$12n_{0717} (K12n_{0717})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle 25879u^{15} - 46049u^{14} + \dots + 675712b - 1063104, \\ &\quad 463377u^{15} - 1801209u^{14} + \dots + 9459968a - 26845656, \ u^{16} - 3u^{15} + \dots - 32u - 16 \rangle \\ I_2^u &= \langle 56993u^{13}a + 77423u^{13} + \dots + 148181a + 443926, \\ &\quad - 5240829u^{13}a - 8288009u^{13} + \dots - 52771818a + 2325177, \\ &\quad u^{14} + u^{13} + 10u^{12} + 8u^{11} + 36u^{10} + 22u^9 + 61u^8 + 34u^7 + 73u^6 + 54u^5 + 82u^4 + 53u^3 + 43u^2 + 20u + 11 \rangle \\ I_3^u &= \langle 31u^{15} - 15u^{14} + \dots + 92b - 472, \ -577u^{15} + 3333u^{14} + \dots + 9292a + 191294, \\ &\quad u^{16} + 11u^{14} + 54u^{12} + 160u^{10} + 329u^8 + 496u^6 + 526u^4 + 343u^2 + 101 \rangle \end{split}$$

$$I_1^v = \langle a, -v^2 + b - 3v - 1, v^3 + 3v^2 + 2v + 1 \rangle$$

* 4 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 63 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle 2.59 \times 10^4 u^{15} - 4.60 \times 10^4 u^{14} + \dots + 6.76 \times 10^5 b - 1.06 \times 10^6, \ 4.63 \times 10^5 u^{15} - 1.80 \times 10^6 u^{14} + \dots + 9.46 \times 10^6 a - 2.68 \times 10^7, \ u^{16} - 3 u^{15} + \dots - 32 u - 16 \rangle$$

(i) Arc colorings

$$a_{10} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -0.0489829u^{15} + 0.190403u^{14} + \cdots - 2.28630u + 2.83782 \\ -0.0382989u^{15} + 0.0681489u^{14} + \cdots + 1.61772u + 1.57331 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -0.0363658u^{15} + 0.193159u^{14} + \cdots - 3.29721u + 1.95978 \\ -0.0226024u^{15} - 0.0410566u^{14} + \cdots + 3.11903u + 2.22303 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -0.0363658u^{15} + 0.193159u^{14} + \cdots - 3.29721u + 1.95978 \\ -0.0126172u^{15} - 0.00275582u^{14} + \cdots + 1.01091u + 0.878038 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -0.0877234u^{15} + 0.254037u^{14} + \cdots - 1.23991u + 4.49819 \\ -0.0395677u^{15} + 0.170191u^{14} + \cdots - 1.04092u + 0.176944 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -0.0106841u^{15} + 0.122254u^{14} + \cdots - 3.90403u + 1.26451 \\ -0.0382989u^{15} + 0.0681489u^{14} + \cdots + 1.61772u + 1.57331 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -0.0800201u^{15} + 0.250091u^{14} + \cdots + 1.11319u - 1.40403 \\ 0.0910791u^{15} - 0.322836u^{14} + \cdots + 0.378447u + 0.00921990 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -0.0489829u^{15} + 0.190403u^{14} + \cdots + 1.01091u - 0.878038 \\ 0.0126172u^{15} + 0.00275582u^{14} + \cdots - 1.01091u - 0.878038 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -0.0106841u^{15} + 0.122254u^{14} + \cdots - 3.90403u + 1.26451 \\ -0.00563321u^{15} - 0.00282644u^{14} + \cdots + 1.01091u - 0.878038 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0.0877234u^{15} - 0.254037u^{14} + \cdots + 1.23991u - 4.49819 \\ -0.0179562u^{15} + 0.0609672u^{14} + \cdots + 0.654917u + 0.323076 \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes =
$$-\frac{3140595}{4729984}u^{15} + \frac{9339149}{4729984}u^{14} + \dots + \frac{1984439}{1182496}u + \frac{1721569}{73906}u^{14} + \dots$$

Crossings	u-Polynomials at each crossing
c_1	$u^{16} - u^{15} + \dots - 11u + 1$
c_2	$u^{16} - 2u^{15} + \dots + 194u - 121$
c_3	$u^{16} - u^{15} + \dots - 19u + 7$
c_4	$u^{16} - 3u^{15} + \dots - 32u - 16$
c_5, c_7, c_{12}	$u^{16} + u^{15} + \dots - 4u + 4$
c_6	$u^{16} + 7u^{15} + \dots - 65u + 28$
c_8, c_{11}	$u^{16} + 3u^{15} + \dots + 13u - 28$
c_{9}, c_{10}	$u^{16} - 2u^{14} + \dots + 4u^2 - 1$

Crossings	Riley Polynomials at each crossing
c_1	$y^{16} - 21y^{15} + \dots - 131y + 1$
c_2	$y^{16} + 26y^{15} + \dots - 15614y + 14641$
<i>c</i> ₃	$y^{16} - 19y^{15} + \dots - 501y + 49$
c_4	$y^{16} + 23y^{15} + \dots - 2304y + 256$
c_5, c_7, c_{12}	$y^{16} + 19y^{15} + \dots - 80y + 16$
<i>C</i> ₆	$y^{16} - 25y^{15} + \dots - 33289y + 784$
c_8, c_{11}	$y^{16} + y^{15} + \dots - 7169y + 784$
c_{9}, c_{10}	$y^{16} - 4y^{15} + \dots - 8y + 1$

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.119335 + 1.038870I		
a = -0.494008 - 1.094850I	-3.83744 - 3.93600I	2.87663 + 4.26125I
b = 0.17992 + 1.59062I		
u = 0.119335 - 1.038870I		
a = -0.494008 + 1.094850I	-3.83744 + 3.93600I	2.87663 - 4.26125I
b = 0.17992 - 1.59062I		
u = -0.034961 + 1.296400I		
a = -0.608719 + 0.180864I	-3.72865 + 1.11794I	3.47362 - 6.30090I
b = -0.891539 - 0.005634I		
u = -0.034961 - 1.296400I		
a = -0.608719 - 0.180864I	-3.72865 - 1.11794I	3.47362 + 6.30090I
b = -0.891539 + 0.005634I		
u = -0.622483 + 0.254551I		
a = 0.390738 + 0.662414I	-1.46484 + 2.93564I	5.07482 - 1.11353I
b = -0.030479 + 1.183440I		
u = -0.622483 - 0.254551I		
a = 0.390738 - 0.662414I	-1.46484 - 2.93564I	5.07482 + 1.11353I
b = -0.030479 - 1.183440I		
u = 0.28607 + 1.44355I		
a = 0.138612 - 0.552258I	1.87947 - 1.24485I	11.40323 + 4.68247I
b = -0.181437 + 0.590003I		
u = 0.28607 - 1.44355I		
a = 0.138612 + 0.552258I	1.87947 + 1.24485I	11.40323 - 4.68247I
b = -0.181437 - 0.590003I		
u = 0.503828		
a = 0.941502	0.729058	13.6990
b = 0.334619		
u = -0.382038		
a = 3.33621	6.53070	22.8110
b = 0.692814		

Solutions to I_1^u	$\int \sqrt{-1}(\operatorname{vol} + \sqrt{-1}CS) \mid$	Cusp shape
u = 0.03599 + 1.87656I		
a = 0.554024 + 0.651219I	-15.1090 - 2.7222I	2.22525 + 1.87237I
b = -0.12246 - 1.50429I		
u = 0.03599 - 1.87656I		
a = 0.554024 - 0.651219I	-15.1090 + 2.7222I	2.22525 - 1.87237I
b = -0.12246 + 1.50429I		
u = 1.25896 + 1.40167I		
a = -0.587811 + 0.033755I	-5.72547 + 7.15671I	3.37598 - 8.21855I
b = -0.566111 - 1.293200I		
u = 1.25896 - 1.40167I		
a = -0.587811 - 0.033755I	-5.72547 - 7.15671I	3.37598 + 8.21855I
b = -0.566111 + 1.293200I		
u = 0.39619 + 1.87970I		
a = 0.718306 - 0.433411I	-15.9449 + 14.1335I	2.81526 - 6.31158I
b = 0.59839 + 1.77105I		
u = 0.39619 - 1.87970I		
a = 0.718306 + 0.433411I	-15.9449 - 14.1335I	2.81526 + 6.31158I
b = 0.59839 - 1.77105I		

 $II. \\ I_2^u = \langle 5.70 \times 10^4 au^{13} + 7.74 \times 10^4 u^{13} + \dots + 1.48 \times 10^5 a + 4.44 \times 10^5, \ -5.24 \times 10^6 au^{13} - 8.29 \times 10^6 u^{13} + \dots -5.28 \times 10^7 a + 2.33 \times 10^6, \ u^{14} + u^{13} + \dots + 20 u + 11 \rangle$

(i) Arc colorings

$$a_{10} = \begin{pmatrix} 1 \\ 0 \\ 0 \\ a_{10} = \begin{pmatrix} 0 \\ u \\ 0 \\ a_{1} = \begin{pmatrix} 0 \\ -0.0750130au^{13} - 0.101903u^{13} + \cdots - 0.195033a - 0.584286 \\ a_{4} = \begin{pmatrix} 1 \\ u^{2} \\ 0 \\ -0.224463au^{13} + 0.101903u^{13} + \cdots + 1.19503a + 0.584286 \\ -0.224463au^{13} - 0.244106u^{13} + \cdots + 0.0452147a - 0.589078 \\ a_{3} = \begin{pmatrix} 0.0750130au^{13} + 0.101903u^{13} + \cdots + 1.19503a + 0.584286 \\ -0.0750130au^{13} + 0.101903u^{13} + \cdots + 1.19503a + 0.584286 \\ -0.0750130au^{13} - 0.101903u^{13} + \cdots - 0.195033a - 0.584286 \\ a_{9} = \begin{pmatrix} 0.0975842au^{13} + 0.0595029u^{13} + \cdots + 0.627079a + 0.991682 \\ -0.163468au^{13} - 0.151136u^{13} + \cdots - 0.199622a - 1.64704 \\ \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0.0750130au^{13} + 0.101903u^{13} + \cdots + 1.19503a + 0.584286 \\ -0.0750130au^{13} - 0.101903u^{13} + \cdots - 0.195033a - 0.584286 \\ \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0.00230200au^{13} + 0.190411u^{13} + \cdots - 1.39365a + 0.990069 \\ 0.0204495au^{13} - 0.0406805u^{13} + \cdots - 0.334311a - 1.07057 \\ \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0.0570072u^{13} - 0.0405770u^{12} + \cdots - a + 0.574026 \\ -0.0750130au^{13} + 0.0927235u^{13} + \cdots - 0.195033a - 0.654532 \\ -0.0750130au^{13} + 0.0751547u^{13} + \cdots - 1.19503a - 1.15393 \\ 0.0744365au^{13} + 0.246160u^{13} + \cdots - 0.435280a + 1.14362 \\ \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0.0975842au^{13} + 0.0187794u^{13} + \cdots + 0.627079a + 0.0745087 \\ 0.0535514au^{13} - 0.0354421u^{13} + \cdots + 1.01996a + 0.618570 \\ \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes =
$$\frac{4926}{30391}u^{13} - \frac{83536}{151955}u^{12} + \dots - \frac{1805974}{151955}u - \frac{701964}{151955}$$

Crossings	u-Polynomials at each crossing
c_1	$u^{28} - 5u^{27} + \dots + 1150u + 5663$
c_2	$u^{28} + u^{27} + \dots + 20378u + 5689$
<i>c</i> ₃	$u^{28} - 14u^{26} + \dots + 40u + 13$
c_4	$(u^{14} + u^{13} + \dots + 20u + 11)^2$
c_5, c_7, c_{12}	$u^{28} - 4u^{27} + \dots + 52u + 4$
<i>C</i> ₆	$(u^{14} - 3u^{13} + \dots + 9u + 1)^2$
c_8, c_{11}	$(u^{14} - 2u^{13} + \dots + 10u + 19)^2$
c_{9}, c_{10}	$u^{28} - u^{27} + \dots - 2u + 7$

Crossings	Riley Polynomials at each crossing	
c_1	$y^{28} - 65y^{27} + \dots + 1024529950y + 32069569$	
c_2	$y^{28} + 95y^{27} + \dots + 1623868142y + 32364721$	
<i>c</i> ₃	$y^{28} - 28y^{27} + \dots + 5316y + 169$	
C ₄	$(y^{14} + 19y^{13} + \dots + 546y + 121)^2$	
c_5, c_7, c_{12}	$y^{28} + 22y^{27} + \dots - 192y + 16$	
c_6	$(y^{14} - 25y^{13} + \dots + 213y + 1)^2$	
c_8, c_{11}	$(y^{14} + 6y^{13} + \dots + 1572y + 361)^2$	
c_{9}, c_{10}	$y^{28} + 5y^{27} + \dots + 808y + 49$	

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.608535 + 0.818694I		
a = -0.411980 + 0.907499I	-6.55425 - 2.13545I	-1.029851 + 0.927255I
b = 0.06835 - 1.89797I		
u = -0.608535 + 0.818694I		
a = -1.176640 + 0.343109I	-6.55425 - 2.13545I	-1.029851 + 0.927255I
b = -0.361633 + 1.267890I		
u = -0.608535 - 0.818694I		
a = -0.411980 - 0.907499I	-6.55425 + 2.13545I	-1.029851 - 0.927255I
b = 0.06835 + 1.89797I		
u = -0.608535 - 0.818694I		
a = -1.176640 - 0.343109I	-6.55425 + 2.13545I	-1.029851 - 0.927255I
b = -0.361633 - 1.267890I		
u = 0.867236 + 0.768486I		
a = 0.660917 - 0.753698I	1.07339 - 1.32380I	7.73703 - 5.74981I
b = 0.417481 + 0.355557I		
u = 0.867236 + 0.768486I		
a = 0.437028 + 0.279301I	1.07339 - 1.32380I	7.73703 - 5.74981I
b = -0.241912 + 0.857846I		
u = 0.867236 - 0.768486I		
a = 0.660917 + 0.753698I	1.07339 + 1.32380I	7.73703 + 5.74981I
b = 0.417481 - 0.355557I		
u = 0.867236 - 0.768486I		
a = 0.437028 - 0.279301I	1.07339 + 1.32380I	7.73703 + 5.74981I
b = -0.241912 - 0.857846I		
u = 0.166845 + 0.745853I		
a = 1.198390 - 0.576968I	0.78349 + 4.75239I	9.02300 - 5.96017I
b = 0.58958 + 1.51898I		
u = 0.166845 + 0.745853I		
a = -0.90241 + 1.32619I	0.78349 + 4.75239I	9.02300 - 5.96017I
b = -0.128235 + 0.168215I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.166845 - 0.745853I		
a = 1.198390 + 0.576968I	0.78349 - 4.75239I	9.02300 + 5.96017I
b = 0.58958 - 1.51898I		
u = 0.166845 - 0.745853I		
a = -0.90241 - 1.32619I	0.78349 - 4.75239I	9.02300 + 5.96017I
b = -0.128235 - 0.168215I		
u = -0.564009 + 0.438487I		
a = -0.755998 + 0.580538I	-2.32511 - 1.81694I	2.43913 + 3.97393I
b = -0.825125 - 0.177451I		
u = -0.564009 + 0.438487I		
a = 1.174370 - 0.329537I	-2.32511 - 1.81694I	2.43913 + 3.97393I
b = 0.126698 - 1.153290I		
u = -0.564009 - 0.438487I		
a = -0.755998 - 0.580538I	-2.32511 + 1.81694I	2.43913 - 3.97393I
b = -0.825125 + 0.177451I		
u = -0.564009 - 0.438487I		
a = 1.174370 + 0.329537I	-2.32511 + 1.81694I	2.43913 - 3.97393I
b = 0.126698 + 1.153290I		
u = -0.22941 + 1.46771I		
a = -1.023950 - 0.634998I	-8.50378 - 4.79575I	-8.7502 + 11.1583I
b = -0.25347 + 1.40401I		
u = -0.22941 + 1.46771I		
a = 0.405862 + 0.057348I	-8.50378 - 4.79575I	-8.7502 + 11.1583I
b = 2.70787 - 0.47109I		
u = -0.22941 - 1.46771I		
a = -1.023950 + 0.634998I	-8.50378 + 4.79575I	-8.7502 - 11.1583I
b = -0.25347 - 1.40401I		
u = -0.22941 - 1.46771I		
a = 0.405862 - 0.057348I	-8.50378 + 4.79575I	-8.7502 - 11.1583I
b = 2.70787 + 0.47109I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.20751 + 1.75492I		
a = 0.579759 - 0.748808I	-15.7247 - 5.5362I	2.24093 + 2.42211I
b = -0.11875 + 1.53558I		
u = -0.20751 + 1.75492I		
a = 0.732938 + 0.492983I	-15.7247 - 5.5362I	2.24093 + 2.42211I
b = 0.60418 - 1.81331I		
u = -0.20751 - 1.75492I		
a = 0.579759 + 0.748808I	-15.7247 + 5.5362I	2.24093 - 2.42211I
b = -0.11875 - 1.53558I		
u = -0.20751 - 1.75492I		
a = 0.732938 - 0.492983I	-15.7247 + 5.5362I	2.24093 - 2.42211I
b = 0.60418 + 1.81331I		
u = 0.07539 + 1.95612I		
a = -0.602812 + 0.538409I	-9.87238 + 4.14557I	-1.66007 - 2.24011I
b = -0.34660 - 1.66417I		
u = 0.07539 + 1.95612I		
a = 0.457249 + 0.003148I	-9.87238 + 4.14557I	-1.66007 - 2.24011I
b = -0.238434 - 0.063577I		
u = 0.07539 - 1.95612I		
a = -0.602812 - 0.538409I	-9.87238 - 4.14557I	-1.66007 + 2.24011I
b = -0.34660 + 1.66417I		
u = 0.07539 - 1.95612I		
a = 0.457249 - 0.003148I	-9.87238 - 4.14557I	-1.66007 + 2.24011I
b = -0.238434 + 0.063577I		

III.
$$I_3^u = \langle 31u^{15} - 15u^{14} + \dots + 92b - 472, \ -577u^{15} + 3333u^{14} + \dots + 9292a + 191294, \ u^{16} + 11u^{14} + \dots + 343u^2 + 101 \rangle$$

(i) Arc colorings

$$a_{10} = \begin{pmatrix} 1 \\ 0 \\ u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ u \\ 0 \\ 0 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 0.0620964u^{15} - 0.358696u^{14} + \dots + 1.99473u - 20.5870 \\ -0.336957u^{15} + 0.163043u^{14} + \dots - 28.1196u + 5.13043 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ u^{2} \\ 0.246879u^{15} + 0.0760870u^{14} + \dots + 23.8426u + 10.5109 \\ -0.478261u^{15} - 0.478261u^{14} + \dots - 46.7826u - 38.7826 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 0.246879u^{15} + 0.0760870u^{14} + \dots + 23.8426u + 10.5109 \\ -0.184783u^{15} - 0.434783u^{14} + \dots - 21.8478u - 31.0978 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0.627206u^{15} - 0.391304u^{14} + \dots + 41.2622u - 21.9130 \\ 0.239130u^{15} + 0.336957u^{14} + \dots + 15.6413u + 28.1196 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0.399053u^{15} - 0.521739u^{14} + \dots + 30.1143u - 25.7174 \\ -0.336957u^{15} + 0.163043u^{14} + \dots - 28.1196u + 5.13043 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0.243328u^{15} - 0.130435u^{14} + \dots + 25.1461u + 4.44565 \\ -0.521739u^{15} + 0.369565u^{14} + \dots - 49.2174u + 11.1957 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -0.0620964u^{15} - 0.358696u^{14} + \dots - 1.99473u - 20.5870 \\ -0.184783u^{15} + 0.434783u^{14} + \dots - 21.8478u + 31.0978 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -0.399053u^{15} - 0.521739u^{14} + \dots - 30.1143u - 25.7174 \\ 0.293478u^{15} + 0.706522u^{14} + \dots + 12.1848u + 47.5652 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0.627206u^{15} - 0.391304u^{14} + \dots + 41.2622u - 21.9130 \\ -0.695652u^{15} + 0.315217u^{14} + \dots + 47.7065u + 11.4022 \end{pmatrix}$$

(ii) Obstruction class = 1

(iii) Cusp Shapes
$$= -\frac{2}{23}u^{14} - \frac{34}{23}u^{12} - \frac{220}{23}u^{10} - \frac{766}{23}u^8 - \frac{1666}{23}u^6 - \frac{2524}{23}u^4 - \frac{2672}{23}u^2 - \frac{1354}{23}u^4 - \frac{2672}{23}u^4 - \frac{1354}{23}u^4 - \frac{1354}{23}u^4$$

Crossings	u-Polynomials at each crossing
c_1	$u^{16} - 10u^{15} + \dots - 602u + 79$
c_2	$u^{16} - 2u^{15} + \dots + 2u + 1$
<i>c</i> ₃	$u^{16} + u^{15} + \dots + 4u + 1$
<i>c</i> ₄	$u^{16} + 11u^{14} + \dots + 343u^2 + 101$
c_5,c_7	$u^{16} - u^{15} + \dots - 8u + 4$
<i>C</i> ₆	$ (u^8 - 4u^7 + 4u^6 + u^5 - 4u^4 + 4u^3 + 4u^2 - u - 1)^2 $
c ₈	$ (u^8 + 2u^7 - u^6 - 3u^5 - 2u^4 - 3u^3 + u^2 + 5u + 1)^2 $
<i>c</i> ₉	$u^{16} - 2u^{14} + \dots + 7u^2 + 1$
c_{10}	$u^{16} - 2u^{14} + \dots + 7u^2 + 1$
c_{11}	$(u^8 - 2u^7 - u^6 + 3u^5 - 2u^4 + 3u^3 + u^2 - 5u + 1)^2$
c_{12}	$u^{16} + u^{15} + \dots + 8u + 4$

Crossings	Riley Polynomials at each crossing		
c_1	$y^{16} - 28y^{15} + \dots + 11898y + 6241$		
c_2	$y^{16} + 32y^{15} + \dots + 50y + 1$		
<i>c</i> ₃	$y^{16} - 9y^{15} + \dots - 6y + 1$		
c_4	$(y^8 + 11y^7 + 54y^6 + 160y^5 + 329y^4 + 496y^3 + 526y^2 + 343y + 101)^2$		
c_5, c_7, c_{12}	$y^{16} + 7y^{15} + \dots + 224y + 16$		
<i>c</i> ₆	$(y^8 - 8y^7 + 16y^6 + 7y^5 + 30y^4 - 54y^3 + 32y^2 - 9y + 1)^2$		
c_8, c_{11}	$(y^8 - 6y^7 + 9y^6 + 9y^5 - 34y^4 + 15y^3 + 27y^2 - 23y + 1)^2$		
c_9, c_{10}	$y^{16} - 4y^{15} + \dots + 14y + 1$		

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.090290I		
a = -0.961088 + 0.180402I	-5.13962	-1.84340
b = -0.664122 - 0.999638I		
u = -1.090290I		
a = -0.961088 - 0.180402I	-5.13962	-1.84340
b = -0.664122 + 0.999638I		
u = 0.258427 + 1.166580I		
a = -0.565702 + 1.110660I	-0.44142 + 5.36486I	3.50284 - 6.38935I
b = -0.139231 - 0.937062I		
u = 0.258427 - 1.166580I		
a = -0.565702 - 1.110660I	-0.44142 - 5.36486I	3.50284 + 6.38935I
b = -0.139231 + 0.937062I		
u = -0.258427 + 1.166580I		
a = -0.870065 - 0.439798I	-0.44142 - 5.36486I	3.50284 + 6.38935I
b = -0.83736 + 1.51086I		
u = -0.258427 - 1.166580I		
a = -0.870065 + 0.439798I	-0.44142 + 5.36486I	3.50284 - 6.38935I
b = -0.83736 - 1.51086I		
u = 0.892618 + 0.961745I		
a = 0.611276 - 0.635790I	0.89291 - 1.78628I	1.46883 + 8.62602I
b = 0.197106 + 0.382187I		
u = 0.892618 - 0.961745I		
a = 0.611276 + 0.635790I	0.89291 + 1.78628I	1.46883 - 8.62602I
b = 0.197106 - 0.382187I		
u = -0.892618 + 0.961745I	0.00004 . 4 =0.0007	4 40000 0 000007
a = -0.259050 + 0.347570I	0.89291 + 1.78628I	1.46883 - 8.62602I
b = 0.227991 + 0.862739I		
u = -0.892618 - 0.961745I	0.00001 1.700007	1 40000 : 0 00000
a = -0.259050 - 0.347570I	0.89291 - 1.78628I	1.46883 + 8.62602I
b = 0.227991 - 0.862739I		

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.50959I		
a = -0.312012 - 0.703036I	0.871886	3.60060
b = 0.167596 + 0.929211I		
u = -1.50959I		
a = -0.312012 + 0.703036I	0.871886	3.60060
b = 0.167596 - 0.929211I		
u = -0.26473 + 1.55369I		
a = 0.266058 + 0.030684I	-8.18722 - 4.50719I	6.14971 - 1.09337I
b = 1.84403 - 0.56362I		
u = -0.26473 - 1.55369I		
a = 0.266058 - 0.030684I	-8.18722 + 4.50719I	6.14971 + 1.09337I
b = 1.84403 + 0.56362I		
u = 0.26473 + 1.55369I		
a = -0.909417 + 0.550848I	-8.18722 + 4.50719I	6.14971 + 1.09337I
b = -0.29601 - 1.42725I		
u = 0.26473 - 1.55369I		
a = -0.909417 - 0.550848I	-8.18722 - 4.50719I	6.14971 - 1.09337I
b = -0.29601 + 1.42725I		

IV.
$$I_1^v = \langle a, -v^2 + b - 3v - 1, v^3 + 3v^2 + 2v + 1 \rangle$$

(i) Arc colorings

$$a_{5} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} v \\ 0 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} v \\ 0 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 0 \\ v^{2} + 3v + 1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -v^{2} - 3v - 1 \\ v^{2} + 3v + 1 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -2v^{2} - 4v - 1 \\ v^{2} + 3v + 1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} v \\ -v^{2} - 2v \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} v \\ -v^{2} - 3v - 1 \\ v^{2} + 3v + 1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} v \\ -v^{2} - 3v - 1 \\ v + 2 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 3v^{2} + 6v + 3 \\ -v^{2} - 3v - 1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 2v^{2} + 3v + 2 \\ -v^{2} - 3v - 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -2v \\ v^{2} + 2v \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $-9v^2 22v 4$

Crossings	u-Polynomials at each crossing
c_1, c_{12}	$u^3 - u^2 + 2u - 1$
c_2, c_{10}	$u^3 - u + 1$
<i>C</i> 3	$u^3 + u^2 - 1$
C ₄	u^3
c_5, c_7	$u^3 + u^2 + 2u + 1$
	$u^3 + 4u^2 + 7u + 5$
c ₈	$u^3 - 2u^2 + u - 1$
<i>C</i> 9	u^3-u-1
c_{11}	$u^3 + 2u^2 + u + 1$

Crossings	Riley Polynomials at each crossing
c_1, c_5, c_7 c_{12}	$y^3 + 3y^2 + 2y - 1$
c_2, c_9, c_{10}	$y^3 - 2y^2 + y - 1$
c_3	$y^3 - y^2 + 2y - 1$
C ₄	y^3
<i>c</i> ₆	$y^3 - 2y^2 + 9y - 25$
c_8,c_{11}	$y^3 - 2y^2 - 3y - 1$

Solutions to I_1^v	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
v = -0.337641 + 0.562280I		
a = 0	-1.45094 + 3.77083I	5.24751 - 8.95287I
b = -0.215080 + 1.307140I		
v = -0.337641 - 0.562280I		
a = 0	-1.45094 - 3.77083I	5.24751 + 8.95287I
b = -0.215080 - 1.307140I		
v = -2.32472		
a = 0	6.19175	-1.49500
b = -0.569840		

V. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$(u^{3} - u^{2} + 2u - 1)(u^{16} - 10u^{15} + \dots - 602u + 79)$ $\cdot (u^{16} - u^{15} + \dots - 11u + 1)(u^{28} - 5u^{27} + \dots + 1150u + 5663)$
c_2	$ (u^{3} - u + 1)(u^{16} - 2u^{15} + \dots + 194u - 121)(u^{16} - 2u^{15} + \dots + 2u + 1) $ $ \cdot (u^{28} + u^{27} + \dots + 20378u + 5689) $
c_3	$(u^{3} + u^{2} - 1)(u^{16} - u^{15} + \dots - 19u + 7)(u^{16} + u^{15} + \dots + 4u + 1)$ $\cdot (u^{28} - 14u^{26} + \dots + 40u + 13)$
c_4	$u^{3}(u^{14} + u^{13} + \dots + 20u + 11)^{2}(u^{16} + 11u^{14} + \dots + 343u^{2} + 101)$ $\cdot (u^{16} - 3u^{15} + \dots - 32u - 16)$
c_5,c_7	$ (u^{3} + u^{2} + 2u + 1)(u^{16} - u^{15} + \dots - 8u + 4)(u^{16} + u^{15} + \dots - 4u + 4) $ $ \cdot (u^{28} - 4u^{27} + \dots + 52u + 4) $
c_6	$(u^{3} + 4u^{2} + 7u + 5)(u^{8} - 4u^{7} + 4u^{6} + u^{5} - 4u^{4} + 4u^{3} + 4u^{2} - u - 1)^{2}$ $\cdot ((u^{14} - 3u^{13} + \dots + 9u + 1)^{2})(u^{16} + 7u^{15} + \dots - 65u + 28)$
c_8	$(u^{3} - 2u^{2} + u - 1)(u^{8} + 2u^{7} - u^{6} - 3u^{5} - 2u^{4} - 3u^{3} + u^{2} + 5u + 1)^{2}$ $\cdot ((u^{14} - 2u^{13} + \dots + 10u + 19)^{2})(u^{16} + 3u^{15} + \dots + 13u - 28)$
c_9	$(u^{3} - u - 1)(u^{16} - 2u^{14} + \dots + 4u^{2} - 1)(u^{16} - 2u^{14} + \dots + 7u^{2} + 1)$ $\cdot (u^{28} - u^{27} + \dots - 2u + 7)$
c ₁₀	$(u^{3} - u + 1)(u^{16} - 2u^{14} + \dots + 4u^{2} - 1)(u^{16} - 2u^{14} + \dots + 7u^{2} + 1)$ $\cdot (u^{28} - u^{27} + \dots - 2u + 7)$
c_{11}	$(u^{3} + 2u^{2} + u + 1)(u^{8} - 2u^{7} - u^{6} + 3u^{5} - 2u^{4} + 3u^{3} + u^{2} - 5u + 1)^{2}$ $\cdot ((u^{14} - 2u^{13} + \dots + 10u + 19)^{2})(u^{16} + 3u^{15} + \dots + 13u - 28)$
c_{12}	$(u^{3} - u^{2} + 2u - 1)(u^{16} + u^{15} + \dots + 8u + 4)(u^{16} + u^{15} + \dots - 4u + 4)$ $\cdot (u^{28} - 4u^{27} + \dots + 52u + 4)$

VI. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$(y^{3} + 3y^{2} + 2y - 1)(y^{16} - 28y^{15} + \dots + 11898y + 6241)$ $\cdot (y^{16} - 21y^{15} + \dots - 131y + 1)$
	$ (y^{28} - 65y^{27} + \dots + 1024529950y + 32069569) $
c_2	$(y^{3} - 2y^{2} + y - 1)(y^{16} + 26y^{15} + \dots - 15614y + 14641)$ $\cdot (y^{16} + 32y^{15} + \dots + 50y + 1)$ $\cdot (y^{28} + 95y^{27} + \dots + 1623868142y + 32364721)$
	$(y + 95y + \cdots + 1025000142y + 52504721)$
c_3	$(y^3 - y^2 + 2y - 1)(y^{16} - 19y^{15} + \dots - 501y + 49)$ $\cdot (y^{16} - 9y^{15} + \dots - 6y + 1)(y^{28} - 28y^{27} + \dots + 5316y + 169)$
c_4	y^{3} $\cdot (y^{8} + 11y^{7} + 54y^{6} + 160y^{5} + 329y^{4} + 496y^{3} + 526y^{2} + 343y + 101)^{2}$ $\cdot ((y^{14} + 19y^{13} + \dots + 546y + 121)^{2})(y^{16} + 23y^{15} + \dots - 2304y + 256)$
-	((g 13g 111 140g 121))(g 23g 111 2504g 250)
c_5, c_7, c_{12}	$(y^{3} + 3y^{2} + 2y - 1)(y^{16} + 7y^{15} + \dots + 224y + 16)$ $\cdot (y^{16} + 19y^{15} + \dots - 80y + 16)(y^{28} + 22y^{27} + \dots - 192y + 16)$
C ₆	$(y^{3} - 2y^{2} + 9y - 25)$ $\cdot (y^{8} - 8y^{7} + 16y^{6} + 7y^{5} + 30y^{4} - 54y^{3} + 32y^{2} - 9y + 1)^{2}$ $\cdot ((y^{14} - 25y^{13} + \dots + 213y + 1)^{2})(y^{16} - 25y^{15} + \dots - 33289y + 784)$
c_8, c_{11}	$(y^{3} - 2y^{2} - 3y - 1)$ $\cdot (y^{8} - 6y^{7} + 9y^{6} + 9y^{5} - 34y^{4} + 15y^{3} + 27y^{2} - 23y + 1)^{2}$ $\cdot ((y^{14} + 6y^{13} + \dots + 1572y + 361)^{2})(y^{16} + y^{15} + \dots - 7169y + 784)$
c_9,c_{10}	$(y^{3} - 2y^{2} + y - 1)(y^{16} - 4y^{15} + \dots + 14y + 1)(y^{16} - 4y^{15} + \dots - 8y + 1)$ $\cdot (y^{28} + 5y^{27} + \dots + 808y + 49)$