ELECTRIC VEHICLES HOMEWORK #2

Problem 1 A length of the road is straight, and it has a profile in the x-y plane described by

$$f(x) = 200 \ln \left[7.06 * 10^{-4} (x + 1416) \right].$$

Where $0 \le x \le 3$ miles = 15,840 ft.; f(x) and x are in feet.

- a) Plot the road profile in the x-y plane for $0 \le x \le 15,840$ ft.
- b) Derive an expression for $\beta(x)$. Calculate $\beta(500ft)$. (answer: $\beta(500ft) = 5.96^{\circ}$)
- c) Derive an expression for percent grade(x). Calculate percent grade(500ft.). (answer: $\frac{\% Grade(500ft)}{\% Grade(500ft)} = \frac{10.4\%}{}$
- d) Derive an expression for tangential road length s(x), such that s(0)=0. Calculate s(500ft.) (answer: s(500 ft) = 504 ft)

Problem 2 An electric vehicle has the following parameter values:

$$\overline{m}$$
=692kg, C_D = 0.2, A_F = 2m², C₀ = 0.009, C₁ = 1.75*10⁻⁶ s²/m², Also, take ρ = 1.16 kg/m³, g = 9.81 m/s²,

The EV is stopped at a stop sign at a point in the road where the grade is +15%. The tractive force of the vehicle is supplied by the vehicle brakes.

- i) Calculate the tractive force necessary for zero rolling resistance (The vehicle is at rest). (answer: $F_{TR} = 1007 \text{ N}$)
- ii) Calculate the minimum tractive force required from the brakes to keep the EV from rolling down the grade. ((answer: $F_{TR} = 946 \text{ N}$)

Problem 3

The EV in problem # 2 is moving at a constant velocity along a road that has a constant grade of -12%.

- i) Plot, on the same graph, the magnitudes of the tangential gravitational force (F_{gT}), the aerodynamic drag force (F_{AD}), and the rolling resistance force (F_{ROLL}) versus velocity for $0 < V \le 180 mph$. Over that range of velocity, does F_{gT} dominate? When does F_{AD} dominate? When does F_{ROLL} dominate? Label these regions on the graph.
- ii) Derive an expression for the tractive force as a function of velocity. Plot this expression on its own graph. Is the tractive force always in the same direction?