Отчет по лабораторной работе № 5 по курсу "Фундаментальная информатика"

Студентка группы М80-109Б-22 Серякова Александра Андреевна, № 17

Работа выполнена: «17» ноября 2022г.					
Преподаватель: каф. 806 Сысоев Максим Алексеевич					
Отчет сдан « »20_ г., итоговая оценка					
Полпись преподавателя					

- 1. Тема: Программирование на языке Си
- 2. Цель работы: Составление и откладка простейшей программы на языке С итеративного характера с целочисленными рекуррентными соотношениями, задающими некоторое регулярное движение точки в целочисленной системе координат (i , j) с дискретным временем K и динамическим параметром движения I.
- 3. Задание (вариант № 22):
 - V. Треугольник с вершинами в точках (-10,0), (0,10), (-10,20)

22.
$$i_0 = 8, j_0 = 15, l_0 = 10$$

 $i_{k+1} = ((i_k + j_k) \mod (|\min(j_k - l_k, l_k - k)| + 1) - k) \mod 20 + 10,$
 $j_{k+1} = \max((i_k + j_k)/(2 + \operatorname{sign}(j_k l_k - i_k k)), (j_k + l_k)/(2 + \operatorname{sign}(i_k j_k - l_k k))) - 10,$
 $l_{k+1} = \max(i_k, j_k) \min(i_k, l_k) \mod 30$

4. Оборудование (студента):

Процессор AMD Ryzen 5 5500U with Radeon Graphics @ 2.100GHz с ОП 9812 Мб, SSD 512 Гб. Монитор 1920х1080

5. Программное обеспечение (студента):

Операционная система семейства: linux, наименование: Arch x86_64 интерпретатор команд: bash версия 5.1.16 Система программирования -- версия --, редактор текстов neovim версия 0.7.2 Утилиты операционной системы mkdir, cd, touch, ls, echo, cat, find, grep, rm, chmod, bash, pwd Прикладные системы и программы -- Местонахождение и имена файлов программ и данных на домашнем компьютере /home/taida/Programming/MAI_labs/lab5

6. Идея, метод, алгоритм решения задачи (в формах: словесной, псевдокода, графической [блок-схема, диаграмма, рисунок, таблица] или формальные спецификации с пред- и постусловиями)

Чтобы определить, что точка принадлежит треугольнику, я придерживалась следующего алгоритма и использовала его в своей программе:

Пусть у нас есть треугольник

Высчитаем значение трех нижеуказанных выражений

1)
$$(xa - x0) * (yb - ya) - (xb - xa) * (ya - y0)$$

2)
$$(xb-x0) * (yc-yb) - (xc-xb) * (yb-y0)$$

3)
$$(xc - x0) * (ya - yc) - (xa - xc) * (yc - y0)$$

где х0,у0 - координаты произвольной точки

Если все три значения одинакового знака, то точка внутри треугольника, если значение равно нулю, значит точка лежит на стороне треугольника В ином случае (если значения различные по знаку), точка вне треугольника.

7. Сценарий выполнения работы [план работы, первоначальный текст программы в черновике (можно на отдельном листе) и тесты либо соображения по тестированию].

Входные данные	Выходные данные	Описание тестируемого случая	

8. Распечатка протокола (подклеить листинг окончательного варианта программы с тестовыми примерами, подписанный преподавателем).

```
C main.c C:\...\lab9 X C main.c C:\...\lab8 •
    #define J0 15
#define L0 10
      #define Ya 0
 10 #define Xb 0
     #define Yc 20
      int max(int a, int b)
      int min(int a, int b)
      int abs(int a)
          if (a < 0)
              return a;
      int sign(int a)
            return 0;
      int mod(int a, int b)
               return a % b;
              return a % b + b;
```

```
int in_triangle(int xa, int ya, int xb, int yb, int xc, int yc, int x0, int y0)
{
    return (((((xa - x0)* (yb-ya) - (xb-xa)* (ya-y0)) <= 0) && (((xb - x0)* (yc - yb) - (xc - xb)* (yb-y0)) <= 0) && (((xc-x0)* (ya - yc) - (xa-xc)* (yc-y0)) <= 0) && (((xb - x0)* (yc - yb) - (xc - xb)* (yb-y0)) <= 0) && (((xc-x0)* (ya - yc) - (xa-xc)* (yc-y0)) <= 0) && (((xc-x0)* (ya - yc) - (xa-xc)* (yc-y0)) <= 0) && (((xc-x0)* (ya - yc) - (xa-xc)* (yc-yb) - (xc - xb)* (yb-y0)) <= 0) && (((xc-x0)* (ya - yc) - (xa-xc)* (yc-yb) - (xc - xb)* (yb-y0)) <= 0) && (((xc-x0)* (ya - yc) - (xa-xc)* (yc-yb) - (xc - xb)* (yb-y0)) <= 0) && (((xc-x0)* (ya - yc) - (xa-xc)* (yc-yb) - (xc - xb)* (yb-y0)) <= 0) && (((xc-x0)* (ya - yc) - (xa-xc)* (yc-yb) - (xc - xb)* (yb-y0)) <= 0) && (((xc-x0)* (ya - yc) - (xa-xc)* (yc-yb) - (xc - xb)* (yb-y0)) <= 0) && (((xc-x0)* (ya - yc) - (xa-xc)* (yc-yb) - (xc - xb)* (yb-y0) <= 0) && (((xc-x0)* (ya - yc) - (xa-xc)* (yc-yb) - (xc - xb)* (yb-y0) <= 0) && (((xc-x0)* (ya - yc) - (xa-xc)* (yc-yb) - (xc - xb)* (yb-y0) <= 0) && (((xc-x0)* (ya - yc) - (xa-xc)* (yc-yb) - (xc - xb)* (yb-y0) <= 0) && (((xc-x0)* (ya - yc) - (xa-xc)* (yc-yb) - (xc - xb)* (yb-y0) <= 0) && (((xc-x0)* (ya - yc) - (xa-xc)* (yc-yb) - (xc - xb)* (yb-y0) <= 0) && (((xc-x0)* (ya - yc) - (xa-xc)* (yc-yb) - (xc - xb)* (yb-y0) <= 0) && (((xc-x0)* (ya - yc) - (xa-xc)* (yc-yb) - (xc - xb)* (yb-y0) <= 0) && (((xc-x0)* (ya - yc) - (xa-xc)* (yc-yb) - (xc - xb)* (yb-y0) <= 0) && (((xc-x0)* (ya - yc) - (xc - xb)* (yc-yb) - (xc - xb)* (y
```

```
for (k = 1; lin_area(i, j) && k < 50; ++k)

{

printf("%d %sside\n", k, in_area(i,j) ? "In" : "Out");

printf("i = %d, j = %d\n", i, j);

printf("k = %d, l = %d\n", k, l);

i = compute i(old i, old j, old_l, k);

j = compute j(old_i, old_j, old_l, k);

compute l(old_i, old_j, old_l, k);

old_i = i;

old_j = j;

old_j = j;

old_j = l;

printf("%d %sside\n", k, in_area(i,j) ? "In" : "Out");

printf("i = %d, j = %d\n", i, j);

printf("k = %d, l = %d\n", k, l);

return 0;

}

return 0;
```

9. Дневник отладки должен содержать дату и время сеансов отладки и основные события (ошибки в сценарии и программе, нестандартные ситуации) и краткие комментарии к ним. В дневнике отладки приводятся сведения об использовании других ЭВМ, существенном участии преподавателя и других лиц в написании и отладке программы.

1	№ Лаб.	Дата	Врем я	Событие	Действие по исправлению	Примечание
	дом	18.11.22	22:00			

10. 3	Замечания	автора	по су	иществу	работы
-------	-----------	--------	-------	---------	--------

11. Выводы

В результате этой лабораторной работы я научилась создавать простейшие программы на языке С, писать различные математические формулы в функциях, без использования специальной библиотеки. Эти знания понадобятся для успешного завершения следующих лабораторных работ.

Недочёты при выполнении задания могут быть устранены следующим образом: --