Lecture 10: Real Rigidities

Juan Herreño UCSD

May 6, 2025

Terminology

- Three distinct but similarly worded terms
 - Nominal stickiness: It is difficult, or costly to adjust individual **nominal prices**
 - Real rigidities: Responsiveness of **real** prices to a changes in **real** economic activity
 - Nominal rigidities: Reactions of **real** economic activity to changes in **nominal** variables
- Result I: Nominal stickiness + real rigidities → large nominal rigidities
- Result II: Nominal stickiness + no real rigidities → small nominal rigidities
- Result III: No nominal stickiness + real rigidities → no nominal rigidities

Economics

- Costs of price adjustment are certainly present in the data:
 - Physical costs of changing prices
 - Organizational costs of deciding new prices
 - Informational costs of doing so
- However, these costs sound rather "small".
- Can "small" price adjustment costs generate large aggregate fluctuations?
- Can the price of asparagus explain the Great Depression?

The economy is characterized by a symmetric steady state

$$P_{it} = P_t$$

In steady state, the money supply satisfies:

$$M_t = P_t Y_t = 1. (1)$$

 Just a normalization, remember that in the absence of nominal rigidities, nominal variables do not matter.

Assume a profit function exclusive of menu costs of the form

$$X_{it} = X\left(p_{it} - p_t, m_t\right) \tag{2}$$

- In words: The demand curve depends on Y and on relative prices. I will not impose CES.
- Profits are equal to Profits_{it} = X_{it} D_{it}k
- D_{it} is a dummy that takes the value of 1 if the firm resets its price
- k is a menu cost

Price flexibility is a Nash equilibrium if whenever every firm is fully adjusting, firm *i* decides to fully adjust as well. (in that case, adjusting your price is a best response)

Remember: maintained assumption that every firm adjusts

$$X_{it} = X\left(p_{it} - p_t, m_t\right) \tag{3}$$

If firm i adjusts, then

$$X_{it} = X\left(0, m_t\right)$$

If firm i does not adjust, then

$$X_{it} = X\left(p_{it}^* - p_t, m_t\right)$$

The firm will not adjust its price iff

$$X(0,m_t)-X(p_{it}^*-p_t,m_t) \leq k$$

• Let me do a second-order optimization of $X(p_{it}^* - p_t, m_t)$ around $p_{it}^* = p_t$

$$X(p_{it}^* - p_t, m_t) \approx X(0, m_t) + X_p(0, m_t)(p_{it}^* - p_t) + \frac{1}{2}X_{pp}(0, m_t)(p_{it}^* - p_t)^2$$

Use the result in the last slide

$$-X_{p}(0,m_{t})(p_{it}^{*}-p_{t})-\frac{1}{2}X_{pp}(0,m_{t})(p_{it}^{*}-p_{t})^{2}\leq k$$

- Notice that firm optimality in the steady state implies that $X_p(0,.) = 0$.
- Therefore

$$-\frac{1}{2}X_{pp}(0,m_t)(p_{it}^*-p_t)^2 \le k$$

Firms will not adjust if this inequality is satisfied

Price flexibility is not a Nash equilibrium iff

$$-\frac{1}{2}X_{pp}(0,m_t)(p_{it}^*-p_t)^2 \le k$$

- There exists a small enough price change (these are log changes)
- so that second-order menu costs induce price rigidity

This was Mankiw (1985), by the way.

Note: The first derivative of the profit function at $p_{it}^* = p_t$ is zero. The curvature of the profit function determines the range of inaction

Conclusion

- The losses from price deviations are second order
- Therefore, small menu costs can rule out price flexibility.

Real Rigiditiies

Question: Is an equilibrium where all prices are fixed a Nash Equilibrium?

- Again, a best response idea: If no one is adjusting, do I want to adjust?
- Note: the premise implies that nominal price adjustment (by firm i) is a real price adjustment (since the price index is fixed).
- Note: The premise implies that the reaction of real prices is to real aggregate demand (since the price index is fixed).
- Therefore, real rigidities are about the response of real prices to real aggregate demand.

Real Rigiditiies

- Consider shocks to nominal demand
- Profits without any shock are X(0,0).
- Profits with a shock and without adjustment are $X(0, m_t)$.
- Profits with a shock and own adjustment are $X(p_{it}^*(m_t) p_t, m_t)$
- Therefore, price rigidity is a Nash equilibrium if

$$X(p_{it}^*(m_t) - p_t, m_t) - X(0, m_t) \le k$$

Real Rigiditiies

Optimality requires

$$X_p(p_{it}^*(m_t)-p_t,m_t)=0$$

Take derivatives

$$X_{pp}\frac{dp_{it}^*(m_t)}{dm_t} + X_{pm} = 0$$

Therefore

$$\frac{dp_{it}^*(m_t)}{dm_t} = -\frac{X_{pm}}{X_{pp}}$$

This is our definition of real rigidities. How real prices change after changes in real demand. Call this ρ , and say there are a lot of real rigidities if ρ is small.

Real Rigidities

$$X(p_{it}^*(m_t) - p_t, m_t) - X(0, m_t) \le k$$

- Take a second-order approximation
- And use $\frac{dp_{it}^*(m_t)}{dm_t} = -\frac{X_{pm}}{X_{pp}}$
- You will find

$$X(p_{it}^*(m_t) - p_t, m_t) - X(0, m_t) \approx -\frac{X_{pm}^2}{2X_{pp}}m_t^2$$

So Price rigidity is an equilibrium as long as

$$X(p_{it}^*(m_t) - p_t, m_t) - X(0, m_t) \approx -\frac{X_{pm}^2}{2X_{pm}}m_t^2 \le k$$

• Solve for the absolute value shock m_t where price rigidity is a Nash equilibrium

$$m^* = \left(\frac{2k}{\rho X_{pm}}\right)$$

Real Rigidities

$$m^* = \left(\frac{2k}{\rho X_{pm}}\right)$$

- Note: If there are no price rigidities (k = 0), nominal rigidities are zero.
- Note: If real rigidities increase (π smaller), nominal rigidities increase.
- Note: These results are very generic

This was Ball and Romer (1990), by the way

Real Rigidities in the NK Model

Back of the envelope calculation.

$$\pi_t = \beta \mathbb{E}_t \pi_{t+1} + \frac{(1 - \beta \lambda)(1 - \theta)}{\lambda} (\gamma + \varphi) \tilde{y}_t$$

- If the frequency of price changes is 0.1 per month, a good calibration for $\frac{(1-\beta\lambda)(1-\lambda))}{\lambda}=0.1$ quarterly
- Using log utility and Frisch of 1 (roughly mid point between micro and macro labor supply elasticities). Then a good number for $\frac{(1-\beta\lambda)(1-\lambda))}{\lambda}(\gamma+\varphi)=0.2$.
- Compare with the slope in Hazell, Herreño, Nakamura, Steinsson (2022) in your reading list (= 0.008 after adjusting between *u* and *y*)
- Orders of magnitude smaller

The calibrated model implies a steep supply curve. Lack of real rigidities in the model.

Two types of real rigidities

- Two types of rigidities (related to the second and cross-derivatives in the earlier examples)
 - Micro RR. If my marginal cost changes and I can adjust my price freely, by how much do I adjust it?
 - Macro RR: If aggregate real demand changes, by how much real marginal costs adjust?
- Note that micro RR linked to the PE pass-through of MC shocks under flexible prices
- Note that macro real rigidities are connected to the elasticity of aggregate marginal costs

Real Rigidities in the NK Model

More general version of the Calvo model:

$$\begin{split} \pi_t &= \beta \mathbb{E}_t \pi_{t+1} + \kappa_{mc} \tilde{m} c_t \\ \tilde{y}_t &= \Omega \tilde{m} c_t \\ \kappa_{mc} &= \phi \omega \end{split}$$

One implicit result in Gali Gertler

$$\pi_t = \beta \mathbb{E}_t \pi_{t+1} + \varphi \omega \Omega \tilde{y}_t$$

- where
- $\varphi = \frac{(1-\lambda)(1-\beta\lambda)}{\lambda}$ is the effect of staggered Calvo prices. Price rigidity
- $\omega = \frac{\partial p_{it}^*}{\partial mc_t}$ the desired pass-through of marginal costs to prices in the flexible price equilibrium: micro real rigidities
- $\Omega = \frac{\partial mc_t}{\partial \tilde{V}_t}$ is the elasticity of marginal costs when demand changes. Macro real rigidities

Real Rigidities in the NK Model

- $\omega = \frac{\partial p_{it}^*}{\partial m c_t}$ the desired pass-through of marginal costs to prices in the flexible price equilibrium
- In our textbook model $\omega=1$. Firms have full price through of marginal costs in the flexible price equilibrium

$$\log P_{it} = \log \mu + \log MC_t$$

But that is not necessary. Imagine instead that demand is not isoelastic (away from CES)

$$\int_0^1 \Upsilon\left(\frac{y_{it}}{Y_t}\right) di = 1$$

$$\int_0^1 \Upsilon\left(\frac{y_{it}}{Y_t}\right) di = 1$$

$$\int_0^1 \Upsilon\left(\frac{y_{it}}{Y_t}\right) di = 1$$

- Demand function: $\frac{y_{it}}{Y_t} = \Upsilon'^{-1} \left(\frac{p_{it}}{P_t} \right)$
- Price elasticity of demand: $\frac{\partial \log y_{it}}{\partial \log p_{it}} = -\theta \left(\frac{y_{it}}{Y_t} \right)$

$$\int_0^1 \Upsilon\left(\frac{y_{it}}{Y_t}\right) di = 1$$

- Demand function: $\frac{y_{it}}{y_t} = \Upsilon'^{-1} \left(\frac{p_{it}}{p_t} \right)$
- Price elasticity of demand: $\frac{\partial \log y_{it}}{\partial \log p_{it}} = -\theta \left(\frac{y_{it}}{Y_t}\right)$
- $P_t^Y = \int_0^1 p_{it} \frac{y_{it}}{y_t} di$ ideal price index, $\mathcal{P}_t = \frac{P_t^Y}{D_t}$ subs. price index, $D_t = \int_0^1 \Upsilon'(\frac{y_{it}}{y_t}) \frac{y_{it}}{y_t} di$ "demand index"

Final good producer: Intermediate input varieties assembled into final good using Kimball aggregator:

$$\int_0^1 \Upsilon\left(\frac{y_{it}}{Y_t}\right) di = 1$$

- Demand function: $\frac{y_{it}}{Y_t} = \Upsilon'^{-1} \left(\frac{p_{it}}{P_t} \right)$
- Price elasticity of demand: $\frac{\partial \log y_{it}}{\partial \log p_{it}} = -\theta \left(\frac{y_{it}}{Y_t}\right)$
- $P_t^Y = \int_0^1 p_{it} \frac{y_{it}}{Y_t} di$ ideal price index, $\mathcal{P}_t = \frac{P_t^Y}{D_t}$ subs. price index, $D_t = \int_0^1 \Upsilon'(\frac{y_{it}}{Y_t}) \frac{y_{it}}{Y_t} di$ "demand index"

Intermediate input firms:

- Calvo pricing: can reset price with probability 1-λ
- $y_{it} = e^{z_i} l_{it}$

Notations:
$$s_{it} = \frac{p_{it}y_{it}}{P_t^{\gamma}Y_t}$$
 and $\mathbb{E}_s[X_{it}] = \int_0^1 s_{it}X_{it}di$

Problem:
$$\max_{p_{it}} \mathbb{E}_t \left[\sum_{s=0}^{+\infty} \lambda^s \Lambda_{t,t+s} \left[p_{it} y_{it+s} - w_{t+s} e^{-Z_i} y_{it+s} \right] \right] \text{ s.t.: } y_{it+s} = \Upsilon'^{-1} \left(\frac{p_{it}}{\mathcal{P}_{t+s}} \right) Y_{t+s}$$

Problem:
$$\max_{p_{it}} \mathbb{E}_t \left[\sum_{s=0}^{+\infty} \lambda^s \Lambda_{t,t+s} \left[p_{it} y_{it+s} - w_{t+s} e^{-z_i} y_{it+s} \right] \right] \text{ s.t.: } y_{it+s} = \Upsilon'^{-1} \left(\frac{p_{it}}{\mathcal{P}_{t+s}} \right) Y_{t+s}$$

$$\hat{p}_{it|t}^{new} = (1 - \beta \lambda) \mathbb{E}_t \left[\sum_{i=1}^{+\infty} (\beta \lambda)^s (\hat{\mu}_{it+s|t}^f + \hat{mc}_{it+s|t}) \right] \quad \text{with } \mu_{it}^f = \frac{\theta_{it}}{\theta_{it} - 1} \text{flexible price markup}$$

Problem:
$$\max_{p_{it}} \mathbb{E}_t \left[\sum_{s=0}^{+\infty} \lambda^s \Lambda_{t,t+s} \left[p_{it} y_{it+s} - w_{t+s} e^{-z_i} y_{it+s} \right] \right] \text{ s.t.: } y_{it+s} = \Upsilon'^{-1} \left(\frac{p_{it}}{\mathcal{P}_{t+s}} \right) Y_{t+s}$$

$$\begin{split} \hat{\rho}_{it|t}^{new} &= (1 - \beta \lambda) \mathbb{E}_t \left[\sum_{s=0}^{+\infty} (\beta \lambda)^s (\hat{\mu}_{it+s|t}^f + \hat{mc}_{it+s|t}) \right] \quad \text{with } \mu_{it}^f = \frac{\theta_{it}}{\theta_{it} - 1} \text{flexible price markup} \\ \hat{\mu}_{it+s|t}^f &= -\Gamma_i \theta_i (\hat{\rho}_{it|t}^{new} - \hat{\mathcal{P}}_{t+s}) \text{ with } \Gamma_i = \frac{\partial \log \mu_i^f}{\partial \log \frac{\mathcal{Y}_i}{\mathcal{Y}}} \text{ markup elasticity} \end{split}$$

Problem:
$$\max_{p_{it}} \mathbb{E}_t \left[\sum_{s=0}^{+\infty} \lambda^s \Lambda_{t,t+s} \left[p_{it} y_{it+s} - w_{t+s} e^{-z_i} y_{it+s} \right] \right] \text{ s.t.: } y_{it+s} = \Upsilon'^{-1} \left(\frac{p_{it}}{\mathcal{P}_{t+s}} \right) Y_{t+s}$$

$$\hat{\rho}_{it|t}^{new} = (1 - \beta \lambda) \mathbb{E}_t \left[\sum_{s=0}^{+\infty} (\beta \lambda)^s (\hat{\mu}_{it+s|t}^f + \hat{mc}_{it+s|t}) \right] \quad \text{with } \mu_{it}^f = \frac{\theta_{it}}{\theta_{it} - 1} \text{flexible price markup}$$

$$\hat{\mu}_{it+s|t}^f = -\Gamma_i \theta_i (\hat{\rho}_{it|t}^{new} - \hat{\mathcal{P}}_{t+s}) \text{ with } \Gamma_i = \frac{\partial \log \mu_i^f}{\partial \log \frac{y_i}{y}} \text{ markup elasticity}$$

$$\hat{p}_{it|t}^{new} = (1 - \beta \lambda) \mathbb{E}_t \left[\sum_{s=0}^{+\infty} (\beta \lambda)^s \left(\underbrace{\zeta_i \rho_i \hat{m} c_{t+s}}_{t+s} + (1 - \zeta_i \rho_i) \hat{\mathcal{P}}_{t+s} \right) \right]$$

$$\rho_i = \frac{1}{1 + \Gamma_i \theta_i} \text{ flexible price passthrough}$$

Problem:
$$\max_{p_{it}} \mathbb{E}_t \left[\sum_{s=0}^{+\infty} \lambda^s \Lambda_{t,t+s} \left[p_{it} y_{it+s} - w_{t+s} e^{-z_i} y_{it+s} \right] \right] \text{ s.t.: } y_{it+s} = \Upsilon'^{-1} \left(\frac{p_{it}}{\mathcal{P}_{t+s}} \right) Y_{t+s}$$

$$\begin{split} \hat{\rho}_{it|t}^{new} &= (1-\beta\lambda)\mathbb{E}_t \left[\sum_{s=0}^{+\infty} (\beta\lambda)^s \big(\hat{\mu}_{it+s|t}^f + \hat{mc}_{it+s|t} \big) \right] \quad \text{with } \mu_{it}^f = \frac{\theta_{it}}{\theta_{it}-1} \text{flexible price markup} \\ \hat{\mu}_{it+s|t}^f &= -\Gamma_i \theta_i \big(\hat{\rho}_{it|t}^{new} - \hat{\mathcal{P}}_{t+s} \big) \text{ with } \Gamma_i = \frac{\partial \log \mu_i^f}{\partial \log \frac{V_i}{Y}} \text{ markup elasticity} \\ \hat{\rho}_{it|t}^{new} &= (1-\beta\lambda)\mathbb{E}_t \left[\sum_{s=0}^{+\infty} (\beta\lambda)^s \left(\zeta_i \rho_i \hat{mc}_{t+s} + (1-\zeta_i \rho_i) \hat{\mathcal{P}}_{t+s} \right) \right] \\ \rho_i &= \frac{1}{1+\Gamma_i \theta_i} \text{ flexible price passthrough} \end{split}$$

$$\frac{\partial \hat{\pi}_t}{\partial (\hat{mc}_t - \hat{P}_t^{\gamma})} = \underbrace{\varphi \mathbb{E}_{\lambda}[\rho_i]}_{K_{\text{eff}}} \text{ with } \varphi \equiv \frac{(1-\lambda)(1-\beta\lambda)}{\lambda}$$

Problem:
$$\max_{p_{it}} \mathbb{E}_t \left[\sum_{s=0}^{+\infty} \lambda^s \Lambda_{t,t+s} \left[p_{it} y_{it+s} - w_{t+s} e^{-Z_i} y_{it+s} \right] \right] \text{ s.t.: } y_{it+s} = \Upsilon'^{-1} \left(\frac{p_{it}}{P_{t+s}} \right) Y_{t+s}$$

Optimal reset price:

$$\begin{split} \hat{\rho}_{it|t}^{new} &= (1-\beta\lambda)\mathbb{E}_t \left[\sum_{s=0}^{+\infty} (\beta\lambda)^s \big(\hat{\mu}_{it+s|t}^f + \hat{mc}_{it+s|t} \big) \right] \quad \text{with } \mu_{it}^f = \frac{\theta_{it}}{\theta_{it}-1} \text{flexible price markup} \\ \hat{\mu}_{it+s|t}^f &= -\Gamma_i \theta_i \big(\hat{\rho}_{it|t}^{new} - \hat{\mathcal{P}}_{t+s} \big) \text{ with } \Gamma_i = \frac{\partial \log \mu_i^f}{\partial \log \frac{y_i}{y}} \text{ markup elasticity} \\ \hat{\rho}_{it|t}^{new} &= (1-\beta\lambda)\mathbb{E}_t \left[\sum_{s=0}^{+\infty} (\beta\lambda)^s \left(\zeta_i \rho_i \hat{mc}_{t+s} + (1-\zeta_i \rho_i) \hat{\mathcal{P}}_{t+s} \right) \right] \\ \rho_i &= \frac{1}{1+\Gamma_i \theta_i} \text{ flexible price passthrough} \end{split}$$

Marginal cost based Phillips curve slope:

$$\frac{\partial \hat{\pi}_t}{\partial (\hat{mc}_t - \hat{P}_t^Y)} = \underbrace{\varphi \mathbb{E}_{\lambda}[\rho_i]}_{K_{\text{ent}}} \text{ with } \varphi \equiv \frac{(1-\lambda)(1-\beta\lambda)}{\lambda}$$

Marginal cost based Phillips curve slope:

$$\frac{\partial \hat{\pi}_t}{\partial (\hat{mc}_t - \hat{P}_t^Y)} = \underbrace{\varphi \mathbb{E}_s[\rho_i]}_{\kappa_{mc}} \text{ with } \varphi \equiv \frac{(1-\lambda)(1-\beta\lambda)}{\lambda}$$

- Notice that if markup elasticities are positive, then pass-throughs are < 1.
- In this case, micro real rigidities dampen the reaction of inflation to marginal costs.
- CES a special case where the markup elasticity = 0 so passthroughs = 1.

Macro Real Rigidities

- Many sources of macro real rigidities
 - Roundabout production functions
 - Sticky wages
- Generically, any economic mechanism that induces marginal costs to move by less

Macro Real Rigidities

Imagine a production structure

$$y_{it} = l_{it}^{\Phi} x_{it}^{1-\Phi}$$

- with x being materials
- Assume that materials are a CES bundle of the product of every other firm
- Therefore the marginal cost of production of the firm is

$$mc_{it} = \left(\frac{W_t}{\Phi}\right)^{\Phi} \left(\frac{P_t}{1-\Phi}\right)^{1-\Phi}$$

- If prices are sticky, then *P* is sluggish. Marginal costs move by less. We are using products as inputs.
- If wages are sticky, then W is sluggish. Marginal costs move by less.

If marginal costs move by less after a change in demand, then prices need to react by less as well.

Evidence?

Table 1: Strategic complementarities: baseline estimates

Dep. var.: Δp_{it}	OLS		IV		
	(1)	(2)	(3)	(4)	(5)
$\Delta m c_{it}$	0.348*** (0.040)	0.348*** (0.041)	0.588*** (0.094)	0.650*** (0.112)	0.616*** (0.103)
Δp_{-it}	0.400*** (0.079)	0.321*** (0.095)	0.549*** (0.097)	0.484*** (0.118)	
# obs.	64,823	64,823	64,823	64,823	64,823
Year F.E. Industry F.E.	yes no	yes yes	yes no	yes yes	yes yes
H_0 : $\psi + \gamma = 1$ [p -value]	0.747 [0.00]	0.669 [0.00]	1.137 [0.05]	1.133 [0.16]	yes
Overid J -test χ^2 $[p ext{-}\mathrm{value}]$			[0.30]	0.74 [0.69]	1.44 [0.70]
Weak IV F -test			199.1	154.6	156.3

Source: Amiti, Itskhoki, Konings (2019). Pass-through of 0.64

Evidence?

Dependent variable: $\Delta \ln P_{i,t}^{Y}$ OLS OLS 2SLS Estimator OLS OLS Instruments WID, Shea, $\Delta e_{i,t}$ (1)(2)(3)(4)(5) $\Delta \ln Y_{i,t}$ -0.060.09 0.130.170.24(0.09)(0.02)(0.02)(0.09)(0.02) $\Delta \ln Q_{i,t}$ -0.16-0.11-0.16(0.03)(0.08)(0.03) $\Delta \ln \text{UVC}_{i,t}$ 0.900.900.890.89(0.02)(0.02)(0.03)(0.03)R-squared 0.004 0.8690.8760.910 0.908Fixed Effects no no no ves yes First stage and instrument diagnostics F main effect 17.37 0.538 Hansen J (p-value)

Notes: The estimates are based on equation (16). Driscoll-Kraay standard errors are reported in parentheses. Fixed effects include industry fixed effects, time fixed effects, and time fixed effects interacted with industries' lagged foreign sales share $(\sum_{j \in \mathcal{J}^F} s_{j,i,t-1})$. First stage estimates for specification (5) are reported in Appendix Table D1.

Source: Boehm, Pandalai-Nayar (2022). Marginal cost elasticity of 0.24.

New back of the envelope

- Don't put too much weight on these. Combines data sources, countries, methods, time aggregation.
- Just want to illustrate the importance.
- remember the slope $\kappa = \varphi \omega \Omega$
- Using the textbook calibration: $\kappa \approx 0.2$.
- Including real rigidities: $\kappa \approx 0.1 \times 0.64 \times 0.24 \approx 0.015$