Übungen zur Linearen Algebra I

Wintersemester 2016/17

Universität Heidelberg Mathematisches Institut Dr. D. Vogel

Dr. M. Witte

Blatt 4

Abgabetermin: Donnerstag, 17.11.2016, 9.30 Uhr

Aufgabe 1. (Permutationen)

(a) Gegeben seien die Permutationen

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 1 & 4 \end{pmatrix}, \qquad \tau = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 1 & 4 \end{pmatrix}$$

in der symmetrischen Gruppe S_4 . Bestimmen Sie $\tau \circ \sigma$, σ^{-1} und $\tau^{-1} \circ \sigma \circ \tau$.

(b) Bestimmen Sie alle $\sigma \in S_3$ mit $\sigma \circ \sigma = id$.

Aufgabe 2. (Restklassen)

- (a) Berechnen Sie im Ring $\mathbb{Z}/5\mathbb{Z}$: $\bar{3} \cdot (\bar{4} + \bar{2}^{-1}), \quad \bar{3}^{12354546767456}$.
- (b) Bestimmen Sie die Lösungsmenge der Gleichung $x^3 = \bar{1}$ in $\mathbb{Z}/3\mathbb{Z}$, $\mathbb{Z}/5\mathbb{Z}$ und $\mathbb{Z}/7\mathbb{Z}$.

Aufgabe 3. (Gruppenhomomorphismen) Zeigen Sie, dass die folgenden Abbildungen f Gruppenhomomorphismen sind:

- (a) für jede Gruppe (G,*) und jedes Element $g \in G$ die Abbildung $f: G \to G, h \mapsto g*h*g';$
- (b) für jede Teilmenge $N \subseteq M$ einer Menge M die Abbildung $f: S(N) \to S(M), \sigma \mapsto \tilde{\sigma}$ wobei $\tilde{\sigma}: M \to M$ durch $\tilde{\sigma}(m) = \sigma(m)$ falls $m \in N$ und $\tilde{\sigma}(m) = m$ falls $m \in M \setminus N$ gegeben ist;
- (c) $f: \mathbb{Z} \mapsto S(\mathbb{Z}), x \mapsto m_x$, wobei $m_x: \mathbb{Z} \to \mathbb{Z}, a \mapsto a + x$ die Verschiebung um x bezeichnet.

Aufgabe 4. (Untergruppen) Sei (G, *) eine Gruppe und $H \subseteq G$ eine Teilmenge. Zeigen Sie, dass folgende Aussagen äquivalent sind:

(a) $*: G \times G \to G$ schränkt sich zu einer Verknüpfung

$$*_H : H \times H \to H, \qquad (a,b) \mapsto a * b$$

ein und $(H, *_H)$ ist eine Gruppe.

(b) Die Menge H ist nicht leer und für alle $a,b\in H$ gilt $a*b'\in H.$

(Sind diese äquivalenten Bedingungen an H erfüllt, so nennt man H eine Untergruppe von G).

Zusatzaufgabe 5. (Endliche Gruppen als Untergruppen der symmetrischen Gruppen) Sei $n \in \mathbb{N}$ und G eine Gruppe mit n Elementen. Zeigen Sie, dass G isomorph zu einer Untergruppe der S_n ist.