Announcements

- HW#2 will be due on 23:59 4/27.
- We will have a midterm on 4/18 (next Tuesday).
- The midterm will take place at S101 and S102.

Review

- Dynamic programming
 - Rod cutting
 - Matrix chain multiplication
 - Longest common subsequence

Edit Distance Q

要算出最少需要幾個 operation可以把X改成 Y?

這個最少的步驟就是 X & Y 的 edit distance

 Given the following operations, the edit distance from X and Y is the minimal number of operations that transform X to Y.

可以選三個指令

- **Replace:** set x_i to some other character
- Insert: add a character into the sequence
- Delete: remove a character into the sequence

X = GATCG Y = CAATGEdit distance (X, Y) = ?

Example (1)

$$X = G \quad A \quad T \quad X \quad C$$

$$Y = C$$
 A A T G

Edit distance $(X, Y) = 3 \leftarrow$

- 1. Replace G with C
- 2. Insert A
- 3. Delete C

Operations:

- Replace
- Insert
- Delete

Example (2)

$$X = \triangle \times \triangle \Rightarrow \Diamond$$

$$Y = \triangle \triangle \triangle \triangle \triangle \triangle \triangle \triangle$$

Edit distance (X, Y) = 3

- 1. Delete 🖈
- 2. Insert ◆ 「個刪除 一個插入
- 3. Insert 🖈

- Replace
- Insert
- Delete

Computing the edit distance

• Recurrence? (大問題解與小問題解的關係?)

d(GATCG, CAATG) = 3

d(GATC, CAAT) = 3

d(GATC, CAATG) = 43

stores the edit distance between two prefix strings

d(GATCG, CAAT) = 4

$$d[i, j]$$
 vs. $d[i-1, j-1]$
 $d[i-1, j]$
 $d[i, j-1]$

需要填入初始值

空的字串跟G 的edit distance 是1

從空字串到變成G A 需要兩步驟 所以edit distance 是 2 (他不是從G 變到A, 他是從空的O 變到A)

1		G	Α	Т	С	G
(0	1	2	3	4	5
С	1					
Α	2					
Α	3					
Т	4			X		
G	5					

$$d(i, j) = \begin{cases} i & \text{if } j = 0 \\ j & \text{if } i = 0 \\ \min(d(i-1, j-1) + (x_i \neq y_j), d(i-1, j) + 1, d(i, j-1) + 1) & \text{otherwise} \end{cases}$$

從左上角過來

Α

Α

G

從左邊過來

從上面過來

從上面和從左邊過來都需要2個步驟 ゲ 從左上過來只需要1個步驟 選最少的,故為1

如果兩個字母相同的情況,就直接把左上角的數字抓下來即可。

	G	Α	Т	С	G
0	1	2	3	4	5
1 2	ك ك ⊅ 1	2	3	3 -	→ 4
2	2	1	2	3	4
3	3	2	2	3	4
4	4	3	2	3	4
5	4	4	3	3	3

檢查三個位置,選最小的值+1, 就會是右下角那格的數字。

暴力法的時間複雜度是O(3ⁿ)

d(GATCG, CAATG)

令 A字串長度為 a, B字串長度為 b worst case: O(ab)

$$d(i, j) = \begin{cases} i & \text{if } j = 0 \\ j & \text{if } i = 0 \\ \min(d(i-1, j-1) + (x_i \neq y_j), d(i-1, j) + 1, d(i, j-1) + 1) & \text{otherwise} \end{cases}$$

		Δ	*	Δ	*	\Diamond
	0	1	2	3	4	5
Δ	1	0	1	2	3	4
Δ	2	1	1	1	2	3
*	3	2	1	2	1	2
\Diamond	4	3	2	2	2	1
\Diamond	5	4	3	3	3	2
*	6	5	4	3	3	3

Longest increasing subsequence

Given a sequence of numbers $X = x_1, x_2, ..., x_N$, find the longest increasing *subsequence* $(i_1, i_2, ..., i_k)$ where numbers in the sequence increase.

找到一個最長的子序列,數字要是遞增的

5 2 8 6 3 6 9 7

Longest increasing subsequence

Given a sequence of numbers $X = x_1, x_2, ..., x_N$, find the longest increasing *subsequence* $(i_1, i_2, ..., i_k)$ where numbers in the sequence increase.

暴力解的時間複雜度是O(2ⁿ)

5 2 8 6 3 6 9 7

不是唯一解

• Let L[i] be the length of the LIS ending at index i such that X[i] is the last element of the LIS.

$$X = 5 2 8 6 3 6 9 7$$
 $L = ?$

Let L[i] be the length of the LIS ending at index i such that X[i] is the last element of the LIS.

$$X = 5$$
 2 8 6 3 6 9 7
 $A = 5$ 1 1 2 2 2 3 4 4

Let L[i] be the length of the LIS ending at index
i such that X[i] is the last element of the LIS.

Recurrence?

第i個的L在LIS中排第幾

在0~i之間找一個最大的L[i]拿來加1

L[j]對應到的X[j]要比我現在在的這個數字/J

$$L[i] = 1 + \max(L[i])$$
 where $0 < j < i$ and $X[j] < X[i]$ or 1, if no such j exists.

上面那行没有達成,就直接放1

Let L[i] be the length of the LIS ending at index
i such that X[i] is the last element of the LIS.

Recurrence?

 $L[i] = 1 + \max(L[i])$ where 0 < j < i and X[j] < X[i] or 1, if no such j exists.

Another example of LIS

O(n^2)是來自,每個數字都要掃一次,掃完之後要再回頭看要排在誰後面。 兩個動作各要做n次,所以O(n^2)。

只有3比他小,3的L裡存的是1,再+1=2

 $O(N^2)$

裡面的那層for loop能不能用更聰明的search 來降低他的時間複雜度變O(nlogn)?要怎麼做?

Another solution

Can we use LCS to solve this problem?

***** 5 2 8 6 3 6 9 7

LCS O(n^2)

Sorted **%** = 2 3 5 6 6 7 8 9

找 X和 sorted X 的 LCS,就會得到LIS

如何利用 LCS 去解決 LIS 問題?

Another solution

Can we use LCS to solve this problem?

```
5 2 8 6 3 6 9 7
```

LCS

2 3 5 6 6 7 8 9

Optimal Binary Search Trees Chapter 15.5

Mei-Chen Yeh

Binary search trees

Binary search trees

- Binary-search-tree property:
 - Let x be a node in a binary search tree.
 - If y is a node in the left subtree of x, then y.key ≤ x.key.

A good binary search tree?

會先看左邊能不能放,再看右邊

• Binary search trees for 3, 7, 9, 12

How many trees in total? Which one you prefer?

Binary trees for four nodes

存4 個值, 會有14 種可能性 (8+4+2)

The total number of binary trees with *n* nodes is

$$c(n) = \frac{1}{n+1} {2n \choose n} = 4^n / n^{1.5}$$

大部分要造binary tree 需要的時間是O(nlogn) 最糟可能需要O(n^2)

樹的種類數量跟節點的個數是呈指數成長

Keys and dummy keys

藍色的點代表數列裡的所有數字

就算樹形狀不同,5個節點都會有6個dummy keys

- p_i
 - the probability of searching for the key k_i
- \bullet q_i
 - the probability of searching for the key d_i

Optimal binary search trees

 Given that we know how often each key occurs, how do we build a binary search tree so as to minimize the number of nodes visited in all searches?

這個節點的機率代表的是『今天會有多少人要來這裡』

i	0	1	2	3	4	5
p_i		0.15	0.1	0.05	0.1	0.2
q_i	0.05	0.1	0.05	0.05	0.05	0.1

熱門的節點如果擺上面一點,要找到特定的key所花費的次數就會比較少

$$K_3=3*0.05=0.15$$

$$K_4=2*0.1=0.2$$

$$K_5=3*0.2=0.6$$

$$d_0=3*0.05=0.15$$

$$d_1=3*0.1=0.3$$

$$d_2=4*0.05=0.2$$

$$d_3=4*0.05=0.2$$

$$d_4=4*0.05=0.2$$

$$d_5=4*0.1=0.4$$

K1 K4 K5 d2 d3 d4 d5

會有0.15的機率要找K1, 因為要找到K1要找兩層, 所以有0.15的機率要花費

狺個兩層。

代表成本	是0 6 5*2	1	2	3	4	5
p_i		0.15	0.1	0.05	0.1	0.2
q_i	0.05	0.1	0.05	0.05	0.05	0.1

期望值:帶有機率的情況下,去玩某個遊戲(彩券),產生的平均結果。

all cost=2.8

這棵樹最後平均的期望值是 2.8次 (平均的搜尋成本是 2.8次)

Cost = Probability * (Depth+1)

$$K_1=2*0.15=0.3$$

$$K_2=1*0.1=0.1$$

$$K_3 = 4*0.05 = 0.2$$

$$K_4=3*0.1=0.3$$

$$K_5=2*0.2=0.4$$

$$d_0=3*0.05=0.15$$

$$d_1=3*0.1=0.3$$

$$d_2=5*0.05=0.25$$

$$d_3=5*0.05=0.25$$

$$d_4=4*0.05=0.2$$

$$d_5=3*0.1=0.3$$

這棵樹深度更深,但期望值(搜尋成本)比較低,所以比較好。 把熱門一點的節點往上放。 all cost=2.75

But, optimal?

0.1

0.05

0

0.05

 p_i

 q_i

0.15

0.1

3

0.05

0.05

4

0.1

0.05

Cost = Probability * (Depth+1)

這個式子算的是:給我一棵樹,要如何計算成本

E[Cost]

5

0.2

0.1

$$= \sum_{i=1}^{n} p_i (depth(k_i) + 1)$$

$$+\sum_{i=0}^{n}q_{i}(depth(d_{i})+1)$$

要讓他是最小化成本,只需要考慮這邊是最小的

$$= \sum_{i=1}^{n} p_{i} \cdot depth(k_{i}) + \sum_{i=0}^{n} q_{i} \cdot depth(d_{i})$$

全部的key、dummy key加起來會是?

all cost=2.75

But, optimal?

E[search cost]

$$= \sum_{i=1}^{n} p_{i} \cdot depth(k_{i}) + \sum_{i=0}^{n} q_{i} \cdot depth(d_{i}) + \sum_{i=1}^{n} p_{i} + \sum_{i=0}^{n} q_{i}$$

Dynamic programming

- Optimal substructure of BST?
 - The optimal binary search tree for 3, 7, 9, 12

Dynamic programming

e[i,j]: the expected cost of searching an optimal BST containing keys $k_{i},...,k_{j}$.

Dynamic programming

e[i,j]: the expected cost of searching an optimal BST containing keys $k_i, ..., k_j$.

$$e[i, j] = e[i, r-1] + e[r+1, j] + \sum_{l=i}^{J} p_l + \sum_{l=i-1}^{J} q_l$$

e[i,j]: the expected cost of searching an optimal BST containing keys $k_i, ..., k_j$.

$$e[i,j] = \min_{i \le r \le j} \left\{ e[i,r-1] + e[r+1,j] + \sum_{l=i}^{j} p_l + \sum_{l=i-1}^{j} q_l \right\}$$

計算的時候只需要先取前面兩個e的最小值,再把它加上後面的藍色部 分,最後再存進e

w[i, j]

- Build 3 tables
- 先把前處理做好
- -e[i, j]: keeps minimum cost
- root[i, j]: keeps who is the root
- -w[i,j]: keeps $\sum_{l=1}^{J} p_l + \sum_{l=1}^{J} q_l$ _{\$\intering\$ \$\parabox{0.5}\$ \$\parabox{0}

這裡不會是1,因為1是整棵樹的機率。 我們這邊只是其中一棵子樹的機率總和。

> 算好先放在w表格裡, 之後在算e的時候可以 直接查表

• $w[i, j] = w[i, j-1] + p_i + q_j$

查i 的前一格 再把i放進去

$$w[i,j] = \sum_{l=i}^{j} p_l + \sum_{l=i-1}^{j} q_l = w[i,j-1] + p_j + q_j$$

建立w表,之後可以快速獲得這些機率的加總

input probability table

i	0	1	2	3	4	5
p _i		0.15	0.1	0.05	0.1	0.2
q_i	0.05	0.1	0.05	0.05	0.05	0.1

	Г							→ j
		W	0	1	2	3	4	5
		1	0.05	0.3				
		2		0.1	0.25			
		3			0.05	0.15		
		4				0.05		
	<u>_</u>	5		.			0.05	
左下角不管,因為為	┎╻┞╞ ┇	可的關係是 6		逐 大』的[網係			0.1

0.05+0.15+0.1

0.1+0.1+0.05

0.05+0.05+0.05

$$w[i,j] = \sum_{l=i}^{j} p_l + \sum_{l=i-1}^{j} q_l = w[i,j-1] + p_j + q_j$$

input probability table

i	0	1	2	3	4	5
p_i		0.15	0.1	0.05	0.1	0.2
q_i	0.05	0.1	0.05	0.05	0.05	0.1

W	0	1	2	3	4	5
1	0.05	0.3	0.45	0.55	0.7	1
2		0.1	0.25	0.35	0.5	0.8
3			0.05	0.15	0.3	0.6
4				0.05	0.2	0.5
5					0.05	0.35
6						0.1

0.05+0.15+0.1

0.1+0.1+0.05

0.05+0.05+0.05

$$e[i,j] = \min_{i \le r \le j} \left\{ e[i,r-1] + e[r+1,j] + \sum_{l=i}^{j} p_l + \sum_{l=i-1}^{j} q_l \right\}$$

i	0	1	2	3	4	5
p_i		0.15	0.1	0.05	0.1	0.2
q_i	0.05	0.1	0.05	0.05	0.05	0.1

w[i, j]

e[1,0]+e[2,1]+w[1,1

=0.05+0.1+0.3

=0.45

	e	0	1	2	3	4	5
	1	0.05	0.45				
	2		0.1				
	3			0.05			
	4				0.05		
	5					0.05	
j	6						0.1

$$e[i,j] = \min_{i \le r \le j} \left\{ e[i,r-1] + e[r+1,j] + \sum_{l=i}^{j} p_l + \sum_{l=i-1}^{j} q_l \right\}$$

i	0	1	2	3	4	5
p_i		0.15	0.1	0.05	0.1	0.2
q_i	0.05	0.1	0.05	0.05	0.05	0.1

ιι w[i, j]

	е	0	1	2	3	4	5
	1	0.05	0.45	0.9	1.25	1.75	2.75
	2		0.1	0.4	0.7	1.2	2
	3			0.05	0.25	0.6	1.3
j	4				0.05	0.3	0.9
	5					0.05	0.5
	6						0.1
		1 2 3 4 5	1 0.05 2 3 4 5	1 0.05 0.45 2 0.1 3 4 5	1 0.05 0.45 0.9 2 0.1 0.4 3 0.05 4 - 5 -	1 0.05 0.45 0.9 1.25 2 0.1 0.4 0.7 3 0.05 0.25 4 0.05 5 0.05	1 0.05 0.45 0.9 1.25 1.75 2 0.1 0.4 0.7 1.2 3 0.05 0.25 0.6 4 0.05 0.05 0.3 5 0.05 0.05

$$e[i,j] = \min_{i \le r \le j} \left\{ e[i,r-1] + e[r+1,j] + \sum_{l=i}^{j} p_l + \sum_{l=i-1}^{j} q_l \right\}$$

i	0	1	2	3	4	5
p_i		0.15	0.1	0.05	0.1	0.2
q_i	0.05	0.1	0.05	0.05	0.05	0.1

ιι w[i, j]

	root	1	2	3	4	5
	1	1	1	2	2	2
	2		2	2	2	4
	3			3	4	5
	4				4	5
↓	5					5

j

0.15

0.1

 p_i

 q_i

0.05

0.1

0.05

0.05

0.05

0.1

0.05

0.2

0.1

Cost = Probability * (Depth+1)

$$K_1=2*0.15=0.3$$

$$K_2=1*0.1=0.1$$

$$K_3=4*0.05=0.2$$

$$K_4=3*0.1=0.3$$

$$K_5=2*0.2=0.4$$

$$d_0=3*0.05=0.15$$

$$d_1=3*0.1=0.3$$

$$d_2=5*0.05=0.25$$

$$d_3=5*0.05=0.25$$

$$d_4=4*0.05=0.2$$

$$d_5=3*0.1=0.3$$

all cost=2.75

But, optimal?

- Time complexity: $O(n^3)$
 - Number of elements in a table: $O(n^2)$
 - Find the minimum cost for each element: O(n)

