$$\frac{3}{4}$$
 9. $\frac{1}{x}$ = 14.33

(1)
$$6 = \sqrt{\sum (x_1 - 14.33)^2} = \sqrt{\sum x_1^2 - h_{\overline{x}}^2}$$

$$= \sqrt{1-84-6\times14.33^2} = \sqrt{(0.38 = 3.22)}$$

$$(7)$$
 $(-6 = 0.9) \approx 2 = 0.05$ The $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$ $\sqrt{3}$ $\sqrt{4}$ $\sqrt{5}$ \sqrt

$$(\sqrt{5\times10.38})$$

 $(7.17, 6.72)$

$$n_1 = 9 \quad \overline{\chi}_1 = 1.61$$

$$\sqrt{2 + n\overline{\chi}^2} = \sqrt{2 - 2\mu} = 0$$

$$51 = \sqrt{\frac{\chi_{1}^{2} - n\overline{\chi}^{2}}{8}} = \sqrt{\frac{85.94}{95.94}} = 9.77$$

$$N_z = 9$$
 $\sqrt{\frac{9}{9}} = 6.18$ $S_z = 21.15$
 $N = (\frac{9.27}{9}^2 + \frac{71.15^2}{9}) / (\frac{9.77^2/9}{8} + \frac{21.15^2}{8}) = 10.96711$

(1)
$$(\bar{\chi} - \bar{q})$$
 $\pm (\bar{q} + \bar{q})$ (1) $\sqrt{\frac{q \cdot y_1^2}{q} + \frac{21.152}{q}}$