Adrian Kramkowski, Abdelhadi Fares, Yousef Al Sahli und Abdelraoof Sahli

Modul: Compilerbau

Aufgabe A2.2 – Akzeptierte Sprache, Determinismus & Darstellung

Gegeben: PDA mit folgenden Übergängen, akzeptierender Zustand q4:

$$\delta(q0, a, \perp) = (q0, A\perp)$$

$$\delta(q0, a, A) = (q0, AA)$$

$$\delta(q0, b, A) = (q1, BA)$$

$$\delta(q1, b, B) = (q1, BB)$$

$$\delta(q1, c, B) = (q2, \epsilon)$$

$$\delta(q2, c, B) = (q2, \epsilon)$$

$$\delta(q2, d, A) = (q3, \epsilon)$$

$$\delta(q3, d, A) = (q3, \epsilon)$$

$$\delta(q3, d, A) = (q3, AA) \leftarrow doppelt (Konflikt)$$

$$\delta(q3, \epsilon, \perp) = (q4, \epsilon)$$

Ist der PDA deterministisch?

Nein.

Begründung: In Zustand q3 bei Eingabe d und Stacktop A sind *zwei* unterschiedliche Übergänge definiert:

- $\delta(q3, d, A) = (q3, \epsilon)$ (A entfernen)
- $\delta(q3, d, A) = (q3, AA)$ (A durch zwei A ersetzen)

Damit verletzt der Automat die DPDA-Bedingung "höchstens ein Übergang je (Zustand, Eingabesymbol, Stacktop)".

Hinweis: Der ε-Übergang $\delta(q3, \epsilon, \perp)$ widerspricht dem Determinismus *nicht*, weil es in q3 für \perp keinen Eingabe-Übergang gibt. Das Problem ist

7-Tupel des PDAs

P = (Q, Σ, Γ, δ, q0, \bot , F)

Zustände: Q = { q0, q1, q2, q3, q4 }

Eingabealphabet: $\Sigma = \{ a, b, c, d \}$

Stackalphabet: $\Gamma = \{ \bot, A, B \}$

Startzustand: q0

Startstapelzeichen: 1

Akzeptierende Zustände: F = { q4 }

Automat (Beschreibung der Phasen)

Phase / Zustand	Gelesen	Stack-Aktion	Interpretation
q0 (a-Phase)	а	A pushen (auf ⊥: A⊥ , auf A: AA)	Zähle a als Anzahl A auf dem Stack.
$q0 \rightarrow q1$	ь (bei д oben)	в vor a legen (ва)	Wechsel in die b- Zählphase, erste Markierung в oben.
q1 (b- Phase)	ь (bei в)	в pushen → вв	Zähle weitere b über einen B-Stack.
q1 → q2	с (bei в)	в рор	Start der c-Phase, erstes B abbauen.
q2 (c- Phase)	с (bei в)	в рор	Alle B müssen durch c abgebaut werden.
$\text{q2}\rightarrow\text{q3}$	d (bei A)	а рор	Wechsel in die d-Phase, beginnt A abzubauen.
q3 (d- Phase)	d (bei A)	nicht-deterministisch: entweder a pop oder AA push	Pro gelesenem d kann die A-Menge um ±1 verändert werden.
q3 → q4	ε (bei ⊥)	_	Akzeptiere im Endzustand, wenn der Stack leer ist.

Welche Sprache akzeptiert der PDA?

Wörter haben eine **Phasenform** a^i b^j c^k d^t mit jeweils mindestens einem Symbol in jeder Phase (weil es sonst keine passende Regel gibt): i, j, k, t \geq 1.

- 1. a-Phase (q0): legt i mal A auf den Stack.
- 2. b-Phase (q1): legt j mal в oben drauf.
- 3. c-Phase (q1/q2): muss j mal B abbauen \rightarrow erzwingt k = j . Sobald alle B weg sind, liegt oben A .
- 4. **d-Phase (q2/q3):** pro d darf die Anzahl der A um ±1 geändert werden (wegen der zwei Regeln in q3). Akzeptiert wird nur, wenn nach allen d der Stack leer ist.

Folgerung (existiert ein akzeptierender Lauf):

Aus A^i kann man mit t Schritten, die jeweils ±1 ändern, genau dann 0 machen, wenn

- t ≥ i (man braucht mindestens so viele Schritte wie anfängliche A), und
- t ≡ i (mod 2) (jede ±1-Änderung kippt die Parität).

Damit akzeptiert der gegebene nicht-deterministische PDA genau die Wörter

```
L = { a^i b^j c^k d^t \mid i,j,k,t \ge 1, k = j, t \ge i, t \equiv i \pmod{2} }.
```

Intuitiv: Erst gleich viele b und c, dann eine d-Strecke, deren Länge zur anfangs eingelesenen Anzahl a passt (gleiche Parität und nicht kürzer).