Universidade de São Paulo Escola de Artes, Ciências e Humanidades

ACH2053 – Introdução à Estatística – 1º sem. 2013 Professor: Dr. José Ricardo G. Mendonça

3ª Prova — Data: 28 jun. 2013

Chance governs all things; necessity, which is far from having the same purity, comes only later.

Luis Buñuel (1900–1983)

- (1) [4,0 pontos] Uma máquina empacotadeira produz pacotes com massas ("pesos") distribuídas normalmente com média μ e desvio padrão 10 g.
 - (a) Quanto deve valer μ para que apenas 10% dos pacotes tenham menos do que 500 g?
 - (b) Para o valor de μ encontrado no iem (a), qual é a probabilidade de que a massa total de 4 pacotes escolhidos ao acaso seja inferior a 2 kg?

A título de controle de qualidade, de hora em hora é retirada da produção uma amostra de 4 pacotes. Se a média da massa da amostra for inferior a 495 g ou superior a 520 g a produção é parada para reajustar a empacotadeira.

- (c) Qual é a probabilidade de se efetuar uma parada desnecessária da produção?
- (d) Se o valor de μ da empacotadeira se desregulou para 500 g, qual é a probabilidade de continuar a produção fora dos padrões desejados?
- 2. [2,0 pontos] Uma indústria farmacêutica deseja saber a quantos voluntários se deve aplicar uma vacina de modo que a proporção de indivíduos imunizados na amostra difira menos de 2% da proporção verdadeira de imunizados na população com probabilidade de 90%.
 - (a) Qual deve ser o tamanho da amostra nesse caso?
 - (b) Suponha que a indústria tenha a informação de que a proporção de imunizados pela vacina seja $p \ge 0.80$. Qual deve ser o novo tamanho da amostra a ser usada?
- 3. [4,0 pontos] De 50.000 lâmpadas fabricadas por uma companhia, retira-se uma amostra de 400 lâmpadas e obtém-se para a vida média das lâmpadas um valor de 800 horas com um desvio padrão de 100 horas.
 - (a) Qual é o intervalo de confiança de 99% para a vida média da população?
 - (b) Com que confiança poder-se-ia dizer que a vida média de cada lâmpada é de 800 ± 0.98 horas?

(c) Que tamanho deve ter a amostra para que a confiança na estimativa de 800 ± 7.84 horas para a vida média de cada lâmpada seja de 95%?

Formulário

Distribuições de probabilidade normal:

Normal
$$(\mu; \sigma^2)$$
: $f_X(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left[-\frac{(x-\mu)^2}{2\sigma^2}\right], \quad -\infty < x < +\infty.$

Transformação entre distribuições cumulativas normais:

$$F_X(x) = \Phi\left(\frac{x-\mu}{\sigma}\right), \qquad \Phi(-z) = 1 - \Phi(z),$$

onde $F_X(x)$ é a c. d. f. de uma variável aleatória $X \sim N(\mu; \sigma^2)$ e $\Phi(x)$ é a c. d. f. de uma variável aleatória padrão $X \sim N(0; 1)$. Esta última função é tabelada.

x	0.00	0.01	0.02	0.03	0.04	0.05	9.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5310	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5597		0.5675		0.5753
0.2	0.5793	0.5832	0.5871	0.5910		0.5987			0.6103	
0.3	0.6179	0.6217	0.6255		0.6331				0.6480	
0.4	0.6554	0.6591				0.6736			0.6844	
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088				
0.6	0.7257	0.7291	0.7324	0.7357					0.7517	
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967					0.8106	
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315			0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554		0.8500	
1.3	0.8643	0.8655	0.8686						0.8810	
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8080	0.8997	
1.3	0.9032	0.9049	0.9066			0.9115			0.9162	
1.4	0.9192	0.9207	0.9222	0.9236	0.9251		0.9279			0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406			0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505		0.9525		0.9545
1.7	0.9554		0.9573				0.9608			0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671		0.9686			0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756		0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803		0.9812	
2.1	0.9821		0.9830				2000		0.9854	
2.2	0.9861					0.9878				0.9890
2.3	0.9893	0.9896	0.9898		0.9904				***	0.9916
2.4	0.9918	0.9920	0.9922					0.9932	0.9934	0.9936

Determinação do tamanho de uma amostra:

Para determinar o valor de n tal que $P(|\overline{X} - \mu| \le \varepsilon) \ge \gamma$ devemos tomar:

Distribuição normal:
$$n \simeq \frac{\sigma^2 z_\gamma^2}{\varepsilon^2}$$
, Proporção $n \simeq \frac{p(1-p)z_\gamma^2}{\varepsilon^2} \simeq \frac{z_\gamma^2}{4\varepsilon^2}$