Теоремы Гёделя о неполноте арифметики

Основные свойства исчислений: Ф.А.

	К.И.В.	И.И.В.	К.И.П.	Ф.А. + кл. модель
корректность	да	да	да (лекция 5)	да (сейчас)
непротиворечивость	да	да	да (лекция 6)	верим (т. Гёделя №2)
полнота	да	да	да (лекция 6)	нет (т. Гёделя №1)
разрешимость	да	да	нет (лекция 7)	<mark>нет</mark> (док-во т. Тарского)

Классическая модель Ф.А.

А как определять «нестандартные» предикаты и функции $(Q_1', c(p,q))$ и т.п.)?

Классическая модель Ф.А.

А как определять «нестандартные» предикаты и функции (Q'_1 , c(p,q) и т.п.)? Для простоты разрешим только нелогические функциональные и предикатные символы (=, +, ·, 0, ').

Классическая модель Ф.А.

А как определять «нестандартные» предикаты и функции (Q_1' , c(p,q) и т.п.)? Для простоты разрешим только нелогические функциональные и предикатные символы (=, +, ·, 0, ′).

Определение

Классическая модель формальной арифметики: $D=\mathbb{N}_0$, оценки предикатных и функциональных символов — естественные.

Теорема

Формальная арифметика корректна

Доказательство.

Свойства аксиом $A1 \dots A8$ очевидны.

Доказательство схемы аксиом индукции:

$$\psi(0) \& (\forall x. \psi(x) \rightarrow \psi(x')) \rightarrow \psi(x)$$

Индукция по структуре формулы ψ , затем математическая индукция по x.

Схема аксиом индукции чуть подробнее

Индукция по структуре формулы ψ в

$$\psi(0) \& (\forall x. \psi(x) \rightarrow \psi(x')) \rightarrow \psi(x)$$

Для примера база:

$$\theta_0(0) = \theta_1(0) \& (\forall x.\theta_0(x) = \theta_1(x) \to \theta_0(x') = \theta_1(x')) \to \theta_0(x) = \theta_1(x)$$

Докажем индукцией по x.

- $1. \;\; x:=0. \;$ Тогда либо $[\![heta_0(0) = heta_1(0)]\!]^{x:=0} = Л$, либо $[\![heta_0(x) = heta_1(x)]\!]^{x:=0} = И$
- $2. \ x := s.$ Тогда s раз применяем переход

$$\llbracket heta_0(x) = heta_1(x)
ightarrow heta_0(x') = heta_1(x')
rbracket^{x:=\overline{0...s}} = \mathsf{M}$$

отсюда

$$[\theta_0(x') = \theta_1(x')]^{x:=s} = [\theta_0(x) = \theta_1(x)]^{x:=s+1} = M$$

Схема аксиом индукции чуть подробнее

Индукция по структуре формулы ψ в

$$\psi(0) \& (\forall x. \psi(x) \rightarrow \psi(x')) \rightarrow \psi(x)$$

Для примера база:

$$\theta_0(0) = \theta_1(0) \& (\forall x.\theta_0(x) = \theta_1(x) \to \theta_0(x') = \theta_1(x')) \to \theta_0(x) = \theta_1(x)$$

Докажем индукцией по x.

- $1. \; x:=0.$ Тогда либо $\llbracket heta_0(0)= heta_1(0)
 rbracket^{ imes :=0}= \Pi$, либо $\llbracket heta_0(x)= heta_1(x)
 rbracket^{ imes :=0}= \mathbb{N}$
- $2. \; x := s. \;$ Тогда $s \;$ раз применяем переход

$$\llbracket \theta_0(x) = \theta_1(x) \rightarrow \theta_0(x') = \theta_1(x') \rrbracket^{x := \overline{0 \dots s}} = \mathsf{M}$$

отсюда

$$[\theta_0(x') = \theta_1(x')]^{x:=s} = [\theta_0(x) = \theta_1(x)]^{x:=s+1} = V$$

Можно ли верить этому доказательству (доказываем индукцию через индукцию)?

Самоприменимость

Определение

Пусть ξ — формула с единственной свободной переменной x_1 . Тогда: $\langle \ulcorner \xi \urcorner, p \rangle \in W_1$, если $\vdash \xi(\ulcorner \xi \urcorner)$ и p — номер доказательства.

Определение

Отношение W_1 рекурсивно, поэтому выражено в $\Phi.A.$ формулой ω_1 со свободными переменными x_1 и x_2 , причём:

- 1. $\vdash \omega_1(\overline{\ulcorner \varphi \urcorner}, \overline{p})$, если p гёделев номер доказательства самоприменения φ ;
- 2. $\vdash \neg \omega_1(\overline{\ulcorner \varphi \urcorner}, \overline{p})$ иначе.

Определение

Определим формулу $\sigma(x_1) := \forall p. \neg \omega_1(x_1, p).$

Первая теорема Гёделя о неполноте арифметики

Определение

Если для любой формулы $\phi(x)$ из $\vdash \phi(0)$, $\vdash \phi(\overline{1})$, $\vdash \phi(\overline{2})$, . . . выполнено $\not\vdash \exists x. \neg \phi(x)$, то теория омега-непротиворечива.

Теорема

Первая теорема Гёделя о неполноте арифметики

- \blacktriangleright Если формальная арифметика непротиворечива, то $\forall \sigma(\overline{\ulcorner \sigma \urcorner})$.
- ightharpoonup Если формальная арифметика ω -непротиворечива, то $otat \neg \sigma(\overline{\ \ \ } \sigma \overline{\ \ \ })$.

Напомним: $\sigma(x_1) := \forall p. \neg \omega_1(x_1, p).$ $W_1(\lceil \xi \rceil, p) - p$ есть доказательство самоприменения ξ .

Доказательство.

▶ Пусть $\vdash \sigma(\overline{ \ \ \ \ \ \ \ \ })$. Значит, p — номер доказательства.

Напомним: $\sigma(x_1) := \forall p. \neg \omega_1(x_1, p).$ $W_1(\lceil \xi \rceil, p) - p$ есть доказательство самоприменения ξ .

Доказательство.

lacktriangle Пусть $\vdash \sigma(\ulcorner \sigma \urcorner)$. Значит, p — номер доказательства. Тогда $\langle \ulcorner \sigma \urcorner, p \rangle \in W_1$.

Напомним: $\sigma(x_1):=\forall p.\neg\omega_1(x_1,p).\ W_1(\ulcorner\xi\urcorner,p)-p$ есть доказательство самоприменения ξ .

Доказательство.

▶ Пусть $\vdash \sigma(\overline{\ulcorner \sigma \urcorner})$. Значит, p — номер доказательства. Тогда $\langle \ulcorner \sigma \urcorner, p \rangle \in W_1$. Тогда $\vdash \omega_1(\overline{\ulcorner \sigma \urcorner}, \overline{p})$.

Напомним: $\sigma(x_1) := \forall p. \neg \omega_1(x_1, p).$ $W_1(\lceil \xi \rceil, p) - p$ есть доказательство самоприменения ξ .

Доказательство.

▶ Пусть $\vdash \sigma(\lceil \overline{\sigma} \rceil)$. Значит, p — номер доказательства. Тогда $\langle \lceil \overline{\sigma} \rceil, p \rangle \in W_1$. Тогда $\vdash \omega_1(\lceil \overline{\sigma} \rceil, \overline{p})$. Тогда $\vdash \exists p.\omega_1(\lceil \overline{\sigma} \rceil, p)$.

Напомним: $\sigma(x_1) := \forall p. \neg \omega_1(x_1, p).$ $W_1(\lceil \xi \rceil, p) - p$ есть доказательство самоприменения ξ .

Доказательство.

▶ Пусть $\vdash \sigma(\lceil \overline{\sigma} \rceil)$. Значит, p — номер доказательства. Тогда $\langle \lceil \overline{\sigma} \rceil, p \rangle \in W_1$. Тогда $\vdash \omega_1(\lceil \overline{\sigma} \rceil, \overline{p})$. Тогда $\vdash \exists p.\omega_1(\lceil \overline{\sigma} \rceil, p)$. То есть $\vdash \neg \forall p.\neg\omega_1(\lceil \overline{\sigma} \rceil, p)$.

Напомним: $\sigma(x_1):=\forall p.\neg\omega_1(x_1,p).\ W_1(\ulcorner\xi\urcorner,p)-p$ есть доказательство самоприменения ξ .

Доказательство.

▶ Пусть $\vdash \sigma(\lceil \overline{\sigma} \rceil)$. Значит, p — номер доказательства. Тогда $\langle \lceil \sigma \rceil, p \rangle \in W_1$. Тогда $\vdash \omega_1(\lceil \overline{\sigma} \rceil, \overline{p})$. Тогда $\vdash \exists p.\omega_1(\lceil \overline{\sigma} \rceil, p)$. То есть $\vdash \neg \forall p. \neg \omega_1(\lceil \overline{\sigma} \rceil, p)$. То есть $\vdash \neg \sigma(\lceil \overline{\sigma} \rceil)$. Противоречие.

Напомним: $\sigma(x_1):=\forall p.\neg\omega_1(x_1,p).\ W_1(\ulcorner\xi\urcorner,p)-p$ есть доказательство самоприменения ξ .

- ▶ Пусть $\vdash \sigma(\lceil \sigma \rceil)$. Значит, p номер доказательства. Тогда $\langle \lceil \sigma \rceil, p \rangle \in W_1$. Тогда $\vdash \omega_1(\lceil \sigma \rceil, \overline{p})$. Тогда $\vdash \exists p.\omega_1(\lceil \sigma \rceil, p)$. То есть $\vdash \neg \sigma(\lceil \sigma \rceil)$. Противоречие.
- ► Пусть $\vdash \neg \sigma(\overline{\ulcorner \sigma \urcorner})$.

Напомним: $\sigma(x_1) := \forall p. \neg \omega_1(x_1, p).$ $W_1(\lceil \xi \rceil, p) - p$ есть доказательство самоприменения ξ .

- ▶ Пусть $\vdash \sigma(\lceil \overline{\sigma} \rceil)$. Значит, p номер доказательства. Тогда $\langle \lceil \overline{\sigma} \rceil, p \rangle \in W_1$. Тогда $\vdash \omega_1(\lceil \overline{\sigma} \rceil, \overline{p})$. Тогда $\vdash \exists p.\omega_1(\lceil \overline{\sigma} \rceil, p)$. То есть $\vdash \neg \forall p. \neg \omega_1(\lceil \overline{\sigma} \rceil, p)$. То есть $\vdash \neg \sigma(\lceil \overline{\sigma} \rceil)$. Противоречие.
- ► Пусть $\vdash \neg \sigma(\overline{\ulcorner \sigma \urcorner})$. Το есть $\vdash \exists p.ω_1(\overline{\ulcorner \sigma \urcorner}, p)$.

Напомним: $\sigma(x_1) := \forall p. \neg \omega_1(x_1, p).$ $W_1(\lceil \xi \rceil, p) - p$ есть доказательство самоприменения ξ .

- ▶ Пусть $\vdash \sigma(\ulcorner \overline{\sigma} \urcorner)$. Значит, p номер доказательства. Тогда $\langle \ulcorner \sigma \urcorner, p \rangle \in W_1$. Тогда $\vdash \omega_1(\ulcorner \overline{\sigma} \urcorner, \overline{p})$. Тогда $\vdash \exists p.\omega_1(\ulcorner \overline{\sigma} \urcorner, p)$. То есть $\vdash \neg \forall p. \neg \omega_1(\ulcorner \overline{\sigma} \urcorner, p)$. То есть $\vdash \neg \sigma(\ulcorner \overline{\sigma} \urcorner)$. Противоречие.
- ► Пусть $\vdash \neg \sigma(\overline{\ulcorner \sigma \urcorner})$. Το есть $\vdash \exists p.ω_1(\overline{\ulcorner \sigma \urcorner}, p)$.
 - ► Но найдётся ли натуральное число p, что $\vdash \omega_1(\overline{\ulcorner \sigma \urcorner}, \overline{p})$?

Напомним: $\sigma(x_1) := \forall p. \neg \omega_1(x_1, p).$ $W_1(\lceil \xi \rceil, p) - p$ есть доказательство самоприменения ξ .

- ▶ Пусть $\vdash \sigma(\ulcorner \overline{\sigma} \urcorner)$. Значит, p номер доказательства. Тогда $\langle \ulcorner \sigma \urcorner, p \rangle \in W_1$. Тогда $\vdash \omega_1(\ulcorner \overline{\sigma} \urcorner, \overline{p})$. Тогда $\vdash \exists p.\omega_1(\ulcorner \overline{\sigma} \urcorner, p)$. То есть $\vdash \neg \forall p. \neg \omega_1(\ulcorner \overline{\sigma} \urcorner, p)$. То есть $\vdash \neg \sigma(\ulcorner \overline{\sigma} \urcorner)$. Противоречие.
- ► Пусть $\vdash \neg \sigma(\overline{\ulcorner \sigma \urcorner})$. Το есть $\vdash \exists p.ω_1(\overline{\ulcorner \sigma \urcorner}, p)$.
 - ▶ Но найдётся ли натуральное число p, что $\vdash \omega_1(\overline{\ulcorner \sigma \urcorner}, \overline{p})$? Пусть нет. То есть $\vdash \neg \omega_1(\overline{\ulcorner \sigma \urcorner}, \overline{0}), \vdash \neg \omega_1(\overline{\ulcorner \sigma \urcorner}, \overline{1}), \ldots$

Напомним: $\sigma(x_1) := \forall p. \neg \omega_1(x_1, p).$ $W_1(\lceil \xi \rceil, p) - p$ есть доказательство самоприменения ξ .

- ▶ Пусть $\vdash \sigma(\ulcorner \overline{\sigma} \urcorner)$. Значит, p номер доказательства. Тогда $\langle \ulcorner \sigma \urcorner, p \rangle \in W_1$. Тогда $\vdash \omega_1(\ulcorner \overline{\sigma} \urcorner, \overline{p})$. Тогда $\vdash \exists p.\omega_1(\ulcorner \overline{\sigma} \urcorner, p)$. То есть $\vdash \neg \forall p. \neg \omega_1(\ulcorner \overline{\sigma} \urcorner, p)$. То есть $\vdash \neg \sigma(\ulcorner \overline{\sigma} \urcorner)$. Противоречие.
- ► Πусть $\vdash \neg \sigma(\overline{\ulcorner \sigma \urcorner})$. Το есть $\vdash \exists p.ω_1(\overline{\ulcorner \sigma \urcorner}, p)$.
 - ► Но найдётся ли натуральное число p, что $\vdash \omega_1(\ulcorner \sigma \urcorner, \overline{p})$? Пусть нет. То есть $\vdash \neg \omega_1(\ulcorner \sigma \urcorner, \overline{0})$, $\vdash \neg \omega_1(\ulcorner \sigma \urcorner, \overline{1})$, . . . По ω -непротиворечивости $\not\vdash \exists p . \neg \neg \omega_1(\ulcorner \sigma \urcorner, p)$.

Напомним: $\sigma(x_1) := \forall p. \neg \omega_1(x_1, p).$ $W_1(\lceil \xi \rceil, p) - p$ есть доказательство самоприменения ξ .

Доказательство.

- ▶ Пусть $\vdash \sigma(\ulcorner \overline{\sigma} \urcorner)$. Значит, p номер доказательства. Тогда $\langle \ulcorner \sigma \urcorner, p \rangle \in W_1$. Тогда $\vdash \omega_1(\ulcorner \overline{\sigma} \urcorner, \overline{p})$. Тогда $\vdash \exists p.\omega_1(\ulcorner \overline{\sigma} \urcorner, p)$. То есть $\vdash \neg \forall p. \neg \omega_1(\ulcorner \overline{\sigma} \urcorner, p)$. То есть $\vdash \neg \sigma(\ulcorner \overline{\sigma} \urcorner)$. Противоречие.
- ► Пусть $\vdash \neg \sigma(\overline{\ulcorner \sigma \urcorner})$. Το есть $\vdash \exists p.ω_1(\overline{\ulcorner \sigma \urcorner}, p)$.
 - ▶ Но найдётся ли натуральное число p, что $\vdash \omega_1(\ulcorner \overline{\sigma} \urcorner, \overline{p})$? Пусть нет. То есть $\vdash \neg \omega_1(\ulcorner \overline{\sigma} \urcorner, \overline{0})$, $\vdash \neg \omega_1(\ulcorner \overline{\sigma} \urcorner, \overline{1})$, . . . По ω -непротиворечивости $\not\vdash \exists p. \neg \neg \omega_1(\ulcorner \overline{\sigma} \urcorner, p)$.

Значит, найдётся натуральное p, что $\vdash \omega_1(\overline{\ulcorner \sigma \urcorner}, \overline{p})$.

Напомним: $\sigma(x_1) := \forall p. \neg \omega_1(x_1, p).$ $W_1(\lceil \xi \rceil, p) - p$ есть доказательство самоприменения ξ .

Доказательство.

- ▶ Пусть $\vdash \sigma(\ulcorner \overline{\sigma} \urcorner)$. Значит, p номер доказательства. Тогда $\langle \ulcorner \sigma \urcorner, p \rangle \in W_1$. Тогда $\vdash \omega_1(\ulcorner \overline{\sigma} \urcorner, \overline{p})$. Тогда $\vdash \exists p.\omega_1(\ulcorner \overline{\sigma} \urcorner, p)$. То есть $\vdash \neg \forall p. \neg \omega_1(\ulcorner \overline{\sigma} \urcorner, p)$. То есть $\vdash \neg \sigma(\ulcorner \overline{\sigma} \urcorner)$. Противоречие.
- ► Пусть $\vdash \neg \sigma(\overline{\ulcorner \sigma \urcorner})$. Το есть $\vdash \exists p.\omega_1(\overline{\ulcorner \sigma \urcorner}, p)$.
 - ► Но найдётся ли натуральное число p, что $\vdash \omega_1(\ulcorner \overline{\sigma} \urcorner, \overline{p})$? Пусть нет. То есть $\vdash \neg \omega_1(\ulcorner \overline{\sigma} \urcorner, \overline{0})$, $\vdash \neg \omega_1(\ulcorner \overline{\sigma} \urcorner, \overline{1})$, . . . По ω -непротиворечивости $\not\vdash \exists p. \neg \neg \omega_1(\ulcorner \overline{\sigma} \urcorner, p)$.

Значит, найдётся натуральное p, что $\vdash \omega_1(\lceil \sigma \rceil, \overline{p})$. То есть, $\langle \lceil \sigma \rceil, p \rangle \in W_1$.

Напомним: $\sigma(x_1) := \forall p. \neg \omega_1(x_1, p).$ $W_1(\lceil \xi \rceil, p) - p$ есть доказательство самоприменения ξ .

Доказательство.

- ▶ Пусть $\vdash \sigma(\ulcorner \overline{\sigma} \urcorner)$. Значит, p номер доказательства. Тогда $\langle \ulcorner \sigma \urcorner, p \rangle \in W_1$. Тогда $\vdash \omega_1(\ulcorner \overline{\sigma} \urcorner, \overline{p})$. Тогда $\vdash \exists p.\omega_1(\ulcorner \overline{\sigma} \urcorner, p)$. То есть $\vdash \neg \forall p. \neg \omega_1(\ulcorner \overline{\sigma} \urcorner, p)$. То есть $\vdash \neg \sigma(\ulcorner \overline{\sigma} \urcorner)$. Противоречие.
- ► Πусть $\vdash \neg \sigma(\overline{\ulcorner \sigma \urcorner})$. Το есть $\vdash \exists p.ω_1(\overline{\ulcorner \sigma \urcorner}, p)$.
 - ► Но найдётся ли натуральное число p, что $\vdash \omega_1(\ulcorner \overline{\sigma} \urcorner, \overline{p})$? Пусть нет. То есть $\vdash \neg \omega_1(\ulcorner \overline{\sigma} \urcorner, \overline{0})$, $\vdash \neg \omega_1(\ulcorner \overline{\sigma} \urcorner, \overline{1})$, . . . По ω -непротиворечивости $\not\vdash \exists p. \neg \neg \omega_1(\ulcorner \overline{\sigma} \urcorner, p)$.

Значит, найдётся натуральное p, что $\vdash \omega_1(\lceil \overline{\sigma} \rceil, \overline{p})$. То есть, $\langle \lceil \sigma \rceil, p \rangle \in W_1$. То есть, p — доказательство самоприменения $\sigma : \vdash \sigma(\lceil \overline{\sigma} \rceil)$.

Напомним: $\sigma(x_1):=\forall p.\neg\omega_1(x_1,p).\ W_1(\ulcorner\xi\urcorner,p)-p$ есть доказательство самоприменения ξ .

Доказательство.

- ▶ Пусть $\vdash \sigma(\ulcorner \overline{\sigma} \urcorner)$. Значит, p номер доказательства. Тогда $\langle \ulcorner \sigma \urcorner, p \rangle \in W_1$. Тогда $\vdash \omega_1(\ulcorner \overline{\sigma} \urcorner, \overline{p})$. Тогда $\vdash \exists p.\omega_1(\ulcorner \overline{\sigma} \urcorner, p)$. То есть $\vdash \neg \forall p. \neg \omega_1(\ulcorner \overline{\sigma} \urcorner, p)$. То есть $\vdash \neg \sigma(\ulcorner \overline{\sigma} \urcorner)$. Противоречие.
- ► Пусть $\vdash \neg \sigma(\overline{\ulcorner \sigma \urcorner})$. Το есть $\vdash \exists p.ω_1(\overline{\ulcorner \sigma \urcorner}, p)$.
 - ► Но найдётся ли натуральное число p, что $\vdash \omega_1(\ulcorner \sigma \urcorner, \overline{p})$? Пусть нет. То есть $\vdash \neg \omega_1(\ulcorner \sigma \urcorner, \overline{0})$, $\vdash \neg \omega_1(\ulcorner \sigma \urcorner, \overline{1})$, . . . По ω -непротиворечивости $\not\vdash \exists p. \neg \neg \omega_1(\ulcorner \sigma \urcorner, p)$.

Значит, найдётся натуральное p, что $\vdash \omega_1(\lceil \overline{\sigma} \rceil, \overline{p})$. То есть, $\langle \lceil \sigma \rceil, p \rangle \in W_1$. То есть, p — доказательство самоприменения $\sigma \colon \vdash \sigma(\lceil \overline{\sigma} \rceil)$. Противоречие.

Определение

Семантически полная теория — теория, в которой любая общезначимая формула доказуема.

Синтаксически полная теория — теория, в которой для каждой формулы α выполнено $\vdash \alpha$ или $\vdash \neg \alpha$.

Теорема

Формальная арифметика с классической моделью семантически неполна.

Определение

Семантически полная теория — теория, в которой любая общезначимая формула доказуема.

Синтаксически полная теория — теория, в которой для каждой формулы α выполнено $\vdash \alpha$ или $\vdash \neg \alpha$.

Теорема

Формальная арифметика с классической моделью семантически неполна.

Доказательство.

Рассмотрим Ф.А. с классической моделью.

Определение

Семантически полная теория — теория, в которой любая общезначимая формула доказуема.

Синтаксически полная теория — теория, в которой для каждой формулы α выполнено $\vdash \alpha$ или $\vdash \neg \alpha$.

Теорема

Формальная арифметика с классической моделью семантически неполна.

Доказательство.

Рассмотрим Ф.А. с классической моделью. Из теоремы Гёделя имеем $otag \sigma(\overline{\sigma})$.

Определение

Семантически полная теория — теория, в которой любая общезначимая формула доказуема.

Синтаксически полная теория — теория, в которой для каждой формулы α выполнено $\vdash \alpha$ или $\vdash \neg \alpha$.

Теорема

Формальная арифметика с классической моделью семантически неполна.

Доказательство.

Рассмотрим Ф.А. с классической моделью. Из теоремы Гёделя имеем $\not\vdash \sigma(\ulcorner \sigma \urcorner)$. Рассмотрим $\sigma(\ulcorner \sigma \urcorner) \equiv \forall p. \neg \omega_1(\ulcorner \sigma \urcorner, p)$: нет числа p, что p — номер доказательства $\sigma(\ulcorner \sigma \urcorner)$.

Определение

Семантически полная теория — теория, в которой любая общезначимая формула доказуема.

Синтаксически полная теория — теория, в которой для каждой формулы α выполнено $\vdash \alpha$ или $\vdash \neg \alpha$.

Теорема

Формальная арифметика с классической моделью семантически неполна.

Доказательство.

Рассмотрим Ф.А. с классической моделью. Из теоремы Гёделя имеем $otag\def \sigma$ ($otag\def \sigma$) = $otag\def p$, $otag\def \sigma$): нет числа $otag\def p$, что $otag\def p$ — номер доказательства $otag\def \sigma$). То есть, $otag\def p$, $otag\def \sigma$ 0. $otag\def p$ 0. o

Определение

Семантически полная теория — теория, в которой любая общезначимая формула доказуема.

Синтаксически полная теория — теория, в которой для каждой формулы α выполнено $\vdash \alpha$ или $\vdash \neg \alpha$.

Теорема

Формальная арифметика с классической моделью семантически неполна.

Доказательство.

Рассмотрим Ф.А. с классической моделью. Из теоремы Гёделя имеем $\not\vdash \sigma(\ulcorner \sigma \urcorner)$. Рассмотрим $\sigma(\ulcorner \sigma \urcorner) \equiv \forall p. \neg \omega_1(\ulcorner \sigma \urcorner, p)$: нет числа p, что p — номер доказательства $\sigma(\ulcorner \sigma \urcorner)$. То есть, $\llbracket \forall p. \neg \omega_1(\ulcorner \sigma \urcorner, p) \rrbracket = \mathsf{И}$. То есть, $\models \sigma(\ulcorner \sigma \urcorner)$.

Определение

$$\theta_1 \le \theta_2 \equiv (\exists p.p + \theta_1 = \theta_2)$$
 $\theta_1 < \theta_2 \equiv \theta_1 \le \theta_2 \& \neg \theta_1 = \theta_2$

Определение

$$heta_1 \leq heta_2 \equiv (\exists p.p + heta_1 = heta_2) \qquad heta_1 < heta_2 \equiv heta_1 \leq heta_2 \& \neg heta_1 = heta_2$$

Определение

Пусть $\langle \ulcorner \xi \urcorner, p \rangle \in W_2$, если $\vdash \lnot \xi (\ulcorner \xi \urcorner)$ и p — номер доказательства. Пусть ω_2 выражает W_2 в формальной арифметике.

Определение

$$\theta_1 \leq \theta_2 \equiv (\exists p.p + \theta_1 = \theta_2)$$
 $\theta_1 < \theta_2 \equiv \theta_1 \leq \theta_2 \& \neg \theta_1 = \theta_2$

Определение

Пусть $\langle \ulcorner \xi \urcorner, p \rangle \in W_2$, если $\vdash \neg \xi (\overline{\ulcorner \xi \urcorner})$ и p — номер доказательства. Пусть ω_2 выражает W_2 в формальной арифметике.

Теорема

Рассмотрим
$$ho(x_1) = \forall p.\omega_1(x_1,p)
ightarrow \exists q.q \leq p \& \omega_2(x_1,q).$$

Определение

$$\theta_1 \leq \theta_2 \equiv (\exists p.p + \theta_1 = \theta_2)$$
 $\theta_1 < \theta_2 \equiv \theta_1 \leq \theta_2 \& \neg \theta_1 = \theta_2$

Определение

Пусть $\langle \ulcorner \xi \urcorner, p \rangle \in W_2$, если $\vdash \lnot \xi (\overline{\ulcorner \xi \urcorner})$ и p — номер доказательства. Пусть ω_2 выражает W_2 в формальной арифметике.

Теорема

Рассмотрим
$$\rho(x_1) = \forall p.\omega_1(x_1,p) \to \exists q.q \leq p \& \omega_2(x_1,q)$$
. Тогда $\not\vdash \rho(\overline{\lceil \rho \rceil})$ и $\not\vdash \neg \rho(\overline{\lceil \rho \rceil})$.

Определение

$$\theta_1 \leq \theta_2 \equiv (\exists p.p + \theta_1 = \theta_2)$$
 $\theta_1 < \theta_2 \equiv \theta_1 \leq \theta_2 \& \neg \theta_1 = \theta_2$

Определение

Пусть $\langle \ulcorner \xi \urcorner, p \rangle \in W_2$, если $\vdash \neg \xi (\overline{\ulcorner \xi \urcorner})$ и p — номер доказательства. Пусть ω_2 выражает W_2 в формальной арифметике.

Теорема

Рассмотрим $\rho(x_1) = \forall p.\omega_1(x_1,p) \to \exists q.q \leq p \& \omega_2(x_1,q)$. Тогда $\not\vdash \rho(\lceil \rho \rceil)$ и $\not\vdash \neg \rho(\lceil \rho \rceil)$. «Меня легче опровергнуть, чем доказать»

Формальное доказательство

Неполнота варианта теории, изложенной выше, формально доказана на Coq, Russell O'Connor, 2005:

"My proof, excluding standard libraries and the library for Pocklington's criterion, consists of 46 source files, 7 036 lines of specifications, 37 906 lines of proof, and 1 267 747 total characters. The size of the gzipped tarball (gzip -9) of all the source files is 146 008 bytes, which is an estimate of the information content of my proof."

```
Theorem Incompleteness : forall T : System,
   Included Formula NN T ->
   RepresentsInSelf T ->
   DecidableSet Formula T ->
   exists f : Formula,
   Sentence f/\(SysPrf T f \/ SysPrf T (notH f) -> Inconsistent LNN T).
```

Лемма

 $\vdash 1 = 0$ тогда и только тогда, когда $\vdash \alpha$ при любом α .

Определение

Обозначим за $\psi(x,p)$ формулу, выражающую в формальной арифметике рекурсивное отношение Proof: $\langle \ulcorner \xi \urcorner, p \rangle \in Proof$, если p-rёделев номер доказательства ξ .

Лемма

 $\vdash 1 = 0$ тогда и только тогда, когда $\vdash \alpha$ при любом α .

Определение

Обозначим за $\psi(x,p)$ формулу, выражающую в формальной арифметике рекурсивное отношение Proof: $\langle \ulcorner \xi \urcorner, p \rangle \in Proof$, если p-rёделев номер доказательства ξ .

Обозначим $\pi(x) \equiv \exists p. \psi(x,p)$

Лемма

dash 1=0 тогда и только тогда, когда dash lpha при любом lpha.

Определение

Обозначим за $\psi(x,p)$ формулу, выражающую в формальной арифметике рекурсивное отношение Proof: $\langle \ulcorner \xi \urcorner, p \rangle \in Proof$, если p-rёделев номер доказательства ξ .

Обозначим $\pi(x) \equiv \exists p. \psi(x,p)$

Определение

Формулой Consis назовём формулу $\neg \pi(\overline{1} = 0\overline{})$

Лемма

 $\vdash 1 = 0$ тогда и только тогда, когда $\vdash \alpha$ при любом α .

Определение

Обозначим за $\psi(x,p)$ формулу, выражающую в формальной арифметике рекурсивное отношение Proof: $\langle \ulcorner \xi \urcorner, p \rangle \in Proof$, если p-rёделев номер доказательства ξ .

Обозначим $\pi(x) \equiv \exists p. \psi(x,p)$

Определение

Формулой Consis назовём формулу $\neg \pi(\overline{1=0})$

Неформальный смысл: «формальная арифметика непротиворечива»

Теорема

Если Consis доказуем, то формальная арифметика противоречива.

Доказательство.

(неформально)

Теорема

Если Consis доказуем, то формальная арифметика противоречива.

Доказательство.

(неформально) Формулировка 1 теоремы Гёделя о неполноте арифметики: «если Ф.А. непротиворечива, то недоказуемо $\sigma(\lceil \overline{\sigma} \rceil)$ ».

Теорема

Если Consis доказуем, то формальная арифметика противоречива.

Доказательство.

(неформально) Формулировка 1 теоремы Гёделя о неполноте арифметики: «если Ф.А. непротиворечива, то недоказуемо $\sigma(\lceil \overline{\sigma} \rceil)$ ». То есть, $\forall p. \neg \omega_1(\lceil \overline{\sigma} \rceil, p)$.

Теорема

Если Consis доказуем, то формальная арифметика противоречива.

Доказательство.

(неформально) Формулировка 1 теоремы Гёделя о неполноте арифметики: «если Ф.А. непротиворечива, то недоказуемо $\sigma(\ulcorner \sigma \urcorner)$ ». То есть, $\forall p. \neg \omega_1(\ulcorner \sigma \urcorner, p)$. То есть, если Consis, то $\sigma(\ulcorner \sigma \urcorner)$.

Теорема

Если Consis доказуем, то формальная арифметика противоречива.

Доказательство.

(неформально) Формулировка 1 теоремы Гёделя о неполноте арифметики: «если Ф.А. непротиворечива, то недоказуемо $\sigma(\lceil \overline{\sigma} \rceil)$ ». То есть, $\forall p. \neg \omega_1(\lceil \overline{\sigma} \rceil, p)$. То есть, если Consis, то $\sigma(\lceil \overline{\sigma} \rceil)$. То есть, если Consis, то $\sigma(\lceil \overline{\sigma} \rceil)$. То есть \vdash Consis $\rightarrow \sigma(\lceil \overline{\sigma} \rceil)$.

Теорема

Если Consis доказуем, то формальная арифметика противоречива.

Доказательство.

(неформально) Формулировка 1 теоремы Гёделя о неполноте арифметики: «если Ф.А. непротиворечива, то недоказуемо $\sigma(\lceil \overline{\sigma} \rceil)$ ». То есть, $\forall p. \neg \omega_1(\lceil \overline{\sigma} \rceil, p)$. То есть, если Consis, то $\sigma(\lceil \overline{\sigma} \rceil)$. То есть, если Consis, то $\sigma(\lceil \overline{\sigma} \rceil)$, — и это можно доказать, то есть \vdash Consis $\rightarrow \sigma(\lceil \overline{\sigma} \rceil)$. Однако если формальная арифметика непротиворечива, то $\not\vdash \sigma(\lceil \overline{\sigma} \rceil)$.

Слишком много неформальности

Рассмотрим такой особый Consis':

$$\pi'(x) := \exists p. \psi(x, p) \& \neg \psi(\overline{1 = 0}, p)$$

$$\mathsf{Consis'} := \pi'(\overline{1 = 0})$$

Заметим:

- 1. Если ФА непротиворечива, то $[\![\pi'(x)]\!] = [\![\pi(x)]\!]$:
 - lacktriangle если $x
 eq \lceil 1=0 \rceil$ и $[\![\psi(x,
 ho)]\!]=$ И, то $[\![\psi(\overline{\lceil 1=0 \rceil},
 ho)]\!]=$ Л
 - lacktriangle если $x=\lceil 1=0 \rceil$, то $\psi(\lceil 1=0 \rceil,p)= \Pi$ при любом p.
- 2. Ho ⊢ Consis'.

Условия выводимости Гильберта-Бернайса-Лёба

Определение

Будем говорить, что формула ψ , выражающая отношение Proof, формула π и формула Consis соответствуют условиям Гильберта-Бернайса-Лёба, если следующие условия выполнены для любой формулы α :

- 1. $\vdash \alpha$ влечет $\vdash \pi(\overline{\ulcorner \alpha \urcorner})$
- 2. $\vdash \pi(\overline{\lceil \alpha \rceil}) \to \pi(\overline{\lceil \pi (\lceil \alpha \rceil) \rceil})$
- 3. $\vdash \pi(\overline{\lceil \alpha \to \beta \rceil}) \to \pi(\overline{\lceil \alpha \rceil}) \to \pi(\overline{\lceil \beta \rceil})$

Первая теорема Гёделя о неполноте ещё раз

Лемма

Лемма об автоссылках. Для любой формулы $\phi(x_1)$ можно построить такую замкнутую формулу α (не использующую неаксиоматических предикатных и функциональных символов), что $\vdash \phi(\ulcorner \overline{\alpha} \urcorner) \leftrightarrow \alpha$.

Теорема

Существует такая замкнутая формула γ , что если Ф.А. непротиворечива, то $\not\vdash \gamma$, а если Ф.А. ω -непротиворечива, то и $\not\vdash \neg \gamma$.

Доказательство.

Рассмотрим $\phi(x_1) \equiv \neg \pi(x_1)$. Тогда по лемме об автоссылках существует γ , что $\vdash \gamma \leftrightarrow \neg \pi(\overline{\ } \gamma \overline{\ })$.

- lacktriangle Предположим, что $\vdash \gamma$. Тогда $\vdash \gamma o \neg \pi(\overline{\lceil \gamma \rceil})$, то есть $\not\vdash \gamma$
- ▶ Предположим, что $\vdash \neg \gamma$. Тогда $\vdash \pi(\ulcorner \gamma \urcorner)$, то есть $\vdash \exists p. \psi(\ulcorner \gamma \urcorner, p)$. Тогда по ω -непротиворечивости найдётся p, что $\vdash \psi(\ulcorner \gamma \urcorner, \overline{p})$, то есть $\vdash \gamma$.

Доказательство второй теоремы Гёделя

- 1. Пусть γ таково, что $\vdash \gamma \leftrightarrow \neg \pi(\overline{\lceil \gamma \rceil})$.
- 2. Покажем $\pi(\overline{\lceil \gamma \rceil}) \vdash \pi(\overline{\lceil 1 = 0 \rceil})$.
 - 2.1 По условию 2, $\vdash \pi(\overline{\ \gamma}) \to \pi(\overline{\ \pi(\overline{\ \gamma})})$. По теореме о дедукции $\pi(\overline{\ \gamma}) \vdash \pi(\overline{\ \pi(\overline{\ \gamma})})$;
 - 2.2 Так как $\vdash \pi(\overline{\lceil \gamma \rceil}) \to \neg \gamma$, то по условию $1 \vdash \pi(\overline{\lceil \pi (\overline{\lceil \gamma \rceil})} \to \neg \gamma \overline{\rceil});$
 - 2.3 По условию 3, $\pi(\overline{\lceil \gamma \rceil}) \vdash \pi(\overline{\lceil \pi(\overline{\lceil \gamma \rceil}) \rceil}) \to \pi(\overline{\lceil \pi(\overline{\lceil \gamma \rceil})}) \to \pi(\overline{\lceil \gamma \rceil}) \to \neg \gamma \urcorner) \to \pi(\overline{\lceil \gamma \gamma \rceil});$
 - 2.4 Таким образом, $\pi(\overline{\ }\gamma^{\neg}) \vdash \pi(\overline{\ }\neg\gamma^{\neg});$
 - 2.5 Однако $\vdash \gamma \to \neg \gamma \to 1=0$. Условие 3 (применить два раза) даст $\pi(\ulcorner \gamma \urcorner) \vdash \pi(\ulcorner 1=0 \urcorner)$.
- 3. $\neg\pi(\overline{\lceil 1=0 \rceil}) \to \neg\pi(\overline{\lceil \gamma \rceil})$ (т. о дедукции, контрапозиция).
- 4. $\vdash \neg \pi(\overline{\ }1 = 0 \overline{\ }) \rightarrow \gamma$ (определение γ).

Расширение на другие теории

Определение

Теория S — расширение теории T, если из $\vdash_{\mathcal{T}} \alpha$ следует $\vdash_{\mathcal{S}} \alpha$

Определение

Теория S — рекурсивно-аксиоматизируемая, если найдётся теория S' с тем же языком, что:

- 1. $\vdash_S \alpha$ тогда и только тогда, когда $\vdash_{S'} \alpha$;
- 2. Множество аксиом теории \mathcal{S}' рекурсивно.

Теорема

Eсли \mathcal{S} — непротиворечивое рекурсивно-аксиоматизируемое расширение формальной арифметики, то в ней можно доказать аналоги теорем Гёделя о неполноте арифметики.

Сужение: система Робинсона

Определение

Теория первого порядка, использующая нелогические функциональные символы 0, (+) и (\cdot) , нелогический предикатный символ (=) и следующие нелогические аксиомы, называется системой Робинсона.

$$\begin{array}{lll} a=a & a=b\rightarrow b=a\\ a=b\rightarrow b=c\rightarrow a=c & a=b\rightarrow a'=b'\\ a'=b'\rightarrow a=b & \neg 0=a'\\ a=b\rightarrow a+c=b+c\&c+a=c+b & a=b\rightarrow a\cdot c=b\cdot c\&c\cdot a=c\cdot b\\ \neg a=0\rightarrow \exists b.a=b' & a+0=a\\ a+b'=(a+b)' & a\cdot 0=0\\ a\cdot b'=a\cdot b+a & \end{array}$$

Система Робинсона неполна: аксиомы — в точности утверждения, необходимые для доказательства теорем Гёделя. Система Робинсона не имеет схем аксиом.

Арифметика Пресбургера

Определение

Теория первого порядка, использующая нелогические функциональные символы 0, 1, (+), нелогический предикатный символ (=) и следующие нелогические аксиомы, называется арифметикой Пресбургера.

$$\neg(0 = x + 1)
x + 1 = y + 1 \to x = y
x + 0 = x
x + (y + 1) = (x + y) + 1
(\varphi(0) & \forall x.\varphi(x) \to \varphi(x + 1)) \to \forall y.\varphi(y)$$

Теорема

Арифметика Пресбургера разрешима и синтаксически и семантически полна.

Невыразимость доказуемости

Определение

$$Th_{\mathcal{S}} = \{ \lceil \alpha \rceil \mid \vdash_{\mathcal{S}} \alpha \}; Tr_{\mathcal{S}} = \{ \lceil \alpha \rceil \mid [\![\alpha]\!]_{\mathcal{S}} = \mathcal{U} \}$$

Лемма

Пусть $D(\lceil \alpha \rceil) = \lceil \alpha(\lceil \alpha \rceil) \rceil$ для любой формулы $\alpha(x)$. Тогда D представима в формальной арифметике.

Теорема

Если расширение Φ .А. $\mathcal S$ непротиворечиво и $\mathcal D$ представима в нём, то $\mathsf{Th}_{\mathcal S}$ невыразимо в $\mathcal S$

Доказательство.

Пусть $\delta(a,p)$ представляет D, и пусть $\sigma(x)$ выражает множество $\mathsf{Th}_\mathcal{S}$ (рассматриваемое как одноместное отношение).

Пусть
$$\alpha(x) := \forall p.\delta(x,p) \to \neg \sigma(p)$$
. Верно ли, что $\lceil \alpha \rceil \in \mathsf{Th}$?

Неразрешимость формальной арифметики

Теорема

Если формальная арифметика непротиворечива, то формальная арифметика неразрешима

Доказательство.

Пусть формальная арифметика разрешима. Значит, есть рекурсивная функция f(x): f(x)=1 тогда и только тогда, когда $x\in \mathsf{Th}_{\Phi,\mathsf{A}}$. То есть, $\mathsf{Th}_{\Phi,\mathsf{A}}$ выразимо в формальной арифметике.

По теореме о невыразимости доказуемости, $\mathsf{Th}_{\Phi,A}$ невыразимо в формальной арифметике. Противоречие.

Теорема Тарского

Теорема (Тарского о невыразимости истины)

Не существует формулы $\varphi(x)$, что $[\![\varphi(x)]\!] = \mathcal{U}$ (в стандартной интерпретации) тогда и только тогда, когда $x \in \mathit{Tr}_{\Phi A}$.

Доказательство.

Пусть теория \mathcal{S} — формальная арифметика + аксиомы: все истинные в стандартной интерпретации формулы. Очевидно, что $\mathsf{Th}_{\mathcal{S}} = \mathsf{Tr}_{\mathcal{S}} = \mathsf{Tr}_{\Phi A}$. То есть $\mathsf{Tr}_{\Phi A}$ невыразимо в \mathcal{S} .

Пусть φ таково, что $[\![\varphi(x)]\!]=$ И при $x\in$ Tr. Тогда $\vdash \varphi(x)$, если $x\in$ Tr и $\vdash \neg\varphi(x)$, если $x\notin$ Tr.

Тогда Tr выразимо в \mathcal{S} . Противоречие.

Теорема Тарского

Теорема (Тарского о невыразимости истины)

Не существует формулы $\varphi(x)$, что $[\![\varphi(x)]\!] = \mathcal{U}$ (в стандартной интерпретации) тогда и только тогда, когда $x \in \mathit{Tr}_{\Phi A}$.

Доказательство.

Пусть теория \mathcal{S} — формальная арифметика + аксиомы: все истинные в стандартной интерпретации формулы. Очевидно, что $\mathsf{Th}_{\mathcal{S}} = \mathsf{Tr}_{\mathcal{S}} = \mathsf{Tr}_{\Phi A}$. То есть $\mathsf{Tr}_{\Phi A}$ невыразимо в \mathcal{S} .

Пусть φ таково, что $[\![\varphi(x)]\!] = \mathsf{И}$ при $x \in \mathsf{Tr}$. Тогда $\vdash \varphi(x)$, если $x \in \mathsf{Tr}$ и $\vdash \neg \varphi(x)$, если $x \notin \mathsf{Tr}$.

Тогда Tr выразимо в \mathcal{S} . Противоречие.

Однако, если взять $D=\mathbb{R}$, истина становится выразима (алгоритм Тарского).