

A Snapshot

AMD & SGLang – one year journey of greatness

- ❖ AMD a top org. contributor to the SGLang project
- SGLang top LLM inference stack recommended by AMD
- SGLang fostered AITER (AI Tensor Engine for ROCm) in AMD
- ❖ AMD & SGLang 1st MI300X production in deployment, live in Q1/25

AMD & SGLang == Upstream sgl-project

- ❖ AMD no ROCm folk to maintain
- ❖ AMD provides MI300X/MI325/MI350 to upstream CIs
- ❖ AMD & SGLang fully integrated GitHub workflow & docker hub repo

How it began [Triton → AITER]

Initial triage – Aug 2024

- Driven by performance demand
- Motivated by advanced use cases KV cache reuse & share, Structured Decoding, etc.

First AMD code merged – Sep 2024

- o AMD MI30X enabled on ROCm 6.2
- o All features of the time were addressed: FP8 (OCP interoperability), Triton MoE, CUDA Graph, Torch Compile
- o Comparable performance vs. competitive solution: open source vLLM or SGLang on Nvidia platform

SGLang @ AMD Al Day, San Francisco – Oct 10, 2024

- Executive keynote featured by AMD
- Luminary Developer Speech by Dr. Lianmin Zheng

INT4-FP8 MoE introduced for very large models – Dec 2024

- \circ PoC was done to support MoE model of 2 trillion parameters on single MI300X node (8 × MI300X)
- o Initial kernels and models served since Jan, 25

DeepSeek V3/R1/etc.

- Day 0 support, fully Functional with Accuracies Dec 2024
- Performance boosted fast ever since

AITER (AI Tensor Engine for ROCm)

- Launched for SGL performance demand Jan 2024
- Fused MoE kernels first used in SGLang Feb 2024
- Fused MLA kernels, Attention kernels, etc. were added over time

Q4/24 Highlights — [Triton, AMD & SGL & xAl]

- Competitive performance vs. competing solution: Open Source SGLang or vLLM on competing platforms
- Achievements on 12/17/2024: enablement GROK1 with SGLang on MI300x machines
 - Server Mode, IL1024-OL1024: E2E latency is around 80% of competitor number.
 - Offline Mode, 1xTP8 v.s. 1xTP8 : E2E latency is around 105~118% of competitor.
 - Offline Mode, 2xTP4 v.s. 1xTP8 : Throughput is around 133~152% of competitor.
- Deployment
 - Taking 30% of production traffics on 800*MI300x GPUs. The p50 is 10% faster than competitor.
- Optimizations
 - MoE triton, CustomAllReduce, elementwise kernel, RMSNorm, ...

12/17: grok-1 with sglang (MI300x v.s. competitor)											
Benchmarking Conf.	TP Conf. on each node	geomean of E2E	geomean of TTFT	geomean of ITL	geomean of TPOT	geomean of throughput					
server, i=1024,o=1024	TP8 on MI300x v.s TP8 on competitor	80.0%	80.8%	91.3%	_	_					
offline, i=128,o=128	TP8 on MI300x v.s TP8 on competitor	106.8%	95.7%	107.1%	107.1%	_					
offline, i=128,o=2048	TP8 on MI300x v.s TP8 on competitor	118.3%	97.7%	118.7%	118.7%	_					
offline, i=2048,o=128	TP8 on MI300x v.s TP8 on competitor	104.9%	98.3%	111.6%	111.6%	_					
offline, i=2048,o=2048	TP8 on MI300x v.s TP8 on competitor	109.7%	98.0%	111.1%	111.1%	_					
offline, i=128,o=128	2xTP4 on MI300x v.s TP8 on competitor	_	_	_	_	150.6%					
offline, i=128,o=2048	2xTP4 on MI300x v.s TP8 on competitor	_	_	_	_	152.2%					
offline, i=2048,o=128	2xTP4 on MI300x v.s TP8 on competitor	_	_	_	_	133.2%					
offline, i=2048,o=2048	2xTP4 on MI300x v.s TP8 on competitor	_	_	_	_	151.5%					
Serving mode request rate from 1 to 32											
Offline mode batch size from 1 to 1024											

Q4/24 Highlights — Continue

Q1/25 Highlights — [Grok-x; INT4 weight, FP8 Compute; 1st Production Deployment]

- Serves model size of $8 \times Grok1$ on single MI300X (previous page)
- Work with Quark (AMD quantizer) quantized int4/fp8 models with dual scaling factors (orange & green)
 - Also work with weight quantization at weight loading (PR in review)
- $INT_4 \rightarrow FP_8$ upcast is perf critical, kernel (fusion) implementation
 - Integrate the AITER CK/ASM fused kernels for performance

AMD Together we advance_

Q2/25 Highlights — [AITER Attention Backend; Llama-4]

AITER scope in the context of inference:

- A lightweight and customizable/tunable/deployable AI tensor engine.
- LLM block-level solutions to plug into customer's framework. (fused-moe, quant-KVCache, etc...)
- Heuristic/user-driver-tuning for self-hosted kernels written in CK/ASM/HIP/Triton
- Fused dynamic quantization kernels and offline utilities.
- A collection of inference Al operators
- C++/Pytorch API and package

AITER Attention Backend introduced optimized attentions from AMD

- Group AITER optimizations for attentions
- Supports Prefill, Extend, Decode attentions
- Supports MHA/GQA/MQA/MLA algo. of the most common sizes (extensible)
- o Includes (both MI30x and MI35x):
 - flash attn varlen func
 - paged attention ragged
 - mla prefill fwd
 - mla decode fwd
 - mha batch prefill func [highly optimized read paged KV]
- Speculative decoding, Draft and MTP support [tree sampling WIP]
- Newer updates to batch_prefill is WIP

Q2/25 Highlights — [MI35X launch, MXFP4]

Initial MXFP4 enablement on MI350/MI355 hardware

- Apply new hardware instructions for MFMA operation
- Provide triton MoE and linear MXFP4 solution
- Work with Quark quantized DSv3
- Make Grok1 BF16 model to be MXFP4 quantized, dynamically at loading

Optimize MXFP4 model performance on MI350/MI355 hardware

- o Provide the CK-MoE solution to support dynamic-tiling to enhance Gemm computation intensity
- o Fused the activation MXFP4 quant with the different operations (ex: activation, linear, Layer Norm)
- Add more linear layers with MXFP4 quantization without affecting correctness

Q3/25 Highlights — [New formats; More models: Kimi-K2, GPT-OSS]

OCP-FP8 native supports built for MI35X (GFX950)

Seamless supports of FP8 from MI30X to MI35X, with OCP-FP8 Interoperability (effortless)

NVFP4 QDQ is supported via Petit Kernels

- Supports CDNA2/CDNA3 GPUs (AMD MI2XX/MI3XX series)
- https://github.com/sgl-project/sglang/pull/7302
 Supports Dense Models
- WIP for MoE Models

MXFP4 is supported on MI35x via Triton & AITER CK Kernels

- Use MXFP _MFMA_ instructions from MI35x (GFX950) native ISA support
- Supported from both Triton (Dense, MoE) and AITER/CK (Dense, MoE) for greater flexibility
- Support Quark MXFP4 PTQ models, and dynamic quantized (MXFP4 weight, activation) MoE

Kimi-K2

- Day 0 support, functions with accuracy
- Early measure shows great advantage MI300X vs. H200 for max_concurrency > 4
- AITER MLA optimization WIP (to support number of heads 8 per TP)

GPT-OSS

- Day 0 support, fully functional with accuracies
- BF16 model runs on MI30X/MI35X
- OpenAI/MXFP4 model runs on MI35X
- AITER CK-MoE optimization WIP (to support bias)

Q3/25 Highlights — [Wave backends]

Wave Attention Backend introduced from AMD

- o Wave is a high-performance pythonic DSL
- o SWMD Wave level programming
- First-class support for PyTorch tensors
- SGLang attentions: Prefill, Extend, Paged Decode
- Constraint based Distribution + Tiling
- Harness MLIR based optimizations

Wave Kernel

Tracing

Symbolic Analysis

Optimization Passes

MLIR Codegen

LLVM IR

Wave level control – Can specify how work is distributed to each wave within a block with minimal increase in complexity.

Easy Tiling/Reordering Optimization — Constraint/tiling is separate from program/compute. It allows for experimenting with different tiling adjustment, loop reordering or workgroup reordering without touching the actual kernel/program.

Replace tanh with tanh_approximation on wave kernel backend, this brings **7~15%** improvement. (IL=8k, from 1027.72 -> 959.62)

			[Wave] Add quantize	d linear layer kernel (#68	31) + [WAVE] Tanh Approx
į,	prefill attention kernel late	h100 numbers			
backend	triton	aiter*	wave	(provided by customer)	
image	0318rc	0318rc	0310rc (14-09)		
8k	1616	1132	959.62	368	38%
16k	4544	2839	2552.95	1206	47%
32k	16067	9502	8746.45	4758	54%
			[Wave] Add quantize	d linear layer kernel (#68	31)
	prefill attention kernel late	ncy (us) on 4/08		h100 numbers	
backend	triton	aiter*	wave	(provided by customer)	
image	0318rc	0318rc	0310rc (14-09)		
8k	1616	1132	1027.72	368	
16k	4544	2839	2943.07	1206	
32k	16067	9502	9774.18	4758	

Q3/25 Highlights — [Petit Kernel]

- Petit: NVFP4 for MI250/MI300
- Tailored, E2E optimizations
 - Efficient dequantizations via offline bit-shuffling
 - Premuted LDS layout, XCC-aware workload partition
 - Software pipelining & low-level instruction scheduling

Q3/25 Highlights — [Petit Kernel]

- Community-built from causalflow.ai (3-BSD license)
- Available on SGLang 0.4.10
 - 1.6x faster than BF16 models (Llama 3.3 70B)
 - 3.7x faster than HipBlasLt during decoding
- Roadmap
 - INT4/MXFP4 support
 - MoE support for DeepSeek & GPT-OSS

Offline generation speed, 1xMI300x

Distributed — [1P1D vs. 2×SingleNode normalized]

DeepSeek-R1

- o ISL [input len] = 1000
- o OSL [output len] = 600
- o Num requests = 128
- o SGL v0.4.10.post2
- o Mooncake b63322c
- o Batch Transfer
- o Page size = 1
- o AITER ENABLED
- o Thor2 BCM57608
- o MI300X

Roadmap – key area: Distributed, MoRI, Rack Scale, OME

AITER — AI Tensor Engine for ROCM (AI/LLM Compute Blocks)

- More operators + more sizes support for more models
- Newer V3 Inference CK Attention Kernel customizable
- https://github.com/ROCm/aiter

MoRI — **Modular RDMA Interface** (LLM Native **Communication** Engine)

- MoRI = DeepEP + shmem + CCL + NIXL + ···
- Integrating with SGLang Q3 2025
- https://github.com/ROCm/mori

OME — Oracle Open Model Engine (Kubernetes Operator for LLM Serving and Management)

- Added Host and Topology Awareness
- Simplified Serving Configuration, Speed to deployment
- Aided Dynamic/Auto Scaling (LB) with optimal traffic engineering
- https://github.com/sgl-project/ome
- o https://docs.sglang.ai/ome/

Wave & more AMD from Communities

- o Petit Kernels ...
- UCCL/UCSHMEM...

AMD together we advance_

Non confidential

Community

Multiple ways to contribute

- Triton most generic
- sgl-kernel HIP, Cuda Hipified (CK, etc. upcoming)
- AITER AMD specific & optimized
- Wave backend
- o 3rd parties: Petit-kernel, etc.

slime: SGLang Native Post-Training Framework for RL Scaling

- Special hanks to the AMD GenAl Foundation Model Team for Day-1 support.
- o https://github.com/THUDM/slime/blob/main/docs/en/amd_tutorial.md
- https://lmsys.org/blog/2025-07-09-slime/
- https://github.com/THUDM/slime

<a>Mooncake

OME: Open Model Engine – a Kubernetes operator that treats models as first-class resources

- o **Multi-node serving:** Deploy massive models like DeepSeek V3 (685B) across multiple nodes with a simple configuration
- o **Prefill-decode disaggregation:** Separate compute-intensive prefill fr. memory-bound decode, with independent scaling
- o **Flexible architectures:** Both prefill and decode can run in single-node or multi-node configurations based on your needs
- o Serverless deployment: Scale-to-zero for cost efficiency when models aren't in use
- o **Business-driven scaling:** Complex autoscaling based on KV cache, tokens/second, latency targets, or custom metric
- OCI + SGLang backed

AMD Resources to community

- AMD Developer Cloud:
 - https://amd.digitalocean.com/partnerships/amd/campaigns/8037ef70-7d32-11f0-a421-0a58ac14471d
- AMD University Program (AUP):
 https://www.amd.com/on/corporate/

