# DAA Experiment-1-A (Batch-A/A1)

| Name                     | Ansari Mohammed Shanouf Valijan       |
|--------------------------|---------------------------------------|
| UID Number               | 2021300004                            |
| Class                    | SY B.Tech Computer Engineering(Div-A) |
| <b>Experiment Number</b> | 1-A                                   |

#### Aim:

To implement the various linear and non-linear functions.

## **Problem Definition and Assumptions:**

From the given list of functions, implement at-least 10, print the input-output table and plot the graphs. Write your observations.

#### Theory:

A function in the context of this experiment is a mathematical expression that gives certain outputs based on the inputs provided. A proper understanding of functions in general and their nature would help us while dealing with the time complexities of algorithms. It would help us to compare two or more algorithms in the process of determining the most efficient one.



The image above shows a conceptual view of a function. Basically, inputs are mapped to outputs in a function such that one input will have only one output. However, an output may be generated by two or more inputs.

#### **Algorithms:**

## [A] For log functions-

- I. Call the log function from the 'math.h' header file.
- II. Wherever log to the base x is asked, divide the answer obtained in the previous step by log(x) and return the obtained value.

### [B] For other functions-

 Simply call the required function from the math header file and return the obtained value.

#### [C] For factorial function-

I. Return the provided number multiplied by factorial of a number one less than the given number till 0 is reached where 1 is returned.

#### **Program:**

```
#include<stdio.h>
#include<math.h>
//utility functions
double factorial(double n){
   if(n<=1)
       return 1;
   return n*factorial(n-1);
double func1(double x){
    return pow(1.5,x);
double func2(double x){
    return pow(x,3);
double func3(double x){
    return log(log(x));
double func4(double x){
    return log(factorial(x))/log(2);
double func5(double x){
    return exp(x);
double func6(double x){
```

```
return log(log(x)/log(2))/log(2);
}

double func7(double x){
    return x;
}

double func8(double x){
    return pow(2,pow(2,x));
}

double func9(double x){
    return x*pow(2,x);
}

double func10(double x){
    return log(x)/log(2);
}

double func11(double x){
    return factorial(x);
}

//main function

void main(){
    for(double i=0; i<=100; i++){
        printf("%.01f\tx.21f\n",i,func1(i));
    }
}</pre>
```

Note that in the main() function, all the 11 functions(including the factorial function) were executed one after the other and their outputs were copied in an excel file for obtaining their respective graphs.

## Implementation:

From the given list of functions, the following ten functions were chosen for execution. The corresponding graph obtained and observation for each of the chosen functions are included as well.

The graphs were obtained through the excel file, the screenshots of which are included at the end of the document.

All the x-y values of the functions were pasted from the terminal to the file in order to be able to obtain their respective graphs. In total, eleven functions were executed.

[A] Function-1:  $(3/2)^n$ 



- I. The graph seems to have a sudden steep rise thereby indicating that we are dealing with an exponential function.
- II. During the runtime of the function on the terminal, it took comparatively more and more time to get the corresponding y value for an x value.
- III. By executing the function for values beyond 100, it was observed that a proper output was obtained for values of x up to 1750 after which vague values were obtained. The following image shows the output obtained when the function was executed for values beyond 1750.





- The graph of the function smoothly increases without any sudden rise or fall as seen above.
- II. The curve is concaving in the upwards direction.
- III. The function, upon its execution with values much larger than 100, still provides a proper output within the split of a second. The image below shows the output obtained when the function is executed for values in the range of a million.





- I. This function is not defined for the input values 0 and 1 as can be seen in the excel screenshot at the end. For these inputs, the output is treated as default by the excel and hence the above graph starts as a flat line.
- II. The graph then steeps down to the only negative value output in the range from 0 to 100.
- III. Further, the graph quickly rises up, then gradually slows down, thereby depicting the behaviour of a logarithmic function.
- IV. From the execution of the graph, it is found that it limits to the approximate value of 2.63 at large inputs that are in the range of a million.

```
1000170 2.63
1000171 2.63
1000172 2.63
1000173 2.63
1000174 2.63
1000175 2.63
1000176 2.63
1000177 2.63
1000178 2.63
1000178 2.63
1000178 2.63
1000180 2.63
1000180 2.63
1000181 2.63
1000182 2.63
1000182 2.63
1000182 2.63
1000183 2.63
1000185 2.63
1000185 2.63
1000185 2.63
1000186 2.63
```



- I. An almost linear behaviour of the function is observed through its graph plotted for the inputs from 0 to 100.
- II. Due to the primary part of the function being factorial, we observe that vague values are obtained once the input crosses the value of 170. This is shown in the image below.

```
989.78
167
         997.17
168
         1004.56
169
         1011.96
170
         1019.37
171
         1.#J
172
         1.#J
173
         1.#J
174
175
         1.#3
176
177
         1.#J
178
         1.#J
179
180
181
         1.#J
182
         1.#J
183
         1.#J
184
185
186
         1.#J
187
         1.#J
```



- I. In the plot of the graph for input ranging from 0 to 100, a flat line is observed which suddenly rises around the input value of 96, showing a very steep behaviour.
- II. The sudden shift of output demonstrates the nature of an exponential function.
- III. Upon executing the function for inputs beyond the value of 100, it is found that we start getting vague outputs after the value of 709. This is shown below.







- I. This particular function is undefined for the input values 0 and 1, the output of which are shown as zero in the graph(the default output for excel).
- II. Further, the graph increases, first rapidly, then slowly, concaving in the downward direction.
- III. At the input values that fall in the range of a million, we find that the output limits to a value of 4.32. This is illustrated below.







- I. A straight line is obtained as we are dealing with a linear function in this case.
- II. Upon the execution of this function for input values that are much larger than 100, the outputs are quickly obtained as the function is linear.
- III. There are no input values for which the output is undefined. Given below is a sample output of the execution of this function.

```
1542939 1542939.00
1542940 1542940.00
1542941 1542941.00
1542942 1542942.00
1542943 1542943.00
1542944 1542944.00
1542945 1542945.00
1542946 1542946.00
1542947 1542947.00
1542948 1542948.00
1542949 1542949.00
1542950 1542950.00
1542951 1542951.00
1542952 1542952.00
1542953 1542953.00
1542954 1542954.00
1542955 1542955.00
1542956 1542956.00
```



- I. The above graph demonstrates that this function increases very rapidly even when the increment in the input is very less.
- II. From the execution of this function on the terminal, it was noticed that for input values greater than 9, vague outputs were obtained. This is shown in the following image.
- III. From the graph, we also see a sharp increase of the output when the input changes from 8 to 9.



- I. The above graph is noted to be similar to that of a generic exponential function, except for the fact that an extra factor of n is included as well.
- II. This graph also shows a steep rise near the input value of 96. The output moves in the order of 32<sup>nd</sup> power of 10 while the input is just 100.
- III. Upon the execution of this function, we get to know that vague values are obtained for input values that are greater than 1014. This is shown below.



- I. The graph of this function roughly imitates the one belonging to a generic logarithmic function having a base value greater than 1.
- II. This function is undefined at the input value of 0, the output at which is shown as 0 in the graph as per the default behaviour of the graph in an excel file.
- III. This function, being a logarithmic one, succeeds in providing proper outputs even when the inputs are in millions or billions.

| 1000045037 | 29.90 |  |  |  |
|------------|-------|--|--|--|
| 1000045038 | 29.90 |  |  |  |
| 1000045039 | 29.90 |  |  |  |
| 1000045040 | 29.90 |  |  |  |
| 1000045041 | 29.90 |  |  |  |
| 1000045042 | 29.90 |  |  |  |
| 1000045043 | 29.90 |  |  |  |
| 1000045044 | 29.90 |  |  |  |
| 1000045045 | 29.90 |  |  |  |
| 1000045046 | 29.90 |  |  |  |
| 1000045047 | 29.90 |  |  |  |
| 1000045048 | 29.90 |  |  |  |
| 1000045049 | 29.90 |  |  |  |
| 1000045050 | 29.90 |  |  |  |
| 1000045051 | 29.90 |  |  |  |
| 1000045052 | 29.90 |  |  |  |
| 1000045053 | 29.90 |  |  |  |
| 1000045054 | 29.90 |  |  |  |
| 1000045055 | 29.90 |  |  |  |



- I. From both the above graphs that are plotted for the ranges 0 to 100 and 0 to 20 respectively, we find that even the factorial function has a rapid increase in its output when the input increases by a small value.
- II. As observed in function-4, upon trying to calculate the factorials of inputs greater than 100, we find that after the value of 170, vague values are found in the output.

Given below is a glimpse of the excel file where all the x-y values for all the various functions were pasted.

| Fund | ction-1  | Fu   | ınction-2 | Funct | tion-3  | - 1 | Funct | tion-4 |
|------|----------|------|-----------|-------|---------|-----|-------|--------|
| χ    | ΥΨ       | Х    | Ψ Υ Ψ     | Х     | Υ       |     | ΧΨ    | Υ      |
| 0    | 1        | 0    | 0         | 0     | 1.#QNB  |     | 0     | 0      |
| 1    | 1.5      | 1    | 1         | 1     | -1.#INF |     | 1     | 0      |
| 2    | 2.25     | 2    | 8         | 2     | -0.3665 |     | 2     | 1      |
| 3    | 3.38     | 3    | 27        | 3     | 0.094   |     | 3     | 2.58   |
| 4    | 5.06     | 4    | 64        | 4     | 0.3266  |     | 4     | 4.58   |
| 5    | 7.59     | 5    | 125       | 5     | 0.4759  |     | 5     | 6.91   |
| 6    | 11.39    | 6    | 216       | 6     | 0.5832  |     | 6     | 9.49   |
| 7    | 17.09    | 7    | 343       | 7     | 0.6657  |     | 7     | 12.3   |
| 8    | 25.63    | 8    | 512       | 8     | 0.7321  |     | 8     | 15.3   |
| 9    | 38.44    | 9    | 729       | 9     | 0.7872  |     | 9     | 18.47  |
| 10   | 57.67    | 10   | 1000      | 10    | 0.834   |     | 10    | 21.79  |
| 11   | 86.5     | 11   | 1331      | 11    | 0.8746  |     | 11    | 25.25  |
| 12   | 129.75   | 12   | 1728      | 12    | 0.9102  |     | 12    | 28.84  |
| 13   | 194.62   | 13   | 2197      | 13    | 0.9419  |     | 13    | 32.54  |
| 14   | 291.93   | 14   | 2744      | 14    | 0.9704  |     | 14    | 36.34  |
| 15   | 437.89   | 15   | 3375      | 15    | 0.9962  |     | 15    | 40.25  |
| 16   | 656.84   | 16   | 4096      | 16    | 1.0198  |     | 16    | 44.25  |
| 17   | 985.26   | 17   | 4913      | 17    | 1.0414  |     | 17    | 48.34  |
| 18   | 1477.89  | 18   | 5832      | 18    | 1.0614  |     | 18    | 52.51  |
| 19   | 2216.84  | 19   | 6859      | 19    | 1.0799  |     | 19    | 56.76  |
| 20   | 3325.26  | 20   | 8000      | 20    | 1.0972  |     | 20    | 61.08  |
| 21   | 4987.89  | 21   | 9261      | 21    | 1.1133  |     | 21    | 65.47  |
| 22   | 7481.83  | 22   | 10648     | 22    | 1.1285  |     | 22    | 69.93  |
| 23   | 11222.74 | 23   | 12167     | 23    | 1.1428  |     | 23    | 74.45  |
| 24   | 16834.11 | 24   | 13824     | 24    | 1.1563  |     | 24    | 79.04  |
| 25   | 25251.17 | 25   | 15625     | 25    | 1.169   |     | 25    | 83.68  |
| 26   | 37876.75 | 26   | 17576     | 26    | 1.1811  |     | 26    | 88.38  |
| 27   | 56815.13 | 27   | 19683     | 27    | 1.1927  |     | 27    | 93.14  |
| 28   | 85222.69 | 28   | 21952     | 28    | 1.2036  |     | 28    | 97.94  |
| 29   | 127834   | 29   | 24389     | 29    | 1.2141  |     | 29    | 102.8  |
|      |          |      |           |       |         |     |       |        |
| 30   | 191751.1 | 30   | 27000     | 30    | 1.2241  |     | 30    | 107.71 |
| 31   | 287626.6 | 31   | 29791     | 31    | 1.2337  |     | 31    | 112.66 |
| 32   | 431439.9 | 32   | 32768     | 32    | 1.2429  |     | 32    | 117.66 |
| 33   | 647159.8 | 33   | 35937     | 33    | 1.2518  |     | 33    | 122.71 |
| 34   | 970739.7 | 34   | 39304     | 34    | 1.2603  |     | 34    | 127.8  |
| 35   | 1456110  | 35   | 42875     | 35    | 1.2685  |     | 35    | 132.92 |
| 36   | 2184164  | 36   | 46656     | 36    | 1.2763  |     | 36    | 138.09 |
| 37   | 3276247  | 37   | 50653     | 37    | 1.284   |     | 37    | 143.3  |
| 38   | 4914370  | 38   | 54872     | 38    | 1.2913  |     | 38    | 148.55 |
| 39   | 7371555  | 39   | 59319     | 39    | 1.2984  |     | 39    | 153.84 |
| 40   | 11057332 | 40   | 64000     | 40    | 1.3053  |     | 40    | 159.16 |
| 41   | 16585998 | 41   | 68921     | 41    | 1.312   |     | 41    | 164.52 |
| 42   | 24878998 | 42   | 74088     | 42    | 1.3185  |     | 42    | 169.91 |
| 43   | 37318497 | 43   | 79507     | 43    | 1.3247  |     | 43    | 175.34 |
|      |          |      |           |       |         |     |       |        |
| 44   | 55977745 | 44   | 85184     | 44    | 1.3308  |     | 44    | 180.79 |
| 45   | 83966617 | 45   | 91125     | 45    | 1.3368  |     | 45    | 186.29 |
| 46   | 1.26E+08 | 46   | 97336     | 46    | 1.3425  |     | 46    | 191.81 |
| 47   | 1.89E+08 | 47   | 103823    | 47    | 1.3481  |     | 47    | 197.36 |
| 48   | 2.83E+08 | 48   | 110592    | 48    | 1.3536  |     | 48    | 202.95 |
| 49   | 4.25E+08 | 49   | 117649    | 49    | 1.3589  |     | 49    | 208.56 |
| 50   | 6.38E+08 | 50   | 125000    | 50    | 1.3641  |     | 50    | 214.21 |
| 51   | 9.56E+08 | 51   | 132651    | 51    | 1.3691  |     | 51    | 219.88 |
| 52   | 1.43E+09 | 52   | 140608    | 52    | 1.374   |     | 52    | 225.58 |
| 53   | 2.15E+09 | 53   | 148877    | 53    | 1.3788  |     | 53    | 231.31 |
|      |          | 1 == |           |       |         | 1   |       |        |

| 54  | 3.23E+09 | 54  | 157464  | 54  | 1.3835 | 54  | 237.06 |
|-----|----------|-----|---------|-----|--------|-----|--------|
| 55  | 4.84E+09 | 55  | 166375  | 55  | 1.3881 | 55  | 242.85 |
| 56  | 7.26E+09 | 56  | 175616  | 56  | 1.3926 | 56  | 248.65 |
| 57  | 1.09E+10 | 57  | 185193  | 57  | 1.397  | 57  | 254.49 |
| 58  | 1.63E+10 | 58  | 195112  | 58  | 1.4013 | 58  | 260.34 |
| 59  | 2.45E+10 | 59  | 205379  | 59  | 1.4055 | 59  | 266.23 |
| 60  | 3.68E+10 | 60  | 216000  | 60  | 1.4096 | 60  | 272.13 |
| 61  | 5.52E+10 | 61  | 226981  | 61  | 1.4136 | 61  | 278.06 |
| 62  | 8.27E+10 | 62  | 238328  | 62  | 1.4176 | 62  | 284.02 |
| 63  | 1.24E+11 | 63  | 250047  | 63  | 1.4215 | 63  | 290    |
| 64  | 1.86E+11 | 64  | 262144  | 64  | 1.4252 | 64  | 296    |
| 65  | 2.79E+11 | 65  | 274625  | 65  | 1.429  | 65  | 302.02 |
| 66  | 4.19E+11 | 66  | 287496  | 66  | 1.4326 | 66  | 308.06 |
| 67  | 6.28E+11 | 67  | 300763  | 67  | 1.4362 | 67  | 314.13 |
| 68  | 9.42E+11 | 68  | 314432  | 68  | 1.4397 | 68  | 320.22 |
| 69  | 1.41E+12 | 69  | 328509  | 69  | 1.4432 | 69  | 326.32 |
| 70  | 2.12E+12 | 70  | 343000  | 70  | 1.4466 | 70  | 332.45 |
| 71  | 3.18E+12 | 71  | 357911  | 71  | 1.4499 | 71  | 338.6  |
| 72  | 4.77E+12 | 72  | 373248  | 72  | 1.4532 | 72  | 344.77 |
| 73  | 7.16E+12 | 73  | 389017  | 73  | 1.4564 | 73  | 350.96 |
| 74  | 1.07E+13 | 74  | 405224  | 74  | 1.4596 | 74  | 357.17 |
| 75  | 1.61E+13 | 75  | 421875  | 75  | 1.4627 | 75  | 363.4  |
| 76  | 2.42E+13 | 76  | 438976  | 76  | 1.4657 | 76  | 369.65 |
| 77  | 3.62E+13 | 77  | 456533  | 77  | 1.4688 | 77  | 375.92 |
| 78  | 5.43E+13 | 78  | 474552  | 78  | 1.4717 | 78  | 382.2  |
| 79  | 8.15E+13 | 79  | 493039  | 79  | 1.4746 | 79  | 388.5  |
| 80  | 1.22E+14 | 80  | 512000  | 80  | 1.4775 | 80  | 394.83 |
| 81  | 1.83E+14 | 81  | 531441  | 81  | 1.4803 | 81  | 401.17 |
| 82  | 2.75E+14 | 82  | 551368  | 82  | 1.4831 | 82  | 407.52 |
| 83  | 4.13E+14 | 83  | 571787  | 83  | 1.4859 | 83  | 413.9  |
| 84  | 6.19E+14 | 84  | 592704  | 84  | 1.4886 | 84  | 420.29 |
| 85  | 9.28E+14 | 85  | 614125  | 85  | 1.4913 | 85  | 426.7  |
| 86  | 1.39E+15 | 86  | 636056  | 86  | 1.4939 | 86  | 433.13 |
| 87  | 2.09E+15 | 87  | 658503  | 87  | 1.4965 | 87  | 439.57 |
|     |          |     |         |     |        |     |        |
| 88  | 3.13E+15 | 88  | 681472  | 88  | 1.499  | 88  | 446.03 |
| 89  | 4.7E+15  | 89  | 704969  | 89  | 1.5015 | 89  | 452.51 |
| 90  | 7.05E+15 | 90  | 729000  | 90  | 1.504  | 90  | 459    |
| 91  | 1.06E+16 | 91  | 753571  | 91  | 1.5065 | 91  | 465.51 |
| 92  | 1.59E+16 | 92  | 778688  | 92  | 1.5089 | 92  | 472.03 |
| 93  | 2.38E+16 | 93  | 804357  | 93  | 1.5113 | 93  | 478.57 |
| 94  | 3.57E+16 | 94  | 830584  | 94  | 1.5137 | 94  | 485.12 |
| 95  | 5.35E+16 | 95  | 857375  | 95  | 1.516  | 95  | 491.69 |
| 96  | 8.03E+16 | 96  | 884736  | 96  | 1.5183 | 96  | 498.28 |
|     |          |     |         |     |        |     |        |
| 97  | 1.2E+17  | 97  | 912673  | 97  | 1.5205 | 97  | 504.88 |
| 98  | 1.81E+17 | 98  | 941192  | 98  | 1.5228 | 98  | 511.49 |
| 99  | 2.71E+17 | 99  | 970299  | 99  | 1.525  | 99  | 518.12 |
| 100 | 4.07E+17 | 100 | 1000000 | 100 | 1.5272 | 100 | 524.76 |

| Fund     | ction-5              |     | Funct    | tion-6           |   | Funct    | ion-7    |   | Func     | tion-8   |
|----------|----------------------|-----|----------|------------------|---|----------|----------|---|----------|----------|
| Х        |                      |     | Х -      |                  |   | Х        | ΥΨ       |   | Х        |          |
| 0        | 1                    |     | 0        | 1.#QNB           |   | 0        | 0        |   | 0        | 2        |
| 1        | 2.72                 |     | 1        | -1.#INF          |   | 1        | 1        |   | 1        | 4        |
| 2        | 7.39                 |     | 2        | 0                |   | 2        | 2        |   | 2        | 16       |
| 3        | 20.09                |     | 3        | 0.6644           |   | 3        | 3        |   | 3        | 256      |
| 4        | 54.6                 |     | 4        | 1                |   | 4        | 4        |   | 4        | 65536    |
| 5        | 148.41               |     | 5        | 1.2153           |   | 5        | 5        |   | 5        | 4.29E+09 |
| 6        | 403.43               |     | 6        | 1.3701           |   | 6        | 6        |   | 6        | 1.84E+19 |
| 7        | 1096.63              |     | 7        | 1.4892           |   | 7        | 7        |   | 7        | 3.4E+38  |
| 8        | 2980.96              |     | 8        | 1.585            |   | 8        | 8        |   | 8        | 1.16E+77 |
| 9        | 8103.08              |     | 9        | 1.6644           |   | 9        | 9        |   | 9        | 1.3E+154 |
| 10       | 22026.47             |     | 10       | 1.732            |   | 10       | 10       |   | 10       | 1.#J     |
| 11       | 59874.14             |     | 11       | 1.7905           |   | 11       | 11       |   | 11       | 1.#J     |
| 12       | 162754.8             |     | 12       | 1.842            |   | 12       | 12       |   | 12       | 1.#J     |
| 13       | 442413.4             |     | 13       | 1.8877           |   | 13       | 13       |   | 13       | 1.#J     |
| 14       | 1202604              |     | 14       | 1.9288           |   | 14       | 14       |   | 14       | 1.#J     |
| 15       | 3269017              |     | 15       | 1.966            |   | 15       | 15       |   | 15       | 1.#J     |
| 16       | 8886111              |     | 16       | 2                |   | 16       | 16       |   | 16       | 1.#J     |
| 17       | 24154953             |     | 17       | 2.0312           |   | 17       | 17       |   | 17       | 1.#J     |
| 18       | 65659969             |     | 18       | 2.06             |   | 18       | 18       |   | 18       | 1.#J     |
| 19       | 1.78E+08             |     | 19       | 2.0868           |   | 19       | 19       |   | 19       | 1.#J     |
| 20       | 4.85E+08             |     | 20       | 2.1117           |   | 20       | 20       |   | 20       | 1.#J     |
| 21       | 1.32E+09             |     | 21       | 2.135            |   | 21       | 21       |   | 21       | 1.#J     |
| 22       | 3.58E+09             |     | 22       | 2.1569           |   | 22       | 22       |   | 22       | 1.#J     |
| 23       | 9.74E+09             |     | 23       | 2.1775           |   | 23       | 23       |   | 23       | 1.#J     |
| 24       | 2.65E+10             |     | 24       | 2.1969           |   | 24       | 24       |   | 24       | 1.#J     |
| 25       | 7.2E+10              |     | 25       | 2.2153           |   | 25       | 25       |   | 25       | 1.#J     |
| 26       | 1.96E+11             |     | 26       | 2.2328           |   | 26       | 26       |   | 26       | 1.#J     |
| 27       | 5.32E+11             |     | 27       | 2.2494           |   | 27       | 27       |   | 27       | 1.#J     |
| 28       | 1.45E+12             |     | 28       | 2.2652           |   | 28       | 28       |   | 28       | 1.#J     |
| 29       | 3.93E+12             |     | 29       | 2.2804           |   | 29       | 29       |   | 29       | 1.#J     |
| 30       | 1.07E+13             |     | 30       | 2.2948           |   | 30       | 30       |   | 30       | 1.#J     |
| 31       | 2.9E+13              |     | 31       | 2.3087           |   | 31       | 31       |   | 31       | 1.#J     |
| 32       | 7.9E+13              |     | 32       | 2.3219           |   | 32       | 32       |   | 32       | 1.#J     |
| 33       | 2.15E+14             |     | 33       | 2.3347           |   | 33       | 33       |   | 33       | 1.#J     |
| 34       | 5.83E+14             |     | 34       | 2.3469           |   | 34       | 34       |   | 34       | 1.#J     |
| 35       | 1.59E+15             |     | 35       | 2.3588           |   | 35       | 35       |   | 35       | 1.#J     |
| 36       | 4.31E+15             |     | 36       | 2.3701           |   | 36       | 36       |   | 36       | 1.#J     |
| 37       | 1.17E+16             |     | 37       | 2.3811           |   | 37       | 37       |   | 37       | 1.#J     |
| 38       | 3.19E+16             |     | 38       | 2.3917           |   | 38       | 38       |   | 38       | 1.#J     |
| 39       | 8.66E+16             |     | 39       | 2.402            |   | 39       | 39       |   | 39       | 1.#J     |
| 40       | 2.35E+17             |     | 40       | 2.4119           |   | 40       | 40       |   | 40       | 1.#J     |
| 41       | 6.4E+17              |     | 41       | 2.4216           |   | 41       | 41       |   | 41       | 1.#J     |
| 42       | 1.74E+18             |     | 42       | 2.4309           |   | 42       | 42       |   | 42       | 1.#J     |
| 43       | 4.73E+18             |     | 43       | 2.44             |   | 43       | 43       |   | 43       | 1.#J     |
| 44       | 1.29E+19<br>3.49E+19 |     | 44<br>45 | 2.4488<br>2.4573 |   | 44<br>45 | 44<br>45 |   | 44<br>45 | 1.#J     |
|          |                      |     |          |                  |   |          |          |   |          |          |
| 46<br>47 | 9.5E+19<br>2.58E+20  |     | 46<br>47 | 2.4656<br>2.4737 |   | 46<br>47 | 46<br>47 |   | 46<br>47 | 1.#J     |
| 48       | 7.02E+20             |     | 48       | 2.4737           |   | 48       | 47       |   | 47       | 1.#J     |
| 48       | 1.91E+21             |     | 48       | 2.4813           |   | 48       | 48       |   | 48       | 1.#J     |
| 50       | 5.18E+21             |     | 50       | 2.4967           |   | 50       | 50       |   | 50       | 1.#J     |
| 51       | 1.41E+22             |     | 51       | 2.504            |   | 51       | 51       |   | 51       | 1.#J     |
| 52       | 3.83E+22             |     | 52       | 2.5111           |   | 52       | 52       |   | 52       | 1.#J     |
| 53       | 1.04E+23             |     | 53       | 2.5111           |   | 53       | 53       |   | 53       | 1.#J     |
| , 33     |                      | ı l |          |                  | 1 |          | . 55     | I | 1 23     |          |

| 54       | 2.83E+23             | 54       | 2.5248           |   | 54       | 54       | 54       | 1.#J         |
|----------|----------------------|----------|------------------|---|----------|----------|----------|--------------|
| 55       | 7.69E+23             | 55       | 2.5314           |   | 55       | 55       | 55       | 1.#J         |
| 56       | 2.09E+24             | 56       | 2.5379           |   | 56       | 56       | 56       | 1.#J         |
| 57       | 5.69E+24             | 57       | 2.5442           |   | 57       | 57       | 57       | 1.#J         |
| 58       | 1.55E+25             | 58       | 2.5504           |   | 58       | 58       | 58       | 1.#J         |
| 59       | 4.2E+25              | 59       | 2.5565           |   | 59       | 59       | 59       | 1.#J         |
| 60       | 1.14E+26             | 60       | 2.5624           |   | 60       | 60       | 60       | 1.#J         |
| 61       | 3.1E+26              | 61       | 2.5682           |   | 61       | 61       | 61       | 1.#J         |
| 62       | 8.44E+26             | 62       | 2.5739           |   | 62       | 62       | 62       | 1.#J         |
| 63       | 2.29E+27             | 63       | 2.5795           |   | 63       | 63       | 63       | 1.#J         |
| 64       | 6.24E+27             | 64       | 2.585            |   | 64       | 64       | 64       | 1.#J         |
| 65       | 1.69E+28             | 65       | 2.5903           |   | 65       | 65       | 65       | 1.#J         |
| 66       | 4.61E+28             | 66       | 2.5956           |   | 66       | 66       | 66       | 1.#J         |
| 67       | 1.25E+29             | 67       | 2.6008           |   | 67       | 67       | 67       | 1.#J         |
| 68       | 3.4E+29              | 68       | 2.6058           |   | 68       | 68       | 68       | 1.#J         |
| 69       | 9.25E+29             | 69       | 2.6108           |   | 69       | 69       | 69       | 1.#J         |
| 70       | 2.52E+30             | 70       | 2.6157           |   | 70       | 70       | 70       | 1.#J         |
| 71       | 6.84E+30             | 71       | 2.6205           |   | 71       | 71       | 71       | 1.#J         |
| 72       | 1.86E+31             | 72       | 2.6253           |   | 72       | 72       | 72       | 1.#J         |
| 73       | 5.05E+31             | 73       | 2.6299           |   | 73       | 73       | 73       | 1.#J         |
| 74       | 1.37E+32             | 74       | 2.6345           |   | 74       | 74       | 74       | 1.#J         |
| 75       | 3.73E+32             | 75       | 2.639            |   | 75       | 75       | 75       | 1.#J         |
| 76       | 1.01E+33             | 76       | 2.6434           |   | 76       | 76       | 76       | 1.#J         |
| 77       | 2.76E+33             | 77       | 2.6477           |   | 77       | 77       | 77       | 1.#J         |
| 78       | 7.5E+33              | 78       | 2.652            |   | 78       | 78       | 78       | 1.#J         |
| 79       | 2.04E+34             | 79       | 2.6562           |   | 79       | 79       | 79       | 1.#J         |
| 80       | 5.54E+34             | 80       | 2.6604           |   | 80       | 80       | 80       | 1.#J         |
| 81       | 1.51E+35             | 81       | 2.6644           |   | 81       | 81       | 81       | 1.#J         |
| 82       | 4.09E+35             | 82       | 2.6685           |   | 82       | 82       | 82       | 1.#J         |
| 83       | 1.11E+36             | 83       | 2.6724           |   | 83       | 83       | 83       | 1.#J         |
| 84       | 3.03E+36             | 84       | 2.6763           |   | 84       | 84       | 84       | 1.#J         |
| 85       | 8.22E+36             | 85       | 2.6802           |   | 85       | 85       | 85       | 1.#J         |
| 86       | 2.24E+37             | 86       | 2.684            |   | 86       | 86       | 86       | 1.#J         |
| 87<br>88 | 6.08E+37<br>1.65E+38 | 87<br>88 | 2.6877<br>2.6914 |   | 87<br>88 | 87<br>88 | 87<br>88 | 1.#J         |
| 89       | 4.49E+38             | 89       | 2.695            |   | 89       | 89       | 89       | 1.#J<br>1.#J |
| 90       | 1.22E+39             | 90       | 2.6986           |   | 90       | 90       | 90       | 1.#J         |
| 91       | 3.32E+39             | 91       | 2.7022           |   | 91       | 91       | 91       | 1.#J         |
| 92       | 9.02E+39             | 92       | 2.7022           |   | 92       | 92       | 92       | 1.#J         |
| 93       | 2.45E+40             | 93       | 2.7091           |   | 93       | 93       | 93       | 1.#J         |
| 94       | 6.66E+40             | 94       | 2.7125           |   | 94       | 94       | 94       | 1.#J         |
| 95       | 1.81E+41             | 95       | 2.7159           |   | 95       | 95       | 95       | 1.#J         |
| 96       | 4.92E+41             | 96       | 2.7192           |   | 96       | 96       | 96       | 1.#J         |
| 97       | 1.34E+42             | 97       | 2.7224           |   | 97       | 97       | 97       | 1.#J         |
| 98       | 3.64E+42             | 98       | 2.7257           |   | 98       | 98       | 98       | 1.#J         |
| 99       | 9.89E+42             | 99       | 2.7289           |   | 99       | 99       | 99       | 1.#J         |
| 100      | 2.69E+43             | 100      | 2.732            |   | 100      | 100      | 100      | 1.#J         |
|          |                      |          |                  | • |          |          |          |              |

| Fund | ction-9  | Functi | on-10 | Func | tion-11  |
|------|----------|--------|-------|------|----------|
| X    | Y        | χΨ     | Υ     | X    | Υ 🕶      |
| 0    | 0        | 0      | -1.#J | 0    | 1        |
| 1    | 2        | 1      | 0     | 1    | 1        |
| 2    | 8        | 2      | 1     | 2    | 2        |
| 3    | 24       | 3      | 1.58  | 3    | 6        |
| 4    | 64       | 4      | 2     | 4    | 24       |
| 5    | 160      | 5      | 2.32  | 5    | 120      |
| 6    | 384      | 6      | 2.58  | 6    | 720      |
| 7    | 896      | 7      | 2.81  | 7    | 5040     |
| 8    | 2048     | 8      | 3     | 8    | 40320    |
| 9    | 4608     | 9      | 3.17  | 9    | 362880   |
| 10   | 10240    | 10     | 3.32  | 10   | 3628800  |
| 11   | 22528    | 11     | 3.46  | 11   | 39916800 |
| 12   | 49152    | 12     | 3.58  | 12   | 4.79E+08 |
| 13   | 106496   | 13     | 3.7   | 13   | 6.23E+09 |
| 14   | 229376   | 14     | 3.81  | 14   | 8.72E+10 |
| 15   | 491520   | 15     | 3.91  | 15   | 1.31E+12 |
| 16   | 1048576  | 16     | 4     | 16   | 2.09E+13 |
| 17   | 2228224  | 17     | 4.09  | 17   | 3.56E+14 |
| 18   | 4718592  | 18     | 4.17  | 18   | 6.4E+15  |
| 19   | 9961472  | 19     | 4.25  | 19   | 1.22E+17 |
| 20   | 20971520 | 20     | 4.32  | 20   | 2.43E+18 |
| 21   | 44040192 | 21     | 4.39  | 21   | 5.11E+19 |
| 22   | 92274688 | 22     | 4.46  | 22   | 1.12E+21 |
| 23   | 1.93E+08 | 23     | 4.52  | 23   | 2.59E+22 |
| 24   | 4.03E+08 | 24     | 4.58  | 24   | 6.2E+23  |
| 25   | 8.39E+08 | 25     | 4.64  | 25   | 1.55E+25 |
| 26   | 1.74E+09 | 26     | 4.7   | 26   | 4.03E+26 |
| 27   | 3.62E+09 | 27     | 4.75  | 27   | 1.09E+28 |
| 28   | 7.52E+09 | 28     | 4.81  | 28   | 3.05E+29 |
| 29   | 1.56E+10 | 29     | 4.86  | 29   | 8.84E+30 |
| 30   | 3.22E+10 | 30     | 4.91  | 30   | 2.65E+32 |
| 31   | 6.66E+10 | 31     | 4.95  | 31   | 8.22E+33 |
| 32   | 1.37E+11 | 32     | 5     | 32   | 2.63E+35 |
| 33   | 2.83E+11 | 33     | 5.04  | 33   | 8.68E+36 |
| 34   | 5.84E+11 | 34     | 5.09  | 34   | 2.95E+38 |
| 35   | 1.2E+12  | 35     | 5.13  | 35   | 1.03E+40 |
| 36   | 2.47E+12 | 36     | 5.17  | 36   | 3.72E+41 |
| 37   | 5.09E+12 | 37     | 5.21  | 37   | 1.38E+43 |
| 38   | 1.04E+13 | 38     | 5.25  | 38   | 5.23E+44 |
| 39   | 2.14E+13 | 39     | 5.29  | 39   | 2.04E+46 |
| 40   | 4.4E+13  | 40     | 5.32  | 40   | 8.16E+47 |
| 41   | 9.02E+13 | 41     | 5.36  | 41   |          |
|      |          | 42     | 5.39  |      | 3.35E+49 |
| 42   | 1.85E+14 |        |       | 42   | 1.41E+51 |
| 43   | 3.78E+14 | 43     | 5.43  | 43   | 6.04E+52 |
| 44   | 7.74E+14 | 44     | 5.46  | 44   | 2.66E+54 |
| 45   | 1.58E+15 | 45     | 5.49  | 45   | 1.2E+56  |
| 46   | 3.24E+15 | 46     | 5.52  | 46   | 5.5E+57  |
| 47   | 6.61E+15 | 47     | 5.55  | 47   | 2.59E+59 |
| 48   | 1.35E+16 | 48     | 5.58  | 48   | 1.24E+61 |
| 49   | 2.76E+16 | 49     | 5.61  | 49   | 6.08E+62 |
| 50   | 5.63E+16 | 50     | 5.64  | 50   | 3.04E+64 |
| 51   | 1.15E+17 | 51     | 5.67  | 51   | 1.55E+66 |
| 52   | 2.34E+17 | 52     | 5.7   | 52   | 8.07E+67 |
| 53   | 4.77E+17 | 53     | 5.73  | 53   | 4.27E+69 |
|      |          |        |       |      |          |

| 54  | 9.73E+17 | 54  | 5.75 | 54  | 2.31E+71 |
|-----|----------|-----|------|-----|----------|
| 55  | 1.98E+18 | 55  | 5.78 | 55  | 1.27E+73 |
| 56  | 4.04E+18 | 56  | 5.81 | 56  | 7.11E+74 |
| 57  | 8.21E+18 | 57  | 5.83 | 57  | 4.05E+76 |
| 58  | 1.67E+19 | 58  | 5.86 | 58  | 2.35E+78 |
| 59  | 3.4E+19  | 59  | 5.88 | 59  | 1.39E+80 |
| 60  | 6.92E+19 | 60  | 5.91 | 60  | 8.32E+81 |
| 61  | 1.41E+20 | 61  | 5.93 | 61  | 5.08E+83 |
| 62  | 2.86E+20 | 62  | 5.95 | 62  | 3.15E+85 |
| 63  | 5.81E+20 | 63  | 5.98 | 63  | 1.98E+87 |
| 64  | 1.18E+21 | 64  | 6    | 64  | 1.27E+89 |
| 65  | 2.4E+21  | 65  | 6.02 | 65  | 8.25E+90 |
| 66  | 4.87E+21 | 66  | 6.04 | 66  | 5.44E+92 |
| 67  | 9.89E+21 | 67  | 6.07 | 67  | 3.65E+94 |
| 68  | 2.01E+22 | 68  | 6.09 | 68  | 2.48E+96 |
| 69  | 4.07E+22 | 69  | 6.11 | 69  | 1.71E+98 |
| 70  | 8.26E+22 | 70  | 6.13 | 70  | 1.2E+100 |
| 71  | 1.68E+23 | 71  | 6.15 | 71  | 8.5E+101 |
| 72  | 3.4E+23  | 72  | 6.17 | 72  | 6.1E+103 |
| 73  | 6.89E+23 | 73  | 6.19 | 73  | 4.5E+105 |
| 74  | 1.4E+24  | 74  | 6.21 | 74  | 3.3E+107 |
| 75  | 2.83E+24 | 75  | 6.23 | 75  | 2.5E+109 |
| 76  | 5.74E+24 | 76  | 6.25 | 76  | 1.9E+111 |
| 77  | 1.16E+25 | 77  | 6.27 | 77  | 1.5E+113 |
| 78  | 2.36E+25 | 78  | 6.29 | 78  | 1.1E+115 |
| 79  | 4.78E+25 | 79  | 6.3  | 79  | 8.9E+116 |
| 80  | 9.67E+25 | 80  | 6.32 | 80  | 7.2E+118 |
| 81  | 1.96E+26 | 81  | 6.34 | 81  | 5.8E+120 |
| 82  | 3.97E+26 | 82  | 6.36 | 82  | 4.8E+122 |
| 83  | 8.03E+26 | 83  | 6.38 | 83  | 3.9E+124 |
| 84  | 1.62E+27 | 84  | 6.39 | 84  | 3.3E+126 |
| 85  | 3.29E+27 | 85  | 6.41 | 85  | 2.8E+128 |
| 86  | 6.65E+27 | 86  | 6.43 | 86  | 2.4E+130 |
| 87  | 1.35E+28 | 87  | 6.44 | 87  | 2.1E+132 |
| 88  | 2.72E+28 | 88  | 6.46 | 88  | 1.9E+134 |
| 89  | 5.51E+28 | 89  | 6.48 | 89  | 1.7E+136 |
| 90  | 1.11E+29 | 90  | 6.49 | 90  | 1.5E+138 |
| 91  | 2.25E+29 | 91  | 6.51 | 91  | 1.4E+140 |
| 92  | 4.56E+29 | 92  | 6.52 | 92  | 1.2E+142 |
| 93  | 9.21E+29 | 93  | 6.54 | 93  | 1.2E+144 |
| 94  | 1.86E+30 | 94  | 6.55 | 94  | 1.1E+146 |
| 95  | 3.76E+30 | 95  | 6.57 | 95  | 1E+148   |
| 96  | 7.61E+30 | 96  | 6.58 | 96  | 9.9E+149 |
| 97  | 1.54E+31 | 97  | 6.6  | 97  | 9.6E+151 |
| 98  | 3.11E+31 | 98  | 6.61 | 98  | 9.4E+153 |
| 99  | 6.27E+31 | 99  | 6.63 | 99  | 9.3E+155 |
| 100 | 1.27E+32 | 100 | 6.64 | 100 | 9.3E+157 |
|     |          |     |      |     |          |

| Conclusion:  By performing this experiment, I was able to observe the difference in the various functions that were implemented. I was also able to understand the procedure of plotting a graph from the obtained data using Microsoft excel. |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                |