

Compléments Mathématiques

Révisions du lycée

Devoir Surveillé du 1er octobre 2022 - Durée 1h30 Correction

Exercice 1 (Combinatoire: (5.5 points))

Une personne a dans son armoire six "bas" (pantalons, shorts, jupes, ...) et neuf "hauts" (chemises, chemisiers, t-shirts, tops, ...)

- 1. Combien d'ensembles (constitués d'un unique haut et d'un unique bas) peut-elle créer?
- 2. Cette personne part en voyage pour trois jours et constitue donc son sac à dos.
 - (a) Combien de sacs à dos différents peut-elle faire (avec donc exactement trois hauts et trois bas).
 - (b) Un sac à dos étant constitué,
 - i. Combien d'ensembles peut-elle créer à partir de son sac à dos?
 - ii. Combien de manières a-t-elle pour s'habiller sur les trois jours? (Avec la contrainte que chaque haut et chaque bas est porté une et une seule fois).
- 3. Au total, combien a-t-elle de manière de s'habiller sur les trois jours (toujours avec la même contrainte).

Correction:

- 1. (1 point) Il y a six bas possibles et pour chaque bas, neuf hauts possibles, soit au total $6 \times 9 = 54$ ensembles possibles.
- 2. (a) (1 point) La personne part en voyage 3 jours. Elle constitue un sac à dos en mettant 3 hauts et 3 bas. Posons

$$B = \{B_1, B_2, B_3, B_4, B_5, B_6\}$$
 et $H = \{H_1, H_2, H_3, H_4, H_5, H_6, H_7, H_8, H_9\}$

Le nombre de triplet $(B_i, B_j, B_k)_{i \neq j \neq k}$ qu'elle peut construire sans répétition et sans tenir compte de l'ordre est par définition le nombre de 3-combinaisons parmi 6 bas. Ainsi, elle peut prendre trois bas parmi six $\binom{6}{3} = \frac{6!}{3!(6-3)!} = 20$). De même elle peut former 3-combinaisons de hauts parmi 9 hauts $\binom{9}{3} = \frac{9!}{3!(9-3)} = 84$). Soit un total de $84 \times 20 = 1680$ sacs possibles.

(b) i. (1 point) Un sac à dos est constitué. Elle dispose donc de 3 hauts et 3 bas dans son sac à dos. Ici, on pose les ensembles suivants :

$$B = \{B_1, B_2, B_3\}$$
 et $H = \{H_1, H_2, H_3\}$

Elle doit choisir un bas parmi trois et un haut parmi trois, soit un total de $\binom{3}{1} \times \binom{3}{1} = 3 \times 3 = 9$ ensembles.

- ii. (1.5 points) La personne dispose d'un sac à dos avec 3 hauts et 3 bas. Le premier jour elle a donc neuf choix possibles (question précédente). Le second jour, il ne lui reste que deux bas et deux hauts, d'où $2 \times 2 = 4$ possibilités. Le dernier jour, elle n'a plus le choix. Donc au total, $9 \times 4 \times 1 = 36$ possibilités.
- 3. (1 point) Au final, elle a 1680 sacs possibles et pour chaque sac 36 possibilités, donc un total de $1680 \times 36 = 60480$ manières de s'habiller sur les trois jours.

Exercice 2 (Suites: (7 points))

Soit $(U_n)_{n\in\mathbb{N}}$ la suite récurrente définie par $U_0=0$ et $U_{n+1}=\frac{3U_n+2}{U_n+4}$.

- 1. (a) Calculer U_1 et U_2 .
 - (b) Montrer que la suite n'est ni géométrique, ni arithmétique.
 - (c) Montrer que pour tout $n \in \mathbb{N}^*$, $U_n > 0$. En déduire que (U_n) est bien définie.
- 2. Déterminer les solutions de l'équation $x = \frac{3x+2}{x+4}$.
- 3. On pose pour tout $n \in \mathbb{N}$, $V_n = \frac{U_n 1}{U_n + 2}$. Montrer que $(V_n)_{n \in \mathbb{N}}$ est une suite géométrique et en préciser la raison.

Correction:

1. (a) (0.5 points) On a

$$U_1 = \frac{1}{2}$$
 et $U_2 = \frac{7}{9}$

(b) (0.5+0.5 points) Nous avons

$$U_1 - U_0 \neq U_2 - U_1$$
,

donc la suite $(U_n)_{n\in\mathbb{N}}$ n'est pas arithmétique. De même

$$\frac{U_0}{U_1} \neq \frac{U_1}{U_2},$$

donc la suite $(U_n)_{n\in\mathbb{N}}$ n'est pas géométrique.

- (c) (1.5 + 0.5 points) Soit \mathcal{P}_n la proposition " $U_n > 0$ ". Montrons par récurrence sur $n \in \mathbb{N}^*$ que \mathcal{P}_n est vraie $\forall n \in \mathbb{N}^*$.
 - Initialisation : $U_1 = \frac{1}{2} > 0$. Donc \mathcal{P}_1 est vraie.
 - Hypothèse de récurrence (Hérédité) : Soit $n \in \mathbb{N}^*$ et supposons que \mathcal{P}_n soit vraie. Montrons que \mathcal{P}_{n+1} est vraie. Par hypothèse de récurrence, $U_n > 0$ Alors $3U_n + 2 > 0$ et $U_n + 4 > 0$. D'où $U_{n+1} = \frac{3U_n + 2}{U_n + 4} > 0$. Ainsi \mathcal{P}_{n+1} est vraie.
 - Conclusion : Le principe de récurrence permet d'affirmer que \mathcal{P}_n est vraie $\forall n \in \mathbb{N}^*$.

Ainsi, il est impossible d'avoir $U_n = -4$, le dénominateur s'annule donc jamais et la suite $(U_n)_{n \in \mathbb{N}}$ est bien définie.

- 2. (1 point) Tout d'abord, nous devons avoir $x \neq -4$. Ensuite, dans ces conditions, cette équation est équivalente à $x^2 + 4x = 3x + 2$ et donc $x^2 + x 2 = 0$. Il s'agit d'un trinôme du second degré dont le discriminant $\Delta = 9 > 0$. Ce trinôme admet donc deux racines réelles distinctes x = 1 et x = -2.
- 3. (2 points) On remarque d'abord que la suite est bien définie puisque la dénominateur ne peut pas s'annuler. Calculons pour tout $n \in \mathbb{N}$:

$$\begin{split} \frac{V_{n+1}}{V_n} &= \frac{U_{n+1}-1}{U_{n+1}+2} \times \frac{U_n+2}{U_n-1} = \frac{\frac{3U_n+2}{U_n+4}-1}{\frac{3U_n+2}{U_n+4}+2} \times \frac{U_n+2}{U_n-1} \\ &= \frac{3U_n+2-U_n-4}{3U_n+2+2U_n+8} \times \frac{U_n+2}{U_n-1} = \frac{2U_n-2}{5U_n+10} \times \frac{U_n+2}{U_n-1} \\ &= \frac{2}{5} \end{split}$$

Ainsi la fraction est une constante et la suite est bien géométrique de raison $\frac{2}{5}$.

Exercice 3 (Suites : (5 points)) Le but de cet exercice est d'étudier l'évolution du nombre de cas d'une maladie.

Le nombre de cas est d'abord mesuré à 10 jours d'intervalle et on constate que le nombre a doublé entre les deux mesures. On note $U_1 = 1000$ le nombre de cas du premier jours et U_{11} le nombre de cas du 11^{ime} jour.

- 1. On suppose dans un premier temps que le nombre de cas évolue de manière constante, c'est-à-dire que le nombre de nouveaux cas par jour est constant.
 - (a) Donner la formule générale donnant U_{n+1} en fonction de U_n (et d'un paramètre que l'on calculera à la question suivante).
 - (b) Donner la formule donnant U_{11} en fonction de U_1 et en déduire le paramètre inconnu.
- 2. Une seconde mesure le 21^{ime} jour montre que le nombre de cas a encore doublé.
 - (a) Justifier que le modèle précédent n'est pas valable et en proposer un nouveau.
 - (b) Donner la formule générale donnant U_{n+1} en fonction de U_n (et d'un paramètre que l'on calculera à la question suivante).
 - (c) Donner la formule donnant U_{11} en fonction de U_1 et en déduire le paramètre inconnu.
- 3. Estimer le nombre de cas le 31^{ime} jour.

Correction:

- 1. (a) (0.5 points) Le modèle suggère une suite arithmétique. La formule est donc $U_{n+1} = U_n + r$ avec r un réel constant.
 - (b) (0.5 + 0.5 points) Nous avons donc $U_{11} = U_1 + 10r$, avec $U_1 = 1000$ et $U_{11} = 2000$, d'où 10r = 1000, soit r = 100. Attention, ici, le premier terme de la suite est U_1 et non U_0 . La formule du cours $U_n = U_0 + nr$ doit subir un changement d'indice. En effet, $U_n = U_0 + nr = U_1 r + nr = U_1 + (n-1)r$

- 2. (a) (0.5 + 0.5 points) Dans le modèle précédent, on aurait dû avoir $U_{21} = U_1 + 20r = 1000 + 2000 = 3000$. Or la mesure donne 4000. Le modèle n'est donc pas valable.
 - Cela semble plutôt être une suite géométrique (taux d'augmentation constant).
 - (b) (0.5 points) Dans ce nouveau modèle nous avons donc $U_{n+1} = qU_n$ avec q un réel constant.
 - (c) (0.5 + 1 points) Dans ce nouveau modèle, on utilise la propriété du cours sur les suites géométriques : $U_n = U_1 \times q^{n-1}$ donnant ainsi $U_{11} = q^{10}U_1$. D'où $q^{10} = 2$, soit $q = 2^{\frac{1}{10}} = \sqrt[10]{2}$.
- 3. (0.5 points) Le nombre de cas semble doubler tous les 10 jours, donc au 31^{ime} jour, le nombre de cas devrait être de 8000.

Exercice 4 (Plan cartésien : (1.5 points))

Soit un repère orthonormé du plan (O, \vec{i}, \vec{j}) , A(1,2), B(1,1), C(-1,2), $\vec{u} = (2,3)$.

- 1. Déterminer les équations des droites
 - Passant par A et de vecteur directeur \vec{u} .
 - (BC)
- 2. Déterminer les intersections de ces deux droites.

Correction:

1. (0.5 + 0.5 points).

<u>Première méthode</u>: Soit M(x,y) un point appartenant à la droite passant par A et de vecteur directeur \overrightarrow{u} . Alors les vecteurs \overrightarrow{AM} et \overrightarrow{u} sont colinéaires. D'après le cours, $\exists \lambda \in \mathbb{R}$ tel que $\overrightarrow{AM} = \lambda \overrightarrow{u}$. Cette dernière égalité est équivalente à

$$\begin{pmatrix} x-1\\y-2 \end{pmatrix} = \begin{pmatrix} 2\lambda\\3\lambda \end{pmatrix}.$$

La première du système précédent donne $\lambda=\frac{x-1}{2}$. En injectant cette expression de λ dans la seconde ligne du système on obtient $y=3\left(\frac{x-1}{2}\right)+2=\frac{3}{2}x+\frac{1}{2}$. Finalement, une équation cartésienne de la droite passant par A et de vecteur directeur \vec{u} est

$$2y - 3x - 1 = 0$$
.

<u>Deuxième méthode</u>: Soit $\mathcal{D}_{\vec{u}}$ la droite passant par le point A et de vecteur directeur \vec{u} . Comme $\vec{u} = (2,3)$ est un vecteur directeur de $\mathcal{D}_{\vec{u}}$, une équation cartésienne de $\mathcal{D}_{\vec{u}}$ est de la forme

$$3x - 2y + c = 0.$$

De plus, les coordonnées du point A vérifient l'équation cartésienne précédente. Ainsi, c=-3+2=1. Une équation cartésienne de $\mathcal{D}_{\overrightarrow{u}}$ est ainsi donnée par

$$3x - 2y + 1 = 0$$

2. Soit M(x, y) un point appartenant à la droite (BC). Alors, les vecteurs \overrightarrow{BM} et \overrightarrow{BC} sont colinéaires. D'après le cours, $\exists \lambda \in \mathbb{R}$ tel que $\overrightarrow{BM} = \lambda \overrightarrow{BC}$. Il s'ensuit que

$$\begin{pmatrix} x-1\\y-1 \end{pmatrix} = \lambda \begin{pmatrix} -2\\1 \end{pmatrix}$$
 (0.1)

La première ligne de l'équation (0.1) donne $\lambda = -\frac{1}{2}(x-1)$. En injectant λ dans la seconde ligne de (0.1) on obtient $y = -\frac{1}{2}(x-1) + 1 = -\frac{1}{2}x + \frac{3}{2}$. Finalement une équation cartésienne de la droite (BC) est donnée par

$$x + 2y - 3 = 0.$$

3. Les deux droites s'intersectent en un point M(x,y) si, et seulement si,

$$\begin{cases} 3x - 2y + 1 = 0 \ (L_1) \\ x + 2y - 3 = 0 \ (L_2) \end{cases} \iff \begin{cases} 3x - 2y + 1 = 0 \\ x = \frac{1}{2} \ (L_2) \leftarrow (L_1) + (L_2) \end{cases} \iff \begin{cases} y = \frac{5}{4} \\ x = \frac{1}{2} \end{cases}$$

Exercice 5 (Intégration : (3 points))

Calculer l'intégrale suivante :

$$\int_{\frac{\pi}{6}}^{\frac{2\pi}{3}} \sin(x) \cos^2(x) \, \mathrm{d}x$$

Correction : Il s'agit ici de calculer $\int_{\frac{\pi}{6}}^{\frac{2\pi}{3}} f(x) dx$ avec $f : \mathbb{R} \to \mathbb{R}$ définie par $f(x) = \sin(x)\cos^2(x)$. On remarque que f est de la forme $f(x) = -u'(x)u^2(x)$ avec $u(x) = \cos(x)$. D'après le cours, une primitive de f notée F est donnée par $F(x) = -\frac{1}{3}u^3(x)$. Ainsi,

$$\int_{\frac{\pi}{6}}^{\frac{2\pi}{3}} \sin(x) \cos^2(x) dx = \left[-\frac{\cos^3(x)}{3} \right]_{\frac{\pi}{6}}^{\frac{2\pi}{3}}$$
$$= -\frac{1}{3} \left(\left(-\frac{1}{2} \right)^3 - \left(\frac{\sqrt{3}}{2} \right)^3 \right) = \frac{1 + 3\sqrt{3}}{24}.$$

Primitive (1 point), valeurs des cos (1 point), résultat (1 point)