New Evolutionary Search for Long Low Autocorrelation Binary Sequences

WAI HO MOW, Senior Member, IEEE Hong Kong University of Science and Technology Hong Kong S. A. R., China

KE-LIN DU, Senior Member, IEEE Xonlink Inc., Ningbo, China

WEI HSIANG WU

Hong Kong University of Science and Technology Hong Kong S. A. R., China

Binary sequences with low aperiodic autocorrelation levels, defined in terms of the peak sidelobe level (PSL) and/or merit factor, have many important engineering applications, such as radars, sonars, spread spectrum communications, system identification, and cryptography. Searching for low autocorrelation binary sequences (LABS) is a notorious combinatorial problem, and has been chosen to form a benchmark test for constraint solvers. Due to its prohibitively high complexity, an exhaustive search solution is impractical, except for relatively short lengths. Many suboptimal algorithms have been introduced to extend the LABS search for lengths of up to a few hundred. In this paper, we address the challenge of discovering even longer LABS by proposing an evolutionary algorithm (EA) with a new combination of several features, borrowed from genetic algorithms, evolutionary strategies (ES), and memetic algorithms. The proposed algorithm can efficiently discover long LABS of lengths up to several thousand. Record-breaking minimum peak sidelobe results of many lengths up to 4096 have been tabulated for benchmarking purposes. In addition, our algorithm design can be easily adapted to tackle various extensions of the LABS problem, say, with a generic sidelobe criterion and/or for possibly nonbinary sequences.

Manuscript received August 4, 2013; revised December 22, 2013; released for publication September 20, 2013.

DOI. No. 10.1109/TAES.2014.130518.

Refereeing of this contribution was handled by S. Blunt.

This work was supported by the Hong Kong Research Grants Councils (GRF Project 616512).

Authors' current addresses: W. H. Mow and W. H. Wu, Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong S.A.R., China. E-mail: (kldu@ieee.org, w.mow@ieee.org); K.-L. Du, Xonlink Inc., Ningbo, China.

0018-9251/15/\$26.00 © 2015 IEEE

I. PROBLEM STATEMENT

Searching for low autocorrelation binary sequences (LABS) is a classical computational problem that raises a challenge to all kinds of search methodologies. LABS are widely used in pulse compression radars and sonars, channel synchronization and tracking, spread spectrum and code-division multiple-access communications, and cryptography [1].

For a binary sequence of length L, $\mathbf{a} = a_1 \ a_2 \dots a_L$ with $a_i = \{-1, +1\}$ for all i, its autocorrelation function (ACF) is given by

$$C_k(\mathbf{a}) = \sum_{i=1}^{L-k} a_i a_{i+k}, \quad k = 0, \pm 1, \dots, \pm (L-1).$$
 (1)

For k = 0, the value of ACF equals L and is called the peak, and for $k \neq 0$, the values of ACF are called the sidelobes. The peak sidelobe level (PSL) of a binary sequence **a** of length L is defined as

$$PSL(\mathbf{a}) = \max_{k=1,\dots,L-1} |C_k(\mathbf{a})|. \tag{2}$$

The minimum peak sidelobe (MPS) defined for all possible binary sequences of length L is defined as

$$MPS(L) = \min_{\mathbf{a} \in \{-1, +1\}^L} PSL(\mathbf{a}). \tag{3}$$

For length L, the MPS is known to be upper-bounded by $\sqrt{2L \ln L}$ [2]. A binary sequence with PSL at most $\sqrt{2L \ln(2L)}$ for every length L>1 was constructed in [3]. It was empirically shown therein that its PSL actually grows like $0.9\sqrt{L \ln(\ln L)}$, which is still far larger than the best known PSL results obtained by well-designed computer searches.

The merit factor F of a binary sequence \mathbf{a} is defined as [4]

$$F(\mathbf{a}) = \frac{L^2}{2\sum_{k=1}^{L-1} C_k^2(\mathbf{a})}.$$
 (4)

The sum term in the denominator is called the sidelobe energy of the sequence. It is conjectured in [4] that for the best binary sequences in the sense of achieving the maximum possible merit factor, we have $F \to 12.3248$ as $L \to \infty$.

Roughly speaking, there are two versions of LABS searches in the literature: one targets at low PSL and the other targets at high merit factor (or equivalently, low sidelobe energy). In this paper, our key focus is to search for long LABS with low PSL, which is more challenging because of the nonanalytical maximum operator in its definition.

The rest of this paper is organized as follows. Section II provides a literature survey on previous works and results on the LABS problem. Section III summarizes the key features of major evolutionary algorithms and then presents our proposed design. Section IV presents the search results on LABS using our proposed evolutionary algorithm and compares them with other benchmarking

results. Finally, Section V contains the concluding remarks.

II. LITERATURE SURVEY

Both versions of the LABS problem are hard since the search space grows exponentially with the sequence length and there are numerous local minima, as well as many optima. For example, a full search for L=64 yields 14872 optimal binary sequences achieving MPS 4, though these sequences have a wide variability of merit factors [5]. The conventional gradient-based and common search approaches are almost always trapped in some poor local minima.

In order to find optimal sequences of length L, the brute-force exhaustive search requires examining 2^L binary sequences. The branch-and-bound enumeration algorithm requires a runtime complexity of $O(1.85^L)$ in order to find optimal merit factors for all $L \le 60$ [1, 6]. A state-of-the-art exhaustive search algorithm for MPS binary sequences was reported in [5]. The method integrates combinatoric tree search techniques, the use of PSL-preserving symmetries, data representations and operations for fast sidelobe computation, and partitioning for parallelism. The PSL-preserving operations applied to any binary sequence a (i.e., negation of a, reversal of a, and sign alternation of a, and their combinations) can preserve its PSL. Consequently, the entire set of binary sequences can be represented by a subset of less than half of its original size [5]. To find all MPS binary sequences, it suffices to search over this subset. This method has a runtime complexity of roughly $O(1.4^L)$ [5, 7].

Some of the known exhaustive search results can be summarized as follows (c.f. [3]):

- 1) MPS(L) = for L = 2, 3, 4, 5, 7, 11, 13; (These optimal MPS sequences are known as Barker sequences.)
 - 2) $MPS(L) \leq 2$ for $L \leq 21$;
 - 3) $MPS(L) \le 3$ for $L \le 48$ [1];
 - 4) $MPS(L) \le 4$ for $L \le 70$ [5];
 - 5) $MPS(L) \le 4$ for $71 \le L \le 82$ [8];
 - 6) $MPS(L) \le 5$ for $83 \le L \le 105$ [8].

Barker sequences with PSL being 1 are known only for lengths 2, 3, 4, 5, 7, 11, and 13. It has been long conjectured that a longer Barker sequence does not exist. The Barker condition that PSL ≤ 1 has been extended for polyphase sequences defined over K-th roots of unity of the form $a_i = e^{2\pi n_i \sqrt{-1}/K}$ with n_i being some integer between 0 and K-1 for all i, where K represents the phase alphabet size. The list of known polyphase Barker sequences has been extended to length 77 [9, 10]. However, since practical applications do not favor large phase alphabets, another direction is to search for low autocorrelation quadriphase sequences, which have better PSL and MF over the best biphase codes [11].

For odd length L, the so-called skew-symmetric binary sequences has the property that $a_{(L+1)/2+i} = (-1)^i a_{(L+1)/2-i}$, for i = 1, ..., (L-1)/2.

For these sequences, $C_k(\mathbf{a}) = 0$ for all odd k. Since the right half of the sequence is determined by the left half, searching the skew-symmetric sequences reduces the effect length of the sequence by a factor of two. Some good results were reported for skew-symmetric sequences, but not for all lengths [1].

To meet the need of longer LABS for practical applications, one approach to dramatically reduce the search complexity is to focus on some special classes of binary sequences. The maximal-length shift register sequences (also called the *m*-sequence) are pseudorandom sequences of length $L = 2^n - 1$ for n = 1, 2, ..., which have an ideal periodic ACF, and they can be easily generated by feedback shift registers [12]. The Legendre sequences are another class of pseudorandom sequences. By searching cyclically shifted variants of the Legendre sequences of prime lengths, low PSL results for prime lengths of up to a thousand were tabulated in [13]. For nonprime L, reasonably good results can be obtained by periodically extending good cyclically shifted Legendre sequences of prime lengths. A numerical investigation was presented for the PSL of Legendre sequences, m-sequences, and Rudin-Shapiro sequences in [7]. The maximum asymptotic merit factor of an optimally cyclically shifted Legendre sequences is 6, and that of an m-sequence is 3, that of a Rudin-Shapiro sequence, as well as its mate, is 3. Besides, in [7], the variation of the PSLs of the Legendre sequences of the first 3500 prime lengths (i.e., $L \le 32609$), as well as those of the *m*-sequences of lengths up to n = 20 (i.e., $L = 2^{20} = 1048575$) were also given. It can be seen that the Legendre sequences are far superior to the *m*-sequences and the Rudin-Shapiro sequences in terms of both PSL and MF. In [14], a systematic way to apply local search strategies to optimize the PSL and MF of a sampled and binarized version of various linear frequency modulated chirp signals, which has been widely used as radar signals, were introduced. LABS of selected lengths up to 4096 with good PSL were tabulated.

In [15], an integer programming formulation of the LABS problem for any L was given. The values of PSL and the merit factor F (for L=71 to 100) of the sequences were obtained by using a mixed-integer linear programming (MILP) solver on the Network-Enabled Optimization System (NEOS) server, which uses the sequential quadratic programming technique. Overall speaking, the PSL results obtained therein are no better than those obtained by an evolutionary algorithm (EA) [21], and a lower PSL value of 5 was obtained only for L=74.

Very recently, a signal processing style computational framework in [16] was proposed to tackle the LABS problem and its various extensions. The essence of the framework is an alternating projection algorithm based on an iterative twisted approximation, which is a merit factor maximizer that can yield solutions depending on initialization. However, the method does not have an effective way to get out of local optima and is unlikely to

outperform a well-designed stochastic search.

Some stochastic search methods, such as simulated annealing and EAs, can be applied for escaping local minima. In [17], a stochastic method with a runtime complexity of $O(1.68^L)$ was reported. Compared with the Kernighan-Lin solver [18] having a runtime complexity of $O(1.463^L)$, the searches based on evolutionary strategies (ES) for optima may require significantly less samples on average and have a runtime complexity of $O(1.397^L)$ [6].

Popular EAs include the genetic algorithm and the memetic algorithm, in addition to the ES. A recent review on the LABS problem was given in [19]. Generally speaking, the performance of EAs are superior to other stochastic search algorithms [19]. In fact, the EAs have attained the best results so far [6]. There are quite a few works on applying EAs to the LABS problem [6, 20, 21–26].

In [21], the genetic algorithm is applied. The method first generates a population of size N_P , then generates some offspring by one-point or two-point mutation, and others by one-point crossover. Unlike the classical genetic algorithm that uses a proportional probabilistic selection mechanism, elitism is applied. Namely, offspring of size N_P with the best fitness are then selected as the parents in the next generation. The fitness function is selected as

$$f_1(\mathbf{a}) = \frac{\alpha}{PSL(\mathbf{a})} + \beta F(\mathbf{a}) \tag{5}$$

where α and β are scaling factors. When $\alpha = 0$ and $\beta \neq 0$, the fitness function corresponds to the minimum PSL. When $\alpha \neq 0$ and $\beta = 0$, it corresponds to the maximum merit factor F. A list of sequences of lengths 49 to 100 are given. The obtained PSL values are the same or better than those obtained in [34], where the Hopfield neural network was used for finding good binary sequences. In [22], the method first generates N_P parents, and then generates offspring of size N_O by one-point crossover; the $N_P + N_O$ individuals compete and the N_P best individuals survive as the next generation; one-point or two-point mutation is applied only when some of the N_P best individuals have the same fitness, i.e., PSL. In [20], ES was used to search for LABS with locally optimal merit factor F, and a preselection operation was applied to the individuals created from mutation.

The memetic algorithm was used for the LABS problem in [23, 24]. In [23], an ES was used as the EA, and a local search was implemented by flipping each bit of the string. The fitness function is selected as

$$f_2(\mathbf{a}) = \frac{F(\mathbf{a})}{PSL(\mathbf{a})} \tag{6}$$

The obtained F is greater that that of [21] for L = 71 to 100, but the PSL is typically worse. In [24], the bit-flipping or tabu search was used as the local search for maximizing F. The memetic algorithm with tabu search is more effective in finding the optimal merit factor F than the Kernighan-Lin solver and the memetic algorithm with

bit climber, from the experiment for $L \le 60$. The memetic algorithm with tabu search is an order of magnitude faster than the pure tabu search with frequent restarts [35]. The latter is roughly on par with the Kernighan-Lin solver for the LABS problem 6.

Some important real-world applications require the search criterion or fitness function of the LABS to be generalized in various ways in order to find (possibly nonbinary) sequence sets with a good tradeoff (defined in some sense) between low crosscorrelation levels and low autocorrelation sidelobe levels. In general, it is not too difficult to adjust the EA to accommodate a new fitness function. In [25], a multiobjective EA was used to generate complex spreading sequences with good crosscorrelation and autocorrelation properties. In [26], the genetic algorithm was used for finding good training sequences for multiple antenna (spatial multiplexing) systems.

III. EVOLUTIONARY ALGORITHM DESIGN FOR LABS

From our literature survey in the previous section, EAs are found to be well suited for the long LABS problem. In this section, the design and pseudocode of our proposed EA is presented after summarizing the key features of the three types of EAs, namely, genetic algorithms, ES,, and memetic algorithms. The latter are inspirations of our proposed design.

A. Introduction to Evolutionary Algorithms

EAs are a class of general-purpose stochastic optimization algorithms under the universally accepted neo-Darwinian paradigm. The neo-Darwinian paradigm is a combination of the classical Darwinian evolutionary theory, the selectionism of Weismann, and the genetics of Mendel [27]. EAs are currently a major approach to adaptation and optimization.

EAs and similar population-based methods are simple, parallel, general-purpose, global optimization methods. They are useful for any optimization problem, particularly when conventional optimization techniques are invalid. They are active and efficient global optimization methods.

1) EA Procedure: In EA, individuals in a population compete and exchange information with one another. There are three basic genetic operations, namely, crossover (also called recombination), mutation, and selection. The procedure of a typical EA is given by Algorithm-EA.

In Algorithm-EA, the initial population is usually generated randomly, while the population of other generations are generated from some selection/ reproduction procedure. Both crossover and mutation are considered the driving forces of evolution. Crossover occurs when two parent chromosomes, normally two homologous instances of the same chromosome, break and then reconnect but to different end pieces. Mutations can be caused by copying errors in the genetic material during cell division and by external environment factors.

Algorithm-EA

Procedure

Initialization:

Set t := 0.

Randomize initial population $\mathcal{P}(0)$.

Repeat:

Evaluate fitness of each individual of $\mathcal{P}(t)$.

Select individuals as parents from $\mathcal{P}(t)$ based on fitness.

Apply search operators (crossover and mutation) to parents, and generate $\mathcal{P}(t+1)$.

Set t := t + 1.

until the termination criterion is satisfied.

End Procedure

Selection embodies the principle of survival of the fittest, which provides a driving force in EA. Selection is based on the fitness of the individuals. From a population $\mathcal{P}(t)$, those individuals with strong fitness have a higher probability of being selected for reproduction so as to generate a population of the next generation, $\mathcal{P}(t+1)$.

The search process of an EA terminates when a certain termination criterion is met. Otherwise a new generation is produced and the search process continues. The criterion can be selected as a maximum number of generations, or the convergence of the genotypes of the individuals. Phenotypic convergence without genotypic convergence is also possible.

2) *Some Terminologies*: Some terminologies that are used in the EA literature are described here. These terminologies are an analogy to their biological counterparts.

Population. A set of individuals in a generation is called a population, $\mathcal{P}(t) = \{\vec{x}_1, \vec{x}_2, \dots, \vec{x}_{N_P}\}$, where \vec{x}_i is the *i*th individual, and N_P is the size of the population.

Chromosome. Each individual $\vec{x_i}$ in a population is a single chromosome. A chromosome, sometimes called a genome, is a set of parameters that define a solution to the problem under consideration. Biologically, a chromosome is a long, continuous piece of DNA, that contains many genes, regulatory elements, and other intervening nucleotide sequences. Chromsomes encode a biological organism.

Gene. In EAs, each chromosome \vec{x} comprises of a string of elements x_i , called genes, i.e., $\vec{x} = (x_1, x_2, \dots, x_n)$, where n is the number of genes in the chromosome. Each gene encodes a parameter of the problem into the chromosome. A gene is usually encoded as a binary string or a real number. In biology, genes are entities that parents pass to offspring during reproduction.

Allele. The biological definition for an allele is any one of a number of alternative forms of the same gene occupying a given position called a locus on a chromosome. The gene's position in the chromosome is called locus (pl. loci). In EA terminology, the value of a gene is indicated as an allele.

Genotype. A genotype is, biologically, the underlying genetic coding of a living organism, usually in the form of DNA. The genotype of each organism corresponds to an

observable, known as a phenotype. In EAs, a genotype represents a coded solution, that is, a chromosome.

Phenotype. Biologically, the phenotype of an organism is either its total physical appearance and constitution or a specific manifestation of a trait. Each individual has a phenotype that is the set of all its traits (including its fitness and its genotype). A phenotype is determined by genotype or multiple genes and influenced by environmental factors. The concept of phenotypic plasticity describes the degree to which an organism's phenotype is determined by its genotype. The mapping of a set of genotypes to a set of phenotypes is referred to as a genotype—phenotype map. In EAs, a phenotype represents a decoded solution.

Fitness. Fitness in biology refers to the ability of an individual of certain genotype to reproduce. The set of all possible genotypes and their respective fitness values is called a fitness landscape. Fitness function is a particular type of objective function that quantifies the optimality of a solution, i.e., a chromosome, in an EA. Fitness is the value of the objective function for a chromosome \vec{x}_i , namely $f(\vec{x}_i)$. After the genotype is decoded, the fitness function is used to convert the phenotype's parameter values into the fitness. Fitness is used to rate the solutions.

Natural Selection. Natural selection is believed to be the most important mechanism in the evolution of biological species. It alters biological populations over time by propagating heritable traits affecting individual organisms to survive and reproduce. It adapts a species to its environment. Natural selection is concerned with those traits that help individuals to survive the environment and to reproduce. It causes traits to become more prevalent when they contribute to fitness.

3) *EA Methods*: EAs can be broadly classified into genetic algorithms [28], ES [29], genetic programming [30], differential evolution [31], and estimation of distribution algorithms [32]. Evolution itself can be accelerated by integrating learning, yielding memetic algorithms [33]. Today, the differentiations among different EA paradigms are getting blurred, since they try to improve the performance by borrowing ideas from one another [27].

The genetic algorithm is coded in binary strings, and crossover is its primary operation and mutation is also used. It employs a probabilistic selection scheme for the parents for mating, according to their fitness. The binary nature of the LABS problem is especially suited for the binary representation of the genetic algorithm.

On the other hand, ES usually codes variables as real numbers, and mutation is the only genetic operation used. It typically takes the form of either the (μ,λ) or the $(\mu+\lambda)$ scheme, where μ is the number of children generated and λ is the number of individuals selected as parents for the next generation. The (μ,λ) scheme selects λ individuals from the μ generated children as the parents for the next generation, while the $(\mu+\lambda)$ scheme selects λ individuals from the pool of μ generated children and the λ parents as the parents for the next generation. Unlike the

genetic algorithm, the ES always selects the λ best individuals as a population (i.e., the elitist strategy), and each individual in the population has the same mating probability.

Differential evolution is featured by the elitist strategy and multiparent reproduction. Each individual in the current generation is allowed to breed through mating with other randomly selected individuals from the population. Specifically, for each individual at the current generation, three other random distinct individuals are selected from the population to form a parent pool of four individuals in order to breed an offspring.

In estimation of distribution algorithms, there is no crossover or mutation operation. A probabilistic model is induced from some of the individuals in population $\mathcal{P}(t)$, and then the next population $\mathcal{P}(t+1)$ is obtained by sampling this probabilistic model.

The memetic algorithm, also called the cultural algorithm, is inspired by the propagation of human ideas and Dawkins' notion of meme [27]. The memetic algorithm may be implemented as an EA followed by a local search, and is also known as a genetic local search. The use of the local search can substantially reduce the total number of fitness function evaluations.

B. Our Proposed Evolutionary Algorithm

We now present our design of an EA for the LABS problem. Binary coding is a natural coding scheme for this problem. Each chromosome is encoded by a string. The classical genetic algorithm is inefficient due to the probabilistic selection/reproduction mechanism and probabilistic crossover/mutation operations. Some ideas from the ES and memetic algorithm are used to improve the search efficiency. Our proposed EA adopts the following features:

- 1) Crossover operation is not applied. Since there are many optima as well as numerous local minima in different regions of the fitness landscape, the crossover of two such individuals only leads to nowhere. Typically, two selected individuals for crossover are likely in different regions, and crossover degrades to random search.
- 2) Selection is elitic. The $(\mu + \lambda)$ ES scheme is applied. In the real-coded ES, the mutation strategies are evolved automatically by encoding them into the chromosome. In the binary-coded case, it is not very efficient to evolve the mutation strategies.
- 3) Two-point mutation is employed. Since we plan to apply a bit-climber (to be explained next) on the mutated individual, two-point mutation is applied. The two-point mutation operator changes two bits at two randomly specified positions of the string. We have two reasons for selecting the two-point mutation. First, one-point mutation flips one randomly specified bit at a time, which may be reset by the bit-climber. Second, the two-point mutation operation controls the variations within a certain range, which avoids the genetic search to be degenerated into a random search.

- 4) The bit-climber is applied as a local search step. The bit-climber is implemented in this way: one bit of the chromosome string is flipped at a time, and the fitness is computed for the new string; if the fitness is better than its earlier value, the new string replaces the current string; repeated until all the L bit flips are performed.
- 5) Partial restart is implemented to improve the genetic diversity of the population to prevent premature convergence, since the elitism selection strategy and the two-point mutation (which has very limited variation) may restrict the individuals to some regions with local minima and premature convergence may occur. Partial restart introduces some randomly generated individuals into the population to increase the diversity of the population. Partial restart can be implemented by a fixed number of generations, or implemented when premature convergence occurs.

By representing binary sequences \mathbf{a}_i s as ± 1 -valued bit strings, the pseudocode of the proposed EA _for_LABS algorithm is given at top of the next page.

The evaluation of the fitness function takes $O(L^2)$ operations for calculating C_k (a)s. For the bit-climber, for each bit flip at a_i , C_k (a) can be calculated from its previous value C'_k (a) by the update equation

$$C_{k}(\mathbf{a})$$

$$= \begin{cases} C'_{k}(\mathbf{a}) - 2a_{i}a_{i+k}, & 1 \leq i \leq k \\ & \text{and } i \leq L - k; \\ C'_{k}(\mathbf{a}) - 2a_{i}(a_{i-k} + a_{i+k}), & k+1 \leq i \leq L - k; \\ C'_{k}(\mathbf{a}) - 2a_{i-k}a_{i}, & L - k + 1 \leq i \leq L \\ & \text{and } i \geq k + 1; \\ C'_{k}(\mathbf{a}), & \text{otherwise.} \end{cases}$$

$$(7)$$

This reduces the complexity for updating all C_k (a)s to O(L). The resultant saving is significant, especially because each mutated or randomly generated individual is subject to L bit flips and fitness evaluations. For example, compared with direct calculation of C_k s, the computing time of the EA is reduced by a factor of 4 when calculating C_k s for L=31 by (7).

IV. RESULTS

Before applying the proposed algorithm for finding long LABS with low PSL, we first address the problem of which fitness function is most suitable for the task at hand.

For the sake of completeness, we also consider the sidelobe measure that generalises PSL and F first introduced in [36] and is defined as

$$f_3(\mathbf{a}) = \frac{1}{\sum_{k=1}^{L-1} (C_k(\mathbf{a}))^{\gamma}}, \quad \gamma \in \{1, 2, \ldots\}.$$
 (8)

This fitness function considers all sidelobes $C_k(\mathbf{a})$, k = 1, 2, ..., L - 1, but gives priority to the largest sidelobes. By setting $\gamma = 2$, f3 (\mathbf{a}) is equivalent to the merit factor F(a). By setting a large value of γ , f3 (a) has a similar effect as 1/PSL(a). In the LABS problem, many $C_k(\mathbf{a})$ s may have

Algorithm EA_for_LABS **Procedure Main** Initialization: Set population size N_P , number of children N_O , number of generations for each restart G_{RS} , maximal number of generations G_{max} , population size for partial restart N_{RS} . t := 0. Randomize a_i , $i = 1, ..., N_P$. for i := 1 to N_P , $a_i := bit_climber(\mathbf{a}_i)$, with fitness $f_P(i)$ end for $\mathcal{P} := \{ (\mathbf{a}_i, f_P(i)) \mid i = 1, ..., N_P \}.$ for t := 1 to G_{max} , if $(t \mod G_{RS} = 0)$, Randomize \mathbf{a}_i , $i = N_P + 1, \dots, N_P + N_{RS}$. for $i := N_P + 1$ to $N_P + N_{RS}$, $\mathbf{a}_i := \text{bit_climber } (\mathbf{a}_i), \text{ with fitness } f_P(i).$ end for $\mathcal{P} := \mathcal{P} \bigcup \{ (\mathbf{a}_i, f_P(i)) \mid i = N_P + 1, ..., N_P + N_{RS} \}.$ end if for i := 1 to N_O , Randomly select \mathbf{a}_k from \mathcal{P} . Mutate \mathbf{a}_k by two-point mutation. $\mathbf{b}_i := \text{bit_climber } (\mathbf{a}_k), \text{ with fitness } f_O(i).$ $\mathcal{O} := \{ (\mathbf{b}_i, f_O(i)) | i = 1, \dots, N_O \}.$ Rank $\mathcal{P} \bigcup \mathcal{O}$ in descending fitness order. Take the first N_P individuals as \mathcal{P} . end for **End Procedure**

Procedure Bit_Climber

Input **a** with fitness $f(\mathbf{a})$. for i := 1 to L, $a_i := -a_i$. Evaluate the fitness $g(\mathbf{a})$. if $g(\mathbf{a}) > f(\mathbf{a})$, $f(\mathbf{a}) := g(\mathbf{a})$. else $a_i := -a_i$. end if Return a with fitness $f(\mathbf{a})$.

End Procedure

the same maximum value. The PSL criterion only considers this maximum value but ignores the number of peak sidelobes. In general, a different tradeoff between the PSL and the merit factor can be achieved by choosing a different value of γ . In the subsequent, $\gamma = 4$ is selected for generating all search results associated with the criterion f_3 .

We set $N_P = 4L$, $N_O = 20$ L, $G_{RS} = 5$, $G_{max} = 100$, $N_{RS} = 10L$. Four different fitness functions, i.e., PSL, F, f_2 , and f_3 , for 5 random runs of the proposed EA are evaluated on a Linux system with Intel's Core 2 Duo processor. The results for L = 3 to 120 are plotted in Fig. 1. The results of Deng et al. [21] are also plotted for comparison.

From Fig. 1, one can arrive at the following observations on the selection of fitness function. When PSL is selected as the fitness function, the *F* performance is the poorest. In contrast, when *F* is selected as the fitness function, the PSL performance is poorest. Better tradeoffs

Fig. 1. Best binary sequences of lengths $L \le q$ 120 with respect to two criteria: (a) PSL; (b) merit factor F.

Fig. 2. Comparison of our PSL results with those given in [16] that are produced by recent ITROX-AP algorithm and optimal PSL results in [5] for $5 \le L \le 69$. Both results of our proposed EA and those of the ITROX-AP algorithm were obtained from lowest PSL values returned from five random runs of corresponding algorithms.

are achieved by the fitness functions f_2 and f_3 . In particular, f_2 achieves the best tradeoff between the achieved PSL and F. It is interesting to note from Fig. 1 that f_2 is an even more effective fitness function than PSL, even if PSL is the objective to be minimized. This may be due to the fact that like most other optimization methods,

TABLE I Some Results Between L=106 to 300, Obtained from 3 Random Runs of the Proposed Algorithm.

L	PSL	PSL	F	Hexadecimal form		
106	7		5.0295		00	542ADD9C19B68C2D2471D4F60
107	7	7 [13]	5.1805		19	8F1C3FC4FF5C8B25D4D952529
108	7		4.6957		В7	6DA4FA9F578883BD89DC75E14
109*	7	8 [13]	5.0429		042	10CC60FF325305D1D306A9756
110	7		4.9631		067	71127548108B1F5E92F03E496
111	7		5.6260		6D0	D79D790123A8553918FC6C936
112	7		5.3153		A86	AA75E4DEDFBD016E371DB21C9
113	7	7 [13]	4.8514		0B91	5E59AB611FFDD319B0C2E0E4A
114	7		4.4114		1589	90DCB2256F59EF7145947BE1E
115	7		4.8729		7F20	3675D7532E45308C1C2796B52
116	7		4.3974		3F60	45CB8F29851309CD56D1B45A0
117	7		4.2832		1F62F	9F1BB3F0430279C56552D30AD
118 119	7 7		4.5355 4.7235		099F0 2C565	E0362DF99884B985BED75D7AE 18B4E68C259FF9D8BFC0EBE2E
120	7		5.8632		2C303 CEF38	EAFF7203153C2FD2175264DA5
121	7		4.4421		0BE168	FD21975B1D913B5BFEE75419A
122	7		4.6368		3FFF28	DB2C3DCAD54C7A3A4ACCCF81A
123	8		4.6897		A6E4EA	7CDDE716359EBD10486F907F5
124	8		4.9987		ACD623	DACF045220A138791537604D7
125	8		4.8646		071E973	E647AE6BF9980D27C8AE95F6
126	8		5.0272		2228C01	7346E3E74A8179F90D4D36D35
127	8	7 [13]	4.8965		443DFCE	10A622702A703694CAFA36D96
128	8	8 [14]	4.8075		A68D156	1CB0186A85A083FC8EF732026
129	8	. ,	4.6328		1E1E54F0	AE35F71FD6666B66A9902B7C8
130	8		4.8872		2F3C397F	F4609489B8DC2D851641B9455
131	8	8 [13]	4.9627		76A76A09	518DBAEE99F83EDF431CDE581
132	8		4.3430		E488D3AA	62B27353FA683E43B295E7EF1
133	8		4.6995		0D92B2472	2B25595491C6B1387C003DF3F
134	8		4.4380		055DA0568	40A5356C7F0E61379E4C0E7CD
135	8		4.5134		430D3E2DC	CE1336972F2102558A2A87FA4
136	8		4.4720		730F3124F	F1350D6C48F8F960100D2AD54
137*	8	9 [13]	4.2273		0599026FAC	2D54ED7485C048707A21961CE
138	8		4.3341		0613C9C3D1	152AC7D322092F70775FF19E9
139	8	8 [13]	4.6602		0BFAA19133	000D149EE962CA31F8B4C6B0B
140	8		4.6009		14C91EFAAB	540B7216139806878A4878B9A
141	8		4.4180		0E57939E879	4FF58AFF242254F6CB2E48E2A
142	8		4.4789		27384E1D0AC	4203368C05FA9BD149829ABAE
143	8 8		4.5584		398F073B238	BA81F2448A1720927BED494A9
144 145	8		4.2492 4.4696		FA1E6F892F0 17E42BB84666	8F2A5462989AC734123D31203 3EB3E383424D0680C29AA59A7
146	8		4.6239		336196CB1E2C	E31A5A9D43A8BD9D950007C00
147	8		4.3409		5922CBC9F357	4BE8CFF8EEB40297390973F39
148	8		4.3703		D1A1CFF74837	787694056465C5B8A4A21340E
149*	8	9 [13]	4.5531		1415F0E18FE14	0712E75328421324CAC97B32B
150	9	9 [14]	4.7209		1994ED80CEAF3	837D4CFB1E3D5F2F40540C97D
151	8	8 [13]	4.3663		6FB488568F32C	ADD641E1AB2F78FA777467711
152	9	. ,	5.2509		208231DA2413C	9E8FC89FC495336A9CBCF0B2A
153	9		4.8206		1750BB45D32C2A	B082DF8180831BE7E6697B1A4
154	8		4.2517		0A14B8E8ABD389	F4D22E71349C93B04FD8E9004
155	8		4.2704		02DBA28BBE1CC1	49CEE3721E654EAA1604848A5
156	9		4.5986		2276F919A0F4F1	52DD15498B483AD14633CE3FF
157	9	8 [13]	4.6368		13BCC89691AF69E	DF81CCE28550F183920BB2BA4
158	9		4.9473		32ED143AD90CDC9	3B353FD6B79CF5105587E9AE0
159	9		4.7396		78E320A0078C468	BF390152F624DAA27734B6D13
160	9		4.8780		AD5A92659732430	2CBCEC260A2841E1FE239FC23
161	9		4.7789		12331B84BDB7B402	60CCB241E09172873D5552F18
162	9	0.5:	4.5674		00540AC0FE408BF2	E8B03739CE69B2932B4F1C696
163	9	9 [13]	4.6760		3585E52CBD46F2F3	2BE31EA222044BDDB060FA2C3
164	9		5.0367		E85E957A353429F9	45968EFB404759E67E7B8ECEE
165	9		4.2834		1A3170699871AF2B3	60570ADABA8483F99E6F65B7D
166	9	0 [12]	4.5337		3CAE9C8BDB9F786DE	ACB526691035DF40F62D14CE2
167	9	8 [13]	4.7190		0344845C1D11FA45B	B319DAA9851CC693EBC210D6F
168	9	0.1143	4.6057		609F6CEEC7744DBB5	3AE6478548782C30B4BFA821B
169 170	9 9	9 [14]	4.7099		0C466755A02AE1ACA0	1C92B60E25C93EFF8F1F28325
	9		4.6598		1B6907DF2E0428551B	3223A81B2ACA77398E1487A0C

TABLE I (Continued.)

L	PSL	PSL	F	Hexadecimal form		
171	9		4.4077		5F3C5C3C370189ACBF	618CBB21DD4A90AD21A654424
172	9		4.7685		1E7CD350F164741AD9	AE652A2B45911803B18B7F104
173	9	9 [13]	4.7932		1B96A4ADDBF5FB30A07	4B2C1574F4532C07F0433A399
174	9		4.6564		30F24FA47B129602434	14DD71ECC81BEF50239AB55CB
175	9		4.2832		69254BED3E8E1F84E30	E4EFE316440B799D9AFAA36FB
176	9		4.2549		10F9CF566589BB4A0AA	5DCB7BDBAB19BE1BAFD2CF40C
177	9		4.3416		154FD8B689BAE3BE56AC	D25BEBC7C0C0BB8484DDEAE67
178	9		4.1331		2C7EED76637297ECE103	2CAE2DF5A64BC8A51883F9507
179	9	9 [13]	4.3287		07A40FBE21A31F277379	96EDFDA6565D4150AA75CF2BC
180	9		4.3385		446CE19E984D8861125F	94F3B9D450F8FEC0DAA74AFE2
181*	9	10 [13]	4.5832		1B079F428BA1567E8D08F	5DF157C6731BFB3DAD6961124
182	9		4.2347		0FFD4F2F4C216624FA5D6	A68BA8AD42522499C381906E3
183	10		4.4879		661197BD30EC41A7BF524	A0709E0B97DB9FA35F551746B
184	9		3.9331		A6C8128BF37ACA8F370AD	63861019A5203B383A8A5C075
185	10		4.5464		052E5A06E24C46E087B31D	55FED1E72489877FA1C4B47E9
186	10		4.6239		14A5EEA662200CA4336A8E	1C905922FD612CF3CC83F05C3
187	10		4.5285		2DDA5535CDF3DFE2DD190C	9E03D9994B8B424E7EE2851FB
188	10		4.7176		74509B5F48E09E6EE2AD31	4A66E2B9C4B102F5A3FFBE3E7
189	10		4.8090		1D1A5428AD626FCD160C272	59DDD805B7D40700E18C580DA
190	10	0.5123	4.4645		17312DBDAEBB8A2F664B97F	D21C22F33F67D0786AB541818
191	10	9 [13]	5.0125		448606030B4C4E95D8C53B4	DE36C5C296756CBA8325FF00F
192	10	10 [12]	4.7950		A2D079EE30185FA85DE6467	8B2E9C19B13D2B6991A01A029
193	10	10 [13]	4.5205 4.4288		0356A8D9D62999F613EDB6C0	D684E0206786428A3BF85C4C0 7180F14F120BD38049EDEFF96
194 195	10 10		4.4288		08A6999A3325EA3714386A2B 19126AB6BEA9F76BA4C1EF07	E0D2EA584FD8A9CEC62B6E71C
195			4.2316		3C2FD50D00D44A1C64496B6D	8B0EFA8C6FE4D8B19165E23BB
196	10 10	10 [12]	4.6267		1016AEDCF5EC0CA1E841D7552	F457FB4C9B79F678CC6D363BD
197	10	10 [13]	4.5052		2A88EAFC16C7B4A411788BF5B	798BC4836B44A1840C9C931E2
199	10	10 [13]	4.4889		4B1A9382A18BB9FD5C60A10F7	4A00CEC3180F5126F41EDB64D
200	10	10 [13]	4.5496		A52DE56BB6911EE34183B1D91	0608C43D13FAE13A13E745544
201	10	10 [14]	4.0080	0	DFAFD351B1F0E2A322A74A30A	7B90B7E40CA194D63ACFD2669
202	10		4.3033	1	5768E01358C821A3C140465C3	FED9225B40BD8833A71BB53B8
203	10		4.3033	3	7AD5210DEFB193936EE1F2325	802C852AAA2FC3187D9079A5C
204	10		4.2310	9	26DB5FAA7AD71A4A1931A91C3	B902260739C8F800F5751C4D0
205	10		4.7050	04	C2AABB65964BDDF6031603DE4	49C948489DE43C1E942851C31
206	10		4.1288	39	7D85973B7D04F776B6868BBC5	DE72C47658A47820324793B5E
207	10		4.1886	45	8303A80984E57076E2EF16C36	9EC4097893F6D5308455E1957
208	10		4.3126	71	D8BCA7635D21AA1FA1A5C6E94	4EF2BA642EE8040C01EDD3061
209	10		4.3542	0A2	7A2D520642791E4A288B3637B	2087A14F58C55EFE347CFD850
210	10		4.6392	3D0	7247DFBC2FCBFDE1AB159A9B9	CD50C3592C5F7C4B3C9856314
211	10	10 [13]	4.2899	521	403FD3104DB895E0D83A2C363	280A2169E75772A3CC8ADB37B
212	10	. ,	4.3567	AF1	CB148B2DB2B65156F3963680C	6EF237EFF9B217F1A3E079D8A
213	10		4.5170	04BC	54B6C279762DD879E85E962C0	DD988D773D8D7C754428EFFFE
214	11		4.4872	2E4C	36AF9C68E25FBFE069F165F57	F3B0B691882748D50B73B4736
215	10		4.3584	59E5	D3D5C736C636B91B930F73E3B	B15620140BE42D9D024AFB852
216	11		4.7725	7C00	C0430BC19BEB2520BB67A388F	3B47D67452BBA56934EA95B94
217	10		4.1364	1F60F	67AA4427449AEB6FB3C7131E1	5ACC420AA12D282E078DB902E
218	11		4.5373	2AAAA	597ACB23CD6B518E16C0E85CB	DFC4ECE0FC812033D921E6C00
219	11		4.7798	3E7E2	500C4A7F0AD9733B60E197309	160EB205358A42ECA62AEEB17
220	11		4.6414	1D6CA	8A9B49E7F2566BC5C2310018B	8DE90BF02A139CBF0832CDB12
221	11		4.4096	0673AF	1860002C5EA107E6B685B38A8	F2CACAAC955D81FA6607D225C
222	11		4.5273	3ADC4C	6C46E38C7094E8FF9552FB26F	EADBFCD1234DE0D53F6C49783
223	11	10 [13]	4.5216	46B8CE	B7A9545D25BD89F37E75809FF	7772BB3038782C30C197A6997
224	11		4.5253	84B288	80D82D0AF19E9C18C6F6A152F	08073A7DD426CB0ECC9291776
225	11		4.6462	0F3F080	960C003CEC2B3628DE13AF24D	02EB37E14A4CE5D58D51EE8E6
226	11		4.5990	08F7EC2	358BCDE176C9455054ACE5048	A2168F5B599A38F803247686F
227	11	10 [13]	4.5641	642652D	D2F46F407DF63C089A79B22D2	061C084B634ABB54189AA38CC
228	11		4.6365	1171615	9828388A9652829FFA130DAFC	6976228B0CF3CEE59A81F8172
229	11	11 [13]	4.5664	1FB417C1	0FA5834140572D8C6B38450A6	59D3C54A7E2C40EEA660F99B0
230	11		4.5299	070B2A15	10BB7DF8973BB7EC9388F2B2F	E2E6B6035DC16BCBB84A47906
231	11		4.5819	61FEE277	96F38A954A0976C262D0D9F26	606344364AD2FC2181D15455B
232	11		4.4556	63D6DD11	06ECAB0CFE5A68AD21DCB8D9B	FDE3E6C07ED23A9442E2F73F8
233	11	11 [13]	4.5423	09E993054	BB2E36746A6C3843035044231	D4B85753BC0F884BE437F5901
234	11		4.3122	3F83FCEE4	8701A329258336DA9E64304AD	DA7942838971518D5558813BC
	11		4.4529	6FDCEF49D	AD916CB37840D43AAA795F25E	4930A3C72ED48776371F5011F

TABLE I (Continued.)

L	PSL	PSL	F	Hexadecimal form		
236	11		4.3418	76B3EABB8	1A847C4DA6B6D204C68407E30	5CC22FD9F148372B64587284C
237	11		4.3488	1B6F29F90C	608FDC6E618E1108B60323724	EB6C58363F5E8545553E4868F
238	11		4.6992	06EAD42CD7	AFCDC47B1EF4DF1236319AF5F	4EAF0C5B411525A6C2DF9411F
239*	11	12 [13]	4.5457	7AA8918194	FAFD27B4515ECE1CF274F5D83	5581EA19C84A1FB1245E76981
240 241*	12	12 [12]	4.6512	826E6DFF3F	D1D316DED80CEF68C9AB09DC4	7AB2B8E50AA552E4A349A1F87
241	11 11	12 [13]	4.3921 4.3464	030D7CE8ECF 3A452CF3DC2	18D184F798C6E925B5704AF4D 89C379144C0E8BA92E4B808CE	A2153A769D9074480E80E002B D496E69311012B053F30E9D7E
242	11		4.6415	35C9D9FAFFB	96A551B71C8390A37759CC45F	484156FA82F926B26887C70F2
244	11		4.2224	5C8AF0D5BF9	D541F6B82C8DE3C6A18267037	AFC92FDDAFB632C94B3DE26F6
245	11		4.3994	029CCAFFEDB3	109A073885E8E81FE68305F54	D0A3A741B0B163E2925AB33A5
246	11		4.4980	1EF242563567	E4FE52FF00D8EF33CBCD77E15	76F0C1098B36CD62E154F3BAA
247	12		4.7024	79A0DBE18DFD	836CDEDA5BD77238DFEBD5081	8A26713F2BD6C58E61E8BA98A
248	11		4.4414	E721F0BD8B58	2CEDF5730D2FE3147225DD445	8008182C9DF924BAD460DD581
249	12		4.6491	0CF423FF49B08	9C5EA2D4EC04B0E66C888F18D	533CAA2E2900A9A61697974F7
250	12	12 [14]	4.4816	0622264A2C88E	147AAAE46E531F0C33FC0B1A0	DB7ED694F30685E9A52EF7BE1
251	11	11 [13]	4.7291	6DB7A22D9933A	C0168A3171654A6CF1F8D0AAF	7B9485F179D73F919E19C17DF
252	11		4.0020	FAC07D4D1E117	B4E1677CC923412105413BBAF	205A3373BC454AE4E34DA35E3
253	12		4.7163	0B0B99CDB21AB6	94CC3F2887D7B83036A9F8965	07976154B800C000C7B4CB986
254	12		4.5440	3FDC4870527391	C0A10C3348A5FE518A2C5B82C	DAB91F0D6927A426457D03B72
255	12	10 51 43	4.5902	21234DBAD3F352	6E8501E19ED0B66077A6F2563	99C6293D902818A2AA03B3D10
256	12	12 [14]	4.8075	C66E72E53E702C	DE4A16F649491AAA790FE155D	07F7FCDD00CD3B2D1C7E7EEBD
257	12 12	12 [13]	4.8338	005288A05F7398A	14DF4441798F8FB49B3667832 30B776153844C33C4B98FD1C5	30292F30CBC295A2B7C6AF90B
258 259	12		4.3421 4.4596	12FFAA7F6EBE859 53018CFB0FEAA29	8564FB299AC381DF0814BDDD8	1F1B8A5C19464B69723B58879 99732E6960AFD0F4ED7F74BF1
260	12		4.4390	3251DD64471D3FD	C39A0D21300321D834F0A9743	B65AB60D44F9D6362EE1057B3
261	11		4.2672	14BC454E90DBA496	2C47443AAC52565A717174C59	62CCCE4B8021C8FF79F0BFFE0
262	12		4.4557	398EAAE6A915AD58	529B8310D39A097DFEEDF926F	7483B0FCF6F8E4C3B936F2278
263	12	12 [13]	4.3344	4FF9990608130226	479E4F03723535A5B15359542	FFA0F358B68B579EF051E71AB
264	12	12 [10]	4.6814	9C6DDF143C077B17	F4734C3A7EA9E3E9ED1809CC6	8162ADCA48DF512AAD04DBDAC
265	12		4.6007	08EAD88E9392BA6D9	6DA7383814819FA67BDB996FC	1BFDCF4447BEA74ABE2C1D5E8
266	12		4.3118	31E2917C735D17D56	B82FF294FBD41AC9886129D19	3CBCB3E467268890373729081
267	11		4.2652	5953B8519D5AF3326	5E8E8F6FAF6132E431B1EF8E7	FB862D2B61B4104B2FA0F8053
268	12		4.5912	CAC8A6B8FF1404596	F16F1D0CC409087C0A547B697	32F1E348DB642BF11D722ACDC
269	12	12 [13]	4.5903	0A28FD2E951E47AD41	4AF7B8C6D698458B626F3CF48	B2120F883A3010D9B2EE26727
270	12		4.3836	3FB24A8175445D1BB7	C06D440EB73C93289BD73E9E6	D6FEE56E3D0C6C6B47B8E243F
271	12	12 [13]	4.5028	37C39615AF6E13408F	3588BEAF3D5489C300D976626	EB64ADF7B3E0BCCAAFA6F61CF
272	12		4.8267	6C7B85DE551BF08A6B	A18C345823177B5F330F135DE	AF745BF938D0FC694B4BB3F64
273 274	12 12		4.4617 4.4683	0A93D1616BF17B44A52	F8CE619CB008B3C7FF649E3DA	1C46C6063649E0055503444E8
274	12		4.4083	27408228CFAA388F25E 63C00D35432AE2D07DD	578392D64A2C34EDD9960B2C0 1C97957581650E3C2E42627FF	BD707BC42A37B13533F9DAD7F 1B6E8D642A57BD66F39DF620D
276	12		4.5032	E7979B9C2CAD25005A7	8250229573D322E8926478D40	FD8DF098A6A20EF4CBB3C8668
277	12	12 [13]	4.4352	09E400E0C161B9B53D99	5C46D0FCAC99D6A2ABC9FC336	FF186A63FAEF1422D7AA5CB3C
278	12	12 [13]	4.5790	2983D92E3BC584B0B25C	8EF00D7AE6E82B0A5EFFCF47E	F4A4330DDD2895725174EAE4E
279	12		4.3192	472EE8D41894A158C233	97B9C4D0F60BD024053C903CD	98404E8D9EA497C924F74F5D5
280	12		4.2535	AA6A5AD2B143072C7EB6	FACC08A4E6372094623FCC11F	E7D14F9B6B8F516EE0BA3C360
281*	12	13 [13]	4.2325	1250B4B5611E8A70A14E0	029B6C2FBC3CACD455008C9EE	64823558B71DE7D170667ECCD
282	12		4.4273	0730D195C56AB2B8EAD3C	87A62ADF9BB7CA20F40C203FD	A0110F2ECC5A4CE865C842C85
283	12	12 [13]	4.4747	1D7F0AF6BC0D0B140051D	561F00D0B349B923F742304EB	3B414B231998E9865147BA49E
284	13		4.4307	F1FDD9F7EC77385877248	7B37A554A01F899BB87518AAB	C23F1AD29F1150D7BE6926DB2
285	12		4.3735	184FEF1665B368529D2C82	90CBFF2376484A77472BAB2A6	550C3507E03441C1C35148877
286	12		4.3830	09D8AEB8A1D5B720AF0EB3	3ADB4CFFB7537B97758B14A4C	F808F1A9DE7A4CD0090FF361F
287	12		4.1706	5864B95DB71C461D0C2D77	64F462406B4234868C55E4AAB	21B9E05E2704D01EF5C29B3EF
288 289	12 12		4.3858 4.2981	F7690297DED44B34F5BB4B 0E19848BE384366860DCC64	CE683CE9ADBBE399B0620F0C1 03A970452A0771277C12F4CEF	F33251F83B88BBB0D554AA11E 5A426AEDB5F150D44081DB67D
289	13		4.2981	003DE0169C79C436192C860	1178171966EDF2D770488BC1C	B3F2E213153B95F8B92B695AA
290	13		4.5621	206FFE4AA9297C4625E9AC5	C134A1ECD978C0D95C8947A64	773BC470C2C02F08300571D56
292	13		4.6410	D4D94856B076680ED4C83BA	E0389F6EA37561A969BE68D09	1E7AF95981EC2382BE7BF75B3
293	13	13 [13]	4.7599	1029280A08AC82FE48A56B5D	F3E49084CBE0F4BCC6BC4D509	8FAA35173B7448CB974338F9C
294	13	1	4.3961	244EB3EFDD33162F72EE399C	D55D00DD65F8532F1408FBC3F	4DE2DAD3C3C9C048A3595AC8F
295	13		4.3992	6595483A55578127E146F1C3	EA9E6FAC40E93CD95BCD5A026	BFB9CCDDDA5FE9CC27E258072
296	12		4.3203	F41C6C21538021B8E1792641	732B13207A97F373C94C2D710	854FD5608FB27364FBCEBAC91
297	12		4.2953	0BFAE9E38FA87671109C805E0	8EFF9F42764E4385F3A255273	50760A835665C96A4082DB659
298	13		4.5771	25C65CB1C766535BE5843B56D	9C843BF83698C284C37F1B1A9	300541600BAA5C2A1FC55F899
299	13	4 4 5 2 1 5	4.4166	5EBB52FEB5DEB2AFCD1AA60B3	566DBE0CA61DDED7C22623611	C53F727860FA230BA0F067ED4
300*	13	14 [14]	4.4074	5AAAF7F284E43542CCFFD096B	A42E7C784BA0BA6E9CC7DE4FC	5E34433349D60837235C11164

 ${\bf TABLE~II}$ Some Results Between L=303 to 1000, Obtained from 3 Random Runs of the Proposed Algorithm.

L	PSL	PSL	F	Hexadecimal form		
303	13	13 [14]	4.3507	AD95352CC22999A6FB0C43086	B95BE0DE162E8D5AB039EBC2E	0 36421E1FC014FBDD9CFCDFCB4
304*	13	14 [14]	4.0676			E
350	14	14 [14]	3.9458	4126CDA6FA380553FAF855670	737149D716A118A39D317F56B	C5AC27200D231605658C0B489 2559C84C9F842
353*	14	15 [13]	4.2075	38329784CD15E5FD165E71FA1	955F6AA3FD68D163C020C83DF	AE5CCC39D0F6696A047369252 1AB8EE1405CBAA
400	15		4.3908	2301CE6AF55A9367F56F975F0	F8237A4B217DED35D90E5816E	94F1ECC71B333DBBDA5036461 614AC33E81BAFF8832AAED86D
		16.5103		42E54FDEAC2B011A64125B93F	84F5F90F9E3397BE311F1C8E9	B7677B7879AC555A8F93B2C14
449	16	16 [13]	4.0547	3BA7280283209CB9B3C119C17	0880B2380EF45 CCA40C033D59A1CFA1F115F10	1BF4967DAADB49A4E7942E196 5AF6785070AB72740DAAECD47
450*	16	18 [14]	4.4235	B3D233BB90D073CED9159C75A	074927D1884C8 3DE3643E9BDB10E53DE50DC11	1F5A9DBD1150A3269BAEF6F77 73C6C1ABE141EAFE4F8F510EF
500*	17	18 [14]	4.3442	86692BB8EE8599610DCF3BBC6	2AB2323A3ECF2D5BAFB96296C 5FF085A3624FFD18784AE2A7F	EB8576E9977DBFF2513B71581 0F53A8729D5FCC682CD079B1A
512*	18	20 [14]	4.2656	0C6	0D7D4513078969028B0AD1E7D	4B9484DCB8B4314EF3C423890
547	18	18 [13]	4.3408	59629957F19DBF1BD1FCC147A 1A1122346FA6	C967014099B8D967A55086B68 B24D0058AF50DF76297DFB4DD	2FD366610BFC62EEFCCD903EA 1FD629835796CABBA9E7B960D
550*	18	20 [14]	4.0695	DF0ADAA3EF781CC68787065EE 1B75CCF68F659A	84E33C3EC2F328FCA7FB90948 1E87B8EA72B3ACBA7B46C702	5ECE5C52EA75E8B38528EC9D0 F9D5EBD17699C445D399CA346
600*	19	20 [14]	3.6753	4A3FCF7D616F61077FF12A907 947D1CA2F0D6605BFE64A83D0	FC89835664FB5421298018595 DE36DF1124823FB586FB3D62B	A5FABE096D9591DC8B1B971A9 EAA03228D4E4A8600B1C1B84B
				B75345932030798EAD7362F79	B956E53BC32227E2EEE501921	3196948FD9B4E8C7CEFE1C32C
650*	20	21 [14]	3.9239	AC842603610546BE0C050D6B5	4E6381E44A00E9C76DCE5A6E1	3629519BBA27A FBD4E1B53B245C71765A69CA5
653	20	20 [13]	4.2287	661453631900E59DF4B4BD866	DCF8106BA56FBE36006054BB8	D835EBA3A93EFA01ECD517F19 0042DAE58D12B9
				D67C18A56FB5FC1A3CC9F0D0D 33B1053BEDE8D1677832775DB	E5EB1EC464C10E86AE5F94159 472499DDC0F47108524DA7AA9	2BBF8ADF8E5BD87B4AF88DAC6 1FABE45FE5104544488DD51AE
700	22	22 [14]	4.1524	3185FD0232E2CDC92725588DE	5ECEBB4381929896E01781621	755D7F2A5202805BA539F3368 779C512CD67B61D874F3AD782
== o.t.				8A1A5E43440216E1292CD9A0C	9358146E7624EE7555C3B9471	F04C2F9FDE6D1E15DAC0E7DC1
750*	22	24 [14]	3.7603	58096AF298169E090BAD48814	0D2C305FBDF8B 0162BB5DBB32A1CBD22EBE507	E28B8F56A2C52EFD20DD56B5F 7E76C268C938C23791F41F7C7
				731E999DC0DC7550640CFC6F1	F66CCB41BDA727A0FEE629F47	7EB2F6311C54DBC8F106724B6
751	22	21 [13]	4.1537		61831AE4D5773	3A33AAE6785AB1421C2C70402
				F98BFFB1D3F4C557F60DAE504	848FA28617F2A0F967C82304C	DFB3B856C8EBD8BEAD682F05A
000*	22	26 [14]	2.7401	E8449FC6C21C355B97C8294A3	875DBDFF3D6C9A56D62DE43F7	6EF61E8F9CD3510C86F4DE665
800*	23	26 [14]	3.7481	43CBDE96919EF1DCE0A34E45D	9BD821BDB337C783D2FABFCF8 85C49DB1EA102F744E437B80C	BE46CCBF2B4D8E87BE39B4DAB BE718414F3AC82113DF1FEFD5
				FF9AE0245D10A97D94CDD048A	336B9745A0AE9821FAAF92E12	FD477533B32E90AD5BEAA5A46
850*	24	25 [14]	3.8096	3EE1A834B9586	872DF36A9E31B629E9CBD6C7E	D8BAB07453F76F25486379032
		. ,		DC8FFFDAFF90FA881B8E616F2	6E6799AFEFF1A82A37574DEA9	D01B23FD9838DF3207EAF287C
				D160CB1A8052DC3851E0850FA	8C6302397D6C3756B96EC6796	EC347F2536D44E154E23F4AA2
853	24	22 [13]	4.0854	02768D10E7D43B	B00F7D393A61C6F78AC926759	4B7F6C536B2553B581B4E1FC9
				9553236F6CCC5A7710BF4B20E	F382C7274E1222AD3E6676769	2719CBC8E037D5C80151FB719
000*	25	26 [14]	2.7622	E3808E0F4D84AF5392E81F508	B2AF69DFD57C1F4DD3F95EB3A	9DFEBF2936C2040261E51D1C3
900*	25	26 [14]	3.7623	D3B8E76EBC7A737A3A210F4E4 24A01FCA8A1A85EF8DB3E4792	47E066618EB529E7F468B8F7C 3EA2F5667ECFC0816743B9379	6C98B68A16646A51508853AF5 12DB00B6508585107D1AA082A
				C3A9BA4E16218D792490B0CAE	585B7EE11EDD201121BB05F5D	C63B889EAEC44169AC775B6DC
950*	26	28 [14]	4.0438	00.1001.001.001.000.000.000	0000,22112222011212200102	2D1A46DB07002
		. ,		A95132B1A8CD2EF8392BCC99D	FBAAC044EFEC8B22AA553D3C7	F7F9C6CCAECA104107D527744
				F7A4C3ED429A82E5ACF4390B1	929EB0B5757D303B22C77E91C	A64EBBF96C7ABBC2C37F635FB
0.50	2.5	25.51.23	2 0 402	46B9AE073DA6987796C3323F4	86C35FF67BEA09FB0EE1FE6AE	170AD040FF2F449A4539A3C63
953	25	25 [13]	3.8493	4E21E0C2 A CD 1E520E2522E23	1D7D50E75D040C2201CDE2E17	1AC865E34EECA7
				6F31F9C2ACB1F520F3522FF35 06B6DF1820F42FADEA195F3E8	1D7D58F75D848C3381CDF3F17 A56CC703346B757F1886E0DB8	65B5CB15C722C43DA7EE6E1EA 42F19F293A2C8A0C31AD9B0A7
				DFD801181F997A767A026899A	EDB73DA9BCBF86FDCAAD48083	50D45A040A2E218999BD5536B
1000*	27	28 [14]	3.7873			7FD311D01DD74BE054B4E2DAD
		. ,		B387727FDB7A3965B9420081E	01CC0C1C3ADC740A94B98DD5D	919F9C1E25F7422E81DFFF045
				CC65374FED83C360625A47996	1B979ACDE60E2C090A499CE7E	AAB94C89526CA1718D53A4073
				EA8B05CD9218A14B2832BB48E	7048D9D11ACE683D415310124	AB5A3FC3A57155DA2056D5982

TABLE III Some Results Between L=1019 to 4096, Obtained from 3 Random Runs of the Proposed Algorithm.

L	PSL	PSL	F	Hexadecimal form		
1019	26	24 [13]	4.1390		5DF5B	7DB1608F87A6C00E33A6AAE88
				2F273C56FCFD5242F0A60D974	CEBE75733A782AC3F6687CC4E	53EC18BA1E7EA820C84B2A1CC
				4742E4ADE9C89A72E36A44130	2F26315A438C72E2955B0C5AA	16C90DFFD00BD37A813852651
				A95FDFC4A371F0EBF4341AC6F	F5DEF996611CC12E2B2DC4200	DAC88AB44E44D26252FA9F789
1024*	28	30 [14]	3.9683		4A3850	61EB56D8C3A37BEDFF2EEBC30
				96B47CF2CE9EBA6C28A6895AF	4CDF08090AB612DA8043C3D1F	E644D50A15E908692AC4DC095
				218D398A6A66B389D16C8A6BC	AF26896612DF211D48CBC027C	7C451B6B5B14EECD199CE823E
1500*	25	40 [14]	2.7216	63C07C4E20AECF7513F41329D	56706E05F66D22A6EEC152A83	0F9378B07D7F3DC2D9FF88C08
1500*	35	40 [14]	3.7316	77CDCD88C3F33F08D81BBBDBE 98B5B323ADD46AF5DD8147BCE	38632CE50E2E8B8D05E31018A D377CCA8DBE4EC7E2C2B51719	7A131386A39129745983C417A
				F5A23C0A52316EA3FF7A02381	7247CB76C9C200C5A92C33CF3	426AFB2270695C9B213A72719 D1405D09103FF0AB18B33CE47
				C8D02E8AF221EB42D0C11A8BC	C8229BD2B305AF900DA4B6BFD	31D4F8B6FA3184A384933AD93
				C512E7E5487593EF9EFD96D7A	A3DC06A6C1C310256B572BFD1	5DDC5F503E8940E4D6734D3CE
2000*	42	44 [14]	3.6193	C312E/E34073/3EI /EI D/0D/A	9300DC650BB35F244E59742D8	848E894E9BC0CB6E07FE3700C
2000	72	44 [14]	3.0193	1AA19DAB48DE771363D8F8D3C	CB7FA78CE77054202A3DE0B08	7572813A1CB889437130C723F
				CFFD7E53BDF26CA3A73ADCBF8	89A612D32BA3AE9112F25E981	7FC933E833A50D7EF85916D44
				6F25526C767ECC52CA9E590D2	DA7222A97C4FCCA1A64DFD474	C018C3DAA150F2286B10EB12A
				031D07357D53866B24D6C2156	109A40AED50D7F388ABF376CE	C0D155125070F70C26DF3C76A
				D94F1531053E29DDD2A02B041	C062263BD95698150CC8697DA	03B20B2C6689097320BA14FBC
				D9425121CBC7AB6AFEFE38105	571F9A740A03A7895BDE60645	E96C607A11C35B0792F588740
2048*	42	44 [14]	3.5387	DA67ACA857A4	B796F2F16FCC6A2B5551A473F	92C9A73B73E254ABB40295752
		. ,		464E144537D7536C12FE744D8	DB9588889629E7673DEA4E8EE	F23ED4EC00FA7E5C6BE33D913
				2A69DFA2B80690E6F5260C231	64F65D4942DCF36C70B4A30CB	E7CF02DB21B23FA0A5F19AD2E
				7BC61CF82B36B1F17CA56E206	76707AB7E8F6BF4CBE25248F3	8048AD63CFA3BE8C26309FC6F
				7E057FFB9A8D152D8760C86A2	A6AF0B683FBFF41F4F9A87DC8	3DDBB7DB858FC94422B1E867C
				748911C572FCEB38E2432D41B	2C39FAB52BB2558EC98DF7A18	181C43D4205A339F904668288
				B06D49401871EC06C3C0AA2E2	316BE7F546B79D9C9D37A2CF9	3128422D7125D8B84B69A717A
2197*	45	47 [14]	3.6423			0331A80FD5ED35094DC259258
				1CA4954F3B24D3E19BD96C272	76AC577596F82274B74FADA2F	2A040059E64D3AC0269E71231
				7E767010E525E7D677D278F9F	8A3924EEB505E7D420822B3F0	30474F2FCF38B9588087863B1
				B9E248F223E0749ED065C6C99	4030B285BEE06AFF726BDFB80	6F5AE3A65151644AD93AADA4B
				27E310E80D9B2598AB4CCE2AE	1F10480A21695A6832F8AC0AF	FB5A995500F8D4EDF1DAB6E0D
				533A69B210A185EA3E3474AE1	7E532288A2B82F8885584F098	51135AC5D5ED48012AFD907CC
				166E0268015AD30A13866F896	3D616584CDAA15D7670C7936E	770C895BB9FFDE94BAF8DE130
2000*	52	5 0 [14]	3.3608	E405FCB9F20FC36356ADFDA33 C22BEEF73C56B9DC59F6D5AFF	E99BB14ABEF78DA6BB10FCA03 803AEF187021AB81871E9124E	89F2DEF119F2B7215C6590AE1 B44DB7568D56738D4262B74A1
3000*	34	58 [14]	3.3008	77157EC6581848C87107C611B	110E4AD281CE0A7B66ED5831B	E04CC0F76D1BABFE6566217A9
				F0A599ACE0DF1B032BA7B1887	568284569B84B691CC2A453E2	FB42BE07DCEFF5E5CF797F2D2
				80319F8BFF4BDAF9E2E7BFBFA	ABB375BD036311507CAB30D94	8AA39A4A4394D4E2FEC507DC7
				BCD4A8BC2A18CE06CE2FB5124	E9B8EC9BB5B04FBE280BCCF12	FFB9A1B81937A6D8B4FF4E36F
				A163EC514A0A93BF4E1B7F89E	FF05CC31496505BF9ED52D248	0576CCD70A7A7B320EF160A2B
				A3822067A6D1EECF2AAC2E53F	386414300931F9E63A12B327E	528EE8E95833A7375E258E632
				B2B1F702E0A4B383FADA845A5	66D5D18CB3160CDD24274F2D8	AA55616D5E20DCE34D80D38A2
				31067F5554C970AD724B0FECE	9220944EEC7C13EB3D7E03303	4E53D593813FFE157C17F8666
				E37569D603E668938A73AD9D8	B0CBC31DF93A4F262A3621118	7EE7A48E00EBD41102F1A4E9B
4096*	61	68 [14]	3.4589		E30A5D894A09A4CE0D11987E	FC7E8DC88127C078FBD569A4A
				D05AB26D86A2D067C1E274783	B891CBF64617E0906673F029A	ED144133B3FF48DF2DB8A1878
				6780075E9C2B0CC46E6D0DA62	3CF1F50F1DF94177C28076F3C	E44BC24C69D242E8D6F49F678
				E71C2D4D72C9412C828734AA3	9CA28EA2A7E5891B451ADA9B2	408E666BA052C81509DE81789
				7E4AF9FE4F504846D80D6B14C	EEBDD9402A35C03AFD4EAE97B	7ECB690094681EFD13837398A
				CECAA9AB5FC10682B00CA74BD	15B5C0D7C53BAF35BF70612CB	4DDE55EB4CF2F028596ED8382
				3F5D1A73463B9953326AE6950	CF1299AB6ACB432887A56E9F0	42957BAE604C003E982152DFE
				AFA75968C0D8B0FEAA2ED33FC	20DE73FBA4E21F154CB291291	58F8BB5B9977C57B6F77A7363
				4D9164A6FEA9647EAA1E1D631	14B6BA1E9F065D66E5F5BF15B	0D46EF9CED3216DB9DF0298E1
				CFBE0AF7596E9EB4BCBBBDA10	8A2B6088380B8D73797F9E9DB	094FCC06FF0544F46E261FE4E
				F60AABCA0A32A5D1694B818B0	3A6D5351B28BAF523D1AE65D6	048136003CFBA56CF22E0E1A2
				F2973C8163731272219255826	1DC2BEC886EBBBD73B5D1EFC2	9BB7E91F72964943D6D3560C3
				A8E20D11EC5A81C106E04D5F5	9218D9FD9D823B118AD4FB1D6	C1435461E338D9F171B337E5D
				D7320CCD9CFE5DC651051E0F6	678550BA09F9892E76D6E17C4	9ECD63F71B71FF351EEAF6DEB

the EA is more effective when applied to a smooth fitness landscape, and the resultant gain may outweigh the loss incurred by approximating the PSL criterion by f_2 . Our PSL results for the interval $L \in [49, 100]$ are better than

those of Deng et al. [21] for L = 57, 72, 75, 89, 92, 93, 94, 97, and 99. Generally speaking, compared with existing methods, our proposed algorithm with the fitness function f_2 is more effective in finding improved or optimal

solutions for the LABS problem. As will be shown, this holds true even for much longer sequences.

In Fig. 2, our PSL results are compared with the latest results of [16] and the optimal results in [5] for $5 \le L \le$ 69. The results were obtained based on 5 random runs with the parameters given above. It can be seen that our results are much closer to the optimal results than those of [16].

Based on our survey on the LABS literature, there are only two papers [13, 14] reporting useful LABS results for lengths beyond a few hundred. This reflects how challenging the long LABS problem is. Therefore, the results found by our proposed EA are compared with the best known PSL results in [14, 13] for $L \geq 106$. The PSL results for lengths 106 to 300 are listed in Table I. To discover longer LABS, our proposed EA was applied for some chosen lengths between L=303 and 4096 for generating Tables II to III. Each result listed therein is the best among 3 random runs of our program.

To reduce the computing time, the population and children sizes for longer lengths are decreased. For L=303 to 1000, we set $N_P=L$, $N_O=2L$, $G_{RS}=5$, $G_{\max}=200$, $N_{RS}=L$. The results are listed in Table II. When L>1000, we set $N_P=N_O=1000$, $G_{RS}=5$, $G_{\max}=200$, $N_{RS}=1000$. The results for L=1019 to 4096 are listed in Table III. Our record-breaking PSL results in Tables I to III are marked in bold and their associated lengths are marked with an asterisk.

For the sake of benchmarking, the best PSL results reported from the locally optimized cyclically shifted Legendre sequences in [13] and the systematic search in [14] are also listed side by side with our results in Tables I to III. From the tables, it can be seen that for the prime lengths considered, our PSL results are comparable to those obtained from the Legendre sequences in [13]. Notably, our PSL results in the tables are better for prime lengths L = 109, 137, 149, 181, 239, 241, 281, and 353.From the tables, it can also be observed that our PSL results are generally better than those in [14], especially for long sequences. Specifically, our PSL results in the tables are better for lengths L = 300, 304, 450, 500, 512,550, 600, 650, 750, 800, 850, 900, 950, 1000, 1024, 1500, 2000, 2048, 2197, 3000, and 4096. In fact, the results in [14] are no better than ours and it is likely that their search algorithm is also far slower than our EA.

As an indication of the runtime complexity of our EA, the computing time is 58009 s or 16.1136 h for L=1019. For lengths up to 4096, the computing time required empirically shows a seemingly quadratic growth with L. Note however that we claim no rigorous complexity analysis results. In particular, the parameters have been adjusted to trade the performance for the search complexity, in case of long sequences. This flexible tradeoff is in fact one of the key advantages of the proposed algorithm.

V. CONCLUDING REMARKS

We have proposed an EA for tackling the problem of discovering long LABS with low PSL. The proposed EA

design incorporates several features, including $(\lambda + \mu)$ ES-like scheme, two-point mutation, a bit-climber used as a local search operator, partial population restart, and a fast scheme for calculating autocorrelation. The results for using several different objectives or fitness functions were compared in terms of both PSL and merit factor. Our algorithm can effectively find optimal or near-optimal PSL results for LABS of lengths up to 69, and significantly outperforms the recently introduced ITROX-AP algorithm in [16].

LABS of selected lengths up to 4096 searched by our algorithm have been tabulated in detail, and they have lower PSL values for many lengths than the previous records reported in [13] and [14], which are the only known papers addressing the long LABS challenge, to our knowledge. Our PSL results are often better (and no worse) than those reported in [14], especially for large lengths. The effectiveness of our algorithm is comparable to that based on the Legendre sequences in [13]. Yet our PSL results still provide lower PSL for many lengths. It is noteworthy that unlike [13], our algorithm is not restricted to prime lengths and its effectiveness does not heavily depend on having a good sequence construction (e.g. Legendre sequences [13] or quantized chirp signals [14]) as its initial guess. Hence it can readily be adapted to tackle various extensions of the LABS problem. It is not only effective for the long LABS problem, but is also promising for handling generic sidelobe criteria, sequence sets with low crosscorrelation and autocorrelation levels, etc. In addition, it is convenient to control the required search time by adjusting the parameters of the proposed algorithm so as to achieve a flexible tradeoff between quality of search results and available computing resource.

REFERENCES

- [1] Mertens, S.
 - Exhaustive search for low-autocorrelation binary sequences. *Journal of Physics A: Mathematical and General*, **29** (1996), 1473–1481
- [2] Alon, N., Litsyn, S., and Shpunt, A. Typical peak sidelobe level of binary sequences. *IEEE Transactions on Information Theory*, 56, 1 (Jan. 2010), 545–554.
- [3] Schmidt, K.-U.
 - Binary sequences with small peak sidelobe level. *IEEE Transactions on Information Theory*, **58**, 4 (Apr. 2012), 2512–2515.
- [4] Golay, M. J. E.
 - The merit factor of long low autocorrelation binary sequences. *IEEE Transactions on Information Theory*, **IT-28**, 3 (May 1982), 543–549.
- [5] Coxson, G., and Russo, J.
 - Efficient exhaustive search for optimal-peak-sidelobe binary codes.
 - *IEEE Transactions on Aerospace and Electronic Systems*, **41**, 1 (Jan. 2005), 302–308.
- [6] Brglez, F., Li, X. Y., Stallmann, M. F., and Militzer, B. Reliable cost predictions for finding optimal solutions to LABS problem: Evolutionary and alternative algorithms. In *Proceedings of 5th International Workshop on Frontiers in Evolutionary Algorithms* (FEA'2003) under JCIS'2003, Cary, NC, Sept. 2003.

- [7] Jedwab, J., and Yoshida, K.
 The peak sidelobe level of families of binary sequences.
 IEEE Transactions on Information Theory, 52, 5 (May 2006), 2247–2254.
- [8] Nunn, C. J., and Coxson, G. E. Best-known autocorrelation peak sidelobe levels for binary codes of length 71 to 105. *IEEE Transactions on Aerospace and Electronic Systems*, 44, 1 (Jan. 2008), 392–395.
- [9] Borwein, P., and Ferguson, R. Polyphase sequences with low autocorrelation. *IEEE Transactions on Information Theory*, 51, 4 (Apr. 2005), 1564–1567.
- [10] Nunn, C. J., and Coxson, G. E.
 Polyphase pulse compression codes with optimal peak and integrated sidelobes.

 IEEE Transactions on Aerospace and Electronic Systems, 45, 2 (Apr. 2009), 41–47.
 [11] Mow, W. H.
- [11] Mow, W. H.

 Best quadriphase codes up to length 24.

 Electronics Letters, 29, 10 (May 1993), 923–925.
- [12] Golomb, S. W. Shift Register Sequences. San Francisco: Holden-Day, 1967.
- [13] Rao, K. V., and Reddy, V. U. Biphase sequence generation with low sidelobe autocorrelation function. *IEEE Transactions on Aerospace and Electronic Systems*, AES-22, 2 (Mar. 1986), 128–133.
- [14] Dzvonkovskaya, A., and Rohling, H. Long binary phase codes with good autocorrelation properties. In *Proceedings of 2008 International Radar Symposium*, Wroclaw, Poland, May 2008, pp. 1–4.
- [15] Ferrara, M. A. Near-optimal peak sidelobe binary codes. In *Proceedings of IEEE Conference on Radar*, Apr. 2006, pp. 400–403.
- [16] Soltanalian, M., and Stoica, P. Computational design of sequences with good correlation properties. *IEEE Transactions on Signal Processing*, 60, 5 (May 2012), 2180–2193.
- [17] Prestwich, S.

 A hybrid search architecture applied to hard random 3-SAT and low-autocorrelation binary sequences.

 In *Proceedings of 6th International Conference on Principles and Practice of Constraint Programming*, LNCS vol. 1894, 2000, pp. 337–352.
- [18] Kernighan, B. W., and Lin, S.
 An efficient heuristic procedure for partitioning graphs.
 Bell System Technical Journal, 49, 1 (1970), 291–307.
- [19] Schotten, H. D., and Luke, H. D. On the search for low correlated binary sequences. AEU - International Journal of Electronics and Communications, 59 (2005), 67–78.
- [20] Militzer, B., Zamparelli, M., and Beule, D. Evolutionary search for low autocorrelated binary sequences. *IEEE Transactions on Evolutionary Computation*, 2, 1 (Apr. 1998), 34–39.
- [21] Deng, X., and Fan, P.
 New binary sequences with good aperiodic autocorrelations obtained by evolutionary algorithm.

 IEEE Communications Letters, 3, 10 (Oct. 1999), 288–290.
- [22] Kocabas, A. E., and Atalar, A. Binary sequences with low aperiodic autocorrelation for synchronization purposes. *IEEE Communications Letters*, 7, 1 (Jan. 2003), 36–38.

- Wang, S., and Ji, X.
 An efficient heuristics search for binary sequences with good aperiodic autocorrelations.
 In Proceedings of IEEE International Conference on Wireless Communications, Networking and Mobile Computing (WiCom'07), Sept. 21-25, 2007, Shanghai, China, pp.
- [24] Gallardo, J. E., Cotta, C., and Fernandez, A. J. A memetic algorithm for the low autocorrelation binary sequence problem. In Proceedings of 9th Annual Conference on Genetic and Evolutionary Computation, London, 2007, pp. 1226–1233.

[23]

763-766.

- Natarajan, B., Das, S., and Stevens, D. An evolutionary approach to designing complex spreading codes for DS-CDMA. *IEEE Transactions on Wireless Communication*, 4, 5 (Sept. 2005), 2051–2056.
- [26] Koike, T., and Yoshida, S. Genetic designing of near-optimal training sequences for spatial multiplexing transmissions. In Proceedings of 10th Asia-Pacific Conference on Communications and 5th International Symposium on Multi-Dimensional Mobile Communications, 2004, pp. 474–478.
- [27] Du, K.-L., and Swamy, M. N. S.

 Neural Networks in a Softcomputing Framework. London:
 Springer, 2006.
- [28] Holland, J.
 Adaptation in Natural and Artificial Systems. Ann Arbor, MI: University of Michigan Press, 1975.
- [29] Rechenberg, I. Evolutionsstrategie-Optimierung Technischer Systeme Nach Prinzipien der Biologischen Information. Freiburg, Germany: Formman Verlag, 1973.
- [30] Koza, J. R. Genetic Programming. Cambridge, MA: MIT Press, 1993.
- [31] Storn, R., and Price, K. Differential evolution—A simple and efficient adaptive scheme for global optimization over continuous spaces. International Computer Science Institute, Berkeley, CA, Tech. Rep. TR-95-012, Mar. 1995.
- [32] Larranaga, P., and Lozano, J. A. (Eds.) Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation. Norwell, MA: Kluwer Academic Press, 2001.
- [33] Moscato, P. On evolution, search, optimization, genetic algorithms and martial arts: Towards memetic algorithms. Caltech Concurrent Computation Program, Caltech, Pasadena, CA, Tech. Report 826, 1989.
- [34] Hu, F., Fan, P. Z., Darnell, M., and Jin, F. Binary sequences with good aperiodic autocorrelation functions obtained by neural network search. *Electronics Letters*, 33, 8 (Apr. 1997), 688–690.
- [35] Dotu, I., and van Hentenryck. P. A note on low autocorrelation binary sequences. In F. Benhamou (Ed.), 12th International Conference on Principles and Practice of Constraint Programming (CP 2006), LNCS vol. 4204, Nantes, France, Sept. 2006. New York: Springer, 2006, pp. 685–689.
- [36] Somaini, U., and Ackroyd, M. H. The peak sidelobe level of families of binary sequences. *IEEE Transactions on Information Theory*, 20, 5 (Sept. 1997), 689–691.

Wai Ho Mow (S'89—M'93—SM'99) received his M.Phil. and Ph.D. degrees in information engineering from the Chinese University of Hong Kong in 1991 and 1993, respectively.

From 1997 to 1999, he was with Nanyang Technological University, Singapore. He has been with Hong Kong University of Science and Technology (HKUST) since March 2000. He was the recipient of seven research/exchange fellowships from five countries, including the Humboldt Research Fellowship. His research interests are in the areas of communications, coding, and information theory. He has published one book, and has coauthored over 30 patent applications and over 160 technical publications, among which he is the sole author of over 40.

Dr. Mow has coauthored two papers that received the ISITA2002 Paper Award for Young Researchers and the APCC2013 Best Paper Award. He is currently the leader of the HKUST Barcode Group, which won the Best Mobile App Award at ACM MobiCom'2013 by developing a novel picture-embedding barcode app, called PiCode. Since 2002, he has been the principal investigator of 16 funded research projects. In 2005, he chaired the Hong Kong Chapter of the IEEE Information Theory Society. He was the Technical Program Co-Chair of five conferences, and served on the technical program committees of numerous conferences, such as ICC, Globecom, ITW, ISITA, VTC, and APCC. He was a Guest Associate Editor for numerous special issues of the *IEICE Transactions on Fundamentals*. He was an industrial consultant for Huawei, ZTE, and Magnotech Ltd. He was a member of the Radio Spectrum Advisory Committee, Office of the Telecommunications Authority, Hong Kong S.A.R. Government from 2003 to 2008.

Ke-Lin Du (M'01—SM'09) received the Ph.D. in electrical engineering from Huazhong University of Science and Technology, Wuhan, China, in 1998.

He founded Xonlink Inc. in March 2014. He was Chief Scientist at Enjoyor Inc. from 2011 to 2014. He was on the research staff at the Department of Electrical and Computer Engineering, Concordia University, Montreal, Canada from 2001 to 2010. Prior to 2001, he was on the technical staff with Huawei Technologies, China Academy of Telecommunication Technology, and Chinese University of Hong Kong. He worked with Hong Kong University of Science and Technology in 2008. He is currently an Affiliate Professor at the Department of Electrical and Computer Engineering, Concordia University. Currently, his research interests are signal processing, wireless communications, neural networks and machine learning.

Dr. Du has coauthored three books (*Neural Networks in a Softcomputing Framework*, Springer, 2006; *Wireless Communication Systems*, Cambridge University Press, 2010; *Neural Networks and Statistical Learning*, Springer, 2014). He has also published over 50 papers, and has 4 U. S. patents and 14 Chinese patents. He has been on the editorial board or been Associate Editor of several journals, including *IET Signal Processing* and *Circuits, Systems & Signal Processing*. He also serves on the editorial board of the Chinese edition of *IEEE Spectrum*.

Wei Hsiang Wu Photograph and biography not available at time of publication.