Transforming tokens into features

Bag of words (BOW)

Let's count occurrences of a particular token in our text

- Motivation: we're looking for marker words like "excellent" or "disappointed"
- For each token we will have a feature column, this is called **text vectorization**.

good movie
not a good movie
did not like

good	movie	not	a	did	like
1	1	0	0	0	0
1	1	1	1	0	0
0	0	1	0	1	1

• Problems:

- we loose word order, hence the name "bag of words"
- counters are not normalized

Let's preserve some ordering

We can count token pairs, triplets, etc.

- Also known as n-grams
 - 1-grams for tokens
 - 2-grams for token pairs

– ...

good movie			
not a good movie			
did not like			

good movie	movie	did not	a	•••
1	1	0	0	• • •
1	1	0	1	•••
0	0	1	0	•••

- Problems:
 - too many features

Remove some n-grams

Let's remove some n-grams from features based on their occurrence frequency in documents of our corpus

Remove some n-grams

Let's remove some n-grams from features based on their occurrence frequency in documents of our corpus

High frequency n-grams:

- Articles, prepositions, etc. (example: and, a, the)
- They are called **stop-words**, they won't help us to discriminate texts → remove them

• Low frequency n-grams:

- Typos, rare n-grams
- We don't need them either, otherwise we will likely overfit

Medium frequency n-grams:

Those are good n-grams

There're a lot of medium frequency n-grams

- It proved to be useful to look at n-gram frequency in our corpus for filtering out bad n-grams
- What if we use it for ranking of medium frequency n-grams?
- Idea: the n-gram with smaller frequency can be more discriminating because it can capture a specific issue in the review

TF-IDF

Term frequency (TF)

- tf(t, d) frequency for term (or n-gram) t in document d
- Variants:

weighting scheme	TF weight
binary	0, 1
raw count	$f_{t,d}$
term frequency	$f_{t,d}/\sum_{t'\in d} f_{t',d}$
log normalization	$1 + \log(f_{t,d})$

TF-IDF

Inverse document frequency (IDF)

- N = |D| total number of documents in corpus
- $|\{d \in D: t \in d\}|$ number of documents where the term t appears
- $idf(t,D) = log \frac{N}{|\{d \in D: t \in d\}|}$

TF-IDF

- $tfidf(t, d, D) = tf(t, d) \cdot idf(t, D)$
- A high weight in TF-IDF is reached by a high term frequency (in the given document) and a low document frequency of the term in the whole collection of documents

Better BOW

- Replace counters with TF-IDF
- Normalize the result row-wise (divide by L_2 -norm)

good movie			
not a good movie			
did not like			

	good movie	movie	did not	•••
	0.17	0.17	0	• • •
,	0.17	0.17	0	• • •
	0	0	0.47	• • •

Python TF-IDF example

```
from sklearn.feature_extraction.text import TfidfVectorizer
import pandas as pd
texts = [
    "good movie", "not a good movie", "did not like",
    "i like it", "good one"
]
tfidf = TfidfVectorizer(min_df=2, max_df=0.5, ngram_range=(1, 2))
features = tfidf.fit_transform(texts)
pd.DataFrame(
    features.todense(),
    columns=tfidf.get_feature_names()
)
```

	good movie	like	movie	not
0	0.707107	0.000000	0.707107	0.000000
1	0.577350	0.000000	0.577350	0.577350
2	0.000000	0.707107	0.000000	0.707107
3	0.000000	1.000000	0.000000	0.000000
4	0.000000	0.000000	0.000000	0.000000

Summary

- We've made simple counter features in bag of words manner
- You can add n-grams
- You can replace counters with TF-IDF values
- In the next video we will train our first model on top of these features