

University of Pisa

DEPARTMENT OF NATURAL, MATHEMATICAL AND PHYSICAL SCIENCES Master's degree in Physics

Optimization of	of the tr	rigger sys	stem an	d data	acquisition
of th	he FOO	Γ experi	ment at	CNAC)

Thesis advisor:

Luca Galli

Candidate:

Lorenzo Marini

 ${\it Research \ supervisor:}$

Bisogni Maria Giuseppina

Abstract

This is the abstract. This is the abstract.

Contents

1		0	icle Therapy	11
	1.1		of Charged Particle Therapy	11
			Electron magnetic energy loss of heavy charged particles	11
			Multiple Coulomb Scattering	12
			Nuclear interaction	12
			Range	12
	1.2		iology in CPT	12
			Dose deposition	12
			DNA damage	12
			Linear Energy Transfer	12
			Cells survival models	12
			Relative Biological Effectiveness	12
	1.3	Thesis of	objectives	12
2			experiment	13
	2.1		rements and strategies	13
	2.2		mentla setup	13
			Upstream region	14
			Tracking system	14
			Downstream region	14
	2.3	Current	t status and research program	14
3	Met	hods and	d materials	15
	3.1	Overvie	ew	15
	3.2	Detection	on system	15
			Start Counter	16
			TOF-Wall detector	16
		3.2.3	The WaveDAQ system	16
	3.3		update	16
			WaveDREAM channels calibration	16
	3.4	Data tal	king	16
	3.5	Data pr	recessing	16
		3.5.1	Start Counter waveforms analysis	16
			TOF-Wall waveforms analysis	16
			Clock analysis	16
			Time resolution	16
		3.5.5	Time of flight evaluation	16
		3.5.6	Charge evaluation	17

6	CONTENTS

	3.5.7 Energy evaluation	17
4	Results and discussion4.1Trigger efficency4.2Charge reconstruction	
A	Capitolo 1	21

List of Figures

y = x $y = 3s$																	
y = x $y = 3s$																	
y = x $y = 3s$																	
y = x $y = 3s$																	
y = x $y = 3s$																	

List of Tables

10 LIST OF TABLES

Charge Particle Therapy

Prova del capitolo 1.

$$F = ma (1.1)$$

$$F = ma (1.2)$$

$$F = ma (1.3)$$

$$F = ma (1.4)$$

1.1 Physics of Charged Particle Therapy

Qui ci scrivo qualcosa.

1.1.1 Electron magnetic energy loss of heavy charged particles Scrivo qualcosa[Pan95].

Figure 1.1: y = x

Figure 1.2: $y = 3\sin x$

1.1.2 Multiple Coulomb Scattering

Scrivo qualcosa[Pan95].

1.1.3 Nuclear interaction

Scrivo qualcosa[Pan95].

1.1.4 Range

Scrivo qualcosa[Pan95].

1.2 Radiobiology in CPT

Qui ci scrivo qualcosa.

1.2.1 Dose deposition

Scrivo qualcosa[Pan95].

1.2.2 DNA damage

Scrivo qualcosa[Pan95].

1.2.3 Linear Energy Transfer

Scrivo qualcosa[Pan95].

1.2.4 Cells survival models

Scrivo qualcosa[Pan95].

1.2.5 Relative Biological Effectiveness

Scrivo qualcosa[Pan95].

1.3 Thesis objectives

The FOOT experiment

Prova del capitolo 1.

$$F = ma (2.1)$$

$$F = ma (2.2)$$

$$F = ma (2.3)$$

$$F = ma (2.4)$$

2.1 Measurements and strategies

Qui ci scrivo qualcosa.

2.2 Experimentla setup

Figure 2.1: y = x

Figure 2.2: $y = 3\sin x$

2.2.1 Upstream region

Scrivo qualcosa[Pan95].

2.2.2 Tracking system

Scrivo qualcosa[Pan95].

2.2.3 Downstream region

Scrivo qualcosa[Pan95].

2.3 Current status and research program

Methods and materials

Prova del capitolo 1.

$$F = ma (3.1)$$

$$F = ma (3.2)$$

$$F = ma (3.3)$$

$$F = ma (3.4)$$

3.1 Overview

Qui ci scrivo qualcosa.

3.2 Detection system

Figure 3.1: y = x

Figure 3.2: $y = 3\sin x$

3.2.1 Start Counter

Scrivo qualcosa[Pan95].

3.2.2 TOF-Wall detector

Scrivo qualcosa[Pan95].

3.2.3 The WaveDAQ system

Scrivo qualcosa[Pan95].

3.3 Trigger update

Qui ci scrivo qualcosa.

3.3.1 WaveDREAM channels calibration

Scrivo qualcosa[Pan95].

3.4 Data taking

Qui ci scrivo qualcosa.

3.5 Data precessing

Qui ci scrivo qualcosa.

3.5.1 Start Counter waveforms analysis

Scrivo qualcosa[Pan95].

3.5.2 TOF-Wall waveforms analysis

Scrivo qualcosa[Pan95].

3.5.3 Clock analysis

Scrivo qualcosa[Pan95].

3.5.4 Time resolution

Scrivo qualcosa[Pan95].

3.5.5 Time of flight evaluation

Scrivo qualcosa[Pan95].

3.5.6 Charge evaluation

Scrivo qualcosa[Pan95].

3.5.7 Energy evaluation

Scrivo qualcosa[Pan95].

Results and discussion

Prova del capitolo 1.

$$F = ma$$
 (4.1)

$$F = ma (4.2)$$

$$F = ma (4.3)$$

$$F = ma (4.4)$$

4.1 Trigger efficency

Qui ci scrivo qualcosa.

4.2 Charge reconstruction

Figure 4.1: y = x

Figure 4.2: $y = 3\sin x$

Appendix A

Capitolo 1

Prova del capitolo 1.

$$F = ma$$
 (A.1)

$$F = ma$$
 (A.2)

$$F = ma (A.3)$$

$$F = ma$$
 (A.4)

Figure A.1: y = x

Figure A.2: $y = 3\sin x$

Bibliography

[Pan95] D. Pan. A tutorial on mpeg/audio compression. *IEEE Multimedia*, 2:60–74, Summer 1995.