Übungen zum Ferienkurs Analysis II 2014

Extrema mit/ohne Nebenbedingungen, Implizite Funktionen

3.1 kritische Punkte

Bestimmen Sie die kritischen Punkte der Abbildung $f: \mathbb{R}^3 \to \mathbb{R}, \ (x,y,z) \mapsto 2x^2 + y^4 + 2z^2 + 4yz$ und untersuchen Sie diese auf lokale Minima, Maxima oder Sattelpunkte.

3.2 Extrema

Sei $D = \{(x,y) \in \mathbb{R}^2 \mid xy \leq 0\}$ und $f: D \to \mathbb{R}$ gegeben durch $f(x,y) = \cos x + y(y+2)$. Bestimmen Sie die lokalen und globalen Extrema von f.

3.3 Implizite Funktionen

a=(3,0,1) ist die Lösung des nichtlinearen Gleichungssystems

$$x^{2} + y^{2} + z^{2} - 6\sqrt{x^{2} + y^{2}} = -8$$
$$x^{2} + y^{2} + z^{2} - 6x - 2y = -8$$

- a) Welche Aussage können Sie mit Hilfe des Satzes über implizite Funktionen über die Auflösbarkeit des Gleichungssystems in einer Umgebung um a nach (y,z) und über die Ableitung der Funktion $x \mapsto (y(x), z(x))$
- b) Überprüfen Sie die Auflösbarkeit nach (x,y) und nach (x,z) um a.

3.4 Implizite Funktionen

Zeigen Sie, dass sich die Gleichung $x+y+z=\sin(xyz)$ in einer Umgebung V von $(0,0,0)\in\mathbb{R}^3$ eindeutig nach z auflösen lässt. D.h. in einer geeigneten Umgebung U von (0,0) existiert eine Funktion z=g(x,y) mit $f(x,y,z)=x+y+z-\sin(xyz)=0$. Berechnen Sie die partiellen Ableitungen von g an der Stelle (0,0).

3.5 Extrema mit Nebenbedingungen

Sie $f: S \to \mathbb{R}$ $f(x_1, x_2, x_3) := sin(x_1) + sin(x_2) + sin(x_3)$ und $S := \{x \in \mathbb{R}^3 : ||x||_2^2 = \frac{1}{4}\pi^2\}$. Bestimmen Sie globale Maxima und Minima von f.

3.6 Extrema mit Nebenbedingungen

Sei $f: M \to \mathbb{R}^3$ gegeben durch f(x, y, z) := xyz, mit $M := \{(x, y, z) \in \mathbb{R}^3 : x + y + 2z^2 = 10\}$. Bestimmen Sie Kandidaten für Extrema von f.