EE288 Data Conversions/Analog Mixed-Signal ICs Spring 2018

Lecture 20: Pipelined ADC 2

Prof. Sang-Soo Lee sang-soo.lee@sjsu.edu ENG-259

1.5-Bit Stage Architecture

V _{IN}	Range	В1	В0	DAC O/P	Residue
$V_{IN} > V_{H}$	Н	1	0	$+\mathbf{V}_{\mathbf{REF}}$	$2V_{IN} - V_{REF}$
$V_L < V_{IN} < V_H$	M	0	1	0	2V _{IN}
$V_{\rm H} < V_{ m L}$	L	0	0	$-\mathbf{V}_{\mathbf{REF}}$	$2V_{IN} + V_{REF}$

Timing Diagram of Pipelining

- Two-phase nonoverlapping clock is typically used, with the coarse ADCs operating within the nonoverlapping times
- All pipelined stages operate simultaneously, increasing throughput at the cost of latency

Timing of Pipeline Stages

Time-Alignment and Synchronization

Digital Error Correction

Digital Correction

$$V_{o} = \begin{cases} 2V_{i} - V_{ref} & \text{if } V_{i} > V_{ref}/4 & d = 2 (10)_{2} \\ 2V_{i} & \text{if } -V_{ref}/4 \leq V_{i} \leq +V_{ref}/4 & d = 1 (01)_{2} \\ 2V_{i} + V_{ref} & \text{if } V_{i} < -V_{ref}/4 & d = 0 (00)_{2} \end{cases}$$

Fig. 2.15 Example of the operation of digital correction: a Ideal situation (and indecision corrected).
b Offset error in stage 2: offset corrected

10-Bit ADC Example

Table 4.3: Example of digital error correction

Figure 4.8: The final structure of the pipeline

Pipelined ADC Features

Features

- Architecture complexity is proportional to the resolution N = Σn_j
- Throughput is significantly improved relative to algorithmic or SAR
- Digital redundancy works the same way as algorithmic
- Inter-stage gain enables stage scaling to save power and area

Limitations

- Typically 3 conversion operations are involved
 - Sample-and-hold
 - Sub-ADC comparison
 - Sub-DAC and residue generation
- High-gain op-amps are required to produce residue signals with certain accuracy, which limits the conversion speed
- Long latency may be problematic for certain applications

No Stage Scaling

- All stages identically sized same capacitors, op-amps, comparators
- Later stages are clearly oversized due to inter-stage gains

Aggressive Stage Scaling

- Stages sized such that the input-referred noises are identical
- Later stages are clearly downsized too aggressively

Optimum Stage Scaling

Optimum scaling lies in between the two extremes → S ≈ 2^{nj}

Class Project: 10-bit Pipelined ADC

Process Technology 45nm CMOS with 0.18um I/O devices

■ Supply Voltage VDD = 1.8V ± 5%

Temperature Range 0 ~ 70 °C

Sampling Rate, Fs
 100 MS/s

Input Full Scale, VFS 1.6 Vppd

■ Input Frequency 1 ~ 10 MHz

FoM < 3.6 pJ/conv. step (To be confirmed)

Process CornersTT, FF, SS

- All performance numbers to be confirmed.
- Use Ideal capacitor cell "cap" from analogLib
- Use "ideal bias" cell in ee288lib for master current sources
- Use "ideal_clock" cell in ee288lib for 2-phase non-overlapping clocks
- Use Ideal DC voltage source for all voltage references such as VREFP, VREFM, and VCM

Signal Swing in Project

1.5-Bit Stage Architecture

Reference Paper:

A. M. Abo and P. R. Gray, "A 1.5-V, 10-bit, 14.3-MS/s CMOS pipeline analog-to-digital converter," *IEEE J. Solid-State Circuits*, vol. 34, pp. 599–606, May 1999

Key Blocks To Design in the Project

Project Scoring Rule

Total point			40	
Condition 1	Functional Fully-Diff	erential 10-bit Pipelined ADC	10	
		Typical corner (TT, 1.8V, 27C)		
		Vin (0.5V to 1.3V)		
		fin = (cycles/N) * fs where cycles=7 and N=64		
		Fs = 100 MSPS		
		Ideal switches		
		Ideal opamp		
Condition 2	Condition 1 plus	Real switches	5	
Condition 3	Condition 2 plus	Real opamp	5	
	·			
Condition 4	Condition 3 plus	Meeting FoM requirement at Typical corner	5	
	•			
Condition 5	Condition 4 plus	Meeting FoM requirement at PVT corner	5	
	•	TT, FF, SS, 1.8V +- 5%, 0-70C		
Presentation (10 min)		5	
	,			
Project report in 4-page IEEE conference paper submission format				
,			5	
Extra point		Publication level papers	10	

Items to prepare for project presentation

- Summary of your design
- Schematics
- Simulation Test Bench
- Simulation Results
 - OPAMP
 - Comparator
 - 1-stage operation
- FFT plot for the whole ADC

Presentation Score Breakdown

- 20% for Neatness and clearness of the presentation materials to check if the slides are done professionally or not
- 20% for block functionality to check if the individual block design is functional or not
- 10% on if you answered the questions correctly or not in the Q&A session following your presentation

Project Report Guideline

- Use the IEEE template file uploaded in project folder in Canvas
- Total report length should be 4-pages
- Report should include the following sections
 - Abstract
 - Introduction
 - Main sections
 - Conclusion
 - References

Project Report Score Breakdown

- 20% for Neatness and clearness to check if the report is done professionally and if the report follows IEEE format
- 20% for block functionality to check if the individual block design is functional or not
- 10% for full block functionality if your team cannot show the full functionality, all of your team score will be affected.
- Extra credit for publication-level report

10-bit Pipeline ADC from [Ref. 1]

[Ref. 1] A. M. Abo and P. R. Gray, "A 1.5-V, 10-bit, 14.3-MS/s CMOS pipeline analog-to-digital converter," *IEEE J. Solid-State Circuits*, vol. 34, pp. 599–606, May 1999.

10-bit ADC Architecture from [Ref. 2]

[Ref. 2] H. Ishii, K. Tanabe, and T. Iida, "A 1.0V 40mW 10b 100MS/s Pipeline ADC in 90nm CMOS," *IEEE Custom Integrated Circuits Conference*, pp. 10.5.1–10.5.4, 2005.

Project: 1.5-bit Pipeline Stage [Ref. 2]

[Ref. 2] H. Ishii, K. Tanabe, and T. Iida, "A 1.0V 40mW 10b 100MS/s Pipeline ADC in 90nm CMOS," *IEEE Custom Integrated Circuits Conference*, pp. 10.5.1–10.5.4, 2005.

Project: 1.5-bit Pipeline Stage [Ref. 3]

[Ref. 3] M. Boulemnakher, "A 1.2V 4.5mW 10b 100MS/s Pipeline ADC in 65nm CMOS," *IEEE International Solid-State Circuit Conference*, pp. 250-251, 2008

Example OPAMP Circuits

Comparators

MDAC

B_1	B_0	D_0	D_1	D_2		
0	0	1	0	0		
0	1	0	1	0		
1	0	0	0	1		
1	1	X	X	X		
Sub-ADC to DAC Bit Logic						

References

- 1. A. M. Abo and P. R. Gray, "A 1.5-V, 10-bit, 14.3-MS/s CMOS pipeline analog-to-digital converter," *IEEE J. Solid-State Circuits*, vol. 34, pp. 599–606, May 1999
- 2. H. Ishii, K. Tanabe, and T. Iida, "A 1.0V 40mW 10b 100MS/s Pipeline ADC in 90nm CMOS," *IEEE Custom Integrated Circuits Conference*, pp. 10.5.1–10.5.4, 2005
- 3. M. Boulemnakher, "A 1.2V 4.5mW 10b 100MS/s Pipeline ADC in 65nm CMOS," ISSCC, pp. 250-251, 2008
- 4. M. E. Bayoumy, *MS Thesis, University of Texas, Austin*, A Study of 10-bit, 100Msps Pipeline ADC and the Implementation of 1.5-bit Stage, 2013
- 5. Overview of Pipelined ADC Chapter 13 from the book by M. Figueiredo et al., Reference-Free CMOS Pipeline Analog-to-Digital Converters, 2013