

DEUTSCHES PATENTAMT (21) Aktenzeichen:

P 40 16 688.0

② Anmeldetag:

23. 5.90

43 Offenlegungstag:

13. 6.91 :

30 Unionspriorität: 32 33 31

08.12.89 JP 319228/89

(7) Anmelder:

Institute of Research and Innovation, Tokyo/Tokio, JP

(4) Vertreter:

Strehl, P., Dipl.-Ing. Dipl.-Wirtsch.-Ing.; Schübel-Hopf, U., Dipl.-Chem. Dr.rer.nat.; Groening, H., Dipl.-Ing., Pat.-Anwälte, 8000 München

② Erfinder:

Tamura, Takaaki, Mitaka, Tokio/Tokyo, JP; Kumagai, Mikio, Kashiwa, Chiba, JP; Katsuta, Akimichi, Matsudo, Chiba, JP

Prüfungsantrag gem. § 44 PatG ist gestellt

- (54) Verfahren zur Entfernung von Stickstoffoxiden aus Abgasen
- Im Verfahren zur Entfernung von Stickstoffoxiden aus Abgasen, die Sauerstoff und Feuchtigkeit enthalten, wird das Abgas in Gegenwart von organischen Verbindungen mit hydrierten Zeolith-Katalysatoren oder hydrierten Zeolith-Katalysatoren, die mit mindestens einem Metall, ausgewählt unter Kupfer, Zink, Vanadium, Chrom, Mangan, Eisen, Kobalt, Nickel, Rhodium, Palladium, Platin und Molybdan imprägniert sind, in Berührung gebracht. Der Zeolith sollte ein Siliciumdioxid/Aluminiumoxid-Verhältnis von 5 und darüber aufweisen. Geeignet sind Zeolithe des Y- oder L-Typs, Offretit-Erionit-Mischkristall-Zeolithe, Ferrierit, Mordenit, Clinoptilolit und Zeolithe des ZSM-5-Typs.

BEST AVAILABLE COPY

Die Erfindung betrifft ein Verfahren zur Behandlung von Abgasen, insbesondere von Abgasen aus Dieselmotoren, Gasmotoren oder Gasturbinen, die überschüssigen Sauerstoff und Feuchtigkeit sowie Stickstoffoxide (im folgenden als NO_x abgekürzt) enthalten. In diesem Verfahren wird das Abgas mit einem Zeolith-Katalysator in Gegenwart von organischen Verbindungen in Berührung gebracht, wodurch die Stickstoffoxide im Abgas in harmlosen Stickstoff umgewandelt werden.

Es gibt verschiedene Verfahren zur Entfernung von NO_x aus Abgasen: So wird beispielsweise die selektive Reduktion für Abgase aus Boilern angewendet, in der der V₂O₅-TiO₂-Katalysator und Ammoniakgas als Reduktionsmittel verwendet werden. Das Verfahren, das für Abgase von Benzinmotoren angewendet wird, besteht im Regeln des Luft-Treibstoffverhältnisses (das heißt, der Sauerstoffkonzentration) und im gleichzeitigen Entfernen von NO_x, Kohlenmonoxid und Kohlenwasserstoffen unter Verwendung eines Dreikomponentenkatalysators. (Vgl. Funahiki und Yamada in "Catalysts for Automotive Exhaust Gas", Vorveröffentlichung des Meeting for Theoretical Fundamental Study of Practical Catalysts, Catalysis Society of Japan, S. 15–20, 1989).

Das erste Verfahren hat einerseits den Vorteil, daß es für überschüssigen Sauerstoff enthaltende Abgase wirkungsvoll ist, andererseits den Nachteil, daß es Ammoniakgas als Reduktionsmittel benötigt. Deshalb ist es für spezielle Anwendungen geeignet, jedoch nicht für den allgemeinen Gebrauch. So kann es insbesondere kaum für Kraftfahrzeuge mit einem Dieselmotor und kleine oder mittlere stationäre Boiler angewendet werden. Das Verfahren mit dem Dreikomponentenkatalysator ist für Abgase, die überschüssigen Sauerstoff enthalten, nicht geeignet und kann deshalb für Abgase aus Dieselmotoren nicht eingesetzt werden.

Aufgabe der Erfindung ist es daher, ein Verfahren zur wirkungsvollen Entfernung von NO_x zur Verfügung zu stellen, das für Abgase, die überschüssigen Sauerstoff enthalten, angewendet werden kann, ohne daß Ammoniak verwendet werden muß.

Diese Aufgabe wird anspruchsgemäß gelöst durch ein Verfahren zur Entfernung von Stickstoffoxiden aus Sauerstoff und Feuchtigkeit enthaltenden Abgasen, das dadurch gekennzeichnet ist, daß das Abgas in Gegenwart von organischen Verbindungen mit hydrierten Zeolith-Katalysatoren oder hydrierten Zeolith-Katalysatoren, die mit mindestens einem Metall, ausgewählt unter Kupfer, Zink, Vanadium, Chrom, Mangan, Eisen, Kobalt, Nickel, Rhodium, Palladium, Platin und Molybdän, imprägniert sind, in Berührung gebracht wird.

Im erfindungsgemäßen Verfahren ist es somit möglich, selektiv Stickstoffoxide aus überschüssigen Sauerstoff enthaltenden Abgasen zu entfernen.

Im erfindungsgemäßen Verfahren werden hydrierte Zeolithe als Katalysatoren oder als Katalysatorträger verwendet. Die Hydrierung bzw. Hydrogenolyse des Zeoliths wird entweder direkt oder indirekt durchgeführt. Bei der direkten Hydrierung wird der Zeolith wiederholt mit Mineralsäuren gewaschen, die Kationen im

Zeolith werden gegen Wasserstoffionen ausgetauscht.

Bei der indirekten Hydrierung wird Zeolith wiederholt mit Ammoniumionen enthaltendem Wasser gewaschen, die Kationen im Zeolith werden durch Ammoniumionen ersetzt, der Zeolith wird dann kalziniert, um das Ammoniak zu verflüchtigen. Beide Verfahren sind erfindungsgemäß anwendbar.

Im erfindungsgemäßen Verfahren ist es wesentlich, hydrierte Zeolithe zu verwenden. Zeolithe, die nicht hydriert sind, entfernen nur wenig NO_x, wie in Beispiel 1 und Vergleichsbeispiel 1 gezeigt. Die Art des im erfindungsgemäßen Verfahren verwendeten Zeoliths ist nicht kritisch, er kann synthetischen oder natürlichen Ursprungs sein, vorausgesetzt, er ist hydriert.

Es ist bekannt, daß die Säurebeständigkeit eines Zeoliths von Siliciumdioxid/Aluminiumoxid-Verhältnis, das die chemische Zusammensetzung des Zeoliths angibt, abhängt, und daß die Säurebeständigkeit umso niedriger ist, je niedriger dieses Verhältnis ist. Es ist auch bekannt, daß hydrierte Zeolithe hydrophob sind und die Eigenschaften von festen Säuren haben, deren Stärke auch vom Siliciumdioxid/Aluminiumoxid-Verhältnis abhängt (vgl. Course of Catalysts, Band 10, zusammengefaßt in "Catalysis Society of Japan", Kodansha, 1986). Diese Tatsachen lassen vermuten, daß die Aktivität von auf Zeolithen aufgebrachten Katalysatoren stark mit dem Siliciumdioxid/Aluminiumoxid-Verhältnis schwanken würde.

Erfindungsgemäß wurde durch Versuche an einer Vielzahl von Zeolithen festgestellt, daß für das erfindungsgemäße Verfahren geeignete Katalysatoren erhalten werden durch Hydrierung von Zeolithen mit einem Siliciumdioxid/Aluminiumoxid-Verhältnis von über etwa 5, wie in Beispiel 1 und 2 gezeigt. Noch aktivere Katalysatoren werden durch Hydrierung von Zeolithen mit einem Siliciumdioxid/Aluminiumoxid-Verhältnis von über etwa 10 erhalten (vgl. Beispiele 1 und 2).

Die erfindungsgemäß verwendeten hydrierten Zeolith-Katalysatoren können durch Hydrieren eines synthetischen Zeoliths (wie eines Zeoliths des Y- oder L-Typs, eines Offretit-Erionit-Mischkristall-Zeoliths, eines Ferrierit- oder Mordenit-Zeoliths oder eines Zeoliths des ZSM-5-Typs) oder eines natürlichen Zeoliths (wie eines Mordenit- oder Clinoptilolit-Zeoliths) hergestellt werden (vgl. Beispiele).

Im erfindungsgemäßen Verfahren wird der Katalysator in Gegenwart von organischen Verbindungen als Reduktionsmittel verwendet. Als organische Verbindungen sind Kohlenwasserstoffe, wie Methan, Ethan, Propan, Butan und Heizöl, sowie Alkohole, Ketone und Ether, geeignet. Das heißt, im erfindungsgemäßen Verfahren ist die Auswahl an Reduktionsmitteln wesentlich breiter als bei der herkömmlichen selektiven Reduktion, in der nur Ammoniak als Reduktionsmittel verwendet wird.

Die Imprägnierung mit dem Metall kann dadurch erfolgen, daß der hydrierte Zeolith (hergestellt wie oben angegeben) in einer wäßrigen Lösung von Salzen des gewünschten Metalls gerührt, von der Lösung getrennt, getrocknet und kalziniert wird. (Dieses Verfahren wird als erste Imprägnierung bezeichnet).

Alternativ kann die Imprägnierung dadurch erfolgen, daß der Zeolith mit einer wäßrigen Lösung von Salzen des gewünschten Metalls und dann mit Ammoniumionen enthaltendem Wasser in Berührung gebracht und schließlich erhitzt wird, um das Ammoniak zu verflüchtigen. (Dieses Verfahren wird als zweite Imprägnierung

bezeichnet.)

Dieses zweite Verfahren kann auch so durchgeführt werden, daß die Reihenfolge der Kontaktierungsstufen umgedreht wird (dritte Imprägnierung).

In den folgenden Beispielen wurden Versuche mit synthetischen Zeolithen der TSM-Reihe durchgeführt, (hergestellt von Toso Co., Ltd.), wie Zeolithe vom Y- oder L-Typ, Offretit-Erionit-Mischkristall-Zeolithe, Ferrierit oder Mordenit oder Zeolith vom ZSM-5-Typ. Diese Zeolithe wurden durch Eintauchen in 4n Salzsäure bei 100°C während vier Stunden hydriert, dann eingehend gewaschen und getrocknet. Die Versuche wurden auch mit natürlichen Zeolithen durchgeführt, wie Mordenit enthaltendem Tuff (von Akita Prefecture) und Clinoptilolit enthaltendem Tuff (von Fukishima Prefecture). Die natürlichen Zeolithe wurden durch wiederholtes Waschen mit heißer Salzsäure (2 mol/l) während 40 Stunden hydriert.

10

20

25

30

35

40

60

Die katalytische Aktivität der hydrierten Zeolithe, mit oder ohne aufgebrachtem Metall, wurde wie folgt untersucht: Das Pulver des hydrierten Zeoliths wurde unter Druck geformt, dann zerkleinert und gesiebt, um nur Teilchen mit einem Durchmesser von 0,84 bis 2 mm (10 bis 20 mesh) zu sammeln. Die Probe (5 cm³) wurde in ein Reaktorrohr aus rostfreiem Stahl mit einem Innendurchmesser von 10 mm eingefüllt. Durch dieses Reaktorrohr wurde ein simuliertes Abgas aus 0,15 vol% NO, 10 vol% Sauerstoff und 7,3 vol% Feuchtigkeit, wobei der Rest Argon war, durchgeleitet. Als organische Verbindung als Reduktionsmittel wurde diesem Abgas Propan in einer Menge, die vier bis fünfmal der molaren NO_x-Konzentration entsprach, zugegeben. Die NO_x-Konzentrationen in den Gasen wurden durch Chemolumineszenz bestimmt. Der Prozentsatz an entferntem NO_x wurde gemäß der folgenden Formel berechnet:

100(%) -- A/B

wobei A die NO_x-Konzentration im aus der Katalysatorschicht abgeleiteten Gas und B die NO_x-Konzentration im in die Katalysatorschicht eingeleiteten Gas ist. Die Erfindung wird durch die folgenden Beispiele und Vergleichsbeispiele näher erläutert.

Beispiel 1

Entfernung von NOx durch hydrierte Zeolith-Katalysatoren

Die Ergebnisse der Versuche zur Entfernung von NO_x mit einer Vielzahl von hydrierten Zeolith-Katalysatoren sind in Tabelle 1 angegeben. In diesen Versuchen wurde die Temperatur des Reaktors auf 400°C gehalten, die Durchflußgeschwindigkeit des simulierten Abgases betrug 210 ml/min (entsprechend einer Raumgeschwindigkeit von 2500 h⁻¹).

Aus Tabelle 1 ist ersichtlich, daß der Prozentsatz an entferntem NO_x null ist bei Zeolithen mit einem Siliciumdioxid-Aluminiumoxid-Verhältnis unter 10 und dieser Prozentsatz über 30% liegt bei Verwendung von Zeolithen mit einem SiO₂/Al₂O₃-Verhältnis von über 12. Die Ergebnisse zeigen, daß hydrierte Zeolithe allein NO_x aus Abgas, das überschüssigen Sauerstoff enthält, entfernen können, vorausgesetzt, sie haben ein SiO₂/Al₂O₃-Verhältnis von über etwa 10 und dem Abgas wird eine organische Verbindung als Reduktionsmittel zugegeben.

Tabelle 1

Zeolith-Typ	SiO ₂ /Al ₂ O ₃	entferntes NO _x (%)	
Ү-Тур	5,9	0	
L-Typ	6,2	0	
Offretit-Erionit- Mischkristall	7,4	0	
Mordenit	10,2	1	
Ferrierit	12,2	34,0	
Mordenit	14,9	35,0	
Ferrierit	20,5	41,0	
ZSM-5-Typ	40,0	40,0	

Beispiel 2

Entfernung von NOx durch mit Metall imprägnierten, hydrierten Zeolith-Katalysatoren

Die Versuche wurden gemäß Beispiel 1 durchgeführt, wobei jedoch Katalysatoren verwendet wurden, die mit mindestens einem Metall, ausgewählt unter Nickel, Kupfer, Mangan, Chrom, Kobalt, Zink, Eisen und Vanadium, imprägniert waren. Die Ergebnisse sind in Tabelle 2 angegeben.

Aus Tabelle 2 ist ersichtlich, daß die hydrierten Zeolithe aktiver werden, wenn sie mit Metallen imprägniert sind. Der Prozentsatz an entferntem NO_x ist höher als 20%, selbst wenn das SiO₂/Al₂O₃-Verhältnis unter 10 liegt (mit der Ausnahme des Zinkkatalysators). Der Prozentsatz an entferntem NO_x liegt über 60%, wenn das Siliciumdioxid-Aluminiumoxid-Verhältnis über 10 beträgt (mit der Ausnahme des Zinkkatalysators). Das heißt,

daß der Prozentsatz an entferntem los stark ansteigt, wenn die hydrierten Zeolithe mit Metalten imprägniert sind.

Tabelle 2

	aufgebrachtes Metall	Art des Trägers*	SiO/AI₂O₃	entferntes NO _x (%)	Umwandlung in N₂ (%)
0	Kupfer	A	5,9	[†] 100	100
		В	12,2	100	99
		C	14,9	100	100
		D	40,0	100	100
_	Vanadium	Α	5,9	33,6	100
5		В	12,2	86,8	100
		С	14,9	84,5	99
		D	40,0	86,2	99
	Chrom	Α	5,9	29,7	97
0	O V	В	12,2	46,7	99
•		Ċ	14,9	42,7	99
		Ď	40,0	49,3	100
•	Mangan	A	5,9	81,1	100
		В	12,2	97,9	100
5		С	14,9	89,2	99
		D	40,0	99,1	100
	Cobalt	Α	5,9	20,7	98
		В	12,2	77,3	100
0		С	14,9	88,4	97
		D	40,0	89,8	99
	Nickel	Α	5,9	66,2	100
		В	12,2	99,8	100
_		С	14,9	87,8	100
5		D	40,0	99,9	100
	Zink	Α	5,9	13,7	97
		В	12,2	23,5	96
		C ,	14,9	22,3	95
0	•	. D	40,0	23,0	98
	Eisen	Α	5,9	25,4	92
		В	12,2	66,5	100
		С	14,9	65,7	100
5		D	40,0	68,3	97

^{*}A: Y-Typ, B: Ferrerit, C: Mordenit, D: ZSM-5-Typ

Beispiel 3

Einfluß der Raumgeschwindigkeit auf die Entfernung von NO_x durch metallimprägnierte Zeolith-Katalysatoren

Die Versuche wurden gemäß Beispiel 2 unter Verwendung der Kupfer- oder Kupfer-Nickel-Katalysatoren durchgeführt, um den Einfluß der Raumgeschwindigkeit auf die Entfernung von NO_x zu untersuchen. Dem simulierten Abgas wurde in diesen Versuchen kein Wasserdampf zugegeben. Die Ergebnisse sind in Tabelle 3 zusammengefaßt.

Aus Tabelle 3 ist ersichtlich, daß Zeolith-Katalysatoren mit einem SiO_2/Al_2O_3 -Verhältnis unter 10 NO_x zu über 50% entfernen, selbst dann, wenn die Raumgeschwindigkeit auf das achtfache erhöht wird (bis zu 20 000 h⁻¹). Bei Zeolith-Katalysatoren mit einem Siliciumdioxid-Aluminiumoxid-Verhältnis über 10 beträgt der Prozentsatz an entferntem NO_x über 90% bei der gleichen Raumgeschwindigkeit.

65

aufge- brachtes Metall	Zeolith (SiO ₂ /Al ₂ O ₃)	Raum- geschwindigkeit (h ⁻¹)	entferntes NO _x (%)	Umwandlung in N₂ (%)	
Kupfer	Y-Typ	5000	100	100	
	(5,9)	10000	96,2	100	
	• •	15000	64,5	99	
		20000	51,6	98	
	Ferrerit	5000	100	100	
	(12,2)	10000	100	100	
	,	15000	100	100	
		20000	96,4	99	
	Mordenit	5000	100	100	
	(14,9)	10000	100	100	
	•	15000	98,6	97	
		20000	87,3	98	
	ZSM-5-Typ	5000	100	100	
	(40,0)	10000	100	100	
	•	15000	100	98	
		20000	97,6	99	
Kupfer-	Ү-Тур	5000	100	96	
Nickel	(5,9)	10000	100	100	
HUNCI	(5,5)	15000	92,5	100	
		20000	63,2	98	
	Ferrerit	5000	100	100	
	(12,2)	10000	100	97	
	(-,-,	15000	100	99	
		20000	93,2	100	
	Mordenit	5000	100	100	
	(14,9)	10000	100	96	
	()	15000	100	100	
		20000	98,8	99	
	ZSM-5-Ťyp	5000	100	100	
	(40,0)	10000	100	100	
	(.4)4)	15000	100	95	
		20000	99,1	97	

Beispiel 4

45

60

Identifizierung der Reaktionsprodukte

Das im erfindungsgemäßen Verfahren behandelte Abgas kann Stickstoffoxid (N₂O) und Salpetersäure sowie Stickstoff enthalten. Um diese Verbindungen zu identifizieren, wurde das behandelte Abgas analysiert. Da das simulierte Abgas keinen Stickstoff enthielt, war es möglich, die Umwandlung von NO_x in Stickstoff aus der Menge des entstandenen Stickstoffs zu berechnen. Die Bestimmung von Stickstoff und Stickstoffoxid wurde durch Gaschromatografie durchgeführt. Die Salpetersäure wurde durch alkalische Titration des aus dem behandelten Gas durch Kühlen mit Eis gewonnenen Kondensats bestimmt. Es wurde festgestellt, daß die Mengen an Stickstoffoxid und Salpetersäure geringer als die Nachweisgrenze waren.

In den Tabellen 2 und 3 ist die Umwandlung von NO_x in Stickstoff in Prozent angegeben, unter der Annahme, daß zwei Mol entferntes NO_x ein Mol Stickstoff ergeben. Es wurde festgestellt, daß die erfindungsgemäß verwendeten, metallimprägnierten Katalysatoren NO_x praktisch vollständig in Stickstoff umwandeln.

Beispiel 5

Denitrifikation durch natürlichen Mordenit

Die Dinitrifikationsversuche wurden unter Verwendung von metallimprägnierten Katalysatoren durchgeführt, die aus natürlichem Mordenit (von Akita Prefecture), der direkt hydriert wurde, hergestellt wurden. Die Metallimprägnierung erfolgte nach dem oben angegebenen ersten Verfahren. Die direkte Hydrierung wurde durch wiederholtes Waschen des natürlichen Mordenits mit 2n Salzsäure bei 100°C während 40 Stunden

<u>D</u>E 40 16 688 A1

durchgeführt. Zur Imprägnierung der Katalysatoren wurden meistens Metallnitrate verwendet (mit der Ausnahme von Palladiumchlorid, Rhodiumchlorid, Chlorplatinsäure, Ammonium-metavanadat und Ammonium-molybdat). Für die Metallimprägnierung wurde der Katalysator 2 Stunden bei 90°C in eine wäßrige Lösung (1 mol/l) eingetaucht, deren Volumen dem dreifachen Volumen des Katalysators entspricht.

Die Versuche wurden unter folgenden Bedingungen durchgeführt: Das Katalysatorbett wurde durch Einfüllen von Katalysatorteilchen mit einer Größe von 0,84 bis 2 mm (10 bis 20 mesh) in eine Säule mit einem Innendurchmesser von 2 cm und einer Höhe von 16 cm hergestellt. Das simulierte Abgas wurde mit einer Durchflußgeschwindigkeit von 1 l/min durchgeleitet. Dieses simulierte Abgas bestand aus N₂ (80 vol%), O₂ (10 vol%), CO₂ (10 vol%), NO (0,17 vol%) und Feuchtigkeit, die durch Einspritzen von 4 g Wasser je Stunde in das Gas erhalten wurde. Das Gas wurde auf die Reaktionstemperatur vorerhitzt und mit einer organischen Verbindung als Reduktionsmittel versetzt.

Die Ergebnisse sind in Tabelle 4 angegeben. Das als Reduktionsmittel verwendete Propan ist ein handelsübliches Produkt für Heizzwecke und besteht aus 92% Propan, 8% Ethan und 0,1% Isobutan. Das Gasöl ist ein handelsübliches Produkt für Diesel-Kraftfahrzeuge. Die anderen organischen Verbindungen sind handelsübliche Reagenzien.

Tabelle 4

20	Aufge- brachtes Element	Reaktions- temperatur (C°)	Reduktions- mittel	zugesetzte Menge (mg/min)	Denitri- fikation (%)	Bemer- kungen
	-	430		0	8	
	_	430	Propos	3,8	55	
25	_	430	Propan Gasöl	3,8 4,3	47	
	~		Gasöl		47 45	
	-	350 430	Gasöl	4,3	43 47	
	_			4,3	41	
	_	500	Gasöl	4,3		
30	_	430	Ethanol	6,0	57 50	
	-	430	Ethylen	4,0	50	
	-	430	Aceton	5,0	47	
	-	430	$n - C_{10}H_{22}$	7,0	55	
		430	Ether	5,0	47	
35	-	430	Isobutan	4,0	50	
	Kupfer	400	_	0	8	
	Kupfer	500	_	0	6	
	Kupfer	600	_	0	3	
	Kupfer	400	Propan	3,8	34	
40	Kupfer	500	Propan	3,8	36	
	Kupfer	500	Propan	3,8	36	$O_2 = 5\%$
	Kupfer	600	Propan	3,8	38	
	Kupfer	600	Propan	8,0	61	
	Kupfer	600	Propan	11,4	74	
45	Kupfer	500	Ethanol	6,0	40	
-	Kupfer	500	$n - C_{10}H_{22}$	7,0	50	
	Kupfer	500	Ether	5,0	45	
	Kupfer	500	Aceton	5,0	48	
	Chrom	430	_	0	15	
50	Chrom	430	Propan	3,8	52	
•	Nickel	430		0	63	
	Nickel	430	Propan	3,8	83	
	Nickel	430	Gasöl	4,3	50	
	Nickel	430	$n - C_{10}H_{22}$	5,0	75	
55	Nickel	430	Ethanol	5,0	60	
JJ	Eisen	430		0	7	
	Eisen	430	Propan	3,8	62	
	Cobalt	430	- · · · · · · · · · · · · · · · · · · ·	0	27	

65

Aufge- brachtes Element	Reaktions- temperatur (C°)	Reduktions- mittel	zugesetzte Menge (mg/min)	Denitri- fikation (%)	Bemer- kungen	
Cobalt	430	Propan	3,8	68		
Cobalt	430	Gasöl	4,3	50		
Cobalt	430	Ethanol	5,0 *	70		16
Palladium	400	_	0	18		
Palladium	500	_	0	18		
Palladium	430	_	0	10		
Palladium	430	Propan	3,8	55		
Palladium	430	Propan	3,8	67		1:
Mangan	430	_ `	0	10		
Mangan	430	Propan	3,8	75		
Mangan	430	Propan	3,8	78		
Mangan	430	Gasöl	4,3	50		
Mangan	430	$n - C_6H_{14}$	6,0	65		2
Mangan	430	$n - C_{10}H_{22}$	7,0	60	:	
Mangan	430	Ethanol	6,0	58		
Mangan	430	Ethylen	4,0	70		
Mangan	430	Aceton	5,0	65	$O_2 = 5\%$	
Mangan	430	n-Butan	4,0	70		2
Mangan	430	Isobutan	4,0	70		
Molybdän	430	_	0	10		
Molybdän	430	Propan	3,8	51		
Molybdän	430	Gasöl	4,3	45		
Rhodium	430		0	15		3
Rhodium	430	Propan	3,8	51		
Rhodium	430	Gasöl	4,3	40		
Platin	430	_	0	10		
Platin	430	Propan	3,8	55		
Platin	430	Gasöl	4,3	46		3
V-Mn binär	300	_	0	15		
V-Mn binär	400	_	0	11		
V-Mn binär	300	Propan	3,8	27		
V-Mn binär	400	Propan	3,8	89		
V-Mn binär	400	Propan	7,3	95		4

Tabelle 4 (Fortsetzung)

5	Aufge- brachtes Element	Reaktions- temperatur (C°)	Reduktions- mittel	zugesetzte Menge (mg/min)	Denitri- fikation (%)	Bemer- kungen
		()		(118/11111)	(<i>1</i> 0)	
	V-Mn binär	500	Propan	3,8	85	
	V-Mn binär	400	Gasöl	4,3	60	
10	Cr-Mn binär	430	Propan	3,8	44	
• •	V-Ni binär	430	_	0	9	
	V-Ni binār	430	Propan	3,8	62	
	Cr-Nibinär	430		0	16	
	Cr-Ni binär	430	Propan	3,8	46	
15	Cr-Ni binär	430	Gasöl	4,3	33	
	Cr-Cu binär	300	_	0	0	
	Cr-Cu binär	400	_	Ŏ	16	
	Cr-Cu binär	250	Propan	3,8	4	
	Cr-Cu binar	300	Propan	3,8	10	
20	Cr-Cu binär	430	Propan	3,8	27	
20	Cr-Cu binär	300	Gasöl	4,3	27	:
	Cr-Cu binär	320	Gasöl	4,3	36	
	Cr-Cu binar	430	Gasöl	4,3	27	
	Cr-V binär	300	_	0	7	
25	Cr-V binar	330	_	ŏ	8	
i)	Cr-V binar	360	_	ŏ	25	
	Cr-V binar	300	Propan	3,8	36	
	Cr-V binar	330	Propan	3,8	61	
	Cr-V binär	360	Propan	3.8	63	
20	Cr-V binar	300	Gasöl	4,3	27	
30	Cr-V binar	360	Gasöl	4,3	22	
	Cr-Fe binär	300	-	0	7	
	Cr-Fe binär	330	_	Ö	14	
	Cr-Fe binar	360	_	ő	6	
35	Cr-Fe binar	380	_	Ö	6	
93	Cr-Fe binär	430	_	Ö	4	
	Cr-Fe binar	300	Propan	3,8	58	
	Cr-Fe binar	330	Propan	3,8	78	
	Cr-Fe binär	380	Propan	3,8	58	
	Cr-Fe binar	430	Propan	3,8	46	
10	Cr-Fe binar	300	Gasöl	4,3	52	
	Cr-Fe binar	330	Gasöl	4,3	55	
	Cr-Fe binar Cr-Fe binar	380 380	Gasöl	4,3 4,3	33	
	Cr-Fe binar Cr-Fe binar	430	$n - C_{10}H_{22}$	4,3 5,0	78	
.5	CI-Fe Dillar	430	11-0101122	J,U	70	

Beispiel 6

Denitrifikation durch natürlichen Clinoptilolit

Die Versuche wurden gemäß Beispiel 5 durchgeführt mit dem Unterschied, daß die Katalysatoren aus Clinoptilolit (von Fukushima Prefecture) hergestellt wurden. Die Ergebnisse sind in Tabelle 5 zusammengefaßt.

50

55

60

Tabelle 5

Aufge- brachtes Element	Reaktions- temperatur (C°)	Reduktions- mittel	zugesetzte Menge (mg/min)	Denitri- fikation (%)	Bemer- kungen	(!
_	430	Propan	3,8	40		
-	430	Gasöl	4,3	40		
_	430	$n - C_{10}H_{22}$	7,0	50		10
_	430	Ethanol	6,0	54		
_	430	Ether	5,0	43		
_	430	Isobutan	4,0	40		
Eisen	430	_	o o	10		
Eisen	430	Propan	3,8	40		15
Eisen	430	Gasöl	4,3	30		
Chrom	430	_	0	10		
Chrom	430	Propan	3,8	44		
Chrom	350	Gasöl	4,3	43		
Chrom	430	Gasöl	4,3	50	i	20
Chrom	520	Gasöl	4,3	40	·	
Mangan	430	_	0	8		
Mangan	430	Propan	3,8	67		
Mangan	430	Ethanol	6,0	60		
Mangan	430	Gasöl	4,3	45		25
Mangan	430	$n - C_{10}H_{22}$	7,0	50		
Nickel	430	-	0	51		
Nickel	430	Propan	3,8	70		
Nickel	430	Gasöl	4,3	45		
Cr-Fe binär	430	_	0	10		30
Cr-Fe binär	330	Propan	3,8	65		
Cr-Fe binär	430	Propan	3,8	40		
Cr-Fe binär	330	Gasöl	4,3	47		
Cr-Fe binär	380	Gasöl	4,3	40		

Beispiel 7

Denitrifikation durch Katalysatoren, die indirekt hydriert wurden

Es wurden die gleichen Rohstoffe und die gleiche Imprägnierungsmethode wie in Beispiel 5 verwendet, mit dem Unterschied, daß die Hydrierung indirekt wie folgt durchgeführt wurde: Natürliches Mordenitgestein wurde zerkleinert, das entstandene Pulver wurde in eine wäßrige Ammoniumchloridlösung (2 mol/l) bei 90°C während zwei Stunden eingetaucht. Das Pulver wurde dann auf 600°C erhitzt, um das Ammoniak zu verflüchtigen. Die Ergebnisse sind in Tabelle 6 angegeben.

Beispiel 8

Einfluß des zweiten Imprägnierungsverfahrens

Der Katalysator wurde aus natürlichem Mordenit gemäß Beispiel 5 hergestellt. Der Zeolith wurde mit dem gewünschten Metall imprägniert und dann durch Ammoniumionenaustausch gemäß dem oben angegebenen, zweiten Imprägnierungsverfahren hydriert. Die Ergebnisse sind in Tabelle 6 angegeben.

Beispiel 9

Einfluß des dritten Imprägnierungsverfahrens

Der Katalysator wurde aus dem gleichen Zeolith wie in Beispiel 5 hergestellt und mit dem gewünschten Metall gemäß dem oben angegebenen, dritten Imprägnierungsverfahren imprägniert. Die Ergebnisse sind in Tabelle 6 zusammengefaßt.

65

35

40

45

50

Tabelle 6

5	Bei- spiel Nr.	aufge- brachtes Element	Reaktions- temperatur (C°)	Reduktions- mittel	zugesetzte Menge (mg/min)	Denitri- fikation (%)
	7	_	430	_	0	0
	7	-	430	Propan	3,8	59
10	7		430	Gasöl	4,3	32
	7	Mangan	430	-	0	3
	7	Mangan	430	Propan	3,8	69
	7	Mangan	430	Gasöl	4,3	55
	7	Eisen	430	Propan	3,8	40
15	7	Kupfer	430	Propan	3,8	35
	8	Mangan	430		0	10
	8	Mangan	430	Propan	3,8	67
	8	Mangan	430	Gasöl	4,3	35
20	9	Mangan	430	Propan	3,8	86 _i
	9	Nickel	430	_ •	o d	5
	9	Nickel	430	Propan	3,8	59
				•		

25

35

40

50

55

60

65

Vergleichsbeispiel 1

Entfernung von NOx durch nichthydrierte Zeolithe

Die Versuche wurden unter den gleichen Bedingungen wie in Beispiel 1 durchgeführt mit dem Unterschied, daß der Zeolith nicht hydriert war. Die Ergebnisse sind in Tabelle 7 angegeben, aus der ersichtlich ist, daß nur sehr wenig NO_x entfernt wurde.

Vergleichsbeispiel 2

Entfernung von NO_x durch hydrierte Zeolith-Katalysatoren in Abwesenheit von organischen Verbindungen

Die Versuche wurden unter den gleichen Bedingungen wie in Beispiel 1 durchgeführt mit dem Unterschied, daß keine organische Verbindung als Reduktionsmittel zugegeben wurde. Die Ergebnisse sind in Tabelle 7 angegeben, aus der ersichtlich ist, daß nur sehr wenig NO_x entfernt wurde.

Vergleichsbeispiel 3

Entfernung von NO_x durch metallimprägnierte, hydrierte Zeolith-Katalysatoren in Abwesenheit von organischen Verbindungen

Die Versuche wurden unter den gleichen Bedingungen wie in Beispiel 2 mit metallimprägnierten Katalysatoren durchgeführt, mit dem Unterschied, daß keine organische Verbindung als Reduktionsmittel zugegeben wurde.

Die Ergebnisse sind in Tabelle 7 zusammengefaßt, aus der ersichtlich ist, daß weniger als 10% NO_x entfernt wurden.

Tabelle 7

Zeolith*	SiO ₂ /Al ₂ O ₃		Entfernung von Vergleichsbeispi	
		1	2	3
A	5,9	0	0	3
В	12,2	1	7	0
С	14,9	0	0	4
D	40,0	2	5	9

^{*}A: Zeolith vom Y-Typ, B: Ferrierit, C: Mordenit, D: Zeolith vom ZSM-Typ

Patentansprüche

1. Verfahren zur Entfernung von Stickstoffoxiden aus Sauerstoff und Feuchtigkeit enthaltenden Abgasen,

40 16 688 A1 DE

gekennzeichnet durch Inbertanzengbringen des Abgases in Gegenwart von organischen Verbindungen mit hydrierten Zeolith-Katalysatoren oder hydrierten Zeolith-Katalysatoren, die mit mindestens einem Metall, ausgewählt unter Kupfer, Zink, Vanadium, Chrom, Mangan, Eisen, Kobalt, Nickel, Rhodium, Palladium, Platin und Molybdän, imprägniert sind.

2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß als Zeolith-Katalysator ein Zeolith mit einem Siliciumdioxid/Aluminiumoxid-Verhältnis von 5 oder mehr verwendet wird.

3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß ein Zeolith mit einem Siliciumdioxid/Aluminiumoxid-Verhältnis von über 10 verwendet wird.

4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß als Zeolith-Katalysator ein Zeolith des Y- oder L-Typs, ein Offretit-Erionit-Mischkristall-Zeolith, Ferrierit, Mordenit, Clinoptilolit oder ein Zeolith des ZSM-5-Typs verwendet wird.

5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß als organische Verbindungen Kohlenwasserstoffe, Alkohole, Ketone oder Ether verwendet werden.

15

10

20

25

30

35

40

45

50

55

- Leerseite -

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
OTHER.

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.