

Examen parcial 2, 21-12-2018

Ejercicio 1.

a) La variable aleatoria X toma los valores 0 y 1 con probabilidades $\frac{1}{2} - \theta$ y $\frac{1}{2} + \theta$, respectivamente. Aquí, θ es un parámetro, $\theta \in (0, 1/2)$.

Disponemos de una muestra aleatoria (x_1, \ldots, x_n) de X de tamaño n, para la que \overline{x} cumple que $1/2 < \overline{x} < 1$.

Estima θ por momentos y por máxima verosimilitud.

b) La variable aleatoria X toma los valores 0 y θ con probabilidades $\frac{1}{2} - \theta$ y $\frac{1}{2} + \theta$, respectivamente. Aquí, θ es un parámetro, $\theta \in (0, 1/2)$.

Disponemos de una muestra aleatoria (x_1, \ldots, x_n) de X de tamaño n, para la que \overline{x} cumple que $0 < \overline{x} < 1/2$.

Estima θ por momentos y por máxima verosimilitud.

Ejercicio 2.

a) En dos cantones suizos se va a someter a referendum una iniciativa. Sólo caben dos respuestas: "sí" y "no".

El objetivo de una empresa de encuestas es estimar la diferencia entre la proporción de habitantes del cantón 1 que apoyan la iniciativa y la proporción de los habitantes que lo hacen en el cantón 2 con un error menor que 1.96 % y confianza del 95 %.

Para ello, se encuestará a n personas (elegidas al azar e independientemente) en el cantón 1 y a otras n en el cantón 2. ¿Cuál es el mínimo valor de n para el que se puede alcanzar el objetivo descrito antes?

- b) Disponemos de una lista de ceros y unos de longitud 100, que suponemos que es una muestra aleatoria de una variable $X \sim \text{BER}(p)$. Se desea contrastar la hipótesis $H_0: p < 1/4$.
- b.1) Parece natural rechazar H_0 si la muestra contiene "muchos" unos. ¿A partir de cuántos unos rechazaremos H_0 con nivel de significación $\alpha = 5 \%$?
- b.2) Supongamos que en la muestra se han visto 65 ceros. ¿Cuál es el p-valor de la muestra?

Ejercicio 3.

La variable X tiene función de densidad $f(x;\theta)$, donde $\theta > 0$. El soporte de X es el intervalo $[1,\infty)$ para todo θ . Conocemos el valor de algunos de los momentos de la variable:

$$\mathbf{E}_{\theta}(X) = 2e^{\theta/2}, \quad \mathbf{E}_{\theta}(X^2) = 6e^{\theta}, \quad \mathbf{E}_{\theta}(X^3) = 26e^{3\theta/2}, \quad \mathbf{E}_{\theta}(X^4) = 150e^{2\theta}.$$

Consideramos el estimador de θ , para muestras de X de tamaño n, siguiente:

$$T(X_1, ..., X_n) = \ln\left(\frac{1}{6n} \sum_{i=1}^n X_i^2\right).$$

- a) Usando el método delta, escribe un resultado de normalidad para T.
- b) En una muestra aleatoria $(x_1, x_2, \dots, x_{100})$ de X de tamaño 100 se ha obtenido el valor $\overline{x^2} = 8.2$. Usa el apartado anterior para escribir un intervalo (aproximado) de confianza al 95 % para θ .

Ejercicio 4.

La variable X se distribuye como una χ^2_n . Aquí, n es un parámetro, un entero ≥ 1 . Se desea contrastar la hipótesis

$$H_0: n \le 6.$$

Para ello, se emplea el siguiente test: se toma una muestra aleatoria de X de tamaño 10, se suman los resultados de esos 10 datos, y si esa suma es ≥ 80 , entonces se rechaza H_0 .

a) Calcula la función de potencia del test.

(Nota: puedes/debes dejar la respuesta en términos de valores de la función de distribución de la χ^2 con un cierto número de grados de libertad).

b) Esboza la gráfica de la función de potencia y calcula el nivel de significación del test (justificando el cálculo).

Percentiles de la χ^2 con n grados de libertad ($n=1,\ldots,12$):

n	1	2	3	4	5	6	7	8	9	10	11
$\chi^2_{\{n;5\%\}}$	3.841	5.991	7.815	9.488	11.070	12.592	14.067	15.507	16.919	18.307	19.675
$\chi^2_{\{n;95\%\}}$	0.004	0.103	0.352	0.711	1.145	1.635	2.167	2.733	3.325	3.940	4.575

Algunos percentiles de la t de Student con n grados de libertad ($n = 1, \dots, 24$):

n	1	2	3	4	5	6	7	8	9	10	11	12
$t_{\{n;5\%\}}$	6.314	2.920	2.353	2.132	2.015	1.943	1.895	1.860	1.833	1.812	1.796	1.782
n	13	14	15	16	17	18	19	20	21	22	23	24
$t_{\{n;5\%\}}$	1.771	1.761	1.753	1.746	1.740	1.734	1.729	1.725	1.721	1.717	1.714	1.711
n	1	2	3	4	5	6	7	8	9	10	11	12
$t_{\{n;2.5\%\}}$	12.70	6 4.30	3.18	2 2.77	6 2.57	1 2.44	7 2.36	55 2.30	6 2.26	2.222	8 2.201	2.179
n	13	14	15	16	17	18	19	20	21	22	23	24
$t_{\{n;2.5\%\}}$	2.16	0 - 2.14	5 2.13	1 2.12	0 2.11	0 2.10	1 2.09	3 2.08	60 - 2.08	0 - 2.07	4 2.069	2.064

Algunos valores de percentiles de la normal estándar:

	5 %									
z_{α}	1.645	1.695	1.751	1.812	1.881	1.960	2.054	2.170	2.326	2.576

Algunos valores de percentiles $F_{\{n_1,n_2;\alpha\}}$ de la F de Fisher con n_1 y n_2 grados de libertad:

α	, .				- , -			8%		
$F_{\{9,11;\alpha\}}$	4.632	3.828	3.398	3.111	2.896	2.726	2.586	2.467	2.364	2.274
$F_{\{11,9;\alpha\}}$	5,178	4.198	3.688	3.351	3.102	2.908	2.748	2.614	2.498	2.396