← Все модули

← Math expressions

Composition of formal power series >

Баллы 4,00/4,00

Оценка 10,00 из 10,00 (100%)

Вопрос 1 Верно

Баллов: 1,00 из 1,00

Give the generating function for the sequence

$$a_n=2^n+3^n$$

in closed form.

Important note for this question and all the following ones: to check your answer, the system compares it to a list of recognized answers (it sounds ridiculous when the AI is a chess champion and writes essays, but that's how it is). So you have to respect a few guidelines to make sure it falls within the limited range of recognized answers:

- Please use the variable q
- Use * as multiplication symbol: 3*q and not 3q, (1+q)*(1-2*q) and not (1+q)(1-2*q)
- Order monoms by increasing powers : 1+4*q^2 and not 4*q^2+1
- Do not put spacing: 3+2*q and not 3 + 2*q

Example: (1+4*q^2)/(1-q+5*q^3)

 $(2-5*q)/(1-5*q+6*q^2)$

Вопрос 2

Верно

Баллов: 1,00 из 1,00

Let f_n be the Fibonacci sequence ($f_0 = f_1 = 1$).

Find the generating function for the sequence

 $f_0, 0, f_2, 0, f_4, 0, \dots$

 $(1-q^2)/(1-3*q^2+q^4)$

Вопрос 3

Верно

1,00

Баллов: 1,00 из

The sequence is given by the recurrence relation

$$a_n = a_{n-1} - a_{n-2} + a_{n-3} - a_{n-4},$$

$$a_0=a_1=1, a_2=a_3=3.$$

Find the generating function for a_n in closed form.

Ответ: (1+3*q^2)/(1-q+q^2-q^3+q^4)

Вопрос 4 Верно

Баллов: 1,00 из 1.00

The sequence a_n is given by the recurrence relation $a_n=2a_{n-1}+3$, with $a_0=1$.

Find the generating function for a_n in closed form.

 $(1+2*q)/(1-3*q+2*q^2)$