

Schletter, Inc.		25° Tilt w/o Seismic Design
HCV	Standard PVMax Racking System	
	Representative Calculations - ASCE 7-10	

1. INTRODUCTION

1.1 Project Description

The following sections will cover the determination of forces and structural design calculations for the Schletter, Inc. PVMax ground mount system.

1.2 Construction

Photovoltaic modules are attached to aluminum purlins using clamp fasteners. Purlins are clamped to inclined aluminum girders, which are then connected to aluminum struts. Each support structure is equally spaced.

PV modules are required to meet the following specifications:

	<u>Maximum</u>		<u>Minimum</u>
Height =	2000 mm	Height =	1900 mm
Width =	1050 mm	Width =	970 mm
Dead Load =	3.00 psf	Dead Load =	1.75 psf

Modules Per Row = 2 Module Tilt = 25°

Maximum Height Above Grade = 3 ft

1.3 Technical Codes

- ASCE 7-10 Chapter 26-31, Wind Loads
- ASCE 7-10 Chapter 7, Snow Loads
- ASCE 7-10 Chapter 2, Combination of Loads
- International Building Code, IBC, 2012, 2015
- Aluminum Design Manual, Eighth Edition, 2005

Typical loading conditions of the module dead loads, snow loads, and wind loads are shown on the left.

2. LOAD ACTIONS

2.1 Permanent Loads

$g_{MAX} =$	3.00 psf
g _{MIN} =	1.75 psf

Self-weight of the PV modules.

2.2 Snow Loads

	30.00 psf	Ground Snow Load, P_g =
(ASCE 7-10, Eq. 7.4-1)	18.56 psf	Sloped Roof Snow Load, P_s =
	1.00	I _s =
	0.82	C _s =
	0.90	C _e =
	1 20	C., =

2.3 Wind Loads

Design Wind Speed, V =	110 mph	Exposure Category = C
Height <	15 ft	Importance Category = II

Peak Velocity Pressure, $q_z = 19.00 \text{ psf}$ Including the gust factor, G=0.85. (ASCE 7-10, Eq. 27.3-1)

Pressure Coefficients

Cf+ _{TOP}	=	1.100	
Cf+ BOTTOM	=	1.100 1.700 <i>(Pressure)</i>	Provided pressure coefficients are the result of wind tunnel
Cf- TOP, OUTER PURLIN	=	-2.500	testing done by Ruscheweyh Consult. Coefficients are located in test report # 1127/0611-1e. Negative forces are
Cf- TOP, INNER PURLIN	=	-1.900 (Suction)	applied away from the surface.
Cf- BOTTOM	=	-1.000	approx array normano ouridoor

2.4 Seismic Loads - N/A

$S_S =$ $S_{DS} =$ $S_1 =$ $S_{D1} =$	0.00	$R = 1.25$ $C_S = 0$ $\rho = 1.3$ $\Omega = 1.25$	ASCE 7, Section 12.8.1.3: A maximum S_s of 1.5 may be used to calculate the base shear, C_s , of structures under five stories and with a period, T_s , of 0.5 or less. Therefore, a S_{ds} of 1.0 was used to
$S_{D1} = T_a =$		$\Omega = 1.25$ $C_d = 1.25$	calculate C_s .

2.5 Combination of Loads

ASCE 7 requires that all structures be checked by specified combinations of loads. Applicable load combinations are provided below.

Strength Design, LRFD

Component stresses are checked using the following LRFD load combinations:

1.2D + 1.6S + 0.5W 1.2D + 1.0W + 0.5S 0.9D + 1.0W ^M 1.54D + 1.3E + 0.2S ^R 0.56D + 1.3E ^R 1.54D + 1.25E + 0.2S ^O 0.56D + 1.25E O

Allowable Stress Design, ASD

Member deflection checks and foundation designs are done according to the following ASD load combinations:

1.0D + 1.0S 1.0D + 0.6W 1.0D + 0.75L + 0.45W + 0.75S 0.6D + 0.6W M (ASCE 7, Eq 2.4.1-1 through 2.4.1-8) & (ASCE 7, Section 12.4.3.2) 1.238D + 0.875E ° 1.1785D + 0.65625E + 0.75S ° 0.362D + 0.875E °

3. STRUCTURAL ANALYSIS

3.1 RISA Results

Appendix B.1 contains outputs from the structural analysis software package, RISA. These outputs are used to accurately determine resultant member and reaction forces from the loads seen throughout Section 2.

3.2 RISA Components

A member and node list has been provided below to correlate the RISA components with the design calculations in Section 4. Items of significance have been listed.

<u>Purlins</u>	Location	Diagonal Struts	Location	Front Reactions Location
M13	Тор	M3	Outer	N7 Outer
M14	Mid-Top	M7	Inner	N15 Inner
M15	Mid-Bottom	M11	Outer	N23 Outer
M16	Bottom			
<u>Girders</u>	Location	Rear Struts	Location	Rear Reactions Location
M1	Outer	M2	Outer	N8 Outer
M5	Inner	M6	Inner	N16 Inner
M9	Outer	M10	Outer	N24 Outer
Front Struts	Location			
M4	Outer			
M8	Inner			
M12	Outer			

^M Uses the minimum allowable module dead load.

^R Include redundancy factor of 1.3.

O Includes overstrength factor of 1.25. Used to check seismic drift.

4.1 Purlin Design

Aluminum purlins are used to transfer loads to the support structure. Purlins are designed as continous beams with cantilevers. These are considered beams with internal hinges that can be joined with splices at 25% of the support respective span. See Appendix A.1 for detailed member calculations. Section units are in (mm).

4.2 Girder Design

Loads from purlins are transferred using an inclined girder, which is connected to a set of aluminum struts. Loads on the girder result from the support reactions of the purlins. See Appendix A.2 for detailed member calculations. Section units are in (mm).

4.3 Front Strut Design

The front aluminum strut connects a portion of the girder to the foundation. Vertical girder forces are then transferred down through the strut into the foundation. The strut is attached with single M12 bolts at each end. See Appendix A.3 for detailed member calculations. Section units are in (mm).

4.4 Diagonal Strut Design

A diagonal aluminum strut braces the support structure. It connects at a front portion of the girder and transfers horizontal forces to the rear foundation connection. The strut is attached with single M12 bolts at each end. See Appendix A.4 for detailed member calculations. Section units are in (mm).

4.5 Rear Strut Design

An aluminum strut connects the rear portion of the girder to the rear foundation connection. Both vertical and horizontal forces are transferred from the girder. The strut is attached with single M12 bolts at each end. See Appendix A.5 for detailed member calculations. Section units are in (mm).

5. FOUNDATION DESIGN CALCULATIONS

5.1 Helical Pile Foundations

The following LRFD loads include a safety factor of 1.3, and are to be used in conjunction with a Schletter, Inc. Geotechnical Investigation Report. The forces below should fall within the guidelines provided in the Geotechnical Investigation Report. If a Geotechnical Investigation Report is not present, please proceed to Section 5.2 for a concrete foundation design.

<u>Maximum</u>	<u>Front</u>	Rear	
Tensile Load =	<u>394.34</u>	4820.59	k
Compressive Load =	4021.68	<u>4680.48</u>	k
Lateral Load =	<u>21.46</u>	2596.58	k
Moment (Weak Axis) =	0.04	0.01	k

5.2 Design of Ballast Foundations

Ballast foundations are used to secure the racking structure in place. The foundations are checked for potential overturning and sliding. Bearing pressures applied by the racking and ballast foundations are checked against the allowable bearing pressures provided by the IBC table 1806.2 (2012, 2015).

Concrete Properties Footing Reinforcement Weight of Concrete = 145 pcf Use fiber reinforcing with (2) #5 rebar. 2500 psi Compressive Strength = Yield Strength = 60000 psi Overturning Check $M_0 =$ 129694.3 in-lbs Resisting Force Required = 1813.91 lbs A minimum 143in long x 35in wide x S.F. = 1.67 18in tall ballast foundation is required Weight Required = 3023.18 lbs to resist overturning. Minimum Width = Weight Provided = 7559.64 lbs Sliding Force = 598.73 lbs Use a 143in long x 35in wide x 18in tall Friction = 0.4 Weight Required = 1496.82 lbs ballast foundation to resist sliding. Resisting Weight = 7559.64 lbs Friction is OK. Additional Weight Required = Cohesion Sliding Force = 598.73 lbs Cohesion = 130 psf Use a 143in long x 35in wide x 18in tall 34.76 ft² Area = ballast foundation. Cohesion is OK. Resisting = 3779.82 lbs Additional Weight Required = 0 lbs Shear Key Additional Force = 0 lbs 200 psf/ft Lateral Bearing Pressure = Required Depth = 0.00 ft Shear key is not required. 2500 psi f'c = Length = 8 in

ASD LC		1.0D	+ 1.0S		1.0D + 0.6W			1.0D + 0.75L + 0.45W + 0.75S				0.6D + 0.6W				
Width	35 in	36 in	37 in	38 in	35 in	36 in	37 in	38 in	35 in	36 in	37 in	38 in	35 in	36 in	37 in	38 in
FA	1537 lbs	1537 lbs	1537 lbs	1537 lbs	1181 lbs	1181 lbs	1181 lbs	1181 lbs	1898 lbs	1898 lbs	1898 lbs	1898 lbs	-171 lbs	-171 lbs	-171 lbs	-171 lbs
F _B	1604 lbs	1604 lbs	1604 lbs	1604 lbs	1669 lbs	1669 lbs	1669 lbs	1669 lbs	2309 lbs	2309 lbs	2309 lbs	2309 lbs	-2214 lbs	-2214 lbs	-2214 lbs	-2214 lbs
F _V	202 lbs	202 lbs	202 lbs	202 lbs	1093 lbs	1093 lbs	1093 lbs	1093 lbs	954 lbs	954 lbs	954 lbs	954 lbs	-1197 lbs	-1197 lbs	-1197 lbs	-1197 lbs
P _{total}	10700 lbs	10916 lbs	11132 lbs	11348 lbs	10410 lbs	10626 lbs	10842 lbs	11058 lbs	11766 lbs	11982 lbs	12198 lbs	12414 lbs	2151 lbs	2280 lbs	2410 lbs	2539 lbs
М	3731 lbs-ft	3731 lbs-ft	3731 lbs-ft	3731 lbs-ft	2992 lbs-ft	2992 lbs-ft	2992 lbs-ft	2992 lbs-ft	4700 lbs-ft	4700 lbs-ft	4700 lbs-ft	4700 lbs-ft	3811 lbs-ft	3811 lbs-ft	3811 lbs-ft	3811 lbs-ft
е	0.35 ft	0.34 ft	0.34 ft	0.33 ft	0.29 ft	0.28 ft	0.28 ft	0.27 ft	0.40 ft	0.39 ft	0.39 ft	0.38 ft	1.77 ft	1.67 ft	1.58 ft	1.50 ft
L/6	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft							
f _{min}	253.8 psf	252.8 psf	251.9 psf	250.9 psf	256.2 psf	255.1 psf	254.1 psf	253.1 psf	270.5 psf	269.0 psf	267.6 psf	266.3 psf	6.7 psf	10.1 psf	13.4 psf	16.4 psf
fmax	361.9 psf	357.9 psf	354.1 psf	350.5 psf	342.8 psf	339.4 psf	336.1 psf	332.9 psf	406.6 psf	401.4 psf	396.4 psf	391.7 psf	117.1 psf	117.5 psf	117.8 psf	118.1 psf

36 in

35 in

 $P_{ftg} = (145 \text{ pcf})(11.92 \text{ ft})(1.5 \text{ ft})(2.92 \text{ ft}) = \frac{7560 \text{ lbs}}{7776 \text{ lbs}} = \frac{7992 \text{ lbs}}{7992 \text{ lbs}} = \frac{8208 \text{ lbs}}{7992 \text{ lbs}}$

Ballast Width

<u>37 in</u>

38 in

Maximum Bearing Pressure = 407 psf Allowable Bearing Pressure = 1500 psf Use a 143in long x 35in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Bearing Pressure

Weak Side Design

Overturning Check

 $M_0 = 1305.9 \text{ ft-lbs}$

Resisting Force Required = 895.50 lbs S.F. = 1.67

Weight Required = 1492.50 lbs Minimum Width = 35 in in Weight Provided = 7559.64 lbs A minimum 143in long x 35in wide x 18in tall ballast foundation is required to resist overturning.

Bearing Pressure

ASD LC	1	.238D + 0.875	iΕ	1.1785	D + 0.65625E	+ 0.75S	0.362D + 0.875E			
Width	35 in			35 in			35 in			
Support	Outer	Inner	Outer	Outer	Inner	Outer	Outer	Inner	Outer	
F _Y	277 lbs	710 lbs	277 lbs	915 lbs	2602 lbs	915 lbs	81 lbs	208 lbs	81 lbs	
F _V	2 lbs	0 lbs	2 lbs	9 lbs	0 lbs	9 lbs	1 lbs	0 lbs	1 lbs	
P _{total}	9636 lbs	7560 lbs	9636 lbs	9824 lbs	7560 lbs	9824 lbs	2818 lbs	7560 lbs	2818 lbs	
М	8 lbs-ft	0 lbs-ft	8 lbs-ft	29 lbs-ft	0 lbs-ft	29 lbs-ft	2 lbs-ft	0 lbs-ft	2 lbs-ft	
е	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	
L/6	0.49 ft	0.49 ft	0.49 ft	0.49 ft	0.49 ft	0.49 ft	0.49 ft	0.49 ft	0.49 ft	
f _{min}	276.8 psf	217.5 psf	276.8 psf	281.0 psf	217.5 psf	281.0 psf	81.0 psf	217.5 psf	81.0 psf	
f _{max}	277.7 psf	217.5 psf	277.7 psf	284.4 psf	217.5 psf	284.4 psf	81.2 psf	217.5 psf	81.2 psf	

Maximum Bearing Pressure = 284 psf Allowable Bearing Pressure = 1500 psf

Use a 143in long x 35in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Foundation Requirements: 143in long x 24in wide x 18in tall ballast foundation and fiber reinforcing with (2) #5 rebar.

5.3 Foundation Anchors

Threaded rods are anchored to the ballast foundations using the Simpson AT-XP epoxy solution. LRFD load results are compared to the allowable strengths of the epoxy solution. Please see the supplementary calculations provided by the Simpson Anchor Designer software.

6.1 Anchorage of Modules to Purlins and Connection of Purlins to Girders

Modules are secured to the purlins with Schletter, Inc. Rapid2+ mounting clamps. Purlins are secured to the girders with the use of 80mm mounting clamps. The reliability of calculations is uncertain due to limited standards, therefore the strength of the clamp fasteners has been evaluated by load testing.

end of the strut and are subjected to double shear.

6.2 Strut Connections

The aluminum struts connect the aluminum girder ends to custom brackets with mounting holes. Single M12 bolts are used to attach each end of the strut to the girder and post. ASTM A193/A193M-86 equivalent stainless steel bolts are used.

<u>Front Strut</u> Maximum Axial Load =	3.094 k	<u>Rear Strut</u> Maximum Axial Load = 3.352 k
M12 Bolt Capacity =	12.808 k	M12 Bolt Capacity = 12.808 k
Strut Bearing Capacity =	7.421 k	Strut Bearing Capacity = 7.421 k
Utilization =	<u>42%</u>	Utilization = 45%
Diagonal Strut		
Maximum Axial Load =	1.854 k	
M12 Bolt Shear Capacity =	12.808 k	Bolt and bearing capacities are accounting for double shear.
Strut Bearing Capacity =	7.421 k	(ASCE 8-02, Eq. 5.3.4-1)
Utilization =	<u>25%</u>	
		Struts under compression are shown to demonstrate the load transfer from the girder. Single M12 bolts are located at each

7. SEISMIC DESIGN

7.1 Seismic Drift - N/A

The racking structure has been analyzed under seismic loading. The allowable story drift of the structure must fall within the limits provided by (ASCE 7, Table 12.12-1).

 $\begin{array}{ccc} \text{Mean Height, h}_{\text{sx}} = & 56.48 \text{ in} \\ \text{Allowable Story Drift for All Other} \\ \text{Structures, } \Delta = \{ & 0.020 h_{\text{sx}} \\ 1.130 \text{ in} \\ \text{Max Drift, } \Delta_{\text{MAX}} = & 0.054 \text{ in} \\ \end{array}$

The racking structure's reaction to seismic loads is shown to the right. The deflections have been magnified to provide a clear portrayal of potential story drift.

APPENDIX A

A.1 Design of Aluminum Purlins - Aluminum Design Manual, 2005 Edition

Purlin = **S1.5**

Strong Axis:

3.4.14

$$\begin{array}{ll} \mathsf{L_b} = & 117 \text{ in} \\ \mathsf{J} = & 0.432 \\ & 323.677 \\ \\ S1 = & \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ \mathsf{S1} = & 0.51461 \\ \\ S2 = & \left(\frac{C_c}{1.6}\right)^2 \\ \mathsf{S2} = & 1701.56 \\ \mathsf{\phiF_L} = & \mathsf{\phib[Bc-1.6Dc*} \sqrt{((\mathsf{LbSc})/(\mathsf{Cb*} \sqrt{(\mathsf{lyJ})/2}))]} \end{array}$$

Weak Axis:

3.4.14

$$\begin{split} \mathsf{L_b} &= & 117 \\ \mathsf{J} &= & 0.432 \\ &= & 205.839 \\ S1 &= & \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ \mathsf{S1} &= & 0.51461 \\ S2 &= & \left(\frac{C_c}{1.6}\right)^2 \\ \mathsf{S2} &= & 1701.56 \\ \varphi \mathsf{F_L} &= & \varphi b [\mathsf{Bc-1.6Dc*} \sqrt{((\mathsf{LbSc})/(\mathsf{Cb*} \sqrt{(\mathsf{lyJ})/2}))]} \\ \varphi \mathsf{F_I} &= & 28.7 \end{split}$$

3.4.16

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 25.1 \text{ ksi}$$

 $\phi F_1 = 27.5 \text{ ksi}$

3.4.16

b/t = 37.0588

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 23.1 \text{ ksi}$$

3.4.16.1

Rb/t =

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

$$h/t = 37.0588$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 40.985$$

$$Cc = 41.015$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.2$$

$$S2 = 77.2$$

 $φF_L = φb[Bbr-mDbr*h/t]$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 25.1 \text{ ksi}$$
 $1x = 897074 \text{ mm}^4$
 2.155 in^4
 $y = 41.015 \text{ mm}$
 $5x = 1.335 \text{ in}^3$
 $4x = 41.015 \text{ mm}$
 $5x = 1.335 \text{ in}^3$
 $5x = 2.788 \text{ k-ft}$

$$h/t = 32.195$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 45.5$$

$$Cc = 45.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$ly = 446476 \text{ mm}^4$$

$$1.073 \text{ in}^4$$

Sy=

 $M_{max}Wk =$

45.5 mm

0.599 in³

1.152 k-ft

 $M_{max}St =$

Compression

3.4.9

b/t = 32.195
S1 = 12.21 (See 3.4.16 above for formula)
S2 = 32.70 (See 3.4.16 above for formula)

$$\phi F_L = \phi c[Bp-1.6Dp^*b/t]$$

 $\phi F_L = 25.1 \text{ ksi}$
b/t = 37.0588
S1 = 12.21
S2 = 32.70
 $\phi F_L = (\phi ck2^*\sqrt{(BpE))}/(1.6b/t)$
 $\phi F_L = 21.9 \text{ ksi}$

3.4.10

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$
S1 = 6.87
S2 = 131.3
 $\phi F_L = \phi y Fcy$
 $\phi F_L = 33.25 \text{ ksi}$

$$\phi F_L = 21.94 \text{ ksi}$$

$$A = 1215.13 \text{ mm}^2$$

$$1.88 \text{ in}^2$$

$$P_{\text{max}} = 41.32 \text{ kips}$$

A.2 Design of Aluminum Girders - Aluminum Design Manual, 2005 Edition

Girder = BF0

Strong Axis: 3.4.14

$$L_b = 104.56 \text{ in}$$
 $J = 1.08$
 179.85

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^{\frac{1}{2}}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

S2 = 1701.56

$$\varphi F_L = \varphi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2})}]$$

Weak Axis:

$$φF_L$$
= $φb[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$
 $φF_I$ = 29.0 ksi

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$SE = 90 | Pa = 1.6$$

 $L_b = 104.56$

J = 1.08

$$\begin{split} \phi F_L &= \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}] \\ \phi F_I &= 28.9 \end{split}$$

3.4.16

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$\varphi F_L = \varphi b[Bp-1.6Dp*b/t]$$

 $\varphi F_L = 31.6 \text{ ksi}$

3.4.16

3.4.16.1 Used Rb/t = 18.1
$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$
 S1 = 1.1
$$S2 = C_t$$
 S2 = 141.0
$$\varphi F_L = \varphi b[Bt-Dt^* \sqrt{(Rb/t)}]$$

31.1 ksi

29.0 ksi

2.366 in⁴

1.375 in³

3.323 k-ft

 $lx = 984962 \text{ mm}^4$

y = 43.717 mm

 $\phi F_L =$

3.4.16.1 N/A for Weak Direction

3.4.18

$$h/t = 7.4$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 35.2$$

$$m = 0.68$$

$$C_0 = 41.067$$

$$Cc = 43.717$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 73.8$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

3.4.18
$$h/t = 16.2$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 40$$

$$Cc = 40$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L Wk = 33.3 \text{ ksi}$$

$$\phi F_L Wk = 32.4 \text{ ksi}$$

$$\phi F_L Wk = 33.3 \text{ ksi}$$

$$\phi F_L Wk = 33.4 \text{ ksi}$$

$$\phi F_L Wk = 33.3 \text{ ksi}$$

$$\phi F_L Wk = 33.3 \text{ ksi}$$

$$\phi F_L Wk = 33.3 \text{ ksi}$$

$$\phi F_L Wk = 33.4 \text{ ksi}$$

$$\phi F_L Wk = 33.3 \text{ ksi}$$

$$\phi F_L Wk = 33.0 \text{ ksi}$$

Compression

 $M_{max}St =$

Sx =

 $\phi F_L St =$

3.4.9

b/t = 16.2 S1 = 12.21 (See 3.4.16 above for formula) S2 = 32.70 (See 3.4.16 above for formula) $\phi F_L = \phi c [Bp-1.6Dp^*b/t]$ $\phi F_L = 31.6$ ksi

b/t = 7.4 S1 = 12.21 S2 = 32.70 $\phi F_L = \phi y F c y$ $\phi F_L = 33.3 \text{ ksi}$

3.4.10

A.10

Rb/t = 18.1 $S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$ S1 = 6.87
S2 = 131.3 $\phi F_L = \phi c [Bt-Dt^* \sqrt{(Rb/t)}]$ $\phi F_L = 31.09 \text{ ksi}$ $\phi F_L = 31.09 \text{ ksi}$

 $A = 1215.13 \text{ mm}^2$ 1.88 in^2 $P_{\text{max}} = 58.55 \text{ kips}$

A.3 Design of Aluminum Struts (Front) - Aluminum Design Manual, 2005 Edition

Strut = **55x55**

Strong Axis:

3.4.14

$$L_b = 24.8 \text{ in}$$

$$J = 0.942$$

$$38.7028$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

 $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_I = 28.2 \text{ ksi}$$

 $\phi F_L = 31.4 \text{ ksi}$

3.4.16.1

4.16.1 Not Used
Rb/t = 0.0
$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$
S1 = 1.1
$$S2 = C_t$$
S2 = 141.0
$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

Weak Axis:

3.4.14

$$\begin{split} L_b &= & 24.8 \\ J &= & 0.942 \\ & 38.7028 \\ S1 &= & \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ S1 &= & 0.51461 \\ S2 &= & \left(\frac{C_c}{1.6}\right)^2 \\ S2 &= & 1701.56 \\ \phi F_L &= & \phi b[Bc-1.6Dc*\sqrt{(LbSc)/(Cb*\sqrt{(lyJ)/2)})}] \\ \phi F_L &= & 31.4 \end{split}$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

h/t = 24.5

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\varphi F_L = 1.3\varphi y F cy$$

$$\varphi F_L = 43.2 \text{ ksi}$$

$$\varphi F_L St = 28.2 \text{ ksi}$$

$$\varphi F_L St = 28.2 \text{ ksi}$$

$$\varphi F_L St = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

$$\varphi = 27.5 \text{ mm}$$

0.621 in³

3.4.18

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$ly = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

$$x = 27.5 \text{ mm}$$

 $Sy = 0.621 \text{ in}^3$

 $M_{max}Wk = 1.460 \text{ k-ft}$

h/t = 24.5

y = Sx =

 $M_{max}St = 1.460 \text{ k-ft}$

SCHLETTER

Compression

3.4.7
$$\lambda = 0.57371$$

$$r = 0.81 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\varphi cc = 0.87952$$

$$\varphi F_L = \varphi cc(Bc-Dc^*\lambda)$$

$$\varphi F_L = 28.0279 \text{ ksi}$$

3.4.9

$$\begin{array}{lll} b/t = & 24.5 \\ S1 = & 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \\ b/t = & 24.5 \\ S1 = & 12.21 \\ S2 = & 32.70 \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \end{array}$$

3.4.10

Rb/t =

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 28.03 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$1.03 \text{ in}^2$$

0.0

28.85 kips

A.4 Design of Aluminum Struts (Diagonal) - Aluminum Design Manual, 2005 Edition

Strut = <u>55x55</u>

 $P_{max} =$

Strong Axis:	Weak Axis:
3.4.14	3.4.14
$L_{b} = 98.03 \text{ in}$	$L_b = 98.03$
J = 0.942 152.985	J = 0.942 152.985
$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2$	$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2$
S1 = 0.51461	S1 = 0.51461
$S2 = \left(\frac{C_c}{1.6}\right)^2$	$S2 = \left(\frac{C_c}{1.6}\right)^2$
S2 = 1701.56	S2 = 1701.56
$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2))}]}$	$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})]}$
$\varphi F_L = 29.4 \text{ ksi}$	$\phi F_L = 29.4$

SCHLETTER

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

Not Used 0.0 3.4.16.1

Rb/t = 0.0

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 28.2 \text{ ksi}$$
 $k = 279836 \text{ mm}^4$
 0.672 in^4
 $y = 27.5 \text{ mm}$

$$y = 27.5 \text{ mm}$$

 $Sx = 0.621 \text{ in}^3$
 $M_{max}St = 1.460 \text{ k-ft}$

Compression

3.4.7

$$\begin{array}{lll} \lambda = & 2.26776 \\ r = & 0.81 \text{ in} \\ & S1^* = \frac{Bc - Fcy}{1.6Dc^*} \\ S1^* = & 0.33515 \\ & S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E} \\ S2^* = & 1.23671 \\ & \phi cc = & 0.89749 \\ & \phi F_L = & (\phi cc Fcy)/(\lambda^2) \\ & \phi F_L = & 6.10803 \text{ ksi} \end{array}$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

$$\begin{aligned} \text{h/t} &=& 24.5 \\ S1 &=& \frac{Bbr - \frac{\theta_y}{\theta_b} \, 1.3Fcy}{mDbr} \\ \text{S1} &=& 36.9 \\ \text{m} &=& 0.65 \\ \text{C}_0 &=& 27.5 \\ \text{Cc} &=& 27.5 \\ S2 &=& \frac{k_1 Bbr}{mDbr} \\ \text{S2} &=& 77.3 \\ \phi \text{F}_{\text{L}} &=& 1.3\phi \text{yFcy} \\ \phi \text{F}_{\text{L}} &=& 43.2 \text{ ksi} \end{aligned}$$

$$ly = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

$$x = 27.5 \text{ mm}$$

28.2 ksi

 $\phi F_l Wk =$

$$x = 27.5 \text{ mm}$$

 $Sy = 0.621 \text{ in}^3$

 $M_{max}Wk =$ 1.460 k-ft

3.4.9

$$\begin{array}{lll} b/t = & 24.5 \\ S1 = & 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \\ b/t = & 24.5 \\ S1 = & 12.21 \\ S2 = & 32.70 \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \end{array}$$

3.4.10

 $\varphi F_L =$

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^{\frac{1}{2}}$$
S1 = 6.87
S2 = 131.3
 $\phi F_L = \phi y Fcy$
 $\phi F_L = 33.25 \text{ ksi}$

$$\phi F_L = 6.11 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$1.03 \text{ in}^2$$

$$P_{\text{max}} = 6.29 \text{ kips}$$

28.2 ksi

A.5 Design of Aluminum Struts (Rear) - Aluminum Design Manual, 2005 Edition

Strut = <u>55x55</u>

Strong Axis: Weak Axis: 3.4.14 $L_b =$ 69.80 in $L_b =$ 69.8 0.942 0.942 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$ $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$ $\phi F_L =$ $\phi F_L = 30.0 \text{ ksi}$ 30.0

3.4.16

$$SA.16$$

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp^*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

$$SA.16$$

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp^*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

$$\varphi F_L = 28.2 \text{ ksi}$$

3.4.16.1 Not Used
$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

 $\phi F_L = 38.9 \text{ ksi}$

3.4.16.1 N/A for Weak Direction

3.4.18

h/t = 24.5

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\varphi F_L = 1.3\varphi y Fcy$$

$$\varphi F_L = 43.2 \text{ ksi}$$

$$\varphi F_L St = 28.2 \text{ ksi}$$

 $lx = 279836 \text{ mm}^4$

0.672 in⁴

0.621 in³

27.5 mm

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\varphi F_L = 1.3\varphi y Fcy$$

$$\varphi F_L = 43.2 \text{ ksi}$$

$$\varphi F_L Wk = 28.2 \text{ ksi}$$

$$\varphi F_L Wk = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

$$x = 27.5 \text{ mm}$$

$$Sy = 0.621 \text{ in}^3$$

 $M_{max}Wk =$

1.460 k-ft

Compression

y = Sx =

 $M_{max}St = 1.460 \text{ k-ft}$

3.4.7

$$\begin{array}{lll} \lambda = & 1.61471 \\ r = & 0.81 \text{ in} \\ S1^* = & \frac{Bc - Fcy}{1.6Dc^*} \\ S1^* = & 0.33515 \\ S2^* = & \frac{Cc}{\pi} \sqrt{Fcy/E} \\ S2^* = & 1.23671 \\ \phi cc = & 0.80606 \\ \phi F_L = & (\phi cc Fcy)/(\lambda^2) \\ \phi F_L = & 10.8205 \text{ ksi} \end{array}$$

3.4.9

b/t = 24.5
S1 = 12.21 (See 3.4.16 above for formula)
S2 = 32.70 (See 3.4.16 above for formula)

$$\phi F_L = \phi c[Bp-1.6Dp^*b/t]$$

 $\phi F_L = 28.2 \text{ ksi}$
b/t = 24.5
S1 = 12.21
S2 = 32.70
 $\phi F_L = \phi c[Bp-1.6Dp^*b/t]$
 $\phi F_L = 28.2 \text{ ksi}$

3.4.10

$$\begin{aligned} \text{Rb/t} &= & 0.0 \\ S1 &= \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^2 \\ \text{S1} &= & 6.87 \\ \text{S2} &= & 131.3 \\ \text{ϕF}_L &= & \text{ϕF$Cy} \\ \text{$\phi$F}_L &= & 33.25 \text{ ksi} \\ \text{ϕF}_L &= & 10.82 \text{ ksi} \\ \text{A} &= & 663.99 \text{ mm}^2 \\ & & 1.03 \text{ in}^2 \\ \text{P}_{\text{max}} &= & 11.14 \text{ kips} \end{aligned}$$

APPENDIX B

B.1

The following pages will contain the results from RISA. Please refer back to Section 2 for load information and Section 4-5 for member and foundation design.

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 4, 2015

Checked By:___

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distribut	.Area(Me.	.Surface(
1	Dead Load, Max	DĽ	•	-1				4	,	,
2	Dead Load, Min	DL		-1				4		
3	Snow Load	SL						4		
4	Wind Load - Pressure	WL						4		
5	Wind Load - Suction	WL						4		
6	Seismic - Lateral	EL								

Member Distributed Loads (BLC 1 : Dead Load, Max)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-9.843	-9.843	0	0
2	M14	Υ	-9.843	-9.843	0	0
3	M15	Υ	-9.843	-9.843	0	0
4	M16	Υ	-9.843	-9.843	0	0

Member Distributed Loads (BLC 2 : Dead Load, Min)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-5.454	-5.454	0	0
2	M14	Υ	-5.454	-5.454	0	0
3	M15	Υ	-5.454	-5.454	0	0
4	M16	Υ	-5.454	-5.454	0	0

Member Distributed Loads (BLC 3 : Snow Load)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-55.176	-55.176	0	0
2	M14	Υ	-55.176	-55.176	0	0
3	M15	Υ	-55.176	-55.176	0	0
4	M16	Υ	-55 176	-55 176	0	0

Member Distributed Loads (BLC 4: Wind Load - Pressure)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	-68.563	-68.563	0	0
2	M14	٧	-68.563	-68.563	0	0
3	M15	V	-105.961	-105.961	0	0
4	M16	V	-105.961	-105.961	0	0

Member Distributed Loads (BLC 5 : Wind Load - Suction)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	155.825	155.825	0	0
2	M14	V	118.427	118.427	0	0
3	M15	V	62.33	62.33	0	0
4	M16	V	62.33	62.33	0	0

Load Combinations

	Description	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa
1	LRFD 1.2D + 1.6S + 0.5W	Yes	Υ		1	1.2	3	1.6	4	.5														
2	LRFD 1.2D + 1.0W + 0.5S	Yes	Υ		1	1.2	3	.5	4	1														
3	LRFD 0.9D + 1.0W	Yes	Y		2	.9					5	1												
4	LATERAL - LRFD 1.54D + 1.3E	Yes	Υ		1	1.54	3	.2			6	1.3												
5	LATERAL - LRFD 0.56D + 1.3E	Yes	Υ		1	.56					6	1.3												
6	LATERAL - LRFD 1.54D + 1.25				1	1.54	3	.2			6	1.25												
7	LATERAL - LRFD 0.56D + 1.25E	Yes	Y		1	.56					6	1.25												

Model Name

Schletter, Inc.HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

Load Combinations (Continued)

	Description	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa
8																								
9	ASD 1.0D + 1.0S	Yes	Υ		1	1	3	1																
10	ASD 1.0D + 0.6W	Yes	Υ		1	1			4	.6														
11	ASD 1.0D + 0.75L + 0.45W + 0	Yes	Υ		1	1	3	.75	4	.45														
12	ASD 0.6D + 0.6W	Yes	_		2	.6					5	.6												
13	LATERAL - ASD 1.238D + 0.875E	Yes	Υ		1	1.2					6	.875												
14	LATERAL - ASD 1.1785D + 0.65	.Yes	Υ		1	1.1	3	.75			6	.656												
15	LATERAL - ASD 0.362D + 0.875E	Yes	Υ		1	.362					6	.875												

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N8	max	494.312	2	1086.14	1	.947	1	.004	1	0	1	Ó	1
2		min	-644.912	3	-1145.901	3	.046	15	0	15	0	1	0	1
3	N7	max	.043	9	1164.902	1	69	15	001	15	0	1	0	1
4		min	14	2	-67.752	3	-16.507	1	033	1	0	1	0	1
5	N15	max	0	15	3093.603	1	0	14	0	9	0	1	0	1
6		min	-1.63	2	-303.337	3	0	11	0	11	0	1	0	1
7	N16	max	1889.811	2	3600.368	1	0	9	0	9	0	1	0	1
8		min	-1997.371	3	-3708.143	3	0	3	0	3	0	1	0	1
9	N23	max	.043	9	1164.902	1	16.507	1	.033	1	0	1	0	1
10		min	14	2	-67.752	3	.69	15	.001	15	0	1	0	1
11	N24	max	494.312	2	1086.14	1	046	15	0	15	0	1	0	1
12		min	-644.912	3	-1145.901	3	947	1	004	1	0	1	0	1
13	Totals:	max	2876.524	2	11196.054	1	0	14	·				·	
14		min	-3287.456	3	-6438.785	3	0	11						

Envelope Member Section Forces

	Member	Sec		Axial[lb]	LC_	y Shear[lb]	LC		LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
1	M13	1	max	99.654	1_	455.605	_1_	-8.091	15	0	15	.279	1_	0	1
2			min	4.045	15	-549.718	3	-200.295	1	014	1	.011	15	0	3
3		2	max	99.654	1	318.419	1	-6.21	15	0	15	.088	1	.507	3
4			min	4.045	15	-387.057	3	-153.642	1	014	1	.004	15	419	1
5		3	max	99.654	1	181.234	1	-4.33	15	0	15	0	3	.839	3
6			min	4.045	15	-224.395	3	-106.989	1	014	1	053	1	69	1
7		4	max	99.654	1	44.049	1	-2.449	15	0	15	005	12	.994	3
8			min	4.045	15	-61.733	3	-60.337	1	014	1	144	1	812	1
9		5	max	99.654	1	100.929	3	568	15	0	15	007	12	.972	3
10			min	4.045	15	-93.137	1	-13.684	1	014	1	184	1	785	1
11		6	max	99.654	1	263.591	3	32.969	1	0	15	007	15	.775	3
12			min	4.045	15	-230.322	1	.663	12	014	1	174	1	61	1
13		7	max	99.654	1	426.253	3	79.621	1	0	15	005	15	.401	3
14			min	4.045	15	-367.507	1	2.574	12	014	1	113	1	286	1
15		8	max	99.654	1	588.915	3	126.274	1	0	15	.001	2	.186	1
16			min	4.045	15	-504.693	1	4.485	12	014	1	003	3	149	3
17		9	max	99.654	1	751.576	3	172.927	1	0	15	.161	1	.807	1
18			min	4.045	15	-641.878	1	6.397	12	014	1	.004	12	875	3
19		10	max	99.654	1	779.063	1	-8.308	12	.014	1	.373	1	1.577	1
20			min	4.045	15	-914.238	3	-219.579	1	001	3	.012	12	-1.777	3
21		11	max	99.654	1	641.878	1	-6.397	12	.014	1	.161	1	.807	1
22			min	4.045	15	-751.576	3	-172.927	1	0	15	.004	12	875	3
23		12	max	99.654	1	504.693	1	-4.485	12	.014	1	.001	2	.186	1
24			min	4.045	15	-588.915	3	-126.274	1	0	15	003	3	149	3
25		13	max	99.654	1	367.507	1	-2.574	12	.014	1	005	15	.401	3
26			min	4.045	15	-426.253	3	-79.621	1	0	15	113	1	286	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC		LC		LC	Torque[k-ft]	LC	y-y Mome		z-z Mome	
27		14	max	99.654	1	230.322	1	663	12	.014	_1_	007	<u>15</u>	.775	3
28			min	4.045	15	-263.591	3	-32.969	1	0	15	174	1_	61	1
29		15	max	99.654	1	93.137	1	13.684	1	.014	1	007	12	.972	3
30			min	4.045	15	-100.929	3	.568	15	0	15	184	1	785	1
31		16	max	99.654	1	61.733	3	60.337	1	.014	1	005	12	.994	3
32			min	4.045	15	-44.049	1	2.449	15	0	15	144	1	812	1
33		17	max	99.654	1	224.395	3	106.989	1	.014	1	0	3	.839	3
34			min	4.045	15	-181.234	1	4.33	15	0	15	053	1	69	1
35		18	max	99.654	1	387.057	3	153.642	1	.014	1	.088	1	.507	3
36			min	4.045	15	-318.419	1	6.21	15	0	15	.004	15	419	1
37		19	max	99.654	1	549.718	3	200.295	1	.014	1	.279	1	0	1
38			min	4.045	15	-455.605	1	8.091	15	0	15	.011	15	0	3
39	M14	1	max	54.917	1	497.327	1	-8.386	15	.009	3	.327	1	0	1
40	IVIIT	<u> </u>	min	2.236	15	-431.372	3	-207.603	1	013	1	.013	15	0	3
41		2	max	54.917	1	360.141	1	-6.505	15	.009	3	.127	1	.401	3
42			min	2.236	15	-309.224	3	-160.95	1	013	1	.005	15	464	1
43		3						-4.624	15	.009	3	.002		.67	3
		3	max	54.917	1	222.956	1						3		
44		1	min	2.236	15	-187.077	3	-114.297	1_	013	1_	022	1_	78	1
45		4	max	54.917	1	85.771	1	-2.744	15	.009	3	004	12	.806	3
46		-	min	2.236	15	-64.929	3	-67.645	1_	013	1_	12	1_	948	1
47		5	max	54.917	1	57.218	3	863	15	.009	3	007	12	.811	3
48		_	min	2.236	15	-51.415	1	-20.992	1	013	1_	168	_1_	966	1
49		6	max	54.917	1_	179.365	3	25.661	1	.009	3_	007	15	.683	3
50			min	2.236	15	-188.6	1	.365	12	013	1	166	1	836	1
_51		7	max	54.917	1	301.513	3	72.313	1	.009	3	005	15	.422	3
52			min	2.236	15	-325.785	1	2.276	12	013	1	113	1	558	1
53		8	max	54.917	1	423.66	3	118.966	1	.009	3	0	10	.029	3
54			min	2.236	15	-462.971	1	4.188	12	013	1	009	1	13	1
55		9	max	54.917	1	545.807	3	165.619	1	.009	3	.145	1	.446	1
56			min	2.236	15	-600.156	1	6.099	12	013	1	.003	12	496	3
57		10	max	54.917	1	737.341	1	-8.011	12	.013	1	.35	1	1.17	1
58			min	2.236	15	-667.955	3	-212.272	1	009	3	.011	12	-1.153	3
59		11	max	54.917	1	600.156	1	-6.099	12	.013	1	.145	1	.446	1
60			min	2.236	15	-545.807	3	-165.619	1	009	3	.003	12	496	3
61		12	max	54.917	1	462.971	1	-4.188	12	.013	1	0	10	.029	3
62		<u> </u>	min	2.236	15	-423.66	3	-118.966	1	009	3	009	1	13	1
63		13	max	54.917	1	325.785	1	-2.276	12	.013	1	005	15	.422	3
64			min	2.236	15	-301.513	3	-72.313	1	009	3	113	1	558	1
65		14	max	54.917	1	188.6	1	365	12	.013	1	007	15	.683	3
66		17	min	2.236	15	-179.365	3	-25.661	1	009	3	166	1	836	1
67		15			1	51.415	1	20.992	1	.013	1	007	12	.811	3
68		13	min	2.236	15	-57.218	3	.863	15	009	3	168	1	966	1
69		16	max	54.917	1	64.929	3	67.645	1	.013	<u> </u>	004	12	.806	3
70		10		2.236		-85.771	1	2.744	15		3	004	1		1
		47	min		15	187.077				009				948	
71		17	max	54.917	1		3	114.297	1	.013	1	.002	3	.67	3
72		4.0	min	2.236	15	-222.956	1	4.624	15	009	3	022	1_	78	1
73		18	max	54.917	1	309.224	3	160.95	1	.013	1_	.127	1_	.401	3
74		1.0	min	2.236	15	-360.141	1	6.505	15	009	3	.005	15	464	1
75		19	max	54.917	1	431.372	3	207.603	1	.013	1_	.327	1	0	1
<u>76</u>			min	2.236	15	-497.327	1	8.386	15	009	3	.013	15	0	3
77	<u>M15</u>	1	max	-2.396	15	565.649	1	-8.382	15	.014	1	.326	1_	0	2
78			min	-58.832	1	-226.669	3	-207.533	1	007	3	.013	15	0	3
79		2	max	-2.396	15	408.206	1	-6.501	15	.014	1	.127	_1_	.212	3
80			min	-58.832	1	-165.294	3	-160.88	1	007	3	.005	15	527	1
81		3	max	-2.396	15	250.763	1	-4.621	15	.014	1_	.001	3	.358	3
82			min	-58.832	1	-103.918	3	-114.228	1	007	3	022	1	884	1
83		4	max	-2.396	15	93.321	1	-2.74	15	.014	1_	004	12	.437	3

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	<u>LC</u>
84			min	-58.832	1	-42.543	3	-67.575	1	007	3	121	1	-1.071	1
85		5	max	-2.396	15	18.833	3	859	15	.014	1	007	12	.45	3
86			min	-58.832	1	-65.954	2	-20.922	1	007	3	169	1	-1.087	1
87		6	max	-2.396	15	80.209	3	25.731	1	.014	1	007	15	.397	3
88			min	-58.832	1	-221.564	1	.425	12	007	3	166	1	932	1
89		7	max	-2.396	15	141.584	3	72.383	1	.014	1	005	15	.277	3
90			min	-58.832	1	-379.007	1	2.336	12	007	3	113	1	607	1
91		8	max	-2.396	15	202.96	3	119.036	1	.014	1	0	10	.09	3
92			min	-58.832	1	-536.449	1	4.248	12	007	3	009	1	111	1
93		9	max	-2.396	15	264.335	3	165.689	1	.014	1	.145	1	.572	2
94		1 3	min	-58.832	1	-693.892	1	6.159	12	007	3	.004	12	163	3
95		10		-2.396		851.335	1	-8.071	12	.007		.35	1	1.4	2
96		10	max	-58.832	1 <u>5</u>	-325.711	3	-212.341	1		<u>3</u>	.011	12	483	3
		4.4	min							014					
97		11	max	-2.396	15	693.892	1	-6.159	12	.007	3	.145	1	.572	2
98		40	min	-58.832	1_	-264.335	3	-165.689	1	014	1	.004	12	163	3
99		12	max	-2.396	15	536.449	1	-4.248	12	.007	3	0	<u>10</u>	.09	3
100			min	-58.832	1_	-202.96	3	-119.036	1_	014	1	009	_1_	111	1
101		13	max	-2.396	15	379.007	1_	-2.336	12	.007	3	005	15	.277	3
102			min	-58.832	1	-141.584	3	-72.383	1	014	1	113	1_	607	1
103		14	max	-2.396	15	221.564	1	425	12	.007	3	007	<u>15</u>	.397	3
104			min	-58.832	1	-80.209	3	-25.731	1	014	1	166	1	932	1
105		15	max	-2.396	15	65.954	2	20.922	1	.007	3	007	12	.45	3
106			min	-58.832	1	-18.833	3	.859	15	014	1	169	1	-1.087	1
107		16	max	-2.396	15	42.543	3	67.575	1	.007	3	004	12	.437	3
108			min	-58.832	1	-93.321	1	2.74	15	014	1	121	1	-1.071	1
109		17	max	-2.396	15	103.918	3	114.228	1	.007	3	.001	3	.358	3
110			min	-58.832	1	-250.763	1	4.621	15	014	1	022	1	884	1
111		18	max	-2.396	15	165.294	3	160.88	1	.007	3	.127	1	.212	3
112		'	min	-58.832	1	-408.206	1	6.501	15	014	1	.005	15	527	1
113		19	max	-2.396	15	226.669	3	207.533	1	.007	3	.326	1	0	2
114		15	min	-58.832	1	-565.649	1	8.382	15	014	1	.013	15	0	3
115	M16	1	max	-4.529	15	524.372	1	-8.106	15	.012	1	.282	1	0	2
116	IVITO		min	-111.299	1	-201.825	3	-200.761	1	01	3	.011	15	0	3
117		2		-4.529	15	366.93	1	-6.226	15	.012	1	.09	1	.185	3
118			max	-111.299	1	-140.449	3	-154.108	1		3				1
		2	min		_			-4.345		01	1	.004	15	483	3
119		3	max	-4.529	15	209.487	1		15	.012	_	0	12	.304	
120		1	min	-111.299	1_	-79.073	3	-107.455	1_	01	3	052	1_	795	1
121		4	max	-4.529	15	52.517	2	-2.464	15	.012	1	005	12	.357	3
122		-	min	-111.299	1	-17.698	3	-60.802	1_	01	3	143	1_	937	1
123		5	max	-4.529	15	43.678	3	584	15	.012	1	007	12	.343	3
124				-111.299	1_	-105.398		-14.15	1	01	3	183	1_	908	1
125		6	max		15	105.053	3	32.503	1	.012	1	007	<u>15</u>	.262	3
126			min	-111.299	1	-262.841	1_	.84	12	01	3	173	_1_	708	1
127		7	max		15	166.429	3	79.156	1	.012	1	005	15	.115	3
128			min			-420.283	1	2.752	12	01	3	113	1_	341	2
129		8	max		15	227.805	3	125.808	1	.012	1	0	10	.202	1
130			min		1	-577.726	1	4.663	12	01	3	003	3	099	3
131		9	max		15	289.18	3	172.461	1	.012	1	.16	1_	.913	1
132			min	-111.299	1	-735.168	1	6.575	12	01	3	.005	12	379	3
133		10	max	-4.529	15	892.611	1	-8.486	12	.012	1	.372	1	1.795	1
134				-111.299	1	-350.556	3	-219.114		01	3	.013	12	725	3
135		11	max		15	735.168	1	-6.575	12	.01	3	.16	1	.913	1
136			min		1	-289.18	3	-172.461	1	012	1	.005	12	379	3
137		12	max		15	577.726	1	-4.663	12	.01	3	0	10	.202	1
138			min			-227.805	3	-125.808		012	1	003	3	099	3
139		13	max		15	420.283	1	-2.752	12	.012	3	005	15	.115	3
140		10	min		1	-166.429		-79.156	1	012	1	113	1	341	2
170			1111111	111.200		100.723	J	10.100		.012		.110		.071	

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		Axial[lb]		y Shear[lb]	LC			Torque[k-ft]	LC	y-y Mome		z-z Mome	LC
141		14	max	-4.529	15	262.841	1	84	12	.01	3	007	15	.262	3
142			min	-111.299	1	-105.053	3	-32.503	1	012	1	173	1	708	1
143		15	max	-4.529	15	105.398	1	14.15	1	.01	3	007	12	.343	3
144			min	-111.299	1	-43.678	3	.584	15	012	1	183	1	908	1
145		16	max	-4.529	15	17.698	3	60.802	1	.01	3	005	12	.357	3
146			min	-111.299	1	-52.517	2	2.464	15	012	1	143	1	937	1
147		17	max	-4.529	15	79.073	3	107.455	1	.01	3	0	12	.304	3
148			min	-111.299	1	-209.487	1	4.345	15	012	1	052	1	795	1
149		18	max	-4.529	15	140.449	3	154.108	1	.01	3	.09	1	.185	3
150			min	-111.299	1	-366.93	1	6.226	15	012	1	.004	15	483	1
151		19	max	-4.529	15	201.825	3	200.761	1	.01	3	.282	1	0	2
152			min	-111.299	1	-524.372	1	8.106	15	012	1	.011	15	0	3
153	M2	1		1057.912	1	2.022	4	.797	1	0	5	0	3	0	1
154	IVIZ		min	-1012.963	3	.476	15	.032	15	0	1	0	1	0	1
155		2		1058.386	1	1.985	4	.797	1	0	5	0	1	0	15
156			min	-1012.608	3	.467	15	.032	15	0	1	0	15	0	4
157		3			1	1.948	4	.797	1		5	_	1	0	15
		3	max	-1012.252			15			0	1	0	15		
158		4	min		3	.458		.032	15	0		0		001	4
159		4		1059.333	1	1.911	4	.797	1	0	5	0	1	0	15
160		_	min	-1011.897	3	.45	15	.032	15	0	1_	0	15	002	4
161		5		1059.807	1	1.874	4	.797	1	0	5	.001	1	0	15
162			min	-1011.542	3	.441	15	.032	15	0	1	0	15	002	4
163		6		1060.281	1_	1.837	4	.797	1_	0	5	.001	1	0	15
164			min	-1011.186	3	.432	15	.032	15	0	1	0	15	003	4
165		7	max	1060.754	1	1.8	4	.797	1	0	5	.002	1_	0	15
166			min	-1010.831	3	.423	15	.032	15	0	1	0	15	004	4
167		8	max	1061.228	1	1.763	4	.797	1	0	5	.002	1	0	15
168			min	-1010.476	3	.415	15	.032	15	0	1	0	15	004	4
169		9	max	1061.702	1	1.726	4	.797	1	0	5	.002	1	001	15
170			min	-1010.121	3	.406	15	.032	15	0	1	0	15	005	4
171		10	max	1062.176	1	1.689	4	.797	1	0	5	.002	1	001	15
172			min	-1009.765	3	.397	15	.032	15	0	1	0	15	005	4
173		11		1062.649	1	1.652	4	.797	1	0	5	.003	1	001	15
174			min	-1009.41	3	.389	15	.032	15	0	1	0	15	006	4
175		12		1063.123	1	1.615	4	.797	1	0	5	.003	1	002	15
176			min	-1009.055	3	.38	15	.032	15	0	1	0	15	006	4
177		13		1063.597	1	1.578	4	.797	1	0	5	.003	1	002	15
178		10	min	-1008.699	3	.371	15	.032	15	0	1	0	15	007	4
179		14		1064.071	1	1.541	4	.797	1	0	5	.003	1	002	15
180		14	min	-1004.071	3	.363	15	.032	15	0	1	0	15	002	4
181		15		1064.544	1	1.504	4	.797	1	0	5	.004	-	007	
182		13	min	-1004.344	3	.354	15	.032	15	0	1	0	15	002	15
		16		1065.018				.797				_			15
183		16			1	1.467	4		1	0	<u>5</u>	.004	1_	002	
184		47	min		3	.345	15	.032	15	0		0	15	008	4
185		17		1065.492	1	1.43	4	.797	1	0	5	.004	1	002	15
186		40	min	-1007.278	3	.336	15	.032	15	0	1	0	15	009	4
187		18		1065.966	1	1.393	4	.797	1_	0	5	.004	1_	002	15
188			min	-1006.923	3	.328	15	.032	15	0	1_	0	15	009	4
189		19		1066.439	1	1.356	4	.797	1	0	5	.005	1	002	15
190			min	-1006.568	3	.319	15	.032	15	0	1	0	15	01	4
191	<u>M3</u>	1		452.717	2	8.992	4	.343	1	0	12		1_	.01	4
192			min	-600.879	3	2.114	15	.014	15	0	1	0	15	.002	15
193		2	max		2	8.12	4	.343	1	0	12	0	1	.006	4
194			min		3	1.909	15	.014	15	0	1	0	15	.001	15
195		3	max	452.377	2	7.248	4	.343	1	0	12	0	1	.003	2
196			min	-601.135	3	1.704	15	.014	15	0	1	0	15	0	3
197		4	max	452.206	2	6.376	4	.343	1	0	12	0	1	0	2

Model Name

Schletter, Inc. HCV

: Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		Axial[lb]		y Shear[lb]				Torque[k-ft]	LC	y-y Mome			LC
198			min	-601.263	3	1.499	15	.014	15	0	1_	0	15	002	3
199		5	max	452.036	2	5.504	4	.343	1	0	12	0	1	0	15
200			min	-601.39	3	1.294	15	.014	15	0	1_	0	15	004	4
201		6	max	451.866	2	4.632	4	.343	1	0	12	.001	1	001	15
202		_	min	-601.518	3_	1.089	15	.014	15	0	1_	0	15	006	4
203		7	max	451.695	2	3.76	4	.343	1	0	12	.001	1	002	15
204			min	-601.646	3_	.884	15	.014	15	0	_1_	0	15	008	4
205		8	max	451.525	2	2.888	4	.343	1	0	12	.001	1	002	15
206			min	-601.774	3	.679	15	.014	15	0	1_	0	15	01	4
207		9	max	451.355	2	2.016	4	.343	1	0	12	.002	1	003	15
208			min	-601.902	3	.474	15	.014	15	0	_1_	0	15	011	4
209		10	max	451.184	2	1.144	4	.343	1	0	12	.002	1	003	15
210			min	-602.029	3_	.269	15	.014	15	0	_1_	0	15	012	4
211		11	max	451.014	2	.332	2	.343	1_	0	12	.002	1	003	15
212			min	-602.157	3	007	3	.014	15	0	1_	0	15	012	4
213		12	max	450.844	2	141	15	.343	1	0	12	.002	1	003	15
214			min	-602.285	3_	6	4	.014	15	0	_1_	0	15	012	4
215		13	max	450.673	2	346	15	.343	1	0	12	.002	1	003	15
216			min	-602.413	3	-1.472	4	.014	15	0	1_	0	15	012	4
217		14	max	450.503	2	551	15	.343	1_	0	12	.002	1	003	15
218			min	-602.54	3	-2.344	4	.014	15	0	_1_	0	15	011	4
219		15	max	450.333	2	756	15	.343	1	0	12	.003	1	002	15
220			min	-602.668	3_	-3.216	4	.014	15	0	_1_	0	15	009	4
221		16	max		2	961	15	.343	1_	0	12	.003	1	002	15
222			min	-602.796	3_	-4.088	4_	.014	15	0	1_	0	15	008	4
223		17	max	449.992	2	-1.166	15	.343	1	0	12	.003	1	001	15
224			min	-602.924	3_	-4.96	4	.014	15	0	_1_	0	15	006	4
225		18	max	449.822	2	-1.371	15	.343	1	0	12	.003	1	0	15
226			min	-603.051	3	-5.832	4	.014	15	0	1_	0	15	003	4
227		19	max	449.651	2	-1.576	15	.343	1	0	12	.003	1	0	1
228			min	-603.179	3	-6.704	4	.014	15	0	_1_	0	15	0	1
229	M4	1		1161.836	_1_	0	1	691	15	0	_1_	.002	1	0	1
230			min	-70.051	3_	0	1_	-17.075	1_	0	_1_	0	15	0	1
231		2		1162.006	1_	0	1	691	15	0	_1_	0	1	0	1
232			min	-69.924	3	0	1_	-17.075	1_	0	1_	0	15	0	1
233		3	max		_1_	0	1	691	15	0	_1_	0	15	0	1
234			min	-69.796	3	0	1	-17.075	1_	0	1_	002	1	0	1
235		4		1162.347	_1_	0	1	691	15	0	_1_	0	15	0	1
236		_	min	-69.668	3	0	1	-17.075	1_	0	1_	004	1	0	1
237		5		1162.517	_1_	0	1	691	15	0	_1_	0	15	0	1
238				-69.54	3	0	1	-17.075	1_	0	1_	006	1	0	1
239		6	-	1162.687	1_	0	1	691	15	0		0	15	0	1
240		_		-69.413	3	0	1	-17.075	1_	0	1_	008	1	0	1
241		7		1162.858	1_	0	1	691	15	0	1_	0	15	0	1
242				-69.285	3	0	1_	-17.075	1_	0	1_	01	1	0	1
243		8		1163.028	1_	0	1	691	15	0	1_	0	15	0	1
244				-69.157	3_	0	1	-17.075	1_	0	1_	012	1	0	1
245		9		1163.198	1_	0	1	691	15	0	1_	0	15	0	1
246		4.0		-69.029	3	0	1	-17.075	1_	0	1_	013	1	0	1
247		10		1163.369	1	0	1	691	15	0	1_	0	15	0	1
248		4.4		-68.902	3	0	1_	-17.075	1_	0	1_	015	1	0	1
249		11		1163.539	1_	0	1	691	15	0	1_	0	15	0	1
250		4.0		-68.774	3	0	1_	-17.075	1_	0	1_	017	1	0	1
251		12		1163.709	1_	0	1	691	15	0	1_	0	15	0	1
252		40	min		3	0	1_	-17.075	1_	0	1_	019	1	0	1
253		13		1163.88	1_	0	1	691	15	0	1_	0	15	0	1
254			min	-68.518	3_	0	1	-17.075	1	0	1_	021	1	0	1

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC			Torque[k-ft]	LC	y-y Mome		z-z Mome	LC
255		14	max		1_	0	1	691	15	0	_1_	0	15	0	1
256			min	-68.39	3	0	1	-17.075	1	0	1	023	1	0	1
257		15	max	1164.221	1	0	1	691	15	0	1	001	15	0	1
258			min	-68.263	3	0	1	-17.075	1	0	1	025	1	0	1
259		16	max	1164.391	1	0	1	691	15	0	1	001	15	0	1
260			min	-68.135	3	0	1	-17.075	1	0	1	027	1	0	1
261		17	max	1164.561	1	0	1	691	15	0	1	001	15	0	1
262			min	-68.007	3	0	1	-17.075	1	0	1	029	1	0	1
263		18		1164.732	1	0	1	691	15	0	1	001	15	0	1
264			min	-67.879	3	0	1	-17.075	1	0	1	031	1	0	1
265		19		1164.902	1	0	1	691	15	Ö	1	001	15	0	1
266			min	-67.752	3	0	1	-17.075	1	0	1	033	1	0	1
267	M6	1		3343.058	1	2.226	2	0	1	0	1	0	1	0	1
268	IVIO	<u> </u>	min	-3275.134	3	.326	12	0	1	0	1	0	1	0	1
269		2	max		1	2.197	2	0	1	0	1	0	1	0	12
270			min	-3274.779	3	.311	12	0	1	0	1	0	1	0	2
271		3		3344.005	1	2.168	2	0	1	0	1	0	1	0	12
272		3		-3274.423	3	.297	12	0	1	0	1	0	1	001	2
		1	min			2.139		-	1		1				
273		4		3344.479	1		2	0		0		0	1	0	12
274		_	min	-3274.068	3	.282	12	0	1	0	1_	0	1_	002	2
275		5		3344.953	1	2.11	2	0	1	0	1	0	1	0	12
276			min	-3273.713	3	.268	12	0	1	0	1_	0	1	003	2
277		6		3345.427	1	2.081	2	0	1	0	1	0	1	0	12
278			min	-3273.358	3	.254	12	0	1	0	1	0	1	003	2
279		7	max	3345.9	_1_	2.052	2	0	1	0	_1_	0	1_	0	12
280			min	-3273.002	3	.239	12	0	1	0	1_	0	1	004	2
281		8	max	3346.374	_1_	2.023	2	0	1	0	_1_	0	1_	0	12
282			min	-3272.647	3	.225	12	0	1	0	1_	0	1	005	2
283		9	max	3346.848	1	1.995	2	0	1	0	_1_	0	1	0	12
284			min	-3272.292	3	.21	12	0	1	0	1	0	1	005	2
285		10	max	3347.321	1	1.966	2	0	1	0	1	0	1	0	12
286			min	-3271.936	3	.196	12	0	1	0	1	0	1	006	2
287		11	max	3347.795	1	1.937	2	0	1	0	1	0	1	0	12
288			min	-3271.581	3	.181	12	0	1	0	1	0	1	007	2
289		12	max	3348.269	1	1.908	2	0	1	0	1	0	1	0	12
290			min	-3271.226	3	.167	12	0	1	0	1	0	1	007	2
291		13	max	3348.743	1	1.879	2	0	1	0	1	0	1	0	12
292			min	-3270.87	3	.151	3	0	1	0	1	0	1	008	2
293		14		3349.216	1	1.85	2	0	1	0	1	0	1	0	12
294			min	-3270.515	3	.129	3	0	1	0	1	0	1	008	2
295		15		3349.69	1	1.821	2	0	1	0	1	0	1	001	12
296			min		3	.107	3	0	1	0	1	0	1	009	2
297		16		3350.164	1	1.793	2	0	1	0	1	0	1	001	12
298		.	min		3	.086	3	0	1	0	1	0	1	01	2
299		17		3350.638	1	1.764	2	0	1	0	1	0	1	001	12
300		17	min	-3269.449	3	.064	3	0	1	0	1	0	1	01	2
301		18		3351.111	1	1.735	2	0	1	0	1	0	1	001	12
302		10	min	-3269.094	3	.042	3	0	1	0	1	0	1	011	2
		10						-	1	_	1		1		
303		19		3351.585	1	1.706	2	0		0		0		001	12
304	N 47	4	min	-3268.739	3	.021	3	0	1	0	1	0	1	011	2
305	<u>M7</u>	1		1769.504	2	9.031	4	0	1	0	1	0	1	.011	2
306			min	-1851.407	3	2.12	15	0	1	0	1	0	1	.001	12
307		2		1769.334	2	8.159	4	0	1	0	1	0	1	.008	2
308			min		3	1.915	15	0	1	0	1	0	1	0	3
309		3		1769.163	2	7.287	4	0	1	0	_1_	0	1	.005	2
310			min	-1851.662	3	1.71	15	0	1	0	1_	0	1	003	3
311		4	max	1768.993	2	6.415	4	0	1	0	_1_	0	1	.002	2

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	. LC
312			min	-1851.79	3	1.505	15	0	1	0	1	0	1	004	3
313		5	max	1768.823	2	5.543	4	0	1	0	1	0	1	0	2
314			min	-1851.918	3	1.3	15	0	1	0	1	0	1	006	3
315		6	max	1768.652	2	4.671	4	0	1	0	_1_	0	1	001	15
316			min	-1852.045	3	1.095	15	0	1	0	1	0	1	007	3
317		7		1768.482	2	3.799	4	0	1	0	_1_	0	1	002	15
318			min	-1852.173	3_	.89	15	0	1	0	1	0	1	008	4
319		8	max		2	2.927	4	0	1	0	1	0	1	002	15
320			min	-1852.301	3	.685	15	0	1	0	1	0	1	01	4
321		9_		1768.141	2	2.055	4	0	1	0	1	0	1	003	15
322		40	min	-1852.429	3	.472	12	0	1	0	1	0	1	011	4
323		10		1767.971	2	1.332	2	0	1	0	1	0	1	003	15
324		4.4	min	-1852.556	3	.133	12	0	1	0	1	0	1	012	4
325		11		1767.801 -1852.684	2	.652	2	0	1	0	1	0	1	003	15
326 327		12	min	1767.63	<u>3</u> 2	364 027	2	0	1	0	1	0	1	012 003	15
328		12	max min	-1852.812	3	873	3	0	1	0	1	0	1	012	4
329		13	max	1767.46	2	34	15	0	1	0	1	0	1	003	15
330		13	min	-1852.94	3	-1.433	4	0	1	0	1	0	1	003	4
331		14	max	1767.29	2	545	15	0	1	0	1	0	1	002	15
332		14	min	-1853.068	3	-2.305	4	0	1	0	1	0	1	011	4
333		15		1767.119	2	75	15	0	1	0	1	0	1	002	15
334		10	min	-1853.195	3	-3.177	4	0	1	0	1	0	1	009	4
335		16		1766.949	2	955	15	0	1	0	1	0	1	002	15
336		10	min	-1853.323	3	-4.049	4	0	1	0	1	0	1	008	4
337		17		1766.779	2	-1.16	15	0	1	0	1	0	1	001	15
338		- ' '	min	-1853.451	3	-4.921	4	0	1	0	1	0	1	005	4
339		18		1766.608	2	-1.365	15	0	1	0	1	0	1	0	15
340		- 10	min	-1853.579	3	-5.793	4	0	1	0	1	0	1	003	4
341		19		1766.438	2	-1.57	15	0	1	0	1	0	1	0	1
342			min	-1853.706	3	-6.665	4	0	1	0	1	0	1	0	1
343	M8	1		3090.536	1	0	1	0	1	0	1	0	1	0	1
344			min	-305.637	3	0	1	0	1	0	1	0	1	0	1
345		2	max	3090.707	1	0	1	0	1	0	1	0	1	0	1
346			min	-305.509	3	0	1	0	1	0	1	0	1	0	1
347		3	max	3090.877	1	0	1	0	1	0	1	0	1	0	1
348			min	-305.381	3	0	1	0	1	0	1	0	1	0	1
349		4	max	3091.047	_1_	0	1	0	1	0	_1_	0	1	0	1
350			min	-305.254	3	0	1	0	1	0	1	0	1	0	1
351		5		3091.218	_1_	0	1	0	1	0	_1_	0	1	0	1
352				-305.126	3	0	1	0	1	0	1	0	1	0	1
353		6		3091.388	1_	0	1	0	1	0	1	0	1	0	1
354			min		3	0	1_	0	1	0	1	0	1	0	1
355		7		3091.559	_1_	0	1	0	1	0	1	0	1	0	1
356			min	-304.87	3	0	1	0	1	0	1	0	1	0	1
357		8		3091.729	1_	0	1	0	1	0	1	0	1	0	1
358			min		3_	0	1	0	1	0	1	0	1	0	1
359		9		3091.899	1	0	1	0	1	0	1	0	1	0	1
360		4.0	min	-304.615	3	0	1	0	1	0	1_	0	1	0	1
361		10	max		1_	0	1	0	1	0	1	0	1	0	1
362			min	-304.487	3	0	1	0	1	0	1	0	1	0	1
363		11	max		1_	0	1	0	1	0	1	0	1	0	1
364		40	min		3	0	1_	0	1	0	1	0	1	0	1
365		12	max		1	0	1	0	1	0	1	0	1	0	1
366		40	min		3	0	1	0	1	0	1_	0	1	0	1
367		13		3092.581	1_	0	1	0	1	0	1	0	1	0	1
368			mın	-304.104	3	0	1	0	1	0	1	0	1	0	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
369		14	max	3092.751	1_	0	1	0	_1_	0	_1_	0	1_	0	1
370				-303.976	3	0	1	0	1_	0	1_	0	1	0	1
371		15	max	3092.921	_1_	0	1	0	_1_	0	1_	0	1	0	1
372			min	-303.848	3	0	1	0	1_	0	1	0	1	0	1
373		16		3093.092	_1_	0	1_	0	_1_	0	_1_	0	1_	0	1
374			min	-303.72	3	0	1	0	1_	0	1_	0	1	0	1
375		17	-	3093.262	_1_	0	1	0	1	0	1_	0	1	0	1
376				-303.593	3	0	1	0	_1_	0	1_	0	1	0	1
377		18		3093.432	1_	0	1	0	1_	0	1_	0	1	0	1
378		4.0		-303.465	3	0	1	0	1_	0	1_	0	1	0	1
379		19		3093.603	_1_	0	1	0	1_	0	1	0	1	0	1
380	N440		_	-303.337	3	0	1	0	1_	0	1_	0	1_	0	1
381	M10	1		1057.912	1_	2.022	4	032	15	0	1_	0	1	0	1
382			min	-1012.963	3	.476	15	797	1_	0	5	0	3	0	1
383		2		1058.386	1	1.985	4	032	<u>15</u>	0	1_	0	15	0	15
384		2	min	1058.859	3	.467	15	797	1_	0	5	0	1 1 5	0	4
385		3		-1012.252	<u>1</u> 3	1.948	<u>4</u> 15	032 707	<u>15</u> 1	0	<u>1</u> 5	0	1 <u>5</u>	001	15
386 387		4	min	1059.333	<u> </u>	.458 1.911	4	797 032	15	0	<u> </u>	0	15	001 0	15
388		4	min	-1011.897	3	.45	15	032 797	10 1	0	5	0	1	002	4
389		5		1059.807	<u> </u>	1.874	4	032	15	0	<u> </u>	0	15	002 0	15
390			min	-1011.542	3	.441	15	797	1	0	5	001	1	002	4
391		6		1060.281	1	1.837	4	032	15	0	1	0	15	0	15
392			min	-1011.186	3	.432	15	797	1	0	5	001	1	003	4
393		7		1060.754		1.8	4	032	15	0	1	0	15	0	15
394			min	-1010.831	3	.423	15	797	1	0	5	002	1	004	4
395		8		1061.228	1	1.763	4	032	15	0	1	0	15	0	15
396			min	-1010.476	3	.415	15	797	1	0	5	002	1	004	4
397		9		1061.702	1	1.726	4	032	15	0	1	0	15	001	15
398				-1010.121	3	.406	15	797	1	0	5	002	1	005	4
399		10		1062.176	1	1.689	4	032	15	0	1	0	15	001	15
400			min	-1009.765	3	.397	15	797	1	0	5	002	1	005	4
401		11	max	1062.649	1	1.652	4	032	15	0	1	0	15	001	15
402			min	-1009.41	3	.389	15	797	1	0	5	003	1	006	4
403		12	max	1063.123	1	1.615	4	032	15	0	1	0	15	002	15
404			min	-1009.055	3	.38	15	797	1	0	5	003	1	006	4
405		13	max	1063.597	1	1.578	4	032	15	0	1	0	15	002	15
406			min	-1008.699	3	.371	15	797	1	0	5	003	1	007	4
407		14		1064.071	_1_	1.541	4	032	15	0	_1_	0	15	002	15
408				-1008.344	3	.363	15	797	1	0	5	003	1	007	4
409		15		1064.544	_1_	1.504	4	032	15	0	_1_	0	15	002	15
410			min		3_	.354	15	797	_1_	0	5	004	1_	008	4
411		16		1065.018	1_	1.467	4	032	15	0	1_	0	15	002	15
412		4	_	-1007.633	3	.345	15	797	1_	0	5	004	1_	008	4
413		17		1065.492	1_	1.43	4	032	<u>15</u>	0	1_	0	15	002	15
414		40	min	-1007.278	3	.336	15	797	1_	0	5	004	1_	009	4
415		18		1065.966	1	1.393	4	032	<u>15</u>	0	1_	0	15	002	15
416		40		-1006.923	3_	.328	15	797	1_	0	5	004	1_	009	4
417		19		1066.439	1	1.356	4	032	<u>15</u>	0	1	0	15	002	15
418	N/1.1	4		-1006.568	3	.319	15	797	1_	0	5	005	1_	01	4
419	M11	1		452.717	2	8.992	4	014	<u>15</u>	0	1 12	0	15	.01	4
420		2		-600.879	3	2.114	15	343	<u>1</u> 15	0	<u>12</u> 1	0	15	.002	15
421		2	max	452.547 -601.007	2	8.12 1.909	15	014 343	<u>15</u> 1	0	12	0	15	.006	15
422		3			<u>3</u> 2	7.248	1 <u>5</u>	343 014	15	0	<u>12</u> 1	0	15	.001	1 <u>5</u>
424		3	max min		3	1.704	15	014	1	0	12	0	15	.003	3
424		1			2		4		15	0	<u>12</u> 1	0	15	0	2
420		4	шах	452.206		6.376	4	014	10	U		U	<u> </u>	U	

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	. LC	z-z Mome	. LC
426			min	-601.263	3	1.499	15	343	1	0	12	0	1	002	3
427		5	max	452.036	2	5.504	4	014	15	0	1	0	15	0	15
428			min	-601.39	3	1.294	15	343	1	0	12	0	1	004	4
429		6	max	451.866	2	4.632	4	014	15	0	1	0	15	001	15
430			min	-601.518	3	1.089	15	343	1	0	12	001	1	006	4
431		7	max	451.695	2	3.76	4	014	15	0	1	0	15	002	15
432			min	-601.646	3	.884	15	343	1	0	12	001	1	008	4
433		8	max	451.525	2	2.888	4	014	15	0	1	0	15	002	15
434			min	-601.774	3	.679	15	343	1	0	12	001	1	01	4
435		9	max	451.355	2	2.016	4	014	15	0	1	0	15	003	15
436			min	-601.902	3	.474	15	343	1	0	12	002	1	011	4
437		10	max		2	1.144	4	014	15	0	1	0	15	003	15
438			min	-602.029	3	.269	15	343	1	0	12	002	1	012	4
439		11	max	451.014	2	.332	2	014	15	0	1	0	15	003	15
440			min	-602.157	3	007	3	343	1	0	12	002	1	012	4
441		12	max	450.844	2	141	15	014	15	0	1	0	15	003	15
442			min	-602.285	3	6	4	343	1	0	12	002	1	012	4
443		13	max	450.673	2	346	15	014	15	0	1	0	15	003	15
444			min	-602.413	3	-1.472	4	343	1	0	12	002	1	012	4
445		14	max	450.503	2	551	15	014	15	0	1	0	15	003	15
446			min	-602.54	3	-2.344	4	343	1	0	12	002	1	011	4
447		15	max		2	756	15	014	15	0	1	0	15	002	15
448			min	-602.668	3	-3.216	4	343	1	0	12	003	1	009	4
449		16	max	450.162	2	961	15	014	15	0	1	0	15	002	15
450			min	-602.796	3	-4.088	4	343	1	0	12	003	1	008	4
451		17	max	449.992	2	-1.166	15	014	15	0	1	0	15	001	15
452			min	-602.924	3	-4.96	4	343	1	0	12	003	1	006	4
453		18	max	449.822	2	-1.371	15	014	15	0	1	0	15	0	15
454			min	-603.051	3	-5.832	4	343	1	0	12	003	1	003	4
455		19	max	449.651	2	-1.576	15	014	15	0	1	0	15	0	1
456			min	-603.179	3	-6.704	4	343	1	0	12	003	1	0	1
457	M12	1_	max		_1_	0	1	17.075	1	0	1	0	15	0	1
458			min	-70.051	3	0	1	.691	15	0	1	002	1	0	1
459		2		1162.006	_1_	0	1	17.075	1	0	1	0	15	0	1
460			min	-69.924	3	0	1	.691	15	0	1	0	1	0	1
461		3	max	1162.176	_1_	0	1	17.075	1	0	1	.002	1_	0	1
462			min	-69.796	3	0	1	.691	15	0	1	0	15	0	1
463		4		1162.347	_1_	0	1	17.075	1	0	1	.004	1	0	1
464			min	-69.668	3	0	1	.691	15	0	1	0	15	0	1
465		5		1162.517	_1_	0	1_	17.075	1	0	1	.006	1_	0	1
466			min	-69.54	3	0	1	.691	15	0	1	0	15	0	1
467		6		1162.687	1_	0	1	17.075	1	0	1	.008	1	0	1
468			min		3_	0	1_	.691	15	0	1	0	15	0	1
469		7		1162.858	1_	0	1	17.075	1	0	1	.01	1	0	1
470		_	min	-69.285	3	0	1	.691	15	0	1	0	15	0	1
471		8		1163.028	1_	0	1	17.075	1	0	1	.012	1	0	1
472			min		3	0	1	.691	15	0	1	0	15	0	1
473		9		1163.198	1_	0	1	17.075	1	0	1	.013	1	0	1
474			min	-69.029	3	0	1	.691	15	0	1	0	15	0	1
475		10		1163.369	1_	0	1	17.075	1	0	1	.015	1_	0	1
476			min	-68.902	3	0	1	.691	15	0	1	0	15	0	1
477		11		1163.539	1_	0	1	17.075	1	0	1	.017	1	0	1
478			min		3_	0	1_	.691	15	0	1	0	15	0	1
479		12		1163.709	1_	0	1	17.075	1	0	1	.019	1	0	1
480			min	-68.646	3	0	1	.691	15	0	1	0	15	0	1
481		13		1163.88	1_	0	1	17.075	1	0	1	.021	1	0	1
482			min	-68.518	3	0	1	.691	15	0	1	0	15	0	1

Model Name

Schletter, Inc. HCV

: Standard PVMax Racking System

Nov 4, 2015

Checked By:____

400	Member	Sec		Axial[lb]						Torque[k-ft]				_	1 1
483 484		14	max min	1164.05	<u>1</u> 3	0	1	17.075 .691	<u>1</u> 15	0	<u>1</u> 1	.023	15	0	1
485		15		-68.39 1164.221	<u>ာ</u> 1	0	1	17.075	<u>15</u> 1	0	1	.025	1	0	1
		10		-68.263	3	0	1	.691	15	0	1	.025	15	0	1
486 487		16	min	1164.391	_ <u>ა_</u> 1	_	1			_	1				1
		10	_	-68.135	3	0	1	17.075	<u>1</u> 15	0	1	.027	15	0	1
488		17	min			0		.691			_	.001		_	1
489		17		1164.561	1	0	1	17.075	1_	0	1	.029	1	0	1
490		4.0	min	-68.007	<u>3</u> 1	0	1	.691	<u>15</u>	0	1	.001	15	0	1
491		18		1164.732		0		17.075	1_	0		.031	1	0	
492		40	min	-67.879	3	0	1_	.691	15	0	1_	.001	15	0	1
493		19		1164.902	1_	0	1	17.075	1_	0	1	.033	1	0	1
494	N 4 4		min	-67.752	3	0	1	.691	15	0	1_	.001	15	0	1_
495	<u>M1</u>	1_	max	200.301	1_	549.684	3	-4.045	<u>15</u>	0	1_	.279	1	0	15
496			min	8.091	15	-453.249	1	-99.464	1_	0	3	.011	15	014	1
497		2	max	201.013	1_	548.539	3	-4.045	<u>15</u>	0	1_	.218	1	.268	1
498			min	8.306	<u>15</u>	-454.776	1	-99.464	1_	0	3	.009	15	342	3
499		3	max	386.713	3	523.514	1_	-4.013	15	0	3	.156	1	.54	1
500			min	-249.82	2	-397.194	3	-98.996	_1_	0	1_	.006	15	672	3
501		4	max	387.247	3	521.987	1_	-4.013	15	0	3	.095	1	.215	1
502			min	-249.108	2	-398.339	3	-98.996	1_	0	1_	.004	15	425	3
503		5	max	387.781	3_	520.46	_1_	-4.013	<u>15</u>	0	3	.033	1	005	15
504			min	-248.396	2	-399.484	3	-98.996	1_	0	1_	.001	15	177	3
505		6	max	388.315	3	518.933	1_	-4.013	15	0	3	001	15	.071	3
506				-247.684	2	-400.629	3	-98.996	1_	0	1_	028	1	431	1
507		7	max	388.849	3_	517.406	_1_	-4.013	<u> 15</u>	0	3	004	15	.32	3
508			min	-246.972	2	-401.775	3	-98.996	1	0	1	09	1	753	1
509		8	max	389.383	3	515.879	1	-4.013	15	0	3	006	15	.57	3
510			min	-246.26	2	-402.92	3	-98.996	1_	0	1_	151	1	-1.073	1
511		9	max	403.815	3	35.151	2	-6.249	15	0	9	.094	1	.668	3
512			min	-162.27	2	.466	15	-153.973	1	0	3	.004	15	-1.222	1
513		10	max	404.349	3	33.624	2	-6.249	15	0	9	0	15	.649	3
514			min	-161.557	2	.005	15	-153.973	1	0	3	002	1	-1.234	1
515		11	max	404.883	3	32.097	2	-6.249	15	0	9	004	15	.632	3
516			min	-160.845	2	-1.828	4	-153.973	1	0	3	097	1	-1.245	1
517		12	max	419.217	3	255.933	3	-3.854	15	0	1	.148	1	.551	3
518			min	-90.11	10	-554.008	1	-95.217	1	0	3	.006	15	-1.1	1
519		13	max	419.751	3	254.787	3	-3.854	15	0	1	.089	1	.393	3
520			min	-89.516	10	-555.535	1	-95.217	1	0	3	.004	15	755	1
521		14	max	420.285	3	253.642	3	-3.854	15	0	1	.03	1	.235	3
522			min	-88.923	10	-557.062	1	-95.217	1	0	3	.001	15	41	1
523		15		420.819	3	252.497	3	-3.854	15	0	1	001	15	.078	3
524			min	-88.33	10	-558.588	1	-95.217	1	0	3	029	1	064	1
525		16		421.353	3	251.352	3	-3.854	15	0	1	004	15	.295	2
526				-87.736	10	-560.115	1	-95.217	1	0	3	088	1	079	3
527		17		421.887	3	250.207	3	-3.854	15	0	1	006	15	.631	1
528			min		10	-561.642	1	-95.217	1	0	3	147	1	234	3
529		18	max		15	528.12	1	-4.53	15	0	3	009	15	.315	1
530				-201.467	1	-200.761	3	-111.478	1	0	2	213	1	115	3
531		19	max		15	526.593	1	-4.53	15	0	3	011	15	.01	3
532				-200.755	1	-201.906	3	-111.478	1	0	2	282	1	012	1
533	M5	1	max		1	1828.403	3	0	1	0	1	0	1	.028	1
534	IVIO		min	16.617	12	-1546.209	1	0	1	0	1	0	1	0	15
535		2	max		1	1827.258	3	0	1	0	1	0	1	.989	1
536				16.974	12	-1547.736	1	0	1	0	1	0	1	-1.132	3
537		3		1225.716	3	1523.275	1	0	1	0	1	0	1	1.916	1
538		3		-867.983	2	-1242.644	3	0	1	0	1	0	1	-2.232	3
539		4		1226.25	3	1521.748	1	0	1	0	1	0	1	.971	1
000		_ +	πιαλ	1220.23	<u> </u>	1041.740		U		U				.311	

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Nov 4, 2015

Checked By:_

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC_
540			min	-867.271	2	-1243.79	3	0	1	0	1	0	1	-1.46	3
541		5	max	1226.784	3	1520.221	1	0	1	0	1	0	1	.033	9
542			min	-866.559	2	-1244.935	3	0	1	0	1	0	1	688	3
543		6	max	1227.318	3	1518.694	1	0	1	0	1	0	1	.085	3
544			min	-865.846	2	-1246.08	3	0	1	0	1	0	1	916	1
545		7	max	1227.852	3	1517.167	1	0	1	0	1	0	1	.859	3
546			min	-865.134	2	-1247.225	3	0	1	0	1	0	1	-1.858	1
547		8	max	1228.386	3	1515.64	1	0	1	0	1	0	1	1.633	3
548			min	-864.422	2	-1248.37	3	0	1	0	1	0	1	-2.799	1
549		9	max	1252.732	3	116.947	2	0	1	0	1	0	1	1.886	3
550			min	-690.697	2	.465	15	0	1	0	1	0	1	-3.173	1
551		10	max	1253.266	3	115.42	2	0	1	0	1	0	1	1.82	3
552			min	-689.985	2	.004	15	0	1	0	1	0	1	-3.213	1
553		11	max	1253.8	3	113.893	2	0	1	0	1	0	1	1.755	3
554			min	-689.273	2	-1.57	4	0	1	0	1	0	1	-3.252	1
555		12	max	1278.343	3	779.513	3	0	1	0	1	0	1	1.537	3
556			min	-515.566	2	-1643.773	1	0	1	0	1	0	1	-2.894	1
557		13	max	1278.877	3	778.368	3	0	1	0	1	0	1	1.053	3
558			min	-514.854	2	-1645.3	1	0	1	0	1	0	1	-1.874	1
559		14	max	1279.411	3	777.223	3	0	1	0	1	0	1	.571	3
560			min	-514.142	2	-1646.827	1	0	1	0	1	0	1	852	1
561		15	max	1279.945	3	776.077	3	0	1	0	1	0	1	.233	2
562			min	-513.43	2	-1648.354	1	0	1	0	1	0	1	0	13
563		16	max	1280.479	3	774.932	3	0	1	0	1	0	1	1.202	2
564			min	-512.718	2	-1649.881	1	0	1	0	1	0	1	393	3
565		17	max	1281.013	3	773.787	3	0	1	0	1	0	1	2.218	1
566			min	-512.006	2	-1651.408	1	0	1	0	1	0	1	873	3
567		18	max	-17.327	12	1797.753	1	0	1	0	1	0	1	1.14	1
568			min	-438.95	1	-700.399	3	0	1	0	1	0	1	455	3
569		19	max	-16.971	12	1796.226	1	0	1	0	1	0	1	.025	1
570			min	-438.238	1_	-701.544	3	0	1	0	1	0	1	02	3
571	M9	1	max	200.301	<u>1</u>	549.684	3	99.464	1	0	3	011	15	0	15
572			min	8.091	15	-453.249	1	4.045	15	0	1	279	1	014	1
573		2	max	201.013	_1_	548.539	3	99.464	1	0	3	009	15	.268	1
574			min	8.306	15	-454.776	1	4.045	15	0	1	218	1	342	3
575		3	max	386.713	3_	523.514	1	98.996	1	0	1	006	15	.54	1_
576			min	-249.82	2	-397.194	3	4.013	15	0	3	156	1	672	3
577		4	max	387.247	3	521.987	1	98.996	1	0	1	004	15	.215	1
578			min	-249.108	2	-398.339	3	4.013	15	0	3	095	1	425	3
579		5	max	387.781	3	520.46	1_	98.996	1	0	1_	001	15	005	15
580				-248.396		-399.484		4.013	15		3	033	1		3
581		6		388.315	3	518.933	1	98.996	1	0	1	.028	1	.071	3
582					2	-400.629	3	4.013	15	0	3	.001	15	431	1
583		7		388.849	3	517.406	1	98.996	1	0	1	.09	1	.32	3
584			min	-246.972	2	-401.775	3	4.013	15	0	3	.004	15	753	1
585		8	max		3_	515.879	1	98.996	1	0	1	.151	1	.57	3
586			min	-246.26	2	-402.92	3	4.013	15	0	3	.006	15	-1.073	1
587		9		403.815	3	35.151	2	153.973	1	0	3	004	15	.668	3
588					2	.466	15	6.249	15	0	9	094	1	-1.222	1
589		10	max		3_	33.624	2	153.973	1	0	3	.002	1	.649	3
590				-161.557	2	.005	15	6.249	15	0	9	0	15	-1.234	1
591		11		404.883	3	32.097	2	153.973	1	0	3	.097	1	.632	3
592			min	-160.845	2	-1.828	4	6.249	15	0	9	.004	15	-1.245	1
593		12		419.217	3	255.933	3	95.217	1	0	3	006	15	.551	3
594			min	-90.11	10	-554.008	1	3.854	15	0	1	148	1_	-1.1	1
595		13		419.751	3	254.787	3	95.217	1	0	3	004	15	.393	3
596			min	-89.516	10	-555.535	1	3.854	15	0	1	089	1	755	1

Model Name

: Schletter, Inc. : HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

Envelope Member Section Forces (Continued)

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC_
597		14	max	420.285	3	253.642	3	95.217	1	0	3	001	15	.235	3
598			min	-88.923	10	-557.062	1	3.854	15	0	1	03	1	41	1
599		15	max	420.819	3	252.497	3	95.217	1	0	3	.029	1	.078	3
600			min	-88.33	10	-558.588	1	3.854	15	0	1	.001	15	064	1
601		16	max	421.353	3	251.352	3	95.217	1	0	3	.088	1	.295	2
602			min	-87.736	10	-560.115	1	3.854	15	0	1	.004	15	079	3
603		17	max	421.887	3	250.207	3	95.217	1	0	3	.147	1	.631	1
604			min	-87.143	10	-561.642	1	3.854	15	0	1	.006	15	234	3
605		18	max	-8.321	15	528.12	1	111.478	1	0	2	.213	1	.315	1
606			min	-201.467	1	-200.761	3	4.53	15	0	3	.009	15	115	3
607		19	max	-8.106	15	526.593	1	111.478	1	0	2	.282	1	.01	3
608			min	-200.755	1	-201.906	3	4.53	15	0	3	.011	15	012	1

Envelope Member Section Deflections

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
1	M13	1	max	0	1	.178	1	.008	3 1.194e-2	1_	NC	1_	NC	1
2			min	0	15	025	3	004	2 -1.622e-3	3	NC	1	NC	1
3		2	max	0	1	.218	3	.046	1 1.329e-2	1	NC	5	NC	2
4			min	0	15	004	9	.002	10 -1.497e-3	3	962.241	3	5261.34	1
5		3	max	0	1	.416	3	.108	1 1.465e-2	1	NC	5	NC	3
6			min	0	15	129	1	.005	15 -1.371e-3	3	531.243	3	2204.251	1
7		4	max	0	1	.536	3	.16	1 1.601e-2	1	NC	5	NC	3
8			min	0	15	201	1	.007	15 -1.245e-3	3	417.085	3	1475.121	1
9		5	max	0	1	.566	3	.186	1 1.737e-2	1	NC	5	NC	3
10			min	0	15	198	1	.008	15 -1.12e-3	3	396.322	3	1265.328	1
11		6	max	0	1	.506	3	.179	1 1.872e-2	1_	NC	5	NC	3
12			min	0	15	123	1	.007	15 -9.939e-4	3	440.985	3	1317.869	1
13		7	max	0	1	.375	3	.14	1 2.008e-2	1	NC	5	NC	3
14			min	0	15	008	9	.006	15 -8.682e-4	3	584.956	3	1689.935	1
15		8	max	0	1	.209	3	.081	1 2.144e-2	1_	NC	1	NC	3
16			min	0	15	.005	15	0	10 -7.426e-4	3	1002.451	3	2959.505	1
17		9	max	0	1	.302	1	.025	3 2.28e-2	1	NC	4	NC	1
18			min	0	15	.009	15	007	10 -6.169e-4	3	1887.231	1	NC	1
19		10	max	0	1	.363	1	.023	3 2.415e-2	1	NC	3	NC	1
20			min	0	1	011	3	016	2 -4.912e-4	3	1262.55	1	NC	1
21		11	max	0	15	.302	1	.025	3 2.28e-2	1	NC	4	NC	1
22			min	0	1	.009	15	007	10 -6.169e-4	3	1887.231	1	NC	1
23		12	max	0	15	.209	3	.081	1 2.144e-2	1	NC	1	NC	3
24			min	0	1	.005	15	0	10 -7.426e-4	3	1002.451	3	2959.505	1
25		13	max	0	15	.375	3	.14	1 2.008e-2	1	NC	5	NC	3
26			min	0	1	008	9	.006	15 -8.682e-4	3	584.956	3	1689.935	1
27		14	max	0	15	.506	3	.179	1 1.872e-2	1	NC	5	NC	3
28			min	0	1	123	1	.007	15 -9.939e-4	3	440.985	3	1317.869	
29		15	max	0	15	.566	3	.186	1 1.737e-2	1	NC	5	NC	3
30			min	0	1	198	1	.008	15 -1.12e-3	3	396.322	3	1265.328	1
31		16	max	0	15	.536	3	.16	1 1.601e-2	1	NC	5	NC	3
32			min	0	1	201	1	.007	15 -1.245e-3	3	417.085	3	1475.121	1
33		17	max	0	15	.416	3	.108	1 1.465e-2	1_	NC	5	NC	3
34			min	0	1	129	1	.005	15 -1.371e-3	3	531.243	3	2204.251	1
35		18	max	0	15	.218	3	.046	1 1.329e-2	1	NC	5	NC	2
36			min	0	1	004	9	.002	10 -1.497e-3	3	962.241	3	5261.34	1
37		19	max	0	15	.178	1	.008	3 1.194e-2	1	NC	1	NC	1
38			min	0	1	025	3	004	2 -1.622e-3	3	NC	1	NC	1
39	M14	1	max	0	1	.272	3	.007	3 7.245e-3	1	NC	1	NC	1
40			min	0	15	554	1	003	2 -4.214e-3	3	NC	1	NC	1

Model Name

Schletter, Inc.

: HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r	LC	(n) L/v Ratio	LC	(n) L/z Ratio	LC
41		2	max	0	1	.53	3	.031	1 8.531e-3	1	NC	5	NC	2
42			min	0	15	897	1	0	10 -5.058e-3	3	683.504	1	8101.611	1
43		3	max	0	1	.752	3	.084	1 9.817e-3	1	NC	15	NC	3
44			min	0	15	-1.197	1	.004	15 -5.902e-3	3	364.143	1	2841.216	
45		4	max	0	1	.912	3	.134	1 1.11e-2	1_		<u>15</u>	NC	3
46			min	0	15	-1.426	1	.006	15 -6.746e-3	3	268.552	1_	1765.665	1
47		5	max	0	1	.999	3	.163	1 1.239e-2	1_		15	NC	3
48			min	0	15	-1.567	1	.007	15 -7.59e-3	3	231.001	1_	1453.889	
49		6	max	0	1	1.011	3	<u>.16</u>	1 1.368e-2	1		<u>15</u>	NC	3
50		_	min	0	15	<u>-1.62</u>	1	.007	15 -8.433e-3	3	219.554	1_	1475.096	1
51		7	max	0	1	.96	3	.128	1 1.496e-2	1_		<u>15</u>	NC 4050,000	3
52		0	min	0	15	<u>-1.596</u>	1	.005	15 -9.277e-3	3	224.59	1_	1856.269	1
53 54		8	max	<u> </u>	1 15	.871 -1.522	3	<u>.075</u> 0	1 1.625e-2 10 -1.012e-2	1	8589.309 241.928	<u>15</u> 1	NC 3198.667	2
55		9	min	0	1	<u>-1.522</u> .781	3	.022	10 -1.012e-2 3 1.753e-2	<u>3</u> 1		15	NC	1
56		9	max min	0	15	-1.436	1	006	10 -1.096e-2	3	265.431	1	NC NC	1
57		10	max	0	1	.737	3	.021	3 1.882e-2	1		15	NC	1
58		10	min	0	1	-1.393	1	014	2 -1.181e-2	3	279.039	1	NC	1
59		11	max	0	15	.781	3	.022	3 1.753e-2	1		15	NC	1
60			min	0	1	-1.436	1	006	10 -1.096e-2	3	265.431	1	NC	1
61		12	max	0	15	.871	3	.075	1 1.625e-2	1		15	NC	2
62			min	0	1	-1.522	1	0	10 -1.012e-2	3	241.928	1	3198.667	1
63		13	max	0	15	.96	3	.128	1 1.496e-2	1		15	NC	3
64			min	0	1	-1.596	1	.005	15 -9.277e-3	3	224.59	1	1856.269	
65		14	max	0	15	1.011	3	.16	1 1.368e-2	1		15	NC	3
66			min	0	1	-1.62	1	.007	15 -8.433e-3	3	219.554	1	1475.096	1
67		15	max	0	15	.999	3	.163	1 1.239e-2	1		15	NC	3
68			min	0	1	-1.567	1	.007	15 -7.59e-3	3	231.001	1	1453.889	1
69		16	max	0	15	.912	3	.134	1 1.11e-2	1		15	NC	3
70			min	0	1	-1.426	1	.006	15 -6.746e-3	3	268.552	1	1765.665	
71		17	max	0	15	.752	3	.084	1 9.817e-3	1_	NC	<u>15</u>	NC	3
72			min	0	1	<u>-1.197</u>	1	.004	15 -5.902e-3	3	364.143	1_	2841.216	1
73		18	max	0	15	.53	3	.031	1 8.531e-3	1_	NC	5	NC	2
74			min	0	1	897	1	0	10 -5.058e-3	3	683.504	1_	8101.611	1
75		19	max	0	15	.272	3	.007	3 7.245e-3	1	NC	1_	NC	1
76	D 4 4 5	_	min	0	1	<u>554</u>	1	003	2 -4.214e-3	3	NC NC	1_	NC	1
77	M15	1_	max	0	15	.279	3	.006	3 3.496e-3	3_	NC NC	1_	NC NC	1
78			min	0	1	<u>554</u>	1	003	2 -7.397e-3	1_	NC NC	1_	NC NC	1
79		2	max	0	15	.449	3	.031	1 4.196e-3	3	NC COO COA	5	NC	2
80		2	min	0	1	<u>926</u>	1	0	10 -8.72e-3 1 4.895e-3	1	628.901 NC	1_	8031.679	1
81 82		3	max	0	15 1	<u>.6</u> -1.25	3	.085 .004	1 4.895e-3 15 -1.004e-2	3	336.037	<u>15</u>	NC 2826.786	3
83		4	max	<u> </u>	15	<u>-1.25</u> .718	3	.004 .135	1 5.595e-3	<u>1</u> 3		15	NC	3
84		7	min	0	1	-1.493	1	.006	15 -1.137e-2	1	249.047	1	1758.751	1
85		5	max	0	15	<u>-1.493 </u>	3	.163	1 6.294e-3	3		15	NC	3
86			min	0	1	-1.638	1	.007	15 -1.269e-2	1	215.786	1	1448.783	1
87		6	max	0	15	.832	3	.161	1 6.994e-3	3		15	NC	3
88		Ť	min	0	1	-1.683	1	.007	15 -1.401e-2	1	207.198	1	1469.784	
89		7	max	0	15	.832	3	.128	1 7.694e-3	3		15	NC	3
90			min	0	1	-1.642	1	.005	15 -1.534e-2	1	214.908	1	1848.155	
91		8	max	0	15	.807	3	.075	1 8.393e-3	3		15	NC	2
92			min	0	1	-1.547	1	.001	10 -1.666e-2	1	235.613	1	3176.018	
93		9	max	0	15	.774	3	.022	1 9.093e-3	3		15	NC	1
94			min	0	1	-1.442	1	005	10 -1.798e-2	1	263.37	1	NC	1
95		10	max	0	1	.756	3	.019	3 9.793e-3	3	NC	15	NC	1
96			min	0	1	-1.39	1	013	2 -1.931e-2	1	279.606	1	NC	1
97		11	max	0	1	.774	3	.022	1 9.093e-3	3	9518.163	15	NC	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r	I.C.	(n) I /v Ratio I	C	(n) I /z Ratio	I.C.
98	WICHIDO		min	0	15	-1.442	1	005	10 -1.798e-2	1		1	NC	1
99		12	max	0	1	.807	3	.075	1 8.393e-3	3		15	NC	2
100			min	0	15	-1.547	1	.001	10 -1.666e-2	1		1	3176.018	
101		13	max	0	1	.832	3	.128	1 7.694e-3	3		15	NC	3
102			min	0	15	-1.642	1	.005	15 -1.534e-2	1	214.908	1	1848.155	1
103		14	max	0	1	.832	3	.161	1 6.994e-3	3	7718.037	15	NC	3
104			min	0	15	-1.683	1	.007	15 -1.401e-2	1		1	1469.784	1
105		15	max	0	1	.796	3	.163	1 6.294e-3	3		<u> 15</u>	NC	3
106			min	0	15	-1.638	1	.007	15 -1.269e-2	1_		1_	1448.783	1
107		16	max	0	1	.718	3	.135	1 5.595e-3	3		<u>15</u>	NC	3
108			min	0	15	-1.493	1	.006	15 -1.137e-2	1_		<u>1_</u>	1758.751	1
109		17	max	0	1	<u>.6</u>	3	.085	1 4.895e-3	3		<u>15</u>	NC Too	3
110		40	min	0	15	<u>-1.25</u>	1	.004	15 -1.004e-2	1_		<u>1</u>	2826.786	
111		18	max	0	1	.449	3	.031	1 4.196e-3	3_		5_	NC	2
112		40	min	0	15	<u>926</u>	1	0	10 -8.72e-3	1_	020.001	1_	8031.679	1
113		19	max	0	1	.279	3	.006	3 3.496e-3 2 -7.397e-3	3		1	NC NC	1
114	M16	1	min	0	15	<u>554</u> .173	1	003		1		<u>1</u> 1	NC NC	1
115 116	IVI I O		max	0 001	15	096	3	.005 003	3 6.421e-3 2 -1.118e-2	<u>3</u> 1		1	NC NC	1
117		2		<u>001</u> 0	15	096 .005	4	003 .045	1 7.371e-3	3		<u>1</u> 5	NC NC	2
118			max min	0	1	057	2	.002	15 -1.235e-2	1		2	5329.297	1
119		3	max	0	15	.026	3	.107	1 8.322e-3	3		5	NC	3
120		-	min	0	1	22	2	.004	15 -1.353e-2	1		2	2219.174	1
121		4	max	0	15	.05	3	.16	1 9.272e-3	3		5	NC	3
122			min	0	1	31	2	.007	15 -1.471e-2	1		2	1480.109	
123		5	max	0	15	.042	3	.186	1 1.022e-2	3		5	NC	3
124			min	0	1	316	2	.008	15 -1.588e-2	1		2	1266.174	1
125		6	max	0	15	.004	12	.179	1 1.117e-2	3		5	NC	3
126			min	0	1	24	2	.007	15 -1.706e-2	1		2	1314.726	
127		7	max	0	15	.005	4	.141	1 1.212e-2	3		5	NC	3
128			min	0	1	099	2	.006	15 -1.823e-2	1	943.583	2	1677.633	1
129		8	max	0	15	.123	1	.082	1 1.307e-2	3		4	NC	3
130			min	0	1	135	3	.003	10 -1.941e-2	1_		2	2902.434	1
131		9	max	0	15	.279	1	.024	1 1.403e-2	3		5_	NC	1
132			min	0	1	2	3	004	10 -2.059e-2	1		1	NC	1
133		10	max	0	1	.349	1	.017	3 1.498e-2	3_		5	NC	1
134			min	0	1	228	3	012	2 -2.176e-2	_1_		1_	NC	1
135		11	max	0	1	.279	1	.024	1 1.403e-2	3		5_	NC	1
136		40	min	0	15	2	3	004	10 -2.059e-2	1_		<u>1</u>	NC	1
137		12	max	0	1	.123	1	.082	1 1.307e-2	3		4	NC	3
138		40	min	0	15	135	3	.003	10 -1.941e-2 1 1.212e-2	<u>1</u>		2	2902.434	
139		13	max	0	15	.005	2	.141		3		<u>5</u>	NC 1677 633	3
140		14	min	<u> </u>	1	099 .004	12	<u>.006</u> .179	15 -1.823e-2 1 1.117e-2	<u>1</u> 3		<u>2</u> 5	1677.633 NC	3
142		14	max min	0	15	24	2	.007	15 -1.706e-2	<u> </u>		<u>2</u>	1314.726	
143		15	max	0	1	.042	3	.186	1 1.022e-2	3		<u> </u>	NC	3
144		10	min	0	15	316	2	.008	15 -1.588e-2	1		2	1266.174	
145		16	max	0	1	.05	3	.16	1 9.272e-3	3		5	NC	3
146		10	min	0	15	31	2	.007	15 -1.471e-2	1		2	1480.109	
147		17	max	0	1	.026	3	.107	1 8.322e-3	3		5	NC	3
148			min	0	15	22	2	.004	15 -1.353e-2	1		2	2219.174	
149		18	max	0	1	.005	4	.045	1 7.371e-3	3		5	NC	2
150			min	0	15	057	2	.002	15 -1.235e-2	1		2	5329.297	
151		19	max	.001	1	.173	1	.005	3 6.421e-3	3		1	NC	1
152			min	0	15	096	3	003	2 -1.118e-2	1		1	NC	1
153	M2	1	max	.007	1	.006	2	.013	1 -1.218e-5			1	NC	2
154			min	007	3	011	3	0	15 -3.007e-4	1	NC	1	5304.81	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
155		2	max	.007	1	.005	2	.012	1	-1.149e-5	<u>15</u>	NC	_1_	NC	2
156			min	006	3	011	3	0	15	-2.837e-4	1_	NC	1_	5784.098	1
157		3	max	.006	1	.004	2	.011	1	-1.08e-5	<u>15</u>	NC	_1_	NC	2
158			min	006	3	01	3	0	15	-2.667e-4	1	NC	1	6354.903	1
159		4	max	.006	1	.003	2	.01	1	-1.011e-5	15	NC	1_	NC	2
160			min	006	3	01	3	0	15	-2.497e-4	1	NC	1	7041.382	1
161		5	max	.005	1	.002	2	.009	1	-9.425e-6	15	NC	1	NC	2
162			min	005	3	01	3	0	15	-2.327e-4	1	NC	1	7876.461	1
163		6	max	.005	1	.001	2	.008	1	-8.736e-6	15	NC	1	NC	2
164			min	005	3	01	3	0	15	-2.157e-4	1	NC	1	8905.974	1
165		7	max	.005	1	0	2	.007	1	-8.048e-6	15	NC	1	NC	1
166			min	004	3	009	3	0	15	-1.986e-4	1	NC	1	NC	1
167		8	max	.004	1	0	2	.006	1	-7.36e-6	15	NC	1	NC	1
168			min	004	3	009	3	0	15	-1.816e-4	1	NC	1	NC	1
169		9	max	.004	1	001	2	.005	1	-6.672e-6	15	NC	1	NC	1
170			min	004	3	008	3	0	15	-1.646e-4	1	NC	1	NC	1
171		10	max	.004	1	001	15	.004	1	-5.984e-6	15	NC	1	NC	1
172			min	003	3	008	3	0	15	-1.476e-4	1	NC	1	NC	1
173		11	max	.003	1	001	15	.003	1	-5.296e-6	15	NC	1	NC	1
174			min	003	3	007	3	0	15	-1.306e-4	1	NC	1	NC	1
175		12	max	.003	1	001	15	.003	1	-4.607e-6	15	NC	1	NC	1
176			min	003	3	007	3	0	15	-1.136e-4	1	NC	1	NC	1
177		13	max	.002	1	001	15	.002	1	-3.919e-6	15	NC	1	NC	1
178			min	002	3	006	3	0	15		1	NC	1	NC	1
179		14	max	.002	1	001	15	.001	1	-3.231e-6	15	NC	1	NC	1
180		17	min	002	3	005	3	0	15	-7.954e-5	1	NC	1	NC	1
181		15	max	.002	1	001	15	0	1	-2.543e-6	15	NC	1	NC	1
182		10	min	001	3	005	4	0	15	-6.252e-5	1	NC	1	NC	1
183		16	max	.001	1	<u>005</u>	15	0	1	-1.855e-6	15	NC	1	NC	1
184		10	min	001	3	004	4	0	15	-4.551e-5	1	NC	1	NC	1
185		17	max	<u>001</u> 0	1	- <u>004</u> 0	15	0	1	-1.167e-6	15	NC	1	NC	1
186		17	min	0	3	003	4	0	15	-2.849e-5	1	NC	1	NC	1
187		18		0	1	<u>003</u> 0	15	0	1	-4.785e-7	15	NC	1	NC	1
188		10	max	0	3	002		0	15	-4.765e-7	1	NC NC	1	NC NC	1
		10	min				4								•
189		19	max	0	1	0	1	0	1	5.54e-6	1	NC NC	1	NC NC	1
190	MO	4	min	0		0	1	0	1	7.241e-8	12	NC NC		NC NC	•
191	M3	1	max	0	1	0	1	0	1	-1.172e-7	12	NC NC	1_	NC NC	1
192			min	0	1	0	1	0	1	-3.273e-6	1_	NC NC	1_	NC NC	1
193		2	max	0	3	0	15	0	1	3.216e-5	1_	NC	1_	NC NC	1
194			min	0	2	003	4	0	12	1.302e-6	<u>15</u>	NC NC	1_	NC NC	1
195		3	max	0	3	001	15	0	1	6.76e-5	1_	NC	1	NC NC	1
196			min	0	2	006	4	0	12	2.734e-6	<u>15</u>	NC	1_	NC NC	1
197		4	max	0	3	002	15	0	1	1.03e-4	1_	NC	1	NC NC	1
198			min	0	2	009	4	0	12	4.165e-6	15	NC	1_	NC	1
199		5	max	.001	3	003	15	0	1	1.385e-4	_1_	NC	1_	NC	1
200			min	0	2	012	4	0	12	5.597e-6		8792.805	4_	NC	1
201		6	max	.002	3	003	15	0	1	1.739e-4	_1_	NC	2	NC	1
202			min	001	2	015	4	0	15	7.028e-6		7098.313	4	NC	1
203		7	max	.002	3	004	15	0	1	2.093e-4	1_	NC	5	NC	1
204			min	001	2	017	4	0	15	8.46e-6	15	6079.122	4	NC	1
205		8	max	.002	3	004	15	.001	1	2.448e-4	_1_	NC	5	NC	1
206			min	002	2	019	4	0	15	9.891e-6	15	5450.191	4	NC	1
207		9	max	.003	3	005	15	.002	1	2.802e-4	1	NC	5	NC	1
208			min	002	2	02	4	0	15	1.132e-5	15	5077.449	4	NC	1
209		10	max	.003	3	005	15	.002	1	3.157e-4	1	NC	5	NC	1
210			min	002	2	021	4	0	15	1.275e-5	15	4895.736	4	NC	1
211		11	max	.003	3	005	15	.003	1	3.511e-4	1	NC	5	NC	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]						(n) L/z Ratio	
212			min	002	2	021	4	0	15	1.419e-5	15	4878.202	4	NC	1
213		12	max	.004	3	005	15	.003	1	3.865e-4	1	NC	5_	NC	1_
214			min	003	2	021	4	0	15	1.562e-5	15	5026.009	4	NC	1
215		13	max	.004	3	005	15	.004	1	4.22e-4	1	NC	5	NC	1_
216			min	003	2	02	4	0	15	1.705e-5	15	5370.08	4	NC	1
217		14	max	.004	3	004	15	.005	1	4.574e-4	1	NC	5	NC	1
218			min	003	2	018	4	0	15	1.848e-5	15	5987.22	4	NC	1
219		15	max	.005	3	004	15	.006	1	4.928e-4	1	NC	3	NC	1
220			min	003	2	015	4	0	15	1.991e-5	15	7047.997	4	NC	1
221		16	max	.005	3	003	15	.007	1	5.283e-4	1	NC	1	NC	1
222			min	004	2	012	4	0	15	2.134e-5	15	8965.765	4	NC	1
223		17	max	.005	3	002	15	.009	1	5.637e-4	1	NC	1	NC	1
224			min	004	2	009	4	0	15	2.277e-5	15	NC	1	NC	1
225		18	max	.006	3	001	15	.01	1	5.991e-4	1	NC	1	NC	2
226			min	004	2	006	1	0	15	2.421e-5	15	NC	1	9831.695	1
227		19	max	.006	3	0	15	.012	1	6.346e-4	1	NC	1	NC	2
228			min	004	2	003	1	0	15	2.564e-5	15	NC	1	8428.607	1
229	M4	1	max	.003	1	.004	2	0	15	1.568e-4	1	NC	1	NC	3
230			min	0	3	006	3	012	1	6.364e-6	15	NC	1	2049.595	1
231		2	max	.003	1	.004	2	0	15	1.568e-4	1	NC	1	NC	3
232			min	0	3	006	3	011	1	6.364e-6	15	NC	1	2227.057	1
233		3	max	.002	1	.004	2	0	15	1.568e-4	1	NC	1	NC	3
234			min	0	3	005	3	01	1	6.364e-6	15	NC	1	2438.367	1
235		4	max	.002	1	.003	2	0	15	1.568e-4	1	NC	1	NC	3
236			min	0	3	005	3	009	1	6.364e-6	15	NC	1	2692.301	1
237		5	max	.002	1	.003	2	0	15	1.568e-4	1	NC	1	NC	3
238		Ŭ	min	0	3	005	3	008	1	6.364e-6	15	NC	1	3000.783	1
239		6	max	.002	1	.003	2	<u>.000</u>	15	1.568e-4	1	NC	1	NC	3
240		Ť	min	0	3	004	3	007	1	6.364e-6	15	NC	1	3380.353	1
241		7	max	.002	1	.003	2	0	15	1.568e-4	1	NC	1	NC	3
242		-	min	0	3	004	3	006	1	6.364e-6	15	NC	1	3854.487	1
243		8	max	.002	1	.002	2	<u>.000</u>	15	1.568e-4	1	NC	-	NC	2
244		T .	min	0	3	004	3	006	1	6.364e-6	15	NC	1	4457.42	1
245		9	max	.002	1	.002	2	<u>.000</u>	15	1.568e-4	1	NC	1	NC	2
246		- 3	min	0	3	003	3	005	1	6.364e-6	15	NC	1	5240.69	1
247		10	max	.001	1	.002	2	003	15	1.568e-4	1	NC	1	NC	2
248		10	min	0	3	003	3	004	1	6.364e-6	15	NC	1	6284.853	1
249		11		.001	1	.002	2	004	15	1.568e-4	1	NC	1	NC	2
250			max min	0	3	003	3	003	1	6.364e-6	15	NC NC	1	7721.673	1
251		12	max	.001	1	.002	2	<u>003</u> 0	15	1.568e-4	1	NC	+	NC	2
252		12	min	0	3	002	3	003	1	6.364e-6		NC	1	9779.047	1
$\overline{}$		12			1		2	<u>003</u> 0		1.568e-4		NC		NC	
253 254		13	max	0	3	.001 002	3	002	15	6.364e-6	1 15	NC NC	<u>1</u> 1	NC NC	1
		1.1			1				15			NC NC	1	NC NC	1
255 256		14	max	0	3	.001	3	0	15	1.568e-4	1_	NC NC	1	NC NC	1
		15	min			002		<u>001</u> 0		6.364e-6	<u>15</u>		1		_
257		15	max	0	1	0	2		15	1.568e-4	1	NC NC		NC NC	1
258		4.0	min	0	3	001	3	0	1_1	6.364e-6	15	NC NC	1	NC NC	1
259		16	max	0	1	0	2	0	15	1.568e-4	4.5	NC NC	1	NC	1
260		47	min	0	3	001	3	0	1	6.364e-6	<u>15</u>	NC NC	1_	NC NC	1
261		17	max	0	1	0	2	0	15	1.568e-4	1	NC NC	1_	NC NC	1
262		40	min	0	3	0	3	0	1_	6.364e-6	15	NC	1_	NC NC	1
263		18	max	0	1	0	2	0	15	1.568e-4	1	NC	1	NC	1
264		1	min	0	3	0	3	0	1	6.364e-6	15	NC	1_	NC	1
265		19	max	0	1	0	1	0	1	1.568e-4	1	NC	1_	NC	1
266			min	0	1	0	1	0	1	6.364e-6	15	NC	1_	NC	1
267	<u>M6</u>	1	max	.022	1	.025	2	0	1	0	1	NC	3	NC	1
268			min	022	3	034	3	0	1	0	1	2774.552	2	NC	1_

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC			(n) L/y Ratio I			
269		2	max	.021	1	.023	2	0	1	0	1	NC .	3	NC	1
270			min	021	3	032	3	0	1	0	1_		2	NC	1
271		3	max	.02	1	.02	2	0	1	0	1		3	NC NC	1
272			min	019	3	03	3	0	1	0	1_		2	NC	1
273		4	max	.019	1	.018	2	0	1	0	1_		3	NC NC	1
274		_	min	018	3	029	3	0	1	0	1_		2	NC NC	1
275		5	max	.017	1	.016	2	0	1	0	1		3	NC NC	1
276			min	017	3	027	3	0	1	0	1_		2	NC NC	1
277		6	max	.016	1	.014	2	0	1	0	1_		3	NC NC	1
278		7	min	016	3	025	3	0	1	0	1_		2	NC NC	1
279		/	max	.015 015	3	.012	3	0	1	0	<u>1</u> 1		1	NC NC	1
280		8	min	015 .014	1	023 .01	2	0	1	0	1		<u>2</u> 1	NC NC	1
282		0	max	013	3	021	3	0	1	0	1		2	NC NC	1
283		9		013 .012	1	.008	2	0	1	0	1		1	NC NC	1
284		9	max min	012	3	02	3	0	1	0	1		2	NC NC	1
285		10		.012	1	.006	2	0	1	0	1		1	NC	1
286		10	max	011	3	018	3	0	1	0	1		1	NC	1
287		11	max	.01	1	.005	2	0	1	0	1		1	NC	1
288		- 1 1	min	01	3	016	3	0	1	0	1		1	NC	1
289		12	max	.009	1	.003	2	0	1	0	1		1	NC	1
290		12	min	008	3	014	3	0	1	0	1		1	NC	1
291		13	max	.007	1	.002	2	0	1	0	1		1	NC	1
292		13	min	007	3	012	3	0	1	0	1		1	NC	1
293		14	max	.006	1	.001	2	0	1	0	1		1	NC	1
294		17	min	006	3	01	3	0	1	0	1	NC	1	NC	1
295		15	max	.005	1	0	2	0	1	0	-		1	NC	1
296		10	min	005	3	008	3	0	1	0	1		1	NC	1
297		16	max	.004	1	0	2	0	1	0	1		1	NC	1
298		10	min	004	3	006	3	0	1	0	1		1	NC	1
299		17	max	.002	1	0	2	0	1	0	1	NC	1	NC	1
300		- ' '	min	002	3	004	3	0	1	0	1		1	NC	1
301		18	max	.001	1	0	2	0	1	0	1		1	NC	1
302			min	001	3	002	3	0	1	Ö	1		1	NC	1
303		19	max	0	1	0	1	0	1	0	1		1	NC	1
304			min	0	1	0	1	0	1	0	1	NC	1	NC	1
305	M7	1	max	0	1	0	1	0	1	0	1		1	NC	1
306			min	0	1	0	1	0	1	0	1		1	NC	1
307		2	max	.001	3	0	15	0	1	0	1		1	NC	1
308			min	0	2	003	3	0	1	0	1	NC	1	NC	1
309		3	max	.002	3	001	15	0	1	0	1	NC	1	NC	1
310			min	002	2	006	3	0	1	0	1		1	NC	1
311		4	max	.003	3	002	15	0	1	0	1	NC	1	NC	1
312			min	003	2	009	3	0	1	0	1	NC	1	NC	1
313		5	max	.004	3	003	15	0	1	0	1		1	NC	1
314			min	004	2	012	3	0	1	0	1	000 0 .	4	NC	1
315		6	max	.005	3	003	15	0	1	0	1		1_	NC	1
316			min	005	2	014	4	0	1	0	1		4	NC	1
317		7	max	.006	3	004	15	0	1	0	1		1_	NC	1
318			min	006	2	017	4	0	1	0	1		4	NC	1
319		8	max	.007	3	004	15	0	1	0	1		2	NC	1
320			min	007	2	019	4	0	1	0	1		4	NC	1
321		9	max	.008	3	005	15	0	1	0	1		5	NC	1
322			min	008	2	02	4	0	1	0	1		4	NC	1
323		10	max	.009	3	005	15	0	1	0	1		5_	NC	1
324			min	009	2	021	4	0	1	0	1_		4	NC	1
325		11	max	.01	3	005	15	0	1	0	_1_	NC	5	NC	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio			LC_
326			min	01	2	021	4	0	1	0	1	4963.814	4	NC	1
327		12	max	.011	3	005	15	0	1	0	1	NC	5	NC	1
328			min	011	2	021	4	0	1	0	1	5110.047	4	NC	1
329		13	max	.012	3	005	15	0	1	0	1	NC	5	NC	1
330			min	012	2	02	4	0	1	0	1	5456.141	4	NC	1
331		14	max	.013	3	004	15	0	1	0	1	NC	5	NC	1
332			min	013	2	018	4	0	1	0	1	6079.721	4	NC	1
333		15	max	.014	3	004	15	0	1	0	1	NC	1	NC	1
334		10	min	013	2	015	4	0	1	0	1	7153.58	4	NC	1
335		16	max	.015	3	003	15	0	1	0	1	NC	1	NC	1
336		10		014	2	003 013	4	0	1	0	1	9096.774	4	NC	1
		47	min		_				•		•				
337		17	max	.016	3	002	15	0	1	0	1	NC	1	NC	1
338		1.0	min	015	2	01	1	0	1	0	1	NC	1_	NC	1
339		18	max	.017	3	001	15	0	1	0	1_	NC	_1_	NC	1
340			min	016	2	007	1	0	1	0	1_	NC	1	NC	1
341		19	max	.018	3	0	15	0	1	0	_1_	NC	_1_	NC	1
342			min	017	2	005	1	0	1	0	1	NC	1_	NC	1
343	M8	1	max	.007	1	.016	2	0	1	0	1	NC	1	NC	1
344			min	0	3	019	3	0	1	0	1	NC	1	NC	1
345		2	max	.007	1	.016	2	0	1	0	1	NC	1	NC	1
346			min	0	3	018	3	0	1	0	1	NC	1	NC	1
347		3	max	.007	1	.015	2	0	1	0	1	NC	1	NC	1
348			min	0	3	016	3	0	1	0	1	NC	1	NC	1
349		4	max	.006	1	.014	2	0	1	0	1	NC	1	NC	1
350		T .	min	0	3	015	3	0	1	0	1	NC	1	NC	1
351		5		.006	1	.013	2	0	1	0	1	NC	1	NC	1
		5	max		3		3		1				1		1
352			min	0		<u>014</u>		0		0	1	NC NC		NC NC	
353		6	max	.005	1	.012	2	0	1	0	1	NC	1	NC	1
354		_	min	0	3	013	3	0	1	0	1	NC	1_	NC	1
355		7	max	.005	1	.011	2	0	1	0	1	NC	1_	NC	1
356			min	0	3	012	3	0	1	0	1_	NC	1_	NC	1
357		8	max	.005	1	.01	2	0	1	0	_1_	NC	_1_	NC	1
358			min	0	3	011	3	0	1	0	1_	NC	1_	NC	1
359		9	max	.004	1	.009	2	0	1	0	1	NC	1	NC	1
360			min	0	3	01	3	0	1	0	1	NC	1	NC	1
361		10	max	.004	1	.008	2	0	1	0	1	NC	1	NC	1
362			min	0	3	009	3	0	1	0	1	NC	1	NC	1
363		11	max	.003	1	.007	2	0	1	0	1	NC	1	NC	1
364			min	0	3	008	3	0	1	0	1	NC	1	NC	1
365		12	max	.003	1	.006	2	0	1	0	1	NC	1	NC	1
366		12	min	0	3	007	3	0	1	0	1	NC	1	NC	1
367		13	max	.002	1	.005	2	0	1	0	1	NC	1	NC	1
368		13	min	0	3	006	3	0	1	0	1	NC	1	NC	1
369		14		.002	1	.005	2	0	1	0	1	NC	1	NC	1
		14	max		3		3	0	1	0	1	NC	1	NC NC	1
370		4.5	min	0		005							_		•
371		15	max	.002	1	.004	2	0	1	0	1	NC	1	NC	1
372			min	0	3	004	3	0	1	0	<u>1</u>	NC	_1_	NC	1
373		16	max	.001	1	.003	2	0	1	0	_1_	NC	_1_	NC	1
374			min	0	3	003	3	0	1	0	1_	NC	1_	NC	1
375		17	max	00	1	.002	2	00	1	0	_1_	NC	_1_	NC	1
376			min	0	3	002	3	0	1	0	1	NC	1_	NC	1
377		18	max	0	1	0	2	0	1	0	1_	NC	1_	NC	1
378			min	0	3	001	3	0	1	0	1	NC	1	NC	1
379		19	max	0	1	0	1	0	1	0	1	NC	1	NC	1
380			min	0	1	0	1	0	1	0	1	NC	1	NC	1
381	M10	1	max	.007	1	.006	2	0	15	3.007e-4	1	NC	1	NC	2
382			min	007	3	011	3	013	1	1.218e-5	15	NC	1	5304.81	1
002			1111111	.007	U	.011	J	.010		1.21000	10	110		JUUT.U1	

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 4, 2015

Checked By:____

383 2 max .007 1 .005 2 0 15 2.837e-4 384 min 006 3 011 3 012 1 1.149e-5	15	NC	1	NC	
	15		_		2
		NC	1	5784.098	
385 3 max .006 1 .004 2 0 15 2.667e-4	1	NC	1	NC	2
386 min006 301 3011 1 1.08e-5	15	NC	1	6354.903	
387 4 max .006 1 .003 2 0 15 2.497e-4	1	NC	1	NC	2
388 min006 301 301 1 1.011e-5	15	NC NC	1	7041.382	1
389 5 max .005 1 .002 2 0 15 2.327e-4 390 min005 301 3009 1 9.425e-6	1	NC NC	1	NC 707C 4C4	2
	15	NC NC	1	7876.461	1
	1	NC NC	1	NC	2
	1 <u>5</u>	NC NC	1	8905.974 NC	1
393 7 max .005 1 0 2 0 15 1.986e-4 394 min004 3009 3007 1 8.048e-6	15	NC	1	NC	1
395 8 max .004 1 0 2 0 15 1.816e-4	1	NC	1	NC	1
396 min004 3009 3006 1 7.36e-6	15	NC	1	NC	1
397 9 max .004 1001 2 0 15 1.646e-4	1	NC NC	1	NC	1
398 min004 3008 3005 1 6.672e-6	15	NC	1	NC	1
399 10 max .004 1001 15 0 15 1.476e-4	1	NC	1	NC	1
400 min003 3008 3004 1 5.984e-6	15	NC	1	NC	1
401 11 max .003 1001 15 0 15 1.306e-4	1	NC	1	NC	1
402 min003 3007 3003 1 5.296e-6	15	NC	1	NC	1
403 12 max .003 1001 15 0 15 1.136e-4	1	NC	1	NC	1
404 min003 3007 3003 1 4.607e-6	15	NC	1	NC	1
405 13 max .002 1001 15 0 15 9.655e-5	1	NC	1	NC	1
406 min002 3006 3002 1 3.919e-6	15	NC	1	NC	1
407	1	NC	1	NC	1
408 min002 3005 3001 1 3.231e-6	15	NC	1	NC	1
409 15 max .002 1001 15 0 15 6.252e-5	1	NC	1	NC	1
410 min001 3005 4 0 1 2.543e-6	15	NC	1	NC	1
411 16 max .001 1 0 15 0 15 4.551e-5	1	NC	1	NC	1
412 min001 3004 4 0 1 1.855e-6	15	NC	1	NC	1
413 17 max 0 1 0 15 0 15 2.849e-5	1	NC	1	NC	1
414 min 0 3003 4 0 1 1.167e-6	15	NC	1	NC	1
415 18 max 0 1 0 15 0 15 1.147e-5	1	NC	1	NC	1
416 min 0 3002 4 0 1 4.785e-7	15	NC	1	NC	1
417	12	NC	1	NC NC	1
418 min 0 1 0 1 -5.54e-6	1	NC	1	NC NC	1
419 M11 1 max 0 1 0 1 0 1 3.273e-6	1	NC NC	1	NC NC	1
420 min 0 1 0 1 0 1 1.172e-7	12	NC NC	1	NC NC	1
421 2 max 0 3 0 15 0 12 -1.302e-6 422 min 0 2003 4 0 1 -3.216e-5		NC NC	1	NC NC	1
422 min 0 2 003 4 0 1 -3.216e-5 423 3 max 0 3 001 15 0 12 -2.734e-6	1_	NC NC	1	NC NC	1
424 min 0 2006 4 0 1 -6.76e-5	1	NC NC	1	NC NC	1
425 4 max 0 3002 15 0 12 -4.165e-6		NC	1	NC	1
426 min 0 2009 4 0 1 -1.03e-4	1	NC	1	NC	1
427 5 max .001 3003 15 0 12 -5.597e-6	15	NC NC	1	NC	1
428 min 0 2012 4 0 1 -1.385e-4	1	8792.805	4	NC	1
429 6 max .002 3003 15 0 15 -7.028e-6	•		2	NC	1
430 min001 2015 4 0 1 -1.739e-4		7098.313		NC	1
431 7 max .002 3004 15 0 15 -8.46e-6			5	NC	1
432 min001 2017 4 0 1 -2.093e-4		6079.122	4	NC	1
433 8 max .002 3004 15 0 15 -9.891e-6			5	NC	1
434 min002 2019 4001 1 -2.448e-4		5450.191	4	NC	1
435 9 max .003 3005 15 0 15 -1.132e-5		NC	5	NC	1
436 min002 202 4002 1 -2.802e-4		5077.449		NC	1
437 10 max .003 3005 15 0 15 -1.275e-5		NC	5	NC	1
438 min002 2021 4002 1 -3.157e-4		4895.736		NC	1
439 11 max .003 3005 15 0 15 -1.419e-5	15	NC	5	NC	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 4, 2015

Checked By:____

440		Member	Sec		x [in]	LC	y [in]	LC	z [in]			LC	(n) L/y Ratio	LC		LC
442	440			min					003			-				1
444			12	max								15		5		1
4446									003							
445			13													_
446												_		•		
447			14													
448			4.5													
449			15													
450			4.0									•		•		
451			16													
452			17									_				
453			17							15 -2.2	2770 4					
455			10											•		
455			10						-							1
456			10									•				2
458			13													
458		M12	1			_								•		
459		IVIIZ										1				1
460			2		_							15		•		3
461						-										
462			3									15		1		3
463														1		-
465			4	max	.002	1			.009			15		1		3
465						3			_			1		1		1
466			5		.002	1	.003	2	.008			15	NC	1		3
468	466			min	0	3	005	3	0			1	NC	1	3000.783	1
469	467		6	max	.002	1	.003	2	.007	1 -6.3	364e-6	15	NC	1	NC	3
470	468			min	0	3	004	3	0	15 -1.5	568e-4	1	NC	1	3380.353	1
471 8 max .002 1 .002 2 .006 1 -6.364e-6 15 NC 1 NC 2 472 min 0 3 004 3 0 15 -1.568e-4 1 NC 1 4457.42 1 473 9 max .002 1 .002 2 .005 1 -6.364e-6 15 NC 1 NC 2 474 min 0 3 003 3 0 15 -1.568e-4 1 NC 1 NC 2 476 min 0 3 003 3 0 15 -1.568e-4 1 NC 1 NC 2 478 min 0 3 003 3 0 15 -1.568e-4 1 NC 1 NC 2 479 12 max .001 1 .002 2 .0			7	max	.002	-	.003		.006			15		1_		3
472 min 0 3 004 3 0 15 -1.568e-4 1 NC 1 4457.42 1 473 9 max .002 1 .002 2 .005 1 -6.364e-6 15 NC 1 NC 2 474 min 0 3 003 3 0 15 -1.568e-4 1 NC 1 5240.69 1 475 10 max .001 1 .002 2 .004 1 -6.364e-6 15 NC 1 NC 2 476 min 0 3 003 3 0 15 -1.568e-4 1 NC 1 NC 2 478 min 0 3 003 3 0 15 -1.568e-4 1 NC 1 NC 2 479 12 max .001 1 .002 2				min								1_		1_		
473			8									15				2
474												•		•		
475 10 max .001 1 .002 2 .004 1 -6.364e-6 15 NC 1 NC 2 476 min 0 3 003 3 0 15 -1.568e-4 1 NC 1 6284.853 1 477 11 max .001 1 .002 2 .003 1 -6.364e-6 15 NC 1 NC 2 478 min 0 3 003 3 0 15 -1.568e-4 1 NC 1 NC 2 480 min 0 3 002 3 0 15 -1.568e-4 1 NC 1 NC 2 480 min 0 3 002 3 0 15 -1.568e-4 1 NC 1 NC 1 481 min 0 3 002 3 0 15 -1.568e-4			9													2
476 min 0 3 003 3 0 15 -1.568e-4 1 NC 1 6284.853 1 477 11 max .001 1 .002 2 .003 1 -6.364e-6 15 NC 1 NC 2 478 min 0 3 003 3 0 15 -1.568e-4 1 NC 1 7721.673 1 479 12 max .001 1 .002 2 .003 1 -6.364e-6 15 NC 1 NC 2 480 min 0 3 002 3 0 15 -1.568e-4 1 NC 1			10									•				1
477 11 max .001 1 .002 2 .003 1 -6.364e-6 15 NC 1 NC 2 478 min 0 3 003 3 0 15 -1.568e-4 1 NC 1 7721.673 1 479 12 max .001 1 .002 2 .003 1 -6.364e-6 15 NC 1 NC 2 480 min 0 3 002 3 0 15 -1.568e-4 1 NC 1			10													
478 min 0 3 003 3 0 15 -1.568e-4 1 NC 1 7721.673 1 479 12 max .001 1 .002 2 .003 1 -6.364e-6 15 NC 1 NC 2 480 min 0 3 002 3 0 15 -1.568e-4 1 NC 1 9779.047 1 481 13 max 0 1 .001 2 .002 1 -6.364e-6 15 NC 1 NC 1 482 min 0 3 002 3 0 15 -1.568e-4 1 NC 1			1.4			_								•		_
479 12 max .001 1 .002 2 .003 1 -6.364e-6 15 NC 1 NC 2 480 min 0 3 002 3 0 15 -1.568e-4 1 NC 1 9779.047 1 481 13 max 0 1 .001 2 .002 1 -6.364e-6 15 NC 1 NC 1 482 min 0 3 002 3 0 15 -1.568e-4 1 NC 1 NC 1 483 14 max 0 1 .001 2 .001 1 -6.364e-6 15 NC 1 NC 1 484 min 0 3 002 3 0 15 -1.568e-4 1 NC 1 NC 1 485 15 max 0 1 0 2 0 1 <td< td=""><td></td><td></td><td>11</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>15</td><td></td><td></td><td></td><td>2</td></td<>			11									15				2
480 min 0 3 002 3 0 15 -1.568e-4 1 NC 1 9779.047 1 481 13 max 0 1 .001 2 .002 1 -6.364e-6 15 NC 1 NC 1 482 min 0 3 002 3 0 15 -1.568e-4 1 NC 1 NC 1 483 14 max 0 1 .001 2 .001 1 -6.364e-6 15 NC 1 NC 1 484 min 0 3 002 3 0 15 -1.568e-4 1 NC 1 NC 1 485 15 max 0 1 0 2 0 1 -6.364e-6 15 NC 1 NC 1 486 min 0 3 001 3 0			40		_							1_				1
481 13 max 0 1 .001 2 .002 1 -6.364e-6 15 NC 1 NC 1 482 min 0 3 002 3 0 15 -1.568e-4 1 NC 1			12					2		1 -6.3	364e-6	15		1	NC 0770 047	4
482 min 0 3 002 3 0 15 -1.568e-4 1 NC 1 NC 1 483 14 max 0 1 .001 2 .001 1 -6.364e-6 15 NC 1 NC 1 484 min 0 3 002 3 0 15 -1.568e-4 1 NC 1 NC 1 485 15 max 0 1 0 2 0 1 -6.364e-6 15 NC 1 NC 1 486 min 0 3 001 3 0 15 -1.568e-4 1 NC 1 NC 1 487 16 max 0 1 0 2 0 1 -6.364e-6 15 NC 1 NC 1 488 min 0 3 0 3 0 15			12													
483 14 max 0 1 .001 2 .001 1 -6.364e-6 15 NC 1 NC 1 484 min 0 3 002 3 0 15 -1.568e-4 1 NC 1 NC 1 485 15 max 0 1 0 2 0 1 -6.364e-6 15 NC 1 NC 1 486 min 0 3 001 3 0 15 -1.568e-4 1 NC 1 NC 1 487 16 max 0 1 0 2 0 1 -6.364e-6 15 NC 1 NC 1 488 min 0 3 001 3 0 15 -1.568e-4 1 NC 1 NC 1 489 17 max 0 1 0 2 0 1 -6.364e-6 15 NC 1 NC 1 490			13	_								10				
484 min 0 3 002 3 0 15 -1.568e-4 1 NC 1 NC 1 485 15 max 0 1 0 2 0 1 -6.364e-6 15 NC 1 NC 1 486 min 0 3 001 3 0 15 -1.568e-4 1 NC 1 NC 1 487 16 max 0 1 0 2 0 1 -6.364e-6 15 NC 1 NC 1 488 min 0 3 001 3 0 15 -1.568e-4 1 NC 1 NC 1 489 17 max 0 1 0 2 0 1 -6.364e-6 15 NC 1 NC 1 490 min 0 3 0 3 0 15			1/									15		_		
485 15 max 0 1 0 2 0 1 -6.364e-6 15 NC 1 NC 1 486 min 0 3 001 3 0 15 -1.568e-4 1 NC 1 NC 1 487 16 max 0 1 0 2 0 1 -6.364e-6 15 NC 1 NC 1 488 min 0 3 001 3 0 15 -1.568e-4 1 NC 1 NC 1 489 17 max 0 1 0 2 0 1 -6.364e-6 15 NC 1 NC 1 490 min 0 3 0 3 0 15 -1.568e-4 1 NC 1 NC 1 491 18 max 0 1 0 2 0 <t< td=""><td></td><td></td><td>14</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td></t<>			14													_
486 min 0 3 001 3 0 15 -1.568e-4 1 NC 1 NC 1 487 16 max 0 1 0 2 0 1 -6.364e-6 15 NC 1 NC 1 488 min 0 3 001 3 0 15 -1.568e-4 1 NC 1 NC 1 489 17 max 0 1 0 2 0 1 -6.364e-6 15 NC 1 NC 1 490 min 0 3 0 3 0 15 -1.568e-4 1 NC 1 NC 1 491 18 max 0 1 0 2 0 1 -6.364e-6 15 NC 1 NC 1 492 min 0 3 0 3 0 15 <t< td=""><td></td><td></td><td>15</td><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td><td></td><td>_</td><td></td><td></td></t<>			15		_							_		_		
487 16 max 0 1 0 2 0 1 -6.364e-6 15 NC 1 NC 1 488 min 0 3 001 3 0 15 -1.568e-4 1 NC 1 NC 1 489 17 max 0 1 0 2 0 1 -6.364e-6 15 NC 1 NC 1 490 min 0 3 0 3 0 15 -1.568e-4 1 NC 1 NC 1 491 18 max 0 1 0 2 0 1 -6.364e-6 15 NC 1 NC 1 492 min 0 3 0 3 0 15 -1.568e-4 1 NC 1 NC 1 493 19 max 0 1 0 1 -1.568e-4			13													
488 min 0 3 001 3 0 15 -1.568e-4 1 NC 1 NC 1 489 17 max 0 1 0 2 0 1 -6.364e-6 15 NC 1 NC 1 490 min 0 3 0 3 0 15 -1.568e-4 1 NC 1 NC 1 491 18 max 0 1 0 2 0 1 -6.364e-6 15 NC 1 NC 1 492 min 0 3 0 3 0 15 -1.568e-4 1 NC 1 NC 1 493 19 max 0 1 0 1 -6.364e-6 15 NC 1 NC 1 494 min 0 1 0 1 -1.568e-4 1 NC 1			16									_				
489 17 max 0 1 0 2 0 1 -6.364e-6 15 NC 1 NC 1 490 min 0 3 0 3 0 15 -1.568e-4 1 NC 1 NC 1 491 18 max 0 1 0 2 0 1 -6.364e-6 15 NC 1 NC 1 492 min 0 3 0 3 0 15 -1.568e-4 1 NC 1 NC 1 493 19 max 0 1 0 1 -6.364e-6 15 NC 1 NC 1 494 min 0 1 0 1 -1.568e-4 1 NC 1 NC 1 495 M1 1 max .008 3 .178 1 0 1 1.384e-2 1 NC 1 NC 1			10									1				
490 min 0 3 0 3 0 15 -1.568e-4 1 NC 1 NC 1 491 18 max 0 1 0 2 0 1 -6.364e-6 15 NC 1 NC 1 492 min 0 3 0 3 0 15 -1.568e-4 1 NC 1 NC 1 493 19 max 0 1 0 1 -6.364e-6 15 NC 1 NC 1 494 min 0 1 0 1 -1.568e-4 1 NC 1 NC 1 495 M1 1 max .008 3 .178 1 0 1 1.384e-2 1 NC 1 NC 1			17									15		•		
491 18 max 0 1 0 2 0 1 -6.364e-6 15 NC 1 NC 1 492 min 0 3 0 3 0 15 -1.568e-4 1 NC 1 NC 1 493 19 max 0 1 0 1 -6.364e-6 15 NC 1 NC 1 494 min 0 1 0 1 -1.568e-4 1 NC 1 NC 1 495 M1 1 max .008 3 .178 1 0 1 1.384e-2 1 NC 1 NC 1			11									1				
492 min 0 3 0 3 0 15 -1.568e-4 1 NC 1 NC 1 493 19 max 0 1 0 1 -6.364e-6 15 NC 1 NC 1 494 min 0 1 0 1 -1.568e-4 1 NC 1 NC 1 495 M1 1 max .008 3 .178 1 0 1 1.384e-2 1 NC 1 NC 1			18		_							15		_		
493 19 max 0 1 0 1 0 1 -6.364e-6 15 NC 1 NC 1 494 min 0 1 0 1 -1.568e-4 1 NC 1 NC 1 495 M1 1 max .008 3 .178 1 0 1 1.384e-2 1 NC 1 NC 1			1.0		_		-									
494 min 0 1 0 1 0 1 -1.568e-4 1 NC 1 NC 1 495 M1 1 max .008 3 .178 1 0 1 1.384e-2 1 NC 1 NC 1			19		<u> </u>							•		_		
495 M1 1 max .008 3 .178 1 0 1 1.384e-2 1 NC 1 NC 1			· Ŭ			_	-									_
		M1	1		•	3		1				1		1		-
	496			min	004	2	025	3	0			3	NC	1	NC	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio L	_C	(n) L/z Ratio	LC
497		2	max	.008	3	.088	1	0	15	6.673e-3	1	NC	5	NC	1
498			min	004	2	012	3	009	1	-9.631e-3	3	1502.184	1	NC	1
499		3	max	.008	3	.011	3	0	15	-6.608e-7	10	NC	5	NC	2
500			min	004	2	01	2	013	1	-2.83e-4	1	721.125	1	9748.617	1
501		4	max	.007	3	.05	3	0	15	4.761e-3	1	NC 1	15	NC	1
502			min	004	2	119	1	012	1	-3.858e-3	3	453.197	1	NC	1
503		5	max	.007	3	.102	3	0	15	9.805e-3	1	9546.857	15	NC	1
504			min	004	2	235	1	008	1	-7.619e-3	3	325.654	1	NC	1
505		6	max	.007	3	.158	3	0	15	1.485e-2	1	7536.806	15	NC	1
506			min	003	2	348	1	004	1	-1.138e-2	3	255.583	1	NC	1
507		7	max	.007	3	.212	3	0	1	1.989e-2	1		15	NC	1
508			min	003	2	45	1	0	3	-1.514e-2	3		1	NC	1
509		8	max	.007	3	.257	3	.001	1	2.494e-2	1		15	NC	1
510			min	003	2	53	1	0	15	-1.89e-2	3		1	NC	1
511		9	max	.007	3	.287	3	0	15	2.74e-2	1		15	NC	1
512			min	003	2	581	1	0	1	-1.909e-2	3		1	NC	1
513		10	max	.007	3	.298	3	0	1	2.815e-2	1		15	NC	1
514			min	003	2	598	1	0	15	-1.689e-2	3		1	NC	1
515		11	max	.006	3	.291	3	0	1	2.889e-2	1		15	NC	1
516			min	003	2	58	1	0	15	-1.469e-2	3		1	NC	1
517		12	max	.006	3	.267	3	0	15	2.721e-2	1		15	NC	1
518			min	003	2	529	1	001	1	-1.238e-2	3		1	NC	1
519		13	max	.006	3	.227	3	0	15	2.193e-2	1		15	NC	1
520			min	003	2	446	1	0	1	-9.902e-3	3		1	NC	1
521		14	max	.006	3	.177	3	.003	1	1.664e-2	1		15	NC	1
522			min	003	2	343	1	0	15	-7.424e-3	3		1	NC	1
523		15	max	.006	3	.12	3	.008	1	1.136e-2	1		15	NC	1
524			min	003	2	229	1	0	15	-4.947e-3	3		1	NC	1
525		16	max	.006	3	.061	3	.011	1	6.073e-3	1		15	NC	1
526		10	min	003	2	113	1	0	15	-2.47e-3	3		1	NC	1
527		17	max	.005	3	.004	3	.012	1	7.879e-4	1		5	NC	1
528			min	003	2	005	2	0	15	7.693e-6	3		1	NC	1
529		18	max	.005	3	.089	1	.009	1	8.457e-3	1		5	NC	1
530		10	min	003	2	048	3	0	15	-2.731e-3	3		1	NC	1
531		19	max	.005	3	.173	1	0	15	1.651e-2	2		1	NC	1
532		10	min	003	2	096	3	001	1	-5.563e-3	3		1	NC	1
533	M5	1	max	.023	3	.363	1	0	1	0.0000 0	1		1	NC	1
534	1010		min	016	2	011	3	0	1	0	1		1	NC	1
535		2	max	.023	3	.18	1	0	1	0	1		5	NC	1
536			min	016	2	004	3	0	1	0	1		1	NC	1
537		3	max	000	3	.034	3	0	1	0	1		15	NC	1
538			min	016	2	031	2	0	1	0	1		1	NC	1
539		4	max	.023	3	.129	3	0	1	0	1		15	NC	1
540			min	016	2	289	1	0	1	0	1		1	NC	1
541		5	max	.022	3	.264	3	0	1	0	1		15	NC	1
542			min	015	2	574	1	0	1	0	1		1	NC	1
543		6	max	.022	3	.418	3	0	1	0	1		15	NC	1
544			min	015	2	86	1	0	1	0	1		1	NC	1
545		7	max	.021	3	.57	3	0	1	0	1		15	NC	1
546			min	015	2	-1.12	1	0	1	0	1		1	NC	1
547		8	max	.021	3	.698	3	0	1	0	1		15	NC	1
548			min	014	2	-1.329	1	0	1	0	1		1	NC	1
549		9	max	.021	3	.781	3	0	1	0	1		15	NC	1
550		3	min	014	2	-1.461	1	0	1	0	1		1	NC	1
551		10	max	.02	3	.811	3	0	1	0	1		15	NC NC	1
552		10	min	014	2	-1.505	1	0	1	0	1		1	NC NC	1
553		11	max	.02	3	<u>-1.505</u> .791	3	0	1	0	1		15	NC NC	1
JJJ		<u> </u>	шал	.02		.131	J	U		U		27U7.U12	J	INC	

Model Name

: Schletter, Inc. : HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
554			min	014	2	-1.46	1	0	1	0	1	73.847	1	NC	1
555		12	max	.019	3	.723	3	0	1	0	1	2622.104	15	NC	1
556			min	013	2	-1.325	1	0	1	0	1	79.831	1	NC	1
557		13	max	.019	3	.612	3	0	1	0	1		15	NC	1
558			min	013	2	-1.11	1	0	1	0	1	91.609	1	NC	1
559		14	max	.018	3	.472	3	0	1	0	1		15	NC	1
560			min	013	2	843	1	0	1	0	1	112.115	1	NC	1
561		15	max	.018	3	.316	3	0	1	0	-		15	NC	1
562		13	min	013	2	553	1	0	1	0	1	148.211	1	NC	1
		16							1	-	_		•		
563		16	max	.017	3	.158	3	0		0	1_		15	NC NC	1
564		47	min	013	2	267	1	0	1	0	1_	216.92	1_	NC NC	1
565		17	max	.017	3	.011	3	0	1	0	1		15	NC NC	1
566			min	012	2	016	2	0	1	0	1_	367.771	1_	NC	1
567		18	max	.017	3	.183	1	0	1	0	1_	NC	5	NC	1
568			min	012	2	115	3	0	1	0	1_	805.317	1	NC	1
569		19	max	.017	3	.349	1	0	1	0	_1_	NC	1_	NC	1
570			min	012	2	228	3	0	1	0	1_	NC	1	NC	1
571	M9	1	max	.008	3	.178	1	0	15	1.94e-2	3	NC	1	NC	1
572			min	004	2	025	3	0	1	-1.384e-2	1	NC	1	NC	1
573		2	max	.008	3	.088	1	.009	1	9.631e-3	3	NC	5	NC	1
574			min	004	2	012	3	0	15	-6.673e-3	1	1502.184	1	NC	1
575		3	max	.008	3	.011	3	.013	1	2.83e-4	1	NC	5	NC	2
576			min	004	2	01	2	0	15	6.608e-7	10	721.125	1	9748.617	1
577		4	max	.007	3	.05	3	.012	1	3.858e-3	3		15	NC	1
578			min	004	2	119	1	0	15	-4.761e-3	1	453.197	1	NC	1
579		5	max	.007	3	.102	3	.008	1	7.619e-3	3		15	NC	1
580		<u> </u>	min	004	2	235	1	0	15	-9.805e-3	1	325.654	1	NC	1
581		6	max	.007	3	.158	3	.004	1	1.138e-2	3		15	NC	1
582		0	min	003	2	348	1	<u>.004</u>	15	-1.485e-2	1	255.583	1	NC	1
		7									•		•		
583		7	max	.007	3	.212	3	0	3	1.514e-2	3		<u>15</u>	NC NC	1
584			min	003	2	45	1	0	1	-1.989e-2	1_	214.332	1_	NC NC	1
585		8	max	.007	3	.257	3	0	15	1.89e-2	3		15	NC NC	1
586			min	003	2	53	1	001	1	-2.494e-2	1_	189.983	1_	NC	1
587		9	max	.007	3	.287	3	0	1	1.909e-2	3		15	NC	1
588			min	003	2	581	1	0	15	-2.74e-2	1_	177.306	1	NC	1
589		10	max	.007	3	.298	3	0	15	1.689e-2	3		15	NC	1
590			min	003	2	598	1	0	1	-2.815e-2	1	173.502	1	NC	1
591		11	max	.006	3	.291	3	0	15	1.469e-2	3	5282.975	15	NC	1
592			min	003	2	58	1	0	1	-2.889e-2	1	177.531	1	NC	1
593		12	max	.006	3	.267	3	.001	1	1.238e-2	3	5649.302	15	NC	1
594			min	003	2	529	1	0	15	-2.721e-2	1	190.674	1	NC	1
595		13	max	.006	3	.227	3	0	1	9.902e-3	3		15	NC	1
596			min	003	2	446	1	0		-2.193e-2	1		1	NC	1
597		14	max	.006	3	.177	3	0		7.424e-3	3		15	NC	1
598			min	003	2	343	1	003	1	-1.664e-2	1	259.199	1	NC	1
599		15	max	.006	3	.12	3	<u>003</u> 0	15	4.947e-3	3		15	NC	1
600		10	min	003	2	229	1	008	1	-1.136e-2	1		1	NC	1
601		16		.006	3	.061	3	<u>008</u> 0	15	2.47e-3	3		15	NC	1
		10	max												
602		47	min	003	2	113	1	011	1	-6.073e-3	1_	468.702	1	NC NC	1
603		17	max	.005	3	.004	3	0		-7.693e-6	3_		5	NC NC	1
604		1.0	min	003	2	005	2	012	1	-7.879e-4	1_	755.784	1_	NC NC	1
605		18	max	.005	3	.089	1	0	15	2.731e-3	3	NC	5	NC	1
606			min	003	2	048	3	009	1	-8.457e-3	1_		1	NC	1
607		19	max	.005	3	.173	1	.001	1	5.563e-3	3	NC	1	NC	1
608			min	003	2	096	3	0	15	-1.651e-2	2	NC	1	NC	1

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	1/5
Project:	Standard PVMax - Worst Case, 14-	-40 Inch	Width
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method: ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: -Anchor ductility: Yes hmin (inch): 8.50 c_{ac} (inch): 9.67 C_{min} (inch): 1.75 Smin (inch): 3.00

Load and Geometry

<Figure 1>

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}$: 1.0

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 14-	-40 Inch	Width
Address:			
Phone:			
E-mail:			•

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 14-	-40 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	1020.0	27.0	565.0	565.6	
Sum	1020.0	27.0	565.0	565 6	

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (lb): 1020

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{Vy} (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)	
8095	0.75	6071	

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-7)

Kc	λ	f'c (psi)	h _{ef} (in)	N_b (lb)			
17.0	1.00	2500	5.247	10215			
$\phi N_{cb} = \phi (A_t)$	Nc / A_{Nco}) $\Psi_{ed,N}$ $\Psi_{c,N}$	$_{N}\Psi_{cp,N}N_{b}$ (Sec. I	D.4.1 & Eq. D-4))			
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cb} (lb)
220.36	247.75	0.967	1.00	1.000	10215	0.65	5710

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

rt-term K _{sat} τ _{k,cr} (psi)
0 1.00 1035
. D-16f)
(in) h_{ef} (in) N_{a0} (lb)
0 6.000 9755
Ψ _{ed,Na} Ψ _{p,Na} N _{a0} (Sec. D.4.1 & Eq. D-16a)
$\Psi_{\text{ed},Na}$ $\Psi_{\text{p},Na}$

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	4/5
Project:	Standard PVMax - Worst Case, 14-	40 Inch	Width
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in y-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

l _e (in)	d _a (in)	λ	f'_c (psi)	c _{a1} (in)	V_{by} (lb)			
4.00	0.50	1.00	2500	7.00	6947			
$\phi V_{cby} = \phi (A_V)$	/c / A vco) \(\mathcal{P}_{ed, V} \(\mathcal{P}_{c, V} \)	$ \sqrt{\Psi_{h,V}V_{by}} $ (Sec.	D.4.1 & Eq. D-2	1)				
A_{Vc} (in ²)	A_{Vco} (in ²)	$arPsi_{\sf ed,V}$	$arPsi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cby} (lb)	
192.89	220.50	0.925	1.000	1.000	6947	0.70	3934	

 V_{bx} (lb)

8282

Shear perpendicular to edge in x-direction:

$V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f_c c_{a1}}^{1.5}$ (Eq. D-24)									
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)					
4.00	0.50	1.00	2500	7.87					

 $\phi V_{cbx} = \phi (A_{Vc}/A_{Vco}) \Psi_{ed,V} \Psi_{c,V} \Psi_{h,V} V_{bx}$ (Sec. D.4.1 & Eq. D-21)

Avc (in ²)	Avco (in ²)	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
165.27	278.72	0.878	1.000	1.000	8282	0.70	3018

Shear parallel to edge in x-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f_c c_{a1}}^{1.5} \text{ (Eq. D-24)}$ $\frac{I_e \text{ (in)} \qquad d_a \text{ (in)} \qquad \lambda \qquad \qquad f'_c \text{ (psi)} \qquad c_{a1} \text{ (in)} \qquad V_{by} \text{ (lb)}}{4.00 \qquad 0.50 \qquad 1.00 \qquad 2500 \qquad 7.00 \qquad 6947}$ $\phi V_{cbx} = \phi (2) (A_{Vc}/A_{Vc}) \Psi_{ed,V} \Psi_{c,V} \Psi_{h,V} V_{by} \text{ (Sec. D.4.1, D.6.2.1(c) \& Eq. D-21)}$

$\varphi \mathbf{v} \cos \varphi \left(\frac{2}{3} \right) (11)$	/c/ / (v co) 1 eu, v 1 c, i	V 1 11, V V by (OCO. D	.+. 1, D.O.Z. 1(0)	α Lq. D Z 1)			
Avc (in ²)	$Av\infty$ (in ²)	$\varPsi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V _{by} (lb)	ϕ	ϕV_{cbx} (lb)
192.89	220.50	1.000	1.000	1.000	6947	0.70	8508

Shear parallel to edge in y-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

l _e (in)	d _a (in)	λ	f'_c (psi)	<i>c</i> _{a1} (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	7.87	8282		
$\phi V_{cby} = \phi (2)$	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{bx}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$arPsi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cby} (lb)
165.27	278.72	1.000	1.000	1.000	8282	0.70	6875

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{cp} = \phi \min |k_{cp} N_a \; ; \; k_{cp} N_{cb}| = \phi \min |k_{cp} (A_{Na}/A_{Na0}) \, \Psi_{ed,Na} \, \Psi_{p,Na} N_{a0} \; ; \; k_{cp} (A_{Nc}/A_{Nco}) \, \Psi_{ed,N} \, \Psi_{c,N} \, \Psi_{cp,N} N_b| \; (\text{Eq. D-30a})$

Kcp	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{p,Na}$	N _{a0} (lb)	N _a (lb)		
2.0	109.66	109.66	1.000	1.000	9755	9755		
Anc (in²)	Ανω (in²)	$\Psi_{ed,N}$	$\Psi_{c,N}$	$arPsi_{cp,N}$	N _b (lb)	Ncb (lb)	ϕ	$\phi V_{c ho}$ (lb)
220.36	247.75	0.967	1.000	1.000	10215	8785	0.70	12298

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	5/5
Project:	Standard PVMax - Worst Case, 14-	-40 Inch	Width
Address:			
Phone:			
E-mail:			_

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	1020	6071	0.17	Pass
Concrete breakout	1020	5710	0.18	Pass
Adhesive	1020	5365	0.19	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	566	3156	0.18	Pass (Governs)
T Concrete breakout y+	565	3934	0.14	Pass
T Concrete breakout x+	27	3018	0.01	Pass
Concrete breakout y+	27	8508	0.00	Pass
Concrete breakout x+	565	6875	0.08	Pass
Concrete breakout, combined	-	-	0.14	Pass
Pryout	566	12298	0.05	Pass
Interaction check Nua	$/\phi N_n$ $V_{ua}/\phi V_n$	Combined Rat	io Permissible	Status
Sec. D.7.1 0.1	9 0.00	19.0 %	1.0	Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	1/5
Project:	Standard PVMax - Worst Case, 21-	-31 Inch	Width
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment: Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: -Anchor ductility: Yes h_{min} (inch): 8.50 c_{ac} (inch): 9.67 C_{min} (inch): 1.75 S_{min} (inch): 3.00

Load and Geometry

Load factor source: ACI 318 Section 9.2 Load combination: not set

Seismic design: No

Anchors subjected to sustained tension: No

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

Ψ_{c,V}: 1.0

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 7.00 x 0.28

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 21	-31 Inch	Width
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 21	-31 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)
1	2495.5	1558.5	0.0	1558.5
2	2495.5	1558.5	0.0	1558.5
Sum	4991.0	3117.0	0.0	3117.0

Maximum concrete compression strain (%): 0.00 Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 4991

Resultant compression force (lb): 0 Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{Vy} (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-7)

k c	λ	f'_c (psi)	h _{ef} (in)	N_b (lb)				
17.0	1.00	2500	6.000	12492				
$\phi N_{cbg} = \phi (A_i)$	$_{ m Nc}$ / $A_{ m Nco}$) $\Psi_{ m ec,N}$ $\Psi_{ m ec}$	$_{d,N} arPsi_{c,N} arPsi_{cp,N} \mathcal{N}_b$ (S	Sec. D.4.1 & Eq	. D-5)				
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cbg} (Ib)
378.00	324.00	1.000	0.972	1.00	1.000	12492	0.65	9208

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

τ _{k,cr} (psi)	f short-term	K_{sat}	$\tau_{k,cr}$ (psi)	
1035	1.00	1.00	1035	
$N_{a0} = \tau_{k,cr} \pi d_{a}$	hef (Eq. D-16f)			
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N _{a0} (lb)	
1035	0.50	6.000	9755	

 $\phi N_{ag} = \phi \left(A_{Na} / A_{Na0} \right) \Psi_{ed,Na} \Psi_{g,Na} \Psi_{ec,Na} \Psi_{p,Na} N_{a0} \text{ (Sec. D.4.1 \& Eq. D-16b)}$

A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{g,Na}$	$arPsi_{ec,Na}$	$arPsi_{ ho, Na}$	$N_{a0}(lb)$	ϕ	ϕN_{ag} (lb)
158.66	109.66	1.000	1.043	1.000	1.000	9755	0.55	8093

Company:	Schletter, Inc.	Date:	8/1/2016			
Engineer:	HCV	Page:	4/5			
Project:	Standard PVMax - Worst Case, 21-31 Inch Width					
Address:						
Phone:						
E-mail:						

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ extit{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in x-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

l _e (in)	d _a (in)	λ	f'_c (psi)	<i>c</i> _{a1} (in)	V_{bx} (lb)			
4.00	0.50	1.00	2500	12.00	15593			
$\phi V_{cbgx} = \phi (A$	Avc / Avco) Yec, v Ye	$_{ed,V} \varPsi_{c,V} \varPsi_{h,V} V_{bx}$	(Sec. D.4.1 & Ed	ą. D-22)				
Avc (in ²)	$Av \infty$ (in ²)	$\Psi_{ec,V}$	$\varPsi_{\sf ed,V}$	$arPsi_{ extsf{c}, extsf{V}}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbgx} (Ib)
378.00	648.00	1.000	0.836	1.000	1.000	15593	0.70	5323

Shear parallel to edge in x-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

le (in)	da (in)	λ	f'c (psi)	<i>c</i> _{a1} (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	8.16	8744		
$\phi V_{cbx} = \phi (2)$	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (Ib)
299.64	299.64	1.000	1.000	1.000	8744	0.70	12241

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{cpg} = \phi \min |k_{cp} N_{ag} \; ; \; k_{cp} N_{cbg}| = \phi \min |k_{cp} (A_{Na} / A_{Nao}) \; \Psi_{ed,Na} \; \Psi_{g,Na} \; \Psi_{ec,Na} \; \Psi_{p,Na} N_{a0} \; ; \; k_{cp} (A_{Nc} / A_{Nco}) \; \Psi_{ed,N} \; \Psi_{e,N} \; \Psi_{c,N} \;$

,			(,	-, 3,,	μ, ,μ (,	,,,	(-1)
<i>k</i> _{cp}	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{g,Na}$	$\Psi_{ec,Na}$	$\Psi_{ m p,Na}$	N _{a0} (lb)	Na (lb)
2.0	158.66	109.66	1.000	1.043	1.000	1.000	9755	14715
A_{Nc} (in ²)	A _{Nco} (in ²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N _b (lb)	N _{cb} (lb)	ϕ
378.00	324.00	1.000	0.972	1.000	1.000	12492	14166	0.70

φV_{cpg} (lb) 19833

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	2496	6071	0.41	Pass
Concrete breakout	4991	9208	0.54	Pass
Adhesive	4991	8093	0.62	Pass (Governs)
Shear	Factored Load, Vua (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	1559	3156	0.49	Pass
T Concrete breakout x+	3117	5323	0.59	Pass (Governs)

Company:	Schletter, Inc.	Date:	8/1/2016		
Engineer:	HCV	Page:	5/5		
Project:	Standard PVMax - Worst Case, 21-31 Inch Width				
Address:					
Phone:					
E-mail:					

Concrete break	out y- 1559	12241	0.	13	Pass (Governs)	
Pryout	3117	19833	0.	16	Pass	
Interaction check	Nua/φNn	Vua/ ϕ Vn	Combined Ratio	Permissible	Status	
Sec. D.7.3	0.62	0.59	120.2 %	1.2	Pass	

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.