Pset 1

- 1) Number system finger exercise. Don't use a calculator to automate these parts, though you can use it if you want help with multiplication or addition or to check answers. If you find any parts difficult or time-consuming, make up some more problems until number systems feel easy.
 - A) Write the powers of 2 from 2^0 to 2^{16} . Commit these numbers to memory because you will use them frequently in digital design.

$\lceil Power \rceil$	Value
0	1
1	2
2	4
3	8
4	16
5	32
6	64
7	128
8	256
9	512
10	1024
11	2048
12	4096
13	8192
14	16384
15	32768
<u> </u>	65536

- B) Base conversions. If you do these properly, you shouldn't have any difficult arithmetic when converting between bases 2, 8, and/or 16.
 - i. Convert the following numbers to base 2. 13_{10} , 1000_{10} , 654_8 , FEED₁₆
 - ii. Convert the following numbers to base 10. 1001_2 , 1100100_2 , 654_8 , BEEF₁₆
 - iii. Convert the following numbers to base 16. 1001_2 , 1100100_2 , 654_8 , 17_{10} , 200_{10} , 1000_{10}

10 A

11 B

12 C

13 D

14 E

15 F

1. 1101

01111101000

 428_{10} = 110101100

$$65261_{10} = 111111110111011_2$$

2.
$$2^3 + 1 = 9$$

 $2^2 + +2^5 + 2^6 = 100$

$$6*64+5*8+4=428$$

$$11*16^3 + 14*16^2 + 14*16 + 15 = 48879_{10}$$

= 1011111011111

- 3. 1.9
 - 2.64
 - 3.1AC
 - 4. 11
 - 5. C8
 - 6.3E8

 I realized just after finishing this that I could have done it much simpler by breaking base 16 into 4 digits in base two, and base 8 into 3 digits. That is silly, but oh well.

C) Number systems

 Convert the following numbers to 8-bit 2's complement and sign-magnitud format:

 69_{10} , -2_{10} , -37_{10}

 69_{10}) sign-magnitude = 01000101

two's compliment format = 01000101

 -2_{10}) sign-magnitude = 10000010 two's compliment format = 11111110

 -37_{10}) sign-magnitude = 10100101 two's compliment format = 1011011

ii. Convert the following 6-bit 2's complement numbers to base 10: 100100_2 , 011111_2

 100100_2 is -28 011111 is 31

iii. Convert the following 6-bit sign-magnitude numbers to base 10: 100100_2 , 011111_2

-4

31

iv. Write the most positive and most negative 8-bit numbers in binary and decimal for each of the following formats: unsigned, 2's complement, signmagnitude.

Binary:

unsigned)

Positive: 11111111 = 255

Most Negative: 00000000 = 0

2's compliment)

Positive: 011111111 = 127

Most Negative: 10000000 = -128

Sign Magnitude)

Positive: 011111111 = 127

Most Negative: 11111111 = -127

D) Arithmetic:

i. Assuming unsigned format:

- a) Compute $1010_2 + 0111_2$. Convert the addends and the sum to decimal and check your results.
- b) Extend 1011112 to 8 bits. Convert the input and result to decimal and check your result.

$$B = 00101111 = 32 + 8 + 4 + 2 + 1 = 47$$
 $101111 = 32 + 8 + 4 + 2 + 1 = 47$

ii. Repeat the question above assuming 2's complement format.

2) Logic gates

Write the symbol, Boolean equation, truth table, and Verilog code for a 3-input NAND gate.

$$y=(ilde{a}+ ilde{b}+ ilde{c})$$

