VIBRACIONES Y ONDAS (ENUNCIADOS)

JULIO 2021

En una cuerda se propaga una onda armónica cuya ecuación, expresada en unidades del S. I., viene dada por la ecuación:

$$y(x.t) = 0.3 \cdot \cos\left(\frac{\pi}{3}t - \frac{\pi}{5}x + \frac{\pi}{10}\right)$$

- a) (1 p) Hallar la amplitud, el período, la frecuencia y la longitud de onda.
- b) (0,5 p) Calcular la velocidad de propagación de la onda.
- c) (1 p) Determinar la velocidad transversal del punto de la cuerda situado en x = 0, en función del tiempo.

JULIO 2021

Un altavoz emite un sonido que se percibe a una distancia d con un nivel de intensidad sonora de 70 dB.

DATOS: La mínima intensidad que puede percibir el oído humano es I_0 = 10^{-12} W/m². Se siente dolor cuando la intensidad supera 1 W/m².

- a) (1 p) Hallar la intensidad sonora en ese punto.
- b) (0,75 p) Calcular el factor por el que debe incrementarse la distancia al altavoz para que el sonido se perciba con un nivel de intensidad sonora de 60 dB.
- c) (0,75 p) Calcular el factor por el que debe incrementarse la potencia, para que a la distancia "d" el sonido se perciba con un nivel de intensidad sonora de 80 dB.

JUNIO 2021

Una onda armónica transversal de 6 mm de amplitud, 0,025 metros de longitud de onda y 50 milisegundos de período, se propaga hacia la parte positiva del eje X. Inicialmente, en el punto x = 0. La elongación es nula y la velocidad es positiva.

- a) (1 p) Escribir la ecuación de onda.
- b) (0,5 p) Calcular la velocidad de propagación de la onda.
- c) (0,5 p) Calcular la diferencia de fase entre dos puntos separados 1 centímetro.
- d) (0,5 p) Determinar la velocidad transversal del punto de la onda situado en x = 2 cm, en función del tiempo.

JUNIO 2021

Un avión a reacción produce una onda sonora cuyo nivel de intensidad a 1 m de distancia es de 180 dB. Calcular:

DATOS: Intensidad umbral es $I_0 = 10^{-12} \text{ W/m}^2$ Se siente dolor cuando la intensidad supera 10^{-12} W/m^2

- a) (1 p) La intensidad sonora en ese punto.
- b) (0,75 p) La potencia del sonido emitido por el motor del avión.
- c) (0,75 p) La distancia mínima a la que hay que situarse del avión para no sentir dolor.

SEPTIEMBRE 2020

Una onda armónica transversal que se propaga hacia la parte positiva del eje X con 5 cm de amplitud, una longitud de onda de 2 m y un periodo de 0,3 s. Sabiendo que en el momento inicial la elongación en x = 0 es 5 cm.

- a) (1 p) Escribir la ecuación de onda.
- b) (0,5 p) Obtener la velocidad de propagación.
- c) (1 p) Desfase entre dos puntos separados 2 m.

SEPTIEMBRE 2020

Un altavoz emite una potencia de 80 W por igual en todas direcciones. Una persona está situada a una distancia de 10 m del altavoz. Sabiendo que la intensidad umbral es $I_0 = 10^{-12}$ W/m².

- a) (1,5 p) ¿Qué intensidad de la onda sonora percibirá? ¿Cuál será el nivel de intensidad en dB?
- b) (1 p) Si se aleja hasta una distancia del altavoz de 30 m, ¿cuál será el nivel de intensidad en dB? ¿Cuánto variará la intensidad de la onda sonora que percibe?

JULIO 2020

Escribir la ecuación de onda de una onda armónica transversal que se propaga hacia la derecha, si tiene 6 cm de amplitud, una velocidad de propagación de 40 m/s y una frecuencia de 2 Hz, teniendo en cuenta que en el momento inicial la elongación en x = 0 es 3 cm.

- a) (1 p) Escribir la ecuación de onda.
- b) (0,5 p) Obtener la longitud de onda.
- c) (1 p) Distancia entre dos puntos con una diferencia de fase de $\pi/2$ radianes.

JULIO 2020

El nivel de intensidad sonora a una distancia de 10 m de una fuente sonora puntual, es 70 dB. Sabiendo que la intensidad umbral es $I_0 = 10^{-12} \text{ W/m}^2$, determinar:

- a) (0,5 p) La intensidad sonora en ese punto.
- b) (1 p) La potencia del sonido emitido por la fuente.
- c) (1 p) ¿Cuánto deberíamos alejarnos para reducir a 35 dB el nivel de intensidad?

JULIO 2019

Una fuente sonora isótropa produce un nivel de intensidad sonora de 60 dB a 1 m de distancia. Si el umbral de percepción de intensidad es $I = 10^{-12} \text{ W/m}^2$. Calcular:

- a) (1 p) La intensidad del sonido de la fuente en ese punto.
- b) (1 p) La potencia emitida por la fuente.

JULIO 2019

Dada la ecuación de onda armónica transversal, en unidades S.I.

$$y(x,t) = 0.04$$
. sen $(2x - \pi t + 2.0)$

- a) (1 p) La longitud, la frecuencia de la onda y la velocidad de propagación.
- b) (0,5 p) El módulo de la velocidad máxima de oscilación de las partículas del medio por el cual se propaga la onda.
- c) (0,5 p) Distancia entre dos puntos con una diferencia de fase de $\pi/2$ radianes.

Sabiendo que la intensidad umbral es 10^{-12} W/m², si la sonoridad de un espectador de un partido de fútbol es 40 dB.

- a) (1 p) ¿Cuál sería la sonoridad si gritaran con la misma intensidad sonora 1000 espectadores a la vez?
- b) (1 p) ¿Cuál es la intensidad de una onda sonora de 85 dB?

JUNIO 2019

Sea una onda armónica transversal de 5 cm de amplitud, con una velocidad de propagación de 5 m/s y periodo 0.1 s. En el instante inicial, el punto situado en x = 0 tiene una elongación de 2.5 cm.

- a) (1 p) Obtener la frecuencia y la longitud de onda.
- b) (1 p) Escribir la ecuación de onda si se propaga hacia la derecha.

SEPTIEMBRE 2018

Una onda se propaga transversalmente por una cuerda en sentido positivo del eje X. El período de dicho movimiento es de 4 s y la distancia que recorre un punto de la cuerda entre posiciones extremas es de 30 cm.

- a) (1 p) Si la distancia mínima que separa dos puntos de la cuerda que oscilan en fase es de 80 cm, écuál es la velocidad de propagación de la onda?; écuál es el número de onda?
- b) (1 p) Escribe la ecuación de la onda suponiendo que su elongación inicial en el punto x = 0 es nula (y(0,0)=0).

SEPTIEMBRE 2018

La expresión matemática de una onda transversal en una cuerda es:

$$y(x,t) = 3 \cdot sen (3\pi t - \pi x)$$

Donde x e y están expresados en metros y t en segundos.

- a) (1 p) ¿Cuál es la longitud de onda y la velocidad de propagación de la onda?
- b) (1 p) En un instante determinado, écuál es la diferencia de fase entre dos puntos separados 1 metro?

JUNIO 2018

La ecuación de una onda transversal es, en unidades del S.I.

$$y\left(x,t\right)=8.\ cos\left[2\pi.\left(\frac{t}{0,02}-\frac{x}{50}\right)\right]$$

- a) (1 p) Amplitud, frecuencia, período y longitud de onda.
- b) (0,5 p) Diferencia de fase entre dos puntos separados 25 m.
- c) (0,5 p) Escribir la ecuación de onda de la misma amplitud y frecuencia pero que se propague en sentido contrario y con la mitad de velocidad.

JUNIO 2018

Una onda transversal de amplitud 0,8 m, frecuencia de 250 Hz y velocidad de propagación de 150 m/s, se propaga hacia valores positivos de x. Determina:

- a) Escribe la ecuación de la onda (0,75 p), si en el instante inicial y(0;0) = 0,2 m, determina la fase inicial (0,25 p).
- b) (1 p) ¿A qué distancia se encuentran dos puntos consecutivos que vibran con una diferencia de fase de 60°?

SEPTIEMBRE 2017

Un alumno estudia la propagación de ondas transversales en una cuerda y determina que se propaga hacia su derecha con una frecuencia de 2 Hz. La amplitud que observa es de 15 cm y la distancia que mide entre dos máximos idénticos consecutivos es de 80 cm. Suponer la elongación en la posición inicial en t=0 nula. Se pide:

- a) (1 p) La ecuación de la onda en unidades SI.
- b) (0,5 p) Distancia entre dos puntos con una diferencia de fase de $\pi/2$ radianes.
- c) (0,5 p) Explica brevemente las diferencias entre onda longitudinal y onda transversal. Pon un ejemplo representativo de cada una.

SEPTIEMBRE 2017

La función de una onda armónica transversal que se mueve sobre una cuerda viene dada por:

$$y(x,t) = 3 \cdot sen(2,2x-3,5t) (m;s)$$

- a) (0,5 p) ¿En qué dirección se propaga esta onda y cuál es su velocidad?
- b) (1 p) Determinar la longitud de onda, la frecuencia y el periodo de esta onda.
- c) (0,5 p) ¿Cuál es la velocidad máxima de cualquier segmento de cuerda?

JUNIO 2017

En una cuerda se genera una onda transversal que se traslada a 12 m/s en el sentido negativo del eje x. El foco que origina la onda está situado en x = 0, y vibra con una frecuencia de 12 Hz y una amplitud de 4 cm. El foco se encuentra en la posición de amplitud nula en el instante inicial.

- a) (1 p) Determinar la ecuación de la onda en unidades SI.
- b) (1 p) Calcular la diferencia de fase de oscilación entre dos puntos de la cuerda separados 80 cm.

JUNIO 2017

En una cuerda se propaga una onda armónica transversal cuya ecuación (en unidades del SI) viene dada por la siguiente función:

$$y(x,t) = 20$$
. $sen\left(-\frac{\pi}{2}t + \frac{\pi}{4}x\right)$

- a) (1 p) Determinar la frecuencia, la longitud de onda y la velocidad de propagación.
- b) (1 p) Razonar el sentido de propagación de la onda y hallar la distancia a la que se encuentran, en un instante dado, dos puntos de esa cuerda que tienen una diferencia de fase entre ellos de $\pi/2$ rad.

SEPTIEMBRE 2016

Por una cuerda se propaga un movimiento ondulatorio caracterizado por la onda (en unidades del SI):

$$y(x,t) = 2 \cdot sen \left[2\pi \cdot \left(\frac{t}{5} - \frac{x}{10} \right) \right]$$

- a) (1 p) Hallar la amplitud, el periodo, la frecuencia, la longitud de onda y la velocidad de esta onda.
- b) (1 p) Hallar la distancia a la que se encuentran, en un instante dado, dos puntos de esa cuerda que tienen una diferencia de fase entre ellos de 10π radianes.

En una cuerda se propaga una onda armónica cuya ecuación, expresada en unidades del S.I., viene dada por la ecuación:

$$y(x,t) = 10 \cdot sen \left[2\pi \cdot \left(\frac{t}{9} - \frac{x}{6}\right)\right]$$

- a) (1 p) Hallar la amplitud, el período, la frecuencia y la longitud de onda de dicha onda.
- b) (1 p) Hallar la velocidad de propagación de la onda.

SEPTIEMBRE 2015

Por una cuerda se propaga un movimiento ondulatorio caracterizado por la onda (en unidades del SI):

$$y(x,t) = 10$$
. $sen\left[2\pi \cdot \left(\frac{t}{4} - \frac{x}{2}\right)\right]$

- a) (1 p) Hallar el periodo, la frecuencia, la longitud de onda y la velocidad de esta onda.
- b) (0,5 p) Hallar la distancia a la que se encuentran, en un instante dado, dos puntos de esa cuerda que tienen una diferencia de fase entre ellos de 10π radianes.
- c) (0,5 p) Explicar brevemente la diferencia entre ondas viajeras y ondas estacionarias.

JUNIO 2015

Por una cuerda se propaga un movimiento ondulatorio caracterizado por la onda (en unidades del SI):

$$y(x,t) = 6 \cdot sen \left[2\pi \cdot \left(\frac{t}{9} - \frac{x}{6} \right) \right]$$

- a) (1 p) Hallar la amplitud, el periodo, la frecuencia, la longitud de onda y la velocidad de esta onda.
- b) (1 p) Hallar la distancia a la que se encuentran, en un instante dado, dos puntos de esa cuerda que tienen una diferencia de fase entre ellos de 3π radianes.

SEPTIEMBRE 2014

En una cuerda se propaga una onda armónica cuya ecuación, expresada en unidades del SI, viene dada por la ecuación:

$$y(x,t) = 6 \cdot sen\left(5t - 8x + \frac{\pi}{6}\right)$$

- a) (1 p) Hallar la amplitud, el período, la frecuencia y la longitud de onda de dicha onda.
- b) (0,5 p) Hallar la velocidad de propagación de la onda.
- c) (0,5 p) Describir brevemente la "doble periodicidad de la función de onda".

JUNIO 2014

Por una cuerda se propaga un movimiento ondulatorio caracterizado por la onda (en unidades del SI):

$$y(x,t) = 9 \cdot sen \left[2\pi \cdot \left(\frac{t}{8} - \frac{x}{4} \right) \right]$$

- a) (1 p) Hallar el periodo, la frecuencia, la longitud de onda y la velocidad de esta onda.
- b) (0,5 p) Hallar la distancia a la que se encuentran, en un instante dado, dos puntos de esa cuerda que tienen una diferencia de fase entre ellos de $\frac{30\pi}{4}$ radianes.
- c) (0,5 p) Explicar brevemente la diferencia entre ondas viajeras y ondas estacionarias.

SEPTIEMBRE 2013

En una cuerda se propaga una onda armónica cuya ecuación, expresada en unidades del SI, viene dada por la ecuación:

$$y(x,t) = 0.60 \cdot sen\left(2t - 4x + \frac{\pi}{4}\right)$$

- a) (1 p) Hallar la amplitud, el período, la frecuencia y la longitud de onda de esta onda.
- b) (1 p) Hallar la velocidad de propagación de la onda.

JUNIO 2013

Por una cuerda se propaga un movimiento ondulatorio caracterizado por la onda (en unidades del SI):

$$y(x,t) = 2 \cdot sen \left[2\pi \cdot \left(\frac{t}{4} - \frac{x}{2} \right) \right]$$

- a) (1 p) Hallar el periodo, la frecuencia, la longitud de onda y la velocidad de esta onda.
- b) (1 p) Hallar la distancia a la que se encuentran, en un instante dado, dos puntos de esa cuerda que tienen una diferencia de fase entre ellos de $\frac{3\pi}{2}$ radianes.

SEPTIEMBRE 2012

En una cuerda se propaga una onda armónica cuya ecuación, expresada en unidades del SI, viene dada por la ecuación:

$$y(x,t) = 0, 2 \cdot sen \left(2t - 4x + \frac{\pi}{4}\right)$$

- a) (1 p) Hallar la amplitud, el período, la frecuencia y la longitud de onda de esta onda.
- b) (1 p) Hallar la velocidad de propagación de la onda.

JUNIO 2012

Un foco sonoro emite una onda armónica de amplitud 7,0 Pa y frecuencia 220 Hz. La onda se propaga en la dirección positiva del eje X a una velocidad de 340 m.s⁻¹. En el instante inicial la presión en el mismo foco es máxima.

- a) (1 p) Hallar los valores de los parámetros A, a, b y φ_0 en la ecuación, $P(x,t) = A \cdot sen\left(\frac{x}{a} \frac{t}{b} + \varphi_0\right)$, de la onda sonora.
- b) (1 p) Hallar la presión en el instante 300 s en un punto situado a una distancia de 2 m del foco.

SEPTIEMBRE 2011

La ecuación de una onda estacionaria en unidades del SI (Sistema Internacional) es:

$$y(x,t) = 0, 2 \cdot sen\left(\frac{2\pi \cdot x}{12}\right) \cdot \cos\left(\frac{2\pi \cdot t}{3}\right)$$

- a) (0,5 p) Hallar la amplitud de las dos ondas que se superponen.
- b) (0,5 p) Hallar la longitud de onda y el periodo de las ondas que se superponen.
- c) (0,5 p) Hallar la distancia entre dos nodos consecutivos.
- d) (0,5 p) Hallar la velocidad transversal máxima del punto situado en x = 3 m.

Una onda armónica transversal de periodo 0.5 s, longitud de onda 1.6 m y amplitud 0.8 m se propaga por una cuerda muy larga en el sentido positivo del eje X. En el instante inicial, la elongación, y, del punto situado en x = 0 es nula y su velocidad transversal es positiva.

- a) (0,5 p) Representar gráficamente la onda en el instante inicial entre x = 0 y x = 4 m.
- b) (0,5 p) Determinar la elongación de la onda en cualquier instante y posición, y (x, t).
- c) (0,5 p) Calcular la velocidad de propagación de la onda.
- d) (0,5 p) Escribir la velocidad transversal del punto situado en x = 1,6 m en función del tiempo.

SEPTIEMBRE 2010

La ecuación de una onda estacionaria en unidades del SI (Sistema Internacional) es:

$$y(x,t) = 10 \cdot \cos\left(\frac{\pi \cdot x}{3}\right) \cdot sen\left(\frac{2\pi \cdot t}{5}\right)$$

- a) (0,5 p) Hallar la amplitud de las dos ondas que se superponen.
- b) (0,5 p) Hallar la longitud de onda y el periodo de las ondas que se superponen.
- c) (0,5 p) Hallar la distancia entre dos nodos consecutivos.
- d) (0,5 p) Hallar la velocidad transversal máxima del punto situado en x = 1,5 m.

JUNIO 2010

Por una cuerda se propaga una onda armónica, cuya expresión matemática es, en unidades del Sistema Internacional:

$$y(x,t) = 3 \cdot sen \left[\pi \cdot \left(\frac{t}{4} - \frac{x}{8} \right) \right]$$

- a) (0,5 p) Determina la amplitud y la longitud de onda.
- b) (0,5 p) Halla el período de la onda y la frecuencia.
- c) (0,5 p) Halla la velocidad de propagación de la onda y su sentido.
- d) (0,5 p) Halla la velocidad transversal máxima de un punto de la cuerda.

SEPTIEMBRE 2009

La amplitud de una onda sinusoidal (armónica) en una cuerda es de $0.1 \, \text{m}$, la longitud de onda es $5 \, \text{m}$ y la velocidad de propagación $2 \, \text{m/s}$. La onda se propaga según el eje OX en el sentido de las x positivas, y los puntos de la cuerda vibran en la dirección vertical OY.

- a) (1 p) Hallar la frecuencia, la frecuencia angular (pulsación) y el período.
- b) (0,5 p) Escribir la ecuación de la onda y (x,t), sabiendo que y (0,0) = 0 m.
- c) (0,5 p) Escribir la ecuación del movimiento vertical, y (t), del punto de la cuerda situado en x = 0.

SEPTIEMBRE 2009

Una máquina industrial produce una onda sonora cuya intensidad a 1 m de distancia es 150 dB.

DATOS: la mínima intensidad que puede percibir el oído humano es 10^{-12} W/m²; se siente dolor cuando la intensidad supera 1 W/m². La intensidad sonora se reduce 6 dB cada vez que se dobla la distancia a la fuente.

- a) (1 p) Calcular la intensidad a esa distancia en W/m².
- b) (0,5 p) ¿Sentirá dolor a esa distancia de la máquina por culpa del sonido un operario con unos auriculares que logran reducir la intensidad sonora en 40 dB? Razonar la respuesta.
- c) (0,5 p) ¿A qué distancia mínima debe situarse un operario sin protección para no sentir dolor?

La expresión matemática de una onda transversal que se propaga por una cuerda es: $y\left(x,t\right)=0,3$. $\cos\left[\pi\cdot\left(10t-x\right)\right]$, en unidades del S.I.:

- a) (0,5 p) ¿En qué dirección y sentido se propaga la onda? ¿En qué dirección se mueven los puntos de la cuerda?
- b) (0,5 p) Halla la velocidad transversal máxima de un punto de la cuerda
- c) (0,5 p) Halla la amplitud, el período, la frecuencia y la longitud de onda.
- d) (0,5 p) La figura representa la situación de una sección de la cuerda en cierto instante; ¿es ese instante t=0 o $t={}^T\!/_2$, donde T es el período? ¿A qué otros instantes podría corresponder la figura?