

N-Channel JFETs

J308	SST308	U309
J309	SST309	U310
J310	SST310	

PRODUCT SUMMARY										
Part Number	V _{GS(off)} (V)	V _{(BR)GSS} Min (V)	g _{fs} Min (mS)	I _{DSS} Min (mA)						
J308	−1 to −6.5	-25	8	12						
J309	−1 to −4	-25	10	12						
J310	−2 to −6.5	-25	8	24						
SST308	−1 to −6.5	-25	8	12						
SST309	−1 to −4	-25	10	12						
SST310	−2 to −6.5	-25	8	24						
U309	−1 to −4	-25	10	12						
U310	−2.5 to −6	-25	10	24						

FEATURES

- Excellent High Frequency Gain: Gps 11.5 dB @ 450 MHz
- Very Low Noise: 2.7 dB @ 450 MHz
- Very Low Distortion
- High ac/dc Switch Off-Isolation

BENEFITS

- Wideband High Gain
- Very High System Sensitivity
- High Quality of Amplification
- High-Speed Switching Capability
- High Low-Level Signal Amplification

APPLICATIONS

- High-Frequency Amplifier/Mixer
- Oscillator
- Sample-and-Hold
- Very Low Capacitance Switches

DESCRIPTION

The J/SST/U308 series offers superb amplification characteristics. Of special interest is its high-frequency performance. Even at 450 MHz, this series offers high power gain at low noise.

Low-cost J series TO-226AA (TO-92) packaging supports automated assembly with tape-and-reel options. The SST series TO-236 (SOT-23) package provides surface-mount capabilities

and is available with tape-and-reel options. The U series hermetically-sealed TO-206AC (TO-52) package supports full military processing. (See Military and Packaging Information for further details.)

For similar dual products packaged in the TO-78, see the U430/431 data sheet.

*Marking Code for TO-236

For applications information see AN104.

J/SST/U308 Series

Vishay Siliconix

ABSOLUTE MAXIMUM RATINGS

Gate Current : (J/SST Prefixes) 10 mA (U Prefix) 20 mA Storage Temperature : (U Prefix) -65 to 175°C

Power Dissipation: (U Prefix)^b 500 mW

Notes

Derate 2.8 mW/°C above 25°C Derate 4 mW/°C above 25°C

								Lin	nits				
					Typ ^a	J/SST308		J/SST309		J/SST310			
Parameter	Symbol	ol Test Conditions		Min		Max	Min	Max	Min	Max	Unit		
Static													
Gate-Source Breakdown Voltage	V _{(BR)GSS}	I _G = -1 μA	$I_G = -1 \mu A$, $V_{DS} = 0 V$			-25		-25		-25		٧	
Gate-Source Cutoff Voltage	V _{GS(off)}	V _{DS} = 10 \	/, I _D = 1 nA	\		-1	-6.5	-1	-4	-2	-6.5	V	
Saturation Drain Current ^b	I _{DSS}	V _{DS} = 10 V	', V _{GS} = 0 '	/		12	60	12	30	24	60	mA	
Gate Reverse Current	lasa	$V_{GS} = -15$	$V, V_{DS} = 0$	V	-0.002		-1		-1		-1	nA	
Gale Reverse Current	I _{GSS}		$T_A = 1$	25°C	-0.001		-1		-1		-1	μΑ	
Gate Operating Current	I _G	V _{DG} = 9 V,	$V_{DG} = 9 \text{ V}, I_{D} = 10 \text{ mA}$		-15							pА	
Drain-Source On-Resistance	r _{DS(on)}	$V_{GS} = 0 \text{ V}, I_D = 1 \text{ mA}$		35							Ω		
Gate-Source Forward Voltage	V _{GS(F)}	$I_G = 10 \text{ mA}$ $V_{DS} = 0 \text{ V}$		0.7		1		1		1	٧		
Dynamic					•			•		•	•	1	
Common-Source Forward Transconductance	9 _{fs}	V _{DS} = 10 V, I _D = 10 mA		Α	14	8		10		8		mS	
Common-Source Output Conductance	gos	f = 1	f = 1 kHz				250		250		250	μS	
Common-Source Input Capacitance	C _{iss}	V _{DS} = 10	V	J	4		5		5		5	-	
Common Course		V _{GS} = -10 f = 1 MHz	V	J	1.9		2.5		2.5		2.5	pF	
Common-Source Reverse Transfer Capacitance	C _{rss}	I = I IVID2		SST	1.9							-	
Equivalent Input Noise Voltage	e _n	V _{DS} = 10 V f = 1	$V_{DS} = 10 \text{ V, } I_{D} = 10 \text{ mA}$ f = 100 Hz		6							nV∕ √Hz	
High Frequency													
Common-Gate	C.		f = 10	5 MHz	14								
Forward Transconductance	9fg		f = 450) MHz	13							mS	
Common-Gate Output Conductance	g _{og}	V _{DS} = 10 V I _D = 10 mA	f = 109		0.16 0.55] ''''	
			f = 10		16	1						┼	
Common-Gate Power Gain ^c	G_{pg}	٠	f = 450		11.5							\dashv	
Noine Figure	NF		f = 10	5 MHz	1.5	1						dB	
Noise Figure		f = 450 MHz) MHz	2.7	Ì	1		i	1	İ	1	

Notes a. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.

Pulse test: PW \leq 300 μ s duty cycle \leq 3%. Gain (G_{pg}) measured at optimum input noise match.

NZB

J/SST/U308 Series Vishay Siliconix

					Limits					
					U309		U310		Unit	
Parameter Sym		rmbol Test Conditions			Min	Max	Min	Max		
Static										
Gate-Source Breakdown Voltage	V _{(BR)GSS}	$I_G = -1 \mu A$	-35	-25		-25		V		
Gate-Source Cutoff Voltage	V _{GS(off)}	V _{DS} = 10 \	/, I _D = 1 nA		-1	-4	-2.5	-6	V	
Saturation Drain Current ^b	I _{DSS}	V _{DS} = 10 V	, V _{GS} = 0 V		12	30	24	60	mA	
Gate Reverse Current		V _{GS} = -15 \	/, V _{DS} = 0 V	-0.002		-0.15		-0.15	nA	
	I _{GSS}		T _A = 125°C	-0.001		-0.15		-0.15	μΑ	
Gate Operating Current	l _G	V _{DG} = 9 V, I _D = 10 mA		-15					pА	
Drain-Source On-Resistance	r _{DS(on)}	V _{GS} = 0 V,	35					Ω		
Gate-Source Forward Voltage	V _{GS(F)}	$I_G = 10 \text{ mA}$, $V_{DS} = 0 \text{ V}$		0.7		1		1	V	
Dynamic										
Common-Source Forward Transconductance	9fs	V _{DS} = 10 V	, I _D = 10 mA	14	10		10		mS	
Common-Source Output Conductance	9 _{os}	f = 1 kHz		110		250		250	μS	
Common-Source Input Capacitance	C _{iss}	V _{DS} = 10 V, f = 1	4		5		5	pF		
Common-Source Reverse Transfer Capacitance	C _{rss}	f = 1	1.9		2.5		2.5	pr		
Equivalent Input Noise Voltage	e _n	$V_{DS} = 10 \ V_{f} = 10$	6					nV∕ √Hz		
High Frequency										
Common-Gate			f = 105 MHz	14						
Forward Transconductance	9fg		f = 450 MHz	13					mS	
Common-Gate Output Conductance			f = 105 MHz	0.16						
	gog	V _{DS} = 10 V	f = 450 MHz	0.55						
		$I_D = 10 \text{ mA}$	f = 105 MHz	16	14		14			
Common-Gate Power Gain ^c	G _{pg}		f = 450 MHz	11.5	10		10		dB	
Noise Figure	NE		f = 105 MHz	1.5		2		2		
	NF		f = 450 MHz	2.7	1	3.5		3.5	1	

Notes a. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing. b. Pulse test: PW \leq 300 μ s duty cycle \leq 3%. c. Gain (G_{pg}) measured at optimum input noise match.

NZB

Document Number: 70237 S-04028—Rev. G, 04-Jun-01

Vishay Siliconix

TYPICAL CHARACTERISTICS (T_A = 25°C UNLESS OTHERWISE NOTED)

V_{GS(off)} – Gate-Source Cutoff Voltage (V)

V_{GS(off)} - Gate-Source Cutoff Voltage (V)

Common-Source Forward Transconductance vs. Drain Current

I_D – Drain Current (mA)

TYPICAL CHARACTERISTICS (TA = 25°C UNLESS OTHERWISE NOTED)

Vishay Siliconix

TYPICAL CHARACTERISTICS (TA = 25°C UNLESS OTHERWISE NOTED)

V_{GS} – Gate-Source Voltage (V)

Circuit Voltage Gain vs. Drain Current 100

Common-Source Reverse Feedback Capacitance vs. Gate-Source Voltage

TYPICAL CHARACTERISTICS (TA = 25°C UNLESS OTHERWISE NOTED)

