

Machine Learning Methods in Mechanics

Predicting Renewable Energy Production using Machine Learning Methods

Dilara Yildiz, Luis Gentner, Leon Sengün

Outline

- Motivation
- Electricity Data
- 3. Feature Engineering
- 4. Benchmark Model Exploration
- 5. Iterative Model Development
- 6. Hyperparameter Optimization
- 7. Results
- 8. Outlook

1. Motivation

- Renewable energies are fluctuating
- Useful for power plant operators
- Goal:
 - Predict renewable energy production
 12 hours into the future

2. Electricity Data

Past inputs and labels

- Hourly production of wind and solar energy in Germany
- Timeframe: 2017 2021
- Source: Energy-Charts (from Fraunhofer ISE)

3. Feature Engineering

Frequency Analysis

Solar and wind energy production show high yearly and daily periodicity

Wind energy production:

Solar energy production:

→ Create yearly and daily time signals

3. Feature EngineeringTime Signals and Solar Elevation

- Time of day and time of year:
 - Periodic representations
 - Sine and cosine signals
- Solar elevation:
 - Clipped and unclipped signals
- Precisely known for the past and future

4. Model Architecture Exploration

- Creation of non-trainable benchmark models:
 - Repeat last step
 - Repeat yesterday
- Searching for feasible model architectures
- Results:
 - CNNs and RNNs show best performance:
 GRU 32 with best R² score: 0.882
 - Continuing with RNNs due to their better performance for increased input and prediction lengths

5. Iterative Model Development Single-shot RNNs

Prediction of multiple time steps at once (usually with an added Dense layer)

5. Iterative Model Development Autoregressive RNNs

- The prediction of the last time step is used as input for the next time step
- Prediction of varying output length without retraining

5. Iterative Model Development

Autoregressive RNNs with continous input

Our approach: Combine the autoregressive predictions with forecasted inputs

5. Iterative model development Additional inputs

Hourly resolution

Timeframe: 2017 - 2021

Source: DWD

Available for up to 117
 DWD stations across
 Germany

5. Iterative Model Development

Correlation analysis

- Decision on which features are interesting/important
- Determine which features to include in model

5. Iterative Model Development

Weather feature reduction

- Input variants:
 - 1. No weather input
 - 2. 4 Parameters of 12 DWD stations: 48 features
 - 3. Autoencoded input of 117 stations: 468 → 48 features
 - 4. PCA reduced input of 117 stations: 468 → 8 features

Selected stations:

5. Iterative Model Development Performance Comparison

Best performance: ARGRU 32³ + AE(wx): R² 0.962

ARGRU 32² + PCA(wx): R² 0.957

5. Iterative Model DevelopmentFinal Model Architecture

- Deep autoregressive GRU with continous input
- 3 layers [32, 32, 32]
- Inputs (24 time steps):
 - Solar and wind energy production (during past/warmup phase)
 - 8 time and sun elevation features
 - 8 PCA reduced weather features
- Prediction of 12 time steps

5. Iterative Model Development Final Model Prediction Examples

Better performance for solar energy predictions

Solar energy production:

Wind energy production:

6. Hyperparameter Optimization

- Optuna: open source hyperparameter optimization framework
- Optimized parameters:
 - Learning rate
 - Units per layer
 - Past input time steps
- Optimization trials: 25

O P T U N A

Hyperparameter Importances

6. Hyperparameter Optimization

Optimization history and final parameters

Parameter	Optimized Model	Previous Model
Past steps	92	24
Learning rate	1.7 e-3	5 e-4
Units 1st layer	15	32
Units 2nd layer	10	32
Units 3rd layer	11	32
Test R ² score	0.9616	0.9567

7. Results

K-Fold cross validation

- The dataset was split into 5 subsets and the model was trained 5 times
- Each time a different subset was the validation set
- Results:

Fold	Val R ²	Test R ²
1	0.9617	0.9315
2	0.9690	0.9574
3	0.9686	0.9607
4	0.9659	0.9558
5	0.9516	0.9444
Average	0.9633	0.9500

8. Outlook

- Account for weather forecast inaccuracy:
 - Train with real forecast data
 - Distort weather data: Random walk?
- CNN Auto-encoder → Detect spatial relationships
- Employ statistic methods
 - e.g structural time series

Thank you!

Dilara Yildiz, Luis Gentner, Leon Sengün

https://github.tik.uni-stuttgart.de/Leon-Senguen/Electricity-Prediction