

# Desenvolvimento de modelos preditivos com base em RNN

Luís Ricardo Silva Inácio

**DE LISBOA** 

Número de Aluno: 129074

Mestrado em Inteligência Artificial

Orientador: Tozé Brito, Phd

Coorientador: Rui Brito, Phd

Outubro, 2024



## Departamento de Ciências e Tecnologias da Informação

# Desenvolvimento de modelos preditivos com base em RNN

Luís Ricardo Silva Inácio

Número de Aluno: 129074

Orientador: Tozé Brito, Phd

Coorientador: Rui Brito, Phd

Outubro, 2024

#### Direitos de cópia ou Copyright

©Copyright: Luís Ricardo Silva Inácio

O Iscte - Instituto Universitário de Lisboa tem o direito, perpétuo e sem limites geográficos, de arquivar e publicitar este trabalho através de exemplares impressos reproduzidos em papel ou de forma digital, ou por qualquer outro meio conhecido ou que venha a ser inventado, de o divulgar através de repositórios científicos e de admitir a sua cópia e distribuição com objetivos educacionais ou de investigação, não comerciais, desde que seja dado crédito ao autor e editor.

## Agradecimentos

Gostaria de expressar a minha gratidão a todas as pessoas que me apoiaram durante a realização deste trabalho...

### Resumo

Texto do resumo em português.

Palavras-chave: palavra-chave1, palavra-chave2, palavra-chave3.

### Abstract

Texto do resumo em inglês.

**Keywords:** keyword1, keyword2, keyword3.

# Índice

| Ą  | grade  | cimentos                       | 2 |
|----|--------|--------------------------------|---|
| Re | esumo  |                                | 3 |
| Al | ostrac | et                             | 4 |
| Li | sta de | e Abreviaturas e Siglas        | 8 |
| 1  | Intr   | odução                         | 1 |
|    | 1.1    | Definição e Contexto           | 1 |
|    | 1.2    | Desafios Atuais                | 1 |
| 2  | Rev    | isão de Literatura             | 2 |
|    | 2.1    | Avanços em Otimização          | 2 |
|    | 2.2    | Aplicações de Machine Learning | 2 |
| 3  | Met    | odologia                       | 3 |
|    | 3.1    | Abordagens de Treinamento      | 3 |
| 4  | Resi   | ultados                        | 4 |
|    | 4.1    | Melhorias Observadas           | 4 |
| Re | eferên | icias Bibliográficas           | 5 |
| A  | Ane    | xo A                           | 6 |

# Lista de Figuras

| 1.1 | Esquema de aprendizado em redes neurais      | 1 |
|-----|----------------------------------------------|---|
| 2.1 | Gráfico de convergência em redes treinadas   | 2 |
| 3.1 | Diagrama detalhado de uma rede convolucional | 3 |

# Lista de Tabelas

| 1.1 | Parâmetros comuns em redes neurais         | 1 |
|-----|--------------------------------------------|---|
| 2.1 | Exemplos de aplicações de machine learning | 2 |

# Lista de Abreviaturas e Siglas

| Sigla           | Descrição                                                |  |
|-----------------|----------------------------------------------------------|--|
| API             | Application Programming Interface                        |  |
| BI              | Business Intelligence                                    |  |
| KPI             | Key Performance Indicator                                |  |
| Deep Learning   | Subcampo do machine learning que utiliza redes neurais   |  |
|                 | profundas.                                               |  |
| Hiperparâmetros | Parâmetros ajustados antes do treinamento do modelo.     |  |
| Overfitting     | Quando o modelo se ajusta demais aos dados de treina-    |  |
|                 | mento.                                                   |  |
| Batch Size      | Número de exemplos processados por vez durante o treina- |  |
|                 | mento.                                                   |  |

#### 1. Introdução

#### 1.1 Definição e Contexto

A inteligência artificial tem evoluído significativamente nas últimas décadas, com avanços em redes neuronais profundas sendo especialmente notáveis. O livro seminal de Goodfellow, Bengio, and Courville (2016) destaca como o deep learning transformou o campo.



Figura 1.1: Esquema de aprendizado em redes neurais.

#### 1.2 Desafios Atuais

Os desafios associados à implementação de redes neuronais foram explorados em várias pesquisas. Por exemplo, Rao (2019) argumenta que os principais desafios incluem o ajuste de hiperparâmetros e a escalabilidade.

| Parâmetro            | Descrição                       | Valor |
|----------------------|---------------------------------|-------|
| Taxa de Aprendizagem | Controla o ajuste do modelo     | 0.001 |
| Número de Camadas    | Define a profundidade do modelo | 4     |
| Tamanho do Batch     | Exemplos por iteração           | 32    |

Tabela 1.1: Parâmetros comuns em redes neurais.

#### 2. Revisão de Literatura

#### 2.1 Avanços em Otimização

A literatura recente investigou estratégias para otimizar redes neuronais e melhorar a eficiência. Smith, Johnson, and Taylor (2021) analisaram técnicas avançadas de otimização que têm impacto no desempenho.



Figura 2.1: Gráfico de convergência em redes treinadas.

#### 2.2 Aplicações de Machine Learning

Brown (2020) exploraram o papel do aprendizado de máquina na análise preditiva, destacando sua relevância em saúde e finanças.

| Setor    | Exemplo             |
|----------|---------------------|
| Saúde    | Diagnóstico médico  |
| Finanças | Previsão de fraudes |

Tabela 2.1: Exemplos de aplicações de machine learning.

### 3. Metodologia

#### 3.1 Abordagens de Treinamento

A metodologia deste estudo foi baseada em Smith et al. (2021), que enfatizam o uso de técnicas otimizadas para treinar redes profundas.



Figura 3.1: Diagrama detalhado de uma rede convolucional.

#### 4. Resultados

#### 4.1 Melhorias Observadas

Os resultados corroboram os achados de Smith et al. (2021), demonstrando melhorias significativas no desempenho.

#### Bibliografia

- Brown, P. (2020). Machine learning for predictive analytics. *Data Science Journal*, 12(4), 56–75.
- contributors, W. (2024). *Recurrent neural networks*. (In Wikipedia. Retrieved from https://en.wikipedia.org/wiki/Recurrent neural network)
- Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT Press.
- Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. In *Advances in neural information processing systems* (Vol. 25, pp. 1097–1105).
- Press, M. (2018). Foundations of deep learning. Author.
- Rao, K. (2019). Challenges in neural networks. AI Research Journal, 10(2), 98–110.
- Recent advances in rnns. (2021). Neural Networks Review, 5(1), 34–50.
- Smith, J., Johnson, R., & Taylor, K. (2021). Optimization techniques for neural networks. *Journal of Machine Learning Research*, 22(3), 1–20. doi: 10.1234/jmlr.v22i3.5678
- Taylor, K. (2015). Simplifying neural networks for beginners. *Journal of AI*, 8(3), 25–35.

#### A. Anexo A

Texto fictício para apêndice. Suspendisse vitae elit. Aliquam arcu neque, ornare in, ullam-corper quis, commodo eu, libero. Fusce sagittis erat at erat tristique mollis. Maecenas sapien libero, molestie et, lobortis in, sodales eget, dui. Morbi ultrices rutrum lorem. Nam elementum ullamcorper leo. Morbi dui. Aliquam sagittis. Nunc placerat. Pellentesque tristique sodales est. Maecenas imperdiet lacinia velit. Cras non urna. Morbi eros pede, suscipit ac, varius vel, egestas non, eros. Praesent malesuada, diam id pretium elementum, eros sem dictum tortor, vel consectetuer odio sem sed wisi.