Appendix

Anonymous

Anonymous

1 Proof Of Theorem 1

Theorem 1. Let the space of the meta-network parameter and clients' distribution representation are bounded in a minimum enclosing ball of radius R_e , and the dimension of them are N and E, respectively. Let the Lip_l , Lip_{φ} and Lip_r are the Lipschitz constant of the functions $L_c^p(x,y)$, $f(*;\varphi)$ and f(r;*). Under the above stated assumptions, For all p, ε , δ with $p \in [1...P]$ and $0 < \varepsilon$, $\delta < 1$, if the period size S(all the C clients use the same period size in the Fed-3DA) satisfies: $T \triangleq \{S \geq \mathbb{O}(\frac{CE+N}{C\varepsilon^2}(\log R_e Lip_l(Lip_{\varphi} + Lip_r) - \log(\varepsilon\delta)))\}$, we have with probability at least 1- δ , any φ , r will satisfy $|\widehat{ER}(\varphi,r) - ER(\varphi,r)| \leq \varepsilon$.

First, we analyze the meta-network from the perspective of p period. From the assumptions of the equation (4) in this paper, we have: $\theta^p = f(r^p; \varphi^p)$, $\theta^p = \{\theta_c^p\}_{c=1}^C$, $r^p = \{r_c^p\}_{c=1}^C$. The loss of the client c in the p^{th} period defined as:

$$\mathcal{L}^p_c(x^p_c,y^p_c;~\theta^p_c) = \mathcal{L}^p_c(x^p_c,y^p_c;~f(r^p_c;~\varphi^p))$$

The average loss for all clients in the p^{th} period is (C represents total client number):

$$\mathcal{L}^{p}(x^{p}, y^{p}; \; \theta^{p}) = \frac{1}{C} \sum_{c=1}^{C} \mathcal{L}^{p}_{c}(x^{p}_{c}, y^{p}_{c}; \; f(r^{p}_{c}; \; \varphi^{p}))$$

We follow the assumptions in the section 4.2 of the previous study [3], the space of the meta-network parameter and clients' distribution representation are bounded in a minimum enclosing ball of radius R_e , so the following Lipschitz conditions hold in the p^{th} period:

$$\begin{split} |f(r^p;\;\varphi^p) - f(r^p;\;\tilde{\varphi^p})| &\leq Lip_{\varphi}^p ||\varphi^p - \tilde{\varphi^p}|| \\ |f(r^p;\;\varphi^p) - f(\tilde{r^p};\;\varphi^p)| &\leq Lip_r^p ||r^p - \tilde{r^p}|| \\ |\mathcal{L}_c^p(x_c^p, y_c^p;\;\theta_c^p) - \mathcal{L}_c^p(x_c^p, y_c^p;\;\tilde{\theta_c^p})| &\leq Lip_l^p ||\theta_c^p - \tilde{\theta_c^p}|| \end{split}$$

From the definition 4 and theorem 4 in the sections 2.3 and 2.6 of [1], for multi-task learning, in order to minimize the average generalization error, the sample size s of a single task needs to satisfy:

$$s \geq \mathbb{O}\left(\frac{1}{n\varepsilon^2}\log\frac{\mathcal{C}\left(\varepsilon,\mathbb{H}_{\mathcal{L}}^{C}\right)}{\delta}\right)$$

where C represents task number, which equivalent to Fed-3DA client number, so we reuse the letter C. $\mathcal{C}\left(\varepsilon,\mathbb{H}_{\mathcal{L}}^{C}\right)$ is the covering number for the permissible hypothesis space family $\mathbb{H}^{C}_{\mathcal{L}}$. In our Fed-3DA, every hypothesis of $\mathbb{H}^{C}_{\mathcal{L}}$ is parameterized by $[r_1^p, ..., r_C^p; \varphi^p]$, and the hypothesis distance from [1] defined as:

$$\begin{split} & d\left(\left(r_1^p,...,r_C^p;\ \varphi^p\right),\ \left(\tilde{r_1^p},...,\tilde{r_C^p};\ \tilde{\varphi^p}\right)\right) \\ &= \underset{x_c^p,y_c^p\sim\mathcal{P}_c^p}{\mathbb{E}}\left[\frac{1}{C}\left|\sum_{c=1}^{C}\mathcal{L}_c^p\left(x_c^p,y_c^p;\ f\left(r_c^p;\ \varphi^p\right)\right) - \sum_{c=1}^{C}\mathcal{L}_c^p\left(x_c^p,y_c^p;\ f\left(\tilde{r_c^p};\ \tilde{\varphi^p}\right)\right)\right|\right] \\ &= \frac{1}{C}\sum_{c=1}^{C}\underset{x_c^p,y_c^p\sim\mathcal{P}_c^p}{\mathbb{E}}\left[\left|\mathcal{L}_c^p\left(x_c^p,y_c^p;\ f\left(r_c^p;\ \varphi^p\right)\right) - \mathcal{L}_c^p\left(x_c^p,y_c^p;\ f\left(\tilde{r_c^p};\ \tilde{\varphi^p}\right)\right)\right|\right] \\ &= \frac{1}{C}\sum_{c=1}^{C}\underset{x_c^p,y_c^p\sim\mathcal{P}_c^p}{\mathbb{E}}\left[\left|\mathcal{L}_c^p\left(x_c^p,y_c^p;\ \theta^p\right) - \mathcal{L}_c^p\left(x_c^p,y_c^p;\ \tilde{\theta^p}\right)\right|\right] \end{split}$$

From the above Lipschitz inequalities, we have:

$$\begin{split} &d\left((r_1^p,...,r_C^p;\ \varphi^p),\ (\tilde{r_1^p},...,\tilde{r_C^p};\ \tilde{\varphi^p})\right)\\ &\leq Lip_l^p||\theta^p-\tilde{\theta^p}||\\ &\leq Lip_l^p||f(r^p;\ \varphi^p)-f(\tilde{r^p};\ \tilde{\varphi^p})||\\ &\leq Lip_l^p||f(r^p;\ \varphi^p)-f(r^p;\ \tilde{\varphi^p})||+Lip_l^p||f(r^p;\ \tilde{\varphi^p})-f(\tilde{r^p};\ \tilde{\varphi^p})||\\ &\leq Lip_l^p\cdot Lip_\varphi^p||\varphi^p-\tilde{\varphi^p}||+Lip_l^p\cdot Lip_p^p||r^p-\tilde{r^p}|| \end{split}$$

Combined with the proof A in [3], the above results imply that if we want an ε -covering in the hypothesis distance d(*, *), we need to select a parameter space in which the distance of pairs $(\varphi^p, \tilde{\varphi}^p)$ and $(r^p, \tilde{r^p})$ are $\frac{\varepsilon}{2Lip_l^p(Lip_\varphi^p + Lip_r^p)}$, meanwhile, $\log \left(\mathcal{C} \left(\varepsilon, \mathbb{H}^{C}_{\mathcal{L}} \right) \right) = \mathbb{O} \left(\frac{CE+N}{\varepsilon} (\log R_{e}Lip_{l}^{p}(Lip_{\varphi}^{p} + Lip_{r}^{p}) - \log(\varepsilon\delta)) \right)$. So far, for any period p, after the condition T is satisfied, we have:

$$\{|\widehat{ER}^p(\varphi^p,r^p)-ER^p(\varphi^p,r^p)|\leq \varepsilon^p\}_{p=1}^P,\ 0<\{\varepsilon^p\}_{p=1}^P<1$$

where $\widehat{ER}^p(\varphi^p, r^p)$ and $ER^p(\varphi^p, r^p)$ represent the empirical and expected loss in the p^{th} period, respectively. In the sequence $\{\varepsilon^p\}_{p=1}^P$, we assume that:

$$\{\varepsilon^p \le \varepsilon^* \mid p, * \in [1...P]\}$$

In all P periods, the empirical and expected loss: $\widehat{ER}(\varphi,r) = \frac{1}{P} \sum_{p=1}^{P} \widehat{ER}^{P}(\varphi^{p},r^{p})$, $ER(\varphi,r) = \frac{1}{P} \sum_{p=1}^{P} ER^{p}(\varphi^{p},r^{p})$, we have:

$$\begin{split} |\widehat{ER}(\varphi,r) - ER(\varphi,r)| &= |\frac{1}{P} \sum_{p=1}^{P} \widehat{ER}^{p}(\varphi^{p}, r^{p}) - \frac{1}{P} \sum_{p=1}^{P} ER^{p}(\varphi^{p}, r^{p})| \\ &= \frac{1}{P} \sum_{p=1}^{P} |\widehat{ER^{p}}(\varphi^{p}, r^{p}) - ER^{p}(\varphi^{p}, r^{p})| \\ &\leq \frac{\varepsilon^{1} + \ldots + \varepsilon^{P}}{P} \\ &\leq \frac{P\varepsilon^{*}}{P} = \varepsilon^{*} \in (0, 1) \end{split}$$

This completes the proof.

2 Additional Experiments

2.1 Distribution Distance Between The Dataset Ruler And Dataset

The distribution distance between the $Dataset\ Ruler$ and the datasets is shown in **figure 1**. In the single main class dataset, the $distance(DR, \mathbb{E}_{[iid]})$ and $distance(DR, \mathbb{E}_{[0.9]})$ obtain the minimum and maximum, the distance is positively correlated with the proportion of the main class. So does the two main class dataset. The dataset size has a slight effect on the trend of the distribution distance. Based on the above experimental results, we believe that the $Dataset\ Ruler$ can be used as a uniform measure of the distribution distance under the different dataset type conditions.

Fig. 1. Distribution distance between the Dataset Ruler and dataset. The DRs of CI-FAR10, CIFAR100 and Fashion-MNIST are all sampled from the ImageNet [2], while the samples are cropped to keep the size consistent and grayed when compared with the Fashion-MNIST.

4 Anonymous

2.2 Model Adaptability Under The Dynamic Distribution Data

This section supplements the scenarios of the experiments in the main text, and the conclusions are consistent with the main text.

Fig. 2. Federated client test accuracy on the Fashion-MNIST under the dynamic distribution. Every approach test for 100 periods with 10 clients, the validation accuracy (FedAvg: 90.7%, Fed-3DA: 89.9%, Local: 87.1%, pFedHN: 82.5%) is marked with a short line.

References

1. Baxter, J.: A model of inductive bias learning. Journal of artificial intelligence research 12, 149-198 (2000)

- 2. Deng, J.: A large-scale hierarchical image database. Proc. of IEEE Computer Vision and Pattern Recognition, 2009~(2009)
- 3. Shamsian, A., Navon, A., Fetaya, E., Chechik, G.: Personalized federated learning using hypernetworks. arXiv preprint arXiv:2103.04628 (2021)