String Synchronizing Sets

Sublinear-Time BWT Construction and Optimal LCE Data Structure

Dominik Kempa and Tomasz Kociumaka

STOC 2019 Phoenix, AZ June 25th, 2019

Burrows-Wheeler Transform: Definition

Burrows & Wheeler, 1994

T 1101001010101010010100

```
BWT
      0010100
      0010101010010100
      0100
      010010100
      010010101010010100
      010100
      01010010100
      0101010010100
      010101010010100
      100
      10010100
       10010101010010100
       10100
       .010010100
       1010010101010010100
      11010010101010010010100
```

Burrows-Wheeler Transform: Definition

Burrows & Wheeler, 1994

```
T 11010010101010100
```

```
BWT
      0010100
      0010101010010100
      0100
      010010100
        0010101010010100
      010100
        1010010100
      0101010010100
      010101010010100
      100
      10010100
       10010101010010100
       10100
       .010010100
       1010010101010010100
      11010010101010010010100
```

Burrows-Wheeler Transform: Definition

Burrows & Wheeler, 1994

```
1101001010101010010100
BWT
      0010100
      0010101010010100
      0100
      010010100
      010010101010010100
      010100
      01010010100
      0101010010100
      010101010010100
      100
      10010100
      10010101010010100
      10100
       1010010100
        10010101010010100
      11010010101010010100
```

Burrows-Wheeler Transform: Applications

T : 11010010101010010100 BWT(*T*) : 0111111011000001000

- First step in compression schemes, e.g., bzip2
 - If T is compressible, then BWT(T) has long **runs** of equal symbols.
 - **Simple** methods on BWT(T) instead of **difficult** methods on T.
- Main component of indexes solving many tasks in small space:
 - MINIMALABSENTWORD
 - LongestBorder.
 - MaximalRepeats
 - MatchingStatistics
 - TANDEMREPEATS

- APPROXSHORTESTSUPERSTING
- LongestCommonSubstring
- MaximalUniqueMatches
- SHORTESTUNIQUESUBSTRING
- LongestRepeatedFactor

Selected construction algorithms:

Algorithm	Space (words)	Time
Classic (suffix trees)	$\mathcal{O}(n)$	$\mathcal{O}(n\log\sigma)$
Farach (FOCS'97)	$\mathcal{O}(n)$	$\mathcal{O}(n)$

Selected construction algorithms:

Algorithm	Space (words)	Time
Classic (suffix trees)	$\mathcal{O}(n)$	$\mathcal{O}(n\log\sigma)$
Farach (FOCS'97)	$\mathcal{O}(n)$	$\mathcal{O}(n)$
Hon et al. (FOCS'03)	$\mathcal{O}(n/\log_{\sigma}n)$	$\mathcal{O}(n\log\log\sigma)$
Belazzougui (STOC'14)	$\mathcal{O}(n/\log_{\sigma}n)$	$\mathcal{O}(n)$ randomized
Munro et al. (SODA'17)	$\mathcal{O}(n/\log_{\sigma}n)$	$\mathcal{O}(n)$

Selected construction algorithms:

Algorithm	Space (words)	Time
Classic (suffix trees)	$\mathcal{O}(n)$	$\mathcal{O}(n\log\sigma)$
Farach (FOCS'97)	$\mathcal{O}(n)$	$\mathcal{O}(n)$
Hon et al. (FOCS'03)	$\mathcal{O}(n/\log_{\sigma}n)$	$\mathcal{O}(n\log\log\sigma)$
Belazzougui (STOC'14)	$\mathcal{O}(n/\log_{\sigma}n)$	$\mathcal{O}(n)$ randomized
Munro et al. (SODA'17)	$\mathcal{O}(n/\log_{\sigma}n)$	$\mathcal{O}(n)$
This work	$\mathcal{O}(n/\log_{\sigma}n)$	$\mathcal{O}(n\log\sigma/\sqrt{\log n})$

Selected construction algorithms for $\sigma = \mathcal{O}(1)$:

Algorithm	Space (words)	Time
Classic (suffix trees)	$\mathcal{O}(n)$	$\mathcal{O}(n \log \sigma)$
	$\mathcal{O}(n)$	$\mathcal{O}(n)$
Hon et al. (FOCS'03)	$\mathcal{O}(n/\log_{\sigma}n)$	$\mathcal{O}(n \log \log \sigma)$
	$\mathcal{O}(n/\log_{\sigma}n)$	$\mathcal{O}(n)$ randomized
	$\mathcal{O}(n/\log_{\sigma}n)$	$\mathcal{O}(n)$
This work	$\mathcal{O}(n/\log_{\sigma}n)$	$O(n \log \sigma / \sqrt{\log n})$

Selected construction algorithms for $\sigma = \mathcal{O}(1)$:

Algorithm	Space (words)	Time
Classic (suffix trees)	$\mathcal{O}(n)$	$\mathcal{O}(n \log \sigma)$
	$\mathcal{O}(n)$	$\mathcal{O}(n)$
Hon et al. (FOCS'03)	$\mathcal{O}(n/\log_{\sigma}n)$	$\mathcal{O}(n \log \log \sigma)$
	$\mathcal{O}(n/\log_{\sigma}n)$	$\mathcal{O}(n)$ randomized
	$\mathcal{O}(n/\log_{\sigma}n)$	$\mathcal{O}(n)$
This work	$O(n/\log_{\sigma}n)$	$O(n \log \sigma / \sqrt{\log n})$

Why $\mathcal{O}(n/\sqrt{\log n})$ rather than $\mathcal{O}(n/\log n)$ time?

Selected construction algorithms for $\sigma = \mathcal{O}(1)$:

Algorithm	Space (words)	Time
Classic (suffix trees)	$\mathcal{O}(n)$	$\mathcal{O}(n\log\sigma)$
Farach (FOCS'97)		$\mathcal{O}(n)$
Hon et al. (FOCS'03)	$\mathcal{O}(n/\log_{\sigma}n)$	$\mathcal{O}(n \log \log \sigma)$
Belazzougui (STOC'14)		$\mathcal{O}(n)$ randomized
Munro et al. (SODA'17)		$\mathcal{O}(n)$
This work	$\mathcal{O}(n/\log_{\sigma}n)$	$O(n \log \sigma / \sqrt{\log n})$

Why $\mathcal{O}(n/\sqrt{\log n})$ rather than $\mathcal{O}(n/\log n)$ time?

BWT construction in $o(n/\sqrt{\log n})$ time for binary length-n strings

Counting inversions in $o(m\sqrt{\log m})$ time for length-m permutations Would improve upon the algorithm by Chan and Pătrașcu (SODA 2010).

Longest Common Extension Queries

Landau & Vishkin, J. Comput. Syst. Sci. 1988

Definition

The **Longest Common Extension** LCE(i, j) is the length of the longest common prefix of T[i ... n] and T[j ... n].

Longest Common Extension Queries

Landau & Vishkin, J. Comput. Syst. Sci. 1988

Definition

The **Longest Common Extension** LCE(i, j) is the length of the longest common prefix of T[i ...n] and T[j ...n].

Used as a **subroutine** in many algorithms and data structures such as for:

- approximate pattern matching (the kangaroo method),
- discovery of repetitions in strings,
- construction of text indexing data structures.

Data Structures for LCE Queries

Data structures supporting constant-time LCE queries:

Algorithm	Space (words)	Construction Time
Landau & Vishkin (JCSS'88)	$\mathcal{O}(n)$	$\mathcal{O}(n\log\sigma)$
Farach (FOCS'97)	$\mathcal{O}(n)$	$\mathcal{O}(n)$

Data Structures for LCE Queries

Data structures supporting constant-time LCE queries:

Algorithm	Space (words)	Construction Time
Landau & Vishkin (JCSS'88)	$\mathcal{O}(n)$	$\mathcal{O}(n\log\sigma)$
Farach (FOCS'97)	$\mathcal{O}(n)$	$\mathcal{O}(n)$
Tanimura et al. (MFCS'17)	$\mathcal{O}(n\sqrt{\log\sigma}/\sqrt{\log_{\sigma}n})$	_
Munro et al. (arXiv'17)	$\mathcal{O}(n/\sqrt{\log_{\sigma} n})$	$\mathcal{O}(n/\sqrt{\log_{\sigma} n})$
Birenzwige et al. (arXiv'18)	$\mathcal{O}(n/\log_{\sigma}n)$	$\mathcal{O}(n)$ randomized

Data Structures for LCE Queries

Data structures supporting constant-time LCE queries:

Algorithm	Space (words)	Construction Time
Landau & Vishkin (JCSS'88)	$\mathcal{O}(n)$	$\mathcal{O}(n\log\sigma)$
Farach (FOCS'97)	$\mathcal{O}(n)$	$\mathcal{O}(n)$
Tanimura et al. (MFCS'17)	$\mathcal{O}(n\sqrt{\log\sigma}/\sqrt{\log_{\sigma}n})$	_
Munro et al. (arXiv'17)	$\mathcal{O}(n/\sqrt{\log_{\sigma} n})$	$\mathcal{O}(n/\sqrt{\log_{\sigma} n})$
Birenzwige et al. (arXiv'18)	$\mathcal{O}(n/\log_{\sigma}n)$	$\mathcal{O}(n)$ randomized
this work	$\mathcal{O}(n/\log_{\sigma}n)$	$\mathcal{O}(n/\log_{\sigma}n)$

Asymptotically optimal for each alphabet size!

BWT construction algorithm

Toy special case:

T is binary except for 2's at $\Theta(\frac{n}{\tau})$ positions, at least one every τ positions.

Toy special case:

T is binary except for 2's at $\Theta(\frac{n}{\tau})$ positions, at least one every τ positions.

Toy special case:

T is binary except for 2's at $\Theta(\frac{n}{\tau})$ positions, at least one every τ positions.

```
Example for \tau=4:   
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 2 1 0 1 2 0 1 2 1 0 1 2 1 0 2 0 2
```

```
20 2

5 2012101210210202

18 202

1 21012012101210210202

8 2101210210202

15 210202

12 210210202
```

Toy special case:

T is binary except for 2's at $\Theta(\frac{n}{\tau})$ positions, at least one every τ positions.

Fact: Suffixes starting with a 2 can be sorted in $\mathcal{O}(n/\tau)$ time.

20 2 5 2012101210210202 18 202 1 21012012101210210202 8 2101210210202 15 210202 12 210210202

Toy special case:

T is binary except for 2's at $\Theta(\frac{n}{\tau})$ positions, at least one every τ positions.

	Example for $ au=$ 4:																		
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
2	1	0	1	2	0	1	2	1	0	1	2	1	0	2	1	0	2	0	2
D				В			D				Ε			Ε			С		Α

Fact: Suffixes starting with a 2 can be sorted in $\mathcal{O}(n/\tau)$ time.

5 2012101210210202 18 202 1 21012012101210210202 8 2101210210202 15 210202 12 210210202

Toy special case:

T is binary except for 2's at $\Theta(\frac{n}{\tau})$ positions, at least one every τ positions.

	Example for $ au=$ 4:																		
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
2	1	0	1	2	0	1	2	1	0	1	2	1	0	2	1	0	2	0	2
D				В			D				Ε			Ε			C		Α

```
7 A 20 2
2 BDEECA 5 2012101210210202
6 CA 18 202
1 DBDEECA 1 21012012101210210202
3 DEECA 8 2101210210202
5 ECA 15 210202
4 EECA 12 210210202
```

Toy special case:

T is binary except for 2's at $\Theta(\frac{n}{\tau})$ positions, at least one every τ positions.

	Example for $ au=$ 4:																		
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
2	1	0	1	2	0	1	2	1	0	1	2	1	0	2	1	0	2	0	2
D				В			D				Ε			Ε			С		Α

```
7 A 20 2
2 BDEECA 5 2012101210210202
6 CA 18 202
1 DBDEECA 1 21012012101210210202
3 DEECA 8 2101210210202
5 ECA 15 210202
4 EECA 12 210210202
```

Toy special case:

T is binary except for 2's at $\Theta(\frac{n}{\tau})$ positions, at least one every τ positions.

						E>	kan	np	le i	tor	au	=	4:						
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
2	1	0	1	2	0	1	2	1	0	1	2	1	0	2	1	0	2	0	2
D				В			D				Ε			Ε			С		Α

7	Α	20	2
2	BDEECA	5	2012101210210202
6	CA	18	202
1	DBDEECA	1	21012012101210210202
3	DEECA	8	2101210210202
5	ECA	15	210202
4	EECA	12	210210202

012 012101210210202
012 101210210202
012 10210202
02
0202
02 10202
1012 012101210210202
1012 10210202
10202
102 10202
12 012101210210202
12 101210210202
12 10210202
2
2 012101210210202
2 02
2 1012012101210210202
2 101210210202
2 10202
2 10210202

	012 012101210210202
	012 101210210202
	012 10210202
	02
	0202
	02 10202
	1012 012101210210202
	1012 10210202
	10202
	102 10202
	12 012101210210202
	12 101210210202
	12 10210202
20	2
2101	2 012101210210202
210	2 02
2	2 1012012101210210202
201	2 101210210202
210	2 10202
2101	2 10210202

Wavelet Trees

Wavelet Trees

Wavelet Trees

Wavelet Trees

Theorem (Munro et al., SPIRE'14; Babenko et al., SODA'15)

The wavelet tree of a sequence of m items with b bits each can be computed in $\mathcal{O}(mb/\sqrt{\log m})$ time using $\mathcal{O}(mb/\log m)$ space.

21012012101210210202

- 7 A
 2 BDEECA
 6 CA
 1 DBDEECA
 3 DEECA
 5 ECA
- - DBDEECA

- EECA

```
20 7 A
2101 2 BDEECA
210 6 CA
2 1 DBDEECA
201 3 DEECA
210 5 ECA
2101 4 FECA
```


1

20 7 A 2101 2 BDEECA 210 6 CA 2 1 DBDEECA 201 3 DEECA 210 5 ECA 2101 4 EECA

1 2 1 2	012
1	02
1 2 2	1012
	102
	12

2

20 7 A 2101 2 BDEECA 210 6 CA 2 1 DBDEECA 201 3 DEECA 210 5 ECA 2101 4 EECA

1 2 1	012
1 2 1 1	02
2	1012
2 2	102
1 2 2 2 2 0 0 0 0	12
0 1 0 2 1 0	2

String Synchronizing Sets

A τ -synchronizing set of T is a set of positions S that is

```
small: |S| = \mathcal{O}(\frac{n}{\tau});
```

consistent: whether $i \in S$ depends only on $T[i ... i + 2\tau - 1]$,

dense: $S \cap [i ... i + \tau - 1] \neq \emptyset$ for $i \in [1 ... n - 3\tau + 2]$.

String Synchronizing Sets

A τ -synchronizing set of T is a set of positions S that is

```
small: |\mathsf{S}| = \mathcal{O}(\frac{n}{\tau}); consistent: whether i \in \mathsf{S} depends only on T[i\mathinner{\ldotp\ldotp} i+2\tau-1], dense: \mathsf{S} \cap [i\mathinner{\ldotp\ldotp} i+\tau-1] \neq \emptyset for i \in [1\mathinner{\ldotp\ldotp} n-3\tau+2] if and only if \mathsf{per}(T[i\mathinner{\ldotp\ldotp} i+3\tau-1]) > \frac{1}{3}\tau.
```

String Synchronizing Sets

A τ -synchronizing set of T is a set of positions S that is

small:
$$|S| = \mathcal{O}(\frac{n}{\tau})$$
;

consistent: whether $i \in S$ depends only on $T[i ... i + 2\tau - 1]$,

dense: $S \cap [i ... i + \tau - 1] \neq \emptyset$ for $i \in [1 ... n - 3\tau + 2]$ if and only if $per(T[i ... i + 3\tau - 1]) > \frac{1}{3}\tau$.

Theorem

Given a text T and a positive integer τ , one can deterministically construct a τ -synchronizing set of size $\mathcal{O}(\frac{n}{\tau})$:

- in $\mathcal{O}(n)$ time in general,
- in $\mathcal{O}(\frac{n}{\tau})$ time if $\tau \leqslant \frac{1}{5} \log_{\sigma} n$.

0	0
1	00
1 1	0010
1	0100
1 1	01001
0 1 1 0	01010
0	100
0	1001
0 0 1 0 0	1010
0	11010

Conclusions

Our contributions:

- **I** BWT construction: $\mathcal{O}(n \log \sigma / \sqrt{\log n})$ time, $\mathcal{O}(n / \log_{\sigma} n)$ space.
- **2** LCE queries in $\mathcal{O}(1)$ time after $\mathcal{O}(n/\log_{\sigma} n)$ -time preprocessing.
- **3** The notion of τ -synchronizing sets.

Conclusions

Our contributions:

- **I** BWT construction: $\mathcal{O}(n \log \sigma / \sqrt{\log n})$ time, $\mathcal{O}(n / \log_{\sigma} n)$ space.
- **2** LCE queries in $\mathcal{O}(1)$ time after $\mathcal{O}(n/\log_{\sigma} n)$ -time preprocessing.
- **3** The notion of τ -synchronizing sets.

Further work:

- **1** Lower bounds for BWT construction with any alphabet size σ .
- 2 Sublinear-time construction of further objects.
- 3 External-memory counterpart.
- 4 Improve the running time wrt. more subtle instance size measures.

Conclusions

Our contributions:

- **I** BWT construction: $\mathcal{O}(n \log \sigma / \sqrt{\log n})$ time, $\mathcal{O}(n / \log_{\sigma} n)$ space.
- **2** LCE queries in $\mathcal{O}(1)$ time after $\mathcal{O}(n/\log_{\sigma} n)$ -time preprocessing.
- **3** The notion of τ -synchronizing sets.

Further work:

- **I** Lower bounds for BWT construction with any alphabet size σ .
- 2 Sublinear-time construction of further objects.
- 3 External-memory counterpart.
- 4 Improve the running time wrt. more subtle instance size measures.

Thank you for your attention!