

(ENADE Computação — 2005) No famoso jogo da Torre de Hanói, é dada uma torre com discos de raios diferentes, empilhados por tamanho decrescente em um dos três pinos dados, como ilustra a figura abaixo. O objetivo do jogo é transportar-se toda a torre para um dos outros pinos, de acordo com as seguintes regras: apenas um disco pode ser deslocado por vez, e, em todo instante, todos os discos precisam estar em um dos três pinos; além disso, em nenhum momento, um disco pode ser colocado sobre um disco de raio menor que o dele; é claro que o terceiro pino pode ser usado como local temporário para os discos.

Imaginando que se tenha uma situação em que a torre inicial tenha um conjunto de 5 discos, qual o número mínimo de movimentações de discos que deverão ser realizadas para se atingir o objetivo do jogo?

O _A	25
ОВ	28
(31
OD	34
○E	38

Relativo a um Tipo Abstrato de Dados (TAD), assinale a alternativa incorreta:		
OA	Abstraída qualquer linguagem de programação, um TAD pode ser visto como um modelo matemático que encapsula um modelo de dados e um conjunto de procedimentos que atuam com exclusividade sobre os dados encapsulados	
© В	Qualquer processamento a ser realizado sobre os dados encapsulados em um TAD pode ser executado por intermédio de procedimentos externos, ou seja, por meio de procedimentos definidos externamente ao modelo matemático do TAD	
୍ର	A implementação de cada TAD deve ocupar porções bem definidas no programa: uma para a definição das estruturas de dados e outra para a definição do conjunto de algoritmos	
OD	Qualquer processamento a ser realizado sobre os dados encapsulados em um TAD só poderá ser executado por intermédio dos procedimentos definidos no modelo matemático do TAD	
ОЕ	Uma coleção de atividades, tais como: inserir, suprimir e consultar; encapsuladas junto com uma estrutura passiva, como um dicionário (conjunto de verbetes), pode ser considerada um TAD	

Dado o seguinte algoritmo:	
Intei	ro Calculo(Inteiro A)
Se A	for igual a um
Entã	0
Re	etorna um
Senã	óo
Re	etorna A multiplica Calculo(A menos um)
Fim	Se
Fi	m Calculo
Está	função é:
OA	Uma função não recursiva que retorna A elevado ao quadrado
⊚B	Uma função recursiva que retorna fatorial de A
୍ର	Uma função recursiva que retorna A elevado a A
OD	Uma função não recursiva que retorna A elevado a A
○E	Uma função não recursiva que retorna fatorial de A

A lista encadeada onde o último elemento inserido é obrigatoriamente o primeiro a ser removido é:	
OA	Vetor
ОВ	Fila
©(Pilha
OD	Lista circular
ОЕ	Lista duplamente encadeada

O resultado da impressão da árvore apresentada, utilizando a ordem de atravessamento infixa, será?

OA	eu adoro estrutura de dados e arquivo
ОВ	eu adoro estrutura de arquivo e dados
્	dados arquivo eu adoro estrutura de e
OD	arquivo eu e estrutura adoro dados de
©E	eu arquivo adoro estrutura e de dados

Apresentada a arvore acima qual forma de atravessamento resultará na expressão a+b*c:

OA	prefixa
ОВ	posfixa
୍ର	alterfixa
©D	infixa
ОЕ	recursixa

(ENADE 2008) Um programador propôs um algoritmo não-recursivo para o percurso em preordem de uma árvore binária com as seguintes características:

- Cada nó da árvore binária é representado por um registro com três campos: chave, que armazena seu identificador; esq e dir, ponteiros para os filhos esquerdo e direito, respectivamente.
- O algoritmo deve ser invocado inicialmente tomando o ponteiro para o nó raiz da árvore binária como argumento.
- O algoritmo utiliza push() e pop() como funções auxiliares de empilhamento e desempilhamento de ponteiros para nós de árvore binária, respectivamente.

A seguir, está apresentado o algoritmo proposto, em que λ representa o ponteiro nulo.

```
Procedimento preordem (ptraiz : PtrNoArvBin)
```

```
Var ptr : PtrNoArvBin;

ptr := ptraiz;

Enquanto (ptr \neq \lambda) Faça

escreva (ptr\uparrow.chave);

Se (ptr\uparrow.dir \neq \lambda) Então

push(ptr\uparrow.dir);

Se (ptr\uparrow.esq \neq \lambda) Então

push(ptr\uparrow.esq);

ptr := pop();

Fim_Enquanto

Fim_Procedimento
```

Com base nessas informações e supondo que a raiz de uma árvore binária com n nós seja passada ao procedimento preordem(), julgue os itens seguintes.

I O algoritmo visita cada nó da árvore binária exatamente uma vez ao longo do percurso.

II O algoritmo só funcionará corretamente se o procedimento pop() for projetado de forma a retornar λ caso a pilha esteja vazia.

III Empilhar e desempilhar ponteiros para nós da árvore são operações que podem ser implementadas com custo constante.

IV A complexidade do pior caso para o procedimento preordem() é O(n). Assinale a opção correta.

OA	Apenas um item está certo.
ОВ	Apenas os itens I e IV estão certos.
୍ର	Apenas os itens I, II e III estão certos.
OD	Apenas os itens II, III e IV estão certos.
©E	Todos os itens estão certos.

(ENADE 2011) No desenvolvimento de um software que analisa bases de DNA, representadas pelas letras A, C, G, T, utilizou-se as estruturas de dados: pilha e fila. Considere que, se uma sequência representa uma pilha, o topo é o elemento mais à esquerda; e se uma sequência representa uma fila, a sua frente é o elemento mais à esquerda.

Analise o seguinte cenário: "a sequência inicial ficou armazenada na primeira estrutura de dados na seguinte ordem: (A,G,T,C,A,G,T,T). Cada elemento foi retirado da primeira estrutura de dados e inserido na segunda estrutura de dados, e a sequência ficou armazenada na seguinte ordem: (T,T,G,A,C,T,G,A).
Finalmente, cada elemento foi retirado da segunda estrutura de dados e

inserido na terceira estrutura de dados e a sequência ficou armazenada na seguinte ordem: (T,T,G,A,C,T,G,A)".

Qual a única sequência de estruturas de dados apresentadas a seguir pode ter sido usada no cenário descrito acima?

©A	Fila - Pilha - Fila.
ОВ	Fila - Fila - Pilha.
୍ର	Fila - Pilha - Pilha.
OD	Pilha - Fila - Pilha.
OE	Pilha - Pilha - Pilha

(POSCOMP2005) Árvores binárias podem ser usadas para guardar e recupérar informações com número de operaçõesproporcional a altura da árvore. Quais das seguintes figuras representam árvores binárias de altura balanceada ou do tipo AVL - Adelson, Velski e Landis:

OA	Somente a (I) e a (IV) são AVL
ОВ	Somente a (I) é AVL
© (Somente a (I) e (II) são AVL
OD	Somente a (II) e a (III) são AVL
ОЕ	Todas são AVL

Considere:

- I. Estrutura de dados linear e estática, composta por um número finito de elementos de um determinado tipo de dados.
- II. É linear e dinâmica quando encadeada; apresenta um campo para conter o dado a ser armazenado e outro campo para apontar para o próximo elemento.
- III. É tipicamente uma representação de vértices ligados por arestas que eventualmente, podem ser direcionadas por meio de setas.
- IV. Os elementos associados a cada nó são habitual- mente chamados de filhos desses nós, podendo existir nós sem filhos.

Em relação às estruturas de dados, é correto afirmar que os itens I, II, III e IV estão associados, respectivamente, a

OA	lista, fila, pilha e vetor.
ОВ	fila, vetor, grafo e árvore.
© C	vetor, lista, grafo e árvore.
\bigcirc D	lista, fila, grafos e tabela de hashing.
ОЕ	fila, vetor, árvore e tabela de hashing.