**

** ** ** ** ** **

**

装 *** 订 ***

**
**
**

线

内答题无

效

**

**

线**

新疆大学 2017—2018 学年度第二学期期末考试

《高等数学》试卷(汉本下册)

姓名:学号:	
--------	--

2018年 6月 11日

题号	_	-	=	四	五.	六	总分
得分				9			y

得分	评卷人	
£.		

- 一、填空题 (每小题 3 分, 共 30 分)
 - 1、如果向量 $\vec{a} = (1, -1, 1)$ 与 $\vec{b} = (-3, 1, 2t)$ 垂直,则 t =
- 2、点(1,-1,1)到平面 2x+2y-z=5 的距离 d=______
- 3、yoz 平面上的曲线 $4y^2-9z^2=36$,绕z 轴旋转所生成的旋转曲面f程是 _____
- 4、设 f 具有一阶连续偏导,且 $z = f(xy, x^2 + y^2)$,则 $\frac{\partial z}{\partial x} = \underline{\hspace{1cm}}$
- 5、设函数 $z = xy + \frac{x}{y}$,则 dz =______
- 6、曲面 $z = x^2 + y^2$ 在点(1,1,2)处的法线方程是_____
- 7、二次积分 $\int_0^R dx \int_0^{\sqrt{R^2-x^2}} f(\sqrt{x^2+y^2}) dy$ 在极坐标系下的二次 $\Re h$
- 8、若曲线积分 $\int_{L} (e^{x} \sin y mxy) dx + (e^{x} \cos y x^{2}) dy$ 与路径无关,则 m =

《高等数学》下则(汉本)试题 (16 周) 第 1

第 1页 (共 6 页)

二、向量部分计算题(每题6分,共12分)

1、已知空间两点 A(1,1,-1), B(-2,1,2). 求 (1) 在线段 AB 上求一点 M , 满足 $\overrightarrow{AM} = 2$ \overrightarrow{MB} , (2) 向量 \overrightarrow{OM} , (2) 与向量 \overrightarrow{OM} 方向一致

的单位向量.

2、一平面过点
$$(1,1,1)$$
, 且与直线
$$\begin{cases} x-y+z-1=0 \\ x+y+z=0 \end{cases}$$
 垂直, 试求该平面方程.

《高等数学》下册(汉本)试题 (16周) 第 2页(共 6页)

			三、	多几
١	四八	评卷人		
	得分	71 6		1.

三、多元函数微分法计算题 (每题 6 分,共 18 分)

多儿园外	$\sqrt{\tan(x+y)+1-1}$
1. $\lim_{(x,y)\to(0,0)}$	

2、试证函数
$$z = \ln \sqrt{x^2 + y^2}$$
 满足方程 $\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = 0$

3、方程
$$x^3 + y^3 + z^3 - 3az = 0$$
 确定了隐函数关系 $z = z(x, y)$,求 $\frac{\partial^2 z}{\partial x \partial y}$

** 装 ** ** 订 线 ** 内 订 ** 答 ** 题 ** 无 效

> ** 线

**

装

《高等数学》下册(汉本)试题 (16 周) 第 3 页(共 6 页)

严格人

四、多元函数积分题(共 3 题,6 分+6 分+8 分=20 分) 1、计算 $\iint_D 2xydxdy$ 其中 D 是由两条抛物线 $y=2x^2$ 及 $y=x^2+1$ 所围成的闭区域 .

計算 $\int_{\Gamma} (x^2 + y^2 + z^2) ds$ 其中 Γ : $x = 2\cos t$, $y = 2\sin t$, z = t $t \in [0, 2\pi]$

、利用高斯公式计算 $\iint_{\Sigma} 2xzdydz + 2xz^2dzdx + z^2dxdy$ 其中 Σ 是上半球面 $z = \sqrt{4-x^2-y^2}$ 的上侧

《高等数学》下册(汉本)试题 (16周) 第 4页(共 6页)

** **

> 装 **

> > **

订

** **

**

** 线 **

装

订

线

内

答

题

无

效

五、级数部分计算题 (每题7分,共14分) 1、讨论级数 $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{(n+1)!}{n^n}$ 的收敛性, 如收敛, 是绝对收敛还是条件收敛。

2、将函数 $f(x) = \frac{3}{x^2 + 3x}$ 展成 x + 1 的幂函数,并求其收区间.

第 5页 (共 6 ^{页)} 《高等数学》下册(汉本)试题 (16 周)

粉评卷人

六、应用题 (6分) 求由曲面 $z=x^2+2y^2$ 和曲面 $z=2-x^2$ 所 围立体的体积V.

方