Moja naslovnica / Moji e-kolegiji / linearna / 10. Skalarni umnožak / 10. domaća zadaća

Započeto petak, 14. siječnja 2022., 22:54

Stanje Završeno

Završeno četvrtak, 20. siječnja 2022., 19:44

Proteklo vrijeme 5 dana 20 sat(a)

Ocjena 10,50 od maksimalno 15,00 (70%)

Pitanje **1**

Točno

Broj bodova: 1,00 od 1,00

Koje od napisanih preslikavanja $s:\mathbb{R}^2 imes\mathbb{R}^2 o\mathbb{R}$ je skalarni umnožak na prostoru \mathbb{R} ?

Odaberite jedan odgovor:

$$igcup a. \quad s(x,y) = x_1(y_1-2y_2) + x_2(-2y_1+4y_2)$$

$$lacksquare b. \quad s(x,y) = x_1 y_1 + 5 x_2 y_2$$

$$\circ$$
 c. $s(x,y) = x_1(y_1 + 2y_2) + x_2(2y_1 + 4y_2)$

$$\circ$$
 d. $s(x,y) = x_1y_2 + 3y_1x_2$

$$igcup$$
 e. $s(x,y)=x_1y_1+3x_1x_2y_2$

Vaš odgovor je točan.

Preslikavanje $s(x,y)=x_1y_1+5x_2y_2\,$ je skalarni umnožak. Niti za jedno drugo preslikavanje nije ispunjeno svojstvo pozitivnosti. Ispravan odgovor je: $s(x,y)=x_1y_1+5x_2y_2\,$

Pitanje **2** Točno

Broj bodova: 1,00 od 1,00

Odredite kut između vektora $\mathbf{A} = \begin{bmatrix} -1 & 2 \\ 4 & 0 \end{bmatrix}$ i $\mathbf{B} = \begin{bmatrix} 0 & 1 \\ 1 & -2 \end{bmatrix}$ u prostoru $M_2(\mathbb{R})$ sa skalarnim umnoškom $\langle \mathbf{A} | \mathbf{B} \rangle = tr(\mathbf{A} \cdot \mathbf{B}^t)$.

Odaberite jedan odgovor:

- \circ a. $\alpha = \arccos \frac{6}{\sqrt{126}}$
- \bigcirc b. $\alpha = \arccos \frac{-6}{\sqrt{126}}$
- oc. Ne znam
- \bigcirc d. $\alpha = \arccos \frac{1}{21}$
- \circ e. $\alpha = \arccos \frac{-1}{21}$

Vaš odgovor je točan.

Neka je lpha traženi kut, vrijedi $\cos lpha = \frac{\langle \mathbf{A} | \mathbf{B} \rangle}{\|\mathbf{A}\| \|\mathbf{B}\|} = \frac{tr(\mathbf{A}\mathbf{B}^t)}{\sqrt{tr(\mathbf{A}\mathbf{A}^t)} \cdot \sqrt{tr(\mathbf{B}\mathbf{B}^t)}} = \frac{6}{\sqrt{21} \cdot \sqrt{6}} \;\; \text{pa je } \alpha = \arccos \frac{6}{\sqrt{126}} \;.$

Ispravan odgovor je: $\alpha = \arccos \frac{6}{\sqrt{126}}$

Pitanje **3**

Točno

Broj bodova: 1,00 od 1,00

Odredite udaljenost između vektora $f(t)=2t^2+t, g(t)=2t-1$ u prostoru polinoma sa skalarnim umnoškom $\langle p|q \rangle=\int_{-1}^1 p(t)q(t)dt$.

Odaberite jedan odgovor:

- a.
- $b. \sqrt{\frac{104}{15}}$
- c. Ne znam
- Od. $\sqrt{\frac{214}{15}}$
- e. $\sqrt{\frac{41}{15}}$

Vaš odgovor je točan.

Neka je $p(t)=f(t)-g(t)=2t^2-t+1\;$, tad je udaljenost između vektora jednaka

$$||p(t)|| = \sqrt{\int_{-1}^{1} p(t) \cdot p(t) dt} = \sqrt{\int_{-1}^{1} (4t^4 - 4t^3 + 5t^2 - 2t + 1) dt} = \sqrt{\left(\frac{4}{5}t^5 - t^4 + \frac{5}{3}t^3 - t^2 + t\right)\Big|_{-1}^{1}} = \sqrt{\frac{104}{15}}.$$

Ispravan odgovor je: $\sqrt{\frac{104}{15}}$

Pitanje **4**Točno

Broj bodova: 1,00 od 1,00

Točno ili netočno: Ako su \mathbf{x}, \mathbf{y} ortonormirani vektori iz unitarnog prostora U, tad su vektori $\mathbf{x} + \mathbf{y}$ i $\mathbf{x} - \mathbf{y}$ ortogonalni.

Odaberite jedan odgovor:

- Točno
- Netočno

Vrijedi $\langle x+y|x-y\rangle=\langle x|x-y\rangle+\langle y|x-y\rangle=\langle x|x\rangle-\langle x|y\rangle+\langle y|x\rangle+\langle y|y\rangle=1-0+0-1=0$ Ispravan odgovor je 'Točno'.

Pitanje **5**Točno

Broj bodova: 1,00 od 1,00

Odredite ortogonalni komplement potprostora razapetog vektorima $\begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 2 & 0 \end{bmatrix}$.

Odaberite jedan odgovor:

- lacksquare a. $\left[egin{bmatrix} -2 & 0 \\ 1 & 0 \end{bmatrix}, egin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \right]$
- \bigcirc c. $\left[\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \right]$
- $\bigcirc \ \mathsf{d.} \ \left[\begin{bmatrix} -2 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \right]$
- e. Ne znam

Vaš odgovor je točan.

Tražimo vektore oblika $\begin{bmatrix} x_1 & x_2 \\ x_3 & x_4 \end{bmatrix}$ koji su okomiti na $\begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}$ i $\begin{bmatrix} 1 & 0 \\ 2 & 0 \end{bmatrix}$.

 $\text{Mora biti } tr\Bigg(\begin{bmatrix}x_1 & x_2\\x_3 & x_4\end{bmatrix}\begin{bmatrix}1 & 0\\2 & 1\end{bmatrix}^t\Bigg) = 0 \text{ iz čega dobivamo } tr\begin{bmatrix}x_1 & 2x_1+x_2\\x_3 & 2x_3+x_4\end{bmatrix} = 0 \text{ , odnosno } x_1+2x_3+x_4=0 \text{ .}$

 $\text{Također vrijedi } tr \Bigg(\begin{bmatrix} x_1 & x_2 \\ x_3 & x_4 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 2 & 0 \end{bmatrix}^t \Bigg) = 0 \text{ iz čega slijedi } tr \begin{bmatrix} x_1 & 2x_1 \\ x_3 & 2x_3 \end{bmatrix} = 0 \text{ , odnosno } x_1 + 2x_3 = 0 \text{ .}$

Iz sustava jednadžbi dobivamo $x_1=-2x_3, x_4=0~$ pa su vektori okomiti na zadane oblika $\begin{bmatrix} -2x_3 & x_2 \\ x_3 & 0 \end{bmatrix}$. Stoga bazu ortogonalnog

komplementa čine vektori

$$\begin{bmatrix} -2 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}.$$

Ispravan odgovor je: $\begin{bmatrix} \begin{bmatrix} -2 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \end{bmatrix}$

Pitanje **6**Točno

Broj bodova: 1,00 od 1,00

Točno ili netočno: U realnom vektorskom prostoru vrijedi $\|\mathbf{x}\| = \|\mathbf{y}\|$ ako i samo ako je $\langle \mathbf{x} + \mathbf{y} | \mathbf{x} - \mathbf{y} \rangle = 0$.

Odaberite jedan odgovor:

- Točno ✓
- Netočno

Pretpostavimo da je $\|\mathbf{x}\| = \|\mathbf{y}\|$, nakon kvadriranja dobivamo $\|\mathbf{x}\|^2 - \|\mathbf{y}\|^2 = 0$, odnosno $\langle \mathbf{x} | \mathbf{x} \rangle - \langle \mathbf{y} | \mathbf{y} \rangle = 0$. Jednakosti možemo oduzeti i dodati član $\langle \mathbf{x} | \mathbf{y} \rangle$, a zbog svojstva komutativnosti pišemo $\langle \mathbf{x} | \mathbf{x} \rangle - \langle \mathbf{x} | \mathbf{y} \rangle + \langle \mathbf{y} | \mathbf{x} \rangle - \langle \mathbf{y} | \mathbf{x} \rangle = 0$. Iskoristimo svojstvo aditivnosti pa dobivamo $\langle \mathbf{x} | \mathbf{x} - \mathbf{y} \rangle + \langle \mathbf{y} | \mathbf{x} - \mathbf{y} \rangle = 0$, odnosno $\langle \mathbf{x} + \mathbf{y} | \mathbf{x} - \mathbf{y} \rangle = 0$ što je i trebalo pokazati.

Pretpostavimo da je $\langle {f x}+{f y}|{f x}-{f y}\rangle=0$, što zbog svojstva aditivnosti možemo pisati kao

$$\langle \mathbf{x} | \mathbf{x} \rangle - \langle \mathbf{x} | \mathbf{y} \rangle + \langle \mathbf{y} | \mathbf{x} \rangle - \langle \mathbf{y} | \mathbf{y} \rangle = 0 \ \text{ , odnosno } \\ \langle \mathbf{x} | \mathbf{x} \rangle - \langle \mathbf{y} | \mathbf{y} \rangle = 0 \ \text{ što je jednako } \\ \|\mathbf{x}\|^2 - \|\mathbf{y}\|^2 = 0 \ \text{ , odnosno } \\ \|\mathbf{x}\| = \|\mathbf{y}\|.$$

Ispravan odgovor je 'Točno'.

Pitanje **7**

Netočno

Broj bodova: 0,00 od 1,00

Ispunjava li preslikavanje $\|\mathbf{x}\|_1 := |x_1| + |x_2| + |x_3|$ aksiome norme na prostoru \mathbb{R}^3 ?

Odaberite jedan odgovor:

- Točno
- Netočno X

Da, jer vrijede svojstva pozitivnosti, homogenosti i nejednakosti trokuta.

Ispravan odgovor je 'Točno'.

Točno

Broj bodova: 1,00 od 1,00

U unitarnom prostoru \mathbb{R}^4 zadan je vektor $\mathbf{x}=(1,1,2,2)$ i potprostor M svojom bazom $\mathbf{a}=(1,1,1,0)$ i $\mathbf{b}=(1,0,1,1)$. Odredite ortogonalnu projekciju i ortogonalnu komponentu vektora \mathbf{x} s obzirom na prostor M.

Odaberite jedan odgovor:

- igcolumn a. Ortogonalna projekcija je vektor $rac{2}{5}(1,1,1,0)$, a ortogonalna komponenta vektor $rac{7}{5}(1,0,1,1)$.
- b. Ortogonalna projekcija je vektor $\frac{1}{5}(9,2,9,7)$, a ortogonalna komponenta vektor $\frac{1}{5}(-4,3,1,3)$.
- \odot c. Ortogonalna projekcija je vektor $\frac{7}{5}(1,0,1,1)$, a ortogonalna komponenta vektor $\frac{2}{5}(1,1,1,0)$.
- d. Ne znam
- \odot e. Ortogonalna projekcija je vektor $\frac{1}{5}(-4,3,1,3)$, a ortogonalna komponenta vektor $\frac{1}{5}(9,2,9,7)$

Vaš odgovor je točan.

Neka je $\mathbf{x} = \mathbf{y} + \mathbf{z}$ pri čemu je $\mathbf{y} \in M$ i $\mathbf{z} \in M^{\perp}$. Tad je vektor \mathbf{y} ortogonalna projekcija vektora \mathbf{x} na prostor M, a vektor \mathbf{z} ortogonalna komponenta vektora \mathbf{x} s obzirom na prostor M.

Možemo pisati $\mathbf{x} = \alpha \mathbf{a} + \beta \mathbf{b} + \gamma \mathbf{c} + \delta \mathbf{d}$ pri čemu je $\mathbf{a}, \mathbf{b} \in M, \mathbf{c}, \mathbf{d} \in M^{\perp}$.

Jednakost redom skalarno množimo vektorima **a** i **b** te dobivamo sustav jednadžbi:

 $\langle \mathbf{x} | \mathbf{a} \rangle = \alpha \langle \mathbf{a} | \mathbf{a} \rangle + \beta \langle \mathbf{b} | \mathbf{a} \rangle \text{, } \langle \mathbf{x} | \mathbf{b} \rangle = \alpha \langle \mathbf{a} | \mathbf{b} \rangle + \beta \langle \mathbf{b} | \mathbf{b} \rangle \text{ (vektori } \mathbf{a}, \mathbf{b} \text{ su okomiti na } \mathbf{c}, \mathbf{d} \text{ pa su njihovi skalarni umnošci jednaki 0) iz čega slijedi sustav } 4 = 3\alpha + 2\beta, 5 = 2\alpha + 3\beta \text{ . Dobivamo } \alpha = \frac{2}{5}, \beta = \frac{7}{5} \text{ pa je } \mathbf{y} = \frac{2}{5}(1, 1, 1, 0) + \frac{7}{5}(1, 0, 1, 1) = \frac{1}{5}(9, 2, 9, 7) \text{ .}$

Za vektor ${\bf z}$ vrijedi ${\bf z}={\bf x}-{\bf y}=(1,1,2,2)-\frac{1}{5}(9,2,9,7)=\frac{1}{5}(-4,3,1,3)$.

Ispravan odgovor je: Ortogonalna projekcija je vektor $\frac{1}{5}(9,2,9,7)$, a ortogonalna komponenta vektor $\frac{1}{5}(-4,3,1,3)$.

Pitanje **9**

Netočno

Broj bodova: 0,00 od 1,00

Odredite udaljenost vektora \mathbf{x} , iz prethodnog zadatka, od potprostora M, također iz prethodnog zadatka.

Odaberite jedan odgovor:

- a. Ne znam
- \odot b. $\sqrt{214}$
- $c. \frac{\sqrt{35}}{5}$
- \bigcirc d. 7
- \bigcirc e. $\frac{\sqrt{214}}{5}$

Vaš odgovor nije točan.

Udaljenost vektora ${\bf x}$ od potprostora M jednaka je $\|{\bf z}\|=\sqrt{\langle {\bf z}|{\bf z}\rangle}=\frac{1}{5}\sqrt{16+9+1+9}=\frac{\sqrt{35}}{5}$.

Ispravan odgovor je: $\frac{\sqrt{35}}{5}$

Netočno

Broj bodova: 0,00 od 1,00

Koji vektor potprostora L razapetog vektorima $\mathbf{a} = (1, 3, 4, 5, 7)$ i $\mathbf{b} = (-6, 6, 8, 0, 8)$ je najbliži vektoru $\mathbf{x} = (1, 0, 0, 0, 0)$?

Odaberite jedan odgovor:

- \bigcirc a. (7, -3, -4, 5, 1)
- b. $\frac{8}{100}(1,3,4,5,7)$
- \circ c. $\frac{1}{100}(50, -18, -24, 40, 0)$
- od. Ne znam
- \bigcirc e. $\frac{7}{100}(-6,6,8,0,8)$

Vaš odgovor nije točan.

Vektor potprostora L koji je najbliži danom vektoru je ortogonalna projekcija danog vektora na potprostor L. Ako vektor \mathbf{x} prikažemo u obliku $\mathbf{x} = \mathbf{y} + \mathbf{z}$ gdje je $\mathbf{y} \in L$ i $\mathbf{z} \in L^{\perp}$, rješenje zadatka je vektor \mathbf{y} .

Vrijedi $\langle \mathbf{x} | \mathbf{a} \rangle = \alpha \langle \mathbf{a} | \mathbf{a} \rangle + \beta \langle \mathbf{b} | \mathbf{a} \rangle$, $\langle \mathbf{x} | \mathbf{b} \rangle = \alpha \langle \mathbf{a} | \mathbf{b} \rangle + \beta \langle \mathbf{b} | \mathbf{b} \rangle$ iz čega dobivamo $1 = 100\alpha + 100\beta, -6 = 100\alpha + 200\beta$ pa je $\alpha = \frac{8}{100}, \beta = \frac{-7}{100}$. Traženi vektor je $\mathbf{y} = \frac{8}{100}(1,3,4,5,7) - \frac{7}{100}(-6,6,8,0,8) = \frac{1}{100}(50,-18,-24,40,0)$.

Ispravan odgovor je: $\frac{1}{100}(50, -18, -24, 40, 0)$

Pitanje 11

Netočno

Broj bodova: 0,00 od 1,00

Izračunajte Grammovu determinantu za vektore (1+i,1,-i),(2+i,1,1),(1,1+3i,2i).

Odaberite jedan odgovor:

- \bigcirc a. 0
- \bigcirc b. 1
- c. -14+28i
- Od. 116
- e. Ne znam

Vaš odgovor nije točan.

Grammova determinanta je $egin{array}{c|ccc} 4&4&-2i&\\4&7&3-4i\\2i&3+4i&15 \end{array} = 116\,.$

Ispravan odgovor je: 116

×

Točno

Broj bodova: 1,00 od 1,00

Dopunite rečenicu: Vektori iz prethodnog zadatka su linearno

Odgovor: nezavisni

Vektori su linearno nezavisni jer je Grammova determinanta različita od 0.

Ispravan odgovor je: nezavisni

Pitanje 13

Točno

Broj bodova: 1,00 od 1,00

Ortonormirajte bazu trodimenzionalnog prostora razapetog vektorima $\mathbf{a}_1=(1,1,1,1), \mathbf{a}_2=(-1,4,4,-1), \mathbf{a}_3=(4,-2,2,0)$ u \mathbb{R}^4 . Napomena: pri ortonormiranju koristite poredak vektora kako je zadano.

Odaberite jedan odgovor:

$$egin{array}{ccc}$$
 a. $\mathbf{e}_1 = (1,1,1,1), \mathbf{e}_2 = (-1,1,1,-1), \mathbf{e}_3 = (1,-1,1,-1) \end{array}$

$$ullet$$
 b. $\mathbf{e}_1 = (1, 0, 1, 0), \mathbf{e}_2 = (1, 1, 1, 1), \mathbf{e}_3 = (1, -1, 1, -1)$

$$\bigcirc \ \mathsf{d.} \ \mathbf{e}_1 = \tfrac{1}{2}(1,0,1,0), \mathbf{e}_2 = \tfrac{1}{2}(1,1,1,1), \mathbf{e}_3 = \tfrac{1}{2}(1,-1,1,-1)$$

© e.
$$\mathbf{e}_1 = \frac{1}{2}(1,1,1,1), \mathbf{e}_2 = \frac{1}{2}(-1,1,1,-1), \mathbf{e}_3 = \frac{1}{2}(1,-1,1,-1)$$

Vaš odgovor je točan.

Nakon provedenog Grammm-Schmidtovog postupka dobivamo vektore $\mathbf{e}_1=\frac{1}{2}(1,1,1,1), \mathbf{e}_2=\frac{1}{2}(-1,1,1,-1), \mathbf{e}_3=\frac{1}{2}(1,-1,1,-1)$. Ispravan odgovor je: $\mathbf{e}_1=\frac{1}{2}(1,1,1,1), \mathbf{e}_2=\frac{1}{2}(-1,1,1,-1), \mathbf{e}_3=\frac{1}{2}(1,-1,1,-1)$

Točno

Broj bodova: 1,00 od 1,00

Nadopunite skup (1,1,2),(2,0,-1) do ortonormirane baze u \mathbb{R}^3 .

Odaberite jedan odgovor:

- lacksquare a. $\mathbf{e}_1=(1,1,2)$, $\mathbf{e}_2=(2,0,-1)$, $\mathbf{e}_3=(1,0,0)$
- \bullet b. $\mathbf{e}_1 = \frac{1}{\sqrt{6}}(1,1,2)$, $\mathbf{e}_2 = \frac{1}{\sqrt{5}}(2,0,-1)$, $\mathbf{e}_3 = \frac{1}{\sqrt{30}}(1,-5,2)$
- igcap c. ${f e}_1=rac{1}{\sqrt{6}}(1,1,2)$, ${f e}_2=rac{1}{\sqrt{5}}(2,0,-1)$, ${f e}_3=(1,0,0)$
- \bigcirc d. $\mathbf{e}_1=rac{1}{\sqrt{6}}(1,1,2)$, $\mathbf{e}_2=rac{1}{\sqrt{5}}(2,0,-1)$, $\mathbf{e}_3=(0,1,0)$
- e. Ne znam

Vaš odgovor je točan.

Zadani vektori su okomiti pa ih je potrebno samo normirati. Nakon normiranja imamo vektore $\mathbf{e}_1 = \frac{1}{\sqrt{6}}(1,1,2)$ i $\mathbf{e}_2 = \frac{1}{\sqrt{5}}(2,0,-1)$.

Nadopunimo skup vektorom $\mathbf{a}=(1,0,0)$ do baze za \mathbb{R}^3 te provedimo Gramm-Shcmidtov postupak, tad je $\mathbf{b}_3=\mathbf{a}-\langle\mathbf{a}|\mathbf{e}_1\rangle\mathbf{e}_1-\langle\mathbf{a}|\mathbf{e}_2\rangle\mathbf{e}_2=\frac{1}{30}(1,-5,2)$ i $\mathbf{e}_3=\frac{\mathbf{b}_3}{\|\mathbf{b}_3\|}=\frac{1}{\sqrt{30}}(1,-5,2)$.

$$\mathbf{b}_3 = \mathbf{a} - \langle \mathbf{a} | \mathbf{e}_1 \rangle \mathbf{e}_1 - \langle \mathbf{a} | \mathbf{e}_2 \rangle \mathbf{e}_2 = \frac{1}{30} (1, -5, 2)$$
 i $\mathbf{e}_3 = \frac{\mathbf{b}_3}{\|\mathbf{b}_3\|} = \frac{1}{\sqrt{30}} (1, -5, 2)$

Napomena: rješenje nije jedinstveno.

Ispravan odgovor je:
$${f e}_1=rac{1}{\sqrt{6}}(1,1,2)$$
 , ${f e}_2=rac{1}{\sqrt{5}}(2,0,-1)$, ${f e}_3=rac{1}{\sqrt{30}}(1,-5,2)$

Djelomično točno

Broj bodova: 0,50 od 1,00

Označite sve tvrdnje koje su točne.

Odaberite jedan ili više odgovora:

- 🛮 a. Ako je A simetrična matrica, tad su vlastiti vektori koji odgovaraju različitim vlastitim vrijednostima međusobno ortonormirani. 🔀
- b. Jedina moguća svojstvena vrijednost ortogonalne matrice je 1.
- \square c. Ako su \mathbf{A} i \mathbf{B} ortogonalne matrice istog tipa, onda je i matrica $\mathbf{A}\mathbf{B}$ ortogonalna.
- d. Svaka simetrična matrica slična je dijagonalnoj.
- e. Niti jedna tvrdnja

Vaš odgovor je djelomično točan.

Broj točnih odgovora: 1

- a) Netočno, ti vektori su međsobno okomiti, ali ne moraju biti ortonormirani.
- b) Netočno, npr. matrica $\begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}$ je ortogonalna, a njezine svojstvene vrijednosti su $\lambda_1 = \frac{\sqrt{2} + i\sqrt{2}}{2}$ i $\lambda_2 = \frac{\sqrt{2} i\sqrt{2}}{2}$.
- c) Točno. Matrice ${f A}$ i ${f B}$ su ortogonalne pa vrijedi ${f A}{f A}^t={f I}$ i ${f B}{f B}^t={f I}$. Provjerimo za $({f A}{f B})({f A}{f B})^t={f A}{f B}{f B}^t{f A}^t={f I}$
- d) Točno.

Ispravni odgovori su: Ako su ${\bf A}$ i ${\bf B}$ ortogonalne matrice istog tipa, onda je i matrica ${\bf AB}$ ortogonalna.

- , Svaka simetrična matrica slična je dijagonalnoj.
- → Predavanja 10. Skalarni umnožak

Prikaži...

13. auditorne vježbe >