CS5489 - Machine Learning

Lecture 7b - Unsupervised Learning - Clustering

Dr. Antoni B. Chan

Dept. of Computer Science, City University of Hong Kong

Outline

- 1. Unsupervised Learning
- 2. Parametric clustering
 - A. K-means
 - B. Gaussian mixture models (GMMs)
 - C. Dirichlet Process GMMs
- 3. Non-parametric clustering and Mean-shift
- 4. Spectral clustering

Non-parametric densities

- Suppose we have samples $\{\mathbf{x}_1,\cdots,\mathbf{x}_N\}$
 - We want to estimate a probability density without assuming a parametric model (e.g., Gaussian)

Non-parametric estimation

- Idea: put a small Gaussian at each data point, and sum it up.
 - each point contributes locally to the probability density.
 - $p(\mathbf{x}) = rac{1}{N} \sum_{i=1}^{N} \mathcal{N}(\mathbf{x}|\mathbf{x}_i, \sigma^2 \mathbf{I})$
 - \circ σ is the bandwidth of the Gaussian.

Kernel density estimator

- This is called a kernel density estimator
 - the kernel is the small Gaussian.

```
In [9]:
           kde = neighbors.KernelDensity(bandwidth=3.0).fit(X)
           plot scores(kde, axbox, 'magma')
           plt.scatter(X[:,0], X[:,1], c='b', s=ssize, edgecolors='k');
            20
            15
                                                         0.006
            10
                                                         0.004
             5
                                                         0.002
             0
             -10
                                       10
                                             15
                                                   20
```

Clustering using KDE

• The modes of the KDE can be considered the cluster centers.

- A mode is a local maximum of the probability density.
- The number of clusters is selected automatically according to the data.
- How to find the cluster centers?
 - mode: $\mu = \operatorname{argmax} p(\mathbf{x})$
 - select a point, and run gradient ascent on $p(\mathbf{x})$.

$$\hat{oldsymbol{\mu}} \leftarrow \hat{oldsymbol{\mu}} + \eta rac{d}{d\mathbf{x}} p(\mathbf{x})$$

• using a clever choice of η , we get an algorithm that is guaranteed to converge called the "Mean-shift algorithm".

Mean-shift algorithm

- Idea: iteratively shift towards the largest concentration of points.
 - start from an initial point x (e.g., one of the data points).
 - repeat until x is unchanged:
 - $\circ~$ 1) find the nearest neighbors to \boldsymbol{x} within some radius (bandwidth)
 - o according to the Gaussian kernels.
 - 2) set **x** to be the mean of the neighbor points.

Getting the clusters

• Run the mean-shift algorithm for many initial points $\{\mathbf x_i\}$.

- the set of converged points contain the cluster centers.
 - need to remove the duplicate centers.
- data points that converge to the same center belong to the same cluster.
- different initializations can run in parallel (n_j obs)

```
In [15]: # bin_seeding=True -- coarsely uses data points as initial points
ms = cluster.MeanShift(bandwidth=5, bin_seeding=True, n_jobs=-1)
Y = ms.fit_predict(X)

cc = ms.cluster_centers_ # cluster centers

plot_scores(kde, axbox, 'magma', showcontour=False)
plot_clusters(ms, axbox, X, Y, rbow, rbow2)
```

Out[15]: (2,) 20 15 10 -5 -10 -5 0.006 0.002

- Cluster partitions
 - assign point based on convergence to same cluster center

```
In [16]: plot_clusters(ms, axbox, X, Y, rbow, rbow2, showregions=True)
```


Number of clusters

- Number of clusters is implicitly controlled by the bandwidth (radius of the nearest-neighbors)
 - larger bandwidth creates less clusters
 - focuses on global large groups
 - smaller bandwidth creates more clusters
 - focuses on local groups.

• Cluster partitions: assign points based on convergence to same cluster center.

In [20]: msfig
Out[20]:

file:///Users/abc/Documents/Work/Courses/CS5489/lectures/lecture7/Lecture7b.slides.html

Non-compact clusters

- K-means, GMM, and Mean-Shift assume that all clusters are compact.
 - i.e., circles or ellipses
- What about clusters of other shapes?
 - e.g., clusters not defined by compact distance to a "center"

Out[24]:

Spectral Clustering

- Estimate clusters using pair-wise affinity between points.
- Affinity (similarity) between points
 - kernel function: $k(\mathbf{x}_i, \mathbf{x}_j)$ -- RBF kernel
 - number of nearest neighbors within a radius (bandwidth)

Spectral Clustering

- Idea: clustering with a graph formulation
 - each data point is a node in a graph
 - lacktriangle edge weight between two nodes is the affinity $k(\mathbf{x}_i,\mathbf{x}_j)$
 - (darker colors indicate stronger weights)

In [28]:

graphfig

Out[28]:

- **Goal:** cut the graph into clusters such that weights of cut edges is small compared to the total edge weight within each cluster.
 - find "blocks" of high affinity in the affinity matrix.
- Intuitively, consider a "mass-spring" system -- masses connected together with springs.
 - the graph nodes are masses, the edge weights are the spring stiffness.
 - if you hit the masses...
 - the masses that are tightly connected by stiff springs will move together in a low-frequency vibration mode.
- These low-frequency modes are found with the smallest non-zero eigenvectors of the graph Laplacian
- Graph Laplacian: $\mathbf{L} = \mathbf{D} \mathbf{A}$
 - **A** is the adjacency (affinity) matrix.
 - D is the degree matrix.
 - $\circ~$ diagonal matrix with entry $D_{ii} = \sum_{j} A_{i,j}$
- There are different ways to define the Laplacian, leading to different versions of Spectral Clustering
 - the one in sklearn is called "Normalized Cuts".

Sensitivity to gamma

- gamma controls which structures are important
 - small gamma far away points are still considered similar
 - large gamma only close points are considered as similar

Another Example

In [36]: graphfig2

Out[36]: 1.5 1.0 0.5 0.0 -0.5-1.0-1.5-1.0-0.5

0.5

1.0

1.5

0.0

Clustering Summary

- **Goal:** given set of input vectors $\{\mathbf x_i\}_{i=1}^n$, with $\mathbf x_i \in \mathbb{R}^d$, group similar x_i together into clusters.
 - estimate a cluster center, which represents the data points in that cluster.
 - predict the cluster for a new data point.

Name	Cluster Shape	Principle	Advantages	Disadvantages
K-Means	circular	minimize distance to cluster center	- scalable (MiniBatchKMeans)	sensitive to initialization; could get bad solutions due to local minima.need to choose K.
Gaussian Mixture Model	elliptical	maximum likelihood	- elliptical cluster shapes.	sensitive to initialization; could get bad solutions due to local minima.need to choose K.
Dirichlet Process GMM	elliptical	maximum likelihood	- automatically selects K via concentration parameter.	can be slow.sensitive to initialization; could get bad solutions due to local minima.
Mean-Shift	concentrated compact	move towards local mean	- automatically selects K via bandwidth parameter.	- can be slow.
Spectral clustering	irregular shapes	graph-based	- can handle clusters of any shape, as long as connected.	- need to choose K. - cannot assign novel points to a cluster.

- can be slow (kernel matrix)

Other Things

- Feature normalization
 - feature normalization is typically required clustering.
 - e.g., algorithms based on Euclidean distance (Kmeans, Mean-Shift, Spectral Clustering)

Example

- scaling down the x_1 feature makes its differences less important, compared to x_2

