Paper 1822: Concentration Bounds for Two Timescale Stochastic Approximation with Applications to Reinforcement Learning

Consider the stochastic approximation given by

$$\theta_{n+1} = \theta_n + \alpha_n (0 - q\theta_n), w_{n+1} = w_n + \beta_n (0 - w_n),$$
(1)

with step sizes $\alpha_n = \frac{1}{n}$, say 0 < q < 0.1 and $\theta_n \in \mathbf{R}$, $w_n \in \mathbf{R}$, $\beta_n = \frac{1}{\sqrt{n}}$. We can put (1) into the framework in the paper by setting $h_1 = 0 - 0.1\theta$, $h_2 = 0 - 1$ w, $M_{n+1}^{(i)} = 0$, i = 1, 2. In this case $\theta^* = 0$ and $\lambda(\theta) = 0$. The related ordinary differential equation is then $\dot{\theta}(t) = -q\theta(t)$ whose solution is $\theta(t) = \theta(0)e^{-qt}$ with probability 1. Assume $\theta(0) = \theta_0 = 1$ for the rest of the discussion. For the aforementioned step size $t(n) = \sum_{0 \le k \le n} \frac{1}{k} \approx \log n$ and hence

$$\theta(t) = e^{-qt} \Rightarrow \theta_n \approx e^{-q\log n} = \frac{1}{n^q}$$
 (2)

Thus the eigenvalue shows up in the rate in the exponent in (2). A tighter analysis can be done on the original sequence say for $n > n_0$

$$\theta_n = \Pi_{k=0}^{n-n_0} (1 - \frac{q}{k+n_0}) \theta_{n_0}$$
$$|\theta_n| = \Pi_{k=0}^{n-n_0} (1 - \frac{q}{k+n_0}) |\theta_{n_0}|$$

Now using the fact that for n_0 sufficiently large $e^{-2\frac{q}{k+n_0}} \le (1-\frac{q}{k+n_0}) \le e^{-\frac{q}{k+n_0}}$ we have

$$|\theta_{n+n_0}| \ge |\theta_{n_0}| e^{-2q\sum_{k=0}^{n-n_0} \frac{1}{k+n_0}} \tag{3}$$

$$|\theta_{n+n_0}| \ge |\theta_{n_0}| e^{-2q \log(n-n_0)}$$
 (4)

$$|\theta_{n+n_0}| \ge |\theta_{n_0}| \left(\frac{n_0}{n}\right)^{2q} \tag{5}$$

and the eigenvalue shows up in the form as $\frac{1}{n^{2q}}$.

We now apply Corollary 2 to the stochastic approximation in (1) by setting $\epsilon_2 = \infty$. Now we have

$$Pr\{|\theta_n| > \epsilon_1|G'_{n_0}\} \le C[e^{-n_0c'_1\epsilon_1^2} + e^{-\sqrt{n_0}c'_2\epsilon_1^2/\log(n_0)}]$$

Considering the fact that out of the two exponents on the right hand side of the above equation, the second term is dominant for large n_0 we have

$$Pr\{|\theta_n| > \epsilon_1|G_{n_0}'\} \le C[e^{-n_0c_1'\epsilon_1^2} + e^{-\sqrt{n_0}c_2'\epsilon_1^2/\log(n_0)}] \approx Ce^{-\sqrt{n_0}c_2'\epsilon_1^2/\log(n_0)}$$

Now let $\delta = Ce^{-\sqrt{n_0}c_2'\epsilon_1^2/\log(n_0)}$.

$$Pr\left\{ \left| \theta_n \right| > \sqrt{\frac{\log(n_0)\log(\frac{C}{\delta})}{c_2'\sqrt{n_0}}} \right| G_{n_0}' \right\} \le \delta. \tag{6}$$

Paper 1822

Since $n \ge n_1 \ge n_0$, we have equation (6) starts holding for all $n \ge n_1 \ge n_0$ with high probability (i.e., $1 - \delta$). So for sufficiently large $n \ge n_0$, θ_n reaches 0 at rate roughly $\frac{1}{n_0^{\frac{1}{4}}}$. However, from (2) and (3) we expect a rate $\frac{1}{n^q}$ where q is the eigenvalue, which can be arbitrarily small.

Issue: c'_1 and c'_2 (in Corollary 2 of the paper) might be dependent on q_1 and q_2 which are actually the minimum eigenvalues as mentioned in lines 489 - 490 above equation (28) of the submission. However, c'_1 and c'_2 are not showing up in the exponent of n_0 in (6).