isstecoa	Filières : TC		Niveau : 1et2	2019	
	SEMESTRE 1	Matièr	e : Mathématiq	ues Générales	
		Examen Premier Semestre			isstecoa
		DUREE : 0)3H M.	FOMEKONG	ISSECCO
2019/2020	Documents Autorisés Calculatrice Autorisée			2019/2020	
	OUI	NON⊠	OUI⊠	NON	2019/2020

Exercice 1: Matrice (5pts)

Soit la matrice A suivante :
$$A = \begin{pmatrix} 1 & 0 & -1 \\ 1 & 2 & 1 \\ 2 & 2 & 3 \end{pmatrix}$$

- Déterminer le polynôme caractéristique de A et en déduire ces valeurs propres.
 (1pts)
- 2. On considère la matrice $P = \begin{pmatrix} 1 & 2 & 1 \\ -1 & -1 & -1 \\ 0 & -2 & -2 \end{pmatrix}$
 - a) Calculer la matrice inverse $P^{-1}de\ P$. (1.25pts)
 - b) Calculer la matrice $D = P^{-1}AP$. (1pts)
 - c) Déduire de la matrice P trois vecteurs propres de A. (0.75pts)
- 3. On considère la matrice $B = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$
 - a) Déterminer la matrice Y telle que $DY = P^{-1}B$. (1pts)
 - **b**) En déduire la résolution du système d'équation linéaire AX = B où A et B sont les matrices précédentes. (1pts)

Exercice 2 : suite Numérique (5pts)

 $(U_n)_n$ est une suite de nombres réels définie par :

$$U_0=1;~U_1=3$$
 et la relation de récurrence $\forall~n\geq 1,~U_{n+1}=\frac{4}{3}U_n-\frac{1}{3}U_{n-1}$

1. On pose:

$$\forall n \geq 0, \qquad V_n = U_{n+1} - U_n$$

Démontrer que $(V_n)_n$ est une suite géométrique. (1pts)

2. Exprimer $(V_n)_n$ en fonction de n et calculer sa limite. (1pts)

3. On pose:

$$\forall n \geq 0, \qquad S_n = V_0 + V_1 \dots \dots \dots + V_{n-1}$$

- a) Calculer S_n en fonction de n. (1pts)
- b) En déduire U_n en fonction de n. (1pts)
- c) Etudier la convergence éventuelle de la suite $(U_n)_n$. (1pts)

Problème: Etude des fonctions (10pts)

Partie A

Soit la fonction g définie par $g(x) = \ln(1-x) + \frac{x}{x-1}$

- 1. Déterminer le domaine de définition de la fonction g
- 2. Calculer les limites de g aux bornes de son ensemble de définition
- 3. Etudier les variations de g et dresser son tableau de variation
- 4. Déterminer le signe de g

Partie B

Soit la fonction $f: \begin{cases} x \ln(1-x) + 1 & \text{si } x < 0 \\ (x+1)e^{-x} & \text{si } x \ge 0 \end{cases}$

1. Quel est le domaine de définition de f?

2.

- a) Calculer la limite de f $en \infty$ $et + \infty$ et conclure
- b) Calculer la limite de $\frac{f(x)}{x}$ $en \infty$ et conclure
- 3. Etudier la dérivabilité de f en 0
- 4. Etudier les variations de f et dresser son tableau de variation
- 5. Montrer que l'équation f(x) = 0 admet une unique solution dans \mathbb{R} et vérifier que cette solution appartient à l'intervalle [-1,3; -1,2]
- 6. Construire la courbe de f

7. Soit
$$A(\lambda) = \int_0^{\lambda} f(x) dx$$
 avec $\lambda > 0$

- a) Interpréter graphiquement cette intégrale
- b) Calculer cette intégrale
- c) Calculer la limite de cette intégrale en $+\infty$