Programación Dinámica

JOAQUÍN ARCILA PÉREZ LAURA LÁZARO SORALUCE CRISTÓBAL MERINO SÁEZ ÁLVARO MOLINA ÁLVAREZ

ÍNDICE

- I. Introducción
- II. Desarrollo
 - 2.1. Eficiencia teórica
 - 2.2. Matriz
 - 2.3. Resultados
- III. Conclusión

INTRODUCCIÓN

PROGRAMACIÓN DINÁMICA

- Naturaleza n-etápica del problema
- Verificación del Principio de Optimalidad de Bellman
- Planteamiento de una recurrencia
- Cálculo de la solución

DESARROLLO Eficiencia teórica

O(n*m)

```
void MatrizCalculos (string seq1, string seq2,
vector<vector<int>> & matriz) {
for (int j=0; j<=seq2.size(); j++) {
 for (int i=0; i<=seq1.size(); i++) {
  if (j = 0 | j = 0)
   matriz[i][j] = 0;
  else if (seq1[i-1] = seq2[i-1])
   matriz[i][i] = matriz[i-1][i-1]+1;
  else
   matriz[j][i] = max(matriz[j-1][i], matriz[j][i-1]);
```

DESARROLLO

Matriz de cálculos

		а	b	b	С	d	е	f	а	b	С	d	x	Z	у	С	С	d
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
a	0	۲1	← 1	←1	-1	←1	-1	-1	۲1	←1	←1	←1	← 1	←1	← 1	←1	←1	←1
b	0	† 1	٢2	₹ 2	- 2	- 2	-2	←2	←2	ζ2	←2	←2	←2	←2	←2	←2	←2	←2
b	0	† 1	۲2	₹ 3	- 3	- 3	-3	-3	3	₹ 3	-3	-3	-3	3	43	43	3	-3
С	0	† 1	↑2	↑3	₹ 4	- 4	-4	-4	4	←4	۲4	←4	←4	-4	-4	₹ 4	۲4	-4
d	0	† 1	↑2	†3	↑4	₹ 5	- 5	5	- 5	← 5	- 5	₹5	← 5	- 5	- 5	- 5	- 5	₹ 5
е	0	† 1	↑2	13	↑4	↑ 5	⊼ 6	-6	-6	-6	-6	← 6	← 6	-6	← 6	← 6	-6	← 6
a	0	۲1	↑2	13	<u></u> †4	↑ 5	<u></u> †6	↑6	5 7	← 7	← 7	← 7	←7	← 7				
f	0	† 1	↑2	↑3	<u></u> †4	↑ 5	<u></u> †6	₹ 7	↑7	↑7	↑7	↑ 7	↑ 7	↑ 7	↑7	↑ 7	↑7	↑7
b	0	† 1	۲2	₹ 3	<u></u> †4	↑ 5	<u></u> †6	↑ 7	↑7	₹8	-8	-8	-8	-8	-8	-8	48	-8
С	0	† 1	↑2	†3	₹ 4	↑ 5	<u></u> †6	_† 7	_† 7	↑8	₹9	- 9	- 9	4 9	- 9	₹ 9	₹9	- 9
d	0	† 1	↑2	†3	†4	₹ 5	<u></u> †6	↑7	_† 7	†8	↑9	₹10	← 10	₹10				
Z	0	†1	↑2	↑3	↑4	↑ 5	<u></u> †6	_† 7	↑7	18	↑9	110	↑10	₹11	← 11	← 11	← 11	← 11
Х	0	† 1	↑2	↑3	↑4	↑ 5	<u></u> †6	_† 7	↑7	18	↑9	110	₹11	↑ 11	† 11	↑11	↑11	†11
у	0	†1	↑2	13	↑4	↑ 5	↑6	↑ 7	↑7	18	↑9	↑10	↑11	↑ 11	512	← 12	←12	← 12
С	0	†1	↑2	†3	5 4	↑ 5	↑6	↑7	↑7	18	₹ 9	†10	↑11	↑ 11	†12	₹13	₹1 3	← 13
С	0	† 1	↑2	†3	₹ 4	↑ 5	†6	↑7	_† 7	↑8	₹ 9	↑10	† 11	↑ 11	†12	₹1 3	₹14	← 14
d	0	†1	↑2	†3	†4	₹ 5	↑6	↑ 7	↑7	↑8	† 9	₹10	† 11	↑11	112	113	114	₹15

DESARROLLO PRIMER EJEMPLO

Secuencias:

- abbcdefabcdxzyccd
- abbcdeafbcdzxyccd

DESARROLLO Resultados primer ejemplo

Longitud de la secuencia más larga: 15

Subsecuencia 1: abbcdefbcdxyccd

, abbcdefabcdxzyccd abbcdeafbcdzxyccd

Subsecuencia 2: abbcdeabcdzyccd

abbcdefabcdxzyccd abbcdeafbcdzxyccd

Porcentaje de parecido: 88.2353%

DESARROLLO SEGUNDO EJEMPLO

Secuencias:

- 01011100010001010101010010001001001

DESARROLLO Resultados segundo ejemplo

Subsecuencia 1: 100001000101010001000100100100 (30)

Subsecuencia 2: 11000000101010100100100100100100 (30)

Porcentaje de parecido: 83.3333%

CONCLUSIÓN

- La PD nos proporciona resultados óptimos, cosa que no siempre se cumple en el caso de otros algoritmos como los Greedy.

- Conseguimos implementar algoritmos más eficientes que por fuerza bruta.

MUCHAS GRACIAS