

Image credit: The Linux Foundation

AI6128 Urban Computing

Course Logistics

Contents

- Couse Logistics
 - Instructors
 - Lectures
 - Quizzes
 - Literature review assignment
 - Course projects
 - Timeline

Instructors

- Part 1
 - Dr. TAN Ruitanrui@ntu.edu.sgN4-02C-85

- Part 2
 - Dr. LONG Cheng c.long@ntu.edu.sg N4-02C-117a

Lecture-based Learning

Lectures

- Time/Location
 - Saturday, 2.30pm-5.30pm, live online at Zoom
 - 3 hours per week
 - 2.5 hours lecture, 0.5 hour consultation/discussion
- Two parts
 - Part 1 (Urban IoT): Week 1-6
 - E-learning (Advanced topics): Week 7
 - Part 2 (Urban data analytics): Week 8-13
- Course materials (enough for completing this course)
 - Lecture notes
 - Pre-selected research papers for literature review assignment
 - Course project manual

References

- For extended knowledge and scope
 - Wireless Sensor Networks: An Information Processing Approach, by Feng Zhao and Leonidas J. Guibas, Morgan Kaufmann Press Online e-book (NTU login required): https://www.sciencedirect.com.remotexs.ntu.e du.sg/book/9781558609143/wireless-sensor-networks
 - Urban Computing, by Yu Zheng, MIT Press (available at NTU library)

Part 1: Urban IoT

Introduction to urban IoT

- What is urban computing?
- IoT applications
- IoT architecture

Urban sensing

- Sensor and facility deployment
- Data acquisition
- Communication infrastructures

Localization and time acquisition

- GPS
- Indoor localization
- Indoor time acquisition

Cloud computing support

- Concepts, mechanisms, architecture
- Virtualization, SaaS, PaaS, IaaS
- Prevalent clouds

Part 2: Urban Data Analytics

Urban data management

- Spatial data indexing and querying
- Spatio-temporal data indexing and querying

Urban data analytics

- Spatial data mining
- Spatio-temporal data mining
- Deep learning on spatial and spatio-temporal data

Overall Assessment

- Weightage
 - Two course projects: 50% (25% each)
 - Two quizzes: 20% (10% each)
 - Literature review: 30%
 - No final exam

Quizzes

- Quiz 1
 - Open book
 - Any 20 minutes during Week 5 lecture
 - Coverage: Contents in Week 1, 2, 3, 4
 - Make-up: Any 20 minutes during Week 6 lecture
- Quiz 2
 - Closed book
 - Any 20 minutes during Week 12 lecture
 - Coverage: Contents in Week 8, 9, 10, 11
 - Make-up: Exam Week 1
- Policy on make-up quizzes
 - For students who miss the quiz without a valid excuse, a penalty of 20% reduction will be applied to the make-up quiz score

E-Learning: Advanced Topics

- Edge computing
- Urban computing in industry

Group-based Self-learning and Hands-on Activities

Student Groups

- For both <u>literature review assignment</u> and <u>course</u> <u>projects</u>
- Group assignment will be generated on August 20th (i.e., after course add/drop period)
 - Based on index number in NTULearn
 - 2~4 students each group
 - Check your group assignment in NTULearn in Week 3
 - Liaise with your group mates in Week 3
 - Change of group assignment is not advisable, unless there are special reasons

Literature Review Assignment

- 18 topics
 - Each group will select a topic exclusively
 - Each topic has 4 pre-selected papers
- Use a Google Form to select your group's topic after knowing your group in Week 3
 - Each group designates one member to use the form to submit selection
 - Each group can only submit once!
 - Topics that have been selected by other groups are not shown on the form
 - Although selections are exclusive, no need to hurry because we have abundant topics
 - Google Form address announced in Week 3, submit the selection by end of Week 4
- Minimum reading requirement
 - Each student in a group should read at least 2 papers related to the selected topic, with at least 1 paper from the pre-selected papers
 - Students in a group should read different sets of papers

How to Access a Research Paper?

- Most computer science/engineering papers can be found from three databases
 - ACM Digital Library, IEEE Xplore, ScienceDirect

Step 1: Visit https://libguides.ntu.edu.sg/az.php and find the database

How to Access a Research Paper? (cont'd)

Step 2: Login using your NTU account and agree the terms of use.

Step 3: Use the database's search function to look for the paper. You can enter the title of the paper to do the search.

Group-based Presentation

- Week 13
 - Presentation time will be allocated proportional to group size
- Suggested format
 - Introduction by a lead presenter
 - Background of the topic
 - What the topic is about?
 - Significance (why it is important?)
 - Presentation of each reviewed paper
 - What problem addressed
 - Why the problem addressed is important
 - How the problem is addressed
 - How the experiments are conducted
 - What results are obtained
 - What limitations the paper has
 - How to address these limitations if you will do further research

Literature Review Assessment

Purely based on the presentation

- Assessment criteria
 - Introduction (group's common score)
 - Each paper review (individual's score)
 - Extra paper review (individual's variable bonus)

Course Projects

- Two course projects
- A report is required for each project
 - Two reports to be submitted

Course Project 1

Topic

 Use a publicly available dataset to study indoor localization for smartphone

Objective

- Reinforce understanding on various sensors
- Get familiar with spatio-temporal data
- Able to pre-process and visualize spatiotemporal data
- Understand challenges of indoor localization

Course Project 1 (cont'd)

Dataset

- Sample data of Microsoft Indoor Location Competition 2.0 (https://github.com/location-competition/indoor-location-competition-20)
- Data collected by a smartphone in two multistorey commercial buildings
- A 1-hour tutorial class will be conducted in Week 5

Footsteps detected based on inertial sensors

Course Project 1 (cont'd)

- Essential tasks (100%)
 - Visualize way points (ground-truth locations)
 - Visualize geomagmetic heat map
 - Visualize RSS heat maps of 3 Wi-Fi APs
 - Requirements
 - You can choose any programming language
 - While you can refer to the sample code in Python, write your own code to pre-process the data and use a basic plotting tool (e.g., matplotlib) to visualize data
 - No need to superimpose your visualization onto map
 - 2-person group to cover 2 essential tasks
 - 3-person group to cover 3 essential tasks

Sample Completion

Course Project 1 (cont'd)

Bonus tasks

- Build a deep learning-based location fingerprint model
- Study the performance improvement brought by multi-modal machine learning
- Study the performance improvement brought by integrating temporal relationship via SLAM
- Any other you can claim

Project 1 Report

- Format
 - Use IEEE A4-size two-column conference templates https://www.ieee.org/conferences/publishing/templates.html
 - Don't change page margins and font sizes
- Submit the writeup in PDF format
 - To tanrui@ntu.edu.sg by the end of Week 9 (Oct 17th)
 - If no acknowledgement is received within 3 days, resend and contact Dr. Rui Tan via Microsoft Teams
- One-week grace period for late submissions
 - No penalty if a valid excuse provided; otherwise, a penalty of 20% reduction will be applied to the mark of the late submission
 - Zero mark for submissions after the grace period
- Policy on plagiarism
 - Write by yourselves based on your own understanding
 - We will use a tool to check submissions against databases
 - Obvious plagiarism cases will have zero scores

Suggested Project 1 Report Content

- Section 1: Introduction (0.5 page)
- Section 2: Dataset (0.5 page)
- Section 3: Essential tasks (1 page each)
 - Subsection 3.1: Visualization of waypoints
 - **—** ...
- Section 4 (optional): Bonus tasks (1 page each)
- Section 5: Group member contributions (within 1 page)
- Appendix: source code

Project 1 Assessment

- Purely based on report
- Overall achievement and quality (70%)
 - Coverage of essential tasks
 - Pre-processing result quality
 - Depth of discussion on the results (e.g., what challenges experienced, how they are addressed or why they cannot be addressed, etc)
- Individual contribution (30%)

Extracurricular Activity

 Very successful groups may consider to participate in Microsoft's Indoor Location Competition 2.0 on Kaggle https://www.kaggle.com/c/xyz10test/overview

Course Project 2

To be announced by Part 2 instructor shortly

Timeline

Week	Lecture Progress		Assessment and related activities
Week 1	Part 1: Urban IoT	Introduction	
Week 2		Introduction, sensing	
Week 3		Sensing	Check group assignment, liaise with group mates
Week 4		Localization	Literature review topic selection due
Week 5		Localization + tutorial	Quiz 1 (10%)
Week 6		Cloud computing	Quiz 1 make-up
Week 7 (E-learning)	Offline: Advanced topics		
Recess week	No lecture		
Week 8	Part 2: Urban data analytics		
Week 9			Submission of Project 1 report (25%)
Week 10			
Week 11			
Week 12			Quiz 2 (10%)
Week 13	Liter	ature review presentation	n (30%)
Exam Week 1	No lecture		Submission of Project 2 report (25%); Quiz 2 make-up;

Clicker

- A few questions at the end of each week
- Questions are not scored
- They are used for you (and me also) to check your level of understanding
- Wooclap: Web-based response system
 - Scan a QR code to participate
 - No authentication

