

SEQUENCE LISTING

<110> Board of Trustees for University of Arkansas

<120> Mitogen-Activated Protein Kinase and Method of Use to Enhance Biotic and Abiotic Stress Tolerance in Plants

<130> UAF-03-14

<140> 60/444,249

<141> 2004-01-31

<160> 10

<170> PatentIn version 3.2

<210> 1

<211> 1396

<212> DNA

<213> Oryza sativa

<400> 1 60 agagagtcag ataaggtcgt taattaggtt ggtcaattcg gctgcttgcg gcgagagaag aggaggaggg attagggatg gacggggcgc cggtggcgga gttcaggccg acgatgacgc 120 180 acqqcqqccq qtacctqctc tacqacatct tcgggaacaa gttcgaggtg acgaacaagt accagoogoo catcatgooo attggoogog gogootacgg gatcgtotgo toogtgatga 240 actttgagac gagggagatg gtggcgataa agaagatcgc caacgcgttc aacaacgaca 300 tggacgccaa gcgcacgctc cgggagatca agctcctcag gcacctcgac cacgagaaca 360 tcataggcat cagggatgtg atcccgccgc cgatccctca ggcgttcaac gacgtctaca 420 480 tegecacqqa geteatqqae acegacetee ateacateat eegeteeaac caagaactgt cagaagagca ctgccagtat ttcctgtacc agatcctgcg ggggctcaag tacatccact 540 600 cggcgaacgt gatccaccgc gacctgaagc cgagcaacct gctgctgaac gccaactgcg 660 acctcaagat ctgcgacttc gggctggcgc ggccgtcgtc ggagagcgac atgatgacgg agtacgtggt cacceggtgg taccgegege eggagetget geteaactee accgaetact 720 780 ccqccqccat cqacqtctqq tccqtcqqct gcatcttcat ggagctcatc aaccqccaqc cgctcttccc cggcagggac cacatgcacc agatgcgcct catcaccgag gtgatcggga 840 cgccgacgga cgacgagctg gggttcatac ggaacgagga cgcgaggaag tacatgaggc 900 acctgccgca gtacccgcgc cggacgttcg cgagcatgtt cccgcgggtg cagcccgccg 960 cgctcgacct catcgagagg atgctcacct tcaacccgct gcagagaatc acagttgagg 1020

MAPK5.ST25

	aggcgctcga	tcatccttac	ctagagagat	tgcacgacat	cgccgatgag	cccatctgcc	1080
	tggagccctt	ctccttcgac	ttcgagcaga	aggctctaaa	cgaggaccaa	atgaagcagc	1140
	tgatcttcaa	cgaagcgatc	gagatgaacc	caaacatccg	gtactagatt	gaatcaccat	1200
,	ggaaatgaga	tcccgtctat	acctgctttg	tacatatgat	caagattgag	agccgggtag	1260
	actgaacatt	gcatttgttt	gtttgttgat	gttcgaaacc	cacattctct	gcaagttgtg	1320
	gctgctttgt	atgatatatg	gtactatgtt	cgaataaaag	ggtttggaac	tttggattaa	1380
	aaaaaaaaa	aaaaaa					1396

<210> 2 <211> 368

<212> PRT

<213> Oryza sativa

<400> 2

Met Asp Gly Ala Pro Val Ala Glu Phe Arg Pro Thr Met Thr His Gly
1 5 10 15

Gly Arg Tyr Leu Leu Tyr Asp Ile Phe Gly Asn Lys Phe Glu Val Thr 20 25 30

Asn Lys Tyr Gln Pro Pro Ile Met Pro Ile Gly Arg Gly Ala Tyr Gly 35 40 45

Ile Val Cys Ser Val Met Asn Phe Glu Thr Arg Glu Met Val Ala Ile 50 55 60

Lys Lys Ile Ala Asn Ala Phe Asn Asn Asp Met Asp Ala Lys Arg Thr . 65 70 75 80

Leu Arg Glu Ile Lys Leu Leu Arg His Leu Asp His Glu Asn Ile Ile 85 90 95

Gly Ile Arg Asp Val Ile Pro Pro Pro Ile Pro Gln Ala Phe Asn Asp 100 105 110

Val Tyr Ile Ala Thr Glu Leu Met Asp Thr Asp Leu His His Ile Ile 115 120 125 Arg Ser Asn Gln Glu Leu Ser Glu Glu His Cys Gln Tyr Phe Leu Tyr Gln Ile Leu Arg Gly Leu Lys Tyr Ile His Ser Ala Asn Val Ile His Arg Asp Leu Lys Pro Ser Asn Leu Leu Leu Asn Ala Asn Cys Asp Leu Lys Ile Cys Asp Phe Gly Leu Ala Arg Pro Ser Ser Glu Ser Asp Met Met Thr Glu Tyr Val Val Thr Arg Trp Tyr Arg Ala Pro Glu Leu Leu Leu Asn Ser Thr Asp Tyr Ser Ala Ala Asp Val Trp Ser Val Gly Cys Ile Phe Met Glu Leu Ile Asn Arg Gln Pro Leu Phe Pro Gly Arg Asp His Met His Gln Met Arg Leu Ile Thr Glu Val Ile Gly Thr Pro Thr Asp Asp Glu Leu Gly Phe Ile Arg Asn Glu Asp Ala Arg Lys Tyr Met Arg His Leu Pro Gln Tyr Pro Arg Arg Thr Phe Ala Ser Met Phe Pro Arg Val Gln Pro Ala Ala Leu Asp Leu Ile Glu Arg Met Leu Thr Phe Asn Pro Leu Gln Arg Ile Thr Val Glu Glu Ala Leu Asp His Pro Tyr Leu Glu Arg Leu His Asp Ile Ala Asp Glu Pro Ile Cys Leu Glu Pro Phe Ser Phe Asp Phe Glu Gln Lys Ala Leu Asn Glu Asp Gln Met Lys

Gln Leu Ile Phe Asn Glu Ala Ile Glu Met Asn Pro Asn Ile Arg Tyr 355 360 365

<210> 3 <211> 1084 <212> DNA <213> Oryza sativa

<400> 60 agagagtcag ataaggtcgt taattaggtt ggtcaattcg gctgcttgcg gcgagagaag 120 aggaggagg attagggatg gacggggcgc cggtggcgga gttcaggccg acgatgacgc acggcggccg gtacctgctc tacgacatct tcgggaacaa gttcgaggtg acgaacaagt 180 accaqueque cateatque attgquegeg gegeetacgg gategtetge teegtgatga 240 actttgagac gagggagatg gtggcgataa agaagatcgc caactgcgac ctcaagatct 300 gcgacttcgg gctggcgcgg ccgtcgtcgg agagcgacat gatgacggag tacgtggtca 360 cccggtggta ccgcgcgccg gagctgctgc tcaactccac cgactactcc gccgccatcg 420 480 acgtctggtc cgtcggctgc atcttcatgg agctcatcaa ccgccagccg ctcttccccg 540 qcaqqqacca catqcaccaq atgcgcctca tcaccgaggt gatcgggacg ccgacggacg 600 acgagctggg gttcatacgg aacgaggacg cgaggaagta catgaggcac ctgccgcagt accegegeeg gaegttegeg ageatgttee egegggtgea geeegeegeg etegaeetea 660 720 tcqaqaqqat qctcaccttc aacccgctgc agagaatcac agttgaggag gcgctcgatc atcettacet agagagattg cacgacateg cegatgagee catetgeetg gagecettet 780 840 ccttcgactt cgaqcagaag gctctaaacg aggaccaaat gaagcagctg atcttcaacg aagcgatcga gatgaaccca aacatccggt actagattga atcaccatgg aaatgagatc 900 960 ccgtctatac ctgctttgta catatgatca agattgagag ccgggtagac tgaacattgc 1020 atttqtttqt ttqttqatqt tcqaaaccca cattctctgc aagttgtggc tgctttgtat 1080 1084 aaaa

<210> 4 <211> 266 <212> PRT <213> Oryza sativa <400> 4

- Met Met Asp Gly Ala Pro Val Ala Glu Phe Arg Pro Thr Met Thr His 1 5 10 15
- Gly Gly Arg Tyr Leu Leu Tyr Asp Ile Phe Gly Asn Lys Phe Glu Val 20 25 30
- Thr Asn Lys Tyr Gln Pro Pro Ile Met Pro Ile Gly Arg Gly Ala Tyr 35 40 45
- Gly Ile Val Cys Ser Val Met Asn Phe Glu Thr Arg Glu Met Val Ala 50 55 60
- Ile Lys Lys Ile Ala Asn Cys Asp Leu Lys Ile Cys Asp Phe Gly Leu 65 70 75 80
- Ala Arg Pro Ser Ser Glu Ser Asp Met Met Thr Glu Tyr Val Val Thr 85 90 95
- Arg Trp Tyr Arg Ala Pro Glu Leu Leu Leu Asn Ser Thr Asp Tyr Ser 100 105 110
- Ala Ala Ile Asp Val Trp Ser Val Gly Cys Ile Phe Met Glu Leu Ile 115 120 125
- Asn Arg Gln Pro Leu Phe Pro Gly Arg Asp His Met His Gln Met Arg 130 135 140
- Leu Ile Thr Glu Val Ile Gly Thr Pro Thr Asp Asp Glu Leu Gly Phe 145 150 155 160
- Ile Arg Asn Glu Asp Ala Arg Lys Tyr Met Arg His Leu Pro Gln Tyr 165 170 175
- Pro Arg Arg Thr Phe Ala Ser Met Phe Pro Arg Val Gln Pro Ala Ala 180 185 190
- Leu Asp Leu Ile Glu Arg Met Leu Thr Phe Asn Pro Leu Gln Arg Ile 195 200 205
- Thr Val Glu Glu Ala Leu Asp His Pro Tyr Leu Glu Arg Leu His Asp

215

210

<213> Artificial

220

Ile Ala 225	a Asp Glu Pro Ile Cys Leu G 230	Glu Pro Phe Ser Pho 235	e Asp Phe Glu 240
Gln Ly:	rs Ala Leu Asn Glu Asp Gln N 245	fet Lys Gln Leu Ile 250	e Phe Asn Glu 255
Ala Ile	e Glu Met Asn Pro Asn Ile A 260 2	Arg Tyr 265	,
<210> <211> <212> <213>			
<220> <223>	gene-specific primer conta	ining restriction	site
<400> cgggat	5 ccgt cggctgcatc ttcatg		26
			•
<210> <211> <212> <213>	25		
<220> <223>	gene-specific primer conta	aining restriction	site
<400> gctcta	6 ngatt caatctagta ccgga		25
<210> <211> <212> <213>	7 20 DNA Artificial		
<220> <223>	gene-specific primer conta	aining restriction	site
<400> gagttc	7 . cagge egaegatgae		. 20
<210> <211> <212>			
	DNA		

20

<220 <223		gene-	-spec	cific	pri	imer	cont	aini	ing i	resti	ricti	ion s	site		
<400> 8 atcggcgatg tcgtgcaatc															
<210> 9 <211> 368 <212> PRT <213> Triticum aestivum															
<400> 9															
Met 1	Asp	Gly	Ala	Pro 5	Val	Ala	Glu	Phe	Arg 10	Pro	Thr	Met	Thr	His 15	Gly
Gly	Arg	Phe	Leu 20	Leu	Tyr	Asn	Ile	Phe 25	Gly	Asn	Gln	Phe	Glu 30	Thr	Thr
Ala	Lys	Tyr 35	Gln	Pro	Pro	Ile	Met 40	Pro	Ile	Gly	Lys	Gly 45	Ala	Tyr	Gly
Ile	Val 50	Cys	Ser	Val	Met	Asn 55	Phe	Glu	Thr	Arg	Glu 60	Met	Val	Ala	Ser
Lys 65	Lys	Ile	Ala	Asn	Ala 70	Phe	Asp	Asn	Asn	Met 75	Asp	Ala	Lys	Arg	Thr 80
Leu	Arg	Glu	Ile	Lys 85	Leu	Leu	Leu	Arg	His 90	Leu	Asp	Glu	Asn	Ile 95	Val
Gly	Leu	Arg	Asp 100	Val	Ile	Pro	Pro	Ala 105	Ile	Pro	Gln	Ser	Glu 110	Asn	Asp
Val	Tyr	Ile 115	Ala	Thr	Glu	Leu	Met 120	Asp	Thr	Asp	Leu	His 125	His	Ile	Ile
Arg	Ser 130	Asn	Gly	Glu	Leu	Ser 135	Glu	Glu	His	Glu	Gln 140	Tyr	Phe	Leu	Tyr
Gln 145	Leu	Leu	Arg	Gly	Leu 150	Lys	Tyr	Ile	His	Ser 155	Ala	Asn	Val	Ile	His 160

MAPK5.ST25

Arg	Asp	Leu	Lys	Pro 165	Ser	Asn	Leu	Leu	Leu 170	Asn	Ala	Asn	Cys	Asp 175	Leu
Lys	Ile	Cys	Asp 180	Phe	Gly	Leu	Ala	Arg 185	Pro	Ser	Ser	Glu	Ser 190	Asp	Met
Met	Thr	Glu 195	Tyr	Val	Val	Thr	Arg 200	Trp	Tyr	Arg	Ala	Pro 205	Glu	Leu	Leu
Leu	Asn 210	Ser	Thr	Asp	Tyr	Ser 215	Ala	Asn	Ile	Asp	Val 220	Trp	Ser	Val	Gly
Cys 225	Ile	Phe	Met	Glu	Leu 230	Ile	Asn	Arg	Ala	Pro 235	Leu	Phe	Pro	Gly	Arg 240
Asp	His	Met	His	Gln 245	Met	Arġ	Leu	Ile	Thr 250	Glu	Val	Ile	Gly	Thr 255	Pro
Thr	Asp	Asp	Asp 260	Leu	Gly	Phe	Ile	Arg 265	Asn	Glu	Asp	Ala	Arg 270	Arg	Tyr
Met	Arg	His 275	Leu	Pro	Gln	Phe	Pro 280	Arg	Arg	Ser	Phe	Pro 285	Gly	Phe	Pro
Lys	Val 290	Gln	Pro	Ala	Ala	Leu 295	Asp	Leu	Ile	Glu	Arg 300	Met	Leu	Thr	Phe
Asn 305	Pro	Leu	Gln	Arg	Ile 310	Thr	Val	Glu	Glu	Ala 315	Leu	Glu	His	Pro	Tyr 320
Leu	Glu	Arg	Leu	His 325			Ala			Pro	Ile	Cys	Thr	Asp 335	Pro
Phe	Ser	Phe	Asp 340	Phe	Glu	Gln	His	Pro 345	Leu	Thr	Glu	Asp	Gln 350	Met	Lys
Leu	Ile	Pro 355	Glu	Asn	Glu	Ala	Leu 360	Glu	Leu	Asn	Pro	Asn 365	Phe	Arg	Tyr
<210 <210 <210	1> :	10 371 PRT													

<213> Nicotiana tabacum

<400> 10

Met Ala Asp Ala Asn Met Gly Ala Gly Gly Gln Phe Pro Asp Phe 1 5 10 15

Pro Ser Val Leu Thr His Gly Gly Gln Tyr Val Gln Phe Asp Asp Ile 20 25 30

Phe Gly Asn Phe Phe Glu Ile Thr Thr Lys Tyr Arg Pro Pro Ile Met 35 40 45

Pro Ile Gly Arg Gly Ala Tyr Ile Val Cys Ser Val Leu Asn Thr Glu 50 55 60

Leu Asn Glu Met Val Ala Val Lys Lys Ile Ala Asn Ala Phe Asn Tyr 65 70 75 80

Met Asp Ala Lys Arg Thr Leu Arg Glu Ile Lys Leu Leu Arg His Leu 85 90 95

Asp His Glu Asn Val Ile Gly Leu Arg Asp Val Ile Pro Pro Pro Leu 100 105 110

Arg Arg Glu Phe Ser Asp Val Tyr Ile Ala Thr Glu Leu Met Asp Thr 115 120 125

Asp Leu His Gln Ile Ile Arg Ser Asn Gln Gly Leu Ser Glu Asp His 130 135 140

Cys Gln Tyr Phe Met Tyr Gln Leu Leu Arg Gly Leu Lys Tyr Ile His 145 150 155 160

Ser Ala Asn Val Leu His Arg Asp Leu Lys Pro Ser Asn Leu Leu Val 165 170 175

Asn Ala Asn Cys Asp Leu Lys Ile Cys Asp Phe Gly Leu Ala Arg Pro 180 185 190

Asn Ile Glu Asn Glu Asn Met Thr Glu Tyr Val Val Thr Arg Trp Tyr 195 200 205 The state of the s

Glu Tyr Ala 370

Arg Ala Pro Glu Leu Leu Asn Ser Thr Asp Tyr Ser Ala Ala Ile Asp 210 215 Val Trp Ser Val Gly Cys Ile Phe Met Glu Leu Ile Asn Arg Lys Pro 230 Leu Phe Pro Gly Lys Asp His Ile His Gln Met Arg Leu Ile Thr Glu 250 Val Ile Gly Thr Pro Thr Glu Ala Asp Leu Gly Phe Leu Gln Asn Glu 265 Asp Ala Arg Arg Tyr Ile Arg Gln Leu Pro Gln His Pro Arg Gln Gln 280 Leu Ala Glu Val Phe Pro His Val Asn Pro Leu Ala Ile Asp Leu Val 295 Asp Lys Met Leu Thr Phe Asp Pro Thr Arg Arg Ile Glu Glu Ala Leu 315 305 310 Asp His Pro Tyr Leu Ala Lys Leu His Asp Ala Gly Asp Glu Pro Ile 330 Cys Pro Val Pro Phe Ser Phe Asp Phe Glu Gln Gly Ile Gly Glu 345 340 Glu Gln Ile Lys Asp Met Ile Tyr Gln Glu Ala Leu Ser Leu Asn Pro 360 355