AMEN FOR LATENT FACTOR MODELS

Shahryar Minhas[†], Peter D. Hoff[‡], & Michael D. Ward[†] Duke University

† Department of Political Science

[‡] Department of Statistical Science

April 6, 2017

Motivation

Relational data are composed of interactions between actors that are interdependent

Sender	Receiver	Event	_					
i	j	Уij	_					
	k	Yik		ı	I			
:	1	Yil			i	j	k	1
j	i	y_{ji}	-			Уij	Yik	y _{il}
	k	y_{jk}		<i>i</i>	NA			
:	1	УјІ	\longrightarrow	j	Ујі	NA	Уjk	y_{jl}
k	i	Уki		.				
-	j	y_{kj}		k	Уki	y_{kj}	NA	УkI
:	1	УkI		1	Уli	Уij	Уlk	NA
1	i	Уli		١	1 3	, ,	J	
	j	Уij						
:	k	y Ik	_					

Relational data assumptions

GLM:
$$y_{ij} \sim \beta^T X_{ij} + e_{ij}$$

Networks typically show evidence against independence of e_{ij} : $i \neq j$

Not accounting for dependence can lead to:

- biased effects estimation - uncalibrated confidence intervals - poor predictive performance - inaccurate description of network phenomena

We've been hearing this concern for decades now:

Thompson & Walker (1982)	Beck et al. (1998)	Snijders (2011)
Frank & Strauss (1986)	Signorino (1999)	Erikson et al. (2014)
Kenny (1996)	Li & Loken (2002)	Aronow et al. (2015)
Krackhardt (1998)	Hoff & Ward (2004)	Athey et al. (2016)

Social Relations Model

$$y_{ij} = \mu + e_{ij}$$

$$e_{ij} = a_i + b_j + \epsilon_{ij}$$

$$\{(a_1, b_1), \dots, (a_n, b_n)\} \stackrel{\text{iid}}{\sim} N(0, \Sigma_{ab})$$

$$\{(\epsilon_{ij}, \epsilon_{ji}) : i \neq j\} \stackrel{\text{iid}}{\sim} N(0, \Sigma_{\epsilon}), \text{ where}$$

$$\Sigma_{ab} = \begin{pmatrix} \sigma_a^2 & \sigma_{ab} \\ \sigma_{ab} & \sigma_b^2 \end{pmatrix} \qquad \Sigma_{\epsilon} = \sigma_{\epsilon}^2 \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix}$$

$$(1)$$

Third Order Dependencies

Homophily: "birds of a feather flock together"

Stochastic equivalence: nothing as pithy to say here, but this model focuses on community detection

HOMOPHILY

STOCHASTIC EQUIVALENCE

Latent Variable Models

Latent class model

$$lpha(u_i,u_j)=m_{u_i,u_j}$$
 $u_i\in\{1,\ldots,K\},\ i\in\{1,\ldots,n\}$
 M a $K\times K$ symmetric matrix

Latent distance model

$$\alpha(\mathbf{u}_i, \mathbf{u}_j) = -|\mathbf{u}_i - \mathbf{u}_j|$$

$$\mathbf{u}_i \in \mathbb{R}^K, i \in \{1, \dots, n\}$$
(2)

Latent factor model

$$\begin{split} &\alpha(\mathbf{u}_i, \mathbf{u}_j) = \mathbf{u}_i^T \Lambda \mathbf{u}_j \\ &\mathbf{u}_i \in \mathbb{R}^K, \ i \in \{1, \dots, n\} \\ &\Lambda \text{ a } K \times K \text{ diagonal matrix} \end{split}$$

Putting it together: AME

$$y_{ij} = g(\theta_{ij})$$

$$\theta_{ij} = \boldsymbol{\beta}^T \mathbf{X}_{ij} + e_{ij}$$

$$e_{ij} = a_i + b_j + \epsilon_{ij} + \alpha(\mathbf{u}_i, \mathbf{v}_j) \text{, where}$$

$$\alpha(\mathbf{u}_i, \mathbf{v}_j) = \mathbf{u}_i^T \mathbf{D} \mathbf{v}_j = \sum_{k \in K} d_k u_{ik} v_{jk}$$
(3)

Swiss Climate Change Application

Parameter Estimates

Variable	Expected Effect
Conflicting policy preferences	
Business v. NGO	_
Opposition/alliance	+
Preference dissimilarity	_
Transaction costs	
Joint forum participation	+
Influence	
Influence attribution	+
Alter's influence in-degree	+
Influence absolute diff.	_
Alter = Government Actor	+
Functional requirements	
$Ego = Environment \; NGO$	+
Same actor type	+
Endogenous dependencies: ERG	GM Specific Parameters
Mutuality	+
Outdegree popularity	+
Twopaths	-
GWIdegree (2.0)	+
GWESP (1.0)	+
GWOdegree (0.5)	+

Latent Factor Visualization

Out of Sample Performance Assessment

Randomly divide the $n \times (n-1)$ data points into S sets of roughly equal size, letting s_{ij} be the set to which pair $\{ij\}$ is assigned.

For each $s \in \{1, \dots, S\}$:

Obtain estimates of the model parameters conditional on $\{y_{ij}: s_{ij} \neq s\}$, the data on pairs not in set s.

For pairs $\{kl\}$ in set s, let $\hat{y}_{kl} = E[y_{kl}|\{y_{ij}: s_{ij} \neq s\}]$, the predicted value of y_{kl} obtained using data not in set s.

Performance Comparison

Network Dependencies

Standard Network Dependence Measures

Simulation Comparison

AMEN v LSM Performance

AMEN V LSM Net Dependence

AMEN v LSM Performance

AMEN V LSM Net Dependence

