Data Mining Mining Complex Data

Lecture Notes for Chapter 6

Data Mining by Zhaonian Zou

6.1 Mining Sequence Data

6.1.1 Sequence Data

Formal Definition of a Sequence

 A sequence is an ordered list of elements (transactions)

$$s = < e_1 e_2 e_3 ... >$$

- Each element contains a set of events (items)

$$e_i = \{i_1, i_2, ..., i_k\}$$

- Each element is attributed to a specific time or location
- Length of a sequence, |s|, is given by the number of elements of the sequence
- A k-sequence is a sequence that contains k events (items)

Examples of Sequence

- Web sequence:
 - < {Homepage} {Electronics} {Digital Cameras} {Canon Digital Camera} {Shopping Cart} {Order Confirmation} {Return to Shopping}>
- Sequence of initiating events causing the nuclear accident at 3-mile Island:

 $(http://stellar-one.com/nuclear/staff_reports/summary_SOE_the_initiating_event.htm)$

- {clogged resin} {outlet valve closure} {loss of feedwater}
 {condenser polisher outlet valve shut} {booster pumps trip}
 {main waterpump trips} {main turbine trips} {reactor pressure increases}>
- Sequence of books checked out at a library:

<{Fellowship of the Ring} {The Two Towers} {Return of the King}>

6.1 Mining Sequence Data

6.1.2 Sequential Pattern Mining

Formal Definition of a Subsequence

• A sequence $<a_1 a_2 \dots a_n>$ is contained in another sequence $<bb_1 b_2 \dots b_m>$ $(m \ge n)$ if there exist integers $i_1 < i_2 < \dots < i_n$ such that $a_1 \subseteq b_{i1}$, $a_2 \subseteq b_{i1}, \dots, a_n \subseteq b_{in}$

Data sequence	Subsequence	Contain?
< {2,4} {3,5,6} {8} >	< {2} {3,5} >	Yes
< {1,2} {3,4} >	< {1} {2} >	No
< {2,4} {2,4} {2,5} >	< {2} {4} >	Yes

- The support of a subsequence w is defined as the fraction of data sequences that contain w
- A sequential pattern is a frequent subsequence (i.e., a subsequence whose support is ≥ minsup)

Sequential Pattern Mining: Definition

- Given:
 - a database of sequences
 - a user-specified minimum support threshold, minsup
- Task:
 - Find all subsequences with support ≥ minsup

Sequential Pattern Mining: Challenge

- Given a sequence: <{a b} {c d e} {f} {g h i}>
 - Examples of subsequences:

 $\{a\} \{c d\} \{f\} \{g\} >, \{c d e\} >, \{b\} \{g\} >, etc.$

 How many k-subsequences can be extracted from a given n-sequence?

Sequential Pattern Mining: Example

Even		Г	
2,4	1,2	٨	1insup
3	2,3	-	
	5	E	xampl
	1,2	١.	(4.0)
3,4	2,3		{1,2} > {2,3} >
	1,	12	{2,4}>
	2,3		{3} {5}
1,5	2,4	<	{1} {2}
	2	<	{2} {2}
	3,	<	{1} {2,
	4,		{2} {2,
	1,	<	{1,2} {
4, 5	2,	L	

Minsup = 50%

Examples of Frequent Subsequences:

< {1,2} >	s=60%	
< {2,3} >	s=60%	
< {2,4}>	s=80%	
< {3} {5}>	s=80%	
< {1} {2} >	s=80%	
< {2} {2} >	s=60%	
< {1} {2,3} >	s=60%	
< {2} {2,3} >	s=60%	
< {1,2} {2,3} >	s=60%	
1 1		

Extracting Sequential Patterns

- Given n events: i_1 , i_2 , i_3 , ..., i_n
- Candidate 1-subsequences:

• Candidate 2-subsequences:

Candidate 3-subsequences:

$$<\{i_1, i_2, i_3\}>, <\{i_1, i_2, i_4\}>, \dots, <\{i_1, i_2\} \{i_1\}>, <\{i_1, i_2\} \{i_2\}>, \dots, \\ <\{i_1\} \{i_1, i_2\}>, <\{i_1\} \{i_1, i_3\}>, \dots, <\{i_n\} \{i_n\} \{i_n\}>, <\{i_n\} \{i_n\} \{i_2\}>, \dots$$

6.1 Mining Sequence Data

6.1.3 GSP Algorithm

Generalized Sequential Pattern (GSP)

- Step 1
 - Make the first pass over the sequence database D to yield all the 1-item frequent sequences
- Step 2:

Repeat until no new frequent sequences are found

- Candidate Generation:
 - Merge pairs of frequent subsequences found in the (k-1)th pass to generate candidate sequences that contain k items
- Candidate Pruning:
 - Prune candidate k-sequences that contain infrequent (k-1)-subsequences
- Support Counting:
 - Make a new pass over the sequence database D to find the support for these candidate sequences
- Candidate Elimination:
 - Eliminate candidate k-sequences whose actual support is less than minsup

Candidate Generation

- Base case (k=2):
 - $\quad \text{Merging two frequent 1-sequences} <\{i_1\}> \text{ and } <\{i_2\}> \text{ will produce} \\ \text{three candidate 2-sequences: } <\{i_1\} \{i_2\}>, <\{i_2\} \{i_1\}> \text{ and } <\{i_1i_2\}>$
- General case (k>2):
 - A frequent (k-1)-sequence w₁ is merged with another frequent (k-1)-sequence w₂ to produce a candidate k-sequence if the subsequence obtained by removing the first event in w₁ is the same as the subsequence obtained by removing the last event in w₂
 - The resulting candidate after merging is given by the sequence w₁ extended with the last event of w₂.
 - $-\,$ If the last two events in w_2 belong to the same element, then the last event in w_2 becomes part of the last element in w_1
 - Otherwise, the last event in w_2 becomes a separate element appended to the end of w_1

Candidate Generation Examples

- Merging the sequences $w_1 = \{1\} \{2\ 3\} \{4\} \text{ and } w_2 = <\{2\ 3\} \{4\ 5\} \text{ will produce the candidate sequence < (1) } \{2\ 3\} \{4\ 5\} \text{ because the last two events in } w_2 (4\ \text{and 5})\ \text{belong to the same element}$
- Merging the sequences $w_1 = <\{1\} \{2\ 3\} \{4\} > \text{ and } w_2 = <\{2\ 3\} \{4\} \{5\} >$ will produce the candidate sequence < \{1} \{2\ 3\} \{4\} \{5} > because the last two events in w_2 (4 and 5) do not belong to the same element
- We do not have to merge the sequences $w_1 = <\{1\}$ {2 6} {4}> and $w_2 = <\{1\}$ {2 }{ 4 5}> to produce the candidate < {1} {2 6} {4 5}> because if the latter is a viable candidate, then it can be obtained by merging w_1 with < {2 6} {4 5}>

6.1 Mining Sequence Data

6.1.4 Sequential Pattern Mining under Timing Constraints

Timing Constraints (I)

x_a: max-gap

n_g: min-gap

m_s: maximum span

 x_g = 2, n_g = 0, m_s = 4

Data sequence	Subsequence	Contain?
< {2,4} {3,5,6} {4,7} {4,5} {8} >	< {6} {5} >	Yes
< {1} {2} {3} {4} {5}>	< {1} {4} >	No
< {1} {2,3} {3,4} {4,5}>	< {2} {3} {5} >	Yes
< {1,2} {3} {2,3} {3,4} {2,4} {4,5}>	< {1,2} {5} >	No

Mining Sequential Patterns with Timing Constraints

- Approach 1:
 - Mine sequential patterns without timing constraints
 - Postprocess the discovered patterns
- Approach 2:
 - Modify GSP to directly prune candidates that violate timing constraints
 - Question:
 - ◆ Does Apriori principle still hold?

Apriori Principle for Sequence Data

Object Timestamp Events 2,4,5 3, 4

 $x_g = 1 \text{ (max-gap)}$ $n_g = 0$ (min-gap) m_s = 5 (maximum span) minsup = 60%

<{2} {5}> support = 40% but <{2} {3} {5}> support = 60%

Problem exists because of max-gap constraint No such problem if max-gap is infinite

Contiguous Subsequences

• s is a contiguous subsequence of

if any of the following conditions hold:

- 1. s is obtained from w by deleting an item from either e₁ or e_k
- 2. s is obtained from w by deleting an item from any element \boldsymbol{e}_{i} that
- 3. s is a contiguous subsequence of s' and s' is a contiguous subsequence of w (recursive definition)
- Examples: s = < {1} {2} >

is a contiguous subsequence of < {1} {2 3}>, < {1 2} {2} {3}>, and < {3 4} {1 2} {2 3} {4} >

is not a contiguous subsequence of < {1} {3} {2}> and < {2} {1} {3} {2}>

Modified Candidate Pruning Step

- Without maxgap constraint:
 - A candidate k-sequence is pruned if at least one of its (k-1)-subsequences is infrequent
- With maxgap constraint:
 - A candidate k-sequence is pruned if at least one of its contiguous (k-1)-subsequences is infrequent

Timing Constraints (II)

x_g: max-gap

n_g: min-gap

ws: window size $\rm m_s$: maximum span

 $x_g = 2$, $n_g = 0$, ws = 1, $m_s = 5$

Data sequence	Subsequence	Contain?
< {2,4} {3,5,6} {4,7} {4,6} {8} >	< {3} {5} >	No
< {1} {2} {3} {4} {5}>	< {1,2} {3} >	Yes
< {1,2} {2,3} {3,4} {4,5}>	< {1,2} {3,4} >	Yes

Modified Support Counting Step

- Given a candidate pattern: <{a, c}>
 - Any data sequences that contain

<... {a c} ... >,

 $< \dots \{a\} \dots \{c\} \dots > \quad (\text{ where time}(\{c\}) - \text{time}(\{a\}) \leq ws) \\ < \dots \{c\} \dots \{a\} \dots > \quad (\text{where time}(\{a\}) - \text{time}(\{c\}) \leq ws)$

will contribute to the support count of candidate

6.1 Mining Sequence Data

6.1.5 Variants of Sequential Pattern Mining

Other Formulation

- In some domains, we may have only one very long time series
 - Example:
 - monitoring network traffic events for attacks
 - monitoring telecommunication alarm signals
- Goal is to find frequent sequences of events in the time series
 - This problem is also known as frequent episode mining

E1 E3 E2 E4

6.2 Mining Graph Data

6.2.1 Graph Data

Frequent Subgraph Mining

- Extend association rule mining to finding frequent subgraphs
- Useful for Web Mining, computational chemistry, bioinformatics, spatial data sets, etc

6.2 Mining Graph Data6.2.2 Subgraph Pattern Mining

Challenges

- Node may contain duplicate labels
- Support and confidence
 - How to define them?
- Additional constraints imposed by pattern structure
 - Support and confidence are not the only constraints
 - Assumption: frequent subgraphs must be connected
- Apriori-like approach:
 - Use frequent k-subgraphs to generate frequent (k+1) subgraphs
 - ◆What is k?

Challenges...

- Support:
 - number of graphs that contain a particular subgraph
- Apriori principle still holds
- Level-wise (Apriori-like) approach:
 - Vertex growing:
 - k is the number of vertices
 - Edge growing:
 - k is the number of edges

Apriori-like Algorithm

- Find frequent 1-subgraphs
- Repeat
 - Candidate generation
 - ◆ Use frequent (k-1)-subgraphs to generate candidate k-subgraph
 - Candidate pruning
 - Prune candidate subgraphs that contain infrequent (*k-1*)-subgraphs
 - Support counting
 - Count the support of each remaining candidate
 - Eliminate candidate k-subgraphs that are infrequent

In practice, it is not as easy. There are many other issues

Candidate Generation

- In Apriori:
 - Merging two frequent k-itemsets will produce a candidate (k+1)-itemset
- In frequent subgraph mining (vertex/edge growing)
 - Merging two frequent k-subgraphs may produce more than one candidate (k+1)-subgraph

Graph Isomorphism

- Test for graph isomorphism is needed:
 - During candidate generation step, to determine whether a candidate has been generated
 - During candidate pruning step, to check whether its (k-1)-subgraphs are frequent
 - During candidate counting, to check whether a candidate is contained within another graph

Graph Isomorphism

- Use canonical labeling to handle isomorphism
 - Map each graph into an ordered string representation (known as its code) such that two isomorphic graphs will be mapped to the same canonical encoding
 - Example:
 - ◆ Lexicographically largest adjacency matrix

6.2 Mining Graph Data

6.2.3 gSpan Algorithm

• Perform a DFS on a graph and obtain a DFS tree v0 v1 v2 v2 v3 v4 Graph DFS Tree DFS Order

Any edge in the DFS tree is a forward edge Any edge not in the DFS tree is a backward edge Forward Edge Forward Edge

Scan the database to find all frequent edges For each frequent edge e do Perform a DFS on the subtree rooted at e If a DFS code C visited in the DFS is minimum, then Count the support of C If sup(C) >= minsup then output C Get the children of C by right-most extension

gSpan Algorithm

