Understanding R1-Zero-Like Training: A Critical Perspective (arxiv)

Key Highlights

問題

- 這篇論文旨在解決什麼問題?本篇論文批判性地研究了類似於R1-Zero的訓練範式,該範式使用強化學習(RL)直接提升LLM的推理能力而不進行有監督的微調。旨在理解兩個核心組件:基礎模型和RL算法。
- 現有的方法有哪些,並且它們有什麼限制?
 - 。現有的方法使用群體相對策略優化(GRPO)進行RL訓練
 - GRPO存在優化偏差,尤其對於錯誤的輸出人工增大了答案的長度
 - 。 開源的PPO實現也含有長度歸一化偏差
 - 。對基礎模型能力和"神奇時刻"的理解不完全

解決方案

- **論文提出了什麼解決方案?** 本論文提出了Dr. GRPO(GRPO Done Right),該 方法去除了原GRPO目標中的長度歸一化(1/|oi|)和標準差歸一化項,以消除優化 偏差。
- **這個理念是受哪些論文影響的?** 這個解決方案的靈感來自於識別出GRPO的長度歸一化在優化過程中產生的回應層級和問題層級難度偏差,導致人工增大錯誤的回應 長度。
- **什麼理論基礎支持這個方法?** 該方法基於正確的策略梯度推導,表明標準差和|o|項 不應出現在無偏的RL目標中,並恢復使用蒙特卡洛優勢估計的標準PPO目標。

實驗

- 實驗效果如何?
 - 使用7B模型在AIME 2024上達到43.3%精度(新的SOTA)
 - Dr. GRPO在保持推理性能同時提高了token效率
 - 。 防止錯誤回應逐漸增加
 - 。在8×A100 GPUs上僅用27小時完成訓練
- 這個方法有什麼限制或假設?
 - 。 實驗主要集中在數學推理任務上
 - 。限於特定的基礎模型家族(Qwen2.5, DeepSeek, Llama)

。 假設基於結果的獎勵信號是足夠的

創新

- 這篇論文有什麼重要或新奇的發現?
 - 。 發現DeepSeek-V3-Base在RL訓練之前已經展示出"神奇時刻"
 - 。發現Qwen2.5模型在沒有提示模板的情況下表現最佳,表明預訓練偏差
 - 揭示GRPO中系統性的優化偏差,人工增大回應長度
 - 顯示模板與模型不匹配可能在RL重建之前破壞推理性能
 - 。展示特定領域的預訓練提高了RL性能上限

評論/批判

- 這篇論文有哪些限制?
 - 。 評估主要集中在數學推理領域
 - 。關於Qwen2.5在預訓練中是否使用了拼接的問題-答案對的假設缺乏直接驗證
 - 分析主要集中在少數模型家族,限制了泛化性
- 論文是否有效地支持其主張? 是的,論文提供了全面的實驗驗證,包括:
 - 。多個基礎模型和模板的系統分析
 - 。清晰的數學推導展示GRPO偏差
 - ∘ 經驗比較展示Dr. GRPO的有效性
 - 。 開源代碼和模型以便於複現

Comprehensive Analysis

Abstract

這篇論文分析了 DeepSeek-R1-Zero 的方法,該方法通過強化學習來增強大型語言模型 (LLM) 的推理能力,而不需經過監督式微調。作者研究了兩個關鍵方面:

基礎模型分析: - 他們研究了各種基礎模型(包括 DeepSeek-V3-Base 和 Qwen2.5),以了解預訓練如何影響強化學習表現。 - 主要發現包括: - DeepSeek-V3-Base 在訓練過程中顯示出「頓悟時刻」。 - Qwen2.5 模型即使沒有提示模板也能展現強大的推理能力,這表明存在潛在的預訓練偏差。

強化學習優化問題: - 他們發現 Group Relative Policy Optimization (GRPO) 中存在一個偏差,這會人為地增加回應長度,特別是對錯誤的答案。

貢獻: - 引入了「Dr. GRPO」——一種改進的、無偏的優化方法,它在保持推理性能的同時,提高了令牌效率。 - 開發了一種簡化的 R1-Zero 訓練方案,使用僅有 70 億參數模型在 AIME 2024 中達到了 43.3% 的準確率,創下了新的最先進水準。

這項工作提供了關於基於強化學習增強推理能力的理論見解以及對訓練方法的實際改進。

Introduction

- 這篇介紹分析了 DeepSeek-R1-Zero 訓練模式,該模式直接應用強化學習(RL) 於基礎語言模型,無需事先經過監督微調。
- 本文探討了兩個關鍵方面:
 - 1. **基礎模型分析**:檢視各種基礎模型的屬性,重點針對 Qwen2.5 模型系列(在R1-Zero 複現嘗試中使用)和 DeepSeek-V3-Base(原始 R1-Zero 的基礎模型)。
 - 2. **RL 優化問題**:識別 GRPO(群體相對策略優化)算法中的偏差問題,這些偏差問題可能導致模型生成的回應越來越長但不正確。作者提出了"Dr. GRPO"(正確實施 GRPO)作為解決方案,以改進 token 效率。
- 本文的主要貢獻是提出了一個簡化的 R1-Zero 類似訓練配方,通過在數學問題上用 Dr. GRPO RL 調整 Qwen2.5-Math-7B 模型,達到最先進的性能效果,只需 8 個 A100 GPU 計算 27 小時。
- 這項工作旨在推進對這種訓練模式及其相關現象的理解,包括"RL 擴展"效應,該 效應表明推理能力隨著回應的加長而改善,以及新興的自我反思技能。

"DeepSeek-R1-Zero (Guo et al., 2025) revolutionizes the pipeline of large language model (LLM) post-training by introducing the R1-Zero-like training paradigm: directly applying RL to base LLMs without relying on supervised fine-tuning (SFT) as a preliminary step."

DeepSeek-R1-Zero (Guo et al., 2025) 通過引入 R1-Zero 類訓練範式革命了大語言模型 (LLM) 的後訓練流程:直接將強化學習 (RL) 應用於基礎LLM,而不依賴於監督微調 (SFT) 作為初步步驟。

"In the second part, we identify the bias in optimization of GRPO (Shao et al., 2024), which may lead to progressively longer incorrect responses. To this end, we propose a simple modification to eliminate the bias, i.e., to get GRPO Done Right (Dr. GRPO), which leads to better token efficiency"

在第二部分,我們識別出 GRPO(Shao et al., 2024)優化中的偏差,這可能會導致越來越長的不正確回應。為此,我們提出了一個簡單的修改來消除這種偏差,即實現正確的GRPO(Dr. GRPO),這使得 token 效率更高。

"Our analysis on base models and RL suggests a minimalist recipe for R1-Zero-like training: we RL-tune Qwen2.5-Math-7B using the (unbiased) Dr. GRPO algorithm on MATH (Hendrycks et al., 2021) level 3-5 questions with the Qwen-Math template, and achieve state-of-theart performance (Fig. 2) with only 27 hours compute on 8× A100 GPUs."

我們對基礎模型和強化學習的分析表明,R1-Zero 類訓練的最小化方案是:我們使用(無偏的) Dr. GRPO 演算法,在MATH(Hendrycks et al., 2021)3-5級問題上,使用 Qwen-Math 範本,對 Qwen2.5-Math-7B 進行強化學習調整,並在 8 台 A100 GPU 上僅用 27 小時計算時間達到最先進的性能(如圖2所示)。

Analysis on Base Models

- 本節描述了對幾個先進的大型語言模型在數學推理任務上的實證評估。
- 研究人員使用MATH數據集中的500個問題樣本,測試了多個基礎模型系列 (Qwen-2.5、Llama-3.1和DeepSeek)——這是一個知名的數學問題解決能力 基準。
- 目的是在未應用任何專門的微調或增強技術前,分析和比較這些不同的基礎模型在數學推理上的表現。

R1-Zero Trainability: Templates Construct Exploratory Base Policies

以下是該筆記的翻譯,使用了繁體中文並遵循了指示:

- 本節探討了如何通過不同的提示模板將基礎語言模型(原本訓練用於句子補完)轉變為有效的問答策略,以適用於R1-Zero強化學習範式。
- 測試的模板:
 - **模板1(R1)**:結構化的對話格式,在<think>標籤中包含明確的推理,在<answer>標籤中提供答案
 - 模板2(Qwen-Math):系統提示鼓勵逐步推理,最終答案使用\boxed{}格式
 - 。**模板3(無模板)**:原始問題輸入,無格式化處理
- 實驗方法:
 - 。在六款模型(參數從1.5B到685B不等,包括Qwen、Llama、DeepSeek變體)上進行測試
 - 使用GPT-4o-mini評估回應是遵循問答模式還是句子補完模式
 - 。根據答案格式的百分比為每個模型選擇最佳模板
 - 測量pass@8準確率以評估強化學習中的探索能力
- **目的:** 確立基本模型是否可以通過適當的提示工程成為強化學習訓練的可行起始策略,從而形成R1-Zero訓練範式的基礎。

"Since training from a base model is a fundamental setting of the R1-Zero-like paradigm, we first investigate whether widely used open-source base models, which are typically trained for sentence completion (i.e., $p\theta(x)$), can have their question-answering capabilities effectively elicited through appropriate templates, thereby functioning as a question-answering base policy $\pi\theta(\cdot|q)$."

由於從基礎模型訓練是 R1-Zero 類似範式的一個基本設置,我們首先調查廣泛使用的開源基礎模型(通常是訓練用於句子補全 (即 $p\theta(x)$)),能否通過適當的模板有效地引出其回答問題的能力,從而作為問答基礎策略 $\pi\theta(\cdot|q)$ 運行。

"We then apply both R1 template and Qwen-Math template to obtain model responses, and determine the most suitable template for each model based on the metric."

然後,我們應用 R1 模板和 Qwen-Math 模板來獲取模型的響應,並根據指標確定每個模型最合適的模板。

"Finally, we evaluate the pass@8 accuracy of each model with the corresponding template to assess whether the base policies can explore rewarding trajectories for RL improvement."

最後,我們評估每個模型使用相應模板的 pass@8 準確性,以評估基礎策略是否能探索 出對強化學習改進有利的路徑。

Qwen-2.5 Models Unlock the Best Performance When Discarding Template

這部分研究了一項意外的發現,即 Qwen-2.5 基礎模型在不需要任何格式模板的情況下表現良好,能夠有效地作為聊天模型使用。 研究人員在五個數學推理基準上對 Qwen-2.5-Math 模型進行了評估(AIME 2024、AMC、MATH500、Minerva Math 和 OlympiadBench),並發現移除模板後性能顯著提高了約60%,相比於傳統的4-shot提示方法。 作者假設這種不尋常的現象源於 Qwen-2.5-Math 的預訓練方法,該方法可能包含了在訓練數據中具有聊天風格的問答對,使得基礎模型在沒有顯式微調的情況下本身就具有對話能力。 這一發現對於嘗試重現其他模型(如 DeepSeek-R1-Zero)的研究人員提出了重要的考慮,因為 Qwen-2.5 基礎模型可能已經具備類似於監督微調(SFT)能力,這可能會影響實驗的有效性。 主要結論:Qwen-2.5 模型挑戰了關於聊天功能必需模板的傳統假設,這可能歸因於其獨特的預訓練方法。

"all Qwen2.5 base models readily serve as chat models even without any template"

所有 Qwen2.5 基礎模型即使在沒有任何模板的情況下也能出色地擔任聊天模型。

"not using any template can drastically boost the average performance, resulting in an improvement of about 60% compared to the traditional 4-shot prompting"

不使用任何模板可以大幅提升平均性能,相比傳統的四次提示法其性能提高約60%。

"Since Qwen2.5-Math uses chat model's data (question-answer pairs) during the pretraining stage, we hypothesize that they might pretrain on the concatenated text to maximize $\log p\theta(q; o)$ directly"

由於 Qwen2.5-Math 在預訓練階段使用了聊天模型的數據(問答對),我們推測它們可能會在串聯文本上進行預訓練以直接最大化 $\log p\theta(q; o)$ 。

Aha Moment Already Appears in Base Models Including DeepSeek-V3-Base

以下是指定語言的翻譯,繁體中文:

- 本節探討 AI 模型中的"靈光一閃"(自我反思行為)是否真的是從強化學習中產生的,還是已經在基礎模型中存在。
- 作者通過測試 DeepSeek-V3-Base-685B(用於創建 DeepSeek-R1-Zero 的實際基礎模型)來填補之前研究中的空白。

主要發現: - 之前的研究表明,開源的 R1 仿製品可能不會顯示真正的"靈光一閃"時刻,因為它們的基礎模型已經包含自我反思能力。 - 作者在 500 道 MATH 題中測試了 DeepSeek-V3-Base,發現它已經顯示出顯著的自我反思行為。 - 基礎模型產生自我反思關鍵詞如「靈光一閃」、「等一下」以及「驗證問題」而不需要經過強化學習訓練。

意義:- 此結果驗證了早期的論點,即 DeepSeek-R1-Zero 中被認為是純弱化學習所帶來的令人印象深刻的自我反思行為,其實可能部分繼承自基礎模型已存在的能力,而不是完全從強化學習過程中湧現出來的。

"一個最令人鼓舞的DeepSeek-R1-Zero研究结果是通过纯RL训练出现了自我反思行为,即'顿悟时刻'。"

"一些先前的研究(Liu 等,2025b;Yeo 等,2025)建议,在开源的R1复刻中可能没有'顿悟时刻',因为他们使用的基准模型已经表现出自我反思关键词。"

"从圖3的右边图可以观察到,DeepSeek-V3-Base同样产生了相當数量的自我反思,进一步验证了Liu等(2025b)的论述。"

Analysis on Reinforcement Learning

這部分介紹了一個用於在詞元層面訓練語言模型的強化學習框架。

- 語言生成被建模為一個詞元層面的馬爾可夫決策過程(MDP),其中每個狀態代表問題加上迄今生成的詞元。
- 策略在每一步選擇下一個詞元,直到達到序列結束的詞元或預算限制。
- 標準目標包括一個獎勵項和一個KL散度正則化項,以防止策略過度偏離參考策略。
- 然而,對於使用基於規則的驗證器(而非學習獎勵模型)的推理模型,作者認為可以去除KL正則化(β = 0),這樣可以節省計算資源並可能提高性能。
- 使用了帶有剪裁替代目標的近端策略優化(PPO)。

- 傳統方法使用帶有學習價值模型的廣義優勢估計(GAE)來估算優勢,但這對於大型語言模型來說計算成本很高。
- 更實際的方法如GRPO通過對每個問題采樣多個回應並使用歸一化之後的回報作為優勢,來估算不使用價值模型的優勢。
- 主要的見解是,對於基於規則的獎勵系統,去除KL正則化可能比傳統的RLHF方法 更高效且效果更好。

"Language model generation can be formulated as a token-level Markov Decision Process (MDP) M = (S, A, r, pQ). At each generation step t, the state $st \in S$ is the concatenation of the input question and the output response generated so far: st = q; o

語言模型生成可以被表述為一個基於單位的馬可夫決策過程(Markov Decision Process, MDP)M = (S, A, r, pQ)。在每個生成步驟 t,狀態 $st \in S$ 是輸入問題和迄今為止生成的輸出回應的連接:st = q; o

"However, RL-tuning reasoning models typically employs rule-based verifiers as r (Lambert et al., 2024), eliminating the concerns of distributional shift. This allows us to remove the KL term, which not only saves the memory and computation required by πref during training, but also potentially leads to better performance for R1-Zero-like training (Hu et al., 2025)."

然而,RL調優推理模型通常使用基於規則的驗證器作為 r (Lambert et al., 2024),消除了分布偏移的擔憂。這使得我們可以去除 KL 項,不僅節省了 πref 在訓練過程中所需的內存和計算,還有可能導致 R1-Zero 類訓練的更好表現 (Hu et al., 2025)。

"However, in the context of LLM RL-tuning, learning the value model is computationally expensive, so methods that estimate ^At without $V\phi$ are practically preferred. For example, Shao et al. (2024) proposed GRPO, which first samples a group of responses $\{01,\ldots,oG\}$ per question and computes their returns $R=\{R1,\ldots,RG\}$, then sets the advantage of all tokens from oi as ^At = Ri-mean(R) std(Ri-mean(Ri))."

然而,在 LLM RL 調優的背景下,學習價值模型計算量大,因此實踐上更偏好不依賴 $V\phi$ 來估計 ^At 的方法。例如,Shao 等人(2024)提出了 GRPO,該方法首先為每個 問題抽取一組回應 $\{o1,\ldots,oG\}$,並計算它們的回報 $R=\{R1,\ldots,RG\}$,然後設置來自 oi 的所有單位的優勢為 ^At = Ri-mean(R) std(R)。

GRPO Leads to Biased Optimization

這部分挑戰了常見的解釋,即在語言模型訓練中增加回應長度表示推理能力的提高。 作者們認為,在像Deepseek-R1-Zero這樣的模型中觀察到的長度增加,可能是GRPO(Group Relative Policy Optimization)目標函數中內在偏差的結果。

關鍵論點: - GRPO算法引入了兩個問題偏差: - 回應層級的長度偏差: 由於通過回應長度(|oi|)的正規化,該算法創造了矛盾的激勵機制: - 對於正確的回應: 較短的答案會獲得較強的梯度更新,鼓勵簡潔 - 對於錯誤的回應: 較長的答案會受到較輕的懲罰,鼓勵錯誤答案變長 - 問題層級的難度偏差: 通過對回應的標準差進行正規化,會給予結果變異較小的問題(非常簡單或非常困難的問題)不成比例的權重,創造了一個跨不同難度層級的非均勻優化場景。

啓示: - 作者們建議,訓練期間普遍觀察到的回應長度增加,可能是這些算法偏差的產物,而非真正的推理能力發展,從而質疑了最近文獻中對該現象的標準解釋。

"However, we argue that the observed increase in response length may also be attributed to a bias inherent in the GRPO (Shao et al., 2024) objective function"

然而,我們認為觀察到的回應長度增加可能也歸因於GRPO(Shao et al., 2024)目標函數中固有的偏差。

"Response-level length bias: This arises from dividing by |oi|. For positive advantages ($\hat{A}i,t > 0$, indicating a correct response), this bias results in greater gradient updates for shorter responses, leading the policy to favor brevity in correct answers. Conversely, for negative advantages ($\hat{A}i,t < 0$, indicating an incorrect response), longer responses are penalized less due to their larger |oi|, causing the policy to prefer lengthier responses among incorrect ones."

回應層次的長度偏差:這是由於除以|oi|而引起的。對於正向優勢(Ai ,t>0,表示正確回應),這種偏差導致對較短回應的梯度更新幅度較大,使策略傾向於在正確答案中偏好簡潔。相反,對於負向優勢(Ai ,t<0,表示錯誤回應),由於較長回應的|oi|較大,其受到的懲罰較少,導致策略在錯誤回應中偏好較長的回答。

"Question-level difficulty bias: This is caused by dividing the centered outcome reward by $std(\{R(q, o1), \ldots, R(q, oG)\})$. Questions with lower standard deviations (e.g., those that are too easy or too hard, with the outcome rewards being almost all 1 or 0) are given higher weights during policy updates."

問題層次的難度偏差:這是由於將中心化的結果獎勵除以std({R(q, o1), ..., R(q, oG)})引起的。標準偏差較低的問題(例如,那些過於簡單或過於困難的問題,結果獎勵幾乎全為1或0),在策略更新期間被賦予較高的權重。

Dr. GRPO: Group Relative Policy Optimization Done Right

摘要

- 本節介紹了 **Dr. GRPO (正確執行的群體相對策略優化)**,這是一種修改版的原始 GRPO算法,旨在消除優化偏差。
- 主要修改:
 - 移除正規化項:消除導致原始GRPO偏差的 1/|oi| 和 std({R(q, o1), ..., R(q, oG)}) 正規化成分。
 - **替換動態平均**:用常數值(如生成預算)替換掩碼平均函數中的 mask.sum(axis=dim)。
- 技術意義:
 - 這些簡單的變更有效地恢復了標準PPO(近端策略優化)的目標。
 - 。優勢估計現在使用蒙特卡洛回報和不帶偏差的基線,遵循了既定的強化學習原 則。
 - 。 這些修改確保了無偏優化目標的忠實實現。
- 作者將 Dr. GRPO 定位為修正版本,保留了基於群組優化的好處,同時消除了原始 GRPO公式中的問題偏差。

"To avoid the aforementioned optimization bias in GRPO, we propose to simply remove the 1|oi| and $std(\{R(q, o1), \ldots, R(q, oG)\})$ normalization terms."

為了避免前述在GRPO中的優化偏差,我們建議簡單地移除1|oi|和std($\{R(q, o1), \ldots, R(q, oG)\}$)正規化項。

"Meanwhile, to faithfully implement the unbiased optimization objective, we could replace the mask.sum(axis=dim) with a constant value (e.g., generation budget) in the masked mean function"

同時,為了忠實地實現無偏的優化目標,我們可以將masked mean函數中的 mask.sum(axis=dim)替換為一個常數值(例如,生成預算)。

"Notably, these simple modifications recover the PPO objective in Eq. (2), with the advantage estimated by Monte Carlo return with an unbiased baseline"

值得注意的是,這些簡單的修改恢復了公式(2)中的PPO目標,並通過無偏的基線估算出 Monte Carlo回報的優勢。

A Duet of Template and Question Set Coverage in RL dynamics

摘要

- 本節介紹了一項研究,檢視在數學推理的強化學習 (RL) 訓練中兩個關鍵因素:
 - **模板效果**:作者探討不同提示模板如何影響RL訓練,這一動機源自他們之前的發現,即使在沒有任何提示模板的情況下,Qwen2.5-Math基礎模型也能準確地解答數學問題。
 - 。**題目集覆蓋範圍**:他們研究訓練期間題目覆蓋範圍的廣度如何影響績效,建立 在已確立的研究基礎上,即更大的題目集覆蓋範圍能夠提升模型的性能。
- 主要焦點是了解這兩個因素之間的**互作**——提示模板和題目覆蓋範圍在RL訓練動態 過程中的協同作用。
- 這代表著對於如何最佳化數學推理任務中的格式化方法(模板)與數據多樣性(題目覆蓋範圍)進行系統性調查。

'Recall that the Qwen2.5-Math base models can readily answer questions with high accuracy without any prompt template (Sec. 2.2).'

請記住,Qwen2.5-Math 基礎模型可以在沒有任何提示模板的情況下準確回答問題(第2.2節)。

'Based on this intriguing observation, we are interested in how different templates affect the RL training.'

基於這一有趣的觀察,我們對不同模板如何影響強化學習(RL)訓練感興趣。

'Furthermore, given the general belief that larger question set coverage leads to better performance (Luo et al., 2025; Hu et al., 2025), we also study the interaction between different templates and different levels of question coverage.'

此外,鑑於普遍認為較大範圍的問題集覆蓋領域能帶來更好的表現(Luo 等, 2025;Hu等, 2025),我們還研究不同模板與不同問題覆蓋範圍之間的相互作用。

Domain-Specific Pretraining Improves RL Ceiling

摘要

- 本部分探討R1-Zero類型的強化學習訓練是否能在初始數學推理能力較弱的模型上取得效果,而不是通常使用的強大Qwen2.5基礎模型。
- 作者提出研究問題,即強化學習訓練能否在較弱的初始模型上成功,並得出積極的 結論,發現特定領域的數學預訓練可以提高通過後續強化學習訓練所能達到的最高 性能上限。

關鍵點:-多數成功的R1-Zero複製使用了已經具備強數學能力的基礎模型 (Qwen2.5) - 研究探索了相反的情況:從數學能力較弱的模型開始 - 結論是數學特定 預訓練改進了通過強化學習訓練所能達到的潛在性能上限

'Recent successful R1-Zero-like replications of math reasoners mostly employ Qwen2.5 base models as the initial policies (Zeng et al., 2025; Cui et al., 2025; Hu et al., 2025), which are already strong math solvers and exhibit self-reflection patterns'

最近成功的類似R1-Zero的數學推理復制大多使用Qwen2.5基礎模型作為初始策略 (Zeng等, 2025; Cui等, 2025; Hu等, 2025), 這些模型已經是強大的數學解題者 並展現出自我反思的模式

'can R1-Zero-like training succeed on originally weak (in terms of math reasoning) base models?'

類似R1-Zero的訓練能否在原本數學推理弱的基礎模型上取得成功?

'math pretraining would improve the ceiling of RL'

數學預訓練將提升強化學習的上限

Closing Remarks

- 這個結尾部分總結了這篇論文在語言模型的強化學習(RL)方面的主要貢獻。
- 作者對R1-Zero風格訓練中使用的基礎模型和強化學習算法進行了批判性分析,揭示了預訓練偏差如何影響強化學習的結果,以及像GRPO這樣的優化方法如何無意間影響模型行為。
- 他們的主要貢獻是"Dr. GRPO",這是一種提高了標記效率同時保持推理性能的改進方法。
- 作者總結說,他們的工作展示了如何讓強化學習的擴展變得更有效和高效,強調有時候更簡單的方法能夠帶來更好的結果。

'We demystified how pretraining biases influence RL outcomes and how optimization choices, like GRPO, can unintentionally shape model behavior.'

我們解釋了預訓練偏差如何影響強化學習結果,以及像GRPO這樣的優化選擇如何無意中 塑造模型行為。

'With the proposed Dr. GRPO, we offer a simple fix that improves token efficiency while preserving reasoning performance.'

通過提出的Dr. GRPO,我們提供了一個簡單的解決方案,提高了token效率,同時保留了推理性能。

'Our results show that scaling RL can be both effective and efficient—sometimes, less really is more.'

我們的結果表明,擴展強化學習可以既有效又高效—有時候,少即是多。

References

No references found.