

Games vs. search problems ■ "Unpredictable" opponent → specifying a move for every possible opponent reply ■ Time limits → unlikely to find goal, must approximate

Games vs. search problems

Brute-force, adding pruning strategies, ...
automatically learning evaluation strategies:
Computer considers possible lines of play (Babbage, 1846)
Algorithm for perfect play (Zermelo, 1912; Von Neumann, 1944)
Finite horizon, approximate evaluation (Zuse, 1945; Wiener, 1948; Shannon, 1950)
First chess program (Turing, 1951)
Machine learning to improve evaluation accuracy (Samuel, 1952-57)
Pruning to allow deeper search (McCarthy, 1956)
...
DeepBlue beating world champion in chess, 1997
Deep Learning: AlphaGo beating champion in Go, 2016

Properties of minimax

- Complete? Yes (if tree is finite)
- Optimal? Yes (against an optimal opponent)
- Time complexity? O(bm)
- Space complexity? O(bm) (depth-first exploration)
- For chess, b ≈ 35, m ≈100 for "reasonable" games
 ⇒ exact solution completely infeasible (35⁵⁰)

α-β pruning example

MAX
MIN

3
12
8

8. Ommer (ommer@uni-heidelborg.de)

Properties of α-β

- Pruning does not affect final result
- Good move ordering improves effectiveness of pruning
- With "perfect ordering," time complexity = O(b^{m/2})
 ⇒ doubles depth of search
- A simple example of the value of reasoning about which computations are relevant (a form of metareasoning)

B. Ommer | ommer@uni-heidelberg.de

The α - β algorithm

function Min-Value(state, α , β) returns a utility value inputs: state, current state in game α , the value of the best alternative for Max along the path to state β , the value of the best alternative for Min along the path to state if Terminal-Test(state) then return Utility(state) $v \leftarrow +\infty$ for a, s in Successors(state) do $v \leftarrow \text{Min}(v, \text{Max-Value}(s, \alpha, \beta))$ if $v \leq \alpha$ then return v $\beta \leftarrow \text{Min}(\beta, v)$ return v

Resource limits

UNIVERSITÄT HEIDELBERG

Suppose we have 100 secs, explore 104 nodes/sec

- \rightarrow 10⁶ nodes per move ~35^{8/2}
- $\rightarrow \alpha$ - β reaches depth 8 \rightarrow pretty good chess program

Standard approach:

- cutoff test (instead of terminal test):
 - e.g., depth limit (perhaps add quiescence search)
- evaluation function (instead of utility):
 - = estimated desirability of position

Evaluation functions

UNIVERSITÄT HEIDELBERG

- For chess, typically linear weighted sum of features $Eval(s) = w_1 f_1(s) + w_2 f_2(s) + ... + w_n f_n(s)$
- e.g., w₁ = 9 with $f_1(s)$ = (number of white queens) – (number of black queens), etc.

(Digression: Exact values don't matter)

- Behavior is preserved under any monotonic transformation of Eval
- Only the order matters:
 - payoff in deterministic games acts as an ordinal utility function

Cutting off search

MinimaxCutoff is identical to MinimaxValue

- Terminal? is replaced by Cutoff?
- Utility is replaced by Eval

Does it work in practice? $b^{m} = 10^{6}, b=35 \rightarrow m=4$

4-ply lookahead is a hopeless chess player!

- 4-ply ≈ human novice
- 8-ply ≈ typical PC, human master 12-ply ≈ Deep Blue, Kasparov

Deterministic games in practice

- Checkers: Chinook ended 40-year-reign of human world champion Marion Tinsley in 1994. Used a precomputed endgame database defining perfect play for all positions involving 8 or fewer pieces on the board, a total of 444 billion restitions. positions.
- Chess: Deep Blue defeated human world champion Garry Kasparov in a six-game match in 1997. Deep Blue searches 200 million positions per second, uses very sophisticated evaluation, and undisclosed methods for extending some lines of search up to 40 ply.
- Othello: human champions refuse to compete against computers, who are too good.
- Until 2016: Go: human champions refuse to compete against computers, who are too bad. In go, b > 300, so most programs use pattern knowledge bases to suggest plausible moves. However, see later slide...

backgammon

Nondeterministic games:

Nondeterministic games in general

- In nondeterministic games, chance introduced by dice, card-shuffling
- Simplified example with coin-flipping:

Algorithm for nondeterministic games

- Expectiminimax gives perfect play
- Just like Minimax, except we must also handle chance nodes:

if state is a MAX node then ${\bf return} \ {\bf the} \ {\bf highest} \ {\bf EXPECTIMINIMAX-VALUE} \ {\bf of} \ {\bf SUCCESSORS} ({\it state})$ if state is a MIN node then ${\bf return} \ {\bf the} \ lowest \ ExpectiMinimax-Value \ of \ Successors ({\it state})$ if state is a chance node then return average of ExpectiMinimax-Value of Successors(state)

Nondeterministic games in practice

- Dice rolls increase b: 21 possible rolls with 2
- Backgammon 20 legal moves (can be 6,000 with 1-1 roll)
- As depth increases, probability of reaching a given node shrinks
 - ⇒ value of lookahead is diminished
- α-β pruning is much less effective
- TDGammon uses depth-2 search + very good Eval ⇒ world-champion level

Digression: Exact values DO matter

- Behavior is preserved only by positive linear transformation of Eval
- Hence Eval should be proportional to the expected payoff

Games of imperfect information

- E.g., card games, where opponent's initial cards are unknown
- Typically we can calculate a probability for each possible
- Seems just like having one big dice roll at the beginning of the game*
- Idea: compute the minimax value of each action in each deal, then choose the action with highest expected value over all
- Special case: if an action is optimal for all deals, it's optimal.
- GIB (best bridge program for long) approximates this idea by 1) generating 100 deals consistent with bidding information 2) picking the action that wins most tricks on average

Commonsense example

- Road A leads to a small heap of gold pieces
- Road B leads to a fork:
 - take the left fork and you'll find a mound of jewels;
 - take the right fork and you'll be run over by a bus.

5

UNIVERSITÄT HEIDELBERG

Commonsense example

- Road A leads to a small heap of gold pieces
- Road B leads to a fork:
 - take the left fork and you'll find a mound of jewels;
 - take the right fork and you'll be run over by a bus.
- Road A leads to a small heap of gold pieces
- Road B leads to a fork:
 - take the left fork and you'll be run over by a bus;
 - take the right fork and you'll find a mound of jewels.

Commonsense example

- Road A leads to a small heap of gold pieces
- Road B leads to a fork:
 - take the left fork and you'll find a mound of jewels;
 - take the right fork and you'll be run over by a bus.
- Road A leads to a small heap of gold pieces
- Road B leads to a fork:
 - take the left fork and you'll be run over by a bus;
 - take the right fork and you'll find a mound of jewels.
- Road A leads to a small heap of gold pieces
- Road B leads to a fork:
 - guess correctly and you'll find a mound of jewels;
 - guess incorrectly and you'll be run over by a bus.

B. Ommer | ommer@uni-heidelberg.de

UNIVERSITÄT HEIDELBERG

Proper Analysis

- * Intuition that the value of an action is the average of its values in all actual states is WRONG
- With partial observability, value of an action depends on the information state or belief state the agent is in
- Can generate and search a tree of information states
- Leads to rational behaviors such as
 - Acting to obtain information, exploration, \dots
 - Signalling to one's partner
 - Acting randomly to minimize information disclosure

UNIVERSITÄT HEIDELBER

Summary

- Games are fun to work on!
- They illustrate several important points about Al
 - perfection is unattainable → must approximate
 - good idea to think about what to think about
 - uncertainty constrains the assignment of values to states
 - optimal decisions depend on information state, not real state
- Games are to AI as grand prix racing is to automobile design

B. Ommer | ommer@uni-heidelberg.de

Garry Kasparov

UNIVERSITÄT HEIDELBERG

... recent improvements.

Alı

AlphaGo zero

UNIVERSITÄT HEIDELBER

Intelligent Game Playing

Learning optimal actions

х

y=f(x;w)

- Learn a function f with some parameters w to predict next move y

B. Ommer | ommer@uni-heidelberg.de