Análise de Carteiras usando o R - Parte 6 Bibliografia – BKM, cap. 8

Claudio Lucinda

FEA-RP/USP

•0

Baixando Dados de Fundos

Dados de Fundos

- Nesta parte do curso, iremos utilizar o banco de dados de fundos de investimentos que eu utilizei no artigo com o João Nerasti:
- NERASTI, João Nascimento; LUCINDA, Claudio Ribeiro.
 Persistência de Desempenho em Fundos de Ações no Brasil (Persistence in Mutual Fund Performance in Brazil). Revista Brasileira de Finanças, v. 14, n. 2, p. 269, 2016.
- Esses dados estão na versão bruta no arquivo Lucinda_Nerasti.xlsx.
- O tratamento dos dados está no arquivo Fund_Data.R
- Puxamos informações sobre "Fatores de Risco" do site do NEFIN
- Os dados finais estão em Fund_Data.RDS.

Modelo de Índice Único

Carregando os dados e fazendo limpezas preliminares

Exemplo – Fundo 280

- Essa é uma amostra de 60 fundos em um período entre 2007 a 2014.
- Vou pegar esse fundo aqui para olhar as coisas completamente aleatório:

```
Fund_Info_clean[14,]
```

```
## Date Fundo CNPJ Classifica
## 280 Fundo_280 Nest Acoes FIC FIA 8.912577e+12 Ações IBOV
## Empresa|gestora Data.do|Início.da.Série
## 280 Nest Investimentos 2007-07-12
```

Correlação entre os retornos do fundo e do índice

- É de se esperar que os retornos do fundo e um índice amplo de ações sejam bastante correlacionados.
- Estou seguindo a definição aqui do NEFIN para o índice amplo de mercado:
- The Market Factor is the difference between the value-weighted daily return of the market portfolio (using all the eligible stocks as defined in Section 2)

Índice de Mercado

- A stock traded in BOVESPA is considered "eligible" for year t if it meets 3 criteria:
- The stock is the most traded stock of the firm (the one with the highest traded volume during last year);
- The stock was traded in more than 80% of the days in year t-1 with volume greater than R\$ 500.000,00 per day. In case the stock was listed in year t-1, the period considered goes from the listing day to the last day of the year;
- The stock was initially listed prior to December of year t-1.

Correlação entre retorno do fundo e retorno de mercado

Fundo 280 versus Mercado

Diagrama de dispersão

Regressão

```
# Regressão
model_280<-lm(Fundo_280~Rm, data=Data_fig)
summary(model_280)
confint(model_280)</pre>
```

Regressão – Outputs

```
##
## Call:
## lm(formula = Fundo_280 ~ Rm, data = Data_fig)
##
## Residuals:
                 1Q Median
##
        Min
                                      3Q
                                              Max
## -0.038763 -0.005151 -0.000461 0.004704 0.067391
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 0.0006187 0.0002299 2.691 0.0072 **
              0.6236462  0.0136305  45.754  <2e-16 ***
## R.m
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ''
##
## Residual standard error: 0.00918 on 1593 degrees of freedom
## Multiple R-squared: 0.5679, Adjusted R-squared: 0.5676
## F-statistic: 2093 on 1 and 1593 DF, p-value: < 2.2e-16
```

Calculando a matriz Variância-Covariância pelo modelo de índice único

• Desse jeito, a gente consegue obter os σ_e^2 e os β de uma vez só:

Calculando a matriz VC

```
cov.mkt<-sigma2_Rm[1,1]*(betas_vec%*%t(betas_vec))
D.matrix<-matrix(0,nrow=nrow(cov.mkt),ncol=ncol(cov.mkt))
for (i in 1:ncol(cov.mkt)) {
   D.matrix[i,i]<-sigmas2_vec[i,1]
}
cov.si<-cov.mkt+D.matrix
cov.hist<-cov(Fund_Returns_clean)</pre>
```

As duas matrizes

```
cov.si[1:4.1:4]
               [,1] [,2] [,3]
##
## [1,] 1.488538e-04 7.891651e-05 7.477208e-05 7.469266e-05
## [2.] 7.891651e-05 3.108718e-04 2.483075e-04 2.480438e-04
## [3,] 7.477208e-05 2.483075e-04 2.799540e-04 2.350173e-04
## [4,] 7.469266e-05 2.480438e-04 2.350173e-04 2.859826e-04
cov.hist[1:4,1:4]
              Fundo_267 Fundo_268 Fundo_269 Fundo_270
## Fundo 267 1.470532e-04 8.945463e-05 8.776943e-05 8.828073e-05
## Fundo 268 8.945463e-05 3.054762e-04 2.867113e-04 2.878323e-04
## Fundo_269 8.776943e-05 2.867113e-04 2.750941e-04 2.758630e-04
## Fundo 270 8.828073e-05 2.878323e-04 2.758630e-04 2.810143e-04
is.positive.definite(cov.si)
## [1] TRUE
```

is.positive.definite(cov.hist)

Os betas são estáveis?

- Como disse anteriormente, eu uso os dados históricos para fazer análises prospectivas.
- Para isso, estou implicitamente assumindo que a minha amostra de dados gera estimativas representativas do que vai acontecer no futuro.
- Vamos fazer uma estimativa dos betas em uma janela móvel de 252 observações.

Beta com janela móvel de 252 dias

Gráfico

Modelo de Fator Único Estatístico

Modelo de Fator Único Estatístico

- Outra forma de determinar o tal do fator único é por meio da análise estatística.
- O instrumento utilizado é a chamada "Análise de Componentes Principais".

Análise de Componentes Principais – Definição

- Análise de Componentes Principais (ACP) ou Principal Component Analysis (PCA) é um procedimento matemático que utiliza uma transformação ortogonal para converter um conjunto de observações de variáveis possivelmente correlacionadas num conjunto de valores de variáveis linearmente não correlacionadas chamadas de componentes principais.
- Esta transformação é definida de forma que o primeiro componente principal tem a maior variância possível (ou seja, é responsável pelo máximo de variabilidade nos dados), e cada componente seguinte, por sua vez, tem a máxima variância sob a restrição de ser ortogonal a (i.e., não correlacionado com) os componentes anteriores.

Extraindo o Primeiro Componente Principal da matriz de retornos

Matriz VC

```
cov.si.stat.fact[1:4,1:4]
##
               Γ.17
                            [,2]
                                   [,3]
                                                      [.4]
## [1.] 1.471256e-04 9.029562e-05 8.587855e-05 8.593852e-05
## [2,] 9.029562e-05 3.054951e-04 2.613879e-04 2.615704e-04
## [3,] 8.587855e-05 2.613879e-04 2.751104e-04 2.487749e-04
## [4.] 8.593852e-05 2.615704e-04 2.487749e-04 2.810341e-04
cov.hist[1:4,1:4]
##
              Fundo 267 Fundo 268 Fundo 269 Fundo 270
## Fundo 267 1.470532e-04 8.945463e-05 8.776943e-05 8.828073e-05
## Fundo 268 8.945463e-05 3.054762e-04 2.867113e-04 2.878323e-04
## Fundo 269 8.776943e-05 2.867113e-04 2.750941e-04 2.758630e-04
## Fundo 270 8.828073e-05 2.878323e-04 2.758630e-04 2.810143e-04
is.positive.definite(cov.si.stat.fact)
```