CSE446: Blockchain & Cryptocurrencies

Lecture - 18: Ethereum - 6 & HF - 1

Agenda

- Ethereum consensus
- Hyperledger Fabric

Bitcoin consensus

- The PoW algorithm utilised in Bitcoin is called a Compute-bound consensus algorithm
- A Compute-bound PoW, also known as CPU-bound PoW, employs a CPU-intensive function
 - that carries out the required computational task by leveraging the capabilities of the processing units (e.g., CPU/GPU)
 - and it does not rely on the main memory of the system
- These particular characteristics can be massively optimised for faster calculation by using Application-specific Integrated Circuit (ASIC) rigs

Bitcoin consensus

- This is not an ideal scenario as now general people with their general purpose computer cannot participate in the mining process
- The mining process is mostly centralised among a group of mining nodes
- Many crypto-currency enthusiasts suggest that this is not a democratic process and facilitates the "rich getting richer" scenario

Memory-bound consensus algorithm

- To counteract this issue of Bitcoin's CPU-bound PoW algorithm, memory-bound PoWs have been proposed
- A memory-bound PoW requires the algorithm to access the main memory several times
- This ultimately binds the performance of the algorithm within the limit of access latency and/or bandwidth as well as the size of memory
 - The higher the memory the faster the performance

Memory-bound consensus algorithm

- This restricts ASIC rigs based miners not to have manifold performance advantage over CPU/GPU-based mining rigs
- The reason is even though thousands of ASICs could be combined they would have a performance threshold based on the size/bw/latency of the memory
 - Remember that you can't install unlimited memory within a PC
- This approach also limits the profit margin of the miners who have a mammoth ASIC-based mining rig
- Another motivation of this approach is to de-monopolise the mining concentrations around some central mining nodes

Ethereum consensus algorithm

- Ethash (DAGGER-HASHIMOTO)/DAGGER is the consensus algorithm designed for Ethereum
- Ethash is a memory-bound PoW algorithm with the goal to be ASIC-resistant for a long period of time
- Dagger is one of the earliest proposed memory-bound PoW algorithms which utilises a Directed Acyclic Graph (DAG)
 - a directed acyclic graph (DAG) is a directed graph with no directed cycles
- However it was found be vulnerable
- Ethereum combined Dagger and Hashimoto algorithms to be more secure

Ethash algorithm

- Ethash depends on a large pseudo-random dataset (the DAG), which is recomputed during each epoch
- Each epoch is determined by the time it takes to generate 30,000 blocks which is approximately five days
- During the DAG generation process, a seed is generated at first, which relies on the length of the chain
- The seed is then used to compute a 16 MB pseudo-random cache
- Then, each item of the DAG is generated by utilising a certain number of items from the pseudo-random cache

Ethash algorithm

- Then, the latest block header and the current candidate nonce are hashed using Keccak (SHA-3) hash function
- The resultant hash is mixed and hashed several times with data from the DAG, the mixHash data field
- The final hashed digest is compared to the difficulty target and accepted or discarded accordingly

Ethash algorithm

Ethash Hashing Algorithm Input Data Preprocessed Current Header Intermediate Data Nonce Intermediate Calculation Function Memory Fetch Request SHA3-like Function ➤ Function Input/Output Memory Fetch Operation Fetch Mix 0 (128B) DAG Page DAG Mixing Function Page 0 Memory Bandwidth Page 1 3 Limited **Fetch** Page 2 Mix 1 (128B) DAG Page ~ 2 GB Mixing Function Page N - 3 Page N - 2 Fetch Page N - 1 DAG O Page 128 Bytes 5 6 **Fetch** Mix 63 (128B) DAG Page Post Mix Digest **Process** Mixing (32B) Function Function Success or Fail **Target** Mix 64 (128B) Threshold (32B)

Ethereum PoS algorithm

- Ethereum moved to a PoS consensus algorithm in 2022
- Like any PoS algorithm there are a number of validators
- To be a validator, one has to deposit 32 eth to an escrow contract
- On depositing their ETH, the user joins an activation queue that limits the rate of new validators joining the network
- Once activated, validators receive new blocks from peers on the Ethereum network
- The transactions delivered in the block are re-executed, and the block is verified
- The validator then sends a vote (called an attestation) in favour of that block across the network

Ethereum PoS algorithm

- Under Ethash algorithm, the timing of blocks is determined by the mining difficulty
- In proof-of-stake, the block generation time is fixed
- Time in proof-of-stake Ethereum is divided into slots (12 seconds) and epochs (32 slots)
- One validator is randomly selected to be a block proposer in every slot
- This validator is responsible for creating a new block and sending it out to other nodes on the network

Ethereum PoS algorithm

- Also in every slot, a committee of validators is randomly chosen, whose votes are used to determine the validity of the block being proposed
- If a validator is chosen to attest the next block, they are rewarded in ETH as a percentage of their stake
- Conversely, validators who do not perform their duties—if they are
 offline, for example—receive penalties, or slashes, in the form of small
 amounts of ETH subtracted from their stakes

Ethereum illustration

Ethereum illustration

Ethereum illustration

Ethereum visualisation

- All participants are using the "same" computer
- Users issue transactions to call programs on the computer
- Everyone shares the same resources and storage
- The computer has no explicit, single owner
- Using the computer's resources costs money (eth)

Hyperledger Fabric

• Motivations of private blockchain systems

Motivations for private blockchain systems

- As blockchain tech gaining maturity, interest in applying blockchain technology and distributed application platform to more innovative enterprise use cases started to grew
- Particularly they are intersected to disrupt current approach of many application domains
 - Disrupting the existing method brings innovation which leads to new service delivery models
 - CD/LP -> online music -> mp3 -> Napster (Torrents) -> Apple iPod/iTunes
- However, public blockchain systems are unsuitable for many enterprise use cases

Motivations for private blockchain systems

- For enterprise use, we need to consider the following requirements:
 - Participants must be identified/identifiable
 - E.g. financial transactions where Know-Your-Customer (KYC) and Anti-Money Laundering (AML) regulations must be followed
 - Networks need to be permissioned
 - High transaction throughput performance
 - Low latency of transaction confirmation
 - Privacy and confidentiality of transactions and data pertaining to business transactions

Hyperledger foundation

- Hyperledger Foundation is an open source collaborative effort created to advance cross-industry blockchain technologies
- It is a global collaboration, hosted by The Linux Foundation
- It includes leaders in finance, banking, Internet of Things, supply chains, manufacturing and Technology
- Joining forces to develop and promote private blockchain systems
- More information: https://www.hyperledger.org/

Hyperledger projects

- Major Hyperledger projects:
 - Fabric initially developed by IBM which is then open-sourced, released and incubated under the Hyperledger project
 - Sawtooth developed by Intel which is then released under the Hyperledger project
 - Burrow a permissioned version of Ethereum released under the Hyperledger project
 - Caliper a benchmarking platform for Hyperledger projects
 - Composer a GUI tool to develop complex business networks
- Fabric is the most advanced and matured project under the Hyperledger umbrella projects

Hyperledger Fabric (HF)

- Hyperledger Fabric is an open source enterprise-grade permissioned distributed ledger technology (DLT) platform
- Designed for use in enterprise contexts
- To deliver some key differentiating capabilities over other popular distributed ledger or blockchain platforms
- More information: https://www.hyperledger.org/use/fabric
- Developer documentation: https://hyperledgerfabric.readthedocs.io/en/release-2.5/

Hyperledger Fabric (HF)

- Fabric is highly modular and configurable
- Fabric is the first distributed ledger platform to support smart contracts authored in general-purpose programming languages
 - such as Java, Go and JavaScript, rather than constrained domain-specific languages (DSL)
- Fabric supports pluggable consensus protocols that enable the platform to be more effectively customised to fit particular use cases and trust models
- Fabric does not require a native cryptocurrency

Question?

