עבודת 1: תורת המספרים וצפנים בסיסיים

 \mathbb{Z}_{20} -ב- משבלה 1 (10 נקודות) חשבו את האיבר ההופכי של 7 ב- משלה 1

שאלה 2 (10 נקודות)

- $.\gcd(285,89)$ חשבו את (285,89)
- 285s + 89t = d עבורם s, t, d מצאו שלמים

 $a\mid c$ ארים אז a,bו- $a\mid bc$ ארים אז הוכיחו: אם 10 $a\mid bc$ ארים אז

שאלה 4 (10 נקודות)

- $ac \equiv 1 \mod b$ אורים אז קיים a,b אם הוכיחו: אם a,b
- $ac\equiv 1\mod b$ הוכיחו: אם a,b לא זרים אז לא קיים a,b

שאלה 5 (10 נקודות)

- $a+c\equiv b+c \mod m$ אז $a\equiv b \mod m$ הוכיחו: אם
- $ac \equiv bd \mod m$ אז $ac \equiv b \mod m$ אז $a \equiv b \mod m$ הוכיחו: אם
 - $a^n \equiv b^n \mod m$ אז $a \equiv b \mod m$ הוכיחו: אם

שאלה 6 (10 נקודות)

נתון הטקסט מוצפן

IAFDXFUUWLFEIALLCRZ

. אשר מוצפן על ידי צופן אפיני עם המפתח a=5,b=17 מצאו את אפיני על אפיני על אשר

שאלה 7 (10 נקודות)

נתון הטקסט מוצפן

HVFDDP

אשר מוצפן על ידי צופן היל עם המפתח

$$k = \left(\begin{array}{ccc} 13 & 5 & 6 \\ 2 & 1 & 7 \\ 9 & 7 & 13 \end{array}\right) .$$

מצאו את הטקסט גלוי.

שאלה 8 (10 נקודות)

נתונה התמורה

$$\pi = \begin{pmatrix} 1 & 4 & 3 & 2 \end{pmatrix}$$

פענחו את הטקסט מצפון

CEDOBAERKGNI

שאלה 9 (10 נקודות)

נתון את הטקסט מוצפן

ZFSXUHIYWU

אשר מוצפן על ידי צופן ויז'נר עם המפתח GREEN. מצאו את הטקסט גלוי.

 \mathbb{Z}_{31} אוא מפתח של צופן האפיני מעל החוג k=(13,8) נניח כי (10 נקודות) שאלה 10

אט מצאו את האיברים a',b' בכלל מפענח

$$d_k(y) = a'y + b'$$

 $a',b'\in\mathbb{Z}_{31}$ כאשר

$$x \in \mathbb{Z}_{31}$$
 לכל $d_k\left(e_k(x)
ight) = x$ הוכיחו כי

פתרונות

שאלה 1

$$1 \cdot 7 = 7 \quad \equiv 7 \mod 20 \ ,$$

$$2 \cdot 7 = 14 \equiv 14 \mod 20 ,$$

$$3\cdot 7=21 \quad \equiv 1 \mod 20 \ .$$

 $.7^{-1}\equiv 3\mod 20$ לכן

שאלה 2

.a = 285, b = 89

$$r_0 = a = 285$$
, $r_1 = b = 89$,
 $s_0 = 1$, $s_1 = 0$,
 $t_0 = 0$, $t_1 = 1$.

$q_1 = 3$	$t_2 = 0 - 3 \cdot 1 = -3$	$s_2 = 1 - 3 \cdot 0 = 1$	$r_2 = 285 - 3 \cdot 89 = 18$	$\cdot k=1$ שלב
$q_2 = 4$	$t_3 = 1 - 4 \cdot (-3) = 13$	$s_3 = 0 - 4 \cdot 1 = -4$	$r_3 = 89 - 4 \cdot 18 = 17$	$\cdot k=2$ שלב
$q_3 = 1$	$t_4 = -3 - 1 \cdot (13) = -16$	$s_4 = 1 - 1 \cdot (-4) = 5$	$r_4 = 18 - 1 \cdot 17 = 1$:k=3 שלב
$q_4 = 17$	$t_5 = 13 - 17 \cdot (-16) = 285$	$s_5 = -4 - 17 \cdot 5 = -89$	$r_5 = 17 - 17 \cdot 1 = 0$	$\cdot k = 4$ שלב

$$\gcd(a,b) = r_4 = 1$$
, $s = s_4 = 5$, $t = t_4 = -16$.

$$ta + sb = 5(289) - 16(85) = 1$$
.

עבורו q שלם \exists לכן $a \mid bc$

$$bc = qa (#1)$$

xa + yb = 1 לכן $x, y \exists$ לכן $\gcd(a, b) = 1$

מכאן

$$b = \frac{1 - xa}{y} \ . \tag{#2}$$

על די הצבה של (2#) ב- (1#) נקבל

$$\left(\frac{1-xa}{y}\right)c = qa$$

$$(1-xa)c = qay$$

$$c-xac = qay$$

$$c = qay + xac$$

$$c = a(xc+qy) .$$

 $a \mid c$ לכן

שאלה 4

עבורם s,t מכיוון ש- a,b ארים אז קיימים שלמים א לפי עבורם

$$sa + tb = 1$$
.

נקח את b של הצד ימין ונקבל $\mod b$

 $(sa+tb) \mod b = 1 \mod b \implies sa \mod b = 1 \mod b \implies sa \equiv 1 \mod b$.

 $ac \equiv 1 \mod b$ עבורו שלם עבורו נניח הטענה דרך השלילה. נניח ל

.ac = qb + 1 א"א $g \; \exists \; y$

מכאן

$$ac - qb = 1 \implies ac + (-q)b - 1$$

 $.d\mid b$ -ו $d\mid a$ -כך ש- $d\neq 1$ משותף מחלק קיים זרים זרים זרים אינם עכשיו a,bעכשיו

 $d \mid 1$ לכן $d \mid (ac + (-q)b)$ ז"א

סתירה!

שאלה 5

a=qm+b שלם עבורו $q \equiv b \mod m$

מכאו

$$a+c=qm+b+c \quad \Rightarrow \quad a+c\equiv b+c \mod m$$
.

a=qm+b שלם עבורו $a\equiv b \mod m$

c=q'm+d שלם עבורו q' אז מא $c\equiv d \mod m$

מכאו

$$ac = (mq + b)(q'm + d) = qq'm^2 + bq'm + dqm + bd = (qq'm + bq' + dq)m + bd$$
.

-לכן
$$\exists ar{q} = qq'm + bq' + dq$$
 לכן

$$ac = \bar{q}m + bd$$

 $.ac \equiv bd \mod m$ לפיכך

n אינדוקציה על (n

שאלה 6 הכלל מפענח הוא

$$d_k(y) = a^{-1} \left(y - b \right) \mod 26$$

לכן
$$.a^{-1} \mod 26 = 5^{-1} \mod 26 = 21$$

$$d_k(y) = 21(y - 17) \mod 26 = 21y - 357 \mod 26$$
.

לכן
$$(-357)$$
% $26 = 26 - (357\%26) = 26 - 19 = 7$ לכן $357\%26 = 357 - 26 \left\lfloor \frac{357}{26} \right\rfloor = 357 - 26(13) = 19$ מכאן $-289 \mod 26 = 7$

$$d_k(y) = 21y + 7.$$

$\mathbf{y} \in C$	I	А	F	D	X	F	U	U	W	L	F	E	I	А	L	L	С	R	Z
$y \in \mathbb{Z}_{26}$					l						1	I	ı				1	ı	
$x \in \mathbb{Z}_{26}$	19	7	8	18	22	8	11	11	1	4	8	13	19	7	4	4	23	0	12
$x \in P$	t	h	i	S	W	i	1	1	b	е	i	n	t	h	е	е	Х	a	m

שאלה 7

$\mathbf{y} \in C$	Н	V	F	D	D	P
$y \in \mathbb{Z}_{26}$	7	21	5	3	3	15

ירמיהו מילר קריפטוגרפיה תשפ"ה סמסטר א'

 $|k|=7 \mod 26=7$ דטרמיננטה של $k \mod 26=7$ דטרמיננטה של $\gcd(7,26)=1$

$$adj(A) = C^t = \begin{pmatrix} 16 & 3 & 3\\ 11 & 11 & 25\\ 5 & 6 & 3 \end{pmatrix} .$$

$$k^{-1} \mod 26 = |k|^{-1} \operatorname{adj}(k)$$
.

$$|k|^{-1} \mod 26 = 7^{-1} \mod 26 = 15 \ .$$

$$k^{-1} = 15 \begin{pmatrix} 16 & 3 & 3 \\ 11 & 11 & 25 \\ 5 & 6 & 3 \end{pmatrix} = \begin{pmatrix} 240 & 45 & 45 \\ 165 & 165 & 375 \\ 75 & 90 & 45 \end{pmatrix} \mod 26 = \begin{pmatrix} 6 & 19 & 19 \\ 9 & 9 & 11 \\ 23 & 12 & 19 \end{pmatrix}$$

$$(7,21,5) \cdot k^{-1} = (346,382,459) \mod 26 = (8,18,17)$$

$$(3,3,15)\cdot k^{-1} = (390,264,375) \mod 26 = (0,4,11)$$

$\mathbf{y} \in C$	H	V	F	D	D	P
$y \in \mathbb{Z}_{26}$	7	21	5	3	3	15
$x \in \mathbb{Z}_{26}$	8	18	17	0	4	11
$x \in C$	i	S	r	а	е	1

שאלה 8

$\mathbf{y} \in C$	С	Ε	D	0	В	А	E	R	K	G	N	\mid I \mid
$y \in \mathbb{Z}_{26}$	2	4	3	14	1	0	4	17	10	6	13	8
$x \in \mathbb{Z}_{26}$	2	14	3	4	1	17	4	0	10	8	13	6
$x \in P$	С	0	d	е	b	r	е	a	k	i	n	g

שאלה 9

$$d_k\left(y_1y_2y_3y_4y_5\right) = \left(x_1-6, x_2-17, x_3-4, x_4-4, x_5-13\right) \mod 26 \ .$$

$\mathbf{y} \in C$	Z	F	S	X	U	Н	I	Y	W	U
$y \in \mathbb{Z}_{26}$	25	5	18	23	20	7	8	24	22	20
$d_k(y)$	19	14	14	19	7	1	17	20	18	7
$x \in P$	t	0	0	t	h	b	r	u	S	h