

## INTERNATIONAL A-LEVEL MATHEMATICS MA04

(9660/MA04) Unit S2 Statistics

Mark scheme

June 2024

Version: 1.1 Final



Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from oxfordaga.com

## Copyright information

OxfordAQA retains the copyright on all its publications. However, registered schools/colleges for OxfordAQA are permitted to copy material from this booklet for their own internal use, with the following important exception: OxfordAQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Copyright © 2024 OxfordAQA International Examinations and its licensors. All rights reserved.

## Key to mark scheme abbreviations

M Mark is for method

m Mark is dependent on one or more M marks and is for method

A Mark is dependent on M or m marks and is for accuracy

**B** Mark is independent of M or m marks and is for method and accuracy

E Mark is for explanation

√ or ft Follow through from previous incorrect result

**CAO** Correct answer only

**CSO** Correct solution only

**AWFW** Anything which falls within

**AWRT** Anything which rounds to

**ACF** Any correct form

AG Answer given

**SC** Special case

**oe** Or equivalent

A2, 1 2 or 1 (or 0) accuracy marks

-x EE Deduct x marks for each error

NMS No method shown

PI Possibly implied

**SCA** Substantially correct approach

**sf** Significant figure(s)

**dp** Decimal place(s)

**ISW** Ignore subsequent working

| Q    | Answer                               | Marks | Comments |
|------|--------------------------------------|-------|----------|
| 1(a) | $E\bigg(\sum_{i=1}^3 X_i\bigg) = 16$ | B1    |          |
|      |                                      | 1     |          |

| Q    | Answer   | Marks      | Comments                                |
|------|----------|------------|-----------------------------------------|
| 1(b) | 4+1+a=6a | <b>M</b> 1 | Forms an equation and attempts to solve |
|      | 5=5a     |            |                                         |
|      | a=1      | <b>A</b> 1 |                                         |
|      |          | 2          |                                         |

| Q    | Answer                                | Marks      | Comments |
|------|---------------------------------------|------------|----------|
| 1(c) | $2E(X_1)-3E(X_2)=2\times 5-3\times 4$ | <b>M</b> 1 | PI       |
|      | =-2                                   | <b>A</b> 1 | CAO      |
|      |                                       | 2          |          |

| Q    | Answer                                                            | Marks      | Comments   |
|------|-------------------------------------------------------------------|------------|------------|
| 1(d) | $4 \text{Var}(X_1) + 9 \text{Var}(X_2) = 4 \times 4 + 9 \times 1$ | M1         | PI Allow ± |
|      | = 25                                                              | <b>A</b> 1 | CAO        |
|      |                                                                   | 2          |            |

| Question 1 Total | 7 |  |
|------------------|---|--|
|------------------|---|--|

| Q    | Answer                                    | Marks      | Comments           |
|------|-------------------------------------------|------------|--------------------|
| 2(a) | $P(X=8) = \frac{e^{-15} \times 15^8}{8!}$ | M1         | PI                 |
|      | = 0.0194 [3 sf]                           | <b>A</b> 1 | <b>AWRT</b> 0.0194 |
|      |                                           | 2          |                    |

| Q       | Answer                          | Marks | Comments                            |
|---------|---------------------------------|-------|-------------------------------------|
| 2(b)(i) | $\mu = 15$ $\sigma = \sqrt{15}$ | B1    | Allow <b>AWRT</b> 3.87 for $\sigma$ |
|         |                                 | 1     |                                     |

| Q        | Answer                               | Marks      | Comments                                     |
|----------|--------------------------------------|------------|----------------------------------------------|
| 2(b)(ii) | $P(15-\sqrt{15} < X < 15+\sqrt{15})$ |            |                                              |
|          | = P(11.127 < X < 18.873)             | <b>M</b> 1 | For substitution of their $\mu$ and $\sigma$ |
|          | $= P(12 \le X \le 18)$               | <b>A</b> 1 | For rounding to integer values <b>oe</b>     |
|          | = 0.81947 - 0.18475                  | M1         | For sight of 1 correct limit PI              |
|          | = 0.635 [3 sf]                       | <b>A</b> 1 | AWRT 0.635                                   |
|          |                                      | 4          |                                              |

| Q    | Answer                                                                                                                                                                                                                                | Marks      | Comments                                                                                                                                                                            |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2(c) | More than one person could be injured in a single accident  The model will only hold for the day as skiing is unlikely to take place at night (unless floodlit!)  The model will only work for the ski season (not the summer season) | <b>E</b> 1 | Any plausible explanation in context eg:  The number of injured people is unlikely to be <b>independent</b> [which is a requirement for data to be modelled as Poisson distrbution] |
|      |                                                                                                                                                                                                                                       | 1          |                                                                                                                                                                                     |

| Question 2 Total | 8 |
|------------------|---|
|------------------|---|

| Q | Answer                                                                                                       | Marks      | Comments                                                                                                                                                  |
|---|--------------------------------------------------------------------------------------------------------------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3 | $H_0: \mu = 25.1$ [megajoules per litre]<br>$H_1: \mu > 25.1$                                                | B1         |                                                                                                                                                           |
|   | $\overline{x} = 26.2$                                                                                        | B1         | PI                                                                                                                                                        |
|   | $s^2 = \frac{1}{59} \times \left(41850 - \frac{1572^2}{60}\right)$                                           | M1         | Attempt at variance formula Allow one slip                                                                                                                |
|   | =11.2[474]                                                                                                   | A1         | PI by correct $z$ or probability<br>Allow 3318/295<br>AWRT<br>accept $s = 3.35[372295]$                                                                   |
|   | $\bar{X} \sim N \left(25.1, \frac{11.2[474]}{60}\right)$                                                     | М1         | $\bar{X} \sim N\left(25.1, \frac{s^2}{60}\right) PI$                                                                                                      |
|   | $z = \frac{26.2 - 25.1}{\sqrt{\frac{11.2[474]}{60}}}$                                                        | M1         | Calculates $z$ with their $s^2$ or for se = 0.433 or $P(\overline{X} \ge 26.2) = 0.006$                                                                   |
|   | = 2.5[40628277]                                                                                              | <b>A</b> 1 | <b>AWRT</b> 2.5 <b>or</b> $P(\bar{X} \ge 26.2) = 0.006$ (1sf)                                                                                             |
|   | $z_{\rm crit} = 2.3[26347931]$                                                                               | B1         | <b>AWRT</b> 2.3 P( $\overline{X} \ge 26.2$ ) = 0.00553<br><b>or</b> for CR is $\overline{x} > 26.1$<br>Accept H <sub>1</sub> Follow through their $z$ and |
|   | Reject H <sub>0</sub> as 2.5[] > 2.3[]<br>or $z > z_{crit}$                                                  | A1ft       | $z_{\rm crit}$ provided signs are consistent or comparison of 26.2 > 26.1 <b>or</b> comparison of their '0.00553' to 0.01                                 |
|   | Evidence to suggest that the mean amount of energy per litre has increased [at the 1% level of significance] | E1ft       | Must be consistent with their conclusion on whether to accept $H_1$ or not based on their $z$ and $z_{\rm crit}$ if not explicitly stated                 |

|--|

| Q    | Answer                                              | Marks      | Comments                                                                           |
|------|-----------------------------------------------------|------------|------------------------------------------------------------------------------------|
| 4(a) | $\int_{1}^{4} \left(\frac{1}{k}x^{2}\right) dx = 1$ | B1         | Setting an integral and fraction summing to 1 oe PI                                |
|      | $\left[\frac{x^3}{3k}\right]_1^4 = 1$               | <b>M</b> 1 | For correct integration with attempt to substitute limits oe PI By later working   |
|      | $\frac{1}{3k}(64-1)=1$                              |            | <b>SC</b> 2/3 for substitution of <i>k</i> into a correct integral which sums to 1 |
|      | $\frac{63}{3} = k$                                  |            |                                                                                    |
|      | k = 21                                              | <b>A</b> 1 | AG Must be convincingly shown                                                      |
|      |                                                     | 3          |                                                                                    |

| Q    | Answer                              | Marks      | Comments                                      |
|------|-------------------------------------|------------|-----------------------------------------------|
| 4(b) | $\int_{3}^{4} \frac{x^2}{21} dx$    | M1         | PI by 0.587<br>Correct integration and limits |
|      | $= \left[\frac{x^3}{63}\right]_3^4$ |            |                                               |
|      | $=\frac{4^3}{63}-\frac{3^3}{63}$    |            |                                               |
|      | $=\frac{37}{63}$                    | <b>A</b> 1 | CAO in an exact form                          |
|      |                                     | 2          |                                               |

| Q       | Answer                                                                                                      | Marks      | Comments                                                                                                                |
|---------|-------------------------------------------------------------------------------------------------------------|------------|-------------------------------------------------------------------------------------------------------------------------|
| 4(c)(i) | $E(5)+2E\left(\frac{1}{X}\right)$                                                                           | B1         | PI                                                                                                                      |
|         | $\left[ E\left(\frac{1}{X}\right) \right] = \int_{1}^{4} \frac{1}{x} \times \frac{1}{21} x^{2} \mathrm{d}x$ |            |                                                                                                                         |
|         | $= \left[\frac{x^2}{42}\right]_1^4$                                                                         | M1         | For correct integration with attempt to substitute limits  oe PI by later working                                       |
|         | $=\frac{1}{42}(16-1)$                                                                                       |            | $\frac{1}{21} \int_{1}^{4} \left( \frac{5x+2}{x} \right) x^{2} dx = \frac{1}{21} \int_{1}^{4} 5x^{2} + 2x dx$           |
|         | $=\frac{5}{14}$                                                                                             |            | $\left[\frac{1}{21}\left(\frac{5}{3}x^3+x^2\right)\right]_1^4$                                                          |
|         | $\left[ E(5) + 2E\left(\frac{1}{X}\right) = \right]  5 + 2 \times \frac{5}{14}$                             | <b>A</b> 1 | $\frac{1}{21} \left[ \left( \frac{5}{3} \times 4^3 + 4^2 \right) - \left( \frac{5}{3} \times 1^3 + 1^2 \right) \right]$ |
|         | $=\frac{40}{7}$                                                                                             | <b>A</b> 1 | oe CAO in an exact form                                                                                                 |
|         |                                                                                                             | 4          |                                                                                                                         |

| Q        | Answer                                                                                                                                                  | Marks      | Comments                                                                                                                               |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------------------------------------------------------------------------------------------------------------------------------------|
| 4(c)(ii) | $Var\left(5 + \frac{2}{X}\right) = 4Var\left(\frac{1}{X}\right)$                                                                                        | B1         | PI                                                                                                                                     |
|          | $\left[ E\left(\frac{1}{X^2}\right) \right] = \int_1^4 \frac{1}{x^2} \times \frac{1}{21} x^2 \mathrm{d}x$                                               |            | $\frac{1}{21} \int_{1}^{4} \left( \frac{(5x+2)}{x} \right)^{2} x^{2} dx$                                                               |
|          | $= \left[\frac{x}{21}\right]_1^4$                                                                                                                       | M1         | $\frac{1}{21} \int_{1}^{4} 25x^2 + 20x + 4 dx$                                                                                         |
|          | $=\frac{1}{21}(4-1)$                                                                                                                                    |            | PI by later working                                                                                                                    |
|          | $\left[E\left(\frac{1}{X^2}\right)\right] = \frac{1}{7}$                                                                                                | <b>A</b> 1 | $\left[\frac{25}{3}x^3 + 10x^2 + 4x\right]_1^4$                                                                                        |
|          | $\operatorname{Var}\left(\frac{1}{X}\right) = \operatorname{E}\left(\frac{1}{X^{2}}\right) - \left(\operatorname{E}\left(\frac{1}{X}\right)\right)^{2}$ |            | $ \frac{1}{21} \left( \left( \frac{1600}{3} + 160 + 16 \right) - \left( \frac{25}{3} + 10 + 4 \right) \right) $ Allow <b>AWRT</b> 32.7 |
|          | $=\frac{1}{7}-\left(\frac{5}{14}\right)^2$                                                                                                              | М1         | For their $E\left(\frac{1}{X^2}\right) - \left[E\left(\frac{1}{X}\right)\right]^2$                                                     |
|          | 3<br>196                                                                                                                                                | <b>A</b> 1 | Or $\frac{229}{7} - \left(\frac{40}{7}\right)^2$                                                                                       |
|          | $\left[\operatorname{Var}\left(5+\frac{2}{X}\right)\right] = 4 \times \frac{3}{196} = \frac{3}{49}$                                                     | <b>A</b> 1 | CAO in an exact form                                                                                                                   |
|          |                                                                                                                                                         | 6          |                                                                                                                                        |

| Question 4 to |
|---------------|
|---------------|

| Q    | Answer                                                          | Marks | Comments                                                     |
|------|-----------------------------------------------------------------|-------|--------------------------------------------------------------|
| 5(a) | Yes,                                                            | B1    | 'Yes' with a reason                                          |
|      | It is a <b>random variable</b> consisting of known observations | E1    | Correct reason or $X_1$ , $X_2$ and $X_3$ are random samples |
|      |                                                                 | 2     |                                                              |

| Q    | Answer                                    | Marks | Comments                               |
|------|-------------------------------------------|-------|----------------------------------------|
| 5(b) | No,                                       | B1    | 'No' with a reason                     |
|      | It includes a <b>population parameter</b> | E1    | Correct reason Allow it includes $\mu$ |
|      |                                           | 2     |                                        |

| Question 5 total | 4 |  |
|------------------|---|--|
|                  |   |  |

| Q    | Answer                                                                           | Marks      | Comments                          |
|------|----------------------------------------------------------------------------------|------------|-----------------------------------|
| 6(a) | $8r - \frac{3r}{t}x$                                                             | M1         | pdf in terms of $x$ , $r$ and $t$ |
|      | $\int_0^t \left(8r - \frac{3r}{t}x\right) \mathrm{d}x = 1$                       | <b>A</b> 1 |                                   |
|      | $\Rightarrow \left[8rx - \frac{3r}{2t}x^2\right]_0^t = 1$                        | M1         |                                   |
|      | $8rt - \frac{3r}{2t}(t)^2 = 1$                                                   |            |                                   |
|      | $r = \frac{2}{13t}$                                                              | <b>A</b> 1 |                                   |
|      | $8 \times \frac{2}{13t} \times x - \frac{3}{2t} \times \frac{2}{13t} \times x^2$ |            |                                   |
|      | $F(x) = \frac{16}{13t}x - \frac{3}{13t^2}x^2$                                    | <b>A</b> 1 | AG Must be convincingly shown     |
|      |                                                                                  | 5          |                                   |

| Q           | Answer                                                                                | Marks      | Comments                                                                                                                |
|-------------|---------------------------------------------------------------------------------------|------------|-------------------------------------------------------------------------------------------------------------------------|
| 6(a)<br>ALT | $\frac{1}{2} \times t \times (8r + 5r) = 1$                                           | M1         | oe                                                                                                                      |
|             | $r = \frac{2}{13t}$                                                                   | <b>A</b> 1 |                                                                                                                         |
|             | $\frac{16}{13t} - \frac{6}{13t^2} x$                                                  | M1         | pdf in terms of $x$ and $t$ only                                                                                        |
|             | $\left[ \int \left( \frac{16}{13t} - \frac{6}{13t^2} x \right) \mathrm{d}x = \right]$ |            |                                                                                                                         |
|             | $\frac{16}{13t}x - \frac{3}{13t^2}x^2 + c$                                            | <b>A</b> 1 |                                                                                                                         |
|             | $F(x) = \frac{16}{13t}x - \frac{3}{13t^2}x^2$                                         | <b>A</b> 1 | AG Must be convincingly shown by considering the value of the constant of integration, possibly by definite integration |
|             |                                                                                       | 5          |                                                                                                                         |

| Q    | Answer                                                                                          | Marks | Comments                                                                            |
|------|-------------------------------------------------------------------------------------------------|-------|-------------------------------------------------------------------------------------|
| 6(b) | $\frac{16}{13t} \times 4 - \frac{3}{13t^2} \times 4^2 = \frac{1}{13t} \Rightarrow 64t - 48 = t$ |       |                                                                                     |
|      | $t = \frac{16}{21} \left[ < 4 \right]$                                                          |       |                                                                                     |
|      | $f(x) = 0$ for $x > \frac{16}{21} \Rightarrow F(4) = 1$                                         |       |                                                                                     |
|      | $\Rightarrow t = \frac{1}{13}$                                                                  | B1    | If <b>B0</b> awarded, allow <b>SC1</b> for $t = \frac{16}{21}$ from correct working |
|      |                                                                                                 | 1     |                                                                                     |

| Question 6 total | 6 |  |
|------------------|---|--|
|------------------|---|--|

| Q    | Answer                                                                                                               | Marks      | Comments                                                                  |
|------|----------------------------------------------------------------------------------------------------------------------|------------|---------------------------------------------------------------------------|
| 7(a) | $ \left[ P(0.805 < B < 0.815) = \right]  P\left( \frac{0.805 - 0.8}{0.006} < Z < \frac{0.815 - 0.8}{0.006} \right) $ | M1         | Standardises both<br>Allow 0.83                                           |
|      | $= P\left(\frac{5}{6} < Z < \frac{5}{2}\right)$                                                                      |            |                                                                           |
|      | $\left[ = P\left(Z < \frac{5}{2}\right) - P\left(Z < \frac{5}{6}\right) \right]$                                     |            |                                                                           |
|      | = 0.99379 - 0.79673 [from tables]                                                                                    | M1         | PI                                                                        |
|      | = 0.197 [3 sf]                                                                                                       | <b>A</b> 1 | Allow 0.196 [from calculator] or 0.197 [from tables] for the final answer |
|      |                                                                                                                      | 3          |                                                                           |

| Q       | Answer                                                                                      | Marks      | Comments                        |
|---------|---------------------------------------------------------------------------------------------|------------|---------------------------------|
| 7(b)(i) | $Var(sample mean) = \frac{0.005^2}{25}$                                                     |            |                                 |
|         | $=1\times10^{-6}$                                                                           |            |                                 |
|         | or SD (sample mean) = $\frac{0.005}{\sqrt{25}}$                                             |            |                                 |
|         | $=1\times10^{-3}$                                                                           | B1         | PI                              |
|         | $ \left[ P(\overline{W} > 1.0015) = \right] P \left( Z > \frac{1.0015 - 1}{0.005} \right) $ |            | For standardising with their SD |
|         | $= P\left(Z > \frac{3}{2}\right)$                                                           | M1         |                                 |
|         | $= P\left(Z > \frac{3}{2}\right)$ $\left[ = 1 - P\left(Z < \frac{3}{2}\right) \right]$      |            | PI                              |
|         | =1-0.93319 [from tables]                                                                    | M1         |                                 |
|         | = 0.06681                                                                                   | <b>A</b> 1 | <b>AWRT</b> 0.0668              |
|         |                                                                                             | 4          |                                 |

| Q        | Answer                                                              | Marks      | Comments                                                   |
|----------|---------------------------------------------------------------------|------------|------------------------------------------------------------|
| 7(b)(ii) | $\left[ P \big( Z < z \big) = 0.05 \right] \Rightarrow z = -1.6449$ | B1         | Allow ±1.64  PI By answer correct to 3sf before rounding   |
|          | $\frac{0.9992 - 1}{\frac{0.005}{\sqrt{n}}} < -1.6449$               | M1         | For standardising                                          |
|          | $\sqrt{n} > 10.28$ $n > 105.69$                                     | М1         | <b>PI</b> For attempt at an equation to solve for <i>n</i> |
|          | n = 106                                                             | <b>A</b> 1 | CAO                                                        |
|          |                                                                     | 4          |                                                            |

| Q       | Answer                                                               | Marks | Comments |
|---------|----------------------------------------------------------------------|-------|----------|
| 7(c)(i) | $[\mu = 100 \times (1+0.8)] = 180 \text{ [grams]}$                   | B1    |          |
|         | $\[\sigma^2 = 100 \times (0.005^2 + 0.006^2)\]$ = 0.0061 \[grams^2\] | B1    |          |
|         |                                                                      | 2     |          |

| Q        | Answer                                                   | Marks      | Comments                                 |
|----------|----------------------------------------------------------|------------|------------------------------------------|
| 7(c)(ii) | $P\left(Z < \frac{m - 180}{\sqrt{0.0061}}\right) = 0.98$ | M1         | For standardising with their mean and SD |
|          | $\frac{m-180}{\sqrt{0.0061}} = 2.0537$                   | B1         | Allow ±2.05                              |
|          | = 180.2 [4 sf]                                           | <b>A</b> 1 | AWRT 180.2                               |
|          |                                                          | 3          |                                          |

|  |  |  | Question 7 total |
|--|--|--|------------------|
|--|--|--|------------------|

| Q    | Answer                              | Marks      | Comments    |
|------|-------------------------------------|------------|-------------|
| 8(a) | <i>Y</i> ∼ Po(4)                    | B1         | PI          |
|      | $\left[P(Y\geq 1)=\right] 1-P(Y=0)$ |            |             |
|      | =1-0.01832                          | M1         | PI          |
|      | = 0.9817                            | <b>A</b> 1 | AWRT 0.9817 |
|      |                                     | 3          |             |

| Q       | Answer                                 | Marks | Comments                                                  |
|---------|----------------------------------------|-------|-----------------------------------------------------------|
| 8(b)(i) | Stage 6                                | B1    | Correctly identifying Stage 6                             |
|         | [critical region is] {0, 1, 2, 3, 14,} | B1    | <b>oe</b> , such as critical region should not include 13 |
|         |                                        | 2     |                                                           |

| Q        | Answer                                                                                                                          | Marks | Comments                              |
|----------|---------------------------------------------------------------------------------------------------------------------------------|-------|---------------------------------------|
| 8(b)(ii) | As 12 is not in the critical region, we do not reject ${\rm H}_0$                                                               | E1ft  | ft Their critical region              |
|          | Insufficient evidence to support the universities claim that the number of meteors seen per 15 minute period has changed from 2 | E1ft  | ft Their comment about H <sub>0</sub> |
|          |                                                                                                                                 | 2     |                                       |

| Q         | Answer                      | Marks | Comments |
|-----------|-----------------------------|-------|----------|
| 8(b)(iii) | [0.0342 + 0.0424 =]  0.0766 | B1    | CAO      |
|           |                             | 1     |          |

| Q       | Answer                                                                           | Marks | Comments                                      |
|---------|----------------------------------------------------------------------------------|-------|-----------------------------------------------|
| 8(c)(i) | $F(t) = \begin{cases} 0 & t < 0 \\ 1 - e^{-\frac{2}{15}t} & t \ge 0 \end{cases}$ | В2    | <b>B1</b> For use of $\lambda = \frac{2}{15}$ |
|         |                                                                                  | 2     |                                               |

| Q        | Answer                                                   | Marks      | Comments                |
|----------|----------------------------------------------------------|------------|-------------------------|
| 8(c)(ii) | $\left[P(T>a)=\right] \mathrm{e}^{-\frac{2}{15}a} = 0.6$ | M1         | oe, PI                  |
|          | 3 mins 50 seconds                                        | <b>A</b> 1 | oe (eg 230 seconds) CAO |
|          |                                                          | 2          |                         |

| Q         | Answer                                                                                                                                                              | Marks      | Comments                                                                       |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------------------------------------------------------------------------------|
| 8(c)(iii) | $ \left[P(T < b + 30   T > 30) = \right] $ $ P(T < b) = 3e^{-\frac{2}{15}b} $ $ 1 - e^{-\frac{2}{15}b} = 3e^{-\frac{2}{15}b} $ $ \frac{1}{4} = e^{-\frac{2}{15}b} $ | M1         | For setting up and attempting to solve by obtaining a single unknown <b>oe</b> |
|           | $b = 15 \ln 2$                                                                                                                                                      | <b>A</b> 1 | oe                                                                             |
|           |                                                                                                                                                                     | 2          |                                                                                |

| Question 8 Tota | 14 |  |
|-----------------|----|--|
|-----------------|----|--|