Assignment 4 Clustering Languages

Verena Blaschke

July 04, 2018

Assignment 4

I: Feature extraction

II: K-means clustering

II: K-means clustering

III: Principal component analysis

IV: Evaluation with gold-standard labels

V: Calculating distances

VI: Hierarchical clustering

I: Feature extraction

```
fin silmæ
fin korva
fin nenæ
fin suu
...
cmn thontsi
cmn zonnai
```

I: Feature extraction

```
fin silmæ
fin korva
fin nenæ
fin suu
...
cmn thontsi
cmn Jonnai
```

▶ 80 languages × 272 IPA segments

- \blacktriangleright k-means clustering for k in [2,70]
- ► silhouette coefficient

- \blacktriangleright k-means clustering for k in [2,70]
- silhouette coefficient
 - ► How close (=similar) is each data point to other points from its own cluster compared to other clusters?
 - ▶ [-1, +1], higher scores are better

- \blacktriangleright k-means clustering for k in [2,70]
- silhouette coefficient
 - How close (=similar) is each data point to other points from its own cluster compared to other clusters?
 - ightharpoonup [-1,+1], higher scores are better
- error function
 - sum of squared distances from the closest centroids kmeans.inertia_

- \blacktriangleright k-means clustering for k in [2,70]
- silhouette coefficient
 - How close (=similar) is each data point to other points from its own cluster compared to other clusters?
 - [-1,+1], higher scores are better
- error function
 - sum of squared distances from the closest centroids kmeans.inertia_
 - What is a good number of clusters? → elbow method

remove redundant features

- remove redundant features
 - remove noise
 - train machine learning models more quickly


```
pca = PCA(features.shape[1])
d = 0
var_explained = 0
while var_explained < 0.9:
    var_explained += pca.explained_variance_ratio_[d]
    d += 1

featuresPCA = PCA(d).fit_transform(features)</pre>
```

```
pca = PCA(features.shape[1])
d = 0
var_explained = 0
while var_explained < 0.9:
    var_explained += pca.explained_variance_ratio_[d]
    d += 1

featuresPCA = PCA(d).fit_transform(features)</pre>
```

```
pca = PCA(0.9)
print(pca.n_components_)
```



```
n_fam = len(set(family))
pred_all = KMeans(n_fam).fit_predict(features)
pred_pca = KMeans(n_fam).fit_predict(featuresPCA)
```

```
n_fam = len(set(family))
pred_all = KMeans(n_fam).fit_predict(features)
pred_pca = KMeans(n_fam).fit_predict(featuresPCA)
```

lang	all	pca	family
kan	2	4	Dravidian
tam	3	0	Dravidian
tel	4	0	Dravidian
mal	4	2	Dravidian
bul	0	1	Indo-European
ces	0	1	Indo-European

► Homogeneity: Each cluster contains data points of the same gold-standard class.

- Homogeneity: Each cluster contains data points of the same gold-standard class.
- ► Completeness: All members of a gold-standard class are in the same cluster.

- Homogeneity: Each cluster contains data points of the same gold-standard class.
- ► Completeness: All members of a gold-standard class are in the same cluster.
- V-measure: Harmonic mean of homogeneity and completeness.
- ▶ [0,1] higher is better

- Homogeneity: Each cluster contains data points of the same gold-standard class.
- Completeness: All members of a gold-standard class are in the same cluster.
- V-measure: Harmonic mean of homogeneity and completeness.
- ▶ [0,1] higher is better

```
all H: 0.1707 C: 0.1461 V: 0.1575
PCA H: 0.1728 C: 0.1572 V: 0.1646
```

V: Calculating distances

	Ε	D	C	В	Α
Α	572	10	452	123	
В	908	370	342		
С	754	127			
D	23				
E					

VI: Hierarchical clustering

```
for m in ['single', 'complete', 'average']:
    fig, ax = plt.subplots()
    z = scipy.cluster.hierarchy.linkage(dist, method=m)
    scipy.cluster.hierarchy.dendrogram(z, labels=languages)
    fig.savefig('dendrogram-{}.pdf'.format(method))
```


