

A Diffusion Model for Battery Degradation Prediction and Synthesis

Hamidreza Eivazi 1,3,* , André Hebenbrock 1,3 , Raphael Ginster 2,3 , Steffen Blömeke 2,3 , Stefan Wittek 1 , Christoph Herrmann 2,3 , Thomas S. Spengler 2,3 , Thomas Turek 1,3 , Andreas Rausch 1,3

¹Clausthal University of Technology, ²Technische Universität Braunschweig, ³Battery LabFactory Braunschweig (BLB)

★he76@tu-clausthal.de

NEURAL INFORMATION PROCESSING SYSTEMS

Introduction

Lithium-ion Batteries. Li-ion batteries are pivotal in energy storage due to their high energy density and long cycle life. Despite their advantages, challenges such as safety risks, environmental impacts, and complex degradation processes persist.

Capacity Degradation. Battery capacity degradation occurs through calendar and cycle aging. This degradation reduces the battery's capacity over time and is very individual depending on, e.g., usage behavior and environmental conditions. Despite extensive research, predicting the rate of capacity loss remains a challenge.

Battery Life Prediction

Machine Learning in Battery Life Prediction. Machine learning (ML) is increasingly employed to predict battery degradation by estimating the state of health (SOH) and remaining useful life (RUL).

Our Contribution. This work introduces DiffBatt, a diffusion model specifically tailored for battery degradation. DiffBatt functions as a probabilistic model to capture the inherent uncertainties in aging processes and a generative model to simulate battery degradation over time. We believe DiffBatt offers a promising pathway toward developing a foundational model for battery degradation.

Methodology

Architecture.

DiffBatt is based on U-Net architecture and employs

- Diffusion Processes
- Classifier-Free Guidance
- Early Cycle Data
- Transformer Encoder

to generate high-quality SOH curves. Our model can be utilized for RUL prediction, SOH estimation, and SOH synthesis.

Conditioning.

Battery information, e.g., the capacity matrix or a diffusion timestep, is embedded and fed into intermediate layers of the network.

Inference.

DiffBatt maps Gaussian noise into a new SOH curve through the reverse diffusion process.

Figure 1: Schematic view of the model architecture. Adapted and modified from the work by [1], with permission from the authors

Figure 2: Denoising steps for one test sample of the MATR dataset.

RUL and SOH Prediction

We conduct a comprehensive evaluation based on several open datasets.

Table 1: Results obtained from DiffBatt for RUL prediction against benchmark results reported in [2]. For models sensitive to initialization, values in the table correspond to the mean error and the standard deviation, mean_{ad-a} across ten seeds. Values that are <u>underlined</u> represent the best results from the benchmarks in BatteryML, while values that are **bold** indicate the overall best results.

Cycle number

Models	MATR1	MATR2	HUST	SNL	CLO	CRUH	CRUSH	MIX	Mean
"Discharge" model	329	149	322	267	143	76	>1000	>1000	411
"Full" model	167	>1000	335	433	<u>138</u>	93	>1000	331	437
PCR	90	187	435	200	197	68	560	376	264
PLSR	104	181	431	242	176	60	535	383	264
XGBoost	334	799	395	547	215	119	330	205	368
Random forest	168 ₉	2337	3687	532 ₂₅	1922	81 ₁	4165	<u>197₀</u>	273
MLP	1493	27527	459 ₉	37081	1465	1034	565 ₉	45142	263
CNN	10294	228104	46575	924267	>1000	17492	54511	272101	464
LSTM	11911	21933	44329	53940	22212	10510	51939	2689	304
Transformer	135 ₁₃	36425	39111	42423	18714	818	550 ₂₁	271 ₁₆	300
DiffBatt (ours)	884	23516	36823	12511	14014	1196	294 ₁₈	2026	196

 $\boldsymbol{c} = [\boldsymbol{c}_t, \boldsymbol{c}_q, \cdots]$

(a) RUL prediction

(b) SOH prediction

k steps

Figure 3: Results obtained from DiffBatt for RUL prediction and SOH estimation on the MIX test datasets. (a) Predicted RUL against the reference, colored by the standard deviation σ_{RUL} . (b) Generated samples and selected predictions, compared against the reference SOH for test samples with the lowest (left) and highest (right) uncertainty in the predictions.

Key Takeaways. DiffBatt exhibits a mean RMSE of 196 across all datasets, outperforming all other models. These results illustrate DiffBatt's efficacy in learning from and generalizing across diverse data sources.

References

- F. Fürrutter et al. Quantum circuit synthesis with diffusion models. Nat. Mach. Intell., 6(5), 2024.
- [2] H. Zhang et al. BatteryML: An open-source platform for machine learning on battery degradation. In ICLR, 2024.

Code and Data

https://github.com/HamidrezaEiv/DiffBatt

Acknowledgement. This research was conducted within the Research Training Group CircularLIB, supported by the Ministry of Science and Culture of Lower Saxony with funds from the program zukunft.niedersachsen of the Volkswagen Foundation (MWK | ZN3678).