4. Serie di Taylor e di Laurent

Vincenzo Recupero
Dipartimento di Scienze Matematiche, Politecnico di Torino
vincenzo.recupero@polito.it

Versione: 13 giugno 2013 Revisione: 24 aprile 2020

Metodi Matematici per l'Ingegneria 05BQXMQ, 06BQXOA (Aaa-Ferr), 06BQXOD, 06BQXPC (Aaa-Ferr)

Dispense di Analisi

1 Serie e successioni complesse

La definizione di successione complessa convergente è del tutto analoga a quella per successioni reali.

Definizione 1.1. Sia $(z_n)_{n\in\mathbb{N}}$ una successione di numeri complessi Diciamo che (z_n) converge $\ell\in\mathbb{C}$ per $n\to\infty$ se

$$\forall \varepsilon > 0 \quad \exists n_{\varepsilon} \in \mathbb{N} \quad : \quad [n > n_{\varepsilon} \implies |z_n - \ell| < \varepsilon]$$

cioè se

$$\lim_{n \to \infty} |z_n - l| = 0.$$

In tal caso scriviamo $\lim_{n\to\infty} z_n = \ell$ or $z_n \to \ell$ per $n \to \infty$.

Grazie alla seguente proposizione lo studio delle successioni complesse si può ridurre a quello delle successioni reali.

Lemma 1.1. Sia $z_n = x_n + iy_n$, $x_n, y_n \in \mathbb{R}$, per $n \in \mathbb{N}$, una successione complessa. Allora

$$\exists \lim_{n \to \infty} z_n = z = x + iy, \ x, y \in \mathbb{R} \quad \Longleftrightarrow \quad \begin{cases} \exists \lim_{n \to \infty} x_n = x \\ \exists \lim_{n \to \infty} y_n = y \end{cases}$$

In particolare se il limite esiste è unico.

Dimostrazione. È una proprietà del calcolo di funzioni vettoriali di più variabili reali.

Questa analogia sussiste anche per le serie numeriche.

Definizione 1.2. Sia $(a_n)_{n\in\mathbb{N}}$ una successione complessa. La serie complessa di termine generale a_n è definita da

$$\sum_{n=0}^{\infty} a_n := \lim_{n \to \infty} \sum_{k=0}^{n} a_k = \lim_{n \to \infty} a_0 + a_1 + \dots + a_n$$

se tale limite esiste in \mathbb{C} . In questo caso si dice che la serie $\sum_{n=0}^{\infty} a_n$ converge (a s) e s è detto somma della serie. Altrimenti la serie non è definita e diciamo che non converge. La somma finita $s_n := a_0 + a_1 + \cdots + a_n$ è chiamata somma parziale della serie.

La seguente proposizione è molto utile.

Proposizione 1.1.

1. Se $a_n = u_n + iv_n$, $u_n, v_n \in \mathbb{R}$, per ogni $n \in \mathbb{N}$, allora

$$\sum_{n=0}^{\infty} a_n \ converge \ a \ s = u + iv, \ u, v \in \mathbb{R} \quad \Longleftrightarrow \quad \begin{cases} \sum_{n=0}^{\infty} u_n = u \in \mathbb{R} \\ \sum_{n=0}^{\infty} v_n = v \in \mathbb{R} \end{cases}$$

- 2. Se $\sum_{n=0}^{\infty} a_n$ converge allora $\lim_{n\to\infty} a_n = \lim_{n\to\infty} |a_n| = 0$.
- 3. Se $\sum_{n=0}^{\infty} |a_n|$ converge allora $\sum_{n=0}^{\infty} a_n$ converge (la convergenza assoluta implica la convergenza).

Dimostrazione. Le affermazioni seguono dal Lemma 1.1.

2 Serie di potenze complesse

Definiamo ora le serie di potenze complesse. Proveremo in seguito che ogni funzione olomorfa è localmente una serie di potenze.

Definizione 2.1. Sia (c_n) una successione complessa. La serie di potenze di centro $z_0 \in \mathbb{C}$ e coefficienti $c_n \in \mathbb{C}$ è la funzione S(z) definita da

$$S(z) = \sum_{n=0}^{\infty} c_n (z - z_0)^n = c_0 + c_1 (z - z_0) + c_2 (z - z_0)^2 + \dots + c_n (z - z_0)^n + \dots$$
 (2.1)

per ogni $z \in \mathbb{C}$ tale che la serie converge. Si osservi che in (2.1) poniamo $0^0 := 1$ (per $z = z_0$ e n = 0).

Si osservi che una serie di potenze è sempre convergente nel punto $z=z_0$. Grazie alla traslazione $z\longmapsto z-z_0$ non è restrittivo limitarsi a studiare le serie di potenze di centro $z_0=0$.

Il prossimo teorema descrive la struttura dell'insieme di convergenza di una serie di potenze complessa.

Teorema 2.1. Se $S(z) = \sum_{n=0}^{\infty} c_n z^n$ è una serie di potenze allora esiste $R \in [0,\infty]$ tale che

- (i) S(z) converge se |z| < R;
- (ii) S(z) non converge se |z| > R.

Inoltre si ha

$$\frac{1}{R} = \lim_{n \to \infty} \left| \frac{c_{n+1}}{c_n} \right|$$

se tale limite esiste, e

$$\frac{1}{R} = \lim_{n \to \infty} \sqrt[n]{|c_n|}$$

se tale limite esiste, dove in entrambi i casi si pone $1/R = +\infty$ per R = 0 e 1/R = 0 per $R = +\infty$. Si dice che R è il raggio di convergenza della serie di potenze. In generale nulla si può dire sulla convergenza nei punti z tali che |z| = R.

Dimostrazione. Si dimostra come l'analogo risultato per le serie di potenze reali. \Box

Esempio 2.1.

a) Si trovi l'insieme di convergenza della serie complessa $\sum_{n=0}^{\infty} \frac{(n+2)(z+i)^n}{\log(n+1)}.$

Si tratta di una serie di potenze di centro $z_0 = -i$ e termine generale $c_n = (n+2)/\log(n+1)$. Troviamo il raggio di convergenza.

$$\left| \frac{c_{n+1}}{c_n} \right| = \left| \frac{(n+3)\log(n+1)}{(n+2)\log(n+2)} \right| \sim \frac{\log(n+1)}{\log(n+2)} = \frac{\log(n(1+1/n))}{\log(n(1+2/n))}$$

$$= \frac{\log n + \log(1+1/n)}{\log n + \log(1+2/n)} = \frac{1 + \frac{\log(1+1/n)}{\log n}}{1 + \frac{\log(1+2/n)}{\log n}} \to 1 \quad \text{per } n \to \infty$$

quindi il raggio di convergenza è R=1/1=1. Grazie al Teorema 2.1 sappiamo che la serie converge se |z-i|<1 mentre non converge se |z-i|>1. Studiamo ora la convergenza sul cerchio |z-i|=1. Se |z-i|=1 il modulo del termine ennesimo della serie data è

$$\left|\frac{(n+2)(z+i)^n}{\log(n+1)}\right| = \frac{(n+2)|(z+i)^n|}{\log(n+1)} = \frac{(n+2)|z+i|^n}{\log(n+1)} = \frac{(n+2)}{\log(n+1)} \to +\infty \neq 0 \text{ as } n \to \infty.$$

Quindi grazie alla Proposizione 1.1-(2.) la serie non converge se |z-i|=1, perciò l'insieme di convergenza è $B_1(-i)=\{z\in\mathbb{C}\ :\ |z+i|<1\}$.

b) Trovare l'insieme di convergenza della serie complessa $\sum_{n=0}^{\infty} \frac{(z-2i)^{2n}}{(-i)^{2n+1}e^{-n}(n^3+3)}.$

Ponendo $w = (z - 2i)^2$ ci riconduciamo alla serie di potenze di centro $w_0 = 0$:

$$\sum_{n=0}^{\infty} \frac{w^n}{(-i)^{2n+1}e^{-n}(n^3+3)} = \sum_{n=0}^{\infty} c_n w^n$$

dove $c_n = 1/((-i)^{2n+1}e^{-n}(n^3+3))$. Troviamone il raggio di convergenza:

$$\left| \frac{c_{n+1}}{c_n} \right| = \left| \frac{(-i)^{2n+1} e^{-n} (n^3 + 3)}{(-i)^{2n+3} e^{-n-1} ((n+1)^3 + 3)} \right| = \frac{|-i|^{2n+1} e^{-n} (n^3 + 3)}{|-i|^{2n+3} e^{-n-1} ((n+1)^3 + 3)}$$
$$= \frac{(n^3 + 3)}{e^{-1} ((n+1)^3 + 3)} \to e \quad \text{per } n \to \infty$$

quindi il raggio di convergenza è $R=1/e=e^{-1}$. Se $|w|=e^{-1}$ il modulo del termine ennesimo della serie data è

$$\left| \frac{w^n}{(-i)^{2n+1}e^{-n}(n^3+3)} \right| = \frac{|w|^n}{|(-i)^{2n+1}e^{-n}(n^3+3)|} = \frac{1}{(n^3+3)} \sim \frac{1}{n^3} \quad \text{per } n \to \infty.$$

Dal momento che $\sum_{n=1}^{\infty} \frac{1}{n^3}$ è convergente, segue che $\sum_{n=0}^{\infty} \left| \frac{w^n}{(-i)^{2n+1}e^{-n}(n^3+3)} \right|$ è anche convergente, così per la Proposizione 1.1 la serie data è (assolutamente) convergente per $|w| = |(z-2i)^2| = e^{-1}$. Per trovare l'insieme di convergenza osserviamo che

$$|w| \le e^{-1} \iff |(z-2i)^2| < e^{-1} \iff |z-2i|^2 < e^{-1} \iff |z-2i| < e^{-1/2}$$

quindi l'insieme di convergenza $\overline{B}_{e^{-1/2}}(2i)=\{z\in\mathbb{C}\ :\ |z-2i|\leqslant e^{-1/2}\}.$

Proposizione 2.1 (Serie geometrica). L'insieme di convergenza della serie geometrica $\sum_{n=0}^{\infty} z^n$ è $B_1(0)$ e si ha che

$$\sum_{n=0}^{\infty} z^n = \frac{1}{1-z} \quad se \ |z| < 1.$$
 (2.2)

 \Diamond

Dimostrazione. Il raggio di convergenza è 1, perciò la serie geometrica converge se |z| < 1 mentre non converge se |z| > 1. Se |z| = 1 la serie non converge perché

$$\lim_{n \to \infty} |z^n| = \lim_{n \to \infty} |z|^n = \lim_{n \to \infty} 1^n = \lim_{n \to \infty} 1 = 1 \neq 0.$$

Quindi l'insieme di convergenza è $B_1(0)=\{z\in\mathbb{C}:|z|<1\}$. È possibile calcolare la somma della serie geometrica: se |z|<1 abbiamo

$$\sum_{n=0}^{\infty} z^n := \lim_{n \to \infty} 1 + z + \dots + z^n = \lim_{n \to \infty} \frac{1 - z^{n+1}}{1 - z} = \frac{1}{1 - z} \qquad (\text{se } |z| < 1)$$

poiché per |z| < 1 si ha $\lim_{n \to \infty} z^n = 0$, infatti $\lim_{n \to \infty} |z^n| = \lim_{n \to \infty} |z|^n = 0$.

Esempio 2.2. Trovare l'insieme di convergenza e la somma della serie complessa $\sum_{n=1}^{\infty} \left(\frac{-i}{9}\right)^n (z+2i)^{2n+1}$.

Si osservi che

$$\sum_{n=1}^{\infty} (-i/9)^n (z+2i)^{2n+1} = \sum_{n=1}^{\infty} [(-i/9)(z+2i)^2]^n (z+2i) = (z+2i) \sum_{n=1}^{\infty} w^n$$

dove $w = (-i/9)(z+2i)^2$. Ci siamo così ricondotti alla serie geometrica: la serie converge se e solo se |w| < 1 e la somma è

$$\sum_{n=1}^{\infty} (-i/9)^n (z+2i)^{2n+1} = (z+2i) \sum_{n=1}^{\infty} w^n = (z+2i) \left(\frac{1}{1-w} - 1\right) = (z+2i) \frac{w}{1-w}$$
$$= (z+2i) \frac{(-i/9)(z+2i)^2}{1 - (-i/9)(z+2i)^2} = \frac{-i(z+2i)^3}{9 + i(z+2i)^2}.$$

Dal momento che

$$|w| < 1 \iff |(-i/9)(z+2i)^2| < 1 \iff |z+2i|^2 < 9 \iff |z+2i| < 3,$$

l'insieme di convergenza è $B_3(-2i)$.

Teorema 2.2 (Le serie di potenze sono olomorfe). Se $S(z) = \sum_{n=0}^{\infty} c_n z^n$ ha raggio di convergenza R > 0 allora S(z) è olomorfa in $B_R(0)$ e

$$S'(z) = \sum_{n=1}^{\infty} nc_n z^{n-1} \qquad \forall z \in B_R(0).$$
 (2.3)

Inoltre la serie in (2.3) ha raggio di convergenza R.

Dimostrazione. Si dimostra come l'analogo risultato per le serie di potenze reali.

In altre parole è lecito derivare termine a termine le serie di potenze. Il teorema precedente permette di ricavare una formula per i coefficienti c_n . Se $S(z) = \sum_{n=0}^{\infty} c_n z^n$ ha raggio di convergenza R > 0 allora anche S'(z) è una serie di potenze e possiamo applicare ad essa il teorema ottenendo

$$S''(z) = \sum_{n=2}^{\infty} n(n-1)c_n z^{n-2} \quad \forall z \in B_R(0).$$

Procedendo per induzione troviamo

$$S^{(k)}(z) = \sum_{n=k}^{\infty} n(n-1)\cdots(n-k+1)c_n z^{n-k} \qquad \forall z \in B_R(0).$$
 (2.4)

per ogni $k \in \mathbb{N}$. Se prendiamo $z = 0 \ (= z_0)$ in (2.4) otteniamo

$$S^{(k)}(0) = k!c_k$$

e traslando da 0 a z_0

$$c_k = \frac{S^{(k)}(z_0)}{k!}$$
 (2.5)

3 Serie di Taylor

Il prossimo importante teorema afferma che ogni funzione olomorfa è localmente una serie di potenze.

Teorema 3.1 (Serie di Taylor di una funzione olomorfa). Sia $\Omega \subseteq \mathbb{C}$ aperto e sia $f:\Omega \longrightarrow \mathbb{C}$ olomorfa. Se $z_0 \in \Omega$ e $B_{r_0}(z_0) \subseteq \Omega$ allora

$$f(z) = \sum_{n=0}^{\infty} c_n (z - z_0)^n = \sum_{n=0}^{\infty} \frac{f^{(n)}(z_0)}{n!} (z - z_0)^n \qquad \forall z \in B_r(z_0),$$
(3.1)

in altri termini f è localmente una serie di potenze.

Dimostrazione. Non è restrittivo assumere che $z_0 = 0$. Consideriamo $z \in B_{r_0}(z_0)$ e prendiamo $r \in]0, r_0[$ tale che |z| < r. Grazie alla formula integrale di Cauchy abbiamo che

$$f(z) = \frac{1}{2\pi i} \int_{\partial B_{\tau}(0)} \frac{f(w)}{w - z} \,\mathrm{d}w,\tag{3.2}$$

Osserviamo che se $w \in \partial B_r(0)$ (cioè |w|=r) allora |z|<|w|, per cui |z/w|<1 e usando la serie geometrica si ha $\frac{1}{1-z/w}=\sum_{n=0}^{\infty}(\frac{z}{w})^n$. Perciò

$$f(z) = \frac{1}{2\pi i} \int_{\partial B_r(0)} \frac{f(w)}{w - z} dw = \frac{1}{2\pi i} \int_{\partial B_r(0)} \frac{f(w)}{w(1 - \frac{z}{w})} dw$$

$$= \frac{1}{2\pi i} \int_{\partial B_r(0)} \frac{f(w)}{w} \sum_{n=0}^{\infty} \frac{z^n}{w^n} dw = \sum_{n=0}^{\infty} \frac{1}{2\pi i} \int_{\partial B_r(0)} \frac{f(w)}{w} \frac{z^n}{w^n} dw$$

$$= \sum_{n=0}^{\infty} \left(\frac{1}{2\pi i} \int_{\partial B_r(0)} \frac{f(w)}{w^{n+1}} dw \right) z^n,$$

dove lo scambio tra il segno di integrale e di serie è lecito in virtù di un teorema che non citiamo esplicitamente (e che è essenzialmente dovuto alla convergenza uniforme della serie nel cerchio di raggio |z|). Allora la sviluppabilità in serie di potenze centrata in $z_0=0$ è dimostrata con $c_n=\frac{1}{2\pi i}\int_{\partial B_r(z_0)}\frac{f(w)}{w^{n+1}}\,\mathrm{d}w$ che risulta indipendente da r grazie al Teorema di Cauchy-Goursat. La formula (3.1) è quindi consequenza di (2.5) e della formula integrale di Cauchy per le derivate.

Sotto le ipotesi del precedente teorema dalla sua dimostrazione, o facendo appello alla formula integrale di Cauchy per le derivate, segue che

$$c_n = \frac{f^{(n)}(z_0)}{n!} = \frac{1}{2\pi i} \int_{\partial B_r(z_0)} \frac{f(w)}{(w - z_0)^{n+1}} dw \qquad \forall r \in]0, r_0[$$
 (3.3)

in particolare questo integrale è indipendente da $r \in [0, r_0]$.

Consideriamo la funzione $f(z) = e^z$. Si ha $f^{(n)}(z) = e^z$ per ogni n, quindi $f^{(n)}(0) = 1$. Essendo f olomorfa in tutto il piano \mathbb{C} , deduciamo dal Teorema 3.1 che

$$e^{z} = \sum_{n=0}^{\infty} \frac{z^{n}}{n!} \qquad \forall z \in \mathbb{C}.$$
 (3.4)

In modo simile, o ricavandole dalla serie precendente, si trovano le seguenti serie di Taylor:

$$\sin z = \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n+1}}{(2n+1)!} \qquad \forall z \in \mathbb{C}.$$
 (3.5)

$$\cos z = \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n}}{(2n)!} \qquad \forall z \in \mathbb{C}.$$
 (3.6)

$$\sinh z = \sum_{n=0}^{\infty} \frac{z^{2n+1}}{(2n+1)!} \qquad \forall z \in \mathbb{C}.$$
 (3.7)

$$\cosh z = \sum_{n=0}^{\infty} \frac{z^{2n}}{(2n)!} \qquad \forall z \in \mathbb{C}.$$
 (3.8)

Esempio 3.1.

a) Si trovi l'insieme di convergenza della serie complessa $\sum_{n=2}^{\infty} \frac{e^{-2niz}}{n^3 + (-i)^n}.$

Se si pone $w = e^{-2iz}$ ci si riduce ad una serie di potenze di centro $w_0 = 0$, infatti

$$\sum_{n=2}^{\infty} \frac{e^{-2niz}}{n^3 + (-i)^n} = \sum_{n=2}^{\infty} \frac{w^n}{n^3 + (-i)^n} = \sum_{n=2}^{\infty} c_n w^n$$

con $c_n = (n^3 + (-i)^n)^{-1}$. Troviamone il raggio di convergenza.

$$\left| \frac{c_{n+1}}{c_n} \right| = \frac{|n^3 + (-i)^n|}{|(n+1)^3 + (-i)^{n+1}|} \sim \frac{n^3}{(n+1)^3} \to 1 \quad \text{per } n \to \infty,$$

infatti $(-i)^n = o(n^3)$ per $n \to \infty$, perché $\lim_{n \to \infty} \left| \frac{(-i)^n}{n^3} \right| = \lim_{n \to \infty} 1/n^3 = 0$. Allora

il raggio di convergenza è R=1/1=1. Studiamo ora la convergenza sulla circonferenza |w|=1. Se |w|=1 il modulo del termine generale della serie data è

$$\left| \frac{w^n}{n^3 + (-i)^n} \right| = \frac{|w|^n}{|n^3 + (-i)^n|} = \frac{1}{|n^3 + (-i)^n|} \sim \frac{1}{n^3} \quad \text{as } n \to \infty.$$

Essendo $\sum_{n=1}^{\infty} \frac{1}{n^3}$ convergente, dalla Proposizione 1.1-(3) deduciamo che la serie data è (assolutamente) convergente per |w|=1. Perciò per il Teorema 2.1 abbiamo che l'insieme di convergenza in termini di w is $\{w: |w| \leq 1\}$. Traduciamo questa condizione in termini di $z=x+iy, \ x,y\in\mathbb{R}$:

$$|w| \leqslant 1 \quad \Longleftrightarrow \quad |e^{-2iz}| \leqslant 1 \quad \Longleftrightarrow \quad e^{\operatorname{Re}(-2iz)} \leqslant 1$$

$$\iff \quad e^{2y-2ix} \leqslant 1 \quad \Longleftrightarrow \quad e^{2y} \leqslant 1 \quad \Longleftrightarrow \quad y \leqslant 0,$$

quindi l'insieme di convergenza è il semipiano chiuso

$$\{z = x + iy : x, y \in \mathbb{R} : y \le 0\}.$$

(

Esempio 3.2. Supponiamo che f e g siano olomorfe in tutto \mathbb{C} e che f(z) = g(z) per ogni $z \in B_1(0)$. Proviamo che f(z) = g(z) per ogni $z \in \mathbb{C}$.

Dal momento che f e g sono olomorfe in tutto il piano complesso, per il Teorema 3.1 le loro serie di Taylor in $z_0 = 0$ hanno raggio di convergenza $R = +\infty^1$. Quindi

$$f(z)=\sum_{n=0}^{\infty}\frac{f^{(n)}(0)}{n!}z^n,\quad g(z)=\sum_{n=0}^{\infty}\frac{g^{(n)}(0)}{n!}z^n\qquad \forall z\in\mathbb{C}.$$

Ora f = g in $B_1(0)$, quindi $f^{(n)}(0) = g^{(n)}(0)$ per ogni $n \in \mathbb{N}$, per cui le due serie di Taylor della formula precedente coincidono, e ciò implica f = g.

Il precedente esercizio è anche una caso particolare di un importante teorema che si può dedurre dal Teorema di Taylor 3.1. Ne omettiamo la dimostrazione.

Teorema 3.2 (Principio d'identità per funzioni analitiche). Sia $\Omega \subseteq \mathbb{C}$ un dominio e siano f e g olomorfe in Ω . Supponiamo che $D \subseteq \Omega$ è un insieme contenente almeno un suo punto di accumulazione, e che f(z) = g(z) per ogni $z \in D$. Allora f(z) = g(z) per ogni $z \in \Omega$.

¹se $z \in \mathbb{C}$ è fissato arbitrariamente e se $r_0 > |z|$, allora $f(z) = \sum_{n \geqslant 0} \frac{f^{(n)}(0)}{n!} z^n$ che è indipendente da r_0 .

Dimostrazione. 🐿

Esempio 3.3. Sia $f: \mathbb{C} \longrightarrow \mathbb{C}$ olomorfa tale che $f(x) = x^2$ per ogni $x \in \mathbb{R} \subseteq \mathbb{C}$. Provare che $f(z) = z^2$ per ogni $z \in \mathbb{C}$:

La funzione $g(z)=z^2$ è olomorfa in $\mathbb C$ e coincide con f(x) per $x\in D=\mathbb R$. Siccome tutti i punti di $D=\mathbb R$ sono di accumulazione per $\mathbb R$, per il principio di identità $f(z)=g(z)=z^2$ per ogni $z\in\mathbb C$.

4 Serie di Laurent e residui

Nel prossimo teorema vediamo che una funzione olomorfa in una corona circolare di centro z_0 ammette una sorta di rappresentazione in serie di potenze attorno alla singolarità z_0 . Dobbiamo però ammettere potenze negative di $(z-z_0)$.

Teorema 4.1 (Serie di Laurent). Se $z_0 \in \mathbb{C}$, $0 \leqslant r_1 < r_2 \leqslant +\infty$, $e \ f \ è \ olomorfa$ nella "corona circolare" $\Omega = \{z \in \mathbb{C} : r_1 < |z - z_0| < r_2\}$, allora esistono $c_n \in \mathbb{C}$, $n \in \mathbb{Z}$, tali che

$$f(z) = \sum_{n=-\infty}^{\infty} c_n (z - z_0)^n := \sum_{n=1}^{\infty} \frac{c_{-n}}{(z - z_0)^n} + \sum_{n=0}^{\infty} c_n (z - z_0)^n \qquad \forall z \in \Omega, \quad (4.1)$$

 $e per ogni n \in \mathbb{Z} si ha$

$$c_n = \frac{1}{2\pi i} \int_{\partial B_r(z_0)} \frac{f(w)}{(w - z_0)^{n+1}} dw \qquad \forall r \in]r_1, r_2[.$$
 (4.2)

Inoltre questo sviluppo in serie "doppia" è unico ed è detto serie di Laurent di f centrata in z_0 in Ω .

Dimostrazione. Non è restrittivo supporre $z_0=0$. Sia $z\in\Omega$ e siano ρ_1,ρ_2 tali che $r_1<\rho_1<|z|<\rho_2< r_2$. Allora utilizzando la formula integrale di Cauchy e procedendo come nella dimostrazione della serie di Taylor si trova

$$f(z) = \frac{1}{2\pi i} \int_{\partial B_{\rho_2}(0)} \frac{f(w)}{w - z} \, dw - \frac{1}{2\pi i} \int_{\partial B_{\rho_1}(0)} \frac{f(w)}{w - z} \, dw$$

$$= \frac{1}{2\pi i} \int_{\partial B_{\rho_2}(0)} \frac{f(w)}{w(1 - z/w)} \, dw + \frac{1}{2\pi i} \int_{\partial B_{\rho_1}(0)} \frac{f(w)}{z(1 - w/z)} \, dw$$

$$= \frac{1}{2\pi i} \int_{\partial B_{\rho_2}(0)} \frac{f(w)}{w} \sum_{n=0}^{\infty} \left(\frac{z}{w}\right)^n \, dw + \frac{1}{2\pi i} \int_{\partial B_{\rho_2}(0)} \frac{f(w)}{z} \sum_{n=0}^{\infty} \left(\frac{w}{z}\right)^n \, dw$$

$$= \sum_{n=0}^{\infty} \left(\frac{1}{2\pi i} \int_{\partial B_{\rho_2}(0)} \frac{f(w)}{w^{n+1}} \, dw\right) z^n + \sum_{n=1}^{\infty} \left(\frac{1}{2\pi i} \int_{\partial B_{\rho_2}(0)} f(w) w^{n+1}\right) \frac{1}{z^n}$$

$$= \sum_{n=0}^{\infty} \left(\frac{1}{2\pi i} \int_{\partial B_{r}(0)} \frac{f(w)}{w^{n+1}} \, dw\right) z^n + \sum_{n=1}^{\infty} \left(\frac{1}{2\pi i} \int_{\partial B_{r}(0)} f(w) w^{n+1}\right) \frac{1}{z^n}$$

dove l'ultima uguaglianza è vera per ogni $r \in [r_1, r_2]$ grazie al al Teorema di Cauchy-Goursat. Quindi è provata l'esistenza di uno sviluppo di Laurent di f in Ω centrato in $z_0 = 0$. Supponiamo ora viceversa che f ammetta uno sviluppo in serie doppia in Ω centrato in z_0 con coefficienti d_n . Allora se $r \in [r_1, r_2]$ si ha

$$\frac{1}{2\pi i} \int_{\partial B_r(z_0)} \frac{f(w)}{(w - z_0)^{n+1}} dw = \frac{1}{2\pi i} \int_{\partial B_r(z_0)} \frac{\sum_{k=-\infty}^{\infty} d_k (w - z_0)^n}{(w - z_0)^{k+1}} dw
= \sum_{k=-\infty}^{\infty} \frac{1}{2\pi i} \int_{\partial B_r(z_0)} \frac{d_k (w - z_0)^k}{(w - z_0)^{n+1}} dw = \sum_{k=-\infty}^{\infty} \frac{d_k}{2\pi i} \int_{\partial B_r(z_0)} \frac{dw}{(w - z_0)^{n-k+1}} = d_n,$$

e ciò prova in particolare l'unicità dello sviluppo in serie di Laurent.

Esempio 4.1. Trovare tutte le serie di Laurent in $z_0 = 0$ della funzione $f(z) = \frac{1}{iz^2 - z^5}$

Essendo $iz^2-z^5=z^2(i-z^3)$ si ha che $z_0=0$ è una singolarità e le altre tre singolarità stanno sulla circonferenza di raggio 1 e centro l'origine. Così per il Teorema di Laurent esistono due serie di Laurent di centro $z_0=0$: la prima nell'insieme $\{z\in\mathbb{C}:0<|z-0|<1\}\ (r_1=0,\ r_2=1);$ la seconda in $\{z \in \mathbb{C} : 1 < |z|\}$ $(r_1 = 1, r_2 = +\infty)$. Cominciamo dal primo sviluppo.

1. Serie di Laurent di centro $z_0 = 0$ in $\{z \in \mathbb{C} : 0 < |z| < 1\}$: Possiamo scrivere

$$\frac{1}{iz^{2}-z^{5}} = \frac{1}{iz^{2}\left(1-\frac{z^{3}}{i}\right)} = \frac{1}{iz^{2}} \sum_{n=0}^{\infty} \left(\frac{z^{3}}{i}\right)^{n} \quad \text{(infatti } \left|\frac{z^{3}}{i}\right| < 1 \Leftrightarrow |z|^{3} < 1 \Leftrightarrow |z| < 1),$$

$$= \sum_{n=0}^{\infty} \frac{z^{3n-2}}{i^{n+1}} = \frac{1}{iz^{2}} + (-z + \cdots) = \frac{1}{iz^{2}} + \sum_{n=1}^{\infty} \frac{z^{3n-2}}{i^{n+1}} \tag{4.3}$$

2. Serie di Laurent di centro $z_0 = 0$ in $\{z \in \mathbb{C} : |z| > 1\}$:

$$\frac{1}{iz^2 - z^5} = \frac{-1}{z^5 \left(1 - \frac{i}{z^3}\right)} = \frac{-1}{z^5} \sum_{n=0}^{\infty} \left(\frac{i}{z^3}\right)^n \quad \text{(infatti } \left|\frac{i}{z^3}\right| < 1 \Leftrightarrow \frac{1}{|z|^3} < 1 \Leftrightarrow |z| > 1),$$

$$= -\sum_{n=0}^{\infty} \frac{i^n}{z^{3n+5}} = \left(-\frac{1}{z^5} - \frac{i}{z^8} - \cdots\right) + 0 = -\sum_{n=0}^{\infty} \frac{i^n}{z^{3n+5}}.$$

Definizione 4.1. Siano dati $D \subseteq \mathbb{C}$ e $f: D \longrightarrow \mathbb{C}$. Si dice che $z_0 \notin D$ è una singolarità isolata per f se esiste $r_0 > 0$ tale che f è olomorfa in $B_{r_0}(z_0) \setminus \{z_0\}$.

Figura 1: z_0 singolarità isolata di f

Definizione 4.2. Sia z_0 una singolarità isolata di una funzione f e sia $r_0 > 0$ tale che in $B_{r_0}(z_0) \setminus \{z_0\}$ la serie di Laurent di f sia

$$\sum_{n=1}^{\infty} \frac{c_{-n}}{(z-z_0)^n} + \sum_{n=0}^{\infty} c_n (z-z_0)^n \quad \text{se } 0 < |z-z_0| < r_0$$

(un tale r_0 esiste per definizione di singolarità isolata). Allora diamo le seguenti definizioni:

- (i) $\sum_{n=1}^{\infty} \frac{c_{-n}}{(z-z_0)^n}$ si dice parte principale di f in z_0 .
- (ii) Se la parte principale di f in z_0 è zero allora z_0 è chiamato singolarità eliminabile di f.
- (iii) Se esiste $m \ge 1$ tale che $c_{-m} \ne 0$ e $c_{-n} = 0$ per ogni n > m, cioè se

$$f(z) = \frac{c_{-m}}{(z - z_0)^m} + \dots + \sum_{n=0}^{\infty} c_n (z - z_0)^n \quad \text{con } c_{-m} \neq 0, \ m \geqslant 1,$$

allora z_0 si dice polo di ordine m per f. Se m=1 diciamo anche che z_0 è un polo semplice; se m=2 la singolarità z_0 si dice anche polo doppio.

(iv) Se la parte principale di f in z_0 ha infiniti termini diversi da zero, allora z_0 viene detto singolarità essenziale.

Definizione 4.3. Sia $D \subseteq \mathbb{C}$, $z_0 \in \mathbb{C}$ e sia $f: D \longrightarrow \mathbb{C}$ per cui esista $r_0 > 0$ tale che f è olomorfa in $B_{r_0}(z_0) \setminus \{z_0\}$. Sia allora

$$\sum_{n=1}^{\infty} \frac{c_{-n}}{(z-z_0)^n} + \sum_{n=0}^{\infty} c_n (z-z_0)^n \quad \text{se } 0 < |z-z_0| < r_0$$

lo sviluppo di Laurent di f in $B_{r_0}(z_0) \setminus \{z_0\}$. Si dice residuo di f in z_0 il numero

$$\operatorname{Res}_{f}(z_{0}) := c_{-1} = \frac{1}{2\pi i} \int_{\partial B_{r}(z_{0})} f(z) \, dz \qquad (r \in]0, r_{0}[). \tag{4.4}$$

Esempio 4.2. Trovare la serie di Laurent di $f(z)=\frac{5}{3z^3+z^4}$ di centro $z_0=0$ nell'insieme $\{z\in\mathbb{C}:\ 0<|z|<3\}$. Classificare la singolarità $z_0=0$ e calcolare il residuo di f in questo punto. Le singolarità di f sono $z_0=0$ e $z_1=-3$ quindi f è olomorfa in $\{z\in\mathbb{C}:\ 0<|z|<3\}$. Se 0<|z|<3 abbiamo

$$\frac{5}{3z^3 + z^4} = \frac{5}{3z^3 \left(1 + \frac{z}{3}\right)} = \frac{5}{3z^3} \sum_{n=0}^{\infty} \left(-\frac{z}{3}\right)^n \left(\inf \left(\frac{z}{3}\right) + \frac{z}{3}\right) < 1 \Leftrightarrow |z| < 3\right),$$

$$= 5 \sum_{n=0}^{\infty} (-1)^n \frac{z^{n-3}}{3^{n+1}} = 5 \left(\frac{1}{3z^3} - \frac{1}{3^2 z^2} + \frac{1}{3^3 z}\right) + 5 \left(-\frac{1}{3^4} + \frac{z}{3^5} - \cdots\right)$$

$$= \left(\frac{5}{3z^3} - \frac{5}{9z^2} + \frac{5}{27z}\right) + 5 \sum_{n=2}^{\infty} (-1)^n \frac{z^{n-3}}{3^{n+1}}.$$

Quindi $z_0 = 0$ è un polo di ordine 3 e $\operatorname{Res}_f(0) = 5/27$.

Esempio 4.3. Trovare la serie di Laurent di $f(z) = z^9 e^{2/z^5}$ di centro $z_0 = 0$ nell'insieme $\mathbb{C} \setminus \{0\}$. Classificare la singolarità $z_0 = 0$ e calcolare il residuo di f in questo punto. Poiché il raggio di convergenza della serie di Taylor di $e^w \in +\infty$, abbiamo

$$z^{9}e^{2/z^{5}} = z^{9} \sum_{n=0}^{\infty} \frac{1}{n!} \left(\frac{2}{z^{5}}\right)^{n} = \sum_{n=0}^{\infty} \frac{1}{n!} \frac{2^{n}}{z^{5n-9}} = \left(z^{9} + 2z^{4}\right) + \left(\frac{2}{z} + \frac{4}{3z^{6}} + \cdots\right)$$
$$= \left(\cdots + \frac{4}{3z^{6}} + \frac{2}{z}\right) + \left(2z^{4} + z^{9}\right) = \sum_{n=2}^{\infty} \frac{1}{n!} \frac{2^{n}}{z^{5n-9}} + \left(2z^{4} + z^{9}\right).$$

Quindi $z_0=0$ è una singolarità essenziale e $\mathrm{Res}_f(0)=2$

Esempio 4.4. Si trovino tutte le serie di Laurent di centro $z_0 = 0$ della funzione $f(z) = \frac{1}{z^{15} - z^{16}}$. Classificare la singolarità z_0 e calcolare $\operatorname{Res}_f(0)$.

Poiché $z^{15}-z^{16}=z^{15}(1-z)$ si ha che $z_0=0$ e $z_1=1$ sono le uniche singolarità. Quindi per il Teorema di Laurent troviamo due serie di Laurent di centro $z_0=0$: la prima nell'insieme $\{z\in\mathbb{C}:0<|z|<1\}$ $(r_1=0,\ r_2=1)$; la seconda in $\{z\in\mathbb{C}:|z|>1\}$ $(r_1=1,\ r_2=+\infty)$: 1. Serie di Laurent di centro $z_0=0$ in $\{z\in\mathbb{C}:0<|z|<1\}$:

$$\begin{split} \frac{1}{z^{15}-z^{16}} &= \frac{1}{z^{15}\left(1-z\right)} = \frac{1}{z^{15}} \sum_{n=0}^{\infty} z^n \quad \text{(infatti } |z| < 1 \text{)}, \\ &= \sum_{n=0}^{\infty} z^{n-15} = \left(\frac{1}{z^{15}} + \dots + \frac{1}{z}\right) + (1+z+\dots) = \left(\frac{1}{z^{15}} + \dots + \frac{1}{z}\right) + \sum_{n=0}^{\infty} z^n. \end{split}$$

2. Serie di Laurent di centro $z_0 = 0$ in $\{z \in \mathbb{C} : |z| > 1\}$:

Si ha

$$\frac{1}{z^{15} - z^{16}} = \frac{-1}{z^{16} \left(1 - \frac{1}{z}\right)} = \frac{-1}{z^{16}} \sum_{n=0}^{\infty} \left(\frac{1}{z}\right)^n \quad \text{(infatti } \left|\frac{1}{z}\right| < 1 \Leftrightarrow \frac{1}{|z|} < 1 \Leftrightarrow |z| > 1),$$

$$= -\sum_{n=0}^{\infty} \frac{1}{z^{n+16}} = \left(-\frac{1}{z^{16}} - \frac{1}{z^{17}} - \cdots\right) + 0 = \sum_{n=0}^{\infty} \frac{-1}{z^{n+16}}.$$

Classificazione della singolarità $z_0 = 0$:

Se vogliamo classificare la singolarità $z_0=0$ e calcolare il residuo di f in questo punto, per definizione, dobbiamo considerare la serie di Laurent $\{z\in\mathbb{C}:0<|z|<1\}$. Per cui $z_0=0$ è un polo di ordine 15 e $\mathrm{Res}_f(0)=1$.

Vediamo ora alcune utili regole di calcolo dei residui.

Proposizione 4.1.

In questo caso

$$\operatorname{Res}_f(z_0) = g(z_0) = \lim_{z \to z_0} (z - z_0) f(z).$$

Dimostrazione. (ma è un caso particolare della prossima Proposizione) Ricordiamo che z_0 è un polo semplice di f, quindi esistono r > 0 e $c_n \in \mathbb{C}$, $n \ge -1$, tali che per ogni $z \in B_r(z_0) \setminus \{z_0\}$ si ha

$$f(z) = \frac{c_{-1}}{z - z_0} + \sum_{n=0}^{\infty} c_n (z - z_0)^n, \qquad c_{-1} \neq 0.$$

Equivalentemente, scrivendo il fattore comune $1/(z-z_0)$, se e solo se

$$f(z) = \frac{1}{z - z_0} \left[c_{-1} + \sum_{n=0}^{\infty} c_n (z - z_0)^{n+1} \right] = \frac{g(z)}{z - z_0}, \qquad c_{-1} \neq 0,$$

dove $g(z) = c_{-1} + \sum_{n=0}^{\infty} c_n (z - z_0)^{n+1}$ è una funzione olomorfa in $B_r(z_0)$ e $g(z_0) = c_{-1} \neq 0$.

Proposizione 4.2.

In tal caso

$$\operatorname{Res}_{f}(z_{0}) = \frac{g^{(m-1)}(z_{0})}{(m-1)!} = \lim_{z \to z_{0}} \frac{1}{(m-1)!} \left[\frac{\mathrm{d}^{m-1}}{\mathrm{d}z^{m-1}} (z - z_{0})^{m} f(z) \right]_{z=z_{0}}.$$

Dimostrazione. Il numero z_0 è un polo di ordine $m \ge 1$ se e solo se

$$f(z) = \frac{c_{-m}}{(z - z_0)^m} + \dots + \sum_{n=0}^{\infty} c_n (z - z_0)^n, \qquad c_{-m} \neq 0,$$

per ogni $z\in B_r(z_0)\setminus\{z_0\},$ per qualche r>0e $c_n\in\mathbb{C}.$ Equivalentemente

$$f(z) = \frac{1}{(z - z_0)^m} \sum_{n=0}^{\infty} c_{-m+n} (z - z_0)^n = \frac{g(z)}{(z - z_0)^m}, \qquad c_{-m} \neq 0,$$

dove

$$g(z) = \sum_{n=0}^{\infty} c_{-m+n}(z-z_0)^n = c_{-m} + c_{-m+1}(z-z_0) + \dots + c_{-1}(z-z_0)^{m-1} + \dots$$

è una funzione olomorfa in $B_r(z_0)$ e $g(z_0)=c_{-m}\neq 0$. Quindi il residuo di f è

$$\operatorname{Res}_{f}(z_{0}) = c_{-1} = \frac{g^{(m-1)}(z_{0})}{(m-1)!} = \lim_{z \to z_{0}} \frac{1}{(m-1)!} \frac{d^{m-1}}{dz^{m-1}} \left[(z - z_{0})^{m} f(z) \right].$$

È utile anche la seguente regola per poli semplici:

Proposizione 4.3.

$$\begin{cases} f(z) = \frac{n(z)}{d(z)}, \ n(z_0) \neq 0 \\ n, d \ olomorfe \ in \ un \ intorno \ di \ z_0 \\ d(z_0) = 0, \ d'(z_0) \neq 0 \end{cases} \implies z_0 \ \grave{e} \ un \ polo \ semplice \ per \ f$$

In questo caso

$$\operatorname{Res}_f(z_0) = \frac{n(z_0)}{d'(z_0)}$$

Dimostrazione. Dalle ipotesi segue che esiste una funzione h, olomorfa in un intorno di z_0 , tale che $h(z_0) \neq 0$ e $d(z) = (z-z_0)h(z)$; perciò

$$\frac{n(z)}{d(z)} = \frac{n(z)}{(z - z_0)h(z)}$$

e z_0 è un polo semplice e

$$\operatorname{Res}_{f}(z_{0}) = \lim_{z \to z_{0}} (z - z_{0}) f(z) = \lim_{z \to z_{0}} n(z) \frac{(z - z_{0})}{d(z)} = \lim_{z \to z_{0}} n(z) \frac{(z - z_{0})}{d(z) - d(z_{0})} = \frac{n(z_{0})}{d'(z_{0})}.$$

Esempio 4.5.

a) Calcoliamo il residuo di $f(z) = \frac{\cosh z}{3 + 2iz}$ in $z_0 = i3/2$, che è l'unica singolaità di f. Si ha

$$f(z) = \frac{\cosh z}{2i(z - i3/2)} = \frac{g(z)}{z - i3/2},$$

dove $g(z) = (\cosh z)/2i$ è olomorfa e

$$g(i3/2) = \frac{\cosh(i3/2)}{2i} = \frac{e^{i3/2} + e^{-i3/2}}{4i} = \frac{\cos(3/2)}{2i} \neq 0.$$

Allora per la Proposizione 4.1 $z_0 = i3/2$ è un polo semplice

$$\operatorname{Res}_f(i3/2) = g(z_0) = \frac{\cos(3/2)}{2i}.$$

b) Sia $f(z) = \frac{e^{iz}}{z(z^2+1)^2}$. Classifichiamo la singolarità $z_0 = i$ e calcoliamo il residuo di f in questo punto. Possiamo scrivere

$$f(z) = \frac{e^{iz}}{z(z-i)^2(z+i)^2} = \frac{g(z)}{(z-i)^2},$$

dove $g(z) := \frac{e^{iz}}{z(z+i)^2}$ è olomorfa in un intorno di $z_0 = i$ e $g(i) = \frac{e^{-1}}{i(2i)^2} \neq 0$. Quindi possiamo applicare la Proposizione 4.2 e dedurre che $z_0 = i$ è un polo doppio e

$$\operatorname{Res}_f(i) = \frac{1}{1!}g'(i) = \left. \left(\frac{ie^{iz}z(z+i)^2 - e^{iz}[(z+i)^2 + 2z(z+i)]}{z^2(z+i)^4} \right) \right|_{z=i} = -\frac{3}{4}e^{-1}.$$

c) Calcoliamo i residui di $f(z)=\frac{z-1}{z^2+3z}$ in tutte le singolarità $z_0=0$ e $z_1=-3$. È chiaro che z_0 e z_1 sono poli semplici, perciò si può usare la Proposizione 4.1. Comunque in questa situazione la regola fornita dalla Proposizione 4.3 è conveniente, e se denotiamo con D l'operazione di derivazione, abbiamo

$$\frac{z-1}{D(z^2+3z)} = \frac{z-1}{2z+3},$$

per cui

Res_f(0) =
$$\left(\frac{z-1}{2z+3}\right)\Big|_{z=0} = -\frac{1}{3}$$
,
Res_f(-3) = $\left(\frac{z-1}{2z+3}\right)\Big|_{z=-3} = \frac{4}{3}$.

 \Diamond

Vediamo alcuni esempi dove le regole precedenti non si possono applicare.

Esempio 4.6.

a) Supponiamo che $z_0 \in \mathbb{C}$ e che

$$f(z) = \frac{g(z)}{z - z_0}$$
 dove $g(z_0) = 0$, g olomorfa in un intorno di z_0 .

Allora per il Teorema di Taylor si ha che $g(z) = \sum_{n=0}^{\infty} c_n (z - z_0)^n$ in un certo intorno $B_r(z_0)$. Inoltre per ipotesi $c_0 = g(z_0) = 0$, per cui troviamo

$$f(z) = \frac{g(z)}{z - z_0} = \frac{1}{z - z_0} \sum_{n=1}^{\infty} c_n (z - z_0)^n = \sum_{n=1}^{\infty} c_n (z - z_0)^{n-1}$$
$$= c_0 (z - z_0)^{-1} + c_1 + \cdots$$
$$= c_1 + c_2 (z - z_0) + \cdots \qquad \forall z \in B_r(z_0) \setminus \{z_0\},$$

quindi z_0 è una singolarità eliminabile e $\operatorname{Res}_f(0) = 0$.

b) Utilizzando il precedente punto a) troviamo che $z_0 = 0$ è una singolarità eliminabile di $f(z) = \frac{\sin z}{z}$, quindi $\mathrm{Res}_f(0) = 0$.

c) L'unica singolarità di $f(z)=\frac{\sin z}{z^2}$ è $z_0=0$ e $\sin(0)=0$, quindi non è possibile applicare nessuna delle regole precedente. Poiché

$$\frac{\sin z}{z^2} = \frac{1}{z^2} \left(z - \frac{z^3}{3!} + \cdots \right) = \frac{1}{z} - \frac{z}{3!} + \cdots,$$

il polo è semplice e

$$\text{Res}_{f}(0) = 1.$$

d) Consideriamo $f(z)=\frac{\cos z}{(z^2-\pi^2/4)^2}$ e classifichiamo la singolarità $z_0=\pi/2$. Si ha

$$f(z) = \frac{\cos z}{(z - \pi/2)^2 (z + \pi/2)^2} = \frac{g(z)}{(z - \pi/2)^2}$$

dove $g(z) = \frac{\cos z}{(z + \pi/2)^2}$. Visto che $g(\pi/2) = 0$ non possiamo applicare nessuna regola nota, per cui scriviamo la serie di Taylor di cos z in $z_0 = \pi/2$. Troviamo

$$\cos(\pi/2) = 0,$$

$$[D(\cos z)]|_{z=\pi/2} = [-\sin z]|_{z=\pi/2} = -1,$$

fermiamoci qui e osserviamo che questi due termini sono sufficienti per classificare la singolarità, infatti possiamo scrivere

$$f(z) = \frac{\cos z}{(z - \pi/2)^2 (z + \pi/2)^2} = \frac{0 - 1(z - \pi/2) + c_2(z - \pi/2)^2 + \cdots}{(z - \pi/2)^2 (z + \pi/2)^2}$$
$$= \frac{-1 + c_2(z - \pi/2) + \cdots}{(z - \pi/2)(z + \pi/2)^2} = \frac{\widetilde{g}(z)}{(z - \pi/2)},$$

dove

$$\widetilde{g}(z)=\frac{-1+c_2(z-\pi/2)+\cdots}{(z+\pi/2)^2} \text{ è olomorfa intorno a } \pi/2 \text{ e } \widetilde{g}(\pi/2)=\frac{-1}{\pi^2}\neq 0.$$

Ora possiamo quindi applicare la Proposizione 4.1 con \widetilde{g} in luogo di g e dedurre che $z_0=\pi/2$ è un polo semplice.

Concludiamo con il Teorema dei Residui, un utile strumento per il calcolo di integrali.

Teorema 4.2 (Teorema dei Residui). Sia $\Omega \subseteq \mathbb{C}$ un dominio regolare limitato. Se $z_1, \ldots, z_N \in \Omega$ e $f : \overline{\Omega} \setminus \{z_1, \ldots, z_N\} \longrightarrow \mathbb{C}$ è continua, f olomorfa in $\Omega \setminus \{z_1, \ldots, z_N\}$, allora

$$\int_{\partial\Omega} f(z) \,dz = 2\pi i \sum_{k=1}^{N} \operatorname{Res}_{f}(z_{k}). \tag{4.7}$$

Dimostrazione. Consideriamo N intorni a due a due disgiunti $B_{r_k}(z_0) \subseteq A, k = 1, \ldots, m$. Allora $A := \Omega \setminus \bigcup_{k=1}^N \overline{B}_{r_k}(z_k)$ è un dominio regolare limitato e f è continua su \overline{E} , olomorfa in E. Quindi per il Teorema di Cauchy-Goursat

$$0 = \int_{\partial A} f(z) \, \mathrm{d}z = \int_{\partial \Omega} f(z) \, \mathrm{d}z - \sum_{k=1}^{N} \int_{\partial B_{r_k}(z_k)} f(z) \, \mathrm{d}z = \int_{\partial \Omega} f(z) \, \mathrm{d}z - \sum_{k=1}^{N} 2\pi i \operatorname{Res}_f(z_k)$$

dove l'ultima uguaglianza è vera in virtù della formula (4.4).

Figura 2: Teorema dei Residui

Esempio 4.7.

a) Calcolare $I:=\int_{\gamma}\frac{e^z}{(z-3)(z^2-2z+2)}\,\mathrm{d}z$ dove γ è la curva di Jordan orientata in senso antiorario il cui sostegno è $E=\{z=x+iy: x,y\in\mathbb{R},\; (x^2/4)+(y^2/9)=1\}$. Il sostegno E è un'ellisse di centro l'origine e semiassi di lunghezza 2 e 3. La funzione integranda

$$f(z) = \frac{e^z}{(z-3)(z^2-2z+2)} = \frac{e^z}{(z-3)(z-1-i)(z-1+i)}$$

ha il polo z=3 che sta all'esterno E, gli altri poli $z=1\pm i$ sono semplici e stanno nell'interno. Allora per il Teorema dei Residui

$$I = 2\pi i \left[\operatorname{Res}_{f}(1+i) + \operatorname{Res}_{f}(1-i) \right]$$

$$= 2\pi i \left[\left(\frac{e^{z}}{(z-3)(z-1+i)} \right) \Big|_{z=1+i} + \left(\frac{e^{z}}{(z-3)(z-1-i)} \right) \Big|_{z=1-i} \right]$$

$$= 2\pi i \left[\frac{ee^{i}}{2i(i-2)} + \frac{ee^{-i}}{2i(i+2)} \right] = \pi e \left[\frac{e^{i}}{(i-2)} + \frac{e^{-i}}{(i+2)} \right].$$

b) Calcolare $I:=\int_C \frac{e^{\pi z}}{z(z-i)^2}\,\mathrm{d}z$ dove C è la frontiera dell'insieme $R=\{z=x+iy: x,y\in\mathbb{R},\ |y-x|<2,\ |x|<2\}.$ L'insieme R è un parallelogramma di vertici 2,2+4i,-2,-2-4i. La funzione integranda $\frac{\pi z}{z}$

E insieme K e un paranelogramma di vertici z, z + 4i, -2, -2 - 4i. La funzione integranda $f(z) = \frac{e^{\pi z}}{z(z-i)^2}$ ha due singolarità: il polo semplice $z_0 = 0$ e il polo doppio $z_1 = i$ che stanno entrambi nell'interno di C. Possiamo quindi utilizzare il Teorema dei Residui e ottenere

$$I = 2\pi i \left[\operatorname{Res}_{f}(0) + \operatorname{Res}_{f}(i) \right] = 2\pi i \left[\left. \left(\frac{e^{\pi z}}{(z - i)^{2}} \right) \right|_{z=0} + \frac{1}{1!} \left. \left(\frac{\mathrm{d}}{\mathrm{d}z} \frac{e^{\pi z}}{z} \right) \right|_{z=i} \right]$$

$$= 2\pi i \left[-1 + \left. \left(\frac{\pi e^{\pi z} z - e^{\pi z}}{z^{2}} \right) \right|_{z=i} \right] = 2\pi i (\pi i - 2).$$

 \Diamond

5 Decomposizione in fratti semplici

Vediamo in questo paragrafo una connessione tra la decomposizione in fratti semplici e la nozione di residuo. Siano p(z) e q(z) due polinomi senza radici comuni e sia f(z) := p(z)/q(z). Assumiamo anche che q(z) non è costante, cioè $q(z) = a_n z^n + \cdots + a_0$ con $n \in \mathbb{N}$, n > 0, $a_k \in \mathbb{C}$ e $a_n \neq 0$. Per il Teorema Fondamentale dell'Algebra q(z) ha r radici, $r \in \mathbb{N}$, $1 \leq r \leq n$, e ci sono $m_1, \ldots, m_r \in \mathbb{N}$, $m_k > 0$, tali che

$$q(z) = q_n(z - z_1)^{m_1} \cdots (z - z_r)^{m_r}.$$

Allora per ogni k = 1, ..., r, la serie di Laurent di f in z_k ha la forma

$$f(z) = \frac{c_{-m_k}^{(k)}}{(z - z_k)^{m_k}} + \dots + \frac{c_{-1}^{(k)}}{(z - z_k)} + \sum_{n=0}^{\infty} c_n^{(k)} (z - z_k)^n \qquad z \in B_{r_k}(z_k),$$
 (5.1)

con opportuni coefficienti $c_n^{(k)} \in \mathbb{C}$, $r_k > 0$ (la serie a secondo membro è in realtà una somma finita, perché f è razionale). Osserviamo che

Quindi se poniamo

$$g(z) := f(z) - \sum_{k=1}^{r} \left(\frac{c_{-m_{(k)}}^{k}}{(z - z_{k})^{m_{k}}} + \dots + \frac{c_{-1}^{(k)}}{(z - z_{k})} \right) = f(z) - \sum_{k=1}^{r} \sum_{n=1}^{m_{k}} \frac{c_{-n}^{(k)}}{(z - z_{k})^{n}}$$

abbiamo che g è una funzione razionale, perché è differenza di due funzioni razionali. Inoltre, scrivendo la serie di Laurent di g in ogni z_k , grazie a (5.1) si deduce che g non ha singolarità (o meglio sono eliminabili), per cui g(z) è un polinomio. Abbiamo allora provato la seguente

Proposizione 5.1. Siano p(z) e q(z) due polinomi senza radici comuni e siano z_1, \ldots, z_r le radici di q(z), con molteplicità m_1, \ldots, m_r . Allora esiste un polinomio g(z) tale che

dove g(z) è il polinomio che si ottiene dividendo p(z) per q(z), in particolare g(z) = 0 se il grado di p è strettamente minore del grado di q.

La decomposizione ha una forma semplice se i poli di p/q sono semplici. In questo caso

$$\frac{p(z)}{q(z)} = g(z) + \frac{\operatorname{Res}_f(z_1)}{(z - z_1)} + \dots + \frac{\operatorname{Res}_f(z_r)}{(z - z_r)}, \qquad z_1, \dots, z_k \text{ poli semplici.}$$

Per comprendere meglio quanto visto consideriamo alcuni esempi.

Esempio 5.1.

a) Troviamo la decomposizione in fratti semplici di $f(z)=\frac{z^4+z^3+1}{z^3+z}$. Abbiamo che g(z)=z+1, inoltre $z^3+z=z(z^2+1)=z(z-i)(z+i)$, quindi tutti i poli sono semplici. Usando le regole per il calcolo dei residui troviamo

$$\operatorname{Res}_f(0) = 1, \qquad \operatorname{Res}_f(i) = -\frac{2-i}{2}, \qquad \operatorname{Res}_f(-i) = -\frac{2+i}{2},$$

per cui

$$\frac{z^4 + z^3 + 1}{z^3 + z} = z + 1 + \frac{1}{z} - \frac{2 - i}{2(z - i)} - \frac{2 + i}{2(z + i)}$$

Essendo i coefficienti di f reali, possiamo anche trovare la decomposizione in fratti semplici reali (quella studiata in Analisi 1). Possiamo seguire la procedure nota dall'Analisi 1 oppure dedurre la decomposizione dalla formula precedente scrivendo

$$\begin{split} \frac{z^4 + z^3 + 1}{z^3 + z} &= z + 1 + \frac{1}{z} - \frac{2 - i}{2(z - i)} - \frac{2 + i}{2(z + i)} \\ &= z + 1 + \frac{1}{z} - \frac{(2 - i)(z + i) + (2 + i)(z - i)}{2(z^2 + 1)} \\ &= z + 1 + \frac{1}{z} - \frac{2z + 1}{(z^2 + 1)}. \end{split}$$

b) Troviamo la decomposizione in fratti semplici di $f(z)=\frac{2z^3+4z^2+3z-1}{z^3+z^2-z-1}$. Prima di tutto abbiamo g(z)=2. Per fattorizzare il denominatore scriviamo, per esempio, $z^3+z^2-z-1=z(z^2-1)+z^2-1=(z^2-1)(z+1)=(z-1)(z+1)^2$. Visto che il numeratore non si annulla in z=1 e in z=-1, abbiamo un polo semplice e un polo doppio

$$\operatorname{Res}_{f(z)}(1) = \left. \frac{2z^2 + 4z^2 + 3z - 1}{(z+1)^2} \right|_{z=1} = 2,$$

$$\operatorname{Res}_{f(z)}(-1) = \frac{\mathrm{d}}{\mathrm{d}z} \left(\frac{2z^3 + 4z^2 + 3z - 1}{z - 1} \right) \Big|_{z = -1}$$
$$= \frac{\mathrm{d}}{\mathrm{d}z} \left(\frac{(6z^2 + 8z + 3)(z + 1) - 2z^3 - 4z^2 - 3z + 1}{(z + 1)^2} \right) \Big|_{z = -1} = 0,$$

e, poiché z=-1 è un polo semplice di (z+1)f(z)

$$\operatorname{Res}_{(z+1)f(z)}(-1) = \left. \frac{2z^2 + 4z^2 + 3z - 1}{z+1} \right|_{z=-1} = 1.$$

Perciò

$$\frac{2z^3+4z^2+3z-1}{z^3+z^2-z-1}=2+\frac{2}{z-1}+\frac{1}{(z+1)^2}.$$

 \Diamond

6 Esercizi

Esercizi (tratti dalle dispense di Analisi Complessa (vecchio ordinamento)).

1. Trovare l'insieme di convergenza delle seguenti serie complesse:

a)
$$\sum_{n=0}^{\infty} \frac{z^n}{n!}$$

b)
$$\sum_{n=1}^{\infty} \frac{z^n}{n^2}$$

c)
$$\sum_{n=0}^{\infty} n! z^n$$

2. Verificare che:

a)
$$\frac{1}{4z-z^2} = \sum_{n=0}^{\infty} \frac{z^{n-1}}{4^{n+1}}$$
 in $\{0 < |z| < 4\}$

b)
$$\frac{\sin z^2}{z^4} = \frac{1}{z^2} - \frac{z^2}{3!} + \frac{z^6}{5!} - \frac{z^{10}}{7!} + \cdots$$
 se $z \neq 0$

3. Trovare le serie di Taylor delle funzioni:

a)
$$f(z) = z^3 - 3z^2 + 4z - 2$$
 at $z_0 = 2$

b)
$$f(z) = z e^{2z}$$
 at $z_0 = -1$

c)
$$f(z) = (z^2 + 1)\cos 3z^3$$
 at $z_0 = 0$

4. Trovare le serie di Laurent in $z_0=0$ delle funzioni:

a)
$$f(z) = \frac{z+1}{z-1}$$
 in $\{|z| < 1\}$ and in $\{|z| > 1\}$

b)
$$f(z) = \frac{\cos 2z^2}{z^5}$$
 in $\{|z| > 0\}$

c)
$$f(z) = \frac{6iz^2}{z^2 + 9}$$
 in $\{|z| < 3\}$ and in $\{|z| > 3\}$

d)
$$f(z) = \frac{2}{(z-1)(z-3)}$$
 in $\{|z| < 1\}$ e in $\{1 < |z| < 3\}$

- 5. Verificare che $z_0=0$ è una singolarità essenziale della funzione $f(z)=\cosh(1/z)$.
- 6. Classificare tutte le singolarità di

$$f(z) = \frac{\cos z \cosh z}{z^3 \left(z^2 - \frac{\pi^2}{4}\right)^2 \left(z^2 + \frac{\pi^2}{4}\right)}$$

(suggerimento: ragionare come nell'Esempio 4.6-d)).

- 7. Trovare le singolarità a calcolare i residui delle funzioni
 - a) $f(z) = \frac{z+1}{z^2 2z}$
 - b) $f(z) = \frac{1 e^{2z}}{z^4}$
 - c) $f(z) = z \cos \frac{1}{z}$
 - $d) \quad f(z) = \frac{1}{3 + 2iz}$
- 8. Calcolare i seguenti integrali curvilinei:

a)
$$\int_C \frac{e^{-z}}{(z-1)^2} dz$$
 where $C = \{|z| = 2\}$

b)
$$\int_C e^{1/z^2} dz$$
 where $C = \{|z| = 1\}$

c)
$$\int_C \frac{5z-2}{z(z-1)} dz \text{ where } C = \{|z| = 3\}$$

d)
$$\int_C \frac{3z^3 + 2}{(z-1)(z^2+9)} dz$$
 where $C = \{|z-2| = 2\}$

e)
$$\int_C \frac{3z^3 + 2}{(z-1)(z^2+9)} dz$$
 where $C = \{|z| = 4\}$

Risposte

- 1. a) C
 - b) $\{|z| \le 1\}$
 - c) $\{0\}$
- 2. Usare la serie geometrica in a) e lo sviluppo di Taylor di $\sin z$ in b)

3. a)
$$f(z) = 2 + 4(z-2) + 3(z-2)^2 + (z-2)^3$$

b)
$$f(z) = -e^{-2} + \frac{e^{-2}}{2} \sum_{n=1}^{\infty} \frac{n-2}{n!} 2^n (z+1)^n$$

c)
$$f(z) = 1 + z^2 - \frac{9}{2}z^6 - \frac{9}{2}z^8 + \frac{81}{4!}z^{12} + \frac{81}{4!}z^{14} - \cdots$$

4. a)
$$f(z) = -1 - 2\sum_{n=1}^{\infty} z^n$$
 in $\{|z| < 1\}$;
 $f(z) = 1 + 2\sum_{n=0}^{\infty} \frac{1}{z^{n+1}}$ in $\{|z| > 1\}$
b) $f(z) = \sum_{n=0}^{\infty} (-1)^n \frac{2^{2n} z^{4n-5}}{(2n)!}$
c) $f(z) = 6i \sum_{n=0}^{\infty} \frac{(-1)^n z^{2n+2}}{9^{n+1}}$ in $\{|z| < 3\}$;
 $f(z) = 6i \sum_{n=0}^{\infty} \frac{(-1)^n 9^n}{z^{2n}}$ in $\{|z| > 3\}$
d) $f(z) = \sum_{n=0}^{\infty} \frac{3^{n+1} - 1}{3^{n+1}} z^n$ in $\{|z| < 1\}$;
 $f(z) = -\sum_{n=0}^{\infty} \frac{z^n}{3^{n+1}} - \sum_{n=0}^{\infty} \frac{1}{z^{n+1}}$ se $1 < |z| < 3$

- 5. Si tratta di una verifica diretta.
- 6. z=0 è un polo di ordine 3 ; $z=\pm\frac{\pi}{2}$ sono poli semplici; $z=\pm\frac{\pi}{2}i$ sono sigolarità eliminabili.

7. a)
$$\operatorname{Res}_f(0) = -\frac{1}{2}$$
; $\operatorname{Res}_f(2) = \frac{3}{2}$

b)
$$\operatorname{Res}_f(0) = -\frac{4}{3}$$

c)
$$\operatorname{Res}_f(0) = -\frac{1}{2};$$

d)
$$\operatorname{Res}_f\left(\frac{3}{2}i\right) = -\frac{i}{2}$$

8. a)
$$-\frac{2\pi i}{e}$$

- b) 0
- c) $10\pi i$
- d) πi
- e) $6\pi i$

7 Appendice

Prima di enunciare il prossimo teorema introduciamo la seguente terminologia: un numero $w_0 \in \mathbb{C}$ si dice zero di molteplicità (o ordine) $n_0 \in \mathbb{N} \setminus \{0\}$ per una funzione f se esiste un intorno $B_r(w_0)$ ed una successione $c_{n_0}, c_{n_0+1}, \ldots \in \mathbb{C}$ tali che

$$f(z) = \sum_{n=n_0}^{\infty} c(z - w_0)^n = c_{n_0}(z - w_0)^{n_0} + c_{n_0+1}(z - w_0)^{n_0+1} + \cdots \quad \forall z \in B_r(w_0)$$
with $c_{n_0} \neq 0$.

Ciò è equivalente a dire che esiste una funzione h(z) olomorfa in $B_r(w_0)$ tale che

$$f(z) = (z - w_0)^{n_0} h(z)$$
 $\forall z \in B_r(w_0), h(w_0) \neq 0.$

Questa terminologia è coerente con la nota nozione di molteplicità di una radice di un polinomio. A volte è pure convenienete usare il termine "molteplicità" per denotare l'ordine di un polo, cioè se z_0 è un polo di ordine $m \in \mathbb{N} \setminus \{0\}$ per f, diciamo allora che m è la molteplicità del polo z_0 per f.

Teorema 7.1 (Principio dell'argomento). Sia $\Omega \subseteq \mathbb{C}$ aperto e sia f una funzione olomorfa in Ω eccetto un numero finito di punti. Sia γ una curva di Jordan in Ω orientata in senso antiorario e supponiamo che

- (a) non esistono né zeri né poli di f sul sostegno di γ ;
- (b) esistono esattamente N zeri w_1, \ldots, w_N di f nell'interno di γ e w_k è uno zero di molteplicità n_k per f, $k = 1, \ldots, N$;
- (c) esistono esattamente M singolarità z_1, \ldots, z_M di f nell'interno di γ e z_k è un polo di molteplicità (ordine) m_k per f, $k = 1, \ldots, M$.

Allora

$$\int_{\gamma} \frac{f'(z)}{f(z)} dz = 2\pi i \left(\sum_{k=1}^{N} n_k - \sum_{k=1}^{M} m_k \right),$$

in altri termini

$$\int_{\gamma} \frac{f'(z)}{f(z)} dz = 2\pi i \left(\underbrace{\begin{bmatrix} \text{numero di zeri} \\ \text{di } f \text{ all'interno di } \gamma \end{bmatrix}}_{\text{contati con moltenlicità}} - \underbrace{\begin{bmatrix} \text{numero di poli} \\ \text{di } f \text{ all'interno di } \gamma \end{bmatrix}}_{\text{contati con moltenlicità}} \right).$$

Dimostrazione. Osserviamo che l'insieme delle singolarità f'/f nell'interno di γ è $\{w_1, \ldots, w_N, z_1, \ldots, z_M\}$. Per ogni zero w_k di f esiste un intorno di w_k ed una funzione h_k olomorfa in tale intorno dove $h_k(z) \neq 0$ e $f(z) = (z - w_k)^{n_k} h_k(z)$, per cui

$$\frac{f'(z)}{f(z)} = \frac{n_k(z - w_k)^{n_k - 1} h_k(z) + (z - w_k)^{n_k} h'_k(z)}{(z - w_k)^{n_k} h_k(z)}$$
$$= \frac{n_k}{(z - w_k)} + \frac{h'_k(z)}{h_k(z)},$$

quindi w_k è un polo semplice di f'/f e $\operatorname{Res}_{f'/f}(w_k) = n_k$. Per ogni singolarità z_k di f esiste un intorno di z_k ed una funzione g_k olomorfa in tale intorno dove $g_k(z) \neq 0$

 $7\ Appendice$

e
$$f(z) = (z - z_k)^{-m_k} g_k(z)$$

$$\frac{f'(z)}{f(z)} = \frac{-m_k (z - z_k)^{-m_k - 1} g_k(z) + (z - z_k)^{-n_k} g'_k(z)}{(z - w_k)^{-m_k} g_k(z)}$$

$$= \frac{-m_k}{(z - w_k)} + \frac{g'_k(z)}{g_k(z)},$$

per cui w_k è un polo semplice di f'/f e $\operatorname{Res}_{f'/f}(z_k) = -m_k$. Allora per il teorema dei residui si ha che

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f'(z)}{f(z)} dz = \sum_{k=1}^{N} \operatorname{Res}_{f/f'}(w_k) + \sum_{k=1}^{M} \operatorname{Res}_{f/f'}(z_k) = \sum_{k=1}^{N} n_k - \sum_{k=1}^{M} m_k.$$

Modifiche dalla revisione 23 maggio 2016 alla revisione del 24 aprile 2020:

- 1. Teorema 2.2: è stato ampliato leggermente l'enunciato.
- 2. La parte conclusiva della dimostrazione del Teorema 3.1 è stata leggermente rivista. Si osservi che è possibile anche procedere senza la traslazione in z=0 con conti solo leggermente piu' complicati, ed è possibile dedurre dalla dimostrazione la formula (3.3), cioè la formula integrale di Cauchy per le derivate.
- 3. Nell'enunciato del Teorema di Laurent è stata corretta la variabilità della r tra $]r_1, r_2[$ nella formula per c_n .
- 4. Per i più curiosi è stata inserita una sintetica dimostrazione del Teorema di Laurent.
- 5. I concetto di residuo è stata isolato nella Definizione 4.3.
- 6. Esempio 4.3: è stato corretto il coefficiente di z^{-6} .
- 7. Nell'esempio 4.6-a) è stato corretto "essenziale" con "eliminabile".
- 8. È stato corretto il risultato dell'Esercizio 4a).
- 9. Si osservi che il Teorema dei Residui (come anche i Teoremi di Cauchy-Goursat e la Formula integrale di Cauchy) sono enunciati qui in una forma più generale di quanto fatto a lezione. Infatti se $\widetilde{\Omega}$ è aperto in \mathbb{C} , $z_1, \ldots, z_N \in \widetilde{\Omega}$, $f:\widetilde{\Omega} \longrightarrow \mathbb{C}$ è olomorfa e se A è un "dominio con bordo" (o "regolare") tale che $z_1, \ldots, z_N \in \overline{A} \subseteq \Omega$, allora le ipotesi del Teorema 4.2 sono sodddisfatte con A al posto di Ω . Nelle dispense si omette l'insieme "ambiente" $\widetilde{\Omega}$ dove la f è definita e ci si concentra sul solo insieme A il cui bordo è la curva di integrazione di f. Ciò è possibile in quanto il Teorema di Cauchy-Goursat del Capitolo 3 viene dedotto da una Formula di Green molto generale. L'approccio seguito a lezione è dovuto al fatto che si vuole utilizzare invece la formula di Green come svolta nei nostri corsi di Analisi 2. Dal punto di vista operativo non cambia nulla.