1. Let

$$A = \left[\begin{array}{rrr} 1 & 3 & 4 \\ 1 & 0 & 3 \\ 1 & 1 & 3 \end{array} \right]$$

(a) Find det(A).

- (b) Compute A^{-1} .
- (c) Find a matrix B and a vector C such that

$$BA = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{bmatrix}, AC = \begin{bmatrix} 4 \\ 3 \\ 3 \end{bmatrix}$$

(d) Let F be any matrix row-equivalent to A. Find the nullspace and range of F.

(e) Let

$$V_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, V_2 = \begin{bmatrix} 3 \\ 0 \\ 1 \end{bmatrix}, V_3 = \begin{bmatrix} 4 \\ 3 \\ 3 \end{bmatrix}$$

G is a 3×3 matrix with $GV_1 = 2V_1, GV_2 = 3V_2, GV_3 = 7V_3$. Find G.

2. Let

$$A = \left[\begin{array}{rrr} 3 & 4 & 2 \\ 0 & 5 & 1 \\ 0 & 0 & 3 \end{array} \right]$$

Find the eigenvalues of A, and for each eigenvalue find a basis of the corresponding eigenspace. Is A diagonalisable? If so, find a diagonal matrix D similar to A. (That is, find a diagonal D such that, for some invertible matrix P, AP = PD or $A = PDP^{-1}$.

3. (a) Let

$$B = \left[\begin{array}{c} 2\\5\\7\\9 \end{array} \right]$$

. Suppose A is a 4×3 matrix. Can the matrix equation AX = B, where X is a vector in \mathbb{R}^3 , have zero, one, or infinitely many solutions? For each possible number of solutions, find a 4×3 matrix A such that AX = B has precisely that many solutions.

(b) Let

$$B = \left[\begin{array}{c} 7 \\ 9 \\ 6 \end{array} \right]$$

. Suppose A is a 3×4 matrix. Can the matrix equation AX = B, where X is a vector in \mathbb{R}^4 , have zero, one, or infinitely many solutions? For each possible

number of solutions, find a 3×4 matrix A such that AX = B has precisely that many solutions.

- 4. (a) Find a spanning set for \mathbb{R}^3 which is not linearly independent.
 - (b) TRUE OR FALSE: Suppose A is a singular 4×4 matrix, and B is row-equivalent to A. Then $\det(A) = \det(B)$.
 - (c) Suppose C is a diagonalisable 6×6 matrix with eigenvalue 7 with algebraic multiplicity 2. Find rank(C-7I).
 - (d) Suppose A is a singular 2×2 matrix which is not diagonalisable. Find the eigenvalues of A, and the characteristic polynomial of A. Give an example of such a matrix.