

WOLAITA SODO UNIVERSITY SCHOOL OF :INFORMATICS

DEPARTMENT OF :INFORMATION SYSTEM AI LAB GROUP ASSIGMENT

NAME		ID
ROBSEN	DEMESEW	UGR/70511/14
ASRES	ALEMAYEHU	UGRT/88054/14
GIRUME		UGR/
NIWAY	DEBEBE	UGR/52630/13
MEKILT	DAWIT	UGR/70014/14
MELAT	FELEKE	UGR/70027/14
BILEN	ANILEY	UGR/68749/14
WONDIMAGEGN YOHANNISUGR/71060/14		

Explanation of the Code

Facts:

Symptoms: A comprehensive list of symptoms that can be used in diagnosing diseases.

Diseases: Each disease is linked to a list of its associated symptoms.

Rules:

has_disease/2: This rule checks if a user-provided list of symptoms corresponds to any disease.

subset/2: A helper rule that determines if all symptoms of a disease are included in the user-provided symptoms.

diagnose/0: This rule prompts the user to enter symptoms and provides potential diagnoses based on the input.

Queries:

You can use the following queries to test the system:

Check for a specific disease:

?- has_disease([fever, cough, fatigue], Disease).

Start the diagnosis process:

?- diagnose.

The Design of Your System

This Prolog program serves as a basic medical diagnosis system that identifies potential diseases based on user-reported symptoms. The system uses defined facts and rules to match symptoms with diseases, providing users with possible diagnoses.

How the Rules and Facts Work Together

• Facts are the foundation of this system. They define symptoms and diseases, establishing the relationships between them. For example, if a user reports "fever" and "cough," the system can check these against the disease facts to find potential matches.

Rules are used to infer conclusions from the facts. The has_disease/2 rule takes user symptoms
and checks them against the disease facts, using the subset/2 helper rule to verify if all
symptoms of a disease are present in the user's input.

When the user inputs their symptoms via the diagnose/0 rule, the system processes this input to find matching diseases and presents the results.

Challenges Faced During Development

• Completeness of Knowledge Base:

Ensuring that the list of symptoms and diseases is comprehensive was a significant challenge. It required thorough research and continuous updates based on new medical knowledge.

Ambiguity in Symptoms:

Many symptoms overlap across different diseases. Designing the system to handle such ambiguities while providing accurate suggestions required careful consideration of symptom combinations.

• User Input Variability:

Users may input symptoms in various formats. Implementing a system to standardize and validate user input was necessary to ensure accurate diagnosis.

• User Experience:

Creating an interactive and user-friendly interface that guides users through the symptom input process posed design challenges, particularly in making the system intuitive.

• Ethical Considerations:

Addressing the ethical implications of providing medical information through a non-professional system was crucial. Clear disclaimers were needed to remind users to consult healthcare professionals for serious health issues.

Conclusion

This Prolog-based medical diagnosis system exemplifies how rules and facts can be effectively utilized to assist in identifying potential diseases based on user-reported symptoms. Despite the challenges encountered, the system provides a foundational tool for symptom analysis and disease suggestion, with opportunities for future enhancement and expansion.