

FIGURE 1

FIGURE 6

FIGURE 7

Phase mask Top view

Far field recording

FIGURE 9

Near field recording

FIGURE 10

 $\tilde{\alpha}$ = input beam in the crystal; α = input beam in air

 $\widetilde{\beta}$ = output beam in the crystal; β = output beam in air;

 $\widetilde{\epsilon}$ = full angle between the read out beams in the crystal;

 ϵ = full angle between the read out beams in air;

 $\tilde{\delta}$ = slant angle of the grating vector in the crystal at room temperature;

 $\widetilde{\delta}^{H}$ = slant angle of the grating vector in the crystal at 180 °C;

 $\delta = \text{slant}$ angle of the dual fiber collimator;

 \mathbf{K} = grating vector; \mathbf{k}_{in} and \mathbf{k}_{out} = wave vectors (in and out);

 $\Lambda_{\rm G}$ = grating period of the refractive index pattern at room temperature;

 Λ_G^H = grating period of the refractive index pattern at 180 °C;

 Λ_P = grating period of the phase mask;

 $\lambda_{\text{R}} = \text{read out wavelength}$

 $\boldsymbol{n}_{\scriptscriptstyle R}$ = refractive index for infrared light

 $a_z = 4.5 \cdot 10^{-6} \, K^{-1}$; $a_y = 1.5 \cdot 10^{-5} \, K^{-1}$; thermal expansion koefficients

 $T_{R}=25^{\circ}\,\mathrm{C}$, read out temperature; $T^{H}{}_{R}=180^{\circ}\,\mathrm{C}$, recording temperature; $\Delta T=155K$;

FIGURE 12

FIGURE 13

