Lecture Module - Introduction

ME3023 - Measurements in Mechanical Systems

Mechanical Engineering
Tennessee Technological University

Topic 1 - Introduction

Module 1 - Introduction

- Topic 1 General Measurement System
- Topic 2 Types of Variables
- Topic 3 Experimental Test Plan
- Topic 4 Numbers and Storage

Topic 1 - General Measurement System

- Definition of a Measurement
- Measurement System Stages
- Brainstorming Activity
- Examples in Mechcanical Engineering

Definition of a Measurement

Measurement System Stages Brainstorming Activity Examples in Mechcanical Engineering

Definition of a Measurement

"A measurement is an act of assigning a specific value to a physical variable."

Measurement System Stages

Figure 1.5 Components of a general measurement system.

Sensor-Transducer Stage

a sensor, a physical element that employs some natural phenomenon... ...to sense the variable being measured

Sensor Stage

Sensor + Transducer Stage

A transducer converts sensed information into a detectable signal

Signal Conditioning Stage

- Filtering
- Amplification
- Attenuation
- Excitation
- Linearization
- Electrical Isolation
- Surge Protection

Question: What is the the definition of signal?

Defintion of a signal

Signal (noun): 4 a: an object used to transmit or convey information beyond the range of human voice b: the sound or image conveyed in telegraphy, telephony, radio, radar, or television c: a detectable physical quantity or impulse (such as a voltage, current, or magnetic field strength) by which messages or information can be transmitted - Merrian Webster

In signal processing, a signal is a function that conveys information about a phenomenon.[1] Any quantity that can vary over space or time can be used as a signal to share messages between observers.[2] The IEEE Transactions on Signal Processing includes audio, video, speech, image, sonar, and radar as examples of signals.[3] A signal may also be defined as any observable change in a quantity over space or time (a time series), even if it does not carry information. - Wikipedia

Output Stage

The output stage indicates or records the value measured. This might be a simple readout display, a marked scale, or even a recording device such as a computer disk drive.

Brainstorming Activity

Activity: Team Brainstorm Duration: ~ 10 minutes Groups: 2-3 members

Topic: Remote Probe Concept

- You are designing a remote probe to inspect an environment which can only be accessed from above.
- The goal is to collect as much information as possible from the environment to prepare for a robotic maintinence task.

Requirements:

- ullet Probe must enter environment through hole $\sim 100\,mm$ wide
- Probe must exit through same hole leaving nothing behind
- The alllowable EFI and RFI is limited. No wifi communication is available

Examples in Mechcanical Engineering

IDETC2022-96785: Development of an Instrumented Rear Suspension to Measure the Tire Forces of a Race Car During Track Driving

Examples in Mechcanical Engineering

IDETC2022-91154: Photometric Stereo Enhanced Light Sectioning Measurement for Microtexture Road Profiling

Examples in Mechcanical Engineering

IDETC2022-90082: Automated Weld Path Generation Using Random Sample Consensus and Iterative Closest Point Workpiece Localization

Topic 2 - Types of Variables

- Measured Variable
- Independent and Dependent Variables
- Controlled Variables and Parameters
- Extraneous Variables

General Measurement System Types of Variables Experimental Test Plan Measured Variable
Independent and Dependent Variables
Controlled Variables and Parameters
Extraneous Variables
Class Activity Measurement System Examples

Measured Variable

"A	is an act of assigning a specific value to a
physical variable.	That physical variable is the measured
variable "	

Independent and Dependent Variables

depends on the value of the v	variables that control the process."			
Normally	, the variable that we measure			
changes in one or more other variables is known as a				
known as an	A variable that is affected by			
9	independently of other variables is			
variable, the two are considered independent of each other. A				
•	η ill not affect the value of some other			

Controlled Variables and Parameters

"A variable is	if it can be held at a constant			
value or at some prescribed c	ondition during a measurement			
complete control of a varial	ole is not usually possible. We use the			
adjective	to refer to a variable that can be held			
as prescribed, at least in a nominal sense				
we define a	as a functional grouping of			
variables. For example, a mor	nent of inertia or a Reynolds number			
A that h	nas an effect on the behavior of the			
المالم مناطونسي المستنوم	control"			
measured variable is called a				

Extraneous Variables

"Variables that are not or cannot be co	ontrolled during measure	ment
but that affect the value of the variabl	e measured are called	
	. Their influence can cor	ıfuse
the clear relation between cause and e	ffect in a measurement	•
The effects due to	car	n
take the form of signals superimposed with such forms as	•	
Text: Theory and Design of Mech. Meas.		

Class Activity: Measurement System Examples

Indiviual Activity: Complete the activity and submit your work on ilearn as an indiviual.

Example 1: SHARP IR Ranger

Image, More Info: Wikipedia-proximity sensor Image, More Info: Wikipedia-PSD

Identify the following measurement stages

- Sensor: _____
- Transducer:
- Signal Conditioning: _____
- Output: ______

Name at least one for each of the following categories

- Measured Variable: ______
- Independent Variable(s):
- Dependent Variable(s):
- Controlled Variable(s):
- Extraneous Variable(s):_____

Class Activity: Measurement System Examples

Indiviual Activity: Complete the activity and submit your work on ilearn as an individual.

Example 2: Thermocouple with DMM

Identify the following measurement stages

Sensor: ______
Transducer:

- Signal Conditioning: _____

 Output:
- Name at least one for each category
 - Measured Variable: _______
 - Independent Variable(s):
 - Dependent Variable(s):
 - Controlled Variable(s): _____

Extraneous Variable(s):

Image, More Info: Wikipedia-Thermocouple Image, More Info: Omega-Ktype Thermocouple

Class Activity: Measurement System Examples

Indiviual Activity: Complete the activity and submit your work on ilearn as an individual.

Example 3: Choose your own example	Independent Variable(s):
Write a brief paragraph describing a measurement system of your choice.	
dentify the following measurement stages Sensor:	Dependent Variable(s):
Transducer: Signal Conditioning: Output:	Controlled Variable(s):
Name at least one for each category	Extraneous Variable(s):

Image, More Info: Wikipedia-Thermocouple Image, More Info: Omega-Ktype Thermocouple

Topic 3 - Experimental Test Plan

- Parameter Design Plan
- System and Tolerance Design Plan
- Data Reduction Design Plan
- Experimental Design Strategies

Parameter Design Plan System and Tolerance Design Plan System and Tolerance Design Plan Experimental Design Strategies

Parameter Design Plan

Parameter Design Plan: Determine the test objective and identify the process variables and parameters and a means for their control.

Ask:

- What question am I trying to answer?
- What needs to be measured?
- What variables and parameters will affect my results?

System and Tolerance Design Plan

System and Tolerance Design Plan: Select a measurement technique, equipment, and test procedure based on some preconceived tolerance limits for error.

Ask:

- In what ways can I do the measurement?
- How good do the results need to be to answer my question?

Data Reduction Design Plan

Data Reduction Design Plan: Plan how to analyze, present, and use the anticipated data.

<u>Ask</u>:

- How will I interpret the resulting data?
- How will I use the data to answer my question?
- How good is my answer?
- Does my answer make sense?

Parameter Design Plan System and Tolerance Design Plar System and Tolerance Design Plar Experimental Design Strategies Small Group Activity

Experimental Design Strategies

- Randomized Tests
- Repetition and Replication.
- Concomitant Methods

Parameter Design Plan System and Tolerance Design Plan System and Tolerance Design Plan Experimental Design Strategies Small Group Activity

Small Group Activity

Group Activity: Find a group of 2-3 students. Complete the activity and submit your work on ilearn as an indiviual. You may submit the same or similar answers as your group members.

Experimental Test Plan: Fuel/Energy Economy

- Develop an experimental test plan for determining the milage cost of your vehicle (choose any vehicle) in dollars per mile. Write a short desciption of the system. (paragraph or bulleted list)
- Identify the following variables for your plan.
 - Measured Variable:
 - Independent Variable(s):
 - Dependent

- Variable(s):
- Controlled Variable(s):
- Extraneous Variable(s):

- Do you expect the results of the study to represent the true milage of the vehicle? How could you validate (or check) the results?
- What could you do to improve the results of the proposed study?

Image, More Info: Wikipedia