Wireless technologies and applications

RF systems issues

1 - Noise rejection (Signal to Noise Ratio)

1.1 - Issues

in the frequency domain:

ex: GSM \rightarrow 33 dBm max DCS-1800 \rightarrow 30 dBm max Bluetooth \rightarrow 0 / 4 / 20 dBm

* Reminder: P (dBm) = 10 log (P / 1mW)

** notice:

f₀ 7 ⇒ channel BW (data rate) 7 antenna size \(\sigma\)

RECEPTION

SNR must be sufficient to guarantee the quality*** of the transmission

*** Bit Error Rate (BER) for digital communications

In the receiver, a minimum Signal to Noise Ratio must be guaranteed to maintain the Bit Error Rate at a sufficiently low level.

(BER is never = 0!)

According to modulation scheme and noise level, a minimum signal level must be received for correct data transmission.

This defines the receiver's sensitivity.

1.1.a — transmission path losses: what net power at the receiving antenna?

Losses depend on the distance d between Tx and Rx and on the carrier wavelength λ :

$$P_{loss} = 10 log (4\pi \ d/\lambda)^2$$
 (dB)
$$\lambda = \frac{300}{f_{carrier}}$$
 (m, MHz)

Using practical units: $P_{loss}(dB) = 32.45 + 20 \log f_{carrier}(MHz) + 20 \log d(km)$

The net received power at the antenna is:

$$P_{Rx} = P_{Tx} + G_{ATx} - P_{loss} + G_{ARx}$$

P_{Rx}: received power (dBm)

 P_{Tx} : transmitted power (dBm)

 G_{ATx} : transmitter antenna gain (dB) ≥ 0

 G_{ARx} : receiver antenna gain (dB) ≥ 0

Ploss (dB)

1.1.b - interferers or adjacent channels: rejection is achieved in the receiver by channel filtering

GSM characteristics:

$$P_{r \text{ min}} \approx -110 \text{ dBm}$$
 $P_{r \text{ max}} \approx -20 \text{ dBm}$
 $\Rightarrow 10^9 \text{ ratio (!!!)}$

$$\Delta f = 200 \text{ kHz}$$

∆f depends on: spacing between the channels

∆G depends on:

- useful channel's power (worst case)
- adjacent channel's power (worst case)
- required SNR

estimation of the required order for the equivalent filter

transfer function (amplitude)

$$(A_2/A_1)_{dB} = -20 \times n \log (f_2/f_1)$$

example: 60 dB attenuation required with $\Delta f = 45 \text{ kHz}$

for
$$f_1 = 5$$
 kHz, $f_2 = 50$ kHz \Rightarrow $n = 3$

$$\Rightarrow$$
 n = 3

for
$$f_1 = 900$$
 MHz, $f_2 = 900,045$ MHz \Rightarrow $n \approx 150 000$

$$n\approx 150\ 000$$

In addition, center frequency f_0 must be tunable, according to the channel of interest ⇒ not compatible with a high quality factor passive filter)

⇒ channel filtering can't be done directly at radio frequency (RF)

1.1.c — thermal noise:

For example, if signal source is an antenna, aimed at sky with effective temperature $T_{antenna}$ =30°K, then the received power spectral density is:

$$PSD_{received} = k T_{antenna} = -174 + 10 log(30/290) = -183.8 dBm/Hz$$

The term: -174(dBm/Hz) is the thermal level for 290K; the term: +10 log(30/290) corrects for a system noise temperature of 30 K. The noise power at the antenna is the PSD multiplied by the receiver's bandwidth B.

1.1.d — receiver's noise: induced by the different elements of the receiver ⇒ the lower the better!

Issues to investigate:

How much added noise for a given element in the chain?

How much added noise for the whole chain?

References:

[1] Richard J. Mohr, Mohr on Receiver Noise: Characterization, Insights & Surprises

[2] Friis, H.T., Noise Figures of Radio Receivers, Proc. Of the IRE, July, 1944, pp 419-422

How much added noise for a given element in the chain?

The input noise can be modeled as a noisy resistor Rs:

When this noise source is connected to a load:

When the source is conjugate matched to the load ($Rs = RL^*$):

- B = bandwidth of the receiver ≈ channel bandwidth
- •True whatever the resistor value as far as source is matched to the load
- •T_s is the noise temperature of the source

11

Similarly, the noise added by an element of the chain, let's say an amplifier with power gain G, can be modeled by its equivalent noise temperature T_{amp} :

Total input noise (signal source and amplifier):

$$N_{intotal} = \frac{N_{out}}{G} = k \left(T_s + T_{amp}\right)B = k T_s B \left(1 + \frac{T_{amp}}{T_s}\right) = k T_s B F$$

Where: $F = \left(1 + \frac{T_{amp}}{T_s}\right)$ Is the noise factor of the amplifier

F is defined by IEEE standard when $T_s = T_0 = 290K$

Noise figure NF is also used, it is simply NF = $10 \log(F)$, expressed in dB

What lies behind noise factor F?

For a noiseless amplifier, $T_{amp} = 0$ Kelvin and therefore F = 1

A real, noisy amplifier exhibits a non-zero noise temperature and then F increases.

The noise factor is a measure of the amplifier's added noise in terms of k T_s B with $T_s = T_0 = 290K$. More precisely, F - 1 measures how many k T_0 B are added by the amplifier to the noise coming from the signal source.

For example, if NF = 6dB, F = 4. This means that the amplifier adds $3 \text{ k T}_0 \text{ B}$ to the noise coming from the signal source.

An alternate definition of the noise factor is:

$$F = SNR_{source} / SNR_{out} = (S_{source}/N_{source}) / (S_{out}/N_{out})$$

$$F = \frac{S_{source}/N_{source}}{S_{out}/N_{out}} = \frac{S_{source}}{S_{out}} \times \frac{N_{out}}{N_{source}} = \frac{1}{G} \times \frac{N_{out}}{N_{source}}$$

Where N_{source} is the noise only due to the signal source (kT₀ B) with T₀ = 290K

$$\Rightarrow$$
 N_{out} = F × G × N_{source}

(total noise at the output)

input-referred noise (= total noise at the output / gain) :
$$F \times N_{source} = F \times kT_0B$$

in dB:
$$N_{in total} = -174 + 10 log B + NF (dBm)$$

What if we have lossy elements (attenuators)?

$$F = \frac{N_{out}}{A \ N_{source}} = 1 + \frac{T_{att}}{T_0} \frac{1 - A}{A}$$

Therefore, if $T_{att} = T_0$, the attenuator's noise factor is 1/A. For example, a 3dB attenuator (attenuator's gain is -3dB) exhibits a noise factor F = 3dB

How much added noise for the whole chain?

$$N_{out} = [F1 \ k \ T_0 B \ G1 + (F2 - 1)k \ T_0 B]G2$$

$$N_{ineq} = \frac{N_{out}}{G1 \ G2} = \left[F1 + \frac{(F2 - 1)}{G1}\right] k \ T_0 B$$

$$F_{global} = \left[F1 + \frac{(F2 - 1)}{G1} \right]$$

Noise figure for cascaded elements

If elements are matched:

$$F_{\text{total}} = F_1 + \frac{F_2 - 1}{G_1} + \frac{F_3 - 1}{G_1 \cdot G_2} + \dots + \frac{F_N - 1}{G_1 \cdot G_2 \cdot \dots \cdot G_{N-1}}$$

"Friis equation [2]"

- \Rightarrow F_i and G_i are NOT in dB
- ⇒ 1st active element in a receiver: Low Noise Amplifier

1.2 - Sensitivity of a receiver

Sensitivity is the minimum power of the input signal which gives a sufficient SNR for correct decoding/demodulation of the transmitted data

sensitivity =
$$P_{in min} = kT_0 B \times F \times SNR_{min}$$

in dB: sensitivity (dBm) = $-174 + 10 \log B + NF + SNR_{min (dB)}$

for illustration

MICRF505

850MHz and 950MHz ISM Band Transceiver

Receive Section			1		L
	All functions turned on		13.5		mA
Rx Current Consumption	LNA bypass		10.9	8	mA
Rx Current Consumption	Switch cap filter bypass with LNA		10.9		mA
	Bypass of Switch cap and LNA	8.6		mA	
Rx Current Consumption Variation	Over temperature		4		mA
	2.4kbps, β = 16, SC=50kHz, BER 10 ⁻³	-111			dBm
	4.8kbps, β = 16, SC=50kHz, BER 10 ⁻³		-110		dBm
Receiver Sensitivity	19.2kbps, β = 8, SC=200kHz, BER 10 ⁻³		-107		dBm
	38.4kbps, β = 4, BER 10 ⁻³		-104		dBm
	76.8kbps, β = 2, BER 10 ⁻³		-101		dBm
	125kbps, β = 2, BER 10 ⁻³		-100		dBm
	200kbps, β = 2, BER 10 ⁻³		-97		dBm
Receiver Maximum Input Power	125kbps, β = 2		-12		dBm
Receiver Maximum input Power	20kbps, β = 10		-10		dBm
Pacaivar Sancitivity Talaranaa	Over temperature		4		dB
Receiver Sensitivity Tolerance	Over power supply range		1		dB
Receiver Bandwidth		50		350	kHz
Co Channel Baisstian	40.011 0 0 00 400111				4D

```
14 dB

⇒ power ratio = 25

⇒ theoretical
distance ratio = 5!

3 dB

⇒ power ratio = 2

⇒ theoretical
distance ratio = 1,4
```

2 - Linearity

2.2 - Issues

non-linear element:

in = A sin(2.
$$\pi$$
.f₁.t) + A sin(2. π .f₂.t)

out =
$$a.in + b.in^2 + c.in^3 + ...$$

a.in
$$\rightarrow$$

$$f_1, f_2 \leftarrow$$

fundamental

b.in²
$$\rightarrow$$

$$(2.f_1)(2.f_2)(f_1 + f_2)(f_1 - f_2)$$

c.in³
$$\rightarrow$$

$$(f_1, (3.f_2), (2.f_1 + f_2), (2.f_2 + f_1), (2.f_1 - f_2)$$

$$2.f_1 - f_2$$

$$2.f_2 - f_1$$

- Out of band harmonics and intermodulation products suppressed by filtering
- **In-band intermodulation products**

non-linearity is quantified by "Input-Referred Third-Order Intermodulation Intercept Point" (IP3)

definition:

if <u>input</u> power (P_{in}) is equal to IP3 power (P_{IP3}), the power <u>at the output</u> of 3rd order intermodulation products is equal to fundamental output power

notice: this is a theoretical value, not necessarily achievable in practice

2.2 - IP3 for cascaded elements

$$\frac{1}{\text{IP3}_{\text{total}}} = \frac{1}{\text{IP3}_{1}} + \frac{G_{1}}{\text{IP3}_{2}} + \dots + \frac{G_{1}.G_{2}.\dots.G_{i-1}}{\text{IP3}_{i}}$$

 \Rightarrow IP3; and G; are NOT in dB

⇒ with respect to linearity, the last element in the chain is predominant

example of characteristics (1/2):

12. Electrical Characteristics: General (Continued)

This device is manufactured with an industrial (not automotive) grade process and process controls. Although this device may meet certain automotive grade criteria in performance, Atmel can not recommend that this device be used in any automotive application.

All parameters refer to GND and are valid for $T_{amb} = 25^{\circ}$ C, $V_{VS1} = V_{VS2} = 3.0$ V (1-battery application), $V_{VS2} = 6.0$ V (2-battery application) and $V_{VS2} = V_{VAUX} = 5.0$ V (Base-station Application). Typical values are given at $f_{RF} = 433.92$ MHz unless otherwise specified. Details about current consumption, timing and digital pin properties can be found in the specific sections of the "Electrical Characteristics".

No.	Parameters	Test Conditions	Pin ⁽¹⁾	Symbol	Min.	Тур.	Max.	Unit	Type*
2.6	Maximum frequency offset in FSK mode	Maximum frequency difference of f _{RF} between receiver and transmitter in FSK mode (f _{RF} is the center frequency of the FSK signal with f _{DEV} = ±16 kHz)	(4)	Δf_{OFFSET}	-58		+58	kHz	В
2.7	Supported FSK frequency deviation	With up to 2 dB loss of sensitivity. Note that the tolerable frequency offset is for $f_{DEV} = \pm 22$ kHz, 6 kHz lower than for $f_{DEV} = \pm 16$ kHz hence $\Delta f_{OFFSET} \le \pm 52$ kHz	(4)	f _{DEV}	±14	±16	±22	kHz	В
		f _{RF} = 315 MHz	(4)	NF		6.0		dB	В
		f _{RF} = 345 MHz	(4)	NF		6.2		dB	В
2.8	System noise figure	f _{RF} = 433.92 MHz	(4)	NF		7.0		dB	В
		f _{RF} = 868.3 MHz	(4)	NF		9.7		dB	В
		f _{RF} = 915 MHz	(4)	NF	3	10.3		dB	В
2.9	Intermediate frequency	f _{RF} = 315 MHz		f _{IF}		227		kHz	Α
		f _{RF} = 345 MHz		f _{IF}		235		kHz	Α
		f _{RF} = 433.92 MHz		f _{IF}		223		kHz	Α
		f _{RF} = 868.3 MHz		f _{IF}		226		kHz	Α
		f _{RF} = 915 MHz		f _{IF}	6	238		kHz	Α

UHF ASK/FSK Transceiver

ATA5423 ATA5425 ATA5428 ATA5429

noise figure

example of characteristics (2/2):

2.12	System outband 3rd-order input intercept point	$\Delta f_{meas1} = 1.8 \text{ MHz}$ $\Delta f_{meas2} = 3.6 \text{ MHz}$ $f_{RF} = 315 \text{ MHz}$	(4)	IIP3		-22		dBm	С
		f _{RF} = 345 MHz	(4)	IIP3		-22		dBm	С
		f _{RF} = 433.92 MHz	(4)	IIP3	}	-21		dBm	С
		f _{RF} = 868.3 MHz	(4)	IIP3		-17		dBm	С
		f _{RF} = 915 MHz	(4)	IIP3		-16		dBm	С
	System outband input 1 dB compression point	$\Delta f_{meas1} = 1 \text{ MHz}$ $f_{RF} = 315 \text{ MHz}$	(4)	I1dBCP		-31		dBm	С
2.13		f _{RF} = 345 MHz	(4)	I1dBCP		-31	,	dBm	С
		f _{RF} = 433.92 MHz	(4)	I1dBCP		-30		dBm	С
		f _{RF} = 868.3 MHz	(4)	I1dBCP		-27		dBm	С
		f _{RF} = 915 MHz	(4)	I1dBCP		-26		dBm	С
	LNA input impedance	f _{RF} = 315 MHz	4	Z _{in_LNA}		(44 – j233)		Ω	С
2.14		f _{RF} = 345 MHz	4	Z _{in_LNA}		(40 - j211)		Ω	С
		f _{RF} = 433.92 MHz	4	Z _{in_LNA}		(32 – j169)		Ω	С
		f _{RF} = 868.3 MHz	4	Z _{in_LNA}		(21 – j78)		Ω	С
		f _{RF} = 915 MHz	4	Z _{in_LNA}		(18 – j70)		Ω	С

IP3

input impedance (useful for antenna matching)