大学物理实验报告		哈尔滨工业大学(深圳)
班级自治化了神学号 ~20320806	姓名英姓子	教师签字》
实验日期	_预习成绩	总成绩

实验名称 用惠斯通电桥测电阻

一. 实验目的 用伏安佑冷制成性/林茂性元件仙伏安特性由成 利用惠斯通电桥则代别性件的阻位与电桥关数度

二、实验预习

绘制惠 好通电桥电路图,并说明平衡时满足条件。

大学物理实验报告

哈尔滨工业大学(深圳)

三. 实验现象及数据记录

1.惠斯通电桥测量电阻

电阻 (阻值)	N	$R_s(\Omega)$	$R_x(\Omega)$	$\triangle R_s(\Omega)$	<i>△n</i> (格)	S(格)
1 ΚΩ	1	994.	984.1	0.8	6	
10 ΚΩ	1					

/00 / /00、2 /00.2 0.3 上 2.惠标通电桥灵敏度测量

N	$R_s(\Omega)$	$R_x(\Omega)$	$\triangle R_s$ (Ω)	<i>△n</i> (格)	S (格)
0.01	97776.	4 978.0	200	6.0	
0.1	9957.4	995.7	20	6.0	
1	998.0	998.0	2	16.1	
10	99.4	994	0.3	8.4	
100	9.9	990	0.2	5.8	

教师	姓名
签字	新老

一. 实验结论及现象分析

对比不能比N值下,惠斯通电桥灵敏度变化,并分析其他可能影响惠斯通电桥灵敏度参量

由实验数据记录可知,N 值等于 1 时,电桥的灵敏度最高,N 值越远离 1, 则灵敏度越低。 其他会影响电桥灵敏度的因素包括:

- 1. 检流计的灵敏度。检流计的灵敏度越高,电桥的灵敏度也越高。
- 2. 电源电压。适当提高电源电压可以增大电桥灵敏度。

二. 讨论问题

- 1.电桥测电阻为什么不能测量小于1Ω的电阻?
- 2.用什么方法保护电流计,不至于因电流过大而损坏?
- 3. 当电桥平衡后,若互换电源和检流计位置,电桥是否仍然平衡?并证明。
- 1.

实验装置中的导线也有一定的电阻(约 $10^{(-5)}\Omega \sim 0.01\Omega$),当测量小于 1 Ω 的电阻时,导 线的电阻值就会造成较大的测量误差。

2.

首先使用较小的灵敏度进行测量,当电流计无法检测出电流变化时再调高灵敏度继续测量; 在接通电流计时通过点按开关的方式,防止大电流持续经过电流计使其损坏。

3.

电桥仍然平衡

在原本的实验装置中, 电桥平衡时, 满足等式:

$$\frac{R_x}{R_s} = \frac{R_1}{R_2}$$

将电源和检流计位置互换后, 电路变为:

对于这个电桥, 其平衡条件为

$$\frac{R_S}{R_2} = \frac{R_x}{R_1}$$

这与上式等效