Set theory

Xie Zejian

Set limitations

$$\{A_n, i.o.\} = \limsup_n A_n = \lim_{k \to \infty} \bigcup_{n=k}^{\infty} A_n$$

$$\{A_n, ult.\} = \liminf_n A_n = \lim_{k \to \infty} \bigcap_{n=k}^{\infty} A_n$$

i.o. means elements in $\{A_n, i.o.\}$ is occurs in A_n infinitely often and ult. means it will always occurs utimately. Hence we have

$$\lim \inf A_n \subset \lim \sup A_n$$

One sequence is converges to A iff

$$\liminf_{n} A_n = \limsup_{n} A_n = A$$

$$\begin{array}{ll} A_i \uparrow & \Longrightarrow A_n \to A = \cup_{k=1}^{\infty} A_k = \lim A_n \\ A_i \downarrow & \Longrightarrow A_n \to A = \cap_{k=1}^{\infty} A_k = \lim A_n \end{array}$$

Algebras

Let Ω be as space

Definition

Definition: A nonempty class of subset of Ω is an semi algebra if

- 1. Closed under inter: $A, B \in \mathcal{S} \Rightarrow A \cap B \in \mathcal{S}$
- 2. Complement can be written as finite disjoint union: $A \in S \implies \exists A_i \in \mathcal{S}, \quad A_i \cap A_j = \emptyset, i \neq j, \quad s.t. \quad A^c = \sum_{i=1}^n A_i$

Definition: A nonempty class of subset of Ω is an algebra on Ω if

- 1. Closed under complement: $A^c \in \mathcal{A} \iff A \in \mathcal{A}$
- 2. Closed under finite union: $\cup_i A_i \in \mathcal{A} \iff \forall i, A_i \in \mathcal{A}$

Note that algebra is closed by finite union and we can prove that is Equivalent to it is closed by finite intersection

Definition: A nonempty class of subset of Ω is an σ algebra on Ω if

- 1. is an algebra
- 2. Closed under countable union.

Remark: \mathcal{A} is an algebra auto implies $\in \mathcal{A}$ and $\Omega \in \mathcal{A}$. So $\{,\Omega\}$ is the minimum algebra on Ω and thus minimum σ algebra.

Generate algebras

The pair (Ω, \mathcal{A}) is called a **measurable space**. The sets of \mathcal{A} are called **measurable sets**.

a semi-algebra ${\mathcal S}$ can generate algebras by take all finite disjoint unions of sets, i.e.

$$\overline{S} = \{ \text{finite disjoint unions of sets in } S \} = A(S)$$

is an algebra.

Generated classes

Let $\{A_{\gamma} : \gamma \in \Gamma\}$ is a collection of σ algebra, then we have

$$\mathcal{A} = \cap_{\gamma \in \Gamma} \mathcal{A}_{\gamma}$$

is also a σ algebra. Hence we can define the smallest σ algebra as intersection of all σ algebras contains A. That is

$$\forall \mathcal{A} \subset \mathcal{P}(\Omega), \quad \exists \sigma(\mathcal{A}) \quad s.t.$$

- 1. $\mathcal{A} \subset \sigma(\mathcal{A})$
- 2. $\forall A \subset B \in \sigma$ -algebras $\implies \sigma(A) \subset B$
- 3. $\sigma(A)$ is unique.

We have

$$\sigma(\mathcal{S}) = \sigma(\overline{\mathcal{S}})$$

Which can be proved by show that

$$\mathcal{S} \subset \sigma(\bar{\mathcal{S}}) \implies \sigma(\mathcal{S}) \subset \sigma(\bar{\mathcal{S}})$$

$$\bar{\mathcal{S}} \subset \sigma(\mathcal{S}) \implies \sigma(\bar{\mathcal{S}}) \subset \sigma(\mathcal{S})$$

The smallest σ -algebra generated by the class of all open intervals on the real line $\mathcal{R} = (-\infty, \infty)$ is **Borel** σ **algebra**, denoted by \mathcal{B} i.e.

$$\mathcal{A} = \{(a, b) : -\infty < a < b < \infty\}$$

$$\mathcal{B} = \sigma(\mathcal{A})$$

, whose elements are called \mathbf{Borel} sets, $(\mathcal{R},\mathcal{B})$ is called \mathbf{Borel} measurable space

Monotone class

m-class is closed under monotone op.

If $A_{1:n} \in \mathcal{A}$ and $A_n \uparrow or \downarrow$

$$\lim_{n\to\infty} A_n \in \mathcal{A}$$

 π -**class** is closed under finite intersection

$$A, B \in \mathcal{A} \implies A \cap B \in \mathcal{A}$$

 λ - class

- 1. $\Omega \in \mathcal{A}$
- 2. closed under proper difference:

$$A - B \in \mathcal{A} \iff B \subset A \text{ and } B, A \in \mathcal{A}$$

3. is an m-class (cause $\Omega - A_i \downarrow$ whenever $A_i \uparrow$)

Relationships with σ algebra

$$\mathcal{A}$$
 is a σ - algebra $\iff \mathcal{A}$ is a m -class and \mathcal{A} is an algebra \mathcal{A} is a σ - algebra $\iff \mathcal{A}$ is a π - class & \mathcal{A} is a λ - class

Which can be proved as follows:

- $\bullet \quad \Longrightarrow :$
 - 1. $\Omega \in \mathcal{A}$
 - 2. $A B = A \cap B^c \in \mathcal{A}$
 - 3. is an m-class
- = :
 - 1. $A^c = \Omega A \in \mathcal{A}$
 - 2. $A \cup B = (A^c \cap B^c)^c \in \mathcal{A}$
 - 3. hence \mathcal{A} is an algebra and \mathcal{A} is a m-class

Similarly, for m, π, λ -class, those properties also hold:

Let $\{A_{\gamma} : \gamma \in \Gamma\}$ is a collection of m, π, λ -class then we have

$$\mathcal{A} = \cap_{\gamma \in \Gamma} \mathcal{A}_{\gamma}$$

is also a m, π, λ -class

 $\forall \mathcal{A} \subset \mathcal{P}(\Omega), \quad \exists m(\mathcal{A}) \quad s.t.$

- 1. $\mathcal{A} \subset \sigma(\mathcal{A})$
- 2. $\forall A \subset B \in \text{m-classes} \quad m(A) \subset B$
- 3. m(A) is unique.

similarly with $\lambda(\mathcal{A})$ and $\pi(\mathcal{A})$

The Monotone Class Theorem(MCT)

Let \mathcal{A} be an algebra, then

- 1. $m(A) = \sigma(A)$
- 2. if \mathcal{B} is an m class and $\mathcal{A} \subset \mathcal{B}$, then $\sigma(\mathcal{A}) = m(\mathcal{A}) \subset \mathcal{B}$

Similarly, let \mathcal{A} be a π class, then $\lambda(\mathcal{A}) = \sigma(\mathcal{A})$

Then we have Monotone class theorem:

 $\forall \mathcal{A} \subset \mathcal{B} \subset \mathcal{P}(\Omega), s.t.$:

- 1. If \mathcal{A} is a π -class, \mathcal{B} is a λ -class, then $\sigma(\mathcal{A}) \subset \mathcal{B}$
- 2. If \mathcal{A} is an algebra, \mathcal{B} is a m-class, then $\sigma(\mathcal{A}) \subset \mathcal{B}$

Product Spaces

Let $(\Omega_i, \mathcal{A}_i)$ be a measurable space.

n-dim **rectangles** of the product space of $\prod_{i=1}^{n} \Omega_i$

$$\prod_{i=1}^{n} A_i := A_1 \times \ldots \times A_n = \{(\omega_1, \ldots, \omega_n) : \omega_i \in A_i \subset \Omega_i, 1 \le i \le n\}$$

if $A_i \in \mathcal{A}_{\rangle}$, they are **measurable rectangles**, let \mathcal{G} denote the class of all measurable rectangles of $\prod_{i=1}^{n} \Omega_i$, it's easy to check that \mathcal{G} is a π class.

n-dim **product** σ -algebra:

$$\prod_{i=1}^{n} A_{i} = \sigma \left(\left\{ \prod_{i=1}^{n} A_{i} : A_{i} \in A_{i}, 1 \leq i \leq n \right\} \right) = \sigma(\mathcal{G})$$

n-dim product **measurable space**:

$$\prod_{i=1}^{n} (\Omega_{i}, \mathcal{A}_{i}) = \left(\prod_{i=1}^{n} \Omega_{i}, \prod_{i=1}^{n} \mathcal{A}_{i} \right)$$

Theorem Let \mathcal{A} be the set of all finite disjoint union of \mathcal{G} , then it's the smallest algebra contains \mathcal{G} .

Proof First show that \mathcal{A} is π class, since for element A_i in \mathcal{A} , it can be written as disjoint unions of subset E_{ij} of \mathcal{G} , i.e. $A_i = \bigcup_{j=1}^{n_i} E_{ij} \in \mathcal{A}$. Then

$$A_1 \cap A_2 = (\bigcup_{j=1}^{n_1} E_{1j}) \cap (\bigcup_{k=1}^{n_2} E_{2k}) = \bigcup \bigcup (E_{ij} \cap E_{2k}) \in \mathcal{A}$$

since \mathcal{G} is already a π class.

Then we show that \mathcal{A} is an algebra, which is suffices to show that it's also closed under complements. Consider element of \mathcal{G} :

$$E = E_1 \times E_2 \times \cdots \times E_n$$

we can show that E^c can be written as disjoint union $\cup D_{i:n}$ Then any $A \in \mathcal{A}$

$$A^{c} = \bigcap E_{j}^{c} = \bigcap \bigcup D_{ij} \xrightarrow{disjoint} \bigcup \bigcap D_{ij} \in \mathcal{A}$$

Clearly $\mathcal{A}(\mathcal{G}) \subset \mathcal{A}$ and $\mathcal{A} \subset \mathcal{A}(\mathcal{G})$ and hence $\mathcal{A} = \mathcal{A}(\mathcal{G})$.

Corollary

$$\prod_{i=1}^{n} \mathcal{A}_i = \sigma(\mathcal{A}) = \sigma(\mathcal{G})$$

Proof $\mathcal{G} \subset \mathcal{A} \subset \sigma(\mathcal{A}) \Longrightarrow \sigma(\mathcal{G}) \subset \sigma(\mathcal{A})$ and $\mathcal{A} = \mathcal{A}(\mathcal{G}) \subset \sigma(\mathcal{G}) \Longrightarrow \sigma(\mathcal{A}) \subset \sigma(\mathcal{G})$ and hence $\sigma(\mathcal{A}) = \sigma(\mathcal{G})$.