

Shawn

B.S. Electrical Engineering, Aerospace Systems

Luke

B.S. Software Engineering

Clay

B.S. Software Engineering

Walter

B.S. Computer Science, Cybersecurity

Project and Sprint 1 Recap

- System Modelling for Crewed Cislunar Station with MagicGrid framework
- Goal to capture novel Failure
 Mode Effects Analysis with
 the system model
- Sprint 1 Accomplishments
 - Built relationships at Dassault and NASA
 - Decided on Tool and Framework
 - Acquired tool and licensing
 - Performed semester workload design

Sprint 1 Hiccups

- Trouble finding good meeting days
 - We all had different schedules
 - Communication was good, but progress required long in-person meetings

- Had to relearn how to create the models
 - SysML has a few key differences from UML
 - Only one form of documentation, and few examples

- Not provided with default stakeholder needs
 - Preliminary research was required before any progress could be made

Implemented changes to our workflow to speed up progress

- Completed a draft of the Problem Domain Black Box
 - Generated stakeholder needs
 - Developed system context
 - Captured use case scenario (crewed operations)
 - Determined measures of effectiveness

Solicited feedback from client regularly to iterate model further

Sprint 2 Team Member Roles

Shawn

- External communication with stakeholders
- Facilitate Learning MBSE and MagicGrid

Luke

- Scrum Master
- Project Merge Manager

Walter

- Annoyed the team
- Crungy, at every team meeting
- Verified and Validated models
- Organized the new meeting times

Clay

- Led discussion / development on model creation
- Kept up with team deadlines, pacing semester work

Project Recap

-			
#	△ Name	Text	Documentation
1	☐ R SN-1 User Needs		0.3
2	SN-1,1 Cislunar Crewed Mission	The Sol should facilitate human crewed missions to cislunar space including capabilities that enable surface missions.	Add sources in this field
3	SN-1.2 Exploration Science Mission	The Sol should provide capabilities to meet scientific requirements for lunar discovery and exploration.	Add sources in this field
4	SN-1.3 Forward Compatability	The Sol should enable, demonstrate, and prove technologies that are enabling for deep space missions.	Add sources in this field
5	SN-1.4 Manual Flight Control	The Sol should allow for manual control of flight dynamics.	Add sources in this field
6	SN-1.5 Automatic Flight Control	The Sol should be able to maintain its orbit.	Add sources in this field
7	SN-1.6 Independent Power	The Sol should produce, store, and regulate its own power.	Add sources in this field
8	R SN-1.7 Crew Safety	The Sol should keep the crew alive and safe.	Add sources in this field
9	SN-1.8 Crew Mission Extensability	The Sol should accomodate extended crew mission durations.	Add sources in this field
10	SN-1.9 Extra-Vehicular Activity	The Sol should allow crew to perform extra-vehicular activity.	Add sources in this field
11	SN-1.10 Visiting Vehicle Docking	The Sol should allow for Visiting Vehicles to dock.	Add sources in this field
12	SN-1.11 Vehicular Logistical Tranfer	The Sol should accept the transferring of crew and cargo.	Add sources in this field
13	SN-1.12 Lunar Surface Communication	The Sol should provide communication to the Lunar surface.	Add sources in this field
14	☐ ■ SN-2 Design Constraints		φ-
15	SN-2.1 User Interoprability	The Sol should have to ability to support multiple self, commerical, and international partner objectives.	Add sources in this field
16	SN-2.2 Crew Size	The Sol should accomodate <u>up to 4</u> crew members.	Add sources in this field
17	R SN-2.3 Mission Duration	The Sol should enable 30 to 90 days of crew missions.	Add sources in this field
18	R SN-2.4 Orbital Access	The Sol should be easy to access from Earth with current launch vehicles.	Add sources in this field
19	SN-2.5 Earth Communication	The Sol should have continuous communication with Earth.	Add sources in this field

Use case decomposition

Risks and Issues

- Learning the software
 - Lots of features
 - Many tools to our disposal

Learning the framework

Next Sprint Goals

- Complete remaining models within the Problem Domain
 - Functional Analysis
 - Conceptual Subsystems
 - MoEs for Subsystems
- Have a better understanding of the software
- Prepare for Solution Domain

Current Status

- Mad respect for System Engineers
- 4/7 models complete currently
- Meeting 3 times a week (excluding class)
 - 2-3 hours per meeting
- Demo

Any Questions?

