

雨课堂 Rain Classroom

F分布

设
$$X \sim \chi^2(n_1)$$
与 $Y \sim \chi^2(n_2)$ 相互独立,则称 $F = \frac{X/n_1}{Y/n_2}$

服从自由度为 (n_1, n_2) 的F分布,记为 $F \sim F(n_1, n_2)$.

$$f(x) = \begin{cases} \frac{\Gamma(\frac{n_1 + n_2}{2})}{\Gamma(\frac{n_1}{2})\Gamma(\frac{n_2}{2})} \frac{\left(\frac{n_1}{n_2}\right)\left(\frac{n_1}{n_2}x\right)^{\frac{n_1 + n_2}{2}}}{\left(1 + \frac{n_1}{n_2}x\right)^{\frac{n_1 + n_2}{2}}}, x \ge 0 \\ 0, & x < 0 \end{cases}$$

上侧分位数

$$P(F > F_{\alpha}(n_1, n_2)) = \alpha$$

多行行
$$F$$
 分行 $F_{0.975}$ $(15,10) = \frac{1}{F_{0.025}(10,15)} = \frac{1}{3.06} = 0.33$ $\frac{1}{F} = \frac{Y/n_2}{X/n_1} \sim F(n_2, n_1)$

$$PF_{0.975}(13,10) = \frac{1}{F_{0.025}(10,15)} = \frac{1}{3.06} = 0.33$$

$$PF_{0.975}(13,10) = \frac{1}{F_{0.025}(10,15)} = \frac{1}{3.06} = 0.33$$

$$PF_{0.975}(13,10) = \frac{1}{F_{0.025}(10,15)} = \frac{1}{3.06} = 0.33$$

~ - 0 021	
## / All	П

$n_2^{n_1}$	8	9	10	12	15	20
13	3.39	3.31	3.25	3.15	3.05	2.95
14	3.29	3.21	3.15	3.05	2.95	2.84
155	3.20	3.12	3.06	2.96	2.86	2.76
16	3.12	3.05	2.99	2.89	2.79	2.68
17	3.06	2.98	2.92	2.82	2.72	2.62
18	3.01	2.93	2.87	2.77	2.67	2.56

F 分布

>>

F分布

例
$$X \sim N(0, \sigma^2), X_1, X_2, X_3, X_4 \text{ i.i.d.}$$

$$Y = (X_1 + X_2)^2 / (X_3 - X_4)^2 \sim ?$$
解 $X_1 + X_2, X_3 - X_4 \text{ i.i.d. } N(0, 2\sigma^2)$

$$\chi_1^2 = [(X_1 + X_2) / \sqrt{2}\sigma]^2 \sim \chi^2(1)$$

$$\chi_2^2 = [(X_3 - X_4) / \sqrt{2}\sigma]^2 \sim \chi^2(1)$$

$$\frac{\chi_1^2 / 1}{\chi_2^2 / 1} = \frac{(X_1 + X_2)^2}{(X_3 - X_4)^2} = Y \sim F(1, 1)$$

>>

单正态总体的抽样分布

抽样定理 设 $X_1, X_2, ..., X_n$ 为来自正态总体 $N(m, s^2)$ 的一个样本,则

$$(1) \, \overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \sim N\left(\mu, \frac{\sigma^2}{n}\right);$$

证明(1)
$$\bar{X} = \sum_{i=1}^{n} \frac{1}{n} X_i \sim N \left(\sum_{i=1}^{n} \frac{1}{n} \mu_i, \sum_{i=1}^{n} \frac{1}{n^2} \sigma_i^2 \right)$$

$$\sim N\left(\mu, \frac{\sigma^2}{n}\right)$$

