18.335 Take-Home Midterm Exam Solutions: Spring 2021

Problem 1: (34 points)

As suggested, let's define a recurrence for Horner's rule so that $s_k = c_k + x s_{k+1}$ with $s_{n-1} = c_{n-1}$, so that $f = s_0$, and hence the corresponding floating-point algorithm for inputs in \mathbb{F} (as in the summation notes from class, this is just a convenience — inputs in \mathbb{R} would just give some additional $1 + \varepsilon$ factors that we could trivially incorporate into the same analysis) is

$$\tilde{s}_{n-1} = c_{n-1}$$

$$\tilde{s}_k = c_k \oplus (x \otimes \tilde{s}_{k+1}) = [c_k + x\tilde{s}_{k+1}(1 + \varepsilon_k)](1 + \varepsilon_k')$$

for some $|\varepsilon_k| \le \varepsilon_{\text{machine}}$ and $|\varepsilon_k'| \le \varepsilon_{\text{machine}}$, by the fundamental axiom of floating-point arithmetic.

Note: a common student oversimplification here seems to be to make all of the ε terms the same — remember, every operation has a *different* roundoff error in general! Only the bound on $|\varepsilon|$ is the same.

First Solution

Hence, dropping $O(\varepsilon_{\text{machine}}^2)$ terms, we have:

$$\tilde{s}_{k} = \underbrace{\left(c_{k} + c_{k}\varepsilon'_{k} + x\tilde{s}_{k+1}[\varepsilon_{k} + \varepsilon'_{k}] + O(\varepsilon_{\text{machine}}^{2})\right)}_{\tilde{c}_{k}} + x\tilde{s}_{k+1} = \sum_{j=k}^{n-1} \tilde{c}_{j}x^{j-k},$$

where we have defined \tilde{c}_k . By construction

$$\tilde{f}(c,x) = \tilde{s}_0 = f(\tilde{c},x),$$

i.e. the output of \tilde{f} is equal to the exact polynomial output with altered coefficients \tilde{c} . To establish backwards stability, we now need to show that $\|\tilde{c} - c\| = \|c\| O(\varepsilon_{\text{machine}})$ in some norm. Similar to the summation analysis in class, we will choose the L^1 norm for convenience. In particular,

$$|\tilde{c}_k - c_k| \le |c_k| |\varepsilon'_k| + |\varepsilon_k + \varepsilon'_k| |x| |\tilde{s}_{k+1}| + O(\varepsilon_{\text{machine}}^2).$$

Now, use the fact that

$$|\tilde{s}_k| = \left| \sum_{j=k}^{n-1} \tilde{c}_j x^{j-k} \right| \le \left| \sum_{j=k}^{n-1} \tilde{c}_j \right| \left(\max\{1, |x|^{n-k}\} \right) \le \|\tilde{c}\|_1 \left(\max\{1, |x|^{n-1}\} \right)$$

to obtain

$$|\tilde{c}_k - c_k| \leq |c_k| |\varepsilon_k'| + |\varepsilon_k + \varepsilon_k'| |x| \|\tilde{c}\|_1 \left(\max\{1, |x|^{n-1}\}\right) + O(\varepsilon_{\text{machine}}^2) \leq |c_k| \varepsilon_{\text{machine}} + 2|x| \varepsilon_{\text{machine}} \|\tilde{c}\|_1 \left(\max\{1, |x|^{n-1}\}\right) + O(\varepsilon_{\text{machine}}^2) \leq |c_k| \varepsilon_{\text{machine}} + 2|x| \varepsilon_{\text{machine}} \|\tilde{c}\|_1 \left(\max\{1, |x|^{n-1}\}\right) + O(\varepsilon_{\text{machine}}^2) \leq |c_k| \varepsilon_{\text{machine}} + 2|x| \varepsilon_{\text{machine}} \|\tilde{c}\|_1 \left(\max\{1, |x|^{n-1}\}\right) + O(\varepsilon_{\text{machine}}^2) \leq |c_k| \varepsilon_{\text{machine}} + 2|x| \varepsilon_{\text{machine}} \|\tilde{c}\|_1 \left(\max\{1, |x|^{n-1}\}\right) + O(\varepsilon_{\text{machine}}^2) \leq |c_k| \varepsilon_{\text{machine}} + 2|x| \varepsilon_{\text{machine}} \|\tilde{c}\|_1 \left(\max\{1, |x|^{n-1}\}\right) + O(\varepsilon_{\text{machine}}^2) \leq |c_k| \varepsilon_{\text{machine}} + 2|x| \varepsilon_{\text{machine}} \|\tilde{c}\|_1 \left(\max\{1, |x|^{n-1}\}\right) + O(\varepsilon_{\text{machine}}^2) \leq |c_k| \varepsilon_{\text{machine}} + 2|x| \varepsilon_{\text{machine}} \|\tilde{c}\|_1 \left(\max\{1, |x|^{n-1}\}\right) + O(\varepsilon_{\text{machine}}^2) \leq |c_k| \varepsilon_{\text{machine}} + 2|x| \varepsilon_{\text{machine}} \|\tilde{c}\|_1 \left(\max\{1, |x|^{n-1}\}\right) + O(\varepsilon_{\text{machine}}^2) \leq |c_k| \varepsilon_{\text{machine}} + 2|x| \varepsilon_{\text{machine}} \|\tilde{c}\|_1 \left(\max\{1, |x|^{n-1}\}\right) + O(\varepsilon_{\text{machine}}^2) \leq |c_k| \varepsilon_{\text{machine}} + 2|x| \varepsilon_{\text{machine}} \|\tilde{c}\|_1 \left(\max\{1, |x|^{n-1}\}\right) + O(\varepsilon_{\text{machine}}^2) \leq |c_k| \varepsilon_{\text{machine}} + 2|x| \varepsilon_{\text{machine}} \|\tilde{c}\|_1 \left(\max\{1, |x|^{n-1}\}\right) + O(\varepsilon_{\text{machine}}^2) \leq |c_k| \varepsilon_{\text{machine}} + 2|x| \varepsilon_{\text{machine}} \|\tilde{c}\|_1 \left(\max\{1, |x|^{n-1}\}\right) + O(\varepsilon_{\text{machine}}^2) \leq |c_k| \varepsilon_{\text{machine}} + 2|x| \varepsilon_{\text{machine}} \|\tilde{c}\|_1 \left(\max\{1, |x|^{n-1}\}\right) + O(\varepsilon_{\text{machine}}^2) \leq |c_k| \varepsilon_{\text{machine}} + 2|x| \varepsilon_{\text{machine}} \|\tilde{c}\|_1 \left(\max\{1, |x|^{n-1}\}\right) + O(\varepsilon_{\text{machine}}^2) \leq |c_k| \varepsilon_{\text{machine}} + 2|x| \varepsilon_{\text{machine}} \|\tilde{c}\|_1 \left(\max\{1, |x|^{n-1}\}\right) + O(\varepsilon_{\text{machine}}^2) \leq |c_k| \varepsilon_{\text{machine}} + 2|x| \varepsilon_{\text{machine}} \|\tilde{c}\|_1 \left(\max\{1, |x|^{n-1}\}\right) + O(\varepsilon_{\text{machine}}^2) \leq |c_k| \varepsilon_{\text{machine}} + 2|x| \varepsilon_{\text$$

and hence

$$\|\tilde{c} - c\|_1 \leq \|c\|_1 \varepsilon_{\text{machine}} + 2n|x|\varepsilon_{\text{machine}} \|\tilde{c}\|_1 \left(\max\{1, |x|^{n-1}\} \right) + O(\varepsilon_{\text{machine}}^2) = \|c\|_1 O(\varepsilon_{\text{machine}}) + \|\tilde{c}\|_1 O(\varepsilon_{\text{mach$$

where we can put any higher-order terms and c-independent coefficients into the $\varepsilon_{\text{machine}}$. Finally, exactly as in Sec. 5.1 of the summation-stability notes from class, $\|\ddot{c}\|_1 O(\varepsilon_{\text{machine}}) = \|c\|_1 O(\varepsilon_{\text{machine}})$, because the difference is higher-order in $\varepsilon_{\text{machine}}$, so we finally have

$$\|\tilde{c} - c\|_1 = \|c\|_1 O(\varepsilon_{\text{machine}})$$

and our backwards-stability proof is complete.

Better Solution

The above solution isn't completely satisfying, because the $\|\tilde{c} - c\|_1$ error bound depends on x, which would be a problem if we wanted to prove backwards stability with respect to *both* c and x. Instead, we can apply a different formulation. Start with the formula for \tilde{s}_k at the top, and collect terms as:

$$\tilde{s}_k = c_k(1 + \varepsilon_k') + x\tilde{s}_{k+1}(1 + \varepsilon_k)(1 + \varepsilon_k').$$

By induction on n, we will show that

$$\tilde{s}_k = \sum_{j=k}^{n-1} \left[c_j (1 + \varepsilon_j') x^{j-k} \prod_{\ell=k}^{j-1} (1 + \varepsilon_\ell) (1 + \varepsilon_\ell') \right].$$

It is trivially true for k = n - 1 (with $\varepsilon'_{n-1} = 0$). Proceeding by (downward) induction on k, we have

$$\begin{split} \tilde{s}_k &= c_k (1 + \varepsilon_k') + x (1 + \varepsilon_k) (1 + \varepsilon_k') \sum_{j=k+1}^{n-1} \left[c_j (1 + \varepsilon_j') x^{j-k-1} \prod_{\ell=k+1}^{j-1} (1 + \varepsilon_\ell) (1 + \varepsilon_\ell') \right] \\ &= c_k (1 + \varepsilon_k') + \sum_{j=k+1}^{n-1} \left[c_j (1 + \varepsilon_j') x^{j-k} \prod_{\ell=k}^{n-1} (1 + \varepsilon_\ell) (1 + \varepsilon_\ell') \right] \end{split}$$

and the result follows. Therefore,

$$\tilde{f}(c,x) = \tilde{s}_0 = \sum_{j=0}^{n-1} \left[c_j (1 + \varepsilon_j') x^j \prod_{\ell=0}^{j-1} (1 + \varepsilon_\ell) (1 + \varepsilon_\ell') \right].$$

We can define (differently from the first solution above!):

$$\boxed{\tilde{c}_j = c_j (1 + \varepsilon_j') \prod_{\ell=0}^{j-1} (1 + \varepsilon_\ell) (1 + \varepsilon_\ell')} = c_j \left(1 + \varepsilon_j' + \sum_{\ell=0}^{j-1} \varepsilon_\ell + \sum_{\ell=0}^{j-1} \varepsilon_\ell' \right) + O(\varepsilon_{\text{machine}}^2),$$

and it follows that $\tilde{f}(c,x) = \sum_{j=0}^{n-1} \tilde{c}_j x^j = f(\tilde{c},x)$ as desired. Furthermore, we obtain

$$|\tilde{c}_j - c_j| \le (2j+1)\varepsilon_{\text{machine}}|c_j| + O(\varepsilon_{\text{machine}}^2)$$

and hence

$$\|\tilde{c} - c\|_1 \le (2n - 1)\varepsilon_{\text{machine}} \|c\|_1 + O(\varepsilon_{\text{machine}}^2) = \|c\|_1 O(\varepsilon_{\text{machine}})$$

as desired, this time with a coefficient independent of x. (So, if we wanted, we could also say that it is backwards-stable with respect to both c and x simultaneously, setting $\tilde{x} = x$.)

Problem 2: (20+13 points)

Suppose that

is an $m \times m$ Hermitian $(T = T^*)$ complex tridiagonal matrix

(a) Let

$$D = \left(\begin{array}{ccc} d_1 & & & \\ & d_2 & & \\ & & \ddots & \\ & & & d_m \end{array} \right).$$

Then

$$\hat{T} = D^{-1}TD = \left(egin{array}{cccc} lpha_1 & eta_1 rac{d_2}{d_1} & & & & & & \\ \overline{eta_1} rac{d_1}{d_2} & lpha_2 & eta_2 rac{d_3}{d_2} & & & & & & \\ & \overline{eta_2} rac{d_2}{d_3} & \ddots & & \ddots & & & & \\ & & \ddots & lpha_{m-1} & eta_{m-1} rac{d_m}{d_{m-1}} & & & eta_{m-1} rac{d_m}{d_{m-1}} & & & & \\ & & & \overline{eta_{m-1}} rac{d_{m-1}}{d_m} & lpha_m & & & & \end{array}
ight).$$

Note that α_k is already real since $T=T^*$, so we only need to choose D to make the off-diagonal terms real. Write β_k in polar form as $\beta_k=r_ke^{i\phi_k}$. In $D^{-1}TD$, this is rescaled in the upper diagonal to $\beta_k\frac{d_{k+1}}{d_k}$. To make this purely real, we therefore want $\frac{d_{k+1}}{d_k}=e^{-i\phi_k}$ (or $-e^{-i\phi_k}$ would also work). Hence, let us define the diagonals by the recurrence:

$$d_1 = 1$$
 (arbitrary choice),
 $d_{k+1} = d_k e^{-i\phi_k} = e^{-i\sum_{j \le k} \phi_j}.$

This also fixes the lower diagonal, since $\frac{d_k}{d_{k+1}} = e^{+i\phi_k}$ and hence:

$$\overline{\beta_k} \frac{d_k}{d_{k+1}} = r_k e^{-i\phi_k} \frac{d_k}{d_{k+1}} = r_k.$$

D is clearly unitary since the diagonal entries all have $|d_k| = 1$ (as long as we chose $|d_1| = 1$).

(b) We should apply QR iterations to \hat{T} , which gives the same result because T and \hat{T} are **similar** matrices (differeing only by a unitary change of basis: they have the same eigenvalues, and the eigenvectors differ by a factor of D), and operating on \hat{T} is faster because then the QR factors will also be purely real, and operations on real numbers take fewer floating-point operations than corresponding operations on complex numbers (adding complex numbers takes 2 flops and multiplying them takes 6 flops, versus 1 addition and 1 multiplication, respectively, for real numbers). (It also requires half as much memory and hence will be more cache-efficient.)

Problem 3: (19+14 points)

Suppose A is an $m \times n$ matrix with n > m and rank m (linearly independent rows): a "wide" matrix. In this case, Ax = b has infinitely many solutions x for any right-hand side $b \in \mathbb{C}^m$ (it is an *underdetermined* system of equations). We compute the QR factorization of the conjugate-transpose $A^* = QR = \hat{Q}\hat{R}$ by some backwards-stable algorithm (e.g. Householder QR), where Q is $n \times n$ and R is $n \times m$, and \hat{Q} is the "thin" QR (the first m columns of Q) and \hat{R} is correspondingly the first m rows of R.

(a) As suggested by the hint, let's write the solutions in the Q basis as

$$x = Qy = (\hat{Q} \quad Q_{\perp}) \begin{pmatrix} \hat{y} \\ y_{\perp} \end{pmatrix} = \hat{Q}\hat{y} + Q_{\perp}y_{\perp},$$

where we have broken up y into the m coefficients of \hat{Q} and the n-m coefficients of Q_{\perp} . Then

$$b = Ax = \hat{R}^* \hat{Q}^* x = \hat{R}^* \hat{Q}^* (\hat{Q}\hat{y} + Q_{\perp}y_{\perp}) = \hat{R}^* \hat{y},$$

since $\hat{Q}^*\hat{Q}=I$ (being an orthonormal basis) and $\hat{Q}^*Q_\perp=0$ since Q_\perp spans the orthogonal complement of \hat{Q} , which spans the row space $C(A^*)$, and hence Q_\perp spans $C(A^*)^\perp=N(A)$. This tells us several things.

- (i) \hat{y} is uniquely determined by solving the $m \times m$ lower-triangular system $\hat{R}^* \hat{y} = b$.
- (ii) any value of y_{\perp} is allowed. (Equivalently, the term $Q_{\perp}y_{\perp}$ represents anything in the null space of A.)
- (iii) $||x||_2^2 = (\hat{Q}\hat{y} + Q_{\perp}y_{\perp})^*(\hat{Q}\hat{y} + Q_{\perp}y_{\perp}) = ||\hat{y}||_2^2 + ||y_{\perp}||_2^2 \ge ||\hat{y}||_2^2$, which is clearly minimized for $y_{\perp} = 0$.
- (iv) Hence the minimum-norm solution is $x = \hat{Q}\hat{y} = \hat{Q}(\hat{R}^*)^{-1}b$.

Note: a common student mistake here is to write $Ax = \hat{R}^* \hat{Q}^* x = b \implies \hat{Q}^* x = (\hat{R}^*)^{-1} b$, and then "invert" the "unitary" matrix \hat{Q}^* by multiplying both sides by \hat{Q} , thus obtaining the "right answer" for the wrong reason. $\hat{Q}^* \hat{Q} = I$, but $\hat{Q} \hat{Q}^* \neq I$ because \hat{Q} is not square (and hence not unitary or invertible). You have to be more careful to justify the result above.

(b) As suggested, suppose we are *given* the $A^* = QR$ factorization computed by Householder QR, and now we want to work out the additional cost of computing our minimum-norm solution x above. Then the additional. cost is to (i) solve $\hat{R}^*\hat{y} = b$ and (ii) multiply $\hat{Q}\hat{y}$. Computation (i) can use forward-substitution since \hat{R}^* is lower-triangular, so it is $\Theta(m^2)$.

(Note, in particular, that we should *not* compute the matrix inverse $(\hat{R}^*)^{-1}$ explicitly! As emphasized in class, explicit inverses are very rarely used in practical computations. Even though this inverse is lower-triangular, computing it explicitly is $\Theta(m^3)$ as far as I know.)

For computation (ii), remember that Householder QR does not actually compute Q explicitly — rather, it computes a set of reflectors and provides an efficient method (algorithm 10.3 in the book) to multiply Q by vectors as a sequence of reflections. Here, we need to apply that algorithm 10.3, but we are multiplying by $y = \begin{pmatrix} \hat{y} \\ 0 \end{pmatrix}$ so we can maybe save a few operations by skipping multiplications with the zero components. Algorithm 10.3 initializes x = y and then computes $x_{k:n} = x_{k:n} - 2v_k(v_k^*x_{k:n})$ for k = m down to 1 (where I've swapped m and n compared to the book). Here, we hope that this simplifies because $y_{m+1:n} = 0$. However, after the *very first* (k = m) step of he algorithm, in which $v_m^*x_{m:n} = \overline{v_m[m]}\hat{y}[m] \neq 0$ in general, we subtract a multiple of $2v_k$ from $x_{m:n}$ and *all* the components become nonzero for subsequent steps. So, in the end the savings from the zero entries of y are asymptotically negligible and the cost of step (ii) is $\Theta(nm)$ exactly as in the book.

Even if you assume we have \hat{Q} explicitly, e.g. if you used modified Gram-Schmidt, multiplying it by a vector still has $\Theta(nm)$ cost.

Hence, the overall complexity is $\Theta(m^2) + \Theta(nm) = \Theta(mn)$: since n > m the step (ii) dominates.