

Statistical Sciences

DoSS Summer Bootcamp Probability Module 8

Ichiro Hashimoto

University of Toronto

July 22, 2025

Recap

Learnt in last module:

- Stochastic convergence
 - ▷ Convergence in distribution
 - ▷ Convergence in probability
 - > Convergence almost surely
 - \triangleright Convergence in L^p
 - Relationship between convergences

Outline

- Convergence of functions of random variables
 - ▷ Slutsky's theorem
 - ▷ Continuous mapping theorem
- Laws of large numbers
 - ▶ WLLN
 - ▷ SLLN
 - ▷ Glivenko-Cantelli theorem
- Central limit theorem

Recall: Stochastic convergence If $X_n \to X$, $Y_n \to Y$ in some sense, how is the limiting property of $f(X_n, Y_n)$?

Recall: Stochastic convergence If $X_n \to X$, $Y_n \to Y$ in some sense, how is the limiting property of $f(X_n, Y_n)$?

Convergence of functions of random variables (a.s.)

Suppose the probability space is complete, if $X_n \xrightarrow{a.s.} X$, $Y_n \xrightarrow{a.s.} Y$, then for any real numbers a, b,

- $aX_n + bY_n \xrightarrow{a.s.} aX + bY$:
- $X_n Y_n \xrightarrow{a.s.} XY$

Remark:

Still require all the random variables to be defined on the same probability space

(Pf) Snoe Xn x a-s, there exists = Nx C SL s.t. $X_n \rightarrow X$ on N_k and $P(N_k) = 1$. Since In I Tais, there ensts Ny CD St. (n-) (on Ny and P (Nx)=1. On Nx Ny, we know Xx -> X, Yx -> Y postusse Thus we have on NxNN7, a Kut bin -> a X+ by pointwise X. In -> X-7 pointwise. (P(Nx n Nx) = 1-1P((Nx nNx))) = 1- [P (Nx C Nx C) apply union bond = 1- (P(Nx) + P(Nx)) = (-0=1 =0 : [P (Nx 1 Nz)= () Thus we have conford portwise convergence of axutby, -> X and Xu: Zy -> X. Y hold with probability.

Convergence of functions of random variables (probability)

Suppose the probability space is complete, if $X_n \xrightarrow{P} X$, $Y_n \xrightarrow{P} Y$, then for any real numbers a, b,

- $aX_n + bY_n \xrightarrow{P} aX + bY$;
- $X_n Y_n \xrightarrow{P} XY$.

Remark:

• Still require all the random variables to be defined on the same probability space

Recall
$$x_n \xrightarrow{p} x$$
 if, $\forall \epsilon > 0$, $p((x_n - x_1 > \epsilon) \rightarrow 0$ as $n > 0$.

Convergence of functions of random variables (L^p)

Suppose the probability space is complete, if $X_n \xrightarrow{L^p} X$, $Y_n \xrightarrow{L^p} Y$, then for any real numbers a, b,

• $aX_n + bY_n \xrightarrow{L^p} aX + bY$;

Remark:

• Still require all the random variables to be defined on the same probability space

Xat In Les XeT of Xy X, Z, Z, Z (pf) Recall that 11 × 11, p = (E|x|) p is a ann if p21. Theretere we have triangle inequality, i.e. 11 x+ 7 11p = 11 x11p + 11711p 11 (xx+3,1- (xxx)) = 11 xx-x11p + 117x-711p -> 0. -) O -) O SILCE TO Y

Even Yntin d) Xti fails

Slutsky's theorem

If $X_n \xrightarrow{d} X$ and $Y_n \xrightarrow{P} c$ (c is a constant), then

Remark: Convergence in distribution is different.

- $X_n + Y_n \xrightarrow{d} X + c$:
- $X_n Y_n \xrightarrow{d} cX$:
- $X_n/Y_n \xrightarrow{d} X/c$, where $c \neq 0$.

Remark: Convergence in distribution is different.

Slutsky's theorem

If $X_n \xrightarrow{d} X$ and $Y_n \xrightarrow{P} c$ (c is a constant), then

- $X_n + Y_n \xrightarrow{d} X + c$;
- $X_n Y_n \xrightarrow{d} cX$;
- $X_n/Y_n \xrightarrow{d} X/c$, where $c \neq 0$.

Remark:

• The theorem remains valid if we replace all the convergence in distribution with convergence in probability.

Remark: The requirement that $Y_n \xrightarrow{P} c$ (c is a constant) is necessary.

Remark: The requirement that $Y_n \xrightarrow{P} c$ (c is a constant) is necessary.

Examples:

$$X_n \sim \mathcal{N}(0,1), Y_n = -X_n$$
, then $Y_n \sim \mathcal{M}(0,1)$ as well.

- $X_n \xrightarrow{d} Z \sim \mathcal{N}(0,1), Y_n \xrightarrow{d} Z \sim \mathcal{N}(0,1);$
- $X_n + Y_n \xrightarrow{d} 0$; $\approx 2 \approx$
- $X_n Y_n = -X_n^2 \xrightarrow{d} -\chi^2(1); \neq 2^2 \wedge \chi^*(1)$
- $X_n/Y_n = -1$.

Continuous mapping theorem

Let X_n , X be random variables, if $g(\cdot): \mathbb{R} \to \mathbb{R}$ satisfies $\mathbb{P}(X \in D_g) = 0$, then

- $X_n \xrightarrow{a.s.} X \Rightarrow g(X_n) \xrightarrow{a.s.} g(X)$:
- $X_n \xrightarrow{P} X \Rightarrow g(X_n) \xrightarrow{P} g(X)$:
- $X_n \xrightarrow{d} X \Rightarrow g(X_n) \xrightarrow{d} g(X)$:

where D_{σ} is the set of discontinuity points of $g(\cdot)$.

10 convergen fail in general. Lt Xh = X when X ∈ LD but € L2.

Lut g(x)= x2.

Then 9(X4) & P. So P convergence doesn't make

g is essentially Coutinuous writ X

Continuous mapping theorem

Let X_n , X be random variables, if $g(\cdot): \mathbb{R} \to \mathbb{R}$ satisfies $\mathbb{P}(X \in D_g) = 0$, then

- $X_n \xrightarrow{a.s.} X \Rightarrow g(X_n) \xrightarrow{a.s.} g(X)$;
- $X_n \xrightarrow{P} X \Rightarrow g(X_n) \xrightarrow{P} g(X)$;
- $X_n \xrightarrow{d} X \Rightarrow g(X_n) \xrightarrow{d} g(X)$;

where D_g is the set of discontinuity points of $g(\cdot)$.

Remark:

- If $g(\cdot)$ is continuous, then ...
- If X is a continuous random variable, and D_g only include countably many points, then ...

Weak Law of Large Numbers (WLLN)

If X_1, X_2, \dots, X_n are i.i.d. random variables $\mathbb{E}(|X_i|) < \infty$, then

$$\bar{X} = \frac{\sum_{i=1}^{n} X_i}{n} \xrightarrow{P} \mu.$$

~ M= EX

Remark:

A more easy-to-prove version is the L^2 weak law, where an additional assumption $Var(X_i) < \infty$ is required.

Sketch of the proof:

$$\mathbb{E}\left[\overline{X} - \mu\right]^{2} = \operatorname{Vor}\left(\overline{X}\right)$$

$$= \operatorname{Vor}\left(\frac{\overline{X}}{n}\right)$$

A generalization of the theorem: triangular array

Triangular array

A triangular array of random variables is a collection $\{x_{n,k}\}_{1 \le k \le n}$.

$$M_{2}(\longrightarrow X_{1,1} \xrightarrow{Sun} S_{1})$$

$$m_{2} \longrightarrow X_{2,1}, X_{2,2} \xrightarrow{Sun} S_{2}$$

$$m_{3} \longrightarrow X_{3,1}, X_{3,2}, X_{3,3} \xrightarrow{Sun} S_{3}$$

$$\vdots$$

$$M \longrightarrow X_{n,1}, X_{n,2}, \cdots, X_{n,n} \xrightarrow{Sun} S_{n} = \prod_{k \geq 1} X_{n,k}$$

Remark: We can consider the limiting property of the row sum S_n .

Law of Large Numbers

L^2 weak law for triangular array

Suppose $\{X_{n,k}\}$ is a triangular array, $n=1,2,\cdots,k=1,2,\cdots,n$. Let $S_n=\sum_{k=1}^n X_{n,k},\ \mu_n=\mathbb{E}(S_n),\ \text{if}\ \sigma_n^2/b_n^2\to 0,\ \text{where}\ \sigma_n^2=Var(S_n)\ \text{and}\ b_n\ \text{is a sequence}$ of positive real numbers, then

$$\frac{S_n-\mu_n}{b_n} \quad \xrightarrow{P} \quad 0.$$

Remark:

The L^2 weak law for i.i.d. random variables is a special case of that for triangular array.

Proof:

Remark:

A more generalized version incorporates truncation, then the second-moment constraint is relieved.

Strong Law of Large Numbers (SLLN)

Let X_1, X_2, \cdots be an i.i.d. sequence satisfying $\mathbb{E}(X_i) = \mu$ and $\mathbb{E}(|X_i|) < \infty$, then $\bar{X} = \frac{\sum_{i=1}^n X_i}{n} \xrightarrow{a.s.} \mu$.

Remark: The proof needs Borel-Cantelli lemma.

Strong Law of Large Numbers (SLLN)

Let X_1, X_2, \cdots be an i.i.d. sequence satisfying $\mathbb{E}(X_i) = \mu$ and $\mathbb{E}(|X_i|) < \infty$, then $\bar{X} = \frac{\sum_{i=1}^n X_i}{n} \xrightarrow{a.s.} \mu$.

Remark: The proof needs Borel-Cantelli lemma.

Glivenko-Cantelli theorem

Let X_i , $i = 1, \dots, n$ i.i.d. with distribution function $F(\cdot)$, and let

$$F_n(x) = \frac{1}{n} \sum_{i=1}^n I(X_i \le x)$$
, then as $n \to \infty$,

$$\sup_{x\in\mathbb{R}}|F(x)-F_n(x)|\to 0,\quad a.s.$$

Note that
$$0 \leq I(X_0 \leq x) \leq 1$$

Cinite

$$\int_{\mathcal{O}} \int_{\mathcal{O}} \left\{ \left\{ \mathbb{E} \left[\left(X_{i} \leq X \right) = \left[P \left(X_{i} \leq X \right) = F \left(\mathcal{O} \right) \leq l \right] \right\} \right\}$$

$$\frac{a.s.}{e}$$
 E $I(x \le x) = F(x)$

Limit Theorems and Counterexamples

Recall: For the law of large numbers to hold, the assumption $E|X| < \infty$ is crucial.

Law of Large Numbers fail for infinite mean i.i.d. random variables

If X_1X_2,\ldots are i.i.d. to X with $E|X_i|=\infty$, then for $S_n=X_1+\cdots+X_n$, $P(\lim_{n\to\infty}S_n/n\in(-\infty,\infty))=0$.

Proof: Omitted

Central Limit Theorem

$$Ver(\overline{X}) = \frac{\sigma^2}{N}$$

Sta(\overline{X}) = $\frac{\sigma}{N}$ \Leftrightarrow Sta(\overline{X}) = σ

What is the limiting distribution of the sample mean?

Classic CLT

Suppose X_1, \dots, X_n is a sequence of i.i.d. random variables with $\mathbb{E}(X_i) = \mu$,

$$Var(X_i) = \sigma^2 < \infty$$
, then

$$\frac{\sqrt{n}(\lambda_{n}-\mu)}{\sigma} \xrightarrow{d} \mathcal{N}(0,1).$$

$$\frac{\sqrt{n}}{\sigma} \cdot \frac{1}{n} \sum_{i=1}^{n} (\chi_{i}-\mu)_{i} = \frac{\sum_{i=1}^{n} (\chi_{i}-\mu)}{\sigma}$$

Remark:

- The proof involves characteristic function.
- A more generalized CLT is referred to as "Lindeberg CLT".

Central Limit Theorem

Example:

Suppose $X_i \sim Bernoulli(p)$, i.i.d., consider $Z_n = \frac{\sum_{i=1}^n X_i - np}{\sqrt{np(1-p)}}$, then by CLT, $Z_n \sim \mathcal{N}(0,1)$ asymptotically.

Monotone Convergence Theorem

Monotone Convergence Theorem

If $X_n \ge c$ and $X_n \nearrow X$, then $EX_n \nearrow EX$

Usage:

Dominate Convergence Theorem

Dominated Convergence Theorem

If $X_n \to X$ a.s. and $|X_n| \le Y$ a.s. for all n and Y is integrable, then $EX_n \to EX$

Usage:

Delta Method

More about CLT: Delta method

Suppose X_n are i.i.d. random variables with $EX_n=0$, $VAR(X_n)=\sigma^2>0$. Let g be a measurable function that is differentiable at 0 with $g'(0)\neq 0$. Then

$$\sqrt{n}\left(g\left(rac{\sum_{k=1}^{n}X_{k}}{n}-g(0)
ight)
ight)
ightarrow \mathcal{N}(0,\sigma^{2}g'(0)^{2})$$
 weakly.

Proof under stronger assumption: Here, we suppose g is continuously differentiable on \mathbb{R} . If you are interested in a general proof refer to Robert Keener's *Theoretical Statistics*.

Problem Set

Problem 1: Prove that on a complete probability space, if $X_n \xrightarrow{a.s.} X$, $Y_n \xrightarrow{a.s.} Y$, then $X_n + Y_n \xrightarrow{a.s.} X + Y$.

Problem 2: Prove that on a complete probability space, if $X_n \xrightarrow{P} X$, $Y_n \xrightarrow{P} Y$, then $X_n + Y_n \xrightarrow{P} X + Y$.

Problem 3: A bank teller serves customers standing in the queue one by one. Suppose that the service time X_i for customer i has mean $\mathbb{E}(X_i)=2$ (minutes) and $Var(X_i)=1$. We assume that service times for different bank customers are independent. Let Y be the total time the bank teller spends serving 50 customers. Find $\mathbb{P}(90 < Y < 110)$.

