1 Chapter 6 Learning as Inference

Problem 6.8 In section 6.2 we assumed that the binary outcome was independent across days. Assume instead that the probability of rain on a day after a rain day is r_r and after a dry day is r_d .

- 1. (a) Derive the posterior probability that it will rain on day t+1 after a series of observations x_1, \ldots, x_t .
- 2. (b) Give an intuition for the resulting expression.

Answer

Generative model

We let each day's weather $x_i \in \{0,1\}$ (dry = 0, rain = 1) follow a first-order dependence:

$$\Pr(x_i = 1 \mid x_{i-1}) = \begin{cases} r_r, & x_{i-1} = 1, \\ r_d, & x_{i-1} = 0, \end{cases}$$

for i = 2, ..., t + 1. No prior on x_1 is needed for the predictive step.

(a) Predictive posterior

We seek

$$\Pr(x_{t+1} = 1 \mid x_{1:t}) = \sum_{x_t \in \{0,1\}} \Pr(x_{t+1} = 1 \mid x_t) \Pr(x_t \mid x_{1:t}).$$

Because x_t is observed, $Pr(x_t \mid x_{1:t}) = 1$ for the actual value of x_t and 0 otherwise. Hence the sum collapses:

$$\Pr(x_{t+1} = 1 \mid x_{1:t}) = \Pr(x_{t+1} = 1 \mid x_t) = \begin{cases} r_r, & x_t = 1, \\ r_d, & x_t = 0. \end{cases}$$

Equivalently, one can write in closed-form:

$$\Pr(x_{t+1} = 1 \mid x_{1:t}) = r_r^{x_t} r_d^{1-x_t}.$$

(b) Intuition

- By assumption only the immediately preceding day x_t affects tomorrow.
- Two regimes:
 - After rain $(x_t = 1)$, the persistence parameter r_r governs the chance of rain.
 - After dry $(x_t = 0)$, the transition parameter r_d governs the chance of rain.
- Earlier days $x_{1:t-1}$ matter only insofar as they determined x_t .