Measures of Dispersion

Measures of Dispersion describe the spread or variability of a dataset.

While **measures of central tendency** (mean, median, mode) <u>tell us where the center is</u>, **measures of dispersion** tell us <u>how far the data values are from that center</u>.

High dispersion means data points are spread out widely, while low dispersion means they are clustered close to the center.

Common measures of dispersion:

- Range
- Variance
- Standard Deviation
- Interquartile Range (IQR)

1. Range

The simplest measure of dispersion, calculated as the difference between the largest and smallest values in the dataset.

• Formula

Range= Maximum Value – Minimum Value

• Example

Dataset: 5, 8, 12, 20, 25

Range = 25 - 5 = 20

Advantages

o Easy to calculate and understand.

• Limitations

- Only depends on extreme values (max and min), ignoring the rest of the data.
- Sensitive to outliers.

2. Variance

Variance measures the average squared deviation from the mean.

It shows how far data points are from the mean, on average.

• Formula (Population Variance) VS Formula (Sample Variance)

Population Variance

$$\sigma^2 = \frac{\sum_{i=1}^{N} (x_i - \mu)^2}{N}$$

 σ^2 = population variance x_i = value of i^{th} element μ = population mean N = population size

Sample Variance

$$s^{2} = \frac{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}{n-1}$$

 s^2 = sample variance

 x_i = value of i^{th} element

 \bar{x} = sample mean

n =sample size

• Example

Dataset: 4, 8, 6

Mean = 6

Variance = $((4-6)^2 + (8-6)^2 + (6-6)^2)/3 = 2.67$

- Advantages
 - Considers all data points.
- Limitations
 - Units are squared, making interpretation less intuitive.

3. Standard Deviation

The square root of variance, bringing the unit back to the same as the original data.

• Formula (Population Standard Deviation) VS Formula (Sample Standard Deviation)

Standard Deviation Formula			
Population	Sample		
$\sigma = \sqrt{\frac{\sum (X - \mu)^2}{N}}$	$s = \sqrt{\frac{\sum (X - \bar{x})^2}{n - 1}}$		
X – The Value in the data distribution μ – The population Mean N – Total Number of Observations	X — The Value in the data distribution \bar{x} — The Sample Mean n - Total Number of Observations		

• Example

Using the variance example above:

Standard Deviation = $(2.67)^{1/2} \approx 1.63$

- Advantages
 - o Easier to interpret than variance because it uses the same units as the data.
- Limitations
 - Sensitive to outliers.

4. Interquartile Range (IQR)

Measures the range of the middle 50% of the data by subtracting the 25th percentile (Q1) from the 75th percentile (Q3).

• Formula

$$IQR = Q3 - Q1$$

• Example

Dataset: 2, 4, 6, 8, 10, 12, 14

$$IQR = 12 - 4 = 8$$

- Advantages
 - o Not affected by extreme values (robust measure).
- Limitations
 - o Ignores data outside the middle 50%.

5. Comparison

Measure	Uses All Data?	Sensitive to Outliers?	Units
Range	X No	✓ Yes	Same as data
Variance	✓ Yes	✓ Yes	Squared units
Standard Deviation	✓ Yes	✓ Yes	Same as data
IQR	X No	X No	Same as data

6. Common Mistakes

- Using range to judge spread in datasets with extreme outliers.
- Forgetting to take the square root of variance when interpreting standard deviation.
- Mixing up sample and population formulas.

7. Visual Example

