Mathematical models in biology, 2021Q1 Miniprojects' proposals B3. Neuronal networks

October 29, 2020

Contents

1	Small conductance-based network	2
2	LIF as a basis for a synaptic-drive firing rate model	5
3	Working memory	7
4	Binocular rivalry	8
5	Small-world network of excitable integrate-and-fire neurons	9
6	Other ideas	11

1 Small conductance-based network

In this project, we aim at simulating a small (two-neuron) network formed by identical conductance-based neuron models, with the following structure:

- Neuron 1 receives a Poisson input at ν Hz through synapses modulated by an α function.
- Neuron 1 excites Neuron 2 through a graded synapsis.
- Neuron 2 inhibits Neuron 1 through a graded synapsis.

In the last part of the project, we will study the effect of plasticity (facilitation and depression).

1. Simulate an input Poisson train for 1 second with rate $\nu = 50 \text{Hz}$. For the homogeneous Poisson process we have

$$P[1 \text{ spike during } \Delta t] \approx r \Delta t,$$

where r is the input rate. This equation can be used to generate a Poisson spike train $\{t_j\}_{j=1}^{n_{spk}}$ by first subdividing time into short intervals, each of duration Δt . Then, generate a sequence of random numbers x[i], uniformly distributed between 0 and 1. For each Δt -interval, if $x[i] \leq r\Delta t$, generate a spike. Otherwise, no spike is generated. This procedure is appropriate only when Δt is very small, i.e, only when $r\Delta t \ll 1$. Typically, $\Delta t = 0.1$ msec should suffice.

For more information, see these notes by David Heeger (NYU).

2. Study of the post-synaptic potentials induced by the Poisson train. From the spike train obtained in (1), generate an synaptic input $g_{syn}(t) = \bar{g} \sum_j \alpha(t - t_j) H(t - t_j)$, where $\alpha(t) = 1/\tau_s^2 t \exp(-t/\tau_s)$ and H is the Heaviside function. Inject it into the system (you can try to inject first only one):

$$C\dot{V} = I - g_L(V - E_L) - g_{Na}m_{\infty}(V)(V - E_{Na}) - g_Kn(V - E_K) + \mathbf{g_{syn}}(\mathbf{t})(V - E_{syn})$$

$$\tau_n \dot{n} = n_{\infty}(V) - n$$
(1)

with

$$m_{\infty}(V) = 1./(1. + \exp(-(V - V_{max,m})/k_m)),$$

and

$$n_{\infty}(V) = 1./(1. + \exp(-(V - V_{max,n})/k_n)).$$

Use the following parameters: $I = 0 \,\mu\text{A/cm}^2$, $C = 1 \,\mu\text{F/cm}^2$, $g_{Na} = 20 \,\text{mS/cm}^2$, $E_{Na} = 60 \,\text{mV}$, $g_K = 10 \,\text{mS/cm}^2$, $V_K = -90 \,\text{mV}$, $g_L = 8 \,\text{mS/cm}^2$, $E_L = -80 \,\text{mV}$, $V_{max,m} = -20 \,\text{mV}$, $k_m = 15 \,\text{mV}$, $V_{max,n} = -25 \,\text{mV}$, $k_n = 5 \,\text{mV}$, $\tau_n = 1 \,\text{ms}$. For the α function, we choose $\tau_s = 5 \,\text{ms}$.

- (a) Show the output voltage together with the marks of the Poisson train.
- (b) Compute the average of the synaptic current along time and the spiking frequency of the cell. Do these two results match according to the f-I curve of the neuron model?
- 3. We want to explore the synapses modeled using the formalism of voltage-gated ionic channels (also called *graded synapses*). Consider two neurons that are modeled according to the system described above:

$$C\dot{V}_i = I_i - g_L(V_i - E_L) - g_{Na}m_{\infty}(V_i)(V_i - E_{Na}) - g_K n_i(V_i - E_K)$$

 $\tau_n \dot{n}_i = n_{\infty}(V_i) - n_i$

for i = 1, 2. Consider that Neuron 1 excites and Neuron 2, and Neuron 2 inhibits and Neuron 1. This implies that the equation of V_1 must contain the term $-g_{inh,max}s_2(V_1 - E_{inh})$, whereas the equation for V_2 must contain the term $-g_{exc,max}s_1(V_2 - E_{exc})$. The dynamics of s_1 and s_2 are regulated by the following type of differential equation:

$$\dot{s}_i = A_s f_{pre}(v_i)(1 - s_i) - \beta_i s_i, \qquad i = 1, 2,$$

where $f_{pre}(v) = 1/(1 + \exp(-(v - v_t)/v_s))$.

By default, we take the following values: $v_t = 2 \,\text{mV}$, $v_s = 5 \,\text{mV}$, $A_s = 1 \,\text{s}^{-1}$, $\beta_1 = 0.25 \,\text{ms}^{-1}$, $\beta_2 = 0.1 \,\text{ms}^{-1}$, $g_{exc,max} = 1 \,\text{mS/cm}^2$ and $g_{inh,max} = 0 \,\text{mS/cm}^2$.

- (a) Explore the spiking activity of the two neurons for different values of the maximal inhibitory synaptic conductance: $g_{inh,max} \in \{0,1,2\} \,\mathrm{mS/cm^2}$ and comment on the results (for instance, frequency of both cells, order of spikes, spikes suppressed when increasing inhibition,...).
- (b) With the given values, the excitatory synapsis has a time constant of $1/\beta_1$ ms and the inhibitory synapsis, $1/\beta_2$ ms. Explore the impact of increasing the time constants, for instance taking the new β 's to change by a factor λ with respect to the original ones, with $\lambda \in \{1, 0.5, 0.1\}$. How can you explain the changes?
- 4. Tsodyks and Markram (Tsodyks 98) proposed a model for short term synaptic plasticity (STP), read this Scholarpedia article. Let x ($0 \le x \le 1$) be the fraction of available vesicles after neurotransmitter depletion and let u be an utilization variable (release probability). Each time there is a spike, we update both variables u and x as follows (we denote as u^-, x^- the values of the variables just before the arrival of the spike, and u^+, x^+ the values at the moment just after the spike): u is increased (due to spike-induced calcium influx to the presynaptic terminal) by an amount $a_f(1-u)$ (that is, $u^+ = u^- + a_f(1-u^-)$)

and x is decreased by an amount u^+x (a fraction u of available resources x is consumed to produce the post-synaptic current); that is, $x^+ = x^-(1 - u^+)$. Between spikes, u decays back to 0 with time constant τ_f while x recovers to 1 with time constant τ_f . In summary, the dynamics for STP are:

$$\tau_d \dot{x} = 1 - x
\tau_f \dot{u} = -u$$

The synapsis is modeled as:

$$\tau_s \dot{s} = -s$$

and $s^+ = s^- + A u^+ x^-$. Choose $\tau_s = 20 \,\text{ms}$ and A = 1. The interplay between the dynamics of u and x determines whether the joint effect of u x is dominated by depression or facilitation.

Consider the network from Exercise 3 with the default parameter values. Show that when $\tau_d >> \tau_f$ (for instance, $\tau_f = 50 \,\mathrm{ms}$, $\tau_d = 750 \,\mathrm{ms}$, $a_f = 0.45$) then the synapse is STD-dominated. If $\tau_f >> \tau_d$ and small a_f (for instance, $\tau_d = 50 \,\mathrm{ms}$, $\tau_f = 750 \,\mathrm{ms}$, $a_f = 0.15$) then the synapse is STF-dominated. The outputs can be (a) the plot of the voltages of the two cells and (b) the synaptic current received by Neuron 2 in the three cases (no plasticity, STD-dominated and STF-dominated).

2 LIF as a basis for a synaptic-drive firing rate model

We will derive a synaptic drive formulation for a firing rate model using the LIF model.

1. First, consider the LIF model:

$$\begin{cases} C_m \dot{V} = -(V - V_{rest})/R_m + I \\ & \text{if } V(t_f) > V_{th}, \text{ then a spike occurs and } V(t_f^+) = V_{rest} \end{cases}$$

For this problem we will use the model in dimensionless form. Introduce the dimensionless voltage $v(t) = [V(t) - V_{rest}]/[V_{th} - V_{rest}]$ and replace t by $\tau = t/\tau_v$ to show that the model becomes:

$$\frac{dv}{d\tau} = -v + i$$
 with firing/reset: $v(t_f) = 1$, then $v(t_f^+) = 0$

Define τ_v (the membrane time constant) and i in terms of C_m , R_m and I.

- 2. Compute the analytical expression of period T vs i when v(T) = 1. Plot the frequency f(=1/T) vs i for 0 < i < 30, and determine analytically the minimum value of i for which repetitive firing exists.
- 3. Replace the injected current input i by a steady synaptic conductance input: $i = g_{ex}(v_{ex} v)$. Plot the frequency f vs g_{ex} over the same range as in 2. If you need a value for v_{ex} , use $v_{ex} = 5$. Find analytically the minimum value of g_{ex} for which repetitive firing exists. Compare and discuss the shapes of the curves (with respect to the result from statement 2). Explain their differences.
- 4. Suppose that when a LIF neuron fires, it initiates in a target cell a pure exponential decaying post-synaptic conductance time course s(t) proportional to $\exp(-t/\tau_s)$ between spikes, that is:

$$\tau_s \dot{s} = q\delta(t - t_f)(1 - s) - s,$$

where t_f is a firing time and $q \in [0,1]$ represents the size of the instantaneous δ -function effect of synaptic transmitter on opening synaptic current channels. In other words, at $t = t_f$, we set $s(t_f^+) = s(t_f^-) + (1 - \exp(-q/\tau_s))(1 - s(t_f^-))$. Use q = 0.1 and $\tau_s = 1$ for numerical examples.

5. Suppose that our LIF cell experiences the summed total input from the other LIF neurons in the network as a net steady conductance g_{ex} (i.e. constant g_{ex}). As in statement 3 above, with g_{ex} constant, v(t) is periodic with period $T = T(g_{ex})$ (firing at $t = 0, T, 2T, \ldots$). So our LIF neuron is firing periodically with period $T = T(g_{ex})$. We want to find the associated periodic s-profile, s(t), that our cell activates in the target cells. Suppose $s(0^+) = s_0$ then find s_0 such that s(t) is periodic, that is, such that

 $s(T^+) = s_0$. NOTE: At t = T, s(t) will have a jump discontinuity. Here, s_0 will be a function of $T(g_{ex})$.

- 6. Compute the (single-cycle) time average of s(t), that is $\bar{s} = 1/T \int_0^T s(t) dt$, as a function of g_{ex} (can be done analytically). Plot \bar{s} vs g_{ex} .
- 7. Now we will find the net steady synaptic drive g_{ex} in this network of purely excitatory, all-to-all coupled, asynchronous LIF cells. We want to find the steady states of the firing rate model for this setup. For this we solve the self-consistency equation:

$$g_{ex} = \bar{g}_{ex}\bar{s}(g_{ex}),$$

where \bar{g}_{ex} is the coupling strength in the network (it depends on the strength of synaptic connections and on the number of cells in the network). This is an implicit equation for g_{ex} . Analyze it graphically. Plot $\bar{s}(g_{ex})$ vs g_{ex} and also plot g_{ex}/\bar{g}_{ex} vs g_{ex} . Intersections correspond to steady states of the system. Describe (qualitatively and quantitatively) how the network steady states depend on \bar{g}_{ex} , say for $\bar{g}_{ex} = 1, 2, \ldots, 6$.

8. (Optional) Build-up a network to test the previous statements computationally. Consider a network with N neurons, (take N = 100, for instance), each one modeled as a LIF:

$$v'_{i} = -v_{i} + \frac{1}{N} \sum_{j=0}^{N} \bar{g}_{ex} s_{j} (v_{ex} - v_{i})$$

 $s'_{i} = -s_{i}$

with the resetting condition: if $v_i > 1$ the $v_i = 0$ and $s_i = s_i + \exp(-q/\tau_s)(1 - s_i)$. Take the initial voltages distributed between 0 and 1 (e.g. $v_i(0) = i/N$, for i = 1...N) and $s_i(0)$ with some value distinct from 0. Consider different values of \bar{g}_{ex} and check that results agree with the predictions.

3 Working memory

1. Design a model for working memory using bump attractors from the following guideline. Consider a ring model of N=60 units/populations, each one coding for a particular angle of the input position $(\alpha_j = 2\pi j/N)$ and modeled with a rate equation:

$$\tau \dot{r}_j = -r_j + F(\frac{15}{N} \sum_{k=1}^{N} w_{kj} r_k + I_j(t)),$$

for j = 1...N. Here, r_j represents the firing rate of population j and F is the transfer function given by

$$F(x) = \begin{cases} 0 & x \le \theta, \\ x & \theta \le x \le 1, \\ 1 & x \ge 1. \end{cases}$$
 (2)

Take $\theta = 0.2$ and $\tau = 1$. The terms w_{kj} represent the connectivity between two populations, which depends on $D = |k - j| \pmod{N/2}$; that is, the distance between two areas. When computing the distance, take into account the fact that neurons are arranged on a ring. Assuming that the inhibition is fast with respect to the excitation, then the interactions are of "Mexican hat" type (guess why by plotting $\hat{w}(x)$), $w_{kj} = \hat{w}(D/N) = w_e(D/N) - w_i(D/N)$, where

$$w_e(x) = a \exp(-0.5(x/\sigma_e)^2)$$

and

$$w_i(x) = b \exp(-0.5(x/\sigma_i)^2).$$

Choose $\sigma_e = 0.08$, $\sigma_i = 0.25$, a > 1, and b = 1.

Suppose that we need to remember the stimulus located at the angle α_n . Then, the input will be $I_j = \hat{I}(D/N)$ where $D = |n - j| \pmod{N/2}$ and $\hat{I}(x)$ is a function of Gaussian type:

$$\hat{I}(x) = 0.5 \exp(-0.5(x/\sigma)^2).$$

Choose $\sigma = 0.05$.

- 2. Show that if a is strong enough, then the bump can be sustained when the input is removed. What happens if a is small. What is the meaning of a?
- 3. What happens if there is no inhibition in the system?
- 4. What happens to this model if you show two different stimuli located at two different angular locations. Can it remember both? What happens if they are close to each other?

4 Binocular rivalry

In binocular rivalry, each eye views a different image but our perception alternates (on a time-scale of seconds) between the images. Several existing models account for the oscillations by incorporating two neuronal populations that compete through mutual inhibition. A slow fatiguing mechanism, such as adaptation, mediates the back and forth switching of dominance. In this project, we want to study a simple firing-rate model. Let $u_j(t)$ be the firing rate of population j (j = 1, 2) and let $a_j(t)$ the corresponding (slow) adaptation variables. The firing rates of the populations evolve in time according to the following set of ODEs:

$$\dot{u}_j = -u_j + f(-\beta u_i - \gamma a_j + I_j)
\tau_a \dot{a}_j = u_j - a_j$$

with $f(x) = 1/(1 + \exp((\theta - x)/k))$ and control parameter values: $\beta = 0.9$, $\gamma = 0.5$, $I_1 = I_2 = 0$, $\tau_a = 10$, $\theta = 0.2$ and k = 0.1.

- 1. Identify and describe the terms and parameters in the model (inhibition, external input, etc.)
- 2. Show that for $\beta = 0.9$ and I = 0.8 ($I = I_1 = I_2$) the model oscillates. Plot the time courses of u_1 and u_1 on the same axes (ordinate: -0.1 to 1.1, abscissa: 0 to 300), and describe the behavior (phases of dominance, suppression, etc). Overlay u_1 and u_2 on another plot and describe the trajectory. The underlying mechanism is bistability in the "fast dynamics". Show it: think of u_j as slow; freeze them, say at 0.5 and look at u_1 and u_2 -nullclines.
- 3. Show that the model oscillates for a range of I-values; compute and plot the period, T vs I; also plot the maximum and the minimum of u_1 vs I. According to Levelt's Proposition 1 (LP1), based on psychophysical experiments, the oscillation period is expected to decrease as I increases. Does the model satisfy LP1?
- 4. Increase β (to 1.1) and compute the model's behavior for 0 < I < 2.5; summarize it in a plot of amplitude vs I (bifurcation diagram); also, T vs I. Note and describe the new behavior (Winner-Take-All, WTA) for an intermediate range of I values. Use some phase plane projections to demonstrate bistability in this WTA regime. For what I-range(s) is LP1 (more-or-less) satisfied or not satisfied?
- 5. Show that decreasing τ_a eliminates oscillations (why?) and leaves only the WTA regime.
- 6. Complete your response diagrams of amplitude of u_1 vs I by including the special "uniform steady state" (time independent, $u_1 = u_2$, $a_1 = a_2$). Can you show analytically that it is monotonic? Identify the bifurcations that occur as different solution states appear/disappear.

5 Small-world network of excitable integrate-and-fire neurons

Consider an array of N integrate-and-fire (IF) neurons, whose voltage is determined by the equation

$$\tau_m \frac{dV_i}{dt} = -V_i + I_{ext} + g_{syn} \sum_{j,m} w_{ij} \, \delta(t - t_j^{(m)} - \tau_D),\tag{3}$$

assuming that the neuron fires whenever its voltage exceeds 1 and, then, the voltage is reset to 0. Observe that V_i has been normalized, and that these neurons are not oscillatory, but excitable, in the regime $I_{ext} < 1$.

- 1. Identify and describe the terms and parameters in the model $(\tau_m, g_{syn}, t_j^{(m)}, \tau_D)$.
- 2. Create a small-world network (SWN) in this way:
 - (a) model the local connections as nearest-neighbor couplings ($w_{ij} = 1$ if and only if |i j| = 1) (underlying regular lattice);
 - (b) establish the long-range connections from randomly adding a fixed fraction pN of unidirectional couplings $w_{ij} = 1$.
 - (c) Using the corresponding undirected graph, compute the clustering coefficient and the average shortest path length of the resulting network for p = 0.1 * k, k = 1, ..., 10. HINT: You need to use software that computes these graph-theoretic properties (SAGE, MATLAB,...).
- 3. Consider N=1000, $I_{ext}=0.85$, gsyn=0.2, $\tau_m=10$ and $\tau_D=1$. Since the synaptic conductance is chosen to satisfy $I_{ext}+g_{syn}>1$, then a single input suffices to sustain firing activity. Check that the network does not show persistent activity, that is, the activity slows down as time goes by $(t_{max}\approx 2000 \text{ should be enough})$ for p=0.
- 4. Now, change p = 0.1 and simulate 10 realizations of the network. Repeat the experiment with p = 0.9. Which are the differences that you observe in terms of persistent activity? Why do they occur?
- 5. (Optional) Build up an automatic procedure to determine whether there is persistent activity or not.
- 6. For different p from 0 to 1 (for instance, p = 0.1 * k, k = 1, ..., 10), average over 2000 realizations to calculate the probability of persistent activity. Plot the complementary probability of failure versus p, for N = 250, 1500, 1000, 2000 and comment the results. Observe that the probability of failure is an increasing function of p with increasing steepness as the size N of the system increases.

7. Prove that a single input will be able to elicit a spike only if the elapsed time from its preceding firing exceeds

$$T_R^{(1)} = \tau_m \ln \left(\frac{I_{ext}}{I_{ext} + g_{syn} - 1} \right). \tag{4}$$

Hint: the time elapsed from the preceding firing of this neuron must allow for a recovery to $V \ge 1 - g_{syn}$.

8. Reproduce the same plot with $\tau_D \in \{0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8\}.$

6 Other ideas

- 1. Hopfield neural networks and associative memories. Daniel J. Amit, Modeling Brain Function: The World of Attractor Neural Networks, Ch. 2, Cambridge University Press (1989).
- 2. Applications of graph theory to connectivity. RubinovSporns-Neuroimage2010.pdf,

Sporns-NatureNeuroscience-2014-Review.pdf, and

Sporns-DialoguesClinNeurosci-20-111.pdf (in this order); database http://networkrepository.com

- 3. Topological data analysis for network neuroscience. Sizemore-NetworkNeuroscience2019.pdf
- 4. Central pattern generators. Katz-PhilTransRoySoc2015-CPGs.pdf.
- 5. Mean-field theory of irregularly spiking neuronal populations. RenartChapter2003.pdf.
- 6. Neural populations from a refractory density approach. ChizhovGrahamTurbin-Neurocomputing2006.pdf, ChizhovGraham-PhysRevE.75.011924-2007.pdf
- 7. Neural mass models.
- 8. Heteroclinic networks as a model of bistable perception. AshwinLavric-PhysicaD2010.pdf.