АЛЬТЕРНАТИВНАЯ ТЕХНОЛОГИЯ ЗАКАНЧИВАНИЯ ГОРИЗОНТАЛЬНЫХ СКВАЖИН

УДК 622.245

ALTERNATIVE TECHNOLOGY FOR FINISHING HORIZONTAL WELLS

Биктимиркин Евгений Юрьевич

магистр кафедры бурение нефтяных и газовых скважин, Самарский государственный технический университет Biktizhenya997@mail.ru

Мозговой Георгий Сергеевич

старший преподаватель кафедры бурение нефтяных и газовых скважин, Самарский государственный технический университет gsmozgovoi@mail.ru

Аннотация. Данная статья описывает альтернативную технологию заканчивания горизонтальных скважин. Предполагается применение хвостовика, составленного из стеклопластиковых труб, специального керамического тампонажного состава, который возможно использовать как для ликвидации негерметичности эксплуатационных колонн, так и для крепления призабойных зон, изменяя отверждающийся состав и добавляя регуляторы не меняя основу состава. Для создания притока флюида в скважину описывается проведение гидропескоструйной перфорации с последующим гидроразрывом пласта.

Ключевые слова: горизонтальная скважина, стеклопластиковые трубы, многостадийный гидроразрыв пласта.

Biktimirkin Evgeniy Yurevich Master of the Department Drilling of oil and gas wells, Samara state technical university Biktizhenya997@mail.ru

Mozgovoy Georgiy Sergeevich Senior Lecturer of the Department Drilling of oil and gas wells, Samara state technical university gsmozgovoi@mail.ru

Annotation. This article describes an alternative technology for completing horizontal wells. It is supposed to use a shank composed of fiberglass pipes, a special ceramic grouting composition, which can be used both to eliminate leakage in production casing and to fix bottom-hole zones, changing the cured composition and adding regulators without changing the composition basis. To create fluid flow into a well, a hydro-sandblasting perforation is described followed by hydraulic fracturing.

Keywords: horizontal well, fiberglass pipes, multi-stage hydraulic fracturing.

Гользование стальных обсадных труб в качестве эксплуатационных колонн при строительстве скважин может сопровождаться процессами коррозии. Применение стеклопластиковых обсадных колонн исключает затраты на ремонтно-восстановительные работы и проведение катодной защиты. Основными компонентами материала стеклопластиковых труб являются эпоксидная смола и стеклонить. Для ускорения процесса полимеризации в смолу добавляют отвердитель и ускоритель. Эпоксидная смола относится к термоактивным пластикам: после добавки отвердителя и соответствующей термообработки в этой смеси происходят химические реакции, вследствие которых макромолекулы сшиваются, что повышает прочность пластика.

В составе хвостовика, составленного из СПОТ, не применяются металлические элементы. При спуске в скважину внутренний диаметр каждой СПОТ проверяют специальным пластиковым шаблоном длиной 350 мм и диаметром 92 мм. Свинчивание СПОТ проводится вручную ременными ключами. Так как плотность материала СПОТ в 4 раза меньше плотности стали, на последнем этапе цементирования возникает вероятность всплытия колонны, составленной из таких труб. Для исключения всплытия необходимо, чтобы плотности тампонажного раствора и продавочной жидкости были близки.

Существует большое разнообразие методов, технологий и технических устройств. Применение их позволяет ликвидировать заколонные перетоки в скважинах и восстановить герметичность заколонного пространства. Так же имеется необходимость установки заколонных пакеров. Как и у всех технологий данный метод помимо достоинст имеет и ряд недостатков, описанных ниже:

- 1. Отсуствие методов определения герметичности посадки пакера.
- 2. Высокий риск невозможности извлечения пакеров.
- 3. Увеличение стоимости последующих ремонтов скважин.
- 4. Установка пакера не гарантирует предотвращение перетока флюида через коллектор.

Исходя из этого, предлагается вариант использования специальных керамических составов с низкой водоотдачей и расширяющимся эффектом. Данная композиция имеет плотность равную 1500 кг/м³, что обуславливает возможность её применение в данной технологии. Этот состав способен проникать в

минимальные зазоры, тем самым гарантирует отсутствие перетока флюида. Преимущества данной композиции – возможность использования состава как для ликвидации негерметичности эксплуатационных колонн, так и для крепления призабойных зон пескопроявляющих скважин изменяя состав отвердения и добавляя регуляторы не меняя основу состава.

Состав состоит из синергетической смеси неорганических материалов и минеральных добавок. Преимуществом состава является водная микродисперсия растворенного полимера, который обладает высокой адгезией к породе, цементу и металлу, низкой вязкостью способствующей высокой проницаемости, высокими прочностными характеристиками. Ограничением является приемистость от 0 до 150 м³/сут. Оптимальная рабочая температура от 0 °С до плюс 90 °С.Прочность на сжатие керамического состава 45,91 МПа. Технические характеристики керамического состава описаны в таблице 1.

Таблица 1 – Технические характеристики керамического состава

Наименование показателей	Значение		
Водоотделение, мл	5,0		
Сроки схватывания, час-мин: Начало, не ранее Конец, не позднее	5–25 6–30		
Время загустевания, мин. 30 BC 70 BC	При 0,1 МПа 235 273	При 0,7 МПа 232 270	
Время выдержки, часы	48	100	150
Прочность, МПА Изгиб Сжатие	10,2 32,3	14,2 44,26	15,34 45,19
Адгезия, МПа Колонна порода	6,3 2,3	6,3 3,7	8,9 4,0

Рассмотрим технологию ускоренного ввода скважины в работу ГПП+ГРП.

Технология основана на непрерывной работе флота ГНКТ выполняющего помимо основной работы, ещё и гидропескоструйную перфорацию, и флота ГРП выполняющего гидравлический разрыв пласта без ограничений по массе проппанта и других осложняющих факторов.

Главной особенностью многостадийного ГПП+ГРП в наклонных и горизонтальных скважинах является то, что они должны быть инициированы из определенных интервалов пласта и геометрические параметры создаваемых при этом трещин (длина, ширина) определяются предельной высотой трещины. В горизонтальных скважинах принципиальное значение имеет количество и ориентация трещин относительно ствола, а также длина трещин. Много стадийный ГПП+ГРП как средство воздействия на участок залежи наиболее эффективны при системном их использовании в добывающих и нагнетательных скважинах в комплексе с методами увеличения нефтеотдачи пластов.

Эффективное применение ГПП (гидропескоструйной перфорации) и ГРП (гидроразрыва пласта) в скважинах позволит:

- вскрыть несколько пластов (это особенно эффективно при наличии множества пропластков, которые можно подвергнуть ГРП по отдельности);
- провести несколько последовательных операций гидроразрыва, обойтись меньшим количеством проппанта, так как он не расходуется на расклинивание глинистых перемычек, а распространяется только в целевые зоны.

Проблема селективных гидроразрывов в ГС может быть успешна решена при объединении технологий гидропескоструйной перфорации и гидроразрыва пласта. При этом технология селективного создания трещин выглядит следующим образом. Первый этап – предварительная резка колонны. Следующий этап – образовании серии каверн путем проведения ГПП. И завершение технологии – разрыв пласта. При выполнении гидропескоструйной перфорации энергия давления смеси жидкости и песка в колонне НКТ преобразуется в кинетическую энергию струи. В образованной полости скорость струи снижается, статическое давление в полости возрастает. При определенных значениях параметров струи и давления в кольцевом пространстве происходит инициация образования трещины. Инициируемые из серии отверстий перфоратора трещины образуют совместную трещину. Как следствие, путем соответствующего размещения перфорационных отверстий обеспечивается возможность уточнения интервала начала развития трещины.

Литература

1. Зарипов И.М. [и др.]. Опыт строительства скважин с эксплуатационной колонной, составленной из стеклопластиковых обсадных труб, в ПАО «Татнефть» // Нефтяное хозяйство. – 2018. – № 1137. – С. 18–20.

2. Лаврентьев И.Д. Применение стеклопластиковых обсадных труб// Сборник материалов Международной научно-практической конференции молодых ученых Энергия молодежи для нефтегазовой индустрии. – 2018. – № 3. – С. 142–145.

References

- 1. Zaripov I.M. [et al.]. Experience in the construction of wells with a production casing composed of fiberglass casing pipes at PJSC Tatneft // Oil industry. 2018. № 1137. P. 18–20.
- 2. Lavrentiev I.D. The use of fiberglass casing pipes // Collection of materials of the International scientific and practical conference of young scientists Energy of youth for oil and gas industry. − 2018. − № 3. − P. 142–145.