Mathématiques Financières Chapitre 5: Emprunts Indivis

Introduction

On parle d'un emprunt indivis (indivisible) quand l'emprunteur s'adresse à un seul prêteur (créancier). Quand il s'agit de plusieurs créanciers, on parle d'un emprunt obligataire.

L'objectif de ce cours est d'étudier les principaux modes de remboursement d'un emprunt indivis.

Introduction

Un emprunt indivis peut être remboursé:

- en une seule fois (*in fine* ou en bloc)
- par annuités constantes
- par amortissements constants

Notations

C: Capital emprunté

i : Taux d'intérêts

I : Montant des intérêts

n : Durée de l'emprunt

a: Annuité

Tableau de remboursement

On présente les détails des paiements liés à un emprunt dans « le tableau de remboursement » qui décrit, pour chaque période, le capital restant dû, la part de capital remboursé, les intérêts et l'annuité.

Période	Capital restant dû en début de période (C _r)	Intérêts de la période (I)	Amortissement (capital remboursé)	Annuités

Remboursement en une seule fois

Ce premier mode de remboursement consiste à payer le capital emprunté *en bloc* à la fin de la dernière période. Entre temps, l'emprunteur ne paye que les intérêts.

L'équivalence est toujours vérifiée:

A la date 0:
$$C = I \cdot \frac{1 - (1+i)^{-n}}{i} + C(1+i)^{-n}$$

A la date n:
$$C(1+i)^n = I \cdot \frac{(1+i)^n - 1}{i} + C$$

Tableau de remboursement (en bloc) d'un emprunt de 80.000DTN au taux annuel de 6% sur 4 ans.

Période	Capital restant dû en début de période (C _r)	Intérêts de la période (I)	Amortissement (capital remboursé)	Annuité(s)
1	80.000	4800	0	4800
2	80.000	4800	0	4800
3	80.000	4800	0	4800
4	80.000	4800	80.000	84.800

Intérêts = $C_r \times i = 80.000 \times 0,06 = 4800$ Coût de l'emprunt = $I \times n = 4800 \times 4 = 19.200$ Annuité = Intérêts + part de capital remboursé

Remboursement par annuités constantes

Dans ce cas, l'emprunteur s'engage à payer la même annuité chaque fin de période. C'est la formule la plus utilisée en pratique.

Les annuités 'a' de fin de périodes permettent de rembourser le capital emprunté C et les intérêts dus. Ainsi, C est égal à la valeur actuelle des différentes annuités au taux i, soit :

$$C = a. \frac{1 - (1 + i)^{-n}}{i}$$

Par conséquent:

$$a = C.\frac{i}{1 - (1+i)^{-n}}$$

Remboursement d'un emprunt de 80.000DTN au taux annuel de 6% sur 4 ans par annuités constantes.

On commence par le calcul de l'annuité 'a':

$$a = C.\frac{1}{1 - (1+i)^{-n}}$$

$$a = 80000. \frac{0,06}{1 - (1 + 0,06)^{-4}}$$

$$a = 23087,3$$

Tableau de remboursement :

Période	Capital restant dû en début de période (C _r)	Intérêts de la période (I)	Amortissement (capital remboursé)	Annuités
1				23087,3
2				23087,3
3				23087,3
4				23087,3

L'emprunteur paye la même annuité chaque fin de période soit 23087,3 DTN.

Période	Capital restant dû en début de période (C _r)	Intérêts de la période (I)	Amortissement (capital remboursé)	Annuités
1	80.000	4800	18287,3	23087,3
2				23087,3
3				23087,3
4				23087,3

Annuité = Intérêts + Capital remboursé Annuité - Intérêts = **Capital remboursé** 23087,3 - 4800 = **18287,3**

En remboursant 18287,3 DTN, le capital restant dû au début de la deuxième période est 80000 – 18287,3 = 61712,7 DTN.

Capital restant de l'année 'n' =

Capital restant de l'année 'n -1' -Capital remboursé de l'année 'n-1'

Période	Capital restant dû en début de période (C _r)	Intérêts de la période (I)	Amortissement (capital remboursé)	Annuités
1	80000	0,06 4800	18287,3	23087,3
2	61712,7 🎽	^{0,06} 3702,7	19384,5	23087,3
3	42328,2	2539,7	20547,6	23087,3
4	21780,6	1306,8	21780.6	23087,3

Vérification

Dans un tableau de remboursement, il faut s'assurer que :

-La somme des amortissements = Capital emprunté

$$18287,3 + 19384,5 + 20547,6 + 21780,6 = 80000$$

- Le capital restant de la dernière période = Amortissement

Période	Capital restant dû en début de période (C _r)	Intérêts de la période (I)	Amortissement (part de capital remboursé)	Annuités
1	80000 🗡	^{0,06} 4800	18287,3	23087,3
2	61712,7 🎽	^{0,06} 3702,7	19384,5	23087,3
3	42328,2	2539,7	20547,6	23087,3
4	21780,6	1306,8	21780,6	23087,3

Remboursement par amortissements constants

- -Dans ce cas, c'est la part de capital remboursé à chaque période qui est constante.
- -Comme pour les annuités, on commence par le calcul de l'amortissement constant : A = C/n

Exemple:

Pour rembourser un emprunt de 80000DTN sur 4 ans par amortissements constants, il faut payer 80000/4 soit 20000 DTN chaque année.

Remboursement d'un emprunt de 80.000DTN au taux annuel de 6% sur 4 ans par amortissements constants.

Période	Capital restant dû en début de période (C _r)	Intérêts de la période (I)	Amortissement (capital remboursé)	Annuités
1				
2				
3				
4				

Le capital restant de la première période est toujours égal à la somme empruntée.

Période	Capital restant dû en début de période (C _r)	Intérêts de la période (I)	Amortissement (capital remboursé)	Annuités
1	80000 ~	4800	⁺ 20000 =	24800
2			20000	
3			20000	
4			20000	

1ère Annuité = intérêts + amortissement = 24800

En remboursant 20000 DTN, le capital restant dû en début de la deuxième période est 80000 - 20000 = 60000 DTN.

Période	Capital restant dû en début de période (C _r)	Intérêts de la période (I)	Amortissement (capital remboursé)	Annuités
1	80000	4800	20000	24800
2	60000	3600	20000	23600
3	40000	2400	20000	22400
4	20000	1200	20000	21200

Le coût de cet emprunt (somme des intérêts) est de 12000 DTN.