25/04/24	PAGE:DATE:
	Polynomial time Reductions:
	Problem X Problem y
Input Output	Ix input Iq Ox Output Oy
	Ty Prespocers Tx Algorithm Ox Post process Dy
	Algo for Y Y reduces to X: YZX
	Question: Can arbitrary instances of Problem y be solved using a [polynomial number of standard computational steps and polynomial number of Calls to a black boss that solves problem x2
	Yes - [Y \leftarrow \chi X]
	Fact 1: 91 X is solvable in polynomial time thun Y is also solvable in polynomial time [MBMP Lp MF]
	Fact 2: 96 y cannot be solved in polynomial time This implies that X cannot be solved in polynomia time

- re- 00

Claim 2:	D-	MIS	40	0 -	SIMI
----------	----	-----	----	-----	------

D-MIS(q,K); 5 + 0-MIS(q)

if S≥K return YES

2 xturn NO

Ventex Cover: Given a graph (u(V,F), a set of C CV is a ventex Cover if for every edge C = (u,v) in Gy, either UEC. or vEC

C1 = 91,2,6,7} $C_2 = 92,3,72$

· Minimum Vertex cover (MVC): Given Ct, find a vertex couer of

minimum size

• Optimization Version of MVC: Given Q, what is
the size of the minimum vertex covers.

· Decision Version of MVC [D-MVC]: Cliven q and k,
Does Cr consist a vertex cover of size [atmost] k

Theorem: let G(V,E) be a graph. Then Stean independent set (if and only if) V/S is an vertex cover

	PAGE:——A DATE:
	Proof: 1 Suppose 9 is an independent set
	let e = (u,v) be any arbitrary edge Then, either U & s or u & s. This implies orthart one of u or u is in V/S. Since & any orbitrary edge, V/S in a vertex conver
-	D Suppose V/S is a vertex cover.
37	· lemma 1: D-MIS L, D-MVC
	Proof: D-MIS(G, K).
	if [D-MVC(G, n-k) is yes] Output yes
	Else -
	Quiput No
1.2	
	· lemma 2: D-MIC & DMIS
	Prioof: DMVC(CIK)
2	Output Yes
	e (se
	Output No
	}

1.23/20	S(1,2) (1,4) ? unionization - almos
21,23,422	{ (1,2) (1,4). } PAGE: DATE:
	Set Cover Given a set U of n elements and
	a collection S ₁ , S ₂ , S _m of subsets of U, circl a number K. Does there exists
	and a number of Dock there exists
	a collection of armost k sets whose union is
2	equal to U.
	Theorem: Vertex-Cover & Set Cover
· · · · · · · · · · · · · · · · · · ·	V·C atmost aze k (G, K) $\longrightarrow U = E$
	(Y/E)
	$G^{\circ} = S_{\circ} \setminus G$
	Si = se e is incident on verter iev}
0	$S_1^2 = \{(1,2), (1,4)\}, k$
4	
	Does the reduced instance of set cover
	Does the reduced instance of set cover contains a set cover of size atmost k
	A MONTON CONTON
	a verter cover containing edge
	lemma. U can
	lemma: U can be covered with atmost k
	enter it and
	only if G contains vertex cover by size
	VVS
	Pupol of Stipping (y Lab
	obmost K Then 3 set cover of size
-	atmost k
	CHINON
	Suppose
	suppose we have a set cover of size at most k
	Shi Sizi - Six such that the union
	Suppose we have a set cover of size at most k I Si. Si Six such that the union of those set cover U= F
	V

