Planning

- Introduction
 - Planning vs. Problem-Solving
 - Representation in Planning Systems
- Situation Calculus
 - The Frame Problem
- STRIPS representation language
 - Blocks World
- Planning with State-Space Search
 - Progression Algorithms
 - Regression Algorithms
- Planning with Plan-Space Search
 - Partial-Order Planning
 - The Plan Graph and GraphPlan
 - SatPlan

Material from Russell & Norvig, chapters 10.3. and 11

Slides based on Slides by Lise Getoor and Tom Lenaerts

Planning problem

- Planning is the task of coming up with a sequence of actions that will achieve a goal starting from an initial state
 - many search-based problem-solving agents are special cases

Given:

- a set of action descriptions (defining the possible primitive actions by the agent),
- an initial state description, and
- a goal state description or predicate,
- Find a plan, which is
 - a sequence of action instances, such that executing them in the initial state will change the world to a state satisfying the goal-state description.
- Goals are usually specified as a conjunction of subgoals to be achieved

Application Scenario

- Classical planning environment
 - fully observable, deterministic, finite, static, discrete
- Practical Applications
 - design and manufacturing
 - military operations
 - games
 - space exploration

Planning vs. Problem Solving

- Planning and problem solving methods can often solve the same sorts of problems
- Planning is more powerful because of the representations and methods used
 - States, goals, and actions are decomposed into sets of sentences (usually in first-order logic)
- Planning can analyze the effects of actions
 - The successor function is a black box: it must be "applied" to a state to know which actions are possible in that state and what are the effects of each one
 - An explicit representation of the possible actions and their effects would help the problem solver
- Subgoals can often be planned independently, reducing the complexity of the planning problem
- Search may be through plan space rather than state space

Key Problems

- Which actions are relevant?
 - Example: Goal is have (milk)
 - the agent may have billions of possible actions
 - e.g., one buy-action for each possible product in a store
 - an intelligent planner will know that buy (X) will cause own (X),
 and only consider the action buy (milk)
- What is a good heuristic functions?
 - Problem:
 - states are domain-specific data structures, and new heuristics must be supplied for each new problem
 - Example: Goal is buying n different items
 - Number of plans grows exponentially with n
 - → Problem-independent heuristics are needed
 - e.g., number of subgoals that have already been reached
- How to decompose a problem?

Decomposable Problems

- Goals are often given as a conjunction of subgoals
 - e.g., have (milk) & have (bread)
 - each subgoal can be solved independently

Other problems can be decomposed into subproblems:

- Example: overnight delivery of a set of packages
 - Planning a complete route for all packages at once is very expensive (O(n!) different routes)
 - → Better decompose the problem:
 - First distribute the packages according to nearest airport to destination
 - Then plan to distribute the package from each airport separately
 - $\rightarrow O(k \cdot (n/k)!)$ different routes (much less than O(n!))

Nearly Decomposable Problems

- Completely decomposable Problems are rare
 - typically there are interactions between subgoals
- → Nearly decomposable Problems
 - planning for subgoals is possible
 - but additional work may be required to bring the partial results together
- Example:
 - Independent plans for have (milk) and have (bread) may have the result that two different super-markets are visited

Representation in Planning

- In Problem Solving, actions, states, and goals are black boxes
 - each problem has its own representation
 - agent does not understand the representations of actions, states, and goals
 - → cannot exploit relations between them
- Planning works with explicit representations of actions, states, and goals
 - typically in some form of logical calculus

Major Approaches to Planning

- Situation calculus
- State space planning
- Partial order planning
- Planning graphs
- Planning with Propositional Logic
- Hierarchical decomposition (HTN planning)
- Reactive planning

Planning in First-Order Logic

Principal Idea:

- Formulate planning problem in First-Order Logic (FOL)
 - states (and goals) are conjunctions of literals
 - actions are logical rules
- Use theorem prover to find a proof for the goal
 - the actions used in this proof are the plan
 - e.g., use PROLOG

Key Problem:

- How to represent change?
 - a) add and delete sentences from the KB to reflect changes
 - b) all facts are indexed by a situation variable → situation calculus

PROLOG-like Logical Notation

- Constant: represents some objects
 - starts with a number or a lower-case letter
 - **e.g.**, pam, bob, liz, 1, pi, true, **etc.**
 - functions are like constants, but complex expressions
- Variable: denotes some unknown object/constant
 - starts with an upper-case letter or an underscore
 - e.g. X, Person, Nummer, _42, etc.
 - within a conjunction of literals, same variables refer to same objects
 - but may be different objects in different conjunctions / rules
- Predicate: denotes a relation between two objects
 - starts with a lower-case letter
 - e.g., parent, male, female
- Literal: a predicate symbol with some arguments
 - e.g., parent(pam, bob), at(pam, X), airport(X)
- Rule: an implication, typically written Head :- Cond1, Cond2,
 - e.g., grandparent(X,Y) :- parent(X,Z), parent(Z,Y).

Situation Calculus

- A situation is a snapshot of the world at some instant in time
- Every true or false statement is made with respect to a particular situation
 - Add situation variables to every predicate.
 - at (agent, 1, 1) becomes at (agent, 1, 1, s0): at (agent, 1, 1) is true in situation (i.e., state) s0.
- Add a new function, result (a,s), that maps a situation s
 into a new situation as a result of performing action a.
 - For example, result (forward, s) is a function that returns
 the successor state (situation) to s after performing action a
 - Note that this is just notation!
 - Logical functions are not implemented or evaluated!
 - They are used in pattern matching

Situation Calculus

- Actions can be respresented as logical rules that describe which states can be valid
- Example:
 - The action agent-walks-to-location-y could be represented by the PROLOG rule

```
at(A,Y,result(walk(Y),S)) :- at(A,X,S).
agent A is at location Y in state result(walk(Y),S)
if it was at location X in state S (and performed action walk(Y))
```

- Action sequences are also useful: results(1,s) is the result of executing the list of actions 1 starting in s:
 - corresponding rules could be included as short-hand notation into inference engine

```
results([],S) = S
results([A|P],S) = results(P,result(A,S))
```

Situation Calculus Planning

Initial state

a logical sentence that describes current situation S₀

```
at(home, s0), not(have(milk, s0)), not(have(bread, s0)), not(have(drill, s0))
```

Goal state

a logical sentence that describes the goal state

```
at(home, G), have(milk, G), have(bread, G), have(drill, G)
```

- Actions (Operators)
 - logical rules that describe the effects of actions

etc.

Situation Calculus Planning

Solution

```
at(home,G), have(milk,G), have(bread,G), have(drill,G)
```

with

```
G = results(P, s0)
```

P could, for example, be something like

Projection

- determine the effect of a sequence of actions
- Planning
 - find the sequence of action with the desired effect

The Frame Problem

the action rules only specify what aspects change when an action is performed

we also need rules that describe what does not change!

If we are in a grocery store and buy milk, we remain in the grocery store.

- such frame axioms are necessary for all possible combination of state predicates and actions
- representational frame problem:
 - we do not want to represent each such possible combination
- inferential frame problem:
 - most of the work will be spent in deriving that nothing changes

SC Planning: More Problems

• Qualification problem:

- difficulty in specifying all the conditions that must hold in order for an action to work
- e.g., go action might fail for various reasons
 (locked doors, hit by a truck while crossing the street, ...)

Ramification problem:

- difficulty in specifying all of the effects that will hold after an action is taken
- e.g., if the agent carries something, a go action will move that thing too...

Complexity:

problem solving (search) is exponential in the worst case

Optimality:

 resolution theorem proving can only find a proof (plan), not necessarily a good plan

Representation Languages for Planning

- Some of the afore-mentioned problems can be solved by better knowledge representation
 - some of them will necessarily remain (e.g., qualification and ramification problems)
- Alternative approach
 - we restrict the language
 - use a special-purpose algorithm (a planner) rather than general theorem prover
- Criteria for a good representation language
 - Expressive enough to describe a wide variety of problems
 - Restrictive enough to allow efficient algorithm
 - Planning algorithm should be able to take advantage of the logical structure of the problem.

The STRIPS Language

- STRIPS (STanford Research Institute Problem Solver)
 - classical planning system (Fikes & Nilsson, 1971)
 - representation of states and actions quite influential

STRIPS: Representation of States

- Decompose the world in logical conditions and represent a state as a conjunction of positive literals.
 - Propositional literals
 - e.g., poor ∧ unknown
 - First-Order literals

 - grounded (contain no variables)
 - function-free (contain no function symbols)
- Closed world assumption
 - what is not known to be true, is assumed to be false

STRIPS: Representation of Goals

- like any other state, a goal is a conjunction of positive ground literals
 - e.g. rich ∧ famous
- may be partially instantiated:
- A goal is satisfied if the state contains all literals in goal
 - e.g. rich ∧ famous ∧ miserable satisfies goal
- In the case of partially instantiated first-order predicates, the state must contain some instantiation of the literals

satisfies the goal with the substitution

$$\theta = \{P/\text{spirit of st louis}\}\$$

STRIPS: Representation of Actions

Preconditions: determine the applicability of an action

- conjunction of function-free literals
- all variables that occur here, must also occur in the effects
- the action is applicable if the preconditions match the current state (similar to goals)

Effects: describe the state change after executing an action

- conjunction of function-free literals
- typically divided into:
- ADD-list:
 - facts that become true after executing the action
- DELETE-list
 - facts that become false after executing the action

Semantics of the STRIPS Language

- What actions are applicable in a state?
 - An action is applicable in any state that satisfies the precondition.
 - For First-Order action schema applicability involves a substitution θ for the variables in the PRECOND.

Example:

```
at(p1,jfk), at(p2,sfo), plane(p1), plane(p2),
  airport(jfk), airport(sfo)
```

satisfies

```
at(P,From), plane(P), airport(From), airport(To)
```

with

```
\theta = \{P/p1, From/jfk, To/sfo\}
```

Thus the action fly(P, From, To) is applicable.

Semantics of the STRIPS Language

- What effects do the actions have?
 - The result of executing action a in state s is the state t
 - t is same as s except
 - Any literal P in the ADD-list is added
 - Any literal P in the DELETE-list is removed

Example

```
ADD: at(P,To)
DELETE: at(P,From)
with substitution θ = {P/p1,From/jfk,To/sfo} results in state
at(p1,sfo), at(p2,sfo), plane(p1), plane(p2),
airport(jfk), airport(sfo)
```

- STRIPS assumption
 - every literal NOT in the effect remains unchanged
 - avoids representational frame problem

Example: Blocks World

- Very famous AI toy domain
- The blocks world is a micro-world that consists of
 - a table
 - a set of blocks
 - a robot hand

- The robot hand can grasp a single block
- The robot hand can move over the table (with or without a block)
- The robot hand can release a block it is holding
- Blocks can be stacked on top of each other if the top is clear
- Any number of blocks can be on the table
- The hand can only hold one block

State Representation

block(a), block(b), block(c),
on(a,table), on(b,table), on(c,a),
clear(b), clear(c), handempty

Goal Representation

on(a,table), on(b,a), on(c,b)

Action Application

Action Application

```
A B TABLE
```

```
block(a), block(b), block(c),
on(a,table), on(b,table),
clear(b),
holding(c), clear(a)
```

```
Action (unstack (X,Y),
PRECOND: handempty,
         block(X),
         block(Y),
          clear(X),
          on (X,Y),
         holding(X),
ADD:
          clear(Y),
         handempty,
DELETE:
          clear(X),
          on (X,Y)
```


More Blocks-World Actions

```
Action (stack (X,Y),
PRECOND: holding(X),
         block(X),
         block(Y),
         clear(Y)
         handempty,
ADD:
         clear(X),
         on (X,Y),
         holding(X),
DELETE:
          clear(Y)
```

```
Action (pickup(X),
      PRECOND: handempty,
                block(X),
                clear(X),
                on(X, table),
                holding(X),
      ADD:
                handempty,
      DELETE:
                clear(X),
                on (X, table)
Action ( putdown (X),
PRECOND: holding(X)
         handempty,
          clear(X),
          on (X, table)
         holding(X)
DELETE:
```

ADD:

Example: Air Cargo Transport

Initial state:

```
at(c1,sfo), at(c2,jfk), at(p1,sfo),
at(p2,sfo), cargo(c1), cargo(c2),
plane(p1), plane(p2), airport(jfk),
airport(sfo)
```

Goal state:

```
at (c1,jfk), at (c2,sfo)
```

Expressiveness and Extensions

- The STRIPS language is a very simple subset of FOL
 - Important limitation: function-free literals
 - All such problems can be represented in propositional logic
 - use one proposition for each possible combination of predicate symbol and arguments
 - Function symbols lead to infinitely many states and actions
 - infinitely many arguments can be constructed with function symbols, hence propositionalization is not possible
- Various extensions have been proposed:
 - Action Description language (ADL)
 - recent extension to STRIPS language
 - allows for types, explicit negation (no CWA), relations and conditions in goals, equality predicate built in, ...
 - Planning domain definition language (PDDL)
 - standardization of various Al planning formalisms

Comparison STRIPS-ADL

STRIPS Language	ADL Language
Only positive literals in states: Poor ∧ Unknown	Positive and negative literals in states: $\neg Rich \land \neg Famous$
Closed World Assumption: Unmentioned literals are false.	Open World Assumption: Unmentioned literals are unknown.
Effect $P \land \neg Q$ means add P and delete Q .	Effect $P \land \neg Q$ means add P and $\neg Q$ and delete $\neg P$ and Q .
Only ground literals in goals: Rich \(Famous \)	Quantified variables in goals: $\exists x A t(P_1, x) \land A t(P_2, x)$ is the goal of having P_1 and P_2 in the same place.
Goals are conjunctions: Rich ∧ Famous	Goals allow conjunction and disjunction: $\neg Poor \land (Famous \lor Smart)$
Effects are conjunctions.	Conditional effects allowed: $\mathbf{when}\ P\colon E$ means E is an effect only if P is satisfied.
No support for equality.	Equality predicate $(x = y)$ is built in.
No support for types.	Variables can have types, as in (p : Plane).

Figure 11.1 Comparison of STRIPS and ADL languages for representing planning problems. In both cases, goals behave as the preconditions of an action with no parameters.

Planning with State-Space Search

- Progression planners
 - forward state-space search
- Regression planners

Progression Algorithm

Formulation as state-space search problem:

- Initial state = initial state of the planning problem
 - Literals not appearing are false
- Actions = those whose preconditions are satisfied
 - Add positive effects, delete negative
- Goal test = does the state satisfy the goal
- Step cost = each action costs 1
 - could be changed if necessary

Search Algorithms

- function-free → finite → any complete graph search algorithm will yield a complete planner
- Efficiency is a problem
 - irrelevant action problem
 - good heuristic required for efficient search

Regression Algorithm

- In order to be able to use a backward search, we must be able to apply the STRIPS operators backwards
- Relevant actions
 - actions that achieve one of the subgals
 - i.e., the subgoal is on the actions' ADD-list
 - Example:
 - Goal state:

```
at (c1,a), at (c2,a),..., at (c20,a)
```

- Relevant action for first conjunct: unload(c1, P, a)
- Consistent actions
 - Actions must not undo subgoals that are already achieved
 - Example:
 - load(c1,p) will never appear in a plan for the above task because it will delete the subgoal at(c1,a) which has been achieved with the first action
- → How can an action be applied backwards?

General process for predecessor construction

- Given a goal description G
- Let A be an action that is relevant and consistent
- The predecessor state is determined as follows:
 - Positive effects of A that appear in G are deleted.
 - because they are assumed to have been added by A (otherwise we do not need A in the plan)
 - Each precondition literal of A is added (unless it already appears)
 - because in order to apply A, we must now make find actions that enable the precconditions.

→ New Goal = Old Goal – ADD(A) + PRECOND(A)

Goal:


```
Action ( stack (X,Y),
PRECOND: holding(X),
         block(X),
         block(Y),
         clear(Y)
         handempty,
ADD:
          clear(X),
         on (X,Y),
         holding(X),
DELETE:
          clear(Y)
```

on(a,table), on(b,a), on(c,b)

Goal:

New Goal:


```
Action ( stack (X,Y),
PRECOND: holding(X),
         block(X),
         block(Y),
         clear(Y)
         handempty,
ADD:
         clear(X),
         on (X,Y),
         holding(X),
DELETE:
         clear(Y)
```

```
on(a,table), on(b,a),
holding(c), block(c), block(b), clear(b)
```

Regression Algorithm

Formulation as state-space search problem:

- Initial state = goal state of the planning problem
 - Literals not appearing may be true or false
- Actions = those whose add-list satisfy the current state
 - delete positive effects, add preconditions
- Goal test = is the current state satisfied in the initial state of the planning problem?
- Step cost = each action costs 1
 - could be changed if necessary

Search algorithm

- again, any standard algorithm can perform the search
- Main Advantage of Regression Planning
 - only relevant actions are considered
 - → often much lower branching factor than for forward search

Heuristics for State-Space Search

- Even for regression we need good heuristics
 - How many actions are needed to achieve the goal?
 - Exact solution is NP hard, find a good estimate

Two approaches to find an admissible search heuristic:

- The optimal solution to a relaxed problem
 - remove all preconditions from actions
 - almost identical to the number of open subgoals
 - remove only the delete-list and find a (minimal) set of actions that collectively achieve the goals
 - problem: finding a minimal set cover is NP-hard, and relaxing the constraint looses admissibility of heuristic
- The subgoal independence assumption:
 - The cost of solving a conjunction of subgoals is approximated by the sum of the costs of solving them independently
 - is only admissible if co-ordination causes additional complexity (not admissible for the have (milk) & have (bread) plan)