Aranda College, Colombo 10 Ananda College, Colombo 10 Ananda College, Colombo 10 Ananda College, Colombo 10 Ananda College, Colo	10
	0
**************************************	0
අත අද කියල් කාළම 10 අත හරද විදහලය. පෙ ළානන්ද විදහලය. පෙ ළානන්ද විදහලය. කොළම 10 අත හරද විදහලය. කෙ	0
Ananda College, Colombo 10 Ananda College, Colom	10

අවසාන වාර පරීක්ෂණය - 2023 ජනවාරි අධනයන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2023

සංයුක්ත ගණිතය Combined Maths I

12 ශුේණිය

පැය

නම	:

උපදෙස් :

මෙම පුශ්න පතුය කොටස් දෙකකින් සමන්විත වේ. A කොටස (පුශ්න 1 - 8) සහ B කොටස (පුශ්න 9 - 13)

※ A කොටස

සියලුම පුශ්නවලට පිළිතුරු සපයන්න. එක් එක් පුශ්නය සඳහා ඔබේ පිළිතුරු, සපයා ඇති ඉඩෙහි ලියන්න. වැඩිපුර ඉඩ අවශා වේ නම්, ඔබට අමතර ලියන කඩදාසි භාවිත කළ හැකිය.

B කොටස

පුශ්න හතරකට පමණක් පිළිතුරු සපයන්න. ඔබේ පීළිතුරු, සපයා ඇති කඩදාසිවල ලියන්න.

- lpha නියමිත කාලය අවසන් වූ පසු ${f A}$ කොටස, ${f B}$ කොටසට උඩින් සිටින පරිදි කොටස් දෙක අමුණා විභාග ශාලාධිපතිට භාර දෙන්න.
- lpha පුශ්න පතුයෙහි ${f B}$ කොටස පමණක් විභාග ශාලාවෙන් පිටතට ගෙනයාමට ඔබට අවසර ඇත.

පරීක්ෂකගේ පුයෝජනය සඳහා පමණි.

කොටස	පුශ්න අංක	ලැබූ ලකුණු
	1	0
	2	250
	3 _ 0	
O A	40	0 1
/A /	5	P25
	6	
	C 7	
9	8	
	9	
	10	
В	11	
	12	
	13	
	එකතුව	
	එකතුව පුතිශතය	

(10) සංයුක්ත ගණිතය II

පනුය I	
පනුය II	
එකතුව	
අවසාන ලකුණු	

ane	rs a	rn I
	අවසාන ලකුණු	
ඉලක්කමෙප	ನೆ	
අකුරින්		

සංකේත අංක	

2	And a ready production in the Contract	
උත්තර පතු පරීක්	ෂක	
පරීක්ෂා කළේ:	1 2	
අධීක්ෂණය		

A කොටස

$f(x)=kx^2-2x+3k+2$; $k \in \mathbb{R}$ වේ. x හි සියලුම කාත්වික අගයන්ට $f(x)>0$ වන පරිදි k	$\frac{\log_{x} 5 - 1}{\left(\log_{5} x\right)^{2}} - \log_{\sqrt{x}} 5 =$						a27.27	
$f(x)=kx^2-2x+3k+2$; $k\in \mathbb{R}$ වේ. x හි සියලුම තාත්වික අගයන්ට $f(x)>0$ වන පරිදි k								
$f(x)=kx^2-2x+3k+2$; $k\in \mathbb{R}$ වේ. x හි සියලුම තාත්වික අගයන්ට $f(x)>0$ වන පරිදි k							11	
$f(x)=kx^2-2x+3k+2$; $k\in\mathbb{R}$ වේ. x හි සියලුම තාත්වික අගයන්ට $f(x)>0$ වන පරිදි k								
$f(x)=kx^2-2x+3k+2$; $k\in\mathbb{R}$ වේ. x හි සියලුම තාත්වික අගයන්ට $f(x)>0$ වන පරිදි k වරාසය සොයන්න.								
$f(x)=kx^2-2x+3k+2$; $k\in \mathbb{R}$ වේ. x හි සියලුම තාත්වික අගයන්ට $f(x)>0$ වන පරිදි k ාරාසය සොයන්න.								
$f(x)=kx^2-2x+3k+2$; $k\in \mathbb{R}$ වේ. x හි සියලුම තාත්වික අගයන්ට $f(x)>0$ වන ප 3 දි k ාරාසය සොයන්න.						0		
f(x) = kx² − 2x + 3k + 2 ; k ∈ R වේ. x හි සියලුම තාත්වික අගයන්ට f(x) > 0 වන පණිදි k ප්රාසය සොයන්න.) A /I	0.5	3 [0	9		
$f(x)=kx^2-2x+3k+2$; $k\in \mathbb{R}$ වේ. x හි සියලුම තාත්වික අගයන්ට $f(x)>0$ වන පරිදි k ාරාසය සොයන්න.	A/I	CPC	5 1	na	ne	rg		
$f(\mathbf{x}) = \mathbf{k}\mathbf{x}^2 - 2\mathbf{x} + 3\mathbf{k} + 2$, $\mathbf{k} \in \mathbf{R}$ වේ. \mathbf{x} හි සියලුම තාත්වික අගයන්ට $f(\mathbf{x}) > 0$ වන පරිදි \mathbf{k} පරාසය සොයන්න.								
F(x) = kx² − 2x + 3k + 2 ; k ∈ R වේ. x හි සියලුම තාත්වික අගයන්ට f(x) > 0 වන පරිදි k හරාසය සොයන්න.								
$F(x) = kx^2 - 2x + 3k + 2$; $k \in \mathbb{R}$ වේ. x හි සියලුම තාත්වික අගයන්ට $f(x) > 0$ වන පරිදි k හිරසය සොයන්න.								
$f(x)=kx^2-2x+3k+2$; $k\in \mathbb{R}$ වේ. x හි සියලුම තාත්වික අගයන්ට $f(x)>0$ වන පරිදි k				70	i.			
F(x) = kx² – 2x + 3k + 2 ; k ළ R වේ. x හි සියලුම තාත්වික අගයන්ට f(x) > 0 වන පරිදි k රෝසය සොයන්න.	***************************************		••••••		••••••			
F(x) = kx² – 2x + 3k + 2 ; k ළ R වේ. x හි සියලුම තාත්වික අගයන්ට f(x) > 0 වන පරිදි k රෝසය සොයන්න.				<u></u>				
F(x) = kx² – 2x + 3k + 2 ; k ∈ R වේ. x හි සියලුම තාත්වික අගයන්ට f(x) > 0 වන පරිදි k ත්රාසය සොයන්න.				<u>)</u>				
F(x) = kx² – 2x + 3k + 2 ; k ∈ R වේ. x හි සියලුම තාත්වික අගයන්ට f(x) > 0 වන පරිදි k ත්රාසය සොයන්න.	. NA DO DE SOULTE SOULTESTANT E STANK EN FRANKE FOR THAN AN THAN		200		gradguigradu tae zdienien manne		21 Mg 104 Mg 104 104 104	22.00000
E(x) = kx² −2x+3k+2 ; k ∈ R වේ. x හි සියලුම තාත්වික අගයන්ට f(x) > 0 වන පරිදි k රෝසය සොයන්න.			60	••••••				
S(x) = kx² – 2x + 3k + 2 ; k ළ R වේ. x හි සියලුම තාත්වික අගයන්ට f(x) > 0 වන පරිදි k රෝසය සොයන්න.			6					
		V	70					
	f(x) = kx ² – 2x + 3k පරාසය සොයන්න.	+2; k∈ R	වේ. x හි ේ	සියලුම තාප				23.57.53
	f(x) = kx ² – 2x + 3k පරාසය සොයන්න.	+2 ; k ∈ R <	වේ. x හි ේ	සියලුම තාප				200000
	f(x) = kx ² – 2x + 3k පරාසය සොයන්න.	+2 ; k ∈ R (වේ. x හි දි	සියලුම තාත				22.57.5.5
			වේ. x හි é	සියලුම තාස				200000
					වික අගයන	රිට f(x) > 0	වන පරිැ	? k
					වික අගයන	8○ f(x) > 0	වන පරිැ	? k
					වික අගයන	60 f(x) > 0	වන පරිදි	? k
					වික අගයන	60 f(x) > 0	වන පරිදි	? k
					වික අගයන	60 f(x) > 0	වන පරිදි	? k
					වික අගයන	60 f(x) > 0	වන පරිදි	? k
					වික අගයන	80 f(x) > 0	වන පරිදි	? k
					වික අගයන	80 f(x) > 0	වන පරිදි	? k
					වික අගයන	80 f(x) > 0	වන පරිදි	k
					වික අගයන	60 f(x) > 0	වන පරිදි	
					්චික අගය න	6 f(x) > 0	වන පරි	
					වික අගයන	80 f(x) > 0	වන පරි	
					වික අගයන	80 f(x) > 0	වන පරි	
					්චික අගයන 	80 f(x) > 0	වන පරිදි	

03.	A(2,3) හා $B(-5,4)$ ලක්ෂා දෙක යා කරන රේඛාව අභාාන්තරව හා බාහිරව බෙදෙන ලක්ෂා
	AC 2 AD 2
	පිළිවෙලින් C හා D වේ. $\frac{AC}{CB} = \frac{2}{3}$ හා $\frac{AD}{DB} = \frac{2}{3}$ වේ. CD හි මධා ලක්ෂායේ ඛණ්ඩාංක සොයන්න.
	CD 3 DD 3
	/ A/I des namere dro
	10
	69
04	Showed $y = 3t^2 + 1$ no $y = 2t^3$ mand for the second $z = 2t^3$ mand for $z = 2t^3$
04.	වකුයක් $x=3t^2+1$ හා $y=2t^3$ මගින් නිරූපණය කරයි. මෙහි t යනු නිශ්ශුනා පරාමිතියකි. මෙම වකුයට t ලක්ෂායේදී ඇඳි අභිලම්බයේ සමීකරණය සොයන්න. නවද මෙම වකුයට අඳින ලද කිසිඳු අභිලම්බයක්
	මුලය හරහා නොපවතින බව පෙන්වන්න.
	ges acos essessor se ecocoso.
	_O`

05. $\frac{2}{x-1} \le x \le \frac{3}{x-2}$ අසමානතාව තෘප්ත කරන x හි අගය කුලකය සොයන්න.

ALGOIDADES UIDI

 $\lim_{x \to \infty} x \left[e^{1/2x} - 1 \right]$ අගයන්න.

07	$\sin^4 \theta$	$\cos^4 \theta$	_ 1	 ≅	$\tan^2 \theta = \frac{2}{3}$	ລຄ	පෙන්වන්න.
07.	2	3	- 5	නම	3	200	ලෙනාවනානා.

22 A/L 48 [papas grp

 $\cos^{-1}\left(\frac{3+5\cos x}{2}\right) = 2\tan^{-1}\left(\frac{1}{2}\tan\frac{x}{2}\right)$

Andrew Colombo 10 Ananda College, Colombo 10 Ana

අවසාන වාර පරීක්ෂණය - 2023 ජනවාරී අධනයන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2023

සංයුක්ත ගණිතය I Combined Maths I

12 ශුේණිය

පුශ්න හතරකට පමණක් පිළිතුරු සපයන්න.

B කොටස

- 09. (a) $f(x) = (2p+3)x^2 + 3x + 4$ බව දී ඇත. මෙහි $p \neq -\frac{3}{2}$ හා $p \in \mathbb{R}$ වේ.
 - (i) f(x) = 0 හි මූල අතාත්වික වන p හි අගය පරාසය සොයන්න. මූල තාත්වික සමපාත වනවිට $p = -\frac{39}{32}$ බව පෙන්වන්න.
 - (ii) f(x)=0 හි මූල α හා β නම් $\frac{\alpha^2+1}{\beta}$, $\frac{\beta^2+1}{\alpha}$ මූලවන වර්ගජ සමීකරණය සොයන්න.
 - (iii) f(x) = 5x + 4 සමීකරණයේ මූල තාත්වික පුභින්න බව පෙන්වා, එක් මූලයක් 4 නම්, p හි අගය සොයන්න.
 - (b) (i) $g(x) = 2x^4 x^3 + ax^2 + bx 6$ බහුපදයට (x+1), (x-2) යන සාධක ඇත. a හා b හි අගයන් සොයන්න.
 - (ii) g(x) > 0 වන x හි අගය පරාසය සොයන්න.
 - (iii) ශේෂ පුමේයය නැවත නැවත යෙදීමෙන් ${f g}({f x})$ යන්න ${f x}^2+{f x}-2$ න් බෙදූවිට ශේෂය ලබාගන්න.
- $\frac{1}{x^4 + 3x^2 + 4}$ භින්න භාගවලට වෙන් කරන්න.
 - (b) $4^{x^2+2}-9.2^{x^2+2}+8=0$ විසඳන්න.
 - (c) n > 1 සඳහා $\frac{1}{\log_2 n} + \frac{1}{\log_3 n} + \frac{1}{\log_4 n} + \dots + \frac{1}{\log_{2023} n} = \frac{1}{\log_{2023!} n}$ බව පෙන්වන්න.
 - (d) $f_1(x) = |x-3|$ හා $f_2(x) = x^2 4|x| + 3$ ශිතවල පුස්තාරවල දළ සටහන් එකම රූපයක අඳින්න. ඒ නයින්, $f_2(x) < f_1(x)$ වන x හි අගය පුාන්තරය සොයන්න. $\text{තවද } f_1(x) \text{ හා } \left| f_2(x) \right| \text{ ශිත සඳහා වෙනත් රූපයක දළ සටහන් ඇඳ දැක්වීමෙන්, } \left| f_2(x) \right| \leq f_1(x)$ වන පෙදෙස් අඳුරු කර දක්වන්න.

22 A/L æ8 [papers grp]

- 11. (a) $x \neq 1$ සඳහා $f(x) = \frac{x^2(x-2)}{(x-1)^3}$ යැයි ගනිමු. f(x) හි පළමු වනුත්පන්නය $f'(x) = \frac{x(4-x)}{(x-1)^4}$ මගින් දෙනු ලබන බව පෙන්වන්න. එනයින් f(x) හි වැඩිවන පුාන්තර හා අඩුවන පුාන්තර සොයන්න. f(x) හි හැරුම් ලක්ෂාවල ඛණ්ඩාංක සොයන්න. f(x) සඳහා $f''(x) = \frac{2(x^2-5x-2)}{(x-1)^5}$ බව දී ඇත. f(x) පුස්තාරයේ තනිවර්තන ලක්ෂා ඇත්නම් ඒවායේ f(x) බණ්ඩාංක සොයන්න. ස්පර්ශෝන්මුඛ, හැරුම් ලක්ෂා, තනිවර්තන ලක්ෂා දක්වමින් f(x) හි පුස්තාරයේ දළ සටහනක් අඳින්න. f(x) වනුය, එහි තිරස් ස්පර්ශෝන්මුඛය මගින් ඡේදනය වන ලක්ෂාවල f(x) බණ්ඩාංක සොයන්න.
 - (b) අරය a වූ උස h වූ ඒකාකාර ඝන ඍජු වෘත්තාකාර සිලින්ඩරයකින් අරය a වූ අර්ධ ගෝලාකාර කොටසක් ඉවත් කර, රූපයේ දැක්වෙන පරිදි අරය a වූ කුහර අර්ධ ගෝලාකාර පියනකින් සමන්විත වන පරිදි මංජුසාවක් සෑදිය යුතුව ඇත. ඒවායේ සමමිතික අක්ෂ දෙක සමපාත වන පරිදි පිහිටිය යුතුය. මෙම මංජුසාවේ කුහර නොවන කොටසේ පරිමාව $130 \, \pi \, \mathrm{cm}^3$ වේ. $130 = \frac{a^2}{3} (3h 2a)$ බව පෙන්වන්න.

මෙම මංජුසාවේ බාහිර පෘෂ්ඨයේ තීන්ත ආලේප කළ යුතුව ඇත. තීන්ත සඳහා වියදම වර්ග සෙන්ටිමීටරයට රු. 500/= කි. තීන්ත සඳහා වැයවන මුළු වියදම රුපියල් C නම්, $C=6500~\pi\left[\frac{20}{a}+\frac{a^2}{3}\right]$ බව පෙන්වන්න. C අවම වන පරිදි a හි අගය සොයන්න.

12. $(\mathbf{x}_0 \ \mathbf{y}_0)$ ලක්ෂායේ සිට $a\mathbf{x} + b\mathbf{y} + \mathbf{c} = 0$ සරල රේඛාවට ඇඳි ලම්බකයේ දිග $\frac{\left|a\mathbf{x}_0 + b\mathbf{y}_0 + \mathbf{c}\right|}{\sqrt{a^2 + b^2}}$ බව පෙන්වන්න.

ABCD සමචතුරසුයේ වර්ගඵලය වර්ග ඒකක 05 කි. එහි කේන්දුය වන E හි ඛණ්ඩාංක $\left(-\frac{1}{2},\ 1\right)$ වන අතර AB හා DC පාද 2x+y=0 රේඛාවට සමාන්තර වේ. AD පාදය මත මූල ලක්ෂා පිහිටයි. D ශීර්ෂය පළමු වෘත්ත පාදයේ පිහිටයි. සමචතුරසුයේ පාදවල සමීකරණ හා විකර්ණවල සමීකරණ සොයන්න.

 $\hat{BFD} = \frac{\pi}{2}$ වන පරිදි F ලක්ෂය පිහිටයි නම් F හි පථයේ සමීකරණය සොයන්න. මෙම පථය A හා C ලක්ෂ හරහා යන බව පෙන්වන්න.

- 13. (a) $\sin{(A+B)}$ හා $\cos{(A+B)}$ යන්නෙහි සර්වසාමා \sin{A} , \sin{B} , \cos{A} , \cos{B} ඇසුරෙන් ලියන්න. එම පුතිඵල භාවිතයෙන් $\tan{(A+B)}$ සඳහා සර්වසාමායක් \tan{A} හා \tan{B} ඇසුරෙන් ලබාගන්න. $\sqrt{3}$ $\tan{20^\circ}$. $\tan{40^\circ} = \sqrt{3} \tan{20^\circ} \tan{40^\circ}$ බව නිගමනය කරන්න.
 - (b) $\cot^{-1}\left(\sqrt{\cos 2y}\right) \tan^{-1}\left(\sqrt{\cos 2y}\right) = x$ නම්, $\sin x = \tan^2 y$ බව පෙන්වන්න.
 - (c) $f(x) = \cos^2 x \cos^2 \left(x + \frac{\pi}{3}\right) \cos^2 \left(x \frac{\pi}{3}\right) = A \left[B + C\cos 2x\right]$ ආකාරයෙන් පුකාශ කරන්න. මෙහි A, B, C නිර්ණ සැක්දියුතු නියන වේ. y = f(x) හි දළ පුස්තාරයක් $-\frac{\pi}{2} \le x \le \frac{\pi}{2}$ පුාන්තරය තුළ අඳින්න. ඉහන පුන්තරය තුළ $f(x) \ge 0$ හි විසඳුම් කුලකය සොයා එය පුස්තාරය මත ලකුණු කරන්න. තවද $f(x) = f\left(x + \frac{\pi}{4}\right)$ හි පොදු විසඳුම් කුලකය ලබාගන්න.

(1) Track of the 1 mg/s	10 ආකත්ද විදහලය, කොළඹ	10 ආකත්ද විදහලය, කොළඹ	10 ආකත්ද විදහලය, කොළඹ 1	0 ආකත්ද විදහලය කෙයු	offi 10 manual	te Bemes	- 10
Ananda Dec, Colombo	10 Ananda College, Colombo	10 Ananda College, Colombo	10 Ananda College, Colombo 1	0 Ananda College, Colo	4 0	~)0
and the same	10 ආකත්ද විදහලය, කෙළ)නන්ද විදහා	වය - කොළඹ	අත්තැඳිම්දහලය. සෙ	101	Q	0
Analda 13 Sec. Colombo	10 Animal College, Colomet	10 enverte fleveren senser	ලය් ලකාළම 10 ආයත්ද විදහලය කොළඹ 1	O amonde Banaga am	IUI	0	TT [
America Colomby	10 Anunda College Colombo	16 Ananda Callege Colomba	10 Anunda College Colombo 1	O Anaryts College Color			

අවසාන වාර පරීක්ෂණය - 2023 ජනවාරි අධෳයන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2023

සංයුක්ත ගණිතය II Combined Maths II

12 ශුේණිය

 $2\frac{1}{2}$ hours

නම	

උපදෙස් :

මම පුශ්න පතුය කොටස් දෙකකින් සමන්විත වේ.
A කොටස (පුශ්න 1 - 8) සහ B කොටස (පුශ්න 9 - 13)

※ A කොටස

සියලුම පුශ්නවලට පිළිතුරු සපයන්න. එක් එක් පුශ්නය සඳහා ඔබේ පිළිතුරු, සපයා ඇති ඉඩෙහි ලියන්න. වැඩිපුර ඉඩ අවශා වේ නම්, ඔබට අමතර ලියන කඩදාසි භාවිත කළ හැකිය.

- * B කොටස
 - පුශ්න හතරකට පමණක් පිළිතුරු සපයන්න. ඔබේ පිළිතුරු, සපයා ඇති කඩදාසිවල ලියන්න.
- lpha නියමිත කාලය අවසන් වූ පසු ${f A}$ කොටස, ${f B}$ කොටසට උඩින් සිටින පරිදි කොටස් දෙක අමුණා විභාග ශාලාධිපතිට භාර දෙන්න.
- 🌞 පුශ්න පතුයෙහි B කොටස පමණක් විභාග ශාලාවෙන් පිටතට ගෙනයාමට ඔබට අවසර ඇත.

පරීක්ෂකගේ පුයෝජනය සඳහා පමණි.

කොටස	පුශ්න අංක	ලැබූ ලකුණු
	1	20
	2	
	3 - 0	
	1/40	200
- 4 _A - /	7/32	40
	6	
	7	
\	8	
	9	
	10	
В	11	
	12	
	13	
	එකතුව	
	එකතුව පුතිශතය	

(10) සංයුක්ත ගණිතය II

පනුය I	
පනුය II	
එකතුව	
අවසාන ලකුණු	

papers grp

අවසාන ලකුණු

ඉලක්කමෙන්	
අකුරින්	

සංකේත අංක

උත්තර පතු පරීඃ	ත්ෂක	
පරීක්ෂා කළේ:	1	
	2	
අධීක්ෂණය		,

A කොටස

01.	v පුවේගයෙන් තිරසට $lpha$ කෝණයකින් ආනත දිශාවට P අංශුවක් පුක්ෂේපණය කෙරේ. $\frac{-}{4}$ තිරස් දුරක්
	චලිත වනවිට h උසැති බිත්තියක් උඩින් ගෑවී නොගෑවී අංශුව බිත්තිය පසුකර යන්නේ නම්,
	$v^2 = (1 + \tan^2 \alpha)h$
	$\frac{v^2}{g} = \frac{(1 + an^2 lpha)h}{8(an lpha - 4)}$ බව පෙන්වන්න. තවද එම අංශුව එහි උපරිමයට පැමිණීමට පෙර බින්තිය පසුකර
	යන්නේ නම් 4 < tan α < 8 බව පෙන්වන්න.
7	
	\mathcal{L}
	1.0
02.	ඉහළ නගින ආරෝහකයක් f ඒකාකාර ත්වරණයකින්ද, ඊට පසු නියත පුවේගයක් සහිතව චලිත වී f
	ඒකාකාර මන්දනය යටතේ චලිත වී නිසල වේ. චලිත වූ මුළු දුර s හා ගතවූ කාලය t ලෙස දී ඇත්නම්
	$(2.48)^{1/2}$
	ආරෝහකය ඒකාකාර පුවේගයෙන් චලිත වූ කාලය $\left[t^2 - \frac{\tau_3}{f}\right]'^2$ බව පෙන්වන්න.
	······································

B දකුණු දිශාවට චලිත වේ නම් v	$=rac{u}{-}$ බව පෙන්වන්න.	
	3	
	••••••	
		×.

		20-0
······································		
	Sinai	sare ai
- / //		
	, 40	
	:0	
	_0	
		D D
පැත්තක දිග 4 <i>a</i> වන ඒකාකාර සම		
B කෙළවර රඑ තිරස් පොළොවක් ම		,
ආකාරයට E නම් සුමට නා දැන්		
බ්රස සමග ආනතිය $ heta$ නම් ${ m BE}$	$= 3a$ so $\tan \theta = \frac{1}{3}$ so	ලස දී ඇත්නම්, F
ආස්තරය හා පොළොව අතර ඝර්ෂ	, - 7	
100000 01 00100 00 C	9	7777B/
-90		

		,

05.	AB, BC, CD හා AD යනු බට W ද දග $2a$ බැගින් වන එකාකාට දඬු හතරක. එවා නිදහස් ලෙස සනධ
	කිරීමෙන් $ABCD$ රොම්බසය සාදා තිබේ. පද්ධතිය A ලක්ෂයෙන් එල්ලා ඇති අතර $AL = CM = \frac{u}{2}$
	වනසේ පිළිවෙලින් AB හා BC දඬු මත L හා M ලක්ෂවලදී LM සැහැල්ලු අවිතනා තන්තුවකින් සම්බන්ධකර ඇත. LM තන්තුවද AC ද සිරස් වන අතර පද්ධතිය සිරස් තලයක සමතුලිතව C ට ඉහළින් පිහිටා
	ඇත. $\hat{BAD} = \hat{BCD} = 60^\circ$ බව දී ඇත. \hat{C} සන්ධියේ පුතිකියාවේ තිරස් හා සිරස් සංරචක සොයා එය
	තිරසට දරන ආනතිය $ an^{-1}\left(2\sqrt{3}\right)$ බව පෙන්වන්න.
	5000 (05) (15)50 tull (245) 60 605)555.
2	A/L 36 Logièrs gro
06.	සෘජුකෝණාසු කාටිසීය අක්ෂ අනුබද්ධයෙන් A,B සහ C ලක්ෂවල ඛණ්ඩාංක පිළිවෙලින් $(0,0),(0,9)$ සහ
	(9,0) වේ. ABC තලයේ කියාකරන බල පද්ධතියක A, B, C ලක්ෂ වටා දක්ෂිණාවර්ත සූර්ණ පිළිවෙලින්
	6M, 9M හා 2M වේ. බල පද්ධතියේ සම්පුයුක්තයේ විශාලත්වය M සහ a ඇසුරෙන් සොයන්න.
	සම්පුයුක්තයේ කිුයා රේඛාවද සොයන්න.

සුපුරුදු අංකනයෙන් O අවල මූලයට අනුබද්ධව $A,\,B,\,C$ ලක්ෂවල පිහිටුම් දෛශික පිළිවෙලින් $(\underline{i}+2\underline{j})$ $(3\underline{i}+5\underline{j})$ හා $(2\underline{i}+\underline{j})$ වේ. P යනු $AP=\lambda AB$ වනසේ AB මතවූ ලක්ෂයකි. $\overrightarrow{\mathrm{OP}} = (1+2\lambda)\underline{i} + (2+3\lambda)\underline{j}$ බව පෙන්වන්න. එනයින් C සිට AB ට ඇඳි ලම්බකයේ අඩියේ පිහිටුම් දෛශිකය සොයන්න. ඒකාකාර බර AB දණ්ඩක් නිදහස් A කෙළවර සුමට සිරස් බිත්තියක ස්පර්ශව ඇති අතර, එම කෙළවරට සම්බන්ධවී ඇති අවිතනෳ තන්තුවක්, එම සිරස් බිත්තියේ A ට ඉහළින් පිහිටි C අචල මුද්දක් වටා ගොස් තන්තුවේ අනෙක් කෙළවර දණ්ඩේ Bනිදහස් කෙළවරට සම්බන්ධ වේ. $\tan B\hat{A}C = \frac{1}{2} \cot \left(\frac{1}{2} A\hat{C}B\right)$

අවසාන වාර පරීක්ෂණය - 2023 ජනවාරී අධෳයන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2023

සංයුක්ත ගණිතය II Combined Maths II

12 ශුේණිය

පුශ්න හතරකට පමණක් පිළිතුරු සපයන්න.

B කොටස

09. (a) සෘජු මාර්ගයක 2a දුරින් A හා B නගර දෙකක් පිහිටා ඇත. AB හි මධා ලක්ෂාය වන C හිදී ජල නල එලීම සඳහා පටු අඟලක් කපා ඇත. නගර අතර ගමන් කරන X බස්රථය A නගරය u ms^{-1} පුවේගයෙන් පසු කරයි. AC අතරතුර ඒකාකාර ලෙස වේගය අඩු කරමින් පැමිණ v ms^{-1} වේගයෙන් C වෙත පැමිණේ. C හි වන අඟල නිසා වන ක්ෂණික ගැස්සීමෙන් බස් රථයේ පුවේගය v_0 පුමාණයත් ක්ෂණිකව පහත වැටේ. ඉන්පසු CB අතර ඒකාකාර මන්දනයෙන් වලනය වන බස්රථය B හිදී නිශ්වලතාවයට පත්වේ. X බස්රථය A නගරය පසු කරන මොහොතේදීම A නගරයට b දුරක් පිටුපසින් ඇති Y බස්රථය නිශ්වලතාවයෙන් ගමන් අරඹා X රථය C වෙත පැමිණෙන මොහොතේම y සිය උපරිම පුවේගය වන v ms^{-1} ලබාගනී. අනතුරුව එම පුවේගයෙන්ම චලිත වීම සිදුවේ.

x හා y රථ දෙකෙහි චලිතය සඳහා පුවේග කාල වකු එකම සටහනක අඳින්න. X රථයට A සිට B වෙත ගමන් කිරීමට ගතවූ කාලය $2a\left[\frac{1}{v+u}+\frac{1}{v-v_0}\right]$ බව පෙන්වන්න.

 $v_0 = v - \sqrt{u^2 - v^2}$ නම් AC හා CB අතර වූ මන්දන සමාන බව පෙන්වන්න.

 $rac{{{
m v}^2} + {{
m v}v_0} + 2{{
m u}v_0}}{({
m u} + {
m v})({
m v} - {
m v}_0)} < rac{{
m b}}{a}$ නම් ${
m X}$ රථය ${
m B}$ වෙත පැමිණීමට පෙර ${
m Y}$ රථයට ${
m X}$ පසුකර යා නොහැකි බව පෙන්වන්න.

(b) සමාන්තර ඉවුරු සහිත පළල x වූ ගඟක් u ms⁻¹ අනවරත වේගයෙන් බටහිර සිට නැගෙනහිරට ගලා යයි. නිසල ජලයේ 2v ms⁻¹ පුවේගයෙන් පැද යා හැකි පාරුවක් ගඟෙහි එක් ඉවුරක වූ A තොටුපළක සිට අනෙක් ඉවුරේ වූ B හා C තොටුපළවල් වෙත මගීන් රැගෙන යයි. ජලය ගලායන දිශාවට සුළු කෝණයක් ආනතව, AB = 2x වන පරිදි B තොටුපළද B තොටුපළට 2x ඉහළින් එම ඉවුරේම C තොටුපළද පිහිටා ඇත. A තොටුපළින් පිටත්වන පාරුව B හි මගීන් බස්සවා අනතුරුව C වෙත ගමන් කර C හි රැඳී සිටින මගීන් නංවාගෙන නැවත B වෙත පැමිණ B හි සිටින මගීන් ද රැගෙන නැවත A වෙත පැමිණේ. පාරුවේ චලිතය සඳහා පුවේග තිකෝණ එකම සටහනක අඳින්න. AB, BC, CB, BA තොටුපළ අතර චලිතයේදී පාරුවේ පොළොවට සාපේක්ෂ පුවේග සොයන්න. පාරුව තොටුපළවල රැඳී නොසිටින්නේ යයි උපකල්පනය කරමින් පාරුවේ මුළු චලිතය සඳහා

ගතවූ කාලය
$$\dfrac{2x\left[\sqrt{16v^2-u^2}+4v\right]}{(4v^2-u^2)}$$
 බව පෙන්වන්න.

10. (a)

ස්කන්ධය m_1 , m_2 හා m_3 වන වස්තු තුනක් ද ස්කන්ධය M වූ සුමට සචල කප්පියක් ද සැහැල්ලු අවිතනා තන්තුවලින් ඇඳා ඇති අතර තන්තු නොබුරුල්ව තබා නිශ්චලතාවයෙන් මුදාහල විට t කාලයකදී පද්ධතිය චලනය වන අවස්ථාව රූපයේ දක්වා ඇත. තන්තු හා වස්තු ස්පර්ශ වී ඇති පෘෂ්ඨ සියල්ල සුමට වේ. එක් එක් වස්තුවේ හා සචල කප්පියේ ත්වරණය ද තන්තුවේ ආතතිය ද නිර්ණය කිරීමට පුමාණවත් සමීකරණ ලියන්න.

එමගින් ත්වරණ රහිත වූද තන්තුවල ආතති ඇතුලත් සමගාමී සමීකරණ දෙකක් ලබාගන්න. ආරම්භයේ සිටම m_3 නිසලව පැවතියේ නම් අනෙක් ස්කන්ධ හා සචල කප්පියේ ත්වරණ සොයන්න.

(b) ස්කන්ධය M වූ හරස්කඩ ABC, $BÂC = \alpha$, $A\hat{C}B = 90^\circ$ හා AB = d වන කුඤ්ඤයක් සුමට තිරස් මේසයක් මත AB රේඛාව අයත් පෘෂ්ඨය ස්පර්ශ වනසේ තබා ඇති අතර එහි α ආනත රඑ මුහුණන මත ස්කන්ධය m වූ අංශුවක් කුඤ්ඤයේ පහළම ලක්ෂායේ තබා u පුවේගයෙන් තලය මත වැඩිතම බෑවුම් රේඛාව ඔස්සේ ඉහළ දිශාවට පුක්ෂේපණය කරනු ලැබේ. කුඤ්ඤයේ ත්වරණය $mg(\mu\cos\alpha+\sin\alpha)\cos\alpha$

 $\frac{-2\sqrt{\mu}}{m\sin\alpha(\sin\alpha+\mu\cos\alpha)+M}$ වන බව පෙන්වන්න. මෙහි μ යනු අංශුව හා කුඤ්ඤය අතර ඝර්ෂණ සංගුණකයයි. තවද කුඤ්ඤයට සාපේක්ෂව අංශුවේ ඉහළ දිශාවට වූ මන්දනයේ විශාලත්වය සොයන්න.

අංශුව කුඤ්ඤයේ මුදුනට යාමට පෙර නිශ්චල වේ නම් $u^2<rac{2d(m+M)g(\mu\cos\alpha+\sin\alpha)\cos\alpha}{m\sin\alpha(\sin\alpha+\mu\cos\alpha)+M}$ වන බව පෙන්වන්න.

- 11. (a) OAB තිකෝණයක් යයි ගනිමු. C හා D ලක්ෂ OA හා AB මත පිහිටනුයේ OC : CA = 2:3 හා AD : DB = 1:3 වන ලෙසය. OD හා BC P හිදී හමුවේ. O ලක්ෂය අනුබද්ධයෙන් A හා B හි පිහිටුම් දෙශික පිළිවෙලින් a හා b වේ.
 - \overrightarrow{OD} , \overrightarrow{BC} හා \overrightarrow{BP} ලෛදශික \underline{a} හා \underline{b} ඇසුරෙන් සොයන්න.
 - $\overrightarrow{OP} = \frac{2}{17}(3\underline{a} + \underline{b})$ බව පෙන්වන්න.
 - \overrightarrow{OP} , \overrightarrow{BP} අදිශ ගුණිතය $|\underline{a}|$ හා $|\underline{b}|$ ඇසුරෙන් සොයන්න. තවද \overrightarrow{OP} හා \overrightarrow{BP} දෛශික ලම්බ නොවන බව පෙන්වන්න.
 - (b) ABCD සෘජුකෝණාසුයකි. AB=6~cm හා BC=4~cm වේ. AB මත E ලක්ෂය පිහිටා ඇත්තේ AE:EB=2:1 වන පරිදි වේ. පිළිවෙලින් ගත් $\overline{BA},~\overline{BC},~\overline{CD},~\overline{AD},~\overline{DE}$ හා \overline{EC} පාද මත $\lambda P,~\mu P,~2P,~\gamma P,~7\sqrt{2}P,~\sqrt{5}P$ බල කිුයාකරයි.
 - (i) පද්ධතිය සමතුලිත වේ නම් λ, μ, γ හි අගයයන් සොයන්න.
 - (ii) $\mu = \gamma$ විට බල පද්ධතිය යුග්මයකට ඌනනය වේ නම් λ , μ , γ සොයා යුග්මයේ සූර්ණය සොයන්න. දැන් \overrightarrow{DE} , \overrightarrow{EC} ඕස්සේ කි්යාකරන බල ඉවත් කර AC ඔස්සේ කි්යාකරන $5\sqrt{13}\ P$ බලයක් පද්ධතියට එක්කළ විට නව පද්ධතියේ නව සම්පුයුක්තයට AB ඔස්සේ A හි සිට ඇති දුර සොයන්න.

- 12. (a) ABCDE සවිධි පංචාස්‍ය තනා ඇත්තේ බර W වූද දිග 2a වූද දඬු පහක් ඒවායේ කෙළවරවල් සුමට ලෙස සන්ධි කිරීමෙනි. සැකිල්ල සිරස් තලයක සමතුලිතව තබා ඇත්තේ CD තිරස් තලයක් මත අවලව පිහිටන සේත්, BC හා DE හි මධා ලක්ෂා ලුහු තන්තුවක් මගින් සම්බන්ධ කිරීමෙන්ද වේ. AB දණ්ඩේ සිරසට ආනතිය α ද BC දණ්ඩේ සිරසට ආනතිය β ද ලෙස ගැනීමෙන් A හා B සන්ධිවල පුතිකියාත් තන්තුවේ ආතතියත් සොයන්න.
 - (b) රූප සටහනේ දැක්වෙන්නේ සැහැල්ලු දඬු නවයකින් තනා ඇති රාමු සැකිල්ලකි. AF හා FE දඬු එක සමාන දිගකින්ද ඉතිරි දඬු හත සමාන දිගකින්ද යුක්ත වේ. A හා E ලක්ෂවල ඇති දෘඪ ආධාරක දෙකක් මත AE තිරස්ව පිහිටන සේ සිරස් තලයක රාමු සැකිල්ල සමතුලිතව තිබේ. B, C හා D සන්ධිවලදී සිරස්ව පහළට 3W, 2W හා 3W බල කියා කරයි.

- සන්ධි ගණන හා දඬු ගණන අතර සම්බන්ධතාවක් දක්වමින් ඉහත රාමුව, දෘඪ රාමු සැකිල්ලක් බව පෙන්වන්න.
- (ii) ආධාරක මගින් රාමුසැකිල්ල මත ඇති කරන පුතිකිුයා සොයන්න.
- (iii) බෝ අංකනය යොදා ගනිමින් රාමු සැකිල්ල සඳහා ප්‍රත්‍යාබල රූපසටහන අඳින්න. එනයින් එක් එක් දණ්ඩේ ප්‍රත්‍යාබල නිර්ණය කර, ඒවා අාතති ද තෙරපුම්ද යන්න වෙන් වෙන්ව දක්වන්න.
- 13. (a) අරය a සහ W බරැති ඝන අර්ධ ගෝලයක් තිරස් තලයක් මත දෘඪව සවිකර ඇත. එහි කේන්දුය හරහා යන සිරස් තලයක දිග 2a වන AB ඒකාකාර දණ්ඩක A කෙළවර තිරස් තලයක් මතද දණ්ඩ C හිදී අර්ධ ගෝලය මතද රූපයේ ආකාරයට නිශ්වලතාවයේ තබා ඇත. G යනු දණ්ඩේ ගුරුත්ව කේන්දුයයි. $GC = \frac{a}{2}$ වේ. A හිදී පෘෂ්ඨ රළු වන අතර C හිදී පෘෂ්ඨ සුමට බව සලකන්න. දණ්ඩ මත තිරස් තලයෙන් ඇතිවන අහිලම්බ පුතිකියාව සහ ඝන අර්ධ ගෝලය මත තිරස් තලයෙන් ඇති කරන අහිලම්බ පුතිකියාව සඳහා පුකාශන W සහ $\cos \alpha$ ඇසුරෙන් ලබාගන්න.

දණ්ඩේ සමතුලිතතාවය සඳහා $\mu>\frac{\sin 2\alpha}{1+2\sin^2\alpha}$ බව පෙන්වන්න. මෙහි μ යනු A ලක්ෂායේදී පෘෂ්ඨ අතර ඝර්ෂණ සංගුණකයයි.

ඝන අර්ධ ගෝලය ගුරුත්ව කේන්දුය, කේන්දුයේ සිට සමමිතික අක්ෂය මත $\frac{3a}{8}$ දුරත් වේ.

(b) ති්රස් පොළොවක් මත A ලක්ෂයක සිට P නම් අංශුවක් ති්රසට θ කෝණයකින් u පුවේගයෙන් පුක්ෂේප කරයි. එම මොහොතේදීම එම සි්රස් තලයේම තවත් Q නම් අංශුවක් එම ති්රස් තලයේම B ලක්ෂයක සිට එකිනෙක දෙසට ති්රසට α කෝණයකින් v පුවේගයෙන් පුක්ෂේප කරයි. පොළොවේ සිට h සි්රස් උසකින් පිහිටි ස්ථානයක අංශු ගැටේ. AB = a ද ගැටෙන ස්ථානයට A

ලක්ෂයේ සිට තිරස් දුර x නම් $x=rac{a\cot\theta}{\cot\theta+\cot\alpha}$ බව පෙන්වන්න.

ගැටෙන මොහොතේදී P අංශුවේ පුවේගය ති්රසට දරන කෝණය eta ද Q අංශුවේ පුවේගය ති්රසට

දරන කෝණය γ ද නම් $\frac{\tan\beta}{\tan\gamma} = \frac{v}{u} \sqrt{\frac{3(3u^2-8gh)}{v^2-8gh}}$ බව පෙන්වන්න.