

Aula 5- Estatística Aplicada Técnicas de amostragem- parte 2 Amostragem aleatória simples

Profa. Me. Aline Cipriano

SEQUÊNCIA DIDÁTICA

- Censo e Amostragem
- Técnicas de amostragem probabilística: amostragem aleatória simples
- ✓ Números aleatórios (TNA, calculadora)
- ✓ Implementação no Python

CENSO x AMOSTRAGEM

Censo: coleta dados de toda a população, fornecendo informações completas e detalhadas sobre todos os seus membros.

Amostragem: coleta dados a partir de uma amostra, que é uma parte da população, para estimar características do grupo todo.

CENSO x AMOSTRAGEM

1. Precisão Necessária:

- **CENSO**: se precisar de informações completas e detalhadas sobre toda a população.
- AMOSTRAGEM: se precisar de uma visão geral

2. Recursos Disponíveis:

- CENSO: recursos abundantes.
- AMOSTRAGEM: recursos limitados (tempo, dinheiro, pessoal). A amostragem é mais econômica e rápida em comparação com um censo.

3. Tamanho da População:

- CENSO: populações pequenas onde é viável coletar dados de todos.
- AMOSTRAGEM: populações grandes, a amostragem é mais prática e ainda fornece resultados confiáveis.

EXERCÍCIOS

- 1. Analise as situações descritas abaixo e decida se a pesquisa deve ser feita por amostragem ou por censo, justificando sua resposta.
- a) Numa linha de produção de empacotamento de café, observar o peso dos pacotes produzidos.
 - a) CENSO. Se houver possibilidade de agregar uma balança automática ao processo produtivo pode-se utilizar censo. Pois como não se trata de teste destrutivo, e peso dos pacotes é importante para a imagem da empresa (e para não haver desperdício) todos os pacotes podem ser medidos.

EXERCÍCIOS

b) Em uma sala de aula composta por 40 alunos, analisar suas idades.

CENSO, porque a população é pequena, apenas 40 elementos.

c) Observar se a água de uma lagoa está contaminada.

AMOSTRAGEM. É no mínimo contraditório retirar toda a água da lagoa para exame de sua contaminação.

EXERCÍCIOS

d) Verificar a carga horária diária de trabalho dos funcionários da cozinha de um restaurante.

CENSO, por razões políticas, para que ninguém se sinta prejudicado, além da população ser pequena e acessível.

e) Pesquisa de opinião eleitoral para governador do estado de São Paulo. AMOSTRAGEM. A necessidade de rápido processamento exige amostragem, devido ao grande tamanho da população que tornaria muito lenta a obtenção dos resultados, além de muito cara.

TÉCNICAS DE AMOSTRAGEM PROBABILÍSTICA

- Amostragem Aleatória Simples (TNA, calculadora);
- Amostragem Sistemática;
- Amostragem por Conglomerados.
- Amostragem Estratificada.

A amostragem aleatória simples é uma técnica de seleção de amostra em que cada indivíduo de uma população tem a mesma probabilidade de ser selecionado.

Exemplo1

 Pesquisa sobre prática de atividade física de famílias de funcionários de uma certa empresa.

- População: 32 funcionários

- Amostra: 5 funcionários

01. Aristóteles	02. Anastácia	03. Arnaldo	04. Bartolomeu	05. Bernardino
06. Cardoso	07. Carlito	08. Cláudio	09. Ermílio	10. Hercílio
11. Ernestino	12. Endevaldo	13. Francisco	14. Felício	15. Fabrício
16. Geraldo	17. Gabriel	18. Getúlio	19. Hiraldo	20. João da Silva
21. Joana	22. Joaquim	23. Joaquina	24. José da Silva	25. José de Souza
26. Josefa	27. Josefina	28. Maria José	29. Mª Cristina	30. Mauro
31. Paula	32. Paulo César			

Exemplo 2

- Pesquisa de estatura de crianças do 6º ano do ensino fundamental de uma escola
- População: 1000 alunos
- Amostra: 10% da população

Exemplo 2

- Pesquisa de estatura de crianças do 6º ano do ensino fundamental de uma escola
- População: 1000 alunos
- Amostra: 10% da população

- 1º passo numeramos os alunos de 1 a 1000.
- 2º passo escrevemos os números dos alunos, de 1 a 1000, em pedacinhos de papel
- 3º passo retiramos 100 números.
- Procedimento MUITO trabalhoso!!!!!
- Alternativa: tabela de números aleatórios no Excel ALEATORIO ENTRE (0 e 1000)

```
141592653589793238462643383279502
419716939937510582097494459230781
062862089986280348253421170679821
086513282306647093844609550582231
535940812848111745028410270193852
055596446229489549303819644288109
665933446128475648233786783165271
190914564856692346034861045432664
133936072602491412737245870066063
588174881520920962829254091715364
789259036001133053054882046652138
469519415116094330572703657595919
092186117381932611793105118548074
237996274956735188575272489122793
```

Situação-problema 1:

População: 80

Amostra: 5

Leitura: primeira linha- esquerda para a direita

R: 14, 15, 65, 35, 79

Situação-problema 2:

População: 400

Amostra: 5

Leitura: última linha- direita para a esquerda.

R: 122, 272, 188, 274, 237

98543	59525	21114	73109	69095	
87060	95250	50277	17486	07962	
82170	68014	07937	98003	40146	
48673	26100	23776	66959	84477	
08560	52600	66188	63746	05849	
68708	28373	27635	52562	18148	
80511	00208	61965	66983	70232	
02253	27120	53172	99800	74603	
37110	07752	38216	54843	22496	
01548	06209	79410	99823	17603	
81417	85771	25961	84381	88582	
36602	77275	35226	53601	91939	
79337	00250	64655	89710	19526	
60564	55609	64304	10940	69422	
87552	78655	14220	30037	07403	
04951	65135	00626	99163	34098	
01761	01438	35218	11762	11586	
41451	57175	88050	23528	46360	
03646	98017	51286	18545	02393	
02863	33742	19979	10905	34863	••••

População: 20

Amostra: 2

11, 09

População: 600

Amostra: 3

577, 200, 398

População: 1000

Amostra: 1

0039,

Considere uma classe de 40 alunos que irão participar de um bingo. Selecione 5 pessoas usando a tabela de números aleatórios.

60 80 85 44 44 74 41 28 11 05
80 94 04 48 93 10 40 83 62 22
85 27 48 68 93 11 30 32 92 70
84 13 38 96 40 44 03 55 21 66
64 42 52 81 08 16 55 41 60 16
90 04 58 54 97 51 98 15 06 54
19 51 69 01 20 46 75 97 16 43
49 38 65 44 80 23 60 42 35 54
06 31 28 89 40 15 99 56 93 21
60 94 20 03 07 11 89 79 26 74

População: 40

Amostra: 5

13, 38, 40, 03, 21.

População: 100

Amostra: 1

085

NÚMEROS ALEATÓRIOS- CALCULADORA

AMOSTRAGEM ALEATÓRIA SIMPLES- PYTHON

Amostragem.ipynb 🚓				
quivo Editar Ver Inserir Ambier	nte de execução Fer	rramentas ,	Ajuda	As alterações não serão salvas
Localizar no Drive				
Novo notebook				
Abrir notebook	Ctrl+O			
Fazer upload de notebook				
Rename				
Mover				
Mover para a lixeira				
Salvar uma cópia no Drive				
Salvar uma cópia como Gist do GitHul	0			
Salvar uma cópia no GitHub				
Salvar	Ctrl+S p	le(n = 100	, rand	dom_state = 1)
Salvar e fixar revisão	Ctrl+M S			
Histórico de revisões				
Fazer download	>			
Imprimir	Ctrl+P			

https://colab.google/

Disco Disponível: 81.45 GB

Carregamento da base de dados

Amostragem

Carregamento da base de dados

```
[4]
      1 import pandas as pd
      2 import random
      3 import numpy as np
     1 dataset=pd.read_csv('census.csv')
[16] 1 dataset.shape
```


Q

 $\{X\}$

⊙ਜ਼ਾ

🛆 Cópia de Amostragem.ipynb 🛚 ☆

Arquivo Editar Ver Inserir Ambiente de execuç

```
+ Código + Texto
誩
```

Carregamento da base de da

```
1 import pandas as pd
2 import random
3 import numpy as np
```

```
1 dataset = pd.read_csv('census.csv'
 3 print(dataset.shape)
(32562, 15)
```

Amostragem

Carregamento da base de dados

```
[4] 1 import pandas as pd
2 import random
3 import numpy as np

[15] 1 dataset=pd.read_csv('census.csv')
[16] 1 dataset.shape
```


Caso não apareça as 15 colunas, utilize um dos caminhos abaixo:

```
dataset=pd.read_csv('census.csv', delimiter=';')
```

```
dataset = pd.read_csv('census.csv', sep=';', header=None, names=['age',
'workclass', 'final-weight','education','education-num','marital-
status','occupation','relationship','race','sex','capital-gain','capital-
loss','hour-per-week','native-country','income'])
```


Amostragem aleatória simples

```
1 df_amostra_aleatoria_simples = dataset.sample(n = 100)
```

```
[ ] 1 df_amostra_aleatoria_simples.shape
(100, 15)
```

[] 1 df_amostra_aleatoria_simples.head()

	age	workclass	final- weight	education	education- num	marital- status	occupation	relationship	race	sex	capital- gain	capital- loos
9646	62	Self-emp- not-inc	26911	7th-8th	4	Widowed	Other- service	Not-in-family	White	Female	0	0
709	18	Private	208103	11th	7	Never- married	Other- service	Other-relative	White	Male	0	0
7385	25	Private	102476	Bachelors	13	Never- married	Farming- fishing	Own-child	White	Male	27828	0
16671	33	Private	511517	HS-grad	9	Married- civ-	Prof- specialty	Husband	White	Male	0	0

```
1 df_amostra_aleatoria_simples = dataset.sample(n=100, )
                                                           (n: int | None = ..., frac: float | None = ...,
                                                           replace: _bool = ..., weights: _str | ListLike@sample
1 df amostra aleatoria simples.shape
                                                           None = ..., random_state: RandomState | None = ...,
                                                           axis: AxisIndex | None = ..., ignore index: bool =
100, 15)
                                                           ...) -> DataFrame
                                                           Return a random sample of items from an axis of object.
1 df_amostra_aleatoria_simples.head()
                                                           You can use random state for reproducibility.
                           final-
                                                 education
             workclass
                                    education
       age
                                                        <sub>ni</sub> Parameters
                           weight
```


1 df_amostra_aleatoria_simples = dataset.sample(n=100, random_state = 1)

 $1\ \mathsf{df_amostra_aleatoria_simples.shape}$

(100, 15)

1 df_amostra_aleatoria_simples.head()

	age	workclass	final- weight	education	education- num	marital- status
9646	43	Private	262038	5th-6th	3	Married- spouse-absent

weights of zero.

If called on a DataFrame, will accept the name of a column when axis = 0.

Unless weights are a Series, weights must be same length as axis being sampled.

If weights do not sum to 1, they will be normalized to sum to 1. Missing values in the weights column will be treated as zero. Infinite values not allowed.

random_state: int, array-like, BitGenerator, np.random.RandomState, n If int, array-like, or BitGenerator, seed for random number generator of the period of

axis: {0 or 'index', 1 or 'columns', None}, default None

Axis to sample Accepts axis number or name Default is stat axis.

0

1 df_amostra_aleatoria_simples<mark>.head()</mark>

_	_
	_
•	→
_	_

	age	workclass	final- weight	education	education- num	marital- status	occupation	relationship	race	sex	capital- gain	capital- loss	hour- per-week
9646	43	Private	262038	5th-6th	3	Married- spouse-absent	Farming- fishing	Unmarried	White	Male	0	0	35
709	60	Private	177665	HS-grad	9	Married-civ- spouse	Craft-repair	Husband	White	Male	0	0	35
7385	37	Private	172538	HS-grad	9	Never-married	Machine-op- inspct	Own-child	White	Male	0	0	40
32273	38	Private	447346	Some- college	10	Married-civ- spouse	Craft-repair	Husband	White	Male	0	0	36
17122	54	Private	284129	Some- college	10	Married-civ- spouse	Transport- moving	Husband	White	Male	0	0	45
							- Código -	+ Texto					

```
+ Código + Texto
```

[58] 1 def amostragem_aleatoria_simples(dataset, amostras):
2 return dataset.sample(n = amostras)

[59] 1 df_amostra_aleatoria_simples = amostragem_aleatoria_simples(dataset, 100) 2 df_amostra_aleatoria_simples.shape

(100, 15)

1 df_amostra_aleatoria_simples.head()

	age	workclass	final- weight	education	education- num	marital- status	occupation	relationship	race	sex	CS
15436	47	Private	162034	Bachelors	13	Married-civ- spouse	Sales	Husband	White	Male	
5997	20	Private	293091	11th	7	Never- married	Transport- moving	Own-child	White	Male	
18075	34	Federal- gov	436341	Some- college	10	Married-AF- spouse	Adm-clerical	Wife	White	Female	
		Salf-amp-				Marriad-civ-					

```
[77] 1 def amostragem_aleatoria_simples(dataset, amostras):
2  return dataset.sample(n = amostras, random_state=1)
```

1 df_amostra_aleatoria_simples = amostragem_aleatoria_simples(dataset, 100)
2 df_amostra_aleatoria_simples.shape

(100, 15)

1 df_amostra_aleatoria_simples.head()

	age	workclass	final- weight	education	education- num	marital- status	occupation	re.
9646	43	Private	262038	5th-6th	3	Married- spouse-absent	Farming- fishing	
709	60	Private	177665	HS-grad	9	Married-civ- spouse	Craft-repair	
7385	37	Private	172538	HS-grad	9	Never-married	Machine-op- inspct	

```
+ Código + Texto
```

```
1 def amostragem_aleatoria_simples(dataset, amostras):
2  return dataset.sample(n = amostras, random_state=2)
```

1 df_amostra_aleatoria_simples = amostragem_aleatoria_simples(dataset, 100)
2 df_amostra_aleatoria_simples.shape

(100, 15)

1 df_amostra_aleatoria_simples.head()

	age	workclass	final- weight	education	education- num	marital- status	occupation	relationship	race	sex	ca
16054	59	Private	159724	Masters	14	Married-civ- spouse	Sales	Husband	White	Male	
				Some-		Marriad-civ-	Protective-				

