Architettura degli Elaboratori

Esercitazione

Su cosa ci esercitiamo oggi?

- > Espressioni booleane
 - > Forma normale SOP e forma canonica SOP
 - > Minimizzazione di espressioni booleane
- Sintesi di reti logiche
 - Reti AND-to-OR
 - Minimizzazzione di reti AND-to-OR

Inoltre, disegnare il circuito minimale che realizza la funzione F

Esercizio 1: Soluzione

Tavola di verità

×	У	Z	y+z	y+z	F
0	0	0	0	1	0
0	0	1	1	0	0
0	1	0	1	0	0
0	1	1	1	0	0
1	0	0	0	1	1
1	0	1	1	0	0
1	1	0	1	0	0
1	1	1	1	0	0

La tavola di verità di F ha un solo 1: F è un mintermine

$$F = x \cdot \overline{y} \cdot \overline{z}$$

Infatti, applicando la
legge di De Morgan si ha

$$F = x \cdot \overline{(y+z)} = x \cdot \overline{(y\cdot z)} = x \cdot \overline{y} \cdot \overline{z}$$

Esercizio 1: Soluzione

Il circuito minimale che realizza la funzione Fè

Determinare l'espressione canonica SOP per la funzione F definita dalla seguente tavola di verità

X ₂	x_1	F
0	0	1
0	1	0
1	0	1
1	1	0

Inoltre, disegnare il circuito minimale che realizza la funzione F

Esercizio 2: Soluzione

Troviamo i mintermini corrispondenti alle occorrenze di 1 nella tavola di verità e sommiamoli

X ₂	x_1	F
0	0	1
0	1	0
1	0	1
1	1	0

 $\overline{x}_2 \cdot \overline{x}_1$

 $x_2 \cdot \overline{x_1}$

Espressione canonica SOP

$$F = \overline{x_2} \cdot \overline{x_1} + x_2 \cdot \overline{x_1}$$
$$= (\overline{x_2} + x_2) \cdot \overline{x_1}$$
$$= \overline{x_1}$$

Espressione minimale

Esercizio 2: Soluzione

Il circuito minimale che realizza la funzione Fè

- Esprimere la funzione XOR in forma canonica SOP
- Inoltre, disegnare il circuito minimale che realizza la funzione XOR

Esercizio 3: Soluzione

X	У	x⊕y
0	0	0
0	1	1
1	0	1
1	1	0

Espre

Esercizio 3: Soluzione

>Il circuito minimale che realizza la funzione XOR

$$x \oplus y = \overline{x} \cdot y + x \cdot \overline{y}$$

Il circuito può essere sostituito X dalla porta XOR

Realizzare in forma canonica SOP la funzione XOR negata, cioè la coincidenza:

$$\overline{\mathbf{x}\oplus\mathbf{y}}$$

Inoltre, disegnare il circuito minimale che realizza la funzione coincidenza

Esercizio 4: Soluzione

Realizzare in forma canonica SOP la funzione XOR negata, cioè la coincidenza: $\overline{x \oplus y}$

 $\overline{\mathbf{x}} \cdot \overline{\mathbf{y}}$

 $X \cdot y$

X	У	$\overline{x \oplus y}$
0	0	1
0	1	0
1	0	0
1	1	1

Tavola di verità

Espressione canonica SOP

$$\frac{1}{x \oplus y} = \overline{x} \cdot \overline{y} + x \cdot y$$

Esercizio 4: Soluzione

➤Il circuito minimale che realizza la funzione coincidenza

$$\overline{x \oplus y} = x \cdot y + \overline{x} \cdot \overline{y}$$

>Usando la porta XOR si ha

Espressioni POS

$$(\overline{x_2} + \overline{x_3})(x_1 + \overline{x_3})$$

- Maxtermine: somma di letterali in cui compare ogni variabile o vera o negata
- Una espressione normale POS è in forma canonica POS se i suoi termini sono tutti maxtermini

$$(x_1 + x_2 + x_3)(x_1 + x_2 + x_3)$$

Maxtermini

Se la funzione logica è un maxtermine, la sua tavola di verità ha un solo 0

Esempio:

se $f = x_3 + \overline{x_2} + \overline{x_1}$ la tavola di verità ha un solo 0 in corrispondenza di $x_3=0$, $x_2=1$, $x_1=1$ Ricorda:

L'OR è 0 sse ogni variabile è 0

Viceversa, se la tavola di verità di f ha un solo 0 necessariamente f è un maxtermine

X ₃	X ₂	x_1	f
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

$$f = x_3 + \overline{x_2} + \overline{x_1}$$

Dalla tavola di verità all'espressione POS

Se invece la tavola di verità ha più occorrenze di 0, troviamo i maxtermini corrispondenti e ne facciamo il prodotto

	X 3	X 2	x_1	f	corri
	0	0	0	0	X ₃ + X ₂ + X ₁
	0	0	1	0	$x_3+x_2+\overline{x_1}$
	0	1	0	0	$X_3 + \overline{X_2} + X_1$
	0	1	1	1	
	1	0	0	0	$\frac{-}{x_3} + x_2 + x_1$
	1	0	1	1	
	1	1	0	0	$\overline{X_3} + \overline{X_2} + X_1$
	1	1	1	0	$\overline{X_3} + \overline{X_2} + \overline{X_1}$
1 8					1

$$x_3+x_2+x_1$$

 $x_3+x_2+\overline{x_1}$
 $x_3+\overline{x_2}+x_1$
 $\overline{x_3}+x_2+x_1$

Nota: la combinazione di input 111 corrisponde al maxtermine

$$\overline{x_3} + \overline{x_2} + \overline{x_1}$$

Dall'espressione POS a una rete a due livelli

- > Nel primo livello varie porte OR
 - > Tante, quanti sono i maxtermini
- > Nel secondo livello, solo una porta AND

La rete risultante è detta OR-to-AND

Rete AND-to-OR o OR-to-AND?

- Guardiamo la tavola di verità della funzione f
 - Se ci sono meno occorrenze di 1 che di 0, costruiamo la rete AND-to-OR attraverso la forma canonica SOP
 - Se ci sono meno occorrenze di 0 che di 1, costruiamo la rete OR-to-AND attraverso la forma canonica POS

Determinare l'espressione canonica POS per la funzione F definita dalla seguente tavola di verità

X ₂	x_1	F
0	0	0
0	1	1
1	0	0
1	1	1

Inoltre, disegnare il circuito OR-to-AND che realizza la funzione F

Suggerimento: usare le leggi di De Morgan

Esercizio 5: Soluzione

X ₂	x_1	F	
0	0	1	$\overline{x_2} \cdot \overline{x_1}$
0	1	0	
1	0	1	$x_2 \cdot \overline{x_1}$
1	1	0	

Poi determiniamo la forma canonica SOP per F $\overline{F}_{SOP} = \overline{x_2} \cdot \overline{x_1} + x_2 \cdot \overline{x_1}$

Esercizio 5: Soluzione

Da cui si ottiene

$$F = \overline{F} = \overline{\overline{x}_2 \cdot \overline{x}_1 + x_2 \cdot \overline{x}_1}$$

$$=(\overline{x_2}\cdot\overline{x_1})\cdot(\overline{x_2}\cdot\overline{x_1})$$

$$= (\overline{\overline{x}}_2 + \overline{\overline{x}}_1) \cdot (\overline{x}_2 + \overline{\overline{x}}_1)$$

$$= (x_2 + x_1) \cdot (\overline{x_2} + x_1)$$

X ₂	x_1	F
0	0	0
0	1	1
1	0	0
1	1	1

$$x_2 + x_1$$

$$\overline{x}_2 + x_1$$

Espressione canonica POS:

prodotto dei maxtermini in corrispondenza dei quali F assume valore 0

Esercizio 5: Soluzione

Il circuito OR-to-AND che realizza la funzione F è

- > Sia N_2 =($b_2b_1b_0$) un numero in binario puro e sia $F(b_2b_1b_0)$ la funzione che determina se Nè un numero primo
 - Determinare la tavola di verità di F
 - Esprimere la funzione F in forma canonica SOP

Esercizio 6: Soluzione

Scriviamo la tavola di verità per la funzione F

b ₂	b ₁	b ₀	F
0	0	b ₀	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

F vale 1 quando N=2,3,5,7

Tavola di verità

Esercizio 6: Soluzione

Troviamo i mintermini corrispondenti alle occorrenze di 1 nella tavola di verità e sommiamoli

b ₂	b ₁	b _o	F
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

$$\begin{array}{lll} \bar{b}_{2} \cdot b_{1} \cdot \bar{b}_{0} & \\ \bar{b}_{2} \cdot b_{1} \cdot b_{0} & F = \bar{b}_{2} \cdot b_{1} \cdot \bar{b}_{0} + \bar{b}_{2} \cdot b_{1} \cdot b_{0} \\ & & + b_{2} \cdot \bar{b}_{1} \cdot b_{0} + b_{2} \cdot b_{1} \cdot b_{0} \\ b_{2} \cdot \bar{b}_{1} \cdot b_{0} & = \bar{b}_{2} \cdot b_{1} \cdot \left(\bar{b}_{0} + b_{0} \right) \\ & & + b_{2} \cdot b_{0} \cdot \left(\bar{b}_{1} + b_{1} \right) \\ b_{2} \cdot b_{1} \cdot b_{0} & = \bar{b}_{2} \cdot b_{1} + b_{2} \cdot b_{0} \end{array}$$

Tavola di verità

Esercizio 6: Soluzione

Il circuito minimale che realizza la funzione è

- Sia N_2 =($b_3b_2b_1b_0$) un numero in binario puro e sia $F(b_3b_2b_1b_0)$ la funzione che determina se $4 \le N \le 7$
 - Determinare la tavola di verità di F
 - Esprimere la funzione F in forma canonica SOP

Esercizio 7: Soluzione

Scriviamo la tavola di verità per la funzione F

F vale 1 quando N=4,5,6,7

Tavola di verità

Esercizio 7: Soluzione

Troviamo i mintermini corrispondenti alle occorrenze di 1 nella tavola di verità e sommiamoli

Esercizio 7: Soluzione

Il circuito minimale che realizza la funzione è

