Федеральное государственное автономное образовательное учреждение высшего образования

«Санкт-Петербургский государственный электротехнический университет «ЛЭТИ»

им. В.И. Ульянова (Ленина)»

Кафедра физики

ОТЧЁТ

по лабораторной работе № 19

«Исследование эффекта Холла в полупроводнике»

Выполнил: Студент группы 4395

Николаев Всеволод Юрьевич

Преподаватель: Малышев Михаил Николаевич

Содержание

1	Введение
2	Теоретические сведения
	2.1 Эффект Холла
	2.2 Подвижность носителей заряда
	2.3 Магнитное поле электромагнита
3	Описание экспериментальной установки
	3.1 Основные элементы стенда
	3.2 Схема подключения
Į.	Методика выполнения работы
	4.1 Подготовка к измерениям
	4.2 Съём экспериментальных данных

1 Введение

Цель данной лабораторной работы — исследовать влияние магнитного поля на движущиеся носители заряда в полупроводнике (с электронным типом проводимости) и определить ключевые параметры материала:

- \bullet постоянную Холла R,
- \bullet концентрацию носителей заряда n,
- подвижность носителей μ .

Явление Холла позволяет не только выявлять природу носителей заряда (электронная или дырочная проводимость), но и оценивать численные значения упомянутых характеристик, что имеет важное практическое значение в полупроводниковой электронике.

2 Теоретические сведения

2.1 Эффект Холла

Эффект Холла заключается в появлении поперечного электрического поля в проводящем образце, по которому протекает ток, при помещении образца в магнитное поле, перпендикулярное направлению тока.

Пусть в тонкой пластинке полупроводника, имеющей толщину d, протекает ток I. Если магнитное поле \vec{B} направлено перпендикулярно току, то на движущиеся заряженные частицы (заряд e, скорость \vec{v}) действует сила Лоренца:

$$\vec{F} = e \left[\vec{v} \times \vec{B} \right].$$

Она отбрасывает носители заряда к одному из краёв пластинки, в результате чего между этим краем и противоположным возникает разность потенциалов, называемая **напряжением Холла** U_x . Сформировавшееся поперечное электрическое поле E_x уравновешивает силу Лоренца, и в установившемся режиме имеем:

$$e v B = e E_x$$
.

Если ширина пластинки равна b, то:

$$U_x = E_x \cdot b$$
.

С другой стороны, плотность тока через образец:

$$j = \frac{I}{b d} = n e v,$$

где n — концентрация носителей заряда, e — заряд электрона, v — средняя скорость направленного движения. Из этих соотношений следует, что:

$$U_x = R \frac{IB}{d},$$

где

$$R = \frac{1}{n \, e}$$

называется **постоянной Холла**. Определив R экспериментально, можно найти концентрацию $n=1/(R\,e)$. Знак U_x даёт информацию о типе проводимости: при электронном типе U_x положительно (для выбранного направления тока), при дырочном — отрицательно (или наоборот, в зависимости от стандарта подключения).

2.2 Подвижность носителей заряда

Подвижность μ описывает, с какой скоростью перемещаются носители заряда под действием электрического поля. Для полупроводника с концентрацией n электронов формула для удельной проводимости σ :

$$\sigma = n e \mu$$
.

Поскольку

$$R = \frac{1}{n.e}$$

TO:

$$\mu = \sigma R$$
.

Значение σ может быть определено из независимых измерений сопротивления образца с учётом его геометрии или известно по данным о материале.

2.3 Магнитное поле электромагнита

В работе используется электромагнит, состоящий из двух соосных катушек на магнитопроводе. При заданных токах I_2 в катушках (в амперах) магнитная индукция B в рабочей области (где размещён датчик Холла) аппроксимируется формулой:

$$B = B_{\rm H} + a I_2,$$

где:

- $B_{\rm h}$ начальная (остаточная) индукция сердечника,
- а коэффициент пропорциональности,
- \bullet I_2 сила тока через обмотки.

3 Описание экспериментальной установки

3.1 Основные элементы стенда

- Датчик Холла (ДХ): полупроводниковая плёнка (или пластинка), напылённая на диэлектрическую подложку, с четырьмя выводами. Два из них для пропускания тока I_1 , ещё два для съёма напряжения Холла U_x .
- Электромагнит (ЭМ): создаёт магнитное поле, перпендикулярное плоскости ДХ. Ток в катушках задаётся источником питания E_2 и потенциометром R_2 .
- Источники питания:
 - $-E_1$ для подачи тока I_1 через ДХ,
 - $-E_{2}$ для питания катушек электромагнита (обеспечивает I_{2}).
- Регулируемые резисторы (потенциометры):
 - $-R_1$ («Ток ДХ») регулирует I_1 ,
 - R_2 («Ток ЭМ») регулирует I_2 .
- Измерительные приборы:

- Миллиамперметр (mA) показывает I_1 (в мA),
- Вольтметр V2 измеряет падение напряжения на резисторе $R=1\,\Omega,$ так что его показания равны току I_2 (в A),
- Операционный усилитель (ОУ) с коэффициентом усиления k усиливает сигнал Холла U_x ,
- Вольтметр V1 измеряет выход ОУ (U_1) , откуда $U_x = U_1/k$.

3.2 Схема подключения

На рисунке условно показан общий вид схемы:

Рис. 1: Принципиальная схема установки для исследования эффекта Холла.

Ключевые элементы схемы (ДХ, ЭМ, R=1 Ом, ОУ, вольтметры, миллиамперметр, потенциометры) связаны так, чтобы:

- задавать ток I_1 в датчике Холла,
- \bullet контролировать магнитное поле (ток I_2 в электромагните),
- усиливать малое напряжение Холла,
- регистрировать его удобным для измерения вольтметром.

4 Методика выполнения работы

4.1 Подготовка к измерениям

- 1. Установить пределы измерений на приборах:
 - миллиамперметр (mA): «200 mA» или соответствующий близкий диапазон,
 - вольтметр V2: «20 VDС» (при $R=1\,\Omega$ даёт измерения тока до 20 A, но в практике обычно $\leq 1\,\mathrm{A}$),
 - вольтметр V1: «20 VDС» для контроля выходного напряжения ОУ.
- 2. Вывести потенциометры R_1 («Ток ДХ») и R_2 («Ток ЭМ») в крайние левые положения (минимум тока).
- 3. Включить источники питания E_1 и E_2 .

4.2 Съём экспериментальных данных

- 1. Задание тока I_1 . Потенциометром R_1 установить нужную величину тока в датчике Холла (например, 2 mA). Зафиксировать по миллиамперметру (mA).
- 2. Изменение тока в электромагните I_2 . Потенциометром R_2 плавно увеличить I_2 от минимума (0–0.1 A) до максимума (около 1 A). На каждом шаге зафиксировать значение I_2 (по V2) и выходное напряжение U_1 (по V1).
- 3. **Повтор** для нескольких (5 и более) значений I_1 (2 mA, 4 mA, 6 mA и т. д.), повторяя набор точек по I_2 .
- 4. После съёма всех точек уменьшить токи I_2 и I_1 , выключить питание.