Bidang Fokus : Pengolahan Air

Luaran: Publikasi Seminar Internasional terindeks Scopus

Kode/ Rumpun Ilmu : 433/ Teknik Kimia

PROPOSAL PENELITIAN STRATEGIS DANA HIBAH RKAT FAKULTAS TEKNIK UNDIP TAHUN ANGGARAN 2021

PENGEMBANGAN MOVING BED BIOFILM REACTOR (MBBR) DENGAN GREEN BED MEDIA BERBAHAN BAMBU UNTUK RESIRKULASI AIR BUDIDAYA SISTEM AKUAKULTUR

TIM PENGUSUL

Dessy Ariyanti, ST., MT., PhD Ketua Peneliti 198412112010122005

Prof. Dr. I Nyoman Widiasa, S.T., M.T. Anggota Peneliti 197004231995121001

Cantika Veranica Aurrely Mahasiswa 21030118130152

Natasza Aura Mahasiswa 21030118140158

DEPARTEMEN TEKNIK KIMIA FAKULTAS TEKNIK UNIVERSITAS DIPONEGORO TAHUN 2021

HALAMAN PENGESAHAN PROPOSAL PENELITIAN STRATEGIS

Judul Penelitian : Pengembangan Moving Bed Biofilm Reactor (MBBR)

dengan Green Bed Media Berbahan Bambu untuk

Resirkulasi Air Budidaya Sistem Akuakultur

Luaran Penelitian : Publikasi di Seminar Internasional Terindeks Scopus

Ketua Penelitian :

a. Nama Lengkap : Dessy Ariyanti, ST., MT., PhD

b. NIP/NIDN : 197004231995121001/0011128402

c. Jabatan Fungsional : Lektor

d. Departemen : Teknik Kimia e. Nomor HP : 081338387882

f. Alamat email : dessy.ariyanti@che.undip.ac.id

Anggota Penelitian (1) :

a. Nama Lengkap : Prof. Dr. I Nyoman Widiasa, ST., MT

b. NIP/NIDN : 197004231995121001/0023047003

c. Departemen : Teknik Kimia

d. Nomor HP : 081325880631

Anggota Mahasiswa : 1. Cantika Veranica Aurrely NIM. 21030118130152

2. Natasza Aura NIM. 21030118140158

Lama Penelitian : 7 (tujuh) bulan

Biaya Penelitian : Rp 20.000.000,-

Sumber Dana : RKAT Fakultas Teknik Undip Tahun 2021

Semarang, 28 Februari 2021

Ketua Peneliti,

(Dessy Ariyanti, ST., MT., PhD)

NIP. 198412112010122005

ABSTRAK

Terciptanya metode resirkulasi air budidaya sistem akuakultur yang ramah lingkungan, dapat bekerja secara optimal dalam penyediaan air dengan kualitas yang baik serta kemudahan teknis baik dalam instalasi dan juga perawatannya sangat diharapkan semua pihak. Hal ini, merupakan upaya mendukung pengembangan sistem akuakultur menuju best practice yang ramah lingkungan dan berkelanjutan. Sistem *moving bed biofilm reactor* (MBBR) dapat dijadikan metode alternatif untuk proses resirkulasi air budidaya sistem akuakultur. Tujuan dari penelitian ini adalah mengembangkan metode MBBR dengan green bed media berbahan bambu untuk resirkulasi air budidaya sistem akuakultur. Penelitian ini diharapkan mampu memberikan kontribusi terhadap terciptanya metode resirkulasi air budidaya sistem akuakultur yang ramah lingkungan namun tetap dapat menghasilkan kualitas air yang sesuai kebutuhan budidaya ikan maupun tumbuhan.

DAFTAR ISI

HALAMAN SAMPUL	i
HALAMAN PENGESAHAN	ii
DAFTAR ISI	iii
RINGKASAN	iv
BAB I PENDAHULUAN	5
BAB II TINJAUAN PUSTAKA	8
BAB III METODOLOGI PENELITIAN	8
DAFTAR PUSTAKA	18
Lampiran A. Justifikasi Anggaran Penelitian	21
Lampiran B. Susunan Organisasi Tim Peneliti dan Pembagian Tugas	22
Lampiran C. Biodata Tim	23
Lampiran D. Surat Pernyataan Ketua Peneliti	34

BAB I PENDAHULUAN

I.1 Latar Belakang

Indonesia merupakan negara pengembang sistem akuakultur terbesar di dunia. Akuakultur yang merupakan sistem budidaya perikanan, organisme dan tumbuhan akuatik baik di pesisir maupun di pedalaman merupakan sektor yang sangat penting dalam mencapai ketahanan pangan dunia. Pemerintah melalui Kementerian Kelautan dan Perikanan (KKP) mendukung pengembangan sistem akuakultur menuju *best practice* yang ramah lingkungan dan berkelanjutan.

Dalam sistem akuakultur menuju *best practice* yang ramah lingkungan dan berkelanjutan. Dalam sistem akuakultur yang berkelanjutan, manajemen pengelolaan air dilakukan dengan sistem Recirculating Aquaculture System (RAS) yang pada prinsipnya adalah mengolah dan mensirkulasikan air yang telah digunakan untuk dikembalikan pada sistem akuakultur. Salah satu kunci penting dalam pengembangan sistem akuakultur dengan produktivitas tinggi adalah kualitas air yang digunakan. Permasalahan yang muncul dalam penggunaan RAS ini adalah kualitas air yang dikembalikan ke dalam sistem akuakultur belum memenuhi standar seperti berkurangnya dissolved oxygen serta kandungan komponen organik dan inorganik seperti nitrat dan phospat yang tinggi. Hal ini menyebabkan turunnya produktivitas sistem yang berdampak pada produk perikanan dan kelautan yang dihasilkan menjadi semakin menurun baik secara kualitas maupun kuantitas (Kumararaja, Suvana, Saraswathy, Lalitha, & Muralidhar, 2019; Mamane, Colorni, Bar, Ori, & Mozes, 2010; Viegas, Gouveia, & Gonçalves, 2021; Widiasa, Harvianto, Susanto, Istirokhatun, & Agustini, 2018).

Metode resirkulasi air budidaya sistem akuakultur terus menerus dikembangkan untuk mendapatkan sistem yang dapat bekerja secara optimal dalam penyediaan air dengan kualitas yang baik serta kemudahan teknis baik dalam instalasi dan juga perawatan (Mamane et al., 2010). Selain itu ditengah isu pemanasan global serta perubahan iklim, metode resirkulasi air budidaya sistem akuakultur juga diharapkan ramah lingkungan. Beberapa metode pengelolaan air sistem akuakultur yang sedang dan telah dikembangkan antara lain; low pressure UV reactor (Mamane et al., 2010); aerasi mekanik (Jescovitch, Boyd, & Whitis, 2017); ultrafiltrasi (Widiasa et al., 2018); metode microalgae (Mohd Nasir et al., 2019; Viegas et al., 2021); kombinasi biofloc dan biofilter (Liu et al., 2021). Sementara itu, beberapa metode pengiolahan air lainnya seperti sistem *moving bed biofilm reactor* (MBBR) belum banyak diteliti terutama pada aplikasi resirkulasi air budidaya sistem akuakultur.

Moving bed biofilm reactor (MBBR) adalah jenis proses pengolahan air limbah yang menitik beratkan pada penyediaan media yang bergerak secara dinamis tempat pengembangbiakan mikroorganisme yang membantu proses degradasi polutan pada air. Kombinasi komponen MBBR seperti aerasi dan *carrier media* menjadi faktor penting dalam peningkatan performa dari sistem MBBR. *Carrier media* yang umum digunakan adalah carrier media berbahan plastik seperti highdensity polyethylene (HDPE), yang dimungkinkan menyebabkan permasalahan lingkungan baru. *Carrier media* yang terbuat dari bahan organik atau alami seperti bambu dimungkinkan sebagai alternatif material yang dapat digunakan sebagai *carrier media*. Penelitian ini menginvestigasi kemungkinan penggunaan bambu sebagai *carrier media* pada aplikasi MBBR untuk resirkulasi air budidaya sistem akuakultur.

I.2 Rumusan Masalah

Penggunaan carrier media pada sistem MBBR berbahan high-density polyethylene (HDPE) dapat menimbulkan permasalahan lingkungan yang cukup serius. Sementara itu terdapat alternatif material organik dan alami yang dapat digunakan sebagai carrier media yaitu bambu. Literatur penggunaan bambu sebagai material carrier media pada sistem MBBR belum banyak ditemukan, namun analisa yang dilakukan terhadap bentuk, dimensi serta tekstur dari bambu dibandingkan dengan carrier media komersial menunjukkan adanya kemiripan yang menimbulkan pertanyaan mendasar, mampukah green bed media berbahan dasar bambu memberikan performa yang sama seperti dengan carrier media komersial pada resirkulasi air budidaya sistem akuakultur.

I.3 Tujuan

Tujuan dari penelitian ini adalah:

- 1. Membuat green bed media berbahan dasar bambu dengan berbagai ukuran sebagai *carrier media* pada sistem MBBR
- 2. Mengkaji penggunaan penggunaan green bed media berbahan bambu sebagai *carrier media* sistem MBBR pada resirkulasi air budidaya sistem akuakultur.
- 3. Melakukan optimasi proses MBBR dalam menghasilkan kualitas air yang sesuai dengan kriteria air budidaya sistem akuakultur.

I.4 Manfaat Khusus

Manfaat dari penelitian ini adalah tersedianya pengetahuan baru dalam bentuk Publikasi Seminar Internasional terindeks Scopus terkait kemungkinan penggunaan green bed media berbahan dasar bambu dengan berbagai ukuran sebagai *carrier media* pada sistem MBBR yang diaplikasikan pada resirkulasi air budidaya sistem akuakultur.

I.5 Urgensi

Urgensi dari penelitian ini adalah kebutuhan akan adanya metode resirkulasi air budidaya sistem akuakultur yang ramah lingkungan, dapat bekerja secara optimal dalam penyediaan air dengan kualitas yang baik serta kemudahan teknis baik dalam instalasi dan juga perawatannya.

BAB II TINJAUAN PUSTAKA

2.1 Kualitas air sistem akuakultur

Parameter kualitas air pada proses sistem akuakultur berperan dalam menciptakan suasana lingkungan hidup ikan dan organisme lainnya agar perairan kolam mampu memberikan suasana yang nyaman bagi pergerakan mahkluk hidup yaitu tersedianya air yang cukup untuk menciptakan kualitas air yang sesuai dengan persyaratan hidup mahkluk hidup yang optimal (kimia air, fisika air, dan biologi air) sesuai dengan parameter yang disyaratkan, tersedianya pakan alami yang cukup dan sesuai, serta terhindarnya dari biota yang merugikan bagi kelangsungan hidup dan perkembangan ikan atau tumbuhan yang dibudidayakan (hama dan penyakit). Standar parameter kimia kualitas air budidaya ikan berdasarkan PP No. 82 Tahun 2001 (Kelas II) yang dapat digunakan sebagai standar umum kualitas air sistem akuakultur ditampilkan pada Tabel 2.1 di bawah ini.

Tabel 2.1. Standard Parameter Kimia Kualitas Air Budidaya Ikan

Parameter	Standard Nilai
pН	6 – 9
Disolved oxygen (DO)	> 4 mg/l
Total Dissolve Solid (TDS)	$\leq 1000 \text{ mg/L}$
Nitrat	max. 10 mg/L
Fosfat	max. 0,2 mg/L
Amoniak	$\leq 0.02 \text{ mg/l}$
Biochemical Oxygen Demand (BOD)	< 3 mg/L

Kegiatan budidaya menghasilkan limbah padat dan limbah cair yang berasal dari feses dan sisa pakan ikan. Selain dari terapi obat-obatan, yang kaya akan senyawa nitrogen (amonia, nitrit, dan nitrat) dan fosfor, serta bahan organik terlarut dan antibiotik. Akumulasi limbah tersebut dapat menyebabkan penurunan kualitas air yang berpengaruh terhadap proses fisiologis, tingkah laku, pertumbuhan, dan mortalitas ikan. Oleh karena itu, diperlukan pengelolaan terhadap kualitas air media pemeliharaan ikan (Liang, Hu, Liang, Chenga, & Chena, 2021).

Beberapa metode pengelolaan air sistem akuakultur telah diaplikasikan antara lain; low pressure UV reactor (Mamane et al., 2010); aerasi mekanik (Jescovitch et al., 2017); ultrafiltrasi (Widiasa et al., 2018); metode microalgae (Mohd Nasir et al., 2019; Viegas et al., 2021); kombinasi biofloc dan biofilter (Liu et al., 2021). Beberapa metode pengolahan air seperti *moving bed biofilm reactor* (MBBR) berpotensi diaplikasikan pada resirkulasi air budidaya sistem akuakultur.

2.2. Moving bed biofilm reactor MBBR

Moving bed biofilm reactor (MBBR) adalah jenis proses pengolahan air limbah yang pertama kali ditemukan oleh Prof. Hallvard Ødegaard di Universitas Sains dan Teknologi Norwegia pada akhir 1980-an (Ødegaard, Rusten, & Westrum, 1994). Sistem MBBR terdiri dari tangki aerasi (mirip dengan tangki lumpur aktif) dengan pembawa plastik khusus yang menyediakan permukaan tempat biofilm dapat tumbuh. Carrier media terbuat dari bahan dengan massa jenis mendekati massa jenis air (1g/cm³). Contohnya adalah high-density polyethylene (HDPE) yang memiliki massa jenis mendekati 0,95 g/cm³. Carrier media dicampur di dalam tangki dengan sistem aerasi dengan demikian kontak yang homogen antara substrat di air limbah influen dan biomassa pada carrier media. Perforated plate (semacam saringan) umumnya dipasang pada saluran keluaran tangka untuk mencegah terbawanya carrier media. MBBR dapat dioperasikan secara anaerobik (di Biase, Kowalski, Devlin, & Oleszkiewicz, 2020) maupun aerobik (Kora, Theodorelou, Gatidou, Fountoulakis, & Stasinakis, 2020) seperti yang terlihat pada Gambar 2.1. Dalam aplikasinya sistem MBBR banyak dikombinasikan dengan beberapa proses pengolahan air dan air limbah lainnya (Mazioti, Stasinakis, Psoma, Thomaidis, & Andersen, 2017).

Gambar 2.1 Skematik MBBR anaerob dan aerob

Seperti yang terlihat pada Gambar 2.1, selain tangki dan *carrier media*, sistem MBBR juga dilengkapi oleh sistem aerasi yang membantu proses dinamika dari *carrier media* ke seluruh tangki untuk selanjutnya dapat membantu proses kontak antara biofilm dengan limbah sehingga proses degradasi limbah dapat berlangsung. Selain itu aerasi juga berfungsi sebagai pensuplai oksigen ke dalam sistem.

Beberapa keuntungan dari MBBR dibandingkan dengan sistem activated sludge pada

aplikasi yang sama adalah waktu retensi padatan yang lebih tinggi (SRT) yang menguntungkan untuk proses nitrifikasi serta memungkinkan perkembangbiakan mikroba yang tumbuh lambat dengan berbagai fungsi dalam biofilm; produksi lumpur yang lebih rendah; area yang dibutuhkan lebih kecil; resistensi yang cukup tinggi; kinerja proses tidak bergantung pada *clarifier* sekunder (Ashkanani et al., 2019; Germec, Demirci, & Turhan, 2020; Gu et al., 2020; Nogueira, Melo, Purkhold, Wuertz, & Wagner, 2002)

MBBR telah menunjukkan potensi dalam mendegradasi polutan mikro yang terkandung dalam air limbah (Casas et al., 2015; Mazioti et al., 2017; Polesel et al., 2017; Tang et al., 2021). Beberapa penelitian menggunakan teknologi MBBR untuk mendegradasi kandungan obat-obatan seperti beta-blocker, analgesik, antidepresan, dan antibiotik dari air limbah rumah sakit (Casas et al., 2015; Ooi et al., 2018). Selain itu, penerapan MBBR yang dikombinasikan dengan treatment untuk mendegradasi komponen pestisida organofosfat dari air limbah (Bachmann Pinto, Miguel de Souza, & Dezotti, 2018; Bouteh et al., 2021; Matheus, Lourenço, Solano, Dezotti, & Bassin, 2020).

2.3. Carrier media

Bed pada MBBR umumnya terdiri dari ribuan potongan kecil carrier media yang tersuspensi di dalam tangka MBBR yang pada umumnya memiliti filling ratio 50-70% dari ruang yang tersedia. Bentuk dan ukuran dari carrier media bervariasi mulai dari menyerupai pasta berbentuk roda, dengan jari-jari roda yang dapat memberikan luas permukaan bagi pertumbuhan bakteri. Selain itu ada pula carrier media berbentuk cakram tipis maupun koin dan bujursangkar. Pertumbuhan biofilm atau bakteri sangat penting untuk membantu menguraikan padatan yang terkandung pada limbah dan perbaikan kualitas air.

Secara umum mekanisme kerja dari *carrier media* pada MBBR adalah menyediakan permukaan luar serta lingkungan yang ramah untuk pertumbuhan mikroorganisme. Biofilm yang tumbuh di media kemudian dapat menguraikan limbah yang terkandung pada feed air masuk MBBR. Carrier media terbuat dari bahan dengan massa jenis mendekati massa jenis air (1g/cm³). Penggunaan carrier media MBBR sangat menguntungkan karena ukurannya yang sangat kecil sehingga penggunaan ruang minimal dapat dicapai, mudah dalam perawatan serta dapat menurunkan kadar limbah dengan maksimal.

Berikut beberapa tipe dari *carrier media*, yaitu: (1) tipe *sponge carriers*: sponge-type carrier media memiliki ketahanan mekanis yang tinggi, luas permukaan spesifik yang sangat tinggi, permukaan dan tekstur yang kasar sehingga dapat menampung biofilm yang terbentuk.

Material ini sangat fleksibel walaupun mudah rusak dibandingkan dengan tipe lainnya; (2) tipe *chip carriers*: chip-type carrier media umumnya tipis dan memiliki banyak pori yang sangat kecil selain fleksibel dan tidak mudah rusak dibandingkan dengan tipe sponge; (3) tipe *coin-shaped carriers*: ukuran sangat tipis hampir sama dengan tipe *chips carrier*; (4) tipe *tube-shaped carriers*: dimensinya cukup panjang, bentuk ini dapat menyediakan luas permukaan tambahan untuk pertumbuhan mikroorganisme, bentuk ini juga dapat membantu proses suspensinya didalam tangki, namun bentuk ini rentan terhadap fouling.

Gambar 2.2 Beberpa jenis carrier media

2.4. State of the Art dan kajian penelitian terdahulu

Seperti yang telah disampaikan pada bagian sebelumnya, MBBR memiliki potensi untuk diaplikasikan pada resirkulasi air budidaya sistem akuakultur karena beberapa keuntungan dan kemudahan prosesnya. Selain itu kemampuan MBBR dalam mendegradasi polutan mikro telah dibuktikan di beberapa penelitian terdahulu. Beberapa penelitian terkait sistem MBBR sebagai sistem pengolahan air dan air limbah dapat dilihat pada Tabel 2.2. Hampir semua penelitian terkait

MBBR menggunakan *carrier media* berbahan plastik. Beberapa bahan organik yang berasal dari alam seperti bambu (Gambar 2.3) memiliki potensi untuk digunakan sebagai *carrier media*. Bentuk alami dari bambu yang menyerupai tipe tube carrier media dapat menyediakan luas permukaan yang cukup besar bagi mikroorganisme untuk bertumbuh. Selain itu tekstur bagian dalam bambu yang menyerupai pori dpat menampung dan menaham mikroorganisme selama proses. Keuntungan lainnya yang tidak dimiliki oleh tipe carrier media yang lain adalah bambu merupakan bahan organik yang dalam penggunaannya dapat mengurangi polusi lingkungan.

Gambar 2.3 Potongan bambu

Tabel 2.2 Beberapa penelitian terkait sistem MBBR sebagai sistem pengolahan air dan air limbah

Jenis MBBR	Jenis input		Media	Parameter operasi	Parameter output	Result	Referensi
mesophilic aerobic MBBR 2L	Air limbah industri kertas	1	media dengan <i>filling ratio</i> 30% (v/v). Luas permukaan 340 m ² /m ³ dengan densitas 0.95 g/cm ³ .	Kons. Phenol 4-60 mg/L; Hydraulic residence time (HRT) 5, 45 jam; organic loading rates (OLR) 2-6 kg COD/m³.hari; Kons. DO 3.0- 3.5 mg/L.	COD, phenol, pH, konduktivitas, DO, SS	Penurunan COD 5.31- 11,14 g COD/L.hari	(Brink, Sheridan, & Harding, 2017)
polyurethane foam- polypropylene immobilized Bacillus sp. MH587030.1 MBBR 2L	Pewarna Congo red		media berpori dengan <i>filling</i> ratio 35% (v/v). Berat rata-rata 1.13 ± 0.04 g.	Konsentrasi pewarna 50 mg/L; Laju alir feed 25–100 mL/h; Waktu operasi 564 jam	Konsentrasi pewarna	Laju penurunan pewarna Congo red 0,263 g/L.hari	(Sonwani, Swain, Giri, Singh, & Rai, 2020)
MBBR 1000 L dengan intermittent feeding	Air limbah rumah tangga		Media Anox K TM Z-400 carriers (VeoliaWater Technologies, AnoxKaldnes, Sweden) dengan <i>filling ratio</i> 30% Luas permukaan 166 m ² /m ³	Hydraulic residence time (HRT) 2 jam; organic loading rates (OLR) 20%; periode intermittent feeding setiap 6- 12 jam	COD, pH, DO	MBBR efektif menurunkan kadar polutan mikro namun tidak efektif untuk menurunkan kadar nitrat	(Edefell et al., 2021)
MBBR 300 mL	Air limbah industri pestisida		Media 149 Kaldnes K1 carriers dengan filling ratio 50%. Luar permukaan 500 m²/m³, ukuran D 9.1 mm	COD 400-600 mg/L; Hydraulic residence time (HRT) 3,3 jam; Waktu operasi 80 jam	COD, TSS	Penurunan COD 84% namun tidak efektif untuk menurunkan kadar nitrat	(Matheus et al., 2020)
Kombinasi anaerobik MBBR 3L dengan aerobik MBBR 3,8L	Air limbah sintetik		AnMBBR: media <i>sponge cubic form carriers</i> (Nisshinbo Chemical Inc.) dengan <i>filling ratio</i> 40% dan densitas 52 and 64 kgm ⁻³ . AeMBBR: media K3 type biocarriers (AnoxKaldnes) dengan <i>filling ratio</i> 33% (v/v)	COD 400 mg/L; Hydraulic residence time (HRT) 13 jam; DO 4 mg/L	COD, TSS, NH4-N, TP, dan pH	Penurunan COD > 84% dan NH ₄ -N > 96%	(Kora et al., 2020)

BAB III METODE PENELITIAN

3.1 Rencana Tahapan Penelitian

Penelitian ini dibagi menjadi beberapa tahapan dengan luaran dan indikator capaiannya masing masing. Keterkaitan antar aspek-aspek penelitian selama kurun waktu penelitian serta korelasinya dengan hasil capaiannya dapat dilihat secara komprehensif pada Gambar 3.1.

Gambar 3.1. Diagram alir penelitian dengan keterkaitan antara kegiatan yang sudah dan yang akan dikerjakan beserta indikator capaian dan luarannya.

3.2 Lingkup dan Rencana Penelitian

Penelitian ini direncanakan dapat menghasilkan pemahaman yang menyeluruh mengenai penggunaan green bed media berbahan bambu sebagai filler sistem MBBR dalam menjaga kualitas air budidaya sistem akuakultur. Berdasarkan hal tersebut, cakupan kegiatan dari penelitian ini difokuskan pada:

• Pembuatan green bed media berbahan dasar bambu dengan berbagai ukuran dan bentuk

- Uji coba penggunaan penggunaan green bed media berbahan bambu sebagai *carrier media* sistem MBBR pada resirkulasi air budidaya sistem akuakultur.
- Optimasi proses MBBR dalam menghasilkan kualitas air yang sesuai dengan kriteria air budidaya sistem akuakultur.

3.3 Lokasi kegiatan

Sebagian besar dari kegiatan penelitian ini akan dilaksanakan di Laboratorium Teknik Kimia Universitas Diponegoro, sementara proses analisa akan dilakukan di Lab Terpadu Universitas Diponegoro.

3.4 Alat dan Bahan

3.4.1 Bahan

Air limbah sistem akuakultur dan lumpur aktif diambil dari kawasan pengembangan sistem akuakultur Marine Science Techno Park (MSTP), Universitas Diponegoro. Sebelum digunakan, air limbah dianalisa terlebih dahulu.

Carrier media yang digunakan adalah green bed media berbahan bambu, bambu dengan ukuran diameter 0,5-1,0 cm dibeli dari pedagang lokal. Sementara carrier media pembanding digunakan KALDNESS K1 dengan diameter 1 cm.

3.4.2 Rangkaian alat yang digunakan

Sistem MBBR yang digunakan dapat dilihat pada Gambar 3.2

Gambar 3.2 Rangkaian alat sistem MBBR yang terdiri dari (1) Tangki influent; (2) Pompa; (3) MBBR yang dilengkapi *sparger* untuk distribusi oksigen; (4) Tangki effluent; (5) pompa udara; (6) green bed media

3. 5 Prosedur Kerja Penelitian

3.5.1 Preparasi green bed media berbahan bambu

Bambu dengan ukuran diameter 0,5-1,0 cm dipotong-potong sehingga membentuk tube dengan ukuran panjang yang divariasikan 1, 3 dan 5 cm

3.5.2 Operasi MBBR

MBBR skala laboratorium terdiri dari tangka aerasi silinder dengan diameter consisted of a glass cylinder with 15 cm diameter and *working volume* 5 L. Tangki kemudian diisi dengan carrier media sesuai dengan variabel dengan filling ratio 30-50%. Laju alir dari umpan limbah sistem akuakultur diatur sesuai dengan yang ditentukan. Penambahan 300 mL lumpur aktif dilakukan sebelum proses aerasi. Sistem aerasi dilengkapi dengan sparger dengan laju alir udara 1.3 L/menit. Waktu operasi dilakukan selama 10 hari.

3.5.3 Analisa Hasil

Sampel air yang telah diolah diambil dalam beberapa periode waktu untuk dianalisa kualitas airnya seperti COD, BOD, TDS, DO, pH serta suhunya. Setelah operasi pengolahan air dengan MBBR selesai maka sampel media carrier dianalisa dengan menggunakan SEM untuk mengetahui seberapa tebal lapisan biofilm yang terbentuk.

Efektivitas dari MBBR diprediksi dengan menggunakan persamaan berikut:

Efisiensi degradasi =
$$\frac{C_{in} - C_{out}}{C_{in}} \times 100\%$$
Kapasitas degradasi =
$$\frac{(C_{in} - C_{out}) \times Q}{V}$$
Inlet loading rate =
$$\frac{C_{in} \times Q}{V}$$

dimana C_{in} dan C_{out} adalah konsentrasi umpan dan keluaran; V adalah $working\ volume\ dari\ MBBR$ dan Q adalah laju alir dari umpan.

BAB IV

BIAYA DAN JADWAL PENELITIAN

4.1 Anggaran Biaya

Justifikasi anggaran disusun secara rinci dan dilampirkan sesuai dengan format pada Lampiran II . Sedangkan ringkasan anggaran biaya disajikan seperti berikut.

Tabel 4.1 Ringkasan Anggaran Biaya Penelitian Strategis

No	Uraian	Jumlah (Rp)
a	b	c
I	BELANJA PERSONIL/ HONORARIUM (maks 30%)	4.200.000
II	BELANJA OPERASIONAL (sewa, SPPD, dll)	13.000.000
III	BELANJA MODAL (peralatan, dll)	2.800.000
	Jumlah	20.000.000

4.2 Jadwal Penelitian

Jadwal pelaksanaan penelitian dibuat untuk 6 bulan (sesuai proposal) dalam bentuk bar chart sesuai dengan format pada Lampiran III

Tabel 4.2 Jadwal Kegiatan

Ienis Kegiatan	Bulan ke-					
Jems Regiatan	I	II	III	IV	V	VI
Preparasi pembuatan green bed media						
berbahan bambu dengan berbagai ukuran dan						
bentuk						
Preparasi pembuatan sistem MBBR						
Ujicoba sistem MBBR untuk pengolahan air						
akuakultur dengan menggunakan media						
KALDNESS K1						
Ujicoba sistem MBBR untuk pengolahan air						
akuakultur dengan menggunakan media						
Bambu dengan berbagai ukuran						
Analisa sampel air						
Publikasi ilmiah dan penyusuanan laporan akhir						
	berbahan bambu dengan berbagai ukuran dan bentuk Preparasi pembuatan sistem MBBR Ujicoba sistem MBBR untuk pengolahan air akuakultur dengan menggunakan media KALDNESS K1 Ujicoba sistem MBBR untuk pengolahan air akuakultur dengan menggunakan media Bambu dengan berbagai ukuran Analisa sampel air	Preparasi pembuatan green bed media berbahan bambu dengan berbagai ukuran dan bentuk Preparasi pembuatan sistem MBBR Ujicoba sistem MBBR untuk pengolahan air akuakultur dengan menggunakan media KALDNESS K1 Ujicoba sistem MBBR untuk pengolahan air akuakultur dengan menggunakan media Bambu dengan berbagai ukuran Analisa sampel air Publikasi ilmiah dan penyusuanan laporan	Preparasi pembuatan green bed media berbahan bambu dengan berbagai ukuran dan bentuk Preparasi pembuatan sistem MBBR Ujicoba sistem MBBR untuk pengolahan air akuakultur dengan menggunakan media KALDNESS K1 Ujicoba sistem MBBR untuk pengolahan air akuakultur dengan menggunakan media Bambu dengan berbagai ukuran Analisa sampel air Publikasi ilmiah dan penyusuanan laporan	Jenis Kegiatan I II III Preparasi pembuatan green bed media berbahan bambu dengan berbagai ukuran dan bentuk Preparasi pembuatan sistem MBBR Ujicoba sistem MBBR untuk pengolahan air akuakultur dengan menggunakan media KALDNESS K1 Ujicoba sistem MBBR untuk pengolahan air akuakultur dengan menggunakan media Bambu dengan berbagai ukuran Analisa sampel air Publikasi ilmiah dan penyusuanan laporan	Jenis Kegiatan I II III IV Preparasi pembuatan green bed media berbahan bambu dengan berbagai ukuran dan bentuk Preparasi pembuatan sistem MBBR Ujicoba sistem MBBR untuk pengolahan air akuakultur dengan menggunakan media KALDNESS K1 Ujicoba sistem MBBR untuk pengolahan air akuakultur dengan menggunakan media Bambu dengan berbagai ukuran Analisa sampel air Publikasi ilmiah dan penyusuanan laporan	Jenis Kegiatan I II III IV V Preparasi pembuatan green bed media berbahan bambu dengan berbagai ukuran dan bentuk Preparasi pembuatan sistem MBBR Ujicoba sistem MBBR untuk pengolahan air akuakultur dengan menggunakan media KALDNESS K1 Ujicoba sistem MBBR untuk pengolahan air akuakultur dengan menggunakan media Bambu dengan berbagai ukuran Analisa sampel air Publikasi ilmiah dan penyusuanan laporan

DAFTAR PUSTAKA

- Ashkanani, A., Almomani, F., Khraisheh, M., Bhosale, R., Tawalbeh, M., & AlJaml, K. (2019). Bio-carrier and operating temperature effect on ammonia removal from secondary wastewater effluents using moving bed biofilm reactor (MBBR). *The Science of the Total Environment*, 693, 133425. doi:10.1016/j.scitotenv.2019.07.231
- Bachmann Pinto, H., Miguel de Souza, B., & Dezotti, M. (2018). Treatment of a pesticide industry wastewater mixture in a moving bed biofilm reactor followed by conventional and membrane processes for water reuse. *Journal of Cleaner Production*, 201, 1061-1070. doi:10.1016/j.jclepro.2018.08.113
- Bouteh, E., Ahmadi, N., Abbasi, M., Torabian, A., van Loosdrecht, M. C. M., & Ducoste, J. (2021). Biodegradation of organophosphorus pesticides in moving bed biofilm reactors: Analysis of microbial community and biodegradation pathways. *Journal of Hazardous Materials*, 408, 124950. doi:10.1016/j.jhazmat.2020.124950
- Brink, A., Sheridan, C. M., & Harding, K. G. (2017). A kinetic study of a mesophilic aerobic moving bed biofilm reactor (MBBR) treating paper and pulp mill effluents: The impact of phenols on biodegradation rates. *Journal of Water Process Engineering*, 19, 35-41. doi:10.1016/j.jwpe.2017.07.003
- Casas, M. E., Chhetri, R. K., Ooi, G., Hansen, K. M. S., Litty, K., Christensson, M., . . . Bester, K. (2015). Biodegradation of pharmaceuticals in hospital wastewater by staged moving bed biofilm reactors (MBBR). *Water Research* (*Oxford*), 83, 293-302. doi:10.1016/j.watres.2015.06.042
- di Biase, A., Kowalski, M. S., Devlin, T. R., & Oleszkiewicz, J. A. (2020). Controlling biofilm retention time in an A-stage high-rate moving bed biofilm reactor for organic carbon redirection. *The Science of the Total Environment*, 745, 141051. doi:10.1016/j.scitotenv.2020.141051
- Edefell, E., Falås, P., Kharel, S., Hagman, M., Christensson, M., Cimbritz, M., & Bester, K. (2021). MBBRs as post-treatment to ozonation: Degradation of transformation products and ozone-resistant micropollutants. *The Science of the Total Environment*, 754, 142103. doi:10.1016/j.scitotenv.2020.142103
- Germec, M., Demirci, A., & Turhan, I. (2020). Biofilm reactors for value-added products production: An in-depth review. *Biocatalysis and Agricultural Biotechnology*, 27, 101662. doi:10.1016/j.bcab.2020.101662
- Gu, W., Wang, L., Liu, Y., Liang, P., Zhang, X., Li, Y., & Huang, X. (2020). Anammox bacteria enrichment and denitrification in moving bed biofilm reactors packed with different buoyant carriers: Performances and mechanisms. *The Science of the Total Environment*, 719, 137277. doi:10.1016/j.scitotenv.2020.137277
- Jescovitch, L. N., Boyd, C. E., & Whitis, G. N. (2017). Effects of mechanical aeration in the waste-treatment cells of split-pond aquaculture systems on water quality. *Aquaculture*, 480, 32-41. doi:10.1016/j.aquaculture.2017.08.001

- Kora, E., Theodorelou, D., Gatidou, G., Fountoulakis, M. S., & Stasinakis, A. S. (2020). Removal of polar micropollutants from domestic wastewater using a methanogenic aerobic moving bed biofilm reactor system. *Chemical Engineering Journal (Lausanne, Switzerland : 1996), 382*, 122983. doi:10.1016/j.cej.2019.122983
- Kumararaja, P., Suvana, S., Saraswathy, R., Lalitha, N., & Muralidhar, M. (2019). Mitigation of eutrophication through phosphate removal by aluminium pillared bentonite from aquaculture discharge water. *Ocean & Coastal Management*, *182*, 104951. doi:10.1016/j.ocecoaman.2019.104951
- Liang, D. h., Hu, Y., Liang, D., Chenga, J., & Chena, Y. (2021). Bioaugmentation of moving bed biofilm reactor (MBBR) with achromobacter JL9 for enhanced sulfamethoxazole (SMX) degradation in aquaculture wastewater. *Ecotoxicology and Environmental Safety*, 207, 111258. doi:10.1016/j.ecoenv.2020.111258
- Liu, W., Du, X., Tan, H., Xie, J., Luo, G., & Sun, D. (2021). Performance of a recirculating aquaculture system using biofloc biofilters with convertible water-treatment efficiencies. *The Science of the Total Environment*, 754, 141918. doi:10.1016/j.scitotenv.2020.141918
- Mamane, H., Colorni, A., Bar, I., Ori, I., & Mozes, N. (2010). The use of an open channel, low pressure UV reactor for water treatment in low head recirculating aquaculture systems (LH-RAS). *Aquacultural Engineering*, 42(3), 103-111. doi:10.1016/j.aquaeng.2009.12.005
- Matheus, M. C., Lourenço, G. R., Solano, B. A., Dezotti, M. W. C., & Bassin, J. P. (2020). Assessing the impact of hydraulic conditions and absence of pretreatment on the treatability of pesticide formulation plant wastewater in a moving bed biofilm reactor. *Journal of Water Process Engineering*, *36*, 101243. doi:10.1016/j.jwpe.2020.101243
- Mazioti, A. A., Stasinakis, A. S., Psoma, A. K., Thomaidis, N. S., & Andersen, H. R. (2017). Hybrid moving bed biofilm reactor for the biodegradation of benzotriazoles and hydroxybenzothiazole in wastewater. *Journal of Hazardous Materials*, *323*, 299-310. doi:https://doi.org/10.1016/j.jhazmat.2016.06.035
- Mohd Nasir, N., Mohd Yunos, F. H., Wan Jusoh, H. H., Mohammad, A., Lam, S. S., & Jusoh, A. (2019). Subtopic: Advances in water and wastewater treatment harvesting of chlorella sp. microalgae using aspergillus niger as bio-flocculant for aquaculture wastewater treatment. *Journal of Environmental Management*, 249, 109373. doi:10.1016/j.jenvman.2019.109373
- Nogueira, R., Melo, L. F., Purkhold, U., Wuertz, S., & Wagner, M. (2002). Nitrifying and heterotrophic population dynamics in biofilm reactors: Effects of hydraulic retention time and the presence of organic carbon. *Water Research*, *36*(2), 469-481. doi: https://doi.org/10.1016/S0043-1354(01)00229-9
- Ødegaard, H., Rusten, B., & Westrum, T. (1994). A new moving bed biofilm reactor applications and results. *Water Science and Technology*, 29(10-11), 157-165. doi:10.2166/wst.1994.0757
- Ooi, G. T. H., Tang, K., Chhetri, R. K., Kaarsholm, K. M. S., Sundmark, K., Kragelund, C., . . . Andersen, H. R. (2018). Biological removal of pharmaceuticals from hospital wastewater in a pilot-scale staged moving bed biofilm reactor (MBBR) utilising nitrifying and denitrifying processes. *Bioresource Technology*, 267, 677-687. doi:10.1016/j.biortech.2018.07.077

- Pfeiffer, T. J., Osborn, A., & Davis, M. (2008). Particle sieve analysis for determining solids removal efficiency of water treatment components in a recirculating aquaculture system. *Aquacultural Engineering*, 39(1), 24-29. doi:10.1016/j.aquaeng.2008.05.003
- Polesel, F., Torresi, E., Loreggian, L., Casas, M. E., Christensson, M., Bester, K., & Plósz, B. G. (2017). Removal of pharmaceuticals in pre-denitrifying MBBR influence of organic substrate availability in single- and three-stage configurations. *Water Research*, *123*, 408-419. doi:https://doi.org/10.1016/j.watres.2017.06.068
- Sonwani, R. K., Swain, G., Giri, B. S., Singh, R. S., & Rai, B. N. (2020). Biodegradation of congo red dye in a moving bed biofilm reactor: Performance evaluation and kinetic modeling. *Bioresource Technology*, 302, 122811. doi:10.1016/j.biortech.2020.122811
- Tang, K., Rosborg, P., Rasmussen, E. S., Hambly, A., Madsen, M., Jensen, N. M., . . . Andersen, H. R. (2021). Impact of intermittent feeding on polishing of micropollutants by moving bed biofilm reactors (MBBR). *Journal of Hazardous Materials*, 403, 123536. doi:10.1016/j.jhazmat.2020.123536
- Viegas, C., Gouveia, L., & Gonçalves, M. (2021). Aquaculture wastewater treatment through microalgal. biomass potential applications on animal feed, agriculture, and energy. *Journal of Environmental Management*, 286, 112187. doi:10.1016/j.jenvman.2021.112187
- Widiasa, I. N., Harvianto, G. R., Susanto, H., Istirokhatun, T., & Agustini, T. W. (2018). Searching for ultrafiltration membrane molecular weight cut-off for water treatment in recirculating aquaculture system. *Journal of Water Process Engineering*, 21, 133-142. doi:10.1016/j.jwpe.2017.12.006

Lampiran A. Justifikasi Anggaran Penelitian

RENCANA PENGGUNAAN DANA HIBAH PENELITIAN STRATEGIS FAKULTAS TEKNIK UNDIP TAHUN ANGGARAN 2021

Ketua Peneliti : Dessy Ariyanti, ST., MT., PhD

Golongan : III/IV*
Departemen : Teknik Kimia
Fakultas : Teknik

Judul Penelitian/Pengabdian : Pengembangan Moving Bed Biofilm Reactor (MBBR) dengan Green Bed

Media Berbahan Bambu untuk Resirkulasi Air Budidaya Sistem Akuakultur

Total Dana (100%) : Rp. 20.000.000,-PPh Pasal 21 5%/15% : Rp. 1.000.000,-Sisa 95%/85% * : Rp. 19.000.000,-

No	Uraian	Vol	Satuan	Biaya Satuan (Rp)	Jumlah (Rp)
a	b	c	d	e	f
I	BELANJA PERSONIL/ HONORARIUM	(maks 30%	(o)		
	Honor Pembantu Lapangan	70	ОН	60.000	4.200.000
II	BELANJA OPERASIONAL				
	Potongan bambu	3	paket	50.000	150.000
	KALDNES KALDNESS K1 MEDIA MBBR	2	paket	100.000	200.000
	Fluidized Moving Bed Filter Bubble Bio Media Filter	1	paket	310.000	310.000
	Tabung Akrilik Tabung	2	buah	150.000	300.000
	Air pump	1	buah	225.000	225.000
	Pompa sirkulasi	1	buah	200.000	200.000
	sistem perpipaan dan valves	1	paket	300.000	300.000
	Beaker glass	4	buah	260.000	1.040.000
	Aquades	50	Liter	5.000	250.000
	botol sampel	50	buah	5.000	250.000
	Fotocopy	1	paket	500.000	500.000
	Kertas HVS 80 gr	5	buah	55.000	275.000
	Catrid tinta	2	buah	250.000	500.000
	Seminar Internasional	1	orang	2.000.000	2.000.000
	SEM	6	sampel	250.000	1.500.000
	Analisa BOD sampel	50	sampel	100.000	5.000.000
III	BELANJA MODAL				
	DO Meter	1	set	2000000	2.000.000
	TDS-PH-Digital	1	set	800000	800.000
				Jumlah (Rp)	20.000.000

(*) Pilih salah satu

Semarang, 28 Februari 2021

Dessy Ariyanti, ST., MT., PhD NIP. 198412112010122005

Lampiran B. Susunan Organisasi Tim Peneliti dan Pembagian Tugas

No	Nama / NIP/ NIDN/ NIM	Departemen	Bidang Ilmu	Alokasi Waktu (jam/minggu)	Uraian Tugas
1	Dessy Ariyanti, ST., MT.,	Teknik Kimia	Material	20	Mengkoordinasi
	PhD				pelaksanaan
					Penelitian
					Mendesain green bed
					media yang akan
					digunakan dalam
					penelitian
					Menyusun proposal,
					laporan dan artikel
					publikasi
2	Prof. Dr. I Nyoman	Teknik Kimia	Membrane	15	Mendesain sistem
	Widiasa, ST, MT		dan		MBBR
			Pengolahan		Menganalisa data
			Air		hasil penelitian
					Mereview proposal,
					laporan dan artikel
					publikasi
3	Cantika Veranica Aurrely	Teknik Kimia	Mahasiswa	10	Membantu preparasi
					pembuatan green bed
					media
4	Natasza Aura	Teknik Kimia	Mahasiswa	10	Membantu pengujian
					efektifitas green bed
					media pada proses
					pengolahan limbah
					akuakultur

Lampiran C. Biodata Tim

Ketua Peneliti

A. Identitas Diri

1	Nama lengkap (dengan gelar)	Dessy Ariyanti, ST., MT., PhD
2	Jenis Kelamin	Perempuan
3	Program Studi	S1 Teknik Kimia
4	NIP/NIDN	198412112010122005/0011128402
5	Tempat dan Tanggal Lahir	Klungkung, 11 Desember 1984
7	Alamat E-mail	dessy.ariyanti@che.undip.ac.id
8	No Telepon/HP	081338387882
9	Mata Kuliah yang diampu	Pengenalan Teknik Kimia
		Matematika 1
		Matematika 2
		Unit Operasi 2
		Perancangan Alat Proses
		Filsafat Ilmu dan Metodologi Penelitian

B. Riwayat Pendidikan

Gelar Akademik	Sarjana	S2/Magister	S3/Doktoral
Nama Institusi	Universitas	Universitas	The University of
	Diponegoro	Diponegoro	Auckland
Jurusan/Prodi	Teknik Kimia	Teknik Kimia	Chemical and
			Material
			Engineering
Tahun Masuk-	2002-2006	2007-2009	2014-2018
Lulus			

C. Penelitian

No	Judul Penelitian	Penyandang Dana	Tahun
1	Sintesis katalis "Free Standing TiO ₂	DRPM DIKTI	2019-2021
	Nanostructures (FSTNS)" melalui		
	proses hidrotermal untuk aplikasi		
	fotodegradasi polutan organik		
2	Kajian geopolimer dari limbah abu	DRPM DIKTI	2019-2020
	terbang sebagai adsorben logam berat		
3	Organic Redox flow battery	Mandiri	2019
4	Submerged membrane photocatalytic	The University of	2018
	reactor for simultaneous organic	Auckland	
	degradation and catalyst recovery		
5	TiO2 nanoribbon with high	The University of	2017
	photocatalysis and sedimentation	Auckland	
	properties		
6	TiO2 nanoparticles for photocatalytic	The University of	2016
	degradation of organic dyes	Auckland	
7	Black titania nanomaterial for visible	The University of	2015
	light photocatalysis	Auckland	
8	Penentuan Proses Pretreatment untuk	DIKNAS JATENG	2014
	Pemanfaatan Limbah Kulit Singkong		
	sebagai Bahan Baku Bioetanol melalui		

No	Judul Penelitian	Penyandang Dana	Tahun
	Hidrolisa Enzimatis menggunakan <i>Aspergillus spp</i> .		
9	Microbial Fuel Cell	Mandiri	2014
10	Modifikasi tepung umbi talas dengan teknik oksidasi sebagai bahan pangan fungsional pengganti tepung terigu	Fakultas Teknik UNDIP	2013
11	Optimasi proses produksi etanol dari bahan baku berbasis laktosa melalui proses fermentasi dengan Kluyveromyces marxianus	Jurusan Teknik Kimia FT UNDIP	2013
12	Produksi bioetanol dari limbah industri keju melalui proses fermentasi dengan <i>Kluyveromyces spp</i> .	Fakultas Teknik UNDIP	2012
13	Studi metode autoflush: pengendalian scaling pada sistem membran reverse osmosis skala rumah tangga	Mandiri	2008
14	Studi karakteristik biopolimer Gracilaria verrucosa sebagai adsorben	Mandiri	2005

D. Pengabdian Kepada Masyarakat

No	Judul Pengabdian Kepada	Penyandang Dana	Tahun
	Masyarakat		
1	Introduksi Teknologi untuk	Fakultas Teknik	2019
	Diversifikasi Produk Olahan Ikan	Undip	
	Bandeng di Kecamatan Gayam Sari		
	Kota Semarang		2010
2	Penguatan Teknologi untuk	Fakultas Teknik	2019
	Peningkatan Kapasitas Produksi dan	Undip	
	Diversifikasi Produk Plastik Daur		
	Ulang KSM Melati di Kecamatan Tugu Kota Semarang		
3	Pengenalan Teknologi Pembuatan	Jurusan Teknik	2018
3	Pupuk Organik (Kompos) dari Limbah	Kimia FT UNDIP	2016
	Rumah Tangga di Kecamatan Gajah	Kiiiia i'i UNDii	
	Mungkur, Kota Semarang		
4	Pelatihan Teknologi Separasi bagi	Jurusan Teknik	2014
	Pengembangan Bioenergi di	Kimia FT UNDIP	
	Kecamatan Karanggawen, Kabupaten		
	Demak		
5	IbPE Kluster Pengolahan Logam	DIKTI	2013
	(Kuningan) di Kecamatan Juwana		
	Kabupaten Pati Jawa Tengah		
6	Pengenalan Teknologi Hidroponik	Jurusan Teknik	2013
	Untuk Pemanfaatan Lahan Pekarangan	Kimia FT UNDIP	
	Sempit Di Lingkungan RW 04		
	Kelurahan Manyaran Kecamatan		
	Semarang Barat Kota Semarang		

No	Judul Pengabdian Kepada	Penyandang Dana	Tahun
	Masyarakat		
7	Pelatihan Pengelolaan Sampah Rumah	Jurusan Teknik	2013
	Tangga menggunakan Metoda	Kimia FT UNDIP	
	Teknologi Bersih di Kelurahan		
	Tembalang		
8	Pelatihan Pengelolaan Sampah dan	Jurusan Teknik	2012
	Pengomposan Skala Rumah Tangga di	Kimia FT UNDIP	
	Kelurahan Kramas Kecamatan		
	Tembalang		

E. Artikel Ilmiah

Tahun	Judul Artikel	Jurnal/Prosiding	Penerbit
2020	Enhanced adsorption property of TiO2 based nanoribbons produced by alkaline hydrothermal process	METANA	Sekolah Vokasi Undip
2020	Surface modification of TiO2 for visible light photocatalysis: Experimental and theoretical calculations of its electronic and optical properties	International Journal of Modern Physics B	World Scientific Publishing Company
2020	Preparation and application of fly ash-based geopolymer for heavy metal removal	AIP Conference Proceedings	AIP Publishing LLC
2020	Graphene and graphene oxide: Raw materials, synthesis, and application	AIP Conference Proceedings	AIP Publishing LLC
2020	Effect UV irradiation and ozonation(O3) process for degradation of copper from electroplating wastewater	AIP Conference Proceedings	AIP Publishing LLC
2020	Synthesis of free standing TiO2 nanostructures (FSTNS) via hydrothermal process for organic photocatalytic degradation	AIP Conference Proceedings	AIP Publishing LLC
2019	Study on Organic Redox flow battery Mechanism using TEMPO and FMN-Na Solutions	Reaktor	Department of Chemical Engineering, Universitas Diponegoro
2019	Penentuan Proses Pretreatment untuk Pemanfaatan Limbah Kulit Singkong sebagai Bahan Baku Bioetanol melalui Hidrolisa Enzimatis menggunakan Aspergillus spp.	Metana	Sekolah Vokasi, Universitas Diponegoro

Tahun	Judul Artikel	Jurnal/Prosiding	Penerbit
2020	Enhanced adsorption property of TiO2 based nanoribbons produced by alkaline	METANA	Sekolah Vokasi Undip
	hydrothermal process		
2020	Surface modification of TiO2 for visible light photocatalysis: Experimental and theoretical calculations of its electronic and optical properties	International Journal of Modern Physics B	World Scientific Publishing Company
2019	Hierarchical structures of coated TiO2 nanoribbons with photodegradation and sedimentation properties	International Journal of Modern Physics B	World Scientific Publishing Company
2019	Formation of copper hydroxyl sulfates in CuSO4 solution by NaOH titration	International Journal of Modern Physics B	World Scientific Publishing Company
2018	Photo-assisted degradation of dyes in a binary system using TiO2 under simulated solar radiation	Journal of environmental chemical engineering	Elsevier
2018	Enhancing photocatalytic activities of titanium dioxide via well-dispersed copper nanoparticles	Chemosphere	Pergamon
2018	Formation of TiO2 based nanoribbons and the effect of post-annealing on its photocatalytic activity	IOP Conference Series: Materials Science and Engineering	IOP Publishing
2017	TiO2 used as photocatalyst for rhodamine B degradation under solar radiation	International Journal of Modern Physics B	World Scientific Publishing Company
2017	Patterned titania nanostructures produced by electrochemical anodization of titanium sheet	International Journal of Modern Physics B	World Scientific Publishing Company
2017	NaBH4 modified TiO2: Defect site enhancement related to its photocatalytic activity	Materials Chemistry and Physics	Elsevier
2016	Visible Light Photocatalytic Properties of Modified Titanium Dioxide Nanoparticles via Aluminium Treatment	Bulletin of Chemical Reaction Engineering & Catalysis	Department of Chemical Engineering, Universitas Diponegoro
2016	Self-organized ZnO nanorods prepared by anodization of zinc in NaOH electrolyte	RSC Advances	Royal Society of Chemistry
2016	Microbial Fuel Cells for Simultaneous Electricity Generation and Organic	International Journal of Renewable Energy Development	Department of Chemical Engineering, Universitas Diponegoro

Tahun	Judul Artikel	Jurnal/Prosiding	Penerbit
2020	Enhanced adsorption property of TiO2 based nanoribbons produced by alkaline hydrothermal process	METANA	Sekolah Vokasi Undip
2020	Surface modification of TiO2 for visible light photocatalysis: Experimental and theoretical calculations of its electronic and optical properties Degradation from	International Journal of Modern Physics B	World Scientific Publishing Company
	Slaughterhouse Wastewater.		
2014	Optimization of Ethanol Production from Whey Through Fed-Batch Fermentation Using Kluyveromyces marxianus	Energy Procedia	Elsevier Ltd.
2014	Taro Tube Flour Modification via Hydrogen Peroxide Oxidation	International Journal of Science and Engineering	Department of Chemical Engineering, Universitas Diponegoro
2014	Modifikasi Tepung Umbi Talas Bogor (Colocasia esculentum (L) Schott) Dengan Teknik Oksidasi Sebagai Bahan Pangan Pengganti Tepung Terigu	Reaktor	Departemen Teknik Kimia, Universitas Diponegoro
2013	Ethanol production from whey by Kluyveromyces marxianus in batch fermentation system: kinetics parameters estimation	Bulletin of Chemical Reaction Engineering & Catalysis	Department of Chemical Engineering, Universitas Diponegoro
2013	Batch and fed-batch fermentation system on ethanol production from whey using Kluyveromyces marxianus	International Journal of Renewable Energy Development	Department of Chemical Engineering, Universitas Diponegoro
2013	Pembuatan Bioetanol Dari Limbah Keju (Whey) Melalui Proses Fermentasi Fed-batch Dengan Kluyveromyces Marxianus	Jurnal Teknologi Kimia dan Industri	Departemen Teknik Kimia, ITB
2012	Enhancing Ethanol production by fermentation using Saccharomyces cereviseae under vacuum condition in batch operation	International Journal of Renewable Energy Development	Department of Chemical Engineering, Universitas Diponegoro
2012	Potency of solar energy applications in Indonesia	International Journal of Renewable Energy Development	Department of Chemical Engineering, Universitas Diponegoro

Tahun	Judul Artikel	Jurnal/Prosiding	Penerbit
2020	Enhanced adsorption property	METANA	Sekolah Vokasi Undip
	of TiO2 based nanoribbons		
	produced by alkaline		
	hydrothermal process		
2020	Surface modification of TiO2	International Journal	World Scientific
	for visible light photocatalysis:	of Modern Physics	Publishing Company
	Experimental and theoretical	В	
	calculations of its electronic		
2012	and optical properties	m 1 ''	
2012	Potensi Mikroalga Sebagai	Teknik	Fakultas Teknik,
	Sumber Biomasa dan		Universitas
	Pengembangan Produk		Diponegoro
2012	Turunannya	T 1.T1	TT * *.
2012	Studi Karakteristik Biopolimer	Jurnal Ilmu	Universitas
	Gracilaria Verrucosa Sebagai	Lingkungan	Diponegoro
2012	Bahan Penjerap	I D'	OMICS International
2012	Feasibility of Using Microalgae for Biocement Production	J Bioprocess	OMICS International
		Biotechniq	
2011	through Biocementation Aplikasi Teknologi Reverse	Teknik	Fakultas Teknik,
2011	Osmosis Untuk Pemurnian Air	ICKIIK	Universitas
2011	Skala Rumah Tangga An overview of biocement	International Journal	Diponegoro Department of
2011		of Science and	Department of
	production from microalgae		Chemical Engineering, Universitas
		Engineering	Diponegoro
2011	Potential Production of	International Journal	Diponegoro Department of
2011	Polyunsaturated Fatty Acids	of Science and	Chemical Engineering,
	from Microalgae	Engineering	Universitas
	irom wiicioaigae	Engineering	Diponegoro
2010	Mikroalga Sebagai Sumber	METANA	Sekolah Vokasi,
2010	Biomasa Terbarukan: Teknik	1411711 11 11 11	Universitas
	Kultivasi Dan Pemanenan		Diponegoro

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Semarang, Februari 2021 Ketua Peneliti

(Dessy Ariyanti, ST., MT., PhD) 198412112010122005

Anggota Peneliti

I. IDENTITAS DIRI

1.1.	Nama Lengkap (dengan gelar)	Prof. Dr. I Nyoman Widiasa, ST, MT	
1.2.	Jabatan Fungsional	Profesor	
1.3.	NIP/NIK/No. identitas lainnya	197004231995121001	
1.4.	Tempat dan Tanggal Lahir	Buleleng, 23 April 1970	
1.5.	Alamat Rumah	Perumahan Tembalang Pesona Asri Blok T/27 Kel. Keramas, Kec. Tembalang, Semarang	
1.6.	Nomor Telepon/Fax	024-70394050	
1.7.	Nomor HP	081325880631	
1.8.	Alamat Kantor	Jurusan Teknik Kimia Fakultas Teknik Undip Kampus UNDIP Tembalang, Semarang, 50239	
1.9.	Nomor Telepon/Fax	024-7460058 / 024-76480675	
1.10.	Alamat e-mail	widiasa@undip.ac.id, widiasa_70@yahoo.com	
1.11.	Lulusan yang telah dihasilkan	S1 > 50 orang, $S2 > 5$ orang S3 = 2 orang	
1.12	Mata Kuliah yang diampu	Teknologi Membran Industrial, S1 dan S2 Teknik Kimia UNDIP	
		2. Pemisahan dengan Membran, S1 Teknik Kimia UNDIP	
		3. Satuan Operasi Mekanik (2 SKS) , S1 Teknik Kimia UNDIP	
		4. Teknologi Pengolahan Air, S2 Magister Ilmu Lingkungan UNDIP	
		5. Fenomena Perpindahan, S2 Teknik Kimia UNDIP	

II. RIWAYAT PENDIDIKAN

2.1. Program :	S1	S2	S3
2.2. Nama PT	UNDIP	ITB	ITB
2.3. Bidang Ilmu	Teknik Kimia (Umum)	Teknik Kimia (Termodinamika)	Teknik Kimia (Teknologi Membran)
2.4. Tahun Masuk	1990	1996	1999
2.5. Tahun Lulus	1995	1998	2005
2.6. Judul Skripsi/ Tesis/Disertasi	Pra Rancangan Pabrik Ethylamine dengan Proses Ammonolisis Etanol Katalis Logam	Ekstraksi Etanol dengan Fluida Superkritik: Pemodelan	Hidrolisis Pati Tapioka Pada Konsentrasi Tinggi dalam Bioreaktor

		Kapasitas ton/tahun	20.000	Kesetin Sistem	_		Membran Enzimatik
2.7. Na Pembimbing/ Promotor	Jama	1. Ir. Herry S	antosa	1. Dr. Sitor	Ir. npul	Johnner	 Prof. Dr. Ir. Sularso, MSME Pror. Dr. Ir. Wisjnuprapto, Dipl.HE Dr. Ir. I Gede Wenten, MSc

III. PENGALAMAN PENELITIAN

		IN I ENEDITIAN	Pend	anaan
No	Tahun	Judul Penelitian	Sumber	Jml (Juta Rp)
1	2008	Rekayasa Teknologi Bioreaktor Membran Enzimatik untuk Produksi Gula Glukosa dari Tepung Ubi Kayu pada Konsentrasi Substrat Tinggi (Ketua)	KNRT	143
2	2003 - 2004	Pengembangan Teknik Daur Ulang Enzim dalam Industri Glukosa/Maltosa (Ketua)	KNRT	300
3	2007 2008	Rekayasa Proses Penyisihan Ion Melassigenik Nira Tebu dengan Teknik Elektrodeionisasi Kontinu untuk Produksi Gula Rafinasi (Anggota)	DP2M	75
4	2005 - 2006	Pengembangan Bioreaktor Hollow Fiber untuk Produksi Gula Cair Fruktosa (Anggota)	DP2M	65
5	2003 - 2004	Pengembangan Teknologi Bebas Limbah dalam Industri Tapioka: Pabrikasi dan Uji Kinerja Instalasi Skala Industri (Anggota)	KNRT	380
6	2006	Produksi Gula Merah dari Tepung Ubi Kayu Melalui Proses Enzimatik Dua Tahap (Ketua)	Diknas Jateng	15
7	2005 - 2006	Rekayasa Kontaktor Hollow Fiber Longitudinal sebagai "Closed Recirculation Modular Cooling Tower" untuk Optimalisasi Penggunaan Air dan Energi di Industri (Ketua)	DP2M	64
8	2007	Pengolahan Air Limbah dengan Metoda AOP (Advance Oxydation Process) dan Reverse Osmosis (Anggota)	PT Pupuk Kalimantan Timur	80
9	2006	Studi CO ₂ Removal dengan Sistem Membran Kontaktor (Anggota)	PT Rainbow Emerald	300

10	2003	Penggunaan Teknologi Membrane sebagai Unit Pendaur Ulang Limbah Cair Cold Rolling Mill – PT Krakatau Steel (Anggota)	PT Krakatau Steel	30
11	2000	Transmisi pati, glukosa, dan fruktosa melalui membran mikrofiltrasi (Ketua)	DP2M	5

IV. PENGALAMAN PENGABDIAN KEPADA MASYARAKAT

			Pendanaan		
No	Tahun	Judul Pengabdian Kepada Masyarakat	Sumber	Jml (Juta Rp)	
1	2006	Kajian Kelayakan dan Pilot Test Pemanfaatan Teknologi Membran Pada Proses Pengolahan Air Buangan Menjadi Air Proses Make-Up dan Pemurnian Raw Water di PT Pertamina (Persero) UP VI Balongan, 2006	PT. Pertamina (Persero) UP VI Balongan	84,1	
2	2008	Ujicoba Lanjut Operasionalisasi Demo-Pond Pengolahan Air Limbah PT. Pupuk Kalimantan Timurdengan Proses Algal- Bakteri	PT. Pupuk Kaltim	78	

V. PENGALAMAN PENULISAN ARTIKEL ILMIAH DALAM JURNAL

No.	Tahun	Judul Artikel Ilmiah	Volume/ Nomor	Nama Jurnal		
Jurna	al Internas	sional				
1	2009	Ultrafiltration fouling of amylose solution: behavior, characterization and mechanism	95	Journal of Food Engineering		
2	2005	Fouling behaviour during cross flow ultrafiltration of cassava starch hydrolysate using polyacrylonitrile membrane,	1	App. Membr. Sci. Tech,		
3	2004	Performance of a novel electrodeionization technique during citric acid recovery	39	Separation and Purification Technology,		
4	2002	Enzymatic Hollow Fiber Membrane Bioreactor for Penicillin Hydrolysis	149	Desalination		
5	2001	Modelling and Simulation of Deep Bed Grain Dryers	19	Drying Technology		
Jurna	Jurnal Nasional					
1	2009	Saccharification of native cassava starch at high dry solids in an enzymatic membrane reactor	12	Reaktor		

2	2009	BWRO Desalination for Portable Water Supply Enhancement in Coastal Regions	12	J. Coastal Development
3	2007	Combination of Reverse Osmosis and Electrodeionization for Simultaneous Sugar Recovery and Salts Removal from Sugary Wastewater	11	Reaktor
4	2005	Simultaneous Heat Dissipation and Pure Water Production from Cooling Water by Direct Contact Membrane Distillation	1	J. Ilmiah Nasional Efisiensi dan Konversi Energi
5	2003	Glucose Syrup Refinery by Electrodeionization: Ions and Water Transport through Ion Exchange Membrane	1	J. Teknik Kimia Indonesia
6	2002	Pemekatan Larutan Gliserol Dengan Proses Reverse Osmosis: Studi Karakteristik Fluks dan Rejeksi	6	Reaktor

VI. PENGALAMAN PENULISAN BUKU

No.	Tahun	Judul Buku	Jumlah Halaman	Penerbit
-	-	-	-	-

VII. PENGALAMAN PEROLEHAN HKI

No.	Tahun	Judul Paten	Jenis	Nomor Pendaftaran/ Sertifikat
1	2002	Kontaktor Cair-Cair Tenaga Surya	Paten Biasa	033.065 A
2	2003	Metoda dan Alat Elektrodemineralisasi Kontinu	Paten Biasa	037.551 A
3	2004	Cooling Tower Aliran Silang Menggunakan Kontaktor Hollow Fiber	Paten Biasa	P00200400522
4	2004	Reaktor Membran Kontinu untuk Produksi Glukosa dari Tapioka	Paten Biasa	P00200400553
5	2004	Metode dan Alat Elektrodeionisasi Kontinu untuk Rafinasi Gula	Paten Biasa	P00200400554
6	2004	Metode dan Mesin untuk Mengembalikan Total Cell Volume (TCV) dan Koefisien Ultrafiltrasi (KUf) Dialiser	Paten Biasa	P00200400619
7	2008	Metode Simultan untuk Efisiensi Air Pendingin dan Pengutipan Panas Buangan Dalam Sistem Pendingin Air	Paten Biasa	P00200800435

VIII. PENGALAMAN RUMUSAN KEBIJAKAN PUBLIK/REKAYASA SOSIAL LAINNYA

No.	Tahun	Judul/Tema/Jenis Rekayasa Sosial Lainnya yang telah diterapkan	Tempat Penerapan	Respon Masyarakat
-	-	-	-	-

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Dan apabila dikemudian hari ternyata dijumpai ketidak sesuain dengan kenyataan, saya sanggup menerima resikonya.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi persyaratan sebagai salah satu syarat pengajuan hibah penelitian.

Semarang, 28 Pebruari 2021 Yang Bersangkutan

(Dr. I Nyoman Widiasa, ST, MT) NIP. 197004231995121001

Lampiran D. Surat Pernyataan Ketua Peneliti

SURAT PERNYATAAN KETUA PENELITI

Yang bertanda tangan di bawah ini:

Nama : Dessy Ariyanti, ST., MT., PhD NIP/ NIDN : 197004231995121001/0011128402

Pangkat / Golongan : Penata/ IIIc Jabatan Fungsional : Lektor

Dengan ini menyatakan bahwa proposal penelitian saya dengan judul: **Pengembangan Moving Bed Biofilm Reactor (MBBR) dengan Green Bed Media Berbahan Bambu untuk Resirkulasi Air Budidaya Sistem Akuakultur** yang diusulkan dalam skema Penelitian Strategis untuk tahun anggaran 2021 **bersifat original dan belum pernah dibiayai oleh lembaga / sumber dana lain**.

Bilamana di kemudian hari ditemukan ketidaksesuaian dengan pernyataan ini, maka saya bersedia dituntut dan diproses sesuai dengan ketentuan yang berlaku dan mengembalikan seluruh biaya penelitian yang sudah diterima ke kas negara.

Demikian pernyataan ini dibuat dengan sesungguhnya dan dengan sebenar-benarnya.

Semarang, Februari 2021 Yang menyatakan,

Dessy Ariyanti, ST., MT., PhD NIP. 198412112010122005