Nom: Correcteur: Note:

Démontrer le résultat suivant (théorème de changement de variable). Soit I et J deux intervalles de \mathbb{R} , $(a,b) \in I^2$, $f: J \to \mathbb{R}$ une fonction continue et $\varphi: I \to \mathbb{R}$ une fonction de classe \mathscr{C}^1 , avec $\varphi(I) \subset J$. Alors

$$\int_{\varphi(a)}^{\varphi(b)} f(t) dt = \int_{a}^{b} f(\varphi(t)) \varphi'(t) dt.$$

Soit l'équation différentielle $(\mathscr{F}): 2y'' + 2\sqrt{2}y' + y = 0$. Donner l'ensemble des solutions complexes de (\mathscr{F}) définies sur \mathbb{R} .

Déterminer une solution sur \mathbb{R}_+^* de l'équation $y' - \frac{y}{2x} = \sqrt{x} \ln(x)$, en utilisant la méthode de la variation de la constante.

Indication : une solution homogène est $x \mapsto \sqrt{x}$.

Soit $n \in \mathbb{N}^*$. Rappeler la définition de « racine $n^{\rm e}$ de l'unité » et donner l'ensemble des racines $n^{\rm es}$ de l'unité.

Expliciter l'ensemble des racines quatrièmes de l'unité.