

Description

The VSM30P05 uses advanced trench technology and design to provide excellent $R_{DS(ON)}$ with low gate charge. It can be used in a wide variety of applications.

General Features

- V_{DS} =-55V, I_{D} =-30A $R_{DS(ON)}$ <40m Ω @ V_{GS} =-10V
- High density cell design for ultra low Rdson
- Fully characterized avalanche voltage and current
- Good stability and uniformity with high E_{AS}
- Excellent package for good heat dissipation

- Power switching application
- Hard switched and high frequency circuits
- Uninterruptible power supply

Schematic Diagram

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VSM30P05-TC	VSM30P05	TO-220C	-	-	-

Absolute Maximum Ratings (T_C=25 ℃unless otherwise noted)

Parameter	Symbol	Limit	Unit	
Drain-Source Voltage	V _{DS}	-55	V	
Gate-Source Voltage	V _G s	±20	V	
Drain Current-Continuous	I _D	-30	А	
Drain Current-Continuous(T _C =100 °C)	I _D (100°C)	-21	А	
Pulsed Drain Current	I _{DM}	110	А	
Maximum Power Dissipation	P _D	90	W	
Derating factor		0.72	W/°C	
Single pulse avalanche energy (Note 5)	E _{AS}	420	mJ	
Operating Junction and Storage Temperature Range	T_{J}, T_{STG}	-55 To 150	$^{\circ}\!\mathbb{C}$	

Thermal Characteristic

Thermal Resistance,Junction-to-Case ^(Note 2)	$R_{ heta JC}$	1.39	°C/W	
---	----------------	------	------	--

Electrical Characteristics (T_C=25°C unless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Off Characteristics	·					
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =-250µA	-55	-	-	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =-55V,V _{GS} =0V	-	-	1	μΑ
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±20V,V _{DS} =0V	-	-	±100	nA
On Characteristics (Note 3)			•			
Gate Threshold Voltage	V _{GS(th)}	V _{DS} =V _{GS} ,I _D =-250μA	-2	-2.6	-4	V
Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =-10V, I _D =-15A	-	30	40	mΩ
Forward Transconductance	g FS	V _{DS} =-25V,I _D =-16A	8	-	-	S
Dynamic Characteristics (Note4)	<u> </u>					
Input Capacitance	C _{lss}		-	3500	-	PF
Output Capacitance	C _{oss}	V_{DS} =-30V, V_{GS} =0V,	-	240	-	PF
Reverse Transfer Capacitance	C _{rss}	F=1.0MHz	-	153	-	PF
Switching Characteristics (Note 4)						
Turn-on Delay Time	t _{d(on)}		-	12	-	nS
Turn-on Rise Time	t _r	V _{DD} =-30V,I _D =-15A	-	15	-	nS
Turn-Off Delay Time	t _{d(off)}	V_{GS} =-10 V , R_{GEN} =3 Ω	-	38	-	nS
Turn-Off Fall Time	t _f		-	15	-	nS
Total Gate Charge	Qg	\/ - 44\/ - 4CA	-	56	-	nC
Gate-Source Charge	Q _{gs}	V_{DS} =-44V, I_{D} =-16A, V_{GS} =-10V	-	11	-	nC
Gate-Drain Charge	Q _{gd}	V _{GS} =-10V	-	24	-	nC
Drain-Source Diode Characteristics	•		•			
Diode Forward Voltage (Note 3)	V _{SD}	V _{GS} =0V,I _S =-24A	-	-	1.2	V
Diode Forward Current (Note 2)	Is		-	-	-30	Α
Reverse Recovery Time	t _{rr}	TJ = 25°C, IF = -15A	-	-	71	nS
Reverse Recovery Charge	Qrr	di/dt = 100A/µs ^(Note3)	-	-	170	nC
Forward Turn-On Time	t _{on}	Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)				

Notes:

- **1.** Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2. Surface Mounted on FR4 Board, t ≤ 10 sec.
- **3.** Pulse Test: Pulse Width ≤ 300µs, Duty Cycle ≤ 2%.
- 4. Guaranteed by design, not subject to production
- **5.** E_{AS} condition: Tj=25 $^{\circ}$ C,V_{DD}=-25V,V_G=-20V,L=1mH,Rg=25 Ω ,I_{AS}=29A

Test Circuit

1) E_{AS} Test Circuit

2) Gate Charge Test Circuit

3) Switch Time Test Circuit

Typical Electrical and Thermal Characteristics (Curves)

Figure 1 Output Characteristics

Figure 2 Transfer Characteristics

Figure 3 Rdson- Drain Current

Figure 4 Rdson-JunctionTemperature

Figure 5 Gate Charge

Figure 6 Source- Drain Diode Forward

Figure 7 Capacitance vs Vds

Figure 9 BV_{DSS} vs Junction Temperature

Figure 10 V_{GS(th)} vs Junction Temperature

Figure 11 Normalized Maximum Transient Thermal Impedance