

Zabbix.

Практическое руководство

Андреа Далле Вакке

УДК 004.7: 004.451.9Zabbix ББК 32.972.5 Д15

Далле Вакке А.

Д15 Zabbix. Практическое руководство / пер. с англ. А. Н. Киселева. – М.: ДМК Пресс, 2017. – 356 с.: ил.

ISBN 978-5-97060-462-5

В книге описана система Zabbix – одно из самых популярных решений мониторинга сетей и приложений.

Описана настройка Zabbix, рассмотрены сценарии мониторинга, создание собственных компонент, автоматизация с использованием Zabbix API, а также интеграция Zabbix с внешними системами.

Издание предназначено системным администраторам и архитекторам, желающим интегрировать инфраструктуру Zabbix в свое окружение.

УДК 004.7: 004.451.9Zabbix ББК 32.972.5

Copyright © Packt Publishing 2016. First published in the English language under the title «Mastering Zabbix – Second Edition» (9781785289262).

Все права защищены. Любая часть этой книги не может быть воспроизведена в какой бы то ни было форме и какими бы то ни было средствами без письменного разрешения владельцев авторских прав.

Материал, изложенный в данной книге, многократно проверен. Но поскольку вероятность технических ошибок все равно существует, издательство не может гарантировать абсолютную точность и правильность приводимых сведений. В связи с этим издательство не несет ответственности за возможные ошибки, связанные с использованием книги.

Содержание

Оо авторе	
Благодарности	
О технических обозревателях	
Глава 1. Развертывание Zabbix	22
Определение размера окружения	
Архитектура Zabbix	
Установка Zabbix	
Предварительные требования	
Настройка сервера	
Настройка агента	
Установка и создание пакета	
Установка из пакетов	32
Настройка сервера	32
Установка базы данных	34
Подготовка базы данных	43
Оценка размера базы данных	45
Очистка истории	47
Веб-интерфейс	
Мастер настройки – настройка веб-интерфейса	
Планирование мощностей с помощью Zabbix	
Эффект наблюдателя	
Выбор параметров для мониторинга	59
Определение базовой оценки	61
Нагрузочное тестирование	61
Прогнозирование тенденций	
В заключение	64
Глава 2. Распределенный мониторинг	66
Прокси-серверы Zabbix	
Прокси-серверы Zabbix Развертывание прокси-сервера Zabbix	
Команды управления прокси-сервером Zabbix во время выполнения Развертывание прокси-сервера Zabbix из RPM-пакета	
Развертывание прокси-сервера Zabbix из кРМ-пакета Использование других баз данных с прокси-серверами	
использование других оаз данных с прокси-серверами	
Движение данных мониторинга в системе Zabbix	
дрижение данива мониторинга через прокем-серверы	1 O

Мониторинг прокси-серверов Zabbix	80
Вопросы безопасности	82
Отказ от конфигурации сети	83
Изолирование сети	84
Простые туннели	85
Протокол SSH	85
Программа stunnel	86
Использование полноценной VPN	87
В заключение	88
Глава 3. Высокая доступность и отказоустойчивость	89
Высокая доступность	
Уровни обслуживания	
Некоторые вопросы высокой доступности	
Автоматизация аварийного переключения с применением диспетчера	
pecypcos	93
Репликация файловой системы с помощью DRBD	
Реализация высокой доступности для веб-сервера	
Настройка НТТРО	
Pacemaker и механизм STONITH	
Pacemaker – так ли необходим кворум?	
Pacemaker – идея закрепления ресурсов	
Pacemaker – настройка Apache/HTTPD	
Реализация высокой доступности для сервера Zabbix	
Реализация высокой доступности для базы данных	
Кластеризация PostgreSQL	
Зеркалирование логического тома с помощью LVM и DRDB	
Обязательные условия использования DRBD на LVM	
Создание устройства DRBD поверх раздела LVM	
Включение ресурсов в DRBD	
Определение первичного устройства DRDB	
Создание файловой системы на устройстве DRBD	
Кластеры Pacemaker – интеграция с DRBD	
Настройка включения DRBD	
Pacemaker – настройка LVM	
Pacemaker – настройка PostgreSQL	
Pacemaker – настройка сети	
Pacemaker – заключительные настройки	
Настройка кластера – заключительная проверка	
Производительность и оптимизация DRBD	
Эффективная синхронизация DRBD	
Включение онлайн-верификации для DRBD	
DRBD – некоторые аспекты настройки сети	
В заключение	

Нестандартные графики	179
Обзор всех параметров настройки графиков	
Визуализация данных с применением карт	
Создание первой карты в Zabbix	
Важные замечания о макросах и адресах URL	
Внутри карты	
Выбор элементов	
Использование макросов в картах	198
Комплексные экраны	200
Создание экрана	200
Динамические элементы	202
Слайд-шоу	204
Проблема управления слайдами на большом мониторе	205
Замечания о слайдах для больших мониторов	205
Автоматизация слайд-шоу	
Информация об уровне обслуживания	207
Настройка предоставления информации об уровне обслуживания	
В заключение	211
Глава 6. Управление оповещениями	212
Выражения триггеров	
Выбор элементов и функций	
Выбор между интервалом времени и количеством замеров	
Функции определения даты и времени	
Важность триггера	
Выбор между абсолютными и относительными значениями	
Операции как способ связывания	
Управление зависимостями триггеров	220
Выполнение действий	221
Определение действия	222
{EVENT.DATE} и {EVENT.TIME}	223
{INVENTORY.SERIALNO.A} и подобные макросы	223
Определение условий	224
Выбор операций	
Шаги и эскалация	
Сообщения и способы оповещения	
Удаленные команды	
В заключение	230
Глава 7. Управление шаблонами	231
Создание шаблонов	
Добавление сущностей в шаблон	232
Использование макросов	
Пользовательские макросы	
Импортирование и экспортирование шаблонов	

Перераспределение хостов между прокси-серверами	297
Добавление и изменение учетных записей	298
Экспортирование данных	301
Извлечение табличных данных	
Создание графиков на основе данных	304
Пакет программ Graphviz	
Создание графа зависимостей триггеров	
Создание карт Zabbix на основе файлов с описанием	
В заключение	
Глава 10. Интеграция с Zabbix	315
Интеграция с WhatsApp	316
Подготовка к отправке сообщений	
Регистрация клиента yowsup	318
Отправка первого сообщения в WhatsApp	
Настройка безопасности клиента yowsup	
Создание первой группы в Zabbix для рассылки оповещений	322
Интеграция yowsup c Zabbix	
Обзор системы Request Tracker	
Настройка RT для интеграции с Zabbix	
Создание отдельной очереди для Zabbix	
Настройка заявок – раздел «Ссылки»	
Настройка заявок – приоритет заявки	335
Настройка заявок – собственные поля	
Соединение с Request Tracker API	338
Настройка Zabbix для интеграции с Request Tracker	
Создание заявок RT из событий Zabbix	
В заключение	348
Предметный указатель	240

Развертывание Zabbix

Если вы читаете эту книгу, значит, вы почти наверняка уже устанавливали и использовали Zabbix. Почти наверняка вы пытались использовать эту систему в небольшом или среднем окружении, но с тех пор ситуация изменилась, ваше окружение разрослось, и вы столкнулись с новыми проблемами. В наши дни окружения растут или изменяются очень быстро, и порой довольно сложно оставаться в полной готовности поддерживать надежный мониторинг.

Обычно начальное развертывание системы мониторинга выполняется под руководством какого-либо самоучителя или инструкции, и это распространенная ошибка. Такой подход оправдан для небольших окружений, где время простоя не имеет большого значения, где не приходится беспокоиться о проблемах восстановления сайтов после аварий и, вообще, где все выглядит очень просто.

Почти всегда в таких случаях развертывание и настройка выполняются без учета появления новых элементов, тригтеров и событий, которые должны обрабатываться сервером. Если вы уже установили Zabbix и желаете реализовать возможность дальнейшего расширения своего решения мониторинга или, напротив, решили спроектировать и создать новую инфраструктуру мониторинга, эта глава поможет вам.

Данная глава поможет также решить сложную задачу настройки/обновления Zabbix для использования в больших и очень больших окружениях. Она охватывает все аспекты такой задачи, начиная от определения большого окружения до использования Zabbix в роли ресурса с планируемой мощностью. Здесь будут представлены все возможные решения на основе Zabbix, включая практический пример установки с прицелом на обслуживание большого окружения и возможность дальнейшего совершенствования.

К концу этой главы вы узнаете, как действует Zabbix, какие таблицы требуют особого внимания, как рационализировать административные работы в большом окружении, что, как показывает опыт прошлых лет, является действительно очень сложной задачей.

В этой главе рассматриваются следующие темы:

- О как определить, что перед вами действительно большое окружение, и какие окружения можно считать большими;
- О настройка/обновление Zabbix в большом и очень большом окружении;

- установка Zabbix в трехуровневой системе при наличии готового решения для большого окружения;
- оценка требований к базе данных и определение общего объема хранимых данных;
- О знакомство с наиболее тяжелыми таблицами и задачами базы данных;
- оптимизация работ с целью снижения нагрузки на СУБД и повышения эффективности системы в целом;
- О основные идеи планирования мощности с учетом возможностей Zabbix.

Определение размера окружения

Основное внимание в этой книге уделяется большим окружениям, поэтому нужно определить, хотя бы приблизительно, какое окружение можно считать большим. Размер определяется разными характеристиками, но в самом простом случае окружение можно назвать большим, если:

- О оно распределено географически;
- О количество контролируемых устройств исчисляется сотнями или даже тысячами;
- О количество проверок, выполняемых каждую секунду, превышает 500;
- О имеется большое количество элементов, триггеров и данных для обработки (объем базы данных превышает 100 ГБ);
- доступность и производительность являются критически важными характеристиками.

Все эти пункты характеризуют большое окружение; установка и обслуживание инфраструктуры Zabbix в таком окружении играют важную роль.

Установка является четко определенной задачей, для выполнения которой специально выделяется время, и относится к разряду важнейших, потому что создает основу для мощной и надежной инфраструктуры мониторинга. Кроме того, после создания некоторого задела порой очень непросто что-то передвинуть/переместить без потери данных. Существуют и другие аспекты, которые необходимо учитывать: у нас появится множество задач, связанных с системой мониторинга, большинство из которых придется решать ежедневно, но в больших окружениях они требуют особого внимания.

В небольших окружениях с маленькими базами данных резервное копирование требует минутных усилий, но для большой базы данных решение той же задачи займет намного больше времени.

Планы по восстановлению должны регулярно пересматриваться и тестироваться, чтобы знать, сколько времени потребуется на решение этой задачи в случае аварийных ситуаций.

Помимо повседневного обслуживания, необходимо предусмотреть время на тестирование и ввод в эксплуатацию обновлений, чтобы максимально уменьшить их влияние на решение повседневных задач.

Архитектура Zabbix

Zabbix можно определить как распределенную систему мониторинга с централизованным веб-интерфейсом (с помощью которого осуществляется управление). Из основных особенностей системы хотелось бы особо выделить следующие:

- Zabbix имеет централизованный веб-интерфейс;
- О сервер может выполняться под управлением практически любой Unixподобной операционной системы;
- О данная система мониторинга имеет готовых агентов для большинства операционных систем Unix, Unix-подобных и Microsoft Windows;
- О система легко интегрируется с другими системами благодаря прикладному интерфейсу, реализованному для множества языков программирования;
- О мониторинг может осуществляться по протоколам SNMP (v1, v2 и v3), IPMI, JMX, ODBC, SSH, HTTP(S), TCP/UDP и Telnet;
- О данная система мониторинга позволяет нам создавать собственные элементы и графики и интерполировать данные;
- О простота настройки.

На рис. 1.1 изображена трехуровневая архитектура Zabbix.

Рис. 1.1 ❖ Трехуровневая архитектура Zabbix

Архитектура Zabbix для большого окружения состоит из трех разных серверов/компонентов (которые также должны настраиваться с учетом высокой доступности):

- О веб-сервер;
- О сервер баз данных;
- O сервер Zabbix.

Полная инфраструктура Zabbix в больших окружениях позволяет вводить в игру еще двух актеров, играющих важную роль. Это агенты Zabbix и прокси-серверы Zabbix. Пример такой инфраструктуры представлен на рис. 1.2.

В этой инфраструктуре имеется централизованный сервер Zabbix, к которому подключено несколько прокси-серверов, обычно по одному на ферму или подсеть.

Сервер Zabbix получает данные от прокси-серверов Zabbix, прокси-серверы получают данные от подключенных к ним areнтов Zabbix, все данные сохраняются в выделенной СУБД, а доступ к этим данным осуществляется посредством веб-интерфейса. Если заглянуть в реализацию системы, можно увидеть, что веб-интерфейс написан на языке PHP, а сервер, прокси-серверы и агенты — на языке С.

Рис. 1.2 ❖ Два дополнительных компонента инфраструктуры Zabbix

Выбор языка С для реализации сервера, прокси-серверов и агентов обусловлен стремлением обеспечить наивысшую производительность и минимальное потребление системных ресурсов. Все компоненты оптимизированы на достижение максимальной производительности.

Используя прокси-серверы, можно реализовать разные архитектуры. Ниже перечислено несколько таких архитектур в порядке возрастания сложности:

- О с единственным сервером;
- О с единственным сервером и множеством прокси-серверов;
- О распределенная архитектура (доступна только в версиях Zabbix 2.3.0 или выше).

Архитектура с единственным сервером не предполагает использования в большом окружении. Это простейшая архитектура, где мониторинг осуществляет единственный сервер, которая может служить неплохой начальной точкой.

Вероятнее всего, у вас уже имеется установленная система Zabbix. Zabbix отличается высокой гибкостью и позволяет расширить установку с единственным сервером до следующего уровня: мониторинга с применением прокси-серверов.

Мониторинг с применением прокси-серверов реализуется путем настройки одного сервера Zabbix и нескольких прокси-серверов, по одному на ветвь или вычислительный центр. Такая конфигурация проста в обслуживании и обладает преимуществом решений централизованного мониторинга. Она обеспечивает хороший баланс между сложностью реализации и мониторингом большого окружения. Архитектуру с единственным сервером и множеством прокси-серверов, изображенную на рис. 1.2, можно (приложив немало усилий) расширить до распределенной архитектуры.

Начиная с версии 2.4.0 система Zabbix не поддерживает сценариев распределенного мониторинга узлов. И действительно, если загрузить исходный код версии Zabbix, обсуждаемой в книге, а затем код версии Zabbix 2.4.3, можно заметить, что ветвь кода, управлявшая узлами, была удалена.

Все возможные архитектуры Zabbix подробно обсуждаются в главе 2 «Распределенный мониторинг».

Установка Zabbix

Конфигурация, обсуждаемая в этой главе, предусматривает создание отдельного сервера для каждого из следующих основных компонентов:

- О веб-интерфейс;
- O сервер Zabbix;
- O база данных Zabbix.

Мы опишем эту конфигурацию потому, что:

- O она может служить основой для дальнейшего расширения за счет добавления прокси-серверов и узлов;
- О каждый компонент выполняется на выделенном сервере;
- О подобные конфигурации являются отправной точкой для организации мониторинга больших окружений;
- О она имеет большое распространение;
- O она почти наверняка станет для вас отправной точкой, пригодной для дальнейшего расширения и совершенствования инфраструктуры мониторинга.

Фактически эта первая установка пригодится всем, кто собирается расширить существующую инфраструктуру. Если имеющееся у вас решение для мониторинга реализовано как-то иначе, вам стоит запланировать переход на архитектуру с тремя выделенными серверами.

Если после организации трехуровневой системы производительность все еще оставляет желать лучшего, можно запланировать и обдумать конфигурацию, лучше подходящую для ваших условий.

Осуществляя мониторинг большого окружения, следует:

- использовать выделенные серверы, чтобы упростить дальнейшее расширение;
- О реализовать конфигурацию с высокой доступностью;
- О реализовать конфигурацию с высокой отказоустойчивостью.

В трехуровневой системе нагрузка на центральный процессор серверного компонента не имеет большого значения, по крайней мере для сервера Zabbix. Потребляемая вычислительная мощность напрямую зависит от количества хранимых элементов и частоты обновления (количества проверок в минуту), а не от объема памяти.

В действительности сервер Zabbix не особенно требователен к производительности центрального процессора, но весьма взыскателен к объему памяти. По опыту, четырехъядерного процессора с 8 ГБ памяти вполне достаточно для мониторинга более чем 1000 хостов.

Существуют два основных способа установки Zabbix:

- О загрузить последнюю версию исходного кода и скомпилировать его;
- О установить из предварительно скомпилированного пакета.

Существует еще один путь: загрузить образ виртуальной машины с сервером Zabbix, настроить его и запустить, но мы не будем рассматривать этот способ, потому что полный контроль и знание необходимых шагов намного лучше. Кроме того, главный недостаток такого решения — в том, что эти образы (доступны по адресу: http://www.zabbix.com/ru/download.php), по утверждению самой компании Zabbix, непригодны для промышленной эксплуатации.

Установка из предварительно скомпилированных пакетов имеет следующие преимущества:

- О упрощает процедуру обновления;
- О автоматически удовлетворяет зависимости.

Установка из исходных кодов также имеет свои преимущества:

- О возможность компиляции только необходимых составляющих;
- O возможность статической сборки агента и установки в разных версиях Linux;
- О возможность полного контроля над обновлениями.

Большие окружения обычно включают компьютеры, работающие под управлением разных версий Linux, Unix и Microsoft Windows. Такие сценарии весьма типичны в гетерогенных инфраструктурах, и если необходимо установить агента Zabbix на каждый Linux-сервер, придется иметь дело с разными версиями агентов и конфигурационными файлами, размещенными в разных местах.

Чем выше уровень стандартизации на серверах, тем проще обслуживать и обновлять инфраструктуру. Флаг компиляции --enable-static дает возможность стандартизовать агента для разных версий и выпусков Linux, и это является большим преимуществом. Агента, скомпилированного статически, легко можно развернуть где угодно и использовать один и тот же конфигурационный файл, хранящийся в одном месте. Процедуру развертывания также можно стандарти-

зовать; единственное, что может отличаться, — это сценарий запуска/остановки и порядок регистрации на требуемом уровне запуска.

Та же идея применима к коммерческим версиям Unix – того же самого агента можно устанавливать на разные версии Unix, выпускаемые одним поставщиком.

Предварительные требования

Перед компиляцией Zabbix необходимо ознакомиться с предварительными требованиями. Для поддержки веб-интерфейса нужно установить следующее программное обеспечение:

- O Apache (1.3.12 или выше);
- **О** PHP (5.3.0 или выше).

Для сборки сервера Zabbix необходимы:

- O СУБД: можно использовать открытые альтернативы, такие как PostgreSQL и MySQL;
- O пакет zlib-devel;
- О пакет mysql-devel: реализует поддержку MySQL (не требуется в нашем примере);
- О пакет postgresql-devel: реализует поддержку PostgreSQL;
- O πακετ glibc-devel;
- О пакет curl-devel: используется для поддержки веб-мониторинга;
- О пакет libidn-devel: требуется для пакета curl-devel;
- O пакет openssl-devel: требуется для пакета curl-devel;
- О пакет net-snmp-devel: реализует поддержку SNMP;
- O пакет popt-devel: может требоваться пакету net-snmp-devel;
- O пакет rpm-devel: может требоваться пакету net-snmp-devel;
- О пакет OpenIPMI-devel: реализует поддержку IPMI;
- О пакет iksemel-devel: реализует поддержку протокола Jabber;
- O пакет Libssh2-devel;
- O пакет sqlite3: необходим для поддержки SQLite, используется как промежуточная база данных Zabbix (обычно на прокси-серверах).

Установить все зависимости в Red Hat Enterprise Linux можно с помощью ушм (с привилегиями root), но сначала нужно подключить репозиторий EPEL следующей командой:

yum install epel-release

Выполните команду yum install, чтобы установить все необходимые пакеты:

yum install zlib-devel postgresql-devel glibc-devel curl-devel gcc automake postgresql
libidn-devel openssl-devel net-snmp-devel rpm-devel OpenIPMI-devel iksemel-devel libssh2devel openldap-devel

Пакет iksemel-devel используется для отправки Jabber-сообщений. Это действительно очень полезная возможность, так как позволяет серверу Zabbix посылать сообщения в чат. Кроме того, Jabber поддерживается в Zabbix как один из типов средств оповещения, для которых есть возможность настроить рабочие часы, чтобы избежать получения сообщений, когда вы находитесь не на работе.

Настройка сервера

Для нормальной работы сервера Zabbix требуется создать и настроить непривилегированную учетную запись. В любом случае, если демон запускается с привилегиями root, он автоматически переключается на работу с правами учетной записи Zabbix, если она имеется:

```
# groupadd zabbix
# useradd -m -s /bin/bash -g zabbix zabbix
# useradd -m -s /bin/bash -g zabbix zabbixsvr
```


Примечание. Никогда не запускайте сервер с привилегиями пользователя root, потому что это увеличивает риск плачевных последствий в случае взлома.

Предыдущие строки позволяют гарантировать повышенный уровень безопасности. Сервер и агент должны выполняться с разными учетными записями; в противном случае агент получит возможность доступа к конфигурации сервера Zabbix. Теперь, используя учетную запись Zabbix, можно загрузить и извлечь исходные тексты из файла tar.gz:

```
 \begin{tabular}{ll} \# wget \ http://sourceforge.net/projects/zabbix/files/ZABBIX%20Latest%20Stable/2.4.4/zabbix-2.4.4.tar.gz/download -O zabbix-2.4.4.tar.gz \end{tabular}
```

```
# tar -zxvf zabbix-2.4.4.tar.gz
```

Теперь займемся подготовкой исходных текстов к компиляции. Кстати, утилита настройки имеет справочный раздел:

```
# cd zabbix-2.4.3
```

./configure --help

В данном примере исходные тексты сервера мы настроим, указав следующие параметры:

```
# ./configure --enable-server --enable-agent --with-postgresql -with-libcurl --with-jabber --with-net-snmp --enable-ipv6 --with-openipmi --with-ssh2 --with-ldap
```


Команды zabbix_get и zabbix_send генерируются, только если при настройке исходных текстов был указан флаг --enable-agent.

Если подготовка к компиляции завершилась без ошибок, на экране должны появиться примерно такие строки:

```
config.status: executing depfiles commands
```

Configuration:

Detected OS: linux-gnu
Install path: /usr/local
Compilation arch: linux
Compiler: qcc

```
Compiler flags: -g -02 -I/usr/include -I/usr/include/rpm -I/usr/local/include -I/usr/lib64/per15/CORE -I. -I/usr/include -I/usr/
```

include -I/usr/include -I/usr/include Enable server: yes Server details: With database: PostgreSQL WEB Monitoring: cURL Native Jabber: yes SNMP: yes IPMI: yes SSH: yes ODBC: -rdynamic -L/usr/lib64 -L/usr/lib64 Linker flags: -L/usr/lib -L/usr/lib -L/usr/lib Libraries: -lm -ldl -lrt -lresolv -lpq -liksemel -lnetsnmp -lssh2 -lOpenIPMI -lOpenIPMIposix -lldap -llber -lcurl Enable proxy: no Enable agent: yes Agent details: Linker flags: -rdynamic -L/usr/lib Libraries: -lm -ldl -lrt -lresolv -lldap -llber -lcurl Enable Java gateway: LDAP support: ves IPv6 support: yes *******************

Мы пока запустим только команду make, без команды make install. Чтобы определить другой каталог для установки сервера Zabbix, используйте флаг --prefix команды configure, например: --prefix=/opt/zabbix. Теперь следуйте инструкциям в разделе «Установка и создание пакета».

Настройка агента

Чтобы подготовить исходные тексты агента к компиляции, выполните следующую команду:

./configure --enable-agent

make

Если передать утилите configure ключ --enable-static, команда make выполнит статическую компоновку агента с библиотеками, благодаря чему выполняемому файлу для запуска не нужны будут внешние библиотеки; этот прием может пригодиться для подготовки агента, способного выполняться в разных версиях Linux.

Установка и создание пакета

В двух предыдущих разделах мы закончили компиляцию исходных текстов и теперь готовы выполнить установку; для чего достаточно запустить следующую команду:

make install

Но я рекомендую не торопиться с установкой, а воспользоваться программой checkinstall. Она создаст пакет Zabbix и установит его.

Загрузить программу можно по адресу ftp://ftp.pbone.net/mirror/ftp5.gwdg.de/pub/opensuse/repositories/home:/ikoinoba/CentOS_CentOS-6/x86_64/checkinstall-1.6.2-3.el6.1.x86_64.rpm.

Обратите внимание, что checkinstall — лишь один из возможных способов создания пакета, пригодного к распространению.

Можно также воспользоваться предварительно собранной программой checkinstall. Текущей, на момент написания этих строк, была версия checkinstall-1.6.2-20.4.i686.rpm (в Red Hat/CentOS); пакет также требует установки rpm-build, которую можно выполнить командой (с привилегиями root):

yum install rpm-build rpmdevtools

После этого требуется создать необходимые каталоги:

mkdir -p ~/rpmbuild/{BUILD,RPMS,SOURCES,SPECS,SRPMS}

Наличие пакета многое упрощает; его легче распространять и обновлять, плюс можно создавать пакеты для разных видов диспетчеров пакетов: rpm, deb и tqz.

Программа checkinstall способна создавать пакеты для Debian (ключ -D), Slackware (ключ -S) и Red Hat (ключ -R). Это особенно удобно для создания пакета с агентом Zabbix (статически скомпонованным) и установки его на серверы в окружении.

Теперь необходимо приобрести привилегии пользователя root или воспользоваться командой sudo, чтобы создать пакет:

```
# checkinstall --nodoc -R --install=no -y
```

Если процедура создания прошла без проблем, должно появиться примерно такое сообщение:

После этого выполните (с привилегиями root) следующую команду, чтобы установить пакет:

```
# rpm -i zabbix-2.4.4-1.x86 64.rpm
```

Теперь система Zabbix установлена. Двоичные файлы сервера установлены в каталог <prefix>/sbin, утилиты — в каталог <prefix>/bin, а man-страницы (страницы справочного руководства) — в каталог <prefix>/share.

Установка из пакетов

Для полноты обзора всех возможных методов установки рассмотрим шаги, которые требуется выполнить, чтобы установить Zabbix из предварительно собранных грт-пакетов.

Сначала необходимо подключить репозиторий:

rpm -ivh http://repo.zabbix.com/zabbix/2.4/rhel/6/x86_64/zabbix-2.4.4-1.el6.x86_64.rpm

Эта команда создаст файл /etc/yum.repos.d/zabbix.repo c параметрами репозитория и подключит его.

Заглянув в репозиторий Zabbix, можно увидеть, что внутри «неподдерживаемого» дерева http://repo.zabbix.com/non-supported/rhel/6/x86_64/ доступны следующие пакеты: iksemel, fping, libssh2 и snmptt.

Теперь, чтобы установить сервер Zabbix и веб-интерфейс, достаточно выполнить команду:

yum install zabbix-server-pgsql

А на веб-сервере (не забыв подключить репозиторий):

yum install zabbix-web-pgsql

Чтобы установить агента, требуется выполнить только одну команду:

yum install zabbix-agent

Если вы решите использовать пакеты RPM, имейте в виду, что конфигурационные файлы в этом случае сохраняются в каталог /etc/zabbix/. Но на протяжении всей книги будет предполагаться, что эти файлы находятся в каталоге /usr/local/etc/.

Кроме того, если в месте развертывания агента Zabbix имеется действующий локальный брандмауэр, вам потребуется настроить правила iptables, чтобы обеспечить беспрепятственное прохождение трафика через порт агента Zabbix:

```
# iptables -I INPUT 1 -p tcp --dport 10050 -j ACCEPT
# iptables-save
```

Настройка сервера

Для настройки сервера нам потребуется проверить и отредактировать единственный файл:

/usr/local/etc/zabbix server.conf

Конфигурационные файлы находятся в каталоге:

/usr/local/etc

*

В файле /usr/local/etc/zabbix_server.conf нужно изменить имя пользователя, пароль и имя базы данных; обратите внимание, что настройка базы данных будет выполнена ниже в этой главе, а пока просто укажите планируемые имя пользователя/пароль/имя базы данных. Итак, действуя с привилегиями учетной записи zabbix, откройте файл для редактирования:

vi /usr/local/etc/zabbix server.conf

и измените следующие параметры:

DBHost=localhost

DBName=zabbix

DBUser=zabbix

DBPassword=<укажите-здесь-свой-пароль>

Теперь сервер Zabbix настроен и практически готов к запуску. Местоположение файла zabbix_server.conf определяется переменной времени компиляции sysconfdir. Не забудьте ограничить доступ к конфигурационному файлу, выполнив следующую команду:

chmod 600/usr/local/etc/zabbix server.conf

Для внешних сценариев отводится каталог:

/usr/local/share/zabbix/externalscripts

Имя этого каталога определяется переменной времени компиляции datadir. Для сценариев оповещений отводится каталог:

/usr/local/share/zabbix/alertscripts

Его так же можно настроить во время компиляции, определив значение переменной времени компиляции datadir.

Теперь перейдем к настройке агента. В конфигурационном файле агента нужно указать IP-адрес сервера Zabbix. После этого добавьте две службы в соответствующие уровни запуска, чтобы обеспечить их активизацию в требуемый момент времени.

Для выполнения этой задачи нужно установить сценарии запуска/остановки:

- O /etc/init.d/zabbix-agent;
- O /etc/init.d/zabbix-proxy;
- O etc/init.d/zabbix-server.

Эти сценарии находятся в каталоге misc:

zabbix-2.4.4/misc/init.d

В их числе — сценарии запуска для разных дистрибутивов Linux. Но это дерево каталогов не поддерживается и не тестируется, и в нем могут находиться устаревшие сценарии, не подходящие для современных версий Linux, поэтому желательно просмотреть их и протестировать перед установкой.

После добавления сценариев запуска/остановки в каталог /etc/init.d нужно включить их в список служб:

```
# chkconfig --add zabbix-server
# chkconfig --add zabbix-agentd
```

Теперь осталось лишь сообщить системе, в какие уровни запуска они должны быть помещены; в этой книге мы будем использовать уровни 3 и 5:

```
# chkconfig --level 35 zabbix-server on
# chkconfig --level 35 zabbix-agentd on
```

Также, если на компьютере с сервером Zabbix имеется действующий брандмауэр, необходимо настроить iptables, чтобы обеспечить беспрепятственное прохождение трафика через порт сервера Zabbix, для чего нужно выполнить следующую команду (с привилегиями root):

```
# iptables -I INPUT 1 -p tcp --dport 10051 -j ACCEPT
# iptables-save
```

Прямо сейчас мы не можем запустить сервер, потому что еще не настроена база данных.

Установка базы данных

После установки сервера Zabbix можно заняться установкой и настройкой сервера баз данных. Все шаги, описываемые ниже, выполняются на выделенном сервере. Прежде всего нужно установить сервер PostgreSQL. Проще всего для этой цели использовать пакет, входящий в состав дистрибутива, но я рекомендую использовать последнюю стабильную версию 9.х.

B Red Hat (RHEL 6.4) все еще используется версия PostgreSQL 8.х. Эта же версия по наследству применяется в CentOS и ScientificLinux. Версия PosgreSQL 9.х имеет множество преимуществ; на момент написания этих строк последней стабильной и готовой к промышленной эксплуатации была версия 9.2.

Чтобы установить версию PostgreSQL 9.4, выполните следующие шаги:

- 1. Найдите файлы . repo:
 - O Red Hat: /etc/yum/pluginconf.d/rhnplugin.conf [main];
 - O CentOS: /etc/yum.repos.d/CentOS-Base.repo, [base] и [updates].
- 2. Добавьте следующую строку в конец разделов, обозначенных выше:

```
exclude=postgresgl*
```

- 3. Откройте в браузере страницу http://yum.postgresql.org и найдите соответствующую версию пакета RPM. Например, чтобы установить PostgreSQL 9.4 в RHEL 6, выберите пакет http://yum.postgresql.org/9.4/redhat/rhel-6-x86_64/pgdg-redhat94-9.4-1.noarch.rpm.
- 4. Подключите репозиторий командой: yum localinstall http://yum.postgresql. org/9.4/redhat/rhel-6-x86 64/pgdg-centos94-9.4-1.noarch.rpm.
- 5. Выведите список пакетов в репозитории postgresql командой:

```
# yum list postgres*
```

- 6. Отыщите требуемый пакет и установите его командой:
 - # yum install postgresq194 postgresq194-server postgresq194-contrib
- 7. После установки пакета необходимо инициализировать базу данных:
 - # service postgresql-9.4 initdb

Инициализацию можно выполнить также командой:

- # /etc/init.d/postgresql-9.4 initdb
- 8. Теперь займемся настройкой параметров в файле /var/lib/pgsql/9.4/data/postgresql.conf. Нужно определить адрес и номер порта для приема запросов:

```
listen_addresses = '*'
port = 5432
```

Также нужно добавить пару строк для настройки zabbix_db, сразу за следующими строками:

```
# TYPE DATABASE USER ADDRESS METHOD
# "local" is for Unix domain socket connections only
local all all trust
in /var/lib/pgsql/9.4/data/pg_hba.conf
# настройки для Zabbix
```

```
local zabbix_db zabbix md5
host zabbix db zabbix <CIDR-address> md5
```

Ключевое слово local соответствует всем соединениям, выполняющимся с помощью сокетов из домена Unix (Unix-domain sockets). За ним следуют имя базы данных (zabbix_db), имя пользователя (zabbix) и метод аутентификации (в данном случае md5).

Ключевое слово host соответствует всем соединениям, выполняющимся по протоколу TCP/IP (включая SSL). За ним следуют имя базы данных (zabbix_db), имя пользователя (zabbix), маска сети (определяет хосты, которым разрешено подключаться к базе данных) и метод аутентификации (в данном случае md5).

- 9. Маска сети, определяющая хосты, которым разрешено подключаться к базе данных, в данном случае должна быть обычной маской, потому что нам требуется открыть доступ к базе данных для веб-интерфейса (то есть веб-сервера) и сервера Zabbix, которые выполняются на других компьютерах. Примером такой маски может служить 10.6.0.0/24 (небольшая подсеть). Вероятнее всего, веб-интерфейс и сервер Zabbix будут находиться в другой сети, поэтому перечислите здесь все необходимые сети и маски.
- 10. В заключение запустите сервер PosgreSQL командой:

```
# service postgresql-9.4 start
```

или:

/etc/init.d/postgresql-9.4 start

Чтобы создать базу данных, нужно зарегистрироваться с учетной записью пользователя postgres (или пользователя в вашем дистрибутиве, который наделен полномочиями управления базами данных PostgreSQL). Создайте пользователя в базе данных (это наш пользователь zabbix) и подключитесь под именем этого пользователя к серверу баз данных, чтобы импортировать схему данных.

Ниже следуют команды, необходимые для импортирования:

su - postgres

После регистрации с учетной записью пользователя postgres можно создать базу данных (в данном случае базу данных с именем zabbix db):

```
-bash-4.1$ psql

postgres=# CREATE USER zabbix WITH PASSWORD '<\pre>TAPOJID-HOJIDSOBATEJIS-BASH-JAHHUX>';

CREATE ROLE

postgres=# CREATE DATABASE zabbix_db WITH OWNER zabbix ENCODING='UTF8';

CREATE DATABASE

postgres=# \q
```

Сценарии создания базы данных находятся в каталоге /database/postgresql, куда извлекались файлы с исходным кодом. Их нужно установить в точности в следующем порядке:

```
# cat schema.sql | psql -h <IP-АДРЕС-СЕРВЕРА-БАЗ-ДАННЫХ> -W -U zabbix zabbix_db # cat images.sql | psql -h <IP-АДРЕС-СЕРВЕРА-БАЗ-ДАННЫХ> -W -U zabbix zabbix_db # cat data.sql | psql -h <IP-АДРЕС-СЕРВЕРА-БАЗ-ДАННЫХ> -W -U zabbix zabbix db
```


Параметр командной строки -h <IP-AДРЕС-СЕРВЕРА-БАЗ-ДАННЫХ> команды psql помогает обойти параметр local в стандартном конфигурационном файле /var/lib/pgsql/9.4/data/pg hba.conf.

Теперь можно запустить сервер Zabbix и проверить связку сервер/база данных:

```
# /etc/init.d/zabbix-server start
```

```
Starting Zabbix server: [ OK ]
```

Заглянув в файл журнала, можно получить более полную информацию о происходящем на сервере. Там должны находиться следующие строки (по умолчанию файл журнала размещается в /tmp/zabbix server.log):

```
26284:20150114:034537.722 Starting Zabbix Server. Zabbix 2.4.4 (revision 51175).
26284:20150114:034537.722 ****** Enabled features ******
26284:20150114:034537.722 SNMP monitoring: YES
26284:20150114:034537.722 IPMI monitoring: YES
26284:20150114:034537.722 WEB monitoring: YES
26284:20150114:034537.722 VMware monitoring: YES
26284:20150114:034537.722 Jabber notifications: YES
26284:20150114:034537.722 Ez Texting notifications: YES
```

```
26284:20150114:034537.722 ODBC: YES
26284:20150114:034537.722 SSH2 support: YES
26284:20150114:034537.722 IPv6 support: YES
26284:20150114:034537.725 *******************
26284:20150114:034537.725 using configuration file: /usr/local/etc/zabbix/zabbix server.conf
26284:20150114:034537.745 current database version (mandatory/optional): 02040000/02040000
26284:20150114:034537.745 required mandatory version: 02040000
26284:20150114:034537.763 server #0 started [main process]
26289:20150114:034537.763 server #1 started [configuration syncer #1]
26290:20150114:034537.764 server #2 started [db watchdog #1]
26291:20150114:034537.764 server #3 started [poller #1]
26293:20150114:034537.765 server #4 started [poller #2]
26294:20150114:034537.766 server #5 started [poller #3]
26296:20150114:034537.770 server #7 started [poller #5]
26295:20150114:034537.773 server #6 started [poller #4]
26297:20150114:034537.773 server #8 started [unreachable poller #1]
26298:20150114:034537.779 server #9 started [trapper #1]
26300:20150114:034537.782 server #11 started [trapper #3]
26302:20150114:034537.784 server #13 started [trapper #5]
26301:20150114:034537.786 server #12 started [trapper #4]
26299:20150114:034537.786 server #10 started [trapper #2]
26303:20150114:034537.794 server #14 started [icmp pinger #1]
26305:20150114:034537.790 server #15 started [alerter #1]
26312:20150114:034537.822 server #18 started [http poller #1]
26311:20150114:034537.811 server #17 started [timer #1]
26310:20150114:034537.812 server #16 started [housekeeper #1]
```

Вообще говоря, место хранения по умолчанию файла журнала выбрано не самое лучшее, потому что каталог /tmp автоматически очищается при каждой перезагрузке, а сами файлы не архивируются.

26315:20150114:034537.829 server #20 started [history syncer #1] 26316:20150114:034537.844 server #21 started [history syncer #2] 26319:20150114:034537.847 server #22 started [history syncer #3] 26321:20150114:034537.852 server #24 started [escalator #1] 26320:20150114:034537.849 server #23 started [history syncer #4] 26326:20150114:034537.868 server #26 started [self-monitoring #1] 26325:20150114:034537.866 server #25 started [proxy poller #1] 26314:20150114:034537.997 server #19 started [discoverer #1]

Mесто по умолчанию можно изменить в конфигурационном файле /etc/zabbix_server.conf. Достаточно просто изменить параметр:

```
### Option: LogFile
LogFile=/var/log/zabbix/zabbix_server.log
```

Не забудьте после этого создать структуру каталогов, выполнив следующую команду с привилегиями root:

```
# mkdir -p /var/log/zabbix
# chown zabbixsvr:zabbixsvr /var/log/zabbix
```

Еще один важный аспект — настройка автоматической ротации журнала в logrotate. Это легко реализуется простым добавлением конфигурационного файла в каталог /etc/logrotate.d/.

Создайте файл, выполнив следующую команду с привилегиями root:

vim /etc/logrotate.d/zabbix-server

и добавьте в него следующие строки:

```
/var/log/zabbix/zabbix_server.log {
    missingok
    monthly
    notifempty
    compress
    create 0664 zabbix zabbix
}
```

После этого перезапустите сервер Zabbix следующей командой (с привилегиями root):

```
# /etc/init.d/zabbix-server restart
Shutting down Zabbix server: [ OK ]
Starting Zabbix server: [ OK ]
```

Кроме того, проверьте, запущен ли сервер с привилегиями соответствующего пользователя:

Вывод команды показывает, что zabbix_server выполняется с привилегиями пользователя 502. Сделаем еще шаг и проверим, соответствует ли идентификатор 502 пользователю, созданному нами выше:

```
# getent passwd 502
zabbixsvr:x:502:501::/home/zabbixsvr:/bin/bash
```

Как следует из полученной строки, все замечательно.

Иногда в журнале можно увидеть строку с ошибкой:

```
28487:20130609:133341.529 Database is down. Reconnecting in 10 seconds.
```

Эта проблема может быть вызвана несколькими причинами:

- О брандмауэр (локальный, на нашем сервере, или находящийся в сетевой инфраструктуре) не пропускает сетевых пакетов;
- О допущены ошибки в настройках сервера PostgreSQL;
- О допущены ошибки в файле zabbix server.conf.