3 A child of weight 330 N is at point X at the top of a slide. The slide is at the edge of a swimming pool, as shown in Fig. 3.1.

Fig. 3.1 (not to scale)

The child moves from rest to the lowest point of the slide that is a vertical distance of 4.0 m below X. The child continues moving towards point Y which is at the end of the slide and a vertical distance of 1.1 m above the lowest point. The kinetic energy of the child at Y is 540 J.

(a) Calculate the difference in the gravitational potential energy of the child at points X and Y.

(b) An average frictional force of 52 N acts on the child when moving from X to Y.

By considering changes of energy, determine the distance moved by the child from X to Y.

distance moved = m [2]

(c) The child leaves the slide at point Y with a velocity that is at an angle of 41° to the horizontal. The path of the child through the air is shown in Fig. 3.2.

Fig. 3.2 (not to scale)

Point Z is the highest point on the path of the child through the air. Assume that air resistance is negligible.

Calculate the speed of the child at:

(i) point Y

(ii) point Z.

speed =
$$ms^{-1}$$
 [2]

[Total: 8]