2 Co.	-: Jorga	and s	'-toma	a - h	o, donde	$A \subset \mathbb{R}^n$	×2 +al												
9. Оол	181derer	nos er a	31Stema 2	Ax = o,		-	-												
					A =	$\begin{bmatrix} 2 & 1 \\ 2 & 1 \\ \vdots & \vdots \\ 2 & 1 \end{bmatrix}$, b =	3 :											
						2 1	.]	3											
a) ; S	Se pued	den ut	ilizar l	as ecu	aciones	s norm	ales?												
,			$x_0 \in I$) 1101	dic.												
,					Ax = b	y verifi	icar qu	ıe solu	ciona (el prob	lema o	de cuac	drados	mínim	ios				
d) ¿E	Es ésta	soluc	ión úni	.ca?															
a)																			
	-: 6			-v;	ماء				1 2	اماء		1,]	4		رز، ۵-	. 440	_
>ı ,	710	אואל	١٤	2X I	51E	2010	0101	n u	יץ ו	יישט	21410	ال (اد	2 0	UVa	٢٨٥	07	(7) Y	imo	>.
Pue	.de	no	se	r (ύnic	a.													
b)																			
X	= (1 - :	7) ∈	: No	(A) L)													
/\/																			
Λ.,		Z	1		1	=		A , ,	1 (_	-\				Du					
Ax,	-	Z :	:		1 1	=	7.	1 +	1.(-	2)	-		E	K					
					-2														
		2	1	1			[2.	1 +	1. (-	z) .									
c)																			
			240			nx	<i>(</i> 2.		ZX	2									
$A^{T}\!A$		Z	ZXN	2		Z	1		40	1									
AA	=					Z :	:	=											
		1	•••	1					Zn	η.									
						2	1												
			zxn			nx1													
Ӓ́Ь	_	Z		Z		3	_	6n											
AO	-	1		1		:	_	311											
				•				L3											
						3													

Por ecuaciones normales $Ax = b \iff A^TAx = A^Tb$. 4n $2n$ x_1 = $6n$ $\iff \{4nx_1 + 2nx_2 = 6n \\ 2nx_1 + nx_2 = 3n\}$ $X = (1,1)$ es solución. Werificamos que $Ax = b$. $Ax = \begin{bmatrix} 2 & 1 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \\ 2 \end{bmatrix}$ Ax = $\begin{bmatrix} 2 & 1 & 1 \\ 1 & 3 \end{bmatrix}$ La solución no es única porque las columnas de A . No son LI .																			
4n $2n$ \cdot $\times 1$ = $6n$ \Leftrightarrow $\begin{cases} 4n \times_1 + 2n \times_2 = 6n \\ 2n \times_1 + n \times_2 = 3n \end{cases}$ $\times = (1,1)$ es solución. Verificamos que $A \times = b$. $A \times = \begin{bmatrix} 2 & 1 & 1 & 1 & 1 \\ 2 & 1 & 1 & 1 & 1 \\ 2 & 1 & 1 & 1 & 1 \end{bmatrix}$ d) La solución no es única porque las columnas de A	_							1						ΔΤΔ		۸٦,			
$X = (1,1)$ es solución. Verificamos que $AX = b$. $AX = \begin{bmatrix} 2 & 1 & 1 \\ \vdots & \vdots & 1 \end{bmatrix} = \begin{bmatrix} 3 \\ \vdots \\ 2 & 1 \end{bmatrix}$ La solución no es única porque las columnas de A .	Por	e	cua	.C101	nes	ŋc) M	ale	S	XA	= b	<=	=>	AP	\X =	: <i>F</i> \	b.		
$X = (1,1)$ es solución. Verificamos que $AX = b$. $AX = \begin{bmatrix} 2 & 1 & 1 \\ \vdots & \vdots & 1 \end{bmatrix} = \begin{bmatrix} 3 \\ \vdots \\ 2 & 1 \end{bmatrix}$ La solución no es única porque las columnas de A .	41	Zn		X ₁	-	6n		<=>		\\ 4n	X1 ·	+ 2r	Χz	=	6n				
Verificamos que $Ax = b$. $Ax = \begin{bmatrix} 2 & 1 & 1 & 1 & 1 \\ 2 & 1 & 1 & 1 \\ 2 & 1 & 1 & 3 \end{bmatrix}$ La solución no es única porque las columnas de A	Zn	n		[X ₂]		[3n]			(Zn	X ₁	+ n	Χz	=	31				
Verificamos que $Ax = b$. $Ax = \begin{bmatrix} 2 & 1 & 1 & 1 & 1 \\ 2 & 1 & 1 & 1 \\ 2 & 1 & 1 & 3 \end{bmatrix}$ La solución no es única porque las columnas de A	× =	(1,	1)	es	Sc	oluc	iór	١.											
Ax = 2 1 · 1 = 3 : : 1 : 1 : 1 : 1 : 1 : 1 : 1 : 1 : 1 :																			
d) La solución no es única porque las columnas de A	Ver	ific	ar	o S	qυ	e l	Δ×	= b .											
d) La solución no es única porque las columnas de A	Δx	=	Z	1		1	=	3											
d) La solución no es única porque las columnas de A			:	:		[1]		:											
La solución no es única porque las columnas de A			2	1	1			3											
	(٥																		
No Son LI.	La	20	luci	ón	No	es	Úŗ	Iica	P	orq	ve	عما	Co	lum	nas	s de	e 1	1	
	No	So	n L	. I															