

重慶程工大學

实验报告

学	院	计算机科学与工程
课程	名称	数字逻辑
班	级	
学生	姓名	学号
任课	教师	
时	间	

2023-2024 学年春季学期

实验名称	电子元器件基础	
实验目的	本次实验的目的是加深对电子元器件基本知识和特性的理解, 掌握电子元器件的分类、特性参数以及基本的测试方法,为后 续的电路设计和实验打下基础。	
实验内容	1. 电子元器件的分类与识别	
	2. 常见电子元器件的特性参数学习	
	3. 电子元器件的测试方法	
	1. 电子元器件的分类与识别面包板:了解面包板的插孔分组及各组的连线关系。电阻器:根据颜色环识别阻值,学习使用万用表测试电阻值。电容器:学习通过外观标识识别容量、耐压值和正负极。二极管:识别二极管的极性。三极管:了解三极管的引脚排列。万用表:掌握利用万用表进行电压电阻及电流的常规测量方法。阅读《电子制作 130 例》第 1 章部分内容,掌握电子元器件的基本分类与识别方法。	
实验步骤		
与记录	实验记录:	
	面包板 中间区域分为许多短排,同一短排内的孔互相连通,不同排之间是 独立的。两侧有 2 条长列,同一长列内的所有孔是互相连通的。	
	电阻器 固定电阻器的阻值读取: 1. 找到起始端,通常金色或银色(代表误差)的色环是最后一环,或者与其他色环间距较大的一环是最后一环。从另一端开始读。 2. 读有效数字:对于四色环电阻:前两环代表有效数字。对于五色环电阻:前三环代表有效数字。 3. 读倍率:紧接着有效数字的那一环代表倍率(即乘以10的多少次方)。 4. 读误差:最后一环代表电阻值的误差范围(容差)。 5. 查表计算:每个颜色对应一个数字(0-9)、倍率值和误差值。需要对照色环代码表来查找对应值。	

电容器

容量:

- 1. 直接标示。
- 2. 数字代码:通常是三位数字。前两位是有效数字,第三位是 10 的幂次方(乘数),单位默认是 pF。

耐压值:

表示电容器能安全承受的最大直流电压。实际工作电压应低于此值。 **正负极**(电解电容):

引脚长的是正极,短引脚一边有"-"标记。

二极管

极性:

- 1. 普通二极管: 黑色圆环一端引脚为负极, 另一端为正极。
- 2. 发光二极管: 引脚长的是正极。

三极管

引脚排列: 查阅数据手册

2. 电子元器件的测试方法

使用万用表测试不同电阻的阻值(包括 100Ω , 1000Ω 和 $10K\Omega$ 的阻值),记录测试结果与标定阻值的差异情况。(注意万用表测电阻时不同量程的选择)

使用万用表测试二极管正负极,导通时记录万用表测得的数值,分析该值代表的含义是什么?

使用万用表测量三极管的电流放大倍数并记录。(注意 NPN, PNP 型管子的区别)

使用万用表测试可变电阻的阻值,调节电阻的阻值,记录可变电阻的调节范围。

实验记录:

1. 用万用表测试不同电阻的阻值

标定阻值	万用表实测值	与标定值差异
100Ω	98.7Ω	-1.3Ω
1kΩ	1015Ω	+15Ω
10kΩ	9.78kΩ	-220Ω

2. 用万用表测试二极管正负极

万用表调至二极管测试档。红表笔接二极管正极,黑表笔接二极管

	负极,读数为 0.635V。这个数值是二极管正向导通时,其两端的电压降。	
	3. 万用表测量三极管的电流放大倍数 万用表调至 hFE 档。将 NPN 型三极管插入对应的孔位,测量值为 238;	
	将 NPN 型三极管插入对应的孔位,测量值为 310。	
实验总结	通过本次实验,我学会了万用表的基本使用方法以及各元器件参数的基本识别方法。	