Natural Language Processing with Disaster Tweets

Jiaqi Liu

Jilin University

2021-07-23

Overview

Problem Definition

Data Process

Model Construction

Model Training

Result

Problem Definition

Background
Data Introduction

Data Process

Word Spliting
Encode the words

Model Construction

The Embedding Layer
TextCNN

Model Training

Training Settings
Training Process

Result

Background

Data Introduction

Data Process

Model Construction

Model Training

Result

Problem Definition

Background

Problem Definition

Background

Data Introduction

Data Process

Model Construction

Model Training

Result

Twitter has become an important communication channel in times of emergency. But, it's not always clear whether a person's words are actually announcing a disaster. Take the tweeter in figure 1 as as example: Although the author used word "ablaze", clearly it wasn't about an incident. This is quite clear to human, but not to computers. Our goal is to develop a model that predicts whether a tweet is about a disaster or not.

On plus side LOOK AT THE SKY LAST NIGHT IT WAS ABLAZE

12:43 AM · Aug 6, 2015 · Twitter for Android

Data Introduction

Problem Definition

Background

Data Introduction

Data Process

Model Construction

Model Training

Result

file name	size	line number	columns
train.csv test.csv		7613 3263	$id, keyword, location, text, target \\ id, keyword, location, text$

Property Explaination

■ id: the identity key of every recorded tweet.

■ keyword : a label representing important words in the tweet

■ location : where the tweet is written

text : the content of the tweet

target : whether the tweet is related to a disaster

Data Process

Word Spliting

Encode the words

Model Construction

Model Training

Result

Data Process

Word Spliting

Problem Definition

Data Process

Word Spliting

Encode the words

Model Construction

Model Training

Result

- The first task of the model is to turn text into word sequence.
 - Mainly based on regex matching.

Normal regex matching.

- ◆ List all the possible seperations and replace them with blanks.
- ◆ Split the tweet according to blanks.

Consider the vocabulary deformation.

- Match and replace them with their original forms.
 - $won't \rightarrow will not$
 - can't \rightarrow can not
 - • •

Encode the words

Problem Definition

Data Process

Word Spliting

Encode the words

Model Construction

Model Training

Result

Encode the words mentioned so that we can further turn it into vectors. Use the pre-trained word vector&dictionary GloVe developed by Stanford.

- Include 400000 words.
- PAD & UNK also indexed.
- The proportion of recruited words is shown in Figure 1

Figure 1

Data Process

Model Construction

The Embedding Layer

TextCNN

Model Training

Result

Model Construction

The Embedding Layer

Problem Definition

Data Process

Model Construction

The Embedding Layer

TextCNN

Model Training

- Pretrained word vector GloVe.
- Turning word into vector of 100 dimensions.
- Based on co-occurence matrix.

Data Process

Model Construction

The Embedding Layer

TextCNN

Model Training

Result

Probability and Ratio	k = solid	k = gas	k = water	k = fashion
P(k ice)	1.9×10^{-4}	6.6×10^{-5}	3.0×10^{-3}	1.7×10^{-5} 1.8×10^{-5}
P(k steam)	$2.2 imes 10^{-5}$	7.8×10^{-4}	2.2×10^{-3}	$1.8 imes 10^{-5}$
P(k ice)/P(k steam)	8.9	8.5×10^{-2}	1.36	0.96

■ It can be seen that the ratio represents the correlation between words.

Ratio	word j,k related	word j,k non-related
word i,k related	close to 1	very big
word i,k non-related	very small	close to 1

■ As word vector also represents correlation between words, $\exists F$, so that:

$$F(w_i, w_j, w_k) = \frac{P_{ik}}{P_{jk}}$$

Data Process

Model Construction

The Embedding Layer

TextCNN

Model Training

$$F(w_{i}, w_{j}, w_{k}) = \frac{P_{ik}}{P_{jk}}$$

$$(\text{consider i,j without k})$$

$$F(w_{i} - w_{j}, w_{k}) = \frac{P_{ik}}{P_{jk}}$$

$$(\text{Right is a scalar})$$

$$F((w_{i} - w_{j})^{\mathsf{T}} w_{k}) = \frac{P_{ik}}{P_{jk}}$$

$$F(w_{i}^{\mathsf{T}} w_{k} - w_{j}^{\mathsf{T}} w_{k}) = \frac{P_{ik}}{P_{jk}}$$

$$(\text{Consider turning minus form into fraction})$$

$$exp(w_{i}^{\mathsf{T}} w_{k} - w_{j}^{\mathsf{T}} w_{k}) = \frac{exp(w_{i}^{\mathsf{T}} w_{k})}{exp(w_{j}^{\mathsf{T}} w_{k})} = \frac{P_{ik}}{P_{jk}}$$

$$exp(w_{i}^{\mathsf{T}} w_{k}) = P_{ik} \quad exp(w_{j}^{\mathsf{T}} w_{k}) = P_{jk}$$

$$w_{i}^{\mathsf{T}} w_{k} = log(\frac{X_{ik}}{X_{i}}) = logX_{ik} - logX_{i}$$

$$(w_{i}^{\mathsf{T}} w_{k} = w_{k}^{\mathsf{T}} w_{i})$$

$$logX_{ik} = w_{i}^{\mathsf{T}} w_{k} + b_{i} + b_{k}$$

$$J = \sum_{ik} (w_{i}^{\mathsf{T}} w_{k} + b_{i} + b_{k} - logX_{ik})^{2}$$

$$J = \sum_{ik} f(X_{ik})(w_{i}^{\mathsf{T}} w_{k} + b_{i} + b_{k} - logX_{ik})^{2}$$

TextCNN

Problem Definition

Data Process

Model Construction

The Embedding Layer

TextCNN

Model Training

Figure 2

Data Process

Model Construction

Model Training

Training Settings

Training Process

Result

Model Training

Training Settings

Problem Definition

Data Process

Model Construction

Model Training

Training Settings

Training Process

Result

Training Settings are listed as followed:

- $lacktriangledown batch_size = 10$
- $learning_rate = 0.005$
- loss = BinaryCrossEntropy
- lacksquare optimizer = AdamOptimizer
- $accuracy = (\sum_{i=0}^{N} 1 |\frac{1}{2}(sign(\hat{y}_i 0.5) + 1) y_i|)/N$

Training Process

Problem Definition

Data Process

Model Construction

Model Training

Training Settings

Training Process

Result

Accuracy & Loss during the training process is as the figures show:

Training Process

Problem Definition

Data Process

Model Construction

Model Training

Training Settings

Training Process

Result

An interesting phonomenon happened near epochs = 27, as the figure shows.

■ By testing epochs near 27, we can find the best epochs.

Training Process

Problem Definition

Data Process

Model Construction

Model Training

Training Settings

Training Process

Result

Epochs	Accuracy
26	0.76340
27	0.78455
28	0.77811
29	0.76371
30	0.77106

 \blacksquare epochs = 27

Data Process

Model Construction

Model Training

Result

Result

Result

Problem Definition

Data Process

Model Construction

Model Training

Result

- Final accuracyreahces 0.78455 with 27 epochs.
- Rank:2349/3625

Contact Information

Jiaqi Liu

Department of Computer Science and Technology Jilin University, China

JQLIU@TULIP.ACADEMY

TEAM FOR UNIVERSAL LEARNING AND INTELLIGENT PROCESSING