Probabilistic models for neural data: From single neurons to population dynamics

NEUROBIO 316QC

Jan Drugowitsch
jan_drugowitsch@hms.harvard.edu

Session 7: Kernel methods

Today

Q&A about previous session

Paper discussion (~1h)

Kernel methods and Gaussian Processes (~30min)

Kernel methods

Gaussian processes

What makes them possible: marginalization of multivariate Gaussians Gaussian progress regression

Learning hyperparameters, extensions, etc.

Kernel methods

Gaussian processes

What makes them possible: marginalization of multivariate Gaussians Gaussian progress regression

Learning hyperparameters, extensions, etc.

Linear regression by kernel methods

Assume $p(y_n|x_n) = N(y_n|\mathbf{w}^T\boldsymbol{\phi}(x_n), \sigma^2)$ and $p(\mathbf{w}) = (\mathbf{w}|\mathbf{0}, \sigma^2\lambda^{-1})$ (i.e., L2 regularization)

Negative log-posterior & MAP solution

$$J(\mathbf{w}) = \frac{1}{2\sigma^2} \|\mathbf{\Phi}\mathbf{w} - \mathbf{y}\|^2 + \frac{\lambda}{2\sigma^2} \mathbf{w}^T \mathbf{w} + \text{const.} \quad \longrightarrow \quad \widehat{\mathbf{w}}_{MAP} = -\frac{1}{\lambda} \mathbf{\Phi}^T (\mathbf{\Phi}\widehat{\mathbf{w}}_{MAP} - \mathbf{y}) = \mathbf{\Phi}^T \mathbf{a}$$

Substitute $\widehat{\boldsymbol{w}}_{MAP}$ into negative log-posterior, becomes function of \boldsymbol{a}

$$J(a) = \frac{1}{2\sigma^2} a^T K K a - \frac{1}{\sigma^2} a^T K y + \frac{1}{2\sigma^2} y^T y + \frac{\lambda}{2\sigma^2} a^T K a \qquad \text{with } Gram \text{ matrix } K = \Phi \Phi^T$$

$$\widehat{a}_{MAP} = (K + \lambda I)^{-1} y \qquad K_{nm} = \phi(x_n)^T \phi(x_m) = k(x_n, x_m)$$

$$\approx \text{similarity between } x \text{ and } x \rightarrow \text{kernel } k(x_n, x_m)$$

~similarity between x_n and $x_m o$ kernel $k(\cdot,\cdot)$

Predict y for new x

similarity of x to training "inputs"

$$y(x) = \widehat{w}_{MAP}^T \phi(x) = \phi^T(x) \Phi^T a = k(x)^T (K + \lambda I)^{-1} y$$

weighted combination of training "outputs"

Valid kernel functions & computational complexity

 $K_{nm} = k(\mathbf{x}_n, \mathbf{x}_m) = \boldsymbol{\phi}(\mathbf{x}_n)^T \boldsymbol{\phi}(\mathbf{x}_m)$, but can specify $k(\mathbf{x}_n, \mathbf{x}_m)$ without $\boldsymbol{\phi}(\cdot)$

Gram matrix needs to be positive definite, i.e., $a^T K a \ge 0$ for all a

Examples

Polynomial kernel $k(\mathbf{x}, \mathbf{x}') = (\mathbf{x}^T \mathbf{x}' + c)^M$

"Gaussian" kernel $k(\mathbf{x}, \mathbf{x}') = \exp(-\|\mathbf{x} - \mathbf{x}'\|^2/2\sigma^2)$

Generalized "Gaussian" kernel $k(\mathbf{x}, \mathbf{x}') = \exp\left(-\frac{1}{2\sigma^2}\left(\tilde{k}(\mathbf{x}, \mathbf{x}) + \tilde{k}(\mathbf{x}', \mathbf{x}') - 2\tilde{k}(\mathbf{x}, \mathbf{x}')\right)\right)$

Computational complexity

Assume N "inputs", $x_1, ..., x_N$, D-dimensional basis function $\phi(\cdot)$ and w (usually $N \gg D$)

"standard" linear regression $y(\mathbf{x}) = \boldsymbol{\phi}^T(\mathbf{x}) \hat{\mathbf{w}}_{MAP} = \boldsymbol{\phi}^T(\mathbf{x}) (\boldsymbol{\Phi}^T \boldsymbol{\Phi} + \lambda \mathbf{I})^{-1} \boldsymbol{\Phi}^T \mathbf{y}$

 $D \times D$

Kernel regression $y(x) = \boldsymbol{\phi}^T(x)\boldsymbol{\Phi}^T \widehat{\boldsymbol{a}}_{MAP} = \boldsymbol{k}(x)^T (\boldsymbol{\Phi} \boldsymbol{\Phi}^T + \lambda \boldsymbol{I})^{-1} \boldsymbol{y}$

Kernel methods

Gaussian processes

What makes them possible: marginalization of multivariate Gaussians Gaussian progress regression

Learning hyperparameters, extensions, etc.

Marginalizing multivariate Gaussians → Gaussian process

Marginalization: 'removing' z_i from z by

$$p(\mathbf{z}') = p(\mathbf{z}_1, \dots, \mathbf{z}_{i-1}, \mathbf{z}_{i+1}, \dots, \mathbf{z}_N) = \int p(\mathbf{z}) d\mathbf{z}_i$$

does not change moments of $z_{j\neq i}$ (as moments of z_i only depend on μ_i and $a_{i:}$)

Gaussian process z(x) (continuous function)

Distribution over any $z(x_1), ..., z(x_N)$ is multivariate Gaussian

$$\mathbf{z} \equiv z(\mathbf{x}_1), \dots, z(\mathbf{x}_N) \sim \mathrm{N}(0, \mathbf{K})$$
 with covariance $K_{nm} = k(\mathbf{x}_n, \mathbf{x}_m)$ positive (semi-)definite expected similarity of $z(\mathbf{x}_n)$ and $z(\mathbf{x}_m)$

Construction possible as "marginalizing out" unobserved z(x)'s yields Gaussian Also: adding another $z(x_{N+1})$ again yields Gaussian

Draws from Gaussian processes

Gaussian progress regression

Model data as draws from GP + noise

GP
$$\mathbf{z}|\mathbf{x}_{1:N} \sim \mathrm{N}(\mathbf{0}, \mathbf{K})$$
 noise $y_n|z_n \sim \mathrm{N}(z_n, \lambda) \longrightarrow \mathbf{y}|\mathbf{z} \sim \mathrm{N}(\mathbf{y}|\mathbf{z}, \lambda \mathbf{I})$

Yields marginal y

$$p(\mathbf{y}|\mathbf{x}_{1:N}) = \int p(\mathbf{y}|\mathbf{z})p(\mathbf{z}|\mathbf{x}_{1:N})d\mathbf{z} = N(\mathbf{y}|\mathbf{0}, \mathbf{K} + \lambda \mathbf{I})$$

Predict $y_{N+1:N+M}$ from $x_{N+1:N+M}$

1. Joint distribution over $y_{N+M} \equiv y_{1:N+M}$

GP cov. between $x_{1:N}$ and $x_{N+1:N+M}$ $p(y_{N+M}|x_{1:N+M}) = N(y_{N+M}|\mathbf{0}, \mathbf{C}_{N+M}) \quad \text{with } \mathbf{C}_{N+M} = \begin{pmatrix} \mathbf{C}_N & \mathbf{k} \\ \mathbf{k}^T & \mathbf{c} \end{pmatrix}$ $x_{N+1:N+M} \text{ GP cov. + noise}$

2. Condition on $y \equiv y_{1:N}$

$$p(y_{N+1:N+M}|\mathbf{y},\mathbf{x}_{1:N+M}) = N(y_{N+1:N+M}|\mathbf{k}^T \mathbf{C}_N^{-1} \mathbf{y},\mathbf{c} - \mathbf{k}^T \mathbf{C}_N^{-1} \mathbf{k})$$

$$= \mathbf{k}^T (\mathbf{K} + \lambda \mathbf{I})^{-1} y$$
as in Kernel regression

Learning the GP hyperparameters, extensions & complexity

Hyperparameters = parameters θ of the GP kernel

Standard approach: maximum likelihood

$$C_N = K + \lambda I$$
, function of θ

$$\widehat{\boldsymbol{\theta}} = \operatorname{argmax}_{\boldsymbol{\theta}} \log p(\boldsymbol{y}|\boldsymbol{x}_{1:N}, \boldsymbol{\theta}) = \operatorname{argmax}_{\boldsymbol{\theta}} \left(-\frac{1}{2} \log |\boldsymbol{c}_N| - \frac{1}{2} \boldsymbol{y}^T \boldsymbol{c}_N^{-1} \boldsymbol{y} \right)$$

Challenge: potentially many local maxima

Extensions

GP kernels matching AR(n) process, LDS, OU process, etc. (see Rassumsen & Williams, 2006)

Kernel classification: non-conjugate likelihood, requires (Laplace) approximation

General: use of non-conjugate likelihood (e.g., Poisson spiking) requires approximations

Computational complexity

Use of GP requires $N \times N$ matrix inversion, $O(N^3)$ complexity

Low-dimensional approximation of covariance matrix K (e.g., Fourier decomposition)

Sparse GP: replace data with representative examples

Kernel methods

Gaussian processes

What makes them possible: marginalization of multivariate Gaussians Gaussian progress regression

Learning hyperparameters, extensions, etc.

Summary

Kernel methods: perform regression in (dual) space of kernels rather than basis functions

Can handle (effectively) infinitely-dimensional basis functions, at cost of increased complexity

Akin to interpolation: predictions by similarity-based averaging of training data

Gaussian processes: priors over (smooth) functions

Made possible due to nice marginalization properties of multivariate Gaussians

Gaussian process regression like kernel regression + measure of uncertainty

Non-conjugate likelihoods require approximations

Until next week

Read paper and prepare presentation (see notes for Session 7)

Read statistical methods section (no separate PRML reading, only session notes)

Next session

Q & A for previous sesstion

Paper discussions (~1h)

Brief introduction to variational autoencoders (~30min)

Note: one-week break, next session on March 23