Date:2023-06-15

Aim:

S.No: 19

Write a program to implement stack using linked lists.

```
Sample Input and Output:
    1.Push 2.Pop 3.Display 4.Is Empty 5.Peek 6.Exit
    Enter your option : 1
    Enter element: 33
    Successfully pushed.
    1.Push 2.Pop 3.Display 4.Is Empty 5.Peek 6.Exit
    Enter your option : 1
    Enter element : 22
    Successfully pushed.
    1.Push 2.Pop 3.Display 4.Is Empty 5.Peek 6.Exit
    Enter your option : 1
    Enter element : 55
    Successfully pushed.
    1.Push 2.Pop 3.Display 4.Is Empty 5.Peek 6.Exit
    Enter your option : 1
    Enter element : 66
    Successfully pushed.
    1.Push 2.Pop 3.Display 4.Is Empty 5.Peek 6.Exit
    Enter your option : 3
    Elements of the stack are : 66 55 22 33
    1.Push 2.Pop 3.Display 4.Is Empty 5.Peek 6.Exit
    Enter your option : 2
    Popped value = 66
    1.Push 2.Pop 3.Display 4.Is Empty 5.Peek 6.Exit
    Enter your option : 2
    Popped value = 55
    1.Push 2.Pop 3.Display 4.Is Empty 5.Peek 6.Exit
    Enter your option : 3
    Elements of the stack are : 22 33
    1. Push 2. Pop 3. Display 4. Is Empty 5. Peek 6. Exit
    Enter your option : 5
    Peek value = 22
    1.Push 2.Pop 3.Display 4.Is Empty 5.Peek 6.Exit
    Enter your option: 4
    Stack is not empty.
    1.Push 2.Pop 3.Display 4.Is Empty 5.Peek 6.Exit
    Enter your option : 6
```

Source Code:

```
StackUsingLL.c
```

```
#include <stdio.h>
#include <stdlib.h>
#include "StackOperationsLL.c"

int main() {
```

```
int op, x;
   while(1) {
      printf("1.Push 2.Pop 3.Display 4.Is Empty 5.Peek 6.Exit\n");
      printf("Enter your option : ");
      scanf("%d", &op);
      switch(op) {
         case 1:
            printf("Enter element : ");
            scanf("%d", &x);
            push(x);
            break;
         case 2:
            pop();
            break;
         case 3:
            display();
            break;
         case 4:
            isEmpty();
            break;
         case 5:
            peek();
            break;
         case 6:
            exit(0);
      }
   }
}
```

StackOperationsLL.c

```
struct node
   int info;
   struct node *next;
};
struct node *FIRST=NULL;
struct node *top=NULL;
struct node *newNode(int);
struct node *newNode(int x)
   struct node *temp=(struct node*)malloc(sizeof(struct node));
   if(temp==NULL)
      printf("{Unable to allocate memory .\nNOde not created.\n");
      exit(0);
   }
   else
      temp->info=x;
      temp->next=NULL;
      return temp;
```

```
void push(int x)
   struct node *temp,*ptr,*ptr1;
   temp=newNode(x);
   if(FIRST==NULL || top==NULL)
      FIRST=temp;
      top=temp;
      printf("Successfully pushed.\n");
   }
   else
   {
      ptr=FIRST;
      while(ptr->next!=NULL)
         ptr=ptr->next;
      }
      ptr->next=temp;
      top=temp;
      printf("Successfully pushed.\n");
   }
}
void pop()
   struct node *ptr;
   if(top==NULL || FIRST==NULL)
      printf("Stack is underflow.\n");
   }
   else if(FIRST==top)
      printf("Popped value = %d\n",top->info);
      free(pop);
      top=NULL;
      FIRST=NULL;
   }
   else
   {
      ptr=FIRST;
      while(ptr->next!=top)
         ptr=ptr->next;
      printf("Popped value = %d\n",top->info);
      top=ptr;
      ptr=ptr->next;
      free(ptr);
   }
void display()
   struct node *ptr;
   if(FIRST==NULL || top==NULL)
      printf("Stack is empty.\n");
```

```
else
   {
      int a[10];
      ptr=FIRST;
      int i=0;
      while(ptr!=top)
         a[i++]=ptr->info;
         ptr=ptr->next;
      }
      a[i++]=ptr->info;
      int j=i-1;
      printf("Elements of the stack are : ");
      for(int k=j;k>=0;k--)
         printf("%d ",a[k]);
      printf("\n");
   }
void isEmpty()
   if(FIRST==NULL || top==NULL)
      printf("Stack is empty.\n");
   }
   else
      printf("Stack is not empty.\n");
   }
}
void peek()
   if(FIRST==NULL)
      printf("Stack is underflow.\n");
   }
   else
      printf("Peek value = %d\n",top->info);
}
```

Execution Results - All test cases have succeeded!

Test Case - 1
User Output
1.Push 2.Pop 3.Display 4.Is Empty 5.Peek 6.Exit 1
Enter your option : 1
Enter element : 33
Successfully pushed.1
1.Push 2.Pop 3.Display 4.Is Empty 5.Peek 6.Exit 1
Enter your option : 1
Enter element : 22

Successfully pushed. 1 1.Push 2.Pop 3.Display 4.Is Empty 5.Peek 6.Exit 1 Enter your option : 1 Enter element : 55 Successfully pushed. 1 1.Push 2.Pop 3.Display 4.Is Empty 5.Peek 6.Exit 1 Enter your option : 1 Enter element : 66 Successfully pushed. 3 1.Push 2.Pop 3.Display 4.Is Empty 5.Peek 6.Exit 3 Enter your option : 3 Elements of the stack are : 66 55 22 33 2 1.Push 2.Pop 3.Display 4.Is Empty 5.Peek 6.Exit 2 Enter your option : 2 Popped value = 66 2 1.Push 2.Pop 3.Display 4.Is Empty 5.Peek 6.Exit 2 Enter your option : 2 Popped value = 55 3 1.Push 2.Pop 3.Display 4.Is Empty 5.Peek 6.Exit 3 Enter your option : 3 Elements of the stack are : 22 33 5 1.Push 2.Pop 3.Display 4.Is Empty 5.Peek 6.Exit 5 Enter your option : 5 Peek value = 224 1.Push 2.Pop 3.Display 4.Is Empty 5.Peek 6.Exit 4 Enter your option : 4 Stack is not empty.6 1.Push 2.Pop 3.Display 4.Is Empty 5.Peek 6.Exit 6 Enter your option : 6

Test Case - 2
User Output
1.Push 2.Pop 3.Display 4.Is Empty 5.Peek 6.Exit 2
Enter your option : 2
Stack is underflow. 3
1.Push 2.Pop 3.Display 4.Is Empty 5.Peek 6.Exit 3
Enter your option : 3
Stack is empty.5
1.Push 2.Pop 3.Display 4.Is Empty 5.Peek 6.Exit 5
Enter your option : 5
Stack is underflow. 4
1.Push 2.Pop 3.Display 4.Is Empty 5.Peek 6.Exit 4
Enter your option : 4
Stack is empty. 1
1.Push 2.Pop 3.Display 4.Is Empty 5.Peek 6.Exit 1
Enter your option : 1
Enter element : 23
Successfully pushed. 1
1.Push 2.Pop 3.Display 4.Is Empty 5.Peek 6.Exit 1
Enter your option : 1

Enter element : 24 Successfully pushed. 3 1.Push 2.Pop 3.Display 4.Is Empty 5.Peek 6.Exit 3 Enter your option : 3 Elements of the stack are : 24 23 5 1.Push 2.Pop 3.Display 4.Is Empty 5.Peek 6.Exit 5 Enter your option : 5 Peek value = 242 1.Push 2.Pop 3.Display 4.Is Empty 5.Peek 6.Exit 2 Enter your option : 2 Popped value = 242 1.Push 2.Pop 3.Display 4.Is Empty 5.Peek 6.Exit 2 Enter your option : 2 Popped value = 23 2 1.Push 2.Pop 3.Display 4.Is Empty 5.Peek 6.Exit 2 Enter your option : 2 Stack is underflow. 4 1.Push 2.Pop 3.Display 4.Is Empty 5.Peek 6.Exit 4 Enter your option : 4 Stack is empty. 6 1.Push 2.Pop 3.Display 4.Is Empty 5.Peek 6.Exit 6 Enter your option : 6