Information Principles and the Quantum Set

Victor Bankston

April 18, 2019

Models for Distributed Computation

- Message passing:
 - ▶ Limited by the speed of light
 - ▶ No obvious way to coordinate processes otherwise
- Non-Locality
 - ► Features of the universe can depend on other distant "non-local" parts of the universe.
 - Counterintuitive in light of relativity
 - Can be achieved via entanglement
 - A potential means of coordination without communication

A Metaphor for Non-Locality

- ▶ We have Boxes, which abstract physics
- ▶ Alice (Bob) chooses an input {0,1} and receives probabilistically an output {0,1}.
 - ► A priori, Alice's output may depend on not only her but also Bob's input and output, as well as random variables.
 - ▶ This allows for correllations between their outputs.
- ▶ We will impose various constraints on these boxes.
 - Most generally, they cannot transfer information.

Distributions Charaterize Boxes

- ▶ Boxes are characterized by their joint probability distribution: $Pr(a_1 a_2 a_3 \mid x_1 x_2 x_3)$.
- Which joint probability distributions can be achieved?
 - By choosing randomly between two distributions, we can always form convex combinations.

- We would like an information principle which characterizes the quantum set.
 - ▶ Helpful for identifying information applications.

Bell Inequalities

- ► A mathematical definition of correllation.
- Mathematical Motiff: Study a space by studying functions on that space.
 - ► These bodies may be studied by optimizing linear functions over them.
 - ▶ A convex set is defined by the set of hyperplanes tangent to it.
 - Each hyperplane represents an inequality which that set satisfies.

Bell Inequalities

- A mathematical definition of correllation.
- Mathematical Motiff: Study a space by studying functions on that space.
 - ► These bodies may be studied by optimizing linear functions over them
 - ▶ A convex set is defined by the set of hyperplanes tangent to it.
 - ► Each hyperplane represents an inequality which that set satisfies

Example: For 2 parties, the CHSH inequality:

$$Pr(00 \mid 00) + Pr(11 \mid 00) + Pr(00 \mid 01) + Pr(11 \mid 01) + Pr(00 \mid 10) + Pr(11 \mid 10) - Pr(00 \mid 11) - Pr(11 \mid 11)$$

- Classically, maximized at 2.
- Can acheive $2\sqrt{2}$ using the quantum set (Tsirelson's bound)

Bell Inequalities

- ► A mathematical definition of correllation.
- Mathematical Motiff: Study a space by studying functions on that space.
 - ► These bodies may be studied by optimizing linear functions over them.
 - ▶ A convex set is defined by the set of hyperplanes tangent to it.
 - Each hyperplane represents an inequality which that set satisfies.
- Example: For 2 parties, the CHSH inequality:

$$Pr(00 \mid 00) + Pr(11 \mid 00) + Pr(00 \mid 01) + Pr(11 \mid 01) + Pr(00 \mid 10) + Pr(11 \mid 10) - Pr(00 \mid 11) - Pr(11 \mid 11)$$

- Classically, maximized at 2.
- Can acheive $2\sqrt{2}$ using the quantum set (Tsirelson's bound)
- ▶ ∴ the quantum set is strictly larger than the classical set.
- Example: For 3 parties, Guess Your Neighbor's Input

$$Pr(000 \mid 000) + Pr(110 \mid 011) + Pr(011 \mid 101) + Pr(101 \mid 110) \le 1$$

► Same bound for both quantum and classical correlations.

Some Information Principles

- No Signalling
 - The statistics of a person's outcome should only depend on his input.
 - ► (But the outcome itself may can depend on non-local events!)
 - ▶ $\forall \widetilde{x}_2 \in \{0,1\} Pr(a_1 \mid x_1) = \sum_{a_2 \in \{0,1\}} Pr(a_1 a_2 \mid x_1 \widetilde{x}_2)$
 - (i.e. both summations on the right have the same value, so $Pr(a_1 \mid x_1)$ is well-defined.)
 - Defines a larger set of correlations than then Quantum Set.

Some Information Principles

No Signalling

- The statistics of a person's outcome should only depend on his input.
- ▶ (But the outcome itself may can depend on non-local events!)
- ▶ $\forall \widetilde{x}_2 \in \{0,1\} Pr(a_1 \mid x_1) = \sum_{a_2 \in \{0,1\}} Pr(a_1 a_2 \mid x_1 \widetilde{x}_2)$
 - (i.e. both summations on the right have the same value, so $Pr(a_1 \mid x_1)$ is well-defined.)
- Defines a larger set of correlations than then Quantum Set.

Information Causality

- ▶ If Alice sends Bob *m* bits, then Bob cannot learn more than *m* bits about Alice, even using his correlations.
- ▶ When m = 0, we recover no-signalling.
- Compatible with Quantum Mechanics.
- Proposed as a candidate to characterize the quantum set.
- Naturally stated as a bipartite principle.

The Quantum Set:

- The set of joint distributions allowed under quantum mechanics.
- Has a mathematical definition (Beyond the scope here).
- ► Not a polytope
 - ► No finite set of extremal points.
- We would like an intuitive definition in terms of information principles.
 - Would be helpful for considering information applications.
 - Might provide a satisfying explanation for quantum mechanics.

Classical Probabilities

- "Local hidden variable model"
- ▶ Classically, we assume the collection of Boxes is in some state, λ , which determines the probability distributions of all the boxes for each input. (There may be additional local sources of randomness)
 - ► The classical assumption is that for any state, the Boxes behave like pairwise independent random variables.
 - $Pr(a_1a_2a_3 \mid x_1x_2x_3\lambda) = \sum_{\lambda} p(\lambda) Pr(a_1 \mid x_1\lambda) Pr(a_2 \mid x_2\lambda) Pr(a_3 \mid x_3\lambda)$
- Deterministic outcomes form the vertices of the polytope.

Main Argument:

- ► To create multipartite principles from bipartite ones, standard practice is to apply the bipartite principle over every bipartition.
- ► However, there is a tripartite distribution which is classical over any bipartition, but is not in the Quantum Set!
- ► Since it is classical over any bipartition, it will satisfy any information principle based on bipartite concepts.
- ► To characterize the quantum set, we will need an inherently tripartite information principle.

"Classical Over a Bipartition"

- Naive Definition (Bilocal distributions):
 - $P(a_1a_2a_3 \mid x_1x_2x_3) = \sum_{\lambda} p(\lambda) P_1(a_1 \mid x_1\lambda) P_{23}(a_2a_3 \mid x_2x_3\lambda)$
 - Allows arbitrary correlations between 2 and 3
 - Even those where a_2 depends on x_3 and a_3 depends on x_2 .
 - ▶ In reality, one of 2 and 3 must measure first.
 - If 2 feeds his output into 3's input, the resulting probability distribution does not factor.
 - We can create non-locality with 1 through local (between 2 and 3) means!
 - "Classical over a bipartition" should be preserved under any protocol 2 and 3 implement.

Classical Over a Bipartition

- Updated Definition (Time Ordered Bilocal Distributions):
- ► $P(a_1a_2a_3 \mid x_1x_2x_3) = \sum_{\lambda} p(\lambda) P(a_1 \mid x_1) P_{2\to 3} (a_2a_3 \mid x_2x_3, \lambda) = \sum_{\lambda} p(\lambda) P(a_1 \mid x_1) P_{2\leftarrow 3} (a_2a_3 \mid x_2x_3, \lambda)$
 - where $P_{2\to3}$ satisfies $P_{2\to3}\left(a_2\mid x_2,\lambda\right)=\sum_{a_3}P_{2\to3}\left(a_2a_3\mid x_2x_3,\lambda\right)$ and
 - ▶ $P_{2\leftarrow 3}$ satisfies $P_{2\leftarrow 3}(a_2 \mid x_2, \lambda) = \sum_{a_3} P_{2\leftarrow 3}(a_2 a_3 \mid x_2 x_3, \lambda)$
 - ▶ 2 or 3 must be able to measure first.
- Being able to think of 2 or 3 as measuring first gives a local model for any protocol 2 and 3 enact.
 - ▶ It is not claimed that TOBL is closed under wirings.

The Counterexample:

	000	001	101	011	100	101	110	111
000	$\frac{2}{3}$	0	0	0	0	0	0	$\frac{1}{3}$
001	$\frac{1}{3}$	$\frac{1}{3}$	0	0	0	0	$\frac{1}{6}$	$\frac{1}{6}$
101	$\frac{1}{3}$	0	$\frac{1}{3}$	0	0	$\frac{1}{6}$	0	$\frac{1}{6}$
011	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	0	$\frac{1}{6}$	$\frac{1}{6}$	0
100	$\frac{1}{3}$	0	0	$\frac{1}{6}$	$\frac{1}{3}$	0	0	$\frac{1}{6}$
101	$\frac{1}{6}$	$\frac{1}{6}$	0	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	0
110	$\frac{1}{6}$	0	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	0
111	0	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	0

- ▶ Invariant with respect to renaming parties
- ▶ Guess Your Neighbor's Input is $\frac{7}{6} > 1$: It's not in the quantum set!
- ► Found via linear program maximizing GYNI over TOBL

Decompositions

▶ Decomposition: $\sum_{\lambda} p(\lambda) P(a \mid x_1) P_{2\rightarrow 3} (bc \mid x_2x_3, \lambda)$

▶ So c can depend on x_2 .

λ	p_{λ}	a ₀	a ₁	b_0	b_1	c ₀₀	c ₀₁	c ₁₀	c ₁₁
1	$\frac{1}{12}$	0	0	0	1	0	1	0	1
2	$\frac{1}{12}$	0	0	0	0	0	1	0	1
3	$\frac{1}{12}$	0	0	0	0	0	0	0	1
4	$\frac{1}{12}$	0	0	0	1	0	0	0	1
5	$\frac{1}{12}$	0	1	0	1	0	0	0	0
6	$\frac{1}{12}$	0	1	0	0	0	1	0	0
7	$\frac{1}{12}$	0	1	0	0	0	0	0	0
8	$\frac{1}{12}$	0	1	0	1	0	1	0	0
9	$\frac{1}{6}$	1	0	1	1	1	1	1	0
10	$\frac{1}{6}$	1	1	1	0	1	0	1	1

Decompositions

Decomposition $n(abc \mid x_1 x_2 x_3) = \sum_{n \in \mathbb{N}} n(\lambda) P(a \mid x_1) P(a \mid x_2) P(a \mid x_3) P(a \mid x_4) P(a \mid x_4$

$$p(abc \mid x_1x_2x_3) = \sum_{\lambda} p(\lambda) P(a \mid x_1) P_{2 \leftarrow 3} (bc \mid x_2x_3, \lambda)$$

 \triangleright b can depend on x_3 .

λ	n	a ₀	a ₁	b ₀₀	b ₀₁	b ₁₀	b_{11}	<i>c</i> ₀	c_1
	p_{λ}	40	<i>a</i> 1	D00	D01	D10	D11	0	c1
1	$\frac{1}{12}$	0	0	0	0	0	1	0	0
2	$\frac{1}{12}$	0	0	0	0	0	1	0	1
3	$\frac{1}{12}$	0	0	0	0	1	1	0	0
4	$\frac{1}{12}$	0	0	0	0	1	1	0	1
5	$\frac{1}{12}$	0	1	0	0	0	0	0	0
6	$\frac{1}{12}$	0	1	0	0	0	0	0	1
7	$\frac{1}{12}$	0	1	0	0	1	0	0	0
8	$\frac{1}{12}$	0	1	0	0	1	0	0	1
9	$\frac{1}{6}$	1	0	1	1	1	0	1	1
10	$\frac{1}{6}$	1	1	1	1	0	1	1	0

Conclusion:

- Information Causality cannot characterize the quantum set.
- Information Causality for multiple parties is defined based on a bipartite principle
- The counter-example will obey information causality.
 - ▶ The distribution behaves classically over any bipartite set.
- ▶ The distribution is not in the quantum set.
 - Its value for GYNI is $\frac{7}{6} > 1$
- We will need a multipartite principle to characterize the quantum set.
 - ► Or we need to reconsider how to extend a bipartite principle to a multipartite one.