From Busemann function to Cheeger-Gromoll splitting

darknmt

May 23, 2017

Contents

1 Busemann function

1

2

2 Harmonicity

We will prove the following result by Cheeger and Gromoll by a slightly modified approach of A. Besse.

Theorem 1 (Cheeger-Gromoll). Let M be a complete, connected Riemannian manifold with non negative Ricci curvature. Suppose that M contains a line then M is isometric to $M' \times \mathbb{R}$ with M' a complete, connected Riemannian manifold with non negative Ricci curvature.

1 Busemann function

Let γ be a geodesic ray. We construct the Busemann function b associated to the ray as

$$b(x) = \lim_{t \to +\infty} f_t(x) = t - d(x, \gamma(t))$$

where the limit exists because the sequence f_t is non-decreasing and bounded by $d(x, \gamma(0))$. The convergence is also uniform in every compact.

In Euclidean space for example, the Busemann function is the orthogonal projection on γ . We will see that in a Riemannian manifold with non negative curvature, the Busemann function will serve as a projection.

Now with a fixed $x_0 \in M$, the tangent vector at x_0 of the geodesics connecting x_0 and $\gamma(t)$ is in the unit sphere of T_xM , which is compact. Let X be a limit point of these tangents vectors and pose

$$b_{X,t}(x) = b(x_0) + t - d(x, C_X(t))$$

where $C_X(t)$ is the geodesic flow starting at x_0 with velocity X.

- **Remark 1.** 1. From the construction of X, one has $b(x_0)+t=b(C_X(t))$, therefore $b_{X,t} \leq b$ with equality in x_0 . We say that b is supported by $b_{X,t}$ at x_0 . In general a function f is supported by g at x_0 if $f(x_0) = g(x_0)$ and $f \geq g$ in a neighborhood of x_0 .
 - 2. $b_{X,t}$ is smooth and a computation in local coordinate gives $\Delta b_{X,t} \leq \frac{\dim M 1}{t}$
 - 3. $\|\nabla b_{X,t}\| = 1$

We also note that it suffices to show that b is harmonic. In fact, from the smoothness one has $\nabla b(x_0) = \nabla b_{X,t}(x_0)$, which means $\|\nabla b\| = 1$ at every point in M. For each point $y \in M$, there exists a unique x with b(x) = 0 and time t when the flow of ∇b arrive at x. M is therefore homeomorphic to $\overline{M} \times \mathbb{R}$ by the above $y \mapsto (x,t)$ map. To see that this map is isometric, it remains to prove that ∇b is parallel, which follows from harmonicity of b

$$Ric(\nabla b, \nabla b) = -\|\nabla(\nabla b)\| - (\nabla b).(\Delta b)$$

we see that ∇b is parallel if $\Delta b = 0$.

Remark 2. One can show (see A. Besse) that every gradient field ∇b of norm 1 at every point is actually harmonic.

2 Harmonicity

The Busemann function associated to a geodesic ray is subharmonic, it is a consequence of the following lemma.

Lemma 2. In a connected Riemannian manifold, if a continuous function f is supported at any point x by a family f_{ϵ} (depending on x) with $\Delta(f_{\epsilon}) \leq \epsilon$, then f can not attain maximum (unless when f is constant).

Proof. Given a small geodesic ball B, suppose that we have a function h on B with $\Delta h < 0$ in B and f + h attains maximum at x in the interior of B. Then $f_{\epsilon} + h$ also attains maximum at x, which means $\Delta f_{\epsilon} + \Delta h \geq 0$, which is contradictory.

For the construction of the function h, one suppose that B is small enough such that $f|_{\partial B} \leq max_B f =: f(x_0)$ and equality is not attained at every points in ∂B . Then choose

$$h = \eta(e^{\alpha\phi} - 1)$$

with and $\phi(x) = -1$ if $x \in \partial B$ and $f(x) = f(x_0)$, $\phi(x_0) = 0$, $\nabla \phi \neq 0$ and a large α such that

$$\Delta h = \eta(-\alpha^2 \|\nabla \phi\| + \alpha \Delta \phi)e^{\alpha \phi}.$$

is negative. \Box

Now for subharmonicity of b, given a harmonic function h that coincides with b in the boundary ∂B of a geodesic ball B, then b-h is supported by $b_{X,t}-h$ with $\Delta(b_{X,t}-h)\to 0$ as t tends to $+\infty$, therefore $b-h\le (b-h)|_{\partial B}=0$ in B. hence b is subharmonic.

Corollary 2.1. The Busemann function of a geodesic ray in a Riemannian manifold M with non-negative Ricci curvature is subharmonic.

Now let b_+ be the function previously constructed for the ray $\gamma|_{[0,+\infty[}$ and b_- the Busemann function for the ray $\tilde{\gamma}|_{[0,+\infty[}$ where $\tilde{\gamma}(t)=\gamma(-t)$. Note that $b_++b_-\leq 0$ with equality on the line γ , but the sum is subharmonic therefore by maximum principle $b_+=-b_-$ and b is harmonic hence smooth. The splitting theorem of Cheeger-Gromoll follows.