Curso de Arduino

Arduino

Introducción a Arduino: Presente

Introducción a Arduino: Presente

José Antonio Vacas Martínez

Hockey

Arduino avanzado

Física del café

Alimentador de mascotas activado por twitter

Can Bus: Centralita de un coche

Plot clock

Impresoras 3D: PrintrBot, RepRap, ...

2010

599€

Introducción a Arduino: Historia

- Maximo Banzi 2005
- Un bar le da nombre
- Made in Italy
- Computación física
- Precio objetivo 30\$
- 100% free source

David Cuartielles @dcuartielles

Gianluca Martino

Tom Igoe @tigoe

David Mellis @mellis

Massimo Banzi @mbanzi

Introducción a Arduino: Presente

300.000 en Mayo de 2011 ¿cuantos se venden ahora?

Due

Uno

Leo

Ethernet

Mega

Mini

Pro

Lilypad

Bluetooth

Yun

Introducción a Arduino: Futuro

- Galileo
- Tree
- Wifi (BBB)
- Android ADK
- ...

Introducción a Arduino: Donde

Makers/DIY

MakeProjects.com

Instructables.com

Introducción a Arduino: Licencias

¿Gratis como la cerveza?

software libre

hardware libre

<u>ejemplo</u> <u>como montarlo</u>

Introducción a Arduino: Trabajo

Hablando de Hardware

Hablando de Colaboración

Trabajo colaborativo

IDE: instalación

Descargamos el IDE de la página de descargas de Arduino

Descargar

http://arduino.cc/en/Main/Software

IDE: instalación

Una vez descargado, lo descomprimimos en una carpeta y a probar los ejemplos!!!

IDE: instalación Linux

sudo usermod -aG dialout <myuser>

El problema más habitual es el instalar el driver de arduino bajo Windows

La clave es seleccionar el directorio "drivers" que contiene "FTDI USB Drivers"

Hardware Arduino: Uno Rev 3

Uno Rev 3

- Zoom
- 5V
- aTMega328
- 14 digitales (6 PWM) + 6 analógicos
- 32Kb + 2Kb + 1Kb 16MHz
- 1 UART
- Detalles

Hardware Arduino: Bloques

Hardware Arduino: Mega 2560

Mega 2560

- 5V
- atMega 2560
- Zoom
- 54 digitales (15PWM) + 16 analógicos
- 256Kb + 8Kb + 4Kb 16MHz
- 4 UART
- Detalles

Hardware Arduino: Mega 2560

Hardware Arduino: DUE

Due

- 3.3V
- ARM SAM3X
- Zoom
- 54 digitales (8PWM) + 12 analógicos +
 2 DAC
- 512Kb + 96Kb + 0Kb 84MHz
- DMA
- 4 UART

Detalles

Hardware Arduino: DUE

Emuladores:¿y si no tengo arduino?

Simulator for Arduino

Virtualbreadboard

Emuladores:¿y si no tengo arduino?

123d.circuits.io

Prototipos: LED en la Breadboard

Prototipos: Breadboard

Estas son las conexiones internas que existen en una placa breadboard:

- Existen esas lineas largas de se utilizan para alimentación a lo largo de la placa.
- Las lineas perpendiculares unen 5 puntos (etiquetados como ABCDE) de cada fila

A la derecha se ven las conexiones que se pueden ver por la parte de abajo

Prototipos: Ejemplo para NO repetir

Prototipos: Así SI

Componentes: Kit

http://www.seeedstudio.com/wiki/index.php?title=Arduino_Sidekick_Basic_Kit

Componentes: Motor DC

Motor CC 3 a 6 V

3 a 6 V. Ø eje 2,3 mm. Ø motor 22 mm. L=27 mm.

http://www.electan.com/motor-cc-3-a-6-v-p-1540.html

Componentes: Controlador Motor

Arduino Shield Motor 2A DFRobot

Características:

- Soporta motores de 4.8 a 35V
- Hasta 2A cada motor
- Utiliza los pines 5,6,7,8 para controlar 2 motores DC
- Soporta control de velocidad PWM.
- Soporta PLL.

http://www.electan.com/arduino-shield-motor-dfrobot-p-3158.html
http://www.dfrobot.com/wiki/index.php?title=Arduino Motor Shield (L298N)
(SKU:DRI0009)

Componentes: Motor Paso a Paso

Small Stepper Motor

This is a Bipolar motor.

Features:

- Stride Angle (degrees): 7.5
- 2-Phase
- Rated Voltage: 12V
- Rated Current: 400mA
- 3mm Diameter Drive Shaft
- 4-Wire Cable Attached
- In-traction Torque: 100 g/cm

http://www.electan.com/motor-paso-paso-pequeno-p-3297.html

Componentes: LCD

6. Interface pin description

Pin no.	Symbol	External connection	Function		
1	Vss	25	Signal ground for LCM		
2	V _{DD}	Power supply	Power supply for logic for LCM		
3	Vo		Contrast adjust		
4	RS	MPU	Register select signal		
5	R/W	MPU	Read/write select signal		
6	E	MPU	Operation (data read/write) enable signal		
7~10	DB0~DB3	MPU	Four low order bi-directional three-state data bus lines. Used for data transfer between the MPU and the LCM. These four are not used during 4-bit operation.		
11~14	DB4~DB7	MPU	Four high order bi-directional three-state data bus lines. Used for data transfer between the MPU		
15	LED+	LED BKL power	Power supply for BKL		
16	LED-	supply	Power supply for BKL		

http://www.electan.com/basic-16x2-character-lcd-amber-black-33v-p-4144.html

Programando Arduino: IDE

```
∞ Blink | Arduino 1.0
File Edit Sketch Tools Help
                                                                Q
  Blink
  Blink
  Turns on an LED on for one second, then off for one second, repea
  This example code is in the public domain.
void setup() {
  // initialize the digital pin as an output.
  // Pin 13 has an LED connected on most Arduino boards:
  pinMode(13, OUTPUT);
void loop() {
  digitalWrite(13, HIGH); // set the LED on
  delay(1000);
                           // wait for a second
  digitalWrite(13, LOW); // set the LED off
  delay(1000);
                            // wait for a second
                                             ......
Compiling sketch.
                                                   Arduino Uno on COM3
```


Programando Arduino: Lenguaje

```
void setup()
{}

void loop()
{}
```

Guía de referencia de Arduino

<u>Librerías</u>

El mundo digital: salidas

digital output

This is the basic 'hello world' program used to simply turn something on or off. In this example, an LED is connected to pin13, and is blinked every second. The resistor may be omitted on this pin since the Arduino has one built in.

El mundo digital: entradas

digital input

This is the simplest form of input with only two possible states: on or off. This example reads a simple switch or pushbutton connected to pin2. When the switch is closed the input pin will read HIGH and turn on an LED.

```
// output pin for the LED
int ledPin = 13;
int inPin = 2;
                           // input pin (for a switch)
void setup()
  pinMode(ledPin, OUTPUT); // declare LED as output
  pinMode(inPin, INPUT); // declare switch as input
void loop()
  if (digitalRead(inPin) == HIGH) // check if input is HIGH
    digitalWrite(ledPin, HIGH);
                                 // turns the LED on
    delay(1000);
                                 // pause for 1 second
   digitalWrite(ledPin, LOW);
                                 // turns the LED off
    delay(1000);
                                 // pause for 1 second
```


El mundo analógico: entradas

potentiometer input

Using a potentiometer and one of the Arduino's analog-to-digital conversion (ADC) pins it is possible to read analog values from 0-1024. The following example uses a potentiometer to control an LED's rate of blinking.

```
int potPin = 0;  // input pin for the potentiometer
int ledPin = 13;  // output pin for the LED

void setup()
{
   pinMode(ledPin, OUTPUT);  // declare ledPin as OUTPUT
}

void loop()
{
   digitalWrite(ledPin, HIGH);  // turns ledPin on
   delay(analogRead(potPin));  // pause program
   digitalWrite(ledPin, LOW);  // turns ledPin off
   delay(analogRead(potPin));  // pause program
}
```


El mundo analógico: salidas

pwm output

Pulsewidth Modulation (PWM) is a way to fake an analog output by pulsing the output. This could be used to dim and brighten an LED or later to control a servo motor. The following example slowly brightens and dims an LED using for loops.

Comunicaciones: introducción

Comunicando con el pc:

```
void setup() {
Serial.begin(9600);}

int i=0;
void loop() {
    Serial.print("hola ");
    Serial.println(i);
}
```


Sensores

Existem multitud de sensores:

Cada uno diseñado para medir una magnitud física distinta.

A partir de esa medida generará un voltaje que mediremos con nuestro Arduino conectándolos habitualmente a una entrada analógica

Sensores: Referencia externa

A veces nuestro montaje necesita medir con voltajes diferentes de los 5V habituales. Para ello podemos usar la función

```
analogReference(valor);
con valor pudiendo ser
```

- DEFAULT: el valor por defecto (5V en placas de 5 y 3.3V en las de 3.3)
- INTERNAL: 1.1V en ATmega168 or ATmega328 y 2.56V en ATmega8
- INTERNAL1V1: 1.1V (Sólo Arduino Mega)
- INTERNAL2V56: 2.56V (Sólo Arduino Mega)
- EXTERNAL: el voltaje de AREF pin (0 to 5V)

Ejemplo muy documentado en Arduteka

Sensores: LDR (Luz)

Sensores: Temperatura

LM35 Especificación // Ejemplo en http://fritzing.org/projects/digital-thermometer-with-lm35/ int analogPin = 0; // Pin analogico 0 de Arduino int temperature = 0; int lm35read; void setup() Serial.begin(9600); void loop () lm35read = analogRead(analogPin); temperature = (5.0 * Im35read * 100.0)/1024.0; Serial.print(temperature); Serial.println("C"); LM35 delay(5000);

Proyectos: Termómetro digital

Proyectos: Termómetro digital

```
int startTemp=20;
void setup()
{ Serial.begin(9600);
  for (int i=2;i<8; i++)
 { pinMode(i,OUTPUT);
void loop()
{ int lm35read = analogRead(A0);
 float temperature = (5.0 * Im35read * 100.0)/1024.0;
 temperature = temperature*0.488;
 for (int i=0; i<8; i++)
  if (temperature>((i*2)+startTemp))
       digitalWrite(i,HIGH); }
  else
      digitalWrite(i,LOW);
 Serial.print(temperature);
 Serial.println(" °C");
 delay(500);
```


Proyectos: Comparador luminoso

Reciclando hardware

	Impresoras	Videos	Lectores DVD	Coches RF
Motores	X	Х	X	Х
Led	X	Х		
Laser			X	
Drivers	×	Х	X	Х
Componentes	Х	Х	X	Х

Reciclando hardware: Samples

samples (muestras): Texas Instruments y Maxim

- Lista de fabricantes que proporcionan samples de instructables
- Fabricantes que proporcionan samples segun ladyada
- En hack a day han recopilado también fuentes

Reciclando hardware: Todo gratis

http://www.instructables.com/id/How-To-Get-FREE-Electronic-parts/?ALLSTEPS

http://blog.elcacharreo.com/2012/04/13/de-donde-obtener-material-electronico-gratis/

Fuentes

arduino arduino programing notebook freeduino

Conclusiones

Gracias por vuestra atención

