

BIPOLAR LINEAR INTEGRATED CIRCUIT

THREE TERMINAL POSITIVE VOLTAGE REGULATORS 5V, 6V, 7V, 8V, 9V, 10V, 12V, 15V, 18V, 20V, 24V.

FEATURES

- · Internal Thermal Overload Protection.
- · Internal Short Circuit Current Limiting.
- · Output Current up to 1.5A.
- · Satisfies IEC-65 Specification. (International Electronical Commission).
- · Package is TO-220AB

LINE-UP

ITEM	OUTPUT VOLTAGE (Typ.)	UNIT
KIA7805AP	5	
KIA7806AP	6	
KIA7807AP	7	
KIA7808AP	8	
KIA7809AP	9	
KIA7810AP	10	V
KIA7812AP	12	
KIA7815AP	15	
KIA7818AP	18	
KIA7820AP	20	
KIA7824AP	24	

MAXIMUM RATINGS (Ta=25℃)

CHARACTER	RISTIC	SYMBOL	RATING	UNIT
	KIA7805 ~ KIA7815		35	
Input Voltage	KIA7818 ~ KIA7824	v_{IN}	40	V
Power Dissipation-1 (No Heatsink)	AP	P _{D2}	1.9	W
Power Dissipation-2 (Infinite Heatsink)	AP	P _{D2}	30	VV
Operating Junction Tem	perature	Тj	-40 ~150	$^{\circ}$
Storage Temperature		T _{stg}	-55 ~150	$^{\circ}$
Maximum Junction Tan	nperature	T _{j(max)}	150	$^{\circ}$

EQUIVALENT CIRCUIT

KIA7805AP ELECTRICAL CHARACTERISTICS (V_{IN}=10V, I_{OUT}=500mA, 0 °C \leq T_j \leq 125 °C)

CHARACTERISTIC	SYMBOL	TEST CIRCUIT	TI	EST CONDITION	MIN.	TYP.	MAX.	UNIT
Output Voltage	v _{OUT}	Fig. 1	T _j =25 ℃, 1	OUT=100mA	4.8	5.0	5.2	V
Locat Decadation	Des line	Ein 1	T25 °C	$7.0V \le V_{\text{IN}} \le 25V$	-	3	100	V
Input Regulation	Reg line	Fig. 1	T _j =25 ℃	$8.0V \le V_{IN} \le 12V$	-	1	50	mV
Y - I D - I d'	D11	F' 1	T -25 %	$5\text{mA} \leq I_{OUT} \leq 1.5\text{A}$	-	15	100	
Load Regulation	Reg load	Fig. 1	T _j =25 ℃	250mA ≤I _{OUT} ≤750mA	-	5	50	mV
Output Voltage	v _{OUT}	Fig. 1	7.0V ≤V _{IN}	√ ≤20V	4.75	-	5.25	V
Quiescent Current	IB	Fig. 1	T _j =25℃, 1	I _{OUT} =5mA	-	4.2	8.0	mA
Quiescent Current Change	$_{\mathcal{I}_{B}}$	Fig. 1	7.0V ≤V _{IN}	_V ≤25V	-	-	1.3	mA
Output Noise Voltage	v _{NO}	Fig. 2	Ta=25 ℃,	10Hz≤f≤100kHz	-	50	-	μV_{rms}
Ripple Rejection Ratio	RR	Fig. 3	f=120Hz,	$8.0V \le V_{IN} \le 18V$,	62	78	-	dB
Dropout Voltage	v_{D}	Fig. 1	I_{OUT} =1.0A, T_j =25 °C		-	2.0	-	V
Short Circuit Current Limit	I_{SC}	Fig. 1	T _j =25 ℃		-	1.6	-	A
Average Temperature Coefficient of Output Voltage	TC _{VO}	Fig. 1	I _{OUT} =5m.	A, 0 ℃ ≤T _j ≤125 ℃	-	-0.6	-	mV/℃

KIA7806AP ELECTRICAL CHARACTERISTICS (V_{IN}=11V, I_{OUT}=500mA, 0 °C \leq T_j \leq 125 °C)

CHARACTERISTIC	SYMBOL	TEST CIRCUIT	TI	EST CONDITION	MIN.	TYP.	MAX.	UNIT
Output Voltage	v _{out}	Fig. 1	T _j =25°C, 1	I _{OUT} =100mA	5.75	6.0	6.25	V
Lord Possibility	Des l'ass	F:- 1	T25 °C	$8.0V \le V_{IN} \le 25V$	-	4	120	
Input Regulation	Reg line	Fig. 1	T _j =25 ℃	$9V \le V_{IN} \le 13V$	-	2	60	mV
V 10 10		F: 1	T. 25 %	$5mA \le I_{OUT} \le 1.5A$	-	15	120	.,
Load Regulation	Reg load	Fig. 1	T _j =25 ℃	250mA ≤I _{OUT} ≤750mA	-	5	60	mV
Output Voltage	v _{OUT}	Fig. 1	8V ≤ V _{IN} :	$8V \le V_{IN} \le 21V$		-	6.3	V
Quiescent Current	IB	Fig. 1	T _j =25℃, 1	T _j =25℃, I _{OUT} =5mA		4.3	8.0	mA
Quiescent Current Change	$_{\mathcal{I}_{B}}$	Fig. 1	8V ≤ V _{IN} 5	≤25V	-	-	1.3	mA
Output Noise Voltage	V _{NO}	Fig. 2	Ta=25 ℃,	10Hz≤f≤100kHz	-	55	-	$\mu V_{ m rms}$
Ripple Rejection Ratio	RR	Fig. 3	f=120Hz,	$f=120Hz, 9V \le V_{IN} \le 19V,$		77	-	dB
Dropout Voltage	v_{D}	Fig. 1	I_{OUT} =1.0A, T_j =25 °C		-	2.0	-	V
Short Circuit Current Limit	I_{SC}	Fig. 1	T _j =25 ℃		-	1.5	-	A
Average Temperature Coefficient of Output Voltage	TC _{VO}	Fig. 1	I _{OUT} =5m.	A, 0 °C ≤T _j ≤125 °C	-	-0.7	-	mV/℃

KIA7807AP ELECTRICAL CHARACTERISTICS (V_{IN}=12V, I_{OUT}=500mA, 0 °C \leq T_j \leq 125 °C)

CHARACTERISTIC	SYMBOL	TEST CIRCUIT	TI	EST CONDITION	MIN.	TYP.	MAX.	UNIT
Output Voltage	v _{out}	Fig. 1	T _j =25℃, 1	I _{OUT} =100mA	6.72	7.0	7.28	V
Locat Developing	Des Une	F:- 1	T -25 %	$9V \le V_{IN} \le 25V$	-	5	140	
Input Regulation	Reg line	Fig. 1	T _j =25 ℃	$10V \le V_{\text{IN}} \le 14V$	-	2	70	mV
			T. 25 %	$5mA \le I_{OUT} \le 1.5A$	-	15	140	
Load Regulation	Reg load	Fig. 1	T _j =25 ℃	250mA ≤ I _{OUT} ≤750mA	-	5	70	mV
Output Voltage	v _{OUT}	Fig. 1	$9V \le V_{IN} \le 22V$		6.65	-	7.35	V
Quiescent Current	IB	Fig. 1	T _j =25℃, 1	I _{OUT} =5mA	-	4.3	8.0	mA
Quiescent Current Change	$_{\mathcal{I}_{B}}$	Fig. 1	9V ≤V _{IN} :	≤25V	-	-	1.3	mA
Output Noise Voltage	v _{NO}	Fig. 2	Ta=25 ℃,	10Hz≤f≤100kHz	-	60	-	$\mu V_{ m rms}$
Ripple Rejection Ratio	RR	Fig. 3	f=120Hz,	$10V \le V_{\text{IN}} \le 20V$,	59	75	-	dB
Dropout Voltage	V_{D}	Fig. 1	I _{OUT} =1.0A, T _j =25 ℃		-	2.0	-	V
Short Circuit Current Limit	I _{SC}	Fig. 1	T _j =25 ℃		-	1.3	-	A
Average Temperature Coefficient of Output Voltage	TC _{VO}	Fig. 1	I _{OUT} =5m.	A, 0 °C ≤T _j ≤125 °C	-	-0.8	-	mV/℃

KIA7808AP ELECTRICAL CHARACTERISTICS (V_{IN}=14V, I_{OUT}=500mA, 0 °C \leq T_j \leq 125 °C)

CHARACTERISTIC	SYMBOL	TEST CIRCUIT	TI	EST CONDITION	MIN.	TYP.	MAX.	UNIT
Output Voltage	v _{OUT}	Fig. 1	T _j =25℃, I	OUT=100mA	7.7	8.0	8.3	V
Locat Developing	Des l'es	F:- 1	T -25 %	$10.5V \leq V_{\text{IN}} \leq 25V$	-	6	160	
Input Regulation	Reg line	Fig. 1	T _j =25 ℃	$11V \le V_{\text{IN}} \le 17V$	-	2	80	mV
V 10 10		F: 1	T -25 %	$5mA \le I_{OUT} \le 1.5A$	-	12	160	.,,
Load Regulation	Reg load	Fig. 1	T _j =25℃	250mA ≤I _{OUT} ≤750mA	-	4	80	mV
Output Voltage	V _{OUT}	Fig. 1	10.5V ≦V ₁	$10.5V \le V_{\text{IN}} \le 23V$		-	8.4	V
Quiescent Current	$I_{\mathbf{B}}$	Fig. 1	T _j =25℃, I	T _j =25℃, I _{OUT} =5mA		4.3	8.0	mA
Quiescent Current Change	$_{\mathcal{I}_{B}}$	Fig. 1	10.5V ≦V _l	_{IN} ≤25V	-	-	1.0	mA
Output Noise Voltage	v _{NO}	Fig. 2	Ta=25 ℃,	10Hz≤f≤100kHz	-	70	-	$\mu V_{ m rms}$
Ripple Rejection Ratio	RR	Fig. 3	f=120Hz,	$11.5V \le V_{IN} \le 21.5V$,	58	74	-	dB
Dropout Voltage	v_{D}	Fig. 1	I_{OUT} =1.0A, T_j =25 °C		-	2.0	-	V
Short Circuit Current Limit	I_{SC}	Fig. 1	T _j =25 ℃		-	1.1	-	A
Average Temperature Coefficient of Output Voltage	TC _{VO}	Fig. 1	I _{OUT} =5m	A, $0 \degree \le T_j \le 125 \degree$	-	-1.0	-	mV/℃

KIA7809AP ELECTRICAL CHARACTERISTICS (V_{IN}=15V, I_{OUT}=500mA, 0 °C \leq T_j \leq 125 °C)

CHARACTERISTIC	SYMBOL	TEST CIRCUIT	TI	EST CONDITION	MIN.	TYP.	MAX.	UNIT
Output Voltage	v _{out}	Fig. 1	T _j =25℃, 1	OUT=100mA	8.64	9.0	9.36	V
L D L	P 1:	F: 1	T -25 %	$11.5V \le V_{\text{IN}} \le 26V$	-	7.0	180	W
Input Regulation	Reg line	Fig. 1	T _j =25 ℃	$13V \le V_{\text{IN}} \le 19V$	-	2.5	90	mV
		F: 1	T -25 %	$5\text{mA} \leq I_{OUT} \leq 1.5\text{A}$	-	12	180	.,,
Load Regulation	Reg load	Fig. 1	T _j =25 ℃	250mA ≤I _{OUT} ≤750mA	-	4.0	90	mV
Output Voltage	V _{OUT}	Fig. 1	11.5V≦V _l	$11.5V \le V_{\text{IN}} \le 26V$		-	9.45	V
Quiescent Current	I_{B}	Fig. 1	T _j =25℃, I	T _j =25℃, I _{OUT} =5mA		4.3	8.0	mA
Quiescent Current Change	$_{\mathcal{I}_{B}}$	Fig. 1	11.5V≦V _I	_{IN} ≤26V	-	-	1.0	mA
Output Noise Voltage	v _{NO}	Fig. 2	Ta=25 ℃,	10Hz≤f≤100kHz	-	75	-	$\mu V_{ m rms}$
Ripple Rejection Ratio	RR	Fig. 3	f=120Hz,	$12.5V \le V_{IN} \le 22.5V$,	56	72	-	dB
Dropout Voltage	V_{D}	Fig. 1	I_{OUT} =1.0A, T_j =25 °C		-	2.0	-	V
Short Circuit Current Limit	I _{SC}	Fig. 1	T _j =25 ℃		-	1.0	-	A
Average Temperature Coefficient of Output Voltage	TC _{VO}	Fig. 1	I _{OUT} =5m	A, $0 \text{ C} \leq T_j \leq 125 \text{ C}$	-	-1.1	-	mV/℃

KIA7810AP ELECTRICAL CHARACTERISTICS (V_{IN} =16V, I_{OUT} =500mA, $0 \text{ °C} \leq T_j \leq 125 \text{ °C}$)

CHARACTERISTIC	SYMBOL	TEST CIRCUIT	TI	EST CONDITION	MIN.	TYP.	MAX.	UNIT
Output Voltage	v _{out}	Fig. 1	T _j =25℃, 1	OUT=100mA	9.6	10.0	10.4	V
Locat Developing	D U.	P:- 1	T -25 %	$12.5V \leq V_{\text{IN}} \leq 27V$	-	8	200	
Input Regulation	Reg line	Fig. 1	T _j =25 ℃	$14V \le V_{\text{IN}} \le 20V$	-	2.5	100	mV
V 10 10		F: 1	T -25 %	$5mA \le I_{OUT} \le 1.5A$	-	12	200	.,
Load Regulation	Reg load	Fig. 1	T _j =25 ℃	250mA ≤I _{OUT} ≤750mA	-	4	100	mV
Output Voltage	V _{OUT}	Fig. 1	12.5V ≦V ₁	$12.5V \le V_{\text{IN}} \le 25V$		-	10.5	V
Quiescent Current	I_{B}	Fig. 1	T _j =25℃, I	T _j =25°C, I _{OUT} =5mA		4.3	8.0	mA
Quiescent Current Change	$_{\mathcal{I}_{B}}$	Fig. 1	12.5V ≦V _l	_{IN} ≦27V	-	-	1.0	mA
Output Noise Voltage	v _{NO}	Fig. 2	Ta=25 ℃,	10 Hz \leq f \leq 100kHz	-	80	-	$\mu V_{ m rms}$
Ripple Rejection Ratio	RR	Fig. 3	f=120Hz,	$13.5V \le V_{\text{IN}} \le 23.5V$,	55	72	-	dB
Dropout Voltage	v_{D}	Fig. 1	I_{OUT} =1.0A, T_j =25 °C		-	2.0	-	V
Short Circuit Current Limit	I _{SC}	Fig. 1	T _j =25 ℃		-	0.9	-	A
Average Temperature Coefficient of Output Voltage	TC _{VO}	Fig. 1	I _{OUT} =5m	A, $0 \text{ °C} \leq T_j \leq 125 \text{ °C}$	-	-1.3	-	mV/℃

KIA7812AP ELECTRICAL CHARACTERISTICS (V_{IN}=19V, I_{OUT}=500mA, 0 °C \leq T_j \leq 125 °C)

CHARACTERISTIC	SYMBOL	TEST CIRCUIT	TI	EST CONDITION	MIN.	TYP.	MAX.	UNIT
Output Voltage	v _{OUT}	Fig. 1	T _j =25℃, 1	OUT=100mA	11.5	12.0	12.5	V
Y ON LO	,	F: 1	T -25 %	$14.5V \le V_{\text{IN}} \le 30V$	-	10	240	
Input Regulation	Reg line	Fig. 1	T _j =25 ℃	$16V \le V_{\text{IN}} \le 22V$	-	3	120	mV
	B 1 1	F	T -25 %	$5\text{mA} \leq I_{OUT} \leq 1.5\text{A}$	-	12	240	.,
Load Regulation	Reg load	Fig. 1	T _j =25 ℃	250mA ≤I _{OUT} ≤750mA	-	4	120	mV
Output Voltage	v _{OUT}	Fig. 1	14.5V ≤ V ₁	$14.5V \le V_{\text{IN}} \le 27V$		-	12.6	V
Quiescent Current	IB	Fig. 1	T _j =25°C, I _{OUT} =5mA		-	4.3	8.0	mA
Quiescent Current Change	$_{\mathcal{I}_{B}}$	Fig. 1	14.5V ≤ V ₁	_N ≤30V	-	-	1.0	mA
Output Noise Voltage	v _{NO}	Fig. 2	Ta=25 ℃,	10Hz≤f≤100kHz	-	90	-	μV _{rms}
Ripple Rejection Ratio	RR	Fig. 3	f=120Hz,	$15V \le V_{\text{IN}} \le 25V$,	55	71	-	dB
Dropout Voltage	V_{D}	Fig. 1	I_{OUT} =1.0A, T_j =25 °C		-	2.0	-	V
Short Circuit Current Limit	I _{SC}	Fig. 1	T _j =25 ℃		-	0.7	-	A
Average Temperature Coefficient of Output Voltage	TC _{VO}	Fig. 1	I _{OUT} =5m	A, 0 ℃ ≤T _j ≤125 ℃	-	-1.6	-	mV/℃

KIA7815AP ELECTRICAL CHARACTERISTICS (V_{IN}=23V, I_{OUT}=500mA, 0 °C \leq T_j \leq 125 °C)

CHARACTERISTIC	SYMBOL	TEST CIRCUIT	TI	EST CONDITION	MIN.	TYP.	MAX.	UNIT
Output Voltage	v _{out}	Fig. 1	T _j =25℃, 1	OUT=100mA	14.4	15.0	15.6	V
Konst Donalding	Des l'es	F:- 1	T25 °C	$17.5V \le V_{\text{IN}} \le 30V$	-	11	300	
Input Regulation	Reg line	Fig. 1	T _j =25 ℃	$20V \le V_{\text{IN}} \le 26V$	-	3	150	- mV
		F: 1	T -25 %	$5\text{mA} \leq I_{OUT} \leq 1.5\text{A}$	-	12	300	.,
Load Regulation	Reg load	Fig. 1	T _j =25 ℃	250mA ≤I _{OUT} ≤750mA	-	4	150	- mV
Output Voltage	v _{OUT}	Fig. 1	17.5V ≦V _I	$17.5V \le V_{\text{IN}} \le 30V$		-	15.75	V
Quiescent Current	IB	Fig. 1	T _j =25℃, 1	$T_j=25\%$, $I_{OUT}=5$ mA		4.4	8.0	mA
Quiescent Current Change	$_{\mathcal{I}_{B}}$	Fig. 1	17.5V ≦V _I	N ≤30V	-	-	1.0	mA
Output Noise Voltage	v _{NO}	Fig. 2	Ta=25 ℃,	10Hz≤f≤100kHz	-	110	-	$\mu V_{ m rms}$
Ripple Rejection Ratio	RR	Fig. 3	f=120Hz,	$18.5V \le V_{IN} \le 28.5V$,	54	70	-	dB
Dropout Voltage	$V_{\mathbf{D}}$	Fig. 1	I_{OUT} =1.0A, T_j =25°C		-	2.0	-	V
Short Circuit Current Limit	I_{SC}	Fig. 1	T _j =25 ℃		-	0.5	-	A
Average Temperature Coefficient of Output Voltage	TC _{VO}	Fig. 1	I _{OUT} =5m.	A, $0 \text{``} \leq T_j \leq 125 \text{``}$	-	-2.0	-	mV/℃

KIA7818AP ELECTRICAL CHARACTERISTICS (V_{IN}=27V, I_{OUT}=500mA, 0 °C \leq T_j \leq 125 °C)

CHARACTERISTIC	SYMBOL	TEST CIRCUIT	TI	EST CONDITION	MIN.	TYP.	MAX.	UNIT
Output Voltage	v _{OUT}	Fig. 1	T _j =25℃, I	OUT=100mA	17.3	18.0	18.7	V
Lagrat Decodation	Dag lina	Ein 1	T25 %	$21V \le V_{\text{IN}} \le 33V$	-	13	360	mV
Input Regulation	Reg line	Fig. 1	T _j =25 ℃	$24V \le V_{\text{IN}} \le 30V$	-	4	180	mv
Y - I D - I d' -	D II	F' 1	T25 °C	$5\text{mA} \leq I_{OUT} \leq 1.5\text{A}$	-	12	360	
Load Regulation	Reg load	Fig. 1	T _j =25 ℃	250mA ≤ I _{OUT} ≤750mA	-	4	180	mV
Output Voltage	V _{OUT}	Fig. 1	21V ≦V _{IN}	$21V \le V_{\text{IN}} \le 33V$		-	18.9	V
Quiescent Current	$I_{\mathbf{B}}$	Fig. 1	T _j =25℃, I	T _j =25℃, I _{OUT} =5mA		4.5	8.0	mA
Quiescent Current Change	$_{\mathcal{I}_{B}}$	Fig. 1	21V ≤V _{IN}	≤33V	-	-	1.0	mA
Output Noise Voltage	V _{NO}	Fig. 2	Ta=25 ℃,	10Hz≤f≤100kHz	-	125	-	$\mu V_{ m rms}$
Ripple Rejection Ratio	RR	Fig. 3	f=120Hz, 2	$22V \le V_{\text{IN}} \le 32V,$	52	68	-	dB
Dropout Voltage	v_D	Fig. 1	I_{OUT} =1.0A, T_j =25 °C		-	2.0	-	V
Short Circuit Current Limit	I _{SC}	Fig. 1	T _j =25 ℃		-	0.4	-	A
Average Temperature Coefficient of Output Voltage	TC _{VO}	Fig. 1	I _{OUT} =5m	A, $0 \% \le T_j \le 125 \%$	-	-2.5	-	mV/℃

KIA7820AP ELECTRICAL CHARACTERISTICS (V_{IN}=29V, I_{OUT}=500mA, 0 °C \leq T_j \leq 125 °C)

CHARACTERISTIC	SYMBOL	TEST CIRCUIT	TI	EST CONDITION	MIN.	TYP.	MAX.	UNIT
Output Voltage	v _{out}	Fig. 1	T _j =25℃, 1	OUT=100mA	19.2	20.0	20.8	V
Lagrat Decodation	Dec line	Ein 1	T25 %	$23V \le V_{\text{IN}} \le 35V$	-	15	400	V
Input Regulation	Reg line	Fig. 1	T _j =25℃	$26V \le V_{\text{IN}} \le 32V$	-	5	200	mV
I - I D - I d'	D I I	F: 1	T-25 °C	$5mA \le I_{OUT} \le 1.5A$	-	12	400	
Load Regulation	Reg load	Fig. 1	T _j =25 ℃	250mA ≤I _{OUT} ≤750mA	-	4	200	mV
Output Voltage	V _{OUT}	Fig. 1	23V ≦V _{IN}	$23V \le V_{\text{IN}} \le 35V$		-	21.0	V
Quiescent Current	IB	Fig. 1	T _j =25℃, 1	T _j =25℃, I _{OUT} =5mA		4.6	8.0	mA
Quiescent Current Change	$_{\mathcal{I}_{B}}$	Fig. 1	23V ≤V _{IN}		-	-	1.0	mA
Output Noise Voltage	v _{NO}	Fig. 2	Ta=25 ℃,	10Hz≤f≤100kHz	-	135	-	$\mu V_{ m rms}$
Ripple Rejection Ratio	RR	Fig. 3	f=120Hz,	$24V \le V_{\text{IN}} \le 34V,$	50	66	-	dB
Dropout Voltage	v_{D}	Fig. 1	I _{OUT} =1.0A, T _j =25℃		-	2.0	-	V
Short Circuit Current Limit	I _{SC}	Fig. 1	T _j =25 ℃		-	0.4	-	A
Average Temperature Coefficient of Output Voltage	TC _{VO}	Fig. 1	I _{OUT} =5m	A, $0 \% \le T_j \le 125 \%$	-	-3.0	-	mV/℃

KIA7824AP ELECTRICAL CHARACTERISTICS (V_{IN}=33V, I_{OUT}=500mA, 0 °C \leq T_j \leq 125 °C)

CHARACTERISTIC	SYMBOL	TEST CIRCUIT	TEST CONDITION		MIN.	TYP.	MAX.	UNIT
Output Voltage	v _{out}	Fig. 1	$T_j=25$ °C, $I_{OUT}=100$ mA		23.0	24.0	25.0	V
Input Regulation	Reg line	Fig. 1	T _j =25 ℃	$27V \le V_{\text{IN}} \le 38V$	-	18	480	- mV
				$30V \le V_{\text{IN}} \le 36V$	-	6	240	
Load Regulation	Reg load	Fig. 1	T _j =25 ℃	$5\text{mA} \leq I_{OUT} \leq 1.5\text{A}$	-	12	480	- mV
				250mA ≤I _{OUT} ≤750mA	-	4	240	
Output Voltage	v _{OUT}	Fig. 1	$27V \le V_{\text{IN}} \le 38V$		22.8	-	25.2	V
Quiescent Current	IB	Fig. 1	T _j =25 ℃, I _{OUT} =5mA		-	4.6	8.0	mA
Quiescent Current Change	$_{\mathcal{I}_{B}}$	Fig. 1	$27V \le V_{\text{IN}} \le 38V$		-	-	1.0	mA
Output Noise Voltage	v _{NO}	Fig. 2	Ta=25 °C, 10Hz ≤f ≤100kHz		-	150	-	μV _{rms}
Ripple Rejection Ratio	RR	Fig. 3	$f=120Hz, 28V \le V_{IN} \le 38V,$		50	66	-	dB
Dropout Voltage	v_{D}	Fig. 1	I _{OUT} =1.0A, T _j =25 ℃		-	2.0	-	V
Short Circuit Current Limit	I_{SC}	Fig. 1	T _j =25 ℃		-	0.3	-	A
Average Temperature Coefficient of Output Voltage	TC _{VO}	Fig. 1	I_{OUT} =5mA, $0 \text{°C} \leq T_j \leq 125 \text{°C}$		-	-3.5	-	mV/℃

TEST CIRCUIT

Fig. 1 Standard Test Circuit & Application Circuit

Fig. 3 Ripple Rejection Test Circuit

APPLICATION CIRCUIT

(1) VOLTAGE BOOST REGULATOR

(a) Voltage boost by use of zener diode

(b) Voltage boost by use of resistor

(c) djustable output regulator

(2) CURRENT BOOST REGULATOR

PRECAUTIONS ON APPLICATION

- (1) In regard to GND, be careful not to apply a negative voltage to the input/output terminal. Further, special care is necessary in case of a voltage boost application.
- (2) When a surge voltage exceeding maximum rating is applied to the input terminal or when a voltage in excess of the input terminal voltage is applied to the output terminal, the circuit may be destroyed. Specially, in the latter case, great care is necessary Further, if the input terminal shorts to GND in a state of normal operation, the output terminal voltage becomes higher than the input voltage (GND potential), and the electric charge of a chemical capacitor connected to the output terminal flows into the input side, which may cause the destruction of circuit. In these cases, take such steps as a zener diode and a general silicon diode are connected to the circuit, as shown in the following figure.

(3) When the input voltage is too high, the power dissipation of three terminal regulator increase because of series regulator, so that the junction temperature rises. In such a case, it is recommended to reduce the power dissipation by inserting the power limiting resistor R_{SD} in the input terminal, and to reduce the junction temperature as a result.

The power dissipation PD of IC is expressed in the following equation.

$$P_D = (V_{IN}' \text{-} V_{OUT}) \cdot I_{OUT} + V_{IN}' \cdot I_B$$

If V_{IN} ' is reduced below the lowest voltage necessary for the IC, the parasitic oscillation will be caused according to circumstances. In determining the resistance value of R_{SD} , design with margin should be made by making reference to the following equation.

$$R_{SD} < \frac{V_{IN} - V_{IN}'}{I_{OUT} + I_{B}}$$

(4) Connect the input terminal and GND, and the output terminal and GND, by capacitor respectively.

The capacitances should be determined experimentally because they depend on printed patterns. In particular, adequate investigation should be made so that there is no problem even at time of high or low temperature.

(5) Installation of IC for power supply

For obtaining high reliability on the heat sink design of the regulator IC, it is generally required to derate more than 20% of maximum junction temperature (T_i MAX.) Further, full consideration should be given to the installation of IC to the heat sink.

(a) Heat sink design

The thermal resistance of IC itself is required from the viewpoint of the design of elements, but the thermal resistance from the IC package to the open air varies with the contact thermal resistance. Table 1 shows how much the value of the contact thermal resistance ($\theta_C + \theta_S$) is changed by insulating sheet (mica) and heat sink grease.

TABLE 1. UNIT: °C/W

PACKAGE	MODEL NO.	TORQUE	MICA	$\theta_{\rm C}$ + $\theta_{\rm S}$
TO-220AB	KIA78xxAP	6kg · cm	Not Provided	$0.3 \sim 0.5(1.5 \sim 2.0)$
	KIA/6XXAI	(0.6N/m)	Provided	$2.0 \sim 2.5(4.0 \sim 6.0)$

The figures given in parentheses denote the values at time of no grease.

The package of regulator IC serves as GND, therefore, usually use the value at time of "no mica"

(b) Silicon grease

When a circuit not exceeding maximum rating is designed, it is to be desired that the grease should be used if possible.

If it is required that the contact thermal resistance is reduced from the view-point of the circuit design,

It is recommended that the following methods be adopted.

A: Use Thercon (Fuji High Polymer Kogyo K.K)

B: Use SC101 (Torei Silicon) or G-640 (GE), if grease is used.

(c) Torque

When installing IC on a heat sink or the like, tighten the IC with the torque of less than the rated value. If it is tightened with the torque in excess of the rated value, sometimes the internal elements of the IC are adversely affected. Therefore, great care should be given to the installing operation. Further, if polycarbonate screws are used, the torque causes a change with the passage of time, which may lessen the effect of radiation.

- (6) IEC (International Electronical Commission)-65 Specification.
- (a) IEC (International Electronical Commission)-65 is the standard, parts testing method, machinery and tolls (used in connecting main power directly and indirectly) Which are used at home and general building. The purpose of the above standard is not to breaking out the risk which is related to an electric shock, a heating, a fire and the damage of surrounding parts in the case of normal or abnormal operating.
- (b) In case temperature is limited by temperature overheating prevention device, fuse or the operation of fuse resistor. One must calculate the temperature of PCB substrate in 2 minute.

⊿T≤110 °C regulated

∠T=T(The PCB substrate temperature in 2 minute)

-Ta(Ambient temperature)

(c) Graph

As the territory of the deviant line appear by the heat, as the area is wider, T(The PCB substrate temperature in 2 minute) is becoming high.

