CSA 250 : Deep Learning Project II Report

Shubham Sharma

February 2, 2020

Task/Objective: The aim of the project is to implement neural and convolution neuralnetwork for the task classification which involves recognizing an image and identify it as one of ten classes.

Task 1 : Build a multi layer neural network with open source neural-network library(pytorch) on Fashion-MNIST dataset.

Task 2: Build Convolution Neural Network with open-source neural-network library(pytorch) on Fashion-MNIST dataset.

Model Architecture:

1. Neural Network:

Given dataset is an image dataset with input images of size 28 x 28, when flatten it will become 784. So after considering it we build a multi layer neural network with input 784 and resulting output as 10 classes.

First layer: Input layer of size 784 x 256 Second layer: Hidden layer of size 256 x 128 Third layer: Hidden layer of size 128 x 64 Fourth layer: Output layer of size 64 x 10

- Used Relu as a activation function on all the hidden layers
- Used softmax on output layer.
- Used negative log likelihood as loss function.
- Used a learning rate of 0.03

2. Convolution Network:

For the similar dataset we build a convolution neural network with two convolution layer in it.

First layer: Convolution layer with kernel size 5 Second layer: Convolution layer with kernel size 5 Third layer: Linear layer with output 10 neurons.

- At both convolution we are using padding of size 2.
- Used cross entropy as loss function.
- kernel size =5

Results:

1. Multi-layer Neural Network:

Accuracy on test data = 87.97 %

Training Loss:

Confusion Matrix:

Accur	асу :	: 0	8797	7					
[[805	2	18	18	1	0	109	Θ	4	1]
[1	965	1	3	2	0	2	Θ	0	0]
[16	0	797	9	82	0	69	Θ	3	0]
[22	19	9	902	43	1	29	0	7	0]
[2	3	76	19	812	0	72	0	5	0]
[1	0	0	0	Θ	955	0	17	3	3]
[147	10	99	46	60	7	714	3	30	1]
[0	0	0	0	Θ	20	0	944	1	39]
[6	1	0	3	Θ	2	5	1	947	0]
[0	Θ	0	0	Θ	15	0	35	0	956]]

2. Convoltuion Neural Network:

Accuracy on test data = 90.14 %

Training Loss:

Confusion Matrix:

[[8	380	3	32	29	1	Θ	141	0	3	0]
[0	977	1	5	Θ	Θ	0	0	1	0]
[16	1	818	17	54	0	53	0	2	0]
[17	10	9	886	12	0	26	0	5	0]
]	6	6	62	30	869	0	64	0	6	0]
[2	Θ	0	0	0	979	1	23	4	5]
[74	2	74	31	62	0	707	0	5	1]
]	0	0	0	0	Θ	10	0	938	2	12]
]	5	1	4	1	2	3	8	Θ	972	0]
]	0	0	0	1	0	8	0	39	Θ	982]]