Parallel and GPUs programming in PLUMED

Daniele Rapetti

Enhanced sampling methods with PLUMED 2023 @CECAM

Why parallelism

- In the past: you just wait a year, and you would get a 2x performance due to Moore's "law"
- Now you need to write better quality code
- And exploit hardware features other than speed
 - SIMD (Single Instruction Multiple Data) this is advanced, and usually the compiler is better than you in at SIMD
 - Multiple CPUs cores
 - GPUs

Serial vs Parallel

Different architectures

CPU

- High serial performances
- Fast, but few cores
 - speed beats quantity
- Low latency (lots of operation in fewer time)

GPU

- High parallel performances
- Slow, but 100s to 1000s of cores
 - quantity beats speed
- High throughput (higher quantity of data processed)

Different parallelism protocols

openMP (shared memory)

- Calculations are done in different threads
- The data is not duplicated
- Race conditions will be present, during calculations

Message Passaging Interface (mpi)

- Calculations are done in different processes
- Data is duplicated: there is a communication layer
- Race conditions may happen, during communication

Concurrency and parallelism

concurrency

Do different things

parallelism

Do the same operation on different pieces of data

Works on atoms
0 to n-1

Works on atoms n to 2n-1

Works on atoms 2nto 3n-1

Works on atoms N-n to N-1

Parallelism in Plumed

The openmp interface

PLMD::OpenMP

The MPI interface

PLMD::Communicator

Better start with some examples

Hands on:

https://github.com/lximiel/PlumedFlagship_parallelism

- OpenMP:
 - OpenMP::getNumThreads()
- MPI:
 - PLMD::Communicator::Get_size()
 - PLMD::Communicator::Get_rank()
 - PLMD::Communicator::Sum()

THANK YOU!!!

