```
In [2]:
                                                                                                  H
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
                                                                                                  H
In [3]:
data = pd.read_csv("World_Per_Capita_Electricity_Consumption.csv")
In [4]:
                                                                                                  H
data.head()
Out[4]:
        Entity
              Year Per capita electricity (kWh)
   Afghanistan 2000
                                    22.474
1 Afghanistan 2001
                                    27.399
2 Afghanistan 2002
                                    30.397
3 Afghanistan 2003
                                    39.652
   Afghanistan 2004
                                    36.155
In [5]:
                                                                                                  H
data.tail()
Out[5]:
                Year Per capita electricity (kWh)
5615 Zimbabwe
                2015
                                     679.553
5616 Zimbabwe 2016
                                     486.509
5617 Zimbabwe 2017
                                     513.434
5618 Zimbabwe 2018
                                     632.533
5619 Zimbabwe 2019
                                     617.672
In [6]:
                                                                                                  H
data.shape
```

localhost:8888/notebooks/Electricity Consumption in World - EDA and Prediction.ipynb

Out[6]:

(5620, 3)

```
In [7]:
                                                                                          M
data.columns
Out[7]:
Index(['Entity', 'Year', 'Per capita electricity (kWh)'], dtype='object')
In [8]:
                                                                                          H
data.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 5620 entries, 0 to 5619
Data columns (total 3 columns):
     Column
                                    Non-Null Count Dtype
     -----
 0
     Entity
                                                     object
                                    5620 non-null
 1
                                    5620 non-null
                                                     int64
     Year
     Per capita electricity (kWh) 5620 non-null
                                                     float64
dtypes: float64(1), int64(1), object(1)
memory usage: 131.8+ KB
In [9]:
                                                                                          H
data.describe()
Out[9]:
            Year Per capita electricity (kWh)
```

count	5620.000000	5620.000000
mean	2005.826157	4095.887211
std	9.238193	5403.908499
min	1985.000000	0.000000
25%	2000.000000	646.116250
50%	2007.000000	2555.821500
75%	2013.000000	5561.172750
max	2021.000000	58863.361000

In [10]: ▶

```
data.isnull().sum()
```

Out[10]:

Entity 0
Year 0
Per capita electricity (kWh) 0

dtype: int64

In [11]:

```
data['Entity'].unique()
```

Out[11]:

```
array(['Afghanistan', 'Africa', 'Albania', 'Algeria', 'American Samoa',
         'Angola', 'Antigua and Barbuda', 'Argentina', 'Armenia', 'Aruba',
         'Australia', 'Austria', 'Azerbaijan', 'Bahamas', 'Bahrain',
        'Bangladesh', 'Barbados', 'Belarus', 'Belgium', 'Belize', 'Benin',
         'Bermuda', 'Bhutan', 'Bolivia', 'Bosnia and Herzegovina',
         'Botswana', 'Brazil', 'British Virgin Islands', 'Brunei',
        'Bulgaria', 'Burkina Faso', 'Burundi', 'Cambodia', 'Cameroon',
        'Canada', 'Cape Verde', 'Cayman Islands',
        'Central African Republic', 'Chad', 'Chile', 'China', 'Colombia',
        'Comoros', 'Congo', 'Cook Islands', 'Costa Rica', 'Croatia',
        'Cuba', 'Cyprus', 'Czechia', 'Democratic Republic of Congo',
        'Denmark', 'Djibouti', 'Dominica', 'Dominican Republic', 'Ecuador', 'Egypt', 'El Salvador', 'Equatorial Guinea', 'Eritrea', 'Estonia', 'Ethiopia', 'Europe', 'European Union (27)', 'Falkland Islands',
        'Fiji', 'Finland', 'France', 'French Guiana', 'French Polynesia', 'Gabon', 'Gambia', 'Georgia', 'Germany', 'Ghana', 'Gibraltar', 'Greece', 'Greenland', 'Grenada', 'Guadeloupe', 'Guam', 'Guatemala', 'Guinea', 'Guinea-Bissau', 'Guyana', 'Haiti',
        'Honduras', 'Hong Kong', 'Hungary', 'Iceland', 'India',
        'Indonesia', 'Iran', 'Iraq', 'Ireland', 'Israel', 'Italy', 'Jamaica', 'Japan', 'Jordan', 'Kazakhstan', 'Kenya', 'Kiribati',
        'Kuwait', 'Kyrgyzstan', 'Laos', 'Latvia', 'Lebanon', 'Lesotho',
        'Liberia', 'Libya', 'Lithuania', 'Luxembourg', 'Madagascar', 'Malawi', 'Malaysia', 'Maldives', 'Mali', 'Malta', 'Martinique',
        'Mauritania', 'Mauritius', 'Mexico', 'Mongolia', 'Montenegro',
        'Montserrat', 'Morocco', 'Mozambique', 'Myanmar', 'Namibia',
        'Nauru', 'Nepal', 'Netherlands', 'Netherlands Antilles', 'New Caledonia', 'New Zealand', 'Nicaragua', 'Niger', 'Nigeria',
        'Niue', 'North Korea', 'North Macedonia', 'Norway', 'Oman',
        'Pakistan', 'Palestine', 'Panama', 'Papua New Guinea', 'Paraguay',
        'Peru', 'Philippines', 'Poland', 'Portugal', 'Puerto Rico', 'Qatar', 'Reunion', 'Romania', 'Russia', 'Rwanda', 'Saint Helena',
        'Saint Kitts and Nevis', 'Saint Lucia',
        'Saint Pierre and Miquelon', 'Saint Vincent and the Grenadines',
         'Samoa', 'Sao Tome and Principe', 'Saudi Arabia', 'Senegal',
        'Serbia', 'Seychelles', 'Sierra Leone', 'Singapore', 'Slovakia',
        'Slovenia', 'Solomon Islands', 'Somalia', 'South Africa',
        'South Korea', 'South Sudan', 'Spain', 'Sri Lanka', 'Sudan',
        'Suriname', 'Sweden', 'Switzerland', 'Syria', 'Taiwan',
        'Tajikistan', 'Tanzania', 'Thailand', 'Togo', 'Tonga',
         'Trinidad and Tobago', 'Tunisia', 'Turkey', 'Turkmenistan',
         'Turks and Caicos Islands', 'Uganda', 'Ukraine',
         'United Arab Emirates', 'United Kingdom', 'United States',
        'United States Virgin Islands', 'Uruguay', 'Uzbekistan', 'Vanuatu',
        'Venezuela', 'Vietnam', 'Western Sahara', 'World', 'Yemen',
         'Zambia', 'Zimbabwe'], dtype=object)
```

```
H
In [13]:
len(data['Entity'].unique())
Out[13]:
213
In [14]:
                                                                                          H
data['Entity'].value_counts()
Out[14]:
Turkey
                         37
Portugal
                         37
Austria
                         37
Cyprus
                         37
Netherlands
                         37
Mauritius
                         20
Ethiopia
                         20
Guinea
                         20
Cambodia
                         20
Netherlands Antilles
Name: Entity, Length: 213, dtype: int64
                                                                                          H
In [15]:
india_electricity_consumption = data[data['Entity']=='India']
In [18]:
                                                                                          H
india_electricity_consumption.head()
```

Out[18]:

	Entity	Year	Per capita electricity (kWh)
2307	India	1985	237.628
2308	India	1986	252.723
2309	India	1987	272.873
2310	India	1988	288.136
2311	India	1989	318.526

In [19]: ▶

```
india_electricity_consumption.tail()
```

Out[19]:

	Entity	Year	Per capita electricity (kWh)
2338	India	2016	924.206
2339	India	2017	960.455
2340	India	2018	1011.229
2341	India	2019	1008.604
2342	India	2020	972.437

In [22]:

In [24]: ▶

china_electricity_consumption = data[data['Entity']=='China']

In [25]: ▶

china_electricity_consumption.head()

Out[25]:

	Entity	Year	Per capita electricity (kWh)
1022	China	1985	381.828
1023	China	1986	410.524
1024	China	1987	445.542
1025	China	1988	479.211
1026	China	1989	504.861

In [26]: ▶

china_electricity_consumption.tail()

Out[26]:

	Entity	Year	Per capita electricity (kWh)
1053	China	2016	4259.257
1054	China	2017	4538.073
1055	China	2018	4900.508
1056	China	2019	5110.046
1057	China	2020	5296.721

In [27]: ▶

In [28]: ▶

US_electricity_consumption = data[data['Entity']=='United States']

In [29]:

 ${\tt US_electricity_consumption.head()}$

Out[29]:

	Entity	Year	Per capita electricity (kWh)
5301	United States	1985	11048.449
5302	United States	1986	11023.556
5303	United States	1987	11312.686
5304	United States	1988	11781.619
5305	United States	1989	12635.657

In [30]: ▶

US_electricity_consumption.tail()

Out[30]:

		Entity	Year	Per capita electricity (kWh)
53	32	United States	2016	12678.900
53	33	United States	2017	12483.701
53	34	United States	2018	12852.293
53	35	United States	2019	12647.457
53	36	United States	2020	12235.088

In [31]:


```
In [43]: ▶
```



```
In [52]:

x = india_electricity_consumption.drop(['Per capita electricity (kWh)', 'Entity'], axis
y = india_electricity_consumption['Per capita electricity (kWh)']

In [53]:

x.shape

Out[53]:
(36, 1)

In [54]:

y.shape

Out[54]:
(36,)
```

```
H
In [55]:
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(x, y, test_size = 0.2)
In [56]:
                                                                                        H
model_india=LinearRegression()
model_india.fit(x,y)
Out[56]:
LinearRegression()
In [57]:
                                                                                        H
print("Coefficient: ",model_india.coef_)
print("intercept: ",model_india.intercept_)
pre = model_india.predict(x)
```

Coefficient: [21.11990232] intercept: -41723.12313899615

```
In [60]: ▶
```

```
plt.figure(figsize=(8,6))
plt.scatter(x,y,label='Acutal value')
plt.plot(x,pre,color='g',label='Predicted value')
plt.legend()
plt.title("India",color='r')
plt.xlabel("Years",color='r')
plt.ylabel("per capital electricity consumption(kWh)",color='r')
plt.tight_layout()
plt.show()
```



```
In [62]: ▶
```

```
import warnings
warnings.filterwarnings("ignore")
```

```
In [63]:
```

```
years=[2021,2022,2023,2024,2025]
for i in years:
    print(model_india.predict([[i]]))
```

```
[960.19944286]
[981.31934517]
[1002.43924749]
[1023.55914981]
[1044.67905212]
```

```
In [65]:
                                                                                        M
from sklearn.metrics import mean_squared_error
In [68]:
                                                                                        H
print("By function: ",mean_squared_error(y,model_india.predict(x)))
By function:
             3107.018301824428
In [69]:
                                                                                        H
x = china_electricity_consumption.drop(['Per capita electricity (kWh)', 'Entity'], axis
y = china_electricity_consumption['Per capita electricity (kWh)']
In [70]:
                                                                                        M
x.shape
Out[70]:
(36, 1)
                                                                                        H
In [71]:
y.shape
Out[71]:
(36,)
In [72]:
                                                                                        M
from sklearn.linear_model import LinearRegression
from sklearn.model selection import train test split
X_train, X_test, y_train, y_test = train_test_split(x, y, test_size = 0.2)
In [73]:
                                                                                        M
model_china=LinearRegression()
model_china.fit(x,y)
Out[73]:
LinearRegression()
In [74]:
print("Coefficient: ",model_china.coef_)
print("intercept: ",model_china.intercept_)
pre = model china.predict(x)
Coefficient:
              [144.66853256]
```

-287644.1720647791

intercept:

```
In [75]: ▶
```

```
plt.figure(figsize=(8,6))
plt.scatter(x,y,label='Acutal value')
plt.plot(x,pre,color='g',label='Predicted value')
plt.legend()
plt.title("China",color='r')
plt.xlabel("Years",color='r')
plt.ylabel("per capital electricity consumption(kWh)",color='r')
plt.tight_layout()
plt.show()
```



```
In [76]:

years=[2021,2022,2023,2024,2025]
for i in years:
    print(model_china.predict([[i]]))
```

```
print(model_china.predict([[i]]))

[4730.93224127]
[4875.60077383]
[5020.26930639]
[5164.93783895]
```

```
In [78]:
```

```
print("By function: ",mean_squared_error(y,model_china.predict(x)))
```

By function: 225359.5087121302

[5309.60637151]

```
In [79]:
x = US_electricity_consumption.drop(['Per capita electricity (kWh)', 'Entity'], axis =
y = US_electricity_consumption['Per capita electricity (kWh)']
                                                                                        H
In [80]:
x.shape
Out[80]:
(36, 1)
In [81]:
                                                                                        H
y.shape
Out[81]:
(36,)
In [82]:
                                                                                        H
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(x, y, test_size = 0.2)
In [83]:
                                                                                        M
model_US=LinearRegression()
model_US.fit(x,y)
Out[83]:
LinearRegression()
                                                                                        M
In [84]:
print("Coefficient: ",model_US.coef_)
print("intercept: ",model_US.intercept_)
pre = model_china.predict(x)
Coefficient: [18.66015328]
            -24394.778085800142
intercept:
```

In [85]: ▶

```
plt.figure(figsize=(8,6))
plt.scatter(x,y,label='Acutal value')
plt.plot(x,pre,color='g',label='Predicted value')
plt.legend()
plt.title("United States",color='r')
plt.xlabel("Years",color='r')
plt.ylabel("per capital electricity consumption(kWh)",color='r')
plt.tight_layout()
plt.show()
```



```
In [86]:

years=[2021,2022,2023,2024,2025]
for i in years:
    print(model_US.predict([[i]]))

[13317.39169683]
[13336.05185011]
[13354.71200339]
[13373.37215667]
[13392.03230995]

In [87]:

print("By function: ",mean_squared_error(y,model_US.predict(x)))
```

By function: 518207.58128774806