

From raw data to temporal graph structure exploration

HOMEWORK 2

SOCIAL NETWORK ANALYSIS

MSc in Business Analytics Part Time (2022-2024) Athens University of Economics and Business Instructor: Dr. Katia Papakonstantinopoulou

08/07/2023

Table of Contents

In	troduction	1
1)	Twitter mention graph	2
	Analysis	2
	IGRAPH	2
2)	Average degree over time	4
	vertices	4
	edges	4
	diameter	5
	In degree	5
	Out degree	6
3)	Important nodes	7
	in degree	7
	out degree	8
	pagerank	9
4)	Communities	О
	fast greedy clustering	О
	infomap clustering1	О
	louvain clustering	О
	community analysis	О
	topic detect	11
	community visualization	2

Introduction

In this assignment, I am tasked with analyzing Twitter data from July 2009 to gain insights into the dynamics of the Twitter network during that time. The data consists of tweets posted in July 2009 and includes information such as timestamps, users, and tweet content. My goal is to create a weighted directed graph representing the mention relationships between users, identify the most important topic for each user based on their hashtags, and analyze the evolution of various graph metrics over five days.

From raw data to temporal graph structure exploration Project 2 for Social Network Analysis - P.T. (2022-2024)

Firstly, I will process the raw data and create five separate CSV files, each representing a day in July 2009. These files will contain the weighted mention graph, indicating the source user, target user, and the weight of the mention. Additionally, I will identify the most important topic for each user by analyzing the hashtags used in their tweets.

Using the generated CSV files, I will create igraph graphs in R and update the graph vertices to include the users' most important topics as attributes. This will enable further analysis and visualization of the network. I will then plot the evolution of metrics such as the number of vertices, number of edges, graph diameter, average in-degree, and average out-degree to identify any significant fluctuations or trends in the network's characteristics over the five-day period.

In addition, I will analyze the top 10 Twitter users each day based on their in-degree, out-degree, and PageRank scores. This analysis will provide insights into the most influential and active users during different time periods. Furthermore, I will perform community detection using three algorithms: fast greedy clustering, infomap clustering, and Louvain clustering. By examining the communities within the mention graphs, I can identify shared interests and patterns. Finally, I will visualize the graph, coloring each community differently, and filter out nodes from very small or large communities for a more meaningful representation.

Overall, this analysis aims to provide a comprehensive understanding of the Twitter network in July 2009 by examining mention relationships, identifying important topics, analyzing graph metrics, and detecting communities.

1) Twitter mention graph

ANALYSIS

All the analysis used to extract both edgelist and topic_of_interest for each of the 5 days is located in the .ipynb file which is located inside the zip with comments about want the file is doing in each step so no further comment will be written here. I tried to follow all the instructions to extract the right info. From my point of view, I have decided to exclude all hashtags that contains less than 3 numbers because they don't seem to mean something. For example, #1 can mean anything and it is something very common. 4 or more digits are acceptable, because of year dates (for example #1995). I kept all hashtags that have letters or numbers, for example #1music is an acceptable hashtag. All the other extracts are based on the instructions.

IGRAPH

We will move on to the igraph library in R which we started creating and analyzing the graphs.

First, we will read the edgelist files.

dfi = read.csv("CSV Files/edgelist_2009_07_01.csv")

M.Sc. In Business Analytics (Part Time) 2022-2024 at

Athens University of Economics and Business (A.U.E.B.)

```
From raw data to temporal graph structure exploration Project 2 for Social Network Analysis - P.T. (2022-2024)
df2 = read.csv("CSV Files/edgelist_2009_07_02.csv")
df3 = read.csv("CSV Files/edgelist 2009 o7 o3.csv")
df4 = read.csv("CSV Files/edgelist_2009_07_04.csv")
df5 = read.csv("CSV Files/edgelist_2009_07_05.csv")
Then the topic of interest files.
dftopic1 = read.csv("CSV Files/topic_of_interest_2009_07_01.csv")
dftopic2 = read.csv("CSV Files/topic_of_interest_2009_o7_o1.csv")
dftopic3 = read.csv("CSV Files/topic_of_interest_2009_07_01.csv")
dftopic4 = read.csv("CSV Files/topic_of_interest_2009_07_01.csv")
dftopic5 = read.csv("CSV Files/topic_of_interest_2009_o7_o1.csv")
Now, we will create the graphs.
dfedgelist1 = df1[, c("from", "to", "weight")]
gi <- graph_from_data_frame(dfedgelisti[,c("from","to","weight")], directed = TRUE)
dfedgelist2 = df2[, c("from","to","weight")]
g2 <- graph_from_data_frame(dfedgelist2[,c("from","to","weight")], directed = TRUE)
dfedgelist3 = df3[, c("from","to","weight")]
g3 <- graph_from_data_frame(dfedgelist3[,c("from","to","weight")], directed = TRUE)
dfedgelist4 = df4[, c("from","to","weight")]
g4 <- graph_from_data_frame(dfedgelist4[,c("from","to","weight")], directed = TRUE)
dfedgelist5 = df5[, c("from","to","weight")]
g5 <- graph_from_data_frame(dfedgelist5[,c("from","to","weight")], directed = TRUE)
We inject now the subject of interest for each user for each day.
V(g_1)$topic_of_interest <- dftopic1$topic_of_interest[match(V(g_1)$name, dftopic1$user)]
V(g_2)$topic_of_interest <- dftopic2$topic_of_interest[match(V(g_2)$name, dftopic2$user)]
V(g_3)$topic_of_interest <- dftopic3$topic_of_interest[match(V(g_3)$name, dftopic3$user)]
V(g_4)$topic_of_interest <- dftopic4$topic_of_interest[match(V(g_4)$name, dftopic4$user)]
V(g5)$topic of interest <- dftopic5$topic of interest[match(V(g5)$name, dftopic5$user)]
M.Sc. In Business Analytics (Part Time) 2022-2024 at
Athens University of Economics and Business (A.U.E.B.)
```

2) Average degree over time

VERTICES

We now want to compare the number of nodes of each day graph. Below we can see a chart for doing that:

As we can see, the 1st day of July seems to have a huge jump and in the next days, it starts to fall. That means that something huge happened in the beginning of July which triggered many people to spread the news to another by mentions.

EDGES

We now want to compare the number of edges of each day graph. Below we can see a chart for doing that:

As we can see, the ${\bf 1}^{\rm st}$ day of July seems to follow the same pattern. M.Sc. In Business Analytics (Part Time) 2022-2024 at

From raw data to temporal graph structure exploration Project 2 for Social Network Analysis - P.T. (2022-2024)

DIAMETER

We now want to compare the diameter of each day graph. Below we can see a chart for doing that:

As we can see, in the beginning of the month, we had a huge graph in which the next days, started to shrink and then it started to rise again at 5^{th} of July.

IN DEGREE

We now want to compare the average in-degree of each day graph. Below we can see a chart for doing that:

As we can see, the in-degree in the 3rd day of July is higher than the rest and that is logical because this graph has the lowest diameter, meaning that it is a smaller graph than the others. Because of that, the average indegree seems to be higher.

M.Sc. In Business Analytics (Part Time) 2022-2024 at

From raw data to temporal graph structure exploration Project 2 for Social Network Analysis – P.T. (2022-2024)

OUT DEGREE

We now want to compare the average out-degree of each day graph. Below we can see a chart for doing that:

As we can see, nothing really changed compared to average in-degree.

3) Important nodes

IN DEGREE

^	User ‡	In_Degree ‡	Date	‡	‡	*	÷
1	tweetmeme	2522	2009-07-01				
2	mashable	1627	2009-07-01				
3	addthis	1212	2009-07-01		27	27 moontweet	27 moontweet 720
4	smashingmag	965	2009-07-01		28	28 lilduval	28 lilduval 428
5	mileycyrus	778	2009-07-01		29	29 PhillyD	29 PhillyD 365
6	Breaking News	763	2009-07-01		30	30 adamlambert	30 adamlambert 362
7	cnn	746	2009-07-01		31	31 Breaking News	31 BreakingNews 949
8	GuyKawasaki	679	2009-07-01		32	32 addthis	32 addthis 816
9	aplusk	669	2009-07-01		33	33 tweetmeme	33 tweetmeme 762
10	rafinhabastos	629	2009-07-01		34	34 iamdiddy	34 iamdiddy 543
11	tweetmeme	2478	2009-07-02		35	35 mileycyrus	35 mileycyrus 535
12	ddlovato	2242	2009-07-02		36	36 cnnbrk	36 cnnbrk 516
13	mashable	1996	2009-07-02		37	37 mashable	37 mashable 456
14	cnnbrk	1300	2009-07-02		38	38 lilduval	38 lilduval 454
15	cnn	1219	2009-07-02		39	39 souljaboytellem	39 souljaboytellem 443
16	addthis	1118	2009-07-02		40	40 TheOnion	40 TheOnion 350
17	souljaboytellem	898	2009-07-02		41	41 davidmmasters	41 davidmmasters 1914
18	OfficialTila	748	2009-07-02		42	42 iamdiddy	42 iamdiddy 1147
19	officialtila	738	2009-07-02		43	43 addthis	43 addthis 861
20	mileycyrus	680	2009-07-02		44	44 tweetmeme	44 tweetmeme 746
21	tweetmeme	1826	2009-07-03		45	45 mashable	45 mashable 550
22	souljaboytellem	1379	2009-07-03		46	46 Breaking News	46 BreakingNews 490
23	addthis	1002	2009-07-03		47	47 moontweet	47 moontweet 360
24	mashable	940	2009-07-03		48	48 mileycyrus	48 mileycyrus 353
25	BreakingNews	874	2009-07-03		49	49 rainnwilson	49 rainnwilson 339
26	cnnbrk	856	2009-07-03		50	50 AKGovSarahPalin	50 AKGovSarahPalin 332

Above we can se 50 registrations of users, with the top 10 from each date for 5 days. We can see that many users are appearing more than one date. As an example, BreakingNews usually is at 6th place, except 3rd date which want 1st place. This make sense because BreakingNews seems to be an information channel and that's why many users have mentioned it.

OUT DEGREE

^	User ‡	Out_Degree ‡	Date ‡				
1	dudebrochill	245	2009-07-01				
2	failbus	215	2009-07-01				
3	tsliquidators	215	2009-07-01	27	n	achhi	achhi 340
4	the_sims_3	202	2009-07-01	28	d	ludebrochill	ludebrochill 305
5	wootboot	200	2009-07-01	29	٧	vootboot	vootboot 277
6	vaguetweetstest	193	2009-07-01	30	r	medic_ray	medic_ray 271
7	Imaobot	165	2009-07-01	31	5	swbot	swbot 830
8	drharvey	142	2009-07-01	32	(dudebrochill	dudebrochill 391
9	luvorhate	119	2009-07-01	33	١	wootboot	wootboot 353
10	help_echo	106	2009-07-01	34	i	fxxxyourlife	fxxxyourlife 257
11	dudebrochill	279	2009-07-02	35		andreapuddu	andreapuddu 246
12	wootboot	240	2009-07-02	36		azandiamjbb	azandiamjbb 244
13	failbus	185	2009-07-02	37		hoboprophet	hoboprophet 240
14	the_sims_3	166	2009-07-02	38		failbus	failbus 239
15	dvdbot	158	2009-07-02	39		herpescure	herpescure 216
16	takeyourpin	147	2009-07-02	40		twiprodigy009	twiprodigy009 202
17	teamqivana	143	2009-07-02	41	5	swbot	swbot 876
18	luvorhate	127	2009-07-02	42	ı	twiprodigy008	twiprodigy008 808
19	modelsupplies	125	2009-07-02	43	t	wiprodigy005	wiprodigy005 672
20	rt_thursday	119	2009-07-02	44	t	wiprodigy007	wiprodigy007 644
21	drejones71	624	2009-07-03	45	t	wiprodigy009	wiprodigy009 588
22	deana1981	605	2009-07-03	46	١	wildingp	wildingp 339
23	killah360dhh	438	2009-07-03	47		dudebrochill	dudebrochill 331
24	imbeeyo	431	2009-07-03	48		wootboot	wootboot 319
25	java4two	383	2009-07-03	49		hoboprophet	hoboprophet 255
26	ohmichael	347	2009-07-03	50		the_sims_3	the_sims_3 225

Above we can se 50 registrations of users, with the top 10 from each date for 5 days. We can see that many users are appearing more than one date. As an example, dudebrochill started at 1st place and ending up 7th place in 5th date. That means that he wanted to express his opinion in many people in the first dates.

PAGERANK

*	User ‡	PageRank [‡]	Date ‡				
1	tweetmeme	0.0017889774	2009-07-01				
2	mashable	0.0012591438	2009-07-01				
3	addthis	0.0011849832	2009-07-01		27	27 mashable	27 mashable 0.0011172055
4	smashingmag	0.0011813695	2009-07-01		28	28 Breaking News	28 BreakingNews 0.0010180932
5	cnn	0.0007182473	2009-07-01		29	29 PhillyD	29 PhillyD 0.0007181871
6	mileycyrus	0.0007096070	2009-07-01		30	30 adamlambert	30 adamlambert 0.0006171114
7	KISSmetrics	0.0006783605	2009-07-01		31	31 souljaboytellem	31 souljaboytellem 0.0056384024
8	CourageCampaign	0.0006260832	2009-07-01		32	32 addthis	32 addthis 0.0019969251
9	aplusk	0.0005397417	2009-07-01		33	33 tweetmeme	33 tweetmeme 0.0016726163
10	rafinhabastos	0.0005195846	2009-07-01		34	34 BreakingNews	34 BreakingNews 0.0016722975
11	ddlovato	0.0028156243	2009-07-02		35	35 lilduval	35 lilduval 0.0012235658
12	drew_taubenfeld	0.0023948782	2009-07-02		36	36 mileycyrus	36 mileycyrus 0.0011959503
13	mashable	0.0021490222	2009-07-02		37	37 mashable	37 mashable 0.0011092977
14	tweetmeme	0.0021307449	2009-07-02		38	38 iamdiddy	38 iamdiddy 0.0010881197
15	global manners	0.0018296943	2009-07-02		39	39 cnnbrk	39 cnnbrk 0.0010306820
16	cnn	0.0015276583	2009-07-02		40	40 garyvee	40 garyvee 0.0009087917
17	addthis	0.0013608868	2009-07-02		41	41 davidmmasters	41 davidmmasters 0.0034208343
18	souljaboytellem	0.0012128067	2009-07-02	l	42	42 iamdiddy	42 iamdiddy 0.0029246273
19	cnnbrk	0.0011659017	2009-07-02		43	43 addthis	43 addthis 0.0022322762
20	mileycyrus	0.0007575637	2009-07-02	l	44	44 aplusk	44 aplusk 0.0021665916
21	tweetmeme	0.0024601761	2009-07-03		45	45 tweetmeme	45 tweetmeme 0.0016896555
22	souljaboytellem	0.0023079639	2009-07-03		46	46 mashable	46 mashable 0.0010695413
23	killerstartups	0.0020972462	2009-07-03	l	47	47 mrskutcher	47 mrskutcher 0.0009199140
24	addthis	0.0017641800	2009-07-03		48	48 moontweet	48 moontweet 0.0008531593
25	moontweet	0.0012360145	2009-07-03		49	49 Breaking News	49 BreakingNews 0.0007359969
26	cnnbrk	0.0011727753	2009-07-03		50	50 mileycyrus	50 mileycyrus 0.0007279574

As far as PageRank, mashable is a nice example of it. He has high score in the first dates, because he was talking to important users but in the next days, he stayed behind.

From raw data to temporal graph structure exploration Project 2 for Social Network Analysis - P.T. (2022-2024)

4) Communities

FAST GREEDY CLUSTERING

This algorithm is particularly slow and it is hard to execute.

INFOMAP CLUSTERING

This algorithm practically never executed because it tries to find the best partition of the network based on information flow. This means that it need to compare each node with each other so in order to be executed, huge amount of resources are needed.

LOUVAIN CLUSTERING

This algorithm was the only one which was executed in fairly normal time so this algorithm is used in the next sections.

Below, you can see a comparison between Fast Greedy and Louvain clustering:

```
> compare(com_fg1, com_lvcl1)
[1] 2.028709
> compare(com_fg2, com_lvcl2)
[1] 2.051972
> compare(com_fg3, com_lvcl3)
[1] 2.487919
> compare(com_fg4, com_lvcl4)
[1] 1.982509
> compare(com_fg5, com_lvcl5)
[1] 1.841737
```

As we can see, they produce different communities with each other.

COMMUNITY ANALYSIS

We need to extract one pseudorandom user that appears in all 5 graphs and then detect the evolution of the community this user belongs to. With the below code, we can extract the pseudorandom user:

We have set a seed in order to be reproduceable. Our random user is: PeaceZicklin

From raw data to temporal graph structure exploration Project 2 for Social Network Analysis – P.T. (2022-2024)

Then, after finding the communities he belongs to, we compare these communities:

```
closeness :
Community 1 : 8.813925e-05
Community 2 : 1
Community 3 : 8.758565e-<u>05</u>
Community 4 : 0.01359627
Community 5 : 0.2611111
                           out_degree :
betweenness :
Community 1 : 4610.825
                            Community 1 : 2.136947
Community 2 : 0
                            Community 2 : 1
Community 3 : 4600.757
                            Community 3 : 2.554873
                            Community 4 : 6.2
Community 4 : 19.31898
Community 5 : 0.3333333
                            Community 5 : 1.333333
                           modularity :
in_degree :
Community 1 : 2.136947
                            Community 1 : 0.9001346
                            Community 2 : 0.9025843
Community 2 : 1
Community 3 : 2.554873
                            Community 3 : 0.847891
                            Community 4 : 0.8846259
Community 4 : 6.2
                           Community 5 : 0.898963
Community 5 : 1.333333
```

Based on my analysis, Community 5 stands out with the highest closeness centrality value of 0.261, indicating that the nodes within this community are relatively close to each other compared to other communities. Additionally, Community 1 has a closeness centrality value of 1, suggesting that all nodes within this community are directly connected.

In terms of betweenness centrality, Community 1 shows the highest value of 4610.825, indicating that the nodes in this community play a crucial role in connecting different parts of the network as important intermediaries. Conversely, Community 2 has the lowest betweenness centrality value of 0, indicating that the nodes within this community do not serve as significant intermediaries.

Looking at the in-degree and out-degree distributions, all communities have similar average values. However, Community 4 slightly exceeds other communities in both in-degree and out-degree values, implying a relatively balanced flow of connections both into and out of the nodes in each community.

Regarding modularity, Community 2 demonstrates the highest modularity value of 0.9025843, suggesting a strong division of the network into distinct communities. Conversely, Community 3 has the lowest modularity value of 0.847891, indicating that the division of this community is not as well-defined.

TOPIC DETECT

Below are the top 5 topics for each community PeaceZicklin belongs to:

```
Top 5 Community Topics for Community 1 are: #quote #woofwednesday #moonfruit #voss #fb
Top 5 Community Topics for Community 2 are: #moonfruit #MMOT #michaeljackson #p2 #quotes
Top 5 Community Topics for Community 3 are: #quote #tcot #moonfruit #fb #voss
Top 5 Community Topics for Community 4 are: #quote #moonfruit #fb #voss #tcot
Top 5 Community Topics for Community 5 are: #FringeTO #Maddie #1chiphttp #alice #AmericanGirl
```

Below, are the top 5 topics among all communities that PeaceZicklin belongs to:

"#quote" "#moonfruit" "#voss" "#fb" "#quotes"

COMMUNITY VISUALIZATION

Communities - Day: 2009-07-01

Communities - Day: 2009-07-02

Communities - Day: 2009-07-03

Communities - Day: 2009-07-04

Communities - Day: 2009-07-05