Devoir surveillé nº 5

- ▶ La présentation, la lisibilité, l'orthographe, la qualité de la rédaction et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.
- ▶ On prendra le temps de vérifier les résultats dans la mesure du possible.
- ▶ Les calculatrices sont interdites.

EXERCICE 1.

On pose G =]-1,1[.

- 1. Montrer que th induit une bijection de \mathbb{R} sur G.
- **2.** Montrer que pour tout $(a,b) \in \mathbb{R}^2$, $\operatorname{th}(a+b) = \frac{\operatorname{th}(a) + \operatorname{th}(b)}{1 + \operatorname{th}(a) \operatorname{th}(b)}$.
- 3. Pour $(x,y) \in G^2$, on pose $x \star y = \frac{x+y}{1+xy}$. A l'aide des questions précédentes, montrer que (G,\star) est un groupe commutatif.
- 4. Soit $x \in G$. Montrer que pour tout $n \in \mathbb{Z}$, $x^{\star n} = \frac{(1+x)^n (1-x)^n}{(1+x)^n + (1-x)^n}$

EXERCICE 2.

Soit $a \in \mathbb{R}_+^*$. On définit une suite (u_n) par son premier terme $u_0 \in \mathbb{R}_+^*$ et par la relation de récurrence

$$\forall n \in \mathbb{N}, \; u_{n+1} = \frac{1}{2} \left(u_n + \frac{\alpha}{u_n} \right)$$

Dans les deux premières questions, on cherche à prouver la convergence de la suite (\mathfrak{u}_n) et à déterminer sa limite de deux façons différentes et dans la dernière question, on s'intéresse à la vitesse de convergence de cette suite.

- 1. a. Montrer que la suite (u_n) est strictement positive.
 - **b.** Montrer que $u_n \geqslant \sqrt{a}$ pour tout $n \in \mathbb{N}^*$.
 - c. Montrer que la suite (u_n) est décroissante à partir du rang 1.
 - $\mathbf{d.}$ En déduire que (u_n) converge et préciser sa limite.
- **2.** On pose $v_n = \frac{u_n \sqrt{a}}{u_n + \sqrt{a}}$ pour tout $n \in \mathbb{N}$.
 - **a.** Montrer que $v_{n+1} = v_n^2$ pour tout $n \in \mathbb{N}$.
 - **b.** En déduire une expression de v_n en fonction de v_0 et n.
 - $\mathbf{c.} \ \mathrm{V\acute{e}rifier} \ \mathrm{que} \ |\nu_0| < 1.$
 - d. En déduire que (u_n) converge et préciser sa limite.
- 3. On s'intéresse maintenant à la vitesse de convergence de (\mathfrak{u}_n) vers sa limite.
 - $\mathbf{a.}\ \, \mathrm{Montrer}\ \, \mathrm{qu'il}\ \, \mathrm{existe}\ \, K\in[0,1[\ \mathrm{tel}\ \, \mathrm{que}\ \, u_n-\sqrt{\alpha}\underset{_{n\rightarrow+\infty}}{=}\mathcal{O}\,(K^{2^n}).$
 - $\mathbf{b.} \ \mathrm{Montrer} \ \mathrm{que} \ \mathrm{pour} \ \mathrm{tout} \ q \in]0,1[, \ u_n \sqrt{a} \underset{_{n \to +\infty}}{=} o \, (q^n).$
- 4. Écrire une fonction Python d'argument trois réels strictement positifs a, u_0 et ϵ renvoyant le plus petit entier naturel n tel que $|u_n \sqrt{a}| \leq \epsilon$.

Problème 1 —

On donne $e \approx 2,72, \ \frac{1}{\sqrt{e}} \approx 0,61, \ \sqrt{2} \approx 1,41 \ \mathrm{et} \ \ln(3) \approx 1,10.$

Partie I – Étude d'une fonction

Soit f la fonction définie sur \mathbb{R}

$$\forall x \in \mathbb{R}, \ f(x) = 3xe^{-x^2} - 1$$

- 1. Étudier les variations de f sur \mathbb{R} ainsi que les limites aux bornes du domaine de définition. Donner le tableau de variations de f. Préciser les branches infinies de la courbe représentative \mathcal{C}_f de f ainsi qu'une symétrie de celle-ci.
- 2. Donner l'équation de la tangente à C_f au point d'abscisse 0. Etudier la position de la courbe de C_f par rapport à cette tangente.
- 3. Donner l'allure de la courbe C_f . On fera également figurer les asymptotes et la tangente des questions précédentes.
- 4. a. Justifier que f admet un développement limité en 0 à tout ordre.
 - b. Donner le développement limité de f en 0 à l'ordre 5.

Partie II – Étude d'une équation différentielle

Soient $n \in \mathbb{N}^*$ et E_n l'équation différentielle $xy' - (n-2x^2)y = n-2x^2$. On note H_n l'équation différentielle homogène associée à E_n .

- 1. Résoudre H_n sur \mathbb{R}_+^* et sur \mathbb{R}_-^* .
- 2. En déduire les solutions de E_n sur \mathbb{R}_+^* et sur \mathbb{R}_-^* .
- **3.** Donner toutes les fonctions de classe \mathcal{C}^1 sur \mathbb{R} solutions de E_n sur \mathbb{R} . On distinguera les cas n=1 et $n\geqslant 2$.

Partie III - Étude de deux suites

On suppose désormais dans cette partie que $n \ge 2$. Soit f_n la fonction définie sur \mathbb{R} par

$$\forall x \in \mathbb{R}, \ f_n(x) = 3x^n e^{-x^2} - 1$$

- 1. Quel est le signe de $f_n(0)$ et de $f_n(1)$?
- 2. Étudier les variations de f_n sur \mathbb{R}_+ . Donner la limite de f_n en $+\infty$. En déduire que f_n s'annule exactement deux fois sur \mathbb{R}_+ en deux réels notés \mathfrak{u}_n et ν_n vérifiant $\mathfrak{u}_n < 1 < \nu_n$.
- **3.** Quelle est la limite de $(v_n)_{n\geqslant 2}$?
- **4.** a. Exprimer $e^{-u_n^2}$ en fonction de u_n^n .
 - **b.** En déduire le signe de $f_{n+1}(u_n)$.
 - c. Déduire de ce qui précède la monotonie de $(u_n)_{n\geq 2}$.
 - **d.** Montrer que la suite $(u_n)_{n\geqslant 2}$ est convergente. On note l sa limite.
- **5.** Soit g_n définie sur \mathbb{R}_+^* par

$$\forall x \in \mathbb{R}_+^*, \ g_n(x) = \ln(3) + n \ln(x) - x^2$$

- **a.** Soit $t \in \mathbb{R}_+^*$. Montrer que $g_n(t) = 0$ si et seulement si $f_n(t) = 0$.
- b. On suppose $l \neq 1$. Trouver une contradiction en utilisant ce qui précède. Conclusion ?
- c. Soit la suite $(w_n)_{n\geqslant 2}$ définie par

$$\forall n \geqslant 2, \ w_n = u_n - 1$$

Trouver en utilisant un développement limité de $g_n(1+w_n)=g_n(u_n)$ un équivalent simple de w_n .