Машинное обучение в гидрометеорологии Лекция №1. Введение. Организационные вопросы.

Михаил Иванович Варенцов (mikhail.varentsov@srcc.msu.ru)

Михаил Алексеевич Криницкий (krinitsky@sail.msk.ru)

ml4hydromet@ml4es.ru

Давайте познакомимся

Коротко обо мне:

- Выпускник географического факультета МГУ, кафедры метеорологии и климатологии (2014)
- □ Кандидат географических наук (2018), тема диссертации «Анализ и моделирование мезоклиматических особенностей Московской агломерации» (научный руководитель проф., д.г.н. А.В. Кислов)
- □ Старший научный сотрудник НИВЦ МГУ, а также сотрудник ИФА РАН, Гидрометцентра РФ и т.д.
- Автор более 70 публикаций в международных рецензируемых журналах

□ Компетенции и интересы:

- Городская метеорология и климатология
- Численное моделирование погоды и климата на региональном масштабе
- Работа на суперкомпьютерах
- Анализ данных
- Экспериментальные метеорологические исследования

Информация о курсе

- □ Курс экспериментальный, на географическом факультете впервые
- □ Разработан на базе курса «Машинное обучение в науках о Земле» Михаила Криницкого (https://github.com/MKrinitskiy/ML4ES*)
- 12 занятий по 2 пары (лекция + семинар)
- Формы контроля успеваемости:
 - Практические работы, они же домашние задания (9 шт.)
 - Курсовой проект обобщение результатов практических работ.
 В конце курса курса будет защита проектов.
 - Экзамен (с возможность получения «автомата»)

Коммуникация

- Почта для отправки практических работ: ml4hydromet@ml4es.ru
- Группа курса ТГ: https://t.me/+n5MY6B6olJM4OWYy
- Репозиторий с материалами по курсу:

https://github.com/mvarentsov/ML4hydromet-2024

План курса

- 1. Введение (сегодня)
- 2. Технические средства анализа данных и машинного обучения
- 3. Вероятностная постановка задач МО
- 4. Методология подхода машинного обучения
- 5. Обзор основных методов машинного обучения
- 6. Краткое знакомство с методами глубокого обучения
- 7. Применение методов МО в гидрометерологии
- 8. Методы МО для решения задач типа "Обучение без учителя"

Практические работы

- □ Практические работы (домашние задания) в основном заключаются в применении разбираемых в рамках курса методов и моделей к выбранным наборам данных. Примеры заданий:
 - Визуализация данных и их распределений
 - Применение линейной или логистической регрессии
 - Применение полносвязной искусственной нейронной сети
- Требования к выполнению практических работ:
 - Выполнение на языке программирования Python
 - Оформление кода и результатов в формате Jupiter Notebook
- Оценка за каждую практическую работу определяется:
 - Исходным код, использованным для анализа данных
 - Визуализацией результатов
 - Текстовым описанием методов и результатов
 - Ответами на вопросы по теме практической работы
- □ Мягкие дедлайны, жесткие штрафы за сдачу после дедлайна ☺

Готовые коллекции данных

Название и ссылка	Предметная область	Куратор	Описание возможных задач
DASIO (All-Sky Imagery over the Ocean)	Атмосферная радиация и облачность	Михаил Криницкий	Аппроксимация радиационных потоков на основе фотоснимков небесной полусферы
DISO3 (In-Situ Observations over the Ocean)	Приводный слой атмосферы	Михаил Криницкий	Анализ взаимосвязей между метеовеличинами
DDM (Discharge and Meteorology)	Гидрология	Михаил Варенцов	Аппроксимация и прогноз расхода воды в реке на основе осредненных по водосбору характеристиках метеорологического режима по данным реанализа
DUHI (Urban Heat Island)	Городская метеорология	Михаил Варенцов	Аппроксимация и прогноз интенсивости городского острова тепла - разности температуры между городом и фоновым ландшафтом
DCIPP (Dataset of Convective Intensive Precipitation Predictors)	Метеорология	Юлия Ярынич	Оценка рисков возникновения опасных явлений, связанных с глубокой конвекцией

Атмосферная радиация и облачность

Dataset of All-Sky Imagery over the Ocean

- photo_name имя файла фотографии
- photo_datetime дата и время регистрации фотографии (UTC)
- CM3up[W/m2] поток полной приходящей коротковолновой радиации (Вт/м2)
- CG3up[W/m2] поток полной приходящей длинноволновой радиации (Вт/м2)
- CM3down[W/m2] поток полной уходящей коротковолновой радиации (Вт/м2)
- CG3down[W/m2] поток полной уходящей длинноволновой радиации (Вт/м2)
- radiation_datetime дата и время момента регистрации осредненных за 10с радиационных потоков
- feature0, feature1, ... feature26 статистические признаки красного (R) цветового канала фотографии за исключением незначимых областей снимка (надстроек парохода, угловых зон снимка). Рассчитываются следующие признаки:
 - o min (минимальное значение)
 - о мах (максимальное значение)
 - o mean (выборочное среднее)
 - o var (выборочная дисперсия)
 - o skew (выборочная оценка коэффициента асимметрии)
 - o kurt (выборочная оценка коэффициента эксцесса)
 - о p1 , p5 , p10 , p15 , ... p95 , p99 (итого 21 шт) выборочные оценки эмпирических перцентилей уровней 1%, 5%, 10% далее с шагом 5% до 95%, а также перцентиля уровня 99%.
- feature27 feature53 статистические признаки зеленого (G) цветового канала фотографии

Krinitskiy, M.; Aleksandrova, M.; Verezemskaya, P.; Gulev, S.; Sinitsyn, A.; Kovaleva, N.; Gavrikov, A. *On the Generalization Ability of Data-Driven Models in the Problem of Total Cloud Cover Retrieval*. Remote Sens. **2021**, *13*, 326. https://doi.org/10.3390/rs13020326 [2] Krinitskiy, M.; Koshkina, V.; Borisov, M.; Anikin, N.; Gulev, S.; Artemeva, M. *Machine Learning Models for Approximating Downward Short-Wave Radiation Flux over the Ocean from All-Sky Optical Imagery Based on DASIO Dataset*. Remote Sens. 2023, 15, 1720. https://doi.org/10.3390/rs15071720

Метеорология приводного слоя атмосферы

Dataset of In-Situ Observations over the Ocean

No кол.	Рек. имя	Ширина в символах	Тип данных	описание переменной
1	year	4	str	Номер года наблюдения
2	mon	3	str	Номер месяца наблюдения
3	day	3	str	Номер даты наблюдения
4	hour	5	str	Часовая компонента времени наблюдения
5	lat	10	float 7.2	Широта наблюдения
6	lon	9	float 6.2	Долгота наблюдения
7	hsun	7	float 4.2	Высота солнца над горизонтом
8	slp	8	float 5.2	атмосферное давление в гПа
9	ta	7	float 4.2	температура атмосферы, °C
10	sst	7	float 4.2	температура поверхности океана, °С
11	td	7	float 4.2	температура точки росы, °С
12	rh	8	float 4.3	относительная влажность (расчетное значение), в долях единицы
13	icn	3	int	Балл общей облачности, в октах (0-8); значение 9 кодирует состояние небосвода, при котором облака не могут быть наблюдены: туман, снег, др. метеорологические явления)

Городская метеорология

Dataset of Urban Heat Island (DUHI)

Целевая переменная:

разность температуры между центром Москвы (Балчуг) и средней температурой по 9 загородным метеостанциям

$$\Delta T = T_{urb} - T_{rur}$$

□ Предикторы:

средние по региону характеристики метеорологического режима (реанализ ERA5 и/или наблюдения на загородных метеостанциях)

Varentsov, M.; Krinitskiy, M.; Stepanenko, V. *Machine Learning for Simulation of Urban Heat Island Dynamics Based on Large-Scale Meteorological Conditions*. Climate. **2023**, *11*, 200. https://doi.org/10.3390/cli11100200

Городская метеорология

Гидрология

Dataset of Discharge and Meteorology (DDM)

Река	Пост и ссылка на данные	Площадь водосбора (км2)	Временной период
Хопер	Пановка	932	1950-2016
Хопер	<u>Балашов</u>	14300	1950-2016
Хопер	<u>Поворино</u>	19100	1950-2016
Сосна	Елец	16300	1950-2016
Которосль	Гаврилов-Ям	4980	1980-2017

Конвективные осадки

Исходные данные реанализа

Расчёт ~50 производных характеристик состояния атмосферы

$$PW = \frac{1}{g} \int_{p1}^{p2} q(p)dp,$$

$$MLCAPE = g \int_{p(LFC-EL)} \frac{T_{v,p} - T_{v,e}}{\overline{T}_{v,e}} dp.$$

$$TFP = \nabla |\nabla ZTE| \, \vec{n}_{ZTE}$$

Итоговый архив признаков,

осреднённых по площади

Набор Признаков из ERA5

Данные метеостанций

Модель машинного

обучения

Максимальная суточная сумма осадков в регионе

Карта расположения метеостанций и домена ERA5

Метеостанции

- все станции фона (21)
- ближайшие станции фона (4)
- станции города (6)

область осреднения признаков

to be continued...

Домашняя работа №1

Нужно сформулировать задачу в терминах машинного обучения, которую можно было бы решать, имея в распоряжении доступные данные (одну из готовых коллекций данных или данные из вашей научной работы).

Для задачи следует указать следующие составляющие:

- класс задачи МО ("С учителем" / "Без учителя" / другое (уточнить))
- вид задачи МО (регрессия, кластеризация, понижение размерности, классификация, ...)
- целевая переменная, указать ее тип (категориальная, действительная, бинарная...) и размерность (количество значений на один объект/событие).
- описать функцию потерь, если это подразумевается типом задачи.
- описать объекты (события) в формулируемой задаче.
- предложить признаковое описание объектов/событий или описать уже имеющееся признаковое описание.
- предложить меру (меры) для оценки качества модели МО.

He забываем, оформление результата — в формате markdown в Jupiter Notebook. Присылать на почту ml4hydromet@ml4es.ru

Итоговое описание задания будет в репозитории.

Давайте познакомимся

Расскажите о себе:

- 1) Как вас зовут?
- 2) Тема научного исследования (например, бакалаврского диплома)?
- 3) Идеи по применениию методов машинного обучения в вашем исследовании?