

Laboratório Avaliação Final

O presente laboratório contem o Exercicio final da disciplina de Redes de Computadores.

Use a experiência laboratorial adquirida anteriormente e aplique-a para resolver os problemas descritos no enunciado.

Neste enunciado encontrará a definição das várias tarefas que vai realizar, bem como a sua cotação individual. A sua classificação individual será calculada com base na soma da pontuação das tarefas feitas, mas também pela avaliação da sua destreza no trabalho com a rede proposta, e no grau de certeza das respostas que der às perguntas que lhe forem colocadas individualmente durante a avaliação (vide a explicação que foi dada sobre este processo de avaliação em particular e que está descrita nos slides apresentados na primeira aula da unidade curricular e disponíveis em www.di.ubi.pt/~ngarcia).

Apeesar do trabalho ser realizado em grupo, os elementos do grupo podem apresentar o trabalho em fases diferentes. Para a apresentação e avaliação do trabalho que submeterem até ao prazo definido na primeira aula, devem ainda proceder ao registo do momento em que desejam ser avaliados. Isso é feito de acordo com as instruções que estão nos slides da primeira aula, no link disponibilizado em www.di.ubi.pt/~ngarcia). Cada timeslot de avaliação tem 30 minutos para avaliar todos os elementos do grupo (com tolerância em função da dimensão do grupo).

Quem não apresentar o trabalho e não se submeter à avaliação terá forçosamente uma nota de zero valores na parte prática.

Esteja preparado para no final da apresentação, propor uma nota de auto-avaliação aos docentes.

Em caso de dúvida consulte a equipa docente.

Bom trabalho!

1. Recrie no Packet Tracer a seguinte Rede.

1.1. Exemplo de possível solução para o problema.

Detalhes sobre a rede apresentada.

i. Note que há ligações com fibra óptica, com cabo série, e com cabo de cobre directo e cruzado. Aplique-os de forma semelhante ao que mostra a imagem acima, assegurando-se de que os equipamentos usados (routers e switches) têm os interfaces adequados. Sugere-se que use equipamentos "empty" e que depois os equipe com os interfaces que achar melhor.

A Empresa X (Emp_X) tem escritórios em Lisboa e no Porto, ligados à rede através de um contrato com a empresa Internet Service Provider A (ISP_A).

Quer a ISP_A quer a ISP_B (outro Internet Service Provider) estão ligados aos dois nós do Internet eXchange de Lisboa e do Porto (GigaPixLx e GigaPixPorto). Os dois nós do GigaPix estão conectados com fibra óptica gigabit. Além disso, os dois nós locais de Lisboa e do Porto estão ligados também por fibra óptica.

- iv. A Empresa Y está conectada directamente ao GigaPix de Lisboa. Esta empresa aloja dois servidores, como se vê na figura.
- v. O ISP_B revende acesso residencial em Lisboa, e como mostra a figura, cada casa tem um router doméstico e pelo menos um computador. O endereço dos computadores de cada uma das casas é dado pelo respectivo router residencial.
- vi. Ainda assim, o ISP_B tem um servidor de DHCP que deve ser usado quando algum computador se ligar ao router ISP_B_Porto.
- vii. Os computadores domésticos da Casa_A e da Casa_B têm cada um uma conta de correio no servidor de email do ISP B (instalado no Porto). Este servidor aloja contas do domínio emailispb.pt. O servidor de DNS local do ISP B sabe resolver este nome, mas o servidor geral de DNS (no endereço 8.8.8.8) também sabe resolver o nome para que os outros servidores de email consigam trocar mensagens com o emailispb.pt.

iii.

- viii. O servidor de DNS local, o DNS_Emp_X sabe resolver o nome "intranet", que só está acessível dentro da rede da Empresa X.
- ix. A rede da empresa X tem 4 VLANs (das quais duas estão referenciadas na figura), e que são, a VLAN 1 (a de default), a VLAN 100 e a 101 (exibidas), e a VLAN 200, que tem apenas o servidor da "intranet".
- x. A Cloud0 tem os seguintes circuitos:
 - a. GigaPixPorto DNS 8.8.8.8
 - b. GigaPixPorto www.cnn.com
 - c. GigaPixPorto email.com
 - d. ISP_B_Porto DNS 8.8.8.8

1.2. Quanto ao routing e ao endereçamento.

O protocolo de routing entre os dois routers Gigapix deve ser OSPF. Sugere-se uma leitura do artigo em https://www.mustbegeek.com/configure-redistribution-between-rip-and-ospf-in-cisco-ios-router/ para implementar a redistribuição das redes OSPF sobre RIP e vice-versa, de modo a que os routers consigam fazer convergir as suas tabelas de routing.

Nos restantes routers, pode usar RIP v2.

Faça a gestão dos endereços IPv4 de forma adequada, como segue:

Entre os routers		Endereços a aplicar na gama				
GigaPixLx	GigaPixPorto	10.10.0.0/24 (*)				
GigaPixLx	ISP_A_Lx	ie a Cha				
GigaPixLx	ISP_B_Lx					
GigaPixLx	Emp_Y	- 100				
GigaPixPorto	ISP_A_Porto					
GigaPixPorto	ISP_B_Porto					
GigaPixPorto	RouterDNS (via "Internet")					
GigaPixPorto	RouterCNN (via "Internet")					
GigaPixPorto	RouterEmail (via "Internet")					
ISP_A_Lx	ISP_A_Porto	10.0.0.0/24 (*)				
ISP_A_Lx	Emp_X_LX					
ISP_A_Porto	Emp_X_Porto					
ISP_B_Porto	RouterDNS (via "Internet")	192.168.1.0/30				
ISP_B_Lx	Casa_A	10.1.0.0/24 (*)				
ISP_B_LX	Casa_B					

(*) isto significa que vai ter que gerir este espaço de endereços para atribuir diferentes redes IP a cada uma das ligações requeridas.

Rede		Bloco de endereços
Rede da Casa_A		10.0.1.0/24
Rede da Casa_B		10.0.2.0/24
VLAN 1	(ligados ao router de Lisboa)	172.16.1.0/24
VLAN 99	(ligados ao router de Lisboa) §	173.249.51.0/24
VLAN 100	(ligados ao router de Lisboa)	172.16.100.0/24
VLAN 101	(ligados ao router de Lisboa)	172.16.101.0/24
VLAN 1	(ligados ao router do Porto)	172.17.1.0/24
VLAN 100	(ligados ao router do Porto)	172.17.100.0/24
VLAN 101	(ligados ao router do Porto)	172.17.101.0/24
VLAN 200	(ligados ao router do Porto)	172.17.200.0/24

§ VLAN do servidor www.noticiasdacovilha.pt

As máquinas nas redes nas VLANS 100 e 101 ligadas aos routers Emp_X_Lx e Emp_X_Porto deverão obter o seu endereço IPv4 de forma dinâmica usando o servidor DHCP com o endereço 172.16.0.1.

Os seguintes servidores têm endereços públicos estáticos, e devem ser registados no servidor de DNS adequado por forma a permitir o seu acesso a partir de qualquer ponto da rede:

<mark>Servido</mark> r	Ligado a	Endereço IPv4
www.wikipedia.org	ISP_A_Lx	91.198.174.192
wikimail.org	ISP_A_Lx	208.80.154.238
www.noticiasdacovilha.pt	Emp_X_Lx	173.249.51.18
emailispb.pt	ISP_B_Porto	193.1.2.3
email.com	(Internet)	170.1.2.3
www.cnn.com	(Internet)	151.101.133.67
dns.org	(Internet)	8.8.8.8

Ad<mark>icional</mark>mente, os seguintes servidores têm endereços privados estáticos, e devem ser registados nos competentes servidores de DNS (se for adequado):

Servidor	Ligado a	Endereço IPv4
Intranet	Emp_X_Porto	172.17.200.1
DHCP	ISP_B_Porto	10.0.99.99
DNS	ISP_B_Porto	10.0.8.8
DHCP	Emp_X_Lx	172.16.0.1
DNS	Emp X Porto	(defina um endereço adequado)

As máquinas que estão ligadas ao ISP B, deverão usar o DNS desse ISP (que depois se liga em cadeia ao DNS geral 8.8.8.8); as máquinas da Empresa X deverão usar o DNS dessa empresa (em cadeia depois com o DNS geral 8.8.8.8). As máquinas que estão ligadas directamente ao Gigapix podem usar o DNS 8.8.8.8.

Pontuação e tarefas a cumprir:

- 1. Adicione todos os equipamentos a topologia. [15]
- 2. Conecte todos os equipamentos na topologia entre si. [20]
- 3. Configure os endereços de forma eficiente e seguindo as indicações dadas, apresentando os respectivos mapas de endereços. [20]
- 4. Configure os endereços IP fixos em todos os servidores. [10]
- 5. Configure rotas OSPF entre os dois routers GigaPix. [20]
- 6. Configure os circuitos Frame-Relay na Cloud0. [10]
- 7. Configure as VLANs nos vários switches. [5]
- 8. Configure os servidores de DNS para funcionarem de forma hierárquica com duas camadas (sendo a de topo constituída pelo servidor DNS 8.8.8.8). [15]
- 9. Configure os vários servidores Web e o servidor de "intranet" para HTTP, cada um dos servidores com uma página índex.html distinta. [10]
- 10. Configure o servidor de Web www.noticiasdacovilha.pt para responder também a HTTPS. [5]
- 11. Configure os servidores de email. [10]
- 12. Configure contas de correio nos vários PCs que estão na topologia. [10]
- 13. Adicione, na Casa_A, um Access Point e um equipamento portátil com acesso Wi-Fi. Configure a senha WEP para esta rede Wi-Fi. [10]
- 14. Instale um computador com ligação por Cabo de Consola para gerir o router ISP A Porto. [5]
- 15. Configure as passwords de login e de acesso a um router (à escolha) e a um switches (à escolha) como "ubi" e "rocks". [5]
- 16. Configure um banner com a MOTD para os routers do GigaPix. [5]
- 17. Configure a partilha de rotas entre RIP e OSPF. [15]
- 18. Produza um pequeno relatório em formato PDF (a submeter com o ficheiro do Packet Tracer) contendo as programações dos routers e dos switches, bem como as tabelas de endereços. [10]
 - PONTOS BONUS (a pontuação máxima continua a ser 200 pontos)
- 19. Terá um bónus de 10 pontos se implementar NAT no router ISP_B_Lx (pode usar a gama de endereços públicos 195.0.0.0/26 para este fim).
- 20. Terá um bónus de 15 pontos se implementar listas de acesso de forma a impedir que os computadores da VLAN 101 possam aceder ao servidor "intranet".
- 21. Terá um bónus de 5 pontos se implementar um servidor FTP na rede da Emp Y.
- 22. Terá um bónus de 10 pontos se configurar um switch e um router com endereços IP por forma a permitir acesso remoto.

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	total
15	20	20	10	20	10	5	15	10	5	10	10	10	5	5	5	15	10	200

Perguntas possíveis:

- 1. Configure pelo menos um Switch e um Router para permitir acesso remoto.
- 2. Em que parte da rede poderia configurar uma rota estática?
- 3. Queremos ligar o ponto de intercâmbio de Internet espanhol a esta topologia. Simule que toda a rede Internet espanhola está no servidor "espana.es". Onde o ligaria e o que seria preciso fazer?
- 4. No ISP_B_Porto, os servi-
- 5. dores estão directamente ligados ao router. Como faria para os interligar através de um switch?
- 6. Como criaria redundância nesse switch?

