Pattern Recognition homework Chapter 4

Wu Bingzhe 1200010666 The School of mathmatical science

October 23, 2015

$1 \quad \mathbf{Ex1}$

According to $x_j \in R_i, j = 1, 2,$ we have :

$$g_i(x_j) \le (\ge)0 \tag{1}$$

In terms of $g(\lambda x_1 + (1 - \lambda)x_2) = \lambda g(x_1) + (1 - \lambda)g(x_2)$, combine (1) and $0 \le \lambda \le 1$,we get:

$$g(\lambda x_1 + (1 - \lambda)x_2) \le (\ge)0\tag{2}$$

So the decision area is convex

2 Ex2

2.1 (a)

The projection of x_a can be represented as:

$$x_a = x_p + r \frac{\omega}{\|\omega\|} \tag{3}$$

Where x_p is the projection point on the hyperplane r is the distance between the x_a and the hyperplane g(x) = 0.

Because the point x_p is on the hyperplane , we have $g(x_p)=0$. Further more:

$$g(x_a) = \omega^T x_a + \omega_0$$

$$= \omega^T (x_p + r \frac{\omega}{\|\omega\|}) + \omega_0$$

$$= g(x_p) + r\|\omega\|$$

$$= r \frac{\omega}{\|\omega\|}$$

So we get $r = \frac{|g(x_a)|}{\|\omega\|}$

On the other hand, for an arbitrarily point \boldsymbol{x}_q on the hyperplane ,

$$||x_q - x_a||^2 = ||x_q - x_p + x_p - x_a||^2$$

$$= ||x_q - x_a||^2 + r^2 + (x_q - x_p)(x_p - x_a)$$

$$= ||x_q - x_a||^2 + r^2$$

$$\geq r^2$$

The conclusion established.

2.2 (b)

In terms of $r = \frac{g(x_a)}{\|\omega\|}$, combine (3) ,we can get the projection of x_a is:

$$x_p = x_a - \frac{g(x_a)}{\|\omega\|^2}\omega$$

3 Ex3

3.1 (a)

Assumption y_i satisfy $a^T y_i \ge b$, hence, we have $a^T y_i \ge b \ge 0$. So after bringing the b, the solution area is located in the original problem area.

3.2 (b)

The boundary of the solution after bringing the b is a hyperplane $a^Ty_i = b$, and the original boundary is another hyperplane $a^Ty_i = 0$. So the distance between the two hyperplane is $d = \frac{b}{\|y_i\|}$

4 Ex4

The criterion function of perceptron has the form:

$$J(a) = \sum_{y \in Y} (-a^t y)$$

- $5 \quad \mathbf{Ex5}$
- 6 Ex6