Seminarul nr. 3

1. Se dă funcția booleană $f:\{0,1\}^3 \longrightarrow \{0,1\}^3$ definită

$$f(x, y, z) = (x + \overline{y}z, y + \overline{z}x, z + \overline{x}y)$$

Construiți un codificator pentru implementarea ei.

- 2. Construiți un codificator pentru funcția $f:\{0,1\}^3\longrightarrow\{0,1\}$ definită prin octetul 10010100.
- 3. Construiți o memorie ROM pe 3 biți, în care la adresa x se află valoarea $x+3 \pmod 8$ (codul Excess 3 pe trei biți).
- 4. Se dă la intrare o secvențăe 5 biți. Să se construiască un circuit care scoate bitul care apare majoritar in acea secvență.
- 5. Se dă la intrare o secvență x de 6 biți. Să se construiască un circuit codificator care scoate valoarea 1 dacă și numai dacă numărul a cărui reprezentare binară este x, este divizibil cu 4.
- 6. Construiți un circuit pentru $DMUX_2$.
- 7. Dați o construcție directă și una recursivă pentru MUX_3 .
- 8. Să se construiască funcția sum a trei biți folosind MUX_3 .
- 9. Folosind numai EMUX construiți un circuit pentru funcția booleană

$$f(a,b,c,d) = a(b+\overline{c})d + \overline{a}(b+d)(b+c)(c+d) + \overline{b}\ \overline{c}\ \overline{d}.$$

- 10. Aceeaşi problemă, folosind codificatori.
- 11. Fie funcția $f(x, y, z) = x + \overline{y} + z$. Să se construiască un circuit combinațional logic folosind:
 - (a) Codificatori;
 - (b) Multiplexori elementari.
- 12. Aceeaşi problemă pentru $f(x, y, z) = (x + \overline{y}z, \overline{x}y + \overline{x}\overline{y}z, y + xz)$.

Rezolvări

1. Se aduc cele trei expresii ale funcției $f(x, y, z) = (f_1(x, y, z), f_2(x, y, z), f_3(x, y, z))$ la forma normal disjunctivă:

$$f_1(x, y, z) = xyz + x\overline{y}z + xy\overline{z} + x\overline{y} \ \overline{z} + \overline{x} \ \overline{y}z,$$

$$f_2(x, y, z) = xyz + \overline{x}yz + xy\overline{z} + \overline{x}y\overline{z} + x\overline{y} \ \overline{z},$$

$$f_3(x, y, z) = xyz + \overline{x}yz + x\overline{y}z + \overline{x}y \ \overline{z} + \overline{x} \ \overline{y}z.$$

Circuitul codificator este:

2. Tabelul de valori al funcției este:

De aici rezultă forma normal disjunctivă $f(x, y, z) = \overline{x} \ \overline{y} \ \overline{z} + \overline{x}yz + x\overline{y}z$. Circuitul codificator este:

sau – dacă detaliem și decodificatorul:

3. Funcția asociată este $f:\{0,1\}^3 \longrightarrow \{0,1\}^3$ cu tabelul

$ \begin{array}{c} x_2 \\ x_1 \\ x_0 \\ \hline z_2 \\ z_1 \\ z_0 \end{array} $	0	0	0	0	1	1	1	1
x_1	0	0	1	1	0	0	1	1
x_0	0	1	0	1	0	1	0	1
$\overline{z_2}$	0	1	1	1	1	0	0	0
21	1	0	0	1	1	0	0	1
~ 1	_	~	~	_	_	-	_	

Codificatorul:

4. O funcție booleană de cinci variabile care să implementeze condiția trebuie să aibă f(1,1,1,1,1) = f(1,1,1,0,0) = f(1,1,0,1,0) = f(1,1,0,0,1) = f(1,0,1,1,0) = f(1,0,1,0,1) = f(1,0,0,1,1) = f(0,1,1,1,0) = f(0,1,1,0,1) = f(0,1,1,1,1) = f(0,0,1,1,1) = 1 și 0 în rest. O astfel de funcție în forma normală se scrie imediat, din care reiese codificatorul (am trasat numai ieșirile utile din DCD_5 , care intră în poarta OR_{11} :

- 5. Mulțimea numerelor din intervalul $[0, 2^6-1]$ divizibile cu 4 este $A = \{0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, 60\}$ (în total 16). Se construiește un DCD_6 în care ieșirile y_i cu $i \in A$ sunt conectate la o poartă OR_{16} , din care iese rezultatul final.
- 6. O simplă particularizare:

7. O construcție directă este:

iar una recursivă:

8. Tabela de valori a funcției sum este

Circuitul MUX_3 este imediat (eventual se poate detalia):

- 9. Nu am avut timp să scriu rezolvarea.
- 10. Nu am avut timp sa scriu rezolvarea.
- 11. Tabela de valori a funcției f este

Un circuit codificator pentru implementare este:

Circuitul bazat pe multiplexori elementari este:

El se poate reduce spectaculos la:

