WHAT IS CLAIMED IS:

- 1. An ink-jet ink comprising a coloring composition containing a coloring particulate containing an ionic-group-containing polymer, an oil-soluble dye, and a hydrophobic high-boiling-point organic solvent having a boiling point of at least 150℃, the coloring particulate being dispersed in a water-based medium, wherein content of the hydrophobic high-boiling-point organic solvent in the coloring composition is at least 25% by mass and not more than 95% by mass with respect to a total amount of the ionic-group-containing polymer, the oil-soluble dye, and the hydrophobic high-boiling-point organic solvent.
- 2. An ink-jet ink according to claim 1 wherein the oil-soluble dye is represented by following general formula I:

general formula I

$$R^2$$
 R^3 A A $B^2 = B^1$

wherein X represents a residual group of a color coupler; A represents one of $-NR^4R^5$ and a hydroxy group; R^4 and R^5 each independently represents one of a hydrogen atom, aliphatic group, aromatic group and heterocyclic group; B^1 represents one

group, aromatic group and heterocyclic group; B¹ represents one of =C(R6)- and =N-; B² represents one of -C(R7)= and -N=; R², R³, R6 and R7 each independently represent one of a hydrogen atom, halogen atom, aliphatic group, aromatic group, heterocyclic group, cyano group, -OR51, -SR52, -CO2R53, -OCOR54, -NR55R56, -CONR57R58, -SO2R59, -SO2NR60R61, -NR62CONR63R64, -NR65CO2R66, -COR67, -NR68COR69, and -NR70SO2R71; R51, R52, R53, R54, R55, R56, R57, R58, R59, R60, R61, R62, R63, R64, R65, R66, R67, R68, R69, R70 and R71 each independently represents one of a hydrogen atom, aliphatic group and aromatic group; and any of pairs, R² and R³, R³ and R⁴, R⁴ and R⁵, R⁵ and R6, and R6 and R7 may bond together to form a ring structure.

- 3. An ink-jet ink according to claim 1, wherein the ionic-group-containing polymer is a vinyl polymer.
- 4. An ink-jet ink according to claim 1, wherein a relative dielectric constant at 25℃ of the hydrophobic high-boiling-point organic solvent is from 3 to 12.
- 5. An ink-jet ink according to claim 1, wherein the vinyl polymer has at least one of carboxyl groups and sulfonic acid groups as ionic groups.
 - 6. An ink-jet ink according to claim 1, wherein the

hydrophobic high-boiling-point organic solvent is at least one hydrophobic high-boiling-point organic solvent selected from hydrophobic high-boiling-point organic solvents represented by following formulae S-1 to S-9:

Formula
$$(S-1)$$
 $O=P (O)_b R_2 (O)_c R_3$

Formula
$$[s-2]$$
 $(R_6)_d$ $COOR_5$

Formula
$$(s-3)$$
 $(Ar-COO)_{e}-R_{7}$

Formula
$$[S-4]$$
 $(R_8-COO)_f-R_9$

Formula
$$[s-5]$$
 R_{10} — $(COO-R_{11})_g$

Formula
$$(S-8)$$
 R_{18} $(R_{10})_i$

wherein: in the formula S-1, R_1 , R_2 and R_3 each

independently represents one of an aliphatic group and an aryl group, and a, b and c each independently represents 0 or 1;

in the formula S-2, R_4 and R_5 each independently represents one of an aliphatic group and an aryl group, R_6 represents one of a fluorine atom, chlorine atom, bromine atom, iodine atom, alkyl group, alkoxy group, aryloxy group, alkoxycarbonyl group and aryloxycarbonyl group, d represents an integer from 0 to 3, and, in a case where d is more than 1, one R_6 may be different from another R_6 ;

in the formula S-3, Ar represents an aryl group, e represents an integer from 1 to 6, and R_7 represents one of an evalent hydrocarbon group and a hydrocarbon group that is mutually bonded by an ether bond;

in the formula S-4, R_8 represents an aliphatic group, f represents an integer from 1 to 6, and R_9 represents one of an f-valent hydrocarbon group and a hydrocarbon group that is mutually bonded by an ether bond;

in the formula S-5, g represents an integer from 2 to 6, R_{10} represents a g-valent hydrocarbon group other than an aryl group, and R_{11} represents one of an aliphatic group and an aryl group;

in the formula S-6, R_{12} , R_{13} and R_{14} each independently represents one of a hydrogen atom, aliphatic group and aryl group, X represents one of -CO- and -SO₂-, and one of a pair R_{12} and R_{13} and a pair R_{13} and R_{14} may bond together mutually to

form a ring;

in the formula S-7, R_{15} represents one of an aliphatic group, alkoxycarbonyl group, aryloxycarbonyl group, alkylsulfonyl group, arylsulfonyl group, aryl group and cyano group, R_{16} represents one of a fluorine atom, chlorine atom, bromine atom, iodine atom, aliphatic group, aryl group, alkoxy group and aryloxy group, h represents an integer from 0 to 3, and in a case where h is more than 1, one R_{16} may be different form another R_{16} ;

in the formula S-8, R_{17} and R_{18} each independently represents one of an aliphatic group and an aryl group, R_{19} represents one of a fluorine atom, chlorine atom, brorine atom, iodine atom, aliphatic group, aryl group, alkoxy group and aryloxy group, i represents an integer from 0 to 4, and, in a case where i is more than 1, one R_{19} may be different from another R_{19} ;

in the formula S-9, R_{20} and R_{21} each independently represents an aliphatic group or aryl group, and j represents 1 or 2.

7. An ink-jet ink according to claim 1, wherein the content of the ionic-group-containing polymer is 1 to 70% by mass with respect to the total amount of the ionic-group-containing polymer, the oil-soluble dye, and the hydrophobic high-boiling-point organic solvent.

- 8. An ink-jet ink according to claim 1, wherein the content of the oil-soluble dye is 3 to 70% by mass with respect to the total amount of the ionic-group-containing polymer, the oil-soluble dye, and the hydrophobic high-boiling-point organic solvent.
- 9. An ink-jet ink according to claim 1, wherein average particle size of the coloring particulate is at most 100 nm.
- 10. An ink-jet ink according to claim 2, wherein the oil-soluble dye which is represented in said general formula I is a compound which is represented in the following general formula II:

General Formula II

wherein, R^2 , R^3 , A, B^1 , and B^2 are synonymous with R^2 , R^3 , A, B^1 , and B^2 in said general formula I;

 R^1 represents one of a hydrogen atom, an aliphatic group, an aromatic group, a heterocyclic group, a cyano group, -OR¹¹, -SR¹², -CO₂R¹³, -OCOR¹⁴, -NR¹⁵R¹⁶, -CONR¹⁷R¹⁸, -SO₂R¹⁹, -

 $SO_2NR^{20}R^{21}$, $-NR^{22}CONR^{23}R^{24}$, $-NR^{25}CO_2R^{26}$, $-COR^{27}$, $-NR^{28}COR^{29}$, and $-NR^{30}SO_2R^{31}$;

 R^{11} , R^{12} , R^{13} , R^{14} , R^{15} , R^{16} , R^{17} , R^{18} , R^{19} , R^{20} , R^{21} , R^{22} , R^{23} , R^{24} , R^{25} , R^{26} , R^{27} , R^{28} , R^{29} , R^{30} , and R^{31} represent respectively independently one of a hydrogen atom, an aliphatic group, and an aromatic group;

D represents an atom group which forms one of a five-membered nitrogen-containing heterocyclic ring and a six-membered nitrogen-containing heterocyclic ring which may be substituted for at least one of an aliphatic group, an aromatic group, a heterocyclic group, a cyano group, -OR⁸¹, -SR⁸², -CO₂R⁸³, -OCOR⁸⁴, -NR⁸⁵R⁸⁶, -CONR⁸⁷R⁸⁸, -SO₂R⁸⁹, -SO₂NR⁹⁰R⁹¹, -NR⁹²CONR⁹³R⁹⁴, -NR⁹⁵CO₂R⁹⁶, -COR⁹⁷, -NR⁹⁸COR⁹⁹, and -NR¹⁰⁰SO₂R¹⁰¹;

the heterocyclic ring may further form a condensed ring with another ring; and

 R^{81} , R^{82} , R^{83} , R^{84} , R^{85} , R^{86} , R^{87} , R^{88} , R^{89} , R^{90} , R^{91} , R^{92} , R^{93} , R^{94} , R^{95} , R^{96} , R^{97} , R^{98} , R^{99} , R^{100} , and R^{101} represent respectively independently one of a hydrogen atom, an aliphatic group, and an aromatic group.

11. An ink-jet ink according to claim 10, wherein the compound which is represented in said general formula II is a compound which is represented in the following general formula III:

General formula III

wherein, R^1 , R^2 , R^3 , R^4 , R^5 , R^6 , and R^7 are synonymous with R^1 , R^2 , R^3 , R^4 , R^5 , R^6 , and R^7 in said general formula II;

 X^1 and Y represent respectively independently one of -C (\mathbb{R}^8) = and -N=;

 R^8 represents one of a hydrogen atom, an aliphatic group, and an aromatic group; and

one of X^1 and Y is always -N=, and X^1 and Y are -N= at different times.

12. An ink-jet ink according to claim 2, wherein the oilsoluble dye which is represented in said general formula I is at least one of compounds which are represented in the following formulas IV-1 to IV-4:

$$R^{202}$$
 R^{201}
 R^{202}
 R^{203}
 R^{203}
 R^{201}
 R^{202}
 R^{203}
 R^{203}

$$R^{202}$$
 R^{203}
 R^{203}
 R^{203}
 R^{203}
 R^{203}
 R^{203}

$$R^{202}$$
 N
 R^{203}
 R^{201}
 N
 R^{203}
 R^{2}
 R^{2}
 R^{3}
 R^{3}

$$R^{202}$$
 R^{203}
 R^{201}
 R^{201}
 R^{203}
 R^{203}
 R^{203}
 R^{203}
 R^{203}
 R^{203}
 R^{203}
 R^{203}

wherein, A, R^2 , R^3 , B^1 , and B^2 are synonymous with A, R^2 , R^3 , B^1 , and B^2 in said general formula I;

 R^{201} , R^{202} , and R^{203} represent respectively independently one of a hydrogen atom, an aliphatic group, an aromatic group, a heterocyclic group, a cyano group, $-OR^{11}$, $-SR^{12}$, $-CO_2R^{13}$, - $OCOR^{14}$, $-NR^{15}R^{16}$, $-CONR^{17}R^{18}$, $-SO_2R^{19}$, $-SO_2NR^{20}R^{21}$, - $NR^{22}CONR^{23}R^{24}$, $-NR^{25}CO_2R^{26}$, $-COR^{27}$, $-NR^{28}COR^{29}$, and -

 $NR^{30}SO_2R^{31}$;

 R^{11} , R^{12} , R^{13} , R^{14} , R^{15} , R^{16} , R^{17} , R^{18} , R^{19} , R^{20} , R^{21} , R^{22} , R^{23} , R^{24} , R^{25} , R^{26} , R^{27} , R^{28} , R^{29} , R^{30} , and R^{31} represent respectively independently one of a hydrogen atom, an aliphatic group, and an aromatic group; and

 R^{201} and R^{202} may be combined with each other and form a ring structure.

- 13. A coloring composition comprising a coloring particulate containing an ionic-group-containing polymer, an oil-soluble dye, and a hydrophobic high-boiling-point organic solvent having a boiling point of at least 150℃, the coloring particulate being dispersed in a water-based medium, wherein content of the hydrophobic high-boiling-point organic solvent in the coloring composition is at least 25% by mass and not more than 95% by mass with respect to a total amount of the ionic-group-containing polymer, the oil-soluble dye, and the hydrophobic high-boiling-point organic solvent.
- 14. An ink-jet recording method in which recording is conducted using an ink-jet ink on a recording material, the ink comprising a coloring composition containing a coloring particulate containing an ionic-group-containing polymer, an oil-soluble dye, and a hydrophobic high-boiling-point organic solvent having a boiling point of at least 150℃, the coloring

particulate being dispersed in a water-based medium, wherein content of the hydrophobic high-boiling-point organic solvent in the coloring composition is at least 25% by mass and not more than 95% by mass with respect to a total amount of the ionic-group-containing polymer, the oil-soluble dye, and the hydrophobic high-boiling-point organic solvent.

15. An ink-jet recording method according to claim 14 wherein the oil-soluble dye is represented by following general formula I:

general formula I

$$R^2$$
 R^3
 A
 B^2
 B^1

wherein X represents a residual group of a color coupler; A represents one of $-NR^4R^5$ and a hydroxy group; R^4 and R^5 each independently represents one of a hydrogen atom, aliphatic group, aromatic group and heterocyclic group; B^1 represents one of $=C(R^6)$ - and =N-; B^2 represents one of $-C(R^7)$ = and -N=; R^2 , R^3 , R^6 and R^7 each independently represent one of a hydrogen atom, halogen atom, aliphatic group, aromatic group, heterocyclic group, cyano group, $-OR^{51}$, $-SR^{52}$, $-CO_2R^{53}$, $-OCOR^{54}$, $-NR^{55}R^{56}$,

-CONR⁵⁷R⁵⁸, -SO₂R⁵⁹, -SO₂NR⁶⁰R⁶¹, -NR⁶²CONR⁶³R⁶⁴, -NR⁶⁵CO₂R⁶⁶, -COR⁶⁷, -NR⁶⁸COR⁶⁹, and -NR⁷⁰SO₂R⁷¹; R⁵¹, R⁵², R⁵³, R⁵⁴, R⁵⁵, R⁵⁶, R⁵⁷, R⁵⁸, R⁵⁹, R⁶⁰, R⁶¹, R⁶², R⁶³, R⁶⁴, R⁶⁵, R⁶⁶, R⁶⁷, R⁶⁸, R⁶⁹, R⁷⁰ and R⁷¹ each independently represents one of a hydrogen atom, aliphatic group and aromatic group; and any of pairs, R² and R³, R³ and R⁴, R⁴ and R⁵, R⁵ and R⁶, and R⁶ and R⁷ may bond together to form a ring structure.

- 16. An ink-jet recording method according to claim 14 wherein the recording material includes a substrate on which is provided an ink receiving layer containing a porous inorganic pigment.
 - 17. An ink-jet recording method comprising the step of:
- (a) preparing an ink-jet ink, containing coloring composition in which coloring particulate containing an ionic-group-containing polymer, an oil-soluble dye, and a hydrophobic high-boiling-point organic solvent having a boiling point of at least 150℃ are dispersed in an aqueous medium, with the content of the hydrophobic high-boiling-point organic solvent in the coloring composition being at least 25% by mass and not more than 95% by mass with respect to total amount of the ionic-group-containing polymer, the oil-soluble dye, and the hydrophobic high-boiling-point organic solvent,
 - (b) disposing the ink-jet ink in a cartridge adapted for use

in an ink-jet printer, and

- (c) using the cartridge in an ink jet printer for recording images.
- 18. An ink-jet recording method according to claim 17, wherein the step of preparing an ink-jet ink includes the substep of dispersing the ionic-group-containing polymer, the oil-soluble dye, and the hydrophobic high-boiling-point organic solvent by a co-emulsifying dispersion technique.