COMPRESSÃO DE DADOS MÉTODOS BÁSICOS MÉTODOS ESTATÍSTICOS

Sérgio Mergen

Compressão vs compactação

- Compressão
 - Reduz a quantidade de dados para representar uma informação
 - Ex. Zip
- Compactação
 - Junta dados que estão separados
 - Ex. Desfragmentação de disco

- A compressão também é chamada de codificação
 - Por sua vez, a descompressão é chamada de decodificação

Porque comprimir?

- Benefícios da compressão
 - Redução do espaço de armazenamento
 - Redução do tempo para efetuar a leitura
 - Tanto a partir de um dispositivo local (acesso a disco)
 - Quanto a partir de um dispositivo remoto (via rede)
- Preço da compressão deve ser analisado
 - Custo computacional para codificar e decodificar a informação

Medida de desempenho

- Razão da compressão:
 - Uma das formas usadas para medir a eficiência do algoritmo de compressão
 - É definida pela razão (em percentual) entre:
 - o tamanho do arquivo não comprimido e
 - o tamanho do arquivo comprimido

• Ex.

- Se o arquivo n\u00e3o comprimido possui 100 bytes
- E o arquivo comprimido possui 20 bytes
- A razão de compressão é de 5.

Tipos de compressão

- Quanto a preservação da informação, existem dois tipos de compressão:
 - Sem perda de dados
 - Ex. zip ou rar
 - Com perda de dados
 - Ex. jpg
- Nos deteremos nos algoritmos que não perdem informação

Tipos de compressão

- As técnicas de compressão também podem ser classificadas quanto a natureza dos dados
 - Ex.
 - Compressão de texto
 - Compressão de imagens
 - Compressão de sons
- Observações
 - Algoritmos de compressão de texto não são eficientes para compressão de sons
 - Geralmente, a compressão de imagens e sons aceita perda de dados
- Nos concentraremos mais nos algoritmos de compressão de texto

Tipos de compressão

- As técnicas também podem ser divididas pela estratégia de compressão usada
- Uma possível divisão classifica as técnicas em:
 - Métodos básicos
 - Baseados em heurísticas simples
 - Métodos estatísticos
 - Baseados na probabilidade de ocorrência dos caracteres
 - Métodos de dicionário
 - Baseado na construção de dicionários para conjuntos de caracteres frequentes

COMPRESSÃO DE DADOS

Métodos Básicos

Métodos Básicos

- Tipos estudados
 - Run length Encoding (RLE)
 - Mapas de bits
 - Compressão de meio byte
 - Técnica dos 7 bits
 - Representação não ASCII

- Estratégia 1:
- Determina-se a quantidade de caracteres idênticos consecutivos na cadeia
- Cada uma dessas cadeias é substituída por
 - um número decimal indicando o número de repetições
 - Uma ocorrência do caractere repetido

- Problemas da estratégia 1
 - Não vale a pena codificar todas cadeias
 - As cadeias mais curtas geram códigos mais longos que a cadeia original

1-B-1-A-3-B-1-A-1-9-1-A-1-B

- Estratégia 2:
- Codificar somente as cadeias maiores
- Usar como código
 - um caractere especial como escape
 - O número de repetições
 - O caractere repetido
- Normalmente é um dos caracteres não imprimíveis da tabela ASCII
 - Para simplificar, usaremos o símbolo #

Amostra da Tabela ASCII

Código binário	Caractere
0000 1110	Shift-out (SO)
0000 1111	Shift-in (SI)
0001 1000	Cancel line (CAN)

- Problema da Estratégia 2:
 - Nem sempre é possível usar um caractere de escape

Estratégia 3:

- Usar como código
 - O número de repetições
 - 2 x o caractere repetido
- Ou seja, a aparição do caractere duas vezes consecutivas denota a presença de uma cadeia repetível

- Problema da Estratégia 3:
 - Cadeias com duas repetições também precisam ser marcadas

Estratégia 4:

- Usar como código
 - um caractere especial como escape (o de menor frequência)
 - O número de repetições
 - O caractere repetido
- Quando o caractere especial aparece como parte do texto
 - Usar como código o caractere especial 2 vezes
- Ex. suponha que o caractere especial seja #

- Problema da Estratégia 4:
 - Necessário pre-processar arquivo para descobrir caractere menos frequente
 - Ocorrências do caractere especial no texto dobram de tamanho
 - Por isso é melhor usar o caractere menos frequente
 - Preferencialmente um que nunca ocorra
- Ex.

- Fisicamente, os caracteres são representados por bytes
 - Isso traz a tona uma limitação das abordagens anteriores
- Ex. No texto comprimido abaixo
 - Os números são representados pelo seu código binário
 - Os caracteres pela sua representação em ASC2

00000110 01000010 00000010 01000001

- Problema das estratégias 1,2,3 e 4:
 - Em código decimal, uma cadeia de 8 bits consegue representar no máximo 255 números
 - Como comprimir cadeias que se repetem mais do que 255 vezes?

Estratégia 5:

 Usar um caractere de início e término para indicar quando um código é usado

- Problema
 - Necessário usar o caractere especial duas vezes em casa código

Estratégia 6:

Cria mais do que um código para mapear toda a contagem

- Problema
 - Necessário usar um caractere especial
 - Desempenho pior quando a maioria dos blocos de caracteres repetidos são grandes

- Existem outras estratégias:
 - Contudo, todas elas possuem uma limitação em comum
 - Desempenho pobre quando há pouca repetição
 - Seja usando caractere especial ou outra forma de marcação

Mapa de bits

- Usado para comprimir caracteres predefinidos, cuja ocorrência seja bastante frequente
- Um mapa de 8 bits determina se o caractere frequente existe em alguma posição no trecho mapeado
 - 1 significa que existe
 - 0 significa que n\u00e3o existe

Ex. caractere frequente = B

TABDBBFC

00101100

Mapa de bits

- O mapa é adicionado antes do trecho que ele codifica
 - Na forma de caractere, para fins de ilustração
- O trecho compreende o espaço contíguo dos primeiros 8 caracteres
 - Com exceção dos caracteres mapeados

,TADFCCBH:YMGMOOPI

Amostra da Tabela ASCII

Byte	caractere
00101100	,
00111010	:

Mapa de bits

- Problemas
 - Só codifica um caractere (o mais frequente)
 - Só faz sentido se a frequência desse caractere for realmente elevada
 - Requer pré-processamento para descobrir a frequência

Compressão de Meio Byte

- Parte da constatação que alguns caracteres utilizam os mesmos bits para a primeira metade do byte
 - Ex. Os dígitos de 0 a 9

Amostra da Tabela ASCII

Caractere	byte
0	0011 0000
1	0011 0001
2	0011 0010

 Ideia: Usar um código para representar sequências de caracteres que possuam essa característica

Compressão de Meio Byte

- Notação:
 - Ce NM C1C2 C3C4 ...
 - Onde:
 - Ce = caractere especial
 - N = número de caracteres a comprimir
 - M = metade do caractere a comprimir
 - C1 em diante: caracteres comprimidos

785496

00110111 **0011**1001 **0011**0101 **0011**0100 **0011**1001 **0011**0110

00011000 0110 0011 0111 1001 0101 0100 1001 0110

Ce N M C1 C2 C3 C4 C5 C6

Compressão de Meio Byte

- : Problemas
 - Só consegue compri*mir* $2^4 = 16$ caracteres consecutivos
 - Só faz sentido se pelo menos 4 caracteres puderem ser comprimidos
 - No exemplo abaixo, o código gerado é maior que a cadeia inicial

Técnica dos 7 bits

- Elimina o bit mais significativo do byte
- Baseia-se no fato de que nenhum caractere de texto utiliza o oitavo bit
 - Se usada a tabela ASCII

Amostra da Tabela ASCII

Caractere	Byte
Α	0 1000001
В	0 1000010
С	0 1000011
Z	0 1011010

Técnica dos 7 bits

Exemplo

ABA

01000001 01000010 01000001

1000001 1000010 1000001

Amostra da Tabela ASCII

Caractere	Byte
Α	0 1000001
В	0 1000010
С	0 1000011
Z	0 1011010

- Problemas:
 - Aplicável somente a arquivos texto codificados em ASCII
 - Alguns caracteres acentuados não compatíveis usam o oitavo bit

Representação não ASCII

- Usa uma representação binária mais curta para caracteres
- Quanto menor o alfabeto, melhor a compressão

①1010100010000011010000011

 \sim

11010001

TCAC

Tabela de códigos

Código	Caractere
Α	00
С	01
G	10
Т	11

- Problema
 - Só faz sentido se mapear menos do que 128 caracteres

COMPRESSÃO DE DADOS

Métodos Estatísticos

Compressão estatística

- Realiza uma compressão otimizada dos caracteres que mais se repetem
 - A compressão leva em consideração a probabilidade de ocorrência de cada caractere.
- Tipos a estudar:
 - Codificação de Huffman
 - Codificação de Shannon-fano

Codificação de Huffman - Etapas

- 1. Monta uma tabela com linhas compostas por
 - O caractere e o número de ocorrências do caractere
- 2. Transformar cada linha (caractere) em um nó
- 3. Escolher os dois nós com o menor número de ocorrências, ainda sem relacionamentos
- 4. Criar um novo nó
 - que será o pai dos dois nós escolhidos
 - O número de ocorrências será a soma das ocorrências dos filhos
 - O filho da esquerda recebe o bit 0
 - O filho da direita recebe o bit 1
- 5. Repetir a partir do passo 3

Exemplo

Texto a ser comprimido

AAAAABBBBCCCDDE

caractere	# ocorrências	Código
А	5	
В	4	
С	3	
D	2	
Е	1	

Texto comprimido (em binário)

Exemplo

Caractere	# ocorrências	Código
A	5	
В	4	
С	3	
D	2	
E	1	

(5)

4

3

2

1

Α

В

C

D

E

Caractere	# ocorrências	Código
Α	5	
В	4	
С	3	
D	2	
E	1	

Caractere	# ocorrências	Código
А	5	
В	4	
С	3	
D	2	
Е	1	

Caractere	# ocorrências	Código
А	5	
В	4	
С	3	
D	2	
E	1	

Caractere	# ocorrências	Código
А	5	
В	4	
С	3	
D	2	
Е	1	

É uma Trie Binária!

Caractere	# ocorrências	Código
А	5	00
В	4	01
С	3	10
D	2	110
Е	1	111

Texto a ser comprimido

AAAABBBBCCCDDE

120 bitse

caractere	# ocorrências	Código
А	5	00
В	4	01
С	3	10
D	2	110
Е	1	111

Texto comprimido (em binário) 0000000000101010110101101111 33 bits

Codificação de Shannon Fano

- 1. Monta uma tabela com linhas compostas por
 - O caractere e o número de ocorrências do caractere
- 2. Adicionar os caracteres em um vetor
 - Ordenado pelo número de ocorrências
- Encontrar o ponto do vetor que melhor divide os números de ocorrências
- 4. Dividir o vetor nesse ponto
 - O sub-vetor à esquerda recebe o bit 0
 - O sub-vetor a direita recebe o bit 1
- Repetir a partir do passo 3, para cada sub-vetor

Texto a ser comprimido

AAAAABBBBCCCDDE

caractere	# ocorrências	Código
А	5	
b	4	
С	3	
D	2	
E	1	

Texto comprimido (em binário)

Caractere	# ocorrências	Código
А	5	
В	4	
С	3	
D	2	
Е	1	

5	A
4	В
3	С
2	D
1	Е

Caractere	# ocorrências	Código
А	5	
В	4	
С	3	
D	2	
E	1	

5	А	9	0
4	В		
3	С		
2	D	6	1
1	Е		

Caractere	# ocorrências	Código
A	5	
В	4	
С	3	
D	2	
E	1	

5	А	9	0	5	0
4	В			4	1
3	С			3	0
2	D	6	1	3	1
1	Е				'

Caractere	# ocorrências	Código
A	5	
В	4	
С	3	
D	2	
E	1	

5	Α	9	0	5	0		
4	В		O	4	1		
3	С			3	0		
2	D	6	1	3	1	2	0
1	Е				'	1	1

Caractere	# ocorrências	Código
Α	5	00
В	4	01
С	3	10
D	2	110
E	1	111

5	А	9	0	5	0		
4	В		J	4	1		
3	С			3	0		
2	D	6	1	3	1	2	0
1	Е				'	1	1

Texto a ser comprimido

AAAABBBBCCCDDE

120 bitse

caractere	# ocorrências	Código	
А	5	00	
В	4	01	
С	3	10	
D	2	110	
Е	1	111	

Texto comprimido (em binário) 0000000000101010110101101111 33 bits

Análise

- No exemplo, as duas técnicas geraram o mesmo código
 - Isso nem sempre acontece
- A codificação de Huffman produz códigos melhores (ótimos)
 - Por essa razão ela é usado pelas ferramentas de compressão
 - Em abordagens híbridas
- Os métodos estatísticos produzem resultados bem superiores aos métodos básicos
 - Com o custo de ter que pré-processar o arquivo a compactar
 - Normalmente, o custo compensa em razão da taxa de compressão obtida.

Exercício

- Use um método de RLE que consiga comprimir a cadeia abaixo
 - 12777222225
- Use os algoritmos de Huffman e o de Shannon Fano para codificar a seguinte cadeia
 - A_BAITA_BATATA
- O que exibir
 - Algoritmo de Huffman
 - A Trie binária gerada
 - A cadeia comprimida
 - Algoritmo de Shannon
 - O vetor dividido
 - A cadeia comprimida