Lecture 1

Introduction to HPC architecture

What is High Performance Computing? High Productivity Computing

HPC is computing on *supercomputer or* a computer with contemporary processing capacity- with high calculation speed and memory.

HPC can happen on:

- A workstation, desktop, laptop, smartphone!
- A supercomputer
- A Linux/MacOS/Windows/... cluster
- A cloud
- Cyberinfrastructure = any combination of the above

Why do we need Computers in Science?

- Numerical solution to complex problems
- Performing "numerical" experiments that are otherwise impossible to perform in a lab
- Verifying the correctness of theories and models

High Performance Computing

Why performance is so important?

1988: PC: 0.25 million FLOPs

400 PCs = 100 million FLOPs?

Why HPC?

- Scientific applications / simulations require greater computing power.

- Single core processors cannot be made more efficient:
- Faster clock speeds cannot be obtained due to cost and power/heat limitations.
- Huge memory on a processor cannot be put —> expensive

Solution: parallel computing

Can putting more transistors on processor chip enhance performance?

TEDxUIUC - William Gropp - Petascale Computing in Scientific Research (Blue Waters)

Where is HPC needed?

Applications: Scientific research and industrial innovation

Biology

Material science

Earth sciences

Climate modeling

Top500 List of Supercomputers

Rank	Site	System	Cores	Rmax (TFlop/s)	Rpeak (TFlop/s)	Power (kW)
1	DOE/SC/Oak Ridge National Laboratory (/site/48553) United States	Summit - IBM Power System AC922, IBM POWER9 22C 3.07GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband (/system/179397) IBM	2,414,592	148,600.0	200,794.9	10,096
2	DOE/NNSA/LLNL (/site/49763) United States	Sierra - IBM Power System S922LC, IBM POWER9 22C 3.1GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband (/system/179398) IBM / NVIDIA / Mellanox	1,572,480	94,640.0	125,712.0	7,438
3	National Supercomputing Center in Wuxi (/site/50623) China	Sunway TaihuLight - Sunway MPP, Sunway SW26010 260C 1.45GHz, Sunway (/system/178764) NRCPC	10,649,600	93,014.6	125,435.9	15,371
4	National Super Computer Center in Guangzhou (/site/50365) China	Tianhe-2A - TH-IVB-FEP Cluster, Intel Xeon E5-2692v2 12C 2.2GHz, TH Express-2, Matrix-2000 (/system/177999) NUDT	4,981,760	61,444.5	100,678.7	18,482
5	Texas Advanced Computing Center/Univ. of Texas (/site/48958) United States	Frontera - Dell C6420, Xeon Platinum 8280 28C 2.7GHz, Mellanox InfiniBand HDR (/system/179607) Dell EMC	448,448	23,516.4	38,745.9	
6	Swiss National Supercomputing Centre (CSCS) (/site/50422) Switzerland	Piz Daint - Cray XC50, Xeon E5-2690v3 12C 2.6GHz, Aries interconnect, NVIDIA Tesla P100 (/system/177824) Cray Inc.	387,872	21,230.0	27,154.3	2,384
7	DOE/NNSA/LANL/SNL (/site/50334) United States	Trinity - Cray XC40, Xeon E5-2698v3 16C 2.3GHz, Intel Xeon Phi 7250 68C 1.4GHz, Aries interconnect (/system/178610) Cray Inc.	979,072	20,158.7	41,461.2	7,578
8	National Institute of Advanced Industrial Science and Technology (AIST) (/site/50762) Japan	Al Bridging Cloud Infrastructure (ABCI) - PRIMERGY CX2570 M4, Xeon Gold 6148 20C 2.4GHz, NVIDIA Tesla V100 SXM2, Infiniband EDR (/system/179393)	391,680	19,880.0	32,576.6	1,649

Some of the fastest HPC facilities around the world

"Summit" supercomputer: Oak Ridge National Laboratory, USA 200 PetaFLOPs

"Sierra" supercomputer: Lawrence Livermore National Laboratory, USA 125 PetaFLOPs

Sunway TaihuLight, China 93 PetaFLOPs

Source: Top500 List

Supercomputing in India

Top500 List:

53	Indian Institute of Tropical Meteorology (/site/50296) India	Pratyush - Cray XC40, Xeon E5-2695v4 18C 2.1GHz, Aries interconnect (/system/179416) Cray Inc.	119,232	3,763.9	4,006.2	1,353
86	National Centre for Medium Range Weather Forecasting (/site/50235) India	Mihir - Cray XC40, Xeon E5-2695v4 18C 2.1GHz, Aries interconnect (/system/179418) Cray Inc.	83,592	2,570.4	2,808.7	955

Supercomputing in India (National Supercomputing Mission)

Param Shakti
IIT Kharagpur 1.3 PetaFLOPs

Param Shivay
IIT BHU 833 TeraFLOPs

Param Brahma
IISER Pune 797 TeraFLOPs

Other Supercomputing Facilities in India

"Pratyush" 4 PetaFLOPs

Indian Institute of Tropical Meteorology

"Mihir" 2.5 PetaFLOPs National Centre for Medium Range Weather Forecasting

Some definitions...

- 1. **Desktop computer** or Personal computer
- 2. **Workstation**: a desktop computer, networked and more powerful than a personal computer
- 3. **Servers**: a computer on a network that manages network resources.
- 4. **Cluster**: collection of desktop computers or servers connected by local area network to act as single large computer.
- 5. Floating point operations per second: computing performance
- **FLOPs** = no. of cores * cycles per sec * FLOP per cycle

Your desktop computer

Intel Core i7 4790 (Haswell) processor

4 cores at 4.0 GHz

Floating point operations per second

FLOPs = no. of cores * cycles per sec * FLOP per cycle

8 double precision floating point operations per second (FLOP/s)

Desktop PC ~ 128 GFLOPs

HPC cluster at IIT Kharagpur: 1.3 PFLOPs

Exascale computing

High Performance Computing

Why performance is so important?

1988: PC: 0.25 million FLOPs

400 PCs = 100 million FLOPs?

HPC Layout

Basic HPC Layout

A typical HPC cluster...

A cluster in 2002

The Ugly part...

HPC cluster these days...

How we use the HPC?

Debug/improve performance

Basic Computer Architecture

Basic Computer Architecture (von Neumann architecture)

Processor or CPU **ALU** Registers Control Main Memory I/O I/O I/O

Moore's law

Gordon Moore (Intel cofounder) "Cramming more components onto integrated circuits" 1995, Electronics Magazine

Number of transistors in a dense integrated circuit (IC) doubles about every two years.

Processor building technology

Year	Technology used in computers	Relative performance/unit cost
1951	Vacuum tube	1
1965	Transistor	35
1975	Integrated circuit	900
1995	Very large-scale integrated circuit	2,400,000
2013	Ultra large-scale integrated circuit	250,000,000,000

Processor chip

Processor architecture

Basic Computer Architecture

Memory Hierarchy

Fastest and smallest

Slowest and largest

Machine Cycle /Instruction Set

- 1. Fetch
- 2. Decode
- 3. Execute
- 4. Write/Store

Registers (Small units of memory inside Processor)

Special Purpose registers: (hold program state)

- 1. Program Counter (PC)
- 2. Instruction Register (IR)
- 3. Processor Status Register

Registers (Small units of memory inside Processor)

General Purpose Registers (GPRs): (store a data or a memory location address)

- Available to use for any program or user
- Large speed disparity between *processor* and the *main memory* where instructions and data are stored
- A typical processor has 32 GPRs.

Processor is 100 times faster than the type of memory

Cache

- Like a temporary storage
- Provides ability to access data at high speed
- Principle of locality: Most programs do not access all code or data uniformly.
- Temporal locality: least recently used objects are least slightly to be referenced in future.
- Spatial locality: neighbours of recently referenced locations are likely to be referenced in the near future.

Main Memory: RAM (Random Access Memory)

Able to handle arbitrary ordered requests without favouring any particular request

- SRAM (Static Random Access Memory)
- DRAM (Dynamic Random Access Memory)

Speed and capacity can vary

Video on how processors are made

https://www.youtube.com/watch?v=qm67wbB5Gml