Skilled Labor Productivity and Cross-country Income Differences

Lutz Hendricks / Todd Schoellman

UNC / MN Fed

June 26, 2019

The Question

Development accounting:

How important is human capital for cross-country income differences?

Context

Early literature: perfect skill substitution

- ⇒ small contribution of human capital
 - ► Hall and Jones (1999); Bils and Klenow (2000); Caselli (2005)

Recently: imperfect skill substitution

- ⇒ large contribution of human capital
 - important: human capital of skilled vs. unskilled
 - ▶ Jones (2014), Hendricks and Schoellman (2018)

Open question:

are relative skilled labor productivity differences due to human capital?

► Caselli and Ciccone (2019), Jones (2019)

This Paper

We perform development accounting allowing for several shifters of skilled labor productivity:

- 1. human capital;
- 2. factor augmenting technologies that may be
 - 2.1 exogenous (Katz and Murphy, 1992)
 - 2.2 chosen from a technology frontier (Caselli and Coleman, 2006)
 - 2.3 due to directed technical change (Acemoglu, 2007)
- 3. capital skill complementarity (Krusell et al., 2000)

Main Result

Human capital accounts for close to 60% of output gaps.

Allowing for other shifters of skilled labor productivity does not diminish the role of human capital.

Baseline Model

Two countries: rich r, poor p.

Aggregate production function

$$y_c = k_c^{\alpha} (z_c L_c)^{1-\alpha} \tag{1}$$

Labor aggregator (Jones, 2014)

$$L_c = \left[\sum_{j=1}^{2} \left(\theta_{j,c} h_{j,c} N_{j,c}\right)^{\rho}\right]^{1/\rho} \tag{2}$$

Technology frontier (Caselli and Coleman, 2006)

$$\left[\sum_{j=1}^{J} (\kappa_j \theta_{j,c})^{\omega}\right]^{1/\omega} \leq B_c^{1/\omega} \tag{3}$$

Analytical Results

The model is equivalent to one with exogenous skill bias and a higher elasticity of substitution.

Intuition: Technology choice is equivalent to increasing the elasticity of substitution.

- ▶ "short-run" elasticity: for fixed technology; likely 1.5-2.
- "long-run" elasticity: with endogenous skill bias; calibrated 4-7.

Development Accounting

How to perform development accounting when the skill bias of technology differs across countries?

We attribute induced changes in skill bias to labor inputs.

 \triangleright similar to induced changes of k

Development accounting now works as with fixed skill bias.

endogenous skill bias does not change development accounting

Human capital accounts for close to 60% of output gaps.

▶ similar to Hendricks and Schoellman (2018)

A useful finding: the contribution of human capital has a closed form solution.

Relative Skilled Labor Productivity

What fraction of skilled labor productivity differences is due to human capital?

We can estimate rich/poor human capital gaps without much model structure:

$$\frac{h_{j,r}}{h_{j,p}} = \frac{w_{j,r}/w_{j,p}}{wg_j}$$
 (4)

- w: observed wages
- ▶ wg: migrant wage gains

Empirically, we find $2 < h_{j,r}/h_{j,p} < 3.7$.

Therefore:

- relative human capital $h_{2,c}/h_{1,c}$ is only about 1.6 times higher in the rich versus the poor country
- ightharpoonup at most 1/3 of relative skilled labor productivity differences are due to h

Exogenous Skill Bias

The contribution of human capital to output gaps now depends on the skill bias of technology.

Two counterfactuals:

- 1. $share_L^{poor}$: Increase poor country labor inputs to rich country levels.
 - 1.1 ranges from 50% to 57%
- 2. $share_L^{rich}$: Decrease rich country labor inputs to poor country levels.
 - 2.1 ranges from 59% to 74%

Minor changes with capital-skill complementarity.

References I

- Acemoglu, D. (2007): "Equilibrium bias of technology," *Econometrica*, 75, 1371–1409.
- Bils, M. and P. J. Klenow (2000): "Does Schooling Cause Growth?" *The American Economic Review*, 90, 1160–1183.
- Caselli, F. (2005): "Accounting for Cross-Country Income Differences," in *Handbook of Economic Growth*, ed. by P. Aghion and S. N. Durlauf, Elsevier, vol. 1B, chap. 9.
- Caselli, F. and A. Ciccone (2019): "The Human Capital Stock: A Generalized Approach Comment," *American Economic Review*, 109, 1155–74.
- Caselli, F. and W. J. Coleman (2006): "The World Technology Frontier," *American Economic Review*, 96, 499–522.

References II

- Hall, R. E. and C. I. Jones (1999): "Why do some countries produce so much more output per worker than others?" *Quarterly Journal of Economics*, 114, 83–116.
- Hendricks, L. and T. Schoellman (2018): "Human Capital and Development Accounting: New Evidence From Immigrant Earnings," *Quarterly Journal of Economics*, 133, 665–700.
- Jones, B. (2019): "The Human Capital Stock: A Generalized Approach: Reply," *American Economic Review*, 109, 1175–95.
- Jones, B. F. (2014): "The Human Capital Stock: A Generalized Approach," *American Economic Review*, 104, 3752–77.
- Katz, L. F. and K. M. Murphy (1992): "Changes in Relative Wages, 1963-1987: Supply and Demand Factors," *The Quarterly Journal of Economics*, 107, 35–78.
- Krusell, P., L. E. Ohanian, J.-V. Rios-Rull, and G. L. Violante (2000): "Capital-Skill Complementarity and Inequality: A Macroeconomic Analysis," *Econometrica*, 68, 1029–1053.