

VL Deep Learning for Natural Language Processing

4. Word Embeddings I

Prof. Dr. Ralf Krestel AG Information Profiling and Retrieval

Summary of Previous Session

- Preprocessing
 - OCR, speech recognition
 - Tokenization
 - Normalization
- Morphological analysis
 - Stemming, lemmatization
 - Part-of-speech tagging
- Syntactic analysis
 - Sentence splitting
 - Parsing
- Semantic analysis
 - Lexical semantics
 - Relational semantics
 - Discourse

- Applications
 - Document Classification
 - Document Clustering
 - Topic Modeling
 - Machine translation (MT)
 - Information retrieval (IR)
 - Information extraction (IE)
 - Question answering (QA)
 - Automatic summarization
 - Recommender Systems (RS)
 - Knowledge Graphs (KG)
 - Natural language generation (NLG)
 - Natural language understanding (NLU)

Semester Schedule

Week	Date	Exercise (Mon)	Lecture (Thu)	Assignments
1	15.4.24	No Exercise	Introduction	
2	22.4.24	Python/Pytorch/Colab	Neural Networks	Hand-out A1
3	29.4.24	Neural Network Implementation	NLP+TM	Introduction
4	6.5.24	Text Classification	Holiday	Hand-in A1
5	13.5.24	Assignment 1 Discussion	Word Embeddings I	Hand-out A2
6	20.5.24	Holiday	Word Embeddings II	951.57
7	27.5.24	Word Embeddings Applications	Word Classifiers	Basics
8	3.6.24	Deep Learning in Practice	Language Models	Hand-out A3
9	10.6.24	RNNs+CNN	Recurrent Neural Networks	Hand-in A2
10	17.6.24	Assignment 2 Discussion	Sequence-to-Sequence Models	
11	24.6.24	Seq2Seq & Hugging Face	Transformer Models	Hand-in A3 Advanced
12	1.7.24	Transformers	Large Language Models	Hand-in A3
13	8.7.24	Assignment 3 Discussion	Generation and Prompting	

Deep Learning for Natural Language Processing

In contrast to deep learning for non-perceptional tasks

- Not NLP
- Not CV

In contrast to machine learning for natural language processing

- Statistics
- Rule-based

- A sequence of characters or words (tokens) (or sub-words)
- DL algorithms for sequences
 - Recurrent neural networks (RNN)
 - 1D convolutional neural networks (CNN)
 - Transformer
 - Large language models (LLM)

What is Meaning

- What's the meaning of this sentence?
 - The weather is nice.
 - Time flies like an arrow; fruit flies like a banana.
- What's the meaning of these words?
 - Bank
 - Jaguar
 - Java
- Is cold positive or negative?
 - Cold beer
 - Cold coffee

https://www.historyonthenet.com/the-egyptians-hieroglyphs

Leibniz Leibniz Gemeinschaft

Learning Goals for this Chapter

- Whats the meaning of meaning?
- Know representations for words
 - Pros and cons
- Understand word2vec
 - CBOW/skip-gram

- Relevant chapters:
 - P6.1
 - S1 (2021) https://www.youtube.com/watch?v=rmVRLeJRkl4

Topics Today

- 1. Word Meaning
- 2. LSA
- 3. Word2vec

What's the Meaning of Meaning?

- Merriam-Webster (https://www.merriam-webster.com/dictionary/meaning)
 - Meaning noun (mean ing | 'mē-niŋ)
 - Definition of meaning
 - 1a: the thing one intends to convey especially by language: <u>purport</u>
 // Do not mistake my meaning.
 - 1b: the thing that is conveyed especially by language: <u>import</u>
 // Many words have more than one meaning.
 - 2 : something meant or intended : <u>aim</u>// a mischievous meaning was apparent
 - 3 : significant quality
 especially : implication of a hidden or special significance
 // a glance full of meaning
 - o 4a: the logical connotation of a word or phrase
 - o 4b: the logical denotation or extension of a word or phrase

SS 2024

How do Humans Understand Words?

- Wikipedia (https://de.wikipedia.org/wiki/Bedeutung (Sprachphilosophie)
 - Meaning means the knowledge of the usual use of a word or phrase within a language community and given context.
 - Meaning means what someone understands based on a sign or a linguistic expression.
 - In reference theory, meaning is the object denoted by a word.
 - In lexical meaning theory, the meaning is expressed by a list of properties that includes a term.
- Decisive for determining the meaning are
 - word and sentence structure (syntax),
 - content of the expression (semantics), and
 - the context of use of an utterance (pragmatics)

How Can a Computer Understand Words?

fox = wn.synset("fox.n.01")
hyper = lambda s: s.hypernyms()

list(fox.closure(hyper))

[Synset('canine.n.02'),
Synset('carnivore.n.01'),
Synset('placental.n.01'),
Synset('mammal.n.01'),

- Easy, using a dictionary!
 - E.g. WordNet, SentiWordNet
 - Collection of words organized in synsets (synonym sets) and in "is-a"-Hierarchy

```
Synset('vertebrate.n.01'),
import nltk
                                                                          Synset('chordate.n.01'),
nltk.download('wordnet')
                                                                          Synset('animal.n.01'),
                                                                          Synset('organism.n.01'),
from nltk.corpus import wordnet as wn
                                                                          Synset('living thing.n.01'),
for synset in wn.synsets("bank"):
                                                                          Synset('whole.n.02'),
    print ("(%s)" % synset.pos(), ", ".join([1.name() for 1
                                                                          Synset('object.n.01'),
    in synset.lemmas()]), "Def: %s " % synset.definition())
                                                                          Synset('physical entity.n.01'),
                                                                          Synset('entity.n.01')]
>>>(n) bank
   Def: sloping land (especially the slope beside a body of water)
>>>(n) depository financial institution, bank, banking concern, banking company
  Def: a financial institution that accepts deposits and channels the money into lending activities
>>>(v) bank
   Def: tip laterally
```


Problems with Dictionaries such as WordNet

- In general useful, e.g. to answer the questions
 - Is this word ,positive'?
 - Is this word related to a particular topic?
- But:
 - Not very sophisticated
 - o proficient is only in certain context a synonym for good
 - New words not included at all
 - o Ninja, wizard, genius
 - Subjective, since man made
 - Very costly to create and maintain
 - Meaning of n-grams unclear
 - Similartiy of words hard to measure
 - Distance in WordNet-Hierarchy

Leibniz Leibniz Gemeinschaft

Words as Discrete Symbols

- Bag-of-words, vector space model
 - Words and n-grams correspond to positions in a vector
 - Also possible on character level: character and character n-grams
 - Length of vector = vocabulary size
 - Between 20k and 500k
 - Advantage:
 - Very successul in IR
 - Input data are vectors
 - Can be processed by a DNNs
 - Documents can be represented as sum of all their words' vectors

Vectorization

One-hot-encoding

Vectorization of words

- Problem:
 - Vectors of similar words are orthogonal
 - One-hot-encoding has no concept of similarity
- Solution:
 - Make use of Wordnet to find synonyms?
 - Better: include similarity already in vector representation

Leibniz Leibniz Gemeinschaft

Represent Words by their Context

- Idea: The meaning of a word is defined by the words that appear often in its vicinity.
 - "You shall know a word by the company it keeps" (Firth 1957)
 - Most successful concept in modern, statistical NLP

- The context of a word w in a text are the words in its vicinity.
 - Typically a window of fixed size
 - Between two and five on both sides
- One word is then represented by all its contexts:

...proud to own a **house** in this neighborhood...

The **house** of cultures offers...

...on main street, the **house** of her parents was...

These contexts then represents the word *house*

John Rupert Firth (1957). "A synopsis of linguistic theory 1930-1955." In Special Volume of the Philological Society. Oxford: Oxford University Press.

Word Vectors

- Idea: each word is represented by a dense vector.
 - Similar words have similar vector representations

$$- house = \begin{bmatrix} -0.345\\ 0.422\\ -0.114\\ -0.225\\ 0.135\\ 0.452\\ -0.164\\ -0.398\\ 0.145 \end{bmatrix} mouse = \begin{bmatrix} 0.441\\ 0.125\\ -0.514\\ 0.156\\ 0.532\\ -0.216\\ -0.379\\ 0.294\\ 0.542 \end{bmatrix} home = \begin{bmatrix} -0.465\\ 0.222\\ -0.165\\ -0.123\\ 0.415\\ 0.392\\ -0.183\\ -0.382\\ 0.1 \end{bmatrix}$$

- These word vectors are called word embeddings.
- Two types of word embeddings
 - Learning of the vectors as part of the machine learning problem
 - Pretrained vectors as input for a DNN
 - Pretrained word embeddings: word2vec, GloVe, fastText

Sparse vs. Dense High vs. Low dimensional Hard-coded vs. Learned from data Word Embeddings One-Hot-coded Vectors

SS 2024 VL DL4NLP

Word Meaning

- How could you determine the sentiment of a sentence using word vectors?
 - E.g movie reviews: "This movie was boring" vs. "Great movie, highly recommended"

VL DL4NLP

Leibniz Leibniz Gemeinschaft

Topics Today

- 1. Word Meaning
- 2. LSA
- 3. Word2vec

Latent Semantic Analysis

- Aka latent semantic indexing (LSA/LSI)
- Based on bag-of-words model
- Given a matrix A encoding some documents:
 - $-A_{ij}$ is the count of word **j** in document **i**.
 - Often tf-idf or other "squashing" functions of the count are used
 - Most entries are 0.

Scott Deerwester et al. "Indexing by latent semantic analysis". Journal of the American society for information science (1990).

Latent Semantic Analysis

Low-rank singular value decomposition (SVD):

$$A_{[m \times n]} = U_{[m \times r]} \Sigma_{[r \times r]} (V_{[n \times r]})^{T}$$

- U: document-to-concept similarities matrix (orthogonal matrix)
- V: word-to-concept similarities matrix (orthogonal matrix)
- $-\Sigma$: strength of each concept

An SVD factorization gives the best possible reconstructions of a word w from its embedding

- Then given a word w (column of A):
 - $\varsigma = w^T \times U$ is the embedding (encoding) of the word **w** in the latent space
 - $w \approx U \times \varsigma^T = U \times (w^T \times U)^T$ is the decoding of the word **w** from its embedding

Topics Today

- 1. Word Meaning
- 2. LSA
- 3. Word2vec

Word Embeddings

- Word2vec is a framework to to compute word vectors (word embeddings) using a deep neural network architecture.
- Idea:
 - 1. Given a very, very large text corpus
 - E.g. the web, large digital libraries, at least Wikipedia
 - 2. Represent each word of the vocabulary as a dense vector.
 - Number of dimensions: 50-300
 - 3. Iterate over each word *c* (center) in the text and look at its context *o* (outside).
 - 4. Learn to predict the center word *c*, given the context word vectors.
 - o P(c|o); Multi-class classification problem; or vice versa P(o|c)
 - 5. Change/adapt the word vectors in a way to maximize these probabilities.
 - Similar context results in similar word vectors!

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J. (2013). Distributed representations of words and phrases and their compositionality. In *Advances in Neural Information Processing Systems (NIPS)*. pp. 3111-3119.

Word2vec

- Two variants of Word2vec
 - 1. Skip-grams (SG)
 - Predict the context words given the center word
- Independent of exact position

- 2. Continuous Bag of Words (CBOW)
 - Predict the center word given the bag-of-words of its context
- Two more or less efficient methods to learn the word vectors
 - 1. Hierarchical softmax
 - 2. Negative sampling
 - We look at naive softmax
 - VERY inefficient ;) but easier to understand ☺

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J. (2013). Distributed representations of words and phrases and their compositionality. In *Advances in Neural Information Processing Systems (NIPS)*. pp. 3111-3119.

Example

• Calculation of $P(w_{t+x}|w_t)$ for window size x

Example

• Calculation of $P(w_{t+x}|w_t)$ for window size x

Network Architecture

Loss Function

• For each position t = 1, ..., T predict the context words in window of size m for a given center word w_t .

$$J'(\theta) = \prod_{t=1}^{T} \prod_{\substack{-m \le j \le m \\ j \ne 0}} P(w_{t+j}|w_t; \theta)$$

• The loss function $J(\theta)$ is then the (average) negative log likelihood:

$$J(\theta) = -\frac{1}{T}\log J'(\theta) = -\frac{1}{T}\sum_{t=1}^{T} \sum_{\substack{-m \le j \le m \\ i \ne 0}} log P(w_{t+j}|w_t; \theta)$$

Minimizing the loss function
 ⇔ Maximizing the prediction accuracy

Computing the Loss Function I

Minimizing the loss function

$$J(\theta) = -\frac{1}{T} \sum_{t=1}^{T} \sum_{\substack{-m \le j \le m \\ j \ne 0}} log P(w_{t+1}|w_t; \theta)$$

- How to compute $P(w_{t+1}|w_t;\theta)$?
- For each word w there are two vectors:
 - $-v_w$ if w is a center word
 - $-u_w$ if w is a context word
- Then, for a given center word *c* and a given context word *o* you can compute:

 Scalar product compares

$$P(o|c) = \frac{e^{u_o^T v_c}}{\sum_{w \in V} e^{u_w^T v_c}}$$

Normalization across the complete vocabulary

Leibniz Gemeinschaft

the similarity of o and c.

Computing the Loss Function II

$$P(o|c) = \frac{e^{u_o^T v_c}}{\sum_{w \in V} e^{u_w^T v_c}}$$

- A version of the softmax function
- Reminder:

$$softmax(x_i) = \frac{e^{x_i}}{\sum_{i} e^{x_j}} = p_i$$

- The softmax function maps arbitrary values x_i to a probability distribution p_i .
 - o "max", because large values are maped to excessively large probability values
 - o "soft", because also very small values get mapped to a small probability value

Parameters of the Model

Optimize all parameters so that loss fuction is minimized!

$$J(\theta) = -\frac{1}{T} \sum_{t=1}^{T} \sum_{\substack{-m \le j \le m \\ j \ne 0}} \log \frac{e^{u_o^T v_c}}{\sum_{w \in V} e^{u_w^T v_c}}$$

- Find two vector representations for each word in a way that similar words have similar vectors.
- Compute gradients per window for all parameters
- Why two vectors per word?
 - Easier to optimize
 - Use average at the end!

$$heta = egin{bmatrix} v_{aachen} \ v_{aake} \ dots \ v_{zuse} \ u_{aachen} \ u_{aake} \ dots \ u_{zuse} \end{bmatrix} \in \mathbb{R}^{2dV}$$

Gradients

- How to change each vector v and u to minimize loss function?
- For each window and context word, we need to compute $\frac{\partial J}{\partial v_c}$ and $\frac{\partial J}{\partial u_o}$:

$$\frac{\partial}{\partial v_c} \log \frac{\mathrm{e}^{u_o^T v_c}}{\sum_{w \in V} \mathrm{e}^{u_w^T v_c}} = \frac{\partial}{\partial v_c} \log \mathrm{e}^{u_o^T v_c} - \frac{\partial}{\partial v_c} \log \sum_{w \in V} \mathrm{e}^{u_w^T v_c}$$

- A: $\frac{\partial}{\partial v_c} u_o^T v_c = u_o^T$
- $\bullet \quad \mathsf{B} \colon \frac{\partial}{\partial v_c} \log \Sigma_{w \in V} \, \mathrm{e}^{u_w^T v_c} = \frac{1}{\sum_{w \in V} \mathrm{e}^{u_w^T v_c}} \cdot \frac{\partial}{\partial v_c} \sum_{x \in V} \mathrm{e}^{u_w^T v_c} = \frac{1}{\sum_{w \in V} \mathrm{e}^{u_w^T v_c}} \cdot \sum_{x \in V} \frac{\partial}{\partial v_c} \mathrm{e}^{u_x^T v_c}$ $= \frac{1}{\sum_{w \in V} \mathrm{e}^{u_w^T v_c}} \cdot \sum_{x \in V} \mathrm{e}^{u_x^T v_c} \frac{\partial}{\partial v_c} u_x^T v_c = \frac{1}{\sum_{w \in V} \mathrm{e}^{u_w^T v_c}} \cdot \sum_{x \in V} \mathrm{e}^{u_x^T v_c} u_x^T$ $= \sum_{x \in V} \frac{\mathrm{e}^{u_x^T v_c}}{\sum_{w \in V} \mathrm{e}^{u_w^T v_c}} u_x^T = \sum_{x \in V} P(x | c) u_x^T$
- A-B: $u_0 \sum_{x \in V} P(x|c) u_x^T$

Learning Embeddings

- Imagine a corpus with only three (meaningful) words
 - house, home, mouse
 - Further there are stop words and verbs.
 - Assume the corpus contains 10k sentences
- Go through the process of learning word embeddings manually using the network architecture and the loss function
 - How does backpropagation changes the weights?

VL DL4NLP

Learning Goals for this Chapter

- Whats the meaning of meaning?
- Know representations for words
 - Pros and cons
- Understand word2vec
 - CBOW/skip-gram

- Relevant chapters:
 - P6.1
 - S1 (2021) https://www.youtube.com/watch?v=rmVRLeJRkl4

Literature

- Efficient Estimation of Word Representations in Vector Space
 - (original word2vec paper)
- <u>Distributed Representations of Words and Phrases and their Compositionality</u>
 - (negative sampling paper)
- GloVe: Global Vectors for Word Representation
 - (original GloVe paper)
- Improving Distributional Similarity with Lessons Learned from Word Embeddings
- word2vec parameter learning explained

Leibniz Leibniz Gemeinschaft