Finding is as easy as detecting for quantum walks

Jérémie Roland

Hari Krovi

Frédéric Magniez

ARIS

Maris Ozols

[ICALP'2010, arxiv:1002.2419]

Spatial search on a graph

Setup

- Graph G on n vertices X
- Marked vertices: unknown $M \subseteq X$
- Vertex register: "robot" position
- Edges: legal moves

The problem

• Move the robot to a marked vertex $x \in M$

Spatial search on a graph

Setup

- Graph G on n vertices X
- Marked vertices: unknown $M \subseteq X$
- Vertex register: "robot" position
- Edges: legal moves

The problem

- Move the robot to a marked vertex x ∈ M
- Complexity: # moves

Search via random walk

Markov chain on the graph

Stochastic matrix $P = (p_{xy})$

- $p_{xy} \neq 0$ only if (x, y) is an edge
- Stationary distribution π $(\pi P = \pi)$

Algorithm

- Start from random $x \sim \pi$
- Apply P until x is marked

Definition: Hitting time HT(P, M)Expected # steps of P until $x \in M$

Search via random walk

Markov chain on the graph

Stochastic matrix $P = (p_{xy})$

- $p_{xy} \neq 0$ only if (x, y) is an edge
- Stationary distribution π $(\pi P = \pi)$

Algorithm

- Start from random $x \sim \pi$
- Apply P until x is marked

Definition: Hitting time HT(P, M)Expected # steps of P until $x \in M$

Search via random walk

Markov chain on the graph

Stochastic matrix $P = (p_{xy})$

- $p_{xy} \neq 0$ only if (x, y) is an edge
- Stationary distribution π $(\pi P = \pi)$

Algorithm

- Start from random $x \sim \pi$
- Apply P until x is marked

Definition: Hitting time HT(P, M)

Expected # steps of P until $x \in M$

Jérémie Roland (NEC Labs) QIP 2011 3 / 14

Quantum case: Related work

Quantum walks

- Complete graph
- Hypercube
- Johnson Graph
- 2D-grid
- Quantum analogue W(P) of Markov chain P

[Grover'95] [Shenvi,Kempe,Wayley'03] [Ambainis'04]

[Ambainis,Kempe,Rivosh'05]

[Szegedy'04]

Quantum hitting time

▶ Detecting marked elements: $\sqrt{\text{HT}(P, M)}$

[Szegedy'04]

► Finding marked elements for state-trans

[Tulsi'08][Magniez, Nayak, Richter, Santha'09]

Question

Is finding as easy as detecting for quantum walks?

 $QHT(P, M) \stackrel{?}{=} \sqrt{HT(P, M)}$

Quantum case: Related work

Quantum walks

Complete graph

[Grover'95] anvi Kampa Waylay'031

Hypercube

[Shenvi,Kempe,Wayley'03] [Ambainis'04]

Johnson Graph2D-grid

[Ambainis,Kempe,Rivosh'05]

ightharpoonup Quantum analogue W(P) of Markov chain P

[Szegedy'04]

Quantum hitting time

▶ Detecting marked elements: $\sqrt{\text{HT}(P, M)}$

[Szegedy'04]

Finding marked elements for state-transitive P and |M|=1: $\sqrt{\mathrm{HT}(P,M)}$ [Tulsi'08][Magniez,Nayak,Richter,Santha'09]

Question

Is finding as easy as detecting for quantum walks?

OHT(P, M) $\frac{7}{2}$, $\sqrt{\text{HT}(P, M)}$

Quantum case: Related work

- Quantum walks
 - Complete graph

[Grover'95] [Shenvi,Kempe,Wayley'03]

Hypercube

[Ambainis'04]

Johnson Graph2D-grid

[Ambainis,Kempe,Rivosh'05]

• Quantum analogue W(P) of Markov chain P

[Szegedy'04]

- Quantum hitting time
 - ▶ Detecting marked elements: $\sqrt{\text{HT}(P, M)}$

[Szegedy'04]

Finding marked elements for state-transitive P and |M|=1: $\sqrt{\mathrm{HT}(P,M)}$ [Tulsi'08][Magniez,Nayak,Richter,Santha'09]

Question

Is finding as easy as detecting for quantum walks?

$$QHT(P, M) \stackrel{?}{=} \sqrt{HT(P, M)}$$

Grover Search

[Grover'95]

- Search for a 1 in an n-bit string
- ▶ G: complete graph
- ► Classical: n Quantum: \sqrt{n}
- Extends to G hypercube and unique marked element (|M| = 1)
- Element Distinctness

[Ambainis'04]

- Search for equal elements in a set of n elements
- G: Johnson graph
- ► Classical: n Ouantum: n²/
- Triangle Finding

Magniez,Santha,Szegedy'05

- Search for a triangle in a graph with n vertices
- ▶ G: Johnson graph
- ▶ Classical: n^2 Quantum: $n^{1.3}$
- Others
 - Matrix Multiplication Testing
 - Commutativity testing

Buhrman,Špalek'06] [Magniez,Navak'05]

Grover Search

[Grover'95]

- Search for a 1 in an n-bit string
- G: complete graph
- ► Classical: n Quantum: \sqrt{n}
- Extends to G hypercube and unique marked element (|M| = 1)
- Element Distinctness

[Ambainis'04]

- Search for equal elements in a set of n elements
- G: Johnson graph
- Classical: n Quantum: n^{2/3}
- Triangle Finding

Magniez, Santha, Szegedy'05

- Search for a triangle in a graph with n vertices
- ▶ G: Johnson graph
- ► Classical: n^2 Quantum: $n^{1.3}$
- Others
 - ▶ Matrix Multiplication Testing
 - Commutativity testing

Buhrman, Špalek' 06]

Grover Search

[Grover'95]

- Search for a 1 in an n-bit string
- ▶ G: complete graph
- ► Classical: n Quantum: \sqrt{n}
- Extends to G hypercube and unique marked element (|M| = 1)
- Element Distinctness

[Ambainis'04]

- Search for equal elements in a set of n elements
- G: Johnson graph
- Classical: n Quantum: n^{2/3}
- Triangle Finding

[Magniez,Santha,Szegedy'05]

- Search for a triangle in a graph with n vertices
- ▶ G: Johnson graph
- ► Classical: n^2 Quantum: $n^{1.3}$
- Others
 - Matrix Multiplication Testing
 - Commutativity testing

Buhrman,Špalek'06]

Grover Search

[Grover'95]

- Search for a 1 in an n-bit string
- ▶ G: complete graph
- ► Classical: n Quantum: \sqrt{n}
- Extends to G hypercube and unique marked element (|M| = 1)

Element Distinctness

[Ambainis'04]

- Search for equal elements in a set of n elements
- G: Johnson graph
- ► Classical: n Quantum: $n^{2/3}$

Triangle Finding

[Magniez,Santha,Szegedy'05]

- Search for a triangle in a graph with n vertices
- G: Johnson graph
- ► Classical: n^2 Quantum: $n^{1.3}$

Others

Matrix Multiplication Testing

Commutativity testing

[Buhrman, Špalek'06] [Magniez, Nayak'05]

Our main result

Theorem

Let

- P be a reversible, ergodic Markov chain
- \bullet π be the (unique) stationary distribution of P
- $\epsilon = \Pr_{\pi}(M)$ be the probability of marked elements

Then, there exists a quantum algorithm that finds an element in M within

- $\sqrt{\mathrm{HT}(P,M)}$ steps if ϵ is known
- $\sqrt{\operatorname{HT}(P, M) \times \log n}$ steps otherwise

Quadratic speed-up for any reversible *P*!

Random walk P on edges (x, y)

- Acts on two registers: position x and coin y
- Walk in two steps:
 Flip the coin y over the neighbours of x
 Swap x and y

Quantum analogue W(P)

- Acts on two registers $|x\rangle|y\rangle$
- Walk in two steps: ightharpoonup reflection of $|y\rangle$ through $|p_x\rangle = \sum_{y'} \sqrt{p_{y'x}}|y\rangle$
 - Swap the $|x\rangle$ and $|y\rangle$ registers

Random walk P on edges (x, y)

- Acts on two registers: position x and coin y
- Walk in two steps:
 Flip the coin y over the neighbours of x
 Swap x and y

Quantum analogue W(P)

- Acts on two registers $|x\rangle|y\rangle$
- Walk in two steps: • reflection of $|y\rangle$ through $|p_x\rangle = \sum_{y'} \sqrt{p_{y'x}} |y'\rangle$
 - Swap the $|x\rangle$ and $|y\rangle$ registers

Spectral correspondance

[Szegedy'04]

Random walk

- \bullet $P = (p_{xy})$
- E-v: $\lambda_k = \cos \theta_k$
- Stationary dist. ($\cos \theta_0 = 1$): $\pi = (\pi_x)$
- E-v gap: $\delta = 1 |\cos \theta_1|$

Quantum walk

- $W(P) = SWAP \cdot ref_{\mathcal{X}}$
- E-v: $e^{\pm i\theta_k}$
- Stationary state ($\theta_0 = 0$):
- phase gap: $\Delta = |\theta_1| = \Theta(\sqrt{\delta})$

Spectral correspondance

[Szegedy'04]

Random walk

- \bullet $P = (p_{xy})$
- E-v: $\lambda_k = \cos \theta_k$
- Stationary dist. ($\cos \theta_0 = 1$): $\pi = (\pi_x)$
- E-v gap: $\delta = 1 |\cos \theta_1|$

Quantum walk

- $W(P) = \mathsf{SWAP} \cdot \mathsf{ref}_{\mathcal{X}}$
- E-v: $e^{\pm i\theta_k}$
- Stationary state ($\theta_0 = 0$):

$$|\pi\rangle = \sum_{x} \sqrt{\pi_x} |x\rangle |p_x\rangle$$

• phase gap: $\Delta = |\theta_1| = \Theta(\sqrt{\delta})$

Absorbing walk

Recall:

- Reversible, ergodic Markov chain P
- (unique) stationary distribution π
- Set of marked elements M:

$$P = \begin{pmatrix} P_{UU} & P_{UM} \\ P_{MU} & P_{MM} \end{pmatrix}$$

Absorbing walk A

- Same as P but self-loops for marked vertices
- ullet Stationary distribution π_M : π restricted to marked vertices
- Hitting time $\mathrm{HT}(P,M) = \sum_{\lambda_i' \neq 1} \frac{\mathrm{IM}(P,M)}{1-\lambda_i'} = \text{"# steps of } P' \text{ to map } \pi \mapsto \pi_M$ "

Absorbing walk

Recall:

- Reversible, ergodic Markov chain P
- (unique) stationary distribution π
- Set of marked elements M:

$$P = \begin{pmatrix} P_{UU} & P_{UM} \\ P_{MU} & P_{MM} \end{pmatrix}$$

Absorbing walk P'

• Same as *P* but self-loops for marked vertices

$$P' = \begin{pmatrix} P_{UU} & P_{UM} \\ 0 & I \end{pmatrix}$$

- Stationary distribution π_M : π restricted to marked vertices
- Hitting time $\mathrm{HT}(P,M) = \sum_{\lambda_k' \neq 1} \frac{|\langle \nu_k' | \pi \rangle|^2}{1 \lambda_k'} =$ "# steps of P' to map $\pi \mapsto \pi_M$ "

Quantum analogues of P and P'

Absorbing walk P'

- $\sqrt{\operatorname{HT}(P,M)}$ iterations of W(P') make $|\pi\rangle$ deviate by angle $\Omega(1)$
 - Good for detecting if M is non-empty

[Szegedy'04]

- But: state may remain far from marked elements
 - ▶ Can be fixed for state-transitive P, |M| = 1
 - ▶ Difficult analysis, less intuition [Tulsi'08][Magniez,Nayak,Richter,Santha'09]

Original walk P

- Extends Grover's algorithm for any graph
 - ► Good for finding [Ambainis'04][Magniez,Nayak,Roland,Santha'07
- But: in general, # steps can be $\gg \sqrt{\text{HT}(P, M)}$

New approach: mixture of P and A

- Finds marked elements for any reversible P, and any |M|
- Better intuition, simpler analysis

Quantum analogues of P and P'

Absorbing walk P'

- $\sqrt{\mathrm{HT}(P,M)}$ iterations of W(P') make $|\pi\rangle$ deviate by angle $\Omega(1)$
 - Good for detecting if M is non-empty

[Szegedy'04]

- But: state may remain far from marked elements
 - ▶ Can be fixed for state-transitive P, |M| = 1
 - ▶ Difficult analysis, less intuition [Tulsi'08][Magniez,Nayak,Richter,Santha'09]

Original walk P

- Extends Grover's algorithm for any graph
 - ► Good for finding [Ambainis'04][Magniez,Nayak,Roland,Santha'07]
- But: in general, # steps can be $\gg \sqrt{\text{HT}(P, M)}$

New approach: mixture of P and P'

- Finds marked elements for any reversible P, and any |M|
- Better intuition, simpler analysis

Quantum analogues of *P* and *P'*

Absorbing walk P'

- $\sqrt{\operatorname{HT}(P,M)}$ iterations of W(P') make $|\pi\rangle$ deviate by angle $\Omega(1)$
 - Good for detecting if M is non-empty

[Szegedy'04]

- But: state may remain far from marked elements
 - ► Can be fixed for state-transitive P, |M| = 1
 - ▶ Difficult analysis, less intuition [Tulsi'08][Magniez,Nayak,Richter,Santha'09]

Original walk P

- Extends Grover's algorithm for any graph
 - Good for finding [Ambainis'04][Magniez,Nayak,Roland,Santha'07]
- But: in general, # steps can be $\gg \sqrt{\text{HT}(P, M)}$

New approach: mixture of P and P'

- Finds marked elements for any reversible P, and any |M|
- Better intuition, simpler analysis

Jérémie Roland (NEC Labs) QIP 2011 10 / 14

Interpolation between P and P'

- P(s) = (1-s)P + sP'
 - Unmarked vertices: apply P
 - ▶ Marked vertices: apply P with probability 1 s, otherwise self-loop

- Stationary distribution $\pi(s) = (\cos^2 \phi(s))\pi_U + (\sin^2 \phi(s))\pi_M$
 - where $\phi(s) = \arcsin \sqrt{\frac{\epsilon}{1-s(1-\epsilon)}}$
 - Similarly, $|\pi(s)\rangle = \cos\phi(s)|\pi_U\rangle + \sin\phi(s)|\pi_M\rangle$
 - ▶ Rotates from $|\pi\rangle = \sqrt{1-\epsilon}|\pi_U\rangle + \sqrt{\epsilon}|\pi_M\rangle$ to $|\pi_M\rangle$
- Reminiscent of adiabatic quantum computing
 - ▶ Indeed, we can also design an adiabatic algorithm [Krovi,Ozols,R.'10, PRA]

11 / 14

▶ Note: Interpolation at the classical level

Interpolation between P and P'

- P(s) = (1-s)P + sP'
 - ▶ Unmarked vertices: apply P
 - ▶ Marked vertices: apply P with probability 1 s, otherwise self-loop

- Stationary distribution $\pi(s) = (\cos^2 \phi(s))\pi_U + (\sin^2 \phi(s))\pi_M$
 - where $\phi(s) = \arcsin \sqrt{\frac{\epsilon}{1 s(1 \epsilon)}}$
 - Similarly, $|\pi(s)\rangle = \dot{\cos\phi(s)}|\pi_U\rangle + \sin\phi(s)|\pi_M\rangle$
 - ▶ Rotates from $|\pi\rangle = \sqrt{1-\epsilon}|\pi_U\rangle + \sqrt{\epsilon}|\pi_M\rangle$ to $|\pi_M\rangle$
- Reminiscent of adiabatic quantum computing
 - ▶ Indeed, we can also design an adiabatic algorithm [Krovi,Ozols,R.'10, PRA]
 - ▶ Note: Interpolation at the classical level

Interpolation between P and P'

- P(s) = (1-s)P + sP'
 - Unmarked vertices: apply P
 - ▶ Marked vertices: apply P with probability 1 s, otherwise self-loop

- Stationary distribution $\pi(s) = (\cos^2 \phi(s))\pi_U + (\sin^2 \phi(s))\pi_M$
 - where $\phi(s) = \arcsin \sqrt{\frac{\epsilon}{1 s(1 \epsilon)}}$
 - Similarly, $|\pi(s)\rangle = \cos\phi(s)|\pi_U\rangle + \sin\phi(s)|\pi_M\rangle$
 - ▶ Rotates from $|\pi\rangle = \sqrt{1-\epsilon}|\pi_U\rangle + \sqrt{\epsilon}|\pi_M\rangle$ to $|\pi_M\rangle$
- Reminiscent of adiabatic quantum computing
 - ▶ Indeed, we can also design an adiabatic algorithm [Krovi,Ozols,R.'10, PRA]
 - Note: Interpolation at the classical level

Jérémie Roland (NEC Labs) QIP 2011 11 / 14

The algorithm

General idea

- Using quantum phase estimation [Kitaev'95][Cleve, Ekert, Macchiavello, Mosca'98]
 - We can measure in the eigenbasis of W(P(s))
 - At a cost \(\sqrt{HT(s)} \) (see later)
- W(P(s)) has unique 1-eigenvector $|\pi(s)\rangle$
 - Measuring phase 0 projects onto $|\pi(s)\rangle$

The algorithm

General idea

- Using quantum phase estimation [Kitaev'95][Cleve,Ekert,Macchiavello,Mosca'98]
 - We can measure in the eigenbasis of W(P(s))
 - At a cost $\sqrt{HT(s)}$ (see later)
- W(P(s)) has unique 1-eigenvector $|\pi(s)\rangle$
 - ▶ Measuring phase 0 projects onto $|\pi(s)\rangle$

Algorithm (known ϵ)

- Prepare $|\pi\rangle$
- Project onto $|\pi(s^*)\rangle = \frac{1}{\sqrt{2}} (|\pi_U\rangle + |\pi_M\rangle)$
 - ▶ succeeds with prob. $\approx 1/2$
- Measure current vertex
 - marked with prob. 1/2

Jérémie Roland (NEC Labs)

12 / 14

Interpolated hitting time

"Interpolated hitting time"

$$\operatorname{HT}(s) = \sum_{\lambda_k(s) \neq 1} \frac{|\langle \nu_k(s) | \pi \rangle|^2}{1 - \lambda_k(s)} =$$
 "# steps of $P(s)$ to map $\pi \mapsto \pi(s)$ "

We show:

$$\mathrm{HT}(s) = \sin^4 \phi(s) \cdot \mathrm{HT}(P, M)$$

- Proof: By computing the derivatives of P(s) and HT(s)
- Therefore: Algorithm has cost $\sqrt{\operatorname{HT}(s^*)} \leq \sqrt{\operatorname{HT}(P,M)}$
- Case of unknown ε: Dichotomic search for s*

Interpolated hitting time

"Interpolated hitting time"

$$\operatorname{HT}(s) = \sum_{\lambda_k(s) \neq 1} \frac{|\langle \nu_k(s) | \pi \rangle|^2}{1 - \lambda_k(s)} =$$
 "# steps of $P(s)$ to map $\pi \mapsto \pi(s)$ "

• We show:

$$\mathrm{HT}(s) = \sin^4 \phi(s) \cdot \mathrm{HT}(P, M)$$

- Proof: By computing the derivatives of P(s) and HT(s)
- Therefore: Algorithm has cost $\sqrt{\text{HT}(s^*)} \leq \sqrt{\text{HT}(P, M)}$
- Case of unknown ε: Dichotomic search for s*

Interpolated hitting time

"Interpolated hitting time"

$$\operatorname{HT}(s) = \sum_{\lambda_k(s) \neq 1} \frac{|\langle \nu_k(s) | \pi \rangle|^2}{1 - \lambda_k(s)} =$$
 "# steps of $P(s)$ to map $\pi \mapsto \pi(s)$ "

We show:

$$\mathrm{HT}(s) = \sin^4 \phi(s) \cdot \mathrm{HT}(P, M)$$

- Proof: By computing the derivatives of P(s) and HT(s)
- Therefore: Algorithm has cost $\sqrt{\text{HT}(s^*)} \leq \sqrt{\text{HT}(P, M)}$

Case of unknown ε: Dichotomic search for s*

13 / 14

Conclusion

Our contribution

- There exists a quantum algorithm that finds an element in M within
 - ▶ $\sqrt{\text{HT}(P, M)}$ steps, if ϵ is known
 - ▶ $\sqrt{\text{HT}(P, M) \times \log n}$ steps, otherwise
- Application: 2D-grid, finding an element within
 - $ightharpoonup \sqrt{n \log n}$ steps, if ϵ is known
 - $\triangleright \sqrt{n} \log n$ steps, otherwise

Open problems

- Hitting time
 - ► Can we beat the quadratic improvement?
- Mixing time
 - Can we also mix quadratically faster using quantum walks?
 - Very few results for Cayley graphs [Aharonov, Ambainis, Kempe, Vazirani'01

Conclusion

Our contribution

- ullet There exists a quantum algorithm that finds an element in M within
 - ▶ $\sqrt{\text{HT}(P, M)}$ steps, if ϵ is known
 - ▶ $\sqrt{\text{HT}(P, M) \times \log n}$ steps, otherwise
- Application: 2D-grid, finding an element within
 - $ightharpoonup \sqrt{n \log n}$ steps, if ϵ is known
 - $ightharpoonup \sqrt{n} \log n$ steps, otherwise

Open problems

- Hitting time
 - ► Can we beat the quadratic improvement?
- Mixing time
 - Can we also mix quadratically faster using quantum walks?
 - Very few results for Cayley graphs [Aharonov, Ambainis, Kempe, Vazirani'01

Conclusion

Our contribution

- There exists a quantum algorithm that finds an element in M within
 - $ightharpoonup \sqrt{\mathrm{HT}(P,M)}$ steps, if ϵ is known
 - ▶ $\sqrt{\text{HT}(P, M)} \times \log n$ steps, otherwise
- Application: 2D-grid, finding an element within
 - ▶ $\sqrt{n \log n}$ steps, if ϵ is known
 - $ightharpoonup \sqrt{n} \log n$ steps, otherwise

Open problems

- Hitting time
 - Can we beat the quadratic improvement?
- Mixing time
 - Can we also mix quadratically faster using quantum walks?
 - Very few results for Cayley graphs [Aharonov, Ambainis, Kempe, Vazirani'01]

