Documentation for KalmanFilter.py: Implementation of MLA, VAR(1), and Random Walk State-Space Models

Based on Buccheri, Corsi & Peluso (2021)

October 14, 2025

Contents

1	Overview	2
2	Core MLA Functions	2
3	VAR(1) Model Functions	2
	3.1 Model Definition	2
	3.2 VAR1_kalman_filter(yt, A, Z, H, Q)	$\frac{2}{2}$
	3.3 VAR1Smoothing(yt, A, Z, att, Ptt, Pt, vt, Ft, Kt)	3
	3.4 VAR1_ml_fit(params, yt)	3
	3.5 VAR1_em_fit(A0, H0, Q0, yt, maxiter=1000, tol=10^{-6})	4
	3.6 Example (VAR(1) Simulation and Estimation)	4
4	Random Walk (RW) Model Functions	4
	4.1 Model Definition	4
	4.2 RW_kalman_filter(yt, drift, H, Q)	5
	4.3 RW_ml_fit(params, yt)	5
	4.4 Example (RW Simulation and Estimation)	6
5	References	6

1 Overview

This package provides implementations of several linear-Gaussian state-space models using Kalman filtering, smoothing, and maximum-likelihood or EM estimation:

- The Multi-Asset Lagged Adjustment (MLA) model Buccheri, Corsi & Peluso (2021);
- The standard Vector Autoregressive (VAR(1)) model;
- The Random Walk (RW) model with drift.

All models share common Kalman routines but have their own specific parameterizations and estimation functions.

2 Core MLA Functions

(Existing MLA documentation preserved — see previous section for equations and input-s/outputs.)

 $\bullet \ \texttt{LeadLagKF}, \ \texttt{FastLeadLagKF}, \ \texttt{LeadLagSmoothing}, \ \texttt{LeadLagMLfit}, \ \texttt{LeadLagllem}$

3 VAR(1) Model Functions

3.1 Model Definition

The VAR(1) model is defined as:

$$\boldsymbol{\alpha}_t = A\boldsymbol{\alpha}_{t-1} + \boldsymbol{\eta}_t, \quad \boldsymbol{\eta}_t \sim \mathcal{N}(0, Q),$$

 $\boldsymbol{y}_t = Z\boldsymbol{\alpha}_t + \boldsymbol{\varepsilon}_t, \quad \boldsymbol{\varepsilon}_t \sim \mathcal{N}(0, H),$

where A is the transition matrix, Z the observation matrix, and Q, H the process and observation noise covariances.

3.2 VAR1_kalman_filter(yt, A, Z, H, Q)

Purpose: Runs a Kalman filter for the VAR(1) model. Inputs:

- yt $(T \times n \text{ array})$: observed multivariate time series.
- A $(n \times n \text{ array})$: state transition matrix.
- $Z(n \times n \text{ array})$: observation matrix (usually identity).
- H $(n \times n \text{ array})$: observation noise covariance matrix.

• Q $(n \times n \text{ array})$: process noise covariance matrix.

Outputs:

- att: filtered state estimates $\hat{\alpha}_{t|t}$.
- Ptt: filtered covariance matrices $P_{t|t}$.
- at: predicted state means $\hat{\alpha}_{t|t-1}$.
- Pt: predicted covariances $P_{t|t-1}$.
- vt: innovations $y_t Z\hat{\alpha}_{t|t-1}$.
- Ft: innovation covariance matrices.
- Kt: Kalman gain matrices.
- loglike: total log-likelihood value.

3.3 VAR1Smoothing(yt, A, Z, att, Ptt, Pt, vt, Ft, Kt)

Purpose: Applies backward Kalman smoothing for the VAR(1) model. **Inputs:**

• Filter outputs from VAR1_kalman_filter.

Outputs:

- x_smooth: smoothed state means $\hat{\alpha}_{t|T}$.
- V_smooth: smoothed state covariances $V_{t|T}$.
- Vt_smooth: smoothed lag-one covariances.

3.4 VAR1_ml_fit(params, yt)

Purpose: Estimates A, H, Q by maximizing the Kalman filter log-likelihood. **Inputs:**

- params (1D array): initial vectorized parameters.
- yt $(T \times n \text{ array})$: observed time series.

Outputs:

- A_mlfit: estimated transition matrix.
- H_mlfit: estimated observation covariance matrix.
- Q_mlfit: estimated process covariance matrix.

3.5 VAR1_em_fit(A0, H0, Q0, yt, maxiter=1000, tol= 10^{-6})

Purpose: Estimates A, H, Q via the EM algorithm.

Inputs:

- AO, HO, QO: initial guesses for system matrices.
- yt: observed series.
- maxiter (int): maximum EM iterations.
- tol (float): convergence tolerance on log-likelihood.

Outputs:

- Updated estimates (A, H, Q).
- Smoothed states and log-likelihood trajectory.

3.6 Example (VAR(1) Simulation and Estimation)

4 Random Walk (RW) Model Functions

4.1 Model Definition

The Random Walk (RW) model is a special case of the VAR(1) model with $A = I_n$ and optional drift μ :

$$\alpha_t = \mu + \alpha_{t-1} + \eta_t, \quad \eta_t \sim \mathcal{N}(0, Q),$$

 $y_t = \alpha_t + \varepsilon_t, \quad \varepsilon_t \sim \mathcal{N}(0, H).$

4

4.2 RW_kalman_filter(yt, drift, H, Q)

Purpose: Runs a Kalman filter for a multivariate random-walk process with drift. **Inputs:**

- yt $(T \times n \text{ array})$: observed series.
- drift (*n*-vector): drift vector μ .
- H $(n \times n \text{ array})$: observation noise covariance.
- \mathbb{Q} ($n \times n$ array): process noise covariance.

Outputs:

- att: filtered states $\hat{\alpha}_{t|t}$.
- Ptt: filtered covariances.
- at, Pt: predictions.
- vt, Ft, Kt: innovations, innovation covariances, and gains.
- loglike: log-likelihood value.

4.3 RW_ml_fit(params, yt)

Purpose: Performs maximum-likelihood estimation of drift, H, and Q parameters for the RW model.

Inputs:

• params (1D array): initial guess vector combining

$$(drift, \sigma_H, \sigma_Q, \rho_Q)$$

• yt: observed series.

Outputs:

- drift_mlfit: estimated drift vector $\hat{\boldsymbol{\mu}}$.
- H_mlfit: estimated observation covariance.
- Q_mlfit: estimated process covariance.

5

4.4 Example (RW Simulation and Estimation)

```
from KalmanFilter import RW_kalman_filter, RW_ml_fit, matrix_generator
import numpy as np
n_assets, n_steps = 4, 600
Ht = np.diag(np.random.uniform(1e-4, 1e-3, n_assets))
s_eta = np.random.uniform(1e-3, .2, n_assets)
rho_eta = np.random.uniform(-.5, .5, int(n_assets*(n_assets-1)/2))
Qt = matrix_generator(np.hstack((s_eta, rho_eta)), n_assets)
drift = np.random.uniform(-1e-2, 2.5e-2, n_assets)
# Simulate random walk
yt = np.zeros((n_steps, n_assets))
alpha = np.zeros((n_steps+1, n_assets))
for t in range(1, n_steps+1):
    alpha[t] = drift + alpha[t-1] + np.random.multivariate_normal(np.
       zeros(n_assets), Qt)
    yt[t-1] = alpha[t-1] + np.random.multivariate_normal(np.zeros(
       n_assets), Ht)
# Filter and ML fit
att, Ptt, at, Pt, vt, Ft, Kt, loglike = RW_kalman_filter(yt, drift, Ht,
params = np.hstack((drift, np.diag(Ht), s_eta, rho_eta))
drift_ml, H_ml, Q_ml = RW_ml_fit(params, yt)
```

5 References

- Buccheri, G., Corsi, F., & Peluso, S. (2021). High-Frequency Lead-Lag Effects and Cross-Asset Linkages: A Multi-Asset Lagged Adjustment Model. Journal of Business & Economic Statistics, 39(3), 605–621.
- Durbin, J. & Koopman, S. J. (2012). Time Series Analysis by State Space Methods. Oxford University Press.
- Shumway, R. H. & Stoffer, D. S. (2015). Time Series Analysis and Its Applications.