COURSE OUTLINE: COMPLETED

DATA EXPLORATION

SUPERVISED LEARNING: REGRESSION

SUPERVISED LEARNING: CLASSIFICATION

UNSUPERVISED LEARNING

VARIOUS TOPICS

LOGISTIC REGRESSION
NAIVE BAYES
RANDOM FORESTS
SUPPORT VECTOR MACHINES
COMPETITION (TODAY)

Questions?

INTRO TO DATA SCIENCE

I. REVIEW

TYPES OF ML PROBLEMS

continuous

categorical

supervised unsupervised

regression
dimension reduction

classification

clustering

MODEL SELECTION

What supervised algorithm should I pick for which problem?

Try them all with varying regularization parameters and pick the one with the best cross-validation results

To avoid overfitting on the test set, you might want to use three different sets: training set, cross-validation set, test set

CLASSIFICATION COMPARISON

	KNN	Logistic	NB	RF
Linear		+	+	-
Interpretation	-	+	+	-
Feature impact	-	+	+	+
Configuration	+	+	+	+
Overfitting	k	L 1/L2	Prior	n trees
Scalable	-	+	+	-

KNN CLASSIFICATION

Choose k e.g., k = 3

Find k nearest neighbors

Take majority vote

LOGISTIC REGRESSION

Logistic regression gives us predicted probabilities, which then could be 'snapped' to class labels

Temperature

A decision tree for mammal classification...

Cold Nonmammals

...may be an accurate way of describing the dataset

Name	Body	Skin	Gives	Aquatic	Aerial	Has	Hiber-	Class
	Temperature	Cover	Birth	Creature	Creature	Legs	nates	Label
human	warm-blooded	hair	yes	no	no	yes	no	mammal
python	cold-blooded	scales	no	no	no	no	yes	reptile
salmon	cold-blooded	scales	no	yes	no	no	no	fish
whale	warm-blooded	hair	yes	yes	no	no	no	mammal
frog	cold-blooded	none	no	semi	no	yes	yes	amphibian
komodo	cold-blooded	scales	no	no	no	yes	no	reptile
dragon								
bat	warm-blooded	hair	yes	no	yes	yes	yes	mammal
pigeon	warm-blooded	feathers	no	no	yes	yes	no	bird
cat	warm-blooded	fur	yes	no	no	yes	no	mammal
leopard	cold-blooded	scales	yes	yes	no	no	no	fish
shark								
turtle	cold-blooded	scales	no	semi	no	yes	no	reptile
penguin	warm-blooded	feathers	no	semi	no	yes	no	bird
porcupine	warm-blooded	quills	yes	no	no	yes	yes	mammal
eel	cold-blooded	scales	no	yes	no	no	no	fish
salamander	cold-blooded	none	no	semi	no	yes	yes	amphibian

Non-

mammals

Gives Birth

Mammals

BAGGING & BOOSTING

Train your base classifier on different bootstrap samples of your training set and take aggregate vote

Ensemble technique reduce the variance (overfitting), not the bias (underfitting)

CROSS-VALIDATION

How do we test the model's predictions?

Train model on a part of **X**, and test the results on the rest of the data

CONFUSION MATRIX

How do we test the model's predictions?

$$Accuracy = (TP + TN) / all$$

$$Precision = TP/(TP + FP)$$

% correct of all positive predictions

Recall =
$$\frac{TP}{(TP + FN)}$$

$$F1 \ score = 2 \frac{P \times R}{P + R}$$

	predictions			
truth	Yes	No		
Yes	TP	FN		
No	FP	TN		

INTRO TO DATA SCIENCE

DISCUSSION