Università di Genova

Macchine di Turing Quantistiche

Relatori

Elena Zucca

Francesco Dagnino

Candidato

Pietro Zignaigo

16-12-2024

Introduzione

Computazione quantistica Macchina di Turing

Macchina di Turing quantistica

Configurazioni

Pre-macchina di Turing quantistica

Operatore di transizione

Funzioni calcolabili quantistiche

Dominio e codominio

Definizione

Categorie di terminazione

Misurazioni

Conclusione

Computazione quantistica

- Lo stato di un computer quantistico è una sovrapposizione di stati discreti
- TODO: parlare di qubit (osservezione distrugge parte dell'informazione)
- Quantum advantage: A parità di problema, la complessità temporale degli algoritmi quantistici può essere minore di quella degli algoritmi classici

Computazione quantistica

Spazi di Hilbert

Per modellare uno stato quantistico si utilizzano gli spazi di Hilbert:

$$\ell^{2}\left(\mathcal{B}
ight)=\left\{ \phi:\mathcal{B}
ightarrow\mathbb{C}\;\middle|\;\sum_{\mathcal{C}\in\mathcal{B}}\left|\phi\left(\mathcal{C}
ight)
ight|^{2}<\infty
ight\}$$

lacktriangle TODO: parlare di ℓ_1^2

Computazione quantistica

Operatori

- TODO: perché servono operatori
- Per ragioni fisiche, possono essere applicati agli elementi dello spazio solo operatori unitari:
 - invertibili
 - conservano la norma
- Perché l'operatore, visto in forma matriciale, sia unitario:
 - 1. Deve avere le colonne con norma 1 (perché la norma sia sempre conservata)
 - Ogni coppia di colonne deve essere ortogonale, ovvero due configurazioni pure non possono sovrapporsi dopo aver applicato l'operatore

Macchina di Turing

- Modello matematico per descrivere funzioni calcolabili da un algoritmo
- Funzioni calcolabili: Funzioni parziali $f : \mathbb{N} \to \mathbb{N}$ che sono calcolabili da una macchina di Turing.

Configurazioni

Una configurazione di una macchina di Turing è:

$$\langle \alpha, q, \beta, i \rangle \in \Sigma^* \times \mathcal{Q} \times \Sigma^* \times \mathbb{Z}$$

Q-configurazioni: Elementi di ℓ_1^2 ($\Sigma^* \times \mathcal{Q} \times \Sigma^* \times \mathbb{Z}$).

7 di 15

Configurazioni

Contatore

- Come mantenere inalterato il risultato dopo il raggiungimento di uno stato finale?
- Soluzione: aggiungere un contatore, la configurazione diventa:

$$\langle \alpha, q, \beta, i, n \rangle \in \Sigma^* \times \mathcal{Q} \times \Sigma^* \times \mathbb{Z} \times \mathbb{N}$$

Chiamiamo questo insieme \mathfrak{C}_M .

Le q-configurazioni diventano elementi di: $\ell_1^2(\mathfrak{C}_M)$.

Pre-macchina di Turing quantistica

• Funzione δ :

$$\delta: (\mathcal{Q} \backslash \mathcal{Q}_t) \times \Sigma \to \ell_1^2((\mathcal{Q} \backslash \mathcal{Q}_s) \times \Sigma \times \mathbb{D})$$

Operatore di transizione

lacktriangle Esiste un teorema che garantisce l'unitarietà se δ rispetta certe condizioni

Funzioni calcolabili quantistiche

Dominio e codominio

- Una Partial Probability Distribution (PPD) è una funzione $\mathcal{P}: \mathbb{N} \to \mathbb{R}_{[0,1]}$ tale che $\sum_{n \in \mathbb{N}} \mathcal{P}(n) \leq 1$
- Una *Probability Distribution (PD)* è una *PPD* tale che $\sum_{n\in\mathbb{N}}\mathcal{P}(n)=1$
- Prendiamo in considerazione funzioni di forma $f: \ell^2_1(\mathbb{N}) o PPD$

Funzioni calcolabili quantistiche

Definizione

■ Funzioni calcolabili quantistiche: Funzioni $f: \ell_1^2(\mathbb{N}) \to PPD$ che sono calcolabili da una Macchina di Turing quantistica.

Categorie di terminazione

Una data computazione può:

- 1. Produrre una *PD* in un numero di passi finito.
- 2. Non produrre una *PD* in un numero di passi finito, ma avere una *PD* come *PPD* limite.
- 3. Non avere una PD come PPD limite.

Misurazioni

14 di 15

Conclusione

L