Fig.1

Fig.2

Fig.4

Fig.5

IF LEFT DRAWING IS CURVED LINE DEFINED BY FOLLOWING POLYNOMIAL,

$$y = f(\lambda) = A\lambda^3 + B\lambda^2 + C\lambda + D$$
(B1)
 $x = g(\lambda)$

IF
$$0 \le \lambda \le 1$$

.....(B2)

IF WHOLE LENGTH OF CURVED LINE DEFINED IS L, FOLLOWING EXPRESSION CAN BE COMPUTED

$$L = \int_0^L ds = \int_0^L \sqrt{dx^2 + dy^2} = \int_0^1 \sqrt{\left(\frac{dx}{d\lambda}\right)^2 + \left(\frac{dy}{d\lambda}\right)^2} \cdot d\lambda \quad (B3)$$

FURTHERMORE, FOLLOWING LINE ELEMENT IS DEFINED BY CUTTING PARAMETER λ WITH SEQUENCE $0=\lambda_0<\lambda_1,\lambda_2,\cdots,\lambda_4,\cdots<\lambda_n=1$

$$\Delta L_i = \int_0^{\lambda_i} \sqrt{\left(\frac{dx}{d\lambda}\right)^2 + \left(\frac{dy}{d\lambda}\right)^2} \cdot d\lambda \qquad (B4)$$

GIVE VELOCITY PROFILE OF VELOCITY FUNCTION F(t) HAVING TIME PARAMETER tON THIS CORVED LINE AND OBTAIN FOLLOWING EXPRESSION

λ AND t CAN BE RELATED WITH EACH OTHER BY MAKING LENGTH OF THIS LINE SEGMENT EQUAL TO LENGTH OF LINE SEGMENT(1)

$$\Delta L_i = \int_0^{\lambda_i} \sqrt{\left(\frac{dx}{d\lambda}\right)^2 + \left(\frac{dy}{d\lambda}\right)^2} \cdot d\lambda = \int_0^{\lambda_i} F(t) \cdot dt$$

BY SOLVING THIS, FOLLOWING IS COMPUTED

$$\lambda = \alpha (t)$$
 (B β)

Fig.6

WORKING SPATIAL POSITION OF EACH AXIS CAN $y=f(\alpha(t)), x=g(\alpha(t))$ FROM EXPESSION (3) THEN, CONVERSION FROM WORKING SPACE OF EAC OBTAINED BY FOLLOWING RELATION	WORKING SPATIAL POSITION OF EACH AXIS CAN BE OBTAINED AS TIME FUNCTION BY $y=f(\alpha(t)), x=g(\alpha(t))$ FROM EXPESSION (3) THEN, CONVERSION FROM WORKING SPACE OF EACH AXIS INTO JOINT SPACE CAN BE OBTAINED BY FOLLOWING RELATION	TIME FUNCTION BY	
WORKING SPACE	CONVERSION		JOINT SPACE
$[x=g(\alpha(t)), y=f(\alpha(t))]$	INVERSE KINEMATICS		[X,Y,A,B]
* [x, y]	INVERSE JACOBIAN		$[\dot{X},\dot{Y},\dot{A},\dot{B}]$
* [x, y]	INVERSE JACOBIAN		$[\ddot{X},\ddot{Y},\ddot{A},\ddot{B}]$

Fig.7

