О реализации декодера одного класса алгебро-геометрических кодов на проективных кривых с использованием алгоритма Сакаты

Пеленицын А. М.

Научные руководители: доцент, к. ф.-м. н. Деундяк В. М., асс. Маевский А. Э. Факультет Математики, механики и компьютерных наук ЮФУ

В данной работе рассматривается обобщение алгоритма Берлекемпа—Месси, предложенное Сакатой [1]. Оно может быть использовано в конструкции декодера одного класса алгебро-геометрических кодов, которые можно назвать алгебро-геометрическими кодами типа Рида—Соломона. Как и в классическом варианте кодов Рида—Соломона [2], использование этого алгоритма позволяет уменьшить теоретическую сложность процесса декодирования, более того, именно эта часть является определяющей для сложности всего процесса [3].

Первоначальной задачей, поставленной в работе, была программная реализация алгоритма, который может быть встроен в имеющийся декодер, использовавший до того менее эффективные методы декодирования. Однако анализ [1] показал, что актуальной проблемой является формализация изложенных там идей и получение строгого, замкнутого в себе описания алгоритма, которое, в свою очередь, может быть использовано для построения программной реализации. Одной из сопутствующих задач стало выделение общих для обеих версий алгоритма Берлекемпа—Месси, обобщённой и классической, особенностей и идей. Приведём здесь полученное описание алгоритма.

Предварительные сведения. Пусть задано поле Галуа K, введём обозначения для следующих множеств: $\mathbb{N}_0 = \{0,1,2,\ldots\}$, $\Sigma_0 = \mathbb{N}_0^2$, компоненты точек из Σ_0 будем обозначать, как обычно, нижними индексами. Введём два отношения порядка на Σ_0 :

- $\forall n, m \in \Sigma_0$: n < m тогда и только тогда, когда $n_1 < m_1 \land n_2 < m_2$;
- $\forall n, m \in \Sigma_0$: $n <_T m$ тогда и только тогда, когда

$$n_1 + n_2 < m_1 + m_2 \lor (n_1 + n_2 = m_1 + m_2) \land (n_2 < m_2)$$

Первое является частичным порядком, а второе — полным и позволяет задать операцию инкремента:

$$\forall n \in \Sigma_0$$
: $n+1 = \begin{cases} (n_1-1,n_2+1), & \text{если } n_1 > 0 \\ (n_2+1,0), & \text{если } n_1 = 0 \end{cases}$

Естественным образом определяются «нестрогие неравенства» \leq , \leq_T . Введём теперь множество: $\forall n, m \in \Sigma_0$: $\Sigma_n^m = \{ p \in \Sigma_0 | n \leq p \wedge p <_T m \}$.

Далее будем рассматривать конечную двумерную последовательность u длины $p \in \Sigma_0$ над полем K, которая понимается как отображение $u : \Sigma_0^p \to K$. Полиномом от двух переменных $x = (x_{1,} x_2)$ называется выражение $f(x) = \sum_{m \in \Gamma_f} f_m \cdot x^m$, где

 $\Gamma_f = \{m \in \Sigma_0 | f_m \neq 0\}$ ($|\Gamma_f| < \infty$), $x^m = (x_1^{m_1}, x_2^{m_2})$. Полный порядок на Σ_0 позволяет ввести понятие (старшей) степени полинома f, которую будем обозначать LP(f). Определим следующую операцию: $f[u]_n = \sum_{m \in \Gamma_f} f_m \cdot u_{m+n-s}$, где $n \in \Sigma_s^p$, s — степень полинома f. Будем

писать $f \in VALPOL(u)$ тогда и только тогда, когда $\forall n \in \Sigma_s^p$: $f[u]_n = 0$ либо $p \leq_T s$. Последнее понятие, необходимое для корректного определения задачи, решаемой алгоритмом, понятие Δ -множества. Будем говорить, что упорядоченный набор $\{s^{(i)}\}_{i=0}^l$ точек из Σ_0 «определяет Δ -множество», если:

 $s_1^{(1)}>s_1^{(2)}>...>s_1^{(l)}=0,\ 0=s_2^{(1)}>s_2^{(2)}>...>s_2^{(l)}$ Пусть ещё $\forall n\in \Sigma_0\colon \Sigma_n=\{p\in \Sigma_0|n\leqslant p\}$. Наконец, $\Delta=\Sigma_0\setminus (\Sigma_{s^{(1)}}\cup \Sigma_{s^{(2)}}\cup ...\cup \Sigma_{s^{(l)}})$ — Δ -множество, определяют Δ -множество, то последнее мы будем обозначать $\Delta(F)$.

Минимальное множество полиномов $F = \{f^{(1)}, \dots f^{(l)}\}$ для последовательности uдлины *p*:

- (1) $F \subset VALPOL(u)$;
- (2) степени элементов F определяют Δ -множество;
- (3) $\forall g: g \in VALPOL(u) \rightarrow LP(g) \notin \Delta(F)$.

Алгоритм строит минимальное множество полиномов данной последовательности и длины р. Перед тем как описать шаги алгоритма, нужно дать определение тех специфических операций и объектов, с которыми он работает. Алгоритм имеет итеративный характер, на каждом шаге $n \in \Sigma_0$ имеются: $F = \{f^{(i)}(x)\}_{i=1}^l$ элементов последовательности, множество ДЛЯ «первых n» $S = \{s^{(i)} = LP(f^{(i)})\}_{i=1}^l$, вместо $\Delta(F)$ будем писать просто Δ ; $G = \{g^{(i)}(x)\}_{i=1}^{l-1}$ — «вспомогательное множество» полиномов и связанные ним множества $T = \{t^{(i)} = LP(g^{(i)})\}_{i=1}^{l-1}$, $PG = \{p^{(i)}\}_{i=1}^{l-1}$, $DG = \{d^{(i)}\}_{i=1}^{l-1}$. Определим операции, которые используют перечисленные параметры алгоритма и, таким образом, зависят от текущего шага:

•
$$\forall i, j \in \mathbb{N}_0$$
: $BP\langle i, j \rangle = \begin{cases} f^{(i)}, j = 0 \\ x^{r-s^{(i)}} \cdot f^{(i)} - (d/d^{(j)}) x^{r-n+p^{(j)}-t^{(j)}} \cdot g^{(j)}, \text{ иначе} \end{cases}$

где $d = f^{(i)}[u]_n$, $r_k = max\{s_k^{(i)}, t_k^{(j)} + n_k - p_k^{(j)}\}$, k = 1,2; $\forall i \in \mathbb{N}_0$: $SP_k \langle i \rangle = x_k^{n_k - s_k^{(i)} + 1} \cdot f^{(i)}$, k = 1,2;

•
$$\forall i \in \mathbb{N}_0$$
: $SP_k \langle i \rangle = x_k^{n_k - s_k^{(i)} + 1} \cdot f^{(i)}, k = 1,2$

•
$$\forall n, m \in \Sigma_0$$
: $inSD(n, m) = \begin{cases} j, & n_k < m_k + s_k^{(j+k-1)}, & k=1,2\\ 0, & \text{иначе} \end{cases}$

Вход: двумерная последовательность *и* длины $p \in \Sigma_0$ над полем *K*.

Выход: минимальное множество F для u.

Шаг 0. Положить
$$n=(0,0)$$
, $F=\{1\}$, $G=DG=PG=\Delta=\emptyset$.

Шаг 1.
$$\forall i \in [1,l]_{\mathbb{N}}$$
: if $\neg (s^{(i)} \le n) \lor (f^{(i)} [u]_n = 0)$ then $f^{(i)} ∈ F_V$ else $f^{(i)} ∈ F_N$

Шаг 2. Положить $aux \in \mathbb{N}_0^l$, $aux = \overline{0} \cdot \forall f^{(i)} \in F_N$: $aux[i] = inSD(n, s^{(i)})$

$$\textit{if} \ \forall \ f^{(i)} \in F_{N} \colon \ \textit{aux}[i] \neq 0 \ \textit{then} \ [\ \forall \ f^{(i)} \in F_{N} \colon \ f^{(i)} = \textit{BP} \ \langle i \,, \textit{aux}[i] \rangle \,; \ \textit{goto} \ \coprod \texttt{ar6}] \,.$$

Шаг 3. Определим Δ_{new} , включая в него последовательно точки каждого из следующих четырёх типов при выполнении условий:

(1)
$$(s_1^{(i)}, s_2^{(i)})$$
, если $f^{(i)} \in F_V \vee aux[i] \neq 0$;

$$(2)\ \, (n_1-s_1^{(i)}+1,n_2-s_2^{(i+1)}+1) \ , \ \text{если}\ \, \exists\, i{\in}[\,1,l-1\,]_{\mathbb{N}}{:}\ \, f^{(i)},f^{(i+1)}{\in}F_N;$$

(3)
$$(n_1-s_1^{(i)}+1,s_2^{(j)})$$
, если

$$\exists f^{(i)}, f^{(j)} \in F_N: (n \le s^{(i)} + s^{(j)}) \land \forall k \in [i, l]: n_2 < s_2^{(k)} + s_2^{(j)};$$

(4)
$$(s_1^{(i)}, n_2 - s_2^{(j)} + 1)$$
, если

$$\exists f^{(i)}, f^{(j)} \in F_N: (n \le s^{(i)} + s^{(j)}) \land \forall k \in [1, j]: n_1 < s_1^{(k)} + s_1^{(i)}$$

Шаг 4. Построить новое F, добавляя в него новый элемент для каждой точки Δ_{new} по определённому правилу для точек каждого типа:

(1)
$$(s_1^{(i)}, s_2^{(i)}) \longrightarrow BP\langle i, aux[i] \rangle$$
;

$$(2) \ \ (n_1 - s_1^{(i)} + 1, n_2 - s_2^{(i+1)} + 1) = t \ \ -- \ \ BP\langle k \,, i \rangle \,, \, \text{где} \ \ k \, \colon \ f^{(k)} \in F_N \wedge s^{(k)} < t \, ;$$

(3)
$$(n_1-s_1^{(i)}+1,s_2^{(j)}) = \begin{cases} BP\langle j,i\rangle, & i\neq l \\ SP_1\langle j\rangle, & \text{иначе} \end{cases}$$
;

(3)
$$(n_1 - s_1^{(i)} + 1, s_2^{(j)}) = \begin{cases} BP\langle j, i \rangle, & i \neq l \\ SP_1\langle j \rangle, & \text{иначе} \end{cases}$$
;
(4) $(s_1^{(i)}, n_2 - s_2^{(j)} + 1) = \begin{cases} BP\langle i, j - 1 \rangle, & j \neq 1 \\ SP_2\langle i \rangle, & \text{иначе} \end{cases}$.

Шаг 5. Построить G_{new} , исходя из условий: $G_{\mathit{new}}{\subset} G \cup F_{\mathit{N}}$ и $|G_{\mathit{new}}|{=}|F|{-}1$.

Пополнить $PG = \{p^{(i)}\}_{i=1}^{l-1}$ и $DG = \{d^{(i)}\}_{i=1}^{l-1}$:

$$\forall g^{(k)} \in G_{new} \cap F_N: PG = PG \cup \{p^{(k)} = n\}, DG = DG \cup \{d^{(k)} = g^{(k)}[u]_n\}$$

Заменить G на G_{new} . Обновить T, исходя из его определения. Перенумеровать элементы G и соответствующие им элементы PG, DG и T так, чтобы: $\forall i \in [\ 1,l-1\]_{\mathbb{N}}\colon\ s_k^{(i+k-1)} = p_k^{(i)} - t_k^{(i)} + 1,\ k=1,2$

$$\forall i \in [1, l-1]_{\mathbb{N}}: s_{k}^{(i+k-1)} = p_{k}^{(i)} - t_{k}^{(i)} + 1, k = 1, 2$$

 \coprod ar 6. n=n+1; if n=p then exit else goto \coprod ar 1.

Литература.

- 1. S. Sakata, «Finding a minimal set of linear recurring relations capable of generating a given finite two-dimensional array,» J. Symb. Comp., vol. 5, pp. 321-337, 1988.
- 2. Р. Блейхут, «Теория и практика кодов, контролирующих ошибки»: Пер. с англ. М.: Мир, 1986.
- 3. J. Justesen, K. J. Larsen, H. E. Jensen, and T. Hoholdt, «Fast decoding of codes from algebraic plane curves,» IEEE Trans. Inform. Theory, vol. 38. DD. 111-119. Jan. 1992.