Teoria da Computação

José Osvano da Silva, PMP

Sumário

> 1. REVISÃO E CONTEXTUALIZAÇÃO

- 1.1 Conjuntos, Relações e Funções
- 1.2 Noções de Lógica
- 1.3 Técnicas de Demonstração
- 1.4 Alfabetos, Palavras, Linguagens e Gramáticas
- 1.5 Introdução à Teoria da Computação
 - > 1.5.1 Sintaxe e Semântica
 - > 1.5.2 Abordagem
- Exercícios

- Conjuntos
 - Conjunto e Elemento
 - Conjunto é uma coleção de zero ou mais objetos distintos, denominados Elementos do conjunto.

> Notações

- $-a \in A, a \notin A$
- $-A \subseteq B \text{ ou } B \supseteq A$
 - A está contido em B
 - A é subconjunto de B
 - > B contém A
- $-A \subset B \text{ ou } B \supset A$
 - A está contido propriamente em B
 - A é subconjunto próprio de B
 - > B contém propriamente A
- -A = B
 - $A \subseteq B \in A$

> Exemplo

```
\{1, 2\} \subset \{0, 1, 2, 3\} (Contido em) \{1, 2\} \subseteq \{0, 1, 2, 3\} (Contido em ou igual a) \{1, 2, 3\} \subseteq \{1, 2, 3\} (Contido em ou igual a)
```

Conjuntos

- número de elementos
 - > Finito
 - > infinito
- conjunto finito
 - > pode ser denotado por extensão
 - > por exemplo, {a, b, c}
- conjunto vazio
 - > sem elementos (ou seja, com zero elementos)
 - > { } ou Ø

Conjuntos

```
    conjunto (finito ou infinito) denotado por compreensão
```

```
- { a | a ∈ A e p(a) } ou

- { a ∈ A | p(a) } ou

- { a | p(a) }
```

> Exemplo

- a ∈ $\{b, a\}$ e c $\notin \{b, a\}$;
- $\{a, b\} = \{b, a\}, \{a, b\} \subseteq \{b, a\} \in \{a, b\} \subset \{a, b, c\};$
- Os seguintes conjuntos são infinitos
 - N conjuntos dos números naturais
 - – ℤ conjuntos dos números inteiros
 - Q conjuntos dos números racionais
 - I conjuntos dos números irracionais
 - R conjuntos dos números reais
- \rightarrow {1, 2, 3} = { x ∈ N | x > 0 e x < 4}
- $\rightarrow N = \{ x \in Z \mid x \ge 0 \};$
- > conjunto dos números pares
 - $\{y \mid y = 2x e x \in N\}$

Operações sobre Conjuntos

- > União
 - $-A \cup B = \{x \mid x \in A \text{ ou } x \in B\}$
- > Intersecção
 - $-A \cap B = \{x \mid x \in A \in x \in B\}$
- > Diferença
 - $-A-B = \{x \mid x \in A \in x \notin B\}$
- > Complemento
 - definida em relação a um conjunto fixo U denominado *universo*
 - $-A' = \{x \mid x \in U \in x \notin A\}$
- > Conjunto das Partes
 - $-2^{A} = \{S \mid S \subseteq A\}$

1.1. Conjuntos, Relações e Funções Operações sobre Conjuntos

> Produto Cartesiano

- $-AxB = \{ (a, b) \mid a \in A \in B \}$
- notação usual de AxA: A²

> Par ordenado

- elemento de um produto cartesiano
- denotado na forma (a, b)
- não deve ser confundido com o conjunto {a, b}
 - a ordem é importante
 - > as duas componentes são distinguidas
 - conceito é generalizado para n-upla ordenada, ou seja, com n > 0 componentes

1.1. Conjuntos, Relações e Funções Operações sobre Conjuntos

> Exemplo

- universo \mathbb{N} , $A = \{0, 1, 2\}$ e $B = \{2, 3\}$
 - \rightarrow A \cup B =
 - \rightarrow A \cap B =
 - \rightarrow A B =
 - > A' =
 - \rightarrow 2^B =
 - \rightarrow A×B =

1.1. Conjuntos, Relações e Funções Operações sobre Conjuntos

> Exemplo

```
- universo \mathbb{N}, A = \{0, 1, 2\} e B = \{2, 3\}

A \cup B = \{0, 1, 2, 3\}

A \cap B = \{2\}

A \cap B = \{0, 1\}

A' = \{x \in \mathbb{N} \mid x > 2\}

A' = \{x \in \mathbb{N} \mid x > 2\}

A \cap B = \{0, 2\}, \{3\}, \{2, 3\}\}

A \cap B = \{0, 2\}, \{0, 3\}, \{1, 2\}, \{1, 3\}, \{2, 2\}, \{2, 3\}\}
```

1.1. Conjuntos, Relações e Funções Algumas Propriedades

- > Suponha universo U e conjuntos A, B e C
 - idempotência da união e intersecção
 - \rightarrow A \cup A = A
 - \rightarrow A \cap A = A
 - associatividade da união e intersecção
 - \rightarrow A U (B U C) = (A U B) U C
 - \rightarrow A \cap (B \cap C) = (A \cap B) \cap C
 - comutatividade da união e intersecção
 - \rightarrow A U B = B U A
 - \rightarrow A \cap B = B \cap A
 - distributividade da união e intersecção
 - \rightarrow A \cap (B \cup C) = (A \cap B) \cup (A \cap C)
 - \rightarrow A U (B \cap C) = (A U B) \cap (A U C)

1.1. Conjuntos, Relações e Funções Algumas Propriedades

- > Suponha universo U e conjuntos A, B e C
 - relativamente ao *complemento*
 - \rightarrow (A')' = A
 - \rightarrow A \cup A' = U
 - \rightarrow A \cap A' = Ø
 - leis de Morgan
 - \rightarrow (A \cup B)' = A' \cap B'
 - \rightarrow (A \cap B)' = A' \cup B'

> Relação

- subconjunto de um produto cartesiano
- $-R \subseteq A \times B$

> Notações

- A é denominado domínio
- B é denominado contra-domínio ou codomínio
- -aRb denota $(a, b) \in R$
- relação em A: R ⊆ A×A
 - domínio e o contra-domínio coincidem
 - > normalmente denotada por (A, R)

Relação de Ordem (R em A)

> Exemplo: Grafo (direto)

- > pode ser definido como uma
 - relação (binária) A (de arestas)
 - em um conjunto V (de vértices)
- \rightarrow A = {(1, 2), (2, 3), (3, 4), (1, 5)}
 - é um grafo em $V = \{1, 2, 3, 4, 5\}$
- $\rightarrow A^* = \{(1, 1), (1, 2), (1, 3), (1, 4), (1,$
 - (1, 5), (2, 2), (2, 3), (2, 4), (3, 3),
 - (3, 4), (4, 4), (5, 5)

› Lógica Booleana

 – o estudo dos princípios e métodos usados para distinguir sentenças verdadeiras de falsas

> Proposição

- sentença declarativa
- possui valor lógico
 - > verdadeiro
 - > falso
- usualmente denotados por V e F

> Proposição Sobre U

- considere um conjunto universo U
- proposição cujo valor lógico depende de x ∈ U
- usualmente denotada por p(x)

- > Operador
 - função da forma op: Aⁿ → A
- > Operador Lógico ou Conetivo
 - operador sobre o conjunto das proposições P
- > Proposição Atômica ou Átomo
 - proposição que não contém conetivos
- > Tabela Verdade
 - descreve os valores lógicos de uma proposição
 - em termos das possíveis combinações dos valores lógicos das proposições componentes

> Operadores Lógicos

- Operador ¬ *Negação*
- Operador ∧ *E*
- Operador v Ou
- Operador → *Se-Então*
- Operador → Se-Somente-Se

	р	q	¬p	p ∧ q	p v q	$p \to q$	$p \leftrightarrow q$
	٧	٧	F	V	٧	٧	٧
	٧	F	F	F	٧	F	F
	F	٧	٧	F	٧	٧	F
_	F	F	٧	F	F	٧	V

- > A negação: Dada uma frase p, que pode ser V ou F, sua negação que se indica por "¬p" será, respectivamente F ou V.
- A conjunção "... e ...": Dadas duas frases p e q, que podem ser V ou F, a frase "p e q" que também é indicada por "p Λ q" será V apenas quando cada uma das frases iniciais for V.
- A disjunção "... ou ...": Dadas duas frases p e q, que podem ser V ou F, a frase "p ou q" que também é indicada por "p v q " será F apenas quando cada uma das frases iniciais for F.
- > A implicação "se ... então ...": Dadas duas frases p e q, que podem ser V ou F, a frase "se p então q" que também é indicada por "p \rightarrow q" será F apenas no caso em que p é V e q é F.
- A equivalência "...se e somente se...": Dadas duas frases p e q, que podem ser V ou F, a frase "p se e somente se q" ou "p é equivalente a q" - que também é indicada por "p [→] q" - será verdadeira quando ambas forem verdadeiras ou ambas forem falsas.

> Exemplo

$$-p \Rightarrow p \lor q$$

$$-p \land q \Rightarrow p$$

р	q	$p \lor q$	$p \to (p \vee q)$	$p \wedge q$	$(p \wedge q) \to p$
٧	٧	٧	V	٧	V
٧	F	٧	V	F	V
F	٧	٧	٧	F	V
F	F	F	V	F	V

> Exemplo

$$-p \rightarrow q \Leftrightarrow \neg q \rightarrow \neg p$$

¬p	¬q	$p \to q$	$\neg q \rightarrow \neg p$	
				$\neg q \to \neg p$
F	F	٧	V	٧
F	٧	F	F	٧
٧	F	V	٧	٧
٧	٧	٧	٧	٧

 π

1.2. Noções de Lógica

> Exemplo

$$-p \rightarrow q \Leftrightarrow (p \land \neg q) \rightarrow F$$

p	q	⊸q	$p \to q$	p ∧ ¬q	$\begin{array}{c} p \to q \leftrightarrow \\ (p \land \neg q) \to F \end{array}$
٧	٧	F	٧	F	V
٧	F	٧	F	V	V
F	٧	F	٧	F	V
F	F	٧	٧	F	V

 π

Exercício de Fixação 01

1) Dados os 2 conjuntos $A = \{1, 2, 4, 5\}$ e $B = \{2, 3, 4\}$ no universo \mathbb{N}

calcule:

- \rightarrow A \cup B =
- \rightarrow A \cap B =
- \rightarrow A B =
- > A' =
- > 2^B =
- \rightarrow A×B =

1.3. Técnicas de Demonstração

> Teorema

- proposição p → q
 - > prova-se ser uma tautologia
 - \rightarrow ou seja, p \Rightarrow q
- p: hipótese
- q: tese

> Corolário

- teorema que é uma consequência quase direta de um outro já demonstrado
- ou seja, cuja prova é trivial ou imediata

> Lema

 teorema auxiliar que possui um resultado importante para a prova de um outro

1.3. Técnicas de Demonstração

› Hipótese e Tese

- antes de iniciar uma demonstração deve-se identificar claramente
 - hipótese
 - > tese

> Exemplo

- hipótese e tese?
- ∩ distribui-se sobre a ∪, ou seja,
 - \rightarrow A \cap (B \cup C) = (A \cap B) \cup (A \cap C)
- reescrita identificando a hipótese e a tese
 - > se A, B e C são conjuntos quaisquer,
 - \rightarrow então A \cap (B \cup C) = (A \cap B) \cup (A \cap C)

- > Definição: Símbolo, Caractere
 - entidades abstratas básica
 - não definida formalmente
- > Exemplo: Símbolo
 - letras
 - dígitos
- > Definição: Alfabeto
 - conjunto finito de símbolos
- > Exemplo: Alfabeto
 - $-\Sigma_{1} = \{a, b, c\}$ $-\Sigma_{2} = \{0, 1, ..., 9\}$ $-\Sigma_{3} = \{\}$

- > Definição: Palavra, Cadeia de Caracteres, Sentença
 - sobre um alfabeto
 - sequência finita de símbolos justapostos
- > Exemplo: Palavra
 - a, abcb são palavras sobre {a, b, c}
 - **–** ε
 - > palavra vazia sem símbolos
 - > é palavra sobre qualquer alfabeto

- > Definição: Tamanho, Comprimento de uma palavra
 - número de símbolos que compõem a palavra
 - representação
 - > W
 - » w denota uma palavra
- > Exemplo: Tamanho de uma palavra
 - -|abcb| = 4
 - $|\varepsilon| = 0$

> Definição: Conjuntos de Palavras sobre Σ

```
    - Σ*

            conjunto de todas as palavras sobre Σ
            - Σ+
            - Σ+ = Σ* - {ε }

    exemplo: para Σ = {a, b}

            - Σ+ = {a, b, aa, ab, ba, bb, aaa,...}
            - Σ* = {ε, a, b, aa, ab, ba, bb, aaa,...}
```

- > Definição: Prefixo, Sufixo, Subpalavra
 - prefixo (sufixo)
 - > qualquer sequência de símbolos inicial (final) de uma palavra
 - subpalavra
 - > qualquer sequência de símbolos contígua de uma palavra
- > **Exemplo:** para a palavra abcb
 - prefixos: ε, a, ab, abc, abcb
 - sufixos: ε, b, cb, bcb, abcb
 - prefixos e sufixos são subpalavras

- > Definição: Linguagem Formal
 - um conjunto de palavras sobre um alfabeto
- > Exemplo: Ling. Formal sobre $\Sigma = \{a, b\}$
 - conjunto vazio
 - conjunto formado pela palavra vazia
 - \rightarrow note-se que $\{\} \neq \{\epsilon\}$
 - conjunto das palíndromos
 - > palavras que têm a mesma leitura da esquerda para a direita e vice-versa
 - > linguagem infinita
 - > ε, a, b, aa, bb, aaa, aba, bab, bbb, aaaa,... são palíndromos

> Definição: Concatenação

- operação binária, definida sobre uma linguagem
- palavra formada pela justaposição das palavras
- notação
 - justaposição dos símbolos que representam as palavras componentes
- satisfaz às seguintes propriedades:
 - > associatividade: v(wt) = (vw)t
 - \rightarrow elemento neutro (esq/dir): $\varepsilon w = w = w \varepsilon$

> Exemplo: Concatenação

- para v = ab e w = cd
 - \rightarrow vw = abcd

> Definição: Concatenação Sucessiva

- concatenação sucessiva de uma palavra com ela mesma
- indefinida para ε^0

> Exemplo: Concatenação Sucessiva

```
- w^3 = www
```

$$- w^1 = w$$

$$-a^5 = aaaaa$$

$$-a^n = aaa...a$$
 (a repetido n vezes)

$$-w^0 = \varepsilon$$
 para $w \neq \varepsilon$

> Definição: Gramática

$$G = (V, T, P, S)$$
:

> V

- conjunto finito de símbolos
- variáveis ou não-terminais

> T

- conjunto finito de símbolos
- terminais
- disjunto de V

- > Definição: Gramática (Continuação)
- > P
 - conjunto finito de pares (α, β)
 - regra de produção
 - α é palavra de (V \cup T)+
 - β é palavra de $(V \cup T)^*$
- > S
 - elemento de V
 - variável inicial

> Definição: Linguagem Gerada

- Linguagem Gerada por G'

- todas as palavras de símbolos terminais deriváveis a partir do símbolo inicial S
- $-L(G) = \{ w \in T^* \mid S \Rightarrow^+ w \}$

1.4. Alfabetos, Palavras, Linguagens e Gramáticas

> Definição: Linguagem Gerada

- Exemplo: números naturais

```
- G = (V, T, P, S)
     \rightarrow V = {S, D}
     \rightarrow T = {0, 1, 2,..., 9}
     \rightarrow P = {S \rightarrow D, S \rightarrow DS, D \rightarrow 0 | 1 | ... | 9}
- uma derivação do número 243 (existe outra?)
     \rightarrow S \Rightarrow DS \Rightarrow 2S \Rightarrow 2DS \Rightarrow 24S \Rightarrow 24D \Rightarrow 243
portanto
     \rightarrow S \Rightarrow* 243
     \rightarrow S \Rightarrow + 243
     \rightarrow S \Rightarrow 6 243
logo GERA(G)
```

> o conjunto dos números naturais

TEORIA DA COMPUTAÇÃO

1.4. Alfabetos, Palavras, Linguagens e Gramáticas

> Definição: Equivalência de Gramáticas

G1 e G2 são equivalentes se e somente se GERA(G1) = GERA(G2)

> Convenções:

- A, B, C,..., S, T símbolos variáveis
- a, b, c,..., s, t símbolos terminais
- u, v, w, x, y, z palavras de símbolos terminais
- α , β ,... palavras de símbolos variáveis e/ou terminais

1.4. Alfabetos, Palavras, Linguagens e Gramáticas

Exemplo: identificadores em Pascal

$$G = (V, T, P, S)$$
 $-V = \{S, C, L, D\}$
 $-T = \{a, b, ..., z, 0, 1, 2, ..., 9\}$
 $P = \{S \rightarrow LC \mid L, C \rightarrow LC \mid DC \mid L \mid D, L \rightarrow a \mid b \mid ... \mid z, D \rightarrow 0 \mid 1 \mid ... \mid 9 \}$

1.4. Alfabetos, Palavras, Linguagens e Gramáticas

Exemplo: texto com aspas balanceadas

$$G = (V, T, P, S)$$

$$-V = \{E\}$$

$$-T = \{x, "\}$$

$$P = \{S \rightarrow xS \mid \epsilon, S \rightarrow "S"\}$$

 π

Nosso primeiro exemplo

$$L1 = \{0^k \mid k \text{ \'e par}\};$$

 $L2 = \{0^k \mid k \in multiplo de 3\};$

Nosso primeiro exemplo L1 U L2.

1.5. Introdução e Conceitos Básicos

- > Teoria das Linguagens Formais
 - desenvolvida na década de 1950
 - objetivo inicial
 - > desenvolver teorias relacionadas com as linguagens naturais
 - entretanto, logo foi verificado que era importante
 - > estudo de linguagens artificiais
 - em especial, para as linguagens originárias da Computação e Informática
 - desde então, desenvolveu-se significativamente

1.5. Introdução e Conceitos Básicos

- Exemplos de aplicações
 - análise léxica e análise sintática de linguagens de programação
 - modelagem de circuitos lógicos ou redes lógicas
 - modelagem de sistemas biológicos
 - **–** ...

Mais recentemente

- animações
- hipertextos e hipermídias
- linguagens **não-lineares**
 - > planares
 - > espaciais
 - > n-dimensionais

- Linguagens Formais
 - problemas sintáticos das linguagens
- > Importante para apresentar os conceitos de
 - sintaxe e semântica
- > Historicamente, o problema sintático
 - reconhecido antes do problema semântico
 - primeiro a receber um tratamento adequado
 - tratamento mais simples que os semânticos

- Consequência
 - grande **ênfase** à **sintaxe**
 - levando à ideia de que questões das linguagens de programação
 - > resumiam-se às questões da sintaxe
- > Teoria da sintaxe possui construções matemáticas
 - bem definidas e universalmente reconhecidas
 - exemplo: Gramáticas de Chomsky

- Linguagem de programação (ou qualquer modelo matemático) pode ser vista como uma entidade
 - livre, sem qualquer significado associado
 - juntamente com uma interpretação do seu significado

> Sintaxe

- trata das propriedades livres da linguagem
- exemplo: verificação gramatical de programas

> Semântica

- objetiva dar uma interpretação para a linguagem
- exemplo: significado ou valor para um determinado programa

- > Consequentemente, a sintaxe:
 - manipula símbolos
 - sem considerar os seus correspondentes significados
- Mas, para resolver qualquer problema real
 - necessário dar uma interpretação semântica aos símbolos
 - exemplo: estes símbolos representam os inteiros
- Sintaticamente "errado"
 - não existe tal noção de programa
 - simplesmente *não é* um **programa** da **linguagem**
- > Sintaticamente válido ("correto")
 - pode não ser o programa que o programador esperava escrever

- > Programa "correto" ou "errado"
 - se o mesmo modela adequadamente o comportamento desejado
- > Limites entre a sintaxe e a semântica
 - nem sempre são claros
 - exemplo: ocorrência de um nome em um programa
 - entretanto, em linguagens artificiais
 - > distinção entre sintaxe e semântica é (em geral) óbvia

> Análise léxica

- tipo especial de análise sintática
- centrada nas componentes básicas da linguagem
- portanto, também é **ênfase** das **Linguagens Formais**

1.5.2. Abordagem

- > Centrada no tratamento sintático
 - linguagens lineares abstratas
 - com fácil associação às linguagens da Computação e Informática
- Classificação dos formalismos
 - Operacional
 - Axiomático
 - Denotacional

1.5.2. Abordagem - Operacional

- > Autômato ou uma máquina abstrata
 - estados
 - instruções primitivas
 - especificação de como cada instrução modifica cada estado
- › Máquina abstrata
 - suficientemente simples
 - para não permitir dúvidas sobre a execução de seu código
- > Também é dito um formalismo Reconhecedor
 - análise de uma entrada para verificar se é "reconhecida"

1.5.2. Abordagem - Operacional

- > Principais máquinas
 - Autômato Finito
 - Autômato com Pilha
 - Máquina de Turing

1.5.2. Abordagem - Axiomático

- > Associam-se regras
 - às componentes da linguagem
- > Regras permitem afirmar
 - o que será verdadeiro após a ocorrência de cada cláusula
 - considerando-se o que era verdadeiro antes da ocorrência
- > Também é dito um formalismo Gerador
 - verifica se um elemento da linguagem é "gerado"

1.5.2. Abordagem - Axiomático

- > Abordagem é sobre Gramáticas
 - Regulares
 - Livres do Contexto
 - Sensíveis ao Contexto
 - Irrestritas

1.5.2. Abordagem - Denotacional

- Ou Funcional
- > Define-se um domínio
 - caracteriza o conjunto de palavras admissíveis na linguagem
 - funções, em geral, composicionais (horizontalmente)
 - valor denotado por uma construção
 - > especificado em termos dos valores denotados por suas subcomponentes
- > Abordagem restrita às Expressões Regulares
- > Também é dito um formalismo Gerador
 - é simples inferir ("gerar") as palavras da linguagem

Exercício de Fixação 02

- 2) Considerando que A U B = $\{1, 2, 3, 4, 5, 6, 7, 8\}$, A \cap B = $\{4, 5\}$ e A B = $\{1, 2, 3\}$, determine o conjunto B.
- 3) Dados os conjuntos $A = \{0, 1\}, B = \{0, 1, 2\} e C = \{2, 3\}, determine (A U B) \cap (B U C).$

Exercício de Fixação 02

- 4° Considerando os conjuntos $U = \{0, 1, 2, 3, 4, 5, 6\}, A = \{1, 2\}, B = \{2, 3, 4\}, C = \{4, 5\}$ determine $(U A) \cap (B \cup C)$.
- 5) O dono de um canil vacinou todos os seus cães, sendo que 80% contra parvovirose e 60% contra cinomose. Determine o porcentual de animais que foram vacinados contra as duas doenças.
- 6) Os senhores A, B e C concorriam à liderança de certo partido político. Para escolher o líder, cada eleitor votou apenas em dois candidatos de sua preferência. Houve 100 votos para A e B, 80 votos para B e C e 20 votos para A e C. Em consequência:
 - a) venceu A, com 120 votos.
 - b) venceu A, com 140 votos.
 - c) A e B empataram em primeiro lugar.
 - d) venceu B, com 140 votos.
 - e) venceu B, com 180 votos.

 π

Exercício de Fixação 02

Individual

Entrega: 16/08/2021 20:55

Dúvidas

