Introdução a Quantum Computing

Alexandre Silva - BCC

Objetivos

- Mostrar um pouco o mundo da computação quântica;
- Dar o pontapé inicial;
- Instigar o estudo dessa área.

MATERIAIS

<u>github.com/Dpbm/introduction-t</u> <u>o-quantum-computing/</u>

O que é computação quântica?

"Computação quântica é uma tecnologia, emergente, que se aproveita da mecânica quântica para resolver problemas".

Fonte: IBM

Quais efeitos ela se aproveita?

Interferência

Fonte: Wikipedia

Superposição

Fonte: Wikipedia

Entanglement

Fonte: PhysOrg

Princípio da incerteza de Heisenberg

Fonte: Caltech

Tipos de Computadores Quânticos

Fonte: YouTube

Fonte: Pasqal

Fonte: <u>IBM</u>

Fonte: Nature

Fonte: Youtube

O SENAI-SP recebeu o primeiro computador educacional quântico do Brasil! Com a missão de democratizar o acesso a essa tecnologia, vamos mobilizar grupos de estudantes, pesquisadores, professores e empresários para propagar o conhecimento básico e possibilitar o desenvolvimento de novas aplicações para o seu uso. Assista e saiba mais!

#SENAISP #quantico #computadorquantico #tecnologia

Tipo	Prós	Contras
Superconducting	Facil de produzir; Veloz.	Erros; Preço.
Trapped ions	Estável; Rearranjo de conexões; Mais barato.	Camára de vácuo; Mais lento;
Neutral atoms	Flexível; Escalável.	Mais lento; Estados são perdidos.
NMR	Teoricamente estável; Escalável para certas aplicações.	Limitados; Erros(tempo gates/tempo de coerencia);

<u>Aplicações</u>

Alguns casos de uso

- Quimíca;
- Física;
- Criptografia;
- Banco de dados;
- Machine learning;
- Problemas NP.

Fonte: Wikipedia

Fonte: Wikipedia

Fonte: ArsTechnica

The world's first integrated quantum communication network

by University of Science and Technology of China

Chinese scientists have established the world's first integrated quantum communication network, combi...

Chinese scientists have established the world's first integrated quantum

Fonte: PhysOrg

Ferramentas

Plataformas

- AWS (Braket);
- Azure;
- <u>IBM</u>;
- IONQ;
- Pasqal;
- Dwave;
- <u>IQM</u>.

Programação

- Braket;
- <u>Q#;</u>
- Cirq;
- Qiskit;
- tket;
- opengasm;
- PennyLane;
- QuTip.

Como funciona?

Computação Clássica

- Binário (0, 1);
- Cada unidade é denominada Bit;
- Informações podem ser manipuladas usando operações Booleanas;
- Representação de inúmeros tipos de informação (imagens, aúdios, texto, números, etc.).

Fonte: Giphy

Fonte: MercadoLivre

Fonte: YouTube(Kurzgesagt)

AND

Somador completo

Fonte: <u>GeeksForGeeks</u>

Computação Quântica

- Qubits (0, 1 e tudo entre isso);
- Representa Amplitudes/probabilidades;
- Pode ser visto como um ponto em uma esfera (Bloch Sphere);
- Precisa de várias medições:
 - Perturbações.

Fonte: Wikipedia

a —

 $|00\rangle$

|11>

 $|00\rangle$

|10>

|111|

Operator	Gate(s)		Matrix
Pauli-X (X)	$-\mathbf{x}$	-—	$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$
Pauli-Y (Y)	$-\mathbf{Y}$		$\begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$
Pauli-Z (Z)	$-\mathbf{z}-$		$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$
Hadamard (H)	$-\mathbf{H}$		$rac{1}{\sqrt{2}} egin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$
Phase (S, P)	$-\mathbf{s}$		$\begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix}$
$\pi/8$ (T)	T		$\begin{bmatrix} 1 & & 0 \\ 0 & e^{i\pi/4} \end{bmatrix}$
Controlled Not (CNOT, CX)			$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$
Controlled Z (CZ)		1	$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix}$
SWAP		_ *	$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$
Toffoli (CCNOT, CCX, TOFF)			$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0$

DEMOS

Próximos passos?

What Can Qiskit Do

github.com/Dpb m/quantum

kiedos.art/quant um-games-list/

Obrigado pela Atenção