Introduction

15 August 2023 16:36

Definition of a Periodic Function:

When at equal intervals of abscissa 'x', the value of each ordinate f(x) repeats itself, i.e f(x) = f(x+T), for all x, then y = f(x) is called a periodic function having period T.

eg. $\sin x$ and $\cos x$ are periodic of period 2π , since $\sin x = \sin(x + 2\pi) = \sin(x + 4\pi) = \dots$ and $\cos x = \cos(x + 2\pi) = \cos(x + 4\pi) = \dots$

Definition:

Let f(x) be a periodic function of period 2π , defined in the interval $(c, c + 2\pi)$, satisfying Dirichlet's Conditions as (i) f(x) and its integrals are finite and single valued,

- (ii) f(x) has discontinuities finite in number,
- (iii) f(x) has finite number of maxima and minima,

then f(x) can be expanded as an infinite trigonometric series as: $f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$

which is called **Fourier Series**, where $a_0, a_n, b_n (n = 1, 2, 3, ...)$ are called Fourier coefficients or Fourier constants.

EULER'S FORMULAE:

The Fourier series for the function f(x) in the interval $c < x < c + 2\pi$ is given by

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$$

where, $a_0 = \frac{1}{\pi} J_c^{c+2\pi} f(x) dx$, $a_n = \frac{1}{\pi} J_c^{c+2\pi} f(x) . \cos nx \ dx$, $b_n = \frac{1}{\pi} J_c^{c+2\pi} f(x) . \sin nx \ dx$ (I)

These values of a_0 , a_n , b_n represented by (I) are known as Euler's Formulae.

TO ESTABLISH EULER'S FORMULAE:

The following definite integrals will be required to establish Euler's formulae:

1.
$$J_c^{c+2\pi} \cos mx \ dx = \left| \frac{\sin mx}{m} \right|_c^{c+2\pi} = 0, \{ for \ all \ m \neq 0 \}$$

2.
$$\int_{c}^{c+2\pi} \sin mx \ dx = -\left|\frac{\cos mx}{m}\right|_{c}^{c+2\pi} = 0, \{for \ all \ m \neq 0\}$$

3.
$$\int_{c}^{c+2\pi} \sin mx \cos nx \ dx = \frac{1}{2} \int_{c}^{c+2\pi} (\sin(m+n)x + \sin(m-n)x) \ dx = 0$$

4.
$$\int_{c}^{c+2\pi} \cos mx \cdot \cos nx \ dx$$

$$= \begin{cases} \frac{1}{2} \int_{c}^{c+2\pi} (\cos(m+n)x + \cos(m-n)x) \, dx = 0, & \text{if or } m \neq n, by \text{ virtue of } (1) \text{ if } \\ \int_{c}^{c+2\pi} \cos^{2} mx \, dx = \frac{1}{2} \int_{c}^{c+2\pi} [1 + \cos 2mx] \, dx = \pi, \text{if or } m = n \text{ if } \end{cases}$$

$$\mathbf{5.} \quad \mathbf{J}_c^{c+2\pi} \sin mx. \sin nx \, dx$$

$$= \begin{cases} \frac{1}{2} \int_{c}^{c+2\pi} (\cos(m-n)x - \cos(m+n)x) \, dx = 0, & \text{for } m \neq n, by \text{ virtue of } (1) \\ \int_{c}^{c+2\pi} \sin^{2}mx \, dx = \frac{1}{2} \int_{c}^{c+2\pi} [1 - \cos 2mx] \, dx = \pi, & \text{for } m = n \end{cases}$$

Theorem: Establish Euler's formulae represented by (I)

Proof: Let f(x) be represented in the interval (c, $c + 2\pi$) by the Fourier series

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx) + \sum_{n=1}^{\infty} (b_n \sin nx) \dots (*)$$

To find a_0 , integrating both sides of (*) w.r.t x from c to $+2\pi$, we have

$$\int_{c}^{c+2\pi} f(x) dx = \frac{a_0}{2} \int_{c}^{c+2\pi} dx + \int_{c}^{c+2\pi} \sum_{n=1}^{\infty} (a_n \cos nx) dx + \int_{c}^{c+2\pi} \sum_{n=1}^{\infty} (b_n \sin nx) dx$$

$$= \frac{a_0}{2} |c + 2\pi - c| + 0 + 0 \qquad \text{ {by the integrals (1) and (2) in the above section } }$$

$$= a_0.\pi$$
Hence $a_0 = \frac{1}{\pi} \int_{c}^{c+2\pi} f(x) dx$

To find a_n , multiplying both sides of (*) by cos nx and then integrating w.r.t x from c to $c + 2\pi$, we have

$$\begin{split} \mathbf{J}_c^{c+2\pi}f(x)\cos nx \; dx \\ &= \frac{a_0}{2}\,\mathbf{J}_c^{c+2\pi}\cos nx \; dx + \mathbf{J}_c^{c+2\pi}\,\boldsymbol{\Sigma}_{n=1}^{\infty}((a_n\cos nx))\cos nx \; dx + \mathbf{J}_c^{c+2\pi}\,\boldsymbol{\Sigma}_{n=1}^{\infty}((b_n\sin nx))\cos nx \; dx \\ &= 0 + a_n.\,\pi + 0 \quad \text{\{ by the integrals (1), (3) and (4) in the above section \}} \\ &= a_n.\,\pi \end{split}$$
 Hence $a_n = \frac{1}{\pi}\,\mathbf{J}_c^{c+2\pi}\,f(x).\cos nx \; dx$

To find b_n , multiply both sides of (*) by sin nx and then integrating w.r.t x from c to $c+2\pi$, we have

$$\begin{split} & \int_c^{c+2\pi} f(x).\sin nx \; dx \\ & = \frac{a_0}{2} \int_c^{c+2\pi} \sin nx \; dx + \int_c^{c+2\pi} \sum_{n=1}^{\infty} \left((a_n \cos nx) \right) \sin nx \; dx + \int_c^{c+2\pi} \sum_{n=1}^{\infty} \left((b_n \sin nx) \right) \sin nx \; dx \\ & = 0 + 0 + b_n.\pi \quad \text{\{ by the integrals (2) , (3) and (5) in the above section \}} \\ & = b_n.\pi \\ & \text{Hence} \quad b_n = \frac{1}{\pi} \int_c^{c+2\pi} f(x).\sin nx \; dx \end{split}$$

Fourier Series for f(x) [Even / Odd / Neither Even nor Odd] in different interval

INTER -VAL	FOURIER SERIES	a_0	a_n	b_n
$(0, 2\pi)$	$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx) + (b_n \sin nx)$	$a_0 = \frac{1}{\pi} \int_0^{2\pi} f(x) dx$	$a_n = \frac{1}{\pi} \int_0^{2\pi} f(x) \cdot \cos nx dx$	$b_n = \frac{1}{\pi} \int_0^{2\pi} f(x) \cdot \sin nx \ dx$
(0,2l)	$f(x) = \frac{a_0}{2} + \lambda_{n=1}^{\infty} \square \left(a_n \cos \left(\frac{n\pi x}{l} \right) \right) + \left(b_n \sin \left(\frac{n\pi x}{l} \right) \right)$	$a_0 = \frac{1}{l} \int_0^{2l} f(x) dx$	$a_n = \frac{1}{l} \int_0^{2l} f(x) \cdot \cos\left(\frac{n\pi x}{l}\right) dx$	$b_n = \frac{1}{l} \Big _0^{2l} f(x) \cdot \sin\left(\frac{n\pi x}{l}\right) dx$
(-π,π)	$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx) + (b_n \sin nx)$	$a_0 = \frac{1}{\pi} \Big _{-\pi}^{\pi} f(x) dx$	$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cdot \cos nx dx$	$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cdot \sin nx dx$
(-l,l)	$f(x) = \frac{a_0}{2} + \Delta_{n=1}^{\infty} \Box \left(a_n \cos \left(\frac{n\pi x}{l} \right) \right) + \left(b_n \sin \left(\frac{n\pi x}{l} \right) \right)$	$a_0 = \frac{1}{l} \int_{-l}^{l} f(x) dx$	$a_n = \frac{1}{l} \int_{-l}^{l} f(x) \cdot \cos\left(\frac{n\pi x}{l}\right) dx$	$b_n = \frac{1}{l} \int_{-l}^{l} f(x) \cdot \sin\left(\frac{n\pi x}{l}\right) dx$
Even function in $(-\pi,\pi)$	$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \Box (a_n \cos nx)$	$a_0 = \frac{2}{\pi} \int_0^{\pi} f(x) dx$	$a_n = \frac{2}{\pi} \int_0^{\pi} f(x) \cdot \cos nx dx$	$b_n = 0$
Even function in (-l,l)	$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[\left(a_n \cos \left(\frac{n\pi x}{l} \right) \right) \right]$	$a_0 = \frac{2}{l} \int_0^l f(x) dx$	$a_n = \frac{2}{l} \int_0^l f(x) \cdot \cos\left(\frac{n\pi x}{l}\right) dx$	$b_n = 0$
Odd function in $(-\pi,\pi)$	$f(x) = \sum_{n=1}^{\infty} \Box (b_n \sin nx)$	$a_0 = 0$	$a_n = 0$	$b_n = \frac{2}{\pi} \int_0^{\pi} f(x) \cdot \sin nx dx$
Odd function in (-l,l)	$f(x) = \sum_{n=1}^{\infty} \left(b_n \sin\left(\frac{n\pi x}{l}\right) \right)$	$a_0 = 0$	$a_n = 0$	$b_n = \frac{2}{l} \int_0^l f(x) . \sin\left(\frac{n\pi x}{l}\right) dx$

SOME IMPORTANT RESULTS:

1. Bernoulli's generalized formula of integration by parts: $\mbox{$J$ } uv = uv_1 - u'v_2 + u''v_3 - \mbox{\dots} \mbox{ until derivatives of } u \mbox{ vanish,}$ where $u', u'', \mbox{$\dots$} \mbox{$

2. I
$$e^{ax} \cos bx \ dx = \frac{e^{ax}}{a^2 + b^2} (a \cos bx + b \sin bx) + c$$

3. I $e^{ax} \sin bx \ dx = \frac{e^{ax}}{a^2 + b^2} (a \sin bx - b \cos bx) + c$

4. Property of definite integrals:

$$J_{-a}^{a} f(x) dx = 0$$
, when $f(x)$ is odd function
$$= 2 J_{0}^{a} f(x) dx \text{ when } f(x) \text{ is even function}$$

PARSEVAL'S IDENTITY:

If $f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos \frac{n\pi x}{c} + b_n \sin \frac{n\pi x}{c} \right)$ is the Fourier series in (0, 2c) then prove that $\frac{1}{c} \int_0^{2c} |f(x)|^2 dx = \left\{ \frac{a_0^2}{2} + \sum_{n=1}^{\infty} (a_n^2 + b_n^2) \right\} \dots (I)$

The formula represented by (I) is known as Parseval's Identity.

Proof: The Fourier for f(x) in (0,2c) is $f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos \frac{n\pi x}{c} + b_n \sin \frac{n\pi x}{c} \right)$ (II)

where
$$a_0 = \frac{1}{c} \int_0^{2c} f(x) dx$$

$$a_n = \frac{1}{c} \int_0^{2c} f(x) \cdot \cos \frac{n\pi x}{c} dx$$

$$b_n = \frac{1}{c} \int_0^{2c} f(x) \cdot \sin \frac{n\pi x}{c} dx$$

Multiplying both sides of (II) by f(x) and integrating term by term w.r.t x from 0 to 2c.

$$\int_{0}^{2c} |f(x)|^{2} dx = \frac{a_{0}}{2} \int_{0}^{2c} f(x) dx + \sum_{n=1}^{\infty} \left(a_{n} \int_{0}^{2c} f(x) . \cos \frac{n\pi x}{c} dx + b_{n} \int_{0}^{2c} f(x) . \sin \frac{n\pi x}{c} dx \right)$$

$$\begin{split} & \therefore \, \mathsf{J}_0^{2c} \mathsf{I} f(x) \mathsf{I}^2 dx = c. \big\{ \frac{a_0^2}{2} + \Sigma_{n=1}^\infty (a_n^2 + b_n^2) \big\} \quad \text{\{Using the result (III)\}} \\ & \frac{1}{c} \, \mathsf{J}_0^{2c} \mathsf{I} f(x) \mathsf{I}^2 dx = \big\{ \frac{a_0^2}{2} + \Sigma_{n=1}^\infty (a_n^2 + b_n^2) \big\} \quad \text{which is the required Parseval's identity.} \end{split}$$

Intervals	Parseval's identity
(0,2c)	$\frac{1}{c} \int_{0}^{2c} f(x) ^{2} dx = \left\{ \frac{a_{0}^{2}}{2} + \sum_{n=1}^{\infty} (a_{n}^{2} + b_{n}^{2}) \right\}$
$(0,2\pi)$	$\frac{1}{\pi} \int_{0}^{2\pi} f(x) ^{2} dx = \left\{ \frac{a_{0}^{2}}{2} + \sum_{n=1}^{\infty} (a_{n}^{2} + b_{n}^{2}) \right\}$
(-c,c)	$\frac{1}{c} \int_{-c}^{c} f(x) ^2 dx = \left\{ \frac{a_0^2}{2} + \sum_{n=1}^{\infty} (a_n^2 + b_n^2) \right\}$
$(-\pi,\pi)$	$\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) ^2 dx = \left\{ \frac{a_0^2}{2} + \sum_{n=1}^{\infty} (a_n^2 + b_n^2) \right\}$
half – range cosine series in $(0,c)$	$\frac{2}{c} \int_{0}^{c} f(x) ^{2} dx = \left\{ \frac{a_{0}^{2}}{2} + \sum_{n=1}^{\infty} (a_{n}^{2}) \right\}$
half – range cosine series in $(0,\pi)$	$\frac{2}{\pi} \int_{0}^{\pi} f(x) ^{2} dx = \left\{ \frac{a_{0}^{2}}{2} + \sum_{n=1}^{\infty} (a_{n}^{2}) \right\}$
half – range sine series in $(0,c)$	$\frac{2}{c} \int_{0}^{c} f(x) ^{2} dx = \sum_{n=1}^{\infty} (b_{n}^{2})$
half – range sine series in $(0,\pi)$,	$\frac{2}{\pi} \int_{0}^{\pi} f(x) ^{2} dx = \sum_{n=1}^{\infty} (b_{n}^{2})$