本次课程提纲: 偶图的匹配

- 匈牙利算法
- 最优匹配算法
- 应用

匈牙利算法

- 输入: 偶图 G = (X, Y)
- 输出: 饱和 *X* 的匹配
- 第 0 步: 若 |X| > |Y|,停止;否则,任取一个匹配 M
- 第 1 步: 若 M 饱和 X , 输出 M , 停止; 否则,取 M 中一个 M 非饱和点 x , 记 $S = \{x\}$, $T = \emptyset$
- 第 2 步: 若 $N(S) \subseteq T$,不存在饱和 X 的匹配,停止;否则,取 $y \in N(S) T$
- 第 3 步: 若 $y \in M$ 饱和的,设 $yz \in M$, $S \leftarrow S \cup \{z\}$, $T \leftarrow T \cup \{y\}$, 转 第 2 步; 否则,找一条 M 可扩路 P(x,y), $M \leftarrow M\Delta E(P)$, 转第 1 步

构造可扩路

• 基于广度或深度优先搜索

• 匈牙利算法复杂性: O(|V|*|E|), $O(n^3)$

最优匹配

- 问题: 设 G = (X, Y) 是边赋权完全偶图, $X = \{x_1, \dots, x_n\}$, $Y = \{y_1, \dots, y_n\}$, $w_{ij} = w(x_i y_j)$, 求一个具有最大权值的完美匹配
- 可行顶点标号
 - 若对任意的 $x \in X$, $y \in Y$, 有 $l(x) + l(y) \ge w(xy)$, 称 $l \neq G$ 的可行顶点标号
- 对于任意 G, 均存在可行顶点标号

$$l(x) = \max_{y \in Y} w(xy)$$
$$l(y) = 0$$

相等子图

• 设 $l \neq G$ 的可行顶点标号,令 $E_l = \{xy \in E(G) | l(x) + l(y) = w(xy) \}$,称 G 的生成子图 $G_l = G[E_l]$ 为 G 对应于 l 的相等子图

最优匹配

定理

设 l 是赋权完全偶图 G 的可行顶点标号,若相等子图 G_l 有完美匹配 M^* ,则 M^* 是 G 的最优匹配

证明

- 设 M^* 是 G_l 的完美匹配: $w(M^*) = \sum_{e \in M^*} w(e) = \sum_{v \in V(G)} l(v)$
- 设 $M \neq G$ 的任一完美匹配: $w(M) = \sum_{e \in M} w(e) \leq \sum_{v \in V(G)} l(v)$
- 故 $w(M^*) \ge w(M)$, 即 M^* 是G的最优匹配

如果找到一种可行顶点标号,对应的相等子图有完美匹配,则求出了G的最优匹配

最优匹配 Kuhn-Munkres 算法

- 第 0 步: 基于任意可行标号 l, 求出相等子图 G_l , 任选 G_l 一个匹配 M
- 第 1 步: 若 M 是完美匹配,算法终止;否则,令 x 是一个 M 非饱和顶点,置 $S = \{x\}$, $T = \emptyset$
- 第2步: 若 $T \subset N_{G_l}(S)$, 转第3步; 否则有 $N_{G_l}(S) = T$, 修改标号l如下:

$$\alpha_l = \min\{l(x) + l(y) - w(xy) | x \in S, y \in Y - T\}$$

$$l(v) \leftarrow \begin{cases} l(v) - \alpha & v \in S \\ l(v) + \alpha & v \in T \end{cases}$$

• 第 3 步: 在 $N_{G_l(S)}$ – T 中选择一个顶点 y, 若 y 是 M 饱和的,记 $yz \in M$, 更新 $S \leftarrow S \cup \{z\}$, $T \leftarrow T \cup \{y\}$, 转第 2 步; 否则,寻找 G_l 中的 M 可扩 (u, y) 路,用其更新 M,转第 1 步

最优匹配 Kuhn-Munkres 算法

$$\mathbf{X}_1$$
 \mathbf{X}_2 \mathbf{X}_3 Equality Graph + Matching
$$\mathbf{S} = \{\mathbf{X}_{1, } \mathbf{X}_2\}$$

$$\mathbf{T} = \{\mathbf{y}_2\}$$

$$N_{G_i}(S) = \{\mathbf{y}\mathbf{2}\}$$

最优匹配 Kuhn-Munkres 算法

- 标号的调整不影响已有匹配
- 每次改变标号都会扩大T,从而扩大匹配
- 完全图存在完美匹配
- 算法复杂度 $O(n^3)$

任务分配匈牙利算法

问题: N 个人分配 N 项任务,每人分配一项,将一项任务分给一个人需支付报酬,如何分配任务,支付的报酬总数最少

- Step 1: Subtract row minima
- Step 2: Subtract column minima
- Step 3: Cover all zeros with a minimum number of lines
 - If n lines are required, stop: an optimal assignment exists among 0s
- Step 4: Create additional zeros
 - Find the smallest element (call it k) not covered by a line in Step 3
 - Subtract k from uncovered elements, add k to elements covered twice.
 - Go to Step 3

任务分配匈牙利算法

 W1 W2	J1 82 77	<i>J2</i> 83 37	<i>J3</i> 69 49	<i>J4</i> 92 92
W3	11	69	5	86
W4	8	9	98	23

Step 1: Subtract row minima

	J1	J2	J3	14	
W1	13	14	0	23	(-69)
W2	40	0	12	55	(-37)
W3	6	64	0	81	(-5)
W4	0	1	90	15	(-8)

Step 2: Subtract column minima

	J1	J2	J3	14
W1	13	14	0	8
W2	40	0	12	40
W3	6	64	0	66
W4	0	1	90	0
				(-15)

Step 3: Cover all zeros with a minimum number of lines

	J1	J2	J3	J4
W1	13	14	0	8
W2	40	0	12	40 x
W3	6	64	0	66
W4	0	1	90	0 x

Step 4: Create additional zeros

	J1	<i>J</i> 2	<i>J3</i>]4
W1	7	8	0	2
W2	40	0	18	40
W3	0	58	0	60
W4	0	1	96	0

Step 3: Cover all zeros with a minimum number of li

	J1	J2	<i>J3</i>	J4	
W1	7	8	0	2	X
W2	40	0	18	40	X
W3	0	58	0	60	X
W4	0	1	96	0	X

The optimal assignment

	J1	J2	J3	34
W1	7	8	0	2
W2	40	0	18	40
W3	0	58	0	60
1/1/4	0	1	96	n

	J1	J2	<i>J3</i>	J4
W1	82	83	69	92
W2	77	37	49	92
W3	11	69	5	86
W4	8	9	98	23

匈牙利算法应用

Konig 定理: 二分图中最大匹配数等于最小点覆盖数

习题

一种数学锁是一个按钮矩阵,某些格子凸起,每次操作可以把某行或某列的格子按下去,如果能用最少次数按下所有格子,锁就打开,求策略。

解答

- 将矩阵转化为二分图, X,Y 中每个节点对应每一行、列
- 按下一行或一列, 就是选择与某个点相连的所有边
- 问题转化为求最小点覆盖数

匈牙利算法应用

习题

有一张 $n \times n$ 的国际象棋盘,其中被删除了一些方格,最多能够放下多少 1×2 的多米诺骨牌

解答

- 将棋盘黑白相间染色
- 构造黑白二分图,每个未删除格子与它上下左右未删除格子相连
- 二分图的最大匹配数,就是能放下最多的多米诺骨牌数

课后练习与思考题

- 列举 Peterson 图所有的完美匹配
- 如何用匈牙利算法求最大匹配