Модель и алгоритмы поиска сигналов в звуковых базах данных

АВТОР: ЛУКЬЯНЧИКОВА А.В., М15-ИВТ-3

РУКОВОДИТЕЛЬ: К.Т.Н., ДОЦЕНТ, ГАЙ В.Е.

Цель и задачи исследования

<u>Цель:</u> разработка модели и алгоритмов поиска сигналов в звуковых базах данных.

Задачи:

- Анализ существующих методов поиска звуковых сигналов в базах данных
- Разработка алгоритма поиска звуковых сигналов в базах данных
- Проведение вычислительного эксперимента для подтверждения работоспособности разработанного алгоритма

Научная новизна

- Информационная модель поиска сигналов в звуковых базах данных
- Алгоритм формирования признакового описания звукового сигнала на основе теории активного восприятия

Информационная модель

Предварительная обработка

- ■Приведение сигналов к единому битрейту
- ■Разбиение музыкальной композиции на сегменты

$$S = \{S_i\}, i = \overline{1, N}$$

 S_i - сегмент, на которые делится входной запрос

N – количество сегментов разбиения

Вычисление массивов сумм на основе амплитуд отсчетов

Предварительная обработка

Формирование признакового описания

Вычисление признакового описания сигнала на основе спектральных коэффициентов U-преобразования

$$G_i = \{G_n\}, n = \overline{1,F}$$

 G_n - коэффициент спектрального представления сегмента сигнала

F - количество фильтров, применяемых при вычислении U-преобразования

Принятие решения

- Формирование бинарного дерева базы данных
- Формирование бинарного дерева сигнала-запроса

Расстояние Хэмминга

Расстояние Хэмминга позволяет определить число позиций, в которых символы двух одинаковых последовательностей различны

Шаблоны:

$$T_1 = \{1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0\}$$

$$T_2 = \{0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1\}$$

Сравнение

Вычислительный эксперимент

База данных: 1000 звуковых сигналов

Количество запросов: 1000 звуковых сигнала

Количество уровней в дереве	3	5	7	
Длительность запроса, секунда	1	2	4	
Величина сегмента, секунда	1	2	4	
Величина смещения, отсчет	1000	100	10	

Всего: 54 конфигурации

При нормальных условиях

Кол-во уровней дерева	Длительность запроса, секунда	Величина сегмента, секунда	Величина смещения в запросе, %	Точность поиска, %	Время поиска запроса, секунда	Время формирования базы данных, секунда
	1	1	10	83,3	1,46	7,6
7	2	1	10	79,2	1,39	8,6
		2	10	91,6	1,01	7,4
		1	10	62,5	1,47	8,8
	4	2	10	79,2	1,25	7,9
		4	10	95,8	0,94	6,7

В условиях шума

Кол-во уровней дерева	Длительность входного запроса, секунда	Уровень шума, дБ	Точность поиск, %
		0	50
7	1	10	66,6
		20	79,2
		0	79,2
	2	83,3	
		20	91,6
		0	87,5
	4	10	91,6
		20	95,8

Сравнение

Уровень шума, дБ	Разработанный метод, %	Shazam, %
0	87,5	80
10	91,6	95
20	95,8	99

Итоги исследования

- Проведен обзор существующих методов решения задачи поиска сигналов в звуковых базах данных
- Предложен новый алгоритм решения задачи поиска сигналов в звуковых базах данных
- Разработан программный продукт для проведения исследования
- Проведен вычислительный эксперимент, подтверждающий работоспособность предложенного метода

Спасибо за внимание!

Расстояние Хэмминга

G	5,6	-3,5	-4,3	6,5	34	-56	0,2	0,7	3,6	5,7	4,6	-4,1	1,1	3,2	0,2
Res	1	0	0	1	1	0	1	1	1	1	1	0	1	1	1
T_1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0
T_2	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1
dis ₁	0	1	1	0	0	1	0	0	1	1	1	0	1	1	1
dis ₂	1	0	0	1	1	0	1	1	0	0	0	1	0	0	0