Week 3

Outline

- A bit more on fixed vs floating-point
- Recap on why floating-point is a challenge

- More on encoding symbols
- How memory works

Why Floating-point?

You want to represent a wide range with a fixed number of bits?

 Reason for floating-point: You want to represent a variable range with a fixed number of bits

Fixed Point

• What numbers does 8-bit fixed-point represent?

Fixed Point

• Suppose I represent an 8-bit number that lies in the range [-2, 2] in fixed-point. What does that mean?

Why Floating-point?

- You want to represent a wide range with a fixed number of bits?
- Reason for floating-point: You want to represent a variable range with a fixed number of bits
- Your memory can store 16 bits.
- Your algorithm involves some calculations with many variables
- Variables include numbers as large as 30000.
- Your algorithm has an exit condition var1-var2>1e-6
- You need more fixed-point bits than you can handle

Bisection algorithm

```
N \leftarrow 1
While N \le NMAX # limit iterations to prevent infinite loop c \leftarrow (a+b)/2 # new midpoint

If f(c) = 0 or (b-a)/2 < TOL then # solution found

Output(c)

Stop
EndIf
N \leftarrow N + 1 # increment step counter
If sign(f(c)) = sign(f(a)) then a \leftarrow c else b \leftarrow c # new interval
EndWhile
Output("Method failed.") # max number of steps exceeded
```


Floating point is not associative

 $\sum_{i=1}^{1e'}i$

Which answer is correct?

```
davidb@goliath ~ $ ./simple_prec_test3
j is 48714886414336.000000
```

```
davidb@goliath ~ $ ./simple_prec_test3b
j is 49423623127040<mark>.</mark>000000
```

Floating point is not associative

```
davidb@goliath ~ $ ./simple_prec_test3c
j is 50000005000000.000000
```

```
davidb@goliath ~ $ ./simple_prec_test3d
j is 500000050000000.000000
```

How do you add numbers in FP

Evaluate 3+0.625+0.875, with 3 bit mantissa $x = \pm 2^e \times 0.b_1 b_2 ... b_m$

$$x = \pm 2^e \times 0.b_1b_2...b_m$$

How do you add numbers in FP

Evaluate 3+0.625+0.875, with 3 bit mantissa

• Compute 3+0.625

$$x = \pm 2^e \times 0.b_1b_2...b_m$$

- 3 is $2^2 \times 0.110$
- 0.625 is $2^{0} \times 0.101$
- Align exponents
 - 3 is $2^2 \times 0.110$
 - 0.625 is $2^2 \times 0.00101$
- Perform addition
 - 2²x0.11101
- Re-normalise to 5 bits
 - $2^2 \times 0.111 = 3.5$
 - Roundoff error of 0.125

• Compute 3.5+0.875.

- 3.5 is $2^2 \times 0.111$
- 0.875 is 2^{0} x0.111
- Align exponents
 - 3.5 is $2^2 \times 0.111$
 - 0.875 is $2^2 \times 0.00111$
- Perform addition
 - $2^2 \times 1.00011$
- Re-normalise to 5 bits
 - $2^3 \times 0.100 = 4$
 - Roundoff error of 0.375

How do you add numbers in FP

Evaluate 0.625+0.875+3, with 3 bit mantissa

• Compute 0.625+0.875

$$x = \pm 2^e \times 0.b_1 b_2 ... b_m$$

- 0.625 is 2^{0} x0.101
- 0.875 is 2^{0} x0.111
- Align exponents
 - 0.625 is 2^{0} x0.101
 - 0.875 is 2^{0} x0.111
- Perform addition
 - 2⁰x1.100
- Re-normalise to 5 bits
 - $2^1 \times 0.110 = 1.5$
 - No roundoff error

• Compute 1.5+3

- Result is 2¹x0.110
- 3 is $2^2 \times 0.110$
- Align exponents
 - 3 is $2^2 \times 0.110$
 - 0.875 is $2^2 \times 0.0110$
- Perform addition
 - $2^2 \times 1.001$
- Re-normalise to 5 bits
 - $2^3 \times 0.101 = 5$
 - Roundoff error of 0.5

Floating-point range/precision/underflow/overflow

- How do you increase range?
- How do you increase precision?
- What is overflow?
- What is underflow?

Worksheet Q4

Encoding symbols

- Why?
 - Computers cannot only work with numbers

- How do you encode any set of symbols?
 - Need to make a link between binary and a symbol
 - First define set
 - Work out minimum number of bits

Why ASCII

- 8-bits
 - Came up with 100 characters. Leave some room for redundancy.

Why ASCII

- 8-bits
 - Came up with 100 characters. Leave some room for redundancy.
 - Good thing: increase to approx. 200 (foreign characters)
- Problems?

Why ASCII

- 8-bits
 - Came up with 100 characters. Leave some room for redundancy.
 - Good thing: increase to approx. 200 (foreign characters)
- Problems?
 - What happens when add Chinese characters
 - Refine set of symbols, number of bits
 - Close to 36000
 - Different encodings
 - Unicode

ASCII vs Unicode

• Which is better?

Benefits of RGB coding

• What is 1110 0010 1101 0100 0000 0101?

• Note: Order matter

• How many combinations can we encode?

- How many combinations can we encode?
 - 23 bits -> how many: 8million

- How many combinations can we encode?
 - 23 bits -> how many: 8million
- How many do we need:
 - 360*100*100 = 3.6 million

- How many combinations can we encode?
 - 23 bits -> how many: 8million
- How many do we need:
 - 360*100*100 = 3.6 million
- Could we just use 22 bits?

- How many combinations can we encode?
 - 23 bits -> how many: 8million
- How many do we need:
 - 360*100*100 = 3.6 million
- Could we just use 22 bits?
 - Hard look-up table
 - Fast encoding/decoding

- How many combinations can we encode?
- 23 bits -> how many: 8million
- How many do we need: 360*100*100 = 3.6 million
- Could we just use 22 bits?

- How many combinations can we encode?
- 23 bits -> how many: 8million
- How many do we need: 360*100*100 = 3.6 million
- Could we just use 22 bits?
- Why would we not?
 - Hard look-up table
- Simple rules vs efficient rules
 - Fast encoding/decoding

Encoding/decoding

- Advantage of RGB is that it can be easily used
- Digital designers make these decisions to maximise efficiency.

Memory

Every computer has memory

What operations does a memory perform

What does a memory conceptually look like

Cells/number of cells

Memory notation

• What is a Byte?

General notation

• How many grams in a kilogram?

General notation

How many grams in a kilogram?

• How many metres in a kilometre?

General notation

• How many grams in a kilogram?

• How many metres in a kilometre?

• How many bytes in a kilobyte?

Memory notation

• KB: 2^10 Bytes,

• MB: 2^20 Bytes,

• GB: 2^30 Bytes,

How many cells in a 2GB memory, where each cell is 1 Byte.

- How many cells in a 2GB memory, where each cell is 1 Byte.
 - 2³⁰ *2 = 2³¹

How many cells in a 2GB memory, where each cell is 2 Bytes.

- How many cells in a 2GB memory, where each cell is 2 Bytes.
 - 2^30

- If write cell it stays
- If read it, you get it back

• If I write to a cell which already has a value, what happens to that value?

- If I write to a cell which already has a value, what happens to that value
 - Write means overwrite

• Say I write 4 bits into 8-bit cell. What happens?

- Write 4 bits into 8-bit cell. What happens?
- Zero pad
- What if you don't pad the 4-bits.
 - Overwrite 4, keep other
 - Remaining 4 unchanged
 - Doesn't write at all

Address

- Every cell in memory must have an address
 - What type of number/encoding for address?
 - Base-2 natural numbers
 - How many bits for address?

 How many bytes does a memory with addresses 10 bits, cells 1 byte have?

• 4GB memory, 2 byte cells. How many cells?

- 4GB memory, 2 byte cells. How many cells?
 - 2^31

• 10 bit address, 16 bit cell. How many cells?

Activity 2

How does a memory work

- Address goes to all cells.
- Decoder chooses one cell

How do we store things in memory

What if I want to store a big thing in memory

How do we store things in memory

- What if I want to store a big thing in memory
 - Use cells in consecutive locations (bytes)
 - Which order?

 Can a big endian architecture share memory with a little endian memory

Activity 3

What is an array?

- Suppose it is an array of integers
- \bullet A[] = {10, 267, 39, 40}
- How many bits?
- Suppose you have a memory with 1 byte cells. What does it look like?

- Memory has no notion of size
- It does not know how many bits are the integers
- It does not know they are storing integers
- How to know size of array if stored in memory?

How to find elements in memory

- Address base
- + bytes encoding size
- +3* size of element

- Memory has no notion of size
- It does not know how many bits are the integers
- It does not know they are storing integers
- How to know size of array if stored in memory?

- Memory has no notion of size
- It does not know how many bits are the integers
- It does not know they are storing integers
- How to know size of array if stored in memory?
 - Create a symbol to say end of array
 - Typically used for strings (null character)
 - Not great for integers (already have a 0)
 - Store the size
 - First put a number
 - Do nothing...
 - (

How to find elements in memory

- Address base
- + bytes encoding size
- +3* size of element

- E.g. look up A[5]
- What if look up A[7] in a array declared of size 6.
- First check it legal
 - Error message arrayindexoutofbounds
- Does this happen at run-time or compile time?

Activity 4

- Store in little endian
- Assume not storing size

• Treasure hunt

- Treasure hunt
 - Solve Clue 1, go to clue 2, solve that get to solution

• Direct:

- Read data in address 10.
- Go to memory, read address 10. Done

• Indirect:

- Read data in address 10.
- Look up address described in address 10

- Direct:
 - Read data in address 10.
 - Go to memory, read address 10. Done
- Indirect:
 - Read data in address 10.
 - Look up address described in address 10

Can have multiple indirection

Why indirection?

• Multiple indirection.

```
public class Data {
        int value;
        public static void main(String[] args) {
          Data obj1, obj2;
          obj1 = new Data();
          obj1.value = 1;
 8
10
          obj2 = obj1;
11
          obj2.valu = 2;
12
13
          System.out.println(obj1.value);
14
15
16
          return;
17
18
```