

BCC265 - Laboratório de Eletrônica para Computação

Professor: Vinicius Martins

Aula 4

Assunto: Capacitores

Agradecimentos: Carlos Frederico e Eduardo Luz

1. Objetivos

- Maior compreensão de circuitos capacitivos.
- Familiarizar o aluno com simulação de circuitos RC.

2. Equipamento necessário

• Computador com software Qucs.

3. Capacitor

Enquanto o resistor é um componente que oferece resistência ao fluxo da carga, o capacitor a armazena (figura 02). A simbologia do capacitor está na figura 01, porém algumas variantes podem ser encontradas. A figura 03 mostra um conjunto de capacitores em suas diversas dimensões e formatos. Capacitores podem ter polaridade ou não. Os que possuem polaridade, caso seja aplicada uma tensão de polaridade inversa, o capacitor é destruído. Capacitores eletrolíticos, cujo símbolo está na parte inferior da figura 01 e cuja fotografia está na figura 04, são capacitores onde a polaridade da tensão aplicada deve ser observada.

Figura 1: simbologia de um capacitor

Figura 3 – Algumas formas de capacitores (também chamados de condensadores)

Figura 2: Ciclo de carga e descarga de um capacitor.

Figura 4 – Capacitores unipolares, como os eletrolíticos acima, a polaridade NÃO pode ser trocada.

A capacitância é medida em Farad (F). O capacitor é encontrado em equações com o símbolo C. Tipicamente, vamos trabalhar com capacitores variando de micro-farads até pico-farads.

Quando aplicamos uma tensão em um capacitor, o mesmo se carrega. Se esta tensão é removida, o capacitor "se opõe" a esta variação e tenta compensar, descarregando sua carga no circuito, se houver caminho (ver Figura 2).

3.1 Associação de capacitores

Na Figura 5, temos dois capacitores em paralelo e, na fig. 6, em série. A associação é feita de acordo com as equações abaixo:

BCC265 - Laboratório de Eletrônica para Computação

Professor: Vinicius Martins

Aula 4

Assunto: Capacitores

Agradecimentos: Carlos Frederico e Eduardo Luz

Csérie = C1*C2/(C1+C2)

$$Cpar = C1 + C2$$

3.2 Reatância Capacitiva

A quantidade de "resistência" de um capacitor, sob regime AC, é conhecida como **reatância capacitiva**, e a mesma varia conforme varia a frequência do sinal AC. A reatância capacitiva é dada por:

$$X_C = \frac{1}{2\pi f C}$$

Onde:

- X_C = reatância capacitiva, medida em ohms
- f = frequência do sinal AC, em Hertz Hz
- C = capacitância medida em Farads F

3.3 Tempo de Carga

O tempo de carga de um condensador (capacitor) é definido pela expressão: T = R x C

Figura 7 - Tempo de Carga

A função do resistor R é controlar o tempo de carga do capacitor. O tempo de carga depende diretamente do produto RC.

Após uma constante de tempo RC, o capacitor carrega com 63,2% da tensão da fonte (63,2% de V). $R.C = 100.10^3$. $100.10^{-6} = 100000.10^{-3} = 10$ segundos

Após 5.R.C, o capacitor está praticamente carregado com a tensão da fonte (99,3% de V) .

 $t = 5.R.C = 5.100.10^{3}.100.10^{-6} = 50000.10^{-3} segundos = 50 segundos$

3.3 Diagrama de Tempo

BCC265 – Laboratório de Eletrônica para Computação

Professor: Vinicius Martins

astr.gsu.edu/hbase/electric/capchg.html

Aula 4

Assunto: Capacitores

Agradecimentos: Carlos Frederico e Eduardo Luz

BCC265 – Laboratório de Eletrônica para Computação

Professor: Vinicius Martins

Aula 4

Assunto: Capacitores

Agradecimentos: Carlos Frederico e Eduardo Luz

4. Parte experimental (Circuitos RC)

4.1 Primeira Parte

Figura 12

A simulação transiente analógica, ou simplesmente análise transiente, apresenta o que você veria em um osciloscópio, tensão ou corrente no eixo Y e tempo no eixo X.

Monte um circuito como o da Figura 12. Ajuste os parâmetros da simulação transiente como mostrado na Figura 12.

Coloque um capacitor, com o mesmo valor

- Em serie
- Em paralelo.

O que aconteceu?

4.2 Segunda Parte

Altere o circuito da Figura 12 para ficar idêntico à figura 13. O que significa o gráfico abaixo? Qual é o valor da Reatância capacitiva para a frequência de 60Hz. Troque para 120 Hz, o que aconteceu? Qual é a corrente a 60 Hz? E a 120Hz?

Figura 13