

ScPoEconometrics: Advanced

Instrumental Variables - Applications

Nikiforos Zampetakis based on Florian Oswald's slides SciencesPo Paris 2024-03-09

Status

What Did we Do Last Week?

- We learned about John Snow's grand experiment in London 1850.
- We used his story to motivate the IV estimator.

Today

- We'll look at further IV applications.
- We introduce an extension called *Two Stage Least Squares*.
- We will use R to compute the estimates.
- Finally we'll talk about *weak* instruments.

Back to school!

Returns To Schooling

- What's the causal impact of schooling on earnings?
- Jacob Mincer was interested in this important question.
- Here's his model:

$$\log Y_i = lpha +
ho S_i + eta_1 X_i + eta_2 X_i^2 + e_i$$

Returns To Schooling

$$\log Y_i = \alpha + \rho S_i + \beta_1 X_i + \beta_2 X_i^2 + e_i$$

- He found an estimate for ρ of about 0.11,
- 11% earnings advantage for each additional year of education
- Look at the DAG. Is that a good model? Well, why would it not be?

Ability Bias

- We compare earnings of men with certain schooling and work experience
- Is all else equal, after controlling for those?
- Given X,
 - Can we find differently diligent workers out there?
 - Can we find differently able workers?
 - Do family connections of workers vary?

- Yes, of course. So, *all else* is not equal at all.
- That's an issue, because for OLS consistency we require the orthogonality assumption

$$E[e_i|S_i,X_i] \neq 0$$

• Let's introduce **ability** A_i explicitly.

Mincer with Unobserved Ability

- ullet In fact we have \emph{two} unobservables: \emph{e} and \emph{A}
- Of course we can't tell them apart.
- So we defined a new unobservable factor

$$u_i = e_i + A_i$$

Mincer with Unobserved Ability

• In terms of an equation:

$$\log Y_i = lpha +
ho S_i + eta_1 X_i + eta_2 X_i^2 + \underbrace{u_i}_{A_i + e_i}$$

- Sometimes, this does not matter, and the OLS bias is small.
- But sometimes it does and we get it totally wrong! Example.

Angrist and Krueger (1991): Birthdate is as good as Random

- Angrist and Krueger (AK91) is an influental study addressing ability bias.
- Idea:
 - 1. construct an IV that encodes birth date of student.
 - 2. Child born just after cutoff date will start school later!
- Suppose all children who reach the age of 6 by 31st of december 2021 are required to enroll in the first grade of school in september 2021.

- If born in September 2015 (i.e. 6 years prior), will be 5 years and 3/4 by the time they start school.
- If born on the 1st of January 2016 will be 6 and 3/4 years when *they* enter school in september 2022.
- However, people can drop out of school legally on their 16-th birthday!
- So, out of people who drop out, some got more schooling than others.
- AK91 construct IV *quarter of birth* dummy: affects schooling, but not related to *A*!

AK91 IV setup

- quarter of birth dummy z: affects schooling, but not related to A!
- In particular: whether born in 4-th quarter or not.

AK91 Estimation: Two Stage Least Squares (2SLS)

AK91 allow us to introduce a widely used variation of our simple IV estimator: 2SLS

- 1. We estimate a **first stage model** which uses only exogenous variables (like z) to explain our endgenous regressor s.
- 2. We then use the first stage model to *predict* values of s in what is called the **second stage** or the **reduced form** model. Performing this procedure is supposed to take out any impact of A in the correlation we observe in our data between s and y.
 - 1. Stage: $s_i = \alpha_0 + \alpha_1 z_i + \eta_i$
 - 2. Stage: $y_i = \beta_0 + \beta_1 \hat{s}_i + u_i$

Conditions:

- 1. Relevance of the IV: $\alpha_1 \neq 0$
- 2. Independence (IV assignment as good as random): $E[\eta|z]=0$
- 3. Exogeneity (our exclusion restriction): E[uert z]=0

Let's do Angrist and Krueger (1991)!

Data on birth quarter and wages

Let's load the data and look at a quick summary

```
#devtools::install_github("jrnold/masteringmetrics", subdir = "masteringmetrics")
data("ak91", package = "masteringmetrics")
# from the modelsummary package
datasummary_skim(data.frame(ak91), histogram = TRUE)
```

	Unique	Missing Pct.	Mean	SD	Min	Median	Max	
lnw	26732	0	5.9	0.7	-2.3	6.0	10.5	
S	21	0	12.8	3.3	0.0	12.0	20.0	
yob	10	0	1934.6	2.9	1930.0	1935.0	1939.0	
qob	4	0	2.5	1.1	1.0	3.0	4.0	1111
sob	51	0	30.7	14.2	1.0	34.0	56.0	ملافلطناس
age	40	0	45.0	2.9	40.2	45.0	50.0	

AK91 Data Transformations

- We want to create the q4 dummy which is TRUE if you are born in the 4th quarter.
- create factor versions of quarter and year of birth.

AK91 Figure 1: First Stage!

Let's reproduce AK91's first figure now on education as a function of quarter of birth!

AK91 Figure 1: First Stage!

- 1. The numbers label mean education *by* quarter of birth groups.
- 2. The 4-th quarters **did** get more education in most years!
- 3. There is a general trend.

AK91 Figure 2: Impact of IV on outcome

What about earnings for those groups?

```
ggplot(ak91_age, aes(x = yob + (qob - 1) / 4, y = lnw)) +
geom_line() +
geom_label(mapping = aes(label = qob, color = q4)) +
scale_x_continuous("Year of birth", breaks = 1930:1940) +
scale_y_continuous("Log weekly wages") +
guides(label = FALSE, color = FALSE) +
theme_bw()
```


AK91 Figure 2: Impact of IV on outcome

- 1. The 4-th quarters are among the highearners by birth year.
- 2. In general, weekly wages seem to decline somewhat over time.

Running IV estimation in R

- Several options (like always with R! ②)
- Will use the feols function from the fixest package.
- We will compute *robust* standard errors which are correcting for heteroskedasticity. Details here.
- Notice the predict to get \hat{s} .

```
librarv(fixest)
# create a list of models
mod <- list()</pre>
# standard (biased!) OLS
mod sols <- lm(lnw ~ s, data = ak91)
# IV: born in q4 is TRUE?
# doing IV manually in 2 stages.
mod[["1. stage"]] <- lm(s ~ q4, data = ak91)</pre>
ak91$shat <- predict(mod[["1. stage"]])
mod[["2. stage"]] \leftarrow lm(lnw \sim shat, data = ak91)
# run 2SLS
# doing IV all in one go
# notice the formula!
# formula = v \sim x \mid z
mod$`2SLS` <- feols(lnw ~ 1 | s ~ q4,
                      data = ak91,
                      vcov = "hetero")
```


AK91 Results Table

	ols	1. stage	2. stage	2SLS	
(Intercept)	4.995***	12.747***	4.955***	4.955***	
	(0.004)	(0.007)	(0.381)	(0.358)	
S	0.071***				
	(0.000)				
q4		0.092***			
		(0.013)			
shat			0.074*		
			(0.030)		
fit_s				0.074**	
				(0.028)	
R2	0.117	0.000	0.000	0.117	
F	43782.556	48.095	6.146		
+ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001					

- 1. OLS likely downward biased (measurement error in schooling)
- 2. First Stage: IV q4 is statistically significant, but small effect: born in q4 has 0.092 years of educ. \mathbb{R}^2 is 0%! But F-stat is large.
- 3. Second stage has same point estimate as 2SLS but different std error (2. stage one is wrong)

Remember the F-Statistic?

- We encountered this before: it's useful to test restricted vs unrestricted models against each other.
- Here, we are interested whether our instruments are *jointly* significant. Of course, with only one IV, that's not more informative than the t-stat of that IV.
- This F-Stat compares the predictive power of the first stage with and without the IVs. If they have very similar predictive power, the F-stat will be low, and we will not be able to reject the H0 that our IVs are **jointly insignificant** in the first stage model. \bigcirc

Additional Control Variables

- We saw a clear time trend in education earlier.
- There are also business-cycle fluctuations in earnings
- We should somehow control for different time periods.
- Also, we can use more than one IV! Here is how:

Additional Control Variables

```
# we keep adding to our `mod` list:
mod$ols_yr <- update(mod$ols, . ~ . + yob_fct) # previous OLS model
# add exogenous vars on both sides of the `|`!
mod[["2SLS_yr"]] <- feols(lnw ~ yob_fct | s ~ q4, data = ak91, vcov = "hetero")
# use all quarters as IVs
mod[["2SLS_all"]] <- feols(lnw ~ yob_fct | s ~ qob_fct, data = ak91, vcov = "hetero")</pre>
```

	ols	2SLS	ols_yr	2SLS_yr	2SLS_all
(Intercept)	4.995***	4.955***	5.017***	4.966***	4.592***
	(0.004)	(0.358)	(0.005)	(0.354)	(0.251)
S	0.071***		0.071***		
	(0.000)		(0.000)		
fit_s		0.074**		0.075**	0.105***
		(0.028)		(0.028)	(0.020)
R2	0.117	0.117	0.118	0.117	0.091
Instruments	none	Q4	none	Q4	All Quarters
Year of birth	no	no	yes	yes	yes
+ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001					

Additional Control Variables

	ols	2SLS	ols_yr	2SLS_yr	2SLS_all
(Intercept)	4.995***	4.955***	5.017***	4.966***	4.592***
	(0.004)	(0.358)	(0.005)	(0.354)	(0.251)
S	0.071***		0.071***		Usi
fit_s	(3.2.2.2)	0.074**	(33333)	0.075**	0.105***
		(0.028)		(0.028)	(0.020)
R2	0.117	0.117	0.118	0.117	0.091
Instruments	none	Q4	none	Q4	All Quarters
Year of birth	no	no	yes	yes	yes
+ p < 0.1, * p <	< 0.05, ** p	o < 0.01, **	** p < 0.00	1	

AK91: Taking Stock - The Quarter of Birth (QOB) IV

- This will produce consistent estimates if
 - 1. The IV predicts the endogenous regressor well.
 - 2. The IV is as good as random / independent of OVs.
 - 3. Can only impact outcome through schooling.
- How does the QOB perform along those lines?

- 1. Plot of first stage and high F-stat offer compelling evidence for **relevance**. ✓
- 2. Is QOB **independent** of, say, *maternal characteristics*? Birthdays are not really random there are birth seasons for certain socioeconomic backgrounds. highest maternal schooling give birth in second quarter. (not in 4th! ✓)
- 3. Exclusion: What if the youngest kids (born in Q4!) are the disadvantaged ones early on, which has long-term negative impacts? That would mean $E[u|z] \neq 0!$ Well, with QOB the youngest ones actually do better (more schooling and higher wage)!

Mechanics of IV

Identification and Inference

IV Identification

Let's go back to our simple linear model:

$$y = \beta_0 + \beta_1 x + u$$

where we fear that $Cov(x, u) \neq 0$, x is endogenous.

Conditions for IV

- 1. first stage or relevance: $Cov(z,x) \neq 0$
- 2. IV exogeneity: Cov(z,u)=0: the IV is exogenous in the outcome equation.

Valid Model (A) vs Invalid Model (B) for IV z

IV Identification

Conditions for IV

- 1. **first stage** or **relevance**: $Cov(z, x) \neq 0$
- 2. IV exogeneity: Cov(z, u) = 0: the IV is exogenous in the outcome equation.

- How does this *identify* β_1 ?
- (How can we express β_1 in terms of population moments to pin it's value down?)

IV Identification

$$Cov(z,y) = Cov(z,eta_0 + eta_1 x + u) \ = eta_1 Cov(z,x) + Cov(z,u)$$

Under condition 2. above (IV exogeneity), we have Cov(z,u)=0, hence

$$Cov(z,y) = \beta_1 Cov(z,x)$$

and under condition 1. (**relevance**), we have $Cov(z,x) \neq 0$, so that we can divide the equation through to obtain

$$eta_1 = rac{Cov(z,y)}{Cov(z,x)}.$$

- β_1 is identified via population moments Cov(z,y) and Cov(z,x).
- We can *estimate* those moments via their *sample analogs*

IV Estimator

Just plugging in for the population moments:

$${\hat eta}_1 = rac{\sum_{i=1}^n (z_i - ar{z})(y_i - ar{y})}{\sum_{i=1}^n (z_i - ar{z})(x_i - ar{x})}$$

- The intercept estimate is $\hat{eta}_0 = ar{y} \hat{eta}_1 ar{x}$
- Given both assumptions 1. and 2. are satisfied, we say that the IV estimator is consistent for β_1 . We write

$$\operatorname{plim}(\hat{eta}_1)=eta_1$$

in words: the *probability limit* of $\hat{\beta}_1$ is the true β_1 .

• If this is true, we say that this estimator is **consistent**.

IV Inference

Assuming $E(u^2|z)=\sigma^2$ the variance of the IV slope estimator is

$$Var(\hat{eta}_{1,IV}) = rac{\sigma^2}{n\sigma_x^2
ho_{x,z}^2}$$

- σ_x^2 is the population variance of x,
- σ^2 the one of u, and
- $\rho_{x,z}$ is the population correlation between x and z.

You can see 2 important things here:

- 1. Without the term $\rho_{x,z}^2$, this is **like OLS variance**.
- 2. As sample size n increases, the **variance decreases**.

IV Variance is Always Larger than OLS Variance

• Replace $ho_{x,z}^2$ with $R_{x,z}^2$, i.e. the R-squared of a regression of x on z:

$$Var(\hat{eta}_{1,IV}) = rac{\sigma^2}{n\sigma_x^2 R_{x,z}^2}$$

- 1. Given $R_{x,z}^2 < 1$ in most real life situations, we have that $Var(\hat{eta}_{1,IV}) > Var(\hat{eta}_{1,OLS})$ almost certainly.
- 2. The higher the correlation between z and x, the closer their $R_{x,z}^2$ is to 1. With $R_{x,z}^2 = 1$ we get back to the OLS variance. This is no surprise, because that implies that in fact z = x.

So, if you have a valid, exogenous regressor x, you should *not* perform IV estimation using z to obtain $\hat{\beta}$, since your variance will be unnecessarily large.

Returns to Education for Married Women

Consider the following model for married women's wages:

$$\log wage = \beta_0 + \beta_1 educ + u$$

Let's run an OLS on this, and then compare it to an IV estimate using father's education. Keep in mind that this is a valid IV z if

- 1. fatheduc and educ are correlated
- 2. fatheduc and u are not correlated.

Returns to Education for Married Women

```
data(mroz,package = "wooldridge")
mods = list()
mods$OLS <- lm(lwage ~ educ, data = mroz)
mods[['First Stage']] <- lm(educ ~ fatheduc, data = subset(mroz, inlf == 1))
mods$IV <- feols(lwage ~ 1 | educ ~ fatheduc, data = mroz, vcov = "hetero")</pre>
```

	OLS	First Stage	IV
(Intercept)	-0.185	10.237***	0.441
	(0.185)	(0.276)	(0.465)
educ	0.109***		
	(0.014)		
fatheduc		0.269***	
		(0.029)	
fit_educ			0.059
			(0.037)
Num.Obs.	428	428	428
R2	0.118	0.173	0.093

IV Standard Errors

IV with a Weak Instrument

- IV is consistent under given assumptions.
- However, even if we have only very small Cor(z,u), we can get wrong-footed
- Small corrleation between x and z can produce **inconsistent** estimates.

$$ext{plim}(\hat{eta}_{1,IV}) = eta_1 + rac{Cor(z,u)}{Cor(z,x)} \cdot rac{\sigma_u}{\sigma_x}$$

- Take Cor(z, u) is very small,
- A **weak instrument** is one with only a small absolute value for Cor(z,x)
- This will blow up this second term in the probability limit.
- Even with a very big sample size n, our estimator would not converge to the true population parameter β_1 , because we are using a weak instrument.

Weak Stuff

To illustrate this point, let's assume we want to look at the impact of number of packs of cigarettes smoked per day by pregnant women (*packs*) on the birthweight of their child (*bwght*):

$$\log(bwght) = \beta_0 + \beta_1 packs + u$$

We are worried that smoking behavior is correlated with a range of other health-related variables which are in u and which could impact the birthweight of the child. So we look for an IV. Suppose we use the price of cigarettes (*cigprice*), assuming that the price of cigarettes is uncorrelated with factors in u. Let's run the first stage of *cigprice* on *packs* and then let's show the 2SLS estimates:

Weak Stuf (Different Package)

	First Stage	IV
(Intercept)	0.067	4.448
	(0.103)	(0.940)
cigprice	0.000	
	(0.001)	
packs		2.989
		(8.996)
R2	0.000	-23.230

Weak Stuff

- The first columns shows: very weak first stage. *cigprice* has zero impact on packs it seems!
- R^2 is zero.
- What is we use this IV nevertheless?

- in the second column: very large, positive(!) impact of packs smoked on birthweight.
- Huge Standard Error though.
- An R^2 of -23?!
- F-stat of first stage: 0.121. Corresponds to a p-value of 0.728: we **cannot** reject the H0 of an insignificant first stage here *at all*.
- So: invalid approach. X

END

- nikiforos.zampetakis@sciencespo.fr
- **%** Slides
- % Book
- @ScPoEcon
- @ScPoEcon