Лабораторная работа № 15 Решение нелинейных уравнений

Задание 1. Графическим и табличным методами отделить корни уравнения. Уточнить корень уравнения (один из корней, если их несколько) методами половинного деления, Ньютона, секущих и методом хорд с точностью до 0,001 (в качестве критерия окончания итерационного процесса использовать условие $|x_{k+1} - x_k| \le \epsilon$).

Вариант	Задание
№	
1	$x - \sin(x) = 0.25$
2	$x - \cos(0.387x) = 0$
3	$tg(0.4x + 0.4) = x^2$
4	$\lg(x) - 2x + 6 = 0$
5	$tg(0.5x + 0.2) = x^2$
6	$3x - \cos(x) - 1 = 0$
7	$x + \ln(x) = 0.5$
8	$tg(0.5x + 0.1) = x^2$
9	$x + 4\sin(x) = 0$
10	$x \cdot \log(x) = 1.2$

Задание 2. Отделить корни уравнения. Привести уравнение к виду, позволяющему применить метод простой итерации. Аналитически ("на листочке") проверить условие сходимости МПИ*. Уточнить корень уравнения (один из корней, если их несколько) с точностью до 0.001 (в качестве критерия окончания итерационного процесса использовать условие $|x_{k+1}-x_k| \le \varepsilon$).

Замечание*. Выполнение условия сходимости МПИ $|\phi'(x)| < 1$ нужно проверить на промежутке, на котором отделен корень (а не только в точке x_0).

Вариант	Задание
	· ·
1	$x^3 - 5x + 1 = 0$
2	$x^3 - 3x^2 + 9x - 10 = 0$
3	$5x^3 - 7x - 1 = 0$
4	$x^3 + 5x - 3 = 0$
5	$2x^3 - 5x^2 + 7x - 1 = 0$
6	$x^3 - 5x - 1 = 0$
7	$x \cdot 2^x = 1$
8	$x - \cos(x) = 0$
9	$x^3 - 0.2x^2 + 3.5x - 1.4 = 0$
10	$x^3 - 3x^2 + 6x - 5 = 0$