머신런닝 개요

Lecture 4: Mathematics for ML

College of Information and Electronic Engineering

Kyung Hee Univeristy

Prof. Wonha Kim

(wonha@khu.ac.kr)

Math for Machine Learning

- 선형대수: 이 분야의 개념을 이용하면 학습 모델의 매개변수집합, 데이터, 선형연산의 결합 등을 행렬 또는 텐서로 간결하게 표현할 수 있다. 데이터를 분석하여 유용한 정보를 알아내거나 특징 공간을 변환하는 등의 과업을 수행하는 데 핵심 역할을 한다.
- 확률과 통계: 데이터에 포함된 불확실성을 표현하고 처리하는 데 활용한다. 베이즈 이론과 최대 우도 기법을 이용하여 확률 추론을 수행한다.
- 최적화: 목적함수를 최소화하는 최적해를 찾는 데 활용하며, 주로 미분을 활용한 방법을 사용한다. 수학자들이 개발한 최적화 방법을 기계 학습이라는 도메인에 어떻게 효율적으로 적용할지가 주요 관심사이다.

1. Linear Algebra: Vector, Matrix, Tensor

- Vector
 - 샘플을 특징 벡터로feature vector 표현
 - 예) Iris 데이터에서 꽃받침의 길이, 꽃받침의 너비, 꽃잎의 의 길이, 꽃잎의 너비라는 4개의 특징이 각각 5.1, 3.5, 1.4,
 0.2인 샘플

$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 5.1 \\ 3.5 \\ 1.4 \\ 0.2 \end{pmatrix}$$

- 여러 개의 특징 벡터는 첨자로 구분

$$\mathbf{x}_{1} = \begin{pmatrix} 5.1 \\ 3.5 \\ 1.4 \\ 0.2 \end{pmatrix}, \ \mathbf{x}_{2} = \begin{pmatrix} 4.9 \\ 3.0 \\ 1.4 \\ 0.2 \end{pmatrix}, \ \mathbf{x}_{3} = \begin{pmatrix} 4.7 \\ 3.2 \\ 1.3 \\ 0.2 \end{pmatrix}, \ \cdots, \ \mathbf{x}_{150} = \begin{pmatrix} 5.9 \\ 3.0 \\ 5.1 \\ 1.8 \end{pmatrix}$$

- Matrix
 - vector의 배열

$$\mathbf{X} = \begin{pmatrix} 5.1 & 3.5 & 1.4 & 0.2 \\ 4.9 & 3.0 & 1.4 & 0.2 \\ 4.7 & 3.2 & 1.3 & 0.2 \\ \vdots & \vdots & \vdots & \vdots \\ 6.2 & 3.4 & 5.4 & 2.3 \\ 5.9 & 3.0 & 5.1 & 1.8 \end{pmatrix} = \begin{pmatrix} x_{1,1} & x_{1,2} & x_{1,3} & x_{1,4} \\ x_{2,1} & x_{2,2} & x_{2,3} & x_{2,4} \\ x_{3,1} & x_{3,2} & x_{3,3} & x_{3,4} \\ x_{4,1} & x_{4,2} & x_{4,3} & x_{4,4} \\ \vdots & \vdots & \vdots & \vdots \\ x_{149,1} & x_{149,2} & x_{149,3} & x_{149,4} \\ x_{150,1} & x_{150,2} & x_{150,3} & x_{150,4} \end{pmatrix}$$

- Tensor
 - Matrix의 배열. 예) RGB color 영상

$$\mathbf{A} = \begin{pmatrix} 74 & 1 & 0 & 3 & 2 & 2 \\ 72 & 0 & 2 & 2 & 3 & 1 & 6 \\ 73 & 0 & 1 & 2 & 6 & 7 & 6 & 3 \\ 3 & 1 & 2 & 3 & 5 & 6 & 3 & 0 \\ 1 & 2 & 2 & 2 & 2 & 2 & 3 & 0 \\ 3 & 0 & 0 & 1 & 1 & 0 & 3 & 1 \\ 5 & 4 & 1 & 3 & 3 & 3 & 3 & 1 \\ 2 & 2 & 1 & 2 & 2 & 1 & 1 \end{pmatrix}$$

1. Linear Algebra: Matrix

Transpose

$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1m} \\ a_{21} & a_{22} & \cdots & a_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nm} \end{pmatrix}, \quad \mathbf{A}^{\mathsf{T}} = \begin{pmatrix} a_{11} & a_{21} & \cdots & a_{n1} \\ a_{12} & a_{22} & \cdots & a_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1m} & a_{2m} & \dots & a_{nm} \end{pmatrix}$$

$$\mathbf{A}^{\mathsf{T}} = \begin{pmatrix} a_{11} & a_{21} & \cdots & a_{n1} \\ a_{12} & a_{22} & \cdots & a_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1m} & a_{2m} & \dots & a_{nm} \end{pmatrix}$$

$$\mathbf{A}^{\mathsf{T}} = \mathbf{I}$$

$$\mathbf{A}^{\mathsf{T}} = \mathbf{I}$$

$$\mathbf{A}^{\mathsf{T}} = \mathbf{I}$$

$$\mathbf{A}^{\mathsf{T}} = \mathbf{I}$$

$$\mathbf{A}^{\mathsf{T}} = \mathbf{I}^{\mathsf{T}} = \mathbf{I}^{\mathsf{T}}$$

$$\mathbf{A} = \begin{pmatrix} 3 & 4 & 1 \\ 0 & 5 & 2 \end{pmatrix} \qquad \mathbf{A}^{\mathrm{T}} = \begin{pmatrix} 3 & 0 \\ 4 & 5 \\ 1 & 2 \end{pmatrix}$$

- Vector data들의 Matrix 표현

$$\mathbf{X} = \begin{pmatrix} \mathbf{X}_1^{\mathrm{T}} \\ \mathbf{X}_2^{\mathrm{T}} \\ \vdots \\ \mathbf{X}_{150}^{\mathrm{T}} \end{pmatrix}$$

Special Matrix

•
$$I = diag(1)$$

•
$$(\mathbf{I})_{ij} = I_{ij} = 1 \text{ if } i = j, 0 \text{ otherwise.}$$

$$I^T = I$$

•
$$AI = IA = A$$
 (if A is square), $Ix = x$

•
$$I = [e_1, e_2,...,e_n]$$
, where only the *i*-th entries of e_i is 1 for all *i*.

• $\mathbf{e}_i^{\mathrm{T}} \mathbf{e}_i = 1$ if i = j, 0 otherwise.

Diagonal Matrix: $\mathbf{D} \in \mathbb{R}^{n \times n}$

•
$$d_{ij} = 0$$
, if $i \neq j$

•
$$\mathbf{D} = \operatorname{diag}(\mathbf{v}) \longrightarrow d_{ii} = v_i$$

Identity Matrix: $\mathbf{I} \in \mathbb{R}^{n \times n}$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad \mathbf{I} = \begin{bmatrix} 1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 1 \end{bmatrix}$$

•
$$AI = IA = A$$
 (if A is square). $Ix = x$

•
$$I = [e_1, e_2, ..., e_n]$$
, where only the *i*-th entries of e_i is 1 for all *i*.

•
$$\mathbf{e}_i^{\mathrm{T}} \mathbf{e}_i = 1$$
 if $i = j$, 0 otherwise.

$$\begin{pmatrix} 50 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 8 \end{pmatrix},$$

$$\begin{bmatrix} 50 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 8 \end{bmatrix}, \quad \mathbf{D} = \begin{bmatrix} d_{11} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & d_{mn} \end{bmatrix}$$

Symmetric Matrix:
$$\mathbf{S} \in \mathbb{R}^{n \times n}$$

$$s_{ij} = s_{ji}$$

$$\begin{pmatrix} 1 & 2 & 11 \\ 2 & 21 & 5 \\ 11 & 5 & 1 \end{pmatrix}$$

Skew Symmetric(anti-symmetric) Matrix

•
$$s_{ij} = -s_{ji}$$
 and $s_{ii} = 0$

1. Linear Algebra: Matrix Operations

Addition

- $\bullet \quad \mathbf{C} = \mathbf{A} + \mathbf{B} \quad \blacktriangleright \quad c_{ij} = a_{ij} + b_{ij}$
- $\bullet \quad \mathbf{D} = \mathbf{A} + k \quad \blacktriangleright \quad d_{ij} = a_{ij} + k$
- $\mathbf{C} = \mathbf{A} + \mathbf{b}$ $c_{ij} = a_{ij} + b_j$ $\mathbf{c}_j = \mathbf{a}_j + b_j$ (broadcasting: convention in deep learning)

Multiplication

For $\mathbf{A} \in \mathbb{R}^{m \times p}$, $\mathbf{B} \in \mathbb{R}^{p \times n}$, $\mathbf{C} \in \mathbb{R}^{m \times n}$,

$$\mathbf{C} = \mathbf{A}\mathbf{B} \quad \blacktriangleright \quad c_{ij} = \sum_{k} a_{ik} b_{kj}$$

$$(m \times p) \cdot (p \times n) = (m \times n)$$

•
$$\mathbf{C} = k\mathbf{A}$$
 \blacktriangleright $c_{ij} = ka_{ij}$

Properties of basic operations

Provided that the dimension-matching for the matrix multiplication is satisfied,

- $AB \neq BA$ (quite often) not commutative
- A(BC) = (AB)C associative
- A(B+C) = AB + AC distributive
- $\mathbf{A}^p = \mathbf{A}\mathbf{A}\mathbf{A}\cdots\mathbf{A}$ (p factors), $(\mathbf{A}^p)(\mathbf{A}^q) = \mathbf{A}^{p+q}$, $(\mathbf{A}^p)^q = \mathbf{A}^{pq}$
- $\mathbf{A}^0 = \mathbf{I}$ (identity matrix), $\mathbf{A}^{-1}\mathbf{A} = \mathbf{I}$ ($\mathbf{A}^{-1} \neq \mathbf{I}/\mathbf{A}$, there is no matrix division!)

$$\mathbf{A} = \begin{pmatrix} 3 & 4 & 1 \\ 0 & 5 & 2 \end{pmatrix} \qquad \mathbf{B} = \begin{pmatrix} 2 & 0 & 1 \\ 1 & 0 & 5 \\ 4 & 5 & 1 \end{pmatrix}$$

$$\mathbf{C} = \mathbf{A}\mathbf{B} = \begin{pmatrix} 14 & 5 & 24 \\ 13 & 10 & 27 \end{pmatrix}$$

1 Linear Algebra: Vector Space

Definition of Vector Space V

Let V is a set of vectors defining

- Vector addition : $x + y \in V$ (x, $y \in V$, i.e, x, y are vector)
- Scalar multiplication : $\alpha x \in V$ (x, y \in V, $\alpha \in R$, i.e, α is a real number.)
- V is a vector space if the following 8 axioms are satisfied
- 1.(Community): $x+y=y+x \in V$
- 2.(Additive identity): $0 \in V$, 0+x=x
- 3.(Associativity) : (x+y)+z=x+(y+z)
- 4. (Additive inverse): $-x \in V$, -x+x=0
- 5.(Distributivity) : For a number α , $\alpha(x+y) = \alpha x + \alpha y$
- **6.** (Distributivity): For number α , β , $(\alpha + \beta) x = \alpha x + \beta y$
- 7. (Associativity) : $(\alpha\beta) x = \alpha(\beta x)$
- 8. 1x=x
- Linear combination (spaces): 선형결합으로 만들어지는 공간
 - For Y, $X_i \in V$ and $\alpha_i \in R$ $Y = \alpha_0 X_0 + \alpha_1 X_1 + ... + \alpha_{(n-1)} X_{(n-1)} = \sum_{i=0}^{(n-1)} \alpha_{(n-1)} X_{(n-1)}$

Vector Addition

Scalar multiplication

1 Linear Algebra: Contracting vector space

Linear Independence

-
$$\alpha_0 X_0 + \alpha_1 X_1 + ... + \alpha_{(n-1)} X_{(n-1)} = 0$$
 then $\alpha_0 = \alpha_1 = \alpha_{(n-1)} = 0$

- X_0 , X_1 ..., $X_{(n-1)}$ are linearly independent.
- No vectors can not be represented as linear combination of the remaining vectors.
- Spanning set $\{V_0, V_1, ..., V_{(n-1)}\}$ of a vector space V
- Every vector in V can be represented as a linear combinations of V_0 , V_1 ..., $V_{(n-1)}$
- Basis $\{V_0, V_1, ..., V_{(n-1)}\}$ of a vector space V
- V_0 , V_1 ..., $V_{(n-1)}$ are linearly independent.
- $\{V_0, V_1, ..., V_{(n-1)}\}$ is a spanning set of V.
- Dimension of a vector space V
- -The number of basis vectors is same as the dimension of V.
- -Any set of linearly independent vectors span V or any n vectors spanning V are linearly independent.

1 Linear Algebra: Data in Vector Space-image data example

Image is the set of data point.

Image is the set of vectors at each location.

- Vector space representation is easier for understanding and analysis.
- we can manipulate image by manipulating their vector representation.

A nxm image vector is transformed to a nmx1 vector.

• Example - Image morphing : $I(i,j) = (1-\alpha) I_a(i,j) + \alpha I_b(i,j)$

Possible because images are points in a vector space.

1 Linear Algebra : image space basis

- A basis of face image vector space.
- An face image can be made from a linearly combination of the basis image vectors.
- The first 16 basis image vector.
 There are more than 16.
- The vectors are orthonormal.

1 Linear Algebra: Vector Norm

- Inner Product : <x,y> for x,y ∈ V
 - i) $\langle x, x \rangle \ge 0$, ii) $\langle x, x \rangle = 0$ iff x=0, iii) $\langle x, y \rangle = \langle y, x \rangle$
- Dot product : $\langle X, Y \rangle = \sum_{i=0}^{(n-1)} x_i y_i$
- Norm (for a certain inner product) : $||X||^2 = \langle X, X \rangle$
 - $-L^p \text{ nom} : ||X||p \equiv \left(\sum_{i=0}^{(n-1)} |x_i|^p\right)^{1/p}$
 - L^2 norm (Euclidean norm) : $||X||^2 \equiv \left(\sum_{i=0}^{(n-1)} |x_i|^2\right)^{1/2}$
 - $-L^{1}$ norm : $||X||^{1} \equiv \sum_{i=0}^{(n-1)} |x_{i}|$
 - L^{∞} norm (max norm) : $||X||^{\infty} \equiv \max(|x_i|)$
- Distance (Metric): D(X,Y) = ||X Y||
 - Euclidean Distance : $||X Y|| = \left(\sum_{i=0}^{(n-1)} |x_i y_i|^2\right)^{1/2}$
 - $-D(X,Y) \le D(X,Z) + D(Z,Y), D(X,Y) = D(Y,X)$

• Dot product : $\langle u, v \rangle = \sum_{i=0}^{(n-1)} u_i v_i$

$$\mathbf{u}^{\mathrm{T}}\mathbf{v} = \|\mathbf{u}\| \|\mathbf{v}\| \cos \theta, \qquad \frac{\mathbf{u}^{\mathrm{T}}\mathbf{v}}{\|\mathbf{u}\| \|\mathbf{v}\|} = \cos \theta$$

- $\mathbf{u}^{\mathrm{T}}\mathbf{v} = 0 \longrightarrow \mathbf{u} \perp \mathbf{v} \longrightarrow (\mathbf{u}^{\mathrm{T}}\mathbf{v} > 0 \Rightarrow \theta < 90^{\circ}, \mathbf{u}^{\mathrm{T}}\mathbf{v} < 0 \Rightarrow \theta > 90^{\circ})$
- Schwarz Inequality: $|\mathbf{u}^{\mathrm{T}}\mathbf{v}| < \|\mathbf{u}\|\|\mathbf{v}\|$
- Triangle Inequality: $\|\mathbf{u} + \mathbf{v}\| \le \|\mathbf{u}\| + \|\mathbf{v}\|$

1 Linear Algebra: Matrix-Vector operations

• A real $m \times n$ Matrix A ($\in \mathbb{R}^{m \times n}$) is a linear operator mapping an n-dimension vector X $(\in \mathbb{R}^n)$ to an M-dimension vector $y \in \mathbb{R}^m$.

•
$$\begin{bmatrix} \vdots \\ y_i \\ \vdots \end{bmatrix} = \begin{bmatrix} \vdots \\ a_{i1} \\ \vdots \\ x_n \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} \vdots \\ \sum_{j=1}^n a_{ij} x_j \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} \vdots \\ \sum_{j=1}^n a_{ij} x_j \\ \vdots \\ x_n \end{bmatrix}$$
 - Y is the inner product of 7 to 7 to 8 of A and X.
- Y is the projection of X on the space spanned by the rows of A.
- Y is coordinate of X in the **row space** of A.
- Maps Rⁿ to Rⁿ. Basis change.

- y_i is the inner product of i^{th} row of A and X.

•
$$\begin{bmatrix} y_1 \\ \vdots \\ y_m \end{bmatrix} = \begin{bmatrix} \vdots \\ a_{11}x_1 + \dots + a_{1n}x_n \\ \vdots \\ a_{m1}x_1 + \dots + a_{mn}x_n \end{bmatrix} = \begin{bmatrix} 1 \\ a_1 \\ 1 \end{bmatrix} x_1 + \dots + \begin{bmatrix} 1 \\ a_n \\ 1 \end{bmatrix} x_n$$
- Y is a linear combination of the columns of A.
- X is coordinate of Y in the *column space* of A.

Along Pn to Pm. Dimension change.

- $-x_i$ is the ith component of y in the space spanned by the columns of A.

- Maps Rⁿ to R^m. Dimension change.
- Rank of a matrix A ($\in R^{mxn}$) is the number of linearly independent columns of A. Rank(A) \leq min(m,n).

1 Linear Algebra: Special Matrix and Vectors

Inverse Matrix (for a square matrix)

If A is not invertible, it is called singular matrix.

$$\bullet \quad \mathbf{A}^{-1}\mathbf{A} = \mathbf{A}\mathbf{A}^{-1} = \mathbf{I},$$

$$\mathbf{I}^{-1} = \mathbf{I}$$

- $(c\mathbf{A})^{-1} = \frac{1}{c}\mathbf{A}^{-1}$

•
$$(\mathbf{A}\mathbf{B})^{-1} = \mathbf{B}^{-1}\mathbf{A}^{-1}$$
 $(\mathbf{A}^{\mathrm{T}})^{-1} = (\mathbf{A}^{-1})^{\mathrm{T}} = \mathbf{A}^{-\mathrm{T}}$

Orthogonality

$$\begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}^{-1} * \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \mathbf{I}$$

- $\mathbf{u} \perp \mathbf{v}$ iff $\mathbf{u} \neq \mathbf{0}, \mathbf{v} \neq \mathbf{0}, \mathbf{u}^{\mathrm{T}} \mathbf{v} = 0$
- Orthonormal vectors = orthogonality + unit norm

Orthogonal matrix: Q

- Rows are mutually orthonormal, and columns are mutually orthonormal
- $\mathbf{O}^{\mathrm{T}}\mathbf{O} = \mathbf{I} \implies \mathbf{O}^{\mathrm{T}} = \mathbf{O}^{-1}$
- Determinants (for a square matrix): det(A) or |A|
 - det(A) = 0 if A has no inverse(singular)
 - $det(\mathbf{A}^{-1}) = \frac{1}{\det(\mathbf{A})}$

$$\mathbf{A} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

$$\mathbf{A} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \qquad \mathbf{A}^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} = \frac{1}{\det(\mathbf{A})} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

$$\det(\mathbf{A}) = ad - bc$$

$$det \begin{pmatrix} a & b & c \\ d & e & f \\ a & b & i \end{pmatrix} = aei + bfg + cdh - ceg - bdi - afh$$

- Homogeneous systems: Ax = 0
 - Homogeneous systems are always consistent
 - If A is $m \times n$, then Ax = 0 has a nontrivial solution if n > m.
- Solution and Singularity
 - Ax = 0 has only the trivial solution $0 \iff A$ is nonsingular
 - Ax = b has a unique solution \Leftrightarrow A is nonsingular
- Solution of Ax = b, (where A is square matrix) If A is invertible, i.e., nonsingular

$$\mathbf{A}^{-1}\mathbf{A}\mathbf{x} = \mathbf{A}^{-1}\mathbf{b}$$

$$\mathbf{x} = \mathbf{A}^{-1}\mathbf{b}$$

1 Linear Algebra: Eigen System

Definition

Given a square matrix $A \in \mathbb{R}^{n \times n}$, a scalar $\lambda \in \mathbb{C}$ is is said to be an eigenvalue or a characteristic value of A if there exists a nonzero vector x such that

$$\mathbf{A}\mathbf{x} = \lambda \mathbf{x}$$
.

The vector **x** is said to be an **eigenvector** or a **characteristic vector** belonging to λ .

- Following statements are equivalent:
 - (a) λ is an eigenvalue of **A**.
 - (b) $(\mathbf{A} \lambda \mathbf{I})\mathbf{x} = \mathbf{0}$ has a nontrivial solution.
 - (c) Nul($\mathbf{A} \lambda \mathbf{I}$) $\neq \{0\}$
 - (d) $(\mathbf{A} \lambda \mathbf{I})$ is singular.
 - (e) $\det(\mathbf{A} \lambda \mathbf{I}) = 0$
- Properties

$$Tr(\mathbf{A}) = \sum_{i=1}^{n} \lambda_i$$

$$\det(\mathbf{A}) = |\mathbf{A}| = \prod_{i=1}^{n} \lambda_i$$

$\binom{2}{1}$	$\frac{1}{2}\binom{1}{1}=3\binom{1}{1}$
$\binom{2}{1}$	${1 \choose 2}{1 \choose -1}=1{1 \choose -1}$
	\bigcirc
	$\lambda_1=3$, $\lambda_2=1$
V 2	$v_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, v_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$

정수 3717은 특성이 보이지 않지
 만, 3*3*7*59로 소인수 분해하면
 특성이 보이듯이, 행렬도 분해하면
 여러모로 유용함

1 Linear Algebra: Eigen System

[그림 2-12]의 반지름이 1인 원 위에 있는 4개의 벡터 $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_4$ 가 $\mathbf{A} = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$ 에 의해 어떻게 변환되는지 살펴보자. 변환 후의 벡터를 각각 $\mathbf{x}_1', \mathbf{x}_2', \mathbf{x}_3', \mathbf{x}_4'$ 로 표기한다.

$$\mathbf{x}_{1}' = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \end{pmatrix} = \begin{pmatrix} 3/\sqrt{2} \\ 3/\sqrt{2} \end{pmatrix}$$

$$\mathbf{x}_{2}' = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$

$$\mathbf{x}_{3}' = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \end{pmatrix} = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \end{pmatrix}$$

$$\mathbf{x}_{4}' = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 0 \\ -1 \end{pmatrix} = \begin{pmatrix} -1 \\ -2 \end{pmatrix}$$

는 여겨 볼 점은 A의 고유 벡터 $\binom{1}{1}$, $\binom{1}{-1}$ 과 방향이 같은 \mathbf{x}_1 과 \mathbf{x}_3 이다. 이들은 변환 때문에 길이가 달라지더라도 방향은 그대로 유지한다. 식 (2.20)을 충실히 따르고 있다. 이때 길이의 변화는 고윳값 λ 에 따른다. 즉, \mathbf{x}_1 은 3배 만큼, \mathbf{x}_3 은 1배만큼 길이가 변한다. 나머지 \mathbf{x}_2 와 \mathbf{x}_4 는 길이와 방향이 모두 변한다. 파란 원 위에 있는 모든 점을 변환하면 빨간색의 타원이 된다. 파란 원 위에 존재하는 무수히 많은 점(벡터) 중에 방향이 바뀌지 않는 것은 고유 벡터에 해당하는 \mathbf{x}_1 과 \mathbf{x}_3 뿐이다.

1 Linear Algebra: Quadratic form

Quadratic form

For $\mathbf{A} \in \mathbb{R}^{n \times n}$, $\mathbf{x} \in \mathbb{R}^n$ (**A** is symmetric)

$$\mathbf{x}^{T} \mathbf{A} \mathbf{x} = \sum_{i=1}^{n} x_{i} (\mathbf{A} \mathbf{x})_{i} = \sum_{i=1}^{n} x_{i} \left(\sum_{j=1}^{n} a_{ij} x_{j} \right) = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} x_{i} x_{j}$$

Positive definite

For
$$\mathbf{A} \in \mathbb{R}^{n \times n}$$
, $\mathbf{x} \in \mathbb{R}^{n}$, $\mathbf{x} \neq \mathbf{0}$, $\mathbf{x} \neq \mathbf{0}$, $\mathbf{x} \neq \mathbf{0}$ $(x_1 \quad x_2) \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = x_1^2 + 2x_2^2 > 0$ $\mathbf{A} = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$: Positive definite

Positive semi-definite

For
$$\mathbf{A} \in \mathbb{R}^{n \times n}$$
, $\mathbf{x} \in \mathbb{R}^n$, $\mathbf{x} \neq \mathbf{0}$, $\mathbf{x}^T \mathbf{A} \mathbf{x} \geq 0$

- Indefinite
 - Neither positive semi-definite nor negative semi-definite, i.e.,
 - If there exist \mathbf{x}_1 , \mathbf{x}_2 such that $\mathbf{x}_1^T \mathbf{A} \mathbf{x}_1 > 0$ and $\mathbf{x}_2^T \mathbf{A} \mathbf{x}_2 < 0$.
- Properties
 - A is positive definite
 ⇔ ¬A is negative definite
 - A is positive definite
 ⇔ A is full rank & invertible

1 Linear Algebra: Eigen System-singular value decomposition (SVD)

Diagonalization

- Let X be a matrix of n independent eigenvector of A, the diagonal matrix $\Lambda = X^{-1}AX$ is the eigenvalue matrix of A.
- A is said to be diagonalizable if it is similar to a diagonal matrix.
- A is diagonalizable if and only if A has n linearly independent eigenvectors

$\begin{pmatrix} 3 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0.5 & 0.5 \\ 0.5 & -0.5 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$

Eigendecomposition

• If $X^{-1}AX = \Lambda$, then $X(X^{-1}AX) = X\Lambda \implies AX = X\Lambda \implies AXX^{-1} = X\Lambda X^{-1}$

$$\begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 3 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0.5 & 0.5 \\ 0.5 & -0.5 \end{pmatrix}$$

$$\Rightarrow$$
 A = X Λ X⁻¹

where X is a matrix of n independent eigenvector of A, and Λ is a diagonal eigenvalue matrix of A

- Power: $A^2 = (X^{-1}\Lambda X)(X^{-1}\Lambda X) = X^{-1}\Lambda^2 X$, $A^3 = (X^{-1}\Lambda^2 X)(X^{-1}\Lambda X) = X^{-1}\Lambda^3 X$, ...
- Independence of eigenvectors
 - Let the eigenvalues of A, λ_1 , λ_2 , ..., λ_n are all different, then the corresponding n eigenvectors \mathbf{x}_1 , \mathbf{x}_2 , ..., \mathbf{x}_n are independent and \mathbf{A} is diagonalizable.

1 Linear Algebra: Eigen System-singular value decomposition (SVD)

Properties of Eigendecomposition

$$\mathbf{A} = \mathbf{X} \mathbf{\Lambda} \mathbf{X}^{-1}$$

- $\det(\mathbf{A}) = \det(\mathbf{X}\Lambda\mathbf{X}^{-1}) = \det(\mathbf{X})\det(\mathbf{\Lambda})\det(\mathbf{X})^{-1} = \det(\mathbf{A}) = \lambda_1\lambda_2\cdots\lambda_n$
- $A^{-1} = (X\Lambda X^{-1})^{-1} = X\Lambda^{-1}X^{-1} = Xdiag(1/\lambda_1, 1/\lambda_2, ..., 1/\lambda_n)X^{-1}$
- $\operatorname{Tr}(\mathbf{A}) = \operatorname{Tr}(\mathbf{X}\Lambda\mathbf{X}^{-1}) = \operatorname{Tr}(\Lambda\mathbf{X}^{-1}\mathbf{X}) = \operatorname{Tr}(\Lambda) = \lambda_1 + \lambda_2 + \dots + \lambda_n$
- $\mathbf{A}^k = (\mathbf{X}\Lambda\mathbf{X}^{-1})^k = (\mathbf{X}\Lambda\mathbf{X}^{-1})(\mathbf{X}\Lambda\mathbf{X}^{-1})\cdots(\mathbf{X}\Lambda\mathbf{X}^{-1}) = \mathbf{X}\Lambda^k\mathbf{X}^{-1} = \mathbf{X}\operatorname{diag}(\lambda_1^k, \lambda_2^k, \dots, \lambda_n^k)\mathbf{X}^{-1}$
- $e^{\mathbf{A}} = \mathbf{X}e^{\mathbf{A}}\mathbf{X}^{-1}$, where $e^{\mathbf{A}} = \operatorname{diag}(e^{\lambda_1}, e^{\lambda_2}, ..., e^{\lambda_n})$
- Properties of Eigenvalues/Eigenvectors for Symmetric Matrices Let A∈ R^{n×n} and symmetric
 - All the eigenvalues of A are real
 - All eigenvectors with different eigenvalues of A are mutually orthogonal
 - The eigenvectors of **A** are orthonormal $\mathbf{A} = \mathbf{U}\mathbf{\Lambda}\mathbf{U}^{-1}$ (instead of **X**)
 - $\mathbf{A} = \mathbf{U}\Lambda\mathbf{U}^{\mathrm{T}}$ (since $\mathbf{U}^{-1} = \mathbf{U}^{\mathrm{T}}$)
 - $\mathbf{x}^{T}\mathbf{A}\mathbf{x} = \mathbf{x}^{T}\mathbf{U}\mathbf{\Lambda}\mathbf{U}^{T}\mathbf{x} = \mathbf{y}^{T}\mathbf{\Lambda}\mathbf{y} = \sum_{i=1}^{n} \lambda_{i} y_{i}^{2}$ Since $y_{i}^{2} > 0$, $\mathbf{x}^{T}\mathbf{A}\mathbf{x} > 0$ if all $\lambda_{i} > 0$ Therefore, if all $\lambda_{i} > 0 \implies \mathbf{A}$ is positive definite

1 Linear Algebra: Eigen System-singular value decomposition (SVD)

• n·m 행렬 A의 Singular Value Decomposition

$$A = U\Sigma V^{T}$$

- 왼쪽 특이행렬 U는 AAT의 고유 벡터를 열에 배치한 *It-I*I 행렬
- 오른쪽 특이행렬 V는 ATA의 고유 벡터를 열에 배치한 *m⋅m* 행렬
- Σ는 AA^T의 고유값의 제곱근을 대각선에 배치한 *n·m* 대각행렬

$$\mathbf{A} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 2 \\ 3 & 1 & 0 \\ 1 & 0 & 2 \end{pmatrix} = \begin{pmatrix} -0.1914 & -0.2412 & 0.1195 & -0.9439 \\ -0.5144 & 0.6990 & -0.4781 & -0.1348 \\ -0.6946 & -0.6226 & -0.2390 & 0.2697 \\ -0.4651 & 0.2560 & 0.8367 & 0.1348 \end{pmatrix}$$

$$\begin{pmatrix} 3.7837 & 0 & 0 \\ 0 & 2.7719 & 0 \\ 0 & 0 & 1.4142 \\ 0 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} -0.7242 & -0.4555 & -0.5177 \\ -0.6685 & 0.2797 & 0.6891 \\ 0.1690 & -0.8452 & 0.5071 \end{pmatrix}$$

2 Probability: Definition

- Probability: Mathematics for dealing with processes or experiments that are non-deterministic.
- Outcome: Possible case.
- (Random) Experiment: Taking values in a set of outcomes.
- (Random) Event : Set of outcomes.
- Probability of an event: A real number between 0 and 1 expressing the chance that the event will
 occur when a random experiment is performed.
- Sample space U: Set of experimental outcomes that must stratify the following properties.
 - Collectively Exhaustive: When experiment is performed, one of these outcomes must occur.
 - ⇒ There is no possible event to which a probability cannot be assigned
 - Mutually Exclusive : Only one outcomes happens and no other can occur.
 - => Simplifying the calculation of the probability of event.
- Probability measure
 - $P(\phi) = 0$, $P(A) \ge 0$, P(U) = P(Sample space) = 1
 - If $A \subseteq B$, $P(A) \le P(B)$
 - $P(A \cup B) = P(A) + P(B) P(A \cap B)$
 - If $A \cap B = \emptyset$, then $P(A \cup B) = P(A) + P(B)$
 - $P(A^c) = 1 P(A)$

2 Probability: Random Variables (RV)

- Random variable (RV) x (RV could be a scalar or vector).
 - Function that assigns a real value to each outcome.
 - That is, $X(a_i) = x$ where $a_i \in U$ is an outcome and $x \in R$ is a real value assinged to ai.
 - In notation, the random variable is subscript and the value is the argument. For example, $P_X(x_1,x_2) = 1/36 = Prob[X=(x_1,x_2)]=1/36$.

Discrete	RV
----------	----

- Take a value of finite or at most countable set of outcomes.
- Probability assignments are given by a probability mass function (pmf).
- $0 \le P_X(x=k) \le 1$ and $\sum_k P_X(k)=1$.

Continuous RV

- Take arbitrary values in a real interval for scalar RV, in an area for a vector RV.
- Probability assignments are given by a probability density function (pdf).

-
$$0 \le P_X(x)$$
 and $\int_{-\infty}^{\infty} P_X(x) dx = 1$,

$$- P_{x}(X=a) = \int_{-a}^{a} P_{X}(x) dx = 0$$

-
$$P_x$$
 (a $\leq X \leq b$) = $\int_a^b P_X(x) dx$

Cumulative Distribution Function (CDF)

-
$$P(z) = Px (x \le z) = \int_{-\infty}^{Z} P_x(x) dx$$

2 Probability: Multiple Random Variables

- Multiple RVs: RV is a collection of random data, that is, a vector.
 - Multiple RVs : A RV data $X=[X_1, X_2, ..., X_n]^T$
 - Medical examination: X=[temperature, blood pressure, weight, age] T
 - pdf for multiple RVs is Joint probability distribution: $P_X(x_1,x_2,x_3,....x_n)$
- Marginalization:
 - Delete the irrelevant or unnecessary RVs from joint pdf.
 - EX: Application to K-Univ. X=[Language score, weight, Math score, height]= [x1, x2, x3, x4].
 - => 'weight' and 'height' are not relevant to possibility of admission.
 - $\Rightarrow P_{X_1X_3}(X_1,X_3) = \sum_{X_2} \sum_{X_4} P_{X_1X_2X_3X_4}(X_1,X_2,X_3,X_4)$ for discrete RV
 - $\Rightarrow P_{X_1X_3}(X_1,X_3) = \iint_{X_2X_4} P_{X_1X_2X_3X_4}(X_1,X_2,X_3,X_4)$ for continuous RV

2 Probability: Conditional Probability

- Conditional Probability: P(A|B)
 - Conditioned on (or Given) the probabilities of an event B, measure of the probability of an event A.
 - "The conditional probability of A given B" or "The probability of A under the condition B"
 - Values of some variables are known (or given), while other variables are unknown.
- Calculation of P(A|B)
- $P(A|B) = P(A \cap B)/P(B)$.
- $P(A \cap B) = P(A|B)P(B) = P(B|A)P(A)$

- Example : Applying to an University
 - For judging the possibility of admission, define new variable with state $Y \in \{Accept, Not Accept\}$.
 - Decide the probability that an application is accepted for given (known) scores of Math (x3=93). Namely, decide $P_{Y|x_2}(Y=Accept \mid x_3=93) = P_{Y,x_2}(Y=Accept , x_3=93)/P_{x_2}(x_3=93)$
- Independence
 - Random variable x_1 and x_2 are independent if $P_{x_1,x_2}(x1,x2) = P_{x_1}(x1) P_{x_2}(x2)$
 - In conditional prob. : $P_{x_1|x_2}(x_1|x_2) = P_{x_1x_2}(x_1,x_2) / P_{x_2}(x_2) = P_{x_1}(x_1)$.
 - Knowing x_2 does not change the estimating probability concerned with x_1 .

2 Probability: Rule of Chain

- Chain rule of probability:
 - $P_{X_1X_2}(X_1,X_2) = P_{X_2|X_1}(X_2|X_2) P_{X_1}(X_1)$
 - $-P_{X_1X_2,...,X_n}(x_1,...,x_n) = P_{X_1|X_2,...X_n}(x_1|X_2,...,x_n) \times P_{X_2|X_3,...X_n}(x_2|X_3,...,x_n) \times P_{X_{n-1}|X_n}(x_{n-1}|X_n) P_{X_n}(x_n)$
- Marginal probability with conditional prob. :
 - $P(A) = \sum_{b \in B} P_X(A, B=b) = \sum_{b \in B} P_X(A|B=b) P(B=b), P_y(y) = \int P_{yx}(y, x) dx = \int P_{y|x}(y|x) P_x(x) dx$
 - Combining the chain rule with the marginalization makes difficult problem simpler.
 - $\Rightarrow P_{x}(x)$ is computed from data observation or historgram
 - $\Rightarrow P_{v|x}(y|x)$ is easier to be estimated because size of observed data is much reduced.
 - ⇒ Bayesian probability => Likelihood Estimation

EX: Break down a hard question (EX: Prob. of Accept and math score 93) into two easier questions.

- \Rightarrow It is well know that $P_{Y,X_2}(Y=Accept \mid x_3=93)$ is closed to 1.
- \Rightarrow Even though computing $P_{X_3}(x_3=93)$ is hard, easier than $P_{Y,X_3}(Y=Accept, x_3=93)$.
- \Rightarrow In order to compute $P_{x_3}(x_3=93)$, gather a number of applicants and make an histogram of math scores.

2 Probability: Momentum (Statistics)

Moments are important properties of random variables.

	Discrete	continuous	
Mean : μ = E[X]	$\mu = \sum_{\mathbf{k}} \mathbf{k} P_X(\mathbf{k})$	$\mu = \int x P(x) dx$	E[(X+Y)] = E[X] + E[Y],
Variance: $\sigma^2 = Var(X) = E[(x-\mu)^2]$	$\sigma^2 = \sum_{\mathbf{k}} (k - \mu)^2 P_X(\mathbf{k})$	$\sigma^2 = \int (x - \mu)^2 P(x) \ dx$	• $Var(X+Y) \neq Var(X) + Var(Y)$ • $E[(x-\mu)^2] = E[x^2] - \mu^2$

- nth order (non-central) moment : E[Xⁿ]
- nth order (central) moment : E[(X-μ)ⁿ]
- Nice distribution are well specified by a very few moments. Ex: Gaussian by mean variance

Gaussian distribution

2 Probability: Covariance

Covariance for scalar RVs x, y :

$$cov[x, y] = \mathbb{E}[\{x - \mathbb{E}[x]\}\{y - \mathbb{E}[y]\}] = \mathbb{E}[xy] - \mathbb{E}[x]\mathbb{E}[y]$$

Covariance matrix for random vector RVs (multiple RVs) x:Kx1, y:Lx1

$$-\operatorname{cov}[\mathbf{x}, \mathbf{y}] = \mathbb{E}_{\mathbf{x}, \mathbf{y}}[\{\mathbf{x} - \mathbb{E}[\mathbf{x}]\}\{\mathbf{y}^{\mathsf{T}} - \mathbb{E}[\mathbf{y}^{\mathsf{T}}]\}] = \mathbb{E}_{\mathbf{x}, \mathbf{y}}[\mathbf{x}\mathbf{y}^{\mathsf{T}}] - \mathbb{E}[\mathbf{x}]\mathbb{E}[\mathbf{y}^{\mathsf{T}}]$$

$$= \begin{pmatrix} \cos[x_1, y_1] & \cos[x_1, y_2] & \cdots & \cos[x_1, y_L] \\ \cos[x_2, y_1] & \cos[x_2, y_2] & \cdots & \cos[x_2, y_L] \\ \vdots & \vdots & \ddots & \vdots \\ \cos[x_K, y_1] & \cos[x_K, y_2] & \cdots & \cos[x_K, y_L] \end{pmatrix}$$

- $cov[\mathbf{x}, \mathbf{x}] \equiv cov[\mathbf{x}] \triangleq \mathbb{E}[(\mathbf{x} - \mathbb{E}[\mathbf{x}])(\mathbf{x} - \mathbb{E}[\mathbf{x}])^{\mathrm{T}}]$: symmetric & Positive definite

$$= \begin{pmatrix} \operatorname{var}[x_1] & \operatorname{cov}[x_1, x_2] & \cdots & \operatorname{cov}[x_1, x_D] \\ \operatorname{cov}[x_2, x_1] & \operatorname{var}[x_2] & \cdots & \operatorname{cov}[x_2, x_D] \\ \vdots & \vdots & \ddots & \vdots \\ \operatorname{cov}[x_D, x_1] & \operatorname{cov}[x_D, x_2] & \cdots & \operatorname{var}[x_D] \end{pmatrix}$$

2 Probability: Covariance

예제 2-7

lris 데이터베이스의 샘플 중 8개만 가지고 공분산 행렬을 계산하자.

$$\mathbb{X} = \{\mathbf{x}_1 = \begin{pmatrix} 5.1 \\ 3.5 \\ 1.4 \\ 0.2 \end{pmatrix}, \mathbf{x}_2 = \begin{pmatrix} 4.9 \\ 3.0 \\ 1.4 \\ 0.2 \end{pmatrix}, \mathbf{x}_3 = \begin{pmatrix} 4.7 \\ 3.2 \\ 1.3 \\ 0.2 \end{pmatrix}, \mathbf{x}_4 = \begin{pmatrix} 4.6 \\ 3.1 \\ 1.5 \\ 0.2 \end{pmatrix}, \mathbf{x}_5 = \begin{pmatrix} 5.0 \\ 3.6 \\ 1.4 \\ 0.2 \end{pmatrix}, \mathbf{x}_6 = \begin{pmatrix} 5.4 \\ 3.9 \\ 1.7 \\ 0.4 \end{pmatrix}, \mathbf{x}_7 = \begin{pmatrix} 4.6 \\ 3.4 \\ 1.4 \\ 0.3 \end{pmatrix}, \mathbf{x}_8 = \begin{pmatrix} 5.0 \\ 3.4 \\ 1.5 \\ 0.2 \end{pmatrix} \}$$

먼저 평균벡터를 구하면 μ = $(4.9125, 3.3875, 1.45, 0.2375)^T$ 이다. 첫 번째 샘플 \mathbf{x} 을 식 (2.39)에 적용하면 다음과 같다.

$$(\mathbf{x}_1 - \boldsymbol{\mu})(\mathbf{x}_1 - \boldsymbol{\mu})^{\mathrm{T}} = \begin{pmatrix} 0.1875 \\ 0.1125 \\ -0.05 \\ -0.0375 \end{pmatrix} (0.1875 \quad 0.1125 \quad -0.05 \quad -0.0375)$$

$$= \begin{pmatrix} 0.0325 & 0.0211 & -0.0094 & -0.0070 \\ 0.0211 & 0.0127 & -0.0056 & -0.0042 \\ -0.0094 & -0.0056 & 0.0025 & 0.0019 \\ -0.0070 & -0.0042 & 0.0019 & 0.0014 \end{pmatrix}$$

나머지 7개 샘플도 같은 계산을 한 다음, 결과를 모두 더하고 8로 나누면 다음과 같은 공분산 행렬을 얻는다.

$$\mathbf{\Sigma} = \begin{pmatrix} 0.0661 & 0.0527 & 0.0181 & 0.0083 \\ 0.0527 & 0.0736 & 0.0181 & 0.0130 \\ 0.0181 & 0.0181 & 0.0125 & 0.0056 \\ 0.0083 & 0.0130 & 0.0056 & 0.0048 \end{pmatrix}$$

2 Probability: Correlation

• Correlation coefficient for scalar RVs,
$$x,y$$
: $corr[x,y] = \frac{cov[x,y]}{\sqrt{var[x]var[y]}}$

Sets of (x,y) points, with corr[x,y] for each set.

2. Probability: Distribution

2. Probability: Gaussian Distribution (for continuous RV)

Univariate Gaussian Distribution

$$\mathcal{N}(x|\mu,\sigma^2) = \frac{1}{(2\pi\sigma^2)^{1/2}} \exp\left\{-\frac{1}{2\sigma^2}(x-\mu)^2\right\}$$

• Multivariate Gaussian Distribution for $x=(x_1,x_2,...,x_D)$

$$\mathcal{N}(\mathbf{x}|\boldsymbol{\mu},\boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{D/2}} \frac{1}{|\boldsymbol{\Sigma}|^{1/2}} \exp\left\{-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\mathrm{T}}\boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right\}$$

where $\Sigma : cov[x]$

2. Probability: Multivariate Gaussian Distri.

• Multivariate Gaussian Distribution with different $\sum (=cov[x])$.

2. Probability: Mahalanobis Distance

- N-dimensional data vector : $\mathbf{x} = [x_1, x_2, \dots, x_N]^T$, $\mathbf{y} = [y_1, y_2, \dots, y_N]^T$
- Mahalanobis Distance : $d(\mathbf{x}, \mathbf{y}) = \sqrt{(\mathbf{x} \mathbf{y})^T \Sigma^{-1} (\mathbf{x} \mathbf{y})}$
 - Measure of correlation between variables.
 In Euclidean distance, d₁=d₂.
 In Mahalonobis distance, d₁< d₂.

- If we employ the center of a distribution, the distance may detect the outliers.

$$d(\mathbf{x}) = \sqrt{(\mathbf{x} - \mathbf{u})^T \Sigma^{-1} (\mathbf{x} - \mathbf{u})}$$

where $\mathbf{u} = [u_1, u_2, u_N]^T$ is mean vector.

(* In Euclian distance, $d_a > d_b$)

2. Probability: Discrete RV Distributions

- Bernoulli distribution:
- Given a binary random variable $x \in \{0, 1\}$ (e.g. tossing a coin)
- 성공(x=1) 확률 p, 실패(x=0) 확률이 1-p인 분포

$$Ber(x; p) = p^{x}(1-p)^{1-x} = \begin{cases} p, & x = 1 일 \text{ 때} \\ 1-p, & x = 0 일 \text{ 때} \end{cases}$$

$$E(x) = p$$
, $var[x] = p(1-p)$

- Bernoulli distribution :
- 성공 확률이 p인 베르누이 실험을 m번 수행할 때 성공할 횟수 의 확률분포

$$B(x; m, p) = C_m^x p^x (1 - p)^{m - x} = \frac{m!}{x! (m - x)!} p^x (1 - p)^{m - x}$$

$$E(x) = mp$$
, $var[x] = mp(1-p)$

2. Probability: Central limit theorem

- Sum of multiple random variables
 - Maximum entropy condition for continuous variable ⇒ Gaussian
 - N random variables $x_1, ..., x_N$, each of x_i has Unif(x | 0, 1). Considering the distribution of the mean $(x_1 + \cdots + x_N)/N$. For large N, this distribution tends to a Gaussian \implies central limit theorem

2 Probability: Bayesian Rule

Proof of Bayesian Rule

$$p(B \mid A)p(A) = p(A \cap B)$$

$$p(A \mid B)p(B) = p(A \cap B)$$

$$p(A \mid B)p(B) = p(B \mid A)p(A) \Rightarrow p(A \mid B) = \frac{p(B \mid A)p(A)}{p(B)} = \frac{p(B \mid A)p(A)}{\sum_{\alpha \in A} p(B \mid A)p(A)}$$

- Prior P(w): Presumption, i.e, hypothesis. In a parametric model, parameters to be set.
- Evidence P(X): Determined from observed data.
- Likelihood P(X|w) (L(X|w)): Under w, the possibility of X. The function of w. Decided by counting frequencies.
- Posterior P(w|X): (Required) inferencing w from observation X.

2. Probability: Information Theory

- A measure of Information-by Shannon
- 1. Information contained in events should be defined in terms of some measure of the uncertainty of the event.
- 2. Less probable events should contain more information.
- 3. Info. of uncorrelated (independent) events should equal to the sum of info. of each event.

 $P(\alpha)$: the prob. of a event α .

 $I(\alpha)$: the information measure of the event α .

$$I(\alpha) = -\log P(\alpha)$$
 (bits)

* If $P(\alpha \cap \beta) = P(\alpha) * P(\beta)$, that is, event α , β are independent.

$$\mathbf{I}(\alpha \cap \beta) = -\log P(\alpha \cap \beta) = -\log (P(\alpha) * P(\beta))$$
$$= -\log P(\alpha) - \log P(\beta) = \mathbf{I}(\alpha) + \mathbf{I}(\beta)$$

- · 메시지가 지닌 정보를 수량화
 - "고비 사막에 눈이 왔다" 와 "대관 령에 눈이 왔다" 라는 두 메시지 중 어 느 것이 더 많은 정보를 가지나?
 - 정보이론의 기본 원리 → 확률이 작을
 수록 많은 정보
 - 정보를 정량화 할 필요가 있음.

2 Probability: Information Theory

Entropy for discrete case or RV

Discrete Memorlyess Source (DMS)

- An event set $U = \{A_1, A_2, A_3, \dots, A_N\}$ with probability $P(A_k)$.
- U is independent of time.

Entropy for continuous RV.

$$H(x) = -\int_{\mathbb{R}} P(x) \log_2 P(x) \, dx \, (bits)$$

Entropy (the average amount of information) for DMS

$$H(u) = \sum_{k=1}^{N} P(\mathbf{A}_k) \bullet I(\mathbf{A}_k) = -\sum_{k=1}^{N} P(\mathbf{A}_k) \bullet \log P(\mathbf{A}_k) \text{ (bits/symbol)}$$

 $U = \{0, 1, 2, 3\}$

• Symbol stream 1 : [0 0 1 2 0 3 2 1]

$$P(0) = 3/8, P(1) = 2/8$$

$$P(2) = 2/8, P(3) = 1/8$$

$$H(U) =$$

- {
$$(3/8) \log_2(3/8) + (2/8) \log_2(2/8) + (2/8) \log_2(2/8) + (1/8) \log_2(1/8)$$
 }

= 1.7 bits/symbol

• Symbol stream 2 : [0 2 1 2 0 3 1 3]

$$P(0) = 2/8, P(1) = 2/8$$

$$P(2) = 2/8, P(3) = 2/8$$

$$H(U) =$$

- {
$$(2/8) \log_2(2/8) + (2/8) \log_2(2/8) + (2/8) \log_2(2/8) + (2/8) \log_2(2/8) + (2/8) \log_2(2/8)$$
}

= 2 bits/symbol

- Symbol stream 2의 Entropy가 높음
 - Event들의 확률이 동일함.
 - 어떤 Event가 발생될지 예측이 어려움
 - 불확실성이 높음.
- Event들의 확률이 동일할 때 최대 entropy가 됨
- 특정 event의 확률이 높을 수록 entropy가 작음

2 Probability: Information Theory

Cross Entropy

$$H(P,Q) = -\sum_{x} P(x)\log_2 Q(x) = -\sum_{i=1,} P(e_i)\log_2 Q(e_i)$$
 $H(P,Q) = -\sum_{x} P(x)\log_2 Q(x)$
 $= -\sum_{x} P(x)\log_2 P(x) + \sum_{x} P(x)\log_2 P(x) - \sum_{x} P(x)\log_2 Q(x)$
 $= H(P) + \sum_{x} P(x)\log_2 \frac{P(x)}{Q(x)} = P$ 의 엔트로피 + P와 Q 간의 KL 다이버전스

Kullback-Leibler (KL) Divergence

KL Divergence

$$KL(P \parallel Q) = \sum_{x} P(x) \log_2 \frac{P(x)}{Q(x)}$$

 $KL(P \parallel Q) = \sum_{x} P(x) \log_2 \frac{P(x)}{Q(x)}$: 오류의 중요도에 관계없이 동일한 penalty를 주는것 penalty를 주는 MSE의 단점을 보완

MSE: 오류의 중요도에 관계없이 동일한

2 Probability: Information Theory

Cross Entropy

[그림 2-21]과 같이 정상적인 주사위와 찌그러진 주사위가 있는데, 정상적인 주사위의 확률분포는 P, 찌그러진 주사위의 확률분포는 Q를 따르며, P와 Q가 다음과 같이 분포한다고 가정하자.

$$P(1) = \frac{1}{6}, \ P(2) = \frac{1}{6}, \ P(3) = \frac{1}{6}, \ P(4) = \frac{1}{6}, \ P(5) = \frac{1}{6}, \ P(6) = \frac{1}{6}$$

$$Q(1) = \frac{3}{12}, \ Q(2) = \frac{1}{12}, \ Q(3) = \frac{1}{12}, \ Q(4) = \frac{1}{12}, \ Q(5) = \frac{3}{12}, \ Q(6) = \frac{3}{12}$$

(a) 정상 주사위

(b) 찌그러진 주사위

그림 2-21 확률분포가 다른 두 주사위

확률분포 P와 Q 사이의 교차 엔트로피와 KL 다이버전스는 다음과 같다.

$$\begin{split} H(P,Q) &= -\left(\frac{1}{6}\log_2\frac{3}{12} + \frac{1}{6}\log_2\frac{1}{12} + \frac{1}{6}\log_2\frac{1}{12} + \frac{1}{6}\log_2\frac{1}{12} + \frac{1}{6}\log_2\frac{3}{12} + \frac{1}{6}\log_2\frac{3}{12} + \frac{1}{6}\log_2\frac{3}{12}\right) = 2.7925 \\ KL(P \parallel Q) &= \frac{1}{6}\log_2\frac{2}{3} + \frac{1}{6}\log_22 + \frac{1}{6}\log_22 + \frac{1}{6}\log_22 + \frac{1}{6}\log_22 + \frac{1}{6}\log_2\frac{2}{3} + \frac{1}{6}\log_2\frac{2}{3} = 0.2075 \end{split}$$

[예제 2-8]에서 P의 엔트로피 H(P)는 2.585이었다. 따라서 식 (2.49)가 성립함을 알 수 있다.

3. Optimization: Optimization task of ML

Optimization for Machine Learning

$$\widehat{\mathbf{\Theta}} = \underset{\mathbf{\Theta}}{\operatorname{argmin}} J(\mathbf{\Theta})$$

Find the optimal solution $\widehat{\mathbf{0}}$ that minimizes the cost function $J(\mathbf{0})$.

- 기계 학습의 최적화는 식이 아니고 훈련집합이 주어지고, 훈련집합에 따라 정해지는 목적함수의 최저점을 찾아야 함.
 - 식이 아닌 데이터로 미분하는 과정 필요
 - 주로 Stochastic Gradient Descent (SDG)에 근거한 오류 역 전파 (Backward propagation) 알고리즘을 사용
 - Data를 이용한 미분 방법

Exhaustive search

입력 : 훈련집합 ※와 ¥

출력: 최적해 **0**

- 1 가능한 해를 모두 생성하여 집합 5에 저장한다.
- 2 *min*을 충분히 큰 값으로 초기화한다.
- \mathbf{S} for (S에 속하는 각 점 $\mathbf{\Theta}_{current}$ 에 대해)
- 4 if $(J(\mathbf{\Theta}_{current}) < min)$ min= $J(\mathbf{\Theta}_{current})$, $\mathbf{\Theta}_{best} = \mathbf{\Theta}_{current}$
- $5 \quad \widehat{\mathbf{\Theta}} = \mathbf{\Theta}_{best}$

Random search

입력 : 훈련집합 ※와 ¥

출력 : 최적해 Θ

- 1 *min*을 충분히 큰 값으로 초기화한다.
- 2 repeat
- 무작위로 해를 하나 생성하고 $\Theta_{current}$ 라 한다.
- 4 if $(J(\mathbf{\Theta}_{current}) < min)$ min= $J(\mathbf{\Theta}_{current})$, $\mathbf{\Theta}_{best} = \mathbf{\Theta}_{current}$
- until(멈춤 조건)
- $6 \quad \widehat{\mathbf{\Theta}} = \mathbf{\Theta}_{best}$

Gradient Decent

입력: 훈련집합 ※와 ※

출력 : 최적해 Θ

- 1 난수를 생성하여 초기해 ⊖을 설정한다.
- 2 repeat
- 3 /(**Θ**)가 작아지는 방향 d**Θ**를 구한다.
- $\mathbf{\Theta} = \mathbf{\Theta} + d\mathbf{\Theta}$
- 5 until(멈춤 조건)
- $\widehat{\mathbf{\Theta}} = \mathbf{\Theta}$

* ML에서 주로 사용하는 방법

3. Optimization: Gradient (1/2)

• Gradient of $f(\mathbf{x})$: ∇f , $\frac{\partial f}{\partial \mathbf{x}}$, $\left(\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, \dots, \frac{\partial f}{\partial x_n}\right)^1$

EX:
$$f(\mathbf{x}) = f(x_1, x_2) = \left(4 - 2.1x_1^2 + \frac{x_1^4}{3}\right)x_1^2 + x_1x_2 + (-4 + 4x_2^2)x_2^2$$

$$\nabla f = f'(\mathbf{x}) = \frac{\partial f}{\partial \mathbf{x}} = \left(\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}\right)^{\mathrm{T}} = (2x_1^5 - 8.4x_1^3 + 8x_1 + x_2, 16x_2^3 - 8x_2 + x_1)^{\mathrm{T}}$$

그림 2-25 그레이디언트는 최저점으로 가는 방향을 알려 줌

초기점 $\mathbf{x}_0 = (-2.5125, -2.5)^{\mathrm{T}}$ 즉, $\nabla f|_{\mathbf{x}_0} = (-2.5125, -2.5)^{\mathrm{T}}$ 즉, $\nabla f|_{\mathbf{x}_0} = (-2.5125, -2.5)^{\mathrm{T}}$ 이다. [그림 2-25]는 \mathbf{x}_0 에서 그레이디언트를 화살표로 표시하고 있어, $-f'(\mathbf{x}_0)$ 은 최저점의 방향을 제대로 가리키는 것을 확인할 수 있다. 하지만 얼마만큼 이동하여 다음 점 \mathbf{x}_1 로 옮겨갈지에 대한 방안은 아직 없다. 2.3.3절에서 공부하는 경사 하강법은 이에 대한 답을 제공한다.

3. Optimization: Gradients (2/2)

Chain Rule: Derivative of f(x) = g(h(x))

$$f'(x) = g'(h(x))h'(x)$$

$$f'(x) = g'(h(i(x)))h'(i(x))i'(x)$$

Ex:
$$f(x) = 3(2x^2 - 1)^2 - 2(2x^2 - 1) + 5$$

Let
$$h(x) = 2x^2 - 1$$

$$f'(x) = \underbrace{(3*2(2x^2-1)-2)}_{g'(h(x))} \underbrace{(2*2x)}_{h'(x)} = 48x^3 - 32x$$

• **Jacobian Matrix:** derivative matrix of $\mathbf{f}: \mathbb{R}^d \mapsto \mathbb{R}^m$

$$\mathbf{J} = \begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \cdots & \frac{\partial f_1}{\partial x_d} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & \cdots & \frac{\partial f_2}{\partial x_d} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1} & \frac{\partial f_m}{\partial x_2} & \cdots & \frac{\partial f_m}{\partial x_d} \end{pmatrix} \mathbf{f} : \mathbb{R}^2 \mapsto \mathbb{R}^3 \circlearrowleft \mathbf{f}(\mathbf{x}) = (2x_1 + x_2^2, -x_1^2 + 3x_2, 4x_1x_2)^{\mathrm{T}}$$

$$\mathbf{J} = \begin{pmatrix} 2 & 2x_2 \\ -2x_1 & 3 \\ 4x_2 & 4x_1 \end{pmatrix} \mathbf{J}|_{(2,1)^{\mathrm{T}}} = \begin{pmatrix} 2 & 2 \\ -4 & 3 \\ 4 & 8 \end{pmatrix}$$

f:
$$\mathbb{R}^2 \mapsto \mathbb{R}^3$$
 ○ **f**(**x**) = $(2x_1 + x_2^2, -x_1^2 + 3x_2, 4x_1x_2)^{\mathrm{T}}$

$$\mathbf{J} = \begin{pmatrix} 2 & 2x_2 \\ -2x_1 & 3 \\ 4x_2 & 4x_1 \end{pmatrix} \qquad \mathbf{J}|_{(2,1)^{\mathrm{T}}} = \begin{pmatrix} 2 & 2 \\ -4 & 3 \\ 4 & 8 \end{pmatrix}$$

Hessian Matrix: Second derivative matrix

$$\mathbf{H} = \begin{pmatrix} \frac{\partial^{2} f}{\partial x_{1} x_{1}} & \frac{\partial^{2} f}{\partial x_{1} x_{2}} & \dots & \frac{\partial^{2} f}{\partial x_{1} x_{n}} \\ \frac{\partial^{2} f}{\partial x_{2} x_{1}} & \frac{\partial^{2} f}{\partial x_{2} x_{2}} & \dots & \frac{\partial^{2} f}{\partial x_{2} x_{n}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^{2} f}{\partial x_{n} x_{1}} & \frac{\partial^{2} f}{\partial x_{n} x_{2}} & \dots & \frac{\partial^{2} f}{\partial x_{n} x_{n}} \end{pmatrix}$$

$$\mathbf{f}(\mathbf{x}) = f(x_{1}, x_{2})$$

$$= \left(4 - 2.1x_{1}^{2} + \frac{x_{1}^{4}}{3}\right)x_{1}^{2} + x_{1}x_{2} + (-4 + 4x_{2}^{2})x_{2}^{2}$$

$$\mathbf{H} = \begin{pmatrix} 10x_{1}^{4} - 25.2x_{1}^{2} + 8 & 1 \\ 1 & 48x_{2}^{2} - 8 \end{pmatrix}$$

$$f(\mathbf{x}) = f(x_1, x_2)$$

$$= \left(4 - 2.1x_1^2 + \frac{x_1^4}{3}\right)x_1^2 + x_1x_2 + (-4 + 4x_2^2)x_2^2$$

$$\mathbf{H} = \begin{pmatrix} 10x_1^4 - 25.2x_1^2 + 8 & 1\\ 1 & 48x_2^2 - 8 \end{pmatrix}$$

$$\mathbf{H}|_{(0,1)^{\mathrm{T}}} = \begin{pmatrix} 8 & 1 \\ 1 & 40 \end{pmatrix}$$

3. Optimization: Gradient Descent (1/3)

- **Gradient Descent**
- Goal: Numerically determine the minimum of a smooth function $J(\theta_1, \theta_2, ..., \theta_M)$.
- Gradient descent is a first-order iterative optimization algorithm.
- Procedure :
 - > Decide the direction that diminishes the function at most. (Steepest direction)
 - > Decide proper movement rate.

Movement = rate * slope

> Iterate until the function values saturate or reaches at the minimum.

The steepest

 $J(\theta_1,\theta_2)$

4. NN Learning: Gradient Descent (SDG) (2/3)

•
$$L = J(\mathbf{\Theta}) = J(\theta_1, \theta_2)$$
 From Taylor series

•
$$L + \Delta L = J(\theta_1 + \Delta \theta_1, \theta_2 + \Delta \theta_2) \approx J(\theta_1, \theta_2) + \frac{\partial J(\theta_1, \theta_2)}{\partial \theta_1} \Delta \theta_1 + \frac{\partial J(\theta_1, \theta_2)}{\partial \theta_2} \Delta \theta_2$$

•
$$\Delta L \approx \frac{\partial J(\theta_1, \theta_2)}{\partial \theta_1} \Delta \theta_1 + \frac{\partial J(\theta_1, \theta_2)}{\partial \theta_2} \Delta \theta_2 = \left(\frac{\partial J(\theta_1, \theta_2)}{\partial \theta_1}, \frac{\partial J(\theta_1, \theta_2)}{\partial \theta_2}\right) \cdot (\Delta \theta_1, \Delta \theta_2) = \Delta J(\mathbf{\Theta}) \cdot \Delta \mathbf{\Theta}$$

To decrease
$$\Delta L$$
 maximally, $\Delta \Theta = -\eta \Delta J(\Theta)$ (Learning rate: $\eta > 0$)

function at the current point.

Take steps proportional to the function at the current point.

$$(\Delta \theta_1, \Delta \theta_2) = -\eta \left(\frac{\partial J(\theta_1, \theta_2)}{\partial \theta_1}, \frac{\partial J(\theta_1, \theta_2)}{\partial \theta_2} \right)$$

The steepest direction: Direction of $\Delta J(\mathbf{\Theta})$

Movement:

$$|\triangle \mathbf{\Theta}| = \eta |\Delta J(\mathbf{\Theta})|$$

= rate * The slope of the steepest direction

Weight Update

New Old
$$\theta_1^{n+1} = \theta_1^n + \Delta \theta_1 = \theta_1^n - \eta \, \frac{\partial J(\theta_1, \theta_2, \dots, \theta_M)}{\partial \theta_1}$$

$$\theta_2^{n+1} = \theta_2^n + \Delta \theta_2 = \theta_2^n - \eta \frac{\partial J(\theta_1, \theta_2, \dots, \theta_M)}{\partial \theta_2}$$

$$\theta_M^{n+1} = \theta_M^n + \Delta \theta_M = \theta_M^n - \eta \frac{\partial J(\theta_1, \theta_2, \dots, \theta_M)}{\partial \theta_M}$$

3. Optimization: Gradient Descent (DG) (3/3)

Gradient Descent Method

$$\widehat{\mathbf{\Theta}} = \underset{\mathbf{\Theta}}{\operatorname{argmin}} J(\mathbf{\Theta})$$

$$\mathbf{\Theta} = \mathbf{\Theta} - \rho \bullet \nabla J = \mathbf{\Theta} - \rho \bullet \frac{\partial J}{\partial \mathbf{\Theta}}$$

Training set: $\mathbb{X} = \{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n\} \longrightarrow \mathbb{Y} = \{y_1, y_2, \dots, y_n\}$

Stochastic Gradient Descent(SDG)

알고리즘 2-4 배치 경사 하강 알고리즘(BGD)

입력: 훈련집합 ※와 ※, 학습률 ρ

출력: 최적해 $\hat{\Theta}$

- 1 난수를 생성하여 초기해 Θ를 설정한다.
- 2 repeat
- 3 \mathbb{X} 에 있는 샘플의 그레이디언트 $\mathbf{\nabla}_1,\mathbf{\nabla}_2,\cdots,\mathbf{\nabla}_n$ 을 계산한다.
 - $\nabla_{total} = \frac{1}{n} \sum_{i=1,n} \nabla_i$ // 그레이디언트 평균을 계산
- $\mathbf{\Theta} = \mathbf{\Theta} \rho \nabla_{total}$
- 6 until(멈춤 조건)
- $7 \quad \widehat{\mathbf{\Theta}} = \mathbf{\Theta}$

알고리즘 2-5 스토케스틱 경사 하강 알고리즘(SGD)

입력: 훈련집합 \mathbb{X} 와 \mathbb{Y} , 학습률 ρ

출력 : 최적해 Θ

- 1 난수를 생성하여 초기해 Θ를 설정한다.
- 2 repeat
 - ™의 샘플의 순서를 섞는다.
 - for (i=1 to n)
 - i번째 샘플에 대한 그레이디언트 $oldsymbol{
 abla}_i$ 를 계산한다.
 - $\mathbf{\Theta} = \mathbf{\Theta} \rho \mathbf{\nabla}_i$
- 7 until(멈춤 조건)
- $\mathbf{\hat{\Theta}} = \mathbf{\Theta}$

