Lab03-Greedy Strategy

CS214-Algorithm and Complexity, Xiaofeng Gao, Spring 2019.

* If there is any problem, please contact TA Mingran Peng.

* Name: 田雪飞 Student ID: <u>515030910347</u> Email: 13487426939@qq.com

- 1. **Proof.** The following is the proof process.
 - Greedy algorithm:

From $1 \leftarrow n$, if A[i] = 1, we can put a fire hydrant in position i + 1, then i = i + 3, skip i to i + 3 and continue to check;

if A[i] = 0, we do not put anything in here and skip to i + 1, and continue to check;

• pseudo code:

Algorithm 1: Greedy algorithm

Input: An array $A[1, \dots, n]$

Output: minimum number of hydrants

```
\begin{array}{lll}
\mathbf{1} & i \leftarrow 1; \\
\mathbf{2} & count \leftarrow 0; \\
\mathbf{3} & \mathbf{while} & i \leq n \mathbf{do} \\
\mathbf{4} & | \mathbf{if} & A[i] == 1 \mathbf{then} \\
\mathbf{5} & | \mathbf{if} & i == n \mathbf{put} \mathbf{a} \mathbf{hydrant} \mathbf{in} \mathbf{position} \mathbf{n}; \\
\mathbf{6} & | \mathbf{if} & i == n \mathbf{put} \mathbf{a} \mathbf{hydrant} \mathbf{in} \mathbf{position} \mathbf{i} + 1; \\
\mathbf{7} & | & | & | & | & | & | & | \\
\mathbf{7} & | & | & | & | & | & | & | \\
\mathbf{7} & | & | & | & | & | & | & | \\
\mathbf{7} & | & | & | & | & | & | & | \\
\mathbf{7} & | & | & | & | & | & | & | \\
\mathbf{7} & | & | & | & | & | & | & | \\
\mathbf{7} & | & | & | & | & | & | & | \\
\mathbf{7} & | & | & | & | & | & | & | \\
\mathbf{8} & | & | & | & | & | & | & | \\
\mathbf{1} & | & | & | & | & | & | & | \\
\mathbf{1} & | & | & | & | & | & | & | \\
\mathbf{1} & | & | & | & | & | & | & | \\
\mathbf{1} & | & | & | & | & | & | & | \\
\mathbf{1} & | & | & | & | & | & | & | \\
\mathbf{1} & | & | & | & | & | & | & | \\
\mathbf{1} & | & | & | & | & | & | & | \\
\mathbf{1} & | & | & | & | & | & | & | \\
\mathbf{1} & | & | & | & | & | & | & | \\
\mathbf{1} & | & | & | & | & | & | & | \\
\mathbf{1} & | & | & | & | & | & | & | \\
\mathbf{1} & | & | & | & | & | & | & | \\
\mathbf{1} & | & | & | & | & | & | & | \\
\mathbf{1} & | & | & | & | & | & | & | \\
\mathbf{1} & | & | & | & | & | & | & | \\
\mathbf{1} & | & | & | & | & | & | & | \\
\mathbf{1} & | & | & | & | & | & | & | \\
\mathbf{1} & | & | & | & | & | & | \\
\mathbf{1} & | & | & | & | & | & | \\
\mathbf{1} & | & | & | & | & | & | \\
\mathbf{1} & | & | & | & | & | & | \\
\mathbf{1} & | & | & | & | & | & | \\
\mathbf{1} & | & | & | & | & | & | \\
\mathbf{1} & | & | & | & | & | & | \\
\mathbf{1} & | & | & | & | & | \\
\mathbf{1} & | & | & | & | & | & | \\
\mathbf{1} & | & | & | & | & | & | \\
\mathbf{1} & | & | & | & | & | & | \\
\mathbf{1} & | & | & | & | & | & | \\
\mathbf{1} & | & | & | & | & | & | \\
\mathbf{1} & | & | & | & | & | & | \\
\mathbf{1} & | & | & | & | & | & | \\
\mathbf{1} & | & | & | & | & | & | \\
\mathbf{1} & | & | & | & | & | \\
\mathbf{1} & | & | & | & | & | & | \\
\mathbf{1} & | & | & | & | & | & | \\
\mathbf{1} & | & | & | & | & | & | \\
\mathbf{1} & | & | & | & | & | & | \\
\mathbf{1} & | & | & | & | & | & | \\
\mathbf{1} & | & | & | & | & | & | & | \\
\mathbf{1} & | & | & | & | & | & | & | & | \\
\mathbf{1} & | & | & | & | & | & | & | & | \\
\mathbf{1} & | & | & | & | & | & | & | \\
\mathbf{1} & | & | & | & | & | & | & | \\
\mathbf{1} & | & | &
```

11 return count;

• Proof:

we assume that an optimal algorithm which skip i to put a hydrant in position j = i + 1: we prove that we can transform this optimal strategy to greedy algorithm; we assume that optimal and greedy algorithm have same strategy before position i;

optimal algorithm:
$$\cdots 1$$
 $\underbrace{A[i+1], A[i+2], A[i+3]}_{j=i+1}$

 \Downarrow we need a hydrant to cover A[i]

optimal algorithm:
$$\cdots \underline{1}$$
 $\underbrace{A[i+1], A[i+2], A[i+3]}_{j=i+1}$

 \downarrow this is same as following strategy.

optimal algorithm : $\cdots 1, A[i+1], [i+2], A[i+3];$

greedy algorithm : $\cdots 1, A[i+1], [i+2], A[i+3];$

we can see optimal strategy is not better than greedy algorithm.when j=i+2,i+3 greedy is also not worse than optimal.

proof end.

- 2. **Proof.** The following is proof process:
 - (a) •we can sort the n real number to be nonincreasing sequence, and if $M \cup x \in \mathbf{C}$, we put x in M until i find the biggest sum.
 - •According to the definition of uniform matriod:

A is a set with n elements, denote **C** be the collection of all subsets of A that contains no more than k elements.

Proof:

Hereditary: if $M \subset N$ and $N \in \mathbb{C}$, obviously, because N is not more than k elements, so N can not more than k elements, then $N \in \mathbb{C}$.

Exchange property: we assume that $M, N \in \mathbb{C}$ and |M| > |N|; we know M is not more than k elements, so N is not more than k elements; meanwhile, there must exist an element in M and not in N $(x \in M \text{ and } x \notin N)$; and we know $N \cup \{x\}$ is not more than k elements. so $N \cup \{x\} \in \mathbb{C}$. so, (A, \mathbb{C}) is a matriod.

(b) Proof:

Hereditary: if $M \subset N$ and $N \in \mathbb{C}$; according to the property of N, then $\forall i \in \{1, 2, 3...n\}$, $|N \cap B_i| \leq d_i$; $M \subset N$, so, $|M \cap B_i| \leq |N \cap B_i| \leq d_i$, so, $\forall i \in \{1, 2, 3...n\}, |M \cap B_i| \leq d_i$, then $M \subset \mathbb{C}$.

Exchange property: we assume that $M,N \in \mathbb{C}$ and |M| > |N|; then $\forall i \in \{1,2,3...n\}$, $|M \cap B_i| \leq d_i$ and $|N \cap B_i| \leq d_i$;

- (1). $|N \cap B_i| = d_i$, but we know,X is subset of $\bigcup_{i=1}^n B_i$, we assume that $X = \bigcup_{i=1}^n B_i$, then $|X \cap B_i| = d_i$, so $N = B_i$; at this case, there must exist an element x which is in M but not in N; so $(N \cup \{x\}) \cup B_i = d_i$, this's still satisfying condition. so $N \cup \{x\} \in \mathbb{C}$.
- (2). if $|N \cap B_i| < d_i$, obviously, |M| > |N|; there must exist an element x in M and not in N; we put x into N, and $(N \cup \{x\}) \cap B_i \le d_i$; so $N \cup \{x\} \in \mathbf{C}$. so, $(\bigcup_{i=1}^n B_i, \mathbf{C})$ is a matroid.

Remark: You need to include your .pdf and .tex files in your uploaded .rar or .zip file.