Non-context-free language

Lin Chen

Email: Lin.Chen@ttu.edu

- A parse tree is a graphical representation of a derivation
 - Example:

$$S \to AB$$

$$A \to aA|e$$

$$B \to bB|e$$

- A parse tree is a graphical representation of a derivation
 - The root of a parse tree is the start symbol $\mathcal S$
 - A leaf of a parse tree is a terminal
 - The leaves of a parse tree, from left to right, form the string

- Consider a parse tree of a long enough string
 - some of the rule is reused

- Consider a parse tree of a long enough string
 - some of the rule is reused

$$V = \{S, (,)\},$$

 $\Sigma = \{(,)\},$
 $R = \{S \rightarrow e,$
 $S \rightarrow SS,$
 $S \rightarrow (S)\}.$

$$D_1 = S \Rightarrow SS \Rightarrow (S)S \Rightarrow ((S))S \Rightarrow (())S \Rightarrow (())(S) \Rightarrow (())($$

- Consider a parse tree of a long enough string
 - some of the rule is reused
 - If $A \to \cdots \to vAy$, then $A \to \cdots \to vAy \to \cdots \to vvAyy$

Pumping lemma for context-free languages If A is a context-free language, then there is a number p (the pumping length) where, if s is any string in A of length at least p, then s may be divided into five pieces s = uvxyz satisfying the conditions

- **1.** for each $i \ge 0$, $uv^i x y^i z \in A$,
- **2.** |vy| > 0, and
- **3.** $|vxy| \le p$.

Use Pumping theorem to show the followings are not context-free:

- a). $\{a^nb^nc^n : n \ge 0\}$
- b). $\{a^p : p \text{ is prime}\}$
- c). $\{a^{n^2}: n \ge 0\}$
- d). $\{a^nb^na^nb^n: n \ge 0\}$
- d). $\{ww: w \in \{a, b\}^*\}$
- e). $\{a^nba^{2n}ba^{3n}b: n \ge 0\}$
- f). $\{w_1 # w_2 : w_1, w_2 \in \{a, b\}^*, w_1 \text{ is a substring of } w_2\}$

$\{a^nb^nc^n:n\geq 0\}$

- a). Suppose on the contrary that $L = \{a^n b^n c^n : n \ge 0\}$ is CFG, then there exists some sufficiently large number N, for any $n \ge N$, we have $a^n b^n c^n = uvxyz$ such that |vy| > 0, $|vxy| \le N$, and $uv^i xy^i z \in L$ for any $i \ge 0$.
- Pick n=N and consider $a^Nb^Nc^N=uvxyz$. $|vxy|\leq N$, so there are 5 different possibilities.
- i). $vxy = a \cdots a$, or $b \cdots b$, or $c \cdots c$, i.e., it only consists one symbol
- ii). $vxy = a \cdots ab \cdots b$ or $vxy = b \cdots bc \cdots c$, i.e., vxy contains both a, b or b, c.

$\{a^nb^nc^n: n \ge 0\}$

- a). Suppose on the contrary that $L=\{a^nb^nc^n:n\geq 0\}$ is CFG, then there exists some sufficiently large number N, for any $n\geq N$, we have $a^nb^nc^n=uvxyz$ such that |vy|>0, $|vxy|\leq N$, and $uv^ixy^iz\in L$ for any $i\geq 0$.
- Pick n = N and consider $a^N b^N c^N = uvxyz$. $|vxy| \le N$, so there are 5 different possibilities.
- i). $vxy = a \cdots a$, or $b \cdots b$, or $c \cdots c$, i.e., it only consists one symbol
- We show the case of $vxy = a \cdots a$, the other two cases are the same. Since |vy| > 0, we know v^2xy^2 contains exactly |vy| more a's than vxy. That is, uv^2xy^2z will contain N + |vy| > N copies of a, i.e., $uv^2xy^2z = a^{N+|vy|}b^Nc^N \notin L$, contradicting that $uv^ixy^iz \in L$ for any $i \ge 0$.
- ii). $vxy = a \cdots ab \cdots b$ or $vxy = b \cdots bc \cdots c$, i.e., vxy contains both a, b or b, c.
- We show that case of $vxy = a \cdots ab \cdots b$, the other case is the same. Since |vy| > 0, we assume $vy = a^{\alpha}b^{\beta}$ for some $\alpha, \beta \geq 0$ and $\alpha + \beta > 0$. Now we have uv^2xy^2z contains $N + \alpha$ copies of a's, $N + \beta$ copies of b's and N copies of c's, which is not in L, contradicting that $uv^ixy^iz \in L$ for any $i \geq 0$
- (Note that since $|vxy| \le N$, it is impossible for vxy to contain all a, b, c. Thus we have exhausted all the possibilities.)

- Regular language is closed under
 - Union
 - Concatenation
 - Kleene star
 - Complementation
 - Intersection

- Context-free language is closed under
 - Union
 - Concatenation
 - Kleene star
- Context-free language is not closed under
 - Complementation
 - Intersection

- Context-free language is closed under
 - Union

Union. Let S be a new symbol and let $G = (V_1 \cup V_2 \cup \{S\}, \Sigma_1 \cup \Sigma_2, R, S)$, where $R = R_1 \cup R_2 \cup \{S \to S_1, S \to S_2\}$. Then we claim that $L(G) = L(G_1) \cup L(G_2)$. For the only rules involving S are $S \to S_1$ and $S \to S_2$, so $S \Rightarrow_G^* w$ if and only if either $S_1 \Rightarrow_G^* w$ or $S_2 \Rightarrow_G^* w$; and since G_1 and G_2 have disjoint sets of nonterminals, the last disjunction is equivalent to saying that $w \in L(G_1) \cup L(G_2)$.

- Context-free language is closed under
 - Concatenation

Concatenation. The construction is similar: $L(G_1)L(G_2)$ is generated by the grammar

$$G = (V_1 \cup V_2 \cup \{S\}, \Sigma_1 \cup \Sigma_2, R_1 \cup R_2 \cup \{S \rightarrow S_1 S_2\}, S).$$

- Context-free language is closed under
 - Kleene star

Kleene Star. $L(G_1)^*$ is generated by

$$G = (V_1 \cup \{S\}, \Sigma_1, R_1 \cup \{S \rightarrow e, S \rightarrow SS_1\}, S).$$

 The intersection of context-free language and regular language is context-free.

Proof: If L is a context-free language and R is a regular language, then $L = L(M_1)$ for some pushdown automaton $M_1 = (K_1, \Sigma, \Gamma_1, \Delta_1, s_1, F_1)$, and $R = L(M_2)$ for some deterministic finite automaton $M_2 = (K_2, \Sigma, \delta, s_2, F_2)$. The idea is to combine these machines into a single pushdown automaton M that carries out computations by M_1 and M_2 in parallel and accepts only if both would have accepted. Specifically, let $M = (K, \Sigma, \Gamma, \Delta, s, F)$, where

```
K=K_1\times K_2, the Cartesian product of the state sets of M_1 and M_2; \Gamma=\Gamma_1; s=(s_1,s_2); F=F_1\times F_2, and
```

 Δ , the transition relation, is defined as follows. For each transition of the pushdown automaton $((q_1,a,\beta),(p_1,\gamma))\in \Delta_1$, and for each state $q_2\in K_2$, we add to Δ the transition $(((q_1,q_2),a,\beta),((p_1,\delta(q_2,a)),\gamma))$; and for each transition of the form $((q_1,e,\beta),(p_1,\gamma))\in \Delta_1$ and each state $q_2\in K_2$, we add to Δ the transition $(((q_1,q_2),e,\beta),((p_1,q_2),\gamma))$. That is, M passes from state (q_1,q_2) to state (p_1,p_2) in the same way that M_1 passes from state q_1 to p_1 , except that in addition M keeps track of the change in the state of M_2 caused by reading the same input.