Dynamic Predictions of Visual Acuity in Uveitis

Eleni-Rosalina Andrinopoulou¹, Koenraad A. Vermeer², Tom Missotten³ and Dimitris Rizopoulos¹

- 1. Department of Biostatistics, Erasmus MC, Rotterdam, The Netherlands
 - 2. Rotterdam Ophthalmic Institute, Rotterdam, The Netherlands
 - 3. Rotterdam Eye Hospital, Rotterdam, The Netherlands

e.andrinopoulou@erasmusmc.nl

International Biometric Conference, Barcelona, July 2018

Motivation

ullet Uveitis - inflammation (INF) o blindness

Influences visual acuity (VA)

- 365 patients visiting the Rotterdam Eye Hospital
 - Data recorded since 2000

Feet	Decimal	LogMAR
20/200	0.10	1.00
20/160	0.13	0.90
20/125	0.16	0.80
20/100	0.20	0.70
20/80	0.25	0.60
20/63	0.32	0.50
20/50	0.40	0.40
20/40	0.50	0.30
20/32	0.63	0.20
20/25	0.80	0.10
20/20	1.00	0.00
·		

Feet	Decimal	LogMAR
20/200	0.10	1.00
20/160	0.13	0.90
20/125	0.16	0.80
20/100	0.20	0.70
20/80	0.25	0.60
20/63	0.32	0.50
20/50	0.40	0.40
20/40	0.50	0.30
20/32	0.63	0.20
20/25	0.80	0.10
20/20	1.00	0.00

Feet	Decimal	LogMAR
20/200	0.10	1.00
20/160	0.13	0.90
20/125	0.16	0.80
20/100	0.20	0.70
20/80	0.25	0.60
20/63	0.32	0.50
20/50	0.40	0.40
20/40	0.50	0.30
20/32	0.63	0.20
20/25	0.80	0.10
20/20	1.00	0.00

Predict future VA measurements in patients with uveitis

Analysis

Better predict VA?

- Special features
 - 1. Clusters (Stable/Unstable patients)

Mixed models

$$y_{\mathsf{VA}_i} = x_{\mathsf{VA}_i}^{\mathsf{T}} \beta_{\mathsf{VA}} + z_{\mathsf{VA}_i}^{\mathsf{T}} b_{\mathsf{VA}_i} + \epsilon_i, \qquad \epsilon_i \sim N(0, \Sigma_i)$$

- $\triangleright \beta_{VA}$ denotes the fixed effects
- $\triangleright b_{\mathrm{VA}i} \sim N(0,D)$ denotes the random effects

Mixed models

$$y_{\mathsf{VA}_i} = \boxed{x_{\mathsf{VA}_i}^{\mathsf{T}} \beta_{\mathsf{VA}}} + z_{\mathsf{VA}_i}^{\mathsf{T}} b_{\mathsf{VA}_i} + \epsilon_i, \qquad \qquad \epsilon_i \sim N(0, \Sigma_i)$$

- $\triangleright \beta_{VA}$ denotes the fixed effects
- $\triangleright b_{\mathrm{VA}i} \sim N(0,D)$ denotes the random effects

Mixed models

$$y_{\mathsf{VA}_i} = x_{\mathsf{VA}_i}^{\mathsf{T}} \beta_{\mathsf{VA}} + \boxed{z_{\mathsf{VA}_i}^{\mathsf{T}} b_{\mathsf{VA}_i}} + \epsilon_i, \qquad \qquad \epsilon_i \sim N(0, \Sigma_i)$$

- $\triangleright \beta_{VA}$ denotes the fixed effects
- $\triangleright b_{\mathrm{VA}i} \sim N(0,D)$ denotes the random effects

Mixed models

$$y_{\text{VA}i\mathbf{c}} = x_{\text{VA}i}^{\top} \beta_{\text{VA}\mathbf{c}} + z_{\text{VA}i}^{\top} b_{\text{VA}i\mathbf{c}} + \epsilon_i, \qquad \epsilon_i \sim N(0, \Sigma_i),$$

- $\triangleright \beta_{VAc}$ denotes the fixed effects
- $\triangleright b_{\mathrm{VA}i\mathbf{c}} \sim N(0,D_{\mathbf{c}})$ denotes the random effects

Better predict VA?

- Special features
 - **2.** Multiple outcomes (VA, INF, COM, . . .) \rightarrow high dimensional model
 - ▶ Penalties
 - ▶ Model averaging

Multivariate Mixed Models (Scenario la)

$$y_{\text{VA}i\mathbf{c}} = x_{\text{VA}i}^{\top} \beta_{\text{VA}\mathbf{c}} + z_{\text{VA}i}^{\top} b_{\text{VA}i\mathbf{c}} + \boldsymbol{\alpha}_{\mathbf{c}} y_{\text{INF}i\mathbf{c}} + \epsilon_i, \qquad \epsilon_i \sim N(0, \Sigma_i)$$

$$\operatorname{logit}(y_{\mathsf{INF}i\mathbf{c}}) = x_{\mathsf{INF}i}^{\top}\beta_{\mathsf{INF}\mathbf{c}} + z_{\mathsf{INF}i}^{\top}b_{\mathsf{INF}i\mathbf{c}}$$

where

 $\triangleright \beta_{VAc}$ and β_{INFc} denote the fixed effects

 $\triangleright b_{i\mathbf{c}} = (b_{\mathsf{VA}i\mathbf{c}}, b_{\mathsf{INF}i\mathbf{c}}) \sim N(0, D_{\mathbf{c}})$ denotes the random effects

 $\triangleright \alpha_{\bf c}$ association between outcomes

Multivariate Mixed Models (Scenario Ib)

$$y_{\text{VA}i\mathbf{c}} = x_{\text{VA}i}^{\top} \beta_{\text{VA}\mathbf{c}} + z_{\text{VA}i}^{\top} b_{\text{VA}i\mathbf{c}} + \boldsymbol{\alpha}_{\mathbf{c}} y_{\text{COM}i\mathbf{c}} + \epsilon_i, \qquad \epsilon_i \sim N(0, \Sigma_i)$$

$$\operatorname{logit}(y_{\operatorname{COM}i\mathbf{c}}) = x_{\operatorname{COM}i}^{\top}\beta_{\operatorname{COM}\mathbf{c}} + z_{\operatorname{COM}i}^{\top}b_{\operatorname{COM}i\mathbf{c}}$$

where

 $\triangleright \beta_{VAc}$ and β_{COMc} denote the fixed effects

 $\triangleright b_{i\mathbf{c}} = (b_{\mathsf{VA}i\mathbf{c}}, b_{\mathsf{COM}i\mathbf{c}}) \sim N(0, D_{\mathbf{c}})$ denotes the random effects

 $\triangleright \alpha_{\bf c}$ association between outcomes

Multivariate Mixed Models (Scenario II)

$$y_{\text{VA}i\text{c}} = x_{\text{VA}i}^{\top} \beta_{\text{VAc}} + z_{\text{VA}i}^{\top} b_{VAi\text{c}} + \alpha_{1\text{c}} y_{INFi\text{c}} + \alpha_{2\text{c}} y_{\text{COM}i\text{c}} + \epsilon_i, \qquad \epsilon_i \sim N(0, \Sigma_i)$$

$$\operatorname{logit}(y_{\mathsf{INF}i\mathbf{c}}) = x_{\mathsf{INF}i}^{\top}\beta_{\mathsf{INF}\mathbf{c}} + z_{\mathsf{INF}i}^{\top}b_{\mathsf{INF}i\mathbf{c}}$$

$$\operatorname{logit}(y_{\operatorname{COM}i\mathbf{c}}) = x_{\operatorname{COM}i}^{\top}\beta_{\operatorname{COM}\mathbf{c}} + z_{\operatorname{COM}i}^{\top}b_{\operatorname{COM}i\mathbf{c}}$$

where

 $\triangleright \beta_{VAc}$, β_{INFc} and β_{COMc} denote the fixed effects

 $\triangleright b_{i\mathbf{c}} = (b_{\mathsf{VA}i\mathbf{c}}, b_{\mathsf{INF}i\mathbf{c}}, b_{\mathsf{COM}i\mathbf{c}}) \sim N(0, D_{\mathbf{c}})$ denotes the random effects

 $ho |\alpha_{1c}|$ and $|\alpha_{2c}|$ association between outcomes

Estimation

- Bayesian framework
 - ▶ Latent classes

*
$$\pi_{ic} \sim Dirichlet(A_c)$$

 $A_c = A_1, \dots, A_C$

- - * Penalties
 - * Model averaging

Estimation

- Bayesian framework
 - ▶ Latent classes

*
$$\pi_{ic} \sim Dirichlet(A_c)$$

$$A_c = A_1, \dots, A_C$$

- * Penalties → Shrinkage priors (Scenario II)
- * Model averaging

Estimation

- Bayesian framework

*
$$\pi_{ic} \sim Dirichlet(A_c)$$

$$A_c = A_1, \dots, A_C$$

- - * Penalties
 - * Model averaging -> Posterior probabilities (Scenario la and lb)

Estimation (cont'd)

Bayesian model averaging: Posterior probability for each model (m)

$$P(M_m \mid D) = \frac{P(D \mid M_m) \mathbf{P(M_m)}}{\sum_{m=1}^{M} P(D \mid M_m) \mathbf{P(M_m)}},$$

- D: data
- ullet $P(M_m)$ prior for the models

Estimation (cont'd)

Bayesian model averaging: Posterior probability for each model (m)

$$P(M_m \mid D) = \frac{\mathbf{P}(\mathbf{D} \mid \mathbf{M_m}) P(M_m)}{\sum_{m=1}^{M} \mathbf{P}(\mathbf{D} \mid \mathbf{M_m}) P(M_m)},$$

where

- D: data
- $P(D \mid M_m) = \int P(D \mid \theta_m, M_m) P(\theta_m \mid M_m) d\theta_m$

Likelihood Priors

Estimation (cont'd)

Bayesian model averaging: Posterior probability for each model (m)

$$P(M_m \mid D) = \frac{\mathbf{P}(\mathbf{D} \mid \mathbf{M_m}) P(M_m)}{\sum_{m=1}^{M} \mathbf{P}(\mathbf{D} \mid \mathbf{M_m}) P(M_m)},$$

where

• D: data

•
$$P(D \mid M_m) = \int P(D \mid \theta_m, M_m) P(\theta_m \mid M_m) d\theta_m$$

Likelihood Priors

Results: Scenario Ia $\rightarrow P(M_{\mathsf{INF}} \mid D) = 1$ and Scenario Ib $\rightarrow P(M_{\mathsf{COM}} \mid D) = 0$

Predictions

Predictions for VA

Predictions

Evaluation

Clinical point of view

ightharpoonup GOOD = | logMAR(observedVA) - logMAR(predictedVA) | <= 0.3

- Cross validation

 - ▷ Split data 5 subsets
 - \triangleright fit \rightarrow 4 subsets
 - \triangleright calculate **GOOD** \rightarrow 1 subset

Repeated 10 times

Conclusion

predictions of VA

Limitations

- No correlation between the eyes
- ▷ different features of the time-varying covariates
- > more features and time-varying covariates for shrinkage

