Задача. 1.8. Нека $n \ge 3$ е естествено число и

$$A = \begin{pmatrix} \cos\frac{2\pi}{n} & -\sin\frac{2\pi}{n} \\ \sin\frac{2\pi}{n} & \cos\frac{2\pi}{n} \end{pmatrix}, \qquad B = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

(съответно "ротация на ъгъл $\frac{2\pi}{n}$ около началото на фиксирана координатна система в равнината" и "симетрия относно абцисната ос"). Нека D_n е подгрупата на $GO_2(\mathbb{R})$, породена от A и B. Да се докаже, че:

- a) $A^n = E$, $B^2 = E$ и $B^{-1}AB = A^{-1}$;
- б) $D_n = \left\{A^i B^j \mid i = 0, 1, \dots, n-1; \ j = 0, 1\right\}$ и $A^i B^j A^k B^l = A^{i+k(-1)^j} B^{j+l};$
- в) D_n е неабелева група от ред 2n (диедрална група).

Решение. а) С индукция се доказва, че

$$A^k = \begin{pmatrix} \cos \frac{2k\pi}{n} & -\sin \frac{2k\pi}{n} \\ \sin \frac{2k\pi}{n} & \cos \frac{2k\pi}{n} \end{pmatrix}$$
, за $k \in \mathbb{N}$, откъдето $A^n = E$.

Очевидно $B^2=E,$ т. е. $B^{-1}=B.$ Директно проверяваме, че

$$B^{-1}AB = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} \cos\frac{2\pi}{n} & -\sin\frac{2\pi}{n} \\ \sin\frac{2\pi}{n} & \cos\frac{2\pi}{n} \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} =$$
$$= \begin{pmatrix} \cos\frac{2\pi}{n} & \sin\frac{2\pi}{n} \\ -\sin\frac{2\pi}{n} & \cos\frac{2\pi}{n} \end{pmatrix} = A^{-1}.$$

Ще обобщим този резултат, като докажем, че $B^{-1}A^kB=A^{-k},\ k\in[1,n-1].$

Нека повдигнем на k-та степен и двете страни на равенството $B^{-1}AB = A^{-1}$. Получаваме

$$(B^{-1}AB)^k = \underbrace{B^{-1}AB.B^{-1}AB...B^{-1}AB.B^{-1}AB}_{k \text{ - Heth}} = B^{-1}A^kB = A^{-k}.$$

б) Нека означим $G = \{A^i B^j \mid i = 0, 1, \dots, n-1; \ j = 0, 1\}$. По условие $D_n = \langle A, B \rangle$, тогава очевидно $G \subseteq D_n$.

Нека сега направим следното уточнение: за $s,t\in\mathbb{N}$ имаме $A^sB^t\in G$. Наистина, нека $s=nq_1+r_1,\,0\le r_1\le n-1,\,$ откъдето $A^s=A^{nq_1+r_1}=A^{nq_1}A^{r_1}=A^{r_1}.$ Аналогично, нека $t=2q_2+r_2,\,0\le r_2\le 1,\,$ откъдето получаваме $B^t=B^{2q_2+r_2}=B^{r_2}.$

Сега, за обратното включване е достатъчно да докажем, че $A^iB^jA^kB^l=A^{i+k(-1)^j}B^{j+l}$, за $0\leq i,k\leq n-1;\ 0\leq j,l\leq 1$. Ще използваме доказаното в подточка а) $B^{-1}A^kB=A^{-k}$, откъдето $A^kB=BA^{-k}$. Разглеждаме поотделно случаите j=0 и j=1. В първия получаваме $A^iB^0A^kB^l=A^{i+k}B^l$. Във втория случай, използвайки равенството $A^kB=BA^{-k}$, получаваме $A^iB^1A^kB^l=A^{i-k}B^{1+l}$. Обединявайки двата случая получаваме желаното равенство.

Сега от дефиницията на група породена от множество (в случая всевъзможните произведения на елементите A и B и техните обратни), следва че $D_n \subseteq G$, откъдето $D_n = G$.

в) Фактът, че D_n е неабелева група е директно следствие на следното: $B^{-1}AB = A^{-1} \Rightarrow AB = BA^{-1} \neq BA$ (единственият случай, в който е изпълнено $A^sB = BA^s$, $s \in [1, n-1]$, е случаят за групи от четен ред, т. е. n=2k, за който е изпълнено, че $A^kB = BA^k$).

От вида на D_n , получен в б), а именно

$$D_n = \{A^i B^j \mid i = 0, 1, \dots, n-1; \ j = 0, 1\},\$$

стигаме до извода, че максималният брой елементи на групата D_n е 2n.

Остава да проверим, дали измежду така зададените елементи на D_n има повтарящи се, т. е. $A^iB^k=A^jB^l\Rightarrow A^{i-j}B^{k-l}=E$, за някои $0\le i\ne j\le n-1;\ 0\le k,l\le 1$. Нека означим за удобство $0\le i-j=s< n$ и k-l=t<2. Тогава, ако t=0, то имаме $A^sB^0=A^s=E\Leftrightarrow s=i-j=0$ - $\frac{1}{2}$, това е един и същ елемент.

Нека сега разгледаме и другия случай

$$A^{s}B = \begin{pmatrix} \cos\frac{2s\pi}{n} & -\sin\frac{2s\pi}{n} \\ \sin\frac{2s\pi}{n} & \cos\frac{2s\pi}{n} \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = \\ = \begin{pmatrix} \cos\frac{2s\pi}{n} & \sin\frac{2s\pi}{n} \\ \sin\frac{2s\pi}{n} & -\cos\frac{2s\pi}{n} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix},$$

последното равенство не се достига за никоя стойност на s.

Оказа се, че елементите на D_n са два по два различни и значи са точно 2n на брой.

Задача. 1.9. Да се докаже, че групата от всички симетрии на правилен n-ъгълник е изоморфна на диедралната група D_n .

Решение. Нека G е множеството от симетрии на правилен n-ъгълник, т. е. G е множеството от всички движения в пространството, които изобразяват n-ъгълника в себе си. ¹

Симетриите биват: ротация, относно центъра на n-ъгълника, на ъгъл $\frac{2\pi}{n}$ и отражение относно някоя от осите на симетрия. В G разглеждаме елементите r -ротация на ъгъл $\frac{2\pi}{n}$ обратно на часовниковата стрелка и s - отражение относно оста прекарана през връх 1 (абцисната ос). В G въвеждаме операцията композиция на изображенията, тя е бинарна (Защо?), асоциативна е, идентитетът играе ролята на единичен елемент, а обратният елемент на всеки е съответното обратно движение (ротация на ъгъл $\frac{2\pi}{n}$ по часовниковата стрелка и отражение относно ос на симетрия).

Очевидно |r| = n и |s| = 2. Ще докажем, че $srs^{-1} = r^{-1}$. Нека приложим изображението върху произволен връх $i \in [1, n]$. Изпълнено е, че r(i) = i+1

 $[\]overline{}^1$ При тези движения n-ъгълникът не може да бъде усукван, т.е. ако под действието на някоя симетрия σ върхът i се изобрази във върха j, то неизбежно неговите съседи, под действието на това изображение остават съседи, с евентуална смяна на местата, т.е. $\sigma(i-1) \in \{j-1,j+1\}$ и аналогично $\sigma(i+1) \in \{j-1,j+1\}$.

 $^{^2}$ В случая на n - нечетно осите на симетрии са един вид: тези, които свързват връх със средата на срещуположна страна (симетрали). За n - четно има 2 вида оси на симетрия: такива които свързват два срещуположни върха и такива, които свързват средите на 2 срещуположни страни (симетрали).

и s(i)=n+2-i (ако изберем i=1 или в случая n=2k, изберем i=k+1, то трябва да имаме предвид, че s(1)=1 и s(k+1)=k+1, въпреки това горната формула е очевидно валидна и за тези върхове).

$$s_{\circ}r_{\circ}s^{-1}(i) = s_{\circ}r(s^{-1}(i)) = s(r(n+2-i)) = s(n+3-i) = i-1 = r^{-1}(i).$$

Така получихме, че $G = \langle r, s \mid r^n = s^2 = id, \ srs^{-1} = r^{-1} \rangle$, следователно $G \cong D_n$.

От теоремата на Кейли, следва че групата D_n може да се реализира като подгрупа на S_n . В зависимост от четността на n, в сила е един от следните 2 случая:

- n = 2k, $D_n \cong G < S_n$; $G = \langle \rho = (1, 2, ..., n), \sigma = (2, n)(3, n-1)...(k, k+2) \mid \rho^n = \sigma^2 = id, \ \sigma \rho \sigma^{-1} = \rho^{-1} \rangle$.
- n = 2k + 1, $D_n \cong G < S_n$; $G = \langle \rho = (1, 2, ..., n), \sigma = (2, n)(3, n - 1) ... (k + 1, k + 2) \mid \rho^n = \sigma^2 = id, \ \sigma \rho \sigma^{-1} = \rho^{-1} \rangle$.

Да разгледаме следните примери - D_4 и D_3 :

Разглеждана като подгрупа на S_4 , групата D_4 има вида: $D_4 = \langle (1234) = A, (24) = B \rangle.$

Разглеждана като подгрупа на S_3 , групата D_3 има вида: $D_3\cong S_3=\langle (123)=A,(23)=B\rangle.$

Задача. 2.10. Да се определят подгрупите на групата \mathbb{Q}_8 .

Решение. $\mathbb{Q}_8 = \{\pm 1, \pm i, \pm j, \pm k\}$ - група на кватернионите. Подгрупите ѝ са:

- $\{1\}, \mathbb{Q}_8$ тривиални подгрупи;
- една циклична подгрупа $\langle -1 \rangle \cong \mathbb{C}_2$;
- три циклични подгрупи $\langle a \rangle = \{\pm 1, \pm a\} \cong \mathbb{C}_4$, където $a = \pm i, \pm j$ или $\pm k$.

Други подгрупи няма. Наистина, ако изберем кои да е два елемента, с условието $a \neq \pm b$, където $a,b \in M = \{\pm i, \pm j, \pm k\}$, то за произведението им $ab = c \in M$ е изпълнено: $c \neq \pm a$ и $c \neq \pm b$. При това $a^2 = b^2 = -1$ и $a^4 = b^4 = 1$. Получихме $\langle a,b \rangle = \mathbb{Q}_8$.

По този начин стигнахме до друго представяне на групата \mathbb{Q}_8 , а именно: $\mathbb{Q}_8 = \langle a,b \mid a^4=1, a^2=b^2, ba^3=ab \rangle$.

Задача. 2.11. Да се определят подгрупите на групата D_4 .

Решение. Диедралната група от ред 8 има представянето $D_4=\langle A,B\mid A^4=B^2=E,B^{-1}AB=A^{-1}\rangle.$ Подгрупите на D_4 са:

- $\{E\}, D_4$ тривиални подгрупи;
- всяко отражение образува циклична подгрупа от ред 2, същото се отнася и за ротацията на ъгъл π . Така получаваме 5 циклични подгрупи от ред 2: $\langle B \rangle$, $\langle AB \rangle$, $\langle A^2B \rangle$, $\langle A^3B \rangle$, $\langle A^2 \rangle \cong \mathbb{C}_2$;
- ullet ротацията на ъгъл $\pm \frac{\pi}{2}$ образува една циклична подгрупа от ред 4, т. е. $\langle A \rangle = \langle A^3 \rangle \cong \mathbb{C}_4;$
- В предните два случая се изчерпаха единичните движения, остава да проверим дали комбинация от ротация и отражение може да породи подгрупа на D_4 . Ако изберем ротацията да бъде на ъгъл $\pm \frac{\pi}{2}$ и приложим към нея кое да е отражение, директна проверка ни дава, че те пораждат цялата група, т.е. $\langle A^{\varepsilon}, A^i B \rangle = D_4$, където $\varepsilon = \pm 1$, i = 0, 1, 2, 3.

Нека сега изберем ротацията на ъгъл π . В зависимост от избора на отражение, получаваме следните две подгрупи на D_4 :

- 1) $\langle A^2, B \rangle = \langle A^2, A^2B \rangle = \{E, A^2, B, A^2B\};$
- 2) $\langle A^2, AB \rangle = \langle A^2, A^3B \rangle = \{E, A^2, AB, A^3B\}.$

И за двете подгрупи е в сила следното: те са четририелементни, абелеви са, всеки техен неединичен елемент е от ред 2 и произведението на всеки два неединични елемента дава третия. Това са познатите ни релации в групата на Клайн K_4 (виж зад. 2.13. а)) и следователно всяка една от двете подгрупи е изоморфна на K_4 .

Други собствени групи на D_4 не могат да бъдат образувани.

Задача. 2.12. Да се намерят подгрупите на групата S_3 .

Решение. Самостоятелно (виж зад. 2.21. а)).

Задача. 2.13. Да се докаже, че в групата A_4 :

- а) множеството $K_4 = \{(1), (12)(34), (13)(24), (14)(23)\}$ е абелева подгрупа (група на Клайн);
- б) няма подгрупа от ред 6 (въпреки че $|A_4|$ се дели на 6).

Решение. а) Очевидно $K_4 \subset A_4$. Нека означим a = (12)(34), b = (13)(24), c = (14)(23). Изършваме проверките за абелева подгрупа:

1) Затвореност и комутативност на операцията композиция. Единичният елемент (1) на A_4 очевидно изпълнява същата роля в K_4 . Всеки неединичен елемент е произведение на 2 транспозиции и значи е от ред 2, т. е. $a^2 = b^2 = c^2 = (1)$. Освен това,

 $^{^3}$ Последните две задачи са пример за неабелеви групи \mathbb{Q}_8 и D_4 , всички собствени групи на които са абелеви.

 $^{^4}$ Тук може да се пропусне директната проверка за абелевост - K_4 е група, в която всеки неединичен елемент е от ред $2 \stackrel{1.16}{\Longrightarrow} K_4$ е абелева група.

$$\begin{bmatrix} 1 & 2 & 3 & 4 \\ b & = & (13)(24) & 3 & 4 & 1 & 2 \\ a & = & (12)(34) & 4 & 3 & 2 & 1 \end{bmatrix} = (14)(23) = c \in K_4.$$

$$\begin{bmatrix} 1 & 2 & 3 & 4 \\ a & = & (12)(34) & 2 & 1 & 4 & 3 \\ b & = & (13)(24) & 4 & 3 & 2 & 1 \end{bmatrix} = (14)(23) = c \in K_4.$$

$$\begin{bmatrix} 1 & 2 & 3 & 4 \\ c & = & (14)(23) & 4 & 3 & 2 & 1 \\ a & = & (12)(34) & 3 & 4 & 1 & 2 \end{bmatrix} = (13)(24) = b \in K_4.$$

$$\begin{bmatrix} 1 & 2 & 3 & 4 \\ a & = & (12)(34) & 2 & 1 & 4 & 3 \\ c & = & (14)(23) & 3 & 4 & 1 & 2 \end{bmatrix} = (13)(24) = b \in K_4.$$

$$\begin{bmatrix} 1 & 2 & 3 & 4 \\ c & = & (14)(23) & 4 & 3 & 2 & 1 \\ b & = & (13)(24) & 2 & 1 & 4 & 3 \end{bmatrix} = (12)(34) = a \in K_4.$$

$$\begin{bmatrix} 1 & 2 & 3 & 4 \\ b & = & (13)(24) & 3 & 4 & 1 & 2 \\ c & = & (14)(23) & 2 & 1 & 4 & 3 \end{bmatrix} = (12)(34) = a \in K_4.$$

2) От факта, че неединичните елементи са от ред 2, следва че $a=a^{-1},\,b=b^{-1},\,c=c^{-1}.$

Получихме, че K_4 е абелева подгрупа на A_4 .

6)
$$A_4 = \{\underbrace{(1), (12)(34), (14)(23), (13)(24)}_{K_4}, (123), (132), (124), (142), (134), (143), (234), (243)\}.$$

Нека допуснем, че съществува $H < A_4$ и |H| = 6. Нека $\sigma \in A_4$ е произволен троен цикъл. Имаме $|A_4:H| = \frac{12}{6} = 2$ и значи два измежду левите съседни класове $H, \sigma H, \sigma^2 H$ съвпадат. Правим проверка:

- 1) $H = \sigma^i H \Leftrightarrow \sigma \in H, i = 1, 2$;
- 2) $\sigma H = \sigma^2 H \Leftrightarrow \sigma \in H$.

Задача. 2.14. Да се докаже, че за всеки естествен делител d на $|S_4|$ групата S_4 има подгрупа от ред d.

Решение. Редът на групата S_4 е $|S_4| = 4! = 24$. Естествените делители на 24 са 1,2,3,4,6,8,12,24. Правим директна проверка за всеки делител:

- ред 1 единичната подгрупа {(1)};
- ред 2 всяка транспозиция или (2,2) транспозиция поражда циклична подгрупа изоморфна на \mathbb{C}_2 ;
- ullet ред 3 всеки троен цикъл поражда циклична подгрупа изоморфна на \mathbb{C}_3

- ред 4 всеки четворен цикъл поражда циклична подгрупа изоморфна на \mathbb{C}_4 , освен това $K_4 < S_4$;
- \bullet ред 6 $S_3 < S_4$ и $|S_3| = 6$;
- ред 8 нека разгледаме $H = \langle (1234), (13) \rangle < S_4$. Твърдим, че $H \cong D_4$ и съответно |H| = 8. Действително, изпълнено е $(1234)^4 = (13)^2 = (1)$ и (13)(1234)(13) = (4321), което повтаря напълно релациите в D_4 . Поточно видът на H е:

$$H = \{(1), (1234), (13)(24) = (1234)^2, (4321) = (1234)^3, (13), (12)(34) = (13)(1234), (24) = (13)(1234)^2, (14)(23) = (13)(1234)^3\};$$

- \bullet ред 12 $A_4 < S_4$ и $|A_4| = 12$;
- ред 24 цялата група S₄.

Задача. 2.16. Да се докаже, че всяка неабелева група G от ред 8 е изоморфиа на точно една от групите \mathbb{Q}_8 и D_4 .

G е група от четен ред $\stackrel{1.14}{\Longrightarrow}$ G има елемент от ред 2.

Ако всеки неединичен елемент на G е от ред $2 \stackrel{1.16}{\Longrightarrow} G$ е абелева група $rac{1}{2}$.

Тъй като за всеки елемент $a\in G$ е изпълнено $|a|\mid |G|\Rightarrow \exists a\in G$: |a|=4. Нека изберем елемент $b\in G\setminus \langle a\rangle$. От по-горе казаното |b|=2 или |b|=4, освен това $|G:\langle a\rangle|=\frac{8}{4}=2,\ G=\langle a\rangle\cup\langle a\rangle b$ и значи $G=\langle a,b\rangle$ (също така $\langle a\rangle\cap\langle a\rangle b=\emptyset,\ |\langle a\rangle|=|\langle a\rangle b|=4$). Проверяваме в кой клас попада елементът $b^{-1}ab$:

- 1) $b^{-1}ab \in \langle a \rangle b \Leftrightarrow b^{-1}ab = a^kb \Leftrightarrow b^{-1}a = a^k \Leftrightarrow b^{-1} = a^{k-1} \Leftrightarrow b \in \langle a \rangle$:
- 2) Следователно, $b^{-1}ab \in \langle a \rangle$ и $b^{-1}ab = a^k$, k = 0, 1, 2, 3, но $\Longrightarrow |b^{-1}ab| = |a| = 4 \Rightarrow b^{-1}ab = a$ или $b^{-1}ab = a^3 = a^{-1}$. Случаят $b^{-1}ab = a$ води до ab = ba и значи $G = \langle a, b \rangle$ е абелева \d . Така $b^{-1}ab = a^{-1}$.

Сега, за реда на елемента b имаме две възможности:

- 1) |b| = 2. Тогава за групата G получаваме: $G = \langle a, b \mid a^4 = b^2 = 1, b^{-1}ab = a^{-1} \rangle \cong D_4$;
- 2) |b|=4. Ако допуснем, че $b^2\in\langle a\rangle b$, то $b=a^k,\ k=0,1,2,3$ \mitlet . Така $b^2\in\langle a\rangle$ и тъй като $|b^2|=2$, то $b^2=a^2.^5$ Дотук получихме 6 от елементите на групата G, а именно $1,a,a^2=b^2,a^3,b,b^3$, остава да покажем кои са последните 2 елемента те трябва да принадлежат на съседния клас $\langle a\rangle b$.

 $^{^5}$ В зад. 2.10. показахме, че групата \mathbb{Q}_8 има същото представяне: $\mathbb{Q}_8 = \langle a,b \mid a^4=1, a^2=b^2, ba^3=ab \rangle.$

Нека c=ab. Последователно получаваме (използваме, че $b^{-1}ab=a^{-1}$):

$$c^2 = abab = ba^{-1}ab = b^2 = a^2 \Rightarrow |c| = 4;$$

$$a^2ba = b^3a = a^3b^3 = ab = c;$$

$$bc = bab = a^2cb = a^2abb = a^5 = a;$$

$$ca = aba = aa^2c = a^2ac = a^2aab = b.$$

Получихме познатите ни релации в \mathbb{Q}_8 . Конструираме изображението:

$$\varphi: G \longrightarrow \mathbb{Q}_8$$

От казаното по-горе, следва че φ е хомоморфизъм на групи, очевидно е биекция, откъдето $G \cong \mathbb{Q}_8$.

Други неабелеви групи от ред 8 няма.

Задача. 2.17. Да се докаже, че H е нормална подгрупа на G:

а) G е абелева група, а H е произволна подгрупа на G; б) $G = S_n$, $H = A_n$; в) $G = GL_n(F)$, $H = SL_n(F)$; г) $G = GO_n(\mathbb{R})$, $H = SO_n(\mathbb{R})$.

Решение. а) G е абелева група $H \leq G$, то очевидно $g^{-1}hg = h, \forall g \in G, h \in H$;

- б) Дадено е, че $G = S_n$ и $H = A_n$. Нека $\sigma = (i_1 \dots i_k) \dots (j_1 \dots j_s) \in H$ и нека $\rho \in G$. Тогава, тъй като спрегнатите елементи са с еднаква циклична структура, съответно и еднаква четност, то е изпълнено $\rho \sigma \rho^{-1} = (\rho(i_1) \dots \rho(i_k)) \dots (\rho(j_1) \dots \rho(j_s)) \in H$;
- в) Дадено е, че $G = GL_n(F)$ и $H = SL_n(F)$. Нека $A \in H$, $B \in G$, тогава $B^{-1}AB \in H \Leftrightarrow det(B^{-1}AB) = 1$. Действително, $det(B^{-1}AB) = detB^{-1}.detA.detB = detB^{-1}.detB = 1$;
- г) Нека $G = GO_n(\mathbb{R})$ и $H = SO_n(\mathbb{R})$. Аналогично на в) подточка.

Задача. 2.18. Да се докаже, че ако H е подгрупа с индекс 2 в група G, то H е нормална подгрупа на G.

Решение. Нека $g\in G\setminus H$. Изпълнено е $G=H\cup gH=H\cup Hg$ и $H\cap gH=H\cap Hg=\emptyset$ и значи $gH=Hg.^6$

Задача. 2.19. Да се докаже, че всяка подгрупа на \mathbb{Q}_8 е нормална подгрупа (въпреки че \mathbb{Q}_8 не е абелева група).

Решение. Използваме зад. 2.10., в която определихме подгруповата структура на \mathbb{Q}_8 .

Тривиалните подгрупи по дефиниция са нормални.

От нетривиалните, за трите циклични подгрупи от ред 4 е изпълнено, че индексът им в G е 2 и те са нормални.

 $^{^{6}}$ Това твърдение може да се използа в зад. 2.17 б) и г), там е изпълнено, че |G:H|=2

Остава да се направи проверка за подгрупата $\langle -1 \rangle \cong \mathbb{C}_2$. Нека $a \in M = \{\pm i, \pm j, \pm k\}$. Изпълнено е: $a^{-1}(-1)a = a^{-1}a^2a = a^2 = -1 \Rightarrow \langle -1 \rangle \lhd \mathbb{Q}_8$.

Задача. 2.24. Нека G е група, $A \subseteq G$, $B \subseteq G$ и $A \cap B = \{1\}$. Да се докаже, че ab = ba за всеки два елемента $a \in A$, $b \in B$.

Решение. Нека $a \in A \unlhd G$ и $b \in B \unlhd G$. Да разгледаме $[a,b] = a^{-1}b^{-1}ab$ - комутатор на елементите a и b. Получаваме $[a,b] = a^{-1}\underbrace{b^{-1}ab}_{\in A} \in A$, а от

друга страна $[a,b] = \underbrace{a^{-1}b^{-1}a}_{\in B}b \in B$, откъдето $[a,b] \in A \cap B$. По условие обаче $A \cap B = \{1\}$, т. е. $[a,b] = a^{-1}b^{-1}ab = 1 \Leftrightarrow ab = ba$.

Задача. 2.25. Нека G е група, A и B са подгрупи на G и $AB = \{ab \mid a \in A, b \in B\}$. Да се докаже, че:

- а) $A \subseteq AB$ и AB = A точно когато AB = BA;
- б) $|AB|=\dfrac{|A||B|}{|A\cap B|}$ (ако $|A|<\infty,\,|B|<\infty);$
- в) AB < G точно когато AB = BA;
- г) ако $A \unlhd G$ или $B \unlhd G$, то $AB \le G$;
- д) ако $A \subseteq G$, то $A \subseteq AB$ и $A \cap B \subseteq B$;
- e) ако $A \subseteq G$ и $B \subseteq G$, то $AB \subseteq G$ и $A \cap B \subseteq G$.

Решение. a) $B \leq G \Rightarrow 1 \in B$, тогава $\forall a \in A$: $a=a1 \in AB \Rightarrow A \subseteq AB$. Ше докажем, че $AB=A \Leftrightarrow AB=BA$.

- $\implies \forall a_i \in A, b \in B \ \exists a_j \in A : a_i b = a_j \Rightarrow b = a_i^{-1} a_j \in A \Rightarrow B \le A;$
- ако $B \leq A$, то очевидно $\forall a \in A$ и $b \in B \Rightarrow ab \in A \Rightarrow AB \subseteq A$ и от $A \subseteq AB \Rightarrow AB = A$.
- б) Нека означим $A \cap B = C \le A$ и нека a_1C, a_2C, \ldots, a_nC са всички различни класове на A по подгрупата C, т. е. |A:C|=n.

Нека сега разгледаме съседните класове на G по подгрупата B: a_1B, a_2B, \ldots, a_nB . За тях е изпълнено:

- 1) $a_iB\cap a_jB=\emptyset$ за $1\leq i\neq j\leq n$. Наистина, $a_iB=a_jB\Leftrightarrow a_i^{-1}a_j\in B\Leftrightarrow a_i^{-1}a_j\in A\cap B=C$ $\clip ;$
- 2) $\forall ab \in AB: ab \in a_iB, \ 1 \leq i \leq n.$ Действително, $\forall ab \in AB, \ a \in A \Rightarrow a \in a_iC,$ за някое $1 \leq i \leq n,$ но $aC = a_iC \Leftrightarrow aB = a_iB.$

Така получихме, че $AB = a_1B \cup a_2B \cup \cdots \cup a_nB$ и $a_iB \cap a_jB = \emptyset$, $1 \le i \ne j \le n$. Следователно $|AB| = |A:C||B| = \frac{|A||B|}{|A \cap B|}$.

- в) Трябва да докажем, че $AB \leq G \Leftrightarrow AB = BA$.
 - \implies Нека $AB \leq G$. Тогава е изпълнено:
 - 1) $\forall a_i, a_j \in A, \, b_i, b_j \in B \, \exists a_k \in A, b_k \in B \colon a_ib_ia_jb_j = a_kb_k$. Умножаваме последователно с a_i^{-1} отляво и b_j^{-1} отдясно. Полу-

$$b_i a_j = \underbrace{a_i^{-1} a_k}_{\in A} \underbrace{b_k b_j^{-1}}_{\in B} \in AB \Rightarrow BA \subseteq AB;$$

- 2) $\forall c \in AB, \exists a \in A, b \in B: c = ab$ и $c^{-1} = (ab)^{-1} \in AB$, но $c^{-1} = (ab)^{-1} = \underbrace{b^{-1}}_{\in B} \underbrace{a^{-1}}_{\in A} \Rightarrow c^{-1} \in BA \Rightarrow AB \subseteq BA \Rightarrow AB = BA;$
- $\forall a_ib_i, a_jb_j \in AB, \exists a_kb_k, a_sb_s \in AB$, така че е изпълнено:

1)
$$a_i \underbrace{b_i a_j}_{\in BA} b_j = \underbrace{a_i a_k}_{\in A} \underbrace{b_k b_j}_{\in B} \in AB$$
, (Tyk $b_i a_j = a_k b_k$);
2) $(a_i b_i)^{-1} = \underbrace{b_i^{-1} a_i^{-1}}_{\in BA} = a_s b_s \in AB$.

2)
$$(a_ib_i)^{-1} = \underbrace{b_i^{-1}a_i^{-1}}_{\in BA} = a_sb_s \in AB.$$

От двете проверки получихме, че $AB \leq G$.