回帰分析

モデルの評価

村田 昇

講義概要

• 第1回:回帰モデルの考え方と推定

• 第2回: モデルの評価

・ 第3回: モデルによる予測と発展的なモデル

回帰分析の復習

線形回帰モデル

• 目的変数 を 説明変数 で説明する関係式を構成

- 説明変数: $x_1, ..., x_p$ (p 次元)

- 目的変数: y(1 次元)

• 回帰係数 $\beta_0,\beta_1,\ldots,\beta_p$ を用いた一次式

$$y = \beta_0 + \beta_1 x_1 + \dots + \beta_p x_p$$

・ 誤差項 を含む確率モデルで観測データを表現

$$y_i = \beta_0 + \beta_1 x_{i1} + \dots + \beta_p x_{ip} + \epsilon_i \quad (i = 1, \dots, n)$$

簡潔な表現のための行列

• デザイン行列 (説明変数)

$$X = \begin{pmatrix} 1 & x_{11} & x_{12} & \cdots & x_{1p} \\ 1 & x_{21} & x_{22} & \cdots & x_{2p} \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & x_{n1} & x_{n2} & \cdots & x_{np} \end{pmatrix}$$

簡潔な表現のためのベクトル

• ベクトル (目的変数・誤差・回帰係数)

$$\mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}, \quad \boldsymbol{\epsilon} = \begin{pmatrix} \epsilon_1 \\ \epsilon_2 \\ \vdots \\ \epsilon_n \end{pmatrix}, \quad \boldsymbol{\beta} = \begin{pmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_n \end{pmatrix}$$

問題の記述

• 確率モデル

$$y = X\beta + \epsilon$$
, $\epsilon \sim$ 確率分布

• 回帰式の推定: **残差平方和** の最小化

$$S(\boldsymbol{\beta}) = (\boldsymbol{y} - X\boldsymbol{\beta})^{\mathsf{T}} (\boldsymbol{y} - X\boldsymbol{\beta})$$

解の表現

• 解の条件: **正規方程式**

$$X^{\mathsf{T}}X\boldsymbol{\beta} = X^{\mathsf{T}}y$$

• 解の一意性 : **Gram 行列 X**^T**X** が正則

$$\hat{\boldsymbol{\beta}} = (X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}\mathbf{v}$$

最小二乗推定量の性質

- **あてはめ値** $\hat{y} = X\hat{\beta}$ は X の列ベクトルの線形結合
- 残差 $\hat{\epsilon} = y \hat{y}$ はあてはめ値 \hat{y} と直交

$$\hat{\epsilon}^{\mathsf{T}}\hat{\mathbf{v}} = 0$$

• 回帰式は説明変数と目的変数の 標本平均 を通過

$$\bar{y} = (1, \bar{x}^{\mathsf{T}})\hat{\beta}, \quad \bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i, \quad \bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i,$$

寄与率

• 決定係数 (R-squared)

$$R^{2} = 1 - \frac{\sum_{i=1}^{n} \hat{\epsilon}_{i}^{2}}{\sum_{i=1}^{n} (y_{i} - \bar{y})^{2}}$$

• 自由度調整済み決定係数 (adjusted R-squared)

$$\bar{R}^2 = 1 - \frac{\frac{1}{n-p-1} \sum_{i=1}^{n} \hat{\epsilon}_i^2}{\frac{1}{n-1} \sum_{i=1}^{n} (y_i - \bar{y})^2}$$

- 不偏分散で補正

解析の事例

実データによる例

- ・ 気象庁より取得した東京の気候データ (再掲)
 - 気象庁 https://www.data.jma.go.jp/gmd/risk/obsdl/index.php
 - データ https://noboru-murata.github.io/statistical-data-analysis2/data/data03.zip

気温に影響を与える要因の分析

• データの概要

日付	気温	降雨	日射	降雪	風向	風速	気圧	湿度	雲量
2023-09-01	29.2	0.0	24.01	0	SSE	4.3	1012.1	71	2.0
2023-09-02	29.6	0.0	22.07	0	SSE	3.1	1010.3	72	8.0
2023-09-03	29.1	3.5	18.64	0	ENE	2.8	1010.6	74	9.3
2023-09-04	26.1	34.0	7.48	0	N	2.6	1007.5	96	10.0
2023-09-05	29.3	0.0	22.58	0	S	3.5	1005.2	77	3.5
2023-09-06	27.5	0.5	13.17	0	SSW	2.6	1003.6	79	10.0
2023-09-07	27.0	0.5	11.01	0	ENE	2.5	1007.9	72	10.0
2023-09-08	21.9	107.5	2.10	0	NW	3.4	1007.8	98	10.0
2023-09-09	24.8	1.0	8.81	0	S	2.2	1006.8	93	7.5
2023-09-10	27.8	0.0	17.57	0	S	3.1	1009.1	83	6.3
2023-09-11	28.1	0.0	17.19	0	SSE	3.1	1010.1	79	9.0
2023-09-12	27.7	0.0	20.02	0	SSE	2.8	1010.0	76	4.8
2023-09-13	28.0	0.0	22.00	0	SE	2.4	1010.9	74	4.5
2023-09-14	28.2	0.0	14.54	0	SSE	2.8	1009.9	80	7.0
2023-09-15	27.4	10.5	9.21	0	NE	2.0	1010.9	88	8.5
2023-09-16	27.9	0.0	11.78	0	SSE	2.0	1011.5	86	10.0
2023-09-17	28.7	0.0	14.84	0	S	3.2	1011.5	80	4.0
2023-09-18	28.9	0.0	19.59	0	S	4.2	1011.6	74	1.8
2023-09-19	29.0	0.0	19.93	0	S	3.3	1010.1	72	2.3
2023-09-20	27.2	6.0	10.65	0	N	1.9	1009.3	82	8.3
2023-09-21	26.7	2.0	6.65	0	S	4.1	1006.7	87	9.5
2023-09-22	24.8	59.5	6.83	0	ENE	2.5	1008.1	93	10.0
2023-09-23	22.1	4.0	4.48	0	NE	2.6	1012.5	89	10.0
2023-09-24	22.2	0.0	15.81	0	N	3.0	1017.2	67	7.0
2023-09-25	22.4	0.0	15.49	0	N	2.5	1017.1	69	6.5
2023-09-26	24.6	0.0	16.08	0	NNW	2.0	1012.7	71	6.0
2023-09-27	25.3	0.0	11.59	0	SSE	1.9	1008.1	81	9.0
2023-09-28	27.4	0.0	14.03	0	ESE	1.9	1004.7	79	5.8
2023-09-29	26.3	0.0	10.11	0	SSE	3.0	1009.0	75	8.5
2023-09-30	25.6	0.0	7.98	0	S	2.5	1007.5	77	7.0

• 気温を説明する5種類の線形回帰モデルを検討

- モデル1: 気温 = F(気圧)

- モデル2: 気温 = F(日射)

- モデル3: 気温 = F(気圧, 日射)

- モデル4: 気温 = F(気圧, 日射, 湿度) - モデル5: 気温 = F(気圧, 日射, 雲量)

分析の視覚化

• 関連するデータの散布図

Figure 1: 散布図

- モデル1の推定結果
- モデル2の推定結果
- モデル3の推定結果
- 観測値とあてはめ値の比較

モデルの比較

• 決定係数 (R², Adjusted R²)

	モデル 1		モデル 2		モデル 3		モデル 4		モデル 5	
Characteristic	Beta	\mathbf{SE}^{I}								
気圧	-0.21	0.135			-0.36	0.090	-0.32	0.098	-0.36	0.092
日射			0.25	0.057	0.30	0.048	0.35	0.069	0.32	0.069
湿度							0.05	0.052		
雲量									0.05	0.151
R ²	0.082		0.414		0.632		0.644		0.633	

Adjusted R²

0.049

0.393

0.604

0.603

0.591

 I SE = Standard Error

あてはめ値の性質

あてはめ値

• さまざまな表現

$$\hat{y} = X\hat{\boldsymbol{\beta}}$$

$$(\hat{\boldsymbol{\beta}} = (X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}\boldsymbol{y}$$

$$= X(X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}\boldsymbol{y}$$

$$(\boldsymbol{y} = X\boldsymbol{\beta} + \boldsymbol{\epsilon}$$

$$= X(X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}X\boldsymbol{\beta} + X(X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}\boldsymbol{\epsilon}$$

$$= X\boldsymbol{\beta} + X(X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}\boldsymbol{\epsilon}$$

$$= X\boldsymbol{\beta} + X(X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}\boldsymbol{\epsilon}$$
(B)

- (A) あてはめ値は **観測値の重み付けの和** で表される
- (B) あてはめ値と観測値は 誤差項 の寄与のみ異なる

あてはめ値と誤差

• 残差と誤差の関係

$$\hat{\epsilon} = y - \hat{y}$$

$$= \epsilon - X(X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}\epsilon$$

$$= (I - X(X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}})\epsilon \qquad (C)$$

- (C) 残差は **誤差の重み付けの和** で表される

ハット行列

• 定義

$$H = X(X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}$$

• ハット行列 H による表現

$$\hat{\mathbf{y}} = H\mathbf{y}$$

$$\hat{\boldsymbol{\epsilon}} = (I - H)\boldsymbol{\epsilon}$$

- あてはめ値や残差は H を用いて簡潔に表現される

Figure 2: モデル 1

Figure 3: モデル 2

Figure 4: モデル 3

Figure 5: モデルの比較

ハット行列の性質

- ・ 観測データ (デザイン行列) のみで計算される
- 観測データと説明変数の関係を表す
- 対角成分 (テコ比; leverage) は観測データが自身の予測に及ぼす影響の度合を表す

$$\hat{y}_i = (H)_{ii} y_i + (それ以外のデータの寄与)$$

- (A)_{ii} は行列 A の (i, j) 成分

- テコ比が小さい:他のデータでも予測が可能

- テコ比が大きい:他のデータでは予測が困難

推定量の統計的性質

最小二乗推定量の性質

• 推定量と誤差の関係

$$\hat{\boldsymbol{\beta}} = (X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}\boldsymbol{y}$$

$$= (X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}(X\boldsymbol{\beta} + \boldsymbol{\epsilon})$$

$$= (X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}X\boldsymbol{\beta} + (X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}\boldsymbol{\epsilon}$$

$$= \boldsymbol{\beta} + (X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}\boldsymbol{\epsilon}$$

• 正規分布の重要な性質 (**再生性**)

正規分布に従う独立な確率変数の和は正規分布に従う

推定量の分布

• 誤差の仮定:独立、平均0分散 σ^2 の正規分布

• 推定量は以下の多変量正規分布に従う

$$\mathbb{E}[\hat{\boldsymbol{\beta}}] = \mathbb{E}[\boldsymbol{\beta} + (\boldsymbol{X}^{\mathsf{T}}\boldsymbol{X})^{-1}\boldsymbol{X}^{\mathsf{T}}\boldsymbol{\epsilon}] = \boldsymbol{\beta}$$
$$\operatorname{Cov}(\hat{\boldsymbol{\beta}}) = \mathbb{E}[(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta})(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta})^{\mathsf{T}}] = \sigma^{2}(\boldsymbol{X}^{\mathsf{T}}\boldsymbol{X})^{-1}$$
$$\hat{\boldsymbol{\beta}} \sim \mathcal{N}(\boldsymbol{\beta}, \sigma^{2}(\boldsymbol{X}^{\mathsf{T}}\boldsymbol{X})^{-1})$$

• 通常 σ^2 は未知、必要な場合には不偏分散で代用

$$\hat{\sigma^2} = \frac{S}{n-p-1} = \frac{1}{n-p-1} \hat{\boldsymbol{\epsilon}}^\mathsf{T} \hat{\boldsymbol{\epsilon}} = \frac{1}{n-p-1} \sum_{i=1}^n \hat{\epsilon}_i^2$$

• これらの性質を利用してモデルの評価を行う

実習

R: 乱数を用いた人工データの生成

• 正規乱数を用いた線形単同帰モデル

```
set.seed(987) # 乱数のシード値を設定
x_obs <- tibble(x0 = 1, x1 = c(1,3,5,7)) # 説明変数の観測値
epsilon <- rnorm(nrow(x_obs), sd = 0.5) # 誤差項の生成
beta <- c(2, -3) # 回帰係数
toy_data <- x_obs |> # 目的変数の観測値を追加
mutate(y = as.vector(as.matrix(x_obs) %*% beta) + epsilon)
toy_lm <- lm(y ~ x1, data = toy_data) # 回帰係数の推定
coef(toy_lm) # 回帰係数の取得
summary(toy_lm) # 分析結果の概要の表示
```

R:数值実験 (Monte-Carlo 法)

• 実験のためのコードは以下のようになる

```
mc_num <- 5000 # 実験回数を指定
mc_trial <- function() { # 1回の試行を行うプログラム
## 乱数生成と推定の処理
return(返り値)}
mc_data <-
replicate(mc_num, mc_trial()) |> # Monte-Carlo 実験
t() |> as_tibble() # 転置 (関数 t()) してデータフレームに変換
#' 適切な統計・視覚化処理 (下記は例)
mc_data |>
summarise(across(everything(), var)) # 各列の分散の計算
ggpairs(mc_data) # 散布図行列の描画
tibble(x = mc_data[[k]]) |> # k列目のベクトルで新しいデータフレームを作成
ggplot(aes(x = x)) + geom_histogram() # k列目のデータのヒストグラム
```

練習問題

- 最小二乗推定量の性質を数値実験 (Monte-Carlo 法) により確認しなさい
 - 以下のモデルに従う人工データを生成する

説明変数の観測データ:

{1, 20, 13, 9, 5, 15, 19, 8, 3, 4}

確率モデル:

$$y = -1 + 2 \times x + \epsilon, \quad \epsilon \sim \mathcal{N}(0, 2)$$

- 観測データから回帰係数を推定する
- 実験を複数回繰り返し推定値 $(\hat{\beta}_0, \hat{\beta}_1)$ の分布を調べる

誤差の評価

寄与率 (再掲)

- 決定係数 (R-squared)
 - 回帰式で説明できるばらつきの比率

$$R^{2} = 1 - \frac{\sum_{i=1}^{n} \hat{\epsilon}_{i}^{2}}{\sum_{i=1}^{n} (y_{i} - \bar{y})^{2}}$$

- 自由度調整済み決定係数 (adjusted R-squared)
 - 決定係数を不偏分散で補正

$$\bar{R}^2 = 1 - \frac{\frac{1}{n-p-1} \sum_{i=1}^{n} \hat{\epsilon}_i^2}{\frac{1}{n-1} \sum_{i=1}^{n} (y_i - \bar{y})^2}$$

各係数の推定量の分布

- 推定された回帰係数の精度を評価
 - 誤差 ϵ の分布は平均 0 分散 σ^2 の正規分布
 - $-\hat{\beta}$ の分布: p+1 変量正規分布

$$\hat{\boldsymbol{\beta}} \sim \mathcal{N}(\boldsymbol{\beta}, \sigma^2 (X^\mathsf{T} X)^{-1})$$

- β̂_i の分布: 1 変量正規分布

$$\hat{\beta}_j \sim \mathcal{N}(\beta_j, \sigma^2((X^\mathsf{T} X)^{-1})_{jj}) = \mathcal{N}(\beta_j, \sigma^2 \zeta_j^2)$$

* (A); は行列 A の (j, j) (対角) 成分

標準誤差

- 標準誤差 (standard error)
 - β̂_i の標準偏差の推定量

s.e.
$$(\hat{\beta}_j) = \hat{\sigma}\zeta_j = \sqrt{\frac{1}{n-p-1}\sum_{i=1}^n \hat{\epsilon}_i^2} \cdot \sqrt{((X^{\mathsf{T}}X)^{-1})_{jj}}$$

- 未知母数 σ^2 は不偏分散 $\hat{\sigma}^2$ で推定
- $-\hat{\beta}_i$ の精度の評価指標

実習

練習問題

- 数値実験により標準誤差の性質を確認しなさい
 - 人工データを用いて標準誤差と真の誤差を比較する

```
#' 標準誤差は以下のようにして取り出せる
toy_lm <- lm(formula, toy_data)
summary(toy_lm)$coefficients # 係数に関する情報はリストの要素として保管されている
summary(toy_lm)$coefficients[,2] # 列番号での指定
summary(toy_lm)$coef[,"Std. Error"] # 列名での指定. coef と省略してもよい
tidy(toy_lm) # 関数 broom::tidy() でも同様に取得できる
```

- 広告費と売上データを用いて係数の精度を議論する
- 東京の気候データを用いて係数の精度を議論する

係数の評価

t 統計量

- 回帰係数の分布 に関する定理
 - t 統計量 (t-statistic)

$$t = \frac{\hat{\beta}_j - \beta_j}{\text{s.e.}(\hat{\beta}_i)} = \frac{\hat{\beta}_j - \beta_j}{\hat{\sigma}\zeta_j}$$

は自由度 n-p-1 の t 分布に従う

- 証明には以下の性質を用いる
 - * $\hat{\sigma}^2$ と $\hat{\beta}$ は独立となる
 - * $(\hat{\beta}_i \beta_i)/(\sigma \zeta_i)$ は標準正規分布に従う
 - * $(n-p-1)\hat{\sigma}^2/\sigma^2 = S(\hat{\beta})/\sigma^2$ は自由度 n-p-1 の χ^2 分布に従う

t 統計量による検定

- 回帰係数 β_i が回帰式に寄与するか否かを検定
 - 帰無仮説 H_0 : $β_i$ = 0 (t 統計量が計算できる)
 - 対立仮説 H_1 : $β_i ≠ 0$
- p値:確率変数の絶対値が |t| を超える確率
 - f(x) は自由度 n-p-1 の t 分布の確率密度関数

$$(p \ \text{値}) = 2 \int_{|t|}^{\infty} f(x) dx \quad (両側検定)$$

帰無仮説 H_0 が正しければ p 値は小さくならない

実習

練習問題

- 数値実験により t 統計量の性質を確認しなさい
 - 人工データを用いて t 統計量の分布を確認する

#' t統計量とその p 値は以下のようにして取り出せる
toy_lm <- lm(formula, toy_data)
summary(toy_lm)\$coef[,c("t value","Pr(>|t|)")] # 列名での指定
summary(toy_lm)\$coef[,3:4] # 列番号での指定
tidy(toy_lm) # 関数 broom::tidy() を用いてもよい

- 広告費と売上データを用いて係数の有意性を議論する
- 東京の気候データを用いて係数の有意性を議論する

モデルの評価

F 統計量

・ ばらつきの比 に関する定理

 $\beta_1 = \cdots = \beta_p = 0$ ならば F 統計量 (F-statistic)

$$F = \frac{\frac{1}{p}S_r}{\frac{1}{n-p-1}S} = \frac{n-p-1}{p} \frac{R^2}{1-R^2}$$

は自由度 p, n-p-1 の F 分布に従う

- 証明には以下の性質を用いる
 - * S_r と S は独立となる
 - * S_r/σ^2 は自由度 p の χ^2 分布に従う
 - * S/σ^2 は自由度 n-p-1 の χ^2 分布に従う

F統計量を用いた検定

- 説明変数のうち1つでも役に立つか否かを検定
 - 帰無仮説 $H_0: \beta_1 = \cdots = \beta_p = 0$ (S_r が χ^2 分布になる)
 - 対立仮説 H_1 : ∃j $β_i ≠ 0$
- p値:確率変数の値がFを超える確率
 - f(x) は自由度 p, n-p-1 の F 分布の確率密度関数

$$(p \ \mbox{\'e}) = \int_F^\infty f(x) dx$$
 (片側検定)

帰無仮説 H_0 が正しければ p 値は小さくならない

実習

練習問題

- 数値実験により F 統計量の性質を確認しなさい
 - 人工データを用いて F 統計量の分布を確認しなさい

```
#' F統計量とその自由度は以下のようにして取り出せる
toy_lm <- lm(formula, toy_data)
summary(toy_lm)$fstat
summary(toy_lm)$fstatistic # 省略しない場合
glance(toy_lm) # 関数 broom::glance() を用いてもよい
```

- 広告費と売上データのモデルの有効性を議論しなさい
- 東京の気候データのモデルの有効性を議論しなさい

補足

R:診断プロット

- 回帰モデルのあてはまりを視覚的に評価
 - Residuals vs Fitted: あてはめ値 (予測値) と残差の関係
 - Normal Q-Q: 残差の正規性の確認
 - Scale-Location: あてはめ値と正規化した残差の関係
 - Residuals vs Leverage: 正規化した残差とテコ比の関係

などが用意されている

```
#' 関数 stats::lm() による推定結果の診断プロット
tw_lm6 <- lm(temp ~ press + solar + rain, data = tw_subset)
#' 関数 ggfortify::autoplot() を利用する
#' 必要であれば 'install.packages("ggfortify")' を実行
library(ggfortify)
autoplot(tw_lm6)
#' 診断プロットは 1 から 6 まで用意されており 1,2,3,5 がまとめて表示される
#' 個別に表示する場合は 'autoplot(tw_lm6, which = 1)' のように指定する
#' 詳細は '?ggfortify::autoplot.lm' を参照
```

次回の予定

• 第1回:回帰モデルの考え方と推定

• 第2回: モデルの評価

・ 第3回:モデルによる予測と発展的なモデル