Лабораторная работа 1.1.6 по курсу "Общая физика"

ИЗУЧЕНИЕ ЭЛЕКТРОННОГО ОСЦИЛЛОГРАФА

Баринов Леонид

14.09.2018

Цель работы: Изучение устройства осциллографа и механизмов его работы

Оборуднование Осциллограф, генераторы электрических сигналов, соединительные кабели

1 Теоретические сведения

Осциллограф - регистрирующий прибор, в котором исследуемое напряжение (сигнал) преобразуется в видимый на экране график изменения напряжения во времени.

Основной частью электронного осциллографа, определяющей его важнейшие технические характеристики, является электронно-лучевая трубка (ЭЛТ).

Трубка представляет собой стеклянную откачанную до высокого вакуума колбу, в которой расположены: подогреватель катода, катод, модулятор, первый (фокусирующий) анод, второй (ускоряющий) анод, горизонтально и вертикально отклоняющие пластины, третий (ускоряющий) анод, экран.

2 Ход работы

2.1 Наблюдение периодического сигнала от генератора и измерение его частоты

Получаем на экране осциллографа устойчивую картину периодического (синусоидального) сигнала, подаваемого с генератора, и с помощью горизонтальной шкалы экрана осциллографа проводим измерение периода и частоты сигнала.

fзг,Гц	Т, дел	мс/дел	Т,мс	δT	f	δf	f - fзг, Гц
20	5,0	10,00	50,00	1,000	20,00	0,40	0,00
513	4,0	0,50	2,00	0,050	500,00	12,50	-13,00
1012	5,0	0,20	1,00	0,020	1000,00	20,00	-12,00
1916	5,2	0,10	0,52	0,010	1923,08	36,98	7,08
5502	3,6	0,05	0,18	0,005	5555,56	154,32	53,56

Таблица 1: Наблюдение периодического сигнала от генератора и измерение его частоты

Цена деления осциллографа равна 0, 2дел. Погрешность осциллографа равна половине цены деления. При перемножениее 0, 1дел на количество секунд на одно деление получаем δT . Частоту сигнала f находим по формуле f = 1/T. δf вычисляем по формуле:

$$\delta f = \frac{\delta T}{T} f$$

Из результатов, зансесенных в таблицу видно, что fзг $\simeq f$ с учетом погрешности.

2.2 Измерение амплитуды сигнала

С помощью вертикальной шкалы экрана осциллографа измеряем отношение максимальной и минимальной амплитуд напряжений Umax/Umin которые способен выдавать генератор.

Измерения проводяться при частоте f=1к Γ ц

Umax = 11,000(2.2дел $\times 5B$ /дел)

Umin = 0,066(3.3дел $\times 0,02B$ /дел)

Выражаем отношение максимального и минимального уровней сигнала β_{21} в $\partial e u u \delta e n a x$ [дБ]

$$\beta_{21} = 20lg \frac{Umax}{Umin}$$

 $\beta_{21} \approx 44,44 д Б$

2.3 Измерение амплитудно-частотной характеристики осциллографа

Амплитудно-частотной характеристикой (АЧХ) измерительного прибора называют зависимость амплитуды измеряемого сигнала от частоты сигнала, подаваемого на вход. Проведем измерения АЧХ осциллографа во всем диапазоне рабочих частот генератора.

Изменяя частоту f звукого генератора во всем доступном диапазоне, исследуем зависимость отношения амплитуды сигнала на осциллографе U(f) к исходной $U_0(=3$ дел) в зависимости от частоты:

$$K(f) = \frac{U(f)}{U_0}$$

В области частот, где K отличается от единицы, проведем подробные

f, Гц	0,028	1,920	19	1009	3471	4624
lgf	-1,553	0,283	1,279	3,004	3,540	3,665
$2U_{AC}$, дел	6,0	6,0	6,0	6,0	6,0	6,0
$K_{AC} = U_{AC}/Uo$	1,00	1,00	1,00	1,00	1,00	1,00
$2U_{DC}$, дел	6,0	6,0	6,0	6,0	6,0	6,0
$K_{DC} = U_{DC}/Uo$	1,00	1,00	1,00	1,00	1,00	1,00

f, Гц	5549	60300	1978000	2740000	5334000
lgf	3,744	4,780	6,296	6,438	6,727
$2U_{AC}$	6,0	6,0	5,9	5,8	5,7
$K_{AC} = U_{AC}/Uo$	1,00	1,00	0,98	0,97	0,95
$2U_{DC}$, дел	6,0	6,0	5,9	5,8	5,7
$K_{DC} = U_{DC}/Uo$	1,00	1,00	0,98	0,97	0,95

измерения K(f). Измерения амплитудно-частотных характеристик K(f) проведем для одного из каналов осциллографа при открытом (DC, \simeq) и при закрытом (AC, \sim) входе. Результаты занесем в таблицу

Построим в единых осях графики зависимостей коэффициента ослабления сигнала от частоты в лографмическом масштабе по частоте $K_{AC}(lgf)$ и $K_{DC}(lgf)$

Рис. 1: $K_{AC}(lgf)$

Рис. 2: $K_{DC}(lgf)$

АЧХ канала в разных разных режимах - горизонтальная линия. При значительном увеличении частоты наблюдается небольшое искажение АЧХ.

2.4 Измерение разности фазово-частотных характеристик каналов осциллографа

 Φ азово-частотной характеристикой (Φ ЧХ) называют зависимость разности фаз входного и выходного сигналов от частоты. Проведем измерение разности фаз, возникающей при подаче одного и того же сигнала на разные каналы осциллографа, в зависимости от частоты сигнала.

При подаче на взаимно перпендикулярные отклоняющие пластины двух синусоидальных сигналов траектория луча на экране осциллографа представляет собой эллипс и может быть в общем виде описана уравнениями

$$x(t) = A_x \sin(\omega t + \varphi_x), \quad y(t) = A_y \sin(\omega t + \varphi_y)$$
 (1)

Разность фаз $\Delta \varphi = \varphi_y - \varphi_x$ можно выразить, положив в (1) $\omega t = -\varphi_x$, после чего получаем

$$\sin|\Delta\varphi| = \left|\frac{y_0}{A_y}\right|$$

где $y_0 = y|_{x=0}$ - отклонение луча по вертикали в момент, когда его абсцисса равна нулю; A_y - амплитуда колебаний по оси y. Тогда возможные значения разности фаз:

$$|\Delta\varphi| = \arcsin\left|\frac{y_0}{A_y}\right| \tag{2}$$

или

$$|\Delta\varphi| = \pi - \arcsin\left|\frac{y_0}{A_y}\right|. \tag{3}$$

При этом, если эллипс наклонен вправо, то угол $\Delta \varphi$ лежит в интервале $[-\pi/2;\pi/2]$ - имеет место формула (2); если эллипс налонен влево, то $\Delta \varphi \in [\pi/2;\pi] \cup [-\pi;-\pi/2]$ - необходимо использовать формулу (3). Результаты измерений занесем в таблицу:

	ı				
f, Гц	lgf	$ 2y_0 $, дел	$ 2A_y $, дел	$ arcsin \frac{y_0}{Ay} $, рад	$\Delta \varphi$, рад
32	1,509	0,1	2,2	0,045	0,045
266	2,424	0,0	2,2	0,000	0,000
1044	3,019	0,0	2,2	0,000	0,000
169400	5,229	0,2	2,2	0,091	0,091
354700	5,550	0,4	2,2	0,183	0,183
536000	5,729	0,6	2,2	0,276	0,276
768000	5,885	0,8	2,2	0,372	0,372
915000	5,961	1,0	2,2	0,472	0,472
1116000	6,048	1,2	2,2	0,577	0,577
1309000	6,117	1,4	2,2	0,690	0,690
1536000	6,186	1,6	2,2	0,814	0,814
1875000	6,273	1,8	2,1	1,030	1,030
2248000	6,352	2,0	2,0	1,571	1,571
2458000	6,391	2,0	2,0	1,571	1,571
2644000	6,422	1,8	2,0	1,120	2,022
2783000	6,445	1,6	2,0	0,927	2,214
2960000	6,471	1,4	2,0	0,775	2,366
3433000	6,536	0,8	2,0	0,412	2,730
4036000	6,606	0,7	2,0	0,358	2,784
4227000	6,626	0,6	2,0	0,305	2,837
4639000	6,666	0,2	2,0	0,100	3,041
5341000	6,728	0,4	2,0	0,201	2,940

Рис. 3: $|\Delta \varphi|(lgf)$

При возрастании f возрастает $|\Delta \varphi|$

2.5 Наблюдение фигур Лиссажу и измерение частоты

Подаем на вход каналов X и Y осциллографа сигналы с двух разных звуковых генераторов. Устанавливаем приблизительно одинаковые частоты генераторов. Изменяя f_x , получаем устойчивые фигуры для нескольких целочисленных отношений частот.

f_y , Гц	f_x , Гц	f_x/f_y
79,3	79,1	1,00
2040	4080	0,50
297,6	99,1	3,00
2010	1008	1,99
202	303	0,67

Рис. 4: Фигуры Лиссажу для колебаний одинаковой амплитуды. $\alpha = \Delta \varphi$

3 Вывод

В этой работе мы узнали основные компоненты и органы управления осциллографа. Провели серию измерений и наблюдений различных физических величин с его помощью и проанализировали полученные данные.

