Problem

Give an example of a non-Riemann integrable function, that is unbounded.

Solution. Consider the function $f:[0,1]\to\mathbb{R}$ given by

$$f(x) = \begin{cases} p & \text{if } x \in \mathbb{Q} \setminus \{0\} \text{ and } x = \frac{p}{q} \text{ with this being in irreducible terms} \\ 0 & \text{otherwise} \end{cases}$$

This function is well-defined on [0,1] because $x \in \mathbb{Q}$ has a unique representation in terms of irreducible integers p,q so that $x=\frac{p}{q}$.

Then take P to be any partition of [0,1]. Sense we have $\mathbb{R} \setminus \mathbb{Q}$ is dense in [0,1] we have any infinite subinterval $[a,b] \subset [0,1]$ we'll have at least one $x \in [a,b]$ such that f(x)=0. So for any partition P we'll have: $L(f,P,[0,1]) = \sum_{j=1}^{n} \inf_{[x_{j-1},x_j]} f(x_j-x_{j-1}) = \sum_{j=1}^{n} 0(x_j-x_{j-1}) = 0$.

So this is true for any partition P, hence L(f, [0, 1]) = 0.

Note then for any $n \in \mathbb{N}$ we'll have $\frac{n}{n+1} \in [0,1]$. So $f\left(\frac{n}{n+1}\right) = n$, but $\lim_{n \to \infty} n = \infty$ and $\lim_{n \to \infty} \frac{n}{n+1} = 0$. So for $x_1 \in P$, being the first partition point after $x_0 = 0$, we'll have at some point $\frac{n}{n+1} \in [x_0 = 0, x_1]$. Hence $\sup_{x \in [x_0, x_1]} f = \infty$, hence we'll have U(P, f, [0, 1]) = m

 $x_1 \sup_{x \in [x_0, x_1]} f + \sum_{j=2}^m (x_j - x_{j-1}) \sup_{x \in [x_{j-1}, x_j]} f = \infty$. Since this is true for any partition P of [0, 1] we'll have $U(f, [0, 1]) = \infty$ and hence $L(f, [0, 1]) = 0 \neq \infty = U(f, [0, 1])$ so that f isn't Riemann integrable, even though there are only a countable number of discontinuities. Riemann integration fails here, because f is unbounded on [0, 1].