Cache memories

Slides by: Randal E. Bryant and David R. O'Hallaron (CMU) Presented by Xin Jin and David Hovemeyer for CSF

October 15, 2021

601.229 Computer Systems Fundamentals

Cache writes and performance

What about writes?

- Multiple copies of data exist:
 - ► L1, L2, L3, Main Memory, Disk
- What to do on a write-hit?
 - Write-through (write immediately to memory)
 - Write-back (defer write to memory until replacement of line)
 - Need a dirty bit (line different from memory or not)
- What to do on a write-miss?
 - Write-allocate (load into cache, update line in cache)
 - Good if more writes to the location follow
 - No-write-allocate (writes straight to memory, does not load into cache)
- Typical
 - Write-through + No-write-allocate
 - Write-back + Write-allocate

Zoom poll #1!

Consider the following code:

```
for (int i = 0; i < 8; i++) {
  a[i] = i * 2;
}</pre>
```

Assume that

- address of a[0] is a multiple of 16
- cache is cold initially
- i is a register
- sizeof(int)=4
- ▶ 16 bytes per block
- cache is direct-mapped
- loads and stores always access exactly 4 bytes

If there are 8 stores to *memory*, what cache configuration is likely?

- A. write-allocate + write-through
- B. no-write-allocate + write-through
- C. write-allocate + write-back
- D. no-write-allocate + write-back

Zoom poll #2!

Consider the following code:

```
for (int i = 0; i < 8; i++) {
  a[i] = i * 2;
}</pre>
```

Assume that

- address of a[0] is a multiple of 16
- cache is cold initially
- i is a register
- sizeof(int)=4
- ► 16 bytes per block
- cache is direct-mapped
- loads and stores always access exactly 4 bytes

If the cache is configured for write-allocate + write-back, how many loads from *memory* are there?

- A. 0
- B. 2
- C. 8
- D. 10
- E. 16

Zoom poll #3!

Consider the following code:

```
for (int i = 0; i < 8; i++) {
  a[i] = i * 2;
}</pre>
```

Assume that

- address of a[0] is a multiple of 16
- cache is cold initially
- i is a register
- sizeof(int)=4
- ► 16 bytes per block
- cache is direct-mapped
- loads and stores always access exactly 4 bytes

If the cache is configured for write-allocate + write-back, how many stores to *memory* are there?

- A. 0
- B. 2
- C. 8
- D. 10
- E. 16

Intel Core i7 Cache Hierarchy

Processor package

L1 i-cache and d-cache:

32 KB, 8-way, Access: 4 cycles

L2 unified cache:

256 KB, 8-way, Access: 10 cycles

L3 unified cache:

8 MB, 16-way, Access: 40-75 cycles

Block size: 64 bytes for

all caches.

Cache Performance Metrics

Miss Rate

- Fraction of memory references not found in cache (misses / accesses)= 1 hit rate
- Typical numbers (in percentages):
 - ▶ 3-10% for L1
 - ▶ can be quite small (e.g., < 1%) for L2, depending on size, etc.</p>

Hit Time

- Time to deliver a line in the cache to the processor
 - includes time to determine whether the line is in the cache
- Typical numbers:
 - ► 4 clock cycle for L1
 - ► 10 clock cycles for L2

Miss Penalty

- Additional time required because of a miss
 - typically 50-200 cycles for main memory (Trend: increasing!)

Let's think about those numbers

- Huge difference between a hit and a miss
 - Could be 100x, if just L1 and main memory
- Would you believe 99% hits is twice as good as 97%?
 - Consider: cache hit time of 1 cycle miss penalty of 100 cycles
 - Average access time:

```
97% hits: 1 cycle + 0.03 * 100 cycles = 4 cycles
99% hits: 1 cycle + 0.01 * 100 cycles = 2 cycles
```

This is why "miss rate" is used instead of "hit rate"

Writing cache-friendly code

Writing Cache Friendly Code

- Make the common case go fast
 - Focus on the inner loops of the core functions
- Minimize the misses in the inner loops
 - Repeated references to variables are good (temporal locality)
 - Stride-1 reference patterns are good (spatial locality)

Key idea: Our qualitative notion of locality is quantified through our understanding of cache memories

Matrix Multiplication Example

Description:

- Multiply N x N matrices
- Matrix elements are doubles (8 bytes)
- \triangleright O(N³) total operations
- N reads per source element
- N values summed per destination
 - but may be able to hold in register

Miss Rate Analysis for Matrix Multiply

Assume:

- Block size = 32B (big enough for four doubles)
- Matrix dimension (N) is very large
 - ► Approximate 1/N as 0.0
- Cache is not even big enough to hold multiple rows

Analysis Method:

Look at access pattern of inner loop

Layout of C Arrays in Memory (review)

- C arrays allocated in row-major order
 - each row in contiguous memory locations
- Stepping through columns in one row:

```
for (i = 0; i < N; i++)
sum += a[0][i];</pre>
```

- accesses successive elements
- ▶ if block size (B) > sizeof(a_{ij}) bytes, exploit spatial locality
 - miss rate = sizeof(a_{ii}) / B
- Stepping through rows in one column:

```
for (i = 0; i < n; i++)
sum += a[i][0];</pre>
```

- accesses distant elements
- no spatial locality!
 - ▶ miss rate = 1 (i.e. 100%)

Matrix Multiplication (ijk)

```
/* ijk */
for (i=0; i<n; i++) {
  for (j=0; j<n; j++) {
    sum = 0.0;
    for (k=0; k<n; k++)
        sum += a[i][k] * b[k][j];
    c[i][j] = sum;
  }
}

matmult/mm.c</pre>
```


Misses per inner loop iteration:

<u>A</u> <u>B</u> <u>C</u> 0.25 1.0 0.0

Matrix Multiplication (jik)

```
/* jik */
for (j=0; j<n; j++) {
  for (i=0; i<n; i++) {
    sum = 0.0;
    for (k=0; k<n; k++)
        sum += a[i][k] * b[k][j];
    c[i][j] = sum
  }
}
matmult/mm.c</pre>
```

Inner loop:

Misses per inner loop iteration:

<u>A</u> <u>B</u> <u>C</u> 0.25 1.0 0.0

Matrix Multiplication (kij)

```
/* kij */
for (k=0; k<n; k++) {
  for (i=0; i<n; i++) {
    r = a[i][k];
    for (j=0; j<n; j++)
       c[i][j] += r * b[k][j];
  }
}
matmult/mm.c</pre>
```

Inner loop: (i,k) A B C A Fixed Row-wise Row-wise

Misses per inner loop iteration:

<u>A</u> <u>B</u> <u>C</u> 0.0 0.25 0.25

Matrix Multiplication (ikj)

```
/* ikj */
for (i=0; i<n; i++) {
  for (k=0; k<n; k++) {
    r = a[i][k];
    for (j=0; j<n; j++)
        c[i][j] += r * b[k][j];
  }
}
matmult/mm.c</pre>
```

```
(i,k) B C (i,*)
```

Row-wise Row-wise

Inner loop:

Fixed

Misses per inner loop iteration:

<u>A</u> <u>B</u> <u>C</u> 0.0 0.25 0.25

Matrix Multiplication (jki)

```
/* jki */
for (j=0; j<n; j++) {
  for (k=0; k<n; k++) {
    r = b[k][j];
  for (i=0; i<n; i++)
    c[i][j] += a[i][k] * r;
  }
}
matmult/mm.c</pre>
```


Misses per inner loop iteration:

<u>A</u> <u>B</u> <u>C</u> 1.0 0.0 1.0

Matrix Multiplication (kji)

```
/* kji */
for (k=0; k<n; k++) {
  for (j=0; j<n; j++) {
    r = b[k][j];
    for (i=0; i<n; i++)
        c[i][j] += a[i][k] * r;
  }
}
matmult/mm.c</pre>
```


Misses per inner loop iteration:

<u>A</u> <u>B</u> <u>C</u> 1.0 0.0 1.0

Summary of Matrix Multiplication

```
for (i=0; i<n; i++) {
  for (j=0; j<n; j++) {
    sum = 0.0;
  for (k=0; k<n; k++)
    sum += a[i][k] * b[k][j];
  c[i][j] = sum;
}
}</pre>
```

```
for (k=0; k<n; k++) {
  for (i=0; i<n; i++) {
    r = a[i][k];
  for (j=0; j<n; j++)
    c[i][j] += r * b[k][j];
}</pre>
```

```
for (j=0; j<n; j++) {
  for (k=0; k<n; k++) {
    r = b[k][j];
  for (i=0; i<n; i++)
    c[i][j] += a[i][k] * r;
}</pre>
```

ijk (& jik):

- 2 loads, 0 stores
- misses/iter = **1.25**

kij (& ikj):

- 2 loads, 1 store
- misses/iter = **0.5**

jki (& kji):

- 2 loads, 1 store
- misses/iter = **2.0**

Core i7 Matrix Multiply Performance

Use blocking to improve temporal locality

Example: Matrix Multiplication

```
c = (double *) calloc(sizeof(double), n*n);

/* Multiply n x n matrices a and b */
void mmm(double *a, double *b, double *c, int n) {
   int i, j, k;
   for (i = 0; i < n; i++)
   for (j = 0; j < n; j++)
        for (k = 0; k < n; k++)
        c[i*n + j] += a[i*n + k] * b[k*n + j];
}</pre>
```


Cache Miss Analysis

Assume:

- Matrix elements are doubles
- Cache block = 8 doubles
- Cache size C << n (much smaller than n)</p>

First iteration:

Afterwards in cache: (schematic)

Cache Miss Analysis

Assume:

- Matrix elements are doubles
- Cache block = 8 doubles
- Cache size C << n (much smaller than n)</p>

Second iteration:

Again: n/8 + n = 9n/8 misses

Total misses:

 \rightarrow 9n/8 * n² = (9/8) * n³

n

Blocked Matrix Multiplication

```
c = (double *) calloc(sizeof(double), n*n);
/* Multiply n x n matrices a and b */
void mmm(double *a, double *b, double *c, int n) {
    int i, j, k;
    for (i = 0; i < n; i+=B)
   for (j = 0; j < n; j+=B)
             for (k = 0; k < n; k+=B)
        /* B x B mini matrix multiplications */
                  for (i1 = i; i1 < i+B; i++)
                      for (j1 = j; j1 < j+B; j++)
                          for (k1 = k; k1 < k+B; k++)
                          c[i1*n+j1] += a[i1*n + k1]*b[k1*n + j1];
                                                         matmult/bmm.c
```


Cache Miss Analysis

Assume:

- Cache block = 8 doubles
- Cache size C << n (much smaller than n)</p>
- ► Three blocks \blacksquare fit into cache: $3B^2 < C$

First (block) iteration:

- \triangleright B²/8 misses for each block
- ightharpoonup 2n/B * B²/8 = nB/4 (omitting matrix c)

Afterwards in cache (schematic)

n/B blocks

Cache Miss Analysis

Assume:

- Cache block = 8 doubles
- Cache size C << n (much smaller than n)</p>
- ► Three blocks \blacksquare fit into cache: $3B^2 < C$

Second (block) iteration:

- Same as first iteration
- \triangleright 2n/B * B²/8 = nB/4

= * Block size B x B

Total misses:

Arr nB/4 * (n/B)² = n³/(4B)

n/B blocks

Blocking Summary

- No blocking: (9/8) * n³
- Blocking: 1/(4B) * n³
- Suggest largest possible block size B, but limit 3B² < C!</p>
- Reason for dramatic difference:
 - Matrix multiplication has inherent temporal locality:
 - ► Input data: 3n², computation 2n³
 - Every array elements used O(n) times!
 - But program has to be written properly

Cache Summary

- Cache memories can have significant performance impact
- You can write your programs to exploit this!
 - Focus on the inner loops, where bulk of computations and memory accesses occur.
 - Try to maximize spatial locality by reading data objects with sequentially with stride 1.
 - Try to maximize temporal locality by using a data object as often as possible once it's read from memory.