- 11) Publication number:
- 0 334 119 A1

EUROPEAN PATENT APPLICATION

(21) Application number: 89104251.7

22 Date of filing: 10.03.89

⑤1 Int. Cl.4: C07D 333/16 , C07D 213/30 , C07C 39/21 , C07C 43/23 ,

A61K 31/33 , A61K 31/05

③ Priority: 21.03.88 US 170512

Date of publication of application: 27.09.89 Bulletin 89/39

Designated Contracting States:

AT BE CH DE ES FR GB GR IT LI LU NL SE

71 Applicant: Boehringer Ingelheim Pharmaceuticals Inc. 90 East Ridge P.O. Box 368 Ridgefield Connecticut 06877(US)

Inventor: Lazer, Edward S.
 280 Beacon Hill Road
 Trumbull, Connecticut 06611(US)

Representative: Laudien, Dieter et al Boehringer Ingelheim International GmbH ZA Patente Postfach 200 D-6507 Ingelheim am Rhein-(DE)

- © Compounds for inhibiting the biosynthesis of lipoxygenase-derived metabolites of arachidonic acid.
- © Compounds having the formula

inhibit 5-lypoxyogenase and are useful in the treatment of inflammation.

D 334 119 A1

COMPOUNDS FOR INHIBITING THE BIOSYNTHESIS OF LIPOXYGENASE-DERIVED METABOLITES OF ARACHIDONIC ACID

This invention relates to compounds, compositions and methods useful in treating symptoms of immunological and non-immunological disorders such as allergy, inflammation, shock or other disorders wherein metabolites of arachidonic acid are implicated.

The antigenic challenge of sensitized tissue, or damage induced in normal tissue through inflammatory insults or trauma, results in a broad array of tissue responses, including the production of various chemical mediators. One such mediator is slow reactive substance of anaphylaxis (SRS-A), the main components of which are the leukotrienes LTC₄, LTD₄ in humans and additionally LTE₄ in certain other species. Other important mediators are LTB₄ and other hydroxy and polyhydroxy metabolites of arachidonic acid which have been identified as being implicated in inflammatory processes.

The synthesis of these mediators in tissue initially requires the production of the biological precursors, arachidonic acid, as by action of phospholipase on cell membrane phospholipids. Subsequent metabolism of arachidonic acid by the lipoxygenase enzymes yields the unstable hydroperoxyeicosatetrae (HPETE's), subsequently the hydroxyeicosatetraenoic acids (HETE's), and various leukotrienes those which make up SRS-A. Arachidonic acid is also metabolized through the alternative cycloogygenase pathway to yield the prostaglandins and the thromboxanes.

The primary pharmacological effects of SRS-A include smooth muscle contraction and increased vascular permeability. Its implication in human allergic asthma has been recognized for many years. More recently, SRS-A, LTB₄ and the (poly)hydroxymetabolites of arachidonic acid have been associated with shock, cardiovascular disease and ischemic tissue damage.

According to a broad aspect of the present invention we provide compounds having the general formula

wherein

10

20

25

30

R₁ and R₂ are each independently branched or straight chained alkyl, allyl, alkoxy e.g. methoxy or halogen, R₅ is hydrogen, alkyl or -CO₂R₈, wherein R₈ is hydrogen or C₁-C₃ alkyl G is

a) -OH

b) the group R₃CO₂- wherein R₃ is (i) HO₂C-X wherein X is an optionally substituted hydrocarbon chain with or without heteroatoms, or (ii) the group

$$(R_{10})(R_{11})N(CH)_n$$

wherein R₁₀ and R₁₁ are hydrogen or alkyl, R₁₂ is hydrogen, alkyl or aryl possibly containing heteroatoms or R₁₁ and R₁₂ together form a ring, or

c) the group HCO₂- provided R₅ is -CO₂R₈ and R₈ is hydrogen or C₁-C₃ alkyl, and Ar is an optionally substituted heteroaromatic or aromatic ring, with proviso that Ar is not

50

wherein --- is single or double bond and X' and Y are

(i) N

(ii) NR4, where R4 is H, lower alkyl,

15

10

where R₁ and R₂ may be the same or different and are H or lower alkyl,

C(O)R₄ wherein R₄ is hydrogen and lower alkyl, cycloalkyl of from three to twenty carbons having from three to eight ring carbons, aryl or aralkyl;

(iii) O; or

(iv) S;

and the further proviso Ar is not

25

30

when R₁ and R₂ are both methyl,

or another pharmaceutically acceptable ester or pro-drug thereof or salt or acid addition salt of the foregoing compounds.

This invention thus relates inter alia to novel 4-(2-aryl- ethenyl)-2,6-disubstituted phenols of general formula 1:

45

40

wherein R_1 and R_2 are straight or branched chained alkyl e.g. C_1 - C_3 alkyl, allyl, alkoxy or halogen, R_5 is hydrogen, alkyl, preferably C_1 - C_5 alkyl or CO_2R_8 , wherein R^8 is hydrogen or alkyl, and R_6 is an optionally substituted heteroaromatic or aromatic ring.

50

This invention includes also the pharmacologically acceptable esters, pro-drugs, salts and acid addition salts of the compounds of formula 1. For instance the invention also relates to esters (formulae 2a, 2b and 2c) of the compounds of formula 1, where the ester group imparts desirable physicochemical characteristics in the molecule, such as improved solubility. The esters are cleaved in vivo, releasing the compound 1 (i.e., they are pro-drugs).

55

In this specification unless otherwise specified the term "alkyl" means an alkyl group containing up to 8 carbon atoms e.g. up to 5 or 6 or 7 carbon atoms; and the term "lower alkyl" means an alkyl group containing 1 to 5 preferably 1 to 3 carbon atoms; "alkoxy" means an alkoxy group containing up to 8 carbon atoms preferably up to three carbon atoms and is especially methoxy; "halogen" means chlorine,

bromine or fluorine preferably chlorine, bromine or fluorine; "heteroaromatic ring" means an aromatic group containing 5 to 12 e.g. up to 9 ring members of which up to 3 may be heteroatoms chosen from N, S or O and which may contain two fused rings; "aromatic ring" means an aromatic group containing five to 12 carbon atoms e.g. up to 10 carbon atoms and which may contain two fused rings; heteroatom includes nitrogen, sulphur or oxygen atoms; the substituents on the group Ar may be for example up to three groups which may be the same or different and chosen from C₁-C₅ alkoxy e.g. C₁-C₃ alkoxy, halogen, trifluoromethyl, alkyl and arylalkoxy.

The pro-drugs of the present invention can e.g. be of three types: monoesters of dicarboxylic acids (2a), esters of amino acids (2b), and substituted olefin esters or acids (2c), and also include salts of 2a, 2b and 2c, and alkyl or other esters of the acids of 2a and 2c.

20

*1*5

2a R₁, R₂, R₅, and Ar are as defined in Formula 1; R₃ is HO₂C-X-, where X is an optionally substituted hydrocarbon chain with or without heteroatoms,

2b R₁, R₂, R₅, and Ar are as defined in Formula 1; R₃ is

25

35

$$(R_{10})(R_{11})N(CH)_{n} - R_{12}$$

wherein R_{10} , R_{11} are hydrogen or alkyl preferably C_1 - C_3 alkyl, R_{12} is hydrogen, alkyl preferably C_1 - C_3 alkyl, or aryl, with or without heteroatoms, or R_{11} , R_{12} form a ring, and n is an integer from 1 to 5;

 $2c R_1$, R_2 and Ar are as defined in Formula 1; R_3 is hydrogen, or as in 2a, or as in 2b; and R_5 is CO_2R_8 , wherein R_8 is hydrogen or alkyl.

Compounds of the invention are inhibitors of the enzyme 5-lipoxygenase and, accordingly, may be employed in the treatment of inflammation and in diseases where products of 5-lipoxygenase metabolism play a role, such as asthma, psoriasis, rheumatoid arthritis and inflammatory bowel disease. Compounds of formula 1 also inhibit the enzyme cyclooxygenase, although they are generally more potent in inhibiting 5-lipoxygenase.

The prior art contains references for six compounds of general Formula 1 wherein Ar is a substituted phenyl ring or pyridyl ring and R₁ and R₂ are both C₁-C₃ alkyl, and one compound wherein R₁ is allyl, R₂ is methoxy and Ar is phenyl. For example, one prior art compound (R₁ and R₂ are methyl, and Ar is 4-hydroxy-3-methoxyphenyl) was disclosed as generated by the treatment of spruce wood meal with alkali (2.2M NaOH) or white liquor (2.1 M NaOH, 0.2 M Na₂S_γ in the presence of 2,6-xylenol (J. Gierer et al., Acta. Chem. Scand., Ser. B, 1979, B33 (8), 580. C.A. 92:78366t, 1980). Another prior art compound (R₁ and R₂ are methyl, and Ar is 3,5-dimethyl-4-hydroxyphenyl) is one of many symmetrical stilbene derivatives synthesized by condensation of chloroacetaldehyde with aromatic compounds, followed by re-arrangement. (R.H. Sieber, Justus Liebigs Ann. Chem. 1969, 730, 31). The oxidation of the 2,6-dialkyl-4-methylphenol with silver carbonate, followed by reduction of the resulting stilbene quinone with zinc in acetic acid is also reported as generating such prior art compound and a further prior art compound wherein R₁ and R₂ are isopropyl and Ar is 3,5-diisopropyl-4-hydroxyphenyl (V. Balogh et al. J. Org. Chem. 1971, 36, 1339).

The synthesis of prior art compounds wherein R₁ and R₂ are methyl, or R₁ is allyl and R₂ is methoxy, and Ar is phenyl by Grignard reaction of the phenolic aldehyde with benzyl magnesium bromide followed by dehydration with potassium hydrogen sulfate has been reported (H.D. Becker, J. Org. Chem. 1969, 34, 1211). The compounds are used as intermediates for dehydrogenation to bisquinone methides.

Two prior art pyridyl compounds (R₁ and R₂ are isopropyl, and Ar is 2-pyridyl or 4-pyridyl) are reportedly synthesized by condensation of the phenolic aldehyde with N-acyl picolinium salts (G.N. Bogdanov et al., Khim Geterotsikl. Soedin., 1971, 7, 1660 CA 76: 153516, 1972). Such compounds are

reported to be useful as antioxidants and useful as anti-tumor agents.

Certain derivatives of 2,6-di-t-butylphenol are reported to be dual inhibitors of the enzymes cyclooxygenase and 5-lipoxygenase. All of these are more potent inhibitors of cyclooxygenase than lipoxygenase, and accordingly useful primarily as cyclooxygenase-inhibiting, non-steroidal anti-inflammatory agents. These 2,6-di-t-butylphenol derivatives include compounds having the following formulas shown below: 3 - (G.G.I. Moore and K.F. Swingle, Agents Actions, 1982, 12, 674.); 4 (T. Hidaka et al., Jap. J. Pharmacol. 1984, 36, 77.); 5 (H. Shirota et al., Third International Conference, Inflammation Research Association Poster Session, Nos. 15 and 16, White Haven, Pa. 1986); and 6 (E. Lazer, U.S.S.N. 843,898).

The compounds of the present invention distinguish themselves from compounds having formulas 3 through 6 by being more potent and selective inhibitors of 5-lipoxygenase.

According to another aspect of the present invention there is provided a process for the preparation of compounds of the present invention which comprises

a) to prepare a compound of formula 1 wherein R₅ is hydrogen and G is -OH, reacting a compound of formula 7

with an aryl or heteroaryl acetic acid 8

ArCH₂CO₂H 8

to yield a compound of formula 1" having the structure

30

40

wherein Ar, R₁ and R₂ are as defined above,

b) to prepare a compound of formula 1, wherein R₅ is CO₂R₈ and G is -OH, reacting a compound of formula 7 as defined above with an aryl or heteroaryl acetic acid ester having the formula 9 ArCH₂CO₂R₈ 9

to yield a compound having formula 10

15

10

wherein Ar, R1, R2 are as defined above and R8 is C1-C3 alkyl,

c) to provide a compound of formula 1 wherein R₈ is hydrogen, hydrolysing an ester of formula 10'

20

25

wherein R, which may be R_8 when this is C_1 - C_3 alkyl, is an ester forming group capable of being removed in a manner known per se, to yield the free acid 11

35

40

wherein Ar, R₁ and R₂ are as defined above:

- d) to provide a compound of formula 1 wherein R₅ is hydrogen, decarboxylation of an acid of formula 11 to yield a compound of formula 1"
- e) to yield a compound of formula 1 wherein R₅ is C₁-C₅ alkyl, deprotecting a compound having the formula 12

50

45

wherein R₁, R₂ and Ar are as defined above and Pg is a hydroxy protecting group f) to yield a compound of formula 13

reacting a compound of the formula wherein G is OH with a compound of the formula

g) to prepare a compound of formula 1 wherein G is the group

$$(R_{10})(R_{11})N(CH)_{n}-CO_{2}-R_{12}$$

o as defined above, reacting a compound of the formula 1 wherein G is OH and R₅ is alkyl, or a compound of formula 10 as defined above with a compound of the formula

wherein R₁, R₂ and R₅ are as defined above, R₁₀, and R₁₁, are hydrogen or alkyl with the proviso that if one is hydrogen the other is alkyl or a removable protecting group, and R₁₂ is hydrogen, alkyl or aryl which may contain at least one heteroatom, and wherein R₁₁, and R₁₂ may together form a ring, and n is an integer from one to five, and thereafter removing the groups R₁₀, and/or R₁₁, when these are protecting groups and if necessary or desired removing the group R;

16

and thereafter, if desired, treating the product of process a) to g) by one or more of the following finishing steps in any desired order:

i) removing an ester group R₈ to yield a free acid

5

15

- ii) esterifying a free acid to yield a pharmaceutically acceptable ester wherein the ester group is capable of being cleaved in vivo to yield the free acid
- iii) forming a pharmaceutically acceptable salt of the free acid e.g. the salt of an alkali metal or alkaline earth metal e.g. sodium, potassium or calcium
- iv) forming an acid addition salt of a compound of formula 1 in particular such a compound wherein R₃ is the group

$$(R_{10})(R_{11})N(CH)_n - R_{12}$$

Thus the compounds of the present invention can be prepared by reaction of an appropriately substituted phenolic aldehyde 7 with an aryl- or heteroaryl acetic acid 8 in the presence of a basic catalyst, as shown below. A suitable catalyst would be for example piperidine, morpholine or triethylamine. The reaction my be performed in the presence of an inert solvent, such as methylene chloride, chloroform or benzene, which may be added at the beginning of the reaction to facilitate mixing, and then boiled off as the reaction progresses. The reaction may also be carried out in a refluxing solvent, such as toluene, xylene, or ethylenedichloride.

The compounds of the invention may also be prepared by reaction of 7 with an aryl- or heteroaryl acetic acid ester 9 in the presence of a basic catalyst and an inert solvent, as shown below. Again, a suitable catalyst would be piperidine. An inert solvent could be ethanol. The resulting ester 10 is hydrolyzed to carboxylic acid 11, which is decarboxylated to yield 1. Intermediates 10 and 11 can also be prodrugs of formula 2c, the prodrug described above.

The required substituted phenolic aldehydes (7) are prepared from the corresponding substituted phenols (12) by reaction of the phenols with hexamethylenetetramine in the presence of an acid catalyst. [Duff reaction, J.C. Duff, J. Chem Soc. 574 (1941)]. As examples, the acid used may be acetic acid, which can be used as the reaction solvent, or boric acid in ethylene glycol as solvent followed by hydrolysis. These modified conditions for the Duff reaction are reported in the literature. The required phenols (12) and arylacetic acids (7) are available commercially or may be prepared by methods reported in the literature.

50

5

10

20

For the compounds of formula I where Rs is methyl or n-butyl, the compounds may be prepared via a Wittig reaction; i.e., a protected phenolic aldehyde (e.g., an ethyl carbonate derivative) is reacted with a Wittig salt of the corresponding phenyl derivative with a base catalyst, such as n-butyllithium, in a suitable solvent such as ether, followed by deprotection e.g. by hydrolysis of the carbonate, to yield the phenol. The remaining compounds of formula I may be prepared using materials and techniques well within the ability of one skilled in the art.

The prodrug esters of formula 2a may be prepared by standard procedures, for example by reaction of a phenol of formula 1 with an anhydride in the presence of a base in an inert solvent. The prodrug esters of formula 2b may be prepared by standard procedures, for example by reaction of a phenol of formula 1 with a protected amino acid in the presence of a coupling reagent such as dicyclohexylcarbodiimide in an inert solvent. A basic catalyst such as 4-dimethylaminopyridine may be added. The protecting group is then removed from the amino acid by standard procedures. The protecting group used may be one of those generally employed in peptide chemistry. For example, tert-butyloxycarbonyl, benzyloxycarbonyl, 9-fluorenylmethyloxycarbonyl or biphenylisopropyloxycarbonyl may be used as amino-protecting groups. See The Practice of Peptide Synthesis, M. Bodanszky and A. Bodanszky (Springer-Verlag, 1984). The prodrugs of formula 2c may be formed by reaction of an aldehyde of formula 7 with an arylacetic ester, formula 9, in a refluxing solvent in the presence of a basic catalyst. A suitable refluxing solvent is ethanol, for example. A suitable basic catalyst is piperidine, for example.

The compounds according to the present invention may be administered to warm-blooded animals topically, perorally, parenterally, rectally or by the respiratory route as active ingredients in conventional pharmaceutical compositions, that is, compositions comprising a pharmaceutical carrier or excipient and an effective amount of the active ingredient.

In another aspect, the present invention provides pharmaceutical compositions comprising a compound of formula I or a physiologically acceptable salt thereof, together with at least one pharmaceutical carrier or excipient.

In a still further aspect, the invention provides a method of treatment of humans or other warm-blooded animals to combat allergic or inflammatory reactions therein which method comprises administering thereto an effective amount of a compound of formula I or a physiologically acceptable salt thereof.

In a yet still further aspect the invention provides the use of a compound of formula I or a physiologically acceptable salt thereof for the treatment of allergic or inflammatory reactions of humans or other warm-blooded animals.

When the compounds of the invention are given by the oral route, they may be formulated in the form of syrups, tablets, capsules, pills and the like. Preferably, the compositions are in unit dosage form, or in a form in which the patient can administer to himself a single dose. When the composition is in the form of a tablet, powder or lozenge, any pharmaceutical carrier suitable for formulating solid compositions may be used. Examples of such carriers are various starches, lactose, glucose, sucrose, cellulose, dicalcium phosphate, and chalk. The composition may also be in the form of an ingestible capsule (for example of gelatin) containing the compound; or in the form of a syrup, a liquid solution or a suspension. Suitable liquid pharmaceutical carriers include ethyl alcohol, glycerin, saline, water, propylene glycol or sorbitol solution, which may be compounded with flavoring or coloring agents to form syrups.

The compounds of this invention may also be administered by other than the oral route. In accordance with routine pharmaceutical procedure, the compositions may be formulated, for example, for rectal administration as a suppository or for presentation in an injectable form in an aqueous or non-aqueous solution, suspension or emulsion in a pharmaceutically acceptable liquid, such as sterile, pyrogen-free water of a parenterally acceptable oil or a mixture of liquids, which may contain bacteriostatic agents, antioxidants, preservatives, buffers, or other solutes to render the solution isotonic with the blood, thickening agents, suspending agents or other pharmaceutically acceptable additives. Such forms will be presented in unit dose forms such as ampules or disposable injection devices or in multi-dose vials such as a bottle from which the appropriate dose may be withdrawn, or in solid form or concentrate which can be used to prepare

50

5

an injectable formulation.

Compounds of this invention may also be suitably presented for administration to the respiratory tract as an aerosol or solution for a nebulizer, or as a microfine powder for insufflation, alone or in combination with an inert carrier such as lactose. In such a case the particles of active compounds suitably have diameters of less than 20 microns, preferably less than 10 microns. Where appropriate, small amounts of other anti-allergics, anti-asthmatics and bronchodilators, for example, sympathomimetic amines such as isoprenaline, isoetharine, metaproterenol, salbutamol, phenylephrine, fenoterol and ephedrine; xanthine derivatives such as theophylline and aminophylline; corticosteroids such as prednisolone and adrenal stimulants such as ACTH may be included.

Compounds of this invention may also be presented as an ointment, cream, lotion, gel, aerosol or solution for topical application to the skin, nose, or eye.

For the preparation of pharmaceutical compositions, the compounds of the invention are mixed in the usual way with appropriate pharmaceutical carrier substances and aroma, flavoring and coloring materials and formed, for example, into tablets or capsules or, with the addition of appropriate adjuvants, suspended or dissolved in water or in an oil, for example corn oil.

The compounds of this invention can be administered orally and parenterally in liquid or solid form. As injection medium, it is preferred to use water which contains the stabilizing agents, solubilizing agents and/or buffers conventionally used for injection solutions. Additives of this type include, for example, tartrate, citrate and acetate buffers, ethanol, propylene glycol, polyethylene glycol, complex formers (such as EDTA), antioxidants (such as sodium bisulfate, sodium metabisulfate or ascorbic acid), high-molecular-weight polymers (such as liquid-polyethylene oxides) for viscosity regulation, and polyethylene derivatives of sorbitol anhydrides.

Preservatives may also be added, if necessary, such as benzoic acid, methylene propylparaben, benzalkonium chloride or other quaternary ammonium compounds.

Solid carrier materials which can be used include, for example, starch, lactose, mannitol, methyl cellulose, microcrystalline cellulose, talcum, pyrogenic silica, dicalcium phosphate, and high-molecular-weight polymers (such as polyethylene glycol).

The following examples demonstrate reaction conditions under which compounds of the present invention may be prepared. Such examples are illustrative only, and do not limit the scope of the present invention.

Example 1

35

25

10

3,5-Dimethyl-4-hydroxybenzaldehyde

2,6-Dimethylphenol (50g, 0.41 mol) and hexamethylenetetramine (57g, 0.41 mol) were combined in 400 mL acetic acid and heated to reflux for 4.5 hours. The reaction mixture was poured into 1500 mL water and stirred until a precipitate formed. The mixture was refrigerated overnight, filtered, and the solid product dried and recrystallized from EtOH. Two crops of 3,5-Dimethyl-4-hydroxybenzaldehyde were obtained for a total of 19.02g (0.127 mol, 31%), mp 114-115 °C

5 Example 2

The compound in Example 1 may also be prepared under the following conditions: 2,6-Dimethylphenol (100g, 0.818 mol), hexamethylenetetramine (195g, 1.39 mol) and boric acid (270g, 4.37 mol) were combined in 1,000 mL ethylene glycol and heated at 130 °C, with stirring, for 1 hr. The hot reaction mixture was combined with 1,400 mL 30% H₂SO₄ and stirred overnight at ambient temperature. The precipitated product was filtered, rinsed with water and recrystallized from EtOH giving 85g, 3,5-dimethyl-4-hyd-roxybenzaldehyde (0.54 mol, 66%), mp 112-113 °C

Example 3

3-Ethyl-5-methoxy-4-hydroxybenzaldehyde

2-Ethyl-6-methoxyphenol (11.4g, 0.075 mol) and hexamethylenetetramine (10.5g. 0.075 mol) were combined in 65 mL acetic acid and heated to reflux for 4.5. hours. The reaction mixture was poured onto ice and water, and the product extracted into CH₂Cl₂ (3 x 150 mL). The combined organic extracts were washed with saturated NaCl solution, dried (Na₂SO₄) and concentrated in vacuo. The product was recrystallized from EtOH giving 2.53g. Crude product from the mother liquor was purified by column chromatography on silica gel, eluting with CH₂Cl₂, giving another 2.1 g for a total of 4.63 g, (0.026 mol, 34%).

The following examples are illustrative of the general procedures used to prepare the compounds of this invention (General Formula 1) which are listed in Table 1.

10

Example 4

2,6-Dimethyl-4-[2-(2-thienyl)ethenyl]phenol

Piperidine (58g, 0.68 mol) was added to 2-thiopheneacetic acid (34g, 0.24 mol) suspended in 75 mL CH₂Cl₂. 3,5-Dimethyl-4-hydroxybenzaldehyde (30g, 0.2 mol) was added and the mixture was heated in an oil bath (bath temperature: 130 °C) with mechanical stirring, under N₂. The CH₂Cl₂ was allowed to boil off. After heating for 7 hours, the dark brown residue was eluted through a silica gel column with CH₂Cl₂. The major fraction was concentrated, and the product recrystallized from toluene giving 21.5g 2,6-Dimethyl-4-[2-(2-thienyl)ethenyl]phenol, (0.093 mol, 47%) mp 133-134 °C.

25

Anal: Cal	cd. fo	r C14H14O	s:			
Found:	O C	73.01; 73.04:	H	6.13; 6.02;	ഗ ഗ	13.92 13.98
. Jana.			<u> </u>			

'H NMR: 2.3 (6H, s, CH₃), 4.7 (1H, s, OH), 6.75-7.2 (7H, aromatic and olefinic protons).

Example 5

134° C.

The product of Example 4 may also be prepared by the following procedure: 2-Thiopheneacetic acid (15g, 0.105 mol) and piperidine (12.9g, 0.15 mol) were combined in 450 mL to and stirred for 20 minutes. 3,5-Dimethyl-4- hydroxybenzaldehyde (15g 0.100 mol) was added and the reaction mixture heated to reflux with a Dean-Stark trap attached to remove water formed in the reaction. After 20 hours, the mixture was cooled to room temperature and poured onto a pad of silica gel packed 3/4 full onto a 2L fritted glass filtering funnel. The product was eluted with toluene and the light yellow solid was recrystallized from ligroine giving 14g 2,6-dimethyl-4-[2-(2-thienyl)ethenyl]phenol,(0.061 mol, 61%), mp 133-

45

Anal: Cald	cd. for	C14H14O	S:			
Found:		73.01; 73.19;	1	6.13; 6.18;	1	13.92 13.97

'H NMR: 2.3 (6H, s, CH₃), 4.7 (1H, s, OH), 6.75-7.2 (7H, aromatic and olefinic protons).

50

Example 5a

Ethyl 3-(3,5-dimethyl-4-hydroxyphenyl)-2-(2-thienyl)propenoate

A mixture of 3,5-dimethyl-4-hydroxybenzaldehyde (15g, 0.1 mol), ethyl 2-thiopheneacetate (17.9 g, 0.105 mol), piperdine (9g, 0.105 mol) and p-toluenesulfonic acid (100 mg) in 300 mL EtOH was heated to

reflux for 18 hours. The reaction mixture was concentrated down to about half its original volume on a rotary evaporator, and a precipitate formed. The mixture was stored in the freezer overnight, filtered and the solid rinsed with cold EtOH. The solid was then suspended in water, the mixture made acidic with 1N HCl and the solid filtered and dried giving 12.2g ethyl 3-(3,5-dimethyl-4-hydroxyphenyl)-2-(2-thienyl) propenoate, (0.04 mol, 40%) mp 85-87° C. A small sample was recrystallized from EtOH, mp 87-89° C.

Anal: Cal	cd. fo	r C ₁₇ H ₁₈ C)₃S:			
	С	67.52	Н	6.00	S	10.60
Found:	С	67.64	Н	6.00	S	10.62

'H NMR; 1.3 (3H, t, CH₃), 2.05 (6H, s, CH₃), 4.26 (2H, q. CH₂), 5.0 (1H, s, OH), 6.8-7.8 (6H, aromatic and olefinic protons).

Example 5b

10

15

20

30

35

50

3-(3,5-Dimethyl-4-hydroxyphenyl)-2-(2-thienyl)propenoic acid

A mixture of ethyl 3-(3,5-dimethyl-4-hydroxyphenyl)-2-(2-thienyl)-propenoate (1.5g, 5 mmol) 10 mL 2N NaOH and 10 mL EtOH was heated to reflux for 3.5 hours. The reaction mixture was then concentrated to half its original volume and combined with 15 mL 2N HCl while stirring on an ice bath. The resulting solid was filtered, dried and recrystallized from toluene giving 0.97g 3-(3,5-dimethyl-4-hydroxyphenyl)-2-(2-thienyl) propenoic acid (3.5 mmol, 71%), mp 195-197° C.

Anal: Cal	cd. fo	r C15H14C)₃S:			
	С	65.67	Н	5.14	S	11.69
Found:	C	65.60	H	5.08	S	11.60

'H NMR: 2.0 (6H, s, CH₃), 6.7-7.7 (6H, aromatic and olefinic protons), 8.8 (1H, s, OH), 12.6 (1H, s, CO₂H).

Example 5c

The product of Example 4 may also be prepared by the following procedure: 3-(3,5-dimethyl-4-hydroxyphenyl)-2-(2-thienyl)propenoic acid (5.3g, 19.3 mmol) was combined with piperidine (1.7g, 20 mmol), forming a light brown mass. Toluene (200 mL) was added and the reaction stirred at room temperature for 20 minutes and then refluxed for 40 hours. The reaction mixture was concentrated to half its original volume and passed through a glass funnel containing silica gel (250g) and eluted with toluene. The light yellow fractions containing product were concentrated giving 1.98g 2,6-dimethyl-4-[2-(2-thienyl)ethenyl]phenol (1a, Table 1), (8.6 mmol, 44% mp 132-133 °C). The H NMR spectrum was identical to the one in Example 4.

Example 6

2-Methoxy-6-methyl-4-[2-(2-thienyl)ethenyl]phenol

Piperidine (2.7g, 32 mmol) was added to a suspension of 2-thiopheneacetic acid (3.3g, 23 mmol) in 10 mL CH₂Cl₂, followed by 3.5g (21 mmol) 4-hydroxy-3-methoxy-5-methylbenzaldehyde. The stirred mixture was heated on an oil bath, the temperature of the oil bath was allowed to rise to 135° C over 3-4 hr. After 2 hours additional piperidine (2.6g, 30 mmol) was added. The reaction mixture was removed from the oil standard after about 4.5 hours. The residue was taken up in 100 mL EtOAc, and washed with 1N HCL (100 mL), water (100 mL), saturated NaHCO₃ (100 mL), 1N HCl (75 mL), saturated NaCl solution (100 mL), cried

(Na₂SO₄) and concentrated. The residue was recrystallized twice from EtOH giving 0.95g 2-methoxy-6-methyl-4-[2-(2-thienyl)ethenyl]phenol (3.9 mmol, 18%), mp 113-114°C.

Anai: Cal	cd. fo	r C14H14C) ₂ S:			
	С	68.26	Н	5.74	S	13.02
Found:	С	68.63	Н	5.78	S	12.89

'H NMR: 2.25 (3H, s, CH₃), 3.9 (3H, s, CH₃), 5.7 (1H, s; OH), 6.8-7.2 (7H, aromatic and olefinic protons).

Example 7

5

15

25

40

50

2,6-Diethyl-4-[2-(2-thienyl)ethenyl]phenol

A mixture of 3,5-diethyl-4-hydroxybenzaldehyde (2.5g, 14 mmol), 2-thiopheneacetic acid (2.58g, 18.2 mmol) and piperidine (4.3g, 51 mmol) in 20 mL CH₂Cl₂ was heated in an oil bath (130-140 °C) for 2.5 hours. The reaction mixture was taken up in EtOAc (100 mL), washed with water (100 mL), the saturated NaHCO₃ solution (2 x 50 mL), saturated NaCl (50 mL), dried (Na₂SO₄) and then concentrated. The residue was passed through a silica gel column, eluting with CH₂Cl₂, the fractions containing product concentrated and the residue recrystallized from EtOH giving 1.57g 2,6-Diethyl-4-[2-(2-thienyl)ethenyl]phenol (6.1 mmol, 43%), mp 113-115 °C.

Anal: Ca	lcd. fo	or C ₁₆ H ₁₈	OS:			
Found	00	74.38 74.24	H	7.02 7.03	s s	12.41 12.36

H NMR: 1.25 (6H t, CH₃), 2.6 (4H, q, CH₂), 4.75 (1H, s, OH), 6.8-7.2 (7H, aromatic and olefinic protons). The following two examples illustrate procedures by which a prodrug of type 2a or 2b may be prepared.

Example 8

2,6-Dimethyl-4-[2-(2-thienyl)ethenyl]phenyl succinate

1.47g 4-Dimethylaminopyridine (12 mmol), 1g succinic anhydride (10 mmol), and 1g triethylamine (10 mmol) were added to a solution of 1a (Table 1) (2.3g, 10 mmol) in 25 mL CH₂Cl₂. After stirring at room temperature for 2.5 hours the reaction was heated to reflux for 1 hour. Then additional 4-dimethylaminopyridine (0.5g), succinic anhydride (0.3g) and triethylamine (1g) were added and the reaction stirred at room temperature another 30 minutes. The reaction was diluted with 50 mL CH₂Cl₂, washed with 1N HCl (2 x 50 mL), saturated NaCl (50 mL), dried (Na₂SO₄) and concentrated. The residue was recrystallized from isopropanol giving 2.25g 2.6-Dimethyl-4-[2-(2-thienyl)ethenyl]phenyl succinate (6.8 mmol, 68%) mp 168-170 °C

Anal: Cal	cd. fo	r C ₁₈ H ₁₈ C) ₄ S:			:
	С	65.43	Н	5.50	S	9.70
Found:	С	65.28	Н	5.48	S	9.60

'H NMR: 2.2(6H, s, CH₃), 2.9 (4H, m, CH₂CH₂), 6.75-7.3 (7H, aromatic and olefinic protons), 11 (1H, broad s, CO₂H).

Example 9

2,6-Dimethyl-4-[2-(2-thienyl)ethenyl]phenyl glycinate hydrochloride

A mixture of 1a (Table 1) (4.6g, 20 mmol), N-(tert-butoxycarbonyl)glycine (3.5g, 20 mmol), 4dimethylaminopyridine (0.8g, 6.5 mmol) and dicyclohexylcarbodimide (4.2g, 20 mmol) in 175 mL CH2Cl2 was stirred for 16 hours at room temperature. The white precipitate was filtered off and rinsed with CH2Cl2. The filtrate was washed with 1N HCl (2 x 75 mL), saturated NaHCO₃ solution (1 x 75 mL) and saturated NaCl solution (1 x 75mL) dried (Na2SO4) and concentrated. The residue was recrystallized from ethanol giving 5.6g of the protected glycine ester (14.5 mmol, 72% mp 124-125°C).

3.8g of the protected glycine ester (9.8 mmol) was dissolved in 250 mL anhydrous ether and HCl gas was bubbled in, with stirring for 30 minutes. The reaction was stirred for 18 hours at room temperature, then the precipitated product was filtered. After stirring the filtrate another 24 hours, additional product was collected for a total of 3.1g 2,6-dimethyl-4-[2-(2-thienyl)ethenyl]phenyl glycinate hydrochloride (9.6 mmol, 98%) mp 275-277° C.

Anal: Cal	cd. fo	r C16H17N	10 ₂ Se	HCI:						
	С	59.34	Н	5.60	CI	10.95	Ν	4.33	S	9.90
Found:	С	58.97	Н	5.64	CI	11.38	N	4.38	S	9.72

'H NMR: 2.1 (6H, s, CH₃), 4.25 (2H, s, CH₂), 6.8-7.5 (7H, aromatic and olefinic protons), 8.6 (3H, s, NH₃ +).

Inhibition of 5-Lipoxygenase in Human Polymorphonuclear Leukocytes (PMN's)

The inhibition of 5-lipoxygenase is measured by determining whether and to what extent test compounds inhibit the amount of 5-HETE biosynthesized by human PMN's. 5-HETE biosynthesis serves as a marker for arachidonic acid metabolism by 5-lipoxygenase.

Human PMN's (5 x 10 6 cells/0.5 mL) in pH 7.2 phosphate buffer containing Ca $^{2^+}$ (0.6 mM) and Mg $^{2^+}$ -(1.0 mM) were incubated with test compound for 15 minutes at 37°C with shaking. Calcium ionophore A23187 (0.25 mM, 0.01 mL) and [14C] arachidonic acid (0.10 microCi in 0.025 mL 0.01N NaOH) were added, and the mixture incubated another 2.5 minutes. The reaction was terminated by the addition of 0.025 mL of 1.0 N HCI. The mixture was then extracted with ethyl acetate-methylene chloride (2:3) supplemented with 12 microgram/mL cold arachidonic acid to reduce degradation of the metabolites. After concentrating the organic phase, the number of microlitres containing 5 x 10⁴ cpm was determined and that volume applied to a silica gel plate. The plate was developed in methylene-chloride-methanol-acetic acid-water (90:8:1:0.8), air dried, and counted on a Berthold linear TLC analyzer. The integrated area of the 5-HETE band was determined and compared with the control (no drug).

Table 1 shows the percent inhibition of 5-lipoxygenase by compounds of the invention at test concentrations of 1 microM. In cases where the IC50 was determined, the result is shown in microM.

Inhibition of 5-lipoxygenase by Compounds of

General Formula 1

55

50

15

25

35

40

	5-LO (M)		0.07	-		0.08	0.11	0.14		0.1		9.0				
5	ion of 5- M IC ₅₀ (
10	Inhibition of 5-LO % at 1 M IC ₅₀ (M)	•	91	77	62	65	85	76	76	70	70	78	65	84	65	78
15 20	mp(C°)		133-134	125-126	104-105	113-114	85.5-86.5	99-100	16-06	79-80	113-115	45.5-48.5	86-88	109.5-110.5	82-83	95-96.5
25	Formula		C1, H1, OS	C14 H13 C10S	C15 H16 OS	C14 H14 O2 S	C15 H16 O2 S	C16 H18 02 S	C, 4 H, 3 C102 S	C, 6 H, 6 OS	C, 6 H, 6 OS	C, 8 H2 2 0S	C, 3 H, 1 FOS	C, 3 H, 1 Clos	C, 3 H, 1 FO2 S	C14 H14 03 S
30	₩		Ħ	ぢ	CH3	, II	Ħ	I	づ	H	H	Ħ	H	工		# ,
35	TABLE 1		CH,	CH3	GH,	осн	OCH,	OCH ₃	OCH,	ਰੂ,	टा, टा,	(CH ₃) ₂ CH	ĮŦ.	CI	P4	OCH,
40		· **	CH3	CH,	H	H.	H ₃ CH ₂	H ₃ CH ₂ CH ₂	H ₃	H2 =CH-CH2	H ₃ CH ₂	CH3)2 CH	H ₃	H ₃	CH3	OCH,
45	pr.	Cy.	ਰ	IJ	ਬ	ਹ	ਬ	ਬ	. ぴ	ਬ	ਹ	こ	ਹ	ਬ	Õ	Ŏ
50	Compound No.	Ar - Ar	la	1 b	10	14	le	1.5	19	1h	ıi .	1.5	٦k	17	Jm	Jn

No. Are Compound R ₁ R ₂ Formula mp(C ²) inhibition of 5-LO 1 at 1 M IC ₂ 0 (M) 1 at 1 M IC ₂ 0 (M) Are CH ₃ CH ₃ CH ₄ (O ₂ S 144-145 84 0.07) 1 cH ₃ CH ₃ CH ₄ C ₄ H ₄ O ₂ S 122-123.5 82 1 cH ₃ CH ₃ CH ₄ C ₄ H ₄ O ₂ S 122-123.5 82 1 cH ₃ CH ₃ CH ₄ C ₄ H ₄ O ₂ S 122-123.5 82 1 cH ₃ CH ₃ CH ₄ C ₄ H ₄ O ₂ S 122-123.5 82 1 cH ₃ CH ₃ CH ₄ C ₄ H ₄ O ₂ S 122-123.5 82 1 cH ₃ CH ₃ CH ₄ CH ₄ CH ₅ CH ₄ C ₄ S 104-105 75 1 cH ₃ CH ₄ CH ₄ CH ₅ CH ₄ CH ₄ CH ₅ CH ₄ CH ₅ CH ₄ CH ₅ CH ₄	50	45	40	35	25 30	20	15	10	5
CH ₃ CH ₃ CH ₄ C ₄ H ₄ OS 144-145 84 0.07 CH ₃ CCH ₃ C ₄ H ₄ O ₅ S 128-130 70 CH ₃ CCH ₃ C ₄ H ₄ O ₅ S 128-130 70 CH ₃ CH ₅ CCH ₃ C ₄ H ₄ O ₅ S 122-123.5 82 CH ₃ CH ₅ CH ₅ CH ₅ C ₄ H ₄ O ₅ S 101-103 59 CH ₅ H ₄ O ₅ S 170-132 66 CH ₅ CH ₅ CH ₅ CH ₅ CH ₅ CH ₅ H ₄ O ₅ S 170-132 66 CH ₅ CH ₅ CH ₅ CH ₅ CH ₅ CH ₅ H ₄ O ₅ S 170-132 66 CH ₅ CH ₅ CH ₅ CH ₅ CH ₅ CH ₅ H ₆ OS 170-132 66 CH ₅ CH ₅ CH ₅ CH ₅ CH ₅ H ₆ OS 170-134 67 CH ₅ CH ₅ CH ₅ CH ₅ CH ₅ H ₅ NO 163-164 77 CH ₅ CH ₅ CH ₅ CH ₅ CH ₅ H ₅ NO 144-145 62 0.5 CH ₅ CH ₅ CH ₅ CH ₅ CH ₅ H ₅ NO 110-131 59 CH ₅ CH ₅ CH ₅ CH ₅ CH ₅ CH ₅ H ₇ NO 110-131 59 CH ₅ CH ₅ CH ₅ CH ₅ CH ₅ CH ₇ H ₇ NO 111-113 61	mpound.	R	SZ.	Formu	la	mp(C°)	Inhibitio % at 1 M	n of 5-10 IC ₅₀ (M)	
CH ₃ CH ₃ C ₁₄ H ₁₄ OS 144-145 84 0.07 CH ₃ OCH ₃ C ₁₄ H ₁₄ O ₂ S 126-130 70 CH ₃ OCH ₃ C ₁₄ H ₁₄ O ₂ S 126-130 70 CH ₃ CCH ₃ CCH ₃ C ₁₄ H ₁₄ O ₂ S 126-123.5 82 CH ₃ CCH ₃ CCH ₃ C ₁₄ H ₁₄ O ₂ S 122-123.5 82 CCH ₃ CCH ₄ CC C1 C ₁₃ H ₁₁ FO ₂ S 104-105 59 CCH ₃ CCH ₄ CCH ₅ CC ₁₄ H ₁₄ OS 100-132 66 CCH ₂ CCH ₅ CCH ₅ CCH ₅ CH ₅ GC ₁₅ H ₁₄ OS 170-132 66 CCH ₂ CCH ₅ CCH ₅ CCH ₅ CCH ₅ CC ₁₅ H ₁₄ OS 170-132 66 CCH ₅ CCH ₅ CCH ₅ CCH ₅ CCH ₅ CC ₁₅ H ₁₅ NO 163-164 77 CCH ₅ CCH ₅ CCH ₅ CCH ₅ CC ₁₅ H ₁₅ NO 163-164 77 CCH ₅ CCH ₅ CCH ₅ CCH ₅ CC ₁₅ H ₁₅ NO 144-145 62 0.5 CCH ₅ CCH ₅ CCH ₅ CCH ₅ CCH ₅ H ₁₅ NO 130-131 59 CCH ₅ CCH ₅ CCH ₅ CCH ₅ CCH ₅ CC ₁₇ H ₁₇ NO 130-131 61 CCH ₅ CCH ₅ CCH ₅ CCH ₅ CC ₁₇ H ₁₇ NO 111-113 61									
CH ₃ OCH ₃ C ₄ H ₁ ,Q ₂ S 128-130 70 OCH ₃ C ₄ H ₁ ,Q ₂ S 122-123.5 82 CH ₃ C ₁ CH ₂ C ₁ H ₁ ,Q ₂ S 122-123.5 82 CH ₃ C ₁ CH ₂ C ₁ H ₁ ,Q ₂ S 104-105 75 OCH ₃ C ₄ H ₁ ,P ₂ S 104-105 75 CH ₃ CH ₃ C ₄ H ₂ CH ₂ C ₄ H ₁ ,P ₂ S 104-103 59 CH ₂ CH ₂ C ₄ H ₂ CH ₂ C ₄ H ₁ ,P ₂ S 130-132 66 CH ₂ CH ₂ CH ₃ CH ₃ C ₄ H ₁ ,P ₂ S 130-132 66 CH ₂ CH ₂ CH ₃ CH ₃ C ₄ H ₁ ,P ₅ S 130-132 66 CH ₃ CH ₃ CH ₃ CH ₃ C ₄ H ₁ ,P ₅ S 144-145 62 CH ₃ CH ₃ CH ₃ CH ₃ C ₄ H ₁ ,P ₅ S 144-145 52 CH ₃ CH ₃ CH ₃ CH ₃ C ₄ H ₁ ,P ₅ S 144-145 52 CH ₃ CH ₃ CH ₃ CH ₃ C ₄ H ₁ ,P ₅ S 130-131 59 CH ₃ CH ₃ CH ₃ C ₄ H ₁ ,P ₃ S 130-131 59 CH ₃ CH ₃ CH ₃ CH ₃ C ₄ H ₁ ,P ₃ S 111-113 61		GH,	CH ₃	C, 4 H,	4 OS	144-145	84	0.07	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.	СH3	OCH3	CITH	5 20 4	128-130	70		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$.) -	OCH	OCH3	C, 4H,	4 O3 S	97-98	77		
CH ₃ C1 C ₁ 3H ₁ 1ClOS 104-105 75 oCH ₃ F C ₁ 3H ₁ 1FO ₂ S 101-103 59 CH ₃ CH ₂ CH ₃ CH ₃ C ₁ 6H ₁ 6OS 130-132 66 CH ₃ CH ₂ CH ₃ CH ₃ C ₁ 6H ₁ 6OS 97-99 75 CH ₃ CH ₃ CH ₃ CH ₃ C ₁ 6H ₁ 5NO 163-164 77 CH ₃ CH ₃ CH ₃ CH ₃ C ₁ 5H ₁ 5NO 144-145 62 CH ₃ CH ₃ CH ₃ CH ₃ C ₁ 5H ₁ 5NO 144-145 62 CH ₃ CH ₃ CH ₃ CH ₃ C ₁ 5H ₁ 5NO 130-131 59 c CH ₃ CH ₃ CH ₃ C ₁ 7H ₁ 9NO 130-131 59 c CH ₃ CH ₃ CH ₃ C ₁ 7H ₁ 9NO 130-131 61 c CH ₃ CH ₃ CH ₃ CH ₃ C ₁ 7H ₁ 9NO 111-113 61	l ta	टस, टस,	OCH	C, 5 H	8 O ₂ S	122-123.5	82		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	PA	GH,	ប	C ₁ 3 H ₁	1 0105	104-105	75		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.1	OCH	E4	C ₁ 3 H ₁	1 FO2 S	101-103	29		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	=	ट्स, ट्स,	टाम, टाम,	C, H,	80 g	130-132	99		
CH ₃ (P=2), CH ₃ (P=3), Or (P=4): CH ₃	•	CH2 -CHCH2	ਦੇ,	C, & H,	80 s	66-16	75		
= CH ₃ (p=2), CH ₃ (p=3), OF (p-4): CH ₃ NO 163-164 77 CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ NO 163-164 77 CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ NO 144-145 62 0.5 CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ NO 130-131 59 CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH C ₁₉ H ₂ NO 130-131 59 CH ₃ CH ₃ CH CH ₃ CH C ₁₉ H ₂ NO 111-113 61						e (Bhasail			
CH ₃ CH ₃ CH ₄ CH ₅			(p=2),	5		((p-4):		
CH ₃ CH ₃ CH ₁₅ NO 163-164 77 CH ₃ CH ₃ CH ₁₅ NO 144-145 62 0.5 CH ₃ CH ₃ CH ₃ CH ₁₅ NO 208-209 46 CH ₃ CH ₃ OCH ₃ CH ₁₅ NO 208-209 46 CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₁₅ NO 144-145 52 0.9 CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₁₅ NO 130-131 59 CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₁₇ NO 111-113 61		Z				JZ Z			ద
CH ₃ CH ₃ CH ₃ C ₁₅ H ₁₅ NO 144-145 62 0.5 CH ₃ CH ₅ CH ₅ CH ₁₅ NO 208-209 46 CH ₃ OCH ₃ CH ₅ C ₁₅ H ₁₅ NO 144-145 52 0.9 CH ₃ CH ₅ CH ₅ CH ₅ CH ₁₅ NO 130-131 59 CH ₅ CH ₅ CH ₅ CH ₅ CH ₅ CH ₅ NO 136-138 73 0.6 CH ₅ CH ₅ CH ₅ CH ₅ CH ₅ CH ₅ NO 111-113 61	***	ਚੰ	CHr		C15 H15 NO		7.7		p=2
CH ₃ CH ₅ CH ₅ CH ₅ C ₁₅ H ₁₅ NO 208-209 46 CH ₅ CH ₅ OCH ₃ C ₁₅ H ₁₅ NO ₂ 144-145 52 0.9 CH ₅ CH ₅ CH ₅ CH ₅ CH ₅ CH ₅ CH ₇ H ₁₉ NO 130-131 59 CH ₅ CCH ₅ C ₂ CH ₅ CCH C ₁₉ H ₂₃ NO 136-138 73 0.6 CH ₂ CCH ₂ CCH ₅ CCH ₅ CCH C ₁₇ H ₁₇ NO 111-113 61	. 4	់ ទី	, £		C15 H15 NO	144-145	62	0.5	C and
CH ₃ CH ₃ OCH ₃ C ₁₅ H ₁₅ NO ₂ 144-145 52 0.9 a CH ₃ CH ₂ CH ₃ CH ₂ C ₁₇ H ₁₉ NO 130-131 59 b (CH ₃) ₂ CH (CH ₃) ₂ CH C ₁₉ H ₂₃ NO 136-138 73 0.6 c CH ₂ CH ₂ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₁₇ NO 111-113 61	! >	, E	THE THE		C, 5 H, 5 NO	208-209	46		p≖d
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$. 13	CH3	OCH3		C, 5 H, 5 NO2		22	0.9	£#ď
$(CH_3)_2$ CH	e e	CH, CH,	CH ₃ CH ₂		C17 H19 NO		59		£=ď
CH2 -CHCH2 CH3 CH3 C1,7 H1,7 NO 111-113 61	מינו	(品,),品	(CH ₃) ₂	E	Ci 9 H2 3 NO		73	9.0	C=ď
	30	CH ₂ = CHCH ₂	CH3		C, 7 H, 7 NO	111-113	19		p=3

50	45	40	35	30	20 25	15	10	5
Compound No.	4	: :	R2	· ×	Formula	mp(Co)	inhibiti % at 1 M	Inhibition of 5-LO % at 1 M IC ₅₀ (M)
Are A Commenter of the Area of	The state of the s							
lad	CH3		CH.	H	C16H160	139-141	72	0.18
lae	E		E	4-CH ₃	C17H180	115-117	75	0.25
laf	E		E	4-CH2 CH3	C, 8 H200	108-109	62	
laq	3 22		2	4-0CH3	C, 7 H, 8 02	139-141	88	0.2
lab	=		=	4-C1	C, 6 H, 5 C10	146-148	16	0.3
lai	z		E	3,4-d1c1	C18 H14 C120	145.5-147	58	
laj	E		E	4-F	C16H15FO	141.5-143	77	0.15
lak	E		E	3-CF3	C, 7 H, 5 F3 0	109-110.5	84	1.0
lal	E		=	3-CH3	C17H180	115-117	84	0.2
lam	E		OCH ₃	4-F	C1 & H1 5 FO2	126.5-128	7.1	
lan	E		****	3-CF3	C17H15F3O2	72-73	7 7	
lao	CH3 (班	E	4-0CH3	C1 8 H2 0 O3	113-114	99	
lap	E	ı	unio Auss	4-1	C17H17F02	121-122	49	
lad	CH		CE,	4-0Bu	C2 0 H2 4 O2	138-139	53	
1 10	E		T	4-0Pr	C19 H22 O2	127-128	81	
188	E		E	XX	C19 H22 O3	143-145	70	
lat	GH, C	(H ₂	टा, टा,	4-0CH3	C1 9 H2 2 O2	122.5-123.5	55	
lau	E	ľ	#	4-CH3	C1 9 H2 2 0	113-114	70	
							cont	14.

Compound No.	E.	R ₂	×	Formula	mp (C°)	Inhibition of 5-LO % at 1 M IC ₅₀ (M)
lav	(CH ₃) ₂ CH	(CH ₃) ₂ CH	4-0CH3	C _{2 1} H _{2 6} O ₂	83-85	7.7
law	=	E .	3,4-diocH3	C2 2 H2 8 03	161-163	57
lax	Ē		4-F	C2 0 H2 3 FO	51-53	32
lay	,	dar Junio	3-CF3	C2 1 H2 3 F3 O	55-57.5	34
laz	OCH	Ē4	4-0CH3	C16 H15 FO3	151-152	63

Inhibition of Antigen-Induced, SRS-A Mediated Bronchioconstriction in Conscious Guinea Pigs

This model is used to measure the ability of a drug to inhibit 5-lipoxygenase in vivo. SRS-A (slow reacting substance of anaphylaxis - also referred to as leukotrienes C₄, D₄ and E₄) is released by cells in the sensitized guinea pig upon stimulation by antigen, resulting in bronchioconstriction and change in pulmonary function. The leukotrienes are biosynthesized from arachidonic acid by the enzyme 5-lipoxygenase. Therefore, an inhibitor of 5-lipoxygenase could reduce the production of SRS-A and attenuate the bronchioconstriction.

Male outbred Hartley strain albino guinea pigs (250-300 grams) were sensitized by i.p. injection of ovalbumin (3mg/kg) followed by an i.p. injection of Bordetella pertussis (about 5x109 killed organisms) and studied 14 days later.

Sensitized guinea pigs (fasted for 18 hours) were anesthesized and a catheter-tip pressure transducer was inserted into the pleural space of each animal. The animals are pretreated (i.p.) with pyrilamine (10mg/kg) and indomethacin (10mg/kg) to antagonize the effects of histamine and inhibit cyclooxygenase respectively. Cyclooxygenase products and histamine are released endogenously along with SRS-A, upon antigen challenge. Test compound is also administered i.p., 60 minutes before antigen challenge.

The guinea pigs were placed in a "head out" plethysmograph and allowed to recover from anesthesia. Airflow into the respiratory system, pleural pressure and airflow signals were measured, and tidal volume, dynamic pulmonary compliance (C_{dyn}) and breathing frequency were calculated according to a published technique (E.G. Damen et al., Toxicol. Appl. Pharmacol., 1982, 64, 465). After baseline values for pulmonary function were obtained, the animals were challenged by aerosolized ovalbumin. The overall changes in pulmonary function parameters were determined by calculating the mean changes from baseline during the period 5 to 15 minutes following antigen challenge.

Drug efficacy was determined by comparing the mean of the percent decrease in $C_{\rm dyn}$ from baseline in drug treated animals (N = 4-6) to control animals (N = 10-12).

Table 2 shows the effect of several of the compounds from Table 1 in the antigen-induced, SRS-A mediated bronchioconstriction model.

TABLE 2

Compound No. ^{1,2}	% Inhibition of Bronchioconstriction ³
1a	75
1d	41
1e	51
1f	57
10	26
1x	39
1ab	34
1ad	53
1ae	59
1 ag	28
1aj	43
tal	49

- 1. Compound number refers to the compound numbers found in Table 1.
- 2. Compounds were administered i.p. in a 5% Tween 80 suspension, at a dose of 30mg/kg.
- 3. % inhibition of the decrease in $C_{\rm dyn}$ seen in antigen challenged animals.

Inhibition of Antigen-Induced, Late Phase Inflammatory Cell Infiltration in Guinea Pigs

This model is used to measure the ability of a drug to inhibit 5-lipoxygenase in vivo. In addition to SRS-A, a chemotactic substance LTB₄ is also released by cells in the sensitized guinea pig lung upon stimulation by antigen. As a result there is a measurable influx of cells into the lung. Therefore, an inhibitor

10

15

30

35

40

45

50

of 5-lipoxygenase could reduce the formation of LTB4 and thereby reduce the cell influx into the lung.

Male outbred Hartley strain albino guinea pigs (250-300 grams) were sensitized to ovalbumin as in the procedure for inhibition of antigen-induced, SRS-A mediated bronchioconstriction in conscious guinea pigs.

4.2

Sensitized guinea pigs were fasted and pretreated with pyrilamine and indomethacin as in bronchioconstriction testing procedure. Test compounds, suspended in 1% acacia, were administered 60 minutes before antigen challenge. Four hours after challenge with aerosolized ovalbumin, the animals were anesthetized, and exsanguinated by severing of the abdominal artery and inferior vena cava. Whole lung lavage was performed with three 5 mL aliquots of normal saline buffered with sodium bicarbonate.

Total cell counts were performed on a Coulter Counter, and differential cell counts were performed. Compounds were evaluated for their ability to alter the antigen-induced total cell influx and, more specifically, neutrophil (PMN) influx.

Table 3. Inhibition of Antigen-Induced, Late Phase Inflammatory Cell Infiltration in Guinea Pigs.

TABLE 3

Compound No.1	Dose(mg/kg)	Route	<pre>% Inh. Total Cells</pre>	% Inh.
la.	30	ip	78	95
la	30	po	51	14
lf	30	ip	77	54
lh	10	ip	55	46
li	30	ip	51	74
li	30	po	65	51
2a	10	po	89	93

1. Compound No. refers to the compound numbers found in Table 1 except for 2a which refers to a prodrug wherein R_1 and R_2 are CH_3 ; Ar is 2-thienyl; and X is $-CH_2$ CH_2 .

Ex Vivo Inhibition of A23187-Induced LTB4 Generation in Squirrel Monkeys.

Incubation of squirrel monkey whole blood with calcium ionophore A23187 stimulates the production of LTB4. This LTB4 production can be inhibited by a lipoxygenase inhibitor in vitro by incubating the blood with the inhibitor prior to A23187 challenge. By dosing squirrel monkeys with a lipoxygenase inhibitor prior to withdrawal of a blood sample, one can determine the ability of the lipoxygenase inhibitor to be absorbed into the bloodstream by measuring the inhibition of A23187 induced LTB4 production ex vivo.

Squirrel monkeys (400-650g) were fasted for 18 hours, anesthetized and dosed either orally or intraperitoneally with test compound. After the desired time period, blood was withdrawn from the femoral vein. The blood (0.5 mL) was heparinized, preincubated at 37°C for 5 minutes and stimulated with A23187

15

40

45

in DMSO to give a final concentration of 30 microM. The reaction was terminated with EGTA (final concentration 10 microM), and the blood centrifuged. Levels of LTB₄ in the plasma were then determined by radioimmunoassay.

The results shown in Table 4 illustrate the ability of a prodrug of type 2a or 2b to be absorbed after ip or po dosing compared to the parent compound 1a.

TABLE 4

Table 4. Ex	Vivo Inhibiti		187-Induced LTE key Blood.	64 Generatio	n in Squ	iirrel
Compound No.1	Dose (mg/kg)	Route	Time After Dosing(min.)	Percent Inh.		
				Monkey #1	2	
1a	30	ip²	60	47	12	
1a	30	po ²	60	18	0	
2a	30	ip ³	60	62	83	٤
2a	30	po ³	60	50	71	(
2a	30	po ³	120	41	100	6
2a	30	po ³	240	43	65	10
2b	30	ip ⁴	60	78 🔻	56	₹
2b	30	po ⁴	60	62	54	33

- 1. Compound No. 1a refers to Compound 1a in Table 1. 2a refers to a prodrug wherein R_1 and R_2 are CH_3 , Ar is 2-thienyl and X is CH_2CH_2 2b refers to a prodrug wherein R_1 and R_2 are CH_3 , Ar is 2-thienyl, R_5 , R_6 and R_7 are H and n=1, hydrochloride salt.
- 2. Suspended in 1% acacia and administered at 6 mL/kg.
- 3. Dissolved in dilute alkali and administered at 6 mL/kg.
- 4: Dissolved in distilled water and administered at 6 mL/kg.
- 5. Administered at 24 mg/kg instead of 30 mg/kg.

Additionally, the following compounds given by way of Example, also within the scope of the present invention, may be made with techniques known of those skilled in the art.

40

5

10

15

20

25

30

45

50

10

	R2	R ₅
	CH ₃	CO2Et
15	CH ₃	H
	CH ₃	H
	CH ₃	H

20 CH₃ H

25

CH₃ H

CH₃ CH₃

40

CH₃ n-Bu

5*0*

. 55 Ar Ph

2-napthyl
3-thianapthenyl
1-napthyl

 $\mathcal{X}^{\mathbf{k}}$

F

F

F

H CH₃ 5 10 H CH₃ 15 CH3 H 20 25 CH₃ H 30 CH3 H 40 H CH₃ 45 H CH₃ 50

t-Bu H

5

ŧij.

10

15

Claims

1. Compounds having the general formula I

25

20

wherein

R₂ and R₂ are each independently branched or straight chained alkyl, allyl, alkoxy e.g. methoxy or halogen, R₃ is hydrogen, alkyl or -CO₂R₈, wherein R₈ is hydrogen or C₁-C₃ alkyl

G is a) -OH

b) the group R_3CO_2 - wherein R_3 is (i) HO_2C -X wherein X is an optionally substituted hydrocarbon chain with or without heteroatoms, or (ii) the group

35

wherein R_{10} and R_{11} are hydrogen or alkyl, R_{12} is hydrogen, alkyl or aryl possibly containing heteroatoms or R_{11} and R_{12} together form a ring, or

c) the group HCO2- provided R5 is -CO2R8 and R8 is hydrogen or C1-C3 alkyl, and

Ar is an optionally substituted heteroaromatic or aromatic ring, with proviso that Ar is not

45

wherein --- is single or double bond and X' and Y are (i) N (ii) NR4, where R4 is H, lower alkyl,

where R₁ and R₂ may be the same or different and are H or lower alkyl, C(O)R₄ wherein R₄ is hydrogen and lower alkyl, cycloalkyl of from three to twenty carbons having from three to eight ring carbons, aryl or aralkyl;

(iii) O; or (iv) S;

10

15

and the further proviso Ar is not

when R₁ and R₂ are both methyl, or another pharmaceutically acceptable ester or pro-drug thereof or salt or acid addition salt of the foregoing compounds.

- 2. A compound as recited in Claim 1 wherein Ar is 2- or 3-thienyl.
- 3. A compound as recited in Claim 1 wherein Ar is 2-thienyl.
- 4. A compound as recited in Claim 1 wherein Ar is 1-napthyl or 2-napthyl.
- 5. A compound as recited in Claim 1 wherein Ar is 3-thianapthenyl.
- 6. A compound as recited in Claim 1 wherein Ar is phenyl optionally mono- or poly-substituted by halogen, alkyl, alkoxy or trifluoromethyl.
 - 7. A compound according to in Claim 1, this compound being

35

40

45

50

Ho
$$CH_3$$
 CH_3
 CH_3
 $CH = CH - C_3$

Haco
$$CH_S$$

$$CH = CH - CH$$

$$CH_{3}CH_{3}$$

$$H_{3}CO$$

$$CH=CH$$

$$CH_2CH_2CH_3$$

$$HO$$

$$CH_2CH_3$$

$$CH_2CH_3$$

Ho
$$CH_3$$

$$CH = CH - CH_3$$

Ho
$$CH_3$$

$$CH = CH - CH_3$$

H₃C
$$H$$
 $CH = CH - F$

$$H_3 = CH = CH - CH_3$$

HC
$$CH = CH - CI$$

or

 $\langle \cdot \rangle$

15

70

20

25

30

8. Compounds as recited in Claim 1 having the following formula:

4G

35

wherein R₃ is HO₂C-X, where X is an optionally substituted hydrocarbon chain with or without heteroatoms and

R₅ is hydrogen or C₁-C₅ alkyl, or CO₂R₈, wherein

- R₈ is hydrogen or C₁-C₃ alkyl, or other ester thereof, or any salt thereof.
 - 9. Compounds as defined in claim 1, having the formula

50

5

wherein
$$R_3$$
 is (R_{10}) (R_{11}) N (CH) n' R_{12}

15

20

25

where R₁₀ and R₁₁ are each independently hydrogen or alkyl, R₁₂ is hydrogen, alkyl or aryl, with or without heteroatoms or R11 and R12 form a ring, and n is an integer from one to five, and R5 is hydrogen, or a salt thereof.

10. Compounds as recited in Claim 1 having the following formula:

30

wherein R₃ is HO₂C-X, where X is an optionally substituted hydrocarbon chain with or without heteroatoms, or R₃ is hydrogen, or R₃ is (R₁₀), R₁₁).

- where R₁₀ and R₁₁ are each independently hydrogen or alkyl, R₁₂ is hydrogen, alkyl or aryl, with or without heteroatoms or R₁₁ and R₁₂ form a ring, and n is an integer from one to five, and R₅ is CO₂R₈, where R₈ is hydrogen or alkyl or other ester thereof, or a salt thereof.
 - 11. A compound as defined in any one of the foregoing claims for use in the treating a disease in a warm blooded animal by inhibiting the enzyme 5-lipoxygenase.
- 12. A pharmaceutical composition which comprises a compound as defined in any one of claims 1 to 11 and a pharmaceutically acceptable carrier or excepient.
 - 13. A method of producing a compound as defined in any one of claims 1 to 11 which comprises
- a) to prepare a compound of formula 1 wherein R₅ is hydrogen and G is -OH, reacting a compound of formula 7

50

45

 \mathcal{O}

with an aryl or heteroaryl acetic acid 8 ArCH₂CO₂H 8 to yield a compound of formula 1" having the structure

wherein Ar, R1 and R2 are as defined above,

b) to prepare a compound of formula 1, wherein R₅ is CO₂R₈ and G is -OH, reacting a compound of formula 7 as defined above with an aryl or heteroaryl acetic acid ester having the formula 9

ArCH₂CO₂R₈ 9

to yield a compound having formula 10

5

10

15

20

25

30

35

40

45

50

wherein Ar, R₁, R₂ are as defined above and R₈ is C₁-C₃ alkyl,

c) to provide a compound of formula 1 wherein R₈ is hydrogen, hydrolysing an ester of formula 10'

wherein R, which may be R_8 when this is C_1 - C_3 alkyl, is an ester forming group capable of being removed in a manner known per se, to yield the free acid 11

wherein Ar, R₁ and R₂ are as defined above:

- d) to provide a compound of formula 1 wherein R₅ is hydrogen, decarboxylation of an acid of formula 11 to yield a compound of formula 1"
 - e) to yield a compound of formula 1 wherein R₅ is C₁-C₅ alkyl, deprotecting a compound having the formula 12

wherein R1, R2 and Ar are as defined above and Pg is a hydroxy protecting group f) to yield a compound of formula 13

reacting a compound of the formula 1 wherein G is OH with a compound of the formula

g) to prepare a compound of formula 1 wherein G is the group

$$(R_{10}) (R_{11}) N (CH)_{n} - CO_{2} - R_{12}$$
15

as defined above,

reacting a compound of the formula 1 wherein G is OH and R₅ is alkyl or a compound of formula 10 as defined above with a compound of the formula

16

wherein R1, R2 and R5 are as defined above, R10, and R11, are hydrogen or alkyl with the proviso that if one is hydrogen the other is alkyl or a removable protecting group, and R12 is hydrogen, alkyl or aryl which may contain at least one heteroatom, and wherein R11, and R12 may together form a ring, and n is an integer from one to five, and thereafter removing the groups R10, and/or R11, when these are protecting groups and if necessary or desired removing the group R; and thereafter, if desired, treating the product of process a) to g) by one or more of the following finishing steps in any desired order:

i) removing an ester group R₈ to yield a free acid

5

25

35

40

45

ii) esterifying a free acid to yield a pharmaceutically acceptable ester wherein the ester group is capable of being cleaved in vivo to yield the free acid

iii) forming a pharmaceutically acceptable salt of the free acid e.g. the salt of an alkali metal or alkaline earth metal e.g. sodium, potassium or calcium

iv) forming an acid addition salt of a compound of formula 1 in particular such a compound wherein

$$R_3$$
 is the group $(R_{10})(R_{11})N(CH)_n$ - R_{12}

EUROPEAN SEARCH REPORT

	DOCUMENTS CONSIDERED TO BE RELEVANT				EP 89104251.7		
Category	Citation of document with of relevant	n indication, where app ant passages	ropriate,	Relevant to claim	l .	CATION OF THE TION (Int. Cl.4)	
A	US - A - 3 390 1	47 (R.C.JAI	EGER)	1,13	C 07 E	333/16	
	* Totality *				C 07 E	213/30	
	• • • • • • • • • • • • • • • • • • •	•••			C 07 C	39/21	
A	US - A - 3 188 3	<u>15</u> (F.J.VII	LLANI)	1,13	C 07 C	43/23	
	* Claims *				A 61 K	31/33	
	•	antinea.			A 61 K	31/05	
D,X, P	<u>US - A - 4 743 6</u> * Totality *	06 (E.S.LA2	ZER)	1,11- 13			
	-						
D,X	CHEMICAL ABSTRAC 25, June 19, 197 USA			1			
	G.N.BOGDANOV et properties of st hydroxystyrylpyr page 445, column	erically hi	indered		TECHN	ICAL FIELDS	
	no. 153 516s			-	SEARCI	HED (Int. Cl.4)	
	<pre>& Khim.Geterotsi 7(12), 1660-4</pre>	ki.Soedin.	1971,		C 07 E	333/00	
		Name			C 07 E	213/00	
A	CHEMICAL ABSTRAC	TS. vol. 75	5. no.	13	C 07 C	39/00	
	3, July 19, 1971 USA		·		C 07 C	43/00	
	M.FETIZON et al. silver carbonate dations of pheno compounds." page 416, column no. 19 855c	/celite. Value of the land relationships and relationships are relationships and relationships and relationships and relationships and relationships and relationships and relationships are relationships and relationships and relationships and relationships are relationships and rel	. Oxi- ated	•			
D,A	& J.Org.Chem. 19	71, 36(10)	, 1339-41				
			•				
	The present search report has b	een drawn up for all cla	nims				
	Place of search	Date of completi	ion of the search		Examin	er	
	VIENNA	16-06-	1989		HOFBAU	JER	
Y: pa do A: te O: no	category of cited boot articularly relevant if taken alone articularly relevant if combined w ocument of the same category chnological background on-written disclosure termediate document		T: theory or print E: earlier pate after the fili D: document of document of document	nt document, ng date cited in the ap cited for other	, but published publication reasons	ed on, or	

BNSDOCID: <EP____0334119A1_I_>

EUROPEAN SEARCH REPORT

	DOCUMENTS CONSI	EP 89104251.7		
Category	Citation of document with of releva	Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int. Cl.4)	
A	CHEMICAL ABSTRAC 5, August 4, 196 USA H.D.BECKER "New	9, Columbus, Ohio,	1	
		ion of hydroxystil-		
D,A	& J.Org.Chem. 19	69, 34(5), 1211-15		
X		TS, vol. 72, no. 70, Columbus, Ohio,	1,13	
	·			
	no. 66 510j	abboraco		TECHNICAL FIELDS SEARCHED (Int. Cl.4)
D,X	& Justus Liebigs 730, 31-46	Ann. Chem. 1969,		
		#		
D,X	CHEMICAL ABSTRAC 9, March 3, 1980 USA	CTS, vol. 92, no. Ohio,	1	
	media. Part III. stilbenes, arylo arylmethanes on wood meal with a liquor in the propage 105, column no. 78 366t	lignins in alkaling The formation of coumarans and di- treatment of spruce alkali and white resence of xylenols a 2, abstract-		
	B 33(8), 580-2			
	The present search report has b			
	Place of search VIENNA	Date of completion of the search $16-06-1989$		Examiner HOFBAUER
Y: pa	CATEGORY OF CITED DOCL articularly relevant if taken alone articularly relevant if combined we ocument of the same category achnological background on-written disclosure attermediate document	E: earlier pat after the fi oith another D: document L: document	ent documenting date cited in the activities for other the same part of th	erlying the invention it, but published on, or application er reasons atent family, corresponding

EUROPEAN SEARCH REPORT

-3-

Cataca	DOCUMENTS CONS Citation of document with	EP 89104251.7		
Category	of relev	vant passages	to claim	APPLICATION (Int. Cl.4)
P,X		051 (ARIZONA STATE	1 ' '	
	UNIVERSITY)		12	
	* Claims *			
	-			
	,			
			Transported the state of the st	TECHNICAL FIELDS SEARCHED (Int. Cl.4)
				OLAHOHED (HIL OF ")
		•		
			٠	
1				
		•		
	The present search report has t	been drawn up for all claims		
	Place of search	Date of completion of the search		Examiner
	VIENNA	16-06-1989		HOFBAUER
X: pa Y: pa do A: teo	CATEGORY OF CITED DOCU rticularly relevant if taken alone rticularly relevant if combined w cument of the same category chnological background	JMENTS T: theory or p E: earlier pate after the fi with another D: document L: document	orinciple under ent document, ling date cited in the ap cited for other	lying the invention but published on, or plication reasons
0 : no	chnological background n-written disclosure ermediate document	&: member o		ent family, corresponding