Fondamenti dell'Informatica

1 SEMESTRE

Quiz sui linguaggi regolari

PROF. GIORGIO GAMBOSI

A.A. 2018-2019

Problema 1: Data l'espressione regolare a^* , definita su $\{a,b\}$, descrivere il linguaggio corrispondente ed elencare 5 stringhe del linguaggio stesso.

Problema 2: Data l'espressione regolare $(ab)^*$, definita su $\{a,b\}$, descrivere il linguaggio corrispondente ed elencare 5 stringhe del linguaggio stesso.

Problema 3: Data l'espressione regolare $a(a+b)^*a$, definita su $\{a,b\}$, descrivere il linguaggio corrispondente ed elencare 5 stringhe del linguaggio stesso.

Problema 4: Data l'espressione regolare $(a+b)^*a(a+b)^*$, definita su $\{a,b\}$, descrivere il linguaggio corrispondente ed elencare 5 stringhe del linguaggio stesso.

Problema 5: Data l'espressione regolare $(a(cd)^*a)^*$, definita su $\{a,b,c,d\}$, descrivere il linguaggio corrispondente ed elencare 5 stringhe del linguaggio stesso.

Problema 6: Data l'espressione regolare $(a+b)^*ab$, definita su $\{a,b\}$, descrivere il linguaggio corrispondente ed elencare 5 stringhe del linguaggio stesso.

Problema 7: Data l'espressione regolare $(aa)^*$, definita su $\{a,b\}$, descrivere il linguaggio corrispondente ed elencare 5 stringhe del linguaggio stesso.

Problema 8: Data l'espressione regolare $(a^*ba^*ba^*)^*$, definita su $\{a,b\}$, descrivere il linguaggio corrispondente ed elencare 5 stringhe del linguaggio stesso.

Problema 9: Data l'espressione regolare a^*b^* , definita su $\{a,b\}$, descrivere il linguaggio corrispondente ed elencare 5 stringhe del linguaggio stesso.

Problema 10: Data l'espressione regolare $(ba + a)^*(b + ba)^*$, definita su $\{a, b\}$ fornire 1 stringa che non appartiene al linguaggio relativo.

Problema 11: Data l'espressione regolare $a^*(b+aaa^*)^*a^*$, definita su $\{a,b\}$ fornire 1 stringa che non appartiene al linguaggio relativo.

Problema 12: Definire un'espressione regolare che descriva l'insieme delle stringhe su $\{0,1\}$ che contengono la sottostringa 000.

Problema 13: Definire un'espressione regolare che descriva l'insieme delle stringhe su $\{0,1\}$ che non contengono la sottostringa 000.

Problema 14: Definire un'espressione regolare che descriva l'insieme delle stringhe su $\{0,1\}$ che contengono la sottostringa 000, ma non come caratteri iniziali.

Problema 15: Definire un'espressione regolare che descriva l'insieme delle stringhe su $\{0,1\}$ che contengono la sottostringa 000, ma non all'inizio né alla fine.

Problema 16: Definire un'espressione regolare che descriva l'insieme delle stringhe su $\{0,1\}$ che contengono esattamente tre caratteri 0

Problema 17: Definire un'espressione regolare che descriva l'insieme delle stringhe su $\{0,1\}$ che contengono al più tre caratteri 0

Problema 18: Definire un'espressione regolare che descriva l'insieme delle stringhe su $\{0,1\}$ che contengono almeno tre caratteri 0

Problema 19: Definire un'espressione regolare che descriva l'insieme delle stringhe su $\{0,1\}$ che inziano e terminano con due caratteri diversi.

Problema 20: Definire un'espressione regolare che descriva l'insieme delle stringhe su $\{0,1\}$ che contengono un numero dispari di 0

Problema 21: Definire un'espressione regolare che descriva l'insieme delle stringhe su $\{0,1\}$ che contengono un numero pari di 0

Problema 22: Definire un'espressione regolare che descriva l'insieme delle stringhe su $\{0, \dots, 9\}$ che rappresentano interi divisibili per 5

Problema 23: Definire un'espressione regolare che descriva l'insieme delle stringhe su $\{a,b,c\}$ che contengono un numero di caratteri a pari a 4k+1, per qualche k>0.

Problema 24: Definire un'espressione regolare che descriva l'insieme delle stringhe su $\{a,b,c\}$ di lunghezza pari a 3k, per qualche $k \ge 0$.

Problema 25: Definire un'espressione regolare che descriva l'insieme delle stringhe su $\{a,b,c\}$ contenenti un numero di caratteri c pari a 3k, per qualche $k \ge 0$.

Problema 26: Definire un'espressione regolare che descriva l'insieme delle stringhe su $\{a,b,c\}$ contenenti 2 caratteri a o 3 caratteri b.

Problema 27: Definire un'espressione regolare che descriva l'insieme delle stringhe su $\{a,b,c\}$ contenenti 2 caratteri a e 3 caratteri b.

Problema 28: Mostrare che le seguenti espressioni regolari definiscono linguaggi diversi. $E_1 = ab + c^*$, $E_2 = (ab + c)^*$, $E_3 = a(b + c)^*$

Problema 29: Definire espressioni regolari per i seguenti linguaggi sull'alfabeto $\{a, b\}$.

- 1. Il linguaggio di tutte le stringhe che contengono almeno tre a.
- 2. Il linguaggio di tutte le stringhe che iniziano e terminano con lo stesso simbolo.
- 3. Il linguaggio di tutte le stringhe aventi sia ab che ba come sottostringhe.

Problema 30: Per una qualunque stringa $w=a_1a_2\ldots a_n$, la stringa inversa $w^{\mathcal{R}}$ di w è la stringa w in ordine inverso, $a_n\ldots a_2a_1$. Per un qualunque linguaggio L, sia $L^{\mathcal{R}}=\{w^{\mathcal{R}}\mid w\in L\}$ il linguaggio composto dalle inverse delle stringhe in L.

- 1. Dimostrare che se L è regolare, anche $L^{\mathcal{R}}$ è regolare.
- 2. Sia dato l'alfabeto

$$\Sigma_3 = \left\{ \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \dots, \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \right\}$$

 Σ_3 contiene tutte le colonne di 3 elementi aventi valore 0 o 1. Una stringa di simboli di Σ_3 corrisponde a tre righe di 0 e 1. Si consideri ogni riga come un numero espresso in notazione binaria, e sia

 $B = \{w \in \Sigma_3^* \mid \text{la riga inferiore di } w \text{ rappresenta la somma delle due righe superiori}\}.$

Mostrare che B è regolare. (Traccia: Usare il primo punto nel problema).

Problema 31: Si considerino i linguaggi $L_1\subseteq\{0,1\}^*$, comprendente tutte e sole le stringhe contenenti il simbolo 0 in ogni posizione pari ad un multiplo di 3 (0,3,6,9,...), ed $L_2\subseteq\{0,1\}^*$, l'insieme delle stringhe aventi almeno 3 caratteri. Mostrare che il linguaggio $L=L_1\circ L_2$ è regolare.

Problema 32: Sia dato un linguaggio $L\subseteq \Sigma^*$. Sia estraiCarattere(L) il linguaggio composto da tutte le stringhe che possono essere ottenute eliminando un simbolo da una qualche stringa in L. Sia cioè estrai $Carattere(L)=\{xz|xaz\in L \text{ dove } x,z\in \Sigma^*, a\in \Sigma\}$. Mostrare che la classe dei linguaggi regolari è chiusa rispetto all'operazione estraiCarattere. (Traccia: Dato l'ASFD che riconosce L costruire un ASFND che riconosce estraiCarattere(L))

Problema 33: Definire le espressioni regolari che descrivono i seguenti linguaggi. Si intende che l'alfabeto è $\{0,1\}$.

1. $L_1 = \{w \mid w \text{ contiene la stringa 0101}\}$

- 2. $L_2 = \{w \mid w \text{ non contiene la stringa 100 come sottostringa}\}$
- 3. $L_3 = \{w \mid w \text{ inizia con 0 e ha lunghezza dispari, o inizia con 1 e ha lunghezza pari}\}$
- 4. $L_4 = \{w \mid w \text{ ha al più 5 caratteri}\}$
- 5. $L_1 = \{ w \mid w \neq \varepsilon \}$

Problema 34: Siano r_1 e r_2 due espressioni regolari. Dimostrare se le seguenti proprietà sono vere o false:

- 1. $L(r_1^*r_1^*) = L(r_1^*)$
- 2. $L((r_1+r_2)^*r_1^*)=L((r_1+r_2)^*)$
- 3. $L((r_1r_2)^*) = L(r_1^*r_2^*)$

Problema 35: Siano r_1 e r_2 due espressioni regolari. Dimostrare se le seguenti proprietà sono vere o false:

- 1. $L(r_1^*r_1^*) = L(r_1^*)$
- 2. $L((r_1+r_2)^*r_1^*) = L((r_1+r_2)^*)$
- 3. $L((r_1r_2)^*) = L(r_1^*r_2^*)$

Problema 36: Siano r_1 e r_2 due espressioni regolari. Dimostrare se le seguenti proprietà sono vere o false:

- 1. $(r_1r_2 + r_1)^*r_1r_2 = (r_1r_1^*r_2)^*$
- 2. $(r_1r_2 + r_1)^*r_1 = r_1(r_2r_1 + r_1)^*$

Problema 37: Usare il *pumping lemma* e le proprietà di chiusura della classe dei linguaggi regolari per mostrare che i seguenti linguaggi non sono regolari.

- 1. $L_1 = \{0^a 1^b 2^c \mid 0 \le a \le b \le c\}$
- 2. $L_2 = \{a^{2^n} \mid n \ge 0\}$
- 3. $L_3 = \{0^{n^2} \mid n \ge 0\}$
- **4.** $L_4 = \{0^n 1^m 0^n \mid m, n \ge 0\}$
- 5. $L_5 = \{w \in \{0,1\}^* \text{ non è palindroma } \}$
- 6. $L_6 = \{a^n b^m | n < l + 3, n, l \ge 0\}$
- 7. $L_7 = \{wwww|w \in \{a,b\}^*\}$
- 8. $L_8 = \{a^n | k = \sqrt{n}, \text{ con } n, k \text{ interi e } n, k \ge 1\}$

Problema 38: Definire grammatiche regolari per i seguenti linguaggi

- 1. $L_1 = L((ab^*aaab^*a)^* + (bba^*b))$
- 2. $L_2 = \{a^n b^m | n + m = 2k, n, m, k \ge 0\}$

Problema 39: Sia $\Sigma = \{0, 1, +, =\}$ e sia ADD $= \{x = y + z \mid x, y, z \text{ sono interi in notazione binaria, e } x \text{ è la somma di } y, z\}$. Mostrare che ADD non è regolare.

Problema 40: Sia L un linguaggio su $\{a,b\}$ tale che per ogni stringa $w \in L$:

- 1. w non contiene coppie di a adiacenti
- 2. ogni b in w è adiacente ad un'altra b
- 3. |w|è pari.

Dimostrare che L è regolare.

Problema 41:(Prova d'esame del 30-1-2006). Dimostrare che il linguaggio $L=\{a^nb^m|n\leq m\}$ non è regolare.

Problema 42:(Prova d'esame del 24-2-2006). Dimostrare che il linguaggio $L = \{a^n b^{2n}\}$ non è regolare.

Problema 43:(Prova d'esame del 4-7-2006). Illustrare come sia possibile verificare, date due espressioni regolari r_1 e r_2 , se esse definiscono lo stesso linguaggio. Mostrare come tale proedimento possa essere applicato per verificare che $a^*(ab+ba)^*b$ e $a^*b(a+ab)^*b^*$ non definiscono uno stesso linguaggio.

Problema 44:(Prova d'esame del 4-7-2006). Il linguaggio $\{a^ib^j|i+j\geq 4\}$ è regolare? Dimostrare la propria risposta.

Problema 45:(Prova d'esame del 4-7-2006). Il linguaggio $\{a^ib^j|i-j\geq 4\}$ è regolare? Dimostrare la propria risposta.

Problema 46:(Prova d'esame del 13-9-2006). Dimostrare che le espressioni regolari $r_1 = ab + c^*$, $r_2 = (ab + c)^*$, $r_3 = a(b + c)^*$ descrivono linguaggi diversi.

Problema 47:(Prova d'esame del 13-9-2006). Sia dato l'ASFND \mathcal{A} con $\Sigma=\{0,1\}$, $Q=\{q_0,q_1,q_2,q_3\}$, $F=\{q_3\}$ e δ definita dalla tabella seguente:

Derivare una espressione regolare che descriva il linguaggio accettato da ${\cal A}$

Problema 48:(Prova d'esame del 18-6-2007). Per ognuna delle seguenti proposizioni, dire se è vera o falsa, giustificando obbligatoriamente la risposta data.

- 1. Se L è un linguaggio regolare allora ogni $L'\subseteq L$ è regolare
- 2. Se L e L' sono linguaggi regolari allora L-L' è regolare
- 3. 11000 appartiene al linguaggio 0*1(11)*10*
- 4. 01110 appartiene al linguaggio $0^*1(11)^*10^*$

Problema 49:(Prova d'esame del 18-6-2007). Dimostrare che il linguaggio $L = \{a^i b^j \mid i < j\}$ non è regolare.

Problema 50:(Prova d'esame dell'11-7-2007). Fornire le espressioni regolari che descrivono i seguenti linguaggi.

- 1. $L = \{a^{2i} \mid i > 0\}$
- 2. $L = {\sigma \mid \sigma \text{ contiene esattamente } 2 \text{ caratteri } a}$
- 3. $L = {\sigma \mid \sigma \text{ contiene un numero pari di caratteri } a}$
- 4. $L = {\sigma \mid \sigma \text{ contiene un numero dispari di caratteri } a}$

Problema 51:(Prova d'esame dell'11-7-2007). Sia dato l'ASFD \mathcal{A} con $\Sigma = \{0,1\}$, $Q = \{q_0,q_1,q_2\}$, $F = \{q_2\}$ e δ definita dalla tabella seguente:

$$\begin{array}{c|ccccc} & q_0 & q_1 & q_2 \\ \hline 0 & q_0 & q_2 & q_0 \\ 1 & q_1 & q_1 & q_1 \end{array}$$

Derivare una espressione regolare che descriva il linguaggio $L(\mathcal{A})$ riconosciuto dall'automa.

Problema 52:(Prova d'esame dell'11-7-2007). Dimostrare che il linguaggio $L=\{a^nb^mc^n\mid n,m>0\}$ non è regolare.

Problema 53:(Prova d'esame del 24-1-2008). Sia dato il linguaggio $L = \{\sigma \in \{a,b,c\}^* \mid \#a(\sigma) = \#b(\sigma) = \#c(\sigma)\}$, dove $\#x(\sigma)$ indica il numero di caratteri x nella stringa σ . Il linguaggio L è regolare? Dimostrare la risposta data.

Problema 54:(Prova d'esame del 24-1-2008). Data l'espressione regolare $r=a(b^*+a)$, derivare un automa a stati finiti deterministico che riconosca il linguaggio L(r).

Problema 55:(Prova d'esonero del 25-2-2015). Si consideri il linguaggio $L = \{a^rb^sc^t|t=r-s\}$. Dimostrare che questo linguaggio non è regolare.

Problema 56:(Prova d'esonero del 9-2-2016). Dimostrare che il seguente linguaggio è regolare $L=\{a^kb^jc^i|i,j,k>0\}$ dove k è dispari e i>2, oppure j è dispari e $i\leq3$.

Problema 57:(Prova d'esonero del 9-2-2016). Si definisca una grammatica di tipo 3 che generi il linguaggio $L = \{x0y | x \in \{0,1\}^*, y \in \{0,1\}^3\}.$

Problema 58:(Prova d'esonero del 4-3-2016). Sia dato il linguaggio

$$L = \{w \in \{a, b\}^* | w \text{ non è della forma } vv\}$$

Mostrare se ${\cal L}$ è regolare o meno.

Problema 59:(Prova d'esonero del 4-3-2016). Si definisca una grammatica di tipo 3 che generi il seguente linguaggio

$$L = \{a^n b^m c^k | n + m + k \text{ dispari}\}\$$

Problema 60:(Prova d'esame del 18-7-2016). Definire una grammatica regolare che generi il seguente linguaggio

$$L = \{w \in \{0,1\}^* : w \text{ non contiene la sottostringa } 101\}$$

descrivendo e giustificando le scelte effettuate.

Problema 61:(Prova d'esame del 18-7-2016). Si determini se i linguaggi

$$L = \{a^i b^j c^i | i, j \ge 1\}$$

е

$$L = \{a^i b^j c^k | i, j, k \ge 0\}$$

sono regolari.

Problema 62:(Prova d'esame del 17-2-2016). Definire una grammatica di tipo 3, priva di simboli inutili, che generi il linguaggio descritto dall'espressione regolare $a^*bc^* + a(ab + c^*b)$

Problema 63:(Prova d'esame del 17-2-2016). Si definisca una grammatica regolare che generi il linguaggio L composto da tutte le stringhe su $\Sigma = \{a,b\}$ non contenenti la sequenza aba