto anterior.

Endereço	Instrução <i>assembly</i>	Instrução máquina
1	mov r0, D	
2	mov r1, d	
3		

- 5. Na aplicação Logisim, carregue o programa na memória de código do processador e execute-o para verificar o seu funcionamento.
- 6. Pretende-se substituir a instrução inc rd, ra pela instrução add rd, ra, #imm2, que realiza a operação rd = ra + imm2, em que imm2 representa um número natural codificado com dois bits. Altere a microarquitetura do processador para que este passe a suportar a execução desta nova instrução.

2/2

¹ O ficheiro está disponível para *download* na página da turma na plataforma Moodle.