Universität Wien

Fakultät für Informatik

Prof. Wilfried Gansterer, RNDr. CSc. Katerina Schindlerova

Mathematische Grundlagen der Informatik 1 SS 2020

Übungsblatt 4: Vektorräume

Literatur: Peter Hartmann: Mathematik für Informatiker, Springer, Kapitel 6

Aufgabe 4-1 5P

Es sei
$$A = \begin{pmatrix} 2 & 1 & 3 \\ 1 & 4 & -2 \\ 0 & -1 & 2 \end{pmatrix}$$
 Berechne A^2 , die Determinante von A und den Rang von A.

Aufgabe 4-2 6P

Es seien H und K zwei Unterräume des \mathbb{R} -Vektorraums V. Wir definieren H+K wie folgt:

$$H + K = \{w | w = u + v, u \in H, v \in K\}.$$

Man beweise, dass H + K ein Unterraum von V ist.

Aufgabe 4-3 8P

Man untersuche für welche $t \in \mathbb{R}$ die Vektoren

$$v_1=inom{1}{-3}{4},\quad v_2=inom{3}{t}{2},\quad v_3=inom{4}{6} ext{ in }\mathbb{R}^3 ext{ linear abhängig sind.}$$

Aufgabe 4-4 8P

Sind die folgenden Vektoren v_1 , v_2 , v_3 jeweils linear unabhängig?

(a)
$$v_1 = (1, 1, -1, 0)^T$$
, $v_2 = (0, -1, 1, -2)^T$ und $v_3 = (3, 1, -1, -4)^T$

(b)
$$v_1 = (1, -1)^T$$
, $v_2 = (2, 0)^T$ und $v_3 = (1, 1)^T$

(c)
$$v_1 = (1, 0, -2)^T$$
, $v_2 = (2, 1, 0)$ und $v_3 = (1, 1, 1)^T$

Anmerkung: Das hochgestellte T bedeutet "transponiert", dh. die Zahlenreihen sind Vektoren, wurden aus Platzgründen aber horizontal angeschrieben.

1

Eine Übersicht: https://de.wikipedia.org/wiki/Transponierte_Matrix

Aufgabe 4-5 9P

Die Matrix A ist invertierbar. Beweisen Sie:

a)
$$A^{-1}$$
 ist invertierbar und $(A^{-1})^{-1} = A$.

- b) A^n ist invertierbar und $(A^n)^{-1} = (A^{-1})^n$ für $n = 1, 2, \dots$
- c) Sei $k \in \mathbb{R}$ mit $k \neq 0$. Dann ist kA invertierbar und $(kA)^{-1} = \frac{1}{k}A^{-1}$.

Aufgabe 4-6 9P

Die Vektoren $\{v_1, v_2, v_3\}$ mit $v_i \in \mathbb{R}^3$ seien linear unabhängig.

- (a) Ist $\{3v_1, 3v_2, 3v_3\}$ linear unabhängig?
- (b) Ist $\{v_1, 2v_2, 3v_3\}$ linear unabhängig?
- (c) Können wir etwas über $\{av_1, bv_2, cv_3\}$ mit $a, b, c \in \mathbb{R}$ bzgl. linear unabhängig sagen?

Aufgabe 4-7 10P

Sei $f:X\to Y$ eine lineare Abbildung von zwei K-Vektorräumen X und Y. Man zeige: ist f injektiv, so ist das Bild einer linear unabhängigen Teilmenge $A=\{x_1,x_2,\ldots,x_n\}$ von X auch linear unabhängig.