Raport ZED

Jedrzej Karpiewski

11 stycznia 2016

Na początku pliku powinna znajdować się automatycznie wypełniona data generacji dokumentu oraz spis treści pozwalający przejść do najważniejszych sekcji. Ponadto raport powinien zaczynać się od rozdziału podsumowującego całą analizę, streszczającego najważniejsze zauważone rzeczy. Po wstępie, raport powinien zawierać następujące elementy:

1. Kod wyliczający wykorzystane biblioteki;

```
search()
```

2.Kod zapewniający powtarzalność wyników przy każdym uruchomieniu raportu na tych samych danych; -cache???

3.Kod pozwalający wczytać dane z pliku;

```
data <- read.csv(file="1000.txt",head=TRUE,sep=";")</pre>
```

4. Kod usuwający z danych wiersze posiadające wartość zmiennej res_name równą: "DA", "DC", "DT", "DU", "DG", "DI", "UNK", "UNX", "UNL", "PR", "PD", "Y1", "EU", "N", "15P", "UQ", "PX4" lub "NAN";

```
data <- filter(data, res_name != "DA", res_name != "DC", res_name != "DT", res_name != "DU", res_name !=
```

5. Kod pozostawiający tylko unikatowe pary wartości (pdb code, res name)

```
clean_data <- distinct(data, pdb_code, res_name)
#head(clean_data, 10)</pre>
```

6.Krótkie podsumowanie wartości w każdej kolumnie;

```
# knitr::kable(summary(data))
# summary(data)
```

7. Sekcje sprawdzającą korelacje między zmiennymi; sekcja ta powinna zawierać jakąś formę graficznej prezentacji korelacji;

```
#wykonać funkcję cor() na wszystkich parach kolumn "zielonych"
#pocisnac te kolumny foreachem?
```

8.Określenie ile przykładów ma każda z klas (res_name);

```
count_data <- count(clean_data, res_name)</pre>
arrange(count_data, desc(n))
## Source: local data frame [169 x 2]
##
##
      res_name
##
        (fctr) (int)
           S04
## 1
                   33
## 2
            CA
                   27
## 3
           GOL
                   23
## 4
             ZN
                   22
            MG
## 5
                   15
## 6
            CL
                   12
## 7
           NAG
                   12
## 8
           ED0
                   10
```

 $9. Wykresy \ rozkładów \ liczby \ atomów \ (local_res_atom_non_h_count) \ i \ elektronów \ (local_res_atom_non_h_electron_sum);$

9

8

P04

HEM

. . .

9

10

..


```
#+
#scale_x_continuous(breaks = seq(0, 30, 1)) +
#scale_y_continuous(breaks = seq(0, 30, 1))
```

10.Próbę odtworzenia następującego wykresu (oś X - liczba elektronów, oś y - liczba atomów):

11. Tabelę pokazującą 10 klas z największą niezgodnością liczby atomów (local_res_atom_non_h_count vs dict_atom_non_h_count) i tabelę pokazującą 10 klas z największą niezgodnością liczby elektronów (local_res_atom_non_h_electron_sum vs dict_atom_non_h_electron_sum;)

```
diff_between_expected_atoms <- select(clean_data, res_name, local_res_atom_non_h_count, dict_atom_non_h
mutate(diff = abs(local_res_atom_non_h_count - dict_atom_non_h_count), diff_squared = diff*diff) %>%
group_by(res_name) %>%
    summarize(difference_mean = mean(diff), standard_deviation = sqrt(mean(diff_squared))) %>%
    arrange(desc(standard_deviation), desc(difference_mean))
knitr::kable(head(diff_between_expected_atoms,10), col.names = c("Nazwa ligandu", "Średnia różnica od wa
```

Table 1: Tabela przedstawiająca 10 klas z największą niezgodnością liczby atomów (sort po odchyleniu standardowym).

Nazwa ligandu	Średnia różnica od wartości oczekiwanej	Odchylenie standardowe
UTP	16.000000	16.000000
CPS	6.000000	6.000000
EPE	3.333333	5.773503
NDP	1.600000	3.577709
ATP	0.800000	1.788854
AAL	1.000000	1.000000
ABA	1.000000	1.000000
BGC	1.000000	1.000000
BRU	1.000000	1.000000
BSA	1.000000	1.000000

```
diff_between_expected_electrons <- select(clean_data, res_name, local_res_atom_non_h_electron_sum, dict
mutate(diff = abs(local_res_atom_non_h_electron_sum - dict_atom_non_h_electron_sum), diff_squared = dif
group_by(res_name) %>%
    summarize(difference_mean = mean(diff), standard_deviation = sqrt(mean(diff_squared))) %>%
    arrange(desc(standard_deviation), desc(difference_mean))
knitr::kable(head(diff_between_expected_electrons, 10), col.names = c("Nazwa ligandu", "Średnia różnica on the color of the col
```

Table 2: Tabela przedstawiająca 10 klas z największą niezgodnością liczby elektronów (sort po odchyleniu standardowym).

Nazwa ligandu	Średnia różnica od wartości oczekiwanej	Odchylenie standardowe
UTP	108.00000	108.00000
CPS	52.00000	52.00000
EPE	21.33333	36.95042
NDP	10.20000	22.80789
ATP	7.80000	17.44133
CPT	17.00000	17.00000
AAL	8.00000	8.00000
ABA	8.00000	8.00000
BGC	8.00000	8.00000
BRU	8.00000	8.00000

- 12. Sekcję pokazującą rozkład wartości wszystkich kolumn zaczynających się od part_01 z zaznaczeniem (graficznym i liczbowym) średniej wartości;
- 13. Sekcję sprawdzającą czy na podstawie wartości innych kolumn można przewidzieć liczbę elektronów i atomów oraz z jaką dokładnością można dokonać takiej predykcji; trafność regresji powinna zostać oszacowana na podstawie miar ${\bf R}^2$ i RMSE;
- 14. Sekcję próbującą stworzyć klasyfikator przewidujący wartość atrybutu res_name (w tej sekcji należy wykorzystać wiedzę z pozostałych punktów oraz wykonać dodatkowe czynności, które mogą poprawić trafność klasyfikacji); klasyfikator powinien być wybrany w ramach optymalizacji parametrów na zbiorze walidującym; przewidywany błąd na danych z reszty populacji powinien zostać oszacowany na danych inne niż uczące za pomocą mechanizmu (stratyfikowanej!) oceny krzyżowej lub (stratyfikowanego!) zbioru testowego.