Roll No

National Institute of Technology Delhi

Name of examination: B. Tech 4th Year (End-semester)

Branch

: EEE

Semester: 7

Title of Course

: AI Techniques in Electrical Engineering

Subject Code: EE-416

Time: 3 Hours

Marks: 50

Note:

- 1. All sections are compulsory
- 2. Assume any data suitably if found missing

(Section-I)

Q.1- Explain the following terms:

(1*10)

- i. 'Tansig' transfer function
- ii. Delta learning rules
- iii. Learning coefficient
- iv. Clustering
- v. Covariance matrix with suitable example
- vi. Difference of fuzzy set with suitable example
- vii. Disjunctive sum of fuzzy set
- viii. Fuzzy Cartesian product
- ix. Fitness Function
- x. Reproduction

(Section-II)

Note: Attempt ant FOUR

Q.2- Find the final updated weight for the delta learning rule with the following input vectors and initial weights:

$$x1 = [1 -2 0 -1]; x2 = [0 1.5 -0.5 -1]; x3 = [-1 1 0.5 -1];$$

 $w1 = [1 -1 \ 0 \ 0.5]^t$; desired response for x1, x2, x3 are d1= 1, d2= 1, d3= -1 respectively and c = 0.1, activation function is "logsig" (5)

- Q.3- What is RBFNN? Explain different methods of selection of Gaussian centres. (5)
- Q.4- In 2-D space, if 'w' is a vector perpendicular to the hyper-planes H0 and H1, then prove that hyper-planes are optimum under certain condition if ||w|| is minimum. (5)
- Q.5- Find the *tautology* or *contradiction* on the crisp propositions P and Q for the following expressions:

(i)
$$(P \Rightarrow Q) \land (Q \Rightarrow P) = (P = Q)$$

(ii)
$$(P \Rightarrow Q) = (\sim P \lor Q)$$

 $(2 \times 2.5 = 5)$

Q.6- Let $X = \{a, b, c, d\}$ and $Y = \{l, m, n, o\}$ are universe of discourse, and

$$\tilde{A} = \{(a, 0), (b, 0.8), (c, 0.6), (d, 1)\}$$

$$\tilde{B} = \{(1, 0.2), (m, 1), (n, 0.8), (o, 0)\}$$

$$\tilde{C} = \{(1, 0), (m, 0.4), (n, 1), (o, 0.8)\}$$

Determine the implication relation IF x is \widetilde{A} THEN y is \widetilde{B} else y is \widetilde{C} (5)

(Section-III) Note: Attempt ant TWO

Q.7- The task is to recognize English alphabetical characters (F, E, X, Y, I, T) in an image processing system. Two fuzzy sets \hat{G} and \hat{H} to represent the identification of characters are:

$$\hat{G} = \{(F, 0.4), (E, 0.3), (X, 0.1), (Y, 0.1), (I, 0.9), (T, 0.8)\}$$

$$\hat{H} = \{(F, 0.99), (E, 0.8) (X, 0.1), (Y, 0.2), (I, 0.5), (T, 0.5)\}$$

Find the Following:

(a) (i) Disjunctive sum of
$$\hat{G}$$
 and \hat{H} (ii) $(\hat{G} - \hat{H})$ (iii) $(\hat{G}^c \cap \hat{H}^c)$ (2×3)

(4)

Q.8- Find the final feature vector using Principal Component Analysis (PCA) for the following 3-dimentional data.

шиспи	Ullai date	4.			
×	0.5	1.0	1.5	2	2.5
V	0.3	0.9	1.2	1.5	1.8
7	0.8	2.0	2.2	2.5	3.0

Q.9- With the enlightenment of all the steps clearly, find the update weight $[V]^1$ and $[W]^1$ upto four decimal points, after the first iteration of the following back-propagation network. Assume $\alpha = 0$, $\eta = 0.5$

