

СОЮЗ СОВЕТСКИХ
СОЦИАЛИСТИЧЕСКИХ
РЕСПУБЛИК

(19) SU (11) 1147712 A

4(51) C 07 D 471/04

ГОСУДАРСТВЕННЫЙ КОМИТЕТ СССР
ПО ДЕЛАМ ИЗОБРЕТЕНИЙ И ОТКРЫТИЙ

ОПИСАНИЕ ИЗОБРЕТЕНИЯ К АВТОРСКОМУ СВИДЕТЕЛЬСТВУ

(21) 3605633/23-04

(22) 13.06.83

(46) 30.03.85. Бюл. № 12

(72) А.Ю. Петров, В.Л. Русинов
и О.Н. Чупахин

(71) Уральский ордена Трудового
Красного Знамени политехнический
институт им. С.М. Кирова

(53) 547.779.1.07(088.8)

(56) 1. Кост А.Н., Сагитуллин Р.С.
Данагулян Г.Г. Изомеризация пиразо-
ло[1, 2-а]пиридинов. Химия гетеро-
циклических соединений, 1977, 4,
с. 558-559 (прототип).

(54)(57) 1. СПОСОБ ПОЛУЧЕНИЯ 1-R-3-
-R'-5-НИТРОПИРАЗОЛО[3, 4-в]ПИРИДИНОВ
формулы R'

- где а) R = R'-H;
б) R - H, R' - CH₃;
в) R - H, R' - C₆H₅;
г) R - CH₃, R' - H;
д) R - C₆H₅, R' - H;
е) R = R' - CH₃;
ж) R - C₆H₅, R' - CH₃;
з) R = R' - C₆H₅,

отличающееся тем, что,
с целью увеличения выхода и расши-
рения ассортимента целевых продук-
тов, соответствующие аминопиразолы
подвергают взаимодействию с натрие-
вой солью нитромалонового альдегида
в воде или в аprotонном органическом
растворителе при 20-100°C.

2. Способ по п. 1, отличаю-
щийся тем, что в качестве апро-
тонного органического растворителя
используют диметилсульфоксид или ди-
метилформамид.

(19) SU (11) 1147712 A

Изобретение относится к усовершенствованному способу получения химических соединений, а именно 1-R-3-R'-5-нитропиразоло[3,4-b]пиридинов формулы

где, Ia R=R'=H; 1б R=H, R'=CH₃, Iв R=H, R'=C₆H₅; Iг R=CH₃, R'=H; Iд R=C₆H₅; R'=H; Iе R=CH₃, R'=CH₃; Iж R=C₆H₅, R'=CH₃; Iз R=R'=C₆H₅, которые могут найти применение как полупродукты органического синтеза и биологически активные вещества.

Известен способ получения 5-нитро-1H-пиразоло[3,4-b]-пиридина. Синтез его осуществлен рециклизацией 6-нитропиразоло[1,5-а]пиридинина (11), которая осуществляется при кипячении соединения 11 в 15%-ном водно-спиртовом растворе KOH в течение 4 ч с выходом 37% [1].

Недостатками известного способа являются невысокий выход целевого продукта, ограниченная применимость способа, так как он не позволяет получить 1-замещенные 5-нитропиразоло[3,4-b]-пиридины.

Цель изобретения - повышение выхода и расширение ассортимента целевых продуктов.

Поставленная цель достигается тем, что согласно способу получения 1-R-3-R'-5-нитропиразоло[3,4-b]пиридинов, соответствующие 1-R-3-R'-5-аминопиразолы подвергают взаимодействию с натриевой солью нитромалонового альдегида в воде или в аprotонном органическом растворителе при 20-100°C. Выход целевых продуктов составляет 60-80%.

В качестве аprotонного органического растворителя используют, например, диметилсульфоксид или диметилформамид.

При уменьшении температуры реакции ниже 20°C уменьшается выход соединений (1a-з). Увеличение температуры реакции до 120-130°C приводит к осмолению реакционной массы, что тоже снижает выход получаемых соединений.

В табл. 1 показаны спектральные характеристики 1-R-3-R'-5-нитропиразоло[3,4-b]пиридинов.

В табл. 2 приведена характеристика полученных соединений.

В ИК спектрах соединений (1 a-з) имеются характеристические полосы поглощения, соответствующие колебаниям нитрогруппы в области 1530-1535 и 1340-1350 см⁻¹ (табл. 1) и NH-группы (1 a-в) при 3100-3200 см⁻¹. В ПМР спектрах наблюдаются характерные дублеты мета-расположенных пиридиновых протонов с константой 2,2 Гц, спектр соединения (1 a) соответствует описанному в литературе (прототип). Сравнение электронных спектров полученных соединений (1 a-в) с (1 г, д) подтверждает существование первых в 1H-форме (табл. 1).

Пример 1. 1-R-3-R'-5-нитропиразоло[3,4-b]пиридины (1 г-з).

Растворяют 0,01 моль 1-R-3-R'-5-аминопиразола в 30-40 мл воды и приливают при перемешивании раствор 1,6 г (0,01 моль) натриевой соли нитромалонового альдегида в 10 мл воды. Нагревают при 90-100°C 5 мин, охлаждают, подкисляют уксусной кислотой и отфильтровывают выпавший осадок. Кристаллизуют из подходящего растворителя (табл. 2).

Пример 2. 1-Метил-5-нитропиразоло[3,4-b]пиридин (1 г). Растворяют 0,95 г (0,01 моль) 1-метил-5-аминопиразола в 30 мл воды и при перемешивании добавляют раствор 1,6 г (0,01 моль) натриевой соли нитромалонового альдегида в 10 мл воды и перемешивают при 20°C в течение суток. Подкисляют 2 н соляной кислотой и отфильтровывают образовавшийся осадок. Выход: 1,1 г (60%). Т.пл. 133-135°C (из этанола). вещество идентично получаемому по примеру 1.

Пример 3. 1-Фенил-3-метил-5-нитропиразоло[3,4-b]пиридин (1 ж). Растворяют 1,73 г (0,01 моль) 1-фенил-3-метил-5-аминопиразола в 10 мл ДМФА (ДМСО) и добавляют 1,6 г (0,01 моль) натриевой соли нитромалонового альдегида. Перемешивают при комнатной температуре в течение суток, прибавляют 1 мл уксусной кислоты и смесь вносят в 100 мл воды. Образовавшийся осадок отфильтровывают и кристалли-

зуют из этанола. Выход 2,0 г (80%). Вещество идентично полученному по методу 1 (пример 1).

П р и м е р 4. 1,3-Дифенил-5-нитропиразоло[3,4-*b*]пиридин (1 з). Смесь 2,35 г (0,01 моль) 1,3-дифенил-5-аминопиразола и 1,6 г (0,01 моль) натриевой соли нитромалонового альдегида нагревают 5 мин при 80–90°C в 20 мл ДМФА (ДМСО), выпаривают в холодную воду (100 мл) и подкисляют разбавленной соляной кислотой до pH 1–2. Выпавший осадок перекристаллизовывают из уксусной кислоты. Выход 2,5 г (80%). Вещество идентично полученному по примеру 1.

П р и м е р 5. 3-R'-5-нитропиразоло[3,4-*b*]пиридин (1 а–в). Смесь 1,6 г (0,01 моль) натриевой соли нитромалонового альдегида и 0,01 моль 3-амино-5-R'-пиразола в 40 мл воды кипятят 5 мин, охлаждают, подкисляют уксусной кислотой и образовавшийся осадок отфильтровывают. Кристаллизуют из подходящего растворителя (табл. 2).

П р и м е р 6. 3-R'-5-нитропиразоло[3,4-*b*]пиридины (1 а, б). Смесь 1,6 г (0,01 моль) натриевой соли нитромалонового альдегида и 0,01 моль 3-R'-5-аминопиразола в 40 мл воды перемешивают при комнатной температуре 24 ч, подкисляют разбавленной соляной кислотой и отфильтровывают осадок. Выход (1 а) 60%, (1 б) – 70%.

П р и м е р 7. 3-Фенил-5-нитропиразоло[4,3-*b*]пиридин (1 в). Смесь 1,6 г (0,01 моль) натриевой соли

нитромалонового альдегида и 1,58 г (0,01 моль) 3-амино-5-фенил-пиразола в 20 мл ДМФА (ДМСО) нагревают при 80–100°C 20 мин, охлаждают, подкисляют уксусной кислотой и выпаривают в 100 мл холодной воды. Образовавшийся осадок отфильтровывают. Выход 1,8 г (75%). Т. пл. 220–222°C (из смеси ДМФА–вода 1:1).

П р и м е р 8. 1-Метил-5-нитропиразоло[3,4-*b*]пиридин (1 г). Растворяют 0,95 г (0,01 моль) 1-метил-5-аминопиразола в 20 мл ДМФА и при перемешивании охлаждают до 5–10°C, приливают охлажденный до этой температуры раствор 1,6 г (0,01 моль) натриевой соли нитромалонового альдегида в 10 мл воды. Выдерживают при 5–10°C 8 ч, разбавляют реакционную массу 100 мл ледяной воды, подкисляют разбавленной HCl и отфильтровывают выпавший осадок 1-метил-5-нитропиразоло[3,4-*b*]пиридина (1 г). Выход: 0,7 г (40%). Т. пл. 133–135°C.

П р и м е р 9. 1-Фенил-3-метил-5-нитропиразоло[3,4-*b*]пиридин (1 ж). Растворяют 1,73 г (0,01 моль) 1-фенил-3-метил-5-аминопиразола в 20 мл ДМСО, нагревают до 120°C и приливают раствор 1,6 г (0,01 моль) натриевой соли нитромалонового альдегида в воде. Перемешивают при 120–130°C 6 ч и выпаривают в 100 мл холодной воды. Выпадает смола, которую отделяют и затирают со спиртом. Выход 1-фенил-3-метил-5-нитропиразоло[3,4-*b*]пиридина (1 ж) 0,8 г (31%). Т. пл. 181–183°C (из этанола).

Таблица 1

Соединение	R	R'	ИК-спектр, см ⁻¹			НМР-спектр, м.д. в DMSO-D ₆		
			ν_{NO_2} as	ν_{NO_2} s	ν_{NH}	4-Н	6-Н	R
1а	H	H	1540	1350	3240	940д	9,65д	–
1б	H	CH ₃	1540	1346	3180	9,34д	9,45д	–
1в	H	C ₆ H ₅	1545	1350	3100	9,30д	9,40д	–
1г	CH ₃	H	1530	1350	–	9,40д	9,51д	4,15с
1д	C ₆ H ₅	H	1535	1350	–	9,34д	9,46д	7,60–7,75 8,10–8,30

Продолжение табл. 1

Соединение	R	R'	ИК-спектр, см ⁻¹			НМР-спектр, м.д. в DMSO-D ₆		
			ν_{NO_2} cm ⁻¹	ν_{NO_2} cm ⁻¹	ν_{NH}	4-Н	6-Н	R
Ie	CH ₃	CH ₃	1530	1345	-	9,35д	9,49д	4,10с
Iж	C ₆ H ₅	CH ₃	1525	1340	-	9,50д	9,60д	7,60-7,75 8,25-8,40
Iз	C ₆ H ₅	C ₆ H ₅	1530	1345	-	9,32д	9,49д	7,50-7,65 и 8,25-8,40. 2 C ₆ H ₅

*) Вещество нерастворимо в воде

Продолжение табл. 1

Соединение	R'	Электронный спектр в H ₂ O		λ_{max} нм (1gE)
		J 4,6 Гц		
Ia		8,60с	2,4	238(4,00), 263(3,99), 313(3,83)
Iб		2,62с	2,4	243(3,94), 265(4,01), 322(3,86)
Iв		7,85-8,00 8,40-8,60	2,4	242(3,90), 266(4,09), 322(3,85)
Iг		8,10с	2,2	243(3,95), 264(4,02), 321(3,84)
Iд		8,77с	2,2	242(4,00), 265(4,10), 320(3,80)
Iе		2,60с	2,2	243(4,02), 265(4,07), 322(3,89)
Iж		2,71с	2,2	x)-
Iз			2,2	x)-

Таблица 2

Соединение	T.пл., °C	Найдено, %			Брутто-формула
		C	H	N	
Ia	195-197*	43,7	2,7	34,2	C ₆ H ₄ N ₄ O ₂
Iб	190-193**	47,3	3,6	31,8	C ₇ H ₆ N ₄ O ₂
Iв	220-222***	60,1	3,7	23,6	C ₁₂ H ₈ N ₄ O ₂

Продолжение табл. 2

Соединение	Т.пл., °C	Найдено, %			Брутто-формула
		C	H	N	
I _r	133-135**	47,0	2,8	31,3	C ₁₁ H ₆ N ₄ O ₂
I _d	175-177**	60,2	3,1	23,0	C ₁₂ H ₈ N ₄ O ₂
I _e	137-139**	50,1	4,0	29,5	C ₈ H ₈ N ₄ O ₂
I _k	181-183**	61,6	5,0	22,1	C ₁₃ H ₁₂ N ₄ O ₂
I _s	223-225***	68,5	4,0	17,9	C ₁₆ H ₂₂ N ₄ O ₂

Продолжение табл. 2

Соединение	Вычислено, %			Выход	
	C	H	N	г	з
I _a	43,9	2,4	34,1	1,05	65
I _b	47,2	3,4	31,4	1,30	75
I _v	60,0	3,3	23,3	1,45	60
I _r	47,2	3,3	31,5	1,20	65
I _d	60,0	3,3	23,3	1,80	75
I _e	50,0	4,2	29,2	1,35	70
I _k	61,4	4,7	22,0	1,90	75
I _s	68,4	3,8	17,7	2,60	80

*из воды; **из этанола; ***из смеси ДМФА-вода 1:1; ***из уксусной кислоты.

Составитель Т. Мамонтова

Редактор Л. Авраменко

Техред Л.Мартышова

Корректор В. Бутяга

Заказ 1492/23

Тираж 384

Подписьное

ВНИИПТИ Государственного комитета СССР

по делам изобретений и открытий

113035, Москва, Ж-35, Раушская наб., д. 4/5

Филиал ППШ "Патент", г. Ужгород, ул. Проектная, 4