Usage Lab: Red Cells (Ketju)

```
library(forecast)
library(ggplot2)
library(gridExtra)
library(knitr)
library(readxl)
library(plyr)
library(lubridate)
library(numbers)
source("src/evalhelp.R")
```

Intro

Currently under development. In this notebook we study how to use hospital blood product usage data to create demand predictions.

Create original datasets that should remain immutable throughout labbing

```
# Load data
# All deliveries
deliv <- read_excel("./data/ketju_data.xlsx", sheet = "Ketju-punasolutoimitukset 2014-")[, c('Päivämäär
colnames(deliv) <- c("time", "deliveries") # Change column names</pre>
deliv$time <- as.Date(deliv$time)</pre>
# Ketju usage 2014 -->
# I'm using read.csv() instead of read_excel() here, because this sheet contains some fields that kills
ketju <- read.csv("./data/ketju_data.csv", header = TRUE, sep = ",", colClasses=c("NULL", NA, "NULL", ")</pre>
colnames(ketju) <- c("hospital", "type", "time", "exp", "pcs") # Change column names</pre>
# Ensure compliant time format with lubridate
ketju$time <- mdy(ketju$time)</pre>
ketju$exp <- mdy(ketju$exp) # This will produce an error "failed to parse" for fields that aren't date
# Arrange by time
ketju <- arrange(ketju, time)</pre>
# Find usage
usage <- aggregate(ketju$pcs, by = list(ketju$time), sum); colnames(usage) <- c("time", "pcs")
```

Histograms of how fresh blood is used across hospitals

The x-axis can be read as "days until an used product would've expired", so a larger number corresponds to a fresher product. We see a similar pattern across all hospitals: products are used in a manner that resembles a "weekly cycle". Most products are used 21 days from expiration, then 14 days, then 7 days...

Same histogram but with blood types

Here we observe the same weekly pattern, but the shape of + products is somewhat different from - products. Older products are used more with - products.

Series of usage

```
# Create a convenience vector for hospital tags
hospitals <-c("FIMLAB HÄMEENLINNA VERIKESKUS", "PHKS VERIKESKUS, LAHTI", "TYKSLAB VERIKESKUS", "SATADI.
              "FIMLAB TAMPERE VERIKESKUS", "FIMLAB VERIKESKUS, JYVÄSKYLÄ", "KYMKS VERIKESKUS, KOTKA", "
              "SEINÄJOEN KS VERIKESKUS", "VAASAN KS VERIKESKUS", "NORDLAB KOKKOLA VERIKESKUS", "ISLAB K
              "NORDLAB OULU VERIKESKUS", "NORDLAB ROVANIEMI VERIKESKUS", "SATADIAG VERIKESKUS, PORI")
plots <- list()
i = 0
for(hospital in hospitals){
   i <- i + 1
  hospital.data <- ketju[ketju$hospital == hospital, ]
  hospital.usage <- aggregate(hospital.data$pcs, by = list(hospital.data$time), sum)
  colnames(hospital.usage) <- c("time", "pcs")</pre>
  temp <- make_whole(hospital.usage)</pre>
  hospital.whole <- temp[[1]]
  hospital.missing <- temp[[2]]
  # Plot
```

```
hospital.plot <- ggplot() +
    geom_line(data = hospital.whole, aes(x = time, y = pcs)) +
    geom_vline(xintercept = hospital.missing, color = "red") +
    xlab("time") +
    ggtitle(paste(hospital, "\n missing data: ", round(length(hospital.missing)/length(hospital.whole$p theme(plot.title = element_text(size = 8))
    plots[[i]] <- hospital.plot
}
ml <- marrangeGrob(plots, nrow=2, ncol=2)
ml</pre>
```

page 1 of 4

time

time

page 2 of 4

page 3 of 4

These are daily red cell product usage data from each hospital. A red line means a missing data point. The missing data point might just be a zero, which is most probable with RAUMA. Let's limit our explorations to 2019 for now. This probably means we'll have to exclude RAUMA.

```
hospitals <- c("FIMLAB HÄMEENLINNA VERIKESKUS", "PHKS VERIKESKUS, LAHTI", "TYKSLAB VERIKESKUS",
              "FIMLAB TAMPERE VERIKESKUS", "FIMLAB VERIKESKUS, JYVÄSKYLÄ", "KYMKS VERIKESKUS, KOTKA", "
              "SEINÄJOEN KS VERIKESKUS", "VAASAN KS VERIKESKUS", "NORDLAB KOKKOLA VERIKESKUS", "ISLAB K
              "NORDLAB OULU VERIKESKUS", "NORDLAB ROVANIEMI VERIKESKUS", "SATADIAG VERIKESKUS, PORI")
plots <- list()
i = 0
for(hospital in hospitals){
   i <- i + 1
  hospital.data <- ketju[ketju$hospital == hospital, ]
  hospital.usage <- aggregate(hospital.data$pcs, by = list(hospital.data$time), sum)
  colnames(hospital.usage) <- c("time", "pcs")</pre>
  hospital.usage <- hospital.usage[hospital.usage$time >= as.Date("2019-01-01"), ]
  temp <- make_whole(hospital.usage)</pre>
  hospital.whole <- temp[[1]]
  hospital.missing <- temp[[2]]
  # Plot
  hospital.plot <- ggplot() +
    geom_line(data = hospital.whole, aes(x = time, y = pcs)) +
    geom_vline(xintercept = hospital.missing, color = "red") +
    ggtitle(paste(hospital, "\n missing data: ", round(length(hospital.missing)/length(hospital.whole$p
```

```
theme(plot.title = element_text(size = 8)) +
   ylab("")

plots[[i]] <- hospital.plot
}

ml <- marrangeGrob(plots, nrow=2, ncol=2)
ml</pre>
```

page 1 of 4

page 2 of 4

FIMLAB VERIKESKUS, JYVÄSKYLÄ missing data: 1.78 %

KYMKS VERIKESKUS, KOTKA missing data: 0 %

EKKS VERIKESKUS, LAPPEENRANTA missing data: 0 %

SEINÄJOEN KS VERIKESKUS missing data: 0.6 %

page 3 of 4

VAASAN KS VERIKESKUS missing data: 0.6 %

NORDLAB KOKKOLA VERIKESKUS missing data: 0.59 %

ISLAB KUOPIO VERIKESKUS missing data: 0 %

NORDLAB OULU VERIKESKUS missing data: 0 %

page 4 of 4

There is a "clear" weekly seasonality in most hospitals, and it is more pronounced where a lot of blood is used.

Total usage across all hospitals (in 2019, without imputation)

Difference in total usage with and without imputation

The imputed series does not differ significantly from the raw series, so we can probably use either.

Deliveries and usage 2019

```
ggplot() +
  geom_line(data = total.usage[total.usage$time >= "2019-01-01", ], aes(x = time, y = pcs, colour = "us
  geom_line(data = deliv[deliv$time >= "2019-01-01", ], aes(x = time, y = deliveries, colour = "deliver
  scale_colour_manual(values = c("black", "#DF013A")) +
  theme(legend.position = "bottom")
```



```
combined <- data.frame(usage = head(total.usage[total.usage$time >= "2018-01-01", ]$pcs, 521), deliveri
# Same week avg diff
diff0 <- 0
for(i in seq(from = 7, to = 469, by = 7)){
  diff0 <- diff0 + (sum(combined$usage[i:(i+6)]) - sum(combined$deliveries[i:(i+6)]))</pre>
}
avg0 \leftarrow diff0/67
# Next week sum
diff1 <- 0
for(i in seq(from = 7, to = 469, by = 7)){
 diff1 <- diff1 + (sum(combined$usage[i:(i+6)]) - sum(combined$deliveries[(i+7):(i+13)]))</pre>
}
avg1 <- diff1/67
# Second week sum
diff2 <- 0
for(i in seq(from = 7, to = 469, by = 7)){
  diff2 <- diff2 + (sum(combined$usage[i:(i+6)]) - sum(combined$deliveries[(i+14):(i+20)]))</pre>
}
avg2 \leftarrow diff2/67
# Third week sum
diff3 <- 0
for(i in seq(from = 7, to = 469, by = 7)){
```

Same week difference seems to be the smallest, but only by a very small margin. The difference constitutes a 10.79 % error, which is slightly higher than what we want. Let's go to the daily level and see what happens.

Third week average diff: -213.69

```
# Same day avg diff
ddiff0 <- 0
for(i in seq(from = 7, to = 469, by = 1)){
  ddiff0 <- ddiff0 + (combined$usage[i] - combined$deliveries[i])</pre>
}
davg0 <- ddiff0/462
# Next day diff
ddiff1 <- 0
for(i in seq(from = 7, to = 469, by = 1)){
  ddiff1 <- ddiff1 + (combined$usage[i] - combined$deliveries[i+1])</pre>
}
davg1 \leftarrow ddiff1/462
# Second day diff
ddiff2 <- 0
for(i in seq(from = 7, to = 469, by = 1)){
  ddiff2 <- ddiff2 + (combined$usage[i] - combined$deliveries[i+2])</pre>
}
davg2 \leftarrow ddiff2/462
# Third day diff
ddiff3 <- 0
for(i in seq(from = 7, to = 469, by = 1)){
  ddiff3 <- ddiff3 + (combined$usage[i] - combined$deliveries[i+3])</pre>
}
davg3 <- ddiff3/462
# Fourth day diff
ddiff4 <- 0
for(i in seq(from = 7, to = 469, by = 1)){
  ddiff4 <- ddiff4 + (combined$usage[i] - combined$deliveries[i+4])</pre>
davg4 \leftarrow ddiff4/462
# Fifth day diff
```

```
ddiff5 <- 0
for(i in seq(from = 7, to = 469, by = 1)){
 ddiff5 <- ddiff5 + (combined$usage[i] - combined$deliveries[i+5])</pre>
davg5 <- ddiff5/462
# Sixth day diff
ddiff6 <- 0
for(i in seq(from = 7, to = 469, by = 1)){
 ddiff6 <- ddiff6 + (combined$usage[i] - combined$deliveries[i+6])</pre>
davg6 <- ddiff6/462
cat(paste("Same day average diff: ", round(davg0, digits = 2), "\n",
          "Next day average diff: ", round(davg1, digits = 2), "\n",
          "Second day average diff: ", round(davg2, digits = 2), "\n",
          "Third day average diff: ", round(davg3, digits = 2), "\n",
          "Fourth day average diff: ", round(davg4, digits = 2), "\n",
          "Fifth day average diff: ", round(davg5, digits = 2), "\n",
          "Sixth day average diff: ", round(davg6, digits = 2)
## Same day average diff: -30.52
```

Same day average diff: -30.52

Next day average diff: -31.74

Second day average diff: -31.07

Third day average diff: -29.97

Fourth day average diff: -30.63

Fifth day average diff: -30.25

Sixth day average diff: -29.77

Same +10 % difference.

Forecasting usage

	$_{\mathrm{cMAPE}}$	MAPE	RMSE
DynReg	26.29518	17.23969	61.10245