LRTA* sobre Sokoban

Mauricio Alfonso

April 27, 2014

Abstract

1 Teoría

1.1 Potencial eléctrico

ohm?

$$\sigma_{elem} \nabla^2 \phi = 0 \tag{1}$$

1.2 transporte (plank?)

$$\frac{\sigma C_i}{\sigma t} = -\nabla \cdot j_i \tag{2}$$

$$j_i = -\mu_i C_i \nabla \phi - D_i \nabla C_i + C_i \tag{3}$$

de donde sale esto??

1.3 generación de poros

$$\frac{dN}{dt} = \alpha e^{(V_m/V_{ep})^2} \left(1 - \frac{N}{N_0 e^{q(V_m/V_{ep})^2}} \right)$$
(4)

2 Método Numérico / Implementación

Se resolvieron los sistemas eléctrico y de transporte usando el método de elementos finitos y el de generación de poros usando diferencias finitas.

2.1 Mallado

Para reducir la cantidad de elementos se modeló la célula como un sólido de revolución con coordenadas cilíndricas. Se generaron mallas con elementos cuadrilaterales usando el programa AutoMesh-2D, con elementos de menor tamaño en las zonas de cercanas a la membrana celular por ser de mayor interés. TODO falta biblio

2.2 Método de Elementos Finitos

breve explicación de elementos finitos (falta leer?)

- 2.3 Potencial eléctrico
- 2.4 Transporte de especies
- 2.5 Diferencias finitas
- 2.6 Generación de poros
- 3 Resultados
- 4 Conclusiones