Bayesian Logistic Regression

Vasilis Gkolemis

ATHENA RC — HUA

June 2025

© Vasilis Gkolemis, 2025. Licensed under CC BY 4.0.

Logistic Regression as a Probabilistic Model

• In binary classification, we model the probability of label $y \in \{0,1\}$ given input $\mathbf{x} \in \mathbb{R}^d$:

$$p(y = 1 \mid \mathbf{x}, \mathbf{w}) = \sigma(\mathbf{w}^{\top} \mathbf{x})$$

- $\sigma(z) = \frac{1}{1+e^{-z}}$ is the logistic sigmoid function.
- ullet In a Bayesian setting, we place a prior over ullet and infer the posterior:

$$p(\mathbf{w} \mid \mathcal{D}) \propto p(\mathbf{w}) \prod_{n=1}^{N} p(y_n \mid \mathbf{x}_n, \mathbf{w})$$

Why Approximate Inference?

- The posterior is not analytically tractable due to the non-conjugate likelihood.
- The logistic sigmoid does not lead to a conjugate posterior with a Gaussian prior.
- Approximate inference methods are needed:
 - Laplace Approximation
 - Importance Sampling
 - Markov Chain Monte Carlo (MCMC)

2D Toy Example

- We create a small dataset with N=50 samples:
 - $\mathbf{x}_n \in [-3, 3]^2$, $y_n \sim \mathrm{Bernoulli}(\sigma(\mathbf{w}^{\top} \mathbf{x}_n))$, where $\mathbf{w}^* = (0.5, -0.6)$
- Classes are slightly overlapping to reflect realistic uncertainty.

Model Specification

• Prior over weights:

$$\mathbf{w} \sim \mathcal{N}(\mathbf{0}, lpha^{-1}\mathbf{I})$$

Likelihood:

$$p(\mathcal{D} \mid \mathbf{w}) = \prod_{n=1}^{N} \sigma(\mathbf{w}^{\top} \mathbf{x}_{n})^{y_{n}} (1 - \sigma(\mathbf{w}^{\top} \mathbf{x}_{n}))^{1 - y_{n}}$$

Posterior:

$$p(\mathbf{w} \mid \mathcal{D}) \propto p(\mathbf{w})p(\mathcal{D} \mid \mathbf{w})$$
 (approximated)

Program

- Laplace Approximation
- 2 Importance Sampling
- 3 MCMC
- 4 Conclusion

Laplace Approximation: Idea

- Is it reasonable to approximate the posterior with a Gaussian?
- Yes:
 - It is an incremental improvement over MAP
 - Many ML methods rely on a single configuration; Laplace is a natural extension
 - When the posterior is dominated by a single mode
- No:
 - When the posterior is multimodal or highly skewed
 - Unfortunately, this is often the case in practice

$$p(\theta \mid \mathcal{D}) \approx \mathcal{N}(\theta; \mu, \Sigma)$$
, where:

 $\mu=\mathsf{MAP}$ estimate (mode of posterior), often denoted as $\hat{m{ heta}}$

 $\Sigma=$ inverse Hessian of the log posterior at the mode, denoted as ${f H}^{-1}$

Laplace Approximation: How it Works

$$p(heta \mid \mathcal{D}) pprox \mathcal{N}(heta; oldsymbol{\mu} = \hat{oldsymbol{ heta}}, oldsymbol{\Sigma} = oldsymbol{\mathsf{H}}^{-1})$$

- Why setting μ to $\hat{\theta}$, i.e., the MAP estimate?
- $p(\theta \mid \mathcal{D})$ is proportional to the product of the prior and likelihood: Search for the point that maximizes $L(\theta)p(\theta) \Rightarrow \mathsf{MAP}$ estimate

$$\hat{\boldsymbol{\theta}} = \arg\max_{\boldsymbol{\theta}} \log p(\boldsymbol{\theta} \mid \mathcal{D}) = \arg\max_{\boldsymbol{\theta}} \left(\log p(\boldsymbol{\theta}) + \sum_{i=1}^{N} \log p(y_i \mid \mathbf{x}_i, \boldsymbol{\theta}) \right)$$

- It is a simple optimization problem:
 - Use gradient-based methods (e.g., Newton-Raphson, L-BFGS)
 - ▶ Can easily solve high-dimensional problems, if autograd is available

◆ロト ◆個ト ◆差ト ◆差ト を めらぐ

Laplace Approximation: How it Works

$$p(heta \mid \mathcal{D}) pprox \mathcal{N}(heta; oldsymbol{\mu} = \hat{oldsymbol{ heta}}, oldsymbol{\Sigma} = oldsymbol{\mathsf{H}}^{-1})$$

- Why setting Σ to \mathbf{H}^{-1} , i.e., the inverse Hessian?
- The MAP is a turning point. What happens there?
 - ▶ Imagine it as a mountain peak in the log-posterior landscape
 - ► The gradient vanishes: $\nabla \log p(\theta \mid \mathcal{D})|_{\theta = \hat{\theta}} = 0$
 - ▶ The Hessian captures local curvature: $\mathbf{H} = -\nabla^2 \log p(\theta \mid \mathcal{D})|_{\theta = \hat{\theta}}$
- $oldsymbol{ iny} oldsymbol{ iny} oldsymbol{ iny} \in \mathbb{R}^{d imes d}$ (where d is the number of parameters), where:

$$\mathbf{H}_{ij} = -rac{\partial^2 \log p(oldsymbol{ heta} \mid \mathcal{D})}{\partial heta_i \partial heta_j}igg|_{oldsymbol{ heta} = \hat{oldsymbol{ heta}}}$$

- $\Sigma = \mathsf{H}^{-1}$:
 - ► High curvature (large values in **H**) means steep slope, low uncertainty
 - ► Low curvature (small values in **H**) means flat slope, high uncertainty

Taylor Expansion and Laplace Approximation

• Taylor expansion approximates a function $f(\theta)$ around a point $\hat{\theta}$ with a polynomial, i.e., a smooth curve:

$$f(\boldsymbol{\theta}) \approx f(\hat{\boldsymbol{\theta}}) + \nabla f(\hat{\boldsymbol{\theta}})^{\top} (\boldsymbol{\theta} - \hat{\boldsymbol{\theta}}) + \frac{1}{2} (\boldsymbol{\theta} - \hat{\boldsymbol{\theta}})^{\top} \nabla^2 f(\hat{\boldsymbol{\theta}}) (\boldsymbol{\theta} - \hat{\boldsymbol{\theta}})$$

a second-order Taylor expansion around the MAP estimate is:

$$\log p(\theta \mid \mathcal{D}) \approx \log p(\hat{\theta} \mid \mathcal{D}) - \frac{1}{2} (\theta - \hat{\theta})^{\top} \mathbf{H} (\theta - \hat{\theta})$$

where $\mathbf{H} = -\nabla^2 \log p(\boldsymbol{\theta} \mid \mathcal{D}) \big|_{\hat{\boldsymbol{\theta}}}$ is the (negative) Hessian at the mode.

 Exponentiating both sides gives the Laplace approximation of the posterior:

$$p(\theta \mid \mathcal{D}) pprox \mathcal{N}(\theta; \hat{ heta}, \mathbf{H}^{-1})$$

Laplace Approximation: Summary

So the Laplace Approximation gives:

$$p(heta \mid \mathcal{D}) pprox \mathcal{N}(heta; oldsymbol{\mu} = \hat{oldsymbol{ heta}}, oldsymbol{\Sigma} = oldsymbol{\mathsf{H}}^{-1})$$

- Computational considerations:
 - lacktriangle MAP estimate $\hat{m{\theta}}$ is a point estimate, not a distribution
 - ▶ If gradients are available, it is efficient to compute
 - ▶ Hessian **H** is computed at the MAP estimate
 - ▶ Up to $O(d^3)$ for inversion, where d is the number of parameters
 - ightharpoonup Cannot work for very high-dimensional problems (e.g., d > 1000)
- Final conclusion:
 - Laplace Approximation is easy to implement and compute but may be inaccurate if the posterior is multimodal or skewed.

Why Laplace Works in Logistic Regression

Consider Bayesian logistic regression:

$$p(\theta \mid \mathcal{D}) \propto p(\mathcal{D} \mid \theta) \cdot p(\theta)$$

- Likelihood: $p(\mathcal{D} \mid \boldsymbol{\theta}) = \prod_n \sigma(\boldsymbol{\theta}^\top \mathbf{x}_n)^{y_n} (1 \sigma(\boldsymbol{\theta}^\top \mathbf{x}_n))^{1 y_n}$
- Prior: $p(\theta) = \mathcal{N}(\theta; \mathbf{0}, \tau^2 \mathbf{I})$

$$\Rightarrow p(\theta \mid \mathcal{D}) = \text{Gaussian prior} \cdot \prod_{n} \text{sigmoid likelihood}$$

Conclusion: The posterior is a Gaussian (prior) where each sigmoid slices off a portion of the mass. The resulting distribution has a single mode, making Laplace a good approximation.

Laplace Approximation in our Toy Example

Laplace Approximation in our Toy Example

Decision Boundaries Sampled from Posterior

Program

- Laplace Approximation
- 2 Importance Sampling
- 3 MCMC
- 4 Conclusion

Posterior Samples

- Often we are not interested in the posterior distribution itself, but rather in samples from it.
- Why?
 - $\theta^i \sim p(\theta|X,y)$
 - Each sample gives a possible configuration of the model parameters.
 - **Each** sample gives one prediction: $y^i \sim p(y|X, \theta^i)$
 - ▶ We can use these samples to estimate mean and variance of predictions:

$$\hat{\mu} = \frac{1}{N} \sum_{i=1}^{N} y^{i}, \quad \hat{\sigma}^{2} = \frac{1}{N-1} \sum_{i=1}^{N} (y^{i} - \hat{\mu})^{2}$$

• But how do we obtain these samples?

Importance Sampling: Motivation

- Goal: Compute expectations under a difficult distribution $p(\theta)$ (e.g., posterior).
- Direct sampling from $p(\theta)$ is hard or impossible.
- Instead, sample from a simpler proposal distribution q(heta).

$$\mathbb{E}_p[f(\theta)] = \int f(\theta)p(\theta)d\theta$$
 but $p(\theta)$ is hard to sample from.

Importance Sampling Estimator

$$\mathbb{E}_p[f(\theta)] = \int f(\theta) \frac{p(\theta)}{q(\theta)} q(\theta) d\theta = \mathbb{E}_q \left[f(\theta) w(\theta) \right]$$

where the importance weights are

$$w(\theta) = \frac{p(\theta)}{q(\theta)}.$$

Practical Importance Sampling

Given samples $\{\theta_i\}_{i=1}^N \sim q(\theta)$:

$$\hat{\mu} = rac{\sum_{i=1}^{N} w_i f(\theta_i)}{\sum_{i=1}^{N} w_i}, \quad ext{where} \quad w_i = rac{p(\theta_i)}{q(\theta_i)}.$$

- Weights are normalized to sum to 1.
- Effective when $q(\theta)$ covers $p(\theta)$ well.

Importance Sampling in Bayesian Inference

- Target posterior: $p(\theta|X, y) \propto p(y|X, \theta)p(\theta)$.
- Proposal $q(\theta)$ can be prior or Laplace approximation.
- Importance weights:

$$w_i = \frac{p(y|X,\theta_i)p(\theta_i)}{q(\theta_i)}.$$

• Samples $\theta_i \sim q(\theta)$ weighted to approximate the posterior.

Importance Sampling with Prior Proposal

- Proposal distribution $q(\theta) = p(\theta)$ (prior).
- Samples drawn directly from prior.
- Importance weights correct for data likelihood.
- May have high variance if prior poorly matches posterior.

Importance Sampling with Laplace Approximation Proposal

- Proposal distribution $q(\theta) \approx \mathcal{N}(\hat{\theta}, H^{-1})$ (Laplace approx).
- Samples concentrated near MAP estimate.
- Importance weights reweight samples to correct approximation.
- Typically lower variance than prior proposal.

Program

- Laplace Approximation
- 2 Importance Sampling
- MCMC
- Conclusion

Markov Chain Monte Carlo (MCMC) for Bayesian Inference

- Goal: Sample from posterior distribution $p(\theta \mid X, y)$ when direct sampling is difficult.
- Construct a Markov chain whose stationary distribution is the posterior.
- Generates dependent samples that approximate the posterior as the chain runs.
- Widely applicable to complex models where exact inference is intractable.

Metropolis-Hastings Algorithm

- Start from an initial parameter $\theta^{(0)}$.
- At step t, propose θ^* from proposal distribution $q(\theta^* \mid \theta^{(t-1)})$.
- Calculate acceptance probability:

$$\alpha = \min \left(1, \frac{p(\theta^* \mid X, y)q(\theta^{(t-1)} \mid \theta^*)}{p(\theta^{(t-1)} \mid X, y)q(\theta^* \mid \theta^{(t-1)})} \right)$$

- Accept θ^* with probability α , else keep $\theta^{(t-1)}$.
- Ensures the chain converges to posterior distribution.

MCMC for Bayesian Logistic Regression

- Posterior $p(\theta \mid X, y) \propto p(y \mid X, \theta)p(\theta)$ is non-conjugate.
- MCMC provides a way to approximate the posterior without analytic form.
- Samples $\{\theta^{(t)}\}_{t=1}^T$ can be used for:
 - Estimating expectations (posterior means, variances).
 - Predictive distributions.
 - Visualizing uncertainty, e.g. decision boundary variation.

Practical Considerations

- Burn-in: Discard initial samples until chain stabilizes.
- **Thinning**: Keep every *k*-th sample to reduce autocorrelation.
- **Tuning**: Proposal distribution parameters (e.g., step size) affect acceptance rate and mixing.
- Diagnostics needed to check convergence (trace plots, effective sample size).

MCMC Samples: Decision Boundaries from Posterior

Program

- Laplace Approximation
- 2 Importance Sampling
- MCMC
- 4 Conclusion

Conclusion

We have explored three approximate inference methods for Bayesian logistic regression:

- Laplace Approximation: Approximates the posterior with a Gaussian centered at the MAP estimate, using the inverse Hessian for covariance.
- **Importance Sampling**: Samples from a simpler proposal distribution and reweights to approximate the posterior.
- MCMC: Constructs a Markov chain to sample from the posterior, allowing for complex models where direct sampling is infeasible.