Linear algebra

Inner product $\langle \psi | \times | \phi \rangle = \langle \psi | \phi \rangle = \sum_{i=1}^n \psi_i^* \phi_i$. Outer product $| \psi \rangle \langle \phi | = \sum_{i=1}^n \sum_{j=1}^n \psi_i \phi_j^* | i \rangle \langle j |$.

Tensor / Kronecker product $|\psi\rangle\otimes|\phi\rangle=|\psi_1\phi,\psi_2\phi,...,\psi_n\phi\rangle$.

$$A\otimes B=egin{bmatrix} a_{11}B & \cdots & a_{1n}B \ dots & \ddots & dots \ a_{m1}B & \cdots & a_{mn}B \end{bmatrix}.$$

Hadamard / Element-wise product $|\psi\rangle \circ |\phi\rangle = |\psi\rangle \odot |\phi\rangle = |\psi\phi\rangle = |\psi_1\phi_1,\psi_1\phi_2,...,\psi_n\phi_n\rangle$.

$$A\circ B=A\odot B=egin{bmatrix} a_{11}b_{11}&\cdots&a_{1n}b_{1n}\ dots&\ddots&dots\ a_{m1}b_{m1}&\cdots&a_{mn}b_{mn} \end{bmatrix}.$$

Eigenvalues λ_i / (normalised) eigenvectors $|v_i
angle \boxed{U|v_i
angle=\lambda_i|v_i
angle}$, for unitary matrix U .

For diagonalisable matrix, spectral decomposition $U = \sum_{i=1}^n \lambda_i |v_i
angle \ \langle v_i|.$

Unitary \cap Hermitian: $A^2 = I$ (self-inverse), e.g. X, Y, Z, H.

 \subseteq Hermitian $A=A^\dagger$ (self-adjoint) \lor **Unitary** $A^\dagger A=I \implies A^{-1}=A^\dagger$ (unique inverse).

 \subseteq normal matrices $A^\dagger A = A A^\dagger.$

Postulates of quantum mechanics

Superposition, interference

Entanglement: non-separability

Concepts in quantum mechanics

Measurement and the Helstrom-Holevo bound $p \leq rac{1+\sin heta}{2}$, where $|\langle\psi_a|\psi_b
angle|=\cos heta$.

The no-signalling principle: after measurement, the entanglement is collapsed, thus not possible to transmit information.

The no-cloning principle: impossible to copy an unknown quantum state. $\nexists U.U(|\psi\rangle|0\rangle) = |\psi\rangle|\psi\rangle$.

The no-deleting principle: impossible to delete one of the unknown quantum state copies. $\nexists \tilde{U}.\tilde{U}(|\psi\rangle|\psi\rangle)=|\psi\rangle|0\rangle.$

Quantum circuits

Universal gate set: $\{H, T, CNOT\}$. Pauli gates X = HZH, Y = iXZ = SXSZ.

- proof for Z = HXH (L8. quantum search)
 - either by matrix multiplication.
 - \circ or geometric interpretation (X/Z: rotate 180 degree about x/z-axis, H: swap x and z axis).

Rotation
$$R_k=\mathrm{diag}(1,e^{irac{2\pi}{2^k}})$$
, $R_k^\dagger=\mathrm{diag}(1,e^{-irac{2\pi}{2^k}})$. $R_0=I$, $R_1=Z$, $R_2=S$, $R_3=T$, \ldots

 $R_z(heta)=\mathrm{diag}(e^{-irac{ heta}{2}},e^{irac{ heta}{2}})$, ignoring the global phase.

$$egin{align} T = \mathrm{diag}(1,e^{irac{\pi}{4}}) & = R_3 = R_z(rac{\pi}{4}) = e^{irac{\pi}{8}}\mathrm{diag}(e^{-irac{\pi}{8}},e^{irac{\pi}{8}}). \ S = T^2 = \mathrm{diag}(1,e^{irac{\pi}{2}}=i) & = R_2 = R_z(rac{\pi}{2}) = e^{irac{\pi}{4}}\mathrm{diag}(e^{-irac{\pi}{4}},e^{irac{\pi}{4}}). \ Z = S^2 = \mathrm{diag}(1,e^{i\pi}=-1) & = R_1 = R_z(\pi) = e^{irac{\pi}{2}}\mathrm{diag}(e^{-irac{\pi}{2}},e^{irac{\pi}{2}}). \ I = Z^2 = \mathrm{diag}(1,1) & = R_0 = R_z(0). \ \end{array}$$

[T,S] are not self-invertible and Z is self-inverse].

$$CNOT = CX = (I \otimes H) \times CZ \times (I \otimes H)$$
, by self-inverse of X,Z .

SWAP can be decomposed into 3 CNOTs.

Entanglement circuits via Hadamard-CNOT combination $\ket{ ext{CNOT}(H\otimes I)|00} = rac{1}{\sqrt{2}}(\ket{00}+\ket{11})$

Quantum information applications

Teleportation

send a qubit via two bits.

Super_dense coding

send two bits via one qubit.

sender:
$$|00\rangle \to_{superposition}^{H\otimes I+{\rm CNOT}}$$
 Bell state $\to_{{\rm two\; bits}}^{\{I,X,Z,XZ\}}$ Bell states.

receiver: Bell states $ightarrow ^{ ext{CNOT}}_{interference}^{H\otimes I}$ two bits.

Lecture 7: Deutsch-Jozsa algorithm

 $f:\{0,1\}^n o \{0,1\}$, which is either constant or balanced.

- ullet Prepare state: $|\psi
 angle |angle .$
 - \circ where the uniform superposition $|\psi
 angle=|+
 angle^{\otimes n}=rac{1}{\sqrt{2^n}}\sum_{x\in\{0,1\}^n}|x
 angle$ of all $N=2^n$ states.
- ullet Unitary operation U_f , a phase operator on the state |x
 angle ,

$$egin{aligned} & U_f|x
angle|y
angle = |x
angle|y\oplus f(x)
angle ext{, where }y\in\{0,1\}.\ & \circ U_f|x
angle|-
angle = (-1)^{f(x)}|x
angle|-
angle. \end{aligned}$$

ullet Interference $H^{\otimes n}$ and measure the first n qubits in $|0
angle^{\otimes n}$ basis.

$$oxed{H^{\otimes n}|x
angle=rac{1}{\sqrt{2^n}}\sum_{z\in\{0,1\}^n}(-1)^{x\cdot z}|z
angle}$$

Proof: as $|x
angle=|x_1...x_n
angle$, where $x_i\in\{0,1\}$ and

$$egin{aligned} H|x_i
angle &=rac{1}{\sqrt{2}}(|0
angle + (-1)^{x_i}|1
angle) \ &=rac{1}{\sqrt{2}}(|z_1=0
angle + (-1)^{x_i}|z_j=1
angle) \ &=rac{1}{\sqrt{2}}((-1)^{x_i imes0}|z_1=0
angle + (-1)^{x_i imes1}|z_2=1
angle) \ &=rac{1}{\sqrt{2}}((-1)^{x_i imes z_1}|z_1=0
angle + (-1)^{x_i imes z_2}|z_2=1
angle) \ &=rac{1}{\sqrt{2}}\sum_{z_i\in\{0,1\}}(-1)^{x_i imes z_j}|z_j
angle \end{aligned}$$

 $H^{\otimes n}|x_1...x_n
angle=\otimes_i(H|x_i
angle)$, and the power of the function is $\sum_i x_i imes z_i=x\cdot z$, we are done.

Lecture 8: Grover's search

- ullet Quadratic speedup over unstructured classical search, from O(N) to $O(\sqrt{N})$.
- ullet M is the number of solutions (marked states f(x)=1) to the search problem.
- ullet Prepare state: $|\psi
 angle |angle .$
 - \circ where the uniform superposition $|\psi
 angle=|+
 angle^{\otimes n}=rac{1}{\sqrt{2^n}}\sum_{x\in\{0,1\}^n}|x
 angle$ of all $N=2^n$ states.
- ullet With the target state $|x_t
 angle=rac{1}{\sqrt{M}}\sum_{x ext{ s.t. }f(x)=1}|x
 angle$,

$$egin{aligned} |\psi
angle|-
angle &=rac{1}{\sqrt{N}}[\sum_{x ext{ s.t. }f(x)=0}|x
angle + \sum_{x ext{ s.t. }f(x)=1}|x
angle] \ &=rac{1}{\sqrt{N}}[\sum_{x ext{ s.t. }f(x)=0}|x
angle + \sqrt{M}rac{1}{\sqrt{M}}\sum_{x ext{ s.t. }f(x)=1}|x
angle] \ &=rac{1}{\sqrt{N}}[\sum_{x ext{ s.t. }f(x)=0}|x
angle + \sqrt{M}|x_t
angle] \end{aligned}$$

- Each iteration $(W\otimes I)V$: rotate the state towards the target state $|x_t\rangle$ by 2θ , where $\theta=rcsinrac{\sqrt{M}}{\sqrt{N}}$.
 - \circ Oracle V flips the sign of the target state $|x_t
 angle$, i.e. $V|x
 angle=(-1)^{\mathbb{I}(x=x_t)}|x
 angle$.
 - \circ Diffusion operator $W=2|\psi
 angle\langle\psi|-I$, rotating $|\psi'
 angle=V|\psi
 angle$ around the axis $|\psi
 angle$.
 - reflected vector: $|\psi''
 angle=2|\psi\rangle\langle\psi||\psi'
 angle-|\psi'
 angle$, where the former is the projected vector of $|\psi'
 angle$ onto the axis $|\psi\rangle$.

- After n_{it} iterations, the angle between the final state and the target state is $(2n_{it}+1)\theta$.
 - $\circ \; n_{it} = rac{rac{\pi}{2} heta}{2 heta} = rac{\pi}{4 heta} pprox rac{\pi}{4\sin heta}.$
 - \circ the final state is $rac{1}{\sqrt{N}}[\cos((2n_{it}+1) heta)\sum_{x ext{ s.t. }f(x)=0}|x
 angle+\sin((2n_{it}+1) heta)|x_t
 angle].$
 - \circ the probability of measuring the target state is $\sin^2((2n_{it}+1) heta)$.

QFT & QPE

QFT transforms a sequence of N complex numbers $\{x\}$ into another $\{y\}$ of the same length,

$$|x
angle o |y
angle : \sum_{j=0}^{N-1} x_j |j
angle o \sum_{k=0}^{N-1} y_k |k
angle$$
 , where $\boxed{y_k = rac{1}{\sqrt{N}} \sum_{j=0}^{N-1} w^{jk} x_j}$ and $w = e^{irac{2\pi}{N}}.$

- \bullet The normalization term is $\frac{1}{N}$ and exponential term is negated in DFT.
 - \circ here, we use $rac{1}{\sqrt{N}}$ to satisfy the unitary condition, where the dimension of Hilbert space for n qubits is $N=2^n$.
- The time series coefficients x_i are transformed into the frequency domain coefficients y_k .
 - $\circ\,$ DFT is the change of basis operator that converts from euclidean basis to the Fourier basis.
 - \circ each y_k corresponds to how much of the sinusoid with frequency $f=rac{k}{N}$ [cycles per sample] is present in the signal.
 - $w^{jk}=e^{irac{2\pi}{N}jk}=\cos(rac{2\pi k}{N}j)+i\sin(rac{2\pi k}{N}j)$, forming an orthogonal basis over the space of N complex vectors.
 - \circ note that $w^N=e^{i2\pi}=1.$

Alternatively, we can express the QFT as a matrix transformation \mathbf{M} , where N is the dimension of the Hilbert space.

The DFT is thus $y = \mathbf{M}x$, which in the matrix form is expressed as,

$$egin{bmatrix} y_0 \ \dots \ y_k \ \dots \ y_N \end{bmatrix} = rac{1}{\sqrt{N}} egin{bmatrix} 1 & 1 & 1 & \dots & 1 \ 1 & \omega & \omega^2 & \dots & \omega^{N-1} \ 1 & \omega^2 & \omega^4 & \dots & \omega^{2(N-1)} \ 1 & \dots & \dots & \dots & \dots \ 1 & \omega^{N-1} & \omega^{2(N-1)} & \dots & \omega^{(N-1)(N-1)} \end{bmatrix} \cdot egin{bmatrix} x_0 \ \dots \ x_j \ \dots \ x_j \ \dots \ x_N \end{bmatrix}, ext{where } \omega = e^{irac{2\pi}{N}}.$$

The matrix ${f M}$ can be expressed as a sum of outer products of the basis states |k
angle, and $\langle j|$,

$$\mathbf{M} = rac{1}{\sqrt{N}} \sum_{j=0}^{N-1} \sum_{k=0}^{N-1} \omega^{jk} |k
angle \langle j|.$$

where the outer product maps the state from $|j\rangle$ to $|k\rangle$,

$$egin{aligned} \mathbf{M}|j
angle &= rac{1}{\sqrt{N}} \sum_{k=0}^{N-1} \omega^{jk} |k
angle \langle j|j
angle, \ |j
angle &
ightarrow^{\mathbf{M}} rac{1}{\sqrt{N}} \sum_{k=0}^{N-1} \omega^{jk} |k
angle. \end{aligned}$$

inverse QFT (iQFT)

$$|y
angle o |x
angle : \sum_{k=0}^{N-1} y_k |k
angle o \sum_{j=0}^{N-1} x_j |j
angle$$
 , where $\boxed{x_j = rac{1}{\sqrt{N}} \sum_{k=0}^{N-1} w^{-jk} y_k}$ and $w^{-jk} = e^{-irac{2\pi}{N}jk}.$

• The exponential term is negated from the QFT.

Quantum Phase Estimation (QPE)

If given the eigenvector $|u\rangle$ of U and eigenvalue $e^{i2\pi\phi}$ with **phase** $\phi\in[0,1)$, we have $U|u\rangle=e^{i2\pi\phi}|u\rangle$, we can estimate the phase ϕ via QPE with t bits of precision.

- preparation

 - $\circ~1^{st}$ register: $H^{\otimes t}|0
 angle^{\otimes t}=rac{1}{\sqrt{2^t}}\sum_{x\in\{0,1\}^t}|x
 angle$ (superposition) $\circ~2^{nd}$ register: the (superposition of) given eigenvector(s) |u
 angle with eigenvalue $e^{i2\pi\phi}$,
- ullet oracle U^j on the 1^{st} register (Entanglement)
 - $egin{array}{l} \circ rac{1}{\sqrt{2}}(\ket{0}+\ket{1})
 ightarrow rac{1}{\sqrt{2}}(\ket{0}+(e^{i2\pi\phi})^j\ket{1}) \end{array}$
 - $ullet rac{1}{\sqrt{2^t}} \sum_{x=0}^{2^t-1} |x
 angle o rac{1}{\sqrt{2^t}} \sum_{i=0}^{2^t-1} (e^{i2\pi\phi})^j |j
 angle$
 - $\circ 2^{nd}$ register: respective $|u\rangle$ with eigenvalue $e^{i2\pi\phi}$ and phase ϕ .
- iQFT (Interference)
- measurement
 - $\circ~1^{st}$ register: t bits approximation of $|\tilde{\phi}\rangle$
 - $\circ \ 2^{nd}$ register: $|u\rangle$ with phase ϕ .

Application: factoring

order finding: for coprime x and N, find $x^r \equiv 1 \mod N$, where r is the least positive integer.

 $U|r
angle=|(x\cdot r)\mod N
angle \implies$ For eigenstates $s\in [0,r-1],$ we have eigenvectors $|u_s
angle=rac{1}{\sqrt{r}}\sum_{j=0}^{r-1}e^{-i2\pirac{s}{r}}j|x^j\mod N
angle$ with **phase** $\phi=rac{s}{r}.$

Use QPE, 2^{nd} register prepared with equal superposition of unknown eigenvectors $\frac{1}{\sqrt{r}}\sum_{j=0}^{r-1}|u_j\rangle=|1\rangle$ (shallow-depth quantum circuit X).

factoring: for composite integer N, $N=p\cdot q$, where p and q are prime numbers.

Shor's algorithm

Application: quantum chemistry

Trotter formula: $U=e^{-i(H_1+H_2)t}=U_1U_2=e^{-iH_1t}e^{-iH_2t}+O(t^2)$, where U_1 and U_2 don't commute.

Projective measurement with (normalized) eigenvectors

Ground state energy estimation $|e_0\rangle$ of a H with eigenvalue $\lambda_0=E_0$.

Use QPE, 2^{nd} register should be prepared as close to the eigenvector such that it's sufficiently dominated by the ground state $|e_0\rangle$ (L15. adiabatic state preparation).

Fault tolerance

bit-flip, phase-flip, Shor code, Steane code

Fault tolerance threshold $p_{th}=rac{1}{c}$, for suppressed error rate $p=cp_e^2+O(p_e^3)$. Per-gate error rate $rac{(cp_e)^{2^k}}{c}$ after k concatenation.