Додаток 1

Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського"

> Факультет інформатики та обчислювальної техніки Кафедра автоматизованих систем обробки інформації і управління

Звіт

з лабораторної роботи №7 з дисципліни «Алгоритми та структури даних-1. Основи алгоритмізації» «Дослідження лінійного пошуку в послідовностях» Варіант <u>6</u>

Виконав студент

ІП-15, Волинець Кирило Михайлович

(шифр, прізвище, ім'я, по батькові)

Перевірив

Вєчерковська Анастасія Сергіївна

(прізвище, ім'я, по батькові)

Лабораторна робота 7

Дослідження лінійного пошуку в послідовностях

Мета - дослідити методи послідовного пошуку у впорядкованих і невпорядкованих послідовностях та набути практичних навичок їх використання під час складання програмних специфікацій.

Індивідуальне завдання

Варіант 6

6	73 - i	64 + 2 * i	Кількість елементів між максимальним та мінімальним
			елементами

Побудова математичної моделі.

Складемо таблицю імен.

Змінна	Tun	Ім'я	Призначення
Розмір масивів (=10)	Цілочисельний	array_size	Стала
Перший масив	Символьний[array_size]	array1	Вхідні
Другий масив	Символьний[array_size]	array2	Вхідні
Масив рівних елементів	Символьний[array_size]	array3	Проміжні
Ітератор1	Цілочисельний	i	Проміжні
Ітератор2	Цілочисельний	j	Проміжні
Розмір третього масиву	Цілочисельний	array3_size	Проміжні
Побудова першого і другого масивів	Пустий (функція)	build_arrays(char*, char*)	Обчислення
Знаходження рівних елементів та їх кількості	Цілочисельний (функція)	find_equal_elements(char*, char*, char*)	Обчислення
Знаходження кількості елементів між максимальним та мінімальним	Цілочисельний (функція)	distance_between_m ax_min(char*, int)	Обчислення
Індекс мінімального	Цілочисельний	min_i	Проміжні
Індекс максимального	Цілочисельний	max_i	Проміжні
Модуль	Цілочисельний (функція)	abs()	Обчислення

Побудуємо два масиви array1 та array2 за допомогою циклу та ітератору. Обчислення будуть здійснені в функції build_arrays. Дані виводяться за допомогою покажчиків. Перший масив буде відсортований за спаданням, а другий за зростанням, тому що вони задані арифметичною прогресією. Знайдемо однакові елементи шляхом порівнювання кожного з кожним. Потім знайдемо відстань між максимальним та мінімальним за допомогою distance_between_max_min. Обійшовши масив, знайдемо позиції максимального та мінімального max_p min_p, та віднімемо їх. Треба взяти модуль, бо відстань від'ємна та відняти ще одиницю для правильного результату.

Розв'язання

Програмні специфікації запишемо у псевдокоді та графічній формі у вигляді блоксхеми.

Псевдокод Основна програма:

кінець find_equal_elements

```
початок
      build_arrays(array1, array2);
      array3_size = find_equal_elements(array1, array2, array3);
      вивести distance_between_max_min(array3, array3_size)
кінепь
Підпрограми:
build_arrays(char* array1, char* array2)
      повторити для і від 0 до і < array_size:
            array1[i] = 73 - i;
            array2[i] = 64 + 2 * i;
      все повторити
кінець build_arrays
find_equal_elements(char* arr1, char* arr2, char* arr3)
      array3\_size = 0
      повторити для і від 0 до arr_size:
            повторити для і від 0 до arr_size:
                  якщо arr1[i] == arr2[j] то:
                        arr3[array3\_size] = arr1[i]
                        array3\_size = array3\_size + 1
            все повторити
      все повторити
      повернути array3_size
```

```
distance_between_max_min(char* array3, int array3_size)

max_i = 0

min_i = 0

nobtoputu для і від 1 до і < array3_size:

якщо array3[i] > array3[min_i]:

max_i = i

все якщо

інакше якщо array3[i] < array3[min_i]:

min_i = i

все якщо

все повторити

повернути abs(max_i - min_i) - 1

кінець distance_between_max_min
```

Блок-схема:

Код програми

Випробування коду

```
Перший масив:
I(73) H(72) G(71) F(70) E(69) D(68) C(67) B(66) A(65) @(64)
Другий масив:
@(64) B(66) D(68) F(70) H(72) J(74) L(76) N(78) P(80) R(82)
Третій масив:
@(64) B(66) D(68) F(70) H(72)
Кількість елементів між мінімальним та максимальним = 3
C:\Users\kiril\source\repos\ASD7\Debug\ASD7.exe (процесс 24808) завершил работу с кодом 0.
Чтобы автоматически закрывать консоль при остановке отладки, включите параметр "Сервис" ->"Параметры" ->"Отладка" -> "А томатически закрыть консоль при остановке отладки".
Нажмите любую клавишу, чтобы закрыть это окно...
```

Висновки

Ми дослідили методи послідовного пошуку у впорядкованих і невпорядкованих послідовностях та набули практичних навичок їх використання під час складання програмних специфікацій. В результаті виконання лабораторної роботи ми отримали алгоритм для визначення двох масивів за формулою та знаходження кількості елементів між максимальним та мінімальним значень серед спільних членів обох масивів. В процесі випробування програма вивела три масиви та відповідь, що є вірною.