Chapter 6 Branch & Bound (B&B)

Key Points

- Understand the pruning strategy of B&B
- Master the framework of B&B
 - o FIFO
 - Priority Queue
- Learn from examples
 - o 0-1 Knapsack
 - o TSP
 - MCP
 - o SSSP

General Thought

B&B vs. BT

- Similar to BT, B&B searches solution in solution space tree
- Goal of search
 - o BT: all feasible solutions
 - B&B: one feasible solution or the **optimal solution**
- Search Strategy
 - o BT: skipped DFS
 - o B&B: BFS or best first search
- The functions for search
 - o BT
- constraint function
- bounding function
- B&B
- constraint function
- bounding function
- priority function (always = bounding function)
- o Characteristic:
 - BT: efficient in space
 - B&B: much faster, without an exhaustive search on the average

B&B Features

- B&B searches
 - o BFS or best first search
 - o avoid invalid and sub-optimal search by pruning functions
- Estimate value of node
 - o pick the node with extremum to search
 - o continually adjust the search direction
- Design of bunding function bases on the objective function

- B&B applies to solve optimization problem
- Each active node has only one chance to be an extending node

Search procedure

- once being an extending node, the node produces all its sons as candidate active nodes
 - o infeasible or sub-optimal ones are discarded
 - o remaining sons: inserted into an active node list
- choose next active node in the active node list as an **extending node** and repeat the above step
- Until: the optimal solution is found or the active node list is empty

Two kinds of B&B

- FIFO
- Use FIFO rule to choose an active node in the list to be the next extending node
- Priority Queue
 - Use Priority Queue to choose an active node in the list to be the next extending node
- To accelerate the search, each active node maintains a bound value
- The active node with the optimal bound value in the list is chosen as the next extending node

B&B Framework

- For a specific problem, define its solution space
 - $\circ \ \ X = (x_1, \cdots, x_n), x_i \in S_i = \{a_{i_1}, \cdots, a_{i_{ri}}\}$
 - Solution space: $S_1 \times S_2 \times \cdots \times S_n$
- Determine a solution-space tree to search
- Traverse the solution-space tree in BFS (FIFO Queue) or Best First Search (Priority Queue) and avoid invalid search by pruning functions (determine B&B efficiency)
 - Constraint function
 - Bounding function, optimal bound
 - Priority function = bounding function (priority queue)

Complexity of B&B

- Efficient on the average
 - the search adapts to the branch that includes the optimal solution
 - o many branches can be terminated very early
- Many NP-hard problem can be solved by B&B efficiently on the average
- A very large tree may be generated in the worst case
- The worst case time complexity is still exponential

0-1 Knapsack

B&B ALG Design for 0-1 Knapsack

- Solution
- Search space
- Node
- Feasible solution: a solution that satisfies weight constraint
- Optimal solution: the feasible solution with **maximal** value
- BFS or best first search
 - Constraint function: weight constraint

Bounding/Priority Function

- ullet Sort items in descending order in items of $v_i/w_i, i=1,2,\cdots,n$
- At node $< x_1, x_2, \cdots, x_i >$
- **Bound** bestp: the maximum knapsack value found so far
 - current value + rest value = total value
- Bounding/Priority function to compute the upper bound of the knapsack
 - o up, based on the current item selection

ALG Comparison for 0-1 Knapsack

- DP if the C is small
- If the C is large
 - o If space is limited, BT is preferred
 - o If search speed is important, B&B is preferred

Details about B&B 0-1 Knapsack

- 寻找上界: 一路左子树走最大
 - 。 对于0-1背包, 还可以最后按比例放进去
- 判断是否加入活跃节点列表: 是否可行 <=> 是否超重
- 判断拿出哪个节点,选上界最大的
- 如果一个节点算下来bestp(上界),且为叶节点,那么bestp就是这个解对应的值
 - o 如果其他节点的上界 < 该叶节点的bestp, 那么最优值已经找到

Traveling Salesman Problem (TSP)

B&B ALG Design for TSP

- Modeling: city set $C = \{c_1, c_2, \cdots, c_n\}$, distance $d(c_i, c_j) = d(c_j, c_i)$
- Solution: n-dimensional vector $< x_1, x_2, \cdots, x_n >, x_i \in \{1, 2, \cdots, n\}, x_i = j \iff$ the i_{th} city that the salesman travels is city j
- Node: $< x_1, x_2, \cdots, x_i >$ (partial vector)
- Search space: a tree of (n-1)! leaves, referred to as a permutation tree
- Optimal solution: k_1, k_2, \dots, k_n , a permutation of $1, 2, \dots, n$, so that

$$\min \Bigg\{ \sum_{i=1}^{n-1} d(c_{k_i}, c_{k_{i+1}}) + d(c_{k_n}, c_{k_1}) \Bigg\}$$

Bounding/Priority Function

- Constraint: the i_{th} vertex should be connected to the (i-1)th vertex on the chosen path 有路可走
 - o If the extending node is a parent of a leaf, the chosen vertex should also connected to vertex x_1 能回去
- Bound bestc: the cost of the found traveling route with minimum cost
- Bounding/Priority function *lcost* = *cc* + *rcost*
 - o cc: current cost
 - rcost: the sum of the minimal costs of the outgoing edges of the remaining vertices and the last vertex on the current path
 - *lcost*: the lower bound of the potential route in the subtree rooted at the present node *lcost* = *cc* + *rcost*

B&B with Priority Queue for TSP

• parent of a leaf node

if append to the active node list

- feasible conditions
 - edge to next vertex
 - able to get back to origin
- bounding condition
 - potential cost <= bestc</p>
- other inner node

if append to the active node list

- feasible conditions
 - edge to next vertex
- bounding condition
 - potential cost <= bestc</p>

every time pick a node with optimal value (potential) as an extending node

- a leaf node: feasible/optimal solution
- a non-leaf node: extending it, and add the feasible sons to the active list

Maximum Clique Problem (MCP)

- Problem: undirected graph $G = \langle V, E \rangle$, find the maximum clique of G
- Complete subgraph of $G: U = \langle V', E' \rangle, V' \subseteq V, E' \subseteq E, \quad \forall u, v \in V', (u, v) \in E'$
- Clique of G: a complete subgraph of G which is not included in another larger complete graph of G
- Maximum clique of G: the clique with maximum vertices

MCP Analysis

- ullet Solution: n-dimensional vector $< x_1, x_2, \cdots, x_n>$, $x_k=1$ iff vertex k belongs to MCP
- Brute force search: for any subset of vertices, check if it is a clique
 - \circ 2ⁿ subsets
 - o exponential time

Design B&B ALG for MCP

- A subset solution space tree
- Node $< x_1, x_2, \cdots, x_k >$
 - \circ The vertices $1, 2, \cdots, k$ are checked and the vertex i is in the clique if $x_i = 1$
- Constraint: the vertex being checked is connected to each vertex in the current clique

Bounding/Priority Function

- Bound bestn: the number of vertices in the MC found so far
- Bounding/Priority function: the upper bound of the # of vertices in the MC extended from the current clique

$$F=C_n+n-k$$

 C_n : the # of vertices in the current clique (initiated as 0)

k+1: the level of the node being considered

• The worst case: $O(n2^n)$

B&B with Priority Queue for MCP

- non-leaf node
 - o feasible condition
 - has edge connected to the nodes in current clique
 - bounding condition
 - upper bound of the vertices ≥ bestn so far

if both are satisfied insert to the active node list

- save the solution so far (of a node)
 - with node
 - a ptr to the parent node
 - a tag shows that it's the l/r child

every time pick a node with optimal value (potential) as an extending node

- a leaf node: feasible/optimal solution
- a non-leaf node: extending it, and add the feasible sons to the active list

Single Source Shortest Path (SSSP)

Compute Short(A,F) -- B&B

- Basic idea
 - 1. Start from the source s and the queue begins with only s
 - 2. Delete/pick one node from the queue and extending it
 - Each neighbor contributes to one son
 - 3. If not being pruned, its sons are inserted into the queue
 - 4. Repeat steps 2-3 until the queue is empty

Pruning functions

- Node i in the solution space tree denotes the distance to vertex v dist(v)
- If $dist(v) \geq$ the current shortest path from the source to the destination, prune the subtree rooted at i

The ways to select a node from the queue

- FIFO (FIFO queue)
- The node denoting the current shortest path (priority queue)