Übungsblatt 4

Felix Kleine Bösing

November 10, 2024

Aufgabe 1

Untersuchen Sie, welche der folgenden Teilmengen Untervektorräume von \mathbb{Q}^3 sind:

$$M_{1} = \{(x, y, z) \in \mathbb{Q}^{3} : x, y, z \geq 0\},$$

$$M_{2} = \{(x, y, z) \in \mathbb{Q}^{3} : 3x + y + z = 5\},$$

$$M_{3} = \{(x, y, z) \in \mathbb{Q}^{3} : x + 2y = 3z\},$$

$$M_{4} = \{(x, y, z) \in \mathbb{Q}^{3} : xy - z = 0\}.$$

Teil (a)

Beweis: Um zu überprüfen, ob M_1 ein Untervektorraum von \mathbb{Q}^3 ist, müssen wir die folgenden Eigenschaften zeigen:

- 1. **Der Nullvektor muss enthalten sein:** Der Nullvektor in \mathbb{Q}^3 ist (0,0,0). Da $0 \geq 0$ für jede Komponente gilt, gehört der Nullvektor zu M_1 .
- 2. **Abgeschlossenheit unter Addition:** Nehmen wir an, dass $(x_1, y_1, z_1), (x_2, y_2, z_2) \in M_1$. Dann sind $x_1, y_1, z_1 \geq 0$ und $x_2, y_2, z_2 \geq 0$. Für die Summe $(x_1 + x_2, y_1 + y_2, z_1 + z_2)$ gilt ebenfalls $x_1 + x_2 \geq 0$, $y_1 + y_2 \geq 0$ und $z_1 + z_2 \geq 0$, sodass die Summe auch in M_1 liegt.
- 3. Abgeschlossenheit unter Skalarmultiplikation: Sei $(x, y, z) \in M_1$ und $c \in \mathbb{Q}$. Wenn c < 0, dann wird eine oder mehrere der Komponenten cx, cy, cz negativ, was die Bedingung $x, y, z \geq 0$ verletzt. Daher ist M_1 nicht unter Skalarmultiplikation abgeschlossen.

Da M_1 nicht unter Skalarmultiplikation abgeschlossen ist, ist es **kein** Untervektorraum von \mathbb{Q}^3 .

Teil (b)

Beweis: Untersuchen wir, ob M_2 ein Untervektorraum von \mathbb{Q}^3 ist.

1. **Der Nullvektor muss enthalten sein:** Der Nullvektor in \mathbb{Q}^3 ist (0,0,0). Setzen wir diesen in die Bedingung 3x+y+z=5 ein, so erhalten wir:

$$3 \cdot 0 + 0 + 0 = 0 \neq 5.$$

Daher gehört der Nullvektor **nicht** zu M_2 .

Da der Nullvektor nicht in M_2 liegt, ist M_2 kein Untervektorraum von \mathbb{Q}^3 .

Teil (c)

Beweis: Untersuchen wir, ob M_3 ein Untervektorraum von \mathbb{Q}^3 ist.

1. **Der Nullvektor muss enthalten sein:** Der Nullvektor in \mathbb{Q}^3 ist (0,0,0). Setzen wir diesen in die Bedingung x+2y=3z ein, so erhalten wir:

$$0 + 2 \cdot 0 = 3 \cdot 0,$$

was offensichtlich wahr ist. Daher gehört der Nullvektor zu M_3 .

2. Abgeschlossenheit unter Addition: Nehmen wir an, dass $(x_1, y_1, z_1), (x_2, y_2, z_2) \in M_3$. Dann gilt:

$$x_1 + 2y_1 = 3z_1$$
 und $x_2 + 2y_2 = 3z_2$.

Für die Summe $(x_1 + x_2, y_1 + y_2, z_1 + z_2)$ ergibt sich:

$$(x_1+x_2)+2(y_1+y_2)=(x_1+2y_1)+(x_2+2y_2)=3z_1+3z_2=3(z_1+z_2),$$

sodass die Summe ebenfalls die Bedingung erfüllt. M_3 ist also unter Addition abgeschlossen.

3. Abgeschlossenheit unter Skalarmultiplikation: Sei $(x, y, z) \in M_3$ und $c \in \mathbb{Q}$. Dann gilt:

$$x + 2y = 3z$$
.

Für das Produkt $c \cdot (x, y, z) = (cx, cy, cz)$ erhalten wir:

$$cx + 2(cy) = c(x + 2y) = c \cdot 3z = 3(cz),$$

was zeigt, dass auch (cx, cy, cz) die Bedingung erfüllt. Somit ist M_3 unter Skalarmultiplikation abgeschlossen.

Da M_3 sowohl den Nullvektor enthält als auch unter Addition und Skalarmultiplikation abgeschlossen ist, ist M_3 ein **Untervektorraum** von \mathbb{Q}^3 .

Teil (d)

Beweis: Untersuchen wir, ob M_4 ein Untervektorraum von \mathbb{Q}^3 ist.

1. **Der Nullvektor muss enthalten sein:** Der Nullvektor in \mathbb{Q}^3 ist (0,0,0). Setzen wir diesen in die Bedingung xy-z=0 ein, so erhalten wir:

$$0 \cdot 0 - 0 = 0,$$

was offensichtlich wahr ist. Daher gehört der Nullvektor zu M_4 .

2. **Abgeschlossenheit unter Addition:** Nehmen wir an, dass $(x_1, y_1, z_1), (x_2, y_2, z_2) \in M_4$, also $x_1y_1 = z_1$ und $x_2y_2 = z_2$. Für die Summe $(x_1+x_2, y_1+y_2, z_1+z_2)$ ergibt sich jedoch:

$$(x_1 + x_2)(y_1 + y_2) = x_1y_1 + x_1y_2 + x_2y_1 + x_2y_2.$$

Da zusätzliche Kreuzterme wie x_1y_2 und x_2y_1 auftreten, ist im Allgemeinen $(x_1+x_2)(y_1+y_2) \neq z_1+z_2$. Somit ist M_4 nicht unter Addition abgeschlossen.

Da M_4 nicht unter Addition abgeschlossen ist, ist es **kein Untervektorraum** von \mathbb{Q}^3 .

Aufgabe 4.2

Teil (a)

Beweis: Wir sollen ein Beispiel eines Vektorraums V und einer Teilmenge $M \subseteq V$ finden, sodass für alle $v, w \in M$ mit $v \neq w$ die Vektoren v und w linear unabhängig sind, die Menge M jedoch linear abhängig ist.

Ein solches Beispiel ist der Vektorraum $V = \mathbb{R}^3$ und die Teilmenge

$$M = \left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \right\}.$$

Betrachten wir die Eigenschaften dieser Vektoren:

- 1. Für jedes Paar unterschiedlicher Vektoren $v, w \in M$ sind v und w linear unabhängig. Zum Beispiel sind $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$ und $\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$ linear unabhängig, da keine Linearkombination $c_1 \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + c_2 \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = 0$ für $c_1, c_2 \in \mathbb{R}$ außer $c_1 = c_2 = 0$ existiert.
- 2. Die Menge M ist jedoch linear abhängig, da

$$\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} - \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

Dies zeigt, dass die Vektoren in M eine lineare Abhängigkeit aufweisen.

Somit erfüllt die Teilmenge M die Bedingungen der Aufgabe.

Teil (b)

Beweis: Gegeben sei ein Körper K und ein K-Vektorraum V. Sei $M = \{v_1, \ldots, v_n\} \subseteq V$ eine Teilmenge, wobei $0 \notin M$. Wir sollen zeigen, dass M genau dann linear unabhängig ist, wenn für alle $i \in \{1, 2, \ldots, n-1\}$ gilt:

$$\langle v_1, \dots, v_i \rangle \cap \langle v_{i+1}, \dots, v_n \rangle = \{0\}.$$

1. **Notwendigkeit:** Angenommen, M ist linear unabhängig. Dann bedeutet dies, dass keine nicht-triviale Linearkombination der Vektoren in M den Nullvektor ergibt. Insbesondere ist jeder Vektor v_i nicht in der Linearkombination der anderen Vektoren, was impliziert, dass für jedes i die Schnittmenge $\langle v_1, \ldots, v_i \rangle \cap \langle v_{i+1}, \ldots, v_n \rangle$ nur den Nullvektor enthält, also

$$\langle v_1, \dots, v_i \rangle \cap \langle v_{i+1}, \dots, v_n \rangle = \{0\}.$$

2. **Hinreichend:** Angenommen, für alle $i \in \{1, 2, ..., n-1\}$ gilt $\langle v_1, ..., v_i \rangle \cap \langle v_{i+1}, ..., v_n \rangle = \{0\}$. Dies bedeutet, dass es keine nicht-triviale Linearkombination von $v_1, ..., v_i$ gibt, die auch als Linearkombination von $v_{i+1}, ..., v_n$ ausgedrückt werden kann. Folglich ist M linear unabhängig, da jede Linearkombination, die den Nullvektor ergibt, nur die triviale Lösung $c_1 = c_2 = \cdots = c_n = 0$ hat.

Damit ist gezeigt, dass M genau dann linear unabhängig ist, wenn für alle $i \in \{1, 2, ..., n-1\}$ gilt:

$$\langle v_1, \dots, v_i \rangle \cap \langle v_{i+1}, \dots, v_n \rangle = \{0\}.$$

Aufgabe 4.3

Gegeben seien ein Körper K und die Untervektorräume $U, V \subseteq K^n$. Definieren wir die folgenden Mengen:

```
U\cap V=\{x\in K^n:x\in U\text{ und }x\in V\}, U\cup V=\{x\in K^n:x\in U\text{ oder }x\in V\}, U+V=\{x\in K^n:\text{es existieren }u\in U\text{ und }v\in V\text{ mit }x=u+v\}. Zeigen Sie:
```

Teil (a)

Beweis: Um zu zeigen, dass die Mengen $U \cap V$ und U + V Untervektorräume des K^n sind, müssen wir überprüfen, ob sie die Bedingungen für einen Untervektorraum erfüllen:

- 1. Die Menge muss den Nullvektor enthalten.
- 2. Sie muss unter Addition abgeschlossen sein.
- 3. Sie muss unter Skalarmultiplikation abgeschlossen sein.
- 1. Untervektorraum $U \cap V$:
 - (a) **Nullvektor:** Da U und V Untervektorräume von K^n sind, enthalten beide den Nullvektor 0. Da $0 \in U$ und $0 \in V$ gilt, folgt $0 \in U \cap V$.
 - (b) **Abgeschlossenheit unter Addition:** Sei $x, y \in U \cap V$. Dann gilt $x \in U$, $x \in V$, $y \in U$ und $y \in V$. Da U und V jeweils unter Addition abgeschlossen sind, ist auch $x + y \in U$ und $x + y \in V$. Daher gilt $x + y \in U \cap V$, und $U \cap V$ ist unter Addition abgeschlossen.
 - (c) Abgeschlossenheit unter Skalarmultiplikation: Sei $x \in U \cap V$ und $c \in K$. Da $x \in U$ und $x \in V$ sowie U und V jeweils unter Skalarmultiplikation abgeschlossen sind, folgt $c \cdot x \in U$ und $c \cdot x \in V$. Somit ist $c \cdot x \in U \cap V$, und $U \cap V$ ist unter Skalarmultiplikation abgeschlossen.

Daher ist $U \cap V$ ein Untervektorraum von K^n .

2. Untervektorraum U + V:

- (a) **Nullvektor:** Da U und V Untervektorräume sind, enthalten beide den Nullvektor 0. Setzen wir $u = 0 \in U$ und $v = 0 \in V$, dann ist u + v = 0, was zeigt, dass $0 \in U + V$.
- (b) Abgeschlossenheit unter Addition: Sei $x, y \in U + V$. Dann existieren $u_1, u_2 \in U$ und $v_1, v_2 \in V$ mit $x = u_1 + v_1$ und $y = u_2 + v_2$. Dann ist:

$$x + y = (u_1 + v_1) + (u_2 + v_2) = (u_1 + u_2) + (v_1 + v_2).$$

Da U und V unter Addition abgeschlossen sind, gilt $u_1 + u_2 \in U$ und $v_1 + v_2 \in V$. Somit ist $x + y \in U + V$, und U + V ist unter Addition abgeschlossen.

(c) Abgeschlossenheit unter Skalarmultiplikation: Sei $x \in U + V$ und $c \in K$. Dann existieren $u \in U$ und $v \in V$ mit x = u + v. Dann ist:

$$c \cdot x = c \cdot (u + v) = (c \cdot u) + (c \cdot v).$$

Da U und V unter Skalarmultiplikation abgeschlossen sind, gilt $c \cdot u \in U$ und $c \cdot v \in V$. Somit ist $c \cdot x \in U + V$, und U + V ist unter Skalarmultiplikation abgeschlossen.

Daher ist U + V ein Untervektorraum von K^n .

Teil (b)

Beweis: Wir zeigen, dass die Menge $U \cup V$ genau dann ein Untervektorraum von K^n ist, wenn $U \subseteq V$ oder $V \subseteq U$ gilt.

- 1. **Notwendigkeit:** Angenommen, $U \cup V$ ist ein Untervektorraum von K^n . Wenn weder $U \subseteq V$ noch $V \subseteq U$ gilt, dann existieren Vektoren $u \in U \setminus V$ und $v \in V \setminus U$. Da $U \cup V$ ein Untervektorraum ist, muss $u + v \in U \cup V$ gelten. Da $u \notin V$ und $v \notin U$, kann u + v weder in U noch in V liegen, was im Widerspruch zur Definition von $U \cup V$ als Untervektorraum steht. Daher muss entweder $U \subseteq V$ oder $V \subseteq U$ gelten.
- 2. **Hinreichend:** Angenommen, $U \subseteq V$. Dann gilt $U \cup V = V$, und da V ein Untervektorraum ist, ist auch $U \cup V$ ein Untervektorraum. Analog gilt, wenn $V \subseteq U$, dann ist $U \cup V = U$, und $U \cup V$ ist ebenfalls ein Untervektorraum.

Damit ist gezeigt, dass $U \cup V$ genau dann ein Untervektorraum von K^n ist, wenn $U \subseteq V$ oder $V \subseteq U$ gilt.

Aufgabe 4.4

Prüfen Sie, ob die folgenden Teilmengen linear unabhängig sind:

Teil (a)

Gegeben sei der Körper $K = \mathbb{Q}$ und die Menge

$$M_1 := \{0\} \subset \mathbb{Q}^4 =: V.$$

Beweis: Die Menge M_1 besteht nur aus dem Nullvektor. Eine Menge, die nur den Nullvektor enthält, ist per Definition **nicht linear unabhängig**. Der Nullvektor ist immer linear abhängig, da ein Vielfaches des Nullvektors immer den Nullvektor ergibt.

Ergebnis: Die Menge M_1 ist nicht linear unabhängig.

Teil (b)

Gegeben sei der Körper $K = \mathbb{R}$ und die Menge

$$M_2 := \left\{ \begin{pmatrix} t \\ 2t \end{pmatrix} : t \in \mathbb{R} \right\} \subset \mathbb{R}^2 =: V.$$

Beweis: Die Menge M_2 besteht aus Vektoren der Form $\binom{t}{2t}$ mit $t \in \mathbb{R}$. Diese Vektoren sind alle Vielfache des Vektors $\binom{1}{2}$. Daher ist M_2 ein eindimensionaler Untervektorraum von \mathbb{R}^2 , der durch den Vektor $\binom{1}{2}$ aufgespannt wird.

Da jeder Vektor in M_2 als Vielfaches von $\begin{pmatrix} 1 \\ 2 \end{pmatrix}$ dargestellt werden kann, sind die Vektoren in M_2 linear abhängig.

Ergebnis: Die Menge M_2 ist nicht linear unabhängig.

Teil (c)

Gegeben sei der Körper $K=\mathbb{C}$ und die Menge

$$M_3 := \left\{ \begin{pmatrix} i \\ 1 \\ -i \end{pmatrix}, \begin{pmatrix} 0 \\ 1+i \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ i-1 \end{pmatrix} \right\} \subset \mathbb{C}^3 =: V.$$

Beweis: Um zu prüfen, ob die Vektoren in M_3 linear unabhängig sind, untersuchen wir, ob es Skalare λ_1 , λ_2 und $\lambda_3 \in \mathbb{C}$ gibt, sodass:

$$\lambda_1 \begin{pmatrix} i \\ 1 \\ -i \end{pmatrix} + \lambda_2 \begin{pmatrix} 0 \\ 1+i \\ 1 \end{pmatrix} + \lambda_3 \begin{pmatrix} 1 \\ 0 \\ i-1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

Diese Gleichung lässt sich in das folgende lineare Gleichungssystem umschreiben:

$$\begin{cases} \lambda_1 \cdot i + \lambda_3 = 0, \\ \lambda_1 + \lambda_2 \cdot (1+i) = 0, \\ -\lambda_1 \cdot i + \lambda_2 + \lambda_3 \cdot (i-1) = 0. \end{cases}$$

Wir lösen dieses Gleichungssystem mit dem Gausschen Eliminiationsverfahren und finden, dass die einzige Lösung $\lambda_1 = \lambda_2 = \lambda_3 = 0$ ist. Dies bedeutet, dass keine nicht-triviale Linearkombination der Vektoren den Nullvektor ergibt. Daher sind die Vektoren in M_3 linear unabhängig.

Ergebnis: Die Vektoren in M_3 sind linear unabhängig.

Teil (d)

Gegeben sei der Körper $K = \mathbb{F}_5$ (der endliche Körper mit fünf Elementen) und die Menge

$$M_4 := \left\{ \begin{pmatrix} 3 \\ 1 \\ 2 \end{pmatrix}, \begin{pmatrix} 1 \\ 4 \\ 2 \end{pmatrix} \right\} \subset \mathbb{F}_5^3 =: V.$$

Beweis: Um zu prüfen, ob die Vektoren in M_4 linear unabhängig sind, stellen wir die Frage, ob es Skalare $c_1, c_2 \in \mathbb{F}_5$ gibt, sodass:

$$c_1 \begin{pmatrix} 3 \\ 1 \\ 2 \end{pmatrix} + c_2 \begin{pmatrix} 1 \\ 4 \\ 2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

Dies ergibt das folgende Gleichungssystem in \mathbb{F}_5 :

$$\begin{cases} 3c_1 + c_2 \equiv 0 \pmod{5}, \\ c_1 + 4c_2 \equiv 0 \pmod{5}, \\ 2c_1 + 2c_2 \equiv 0 \pmod{5}. \end{cases}$$

Wir lösen dieses System schrittweise im endlichen Körper \mathbb{F}_5 :

- 1. Erste Gleichung: $3c_1 + c_2 \equiv 0 \pmod{5} \Rightarrow c_2 \equiv -3c_1 \pmod{5}$. Da $-3 \equiv 2 \pmod{5}$, erhalten wir $c_2 \equiv 2c_1 \pmod{5}$.
- 2. **Zweite Gleichung:** Setzen wir $c_2 \equiv 2c_1 \pmod{5}$ in die zweite Gleichung ein:

$$c_1+4\cdot(2c_1)\equiv 0\pmod{5} \Rightarrow c_1+8c_1\equiv 0\pmod{5} \Rightarrow 9c_1\equiv 0\pmod{5}.$$

Da $9 \equiv 4 \pmod{5}$, haben wir $4c_1 \equiv 0 \pmod{5}$. Da 4 in \mathbb{F}_5 eine Einheit ist, folgt $c_1 = 0$.

3. Einsetzen in die erste Gleichung: Setzen wir $c_1 = 0$ in die erste Gleichung ein, ergibt sich $c_2 = 0$.

Da die einzige Lösung $c_1=0$ und $c_2=0$ ist, sind die Vektoren in M_4 linear unabhängig.

Ergebnis: Die Vektoren in M_4 sind linear unabhängig.

References