Lezione 3 Algebra I

Federico De Sisti2024-10-08

1 Altra roba sui gruppi

Proposizione 1 (Caratterizazzione dei sottogruppi normali)

 (G,\cdot) gruppo, $N \leq G$

Le seguenti sono equivalenti:

 $1)gNg^{-1} \subseteq N \quad \forall g \in G$

 $2)gNg^{-1} = N \quad \forall g \in G$

 $3)N \subseteq G$

4) L'operazione $G/N \times G/N \to G/N$

è ben posta $(fN, gN) \rightarrow fgN$

o equivalentemente $N \backslash G \times n \backslash G \rightarrow n \backslash G$

$$(Nf,Ng) \rightarrow Nfg$$

Dimostrazione

 $1 \rightarrow 2$

Verifichiamo che $N \subseteq gNg^{-1}$

Dato che $n \in N \Rightarrow n = g(g^{-1}ng)g^{-1}$ basta dimostrare che $g^{-1}ng \in N$

 $D'altra\ parte\ g^{-1}ng\in g^{-1}Ng\subseteq N\ (per\ ipotesi\ 1)$

 $2 \to 3$

 $\forall g \in G \ \forall n \in N$

 $gng^{-1} \in N \ (per \ ipotesi \ 2)$

$$\begin{cases} gn \in Ng \\ ng^{-1} \in g^{-1}N \end{cases} \Rightarrow \begin{cases} gN \subseteq Ng(1) \\ Ng^{-1} \subseteq g^{-1}N(2) \end{cases}.$$

Il che è equivalente a dire che gN=Ng la prima condizione mi dice $G/N\subseteq G/N$ e la seconda dell'arbitrarietà di g

 $G/N \subseteq G/N$

 $3 \rightarrow 4$

 $Datifeg \in G \ abbiamo$

$$(Nf)(Ng) = (fN)(Ng) = fNg = (fN)g = (Nf)g = Nfg.$$

 $4 \rightarrow 1$

Per ipotesi $4 (Nf)(Ng) = Nfg \ \forall f, g \in G \text{ quindi}$

$$nfn'g \in Nfg \quad \forall n, n' \in N.$$

dall'arbitrarietà di g, scelgo $g = f^{-1}$, quindi

$$nfn'f^{-1}\in N \ \forall f\in G.$$

Moltiplico (a sinistra) per n^{-1} e ottengo

$$fn'f^{-1} \in N \ \forall f \in G.$$

Dall'arbitrarietà di n' otteniamo $fNf^{-1} \subseteq N \ \forall f \in G \ che \ e \ la \ condizione (1)$

Osservazione

 (G,\cdot) gruppo, la proposizione ci dice che un sottogruppo H è normale se e solo se l'operazione indotta su G/H è ben definita

Teorema 1

$$(G,\cdot)$$
 gruppo $N \subseteq G$
Allora $(G/N,\cdot)$ è un gruppo (detto gruppo quoziente)

Dimostrazione

Associatività, ovvia

elemento neutro : N = Ne

elemento inverso di $Ng \ \dot{e} \ Ng^{-1} \quad \forall g \in G$

Osservazione

 (G, \cdot) gruppo e $H \leq G$ t.c. [G:H] = 2 Allora $H \subseteq G$ Infatti esistono solo due laterali sinistri o destri: H, G/H

Osservazione

 (G,\cdot) gruppo abeliano \Rightarrow ogni sottogruppo è normale

Non vale sempre il viceversa

Esempio

Dimostrare che $Q = \{\pm 1, \pm i, \pm j, \pm k\}$

è un gruppo (rispetto al prodotto) non abeliano in cui però tutti i sottogruppi sono normali

Prodotti:

$$i^{2} = k^{2} = j^{2} = -1$$

 $ij = k$ $jk = i$ $ki = j$
 $ji = -k$ $kh = -i$ $ik = -j$

Definizione 1

Siano (G_1, \cdot) e $(G_2, *)$ gruppi

 $Sia \varphi un'applicazione$

 $\varphi: G_1 \to G_2$ si dice omomorfismo se:

$$\varphi(g \cdot f) = \varphi(g) * \varphi(f) \quad \forall g, f \in G_1.$$

Osservazione

Graficamente φ è un omomorfismo se

Esempi:

 $(\mathbb{R},+)$ gruppo additivo reali

 $(\mathbb{R}_{>0},\cdot)$ gruppo moltiplicativo reali positivi

Allora

$$exp: \mathbb{R} \to \mathbb{R}_{>0}$$
$$x \to e^x$$

è un omomorfismo infatti: $\forall x, y \in \mathbb{R}$

$$e^{x+y} = e^x \cdot e^y.$$

Esempio

$$ln: \mathbb{R}_{>0} \to \mathbb{R}$$

$$x \to ln(x)$$

è un omomorfismo, infatti $\ln(x \cdot y) = \ln(x) + \ln(y) \quad \forall x, y \in \mathbb{R}_{>0}$

Osservazione:

$$l^0 = 1$$
 $ln(1) = 0$

0 è l'elemento neutro in $(\mathbb{R}, +)$

1 è l'elemento neutro in $(\mathbb{R}_{>0},\cdot)$

Osservazione:

$$e^{-x} = \frac{1}{e^x}$$

Inverso di x in $(\mathbb{R}, +)$

è invero di e^x in $(\mathbb{R}_{>0},\cdot)$

$$\ln(\frac{1}{x}) = -\ln(x)$$

Esercizio

 $\varphi:G_1\to G_2$ omomorfismo. Dimostrare

$$1)\varphi(e_1) = e_2$$

$$2)\varphi(g^{-1}) = \varphi(g)^{-1} \quad \forall g \in G_1$$

Soluzione:

$$\varphi(e_1) = \varphi(e_1 \cdot e_2) = \varphi(e_1) * \varphi(e_1)$$

moltiplico per $\varphi(e_1)^{-1}$

$$\Rightarrow e_2 = \varphi(e_1)^{-1} * \varphi(e_1) = \varphi(e_1)^{-1} * (\varphi(e_1) * \varphi(e_1)) = \varphi(e_1)$$

Esempio: (G, \cdot) gruppo, $N \subseteq G$

Allora

$$\pi:G\to G/N$$

$$g \to gN$$

è un omomorfismo

Esempio

$$det: GL_n(\mathbb{K}) \to \mathbb{K}^*$$

dove \mathbb{K} campo

 $\mathbb{K}^* = \mathbb{K} \setminus \{0\}$ è un gruppo rispetto l prodotto

allora det è un omomorfismo

infatti:

$$\forall A, B \in GL_n(\mathbb{K}) \quad det(AB) = det(A)det(B).$$

in particoalre:

$$det(Id) = 1$$

$$det(A^{-1}) = \frac{1}{det(A)} \quad \forall A \in GL_n(\mathbb{K})$$

```
Definizione 2
```

```
\varphi: G_1 \to G_2 omomorfismo
il nucleo di \varphi è ker(\varphi) := \{g \in G_1 | \varphi(g) = e\}
L'immagine di \phi è
Im(\varphi) = \{h \in H_2 | \exists g \in G_1 : \varphi(g) = h\}
```

Esercizio:

 $\varphi: G_1 \to G_2$ omomorfismo Allora $ker(\varphi) \subseteq G_1$)

Soluzione

Chiamo $H: ker(\varphi)$

vorrei verificare che $gHg^{-1} \subseteq H \ \forall g \in G_1$

scegliamo $h \in H$ (ovvero $\varphi(g) = e_2$)

$$\begin{array}{l} \Rightarrow \varphi(ghg^{-1}) = \varphi(g)\varphi(h)\varphi(g^{-1}) = \text{per esercizio} = \varphi(g)\varphi(h)\varphi(g)^{-1} = e_2 \\ \Rightarrow ghg^{-1} \in H \forall h \in H, \forall g \in G \Rightarrow gHg^{-1} \subseteq H \end{array}$$

Osservazione

 (G,\cdot) gruppo, $H \leq G$. Allora HG se e solo se esiste $\varphi: G_1 \to G_2$ omomorfismo tale che $H = ker(\varphi)$

Dimostrazione

 $Resta\ solo\ l'implicazione \Rightarrow$

Sia $H \leq G$. considero l'omomorfismo

$$\pi:G\to G/H$$

$$g \rightarrow gH$$

chi è $ker(\pi)$

$$ker(\pi) = \{g \in G | gH = H\} = \{g \in G | g \in H\} = H$$

Esempio

$$det: GL_n(\mathbb{K}) \to K^*$$

$$ker(det) := \{ A \in GL_n(\mathbb{K}) | det(A) = 1 \} = SL_n(\mathbb{K})$$

quindi

$$\mathrm{SL}_n(\mathbb{K}) \subseteq GL_n(\mathbb{K})$$

Esercizio

 (G,\cdot) gruppo $g\in G$ fissato

$$\varphi: \mathbb{Z} \to G$$

$$n \to g^n$$

è un omomorfismo

determinare $ker\varphi$ e $Im\varphi$

Esercizio

Sia $\varphi: G_1 \to G_2$ omomorfismo

1) Se
$$H_1 \leq G_1 \Rightarrow \varphi(H_1) \leq G_2$$

se
$$H_1 \subseteq G_1 \Rightarrow \varphi(H_1) \subseteq \varphi(G_1)$$

1) Se
$$H_2 \le G_2 \Rightarrow \varphi^{-1}(H_2) \le G_1$$

se
$$H_1 \leq G_2 \Rightarrow \varphi^{-1}(H_2) \leq \varphi(G_1)$$