**I/**0



### Concepts to Learn

- I/O subsystems
- Blocking, non-blocking, asynchronous I/O
- Memory-mapped I/O
- Programmed I/O vs. DMA
- Disk



# Input/output (I/O) Subsystems





# I/O Subsystems: the Goal

- Provide easy to use standardized interfaces
  - This code works for many different devices

Hide the details of each device to users



## Standard Device Types

- Block devices
  - E.g., disk, cd-rom, USB stick
  - High speed, block (sector) level accesses
- Character devices
  - E.g., keyboard, mouse, joystick
  - Low speed, character level accesses
- Network devices
  - E.g., ethernet, wifi, bluetooth
  - Socket interface



## Types of I/O Operations

- Blocking I/O
  - Wait (i.e., the calling process is put to sleep) until the data is ready
- Non-blocking I/O
  - Immediately return to the caller no matter what.
  - I/O may not be completed
- Asynchronous I/O
  - Notify later when the I/O is completed (via callback or interrupts)



#### How Does CPU Talk to Devices?

- CPU talks to device controllers
  - Via I/O instructions or memory mapped I/O





# Memory Mapped I/O

| Base Address | Limit Address | Size        | Description                                                                |
|--------------|---------------|-------------|----------------------------------------------------------------------------|
| 0x0000_0000  | 0x0001_0000   | 64 KB       | iROM                                                                       |
| 0x0200_0000  | 0x0201_0000   | 64 KB       | iROM (mirror of 0x0 to 0x10000)                                            |
| 0x0202_0000  | 0x0206_0000   | 256 KB      | iRAM                                                                       |
| 0x0300_0000  | 0x0302_0000   | 128 KB      | Data memory or general purpose of Samsung<br>Reconfigurable Processor SRP. |
| 0x0302_0000  | 0x0303_0000   | 64 KB       | I-cache or general purpose of SRP.                                         |
| 0x0303_0000  | 0x0303_9000   | 36 KB       | Configuration memory (write only) of SRP                                   |
| 0x0381_0000  | 0x0383_0000   | 1           | AudioSS's SFR region                                                       |
| 0x0400_0000  | 0x0500_0000   | 16 MB       | Bank0 of Static Read Only Memory Controller (SMC) (16-bit only)            |
| 0x0500_0000  | 0x0600_0000   | 16 MB       | Bank1 of SMC                                                               |
| 0x0600_0000  | 0x0700_0000   | 16 MB       | Bank2 of SMC                                                               |
| 0x0700_0000  | 0x0800_0000   | 16 MB       | Bank3 of SMC                                                               |
| 0x0800_0000  | 0x0C00_0000   | 64 MB       | Reserved                                                                   |
| 0x0C00_0000  | 0x0CD0_0000   | ı           | Reserved                                                                   |
| 0x0CE0_0000  | 0x0D00_0000   | CD CD/M     | SFR region of Nand Flash Controller (NFCON) MC Timer, SFR region           |
| 0x1000_0000  | 0x1400_0000   | ob, SD/ IVI | SFR region                                                                 |
| 0x4000_0000  | 0xA000_0000   | 1.5 GB      | Memory of Dynamic Memory Controller (DMC)-0                                |
| 0xA000_0000  | 0x0000_0000   | 1.5 GB      | MeMory of DMC-1                                                            |



# Memory Mapped I/O

- Parts of physical memory space are mapped to hardware controllers
  - Mapped to control registers and buffers
- Reading/writing from/to the memory mapped regions in device specific ways
  - Device drivers' job



### Example

```
#define CTRL BASE ADDR 0xCE000000
int *io base = (int *)ioremap nocache(CRTL BASE ADDR, 4096);
// initialize the device (by writing some values to h/w regs)
*io base = 0x1;
*(io base + 1) = 0x2;
*(io base + 2) = 0x3;
// wait until the device is ready (bit31 = 0)
while (*io base & 0x80000000);
// send data to the device
for (i = 0; i < sizeof(buffer); i++) {
                                                   Programmed I/O (PIO)
  *(io base + 0x10) = buffer[i];
  while (*io base & 0x80000000);
```



#### Data Transfer Methods

- Programmed I/O
  - Via CPU's load/store instructions
  - Simple h/w, but high CPU load
- Direct Memory Access
  - Controllers directly read/write from/to DRAM
  - Interrupts the CPU on the completion of I/O ops.
  - Complex h/w, but low CPU overhead



### **Direct Memory Access**





# Interrupt Driven I/O Cycle





#### Disk

- Magnetic disks (HDD)
  - Still used as the main storage device on many computers
  - Mechanical device (moving parts)
  - Cheap but slow
- Solid-state disks (SSD)
  - All smartphones and tables, many notebooks
  - No moving parts, use NAND flash chips
  - Still a bit expensive but faster



#### The First Commercial Disk Drive



1956 IBM RAMDAC computer included the IBM Model 350 disk storage system

5M (7 bit) characters 50 x 24" platters Access time = < 1 second



# Magnetic Disk





# Hard Disk Drive (HDD)



- Storage size
  - ~ 3TB
- Performance
  - B/W: ~1Gb/s
  - Seek time: 3-12ms





# Disk Scheduling

- Goal: minimize seek time
- FCFS, SSTF (shortest seek time first), SCAN





## NAND Flash Memory Chip





# Solid-State Disk (SSD)





- Same I/f as HDD
  - SATA.
- Flash Translation Layer (FTL)
  - S/W running on the controller
  - Provides disk abstraction
- Storage size
  - ~1TB
- No seek time
- Bandwidth
  - SATA (6Gbps) is the bottleneck
  - Some use PCle I/F



### Summary

- I/O subsystems
  - Standardized interfaces to access various i/o devices
- I/O device types
  - Block, characters, network devices
- I/O mechanisms
  - Memory-mapped I/O, I/O instructions
  - Programmed I/O vs. DMA
- Disk
  - HDD vs. SDD

