IMPERIAL COLLEGE LONDON

MSc COURSE IN COMPUTATIONAL METHODS IN ECOLOGY AND EVOLUTION MULTIPLE CHOICE QUESTIONS

For Internal Students of Imperial College of Science, Technology and Medicine

Exam Date: Monday, 29th March 2021, 14:00 - 17:00

Length of Exam: 2 HOURS

Instructions:

- You will be expected to answer 30 multiple choice questions in this exam.
- A question may have more than one correct answer and this should be indicated clearly in the question's wording.
- There will be exactly 5 options to choose from in each question
- There is no negative marking
- Please follow the instructions for the remote assessment carefully .

Continues on next page	
	Page 1 of 5

Section A Ecological modelling

Question A1

Which one of the following assumptions does not need to be made for the Lotka-Volterra competition model?

- A) There are no delays in the interactions
- B) There is no spatial structure in the populations described
- C) There is no age structure in the populations described
- D) There is no density dependence
- E) The competition coefficients are assumed to be independent of the size of the populations

Continues on next page	
continues on next page	Page 2 of 5

Section B Biological data and C

Question B1

Consider these lines of code.

```
int c;
c = 1/2;
```

Which one of the following statements is true?

- A) The expression 1/2 evaluates to an integer, assignment to c leaves this unchanged.
- B) The expression 1/2 evaluates to a float, but assignment to c makes the result an integer.
- C) The expression 1/2 evaluates to a double, but assignment to c makes the result an integer.
- D) The expression 1/2 evaluates to a float, but assignment to c makes the result an integer rounded to the nearest whole value.
- E) The expression 1/2 evaluates to an integer rounded to the nearest whole value.

_____ Continues on next page _____

Section C Maths

Question C1

The equation

$$N_{t+1} = \lambda N_t (1 + aN_t)^{-b}$$

where $\lambda, a, b > 0$ is often encountered in the biological literature as an empirical description for density-limited population growth. What are the fixed points of this equation?

(*Hint*: for difference equations $N_{t+1}=f(N_t)$, fixed points \bar{N} are given by $\bar{N}=f(\bar{N})$)

A)
$$\bar{N}=0$$
 or $\bar{N}=-\frac{1}{a}$

B)
$$\bar{N}=0$$
 or $\bar{N}=\frac{1}{a}\left[\left(\frac{1}{\lambda}\right)^b-1\right]$

C)
$$\bar{N}=0$$
 or $\bar{N}=\frac{1}{a}\left[\sqrt[b]{\lambda}-1\right]$

D)
$$\bar{N}=0$$
 or $\bar{N}=rac{1}{a}\left[\sqrt[b]{rac{1}{\lambda}}-1
ight]$

E)
$$\bar{N}=1$$
 or $\bar{N}=\lambda$

Section D Generalised Linear Modelling

Question D1

Which link fur	nction would	you impleme	nt in th	e generalised	linear	model:	OocytesNumber	~ FSI	H? Select	one
from the follow	ving:									

- A) Logit
- B) Log-linear
- C) Identity
- D) Inverse squared
- E) Exponential

End of paper	