

Comparison with DK1.1_RF_mmW model(s)

Please use the bookmark to navigate

General information on EGLVTV models

- Maximum supply voltage is 1.5 V.
- Validity domain is defined as follows:
 - ✓ Drawn gate length varies from 100nm to 10um.
 - ✓ Drawn transistor width varies from 0.16um to 10um.
 - ✓ Device temperature varies from -40 °C to 125 °C.

dormieub

Output parameters definitions

- Model(s): eglvtvnfet_acc, eglvtvpfet_acc
 - ✓ Vt_lin: Threshold voltage defined as Vgs value for which drain current is ivt*M*1*W/(1*L+0+1*p_la) at Vds = 0.05V.
 - ✓ Ig_on: Gate current at Vds = 0V and Vgs = 1.5V.
 - ✓ Gm_c: Drain transconductance at Vgs = Vt_lin + 0.2, Vds = Vdd/2V, f = 100kHz.
 - ✓ Gd_c: Drain conductance at Vgs = Vt_lin + 0.2, Vds = Vdd/2V, f = 100kHz.
 - ✓ Ig_off: Gate current at Vds = VddV, Vgs = 0V.
 - ✓ Logioff : log10(Ioffsat).
 - ✓ Gain_c : Voltage gain defined as Gm_c / Gd_c.
 - ✓ Ieff: Average drain current (Ilow + Ihigh) / 2.
 - ✓ Ilin : Drain current at Vgs = 1.5V, Vds = 0.05V.
 - ✓ Dibl: Vt_lin Vt_sat.
 - ✓ Ioff_s : Source current at Vgs = 0V, Vds = vds_satV.
 - ✓ Ioffsat : Drain current at Vgs = 0V, Vds = vds_satV.
 - ✓ Ioff_g : Gate current at Vgs = 0V, Vds = vds_satV.
 - ✓ Vt_sat: Threshold voltage defined as Vgs value for which drain current is ivt*M*1*W/(1*L+0+1*p_la) at Vds = vds_satV.
 - ✓ Cgg_inv: Total gate capacitance at Vgs = 1.5V, Vds = 0V, f = 100kHz.
 - ✓ Isat : Drain current at Vgs = 1.5V, Vds = VddV.
 - ✓ Cgd_0v: Gate-to-Drain capacitance at Vgs = 0V, Vds = 0V, f = 100kHz.
 - ✓ Vtgmmax: Threshold voltage at Vds = 0.05 derived from Gm max method.

ST Confidential

eglvtvnfet_acc Electrical characteristics per geometry

eglvtvnfet_acc@ w=2e-06, l=1.0e-07, swshe=0, pre_layout_local=1, sa=1.80e-6, sb=1.80e-6, sd=1.4e-07, devtype=PT, as=3.6e-12, ad=3.6e-12, ps=7.6e-06, pd=7.6e-06, vbs=0, vdd=1.5, temp=25.0

DK1.2_RF_mmW wrt DK1.1_RF_mmW

	SSF	SS	TT	FF	FFF
Vt_lin [mV]	423.4 0.0mV	414.3 0.0mV	365.4 0.0mV	319.7 0.0mV	309.8 0.0mV
Vt_sat [mV]	394.2 0.0mV	386.2 0.0mV	337.2 0.0mV	291 0.0mV	282.2 0.0mV
Isat [mA]	1.11 0.0%	1.15 0.0%	1.25 0.0%	1.34 0.0%	1.39 0.0%
Ilin [μA]	170 0.0%	186.1 0.0%	203.3 0.0%	219.7 0.0%	236 0.0%
Gm_c [mS]	0.78 0.0%	0.84 0.0%	0.89 0.0%	0.94 0.0%	1 0.0%
Gd_c [µS]	10.81 0.0%	11.4 0.0%	13.05 0.0%	14.76 0.0%	15.37 0.0%
Gain_c []	72.33 0.0%	73.29 0.0%	68.34 0.0%	63.87 0.0%	65.28 0.0%
VtGmmax [mV]	392.3 0.0mV	387.7 0.0mV	341.7 0.0mV	298.4 0.0mV	292.1 0.0mV
Cgd_0v [aF]	424.1 0.0%	446.5 0.0%	444.2 0.0%	435.9 0.0%	464.3 0.0%
Cgg_inv [fF]	2.34 0.0%	2.42 0.0%	2.42 0.0%	2.41 0.0%	2.5 0.0%
Ieff [μA]	647.4 0.0%	681.6 0.0%	766.6 0.0%	847.4 0.0%	891.2 0.0%
Ig_on [fA]	2.08e-02 0.0%	0.19 0.0%	0.21 0.0%	0.26 0.0%	2.66 0.0%
Ioffsat [pA]	36.88 0.0%	42.99 0.0%	194.3 0.0%	807.2 0.0%	982.2 0.0%
Ioff_g [aA]	-0.62 -0.0%	-1.76 -0.0%	-6.19 -0.0%	-23.46 -0.0%	-62.7 -0.0%
Ioff_s [pA]	-36.88 -0.0%	-42.99 -0.0%	-194.3 -0.0%	-807.2 -0.0%	-982.2 -0.0%

eglvtvnfet_acc@ w=2e-06, l=2.0e-06, swshe=0, pre_layout_local=1, sa=2.26e-6, sb=2.26e-6, sd=1.4e-07, devtype=PT, as=4.52e-12, ad=4.52e-12, ps=8.52e-06, pd=8.52e-06, vbs=0, vdd=1.5, temp=25.0

DK1.2_RF_mmW wrt DK1.1_RF_mmW

	SSF	SS	TT	FF	FFF
Vt_lin [mV]	431.2 0.0mV	433.6 0.0mV	392.6 0.0mV	354.6 0.0mV	352.5 0.0mV
Vt_sat [mV]	420.3 0.0mV	422.8 0.0mV	382.4 0.0mV	344.9 0.0mV	342.8 0.0mV
Isat [μA]	151.8 0.0%	150 0.0%	172.8 0.0%	195.2 0.0%	196 0.0%
Ilin [μA]	15.91 0.0%	15.61 0.0%	17.28 0.0%	18.83 0.0%	18.69 0.0%
Gm_c [µS]	54.85 0.0%	54.73 0.0%	58.72 0.0%	62.46 0.0%	62.52 0.0%
Gd_c [nS]	54.19 0.0%	54.55 0.0%	62.3 0.0%	70.23 0.0%	70.44 0.0%
Gain_c []	1012 0.0%	1003 0.0%	942.5 0.0%	889.3 0.0%	887.5 0.0%
VtGmmax [mV]	438 0.0mV	438.7 0.0mV	400.1 0.0mV	364 0.0mV	361.4 0.0mV
Cgd_0v [aF]	424.1 0.0%	446.5 0.0%	444.3 0.0%	436.3 0.0%	464.8 0.0%
Cgg_inv [fF]	30.25 0.0%	31.01 0.0%	31.57 0.0%	32.22 0.0%	33.01 0.0%
Ieff [μA]	80.03 0.0%	78.98 0.0%	91.51 0.0%	104 0.0%	104.2 0.0%
Ig_on [fA]	0.32 0.0%	2.63 0.0%	2.8 0.0%	3.23 0.0%	30.84 0.0%
Ioffsat [pA]	0.45 0.0%	0.4 0.0%	1.36 0.0%	4.34 0.0%	4.47 0.0%
Ioff_g [fA]	-1.12e-02 -0.0%	-3.19e-02 -0.0%	-0.11 -0.0%	-0.42 -0.0%	-1.13 -0.0%
Ioff_s [pA]	-0.45 -0.0%	-0.4 -0.0%	-1.36 -0.0%	-4.34 -0.0%	-4.46 -0.0%

eglvtvpfet_acc Electrical characteristics per geometry

eglvtvpfet_acc@ w=2e-06, l=1.0e-07, swshe=0, pre_layout_local=1, sa=1.80e-6, sb=1.80e-6, sd=1.4e-07, devtype=PT, as=3.6e-12, ad=3.6e-12, ps=7.6e-06, pd=7.6e-06, vbs=1.5, vdd=1.5, temp=25.0

DK1.2_RF_mmW wrt DK1.1_RF_mmW

	SSF	SS	ТТ	FF	FFF
Vt_lin [mV]	403.5 0.0mV	358.4 0.0mV	336.8 0.0mV	314.8 0.0mV	271.6 0.0mV
Vt_sat [mV]	369.3 0.0mV	325.9 0.0mV	303.7 0.0mV	281 0.0mV	238.4 0.0mV
Isat [μA]	454.1 0.0%	514.8 0.0%	552.4 0.0%	586 0.0%	642 0.0%
Ilin [μA]	43.81 0.0%	53.44 0.0%	57.19 0.0%	60.82 0.0%	71.02 0.0%
Gm_c [µS]	204.5 0.0%	232.8 0.0%	249.6 0.0%	266.1 0.0%	292.1 0.0%
Gd_c [µS]	4.34 0.0%	4.88 0.0%	5.66 0.0%	6.52 0.0%	7.12 0.0%
Gain_c []	47.08 0.0%	47.74 0.0%	44.08 0.0%	40.78 0.0%	41.05 0.0%
VtGmmax [mV]	389 0.0mV	353.4 0.0mV	334.3 0.0mV	314.4 0.0mV	277.7 0.0mV
Cgd_0v [aF]	364.2 0.0%	382.7 0.0%	384.1 0.0%	382 0.0%	406.3 0.0%
Cgg_inv [fF]	2.01 0.0%	2.07 0.0%	2.06 0.0%	2.05 0.0%	2.12 0.0%
Ieff [μA]	231.9 0.0%	277.3 0.0%	302.2 0.0%	326.2 0.0%	373.1 0.0%
Ig_on [aA]	1.99 0.0%	7.94 0.0%	20.9 0.0%	64.27 0.0%	219.5 0.0%
Ioffsat [nA]	2.48e-02 0.0%	8.79e-02 0.0%	0.17 0.0%	0.34 0.0%	1.2 0.0%
Ioff_g [aA]	-5.44 -0.0%	-17.71 -0.0%	-48.21 -0.0%	-147.6 -0.0%	-426.2 -0.0%
Ioff_s [nA]	-2.48e-02 -0.0%	-8.79e-02 -0.0%	-0.17 -0.0%	-0.34 -0.0%	-1.2 -0.0%

eglvtvpfet_acc@ w=2e-06, l=2.0e-06, swshe=0, pre_layout_local=1, sa=2.26e-6, sb=2.26e-6, sd=1.4e-07, devtype=PT, as=4.52e-12, ad=4.52e-12, ps=8.52e-06, pd=8.52e-06, vbs=1.5, vdd=1.5, temp=25.0

DK1.2_RF_mmW wrt DK1.1_RF_mmW

	SSF	SS	TT	FF	FFF
Vt_lin [mV]	369.2 0.0mV	338.5 0.0mV	330.8 0.0mV	324 0.0mV	291.6 0.0mV
Vt_sat [mV]	359.6 0.0mV	328.9 0.0mV	321.5 0.0mV	314.8 0.0mV	282.4 0.0mV
Isat [μA]	54.12 0.0%	56.39 0.0%	59.95 0.0%	63.23 0.0%	65.98 0.0%
Ilin [μA]	5.14 0.0%	5.17 0.0%	5.44 0.0%	5.68 0.0%	5.72 0.0%
Gm_c [µS]	16.16 0.0%	16.06 0.0%	16.77 0.0%	17.42 0.0%	17.27 0.0%
Gd_c [nS]	22.53 0.0%	22.92 0.0%	26.11 0.0%	29.44 0.0%	29.73 0.0%
Gain_c []	717.5 0.0%	700.7 0.0%	642.4 0.0%	591.6 0.0%	581 0.0%
VtGmmax [mV]	410.1 0.0mV	380.3 0.0mV	375.4 0.0mV	371.1 0.0mV	340.3 0.0mV
Cgd_0v [aF]	348.8 0.0%	365.6 0.0%	365.1 0.0%	360.8 0.0%	382.6 0.0%
Cgg_inv [fF]	28.7 0.0%	29.42 0.0%	29.88 0.0%	30.43 0.0%	31.17 0.0%
Ieff [μA]	28.31 0.0%	29.63 0.0%	31.49 0.0%	33.2 0.0%	34.8 0.0%
Ig_on [aA]	2.81 0.0%	11.68 0.0%	30.29 0.0%	92.03 0.0%	327.9 0.0%
Ioffsat [pA]	0.73 0.0%	1.69 0.0%	2.17 0.0%	2.88 0.0%	6.9 0.0%
Ioff_g [fA]	-9.85e-02 -0.0%	-0.32 -0.0%	-0.87 -0.0%	-2.67 -0.0%	-7.71 -0.0%
Ioff_s [pA]	-0.73 -0.0%	-1.69 -0.0%	-2.17 -0.0%	-2.87 -0.0%	-6.89 -0.0%

eglvtvnfet_acc Electrical characteristics scaling

Scaling versus Width (L=0.10u,Temp=25,Vbs=0V)

dormieub

eglvtvnfet_acc, Vt_lin [mV] vs W [m]

l==0.10e-6 and Temp==25 and w>0.135e-6 and devType=="PCELLwoWPE"

ST Confidential

eglvtvnfet_acc, Ilin/W [A/m] vs W [m]

eglvtvnfet_acc, VtGmmax [mV] vs W [m]

eglvtvnfet_acc, DIBL [mV] vs W [m]

eglvtvnfet_acc, Vt_sat [mV] vs W [m]

eglvtvnfet_acc, Isat/W [A/m] vs W [m]

l==0.10e-6 and Temp==25 and w>0.135e-6 and devType=="PCELLwoWPE"

ST Confidential

eglvtvnfet_acc, Ioffsat [A] vs W [m]

l==0.10e-6 and Temp==25 and w>0.135e-6 and devType=="PCELLwoWPE"

ST Confidential

eglvtvnfet_acc, LogIoff [A] vs W [m]

eglvtvnfet_acc, Ig_on/(L*W) [A/m2] vs W [m]

eglvtvnfet_acc, Ig_off/(W) [A/m] vs W [m]

eglvtvnfet_acc, Gd_c/W [s/m] vs W [m]

eglvtvnfet_acc, Gm_c/W [s/m] vs W [m]

eglvtvnfet_acc, Gain_c [] vs W [m]

eglvtvnfet_acc, Cgd_0v/W [F/m] vs W [m]

eglvtvnfet_acc, Cgg_inv/(L*W) [F/m2] vs W [m]

Scaling versus Temp @ Vbs=0, L=0.1u

dormieub

eglvtvnfet_acc, Vt_lin [mV] vs Temp [degC]

eglvtvnfet_acc, Ilin/W [A/m] vs Temp [degC]

eglvtvnfet_acc, VtGmmax [mV] vs Temp [degC]

eglvtvnfet_acc, DIBL [mV] vs Temp [degC]

eglvtvnfet_acc, Vt_sat [mV] vs Temp [degC]

eglvtvnfet_acc, Isat/W [A/m] vs Temp [degC]

eglvtvnfet_acc, Ioffsat [A] vs Temp [degC]

eglvtvnfet_acc, LogIoff [A] vs Temp [degC]

eglvtvnfet_acc, Ig_on/(L*W) [A/m2] vs Temp [degC]

eglvtvnfet_acc, Ig_off/(W) [A/m] vs Temp [degC]

eglvtvnfet_acc, Gd_c/W [s/m] vs Temp [degC]

eglvtvnfet_acc, Gm_c/W [s/m] vs Temp [degC]

eglvtvnfet_acc, Gain_c [] vs Temp [degC]

eglvtvnfet_acc, Cgd_0v/W [F/m] vs Temp [degC]

eglvtvnfet_acc, Cgg_inv/(L*W) [F/m2] vs Temp [degC]

Normalized scaling versus Temp @ Vbs=0, L=0.1u

eglvtvnfet_acc, Vt_lin [mV] vs Temp [degC]

eglvtvnfet_acc, Ilin/W [A/m] vs Temp [degC]

eglvtvnfet_acc, VtGmmax [mV] vs Temp [degC]

eglvtvnfet_acc, DIBL [mV] vs Temp [degC]

eglvtvnfet_acc, Vt_sat [mV] vs Temp [degC]

eglvtvnfet_acc, Isat/W [A/m] vs Temp [degC]

eglvtvnfet_acc, Ioffsat [A] vs Temp [degC]

eglvtvnfet_acc, LogIoff [A] vs Temp [degC]

eglvtvnfet_acc, Ig_on/(L*W) [A/m2] vs Temp [degC]

eglvtvnfet_acc, Ig_off/(W) [A/m] vs Temp [degC]

eglvtvnfet_acc, Gd_c/W [s/m] vs Temp [degC]

eglvtvnfet_acc, Gm_c/W [s/m] vs Temp [degC]

eglvtvnfet_acc, Gain_c [] vs Temp [degC]

eglvtvnfet_acc, Cgd_0v/W [F/m] vs Temp [degC]

eglvtvnfet_acc, Cgg_inv/(L*W) [F/m2] vs Temp [degC]

eglvtvpfet_acc Electrical characteristics scaling

Scaling versus Width (L=0.10u,Temp=25,Vbs=0V)

eglvtvpfet_acc, Vt_lin [mV] vs W [m]

l==0.10e-6 and Temp==25 and w>0.135e-6 and devType=="PCELLwoWPE"

eglvtvpfet_acc, Ilin/W [A/m] vs W [m]

l==0.10e-6 and Temp==25 and w>0.135e-6 and devType=="PCELLwoWPE"

eglvtvpfet_acc, VtGmmax [mV] vs W [m]

eglvtvpfet_acc, DIBL [mV] vs W [m]

l==0.10e-6 and Temp==25 and w>0.135e-6 and devType=="PCELLwoWPE"

ST Confidential

eglvtvpfet_acc, Vt_sat [mV] vs W [m]

eglvtvpfet_acc, Isat/W [A/m] vs W [m]

eglvtvpfet_acc, Ioffsat [A] vs W [m]

eglvtvpfet_acc, LogIoff [A] vs W [m]

eglvtvpfet_acc, Ig_on/(L*W) [A/m2] vs W [m]

eglvtvpfet_acc, Ig_off/(W) [A/m] vs W [m]

eglvtvpfet_acc, Gd_c/W [s/m] vs W [m]

eglvtvpfet_acc, Gm_c/W [s/m] vs W [m]

eglvtvpfet_acc, Gain_c [] vs W [m]

eglvtvpfet_acc, Cgd_0v/W [F/m] vs W [m]

eglvtvpfet_acc, Cgg_inv/(L*W) [F/m2] vs W [m]

Scaling versus Temp @ Vbs=0, L=0.1u

dormieub

Normalized scaling versus Temp @ Vbs=0, L=0.1u

Annex

ST Confidential

Conditions of simulations

The simulations were done with SBenchLSF Alpha using Eldo simulator 2018.3.

- Model eglvtvnfet_acc (DK1.2_RF_mmW)
 - ✓ Input Parameters
 - **x** vds_off = vds_sat V
 - \times vds_cgd = 0 V
 - \times vds_cgg = 0 V
 - \times mc_sens = 0
 - \times vds lin = 0.05 V
 - \times ivt = 300e-9 A
 - **✗** model_version = 1.2.e
 - \times ams_release = 2018.3
 - \times vgs_stop = vdd V
 - **✗** dlshrink_ivt = 0
 - **✗** sbenchlsf_release = Alpha
 - \times vds_sat = Vdd V
 - **x** mc_nsigma = 3
 - **x** shrink_ivt = 1

Sep 21, 2018

- **✗** dlshrink_tinv = 0
- \times vgs_start = -0.5 V
- **✗** plashrink_ivt = 1
- \star ithslwi = 10e-9 A
- \times vds_cbd = 0 V
- \mathbf{x} vddmax = vdd
- \times voffset = 0.2 V
- \times mc runs = 1000
- \mathbf{X} vstep_ivt = 0.005 V
- \mathbf{x} vgs_off = 0 V
- **x** temp = $25 \, ^{\circ}$ C
- \star f_ext = 100k Hz
- \mathbf{x} vbs = 0 V
- \times vdd = 1.5 V
- \star shrink_tinv = 0.9
- \times vds_gmgd = Vdd/2 V
- ✓ Sweep Parameters
 - **x** temp = -40.0, 0.0, 25.0, 85.0, 125.0
- ✓ Extra parameters
 - \mathbf{x} eglvt_dev = 0
 - **✗** gflag_noisedev_eglvt_cmos028fdsoi = 0
- Model eglvtvpfet_acc (DK1.2_RF_mmW)
 - ✓ Input Parameters
 - **x** vds_off = vds_sat V
 - \times vds_cgd = 0 V

- \times vds_cgg = 0 V
- \mathbf{x} mc sens = 0
- \times vds lin = 0.05 V
- **X** ivt = 70e-9 A
- **x** model_version = 1.2.e
- **x** ams_release = 2018.3
- \times vgs_stop = vdd V
- X dlshrink ivt = 0
- **x** sbenchlsf_release = Alpha
- \times vds_sat = Vdd V
- **x** mc_nsigma = 3
- **x** shrink_ivt = 1
- **✗** dlshrink_tinv = 0
- \times vgs_start = -0.5 V
- **✗** plashrink_ivt = 1
- \star ithslwi = 10e-9 A
- \times vds_cbd = 0 V
- \mathbf{X} vddmax = vdd
- \times voffset = 0.2 V
- **x** mc_runs = 1000
- \times vstep_ivt = 0.005 V
- \mathbf{x} vgs_off = 0 V
- \times temp = 25 °C
- \mathbf{X} f ext = 100k Hz
- **x** vbs = 1.5 V

ST Confidential

- \times vdd = 1.5 V
- \star shrink tinv = 0.9
- \times vds_gmgd = Vdd/2 V
- ✓ Sweep Parameters
 - \mathbf{x} temp = -40.0, 0.0, 25.0, 85.0, 125.0
- ✓ Extra parameters
 - \mathbf{x} eglvt_dev = 0
 - **✗** gflag_noisedev_eglvt_cmos028fdsoi = 0
- Model eglvtvnfet_acc (DK1.1_RF_mmW)
 - ✓ Input Parameters
 - \times vds_off = vds_sat V
 - \times vds_cgd = 0 V
 - \times vds_cgg = 0 V
 - \times mc_sens = 0
 - \times vds lin = 0.05 V
 - \times ivt = 300e-9 A
 - **✗** model_version = 1.2.d
 - \mathbf{x} ams_release = 2018.3
 - x vgs_stop = vdd V
 - **✗** dlshrink_ivt = 0
 - **x** sbenchlsf_release = Alpha
 - \times vds_sat = Vdd V
 - **x** mc_nsigma = 3
 - **✗** shrink_ivt = 1
 - **✗** dlshrink_tinv = 0

- \times vgs_start = -0.5 V
- **x** plashrink_ivt = 1
- \star ithslwi = 10e-9 A
- \times vds_cbd = 0 V
- \mathbf{X} vddmax = vdd
- \times voffset = 0.2 V
- \times mc runs = 1000
- \mathbf{X} vstep_ivt = 0.005 V
- \mathbf{x} vgs_off = 0 V
- \times temp = 25 °C
- \star f_ext = 100k Hz
- \mathbf{x} vbs = 0 V
- \times vdd = 1.5 V
- \star shrink_tinv = 0.9
- x vds_gmgd = Vdd/2 V
- ✓ Sweep Parameters
 - \times temp = -40.0, 0.0, 25.0, 85.0, 125.0
- ✓ Extra parameters
 - \mathbf{x} eglvt_dev = 0
 - **✗** gflag_noisedev_eglvt_cmos028fdsoi = 0
- Model eglvtvpfet_acc (DK1.1_RF_mmW)
 - ✓ Input Parameters
 - **x** vds_off = vds_sat V
 - \times vds_cgd = 0 V
 - \times vds_cgg = 0 V

Sep 21, 2018

- \mathbf{x} mc_sens = 0
- \times vds lin = 0.05 V
- **X** ivt = 70e-9 A
- **✗** model_version = 1.2.d
- **x** ams_release = 2018.3
- \times vgs_stop = vdd V
- **✗** dlshrink_ivt = 0
- **x** sbenchlsf_release = Alpha
- \times vds_sat = Vdd V
- **x** mc_nsigma = 3
- \times shrink ivt = 1
- X dlshrink tinv = 0
- \times vgs_start = -0.5 V
- **✗** plashrink_ivt = 1
- \star ithslwi = 10e-9 A
- \times vds_cbd = 0 V
- \mathbf{X} vddmax = vdd
- \times voffset = 0.2 V
- **x** mc_runs = 1000
- \times vstep_ivt = 0.005 V
- \mathbf{x} vgs_off = 0 V
- \times temp = 25 °C
- x f ext = 100k Hz
- \star vbs = 1.5 V
- \times vdd = 1.5 V

ST Confidential

- \star shrink_tinv = 0.9
- \mathbf{x} vds_gmgd = Vdd/2 V
- ✓ Sweep Parameters
 - **x** temp = -40.0, 0.0, 25.0, 85.0, 125.0
- ✓ Extra parameters
 - \mathbf{X} eglvt_dev = 0
 - **✗** gflag_noisedev_eglvt_cmos028fdsoi = 0

