

Under-sampling methods

Process of **reducing** the number of samples from the Majority Class

Under-sampling methods

Process of **reducing** the number of samples from the Majority Class

Fixed vs Cleaning under- sampling

Balancing ratio

$$R(x) = \frac{X(minority)}{X(majority)}$$

- If $X(min) = X(maj) \rightarrow R(x) = 1$
- If $X(min) = 1/2 \times X(maj) \rightarrow R(x) = 0.5$

Fixed Under-sampling

• Remove samples from the majority class until R(x) = 1

Fixed Under-sampling

• Remove samples from the majority class until R(x) = 1

 But, user could determine otherwise, for example R(x) = 0.5, that is twice as many from the majority class as those from the minority.

Under-sampling criteria

Random Undersampling ENN, RENN, AllKNN

Tomek Links

NCR

Instance Hardness

CNN

NearMiss

One Sided Selection

Random

Remove Noisy observations

Retain observations in the boundary

Both

Under-sampling criteria

Random under-sampling

Observations are removed at random.

Remove noisy observations

Observations similar to the opposite class are preferentially removed.

Retain closer observations

Observations similar to the opposite class are preferentially retained.

THANK YOU

www.trainindata.com