Appareils de mesures

Objectifs:

• Connaître les différents types d'appareils utilisés en électricité et en électronique pour effectuer des mesures en régime continu. En particulier, se familiariser avec l'utilisation d'un multimètre numérique.

• Comprendre la notion d'impédance interne.

Préparation : Conseillée.

Compte rendu : À remettre à la fin de la deuxième séance de TP.

1. Avant propos : Le multimètre numérique

Un multimètre numérique réunit en un seul appareil plusieurs types d'appareils de mesures tels que :

- voltmètre
- ampèremètre
- ohmmètre
- fréquencemètre
- •

Les modèles de multimètre utilisés dans les salles de TP sont les suivants :

- Agilent 34405A (documentation fournie en annexe)
- DVM832

2. Mesures de tensions, d'intensités et de résistances

Le montage d'étude est le suivant :

2.1. Mesures de tensions, d'intensités et de résistances

Les tensions électriques se mesurent avec un voltmètre.

- 2.1.1. Donner le symbole d'un voltmètre.
- 2.1.2. Comment doit-on câbler un voltmètre?
- 2.1.3. Quelle est l'impédance interne d'un voltmètre idéal ? Justifier votre réponse.
- 2.1.4. A l'aide des extraits des notices constructeurs donner la valeur de la résistance (impédance) interne du voltmètre. Préciser la référence de votre multimètre.

- 2.1.5. Placer sur le schéma du montage d'étude les voltmètres permettant de mesurer les tensions E, U₁ et U₂. Indiquer sur ce schéma les polarités des voltmètres.
- 2.1.6. Câbler le montage et effectuer les mesures des tensions précédentes. Indiquer dans chaque cas la précision de vos mesures.

2.2. Mesure de l'intensité du courant électrique

L'intensité du courant électrique se mesure avec un ampèremètre.

- 2.2.1. Donner le symbole d'un ampèremètre.
- 2.2.2. Comment doit-on câbler un ampèremètre ?
- 2.2.3. Quelle est l'impédance interne d'un ampèremètre idéal ? Justifier votre réponse.
- 2.2.4. A l'aide des extraits des notices constructeurs donner la valeur de l'impédance interne de l'ampèremètre (Préciser la référence de votre multimètre)
- 2.2.5. Placer sur le schéma du montage d'étude les ampèremètres permettant de mesurer les intensités I₁, I₂.et I₃. Indiquer sur ce schéma les polarités des ampèremètres.
- 2.2.6. Câbler le montage et effectuer les mesures des intensités précédentes. Indiquer dans chaque cas la précision de vos mesures.

2.3. Mesure de résistance

La résistance d'un conducteur ohmique se mesure avec un ohmmètre. Il existe plusieurs méthodes de mesure, nous allons voir le principe de deux d'entre elles :

Par injection d'un courant constant : utilisée par les multimètres Agilent 34405A

Un courant constant I (par exemple 1 mA) est injecté dans le dipôle à mesurer. Puis la tension U à ses bornes est mesurée. La valeur de la résistance R est obtenue à partir de la loi d'ohm par la relation :

$$R = \frac{U}{I}$$

(par exemple R=1000U si I =1 mA)

<u>Par la méthode dite « des rapports de résistances »:</u> utilisée par exemple par le multimètre Fluke 45.

La résistance à mesurer Rmes est placée en série avec une résistance de référence Rref. L'ensemble est alimenté par une tension Vs. La mesure des tensions Uref et Umes permet d'obtenir le rapport :

$$R_{mes} = \frac{U \, mes}{U \, ref} \, Rref$$

- 2.3.1. Donner le symbole d'un ohmmètre.
- 2.3.2. Comment doit-on câbler un ohmmètre?
- 2.3.3. Un ohmmètre est-il polarisé?
- 2.3.4. On souhaite mesurer la résistance Req de l'association des résistances R_1 , R_2 et R_3 entre les points A et B du montage d'étude. Quelles précautions doit-on prendre afin de :
 - ne pas risquer la détérioration de l'ohmmètre.
 - d'obtenir une mesure juste.
- 2.3.5. Effectuer la mesure de Req.
 - Indiquer la précision de la mesure.
 - Comparer avec la valeur théorique.

3. Influence de la résistance interne d'un voltmètre

On réalise le montage suivant :

- 1. Quelle est la valeur théorique de la tension U ? Cette valeur dépend-t-elle de R ?
- 2. Mesurer la tension U avec le voltmètre numérique Agilent 34405A puis avec le voltmètre DVM832 pour les valeurs R suivantes : $1 \text{ k}\Omega$, $100 \text{ k}\Omega$, $1 \text{ M}\Omega$ et 4,7 M Ω .

Présenter les résultats sous forme d'un tableau.

Comparer avec la valeur théorique. Justifier les éventuels écarts.

Remarque : la résistance (impédance) d'entrée des voltmètres est indiquée dans leurs documentations techniques.

4. Mesure de l'impédance interne d'une source

On réalise le montage suivant :

Le générateur de tension utilisé ici est un GBF (Générateur Basses Fréquences) utilisé en continu.

La fém E sera réglée à 1 V.

R est une résistance variable (utiliser les boites de résistances)

- 1. Régler la fém E à 1 V. Détailler votre démarche.
- 2. Quelle est la valeur de R qui permet d'obtenir $U = \frac{E}{2}$? (à montrer au niveau théorique).
- 3. Régler R pour avoir $U = \frac{E}{2}$. Noter la valeur de R. En déduire la valeur de la résistance interne R_{int} du GBF.

5. Adaptation d'impédance

Le montage d'étude est celui de la section 4.

On note P la puissance absorbée par R. Il y a adaptation d'impédance lorsque la charge R reçoit une puissance maximale.

- 1. Exprimer P en fonction de R et U.
- 2. Pour R variant de 1 Ω à 500 Ω , mesurer la tension U.
- 3. Tracer la caractéristique P=f(R). En particulier effectuer une mesure précise lorsque la puissance P est maximale.
- 4. Pour quelle valeur R, la puissance P est-elle maximale ?
- 5. Donner l'expression théorique de P_{max}, sa valeur numérique, puis comparer avec vos mesures.

Annexes : extraits des notices des multimètres

Agilent 34405A

SPECIFICATIONS DC[1]

FONCTION	GA MME ^[2]			PRECISION \pm (% de la mesure + % de la gamme)	
		COURANT DE TEST OU TENSION DE CHARGE	IMPEDANCE D'ENTREE ^[3]	1 an 23 °C ± 5 °C	Coefficient de température 0°C - 18°C 28°C - 55°C
TENSION	100,000 mV	-	10,0 MΩ±2%	0,025+0,008	0,0015+0,0005
	1,00000 V		10,0 MΩ±2%	0,025+0,006	0,0010+0,0005
	10,0000 V		10,1 MΩ±2%	0,025+0,005	0,0020+0,0005
	100,000 V		10,1 MΩ±2%	0,025+0,005	0,0020+0,0005
	1000,00 V	-	10,0 MΩ±2%	0,025+0,005	0,0015+0,0005
RESISTANCE	100,000 Ω	1,0 mA	-	0,05+0,008 ^[4]	0,0060+0,0008
	1,00000 kΩ	0,83 mA	-	0,005+0,005[4]	0,0060+0,0005
	10,0000 kΩ	100 μA		0,005+0,006[4]	0,0060+0,0005
	100,000 kΩ	10,0 µA	-	0,05+0,007	0,0060+0,0005
	1,00000 MΩ	900 nA		0,06+0,007	0,0060+0,0005
	10,0000 MΩ	205 nA	-	0,25+.0,05	0,0250+0,0005
	100,000 MΩ	205 nA 10 MΩ		2,00+0,005	0,3000+0,0005
COURANT	10,0000 mA	< 0,2 V	-	0,05+0,015	0,0055+0,0005
	100,000 mA	< 0,2 V		0,05+0,005	0,0055+0,0005
	1,00000 A	< 0,5 V	-	0,20+0,007	0,0100+0,0005
	10,0000 A	< 0,6 V		0,25+0,007	0,0150+0,0005
CONTINUITE	1000 Ω	0,83 mA	-	0,05+0,005	0,0050+0,0005
TEST DE DIODES ^[6]	1,0000 V	0,83 mA		0,05+0,005	0,0050+0,0005

- [1] Spécifications pour un délai de chauffe de 30 minutes, une résolution de 5 1/2 chiffres et température de calibrage de 18 °C 28 °C.
- [2] 20 % de la gamme, sur toutes les gammes à l'exception de 1000 V DC.
- [3] L'impédance d'entrée est en parallèle avec la capacité < 120 pF.</p>
- [4] Spécifications pour une mesure ohmique sur 2 fils avec Math Null. Sans Math Null, ajouter 0,2 Ω d'erreur additionnelle.
- [5] Spécifications pour la tension mesurée uniquement aux bornes d'entrée.
- [6] 20 % de la gamme, sur toutes les gammes à l'exception de 750 V AC
- [7] Spécifications pour des entrées sinusoïdales > 5 % de la gamme. Facteur de crête maxi : 3 à pleine échelle.
- [8] Erreur additionnelle à ajouter quand la fréquence est > 30 kHz et l'entrée de signal est < 10 % de la gamme. 30 kHz ~ 100 kHz : 0,003 % de la pleine échelle, par kHz.
- [9] Pour une entrée < 200 V eff.
- [10] Pour une entrée < 300 V eff.
- [11] Pour une borne 12 A, 10 A DC ou AC eff. continu, > 10 A DC ou AC eff. pendant 30 secondes ON et 30 secondes OFF.
- [12] Pour les gammes 1 A et 10 A, la fréquence est vérifiée pour moins de 5 kHz.
- [13] Spécifications pour un délai de chauffe de 30 minutes, à l'ouverture de 0,1 seconde. La fréquence peut être mesurée jusqu' à 1 MHz avec un signal 0,5 V jusqu'aux gammes 100 mV/1 V.
- [14] Pour 20 Hz ~ 10 kHz, la sensibilité est égale au courant d'entrée AC de 10 % à 120 % de la gamme, sauf exception signalée.
- [15] Pour 100 kHz ~ 300 kHz, la sensibilité sera égale à 12 % ~ 120 % de la gamme, sauf pour la gamme 750 V.

SPECIFICATIONS DE MESURE SUPPLEMENTAIRES

TENSION DC

Méthode de mesure :

Convertisseur N-A Sigma Delta

Résistance d'entrée :

10 M Ω ± 2 % de la gamme (typique)

Protection de l'entrée :

1000 V sur toutes les gammes

RESISTANCE

Méthode de mesure :

Ohmique, 2 fils

Tension de circuit ouvert :

Limitée à < 5 V

Protection de l'entrée :

1000V sur toutes les gammes

COURANT DC

Résistance du shunt :

0,1 Ω à 10 Ω pour les gammes 10 mA à 1,2 A

0,01 Ω pour la gamme 12 A

Protection de l'entrée :

Panneau avant Fusible 1,25 A, 500 V pour la borne I Interne Fusible 15 A, 600 V pour la borne 12 A