$12n_{0437} \ (K12n_{0437})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle 9.19324 \times 10^{24} u^{24} - 9.37535 \times 10^{25} u^{23} + \dots + 7.01855 \times 10^{25} b + 8.63495 \times 10^{25}, \\ &- 4.13470 \times 10^{25} u^{24} + 4.13261 \times 10^{26} u^{23} + \dots + 7.01855 \times 10^{25} a - 2.79968 \times 10^{27}, \\ &u^{25} - 10 u^{24} + \dots + 72 u - 1 \rangle \\ I_2^u &= \langle -u^4 + u^3 - 4 u^2 + b + 3 u - 3, \ a, \ u^5 - u^4 + 4 u^3 - 3 u^2 + 3 u - 1 \rangle \\ I_3^u &= \langle u^2 a + b + u, \ u^2 a + a^2 - a u - 2 u^2 + 2 a + u - 3, \ u^3 - u^2 + 2 u - 1 \rangle \end{split}$$

* 3 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 36 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle 9.19 \times 10^{24} u^{24} - 9.38 \times 10^{25} u^{23} + \dots + 7.02 \times 10^{25} b + 8.63 \times 10^{25}, \ -4.13 \times 10^{25} u^{24} + 4.13 \times 10^{26} u^{23} + \dots + 7.02 \times 10^{25} a - 2.80 \times 10^{27}, \ u^{25} - 10 u^{24} + \dots + 72 u - 1 \rangle$$

(i) Arc colorings

$$a_{4} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0.589110u^{24} - 5.88812u^{23} + \dots - 335.813u + 39.8897 \\ -0.130985u^{24} + 1.33580u^{23} + \dots + 39.4166u - 1.23030 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 0.452645u^{24} - 4.39464u^{23} + \dots - 195.754u + 22.1379 \\ -0.146274u^{24} + 1.40258u^{23} + \dots + 20.5478u - 0.642297 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0.598919u^{24} - 5.79722u^{23} + \dots - 216.301u + 22.7802 \\ -0.146274u^{24} + 1.40258u^{23} + \dots + 20.5478u - 0.642297 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0.598919u^{24} - 5.79722u^{23} + \dots - 216.301u + 22.7802 \\ 0.0345873u^{24} - 0.219643u^{23} + \dots + 21.9603u - 0.710241 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 0.0157966u^{24} + 0.0835882u^{23} + \dots + 21.9603u - 0.710241 \\ -0.0421281u^{24} + 0.395025u^{23} + \dots + 1.19935u - 0.137223 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 0.0628449u^{24} - 0.637985u^{23} + \dots - 55.7029u + 8.66493 \\ 0.0743783u^{24} - 0.692119u^{23} + \dots - 9.71411u + 0.0157966 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 0.137223u^{24} - 1.33010u^{23} + \dots - 65.4171u + 8.68072 \\ 0.100634u^{24} - 0.951779u^{23} + \dots - 12.6101u + 0.0579248 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0.589110u^{24} - 5.88812u^{23} + \dots - 335.813u + 39.8897 \\ -0.137742u^{24} + 1.39067u^{23} + \dots - 335.813u + 39.8897 \\ -0.137742u^{24} + 1.39067u^{23} + \dots + 39.7915u - 1.22733 \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes = $\frac{25106355762453601367160863}{23395155619836929736818172}u^{24} - \frac{62945700046644877607050528}{5848788904959232434204543}u^{23} + \dots - \frac{511603421605188008732954519}{1376185624696289984518716}u + \frac{351161482484964948702456565}{23395155619836929736818172}$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_4, c_6	$u^{25} + 10u^{24} + \dots + 72u + 1$
c_2, c_5	$u^{25} + 4u^{24} + \dots - 12u - 1$
c_3, c_8	$u^{25} - 2u^{24} + \dots - 32u - 64$
c_7, c_{10}	$u^{25} - 4u^{24} + \dots - 192u - 32$
c_9, c_{11}, c_{12}	$u^{25} + 9u^{24} + \dots - 41u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_4, c_6	$y^{25} + 14y^{24} + \dots + 4016y - 1$
c_2, c_5	$y^{25} - 10y^{24} + \dots + 72y - 1$
c_3, c_8	$y^{25} - 28y^{24} + \dots + 29696y - 4096$
c_7, c_{10}	$y^{25} + 24y^{24} + \dots + 51712y - 1024$
c_9, c_{11}, c_{12}	$y^{25} - 9y^{24} + \dots + 1947y - 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.799543 + 0.627415I		
a = -0.93941 + 1.56370I	-4.36096 - 1.13139I	0.75657 + 1.52598I
b = -0.01758 + 1.51331I		
u = -0.799543 - 0.627415I		
a = -0.93941 - 1.56370I	-4.36096 + 1.13139I	0.75657 - 1.52598I
b = -0.01758 - 1.51331I		
u = -0.034202 + 0.923614I		
a = -0.686187 - 0.237402I	1.97950 - 1.66008I	-0.69040 + 2.96263I
b = 0.108494 + 0.547445I		
u = -0.034202 - 0.923614I		
a = -0.686187 + 0.237402I	1.97950 + 1.66008I	-0.69040 - 2.96263I
b = 0.108494 - 0.547445I		
u = 0.856820 + 0.829058I		
a = 1.063360 - 0.668986I	-0.38972 - 2.81828I	-1.13877 + 3.80627I
b = 0.022399 - 0.950691I		
u = 0.856820 - 0.829058I		
a = 1.063360 + 0.668986I	-0.38972 + 2.81828I	-1.13877 - 3.80627I
b = 0.022399 + 0.950691I		
u = 0.755262		
a = -2.29591	7.52575	-13.1500
b = 0.108132		
u = 0.240993 + 1.276750I		
a = -0.034747 + 0.379118I	4.24524 - 2.77554I	34.2342 + 3.0457I
b = 0.13663 + 3.40519I		
u = 0.240993 - 1.276750I		
a = -0.034747 - 0.379118I	4.24524 + 2.77554I	34.2342 - 3.0457I
b = 0.13663 - 3.40519I		
u = -0.563738 + 1.206990I		
a = 0.839591 - 1.130370I	-2.40018 + 6.37988I	2.18378 - 2.52933I
b = -0.40514 - 1.62951I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.563738 - 1.206990I		
a = 0.839591 + 1.130370I	-2.40018 - 6.37988I	2.18378 + 2.52933I
b = -0.40514 + 1.62951I		
u = 0.75670 + 1.19685I		
a = 0.860055 + 0.001764I	0.73025 - 3.27384I	-1.24326 + 3.27643I
b = -0.149981 + 0.594534I		
u = 0.75670 - 1.19685I		
a = 0.860055 - 0.001764I	0.73025 + 3.27384I	-1.24326 - 3.27643I
b = -0.149981 - 0.594534I		
u = 0.462757 + 0.342084I		
a = -0.172877 - 1.143600I	0.902564 - 0.255949I	-3.12150 + 6.64716I
b = -0.66811 - 1.47469I		
u = 0.462757 - 0.342084I		
a = -0.172877 + 1.143600I	0.902564 + 0.255949I	-3.12150 - 6.64716I
b = -0.66811 + 1.47469I		
u = 0.447970		
a = -0.336060	-0.908338	-11.6550
b = 0.456804		
u = 0.11903 + 1.59221I		
a = -0.113155 + 0.609313I	13.29460 - 3.19957I	9.89238 + 1.87771I
b = 0.018929 + 0.249452I		
u = 0.11903 - 1.59221I		
a = -0.113155 - 0.609313I	13.29460 + 3.19957I	9.89238 - 1.87771I
b = 0.018929 - 0.249452I		
u = 1.63956 + 0.34345I		
a = -0.019703 - 1.413500I	-10.18570 - 4.57384I	0. + 2.62009I
b = 0.15371 - 1.68285I		
u = 1.63956 - 0.34345I		
a = -0.019703 + 1.413500I	-10.18570 + 4.57384I	02.62009I
b = 0.15371 + 1.68285I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.04678 + 1.44405I		
a = 0.689190 + 1.046230I	-7.03225 - 4.52109I	0
b = -0.09880 + 1.59912I		
u = 1.04678 - 1.44405I		
a = 0.689190 - 1.046230I	-7.03225 + 4.52109I	0
b = -0.09880 - 1.59912I		
u = 0.66532 + 1.68962I		
a = -0.626781 - 0.927153I	-3.94520 - 12.71920I	0
b = 0.44778 - 1.73312I		
u = 0.66532 - 1.68962I		
a = -0.626781 + 0.927153I	-3.94520 + 12.71920I	0
b = 0.44778 + 1.73312I		
u = 0.0157871		
a = 34.9133	1.12664	9.59670
b = -0.661595		

II. $I_2^u = \langle -u^4 + u^3 - 4u^2 + b + 3u - 3, \ a, \ u^5 - u^4 + 4u^3 - 3u^2 + 3u - 1 \rangle$

(i) Arc colorings

$$a_{4} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{4} - u^{3} + 4u^{2} - 3u + 3 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u \\ u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u^{4} - u^{3} + 4u^{2} - 4u + 3 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u^{2} + 1 \\ -u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{3} + 2u \\ -u^{3} - u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u \\ -u \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $-18u^4 + 11u^3 65u^2 + 29u 38$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_3, c_4	$u^5 - u^4 + 4u^3 - 3u^2 + 3u - 1$
c_2	$u^5 - u^4 + u^2 + u - 1$
<i>C</i> ₅	$u^5 + u^4 - u^2 + u + 1$
c_6,c_8	$u^5 + u^4 + 4u^3 + 3u^2 + 3u + 1$
c_7, c_{10}	u^5
<i>c</i> ₉	$(u+1)^5$
c_{11}, c_{12}	$(u-1)^5$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_3, c_4 c_6, c_8	$y^5 + 7y^4 + 16y^3 + 13y^2 + 3y - 1$
c_2, c_5	$y^5 - y^4 + 4y^3 - 3y^2 + 3y - 1$
c_7, c_{10}	y^5
c_9, c_{11}, c_{12}	$(y-1)^5$

(vi) Complex Volumes and Cusp Shapes

Se	olutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.	.233677 + 0.885557I		
a =	0	3.46474 - 2.21397I	3.79538 + 3.60694I
b = 0.	278580 - 1.055720I		
u = 0.	233677 - 0.885557I		
a =	0	3.46474 + 2.21397I	3.79538 - 3.60694I
b = 0.	.278580 + 1.055720I		
u = 0	.416284		
a =	0	0.762751	-36.9390
b = 2	.40221		
u = 0.	0.05818 + 1.69128I		
a =	0	12.60320 - 3.33174I	-2.32599 + 3.47010I
b = 0.	0.020316 - 0.590570I		
u = 0.	05818 - 1.69128I		
a =	0	12.60320 + 3.33174I	-2.32599 - 3.47010I
b = 0.	020316 + 0.590570I		

III. $I_3^u = \langle u^2a + b + u, \ u^2a + a^2 - au - 2u^2 + 2a + u - 3, \ u^3 - u^2 + 2u - 1 \rangle$

(i) Arc colorings

$$a_{4} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} a \\ -u^{2}a - u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{2} - a - u + 2 \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{2} - a - u + 2 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u^{2} - a - u + 2 \\ -u^{2}a - u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u \\ u^{2} - u + 1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u \\ -u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 0 \\ -u \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $-3au + 5u^2 3a + 2u + 4$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_4	$(u^3 - u^2 + 2u - 1)^2$
c_2	$(u^3 + u^2 - 1)^2$
c_3, c_8	u^6
<i>C</i> ₅	$(u^3 - u^2 + 1)^2$
<i>c</i> ₆	$(u^3 + u^2 + 2u + 1)^2$
c_{7}, c_{9}	$(u^2-u-1)^3$
c_{10}, c_{11}, c_{12}	$(u^2+u-1)^3$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_4, c_6	$(y^3 + 3y^2 + 2y - 1)^2$
c_2, c_5	$(y^3 - y^2 + 2y - 1)^2$
c_3, c_8	y^6
$c_7, c_9, c_{10} \\ c_{11}, c_{12}$	$(y^2 - 3y + 1)^3$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.215080 + 1.307140I		
a = -0.198308 + 1.205210I	11.90680 - 2.82812I	1.56739 + 1.81005I
b = 0.132927 + 0.807858I		
u = 0.215080 + 1.307140I		
a = 0.075747 - 0.460350I	4.01109 - 2.82812I	-5.96298 + 6.80673I
b = -0.34801 - 2.11500I		
u = 0.215080 - 1.307140I		
a = -0.198308 - 1.205210I	11.90680 + 2.82812I	1.56739 - 1.81005I
b = 0.132927 - 0.807858I		
u = 0.215080 - 1.307140I		
a = 0.075747 + 0.460350I	4.01109 + 2.82812I	-5.96298 - 6.80673I
b = -0.34801 + 2.11500I		
u = 0.569840		
a = 1.08457	-0.126494	1.65540
b = -0.922021		
u = 0.569840		
a = -2.83945	7.76919	20.1360
b = 0.352181		

IV. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1, c_4	$ (u^{3} - u^{2} + 2u - 1)^{2}(u^{5} - u^{4} + 4u^{3} - 3u^{2} + 3u - 1) $ $ \cdot (u^{25} + 10u^{24} + \dots + 72u + 1) $
c_2	$((u^3 + u^2 - 1)^2)(u^5 - u^4 + u^2 + u - 1)(u^{25} + 4u^{24} + \dots - 12u - 1)$
<i>C</i> ₃	$u^{6}(u^{5} - u^{4} + \dots + 3u - 1)(u^{25} - 2u^{24} + \dots - 32u - 64)$
<i>C</i> ₅	$((u^3 - u^2 + 1)^2)(u^5 + u^4 - u^2 + u + 1)(u^{25} + 4u^{24} + \dots - 12u - 1)$
<i>C</i> ₆	$(u^{3} + u^{2} + 2u + 1)^{2}(u^{5} + u^{4} + 4u^{3} + 3u^{2} + 3u + 1)$ $\cdot (u^{25} + 10u^{24} + \dots + 72u + 1)$
C ₇	$u^{5}(u^{2}-u-1)^{3}(u^{25}-4u^{24}+\cdots-192u-32)$
<i>c</i> ₈	$u^{6}(u^{5} + u^{4} + \dots + 3u + 1)(u^{25} - 2u^{24} + \dots - 32u - 64)$
<i>c</i> ₉	$((u+1)^5)(u^2-u-1)^3(u^{25}+9u^{24}+\cdots-41u+1)$
c_{10}	$u^{5}(u^{2}+u-1)^{3}(u^{25}-4u^{24}+\cdots-192u-32)$
c_{11}, c_{12}	$((u-1)^5)(u^2+u-1)^3(u^{25}+9u^{24}+\cdots-41u+1)$

V. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_4, c_6	$(y^3 + 3y^2 + 2y - 1)^2(y^5 + 7y^4 + 16y^3 + 13y^2 + 3y - 1)$ $\cdot (y^{25} + 14y^{24} + \dots + 4016y - 1)$
c_2,c_5	$(y^3 - y^2 + 2y - 1)^2 (y^5 - y^4 + 4y^3 - 3y^2 + 3y - 1)$ $\cdot (y^{25} - 10y^{24} + \dots + 72y - 1)$
c_3,c_8	$y^{6}(y^{5} + 7y^{4} + 16y^{3} + 13y^{2} + 3y - 1)$ $\cdot (y^{25} - 28y^{24} + \dots + 29696y - 4096)$
c_7, c_{10}	$y^{5}(y^{2} - 3y + 1)^{3}(y^{25} + 24y^{24} + \dots + 51712y - 1024)$
c_9, c_{11}, c_{12}	$((y-1)^5)(y^2-3y+1)^3(y^{25}-9y^{24}+\cdots+1947y-1)$