Aufgabenblatt 3 zur Diskreten Mathematik 2

(Ordnungsrelationen)

Aufgabe 3.1

Es seien M_1 , M_2 nichtleere Mengen, und R_i sei eine Ordnungsrelation auf M_i für i = 1, 2. Wir verwenden die Notation

$$x_i \sqsubseteq_i y_i :\Leftrightarrow (x_i, y_i) \in R_i$$
 für alle $x_i, y_i \in M_i$ und $i = 1, 2$.

Auf $M := M_1 \times M_2$ definiere die Relation

$$(x_1, x_2) \sqsubseteq (y_1, y_2) :\Leftrightarrow x_1 \sqsubseteq_1 y_1 \text{ und } x_2 \sqsubseteq_2 y_2 \text{ für alle } (x_1, x_2), (y_1, y_2) \in M.$$

- (a) Zeigen Sie, dass \sqsubseteq eine Ordnungsrelation auf M definiert.
- (b) Betrachte speziell den Fall $M_1 = M_2 = \mathbb{N}_0$ und $\sqsubseteq_1 = \sqsubseteq_2 = \leqslant$. Ist dann die Ordnungsrelation \sqsubseteq auf $\mathbb{N}_0 \times \mathbb{N}_0$ eine totale Ordnung?

Aufgabe 3.2

Es sei X eine Menge und M := P(X) die Potenzmenge von X.

- (a) Zeigen Sie, dass die Teilmengen-Relation ⊆ eine Ordnungsrelation ist.
- (b) Zeigen Sie, dass für alle $A, B \in M$ gilt $\sup\{A, B\} = A \cup B$ und $\inf\{A, B\} = A \cap B$.

Aufgabe 3.3

Für eine Zahl $n \in \mathbb{N}$ bezeichne $T(n) := \{k \in \mathbb{N} \mid k \mid n\}$ die Menge aller Teiler von n, ausgestattet mit der Teiler-Ordnung. Erstellen Sie die Hasse-Diagramme von T(5), T(6).T(24) und T(648).

Aufgabe 3.4

Betrachte die Menge $M := \{0, 2, 3, 4, 6, 7, 8, 9, 12, 24, 25\}$ ausgestattet mit der | (teilt)-Relation.

- (a) Erstellen sie das zugehörige Hasse-Diagramm.
- (b) Bestimmen Sie alle maximalen und minimalen Elemente sowie größtes und kleines Element von M, sofern diese existieren.
- (c) Bestimmen Sie alle oberen und unteren Schranken von $A := \{4, 6, 12\}$ sowie inf A und sup A, sofern diese existieren.

Aufgabe 3.5

Es sei R eine Ordnungsrelation auf der Menge M.

- (a) Zeigen Sie, dass die inverse Relation R^{-1} ebenfalls eine Ordnungsrelation auf M ist.
- (b) Seien $A \subseteq M$ und $b \in M$. Zeigen Sie: b ist genau dann größtes Element (resp. maximales Element/obere Schranke/obere Grenze/Supremum) von A bezüglich R, wenn b kleinstes Element (resp. minimales Element/untere Schranke/untere Grenze/Infimum) von A bezüglich R^{-1} ist.

Aufgabe 3.6

Es sei $M := \mathbb{Q}$ ausgestattet mit der \leq -Ordnung und $A := \{\frac{1}{n} \mid n \in \mathbb{N}\} \subseteq M$. Bestimmen Sie inf A und sup A.