CS202M First Exam

Jan 30, 2024

Duration: 75 minutes

Max Marks: 40

Closed Book and Open Lecture Notes and Open Printouts of Course Website Material

Instructions

1. The exam is closed book and open lecture-notes and open printouts of course website material.

- 2. You are not allowed to have electronic devices such as mobile phones, laptops or tablet PCs with you during the exam.
- 3. Answers should be clear, and to the point. Also write your answers neatly and strike out any rough work.
- 4. In your derivation trees, for each inference rule applied please write its name alongside.

Q1(marks-4) Give a (intuitionistic logic) derivation of $A \vee \neg A \vdash_{Ni} \neg \neg A \to A$.

Q2(marks-8) Give a (classical logic) derivation of $A \to B \vdash_{Nc} \neg A \lor B$.

Q3(marks-3+3+12)

- (a) Give a (minimal logic) derivation of $A, \neg B \vdash_{Nm} \neg (A \rightarrow B)$.
- (b) Label your deduction in (a) with construction terms.
- (c) Give a (minimal logic) derivation of $\neg\neg(A \to B) \vdash_{Nm} \neg\neg A \to \neg\neg B$.

[Hint: you may like to use part (a)]

Q4(marks-5+5) Let $\mathbf{B}=(B,\leq,\vee,\wedge,\neg,0,1)$ be a Boolean algebra.

- (i) For any $a, b \in B$, show that $a \leq b$ iff $\neg b \leq \neg a$.
- (ii) For any $a, b \in B$, show that $a \leq b$ iff $a \to b = 1$, (where $a \to b \equiv \neg a \lor b$).

-----End-----