

Università degli Studi di Genova

Computer Security

Lorenzo Vaccarecci

Indice

1	Intr	roduzione	2
	1.1	Information Security	2
	1.2	Security Properties	2
	1.3	Protection Countermeasures	3
	1.4	Managing security: implementing a solution	į
2	Intr	oduzione alla Crittografia	4
	2.1	Concetti base	4
	2.2	Schema generale della crittografia	4
	2.3	Classificazione della sicurezza	-
	2.4	Criptoanalisi	-
		2.4.1 Brute-force attack	-
		2.4.2 Tipi di attacco	5
	2.5	Matematicamente	5
	2.6	Cifrari a blocchi, a flusso e a codici	(
	2.7	Cifrari a sostituzione	
		2.7.1 Esempio: Cifrario affine	6

Capitolo 1

Introduzione

1.1 Information Security

- La sicurezza concerne la protezione degli asset dalle minacce (threats)
- I proprietari (owners) valorizzano i loro asset e vogliono proteggerli
- I proprietari analizzano le minacce e valutano i rischi. Questo aiuta la selezione di contromisure che riducono le vulnerabilità

$$Risk_E = P(E) \cdot I_E$$

Dove E è l'evento che rappresenta la minaccia, P(E) è la probabilità che l'evento si verifichi e I_E è l'impatto che l'evento ha.

$$Risk_{Tot} = \sum_{e \in E} (P(e) \cdot I_e)$$

 $P(\cdot)$ può essere:

• 0.7 - 1 : Alta

• 0.4 - 0.7 : Media

• ≤ 0.3 : Bassa

1.2 Security Properties

- Confidentiality: l'informazione non è conosciuta da non autorizzati, bisogna permettere solo a chi ne ha diritto attraverso **security policies**. Qualche volta si dice **privacy** per gli individui, **secrecy** per le organizzazioni, **anonymity** invece per nascondere l'identità.
- Integrity: l'informazione non deve essere modificata in modo malizioso.
- Authentication: i dati o i servizi devono essere accessibili solo da chi autorizzato. Solitamente il metodo di autenticazione è qualcosa che si ha, qualcosa che si conosce o qualcosa che sei (impronta digitale, firma, biometrica).
- Availability: i dati o i servizi devono esere accessibili e utilizzabili in qualsiasi momento. Questo significa che bisogna prevenire da attacchi DoS (**Denial of Service**)
- Accountability: le azioni sono registrare e rintracciabili dalle parti responsabili.

1.3 Protection Countermeasures

- Prevention: prevenire gli attacchi attraverso la progettazione di sistemi e impiegando tecnologie di sicurezza.
- Detection: i metodi principali sono il **logging** e il **MACs** (file hash per rilevare alterazioni).
- Response: varia dal ripristinare backup all'informare le autorità competenti o le parti coinvolte.
- Remediation

1.4 Managing security: implementing a solution

- Security Analysis: analizza le minacce che potrebbero compromettere l'asset e propone delle politiche e soluzioni a costi appropriati.
- Threat Model: documenta le possibile minacce al sistema, immaginando tutte le possibili vulnerabilità che possono essere sfruttate.
- Risk Assessment: valutazione quantitativa dei rischi.
- Security Policy: per ogni rischio si descrivono le contromisure da adottare.
- Security Solution: progettazione e implementazione delle tecnologie appropriate a costi appropriati.

Capitolo 2

Introduzione alla Crittografia

2.1 Concetti base

CIA: Confidentiality, Integrity, Authentication

- Confidentiality: l'informazioe rimane segreta
- Integrity: l'informazione non è alterata
- Authentication: i principali (Alice e Bob) sanno con chi stanno parlando
- Cryptology: lo studio di scritture segrete
- Steganography: la scienza di nascondere un messaggio in un altro messaggio
- Cryptography: la scienza di scrivere in modo segreto

2.2 Schema generale della crittografia

Dove $E_{key_1}(P) = C$ e $D_{key_2}(C) = P$.

- La sicurezza dipende dalla segretezza (secrecy) della chiave non dell'algoritmo
- Algoritmi Simmetrici: le due chiavi sono uguali oppure sono facilmente derivabili l'una dall'altra

Dove nel canale sicuro si invia la chiave e \hat{X} è parte del messaggio decriptato e \hat{K} è parte della chiave decriptata.

- Algoritmi Asimmetrici: le due chiavi sono diverse e non è possibile derivare una dall'altra e una chiave pubblica (**public key**) può essere distribuita senza compromettere le chiavi private (**private key**)
- Quando si costruisce un sistema crittografico bisogna presumere che l'algoritmo sia conosciuto, quindi la sicurezza dipende dalla chiave

2.3 Classificazione della sicurezza

- Unconditional Security: il sistema è sicuro anche se l'avversario ha potenza computazionale illimitata. La sicurezza è misurata in termini di teoria dell'informazione (information theory).
- Conditional Security: il sistema può essere violato se l'avversario ha abbastanza potenza computazionale. La sicurezza è misurata in termini di teoria della complessità (complexity theory).

2.4 Criptoanalisi

E' la scienza del recuperare il messaggio originale da quello criptato senza la chiave. L'obiettivo non è solo quello di recuperare il messaggio ma anche la chiave.

2.4.1 Brute-force attack

- E' sempre possibile: basta provare tutte le chiavi, solitamente sono $2^{\#bit}$ chiavi possibili se sono caratteri invece è una permutazione di n! chiavi possibili.
- Costa molto, dipende dalla dimensione della chiave
- Presume che il messaggio decifrato sia conociuto o riconoscibile

2.4.2 Tipi di attacco

- Ciphertext only: l'aavversario conosce il testo cifrato e prova a dedurne la chiave
- Known plaintext: rispetto a ciphertext only, l'avversario conosce anche il testo decifrato
- Chosen plaintext: come sopra ma l'avversario può scegliere il testo cifrato
- Adaptive chosen plaintext: può, non solo scegliere il testo decifrato, ma può modificare il testo decifrato in base ai risultati della cifratura
- Chosen ciphertext: l'avversario può scegliere il testo cifrato e vedere il testo decifrato

2.5 Matematicamente

- A è l'alfabeto, un insieme finito
- $\mathcal{M} \subseteq \mathcal{A}^*$ è lo spazio dei messaggi. $M \in \mathcal{M}$ è un messaggio in chiaro
- ullet $\mathcal C$ è lo spazio dei testi cifrati, il cui alfabeto può essere diverso da quello di $\mathcal M$
- K denota l'insieme delle chiavi
- $e \in \mathcal{K}$ deterima una funzione biettiva $e : \mathcal{M} \to \mathcal{C}$, la funzione di cifratura è denotata da E_e

- $\forall d \in \mathcal{K}, D_d : \mathcal{C} \to \mathcal{M}$, la funzione di decifratura è denotata da D_d ed è biettiva
- $D_d(E_e(M)) = E_e^{-1}(M) = M$

2.6 Cifrari a blocchi, a flusso e a codici

- Block cipher: è uno schema di cifratura che divide il messaggio in blocchi di lunghezza fissa t e cifra ogni blocco separatamente.
- Stream cipher: è uno schema di cifratura dove il blocco è di lunghezza 1 (un bit alla volta)
- Code: è uno schema di cifratura dove il messaggio è cifrato in blocchi di lunghezza variabile

2.7 Cifrari a sostituzione

- Cifrario di Cesare: ogni carattere del messaggio in chiaro viene sostituito dal carattere n a destra modulo 26 (26! possibili chiavi, molto poco sicuro)
- ROT13: è un cifrario di Cesare con n = 13
- Alfanumerico: si sostituisce ogni carattere con un numero

2.7.1 Esempio: Cifrario affine

- E' una sostituzione monoalfabetica tale che $E(m) = (a \cdot m + b) \mod |\mathcal{A}|$ dove a,b sono interi positivi e sono chiave del cifrario
- Per essere invertibile a deve essere coprimo con $|\mathcal{A}|$
- La decifratura è $D(c) = a^{-1}(c-b) \mod |\mathcal{A}|$ dove $1 = a \cdot a^{-1} \mod |\mathcal{A}|$