Chapter 1

Further Results in Stochastic Analysis

1.1 The Martingale Representation Theorem for Brownian Motion

Let $W_t, t \geq 0$ be a Brownian motion on a probability space (Ω, \mathcal{F}, P) , and let \mathcal{F}_t be the natural filtration: $\mathcal{F}_t = \sigma\{W_s, 0 \leq s \leq t\}$.

Theorem 1 Let T>0 and suppose that $X\in L_2(\Omega,\mathcal{F}_T,P)$. Then there exists an adapted process g_t such that $E\int_0^T g^2(s)ds < \infty$ and

$$X = EX + \int_0^T g(s)dW_s. \tag{1.1}$$

The proof follows from the Lemmas below. First, recall that a subset \mathcal{D} of $L_2(\Omega, \mathcal{F}_T, P)$ is dense if for every $X \in L_2(\Omega, \mathcal{F}_T, P)$ we have $\mathcal{D} \cap B \neq \emptyset$ for every neighbourhood B of X. In particular, there exists a sequence $X_n \in \mathcal{D}$ such that $X_n \to X$.

Lemma 1 Theorem 1 holds if the representation (1.1) holds for every X in some dense subset \mathcal{D} of $L_2(\Omega, \mathcal{F}_T, P)$.

PROOF: Let $X \in L_2(\Omega, \mathcal{F}_T, P)$ and take $X_n \in \mathcal{D}, X_n \to X$ as described above. Then $EX_n \to EX$ and there exist integrands g_n such that

$$X_n = EX_n + \int_0^T g_n(s)dW_s. \tag{1.2}$$

Taking $\tilde{X}_n = X_n - EX_n$ we have the Ito isometry

$$E(\tilde{X}_n - \tilde{X}_m)^2 = E \int_0^T (g_n(s) - g_m(s))^2 ds$$
 (1.3)

Since X_n is convergent, it is a Cauchy sequence, and hence from (1.3) the sequence g_n is convergent in $L_2(\Omega \times [0,T], dP \times dt)$. Thus there exists g such that

$$E\int_0^T (g_n(s) - g(s))^2 ds \to 0 \quad \text{as } n \to \infty$$

and (1.1) holds with this integrand g.

 \Diamond

Let \mathcal{D}_T be the subset of $L_2(\Omega, \mathcal{F}_T, P)$ consisting of random variables X of the form $X = h(W_{t_1}, W_{t_2}, \dots W_{t_n})$, where n is an integer, h is a bounded continuous function from R^n to R, and $0 \le t_1 < \dots < T_n \le T$. The proof of the following result is an elegant application of the martingale convergence theorem. See Øksendal¹, Lemma 4.3.1.

Lemma 2 \mathcal{D}_T is dense in $L_2(\Omega, \mathcal{F}_T, P)$.

To prove the Theorem, it remains to show that any $X \in \mathcal{D}_T$ has the representation property, and this we can show by a direct argument. In the following, we take n = 2; the extension to n > 2 is obvious. First, a fact about conditional expectation.

Lemma 3 Let X, Y be random variables taking values in \mathbb{R}^n , \mathbb{R}^m respectively, on a probability space (Ω, \mathcal{F}, P) . Let \mathcal{G} be a sub- σ -field of \mathcal{F} , and suppose that X is independent of \mathcal{G} while Y is \mathcal{G} -measurable. Then for any measurable function $f: \mathbb{R}^{n+m} \to \mathbb{R}$ such that $E|f(X,Y)| < \infty$, we have

$$E[f(X,Y)|\mathcal{G}] = b(Y),$$

where

$$b(y) = \int_{\mathbb{R}^n} f(x, y) \mu_X(dx).$$

Here μ_X is the distribution of X, the measure on the Borel sets \mathcal{B}^n of R^n defined by $\mu_X(B) = P(X \in B)$ for $B \in \mathcal{B}^n$.

PROOF: We have to show that for all bounded real-valued \mathcal{G} -measurable random variables Z we have

$$E[Zf(X,Y)] = E[Zb(Y)].$$

Let $\mu_{X,Y,Z}$ be the distribution of the R^{n+m+1} -valued r.v. (X,Y,Z). Since X is independent of \mathcal{G} , the random variables X and (Y,Z) are independent, so that $\mu_{X,Y,Z}(dx,dy,dz) = \mu_X(dx)\mu_{Y,Z}(dy,dz)$. Hence

$$E[Zf(X,Y)] = \int zf(x,y)\mu_{X,Y,Z}(dx,dy,dz)$$

$$= \int z \int f(x,y)\mu_X(dx)\mu_{Y,Z}(dy,dz)$$

$$= \int zb(y)\mu_{Y,Z}(dy,dz)$$

$$= E[Zb(Y)].$$

Lemma 4 Let $h: R^2 \to R$ be a bounded continuous function and let t_1, t_2, t satisfy $0 \le t_1 \le t \le t_2$. Then

$$E[h(W_{t_1}, W_{t_2})|\mathcal{F}_t] = v_1(t, W_{t_1}, W_t),$$

where

$$v_1(t, x, y) = \int h(x, z) \frac{1}{\sqrt{2\pi(t_2 - t)}} e^{(z - y)^2/2(t_2 - t)} dz.$$
 (1.4)

¹B. Øksendal, Stochastic Differential Equations, 6th ed., Springer-Verlag 2003

PROOF: Writing $h(W_{t_1}, W_{t_2}) = h(W_{t_1}, (W_{t_2} - W_t) + W_t)$, this follows immediately from Lemma 4, on taking $X = W_{t_2} - W_{t_1}$, $Y = (W_{t_1}, W_t) \in \mathbb{R}^2$ and $f(x, y) = h(y_1, x + y_2)$, and recalling that $X \sim N(0, t_2 - t)$.

Lemma 5 The random variable $X = h(W_{t_1}, W_{t_2})$, as defined in Lemma 4, has the representation property.

PROOF: It can be checked directly from (1.4) that the function v_1 satisfies

$$\frac{\partial v_1}{\partial t}(t, x, y) + \frac{1}{2} \frac{\partial^2 v_1}{\partial y^2}(t, x, y) = 0$$

and $v_1(T, x, y) = h(x, y)$. Hence by the Ito formula

$$h(W_{t_1}, W_{t_2}) = v_1(T, W_{t_1}, W_{t_2}) = v_1(t_1, W_{t_1}, W_{t_1}) + \int_{t_1}^{t_2} \frac{\partial v_1}{\partial y}(s, W_{t_1}, W_s) dW_s, \tag{1.5}$$

and we know from Lemma 4 that $v_1(t_1, W_{t_1}, W_{t_1}) = E[h(W_{t_1}, W_{t_2}) | \mathcal{F}_{t_1}]$. Now define $v_0(t_1, x) = v_1(t_1, x, x)$, and, for $t < t_1$

$$v_0(t,x) = \int v_0(t,z) \frac{1}{\sqrt{2\pi(t_1 - t)}} e^{(z-x)^2/2(t_1 - t)} dz.$$
 (1.6)

As above, we have

$$\frac{\partial v_0}{\partial t}(t,x) + \frac{1}{2} \frac{\partial^2 v_1}{\partial x^2}(t,x) = 0,$$

and the Ito formula gives

$$v_0(t_1, W_{t_1}) = v_1(t_1, W_{t_1}, W_{t_1}) = v_0(0, 0) + \int_0^{t_1} \frac{\partial v_0}{\partial y}(s, W_s) dW_s.$$
(1.7)

From (1.5),(1.7) we now see that

$$h(W_{t_1}, W_{t_2}) = v_0(0, 0) + \int_0^{t_2} g(s)dW_s,$$

where

$$g(s) = \begin{cases} (\partial v_0 / \partial y)(s, W_s), & s < t_1 \\ (\partial v_1 / \partial y)(s, W_{t_1}, W_s), & t_1 \le s < t_2 \end{cases},$$

and that

$$v_0(0,0) = E[h(W_{t_1}, W_{t_2})].$$

1.2 Changes of Measure

1.2.1 Normal distributions

A random variable X is normally distributed, written $X \sim N(\mu, \sigma^2)$, if its characteristic function ψ takes the form

$$\psi_{\mu}(u) = Ee^{iuX} = \exp\left(iu\mu - \frac{1}{2}u^2\sigma^2\right). \tag{1.8}$$

This corresponds to the density function ϕ given by

$$\phi_{\mu}(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2\sigma^2}(x-\mu)^2\right).$$

 μ and σ are the mean and standard deviation respectively. (σ is fixed in the following and so is not included in the notation.)

If $X \sim N(\mu, \sigma^2)$ then for any bounded function f,

$$E[f(X)] = \int f(x)\phi_{\mu}(x)dx,$$

For any ν we can trivially write this as

$$E[f(X)] = \int f(x) \frac{\phi_{\mu}(x)}{\phi_{\nu}(x)} \phi_{\nu}(x) dx, \qquad (1.9)$$

and we find that

$$\frac{\phi_{\mu}(x)}{\phi_{\nu}(x)} = \exp\left(\frac{1}{\sigma^2}(\mu - \nu)x - \frac{1}{2\sigma^2}(\mu^2 - \nu^2)\right). \tag{1.10}$$

Let us denote by Λ the random variable $\Lambda = \phi_{\mu}(X)/\phi_{\nu}(X)$. We find that

- $\Lambda > 0$, $E_{\nu}[\Lambda] = 1$
- $E_{\mu}[f(X)] = E_{\nu}[f(X)\Lambda]$, where E_{μ} denotes integration wrt $N(\mu, \sigma^2)$

To see the first of these, take $f(x) \equiv 1$ in (1.9), or use (1.10) and the fact that if $X \sim N(\nu, \sigma^2)$ then

$$Ee^X = e^{\nu + \frac{1}{2}\sigma^2}.$$

We can thus flip between E_{μ} and E_{ν} by introducing Λ , the *likelihood ratio* or *Radon-Nikodym derivative*. In most applications, $\nu = 0$.

1.2.2 A General Setting

Let (Ω, \mathcal{F}, P) be a probability space, and Λ be a r.v. such that $\Lambda \geq 0$ a.s. and $E\Lambda = 1$. Then we can define a measure Q on (Ω, \mathcal{F}) by

$$QF = \int_{F} \Lambda dP, \ F \in \mathcal{F}. \tag{1.11}$$

 Λ is often written dQ/dP and is the Radon-Nikodym derivative of Q wrt P. Note that $PF = 0 \Rightarrow QF = 0$; we say that Q is absolutely continuous wrt P, written $Q \ll P$. The Radon-Nikodym theorem states that any Q that is absolutely continuous wrt P can be written as (1.11) for some Λ . If $\Lambda > 0$ a.s. then P is absolutely continuous wrt Q, with RN derivative $dP/dQ = 1/\Lambda$. In this case P and Q are said to be equivalent, written $P \sim Q$. Measures P and Q are equivalent if and only if they have the same null sets: $PF = 0 \Leftrightarrow QF = 0$.

Conditional Expectations

Let X be an integrable r.v. and \mathcal{G} a sub-sigma-field of \mathcal{F} . Recall that the conditional expectation of X given \mathcal{G} is the unique \mathcal{G} -measurable r.v., denoted $E[X|\mathcal{G}]$ such that

$$\int_{G} X dP = \int_{G} E[X|\mathcal{G}] dP.$$

Key properties:

- 1. $E[X|\mathcal{G}] = X$ if X is \mathcal{G} -measurable
- 2. $E[X|\mathcal{G}] = EX$ if X is independent of \mathcal{G}
- 3. $E[YX|\mathcal{G}] = YE[X|\mathcal{G}]$ if Y is \mathcal{G} -measurable
- 4. For $\mathcal{H} \subset \mathcal{G}$, $E[X|\mathcal{H}] = E[E[X|\mathcal{G}]|\mathcal{H}]$. In particular, $EX = E(E[X|\mathcal{G}])$ for any sub- σ -field \mathcal{G} .

Existence of $E[X|\mathcal{G}]$ follows from the Radon-Nikodym theorem. Indeed, the formula $Q(A) = \int_A X dP$ defines a measure on (Ω, \mathcal{G}) that is absolutely continuous wrt P', the restriction of P to \mathcal{G} . Hence there exists a \mathcal{G} -measurable function Λ such that $Q(A) = \int_A \Lambda dP'$.

The following result will be needed in Section 1.2.3 below.

Lemma 6 Suppose $X, X_1, X_2, ...$ is a sequence of integrable random variables such that $X_n \to X$ in L_1 . Then for any σ -field \mathcal{G} , $E[X_n|\mathcal{G}] \to E[X|\mathcal{G}]$ in L_1 .

PROOF: First we show that if Y is any integrable r.v. then

$$|E[Y|\mathcal{G}]| \le E[|Y||\mathcal{G}] \text{ a.s.}$$
(1.12)

Indeed, denoting as usual $Y^+ = \max(Y, 0)$ and $Y^- = Y^+ - Y$, we have

$$E[Y|\mathcal{G}]^+ = E[Y^+ - Y^-|\mathcal{G}]^+ \le E[Y^+|\mathcal{G}]^+ = E[Y^+|\mathcal{G}]$$

and

$$E[Y|\mathcal{G}]^- = E[-Y|\mathcal{G}]^+ \le E[(-Y)^+|\mathcal{G}] = E[Y^-|\mathcal{G}],$$

from which (1.12) follows. Now if $X_n \to X$ in L_1 then using (1.12)

$$E |E[X_n|\mathcal{G}] - E[X|\mathcal{G}]| = E |E[X_n - X|\mathcal{G}]|$$

$$\leq E (E[|X_n - X||\mathcal{G}])$$

$$= E|X_n - X| \to 0.$$

Conditional expectation under change of measure

If P,Q are measures on (Ω,\mathcal{F}) such that $Q\ll P$ with RN derivative $\Lambda=dQ/dP$, and \mathcal{G} is a sub-sigma-field of \mathcal{F} then

$$E_Q[X|\mathcal{G}] = \frac{E[X\Lambda|\mathcal{G}]}{E[\Lambda|\mathcal{G}]}$$
 a.s. Q (1.13)

To see this, calculate $E[X\Lambda|\mathcal{G}]$ by taking a set $G \in \mathcal{G}$ and using the above properties of conditional expectation. We get

$$\begin{split} \int_G E[X\Lambda|\mathcal{G}]dP &= \int_G X\Lambda dP \\ &= \int_G XdQ \\ &= \int_G E_Q[X|\mathcal{G}]dQ \\ &= \int_G E_Q[X|\mathcal{G}]\Lambda dP \\ &= \int_G E_Q[X|\mathcal{G}]E[\Lambda|\mathcal{G}]dP \end{split}$$

Thus $\int_G Z dP = 0$ for all $G \in \mathcal{G}$, where $Z = E[X\Lambda|\mathcal{G}] - E_Q[X|\mathcal{G}]E[\Lambda|\mathcal{G}]$ is a \mathcal{G} -measurable random variable. Hence Z = 0 a.s. This gives (1.13) on noting that, by definition, the set $\{\omega : E[\Lambda|\mathcal{G}] = 0\}$ has Q-measure 0.

Changes of measure and martingales

Take a probability space (Ω, \mathcal{F}, P) equipped with a filtration $(\mathcal{F}_t, t \in [0, T])$. Assume for convenience that $\mathcal{F} = \mathcal{F}_T$, and suppose there is another measure Q, defined by $dQ/dP = \Lambda$, where Λ is a non-negative r.v. with $E\Lambda = 1$. An adapted process (X_t) is a martingale (under measure P) if it is integrable and for $s \leq t$

$$X_s = E[X_t | \mathcal{F}_s]$$
 a.s.

The main result we need is this: a process Y_t is a Q-martingale if and only if the process $X_t = Y_t \Lambda_t$ is a P-martingale, where $\Lambda_t = E[\Lambda | \mathcal{F}_t]$. This follows from (1.13). Indeed, for s < t we have

$$E_{Q}[Y_{t}|\mathcal{F}_{s}] = \frac{E[Y_{t}\Lambda|\mathcal{F}_{s}]}{E[\Lambda|\mathcal{F}_{s}]}$$
$$= \frac{E[Y_{t}\Lambda_{t}|\mathcal{F}_{s}]}{\Lambda_{s}}$$

If Y_t is a Q-martingale the left-hand side is equal to Y_s , so that $Y_t\Lambda_t$ is a martingale, while if $Y_t\Lambda_t$ is a martingale then the right-hand side is equal to Y_s , showing that Y_t is a Q-martingale.

A process X_t is a local martingale if there exists a sequence of stopping times τ_n such that $\tau_n \to \infty$ a.s. and for each n the process $X_t^n = X_{t \wedge \tau_n}$ is a martingale. It is also true that a process Y_t is a Q-local martingale if and only if the process $X_t = Y_t \Lambda_t$ is a P-local martingale. Exercise: show this.

1.2.3 The Lévy characterization of Brownian Motion

Quadratic variation of Brownian motion

Let W_t be a Brownian motion process and let T be a fixed time. For n = 1, 2, ... let $\{t_i^n, i = 0..k_n\}$ be an increasing sequences of times with $t_0^n = 0, t_{k_n}^n = T$. Denote $\Delta W_i = W_{t_{i+1}^n} - W_{t_i^n}, \Delta t_i = 0$.

 $t_{i+1}^n - t_i^n$ and $S_n = \sum_i \Delta W_i^2$. Note that the r.v. ΔW_i are independent with $E\Delta W_i = 0$, $E\Delta W_i^2 = \Delta t_i$. Hence that $ES_n = T$ and

$$ES_n^2 = 2\sum_i \Delta t_i^2 + T^2. (1.14)$$

The latter follows from a short calculation using the fact that if $X \sim N(0, \sigma^2)$ then $EX^4 = 3\sigma^4$. From (1.14),

$$\operatorname{var}(S_n) = E(S_n - T)^2$$

$$= 2\sum_{i} \Delta t_i^2$$

$$\leq 2 \max_{i} \{\Delta t_i\} \sum_{i} \Delta T_i$$

$$= 2T \max_{i} \{\Delta t_i\}. \tag{1.15}$$

Hence $S_n \to T$ in L_2 as $n \to \infty$ as long as $\max_i \{\Delta t_i\} \to 0$.

Let us now specialize to the case $t_i^n=i/2^n$. From (1.15) and the Chebyshev inequality, for any $\epsilon>0$

$$P[|S_n - T)| > \epsilon] \le \frac{2T2^{-n}}{\epsilon^2}.$$

Taking $\epsilon = 1/n$ we find that

$$\sum_{n} P\left[|S_n - T|| > \frac{1}{n}\right] \le \sum_{n} 2Tn^2 2^{-n} < \infty$$

Hence by the Borel-Cantelli lemma we have

$$P\left[|S_n - T| > \frac{1}{n} \text{ infinitely often}\right] = 0,$$

showing that $S_n \to T$ almost surely. Thus for each T > 0 the quadratic variation QV(T) is equal to the deterministic function QV(T) = T.

Suppose now that X_t is a continuous process with sample paths of bounded variation, i.e.

$$\sup_{n} \sum_{i} \left| X_{t_{i+1}^n} - X_{t_i^n} \right| < \infty \quad a.s.$$

For example, any process of the form $X_t = \int_0^t \phi(s) ds$ with integrable ϕ satisfies this. Let us compute the quadratic variation of $Y_t = W_t + X_t$. We have

$$\sum_{i} (Y_{t_{i+1}} - Y_{t_{i}}^{n})^{2} = \sum_{i} (W_{t_{i+1}}^{n} - W_{t_{i}}^{n} + X_{t_{i+1}}^{n} - X_{t_{i}}^{n})^{2}$$
$$= \sum_{i} \Delta W_{i}^{2} + \sum_{i} \Delta X_{i}^{2} + 2 \sum_{i} \Delta W_{i} \Delta X_{i}$$

where $\Delta W_i = W_{t_{i+1}^n} - W_{t_i^n}$ etc. The first term converges to T and the second and third converge to 0: for the third term,

$$\sum_{i} (W_{t_{i+1}^n} - W_{t_i^n})(X_{t_{i+1}^n} - X_{t_i^n}) \le \max_{i} |W_{t_{i+1}^n} - W_{t_i^n}| \sum_{i} |X_{t_{i+1}^n} - X_{t_i^n}|.$$

The sum on the right is bounded and the "max" converges to zero because W_t is a continuous function. A similar argument applies to the second term.

We have shown that the quadratic variation of W and Y are the same: the quadratic variation of W is not altered by adding a bounded variation perturbation to the sample path.

Quadratic variation of continuous martingales

We can't treat this subject in complete detail here; see [7] pages 52-55 or [2]. Let M_t be a martingale on a filtered probability space $(\Omega, \mathcal{F}, (\mathcal{F}_t), P)$. Because of the martingale property,

$$E[(M_t - M_s)^2 | \mathcal{F}_s] = E[M_t^2 + M_s^2 - 2M_t M_s | \mathcal{F}_s] = E[M_t^2 - M_s^2 | \mathcal{F}_s].$$
(1.16)

and hence with the notation above

$$E\left[\sum_{i} (M_{t_{i+1}^{n}} - M_{t_{i}^{n}})^{2}\right] = E\left[\sum_{i} E\left((M_{t_{i+1}^{n}} - M_{t_{i}^{n}})^{2} \middle| \mathcal{F}_{t_{i}^{n}}\right)\right] = EM_{T}^{2}, \tag{1.17}$$

using (1.16). This suggests that the left-hand side has a limit as $n \to \infty$, the quadratic variation of (M_t) .

When (M_t) is Brownian motion we have from (1.16) for t > s

$$E[M_t^2|\mathcal{F}_s] = E[M_t^2 - M_s^2|\mathcal{F}_s] + M_s^2$$

= $E[(M_t - M_s)^2|\mathcal{F}_s] + M_s^2$
= $t - s + M_s^2$.

Hence the process $M_t^2 - t$ is a martingale. The general situation is as follows.

Theorem 2 Let M_t be a continuous local martingale. Then there is a unique continuous increasing process, denoted $[M]_t$, such that $M_t^2 - [M]_t$ is a local martingale. $[M]_t$ is the quadratic variation of M_t : it is the almost sure limit of approximating sums as in (1.17) taken along suitable sequences (t_i^n) .

The existence of $[M]_t$ gives us an Ito formula for continuous local martingales, analogous to the usual Ito formula for Brownian motion.

Theorem 3 Let M_t be a continuous local martingale and f a $C^{1,2}$ function. Then

$$df(t, M_t) = \frac{\partial f}{\partial t}dt + \frac{\partial f}{\partial M}dM_t + \frac{1}{2}\frac{\partial^2 f}{\partial M^2}d[M]_t$$
(1.18)

The Lévy characterization

Theorem 4 Let M_t be a continuous local martingale on a filtered probability space $(\Omega, \mathcal{F}, (\mathcal{F}_t), P)$, and suppose that $[M]_t = t$, $t \geq 0$. Then M_t is an \mathcal{F}_t -Brownian motion.

PROOF: Suppose M_t is a continuous local martingale with $[M]_t = t$ and take $f(t, x) = \exp(iux + u^2t/2)$. By applying (1.18) to the real and imaginary parts of f you can check that (1.18) is also valid for complex functions. We obtain

$$df(t, M_t) = \frac{1}{2}u^2 f(t, M_t) dt + iuf(t, M_t) dM_t - \frac{1}{2}u^2 f(t, M_t) d[M]_t,$$

so that $f(t, M_t)$ is a local martingale if $[M]_t = t$. Thus for t > s we have

$$E\left[e^{iuM_{t\wedge\tau_n} + \frac{1}{2}u^2t\wedge\tau_n}\middle|\mathcal{F}_s\right] = e^{iuM_{s\wedge\tau_n} + \frac{1}{2}u^2s\wedge\tau_n},\tag{1.19}$$

where τ_n is a sequence of localizing times. Now the sequence $\exp(iuM_{s\wedge\tau_n} + \frac{1}{2}u^2(s\wedge\tau_n))$ is bounded and converges almost surely (and hence in L_1) to $\exp(iuM_s + \frac{1}{2}u^2s)$. By Lemma 6, the conditional expectation in (1.19) converges in L_1 to the conditional expectation of the limit, and we conclude that

$$E\left[e^{iuM_t + \frac{1}{2}u^2t}\middle|\mathcal{F}_s\right] = e^{iuM_s + \frac{1}{2}u^2s},$$

or, equivalently,

$$E\left[e^{iu(M_t-M_s)}\middle|\mathcal{F}_s\right] = e^{-\frac{1}{2}u^2(t-s)}.$$
 (1.20)

Now let Y be any \mathcal{F}_s -measurable random variable, and ψ_Y be the characteristic function of Y. Then by Property (3) of conditional expectation (see Section 1.2.2 above) the joint characteristic function of Y and $M_t - M_s$ is

$$\psi_{Y,M_t-M_s}(v,u) = E\left[e^{i(vY+u(M_t-M_s))}\right]$$

$$= E\left[e^{ivY}e^{iu(M_t-M_s)}\right]$$

$$= E\left[e^{ivY}E\left[e^{iu(M_t-M_s)}\middle|\mathcal{F}_s\right]\right]$$

$$= E\left[e^{ivY}\right]e^{-\frac{1}{2}u^2(t-s)}$$

$$= \psi_Y(v)\psi_{M_t-M_s}(u).$$

Thus Y and $(M_t - M_s)$ are independent, implying – since Y is arbitrary – that $(M_t - M_s)$ is independent of \mathcal{F}_s . From (1.20), $(M_t - M_s)$ is normally distributed with mean 0 and variance t - s. Hence (M_t) is an (\mathcal{F}_t) Brownian motion.

1.2.4 The Girsanov Theorem

The Girsanov theorem states that, for Brownian motion, absolutely continuous change of measure is equivalent to change of drift.

Theorem 5 Let $(\Omega, \mathcal{F}, \{\mathcal{F}_t\}_{t \in [0,T]}, P)$ be a filtered probability space, where $0 < T < \infty$ and we assume for convenience that $\mathcal{F} = \mathcal{F}_T$. Let w_t be an (\mathcal{F}_t, P) -Brownian motion.

(a) Let g(t) be an adapted process satisfying $\int_0^T g^2(s)ds < \infty$ a.s. and define

$$\Lambda_T = \exp\left(\int_0^T g(s)dw_s - \frac{1}{2}\int_0^T g^2(s)ds\right).$$
 (1.21)

Suppose that $E[\Lambda_T] = 1$, and define a measure Q on (Ω, \mathcal{F}) by $dQ/dP = \Lambda_T$. Then under measure Q the process \tilde{w}_t defined by

$$\tilde{w}_t = w_t - \int_0^t g(s)ds$$

is an \mathcal{F}_t Brownian motion.

(b) Suppose \mathcal{F}_t is the natural filtration of w_t and that Q is a measure such that $Q \sim P$. Then there exists a process g(t) such that dQ/dP is equal to Λ_T defined by (1.21).

PROOF: (a) The assumption that $E\Lambda_T = 1$ ensures that Q is a probability measure. Applying the Ito formula, we find that

$$d(\tilde{w}\Lambda) = \Lambda(\tilde{w}g + 1)dw,$$

so that $\tilde{w}\Lambda$ is a local martingale which implies, as shown in section 1.2.2, that \tilde{w} is a Q-local martingale. Certainly \tilde{w} has continuous sample paths, and by the argument in section 1.2.3 the quadratic variation of \tilde{w} is equal to t. By the Lévy characterization, \tilde{w} is a Q-Brownian motion. (b) Let Q be an equivalent measure and define $\Lambda_T = dQ/dP$. Then $\Lambda_T > 0$ a.s. and $E\Lambda_T = 1$. For any $t \in [0,T]$ let P^t, Q^t denote the restrictions of P and Q to \mathcal{F}_t . Then $P^t \sim Q^t$ and the Radon-Nikodym derivative is $dQ^t/dP^t := \Lambda_t = E[\Lambda_T|\mathcal{F}_t]$. Hence $\Lambda_t > 0$ a.s. By the martingale representation theorem for Brownian motion, there exists an integrand ϕ such that $\int_0^T \phi^2(t) dt < \infty$ and

$$\Lambda_t = 1 + \int_0^t \phi(s)dw_s, \quad 0 \le t \le T. \tag{1.22}$$

Now apply the Ito formula to calculate

$$d\log \Lambda_t = \frac{1}{\Lambda_t} \phi(t) dw_t - \frac{1}{2} \frac{1}{\Lambda_t^2} \phi^2(t) dt.$$

Thus Λ_T is given by (1.21) with $g(t) = \phi(t)/\Lambda_t$. \diamondsuit

Remarks (a) Let M_t be a non-negative local martingale, i.e. for times $\tau_n \uparrow \infty$, for t > s

$$M_{s \wedge \tau_n} = E[M_{t \wedge \tau_n} | \mathcal{F}_s].$$

Thus, using Fatou's lemma for conditional expectation,

$$\begin{array}{rcl} M_s & = & \liminf_n M_{s \wedge \tau_n} \\ & = & \liminf_n E[M_{t \wedge \tau_n} | \mathcal{F}_s] \\ & \geq & E[\liminf_n M_{t \wedge \tau_n} | \mathcal{F}_s] \\ & = & E[M_t | \mathcal{F}_s]. \end{array}$$

Thus any non-negative local martingale is a supermartingale, so that in particular EM_t is a decreasing function of t. Now Λ_T defined by (1.21) is a non-negative local martingale, so the assumption that $E\Lambda_T = 1$ implies that $E\Lambda_t = 1$ for all $t \in [0, T]$, since $\Lambda_0 = 1$ a.s.

(b) The best general sufficient condition implying $E\Lambda_T = 1$ is the Novikov condition

$$E \exp\left(\frac{1}{2} \int_0^T g^2(s) ds\right) < \infty.$$