FLS 6441 - Methods III: Explanation and Causation

Week 1 - Review

Jonathan Phillips

February 2019

Course Objectives

1. temp

Data

1. We work with variables, which VARY!

Variable
0.19
-0.22
1.88
-0.78
-0.03
1.37
-0.21
-0.28
0.52
1.18

1. Regression is a Conditional Expectation Function

- 1. Regression is a **Conditional Expectation Function**
- 2. Conditional on X, what is our expectation (mean value) of Y?

- 1. Regression is a **Conditional Expectation Function**
- 2. Conditional on X, what is our expectation (mean value) of Y?
- 3. E(Y|X)

1. Regression is very similar to calculating correlation

Regression Guide

- Choose variables and measures: To test a specific hypothesis
- Choose a Model/Link Function: Should match the data type of your outcome variable
- 3. **Choose Covariates:** To match your strategy of inference
- Choose Fixed Effects: To focus on a specific level of variation
- 5. **Choose Standard Error Structure:** To match known dependencies/clustering in the data
- 6. **Interpret the coefficients:** Depending on the type/scale of the explanatory variable

Regression Models

The Regression Model reflects the data type of the outcome variable:

► Continuous -> Ordinary Least Squares

```
zelig(Y X,data=d,model="ls")
```

► Binary -> Logit

```
zelig(Y X,data=d,model="logit")
```

► Unordered categories -> Multinomial logit

```
zelig(Y X,data=d,model="mlogit")
```

► Ordered categories -> Ordered logit

```
zelig(Y X,data=d,model="ologit")
```

► Count -> Poisson

```
zelig(Y X,data=d,model="poisson")
```

Interpreting Regression Results

- ➤ Difficult! It depends on the scale of the explanatory variable, scale of the outcome, the regression model we used, and the presence of any interaction
- ► Basic OLS:
 - 1 [unit of explanatory variable] change in the explanatory variable is associated with a β [unit of outcome variable] change in the outcome

Predictions from Regressions

▶ temp

Omitted Variable Bias

Omitted Variable Bias

