Data Structure and Algorithms Lab6

Submitted to: Ms. Sehar Waqar

Submitted by: **SABA**

Roll no: 2019-CE-04

Date: <u>25thMay,2021</u>

<u>Department of Computer Engineering</u>
<u>UET,Lahore</u>

Homework Question:

In this exercise, we will explore different types of randomized algorithms. We say that a randomized algorithm is a **Las Vegas algorithm** if it is always correct (that is, it returns the right answer with probability 1), but the running time is a random variable. We say that a randomized algorithm is a **Monte Carlo algorithm** if there is some probability that it is incorrect. For example, QuickSort (with a random pivot) is a Las Vegas algorithm, since it always returns a sorted array, but it might be slow if we get very unlucky.

We will revisit the Majority Element problem to get more insight on randomized algorithms.

Answer:

Algorithm	Monte Carlo or Las Vegas?	Expected Running Time	Worst-case running time	Probability of returning a majority element
Algorithm 1	Las Vegas	O(n)	infinite	1
Algorithm 2	Monte Carlo	O(n)	O(n)	$1-\frac{1}{2^{100}}$
Algorithm 3	Las Vegas	O(n)	O(n²)	1

Algorithm 1: It always gives correct result, so it is Las Vegas Algorithm.

Expected Running Time = Choosing a random p takes O(1) and isMajority(P,p) takes O(n). So, expected running time is O(n).

Worst-case running time = Infinite (for every choice of $p \in P$, p is not the majority element). **Probability of returning a majority element** = P[failure] = 0. That's why Probability of returning a majority element is 1.

Algorithm 2: It does not always gives you correct result, so it is Monte Carlo Algorithm.

Expected Running Time = Choosing a random p takes O(1) and isMajority(P,p) takes O(n). So, expected running time is O(n).

Worst-case running time = O(n) whether it is wrong or right.

Probability of returning a majority element:

Let P be the probability to find majority element

$$P[failure] = \frac{1}{2^{100}}$$

Probability of returning a majority element = $1 - \frac{1}{2^{100}}$

