Defining conditional probability

In the discrete case

$$P(A_2|A_1) = \frac{P(A_1 \cap A_2)}{P(A_1)}$$

In general, the definition is not so simple because we can't divide by zero. Instead, the definition is inspired by partitioning the outcome space:

$$\cup_{i=1}^n A_2^i = \Omega$$

$$A_2^i \cap A_2^j = 0$$
 for $i \neq j$

$$i = 1, ..., n$$

$$P(A_1) = \sum_{i=1}^{n} P(A_1 \cap A_2^i)$$

$$P(A_1) = \sum_{i=1}^{n} P(A_1|A_2^i) P(A_2^i)$$

.

Definition of conditional probability for arbitrary distributions

random variable X with distribution Q_X collection of probability measures P_x – conditional distribution given X

requirements:

(1)
$$P_x({X = x}) = 1$$
except (...)

(2) (Borel measurability requirement)

(3) For all events $A \in \mathcal{A}$ (\mathcal{A} is the collection of events in the probability space (Ω, \mathcal{A}, P)):

$$P(A) = \int_{\mathbb{R}} P_x(A) dQ_X(x)$$

 $P_x(A)$ is the same as P(A|X=x)