

LM741

SNOSC25D-MAY 1998-REVISED OCTOBER 2015

LM741 Operational Amplifier

Features

- Overload Protection on the Input and Output
- No Latch-Up When the Common-Mode Range is Exceeded

Applications

- Comparators
- Multivibrators
- DC Amplifiers
- **Summing Amplifiers**
- Integrator or Differentiators
- Active Filters

3 Description

The LM741 series are general-purpose operational amplifiers which feature improved performance over industry standards like the LM709. They are direct, plug-in replacements for the 709C, LM201, MC1439, and 748 in most applications.

The amplifiers offer many features which make their application nearly foolproof: overload protection on the input and output, no latch-up when the commonmode range is exceeded, as well as freedom from oscillations.

The LM741C is identical to the LM741 and LM741A except that the LM741C has their performance ensured over a 0°C to +70°C temperature range, instead of -55°C to +125°C.

Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)
	TO-99 (8)	9.08 mm × 9.08 mm
LM741	CDIP (8)	10.16 mm × 6.502 mm
	PDIP (8)	9.81 mm × 6.35 mm

(1) For all available packages, see the orderable addendum at the end of the data sheet.

Typical Application

5 Pin Configuration and Functions

Pin Functions

PIN		1/0	DESCRIPTION	
NAME	NO.	· I/O	DESCRIPTION	
INVERTING INPUT	2	I	Inverting signal input	
NC	8	N/A	No Connect, should be left floating	
NONINVERTING INPUT	3	I	Noninverting signal input	
OFFSET NULL	1.5		Officet will him used to climinate the effect valtage and belongs the input valtages	
OFFSET NULL	1, 5	ı	Offset null pin used to eliminate the offset voltage and balance the input voltages.	
OUTPUT	6	0	Amplified signal output	
V+	7	I	Positive supply voltage	
V-	4	ı	Negative supply voltage	

Copyright © 1998–2015, Texas Instruments Incorporated

Submit Documentation Feedback

Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted) (1)(2)(3)

		MIN	MAX	UNIT
Complement	LM741, LM741A		±22	
Supply voltage	LM741C		±18	V
Power dissipation (4)			500	mW
Differential input voltage			±30	V
Input voltage (5)			±15	V
Output short circuit duration		Conti	nuous	
Operating temperature	LM741, LM741A	-50	125	°C
Operating temperature	LM741C	0	70	30
lunation to an anatum	LM741, LM741A		150	°C
Junction temperature	LM741C		100	30
	PDIP package (10 seconds)		260	°C
Soldering information	CDIP or TO-99 package (10 seconds)		300	°C
Storage temperature, T _{stg}		-65	150	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) For military specifications see RETS741X for LM741 and RETS741AX for LM741A.

6.2 ESD Ratings

			VALUE	UNIT
V _(ESD)	Electrostatic discharge	Human body model (HBM), per ANSI/ESDA/JEDEC JS-001 (1)	±400	V

Level listed above is the passing level per ANSI, ESDA, and JEDEC JS-001. JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

		MIN	NOM	MAX	UNIT	
Supply voltage (VDD-GND)	LM741, LM741A	±10	±15	±22	V	
	LM741C	±10	±15	±18		
Tomor orative	LM741, LM741A	-55		125	5	
Temperature	LM741C	0		70		

6.4 Thermal Information

			LM741				
	THERMAL METRIC ⁽¹⁾	LMC (TO-99)	NAB (CDIP)	P (PDIP)	UNIT		
		8 PINS	8 PINS	8 PINS			
$R_{\theta JA}$	Junction-to-ambient thermal resistance	170	100	100	°C/W		
$R_{\theta JC(top)}$	Junction-to-case (top) thermal resistance	25	_	_	°C/W		

For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

Copyright © 1998-2015, Texas Instruments Incorporated

If Military/Aerospace specified devices are required, please contact the TI Sales Office/Distributors for availability and specifications.

For operation at elevated temperatures, these devices must be derated based on thermal resistance, and T_i max. (listed under "Absolute Maximum Ratings"). $T_j = T_A + (\theta_{jA} P_D)$. For supply voltages less than ±15 V, the absolute maximum input voltage is equal to the supply voltage.

TL081, TL081A, TL081B, TL082, TL082A TL082B, TL084, TL084A, TL084B

SLOS081I-FEBRUARY 1977-REVISED MAY 2015

TL08xx JFET-Input Operational Amplifiers

Features

- Low Power Consumption: 1.4 mA/ch Typical
- Wide Common-Mode and Differential Voltage Ranges
- Low Input Bias Current: 30 pA Typical
- Low Input Offset Current: 5 pA Typical
- **Output Short-Circuit Protection**
- Low Total Harmonic Distortion: 0.003% Typical
- High Input Impedance: JFET Input Stage
- Latch-Up-Free Operation
- High Slew Rate: 13 V/µs Typical
- Common-Mode Input Voltage Range Includes V_{CC+}

Applications

- **Tablets**
- White goods
- Personal electronics
- Computers

3 Description

The TL08xx JFET-input operational amplifier family is designed to offer a wider selection than any previously developed operational amplifier family. Each of these JFET-input operational amplifiers incorporates well-matched, high-voltage JFET and bipolar transistors in a monolithic integrated circuit. The devices feature high slew rates, low input bias offset currents, and low offset-voltage temperature coefficient.

Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)
TL084xD	SOIC (14)	8.65 mm × 3.91 mm
TL08xxFK	LCCC (20)	8.89 mm × 8.89 mm
TL084xJ	CDIP (14)	19.56 mm × 6.92 mm
TL084xN	PDIP (14)	19.3 mm × 6.35 mm
TL084xNS	SO (14)	10.3 mm × 5.3 mm
TL084xPW	TSSOP (14)	5.0 mm × 4.4 mm

⁽¹⁾ For all available packages, see the orderable addendum at the end of the data sheet.

Schematic Symbol

TL082 (EACH AMPLIFIER) TL084 (EACH AMPLIFIER)

5 Pin Configuration and Functions

TL084 FK Package 20-Pin LCCC Top View

TL081 and TL081x D, P, and PS Package 8-Pin SOIC, PDIP, and SO Top View

TL082 and TL082x D, JG, P, PS and PW Package 8-Pin SOIC, CDIP, PDIP, SO, and TSSOP Top View

TL084 and TL084x D, J, N, NS and PW Package 14-Pin SOIC, CDIP, PDIP, SO, and TSSOP Top View

Pin Functions

		PII					
	TL081	TL082		TL084			
NAME	SOIC, PDIP, SO	SOIC, CDIP, PDIP, SO, TSSOP	LCCC	SOIC, CDIP, PDIP, SO, TSSOP	LCCC	I/O	DESCRIPTION
1IN-	_	2	5	2	3	1	Negative input
1IN+	_	3	7	3	4	- 1	Positive input
1OUT	_	1	2	1	2	0	Output
2IN-	_	6	15	6	9	I	Negative input
2IN+	_	5	12	5	8	I	Positive input
2OUT	_	7	17	7	10	0	Output
3IN-	_	_	_	9	13	1	Negative input
3IN+	_	_	_	10	14	ı	Positive input
3OUT	_	_	_	8	12	0	Output
4IN-	_	_	_	13	19	I	Negative input
4IN+	_	_	_	12	18	I	Positive input
4OUT	_	_		14	20	0	Output

Pin Functions (continued)

		PII	N					
	TL081	TLO	082	TL084				
NAME	SOIC, PDIP, SO	SOIC, CDIP, PDIP, SO, TSSOP	LCCC	SOIC, CDIP, PDIP, SO, TSSOP	LCCC	I/O	DESCRIPTION	
IN-	2	_	_	_	_	I	Negative input	
IN+	3	_	ĺ		I	I	Positive input	
			1 3		1			
			4 6	_	5			
NC	8	_	8 9		7	_	Do not connect	
			11 13		11			
			14 16	-	15			
			18		17			
OFFSET N1	1		l		I	_	Input offset adjustment	
OFFSET N2	5	_	_	_	_	_	Input offset adjustment	
OUT	6	_				0	Output	
V _{CC} -	4	4	10	11	16	_	Power supply	
V _{CC+}	7	8	20	4	6	_	Power supply	

L293, L293D

SLRS008D - SEPTEMBER 1986 - REVISED JANUARY 2016

L293x Quadruple Half-H Drivers

Features

- Wide Supply-Voltage Range: 4.5 V to 36 V
- Separate Input-Logic Supply
- Internal ESD Protection
- High-Noise-Immunity Inputs
- Output Current 1 A Per Channel (600 mA for L293D)
- Peak Output Current 2 A Per Channel (1.2 A for
- Output Clamp Diodes for Inductive Transient Suppression (L293D)

Applications

- Stepper Motor Drivers
- DC Motor Drivers
- Latching Relay Drivers

3 Description

The L293 and L293D devices are quadruple highcurrent half-H drivers. The L293 is designed to provide bidirectional drive currents of up to 1 A at voltages from 4.5 V to 36 V. The L293D is designed to provide bidirectional drive currents of up to 600-mA at voltages from 4.5 V to 36 V. Both devices are designed to drive inductive loads such as relays, solenoids, DC and bipolar stepping motors, as well as other high-current/high-voltage loads in positivesupply applications.

Each output is a complete totem-pole drive circuit, with a Darlington transistor sink and a pseudo-Darlington source. Drivers are enabled in pairs, with drivers 1 and 2 enabled by 1,2EN and drivers 3 and 4 enabled by 3,4EN.

The L293 and L293D are characterized for operation from 0°C to 70°C.

Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)
L293NE	PDIP (16)	19.80 mm × 6.35 mm
L293DNE	PDIP (16)	19.80 mm × 6.35 mm

(1) For all available packages, see the orderable addendum at the end of the data sheet.

Logic Diagram

5 Pin Configuration and Functions

Pin Functions

PIN		TYPE	DESCRIPTION
NAME	NO.	TIPE	DESCRIPTION
1,2EN	1	1	Enable driver channels 1 and 2 (active high input)
<1:4>A	2, 7, 10, 15	I	Driver inputs, noninverting
<1:4>Y	3, 6, 11, 14	0	Driver outputs
3,4EN	9	I	Enable driver channels 3 and 4 (active high input)
GROUND	4, 5, 12, 13	_	Device ground and heat sink pin. Connect to printed-circuit-board ground plane with multiple solid vias
V _{CC1}	16	_	5-V supply for internal logic translation
V _{CC2}	8	_	Power VCC for drivers 4.5 V to 36 V

Copyright © 1986–2016, Texas Instruments Incorporated

Submit Documentation Feedback

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

	MIN	MAX	UNIT
Supply voltage, V _{CC1} ⁽²⁾		36	V
Output supply voltage, V _{CC2}		36	V
Input voltage, V _I		7	V
Output voltage, V _O	-3	V _{CC2} + 3	V
Peak output current, I _O (nonrepetitive, t ≤ 5 ms): L293	-2	2	Α
Peak output current, I _O (nonrepetitive, t ≤ 100 µs): L293D	-1.2	1.2	Α
Continuous output current, I _O : L293	-1	1	Α
Continuous output current, I _O : L293D	-600	600	mA
Maximum junction temperature, T _J		150	°C
Storage temperature, T _{stg}	-65	150	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 ESD Ratings

			VALUE	UNIT
V _(ESD)		Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±2000	\
	^{D)} discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 (2)	±1000	

⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

			MIN	NOM MAX	UNIT
	Supply voltogo	V _{CC1}	4.5	7	V
	Supply voltage	V _{CC2}	V _{CC1}	36	
V _{IH}	High level input valtage	V _{CC1} ≤ 7 V	2.3	V _{CC1}	V
	High-level input voltage	V _{CC1} ≥ 7 V	2.3	7	V
V _{IL}	Low-level output voltage		-0.3 ⁽¹⁾	1.5	V
T _A	Operating free-air temperature		0	70	°C

⁽¹⁾ The algebraic convention, in which the least positive (most negative) designated minimum, is used in this data sheet for logic voltage levels.

6.4 Thermal Information

		L293, L293D		
	THERMAL METRIC ⁽¹⁾	NE (PDIP)	UNIT	
		16 PINS		
$R_{\theta JA}$	Junction-to-ambient thermal resistance (2)	36.4	°C/W	
R ₀ JC(top)	Junction-to-case (top) thermal resistance	22.5	°C/W	
$R_{\theta JB}$	Junction-to-board thermal resistance	16.5	°C/W	
Ψлτ	Junction-to-top characterization parameter	7.1	°C/W	
ΨЈВ	Junction-to-board characterization parameter	16.3	°C/W	

For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

Submit Documentation Feedback

Copyright © 1986–2016, Texas Instruments Incorporated

⁽²⁾ All voltage values are with respect to the network ground terminal.

⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

⁽²⁾ The package thermal impedance is calculated in accordance with JESD 51-7.

6.5 Electrical Characteristics

over operating free-air temperature range (unless otherwise noted)

	PARAMETER		•	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
.,	High-level output voltage		L293: I _{OH} = −1 A		V _{CC2} – 1.8	V _{CC2} - 1.4		٧	
V _{OH}			L293D: I _{OH}	L293D: I _{OH} = - 0.6 A					
.,	Low-level output voltage		L293: I _{OL} = 1 A			1.2		V	
V_{OL}			L293D: I _{OL} = 0.6 A				1.8		
V _{OKH}	High-level output clamp voltage		L293D: I _{OK} = -0.6 A			V _{CC2} + 1.3		V	
V _{OKL}	Low-level output clamp voltage	Э	L293D: I _{OK}	= 0.6 A		1.3		V	
	High-level input current	Α	\/ 7\/	V _I = 7 V		0.2	100 10 μΑ		
I _{IH}		EN	v ₁ = 7 v			0.2		μA	
	Low-level input current	Α	V 0	V 0		-3	 μ		
I _{IL}		EN	$V_1 = 0$			-2		μA	
				All outputs at high level		13	22	mA	
I _{CC1}	Logic supply current		I _O = 0	All outputs at low level		35	60		
1001				All outputs at high impedance		8	24		
	Output supply current		I _O = 0	All outputs at high level		14	24		
I _{CC2}				All outputs at low level		2	6	mA	
1002				All outputs at high impedance		2	4		

6.6 Switching Characteristics

over operating free-air temperature range (unless otherwise noted) $V_{CC1} = 5 \text{ V}, V_{CC2} = 24 \text{ V}, T_A = 25^{\circ}\text{C}$

	PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT	
t _{PLH}	Propagation delay time, low-to- high-level output from A input	L293NE, L293DNE			800		ns	
		L293DWP, L293N L293DN			750			
	Propagation delay time, high-to- low-level output from A input	L293NE, L293DNE	C _L = 30 pF, See Figure 2		400		ns	
t _{PHL}		L293DWP, L293N L293DN			200			
	Transition time, low-to-high-level output	L293NE, L293DNE			300			
t _{TLH}		L293DWP, L293N L293DN			100		ns	
t _{THL}	Transition time, high-to-low-level output	L293NE, L293DNE			300			
		L293DWP, L293N L293DN			350		ns	

6.7 Typical Characteristics

 T_A – Ambient Temperature – °C Figure 1. Maximum Power Dissipation vs Ambient Temperature

Copyright © 1986–2016, Texas Instruments Incorporated

Submit Documentation Feedback