	Examer	ı final de Xarxes de Computado	rs (XC)	Grau en Ingenierí	a Informàtica	14/1/2021	Tardor 2020
Nor	n		Cognoms			Grup	DNI
L Dur	ació: 2h45	m. El test es recollirà en 25 m	ninuts. Respon	dre els problemes en el	mateix enunciat.		
		unts) Totes les preguntes so				0 si més.	
	Digues q	uines de les següents afirma En una connexió HTTP no Un client pot enviar un fit Un client pot enviar les da En una connexió HTTP 1.	cions són cert o persistent ca xer al servido ades d'un form	es respecte HTTP ada missatge HTTP r or amb un GET amb l nulari HTML en el qu	equest s'envia en MIME ery-string d'un G	una connexió T	$\Gamma ext{CP diferent}$
2.	seguit es	na finestra de congestió de 7 rep 1 confirmació (ack) que processi l'ack.					
] 10.000 □ 3.000 □ 15.1	50 🗆 15.00	0 🗆 16.500			
3.		Cap resource record si el r Un resource record de tipu Un resource record de tipu Un resource record de tipu Un resource record de tipu	nom www.xc.c ns CNAME de ns A del domi	com no existeix el nom www.xc.com, s ni .com		ingui:	
4.		uines afirmacions són certes En cas de fragmentació, el el mateix Cada cop que un datagran Si un datagrama que porta de la capçalera IP Si un datagrama que porta serà diferent del camp de	camp "ident	a un router es decreme UDP passa per un rou UDP s'envia per un tú	enta el camp TTI uter que fa NAT,	L de la capçaler el router haurà	ra de canviar el checksum
5.	Digues q	uins dels següents protocols	-				
		TCP UDP Ether					
6.		col TCP Serveix per a transmission Només es poden transmeti Té mecanismes per ajustai Serveix per a transmission	re dades de l'a r el valor del l	= =		STABLISHED	
7.		casos és possible un enllaç Entre un PC i un hub Eth Entre dos switches Ethern Entre un portàtil i un AP Entre un router i un switc	ernet et wifi				
8.		firmacions són certes respect Si es rep una trama i l'ad excepte pel port per on s'l Si es rep una trama i l'ad excepte pel port per on s'l En la taula MAC hi ha ad La informació de la taula l'	reça destinaci na rebut lreça destinac na rebut reces MAC, p	ió no està en la taula ió no està en la taula port, VLAN i adreces	a MAC, s'envia p	per tots els por	ts de totes les VLANs,
9.		tines de les següents afirmac Els missatges d'update s'e Quan RIP ha convergit la possible El temps de convergència e Split-Horizon redueix la m	nvien periòdic mètrica de l depèn del nor	cament es entrades RIP que nbre de hops entre els			nent serà la més petita
10.		uines de les següents afirmac Un caràcter que es codifica Per enviar un email amb t Content-transfer-encodi Per descarregar una pàgin Content-transfer-encodi	a amb UTF-8 ext codificat a ing: base64 a web amb te ing: base64	amb un sòl byte té el amb UTF-8 caldrà M xt codificat amb UTF	IME amb		er codificat amb ASCII
		Per codificar U+122AB an	nb UTF-8 far	a talta més d'1 byte			

Examen final de Xarxes de Comput	14/01/2021	Tardor 2020
NOM (en MAJÚSCULES):	GRUP:	DNI:

Duració: 2h 45 minuts. El test es recollirà en 25 minuts.

Problema 1 (3 punts)

La figura mostra la configuració de les subxarxes d'una entitat i la seva connexió a Internet a través de l'ISP. La part de la dreta mostra la notació de les adreces IP i MAC de les interfícies del router B com a exemple.

a) (0'5 punts) Es disposa del rang d'adreces IP 200.200.192.0/20. Assigna un rang d'adreces /24 a cada una de les subxarxes de forma que es pugui agregar subxarxes i minimitzar el nombre de rutes a les taules.

X1	200.200.192.0/24
X2	
Х3	
X4	
X5	

Х6	
X7	
X8	
Х9	
X10	

Quin rang queda disponible?

b) (0'5 punts) Completa les taules d'encaminament dels routers, indicant les adreces agregades (*Destination*), la interfície (adreça MAC) i la mètrica de RIP. (RB/RD indica que les dues rutes són possibles).

Destination		RA		RB		RC			RD			
	GW	if	met	GW	if	met	GW	if	met	GW	if	met
(X1) 200.200.192.0/24		ra1	1	RA	rba		RB/RD	rcb/d		RA		
(X2+X3)	RB	rab			*							
(X4+X5+X6)	RB/RD	rab/d		RC	rbc			*	1			
(X7++X10)	RD	rad		RD	rbd						*	1
0.0.0.0/0	GW	eth0	1	RA	rba		RB/RD	rcb/d		RA		

^{*} indica que hi ha una ruta per a cada subxarxa amb la seva interfície corresponent.

c) (0'25 punts) Utilitza el rang d'adreces privades 10.0.0.0 per assignar adreces als enllaços punt a punt entre els routers utilitzant el mínim nombre d'adreces.

RA-RB		RC-RD	
RB-RC		RD-RA	
RB-RD			

d) (0'25 punts) Si falla l'enllaç RD-RA indicar NOMÉS les rutes modificades.

Destination	RA			RB		RC			RD			
	GW	if	met									
X1												
X2+X3												
X4+X5+X6												
X7+X8+X9+X10												
0.0.0.0/0												

e) (0'5 punts) Suposa que les taules ARP dels routers només tenen les adreces MAC de les interfícies dels enllaços punt a punt entre routers i que les taules ARP dels dispositius estan buides. Un dispositiu H3 (en la xarxa X3) fa "ping H1" (H1 està en X1).

Completa la següència de trames Ethernet i paquets IP dins la xarxa X3.

Ethernet		ARP		IP					
src	dst	Q/R	message	src	dst	Payload			
h3									

f) (0'25 punts) El mateix pel cas anterior (següència de trames i paquets) a l'enllaç RB-RA.

Ethernet		ARP		IP				
src	dst	Q/R	message	src	dst	Payload		

g) (0'25 punts) Les xarxes X queden petites i es decideix afegir xarxes privades (P1 .. P10) amb adreces del rang 10.2.0.0/15. Cada xarxa Pi es posa al costat de la Xi (els routers tenen ports suficients).

Caldrà fer PAT (*Port and Address Translation*)?

Si és així, en quina interfície?

Un client d'una xarxa privada (10.2.11.21:17000) inicia una connexió TCP amb 147.83.83.147:80. Indica els valors dels camps de la capcalera dels datagrames que passen per RA i surten cap a Internet.

Interfície	interna	dе	RΔ
HILLITICIC	IIIICIIIa	uc	ראו

mitornois mitorna as rait									
src IP	src#	dst IP	dst#						
10.2.11.21	17000								

Interfície	avtarna	AQ DA
IIIILEITICIE	externa	ue KA

src IP	src#	dst IP	dst#

h) (0'25 punts) S'afegeix la xarxa remota P11 amb adreçament privat (10.111.0.0/16) i es configura un túnel entre RA i un router remot (RR). P11 i RR no es mostren a la figura. El client 10.2.11.21:17000 estableix una connexió TCP amb el servidor remot 10.111.4.5:80, que està en P11.

Indica els valors dels camps de les capçaleres dels datagrames que passen per RA i surten cap a Internet.

Interfície interna de RA

internore interna de la t						
src IP	src#	dst IP	dst#			
10.2.11.21	17000					

Interfície externa de RA

src IP	src#	dst IP	dst#					

i) (0'25 punts) Es configura un tallafocs ("Firewall") a la interfície externa de RA (RA_{ISP}).

		and an tallalocs	, ,				
#RULE	IN/OUT	SRC IP	SRC	DST IP	DST	PROT	ACTION
			port		port		
1	IN	ANY	< 1024	ANY	> 1024	TCP/UDP	ACCEPT
1	OUT	ANY	> 1024	ANY	< 1024	TCP/UDP	ACCEPT
2	IN	ANY		200.200.192.0/20		ICMP	ACCEPT
2	OUT	200.200.192.0/20		ANY		ICMP	ACCEPT
3							
3							
	ANY	ANY	ANY	ANY	ANY	ANY	DENY

Què fa la regla 1?

Què fa la regla 2?

Afegir la regla 3 per tal de permetre l'accés a servidors TCP de la xarxa X1 des de clients externs.

Examen final de Xarxes de Computadors (XC)		Grau en Ingeniería Informàtica	14/1/2021	Tardor 2020	
ſ	Nom	Cognoms		Grup	DNI

Duració: 2h45m. El test es recollirà en 25 minuts. Respondre els problemes en el mateix enunciat.

Problema 2 (2.5 punts. La puntuació de tots els apartats és la mateixa.)

S'ha configurat la xarxa de la figura amb 3 VLANs, 36 PCs i 1 servidor S. Tots els enllaços ethernet són d'1 Gbps full duplex. L'AP (access point) està configurat en mode bridge, i té una capacitat de 60 Mbps. És a dir, la suma de les velocitats efectives dels PCs wifi de la VLAN1 pot ser de 60 Mbps, com a màxim. Suposa que tots els PCs estableixen una connexió TCP amb el servidor i envien a la velocitat màxima que els hi permet la xarxa. Totes les connexions TCP anuncien una finestra (awnd) de 60 kbyte ($k=10^3$). El router pot emmagatzemar fins a 1 Mbyte ($M=10^6$).

2.1 Justifica perquè les connexions dels PCs de les VLANs 1 i 2 passaran per el router i les de la VLAN 3 no.

2.2 Digues quina serà, aproximadament, la velocitat efectiva (throughput), v_1 , v_2 , v_3 , que aconseguirà un PC de cadascuna de les VLAN1, VLAN2 i VLAN3, respectivament. Justifica la resposta, indicant on hi haurà el colls d'ampolla (CA). Dóna el resultats en Mbps.

2.3 Justifica perquè hi haurà pèrdues en el router.

Per a respondre les següents preguntes suposa el següent: (i) Les connexions ja fa estona que s'han iniciat i la finestra ha assolit un règim estacionari. (ii) La finestra de totes les connexions que passen per el router segueix una forma periòdica, de període T, com mostra la figura 1. (iii) Fes l'aproximació de que cada vegada que s'omple la cua del router totes les connexions assoleixen la seva finestra màxima (W en la figura 1).

2.4 Amb l'ajuda de l'esbós de la figura 1, calcula aproximadament la relació que hi ha entre la finestra màxima, W, i la finestra mitjana, \overline{W} , d'una connexió que passa per el router.

2.5 Justifica perquè l'RTT màxim de totes les connexions TCP que passen per el router serà el mateix.

2.6	Calcula aproximadament quin serà el $round\ trip\ time$ màxim, RTT , d'una de les connexions TCP que passen per el router. Dóna el resultat en ms.
2.7	Justifica perquè la mitjana de l'RTT, \overline{RTT} , de les connexions que passen per el router serà aproximadament $\overline{RTT}\approx 3/4$ RTT , on RTT és l'RTT màxim, i calcula \overline{RTT} de les connexions que passen per el router. Dóna el resultat en ms.
2.8	Calcula aproximadament quina serà la finestra mitjana, \overline{W}_1 , \overline{W}_2 , d'una connexió de la VLAN1 i 2 respectivament. Dóna el resultats en kbytes.
2.9	Justifica si les connexions de la VLAN3 tindran o no pèrdues, i digues quina serà la finestra màxima i mitjana W_3 i \overline{W}_3 respectivament. Dóna el resultats en kbytes.
2.10	Fes un esbós com el de la figura 1 mostrant l'evolució de la finestra per a una de les connexions que passen per el router, indicant les fases on la finestra està en slow start, SS, i congestion avoidance, CA.
2.11	Suposa que les connexions TCP fan servir MSS= 1460 bytes. Calcula aproximadament la duració de la fase de congestion avoidance, T_{CA} , per a cada període T que mostra la figura 1, per a una connexió de la VLAN1. Dóna el resultat en ms.

Examen Final de Xarxes de Comput	14/1/2021	Tardor 2020	
NOM (MAJÚSCULES):	GRUP:	DNI:	

Duració: 2h45m total. El test es recollirà en 25 minuts. Respondre en el mateix enunciat.

Problema 3 (2 punts)

Un usuari a la UPC descarrega una pàgina web de servidors HTTP 1.1 al seu PC client.upc.edu amb un navegador web. Cada domini té un servidor web i DNS a la mateixa ubicació i la latència (en un sentit) entre cadascun d'ells és de 5 ms. Per tant, la latència de client.upc.edu a cada servidor (el temps per arribar a cada servidor en un sentit) és:

DNS	ns.upc.edu	ns.d1.eu	ns.d2.eu	ns.eu	a.root-servers.net
Web	w.upc.edu	w.d1.eu	w.d2.eu	w.eu	w.root-servers.net
Latència (ms) des del client	5	10	15	20	25

Suposem que:

Totes les memòries cau (cache) web i DNS estan buides inicialment. Tots els recursos (RR) tenen TTL més llarg que el període d'observació.

El servidor DNS local fa resolució recursiva, la resta de servidors DNS només iterativa.

El navegador del client manté les connexions obertes durant alguns segons, i utilitzarà la millor estratègia per minimitzar el temps de resposta i fer connexions concurrents.

Cada petició o resposta DNS, sol·licitud HTTP i resposta HTML cap en un sol segment TCP i no triga més temps per sobre de l'RTT. Cada fitxer JPG triga 10 ms a descarregar-se (del primer a l'últim byte de la resposta).

El tràfic de xarxa, càrrega del servidor o pèrdues de paquets tenen un impacte insignificant en el retard.

Els valors d'adreces IP es poden expressar com a @nom: per exemple @w.eu representa l'adreça IP del host w.eu. Notació per a diagrames: (a partir d'un exemple per descarregar des de client.upc.edu la pàgina d'inici a w.upc.edu) client.upc.edu ns.upc.edu

1) +5ms 2) (repetit per à TCP i HTTP, omès per brevetat)

Prot	Origen IP	Destí IP	Operació	Recurs	Valor/comentari	Latència
DNS	@client	@ns.upc.edu	A?	w.upc.edu	1)	5 (anada)
DNS	@ns.upc.edu	@client	Α	w.upc.edu	w.upc.edu CNAME w.upc.es;	5
					w.upc.es A @w.upc.es 2)	
TCP	@client	@w.upc.edu	SYN		Tot consecutiu després de l'anterior	5
TCP	@w.upc.edu	@client	SYN, ACK			5
HTTP	@client	@w.upc.edu	GET?	«/»		5
HTTP	@w.upc.edu	@client	GET	«index.html»	CONTENT, 1 segment, no temps extra	5

A) (0,75 punts) Quins serien els passos i recursos (A, NS) necessaris per resoldre el nom DNS de la comanda "ping w.d1.eu" en el client? Dibuixa el diagrama d'interaccions de xarxa i després completa la taula amb els detalls. client.upc.edu ns.upc.edu ns.d1.eu ns.d2.eu ns.eu a.root-servers.net

	į				į	
Prot	Origen IP	Destí IP	Operació	Recurs	Valor/comentari	Latència

B) (0,25 punts) Quin seria el temps de resposta total observat per client.upc.edu per a la resolució anterior? Mostra la contribució a la latència per a cada pas i el valor total.

C) (0,75 punts) Just després, el navegador web visita la pàgina http://w.d1.eu. La pàgina conté dues imatges incrustades així: "<html> </html>"

Dibuixa el diagrama d'interaccions de xarxa (considerant DNS, TCP, HTTP) i després completa la taula amb els detalls. client.upc.edu ns.upc.edu ns.d1.eu ns.d2.eu ns.eu a.root-servers.net

w.upc.edu w.d1.eu w.d2.eu www.eu www.root-servers.net

Prot	Origen IP	Destí IP	Operació	Recurs	Valor/comentari	Latència

D) (0,25 punts) Quin seria el temps total de descàrrega de l'últim byte de la pàgina observat per client.upc.edu? Mostra la contribució de latència de cada element i el total. Recorda que algunes interaccions poden ser concurrents, i que la descàrrega de JPG pren 10 ms extra.