1. What is the probability that a card selected at random from a standard deck of 52 cards is an ace?

4 of the deck of cards are aces.
$$\frac{4}{52} = \frac{1}{13} \approx 7.7 \%$$

3. What is the probability that a randomly selected integer chosen from the first 100 positive integers is odd?

Among the Lirst 100 positive integers, there are exactly so odd.

$$50/100 = \frac{1}{2}$$

24. Find the probability of winning a lottery by selecting the correct six integers, where the order in which these integers are selected does not matter, from the positive integers not exceeding

$$^{U}C^{\lambda} = \frac{(u-\lambda)[\lambda]}{u}$$

a) 30.

$$\frac{1}{\binom{30}{6}} = \frac{1}{30(6)} = \frac{1}{30!} = \frac{24!6!}{30 \cdot 29 \cdot 28 \cdot 27 \cdot 26 \cdot 25 \cdot 24!} = \frac{24!6!}{30 \cdot 29 \cdot 28 \cdot 27 \cdot 26 \cdot 25 \cdot 24!} = \frac{6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{30 \cdot 29 \cdot 28 \cdot 27 \cdot 26 \cdot 25} \approx 0.000001684$$

- **33.** What is the probability that Abby, Barry, and Sylvia win the first, second, and third prizes, respectively, in a drawing if 200 people enter a contest and
 - a) no one can win more than one prize.
 - **b**) winning more than one prize is allowed.
- a) There are 200.199.198 equally likely outcomes of the drawings only one of these do Abby, Barry and Sylvia win the 1st, 2nd, 3rd prizes, respectively.

7.2 Probability Theory

Ch. 7.2 1, 3, 23

1. What probability should be assigned to the outcome of heads when a biased coin is tossed, if heads is three times as likely to come up as tails? What probability should be assigned to the outcome of tails?

3. Find the probability of each outcome when a biased die is rolled, if rolling a 2 or rolling a 4 is three times as likely as rolling each of the other four numbers on the die and it is equally likely to roll a 2 or a 4.

let denote by t the probability that a 2 or 4 appears.

(1-t) is the probability that some other number appear.

t=3(1-t)

t=3-3t

4t=3

t=\frac{3}{4}

we assume from the statement of the problem that 2 and 4 are equally likely.

=> each of them must have probability 3/8.

=> each of other numbers (1,3,5,or6) must have probability $\frac{(1-t)}{4}$ => $\frac{(1-\frac{3}{4})}{4} = \frac{1}{4} \cdot \frac{1}{4} = \frac{1}{16}$

23. What is the conditional probability that exactly four heads appear when a fair coin is flipped five times, given that the first flip came up heads?

There are 16 equally likely outcomes of flipping a fair coin five times in which the first flip comes up heads

=> By the definition of conditional probability:

$$\frac{4}{16} = \frac{1}{4}$$