Линейна зависимост и линейна независимост

доц. Евгения Великова

Октомври 2020

Определения ЛЗ и ЛНЗ

линейна зависимост

Нека V линейно пространство над F и b_1,\ldots,b_k вектори от V.

$$b_1, \ldots, b_k$$
 са ЛЗ $\Leftrightarrow \begin{cases} \exists \alpha_1, \ldots, \alpha_k \neq 0, \ldots, 0 \ (\alpha_i \in F) \\ \alpha_1 b_1 + \ldots + \alpha_k b_k = \mathcal{O} \end{cases}$.

линейна независимост

Нека V е линейно пространство над F и b_1,\ldots,b_k вектори от V.

$$b_1, \ldots, b_k$$
 са ЛНЗ $\Leftrightarrow \begin{cases} \forall \alpha_1, \ldots, \alpha_k \neq 0, \ldots, 0 \ (\alpha_i \in F) \\ \alpha_1 b_1 + \ldots + \alpha_k b_k \neq \mathcal{O} \end{cases}$.

 $\it Забележка$: Всяка съвкупност от вектори от линейно пространство $\it V$ е или линейно зависима или линейно независима.

3абележка: За произволни вектори $b_1,\dots,b_k\in V$ винаги е изпълнено $0b_1+\dots+0b_k=\mathcal{O}.$

Пример

Линейно независими ли са матриците A, B, C, D, където

$$A = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}, B = \begin{pmatrix} i & i \\ 0 & i \end{pmatrix}, C = \begin{pmatrix} -i & 0 \\ -i & -i \end{pmatrix} \text{ if } D = \begin{pmatrix} 0 & 5 \\ 5 & 5 \end{pmatrix}.$$

$$\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = \lambda_1 \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} + \lambda_2 \begin{pmatrix} i & i \\ 0 & i \end{pmatrix} + \lambda_3 \begin{pmatrix} -i & 0 \\ -i & -i \end{pmatrix} + \lambda_4 \begin{pmatrix} 0 & 5 \\ 5 & 5 \end{pmatrix}$$

$$\begin{vmatrix} \lambda_1 + i\lambda_2 - i\lambda_3 = 0 \\ \lambda_1 + i\lambda_2 + 5\lambda_4 = 0 \\ \lambda_1 - i\lambda_3 + 5\lambda_4 = 0 \end{vmatrix} A = \begin{pmatrix} 1 & i & -i & 0 \\ 1 & i & 0 & 5 \\ 1 & 0 & -i & 5 \\ 0 & i & -i & 5 \end{pmatrix} \rightarrow$$

$$\Rightarrow \begin{pmatrix} 1 & i & -i & 0 \\ 0 & 0 & i & 5 \\ 0 & -i & 0 & 5 \\ 0 & i & -i & 5 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & i & -i & 0 \\ 0 & 0 & i & 5 \\ 0 & -i & 0 & 5 \\ 0 & 0 & -i & 10 \end{pmatrix} \Rightarrow$$

единствено решение $\lambda_1 = \lambda_2 = \lambda_3 = \lambda_4 = 0$

 $\Rightarrow A, B, C, D$ са линейно независими.

свойства

Свойство 1:

Множество, състоящо се от един вектор е линейно зависимо тогава и само тогава, когато векторът е нулевият вектор на пространството.

 \mathcal{L} оказателство: Нека $\{a\}$ е линейно зависимо, тогава съществува $\lambda \neq 0$, за който $\lambda a = \mathcal{O} \quad \Rightarrow \mathcal{O} = \lambda^{-1} \lambda a = a$.

Свойство 2:

Система от два вектора е линейно зависима, точно когато векторите са пропорционални.

Доказателство:

- Ако векторите са пропорционални $b=\beta a$, тогава $\beta a-1b=\mathcal{O}$, векторите са линейно зависими.
- Нека a,b са зависими вектори, и $\lambda a + \mu b = \mathcal{O}$, където $\lambda,\mu \neq 0,0$, и нека например $\lambda \neq 0$. Преобразуваме до $a = -\frac{\mu}{\lambda}b \Rightarrow$ векторите са пропорционални.

свойства

Твърдение

Нека V е линейно пространство над F и $b_1,\ldots,b_k\in V$ и $k\geq 2$. Векторите b_1,\ldots,b_k са линейно зависими тогава и само тогава когато един от векторите може да се представи като линейна комбинация на останалите вектори.

Доказателство.

$$\implies$$
 Нека b_1,\ldots,b_k са линейно зависими

$$\overline{\exists \alpha_1}, \ldots, \alpha_k \neq 0, \ldots, 0$$
 и $\mathcal{O} = \alpha_1 b_1 + \ldots + \alpha_k b_k$.

Ако
$$\alpha_p \neq 0 \Rightarrow \exists \alpha_p^{-1} \Rightarrow$$

$$b_{p} = -\frac{1}{\alpha_{p}}(\alpha_{1}b_{1} + \ldots + \alpha_{p-1}b_{p-1} + \alpha_{p+1}b_{p+1} + \ldots + \alpha_{k}b_{k})$$

Свойства

Свойство

Ако едно множество от вектори съдържа линейно зависимо подмножество, тогава също и цялото множество е линейно зависимо.

Доказателство: Нека $\{b_1,\ldots,b_s\}\subset\{b_1,\ldots,b_k\}$, където s< k и подмножеството $\{b_1,\ldots,b_s\}$ е линейно зависимо, съществуват скалари $\alpha_1,\ldots,\alpha_s\neq 0,\ldots,0$, и $\alpha_1b_1+\ldots+\alpha_sb_s=\mathcal{O}.$

$$\alpha_1b_1+\ldots+\alpha_sb_s+0b_{s+1}+\ldots+0b_k=\mathcal{O}.$$

 $lpha_1,\ldots,lpha_{\mathfrak{s}},0,\ldots,0
eq 0,\ldots,0,\ \Rightarrow\ \{b_1,\ldots,b_k\}$ е линейно зависимо.

Свойство

Всяко подмножество на линейно независимо множество от вектори е линейно независимо.

Доказателство: Нека b_1, \ldots, b_s е подмножество на линейно независимото множество b_1, \ldots, b_k . Ако допуснем, че b_1, \ldots, b_s е ЛЗ, ще получим че и b_1, \ldots, b_k е ЛЗ, което е противорение b_1, \ldots, b_k е ЛЗ, което е противорение.

Лема за линейна независимост

Лема

Нека V е линейно пространство над F и $\{b_1,\ldots,b_k\}\subset V$ и $c\in V$.

Ако
$$\{b_1,\ldots,b_k\}$$
 са ЛНЗ $\qquad \qquad \Downarrow \ \{b_1,\ldots,b_k,c\}$ са ЛНЗ $\qquad \Leftrightarrow \ c\notin \ell(b_1,\ldots,b_k)$

Доказателство:

$$\Longrightarrow$$
 Нека b_1,\ldots,b_k,c ЛНЗ и допускаме, че $c\in\ell(b_1,\ldots,b_k)$ $\Rightarrow c=\lambda_1b_1+\ldots+\lambda_kb_k.$

$$\lambda_1 b_1 + \ldots + \lambda_k b_k - 1c = \mathcal{O}$$
 , където $\lambda_1, \ldots, \lambda_k, -1 \neq 0, \ldots, 0, 0.$

Следователно системата b_1,\dots,b_k,c е ЛЗ, което е противоречие. Следователно, допускането е невярно и затова $c\notin\ell(b_1,\dots,b_k)$.

продължение на доказателството

 \leftarrow Нека $c \notin \ell(b_1, \ldots, b_k)$.

Допускаме, че b_1,\ldots,b_k,c са линейно зависими.

 \Rightarrow съществуват $\lambda_1,\dots,\lambda_k,\mu
eq 0,\dots,0,0$ за които

$$\lambda_1 b_1 + \ldots + \lambda_k b_k + \mu c = \mathcal{O}$$

- Ако $\mu \neq 0$, изразяваме c и получаваме $c = -\frac{1}{\mu}(\lambda_1 b_1 + \ldots + \lambda_k b_k)$, следователно $c \in \ell(b_1, \ldots, b_k)$, което е противоречие;
- Ако $\mu=0 \Rightarrow \mathcal{O}=\lambda_1b_1+\ldots+\lambda_kb_k+0c$ и $\lambda_1,\ldots,\lambda_k\neq 0,\ldots,0.$ Следователно b_1,\ldots,b_k са линейно зависими, което е противоречие.

Достигнахме до противоречие, следователно допускането не е вярно и затова b_1,\dots,b_k,c са линейно независими.

примери

Основна лема на линейната алгебра

Основна лема на линейната алгебра

Нека V е линейно пространство над F и векторите a_1,\ldots,a_k и b_1,\ldots,b_n са от пространството V.

Ако
$$\left\{ \begin{array}{c} \{b_1,\ldots,b_n\}\subset \ell(a_1,\ldots,a_k) \\ \text{и } n>k \end{array} \right\} \Rightarrow \{b_1,\ldots,b_n\}$$
 е ЛЗ.

Доказателство: индукция по k

Нека k=1 и

$$b_1 = \lambda_1 a_1, \ldots, b_n = \lambda_n a_1$$

- ullet ако $\lambda_1 = 0$, следователно $b_1 = \mathcal{O}$ и b_1, \dots, b_n е ЛЗ;
- ако $\lambda_1 \neq 0 \Rightarrow \lambda_2 b_1 \lambda_1 b_2 = \mathcal{O}$ и $\lambda_2, -\lambda_1 \neq 0, 0$ следователно b_1, b_2 са ЛЗ $\Rightarrow b_1, \dots, b_n$ ЛЗ;

Доказателство на основна лема - продължение

Нека за k-1 вектори a_1,\dots,a_{k-1} е изпълнено твърдението. Разглеждаме случая, когато $b_i\in\ell(a_1,\dots,a_k)$ за $i=1,2,\dots,n$ и n>k

- ullet Ако всички скалари при b_n са нули, $\Rightarrow b_n = \mathcal{O}$ и b_1, \dots, b_n са Л3
- Ако съществува $\lambda_{n,i} \neq 0$, без ограничение считаме че $\lambda_{n,k} \neq 0$ $c_i = b_i \frac{\lambda_{ik}}{\lambda_{nk}} b_n$ за $i=1,2,\ldots,n-1$,

Доказателство на основна лема - продължение 2

$$c_i = b_i - \frac{\lambda_{ik}}{\lambda_{nk}}b_n =$$
 $= \left(\lambda_{i1} - \frac{\lambda_{n1}\lambda_{ik}}{\lambda_{nk}}\right)a_1 + \ldots + \left(\lambda_{i,k-1} - \frac{\lambda_{n,k-1}\lambda_{ik}}{\lambda_{nk}}\right)a_{k-1} + 0a_k$
 \downarrow
 $c_i \in \ell(a_1, \ldots, a_{k-1}), \quad \text{3a } i=1,2,\ldots, n-1$
 $\Rightarrow \{c_1, \ldots, c_{n-1}\} \subset \ell(a_1, \ldots, a_{k-1}) \text{ if } n-1 > k-1.$

Прилагаме индукционното предположение
$$\Rightarrow c_1, \dots, c_{n-1}$$
 са ЛЗ

$$\exists \ \alpha_1, \dots, \alpha_{n-1} \neq 0, \dots, 0$$
, за които $\alpha_1 c_1 + \dots + \alpha_{n-1} c_{n-1} = \mathcal{O}$.

$$\alpha_1b_1+\ldots+\alpha_n-1b_{n-1}+\mu b_n=\mathcal{O},$$

$$\mu = -(\alpha_1 \frac{\lambda_{1k}}{\lambda_{nk}} + \ldots + \alpha_{n-1} \frac{\lambda_{n-1,k}}{\lambda_{nk}})$$

$$\alpha_1,\ldots,\alpha_{n-1},\mu\neq 0,\ldots,0,0\Rightarrow b_1,\ldots,b_n$$
 ЛЗ