ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU ROZPOCZĘCIA EGZAMINU!

Miejsce na naklejkę

MMA-P1 1P-082

EGZAMIN MATURALNY Z MATEMATYKI

POZIOM PODSTAWOWY

Czas pracy 120 minut

Instrukcja dla zdającego

- 1. Sprawdź, czy arkusz egzaminacyjny zawiera 19 stron (zadania 1 – 12). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin.
- 2. Rozwiązania zadań i odpowiedzi zamieść w miss przeznaczonym.
- rozwiązaniach zadań przedstaw rozumowania prowadzący do ostatecznego wyniku. 4. Pisz czytelnie. Używaj długo sprora tylko z czarnym
- tuszem/atramentem.

- 5. Nie używaj korektora (1) one zapisy przekreśl.
 6. Pamiętaj, że zapisy o odnopisie nie podlegają ocenie.
 7. Obok każdego z dana podana jest maksymalna liczba punktów, którą a sze buzyskać za jego poprawne rozwiązanie.
- 8. Możes korzystać z zestawu wzorów matematycznych, cyrkla i linijki oraz kalkulatora.
- 9. Na karcie odpowiedzi wpisz swoją datę urodzenia i PESEL. Nie wpisuj żadnych znaków w części przeznaczonej dla egzaminatora.

Życzymy powodzenia!

MAJ ROK 2008

Za rozwiązanie wszystkich zadań można otrzymać łącznie 50 punktów

Wypełnia zdający przed rozpoczęciem pracy										
PESEL ZDAJĄCEGO										

KOD ZDAJĄCEGO

Zadanie 1. (4 pkt)

Na poniższym rysunku przedstawiono łamaną ABCD, która jest wykresem funkcji y = f(x).

Korzystając z tego wykresu:

- a) zapisz w postaci przedziału zbiór wartości funkcji f,
- b) podaj wartość funkcji f dla argumentu $x = 1 \sqrt{10}$,
- c) wyznacz równanie prostej BC,
- d) oblicz długość odcinka BC.
- a) Zbiór wartości funkcji f odczytuję z wykresu. Jest nim przedział $\langle -4, 3 \rangle$.
- b) Zauważam, że $-3 < 1 \sqrt{10} < -2$. Z wykresu odczytuję, że w przedziale $\langle -3, -2 \rangle$ funkcja f jest stała i dla każdego argumentu z tego przedziału przyjmuje wartość (-4), zatem wartością funkcji f dla argumentu $x = 1 \sqrt{10}$ jest (-4), co można zapisać $f\left(1 \sqrt{10}\right) = -4$.
- c) Wyznaczam równanie prostej przechodzącej przez punkty B = (-2, -4) i C = (2,3): $y-3 = \frac{-4-3}{-2-2}(x-2)$ stąd $y = \frac{7}{4}x \frac{1}{2}$.

Obliczam długość odcinka BC:
$$|BC| = \sqrt{(2-(-2))^2 + (3-(-4))^2} = \sqrt{65}$$
.

Zadanie 2. (4 pkt)

Liczba przekątnych wielokąta wypukłego, w którym jest n boków i $n \ge 3$ wyraża się wzorem $P(n) = \frac{n(n-3)}{2}$.

Wykorzystując ten wzór:

- a) oblicz liczbę przekątnych w dwudziestokącie wypukłym.
- b) oblicz, ile boków ma wielokąt wypukły, w którym liczba przekątnych jest pięć razy większa od liczby boków.
- c) sprawdź, czy jest prawdziwe następujące stwierdzenie: Każdy wielokąt wypukły o parzystej liczbie boków ma parzystą liczbę przekątnych. Odpowiedź uzasadnij.
- a) Do podanego wzoru podstawiam n = 20 i otrzymuję $P(20) = \frac{20 \cdot 17}{2} = 170$. W dwudziestokącie wypukłym jest 170 przekątnych.
- b) Zapisuję równanie uwzględniające treść tego podpunktu: n(n-3)/2 = 5n.
 Jest ono równoważne równaniu kwadratowemu n²-13n=0, którego rozwiązaniem są liczby n=0 lub n=13.
 Biorąc pod uwagę założenie, że n≥3 formułuję odpowiedź: Wielokątem wypukłym, który ma 5 razy więcej przekątnych niż boków jest trzynastokąt.
- c) Powyższe stwierdzenie nie jest prawdziwe, ponieważ sześciokąt wypukły ma 9 przekątnych, czyli P(6)=9.

Zadanie 3. (4 pkt)

Rozwiąż równanie $4^{23} x - 32^9 x = 16^4 \cdot (4^4)^4$.

Zapisz rozwiązanie tego równania w postaci 2^k , gdzie k jest liczbą całkowitą.

Wszystkie liczby występujące w równaniu zapisuję w postaci potęgi o podstawie 2:

$$2^{46}x - 2^{45}x = 2^{16} \cdot 2^{32}$$

Po lewej stronie równania wyłączam wspólny czynnik przed nawias, a po prawej stronie wykonuję mnożenie:

$$2^{45}x(2-1) = 2^{48}$$

$$2^{45}x = 2^{48}$$

dzielę obie strony równania przez 2⁴⁵ i otrzymuję:

$$x = 2^{48} : 2^{45} = 2^3$$

Rozwiązaniem równania jest liczba 2³.

Zadanie 4. (3 pkt)

Koncern paliwowy podnosił dwukrotnie w jednym tygodniu cenę benzyny, pierwszy raz o 10%, a drugi raz o 5%. Po obu tych podwyżkach jeden litr benzyny, wyprodukowanej przez ten koncern, kosztuje 4,62 zł. Oblicz cenę jednego litra benzyny przed omawianymi podwyżkami.

Oznaczam literą x cenę jednego litra benzyny przed podwyżkami;

1,1x –cena jednego litra benzyny po pierwszej podwyżce;

 $1,05 \cdot 1,1x$ – cena jednego litra benzyny po obu podwyżkach.

Zapisuję równanie: $1,05 \cdot 1,1x = 4,62$

$$1,155x = 4,62$$

Rozwiązaniem równania jest x = 4;

Cena jednego litra benzyny przed podwyżkami była równa 4 zł.

Zadanie 5. (5 pkt)

Nieskończony ciąg liczbowy (a_n) jest określony wzorem $a_n = 2 - \frac{1}{n}$, n = 1, 2, 3, ...

- a) Oblicz, ile wyrazów ciągu (a_n) jest mniejszych od 1,975.
- b) Dla pewnej liczby x trzywyrazowy ciąg (a_2, a_7, x) jest arytmetyczny. Oblicz x.
- a) Rozwiązuję nierówność $2 \frac{1}{n} < 1,975$.

Przekształcam ją do postaci równoważnej $\frac{1}{n} > 0,025$. Nierówność tę zapisuję w postaci $\frac{1}{n} > \frac{1}{40}$. Jest ona spełniona gdy: n < 40.

Ponieważ n jest liczbą naturalną, więc odpowiedź jest następująca: 39 wyrazów danego ciągu to liczby mniejsze od 1,975.

b) Korzystam ze związku między sąsiednimi wyrazami w ciągu arytmetycznym i zapisuję równanie: $\frac{a_2+x}{2}=a_7$, czyli $x=2a_7-a_2$.

Obliczam potrzebne wyrazy: $a_2 = \frac{3}{2}$, $a_7 = \frac{13}{7}$.

Wstawiam obliczone wartości do równania i otrzymuję $x = 2 \cdot \frac{13}{7} - \frac{3}{2} = \frac{31}{14}$.

Odpowiedź: Trzywyrazowy ciąg (a_2, a_7, x) jest arytmetyczny dla $x = \frac{31}{14}$.

Zadanie 6. (5 pkt)

Prosta o równaniu 5x+4y-10=0 przecina oś Ox układu współrzędnych w punkcie A oraz oś Oy w punkcie B. Oblicz współrzędne wszystkich punktów C leżących na osi Ox i takich, że trójkąt ABC ma pole równe 35.

Wyznaczam współrzędne punktów A i B: A = (2,0) oraz $B = (0,\frac{5}{2})$.

Punkt C może leżeć z lewej lub z prawej strony punktu A. Przyjmując, że w obu przypadkach wysokością trójkąta ABC jest odcinek BO, którego długość jest równa $\frac{5}{2}$ i korzystając z faktu, że pole trójkąta ABC równa się 35 zapisuję

równanie:
$$\frac{1}{2} \cdot |AC| \cdot |BO| = 35$$
$$\frac{1}{2} \cdot |AC| \cdot \frac{5}{2} = 35$$
$$|AC| = 28.$$

Ponieważ punkt A = (2,0), więc C = (30,0) lub C = (-26,0).

Zadanie ma zatem dwa rozwiązania.

Zadanie 7. (4 pkt)

Dany jest trapez, w którym podstawy mają długość 4 cm i 10 cm oraz ramiona tworzą z dłuższą podstawą kąty o miarach 30° i 45°. Oblicz wysokość tego trapezu.

Trójkąt AED jest trójkątem prostokątnym i równoramiennym $(| \sphericalangle DAE | = | \sphericalangle EDA | = 45^\circ)$, więc |AE| = |ED| = h.

Korzystam z własności trójkąta prostokątnego BFC i zapisuję zależność między przyprostokątnymi $\frac{|CF|}{|FB|} = \operatorname{tg} 30^{\circ}$, stąd $|FB| = |CF| \cdot \sqrt{3}$, $|FB| = h\sqrt{3}$.

|EF| = |DC| = 4, więc otrzymuję równanie:

 $\left|AE\right|+4+\left|FB\right|=10$, z którego po podstawieniu wyznaczonych wielkości otrzymuję:

$$h + 4 + h\sqrt{3} = 10$$
.

Obliczam wysokość trapezu:

$$h + h\sqrt{3} = 6$$

$$h\left(1 + \sqrt{3}\right) = 6$$

$$h = \frac{6}{\sqrt{3} + 1} = 3\left(\sqrt{3} - 1\right).$$

Odpowiedź: Wysokość trapezu jest równa $3(\sqrt{3}-1)$ cm.

Zadanie 8. (4 pkt)

Dany jest wielomian $W(x) = x^3 - 5x^2 - 9x + 45$.

- a) Sprawdź, czy punkt A = (1, 30) należy do wykresu tego wielomianu.
- b) Zapisz wielomian W w postaci iloczynu trzech wielomianów stopnia pierwszego.
- a) Obliczam W(1):

$$W(1) = 1^3 - 5 \cdot 1^2 - 9 \cdot 1 + 45 = 32$$

$$W(1) \neq 30$$

Otrzymany wynik oznacza, że punkt A nie należy do wykresu wielomianu W.

b) Rozkładam wielomian na czynniki:

$$W(x) = x^{3} - 5x^{2} - 9x + 45 =$$

$$= x^{3} - 9x - 5x^{2} + 45 =$$

$$= x(x^{2} - 9) - 5(x^{2} - 9) =$$

$$= (x^{2} - 9)(x - 5) =$$

$$= (x + 3)(x - 3)(x - 5).$$

Odpowiedź: W(x) = (x+3)(x-3)(x-5).

Zadanie 9. (5 pkt)

Oblicz najmniejszą i największą wartość funkcji kwadratowej f(x) = (2x+1)(x-2) w przedziale $\langle -2, 2 \rangle$.

Zapisuję wzór funkcji w postaci ogólnej $f(x) = 2x^2 - 3x - 2$.

Wyznaczam odciętą wierzchołka paraboli: $x_w = \frac{-b}{2a} = \frac{3}{4}$.

Pierwsza współrzędna wierzchołka paraboli należy do przedziału $\langle -2,2\rangle$, więc najmniejszą wartością funkcji f w tym przedziale jest druga współrzędna wierzchołka: $y_w = \frac{-\Delta}{4a} = -\frac{25}{8}$.

Obliczam wartości funkcji na końcach przedziału: f(-2)=12, f(2)=0.

Największą wartością funkcji f w podanym przedziale jest f(-2)=12.

Odpowiedź: Najmniejszą wartością funkcji w podanym przedziale jest $y_w = -\frac{25}{8}$, a największą f(-2) = 12.

Zadanie 10. (3 pkt)

Rysunek przedstawia fragment wykresu funkcji h, określonej wzorem $h(x) = \frac{a}{x}$ dla $x \neq 0$.

Wiadomo, że do wykresu funkcji h należy punkt P = (2,5).

- a) Oblicz wartość współczynnika a.
- b) Ustal, czy liczba $h(\pi) h(-\pi)$ jest dodatnia czy ujemna.
- c) Rozwiąż nierówność h(x) > 5.

a) Korzystam z faktu, że punkt P = (2,5) należy do wykresu funkcji h i wyznaczam współczynnik a: $5 = \frac{a}{2}$ stąd a=10.

Funkcja h jest dana wzorem: $h(x) = \frac{10}{x}$.

b) Z wykresu odczytuję, że $h(-\pi) < 0$, natomiast $h(\pi) > 0$. Stąd wynika, że $h(\pi) - h(-\pi)$ jest liczbą dodatnią.

Z informacji podanej w zadaniu wiem, że wykres funkcji h przechodzi przez punkt P = (2,5). Odczytuję rozwiązanie nierówności h(x) > 5 z wykresu: jest to przedział (0,2).

Zadanie 11. (5 pkt)

Pole powierzchni bocznej ostrosłupa prawidłowego trójkątnego równa się $\frac{a^2\sqrt{15}}{4}$, gdzie a oznacza długość krawędzi podstawy tego ostrosłupa. Zaznacz na poniższym rysunku kąt nachylenia ściany bocznej ostrosłupa do płaszczyzny jego podstawy. Miarę tego kąta oznacz symbolem β . Oblicz $\cos\beta$ i korzystając z tablic funkcji trygonometrycznych odczytaj przybliżoną wartość β z dokładnością do 1°.

Na rysunku zaznaczam kąt nachylenia ściany bocznej ostrosłupa do płaszczyzny podstawy – β (punkt D jest środkiem odcinka BC).

Wprowadzam oznaczenie: h – wysokość ściany bocznej.

Zapisuję równanie opisujące pole powierzchni bocznej ostrosłupa:

$$3 \cdot \frac{1}{2} a \cdot h = \frac{a^2 \sqrt{15}}{4}$$
, z którego wyznaczam wysokość ściany bocznej ostrosłupa $h = \frac{a\sqrt{15}}{6}$.

Z trójkąta prostokątnego SOD, w którym $x = |OD| = \frac{a\sqrt{3}}{6} - długość promienia$ okręgu wpisanego w podstawę ostrosłupa otrzymuję: $\cos \beta = \frac{x}{h}$.

$$\cos \beta = \frac{x}{h} = \frac{\frac{a\sqrt{3}}{6}}{\frac{a\sqrt{15}}{6}} = \frac{\sqrt{5}}{5} \approx 0,4472.$$

Z tablicy wartości funkcji trygonometrycznych odczytuję miarę kąta: $\beta = 63^{\circ}$.

Zadanie 12. (4 pkt)

Rzucamy dwa razy symetryczną sześcienną kostką do gry. Oblicz prawdopodobieństwo każdego z następujących zdarzeń:

- a) A w każdym rzucie wypadnie nieparzysta liczba oczek.
- b) B suma oczek otrzymanych w obu rzutach jest liczbą większą od 9.
- c) C suma oczek otrzymanych w obu rzutach jest liczbą nieparzystą i większą od 9.

 Ω dla tego doświadczenia jest zbiorem wszystkich uporządkowanych par, których wyrazy mogą się powtarzać i każdy z tych wyrazów może być jedną z liczb: 1, 2, 3, 4, 5, 6.

Można ten zbiór opisać w tabelce:

	1	2	3	4	5	6
1	(1,1)	(1,2)	(1,3)	(1,4)	(1,5)	(1,6)
2	(2,1)	(2,2)	(2,3)	(2,4)	(2,5)	(2,6)
3	(3,1)	(3,2)	(3,3)	(3,4)	(3,5)	(3,6)
4	(4,1)	(4,2)	(4,3)	(4,4)	(4,5)	(4,6)
5	(5,1)	(5,2)	(5,3)	(5,4)	(5,5)	(5,6)
6	(6,1)	(6,2)	(6,3)	(6,4)	(6,5)	(6,6)

$$|\Omega| = 6^2 = 36$$
.

Zdarzeniu A sprzyja 9 zdarzeń elementarnych:

$$\{(1,1),(1,3)(1,5),(3,1),(3,3),(3,5),(5,1),(5,3),(5,5)\}.$$

Obliczam prawdopodobieństwo zdarzenia A: $P(A) = \frac{9}{36} = \frac{1}{4}$.

Zdarzeniu B sprzyja 6 zdarzeń elementarnych. Łatwo je wypisać:

$$\{(6,6),(6,5),(6,4),(5,6),(5,5),(4,6)\}.$$

Obliczam prawdopodobieństwo zdarzenia B: $P(B) = \frac{6}{36} = \frac{1}{6}$.

Zdarzeniu C sprzyjają dwa zdarzenia elementarne: $\{(6,5),(5,6)\}$

Obliczam prawdopodobieństwo zdarzenia C: $P(C) = \frac{2}{36} = \frac{1}{18}$.

BRUDNOPIS