Cuadripolos

Oscar Perpiñán Lamigueiro

Introducción

Parámetros de Cuadripolos

parámetros

Cuadripolos entre Dipolos Terminales

Asociación de Cuadripolos

Cuadripolos
Teoría de Circuitos III

Oscar Perpiñán Lamigueiro

Diciembre 2018

Introducción

Parámetros de Cuadripolos

Relación entre parámetros

Cuadripolos entre Dipolos Terminales

Cuadripolo

Atención al sentido de las corrientes

Cuadripolos

Oscar Perpiñán Lamigueiro

Introducción

arámetros de uadripolos

elación entre arámetros

Cuadripolos entre Dipolos Perminales

Cuadripolos Recíprocos y Simétricos

Un cuadripolo es recíproco si, al intercambiar la posición de las excitaciones, la respuesta en el puerto correspondiente no sufre cambios (teorema de reciprocidad).

- Un cuadripolo lineal (RLC) y sin fuentes dependientes es recíproco.
- Un cuadripolo recíproco es simétrico si se puede intercambiar la entrada con la salida (simetría física).

Cuadripolos

Oscar Perpiñán Lamigueiro

Introducción

Parámetros de Cuadripolos

parámetros

Cuadripolos entre Dipolos Terminales

Introducción

Parámetros de Cuadripolos

Relación entre parámetros

Cuadripolos entre Dipolos Terminales

Introducción

Parámetros de Cuadripolos Parámetros de Impedancia

Parámetros de Admitancia Parámetros Híbridos Parámetros Híbridos Inversos Parámetros de Transmisión Parámetros de Transmisión Inversa

Relación entre parámetros

Cuadripolos entre Dipolos Terminales

Definición

Mediante teorema de superposición:

$$\begin{aligned} & \mathbf{V}_1 = \mathbf{z}_{11} \mathbf{I}_1 + \mathbf{z}_{12} \mathbf{I}_2 \\ & \mathbf{V}_2 = \mathbf{z}_{21} \mathbf{I}_1 + \mathbf{z}_{22} \mathbf{I}_2 \end{aligned}$$

Las variables independientes (generadores) son I_1 e I_2 .

Cuadripolos

Oscar Perpiñán Lamigueiro

Introducción

Parámetros de

Parámetros de Impedancia

Parámetros Híbridos Parámetros Híbridos

Parámetros de Transmisión Parámetros de Transmisión Inversa

Relación entre parámetros

Cuadripolos entre Dipolos Terminales

Expresión Matricial

$$\left[\begin{array}{c} \mathbf{V}_1 \\ \mathbf{V}_2 \end{array}\right] = \left[\begin{array}{cc} \mathbf{z}_{11} & \mathbf{z}_{12} \\ \mathbf{z}_{21} & \mathbf{z}_{22} \end{array}\right] \cdot \left[\begin{array}{c} \mathbf{I}_1 \\ \mathbf{I}_2 \end{array}\right]$$

Cuadripolos

Oscar Perpiñán Lamigueiro

Introducció

Parámetros de

Parámetros de Impedancia

Parámetros de Admitancia Parámetros Híbridos

Parámetros Híbrid Inversos

Parámetros de Transmisión
Parámetros de Transmisión
Inversa

Relación entre parámetros

Cuadripolos entre Dipolos Terminales

Circuito Equivalente

$$\begin{aligned} &V_1 = z_{11}I_1 + z_{12}I_2 \\ &V_2 = z_{21}I_1 + z_{22}I_2 \end{aligned}$$

Cuadripolos

Oscar Perpiñán Lamigueiro

Introducció:

Parámetro

Parámetros de Impedancia

Parámetros de Admitancia

Parámetros Híbrid Inversos

Parámetros de Transmisión
Parámetros de Transmisión

Relación entre parámetros

Cuadripolos entre Dipolos Terminales

Cálculo de parámetros

Salida en abierto

$$\left[\begin{array}{c} \mathbf{V}_1 \\ \mathbf{V}_2 \end{array}\right] = \left[\begin{array}{cc} \mathbf{z}_{11} & \mathbf{z}_{12} \\ \mathbf{z}_{21} & \mathbf{z}_{22} \end{array}\right] \cdot \left[\begin{array}{c} \mathbf{I}_1 \\ \mathbf{I}_2 \end{array}\right]$$

Cuadripolos

Oscar Perpiñán Lamigueiro

Introducción

Parámetros de Cuadripolos

Parámetros de Impedancia

Parámetros de Admitancia

Parámetros Híbridos Inversos

Parámetros de Transmisión
Parámetros de Transmisión
Inversa

Relación entre parámetros

Cuadripolos entre Dipolos Terminales

Cálculo de parámetros

Entrada en abierto

$$\left[\begin{array}{c} \mathbf{V}_1 \\ \mathbf{V}_2 \end{array}\right] = \left[\begin{array}{cc} \mathbf{z}_{11} & \mathbf{z}_{12} \\ \mathbf{z}_{21} & \mathbf{z}_{22} \end{array}\right] \cdot \left[\begin{array}{c} \mathbf{I}_1 \\ \mathbf{I}_2 \end{array}\right]$$

Cuadripolos

Oscar Perpiñán Lamigueiro

Introducción

Parámetros de Cuadripolos

Parámetros de Impedancia

Parámetros de Admitancia Parámetros Híbridos

Inversos

Parámetros de Transmisión

Parámetros de Transmisión Inversa

Relación entre parámetros

Cuadripolos entre Dipolos Terminales

Reciprocidad

$$\begin{array}{ccc} \mathbf{V_1}| & \mathbf{I_1} = \mathbf{0} & = \mathbf{V_2}| & \mathbf{I_2} = \mathbf{0} \\ & \mathbf{I_2} = \mathbf{I_x} & & \mathbf{I_1} = \mathbf{I_x} \end{array}$$

Cuadripolos

Oscar Perpiñán Lamigueiro

Introducción

Parámetros de Cuadripolos

Parámetros de Impedancia

Parámetros de Admitancia

Parámetros Híbrido Inversos

Parámetros de Transmisión Parámetros de Transmisión

Relación entre parámetros

Cuadripolos entre Dipolos

Relación entre parámetros

Las impedancias de transferencia son idénticas

$$\left. egin{aligned} \mathbf{V}_x &= \mathbf{z}_{11}\mathbf{0} + \mathbf{z}_{12}\mathbf{I}_x \ \mathbf{V}_x &= \mathbf{z}_{21}\mathbf{I}_x + \mathbf{z}_{22}\mathbf{0} \end{aligned}
ight.
ight.
ightarrow \mathbf{z}_{12} = \mathbf{z}_{21}
ight.$$

Cuadripolos

Oscar Perpiñán Lamigueiro

Introducció

Parámetros d

Parámetros de Impedancia

Parámetros de Admitancia

Parámetros Híbrido

Parámetros de Transmisión Parámetros de Transmisión

Relación entre

Cuadripolos entre Dipolos Terminales

Circuito Equivalente en T

$$egin{bmatrix} \overline{\mathbf{z}_{12}} = \overline{\mathbf{z}_{21}}
ightarrow \left[egin{array}{c} \mathbf{V}_1 \ \mathbf{V}_2 \end{array}
ight] = \left[egin{array}{cc} \mathbf{z}_{11} & \overline{\mathbf{z}_{12}} \ \overline{\mathbf{z}_{12}} & \overline{\mathbf{z}_{22}} \end{array}
ight] \cdot \left[egin{array}{c} \mathbf{I}_1 \ \mathbf{I}_2 \end{array}
ight]$$

Ejercicio

Demostrar que un cuadripolo recíproco es equivalente al circuito en T de la figura.

Cuadripolos

Oscar Perpiñán Lamigueiro

Introducción

Parámetros de

Parámetros de Impedancia

Parámetros de Admitancia

Parámetros Híbrido

Parámetros de Transmisión Parámetros de Transmisión

Relación entre parámetros

Cuadripolos entre Dipolos Terminales

Cuadripolo Simétrico

Cuadripolos

Oscar Perpiñán Lamigueiro

Introducció

Parámetros d Cuadripolos

Parámetros de Impedancia

Parámetros de Admitancia

Parámetros Híbrido Inversos

Parámetros de Transmisión
Parámetros de Transmisión
Inversa

Relación entre parámetros

Cuadripolos entre Dipolos Terminales

No siempre hay parámetros Z

¿Cuáles son los parámetros Z ...

- de un transformador ideal?
- ▶ de una impedancia serie?

Cuadripolos

Oscar Perpiñán Lamigueiro

Introducción

Parámetros de Cuadripolos

Parámetros de Impedancia

Parámetros de Admitancia

Parámetros Híbrid

Parámetros de Transmisió

nversa

Relación entre

Cuadripolos entre Dipolos Terminales

Introducción

Parámetros de Cuadripolos

Parámetros de Impedancia

Parámetros de Admitancia

Parámetros Híbridos

Parámetros Híbridos Inversos

Parámetros de Transmisión

Parámetros de Transmisión Inversa

Relación entre parámetros

Cuadripolos entre Dipolos Terminales

Definición

Mediante teorema de superposición:

$$\mathbf{I}_1 = \mathbf{y}_{11}\mathbf{V}_1 + \mathbf{y}_{12}\mathbf{V}_2$$

 $\mathbf{I}_2 = \mathbf{y}_{21}\mathbf{V}_1 + \mathbf{y}_{22}\mathbf{V}_2$

Las variables independientes (generadores) son V_1 e V_2 .

Cuadripolos

Oscar Perpiñán Lamigueiro

Introducción

Parámetros de Cuadripolos

Parámetros de Admitancia

Parámetros Híbridos Inversos

Parámetros de Transmisión Inversa

parámetros

Cuadripolos entre Dipolos Terminales

Expresión Matricial

$$\left[\begin{array}{c}\mathbf{I}_1\\\mathbf{I}_2\end{array}\right] = \left[\begin{array}{cc}\mathbf{y}_{11} & \mathbf{y}_{12}\\\mathbf{y}_{21} & \mathbf{y}_{22}\end{array}\right] \cdot \left[\begin{array}{c}\mathbf{V}_1\\\mathbf{V}_2\end{array}\right]$$

Cuadripolos

Oscar Perpiñán Lamigueiro

Introduccio

Parámetros (Cuadripolos

Parámetros de Impeda

Parámetros de Admitancia

Parámetros Híbrido Inversos

Parámetros de Transmisión Parámetros de Transmisión

Relación entre parámetros

Cuadripolos entre Dipolos Terminales

Circuito Equivalente

$$\begin{split} I_1 &= y_{11}V_1 + y_{12}V_2 \\ I_2 &= y_{21}V_1 + y_{22}V_2 \end{split}$$

Cuadripolos

Oscar Perpiñán Lamigueiro

Introducció

Parámetr Cuadripo

Parámetros de Impedar

Parámetros de Admitancia

Parámetros Híbrido Inversos

Parámetros de Transmisión Parámetros de Transmisión

Relación entre parámetros

Cuadripolos entre Dipolos Terminales

Cálculo de parámetros

Salida en cortocircuito

$$\left[\begin{array}{c}\mathbf{I}_1\\\mathbf{I}_2\end{array}\right] = \left[\begin{array}{cc}\mathbf{y}_{11} & \mathbf{y}_{12}\\\mathbf{y}_{21} & \mathbf{y}_{22}\end{array}\right] \cdot \left[\begin{array}{c}\mathbf{V}_1\\\mathbf{V}_2\end{array}\right]$$

Cuadripolos

Oscar Perpiñán Lamigueiro

Introducción

Parámetros de Cuadripolos

Parámetros de Imped

Parámetros de Admitancia

Parámetros Híbridos Inversos

Parámetros de Transmisión Parámetros de Transmisión

Relación entre parámetros

Cuadripolos entre Dipolos Terminales

Cálculo de parámetros

Entrada en cortocircuito

$$\left[\begin{array}{c}\mathbf{I}_1\\\mathbf{I}_2\end{array}\right] = \left[\begin{array}{cc}\mathbf{y}_{11} & \mathbf{y}_{12}\\\mathbf{y}_{21} & \mathbf{y}_{22}\end{array}\right] \cdot \left[\begin{array}{c}\mathbf{V}_1\\\mathbf{V}_2\end{array}\right]$$

Cuadripolos

Oscar Perpiñán Lamigueiro

Introducción

Parámetr Cuadripo

Danim store de Issue

Parámetros de Admitancia

Parámetros Híbridos Inversos

Parámetros de Transmisión
Parámetros de Transmisión

Relación entre parámetros

Cuadripolos entre Dipolos Terminales

Reciprocidad

$$\begin{array}{ccc} \mathbf{I_1}| & \mathbf{V_1} = \mathbf{0} & = \mathbf{I_2}| & \mathbf{V_2} = \mathbf{0} \\ \mathbf{V_2} = \mathbf{V_x} & \mathbf{V_1} = \mathbf{V_x} \end{array}$$

Cuadripolos

Oscar Perpiñán Lamigueiro

Introducción

Parámetros de Cuadripolos

Parámetros de Impeda

Parámetros de Admitancia

Parámetros Híbrido

Parámetros de Transmisión

Inversa

parámetros

Cuadripolos entre Dipolos Terminales

Relación entre parámetros

Las admitancias de transferencia son idénticas

$$\begin{bmatrix} \mathbf{I}_x = \mathbf{y}_{11}0 + \mathbf{y}_{12}\mathbf{V}_x \\ \mathbf{I}_x = \mathbf{y}_{21}\mathbf{V}_x + \mathbf{y}_{22}0 \end{bmatrix} \rightarrow \begin{bmatrix} \mathbf{y}_{12} = \mathbf{y}_{21} \end{bmatrix}$$

Cuadripolos

Oscar Perpiñán Lamigueiro

Introducción

Parametros de Cuadripolos

Parámetros de Imped

Parámetros de Admitancia

Parámetros Híbridos

Parámetros de Transmisión

Parámetros de Transmisión

Relación entre parámetros

Cuadripolos entre Dipolos Terminales

Circuito Equivalente en π

$$egin{bmatrix} oldsymbol{y_{12} = y_{21}}
ightarrow \left[egin{array}{c} \mathbf{I}_1 \ \mathbf{I}_2 \end{array}
ight] = \left[egin{array}{c} \mathbf{y}_{11} & \mathbf{y}_{12} \ \mathbf{y}_{12} & \mathbf{y}_{22} \end{array}
ight] \cdot \left[egin{array}{c} \mathbf{V}_1 \ \mathbf{V}_2 \end{array}
ight]$$

Ejercicio

Demostrar que un cuadripolo recíproco es equivalente al circuito en π de la figura.

Cuadripolos

Oscar Perpiñán Lamigueiro

Introducción

Parámetr Cuadripo

Parámetros de Impedancia

Parámetros de Admitancia

Parámetros Híbridos

Parámetros de Transmisión Parámetros de Transmisión

Relación entre parámetros

Cuadripolos entre Dipolos Terminales

Cuadripolo Simétrico

Cuadripolos

Oscar Perpiñán Lamigueiro

Introducció

Parámetr Cuadripo

Parámetros do Impeda

Parámetros de Admitancia

Parámetros Híbrido

Parámetros de Transmisión

Inversa

Relación entre parámetros

Cuadripolos entre Dipolos Terminales

No siempre hay parámetros Y

¿Cuáles son los parámetros Y ...

- de un transformador ideal?
- de una impedancia paralelo?

Cuadripolos

Oscar Perpiñán Lamigueiro

Introducción

Parámetros de Cuadripolos

Parámetros de Impeda

Parámetros de Admitancia

Parámetros Híbrido Inversos

Parámetros de Transmisión

nversa

Relación entre parámetros

Cuadripolos entre Dipolos

Introducción

Parámetros de Cuadripolos

Parámetros de Impedancia Parámetros de Admitancia

Parámetros Híbridos

Parámetros Híbridos Inversos Parámetros de Transmisión Parámetros de Transmisión Inversa

Relación entre parámetros

Cuadripolos entre Dipolos Terminales

Definición

Mediante teorema de superposición:

$$\mathbf{V}_1 = \mathbf{h}_{11}\mathbf{I}_1 + \mathbf{h}_{12}\mathbf{V}_2$$

 $\mathbf{I}_2 = \mathbf{h}_{21}\mathbf{I}_1 + \mathbf{h}_{22}\mathbf{V}_2$

Las variables independientes (generadores) son I_1 e V_2 .

Cuadripolos

Oscar Perpiñán Lamigueiro

Introducción

Parámetros de Cuadripolos Parámetros de Impedancia

Parámetros de Admitancia Parámetros Híbridos

> rámetros Híbi versos

Parámetros de Transmisión Parámetros de Transmisión

Relación entre parámetros

Cuadripolos entre Dipolos Terminales

Expresión Matricial

$$\left[\begin{array}{c} \mathbf{V}_1 \\ \mathbf{I}_2 \end{array}\right] = \left[\begin{array}{cc} \mathbf{h}_{11} & \mathbf{h}_{12} \\ \mathbf{h}_{21} & \mathbf{h}_{22} \end{array}\right] \cdot \left[\begin{array}{c} \mathbf{I}_1 \\ \mathbf{V}_2 \end{array}\right]$$

Cuadripolos

Oscar Perpiñán Lamigueiro

Introducció

Parámet: Cuadrip

Parámetros de Impedanci

Parámetros Híbridos

Parámetros Híl Inversos

Parámetros de Transmisión
Parámetros de Transmisión

Relación entre parámetros

Cuadripolos entre Dipolos Terminales

Circuito Equivalente

$$\begin{aligned} V_1 &= h_{11}I_1 + h_{12}V_2 \\ I_2 &= h_{21}I_1 + h_{22}V_2 \end{aligned}$$

Cuadripolos

Oscar Perpiñán Lamigueiro

Introducció

Parámet: Cuadrip

Parámetros de Impedancia Parámetros de Admitancia

Parámetros Híbridos

Parámetros Híbr

Parámetros de Transmisión Parámetros de Transmisión

Relación entre parámetros

Cuadripolos entre Dipolos Terminales

Cálculo de parámetros

Salida en cortocircuito

$$\left[\begin{array}{c} \mathbf{V}_1 \\ \mathbf{I}_2 \end{array}\right] = \left[\begin{array}{cc} \mathbf{h}_{11} & \mathbf{h}_{12} \\ \mathbf{h}_{21} & \mathbf{h}_{22} \end{array}\right] \cdot \left[\begin{array}{c} \mathbf{I}_1 \\ \mathbf{V}_2 \end{array}\right]$$

Cuadripolos

Oscar Perpiñán Lamigueiro

Introducción

Parámetr Cuadripo

Parámetros de Impedanci

Parámetros de Admit

arámetros Híbrid

Parámetros de Transmisión Parámetros de Transmisión

Relación entre

Cuadripolos entre Dipolos Terminales

Cálculo de parámetros

Entrada en abierto

$$\left[\begin{array}{c} \mathbf{V}_1 \\ \mathbf{I}_2 \end{array}\right] = \left[\begin{array}{cc} \mathbf{h}_{11} & \mathbf{h}_{12} \\ \mathbf{h}_{21} & \mathbf{h}_{22} \end{array}\right] \cdot \left[\begin{array}{c} \mathbf{I}_1 \\ \mathbf{V}_2 \end{array}\right]$$

Cuadripolos

Oscar Perpiñán Lamigueiro

Introducción

arámetro

Parámetros de Impedancia

Parámetros Híbridos

Parámetros Híb Inversos

Parámetros de Transmisión Parámetros de Transmisión

Relación entre parámetros

Cuadripolos entre Dipolos Terminales

Introducción

Parámetros de Cuadripolos

Parámetros de Impedancia Parámetros de Admitancia Parámetros Híbridos

Parámetros Híbridos Inversos

Parámetros de Transmisión Parámetros de Transmisión Inversa

Relación entre parámetros

Cuadripolos entre Dipolos Terminales

Definición

Mediante teorema de superposición:

$$\begin{split} \mathbf{I}_1 &= \mathbf{g}_{11} \mathbf{V}_1 + \mathbf{g}_{12} \mathbf{I}_2 \\ \mathbf{V}_2 &= \mathbf{g}_{21} \mathbf{V}_1 + \mathbf{g}_{22} \mathbf{I}_2 \end{split}$$

Las variables independientes (generadores) son V_1 e I_2 .

Cuadripolos

Oscar Perpiñán Lamigueiro

Introducción

Cuadripolos
Parámetros de Impedancia

Parámetros Híbridos Inversos

Parámetros de Transmisión Parámetros de Transmisión

Relación entre parámetros

Cuadripolos entre Dipolos Terminales

Expresión Matricial

$$\left[\begin{array}{c}\mathbf{I}_1\\\mathbf{V}_2\end{array}\right] = \left[\begin{array}{cc}\mathbf{g}_{11} & \mathbf{g}_{12}\\\mathbf{g}_{21} & \mathbf{g}_{22}\end{array}\right] \cdot \left[\begin{array}{c}\mathbf{V}_1\\\mathbf{I}_2\end{array}\right]$$

Cuadripolos

Oscar Perpiñán Lamigueiro

Introducció

Parámetros de Cuadripolos Parámetros de Impedanci

Parámetros de Admitancia Parámetros Híbridos

Parámetros Híbridos Inversos

Parámetros de Transmisión Parámetros de Transmisión Inversa

Relación entre parámetros

Cuadripolos entre Dipolos Terminales

Circuito Equivalente

$$\begin{split} \textbf{I}_1 &= \textbf{g}_{11} \textbf{V}_1 + \textbf{g}_{12} \textbf{I}_2 \\ \textbf{V}_2 &= \textbf{g}_{21} \textbf{V}_1 + \textbf{g}_{22} \textbf{I}_2 \end{split}$$

Cuadripolos

Oscar Perpiñán Lamigueiro

Introducció

Parámet Cuadrip

Parámetros de Admitanci

Parámetros Híbridos Inversos

Parámetros de Transmisión
Parámetros de Transmisión
Inversa

Relación entre parámetros

Cuadripolos entre Dipolos Terminales

Cálculo de parámetros

Salida en abierto

$$\left[\begin{array}{c}\mathbf{I}_1\\\mathbf{V}_2\end{array}\right] = \left[\begin{array}{cc}\mathbf{g}_{11} & \mathbf{g}_{12}\\\mathbf{g}_{21} & \mathbf{g}_{22}\end{array}\right] \cdot \left[\begin{array}{c}\mathbf{V}_1\\\mathbf{I}_2\end{array}\right]$$

Cuadripolos

Oscar Perpiñán Lamigueiro

Introducciór

Parámetros de Cuadripolos

Parámetros de Admitancia

Parámetros Híbridos Inversos

Parámetros de Transmisión Parámetros de Transmisión

Relación entre parámetros

Cuadripolos entre Dipolos Terminales

Cálculo de parámetros

Entrada en cortocircuito

$$\left[\begin{array}{c}\mathbf{I}_1\\\mathbf{V}_2\end{array}\right] = \left[\begin{array}{cc}\mathbf{g}_{11} & \mathbf{g}_{12}\\\mathbf{g}_{21} & \mathbf{g}_{22}\end{array}\right] \cdot \left[\begin{array}{c}\mathbf{V}_1\\\mathbf{I}_2\end{array}\right]$$

Cuadripolos

Oscar Perpiñán Lamigueiro

Introducción

Parámetros de Cuadripolos

Parámetros de Admitancia

Parámetros Híbridos Inversos

Parámetros de Transmisión Parámetros de Transmisión

Relación entr parámetros

Cuadripolos entre Dipolos Terminales

Introducción

Parámetros de Cuadripolos

Parámetros de Impedancia Parámetros de Admitancia Parámetros Híbridos Parámetros Híbridos Inversos

Parámetros de Transmisión

Parámetros de Transmisión Inversa

Relación entre parámetros

Cuadripolos entre Dipolos Terminales

Definición

$$\mathbf{V}_1 = \mathbf{A}\mathbf{V}_2 + \mathbf{B}\mathbf{I}'_2$$
$$\mathbf{I}_1 = \mathbf{C}\mathbf{V}_2 + \mathbf{D}\mathbf{I}'_2$$

Atención al sentido de la corriente I'_2 . ($I'_2 = -I_2$).

Cuadripolos

Oscar Perpiñán Lamigueiro

Introducción

arametros de adripolos erámetros de Impedancia erámetros de Admitancia erámetros Híbridos

Parámetros de Transmisión

Relación entre

Cuadripolos entre Dipolos

Expresión Matricial

$$\left[\begin{array}{c} \mathbf{V}_1 \\ \mathbf{I}_1 \end{array}\right] = \left[\begin{array}{cc} \mathbf{A} & \mathbf{B} \\ \mathbf{C} & \mathbf{D} \end{array}\right] \cdot \left[\begin{array}{c} \mathbf{V}_2 \\ \mathbf{I}'_2 \end{array}\right]$$

Cuadripolos

Oscar Perpiñán Lamigueiro

Introducció

rrámetros de nadripolos vrámetros de Impedancia vrámetros de Admitancia vrámetros Híbridos

Parámetros de Transmisión Parámetros de Transmisión

Relación entre parámetros

Cuadripolos entre Dipolos Terminales

Cálculo de parámetros

Se debe medir el inverso de cada parámetro, dado que la magnitud a medir y la excitación pertenecen al mismo puerto.

$$\left. \frac{1}{A} = \left. \frac{\mathbf{V}_2}{\mathbf{V}_1} \right|_{\mathbf{I}_2 = \mathbf{0}} \quad \frac{1}{B} = \left. \frac{\mathbf{I}'_2}{\mathbf{V}_1} \right|_{\mathbf{V}_2 = \mathbf{0}}$$

$$\frac{1}{\mathbf{C}} = \frac{\mathbf{V}_2}{\mathbf{I}_1}\Big|_{\mathbf{I}_2=0} \quad \frac{1}{\mathbf{D}} = \frac{\mathbf{I}'_2}{\mathbf{I}_1}\Big|_{\mathbf{V}_2=0}$$

$$\mathbf{V}_1 = \mathbf{A}\mathbf{V}_2 + \mathbf{B}\mathbf{I}'_2$$
$$\mathbf{I}_1 = \mathbf{C}\mathbf{V}_2 + \mathbf{D}\mathbf{I}'_2$$

Cuadripolos

Oscar Perpiñán Lamigueiro

Introducción

arámetros de Juadripolos

Parámetros de Admitancia Parámetros Híbridos

Parámetros Híbridos Inversos

Parámetros de Transmisión Parámetros de Transmisión

Relación entre

Cuadripolos entre Dipolos Terminales

Introducción

Parámetros de Cuadripolos

Parámetros de Impedancia Parámetros de Admitancia Parámetros Híbridos Parámetros Híbridos Inversos Parámetros de Transmisión Parámetros de Transmisión Inversa

Relación entre parámetros

Cuadripolos entre Dipolos Terminales

Definición

$$\mathbf{V}_2 = \mathbf{a}\mathbf{V}_1 + \mathbf{b}\mathbf{I}'_1$$
$$\mathbf{I}_2 = \mathbf{c}\mathbf{V}_1 + \mathbf{d}\mathbf{I}'_1$$

Atención al sentido de la corriente \mathbf{I}'_1 ($\mathbf{I}'_1 = -\mathbf{I}_1$).

Cuadripolos

Oscar Perpiñán Lamigueiro

Introducción

arámetros de uadripolos arámetros de Impedancia

rámetros Híbridos irámetros Híbridos versos

Parámetros de Transmisión Inversa

Relación entre parámetros

Cuadripolos entre Dipolos Ferminales

Cuadripolos

Expresión Matricial

$$\left[\begin{array}{c} \mathbf{V}_2 \\ \mathbf{I}_2 \end{array}\right] = \left[\begin{array}{cc} \mathbf{a} & \mathbf{b} \\ \mathbf{c} & \mathbf{d} \end{array}\right] \cdot \left[\begin{array}{c} \mathbf{V}_1 \\ \mathbf{I}'_1 \end{array}\right]$$

Cuadripolos

Oscar Perpiñán Lamigueiro

Introducció

arámetros de uadripolos

^oarámetros de Impedancia ^oarámetros de Admitancia ^oarámetros Híbridos

Parámetros de Transmisión Parámetros de Transmisión

Relación entre parámetros

Inversa

Cuadripolos entre Dipolos Terminales

Cálculo de parámetros

Se debe medir el inverso de cada parámetro, dado que la magnitud a medir y la excitación pertenecen al mismo puerto.

$$\frac{1}{a} = \left. \frac{\mathbf{V}_1}{\mathbf{V}_2} \right|_{\mathbf{I}_1 = \mathbf{0}} \quad \frac{1}{b} = \left. \frac{\mathbf{I}'_1}{\mathbf{V}_2} \right|_{\mathbf{V}_1 = \mathbf{0}}$$

$$\frac{1}{\mathbf{c}} = \left. \frac{\mathbf{V}_1}{\mathbf{I}_2} \right|_{\mathbf{I}_1 = \mathbf{0}} \quad \frac{1}{\mathbf{d}} = \left. \frac{\mathbf{I}'_1}{\mathbf{I}_2} \right|_{\mathbf{V}_1 = \mathbf{0}}$$

$$\mathbf{V}_2 = \mathbf{a}\mathbf{V}_1 + \mathbf{b}\mathbf{I}'_1$$

 $\mathbf{I}_2 = \mathbf{c}\mathbf{V}_1 + \mathbf{d}\mathbf{I}'_1$

Cuadripolos

Oscar Perpiñán Lamigueiro

Introducción

Parámetros de Cuadripolos

Parámetros de Admitancia

arámetros Híbrido iversos

Parámetros de Transmisión
Parámetros de Transmisión
Inversa

Relación entre

Cuadripolos entre Dipolos

Introducción

Parámetros de Cuadripolos

Relación entre parámetros

Cuadripolos entre Dipolos Terminales

Impedancia y Admitancia

$$\begin{bmatrix} \mathbf{V}_1 \\ \mathbf{V}_2 \end{bmatrix} = \begin{bmatrix} \mathbf{z}_{11} & \mathbf{z}_{12} \\ \mathbf{z}_{21} & \mathbf{z}_{22} \end{bmatrix} \cdot \begin{bmatrix} \mathbf{I}_1 \\ \mathbf{I}_2 \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{I}_1 \\ \mathbf{I}_2 \end{bmatrix} = \begin{bmatrix} \mathbf{y}_{11} & \mathbf{y}_{12} \\ \mathbf{y}_{21} & \mathbf{y}_{22} \end{bmatrix} \cdot \begin{bmatrix} \mathbf{V}_1 \\ \mathbf{V}_2 \end{bmatrix}$$

Cuadripolos

Oscar Perpiñán Lamigueiro

Introducción

Parámetros de Cuadripolos

Relación entre parámetros

Cuadripolos entre Dipolos Terminales

Asociación de

Híbridos

$$\begin{bmatrix} \mathbf{V}_1 \\ \mathbf{I}_2 \end{bmatrix} = \begin{bmatrix} \mathbf{h}_{11} & \mathbf{h}_{12} \\ \mathbf{h}_{21} & \mathbf{h}_{22} \end{bmatrix} \cdot \begin{bmatrix} \mathbf{I}_1 \\ \mathbf{V}_2 \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{I}_1 \\ \mathbf{V}_2 \end{bmatrix} = \begin{bmatrix} \mathbf{g}_{11} & \mathbf{g}_{12} \\ \mathbf{g}_{21} & \mathbf{g}_{22} \end{bmatrix} \cdot \begin{bmatrix} \mathbf{V}_1 \\ \mathbf{I}_2 \end{bmatrix}$$

Cuadripolos

Oscar Perpiñán Lamigueiro

Introducción

Parámetros de Cuadripolos

Relación entre parámetros

Cuadripolos entre Dipolos Terminales

Asociación de

Transmisión

$$\begin{bmatrix} \mathbf{V}_1 \\ \mathbf{I}_1 \end{bmatrix} = \begin{bmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{C} & \mathbf{D} \end{bmatrix} \cdot \begin{bmatrix} \mathbf{V}_2 \\ \mathbf{I}'_2 \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{V}_2 \\ \mathbf{I}_2 \end{bmatrix} = \begin{bmatrix} \mathbf{a} & \mathbf{b} \\ \mathbf{c} & \mathbf{d} \end{bmatrix} \cdot \begin{bmatrix} \mathbf{V}_1 \\ \mathbf{I}'_1 \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{C} & \mathbf{D} \end{bmatrix} = \begin{bmatrix} \mathbf{a} & -\mathbf{b} \\ -\mathbf{c} & \mathbf{d} \end{bmatrix}^{-1}$$

Cuadripolos

Oscar Perpiñán Lamigueiro

Introduccion

Parámetros de Cuadripolos

Relación entre parámetros

Cuadripolos entre Dipolos Terminales

	z		y		h		g		T		t	
z	\mathbf{z}_{11}	\mathbf{z}_{12}	$\frac{\mathbf{y}_{22}}{\Delta_y}$	$-\frac{\mathbf{y}_{12}}{\Delta_{\mathbf{y}}}$	$\frac{\Delta_h}{\mathbf{h}_{22}}$	$\frac{\mathbf{h}_{12}}{\mathbf{h}_{22}}$	$\frac{1}{g_{11}}$	$-\frac{\mathbf{g}_{12}}{\mathbf{g}_{11}}$	$\frac{\mathbf{A}}{\mathbf{C}}$	$\frac{\Delta_T}{\mathbf{C}}$	$\frac{\mathbf{d}}{\mathbf{c}}$	$\frac{1}{\mathbf{c}}$
	\mathbf{z}_{21}	\mathbf{z}_{22}	$-\frac{\mathbf{y}_{21}}{\Delta_y}$	$\frac{\mathbf{y}_{11}}{\Delta_y}$	$-\frac{\mathbf{h}_{21}}{\mathbf{h}_{22}}$	$\frac{1}{\mathbf{h}_{22}}$	$\frac{\mathbf{g}_{21}}{\mathbf{g}_{11}}$	$\frac{\Delta_g}{\mathbf{g}_{11}}$	$\frac{1}{\mathbf{C}}$	$\frac{\mathbf{D}}{\mathbf{C}}$	$\frac{\Delta_t}{\mathbf{c}}$	$\frac{\mathbf{a}}{\mathbf{c}}$
y	$rac{\mathbf{z}_{22}}{\Delta_z}$	$-\frac{\mathbf{z}_{12}}{\Delta_z}$	\mathbf{y}_{11}	\mathbf{y}_{12}	$\frac{1}{\mathbf{h}_{11}}$	$-\frac{\mathbf{h}_{12}}{\mathbf{h}_{11}}$	$rac{\Delta_g}{\mathbf{g}_{22}}$	$\frac{\mathbf{g}_{12}}{\mathbf{g}_{22}}$	$\frac{\mathbf{D}}{\mathbf{B}}$	$-\frac{\Delta_T}{\mathbf{B}}$	$\frac{\mathbf{a}}{\mathbf{b}}$	$-\frac{1}{\mathbf{b}}$
	$-\frac{\mathbf{z}_{21}}{\Delta_z}$	$rac{\mathbf{z}_{11}}{\Delta_z}$	\mathbf{y}_{21}	\mathbf{y}_{22}	$\frac{\mathbf{h}_{21}}{\mathbf{h}_{11}}$	$\frac{\Delta_h}{\mathbf{h}_{11}}$	$-\frac{\mathbf{g}_{21}}{\mathbf{g}_{22}}$	$\frac{1}{\mathbf{g}_{22}}$	$-\frac{1}{\mathbf{B}}$	$\frac{\mathbf{A}}{\mathbf{B}}$	$-\frac{\Delta_t}{\mathbf{b}}$	$\frac{\mathbf{d}}{\mathbf{b}}$
h	$rac{\Delta_z}{\mathbf{z}_{22}}$	$\frac{\mathbf{z}_{12}}{\mathbf{z}_{22}}$	$\frac{1}{\mathbf{y}_{11}}$	$-\frac{\mathbf{y}_{12}}{\mathbf{y}_{11}}$	\mathbf{h}_{11}	\mathbf{h}_{12}	$rac{\mathbf{g}_{22}}{\Delta_g}$	$-\frac{{\bf g}_{12}}{\Delta_g}$	$\frac{\mathbf{B}}{\mathbf{D}}$	$\frac{\Delta_T}{\mathbf{D}}$	$\frac{\mathbf{b}}{\mathbf{a}}$	$\frac{1}{\mathbf{a}}$
	$-\frac{\mathbf{z}_{21}}{\mathbf{z}_{22}}$	$\frac{1}{\mathbf{z}_{22}}$	$\frac{\mathbf{y}_{21}}{\mathbf{y}_{11}}$	$\frac{\Delta_y}{\mathbf{y}_{11}}$	h ₂₁	h ₂₂	$-rac{{f g}_{21}}{\Delta_g}$	$rac{{f g}_{11}}{\Delta_g}$	$-\frac{1}{\mathbf{D}}$	$\frac{\mathbf{C}}{\mathbf{D}}$	$\frac{\Delta_t}{\mathbf{a}}$	e a
g	$\frac{1}{\mathbf{z}_{11}}$	$-\frac{\mathbf{z}_{12}}{\mathbf{z}_{11}}$	$\frac{\Delta_y}{\mathbf{y}_{22}}$	$\frac{y_{12}}{y_{22}}$	$\frac{\mathbf{h}_{22}}{\Delta_h}$	$-\frac{\mathbf{h}_{12}}{\Delta_h}$	\mathbf{g}_{11}	\mathbf{g}_{12}	$\frac{\mathbf{C}}{\mathbf{A}}$	$-\frac{\Delta_T}{\mathbf{A}}$	$\frac{\mathbf{c}}{\mathbf{d}}$	$-\frac{1}{\mathbf{d}}$
	$\frac{\mathbf{z}_{21}}{\mathbf{z}_{11}}$	$\frac{\Delta_z}{\mathbf{z}_{11}}$	$-\frac{\mathbf{y}_{21}}{\mathbf{y}_{22}}$	$\frac{1}{y_{22}}$	$-\frac{\mathbf{h}_{21}}{\Delta_h}$ Δ_h	$rac{\mathbf{h}_{11}}{\Delta_h} \ \mathbf{h}_{11}$	g ₂₁	g ₂₂	$\frac{1}{\mathbf{A}}$	$\frac{\mathbf{B}}{\mathbf{A}}$	$\frac{\Delta_t}{\mathbf{d}}$	$-\frac{\mathbf{b}}{\mathbf{d}}$
T	$\frac{\mathbf{z}_{11}}{\mathbf{z}_{21}}$	$\frac{\Delta_z}{\mathbf{z}_{21}}$	$-\frac{\mathbf{y}_{22}}{\mathbf{y}_{21}}$ Δ_y	$-\frac{1}{\mathbf{y}_{21}}$ \mathbf{y}_{11}	$-\frac{\Delta_h}{\mathbf{h}_{21}}$ \mathbf{h}_{22}	$-\frac{\mathbf{h}_{11}}{\mathbf{h}_{21}}$	$\frac{1}{\mathbf{g}_{21}}$ \mathbf{g}_{11}	$\frac{\mathbf{g}_{22}}{\mathbf{g}_{21}}$ Δ_g	A	В	$\frac{\mathbf{d}}{\Delta_t}$	$\frac{\mathbf{b}}{\Delta_t}$
	$\frac{1}{\mathbf{z}_{21}}$	$\frac{\mathbf{z}_{22}}{\mathbf{z}_{21}}$ $\underline{\Delta_z}$	$-{y_{21}}$	$-\frac{y_{11}}{y_{21}}$	$-\frac{\mathbf{h}_{22}}{\mathbf{h}_{21}}$ $\underline{\frac{1}{\mathbf{h}_{22}}}$	$-\frac{\mathbf{h}_{21}}{\mathbf{h}_{11}}$	$\frac{\mathbf{g}_{11}}{\mathbf{g}_{21}}$ Δ_g	g_{21}	C D	D R	$\frac{\mathbf{c}}{\Delta_t}$	$\frac{\mathbf{a}}{\Delta_t}$
t	$\frac{\mathbf{z}_{22}}{\mathbf{z}_{12}}$	$\frac{-z}{\mathbf{z}_{12}}$ \mathbf{z}_{11}	$-\frac{\mathbf{y}_{11}}{\mathbf{y}_{12}}\\\Delta_y$	$-\frac{1}{y_{12}}$ y_{22}	$\frac{\mathbf{h}_{12}}{\mathbf{h}_{22}}$	$rac{\mathbf{h}_{11}}{\mathbf{h}_{12}}$ Δ_h	$-\frac{-s}{\mathbf{g}_{12}}$ \mathbf{g}_{11}	$-\frac{\mathbf{g}_{22}}{\mathbf{g}_{12}}$ 1	$egin{array}{c} \mathbf{D} \\ \overline{\Delta_T} \\ \mathbf{C} \end{array}$	$\frac{\mathbf{B}}{\Delta_T}$	a	b
	$\frac{1}{\mathbf{z}_{12}}$	$\frac{z_{11}}{z_{12}}$	$-\frac{-y}{\mathbf{y}_{12}}$	$-\frac{y_{22}}{y_{12}}$	$\frac{{\bf h}_{22}}{{\bf h}_{12}}$	$\frac{\Delta_h}{\mathbf{h}_{12}}$	$-\frac{\mathbf{g}_{11}}{\mathbf{g}_{12}}$	$-\frac{1}{\mathbf{g}_{12}}$	$\frac{c}{\Delta_T}$	$\frac{\mathbf{A}}{\Delta_T}$	с	d
$\begin{array}{lll} \Delta_z = \mathbf{z}_{11}\mathbf{z}_{22} - \mathbf{z}_{12}\mathbf{z}_{21}, & \Delta_h = \mathbf{h}_{11}\mathbf{h}_{22} - \mathbf{h}_{12}\mathbf{h}_{21}, \\ \Delta_y = \mathbf{y}_{11}\mathbf{y}_{22} - \mathbf{y}_{12}\mathbf{y}_{21}, & \Delta_g = \mathbf{g}_{11}\mathbf{g}_{22} - \mathbf{g}_{12}\mathbf{g}_{21}, \end{array}$					$\Delta_T = \mathbf{A}$ $\Delta_t = \mathbf{a}$	D – BC d – bc						

Reciprocidad

A partir de las relaciones ya obtenidas para impedancia y admitancia, utilizando la tabla anterior obtenemos la relación para parámetros híbridos y de transmisión:

$$\left. \begin{array}{l} z_{12} = z_{21} \\ y_{12} = y_{21} \end{array} \right\} \rightarrow \left\{ \begin{array}{l} h_{12} = -h_{21} \\ g_{12} = -g_{21} \\ AD - BC = 1 \\ ad - bc = 1 \end{array} \right.$$

Cuadripolos

Oscar Perpiñán Lamigueiro

Introduccion

Parámetros de Cuadripolos

Relación entre parámetros

Cuadripolos entre Dipolos Terminales

Simetría

A partir de las relaciones ya obtenidas para impedancia y admitancia, utilizando la tabla anterior obtenemos la relación para parámetros híbridos y de transmisión:

$$\left. \begin{array}{l} \mathbf{z_{11}} = \mathbf{z_{22}} \\ \mathbf{y_{11}} = \mathbf{y_{22}} \end{array} \right\} \rightarrow \left\{ \begin{array}{l} \mathbf{h_{11}} \cdot \mathbf{h_{22}} - \mathbf{h_{12}}^2 = 1 \\ \mathbf{g_{11}} \cdot \mathbf{g_{22}} - \mathbf{g_{12}}^2 = 1 \\ \mathbf{A} = \mathbf{D} \\ \mathbf{a} = \mathbf{d} \end{array} \right.$$

Además:

$$|[T] = [t]$$

Cuadripolos

Oscar Perpiñán Lamigueiro

Introducción

'arámetros de Cuadripolos

Relación entre parámetros

Cuadripolos entre Dipolos Terminales

Introducción

Parámetros de Cuadripolos

Relación entre parámetros

Cuadripolos entre Dipolos Terminales

Introducción

Parámetros de Cuadripolos

Relación entre parámetros

Cuadripolos entre Dipolos Terminales Situación General

Parámetros Imagen

$$\mathbf{V}_1 = \mathbf{E}_g - \mathbf{Z}_g \cdot \mathbf{I}_1$$
$$\mathbf{V}_2 = -\mathbf{Z}_L \cdot \mathbf{I}_2$$

Cuadripolos

Oscar Perpiñán Lamigueiro

Introducción

Parámetros de Cuadripolos

parámetros

Dipolos Terminales

Situación General Parámetros Imagen

$$\mathbf{V}_1 = (\mathbf{I}_g - \mathbf{I}_1) \cdot \mathbf{Z}_g$$
$$\mathbf{V}_2 = -\mathbf{Z}_L \cdot \mathbf{I}_2$$

Cuadripolos

Oscar Perpiñán Lamigueiro

Introducción

Parámetros de Cuadripolos

parámetros

Cuadripolos entre Dipolos Terminales

Situación General Parámetros Imagen

Ganancia

Ganancia de Tensión

$$\mathbf{A}_V = \frac{\mathbf{V}_2}{\mathbf{E}_g}$$

Ganancia de Corriente

$$\mathbf{A}_I = \frac{\mathbf{I}_I}{\mathbf{I}_I}$$

Cuadripolos

Oscar Perpiñán Lamigueiro

Introducción

arámetros de Juadripolos

oarámetros

Terminales

Situación General Parámetros Image

Impedancia

Impedancia de Entrada

$$\mathbf{Z}_i = rac{\mathbf{V}_1}{\mathbf{I}_1}$$

Impedancia de Salida

$$\mathbf{Z}_o = \left. \frac{\mathbf{V}_2}{\mathbf{I}_2} \right|_{\mathbf{E}_g = 0}$$

Cuadripolos

Oscar Perpiñán Lamigueiro

Introducció:

arámetros de uadripolos

parámetros

Dipolos Ferminales

Situación General

Asociación de

Transferencia

Transadmitancia directa

$$\mathbf{Y}_f = \frac{\mathbf{I}_2}{\mathbf{E}_g}$$

Transimpedancia directa

$$\mathbf{Z}_f = \frac{\mathbf{V}_2}{\mathbf{I}_g}$$

Cuadripolos

Oscar Perpiñán Lamigueiro

Introducción

arámetros de Juadripolos

parámetros

Dipolos Terminales

Situación General Parámetros Imagen

Ejercicio de Cálculo (1)

Demuestra que la impedancia de entrada del circuito a la derecha de la fuente real expresada con parámetros de transmisión es:

Cuadripolos

Oscar Perpiñán Lamigueiro

Introducción

rámetros de adripolos

Relación ent: parámetros

fuadripolos entre Pipolos erminales

Situación General Parámetros Imagen

Ejercicio de Cálculo (2)

¿Qué impedancia de carga \mathbf{Z}_L hay que conectar a la salida del cuadripolo para obtener la máxima transferencia de potencia?

Cuadripolos

Oscar Perpiñán Lamigueiro

Introducción

arámetros de uadripolos

Relación entro parámetros

uadripolos entre Pipolos

Situación General Parámetros Imagen

Introducciór

Parámetros de Cuadripolos

Relación entre parámetros

Cuadripolos entre Dipolos Terminales

Situación General

Parámetros Imagen

Impedancia Característica

Para un cuadripolo **recíproco** y **simétrico** se definen los parámetros imagen:

▶ Impedancia característica, \mathbb{Z}_0 : impedancia que, conectada en una puerta, hace que desde la otra puerta se vea la misma impedancia.

$$\mathbf{Z}_o = \frac{\mathbf{U}_1}{\mathbf{I}_1}$$

$$\mathbf{Z}_o = \frac{\mathbf{A}\mathbf{Z}_o + \mathbf{B}}{\mathbf{C}\mathbf{Z}_o + \mathbf{D}}$$

$$\mathbf{A} = \mathbf{D}
ightarrow \mathbf{Z}_o = \pm \sqrt{rac{\mathbf{B}}{\mathbf{C}}}$$

Cuadripolos

Oscar Perpiñán Lamigueiro

Introducció

Parámetros de Cuadripolos

parámetro

uadripolos entre ipolos erminales

Parámetros Imagen

Impedancia Característica

Atención

La ecuación proporciona dos soluciones, una de las cuáles implicará una impedancia no viable (*resistencia negativa*).

$$\mathbf{Z}_o = \pm \sqrt{\frac{\mathbf{B}}{\mathbf{C}}}$$

Cuadripolos

Oscar Perpiñán Lamigueiro

Introducción

arámetros de uadripolos

parámetros

erminales

Parámetros Imagen

Asociación de

Función de Propagación

Para un cuadripolo **recíproco** y **simétrico** se definen los parámetros imagen:

► Función de propagación, γ : relacionada con el cociente de potencias en las puertas del cuadripolo cuando una de ellas está cargada con \mathbb{Z}_0

$$exp(2\gamma) = \frac{\textbf{U}_1 \textbf{I}_1}{\textbf{U}_2 \textbf{I}_2'}$$

$$\mathbf{U}_1 = \mathbf{I}_1 \mathbf{Z}_o$$
$$\mathbf{U}_2 = \mathbf{I}_2' \mathbf{Z}_o$$

$$\boxed{ \exp(\gamma) = \frac{\mathbf{U}_1}{\mathbf{U}_2} = \frac{\mathbf{I}_1}{\mathbf{I}_2'} }$$

Cuadripolos

Oscar Perpiñán Lamigueiro

Introducció:

'arámetros de Cuadripolos

parámetro:

Pipolos erminales

Parámetros Imagen

Relación entre \mathbf{Z}_o y γ

$$egin{aligned} \exp(\gamma) &= rac{\mathbf{U}_1}{\mathbf{U}_2} = \ &= rac{\mathbf{A}\mathbf{U}_2 + \mathbf{B}\mathbf{I}_2'}{\mathbf{U}_2} = \ &= \mathbf{A} + \mathbf{B}rac{\mathbf{I}_2'}{\mathbf{I}_2} \end{aligned}$$

$$\exp(\gamma) = \mathbf{A} + \frac{\mathbf{B}}{\mathbf{Z}_o}$$

Cuadripolos

Oscar Perpiñán Lamigueiro

Introducció

Parámetros de Cuadripolos

Kelación enti parámetros

Cuadripolos entre Dipolos Ferminales

Parámetros Imagen

Relación entre \mathbf{Z}_o y γ

Teniendo en cuenta la expresión de \mathbb{Z}_0 :

$$\left. \begin{array}{l} \mathbf{Z}_{o} = \pm \sqrt{\frac{\mathbf{B}}{C}} \\ \exp(\gamma) = \mathbf{A} + \frac{\mathbf{B}}{\mathbf{Z}_{o}} \end{array} \right\} \rightarrow \boxed{\exp(\gamma) = \mathbf{A} \pm \sqrt{\mathbf{BC}}}$$

Además, teniendo en cuenta la relación de un cuadripolo recíproco y simétrico:

$$\mathbf{A}^2 - \mathbf{BC} = 1 \rightarrow \boxed{\exp(\gamma) = \mathbf{A} \pm \sqrt{\mathbf{A}^2 - 1}}$$

Atención al signo que acompaña a las raíces cuadradas. Se debe elegir de forma que la parte real de γ sea acorde al cuadripolo.

Cuadripolos

Oscar Perpiñán Lamigueiro

Introducción

arámetros de luadripolos

arámetros

erminales

Parámetros Imagen

Transmisión a partir de Imagen

$$\mathbf{A}^2 - \mathbf{BC} = 1$$

$$e^{\gamma} = \mathbf{A} + \sqrt{\mathbf{A}^2 - 1}$$
 $\cosh(\gamma) = \frac{e^{\gamma} + e^{-\gamma}}{2}$ $\sinh(\gamma) = \frac{e^{\gamma} - e^{-\gamma}}{2}$ $\cosh^2(\gamma) - \sinh^2(\gamma) = 1$

$$\mathbf{A} = \cosh(\gamma)$$
 $\mathbf{B} = \mathbf{Z}_o \sinh(\gamma)$
 $\mathbf{C} = \sinh(\gamma)/\mathbf{Z}_o$ $\mathbf{D} = \cosh(\gamma)$

Cuadripolos

Oscar Perpiñán Lamigueiro

Introducció

Parámetros de Cuadripolos

Kelación ent: parámetros

Cuadripolos entre Dipolos Ferminales

Parámetros Imagen

Régimen Permanente Sinusoidal

Cuando el circuito funciona en régimen permanente sinusoidal:

La función de propagación es un número complejo denominado constante de propagación.

$$\overline{\gamma} = \alpha + j\beta$$

Las tensiones y corrientes son fasores

$$\exp(\overline{\gamma}) = \exp(\alpha) \cdot \exp(j\beta) = \frac{U_1}{\overline{U}_2} = \frac{I_1}{\overline{I}_2'}$$

Cuadripolos

Oscar Perpiñán Lamigueiro

Introducción

arámetros de Juadripolos

parámetros

erminales

Parámetros Imagen

Régimen Permanente Sinusoidal

Constante de Atenuación (cuando $\alpha > 1$ el cuadripolo atenúa la salida respecto de la entrada)

$$\exp(\alpha) = \frac{U_1}{U_2} = \frac{I_1}{I_2}$$

Constante de Fase (desfase entre puertos)

$$\beta = \theta_{\overline{U}_1} - \theta_{\overline{U}_2} = \theta_{\overline{I}_1} - \theta_{\overline{I}_2'}$$

Cuadripolos

Oscar Perpiñán Lamigueiro

Introducció

arámetros de uadripolos

delación entre parámetros

erminales tuación General

Parámetros Imagen

Atenuación de Potencia

Cuando está conectada la impedancia característica, las potencias activas en los puertos se expresan:

$$P_1 = U_1 I_1 \cos(\theta_o)$$

$$P_2 = U_2 I_2 \cos(\theta_o)$$

donde θ_0 es el ángulo de la impedancia \overline{Z}_0 . Por tanto, la relación de potencias activas es:

$$\frac{P_1}{P_2} = \frac{U_1 I_1}{U_2 I_2}$$

Teniendo en cuenta la expresión de la constante de atenuación, esta relación es:

$$\exp(\alpha) = \frac{U_1}{U_2} = \frac{I_1}{I_2} \to \boxed{\exp(2\alpha) = \frac{U_1 I_1}{U_2 I_1} = \frac{P_1}{P_2}}$$

Cuadripolos

Oscar Perpiñán Lamigueiro

Introducción

arámetros de uadripolos

Kelación entre parámetros

Pipolos erminales

Parámetros Imagen

Asociación de Cuadripolos Introducciór

Parámetros de Cuadripolos

Relación entre parámetros

Cuadripolos entre Dipolos Terminales

Asociación de Cuadripolos

Conexiones

Definición

- ▶ Serie: misma corriente, suma de tensiones
- Paralelo: misma tensión, suma de corrientes

Catálogo

- ► Serie-Serie: parámetros impedancia
- ► Paralelo-Paralelo: parámetros admitancia
- ► Serie-Paralelo: parámetros híbridos
- ► Paralelo-Serie: parámetros híbridos inversos
- Cascada: parámetros transmisión/imagen

Cuadripolos

Oscar Perpiñán Lamigueiro

Introducción

uadripolos

xeiación parámetr

> uadripolos (lipolos erminales

Asociación de Cuadripolos

Asociación Paralelo-Paralelo

> Asociación Paralelo-Serie Asociación Cascada

Introducción

Parámetros de Cuadripolos

Relación entre parámetros

Cuadripolos entre Dipolos Terminales

Asociación de Cuadripolos
Asociación Serie-Serie
Asociación Paralelo-Paralelo
Asociación Serie-Paralelo
Asociación Paralelo Serie

Conexión

Tensiones

$$\mathbf{V}_1 = \mathbf{V}_{1A} + \mathbf{V}_{1B}$$
$$\mathbf{V}_2 = \mathbf{V}_{2A} + \mathbf{V}_{2B}$$

Condición de Puerto

$$\mathbf{I}_{1A} = \mathbf{I}_{1'A}$$
 $\mathbf{I}_{1B} = \mathbf{I}_{1'B}$
 $\mathbf{I}_{2A} = \mathbf{I}_{2'A}$
 $\mathbf{I}_{2B} = \mathbf{I}_{2'B}$

Cuadripolos

Oscar Perpiñán Lamigueiro

Introducción

rámetros de adripolos

Relación entre parámetros

uadripolos entre lipolos erminales

sociación de Juadripolos

Asociación Serie-Serie

Asociación Paralelo-Parale

Paralelo-Paralelo Asociación Serie-Paralel Asociación Paralelo-Seri

Cuadripolo Equivalente

Parámetros Impedancia

 $[\mathbf{V}_A] = [\mathbf{Z}_A] \cdot [\mathbf{I}_A]$ $[\mathbf{V}_B] = [\mathbf{Z}_B] \cdot [\mathbf{I}_B]$

Cuadripolo Equivalente

 $\boxed{[\mathbf{Z}] = [\mathbf{Z}_A] + [\mathbf{Z}_B]}$

Cuadripolos

Oscar Perpiñán Lamigueiro

Introducción

ámetros de

elación ent rámetros

uadripolos ipolos erminales

sociación de uadripolos

Asociación Serie-Serie

Asociación Paralelo-Par

> Asociación Serie-Paralelo Asociación Paralelo-Serie Asociación Cascada

Interacción

► Entrada

$$\begin{aligned} \mathbf{I}_{1A} &= \mathbf{I}_{g1} \\ \mathbf{I}_{1'A} &= \mathbf{I}_{g1} - \mathbf{I}_h \end{aligned}$$

► Salida

$$\begin{split} \mathbf{I}_{2A} &= \mathbf{I}_{g2} \\ \mathbf{I}_{2'A} &= \mathbf{I}_{g2} + \mathbf{I}_h \end{split}$$

Condición de Puerto

$$\mathbf{I}_h = 0$$

Interacción

Si no hay interacción, al aplicar superposición la corriente de circulación debe ser nula **en ambos casos**.

Test de Brune

Aplicando superposición desconectamos los cuadripolos: si no hay interacción, no habrá cambio de tensión.

Métodos para evitar interacción

Cuadripolos

Oscar Perpiñán Lamigueiro

Introducció

Parámetros de Cuadripolos

Relación entre parámetros

Cuadripolos entre Dipolos Terminales

Asociación de Cuadripolos

Asociación Serie-Serie

Paralelo-Paralelo
Asociación Serie-Paralelo
Asociación Paralelo-Serie

Métodos para evitar interacción

Cuadripolos

Oscar Perpiñán Lamigueiro

Introducció:

Parámetros de Cuadripolos

Relación entre parámetros

Cuadripolos entre Dipolos Terminales

Asociación de Cuadripolos

Asociación Serie-Serie

Paralelo-Paralelo
Asociación Serie-Paralelo
Asociación Paralelo-Serie
Asociación Cascada

Introducción

Parámetros de Cuadripolos

Relación entre parámetros

Cuadripolos entre Dipolos Terminales

Asociación de Cuadripolos

Asociación Serie-Serie

Asociación Paralelo-Paralelo

Asociación Serie-Paralelo

Asociación Paralelo-Serie

Conexión

Corrientes

$$\mathbf{I}_1 = \mathbf{I}_{1A} + \mathbf{I}_{1B}$$
$$\mathbf{I}_2 = \mathbf{I}_{2A} + \mathbf{I}_{2B}$$

Condición de Puerto

$$\mathbf{I}_{1A} = \mathbf{I}_{1'A}$$
 $\mathbf{I}_{1B} = \mathbf{I}_{1'B}$
 $\mathbf{I}_{2A} = \mathbf{I}_{2'A}$
 $\mathbf{I}_{2B} = \mathbf{I}_{2'B}$

Cuadripolos

Oscar Perpiñán Lamigueiro

Introducción

arámetros de uadripolos

arámetros

Cuadripolos entre Dipolos Terminales

Cuadripolos

Asociación Paralelo-Paralelo

Asociación Serie-Paralelo Asociación Paralelo-Serie Asociación Cascada

Cuadripolo Equivalente

Parámetros Admitancia

$$[\mathbf{I}_A] = [\mathbf{Y}_A] \cdot [\mathbf{V}_A]$$

 $[\mathbf{I}_B] = [\mathbf{Y}_B] \cdot [\mathbf{V}_B]$

Cuadripolo Equivalente

$$\boxed{[\mathbf{Y}] = [\mathbf{Y}_A] + [\mathbf{Y}_B]}$$

Cuadripolos

Oscar Perpiñán Lamigueiro

Introducció

arámetros de uadripolos

Relación entr parámetros

Cuadripolos entre Dipolos Terminales

Cuadripolos

Asociación Serie-Serie

Asociación

Asociación Paralelo-Paralelo

Asociación Paralelo-Serie
Asociación Cascada

Interacción

Cuadripolos

Oscar Perpiñán Lamigueiro

Introducción

Parámetros de Cuadripolos

Relación entre parámetros

Cuadripolos entre Dipolos Ferminales

Cuadripolos

Asociación Paralelo-Paralelo

Asociación Paralelo-Serie Asociación Cascada

Interacción

Si no hay interacción, al aplicar superposición la corriente de circulación debe ser nula **en ambos casos**.

Test de Brune

Aplicando superposición desconectamos los cuadripolos: si no hay interacción, no habrá cambio de tensión.

Test de Brune

Aplicando superposición desconectamos los cuadripolos: si no hay interacción, no habrá cambio de tensión.

Métodos para evitar interacción

Cuadripolos

Oscar Perpiñán Lamigueiro

Introducció:

Parámetros de Cuadripolos

Relación entre parámetros

Cuadripolos entre Dipolos Terminales

Asociación de Cuadripolos

Asociación Paralelo-Paralelo

Asociación Paralelo-Serie Asociación Cascada

Métodos para evitar interacción

Cuadripolos

Oscar Perpiñán Lamigueiro

Introducción

Parámetros de Cuadripolos

Relación entre parámetros

Cuadripolos entre Dipolos Terminales

Asociación de Cuadripolos

Asociación Paralelo-Paralelo

Asociación Paralelo-Serie Asociación Cascada

Introducción

Parámetros de Cuadripolos

Relación entre parámetros

Cuadripolos entre Dipolos Terminales

Asociación de Cuadripolos

Asociación Paralelo-Paralelo

Asociación Serie-Paralelo

Asociación Paralelo-Serie

Conexión

Relaciones

$$\mathbf{V}_1 = \mathbf{V}_{1A} + \mathbf{V}_{1B}$$
$$\mathbf{I}_2 = \mathbf{I}_{2A} + \mathbf{I}_{2B}$$

Cuadripolo Equivalente

$$[\mathbf{H}] = [\mathbf{H}_A] + [\mathbf{H}_B]$$

Cuadripolos

Oscar Perpiñán Lamigueiro

Introducción

arámetros de uadripolos

Kelación ent parámetros

Cuadripolos entre Dipolos Terminales

Asociación de Cuadripolos

Asociación Paralelo-Paralelo

Asociación Serie-Paralelo Asociación Paralelo-Serie

Test de Brune

Aplicando superposición desconectamos los cuadripolos: si no hay interacción, no habrá cambio de tensión.

Introducción

Parámetros de Cuadripolos

Relación entre parámetros

Cuadripolos entre Dipolos Terminales

Asociación de Cuadripolos

Asociación Serie-Serie
Asociación Paralelo
Asociación Serie-Paralelo

Asociación Paralelo-Serie

Conexión

Relaciones

$$\mathbf{I}_1 = \mathbf{I}_{1A} + \mathbf{I}_{1B}$$
$$\mathbf{V}_2 = \mathbf{V}_{2A} + \mathbf{V}_{2B}$$

Cuadripolo Equivalente

$$[\mathbf{G}] = [\mathbf{G}_A] + [\mathbf{G}_B]$$

Cuadripolos

Oscar Perpiñán Lamigueiro

Introducción

erámetros de uadripolos

parámetros

Cuadripolos entre Dipolos Terminales

Asociación de Cuadripolos

Asociación Serie-Serie
Asociación
Paralelo-Paralelo

Asociación Paralelo-Serie

Test de Brune

Aplicando superposición desconectamos los cuadripolos: si no hay interacción, no habrá cambio de tensión.

Introducción

Parámetros de Cuadripolos

Relación entre parámetros

Cuadripolos entre Dipolos Terminales

Asociación de Cuadripolos

Asociación Serie-Serie Asociación Paralelo-Paralelo Asociación Serie-Paralelo Asociación Paralelo-Serie

Conexión

$$\mathbf{V}_{2A} = \mathbf{V}_{1B}$$
$$\mathbf{I}'_{2A} = \mathbf{I}_{1B}$$

$$[\mathbf{T}] = [\mathbf{T}_A] \cdot [\mathbf{T}_B]$$

Cuadripolos

Oscar Perpiñán Lamigueiro

Introducción

Parámetros de Cuadripolos

Relación en parámetros

Cuadripolos entre Dipolos Ferminales

Asociación de Cuadripolos

Asociación Paralelo-Paralelo Asociación Serie-Paralelo Asociación Paralelo-Serie