CAB420: Overfitting and Linear Regression

WHAT IS IT? AND WHY DO I CARE?

Overfitting and Regression

- Consider a multi-variate linear regression task
- We can (usually) make the model more accurate on the test set by adding more terms
 - Additional variables
 - Higher order terms

Overfitting and Regression

- On the right we have:
 - A sine wave in green, which has been sampled
 - Samples have been offset by noise
 - We seek to fit a curve (in red) to the sampled data

Overfitting and Regression

- M=9 (9th order polynomial) offers the best fit to the data
 - Hits all the points almost perfectly
- M=3 actually captures the function the best
 - Some error in predictions
 - Overall shape correct however
- Consider, how would M=9 and M=3 perform on a new set of points?
 - Which one would look more correct?

Detecting Overfitting

- We cannot observe overfitting using the training set alone
 - Validation and testing sets are required
- Performance will likely always increase on the training set
 - Need to evaluate performance on other data held out of training
 - Validation data, Testing data
- Often referred to as testing if a model generalises to unseen data

Overfitting in Practice

- See CAB420_Regression_Example_2_Regularised_Regression.ipynb
- Demo Overview
 - Load traffic data from Brisbane which contains average travel times between key points on the road network
 - We'll consider the first 9 data series and time of day
 - First 8 series as predictors, with the hour as a categorical
 - 9th series is the response
 - Apply linear regression to data, increase complexity and observe results

Simple Linear Model

(linear terms with hour of day categorical term)

OLS Regression							
	x_12601261_					0.256	
Model:	OLS		Adj. R-squared:		0.253		
Method:	Least Squares		F-statistic:		73.95		
Date:	Wed, 13 Jan 2021		Prob (F-statistic):		0.00		
Time:		20:03:40		Log-Likelihood:		-45686.	
o. Observations: 6694		AIC:		9.144e+04			
Df Residuals:		6662		BIC:		9.165e+04	
Df Model:		31					
Covariance Type	e:	nonrobust					
	coef	std err	t	P> t	[0.025	0.975]	
const	119.9389	26.334	4.555	0.000	68.316	171.562	
x_10981056_					-0.066		
x_10581059_	0.2443	0.082	2.980	0.003	0.084	0.405	
x_10571056_	2.7346		16.356	0.000	2.407	3.062	
	0.2636		5.492	0.000	0.169	0.358	
	1.3343	0.161	8.268	0.000	1.018	1.651	
x_10151115_					-0.334		
x_11031061_							
x_11351231_	0.7734	0.112	6.891	0.000	0.553	0.993	
1	-50.3136	38.054	-1.322	0.186	-124.912	24.284	
2	33.6517 -41.9974	43.325 27.007	0.777	0.437	-51.279 -94.940	118.583	
4	-70.6742	24.455	-2.890	0.004	-94.940	-22.734	
5	-5.7150		-0.238	0.812	-52.767		
6	128.0683		5.279	0.000	80.510		
7	115.4191	24.745	4.664	0.000	66.912	163.927	
8	52.9131	24.839	2.130	0.033	4.221	101.605	
9	2.7002	24.055	0.112	0.033	-44.475	49.876	
10	-86.9350	24.414	-3.561	0.000	-134.793	-39.077	
11	-94.3841	24.791	-3.807	0.000	-142.982	-45.786	
12	-121.3032	25.006	-4.851	0.000	-170.323	-72.283	

Simple Linear Model

Simple Linear Model

- R-squared quite low
- Lots of data
- Most terms significant
 - 3 of our other predictors have poor p-values
 - Could investigate co-linearity here
 - May also be predictors that are unrelated to the response
 - Hour of day significant
 - Note that if one of the categorical terms is significant, we consider the whole model significant
- Residuals not normally distributed
- Predictions not great
- Higher accuracy on the test set
 - Not overfitting

Simple Linear Model: Is it any good?

- Sort of
 - No overfitting, simple model
 - Some poor terms, but most are meaningful
 - Predictive power is limited, but model seems to capture the main trends
 - End use needs to be kept in mind is the model fit for purpose? How accurate does it need to be?
- Improving the model
 - Investigate higher order terms

I DON'T TRUST LINEAR REGRESSIONS WHEN IT'S HARDER TO GUESS THE DIRECTION OF THE CORRELATION FROM THE SCATTER PLOT THAN TO FIND NEW CONSTELLATIONS ON IT.

Cartoon from XKCD

A More Complex Model

(quartic terms with interactions, and hour of day categorical term)

- ~500 model parameters
 - Too many terms to reasonably consider p-values, etc
 - R-squared of 0.412
 - A big improvement over what we had

A More Complex Model

A More Complex Model

- Improved R-squared (though with room for further improvement)
- Improved accuracy on training set
- Residuals not normally distributed
- Massive errors on the testing set
 - Model is overfitting

Complex Linear Model: Is it any good?

- Not really
 - Unpredictable performance on test data
 - Very high number of parameters
 - Difficult to inspect or tune due to size
 - Likely large amounts of redundancy, though difficult to assess due to model size
- Improving the model
 - Removing terms:
 - Reverting to lower order (i.e. quadratic rather than quartic) would reduce complexity, but may discard useful terms
 - Manual investigation is difficult given model size

CAB420: Regularisation

MAKING MODELS REGULAR?

Bias and Variance

- Bias and Variance are two factors in regression which we try to manipulate in order to find the "best" model.
- The variance of a model is the error from sensitivity to small changes in the training data. High variance can lead to overfitting.
 - Somewhat indicated by the R^2
- The **bias** of a model is the error from erroneous assumptions in the model. High bias can lead to underfitting.
 - Somewhat indicated by the RMSE
- As more terms are added to a model (i.e., it becomes more complex), the coefficients more accurately fit the given data (i.e., bias decreases).
- However, as more terms are added the model will become worse at predicting new data (i.e., variance increases) due to over-fitting

Bias and Variance

Image taken from blog on bias vs variance, found at: https://community.alteryx.com/t5/Data-Science-Blog/Bias-Versus-Variance/ba-p/351862

Regularises

- Reduce the magnitude and/or number of parameters in order to reduce model complexity.
- Reduction in model complexity → reduced variance and increased bias.
- Useful when applied to models with many parameters.
- Regularisation seeks to penalise complex models
 - We have an intuition that a small change in input value to a model should lead to a small change in output value
 - Model complexity often leads to overfitting, reducing parameters (complexity) makes overfitting less likely

Regularisation and Regression

- Regularises are applied by penalising slope terms, β .
- There are two types of regularization we look at in CAB420:
 - L1 regularisation (Lasso regression), and
 - L2 regularisation (ridge regression).
- Both L1 and L2 seek to
 - Penalise big coefficients
 - Favour models with small slopes for individual data points
- Why?
 - A large slope means a small change in the data gives a large change in the estimate
 - Seek to reduce the model's variance, and make estimates more stable

Regularisation and Regression

 \circ With linear regression we aim to find values for eta that minimises

$$\sum_{i=1}^{n} \left(y_i - \sum_{j} x_{ij} \beta_j \right)^2$$

Regularisation applies a penalty term

$$\sum_{i=1}^{n} \left(y_i - \sum_{j} x_{ij} \beta_j \right)^2 + \lambda P$$

where λ is a weight that controls the influence of our penalty

Regularisation and Regression

- Adds extra term(s) to the objective function
 - Terms don't operate over data or errors, but rather the model parameters
 - Regularisation terms are usually weighted
 - We can control how strong the regularisation is
 - How do we select the weight?
- Regularisation can also help when we have more dimensions than samples
 - Though in such situations we need to use an optimisation algorithm to find parameters

CAB420: Ridge Regression

L2 REGULARISATION

Ridge Regression

Linear Regression with L2 regularisation

Add to our loss term the sum of the coefficients squared

$$\sum_{i=1}^{n} \left(y_i - \sum_{j} x_{ij} \beta_j \right)^2 + \lambda \sum_{j=1}^{p} \|\beta_j\|_2$$

- We don't add the intercept
- Very big slopes are penalised heavily
 - Favour smaller slopes for all terms
 - Weight the L2 term by a factor, lambda
 - The ridge term

Regression Formulation: Revision

- Recall that for OLS regression:
 - Sum of squared errors term:

$$SSE(\beta) = (\mathbf{y}'\mathbf{y} - 2\beta'\mathbf{x}'\mathbf{y} + \beta'\mathbf{x}'\mathbf{x}\beta)$$

• Derivative of SSE with respect to β :

$$\nabla SSE(\beta) = 2(\mathbf{x}'\mathbf{x}\beta - \mathbf{x}'\mathbf{y})$$

• Setting to 0 and solving for β gives the optimal vector, $\hat{\beta}$:

$$\hat{\beta} = (\mathbf{x}'\mathbf{x})^{-1}\mathbf{x}'\mathbf{y}$$

Ridge Regression Formulation

We want to minimize

$$(\mathbf{y}'\mathbf{y} - 2\beta'\mathbf{x}'\mathbf{y} + \beta'\mathbf{x}'\mathbf{x}\beta) + \lambda\beta'\beta$$

• Derivative with respect to β :

$$2(\mathbf{x}'\mathbf{x}\boldsymbol{\beta} - \mathbf{x}'\mathbf{y} + \lambda\boldsymbol{\beta})$$

• Setting to 0 and solving for β gives the optimal vector, $\hat{\beta}$:

$$0 = \beta(\mathbf{x}'\mathbf{x} + \lambda I) - \mathbf{x}'\mathbf{y}$$
$$\hat{\beta} = (\mathbf{x}'\mathbf{x} + \lambda I)^{-1}\mathbf{x}'\mathbf{y}$$

• Known as **ridge** regression because the slope penalty term is added along the diagonal of $\mathbf{x}'\mathbf{x}$ like a ridge.

Demo

- See CAB420_Regression_Example_2_Regularised_Regression.ipynb
- Same setup as our overfitting example from before
- Fit to data using Ridge Regression

Using Ridge Regression

• Formula:

$$\sum_{i=1}^{n} \left(y_i - \sum_{j=1}^{n} x_{ij} \beta_j \right)^2 + \lambda \sum_{j=1}^{p} \|\beta_j\|_2$$

- We need to choose λ
- What should λ be?
 - What happens if it's 0?
 - Let's try 1

Ridge Regression: Results

- \circ λ perhaps should not be 1
- Instead, try a range of values
 - 0, 2, 4, 6,, 498, 500

Ridge Regression: Results

- \circ Plotting RMSE as λ changes
- We see a very small change as λ increases
 - \circ Clearly λ needs to be much bigger with the data as it is

An Aside: Standardisation

- Let's visualise our data using a box plot
- We can see that different variables have very different ranges
 - First 100 dimensions only shown

Standardisation – Why?

- For a given dataset, dimensions are usually in different scales
 - i.e. Dimension 1 may range from [0..1], Dimension 2 may range from [100...100000]
 - With a regularisation penalty, Dimension 1 may be penalised much more than Dimension 2 due to its scale
- We seek to scale all dimensions equally, so that they are all considered equally when fitting a model

Standardisation – What?

- For each dimension
 - Get the mean and standard deviation
 - For that dimension, subtract the mean, divide by the standard deviation
- Fnd result:
 - All dimensions have mean 0, standard deviation 1
 - i.e. they are all scaled to the same range
 - Outliers are preserved
 - A point that is 10 standard deviations away in the original set, is still 10 standard deviations away
- Also
 - It usually makes the model easier to visualise

Standardised Data

- All data now has a similar range
 - First 100 dimensions shown
 - Lots of outliers still visible

Ridge Regression with Standardised Data

- RMSE vs λ
 - We see an immediate drop as we increase λ
 - Remember, $\lambda = 0$ is least squared regression
 - Value which minimises the Validation RMSE is our best λ
 - For us, this is 79.5
 - \circ Training RMSE will gradually increase with λ
 - Variance vs Bias

Ridge Trace Plot

- Individual Coefficients vs λ
 - Increases in λ lead to smaller coefficients overall
 - Note the distorted scale when $\lambda = 0$ is inlouded
 - Coefficients gradually decrease and slowly approach 0

Ridge Results

- Final Model, $\lambda = 79.5$
 - Similar performance to original Linear model

Ridge Results

- Final Model, $\lambda = 79.5$
- $R^2 = 0.244$
 - \circ Much lower \mathbb{R}^2 than our higher order linear model, yet better performance on validation data
 - Variance vs Bias
- Similar looking residual plots to previously

CAB420: LASSO Regression

L1 REGULARISATION

LASSO Regression

Linear Regression with L1 regularisation

Add to our loss the sum of absolute values of coefficients

$$\sum_{i=1}^{n} \left(y_i - \sum_{j=1}^{n} x_{ij} \beta_j \right)^2 + \lambda \sum_{j=1}^{p} \|\beta_j\|_1$$

- Again, we don't add the intercept
- Compared to Ridge Regression

$$\sum_{i=1}^{n} \left(y_i - \sum_{j} x_{ij} \beta_j \right)^2 + \lambda \sum_{j=1}^{p} \| \beta_j \|_{2} \text{vs } \sum_{i=1}^{n} \left(y_i - \sum_{j} x_{ij} \beta_j \right)^2 + \lambda \sum_{j=1}^{p} \| \beta_j \|_{1}$$

- Only difference is the type of norm being used
 - L1 (LASSO) vs L2 (Ridge)
- Big coefficients aren't penalised quite as badly
- Coefficients can go to 0
 - We can eliminate poor terms
- L1 norm still controlled by a scaling factor

Lasso Regression Formulation

We want to minimize

$$(\mathbf{y}'\mathbf{y} - 2\beta'\mathbf{x}'\mathbf{y} + \beta'\mathbf{x}'\mathbf{x}\beta) + \lambda\beta$$

• The following is the derivative with respect to β :

$$2x'x\beta - 2x'y + \lambda I$$

• Setting to 0 and solving for β gives the optimal vector, $\hat{\beta}$:

$$\hat{\beta} = (2\mathbf{x}'\mathbf{x})^{-1}(2\mathbf{x}'\mathbf{y} - \lambda I)$$

- Where does the name come from?
 - Acronym: Least Absolute Selection and Shrinkage Operator
- \circ Not completely straight-forward, as the term in the first line should be $\lambda |\beta|$
 - This actually makes it a lot more complex

Demo

- See CAB420_Regression_Example_2_Regularised_Regression.ipynb
- Same setup as our overfitting and ridge regression
- Fit to data using LASSO Regression

Using Lasso Regression

• Formula:

$$\sum_{i=1}^{n} \left(y_i - \sum_{j=1}^{n} x_{ij} \beta_j \right)^2 + \lambda \sum_{j=1}^{p} \|\beta_j\|_{1}$$

- We need to choose λ
- As per Ridge, we'll use a range
 - 0 to 0.5 in steps of 0.01
 - \circ Lasso typically uses a smaller λ than ridge
- We'll use standarised data from the start

Lasso: Selecting Lambda

- Best $\lambda = 0.02$
- Same trend as ridge
 - Training data always increases with λ
 - Validation data decreases to a minimum, then increases

Lasso Trace Plot

- Terms decrease in value as λ increases
 - Terms can go to 0 and be eliminated
 - At the far end of the plot, all terms are 0 (constant model)

Lasso Results

- $^{\circ}$ Final Model, $\lambda=0.02$
 - Similar to Ridge and Linear Model
 - Final model contains 26 terms (all others are 0)

Lasso Results

- Final Model, $\lambda = 0.02$
- $R^2 = 0.315$
 - Between higher order linear model and ridge model
 - Model less accurate than ridge on training data, more accurate than higher order linear model, Variance vs Bias again
 - Similar looking residual plots to previously

ElasticNet Regression

- Bonus Regression Method!
- StatsModels regression implementation also does ElasticNet Regression
 - L1 and L2 terms added to the least squares loss
 - By default the function does pure Lasso
- Does this mean it's twice as good?
 - Not really, though it's not bad either
 - It does mean that we now have another hyper-parameter to tune
 - We need to select the relative weight of the two terms

A Note on Comapring Models

- We're only comparing our data on
 - Training data: which the model is trained on
 - Validation data: which is used to select lambda
- Ideally, we want a third dataset
 - Testing data: totally unseen, used to confirm that our model generalises to unseen data

CAB420: Ridge vs LASSO

WHICH ONE?

Ridge vs Lasso

$$\sum_{i=1}^{n} \left(y_i - \sum_{j=1}^{n} x_{ij} \beta_j \right)^2 + \lambda \sum_{j=1}^{p} \|\beta_j\|_2$$

- We have a two coefficients
 - The "best solution" according to least squares is \hat{eta}
 - \circ The blue area is the constraint region for a given λ
- Ridge uses an L_2 norm
 - Circular constraint region
 - Closest point on the constraint region to $\hat{\beta}$ is our ridge solution

Ridge vs Lasso

$$\sum_{i=1}^{n} \left(y_i - \sum_{j} x_{ij} \beta_j \right)^2 + \lambda \sum_{j=1}^{p} \|\beta_j\|_1$$

- We have a two coefficients
 - The "best solution" according to least squares is \hat{eta}
 - \circ The blue area is the constraint region for a given λ
- \circ Lasso uses an L_1 norm
 - Diamond shaped constraint region
 - Closest point on the constraint region to $\hat{\beta}$ is our ridge solution

Ridge vs Lasso

- Due to the shape of the constraint region
 - Lasso can pull terms to 0
 - Ridge can make terms very small, but not 0

Impact of λ

ANOTHER LOOK AT WHAT IT DOES

A Simple Example

- See CAB420_Regression_Additional_Example_Regularisation_Impact.ipynb
- Predict traffic times again
 - Standardised data
 - 18 predictors
 - Linear, Ridge and Lasso models
 - Training, validation and testing set all taken from different time periods
 - Split in chronological order

Linear Model

- Excellent fit to training data
- Fit gets worse for validation and testing data
- Coefficients vary in value

Ridge Model

- Larger λ leads to
 - Smaller coefficients
 - Flatter prediction curves
 - Coefficents can change sign
- Largest λ is least accurate on training data, most accurate on testing data

Lasso Model

- Larger λ leads to
 - Smaller coefficients
 - Flatter prediction curves
 - Coefficents can change sign
- Coefficients can go to 0
 - Can happen at very small lambda
- Large λ will push all coefficients to

Regularised Regression and Small Datasets

Regression Data Requirements

- Usually, we would like to have more data points than parameters
- If we don't have this, direct solutions to fit a regression function will fail
- However, gradient descent can be used to find a solution
 - Allows us to fit high dimensional models to small datasets
 - Increases the danger of overfitting
- In general, extrapolation with linear regression can be risky

MY HOBBY: EXTRAPOLATING

Cartoon from XKCD

Demo

- See CAB420_Regression_Example_3_Regression_with_Less_Data.ipynb
- Traffic time prediction again, but with very limited data
 - 50 samples total
 - 30 training, 10 validation, 10 testing
 - ~150 variables
- Linear model will overfit
- Lasso and Ridge can be used to get a better fit to the data
- Review this example in your own time
 - Covered in more detail in the interactive session