Quiz 1. True/False: $9/3 + 2(3^2 + 10) - 8 + 4 \cdot 3 = 45$

Solution. The statement is *false*. To see this, we can simply follow the order of operations—using PEMDAS as a guide:

$$9/3 + 2(3^{2} + 10) - 8 + 4 \cdot 3 \stackrel{?}{=} 55$$

$$9/3 + 2(9 + 10) - 8 + 4 \cdot 3 \stackrel{?}{=} 55$$

$$9/3 + 2(19) - 8 + 4 \cdot 3 \stackrel{?}{=} 55$$

$$3 + 2(19) - 8 + 4 \cdot 3 \stackrel{?}{=} 55$$

$$3 + 38 - 8 + 4 \cdot 3 \stackrel{?}{=} 55$$

$$3 + 38 - 8 + 12 \stackrel{?}{=} 55$$

$$41 - 8 + 12 \stackrel{?}{=} 55$$

$$33 + 12 \stackrel{?}{=} 55$$

$$45 \neq 55$$

Quiz 2. True/False: $gcd(2^3 \cdot 3 \cdot 5, 2 \cdot 3^2 \cdot 7) = 2^3 \cdot 3^2 \cdot 5 \cdot 7$.

Solution. The statement is *false*. Remember given a prime factorization of the numbers, we find the gcd by choosing the *smallest* powers of each prime that appears in the factorizations. So we should have $\gcd(2^3 \cdot 3 \cdot 5, 2 \cdot 3^2 \cdot 7) = 2 \cdot 3$. Instead, the largest power of each prime that appears in the factorizations was chosen which is how we compute the lcm. Therefore, we have $\gcd(2^3 \cdot 3 \cdot 5, 2 \cdot 3^2 \cdot 7) = 2^3 \cdot 3^2 \cdot 5 \cdot 7$.