Exploiting subsequence matching in Recommender Systems

Pablo Sánchez Pérez

Universidad Autónoma de Madrid pablo.sanchezp@estudiante.uam.es

3 de Julio 2017

Índice

- Introducción
- 2 Propuesta: LCS en recomendación
- 3 Experimentos
- 4 Conclusiones y trabajo futuro

Introducción

2 Propuesta: LCS en recomendación

3 Experimentos

4 Conclusiones y trabajo futuro

Sistemas de recomendación

- -Filtrado colaborativo
- -Basado en contenido
- -Híbridos

• • •

Sistemas de recomendación

- -Filtrado colaborativo
- -Basado en contenido
- -Híbridos
- . . .

Objetivo: Recomendaciones Relevantes y Personalizadas

Objetivos de este TFM

Nueva similitud

Trabajar con el algoritmo de la subcadena común más larga para definir la similitud entre usuarios

Objetivos de este TFM

Nueva similitud

Trabajar con el algoritmo de la subcadena común más larga para definir la similitud entre usuarios

Generación de (sub) cadenas o secuencias

Investigar diferentes maneras de transformar a los usuarios en secuencias de artículos consumidos. Ver si es posible (y cómo) añadir información auxiliar para ser empleada en la generación de secuencias

Objetivos de este TFM

Nueva similitud

Trabajar con el algoritmo de la subcadena común más larga para definir la similitud entre usuarios

Generación de (sub) cadenas o secuencias

Investigar diferentes maneras de transformar a los usuarios en secuencias de artículos consumidos. Ver si es posible (y cómo) añadir información auxiliar para ser empleada en la generación de secuencias

Evaluación

Obtener resultados empíricos de evaluación de ranking, novedad y diversidad. Comparar estos nuevos recomendadores con otros conocidos en el área

Introducción

2 Propuesta: LCS en recomendación

3 Experimentos

4 Conclusiones y trabajo futuro

Preliminares: Longitud de la subcadena común más larga

```
1: procedure LCS(x, y)

    La LCS de x e y

        L[0\cdots m, 0\cdots n] \leftarrow 0
2:
        for i \leftarrow 1, m do
3:
            for i \leftarrow 1, n do
4.
                if x_i = y_i then
                                                            5:
                     L[i, i] \leftarrow L[i-1, i-1] + 1
6:
                else
 7:
                     L[i, i] \leftarrow \max(L[i, i-1], L[i-1, i])
 8:
                 end if
9:
            end for
10:
        end for
11:
        return L[m, n] \triangleright L[m, n] contiene la longitud de LCS entre x_1 \dots x_i
12:
    y y_1 \dots y_i
13: end procedure
```

$$L[i,j] = \begin{cases} 0 & \text{si } i=0 \text{ o } j=0\\ L[i-1,j-1]+1 & \text{si } i,j>0 \text{ y } X_i=Y_j\\ \max(L[i,j-1],L[i-1,j]) & \text{si } i,j>0 \text{ y } X_i\neq Y_j \end{cases}$$
(1)

$$L[i,j] = \begin{cases} 0 & \text{si } i=0 \text{ o } j=0\\ L[i-1,j-1]+1 & \text{si } i,j>0 \text{ y } X_i=Y_j\\ \max(L[i,j-1],L[i-1,j]) & \text{si } i,j>0 \text{ y } X_i\neq Y_j \end{cases}$$
(1)

	Ø	Α	G			Α	C
Ø	0	0	0	0	0	0	0
G							
C							
G							
Т							
G							
C							

$$L[i,j] = \begin{cases} 0 & \text{si } i=0 \text{ o } j=0\\ L[i-1,j-1]+1 & \text{si } i,j>0 \text{ y } X_i=Y_j\\ \max(L[i,j-1],L[i-1,j]) & \text{si } i,j>0 \text{ y } X_i\neq Y_j \end{cases}$$
(1)

	Ø	Α	G	G	Т	Α	C
Ø	0	0	0	0	0	0	0
G	0	0	1	1	1	1	1
C							
G							
Т							
G							
C							

$$L[i,j] = \begin{cases} 0 & \text{si } i=0 \text{ o } j=0\\ L[i-1,j-1]+1 & \text{si } i,j>0 \text{ y } X_i=Y_j\\ \max(L[i,j-1],L[i-1,j]) & \text{si } i,j>0 \text{ y } X_i\neq Y_j \end{cases}$$
(1)

	Ø	Α	G	G	Т	Α	C
Ø	0	0	0	0	0	0	0
G	0	0	1	1	1	1	1
C	0	0	1	1	1	1	2
G							
Т							
G							
C							

$$L[i,j] = \begin{cases} 0 & \text{si } i=0 \text{ o } j=0\\ L[i-1,j-1]+1 & \text{si } i,j>0 \text{ y } X_i=Y_j\\ \max(L[i,j-1],L[i-1,j]) & \text{si } i,j>0 \text{ y } X_i\neq Y_j \end{cases}$$
(1)

	Ø	Α	G	G	Т	Α	C
Ø	0	0	0	0	0	0	0
G	0	0	1	1	1	1	1
C	0	0	1	1	1	1	2
G	0	0	1	2	2	2	2
Т							
G							
C							

$$L[i,j] = \begin{cases} 0 & \text{si } i=0 \text{ o } j=0\\ L[i-1,j-1]+1 & \text{si } i,j>0 \text{ y } X_i=Y_j\\ \max(L[i,j-1],L[i-1,j]) & \text{si } i,j>0 \text{ y } X_i\neq Y_j \end{cases}$$
(1)

	Ø	Α	G	G	Т	Α	C
Ø	0	0	0	0	0	0	0
G	0	0	1	1	1	1	1
C	0	0	1	1	1	1	2
G	0	0	1	2	2	2	2
Т	0	0	1	2	3	3	3
G							
C							

$$L[i,j] = \begin{cases} 0 & \text{si i=0 o j=0} \\ L[i-1,j-1] + 1 & \text{si } i,j > 0 \text{ y } X_i = Y_j \\ \max(L[i,j-1], L[i-1,j]) & \text{si } i,j > 0 \text{ y } X_i \neq Y_j \end{cases}$$
(1)

	Ø	Α	G	G	Т	Α	C
Ø	0	0	0	0	0	0	0
G	0	0	1	1	1	1	1
C	0	0	1	1	1	1	2
G	0	0	1	2	2	2	2
Т	0	0	1	2	3	3	3
G	0	0	1	2	3	3	3
C							

$$L[i,j] = \begin{cases} 0 & \text{si } i=0 \text{ o } j=0\\ L[i-1,j-1]+1 & \text{si } i,j>0 \text{ y } X_i=Y_j\\ \max(L[i,j-1],L[i-1,j]) & \text{si } i,j>0 \text{ y } X_i\neq Y_j \end{cases}$$
(1)

	\emptyset	Α	G	G	Т	Α	C
Ø	0	0	0	0	0	0	0
G	0	0	1	1	1	1	1
C	0	0	1	1	1	1	2
G	0	0	1	2	2	2	2
Т	0	0	1	2	3	3	3
G	0	0	1	2	3	3	3
C	0	0	1	2	3	3	4

$$L[i,j] = \begin{cases} 0 & \text{si } i=0 \text{ o } j=0\\ L[i-1,j-1]+1 & \text{si } i,j>0 \text{ y } X_i=Y_j\\ \max(L[i,j-1],L[i-1,j]) & \text{si } i,j>0 \text{ y } X_i\neq Y_j \end{cases}$$
(1)

	Ø	Α	G	G	Т	Α	C
Ø	0	0	0	0	0	0	0
G	0	0	1	1	1	1	1
C	0	0	1	1	1	1	2
G	0	0	1	2	2	2	2
Т	0	0	1	2	3	3	3
G	0	0	1	2	3	3	3
C	0	0	1	2	3	3	4

$$L[i,j] = \begin{cases} 0 & \text{si } i=0 \text{ o } j=0\\ L[i-1,j-1]+1 & \text{si } i,j>0 \text{ y } X_i=Y_j\\ \max(L[i,j-1],L[i-1,j]) & \text{si } i,j>0 \text{ y } X_i\neq Y_j \end{cases}$$
(1)

	Ø	Α	G	G	Т	Α	C
Ø	0	0	0	0	0	0	0
G	0	0	1	1	1	1	1
C	0	0	1	1	1	1	2
G	0	0	1	2	2	2	2
Т	0	0	1	2	3	3	3
G	0	0	1	2	3	3	3
C	0	0	1	2	3	3	4

$$L[i,j] = \begin{cases} 0 & \text{si } i=0 \text{ o } j=0\\ L[i-1,j-1]+1 & \text{si } i,j>0 \text{ y } X_i=Y_j\\ \max(L[i,j-1],L[i-1,j]) & \text{si } i,j>0 \text{ y } X_i\neq Y_j \end{cases}$$
(1)

	Ø	Α	G	G	Т	Α	C
Ø	0	0	0	0	0	0	0
G	0	0	1	1	1	1	1
C	0	0	1	1	1	1	2
G	0	0	1	2	2	2	2
Т	0	0	1	2	3	3	3
G	0	0	1	2	3	3	3
C	0	0	1	2	3	3	4

$$L[i,j] = \begin{cases} 0 & \text{si } i=0 \text{ o } j=0\\ L[i-1,j-1]+1 & \text{si } i,j>0 \text{ y } X_i=Y_j\\ \max(L[i,j-1],L[i-1,j]) & \text{si } i,j>0 \text{ y } X_i\neq Y_j \end{cases}$$
(1)

	Ø	Α	G	G	Т	Α	C
Ø	0	0	0	0	0	0	0
G	0	0	1	1	1	1	1
C	0	0	1	1	1	1	2
G	0	0	1	2	2	2	2
Т	0	0	1	2	3	3	3
G	0	0	1	2	3	3	3
C	0	0	1	2	3	3	4

$$L[i,j] = \begin{cases} 0 & \text{si } i=0 \text{ o } j=0\\ L[i-1,j-1]+1 & \text{si } i,j>0 \text{ y } X_i=Y_j\\ \max(L[i,j-1],L[i-1,j]) & \text{si } i,j>0 \text{ y } X_i\neq Y_j \end{cases}$$
(1)

Utilizada para comparar similitudes entre dos cadenas de ADN

La subsecuencia puede no ser única

	Ø	Α	G	G	Т	Α	C
Ø	0	0	0	0	0	0	0
G	0	0	1	1	1	1	1
C	0	0	1	1	1	1	2
G	0	0	1	2	2	2	2
Т	0	0	1	2	3	3	3
G	0	0	1	2	3	3	3
C	0	0	1	2	3	3	4

Propuesta: LCS en recomendación

Hipótesis

El algoritmo de LCS puede emplearse como medida de similitud entre usuarios y ser incluido en un sistema de recomendación de filtrado colaborativo basado en vecinos (k - NN)

Propuesta: LCS en recomendación

Hipótesis

El algoritmo de LCS puede emplearse como medida de similitud entre usuarios y ser incluido en un sistema de recomendación de filtrado colaborativo basado en vecinos (k-NN)

Filtrado colaborativo basado en vecinos

$$\hat{r}_{ui} \approx \frac{\sum_{v \in \mathcal{N}_i(u)} r_{vi} w_{uv}}{\sum_{v \in \mathcal{N}_i(u)} |w_{uv}|} \approx \sum_{v \in \mathcal{N}_i(u)} r_{vi} w_{uv}$$
 (2)

Hipótesis

El algoritmo de LCS puede emplearse como medida de similitud entre usuarios y ser incluido en un sistema de recomendación de filtrado colaborativo basado en vecinos (k-NN)

Filtrado colaborativo basado en vecinos

$$\hat{r}_{ui} \approx \frac{\sum_{v \in \mathcal{N}_i(u)} r_{vi} w_{uv}}{\sum_{v \in \mathcal{N}_i(u)} |w_{uv}|} \approx \sum_{v \in \mathcal{N}_i(u)} r_{vi} \left[w_{uv} \right]$$
 (2)

 El objetivo es sustituir el peso de los vecinos por el valor de LCS obtenido al comparar las secuencias del usuario u y v:

$$w_{uv} = LCS(u, v)$$

Generación de secuencias

Definir un método genérico para obtener secuencias a partir de los datos del usuario

Generación de secuencias

Definir un método genérico para obtener secuencias a partir de los datos del usuario

Generación de secuencias

Definir un método genérico para obtener secuencias a partir de los datos del usuario

Analizar otras adaptaciones del algoritmo

Aprovechar sesgos del usuario

Generación de secuencias

Definir un método genérico para obtener secuencias a partir de los datos del usuario

- Aprovechar sesgos del usuario
- Favorecer los artículos más relevantes de cada usuario

Generación de secuencias

Definir un método genérico para obtener secuencias a partir de los datos del usuario

- Aprovechar sesgos del usuario
- Favorecer los artículos más relevantes de cada usuario
- Considerar la confianza de los vecinos

Generación de secuencias

Definir un método genérico para obtener secuencias a partir de los datos del usuario

- Aprovechar sesgos del usuario
- Favorecer los artículos más relevantes de cada usuario
- Considerar la confianza de los vecinos
- Normalizar en el intervalo [0,1], al igual que en otras métricas conocidas como la correlación de Pearson o la similitud coseno

Propuesta: LCS en recomendación. Algoritmo

```
1: procedure LCS_RecSys(u, v, f, \delta) \triangleright La LCS de u y v aplicando la
    transformación f
        (x,y) \leftarrow |(f(u),f(v))|
                                               L[0\cdots m, \overline{0\cdots n}] \leftarrow 0
 3:
      for i \leftarrow 1, m do
 4:
             for j \leftarrow 1, n do
 5:
                 if [match(x_i, y_j, \delta)] then \triangleright Hay una coincidencia \le \delta
 6:
                      \frac{\overline{L[i,j]} \leftarrow L[i-1,j-1] + 1}{L[i,j]}
 7:
 8:
                 else
                      L[i, j] \leftarrow \max(L[i, j-1], L[i-1, i])
 9:
                 end if
10:
             end for
11:
        end for
12:
13:
         return L[m, n]
14: end procedure
```

Propuesta: LCS en recomendación. Formulación y ejemplo

Película	Rating	g Fecha Géneros	
Star Wars IV (id 1)	4	24/6/2017 Aventura (id 1), Sci-Fi (id 4)	
Alien (id 8)	2	26/6/2017 Sci-Fi (id 4), Terror (id 5)	
Blade Runner (id 16) 5	25/6/2017 Acción (id 2), Sci-Fi (id 4) Thiller (id 6)	

Función f como combinación de tres funciones

$$f = s \circ t \circ e$$

- e: Extensión de la información
- t: Transformación a símbolos interpretables por LCS
- s: Ordenación

Película	Rating	Fecha	Géneros
Star Wars IV (id 1)	4	24/6/2017	Aventura (id 1), Sci-Fi (id 4)
Alien (id 8)	2	26/6/2017	Sci-Fi (id 4), Terror (id 5)
Blade Runner (id 16)	5	25/6/2017	Acción (id 2), Sci-Fi (id 4) Thiller (id 6)

Extensión de la información

A cada ítem se le asocia un conjunto de tuplas de elementos asociables a dicho artículo $e: \mathcal{I} \times \mathcal{R} \to \mathcal{I} \times \mathcal{T}^k$

Película	Rating	Fecha	Géneros
Star Wars IV (id 1)	4	24/6/2017	Aventura (id 1), Sci-Fi (id 4)
Alien (id 8)	2	26/6/2017	Sci-Fi (id 4), Terror (id 5)
Blade Runner (id 16)	5	25/6/2017	Acción (id 2), Sci-Fi (id 4) Thiller (id 6)

Extensión de la información

A cada ítem se le asocia un conjunto de tuplas de elementos asociables a dicho artículo $e: \mathcal{I} \times \mathcal{R} \to \mathcal{I} \times \mathcal{T}^k$

Extensión de la información. Géneros: $e_{gr}(i,r) = (i, \{G_j(i), r\}_j)$

(Star Wars, {{Aventura, 4}, {Sci-Fi, 4} }) (Alien, {{Sci-Fi, 2}, {Terror, 2} }) (Blade rupper, {{Acción, 5}, {Sci, Fi, 5}, {

(Blade runner, $\{\{Acción, 5\}, \{Sci-Fi, 5\}, \{Thriller, 5\}\}$)

Película	Rating	Fecha	Géneros
Star Wars IV (id 1)	4	24/6/2017	Aventura (id 1), Sci-Fi (id 4)
Alien (id 8)	2	26/6/2017	Sci-Fi (id 4), Terror (id 5)
Blade Runner (id 16)	5	25/6/2017	Acción (id 2), Sci-Fi (id 4) Thiller (id 6)

Símbolos interpretables por LCS

Trasformación de dichas tuplas en símbolos más manejables

$$t: \mathcal{I} \times \mathcal{T}^k \to \mathcal{I} \times \mathbb{Z}^k$$

Película	Rating	g Fecha Géneros	
Star Wars IV (id 1)	4	\parallel 24/6/2017 \parallel Aventura (id 1), Sci-Fi (id 4)	
Alien (id 8)	2	\parallel 26/6/2017 \parallel Sci-Fi (id 4), Terror (id 5)	
Blade Runner (id 16)) 5	25/6/2017 Acción (id 2), Sci-Fi (id 4) Thiller (id 6)	

Símbolos interpretables por LCS

Trasformación de dichas tuplas en símbolos más manejables $t: \mathcal{I} \times \mathcal{T}^k \to \mathcal{I} \times \mathbb{Z}^k$

Símbolos interpretables para LCS. $t_{gr}(g,r) = 10 \cdot id(g) + r$

(Star Wars, {14,44}) (Alien, {42,52}) (Blade runner, {25,45,65})

Película	Rating	g Fecha Géneros	
Star Wars IV (id 1)	4	\parallel 24/6/2017 \parallel Aventura (id 1), Sci-Fi (id 4	.)
Alien (id 8)	2	26/6/2017 Sci-Fi (id 4), Terror (id 5)	
Blade Runner (id 16) 5	25/6/2017 Acción (id 2), Sci-Fi (id 4) Thiller (id 6)	

Ordenación de secuencias

$$s(\{i_j,(n_{jk})_k\}_j)=((n_{jk})_k)_{j=1}^{|\mathcal{I}|}$$

Película	Rating	Fecha	Géneros
Star Wars IV (id 1)	4	24/6/2017	Aventura (id 1), Sci-Fi (id 4)
Alien (id 8)	2	26/6/2017	Sci-Fi (id 4), Terror (id 5)
Blade Runner (id 16)	5	25/6/2017	Acción (id 2), Sci-Fi (id 4) Thiller (id 6)

Ordenación de secuencias

$$s(\{i_j,(n_{jk})_k\}_j)=((n_{jk})_k)_{j=1}^{|\mathcal{I}|}$$

Representación final. Ordenación por ids y temporal

Id
$$(s_i) = (14,44,42,52,25,45,65)$$

Temporal $(s_T) = (14,44,25,45,65,42,52)$

Muchas funciones de similitud están acotadas entre [-1,1] o [0,1]. Para conseguir esto con LCS, se pueden emplear las siguientes:

$$sim_1^{f,\delta}(u,v) = LCS_RecSys(u,v,f,\delta)$$
 (3.1)

$$\sin_2^{f,\delta}(u,v) = \frac{\sin_1^{f,\delta}(u,v)^2}{|f(u)| \cdot |f(v)|}$$
(3.2)

$$\sin_3^{f,\delta}(u,v) = \frac{2 \cdot \sin_1^{f,\delta}(u,v)}{|f(u)| + |f(v)|}$$
(3.3)

$$\sin_{4}^{f,\delta}(u,v) = \frac{\sin_{1}^{f,\delta}(u,v)}{\max(|f(u)|,|f(v)|)}$$
(3.4)

$$\sin_5^{f,\delta}(u,v) = \frac{\sin_1^{f,\delta}(u,v)}{\min(|f(u)|,|f(v)|)}$$
(3.5)

LCS en recomendación. Configuraciones

Configuración	Notación	n Descripción	Efecto
Generación de secuencias		Generación de distintas secuencias empleando información de contenido o colaborativa	Obtención de recomendadores híbridos o puramente colaborativos
Preferencia	γ	$ \begin{array}{c c} & \text{Considera s\'olo los art\'aculos que} \\ & \text{han sido votado con una una} \\ & \text{nota} \geq \gamma \end{array} $	Reducción del coste computa- cional Reducción de cobertura
Confianza	τ	Sólo considera los vecinos que superan un determinado valor de similitud	Calidad de los vecinos aumentada Reducción de cobertura
Umbral	δ	Dos artículos son iguales si han sido puntuados con una diferencia menor o igual que el valor de dicho umbral	Calidad de los vecinos decrementada Aumento de la cobertura
Normalizaciones	sim _x	Acotar la escala de las simili- tudes	Similitud en el intervalo [0,1]

Introducción

2 Propuesta: LCS en recomendación

- 3 Experimentos
- 4 Conclusiones y trabajo futuro

Metodología: métricas

Evaluación de ranking

Objetivo: Devolver una lista de artículos relevantes al usuario

Métricas: Precision, Recall, MAP y nDCG

Valores más cercanos a 1, mejores

Metodología: métricas

Evaluación de ranking

Objetivo: Devolver una lista de artículos relevantes al usuario

Métricas: Precision, Recall, MAP y nDCG Valores más cercanos a 1, mejores

Novedad

Objetivo: Recomendar al usuario artículos que no está acostumbrado a consumir

Métricas: EPC y EPD

Valores más cercanos a 1, mejores

Metodología: métricas

Evaluación de ranking

Objetivo: Devolver una lista de artículos relevantes al usuario

Métricas: Precision, Recall, MAP y nDCG Valores más cercanos a 1, mejores

Novedad

Objetivo: Recomendar al usuario artículos que no está acostumbrado a consumir

Métricas: EPC y EPD

Valores más cercanos a 1, mejores

Diversidad

Objetivo: Recomendar al usuario artículos distintos entre ellos

Métricas: EILD, Gini, Aggregate Diversity y α -nDCG

Valores más altos, mejores

- Sólo se consideran los primeros 5 artículos devueltos (cutoff @5)
- Relevantes aquellos artículos que han sido puntuados con ≥ 5

Metodología: frameworks y configuraciones

RiVal Mahout RankSys

The state of the state

- RiVal para evaluación de ránking. RankSys para evaluación de novedad y diversidad
- RankSys para programar recomendadores
- Mahout descartado por bajos resultados

Dataset	Usuarios	Artículos	Ratings	Densidad					
MovielensHetRec	2.113	10.197	855.598	3,97%					
*LastFm	1.892	17.632	92.834	0,28%					
MovieTweetings	45.324	26.087	541.304	0,045%					
* $ ilde{r}_{ui} \sim \left[5 \cdot rac{\mathcal{F}_{ui}}{max\mathcal{F}_{u}} ight]$									

- MovielensHetRec y Lastfm validación cruzada con 5 folds
- MovieTweetings split temporal

Resultados: efectos de umbral y distintas secuencias (MovielensHetRec)

Configuración	Notación	Descripción	Efecto
Generación de secuencias		Generación de distintas secuencias empleando información de contenido o colaborativa	Obtención de recomendadores híbridos o puramente colabora- tivos
Preferencia	γ		Reducción del coste computa- cional Reducción de cobertura
Confianza	τ	Sólo considera los vecinos que superan un determinado valor de similitud	Calidad de los vecinos aumen- tada Reducción de cobertura
Umbral	δ	Dos artículos son iguales si han sido puntuados con una diferencia menor o igual que el valor de dicho umbral	Calidad de los vecinos decre- mentada Aumento de la cobertura
Normalizaciones	sim_x	Acotar la escala de las simili- tudes	Similitud en el intervalo [0,1]

Secuencias basadas en géneros obtienen un rendimiento peor

Resultados: efecto de normalizaciones (MovielensHetRec)

Configuración	Notación	Descripción	Efecto
Generación de secuencias		Generación de distintas secuencias empleando información de contenido o colaborativa	Obtención de recomendadores híbridos o puramente colabora- tivos
Preferencia	γ	$ \begin{array}{c c} \textbf{Considera sólo los artículos que} \\ \textbf{han sido votado con una una} \\ \textbf{nota} \geq \gamma \end{array} $	Reducción del coste computa- cional Reducción de cobertura
Confianza	τ	Sólo considera los vecinos que superan un determinado valor de similitud	Calidad de los vecinos aumen- tada Reducción de cobertura
Umbral	δ	Dos artículos son iguales si han sido puntuados con una difer- encia menor o igual que el valor de dicho umbral	Calidad de los vecinos decre- mentada Aumento de la cobertura
Normalizaciones	sim _x	Acotar la escala de las simili- tudes	Similitud en el intervalo [0,1]

Resultados: efecto de normalizaciones (MovielensHetRec)

Normalizaciones permiten incrementar el valor de nDCG

Resultados: efecto de las mejores combinaciones (MovielensHetRec)

Configuración	Notación	Descripción	Efecto
Generación de secuencias		Generación de distintas secuencias empleando información de contenido o colaborativa	Obtención de recomendadores híbridos o puramente colabora- tivos
Preferencia	γ	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Reducción del coste computa- cional Reducción de cobertura
Confianza	τ	Sólo considera los vecinos que superan un determinado valor de similitud	Calidad de los vecinos aumen- tada Reducción de cobertura
Umbral	δ	Dos artículos son iguales si han sido puntuados con una difer- encia menor o igual que el valor de dicho umbral	Calidad de los vecinos decre- mentada Aumento de la cobertura
Normalizaciones	sim _x	Acotar la escala de las simili- tudes	Similitud en el intervalo [0,1]

Combinación de parámetros: mejores soluciones en términos de ranking-evaluation

Combinación de parámetros: mejores resultados con $\delta=10$

Mejor recomendador: MF LCS altamente competitivo (comparación con UB)

Recommender	nDCG	Р	R	MAP	EPC	EPD	AD	$\alpha\text{-nDCG}$	EILD	Gini
Pop	0.160	0.105	0.112	0.069	0.444	0.741	7.66%	0.123	0.700	0.002
UB1	0.233	0.152	0.161	0.106	0.484	0.723	12.94%	0.177	0.682	0.003
UB2	0.235	0.153	0.161	0.107	0.490	0.722	12.94%	0.177	0.678	0.004
IB1	0.162	0.109	0.116	0.069	0.521	0.712	65.03%	0.132	0.660	0.004
IB2	0.179	0.119	0.126	0.077	0.508	0.710	67.04%	0.145	0.672	0.004
MF	0.271	0.176	0.200	0.133	0.635	0.694	36.50%	0.207	0.626	0.025
PureCB	0.010	0.007	0.010	0.005	0.853	0.739	53.69%	0.028	0.658	0.020
CBCF	0.254	0.165	0.180	0.120	0.504	0.722	13.06%	0.192	0.666	0.004
BestLCS	0.246	0.179	0.152	0.101	0.406	0.571	25.88%	0.150	0.538	0.005

 $\mathsf{BestLCS} = (\mathsf{sim}_2, \mathit{f}_{\mathit{dr}}, 10, 30, \bar{\mathit{u}})$

Resultados: efecto de ordenaciones y normalizaciones (MovieTweetings)

Configuración	Notación	Descripción	Efecto
Generación de secuencias		Generación de distintas secuencias empleando información de contenido o colaborativa	Obtención de recomendadores híbridos o puramente colabora- tivos
Preferencia	γ	$ \begin{array}{c c} \textbf{Considera sólo los artículos que} \\ \textbf{han sido votado con una una} \\ \textbf{nota} \geq \gamma \end{array} $	Reducción del coste computa- cional Reducción de cobertura
Confianza	au	Sólo considera los vecinos que superan un determinado valor de similitud	Calidad de los vecinos aumen- tada Reducción de cobertura
Umbral	$\bigg\ \qquad \delta$	Dos artículos son iguales si han sido puntuados con una diferencia menor o igual que el valor de dicho umbral	Calidad de los vecinos decre- mentada Aumento de la cobertura
Normalizaciones	sim _x	Acotar la escala de las simili- tudes	Similitud en el intervalo [0,1]

Ordenación temporal (s_T) no produce ventajas respecto a la de id (s_i) Resultados muy bajos en comparación con otros datasets

Resultados: comparación con otros predictores base (MovieTweetings)

MC: mejor recomendador temporal. Fossil no obtiene buenos resultados. LCS sigue siendo competitivo en sparse datasets

Recommender	nDCG	Р	R	MAP	EPC	EPD	AD	$\alpha\text{-nDCG}$	EILD	Gini
Pop	0.003	0.006	0.003	0.001	0.938	0.393	1.84%	0.006	0.751	0.000
UB1	0.011	0.016	0.006	0.003	0.459	0.330	39.05%	0.008	0.305	0.007
UB2	0.010	0.015	0.006	0.003	0.463	0.333	35.07%	0.008	0.311	0.007
IB1	0.009	0.015	0.006	0.003	0.484	0.331	61.10%	0.007	0.299	0.015
IB2	0.009	0.016	0.006	0.003	0.484	0.334	43.68%	0.008	0.311	0.020
MF	0.006	0.009	0.004	0.002	0.986	0.329	11.76%	0.009	0.517	0.003
Fossil	0.008	0.012	0.004	0.002	0.425	0.324	14.08%	0.005	0.327	0.001
MC	0.013	0.021	0.008	0.004	0.428	0.323	26.61%	0.011	0.312	0.002
$(sim_2, f_{ir}, 10, s_i)$	0.011	0.016	0.007	0.004	0.462	0.332	40.02%	0.008	0.310	0.008

Introducción

- 2 Propuesta: LCS en recomendación
- 3 Experimentos

4 Conclusiones y trabajo futuro

• El algoritmo LCS es competitivo frente a otras similitudes

- It algoritmo LCS es competitivo frente a otras similitudes
- El algoritmo LCS es altamente adaptable y configurable

- El algoritmo LCS es competitivo frente a otras similitudes
- El algoritmo LCS es altamente adaptable y configurable
- Las normalizaciones resultan imprescindibles para mejorar el rendimiento del algoritmo LCS

- It algoritmo LCS es competitivo frente a otras similitudes
- El algoritmo LCS es altamente adaptable y configurable
- Las normalizaciones resultan imprescindibles para mejorar el rendimiento del algoritmo LCS
- Las secuencias que emplean géneros han obtenido unos resultados peores que las puramente colaborativas

- El algoritmo LCS es competitivo frente a otras similitudes
- El algoritmo LCS es altamente adaptable y configurable
- Las normalizaciones resultan imprescindibles para mejorar el rendimiento del algoritmo LCS
- Las secuencias que emplean géneros han obtenido unos resultados peores que las puramente colaborativas
- Su La ordenación secuencial a priori no parece tener ventajas frente a la ordenación por id. No obstante, este resultado al ser contraintuitivo, debe confirmarse con más experimentos

Trabajo futuro

Más características

Ver si es posible emplear datos demográficos u otras características para generar recomendadores basados en LCS

Trabajo futuro

Más características

Ver si es posible emplear datos demográficos u otras características para generar recomendadores basados en LCS

Variaciones de LCS

En lugar de sumar siempre el mismo valor si pasa de un cierto threshold, se podría modificar el algoritmo para que tenga en cuenta los ratings de forma distinta

Trabajo futuro

Más características

Ver si es posible emplear datos demográficos u otras características para generar recomendadores basados en LCS

Variaciones de LCS

En lugar de sumar siempre el mismo valor si pasa de un cierto threshold, se podría modificar el algoritmo para que tenga en cuenta los ratings de forma distinta

Reformulación de los k-NN

Tener en cuenta la última interacción entre los vecinos para recomendar artículos cercanos a ella. Consideramos que el algoritmo de LCS puede aplicarse para esta nueva aproximación empleándose también como medida de similitud

Gracias por vuestra atención

El uso de threshold en este caso mejora los resultados

$$--- (\operatorname{\mathsf{sim}}_1, f, \delta = 0) ---- (\operatorname{\mathsf{sim}}_1, f, \delta = 10)$$

Preferencia y confianza aumentan el rendimiento

Pero reducen cobertura

Recommender	Coverage
$(f_{ir},0,3,\overline{u})$	1.587, 6
$(f_{ir},0,5,\overline{u})$	700, 6
$(f_{ir}, 10, 3, \overline{u})$	1.771, 0
$(f_{ir}, 10, 5, \overline{u})$	1.243, 2

Resultados para Lastfm. Baselines

Incluso en versiones puramente colaborativas LCS es un recomendador competitivo

Recommender	nDCG	Р	R	MAP	EPC	EPD	AD	lpha-nDCG	EILD	Gini
Pop	0.082	0.040	0.093	0.060	0.792	0.922	1.35%	0.064	0.933	0.000
UB1	0.223	0.106	0.246	0.172	0.883	0.895	53.60%	0.191	0.896	0.006
UB2	0.222	0.106	0.245	0.171	0.883	0.895	52.70%	0.191	0.896	0.005
IB1	0.211	0.101	0.235	0.162	0.913	0.732	81.93%	0.171	0.721	0.027
IB2	0.214	0.100	0.231	0.167	0.912	0.694	86.81%	0.175	0.681	0.034
MF	0.261	0.123	0.288	0.203	0.925	0.870	26.77%	0.223	0.874	0.014
$(sim_1, f_{ir}, 0)$	0.199	0.094	0.219	0.154	0.866	0.906	49.72%	0.171	0.906	0.004
$(sim_2, f_{ir}, 0)$	0.204	0.096	0.223	0.157	0.868	0.900	56.99%	0.174	0.899	0.004
$(sim_1, f_{ir}, 10)$	0.215	0.102	0.237	0.166	0.873	0.901	47.90%	0.186	0.902	0.004
$(sim_2, f_{ir}, 10)$	0.222	0.106	0.245	0.171	0.879	0.887	59.22%	0.190	0.887	0.006

Géneros son demasiado amplios

- Godzilla: Acción, Sci-Fi, Thriller
- Alien: Acción, Horror, Sci-Fi, Thriller
- Soy leyenda: Acción, Horror, Sci-Fi, Thriller

Todos estos artículos contienen prácticamente los mismos géneros, dando lugar a secuencias prácticamente iguales.

Pearson en LCS

```
1: procedure LCS_RecSys2(u, v, f, \delta, \vec{r_u}, \vec{r_v})
                                                                                \triangleright La LCS de los usuarios u \lor v aplicando la
       transformación f, usando sus ratings \vec{r}_u y \vec{r}_v
 2:
            (x,y) \leftarrow (f(u),f(v))
                                                                                             \triangleright La cadena x contiene m símbolos
          (m_{ii}, m_{ii}) \leftarrow (\text{avg}(\vec{r}_{ii}), \text{avg}(\vec{r}_{ii}))
                                                                                                                 ▶ Media de los ratings
 4:
         L[0\cdots m,0\cdots n]\leftarrow 0
 5:
        (s, s_{\mu}, s_{\nu}) \leftarrow 0
 6:
       for i \leftarrow 1, m do
 7:
                  for j \leftarrow 1, n do
 8:
                        (t_{\prime\prime},t_{\prime\prime})\leftarrow 0
 9:
                       if match(x_i, y_i, \delta) then
10:
                             L[i,j] \leftarrow L[i-1,j-1] + 1
                                                                                                              \triangleright Hay una concidencia-\delta
11:
                             t_{ii} \leftarrow r_{ii} - m_{ii}
12:
                             t_v \leftarrow r_{vi} - m_v
13:
                       else
14:
                             L[i, j] \leftarrow \max(L[i, j-1], L[i-1, j])
15:
                       end if
16:
                       s \leftarrow s + t_{ii} \cdot t_{v}
17:
                       s_{ii} \leftarrow s_{ii} + t_{ii} \cdot t_{ii}
18:
                       s_v \leftarrow s_v + t_v \cdot t_v
19:
                  end for
20:
            end for
21:
             return s/\sqrt{s_{II} \cdot s_{V}}
22: end procedure
```

Resultados para MovieTweetings. Backward-Forward. Baselines.

Recommender	nDCG	Р	R	MAP	EPC	EPD	AD	lpha-nDCG	EILD	Gini
Pop	0.003	0.006	0.003	0.001	0.938	0.393	1.84%	0.006	0.751	0.000
UB1	0.011	0.016	0.006	0.003	0.459	0.330	39.05%	0.008	0.305	0.007
UB2	0.010	0.015	0.006	0.003	0.463	0.333	35.07%	0.008	0.311	0.007
IB1	0.009	0.015	0.006	0.003	0.484	0.331	61.10%	0.007	0.299	0.015
IB2	0.009	0.016	0.006	0.003	0.484	0.334	43.68%	0.008	0.311	0.020
MF	0.006	0.009	0.004	0.002	0.986	0.329	11.76%	0.009	0.517	0.003
Fossil	0.008	0.012	0.004	0.002	0.425	0.324	14.08%	0.005	0.327	0.001
MC	0.013	0.021	0.008	0.004	0.428	0.323	26.61%	0.011	0.312	0.002
$(sim_2, f_{ir}, 20, s_T)$	0.031	0.058	0.021	0.011	0.484	0.353	30.55%	0.031	0.288	0.002
$(\operatorname{sim}_2, f_{ir}, 10, s_T)$	0.030	0.058	0.020	0.011	0.483	0.352	32.25%	0.029	0.286	0.002

	Test	:	Recommendation			
User	Item	Rating	User	Item	Score	
175	2	5	175	7	5	
175	20	4	175	2	4,5	
190	36	5	175	10	4	
190	47	4	190	36	5	
190	6	5	190	10	4,8	
267	2	5	190	47	4	
267	7	5	267	2	5	
267	36	3	267	11	4	
			267	10	3	

Precision

$$Precision = \frac{|Relevant \cap Retrieved|}{|Retrieved|} = \frac{\frac{1}{3} + \frac{2}{3} + \frac{1}{3}}{3} = 0,4444 \tag{3}$$

	Test	:	Recommendation			
User	Item	Rating	User	Item	Score	
175	2	5	175	7	5	
175	20	4	175	2	4,5	
190	36	5	175	10	4	
190	47	4	190	36	5	
190	6	5	190	10	4,8	
267	2	5	190	47	4	
267	7	5	267	2	5	
267	36	3	267	11	4	
			267	10	3	

Recall

$$\mathsf{RecalI} = \frac{|\mathsf{Relevant} \cap \mathsf{Retrieved}|}{|\mathsf{Relevant}|} = \frac{\frac{1}{2} + \frac{2}{3} + \frac{1}{3}}{3} = 0,5 \tag{3}$$

	Test		Recommendation			
User	Item	Rating	User	Item	Score	
175	2	5	175	7	5	
175	20	4	175	2	4,5	
190	36	5	175	10	4	
190	47	4	190	36	5	
190	6	5	190	10	4,8	
267	2	5	190	47	4	
267	7	5	267	2	5	
267	36	3	267	11	4	
			267	10	3	

MAP

$$AP = \frac{1}{|Relevant|} \sum_{\{k: d_k \in Relevant\}} P@k = \frac{\frac{\frac{1}{2}}{2} + \frac{1 + \frac{2}{3}}{3} + \frac{1}{3}}{3} = 0,3796$$
 (3)

	Test	:	Recommendation			
User	Item	Rating	User	Item	Score	
175	2	5	175	7	5	
175	20	4	175	2	4,5	
190	36	5	175	10	4	
190	47	4	190	36	5	
190	6	5	190	10	4,8	
267	2	5	190	47	4	
267	7	5	267	2	5	
267	36	3	267	11	4	
			267	10	3	

NDCG

DCG@
$$p = \sum_{i=1}^{p} \frac{2^{rel_i} - 1}{\log_2(i+1)} = \frac{\frac{31}{31 + 19,55 + 3.5} + \frac{31 + 7.5}{31 + 19,55 + 7.5} + \frac{19.55}{31 + 9.46}}{3} = 0,573$$
 (3)