Computability - Exercise 7

All questions should be answered formally and rigorously unless stated otherwise

Due: May 31, 2020

Question 1 (not for submission)

- (a) Show that reductions are reflexive. That is, show that for every language L over Σ , it holds that $L \leq_m L$.
- (b) Show that reductions need not be anti-symmetric. That is, show that there exist two languages L_1 and L_2 over Σ such that $L_1 \neq L_2$ and still $L_1 \leq_m L_2$ and $L_2 \leq_m L_1$.
- (c) Show that reductions are transitive. That is, show that for every three languages L_1, L_2 and L_3 over Σ , it holds that if $L_1 \leq_m L_2$ and $L_2 \leq_m L_3$, then $L_1 \leq_m L_3$.

Question 2

- (a) We say that a language L is RE-hard if for every language $L' \in RE$, it holds that $L' \leq_m L$. Prove that A_{TM} is RE-hard.
- (b) We say that a language L is R-hard if for every language $L' \in R$, it holds that $L' \leq_m L$. Prove that every nontrivial language is R-hard. That is, for every $L \notin \{\emptyset, \Sigma^*\}$, it holds that L is R-hard.

Question 3 (2,3,5,7) not for submission)

For each of the following languages, determine whether it is in R, $RE \setminus R$, $coRE \setminus R$ or $\overline{RE \cup coRE}$. Prove your answers formally, don't use Rice's Theorem in your proofs (in all questions, M is a TM).

- 1. $L = \{\langle M, w \rangle : M \text{ accepts } w \text{ and uses at most } |w| \text{ tape cells during the run on } w\}.$
- 2. $L = \{\langle M \rangle : \text{ there exists } w \in \Sigma^* \text{ such that } M \text{ accepts } w \text{ after at least } |w| \text{ steps} \}.$
- 3. $REACH_{TM} = \{ \langle M, q \rangle : q \neq q_{acc} \text{ and } M \text{ reaches the state } q \text{ on every input} \}.$
- 4. $L = \{ \langle M \rangle : L(M) = A_{TM} \}.$
- 5. $RE_{TM} = \{\langle M \rangle : L(M) \in RE\}.$
- 6. $MIN_{TM} = \{\langle M, k \rangle : \text{ there exists a TM } D \text{ such that } L(M) = L(D) \text{ and } D \text{ has less than } k \text{ states} \}.$
- 7. $L_7 = \{\langle M \rangle : \text{ there exists } w \text{ such that } M \text{ uses unboundedly many tape cells in its run on } w\}$
- 8. $NONTRIVIAL_{TM} = \{\langle M \rangle : L(M) \neq \emptyset \text{ and } L(M) \neq \Sigma^* \}.$
- 9. $L = \{\langle M \rangle : \text{There does not exist } w \in \Sigma^* \text{ such that } M \text{ rejects } w\}$

Question 4 (from a midterm exam)

- 1. Let $L_1, L_2 \subseteq \Sigma^*$ and let $f, g: \Sigma^* \to \Sigma^*$ be two computable functions such that for every $x \in \Sigma^*$, it holds that $x \in L_1 \iff f(x) \in L_2$ and $g(x) \notin L_2$. Prove / Disprove the following claims:
 - (a) If $L_2 \in R$ then $L_1 \in R$.
 - (b) If $L_2 \in RE$ then $L_1 \in RE$.
- 2. Prove that there exists $L_2 \notin RE$ such that $\overline{L_2} \leq_m L_2$. **Guidance**: Consider "tweaking" some well-known undecidable language.

Question 5 (from an exam)

A zig-zag enumerator that correpsonds to a language $L \subset \Sigma^*$ is a an enumerator that prints a sequence of words, w_1, w_2, \ldots such that

$$L = \{w_1, w_3, w_5, \dots\}$$

 $\bar{L} = \{w_2, w_4, w_6, \dots\}$

That is, this enumerator (eventually) prints all words in Σ^* , alternating between words in L and in \bar{L} (and possibly writing the same word more than once). Prove or refute the following statement: For every **non-trivial** language $L \subset \Sigma^*$, we have that $L \in R$ iff there exists a zigzag enumerator corresponding to L.