Práctica 4

Integrabilidad Uniforme

A lo largo de esta guía fijaremos un espacio de medida finita (X, \mathcal{M}, μ) .

Definición. Una familia $(f_i)_{i\in I}$ en $L^1(X,\mathcal{M},\mu)$ se dice uniformemente integrable si

$$\lim_{\xi \to +\infty} \left[\sup_{i \in I} \int_{\{|f_i| > \xi\}} |f_i| \, d\mu \right] = 0.$$

- 1. a) Mostrar que toda familia uniformemente integrable está acotada en L^1 .
 - b) Mostrar que la recíproca no es cierta.
- 2. Mostrar que toda familia finita de funciones en L^1 es uniformemente integrable.
- 3. Mostrar que toda familia $(f_i)_{i \in I}$ uniformemente integrable está acotada en medida.
- 4. Probar que si $(f_i)_{i\in I}$ es una familia de funciones medibles tal que existe $f\in L^1$ que verifica $|f_i|\leq f$ para todo $i\in I$ entonces $(f_i)_{i\in I}$ es uniformemente integrable.
- 5. a) Sea $G: \mathbb{R}_{\geq 0} \longrightarrow \mathbb{R}_{\geq 0}$ una función medible tal que $\lim_{x \to +\infty} \frac{G(x)}{x} = +\infty$. Mostrar que para todo C > 0 la familia

$$\left\{ f \in L^1(X, \mathcal{M}, \mu) : \int_X G(|f|) \, d\mu \le C \right\}$$

es uniformemente integrable.

- b) Deducir que toda familia acotada en L^p para p>1 es uniformemente integrable.
- c) Probar la recíproca, i.e., si $(f_i)_{i\in I}$ es una familia uniformemente integrable entonces existe una función G como en el item (a) tal que

$$\sup_{i \in I} \left[\int_X G(|f_i|) \, d\mu \right] < +\infty.$$

- 6. Sea $(f_i)_{i\in I}$ una familia acotada en L^1 . Entonces son equivalentes
 - a) $(f_i)_{i\in I}$ es uniformemente integrable.
 - b) Dado $\varepsilon > 0$ existe $\delta > 0$ tal que

$$\mu(A) < \delta \Longrightarrow \sup_{i \in I} \left[\int_{A} |f_{i}| d\mu \right] < \varepsilon.$$

- 7. Mostrar que si $(f_i)_{i\in I}$ y $(g_j)_{j\in J}$ son dos familias uniformemente integrables entonces $(f_i+g_j)_{(i,j)\in I\times J}$ es también uniformemente integrable.
- 8. Sea $(f_n)_{n\in\mathbb{N}}$ una sucesión de funciones en L^1 que converge en medida a una función medible f. Mostrar que

1

$$f_n \longrightarrow f$$
 en $L^1 \iff (f_n)_{n \in \mathbb{N}}$ uniformemente integrable.