10

A particle P of mass 0.05 kg is attached to one end of a light inextensible string of length 1 m. The other end of the string is attached to a fixed point O. A particle Q of mass 0.04 kg is attached to one end of a second light inextensible string. The other end of this string is attached to P.

The particle P moves in a horizontal circle of radius 0.8 m with angular speed ω rad s⁻¹. The particle Q moves in a horizontal circle of radius 1.4 m also with angular speed ω rad s⁻¹. The centres of the circles are vertically below O, and O, P and Q are always in the same vertical plane. The strings OP and PQ remain at constant angles α and β respectively to the vertical (see diagram).

1)	Find the tension in the string <i>OP</i> .	[3]

* (0000800000011 *	11
(b)	Find the value of ω .	[3]
(c)	Find the value of β .	[2]