11 Least Squares

Unit 1: Vectors, Book ILA Ch. 1-5

Unit 2: Matrices, Book ILA Ch. 6-11 + Book IMC Ch. 2

Unit 3: Least Squares, Book ILA Ch. 12-14

- 11 Least Squares
- 12 Least Squares Data Fitting
- 13 Least Squares Classification

Outline: 11 Least Squares

- Least Square Problem
- Solution of Least Square Problem
- Examples

Regression to Model House Prices

- Outcome is y_t selling price of house in \$1000.
- Regressors are x = (house area in 1000 sq.ft, # bedrooms).

• A regression model helps us predict the price from x.

Question: Find w, b given data? \rightarrow Solve least square problem!

Least Squares Problem

Definition: Let be given a $m \times n$ matrix A and m-vector b. The least squares problem is the problem of choosing an n-vector x to minimize:

$$||Ax-b||^2$$
.

- ullet $\left\| Ax-b
 ight\|^2$ is called the objective function,
- If \hat{x} is a solution of the linear equation Ax = b, then \hat{x} is a solution of the least square problem. The converse is not true.
- \hat{x} is a solution of least squares problem if $\|A\hat{x}-b\|^2 \leq \|Ax-b\|^2$ for any other n-vector x.

Exercise: Consider the matrix A and vector b as:

$$A = \left[egin{array}{cc} 2 & 0 \ -1 & 1 \ 0 & 2 \end{array}
ight], \quad b = \left[egin{array}{cc} 1 \ 0 \ -1 \end{array}
ight].$$

Write the objective function associated to the least square problem defined by A and b in terms of entries of x.

```
import numpy as np; import matplotlib.pyplot as plt
objective = lambda x : (2 * x[0] - 1) ** 2 + (- x[0] + x[1]) ** 2 + (2 * x[1] +
n_points, xmin, xmax, ymin, ymax = 20, -2, 2, -2, 2
x = np.arange(xmin, xmax, (xmax-xmin)/n_points); y = np.arange(ymin, ymax, (ymax
for i in range(n_points):
    for j in range(n_points):
        Z[i, j] = objective(xx[i, j])
plt.imshow(Z, extent=[xmin, xmax, ymin, ymax]); plt.colorbar(); plt.xlabel("x1")
```


Outline: 11 Least Squares

- Least Square Problem
- Solution of Least Square Problem
- Examples

Least Square Solution

Proposition:

- ullet Consider a least square problem $\left|\left|Ax-b
 ight|
 ight|^2$ for matrix A and vector b.
- ullet Assume that A has linearly independent columns.

Then, there is a unique solution \hat{x} to the least square problem, defined as:

$$\hat{x} = (A^T A)^{-1} A^T b = A^{\dagger} b.$$

ullet $A^\dagger=(A^TA)^{-1}A^T$ is called the pseudo-inverse of A.

Exercise (hard): Using the fact that:

$$||a+b||^2 = ||a||^2 + ||b||^2 + 2a^Tb,$$

prove that \hat{x} defined in the previous slide is indeed a solution.

• Hint: Show that for any other n-vector x, we have:

$$||A\hat{x} - b||^2 \le ||Ax - b||^2.$$

• Hint 2: You will need to show that $A^T(A\hat{x}-b)=0$.

Outline: 11 Least Squares

- Least Square Problem
- Solution of Least Square Problem
- Examples

Political Advertising

Example: Political Advertising

- A company wants to advertize to potential voters.
 - lacktriangleright m demographics groups, n advertising channels
 - v^{target} is m-vector of target views ("impressions") per group
 - s is n-vector of spending per channel
 - R is $m \times n$ matrix of demographic reach of channels:
 - $\circ~R_{ij}$ is number of views per dollar spent (in 1000/\$)
- $\bullet\,$ How much should be spent to be as close as possible to v^{target} ?

Example: What is the optimal spending \hat{s} ?

- m=10 groups and n=3 channels,
- $v^{target} = 1000.1_m$.

Example: Illumination

Example: Illumination

What is the power of the lamps needed to reach a target illumination?

- ullet n lamps illuminate an area divided in m regions
- ullet A_{ij} is illumination in region i if lamp j is has power 1, other lamps are off
- x_j is power of lamp j
- ullet $(Ax)_i$ is illumination level at region i
- ullet b_i is target illumination level at region i

Find the associated least-square problem.

figure shows lamp positions for example with

$$m = 25^2$$
, $n = 10$

• equal lamp powers (x = 1)

► least squares solution \hat{x} , with b = 1

Outline: 11 Least Squares

- Least Square Problem
- Solution of Least Square Problem
- Examples

Resources: Book ILA Ch. 11