

L4 - Conversor comutado DC-DC ampliador

Duarte Marques (96523) | João Chaves (96540)

MEFT | Complementos de Eletrónica

Prof. João Luís Maia Figueirinhas

Instituto Superior Técnico, 9 de janeiro de 2024

Resumo

Nesta atividade experimental, foi estudado um conversor comutado DC-DC ampliador (boost), recorrendo a um transístor 2N3055 a funcionar como interruptor, cujo fator de ciclo (D) é controlado por um gerador de funções. Tendo-se verificado experimentalmente a variação do ganho de tensão com D, procedeu-se à determinação do rendimento do conversor, tendo-se obtido o valor $\eta = (85 \pm 3)$ %. Por outro lado, obteve-se para este circuito uma impedância de saída de $Z_o = (2.5 \pm 0.9) \Omega$ e uma tensão de tremor proporcional ao inverso da frequência de comutação. Além disso, foi considerado o regime de condução descontínua, com $D_o = (32 \pm 4)$ %, através da diminuição considerável da frequência de comutação. Por fim, foi implementado um sistema de realimentação que permitiu estabilizar a tensão de saída (com uma variação máxima de 9%) face a alterações na tensão de entrada do conversor ampliador.

1 Introdução [1-3]

Conversores de potência são utilizados, para além de outras aplicações, na alimentação dos circuitos eletrónicos, que necessitam de tensões contínuas de alimentação. Em todos os casos, um dos principais objetivos é a obtenção de um rendimento elevado. Estes circuitos fazem, por isso, processamento de energia, de forma a reduzir as suas perdas. Desta forma, incluem transístores utilizados como interruptores e elementos reativos (bobines e condensadores). Em particular, os conversores DC/DC permitem, a partir de uma tensão contínua, obter outra tensão contínua de valor diferente.

A topologia do **conversor ampliador** (boost) encontra-se representada na Fig. 1. O interruptor S abre e fecha periodicamente, com uma frequência de comutação $f_c = 1/T$. A fração do período em que o interruptor está fechado representa-se por D e designa-se por fator de ciclo (duty-cycle ou duty-ratio), sendo que num período o interruptor está fechado durante o intervalo de tempo DT e aberto durante (1 - D)T $(D \in]0, 1[)$.

Figura 1: Topologia do conversor ampliador (boost).

Pode admitir-se que a tensão de saída V_O é aproximadamente constante, se a resistência e o condensador originarem uma constante de tempo muito superior ao período de comutação - i.e., RC >> T. Considera-se inicialmente que o interruptor e o díodo são ideias - i.e., desprezando a queda de tensão nestes elementos quando conduzem. Quando o interruptor está fechado, a tensão na bobine vale $v_L = V_I$, sendo $\Delta i_L^{(1)} = \frac{V_I}{L}DT$; quando o interruptor está aberto, a condução no díodo assegura a continuidade da corrente na bobine, ficando $v_L = V_I - V_O$ e $\Delta i_L^{(2)} = \frac{V_I - V_O}{L}(1-D)T$.

Em regime estacionário, o valor de i_L no fim de um período de comutação é igual ao valor no início do período. ou seja, o valor médio de v_L é nulo. Tendo-se que

$$v_L = L \frac{di_L}{dt} \tag{1}$$

a relação $\Delta i_L^{(1)} + \Delta i_L^{(2)} = 0,$ representada na Fig. 2, leva a

$$V_O = \frac{V_I}{1 - D} \tag{2}$$

Figura 2: Curvas caraterísticas do conversor ampliador em regime de condução contínua.

Se i_L não se anular durante o período de comutação, dizse que o circuito funciona em regime de condução contínua. Por outro lado, se a corrente se anular durante uma parte do período, o conversor funciona em regime de condução descontínua. O rendimento dos conversores comutados (para o regime de condução contínua) é elevado. Desprezando as perdas nos outros componentes e considerando que as tensões no interruptor e díodo quando conduzem têm valores constantes V_S e V_D (respetivamente), devido à conservação de energia tem-se que $V_I I_I = V_O I_O + V_S I_S + V_D I_D$, sendo $I_S = I_I D$ e $I_D = I_I (1-D)$ os valores médios das correntes no interruptor e díodo, respetivamente. Assim, chega-se a

$$\eta = \frac{V_O I_O}{V_I I_I} = 1 - \frac{V_S}{V_I} D - \frac{V_D}{V_O} = 1 - \frac{V_S}{V_I} D - \frac{V_D}{V_I} (1 - D) \quad (3)$$

Na realidade, a tensão de saída tem uma componente variável - tremor ou ondulação (ripple) - que se calcula sabendo que durante o intervalo DT o díodo está cortado e o condensador descarrega sobre a resistência:

$$|\Delta v_O| \approx \frac{1}{C} |I_O| DT = \frac{1}{C} \frac{|V_O|}{R} DT$$
 (4)

Realçando que a corrente fornecida à carga é dada por

$$I_O = \frac{V_O}{R} = \frac{V_I}{R(1-D)}$$

O regime de condução contínua mantém-se enquanto $I_L > \Delta i_L/2$, o que leva a

$$I_{I} = \frac{V_{O}I_{O}}{V_{I}} = \frac{1}{1 - D}\frac{V_{O}}{R} > \frac{V_{I}}{2L}DT = \frac{V_{O}(1 - D)DT}{2L}$$

Dando origem à relação

$$\frac{L}{R} > \frac{D(1-D)^2}{2f_c}$$
 (5)

1.1 Regime de condução descontínua

Neste caso, o comportamento é análogo quando o interruptor está fechado. Porém, quando o interruptor está aberto, e antes de se anular i_L , tem-se que $\Delta i_L^{(2)} = \frac{V_I - V_O}{L} D_0 T$; depois de se anular i_L , a corrente e a queda de tensão na bobina são nulos $(i_L = 0, v_L = 0)$. Considerando a relação $\Delta i_L^{(1)} + \Delta i_L^{(2)} = 0$, chega-se a

$$V_O = \frac{D + D_0}{D_0} V_I \tag{6}$$

De forma a determinar D_0 , tem-se em conta que

$$I_{I} = \frac{V_{O}I_{O}}{V_{I}} = \frac{V_{o}}{V_{i}}\frac{V_{O}}{R} = I_{L} = \frac{\Delta i_{L}}{2}(D + D_{0})$$

e substituem-se as equações para o regime de condução descontínua (com $\Delta i_L=|\Delta i_L^{(2)}|$), obtendo-se

$$D_0 = \frac{L}{DRT} \pm \sqrt{\left(\frac{L}{DRT}\right)^2 + \frac{2L}{RT}} \tag{7}$$

2 Trabalho experimental

Nesta atividade laboratorial, foi montado o circuito da Fig. 3, que inclui um gerador de funções com uma resistência interna $R_g = 50\,\Omega.$ Por outro lado, é incluída a resistência R_1 , de valor próximo a R_q , sendo que o transístor Q_1 de modelo 2N3055 funciona como interruptor do conversor ampliador, cujo fator de ciclo é comandado pelo gerador de funções. A alteração mais significativa face à implementação standard da Fig. 1 corresponde à inclusão do díodo D_1 . Este é utilizado de forma a corrigir situações nas quais a tensão V_{CE} no transístor Q_1 fica negativa por algum tempo durante DT, o que levaria a um circuito aberto - tendo o díodo D_1 , é assegurado o "curtocircuito" (havendo uma ligeira queda de tensão devido ao próprio díodo). Neste circuito, a indutância é realizada pelo secundário do transformador utilizado na primeira atividade laboratorial, tendo-se registado o valor $L_1 = (14.2 \pm 0.1) \,\mathrm{mH}.$ Por sua vez, foi utilizado um condensador de capacitância C_1 = 2.2 mF, tendo-se selecionado, na parte inicial do procedimento, uma resistência $R_c = (46.9 \pm 0.1) \Omega$.

Figura 3: Circuito implementado no laboratório.

Inicialmente, foi necessário selecionar a frequência de comutação. Para isso, há que considerar duas condições limitantes, apresentadas na Sec. 1. Por um lado, é necessário garantir que a constante de tempo do filtro passa-baixo é muito superior a $1/f_c$, correspondendo à primeira condição em (8). Por outro lado, de forma a assegurar o regime de condução contínua, há que ter em conta a relação mencionada na Sec. 1.1, que leva à segunda condição em (8), sendo que o valor máximo do segundo membro desta inequação acontece para D=1/3. Desta forma, foi utilizada na maior parte deste procedimento laboratorial a frequência f_c apresentada na Tab. 1.

$$f_c \gg \frac{1}{R_c C_1} \wedge f_c > \frac{R_c}{2L_1} D(1-D)^2$$
 (8)

Limites	$f_c[Hz]$	
$R_c C_1 \gg T$	Condução contínua	IC[IIZ]
9.69 ± 0.02	245 ± 2	1005 ± 5

Tabela 1: Limites inferiores para a frequência de comutação e respetivo valor selecionado.

Finalmente, foram ajustados os parâmetros no gerador de funções de forma a gerar uma onda quadrada (logo, com D=50%), com a frequência de comutação f_c e a variar entre $0\,\mathrm{V}$ e $(4.5\pm0.1)\,\mathrm{V}$, tendo o valor de amplitude sido selecionado de forma a observar uma onda quadrada sem saturação nem distorção para a queda de tensão V_{CE} de Q_1 . Quando o transístor conduz, esta tensão é mínima, sendo o seu valor igual à tensão na saída (desconsiderando a queda de tensão no díodo) quando a tensão no gerador é nula (o transístor corta).

2.1 Variação da tensão de saída com D

Em seguida, foi variado o fator de ciclo D no gerador de funções - o que implicou ajustes consequentes na frequência de forma a manter o valor de f_c . Tendo em conta a previsão teórica descrita por (2), de forma a variar V_o entre $10\,\mathrm{V}$ e $20\,\mathrm{V}$, dever-se-iam selecionar valores de D entre 23.0% e 61.5%, respetivamente. Na prática, obtiveram-se experimentalmente valores de V_o (medidos em R_c) entre estes limites, em saltos de aproximadamente $1\,\mathrm{V}$, sendo o fator de ciclo D consequentemente determinado com o osciloscópio. Tendo em conta a tensão $V_1 = (7.7 \pm 0.1)\,\mathrm{V}$ e as tensões registadas na saída, foram obtidos os resultados apresentados na Fig. 4, dispostos com a respetiva previsão teórica dada por (2). Além disso, é apresentada uma curva "corrigida" na qual se considera a queda de tensão no díodo D_2 , aproximada por $V_D = 0.7\,\mathrm{V}$, anteriormente desconsiderada na análise teórica.

Figura 4: Variação do ganho de tensão $G_V = V_o/V_1$ com o fator de ciclo D.

Tendo em conta os resultados obtidos, observa-se uma concordância significativa entre os valores experimentais e os valores teóricos ao quais foi subtraída a queda de tensão no díodo, para menores valores de D. À medida que D aumenta, porém, o termo 1/(1-D) torna-se mais significativo, havendo

maior discrepância face a ambas as curvas teóricas. Quando D aumenta, o transístor Q_1 conduz durante um intervalo de tempo superior. Os resultados experimentais indicam que V_o não adota valores tão elevados como esperado, o que poderá ser resultado de dissipação de potência em resistências parasíticas.

2.2 Rendimento do conversor

Tendo-se configurado uma onda (aproximadamente) quadrada no gerador, com $D=(50.8\pm0.8)\,\%$, foram registadas a tensão e corrente na fonte, assim como a tensão na saída, de forma a determinar as potências de entrada e saída, dadas respetivamente por $P_i=V_1I_1$ e $P_o=V_oI_o=V_o^2/R_c$. Por sua vez, o rendimento respetivo é dado por $\eta=P_o/P_i$. Tendo isto em conta, foram obtidos os resultados na Tab. 2, no qual o rendimento teórico η_{teo} é dado pela equação (3), tendo-se considerado $V_D=0.7\,\mathrm{V}$. Por outro lado, considerou-se $V_S=1.1\,\mathrm{V}$, correspondente ao valor mínimo da tensão de saturação do transístor indicada na respetiva ficha técnica [4].

Parâmetro	Valor
$V_1[V]$	7.5 ± 0.1
$I_1[A]$	0.64 ± 0.01
$V_o[V]$	13.84 ± 0.01
$P_i[W]$	4.8 ± 0.2
$P_o[W]$	4.08 ± 0.01
η [%]	85 ± 3
$\eta_{teo}[\%]$	88.4

Tabela 2: Valores relativos às potências e rendimento do circuito.

Neste caso, obteve-se uma proximidade considerável entre os valores experimental e teórico do rendimento, sendo que a pequena diferença pode ser justificada pela queda de tensão ou perda de corrente em elementos parasíticos no circuito, na fonte, no gerador de funções ou na resistência R_1 . Além disso, os parâmetros V_D e V_S poderão assumir valores distintos dos considerados nos cálculos. A obtenção destes rendimentos elevados é uma principais preocupações em conversores de potência, que visam evitar perdas de energia - daí serem constituídos por elementos reativos (condensadores e bobines) e interruptores (transístores).

2.3 Impedância de saída

Tendo mantido o valor de fator de ciclo, foram utilizadas dois valores distintos para R_c e medidas as respetivas quedas de tensão, de forma a determinar a impedância de saída com a fórmula

$$Z_o = \begin{vmatrix} v_{o_2} - v_{o_1} \\ \frac{v_{o_1}}{R_{c_1}} - \frac{v_{o_2}}{R_{c_2}} \end{vmatrix}$$
 (9)

de acordo com a configuração apresentada na Fig. 5. Neste caso, a carga adicionada (R_{load}) seria colocada em paralelo com R_c , pelo que alterar o valor desta carga corresponde a utilizar valores distintos para R_c . Desta forma, foram obtidos os resultados apresentados na Tab. 3. O baixo valor de Z_o , na ordem de grandeza de 1Ω , é benéfico neste tipo de circuitos de forma a evitar a perda de potência devido à divisão de tensão resultante da ligação deste circuito a uma dada carga - nomeadamente, outro andar num sistema eletrónico mais complexo. Se tal acontecesse, seria de certa forma desperdiçado o elevado rendimento que se obtém com este tipo de conversores de potência.

$ m R_{c_1}[\Omega]$	$\mathrm{R_{c_2}}[\Omega]$	$\mathbf{Z_o}[\Omega]$	
46.9 ± 0.1	52.1 ± 0.1	2.5 ± 0.9	

Tabela 3: Determinação da impedância de saída.

Figura 5: Método de determinação da impedância de saída.

2.4 Tensão de tremor

Para a determinação do tremor na tensão de saída (com D=50%), foi utilizado o osciloscópio, de forma a obter valores com maior exatidão. Estes resultados foram obtidos para três valores da frequência de comutação - aproximadamente f_c (determinado anteriormente), $f_c/2$ e $2f_c$. Em cada caso, foi registado o valor da tensão de saída (V_o) de forma a calcular os quocientes $\Delta V_o/V_o$ e compará-los com as respetivas previsões teóricas dadas por (4). Desta forma, foram obtidos os resultados na Tab. 4, tendo-se utilizado os valores experimentais de V_o para determinar os respetivos valores teóricos do ripple.

	$\mathbf{f}[\pm 1Hz]$	$\Delta v_o[mV]$	$\Delta v_{o(t)}[mV]$	$\Delta v_o/V_o[\%]$	$\Delta m v_{o(t)}/V_{o}[\%]$
	498	441 ± 1	135 ± 3	3.19 ± 0.01	0.99 ± 0.02
ı	1011	352 ± 1	66 ± 1	2.53 ± 0.01	0.49 ± 0.01
	2005	318 ± 1	34 ± 1	2.27 ± 0.01	0.25 ± 0.01

Tabela 4: Determinação da tensão de tremor - valores experimentais e teóricos (t).

Tendo em conta estes resultados, verifica-se a relação $\Delta v_o/V_o \propto 1/f$ prevista teoricamente. Com todos valores da frequência de comutação considerados, não se transitará para um regime de condução descontínuo, tendo em conta o estudo anterior indicado na Tab. 1. Porém, verifica-se que os valores experimentais se encontram acima dos respetivos valores teóricos, em cerca de 2 pontos percentuais. Estas discrepâncias poderão ser devidas ao valor da capacitância, que não foi medida em laboratório, tendo sido considerado o valor indicado no próprio componente. Ao longo do tempo, a perturbação do dielétrico num condensador vai levando à diminuição da sua capacitância, o que faz aumentar o valor de Δv_o .

2.5 Regime de condução descontínua

De forma a estudar o regime de condução descontínua, começou-se por considerar a hipótese de aumentar o valor de R_c . De acordo com a equação (5), o valor máximo para o regime de condução contínua corresponde a $R_{c(max)} = 227.2\,\Omega$ (com D=50% e $f_c=1\,\mathrm{kHz}$). Contudo, tendo em conta o material disponível em laboratório, não seria possível utilizar valores desta ordem de grandeza. Desta forma, diminuiu-se a frequência de comutação até a condição em (5) se verificar.

A transição para o regime de condução descontínua foi verificada no osciloscópio, sendo que a tensão V_{CE} do transístor Q_1 tem o seu valor mínimo quando este conduz. Por sua vez, vale V_o+V_D (sendo V_D a queda de tensão no díodo) quando o interruptor está aberto, tendo-se registado $V_{CE(D_0)}=(17.6\pm0.1)\,\mathrm{V}$ com o osciloscópio. Quando a corrente na bobine se anula, e o transístor continua cortado, ocorre uma descarga do condensador, acabando por atingir um valor ligeiramente superior a V_1 , dado por $V_{CE(1-D-D_0)}=(7.85\pm0.01)\,\mathrm{V}$. Este comportamento é observável na Fig. 6.

Figura 6: Valor de V_{CE} em função do tempo.

Nestas condições, foram obtidos os resultados da Tab. 5, tendo em conta um fator de ciclo $D=(51\pm5)\%$ medido. Obteve-se um erro experimental para V_o de -20%, diferindo D_0 em 8 pontos percentuais. Considerando a definição de D_0 , conclui-se que a corrente na indutância atingiu o valor nulo mais tarde do que previsto teoricamente, o que poderá indicar que L_1 possui um valor superior ao esperado, o que realça um dos problemas associados a este regime de condução - a dependência direta do valor da tensão de saída face a outros parâmetros do circuito (nomeadamente, L_1 , R_c e f_c). Por outro lado, embora o ganho de tensão seja agora ligeiramente superior ao regime de condução contínua, verificou-se no osciloscópio a existência de maior tensão de tremor - uma vez que o condensador descarrega em DT e também em $(1-D-D_0)T$.

Exp	erimental	Teórico	
$D_0[\%]$	$V_o[V]$	$D_0[\%]$	$V_o[V]$
32 ± 4	16.02 ± 0.01	24 ± 2	20 ± 2

Tabela 5: Resultados no regime de condução descontínua.

2.6 Sistema realimentado

Finalmente, o conversor ampliador foi desconectado do gerador de funções, tendo sido incorporado no sistema de realimentação da Fig. 7. O objetivo deste novo sistema é manter a tensão de saída o mais estável possível, através da variação do fator de ciclo D. Utilizando o amplificador operacional (AMPOP) de modelo LM741, define-se para o bloco com este dispositivo a função $V_x = V_+ - V_o'$ - considerando os ganhos das configurações inversora e não-inversora e o Princípio da Sobreposição. Desta forma, o aumento (diminuição) de V_o leva à consequente diminuição (aumento) da tensão de saída deste bloco. Uma vez que V_o visa ser comparada com $VCC \approx 8 \, \mathrm{Ver}$ 0 poderia admitir valores até cerca de 20 V para os valores de V_i 0 considerados posteriormente, é ligado um divisor de tensão à saída do conversor ampliador, de forma a obter V_o' 0.

Por sua vez, recorrendo ao bloco com o AMPOP de modelo LM311, é construído um modulador de largura de impulso (PWM), no qual a tensão em dente de serra proveniente do gerador de funções é comparada com a saída do bloco anterior. O sinal resultante é consequentemente utilizado para controlar o intervalo de tempo no qual o transístor bipolar BD137 (e, consequentemente, Q_1) conduz, determinando-se assim o fator de ciclo D. Quando V_x aumenta (diminui), o fator de ciclo aumenta (diminui). Assim, construiu-se um sistema no qual uma subida em V_o leva a uma descida no valor de V_x , o que diminui o valor de D; tendo em conta a equação (2), isto leva a uma diminuição em V_o , contrariando assim a sua subida anterior. Por sua vez, acontece o inverso quando o valor de V_o diminui - por exemplo, devido a um menor valor de V_i .

Figura 7: Sistema implementado em laboratório.

Desta forma, tendo variado V_i , foram registados os consequentes valores de V_o , tendo sido obtidos os resultados na Fig. 8, na qual se incluem as previsões teóricas dadas por (2) (com D=50%). Observa-se uma considerável estabilização dos valores de V_o , tendo-se obtido um declive $a_{exp}=0.325\pm0.003$ para o ajuste linear, face ao respetivo valor sem realimentação dado por $a_{teo}=2$ - havendo assim uma diferença de -84%. De forma a obter esta considerável estabilização, acabou por ser colocado outro bloco com o dispositivo LM741 (representado na Fig. 7), correspondente a uma configuração não inversora, que amplifica o seu sinal de entrada para que variações em V_o levem a alterações mais significativas em V_x (comparado com a tensão em dente de serra).

Figura 8: Variação de V_o com e sem realimentação.

3 Conclusão

Com a realização deste trabalho experimental, foi possível estudar diferentes caraterísticas do conversor comutado DC-DC ampliador (boost). A parte inicial desta atividade foi efetuada em regime de condução contínua, tendo-se observado uma variação do ganho de tensão com o fator de ciclo D próxima dos resultados esperados, sobretudo para valores inferiores do fator de ciclo. Por sua vez, obteve-se um elevado rendimento de $\eta = (85 \pm 3)\%$, próximo das previsões teóricas, que apenas consideram perdas no interruptor e no díodo D_2 (levando, por isso, a um rendimento ligeiramente superior). Em seguida, como desejado, obtiveram-se baixos valores para a impedância de saída (na ordem de grandeza de 1Ω) e tensão de tremor (entre 2.27% e 3.19% em termos relativos), tendo havido uma discrepância de cerca de 2 pontos percentuais face aos valores esperados de $\Delta v_o/V_o$. De forma a obter resultados com maior exatidão, poder-se-ia ter registado o valor da capacitância C_1 em laboratório, de forma a limitar sobretudo a causa desta discrepância a elementos parasíticos no circuito. Por sua vez, de forma a estudar o regime de condução descontínua, foi alterada a frequência de comutação de forma a determinar D_0 e V_o . Finalmente, foi estabelecido um sistema de controlo com um loop de realimentação negativa, tendo sido possível estabilizar consideravelmente a tensão de saída face a um intervalo de variação de $\Delta V_i = (4.28 \pm 0.02) \, \text{V}$ na tensão de entrada.

Referências

- Manuel de Medeiros Silva. Circuitos com Transístores Bipolares e MOS. 6ª ed. Fundação Calouste Gulbenkian, 2016.
- [2] José Gerald (DEEC). Capítlo 6 Conversores Eletrónicos de Potência. Eletrónica Geral (Instituto Superior Técnico). Ago. de 2021.
- [3] José Luís Maia Figueirinhas (DF). Conversores eletrónicos de potência. Complementos de Eletrónica (Instituto Superior Técnico). 2023.
- [4] LLC Semiconductor Components Industries. 2N3055(NPN), MJ2955(PNP). Rev. 6.