2014 TAIWAN

International Olympiad in Informatics 2014

13-20th July 2014 Taipei, Taiwan Day-2 tasks

holiday Language: ka-GE

დღესასწაული

ჯიან-ჯი მომავალი სადღესასწაულო დღეების გატარებას ტაივანში გეგმავს. მას უნდა გადაადგილდეს ქალაქიდან ქალაქში და ესტუმროს ამ ქალაქებში არსებულ ატრაქციონებს.

ტაივანში n ქალაქია, რომლებიც განლაგებულია ერთი მაგისტრალის გასწვრივ. ქალაქები გადანომრილია მიმდევრობით 0-დან (n-1)-მდე. i-ური ქალაქისათვის (0 < i < n-1) მეზობელი ქალაქებია (i-1)-ე და (i+1)-ე ქალაქები. ქალაქ 0-ის ერთადერთი მეზობელია ქალაქი 1, ქალაქ n-1-ის ერთადერთი მეზობელია ქალაქი n-1-ის

ყოველ ქალაქში არის ატრაქციონების გარგვეული რაოდენობა. ჯიან-ჯი გეგმავს ესტუმროს რაც შეიძლება ბევრ ატრაქციონს. ჯიან-ჯის შერჩეული აქვს ქალაქი, საიდანაც უნდა დაიწყოს სადღესასწაულო მოგზაურობა. ყოველ დღეს ჯიან-ჯის შეუძლია შეასრულოს ორი მოქმედებიდან ერთ-ერთი: გადაადგილდეს მეზობელ ქალაქში, ან ესტუმროს ყველა ატრაქციონს იმ ქალაქში, რომელშიც იმყოფება. ორივე მოქმედების ერთდროულად შესრულება მას არ შეუძლია. ჯიან-ჯის დევიზია აგრეთვე, არასდროს არ ესტუმროს ერთი და იგივე ქალაქში ატრაქციონებს ორჯერ, თუნდაც მრავალჯერ დარჩეს ამ ქალაქში. დაეხმარეთ ჯიან-ჯის ისე დაგეგმოს თავისი სადღესასწაულო მოგზაურობა, რომ ესტუმროს რაც შეიძლება ბევრ განსხვავებულ ატრაქციონს.

მაგალითი

დავუშვათ, ჯიან-ჯის აქვს 7-დღიანი დღესასწაულები, მოცემულია 5 ქალაქი (ჩამოთვლილია ქვემოთ ცხრილში) და იწყებს მოგზაურობას მე-2 ქალაქიდან. პირველ დღეს ჯიან-ჯი ესტუმრება მე-2 ქალაქში 20 ატრაქციონს. მეორე დღეს ჯიან-ჯი გაემგზავრება მე-3 ქალაქში, მე-3 დღეს ესტუმრება 30 ატრაქციონს მე-3 ქალაქში. შემდეგ 3 დღეს ჯიან-ჯი მოანდომებს მე-3-დან 0-ვან ქალაქში გადაადგილებას, შემდეგ დღეს ესტუმრება 10 ატრაქციონს 0-ვან ქალაქში (მეშვიდე დღეს). სულ ჯიან-ჯი ესტუმრება 20 + 30 + 10 = 60 ატრაქციონს. ეს არის მაქსიმალური რაოდენობა ატრაქციონებისა, რომლებსაც ესტუმრება ჯიან-ჯი 00 დღის განმავლობაში, როცა მოგზაურობას დაიწყებს მე-2 ქალაქიდან.

ქალაქი	ატრაქციონების რაოდენობა		
0	10		
1	2		
2	20		
3	30		
4	1		

დღე	მოქმედება			
1	ესტუმრება ატრაქციონებს მე-2 ქალაქში			
2	გაემგზავრება მე-2 ქალაქიდან მე-3 -ში			
3	ესტუმრება ატრაქციონებს მე-3 ქალაქში			
4	გაემგზავრება მე-3 ქალაქიდან მე-2 -ში			
5	გაემგზავრება მე-2 ქალაქიდან 1-ლში			
6	გაემგზავრება 1-ლი ქალაქიდან 0-ვანში			
7	ესტუმრება ატრაქციონებს 0-ვან ქალაქში			

ამოცანის დასმა

გთხოვთ გაუკეთოთ რეალიზაცია ფუნქციას findMaxAttraction. იგი ითვლის ატრაქციონების მაქსიმალურ რაოდენობას, რომლებსაც შეუძლია ესტუმროს ჯიან-ჯი.

- findMaxAttraction(n, start, d, attraction)
 - n: ქალაქების რაოდენობა.
 - start: საწყისი ქალაქის ნომერი.
 - d: სადღესასწაულო დღეების რაოდენობა.
 - lacktriangle attraction: n სიგრძის მასივი; attraction[i] არის ატრაქციონების რაოდენობა i-ურ ქალაქში, სადაც $0 \le i \le n-1$.
 - ფუნქცია დაგვიბრუნებს ატრაქციონების მაქსიმალურ რაოდენობას, რომლებსაც შეუძლია ესტუმროს ჯიან-ჯი.

ქვეამოცანები

ყველა ქვეამოცანში $0 \leq d \leq 2n + \lfloor n/2 \rfloor$.

დამატებითი შეზღუდვები:

ქვეამოცანა	ქულა	n	ატრაქციონების რაოდენობა ქალაქში (t)	საწყისი ქალაქი
1	7	$2 \leq n \leq 20$	$0 \leq t \leq 1,000,000,000$	შეზღუდვა არ არის
2	23	$2 \leq n \leq 100,000$	$0 \le t \le 100$	ქალაქი 0
3	17	$2 \leq n \leq 3,000$	$0 \leq t \leq 1,000,000,000$	შეზღუდვა არ არის
4	53	$2 \leq n \leq 100,000$	$0 \leq t \leq 1,000,000,000$	შეზღუდვა არ არის

რეალიზაციის დეტალები

თქვენ უნდა გააგზავნოთ ერ-ერთი ფაილი holiday.c, holiday.cpp ან holiday.pas. ფაილში რეალიზება უნდა გაუკეთოთ ზემოთ აღწერილ ქვეპროგრამას შესაბამისი შაბლონით. აგრეთვე უნდა ჩართოთ ფაილი holiday.h (C/C++)-ში რეალიზაციისას.

მიაქციეთ ყურადღება, რომ შედეგი შეიძლება იყოს დიდი და findMaxAttraction-ის მიერ უნდა დაბრუნდეს 64-ბიტიანი მთელი რიცხვი.

C/C++ პროგრამა

```
long long int findMaxAttraction(int n, int start, int d,
int attraction[]);
```

Pascal პროგრამა

```
function findMaxAttraction(n, start, d : longint;
attraction : array of longint): int64;
```

grader-ის მაგალითი

grader-ის მაგალითში შემავალი მონაცემების შეტანა ხდება შემდეგი ფორმატით:

- **%%0** 1: n, start, d.
- bb602: attraction[0], ..., attraction[n-1].

grader-ის მაგალითმა უნდა დაბეჭდოს findMaxAttraction-ის მიერ დაბრუნებული მნიშვნელობა.