

والمالية والمراكز والمنافي والمالية والمراكز والمنافية والمراكرة والمنافية والمراكزة والمراكزة والمنافية والمناف

DATA

어떠한 자료 혹은 실제 값

→ 에베레스트 산의 높이 : 8848m

정보

데이터를 기반으로 하여 의미를 부여한 것 → 에베레스트는 세계에서 가장 높은 산이다.

DataBase의 정의

- 1. 운영 데이터(Operational Data)
 - 조직의 목적을 위해 사용되는 데이터
- 2. 공용 데이터(Shared Data)
 - 공동으로 사용되는 데이터
- 3. 통합 데이터(Integrated Data)
 - 중복을 최소화하여 중복으로 인한 데이터 불일치 현상 제거
- 4. 저장 데이터(Stored Data)
 - 컴퓨터 저장장치에 저장된 데이터
- ※ 한 조직에 필요한 정보를 여러 응용시스템에서 공용할 수 있도록 논리적으로 연관된 데이터를 모으고, 중복되는 데이터를 최소화하여 구조적으로 통합/저장해 놓은 것

DataBase의 특징

- 1. 실시간 접근성(real time accessibility)
 - 사용자가 데이터를 요청하면 실시간으로 결과를 서비스한다.
- 2. 계속적인 변화(continuous change)
 - 데이터 값은 시간에 따라 항상 바뀐다.
- 3. 동시 공유(concurrent sharing)
 - 데이터베이스는 서로 다른 업무 또는 여러 사용자에게 동시 공유된다.
- 4. 내용에 따른 참조(reference by content)
 - 데이터베이스에 저장된 데이터는 데이터의 물리적 위치가 아 니라 데이터 값에 따라 참조된다.

DBMS(DataBase Management System)

데이터베이스에서 데이터를 추출, 조작, 정의, 제어 등을 할 수 있게 해주는 데이터베이스 전용 관리 프로그램

DBMS의 기능

기능	설명
데이터 추출 (Retrieval)	사용자가 조회하는 데이터 혹은 응용프로그램의 데이터를 추출
데이터 조작 (Manipulation)	데이터를 조작하는 소프트웨어가 요청하는 데이터의 삽입, 수정, 삭제 작업을 지원
데이터 정의 (Definition)	데이터의 구조를 정의하고 데이터 구조에 대한 삭제 및 변경 기능을 수행
데이터 제어 (Control)	데이터베이스 사용자를 생성하고 모니터링하며 접근을 제어 백업과 회복, 동시성 제어 등의 기능을 지원

والمالية والمراجع فأراوع والمراجع والمالية والمراجع فأراوع والمراجع والمالية والمراجع فأراوع والمرجوع

DBMS 사용 이점

주요 이점	설명				
데이터 독립화	- 데이터와 응용 프로그램을 분리시킴으로써 상호 영향 정도를 줄일 수 있다.				
데이터 중복 최소화 데이터 무결성 보장	 중복되는 데이터를 최소화 시키면 데이터 무결성이 손상될 가능성이 줄어든다. 중복되는 데이터를 최소화 시키면서 필요한 저장공간의 낭비를줄일 수 있다. 				
데이터 보안 향상	 응용프로그램은 DBMS를 통해 DBMS가 허용하는 데이터에만 접 근 할 수 있다. 권한에 맞게 데이터 접근을 제한하거나 데이터를 암호화 시켜 저 장 할 수 있다. 				
관리 편의성 향상	다양한 방법으로 데이터를 백업할 수 있다.장애 발생 시 데이터를 복구할 수 있다.				

والمالية والمراجع فأراوع والمراجع والمالية والمراجع فأراوع والمراجع والمالية والمراجع فأراوع والمرجوع

DataBase의 변천 과정

데이터 모델	1960	1970	1980	1990	2000	2010
파일시스템						
계층 데이터 모델						
네트워크 데이터 모델						
관계 데이터 모델						
객체 데이터 모델						
객체-관계 데이터 모델						

والمالية والمراجع فالمراجع والملاوي المراجع فالمراجع والمالية والمراجع والمراجع والمراجع والمراجع والمراجع

주요 DataBase의 유형

데이터 모델	설명				
계층 데이터 모델	데이터의 관계를 트리구조로 정의하고, 부모 자식형태를 갖는 구조로 데이터 중복 문제가 발생함				
네트워크 데이터 모델	계층형 모델의 중복문제를 해결한 구조로 데이터 간의 다양한 관계를 그물처럼 갖는 구조 복잡한 구조 때문에 구조 설계 및 변경이 매우 어려움				
관계 데이터 모델	행과 열로 구성된 Table간의 관계를 나타내어 데이터를 표현하는 구조로 흔히 DBMS에서 사용하는 구조				
객체-관계 데이터 모델	객체 지향 데이터베이스 모델을 가진 관계형 데이터베이스로 틀 안에 정해진 Table과의 관계였지만 사용자 정의 타입을 지원				

والمالية والمراجع فأراوع والمراجع والمالية والمراجع فأراوع والمراجع والمالية والمراجع فأراوع والمرجوع

객체-관계형 데이터베이스 특징

- 1. 사용자 정의 타입을 지원한다.
 - 사용자가 임의로 정한 데이터 유형을 말하며, 기본형 데이터 타입을 뛰어 넘어 다양한 형태의 데이터를 다룰 수 있다.
- 2. 참조(reference)타입을 지원한다.
 - 객체들로 이루어진 객체 테이블의 경우, 하나의 레코드가 다른 레코드를 참조할 수 있는 것을 말한다.
- 3. 중첩 테이블을 지원한다.
 - 테이블을 구성하는 로우(ROW) 자체가 또다른 테이블로 구성되는 테이블을 지원하여 조금 더 복합적인 정보표현이 가능하다.
- 4. 대단위 객체의 저장, 추출이 가능하다.
 - 이미지, 오디오, 비디오 등을 저장하기 위한 객체를 지원한다.
- 5. 객체간 상속관계를 지원한다.
 - 오라클의 경우 Object타입을 지원함으로써 상속기능을 구현하고 있다.

والمالية والأراكية والمنازي والمراكب والمالية والمراكزة والمنازي والمنازية والمراكبة والمراكزة