DC CIRCUIT

1. Find out the value of I_5 , I_4 , I_3 , I_2 , I_1 ?

Solution: Total resistance $R_T=(2 \parallel 1 \parallel 4)+3=3.571\Omega$

$$I_1 = \frac{200}{3.571} = 56A$$
 (Ans.)

$$V_4=200-(56*3)=32V$$

$$I_2 = \frac{32}{4} = 8A$$
 (Ans.)
 $I_3 = 56-8=48A$ (Ans.)
 $I_4 = \frac{48*2}{2+1} = 32A$ (Ans.)
 $I_5 = 48-32=16A$ (Ans.)

$$I_3 = 56 - 8 = 48A$$
 (Ans.)

$$I_4 = \frac{48*2}{2+1} = 32A$$
 (Ans.)

$$=48-32=16A$$
 (Ans.)

2. Find out the value of R.

Solution: Apply KVL,

$$-20+10+10I-30=0$$

 $I=4A$
 $R=\frac{10}{1}=2.5\Omega$ (Ans.)

3. Find out the value

Three light bulbs are connected to a 9-V battery as shown in Fig. 2.56(a). Calculate: (a) the total current supplied by the battery, (b) the current through each bulb, (c) the resistance of each bulb.

Solution:

(a) The total power supplied by the battery is equal to the total power absorbed by the bulbs; that is,

$$p = 15 + 10 + 20 = 45 \text{ W}$$

Since p = VI, then the total current supplied by the battery is

$$I = \frac{p}{V} = \frac{45}{9} = 5 \text{ A}$$

(b) The bulbs can be modeled as resistors as shown in Fig. 2.56(b). Since R_1 (20-W bulb) is in parallel with the battery as well as the series combination of R_2 and R_3 ,

$$V_1 = V_2 + V_3 = 9 \text{ V}$$

The current through R_1 is

$$I_1 = \frac{p_1}{V_1} = \frac{20}{9} = 2.222 \text{ A}$$

By KCL, the current through the series combination of R_2 and R_3 is

$$I_2 = I - I_1 = 5 - 2.222 = 2.778 \text{ A}$$

(c) Since $p = I^2 R$,

$$R_1 = \frac{p_1}{I_1^2} = \frac{20}{2.222^2} = 4.05 \,\Omega$$

$$R_2 = \frac{p_2}{I_2^2} = \frac{15}{2.777^2} = 1.945 \ \Omega$$

$$R_3 = \frac{p_3}{I_3^2} = \frac{10}{2.777^2} = 1.297 \ \Omega$$

Find out the value of R

 $\begin{array}{lll} \textbf{Solution:} & V_R{=}50\text{-}10{=}40V \\ & R{=}\frac{40}{4}{=}10\Omega \ Ans. \end{array}$

Find out the value of V & $P_{1\Omega}$ apply super position therem.

Solution:

$$I = \frac{3}{2} = 1.5 A$$
 (v)
When 3V active,

$$I'' = \frac{3}{2} = 1.5 A$$

$$I = 1.5 + 1.5 = 3A$$
 (\checkmark)

Power= $I^2R=3^2*1=9W$ (Ans.)

6. Find out the value of V? [Ans: 70V]

Solution: $I_T = \frac{100}{(60+40)\|100+50} = 1A$ $I_{40} = \frac{1}{2} = 0.5A$

(Because of "AC" Parallal resistance are equal. So current dividation is equal between the two ressistance)

$$V=(40*0.5)+50=70V$$
 (Ans.)

7. Find out the value of R? [Ans: 1Ω]

Solution:
$$I_T = \frac{10-2}{2} = 4A$$

Apply KCL point a,
 $I_T = 1+x$
 $4 = 1+x$
 $X = 3A$
Apply KCL point b,
 $I_R = 3 - (\frac{2}{2} + \frac{2}{2}) = 1A$
 $1 = \frac{2}{1+R}$
 $R = 1\Omega$ (Ans.)

8. Find out the value of E?

Solution: Firstly, Simplify this circuit.

 $R_T = (5\|6+8\|4)\|9+3=6.3726\Omega$

V=6.3726*9=57.3534V

(Ans.)

Find out the value of R? [Ans: 4Ω]

Solution:
$$R=(8||8)+6=10 \Omega I=\frac{20}{10}=2A$$

$$I_R = 7 - 2 = 5 A$$

$$I_R = 7-2=5A$$
 $R = \frac{20}{5} = 4 \Omega$ (Ans.)

[Ans: 1.2 V]

Solution: Simplipy this circuit. How it will be simplipied. Then solve it own style.

Estimpting this circuit. How it wish
$$R_T=3\|5=1.875\Omega$$
, $I=\frac{6}{1.875}=3.2A$ $I_4=3.2-2=1.2A$ $I_2=\frac{1.2}{2}=0.6A$

$$I_2 = \frac{1.2}{1.2} = 0.6A$$

$$V_2 = 0.6 * 2 = 1.2 V$$

(Ans.)

11. Find out the value of E and Ammeter Current?

[Ans: V=57.79 Volt, Ammeter current= 0.564 Amp]

Solution: $I_T = \frac{20}{10} = 2A$

Applying current divider rule,
$$I_A = \frac{2*11}{11+15+13} = 0.564A$$
 (Ans.)

Voltage drop of Ammeter branch =0.564*(15+13)=15.795V

Total voltage
$$E=20+(11*2)+15.795=57.795V$$
 (Ans.

12. Find out the value of I_T ? [When S is open and, S is close]

[Ans: $I_{T(S \text{ closed})}=3A$ $I_{T(S \text{ open})}=2.5A$

Solution: When S is open,

$$R_T=10||15=6\Omega I_T=\frac{15}{6}=2.5A$$
 (Ans.)

When S is closed,

$$R_T=6\|3+4\|12=5\Omega \ I_T=\frac{15}{5}=3A$$
 (Ans.)
13. Find out the value of E, R? [Ans: V=15.5 Volt, R=35 Ω] *

$$I_R = I_T - I_{14} = 1 - \frac{10}{14} = 0.2857A$$

Solution: Applying KCL,
$$I_R = I_T - I_{14} = 1 - \frac{10}{14} = 0.2857A$$

$$R = \frac{10}{.2857} = 35\Omega \qquad (Ans.)$$

Total voltage E=3+10+(2.5*1)=15.5V

(Ans.)

14. Find out the value of I_T , I_1 ? [Ans: $I_T=6$ Amp, $I_1=0.6$ Amp]

(Ans.)

$$I_6=I_1+I_8$$

Apply RCL,

$$\frac{I_6=I_1+I_8}{3*4} = I_1 + \frac{3*2}{8+2}$$

$$I_1=0.6 \text{ A} \quad \text{(Ans.)}$$

15. Find out the value of E, I_1 ? [Ans: E=100 Volt, I_1 =2 Amp]

Solution: Very easy circuit. Don't fear. Apply point method. So, let's try.

 $R_T = (20 \parallel 100 \parallel 25) + 10 = 20\Omega$

$$E=5*20 = 100V$$
 (Ans.

$$V_{25}=100-(10*5)=50$$

E=5*20 = 100V (Ans.)
V₂₅=100·(10*5) = 50V
l₁=
$$\frac{50}{25}$$
 = 2A (Ans.)

Special Thanks to Meson Chakma EEE, DUET.