ENGR 3321: Introduction to Deep Learning for Robotics

Neural Network 101: SISO Linear Function

Outline

- Simplest neural network model: NN101
- Model learning/training

Neural Network

Neural Network == Function

SISO Neural Network (NN101)

NN101 == Linear Model

$$\hat{y} = f(x) = wx + b$$

Linear Model Examples

$$y = 15x$$

Hourly wage

$$y = -3x + 25$$

Car decelerate

$$y = \frac{9}{5}x + 32$$

Temperature conversion

Learning Objective

$$\hat{y} = f(x) = wx + b$$

Parameters Learning Procedure

- 1. Guess a model (w and b).
- 2. Evaluate the model.
- 3. Find out hints to improve the model.
- 4. Perform improvements.
- 5. Repeat 2 to 4 until converge.

Example: Predict Used Car Price

Mileage (10,000 miles)	Selling Price (\$10,000)
5.7923	3.359
7.1229	2.259
1.9160	3.959
4.1124	3.099
12.8000	1.5
6.8696	2.799
2.9499	3.459
4.3000	3.5
1.7302	2.999
3.0237	3.859

Dataset: $\mathcal{D} = \{(^{(1)}x,^{(1)}y), (^{(2)}x,^{(2)}y), \dots, (^{(M)}x,^{(M)}y)\}$

Initial Guess

Evaluate Model Performance

Mean Squared Error (MSE) function

$$\mathcal{L}(\hat{\mathbf{y}}, \mathbf{y}) = \frac{1}{M} \sum_{i=1}^{M} \frac{1}{2} (i) \hat{y} - (i) y)^{2}$$

Gradient/Derivatives

$$\nabla \mathcal{L}(w,b) = \begin{bmatrix} \frac{\partial \mathcal{L}}{\partial w} \\ \frac{\partial \mathcal{L}}{\partial b} \end{bmatrix} = \begin{bmatrix} \frac{\partial \mathcal{L}}{\partial \hat{\mathbf{y}}} \frac{\partial \hat{\mathbf{y}}}{\partial w} \\ \frac{\partial \mathcal{L}}{\partial \hat{\mathbf{y}}} \frac{\partial \hat{\mathbf{y}}}{\partial b} \end{bmatrix} = \begin{bmatrix} \frac{1}{M} \sum_{i=1}^{M} \binom{(i)}{\hat{y}} - \binom{(i)}{y} y)^{(i)} x \\ \frac{1}{M} \sum_{i=1}^{M} \binom{(i)}{\hat{y}} - \binom{(i)}{y} y \end{bmatrix}$$

Gradient Descent Concept

Find w and b that minimize $\mathcal{L}(w, b)$

Gradient Descent Algorithm

Initialize w and b

Repeat until converge {

$$w := w - lpha rac{\partial \mathcal{L}}{\partial w}$$

$$b:=b-lpharac{\partial \mathcal{L}}{\partial w}$$

where α is learning rate

Loss Decrease

Trained Model

Derivative Review

the derivative of a function at a given point gives us the rate of change or slope of the tangent line to the function at that point.