```
In [1]: import pandas as pd
In [2]: df=pd.read_csv('Social_Network_Ads.csv');
In [3]:
        df
Out[3]:
               User ID Gender Age
                                   EstimatedSalary
                                                   Purchased
           0 15624510
                         Male
                                19
                                             19000
                                                           0
           1 15810944
                         Male
                                35
                                             20000
                                                           0
           2 15668575
                                                           0
                       Female
                                26
                                             43000
           3 15603246
                                                           0
                       Female
                                27
                                             57000
           4 15804002
                         Male
                                19
                                            76000
                                                           0
         395 15691863
                       Female
                                46
                                            41000
                                                           1
         396 15706071
                         Male
                                51
                                             23000
                                                           1
         397 15654296
                       Female
                                50
                                             20000
                                                           1
         398 15755018
                         Male
                                36
                                             33000
                                                           0
         399 15594041 Female
                                49
                                             36000
                                                           1
        400 rows × 5 columns
In [4]:
        df=df.drop(columns='Gender')
In [ ]:
        y=df['Purchased']
In [5]:
         x=df.drop(columns='Purchased')
In [6]: from sklearn.model_selection import train_test_split
In [7]: xtrain,xtest,ytrain,ytext=train_test_split(x,y,test_size=0.3,random_state=0)
In [8]: xtrain
```

Out[8]:		User ID	Age	EstimatedSalary
	92	15809823	26	15000
	223	15593715	60	102000
	234	15619407	38	112000
	232	15813113	40	107000
	377	15800215	42	53000
	•••	•••		
	323	15619465	48	30000
	192	15779581	29	43000
	117	15591433	36	52000
	47	15776348	27	54000
	172	15794661	26	118000

280 rows × 3 columns

Out[9]:		User ID	Age	EstimatedSalary
	132	15725660	30	87000
	309	15652400	38	50000
	341	15776844	35	75000
	196	15738448	30	79000
	246	15638003	35	50000
	•••	•••	•••	
	216	15636023	49	65000
	259	15815236	45	131000
	49	15793813	31	89000
	238	15617877	46	82000
	343	15629739	47	51000

120 rows × 3 columns

```
In [10]: from sklearn.linear_model import LogisticRegression

In [11]: model1=LogisticRegression() model1.fit(xtrain,ytrain)

Out[11]: v LogisticRegression
    LogisticRegression()
```

In [12]: Y_predict=model1.predict(xtest) #predict without scaling

```
In [13]: Y predict
Out[13]: array([0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1,
               1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0,
               0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1,
               0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0,
               0, 0, 0, 0, 0, 1, 0, 0, 0], dtype=int64)
In [14]: from sklearn.metrics import accuracy score
         acuuracy=accuracy_score(Y_predict,ytext)
In [15]: acuuracy # accuracy without scaling
Out[15]: 0.791666666666666
In [16]: from sklearn.preprocessing import StandardScaler
In [17]: std=StandardScaler()
In [18]: xtest=std.fit transform(xtest)
In [19]: xtrain=std.fit_transform(xtrain)
In [20]: model2=LogisticRegression()
         model2.fit(xtrain,ytrain)
Out[20]: • LogisticRegression
         LogisticRegression()
In [21]: Y1_predict=model2.predict(xtest) #predict with scaling
In [22]: | acuuracy=accuracy_score(Y1_predict,ytext)
         acuuracy
Out[22]: 0.875
In [23]: x_new=[[0,0,0],[15794698,30,6000],[26794698,35,600],[17994698,40,7000]]
         x_new
Out[23]: [[0, 0, 0], [15794698, 30, 6000], [26794698, 35, 600], [17994698, 40, 7000]]
In [24]: x_new=std.fit_transform(x_new)
In [25]: new_predict=model2.predict(x_new)
In [26]: new_predict
Out[26]: array([0, 1, 0, 1], dtype=int64)
In [27]: #to compute confusion matrix
         from sklearn.metrics import confusion matrix, recall score, precision score, f1 sco
```