Государственное бюджетное общеобразовательное учреждение города Москвы «Школа № 2103»

ДОКУМЕНТАЦИЯ ПО КОМАНДНОМУ КЕЙСУ №3 МОСКОВСКОЙ ПРЕДПРОФЕССИОНАЛЬНОЙ ОЛИМПИАДЫ ШКОЛЬНИКОВ

Модуль наблюдения за стратостатным запуском Выполненный командой «Клевер»

В состав команды входят: Ученики 10 «Т» класса ГБОУ Школы №2103 Журавлев Роман Александрович Волкова Ксения Александровна Ковалева Вероника Алексеевна Фельк Кирилл Владимирович

> Научные руководители: инженер Ткаченко Артём Алексеевич

Оглавление	2
1 Введение	3
2 Наша команда	4
3 Цели \ задачи	5
3.1 Наши цели	5
3.2 Наши задачи	6
4 Описание устройства	7
4.1 Элементы устройства	7
5 Функциональность	8
5.1 Функции	8
6 Устройство	10
6.1 Описание устройства	10
6.2 3D модель CubeSat	12
7 Электроника	13
7.1 Описание электронных компонентов	13
7.2 Таблицы электро-компонентов	14
7.3 Схемы электроники	16
8 Код	17
8.1 Листинг	17
9 Список использованных источников	18

1 Введение

CubeSat - многофункциональная установка. Помогает проводить испытание чего-либо в наиболее приближенных к реальности условиях перед применением в более сложных и дорогостоящих космических проектах. Например, обкатка техники для ведения съемки или изучение новых материалов.

Один из вариантов — сбор информации о магнитном поле планеты и его колебаниях для раннего обнаружения землетрясений.

Эксперименты могут быть даже биологическими, например, отправить CubeSat со штаммами дрожжей для изучения воздействия радиации на живые организмы.

Для студентов CubeSat — это уникальная возможность еще в учебном заведении проследить весь цикл создания беспилотного космического аппарата и принять участие в его разработке. Применение тут тоже в основном научное: фотосъемка, изучение атмосферы, климата, перемещения популяций животных и т. д.

Информацию, которую позволяет получать выведенный на орбиту CubeSat, можно продавать. Например, фотографии полей из космоса заинтересуют фермеров, а снимки городов — тех, кто отвечает за их развитие.

2 Наша команда

Участие в разработке проекта приняли (рис. 1):

Журавлев Роман Александрович - капитан, программист, ответственный за коммуникацию

Волкова Ксения Александровна - капитан, разработчик 3D моделей, дизайнер документации проекта

Ковалева Вероника Алексеевна - программист, дизайнер интерфейса

Фельк Кирилл Владимирович - ответственный за разработку электронной начинки устройства и документации к ней

Рисунок 1 - Фотографии команды "Клевер" с перечнем основного функционала

3 Цели и задачи

3.1 Наши цели

Разработать устройство CubeSat (далее – девайс). Подобное устройство позволяет собирать разнообразные данные. В нашем случае собирать информацию о высоте и температуре.

В девайсе должно быть предусмотрено:

- 1. Наличие высотомера
- 2. Наличие датчика температуры
- 3. Наличие модуля радиопередатчика

3.2 Наши задачи

- 1. Разработать надежную конструкцию CubeSat (далее девайс):
- а. определить все компоненты девайса, определить надежный способ соединения отдельных частей девайса в единую конструкцию и оптимальные размеры;
- b. определить порядок взаимодействия компонентов девайса.
- 2. Продумать и подготовить компоненты девайса:
- а. продумать расположение электронных компонентов внутри девайса;
- b. продумать взаимодействие электронных компонентов между собой и управление ими;
- с. продумать связь между девайсом и станцией;
- d. разработать 3D модель отдельных компонентов устройства и сборки девайса, используя приложение Fusion 360 и возможности 3D принтера, лазерного и фрезерного Ч.П.У. станков с учетом имеющихся материалов.
- 3. Разработать управляющую программу устройства:
- а. разработать диаграмму последовательности и диаграмму состояний;
- b. разработать программный код для управления электронных компонентов и передачей данных на станцию.
- 4. Объединить все составляющие девайса и проверить на работоспособность при необходимости отладить.

4 Описание устройства

CubeSat представляет собой куб, внутрь которого помещены некоторые приборы для измерения высоты и температуры.

Данное устройство нужно для передачи некоторой информации на станцию. Подключение к станции осуществлено дистанционно. После включения и инициализации система переключается в режим прослушивания радиоканала для приема и расшифровки входящих сообщений со станции. После получения сообщения CubeSat начинает считывать данные в течении 20 секунд и ежесекундно шифровать их и отправлять на станции, а затем возвращается обратно в состояние прослушивания радиоканала.

4.1 Элементы системы

- Корпус;
- Направляющие для выгрузки CubeSat из носителя;
- Система крепления электронных компонентов;

5 Функциональность

5.1 Функции

- Принятие сигналов со станции
- Расшифровка сигналов со станции
- Считывание данных с датчиков температуры и высотомера
- Шифровка данных с датчиков
- Отправка данных на станцию

Рисунок 2 - диаграмма StateMachine

Рисунок 3 - диаграмма Sequence

6 Устройство

6.1 Описание устройства

Для выбранного модуля требуется реализовать весь его необходимый функционал, а также корпус cubesat 1u и систему крепления разрабатываемого модуля в нем.

Модуль состоит из высотомера, датчика температуры и модуля радиопередатчика.

При получении радиосигнала устройство должно исполнять тестирующий алгоритм (1), снимающий показания с датчиков и отправляющих их на радиостанцию (2).

Алгоритм работы устройства (1):

- 1. Включение и инициализация систем;
- 2. Установка начального состояния устройства;
- 3. Начало прослушивания радиоканала;
- 4. Прием и расшифровка входящих сообщений;
- 5. При получении сообщения со станции:
- а. Переход в режим вещания сообщений;
- b. На протяжении последующих 20 секунд каждую секунду;
- Отправка сообщения на станцию с показаниями возвышения, температуры и времени;

Снимаемые данные должны быть откалиброваны и представляться в определённом формате (2):

1. Показания альтиметра должны быть скорректированы с учетом температурных изменений.

Показания температуры отфильтрованы алгоритмом бегущего среднего арифметического.

2. На станцию должны отправляться показания альтиметра в виде вещественного числа с точностью 1 знак после запятой, целочисленное значение температуры и целочисленное время со старта устройства в секундах.

Отличительной чертой спутника формата cubesat являются направляющие рельсы. Внутреннее содержимое спутника поддается интерпретации, но размеры и рельсы остаются неизменными.

6.2 3D модель CubeSat

Рисунок 4 - 3D модель CubeSat

7 Электроника

7.1 Описание электронных компонентов

Датчик температуры и давления были выбраны исходя из требований, поставленных в техническом задании.

Отладочная плата ESP8266 требуется для управления всеми электрическими компонентами.

Для защиты устройства создаем запас мощности при помощи керамических конденсаторов 0.1 мкф.

7.2 Таблицы электро-компонентов

Таблица Электрокомпонентов

Имя	Устройства	Модель	Параметры	Комментарий
WEMOS	Отладочная плата	WEMOS D1	In: 3,3 V	Отладочная плата
	ESP8266	MINI	USB выход	для
			WIFI module	отправки/передачи
			max: 3,2 V	данных с датчиков
			2,5 x 3,5 cm	
	_			
BM	Датчик температуры и	BME280	15,5 x 12 x 5,5	Измеряет
	атмосферного		MM	температуру во
	давления		3,5 – 5,5 V	время запуска
			0,3 A	устройства
			N = 1 Гц	
			$T = 0 - 50 ^{\circ}C$	
			P = 20 - 80 %	
LORA	Приёмник	SX1278 (RA-02)	27 x 20 mm	Sound Module для
	/передатчик LORA		Range 1: 0 – 10	отправки и
			KM	получения данных
			Range 2: 410 –	устройства
			525 МГц	
			$T = -40 - 85 ^{\circ}C$	
			0 – 120 mA	
			V = 0 - 300	
			кбит/сек	
Li-Po	Блок питания	Li-Po 11.1v	106 x 34 x 23	БП -
		1100mAh	MM	использующийся
			11,1 V	для питания
			1100 мАч	устройств
			25 - 50 A	
СС	Конденсатор		0,1 мкф	Выступает в роли
			100 нФ	разделительного/
			35 V	блокировочного
			7 x 7 mm	конденсатора
TP	Контроллер питания	TP4056	25 x 17 x 4 mm	Выступает в роли
			In: 4,5 – 5,5 V	стабилизации
			U = 4,2 V (full	питания от
			charge)	аккумулятора
			Range: - 10 –	' '
			85°C	

Рисунок 5 - таблица электрокомпонентов

Таблицы подключений

ESP8266

Пин	Назначение	Устройство	Пин	Комментарий
	пина		устройства	
OUT+	Осуществляет	TP4056	BAT+	Питание от БП
	Питание от			
	аккумулятора			
B-	Осуществляет	TP4056	BAT-	Заземление от
	заземление от			БП
	аккумулятора			
VCC	Осуществляет	SX1278 (RA-02)	5V	Питание датчика
	питание			
	передатчика			
	LORA			
GND	Осуществляет	SX1278 (RA-02)	G	Заземление
	заземление			датчика
	передатчика			
	LORA			
PIN2	Осуществляет	SX1278 (RA-02)	D1	Питание датчика
	второстепенное	, ,		
	питание датчика			
PIN3	Осуществляет	SX1278 (RA-02)	D2	Питание датчика
	второстепенное	, ,		
	питание датчика			
PIN4	Осуществляет	SX1278 (RA-02)	D3	Питание датчика
	второстепенное			
	питание датчика			
PIN6	Осуществляет	SX1278 (RA-02)	D4	Питание датчика
	второстепенное			
	питание датчика			
3,3V	Осуществляет	BME280	3,3V	Питание датчика
	питание датчика			
	температуры			
GND	Осуществляет	BME280	PIN15	Заземление
	заземление			датчика
	датчика			
SCK	Осуществляет	BME280	D8	Тактирование
	тактирование			шины
	шины цифрового			
	сигнала			
SDI	Осуществляет	BME280	D7	Вход/выход
	вход и выход			сигнала
	цифрового			
	сигнала			

Рисунок 6 - Таблица подключений

7.3 Схемы электроники

Рисунок 7 - монтажная схема

Рисунок 8 - принципиальная схема

8.1 Листинг

```
#include <ESP8266WiFi.h>
#include <HTTPClient.h>
const char ssid =
void setup() {
  Serial.begin(115200);
  WiFi.begin(ssid, password);
  while (WiFi.status() != WL_CONNECTED) {
    delay(5000);
    Serial.println("Подключение к WI-FI");
  Serial.println("Подключени к WI-FI");
void loop() {
  if ((WiFi.status() == WL_CONNECTED)) {
    HTTPClient http;
    http.begin("http://api.thingspeak.com/update?api_key=YOUR_API_KEY&field1=0");
    int httpCode = http.GET();
    String payload = http.getString();
    Serial.println(httpCode);
    Serial.println(payload);
    http.end();
  } else {
    Serial.println("Ошибка подключения к WI-FI");
  delay(45000);
#include <Wire.h>
#include <SPI.h>
#include <Adafruit_Sensor.h>
#include <Adafruit_BME280.h>
#define BME SCK 13
#define BME MISO 12
#define BME_MOSI 11
#define BME_CS 10
```

Продолжение кода на github (ссылка на код C++ в github: clever predprof cubesat/Код C++.ino at main · AklRoman/clever predprof cubesat (github.com))

9 Список использованных источников

- 1) плейлист видеоуроков на YouTube "Уроки Arduino и программирования" https://www.youtube.com/playlist?list=PLgAbBhxTglwmVxDDC5TSYUI91oZ0LZ QMw
- 2) видеоурок на YouTube "Разводим печатные платы в EasyEDA. Большой гайд" https://www.youtube.com/watch?v=9FS1m K8aWI
- 3) статья "Ebyte LoRa E22 device for Arduino, esp32 or esp8266: configuration 3" https://www.mischianti.org/2022/03/29/ebyte-lora-e22-device-for-arduino-esp32-or-esp8266-configuration-3/amp/