# Mechanizmy wykrywania i zapobiegania przedwczesnym kodonom STOP

## Małgorzata Grabińska

Zakład Genomiki, Wydział Biotechnologii Uniwersytet Wrocławski malgorzata.grabinska@smorfland.uni.wroc.pl

30 listopada 2015

- są wynikiem błędów powstałych w wyniku replikacji, translacji a przede wszystkim transkrypcji;
- najczęstszymi błędami są mutacje punktowe i przesunięcia ramek odczytu;
- utworzone PTC może być dziedziczone i prowadzić do różnych chorób genetycznych, np. dystrofia mięśniowa Duchenna;
- PTC może prowadzić także do utraty funkcjonalności sekwencji lub produkcji cytotoksyn.

- są wynikiem błędów powstałych w wyniku replikacji, translacji a przede wszystkim transkrypcji;
- najczęstszymi błędami są mutacje punktowe i przesunięcia ramek odczytu;
- utworzone PTC może być dziedziczone i prowadzić do różnych chorób genetycznych, np. dystrofia mięśniowa Duchenna;
- PTC może prowadzić także do utraty funkcjonalności sekwencji lub produkcji cytotoksyn.

- są wynikiem błędów powstałych w wyniku replikacji, translacji a przede wszystkim transkrypcji;
- najczęstszymi błędami są mutacje punktowe i przesunięcia ramek odczytu;
- utworzone PTC może być dziedziczone i prowadzić do różnych chorób genetycznych, np. dystrofia mięśniowa Duchenna;
- PTC może prowadzić także do utraty funkcjonalności sekwencji lub produkcji cytotoksyn.

- są wynikiem błędów powstałych w wyniku replikacji, translacji a przede wszystkim transkrypcji;
- najczęstszymi błędami są mutacje punktowe i przesunięcia ramek odczytu;
- utworzone PTC może być dziedziczone i prowadzić do różnych chorób genetycznych, np. dystrofia mięśniowa Duchenna;
- PTC może prowadzić także do utraty funkcjonalności sekwencji lub produkcji cytotoksyn.

- są wynikiem błędów powstałych w wyniku replikacji, translacji a przede wszystkim transkrypcji;
- najczęstszymi błędami są mutacje punktowe i przesunięcia ramek odczytu;
- utworzone PTC może być dziedziczone i prowadzić do różnych chorób genetycznych, np. dystrofia mięśniowa Duchenna;
- PTC może prowadzić także do utraty funkcjonalności sekwencji lub produkcji cytotoksyn.

- NMD (nonsense mediated decay) zjawisko występujące u większości eukariotów;
- 2 używalność kodonów bezpiecznych.

#### ce

- NMD (nonsense mediated decay) zjawisko występujące u większości eukariotów;
- używalność kodonów bezpiecznych.

се

- NMD (nonsense mediated decay) zjawisko występujące u większości eukariotów;
- 2 używalność kodonów bezpiecznych.

се

- NMD (nonsense mediated decay) zjawisko występujące u większości eukariotów;
- 2 używalność kodonów bezpiecznych.

### cel

### **NMD**

zjawisko zachodzące w komórkach eukariotycznych , polegające na rozpoznawaniu i niszczeniu mRNA zawierający PTC. Jest to proces kontroli jakości, zapobiega powstawaniu skróconych białek, które mogą być szkodliwe dla komórki.

- NMD-EJC (połączenie egzon-egzon zależne od introna);
- NMD-PABP (wymaga występowania PABP-polyA niezależnego od introna).

#### **NMD**

zjawisko zachodzące w komórkach eukariotycznych , polegające na rozpoznawaniu i niszczeniu mRNA zawierający PTC. Jest to proces kontroli jakości, zapobiega powstawaniu skróconych białek, które mogą być szkodliwe dla komórki.

- NMD-EJC (połączenie egzon-egzon zależne od introna);
- NMD-PABP (wymaga występowania PABP-polyA niezależnego od introna).

### **NMD**

zjawisko zachodzące w komórkach eukariotycznych , polegające na rozpoznawaniu i niszczeniu mRNA zawierający PTC. Jest to proces kontroli jakości, zapobiega powstawaniu skróconych białek, które mogą być szkodliwe dla komórki.

- NMD-EJC (połączenie egzon-egzon zależne od introna);
- NMD-PABP (wymaga występowania PABP-polyA niezależnego od introna).



# Rys.1. Ścieżka NMD "mRNA quality control: An ancient machinery

"mRNA quality control: An ancient machinery recognizes and degrades mRNAs with nonsense codon" I. Behm-Ansmant i współ.,2007, FEBS Letters 581, 2845-2853

# Kodony "kruche", ryzykowne

| Genetic | code 1 | : standar | d   |     |     |      |     |
|---------|--------|-----------|-----|-----|-----|------|-----|
| TTT     | Phe    | тст       | Ser | TAT | Tyr | TGT  | Cys |
| TTC     | Phe    | TCC       | Ser | TAC | Tyr | TGC  | Cys |
| TTA     | Leu    | TCA       | Ser | TAA | Stp | TGA  | Stp |
| TTG     | Leu    | TCG       | Ser | TAG | Stp | TGG  | Trp |
| СТТ     | Leu    | ССТ       | Pro | CAT | His | CGT  | Arg |
| CTC     | Leu    | CCC       | Pro | CAC | His | CGC  | Arg |
| CTA     | Leu    | CCA       | Pro | CAA | Gln | CGA  | Arg |
| CTG     | Leu    | CCG       | Pro | CAG | Gln | CGG  | Arg |
| АТТ     | lle    | ACT       | Thr | AAT | Asn | A GT | Ser |
| ATC     | lle    | ACC       | Thr | AAC | Asn | AGC  | Ser |
| ATA     | lle    | ACA       | Thr | AAA | Lys | AGA  | Arg |
| ATG     | Met    | ACG       | Thr | AAG | Lys | AGG  | Arg |
| GTT     | Val    | GCT       | Ala | GAT | Asp | GGT  | Gly |
| GT C    | Val    | GCC       | Ala | GAC | Asp | GGC  | Gly |
| GT A    | Val    | GCA       | Ala | GAA | Glu | GGA  | Gly |
| GT G    | Val    | GCG       | Ala | GAG | Glu | GGG  | Gly |

Tabela.1 Tabela standardowego kodu genetycznego z pakietu seqinr

## Kodony "kruche", ryzykowne



Tabela.2 Tabela standardowego kodu genetycznego z pakietu *seqinr* z ryzykownymi kodonami

## Kodony "kruche", ryzykowne



Tabela.3 Tabela standardowego kodu genetycznego z pakietu *seqinr* z ryzykownymi kodonami i aminokwasami

#### Metoda 1

Porównywanie FCU, NFCU, FAU, NFAU regionów nie- i podlegającym NMD z kontrolą. Wszystkie współczynniki obliczano dla każdego genu w grupach kodonów synonimicznych i o takiej samej zawartości GC i tylko dla tych grup gdzie istniały nie- i ryzkowne kodony. Sprawdzano organizmy posiadające obie ścieżki NMD: człowiek, mysz a kontrole wykonano na genomie *Drosophila Melanogaster* gdzie występuje tylko ścieżka NMD-PABP. Pórównano także genomy drożdży *Schizosaccharomyces pombe* (obie ścieżki NMD) i *Saccharomyces cerevisiae* (NMD-PABP).

B.P. Cusack i współ.,2011, PLos Genetics 7, 10

<sup>&</sup>quot;Preventing dangerous nonsene: selection for robustness to transcriptional error in Human Genes."

- 1. TCA, TCT (seryna)
- 2. TCG, TCC (seryna);
- 3. CGA, CGT (arginina)
- 4. GGA, GGT (glicyna);
- TTG, CTT, CTA (leucyna).

- 1. tyrozyna, lizyna, asparagina, fenyloalanina
- 2. glutamina, kwas glutaminowy, cysteina, seryna, histydyna treonina, kwas asparaginowy, walina.

- 1. ICA, ICI (seryna)
- 2. TCG, TCC (seryna);
- CGA, CGT (arginina);
- 4. GGA, GGT (glicyna);
- 5. TTG, CTT, CTA (leucyna).

- 1. tyrozyna, lizyna, asparagina, fenyloalanina
- 2. glutamina, kwas glutaminowy, cysteina, seryna, histydyna treonina, kwas asparaginowy, walina.

- 1. TCA, TCT (seryna);
- 2. TCG, TCC (seryna);
- CGA, CGT (arginina);
- 4. GGA, GGT (glicyna);
- 5. TTG, CTT, CTA (leucyna).

- 1. tyrozyna, lizyna, asparagina, fenyloalanina
- 2. glutamina, kwas glutaminowy, cysteina, seryna, histydyna treonina, kwas asparaginowy, walina.

- 1. TCA, TCT (seryna);
- 2. TCG, TCC (seryna);
- CGA, CGT (arginina);
- 4. GGA, GGT (glicyna);
- 5. TTG, CTT, CTA (leucyna).

- 1. tyrozyna, lizyna, asparagina, fenyloalanina
- 2. glutamina, kwas glutaminowy, cysteina, seryna, histydyna treonina, kwas asparaginowy, walina.

- 1. TCA, TCT (seryna);
- 2. TCG, TCC (seryna);
- 3. CGA, CGT (arginina);
- 4. GGA, GGT (glicyna)
- 5. TTG, CTT, CTA (leucyna)

- 1. tyrozyna, lizyna, asparagina, fenyloalanina
- 2. glutamina, kwas glutaminowy, cysteina, seryna, histydyna treonina, kwas asparaginowy, walina.

- 1. TCA, TCT (seryna);
- 2. TCG, TCC (seryna);
- 3. CGA, CGT (arginina);
- 4. GGA, GGT (glicyna);
- 5. TTG, CTT, CTA (leucyna)

- 1. tyrozyna, lizyna, asparagina, fenyloalanina
- 2. glutamina, kwas glutaminowy, cysteina, seryna, histydyna treonina, kwas asparaginowy, walina.

- TCA, TCT (seryna);
- 2. TCG, TCC (seryna);
- 3. CGA, CGT (arginina);
- 4. GGA, GGT (glicyna);
- 5. TTG, CTT, CTA (leucyna).

- 1. tyrozyna, lizyna, asparagina, fenyloalanina
- 2. glutamina, kwas glutaminowy, cysteina, seryna, histydyna treonina, kwas asparaginowy, walina.

- 1. TCA, TCT (seryna);
- 2. TCG, TCC (seryna);
- 3. CGA, CGT (arginina);
- 4. GGA, GGT (glicyna);
- 5. TTG, CTT, CTA (leucyna).

- 1. tyrozyna, lizyna, asparagina, fenyloalanina
- 2. glutamina, kwas glutaminowy, cysteina, seryna, histydyna treonina, kwas asparaginowy, walina.

- TCA, TCT (seryna);
- 2. TCG, TCC (seryna);
- 3. CGA, CGT (arginina);
- 4. GGA, GGT (glicyna);
- 5. TTG, CTT, CTA (leucyna).

- 1. tyrozyna, lizyna, asparagina, fenyloalanina;
- 2. glutamina, kwas glutaminowy, cysteina, seryna, histydyna treonina, kwas asparaginowy, walina.

- TCA, TCT (seryna);
- 2. TCG, TCC (seryna);
- 3. CGA, CGT (arginina);
- GGA, GGT (glicyna);
- 5. TTG, CTT, CTA (leucyna).

- 1. tyrozyna, lizyna, asparagina, fenyloalanina;
- 2. glutamina, kwas glutaminowy, cysteina, seryna, histydyna, treonina, kwas asparaginowy, walina.

|              |             | PABP-dependent<br>NMD | EJC-dependent<br>NMD | Genes | NFCU        | <i>P</i> -value    | Ratio |
|--------------|-------------|-----------------------|----------------------|-------|-------------|--------------------|-------|
| Human genes  |             |                       |                      |       |             |                    |       |
| Multi-exon   |             | +                     | +                    | 20563 | 0.47        |                    | 1.00  |
|              |             |                       |                      |       | (0.41-0.54) |                    |       |
| Single-exon: | All         | +/-                   | -                    | 2422  | 0.43        | <10 <sup>-15</sup> | 0.92  |
|              |             |                       |                      |       | (0.34-0.51) |                    |       |
|              | Non-histone | +                     | -                    | 2367  | 0.43        | <10 <sup>-15</sup> | 0.92  |
|              |             |                       |                      |       | (0.34-0.51) |                    |       |
|              | Histone     | -                     | -                    | 55    | 0.32        | <10 <sup>-9</sup>  | 0.68  |
|              |             |                       |                      |       | (0.23-0.45) |                    |       |
| Mouse genes  |             |                       |                      |       |             |                    |       |
| Multi-exon   |             | +                     | +                    | 20263 | 0.47        |                    | 1.00  |
|              |             |                       |                      |       | (0.40-0.53) |                    |       |
| Single-exon: | All         | +/-                   | -                    | 3582  | 0.42        | <10 <sup>-15</sup> | 0.89  |
|              |             |                       |                      |       | (0.33-0.51) |                    |       |
|              | Non-histone | +                     | -                    | 3533  | 0.42        | <10 <sup>-15</sup> | 0.89  |
|              |             |                       |                      |       | (0.33-0.51) |                    |       |
|              | Histone     | -                     | -                    | 49    | 0.22        | <10 <sup>-15</sup> | 0.47  |
|              |             |                       |                      |       | (0.14-0.33) |                    |       |
| Fly genes    |             |                       |                      |       |             |                    |       |
| Multi-exon   |             | +                     | -                    | 11643 | 0.54        |                    | 1.00  |
|              |             |                       |                      |       | (0.48-0.60) |                    |       |
| Single-exon: | All         | +/-                   | -                    | 2498  | 0.53        | 0.0002             | 0.98  |
|              |             |                       |                      |       | (0.45-0.62) |                    |       |
|              | Non-histone | +                     | -                    | 2466  | 0.53        | 0.002              | 0.98  |
|              |             |                       |                      |       | (0.45-0.62) |                    |       |
|              | Histone     | -                     | -                    | 32    | 0.38        | <10 <sup>-9</sup>  | 0.69  |
|              |             |                       |                      |       | (0.38-0.38) |                    |       |

|              | PABP-dependent | EJC-dependent |       |             |                    |       |
|--------------|----------------|---------------|-------|-------------|--------------------|-------|
|              | NMD            | NMD           | Genes | FAU         | <i>P</i> -value    | Ratio |
| Human genes  |                |               |       |             |                    |       |
| Multi-exon   | +              | +             | 20573 | 0.23        |                    | 1.00  |
|              |                |               |       | (0.20-0.27) |                    |       |
| Single-exon: | +/-            | -             | 2424  | 0.19        | <10^-15            | 0.83  |
|              |                |               |       | (0.16-0.24) |                    |       |
| Mouse genes  |                |               |       |             |                    |       |
| Multi-exon   | +              | +             | 20284 | 0.24        |                    | 1.00  |
|              |                |               |       | (0.21-0.27) |                    |       |
| Single-exon: | +/-            | -             | 3589  | 0.19        | <10 <sup>-15</sup> | 0.79  |
|              |                |               |       | (0.16-0.24) |                    |       |
| Fly genes    |                |               |       |             |                    |       |
| Multi-exon   | +              | _             | 11643 | 0.23        |                    | 1.00  |
|              |                |               |       | (0.20-0.26) |                    |       |
| Single-exon: | +/-            | -             | 2498  | 0.23        | 0.97               | 1.00  |
|              |                |               |       | (0.20-0.26) |                    |       |

|             | PABP-dependent<br>NMD | EJC-dependent<br>NMD | Genes | NFAU          | <i>P</i> -value    | Ratio |
|-------------|-----------------------|----------------------|-------|---------------|--------------------|-------|
| Human genes |                       |                      |       |               |                    |       |
| Multi-exon  | +                     | +                    | 20573 | 0.44          |                    | 1.00  |
|             |                       |                      |       | (0.39 - 0.48) |                    |       |
| Single-exon | +/-                   | -                    | 2424  | 0.38          | <10^-15            | 0.88  |
|             |                       |                      |       | (0.32 - 0.47) |                    |       |
| Mouse genes |                       |                      |       |               |                    |       |
| Multi-exon  | +                     | +                    | 20284 | 0.43          |                    | 1.00  |
|             |                       |                      |       | (0.39 - 0.48) |                    |       |
| Single-exon | +/-                   | -                    | 3588  | 0.36          | <10 <sup>-15</sup> | 0.84  |
|             |                       |                      |       | (0.31 - 0.46) |                    |       |
| Fly genes   |                       |                      |       |               |                    |       |
| Multi-exon  | +                     | -                    | 11643 | 0.41          |                    | 1.00  |
|             |                       |                      |       | (0.37 - 0.46) |                    |       |
| Single-exon | +/-                   | -                    | 2498  | 0.42          | <10^4              | 1.02  |
|             |                       |                      |       | (0.37 - 0.48) |                    |       |

- dla genów o współczynniku  $\frac{K_a}{K_s}\sim 1$  organizm obniża zawartość ryzykownych kodonów i aminokwasów;
- $\frac{K_a}{K_s} \sim 0$  różnice mogą się akumulować tyklo na poziomie używalności kodonów (selekcja na poziomie aminokwasów)
- FCU i NFCU w pojedynczo egzonowych i wieloegzonowych genach jest niezależna od kodonów optymalnych;
- w ostatnim egzonie w wieloegzonowych genach jest o 8% mniejsze FCU niż w całości (7% u myszy, bez różnic u muchy)

- dla genów o współczynniku  $\frac{K_a}{K_s}\sim 1$  organizm obniża zawartość ryzykownych kodonów i aminokwasów;
- $\frac{K_a}{K_s} \sim 0$  różnice mogą się akumulować tyklo na poziomie używalności kodonów (selekcja na poziomie aminokwasów
- FCU i NFCU w pojedynczo egzonowych i wieloegzonowych genach jest niezależna od kodonów optymalnych;
- w ostatnim egzonie w wieloegzonowych genach jest o 8% mniejsze FCU niż w całości (7% u myszy, bez różnic u muchy)

- dla genów o współczynniku  $\frac{K_a}{K_s}\sim 1$  organizm obniża zawartość ryzykownych kodonów i aminokwasów;
- $\frac{K_a}{K_s} \sim 0$  różnice mogą się akumulować tyklo na poziomie używalności kodonów (selekcja na poziomie aminokwasów);
- FCU i NFCU w pojedynczo egzonowych i wieloegzonowych genach jest niezależna od kodonów optymalnych;
- w ostatnim egzonie w wieloegzonowych genach jest o 8% mniejsze FCU niż w całości (7% u myszy, bez różnic u muchy)

- dla genów o współczynniku  $\frac{K_a}{K_s}\sim 1$  organizm obniża zawartość ryzykownych kodonów i aminokwasów;
- $\frac{K_a}{K_s} \sim 0$  różnice mogą się akumulować tyklo na poziomie używalności kodonów (selekcja na poziomie aminokwasów);
- FCU i NFCU w pojedynczo egzonowych i wieloegzonowych genach jest niezależna od kodonów optymalnych;
- w ostatnim egzonie w wieloegzonowych genach jest o 8% mniejsze FCU niż w całości (7% u myszy, bez różnic u muchy)

- dla genów o współczynniku  $\frac{K_a}{K_s}\sim 1$  organizm obniża zawartość ryzykownych kodonów i aminokwasów;
- $\frac{K_a}{K_s} \sim 0$  różnice mogą się akumulować tyklo na poziomie używalności kodonów (selekcja na poziomie aminokwasów);
- FCU i NFCU w pojedynczo egzonowych i wieloegzonowych genach jest niezależna od kodonów optymalnych;
- w ostatnim egzonie w wieloegzonowych genach jest o 8% mniejsze FCU niż w całości (7% u myszy, bez różnic u muchy)

## Metoda 1

Badanie rozkładów kodonów tylko dla aminokwasów z kodonami ryzykownymi i poczwórnie zdegenerowanych (leucyna,seryna,arginina i glicyna).

- "The usage of codons which are similar to stop codons in the genomes of Xylella fastidiosa and "
- D. Galves-dos-Santos i współ.,2011, Curr Microbiol 62, 1090-1095

|            | LEU | SER | ARG | GLY |
|------------|-----|-----|-----|-----|
| Very risky | UUA | UCA |     |     |
| Risky      | UGG | UCG | CGA | GGA |
|            |     |     | AGA |     |
| Safe       | CUA | UCU | CGU | GGU |
|            | CUG | AGU | CGC | GGC |
|            |     | ACG | CGG | GGG |
|            |     |     | AGG |     |
| Very safe  | CUC |     |     |     |
|            | CUU |     |     |     |

## Xanthomonas citri

| Xylella fastidiosa<br>Random codon usage | Xanthomonas axonopodis pv. citri<br>Evident selection of optimal codons |  |  |
|------------------------------------------|-------------------------------------------------------------------------|--|--|
| Leucine                                  | Leucine                                                                 |  |  |
| UUA (Very risky): 298                    | UUA (Very risky): 8                                                     |  |  |
| UUG (Risky): 280                         | UUG (Risky): 871                                                        |  |  |
| CUA (Safe): 660                          | CUA (Safe): 40                                                          |  |  |
| CUG (Safe): 1665                         | CUG (Safe): 6730                                                        |  |  |
| CUC (Very safe): 1511                    | CUC (Very safe): 1099                                                   |  |  |
| CUU (Very safe): 318                     | CUU (Very safe): 117                                                    |  |  |
| Serine                                   | Serine                                                                  |  |  |
| UCA (Very risky): 310                    | UCA (Very risky): 26                                                    |  |  |
| UCG (Risky): 125                         | UCG (Risky): 1834                                                       |  |  |
| UCU (Safe): 92                           | UCU (Safe): 59                                                          |  |  |
| AGU (Safe): 86                           | AGU (Safe): 104                                                         |  |  |
| AGC (Safe): 1048                         | AGC (Safe): 1868                                                        |  |  |
| Arginine                                 | Arginine                                                                |  |  |
| CGA (Risky): 154                         | CGA (Risky): 21                                                         |  |  |
| AGA (Risky): 75                          | AGA (Risky): 4                                                          |  |  |
| CGU (Safe): 492                          | CGU (Safe): 899                                                         |  |  |
| CGC (Safe): 1731                         | CGC (Safe): 4080                                                        |  |  |
| CGG (Safe): 168                          | CGG (Safe): 308                                                         |  |  |
| AGG (Safe): 25                           | AGG (Safe): 22                                                          |  |  |
| Glycine                                  | Glycine                                                                 |  |  |
| GGA (Risky): 398                         | GGA (Risky): 73                                                         |  |  |
| GGU (Safe): 322                          | GGU (Safe): 983                                                         |  |  |
| GGC (Safe): 2260                         | GGC (Safe): 6784                                                        |  |  |
| GGG (Safe): 115                          | GGG (Safe): 374                                                         |  |  |





 założenie, że Xylella fastidiosa (wolno rosnąca) używa losowo kodonów wynika z częstszego używania kodonów bardzo ryzykownych niż Xanthomonas citri (szybko rosnąca).  założenie, że Xylella fastidiosa (wolno rosnąca) używa losowo kodonów wynika z częstszego używania kodonów bardzo ryzykownych niż Xanthomonas citri (szybko rosnąca).

•

# Używalność kodonów ryzykownych dla bazy prokaryotów

## Materialy

Do analizy została wzięta baza genomów prokaryotów oprócz *Mycoplasmy* ze względu na różnice w kodzie genetycznym. Analiza używalności została wykonana na zbiorach sekwencji kodujących bialko z i bez sekwencji kodujących białka rybosomalne.

#### Metoda

Dla każdego genomu został wyliczony średni współczynnik FCU FAU, NFCU, NFAU, NRSCU oraz średnie GC.

# Używalność kodonów ryzykownych dla bazy prokaryotów

### Materialy

Do analizy została wzięta baza genomów prokaryotów oprócz *Mycoplasmy* ze względu na różnice w kodzie genetycznym. Analiza używalności została wykonana na zbiorach sekwencji kodujących bialko z i bez sekwencji kodujących białka rybosomalne.

### Metoda

Dla każdego genomu został wyliczony średni współczynnik FCU, FAU, NFCU, NFAU, NRSCU oraz średnie GC.

























