The Three Forms of a Quadratic Function (Parabola)

Dr. William J. Larson - http://MathsTutorGeneva.ch/

General Form

$y = ax^2 + bx + c$

The *concavity* is determined by a. If a > 0 the parabola is concave up. If a < 0 the parabola is concave down.

The y-intercept is c.

The axis of symmetry, which is also the x-coordinate of the vertex, is $x = \frac{-b}{2a}$.

To find the *x*-intercepts, solve $0 = ax^2 + bx + c$.

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

To get this form from the other forms: Multiply it out & collect like terms.

Example

$$y = 2x^2 - 12x - 14$$

 $a = 2, b = -12, c = -14$

The y-intercept is (0, -14).

The axis of symmetry is:

$$x = \frac{-(-12)}{(2)(2)} = 3$$
. So $x = 3$.

Factored form

$$y = a (x - \alpha) (x - \beta)$$

Gives the *x*-intercepts: $x = \alpha$, β .

To find the *y*-intercept set x = 0 and evaluate.

The *concavity* is determined by a. If a > 0 the parabola is concave up. If a < 0 the parabola is concave down

The x-coordinate of the vertex and the equation of the axis of the symmetry is the <u>average</u> of the x-intercepts, $\frac{\alpha+\beta}{2}$.

To get this form from the other forms: Factor it.

Example

$$y = 2(x+1)(x-7)$$

The zeros are x = -1, 7

The x-intercepts are (-1, 0), (7, 0)

The axis of symmetry is:

$$x = \frac{-1+7}{2}$$
, so $x = 3$.

The y-intercept is y = 2(0+1)(0-7) = -14

Vertex (or Standard) form

$$y = a(x - h)^2 + k$$

Gives the vertex: (h, k). (Note the minus sign on h.)

The axis of symmetry is x = h.

The *concavity* is determined by a. If a > 0 the parabola is concave up. If a < 0 the parabola is concave down.

To get this form from the other forms: Complete the square.

To find the *x*-intercepts set y = 0 and solve for *x*.

To find the *y*-intercept set x = 0 and evaluate.

Example

$$y = 2(x-3)^2 - 32$$

The vertex is (3, -32)

The axis of symmetry is: x = 3

To find the *x*-intercept $0=2(x-3)^2-32$ So $32=2(x-3)^2$, so $16=(x-3)^2$, so $\pm 4=x-3$, so x=-1, 7.

The y-intercept is $y=2(0-3)^2-32=-14$

The Four "Quadratic Equations"

There are four <u>different</u> mathematical objects that are sometimes called by students the "Quadratic Equation". Try to keep them straight.

Quadratic Expression $ax^2 + bx + c$ It can be factored, but it cannot be "solved", because it's not an

equation and only equations can be solved.

Quadratic Equation $0 = ax^2 + bx + c$ It can be solved, possibly by factoring it.

Quadratic Function $y = ax^2 + bx + c$ It cannot be "solved." It can be graphed and the x-intercepts can be solved for, possibly by factoring it.

Quadratic Formula $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ The solution of the quadratic equation.

Several statements about Ouadratics

There are several ways of discussing the solutions of $0 = a(x - \alpha)(x - \beta)$. The following are all the same statement:

- 1. The **zeros, roots** or **solutions** of the quadratic equation are $\alpha \& \beta$.
- 2. The **factors** of the corresponding quadratic expression are $(x \alpha)(x \beta)$.
- 3. The **zeros** of the corresponding quadratic function are $\alpha \& \beta$. I.e. these are the values of x that make y = 0.
- 4. The *x*-intercepts of the corresponding quadratic function are $(\alpha, 0)$, $(\beta, 0)$.

Example: Given that the x-intercepts of f(x) are 2 and -3, solve f(x) = 0. The answer is simply x = 2 and -3.