Data Preprocessing

Sibylle Hess

Notation: Assumptions for this Lecture

ID	F_1	F_2		F_d
1	5.1	3.5		0.2
2	6.4	3.5		1.2
i	:	::	:	:

$$\mu_{\mathbf{F}_k} = \frac{1}{n} \sum_{i=1}^n D_{ik}$$

$$\mu_{\mathbf{F}} = (\mu_{\mathbf{F}_k})_k \in \mathbb{R}^d$$

$$\sigma_{F_k}^2 = \frac{1}{n} \sum_{i=1}^n (D_{ik} - \mu_{F_k})^2$$

We assume that we have a dataset with n observations of d features, which is represented by a $D \in \mathbb{R}^{n \times d}$ -dimensional data matrix

The vector of all feature sample mean values

The vector of all feature sample mean values

Sample variance of feature F_k

BASIC DATA CHARACTERIS-TICS

Raw Data is Usually not "Clean"

Covid: Man offered vaccine after error lists him as 6.2cm tall

Liam Thorp was wrongly classed as morbidly obese according to his height and weight

Finding a Good Data Representation

ID	height[m]	eyes	children	sex
1	1.8	blue	0	m
2	0.4	green	2	f
÷	:	:	:	:
n	1.65	brown	NA	f

ID	height		eyes		children	sex
	[m]	bl	gr	br		
1	1.8	1	0	0	0	0
2	1.6	0	1	0	2	1
	:	:	:	:	:	:
n	1.65	0	0	1	0	1

Finding a suitable representation of your data starts with the encoding, for which it's important to identify the feature types first.

Feature types are distinguished into qualitative and quantitative ones.

Qualitative Features

Nominal Data:

- categories
- no order

1	blue	m	5629NZ
2	green	f	5381
• • • •	:	:	:

sex

eyecolor

ID

Ordinal Data:

- categories
- with order
- subjective scale

ID	rating	size	grade
1	***	S	7.5
2	***	XL	9
:	:	:	:

zip code

Quantitative Features

Discrete Data:

- countable amount of values
- distances are meaningful

טו	age	III. Cililaren	III. yes votes
1	22	2	1298
2	24	0	2780
	:	:	:

ID age by children by yes yetes

Continuous Data:

- measurements
- distances are meaningful

ID	income[€]	height[m]	temp[°C]
1	2260.35	1.75	23
2	3502.60	1.68	26
:	:	:	:

It's not always easy to identify the exact feature type.

However, being aware of your feature types is important, because **NOT ALL ENCODINGS AND** STATISTICS MAKE SENSE FOR ALL TYPES

Ordinal Encoding

Map ordinal values to integers (be careful keeping the order).

ID	pic	size
1	dog	S
2	cat	XL
•	<u>:</u>	:
n	fish	S

$$\begin{array}{lll} \mathsf{cat} \to 0 & \mathsf{XS} \to 0 \\ \mathsf{dog} \to 1 & \mathsf{S} \to 1 \\ \mathsf{fish} \to 2 & \mathsf{M} \to 2 & \to \\ \mathsf{bird} \to 3 & \mathsf{L} \to 3 \\ & \mathsf{XI} \to 4 \end{array}$$

ID	pic	size
1	1	1
2	0	4
:	:	÷
n	2	1

PROBLEMATIC: suggests that the feature can be treated like a discrete one when the feature is qualitative.

Usually applied for class labels (nominal!) and ordinal data

One-Hot Encoding

Create for every value a new binary feature.

ID	pic	
1	dog	
2	cat	_
:	:	
n	fish	

ID	pic				
	cat	dog	fish	bird	
1	0	1	0	0	
2	1	0	0	0	
:	:	:	:	:	
n	0	0	1	0	

PROBLEMATIC: increases the dimensionality of the feature space

Usually applied for nominal data

Statistics Depending on Feature Types

Let x_1, \ldots, x_n be a set of feature values and let $x_{(1)}, \ldots, x_{(n)}$ be the ordered sequence of feature values $(x_{(i)} \le x_{(i+1)})$

statistic			permissi nominal	
mode	most frequent value		yes	yes
median	$\begin{cases} x_{\left(\frac{n+1}{2}\right)} \\ \frac{x_{\left(\frac{n}{2}\right)} + x_{\left(\frac{n}{2}+1\right)}}{2} \\ \frac{n}{2} \end{cases}$	if <i>n</i> is odd otherwise	no	yes
mean	$\mu = \frac{1}{n} \sum_{i=1}^{n} x_i$		no	no
variance	$\sigma^2 = \frac{1}{n} \sum_{i=1}^n (x_i - x_i)$	$(-\mu)^2$	no	no

In addition to looking at statistics, it's always good to plot your data.

For this, we have a look at the Iris dataset.

Exploring the Iris Dataset

sepal length	sepal width	petal length	petal width	class
5.1	3.5	1.4	0.2	setosa
6.4	3.5	4.5	1.2	versicolor
5.9	3.0	5.0	1.8	virginica
:	:	:	:	:
				•

Scatter Matrix Plot

Boxplot

FEATURE TRANSFORMA-TIONS

Scaling

Scaling is used to make features comparable.

- If one feature is measured in kg and the other in g, differences in the feature in g might seem more important
- Most ML methods learn based on similarities/distances between data points. These similarities/distances might be distorted when some of the features have much bigger values than others

Min-Max Scaling a.k.a 0-1 Scaling

Feature F_k is scaled to the range [0, 1].

$$\hat{D}_{ik} = \frac{D_{ik} - \min(D_{\cdot k})}{\max(D_{\cdot k}) - \min(D_{\cdot k})}$$

Standardization

Feature F_k gets sample mean-centered and scaled to a sample standard deviation of one.

$$\hat{D}_{ik} = \frac{D_{ik} - \mu_{F_k}}{\sigma_{F_k}}$$

Robust Scaling

Feature F_k gets median-centered and scaled by the inter quantile range

$$\hat{D}_{ik} = \frac{D_{ik} - \text{median}(D_{\cdot k})}{q_{75}(D_{\cdot k}) - q_{25}(D_{\cdot k})}$$

4 D > 4 A > 4 B > 4 B >

Scaler Comparison

MIN-MAX SCALING: might make sense for ordinal data, but is not robust against outliers

STANDARDIZATION: makes mostly sense for normal distributed data, a bit robust to outliers

ROBUST SCALING: might make sense for ordinal data, and is robust against outliers

$$\hat{D}_{ik} = \frac{D_{ik} - \min(D_{\cdot k})}{\max(D_{\cdot k}) - \min(D_{\cdot k})}$$

$$\hat{D}_{ik} = \frac{D_{ik} - \mu_{F_k}}{\sigma_{F_k}}$$

$$\hat{D}_{ik} = \frac{D_{ik} - \operatorname{median}(D_{\cdot k})}{q_{75}(D_{\cdot k}) - q_{25}(D_{\cdot k})}$$

Comparison of Scalers without Outliers

Comparison of Scalers with Outliers

Scaling sounds fair, every feature is treated the same, e.g., every feature gets the same variance.

However, those differences in, e.g., the variance can also tell you about the usefulness of the features.

→ FEATURE SELECTION

Feature Selection

Feature selection removes features which are probably not needed. This is useful, because:

- every feature adds a dimensionality to your data points,
- in high dimensional data, data points tend to be equidistant to each other, so all observations seem to be alike →CURSE OF DIMENSIONALITY,
- having fewer features improves the interpretability of results: in many tasks we want to know which features are important to get a good model.

Feature Selection by Variance Thresholding

IDEA: features with very low variance will not have a big impact on the result and can be removed

 \rightarrow keep only features F_k with a variance $\sigma_{F_k}^2 > \tau$.

PROBLEMATIC: how do we scale the data to allow for fair variance comparisons? How to set τ ?

OPTION: scale by dividing each feature by its mean

Feature Selection by Correlation

IDEA: correlation is a statistical measure of similarity of features and similar features are assumed to convey redundant information \rightarrow remove F_k or F_l when $|\operatorname{corr}(D_{\cdot k}, D_{\cdot l})| > \tau$.

INTERMISSION: COVARIANCE AND CORRELATION

Covariance as Inner Product Similarity

We compute the sample covariance of two feature vectors by

$$cov(D_{\cdot k}, D_{\cdot l}) = \frac{1}{n} \sum_{i=1}^{n} (D_{ik} - \mu_{\mathbb{F}_k}) (D_{il} - \mu_{\mathbb{F}_l}),$$

If we consider the centered data matrix ${\cal C}=D-{\bf 1}\mu_{\rm F}$, then the covariance can be written as an inner product:

$$cov(D_{\cdot k}, D_{\cdot l}) = \frac{1}{n} \sum_{i=1}^{n} C_{ik} C_{il} = \frac{1}{n} C_{\cdot k}^{\top} C_{\cdot l}$$

That is, the **COVARIANCE** can be seen as **THE INNER PRODUCT SIMILARITY** of the centered feature values.

Covariance and Variance

The **VARIANCE** is the covariance of a feature with itself and thus equal to the squared norm:

$$\sigma_{\mathbf{F}_k}^2 = \text{cov}(D_{\cdot k}, D_{\cdot k}) = \frac{1}{n} C_{\cdot k}^{\top} C_{\cdot k} = \frac{1}{n} \|C_{\cdot k}\|^2$$

The covariance between two features is large when the angle between the feature vectors is small and the variance of the features is high

$$cov(D_{.k}, D_{.l}) = \frac{1}{n} C_{.k}^{\top} C_{.l} = \frac{1}{n} cos \triangleleft (C_{.k}, C_{.l}) ||C_{.k}|| ||C_{.l}||$$
$$= cos \triangleleft (C_{.k}, C_{.l}) \sigma_{F_k} \sigma_{F_l}$$

The Covariance Matrix

With ${\it C}$ being the centered data matrix, the covariance matrix is given by

$$C^{\top}C = \begin{pmatrix} \sigma_{F_1}^2 & \cos(D_{\cdot 1}, D_{\cdot 2}) & \dots & \cos(D_{\cdot 1}, D_{\cdot d}) \\ \cos(D_{\cdot 2}, D_{\cdot 1}) & \sigma_{F_1}^2 & \dots & \cos(D_{\cdot 2}, D_{\cdot d}) \\ \vdots & \vdots & \vdots & \vdots \\ \cos(D_{\cdot d}, D_{\cdot 1}) & \cos(D_{\cdot d}, D_{\cdot 2}) & \dots & \sigma_{F_d}^2 \end{pmatrix}$$

Pearson's Correlation Coefficient

$$\operatorname{corr}(D_{\cdot k}, D_{\cdot l}) = \frac{\operatorname{cov}(D_{\cdot k}, D_{\cdot l})}{\sigma_{F_{t}} \sigma_{F_{t}}} = \operatorname{cos} \triangleleft (C_{\cdot k}, C_{\cdot l}) \in [-1, 1]$$

The correlation between two features is the normalized version of the covariance and it's large when the angle between the centered feature vectors is small.

END OF INTERMISSION

Transformations of the Feature Space

In some cases, it makes sense to transform the features or add transformed features, e.g., transforming the data can transfer nonlinear relations into linear ones.

ID	F_1	F_2	
1	1.1	3.2	
2	2.0	2.7	_
:	:	:	,

ID	F_1^2	F_1F_2	F_2^2	$\log(\mathtt{F}_2)$
1	1.21	3.52	10.24	1.16
2	4.00	5.40	7.29	1.69
:	:	:	:	:

The task of dimensionality reduction is to find a TRANSFORMATION INTO A LOW-DIMENSIONAL **FEATURE SPACE** which keeps characteristics of the data

Principal Component Analysis (PCA)

The goal of PCA is to **MAINTAIN MOST OF THE VARIANCE** in the low-dimensional view.

We will discuss PCA and how it works later in the course.

t-Distributed Stochastic Neighbor Embedding (t-SNE)

The goal of t-SNE is to **MAINTAIN LOCAL SIMILARITIES** in the low-dimensional view

We will not discuss how t-SNE works in detail in the course. If you want to get a good idea about it, have a look here: https://distill.pub/2016/misread-tsne/