Cvičení 3.5

- 1. Simulací ověřte nestrannost/vychýlení odhadu $\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (X_i \mu)^2$ jsou-li $X_i \sim N(\mu, \sigma^2)$, když
 - a) μ známe,
 - b) μ neznáme a nahrazujeme odhadem $\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} X_i$.
- 2. Mějme dvě měření $X_1 \sim N(0, \sigma_1^2)$ a $X_2 \sim N(0, \sigma_2^2)$ a odhad střední hodnoty těchto dvou měření $\hat{\mu} = \alpha X_1 + (1 \alpha) X_2$.
 - a) Dokažte, že je to odhad nestranný.
 - b) Spočítejte rozptyl odhadu $\hat{\mu}$.
 - Najděte α takové, aby rozptyl $\hat{\mu}$ byl minimální.
 - Simulací porovnejte empirickou hodnotu $E[\hat{\mu}]$ a $VAR[\hat{\mu}]$ s teoretickou hodnotou v závislosti na α a také porovnejte experimentální optimální hodnotu α s teoretickou.