Rewrite eq. (i) as
$$x^{2} + \frac{b}{a}x + \frac{c}{a} = 0$$
or
$$x^{2} - \left(-\frac{b}{a}\right)x + \frac{c}{a} = 0$$

$$x^{2} - (\alpha + \beta)x + \alpha\beta = 0$$
or
$$x^{2} - (\text{sum of roots})x + \text{product of roots} = 0, \text{ that is,}$$

 $x^2 - Sx + P = 0$ where $S = \alpha + \beta$ and $P = \alpha\beta$

SOLVED EXERCISE 2.5

1. Write the quadratic equations having following roots.

(a) 1, 5

Solution:

Since 1 and 5 are the roots of the required quadratic equation, therefore,

$$S = Sum of roots = 1 + 5 = 6$$

$$P = Product of roots = (1)(5) = 5$$

Thus, the required quadratic equation is

$$x^2 - Sx + P = 0$$

$$x^2 - 6x + 5 = 0$$

(b) 4, 9

Solution:

Since 4 and 9 are the roots of the required quadratic equation, therefore,

$$S = Sum of roots = 4 + 9 = 13$$

$$P = Product of roots = (4)(9) = 36$$

Thus, the required quadratic equation is

$$x^{2} - Sx + P = 0$$
$$x^{2} - 13x + 36 = 0$$

$$(c) - 2, 3$$

. Solution:

Since -2 and 3 are the roots of the required quadratic equation, therefore,

$$S = Sum of roots = -2 + 3 = 1$$

$$P = Product of roots = (-2)(3) = -6$$

Thus, the required quadratic equation is

$$x^2 - Sx + P = 0$$

$$x^{2} - (1)x + (-6) = 0$$

 $x^{2} - x - 6 = 0$

(d)
$$0, -3$$

Solution:

Since 0 and -3 are the roots of the required quadratic equation, therefore,

$$S = Sum of roots = 0 + (-3) = -3$$

P = Product of roots = (0)(-3) = 0

Thus, the required quadratic equation is

$$x^2 - Sx + P = 0$$

 $x^2 - (3)x + 0 = 0$

$$x^2 + 3y = 0$$

$$x^2 + 3x = 0$$

(e) 2, -6

Solution:

Since 2 and -6 are the roots of the required quadratic equation, therefore,

$$S = Sum of roots = 2 + (-6) = -4$$

$$P = Product of roots = (2)(-6) = -4$$

Thus, the required quadratic equation is

$$x^2 - Sx + P = 0$$

$$x^2 - (-4)x + (-12) = 0$$

$$x^2 + 4x - 12 = 0$$

(f)
$$-1, -7$$

Solution:

Since -1 and -7 are the roots of the required quadratic equation, therefore,

$$S = Sum of roots = (-1) + (-7) = -1 - 7 = -8$$

$$P = Product of roots = (-1)(-7) = 7$$

Thus, the required quadratic equation is

$$x^2 - sx + p = 0$$

$$x^2 - (-8)x + 7 = 0$$

 $x^2 + 8x + 7 = 0$

$$x^2 + 8x + 7 = 0$$

(g)
$$1 + i, 1 - i$$

Solution:

Since 1 + i and 1-i are the roots of the required quadratic equation, therefore.

$$S = Sum of roots = 1 + i, 1 - i = 2$$

P = Product of roots =
$$(1 + i)(1-i) = 1 - i^2 = 1 - (-1) = 2$$

Thus, the required quadratic equation is

$$x^2 - Sx + P = 0$$

$$x^2 - 2x + 2 = 0$$

$$x^2 + 3x = 0$$

(h)
$$3 + \sqrt{2}$$
, $3 - \sqrt{2}$

Solution:

Since $3-\sqrt{2}$ and $3-\sqrt{2}$ are the roots of the required quadratic equation, therefore,

S = Sum of roots =
$$3 + \sqrt{2} + 3 - \sqrt{2} = 6$$

P = Product of roots =
$$(3 + \sqrt{2})(3 - \sqrt{2}) = (3)^2 - (\sqrt{2})^2 = 9 - 2 = 7$$

Thus, the required quadratic equation is

$$x^{2} - Sx + P = 0$$
$$x^{2} - 6x + 7 = 0$$

2. If α , β are the roots of the equation $x^2 - 3x + 6 = 0$.

Form equations whose roots are

(a)
$$2\alpha + 1, 2\beta + 1$$

Solution:

$$x^2 - 3x + 6 = 0$$

Here

$$a = 1, b = -3, c = 6$$

As ∞ , β be the roots of given equation.

$$S = Sum of roots$$

=
$$(2 \propto + 1) + (2 \beta + 1)$$

= $2 \propto + 1 + 2 \beta + 1$

$$=2\infty+2\beta+2$$

$$=2(\alpha+\beta)+2$$

$$= 2(3) + 2$$

P = Product of roots and

=
$$(2\alpha + 1)(2\beta + 1)$$

= $(2\alpha + 1)(2\beta + 1)$

$$-(2\alpha + 1)(2p + 1)$$

$$= 4\alpha\beta + 2\alpha + 2\beta + 1$$

= 4 (6) + 2 (3) + 1

$$= 24 + 6 + 1$$

$$= 31$$

Thus, the required quadratic equation is

$$x^2 - Sx + P = 0$$

$$x^2 - 8x + 31 = 0$$

(b)
$$\alpha^2$$
, β^2

Solution:

$$x^2 - 3x + 6 = 0$$

Here

$$a = 1, b = -3, c = 6$$

As α , β be the roots of given equation.

Then
$$\alpha + \beta = -\frac{b}{a}$$

$$=-\frac{\left(-3\right)}{1}$$

and
$$\alpha \beta = \frac{c}{a}$$

$$=\frac{6}{1}$$

$$= 3$$

$$= Sum of roots and$$

$$= \alpha^2 + \beta^2$$

$$= \alpha + \beta$$

$$= (\alpha + \beta)^{2} - 2\alpha\beta$$

$$= (3)^{2} - 2(6)$$

$$= 9 - 12$$

$$= 9 - 12$$

P = Product of roots
=
$$(\alpha^2 + 1)(\beta^2)$$

$$=(\alpha^2)(\beta^+)$$

$$=(\alpha\beta)^2$$

$$= (6)^2$$

$$= -3$$

= 36

Thus, the required quadratic equation is

$$x^2 - Sx + P = 0$$

$$x^{2} - (-3)x + 36 = 0$$
$$x^{2} + 3x + 36 = 0$$

(c)
$$\frac{1}{\alpha}$$
, $\frac{1}{\beta}$

Solution:

$$x^2 - 3x + 6 = 0$$

Here
$$a = 1, b = -3, c = 6$$

As ∞ , β be the roots of given equation.

Then
$$\alpha + \beta = -\frac{b}{a}$$

and
$$\alpha \beta = \frac{c}{a}$$

$$=-\frac{(-3)}{1}$$

$$=\frac{6}{1}$$

= 6

S = Sum of roots and

$$=\frac{1}{\alpha}+\frac{1}{\beta}$$

$$=\left(\frac{1}{\alpha}\right)\left(\frac{1}{\beta}\right)$$

$$=\frac{\alpha + \beta}{\alpha \beta}$$

$$=\frac{1}{\alpha \beta}$$

$$=\frac{3}{6}=\frac{1}{2}$$

$$=\frac{1}{2}$$

Thus, the required quadratic equation is

$$x^2 - Sx + P = 0$$

$$x^2 - \frac{1}{2}x + \frac{1}{6} = 0$$

$$6x^2 - 3x + 1 = 0$$

(d)
$$\frac{\alpha}{\beta}, \frac{\beta}{\alpha}$$

Solution:

$$x^2 - 3x + 6 = 0$$

Here
$$a = 1, b = -3, c = 6$$

As ∞ , β be the roots of given equation.

Then
$$\alpha + \beta = -\frac{b}{a}$$
 and $\alpha \beta = \frac{c}{a}$

$$d \propto \beta = -1$$

$$=-\frac{\left(-3\right)}{1}$$

$$=\frac{6}{1}$$

$$S = \text{Sum of roots}$$

$$= \frac{\alpha}{\beta} + \frac{\beta}{\alpha}$$

$$= \frac{\alpha^2 + \beta^2}{\alpha \beta}$$

$$= \frac{(\alpha + \beta)^2 - 2 \alpha \beta}{\alpha \beta}$$

$$= \frac{(3)^2 - 2(6)}{6}$$

$$= \frac{9 - 12}{6}$$

Thus, the required quadratic equation is $x^2 - Sx + P = 0$

P. = Product of roots

 $=\left(\frac{\alpha}{\beta}\right)\left(\frac{\beta}{\alpha}\right)$

4

= 1

and

$$x^{2} - \left(-\frac{1}{2}\right)x + 1 = 0$$

$$2x^{2} + x + 2 = 0$$

(e)
$$\alpha + \beta$$
, $\frac{1}{\alpha}$, $\frac{1}{\beta}$

 $=-\frac{3}{6}$

Solution:

$$x^2 - 3x + 6 = 0$$

Here a = 1, b = -3, c = 6

As \propto , β be the roots of given equation.

Then
$$\alpha + \beta = -\frac{b}{a}$$
 and $\alpha \beta = \frac{c}{a}$

$$= -\frac{(-3)}{1}$$

$$= 3$$

$$= \frac{6}{1}$$

$$= 6$$

$$= \alpha + \beta + \frac{1}{\alpha} + \frac{1}{\beta}$$

$$= (\alpha + \beta) \left(\frac{1}{\alpha} + \frac{1}{\beta} \right)$$

$$= (\alpha + \beta) + \frac{\alpha + \beta}{\alpha \beta}$$

$$= \frac{\alpha}{\alpha} + \frac{\alpha}{\beta} + \frac{\beta}{\alpha} + \frac{\beta}{\beta}$$

$$= 3 + \frac{3}{6}$$

$$= 1 + \frac{\alpha^{2} + \beta^{2}}{\alpha \beta} + 1$$

$$= 2 + \frac{2 + (\alpha + \beta)^{2} - 2 \alpha \beta}{\alpha \beta}$$

$$= \frac{7}{2}$$

$$= 2 + \frac{(3)^{2} - 2(6)}{6}$$

$$= 2 + \frac{9 - 12}{6}$$

$$= 2 - \frac{3}{6}$$

$$= 2 - \frac{1}{2}$$

$$= \frac{3}{2}$$

Thus, the required quadratic equation is

$$x^{2} - Sx + P = 0$$

$$x^{2} - \frac{7}{2}x + \frac{3}{2} = 0$$

$$\Rightarrow 2x^2 - 7x + 3 = 0$$

3. If α , β are the roots of the equation $x^2 + px + q = 0$.

`

(a) α^2 , β^2

Solution:

$$x^2 + Px + q = 0$$

Here a = 1, b = P, c = q

As ∞ , β be the roots of given equation.

Then
$$\alpha + \beta - \frac{b}{a}$$
 and $\alpha \beta = \frac{c}{a}$

$$= -\frac{p}{1}$$

$$= -p$$

$$S = \text{Sum of roots}$$

$$= \alpha^2 + \beta^2$$

$$= (\alpha + \beta)^2 - 2 \alpha \beta$$

$$= (-p)^2 - 2q$$

$$= p^2 - 2q$$
The state of roots and and an expectation in the state of roots are also as a state of roots and a state of roots are also as a state of roots are also as a state of roots and a state of roots are also as a state of roots are a

Thus, the required quadratic equation is

$$x^2 - Sx + P = 0$$

$$x^2 - (p^2 - 2q) x + q^2 = 0$$

(b)
$$\frac{\alpha}{\beta}, \frac{\beta}{\alpha}$$

Solution:

$$x^2 + Px + q = 0$$

Here a=1, b=P, c=q

As \propto , β be the roots of given equation.

Then
$$\alpha + \beta = -\frac{b}{a}$$
 and $\alpha \beta = \frac{c}{a}$

$$= -\frac{p}{l}$$

$$= -p$$

$$= -p$$

$$= -p$$

$$= q$$

$$S = \text{Sum of roots}$$
 and
$$P = \text{Product of roots}$$

$$= \frac{\alpha}{\beta} + \frac{\beta}{\alpha}$$

$$= \left(\frac{\alpha}{\beta}\right) \left(\frac{\beta}{\alpha}\right)$$

$$= \frac{\frac{\alpha^2 + \beta^2}{\infty \beta}}{\frac{(\alpha + \beta)^2 - 2 \alpha \beta}{\infty \beta}}$$

$$= \frac{(\alpha + \beta)^2 - 2 \alpha \beta}{\frac{(\alpha + \beta)^2}{\alpha \beta}}$$

$$=\frac{\left(-p\right)^2-2q}{q}$$

$$=\frac{p^2-2q}{q}$$

Thus, the required quadratic equation is $x^2 - Sx + P = 0$

$$x^2 - \left(\frac{p^2 - 2q}{q}\right) + 1 = 0$$

$$\Rightarrow qx^2 - (p^2 - 2q) + q = 0$$

Synthetic Division:

Synthetic division is the process of finding the quotient and remainder, when a polynomial is divided by a linear polynomial. In Fact synthetic division is simply a shortcut of long division method.

SOLVED EXERCISE 2.6

1. Use synthetic division to find the quotient and the remainder, when

= 1

(i)
$$(x^2 + 7x - 1) + (x + 1)$$