Motivation

Uses of Gaze Prediction:

- UI/UX design and development
- Psychology and market research
- Accessibility tools

Limitations to State-of-the-Art Tech:

- Cost
- Portability

Project Goals

Create web application that:

- Collects eye data from webcam
- Trains model using collected data
- Visualizes predicted live user gaze

Model

Architecture

- Multiple regression via feed-forward NN
 - 3 hidden dense layers decreasing in size
 - ReLU activation function
 - Linear output → predicted gaze coords

Optimizer

- Adam (SGD + adaptive moment estimation)
 - Learning rate: 5e-4

Loss Function

- Mean squared error
 - Seeks to minimize distance between prediction and true gaze location
 - Penalizes large error

$$rac{1}{n}\sum \left(y_i-\hat{y}_i
ight)^2$$

kernel (32×2)

bias (2)

Results

Quantitative

 Test average Euclidean distance: ~125 relative pixels

Qualitative

- Predictions are jumpy, even when gaze is stationary
- Some gaze regions are more accurate than others
- Sensitive to shifts in user position and head orientation

Data

<u>Samples</u>

- TensorFlow.js face landmark model
- 76 eye points \rightarrow 152 features (x,y)

Labels

(x,y) coordinates of user gaze on screen

Preprocessing

- Samples and labels are on different scales
- Standardize all training features
- Necessary to get low loss

$$z = \frac{x - \mu}{\sigma}$$

Future Enhancements

- Restrict sample space to face box
- Input data augmentation
 - Apply shifts, scale changes and small rotations
- Adjust the model
 - Modify complexity, fine-tune hyperparameters

References

Acknowledgements