## WAKISSHA JOINT MOCK EXAMINATIONS MARKING GUIDE Uganda Advanced Certificate of Education UACE August 2023 CHEMISTRY P525/1



Honald

|           | Reject R                                                                                                                                                                                                                                                                              |                    |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| 1. (a)    | 24Na                                                                                                                                                                                                                                                                                  | 01                 |
| (b)       | $\lambda = \frac{\ln 2}{t_{1/2}}$ $\lambda = \frac{\ln 2}{15} = 0.046209812 \text{ per hour}$ $\ln \left( \frac{No}{Nt} \right) = \lambda t.$ $\ln \left( \frac{2.4}{Nt} \right) = 0.046209812 \text{ X } 72$                                                                         | 04                 |
| (c)       | Nt = $0.086152g$ .  Mass decayed = $24 - 0.086152$ = $23.913848 g$ 2.39  Carbon dating using carbon $-14$                                                                                                                                                                             |                    |
|           | Cobalt-60 gamma radation for cancer treatment (any 2 correct)                                                                                                                                                                                                                         | 01                 |
| 2.(a) (i) |                                                                                                                                                                                                                                                                                       | 06 marks           |
| (ii)      | 1s <sup>2</sup> 2s <sup>2</sup> 2p <sup>6</sup> 3s <sup>2</sup> 3p <sup>6</sup> 3d <sup>5</sup> 4s Accept 1s <sup>2</sup> 25 <sup>2</sup> 2p <sup>6</sup> 3s <sup>2</sup> 3p <sup>6</sup> 4s <sup>1</sup> 3d <sup>5</sup><br>CrO, Cr <sub>2</sub> O <sub>3</sub> and CrO <sub>3</sub> | 01                 |
| (b)(i)    | Cro, Cr <sub>2</sub> O <sub>3</sub> and Cro <sub>3</sub>                                                                                                                                                                                                                              | 11/2               |
|           | $CrO_{(s)} + 2H^{+}_{(aq)} \longrightarrow Cr^{2+}_{(aq)} + H_{2}O_{(l)} \xrightarrow{-\frac{1}{2}} $ for wrong state $CrO_{3(s)} + 2\bar{O}H_{(aq)} \longrightarrow CrO^{2-}_{4(aq)} + H_{2}O_{(l)}$ $Accept maleutar equations$                                                     | used correctly     |
| (ii)      | CrO <sub>3(s)</sub> + 2ŌH <sub>(aq)</sub> CrO <sup>2-</sup> <sub>4 (aq)</sub> + H2O <sub>(1)</sub> Accept melecular equation                                                                                                                                                          | 11/2               |
| 3(a)      | CH CH D. CH CH ST. 522 1                                                                                                                                                                                                                                                              | $5^{1}/_{2}$ marks |
|           | Mechanism Heat  Mechanism Heat  CH3 CH2 OCH2 CH3  CH3 CH2 ONA  CH3 CH2 OCH2 CH2  CH3 CH2 OCH2 CH2  CH3 CH2 OCH2 CH2  CH3 CH2 OCH2 CH3 + Br  CH3 CH2 OCH2 CH3 + Br                                                                                                                     | 03                 |
| (b)       | Br Br Br                                                                                                                                                                                                                                                                              | 03                 |
|           |                                                                                                                                                                                                                                                                                       | 06                 |
|           | © WAKISSHA Joint Mock Examinations 2023                                                                                                                                                                                                                                               | 06 marks           |

= 54 marks

| 4(a)      | The precipitation of a sparingly soluble ionic compound from its saturated solution at constant temperature by adding a solution containing a strong electrolyte with similar ions.  R. F. M. of PbCl <sub>2</sub> = 277.8                                  | ble salt 01   |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| (b) (i)   | R.F.M of PbCl <sub>2</sub> = 277.8<br>Solubility in CaCl <sub>2</sub> = 2.951625 / 277.8 Accept $CCL_2 = 2.951625 / 277.8$ Accept $CCL_2 = 2.951625 / 277.8$ $= 0.010625 \text{ moldm}^{-3}$ $= 0.010625 \text{ moldm}^{-3}$ $= 0.06125 \text{ moldm}^{-3}$ | 1.7           |
|           | Solubility in CaCl <sub>2</sub> = 2.951625 / 277.8                                                                                                                                                                                                          | vi.           |
|           | = 0.010625 moldm <sup>-3</sup> . Kan-1.696 x10 5 m                                                                                                                                                                                                          | stolm 9       |
|           | $[Cl] = 2 \times 0.02 + 0.010625 \times 2$                                                                                                                                                                                                                  |               |
|           | = 0.00123 morani                                                                                                                                                                                                                                            |               |
|           | $PbCl_{2(s)} + aq$ $Pb^{2+}_{(aq)} + 2Cl_{(aq)}$                                                                                                                                                                                                            |               |
|           | $Ksp = [Pb^{2+}] [Cl^{-}]^{2}$ $= 0.010625 \times 0.06125^{2} = 3.98604 \times 10^{-5} \text{ mol}^{3} \text{dm}^{-9}.$                                                                                                                                     |               |
|           |                                                                                                                                                                                                                                                             |               |
|           | Let solubility in pure water be x.<br>$Ksp = 4x^3$ $4x^3 = 1.696 \times 10^{-5}$                                                                                                                                                                            | 05            |
|           | $Ax^3 = 3.08604 \times 10^{-5}$                                                                                                                                                                                                                             | -1            |
|           | 1.696X18                                                                                                                                                                                                                                                    | 1)3           |
|           | $4x^{3} = 3.98604 \times 10^{-5}$ $x = \left(\frac{1}{4} \times 3.98604 \times 10^{-5}\right)^{1/3}$ $= 0.02152 \text{ mol}^{3} \text{dm}^{-9}$                                                                                                             |               |
|           | chibity100                                                                                                                                                                                                                                                  | 7             |
|           | = 0.02152 mol <sup>3</sup> dm <sup>-9</sup> Saluhility = 0.02125 0.277.0 t                                                                                                                                                                                  | in            |
|           | Solubility = $0.02125 \times 277.8$                                                                                                                                                                                                                         | 13 13 13      |
|           | = 5.90325 gdm <sup>-3</sup>                                                                                                                                                                                                                                 |               |
| (ii)      | Lead (II) chloride is less soluble in calcium chloride than in pure                                                                                                                                                                                         | 1/            |
|           | water D. Award if b(i) is correct.                                                                                                                                                                                                                          | 1/2           |
|           |                                                                                                                                                                                                                                                             | 6½ marks      |
| 5(a)      | $MgCl_{(aq)} + H_2O_{(l)} \longrightarrow MgO_{(s)} + 2HCl_{(aq)} \mid 146.2$                                                                                                                                                                               |               |
|           | $Mg_{(s)} + 2HCl_{(aq)} \longrightarrow MgCl_{2(aq)} + H_{2(g)}$                                                                                                                                                                                            |               |
| +         | $H_{2(g)} + \frac{1}{2}O_{2(g)} \longrightarrow H_2O_{(l)}$ $\frac{1}{2} \times 572$                                                                                                                                                                        | 03            |
|           | $Mg_{(s)} + \frac{1}{2}O_{2(g)}$ $\longrightarrow$ $MgO_{(s)}$ $\Delta Hf = -618 2 \text{KJmol}^{-1}$                                                                                                                                                       |               |
| (b)       |                                                                                                                                                                                                                                                             |               |
|           | Magnesium is stable (relative to its elements) Rej (fa) is wrong Reason - Negative enthalpy of formation                                                                                                                                                    | 11/2          |
| 1 2000/30 | Reason - Negative enthalpy of formation. Acc Enthalpy of formation                                                                                                                                                                                          | is exothermic |
| 6(a)      |                                                                                                                                                                                                                                                             | 4½marks       |
|           | Fluorine is more electronegative than Iodine thus hydrogen fluoride                                                                                                                                                                                         |               |
|           | molecules are held by strong intermolecular hydrogen bonds while                                                                                                                                                                                            | 02            |
|           | hydrogen iodide molecules are held by weak vander waals forces which require less heat energy to break.                                                                                                                                                     | 02            |
| (b)(i)    |                                                                                                                                                                                                                                                             |               |
|           | Both HF and HI react with sodium carbonate solution to form                                                                                                                                                                                                 |               |
|           | 2115 Sodium saits, carbon dioxide gas and water.                                                                                                                                                                                                            |               |
|           | $2NaF_{(aa)} + CO_{2}_{(a)} + H_{2}O_{(a)}$                                                                                                                                                                                                                 | 1             |
|           | 2H1 (g) + Na <sub>2</sub> CO <sub>3</sub> (aa) 2Na <sub>1</sub>                                                                                                                                                                                             |               |
|           | $2HF_{(1)} + Na_2CO_{3 (aq)}$ $2HI_{(g)} + Na_2CO_{3 (aq)}$ $Accept general equation$ $2NaF_{(aq)} + CO_{2 (g)} + H_2O_{(1)}$ $2NaI_{(aq))} + CO_{2 (g)} + H_2O_{(1)}$                                                                                      | 11/2          |
|           | - Caracion                                                                                                                                                                                                                                                  | 11/2          |
|           | Accept general equation $2Hx + Na_2CO_{3 (aq)} \longrightarrow 2NaX_{(aq)} + CO_{2 (g)} + H_2O_{(l)}$ $2Hx + Na_2CO_{3 (aq)} \longrightarrow 2NaX_{(aq)} + CO_{2 (g)} + H_2O_{(l)}$                                                                         | 11/2          |

| 4        |                                                                                                                                                                                                                                                                                                                                                                               |                   |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
|          | HF does not react with Conc. H <sub>2</sub> SO <sub>4</sub> .  HI reduces concentrated Sulphuric acid to Sulphurdioxide and water, itself oxidized to Iodine.  2HI + H2SO <sub>4</sub> (I)  SO <sub>2</sub> (g) + I <sub>2</sub> (g) +2H <sub>2</sub> O <sub>(I)</sub> 3HI + H <sub>2</sub> SO <sub>4</sub> (I)  H <sub>2</sub> S(g) + H <sub>2</sub> O + H <sub>2</sub> C(g) | 1½ 05marks        |
| 7. (2    | Warm O COOH + CH3 OH.                                                                                                                                                                                                                                                                                                                                                         | 01<br>be written. |
| (b       | Observations  Rej all marks if solut                                                                                                                                                                                                                                                                                                                                          | olichon 01        |
|          | - Bubbles of a colorless gas  CH <sub>3</sub> OH - No observable change                                                                                                                                                                                                                                                                                                       | 02                |
| (c       | Solvent extraction                                                                                                                                                                                                                                                                                                                                                            | 1/2               |
| 8.(a     |                                                                                                                                                                                                                                                                                                                                                                               | 4½marks           |
| (b) (i)  | Pressure  (atm)  Solid E vapour Est  Phases - 1/2  Axes - 01  Shape - 1/2 (position of triple  point and critical  point)  Temperature (oc)  Solid E malto into line id with the control of triple  point and critical  point)                                                                                                                                                | 03                |
| (ii)     | Solid E melts into liquid which on further heating is converted into vapour.                                                                                                                                                                                                                                                                                                  | 01                |
| (11)     | All Liquid E and gaseous E (vapour) solidifies. Phases are not me                                                                                                                                                                                                                                                                                                             | al disned 01      |
| 9.(a)(i) | hexachloroplumbate (IV) ions Acc. hexachloroplumbic (iv) acid                                                                                                                                                                                                                                                                                                                 | 05mayles          |
| (ii)     | Ammonium hexachloro plumbate (IV)                                                                                                                                                                                                                                                                                                                                             | 1/2               |
| (iii)    | Lead (IV) chloride Accept Lead tetrachloride                                                                                                                                                                                                                                                                                                                                  | 1/2               |
| (b)      | PhCI                                                                                                                                                                                                                                                                                                                                                                          | 1/2               |
| (c)      | Hydrolysis PbO <sub>2(s)</sub> + 4HCl <sub>(g)</sub> Accept aq) for                                                                                                                                                                                                                                                                                                           | tcl . 01          |
|          |                                                                                                                                                                                                                                                                                                                                                                               | 1/2               |
|          |                                                                                                                                                                                                                                                                                                                                                                               | 03marks           |



| A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            | $\propto = \frac{\Lambda_c}{\Lambda_o}$ $= 9.8712 \times 10^{-7} / 548.4$                                                                                                                                                                                                                                      |                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |                                                                                                                                                                                                                                                                                                                |                    |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            | $= 1.80 \times 10^{-9}$                                                                                                                                                                                                                                                                                        |                    |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (ii)       | $Kw = [H^+] [\tilde{O}H]$ or $Kw = C^2 \propto^2$                                                                                                                                                                                                                                                              |                    |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            | $= \left(\frac{1000}{18}\right)^2 \times (1.80 \times 10^{-9})^2$                                                                                                                                                                                                                                              | 11/2               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | $\approx 1.0 \times 10^{-14}  \text{mol}^2  \text{dm}^{-6}$                                                                                                                                                                                                                                                    |                    |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            | V                                                                                                                                                                                                                                                                                                              | 09marks            |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 12.(a) (i) | Due to the presence of lone pairs of electrons on the oxygen atom, the hydroxyl group of phenol has a positive inductive effect which increases the electron density of the benzene ring thus phenol is more reactive towards electrophilic substitution than benzene.                                         | 02                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (ii)       | 2-nitrophenol is volatile and immiscible with water since its molecules are held by weak vander waals forces while 4-introphenol is relatively non-volatile due to strong intermolecular hydrogen bonds.  2-nitrophenol has a fairly high relative formula mass.                                               | 02                 |
| The second secon | (b)        | Vapour pressure of 2-nitrophenol = 1.0 – 0.825 = 0.175atm.  V.P of water = mass of water x R.F.M of 2-nitrophenol mass of 2-nitrophenol x R.F.M of water  0.825 = 0.9 x 123 m x 18  M = 0.9 x 123 x 0.175 0.825 x 18  M = 1.30455g. 14474                                                                      | 03                 |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (c)        | 02                                                                                                                                                                                                                                                                                                             |                    |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 12 (-)(2)  | Di chilin                                                                                                                                                                                                                                                                                                      | 0m1                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 13.(a)(i)  | Barium nitrate followed by difute nitric acid Ammonium month bolde a K <sub>2</sub> SO <sub>4 (aq)</sub> — White precipitate insoluble in nitric acid.                                                                                                                                                         | Parks              |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            | K <sub>3</sub> PO <sub>4 (aq)</sub> - White precipitate soluble in nitric acid.                                                                                                                                                                                                                                | 02                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (ii)       | Silver nitrate solution followed by dilute nitric acid Calcium nitrate NaCl(aq) - White precipitate insoluble in nitric acid No observa                                                                                                                                                                        | solution de chappe |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (b)(i)     | Dichromate ions react with sodium hydroxide to form chromate (VI) ions which form sparingly soluble lead(II) chromate addition of lead(II) nitrate. $Cr_2O_7^{2-}_{(aq)} + 2\bar{O}H_{(aq)} \longrightarrow 2CrO_4^{2-}_{(aq)} + H_2O_{(I)}$ $Pb^{2+}_{(aq)} + CrO_4^{2-}_{(aq)} \longrightarrow PbCrO_{4(s)}$ | 21/2               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | C WAKING.                                                                                                                                                                                                                                                                                                      |                    |

| (ii)      | Maganese (II) ions are oxidized to Manganate (VII) ions which is purple and the bismuthate is reduced to bismuth (III) ions. $2Mn^{2+}_{(aq)} + 5BiO_3 + 14H^{+}_{(aq)} \longrightarrow 2MnO_4 (aq) + 5Bi^{3+}_{(aq)} \longrightarrow 7H_2O_{(I)}$ |           |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
|           |                                                                                                                                                                                                                                                    | 9marks    |
| 14 (a)(i) | CH3 CH CH2 CHO                                                                                                                                                                                                                                     | 01        |
| (ii)      | 3-hydroxybutanal                                                                                                                                                                                                                                   | 01        |
| (b)(i)    | CH3 CH(OH) CH2 CHO ZnCiz(s) Conc. HC1 CH3 CHCH2 CHO                                                                                                                                                                                                | 01        |
| (ii)      | OH CH2 CHO + 2 Ag (cq) +2 NiH3 (cq) + H2 Oc) -> CH3 CH CH2 COOH +2 Agust OH  Or CH3 CHCH2 CHO Ag NO3 INH3 (cq) CH3 CHCH2 COOH + Ag.                                                                                                                | NH4<br>01 |
| (iii)     | CH3 CH CH2 CHO + NaHSO3 (aq) CH3 CH CH2 CHSO3 Nat OH Kej One ions                                                                                                                                                                                  | 01        |
| (c)       | CH <sub>3</sub> CH CH <sub>2</sub> CHO: >+1+                                                                                                                                                                                                       | 04        |
|           | Yield of ammonia increases  The formation of ammonia (forward reaction) occurs with a decrease in volume (number of molecules) thus high pressure shifts the equilibrium position from left to the right.                                          | 11/2      |
| (ii)      | Yield of ammonia decreases  The forward reaction (formation of ammonia) is exothermic thus an increase in temperature favours the dissociation of ammonia reducing its concentration at equilibrium.                                               | 11/2      |

© WAKISSHA Joint Mock Examinations 2023

| (b)(i)    |                                                                                                                       |                                                                                         |                                                                                |                                                                                       |      |
|-----------|-----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|------|
|           | $N_{2(g)} + 3H_{2(g)} =$ Initial                                                                                      | $\rightleftharpoons$ 2NH <sub>3 (g)</sub> $\mid$ 3.0                                    | 1.0 3 - 2cg)                                                                   | ->2 NH3(g)                                                                            |      |
|           | Moles                                                                                                                 |                                                                                         |                                                                                |                                                                                       |      |
|           | Reacted                                                                                                               | <sup>1</sup> / <sub>2</sub> x 0.02                                                      | $^{3}/_{2} \times 0.02$                                                        | 0.34 / 17 = 0.02                                                                      |      |
|           | Moles                                                                                                                 | 0.01                                                                                    | 0.03                                                                           | 0.02                                                                                  |      |
|           | Equilibrium                                                                                                           | 2.99                                                                                    | 0.97                                                                           | 0.02                                                                                  |      |
|           | Moles                                                                                                                 |                                                                                         |                                                                                |                                                                                       |      |
|           | $[N_2] = 2.99 / ($                                                                                                    | ).5                                                                                     | $[H_2] = 0.97$                                                                 | /0.5 [NH <sub>3</sub> ] = 0.02 / 0.5                                                  | 03   |
|           |                                                                                                                       |                                                                                         | = 1.94  mole                                                                   | $dm^{-3}$ = 0.04 moldm <sup>-3</sup>                                                  |      |
|           | $[NH_3]^2$                                                                                                            | x                                                                                       |                                                                                |                                                                                       |      |
|           | $Kc = \frac{[NH_3]^2}{[N_2][H_2]^3}$                                                                                  |                                                                                         |                                                                                |                                                                                       |      |
|           | $=\frac{(0.04)^{2}}{5.98 \times 1.9}$                                                                                 | 12 1                                                                                    |                                                                                |                                                                                       |      |
|           |                                                                                                                       |                                                                                         | V                                                                              |                                                                                       |      |
|           | = 3.6645                                                                                                              | x 10 <sup>-5</sup> mol <sup>-2</sup>                                                    | 2dm <sup>6</sup>                                                               |                                                                                       | 1    |
| (c)       |                                                                                                                       |                                                                                         |                                                                                |                                                                                       |      |
|           | $2NO_{(g)} + O_{2(g)}$                                                                                                | 03                                                                                      |                                                                                |                                                                                       |      |
|           | $4NO_{2(g)} + O_{2(g)}$                                                                                               |                                                                                         |                                                                                |                                                                                       |      |
| 16.(a)(i) | Lithium has the                                                                                                       | 9marks                                                                                  |                                                                                |                                                                                       |      |
|           | Lithium ion has the highest charge density. I polarizing power                                                        |                                                                                         |                                                                                |                                                                                       |      |
|           | Lithium has the most negative electrode potential. any three;                                                         |                                                                                         |                                                                                |                                                                                       |      |
|           | Lithium has the                                                                                                       | e most nega                                                                             | tive electrode                                                                 | e potential, any three;                                                               | 11/  |
|           |                                                                                                                       |                                                                                         |                                                                                | e potential. any three;                                                               | 11/2 |
|           |                                                                                                                       |                                                                                         |                                                                                |                                                                                       | 11/2 |
| (ii) (b)  | Lithium is the                                                                                                        | least electro                                                                           | positive / mo                                                                  | est electronegative alkali                                                            | 11/2 |
| (ii) (b)  | Lithium is the metal.  - Lithium only                                                                                 | forms the r                                                                             | positive / mo                                                                  | est electronegative alkali                                                            | 11/2 |
| (ii) (p)  | Lithium is the metal.  - Lithium only - Lithium hydr                                                                  | forms the roxide is only                                                                | positive / monormal oxide                                                      | est electronegative alkali                                                            | 11/2 |
| (ii) (b)  | Lithium is the metal.  - Lithium only - Lithium hydra - When heated oxide and car                                     | forms the roxide is only Lithium carbon dioxide                                         | normal exide<br>y sparingly s<br>rbonate deco                                  | soluble in water emposes to form lithium                                              |      |
| (ii) (b)  | Lithium is the metal.  - Lithium only - Lithium hydra - When heated oxide and car - The nitrate o                     | forms the roxide is only Lithium carbon dioxide                                         | positive / monormal exidence y sparingly surbonate decomposes we composes we   | soluble in water emposes to form lithium then heated to form an                       | 03   |
| (ii) (p)  | Lithium is the metal.  - Lithium only - Lithium hydra - When heated oxide and car - The nitrate or oxide, nitrograms. | forms the roxide is only Lithium carbon dioxide f Lithium de en dioxide g               | positive / monormal exide<br>by sparingly surbonate decomposes we gas and oxyg | soluble in water amposes to form lithium then heated to form an en.                   |      |
| (ii) (b)  | Lithium is the metal.  - Lithium only - Lithium hydra - When heated oxide and car - The nitrate or oxide, nitrograms. | forms the roxide is only Lithium carbon dioxide f Lithium de en dioxide g               | positive / monormal exide<br>by sparingly surbonate decomposes we gas and oxyg | soluble in water emposes to form lithium then heated to form an                       |      |
|           | Lithium is the metal.  - Lithium only - Lithium hydra - When heated oxide and care - The nitrate or oxide, nitrog     | forms the roxide is only Lithium carbon dioxide f Lithium de en dioxide gets with nitro | positive / monormal exide<br>by sparingly surbonate decomposes we gas.         | soluble in water composes to form lithium chen heated to form an en. Lithium nitride. |      |
|           | Lithium is the metal.  - Lithium only - Lithium hydra - When heated oxide and car - The nitrate or oxide, nitrograms. | forms the roxide is only Lithium carbon dioxide f Lithium de en dioxide gets with nitro | positive / monormal exide<br>by sparingly surbonate decomposes we gas.         | soluble in water composes to form lithium chen heated to form an en. Lithium nitride. |      |

| (ii)      | BeCl <sub>2(S)</sub> + 4NaOH (aq) → Na <sub>2</sub> Be (OH) 4 (aq) + 2NaCl (aq)                                                                                                                                                     | y one              |  |  |  |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--|--|--|
| Evis 15   | BeCl <sub>2(S)</sub> + 4NaOH (aq) $\longrightarrow$ Na <sub>2</sub> Be (OH) 4 (aq) + 2NaCl (aq) or Be Cl <sub>2(S)</sub> + 4 $\overline{O}$ H (aq) $\longrightarrow$ Be(OH) <sub>4</sub> <sup>2-</sup> (aq) + 2Cl <sup>-</sup> (aq) | 11/2               |  |  |  |
|           | or Be $Cl_{2(S)} + 4\overline{O}H_{(aq)} \longrightarrow BeO_2^{2-}_{(aq)} + 2Cl_{(aq)} + 2H_2O_{(l)}$                                                                                                                              |                    |  |  |  |
|           |                                                                                                                                                                                                                                     |                    |  |  |  |
| (iii)     | (iii) $BaO_{2(s)} + 2HCl_{(aq)} \longrightarrow BaCl_{2(aq)} + H_2O_{2(aq)}$                                                                                                                                                        |                    |  |  |  |
| (111)     | 2 BaO2(s) + 2H+(ag) -> Ba2+(ag) + H2O2(ag)                                                                                                                                                                                          | 09marks            |  |  |  |
| 17(a) (i) | Positive deviation                                                                                                                                                                                                                  | 01                 |  |  |  |
| (ii)      |                                                                                                                                                                                                                                     |                    |  |  |  |
|           | between ethanol molecules. This increases the escaping tendency of ethanol and hexane molecules from solution into vapor phase hence                                                                                                |                    |  |  |  |
|           | increasing the vapor pressure above solution which is greater than                                                                                                                                                                  |                    |  |  |  |
|           | that expected for ideal solutions.                                                                                                                                                                                                  |                    |  |  |  |
| (b)(i)    |                                                                                                                                                                                                                                     |                    |  |  |  |
|           |                                                                                                                                                                                                                                     |                    |  |  |  |
|           | Boiling 78-41                                                                                                                                                                                                                       |                    |  |  |  |
|           | 2014/01                                                                                                                                                                                                                             |                    |  |  |  |
|           | howellac) About                                                                                                                                                                                                                     |                    |  |  |  |
|           | shape - 64                                                                                                                                                                                                                          | 7 7 1 1 1 1        |  |  |  |
|           |                                                                                                                                                                                                                                     | 02                 |  |  |  |
|           | 11941d azeotrope                                                                                                                                                                                                                    |                    |  |  |  |
|           | TIT WICH                                                                                                                                                                                                                            |                    |  |  |  |
|           | collectione Percentage composition 100% Hexane                                                                                                                                                                                      |                    |  |  |  |
|           | ool, ethanol .                                                                                                                                                                                                                      |                    |  |  |  |
|           |                                                                                                                                                                                                                                     |                    |  |  |  |
| (ii)      | distillate – azeotropic mixture or liquid mixture 61.58% hexane and                                                                                                                                                                 |                    |  |  |  |
| MARIN     |                                                                                                                                                                                                                                     |                    |  |  |  |
|           | Residual liquid – Pure hexane.                                                                                                                                                                                                      | 01                 |  |  |  |
| (c)       | Mass of ethanol in azeotrope = $\frac{38.42}{100}$ x (50 x 0.687) = 13.2g                                                                                                                                                           |                    |  |  |  |
|           | Let the mass extracted be xg.                                                                                                                                                                                                       |                    |  |  |  |
|           |                                                                                                                                                                                                                                     |                    |  |  |  |
|           | Kd = [ethanol] in chtofine chloride [ethanol] in hexane                                                                                                                                                                             |                    |  |  |  |
|           |                                                                                                                                                                                                                                     |                    |  |  |  |
|           | $15.8 = \frac{x/100}{(13.2 - x)/50}$                                                                                                                                                                                                |                    |  |  |  |
|           | $15.8 \times 2 (13.2 - x) = x;  x = 417.12/32.6 \approx 12.8g$                                                                                                                                                                      | THE REAL PROPERTY. |  |  |  |
|           | 7 417.12/32.6 ≈ 12.8g                                                                                                                                                                                                               |                    |  |  |  |
|           |                                                                                                                                                                                                                                     | Mark Control       |  |  |  |
|           |                                                                                                                                                                                                                                     |                    |  |  |  |
|           |                                                                                                                                                                                                                                     | 09marks            |  |  |  |