Exam 1 Solutions

1. For n=9 randomly sampled school districts, a simple linear regression model of eighth grade math NAEP (Natl Assessment of Educ. Progress) score (y) on per-pupil expenditures (x, in \$K) was fit $(\widehat{y} = \widehat{\beta}_0 + \widehat{\beta}_1 x)$ with partial output below:

```
The SAS System
The REG Procedure
                             Analysis of Variance
                                                       Mean
                                     Sum of
                                                                          Pr > F
                          DF
                                                               F Value
Source
                                    Squares
                                                     Square
Model
                                  172.80000
                                  126.00000
Error
Corrected Total
                           8
                                  298.80000
                                         Standard
                       Parameter
Variable
              DF
                       Estimate
                                            Error
                                                      t Value
                                                                  Pr > |t|
                                                                    < .0001
{\tt Intercept}
                       230.00000
                                         13.24387
                                                        17.37
               1
               1
                         6.00000
                                          1.93649
                                                         3.10
                                                                    0.0174
```

- (a) Report the coefficient of determination for this regression model. $r^2 = 172.8/298.8 = 0.58$
- (b) Report the *p*-value and *F*-ratio from a test of $H_0: \beta_1 = 0$. $F = 172.8/(126/7) = 9.5(=t^2)$ with p = .0174
- (c) Obtain the fitted value, \hat{y} for math scores among schools spending \$6800 per pupil. Also, obtain residuals for the third and last observations in the table below:

```
х
          у
                  fitted
                             resid
5.6
        260.6
                   263.6
                               -3
6.4
        262.4
                   268.4
                              -6
6.8
        270.8
                   273.2
7.2
        279.2
                              6
8.0
        275.0
                   278.0
                              -3
6.0
        269.0
                   266.0
                               3
6.4
        271.4
                   268.4
                               3
7.2
        276.2
                   273.2
7.6
        272.6
                   275.6
```

The fitted value is $\hat{\beta}_0 + \hat{\beta}_1(6.8) = 230 + 6(6.8) = 270.8$. Residuals are $e_3 = 0$ and $e_9 = -3$.

- (e) Describe briefly how to obtain a quantile-quantile plot to check for normality. ... The sorted residuals are plotted against the corresponding quantiles from N(0,1). The most negative residual, -6, is plotted against the 10^{th} percentile, $z_{.9} = -1.28$ and the largest residual, 6 is plotted against the 10^{th} percentile, $z_{.1} = 1.28$.
- (f) The mean expenditure in the sample was $\overline{x} = 6.8$ and the estimated mean response at this value is $\widehat{\mu}(x = \overline{x}) = \overline{y}$. It can be shown that $SD(\widehat{\mu}(x = \overline{x})) = \sigma/\sqrt{n}$. Report an estimate, \widehat{SE} of this standard error.

$$\sigma/\sqrt{n}$$
 can be estimated by $SE = \sqrt{MS(E)/9} = \sqrt{2}$

(g) The 97.5th percentile from the appropriate t distribution is t = 2.36. Use it to construct a 95% confidence interval for the mean math score among districts who spend the average (\overline{x}) per pupil.

$$\overline{y} \pm 2.36SE$$
 or $270.8 \pm 2.36\sqrt{2}$ or 270.8 ± 3.34

(h) Obtain a 95% prediction interval for the grades from one such school with $x = \overline{x}$ sampled at random.

$$\overline{y} \pm 2.36\sqrt{SE^2 + MS(E)}$$
 or $270.8 \pm 2.36\sqrt{2 + 18}$ or 270.8 ± 10.6

- 2. (15 pts) A bivariate random sample $(x_1, y_1), \ldots, (x_{16}, y_{16})$ led to an observed average of $\overline{y} = 10$. The observed standard deviations were $s_x = 3$ and $s_y = 2$. The observed correlation between x and y was r = 0.6
 - (a) Report the least squares estimate of the slope in a simple linear regression of y on x. $\hat{\beta}_1 = r \frac{s_y}{s_x} = 0.6 \frac{2}{3} = 0.4$
 - (b) Estimate the population mean of the response y when x is one standard deviation below its average from the sample, \overline{x} . (\overline{x} isn't needed to solve this problem.)

$$\widehat{\mu}(x = \overline{x} - s_x) = \widehat{\beta}_0 + \widehat{\beta}_1(\overline{x} - s_x)$$

$$= \overline{y} - \widehat{\beta}_1 \overline{x} + \widehat{\beta}_1(\overline{x} - s_x)$$

$$= \overline{y} - \widehat{\beta}_1 s_x$$

$$= \overline{y} - (0.4)(3)$$

$$= 10 - 1.2 = 8.8$$

(c) Estimate the difference in the mean estimated in part (b) and the estimated mean when $x = \overline{x}$.

$$\widehat{\mu}(x = \overline{x} - s_x) = \overline{y} - r \frac{s_y}{s_x} s_x$$

$$\widehat{\mu}(x = \overline{x}) = \widehat{\beta}_0 + \widehat{\beta}_1(\overline{x})$$

$$= \overline{y} - \widehat{\beta}_1 \overline{x} + \widehat{\beta}_1(\overline{x})$$

$$= \overline{y}$$

$$\widehat{\mu}(\overline{x}) - \widehat{\mu}(\overline{x} - s_x) = -r s_y = -0.6(2) = -1.2$$

- 3. An experiment in veterinary medicine involves N=20 cats suffering from the same degenerative hip condition. They are assigned to t=4 treatment groups at random:
 - FHO Surgery, plus physical therapy
- FHO Surgery, no physical therapy
- THR Surgery, plus physical therapy
- THR Surgery, no physical therapy

A primary outcome (y) from the surgery is leg extension on the operated side after 12 months. The means, standard deviations and variances from these four treatment groups are given below:

·					
	N				
trt	0bs	N 	Mean	Std Dev	Variance
FHO,PT	5	5	146.1000000	5.7706152	33.3000000
FHO, no PT	5	5	142.000000	6.3146655	39.8750000
THR, PT	5	5	149.5000000	3.9051248	15.2500000
THR, no PT	5	5	143.800000	7.9733933	63.5750000

- (a) What is the name of this experimental design? Completely Randomized Design
- (b) Complete the ANOVA table below and (b) construct an F-ratio for testing for an effect of the surgery-by-PT treatment combination:

Source	df	Sum of squares	Mean square	F-ratio
Treatments	3	157.05	52.35	1.38
Error	16	608	38	
Total	19	765		

(c) Under the model $Y_{ij} = \mu + \tau_i + E_{ij}$ with $E_{ij} \stackrel{iid}{\sim} N(0, \sigma^2)$, what is the expectation of the error mean square: $E(MS(E)) = \underline{\sigma^2}$.

4. Consider further the experiment with cats undergoing hip surgery. Two solution vectors for the parameters $(\mu, \tau_1, \ldots, \tau_4)$ for the model $Y_{ij} = \mu + \tau_i + E_{ij}$ are given as output below.

ine GLM	I Procedure (top)				
			Standard			
Paramet	er	Estimate	Error	t Value	Pr > t	
Interce	pt	143.8000000 B	2.75680975	52.16	<.0001	
trt	FHO,PT	2.3000000 B	3.89871774	0.59	0.5635	
trt	FHO, no PT	-1.8000000 B	3.89871774	-0.46	0.6505	
trt	THR, PT	5.7000000 B	3.89871774	1.46	0.1631	
trt	THR, no PT	0.0000000 B	•	•	•	
t	o solve the nor	as been found to be mal equations. Ter uely estimable.	•	-		
	•					
The GLM	I Procedure (bot	•				
The GLM	Procedure (bot	•	Standard			
		•	Standard Error	t Value	Pr > t	
Paramet	er	tom)			Pr > t <.0001	
Paramet Interce	er	tom) Estimate	Error		<.0001	
Paramet Interce trt	er pt FHO,PT	Estimate 146.1000000 B	Error 2.75680975	53.00	<.0001	
Paramet Interce trt trt	er Pt FHO,PT FHO,no PT	Estimate 146.1000000 B 0.0000000 B	Error 2.75680975 3.89871774	53.00 -1.05	<.0001 0.3086	
The GLM Paramet Interce trt trt trt	Pt FHO,PT FHO,no PT THR,PT	Estimate 146.1000000 B 0.0000000 B -4.1000000 B	Error 2.75680975 3.89871774	53.00 -1.05 0.87	<.0001 0.3086 0.3961	

(a) Use this output to complete the table of estimates below:

	Parameter					
Parameterization	$ au_3 - au_4$	$\mu + \tau_3$	$ au_3$			
top	5.7 - 0 = 5.7	143.8 + 5.7 = 149.5	5.7			
bottom	3.4 - (-2.3) = 5.7	146.1 + 3.4 = 149.5	3.4			
Label	UE	UE	NUE			

(b) In the table above, write UE or NUE beneath each column to indicate whether the linear combination of parameters in that column is uniquely estimable (UE) or not (NUE).

5. (30 points) Three measurements are made on each of n = 31 trees randomly sampled from a population of interest: y = volume (in cubic ft), $x_1 = girth$ (in inches), $x_2 = height$ (in feet). Let X denote the design matrix for a multiple linear regression model of y on x_1 and x_2 :

$$Y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + E_i$$

The partial output at the end of the exam was generated using the SAS code below. Use it to answer the given questions.

proc reg;

model volume=girth height/xpx i ss1 ss2;
run;

- (a) Enter here the hidden part of the output labelled AAA. (n = 31)
- (b) Enter here the hidden part of the output labelled BBB. $\sum x_{i1} = 410.7$
- (c) Enter here the hidden part of the output labelled CCC. Since $SE(\hat{\beta}_1) = .26$ and $V(\hat{\beta}) = (X'X)^{-1}MS(E)$, we can solve for the entry in $(X'X)^{-1}$:

CCC
$$MS(E) = 0.26^2 \implies CCC = .26^2 / MS(E) = .0045$$

- (d) Specify the dimension of the design matrix X. 31×3
- (e) Give the matrix product $(X'X)^{-1}X'Y$

$$\widehat{\beta} = \left(\begin{array}{c} -58\\ 4.7\\ 0.34 \end{array}\right)$$

- (f) Give the extra sum of squares for girth after controlling for height, $R(\beta_1|\beta_0,\beta_2)$. Type II SS for girth: 4783.
- (g) Give the regression sum of squares for a simple linear regression of volume on height only.

$$R(\beta_2|\beta_0) + R(\beta_1|\beta_0, \beta_2) = \text{Model SS} = 7684 \Leftrightarrow R(\beta_2|\beta_0) = 7684 - 4782 = 2902$$

- (h) What is the squared correlation between the observed values (y_i) and the fitted values (\hat{y}_i) from the multiple linear regression? What is this coefficient called? $r^2 = .948$, the multiple coefficient of determination.
- (i) When the product girth × height is added to the model, the least squares regression equation becomes

$$\hat{y} = 69.4 - 5.86x_1 - 1.3x_2 + 0.135x_1x_2$$

and the unexplained error is quantified by SS[E] = 198 on 27 df. Formulate a test comparing the additive model with the interactive model. Specify a null hypothesis H_0 and report an F-ratio, along with associated degrees of freedom.

$$F = \frac{SS(E)_r - SS(E)_f}{MS(E)_f} = (422 - 198)/(198/27) = 30.5, df = 1,27$$

(j) Consider trees with $x_1 = 10$. Use the fitted model from (i) to report the least squares regression line for estimated volume as a function of x_2 for these trees:

$$\mu(x_2) = \underline{\qquad} + \underline{\qquad} x_2$$

Substituting $x_1 = 10$ into the regression equation gives

$$\mu(x_1 = 10, x_2) = 69.4 - 5.86(10) - 1.3x_2 + 0.135(10)x_2 = 10.8 + .05x_2$$

Model Crossproducts X'X X'Y Y'Y

Variable	Intercept	girth	heigl	nt	volume			
Intercept	AAA	410.7	235	56	935.3			
girth	BBB	5736.55	31524		13887.86			
height	2356	31524.7	1802		72962.6			
volume	935.3	13887.86	72962		36324.99			
X'X Inverse, Parameter Estimates, and SSE								
Variable	Intercept	girth	heigl	nt	volume			
Intercept	4.9519429276	0.028680223	-0.0697322	57 -57	7.98765892			
girth	0.028680223	CCC	-0.00118526	65 4.	708160503			
height	-0.069732257	-0.001185265	0.001124146	0.3	392512342			
volume	-57.98765892	4.708160503	0.339251234	42 421	.92135922			
	A	nalysis of Varian	ce					
		Sum of	Mean					
Source	DF	Squares	Square I	F Value	Pr > F			
Model	2	7684.16251	3842.08126	254.97	<.0001			
Error	28	421.92136	15.06862	204.91	V.0001			
Corrected To		8106.08387	10.00002					
Collected 10	uai ou	0100.00007						
Root MSE	3.88183	R-Square 0	.9480					
Dependent Me		-	.9442					
1		3 1						
Parameter Estimates								
	Parameter	Standard						
Variable D	F Estimate	Error t Valu	e Pr > t	Type I SS	Type II SS			
Intercept	1 -57.98766	8.63823 -6.7	1 <.0001	28219	679.04025			
_	1 4.70816	0.26426 17.8		7581.78133	4782.97364			
•	1 0.33925	0.13015 2.6		102.38118	102.38118			
11019110	1 0.00020	3.10010 2.0	2 0.0140	102.00110	102.00110			