Formelsammlung

Umkehrfunktion

Name	Alias	Beispiel		
Arcussinus	sin^{-1}	$sin^{-1}(sin(\alpha)) = \alpha$		
Arcuscosinus	cos ⁻¹	$xos^{-1}(cos(\alpha)) = \alpha$		
Arcustangens	tan ⁻¹	$tan^{-1}(tan(\alpha)) = \alpha$		

Betrachtung von α	Betrachtung von β		
$Gin(\alpha)$ Gegenkathete von α a	$\sin(\beta) = \frac{Gegenkathete\ von\ \beta}{Hypotenus} = \frac{b}{c}$		
$\sin(\alpha) = \frac{1}{\text{Hypotenus}} = \frac{1}{c}$			
Ankathete von $\propto b$	Ankathete von β a		
$\cos(\alpha) = {Hypotenus} = {c}$	$\cos(\beta) = \frac{\gamma}{Hypotenus} = \frac{\gamma}{c}$		
$ton(\alpha)$ Gegenkathete von α a	$tan(\theta)$ - Gegenkathete von β - b		
$\tan (\alpha) = \frac{3}{Ankathete \ von \ \alpha} = \frac{1}{b}$	$\tan (\beta) = \frac{\beta}{Ankathete \ von \ \beta} = \frac{1}{a}$		
Ankathete von α b	Ankathete von β a		
$\cot(\alpha) = \frac{1}{Gegenkathete\ von\ \alpha} = \frac{1}{a}$	$\cot(\beta) = \frac{7}{Gegenkathete\ von\ \beta} = \frac{7}{b}$		

Im rechtwinkligen Dreieck	allgemein
$a^2 + b^2 = c^2$	Pythagoras
$\cos^2(\propto) + \sin^2(\propto) = 1$	Pythagoras im Einheitskreis
$h^2 = p * q$	Höhensatz
Cosinussatz	$a^2 = b^2 + c^2 - 2bc * \cos(\propto)$
	$b^2 = a^2 + c^2 - 2ac * cos(\beta)$
	$c^2 = a^2 + b^2 - 2ab * cos(\gamma)$
Sinussatz	a b c
	$\frac{1}{\sin(\alpha)} \equiv \frac{1}{\sin(\beta)} \equiv \frac{1}{\sin(\gamma)}$
Bogenmass Grad Umrechnung	$\propto = \frac{2\pi}{360} \alpha^{\circ}$
	$\propto^{\circ} = \frac{360}{2\pi} \propto$
	$\alpha = \frac{1}{2\pi} \alpha$
Phasenverschiebung	$\sin(\alpha) = \cos(90^{\circ} - \alpha)$
_	$\cos(\alpha) = \sin(90^{\circ} - \alpha)$

Im allgemeinen Dreieck			
Sinussatz	$\frac{a}{\sin(\alpha)} = \frac{b}{\sin(\beta)} = \frac{c}{\sin(\gamma)}$		
Cosinussatz	$a^{2} = b^{2} + c^{2} - 2bc * cos(\propto)$ $b^{2} = a^{2} + c^{2} - 2ac * cos(\beta)$ $c^{2} = a^{2} + b^{2} - 2ab * cos(\gamma)$		

Trigonometrie 1

Spezielle Werte

∝	0°	30°	45°	60°	90°	120°	135°	150°	180°	270°
sin (∝)	0	1	$\sqrt{2}$	$\sqrt{3}$	1	$\sqrt{3}$	$\sqrt{2}$	1	0	-1
		2	2	$\frac{1}{2}$		$\frac{1}{2}$	2	2		
cos (∝)	1	$\sqrt{3}$	1	$\sqrt{3}$	0	_ 1	$\sqrt{2}$	$\sqrt{3}$	-1	0
		2				2				
tan(∝)	0	$\sqrt{3}$	$\sqrt{2}$	1	_	$-\sqrt{3}$	-1	$\sqrt{3}$	0	_
		3	2	2				3		

Welche Formel ist zu wählen, wenn wir Winkel ∝ betrachten

Gegeben	Gesucht	Formel
a, b	С	Pythagoras
a, b	∝	$tan^{-1} oder cot^{-1}$
a, c	∝	sin^{-1}
<i>b</i> , <i>c</i>	∝	cos ⁻¹
<i>a</i> , ∝	C	sin
<i>c</i> , ∝	а	sin
<i>b</i> , ∝	C	cos
<i>c</i> , ∝	b	cos
<i>b</i> , ∝	а	tan oder cot
<i>a</i> , ∝	b	tan oder cot

Welche Formel ist zu wählen, wenn wir Winkel $oldsymbol{eta}$ betrachten

Gegeben	Gesucht	Formel
a, b	C	Pythagoras
a, b	β	Pythagoras tan ⁻¹ oder cot ⁻¹
a, c	β	cos^{-1}
<i>b</i> , <i>c</i>	β	sin^{-1}
a, β	С	sin
c, β	а	cos
b, β	C	sin
c, β	b	cos
<i>b</i> , <i>β</i>	а	tan oder cot
α, β	b	tan oder cot

ist
$$\propto$$
 bekannt ist $\beta = 180 - 90 - \alpha$

ist β bekannt ist $\propto = 180 - 90 - \beta$

0 <<< 90	90 <∝< 180	180 <∝< 270	270 <∝< 360		
sin(∝)	$sin(180-\alpha)$	$sin(180+\alpha)$	sin(360-∝)		
	$= sin(\propto)$	$=-sin(\propto)$	$=-sin(\propto =$		
cos(∝)	<i>cos</i> (180−∝)	<i>cos</i> (180+∝)	<i>cos</i> (360−∝)		
	$=-cos(\propto)$	$=-cos(\propto)$	$= cos(\propto)$		

Trigonometrie 2