目录

第一章	研究背景	1
第1	节 抗原抗体的相互作用	1
第 2	节 抗原抗体相互作用研究现状	5
第3	节 亲和力预测	6
	3.1. 一些注意事项	6
	3.2. T _E X 资源	7
第二章	正文行文	8
第1	节 文章标题	8
第 2	节 章标题	8
第3	节 节标题	8
第4	节 子节标题	8
第5	节 正文	8
第 6	节 章节	8
第三章	公式排版	9
第1	节 行内公式	9
第 2	节 行间公式	9
第四章	表格和图片 1	1
第五章	定理环境	2
第1	节 题头 1	2
第 2	节 同章另一节的题头	2
笋六音	参考文献的写法 1	2

数学学院毕业论文模版

刘传省

学号: 17210180030

专业: 计算系统生物学

摘要 这是我的中文摘要

关键字: 正文写法, 公式写法, 参考文献写法.

Abstract This is my English abstract.

Keywords: 正文写法, 公式写法, 参考文献写法.

本章主要介绍相关研究的背景知识,要解决问题的意义和研究进展

第1节 抗原抗体的相互作用

人的免疫系统是人体抵抗外界病原入侵的重要系统,它可以分为天然免疫(innate immunity)和获得性免疫(adaptive immunity). 天然免疫不具有特异性,或者最多也只能针对一大类的病原进行防御。它包括巨噬细胞、抑菌蛋白、NK细胞、补体系统、粒细胞等。天然免疫构成了人体防御的第一道防线。一旦病原突破第一道防线,人体就要进行获得性免疫。获得性免疫是针对入侵的病原产生一系列的特异性的免疫反应,包括特异性的细胞免疫和体液免疫。获得性免疫的特异性,可以使得人体把主要的资源集中起来应对特定的病原,从而更高效。但是,自然界的病原千千万万,那么获得性免疫是如何识别这不同的病原的呢?

对于特异性的细胞免疫来讲,他的特异性可以用下面的图 1.1来说明。

图 1.1: 特异性细胞免疫示意图。此图知识简要说明了细胞免疫的过程, 真是的情况比这里要复杂的多, 比如共刺激等。

对不同的病原体来讲,都有其独特的结构和成分,那些可以引起免疫反应的结构和成分,成为抗原(antigen).体液免疫的特异性就是特定抗体对特定抗原的识别,如图1.2。

图 1.2: 特异性体液免疫示意图。此图知识简要说明了体液免疫过程中,抗体的的产生和对病抗原的识别,真实的过程比这要复杂的多,比如说 T helper 的作用等。同时,抗体除了直接杀死病原体之外,还可以参与抗体介导的细胞毒性(antibody directed cell cytotoxicity)。

人类的抗体结构是一个二聚体,由两条重链(heavy chain)和两条轻链(light chain)组成。每条链又分为可变区(variable fragment)和不变区(constant fragment)。抗体的特异性则主要来自与可变区的互补决定区(CDR, complementarity determining region)如图1.3。

图 1.3: 抗体结构示意图

互补决定区主要由6个比较短的氨基酸片段组成,它们分为来自重链和轻链的CDR1, CDR2和CDR3。氨基酸在这些区域上的不同序列决定了抗体的特异性和多样性。对于 抗原和抗体相互作用的研究,可以在一定程度上简化为CDRs和抗原局部区域的相互作

用。抗原上那些和抗体相互作用的部分又称为抗原表位(epitope). CDR多样性的来源主要有两个,一个是不同基因片段的拼接,另外一个是细胞超突变(Somatic hypermutation),也就是这些区域比其他区域有更高的突变率,有时候还会在拼接的过程中加入或者丢失一些碱基。理论上讲,可以产生的多样性可以达到10¹²数量级,甚至还要更多。所以,体液免疫是一个强大的免疫机制,几乎对所有抗原都可以产生对应特异性抗体。

体液免疫早在很久以前就被用来和疾病斗争。早在宋朝的时候,智慧的中国人就用"种痘"来预防天花,就是利用的用毒性弱的毒株让人体产生抗体和免疫记忆。这就是最早的疫苗了,只是这时种的是人痘,具有极高的风险。1796年,英国人Edward Jener 用接种牛痘的方法来预防天花,极大的降低了接种的风险。1979年,世界卫生组织(WHO,world health organization)宣布天花从地球上消除。这是,人类利用体液免疫的一次巨大成功,也是人类医学史上的壮举。自1796年以来,随着每次技术的进步,疫苗的数量和质量都会有很大的提升。

图 1.4: 疫苗的数量变化和疫苗开发技术的发展[1]

但是,并不是所有的传染病都能顺利开发出疫苗,比如说HIV-1[2]。其中的一个原因在于抗原的多变性。但是,也发现了一些具有广谱作用的抗体,可以抵抗多种不同的毒株。对这些抗体的进一步分析发现,它们对可以识别HIV-1一些保守的的抗原表位(epitope)。知道了这些抗原表位之后,就可以通过抗原表位的嫁接(grafting)或者把抗原表位整合的特殊设计的架构(scaffolding)中,由此设计的疫苗会比传统意义的上的疫苗效果更好。抗原表位的确定除了可以通过实验手段的到,还可以通过计算的手段,通过一系列的模型预测。

对抗原抗体相互作用的研究,除了可以帮助设计疫苗和预测抗原表位外,还可以促进对治疗性抗体(therapeutic antibody)的开发。随着单克隆抗体(monoclonal antibody)和人源化抗体(humanized antibody)技术的进步,越来越多的治疗性抗体被注册成新的药物。到2020年2月初,已经被FDA(Food and Drug Administration)和EMA(European

Medicines Agency)批准或正在审核的治疗性抗体就多达106个[3]。更是开发出很多具有广谱抗癌作用的治疗性抗体,其中有很多是针对免疫过程中的检测点(checkpoint)开发的[4]。比如,在治疗美国前总统吉米卡特的癌症中起着至关重要作用的抗体 pembrolizumab 就是通过抑制PD1(programmed cell death protein 1),从而实现免疫细胞对癌细胞的杀伤。鉴于传统小分子药物开发越来越困难,以及抗体的的多样性和相关技术的发展,治疗性抗体必将开辟人类药学史上一个新的时代[5]。

一个简单的单克隆抗体的生产过程大概如下:

然而如果把这些由老鼠产生的单克隆抗体直接注射到人体内,往往会产生免疫反应。一个避免免疫反应的做法是把这些单克隆抗体的CDR区域的氨基酸序列安插到人类抗体对应的位置,这样的抗体就是人源化抗体。CDR序列的产生需要大量的实验,如果这个过程可以通过计算的手段来做比较准确的预测,则会对抗体的制备有深刻影响。同时,即便是通过实验手段产生CDR序列,由于实验过程中一些比较难以控制的因素,产生的序列也未必能满足我们的要求。一个不易控制的因素是抗体的作用位点。对于一个抗原来讲,可能的抗原表位会有很多,其中的任何一个抗原表位都可能诱导免疫反应,产生抗体,而理想的抗体往往需要针对特定的抗原表位(如图)。

另外一个不易控制的因素是抗原抗体之间的亲和力(affinity)。一个可以用作治疗用的抗体往往要求具有足够高的亲和力,这直接关系到抗体的疗效。虽然免疫系统本身会筛选出亲和力比较高的抗体,但是无法保证这样的亲和力就满足要求。那么这就需要在原来抗体的基础上,对CDR序列进行一定的改造,从而提高亲和力,达到我们的要求。对抗原抗体的相互作用有足够的了解可以指导对这些序列的改造,从而大大节约抗体药物的研发和生产成本。

对抗原抗体相互作用的研究,除了上面说的意义之外,还有很多外溢效应。比如 说设计合适的抗体来催化一些反应,也就是抗体酶。再比如说,设计一些治疗性的多

肽。从更大的范围讲,抗原抗体的相互作用是蛋白与蛋白相互作用的一部分,研究蛋白和蛋白相互作用的方法,在一定程度上可以用来研究抗原抗体的相互作用。但是抗原抗体的相互作用又有其特殊性,因为抗原抗体的相互作用主要表现为抗体的CDR loop 区和抗原表位的相互作用。

第2节 抗原抗体相互作用研究现状

对抗原抗体相互作用,比较早的是Cothia, 他第一次指出了抗体主要通过CDR区 域和抗原相互作用,并且分析了CDR1和CDR2的经典结构。但是,这些都是描述性 的,并不能对抗体的性质,以及什么样的抗原和什么样的抗体结合做出回答。接下来, 大家开始对特定的抗原抗体复合物进行研究。其中对蛋清溶菌酶(hen egg white lysosome)和其抗体的相互作用的研究尤其多。Padlan 等解析了HyHEL-10 Fab和蛋清溶菌 酶(HEL)的结构,认为抗原表位是不连续的,范德华力(van der Waals)和氢键(hydrogen bond)是相互作用的关键[6]; Yokota 等通过对HyHEL-10-HEL复合物中一些氨基酸的 突变(L-Y50F, L-S91A, 和 L-S93A)来研究氢键的作用[7], 后来又研究了Arg的作用[8]; Pons 等通过Alanine scanning 研究了HyHEL-10-HEL中参与相互作用的各个氨基酸的 重要性[9]; Shiroishi 等通过把Tyr 突变成 Phe 和 Ala 来研究 Tyr 在 HyHEL-10-HEL 中的作用[10];同样,Shiroishi 等通过对 HyHEL-10-HEL 的分析,研究了盐桥(saltbridge)的作用[11]; Kam-Morgan 等通过突变对HyHEL-10-HEL中抗原表位做了更为精 细的研究[12]。除了HvHEL-10-HEL,还有许多文章对抗体HvHEL-63 和HEL 的复合 物HyHEL-63-HEL, 以及HyHEL-5-HEL 做了许多类似的研究[13, 14, 15, 16, 17, 18, 19, 20, 21]。除了针对HEL 和其抗体的研究之外,还有许多关于其他抗原抗体的研 究。但是,所有这些研究,都是关于某一个具体的复合物在特定情况下的氨基酸的 作用,或者某种相互作用力的贡献,从来没有一个系统的关于所有抗原抗体相互作用 的描述。其中一个重要原因,是抗原抗体相互作用的构象(conformation)性质。也就是 说,参与抗原抗体相互作用的氨基酸,特别是抗原表位上的氨基酸,并不是线性排列 的,而是具有空间上的关系。就拿1918年H1N1流感大爆发时候流感病毒表面的血凝 素(Hemagglutinin)SC1918/H1和它的抗体CR6261来说。

图 1.5: **A**是SC1918/H1 和 CR6261 复合物的结构。**B** 是 SC1918/H1 和抗体结合区域的放大图,其抗原表位都已经标出。此图由文献[22]中的图片编辑而成。

从图1.5 B中可以看出,在序列上,这些氨基酸并在序列不连续,然而在空间上却比较临近,形成有效的抗原表位,这就是抗原表位的构象性质。根据 Saba Ferdous 等最近对488个B-cell epitope 的研究,只有大概4%的是线性的。如果把有不小于3个的氨基酸参与相互作用,并且这些氨基酸在序列上的距离不大于3的位置定为一个区域(region),那么只有约14%的抗原表位只有一个区域[23],也就是说,抗原的表位是高度的非线性的。

虽然抗原表位的非线性特征,给抗原抗体的研究带了的巨大的困难。但是,鉴于抗原表位在抗体设计和疫苗研发中的重要性,对抗原表位预测的努力一直没有停止。从实验的角度来讲,主要有结构生物学的方法和突变的方法。结构生物学的方法是通过分析抗原抗体复合物的结构,来判断哪些是抗原表位。突变的方法则是通过在不同的位点引入突变来确定,究竟哪些氨基酸在抗原抗体的结合过程中起关键作用[24]。除了上面的实验手段,利用计算手段对抗原表位的预测,一直在发展。较早期,大家认为抗原表位和非抗原表位的区别是显著的[25],很多方法都是集中与对任意给定的抗原来寻找它的抗原表位。

可是,理论上讲,一个抗原的任何区域都有可能被抗体识别,也就是任何区域都有可能是抗原表位,所以对一个抗原来讲,预测给定抗体的抗原表位才更有意义[26]。

第3节 亲和力预测

第4节 本论文的主要内容

4.1. 一些注意事项

本模板提供的格式应该是数学论文写作中的一些通行格式. CT_FX套装的 2.8 版似乎并不稳定. 请大家下载其他稳定的版本.

4.2. T_EX 资源

TFX 的下载: http://www.ctex.org/HomePage

TFX 的论坛: http://bbs.ctex.org/

第二章 正文行文

第1节 文章标题

使用文章标题样式, 是居中, 黑体, 一号字.

第2节 章标题

使用三号字, 黑体, 居中对齐.

第3节 节标题

使用小三号字, 黑体, 居中对齐.

第4节 子节标题

使用小四号字, 黑体, 靠左对齐.

第5节 正文

使用小四号字, 行距为20磅. 首行缩进两个字符宽. 建议标点符号用半角. 例如句号用"句点". 输入时每个标点后打一个空格.

第6节 章节

如果文章内容较多,可以采用分章节.如果内容较少,可以只用节而不用章.章节的编号方式(编号类型等的选择)要恰当.

第三章 公式排版

这部分介绍如何正确使用公式编排.

$$F(b) - F(a) = \int_{a}^{b} F'(x) dx.$$
 (3.1)

第1节 行内公式

如果 x = y, y = z, 那么我们可以推得 x = z. 如果式子过长, 应该写成行间公式.

第2节 行间公式

如果 x = y, 那么

$$f(x) = f(y)$$

但是, 若 $x \neq y$, 我们也不能获得

$$f(x) \neq f(y) \tag{3.2}$$

所以 (3.2) 不是 $x \neq y$ 的必要条件.

下面是另外的例子:第一个公式不标号,请注意命令\nonumber的使用:

$$W_{i,a}^{\text{new}} \leftarrow W_{i,a} \sum_{\mu} \frac{V_{i,\mu}}{(WH)_{i,\mu}} H_{a,\mu}$$

$$H_{a,\mu}^{\text{new}} \leftarrow H_{a,\mu} \sum_{i} W_{i,a} \frac{V_{i,\mu}}{(WH)_{i,\mu}}$$

$$(3.3)$$

$$W_{i,a}^{\text{new}} \leftarrow \frac{W_{i,a}}{\sum_{j} W_{j,a}} \tag{3.4}$$

第三章 公式排版 10

如果所有公式都不标号, 可以采用下面的环境:

$$(\arcsin x)^{2} = \left(\sum_{k=0}^{\infty} \frac{C_{2k}^{k}}{2k+1} \frac{x^{2k+1}}{2^{2k}}\right)^{2}$$

$$= \sum_{k=0}^{\infty} \sum_{j=0}^{\infty} \frac{C_{2k}^{k} C_{2j}^{j}}{(2k+1)(2j+1)} \frac{x^{2k+2j+2}}{2^{2k+2j}}$$

$$= \sum_{n=0}^{\infty} \sum_{k+j=n} \frac{C_{2k}^{k} C_{2j}^{j}}{(2k+1)(2j+1)} \frac{x^{2n+2}}{2^{2n}}$$

$$= \sum_{n=0}^{\infty} \frac{(2x)^{2n+2}}{2C_{2n+2}^{n+1}(n+1)^{2}}.$$

更多公式环境的使用以及一些数学符号的使用可以参考一些IPTFX的书籍.

本模板中, 在每章开头, 公式标号重新计数. 一章中, 即使换节, 计数并不重新开始(比较(3.1), (3.2)), 请注意公式编号的引用以及对应的超链接效果.

若各节的公式需要重新编号, 可自行修改, 比如利用命令

\def\theequation{\arabic{chapter}.\arabic{section}.\arabic{equation}}

(或 \def\theequation{3.2.\arabic{equation}})

\setcounter{equation}{0}

利用以上命令也可以解决诸如引入带撇的编号"3.1.3",以及回到正常编号的重新编号问题.

上述命令下的公式编号:

$$\lim_{n \to +\infty} \left(1 + \frac{1}{n} \right)^n = e. \tag{3.2.1}$$

定义、定理、例子等的编号格式也可以用类似命令.

第四章 表格和图片

Dataset	Before	After	Percentage
ALL/AML leukaemia	7129	1038	14.56
Breast Cancer	$24\ 481$	834	3.41
CNS embryonal tumous	7129	74	1.04
Colon tumour	7129	135	1.89
Lung cancer	12 533	5365	42.81
Prostate cancer	12 600	3071	24.37
outcome	12 600	208	1.65

表 4.1: 这是个表格

如果插图, 可以考虑下面的命令:

\includegraphics[options]{yourfile}

具体命令参考 graphicx 宏包说明, 值得注意的是用 PDF LATEX 编译是不支持插入 EPS 格式图片的, 不过将 EPS 格式图片转换为 PDF 后就可以插入了. 限于条件限制, 本模板不给出插入图片的示例.

论文中的数据图例可以由 MatLab 制作(比如数据模拟图), 一般的图例(含流程图, 交换图等)可由 MetaPost 或者 Asymptote 作出(当然作图工具不限于此), 限于条件限制, 模板不给出示例.

第五章 定理环境

第1节 题头

同一章内定理、引理等"题头"可以采用连续/统一的标号,这是由模板中的诸如 "\newtheorem{theorem}[definition]{定理}"这样的命令中的" [definition]"选项确定的,它使所有定理采用和定义统一编号:

引理 5.1. 对于任何实数 A, 成立着 $A^2 \ge 0$.

定理 5.2. 设A, B是两个实数, 则 $2AB \le A^2 + B^2$.

第2节 同章另一节的题头

推论 5.3. 设a,b为两个正数,则其几何平均不大于其算术平均,即 $\sqrt{ab} \leq \frac{a+b}{2}$.

第六章 参考文献的写法

所有参考文献均用尾注形式列在论文篇末,内容包括:主要负责人(作者,编者)文献题名.出版地,出版年份,起止页码.(如果文献是期刊杂志内的文章,则除要列出作者和题名外,还要注明期刊名,出版时间,卷号或期号,起止页码).

英文出版物见[27], 国际会议见[29], 英文期刊见[28].

中文出版物见[30], 中文期刊见[31].

建议文献排序按作者姓氏的字母排序,同一作者的文章按时间先后排列.英文姓名的写法有先姓后名([32])和先名后姓([28])两种写法,请统一到其中一种.

注意"参考文献"不写成论文的一章.

致谢

请对帮助过你完成论文的老师、同学致谢. 也可以在此对您四年大学生活有重要帮助的人致谢.

"致谢"本身不作为一章,致谢内容的字体大小不宜与作为标题的"致谢"两字的大小有很大的反差.这一点尤其请使用word模板的同学注意.一般说来,杂志论文的致谢在文章正文结束、参考文献前(即本模板中它所处的位置);学位论文的致谢在最后一页,并宜单独成页;书籍的致谢在序言结尾.

参考文献

- [1] Gary J. Nabel, Designing Tomorrow's Vaccines, N Engl J Med, 6(2013), 368:551-560.
- [2] Peter D. Kwong, John R. Mascola and Gary J. Nabel, Broadly neutralizing antibodies and the search for an HIV-1 vaccine: the end of the beginning, *Nat Rev Immunol*, (2013), 13:693-701.
- [3] https://www.antibodysociety.org/resources/approved-antibodies/
- [4] Drew M. Pardoll, The blockade of immune checkpoints in cancer immunotherapy, *Nat Rev Cancer*, (2012), 12(4): 252 264.
- [5] Antó nio L.Grilo, A.Mantalaris, The Increasingly Human and Profitable Monoclonal Antibody Market, Trends in biotechnology 37.1 (2019): 9-16.
- [6] Padlan, Eduardo A., et al. Structure of an antibody-antigen complex: crystal structure of the HyHEL-10 Fab-lysozyme complex. *PNAS*, (1989), 86(15):5938-5942.
- [7] Yokota, Akiko, et al. The Role of Hydrogen Bonding via Interfacial Water Molecules in Antigen-Antibody Complexation THE HyHEL-10-HEL INTERACTION. *Journal of Biological Chemistry*, (2003), 7(278):5410-5418.
- [8] Yokota, Akiko, et al. Contribution of asparagine residues to the stabilization of a proteinaceous antigenantibody complex, HyHEL-10-hen egg white lysozyme. *Journal of Biological Chemistry*, (2010), 285(10): 7686-7696.
- [9] Pons Jaume, Arvind Rajpal, and Jack F. Kirsch. Energetic analysis of an antigen/antibody interface: alanine scanning mutagenesis and double mutant cycles on the HyHEL-10/lysozyme interaction. *Protein Science*,(1999), 8(5): 958-968.
- [10] Shiroishi, Mitsunori, et al. Structural Consequences of Mutations in Interfacial Tyr Residues of a Protein Antigen-Antibody Complex THE CASE OF HyHEL-10-HEL. *Journal of Biological Chemistry*, (2007), 282(9): 6783-6791.
- [11] Shiroishi, Mitsunori, et al. Structural Evidence for Entropic Contribution of Salt Bridge Formation to a Protein Antigen-Antibody Interaction THE CASE OF HEN LYSOZYME-HyHEL-10 Fv COMPLEX. *Journal of Biological Chemistry*, (2001), 276(25): 23042-23050.
- [12] Kam-Morgan, L. N., et al. High-resolution mapping of the HyHEL-10 epitope of chicken lysozyme by sitedirected mutagenesis. PNAS,(1993),90(9): 3958-3962.
- [13] Novotny, Jiri, Robert E. Bruccoleri, and Frederick A. Saul. On the attribution of binding energy in antigenantibody complexes McPC 603, D1. 3, and HyHEL-5. *Biochemistry*, (1989), 28(11): 4735-4749.
- [14] Li, Yili, et al. Three-dimensional structures of the free and antigen-bound Fab from monoclonal antilysozyme antibody HyHEL-63. *Biochemistry*, (2000), 39(21): 6296-6309.
- [15] Hibbits, Kari A., Davinder S. Gill, and Richard C. Willson. Isothermal titration calorimetric study of the association of hen egg lysozyme and the anti-lysozyme antibody HyHEL-5. *Biochemistry*,(1994),33(12): 3584-3590.

参考文献 16

[16] Cohen, GERson H., S. Sheriff, and DAVID R. Davies. Refined structure of the monoclonal antibody HyHEL-5 with its antigen hen egg-white lysozyme. *Acta Crystallographica Section D: Biological Crystallography*, (1996), 52(2): 315-326.

- [17] Li, Yili, et al. Dissection of binding interactions in the complex between the anti-lysozyme antibody HyHEL-63 and its antigen. *Biochemistry*,(2003), 42(1): 11-22.
- [18] Xavier, K. Asish, et al. Involvement of water molecules in the association of monoclonal antibody HyHEL-5 with bobwhite quail lysozyme. *Biophysical journal*, (1997), 73(4): 2116-2125.
- [19] Slagle, S. P., R. E. Kozack, and S. Subramaniam. Role of electrostatics in antibody-antigen association: anti-hen egg lysozyme/lysozyme complex (HyHEL-5/HEL). *Journal of Biomolecular Structure and Dynamics*, (1994), 12(2): 439-456.
- [20] Cohen, Gerson H., et al. Water molecules in the antibody antigen interface of the structure of the Fab HyHEL-5 – lysozyme complex at 1.7 A resolution: comparison with results from isothermal titration calorimetry. Acta Crystallographica Section D: Biological Crystallography, (2005), 61(5): 628-633.
- [21] Wibbenmeyer, Jamie A., et al. Salt links dominate affinity of antibody HyHEL-5 for lysozyme through enthalpic contributions. *Journal of Biological Chemistry*, (1999), 274(38): 26838-26842.
- [22] Ekiert, Damian C., et al. Antibody recognition of a highly conserved influenza virus epitope. *Science*,(2009), 324(5924): 246-251.
- [23] , S Ferdous, S Kelm, TS Baker, J Shi, ACR Martin, B-cell epitopes: Discontinuity and conformational analysis *Molecular immunology*, (2019), 114:643-650.
- [24] G. E. Morris, Epitope mapping, Methods in Molecular Biology, (2005), 295:255 268.
- [25] Rubinstein, Nimrod D., et al. Computational characterization of B-cell epitopes. Molecular immunology, (2008), 45(12):3477-3489.
- [26] Sela-Culang, Inbal, Yanay Ofran, and Bjoern Peters. Antibody specific epitope prediction—emergence of a new paradigm. *Current opinion in virology*, (2015), 11: 98-102.
- [27] T. Hastie et al., The Element of Statistical Learning, Springer Series in Statistics, Springer-Verlag, 2001.
- [28] S. Chen, Mach configuration in pseudo-stationary compressible flow, J. Amer. Math. Soc., 21(2008), no. 1, pp. 63–100.
- [29] Junping Zhang, Li He, and Zhi-Hua Zhou, "Analyzing Magnification Factors and Principal Spead Directions in Manifold Learning", in *Proceedings of the 9th Online World Conference on Soft Computing in Industrial Applications (WSC9)*, 2004.
- [30] 陈纪修, 淤崇华, 金路, 数学分析, 高等教育出版社, 1999.
- [31] 苏步青, 数学教育与应用数学问题, 数学通报, 1988, (2): 1-2.
- [32] Li, T. and Chen, Y., Global classical solutions for nonlinear evolution equations, Pitman Monographs and Surveys in Pure and Applied Mathematics, 45, Longman Scientific & Technical, Harlow.