Introduction to Networks & Distributed Computing CECS 327

TCP/IP Layers

TCP/IP Prototocols

Application Layer	НТТР	ITTP FTP		Telnet		,	SMTP	DNS
Transport Layer	ТСР				UDP			
Network Layer	IP ARP			Р	ICMP		IGMP	
Network Interface Layer	Ether	Ethernet Tok		oken Ring		Other Link-Layer Protocols		
Physical	Bits of data							

IP Packet Format

- Version (4): currently 4
- Hlen (4): number of 32-bit words in header
- TOS (8): type of service (not widely used)
- Length (16): number of bytes in this datagram
- Ident (16): used by fragmentation
- Flags/Offset (16): used by fragmentation
- TTL (8): number of hops this datagram has traveled
- Protocol (8): demux key (TCP=6, UDP=17)
- Checksum (16): of the header only
- DestAddr & SrcAddr (32)

MTU

Maximum Transmission Unit (MTU)

Largest IP packet a *network* will accept Arriving IP packet may be larger

- Every Network has Own Maximum Transmission Unit (MTU)
 - Largest IP datagram it can carry within its own packet frame
 - Ethernet (1500 bytes), FDDI (4500 bytes)
 - Don't know MTUs of all intermediate networks in advance

IP Solution

- When hit network with small MTU, fragment packets
 - Might get further fragmentation as proceed farther

If IP packet is longer than the MTU, the router breaks packet into smaller packets

Called IP fragments

Fragments are still IP packets

Earlier in Mod A, fragmentation in TCP

What is Fragmented?

Only the original data field New headers are created

Multiple Fragmentations

Original packet may be fragmented multiple times along its route

Defragmentation

- "Internet layer" process on destination host defragments, restoring the original packet
- IP Defragmentation only occurs once

Fragmentation and IP Fields

More Fragments field (1 bit) / (Flag)

- If router fragments, sets More Fragments (Flag) field in last fragment to 0
- In all other fragments, sets to 1
 - 1 if more fragments
 - 0 if not

IP packet has a 16-bit *Identification* field

Version Hdr Len (4) (4)	TOS (8)	Total Length in bytes (16)				
Indication	Flags (3)	Fragm	nent Offset (13)			
Time to Live (8)	Protocol (8)	Header Checksum (16)				
Source IP Address						
Destination IP Address						
Options (if any)				PAD		
Data Field						

- IP packet has a 16-bit Identification field
 - Source host internet process places a "random number" in the Identification field
 - The "random number" is different for each IP packet

Version Hdr Len (4) (4)	TOS (8)	Total Length in bytes (16)			
Indication	n (16 bits)	Flags (3)	Fragment Offset (13)		
Time to Live (8)	Protocol (8)	Header Checksum (16)			

- IP packet has a 16-bit Identification field
 - If router fragments, places the original Identification field value in the Identification field of each fragment

Purpose

- Allows receiving host's "internet layer" process know what fragments belong to each original packet
- ii. Works even if an IP packet is fragmented several times

Fragment Offset Field

- Fragment offset field (13 bits) is used to reorder fragments with the same Identification field
- Contains the data field's starting point (in octets) from the start of the data field in the original IP packet

Version (4)	Hdr Len (4)	TOS (8)	Total Length in bytes (16)		
Indication (16 bits)			Flags (3)	Fragment Offset (13)	

Fragment Offset Field

- Receiving host's "internet layer" process assembles fragments in order of increasing fragment offset field value
- This works even if fragments arrive out of order!
- Works even if fragmentation occurs multiple times

Length

Indicate the Length of IP fragment

Fragmentation: Recap

IP Fragmentation

- Data field of a large IP packet is fragmented
- The fragments are sent into a series of smaller IP packets fitting a network's MTU
- Fragmentation is done by routers
- Fragmentation may be done multiple times along the route

Defragmentation: Recap

IP Defragmentation

Defragmentation (reassembly) is done once, by destination host's internet layer process

Defragmentation: Recap

- All IP packets resulting from the fragmentation of the same original IP packet have the same Identification field value
- Destination host internet process orders all IP packets from the same original on the basis of their Fragment Offset field values
- More Fragments (flag) field tells whether there are no more fragments coming

Fragmentation Related Fields

- Length
 - Length of IP fragment
- Identification
 - To match up with other fragments
- Fragment offset
 - Where this fragment lies in entire IP datagram
- Flags
 - "More fragments" flag
 - "Don't fragment" flag

IP Fragmentation Example #1

IP Fragmentation Example #2

