

Retardo Cosmológico Temporal en Teorías de Gravedad Modificada f(R)

Julián Orlando Jiménez Cárdenas

Retardo Cosmológico Temporal en Teorías de Gravedad Modificada f(R)

Julián Orlando Jiménez Cárdenas

Tesis o trabajo de grado presentada(o) como requisito parcial para optar al título de: **Físico**

Director(a): Ph.D. Leonardo Castañeda Colorado

Línea de Investigación:
Astrofísica, Gravitación y Cosmologia
Grupo de Investigación:
Grupo de Galaxias, Gravitación y Cosmologia

Universidad Nacional de Colombia Facultad de Ciencias, Departamento de Física Bogotá D. C. ,Colombia 2019

$m \stackrel{^{1}}{R}esumen$

En la primera parte de este texto se presenta una introducción a la geometría diferencial como herramienta matemática para la Relatividad General. Se estudia la gravedad linealizada y el papel que esta desempeña en la radiación gravitacional, profundizando así en los conceptos de gauge, energía y contribución cuadrupolar. Seguidamente se presentan las ecuaciones de Einstein relajadas como una generalización para el estudio de la radiación gravitacional y se obtienen expresiones generales para la energía, el momentum lineal y angular. Posteriormente se muestra la relación entre las expresiones de flujo de energía, momentum lineal y angular con el tensor de Weyl.

Palabras clave: Radiación Gravitacional, Gravedad Linealizada, Ecuaciones de Einstein relajadas, Tensor de Weyl

Abstract

In the first part of this text an introduction to differential geometry is presented as a tool for General Relativity. The linearized gravity is studied and the role that this one plays in the gravitational radiation, deepening in the gauge, energy and quadrupolar contribution concepts. After this the relaxed Einstein equations are presented as a generalization for the study of gravitational radiation and general expression of energy, linear and angular momentum are obtained. Later it is shown the relation between the flux of energy, lineal and angular momentum with the Weyl tensor.

Keywords: Gravitational Radiation, Linearized Gravity, Relaxed Einstein field equations, Weyl tensor

Contenido

	Res	umen														V
	Not	ación														VII
1	Rela	tividad General														1
	1.1	Introducción														1
	1.2	Variedades														1
		1.2.1 Mapas														1
		1.2.2 Regla de la	a cadena													2
		1.2.3 Variedades														3
		1.2.4 Espacio tar	ngente y cotangente	.												4
	1.3	Curvatura														7
		1.3.1 Derivada c	ovariante													7
		1.3.2 Transporte	e paralelo													10
		1.3.3 Tensor de l	$\stackrel{-}{ ext{Riemann}}$													11
	1.4	Gravitación														14
2	Len	ites Gravitacionales 10										16				
-	2.1		zschild													16
	2.1	Donoes de Senwarz		• •		•	•	•			• •	•	•	•	 •	10
3	Esta	adística bayesiana 1									19					
	3.1	Preliminares														19
		3.1.1 Espacio de	probabilidad													19
		3.1.2 Probabilida	ad condicional													23
		3.1.3 Variables a	aleatorias													26
		3.1.4 Vectores al	leatorios													29
	3.2	Función de verosir	$ \text{militud} \dots \dots $													31
		3.2.1 Estadística	l													31
		3.2.2 Estimación	n bayesiana													34
	3.3		ov Monte Carlo													35
		3.3.1 Algoritmo	de Metropolis-Hasti	ings												40
	Refe	erencias														42

Notación

En esta sección se expone la notación y convención utilizadas en los diferentes capítulos de este trabajo.

Relatividad General

Se identificarán los índices latinos con las dimensiones espaciales. Por ejemplo,

$$x^i(\tau)$$

representa las coordenadas i = 1, 2, 3 de la 4-posición. Los índices griegos harán referencia a las dimensiones espacio-temporal. Por ejemplo, cuando se denota

$$x^{\mu}(\tau),$$

se hace referencia a las cuatro componentes de la 4-posición, $\mu = 0, 1, 2, 3$. La dimensión temporal será la componente $\mu = 0$, y las espaciales serán $\mu = 1, 2, 3$. Se usará la notación de suma de Einstein sobre las componentes espaciales o espacio-temporales; por ejemplo,

$$g_{\mu\nu} \mathrm{d}x^{\mu} \mathrm{d}x^{\nu} \equiv \sum_{\mu=0}^{3} \sum_{\nu=0}^{3} g_{\mu\nu} \mathrm{d}x^{\mu} \mathrm{d}x^{\nu} \mathrm{y}$$

$$x^i y^i = \sum_{i=1}^3 x^i y^i.$$

A menos que se comente lo contrario, se tomará la velocidad de la luz c=1. La signatura que usará para todos los tensores métricos será (-,+,+,+). Por ejemplo, la métrica de Minkowski será, en representación matricial: $\eta = diag(-1,1,1,1)$.

1 Relatividad General

1.1. Introducción

Este capítulo es una breve introducción a la teoría de la relatividad general, partiendo desde el concepto de variedad, el espacio tangente y cotangente, el concepto de curvatura y el papel que juega la gravedad en todas estas ideas matemáticas. Las referencias clave de este capítulo son [4, 7, 1, 12].

1.2. Variedades

1.2.1. Mapas

Definición 1.2.1 (Mapa). Dados dos conjuntos A y B, un mapa ϕ : $M \to N$ es una relación que asigna cada elemento $x \in M$ a un único elemento $y \in N$. En este caso, se denota como $\phi(x) = y$.

Definición 1.2.2 (Composición de Mapas). Con dos mapas $\phi: A \to B$ y $\Psi: B \to C$, se define la composición de ambos mapas, $\Psi \circ \phi: A \to C$, por su acción sobre los elementos de A:

$$(\Psi \circ \phi)(a) = \Psi(\phi(a)).$$

Un mapa $\phi: A \to B$ se dice inyectivo (uno a uno) si cada elemento de B tiene a lo sumo un elemento de A que es mapeado a él. Este mapa se dice sobreyectivo si cada elemento de B tiene al menos un elemento de A mapeado a él. A se conoce como el dominio del mapa ϕ , y su imagen es

$$Im \phi := \{ y \in B : \exists x \in A \text{ tal que } \phi(x) = y \}.$$

La preimagen de un conjunto $U\subseteq B$ bajo la función ϕ se define como

$$\phi^{-1}(U) := \{ x \in A : \exists y \in U \text{ tal que } \phi(x) = y \}.$$

Un mapa $\phi: A \to B$ que es inyectivo y sobreyectivo a la vez se conoce como invertible (biyectivo). En este caso, se define el mapa inverso $\phi^{-1}: B \to A$ de modo que se satisfaga que, para todo $y \in B$ $(\phi \circ \phi^{-1})(y) = y$.

$$A \stackrel{\phi^{-1}}{\swarrow} B$$

Un mapa f de \mathbb{R}^m a \mathbb{R}^n toma una m-tupla (x^1, x^2, \dots, x^m) y la envía a una n-tupla (y^1, y^2, \dots, y^n) , de modo que se puede pensar como una colección de n funciones ϕ^i de m variables:

$$y^{i} = \phi^{i}(x^{1}, \dots, x^{m}) \text{ con } i = 1, \dots, n,$$

de modo que

$$f(x^1, \dots, x^m) = (\phi^1(x^1, \dots, x^m), \dots, \phi^n(x^1, \dots, x^m)).$$

Se referirá a cada una de las funciones ϕ^i como C^p si son continuas y p-veces diferenciables, y al mapa entero $f: \mathbb{R}^m \to \mathbb{R}^n$ como C^p si cada uno de los campos escalares $\phi^i, i = 1, \ldots, n$ es al menos C^p .

Un mapa C^0 es continuo pero no necesariamente diferenciable, mientras que un mapa C^{∞} es continuo y puede ser diferenciado cuantas veces se desee. Los mapas C^{∞} se llaman suaves.

Definición 1.2.3 (Difeomorfismo). El mapa $\phi: A \to B$ se conoce como difeomorfismo si es biyectivo, y tanto él como su inversa son C^{∞} . Se dice entonces que los conjuntos A y B son difeomorfos.

1.2.2. Regla de la cadena

Si tiene dos mapas $f: \mathbb{R}^m \to \mathbb{R}^n$ y $g: \mathbb{R}^n \to \mathbb{R}^l$, que se componen en $(g \circ f): \mathbb{R}^m \to \mathbb{R}^l$, represente cada espacio en términos de coordenadas: x^a en \mathbb{R}^m , y^b en \mathbb{R}^n y z^c en \mathbb{R}^l , donde los índices a, b, c varían sobre los valores apropiados.

$$\mathbb{R}^m \xrightarrow{g \circ f} \mathbb{R}^l$$

$$\mathbb{R}^n$$

La regla de la cadena relaciona las derivadas parciales de la composición $(g \circ f)$ con las derivadas parciales de los mapas f y g de la siguiente manera

$$\frac{\partial}{\partial x^a} (g \circ f)^c = \sum_{b=1}^n \frac{\partial f^b}{\partial x^a} \frac{\partial g^c}{\partial y^b}.$$

1.2 Variedades 3

1.2.3. Variedades

En el capítulo de estabilidad se trató el concepto de variedad como un espacio métrico homeomorfo localmente a la bola abierta. En este capítulo se tomará una variedad más general: la variedad topológica, para lo cual se introducirá la idea de topología, y demás conceptos necesarios en términos de la topología de la variedad.

Definición 1.2.4 (Espacio topologico). Tome A como un conjunto arbitrario. τ es una topología para el conjunto A si satisface las siguientes condiciones:

- 1. $\emptyset, A \in \tau$
- 2. Si $\{U_{\alpha}\}_{{\alpha}\in I}\subset \tau$ es una familia arbitraria de elementos de τ , entonces la unión de toda esta familia pertenece a τ , es decir, $\bigcup_{{\alpha}\in I}U_{\alpha}\in \tau$, y
- 3. Si $\{U_n\}_{n=1}^m \subset \tau$ es una familia finita de elementos de τ , entonces la intersección de todos sus elementos también es un elemento de τ , es decir, $\bigcap_{n=1}^m U_n \in \tau$.

En este caso se dice que la pareja (A, τ) es un espacio topológico. Los elementos de τ se llaman abiertos y sus complementos se llaman cerrados.

Definición 1.2.5 (Carta o sistema coordenado). Considere un espacio topológico (M, τ) . Una carta o sistema coordenado (U, ϕ) consiste de un conjunto abierto $U \subset M$, junto con un mapa inyectivo $\phi: U \to \mathbb{R}^n$, tal que $\phi(U)$ es abierto en $(\mathbb{R}^n, \tau_u)^1$.

Definición 1.2.6 (Atlas C^r). Un atlas C^r es una colección indexada de cartas $\{(U_\alpha.\phi_\alpha)\}_{\alpha\in I}$, con ϕ_α siendo al menos C^r , para todo $\alpha\in I$, que satisface las siguientes condiciones

- 1. $\bigcup_{\alpha \in I} U_{\alpha} = M$, es decir, $\{U_{\alpha}\}_{\alpha \in I}$ es un cubrimiento abierto para M y
- 2. si para algunos $\alpha, \beta \in I$ ($\alpha \neq \beta$), $U_{\alpha} \cap U_{\beta} \neq \emptyset$, entonces el mapa ($\phi_{\alpha} \circ \phi_{\beta}^{-1}$): $\phi_{\beta}(U_{\alpha} \cap U_{\beta}) \to \phi_{\alpha}(U_{\alpha} \cap U_{\beta})$ toma puntos en $\phi_{\beta}(U_{\alpha} \cap U_{\beta}) \subseteq \mathbb{R}^{n}$ y los envía a puntos en $\phi_{\alpha}(U_{\alpha} \cap U_{\beta})$, y viceversa. Ambas composiciones deben ser C^{r} . Si se satisface esta condición se dice que los mapas ϕ_{α} y ϕ_{β} son compatibles

Un atlas se dice maximal si contiene todas las posibles cartas compatibles.

Definición 1.2.7 (C^r Variedad n-dimensional). Una C^r variedad n-dimensional es un espacio topológico (M, τ) junto con un atlas maximal C^r .

 $^{^{1}\}tau_{u}$ denota la topología usual sobre \mathbb{R}^{n} .

El hecho de que una variedad sea localmente como \mathbb{R}^n (a través de las cartas) introduce la posibilidad de usar herramientas del cálculo real sobre ella. Tome por ejemplo dos C^{∞} variedades (M, τ_M) y (N, τ_N) de dimensión m y n, respectivamente. Por simplicidad, pero sin pérdida de generalidad, tome $\phi: M \to \mathbb{R}^m$ y $\Psi: N \to \mathbb{R}^n$ como las cartas coordenadas de M y N, respectivamente. Si $f: M \to N$ es una función entre ambas variedades,

$$M \xrightarrow{f} N$$

$$\downarrow^{\phi^{-1}} \qquad \qquad \downarrow^{\Psi}$$

$$\mathbb{R}^m \xrightarrow{\Psi \circ f \circ \phi^{-1}} \mathbb{R}^n$$

se puede introducir el concepto de diferenciación sobre el mapa f, construyendo el mapa

$$(\Psi \circ f \circ \phi^{-1}) : \mathbb{R}^m \to \mathbb{R}^n,$$

de modo que el operador $\frac{\partial f}{\partial x^{\mu}}$ que de definido como

$$\frac{\partial f}{\partial x^{\mu}} := \frac{\partial}{\partial x^{\mu}} (\Psi \circ f \circ \phi^{-1}),$$

donde $\mu = 1, \ldots, m$.

1.2.4. Espacio tangente y cotangente

Tome \mathcal{F} como el espacio de todas las funciones suaves $f: M \to \mathbb{R}$ ($\phi^{-1} \circ f$ es de clase C^{∞} , siendo ϕ la carta coordenada de M). Cada curva $\gamma: \mathbb{R} \to M$ que pasa por algún punto $p \in M$ define un operador sobre el espacio, la derivada direccional, que mapea f a

$$\frac{\mathrm{d}f}{d\lambda}\Big|_{\lambda:\gamma(\lambda)=p} := \frac{\mathrm{d}}{d\lambda}(f \circ \gamma)(\lambda)$$

(evaluada en p).

$$\mathbb{R} \xrightarrow{\gamma} M \xrightarrow{f} \mathbb{R}$$

Definición 1.2.8 (Espacio tangente). El espacio tangente T_pM a un punto $p \in M$ es el espacio de los operadores derivadas direccionales dados por todas las curvas que pasan por el punto p. Este espacio resulta ser un espacio vectorial.

El espacio tangente T_pM posee una base natural, $\{\partial_{\mu}\}$. Cada uno de estos operadores está definido en términos de la curva generada por la carta coordenada del punto p. Es decir, si (U,ϕ) es una carta coordenada tal que $p \in U$, se toma $(\phi^{-1})^{\mu} : \mathbb{R} \to M$ como la restricción de la función ϕ^{-1} a una única variable, x^{μ} , $\mu = 1, \ldots, m$, con el objetivo de que esta nueva función sea una curva sobre M que pase por p, para que defina la derivada direccional ∂_{μ} . Para ver que efectivamente es una base del espacio tangente T_pM , considere una variedad m-dimensional suave M, una carta coordenada (U,ϕ) , una curva $\gamma : \mathbb{R} \to M$ y una función $f: M \to \mathbb{R}$.

1.2 Variedades 5

Si λ es el parámetro de la curva γ , se expande el operador $\frac{d}{d\lambda}$ en términos de los operadores ∂_{μ} aplicando la regla de la cadena:

$$\frac{\mathrm{d}f}{\mathrm{d}\lambda} = \frac{\mathrm{d}}{\mathrm{d}\lambda}(f \circ \gamma) = \frac{\mathrm{d}}{\mathrm{d}\lambda}((f \circ \phi^{-1}) \circ (\phi \circ \gamma)) = \frac{\mathrm{d}(\phi \circ \gamma)^{\mu}}{\mathrm{d}\lambda} \frac{\partial (f \circ \phi^{-1})}{\partial x^{\mu}} = \frac{\mathrm{d}x^{\mu}}{\mathrm{d}\lambda} \partial_{\mu}f.$$

Como la función f es arbitraria,

$$\frac{\mathrm{d}}{\mathrm{d}\lambda} = \frac{\mathrm{d}x^{\mu}}{\mathrm{d}\lambda} \partial_{\mu},$$

con lo que los operadores derivada direccional $\{\partial_{\mu}\}$ son una base para T_pM , conocida como base coordenada. Además, esto implica que el espacio tangente T_pM tiene la misma dimensión de la variedad.

Una de las ventajas de este punto de vista de los vectores como operadores diferenciales es que la ley de transformación es inmediata. Como los vectores de la base son $\hat{e}_{(\mu)} = \partial_{\mu}$, los vectores de la base en un nuevo sistema coordenado $x^{\mu'}$ están dadas por la regla de la cadena [4]

$$\partial_{\mu'} = \frac{\partial x^{\mu}}{\partial x^{\mu'}} \partial_{\mu}$$

La ley de transformación de vectores se introduce de tal forma que un vector del espacio tangente $V = V^{\mu} \partial_{\mu}$ permanezca invariante bajo un cambio de base, es decir,

$$V^{\mu}\partial_{\mu} = V^{\mu'}\partial_{\mu'} = V^{\mu'}\frac{\partial x^{\mu}}{\partial x^{\mu'}}\partial_{\mu},$$

y como la matriz $\frac{\partial x^{\mu'}}{\partial x^{\mu}}$ es la inversa de $\frac{\partial x^{\mu}}{\partial x^{\mu'}}$, la ley de transformación es

$$V^{\mu'} = \frac{\partial x^{\mu'}}{\partial x^{\mu}} V^{\mu}. \tag{1-1}$$

Definición 1.2.9 (Espacio cotangente). El espacio cotangente T_p^*M de una variedad M en un punto $p \in M$ es el conjunto de los mapas lineales $\omega : T_pM \to \mathbb{R}$. Los elementos de este espacio se conocen como 1-formas.

El ejemplo canónico de 1-forma es el gradiente de una función $f:M\to\mathbb{R}$, denotado por df. Su acción sobre un vector $\frac{\mathrm{d}}{\mathrm{d}\lambda}$ del espacio tangente es exactamente la derivada direccional sobre la función f:

$$\mathrm{d}f\left(\frac{\mathrm{d}}{\mathrm{d}\lambda}\right) = \frac{\mathrm{d}f}{\mathrm{d}\lambda}\Big|_p.$$

Justo como las derivadas parciales a lo largo de los ejes coordenados proveen una base natural para el espacio tangente, los gradientes de las funciones coordenadas x^{μ} proveen una base natural para el espacio cotangente $\{dx^{\mu}\}$, conocida como base dual. Observe que, al aplicar $\mathrm{d} x^{\mu}$ a ∂_{η} se obtiene que

$$\mathrm{d}x^{\mu}(\partial_{\nu}) = \frac{\partial x^{\mu}}{\partial x^{\nu}} = \frac{\partial}{\partial x^{\nu}} (x^{\mu} \circ (x^{\nu})^{-1}) = \frac{\partial}{\partial x^{\nu}} ((x^{\mu} \circ \phi^{-1}) \circ (\phi \circ (x^{\nu})^{-1})).$$

$$\mathbb{R} \xrightarrow{(x^{\nu})^{-1}} M \xrightarrow{\phi^{-1}} M \xrightarrow{x^{\mu} \circ \phi^{-1}} \mathbb{R}^{m}$$
la regla de la cadena,

Aplicando la regla de la cadena,

$$\frac{\partial}{\partial x^{\nu}}((x^{\mu}\circ\phi^{-1})\circ(\phi\circ(x^{\nu})^{-1}))=\frac{\partial(\phi\circ(x^{\nu})^{-1})^{\eta}}{\partial x^{\nu}}\frac{\partial(x^{\mu}\circ\phi^{-1})}{\partial x^{\eta}}.$$

Intuitivamente, $x^{\mu} \circ \phi^{-1} = x^{\mu}$, donde x^{μ} del lado izquierdo de la igualdad es la μ -ésima coordenada de la carta, y al lado derecho es la μ -ésima componente de \mathbb{R}^m . Por otro lado, $(\phi \circ (x^{\nu})^{-1})^{\eta} = x^{\eta}$, con lo que

$$\frac{\partial (\phi \circ (x^{\nu})^{-1})^{\eta}}{\partial x^{\nu}} \frac{\partial (x^{\mu} \circ \phi^{-1})}{\partial x^{\eta}} = \frac{\partial x^{\eta}}{\partial x^{\nu}} \frac{\partial x^{\mu}}{\partial x^{\eta}} = \delta^{\mu}_{\eta} \frac{\partial x^{\eta}}{\partial x^{\nu}} = \frac{\partial x^{\mu}}{\partial x^{\nu}} = \delta^{\mu}_{\nu}.$$

En resumen,

$$dx^{\mu}(\partial_{\nu}) = \delta^{\mu}_{\nu}. \tag{1-2}$$

Esta condición determina que $\{dx^{\mu}\}$ es una base para el espacio cotangente T_p^*M [4]. De este modo, cualquier 1-forma ω se puede expandir en sus componentes: $\omega = \omega_{\mu} dx^{\mu}$. Las propiedades de transformación de los vectores de la base dual y las componentes de una 1-forma se siguen de la misma forma que en el caso del espacio tangente:

$$\mathrm{d}x^{\mu'} = \frac{\partial x^{\mu'}}{\partial x^{\mu}} \mathrm{d}x^{\mu}; \ \omega_{\mu'} = \frac{\partial x^{\mu}}{\partial x^{\mu'}} \omega_{\mu}.$$

Definición 1.2.10 (Espacio producto cartesiano). Se define el espacio producto cartesiano Π_{l}^{k} respecto a un punto $p \in M$ de la variedad como:

$$\Pi_l^k := \underbrace{T_p^* M \times \dots \times T_p^* M}_{l-veces} \times \underbrace{T_p M \times \dots \times T_p M}_{k-veces}, \ es \ decir,$$

$$\Pi_l^k = \{(\omega^1, \omega^2, \dots, \omega^l, \mathbb{X}_1, \mathbb{X}_2, \dots, \mathbb{X}_k) : \omega^i \in T_p^*M; \ \mathbb{X}_i \in T_pM\}.$$

Este espacio es un espacio vectorial con la suma y el producto usuales.

1.3 Curvatura 7

Definición 1.2.11 (Tensores). Un tensor (k,l) \mathbb{T} : $\Pi_l^k \to \mathbb{R}$ es un mapa multilineal (lineal en cada uno de sus argumentos). Este tensor se puede expandir en términos de las bases del espacio tangente y cotangente de la siguiente forma:

$$\mathbb{T} = T^{\mu_1 \cdots \mu_k}{}_{\nu_1 \cdots \nu_l} \partial_{\mu_1} \otimes \cdots \otimes \partial_{\mu_k} \otimes \mathrm{d} x^{\nu_1} \otimes \cdots \otimes \mathrm{d} x^{\nu_l},$$

donde $T^{\mu_1\cdots\mu_k}_{\nu_1\cdots\nu_l}$ son los coeficientes del tensor.

De modo similar al caso de los vectores, los tensores transforman coordenadas en cada uno de sus índices de la siguiente forma:

$$T^{\mu'_1\cdots\mu'_k}{}_{\nu'_1\cdots\nu'_l} = \frac{\partial x^{\mu'_1}}{\partial x^{\mu_1}}\cdots\frac{\partial x^{\mu'_k}}{\partial x^{\mu_k}}\frac{\partial x^{\nu_1}}{\partial x^{\nu'_1}}\cdots\frac{\partial x^{\nu_l}}{\partial x^{\nu'_l}}T^{\mu_1\cdots\mu_k}{}_{\nu_1\cdots\nu_l}.$$

Infortunadamente, la derivada parcial de un tensor no es, en general, un tensor (no cumple esta regla de transformación de coordenadas). Esto motivará posteriormente la derivada covariante, que preservará el carácter tensorial tras aplicarse sobre un tensor.

Definición 1.2.12 (Tensor métrico). El tensor métrico $g_{\mu\nu}$ es un tensor simétrico (0,2), cuya representación matricial tiene determinante no nulo $(g = |g_{\mu\nu}| \neq 0)$, y satisface la relación

$$g^{\mu\nu}g_{\nu\sigma} = \delta^{\mu}_{\ \sigma}.\tag{1-3}$$

La simetría de $g_{\mu\nu}$ implica la simetría de $g^{\mu\nu}$, y la relación (1-3) permite que el tensor métrico se pueda usar para subir o bajar índices.

Definición 1.2.13 (Elemento de línea). El elemento de línea se define de la siguiente forma

$$\mathrm{d}s^2 = g_{\mu\nu} \mathrm{d}x^\mu \mathrm{d}x^\nu.$$

1.3. Curvatura

1.3.1. Derivada covariante

Como se comentó en la sección anterior, es necesario definir un operador derivada (denotado por ∇), que lleve a cabo las operaciones de la derivada parcial usual, pero de manera independiente de las coordenadas, y que a su vez preserve el carácter tensorial tras ser aplicada a un tensor. ∇ debe ser un mapa de los tensores (k, l) a los tensores (k, l+1) que guarda las siguientes propiedades

- 1. Linealidad: $\nabla(T+S) = \nabla T + \nabla S$.
- 2. Ley del producto de Leibniz: $\nabla(T \otimes S) = (\nabla T) \otimes S + T \otimes (\nabla S)$.

Si ∇ obedece la regla de la cadena, ∇ se puede escribir como una derivada parcial más alguna transformación lineal [11]. Entonces, se toma primero la derivada parcial y se aplica una corrección lineal para hacer el resultado covariante. Se propone entonces, para un vector del espacio tangente:

$$\nabla_{\mu}V^{\nu} = \partial_{\mu}V^{\nu} + \Gamma^{\nu}_{\ \mu\lambda}V^{\lambda},\tag{1-4}$$

donde $\Gamma^{\nu}_{\mu\lambda}$ son las componentes de la matriz (no es un tensor, porque no transforma como tal) que se encarga de realizar la corrección. Todas estas componentes reciben el nombre de símbolos de Christoffel.

De modo similar al caso del vector del espacio tangente, la derivada covariante de una 1-forma se puede expresar como una derivada parcial más alguna transformación lineal:

$$\nabla_{\mu}\omega_{\nu} = \partial_{\mu}\omega_{\nu} + \Xi^{\lambda}_{\ \mu\nu}\omega_{\lambda},$$

donde $\Xi^{\lambda}_{\mu\nu}$ podría ser distinta, en general, de $\Gamma^{\lambda}_{\mu\nu}$. Se exigen además las siguientes propiedades para la derivada covariante:

- 3. Conmutación bajo contracciones: $\nabla_{\mu}(T^{\lambda}_{\lambda\rho}) = (\nabla T)^{\lambda}_{\mu}_{\lambda\rho}$.
- 4. Se reduce a la derivada parcial en el caso de escalares: $\nabla_{\mu}\phi = \partial_{\mu}\phi$.

No hay forma de derivar estas propiedades, simplemente se exige que sean ciertas [4]. A continuación se verán las implicaciones de estas propiedades. Si ω_{μ} es una 1-forma y $V^m u$ es un vector, se puede tomar la derivada covariante del escalar definido por $\omega_{\lambda}V^{\lambda}$, obteniendo

$$\nabla_{\mu}(\omega_{\lambda}V^{\lambda}) = (\nabla_{\mu}\omega_{\lambda})V^{\lambda} + \omega_{\lambda}(\nabla_{\mu}V^{\lambda})$$

$$= (\partial_{\mu}\omega_{\lambda} + \Xi^{\sigma}_{\mu\lambda}\omega_{\sigma})V^{\lambda} + \omega_{\lambda}(\partial_{\mu}V^{\lambda} + \Gamma^{\lambda}_{\mu\sigma}V^{\sigma})$$

$$= (\partial_{\mu}\omega_{\lambda})V^{\lambda} + \Xi^{\sigma}_{\mu\lambda}\omega_{\sigma}V^{\lambda} + \omega_{\lambda}(\partial_{\mu}V^{\lambda}) + \omega_{\lambda}\Gamma^{\lambda}_{\mu\sigma}V^{\sigma}.$$
(1-5)

Por otro lado, como $\omega_{\lambda}V^{\lambda}$ es un escalar,

$$\nabla_{\mu}(\omega_{\lambda}V^{\lambda}) = \partial_{\mu}(\omega_{\lambda}V^{\lambda}) = (\partial_{\mu}\omega_{\lambda})V^{\lambda} + \omega_{\lambda}(\partial_{\mu}V^{\lambda}). \tag{1-6}$$

Igualando (1-5) y (1-6), se obtiene que

$$\Xi^{\sigma}_{\mu\lambda} = -\Gamma^{\sigma}_{\mu\lambda}.$$

De esta forma, el resultado tras aplicar la derivada covariante sobre una 1-forma es

$$\nabla_{\mu}\omega_{\nu} = \partial_{\mu}\omega_{\nu} - \Gamma^{\lambda}_{\ \mu\nu}\omega_{\lambda}. \tag{1-7}$$

La generalización para un tensor (k, l) es

$$\nabla_{\sigma} T^{\mu_{1}\cdots\mu_{k}}{}_{\nu_{1}\cdots\nu_{l}} = \partial_{\sigma} T^{\mu_{1}\cdots\mu_{k}}{}_{\nu_{1}\cdots\nu_{l}} + \Gamma^{\mu_{1}}{}_{\sigma\lambda} T^{\lambda\cdots\mu_{k}}{}_{\nu_{1}\cdots\nu_{l}} + \cdots + \Gamma^{\mu_{k}}{}_{\sigma\lambda} T^{\mu_{1}\cdots\lambda_{l}}$$

$$- \Gamma^{\lambda}{}_{\sigma\nu_{1}} T^{\mu_{1}\cdots\mu_{k}}{}_{\lambda\cdots\nu_{l}} - \cdots - \Gamma^{\lambda}{}_{\sigma\nu_{l}} T^{\mu_{1}\cdots\mu_{k}}{}_{\nu_{1}\cdots\lambda}.$$

$$(1-8)$$

1.3 Curvatura 9

Generalmente se abrevia la derivada covariante de la siguiente manera:

$$\nabla_{\sigma} T^{\mu_1 \cdots \mu_k}{}_{\nu_1 \cdots \nu_l} = T^{\mu_1 \cdots \mu_k}{}_{\nu_1 \cdots \nu_l; \sigma}.$$

Par construir esta derivada covariante es necesario agregar una conexión a la variedad, que transforme de tal forma que anule los términos que impiden la transformación tensorial de la derivada parcial usual.

En lo que refiere a la unicidad, se garantiza si se suponen las siguientes condiciones:

- libre de torsión: $\Gamma^{\lambda}_{\mu\nu} = \Gamma^{\lambda}_{(\mu\nu)}$ (la conexión es simétrica) y
- compatibilidad con la métrica: $\nabla_{\rho}g_{\mu\nu} = 0$.

Para demostrar este hecho, considere las tres permutaciones posibles de la compatibilidad con la métrica.

$$\nabla_{\rho}g_{\mu\nu} = \partial_{\rho}g_{\mu\nu} - \Gamma^{\lambda}_{\ \rho\mu}g_{\lambda\nu} - \Gamma^{\lambda}_{\ \rho\nu}g_{\mu\lambda} = 0, \tag{1-9}$$

$$\nabla_{\mu}g_{\nu\rho} = \partial_{\mu}g_{\nu\rho} - \Gamma^{\lambda}_{\mu\nu}g_{\lambda\rho} - \Gamma^{\lambda}_{\mu\rho}g_{\nu\lambda} = 0, \tag{1-10}$$

$$\nabla_{\nu}g_{\rho\mu} = \partial_{\nu}g_{\rho\mu} - \Gamma^{\lambda}_{\nu\rho}g_{\lambda\mu} - \Gamma^{\lambda}_{\nu\mu}g_{\rho\lambda} = 0. \tag{1-11}$$

Realizando la operación (1-9)-(1-10)-(1-11), y aplicando la simetría de la conexión, se obtiene lo siguiente

$$\partial_{\rho}g_{\mu\nu} - \partial_{\mu}g_{\nu\rho} - \partial_{\nu}g_{\rho\mu} + 2\Gamma^{\lambda}_{\ \mu\nu}g_{\lambda\rho} = 0,$$

de modo que al despejar $\Gamma^{\lambda}_{\ \mu\nu}$ con la ayuda de la métrica inversa $g^{\sigma\rho}$ se tiene que

$$\Gamma^{\sigma}_{\ \mu\nu} = \frac{1}{2} g^{\sigma\rho} [\partial_{\mu} g_{\nu\rho} + \partial_{\nu} g_{\rho\mu} - \partial_{\rho} g_{\mu\nu}]. \tag{1-12}$$

Esta última fórmula prueba tanto la existencia como la unicidad y se conoce como conexión de Christoffel, conexión de Levi-Civita o conexión Riemanniana. Los coeficientes de conexión se conocen como símbolos de Christoffel.

Una manera de escribir la contracción $\Gamma^{\mu}_{\ \mu\lambda}$ de los símbolos de Christoffel se basa en la siguiente propiedad que cumple cualquier matriz M [1]

$$Tr(M^{-1}\partial_{\lambda}M) = \partial_{\lambda} \ln \det M$$

con la cual

$$\Gamma^{\mu}{}_{\mu\lambda} = \frac{1}{\sqrt{|g|}} \partial_{\lambda} \sqrt{|g|}, \tag{1-13}$$

donde |g| = det g. Con esta forma de escribir $\Gamma^{\mu}_{\mu\lambda}$, se tiene que cualquier derivada covariante de un vector V^{μ} se puede reescribir de la siguiente forma

$$\nabla_{\mu}V^{\mu} = \frac{1}{\sqrt{|g|}} \partial_{\mu} (\sqrt{|g|}V^{\mu}). \tag{1-14}$$

1.3.2. Transporte paralelo

Un concepto recurrente en el espacio plano es el transporte paralelo, que busca mantener un vector (tensor) constante conforme uno se mueve a través de una trayectoria. Dada una curva $x^{\mu}(\lambda)$, el requerimiento de la constancia de un tensor T a lo largo de la curva en el espacio plano es

$$\frac{\mathrm{d}T}{\mathrm{d}\lambda} = \frac{\mathrm{d}x^{\mu}}{\mathrm{d}\lambda} \frac{\partial T}{\partial x^{\mu}} = 0.$$

De este modo, en analogía con el caso planar, se define la derivada covariante a lo largo de una trayectoria $x(\lambda)$ sobre la variedad como el operador

$$\frac{\mathrm{D}}{\mathrm{D}\lambda} \equiv \frac{\mathrm{d}x^{\mu}}{\mathrm{d}\lambda} \nabla_{\mu}.\tag{1-15}$$

Con ello, se define el transporte paralelo del tensor T a lo largo de la trayectoria $x(\lambda)$ bajo el requerimiento de que, a lo largo de dicha trayectoria:

$$\left(\frac{\mathrm{D}T}{\mathrm{D}\lambda}\right)^{\mu_1\cdots\mu_k} = \frac{\mathrm{d}x^{\sigma}}{\mathrm{d}\lambda} \nabla_{\sigma} T^{\mu_1\cdots\mu_k}{}_{\nu_1\cdots\nu_\ell} = 0.$$
(1-16)

Esta última ecuación recibe el nombre de ecuación de transporte paralelo. Para un vector V^{μ} toma la forma

$$\frac{\mathrm{d}V^{\mu}}{\mathrm{d}\lambda} + \Gamma^{\mu}{}_{\sigma\rho} \frac{\mathrm{d}x^{\sigma}}{\mathrm{d}\lambda} V^{\rho} = 0. \tag{1-17}$$

Se puede ver la ecuación de transporte paralelo como una ecuación diferencial de primer orden que define un problema de valor inicial: dado un tensor en algún punto del camino, hay una única continuación del tensor a otros puntos a través del camino tal que la continuación satisface (1-16). Se dice entonces que el tensor es transportado paralelamente.

Por supuesto, la noción de transporte paralelo depende de la conexión, por lo que diferentes conexiones llevan a distintas soluciones. Si la conexión es compatible con la métrica:

$$\frac{\mathrm{D}g_{\mu\nu}}{\mathrm{D}\lambda} = \frac{\mathrm{d}x^{\sigma}}{\mathrm{d}\lambda} \nabla_{\sigma} g_{\mu\nu} = 0,$$

lo que implica que la métrica es transportada paralelamente. Una propiedad interesante que satisface una métrica transportada paralelamente es que el producto interno dos vectores paralelamente transportados es preservado a lo largo de la trayectoria. Esto es, si V^{μ} y W^{μ} son dos vectores paralelamente transportados, se tiene que

$$\frac{\mathrm{D}}{\mathrm{D}\lambda}\left(g_{\mu\nu}V^{\mu}W^{\nu}\right) = \left(\frac{\mathrm{D}}{\mathrm{D}\lambda}g_{\mu\nu}\right)V^{\mu}W^{\nu} + g_{\mu\nu}\left(\frac{\mathrm{D}}{\mathrm{D}\lambda}V^{\mu}\right)W^{\nu} + g_{\mu\nu}V^{\mu}\left(\frac{\mathrm{D}}{\mathrm{D}\lambda}W^{\nu}\right) = 0,$$

de donde se deduce que el transporte paralelo con respecto a una conexión compatible con la métrica preserva la norma de vectores.

1.3 Curvatura 11

Se define ahora una **geodésica** como una trayectoria que transporta paralelamente su propio vector tangente. El vector tangente a una trayectoria $x(\lambda)$ es $\frac{dx^{\mu}}{d\lambda}$, de modo que la condición de transporte paralelo para este vector es

$$\frac{\mathrm{D}}{\mathrm{D}\lambda} \frac{\mathrm{d}x^{\mu}}{\mathrm{d}\lambda} = 0,\tag{1-18}$$

o de manera alternativa,

$$\frac{\mathrm{d}^2 x^{\mu}}{\mathrm{d}\lambda^2} + \Gamma^{\mu}{}_{\rho\sigma} \frac{\mathrm{d}x^{\rho}}{\mathrm{d}\lambda} \frac{\mathrm{d}x^{\sigma}}{\mathrm{d}\lambda} = 0. \tag{1-19}$$

Esta última expresión recibe el nombre de **ecuación de la geodésica**. También se puede obtener esta expresión a través de un principio variacional sobre la acción $\sqrt{-g_{\mu\nu}\frac{\mathrm{d}x^{\mu}}{\mathrm{d}\lambda}\frac{\mathrm{d}x^{\nu}}{\mathrm{d}\lambda}}$, para trayectorias tipo tiempo [4].

1.3.3. Tensor de Riemann

La curvatura se cuantifica mediante el tensor de Riemann, que se deriva de la conexión. La idea detrás de la medición de la curvatura es que se tiene una idea natural de planitud de la conexión: la conexión de Christoffel convencional asociada a la métrica Minkowskiana o euclideana tiene varias propiedades que se pueden ver como manifestaciones de planitud. Algunas de ellas son las siguientes:

- El transporte paralelo alrededor de una trayectoria cerrada deja el vector invariante.
- Las derivadas covariantes de tensores conmutan.
- Las geodésicas que inician paralelas siguen siendo paralelas.

El tensor de Riemann surge cuando se estudia cómo cambian estas propiedades en contextos más generales. Una manera convencional de introducir el tensor de Riemann es considerar transportes paralelos alrededor de un loop infinitesimal. Imagine que se transporta paralelamente un vector V^{σ} alrededor de un loop cerrado definido por dos vectores A^{ν} y B^{μ} (ver figura 1-1). Como se sabe que la acción del transporte paralelo es independiente de las coordenadas, debe haber algún tensor que diga cómo cambia el vector cuando vuelve a su punto inicial.

Se tendrá entonces una transformación lineal sobre el vector, de modo que el tensor encargado de esta corrección tendrá un índice superior y otro inferior. Por otro lado, este tensor dependerá de los vectores A y B que determinan el loop, por lo que tendrá otros dos índices inferiores adicionales para contraer A^{ν} y B^{μ} . Más aún, el tensor debe ser antisimétrico en estos dos índices, porque intercambiarlos corresponde a recorrer el loop al revés. Se espera entonces que la expresión para el cambio δV^{ρ} experimentado por este vector cuando es transportado paralelamente por el loop sea de la forma [4]

$$\delta V^{\rho} \equiv (\delta a)(\delta b) A^{\nu} B^{\mu} R^{\rho}_{\ \sigma\mu\nu} V^{\rho}, \tag{1-20}$$

Figura 1-1: Esquema de transporte paralelo del vector V^{σ} alrededor de un loop cerrado definido por los vectores A^{ν} y B^{μ} , y las longitudes infinitesimales de los lados del loop son δa y δb .

Figura 1-2: Conmutación de las derivadas covariantes.

donde $R^{\rho}_{\sigma\mu\nu}$ es un tensor (1,3) conocido como **tensor de Riemann** (o tensor de curvatura), antisimétrico en sus dos últimos índices:

$$R^{\rho}_{\ \sigma\mu\nu} = -R^{\rho}_{\ \sigma\nu\mu}.$$

Para encontrar $R^{\rho}_{\sigma\mu\nu}$ en términos de los coeficientes de la conexión, se usa la conmutación de las derivadas covariantes, que mide la diferencia entre el transporte paralelo de un tensor a través de una curva infinitesimal y luego a través de otra, contra el orden opuesto.

Así, si calcula el conmutador de las derivadas covariantes $[\nabla_{\mu}, \nabla_{\nu}]$, aplicado sobre un vector V^{ρ} , se obtiene que

$$[\nabla_{\mu}, \nabla_{\nu}]V^{\rho} = (\partial_{\mu}\Gamma^{\rho}_{\nu\sigma} - \partial_{\nu}\Gamma^{\rho}_{\mu\sigma} + \Gamma^{\rho}_{\mu\lambda}\Gamma^{\lambda}_{\nu\sigma} - \Gamma^{\rho}_{\nu\lambda}\Gamma^{\lambda}_{\mu\sigma})V^{\sigma} - (\Gamma^{\lambda}_{\mu\nu} - \Gamma^{\lambda}_{\mu\sigma})(\partial_{\lambda}V^{\rho} + \Gamma^{\rho}_{\lambda\sigma}V^{\sigma})$$

$$= (\partial_{\mu}\Gamma^{\rho}_{\nu\sigma} - \partial_{\nu}\Gamma^{\rho}_{\mu\sigma} + \Gamma^{\rho}_{\mu\lambda}\Gamma^{\lambda}_{\nu\sigma} - \Gamma^{\rho}_{\nu\lambda}\Gamma^{\lambda}_{\mu\sigma})V^{\sigma} - 2\Gamma^{\lambda}_{[\mu\nu]}\nabla_{\lambda}V^{\rho}.$$
(1-21)

De este modo, se reescribe el conmutador como

$$[\nabla_{\mu}, \nabla_{\nu}] = R^{\rho}_{\ \sigma\mu\nu} - T^{\lambda}_{\ \mu\nu} \nabla_{\lambda}, \tag{1-22}$$

1.3 Curvatura 13

donde $T^{\lambda}_{\ \mu\nu}$ es la antisimetrización sobre los índices inferiores de los símbolos de Christoffel, y se identifica el tensor de Riemann con

$$R^{\rho}_{\sigma\mu\nu} = \partial_{\mu}\Gamma^{\rho}_{\nu\sigma} - \partial_{\nu}\Gamma^{\rho}_{\mu\sigma} + \Gamma^{\rho}_{\mu\lambda}\Gamma^{\lambda}_{\nu\sigma} - \Gamma^{\rho}_{\nu\lambda}\Gamma^{\lambda}_{\mu\sigma}. \tag{1-23}$$

Se puede demostrar que la definición del tensor de Riemann dada en (1-20) es equivalente a (1-23) [12]. Por otro lado, este tensor es efectivamente un tensor, a pesar de estar conformado de elementos que no son tensores.

Algunas ecuaciones importantes que satisface el tensor de Riemann son las siguientes,

$$\nabla_{\lambda} R_{\rho\sigma\mu\mu} + \nabla_{\rho} R_{\sigma\lambda\mu\nu} + \nabla_{\sigma} R_{\lambda\rho\mu\nu} = 0, \tag{1-24}$$

$$\nabla_{[\lambda} R_{\rho\sigma]\mu\nu} = 0. \tag{1-25}$$

Esta última ecuación se conoce como identidad de Bianchi. Por otro lado, algunas contracciones importantes del tensor de Riemann son el tensor de Ricci

$$R_{\mu\nu} = R^{\lambda}_{\ \mu\lambda\nu},\tag{1-26}$$

que resulta ser simétrico; y el escalar de Ricci

$$R = R^{\mu}_{\ \mu} = g^{\mu\nu} R_{\mu\nu}. \tag{1-27}$$

Una expresión especialmente útil se obtiene al contraer dos veces (1-24).

$$\begin{split} 0 &= g^{\nu\sigma} g^{\mu\lambda} \left(\nabla_{\lambda} R_{\rho\sigma\mu\mu} + \nabla_{\rho} R_{\sigma\lambda\mu\nu} + \nabla_{\sigma} R_{\lambda\rho\mu\nu} \right) \\ &= g^{\nu\sigma} \left(\nabla^{\mu} R_{\rho\sigma\mu\nu - \nabla_{\rho}} R^{\mu}_{\sigma\mu\nu} + \nabla_{\sigma} R^{\mu}_{\rho\mu\nu} \right) \\ &= -\nabla^{\mu} \left(R^{\nu}_{\rho\mu\nu} \right) - \nabla_{\rho} R + \nabla^{n} u R_{\rho\nu} \\ &= \nabla^{\mu} R_{\rho\mu} - \nabla_{\rho} R + \nabla^{\nu} R_{\rho\nu}. \end{split}$$

En el desarrollo anterior se usó la compatibilidad con la métrica para introducirla dentro de las derivadas covariantes, para subir y bajar índices. De este modo,

$$\frac{1}{2}\nabla_{\rho}R = \nabla^{\mu}R_{\rho\mu}.\tag{1-28}$$

Si se define el tensor de Einstein (simétrico) como

$$G_{\mu\nu} = R_{\mu\nu} - \frac{1}{2} R g_{\mu\nu},\tag{1-29}$$

es claro por (1-28) que

$$\nabla^{\mu}G_{\mu\nu} = 0. \tag{1-30}$$

1.4. Gravitación

Los postulados fundamentales de la relatividad son los siguientes:

- 1. En presencia de gravedad, el espacio-tiempo luce como una variedad curvada 4-dimensional (con componentes del tensor de Riemann en general no nulas).
- 2. No hay forma de distinguir la aceleración uniforme de un campo gravitacional externo.
- 3. Las partículas libres se mueven a lo largo de geodésicas.

Se define ahora el límite Newtoniano por los siguientes tres requerimientos: las partículas se mueven lentamente (con respecto a la velocidad de la luz), el campo gravitacional es plano (puede considerarse como una perturbación del espacio plano) y el campo gravitacional es estático (no varía en el tiempo). Tomando el tiempo propio τ como parámetro afín, la ecuación de la geodésica (1-19) es

$$\frac{\mathrm{d}^2 x^{\mu}}{\mathrm{d}\tau^2} + \Gamma^{\mu}{}_{\rho\sigma} \frac{\mathrm{d}x^{\rho}}{\mathrm{d}\tau} \frac{\mathrm{d}x^{\sigma}}{\mathrm{d}\tau} = 0. \tag{1-31}$$

Moverse lentamente implica que la partícula avanza más en el tiempo que en el espacio. Matemáticamente, esta condición se escribe como

$$\frac{\mathrm{d}x^i}{\mathrm{d}\tau} << \frac{\mathrm{d}t}{\mathrm{d}\tau},\tag{1-32}$$

donde i = 1, 2, 3. De este modo, la ecuación de la geodésica queda escrita como

$$\frac{\mathrm{d}^2 x^{\mu}}{\mathrm{d}\tau^2} + \Gamma^{\mu}_{00} \left(\frac{\mathrm{d}t}{\mathrm{d}\tau}\right)^2 = 0. \tag{1-33}$$

Ahora, los símbolos de Christoffel de la forma Γ^{μ}_{00} son, usando (1-12), y teniendo en cuenta que el campo es estático:

$$\Gamma^{\mu}_{00} = \frac{1}{2} g^{\mu\lambda} \left(\partial_0 g_{\lambda 0} + \partial_0 g_{0\lambda} - \partial_\lambda g_{00} \right) = -\frac{1}{2} g^{\mu\lambda} \partial_\lambda g_{00}.$$

Finalmente, como el campo gravitacional es débil, se puede descomponer la métrica en dos componentes: la métrica de Minkowski $\eta_{\mu\nu} = diag(-1,0,0,0)$ más una perturbación $h_{\mu\nu}$, de modo que

$$g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}.$$

A primer orden de h, se puede usar la métrica de Minkowski para subir y bajar índices. Así,

$$\Gamma^{\mu}_{00} = -\frac{1}{2}\eta^{\mu\lambda}\partial_{\lambda}h_{00}. \tag{1-34}$$

La ecuación geodésica (1-33) es entonces

$$\frac{\mathrm{d}^2 x^{\mu}}{\mathrm{d}\tau^2} = \frac{1}{2} g^{\mu\lambda} \partial_{\lambda} h_{00} \left(\frac{\mathrm{d}t}{\mathrm{d}\tau}\right)^2. \tag{1-35}$$

1.4 Gravitación 15

Como el campo es estático, $\partial_0 h_{00} = 0$, y la componente $\mu = 0$ de esta ecuación es

$$\frac{\mathrm{d}^2 t}{\mathrm{d}\tau^2} = 0,$$

lo que implica que $\frac{dt}{d\tau}$ es una constante. Respecto a las componentes espaciales i=1,2,3,

$$\frac{\mathrm{d}^2 x^i}{\mathrm{d}\tau^2} = \frac{1}{2} \left(\frac{\mathrm{d}t}{\mathrm{d}\tau}\right)^2 \partial_i h_{00}. \tag{1-36}$$

Dividiendo la última ecuación por $\left(\frac{\mathrm{d}t}{\mathrm{d}\tau}\right)^2$ y aplicando la regla de la cadena, se tiene que

$$\frac{\mathrm{d}^2 x^i}{\mathrm{d}t^2} = \frac{1}{2} \partial_i h_{00}. \tag{1-37}$$

Tomando la componente h_{00} como $-2V(x^i)$ en (1-37), se obtiene la ley de gravitación universal de Newton. En otras palabras,

$$g_{00} = -(1 + 2V(x^{i})). (1-38)$$

Entonces, la curvatura del espacio-tiempo es suficiente para describir el comportamiento de la gravedad en el límite Newtoniano, siempre que la métrica satisfaga (1-38). La manera de conocer $g_{\mu\nu}$ es mediante las ecuaciones de campo para la métrica, conocidas como ecuaciones de campo de Einstein. Estas ecuaciones se deducen a través de un principio variacional sobre la acción de Hilbert-Einstein

$$S_H = \int d^4x \sqrt{-g} \left(R - 2\Lambda \right), \qquad (1-39)$$

donde Λ es la constante cosmológica. De esta forma, las ecuaciones de campo de Einstein son

$$R_{\mu\nu} - \frac{1}{2}Rg_{\mu\nu} + \Lambda g_{\mu\nu} = 8\pi G T_{\mu\nu}, \qquad (1-40)$$

donde $T_{\mu\nu}$ es el tensor de momento-energía. De este modo, conociendo la métrica que soluciona (1-40), se puede determinar el potencial en el límite Newtoniano (de campo débil), producto de dicha métrica a través de (1-38).

2 Lentes Gravitacionales

En este capítulo se introduce la idea de lente gravitacional, fenómeno predicho por la teoría de la relatividad general, y comprobado observacionalmente en diferentes escalas del universo: desde la curvatura de la trayectoria de la luz de las estrellas de fondo detrás del sol, medible en los eclipses solares; hasta los efectos provocados por galaxias o súper cúmulos sobre las fuentes de luz que se encuentran detrás de ellas. Algunas referencias clave de este capítulo son [9, 13].

2.1. Lentes de Schwarzschild

Como se comentó en el párrafo introductorio, uno de los primeros resultados de la teoría de la relatividad general susceptible a ser medido fue la desviación de un rayo de luz en presencia del sol. La teoría de la relatividad general predice que un rayo de luz que pase a una distancia mínima ξ de un cuerpo de masa M es desviado un ángulo

$$\alpha = \frac{4GM}{c^2 \xi} = \frac{2R_S}{\xi},\tag{2-1}$$

suponiendo que el parámetro de impacto ξ es mucho mayor que el radio de Schwarzschild [13]

$$R_S = \frac{2GM}{c^2}. (2-2)$$

Para mostrar el efecto de una masa sobre los rayos de luz, considere la configuración más simple de lentes gravitacionales, ilustrado en la figura 2-1: una masa puntual M, que se encuentra a una distancia D_d del observador O. La fuente S se encuentra a una distancia D_s del observador y su verdadera separación angular respecto al segmento \overline{OM} (conocido como eje óptico) es β , la separación angular a la cual se observaría en ausencia de lentes. θ es la separación angular observada en presencia de la lente. Un rayo de luz que pasa a una distancia ξ es desviado un ángulo α , dado por (2-1).

Se puede determinar una expresión para β a partir de la trigonometría fundamental. Primero, observe que el ángulo ϕ de la figura **2-1** es $\pi/2 + \theta - \alpha$. De este modo, es posible escribir la relación trigonométrica

$$\frac{\pi}{2} - \phi = \alpha - \theta = \frac{\ell}{D_{ds}},$$

Figura 2-1: Configuración de lentes gravitacionales para una masa puntual M, un observador O y una fuente S.

de forma que $\ell = D_{ds}(\alpha - \theta)$, y

$$\beta = \frac{\xi}{D_d} - \frac{D_{ds}}{D_s} \alpha = \frac{\xi}{D_d} - \frac{2R_S}{\xi} \frac{D_{ds}}{D_s}.$$
 (2-3)

Sin embargo, la mayoría de las lentes gravitacionales observables ocurren en el universo a gran escala, por lo que se debe usar un modelo cosmológico para determinar las distancias, que pasarán a ser distancias diámetro-angulares, para las cuales, en general, $D_{ds} \neq D_s - D_d$ [9]. Reescribiendo (2-3), se obtiene la ecuación de lente

$$\beta = \theta - 2R_S \frac{D_{ds}}{D_s D_d} \frac{1}{\theta}.$$
 (2-4)

Se introduce el ángulo característico y la longitud característica como

$$\alpha_0 = \sqrt{2R_S \frac{D_{ds}}{D_d D_s}} \tag{2-5}$$

у

$$\xi_0 = \sqrt{2R_S \frac{D_d D_{ds}}{D_s}} = \sqrt{\frac{4GM}{c^2} \frac{D_d D_{ds}}{D_s}} = \alpha_0 D_d, \tag{2-6}$$

respectivamente. Adicionalmente, se introduce una escala de longitud característica en el plano de la fuente, dada por

$$\eta_0 = \sqrt{2R_S \frac{D_s D_{ds}}{D_d}} = \sqrt{\frac{4GM}{c^2} \frac{D_s D_{ds}}{D_d}} = \alpha_0 D_s.$$
(2-7)

Con el ángulo característico, se puede escribir la ecuación de la lente (2-4) como

$$\theta^2 - \beta\theta - \alpha_0^2 = 0, (2-8)$$

cuyas posibles soluciones son

$$\theta_{\pm} = \frac{1}{2} \left(\beta \pm \sqrt{4\alpha^2 + \beta^2} \right), \tag{2-9}$$

lo que sugiere que se forman dos imágenes, una a cada lado del eje óptico. La separación de estas imágenes es

$$\Delta\theta = \theta_{+} - \theta_{-} = \sqrt{4\alpha_0^2 + \beta^2} \ge 2\alpha_0,$$
 (2-10)

y la separación angular verdadera entre la fuente y el observador está relacionada con las posiciones de las imágenes por la ecuación

$$\theta_+ + \theta_- = \beta. \tag{2-11}$$

De la ecuación (2-10), se puede interpretar el significado físico del ángulo característico: Es la mitad de la distancia angular mínima que debe existir entre las dos imágenes formadas por el lente. Un caso de interés particular ocurre cuando $\beta = 0$, es decir, cuando la fuente, la lente y el observador son colineales. En este caso, $\theta_{\pm} = \pm \alpha_0$. Sin embargo, el sistema completo es rotacionalmente simétrico respecto al eje óptico, y por esta simetría, el anillo con radio angular $\theta = \alpha_0$ es solución de la ecuación de lente. Este fenómeno se conoce como anillo de Einstein.

3 Estadística bayesiana

En este capítulo se hace una breve introducción a la teoría bayesiana, con el fin de obtener las herramientas necesarias para ajustar los parámetros de un modelo dado a través de un conjunto de datos experimentales. Algunas referencias clave de este capítulo son [2, 8, 10, 5, 3, 6].

3.1. Preliminares

Antes de enunciar la regla de Bayes, es necesario definir lo que es un espacio de probabilidad, y la probabilidad condicional. Esta sección busca fundamentar las bases de la teoría de la probabilidad, para comprender a cabalidad temas posteriores.

3.1.1. Espacio de probabilidad

La probabilidad es una teoría matemática que busca medir de alguna forma la posibilidad de que ocurra un evento contenido en un conjunto de posibles eventos, resultados todos de un experimento. Por supuesto, no se conoce de forma determinista cuál será el resultado tras la ejecución del experimento, de modo que sólo se puede hablar de posibilidades de que ocurra algún evento. Este tipo de experimentos se conocerán como experimentos aleatorios.

Definición 3.1.1 (Experimento Aleatorio). Un experimento se dice aleatorio si su resultado no se puede determinar de antemano.

Definición 3.1.2 (Espacio de Muestra). El conjunto Ω de todos los posibles resultados de un experimento aleatorio se llama espacio de muestra. Un elemento $\omega \in \Omega$ se llama resultado o muestra. Ω se dice discreto si es finito o contable.

Ahora se requiere definir lo que se entenderá por evento, para lo cual se definirá una estructura sobre el espacio de muestra, conocida como σ -álgebra, que dará cuenta de los eventos de interés tras la ejecución de un experimento aleatorio.

Definición 3.1.3 (σ -álgebra). Tome $\Omega \neq \emptyset$. Una colección \Im de subconjuntos de Ω se llama σ -álgebra sobre Ω si:

- 1. $\Omega \in \Im$,
- 2. Si $A \in \Im$, entonces $A^c \in \Im$ y,

3. Si $A_1, A_2, \ldots \in \Im$, entonces $\bigcup_{i=1}^{\infty} A_i \in \Im$.

Los elementos de 3 se llaman eventos.

El siguiente teorema será de utilidad para construir una σ -álgebra a partir de un conjunto finito o contable de σ -álgebras.

Teorema 3.1.1. Si $\Omega \neq \emptyset$ y \Im_1, \Im_2, \ldots son σ -álgebras sobre Ω , entonces $\bigcap_{i=1}^{\infty} \Im_i$ es una σ -álgebra sobre Ω .

Demostración. Como $\Omega \in \Im_j$, para $j = 1, 2, \ldots, \Omega \in \bigcap_{j=1}^{\infty} \Im_j$. Si $A \in \bigcap_{j=1}^{\infty} \Im_j$, $A \in \Im_j$, para $j = 1, 2, \ldots$, de modo que $A^c \in \Im_j$, y $A^c \in \bigcap_{j=1}^{\infty} \Im_j$. Por último, si

$$A_1, A_2, \ldots \in \bigcap_{j=1}^{\infty} \Im_j,$$

para todo $j = 1, 2, \ldots, A_1, A_2, \ldots \in \Im_j$, de modo que

$$\bigcup_{i=1}^{\infty} A_i \in \Im_j \ \mathbf{y} \ \bigcup_{i=1}^{\infty} A_i \in \bigcap_{j=1}^{\infty} \Im_j.$$

Con este teorema, se puede definir la σ -álgebra más pequeña¹ que contiene un subconjunto de Ω .

Definición 3.1.4 (σ -álgebra generada). Tome $\Omega \neq \emptyset$ y \mathcal{A} como una colección de subconjuntos de Ω . Si $\mathcal{M} := \{ \Im : \Im \text{ es una } \sigma - \text{álgebra sobre } \Omega \text{ que contiene a } \mathcal{A} \},$

$$\sigma(\mathcal{A}) := \bigcap_{\Im \in \mathcal{M}} \Im$$

es la σ -álgebra más pequeña sobre Ω que contiene a \mathcal{A} . Esta σ -álgebra se conoce como σ -álgebra generada por \mathcal{A} .

Definición 3.1.5 (Espacio de medida). Tome $\Omega \neq \emptyset$ y sea \Im una σ -álgebra sobre Ω . La pareja (Ω, \Im) se llama espacio de medida.

Al evento \emptyset se le conoce como evento imposible; Ω es el evento seguro y $\{\omega\}$, con $\omega \in \Omega$ es un evento simple. Se dice que el evento A ocurre después de llevar a cabo el experimento aleatorio si se obtiene un resultado en A, esto es, A ocurre si el resultado es algún $\omega \in A$.

1. El evento $A \cup B$ ocurre si y sólo si A ocurre, B pasa, o ambos ocurren.

¹Es la más pequeña en el sentido de que es la que requiere menos elementos para satisfacer las condiciones necesarias para ser una σ -álgebra.

3.1 Preliminares 21

- 2. El evento $A \cap B$ ocurre si y sólo si A y B ocurren a la vez.
- 3. El evento A^c ocurre si y sólo si A no ocurre.
- 4. El evento A B ocurre si y sólo si A ocurre pero B no ocurre.

Si dos eventos no tienen eventos simples en común, se dirá que son eventos mutuamente excluyentes:

Definición 3.1.6 (Eventos mutuamente excluyentes). Dos eventos A y B se dicen mutuamente excluyentes si $A \cap B = \emptyset$.

Antes de introducir la función de probabilidad, que medirá la posibilidad de que ocurra un evento de la σ -álgebra, es necesario definir por completez la frecuencia relativa, pues ella determina la posibilidad de que ocurra un evento al cabo de n repeticiones del experimento aleatorio.

Definición 3.1.7 (Frecuencia relativa). Para cada evento A, el número $f_r(A) := \frac{n(A)}{n}$ se llama la frecuencia relativa de A, donde n(A) indica el número de veces que ocurre A en n repeticiones del experimento aleatorio.

Cuando $n \to \infty$, se puede hablar intuitivamente de la probabilidad de que ocurra el evento A, normalizada de 0 a 1. Por supuesto, es imposible realizar infinitas veces un experimento aleatorio para determinar la probabilidad de ocurrencia de todos los eventos de la σ -álgebra, por lo que se introduce de antemano la función de probabilidad, suponiendo que ella da cuenta del comportamiento de la frecuencia relativa cuando $n \to \infty$.

Definición 3.1.8 (Espacio de probabilidad). Tome (Ω, \Im) como un espacio de medida. Una función real P sobre \Im que satisface las siguientes condiciones:

- 1. $P(A) \ge 0$ para todo $A \in \Im$ (no negativa),
- 2. $P(\Omega) = 1$ (normalizada) y,
- 3. $si\ A_1, A_2, \ldots$ son eventos mutuamente excluyentes en \Im , esto es, si

 $A_i \cap A_j = \emptyset$ para todo $i \neq j$, entonces

$$P\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} P(A_i),$$

se llama medida de probabilidad sobre (Ω, \Im) . La tripleta (Ω, \Im, P) se llama espacio de probabilidad.

El siguiente teorema caracteriza las propiedades más importantes de un espacio de probabilidad.

Teorema 3.1.2. Si (Ω, \Im, P) es un espacio de probabilidad, entonces

- 1. $P(\emptyset) = 0$.
- 2. Si $A, B \in \Im$ $y A \cap B = \emptyset$, entonces $P(A \cup B) = P(A) + P(B)$.
- 3. Para todo $A \in \Im$, $P(A^c) = 1 P(A)$.
- 4. Si $A \subseteq B$, entonces $P(A) \le P(B)$ y P(B A) = P(B) P(A). En particular, $P(A) \le 1$ para todo $A \in \Im$.
- 5. Para todo $A, B \in \Im$, $P(A \cup B) = P(A) + P(B) P(A \cap B)$.
- 6. Tome $\{A_n\}_n \subseteq \Im$ como una sucesión creciente, esto es, $A_n \subseteq A_{n+1}, \forall n \in \mathbb{N}$; entonces

$$P\left(\lim_{m\to\infty} A_n\right) = \lim_{n\to\infty} P(A_n), \ donde \ \lim_{n\to\infty} A_n := \bigcup_{i=1}^{\infty} A_i.$$

7. Tome $\{A_n\}_n \subseteq \Im$ como una sucesión decreciente, esto es, $A_n \supseteq A_{n+1}, \forall n \in \mathbb{N}$; entonces

$$P\left(\lim_{m\to\infty}A_n\right) = \lim_{n\to\infty}P(A_n), \ donde \ \lim_{n\to\infty}A_n := \bigcap_{i=1}^{\infty}A_i.$$

Demostración. 1. $1 = P(\Omega \cup \emptyset \cup \emptyset \cup \cdots) = P(\Omega) + P(\emptyset) + P(\emptyset) + \cdots = 1 + P(\emptyset) + \cdots \Longrightarrow P(\emptyset) = 0.$

- 2. $P(A \cup B) = P(A \cup B \cup \emptyset \cup \emptyset \cup \cdots) = P(A) + P(B)$.
- 3. $P(A) + P(A^c) = P(A \cup A^c) = P(\Omega) = 1 \implies P(A^c) = 1 P(A)$.
- 4. Si $A \subseteq B$, $B = A \cup (B A)$, de modo que P(B) = P(A) + P(B A). Como $P \ge 0$, $P(B) \ge P(A)$ y P(B A) = P(B) P(A). Si $B = \Omega$, $P(A) \le 1$.
- 5. Use el hecho de que $A \cup B = [A (A \cap B)] \cup [B (A \cap B)] \cup [A \cap B]$.
- 6. Tome la sucesión $C_1=A_1, C_2=A_2-A_1, \ldots, C_r=A_r-A_{r-1}, \ldots$ Es claro que

$$\bigcup_{i=1}^{\infty} C_i = \bigcup_{i=1}^{\infty} A_i.$$

Más aún, como $C_i \cap C_j = \emptyset \ \forall i \neq j$, se sigue que

$$P\left(\bigcup_{i=1}^{\infty} A_i\right) = P\left(\bigcup_{n=1}^{\infty} C_n\right) = \sum_{n=1}^{\infty} P(C_n) = \lim_{n \to \infty} \sum_{k=1}^{n} P(C_k)$$
$$= \lim_{n \to \infty} P\left(\bigcup_{k=1}^{n} C_k\right) = \lim_{n \to \infty} P(A_n).$$

3.1 Preliminares 23

7. Tome la sucesión $\{B_n = A_n^c\}_n$ y aplique el resultado anterior.

Aplicando el teorema anterior de forma inductiva, para algunos eventos $A_1, A_2, \ldots, A_n \in \mathfrak{F}$:

$$P(A_1 \cup A_2 \cup \dots \cup A_n) = \sum_{i=1}^n P(A_i) - \sum_{i_1 < i_2} P(A_{i_1} \cap A_{i_2}) + \dots + (-1)^{r+1} \sum_{i_1 < i_2 < \dots < i_r} P(A_{i_1} \cap A_{i_2} \cap \dots \cap A_{i_r}) + \dots + (-1)^{n+1} P(A_1 \cap A_2 \cap \dots \cap A_n).$$

Por otro lado, tome (Ω, \Im, P) como un espacio de probabilidad con Ω finito o contable y $\Im = \mathbb{P}(\Omega)$. Tome $\emptyset \neq A \in \Im$. Es claro que

$$A=\bigcup_{\omega\in A}\{\omega\},\ \text{de modo que}$$

$$P(A)=\sum_{\omega\in A}P(\omega),\ \text{donde }P(\omega):=P(\{\omega\}).$$

Así, P queda completamente definido por $p_j := P(\omega_j)$, donde $\omega_j \in \Omega$. El vector $|\Omega|$ –dimensional $p := (p_1, p_2, \dots)$ satisface las siguientes condiciones:

- $p_i \ge 0$ y

Un vector que satisface las anteriores condiciones se llama vector de probabilidad.

3.1.2. Probabilidad condicional

Tome B como un evento cuya opción de ocurrir debe ser medida bajo la suposición de que otro evento A fue observado. Si el experimento se repite n veces bajo las mismas circunstancias, entonces la frecuencia relativa de B bajo la condición A se define como

$$f_r(B|A) := \frac{n(A \cap B)}{n(A)} = \frac{\frac{n(A \cap B)}{n}}{\frac{n(A)}{n}} = \frac{f_r(A \cap B)}{f_r(A)}, \text{ si } n(A) > 0.$$

Esto motiva la definición de probabilidad condicional, como el comportamiento de esta frecuencia relativa cuando $n \to \infty$.

Definición 3.1.9 (Probabilidad condicional). Tome (Ω, \Im, P) como un espacio de probabilidad. Si $A, B \in \Im$, con P(A) > 0, entonces la probabilidad del evento B bajo la condición A se define como sigue

$$P(B|A) := \frac{P(A \cap B)}{P(A).}$$

El siguiente teorema provee algunas propiedades de la probabilidad condicional.

Teorema 3.1.3 (Medida de probabilidad condicional). Tome (Ω, \Im, P) como un espacio de probabilidad y $A \in \Im$, con P(A) > 0. Entonces:

- 1. $P(\cdot|A)$ es una medida de probabilidad sobre Ω centrada en A, esto es, P(A|A) = 1.
- 2. Si $A \cap B = \emptyset$, entonces P(B|A) = 0.
- 3. $P(B \cap C|A) = P(B|A \cap C)P(C|A)$ si $P(A \cap C) > 0$.
- 4. Si $A_1, A_2, \ldots, A_n \in \Im$, con $P(A_1 \cap A_2 \cap \cdots \cap A_{n-1}) > 0$, entonces

$$P(A_1 \cap A_2 \cap \dots \cap A_n) = P(A_1)P(A_2|A_1)P(A_3|A_1 \cap A_2) \dots P(A_n|A_1 \cap A_2 \cap \dots \cap A_{n-1}).$$

Demostración. 1. Las tres propiedades de una medida de probabilidad deben ser verificadas.

- a) Claramente, $P(B|A) \ge 0$ para todo $B \in \Im$.
- b) $P(\Omega|A) = \frac{P(\Omega \cap A)}{P(A)} = \frac{P(A)}{P(A)} = 1$. También se tiene que P(A|A) = 1.
- c) Tome $A_1, A_2, \ldots \in \Im$ una sucesión de conjuntos disyuntos. Entonces

$$P\left(\bigcup_{i=1}^{\infty} A_i | A\right) = \frac{P\left(A \cap \bigcup_{i=1}^{\infty} A_i\right)}{P(A)} = \frac{P\left(\bigcup_{i=1}^{\infty} A \cap A_i\right)}{P(A)}$$
$$= \sum_{i=1}^{\infty} \frac{P(A \cap A_i)}{P(A)} = \sum_{i=1}^{\infty} P(A_i | A).$$

2. Si
$$A \cap B = \emptyset$$
, $P(B|A) = \frac{P(A \cap B)}{P(A)} = \frac{P(\emptyset)}{P(A)} = 0$.

3.
$$P(B \cap C|A) = \frac{P(A \cap B \cap C)}{P(A)} = \frac{P(B \cap C \cap A)}{P(A \cap C)} \frac{P(C \cap A)}{P(A)} = P(B|A \cap C)P(C|A).$$

4.
$$P(A_1 \cap \cdots \cap A_n) = \frac{P(A_1 \cap \cdots \cap A_n)}{P(A_1 \cap \cdots \cap A_{n-1})} \frac{P(A_1 \cap \cdots \cap A_{n-1})}{P(A_1 \cap \cdots \cap A_{n-2})} \cdots \frac{P(A_1 \cap A_2)}{P(A_1)} P(A_1) = P(A_1) P(A_2 | A_1) P(A_3 | A_1 \cap A_2) \cdots P(A_n | A_1 \cap A_2 \cap \cdots \cap A_{n-1}).$$

El siguiente teorema permitirá probar la regla de Bayes.

Teorema 3.1.4 (Teorema de probabilidad total). Tome A_1, A_2, \ldots como una partición finita o contable de Ω , esto es, $A_i \cap A_j = \emptyset, \forall i \neq j \ y \bigcup_{i=1}^{\infty} A_i = \Omega$, tal que $P(A_i) > 0$, para todo $A_i \in \mathcal{S}$. Entonces, para todo $B \in \mathcal{S}$:

$$P(B) = \sum_{i} P(B|A_i)P(A_i).$$

3.1 Preliminares 25

Demostración. Observe que

$$B = B \cap \Omega = B \cap \left(\bigcup_{i=1}^{\infty} A_i\right) = \bigcup_{i=1}^{\infty} B \cap A_i,$$

de modo que

$$P(B) = P\left(\bigcup_{i=1}^{\infty} B \cap A_i\right) = \sum_{i=1}^{\infty} P(B \cap A_i) = \sum_{i=1}^{\infty} P(B|A_i)P(A_i).$$

Matemáticamente, este teorema se puede interpretar como que la probabilidad de que ocurra B se puede medir en términos de una partición de Ω en el sentido de que B, como subconjunto de Ω puede ocurrir cuando ocurran algunos elementos de la partición, los cuales tendrán mayor peso en el término $P(B|A_i)$ de la suma.

Como corolario del teorema anterior, se obtiene la **regla de Bayes**, que constituye la base para la **teoría Bayesiana**.

Corolario 3.1.1 (Regla de Bayes). Tome A_1, A_2, \ldots como una partición finita o contable de Ω con $P(A_i) > 0$, para todo i; entonces, para todo $B \in \Im$ con P(B) > 0:

$$P(A_i|B) = \frac{P(A_i)P(B|A_i)}{\sum_j P(B|A_j)P(A_j)}, \forall i.$$

Demostración.

$$P(A_i|B) = \frac{P(A_i \cap B)}{P(B)} = \frac{P(A_i)P(B|A_i)}{P(B)} = \frac{P(A_i)P(B|A_i)}{\sum_{i} P(B|A_i)P(A_i)}.$$

Con la partición $A_1=A, A_2=A^c$ se obtiene la forma usual de la regla de Bayes. \Box

A continuación se definen las distribuciones a priori y a posteriori, que hacen referencia a la probabilidad de que ocurran ciertos eventos de una partición de Ω antes de que ocurra un evento B y al cabo de que este evento B ocurra.

Definición 3.1.10 (Distribuciones a priori y a posteriori). Tome A_1, A_2, \ldots como una partición finita o contable de Ω , con $P(A_i) > 0$, para todo i. Si P(B) > 0, con $B \in \mathcal{F}$, entonces $\{P(A_n)\}_n$ se llama distribución a priori (antes de que B ocurra), y $\{P(A_n|B)\}_n$ se llama distribución a posteriori (después de que B ocurra).

Algunas veces, la ocurrencia de un evento B no afecta la probabilidad de un evento A, es decir,

$$P(A|B) = P(A).$$

En este caso, se dice que el evento A es independiente del evento B. Esto motiva la siguiente definición.

Definición 3.1.11 (Eventos independientes). Dos eventos A y B se dicen independientes si y sólo si

$$P(A \cap B) = P(A)P(B).$$

Si esta condición no se tiene, se dice que los eventos son dependientes.

En algunos casos, es necesario analizar la independencia de dos o más eventos. Para ello, se dan las siguientes definiciones.

Definición 3.1.12 (Familia independiente). Una familia de eventos $\{A_i : i \in I\}$ se dice independiente si

$$P\left(\bigcap_{i\in J} A_i\right) = \prod_{i\in J} P(A_i),$$

para cualquier subconjunto no vacío $J \subseteq I$.

Definición 3.1.13 (Eventos independientes par a par). Una familia de eventos $\{A_i : i \in I\}$ se dice par a par independiente si

$$P(A_i \cap A_j) = P(A_i)P(A_j)$$
, para todo $i \neq j$.

3.1.3. Variables aleatorias

En un experimento aleatorio, generalmente hay mayor interés en determinar ciertos valores numéricos asociados a los resultados del experimento aleatorio, que al resultado mismo del experimento aleatorio. Con esto en mente se define la variable aleatoria.

Definición 3.1.14 (Variable aleatoria). Tome (Ω, \Im, P) como un espacio de probabilidad. Una variable aleatoria es un mapa $X : \Omega \to \mathbb{R}$ tal que, para todo $A \in \mathbb{B}$, $X^{-1}(A) \in \Im$, donde \mathbb{B} es la σ -álgebra de Borel sobre \mathbb{R} (σ -álgebra más pequeña que contiene todos los intervalos de la forma $(-\infty, a]$).

El conjunto de posibles valores de X es $\mathbb{S} := \{x \in \mathbb{R} : \exists \omega \in \Omega \ tal \ que \ X(\omega) = x\}$, conocido como **soporte de la variable aleatoria** X.

Si X es una variable aleatoria definida sobre un espacio de probabilidad (Ω, \Im, P) , se introduce la notación

$${X \in B} := {\omega \in \Omega : X(\omega) \in B}, \text{ con } B \in \mathbb{B}.$$

Definición 3.1.15 (Variable aleatoria discreta). Una variable aleatoria X se dice discreta cuando el soporte $\mathbb S$ de X es un subconjunto finito o contable de $\mathbb R$. Para $x \in \mathbb S$, la función f(x) = P(X = x) se llama función de densidad de probabilidad (pdf para abreviar).

3.1 Preliminares 27

Definición 3.1.16 (Variable aleatoria continua). Una variable aleatoria X se dice continua si el soporte $\mathbb S$ de X es la unión de uno o más intervalos y si existe una función no negativa y real f(x) tal que $P(X \le x) = \int_{-\infty}^{x} f(t) dt$. La función f(x) se llama función de densidad de probabilidad (pdf).

Algunas propiedades de la pdf discreta son las siguientes:

- 1. $f(x) \ge 0, \forall x \in \mathbb{S} \text{ y } f(x) = 0, \forall x \notin \mathbb{S}.$
- 2. $\sum_{x \in S} f(x) = 1$.
- 3. $P(X \in B) = \sum_{x \in B} f(x)$.

Análogamente, para la pdf continua:

- 1. $f(x) > 0, \forall x \in \mathbb{S} \text{ y } f(x) = 0, \forall x \notin \mathbb{S}.$
- 2. $\int_{\mathbb{S}} f(x) dx = 1$.
- 3. $P(X \in B) = \int_B f(x) dx$.

Definición 3.1.17 (Función de distribución acumulativa). La función de distribución acumulativa (CDF, para abreviar) de una variable aleatoria se define como la función $F(x) = P(X \le x)$.

El siguiente teorema resume algunas propiedades importantes de una CDF.

Teorema 3.1.5. Si X es una variable aleatoria, con CDF F(x), entonces:

- 1. $\lim_{x\to-\infty} F(x) = 0$ $y \lim_{x\to\infty} F(x) = 1$.
- 2. F(x) es no decreciente; esto es, $F(x) \leq F(y)$, siempre que $x \leq y$.
- 3. F(x) es continua por derecha.
- 4. $P(a < X \le b) = F(b) F(a)$.

Demostración. 1. Cuando $\mathbf{x} \to -\infty$, para todo $n \in \mathbb{N}$, se satisface que

$$\{X \leq -n\} \supseteq \{X \leq -(n+1)\}, \text{ y en adición,}$$

$$\emptyset = \bigcap_{n=1}^{\infty} \{X \leq -n\}, \text{ con lo que}$$

$$\lim_{x \to -\infty} F(x) = \lim_{n \to \infty} F(-n) = P(\emptyset) = 0.$$

Cuando $\mathbf{x} \to \infty$, para todo $n \in \mathbb{N}$, se satisface que

$$\{X \le n\} \subseteq \{X \le n+1\}, \ \mathbf{y},$$

$$\Omega = \bigcup_{n=1}^{\infty} \{X \le n\}, \text{ de modo que }$$

$$\lim_{x \to \infty} F(x) = \lim_{n \to \infty} = P(\Omega) = 1.$$

2. Si $x \leq y$, entonces

$$\{X \leq x\} \subseteq \{X \leq y\}$$
, con lo que

$$F(x) = P(X \le x) \le P(X \le y) = F(y).$$

3. Tome $x \in \mathbb{R}$ fijo. Suponga que $\{x_n\}_{n \in \mathbb{N}}$ es una sucesión decreciente de números reales, cuyo límite va a x. Se puede ver que

$$\{X \leq x_1\} \supseteq \{X \leq x_2\} \supseteq \cdots$$
, y

$$\bigcap_{n=1}^{\infty} \{X \le x_n\} = \{X \le x\}, \text{ de modo que}$$

$$\lim_{y \to x^+} F(y) = \lim_{n \to \infty} F(x_n) = \lim_{n \to \infty} P(X \le x_n) = P(X \le x) = F(x).$$

4. Dado que $\Omega = \{X \le a\} \cup \{a < X \le b\} \cup \{X > b\},\$

$$1 = P(X < a) + P(a < X < b) + P(X > b),$$

:.
$$P(a < X \le b) = P(X \le b) - P(X \le a) = F(b) - F(a)$$
.

Los teoremas posteriores indican cómo determinar la pdf a partir de la CDF de una variable aleatoria.

Teorema 3.1.6. Si X es una variable aleatoria discreta con CDF F(x) y soporte $\mathbb{S} = \{x_0, x_1, \dots\}$, con $x_0 < x_1 < \dots$, entonces, para $x_k \in \mathbb{S}$,

$$f(x_k) = F(x_k) - F(x_{k-1}).$$

Demostración. Para $k \geq 1$,

$$f(x_k) = P(X = x_k) = P(x_{k-1} < X \le x_k) = F(x_k) - F(x_{k-1}).$$

Teorema 3.1.7. Para una variable aleatoria continua, $f(x) = \frac{dF}{dx}, \forall x \in \mathbb{R}$.

Demostración. La prueba se sigue directamente del teorema fundamental del cálculo.

3.1 Preliminares 29

3.1.4. Vectores aleatorios

En la mayoría de los análisis estadísticos, más de una variable debe ser analizada al cabo de un experimento aleatorio. Cada observación se puede representar como un vector de observaciones, conocido como vector aleatorio.

Definición 3.1.18 (Vector aleatorio). Un vector aleatorio $\vec{X} = (X_1, X_2, \dots, X_k)$ es un vector k-dimensional, donde X_1, \dots, X_k son variables aleatorias. Un vector aleatorio se dice discreto cuando cada una de las variables aleatorias que lo conforman son discretas, y continuo cuando son continuas.

Definición 3.1.19 (Variable aleatoria bivariada). Un vector aleatorio bidimensional $\vec{X} = (X_1, X_2)$ se llama variable aleatoria bivariada.

De modo similar al caso de las variables aleatorias, los vectores aleatorios tienen pdf, un soporte y una CDF. El soporte de un vector aleatorio k-dimensional es el conjunto de valores que puede tomar, denotado por $\mathbb{S}_{\vec{X}} \subseteq \mathbb{R}^k$.

Definición 3.1.20 (Función de densidad de probabilidad adjunta discreta). Tome \vec{X} como un vector aleatorio discreto k-dimensional. La pdf adjunta de \vec{X} se define como

$$f(\vec{x}) := f(x_1, x_2, \dots, x_k) = P(X_1 = x_1, X_2 = x_2, \dots, X_k = x_k)$$

$$para \vec{x} = (x_1, x_2, \dots, x_k) \in \mathbb{S}_{\vec{X}}.$$

La pdf adjunta discreta tiene las siguientes propiedades:

- 1. $0 \le f(x_1, x_2, \dots, x_k) \le 1, \forall \vec{x} \in \mathbb{S}_{\vec{X}}$.
- $2. \sum_{\vec{x} \in \mathbb{S}_{\vec{X}}} f(\vec{x}) = 1.$
- 3. Para cualquier subconjunto $B \subseteq \mathbb{S}_{\vec{X}}, \ P(\vec{X} \in B) = \sum_{\{\vec{x} \in \mathbb{S}_{\vec{X}}: \vec{x} \in B\}} f(\vec{x}).$

Definición 3.1.21 (Función de densidad de probabilidad adjunta continua). Tome \vec{X} como un vector aleatorio k-dimensional continuo. La pdf continua de \vec{X} se define como cualquier función no negativa $f(\vec{x})$ que satisfaga las siguientes propiedades:

- 1. $f(x_1,\ldots,x_k) > 0, \forall \vec{x} \in \mathbb{S}_{\vec{X}}.$
- 2. $\int_{\mathbb{S}_{\vec{v}}} f(x_1, \dots, x_k) dx_1 \cdots dx_k = 1.$
- 3. Para cualquier subconjunto $B \subset \mathbb{S}_{\vec{X}}, \ P(\vec{X} \in B) = \int_B f(x_1, \dots, x_k) dx_1 \cdots dx_k.$

Definición 3.1.22 (Función de distribución acumulativa adjunta). $Tome \vec{X} = (X_1, X_2, \dots, X_k)$ como un vector aleatorio k-dimensional. La CDF adjunta de \vec{X} se define como

$$F(x_1, x_2, \dots, x_k) = P(X_1 \le x_1, X_2 \le x_2, \dots, X_k \le x_k), \ \forall (x_1, \dots, x_k) \in \mathbb{R}^k.$$

Las componentes de un vector aleatorio \vec{X} son variables aleatorias, por lo que las pdf de cada variable aleatoria X_i de \vec{X} se pueden derivar de la pdf adjunta de \vec{X} .

Definición 3.1.23 (Función de densidad de probabilidad marginal). Tome $\vec{X} = (X_1, \dots, X_k)$ como un vector aleatorio k-dimensional. La función de densidad de probabilidad marginal de la variable aleatoria X_i es

$$f_i(x_i) = \underbrace{\sum_{\substack{x_1 \in \mathbb{S}_X \\ \text{quitando la suma sobre } x_i \\ \text{quitando la integral sobre } x_i}} f(x_1, \dots, x_k) \qquad \text{cuando } \vec{X} \text{ es discreta } y$$

$$f_i(x_i) = \underbrace{\int_{x_1 \in \mathbb{S}_{X_1}} \dots \int_{x_k \in \mathbb{S}_{X_k}} f(x_1, \dots, x_k) \prod_{n \neq i} \mathrm{d}x_n}_{\text{quitando la integral sobre } x_i} f(x_1, \dots, x_k) \prod_{n \neq i} \mathrm{d}x_n \quad \text{cuando } \vec{X} \text{ es continua.}$$

También se puede definir la distribución condicional dada una variable aleatoria de forma similar al caso de la probabilidad condicional.

Definición 3.1.24 (Función de densidad de probabilidad condicional). Tome $\vec{X}(X_1, \ldots, X_k)$ como un vector aleatorio k-dimensional. Para un valor fijo de x_i , donde $f_i(x_i) > 0$, la función de densidad de probabilidad condicional para $\vec{Y}|X_i$; donde \vec{Y} es un vector aleatorio (k-1)-dimensional con todas las variables aleatorias de \vec{X} , a excepción de X_i ; es

$$f(\vec{y}|x_i) = \frac{f(x_1, \dots, x_k)}{f_i(x_i)},$$

donde $\vec{y} \in \mathbb{S}_{\vec{v}}$.

Esta última definición motiva, como en el caso de los eventos independientes, el concepto de variables aleatorias independientes.

Definición 3.1.25 (Colección independiente de variables aleatorias). Una colección de variables aleatorias $\{X_1, X_2, \dots, X_k\}$ se dice independiente cuando

$$F(x_1, x_2, \dots, x_k) = \prod_{i=1}^k F_i(x_i), \forall \vec{x} \in \mathbb{R}^k,$$

donde $F_i(x_i)$ es la CDF marginal de la variable aleatoria X_i (determinada a partir de la pdf marginal: $F_i(x_i) := P(X_i \leq x_i)$).

También se puede definir la independencia entre variables aleatorias usando las pdf, en el sentido de que la misma colección de variables aleatorias se dice independiente cuando

$$f(x_1, x_2, \dots, x_k) = \prod_{i=1}^k f_i(x_i), \forall \vec{x} \in \mathbb{S}_{\vec{X}},$$

donde $f_i(x_i)$ es la pdf marginal asociada a la variable aleatoria X_i .

Definición 3.1.26 (Colección de variables aleatorias independientes idénticamente distribuidas). Una colección de variables aleatorias $\{X_1, X_2, \ldots, X_k\}$ se dice independiente e idénticamente distribuidas (iid, para abreviar) si y sólo si X_1, X_2, \ldots, X_k son variables aleatorias independientes y la pdf de cada variable aleatoria es idéntica.

3.2. Función de verosimilitud

3.2.1. Estadística

En la realidad, uno se encuentra en presencia de un experimento aleatorio del cual desconoce su función de densidad de probabilidad, dependiendo de las variables aleatorias asociadas a este. A través de una muestra lo suficientemente amplia, se desearía es reconstruir el modelo probabilístico que generó dicha muestra. Sin embargo, el problema resulta casi imposible de resolver sin especificar la forma de la función de densidad de probabilidad, por lo que se suele hacer es escoger una pdf con ciertos parámetros a determinar, buscando el mejor ajuste posible respecto a la muestra. Las componentes de esta estimación paramétrica son las siguientes [8]

- 1. Un modelo probabilístico $f(x, \theta)$, especificado con los valores de los parámetros desconocidos.
- 2. Un conjunto de posibles valores de θ bajo consideración, llamado el espacio de parámetros, denotado por Θ .
- 3. Una muestra aleatoria de n observaciones del modelo probabilístico.
- 4. Un conjunto de estimadores puntuales para los valores de los parámetros desconocidos, basados en la información contenida en la muestra aleatoria.
- 5. Las propiedades específicas de los estimadores que permiten evaluar la precisión y eficiencia del estimador.

A continuación se define lo que se entenderá por muestra.

Definición 3.2.1 (Muestra). Una colección de variables aleatorias X_1, \ldots, X_k se llama muestra de tamaño n. Una muestra de n variables aleatorias independientes X_1, \ldots, X_n se llama muestra aleatoria.

Con una muestra dada, se pueden estimar algunos parámetros de una población. Esta estimación se conoce como estadística.

Definición 3.2.2 (Estadística y estimador). Dada una muestra $X_1, X_2, ..., X_n$, una estadística $T = T(X_1, ..., X_n)$ es una función de la muestra que no depende de ningún otro

parámetro desconocido. Un estimador es una estadística que se usa para determinar una cantidad desconocida, y el estimado es el valor observado del estimador (evaluando la función en la muestra).

El comportamiento de un estimador y su efectividad para estimar un parámetro se puede medir a través de la distribución de probabilidad del estimador, conocida como distribución muestral.

Definición 3.2.3 (Distribución muestral). Para una muestra X_1, \ldots, X_n y una estadística $T = T(X_1, \ldots, X_n)$, la distribución muestral de la estadística T es la distribución de probabilidad asociada a la variable aleatoria T. La pdf de la distribución muestral se denota como $f_T(t;\theta)$.

Antes de continuar, es necesario definir el concepto de valor esperado o media, requerido para medir la eficiencia de un estimador.

Definición 3.2.4 (Valor esperado). Tome X como una variable aleatoria con pdf f(x) en \mathbb{S}_X . El valor esperado de la variable aleatoria X, denotado por E(X), se define como

$$E(X) = \sum_{x \in \mathbb{S}_X} x f(x)$$

cuando X es una variable aleatoria discreta, y como

$$E(X) = \int_{x \in S_X} x f(x) dx$$

 $cuando\ X\ es\ una\ variable\ aleatoria\ continua.$

Cuando una estadística T es usada para estimar un parámetro θ , se espera que la media de dicha estadística sea cercano a θ . Cuando se da la igualdad, T se llama estimador imparcial del parámetro θ .

Definición 3.2.5 (Estimador imparcial). Una estadística T se dice estimador imparcial de un parámetro θ cuando $E(T) = \theta$, $\forall \theta \in \Theta$. Una estadística se conoce como estimador parcial de θ cuando $E(T) \neq \theta$, y la parcialidad de una estadística T para estimar un parámetro θ se define como $Bias(T;\theta) = E(T) - \theta$.

En algunos casos, cuando el estimador es parcial, se puede despreciar la parcialidad tomando una muestra lo suficientemente grande. Un estimador cuya parcialidad va a cero cuando $n \to \infty$ se conoce como estimador asintóticamente imparcial.

Definición 3.2.6 (Estimador asintóticamente imparcial). Una estadística $T_n = T(X_1, ..., X_n)$ se conoce como estimador asintóticamente imparcial de un parámetro θ cuando

$$\lim_{n\to\infty} Bias(T_n;\theta) = 0.$$

A pesar de que es importante que un estimador se aproxime a su respectivo parámetro, el valor esperado (la media) no mide la precisión ni la exactitud del estimador T. Para medir la precisión se introduce el **error estándar de una estadística** como la desviación estándar de la misma, es decir,

$$SE(T) := \sqrt{E((T - E(T))^2)} := \sqrt{Var(T)}.$$

Por otro lado, para medir la exactitud de un estimador T usado para estimar un parámetro θ se introduce el **error cuadrado medio** asociado a T.

$$MSE(T; \theta) = E((T - \theta)^2).$$

Cuando se realiza una estimación paramétrica, la información acerca del parámetro desconocido $\theta \in \Theta$ está contenida en una muestra aleatoria de tamaño n seleccionada a partir de una pdf común $f(x;\theta)$. Una estadística que contiene toda la información relevante acerca de θ en una muestra se conoce como estadística suficiente [8].

Definición 3.2.7 (Estadística suficiente). Tome X_1, \ldots, X_n como una muestra de variables aleatorias iid con pdf común $f(x;\theta)$, para $\theta \in \Theta \subseteq \mathbb{R}^d$. Un vector de estadísticas $\vec{S}(\vec{X}) := (S_1(\vec{X}), \ldots, S_k(\vec{X}))$ se dice que es una estadística suficiente k-dimensional para un parámetro θ si y sólo si la distribución condicional de \vec{X} dado S = s no depende de θ , para ningún valor de s.

Esta última definición no es útil en la práctica para determinar la suficiencia de una estadística. Para esta labor se introduce la función de verosimilitud, que junto con el teorema de factorización de Neyman-Fisher puede determinar si una estadística es suficiente.

Definición 3.2.8 (Función de verosimilitud). Para una muestra X_1, \ldots, X_n , la función de verosimilitud $L(\theta|\vec{X})$ es la pdf adjunta de $\vec{X} = (X_1, \ldots, X_n)$, es decir,

$$L(\theta|\vec{X}) = f(x_1, \dots, x_n; \theta)$$

La función logarítmica de verosimilitud $\ell(\theta)$ se define como el logaritmo de la función de verosimilitud.

Cuando X_1, \ldots, X_n es una muestra de variables aleatorias iid, se puede escribir la función de verosimilitud como

$$L(\theta) = \prod_{i=1}^{n} f(x_i; \theta),$$

Teorema 3.2.1 (Teorema de factorización de Neyman-Fisher). Tome X_1, \ldots, X_n como una muestra de variables aleatorias iid con pdf $f(x;\theta)$, y espacio de parámetros Θ . Una estadística $S(\vec{X})$ es suficiente para θ si y sólo si $L(\theta)$ se puede factorizar como

$$L(\theta) = g(S(\vec{x}); \theta)h(\vec{x}),$$

donde $g(S(\vec{x}); \theta)$ no depende de $\vec{x} = (x_1, \dots, x_n)$, excepto a través de $S(\vec{x})$, $y h(\vec{x})$ no depende de θ .

En un modelo paramétrico $f(\vec{x}; \vec{\theta})$, la función de verosimilitud conecta los datos observados con dicho modelo, de tal modo que se puede hacer inferencias estadísticas sobre $\vec{\theta}$. Su importancia se resume en la ley de verosimilitud.

Ley de verosimilitud: Tome X_1, \ldots, X_n como una muestra de variables aleatorias iid con pdf común $f(x; \vec{\theta})$ y espacio de parámetros Θ . Para $\vec{\theta} \in \Theta$, mientras mayor sea el valor de $L(\vec{\theta})$, el modelo probabilístico con parámetro $\vec{\theta}$ se ajusta más a los datos observados. Entonces, el grado con el cual la información de la muestra da soporte a un parámetro $\vec{\theta}_0 \in \Theta$, en comparación con otro parámetro $\vec{\theta}_1 \in \Theta$ es igual a la razón entre sus verosimilitudes

$$\Lambda(\vec{\theta_0}, \vec{\theta_1}) = \frac{L(\vec{\theta_0})}{L(\vec{\theta_1})}.$$

En particular, la información en la muestra coincide mejor con $\vec{\theta}_1$ que con $\vec{\theta}_0$ cuando $\Lambda < 1$, y viceversa cuando $\Lambda > 1$.

Para encontrar el parámetro $\vec{\theta}$ para el cual la función de verosimilitud alcanza su mayor valor se introduce la función de Score.

Definición 3.2.9 (Función de Score). Tome X_1, \ldots, X_n como una muestra de variables aleatorias con función de verosimilitud $L(\vec{\theta})$, para $\vec{\theta} \in \Theta$. Si la función de verosimilitud logarítmica $\ell(\vec{\theta})$ es diferenciable, la función de Score se define como

$$Sc(\vec{\theta}) = \nabla_{\vec{\theta}} \ \ell(\theta),$$

de tal modo que una condición necesaria para que $\vec{\theta} \in \Theta$ sea un máximo es que $Sc(\theta) = \vec{0}$.

3.2.2. Estimación bayesiana

En la estimación paramétrica puntual bayesiana, el parámetro θ se trata como una variable aleatoria, con su propia pdf $\pi(\theta; \lambda)$. Esta distribución recibe el nombre de distribución previa y λ se llama hiperparámetro de la distribución previa. Cuando θ es una variable aleatoria, el modelo paramétrico $f(x; \theta)$ que genera la muestra aleatoria es la distribución condicional de X dado θ , por lo que la pdf de X se denotará como $f(x|\theta)$.

Las inferencias de θ en la aproximación bayesiana están basadas en la distribución de θ dados los valores observados de una muestra aleatoria $\vec{x} = (x_1, \dots, x_n)$, llamada distribución posterior, y denotada por $f(\theta|\vec{x})$ [8].

Usando el teorema de Bayes y el teorema de la probabilidad total, en el caso de que θ es una variable aleatoria continua,

$$f(\theta|\vec{x}) = \frac{f(\vec{x}, \theta; \lambda)}{f_{\vec{X}}(\vec{x})} = \frac{f(\vec{x}|\theta)\pi(\theta; \lambda)}{\int_{\mathbb{S}_{\theta}} f(\vec{x}|\theta)\pi(\theta; \lambda) d\theta}.$$

De modo similar, cuando θ es una variable aleatoria discreta,

$$f(\theta|\vec{x}) = \frac{f(\vec{x}|\theta)\pi(\theta;\lambda)}{\sum_{\theta \in S_{\theta}} f(\vec{x}|\theta)\pi(\theta;\lambda)}.$$

La distribución posterior combina la información disponible de θ en la distribución previa y la función de verosimilitud para producir una distribución actualizada que contiene toda la información disponible de θ .

El siguiente teorema indica que la distribución posterior depende de la muestra \vec{x} sólo bajo una estadística suficiente para θ .

Teorema 3.2.2. Si X_1, \ldots, X_n es una muestra de variables independientes iid con pdf común $f(x|\theta)$, S es una estadística suficiente para θ , $y \pi(\theta;\lambda)$ una distribución previa para θ , entonces la distribución posterior de θ dado \vec{X} depende de la muestra sólo a través de una estadística suficiente S.

Demostración. La prueba se hará únicamente para el una distribución previa discreta, puesto que en el caso continuo la prueba es similar, reemplazando la sumatoria por la integral. Tome X_1, \ldots, X_n como una muestra de variables aleatorias iid con pdf común $f(x|\theta)$, S como una estadística suficiente para θ , y $\pi(\theta; \lambda)$ como la distribución previa de θ . Entonces, como S es suficiente para θ , por el teorema de factorización de Fisher-Neyman, la distribución adjunta de X_1, \ldots, X_n puede ser factorizada como $f(\vec{x}|\theta) = f(S;\theta)h(\vec{x})$, para algunas funciones g y g

Entonces, la pdf de la distribución posterior es

$$f(\theta|\vec{x}) = \frac{f(\vec{x}|\theta)\pi(\theta)}{\sum_{\theta \in \mathbb{S}_{\theta}} f(\vec{x}|\theta)\pi(\theta)} = \frac{g(S;\theta)h(\vec{x})\pi(\theta)}{\sum_{\theta \in \mathbb{S}_{\theta}} g(S;\theta)h(\vec{x})\pi(\theta)} = \frac{g(S;\theta)\pi(\theta)}{\sum_{\theta \in \mathbb{S}_{\theta}} g(S;\theta)\pi(\theta)},$$

que es una función de S y θ únicamente. Entonces, $f(\theta|\vec{x})$ depende de \vec{X} sólo a través de la estadística suficiente S.

3.3. Cadenas de Markov Monte Carlo

La teoría comentada en la sección anterior estipula el número de muestras necesarias para tener una estadística suficiente, y da a conocer posibles funciones de costo para estimar la precisión y exactitud de un estimador dado. Por supuesto, se requiere un estimador para obtener los valores de los parámetros de un modelo probabilístico. Para ello, se usarán algoritmos relacionados con cadenas de Markov Monte Carlo (*MCMC* para abreviar).

Para empezar, recuerde que el teorema de Bayes estipula que, en el caso en el cual θ es una variable aleatoria continua:

$$P(\theta) = \frac{L(\theta)\pi(\theta)}{\int_{\theta \in \mathbb{S}_{\theta}} L(\theta)\pi(\theta) d\theta} = \frac{L(\theta)\pi(\theta)}{Z},$$
(3-1)

donde $P(\theta) := f(\theta|\vec{x})$ es la distribución posterior, $L(\theta) = f(\vec{x}|\theta)$ es la función de verosimilitud, $\pi(\theta)$ es la distribución previa y la constante Z se conoce como evidencia.

Considere ahora una función $f(\theta)$ del parámetro o parámetros del modelo que va a \mathbb{R} . El valor esperado de esta función sobre todo el soporte de θ es

$$\underbrace{E_P[f(\theta)]}_{\text{valor esperado respecto a }P} = \int_{\theta \in \mathbb{S}_{\theta}} f(\theta) P(\theta) d\theta. \tag{3-2}$$

Esta integral se puede aproximar usando rejillas. Por ejemplo, en el caso en el que el modelo tiene un único parámetro $\theta \in \mathbb{S}_{\theta} \subseteq \mathbb{R}$, se puede construir una partición del soporte de θ (finita o infinita). Acá se supondrá un soporte acotado, pero el razonamiento para un soporte no acotado es similar. Considere entonces la partición $\mathcal{P} = \{\theta_1 < \theta_2 < \cdots < \theta_{n+1}\}$. Definiendo $\Delta \theta_i = \theta_{i+1} - \theta_i$ como el desplazamiento entre los elementos de la partición y $\overline{\theta_i} = \frac{\theta_{i+1} + \theta_i}{2}$ como el punto medio entre θ_{i+1} y θ_i , el valor esperado de $f(\theta)$ se puede aproximar de la siguiente forma:

$$E_P[f(\theta)] \approx \sum_{i=1}^n f(\overline{\theta_i}) P(\overline{\theta_i}) \Delta \theta_i.$$
 (3-3)

La generalización a más dimensiones es directa: se descompone el soporte $\mathbb{S}_{\theta} \subseteq \mathbb{R}^{N}$ en n cuboides N-dimensionales. La contribución de cada uno de estos cuboides es proporcional al producto del peso $f(\overline{\theta_{i}})P(\overline{\theta_{i}})$ (donde $\overline{\theta_{i}}$ es el centro geométrico del i-ésimo cuboide) y al volumen

$$\Delta \theta_i = \prod_{j=1}^N \Delta \theta_{i,j},$$

donde $\Delta\theta_{i,j}$ es el ancho del i-ésimo cuboide en la j-ésima dimensión. Así, la ecuación para el valor esperado de $f(\theta)$ tiene la misma forma que (3-3). Más aún, escribiendo el valor esperado de la siguiente forma

$$E_P[f(\theta)] = \int_{\theta \in \mathbb{S}_{\theta}} f(\theta) P(\theta) d\theta = \underbrace{\int_{\theta \in \mathbb{S}_{\theta}} f(\theta) P(\theta) d\theta}_{\text{left}} = \underbrace{\int_{\theta \in \mathbb{S}_{\theta}} f(\theta) Z P(\theta) d\theta}_{\text{left}}$$

y tomando $\tilde{P}(\theta) = ZP(\theta)$, se puede aproximar la evidencia a través del mismo procedimiento, dado que $Z = \int_{\theta \in \mathbb{S}_{\theta}} \tilde{P}(\theta) d\theta$:

$$E_P[f(\theta)] = \frac{\int_{\theta \in \mathbb{S}_{\theta}} f(\theta) \tilde{P}(\theta) d\theta}{\int_{\theta \in \mathbb{S}_{\theta}} \tilde{P}(\theta) d\theta} \approx \frac{\sum_{i=1}^n f(\overline{\theta_i}) \tilde{P}(\overline{\theta_i}) \Delta \theta_i}{\sum_{i=1}^n \tilde{P}(\overline{\theta_i}) \Delta \theta_i}.$$

Esta sustitución a la distribución posterior no normalizada $\tilde{P}(\theta)$ es crucial para calcular valores esperados en la práctica, puesto que es posible calcular directamente $\tilde{P}(\theta) = L(\theta)\pi(\theta)$,

sin conocer Z. En el caso de que se necesite Z, se puede aproximar numéricamente a través de rejillas, como se vio anteriormente.

Una desventaja de la aproximación a este problema por medio de rejillas es el crecimiento exponencial de la cantidad de cubos necesarios para cubrir el soporte cuando aumenta su dimensión. Otra desventaja es que, al no conocer la forma de la distribución posterior, la contribución de cada parte de la rejilla puede ser altamente inexacta, dependiendo de su estructura. Si no se escogen bien los cuboides de la rejilla se podría terminar con muchos puntos localizados en regiones donde $\tilde{P}(\theta)$ o $f(\theta)\tilde{P}(\theta)$ son relativamente pequeños, lo que implicaría que su suma podría estar dominada por un pequeño número de puntos con pesos muy grandes. Para resolver esta desventaja, se busca incrementar la resolución de la rejilla en regiones donde la distribución posterior es grande y disminuirla en las otras regiones para evitar este efecto [10].

Para resolver esta última desventaja (teóricamente), se introducirá la idea de **media pesada muestral** de un conjunto de $\{f_1, \ldots, f_n\}$ observaciones con peso $\{\omega_1, \ldots, \omega_n\}$ de la siguiente forma:

$$f_{mean} = \frac{\sum_{i=1}^{n} \omega_i f_i}{\sum_{i=1}^{n} \omega_i}.$$
 (3-4)

Si se toma $f_i := f(\overline{\theta_i})$ y $\omega_i := \tilde{P}(\overline{\theta_i})\Delta\theta_i$, se observa que el valor esperado se puede escribir de manera aproximada como una media pesada muestral. De esta forma, es necesario encontrar una forma eficiente de calcular dicha media pesada muestral para evitar la desventaja comentada. El **tamaño de muestra efectivo** n_{eff} es una primera aproximación, basada en el hecho de que no todas las muestras dan la misma información. En teoría, uno puede encontrar una manera de aproximar $E_P[f(\theta)]$ de mejor o igual forma de la que se tiene en términos de una media pesada muestral de tamaño n usando un número más pequeño de muestras n_{eff} si se es capaz de localizarlos más eficientemente.

De manera formal, se define n_{eff} del siguiente modo[5]:

$$n_{eff} = \frac{\left(\sum_{i=1}^{n} \omega_i\right)^2}{\sum_{i=1}^{n} \omega_i^2}.$$
 (3-5)

Intuitivamente, el mejor caso es cuando todos los pesos son iguales $(\omega_i = \omega)$, donde

$$n_{eff}^{best} = \frac{(n\omega)^2}{n\omega^2} = n,$$

y el peor caso es cuando todo el peso está concentrado en una única muestra, ($\omega_j = \omega$, para algún j y $\omega_i = 0$ en otro caso):

$$n_{eff}^{worst} = \frac{\omega^2}{\omega^2} = 1.$$

El mejor caso hace referencia a cuando todos los elementos de la rejilla tienen aproximadamente la misma contribución en la integral, mientras que el peor caso hace referencia a cuando la integral entera está contenida en un único cuboide de la rejilla. Se debe procurar entonces que los pesos tiendan a ser una constante. En teoría, si se conoce la distribución posterior lo suficientemente bien, para n lo suficientemente grande, se podría ajustar $\Delta\theta_i$ para que los pesos $\omega_i = \tilde{P}(\overline{\theta_i})\Delta\theta_i$ sean uniformes a cierto nivel de precisión. Esta uniformidad ocurre cuando

$$\Delta\theta_i \propto \frac{1}{\tilde{P}(\overline{\theta_i})}$$
, para todo *i*.

Cuando $n \to \infty$, el espaciamiento $\Delta \theta$ cambia como función de θ . Esto motiva la definición de la densidad de puntos $Q(\theta)$, conocida como **distribución propuesta**, basada en la resolución variable $\Delta \theta(\theta)$ en la rejilla infinita como función de θ :

$$Q(\theta) \propto \frac{1}{\Delta \theta(\theta)}.$$

Usando $Q(\theta)$, se puede reescribir el valor esperado como

$$E_P[f(\theta)] = \frac{\int_{\theta \in \mathbb{S}_{\theta}} f(\theta) \tilde{P}(\theta) d\theta}{\int_{\theta \in \mathbb{S}_{\theta}} \tilde{P}(\theta) d\theta} = \frac{\int_{\theta \in \mathbb{S}_{\theta}} f(\theta) \frac{\tilde{P}(\theta)}{Q(\theta)} Q(\theta) d\theta}{\int_{\theta \in \mathbb{S}_{\theta}} \frac{\tilde{P}(\theta)}{Q(\theta)} Q(\theta) d\theta} = \frac{E_Q[f(\theta)\tilde{P}(\theta)/Q(\theta)]}{E_Q[\tilde{P}(\theta)/Q(\theta)]}.$$

En palabras, la rejilla de n elementos en el límite de infinita resolución se manifiesta en una nueva distribución $Q(\theta)$, con la cual se puede escribir el valor esperado $E_P[f(\theta)]$ en términos de los valores esperados $E_Q[f(\theta)\tilde{P}(\theta)/Q(\theta)]$ y $E_Q[\tilde{P}(\theta)/Q(\theta)]$. La practicidad de esto radica en el hecho de que se pueden calcular estas últimos valores esperados generando una muestra aleatoria de n elementos a partir de $Q(\theta)$.

Como no se sabe la forma exacta de $P(\theta)$ de antemano, se desconoce cuál rejilla proveerá un estimado óptimo para $E_P[f(\theta)]$. Una de las formas de calcular este valor esperado es usando la distribución propuesta $Q(\theta)$, generando muestras a partir de ella. Esto motiva a escoger $Q(\theta)$ de manera que se puedan generar muestras de manera fácil y directa. Generando n muestras $\{\theta_1, \ldots, \theta_n\}$ de esta distribución, con pesos asociados q_i y definiendo

$$f(\theta_i) = f_i, \quad \tilde{\omega}_i := \tilde{\omega}(\theta_i) = \tilde{P}(\theta_i)/Q(\theta_i),$$

el valor esperado se puede aproximar como

$$E_P[f(\theta)] = \frac{E_Q[f(\theta)\tilde{P}(\theta)/Q(\theta)]}{E_Q[\tilde{P}(\theta)/Q(\theta)]} \approx \frac{\sum_{i=1}^n f_i \tilde{\omega}_i q_i}{\sum_{i=1}^n \tilde{\omega}_i q_i}.$$

Si además se toma $Q(\theta)$ de modo que las muestras sean iid, los correspondientes pesos q_i se reducen a 1/n, de manera que

$$E_P[f(\theta)] \approx \frac{n^{-1} \sum_{i=1}^n f_i \tilde{\omega_i}}{n^{-1} \sum_{i=1}^n \tilde{\omega_i}}.$$

El denominador de la última expresión es nuevamente una aproximación directa de la evidencia,

$$Z = \int_{\theta \in \mathbb{S}_{\theta}} \tilde{P}(\theta) d\theta \approx n^{-1} \sum_{i=1}^{n} \tilde{\omega}_{i}.$$

De este modo, los pasos a seguir para calcular el valor esperado son los siguientes.

- 1. Se debe generar n muestras iid $\{\theta_1, \dots, \theta_n\}$ a partir de $Q(\theta)$.
- 2. Se calculan sus correspondientes pesos $\tilde{\omega}_i = \tilde{P}(\theta_i)/Q(\theta_i)$.
- 3. Se estima $E_P[f(\theta)]$ aproximando $E_Q[f(\theta)\tilde{P}(\theta)/Q(\theta)]$ y $E_Q[\tilde{P}(\theta)/Q(\theta)]$ a través de los pesos de las muestras.

Los métodos MCMC buscan generar muestras de tal modo que los pesos asociados $\{\tilde{\omega}_1, \dots, \tilde{\omega}_n\}$ sean constantes. $Q(\theta)$ juega un papel fundamental para lograr este cometido, y para ilustrar, considere los siguientes casos.

• Tome $Q(\theta) = Q^{unif}(\theta)$, definida sobre un cuboide de volumen V, de la siguiente manera

$$Q^{unif}(\theta) = \begin{cases} 1/V, & \text{si } \theta \text{ est\'a dentro del cuboide o} \\ 0 & \text{en otro caso.} \end{cases}$$

Los pesos en este caso serán proporcionales a la distribución posterior:

$$\tilde{\omega_i}^{unif} = \frac{\tilde{P}(\theta_i)}{Q^{unif}(\theta_i)} = V\tilde{P}(\theta_i) \propto P(\theta_i).$$

■ Tome $Q(\theta) = Q^{prior}(\theta) = \pi(\theta)$ como la distribución previa de θ . Los pesos en este caso se pueden calcular mediante la función de verosimilitud.

$$\tilde{\omega_i}^{prior} = \frac{\tilde{P}(\theta_i)}{Q^{prior}(\theta_i)} = \frac{ZP(\theta_i)}{\pi(\theta_i)} = \frac{L(\theta_i)\pi(\theta_i)}{\pi(\theta_i)} = L(\theta_i).$$

■ Tome $Q(\theta) = Q^{post}(\theta) = P(\theta)$ como la distribución posterior de θ , de modo que los pesos serán constantes e iguales a la evidencia Z:

$$\tilde{\omega_i}^{post} = \frac{\tilde{P}(\theta_i)}{Q^{post}(\theta_i)} = \frac{ZP(\theta_i)}{P(\theta_i)} = Z.$$

Siguiendo la idea del último caso, si uno desea que sus pesos sean constantes, se debe procurar que $Q(\theta)$ sea lo más cercana posible a $P(\theta)$. Los modelos MCMC buscan generar muestras con pesos proporcionales a la distribución posterior, para obtener un estimado óptimo del valor esperado.

Los modelos MCMC logran esto creando una cadena de valores de parámetros correlacionados $\{\theta_1 \to \cdots \to \theta_n\}$ al cabo de n iteraciones de tal modo que el número $m(\theta)$ de iteraciones

hechas en cada región particular δ_{θ} , centrada en θ es proporcional a la densidad posterior $P(\theta)$. En otras palabras, la densidad de muestras generadas por el modelo MCMC

$$\rho(\theta) := \frac{m(\theta)}{n}$$

en la posición θ integrada sobre δ_{θ} es aproximadamente

$$\int_{\theta \in \delta_{\theta}} P(\theta) d\theta \approx \int_{\theta \in \delta_{\theta}} \rho(\theta) d\theta \approx n^{-1} \sum_{j=1}^{n} \mathbb{1}[\theta_{j} \in \delta_{\theta}],$$

donde $\mathbb{1}[\cdot]$ es la función indicadora, equivalente a 1 si la condición a la que está siendo evaluada es verdadera, y cero si es falsa. La densidad de muestras se puede aproximar de esta forma contando el número de muestras dentro de δ_{θ} y normalizando por el número total de muestras n.

Cuando $n \to \infty$, se garantiza que $\rho(\theta) \to P(\theta)$ en cualquier punto θ [3]. Con una aproximación razonable de $\rho(\theta)$, se pueden usar las muestras $\{\theta_1 \to \cdots \to \theta_n\}$ generadas por $\rho(\theta)$ para estimar la evidencia

$$Z = \int_{\theta \in \mathbb{S}_{\theta}} \frac{\tilde{P}(\theta)}{\rho(\theta)} \rho(\theta) d\theta = E_{\rho}[\tilde{P}(\theta)/\rho(\theta)] \approx n^{-1} \sum_{i=1}^{n} \frac{\tilde{P}(\theta_{i})}{\rho(\theta_{i})}.$$

Además, como el modelo MCMC produce una serie de n muestras de la distribución posterior, el valor esperado de $f(\theta)$ se reduce a

$$E_P[f(\theta)] \approx \frac{n^{-1} \sum_{i=1}^n f_i \tilde{\omega}_i}{n^{-1} \sum_{i=1}^n \tilde{\omega}_i} = \frac{n^{-1} \sum_{i=1}^n f_i}{n^{-1} \sum_{i=1}^n 1} = n^{-1} \sum_{i=1}^n f_i,$$

que es la expresión del promedio aritmético de los valores $f_i = f(\theta_i)$.

3.3.1. Algoritmo de Metropolis-Hastings

Se desea generar muestras $\theta_i \to \theta_{i+1}$ de modo que la distribución de las muestras finales $\rho(\theta)$ sea estacionaria cuando $n \to \infty$ (que converja) y sea igual a $P(\theta)$. La primera condición se puede satisfacer usando el **balance detallado**, que refiere a la idea de que la probabilidad sea conservada cuando uno se mueve de una posición a otra (es decir, el proceso es reversible). Formalmente, esto implica que

$$M(\theta_{i+1}|\theta_i)M(\theta_i) = M(\theta_{i+1},\theta_i) = M(\theta_i|\theta_{i+1})M(\theta_{i+1}),$$

donde $M(\theta_{i+1}|\theta_i)$ es la probabilidad de moverse de θ_i a θ_{i+1} y $M(\theta_{i+1}|\theta_i)$ es la probabilidad de moverse de θ_{i+1} a θ_i . Reescribiendo esta última igualdad:

$$\frac{M(\theta_{i+1}|\theta_i)}{M(\theta_i|\theta_{i+1})} = \frac{M(\theta_{i+1})}{M(\theta_i)} = \frac{P(\theta_{i+1})}{P(\theta_i)}.$$
(3-6)

La última igualdad hace referencia al hecho de que la distribución con la que se buscan generar las muestras es la posterior, $P(\theta)$.

Es necesario construir un procedimiento que permita moverse a una nueva posición calculando esta probabilidad M. Para ello, se propone una nueva posición $\theta_i \to \theta'_{i+1}$ usando la distribución propuesta $Q(\theta'_{i+1}|\theta_i)$. Se decide si aceptar $(\theta_{i+1} = \theta'_{i+1})$ o rechazar $(\theta_{i+1} = \theta_i)$ esta nueva posición con una **probabilidad de transición** $T(\theta'_{i+1}|\theta_i)$. Combinando ambas distribuciones, se obtiene la probabilidad de moverse a una nueva posición

$$M(\theta_{i+1}|\theta_i) = Q(\theta_{i+1}|\theta_i)T(\theta_{i+1}|\theta_i).$$

El problema estaría completamente determinado si se conoce la probabilidad de transición $T(\theta'_{i+1}|\theta_i)$. Para encontrarla, se hace uso de la condición de balance detallado (3-6).

$$\frac{T(\theta_{i+1}|\theta_i)}{T(\theta_i|\theta_{i+1})} = \frac{P(\theta_{i+1})}{P(\theta_i)} \frac{Q(\theta_i|\theta_{i+1})}{Q(\theta_{i+1}|\theta_i)}.$$

El criterio de Metropolis [6]:

$$T(\theta_{i+1}|\theta_i) = \min \left[1, \frac{P(\theta_{i+1})}{P(\theta_i)} \frac{Q(\theta_i|\theta_{i+1})}{Q(\theta_{i+1}|\theta_i)} \right]$$

satisface esta condición, por lo que el algoritmo para generar la muestra es el siguiente:

- 1. Se propone una nueva posición $\theta_i \to \theta'_{i+1}$, generando una muestra de la distribución propuesta $Q(\theta'_{i+1}|\theta_i)$.
- 2. Se calcula la probabilidad de transición $T(\theta'_{i+1}|\theta_i)$.
- 3. Se genera un número aleatorio u_{i+1} a partir de una distribución uniforme entre 0 y 1.
- 4. Si $u_{i+1} \leq T(\theta'_{i+1}|\theta_i)$, se acepta el movimiento y se toma $\theta_{i+1} = \theta_i$. Si $u_{i+1} > T(\theta'_{i+1}|\theta_i)$, se rechaza el movimiento y se toma $\theta_{i+1} = \theta_i$.
- 5. Se incrementa i = i + 1 y se repite el proceso.

Bibliografía

- [1] Richard L. Bishop and Samuel I. Goldberg. *Tensor analysis on manifolds*. Dover Publications, 1980.
- [2] L. Blanco, V. Arunachalam, and Dharmaraja S. Introduction to Probability and Stochastic Processes with Applications. Wiley, 2012.
- [3] Steve Brooks, Andrew Gelman, and Galin L. Jones. *Handbook of Markov chain Monte Carlo*. CRC Press, 2011.
- [4] S. Carroll. Lecture Notes on General Relativity. Institute of Theoretical Physics, University of California, 1997.
- [5] Leslie Kish. Survey sampling. Wiley, 1995.
- [6] Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth, Augusta H. Teller, and Edward Teller. Equation of state calculations by fast computing machines. The Journal of Chemical Physics, 21(6):1087–1092, 1953.
- [7] J. Munkres. Topology. Pearson Education Limited, 2014.
- [8] R. Rossi. Mathematical statistics: an introduction to likelihood based inference. John Wiley Sons, Inc., 2018.
- [9] P. Schneider, J. Ehlers, and E. E. Falco. Gravitational lenses. Springer, 1992.
- [10] Joshua S. Speagle. A conceptual introduction to markov chain monte carlo methods, 2019.
- [11] K. Thorne, J. Wheeler, and C. Misner. Gravitation. W.H. Freeman and Company, 1973.
- [12] Robert M. Wald. General relativity, May 2010.
- [13] Steven Weinberg. Gravitation and cosmology: principles and applications of the general theory of relativity. Wiley India Pvt. Ltd., 2016.