

FCC PART 15C TEST REPORT

No.I19Z62252-IOT05

for

Client name: TCL Communication Ltd.

Product name: LTE Mobile WiFi Router

Model name: MW43TM

With

FCC ID: 2ACCJB117

Hardware Version: 03

Software Version: MW43 ZZ 02.00 01

Issued Date: 2020-02-19

Note:

The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of CTTL.

The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the U.S.Government.

Test Laboratory:

CTTL-Telecommunication Technology Labs, CAICT

No. 52, Huayuan North Road, Haidian District, Beijing, P. R. China 100191.

Tel:+86(0)10-62304633-2512, Fax:+86(0)10-62304633-2504

Email: cttl terminals@caict.ac.cn, website: www.caict.ac.cn

REPORT HISTORY

Report Number	Revision	Description	Issue Date	
I19Z62252-IOT05	Rev.0	1st edition	2020-02-19	

CONTENTS

1. TEST LABORATORY	5
1.1. Introduction & Accreditation	5
1.2. TESTING LOCATION	5
1.3. TESTING ENVIRONMENT	5
1.4. Project date	5
1.5. Signature	5
2. CLIENT INFORMATION	6
2.1. APPLICANT INFORMATION	6
2.2. Manufacturer Information	6
3. EQUIPMENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT (AE)	7
3.1. About EUT	7
3.2. Internal Identification of EUT	7
3.3. INTERNAL IDENTIFICATION OF AE	
3.4. GENERAL DESCRIPTION	8
3.5. Interpretation of the Test Environment	8
4. REFERENCE DOCUMENTS	8
4.1. DOCUMENTS SUPPLIED BY APPLICANT	8
4.2. Reference Documents for testing	8
5. TEST RESULTS	9
5.1. SUMMARY OF TEST RESULTS	9
5.2. Statements	9
5.3. TEST CONDITIONS	9
6. TEST FACILITIES UTILIZED	10
7. MEASUREMENT UNCERTAINTY	11
7.1. MAXIMUM OUTPUT POWER	11
7.2. PEAK POWER SPECTRAL DENSITY	11
7.3. DTS 6-DB SIGNAL BANDWIDTH	11
7.4. BAND EDGES COMPLIANCE	
7.5. Transmitter Spurious Emission	
7.6. AC POWER-LINE CONDUCTED EMISSION	11
ANNEX A: DETAILED TEST RESULTS	12
A.1. MEASUREMENT METHOD	12
A.2. MAXIMUM OUTPUT POWER	13
A.3. PEAK POWER SPECTRAL DENSITY	15

A.4. DTS 6-DB SIGNAL BANDWIDTH	22
A.5. BAND EDGES COMPLIANCE	29
A.6. TRANSMITTER SPURIOUS EMISSION	34
A.6.1 Transmitter Spurious Emission – Conducted	34
A.6.2 Transmitter Spurious Emission - Radiated	87
A.7. AC POWER-LINE CONDUCTED EMISSION	101
ANNEX B: ACCREDITATION CERTIFICATE	105

1. Test Laboratory

1.1.Introduction & Accreditation

Telecommunication Technology Labs, CAICT is an ISO/IEC 17025:2005 accredited test laboratory under NATIONAL VOLUNTARY LABORATORY ACCREDITATION PROGRAM (NVLAP) with lab code 600118-0, and is also an FCC accredited test laboratory (CN5017), and ISED accredited test laboratory (CN0066). The detail accreditation scope can be found on NVLAP website.

1.2. Testing Location

Location 1:CTTL(Huayuan North Road)

Address: No. 52, Huayuan North Road, Haidian District, Beijing,

P. R. China100191

Location 2:CTTL(Shouxiang)

Address: No. 51 Shouxiang Science Building, Xueyuan Road,

Haidian District, Beijing, P. R. China100191

Location 3:CTTL(BDA)

Address: No.18A, Kangding Street, Beijing Economic-Technology

Development Area, Beijing, P. R. China 100176

1.3. Testing Environment

Normal Temperature: 15-35°C Relative Humidity: 20-75%

1.4. Project date

Testing Start Date: 2019-12-23 Testing End Date: 2020-02-01

1.5. Signature

Xie Fangfang

(Prepared this test report)

Zheng Wei

(Reviewed this test report)

Hu Xiaoyu

(Approved this test report)

古月晚年

2. Client Information

2.1. Applicant Information

Company Name: TCL Communication Ltd.

5/F, Building 22E, 22 Science Park East Avenue, Hong Kong Science Address:

Park, Shatin, NT, Hong Kong

City: Hong Kong

Postal Code:

Country: China

Telephone: 0086-755-36611722

Fax: 0086-755-36612000-81722

2.2. Manufacturer Information

Company Name: TCL Communication Ltd.

Address: 5/F, Building 22E, 22 Science Park East Avenue, Hong Kong Science

Park, Shatin, NT, Hong Kong

City: Hong Kong

Postal Code: /

Country: China

Telephone: 0086-755-36611722

Fax: 0086-755-36612000-81722

3. Equipment Under Test (EUT) and Ancillary Equipment (AE)

3.1. About EUT

Description LTE Mobile WiFi Router

Model name MW43TM FCC ID 2ACCJB117

With WLAN Function Yes

Frequency Range ISM 2400MHz~2483.5MHz

Type of Modulation DSSS/CCK/OFDM

Number of Channels 11

Antenna Integral Antenna

MAX Conducted Power 26.24dBm

Power Supply 3.8V

3.2. Internal Identification of EUT

EUT ID* SN or IMEI		IMEI HW Version SW	
EUT1	015659000001186	03	MW43_ZZ_02.00_01
EUT2	015659000001939	03	MW43_ZZ_02.00_01

^{*}EUT ID: is used to identify the test sample in the lab internally.

3.3. Internal Identification of AE

AE ID*	Description	SN
AE1	Battery	/
AE3	Charger	CH001/004
AE5	USB Cable	DC012/022

AE1

Model TLi043F1/CAB4300004C1

Manufacturer BYD
Capacitance 4400mAh
Nominal voltage 3.7 V

AE3

Model UC13US
Manufacturer Puan
Length of cable /

AE5

Model CDA0000123C2
Manufacturer SHENGHUA

Length of cable /

^{*}AE ID: is used to identify the test sample in the lab internally.

3.4. General Description

The Equipment under Test (EUT) is a model of LTE Mobile WiFi Router with integrated antenna and inbuilt battery.

It has Bluetooth (EDR) function.

It consists of normal options: travel charger, USB cable.

Manual and specifications of the EUT were provided to fulfil the test.

Samples undergoing test were selected by the client.

3.5. Interpretation of the Test Environment

For the test methods, the test environment uncertainty figures correspond to an expansion factor k=2.

Measurement Uncertainty

Parameter	Uncertainty	
temperature	0.48°C	
humidity	2 %	
DC voltages	0.003V	

4. Reference Documents

4.1. Documents supplied by applicant

EUT feature information is supplied by the applicant or manufacturer, which is the basis of testing.

4.2. Reference Documents for testing

The following documents listed in this section are referred for testing.

Reference	Title	Version
	FCC CFR 47, Part 15, Subpart C:	
	15.205 Restricted bands of operation;	
FCC Part15	15.209 Radiated emission limits, general requirements;	2018
	15.247 Operation within the bands 902-928MHz,	
	2400-2483.5 MHz, and 5725-5850 MHz.	
ANSI C63.10	American National Standard of Procedures for Compliance	2013
ANSI C03.10	Testing of Unlicensed Wireless Devices	2013
	Federal Communications Commission Office of	
	Engineering and Technology Laboratory Division	
	GUIDANCE FOR COMPLIANCE MEASUREMENTS ON	
KDB 558074 D01	DIGITAL TRANSMISSION SYSTEM, FREQUENCY	2019
	HOPPING SPREAD SPECTRUM SYSTEM, AND HYBRID	
	SYSTEM DEVICES OPERATING UNDER SECTION	
	15.247 OF THE FCC RULES	

5. Test Results

5.1. Summary of Test Results

SUMMARY OF MEASUREMENT RESULTS	Sub-clause of Part15C	Sub-clause of IC	Verdict
Maximum Peak Output Power	15.247 (b)	1	Р
Peak Power Spectral Density	15.247 (e)	1	Р
Occupied 6dB Bandwidth	15.247 (a)	1	Р
Band Edges Compliance	15.247 (d)	1	Р
Transmitter Spurious Emission - Conducted	15.247 (d)	1	Р
Transmitter Spurious Emission - Radiated	15.247, 15.205, 15.209	1	Р
AC Powerline Conducted Emission	15.107, 15.207	1	Р

Please refer to ANNEX A for detail.

Terms used in Verdict column

Р	Pass, The EUT complies with the essential requirements in the standard.			
NP	Not Perform, The test was not performed by CTTL			
NA	Not Applicable, The test was not applicable			
F	Fail, The EUT does not comply with the essential requirements in the			
	standard			

5.2. Statements

The test cases as listed in section 5.1 of this report for the EUT specified in section 3 was performed by CTTL and according to the standards or reference documents listed in section 4.2 The EUT met all requirements of the standards or reference documents, and only the WLAN function was tested in this report.

5.3. Test Conditions

T nom	Normal Temperature	
T min	Low Temperature	
T max	High Temperature	
V nom	Normal Voltage	

For this report, if the test cases listed above are tested under normal temperature and normal voltage, and also under norm humidity, the specific condition is shown as follows:

Temperature	Tnom	26℃	
Voltage	V nom	3.8V(By battery)	
Humidity	H nom	20-75%	

6. <u>Test Facilities Utilized</u>

Conducted test system

No.	Equipment	Model	Serial Number	Manufacturer	Calibration Period	Calibration Due date
			Nullibei		i eriou	Due date
1	Vector Signal	FSQ40	200089	Rohde &	1 year	2020-05-15
'	Analyzer	F3Q40	200069	Schwarz	1 year	2020-05-15
	LION	ENIV /04.0	404000	Rohde &	4	0000 00 44
2	LISN	ENV216	101200	Schwarz	1 year	2020-03-14
	To A David and	F001	400044	Rohde &	4	0000 00 44
3	Test Receiver ESC	ESCI	ESCI 100344	Schwarz	1 year	2020-02-14
4	Shielding Room	S81	/	ETS-Lindgren	/	/

Radiated emission test system

Ita	alatea elilissioli te					
No.	Equipment	Model	Serial Number	Manufacturer	Calibration Period	Calibration Due date
1	Test Receiver	ESU26	100376	Rohde & Schwarz	1 year	2020-10-30
2	BiLog Antenna	VULB9163	9163-514	Schwarzbeck	1 year	2020-02-03
3	Universal Radio Communication Tester	CMW500	159408	R&S	1 year	2020-02-03
4	EMI Antenna	3117	00139065	ETS-Lindgren	1 year	2020-11-10
5	EMI Antenna	3116	2663	ETS-Lindgren	1 year	2020-05-31
6	Test Receiver	FSV40	101047	R&S	1 year	2020-05-16

7. Measurement Uncertainty

7.1. Maximum Output Power

Measurement Uncertainty: 0.387dB,k=1.96

7.2. Peak Power Spectral Density

Measurement Uncertainty: 0.705dB,k=1.96

7.3. DTS 6-dB Signal Bandwidth

Measurement Uncertainty: 60.80Hz,k=1.96

7.4. Band Edges Compliance

Measurement Uncertainty: 0.62dB,k=1.96

7.5. Transmitter Spurious Emission

Conducted (k=1.96)

Frequency Range	Uncertainty(dB)
30MHz ≤ f ≤ 2GHz	1.22
2GHz ≤ f ≤3.6GHz	1.22
3.6GHz ≤ f ≤8GHz	1.22
8GHz ≤ f ≤12.75GHz	1.51
12.75GHz ≤ f ≤26GHz	1.51
26GHz ≤ f ≤40GHz	1.59

Radiated (k=2)

Frequency Range	Uncertainty(dB)
9kHz-30MHz	/
30MHz ≤ f ≤ 1GHz	5.40
1GHz ≤ f ≤18GHz	4.32
18GHz ≤ f ≤40GHz	5.26

7.6. AC Power-line Conducted Emission

Measurement Uncertainty: 3.08dB,k=2

ANNEX A: Detailed Test Results

A.1. Measurement Method

A.1.1. Conducted Measurements

Connect the EUT to the test system as Fig.A.1.1.1 shows.

Set the EUT to the required work mode.

Set the EUT to the required channel.

Set the Vector Signal Analyzer and start measurement.

Record the values. Vector Signal Analyzer

Fig.A.1.1.1: Test Setup Diagram for Conducted Measurements

A.1.2. Radiated Emission Measurements

In the case of radiated emission, the used settings are as follows, Sweep frequency from 30 MHz to 1GHz, RBW = 100 kHz, VBW = 300 kHz; Sweep frequency from 1 GHz to 26GHz, RBW = 1MHz, VBW = 10Hz;

Fig.A.1.2.1: Test Setup Diagram for Radiated Measurements

A.2. Maximum Output Power

Method of Measurement: See ANSI C63.10-2013-clause 11.9.1.2

- a) Set the RBW = 1 MHz.
- b) Set the VBW = 3 MHz.
- c) Set the span \geq [1.5 \times DTS bandwidth].
- d) Detector = peak.
- e) Sweep time = auto couple.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.
- h) Use the instrument's band/channel power measurement function with the band limits set equal to the DTS bandwidth edges (for some instruments, this may require a manual override to select the peak detector).

Measurement Limit:

Standard	Limit (dBm)	
FCC CRF Part 15.247(b)	< 30	

EUT ID: EUT2

Peak Output Power-conducted

Measurement Results:

802.11b/g mode

	Data Data	Test Result (dBm)			
Mode	Data Rate (Mbps)	2412MHz (Ch1)	2437MHz (Ch6)	2462 MHz (Ch11)	
	1	/	22.06	/	
902 11b	2	/	22.32	1	
802.11b	5.5	/	23.74	/	
	11	24.64	24.87	24.31	
	6	/	25.01	/	
	9	/	25.11	/	
	12	/	24.92	/	
902.11a	18	/	25.02	/	
802.11g	24	26.23	26.24	25.88	
	36	/	25.04	/	
	48	/	24.13	/	
	54	1	24.34	1	

The data rate 11Mbps and 24Mbps are selected as worse condition, and the following cases are performed with this condition.

802.11n-HT20 mode

	Data Rate	Test Result (dBm)			
Mode		2412MHz	2437MHz	2462 MHz	
	(Index)	(Ch1)	(Ch6)	(Ch11)	
	MCS0	25.07	25.55	24.89	
	MCS1	/	24.65	/	
	MCS2	/	24.94	/	
802.11n	MCS3	/	25.39	/	
(20MHz)	MCS4	/	25.50	/	
	MCS5	/	24.27	/	
	MCS6	/	24.54	/	
	MCS7	/	24.29	/	

The data rate MCS0 is selected as worse condition, and the following cases are performed with this condition.

802.11n-HT40 mode

	Doto Boto	Test Result (dBm)			
Mode	Data Rate (Index)	2422MHz (Ch3)	2437MHz (Ch6)	2452 MHz (Ch9)	
	MCS0	/	23.20	/	
	MCS1	/	22.77	/	
-	MCS2	/	22.77	/	
802.11n	MCS3	/	23.15	/	
(40MHz)	MCS4	23.80	23.16	23.23	
	MCS5	/	22.79	/	
	MCS6	/	22.88	/	
	MCS7	/	22.77	/	

The data rate MCS4 is selected as worse condition, and the following cases are performed with this condition.

Conclusion: Pass

A.3. Peak Power Spectral Density

Method of Measurement: See ANSI C63.10-2013-clause 11.10.2

- a) Set analyzer center frequency to DTS channel center frequency.
- b) Set the span to 1.5 times the DTS bandwidth.
- c) Set the RBW to RBW = 3 kHz.
- d) Set the VBW = 10 kHz.
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum amplitude level within the RBW.

Measurement Limit:

Standard	Limit	
FCC CRF Part 15.247(e)	< 8 dBm/3 kHz	

Measurement Results:

802.11b/g mode

Mode	Channel		ctral Density /3 kHz)	Conclusion
	1	Fig.A.3.1	-4.23	Р
802.11b	6	Fig.A.3.2	-4.04	Р
	11	Fig.A.3.3	-4.55	Р
	1	Fig.A.3.4	-8.85	Р
802.11g	6	Fig.A.3.5	-8.87	Р
	11	Fig.A.3.6	-9.11	Р

802.11n-HT20 mode

Mode	Channel	Power Spectral Density (dBm/3 kHz)		Conclusion
900 11n	1	Fig.A.3.7	-11.16	Р
802.11n	6	Fig.A.3.8	-11.29	Р
(HT20)	11	Fig.A.3.9	-11.48	Р

802.11n-HT40 mode

Mode	Channel	-	ctral Density /3 kHz)	Conclusion
802.11n (HT40)	3	Fig.A.3.10	-13.86	Р
	6	Fig.A.3.11	-15.77	Р
(1140)	9	Fig.A.3.12	-15.18	Р

Conclusion: Pass

Test graphs as below:

Fig.A.3.1 Power Spectral Density(802.11b,Ch1)

Fig.A.3.2 Power Spectral Density (802.11b, Ch 6)

Fig.A.3.3 Power Spectral Density (802.11b, Ch 11)

Fig.A.3.4 Power Spectral Density (802.11g, Ch 1)

Fig.A.3.5 Power Spectral Density (802.11g, Ch 6)

Fig.A.3.6 Power Spectral Density (802.11g, Ch 11)