SPECTROSCOPIA RADIATIILOR BETA

1. Scopul lucrarii

Determinarea energiei maxime a radiațiilor beta.

2. Rezumat al teoriei

Radiațiile beta sunt fluxuri de particule emise în timpul dezintegrării nucleare. Există două tipuri principale:

- Radiația beta negativă (β -): un neutron din nucleu se transformă într-un proton, emitând un electron și un antineutrino.
- Radiația beta pozitivă (β^+): un proton din nucleu se transformă întrun neutron, emițând un pozitron și un neutrino.

Energia radiațiilor beta are un spectru continuu, deoarece energia totală este împărțită între particula emisă și neutrino/antineutrino.

Spectrul energetic

Energia maximă a radiației beta (Emax) este de trei ori mai mare decât energia cea mai probabilă (Eh), care poate fi determinată dintr-un grafic ce reprezintă numărul de impulsuri (N) în funcție de energia particulelor (E).

Într-un câmp magnetic, particulele încărcate electric sunt deviate de forța Lorentz, care determină o traiectorie circulară. Această mișcare este utilizată pentru a calcula energia cinetică a particulelor.

3. Dispozitivul experimental & modul de lucru

Sistemul include:

- un electromagnet pentru a genera câmpul magnetic,
- detector de radiații pentru a înregistra impulsurile generate de particulele beta,
- o sursă radioactivă (90Sr pentru β^-).

Valorile câmpului magnetic sunt ajustate pentru a obține diferite energii cinetice ale particulelor.

Energia maximă a electronilor sau pozitronilor este calculată pe baza valorilor măsurate și a formulei de mai jos:

$$E = \sqrt{(qRBc)^2 + (m_0c^2)^2} - m_0c^2$$

4. Rezultatele experimentului

Tabelul sursei Sr:

Nr. Crt	I (A)	B (mT)	E (keV)	N (imp)	n'=N/t	n=n'-f	sigma_n
1	0	15.8	52.29	169	2.82	157.4	79.28
2	0.13	27.9	149.53	336	5.6	324.4	162.78
3	0.21	33.76	208.42	439	7.32	427.4	214.28
4	0.26	36.64	239.45	481	8.02	469.4	235.28
5	0.31	42.62	307.43	588	9.8	576.4	288.78
6	0.4	50.69	405.15	774	12.9	762.4	381.78
7	0.44	55.06	460.2	968	16.13	956.4	478.78
8	0.49	60.99	536.87	1049	17.48	1037.4	519.28
9	0.56	67.5	623.14	1069	17.82	1057.4	529.28
10	0.58	70.75	666.87	1049	17.48	1037.4	519.28
11	0.58	70.75	666.87	1127	18.78	1115.4	558.28
12	0.71	83.88	847.01	1234	20.57	1222.4	611.78
13	0.79	93.02	974.93	1156	19.27	1144.4	572.78
14	0.9	105.6	1153.38	1124	18.73	1112.4	556.78
15	1.04	118.2	1334.17	834	13.9	822.4	411.78
16	1.11	126.1	1448.31	810	13.5	798.4	399.78
17	1.21	133	1548.4	663	11.05	651.4	326.28
18	1.3	145.2	1726.14	585	9.75	573.4	287.28
19	1.4	152	1825.56	453	7.55	441.4	221.28
20	1.51	167.79	2057.14	340	5.67	328.4	164.78
21	1.59	173.67	2143.65	293	4.88	281.4	141.28
22	1.7	189.93	2383.34	195	3.25	183.4	92.28

E_h = 869 max_N = 1187.1653524895216