BIG DATA ANALYTICS Advertising on the Web

Outline

Web Advertising

The Adwords Problem

On-line advertising

- Web applications support themselves through advertising
- The most lucrative venue for on-line advertising: search
- The "adwords" model of matching search queries to advertisements
- The algorithms: greedy and "on-line"

Online Advertising

- Banner ads: Initial form of web advertising
- On-line stores: to maximize the probability that the customer will be interested in the product
- Search ads are placed among the results of a search query:
 - Advertisers bid for the right to have their ad shown in response to certain queries
 - They pay only if the ad is clicked on

Display Ads

- ullet \sim advertising in traditional media
- The fee is typically a fraction of a cent per impression

Specialized Display Ads

- Traditional media: newspapers or magazines for special interests
- many specialized, low-circulation magazines
- An ad for golf clubs on sports.yahoo.com/golf has much more value per impression

Content Personalization

- Use information about the user
- E.g. Sally likes golf \implies show her an ad for golf clubs
 - She may belong to a golf-related group on Facebook
 - She may mention "golf" frequently in emails posted on her gmail account
 - She may spend a lot of time on the Yahoo! golf page
 - She may issue search queries with golf-related terms frequently
 - She may bookmark the Web sites of one or more golf courses.

Privacy issues

- People like the free services that are usually advertisingsupported
- These services depend on advertising being much more effective than conventional ads
- Better to see things you might actually use
- Potential for misuse if the information.

Search Advertising

- Introduced by Overture around 2000
 - Advertisers bid on keywords
 - When someone searched fors that keyword, the highest bidders' ads are shown
 - Advertiser is charged only if the ad is clicked on
- Similar system adopted by Google around 2002: Adwords

Challenges for the Search Advertising (1)

- Ads are displayed in response to query terms:
 - inverted index of words
 - the advertiser specifies parameters of the ad
- How to rank ads?
- "Most-recent first":
 - advertisers post small variations of their ads at frequent intervals
 - ⇒ discover ads that are too similar

Challenges for the Search Advertising (2)

- Measure the attractiveness of an ad:
 - Attractive ads will be clicked on more frequently
 - The position of the ad has great influence is clicked
 - Attractiveness may depends on the query terms
 - All ads deserve the opportunity to be shown until their click probability can be approximated closely

Web 2.0

- Performance-based advertising works!
 - Multi-billion-dollar industry
- Interesting problem: what ads to show for a given query?
 - Today's lecture
- If I am an advertiser, which search terms should I bid on and how much should I bid?

Outline

Web Advertising

The Adwords Problem

The Adwords system

- Only a limited number of ads with each query
- Users: a budget for all clicks on their ads in a month
- Ordering ads: by the amount they expected to receive for display of each ad
 - The click-through rate based on the history of displays
 - The value of an $ad = the bid \times the click-through rate.$

Adwords Problem

Given:

- 1. A set of bids by advertisers for search queries.
- 2. A click-through rate for each advertiser-query pair.
- 3. A budget for each advertiser.
- 4. A limit on the number of ads to be displayed with each search query.
- Respond to each search query with a set of advertisers such that:
 - 1. The size of the set is no larger than the limit on the number of ads per query.
 - 2. Each advertiser has bid on the search guery.
 - 3. Each advertiser has enough budget left to pay for the ad if it is clicked upon.

Adwords Problem

- A stream of queries arrives at the search engine: q_1, q_2, \dots
- Several advertisers bid on each query
- When query q_i arrives, search engine must pick a subset of advertisers whose ads are shown
- Goal: Maximize search engine's revenues
- Simple solution: Instead of raw bids, use the "expected revenue per click" (i.e., Bid×CTR)
- We need an online algorithm!

Online algorithms

Classic model of algorithms:

- You get to see the entire input, then compute some function of it
- In this context, "offline algorithm"

• Online Algorithms:

- You get to see the input one piece at a time, and need to make irrevocable decisions along the way
- Optimizing the output

The Adwords Innovation

Advertiser	Bid	CTR	$Bid{ imes}CTR$
А	\$1	1%	1 cent
В	\$0.75	2%	1.5 cent
С	\$0.5	2.5%	1.125 cent

Complications: Budget

- Two complications:
 - Budget
 - CTR of an ad is unknown
- Each advertiser has a limited budget:
 - Search engine guarantees that the advertiser will not be charged more than their daily budget

Complications: CTR

- CTR: Each ad has a different likelihood of being clicked
 - Advertiser 1 bids \$2, click probability = 0.1
 - Advertiser 2 bids \$1, click probability = 0.5
- Clickthrough rate (CTR) is measured historically
- Very hard problem: Exploration vs. exploitation
- Exploit: Should we keep showing an ad for which we have good estimates of click-through rate
- OR Explore: Shall we show a brand new ad to get a better sense of its click-through rate

Greedy Algorithm

- Our setting: Simplified environment:
 - There is 1 ad shown for each query
 - All advertisers have the same budget B
 - All ads are equally likely to be clicked
 - Value of each ad is the same (=1)
- Simplest algorithm is greedy:
 - For a query pick any advertiser who has bid 1 for that query

Bad scenario for Greedy

- Two advertisers A and B:
 - ullet A bids on query x, B bids on x and y
 - Both have budgets of \$4
- Query stream: xxxxyyyy
 - Worst case greedy choice: BBBB_____
 - Optimal: AAAABBBB
 - Competitive ratio = 1/2
- Note: Greedy algorithm is deterministic it always resolves draws in the same way

BALANCE algorithm

- BALANCE Algorithm by Mehta, Saberi, Vazirani, and Vazirani
 - For each query, pick the advertiser with the largest unspent budget
 - Break ties arbitrarily (but in a deterministic way)

Example: BALANCE

- Two advertisers A and B:
 - ullet A bids on query x, B bids on x and y
 - Both have budgets of \$4
- Query stream: xxxxyyyy
- BALANCE choice: ABABBB___
 - Optimal: A A A A B B B B
 - Greedy: $BBBB_{---}$
- Competitive ratio = 3/4

General Version of the Problem

- Arbitrary bids and arbitrary budgets!
- ullet Consider we have 1 query q, advertiser i
 - Bid = x_i
 - Budget = b_i
- In a general setting BALANCE can be terrible
 - Consider two advertisers A_1 and A_2
 - $A_1: x_1 = 1, b_1 = 110$
 - $A_2: x_2 = 10, b_2 = 100$
 - Consider we see 10 instances of q
 - BALANCE always selects A_1 and earns 10
 - Optimal earns 100

Generalized BALANCED

- ullet Arbitrary bids: consider query q, bidder i
 - Bid = x_i
 - Budget= b_i
 - Amount spent so far $= m_i$
 - Fraction of budget left over $f_i = 1 m_i/b_i$
 - Define $\psi_i(q) = x_i(1 e^{-f_i})$
- Allocate query q to bidder i with largest value of $\psi_i(q)$
- Competitive ratio (1-1/e)

Generalized BALANCED

- The click-through rate differs for different ads
- ullet multiply the bid by the click-through rate when computing the $\psi_i(q)$'s
- maximize the expected revenue

Matching Bids and Search Queries

- Simplified model: advertisers bid on sets of words
- "Broad matching":
 - ad is eligible also for search queries that are inexact matches of the bid keywords
 - E.g., subset of keywords/ queries with very similar meanings
- Need to take into account how closely related the search query is to the advertiser's bid

Charging Advertisers for Clicks

- Simplified model:
 - A first-price auction
- A second-price auction:
 - advertiser pays approximately the bid of the advertiser placed immediately behind them in the auction
 - less susceptible to being gamed by advertisers than first-price auctions
 - higher revenues for the search engine

References

 J. Leskovec, A. Rajaraman and J. D. Ullman Mining of Massive Datasets (2014), Chapter 8