Subject Name: MATHEMATICS - 2 Subject Code: 3110015

Semester: II (2018/19)

Faculties

Mr. Pathik Mehta, Mr. Jaysan Shukla, Mr. Dattu Patel, Mr. Hitesh Manglani, Mr. Hardik Patel, Ms. Hena Shah, Ms. Purva Joshi, Mr. Dharmin Patel, Mr. Shailesh Bhanotar, Ms. Sakina Jadliwala

	CHAPTER 01:VECTOR CALCULUS	(6)
	TOPIC: 1 SCALAR, VECTOR POINT FUNCTION, FIELD, NEBLA, GRADIEN AND CURVE ARC LENGTH	
	MCQ/ Short Questions	
1.	If $\vec{a} = 2\vec{i} - 3\vec{j} + \vec{k}$ then the $ \vec{a} = (a) \sqrt{-4}$ (b) $\sqrt{4}$ (c) $\sqrt{13}$ (d) $\sqrt{14}$ (Jan'15 New) [LJIET] Ans:- (d) $\sqrt{14}$	01
2.	f $\phi = xyz$, then the value of $ grad\phi $ at $(1,2,-1)$ is (a) 0 (b) 1 (c) 2 (d) 3(May'16 New)[LJIET] Ans:- (d) 3	01
3.	$\bar{\imath} \times \bar{\jmath}$ is (a) \bar{k} (b) - \bar{k} (c) 0 (d) none of these(Dec'17 New)[LJIET] Ans:- (a) \bar{k}	01
4.	If $\bar{u} = 6\bar{\iota} - 3\bar{\jmath} + 2\bar{k}$ then $ \bar{u} $ is $(a)\sqrt{49}$ (b) $-\sqrt{49}$ (c)49 (d) none of these(Dec'17 New)[LJIET]Ans:- $(a)\sqrt{49}$	01
5.	If $\bar{a}.\bar{b} = 0$ then angle between \bar{a} and \bar{b} is (a)0 b)2 π (c) π (d)none of these(Dec'17 New)[LJIET]Ans:- (d)none of these	01
	Descriptive	
	Numaricala	
6.	Numericals If $\bar{r} = x\bar{\iota} + y\bar{\jmath} + z\bar{k}$, Prove that $\nabla^2 r^n = n(n+1)r^{n-2}$.(May'12 Old) (May'16	02
0.	Old)[LJIET]	03
7.	Prove that $\nabla^2 f(r) = f''(r) + \frac{2}{r}f'(r)$ (May'12 Old)[LJIET]	03
8.	If $\phi = 3x^2y - y^3z^2$, find grad ϕ at the point (1,-2,-1). (June'13 Old)(Jan'15 Old)[LJIET]	03 02
9.	Find grad(ϕ) if $\phi = \log(x^2 + y^2 + z^2)$ at the point(1,0, -2)(Jan'15New)(LJIET) OR	03 04
	(i) Find $grad(\emptyset)$, if $\emptyset = log(x^2 + y^2 + z^2)$ at the point $(1, 0, -2)$ (Updated) (ii) Find a unit vector normal to the surface $x^3 + y^3 + 3xyz = 3$ at the	
10.	point $(1, 2, -1)$ (May'18 Old)[LJIET] Find the length of the arc of the curve $y = \log \sec x$ from $x=0$ to $x=\pi/3$. (June'13 Old)[LJIET]	03
11.	Find the arc length of the portion of the circular helix $\bar{r}(t) = \cos t \hat{i} + \sin t \hat{j} + t \hat{k}$ from t=0 to t= π . (June'15 New)(LJIET)	03
12.	The shape of a cable from an antenna tower is given by the equation $y = \frac{4}{3}x^{\frac{3}{2}}$ from x=0	03
	to x=20. Find the total length of the cable. (Dec'16 Old) [LJIET]	

	z^2)i + $(3xy^3 - x^2z)j$ + $(\lambda xy^2z + xy)k$ is solenoidal.(Dec'15 Old) [LJIET]	
21.	Determine whether the vector field $\mathbf{u} = \mathbf{y}^2 \hat{\mathbf{i}} + 2\mathbf{x}\mathbf{y}\hat{\mathbf{j}} - \mathbf{z}^2\hat{\mathbf{k}}$ is solenoidal at a point (1,2,1).	03
	(Dec'15 New)[LJIET]	
22.	Find the unit vector normal to surface $x^2y + 2xz = 4$ at the point (2,-2,3). (Dec'15 New)	04
22	[LJIET]	
23.	Find curl \vec{F} at the point $(2,0,3)$, if $\vec{F} = z e^{2xy}\hat{\imath} + 2xy \cos y \hat{\jmath} + (x+2y)\hat{k}$. (Dec'15 New)	03
24	[LJIET] Find the directional derivative of $\emptyset = x^2 - y^2 + 2z^2$ at the point P(1,2,3) in the	04
24.	direction of the line PQ where Q is the point $(5,0,4)$. (May'16 Old)[LJIET]	04
25.	Show that $\bar{F} = 2xyz\bar{\imath} + (x^2z + 2y)\bar{\jmath} + x^2y\bar{k}$ is conservative. Find its scalar potential	04
	function Ø.(May'16 Old)[LJIET]	
26.	Find curl F, if $F = (y^2 \cos x + z^3)i + (2y \sin x - 4)j + 3xz^2k$. Whether F is irrotational?	03
	(May'16 New)[LJIET]	
27.	Find the directional derivative of $f(x, y, z) = x^3 - xy^2 - z$ at (1,1,0) in the direction of	04
	2i-3j+6k (May'16 New)[LJIET]	
28.	Find the unit normal to the surface $z^2 = 4(x^2 + y^2)$ at a point (1,0,2). (May'16	03
	New)[LJIET]	
29.	If $F = (2xy + z^3)i + x^2j + 3xz^2k$. Show that $\int F \cdot dr$ is independent of path of integration.	04
	Hence find the integral when C is any path joining (1,-2,1) and (3,1,4) (May'16	
20	New)[LJIET]	0.4
30.	Find the directional derivative of the function $f(x, y, z) = xy^2 + yz^3$ at the point (2,-1,1)	04
	in the direction of the vector $\hat{i} + 2\hat{j} + 2\hat{k}$. (Dec'16 Old) [LJIET]	0=
31.	Find div \vec{F} and curl \vec{F} , where $\vec{F} = grad(x^3 + y^3 + z^3 - 3xyz)$ (Dec'16 Old) [LJIET]	07
32.	find the workdone when a force $F = (x^2 - y^2 + 2x)i - (2xy + y)j$ moves a particle in	04
	the xy plane from $(0,0)$ to $(1,1)$ along the parabola $y^2 = x$. Is the workdone different	
22	when the path is straight line $y=x$? (Jan' 17 New) [LJIET]	02
33.	Find directional derivative of the function $f(x, y, z) = x^2 + 3y^2 + z^2$ at the point $P(2,1,3)$ in the direction of the vector $\hat{\imath} - 2\hat{k}$. (May'17 Old) [LJIET]	03
34.	Find unit normal vector to the surface $x^2 + 2y^2 + z^2 = 7$ at $(1, -1, 2)$ (May'17 Old)	03
	[LJIET]	
35.	If $F = 3xy \hat{\imath} - y^2 \hat{\jmath}$, evaluate $\int_c^{\cdot} F dr$ where C is the arc of parabola $y=2x^2$	04
	from(0,0) to (1,2) (May'17 Old) [LJIET]	
36.	Find the directional derivative of $xy^2 + yz^3$ at the point (2,-1,1). (May'17 New) [LJIET]	03
37.	Find directional derivative of function $\emptyset = zx^2 + 2xy^2 + yz^2$ at point (1,2,-1) in the	04
38.	direction of the vector $\overline{a} = 2i + 3j - 4k$. (Jan.'18 old) [L.J.I.E.T] Find directional derivative of the function $f(x, y, z) = ax + by$; a,b are	03
30.	constants, at the pointP(0,0) which makes analge of 30^0 with positive x-axis. (Dec'17	US
	Old)[LJIET]	
39.	Find a potential function for the field $F=e^{y+2z}(i + xj + 2xk)$. (Dec'17 Old)[LJIET]	04
40.	Find the magnitude and the direction of the greatest change of u=xyz ² at	03
	(1, 0,3)(Dec'17 Old)[LJIET]	
41.	Find the workdone when a force $F=(x^2-y^2+x)i-(2xy+y)j$ moves a	04
	particle in the xy-plane from (0, 0) and (1, 1) along the parabola y ² =x. Is the work	
	done different when the path is the straight-line y=x?(Dec'17 Old)[LJIET]	

	26.	Find the value of 1. $L(t \sin wt)$ 2. 1 * 1 where * denote the convolution product	04
		(Dec. 2009)[LJIET]	
Ī	27.	Find the Laplace transform of half wave rectification of sin wt defined by	03,0
		$\left(\sin wt \ if \ 0 < t < \frac{\pi}{v} \right)$	4
	J	$f(t) = \begin{cases} \sin wt & \text{if } 0 < t < \frac{\pi}{w} \\ 0 & \text{if } \frac{\pi}{w} < t < \frac{2\pi}{w} \end{cases} , f(t) = f(t + \frac{2\pi}{w}) \text{(H March 2010, Jan. 2013old)}$	
Ļ	20	course)[LJIET]	0.4
	28.	Find the Laplace transform of 1. $t^2 \sin \pi t$ 2. $e^t u(t-2)$ (Dec. 2010)[LJIET]	04
	29.	Find Laplace Transform of $f(t) = \sin wt $; $t \ge 0$ (H May 2011)[LJIET]	03
	30.	Find Laplace Transform of $f(t) = \sinh wt$, $t \ge 0$ (Dec. 2011)[LJIET]	03
	31.	Find Laplace Transform of 1. $e^{-3t}u(t-2)$, 2. $\int_0^t e^{-u}\cos u \ du$ (H May 2012)[LJIET]	03
	32.	Solve the differential equation $\frac{d^2y}{dt^2} + 4y = f(t)$, $y(0) = 0$, $y'(0) = 1$ by Laplace transform	03,0
		where (i) $f(t) = 1, 0 < t < 1$	
		=0, t>1	
		(ii) $f(t) = H(t-2)$. (H May 2012) (H Nov 2017,OLD)[LJIET]	
	33.	Prove that $L(1) = \frac{1}{s} \& L(\sinh at) = \frac{a}{(s^2 - a^2)} (Jan. 2013) [LJIET]$	07
	34.	$r(g(t)) = \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) + \frac{1}{2} \left$	07,0
		If $L\{f(t)\} = \overline{f}(s)$ and if $L\{\frac{f(t)}{t}\}$ exists then prove that $L\{\frac{f(t)}{t}\} = \int_{s}^{\infty} \overline{f}(s)ds$ Also	7
		find $L\left\{\frac{\sin 2t}{t}\right\}$. (Jan. 2013, H June 2014) [LJIET]	
	35.	Find the Laplace Transform of 1. $cos^2 2t$ 2. $t^3 \cosh 2t$ (Jan. 2013old course) [LJIET]	04
	36.	Prove that $L(e^{-at}) = \frac{1}{s+a}$, $s > -a$. (H June 2013) [LJIET]	03
	37.	Prove that $L(t^n) = \frac{n!}{s^{n+1}}$, n being positive integer. (H June 2013, Dec. 2013) [LJIET]	04,0
_	38.		07
	20.	If $\overline{f(s)}$ is the Laplace transform of $f(t)$ and $a \ge 0$, then prove that	0,
		$L[f(t-a)u(t-a)] = e^{-as} \overline{f(s)}$. (H June 2013) [LJIET]	
	39.	Find the Laplace Transform $L\begin{bmatrix} \int_0^t e^{-x} \cos x dx \end{bmatrix}$. (H June 2013) [LJIET]	03
	40.	Find the Laplace Transform $L\begin{bmatrix} \int_{0}^{t} \int_{0}^{t} \sin aududu \end{bmatrix}$. (H June 2013) [LJIET]	04
ļ	41.	Define Laplace Transform and find Laplace Transform of	07
20	JI	1. $t^3 + e^{-3t} + t^{1/2}$ 2. $e^{-2t} \sin^2 2t$ (H June 2013old course) [LJIET]	EI
ļ	42.	Prove that $\cosh at = \frac{s}{(s^2 - a^2)}$ (Dec. 2013)[LJIET]	03
}	43.	If $L\{f(t)\}=\overline{f}(s)$, then show that $L\{tf(t)\}=-\frac{d}{ds}\{\overline{f}(s)\}$. Use this result to obtain	07
		$ds^{(*)}$	

	$L\left\{e^{at}t\sin at\right\}$. (Dec. 2013) [LJIET]	
44.	Given that $f(t) = t + 1, 0 \le t < 2$	05
	$=3,t\geq 2$	
45.	find $L\{f(t)\}$ and $L\{f'(t)\}$. (Dec. 2013old course) [LJIET] $1-e^t$	05
13.	Find the Laplace Transform of $\frac{}{t}$. (Dec. 2013old course) [LJIET]	
46.	Prove that $L(\sinh at) = \frac{a}{s^2 - a^2}$, $s > a $ (H June 2014, H Jan. 2015 for $a = k$) [LJIET]	03, 04
47.	Find the Laplace Transforms of (i) $\sin 2t \sin 3t$ (ii) $e^{-3t} (2\cos 5t - 3\sin 5t)$. (H June 2014)[LJIET]	04
48.	Find Laplace Transform of $t^5 + \cos 5t + e^{-100t}$ (H June 2014old course) [LJIET]	03
49.	Find the Laplace Transforms of the function $f(t) = t \cosh t$. (H June 2014old course)	03
	[LJIET]	
50.	Find the Laplace Transforms of following functions: (i) $\cos^3 t$ (ii) $\sin^2 t$. (H June 2014old course) [LJIET]	07
51.	$L\{f(t)\}=\overline{f}(s)$, then show that $L\{t^n f(t)\}=(-1)^n \frac{d^n}{ds^n}\{\overline{f}(s)\}$ where n=1,2,3, and use	07
	this result to find $L(t^2 \sin wt)$ (H Jan. 2015)[LJIET]	
52.	Find the Laplace Transform of $f(t) = \begin{cases} 0 : 0 \le t \le 3 \\ 4 : t \ge 3 \end{cases}$ (H Jan. 2015)[LJIET]	03
53.	Find the Laplace Transform of the following functions	07
•	1. $\sin 2t \cos 2t$ 2. $\cos^3 2t$ 3. Unit step function	7
54.	(H Jan. 2015old course)[LJIET]	04
54.	Prove that 1. $L(e^{at}) = \frac{1}{s-a}$; $s > a$ 2. $L(\sinh at) = \frac{a}{s^2 - a^2}$	04
55.	(H June 2015)[LJIET] Find the Laplace Transform of t sin 2t(H June 2015) [LJIET]	03
56.		03
20.	Find the Laplace Transform of $f(t) = \begin{cases} 0, 0 < t < \pi \\ \sin t, t \ge \pi \end{cases}$ (H June 2015) [LJIET]	04
57.	Find Laplace Transform of $e^{4t} \sin 2t \cos t$ (H June 2015) [LJIET]	03
58.	Find $L(t^2 \cosh 3t)$ (H June 2015, H June 2016) [LJIET]	03,0
59.	Find the Laplace Transform of $f(t) = 100^t + 2t^{10} + \sin 10t$ (H June 2015old	03
	course)[LJIET]	
60.	Find the Laplace Transform of function $t \sin t$ (H June 2015old course)[LJIET]	03
61.	Find the Laplace Transform of sin ³ 2t and sin ² 2t (H June 2015, old course)[LJIET]	07
62.	Find $L\left\{\int_0^t e^u(u+\sin u)du\right\}$ (Dec. 2015)[LJIET]	03
63.	Find $L\{t(\sin t - t \cos t)\}$ (Dec. 2015) [LJIET]	03
64.	Find $L\{t^2 \sin 4t\}$ (Dec. 2015) [LJIET]	03
65.	Find the Laplace Transform of the Periodic Function defined by $f(t) = \frac{t}{2}$, $0 < t < 3$, $f(t+3) = f(t)$.(Dec. 2015)[LJIET]	04

66.	Find $L(\frac{1-\cos 2t}{t})$ (Dec. 2015)[LJIET] (H Nov-2017)[LJIET]	03,0
	t ma = (t)(Beel 2012)[Bell] (II nov 2017)[Bell]	2
67.	1. Find $L(\frac{t-\sin 5t}{t})$	07
	2. Find $L(t^2cos^22t)$ (H June 2016)[LJIET]	
68.		04
10	Cosat-cosbt	
	2. $t \sin at(H \text{ June 2016})[LJIET]$	
69.		04
70.	Find $L\{u(t-4)(t-4)^2\}$ (H Dec 2016, old)[LJIET] Find $L\{4te^{-t}\}$ (H Dec 2016, old)[LJIET]	03
71.	Obtain $L\{e^{2t}sin^2t\}$ (H May 2017)[LJIET]	03
72.	Find the Laplace transform {te ^{4t} cos2t}(H May 2017)[LJIET]	03
73.	Find $L\left\{\int_0^t e^t \frac{\sin t}{t} dt\right\}$. (H Dec 2016)[LJIET]	03
74.	Find $L\{tsin3tcos2t\}$. (H Dec 2016)[LJIET]	03
75.	show that	02
	2) $L\{t \sin at\}$ (H May 2017,old)[LJIET]	
76.	show that $L\{\sin at\} = \frac{a}{s^2 + a^2}$ (H May 2017,old)[LJIET]	03
77.	show that 1) $L\left\{\frac{1-\cos 2t}{t}\right\}$ (H May 2017,old)[LJIET]	3.5
78.	Prove that if $L\{f(t)\} = F(S)$ then $L\left\{\frac{f(t)}{t}\right\} = \int_0^\infty F(S) dS$ (H May 2017,old)[LJIET]	04
79.	Find L[cos ² t] (MAY-2018)[LJIET]	03
80.	Find L [e ^{2t} sin3t] (MAY-2018)[LJIET]	04
81.	Prove that $L\{\cosh at\} = \frac{s}{s^2 - a^2}$ (H May 2018,old)[LJIET]	03
82.	State first shifting theorem and using it compute $L\{e^{3t}(2\sin 4t - 3\cos 4t)\}$ (H May	04
	2018,old)[LJIET]	
83.	Find the laplace transform of f(t)=e ^t (H NOV 2017,OLD)[LJIET]	03
84.	Find the laplace transform function f(t)=tsint(H May 2018,old)[LJIET]	03
85.	Find the Laplace Transform of the function $f(t) = \frac{\sin t}{t}$.(H May 2018,old)[LJIET]	04
86.	Find the Laplace transform of $t \sin^2 3t$. (H Nov-2017)[LJIET]	04
87.	Find the Laplace transforms of :	02
	(i) $e^{-3t} u(t-2)$ (H Nov-2017)[LJIET]	
88.	Find the Laplace transform of the periodic function of the waveform	03
	$f(t) = \frac{2t}{3}, 0 \le t \le 3, f(t+3) = f(t)$ (H Nov-2017)[LJIET]	
89.	State and prove First shifting theorem of Laplace Transform (H Nov 2018)[LJIET]	03
90.	Find <i>L</i> [<i>t Sint</i>] (H Nov 2018)[LJIET]	03
91.	Define unit step function $u(t-a)$. Find $L[t^2u(t-2)]$. (H Nov 2018)[LJIET]	03
92.	Find Laplace transform of $\frac{(cosat-cosbt)}{t}$ (H Nov 2018)[LJIET]	03
93.	Define periodic function. Find Laplace transform $f(t) = t^2$; $0 \le t \le 2$, $f(t+2) = f(t)$	04
	(H Nov 2018)[LJIET]	

94.	Prove that $\int_0^\infty \frac{e^{-at} - e^{-bt}}{t} dt = \ln\left(\frac{b}{a}\right)$ (H Nov 2018)[LJIET]	04
95.	Find the Laplace transform of the function $f(t) = \sin \sqrt{t}$ (H Nov 2018)[LJIET]	03
96.	Find the Laplace transform of the function $f(t) = t \cos t$. (H Nov 2018)[LJIET]	03
	TOPIC: 2 INVERSE LAPLACE TRANSFORM	
40	MCQ/ Short Questions	E
	Descriptive	
1.	State and Prove Convolution Theorem (H June 2013old course) [LJIET]	07
	NUMERICAL	rol .
1.	Find the convolution of t & et(H Dec. 2010, H NOV 2017,old)[LJIET]	02,0 3
2.	Obtain $L^{-1}(\log_s^{\frac{1}{s}})$ (H May 2011)[LJIET]	02
3.	Find the inverse Laplace Transform of $\frac{3(s^2-1)^2}{2s^5}$. (H Dec. 2013old course) [LJIET]	02
4.	Find the convolution of 1 * 1(H June 2015)[LJIET]	02
5.	$L^{-1}\left(\frac{1}{(s+a)^2}\right) =$ (H June 2016)[LJIET]	01
6.	Define Inverse Laplace Transform of the function $f(t)$	01
7.	Find $L^{-1} \left(\frac{4}{S^2} - \frac{1}{S^2 + 9} \right)$ (H May 2017) [LJIET]	01
8.	Evaluate $L^{-1}(\frac{3}{s^2+6s+18})$ (H Dec. 2009)[LJIET]	02
9.	Find $L^{-1}(\frac{1}{(s+\sqrt{2})(s-\sqrt{3})})$ (H Dec. 2009, H Dec. 2010, H June 2015old course, H June	02,0
	2016)[LJIET]OR	2, 03,0
	Find the Inverse Laplace Transform of the function:	3,03
	$F(s) = \frac{1}{\left(s + \sqrt{2}\right)\left(s - \sqrt{3}\right)}.$ (H. May 2018)[LJIET]	
10		02.0
10.	Evaluate $L^{-1}(\frac{ss^{-2s}}{s^2+\pi^2})$ (H Dec. 2009, H Dec. 2010) [LJIET]	03,0
11.	Using Convolution theorem obtain the value of $L^{-1}(\frac{1}{s(s^2+4)})$	03, 05,
	or State convolution theorem on Laplace Transform and using it find $L^{-1}(\frac{1}{s(s^2+4)})$ Or	03,
	Find $L^{-1}(\frac{1}{s(s^2+4)})$	04
	(H Dec. 2009, H Jan. 2013old course, H Jan. 2015, H June 2015)[LJIET]	
12.	Find $L^{-1}(-\frac{s+10}{s^2-s-2})$ (H March 2010)[LJIET]	03
13.	Find $L^{-1}(\frac{s^3+2s^2+2}{s^3(s^2+1)})$ (H March 2010)[LJIET]	03
14.	State convolution theorem and use it to evaluate $L^{-1}(\frac{a}{s^2(s^2+a^2)})$ (H March 2010, H Dec	04,0
	2016, old)[LJIET]	7.7
15.	Find $L^{-1}(\frac{1}{s^4-81})$ (H March 2010, H June 2016)[LJIET]	03,0
16.	Find Inverse transform of $\ln(1 + \frac{w^2}{s^2})$ (H March 2010) [LJIET]	03
	s ² /	

39.

Prove that,

4.

03

	$\int_0^\infty \frac{1-\cos(\pi w)}{w} \sin(xw) dw = \begin{cases} \frac{\pi}{2}; 0 < x < \pi \\ 0; x > \pi \end{cases}$ (H March 2010)[LJIET] Find the Fourier cosine integral of $f(x) = e^{-kx}; x > 0, k > 0$. (March 2010, H Dec	
5.	2016)(H NOV 2017 ald)[[HET]	03,0 3,03
6.	Show that, $\int_{0}^{\infty} \frac{\omega \sin(\omega x) + \cos(\omega x)}{1 + \omega^{2}} d\omega = \begin{cases} 0; x < 0 \\ \frac{\pi}{2}; x = 0 \end{cases}$ (H Dec 2010, H Jan 2015, H June $\pi e^{-x}; x > 0$	05,0 7,07
7.	Find Fourier integral representation of $f(x) = \begin{cases} 2 & ; x < 2 \\ 0 & ; x > 2 \end{cases}$. (H Jan 2013, H June 2014, H June 2016, H Dec 2016, old ,H May 2017)[LJIET]	07,0 7,03, 07,0 4
8.	Find Fourier cosine integral of $f(x) = \begin{cases} x & \text{if } 0 < x < a \\ 0 & \text{if } x > a \end{cases}$. (H June 2013)[LJIET]	07
9.	Find Fourier integral representation of $f(x) = \begin{cases} 1 \\ 0 \end{cases}$; $ x < 1$; $ x > 1$ and hence evaluate $\int_0^\infty \frac{\sin(x)\cos(\lambda x)}{\lambda} d\lambda$ (H Dec 2013, H June 2015)[LJIET] or	07,0 7,07,
	Find Fourier integral representation of $f(x) = \begin{cases} 1 & ; x < 1 \\ 0 & ; x > 1 \end{cases}$ May 2017,old)[LJIET] Express the function $f(x) = \begin{cases} 1, & x < 1 \\ 0; otherwise \end{cases}$ as fourier integral. (H Nov 2018)[LJIET]	07,0 7,07, 05
10.	Express the function $f(x) = \begin{cases} \sin x, 0 \le x \le \pi \\ 0, x > \pi \end{cases}$ as a fourier sine integral and evaluate $\int_0^\infty \frac{\sin \lambda x \sin \pi \lambda}{1 - \lambda^2} d\lambda (\mathbf{H} \mathbf{Dec 2013}) [\mathbf{LJIET}]$	04
11.		07
12.	Find the Fourier cosine integral of $f(x) = \frac{\pi}{2}e^{-x}, x \ge 0$. (H Dec 2015, new)[LJIET]	03
13.	Show that $\int_0^\infty \frac{\lambda^3}{\lambda^4 + 4} \sin \lambda x d\lambda = \frac{\pi}{2} e^{-x} \cos x, x > 0. (\textbf{H Dec 2015, new}) [\textbf{LJIET}]$	04
14.	Find the Fourier transform of $(x) = \frac{1}{x}$. (H June 2016, old)[LJIET]	07
15.	Find the Fourier transform of the function $f(x) = e^{-ax^2}$ (H June 2016)[LJIET]	03
16.	Show that $\int_0^\infty \frac{\sin\lambda \cos\lambda}{\lambda} d\lambda = 0$, if x>1. (H Dec 2016)[LJIET]	04
17.	Express $f(x) = \begin{cases} 1, & \text{for } 0 \le x \le \pi \\ 0, & \text{for } x > \pi \end{cases}$ As a Fourier sine integral and hence evaluate $\int_{-\infty}^{\infty} \frac{1 - \cos(\pi \lambda)}{\lambda} \sin(x\lambda) d\lambda$	03
JI	2017)[] HET]	RI
18.	As a Fourier sine integral and hence evaluate $\int_{0}^{\infty} \frac{1 - \cos(\pi \lambda)}{\lambda} \sin(x\lambda) d\lambda$ 2017)[LJIET] Express $f(x) = \begin{cases} \sin x, & 0 \le x \le \pi \\ 0, & x > \pi \end{cases}$	04
	as Fourier Sine integral and evaluate $\int_0^\infty \frac{\sin \lambda x \sin \pi \lambda d\lambda}{1 - \lambda^2} (\text{H Nov 2018})[\text{ LJIET}]$	

9.	Solve $\frac{dy}{dx} - y = e^{2x}$ (H Dec 2009)[LJIET]	02
10.	Solve $\frac{dy}{dx} - y = -\frac{x}{y}$ (H Dec 2009)[LJIET]	03
11.	Solve $y' + 6x^2y = \frac{e^{-2x^3}}{x^2}$ (H March 2010,old)[LJIET]	03
12.	Solve the differential equation $y' + y \sin x = e^{\cos x}$. (H March10,old)[LJIET]	03
13.	Solve: $\frac{dy}{dx} + \frac{1}{3}y = \frac{1}{3}(1 - 2x)x^4$ (Dec.2010)[LJIET]	03
14.	Solve the initial value problem $y' - (1 + 3x^{-1})y = x + 2$, $y(1) = e - 1$ (H Dec 2010)[LJIET]	03
15.	Solve the differential equation $\frac{dy}{dx} + \frac{1}{x} = \frac{e^y}{x^2}$ (H May 2011, H June 2015 new, H June 2016 old) [LJIET]	03,0 4,3.5
16.	Solve the Bernoulli equation $y'+y\sin x = e^{\cos x}$ (H Dec 2011)[LJIET]	03
17.	Solve: $(x + y)^2 [x \frac{dy}{dx} + y] = xy[1 + \frac{dy}{dx}]$ (H May 2012)[LJIET]	02
18.	Solve $\frac{dy}{dx} + \frac{1}{x^2}y = 6e^{1/x}$ (H Jan 2013)[LJIET]	03
19.	Solve $x \frac{dy}{dx} + (1+x)y = x^3$ (H June 2013,old)[LJIET]	03
20.	Solve: $\frac{dy}{dx} + \frac{4x}{x^2 + 1}y = \frac{1}{(x^2 + 1)^3}$ (H Dec 2013)[LJIET]	03
21.	Solve $(x+1)\frac{dy}{dx} - y = e^{3x}(x+1)^2$ (H June 2014, H Dec 2016)[LJIET]	03,0
22.	Solve $(1+y^2)\frac{dx}{dy} = \tan^{-1} y - x$.(H June 2013)[LJIET]	03
23.	Solve $\frac{dy}{dx} + y \tan x = \sin 2x$ (H Jan 2013 old, H Dec 2016, old)[LJIET]	02,0
24.	Solve the differential equation $x \frac{dx}{dy} + y = x^3 y^6$ (H Dec 2013 old)[LJIET]	04
	dy dy	
25.	Solve $\frac{1}{2x} + 2y \tan x = \sin x$ (H Jan 2015)[LJIET]	03
25. 26.	Solve $\frac{dy}{dx} + 2y \tan x = \sin x$ (H Jan 2015)[LJIET] Solve $\frac{dy}{dx} + y \tan x = \cos x$, $y(0) = 2$ (H Jan 2015, old)[LJIET]	03
	Solve $\frac{dy}{dx} + y \tan x = \cos x$, $y(0) = 2(\mathbf{H Jan 2015, old})[\mathbf{LJIET}]$	
26.	Solve $\frac{dy}{dx} + y \tan x = \cos x$, $y(0) = 2(\mathbf{H Jan 2015, old)[LJIET]}$ Solve $\frac{dy}{dx} + x \sin 2y = x^3 \cos^2 y(\mathbf{H Jan 2015, old)[LJIET]}$ Solve $\frac{dy}{dx} + \frac{1}{x}y = 6e^{1/x}$	04
26. 27.	Solve $\frac{dy}{dx} + y \tan x = \cos x$, $y(0) = 2$ (H Jan 2015, old)[LJIET] Solve $\frac{dy}{dx} + x \sin 2y = x^3 \cos^2 y$ (H Jan 2015, old)[LJIET] Solve $\frac{dy}{dx} + \frac{1}{x^2} y = 6e^{1/x}$ (H June 2015)[LJIET]	04
26.27.28.29.	Solve $\frac{dy}{dx} + y \tan x = \cos x$, $y(0) = 2(\mathbf{H} \mathbf{Jan 2015, old})[\mathbf{LJIET}]$ Solve $\frac{dy}{dx} + x \sin 2y = x^3 \cos^2 y(\mathbf{H} \mathbf{Jan 2015, old})[\mathbf{LJIET}]$ Solve $\frac{dy}{dx} + \frac{1}{x^2} y = 6e^{1/x}$ $(\mathbf{H} \mathbf{June 2015})[\mathbf{LJIET}]$ Solve $\frac{dy}{dx} + 2y \tan x = \sin x(\mathbf{H} \mathbf{Dec 2015, old})[\mathbf{LJIET}]$	04 07 03 04
26. 27. 28.	Solve $\frac{dy}{dx} + y \tan x = \cos x$, $y(0) = 2$ (H Jan 2015, old)[LJIET] Solve $\frac{dy}{dx} + x \sin 2y = x^3 \cos^2 y$ (H Jan 2015, old)[LJIET] Solve $\frac{dy}{dx} + \frac{1}{x^2} y = 6e^{1/x}$ (H June 2015)[LJIET]	04 07 03
26. 27. 28. 29.	Solve $\frac{dy}{dx} + y \tan x = \cos x$, $y(0) = 2$ (H Jan 2015, old)[LJIET] Solve $\frac{dy}{dx} + x \sin 2y = x^3 \cos^2 y$ (H Jan 2015, old)[LJIET] Solve $\frac{dy}{dx} + \frac{1}{x^2} y = 6e^{1/x}$ (H June 2015)[LJIET] Solve $\frac{dy}{dx} + 2y \tan x = \sin x$ (H Dec 2015, old)[LJIET] Solve $\frac{dy}{dx} + \frac{1}{x} y = x^3 y^3$.(H Dec 2015, new)[LJIET]	04 07 03 04 04

59.	Find the general solution of $y'''-3y''+3y'-y=4e^t$ (H NOV 2017,old)[LJIET]	04
60.	Find the general solution of the following differential equation :	04
	$\frac{d^3y}{dx^3} - 2\frac{dy}{dx} + 4y = e^x \cos x$	
	ar ar	
61.	(H Nov-2017)[LJIET] Solve $(D^2 - 4)y = 1 + e^x$; where $D = d/dx$. (H Nov 2018)[LJIET]	04
62.	Solve $\frac{d^4y}{dx^4} - 2\frac{d^2y}{dx^2} + y = 0$ (H Nov 2018)[LJIET]	03
	ax^{-}	
63.	Solve the differential equation. $(D^3 - 2D^2 + 4D - 8)y = 0$; where $D = d/dx$ (H Nov 2018)[LJIET]	04
64.	Solve: $\frac{d^4x}{dy^4} + 4x = 0$ (H Nov 2018)[LJIET]	04
65.	Solve: $\frac{d^3y}{dt^3} - 6\frac{d^2y}{dt^2} + 11\frac{dy}{dt} - 6y = 0$ (H Nov 2018)[LJIET]	04
66.	Solve $(D^2 - 4)y = e^x + \sin 2x$. (H Nov 2018)[LJIET]	03
	TOPIC: 2 Cauchy-Euler and Legendre's Equation	
	MCQ/ Short Questions	
1.	Write the steps to solve Cauchy Euler's differential equation. [LJIET]	01
2.	The solution of $x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} = 0$ is[LJIET]	01
	Descriptive Descriptive	
	NUMERICALS	
1.	Solve the Euler-Cauchy equation $x^2y'' - 2.5xy' - 2.0y = 0$. (H May 2011)[LJIET]	02
2.	Solve $x^3 \frac{d^3y}{dx^3} + 2x^2 \frac{d^2y}{dx^2} + 2y = 10(x + \frac{1}{x})$.	04,0
f	(H May 2011,H June 2014, H Jan 2013, H Jan 2015, old)[LJIET]	4,05, 07
3.	Solve: $(2x + 5)^2 \frac{d^2y}{dx^2} - 6(2x + 5) \frac{dy}{dx} + 8y = 6x$. (H JUNE 2014 old) [LJIET]	04
4.	Solve the differential equation $x^2 \frac{d^2y}{dx^2} - x \frac{dy}{dx} - 3y = x^2 \log x$. (H Dec 2013 old) [LJIET]	04
5.	Solve $x^2y'' + 4xy' - 4y = sin(lnx)$ (H June 2013)[LJIET]	04
6.	Solve: $(1+x^2)\frac{d^2y}{dx^2} + (1+x)\frac{dy}{dx} + y = 4\cos(\log(1+x))$. (H May 2012,H Dec	03,0
7.	2015) [LJIET] Solve the differential equation $(X^2D^2 - 3XD + 4)y = x^2$ given that $y(1)=1$ and	
'`	y'(1)=0.	03
	(H May 2012)[LJIET]	
8.	Solve: $(x^2D^2 - 3xD + 4)y = 0$, $y(1) = 0$, $y'(1) = 3$.(H Dec 2011)[LJIET]	02
9.	2 // 1 / 2 // 24 // 2775 2044)	04,0
	Solve: $x^2y'' - 4xy' + 6y = 21x^{-4}(H \text{ May 2011})(H \text{ NOV 2017,OLD})[LJIET]$	7
10.	Find the general solution of the equation $(x^2D^2 - 2xD + 2)y = x^3cosx$. (H Dec 2010)[LJIET]	04
10. 11.	Find the general solution of the equation $(x^2D^2 - 2xD + 2)y = x^3cosx$. (H Dec 2010)[LJIET] Solve $(x^2D^2 - 3xD + 3)y = 3lnx - 4$. (H March 2010)[LJIET]	
11. 12.	Find the general solution of the equation $(x^2D^2 - 2xD + 2)y = x^3cosx$. (H Dec 2010)[LJIET] Solve $(x^2D^2 - 3xD + 3)y = 3lnx - 4$. (H March 2010)[LJIET]	04
11.	Find the general solution of the equation $(x^2D^2 - 2xD + 2)y = x^3cosx$. (H Dec 2010)[LJIET]	04
11. 12.	Find the general solution of the equation $(x^2D^2 - 2xD + 2)y = x^3cosx$. (H Dec 2010)[LJIET] Solve $(x^2D^2 - 3xD + 3)y = 3lnx - 4$. (H March 2010)[LJIET] Solve $x^2D^2y - 3xDy + 5y = x^2\sin(\log x)$ (H June 2015)[LJIET]	04 03 05

Semester:	II	(2018/19)

2.	Prove that: $J_{\frac{1}{2}}(x) = \sqrt{(2/\pi x)} \sin x$ (H Jan 2013, H June 2015) [LJIET]	2.5,0
3.	Prove that $J_0'(x) = -J_1(x)$. (H March 2010, H Dec 2011) [LJIET]	04,0
4.	Show that (i) $J_{n-1}(x) - J'_n(x) = \frac{n}{x}J_n(x)$ (ii) $J_0(0) = 1$.(H Jan 2013) [LJIET]	04
5.	Prove that $\frac{d}{dx}[x^nJ_n(x)] = x^nJ_{n-1}(x)$. (H June 2013 old) [LJIET]	04
6.	Determine the value of (a) $J_2^1(x)$ (b) $J_2^3(x)$.(H June 2016)[LJIET]	07
7.	Prove that $\frac{d}{dx}(x^nJ_n(x)) = x^nJ_{n-1}(x)$. (H Nov 2018)[LJIET]	04

E

E