공간 자기상관함수의 이해 및 국내 기온 예측

Comprehension of Spatial Autocovariance Function & Predict South Korea Temperature

연구번호: 2023-NS-M-004 지도교수: 정재홍 팀원: 유범주, 정성준, 한만휘, 홍상혁

1. 데이터 소개

기상청에서 제공하는 월 평균 종관 및 방재 기상 관측 자료 중 2007년, 2012년, 2017년, 2022년 총 4개년 데이터를 해당년도 3월 ~ 5월을 봄, 6월 ~ 8월을 여름, 9월 ~ 11월을 가을, 12월~ 이듬해 2월을 겨울로 묶어 관측소 별로 평균을 내어 총 16개의 데이터를 활용하였다.

그림 1. 국내 관측소 분포(2023.10.29) 그림 2. 2022년 계절 별 Boxplot 그림 3. 2022 가을 Variogram Fitting

표 1. 2022년 계절별 기온(°C) 관측자료 기본 통계량							
2022년	Min.	Q1.	Median	Mean	Q3	Max.	SD.
Spring	3.2333	11.6333	12.7667	12.5348	13.7333	16.0667	1.7231
Summer	15.0667	23.4667	24.3667	24.0223	25.0667	27.1667	1.6011
Fall	6.2	13.2333	14.8333	14.6689	16.1	21.1	2.2182
Winter	-10	-1.95	0.0333	0.0855	2.1	9.3	3.0887

2. Autocovariance Function

데이터를 10개의 partition으로 나누고, 1개를 test 데이터로 지정하여 나머지 9개의 데이터로, test 데이터의 기온을 예측한다. 10번의 예측을 진행하고 각 예측에서의 MSE의 평균값을 구하였다.

$$(1) \text{ MSE}_i = \sum_{s \in p_i} \frac{\left(Z_p(s) - Z(s)\right)^2}{n(\wp_i)} \qquad (2) \text{ MSE(of one season)} = \frac{1}{10} \sum_{i=1}^{10} \text{MSE}_i \qquad (3) \ Z_p(s_0) = \sum_{i=1}^n \ \lambda_i Z(s_i)$$

Model 1(a): Gaussian process with **Exponential** covariance function Model 1(b): Gaussian process with **Matérn** covariance function Model 1(c): Gaussian process with **Gaussian** covariance function

3. Prediction Models

Model 1: Matérn covariance function based Kriging

Model 2: MLE based Kriging

Model 3: Inverse Distance Weighted(IDW)

Model 4: Thin Plate Spline(TPS)

그림 4. Comparing Prediction Models

4. 예측 성능 향상의 위한 방안

data 1: Raw Data

data 2: Altitude Correction Data

data 3: Without island Data

data 4: Altitude Correction & Without island Data

표 2. 2022년 가을 기온(℃) 데이터 별 기본 통계량							
	Min.	Q.	Median	Mean	Q3	Max.	SD.
data 1	6.2	13.1	14.8	14.6098	16.0917	21.1	2.2382
data 2	11.3324	14.2775	15.2920	15.4992	16.5269	21.7289	1.6717
data 3	6.2	13.0333	14.6833	14.4175	15.8333	18.8	2.0603
data 4	11.3324	14.1836	15.1520	15.2513	16.1922	19.2141	1.4433

표 3. 2022년 데이터 별 MSE 평균								
	Spring	Summer	Fall	Winter				
data 1	1.332	1.1748	1.4281	1.4132				
data 2	0.3875	0.1989	0.6334	0.5460				
data 3	1.1728	1.1041	1.1372	1.1729				
data 4	0.3964	0.1869	0.5856	0.5439				