Elementary Number Theory: The Theory of Congruences

Arjun Vardhan

† Created: 8th April 2022

Last updated: 5th July 2022

1 Basic Properties of Congruence

- Let $n \in \mathbb{N}$. $a, b \in \mathbb{Z}$ are said to be congruent modulo n, denoted $a \equiv b \mod n$, if $n \mid (a b)$.
- Let $a, b \in \mathbb{Z}$. $a \equiv b \mod n$ if and only if a and b leave the same non-negative remainder on division by n. Proof: Let a = b + kn for some $k \in \mathbb{Z}$. By the division algorithm, b = qn + r, where $0 \le r < n$. Thus a = (k+q)n + r. Conversely, suppose $a = q_1n + r$ and $b = q_2n + r$, where $0 \le r < n$. Then $a b = (q_1 q_2)n$ and thus $n \mid (a b) \implies a \equiv b \mod n$.
- Let n > 1 be fixed and $a, b, c, d \in \mathbb{Z}$. Then:
 - 1. $a \equiv a \mod n$. Proof: $n \mid 0 = a a$.
 - 2. If $a \equiv b \mod n$, then $b \equiv a \mod n$. Proof: $n \mid a-b \implies a-b = kn \implies b-a = -kn \implies b \equiv a \mod n$.
 - 3. If $a \equiv b \mod n$, and $b \equiv c \mod n$, then $a \equiv c \mod n$. Proof: $a = b + k_1 n$ and $b = c + k_2 n \implies a = c + (k_1 + k_2)n \implies n \mid a c \implies a \equiv c \mod n$.
 - 4. If $a \equiv b \mod n$ and $c \equiv d \mod n$, then $a+c \equiv b+d \mod n$ and $ac \equiv bd \mod n$. Proof: $a=b+k_1n$ and $c=d+k_2n \implies a+c=b+d+(k_1+k_2)n \implies n\mid (a+c)-(b+d) \implies a+c \equiv b+d \mod n$. Also, $ac=(b+k_1n)(d+k_2n)=bd+bk_2n+dk_1n+k_1k_2n^2$. Therefore, $n\mid ac-bd \implies ac \equiv bd \mod n$.
 - 5. If $a \equiv b \mod n$, then $a + c \equiv b + c \mod n$ and $ac \equiv bc \mod n$. Proof: $a = b + kn \implies a + c = b + c + kn \implies n \mid (a + c) (b + c) \implies a + c \equiv b + c \mod n$. Additionally, $ac = bc + kcn \implies n \mid ac bc \implies ac \equiv bc \mod n$.
 - 6. If $a \equiv b \mod n$, then $a^k \equiv b^k \mod n$ for any positive integer k. Proof: $a^k b^k = (a-b)(a^{n-1} + a^{n-2}b + ...)$. Since $n \mid a-b, n \mid a^k b^k \implies a^k \equiv b^k \mod n$.
- If $ca \equiv cb \mod n$, then $a \equiv b \mod \frac{n}{d}$, where $d = \gcd(c,n)$. Proof: ca cb = kn. Since $\gcd(c,n) = d$, there exist relatively prime integers r,s such that c = dr and n = ds. Then, r(a-b) = ks. As $s \mid r(a-b)$ and $\gcd(r,s) = 1$, by euclid's lemma $s \mid a-b$. So $a \equiv b \mod \frac{n}{d}$, as $s = \frac{n}{d}$.
- Corollary: If $ca \equiv cb \mod n$ and gcd(c, n) = 1, then $a \equiv b \mod n$.
- Corollary: If $ca \equiv cb \mod p$, where p is prime and $p \not\mid c$, then $a \equiv b \mod n$. Proof: p being prime and $p \not\mid c$ implies $\gcd(p,c) = 1$.

2 Binary and Decimal Representations of Integers

3 Linear Congruences and the Chinese Remainder Theorem

• An equation of the form $ax \equiv b \mod n$ is called a linear congruence. A solution to this would an integer x_0 such that $ax_0 \equiv b \mod n$.

- Two solutions of $ax \equiv b \mod n$, say x_1 and x_2 , are treated as equal if $x_1 \equiv x_2 \mod n$. Thus we want to find all possible incongruent integers satisfying a linear congruence.
- The linear congruence $ax \equiv b \mod n$ is equivalent to the diophantine equation ax ny = b (they have the same solutions).
- The linear congruence $ax \equiv b \mod n$ has a solution if and only if $d \mid b$, where $d = \gcd(a, n)$. In such a case, it has d mutually incongruent solutions. Proof: This congruence is equivalent to the diophantine equation ax ny = b, which has a solution if and only if $d \mid b$. Moreover, if x_0, y_0 is a specific solution, then every other solution is of the form $x_0 + \frac{n}{d}t$, $y_0 + \frac{n}{d}t$. Suppose x_0 is a solution and consider $x_0 + \frac{n}{d}t$ when t = 0, 1, 2..., d 1. We need to show that all of these are incongruent modulo n and that any integer satisfying the congruence is congruent to one of them. Suppose $x_0 + \frac{n}{d}t_1 \equiv x_0 + \frac{n}{d}t_2 \mod n$, where $0 \le t_1 < t_2 \le d 1$. Then $\frac{n}{d}t_1 \equiv \frac{n}{d}t_2 \mod n$ and since $\gcd(\frac{n}{d}, n) = \frac{n}{d}$, we have $t_1 \equiv t_2 \mod d$. Thus $d \mid t_2 t_1$, but this is impossible as $t_2 t_1 < d$. Now let $x_0 + \frac{n}{d}t$ be an arbitrary solution to the congruence. By the division algorithm, t = qd + r, where $0 \le r \le d 1$. So $x_0 + \frac{n}{d}t = x_0 + \frac{n}{d}qd + \frac{n}{d}r = x_0 + qn + \frac{n}{d}r \equiv x_0 + \frac{n}{d}r \mod n$. ■
- Corollary: If gcd(a, n) = 1, then the linear congruence $ax \equiv b \mod n$ has a unique solution.
- Consider a system of linear congruences: $a_1x \equiv b_1 \mod m_1$, $a_2x \equiv b_2 \mod m_2,...$, $a_rx \equiv b_r \mod m_r$, where the moduli m_i are pairwise relatively prime. The system will obviously have no solution unless each congruence is individually solvable, so $d_k \mid b_k$ for each k, where $d_k = \gcd(a_k, m_k)$. The factor d_k can be cancelled from the kth congruence to produce a new, simpler system of congruences with the same solutions: $a'_1x \equiv b'_1 \mod n_1$, $a'_2x \equiv b'_2 \mod n_2,...,a'_rx \equiv b'_r \mod n_r$, where $n_k = \frac{m_k}{d_k}$ and $\gcd(n_i, n_j) = 1$ for $i \neq j$. Also, $\gcd(a'_k, n_k) = 1$ for all k.
- Chinese Remainder Theorem: Let $n_1, n_2, ..., n_r$ be positive integers such that $\gcd(n_i, n_j) = 1$ for $i \neq j$. Then the system of linear congruences $x \equiv a_1 \mod n_1$, $x \equiv a_2 \mod n_2, ..., x \equiv a_r \mod n_r$ has a unique solution modulo the integer $n_1n_2...n_r$. Proof: Let $n = n_1n_2...n_r$. For each k = 1, 2, ..., r, let $N_k = \frac{n}{n_k} = n_1...n_{k-1}n_{k+1}...n_r$. As n_i are relatively prime pairwise, $\gcd(N_k, n_k) = 1$. Thus it is possible to solve $N_k x \equiv 1 \mod n_k$; let the unique solution be x_k . Let $\overline{x} = a_1N_1x_1 + a_2N_2x_2 + ... + a_rN_rx_r$. As $n_k \mid N_i$ for $i \neq k$, $N_i \equiv 0 \mod n_k$ and so $a_iN_ix_i \equiv 0 \mod n_k$. Thus $\overline{x} \equiv a_kN_kx_k \mod n_k$. But as $N_kx_k \equiv 1 \mod n_k$, we have $\overline{x} \equiv a_k \mod n_k$. Thus \overline{x} is a simulatenous solution to the system of congruences. Now suppose x' is any other solution to the system. Then $\overline{x} \equiv a_k \equiv x' \mod n_k$ for k = 1, 2, ..., r. So $n_k \mid \overline{x} x'$ for each k. Because $\gcd(n_i, n_j) = 1, n_1n_2...n_r \mid \overline{x} x'$, thus $x' \equiv \overline{x} \mod n$.
- The system of linear congruences $ax + by \equiv r \mod n$, $cx + dy \equiv s \mod n$ has a unique solution modulo n whenever gcd(ad bc, n) = 1. *Proof:*