Potential Outcomes and Randomized Experiments

Ryan T. Moore

 $23~\mathrm{July}~2019$

Preliminaries

Statistical Refreshment

Assignment of Treatment

Randomization (Design-based) Inference

Preliminaries

Preliminaries

- ▶ PS1 for today
- ▶ PS2 for tomorrow
- ▶ .Rmd

Treatment Assignment Randomized Not Randomized Randomized Randomized Survey **Experiment** Sampling Jnit Selection (gold standard) (allows population inference) Not Randomized Controlled Observational **Experiment** Study (allows causal inference) (large potential for bias)

Figure 1: Ramsey & Schafer, The Statistical Sleuth

Review Questions

- 1. When can we observe both $Y_i(1)$ and $Y_i(0)$?
- 2. What is this fact called?
- 3. When does the empirical difference-in-means estimator exactly equal the true, underlying ATE?
- 4. What are the two parts of SUTVA?

Exercise in Potential Outcomes

Statistical Refreshment

Expectation

$$E(Y) = \sum_{i=1}^{n} [y_i \cdot p(y_i)]$$

Expectation

$$E(Y) = \sum_{i=1}^{n} [y_i \cdot p(y_i)]$$

Calculate E(Ideology).

Respondent	Ideology
1	3
2	-2
3	3
4	1
5	1

$$E(Y|X = x) = \sum_{i=1}^{n} [y_i \cdot p(y_i|X = x)]$$

$$E(Y|X = x) = \sum_{i=1}^{n} [y_i \cdot p(y_i|X = x)]$$

Calculate E(Ideology|Dem = 0).

Respondent	Ideology	Dem
1	3	0
2	-2	1
3	3	0
4	1	0
5	1	1

$$E(Y|X = x) = \sum_{i=1}^{n} [y_i \cdot p(y_i|X = x)]$$

Calculate E(Ideology|Dem = 0)

		Dem?	
		0	1
	3	2	0
Ideology	1	1	1
	-2	0	1

("wide" data, cells: counts of units with row/column scores)

$$E(Y|X = x) = \sum_{i=1}^{n} [y_i \cdot p(y_i|X = x)]$$

Calculate E(Ideology|Dem = 0)

		Dem?	
		0	1
	3	0.4	0.0
Ideology	1	0.2	0.2
	-2	0.0	0.2

("wide" data, cells: probability unit has row/column scores)

$$E(\hat{\theta}) = \theta$$

$$E(\hat{\theta}) = \theta$$

$$E\left[\widehat{Y_1 - Y_0}\right] = \overline{Y_1 - Y_0}$$

$$E(\hat{\theta}) = \theta$$

$$E\left[\widehat{\overline{Y_1 - Y_0}}\right] = \overline{Y_1 - Y_0}$$

$$E\left[\widehat{\beta_1}\right] = \beta_1$$

$$E\left[\widehat{\beta_1}\right] = \beta_1$$

What estimator used to estimate $\overline{Y_1 - Y_0}$?

What estimator used to estimate $\overline{Y_1 - Y_0}$?

The difference-in-means estimator.

What estimator used to estimate $\overline{Y_1 - Y_0}$?

The difference-in-means estimator.

$$\widehat{Y_1 - Y_0} = (Y_1 | T_i = 1) - (Y_0 | T_i = 0)$$

Probability

The Three Axioms

- 1. $P(A) \ge 0$
- **2**. $P(\Omega) = 1$
- 3. If events mutually exclusive (or, sets disjoint), then

$$P(A \text{ or } B) = P(A) + P(B)$$

Conditional Probability

For events A and B,

$$P(A \text{ and } B) = P(A)P(B|A)$$

= $P(B)P(A|B)$

Divide both sides by marginal probability P(B) yields

$$P(A|B) = \frac{P(A \text{ and } B)}{P(B)}$$

Statistical Independence

A and B are independent iff both

$$P(A|B) = P(A)$$

and

$$P(B|A) = P(B)$$

A and B can be independent conditional on C.

A and B can be independent conditional on C.

Many times, only independent given C.

A and B can be independent conditional on C.

Many times, only independent given C.

E.g., Y_1, Y_0 indep of T, given X.

A and B can be independent conditional on C.

Many times, only independent given C.

E.g., Y_1, Y_0 indep of T, given X.

$$P(A \text{ and } B|C) = P(A|C)P(B|C)$$

▶ Individual TE

$$\tau_i = Y_i(1) - Y_i(0)$$

► Average treatment effect

$$ATE = E(Y_1 - Y_0) = E(Y_1) - E(Y_0)$$

► Average treatment effect for the treated

$$ATT = E(Y_1|T=1) - E(Y_0|T=1)$$

The average treatment effect (ATE):

$$E(Y_1 - Y_0) = \frac{1}{2n} \sum_{i=1}^{2n} (Y_{i1} - Y_{i0})$$

$$= \frac{1}{2n} \sum_{i=1}^{2n} (Y_{i1}) - \frac{1}{2n} \sum_{i=1}^{2n} (Y_{i0})$$

$$= E(Y_1) - E(Y_0)$$

- ▶ If we know (Y_1, Y_0) indep of T
- ► Then,

$$E(Y_1) = E(Y_1|T=1)$$

 $E(Y_0) = E(Y_0|T=0)$

▶ Then, can substitute

$$ATE = E(Y_1) - E(Y_0)$$

= $E(Y_1|T=1) - E(Y_0|T=0)$

- ▶ If we know (Y_1, Y_0) indep of T
- ► Then,

$$E(Y_1) = E(Y_1|T=1)$$

 $E(Y_0) = E(Y_0|T=0)$

▶ Then, can substitute

$$ATE = E(Y_1) - E(Y_0)$$

= $E(Y_1|T=1) - E(Y_0|T=0)$

Observed diff in Tr and Co group means gives ATE!

Holland (1986): "prima facie effect":

$$E(Y_t|S=t) - E(Y_c|S=c)$$

Holland (1986): "prima facie effect":

$$E(Y_t|S=t) - E(Y_c|S=c)$$

"It is important to recognize that $E(Y_t)$ and $E(Y_t|S=t)$ are not the same thing ..."

Potential Outcomes Model: Estimands, Interpretation

Gerber & Green:

When
$$Y(1)$$
 and $Y(0)$ indep of T ,
$$ATE = E(Y_i(1)|T_i=1) - E(Y_i(0)|T_i=0)$$

Potential Outcomes Model: Estimands, Interpretation

Gerber & Green:

When
$$Y(1)$$
 and $Y(0)$ indep of T ,

$$ATE = E(Y_i(1)|T_i = 1) - E(Y_i(0)|T_i = 0)$$

$$= E(Y_i(1)|T_i = 1) - E(Y_i(0)|T_i = 1) + E(Y_i(0)|T_i = 1) - E(Y_i(0)|T_i = 0)$$

Potential Outcomes Model: Estimands, Interpretation

Gerber & Green:

When
$$Y(1)$$
 and $Y(0)$ indep of T ,

$$ATE = E(Y_i(1)|T_i = 1) - E(Y_i(0)|T_i = 0)$$

$$= E(Y_i(1)|T_i = 1) - E(Y_i(0)|T_i = 1) +$$

$$E(Y_i(0)|T_i = 1) - E(Y_i(0)|T_i = 0)$$

$$= [E(Y_i(1)|T_i = 1) - E(Y_i(0)|T_i = 1)] +$$

$$[E(Y_i(0)|T_i = 1) - E(Y_i(0)|T_i = 0)]$$

Potential Outcomes Model: Estimands, Interpretation

Gerber & Green:

When
$$Y(1)$$
 and $Y(0)$ indep of T ,
$$ATE = E(Y_i(1)|T_i = 1) - E(Y_i(0)|T_i = 0)$$

$$= E(Y_i(1)|T_i = 1) - E(Y_i(0)|T_i = 1) +$$

$$E(Y_i(0)|T_i = 1) - E(Y_i(0)|T_i = 0)$$

$$= [E(Y_i(1)|T_i = 1) - E(Y_i(0)|T_i = 1)] +$$

$$[E(Y_i(0)|T_i = 1) - E(Y_i(0)|T_i = 0)]$$

$$= E(Y_i(1) - Y_i(0)|T_i = 1) +$$

$$E(Y_i(0)|T_i = 1) - E(Y_i(0)|T_i = 0)$$

Potential Outcomes Model: Estimands, Interpretation

Gerber & Green:

When
$$Y(1)$$
 and $Y(0)$ indep of T ,
$$ATE = E(Y_i(1)|T_i = 1) - E(Y_i(0)|T_i = 0)$$

$$= E(Y_i(1)|T_i = 1) - E(Y_i(0)|T_i = 1) +$$

$$E(Y_i(0)|T_i = 1) - E(Y_i(0)|T_i = 0)$$

$$= [E(Y_i(1)|T_i = 1) - E(Y_i(0)|T_i = 1)] +$$

$$[E(Y_i(0)|T_i = 1) - E(Y_i(0)|T_i = 0)]$$

$$= E(Y_i(1) - Y_i(0)|T_i = 1) +$$

$$E(Y_i(0)|T_i = 1) - E(Y_i(0)|T_i = 0)$$

$$\underbrace{E(Y_i(1) - Y_i(0)|T_i = 1)}_{\text{ATT}} + \underbrace{E(Y_i(0)|T_i = 1) - E(Y_i(0)|T_i = 0)}_{\text{Selection Bias}}$$

Assignment of Treatment

► Causal effects: relative to some other condition

- ► Causal effects: relative to some other condition
- ▶ Treatment

- ► Causal effects: relative to some other condition
- ▶ Treatment
 - \blacktriangleright timing defined

- ► Causal effects: relative to some other condition
- Treatment
 - ightharpoonup timing defined
 - ▶ must be excludable

- ► Causal effects: relative to some other condition
- ▶ Treatment
 - ▶ timing defined
 - ▶ must be excludable
 - ▶ cannot be "attribute"

- ► Causal effects: relative to some other condition
- ▶ Treatment
 - timing defined
 - ▶ must be excludable
 - ▶ cannot be "attribute"
- ► Covariates: causally prior to treatment

- Causal effects: relative to some other condition
- Treatment
 - timing defined
 - ▶ must be excludable
 - ▶ cannot be "attribute"
- ▶ Covariates: causally prior to treatment
- ▶ Dose-response "biological gradient" evidence

Attributes

```
"Causal effect of race"?

resume <- read_csv("http://j.mp/2sDjsHI")

dim(resume)

## [1] 4870 4
```

Attributes

```
"Causal effect of race"?

resume <- read_csv("http://j.mp/2sDjsHI")

dim(resume)

## [1] 4870 4

kable(table(resume$race, resume$call))
```

	0	1
black	2278	157
white	2200	235

Attributes

```
"Causal effect of race"?
resume <- read_csv("http://j.mp/2sDjsHI")</pre>
dim(resume)
## [1] 4870
kable(table(resume$race, resume$call))
                                0
                     black
                            2278
                                   157
                     white
                            2200
                                   235
```

Sen and Wasow (2016): "Race as a Bundle of Sticks: Designs that Estimate Effects of Seemingly Immutable Characteristics" (elements of attributes varyingly manipulable)

The Potential Outcomes Model: Assignment

Observed outcome:
$$Y_i = Y_i(1) \cdot T_i + Y_i(0) \cdot (1 - T_i)$$

The assignment mechanism *selects* which potential outcome we observe.

The Potential Outcomes Model: Assignment

Observed outcome:
$$Y_i = Y_i(1) \cdot T_i + Y_i(0) \cdot (1 - T_i)$$

The assignment mechanism *selects* which potential outcome we observe.

(Gerber & Green use $Y_i = Y_i(1) \cdot d_i + Y_i(0) \cdot (1 - d_i)$ to highlight that we observe pot outcome from treatment actually taken, not hypothetical or assigned treatment.)

The Potential Outcomes Model: Assignment

"Assignment mechansims" are really missing-data-generating procedures.

Ignorability

Assignment mechanism is ignorable if Y_{obs} conditnly indep of T

$$P(T|X, Y_{obs}, Y_{mis}) = P(T|X, Y_{obs})$$

Ignorability

Assignment mechanism is ignorable if Y_{obs} conditnly indep of T

$$P(T|X, Y_{obs}, Y_{mis}) = P(T|X, Y_{obs})$$

Nothing in unobserved Y_{mis} informs relationship between Y_{obs} , T.

Unconfoundedness

Some ignorable mechanisms are unconfounded, too.

$$P(T|X, Y_{obs}, Y_{mis}) = P(T|X)$$

Unconfoundedness

Some ignorable mechanisms are unconfounded, too.

$$P(T|X, Y_{obs}, Y_{mis}) = P(T|X)$$

Nothing in Y informs T.

Unconfoundedness

Some ignorable mechanisms are *unconfounded*, too.

$$P(T|X, Y_{obs}, Y_{mis}) = P(T|X)$$

Nothing in Y informs T.

These are special cases of conditional independence.

An Assignment Mechanism

Little & Rubin (2000):

Patient	Y	Т
1	6	1
2	12	1
3	9	0
4	11	0

An Assignment Mechanism

Little & Rubin (2000):

Patient	Y	Τ
1	6	1
2	12	1
3	9	0
4	11	0

Clearly, treatment is harmful. $\overline{Y(1)} - \overline{Y(0)} = 9 - 10 = -1$.

An Assignment Mechanism

Little & Rubin (2000):

Patient	Y(0)	Y(1)	τ	Т
1		6		1
2		12		1
3	9			0
4	11			0
Mean	10	9		

Clearly, treatment is harmful.

$$\overline{Y(1)|T=1} - \overline{Y(0)|T=0} = 9 - 10 = -1$$

Little & Rubin (2000):

Patient	Y(0)	Y(1)	au	Т
1	(1)	6		1
2	(3)	12		1
3	9	(8)		0
4	11	(10)		0
Mean	10	9		

Little & Rubin (2000):

Patient	Y(0)	Y(1)	au	Т
1	(1)	6	(5)	1
2	(3)	12	(9)	1
3	9	(8)	(-1)	0
4	11	(10)	(-1)	0
Mean	10	9	(3)	

Little & Rubin (2000):

Patient	Y(0)	Y(1)	au	Т
1	(1)	6	(5)	1
2	(3)	12	(9)	1
3	9	(8)	(-1)	0
4	11	(10)	(-1)	0
Mean	10	9	(3)	

Clearly, treatment is beneficial:

$$\overline{Y(1)} - \overline{Y(0)} = 9 - 6 = 3$$

Little & Rubin (2000):

Y(0)	Y(1)	au	Т
(1)	6	(5)	1
(3)	12	(9)	1
9	(8)	(-1)	0
11	(10)	(-1)	0
10	9	(3)	
	(1) (3) 9 11	(1) 6 (3) 12 9 (8) 11 (10)	(1) 6 (5) (3) 12 (9) 9 (8) (-1) 11 (10) (-1)

Clearly, treatment is beneficial:

$$\overline{Y(1)} - \overline{Y(0)} = 9 - 6 = 3$$

This assg mechanism is non-ignorable, confounded.

Simple/complete randomization (Bernoulli trial, prob π)

- Simple/complete randomization (Bernoulli trial, prob π)
- ► Complete randomization / random allocation (fixed proportion to tr)

- Simple/complete randomization (Bernoulli trial, prob π)
- Complete randomization / random allocation (fixed proportion to tr)
- ► Blocked randomizations (fixed proportion to tr, w/in group)

- Simple/complete randomization (Bernoulli trial, prob π)
- Complete randomization / random allocation (fixed proportion to tr)
- ► Blocked randomizations
 (fixed proportion to tr, w/in group)
- ► Cluster randomizations
 (assignment at higher level)

Randomization (Design-based) Inference

A volunteer?

A volunteer?

The task: select the 2 folders with messages

The task: select the 2 folders with messages

▶ What is our baseline expectation/model for this process?

- ▶ What is our baseline expectation/model for this process?
 - ightharpoonup "No x-ray vision. No ESP. Effect of messages on choice = 0."

- ▶ What is our baseline expectation/model for this process?
 - ightharpoonup "No x-ray vision. No ESP. Effect of messages on choice = 0."
- ▶ What is an alternative?

- ▶ What is our baseline expectation/model for this process?
 - ightharpoonup "No x-ray vision. No ESP. Effect of messages on choice = 0."
- ▶ What is an alternative?
 - ▶ "Some way to detect messages. Message location \rightarrow choice."

- ▶ What is our baseline expectation/model for this process?
 - ightharpoonup "No x-ray vision. No ESP. Effect of messages on choice = 0."
- ▶ What is an alternative?
 - ▶ "Some way to detect messages. Message location \rightarrow choice."

The task: select the 2 folders with messages

- ▶ What is our baseline expectation/model for this process?
 - ightharpoonup "No x-ray vision. No ESP. Effect of messages on choice = 0."
- ▶ What is an alternative?
 - ▶ "Some way to detect messages. Message location \rightarrow choice."

Select!

The possible choices:

 \blacktriangleright You chose ____ and ___. Let X= number found.

- \blacktriangleright You chose ____ and ___. Let X= number found.
- ▶ What was $P(X \ge 2 | \text{no ESP})$?

- \blacktriangleright You chose ____ and ___. Let X= number found.
- ▶ What was $P(X \ge 2 | \text{no ESP})$? $\frac{1}{10} = 0.1$

- \blacktriangleright You chose ____ and ___. Let X= number found.
- ▶ What was $P(X \ge 2 | \text{no ESP})$? $\frac{1}{10} = 0.1$
- ▶ What was $P(X \ge 1 | \text{no ESP})$?

- \blacktriangleright You chose ____ and ___. Let X= number found.
- ▶ What was $P(X \ge 2 | \text{no ESP})$? $\frac{1}{10} = 0.1$
- ▶ What was $P(X \ge 1 | \text{no ESP})$? $\frac{7}{10} = 0.7$

- \blacktriangleright You chose ____ and ___. Let X= number found.
- ▶ What was $P(X \ge 2 | \text{no ESP})$? $\frac{1}{10} = 0.1$
- ▶ What was $P(X \ge 1 | \text{no ESP})$? $\frac{7}{10} = 0.7$
- ▶ What is "prob result at least this extreme, given model of no effect"?

- \blacktriangleright You chose ____ and ___. Let X= number found.
- ▶ What was $P(X \ge 2 | \text{no ESP})$? $\frac{1}{10} = 0.1$
- ▶ What was $P(X \ge 1 | \text{no ESP})$? $\frac{7}{10} = 0.7$
- What is "prob result at least this extreme, given model of no effect"?
- ightharpoonup Definition of p-value!

- \blacktriangleright You chose ____ and ___. Let X= number found.
- ▶ What was $P(X \ge 2 | \text{no ESP})$? $\frac{1}{10} = 0.1$
- ▶ What was $P(X \ge 1 | \text{no ESP})$? $\frac{7}{10} = 0.7$
- ▶ What is "prob result at least this extreme, given model of no effect"?
- \triangleright Definition of p-value!
- \triangleright Valid, exact, with no distributional assumption, no large n.

- \blacktriangleright You chose ____ and ___. Let X= number found.
- ▶ What was $P(X \ge 2 | \text{no ESP})$? $\frac{1}{10} = 0.1$
- ▶ What was $P(X \ge 1 | \text{no ESP})$? $\frac{7}{10} = 0.7$
- ▶ What is "prob result at least this extreme, given model of no effect"?
- ▶ Definition of *p*-value!
- \triangleright Valid, exact, with no distributional assumption, no large n.
- ► Randomization creates dist'n of possible numbers correct

The Randomization Distribution of X

The Randomization Distribution of X

The Randomization Distribution of X

Parametric Null Hypothesis Significance Testing

- Specify and assume H_0
- ▶ Define H_A
- Examine reference dist'n $(t, \chi^2, ...)$ under H_0
- ► Calculate *p*-value
- ▶ Compare to some α ; reject H_0 if $p < \alpha$

▶ Specify and assume H_0 (sharp null of no treatment effect)

- Specify and assume H_0 (sharp null of no treatment effect)
- ▶ Define H_A

- Specify and assume H_0 (sharp null of no treatment effect)
- ▶ Define H_A
- ► Create reference dist'n from all possible values of X under H_0 (or at least a big sample of them)

- ► Specify and assume *H*₀ (sharp null of no treatment effect)
- ▶ Define H_A
- ► Create reference dist'n from all possible values of X under H_0 (or at least a big sample of them)
- ► What prop. of possible "at least as extreme as" observed?
 - $\rightsquigarrow p$ -value!

- ➤ Specify and assume H_0 (sharp null of no treatment effect)
- ▶ Define H_A
- ► Create reference dist'n from all possible values of X under H_0 (or at least a big sample of them)
- ► What prop. of possible "at least as extreme as" observed?
 - $\rightsquigarrow p$ -value!
- ▶ Compare to some α ; reject H_0 if $p < \alpha$

- ➤ Specify and assume H_0 (sharp null of no treatment effect)
- ▶ Define H_A
- Create reference dist'n from all possible values of X under H_0 (or at least a big sample of them)
- ► What prop. of possible "at least as extreme as" observed?
 - $\rightsquigarrow p$ -value!
- ▶ Compare to some α ; reject H_0 if $p < \alpha$
- ► CA ballot ordering effects (JASA 2006)

The RI p-value is

$$p = \frac{\text{\# outcomes } \ge \text{as extreme as obs}}{\text{total } \# \text{ outcomes}}$$

The RI
$$p$$
-value is

$$p = \frac{\text{\# outcomes } \geq \text{as extreme as obs}}{\text{total } \# \text{ outcomes}}$$

or

$$p = \frac{\# \text{ randomizations producing extreme } \widehat{ATE}}{\text{total } \# \text{ randomizations}}$$

The RI
$$p$$
-value is

$$p = \frac{\text{\# outcomes } \ge \text{as extreme as obs}}{\text{total } \# \text{ outcomes}}$$

or

$$p = \frac{\# \text{ randomizations producing extreme } \widehat{ATE}}{\text{total } \# \text{ randomizations}}$$

How many randomizations are there?

How many ways to **select** k things from a set of n things?

$$_{n}C_{k} = \binom{n}{k} = \frac{nP_{k}}{k!} = \frac{n!}{k!(n-k)!}$$

How many ways to **select** k things from a set of n things?

$$_{n}C_{k} = \binom{n}{k} = \frac{nP_{k}}{k!} = \frac{n!}{k!(n-k)!}$$

How many ways to choose 5 villages of 10 for treatment?

How many ways to **select** k things from a set of n things?

$$_{n}C_{k} = \binom{n}{k} = \frac{nP_{k}}{k!} = \frac{n!}{k!(n-k)!}$$

How many ways to choose 5 villages of 10 for treatment?

$$_{10}C_5 = \begin{pmatrix} 10\\5 \end{pmatrix} = \frac{10!}{5!(10-5)!}$$

How many ways to **select** k things from a set of n things?

$$_{n}C_{k} = \binom{n}{k} = \frac{nP_{k}}{k!} = \frac{n!}{k!(n-k)!}$$

How many ways to choose 5 villages of 10 for treatment?

$$_{10}C_5 = \binom{10}{5} = \frac{10!}{5!(10-5)!}$$

$$\frac{10 \cdot 9 \cdot 8 \cdot 7 \cdot 6}{5 \cdot 4 \cdot 3 \cdot 2 \cdot 1} = 252$$

Common Assumptions, Null Hypotheses

► Constant effect:

$$\tau_i = Y_{i1} - Y_{i0} = \tau \quad \forall i$$

▶ Null hypothesis of no average effect:

$$ATE = \overline{\tau} = 0$$

▶ Sharp null hypothesis of no effect:

$$\tau_i = 0$$

An Assignment Mechanism: Perfect Doctor

Calculate RI p-value for Perfect Doctor, under sharp null.

Patient	Y(0)	Y(1)	au	Т
1	(1)	6	(5)	1
2	(3)	12	(9)	1
3	9	(8)	(-1)	0
4	11	(10)	(-1)	0
Mean	10	9	(3)	

An Assignment Mechanism: Perfect Doctor

Calculate RI p-value for Perfect Doctor, under sharp null.

Patient	Y(0)	Y(1)	au	Т
1	(1)	6	(5)	1
2	(3)	12	(9)	1
3	9	(8)	(-1)	0
4	11	(10)	(-1)	0
Mean	10	9	(3)	

(See 02-ri-perfect-dr.R)

RI versus the t-test

Perfect Doctor:

- ▶ RI: p = 1
- t.test(): $p \approx 0.8$
- "If no tr effect, then this result typical"

RI versus the t-test

Perfect Doctor:

- ▶ RI: p = 1
- t.test(): $p \approx 0.8$
- "If no tr effect, then this result typical"

(Odd logic of NHST: "assume false thing, how strange is data?"")

► Resume audit study, Bertrand and Mullainathan (2004)

	0	1
black	2278	157
white	2200	235

► Resume audit study, Bertrand and Mullainathan (2004)

	0	1
black	2278	157
white	2200	235

▶ Only possible values: $\tau_i \in \{-1, 0, 1\}$

2 white 0.0965

► Resume audit study, Bertrand and Mullainathan (2004)

	0	1
black	2278	157
white	2200	235

▶ Only possible values: $\tau_i \in \{-1, 0, 1\}$

```
resume %>% group_by(race) %>% summarise(call_rate = me
## # A tibble: 2 x 2
## race call_rate
## <fct> <dbl>
## 1 black 0.0645
```

▶ Assume the sharp null $\tau_i = 0$ for every employer.

- ▶ Assume the sharp null $\tau_i = 0$ for every employer.
- $H_0: \mu_{\text{black name}} = \mu_{\text{white name}}$

- Assume the sharp null $\tau_i = 0$ for every employer.
- $H_0: \mu_{\text{black name}} = \mu_{\text{white name}}$
- $H_A: \mu_{\text{black name}} \neq \mu_{\text{white name}}$

- Assume the sharp null $\tau_i = 0$ for every employer.
- $H_0: \mu_{\text{black name}} = \mu_{\text{white name}}$
- $H_A: \mu_{\text{black name}} \neq \mu_{\text{white name}}$
- ▶ Create reference dist'n of all possible assignments

- Assume the sharp null $\tau_i = 0$ for every employer.
- $H_0: \mu_{\text{black name}} = \mu_{\text{white name}}$
- $H_A: \mu_{\text{black name}} \neq \mu_{\text{white name}}$
- ▶ Create reference dist'n of all possible assignments

- Assume the sharp null $\tau_i = 0$ for every employer.
- $\blacktriangleright H_0: \mu_{\text{black name}} = \mu_{\text{white name}}$
- \bullet $H_A: \mu_{\text{black name}} \neq \mu_{\text{white name}}$
- ▶ Create reference dist'n of all possible assignments

$$_{4870}C_{2435} = \binom{4870}{2435} = \frac{4870 \cdot 4869 \cdot \dots \cdot 2436}{2435!}$$

- Assume the sharp null $\tau_i = 0$ for every employer.
- $H_0: \mu_{\text{black name}} = \mu_{\text{white name}}$
- \bullet $H_A: \mu_{\text{black name}} \neq \mu_{\text{white name}}$
- ▶ Create reference dist'n of all possible assignments

$$_{4870}C_{2435} = \binom{4870}{2435} = \frac{4870 \cdot 4869 \cdot \dots \cdot 2436}{2435!}$$

$$\approx 1.1 \times 10^{1464}$$

- ▶ Assume the sharp null $\tau_i = 0$ for every employer.
- $H_0: \mu_{\text{black name}} = \mu_{\text{white name}}$
- $H_A: \mu_{\text{black name}} \neq \mu_{\text{white name}}$
- ▶ Create reference dist'n of all possible assignments

$$_{4870}C_{2435} = \begin{pmatrix} 4870 \\ 2435 \end{pmatrix} = \frac{4870 \cdot 4869 \cdot \dots \cdot 2436}{2435!}$$

 $\approx 1.1 \times 10^{1464}$

(There are $\approx 10^{86}$ fundamental particles in the universe.)

- ▶ Assume the sharp null $\tau_i = 0$ for every employer.
- $H_0: \mu_{\text{black name}} = \mu_{\text{white name}}$
- $H_A: \mu_{\text{black name}} \neq \mu_{\text{white name}}$
- ▶ Create reference dist'n of all possible assignments

$$_{4870}C_{2435} = \begin{pmatrix} 4870 \\ 2435 \end{pmatrix} = \frac{4870 \cdot 4869 \cdot \dots \cdot 2436}{2435!}$$

 $\approx 1.1 \times 10^{1464}$

(There are $\approx 10^{86}$ fundamental particles in the universe.)

▶ Let's do 1000, or 100,000 – something reasonable

- Assume the sharp null $\tau_i = 0$ for every employer.
- $H_0: \mu_{\text{black name}} = \mu_{\text{white name}}$
- $H_A: \mu_{\text{black name}} \neq \mu_{\text{white name}}$
- ▶ Create reference dist'n of all possible assignments

$$_{4870}C_{2435} = \begin{pmatrix} 4870 \\ 2435 \end{pmatrix} = \frac{4870 \cdot 4869 \cdot \dots \cdot 2436}{2435!}$$

 $\approx 1.1 \times 10^{1464}$

(There are $\approx 10^{86}$ fundamental particles in the universe.)

- ▶ Let's do 1000, or 100,000 something reasonable
- ▶ See 02-ri-resume-donate.R

- ► Gerber & Green donations example, p. 65
- ▶ Possible values $\tau_i \in (-\infty, \infty)$
- Y_1, Y_0, τ likely very skewed
- ▶ See 02-ri-resume-donate.R

Recall that

"reject H_0 at $\alpha = 0.05$ " \equiv " H_0 falls outside 95% CI"

Recall that

"reject H_0 at $\alpha = 0.05$ " \equiv " H_0 falls outside 95% CI"

Create RI confidence intervals

• Posit $H_0: \tau = \tau^* \in \{\dots, -2, 1, 0, 1, 2, \dots\}$

Recall that

"reject H_0 at $\alpha = 0.05$ " \equiv " H_0 falls outside 95% CI"

- Posit $H_0: \tau = \tau^* \in \{\dots, -2, 1, 0, 1, 2, \dots\}$
- ▶ RI test whether to reject H_0

Recall that

"reject H_0 at $\alpha = 0.05$ " \equiv " H_0 falls outside 95% CI"

- Posit $H_0: \tau = \tau^* \in \{\dots, -2, 1, 0, 1, 2, \dots\}$
- ▶ RI test whether to reject H_0
- ▶ If not, then τ^* is in CI

Recall that

"reject H_0 at $\alpha = 0.05$ " \equiv " H_0 falls outside 95% CI"

- Posit $H_0: \tau = \tau^* \in \{\ldots, -2, 1, 0, 1, 2, \ldots\}$
- ▶ RI test whether to reject H_0
- ▶ If not, then τ^* is in CI
- ▶ CI consists of set of τ^* not unusual, given data

Recall that

"reject H_0 at $\alpha = 0.05$ " \equiv " H_0 falls outside 95% CI"

- Posit $H_0: \tau = \tau^* \in \{\dots, -2, 1, 0, 1, 2, \dots\}$
- ▶ RI test whether to reject H_0
- ▶ If not, then τ^* is in CI
- ▶ CI consists of set of τ^* not unusual, given data
- ▶ See 02-ri-resume-donate.R

Next: Covariates in Experiments PS2 due

Bertrand, Marianne, and Sendhil Mullainathan. 2004. "Are Emily and Greg More Employable Than Lakisha and Jamal? A Field Experiment on Labor Market Discrimination." *American Economic Review* 94 (4): 991–1013.

Sen, Maya, and Omar Wasow. 2016. "Race as a Bundle of Sticks: Designs That Estimate Effects of Seemingly Immutable Characteristics." *Annual Reviews of Political Science* 19: 499–522.