1. 교과목 수강인원

수업년도	수업학기	계열구분	수강인원	이수인원
2021	2	자연과학	3	3
2021	2	공학	85	81
2022	2	자연과학	3	3
2022	2	공학	76	72
2023	2	자연과학	1	1
2023	2	공학	63	61
2024	2	공학	57	57

2. 평균 수강인원

 수업년도	수업학기	캠퍼스	공통교과목	학과교과목	해당교과목	내교과목
2015	2	36.28	70.35	30.36	10	
2015	1	37.21	54.62	34.32		
2014	2		-			
2014	1	A	1000			
2013	2		1939			

3. 성적부여현황(평점)

비율

3.23 33.33 19.3

21.05

8.77 15.79 1.75

교과목 포트폴리오 (CHE3006 화공열역학2)

4. 성적부여현황(등급)

2023

2023

2

2

C+

C0

1

2

			37					
수업년도	수업학기	등급	인원	비율	수업년도	수업학기	등급	인원
2021	2	Α+	34	40.48	2023	2	D+	2
2021	2	A0	18	21.43	2024	2	A+	19
2021	2	B+	19	22.62	2024	2	Α0	11
2021	2	ВО	6	7.14	2024	2	B+	12
2021	2	C+	4	4.76	2024	2	ВО	5
2021	2	C0	2	2.38	2024	2	C+	9
2021	2	D+	1	1.19	2024	2	C0	1
2022	2	Α+	25	33.33				
2022	2	A0	23	30.67				
2022	2	B+	15	20				
2022	2	В0	7	9.33				
2022	2	C+	2	2.67	-			
2022	2	C0	2	2.67				
2022	2	D+	1	1.33	_			
2023	2	Α+	16	25.81	-			
2023	2	Α0	22	35.48				
2023	2	B+	8	12.9	_			
2023	2	ВО	11	17.74	_			
	1		1	1	-			

1.61

3.23

5. 강의평가점수

수업년도	수업학기	캠퍼스	공통교과목	학과교과목	해당교과목	내교과목
2024	2	92.56	93.8	92.33	97	
2024	1	91.5	93.79	91.1		
2023	1	91.47	93.45	91.13		
2023	2	91.8	93.15	91.56	93	
2022	2	90.98	92.48	90.7	89	

6. 강의평가 문항별 현황

	평가문항 번호		소속학과,대학평균과의 차이 (+초과,-:미달)		점수별 인원분포				
번호					매우 그렇 치않 다	그렇 치않 다	보통 이다	그렇 다	매우 그렇 다
		5점	학과	대학	1점	2점	3점	4점	디
교강	교강사:	미만	차이 평균	차이 평균	- 12	28	24	42	5점

No data have been found.

7. 개설학과 현황

학과	2025/2	2024/2	2023/2	2022/2	2021/2
화학공학과	1강좌(3학점)	2강좌(6학점)	1강좌(3학점)	2강좌(6학점)	2강좌(6학점)

8. 강좌유형별 현황

강좌유형	2021/2	2022/2	2023/2	2024/2	2025/2
일반	2강좌(88)	2강좌(79)	1강좌(64)	2강좌(57)	0강좌(0)

9. 교과목개요

교육과정	관장학과	국문개요	영문개요	수업목표
학부 2024 - 2027 교육과 정	서울 공과대학 화학공학과	- 흐름공정에 대한 열역학의 응용을 분석하고 기 -액 평형과 화학반응 평형, 그리고 용액열역학을 익힌다. - 열로부터의 동력의 생성, 냉동 및 액화공정에 대한 열역학을 다룬다. - 3~4명씩 팀을 이루어 담당교수가 제시하는 공 정열역학 관련 주제에 따라 설계 프로젝트를 수 행하고, 그 결과를 보고서 형식으로 작성하여 제 출 및 평가를 받는다.	solution thermodynamics are investigated from the chemical engineering point of view. - The generation of power from heat, liquefaction and refrigeration cycles are analyzed.	
학부 2020 - 2023 교육과 정	서울 공과대학 화학공학과	 흐름공정에 대한 열역학의 응용을 분석하고 기 액 평형과 화학반응 평형, 그리고 용액열역학을 익힌다. 열로부터의 동력의 생성, 냉동 및 액화공정에 대한 열역학을 다룬다. 3~4명씩 팀을 이루어 담당교수가 제시하는 		

교육과정	관장학과	국문개요	영문개요	수업목표
		공정열역학 관련 주제에 따라 설계 프로젝트를 수행하고, 그 결과를 보고서 형식으로 작성하여 제출 및 평가를 받는다.	 The generation of power from heat, liquefaction and refrigeration cycles are analyzed. Each team consisting of 3~4 students performs thermodynamics project assigned by the professor and submit the followed by evaluation. 	
학부 2016 - 2019 교육과 정	서울 공과대학 화학공학과	- 흐름공정에 대한 열역학의 응용을 분석하고 기 -액 평형과 화학반응 평형, 그리고 용액열역학을 익힌다. - 열로부터의 동력의 생성, 냉동 및 액화공정에 대한 열역학을 다룬다. - 3~4명씩 팀을 이루어 담당교수가 제시하는 공 정열역학 관련 주제에 따라 설계 프로젝트를 수 행하고, 그 결과를 보고서 형식으로 작성하여 제 출 및 평가를 받는다.	 In this course the characteristics in flow thermodynamics, vapor-liquid equilibrium, fluid, chemical reaction equilibrium, and solution thermodynamics are investigated from the chemical engineering point of view. The generation of power from heat, liquefaction and refrigeration cycles are analyzed. Each team consisting of 3~4 students performs thermodynamics project assigned by the professor and submit the followed by evaluation. 	
학부 2013 - 2015 교육과 정	서울 공과대학 화공생명공학 부 화학공학전 공	화공열역학2 - 흐름공정에 대한 열역학의 응용을 분석하고 기-액 평형과 화학반응 평형, 그리고 용액열역학을 익힌다 열로부터의 동력의 생성, 냉동 및 액화공정에 대한 열역학을 다룬다 3~4명씩 팀을 이루어 담당교수가 제시하는 공 정열역학 관련 주제에 따라 설계 프로젝트를 수행하고, 그 결과를 보고서 형식으로 작성하여 제출 및 평가를 받는다.	 In this course the characteristics in flow thermodynamics, vapor-liquid equilibrium, fluid, chemical reaction equilibrium, and solution thermodynamics are investigated from the chemical engineering point of view. The generation of power from heat, liquefaction and refrigeration cycles are analyzed. Each team consisting of 3~4 students performs thermodynamics project assigned by the professor and submit the followed by evaluation. 	
학부 2013 - 2015 교육과 정	서울 공과대학 화학공학과	화공열역학2 - 흐름공정에 대한 열역학의 응용을 분석하고 기-액 평형과 화학반응 평형, 그리고 용액열역학을 익힌다 열로부터의 동력의 생성, 냉동 및 액화공정에 대한 열역학을 다룬다 3~4명씩 팀을 이루어 담당교수가 제시하는 공정열역학 관련 주제에 따라 설계 프로젝트를 수행하고, 그 결과를 보고서 형식으로 작성하여 제출 및 평가를 받는다.	 In this course the characteristics in flow thermodynamics, vapor-liquid equilibrium, fluid, chemical reaction equilibrium, and solution thermodynamics are investigated from the chemical engineering point of view. The generation of power from heat, liquefaction and refrigeration cycles are analyzed. Each team consisting of 3~4 students performs thermodynamics project assigned by the professor and submit the followed by evaluation. 	
학부 2009 - 2012 교육과 정	서울 공과대학 화공생명공학 부 화학공학전 공	- 흐름공정에 대한 열역학의 응용을 분석하고 기 -액 평형과 화학반응 평형, 그리고 용액열역학을 익힌다. - 열로부터의 동력의 생성, 냉동 및 액화공정에 대한 열역학을 다룬다. - 3~4명씩 팀을 이루어 담당교수가 제시하는 공 정열역학 관련 주제에 따라 설계 프로젝트를 수 행하고, 그 결과를 보고서 형식으로 작성하여 제 출 및 평가를 받는다.	- In this course the characteristics in flow thermodynamics, vapor-liquid equilibrium, fluid, chemical reaction equilibrium, and solution thermodynamics are investigated from the chemical engineering point of view. - The generation of power from heat, liquefaction and refrigeration cycles are analyzed.	

교육과정	관장학과	국문개요	영문개요	수업목표
			- Each team consisting of 3~4 students performs thermodynamics project assigned by the professor and submit the followed by evaluation.	
학부 2009 - 2012 교육과 정	서울 공과대학 응용화공생명 공학부 화학공 학전공	- 흐름공정에 대한 열역학의 응용을 분석하고 기 -액 평형과 화학반응 평형, 그리고 용액열역학을 익힌다. - 열로부터의 동력의 생성, 냉동 및 액화공정에 대한 열역학을 다룬다. - 3~4명씩 팀을 이루어 담당교수가 제시하는 공 정열역학 관련 주제에 따라 설계 프로젝트를 수 행하고, 그 결과를 보고서 형식으로 작성하여 제 출 및 평가를 받는다.	solution thermodynamics are investigated from the chemical engineering point of view. - The generation of power from heat, liquefaction and refrigeration cycles are analyzed.	
학부 1989 - 1992 교육과 정	서울 공과대학 화학공학			

10. CQI 등록내역

No data have been found.