Aufgabe 1 (Frühjahr 2014). Sei L/K eine endliche Galoiserweiterung. Zeigen Sie, daß für $\alpha \in L$ folgende Aussagen äquivalent sind.

- (a) Es gilt $L = K(\alpha)$.
- (b) Für alle $g \in Gal(L/K)$ mit $g \neq id$ gilt $g(\alpha) \neq \alpha$.

Aufgabe 2 (Herbst 2003). Gegeben sei das Element $z = X^2 + X^{-2}$ des rationalen Funktionenkorpers $\mathbb{Q}(X)$.

- (a) Zeigen Sie, daß $\mathbb{Q}(X)$ über $\mathbb{Q}(z)$ endlich vom Grad ≤ 4 ist.
- (b) Bestimmen Sie die Gruppe der Automorphismen von $\mathbb{Q}(X)$ die z festlassen.
- (c) Zeigen Sie, daß $\mathbb{Q}(X)$ über $\mathbb{Q}(z)$ Galois'sch ist und geben Sie alle Körper zwischen $\mathbb{Q}(X)$ und $\mathbb{Q}(z)$ an.

Aufgabe 3 (Frühjahr 2004). Es sei K/k eine Galoiserweiterung, deren Galoisgruppe isomorph zur symmetrischen Gruppe S_n ist. Zeigen Sie:

- (a) K enthält n zueinander konjugierte Zwischenkörper vom Grad n über k, die zusammen K über k erzeugen.
- (b) K ist der Zerfällungskörper eines Polynoms vom Grad n aus k[X] über k

Aufgabe 4 (Herbst 2004). Es sei $K = \mathbb{F}_{3^3}$ der Körper mit 27 Elementen. Was ist die Ordnung der Galoisgruppe $G = \text{Gal}(K/\mathbb{F}_3)$? In wieviele und wie lange Bahnen zerfällt K unter der Operation von G?