For the second model I wanted to use decision trees because I thought it would be interesting to see the tree model visualized and possibly gain some additional insight from that. I used the same dataset created previously during EDA and also used the same target and predictors.

```
import pandas as pd
pd.pandas.set_option('display.max_columns', None)
import numpy as np
import statsmodels.api as sm
import matplotlib.pyplot as plt
from scipy import stats
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.preprocessing import OneHotEncoder
from sklearn.tree import DecisionTreeClassifier
from sklearn import tree
from sklearn.metrics import confusion_matrix
from sklearn.metrics import plot_confusion_matrix
from sklearn.metrics import precision_score, recall_score, accuracy_score, f1_score
```

```
In [4]: df1 = pd.read_csv('EDA_df.csv')
     df1.head()
```

## Out[4]:

| • | Unnamed:<br>0 | Subject Age<br>Group | Stop<br>Resolution | Weapon<br>Type | Officer<br>ID | Officer<br>YOB | Officer<br>Gender | Officer Race                 | Subject<br>Perceived Race    | Subject Perceived<br>Gender | Reported<br>Date        | Reported<br>Time | Arrest<br>Flag | Frisk<br>Flag |
|---|---------------|----------------------|--------------------|----------------|---------------|----------------|-------------------|------------------------------|------------------------------|-----------------------------|-------------------------|------------------|----------------|---------------|
| ( | 0             | Unknown              | Arrest             | None           | 7500          | 1980s          | М                 | Black or African<br>American | Asian                        | Male                        | 2015-10-<br>16T00:00:00 | 11:32:00         | N              | N             |
| 1 | 1             | Unknown              | Field<br>Contact   | None           | 5670          | 1960s          | М                 | White                        | Unknown                      | Unknown                     | 2015-03-<br>19T00:00:00 | 07:59:00         | N              | N             |
| 2 | . 3           | Unknown              | Field<br>Contact   | None           | 7539          | 1960s          | М                 | White                        | Unknown                      | Unknown                     | 2015-04-<br>01T00:00:00 | 04:55:00         | N              | N             |
| 3 | 4             | Unknown              | Field<br>Contact   | None           | 6973          | 1970s          | М                 | White                        | Black or African<br>American | Male                        | 2015-04-<br>03T00:00:00 | 00:41:00         | N              | N             |
| 4 | 5             | Unknown              | Field<br>Contact   | None           | 7402          | 1970s          | М                 | White                        | Black or African<br>American | Male                        | 2015-04-<br>05T00:00:00 | 23:46:00         | N              | N             |

After splitting the data for the target and predictors, I had to make some adjustments again to the N/Y values and replace it with 0 and 1 for better calculations. Dummy variables/one-hot-encoding was next completed and then the data was reasy to do a train-test-split.

```
In [5]: target = df1['Arrest Flag']
predictors = df1.drop(columns = ['Arrest Flag'], axis = 1)
```

```
In [6]: target.replace({"N": 0, "Y": 1}, inplace=True)
predictors['Frisk Flag'].replace({"N": 0, "Y": 1}, inplace=True)
```

```
In [7]: dummy predictors = pd.get dummies(predictors. drop first=False)
 In [8]: X train, X test, y train, y test = train test split(dummy predictors, target, random state=11)
          Fitting my data to the decision tree classifier from scikit-learn.
 In [9]: classifier = DecisionTreeClassifier(random state=11)
          classifier.fit(X train, v train)
 Out[9]: DecisionTreeClassifier(random state=11)
In [10]: y pred test = classifier.predict(X test)
          v pred train = classifier.predict(X train)
          To evaluate the model, I brought over the function I made during Logistic Regression to calculate Precision, Recall, Accuracy, and the F1 score of the train and test groups. I also
          calculate the AUC (Area Under Curve).
In [12]: def model eval(YTrain, YTest, YHat Train, YHat Test):
              PrecisionTrain = precision score(YTrain, YHat Train)
              PrecisionTest = precision score(YTest, YHat Test)
              RecallTrain = recall score(YTrain, YHat Train)
              RecallTest = recall score(YTest, YHat Test)
              AccuracyTrain = accuracy score(YTrain, YHat Train)
              AccuracyTest = accuracy score(YTest, YHat Test)
              F1Train = f1 score(YTrain, YHat Train)
              F1Test = f1 score(YTest, YHat Test)
              print('Precision Score:\nTrain: {} Test: {}\nRecall Score:\nTrain: {} Test {}\nAccuracy Score:\nTrain: {} Test: {}\nF1 Score:\nTrain: {}
                                                                PrecisionTrain, PrecisionTest, RecallTrain, RecallTest,
                                                                AccuracyTrain, AccuracyTest, F1Train, F1Test))
In [13]: model_eval(y_train, y_test, y_pred_train, y_pred_test)
          Precision Score:
          Train: 1.0 Test: 0.9969183359013868
          Recall Score:
          Train: 1.0 Test 0.9892966360856269
          Accuracy Score:
          Train: 1.0 Test: 0.9991973602069028
          F1 Score:
          Train: 1.0 Test: 0.9930928626247123
```

```
In [11]: false_positive_rate, true_positive_rate, thresholds = roc_curve(y_test, y_pred_test)
    roc_auc = auc(false_positive_rate, true_positive_rate)
    print('AUC is :{0}'.format(round(roc_auc, 2)))
```

AUC is :0.99

It appears that this model performed very well since the test scores are all above 98%, as opposed to the logistic regression model where only recall and accuracy had high scores and precision and F1 were much lower. While I am skeptical of such good results, the confusion matrix shows the overwelming amount of true positives.



Lastly I wanted a visual representation of the tree that was created. There is both a text version (for easy loading and running) and the bigger visualizations that show each leaf node more easily.

1/21/2021

In [18]: text representation = tree.export text(classifier) print(text representation)

```
|--- feature 10 <= 0.50
   |--- feature 2342 <= 0.50
       |--- feature 8148 <= 0.50
          |--- class: 0
       |--- feature 8148 > 0.50
       | |--- class: 1
   |--- feature 2342 > 0.50
    | |--- class: 1
|--- feature 10 > 0.50
   |--- feature 15 <= 0.50
       |--- feature 27 <= 0.50
           |--- feature 18 <= 0.50
               |--- feature 23 <= 0.50
                   |--- feature 1 <= 8651.50
                       |--- feature 22 <= 0.50
                           |--- feature 32 <= 0.50
                               |--- feature 26 <= 0.50
                                  |--- feature 35 <= 0.50
                                       |--- feature 29 <= 0.50
                                         |--- truncated branch of depth 3
                                       |--- feature 29 > 0.50
                                       | |--- class: 1
                                   --- feature 35 > 0.50
                                   | | |--- class: 1
                                --- feature 26 > 0.50
                                   |--- feature 0 <= 23814.50
                                       |--- feature 1659 <= 0.50
                                         |--- truncated branch of depth 5
                                       --- feature 1659 > 0.50
                                       | |--- class: 1
                                   --- feature 0 > 23814.50
                                       |--- feature 5 <= 0.50
                                         |--- truncated branch of depth 3
                                       |--- feature 5 > 0.50
                                      | |--- class: 1
                           |--- feature_32 > 0.50
                              |--- class: 1
                        --- feature 22 > 0.50
                          |--- class: 1
                   |--- feature 1 > 8651.50
                   | |--- class: 1
               |--- feature 23 > 0.50
               | |--- class: 1
            --- feature_18 > 0.50
              |--- class: 1
        --- feature 27 > 0.50
           |--- class: 1
    |--- feature 15 > 0.50
        --- feature_1034 <= 0.50
           |--- feature 1330 <= 0.50
```

```
--- feature 13443 <= 0.50
          |--- feature 1218 <= 0.50
              |--- feature 11859 <= 0.50
                  --- feature 1540 <= 0.50
                      |--- feature 3872 <= 0.50
                         |--- feature 492 <= 0.50
                             --- feature 1326 <= 0.50
                             | |--- truncated branch of depth 2
                             --- feature 1326 > 0.50
                           | |--- class: 0
                          --- feature 492 > 0.50
                         | |--- class: 0
                      --- feature 3872 > 0.50
                      | |--- class: 0
                  --- feature 1540 > 0.50
                  | |--- class: 0
               --- feature 11859 > 0.50
                |--- class: 0
           --- feature 1218 > 0.50
          | |--- class: 0
       --- feature 13443 > 0.50
      | |--- class: 0
   --- feature 1330 > 0.50
      |--- class: 0
--- feature 1034 > 0.50
  |--- class: 0
```

```
In [37]: plt.figure(figsize=(25,20))
    tree.plot_tree(classifier, fontsize=11);
    plt.show()
```



While the results were very good, this brought up concerns of overfitting since I am still skeptical of the results.