CAR PRICE PREDICTION

PRESENTATION

Content

Data preparation and EDA

Data transformation, detect outliers, check duplicated values and imputate or drop the null values

2 Data modeling and Evaluate

Using the distinct regression models and evaluate to find the best result for selling price prediction

3 Model Prediction

Perform model predict the selling price for brands and information about car by using Streamlit

Executive Summary

- Data preparation is to handle all values.
- Exploratory Data Analysis (EDA) is to perform the Data Analytic.

Result Summary

- The best model for car price prediction is **XGBoost** model.
- The primary factors which have high influent for model training is

year and for the mid-high are max_power, is_popular, is_luxury and engine

Features selection

Features selection is to choosing subset of features in a large set of variable.

The goal is to improve and effective the model performance, reduce overfitting and enhance the interpretability.

The 13 features from data set aren't enough to effective the model performance, so we will have to create new features from original 13 features in data set.

which are.....

age brands high_mileage fuel_efficiency is_popular is_luxury age_category

Features importance

MLOPs in model deployment

Model management

Model for car price prediction

Model Performance Comparison: Model Train R² Test R² RMSE 0 Linear Regression 0.736 113404.94 154842.57 Ridge Regression 0.747 0.736 113385.53 154848.90 Lasso Regression 0.747 0.736 113404.94 154842.57 Random Forest 0.973 0.886 66799.70 101696.78 Gradient Boosting 0.966 0.895 64583.00 97784.77 XGBoost 0.962 97150.58 0.896 64576.10

XGBoost

Best model

- Linear Regression
- Ridge Regression
- Lasso Regression
- Random Forest
- Gradient Boosting

Data Description

The data was collected by Kaggle:

https://www.kaggle.com/code/mohaiminul101/car-price-prediction

	name	year	selling_price	km_driven	fuel	seller_type	transmission	owner	mileage	engine	max_power	torque	seats
0	Maruti Swift Dzire VDI	2014	450000	145500	Diesel	Individual	Manual	First Owner	23.4 kmpl	1248 CC	74 bhp	190Nm@ 2000rpm	5.0
1	Skoda Rapid 1.5 TDI Ambition	2014	370000	120000	Diesel	Individual	Manual	Second Owner	21.14 kmpl	1498 CC	103.52 bhp	250Nm@ 1500-2500rpm	5.0
2	Honda City 2017-2020 EXi	2006	158000	140000	Petrol	Individual	Manual	Third Owner	17.7 kmpl	1497 CC	78 bhp	12.7@ 2,700(kgm@ rpm)	5.0
3	Hyundai i20 Sportz Diesel	2010	225000	127000	Diesel	Individual	Manual	First Owner	23.0 kmpl	1396 CC	90 bhp	22.4 kgm at 1750-2750rpm	5.0
4	Maruti Swift VXI BSIII	2007	130000	120000	Petrol	Individual	Manual	First Owner	16.1 kmpl	1298 CC	88.2 bhp	11.5@ 4,500(kgm@ rpm)	5.0
								·				·	
8123	Hyundai i20 Magna	2013	320000	110000	Petrol	Individual	Manual	First Owner	18.5 kmpl	1197 CC	82.85 bhp	113.7Nm@ 4000rpm	5.0
8124	Hyundai Verna CRDi SX	2007	135000	119000	Diesel	Individual	Manual	Fourth & Above Owner	16.8 kmpl	1493 CC	110 bhp	24@ 1,900-2,750(kgm@ rpm)	5.0
8125	Maruti Swift Dzire ZDi	2009	382000	120000	Diesel	Individual	Manual	First Owner	19.3 kmpl	1248 CC	73.9 bhp	190Nm@ 2000rpm	5.0
8126	Tata Indigo CR4	2013	290000	25000	Diesel	Individual	Manual	First Owner	23.57 kmpl	1396 CC	70 bhp	140Nm@ 1800-3000rpm	5.0
8127	Tata Indigo CR4	2013	290000	25000	Diesel	Individual	Manual	First Owner	23.57 kmpl	1396 CC	70 bhp	140Nm@ 1800-3000rpm	5.0

The data set was consisted by the column of car information following details:

name

fuel

mileage

year

8128 rows x 13 columns

- transmission
- engine

- km_driven
- seller_type
- max_power

seats

- selling_price
- owner

torque

Data preparation

DATA VALIDATION FOR MODELING

- Total Data: 8128 Records
- Total Columns: 13 Columns
- Categorical Columns : 6 Columns
- Numerical Columns : 5 Columns
- Null values: 1100 values
- Duplicated values : 1202 values

DATA CLEANSING

- Check any missing values and duplicated values
- Drop the Duplicated values
- Detect outlier values and remove

Data preparation

DATA TRANSFORMATION

```
car_df.drop("torque", axis=1, inplace=True)
```

• drop the **torque** columns

```
car_df = car_df.rename(columns={'mileage':'mileage (kmpl)'})
car_df['mileage (kmpl)'] = car_df['mileage (kmpl)'].str.split().str[0].astype(float)

car_df = car_df.rename(columns={'engine': 'engine (CC)'})
car_df['engine (CC)'] = car_df['engine (CC)'].str.split().str[0]
car_df['engine (CC)'] = pd.to_numeric(car_df['engine (CC)'], errors='coerce')

| car_df = car_df.rename(columns={'max_power': 'max_power (bhp)'})
car_df['max_power (bhp)'] = car_df['max_power (bhp)'].str.split().str[0]
car_df['max_power (bhp)'] = pd.to_numeric(car_df['max_power (bhp)'], errors='coerce')
```

Create new feature like is_luxury, is_popular, age ETC

FOR EXAMPLE

```
car_df["is_luxury"] = car_df['brands'].isin(luxury_brands).astype(int)
car_df

popular_brands = [
    'Maruti', 'Hyundai', 'Honda', 'Toyota', 'Tata', 'Mahindra',
    'Ford', 'Renault', 'Volkswagen', 'Skoda', 'Nissan', 'Chevrolet'
]

car_df["is_popular"] = car_df['brands'].isin(popular_brands).astype(int)
car_df
```

luxury_brands = ['BMW', 'Mercedes-Benz', 'Audi', 'Jaguar', 'Land', 'Volvo', 'Lexus']

• Split mileage, engine, max_power, columns into single values

<class 'pandas.core.frame.DataFrame'> Index: 6926 entries, 0 to 8125 Data columns (total 18 columns): Column Non-Null Count Dtype object 6926 non-null name 6926 non-null int64 selling price 6926 non-null int64 km driven int64 6926 non-null fuel 6926 non-null object seller_type 6926 non-null object transmission 6926 non-null object 6926 non-null object mileage (kmpl) 6718 non-null float64 float64 engine (CC) 6718 non-null max power (bhp) 6720 non-null float64 11 seats 6718 non-null float64 6926 non-null int64 object 6926 non-null brands 14 is popular 6926 non-null int64 15 is luxury 6926 non-null int64 16 high_mileage 6926 non-null int64 17 age_category 6926 non-null category dtypes: category(1), float64(4), int64(7), object(6)

Outliers before cleansing

Outliers after cleansing

- 0.75

- 0.50

- 0.25

- 0.00

- -0.25

- -0.75

Data Modeling

Use LabelEncoder to encode the categorical values to prepare for modeling

For example

```
car_df["fuel"] = LabelEncoder.fit_transform(car_df["fuel"])
car_df["fuel"].unique()

array([1, 3, 2, 0])

car_df["seller_type"] = LabelEncoder.fit_transform(car_df["seller_type"])
car_df["seller_type"].unique()

array([1, 0, 2])

car_df["brands"] = LabelEncoder.fit_transform(car_df["brands"])
car_df["brands"].unique()

array([16, 21, 9, 10, 23, 8, 20, 15, 22, 4, 5, 12, 17, 2, 24, 19, 3, 14, 13, 6, 7, 25, 18, 1, 0, 11])
```

Drop the 'selling_price' feature for and split for training

```
y = car_df['selling_price']
X = car_df.drop('selling_price', axis=1)

from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
```

Split the data for 70% training and 30% for testing

Prepare models for prediction, which are regression models and tree-based models

- Linear Regression
- Random Forest
- Ridge Regression
- Gradient Boosting
- Lasso Regression
- XGBoost

Train Model

Example for coding

```
models = {
   "Linear Regression": Pipeline([
       ('scaler', StandardScaler()),
       ('model', LinearRegression())
   1),
    "Ridge Regression": Pipeline([
       ('scaler', StandardScaler()),
       ('model', GridSearchCV(
            Ridge(),
           param_grid={"alpha": [0.1, 1.0, 10.0]},
            cv=10
        ))
   ]),
   "Lasso Regression": GridSearchCV(
       Pipeline([
            ('scaler', StandardScaler()),
            ('model', Lasso(random_state=42))
       param grid={"model alpha": [0.001, 0.01, 0.1, 1.0, 10.0]},
       cv=10,
    "Random Forest": GridSearchCV(
       RandomForestRegressor(random state=42),
       param grid={
            "n estimators": [100, 200],
            "max_depth": [None, 10, 20],
            "min_samples_split": [2, 5]
       cv=10,
       n jobs=-1
```

```
results = []
trained_models = {}
for name, model in models.items():
    print(f"Training {name}...")
    model.fit(X_train, y_train)
    if hasattr(model, 'best estimator '):
        best model = model.best estimator
    elif hasattr(model, 'named_steps') and hasattr(model.named_steps['model'], 'best_estimator_'):
        best model = model
        best_model = model
    trained models[name] = best model
    y_pred = best_model.predict(X_test)
    y pred train = best model.predict(X train)
    r2_train = r2_score(y_train, y_pred_train)
    r2_test = r2_score(y_test, y_pred)
    mae = mean absolute error(y test, y pred)
    rmse = np.sqrt(mean_squared_error(y_test, y_pred))
    results.append({
        "Model": name,
        "Train R2": round(r2_train, 3),
        "Test R2": round(r2_test, 3),
        "MAE": round(mae, 2),
        "RMSE": round(rmse, 2)
    })
results car df = pd.DataFrame(results)
print("="*60)
print("Model Performance Comparison:")
print(results_car_df)
```

Evaluation

Мо	del Performance Com	parison:			
	Model	Train R²	Test R ²	MAE	RMSE
0	Linear Regression	0.747	0.736	113404.94	154842.57
1	Ridge Regression	0.747	0.736	113385.53	154848.90
2	Lasso Regression	0.747	0.736	113404.94	154842.57
3	Random Forest	0.973	0.886	66799.70	101696.78
4	Gradient Boosting	0.966	0.895	64583.00	97784.77
5	XGBoost	0.962	0.896	64576.10	97150.58

The 3 Linear models perform similar result, but show the large MAE and RMSE. The Random Forest with a an excellent train score but low on test score, which is show some overfitting. The Gradient and XGBoost models are perform with the best result among these models, but the best choice is XGBoost with lowest MAE and RMSE score.

Evaluation

Car Selling Price Predictor

Save the best model as pkl file and then use Streamlit to perform a car price model prediction

Input the information of the car, for example Honda City 2015 which the average price in second hand or above in range 400000 - 600000

The model prediction was 587,503 which is a excellent and fascinate result.

Estimated Selling Price: 587,503

Prediction Confidence: High

End