2022 秋高等代数习题课

2022-10-21 第四次习题课

第一题. 计算下列行列式。

$$(1) D = \begin{vmatrix} 2 & 1 & -1 & 3 \\ 1 & 4 & 1 & 2 \\ -1 & 2 & 1 & 1 \\ 1 & 0 & 2 & 1 \end{vmatrix}; \qquad (2) D_n = \begin{vmatrix} 1 + a_1 & a_2 & a_3 & \cdots & a_n \\ a_1 & 1 + a_2 & a_3 & \cdots & a_n \\ a_1 & a_2 & 1 + a_3 & \cdots & a_n \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_1 & a_2 & a_3 & \cdots & 1 + a_n \end{vmatrix}$$

解:(1)

$$D = \begin{vmatrix} 2 & 1 & -1 & 3 \\ 1 & 4 & 1 & 2 \\ -1 & 2 & 1 & 1 \\ 1 & 0 & 2 & 1 \end{vmatrix} = \begin{vmatrix} 0 & 1 & -5 & 1 \\ 0 & 4 & -1 & 1 \\ 0 & 2 & 3 & 2 \\ 1 & 0 & 2 & 1 \end{vmatrix} = (-1)^{4+1} \begin{vmatrix} 1 & -5 & 1 \\ 4 & -1 & 1 \\ 2 & 3 & 2 \end{vmatrix}$$
$$= -(-1)^{1+1} \begin{vmatrix} 1 & -5 & 1 \\ 0 & 19 & -3 \\ 0 & 13 & 0 \end{vmatrix} = - \begin{vmatrix} 19 & -3 \\ 13 & 0 \end{vmatrix} = -39$$

(2) 利用行列式的多线性性进行求解。令 $e_1=(1,0,\ldots,0)^T,\ldots,e_n=(0,\ldots,0,1)^T,\,\gamma=(1,\ldots,1)^T=e_1+\cdots+e_n.$ 那么

$$D_{n} = \det(e_{1} + a_{1}\gamma, \dots, e_{n} + a_{n}\gamma)$$

$$= \det(e_{1}, \dots, e_{n}) + \det(a_{1}\gamma, e_{2}, \dots, e_{n}) + \dots + \det(e_{1}, \dots, e_{n-1}, a_{n}\gamma) + 0 + \dots + 0$$

$$= 1 + a_{1} \det(\gamma, e_{2}, \dots, e_{n}) + \dots + a_{n} \det(e_{1}, \dots, e_{n-1}, \gamma)$$

$$= 1 + a_{1} \det(e_{1} + \dots + e_{n}, e_{2}, \dots, e_{n}) + \dots + a_{n} \det(e_{1}, \dots, e_{n-1}, e_{1} + \dots + e_{n})$$

$$= 1 + a_{1} \det(e_{1}, e_{2}, \dots, e_{n}) + \dots + a_{n} \det(e_{1}, \dots, e_{n-1}, e_{n})$$

$$= 1 + a_{1} + \dots + a_{n}$$

这题也可以利用加边的方式进行求解。

第二题. 求下列线性方程组的一个特解 γ_0 以及导出组的一个基础解系,并用它们表出线性方程组的全部解。

$$\begin{cases} x_1 - x_2 - 3x_3 + x_4 + 3x_5 = 1 \\ x_1 - x_2 - x_3 + x_4 + x_5 = 1 \\ x_1 + x_2 + x_3 - x_4 - x_5 = 1 \end{cases}$$

1

解: 化为增广矩阵的形式进行化简

$$\begin{pmatrix} 1 & -1 & -3 & 1 & 3 & | & 1 \\ 1 & -1 & -1 & 1 & 1 & | & 1 \\ 1 & 1 & 1 & -1 & -1 & | & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & -3 & 1 & 3 & | & 1 \\ 0 & 0 & 2 & 0 & -2 & | & 0 \\ 0 & 2 & 4 & -2 & -4 & | & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & 0 & 1 & 0 & | & 1 \\ 0 & 0 & 1 & 0 & -1 & | & 0 \\ 0 & 2 & 0 & -2 & 0 & | & 0 \end{pmatrix}$$
$$\rightarrow \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & | & 1 \\ 0 & 0 & 1 & 0 & -1 & | & 0 \\ 0 & 1 & 0 & -1 & 0 & | & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & | & 1 \\ 0 & 1 & 0 & -1 & 0 & | & 0 \\ 0 & 0 & 1 & 0 & -1 & | & 0 \end{pmatrix}$$

解得通解为

$$\begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} + \tau_1 \begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \\ 0 \end{pmatrix} + \tau_2 \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \\ 1 \end{pmatrix}, \quad \tau_1, \tau_2 \in \mathbb{R}.$$

第三题. 设 \mathbb{F} 上 n 维线性空间 V 的一组基为 $\alpha_1, \alpha_2, \ldots, \alpha_n$, 令

$$\beta_k = \alpha_1 + \alpha_2 + \dots + \alpha_k, \quad k = 1, 2, \dots, n.$$

- (1) 证明 $\beta_1, \beta_2, \dots, \beta_n$ 是 V 的一组基;
- (2) 对于 $\alpha = \alpha_1 + 2\alpha_2 + \cdots + n\alpha_n$, 求出 α 在基 $\beta_1, \beta_2, \ldots, \beta_n$ 下的坐标。

解: (1) 我们有

$$(\beta_1, \beta_2, \dots, \beta_n) = (\alpha_1, \alpha_2, \dots, \alpha_n) \underbrace{\begin{pmatrix} 1 & 1 & 1 & \cdots & 1 \\ 0 & 1 & 1 & \cdots & 1 \\ 0 & 0 & 1 & \cdots & 1 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 & 1 \end{pmatrix}}_{\text{if } \text{fe} A}$$

到这里我们可以直接说由于 A 是一个可逆 (满秩) 方阵, 所以 $\beta_1,\beta_2,\ldots,\beta_n$. 如果还不清楚的话, 我们就假设 $\beta_1,\beta_2,\ldots,\beta_n$ 线性相关,即存在不全为 0 的数 $\lambda_1,\ldots,\lambda_n$, 使得 $\lambda_1\beta_1+\cdots+\lambda_n\beta_n=0$, 即有

$$0 = (\beta_1, \beta_2, \dots, \beta_n) \underbrace{\begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_n \end{pmatrix}}_{\text{idff}\lambda} = (\alpha_1, \alpha_2, \dots, \alpha_n) A \lambda.$$

由于 $\alpha_1, \alpha_2, \ldots, \alpha_n$ 是基, 线性无关, 所以要使上式成立, 必须有 $A\lambda = 0$. 但是方阵 A 满秩, 所以 $A\lambda = 0$ 只能有零解, 矛盾。

另一种解法: 容易看出有 $\alpha_1=\beta_1,\alpha_k=\beta_k-\beta_{k-1},k=2,\ldots,n$. 即 α_1,\ldots,α_n 能由 β_1,\ldots,β_n 线性表出。故 β_1,\ldots,β_n 的秩大于等于 α_1,\ldots,α_n 的秩。由于 α_1,\ldots,α_n 是基,故秩只能相等,从 而知 β_1,\ldots,β_n 也是一组基。这种解法相当于把矩阵 A 的逆求出来了。

(2) 沿用上一小题记号,我们设 α 在基 $\beta_1,\beta_2,\ldots,\beta_n$ 下的坐标为 $\lambda=(\lambda_1,\ldots,\lambda_n)^T$,那么

$$\alpha = \alpha_1 + 2\alpha_2 + \dots + n\alpha_n = (\alpha_1, \alpha_2, \dots, \alpha_n) \begin{pmatrix} 1 \\ 2 \\ \vdots \\ n \end{pmatrix}$$
$$= (\beta_1, \beta_2, \dots, \beta_n)\lambda = (\alpha_1, \alpha_2, \dots, \alpha_n)A\lambda$$

解线性方程组
$$A\lambda = \begin{pmatrix} 1 \\ 2 \\ \vdots \\ n \end{pmatrix}$$
:

$$\begin{pmatrix} 1 & 1 & 1 & \cdots & 1 & 1 \\ 0 & 1 & 1 & \cdots & 1 & 2 \\ 0 & 0 & 1 & \cdots & 1 & 3 \\ \vdots & \vdots & \ddots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 & 1 & n \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & \cdots & 0 & | & -1 \\ 0 & 1 & 1 & \cdots & 1 & | & 2 \\ 0 & 0 & 1 & \cdots & 1 & | & 3 \\ \vdots & \vdots & \ddots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 & 1 & | & n \end{pmatrix} \rightarrow \cdots \rightarrow \begin{pmatrix} 1 & 1 & 0 & \cdots & 0 & | & -1 \\ 0 & 1 & 0 & \cdots & 0 & | & -1 \\ 0 & 0 & 1 & \cdots & 0 & | & -1 \\ \vdots & \vdots & \ddots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 & 1 & | & n \end{pmatrix}$$

解得 α 在基 $\beta_1, \beta_2, \dots, \beta_n$ 下的坐标为 $\lambda = (-1, \dots, -1, n)^T$.

或者我们利用 $\alpha_1=\beta_1,\alpha_k=\beta_k-\beta_{k-1},k=2,\ldots,n,$ 代入 $\alpha=\alpha_1+2\alpha_2+\cdots+n\alpha_n$ 也可以得到相同的结论。

第四题. 判断下述结论是否正确, 并说明理由。

- (1) 设向量组 $I = \{\alpha_1, \alpha_2, \dots, \alpha_m\}$ 的秩为 r. 若去掉 I 中任意一个向量 $\alpha_i (1 \leqslant i \leqslant m)$ 都有向量组 $I \setminus \{\alpha_i\}$ 的秩为 r-1, 则有 r=m;
- (2) 若 W 是 V 的子空间,且 $\alpha_1+W,\ldots,\alpha_r+W$ 是商空间 V/W 的一组基,则 α_1,\ldots,α_r 在 V 中是线性无关的。

解:(1)正确。

用反证法,假设 r < m,那么取向量组 I 的一个极大线性无关组 $I' = \{\alpha_{i_1}, \alpha_{i_2}, \dots, \alpha_{i_r}\}$,那么取 I 中不属于 I' 的任意一个向量 α ,都有 $I\setminus\{\alpha\}$ 包含 I',从而秩为 r,矛盾。

(2) 正确。

用反证法, 假设 α_1,\ldots,α_r 在 V 中线性相关, 那么存在不全为 0 的数 $\lambda_1,\ldots,\lambda_r$, 使得 $\lambda_1\alpha_1+\cdots+\lambda_r\alpha_r=0\in W$. 那么

$$\lambda_1(\alpha_1 + W) + \dots + \lambda_r(\alpha_r + W) = 0 + W.$$

从这里我们可以看到, α_1,\ldots,α_r 的选取需要比它们线性无关更强的条件, 即进一步要求

$$\operatorname{span}\{\alpha_1,\ldots,\alpha_r\}\cap W=\{0\}.$$

第五题. 设 $V = \mathbb{F}^n, n \geqslant 2$, 定义 \mathbb{F}^n 的子集 W_1, W_2 如下:

$$W_1 = \{(x_1, \dots, x_n) \in \mathbb{F}^n \mid x_1 + \dots + x_n = 0\},\$$

$$W_2 = \{(y_1, \dots, y_n) \in \mathbb{F}^n \mid y_1 - \dots - y_n = 0\}.$$

- (1) 证明 W_1, W_2 都是 V 的子空间, 并且 $V = W_1 + W_2$.
- (2) 求 $\dim(W_1 \cap W_2)$ 和 $W_1 \cap W_2$ 的一组基。

解: (1) 这题可以根据定义去验证,也可以通过 W_1,W_2 是两个齐次线性方程 (组) 的解空间来说明他们是 V 的子空间。关于维数关系,我们有

$$\dim(W_1 + W_2) = \dim(W_1) + \dim(W_2) - \dim(W_1 \cap W_2) = (n-1) + (n-1) - \dim(W_1 \cap W_2).$$

 $W_1 \cap W_2$ 是线性方程组

$$\begin{cases} x_1 + \dots + x_n = 0 \\ x_1 - \dots - x_n = 0 \end{cases}$$

的解空间,维数为 n-2,从而有 $\dim(W_1+W_2)=2n-2-\dim(W_1\cap W_2)=2n-2-(n-2)=n$,即有 $V=W_1+W_2$.

另一种方法是,可以很容易写出 W_1 的一组基 $(1,-1,0,\dots,0)^T, (1,0,-1,0,\dots,0)^T,\dots, (1,0,\dots,0,-1)^T,$ 以及 W_2 的一组基 $(1,1,0,\dots,0)^T, (1,0,1,0,\dots,0)^T,\dots, (1,0,\dots,0,1)^T$. 把这两组基合并在一起组成 W_1+W_2 中的一个向量组,容易看出这个向量组的秩为 n,从而知 $V=W_1+W_2$.

(2) 进一步解上述线性方程组有解

$$x = \begin{pmatrix} 0 \\ \tau_1 \\ \vdots \\ \tau_{n-2} \\ -(\tau_1 + \dots + \tau_{n-2}) \end{pmatrix}, \quad \tau_1, \dots, \tau_{n-2} \in \mathbb{R}.$$

即知 $\dim(W_1 + W_2) = n - 2$, 一组基可以取为

$$\left\{ \begin{pmatrix} 0 \\ 1 \\ 0 \\ \vdots \\ 0 \\ -1 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \\ \vdots \\ 0 \\ -1 \end{pmatrix}, \dots, \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 1 \\ -1 \end{pmatrix} \right\}.$$

第六题. 设 $\alpha_1,\alpha_2,\ldots,\alpha_r$ 和 $\beta_1,\beta_2,\ldots,\beta_r$ 分别是 n 维线性空间 V_1 和 V_2 的两组线性无关的向量组,

(1) 构造一个 V_1 到 V_2 的同态映射 f 满足

$$f(\alpha_i) = \beta_i, i = 1, \dots, r$$
, 并且 $\dim(\ker(f)) = n - r$,

(2) 满足上述条件的同态映射是否唯一? 并证明你的结论。

解: (1) 将线性空间 V_1 的线性无关组 $\alpha_1,\alpha_2,\ldots,\alpha_r$ 扩充为一组基 $\alpha_1,\alpha_2,\ldots,\alpha_r,\alpha_{r+1},\cdots,\alpha_n$. 定义 $f:V_1\to V_2$ (在 V_1 的基 α_1,\ldots,α_n 上作用) 为

$$f(\alpha_i) = \begin{cases} \beta_i, & i = 1, \dots, r, \\ 0, & i = r + 1, \dots, n. \end{cases}$$

由于 $\beta_1, \beta_2, \dots, \beta_r$ 线性无关,所以 $\ker(f) = \operatorname{span}\{\alpha_{r+1}, \dots, \alpha_n\}$,即有 $\dim(\ker(f)) = n - r$.

(2) 不唯一。事实上,只要我们让 $f(\alpha_i) \in \operatorname{span}\{\beta_1, \beta_2, \dots, \beta_r\}, i = r + 1, \dots, n$,即可。例如

$$f(\alpha_i) = \begin{cases} \beta_i, & i = 1, \dots, r, \\ \beta_1, & i = r + 1, \dots, n. \end{cases}$$

此时, $Im(f) = span\{\beta_1, \beta_2, \dots, \beta_r\}$, 即有 dim(Im(f)) = r, 那么根据维数公式有

$$\dim(\ker(f)) = \dim V_1 - \dim(\operatorname{Im}(f)) = n - r.$$

或者, 你也可以通过 f 的定义算得

$$\ker f = \operatorname{span}\{\alpha_1 - \alpha_i \mid i = r + 1, \dots, n\},\$$

再得到上述空间的维数为 n-r.

同时,根据维数公式可知,条件 $f(\alpha_i) \in \text{span}\{\beta_1,\beta_2,\ldots,\beta_r\}, i=r+1,\ldots,n$,是满足题设条件的同态映射 f 必须要满足的条件。

注: 线性空间之间的同态映射(这里就是线性映射)完全由它在定义域(V_1)上每个元素的取值唯一决定,如果两个 V_1 到 V_2 的线性映射在 V_1 中的每个向量上的取值都一样,那么它们就是相等的,是同一个线性映射。当 V_1 取定了一组基 α_1,\ldots,α_n 之后, V_1 中的每个元素 α 都可以唯一表示为 α_1,\ldots,α_n 的线性组合

$$\alpha = \lambda_1(\alpha)\alpha_1 + \dots + \lambda_n(\alpha)\alpha_n,$$

这里的 $\lambda_i(\alpha)$ 指的是一些由 α (唯一) 决定的数。 作为线性映射, f 就必须满足

$$f(\alpha) = \lambda_1(\alpha)f(\alpha_1) + \dots + \lambda_n(\alpha)f(\alpha_n).$$

于是,只要在基 $\alpha_1, \ldots, \alpha_n$ 上的取值 (值是 V_2 中的向量) 确定了,那么在 V_1 中每个向量上的取值 就确定了,这个线性映射就唯一确定了。