Ising Model

Question1.py -1

برای مدل آیزینگ از اگوریتم قدیمی استفاده شده است. تلاش هایی برای پیاده سازی الگوریتم جدید (بهینه تر) انجام شد ولی به دلیل نویزی بودن نتایج و دیباگ نشدن، تصمیم به پیاده سازی الگوریتم قدیمی شد. برای مشاهده بهتر، تصویر اسپین ها را رسم کرده ایم.

الكوريتم قديمي

مشاهده می شود که الگوریتم بهینه تر دارای مشکل است و نویز دارد.

برای تایید بیشتر صحت الگوریتم، نمودار های انرژی کل و مغناطش کل برحسب اندازه گیری ها رسم شده است. است. باید توجه داشت که در این نمودارها سیستم به پایداری کامل نرسیده است.

طبق انتظار انرژی به صورت یکنواخت پایین می آید.

چون سیستم به پایداری نرسیده است، مغناطش هنوز ثابت نشده است.

در ادامه سیستم هایی که به پایداری رسیده اند را بررسی می کنیم.

سیستم پایدار در دمای کم:

طبق انتظار همه اسپین ها در یک جهت شده اند و مغناطش 1 شده است.

سیستم پایدار در دمای بالا:

طبق انتظار مغناطش سیستم صفر شده است. بهتر بود برای کم کردن نواسانات نمودار آنسامبل گیری می کردیم ولی به دلیل طولانی بودن زمان اجرا این کار مقدور نبود.

حال برای مشاهده رفتار تغییر فاز نمودار مغناطش برحسب دما را رسم می کنیم.

تغییر فاز در دمای نزدیک 2.5 قابل مشاهده است.

Subject: Year: Month: Date:	N.
Year: Month: Date: $\langle m \rangle = \frac{1}{Z} \sum_{i} m_{i} e^{-\beta E_{i}} + \overline{\mu} m_{i} \overline{U}$	
Z= Ze-BE; Ze-BE; + PHM; I	
X=3 <m></m>	
OMZ 1 OZ @ 1 E Bm; e BE; +B Hm;	5 =
B(m) (D)	
$\frac{\partial^2 \ln Z}{\partial H^2} = \frac{\partial}{\partial H} \left(\frac{1}{Z} \frac{\partial Z}{\partial H} \right)$	12.
$= \frac{-1}{Z^{2}} \left(\frac{\partial Z}{\partial H} \right)^{2} + \frac{1}{Z} \frac{\partial^{2} Z}{\partial H^{2}}$ $= \frac{-1}{Z^{2}} \left(\frac{\partial Z}{\partial H} \right)^{2} + \frac{1}{Z} \frac{\partial^{2} Z}{\partial H^{2}}$ $= \frac{-1}{Z^{2}} \left(\frac{\partial Z}{\partial H} \right)^{2} + \frac{1}{Z} \frac{\partial^{2} Z}{\partial H^{2}}$ $= \frac{-1}{Z^{2}} \left(\frac{\partial Z}{\partial H} \right)^{2} + \frac{1}{Z} \frac{\partial^{2} Z}{\partial H^{2}}$ $= \frac{-1}{Z^{2}} \left(\frac{\partial Z}{\partial H} \right)^{2} + \frac{1}{Z} \frac{\partial^{2} Z}{\partial H^{2}}$ $= \frac{-1}{Z^{2}} \left(\frac{\partial Z}{\partial H} \right)^{2} + \frac{1}{Z} \frac{\partial^{2} Z}{\partial H^{2}}$ $= \frac{-1}{Z^{2}} \left(\frac{\partial Z}{\partial H} \right)^{2} + \frac{1}{Z} \frac{\partial^{2} Z}{\partial H^{2}}$ $= \frac{-1}{Z^{2}} \left(\frac{\partial Z}{\partial H} \right)^{2} + \frac{1}{Z} \frac{\partial^{2} Z}{\partial H^{2}}$ $= \frac{-1}{Z^{2}} \left(\frac{\partial Z}{\partial H} \right)^{2} + \frac{1}{Z} \frac{\partial^{2} Z}{\partial H^{2}}$ $= \frac{-1}{Z^{2}} \left(\frac{\partial Z}{\partial H} \right)^{2} + \frac{1}{Z} \frac{\partial^{2} Z}{\partial H^{2}}$	No No N
$\frac{-B^{2}(m)^{2}+B^{2}(m^{2})}{B^{2}(m^{2})}=B^{2}O_{m}^{2}$	
D-> X = Bom2 = Om2/KBT	11

Question3.py -3

تنها نتکه قابل توجه در کد این است که هنگامی که همه اسپین ها یکسان هستند واریانس صفر است، پس باید برای جلوگیری از مخرج صفر همبستگی را برابر یک قرار داد.

رفتار كميت ها برحسب دما براى طول هاى مختلف رسم شده است.

 $\label{eq:continuous} Thermodynamic Properties vs Temperature \\ J=1 L=10 \; n_steps=1000000 \; n_measure=1000 \; n_ensemble=5$

Thermodynamic Properties vs Temperature J=1 L=15 n_steps=1000000 n_measure=1000 n_ensemble=3

Thermodynamic Properties vs Temperature J=1 L=20 n_steps=1000000 n_measure=1000 n_ensemble=3

Thermodynamic Properties vs Temperature J=1 L=30 n_steps=10000000 n_measure=10000 n_ensemble=3

رفتار تغییر فاز کاملا برای هر چهار پارامتر مشهود است. بجز مغناطش پارامتر های دیگر در نزدیکی نقطه تغییر فاز به سمت بینهایت میل می کنند.

مقدار بیشینه C_v با افزایش طول، بیشتر می شود. ولی مقدار بیشینه χ با افزایش طول، کمتر می شود.

حال می خواهیم نما های بحرانی را حاسبه کنیم. ابتدا دمای بحرانی بیهنهایت را از حل تحلیلی محاسبه می کنیم.

$$\frac{J}{k_B T_c} = \frac{1}{2} \ln(1 + \sqrt{2})$$
 , $J = 1$, $k_B = 1$ $T_c = 2.269$

حال مقدار دما های بحرانی شبیه سازی را در اکسل وارد کرده و نمودار لگاریتمی اختلاف دمای بحرانی بینهایت وطول محدود را رسم می کنیم. شیب این نمودارها نماهای بحرانی را می دهند. باید توجه داشت که دمای بحرانی بینهایت و طول محدود جابجا هستند و باید شیب را در یک منفی ضرب کرد.

 $\gamma = 1.15$

 $: \xi$

37	ksi		Tc = 2.269	log(Tc(L) - Tc) : ksi									
38	L	Tc(L)	Tc(L) - Tc										
39	10	2.625	0.356	0									
10	15	2.625	0.356	0	0.2	0.4	0.6	0.8	1	1.2	1.4	1.6	
41	20	2.5625	0.2935	-0.1									
42	25	2.5	0.231	-0.2									
43	30	2.52	0.251	Tc)									
14				-0.3									
45		log(L)	log(Tc(L) - Tc)	-0.4 -0.4									
46		1	-0.448550002						•	•			
47		1.176091	-0.448550002	-0.5									
48		1.30103	-0.532391894	-0.6					y = -	0.4078x - 0.	0132.		
49		1.39794	-0.63638802							$R^2 = 0.8006$			
50		1.477121	-0.600326279	-0.7	-0.7 log(L)								
51													
52													

 $\nu = 0.41$

 $\beta = 1.31$

:Cv

چون تابعیت لگاریتمی دارد، نمودار نیم لگ رسم شده است.

$$C_0 = 0.11$$