QCI

Day 5: Quantum Gates [1]

State Vectors

Does this satisfy conservation of probability?

$$|\psi\rangle = \begin{pmatrix} \frac{\sqrt{2}}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} \end{pmatrix}$$

Exercise: Qiskit Statevectors

Show custom state and bloch sphere plots

Superposition & Phase

Speaker notes Information from this section comes from Qiskit Textbook. Single Qubit Gates.

Hadamard Gate

$$H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

$$H|0\rangle = |+\rangle$$

$$H|1\rangle = |-\rangle$$

Apply H to I0> and I1>. What is the difference? Show math on iPad

The + and - have to do with the sign of the phase (we'll see this on the bloch sphere)

R_{ϕ} Gate

$$R_{\phi} = \begin{bmatrix} 1 & 0 \\ 0 & e^{i\phi} \end{bmatrix}$$

Performs a rotation by ϕ radians on the Z axis.

What gate does this resemble?

S/S^{\dagger} ($\sqrt{Z}/\sqrt{Z}^{\dagger}$) Gates

$$\sqrt{Z} = S = \begin{bmatrix} 1 & 0 \\ 0 & e^{\frac{i\pi}{2}} \end{bmatrix}$$

$$\sqrt{Z}^{\dagger} = S^{\dagger} = \begin{bmatrix} 1 & 0 \\ 0 & e^{-\frac{i\pi}{2}} \end{bmatrix}$$

Special case of the R_{ϕ} gate with $\phi = \frac{\pi}{2}$

Why is this called *sqrtZ*? (applying this gate twice results in Z)

Are they their own inverses? (No. Show math on Jamboard)

T/T^{\dagger} ($\sqrt[4]{Z}/\sqrt[4]{Z}^{\dagger}$) Gates

$$T = \begin{bmatrix} 1 & 0 \\ 0 & e^{\frac{i\pi}{4}} \end{bmatrix}$$

$$T^{\dagger} = \begin{bmatrix} 1 & 0 \\ 0 & e^{-\frac{i\pi}{4}} \end{bmatrix}$$

Exercise: Qiskit Superposition and Phase

Entanglement

Review: Entangled Statevectors

 $\begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix}$

How might we entangle two qubits?

Bell State: H + CNOT (Show in Qiskit, show histogram and bloch sphere)

Qiskit: Intro to Phase Kickback

Put a $|0\rangle$ into superposition with H, it has positive phase.

Put a $|1\rangle$ into superposition with H, it has negative phase.

Show matrix multiplication with CNOT (from $|+\rangle$ to $|-\rangle$) to see what will happen

Phase Kickback: Using a controlled gate to modify the control qubit

Wrap a CNOT in H gates -- shows kickback

References

- Qiskit Textbook. Single Qubit Gates
- Qiskit Textbook. Phase Kickback
- Qiskit Textbook. Multiple Qubits and Entangled States