Advanced Financial Models

October 5, 2018

CONTENTS	2
Contents	
0 Introduction	3
1 Discrete time models	4

3

0 Introduction

 $www.staslab.cam.ac.uk/\ mike/AFM/$ for course material. However lecture notes only come after lectures, so taking notes is still necessary..

m.tehranchi@statslab.cam.ac.uk

Assumptions for this course:

No dividends, zero tick size (continuous), no transaction costs, no short-selling constraints, infinitely divisible assets, no bid-ask spread, infinite market depth, agents have preferences for expected utility.

1 Discrete time models

We'll assume there are n assets with price P_t^i at time t for asset i. Apparently P_t^i is a random variable on some probability space $(\Omega, \mathcal{F}, \mathbb{P})$.

We'll use the notation $P=(P^1_t,...,P^n_t)_{t\geq 0}$ which is a n-dimensional stochastic process.

Information available at time t is modelled by a σ -algebra $\mathcal{F}_t \subseteq \mathcal{F}$.

The assumption will be $\mathcal{F}_s \subseteq \mathcal{F}_t$ for $s \leq t$ (in other words, \mathcal{F} is a filtration):

Definition. (Filtration)

A Filtration is a collection of σ -algebra $(\mathcal{F}_t)_{t\geq 0}$ such that $\mathcal{F}_s\subseteq \mathcal{F}_t$ for $s\leq t$.

We'll assume that \mathcal{F}_0 is trivial, i.e. if A is \mathcal{F}_0 measure then $\mathbb{P}=0$ or 1.