Artificial Intelligence Fundamentals

Learning: Genetic Algorithms

Mitosis

Process when new cells are generated

Reproduction

 Meiosis - Special type of cell division that occurs in sexually reproducing organisms

Chromosome - mutation

....0110001000100.....

A string of things

Population	> Mutation
0110001000100	0110 <mark>1</mark> 01000100
0111010101100	011101 <mark>1</mark> 101100
1110110111100	1110110111100
0001001101100	0 <mark>1</mark> 01001101100

Parameters – how many mutations per chromosome; how many chromosome we allow to be mutated?

Chromosome – cross over

Population ———after mutation	Population after cross over
0110101000100	0110101001100
0111011101100	0111011100100
11101101111100	11101111011100
0001001101100	0001000111100

Parameters – how many cross over operations per chromosome;?

Chromosome - genotype to phenotype transition

- The chromosome must be interpreted in order to be something
- Each chromosome create an individual

Population after cross over	Individuals ———	→ Fitness
0110101001100		64
0111011100100		12
1110111101100		56
0001000111100		112

Fitness - Probability - Selection

Fitness		Selection phenotype to genotype
64	0.44	0111111000100
12	0.07	0111010101100
56	0.56	0001110001100
112	0.82	1010001000100

Selection methods

1. Based on fitness

$$P_i = \frac{f_i}{\sum_j f_j}$$

2. Rank space

$$P_1 = p_c$$

$$P_2 = (1 - p_c)p_c$$

$$P_3 = (1 - p_c)^2 \, p_c$$

3. Fitness and diversity rank

$$P_3 = (1 - p_c)^2 p_c$$
 $P_{N-1} = (1 - p_c)^{N-2} p_c$ $P_N = (1 - p_c)^{N-1}$

Planning problems

- S_1 , S_2 , S_3 ... S_n
- S_1 , S_2 , S_3 ... S_n
- S_1 , S_2 , S_3 ... S_n

Rule based problems

- IF X and Y THEN
- IF A and B THEN
- IF X' AND M THEN

Related resources

Readings

Artificial Intelligence (3rd Edition), Patrick Winston, Chapter 25