LECTURE 1: Probability models and axioms

- Sample space
- Probability laws
 - Axioms
 - Properties that follow from the axioms
- Examples
 - Discrete
 - Continuous
- Discussion
 - Countable additivity
 - Mathematical subtleties
- Interpretations of probabilities

Sample space

- Two steps:
 - Describe possible outcomes
 - Describe beliefs about likelihood of outcomes

Sample space

List (set) of possible outcomes, Ω

- List must be:
- Mutually exclusive
- Collectively exhaustive
- At the "right" granularity

Sample space: discrete/finite example

Two rolls of a tetrahedral die

sequential description

Sample space: continuous example

• (x,y) such that $0 \le x,y \le 1$

Probability axioms

- Event: a subset of the sample space
- Probability is assigned to events

Axioms:

- Nonnegativity: $P(A) \ge 0$
- Normalization: $P(\Omega) = 1$
- (Finite) additivity: (to be strengthened later) If $A \cap B = \emptyset$, then $\mathbf{P}(A \cup B) = \mathbf{P}(A) + \mathbf{P}(B)$

Some simple consequences of the axioms

Axioms

$$P(A) \geq 0$$

$$P(\Omega) = 1$$

For disjoint events:

$$P(A \cup B) = P(A) + P(B)$$

Consequences

$$P(A) \leq 1$$

$$P(\emptyset) = 0$$

$$P(A) + P(A^c) = 1$$

$$P(A \cup B \cup C) = P(A) + P(B) + P(C)$$

and similarly for k disjoint events

$$P(\{s_1, s_2, \dots, s_k\}) = P(\{s_1\}) + \dots + P(\{s_k\})$$

= $P(s_1) + \dots + P(s_k)$

Some simple consequences of the axioms

Axioms

$$P(A) \geq 0$$

$$P(\Omega) = 1$$

For disjoint events:

(c)
$$P(A \cup B) = P(A) + P(B)$$

$$AUA' = SL$$

$$ANA' = \emptyset$$

$$\frac{1}{2} = P(SL) = P(AUA^{c})
= P(A) + P(A^{c})
= P(A) = 1 - P(A^{c})
= 1$$

$$1 = P(\Omega) + P(\Omega^c)$$

$$1 = 1 + P(\phi) \Rightarrow P(\phi) = 0.$$

Some simple consequences of the axioms

• A, B, C disjoint: $P(A \cup B \cup C) = P(A) + P(B) + P(C)$

•
$$P(\{s_1, s_2, ..., s_k\}) = \int \{\{s_1, s_2, ..., s_k\}\} = \int \{\{s_1, s_2, ...,$$

=
$$P(\{5,3\}) + \cdots + P(\{5,2\})$$

= $P(\{5,\}) + \cdots + P(\{5,2\})$

More consequences of the axioms

• If $A \subset B$, then $\mathbf{P}(A) \leq \mathbf{P}(B)$

• $P(A \cup B) = P(A) + P(B) - P(A \cap B)$

• $P(A \cup B) \le P(A) + P(B)$ union hound = a+b+c

More consequences of the axioms

• $P(A \cup B \cup C) = P(A) + P(A^c \cap B) + P(A^c \cap B^c \cap C)$

Probability calculation: discrete/finite example

- Two rolls of a tetrahedral die
- Let every possible outcome have probability 1/16

•
$$P(X = 1) = 4 \cdot \frac{1}{16} = \frac{1}{4}$$

Let $Z = \min(X, Y)$

•
$$P(Z=4) = \frac{1}{16}$$

•
$$P(Z=2) = 5 \cdot \frac{1}{16}$$
.

Discrete uniform law

- Assume Ω consists of n equally likely elements
- Assume \underline{A} consists of \underline{k} elements

$$P(A) = k \cdot \frac{1}{n}$$

Probability calculation: continuous example

- (x,y) such that $0 \le x,y \le 1$
- Uniform probability law: Probability = Area

$$P(\{(x,y) \mid x+y \le 1/2\}) = \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{8}$$

$$P(\{(0.5,0.3)\}) = \bigcirc$$

Probability calculation steps

- Specify the sample space
- Specify a probability law
- Identify an event of interest
- Calculate...

Probability calculation: discrete but infinite sample space

- Sample space: {1,2,...}

- We are given
$$P(n) = \frac{1}{2^n}$$
, $n = 1, 2, ...$

• P(outcome is even) = $P(\S 2, 4, 6, ..., \S)$

$$=\frac{1}{2^{2}}+\frac{1}{2^{4}}+\frac{1}{2^{6}}+\cdots =\frac{1}{4}\left(1+\frac{1}{4}+\frac{1}{4^{2}}+\cdots \right)=\frac{1}{4}\cdot\frac{1}{1-\frac{1}{4}}=\frac{1}{3}$$

Countable additivity axiom

Strengthens the finite additivity axiom

Countable Additivity Axiom:

If A_1 , A_2 , A_3 ,... is an infinite **sequence** of disjoint events, then $P(A_1 \cup A_2 \cup A_3 \cup \cdots) = P(A_1) + P(A_2) + P(A_3) + \cdots$

Mathematical subtleties

Countable Additivity Axiom:

If $A_1, A_2, A_3,...$ is an infinite **sequence** of disjoint events, then $P(A_1 \cup A_2 \cup A_3 \cup \cdots) = P(A_1) + P(A_2) + P(A_3) + \cdots$

- Additivity holds only for "countable" sequences of events
- The unit square (simlarly, the real line, etc.) is not countable (its elements cannot be arranged in a sequence)
- "Area" is a legitimate probability law on the unit square,
 as long as we do not try to assign probabilities/areas to "very strange" sets

Interpretations of probability theory

- A narrow view: a branch of math
- Axioms \Rightarrow theorems "Thm:" "Frequency" of event A "is" P(A)

- Are probabilities frequencies?
- P(coin toss yields heads) = 1/2
- $P(\text{the president of } \dots \text{ will be reelected}) = 0.7$

- Probabilities are often intepreted as:
 - Description of beliefs
 - Betting preferences

The role of probability theory

- A framework for analyzing phenomena with uncertain outcomes
- Rules for consistent reasoning
- Used for predictions and decisions

