Stress:

Thinking Multidimensionally

The information presented here is for informational and educational purposes only. One must always seek advice from their healthcare professional. Dr. Ben Lynch will not be liable for any direct, indirect, consequential, special, exemplary, or other damages arising from the use or misuse of any materials or information published.

Disclosure:

Relationship with commercial interests - None Disclosure of commercial support - None Conflict of interest - None

Which Drug Do I Need for Stress?

Anxiolytics, Benzodiazepines

Class Summary

By binding to specific receptor sites, benzodiazepines appear to potentiate the effects of gamma-aminobutyrate (GABA) and facilitate inhibitory GABA neurotransmission and other inhibitory transmitters. These agents are effective on standing-dose and as-needed (prn) schedules

Panic Disorder Medication, Medscape, Nov 2016

Lorazepam

View full drug information

Lorazepam is a sedative hypnotic with a short onset of intermediate half-life. By increasing the action of GABA neurotransmitter in the brain, lorazepam may depress a including the limbic and reticular formations.

Clonazepam

· View full drug information

Clonazepam is a sedative hypnotic that is a long-acting ber life of approximately 36 hours and an intermediate onset of facilitates inhibitory GABA neurotransmission and other inh

Alprazolam

View full drug information

Alprazolam is used for the management of anxiety attacks. It is a short-acting anxiolytic with an intermediate onset of effects. This agent binds to receptors at several sites within the CNS, including the limbic system and the reticular formations. The effects of alprazolam may be mediated through the GABA receptor system. Alprazolam has been widely reviewed in the literature, although its use is currently discouraged because of its higher potential to elicit dependency.

Diazepam

View full drug information

Diazepam is an anxiolytic benzodiazepine and has a rapid onset of effects. This medication depresses all levels of the CNS (eg, the limbic and reticular formations), possibly by increasing the activity of GABA.

Panic Disorder Medication, Medscape, Nov 2016

Which Drug Do I Need for Stress?

"If we are intellectually honest, we must discard old ideas and look for new paradigms to explain the cause of symptoms in a disease... if we test a rationally designed therapy in patients with the disease, but it fails repeatedly."

Dr. Anthony Linnane

Cell danger response, Naviaux

Which Gene is Associated with my Stress?

MTHFR C677T +/+
COMT V158M +/+
MAOA T941G -/-

NEW! updated to now include mood stabilizers, anxiolytics/hypnotics and 4 additional genes!

A personalized approach to help patients get their lives back

a clinically proven, genetic-based decision support tool that can help get patients on the right medication faster.

And the other 19,000? And gene:gene:gene:... communication?

Which Gene is Associated with my Stress?

"If we are intellectually honest, we must discard old ideas and look for new paradigms to explain the cause of symptoms in a disease... if we test a rationally designed therapy in patients with the disease, but it fails repeatedly."

Dr. Anthony Linnane

Cell danger response, Naviaux

Which Vitamins do I take for my Stress SNPs?

MTHFR C677T +/+

MAOA T941G -/-

MTHF

HydroxoB12

Category	RSID	Gene	Expected	Genotype: Risk	Genotype Freq	Gene Function	Consequences	Encourage	Avoid
Neurotransmitter	rs4680	COMT	G	AG: 1/2	48.2074%	Degrades catecholamines, Phase	Slower breakdown dopamine,	Hydroxy B12	Methyl B12, Methyl
Levels						II, inactivates hydroxy-estrogens	oestrogen, worrier, prone to	(hydroxycobalamin)	donors, Cannabis
							anxiety, more sensitive to green		
							tea		
Neurotransmitter	rs6323	MAO-A	G	TT: 2/2	N/A	Oxidizes serotonin, dopamine,	Lower expression of MAO A	Progesterone	Curcumin, Estrogens,
Levels						epinephrine, norepinephrine			Androgens
Folate One-Carbon	rs651852	BHMT08	T	CT: 1/2	48.0752%	Methylates homocysteine to	Downregulation	Phosphatidylcholine,	
Metabolism /						methionine		TMG,	
Methylation (FOCM)								Phosphatidylserine,	
								Zinc	
Folate One-Carbon	rs234706	CBS	G	AG: 1/2	39.9436%	Adds I-serine to homocysteine to	Increased responsiveness to	Vitamin B6	
Metabolism /						produce I-cystathionine	homocysteine-lowering effects of		
Methylation (FOCM)							folic acid. Marginally increased		
							disposal of homocysteine.		
Folate One-Carbon	rs1805087	MTR	A	GG: 2/2	4.79560%	Converts homocysteine into	Upregulation that can deplete	Methyl b12,	
Metabolism /						methionine	methyl-b12.	L-methylfolate,	
Methylation (FOCM)								Lithium orotate,	
								Grapeseed extract	
Folate One-Carbon	rs1802059	MTRR	G	AA: 2/2	9.58110%	Methylates, recycles vitamin b12	Less active enzyme	Methyl B12	
Metabolism /									
Methylation (FOCM)									

Which Vitamins do I take for my Stress SNPs?

"If we are intellectually honest, we must discard old ideas and look for new paradigms to explain the cause of symptoms in a disease... if we test a rationally designed therapy in patients with the disease, but it fails repeatedly."

Dr. Anthony Linnane

Cell danger response, Naviaux

Which Pathway is Associated with Stress?

Which Pathway is Associated with Stress?

"If we are intellectually honest, we must discard old ideas and look for new paradigms to explain the cause of symptoms in a disease... if we test a rationally designed therapy in patients with the disease, but it fails repeatedly."

Dr. Anthony Linnane

Cell danger response, Naviaux

How do we resolve stress?

How do we resolve stress?

Nutritious Food

Restorative Sleep

Happy Mitochondria

Community

Gratitude

"Fix MY SNPs, MTHF'R!!"

Foundations

Timeline

⇒ Logical

Plot

Response

Trigger

Strategic

Plan

Docere

Pulse

RS#		Risk Allele	Gene	Variation	Result	RS#	Call	Risk Allele	Gene	Variation	Result	
rs1051266	CT	T	SLC19a1	G80A	+/-	p		T				
rs2236225	AA	Α	MTHFD1	G1958A	+/+	rs12934922	AT	-	BCO1	R267S	+/-	
rs1801131	TT	G	MTHFR	A1298C	-/-	rs7501331	CC	T	BCO1	A379V	-/-	
rs1801133	AG	Α	MTHFR	C677T	+/-	rs6420424	AA	Α	BCO1 (PKD1L2)	C754T	+/+	
rs1801394	AA	G	MTRR	A66G	-/-	rs11645428	GG	G	BCO1		+/+	
rs1532268	CC	T	MTRR	C524T	-/-	rs6564851	GG	G	BCO1		+/+	
rs72558181	CC	T	MAT1A	R264H	-/-							
rs28934891	CC	T	CBS	D444N	-/-	rs601338	GG	Α	FUT2		-/-	
rs4920037	AG	Α	CBS	C19150T	+/-	rs1800566	GG	Α	NQ01		-/-	
rs5742905	AA	G	CBS	T833C	-/-	rs1800562	GG	Α	HFE	C282Y	-/-	
rs234706	AG	Α	CBS	C699T	+/-	rs1799945	CG	G	HFE	H63D	+/-	
rs4880	AG	A	SOD2	A16V	+/-			T				
rs1799895	CC	G	SOD3	Ex3-631C>G	-/-	13002468	AA	1	HFE	Ser65Cys	-/-	
rs1695	AG	G	GSTP1	lle105Val	+/-	rs7946	CT	T	PEMT	5465G>A	+/-	
rs1138272	CC	T	GSTP1	A114V	-/-	rs174537	GG	G	FADS1		+/+	
rs1050828	C	T	G6PD	G202A	-/-	rs174548	CC	G	FADS1		-/-	
rs1050829	T	С	G6PD	A376G	-/-	rs1535	AA	G	FADS2		-/-	
rs5030868	G	Α	G6PD	C563T (Medit.)	-/-							
rs1050450	GG	Α	GPX1	Pro199Leu	-/-	rs1800629	AG	Α	TNF-alpha		+/-	
rs1800783	TT	Α	NOS3/eNOS	-1495A>T	-/-	rs34637584	GG	Α	LRRK2	21095	-/-	
rs1800779	AA	G	NOS3/eNOS	A(-922)G	-/-	rs2228570	NA	G	VDR	Fok1	NA	
i6018900	NA	T	SULT1A1	638G>A	NA	rs731236	AA	G	VDR	Taq1	-/-	
rs6323	T	G	MAOA	T941G	-/-						-/-	
rs1137070	C	T	MAOA	1410T>C	-/-	rs1544410	CC	1	VDR	Bsm1		
rs1799836	C	C	MAOB		+/+*	<u>rs7412</u>	CC	С	APOE	Arg176Cys	+/+	
rs4680	AG	Α	COMT	V158M	+/-	rs429358	CT	C	APOE		+/-	
rs4633	CT	T	COMT	H62H	+/-	-/- = not present; +/- = one mutation; +/+ = double mutation; +/+* = mutation on the X chromosome in a male.						
rs10156191	CT	T	AOC1/ABP1	Thr16Met	+/-							
				nutation on the X chromoson ite: INTERMEDIATE (0.99)		APOE genotyp	e: APOE	3/4				

FOUNDATIONS

GAPS / No salads
Electronics to relax
Irregular sleep/wake

Snacking frequently
Frequent urination / thirsty
Use chemicals
No filtration

Practical

- ✓ Alignment
- √ Foundations

Timeline

⇒ Logical

Plot

Response

Trigger

Strategic

Plan

Docere

Pulse

TIMELINE

Brain Fog Fatigue

Active EBV / Yeast

Insomnia

Stress!!

Root canal nitrous use

Energy Drinks /

Sugar / Marathons

Estrogen

GAPS

Hormone / Urticaria /

Fatigue

Chronic

Plan and Educate Why / How

Dairy stop

Protein reduction Exercise reduction

Breathe Histamine Foods

Night routine establish

Nitrous avoid Screens filtered

Pulse

<u>46</u>

TNF 🐤

Which Pathway is Associated with Stress?

STRESS

Environment

- Heavy Metals
- Mold
- Infections
- Chemicals

Lifestyle

- 'Yes'
- Overtraining
- Overworked
- Focused outward
- Disconnected
- 'want' vs 'need'

Diet / Supplements

- SAD
- Folic acid
- PC
- Protein
- Deficiencies
- Vegetarian
- Blood sugar swings

Genetics

- COMT
 TNF
- MTHFR IL1
- MAOA
 IFNG
- SOD FUT2
- NOS3
 CYT
- GST NAT2
- DHFRFADS2
- TPH2 PEMT
- BDNF CRH

PRACTICAL → LOGICAL → STRATEGIC → OPTIMIZE

<u>Do NOT</u> <u>Start</u> <u>Here</u>

STRESS

- Not a condition
- Not a genetic condition
- Altered gene expression → cell danger response

PRIORITY IS MOST IMMEDIATE

- **SOMS5RN** fight or flight
- Infection fight or die
- Inflammation heal or die

LIMITED RESOURCES - MOST URGENT WINS

TREATMENT GOAL:

Assist body in its priorit(ies) so optimal mood returns

MAGIC

References

All papers shown in presentation are published in PubMed and cited

HuGE Navigator: Phenotype Database provides genes assoc w stress

Medscape provides drug information

All diagrams shown have references organized by pathway and gene.

References may be found here: https://seekinghealth.org/bibliography/