第八章总复习题

- (1). 过坐标原点且平行于两条直线 $l_1: \frac{x+1}{1} = \frac{y}{2} = \frac{z-1}{1}$ 和 $l_2: x = 2t, y = 1+t, z = 2+t$ 的平面方程为(
 - A. x-y+3z=0 B. x+y-3z=0 C. x-y-3z=0 D. x+y+3z=0
- (2). 直线 L: $\frac{x-1}{2} = \frac{y-4}{5} = \frac{z+1}{-3}$ 和平面 $\pi: 7x y + 3z = 0$ 的位置关系是(
 - A. L与 π 平行 B. L与 π 斜交 C. L $\perp \pi$ D. L $\in \pi$

- (3). 设直线 L 的方程为 $\begin{cases} 5x-y-z=0, \\ 3x+y-3z+4=0, \end{cases}$ 则的参数方程为(
 - A. $\begin{cases} x = -1 + t, \\ y = -2 + t, \\ -3 + 2t \end{cases}$ B. $\begin{cases} x = 1 + t, \\ y = 2 + t, \\ -3 + 2t \end{cases}$ C. $\begin{cases} x = 1 + t, \\ y = 2 + 3t, \\ -3 + 2t \end{cases}$ D. $\begin{cases} x = -1 + t, \\ y = 2 + 3t, \\ -3 + 2t \end{cases}$ D. $\begin{cases} x = -1 + t, \\ y = -2 + 3t, \\ -3 + 2t \end{cases}$

- (4). 平面 x+y+z+3=0 与平面 2x+2y+2z+3=0 之间的距离为(

- A. $\sqrt{3}$ B. $\frac{3}{2}$ C. $\frac{\sqrt{3}}{2}$ D. $\frac{\sqrt{3}}{3}$
- (5). 求通过直线 $\frac{x-1}{2} = \frac{y+2}{-3} = \frac{z-2}{2}$ 且垂直于平面 3x + 2y z 5 = 0 的平面方程(
 - A. x 8y 13z + 9 = 0
- B. x 8y 13z 9 = 0
- C. x + 8y 13z + 41 = 0
- D. x + 8y 13z 41 = 0

二、填空题

- (1). 已知 \vec{a} , \vec{b} , \vec{c} 为单位向量,且满足 \vec{a} + \vec{b} + \vec{c} = $\vec{0}$,则 \vec{a} · \vec{b} + \vec{b} · \vec{c} + \vec{c} · \vec{a} =_____.
- (2). 设 $(\overrightarrow{a} \times \overrightarrow{b}) \cdot \overrightarrow{c} = 2$,则 $[(\overrightarrow{a} + \overrightarrow{b}) \times (\overrightarrow{b} + \overrightarrow{c})] \cdot (\overrightarrow{c} + \overrightarrow{a}) = \underline{\hspace{1cm}}$
- (3). 直线 $L: \frac{x+2}{3} = \frac{y-2}{1} = \frac{z+1}{2}$ 和 平 面 $\pi: 2x+3y+3z-8=0$ 的 交 点 是
- (4). 点 (3,2,2) 到平面 x+2y-2z=0 的距离=______
- (5). 点(2,3,2)到直线 $\frac{x-1}{1} = \frac{y-2}{2} = \frac{z-3}{3}$ 的距离=
- (6). xoz 面上的抛物线 $z^2 = 5x$ 绕 x 轴旋转而成的曲面方程是

(9). 求过点 M(1,2,-1) 且与直线 $\begin{cases} x = -t + 2 \\ y = 3t - 4 \text{ 垂直的平面方程} \\ z = t - 1 \end{cases}$.

(10). 曲面 $\frac{x^2}{9} - \frac{y^2}{4} - \frac{z^2}{16} = 1$ 的形状是	(10).	=1 的形状是
--	-------	---------

三、解答题

(1). 已知两直线方程

$$L_1: \frac{x-1}{1} = \frac{y-2}{0} = \frac{z-3}{-1}$$
 $\exists L_2: \frac{x+2}{2} = \frac{y-1}{1} = \frac{z}{1}$

求过 L_1 且平行于 L_2 的平面方程.

(2). 设平面经过原点及点(6,-3,2)且与平面4x-y+2z=8垂直,求此平面方程.

(3). 求过点 (5,8,-10) 且平行于直线 $x = \frac{y}{-1} = z$ 及 $\begin{cases} x = 0 \\ y = z \end{cases}$ 的平面方程.

(4). 求过点 A(3,0,0) 和 B(0,0,1) 且与平面 xOy 成 $\frac{\pi}{3}$ 角的平面的方程.

(5). 求过点 (-3, 2, 5) 且与直线 $\frac{x+1}{3} = \frac{y-1}{2} = \frac{z}{-1}$ 垂直相交的直线方程.

(6). 求 (1) 直线 $L: \frac{x-1}{1} = \frac{y}{1} = \frac{z+1}{-1}$ 在平面 $\Pi: x-y+2z-1=0$ 上的投影直线 L_0 的方程; (2) 直线 L_0 绕 y 轴旋转一周而成的曲面方程.

(7). 过 $P_0 = (-1,0,4)$) 点且平行于 3x - 4y + z - 10 = 0,又与直线 $\frac{x+1}{1} = \frac{y-3}{1} = \frac{z}{2}$ 相交的直线方程.

(8). 求两不相交直线 L_1 : $\frac{x-9}{4} = \frac{y+2}{-3} = z = L_2$: $\frac{x}{-2} = \frac{y+7}{9} = \frac{z-2}{2}$ 的距离及公垂线方程.

