Exercise 1. Let $H \subseteq \mathbb{P}^n$ be a hyperplane. H is defined as the zero locus of a linear equation

$$H = \mathbb{V}(a_0x_0 + \cdots + a_nx_n), \ a_0, \ldots, a_n \in \mathbb{C}.$$

Prove that $H \simeq \mathbb{P}^{n-1}$. (Also, be comfortable with the fact that $\mathbb{P}^n \setminus L \simeq \mathbb{A}^n$.)

Answer

Exercise 2. Let $\nu_2: \mathbb{P}^2 \to \mathbb{P}^5$ be the Veronese embedding of degree 2. Write out the equations defining the image of ν_2 .

Answer

Recall that this particular Veronese map takes a point in \mathbb{P}^2 to all possible monomials of degree 2 in \mathbb{P}^5 . This means that

$$\nu_2([u:v:w]) = [u^2:v^2:w^2:uv:vw:wu].$$

Recall that the image of the Veronese map is defined using a multi-indexed array, so let us relabel in that sense:

$$\left[u^2:v^2:w^2:uv:vw:wu\right] = \left[z_{2,0,0}:z_{0,2,0}:z_{0,0,2}:z_{1,1,0}:z_{0,1,1}:z_{1,0,1}\right].$$

The defining equations for the image are given by

$$z_I z_J = z_K z_L$$
, $I + J = K + L$,

where I, ..., L are our multi-indices. The only ways to sum our multi-indices in a non-trivial manner are:

$$\begin{cases} (2,0,0) + (0,1,1) = (1,1,0) + (1,0,1) \\ (0,2,0) + (1,0,1) = \end{cases}$$