

数字逻辑 14 可编程逻辑器件

使用可编程器件快速设计线路

杨永全

计算机科学与技术学院

<u>目录</u>

- 1. 课程目标
- 2. 课程内容
- 3. 课堂练习
- 4. 课堂讨论
- 5. 课堂总结

1.课程目标

1. 目标

- 1. 了解 PLD 基本结构
- 2. 了解 PLD 的分类
- 3. 了解使用 PLD 进行线路设计的方法
- 4. 了解应用存储器的线路设计方法
- 5. 了解应用 PLA 的数字电路设计方法

2.课程内容

1. PLD 概述 1.什么是 PLD

PLD(Programmable Logic Devices): 可编程逻辑器件

定义:

是一种中小规模集成电路产品,允许用户在相应的软硬件平台支持下,通过编程开发出自己的产品。

还可以对功能进行一次或者多次更改。

分类:

- 1、PROM
- 2、PLA
- 3、PAL
- 4、GAL
- 5、FPGA

1. PLD 概述 2.PLD 的基本结构

组合线路逻辑表达式,都可表示为最小项形式:

例如:

$$F_1 = A\overline{B} + \overline{A}B$$

$$F_2 = \overline{A}\overline{B} + AB$$

1. PLD 概述 2.PLD 的基本结构

- 1) 与阵列提供所有的最小项
- 2) 或阵列是可编程阵列,将需要的最小项连接即可

1. PLD 概述 2.PLD 的基本结构

黑色实心点为固定阵列,空心点为可编程阵列。

1. PLD 概述 3.PLD 的分类

1、与阵列固定,或阵列可编程 (PROM)。

1. PLD 概述 3.PLD 的分类

2、与阵列、或阵列均可编程 (PLA)。

1. PLD 概述 3.PLD 的分类

3、与阵列可编程,或阵列固定 (PAL,GAL)。

1. PLD 概述 4.PLD 的编程单元

1) 熔丝反熔丝结构。只能编程一次。如 PROM 结构,熔丝的断与不断。

2) 可擦除可编程结构。可多次编程。如 EPROM。

源-漏极间连接:通过编程加负压

源-漏极间断开: 紫外线照射

注:只读存贮器只要已用于某一数字系统,在该系统运行期间只能读出数据。非易失性编程单元。

3) 静态随机存贮器结构,SRAM。可随机读写,采用触发器的编程单元。

注:易失性存贮单元(掉电后丢失所存贮的信息)

例 1 用 PROM 实现四位二进制码到格雷码的转换

$$G_3 = \sum (8, 9, 10, 11, 12, 13, 14, 15)$$

$$G_2 = \sum (4, 5, 6, 7, 8, 9, 10, 11)$$

$$G_1 = \sum (2, 3, 4, 5, 10, 11, 12, 13)$$

$$G_0 = \sum (1, 2, 5, 6, 9, 10, 13, 14)$$

B ₃	B_2	B ₁	B_0	G_3	G_2	G_1	G_0
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1
0	0	1	0	0	0	1	1
-	-		_	-	-		
0	0	1	1	0	0	1	0
0	1	0	0	0	1	1	0
0	1	0	1	0	1	1	1
0	1	1	0	0	1	0	1
0	1	1	1	0	1	0	0
1	0	0	0	1	1	0	0
1	0	0	1	1	1	0	1
1	0	1	0	1	1	1	1
1	0	1	1	1	1	1	0
1	1	0	0	1	0	1	0
1	1	0	1	1	0	1	1
1	1	1	0	1	0	0	1
1	1	1	1	1	0	0	0

例:用 PROM 实现序列信号发生器

例:用 RAM 实现一个十进制计数器

D	С	В	Α	S_4	S_3	S_2	S_1
0	0	0	0	0	0	0	1
0	0	0	1	0	0	1	0
0	0	1	0	0	0	1	1
0	0	1	1	0	1	0	0
0	1	0	0	0	1	0	1
0	1	0	1	0	1	1	0
0	1	1	0	0	1	1	1
0	1	1	1	1	0	0	0
1	0	0	0	1	0	0	1
1	0	0	1	0	0	0	0

例:用 PLA 实现四位二进制码到格雷码的转换

$$G_3 = \sum (8, 9, 10, 11, 12, 13, 14, 15)$$

$$G_2 = \sum (4, 5, 6, 7, 8, 9, 10, 11)$$

$$G_1 = \sum (2, 3, 4, 5, 10, 11, 12, 13)$$

$$G_0 = \sum (1, 2, 5, 6, 9, 10, 13, 14)$$

D	D	B_1	D	G	G	G_1	G
B_3	B_2		B_0	G_3	G_2		G_0
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1
0	0	1	0	0	0	1	1
0	0	1	1	0	0	1	0
0	1	0	0	0	1	1	0
0	1	0	1	0	1	1	1
0	1	1	0	0	1	0	1
0	1	1	1	0	1	0	0
1	0	0	0	1	1	0	0
1	0	0	1	1	1	0	1
1	0	1	0	1	1	1	1
1	0	1	1	1	1	1	0
1	1	0	0	1	0	1	0
1	1	0	1	1	0	1	1
1	1	1	0	1	0	0	1
1	1	1	1	1	0	0	0

例:用 PLA 实现四位二进制码到格雷码的转换

化简后:

$$G_3 = B_3$$

$$\mathsf{G}_2 = \overline{\mathsf{B}_3}\mathsf{B}_2 + \mathsf{B}_3\overline{\mathsf{B}_2}$$

$$\mathsf{G}_1 = \overline{\mathsf{B}_2} \mathsf{B}_1 + \mathsf{B}_2 \overline{\mathsf{B}_1}$$

$$G_0 = \overline{B_1}B_0 + B_1\overline{B_0}$$

例:使用 PLA 设计一个二进制全加器

$$S = \overline{ABC_{i-1}} + \overline{ABC_{i-1}} + A\overline{BC_{i-1}} + ABC_{i-1}$$

$$C_i = \sum (3, 5, 6, 7) = BC_{i-1} + AB + ACi - 1$$

3.课堂练习

例:用 PLA 和触发器设计一个时序锁,它有两个输入(X1,X2),一个输出(Z),和四种状态 R,B,C,E。当 X1,X2 输入为:00-01-11 时状态 R-B-C,并且输出 Z=1,开锁,否则,进入状态 E。当输入为 00,返回状态 R。中间允许重复输入,例如,当状态为 B 时、输入 01、状态维持 B 不变。

画出状态图

编码规则:

R:00

B:01

C:11

E:10

列出状态表:

x1x2 y1y2	00	01	11	10	z
R	R	В	E	E	0
В	R	В	С	E	0
С	R	E	С	E	1
E	R	E	E	E	0

编码后列出状态表:

x1x2 y1y2	00	01	11	10	z
R 00	00	01	10	10	0
B 01	00	01	11	10	0
C 11	00	10	11	10	1
E 10	00	10	10	10	0

列出状态转移表

X 1	X 2	y ₁	y ₂	y_1^{n+1}	y_2^{n+1}	j_1	k_1	j_2	k_2	Z
0	0	0	0	0	0	0	Φ	0	Φ	0
0	0	0	1	0	0	0	Φ	Φ	1	0
0	0	1	0	0	0	Φ	1	0	Φ	0
0	0	1	1	0	0	Φ	1	Φ	1	1
0	1	0	0	0	1	0	Φ	1	Φ	0
0	1	0	1	0	1	0	Φ	Φ	0	0
0	1	1	0	1	0	Φ	0	0	Φ	0
0	1	1	1	1	0	Φ	0	Φ	1	1
1	0	0	0	1	0	1	Φ	0	Φ	0
1	0	0	1	1	0	1	Φ	Φ	1	0
1	0	1	0	1	0	Φ	0	0	Φ	0
1	0	1	1	1	0	Φ	0	Φ	1	1
1	1	0	0	1	0	1	Φ	0	Φ	0
1	1	0	1	1	1	1	Φ	Φ	0	0
1	1	1	0	1	0	Φ	0	0	Φ	0
1	1	1	1	1	1	Φ	0	Φ	0	1

化简:

$$Z = y_1 y_2$$

 $J_1 = x_1$
 $K_1 = \overline{x_1} \overline{x_2}$
 $J_2 = \overline{x_1} \overline{y_1} x_2$
 $K_2 = \overline{x_2} + \overline{x_1} y_1$

作图:

4.课堂讨论

所有课程都学完了,有什么收获?感觉有什么不足?

5.课堂总结

1. 课堂总结

□ 笔记

现在可以总结自己的笔记,提炼大纲,回顾课程。

● 总结

还可以将课程的总结、心得记录在总结区。

问答环节