Sistemas Operativos

Paginación

Departamento de Ingeniería en Sistemas y Computación Universidad Católica del Norte, Antofagasta.

Ejercicio

Considere un sistema con intercambio, en el que la memoria posee particiones libres de tamaño fijo: 1500Kb, 700Kb, 1300Kb, 900Kb, 700Kb, 800Kb y 1200Kb. Estos huecos están dispuestos en el orden dado. Se tienen cuatro procesos de tamaños 1100Kb, 700Kb, 1200Kb y 900Kb. Cuál de los siguientes algoritmos de ubicación permite obtener una menor fragmentación total? Indique su valor.

- Primero en ajustarse
- Mejor en ajustarse
- Peor en ajustarse
- Siguiente en ajustarse

Intercambio

Paginación simple

- La memoria principal está particionada en pedazos iguales de tamaño-fijo (de tamaño relativamente pequeño)
- Truco: cada proceso también es dividido en pedazos del mismo tamaño llamado páginas
- Las páginas del proceso pueden asignarse a los pedazos disponibles en memoria principal llamado marcos (o marcos de página)
- Consecuencia: un proceso no necesita ocupar una porción contigua de memoria

Ejemplo de carga de proceso

 Ahora suponga que el proceso B es sacado de memoria (swapped out)

Ejemplo de carga de proceso

- Cuando los procesos A y C se bloquean, el paginador (pager) carga un nuevo procesó D que consiste de 5 páginas
- El proceso D no ocupa una porción contigua de memoria
- No hay fragmentación externa
- La fragmentación interna consiste solamente de la última página de cada proceso

	Main memory
0	A.0
1	A.1
2	A.2
3	A.3
4	
5	
6	
7	C.0
8	C.1
9	C.2
10	C.3
11	
12	
13	
14	
7 8 9 10 11 12 13	C.1 C.2

2	A.2
3	A.3
4	D.0
5	D.1
6	D.2
7	C.0
8	C.1
9	C.2
10	C.3
11	D.3
12	D.4
13	
14	

(e) Swap out B

(f) Load Process D

Main memory A.0

A.1

Tabla de páginas

- El OS ahora necesita mantener (en memoria principal) una tabla de página por cada proceso
- Cada entrada de la tabla de páginas, consiste del número del marco donde la página correspondiente se localiza físicamente
- La tabla de página está indexada por el número de página para obtener el número del marco
- Se mantiene una lista de marcos libres, disponible para las páginas.

Dirección lógica usada en paginación

- Dentro de cada programa, cada dirección lógica debe consistir en un número de página y un desplazamiento dentro de la página
- Un registro de CPU siempre mantiene la dirección física de comienzo de la tabla de páginas del proceso en ejecución actual
- Presentado con la dirección lógica (número de la página, desplazamiento), el procesador accesa la tabla de página para obtener la dirección física (número del marco, desplazamiento)

Direccionamiento lógico en paginación

- La dirección lógica se vuelve una dirección relativa cuando el tamaño de la página es una potencia de 2
- Ejem: si se usa direccionamiento de 16 de bits y páginas de tamaño = 1K, se necesitan 10 bits para el desplazamiento y se tienen 6 bits disponibles para el número de la página
- Entonces, la dirección de 16 bits obtenida con los 10 bits menos significativos como desplazamiento y los 6 bits más significativos como número de página, es una localización relativa al comienzo del proceso

Direccionamiento lógico en paginación

- Usando un tamaño de página de una potencia de 2, las páginas son invisibles al programador, compilador/ensamblador y, el enlazador
- Traducción de direcciones en tiempo-deejecución, es entonces fácil de implementar en hardware
 - Dirección lógica (n,m) se traduce a la dirección física (k,m) indexando la tabla de página y añadiendo el mismo desplazamiento m al número del marco k

Hardware para paginación

Paginación

- La tabla de páginas es almacenada en memoria principal.
- PTBR: registro base que apunta a la tabla de páginas.
- PTLR: registro que indica el tamaño de la tabla de páginas.

Bit de validez

Traducción de dirección lógica a física

Ejercicio

Considere la siguiente Tabla de páginas:

N _{pagina}	N _{marco}
0	4
1	7
2	-
3	2
4	-
5	0

Considere que el tamaño de las páginas es de 1KB. El marco 0 está cargado en la dirección física cero y el resto sucesivamente. Indique a que dirección física corresponden las siguientes direcciones lógicas:

- (1,125)
- \circ (2,324)
- (5,322)
- (7,321)
- (3, 1026)

