

ESCOLA SUPERIOR DE TECNOLOGIA E GESTÃO

Trabalho Prático de

${\small Matem\'atica\ Discreta} \\ 2022/2023$

Trabalho Elaborado por:

Grupo 20

8220169 César Ricardo Barbosa Castelo 8220337 Hugo Ricardo Almeida Guimarães 8220256 João Pedro Da Silva Santos 8220307 Pedro Marcelo Santos Pinho

Curso de:

Licenciatura em Engenharia Informática

Docentes:

Eliana Costa e Silva (eos@estg.ipp.pt) Isabel Cristina Duarte (icd@estg.ipp.pt)

Felgueiras, 26 de maio de 2023

Conteúdo

1	Pergunta 1	6
2	Pergunta 2	14
3	Pergunta 3	19
4	Pergunta 4	31

Lista de Figuras

1.1	Cardinalidade dos conjuntos A e B em SciLab	7
1.2	Complementar absoluto do conjunto A	7
1.3	União do conjunto A com B	8
1.4	Interseção do conjunto A com B $\ \ \ldots \ \ \ldots \ \ \ldots$	8
1.5	Diferença entre os conjuntos A e B	9
1.6	diferença simétrica entre os conjuntos A e B	10
1.7	União do complementar absoluto da diferença simétrica de A \cos	
	B, com a diferença de A com b	11
1.8	Função do produto cartesiano	12
1.9	Função do produto cartesiano para A^3	13
2.1	Funções que calculam o produtório da pergunta 2a	16
2.2	Output função do script da alínea 2a	16
2.3	Funções que calculam o somatório da pergunta 2a	17
2.4	Output função do script da alínea 2c	17
2.5	Função que calcula a expressão da pergunta 2c	18
2.6	Output função do script da alínea 2c	18
3.1	Fragmento do Output do algoritmo de Dijkstra	25
3.2	Função main do algoritmo de Dijkstra	26

3.3	Árvore de Custo Mínimo	28
3.4	Output algoritmo de Kruskal	29
3.5	Função que troca os números pelas respetivas capitais	30
4.1	Grafo utilizado no algoritmo de Floyd-Warshall	32
4.2	Output do resultado do algoritmo de Floyd Warshall em C $$	37
43	Função em C de que realiza o algoritmo de Floyd Warshall	38

Lista de Tabelas

3.1	Tabela Algoritmo de Dijkstra		•	20
3.2	Tabela Algoritmo de Kruskal com os nomes das cidades $$.			2
3.3	Tabela Algoritmo de Kruskal com os números das cidades			2

Pergunta 1

Para fazer as alíneas da pergunta 1, antes foi preciso criar um conjunto U, e dois sub-conjuntos A e B do conjunto U. O cálculo das mesmas foi feita a partir do programa SciLab[5]

$$U=\{x\in\mathbb{N}:x\leq30\},\quad A=\{x\in\mathbb{N}:x\leq6\},\quad B=\{x\in\mathbb{N}:3\leq x\leq18\}$$

$$A\subseteq U\quad B\subseteq U$$

a.

$$\#A = 6 e \#B = 16$$

O #A ou #B. são o **cardinal** dos conjuntos, a medida que indica a quantidade de elementos que um conjunto tem.

Para realizar esta operação no SciLab, foi utilizado o comando length.

```
--> length(A)
ans =
6.
--> length(B)
ans =
```

Figura 1.1: Cardinalidade dos conjuntos A e B em SciLab

b.

 $\overline{A} = \{7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30\}$ O \bar{A} é o **complementar absoluto**, ou simplemente, **complementar** do conjunto A, que é o conjunto de elementos que pertencem ao conjunto U, as não pertencem ao conjunto A.

Esta operação foi realizada no SciLab utilizando o comando setdiff.

```
--> setdiff(U, A)
ans =

column 1 to 13

7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19.

column 14 to 24

20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30.
```

Figura 1.2: Complementar absoluto do conjunto A

c.

$$A \cup B = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18\}$$

 $A \cup B$ é a **união** ou **reunião** dos conjunto A e B, ele é o conjunto de todos os elementos que pertencem a A ou B.

Esta operação foi realizada no SciLab utilizando o comando union.

```
--> union(A, B)
ans =

column 1 to 14

1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14.

column 15 to 18

15. 16. 17. 18.
```

Figura 1.3: União do conjunto A com B

d.

$$A \cap B = \{3, 4, 5, 6\}$$

 $A\cap B$ é a **interseção** dos conjuntos A e b, que é o conjunto de todos os elementos que pertencem a A e B. Esta operação foi realizada no SciLab utilizando o comando *intersect*.

```
--> intersect(A, B)
ans =
3. 4. 5. 6.
```

Figura 1.4: Interseção do conjunto A com B

e.

$$A - B = \{1, 2\}$$

A-B ou $A\backslash B$, é a **diferença** entre A e B, que é o conjunto que contém os elementos que estão em A mas não estão em B.

Esta operação foi realizada no SciLab utilizando o comando setdiff.

Figura 1.5: Diferença entre os conjuntos A e B

f.

$$A \oplus B = \{1, 2, 3, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18\}$$

 $A \oplus B$ ou $A \cup B - A \cap B$, é a **diferença simétrica** entre o conjunto e B, ela é o conjunto de todos os objetos que são membros de um dos conjuntos. Esta operação foi realizada no SciLab ao utilizar dois comandos já usados anteriormente, sendo eles: o *union* para fazer uma união dos conjuntos A e B; o *intersect* para fazer uma interseção entre os conjuntos A e B; e o *setdiff* para fazer a diferença entre a união e a interseção dos conjuntos A e B.

```
--> uni = union(A, B);
--> inter = intersect(A, B);
--> setdiff(uni, inter)
ans
         column 1 to 13
                       9.
                            10.
                                   11.
                                         12.
                                               13.
                                                     14.
                                                            15.
                                                                  16.
                                                                      17.
                  8.
         column 14
   18.
```

Figura 1.6: diferença simétrica entre os conjuntos A e B

g.

```
\overline{A \oplus B} \cup (A - B) = \{1, 2, 3, 4, 5, 6, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30\}
```

Esta operação foi realizada no SciLab da seguinte forma: foram realizadas as operações da alínea anterior, e foram guardadas na variável diferencaSimetrica, a seguir, fez-se a união, utilizando o comando union, entre o complementar absoluto da diferença simétrica de A e B, e a diferença de A e B. As duas operações intermediárias foram realizadas com o comando setdiff.

Figura 1.7: União do complementar absoluto da diferença simétrica de A com B, com a diferença de A com b

h.

```
A \times B = \{(1,3), (1,4), (1,5), (1,6), (1,7), (1,8), (1,9), (1,10), (1,11), (1,12), \\ (1,13), (1,14), (1,15), (1,16), (1,17), (1,18), (2,3), (2,4), (2,5), (2,6), (2,7), \\ (2,8), (2,9), (2,10), (2,11), (2,12), (2,13), (2,14), (2,15), (2,16), (2,17), (2,18), \\ (3,3), (3,4), (3,5), (3,6), (3,7), (3,8), (3,9), (3,10), (3,11), (3,12), (3,13), (3,14), \\ (3,15), (3,16), (3,17), (3,18), (4,3), (4,4), (4,5), (4,6), (4,7), (4,8), (4,9), (4,10), \\ (4,11), (4,12), (4,13), (4,14), (4,15), (4,16), (4,17), (4,18), (5,3), (5,4), (5,5), \\ (5,6), (5,7), (5,8), (5,9), (5,10), (5,11), (5,12), (5,13), (5,14), (5,15), (5,16), \\ (5,17), (5,18), (6,3), (6,4), (6,5), (6,6), (6,7), (6,8), (6,9), (6,10), (6,11), (6,12), \\ (6,13), (6,14), (6,15), (6,16), (6,17), (6,18)\}
```

 $A \times B$ é o **produto cartesiano** entre o conjunto A e o conjunto B, que é o conjunto dos pares ordenados (a, b), onde $a \in A$ e $b \in B$.

Para fazer esta Operação no SciLab foi preciso criar uma função que juntaria cada elemento do conjunto A com cada elemento do conjunto B, a função criada foi nomeada como *produto Carteseano*.

```
function [pares] == produtoCarteseano (conjuntoA, conjuntoB)
... tamA == length (conjuntoA);
... tamB == length (conjuntoB);
...
... par == [];
... pares == [];
...
... for i == 1:tamA
... for j == 1:tamB
... pares == [conjuntoA(i), conjuntoB(j)];
... pares == [pares; par];
... end
... end
... end
... end
```

Figura 1.8: Função do produto cartesiano

i.

```
A^3 = A \times A \times A = \{(1, 1, 1), (1, 1, 2), (1, 1, 3), ..., (6, 6, 4), (6, 6, 5), (6, 6, 6)\}
```

Para fazer A^3 ou o produto cartesiano de $A \times A \times A$, foi preciso alterar a função "produto Cartesiano" criada na alínea anterior, para que esta suporta-se mais que dois conjuntos.

Figura 1.9: Função do produto cartesiano para A^3

Pergunta 2

Na segunda pergunta, é dito que devemos substituir o β por o último algarismo do número do elemento de algum dos elementos do grupo, e o n por um número natural, então decidiu-se usar o número 7, e o n pelo número 30. Ficando assim:

$$50 + 7 < 2 * 30 < 100 - 7$$

 $\Leftrightarrow 57 < 60 < 93$

a.

Nesta alínea é pedido para fazer o somatório o seguinte somatório:

$$\prod_{i \in C} \left(\frac{3}{i} - 1\right)^4 = 0.0001020$$

$$C = \{5m \in \mathbb{Z} : m = 1, ..., M\} \text{ e } M = \min\Bigl\{5 + \beta, \left\lceil\frac{100}{\beta + 1}\right\rceil\Bigr\}$$
 Como $\beta = 7$, então $M = \min\Bigl\{5 + 7, \left\lceil\frac{100}{7 + 1}\right\rceil\Bigr\} \Leftrightarrow M = \min\Bigl\{12, \left\lceil\frac{100}{8}\right\rceil\Bigr\}$. Como $i \in C$ e $5m \in \mathbb{Z}$, então $\prod_{i \in C} \left(\frac{3}{5m} - 1\right)^4$.

Para simplificar o produtório, usou-se a seguinte regra $\prod (x_i)^k = \left(\prod (x_i)\right)^k$, então a expressão fica $\left(\prod_{i \in C} \left(\frac{3}{i} - 1\right)\right)^4$.

Progressão Aritmética:

$$C_{n+1} - C_n = \frac{2-i}{i+1} - \frac{3-i}{i} = \frac{2i-i^2}{i(i+1)} - \frac{(3-i)(i+1)}{i(i+1)}$$
$$= \frac{2i-i^2 - (3i+3-i^2-i)}{i(i+1)} = \frac{2i-i^2 - 2i - 3 + i^2}{i(i+1)}$$
$$= \frac{-3}{i(i+1)}$$

Progressão Geométrica:

$$\frac{C_{n+1}}{C_n} = \frac{\left(\frac{3-(i+1)}{i+1}\right)}{\left(\frac{3-i}{i}\right)} = \frac{\left(\frac{3-i-1}{i+1}\right)}{\left(\frac{3-i}{i}\right)} = \frac{\left(\frac{2-i)}{i+1}\right)}{\left(\frac{3-i}{i}\right)} = \left(\frac{i(2-i)}{(3-i)(i+1)}\right)$$

Como ambas as formas não apresentam uma razão constante então **não é uma** progressão aritmética nem geométrica.

Para calcular o valor desta expressão no SciLab, foi criado dois scripts que calculam o valor mínimo do conjunto M com a função min e iteram até calcular o valor final. A primeira dessas expressões usa um ciclo for até chegar ao resultado final, enquanto a outra, usa a função prod para fazer o mesmo.

Figura 2.1: Funções que calculam o produtório da pergunta 2a

0.0001020

Figura 2.2: Output função do script da alínea 2a

b.

$$\sum_{j=\beta+3}^{n} \left(\frac{-\beta-1}{5}\right)^{j} = 818028.75$$

Como $\beta=7$, então $\sum_{j=10}^{n} \left(-\frac{8}{5}\right)^{j}$

$$\left(\frac{Cn+1}{Cn}\right) = \frac{\left(\frac{-8}{5}\right)^{j+1}}{\left(\frac{-8}{5}\right)^j} = \frac{\left(\frac{-8}{5}\right)^j \times \left(\frac{-8}{5}\right)}{\left(\frac{-8}{5}\right)^j} = \left(-\frac{8}{5}\right)$$

Como r (razão) é constante para todos os valores de j, então esta expressão é uma sucessão geométrica.

Para calcular o valor desta expressão no SciLab, foi criado dois scripts que iteram até calcular o valor final. A primeira dessas expressões usa um ciclo for

até chegar ao resultado final, enquanto a outra, usa a função sum para fazer o mesmo.

Figura 2.3: Funções que calculam o somatório da pergunta 2a

818028.75 818028.75

Figura 2.4: Output função do script da alínea $2\mathrm{c}$

c.

$$\begin{split} \prod_{k=1}^{n-15} \left(3 \times \sum_{j=n-5}^{n} \left(\left\lfloor 1 + \frac{j+k}{200} \right\rfloor \left\lceil \frac{6!}{\beta} \right\rceil \right) \right) &= -1.187 \times 10^{61} \\ \text{Como } \beta = 7 \text{ e } n = 30, \text{ então: } \prod_{k=1}^{n-15} \left(3 \times \sum_{j=25}^{n} \left(\left\lfloor 1 + \frac{j+k}{200} \right\rfloor \left\lceil \frac{6!}{7} \right\rceil \right) \right) \end{split}$$

Progressão Aritmética:

$$C_{n+1} - C_n = \left(3 \times \left(\left\lfloor 1 + \frac{(j+1) + (k+1)}{200} \right\rfloor \left\lceil \frac{6!}{7} \right\rceil \right)\right) - \left(3 \times \left(\left\lfloor 1 + \frac{j+k}{200} \right\rfloor \left\lceil \frac{6!}{7} \right\rceil \right)\right)$$

Progressão Geométrica:

$$\left(\frac{Cn+1}{Cn}\right) = \frac{\left(3 \times \left(\left\lfloor 1 + \frac{(j+1) + (k+1)}{200} \right\rfloor \left\lceil \frac{6!}{7} \right\rceil\right)\right)}{\left(3 \times \left(\left\lfloor 1 + \frac{j+k}{200} \right\rfloor \left\lceil \frac{6!}{7} \right\rceil\right)\right)}$$

Para calcular o valor desta expressão no SciLab, foi criado um script que itera com dois ciclos for até chegar ao valor final. O primeiro ciclo representa o produtório inicial, já o segundo ciclo representa o somatório que fica dentro do produtório. Dentro do seundo ciclo foi preciso usar o comando floor, que significa maior inteiro que, e o comando ceiling, que significa menor inteiro que

Figura 2.5: Função que calcula a expressão da pergunta 2c

-1.187D+61

Figura 2.6: Output função do script da alínea 2c

Pergunta 3

Neste exercício é pedido para considerar σ sendo os dois últimos algarismos do número de estudante de um dos elementos do grupo, então escolheram-se os números 07. Ficando Assim:

 $\sigma = 7$

a.

Como o número $\sigma=7$, então, neste exercício vai se usar o algoritmo de Dijkstra para calcular o caminho mínimo de Évora a todas as outras capitais do distrito.

Tabela 3.1: Tabela Algoritmo de Dijkstra

It	Vd	Mc	A	vi,, vj e	X e Xd	R: Caminho mínimo
				L(vj)		
				L(2) = 80	{2, 12, 14, 11}	7,2; 7,12; 7,14; 7,11
0		7	{2,11,12,14}	L(11) = 150	{80, 100, 120, 150}	
				L(12) = 100		
				L(14) = 120		
			(0.45)	L(8) = 250	{12, 14, 11, 15, 8}	7,12 ; 7,14; 7,11; 7,2,15; 7,2,8
1	2	7,2	{8,15}	L(15) = 215	{100, 120, 150, 215, 250}	
2			(5.4.0)	L(5) = 180	{14, 11, 5, 15, 8}	7,14 ; 7,11; 7,12,5; 7,2,15; 7,2,8
2	12	7,12	{5,14}	L(14) = 250	{120, 150, 180, 215, 250}	
3		7.14	(5.11.10)	L(5) = 320	{11, 5, 15, 8, 12}	7,11 ; 7,12,5; 7,2,15; 7,2,8; 7,14,12
3	14	7,14	{5,11,12}	L(11) = 190	{150, 180, 215, 250, 270}	
				L(12) = 270		
4			(10.14.15)	L(10) = 280	{5, 15, 8, 12, 10}	7,12,5 ; 7,11,15; 7,2,8; 7,14,12; 7,11,10
4	11	7,11	{10,14,15}	L(14) = 220	{180, 200, 250, 270, 280}	
				L(15) = 200		
_	_	7.10.5	(0.0.14)	L(6) = 340	{15, 8, 12, 10, 9, 6}	7,11,15 ; 7,2,8; 7,14,12; 7,11,10; 7,12,5,9;
5	5	7,12,5	{6,9,14}	L(9) = 280	{200, 250, 270, 280, 280, 340}	7,12,5,6
				L(14) = 380		
6	15	7,11,15	(0.11)	L(8) = 475	{8, 12, 10, 9, 6}	7,2,8; 7,14,12; 7,11,10; 7,12,5,9; 7,12,5,6
0	15	7,11,15	{8,11}	L(11) = 265	{250, 270, 280, 280, 340}	
7	8	7.2.8	{15}	L(15) = 510	{12, 10, 9, 6}	7,14,12 ; 7,11,10; 7,12,5,9; 7,12,5,6
1	l°	1,2,0	{10}		{270, 280, 280, 340}	
8	12	7,14,12	{5}	L(5) = 350	{10, 9, 6}	7,11,10 ; 7,12,5,9; 7,12,5,6
0	12	7,14,12	{0}		{280, 280, 340}	
9	10	7.11.10	{6}	L(6) = 350	{9, 6}	7,12,5,9 ; 7,12,5,6
9	10	7,11,10	{0}		{280, 340}	
10	9	7,12,5,9	{4,6,17,18}	L(4) = 480	{6, 18, 17, 4}	7,12,5,6 ; 7,12,5,9,18; 7,12,5,9,17; 7,12,5,9,4
10	9	7,12,0,9	{4,0,17,10}	L(6) = 440	{340, 360, 430, 480}	
				L(17) = 430		
				L(18) = 360		
11	6	7,12,5,6	{1,5,9,18}	L(1) = 420	{18, 1, 17, 4}	7,12,5,9,18 ; 7,12,5,6,1; 7,12,5,9,17; 7,12,5,9,4
	"	1,12,0,0	[1,0,0,10]	L(5) = 500	{360, 420, 430, 480}	
				L(9) = 500		
				L(18) = 420		
12	18	7,12,5,9,18	{1,6,17}	L(1) = 460	{1, 17, 4}	7,12,5,6,1; 7,12,5,9,17; 7,12,5,9,4
		1,1-2,0,0,10	(=,0,=1)	L(6) = 440	{420, 430, 480}	
				L(17) = 470		
13	1	7,12,5,6,1	{6,13}	L(6) = 500	{17, 4, 13}	7,12,5,9,17 ; 7,12,5,9,4; 7,12,5,6,1,13
_		-, ,-,-,	(-7 -7	L(13) = 490	{430, 480, 490}	
14	17	7,12,5,9,17	{3,4,13,18}	L(3) = 530	{4, 13, 3}	7,12,5,9,4; 7,12,5,6,1,13; 7,12,5,9,17,3
				L(4) = 570	{480, 490, 530}	
				L(13) = 550		
_				L(18) = 540		
15	4	7,12,5,9,4	{17}	L(17) = 620	{13, 3}	7,12,5,6,1,13 ; 7,12,5,9,17,3
			. ,		{490, 530}	
16	13	7,12,5,6,1,13	{3,16,17}	L(3) = 540	{3, 16}	7,12,5,9,17,3 ; 7,12,5,6,1,13,16
				L(16) = 570	{530, 570}	
				L(17) = 610		
17	3	7,12,5,9,17,3	{13,16}	L(13) = 580	{16}	7,12,5,6,1,13,16
		1	` ' '	L(16) = 580	{570}	

Évora a Aveiro: na iteração 11

Évora \rightarrow Portalegre \rightarrow Castelo Branco \rightarrow Coimbra \rightarrow Aveiro Custo: 420

Évora a Beja: na iteração 0

 $\acute{\text{E}}\text{vora} \rightarrow \Beta{\text{eja}}$ Custo: 80

Évora a Braga: iteração 14

Évora \rightarrow Portalegre \rightarrow Castelo Branco \rightarrow Guarda \rightarrow Vila Real \rightarrow Braga

Custo: 530

Évora a Bragança: na iteração 10

Évora \rightarrow Portalegre \rightarrow Castelo Branco \rightarrow Guarda \rightarrow Bragança Custo: 480

Évora a Castelo Branco: na iteração 2

Évora \rightarrow Portalegre \rightarrow Castelo Branco Custo: 180

Évora a Coimbra: na iteração 5

Évora \rightarrow Portalegre \rightarrow Castelo Branco \rightarrow Coimbra Custo: 340

Évora a faro: na iteração 1

 $\acute{\text{E}}\text{vora} \rightarrow \text{Beja} \rightarrow \text{Faro}$ Custo: 250

Évora a Guarda: na iteração 5

Évora \rightarrow Portalegre \rightarrow Castelo Branco \rightarrow Guarda Custo: 280

Évora a Leiria: na iteração 4

Évora \rightarrow Lisboa \rightarrow Leiria Custo: 280

Évora a Lisboa: na iteração 0

Évora \rightarrow Lisboa Custo: 150

Évora a Portalegre: na iteração 0

 $\text{Évora} \rightarrow \text{Portalegre}$ Custo: 100

Évora a Porto: iteração 13

Évora \rightarrow Portalegre \rightarrow Castelo Branco \rightarrow Coimbra \rightarrow Aveiro \rightarrow Porto

Custo: 490

Évora a Santarém: na iteração 0

Évora \rightarrow Santarém Custo: 120

Évora a Setúbal: na iteração 1

Évora \rightarrow Lisboa \rightarrow Setúbal Custo: 200

Évora a Viana do Castelo: iteração 16

Évora \rightarrow Portalegre \rightarrow Castelo Branco \rightarrow Coimbra \rightarrow Aveiro \rightarrow Porto \rightarrow Viana do Castelo **Custo:** 570

Évora a Vila Real: na iteração 10

Évora \rightarrow Portalegre \rightarrow Castelo Branco \rightarrow Guarda \rightarrow Vila Real Custo: 430

Évora a Viseu: na iteração 10

Évora \rightarrow Portalegre \rightarrow Castelo Branco \rightarrow Guarda \rightarrow Viseu Custo: 360

b.

Para a resolução do exercício foi usado um código em Java encontrado no *oset-tacode.org*[1], para que o programa consiga fazer o algoritmo de Dijkstra é necessário fazer a conversão do mapa do enunciado para uma matriz de pesos, ficando da seguinte forma:

0	0	0	0	0	80	0	0	0	0	0	0	70	0	0	0	0	100
0	0	0	0	0	0	80	170	0	0	0	0	0	0	135	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	50	0	0	50	100	0
0	0	0	0	0	0	0	0	200	0	0	0	0	0	0	0	140	0
0	0	0	0	0	160	0	0	100	0	0	80	0	200	0	0	0	0
80	0	0	0	160	0	0	0	160	70	0	0	0	0	0	0	0	80
0	80	0	0	0	0	0	0	0	0	150	100	0	120	0	0	0	0
0	170	0	0	0	0	0	0	0	0	0	0	0	0	260	0	0	0
0	0	0	200	100	160	0	0	0	0	0	0	0	0	0	0	150	80
0	0	0	0	0	70	0	0	0	0	130	0	0	0	0	0	0	0
0	0	0	0	0	0	150	0	0	130	0	0	0	70	50	0	0	0
0	0	0	0	80	0	100	0	0	0	0	0	0	150	0	0	0	0
70	0	50	0	0	0	0	0	0	0	0	0	0	0	0	80	120	0
0	0	0	0	200	0	120	0	0	0	70	150	0	0	0	0	0	0
0	135	0	0	0	0	0	260	0	0	50	0	0	0	0	0	0	0
0	0	50	0	0	0	0	0	0	0	0	0	80	0	0	0	0	0
0	0	100	140	0	0	0	0	150	0	0	0	120	0	0	0	0	110
100	0	0	0	0	80	0	0	80	0	0	0	0	0	0	0	110	0

Após saber a matriz de pesos, foi usado o código em Java para calcular o caminho mais curto entre todos os vértices. Para o código funcionar como pedido no exercício, foi preciso primeiro converter a matriz de pesos para código, e depois fazer algumas alterações para ele iterar por todos os vértices e mostrar o caminho de menor custo de uma maneira mais organizada. O resultado obtido foi o seguinte:

Évora a Aveiro:

Évora \rightarrow Portalegre \rightarrow Castelo Branco \rightarrow Coimbra \rightarrow Aveiro Custo: 420

Évora a Beja:

Évora \rightarrow Beja Custo: 80

Évora a Braga:

Évora \rightarrow Portalegre \rightarrow Castelo Branco \rightarrow Guarda \rightarrow Vila Real \rightarrow Braga

Custo: 530

Évora a Bragança:

Évora \rightarrow Portalegre \rightarrow Castelo Branco \rightarrow Guarda \rightarrow Bragança Custo: 480

Évora a Castelo Branco:

 $\acute{\text{E}}\text{vora} \rightarrow \text{Portalegre} \rightarrow \text{Castelo Branco}$ Custo: 180

Évora a Coimbra:

 $\acute{\text{E}}\text{vora} \rightarrow \text{Portalegre} \rightarrow \text{Castelo Branco} \rightarrow \text{Coimbra}$ Custo: 340

Évora a faro:

Évora \rightarrow Beja \rightarrow Faro Custo: 250

Évora a Guarda:

Évora \rightarrow Portalegre \rightarrow Castelo Branco \rightarrow Guarda Custo: 280

Évora a Leiria:

 $\acute{\text{E}}\text{vora} \rightarrow \text{Lisboa} \rightarrow \text{Leiria}$ Custo: 280

Évora a Lisboa:

 $\acute{\text{E}}\text{vora} \rightarrow \acute{\text{Lisboa}}$ Custo: 150

Évora a Portalegre:

Évora \rightarrow Portalegre Custo: 100

Évora a Porto:

Évora \rightarrow Portalegre \rightarrow Castelo Branco \rightarrow Coimbra \rightarrow Aveiro \rightarrow Porto

Custo: 490

Évora a Santarém:

Évora \rightarrow Santarém Custo: 120

Évora a Setúbal:

Évora \rightarrow Lisboa \rightarrow Setúbal Custo: 200

Évora a Viana do Castelo:

Évora \rightarrow Portalegre \rightarrow Castelo Branco \rightarrow Coimbra \rightarrow Aveiro \rightarrow Porto \rightarrow Viana do Castelo **Custo:** 570

Évora a Vila Real:

Évora \rightarrow Portalegre \rightarrow Castelo Branco \rightarrow Guarda \rightarrow Vila Real **Custo:** 430

Évora a Viseu:

Évora \rightarrow Portalegre \rightarrow Castelo Branco \rightarrow Guarda \rightarrow Viseu Custo: 360

```
Evora -> Portalegre(100) -> Castelo Branco(180) -> Coimbra(340) -> Aveiro(420)
Caminho de Evora a Beja:
Evora -> Beja(80)
Caminho de Evora a Coimbra:
Evora -> Portalegre(100) -> Castelo Branco(180) -> Coimbra(340)
Caminho de Evora a Santarem:
Evora -> Santarem(120)
Caminho de Evora a Braganca:
Evora -> Portalegre(100) -> Castelo Branco(180) -> Guarda(280) -> Braganca(480)
Caminho de Evora a Lisboa:
Evora -> Lisboa(150)
Caminho de Evora a Castelo Branco:
 vora -> Portalegre(100) -> Castelo Branco(180)
Caminho de Evora a Braga:
Evora -> Portalegre(100) -> Castelo Branco(180) -> Guarda(280) -> Vila Real(430) -> Braga(530)
Caminho de Evora a Viseu:
 Evora -> Portalegre(100) -> Castelo Branco(180) -> Guarda(280) -> Viseu(360)
Caminho de Evora a Leiria:
Evora -> Lisboa(150) -> Leiria(280)
Caminho de Evora a Setubal:
Evora -> Lisboa(150) -> Setubal(200)
Caminho de Evora a Aveiro:
Evora -> Portalegre(100) -> Castelo Branco(180) -> Coimbra(340) -> Aveiro(420)
```

Figura 3.1: Fragmento do Output do algoritmo de Dijkstra


```
private static final int TAMANHO GRAFO = 18;
public static final String START = "Evora";
private static final String[] ARRAY CAPITAIS = { "Aveiro", "Beja", "Braga", "Braganca",

Run|Debug
public static void main(String[] args) {
    Graph g = new Graph(GRAPH);

    System.out.println("\nCaminho de " + Dijkstra.START + " a " + "Aveiro" + ":");
    g.dijkstra(START);
    g.printPath(endName: "Aveiro"); // primeira iteração
    g.printAllPaths(); //restantes iterações
}
```

Figura 3.2: Função main do algoritmo de Dijkstra

c.

Para a resolução deste exercício é pedido a realização do algoritmo de Kruskal. O algoritmo de Kruskal é um algoritmo na teoria dos grafos que procura árvore geradora de custo mínimo do grafo, que é uma árvore constituída por todos os vértices desse grafo e pelas arestas para as quais se obtém um peso total¹ menor.

¹soma dos pesos dessas arestas

Tabela 3.2: Tabela Algoritmo de Kruskal com os nomes das cidades

Series of the se	(vi.e)	I=I=	l+	lss.	lso.	lsa.	la.	×s.	l=	lar.	l=	l so	l xxx	803	lsia.	M33	Ni.	No.	×as	NAT.	xix
Market M		П.		Arries	Beja		Bragança	Castrin Brazes	Coledina	Even	Fire	Counts	Leinia	Eishu	Postaloger	Porte	Xostorbu	Neshal	Yana de Castela	Vila Real	Years
Market M	Value of Canada, sange				noja			Connect	****	740			l	ranage					111.00	****	
Mathematical Math	Brugs, Parks	15 10	Braga - 3, Posts - 13	Arries	Beja	Bragases	Cantoln Branco	Coindre	Erres	Fam	Guerda	Leinia	Links	Portaligue	Xustiantia	Residual	Yana de Castelo,	Villa Read	Tiere		
Mathematical Content	Lisbon, Settlad	10 13	Dalos II, Seibil II	Assis	Beja	Bragança	Castele Branco	Caladra	Error	Fam	Counts	Leiria	Linkson, Newstead	Parisleger	Kantarita	Vissa de Castelo,		Vises			
Market M		₩.														Beggs , Ports					
Market M	Farin, Arries	12 3	Posts - 13, Arries - 1	No.	Erogonya	Castrio Braum	Coinches	Street	Fare	Guarda	Leinia	Lishua, Srishal	Partaloger	Nantan'es	Years de Cantrin, Braza - Parin,	Villa Birol	Yaru				
Market M		ш													Acries						
Market M	Coimbra, Leiria	1.1.	Crimbra - 6, Letria - 10	Brys.	Engany	Castrie Brawn	Colesbru, Leirin	Street	Fare	Guarda	Linkson, Schillad	Portalogor	Series	Visus de Castelo, Braza - Porto	Vila Real	Visre					
Martin M														Armina							
Martine Mart	Lisbon, Santarine	× =	Listen - 11, Santarin - 11	Bija	Braganya	Castrio Braum	Columbra, Leteia	Street	Fare	Guarda	Liston, Scottal,	Partalogor	Vana de Castelo, Essas Basic	Vila Real	Yan						
Martin M													Arries								
Mark	Vissa de Castelo, Porto	20 20	Yana de Castele - 16, Porte - 13																		
	Avriro, Calmiro	20 4	Arries I, Caladra 6	Seja	Engage	Castrin Brawn	Error	Yen	Oseda	Links, Smithd	Portuleger	Visus de Castelo,	Vila Real	View	_				_		_
Martin M				1						Kantarim		Beggs , Paris,									
Mark Name 1 2 1 2 Mark Name 2 1 Mark Name 2 1 2 Mark Name 2 1 Mark N				1								Aveiro, Coindea, Leiria									
Martin M	Cointes, Yaru	0 22	Cristes - 6, Year - 18	Brjs.	Engunya	Castrio Braum	Enm	Turn	Gueda	Lishus, Notiful,	Fortileger	Visna de Castelo,	Via Real								
Martin M				1						Kantantss		Brugs , Paris, Aretro, Colubra,									
And The American Conference of the Conference of		ш										Letria Vises									
And The Control of th	Guesia, Yaru	6 9	Gueda - 9, York - 18	No.	Enguny	Castrin Brusen	Error	Turn	Guardia, Vissa de Cantalo Brass	Links, Netchal, Neutralin	Portuleger	Vila Real									
Martin M				1					Darte, Arries												
See				1					Coloden, Lei												
	Castrin Brazen, Firstaleger	12 2	Castele Brases - 5, Fietaleger - 1	Box	Braganya	Catrle Brann,	Enra	Fam			Vila Real							t			
Part		11	l	1	1	Postaleger		1	de Castelo, Brogo	Kantanim		1			l			1	1		l
Part		11	I	1	1	1	1	1	Colodes, Lei	1	l	1	1	l	I			1	1	1	1
A		1.1																	_		
April Apri	Brja, Erom	T. I.	Brjs. 3, Eron. 7	Brja, Erona	Enguny	Castrie Branco, Fortaleger	Fam		Linkson, Schilled Sententine	Vila Red	l	1			l			1			
March Marc		11	I	1	1	1	1	- Peta Arriva		1	I	1	1	l	I			1	1	1	1
See No. 1		11	I	1	1	1	1		1	1	I	1	1	l	I			1	1	1	1
Annual Control Annu	Brage, Vila Real	5 7	Braga - 3, Vila Real - 17	Brja, Bross	Braganya	Catrle Brane,	Fare	Carda Year	Lisbon, Setabal	1											
March Marc		11		1	1	Portaleger		de Castelo, Brago.	Sestante		l	1			l			1			
March Marc		11		1	1	1		Conden, Leisia,			l	1			l			1			
A	Lanton Warm	1.	Auto A View A	-	-	-	-	Yors, Via Red		-		-		-		-	_	-	-		_
April Apri		H,																			
April Apri	Cantrin Brawn, Guarda	3 3	Castrio Bruson - 5, Guarda - 9	Brja, Erona	Engunya	Catrle Brann,	Fare	Lishus, Neithal,													
Company Comp				1		Fortaleger, Coursia, Vissa		Xustantus													
March Marc				1		de Castelo, Brago															
No.				1		, Flota, Antina, Crimbus, Luisia															
Market M		ш				Yara, Vila Real															
No. 10 N	Erora, Parialeger	1 2	Sura - 7, Parisinger - 12	Brja, Even, Can	Enguny	Turn	Lishus, Setshal,														
No. 10 N				talogo, Casola,			-														
American		Ш																			
American				Brago , Porto, Arries, Caladra,																	
The Control of the Co				Leinin, Vises, Vila																	
The Control of the Co	Ván Brod, Visco	11	Vila Real - 17, Viera - 16	and	_	_	_	_		_	_	_			_	_		_			-
Part		1 1	i																		
Mark	Ports, Vila Real	TT	Posts - 13, Vila End - 17	1	1	1	1	1		1	1	1			I			1	1		
April Apri	Erora, Santarina	1 2	Every - 7, Nastarby - 14	Brja, Even, Can	Braganya	Turn															
No.		11	I	tric Brazes, For-	1	1	1	1	1	1	l	1	1	l	I			1	1	1	1
March 1 March		11		Visua de Castilo,	1	1					l	1			l			1			
March 1 March		11	I	Sings , Paris, Agrico Coprine	1	1	1	1	1	1	I	1	1	l	I			1	1	1	1
No. 20		11	I	Lebia, Visco,	1	1	1	1	1	1	I	1	1	l	I			1	1	1	1
No. No. 100 1 No. 10 No.		11	I		1	1	1	1	1	1	l	1	1	l	I			1	1	1	1
See	Leinia, Linhou	11	Seiria - 10, Einhea - 11	- roma, namerica	†		†			 								†			_
The Adaptive Control of Control o		++	ı			-		_					_						-		\vdash
Market 1	Settlal, Brja	TT	Seedad - 15, Seja - 2	1	1	1	1	1	1	1	1	1	1	l	I			1	1	1	
Water Wate	Vás Bral, Bragança	1 2	Vila Real - 17, Beaguage - 4	Brja, Even, Can	Fare																
No.		11	I	tele Braum, For. taleger, Caseda.	1	1	1	1	1	1	l	1	1	l	I			1	1	1	1
No. Yes No.		11	I	Visco de Castilo,	1	1	1	1	1	1	I	1	1	l	I			1	1	1	1
No. Yes No.		11	I	Sings , Paris, Agrico Coprine	1	1	1	1	1	1	I	1	1	l	I			1	1	1	1
No. Martines 2 No. 10 No. Martines No. Martines No. Martines No. Martines No. Martines No. No. Martines No.		11	I	Leinia, Visco,	1	1	1	1	1	1	I	1	1	l	I			1	1	1	1
No.		11	l	Vila Bral,Lisbon,	1	1		1				1			l			1	1		l
1		Ш																			
See See 2 2 See 5 See 5	Vila Real, Guarda	11	Vila Real - 17, Guarda - 9																		
See See 2 2 See 5 See 5	Season, Petalogo	1.	Santarius - 14, Portaleger - 12	 	<u> </u>	 		_		 	_								_		_
See		1.1				-													_		
Address Carlon States 1	Acress, Firem	TT	nessa . 11, Eron . 7	1	1	1	1	1	1	1	1	1		l	I			1	1	1	
20 Parison V V V Res 1 Nov 4 Nov Section 10 Nov Sec	Colesbra, Guarda	1.	Crimbra - 6, Cramba - 9	l		l				l											
20 Parison V V V Res 1 Nov 4 Nov Section 10 Nov Sec	Crimbra, Castrio Brazon	1.1.	Cristry & Carrie By *	_	-	_	-	_	_	-	-	-	_	_	_	_		-	_	_	_
Sale States File. Sales Control Sales Sales - Ports Sales - Ports Sales - Torin Sales - Tor		TT																			
Martin State Mart	lieja, linguaya	1 2	Brju. 3, Fare - 8	Brja, Even, Can.																	
No. 40 Codes.		11	I	talogo, Gasola,	1	1	1	1	1	1	I	1	1	l	I			1	1	1	1
Arm. Codes. Sites, Ven. We. Relation.		11	l	Yann de Castrin,	1	1		1				1			l			1	1		l
None, York, National None and National None and National		11	I		1	1	1	1	1	1	I	1	1	l	I			1	1	1	1
Strike Salarina		11	I	Lette, View,	1	1	1	1	1	1	I	1	1	l	I			1	1	1	1
British, Statutes.		11	l	Vila Bral, Linbon,	1	1		1				1			l			1	1		l
		11	l	Sritiful, Santarina, Sragança,Fare	1	1		1				1			l			1	1		l

Tabela 3.3: Tabela Algoritmo de Kruskal com os números das cidades

· I (vi.e)	o Is	Isl	T	81	82	82	84	xa	SIG	87	SIX	SID	910			813	814	813	814	817	818	NR
\top	\top	П		1	2	1		2			×	5	30	11	12	13	11	15	16	17	18	г
26, 3	10	1 2	14 - 16, 3 - 3	1	2		3	6	7	×	9	30	11	12	13	14	13	34, 3	17	18		௩
2, 13	10	12	3 - 15, 13 - 12	1	2		5	6	7	×	5	30	11	12	14	15	14, 3, 13	17	18			2
11, 13	- 10	13	11 - 16, 15 - 13	1	2		5			×	9	30	11, 15	12	14	14, 3, 13	17	10				1
			11 - 13, 1 - 1			3	4	7	×		20	11, 15	12	14	16, 3, 13, 1	17	14					
6, 20	- 1	×	6 - 4, 10 - 8	2		5	4, 20	7	×	5	11, 15	12	14	16, 3, 13, 1	17	14						5
11, 14		30	11 - X, 14 - 10	2		3	6, 20	7	×	,	11, 15, 14	12	26, 3, 13, 1	17	14							t-
26, 13	- 1	30	14 - 16, 13 - 10																			_
1	- 1	11		1			l		l	l	l					l .		l .		1	1	1
1,6	- 12	1.	1 - 10, 4 - 4	2		3	,			11, 15, 14	12	36, 3, 13, 1, 6, 10	IT	14								1
6, 18	- 1	11	6 - 9, 18 - 11	2		3	7	×	,	11, 15, 14	12	36, 3, 13, 1, 6, 10,18	IT									1.
0 5.18	- 14			2		3	,		5, 36, 3, 13, 1, 4,		12	17										t-
1	- 1	1 1		1					10,1×											1	1	
5.12	- 12	1.	5 - 3, 12 - 8	2		5.12			5, 36, 3, 13, 1, 6,	11.15.14	17											10
	- 1	11					l		20.1K		1							l .		1	1	
2.7	1	1	2 - 1, 7 - 4	2.7		5, 12		5 16 3 13 1, 6	11. 15. 14	17												111
1.	- 1	11					1	20.18		1	l							l .		1	1	
3, 17	- 1	2	3 - 5, 17 - 7	2.7		5, 12		5, 16, 3, 13, 1, 6, 10,	11.15.14													12
1	- 1	ш		1.				16, 17												1	1	
1,18	- 5	3	1 - 5, 14 - 5																			
1	- 1	11		ı	1	i .	l	i .	i	i	i				i	i		l		1	1	ı
3,9	- 3	3	5-29-5	2.7		5, 12, 9, 14, 3, 13,		11, 15, 14														13
1	- 1	ш		1		1, 4, 10, 14, 17														1	1	
5,12	1	1	T - 1, 12 - 3	2, 7, 5, 12, 9, 16, 3,			11, 15, 14															14
1	- 1	11		13, 1, 6, 10, 16, 17			l		l	l	l							l .		1	1	
17,14		1	17 - 1, 18 - 1																			\vdash
1	- 1	1 1		1			l		l	l	l					l		l		1	1	1
× 13, 17		1	11 - 1, 17 - 1																			$\overline{}$
1	- 1	11		1			l		l	l	l							l .		1	1	1
9 7,14	- 1	1	7 - 1, 14 - 4	2, 7, 5, 12, 9, 96,																		13
1	- 1	11		3, 13, 1, 6, 10, 16,			l		l	l	l							l .		1	1	
	_	ш		12,11, 15, 14																		
0 30, 11	- 1		10 - 1, 11 - 1																			
	_	\perp																				
1 15, 2	1	П	15 : 1, 2 : 1																			
	_	\perp																				
17, 4	- 1	IΠ	17 - 1, 4 - 2	2, 7, 3, 12, 9, 36,																		16
1	- 1	11		3, 13, 1, 6, 10, 18,			l		l	l	l							l .		1	1	
_	_	ш		17,11, 15, 14, 4																		_
17, 9	- [-	ы	17 - 1, 9 - 1																			1
-	-	\sqcup																		-		-
16, 12	- 15	ы	14 - 1, 12 - 1																			1
_	_	\perp																				_
11,7	- 1	ы	11 - 1, 7 - 1																	1	1	
-	_	ш																				┺
6 6,9	- 15	P.I	6-1,9-1	1		I	1	1	1	1	1	1		1	I	l		1		('	1	1
-	4	\perp		_																-		-
1 6,3	- 15	P.I	6 - 1, 5 - 1	1		I			1	1	1	1		!	l	1				('	1	1
× 2,4	-	₩		_		_														-	_	-
	- 15	12		2, 7, 5, 12, 9, 96,	1	I	I	1	ı	1	1	l		1	I	I		I		('	1	17
				3, 13, 1, 6, 10, 16,																		
1.	- 1	11		17,11, 15, 14, 4,8																		

Árvore $= {(16, 3), (3, 13), (11, 15), (13, 1), (6, 10), (11, 14), (1, 6), (6, 18), (9, 18), (5, 12), (2, 7), (3, 17), (5, 9), (7, 12), (7, 14), (17, 4), (2, 8)}$

ou seja:

Árvore = {(Viana do Castelo, Braga), (Braga, Porto), (Lisboa, Setúbal), (Porto, Aveiro), (Coimbra, Leiria), (Lisboa, Santarém), (Aveiro, Coimbra), (Coimbra, Viseu), (Guarda, Viseu), (Castelo Branco, Portalegre), (Beja, Évora), (Braga, Vila Real), (Castelo Branco, Guarda), (Évora, Portalegre), (Évora, Santarém), (Vila Real, Bragança), (Beja, Faro)}

Figura 3.3: Árvore de Custo Mínimo

d.

Com a matriz de pesos calculada no exercício 3b, foi usado um código em python encontrado no www.programiz.com[4], para calcular a árvore geradora de custo mínimo do grafo. Para o código funcionar como foi pedido no exercício, foi preciso primeiro converter a matriz de pesos para código, e depois fez-se uma função que converte os números do resultado para a respetiva capital do distrito. O resultado obtido foi o seguinte:

```
Braga - Porto: 50
Braga - Viana do Castelo: 50
Lisboa - Setubal: 50
Aveiro - Porto: 70
Coimbra - Leiria: 70
Lisboa - Santarem: 70
Aveiro - Coimbra: 80
Beja - Evora: 80
Castelo Branco - Portalegre: 80
Coimbra - Viseu: 80
Guarda - Viseu: 80
Braga - Vila Real: 100
Castelo Branco - Guarda: 100
Evora - Portalegre: 100
Evora - Santarem: 120
Braganca - Vila Real: 140
Beja - Faro: 170
```

Figura 3.4: Output algoritmo de Kruskal

```
# Troca os numeros pelos nomes das regioes

def switchRegioes(i):
    match i:
        case 0:
            return "Aveiro"
        case 1:
            return "Beja"
        case 2:
            return "Braga"
        case 3:
            return "Braganca"
        case 4:
            return "Castelo Branco"
        case 5:
            return "Coimbra"
        case 6:
            return "Faro"
        case 8:
            return "Faro"
        case 8:
            return "Guarda"
        case 9:
            return "Leiria"
        case 10:
            return "Lisboa"
        case 11:
            return "Portalegre"
        case 12:
            return "Santarem"
        case 13:
            return "Setubal"
        case 14:
            return "Setubal"
        case 15:
            return "Viana do Castelo"
        case 16:
            return "Viaeal"
        case 17:
            return "Viseu"
        case _:
            return "Erro"
```

Figura 3.5: Função que troca os números pelas respetivas capitais

Pergunta 4

a.

Neste exercício foi pedido para que se fizesse uma pesquisa sobre um dos algoritmos que tínhamos à escolha, e o escolhido foi o algoritmo de Floyd-Warshall.

O algoritmo de Floyd-Warshall serve para calcular o caminho mais curto entre todos os pares de vértices num grafo orientado, ao comparar todos os caminhos possíveis através do gráfico entre cada par de vértices. Ele é bastante útil, pois e ele consegue encontrar p caminho mais curto entre todos os pares de vértices do grafo independentemente da presença de arestas negativos. Isso significa que ele é aplicável a uma ampla variedade de problemas. No entanto, embora o algoritmo de Floyd-Warshall consiga trabalhar com arestas negativos, ele não consegue trabalhar com ciclos negativos¹, e é mais lento que outros algoritmos que foram desenvolvidos para fazer a mesma tarefa, isso deve-se por ter uma complexidade de tempo $O(V^3)$ na notação $Big\ O^2$

Na demonstração da utilização do algoritmo de Floyd-Warshall usaremos o seguinte grafo e a seguinte matriz de pesos desenhado no *graphonline.ru*[3]:

 $^{^{1}\}mathrm{soma}$ de todos os vértices ser negativa

 $^{^2}$ notação usada na análise de algoritmos e complexidade computacional.

Figura 4.1: Grafo utilizado no algoritmo de Floyd-Warshall

0	3	0	0	0	0	5	0	2	0
6	0	0	0	5	0	4	0	0	5
0	0	0	0	4	0	6	0	0	0
0	0	0	0	4	7	0	0	3	0
0	2	6	8	0	5	0	0	0	6
0	0	0	5	4	0	0	0	0	0
3	6	5	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	3	8
2	0	0	6	0	0	0	4	0	0
$ _{0}$	6	0	0	4	0	0	6	0	Λ

Antes de começar a realizar o algoritmo, primeiro é preciso alterar a matriz de pesos, pois, tanto os vértices que não têm nenhum caminho, como os vértices que têm caminhos indiretos que os unem estão representados na matriz com o algarismo 0, então efetuar-se-à uma troca desses valores por ∞ . Assim, os únicos caminhos que têm um 0, são aqueles em que não existem nenhum caminho que os une. Ficando assim uma matriz de distâncias.

Para começar o algoritmo de Floyd, será necessário criar uma matriz A^1 com os valores da matriz A^0 , onde apenas sobrarão os elementos da primeira linha, primeira coluna e diagonal principal. Depois será necessário preencher os espaços em branco da matriz, para isso, vai se somar cada elemento da coluna com cada elemento da linha que se separou, e fazer-se-à uma comparação dessa soma com o valor que está na posição da i, j dos valores que se somou, assim vai-se verificar se a distância entre um par de vértices é menor ao passar por um vértice intermediário.

Por exemplo, ao somar A[2][1] com A[1][2], será feita uma comparação dessa soma com a posição A[2][2]. Se o resultado da soma for **maior** ou **igual** ao valor contido em A[2][2], então o valor que estava nessa posição na matriz A0 será mantido. Caso seja **menor**, o valor da posição A[2][2] será substituído pelo valor da soma.

1ª Iteração:

$$(A[2][1] + A[1][2]) > A[2][2]$$
 $(A[2][1] + A[1][3]) = A[2][3]$
 $(A[2][1] + A[1][4]) = A[2][4]$ $(A[2][1] + A[1][5]) > A[2][5]$
 $(A[2][1] + A[1][6]) = A[2][6]$ $(A[2][1] + A[1][7]) > A[2][7]$
 $(A[2][1] + A[1][8]) = A[2][2]$ $(A[2][1] + A[1][9]) < A[2][9]$
 $(A[2][1] + A[1][10]) > A[2][10]$ (...)

2ª Iteração:

$$(A[3][2] + A[2][1]) = A[3][1]$$
 $(A[1][2] + A[2][3]) = A[1][3]$
 $(A[3][2] + A[3][1]) > A[1][2]$ (...)

3ª Iteração:

$$(A[1][3] + A[3][1]) > A[1][1]$$
 $(A[3][2] + A[3][1]) > A[1][2]$
 $(A[3][1] + A[2][3]) > A[2][1]$ (...)

4ª Iteração:

5ª Iteração:

$$A^{5} = \begin{bmatrix} 0 & & & 8 & & & & & \\ & 0 & & 5 & & & & & \\ & 0 & & 4 & & & & \\ & & 0 & 4 & & & & \\ & & 0 & 4 & & & \\ & & & 0 & 4 & & \\ & & & & 0 & 5 & 6 & \infty & 10 & 6 \\ & & & 4 & 0 & & & \\ & & & & \infty & & 0 & \\ & & & & 10 & & & 0 \\ & & & & 4 & & & & 0 \end{bmatrix} \Longrightarrow \begin{bmatrix} 0 & 3 & 14 & 16 & 8 & 13 & 5 & \infty & 2 & 8 \\ 6 & 0 & 11 & 13 & 5 & 10 & 4 & \infty & 8 & 5 \\ 12 & 6 & 0 & 12 & 4 & 9 & 6 & \infty & 14 & 10 \\ 12 & 6 & 10 & 0 & 4 & 7 & 10 & \infty & 3 & 10 \\ 8 & 2 & 6 & 8 & 0 & 5 & 6 & \infty & 10 & 6 \\ 12 & 6 & 10 & 5 & 4 & 0 & 10 & \infty & 8 & 10 \\ 3 & 6 & 5 & 17 & 9 & 14 & 0 & \infty & 5 & 11 \\ \infty & 0 & 3 & 8 \\ 2 & 5 & 16 & 6 & 10 & 13 & 7 & 4 & 0 & 10 \\ 12 & 6 & 10 & 12 & 4 & 9 & 10 & 6 & 14 & 0 \end{bmatrix}$$

$6^{\underline{a}}$ Iteração:

7^{<u>a</u>} Iteração:

$$A^{7} = \begin{bmatrix} 0 & & & & 5 & & & \\ & 0 & & & & 4 & & \\ & 0 & & & 6 & & \\ & & 0 & & 10 & & \\ & & & 0 & & 10 & & \\ & & & & 0 & 10 & & \\ & & & & 0 & 10 & & \\ & & & & 0 & 10 & & \\ & & & & 0 & 10 & & \\ & & & & 0 & 10 & & \\ & & & & & 0 & 10 & & \\ & & & & & 0 & & \\ & & & & & 7 & & 0 & \\ & & & & & 10 & & & 0 \end{bmatrix} \Longrightarrow \begin{bmatrix} 0 & 3 & 10 & 16 & 8 & 13 & 5 & \infty & 2 & 8 \\ 6 & 0 & 9 & 13 & 5 & 10 & 4 & \infty & 8 & 5 \\ 9 & 6 & 0 & 12 & 4 & 9 & 6 & \infty & 11 & 10 \\ 12 & 6 & 10 & 0 & 4 & 7 & 10 & \infty & 3 & 10 \\ 8 & 2 & 6 & 8 & 0 & 5 & 6 & \infty & 10 & 6 \\ 12 & 6 & 10 & 5 & 4 & 0 & 10 & \infty & 8 & 10 \\ 3 & 6 & 5 & 17 & 9 & 14 & 0 & \infty & 5 & 11 \\ \infty & 0 & 3 & 8 \\ 2 & 5 & 16 & 6 & 10 & 13 & 7 & 4 & 0 & 10 \\ 12 & 6 & 10 & 12 & 4 & 9 & 10 & 6 & 14 & 0 \end{bmatrix}$$

8^{<u>a</u>} Iteração:

9ª Iteração:

10ª Iteração:

Para validar se o resultado obtido estava correto, foi criado um código em C que fizesse o algoritmo de Floyd Warshall e que mostrasse a matriz com o resultado final. Esse código foi feito em cima do pseudocódigo do algoritmo que foi encontrado na Wikipédia[2].

```
0 3 10 8 8 13 5 6 2 8
6 0 9 13 5 10 4 11 8 5
9 6 0 12 4 9 6 15 11 10
5 6 10 0 4 7 10 7 3 10
8 2 6 8 0 5 6 12 10 6
10 6 10 5 4 0 10 12 8 10
3 6 5 11 9 14 0 9 5 11
5 8 15 9 12 16 10 0 3 8
2 5 12 6 10 13 7 4 0 10
11 6 10 12 4 9 10 6 9 0

Precess exited after 0.041 seconds with return value 0
Press any key to continue . . .
```

Figura 4.2: Output do resultado do algoritmo de Floyd Warshall em C

Figura 4.3: Função em C de que realiza o algoritmo de Floyd Warshall

Bibliografia

- [1] Dijkstra's algorithm. https://rosettacode.org/wiki/Dijkstra%27s_algorithm#Java.
- [2] Floyd-warshall algorithm. https://en.wikipedia.org/wiki/Floyd%E2% 80%93Warshall_algorithm.
- [3] Graph online. https://graphonline.ru/en/.
- [4] Kruskal's algorithm. https://www.programiz.com/dsa/kruskal-algorithm.
- [5] Scilab. https://www.scilab.org.
- [6] H. Martinez. algoritmo de floyd-warshall. https://www.youtube.com/watch?v=h-nmexY9gtA.