## Electronic Devices Sheet #3

- 1. For the circuit shown VAA= 8V, Vm=0.5 V, and RL=  $1k\Omega$ . In the large signal model of the diode  $V\gamma$ =0.7V, Rf= $20\Omega$  and  $\eta$  =2, Determine:
  - a) The alternating component of the voltage across RL.
  - b) The total voltage across RL.



2. Find the output of parallel based clipper shown in figure for simplicity assume diodes are ideal.



- 3. a) Obtain the voltage transfer characteristics of the circuit shown, assuming diodes are having  $V\gamma = 0.6V$  and Rf = 0.
  - b) Sketch one cycle of the output voltage, assuming that the input voltage  $Vin(t)=20sin\omega t$ .



4. The diodes shown in two-level clipper shown in the following figure are ideal. Sketch transfer characteristic (Vo vs. Vi) and indicate the state of each diode.



5. The diodes shown in the two-level clipper shown in the following figure are ideal. Write the transfer function ( $V_0$  as a function of  $V_i$ ).



- 6. a) The voltage transfer characteristics of diode network is shown sketch the output voltage for  $Vi(t) = 5\sin\omega t$ .
  - b) Design a simple diode network, using ideal diodes that have the transfer function given.



- 7. a) The voltage transfer characteristics of diode network is shown sketch the output voltage for  $Vs(t) = 2.0 + 3\sin\omega t$ .
  - b) Design a simple diode network, using ideal diodes that have the transfer function given.

