Математический анализ

Храбров Александр Игоревич

25 октября 2022 г.

Содержание

1.	Teor	1еория меры 1 1.1 Система множеств 2 1.2 Объем и мера 6 1.3 Продолжение мер 9 1.4 Мера Лебега 13 Интеграл Лебега 19
	1.1	Система множеств
	1.2	Объем и мера
	1.3	Продолжение мер
	1.4	Мера Лебеra
2.	Инт	еграл Лебега
	2.1	Измеримые функции
	2.2	Последовательности измеримых функций
	2.3	Определение интеграла
	2.4	Суммируемые функции
	2.5	Предельный переход под знаком интеграла
	2.6	Произредение мер

1. Теория меры

1.1. Система множеств

Полезные обозначения: $A \sqcup B$ - объединение A и B, такие что $A \cap B = \emptyset$

Определение 1.1. Набор мн-в дизъюнктный, если мн-ва попарно не пересекаются: $\bigsqcup_{\alpha \in I} A_{\alpha}$

Определение 1.2. E – мн-во; если $E = \bigsqcup_{\alpha \in I} E_{\alpha}$ – разбиение мн-ва E.

Напоминание:

$$X \setminus \bigcup_{\alpha \in I} A_{\alpha} = \bigcap X \setminus A_{\alpha}$$

$$X \setminus \bigcap_{\alpha \in I} A_{\alpha} = \bigcup X \setminus A_{\alpha}$$

Определение 1.3. \mathcal{A} – система подмн-в X: $A \subset 2^X$

- 1. (δ_0) : если $\forall A, B \in \mathcal{A} \implies A \cap B \in \mathcal{A}$
- 2. (σ_0) : если $\forall A, B \in \mathcal{A} \implies A \cup B \in \mathcal{A}$
- 3. (δ) : если $A_n \in \mathcal{A}, \ \forall n \implies \bigcap_{n=1}^{\infty} A_n \in \mathcal{A}$
- 4. (σ): если $A_n \in \mathcal{A}, \ \forall n \implies \bigcup_{n=1}^{\infty} A_n \in \mathcal{A}$

Определение 1.4. \mathcal{A} – симметрическая система мн-в, если $\forall A \in \mathcal{A} \implies X \setminus A \in \mathcal{A}$.

Утверждение 1.1. Если \mathcal{A} – симм., то $(\delta_0) \Leftrightarrow (\sigma_0)$ и $(\delta) \Leftrightarrow (\sigma)$.

Доказательство.
$$A_{\alpha \in I} \mathcal{A} \Leftrightarrow X \setminus A_{\alpha} \in \mathcal{A} \implies \bigcup_{\alpha \in I} A_{\alpha} = \bigcap_{\alpha \in I} X \setminus A_{\alpha} \in \mathcal{A}$$

Определение 1.5. \mathcal{A} – алгебра мн-в, если \mathcal{A} – симметр., $\emptyset \in \mathcal{A}$ и $\forall A, B \in \mathcal{A} : A \cup B \in \mathcal{A}$ (по утв. 1.1 $(\delta_0) \Leftrightarrow (\sigma_0)$; смотри опр. алгебры).

Свойства. алгебры мн-в:

- 1. $\varnothing, X \in \mathcal{A}$
- 2. Если $A_1, \ldots, A_n \in \mathcal{A}$, то $\bigcup_{k=1}^n A_k \in \mathcal{A} \wedge \bigcap_{k=1}^n A_k \in \mathcal{A}$
- 3. Если $A,B\in\mathcal{A},$ то $A\cap(X\setminus B)=A\setminus B\in\mathcal{A}$

Определение 1.6. \mathcal{A} - σ -алгебра мн-в, если \mathcal{A} - симм., $\emptyset \in \mathcal{A}$ и свойство (σ) выполнено (т.е. есть замкнутость по объединению любого числа множетсв; в силу симметричности по утв. 1.1 получаем (σ) \Leftrightarrow (δ)).

Замечание. σ -алгебра \Longrightarrow алгебра.

Пример. 1. 2^X - σ -алгебра.

- 2. $X = \mathbb{R}^2$, \mathcal{A} всевозможные огр. подмн-ва. \mathbb{R}^2 и их дополнения. (\mathcal{A} алгебра, но не σ -алгебра). **Rem**: огр. множество в метрич. пр-ве это множетсво ограниченного диаметра (d(x, y) := ||x y||), т.е. $\sup\{d(x, y) | x, y \in X\}$ ограничен.
- 3. \mathcal{A} алгебра (σ -алгебра) подмн-в X и $Y \subset X$. $\mathcal{A}_Y := \{A \cap Y : A \in \mathcal{A}\}$ индуцированная алгебра (σ -алгебра).

- 4. Пусть \mathcal{A}_{α} алгебры (σ -алгебры), тогда $\bigcap_{\alpha \in I} \mathcal{A}_{\alpha}$ алгебра (σ -алгебра).
- 5. $A, B \subset X$ ниже перечислено, что есть в алгебре, содержащей A, B: $\varnothing, X, A, B, A \cup B, A \cap B, A \setminus B, B \setminus A, X \setminus A, X \setminus B, X \setminus (A \cup B), X \setminus (A \cap B), A \triangle B, X \setminus (A \triangle B), X \setminus (A \setminus B), X \setminus (B \setminus A).$

Теорема 1.2. Пусть ϵ – семейство подмн-в в X, тогда существует наименьшая по включению σ -алгебра (алгебра) \mathcal{A} , такая что $\epsilon \subset \mathcal{A}$.

Доказательство. \mathcal{A}_{α} – всевозможные σ -алгебры $\supset \epsilon$. Такие есть, так как 2^X подходит.

 $\mathcal{A}:=\bigcap_{\alpha\in I}\mathcal{A}_{\alpha}\supset\epsilon$. Теперь проверим, что \mathcal{A} – наим. по вкл. $\mathcal{A}\subset A_{\alpha}\ \forall \alpha\in I$.

Определение 1.7. 1. Такая σ -алгебра – борелевская оболочка ϵ – ($\mathcal{B}(\epsilon)$).

2. $X = \mathbb{R}^n$; такая σ -алгебра, натянутая на все открытые мн-ва – борелевская σ -алгебра (\mathcal{B}^n) .

Замечание. $\mathcal{B}^n \neq 2^{\mathbb{R}^n}$ больше континуального

Определение 1.8. R – кольцо, если $\forall A, B \in R \implies A \cup B, A \cap B, A \setminus B \in R$.

Замечание. Кольцо $+(X \in R) \implies$ алгебра.

Определение 1.9. *P* – полукольцо, если

- 1. $\varnothing \in P$
- $2. \ \forall A, B \in P \implies A \cap B \in P$
- 3. $\forall A, B \in P \implies \exists Q_1, Q_2, \dots, Q_n \in P$, такие что $A \setminus B = \bigsqcup_{k=1}^n Q_k$.

Пример. $X = \mathbb{R}, P = \{(a, b] : a, b \in X\}$ – полукольцо.

Clorato 2;

$$\frac{A \cap 8}{(1 - 1)^{3}} \Rightarrow A \cap B \in S$$

$$(3 - 1)^{3} = 10$$

Closoth 3:

Лемма.
$$\bigcup_{n=1}^{N} A_n = \bigsqcup_{n=1}^{N} A_n \setminus \left(\bigcup_{k=1}^{n-1} A_k\right).$$

Доказательство. \supset : Дизъюнктивность $B_n \subset A_n$ и при m > n $B_m \cap A_n = \emptyset \implies B_n \cap B_m = \emptyset$. \subset : Пусть $x \in \bigcup_{n=1}^N A_n$. Возьмем наим. m, такой что $x \in A_m \implies x \in B_m \implies x \in \bigcup_{n=1}^N B_n$. \square

Теорема 1.3. $P, P_1, P_2, \dots \in \mathcal{P}$. Тогда

1.
$$P \setminus \bigcup_{k=1}^n P_k = \bigcup_{j=1}^m Q_j$$
, где $Q_j \in \mathcal{P}$ – полукольцо.

2.
$$\bigcup_{k=1}^{n} P_k = \bigcup_{k=1}^{n} \bigcup_{j=1}^{m_k} Q_{kj}$$
, где $Q_{kj} \in \mathcal{P}$ и $Q_{kj} \subset P_k$.

Доказательство. 1. индукция по n. База – опр. полукольца. Переход $(n \to n+1)$:

$$P \setminus \bigcup_{k=1}^{n+1} P_k = (P \setminus \bigcup_{k=1}^n P_k) \setminus P_{k+1} = \bigsqcup_{j=1}^m \left(\underbrace{Q_j \setminus P_{n+1}}_{\bigcup_{i=1}^{l_j} Q_{ji}} \right)$$

2.
$$\bigcup_{k=1}^{n} P_k = \bigsqcup_{k=1}^{n} \left(\underbrace{P_k \setminus \bigcup_{j=1}^{k-1} P_j}_{Q_{kj}} \right)$$

Замечание. В (2) можно писать $n=\infty$.

Определение 1.10. \mathcal{P} – полукольцо подмн-ва X.

 \mathcal{Q} — полукольцо подмн-ва Y.

 $\mathcal{P} \times \mathcal{Q} := \{P \times Q : P \in \mathcal{P}, Q \in \mathcal{Q}\}$ – декартово произведение полуколец.

Теорема 1.4. Декартово произведение полуколец – полукольцо.

Доказательство.

$$(P\times Q)\cap (P'\times Q')=(P\cap P')\times (Q\cap Q')$$

$$(P \times Q) \setminus (P' \times Q') = (P \setminus P') \times Q \sqcup (P \cap P') \times (Q \setminus Q')$$

Замечание. Остальные структуры не сохр. при декартовом произведении: $2^X \times 2^Y$ — полукольцо.

Определение 1.11. Замкнутый параллелепипед $a,b \in \mathbb{R}^m$.

$$[a, b] = [a_1, b_1] \times [a_2, b_2] \times \cdots \times [a_m, b_m]$$

Открытый параллелепипед:

$$(a,b) = (a_1,b_1) \times (a_2,b_2) \times \cdots \times (a_m,b_m)$$

Ячейка:

$$(a,b] = (a_1,b_1] \times (a_2,b_2] \times \cdots \times (a_m,b_m]$$

Теорема 1.5. Непустая ячейка – пересечение убыв. посл. открытых паралл. / объединение возраст. послед. замкн.

Доказательство. $P_n := (a_1, b_1 + \frac{1}{n}) \times \cdots \times (a_m, b_m + \frac{1}{n})$

$$P_n \supset P_{n+1}$$
 и $\bigcap_{n=1}^{\infty} P_n = (a,b]$

$$Q_n := \left[a_1 + \frac{1}{n}, b_1\right] \times \cdots \times \left[a_m + \frac{1}{n}, b_m\right]$$

$$Q_n \subset Q_{n+1}$$
 и $\bigcup_{n=1}^{\infty} Q_n = (a,b]$

Обозначения: \mathcal{P}^m – сем-во ячеек из \mathbb{R}^m .

 $\mathcal{P}^m_{\mathbb{Q}}$ – сем-во ячеек из \mathbb{R}^m с рациональными координатами вершин.

Теорема 1.6. $\mathcal{P}^m, \mathcal{P}^m_{\mathbb{Q}}$ – полукольца.

Доказательство. $\mathcal{P}^m = \mathcal{P}^{m-1} \times \mathcal{P}^1$

$$\mathcal{P}^m_{\mathbb{Q}} = \mathcal{P}^{m-1}_{\mathbb{Q}} imes \mathcal{P}^1_{\mathbb{Q}}$$

Теорема 1.7. $G \neq \emptyset$ – открытое множество в \mathbb{R}^m . Тогда его можно представить как не более чем счетное дизъюнктивное объелинение ячеек, замыкание каждой из которых содержится в G (можно считать, что ячейки с рациональными координатными вершинами).

Доказательство. R_x – ячейка, $Cl(R_x)$ $\subset G$, $x \in R_x$, получаем, что $G = \bigcup_{x \in G} R_x$.

Выкинем повторы: $G = \bigcup_{n=1}^{\infty} R_{x_n} = \bigsqcup_{n=1}^{\infty} \bigsqcup_{j=1}^{m_n} Q_{nj}$

Следствие. $\mathcal{B}(\mathcal{P}^m_{\mathbb{Q}}) = \mathcal{B}^m$.

Доказательство. 1. $\mathcal{P}^m\supset\mathcal{P}^m_{\mathbb{Q}}\implies\mathcal{B}(\mathcal{P}^m)\supset\mathcal{B}(\mathcal{P}^m_{\mathbb{Q}})$

$$(a,b] \in \mathcal{B}^m \implies \mathcal{P}^m \subset \mathcal{B}^m \implies \mathcal{B}(\mathcal{P}^m) \subset \mathcal{B}^m$$
 G – открытое $\implies G \in \mathcal{B}(\mathcal{P}^m_{\mathbb{Q}}) \implies \mathcal{B}(\mathcal{P}^m_{\mathbb{Q}}) \supset \mathcal{B}^m$

1.2. Объем и мера

Определение 1.12. \mathcal{P} – полукольцо. $\mu:\mathcal{P}\to [0,+\infty]$. μ – объем, если

- 1. $\mu(\emptyset) = 0$
- 2. Если $P_1, P_2, \dots, P_n \in \mathcal{P}$ и $\bigsqcup_{k=1}^n P_k \in \mathcal{P}$, то $\mu(\bigsqcup_{k=1}^n P_k) = \sum_{k=1}^n \mu P_k$

Определение 1.13. μ – мера, если

- 1. $\mu(\emptyset) = 0$
- 2. Если $P_1, P_2, \dots \in \mathcal{P}$ и $\bigsqcup_{k=1}^{\infty} P_k \in \mathcal{P}$, то μ $\left(\bigsqcup_{k=1}^{\infty} P_k\right) = \sum_{k=1}^{\infty} \mu P_k$

Упражнение. μ – мера. Если $\mu \not\equiv +\infty$, то условия $\mu\varnothing = 0$ выполнено автоматически.

Пример. 1. \mathcal{P}^1 , $\mu(a,b] := b - a$ – длина (упр. доказать, что объем и мера).

- 2. $g: \mathbb{R} \to \mathbb{R}$ нестрого монотонная
 - (a) $\mu_g(a,b] := g(b) g(a)$ (упр. доказать, что объем).
- 3. \mathcal{P}^m (m-мерные ячейки), $\mu(a,b]:=(b_1-a_1)(b_2-a_2)\dots(b_m-a_m),\ a:=(a_1,\ ...,\ a_m),\ b:=(b_1,\ ...,\ b_m)$ классический объем.
- 4. $\mathcal{P} = 2^X$, $x_0 \in X$, $a \ge 0$

$$\mu A := \begin{cases} a, & if \ x_0 \in A \\ 0, & otherwise \end{cases}$$
 (1)

 μ - mepa.

5. P – огр. мн-ва и их дополнения.

$$\mu A := \begin{cases} 1, & \text{if } x_0 \in A \\ 0, & \text{otherwise} \end{cases}$$
 (2)

 μ - объем, но не мера.

Теорема 1.8. μ - объем на полукольце \mathcal{P}

- 1. Монотонность: $\mathcal{P} \ni P \subset \tilde{P} \in \mathcal{P} \implies \mu P \leq \mu \tilde{P}$
- 2. (a) Усиленная монотонность: $P_1, P_2, \dots P_n, P \in \mathcal{P}$. $\bigsqcup_{k=1}^n P_k \subset P \implies \sum_{k=1}^n \mu P_k \leq \mu P$
 - (b) Пункт (a), но $n = \infty$

3. Полуаддитивность: $P, P_1, P_2, \dots P_n \in \mathcal{P}$ и $P \subset \bigcup_{k=1}^n P_k$, тогда $\mu P \leq \sum_{k=1}^n \mu P_k$

Доказательство. 1. Очев типо.

2. (a)
$$P \setminus \bigsqcup_{k=1}^{n} \mu P_k = \bigsqcup_{j=1}^{m} Q_j \implies P = \bigsqcup_{k=1}^{n} P_k \sqcup \bigsqcup_{j=1}^{m} Q_j \implies \mu P = \sum_{k=1}^{n} \mu P_k + \sum_{j=1}^{m} \mu Q_j \geq \sum_{k=1}^{n} \mu P_k$$

(b)
$$\bigsqcup_{k=1}^{\infty} P_k \subset P \implies \bigsqcup_{k=1}^{n} P_k \subset P \implies \sum_{k=1}^{n} \mu P_k \to \sum_{k=1}^{\infty} \mu P_k \leq \mu P$$

3.
$$P_k' := P \cap P_k \in \mathcal{P} \ (\mathcal{P} \text{ - полукольцо}), \quad P = \bigcup_{k=1}^n P_k' = \bigsqcup_{k=1}^n \bigsqcup_{j=1}^{m_k} Q_{kj} \implies \sum_{k=1}^n Q_{kj} \in \mathcal{P}_k'$$

$$\implies \mu P = \sum_{k=1}^{n} \sum_{j=1}^{m_k} \mu Q_{kj} \leq \sum_{k=1}^{n} \mu P_k$$

$$\leq \mu P_k' \leq \mu P_k \text{ (CBOЙCTBO 2(a))}$$

Замечание. 1. Если \mathcal{P} – кольцо и $A, B \ (B \subset A) \in \mathcal{P}$, то $A \setminus B \in \mathcal{P}$

$$\mu(A \setminus B) + \mu B = \mu A$$

Если
$$\mu B \neq +\infty$$
, то $\mu(A \setminus B) = \mu A - \mu B$

Теорема 1.9. \mathcal{P} – полукольцо подмн-в X, μ – объем на \mathcal{P}

 $\mathcal Q$ – полукольцо подмн-в $Y,\, \nu$ – объем на $\mathcal Q$

$$\lambda(P \times Q) := \mu P \cdot \nu Q$$
, где $0 \cdot +\infty = +\infty \cdot 0 = 0$

Тогда λ – объем на $P \times Q$.

Следствие. Классический объем на ячейках – действительно объем.

Доказательство. Простой случай. $P = \bigsqcup_{k=1}^n P_k, Q = \bigsqcup_{j=1}^m Q_j,$ тогда:

$$P \times Q = \bigsqcup_{k=1}^{n} \bigsqcup_{j=1}^{m} P_k \times Q_j$$
, докажем, что
$$\underbrace{\lambda(P \times Q)}_{\sum_{k=1}^{n} \mu P_k \cdot \sum_{j=1}^{m} \nu Q_j = \mu P \cdot \nu Q} = \sum_{k=1}^{n} \sum_{j=1}^{m} \underbrace{\lambda(P_k \times Q_j)}_{\mu P_k \cdot \nu Q_j}$$

Общий случай.

$$P \times Q = \bigsqcup_{k=1}^{n} P_k \times Q_k$$

$$P = \bigcup_{k=1}^{n} P_k = \bigsqcup_{k=1}^{N} P'_k$$

$$Q = \bigcup_{j=1}^{m} Q_j = \bigsqcup_{j=1}^{M} Q'_j$$

Пример. 1. Классический объем на ячейках λ_m – мера

2. $g: \mathbb{R} \to \mathbb{R}$ нестрого монотонная возрастающая и непрерывна слева во всех точках, тогда $\nu_q(a,b] := g(b) - g(a)$ – мера.

(Rem: $\lim_{x\to a^-} f(x) = f(a)$ – непрерывность слева).

- 3. Считающаяся мера: $\mu A := \# A$ кол-во элементов.
- 4. $T = \{t_1, t_2, \dots\}$ не более чем счетное множетсво, $w_1, w_2, \dots \ge 0$, $\mu A := \sum_{k: t_k \in A} w_k \to \mu$ мера.

Доказательство. 4. $A = \bigsqcup_{n=1}^{\infty} A_n \implies \mu A = \sum_{n=1}^{\infty} \mu A_n$

Обозначения:

- 1. $\sum_{n=1}^{N} \sum_{k: t_k \in A_n} w_k (*)$.
- 2. $\sum_{k: t_k \in A} w_k (**).$
- 3. $\sum_{n=1}^{\infty} \sum_{k: t_k \in A_n} w_k \ (***).$
- 1. $\mu A = \sum_{k: \ t_k \in A} w_k \ (**) \ge \sum_{n=1}^N \sum_{k: \ t_k \in A_n} w_k \ (*) \text{т.к.} \ A_i \cap A_j = \varnothing \ (\forall i, \ j: \ i \ne j),$ то каждое слагаемое w_k не более 1 раза попадет в (*) и $A = \bigsqcup_{n=1}^\infty A_n$.
- 2. $\sum_{n=1}^{\infty} \mu A_n = \sum_{n=1}^{\infty} \sum_{k: t_k \in A_n} w_k \ (***) \ge \sum_{k: t_k \in A}$ нер-во верно, так как мы можем к каждому w_k из (**) найти этот же w_k в (***).

Итого имеем равенство:

$$(**) = (***): \sum_{k: \ t_k \in A} w_k = \sum_{n=1}^{\infty} \sum_{k: \ t_k \in A_n} w_k \implies \mu A = \sum_{n=1}^{\infty} \mu A_n, \ \text{чтд.}$$

(От автора: если у кого-то лучше расписано данное док-во, сделайте, пожалуйста, PR).

Теорема 1.10. (О счетной аддитивности меры).

 μ – объем на полукольце \mathcal{P} . Тогда μ -мера \Leftrightarrow если $P \subset \bigcup_{n=1}^{\infty} P_n \ P, P_n \in \mathcal{P}$, то $\mu \cdot P \leq \sum_{n=1}^{\infty} \mu \cdot P_n$ (счетная полуаддитивность).

Доказательство. " \Leftarrow ": Пусть $P = \bigsqcup_{n=1}^{\infty} P_n$, тогда нажо д-ть, что $\mu P = \sum_{n=1}^{\infty} \mu P_n$: для " \leq " – счетная полуаддитивность, для " \geq " – усиленная монот. объема.

"⇒":
$$P'_n:=P\cap P_n\implies P=\bigcup_{n=1}^\infty P'_n\implies P=\bigcup_{n=1}^\infty\bigcup_{k=1}^\infty Q_{nk},$$
 где $Q_{nk}\subset P'_n\implies \mu P=\sum_{n=1}^\infty\sum_{k=1}^\infty\mu Q_{nk}$ – усиленная монот. объема. $\bigcup_{k=1}^{m_k}Q_{nk}\subset P'_n\subset P_n.$

Следствие. Если μ – мера на σ -алгебре, то счетное объединение мн-в ненулевой меры – мн-во нулевой меры.

Доказательство.
$$\mu A_n = 0 \implies \mu\left(\bigcup_{n=1}^{\infty}\right) \le \sum_{n=1}^{\infty} \mu A_n = 0.$$

Теорема 1.11. (О непрерывности меры снизу).

 μ – объем на σ -алгебре \mathcal{A} . Тогда μ – мера \Leftrightarrow если $\mathcal{A} \ni A_n \subset A_{n+1}$, то $\mu\left(\bigcup_{n=1}^{\infty} A_n\right) = \lim_{n \to \infty} \mu A_n$ – непр. меры снизу.

Доказательство. " \Rightarrow ": $A \ni B_n := A_n \setminus A_{n-1}, \ A_0 = \emptyset$.

$$B_n$$
 – дизъюнктны: $\bigsqcup_{n=1}^{\infty} B_n = \bigcup_{n=1}^{\infty} A_n$.

$$\mu\left(\bigcup A_n\right) = \mu \bigsqcup B_n = \sum_{n=1}^{\infty} \mu B_n = \lim_{n \to \infty} \sum_{k=1}^n \mu B_k = \lim \mu A_n.$$

"
$$\Leftarrow$$
": Пусть $C = \bigsqcup_{n=1}^{\infty} C_n$, надо д-ть, что $\mu C = \sum_{n=1}^{\infty} \mu C_n$.

$$A_n := \bigsqcup_{k=1}^n C_k, \ A_n \subset A_{n+1}, \ \bigcup_{n=1}^\infty A_n = \bigsqcup_{n=1}^\infty C_n$$

$$\underbrace{\mu\left(\bigcup_{n=1}^{\infty} A_n\right)}_{=\mu(|\square_{n-1}^{\infty} C_n)} = \lim \mu A_n = \lim \mu\left(\bigcup_{k=1}^{n} C_k\right) = \lim \sum_{k=1}^{n} \mu C_k = \sum_{n=1}^{\infty} \mu C_n \qquad \Box$$

Теорема 1.12. (О непрерывности меры сверху).

 μ – объем на σ -алгебре \mathcal{A} и $\mu X < +\infty$.

Тогда равносильны:

- 1. μ мера
- 2. если $A_n \supset A_{n+1}$, то $\mu\left(\bigcap_{n=1}^{\infty} A_n\right) = \lim \mu A_n$
- 3. если $A_n \supset A_{n+1}$ и $\bigcap_{n=1}^{\infty} A_n = \emptyset$, то $\lim \mu A_n = 0$.

Доказательство. (1) \Longrightarrow (2): $A_n \supset A_{n+1} \Longrightarrow B_n := X \setminus A_n \subset X \setminus A_{n+1} =: B_{n+1}$. $\bigcup_{n=1}^{\infty} B_n = X \setminus \bigcap_{n=1}^{\infty} A_n$.

$$\implies \underbrace{\mu\left(\bigcup_{n=1}^{\infty} B_n\right)}_{\mu(X\setminus\bigcap_{n=1}^{\infty} A_n)} = \lim \mu B_n = \lim \mu(X\setminus A_n) = \lim(\mu X - \mu A_n)$$

(3) \Longrightarrow (1): $C = \bigsqcup_{n=1}^{\infty} C_n$, надо д-ть, что $\mu C = \sum_{n=1}^{\infty} \mu C_n$.

$$A_n:=\bigsqcup_{k=n+1}^\infty C_k,\ A_n\supset A_{n+1}$$
 и $\bigcap_{n=1}^\infty A_n=\varnothing,$ тогда $\lim\mu A_n=0.$

$$C = \bigsqcup_{k=1}^{n} C_k \sqcup A_n \implies \mu C = \sum_{k=1}^{n} \mu C_k + \mu A_n.$$

Следствие. Если μ – мера, $A_n \supset A_{n+1}$ и существует m, такое что $\mu A_m < +\infty$, тогда $\mu(\bigcap_{n=1}^{\infty} A_n) = \lim_{n \to \infty} \mu A_n$.

Доказательство. Просто берем $X := A_m$ и пользуемся теоремой о непрерывности меры сверху.

Упражнение. Придумать объем, не являющийся мерой, обладающей св-вом из следствия.

1.3. Продолжение мер

 ${\it Onpedenetue}\,$ 1.14. $\, \nu: 2^X o [0; +\infty] \,$ – субмера, если

- 1. $\nu\varnothing=0$
- 2. монотонность: если $A \subset B$, $\nu A \leq \nu B$
- 3. счетная полуаддитивность: если $A \subset \bigcup_{n=1}^{\infty} A_n$, то $\nu A \leq \sum_{n=1}^{\infty} \nu A_n$

Замечание. 1. счетная полуаддитивность ⇒ конечная.

2. монотонность (следует из счетной полуаддитивности) $A \subset B, n = 1$.

Определение 1.15. μ – полная мера на σ -алгебре \mathcal{A} , если $A \subset B \in \mathcal{A}$ и $\mu B = 0 \implies A \in \mathcal{A}$.

Замечание. это означает, что $\mu A = 0$.

Определение 1.16. ν – субмера, назовем $E\subset X$ ν -измеримым, если $\forall A\subset X$ $\nu A=\nu(A\cap E)+\nu(A\setminus E)$

Замечание. Достаточен знак ">" (следует из счетной полуаддитивности).

Теорема 1.13. Каратеодори.

Пусть ν — субмера. Тогда все ν -измеримые мн-ва образуют σ -алгебру и сужение ν на эту σ -алгебру — это полная мера.

Доказательство. Обозначим через $A \nu$ -измеримые мн-ва.

1. Если
$$E=0$$
, то $E\in\mathcal{A}$.

$$\forall A \subset X, \ \nu A \underbrace{\geq}_{?} \nu(A \cap E) + \nu(A \setminus E)$$

$$A\cap E\subset E,\ \nu(A\cap E)\leq \nu E=0\implies \nu(A\cap E)=0,$$
 тогда доказали вопросик сверху.

2. A – симметричное семейство мн-в.

$$E \in \mathcal{A} \implies X \setminus E \in \mathcal{A}$$

$$A \cap E = A \setminus (X \setminus X)$$

$$A \setminus E = A \cap (X \setminus E)$$

3. Если E и $F \in \mathcal{A}$, то $E \cup F \in \mathcal{A}$

$$\nu A = \nu(A \cap E) + \nu(A \setminus E) = \underbrace{\nu(A \cap E) + \nu((A \setminus E) \cap F)}_{\geq \nu(A \cap (E \cup F))} + \underbrace{\nu((A \setminus E) \setminus F)}_{\nu(A \setminus (E \cup F))} \geq \nu(A \cap (E \cup F)) + \underbrace{\nu(A \cap (E \cup F))}_{\nu(A \setminus (E \cup F))}$$

4. A – алгебра.

5.
$$E = \bigsqcup_{n=1}^{\infty} E_n$$
, где $E_n \in \mathcal{A} \underset{?}{\underbrace{\Longrightarrow}} E \in \mathcal{A}$.

$$\nu A = \nu(A \cap \bigsqcup_{k=1}^{n} E_k) + \nu(A \setminus \bigsqcup_{k=1}^{n} E_k) \ge \underbrace{\nu(A \cap \bigsqcup_{k=1}^{n} E_k)}_{\nu(A \cap E_n) + \nu(A \cap \bigsqcup_{k=1}^{n-1} E_k)} + \nu(A \setminus E) \Longrightarrow$$

$$\implies \nu A \ge \sum_{\substack{k=1 \ \geq \nu(\bigcup_{k=1}^{\infty} (A \cap E_k)) = \nu(A \cap E)}}^{\infty} + \nu(A \setminus E) \ge \nu(A \cap E) + \nu(A \setminus E).$$

- 6. Если $E_n \in \mathcal{A}$ и $E = \bigcup_{n=1}^{\infty} E_n$, то $E \in \mathcal{A}$.
- 7. $\mathcal{A} \sigma$ -алгебра.
- 8. ν мера на A.

$$E = \bigsqcup_{n=1}^{\infty} E_n \underset{2}{\Longrightarrow} \nu E = \sum_{n=1}^{\infty} \nu E_n.$$

Докажем, что $\nu E \ge \sum_{k=1}^n \nu E_k$ (т. к. \le уже есть из определения субмеры). Знаем, что $\nu E \ge \nu(\bigsqcup_{k=1}^n E_k) = \sum_{k=1}^n \nu E_k$

Определение 1.17. μ – мера на полукольце \mathcal{P} , $A \subset X$.

$$\mu^* A := \inf \left\{ \sum_{k=1}^{\infty} \mu P_k : P_k \in \mathcal{P} \land A \subset \bigcup_{k=1}^{\infty} P_k \right\}$$

если покрытия нет, то $+\infty$.

внешняя мера, порожд. μ.

Замечание. 1. Можно считать, что P_k – дизъюнктны

$$A \subset \bigcup_{n=1}^{\infty} P_n = \bigsqcup_{n=1}^{\infty} \bigsqcup_{k=1}^{m_k} Q_{nk}, \ \sum_{n=1}^{\infty} \sum_{k=1}^{n=m_k} \mu Q_{nk} \le \sum_{n=1}^{\infty} \mu P_n$$

2. Если μ задана на σ -алгебре \mathcal{A} , то $\mu^*A = \inf \{ \mu B : B \in \mathcal{A} \land A \subset B \}$

Теорема 1.14. Пусть μ – мера на полукольце \mathcal{P} . Тогда μ^* – субмера, совпадающая с мерой μ на полукольце \mathcal{P} .

Доказательство. 1. $A \in \mathcal{P}$, хотим доказать, что $\mu A = \mu^* A$.

"≥": очевидно, так как множество покрывает само себя.
$$\mu^*A = \inf \{ \sum_{k=1}^\infty \mu P_k : \bigcup_{k=1}^\infty P_k \supset A \}$$
 "≤": $A \subset \bigcup_{k=1}^\infty P_k$ $\Longrightarrow \mu A \leq \inf = \mu^*A$

2. μ^* – субмера, т.е. нужна счетная полуаддитивность.

$$A \subset \bigcup_{n=1}^{\infty} A_n \underset{?}{\underbrace{\Longrightarrow}} \mu^* A \le \sum_{n=1}^{\infty} \mu^* A + \epsilon$$

$$\mu^*A_n=\inf$$
 ..., берем покрытие $A_n\subset\bigcup_{k=1}^\infty P_{nk}$ т.ч. $\sum_{k=1}^\infty \mu P_{nk}<\mu^*A_n+\frac{\epsilon}{2^n}$ $\mu^*A\leq\sum_{n=1}^\infty\sum_{k=1}^\infty \mu P_{nk}<\sum_{n=1}^\infty \mu^*A_n+\epsilon$ и $A\subset\bigcup_{n=1}^\infty A_n\subset\bigcup_{n=1}^\infty\bigcup_{k=1}^\infty P_{nk}$ – устремляем ϵ к нулю.

Определение **1.18.** Стандартное продолжение меры – конструкция, полученная следующими действиями:

- 1. Берем меру μ_0 на полукольце \mathcal{P} .
- 2. Берем μ_0^* внешняя мера.
- 3. Сужаем полученную внешнюю меру на множество всех μ_0^* -измеримых множеств.

Получилась полная мера μ на σ -алгебре $\mathcal{A} \supset \mathcal{P}$ и $\mu P = \mu_0 P$ для $P \in \mathcal{P}$.

Множества, содержащиеся в A, назовем μ -измеримыми.

Теорема 1.15. Это действительно продолжение, то есть $\mathcal{A} \supset \mathcal{P}$.

Доказательство. Надо доказать, что $E \in \mathcal{P} \ \land \ A \subset X, \ \mu_0^*A \ge \mu_0^*(A \setminus E) + \mu_0^*(A \cap E).$

Рассмотрим случаи:

1. $A \in \mathcal{P}$.

$$\mu_0^* A = \mu_0 A, \ \mu_0^* (A \cap E) = \mu_0 (A \cap E)$$
$$A \setminus E = \bigsqcup_{k=1}^n Q_k, \ Q_k \in \mathcal{P}$$

$$A = (A \cap E) \sqcup \bigsqcup_{k=1}^{n} Q_k \implies \mu_0^* A = \mu_0 A = \underbrace{\sum_{k=1}^{n} \mu_0 Q_k}_{\geq \mu_0^*(A \setminus E)} + \underbrace{\mu_0(A \cap E)}_{\mu_0^*(A \cap E)}$$

2. $A \notin \mathcal{P}$.

Если $\mu_0^*A = +\infty$, то все очевидно, поэтому считаем, что оно конечно.

Считаем, что $\mu_0^*A < +\infty$. Возьмем $P_k \in \mathcal{P}$, такое что $A \subset \bigcup_{k=1}^{\infty} P_k$ и $\sum_{k=1}^{\infty} \mu_0 P_k < \mu_0^*A + \epsilon$.

Знаем, что $\mu_0^* P_k \ge \mu_0^* (P_k \setminus E) + \mu_0^* (P_k \cap E)$

$$\mu_0^* A + \epsilon > \sum_{k=1}^{\infty} \mu_0 P_k \ge \sum_{k=1}^{\infty} \mu_0^* (P_k \setminus E) + \sum_{k=1}^{\infty} \mu_0^* (P_k \cap E)$$

$$\ge \mu_0^* (\bigcup_{k=1}^{\infty} (P_k \setminus E)) \ge \mu_0^* (A \setminus E) + \sum_{k=1}^{\infty} \mu_0^* (P_k \cap E) \ge \mu_0^* (A \cap E)$$

Замечание. 1. Дальше меру и ее продолжение обозначаем как μ .

Если $A - \mu$ -измеримое множество, то $\mu A = \inf \{ \sum_{k=1}^{\infty} \mu P_k : A \subset \bigcup_{k=1}^{\infty} P_k \land P_k \in \mathcal{P} \}$

2. Стандартное продолжение, примененое к стандартному продолжению, не дает ничего нового.

Упражнение. Указание. Проверить, что стандартное продолжение порождает ту же врешнюю меру, что и μ .

3. Можно ли распространить меру на более широкую σ -алгебру.

4.

Определение 1.19. ν – σ -конечная мера на полукольце \mathcal{P} , если $X = \bigcup_{n=1}^{\infty} P_n, \ P_n \in \mathcal{P} \wedge \mu P_n < +\infty.$

Можно ли по-другому продолжить на σ -алгебру μ -измерим. мн-в?

Если $\mu - \sigma$ -конечная мера, то нельзя.

5. Обязательно ли полная мера будет задана на μ -измеримых множествах.

Если $\mu - \sigma$ -конечная мера, то обязательно.

Теорема 1.16. μ – стандартное продолжение меры с полукольца \mathcal{P} , μ^* – соответствующая внешняя мера, $A \subset X$, $\mu^*A < +\infty$. Тогда $\exists B_{nk} \in \mathcal{P}$, такие что $C_n := \bigcup_{k=1}^{\infty} B_{nk}, \ C := \bigcap_{n=1}^{\infty} C_n, \ C \supset A \land \mu^*A = \mu C$.

Доказательство. $\mu^*A = \inf\{\sum_{k=1}^\infty \mu P_k : A \subset \bigcup_{k=1}^\infty P_k \land P_k \in \mathcal{P}\}$, берем покрытие с суммой $<\mu^*A+\frac{1}{n}$.

$$\mu C_n \le \sum_{k=1}^{\infty} \mu B_{nk} < \mu^* A + \frac{1}{n}, \ C_n = \bigcup_{k=1}^{\infty} B_{nk} \supset A \implies C = \bigcap_{n=1}^{\infty} C_n \supset A.$$

$$\mu^* A \le (\mu^* C = \mu C) \le \mu C_n < \mu^* A + \frac{1}{n}$$

Следствие. μ – стандартное продолжение с полукольца \mathcal{P} . A – μ -измеримое мн-во и $\mu A < +\infty$. Тогда $A = B \sqcup e$, где $B \in \mathcal{B}(\mathcal{P})$ и $\mu e = 0$.

Доказательство. Берем C $\in \mathcal{B}(\mathcal{P})$ из теоремы. $A \subset C$, и $\mu A = \mu C$.

 $e_1 := C \setminus A$, $\mu e_1 = 0$, теперь подставляем e_1 в теорему:

найдется $e_2: e_2 \in \mathcal{B}(\mathcal{P}) \land e_2 \supset e_1 \land \mu e_2 = \mu e_1 = 0 \implies B := C \setminus e_2 \in \mathcal{B}(\mathcal{P}) \implies B \subset A.$

 $C \setminus e_2 \subset B \subset C, \ \mu C = \mu C - \mu e_2 \le \nu B \le \mu C \implies \mu B = \mu A. \ e = A \setminus B \implies \mu e = 0$

Автор: Дмитрий Артюхов

Теорема 1.17. (Единственность продолжения).

 μ – стандартное продолжение с полукольца \mathcal{P} на σ -алгебру \mathcal{A} .

 ν – другая мера на \mathcal{A} , совпадающая с μ на \mathcal{P} . Если μ – σ -конечная, то $\mu = \nu$.

Доказательство. Если $A\subset\bigcup_{n=1}^{\infty}P_n,\ P_n\in\mathcal{P},\ \mathrm{To}\ \sum_{n=1}^{\infty}\mu P_n=\sum_{n=1}^{\infty}\nu P_n\geq\nu A$ (пользуемся счетной полуаддитивностью).

$$\mu A = \inf \{ \sum \mu P_n \} \ge \nu A.$$

Возьмем
$$P \in \mathcal{P}, A \in \mathcal{A}$$
: $\mu P = \nu P \implies \nu(P \cap A) + \nu(P \setminus A) \le \mu(P \cap A) + \mu(P \setminus A) = \mu P$

Если $\mu P < +\infty$, то равенство вместо неравенства.

$$\implies \mu(P \cap A) = \nu(P \cap A)$$

$$X=igsqcup_{k=1}^{\infty}P_k$$
, т.ч. $\mu P_k<+\infty\implies \mu(P_k\cap A)=
u(P_k\cap A)$

$$\mu A = \sum_{k=1}^{\infty} \mu(P_k \cap A) = \sum_{k=1}^{\infty} \nu(P_k \cap A) = \nu A$$

1.4. Мера Лебега

Теорема 1.18. Классический объем λ_m на полукольце ячеек \mathcal{P}^m – мера.

Доказательство. Так как λ_m – объем, то нам необходимо проверить счетную полуаддитивность, то есть следующую стрелочку:

$$(a;b] = \bigsqcup_{n=1}^{\infty} (a^{(n)};b^{(n)}] \Longrightarrow_{\gamma} \lambda(a;b] \le \sum_{n=1}^{\infty} \lambda(a^{(n)};b^{(n)}].$$

Берем $\epsilon > 0$.

Затем возьмем:

1.
$$[a,b'] \subset [a,b)$$
 и $\lambda_m[a,b) < \lambda_m[a,b') + \epsilon$.

2.
$$(\tilde{a}^{(n)},b^{(n)})\supset [a^{(n)},b^{(n)})$$
 и $\lambda_m[\tilde{a}^{(n)},b^{(n)})<\lambda_m[a^{(n)},b^{(n)})+\frac{\epsilon}{2^n}.$

Тогда получаем, что $\underbrace{[a,b']}_{\text{компакт}}\subset\bigcup_{n=1}^{\infty}\underbrace{(\tilde{a}^{(n)},b^{(n)})}_{\text{открытое мн-во}}\implies$ существует конечное подпокрытие, то

есть $[a, b'] \subset \bigcup_{n=1}^{N} (\tilde{a}^{(n)}, b^{(n)}).$

Далее можно написать ячейки и вложенность сохранится:

$$[a, b') \subset \bigcup_{n=1}^{N} [\tilde{a}^{(n)}, b^{(n)}).$$

Теперь давайте запишем конечную полуаддитивность для объема:

Теперь давайте запишем конечную полуаддитивность для объема:
$$\lambda_m[a,b') \underbrace{\leq}_{\text{кон. полуаддитивность}} \sum_{n=1}^N \lambda_m[\tilde{a}^{(n)},b^{(n)}) \leq \sum_{n=1}^\infty \lambda_m[\tilde{a}^{(n)},b^{(n)}) < \sum_{n=1}^\infty \left(\lambda_m[a^{(n)},b^{(n)}) + \frac{\epsilon}{2^n}\right) = \sum_{n=1}^\infty \lambda_n[\tilde{a}^{(n)},b^{(n)}] = \sum_{n=1}^\infty \lambda_n[\tilde{a}^$$

$$\sum_{n=1}^{\infty} \lambda_m[a^{(n)}, b^{(n)}) + \epsilon.$$

Теперь поймем, что у нас есть нер-во в другую сторону и мы можем зажать $\lambda_m[a,b')$ с двух сторон:

$$\lambda_m[a,b) - \epsilon < \lambda_m[a,b') < \sum_{n=1}^{\infty} \lambda_m[a^{(n)},b^{(n)}) + \epsilon.$$

Переносим ϵ в другую сторону и устремляем к 0:

$$\lambda_m[a,b) < \sum_{n=1}^{\infty} \lambda_m[a^{(n)},b^{(n)}) + 2\epsilon$$

$$\lambda_m[a,b) \leq \sum_{n=1}^{\infty} \lambda_m[a^{(n)},b^{(n)})$$
 – получили, что хотели.

Определение 1.20. Мера Лебега в \mathbb{R}^m (обозначение λ_m) – стандартное продолжение классического объема с \mathcal{P}^m .

 σ -алгебра, на которую все продолжилось, лебегевская σ -алгебра (\mathcal{L}^m).

Замечание. $\lambda_m A = \inf\{\sum_{k=1}^\infty \lambda_m P_k : P_k - \text{ ячейки и } \bigcup_{k=1}^\infty P_k \supset A\}.$

Можно вместо $P_k \in \mathcal{P}^m$ писать $P_k \in \mathcal{P}_Q^m$.

Свойства. Свойства меры Лебега:

1. Открытое мн-во измеримо и мера непустого открытого > 0.

Доказательство. Пусть G - открытое, $x \in G$, B - шар, накрывающий x и $B \subset G$, вписываем ячейку в шар.

2. Замкнутое мн-во измеримо и мера одноточечного мн-ва = 0.

Доказательство. Берем точку и ячейку, которая ее накрывает (стороны по ϵ), тогда $\lambda_m E_{\epsilon} = \epsilon^m \implies \inf = 0.$

3. Мера ограниченного мн-ва конечна.

Доказательство. Есть множество, его можно положить в шар, а шар в кубик.

4. Всякое измеримое мн-во – объединение мн-в конечной меры.

Доказательство. Берем все \mathbb{R}^m и нарежем его на ячейки по целочисленной сетке, тогда $(P_k \cap E)$ ограничено и измеримо $\underbrace{P_k}$, тогда $E = \bigsqcup_{k=1}^{\infty}$

5. Пусть $E \subset \mathbb{R}^m$, такое что $\forall \epsilon > 0 : \exists A_{\epsilon}, B_{\epsilon} \in \mathcal{L}^m$.

 $A_{\epsilon} \subset E \subset B_{\epsilon}$ и $\lambda_m(B_{\epsilon} \setminus A_{\epsilon}) < \epsilon$, тогда $E \in \mathscr{L}^m$

Доказательство. $A:=\bigcup_{n=1}^{\infty}A_{\frac{1}{n}}\in\mathscr{L}^m$ и $B:=\bigcap_{n=1}^{\infty}B_{\frac{1}{n}}\in\mathscr{L}^m$.

 $A \subset E \subset B, B \setminus A \subset B_{\underline{1}} \setminus A_{\underline{1}}.$

$$\lambda_m(B \setminus A) \le \lambda_m(B_{\frac{1}{n}} \setminus A_{\frac{1}{n}}) < \frac{1}{n} \implies \lambda_m(B \setminus A) = 0.$$

 $E \setminus A \subset B \setminus A \implies E \setminus A \in \mathscr{L}^m \implies E = E \setminus A \sqcup A \in \mathscr{L}^m.$

6. Пусть $E \subset \mathbb{R}^m$, такое что $\forall \epsilon > 0$: $\exists B_{\epsilon} \in \mathcal{L}^m$, такое что $\lambda_m B_{\epsilon} < \epsilon$ и $E \subset B_{\epsilon}$.

Тогда $E \in \mathscr{L}^m$ и $\lambda_m E = 0$.

Доказательство. $A_{\epsilon} := \varnothing \Longrightarrow_{\text{свойство (5)}} E$ – измеримое.

$$\lambda E \le \lambda B_{\epsilon} < \epsilon \implies \lambda E = 0.$$

- 7. Счетное объединение мн-в нулевой меры мн-во нулевой меры.
- 8. Счетное мн-во имеет меру 0.

9. Мн-во нулевой меры не имеет внутренних точек.

Доказательство. Пусть
$$x \in IntE \implies \underbrace{B_r(x)}_{\text{непустое и открытое}} \subset E \implies 0 < \lambda B_r(x) \le \lambda E.$$

10. Если $\lambda e=0$, то существуют кубические ячейки Q_j , такие что $\bigcup_{j=1}^{\infty}Q_j\supset e$ и $\sum_{j=1}^{\infty}\lambda Q_j<\epsilon$.

Доказательство. $0 = \lambda_m e = \inf\{\sum_{j=1}^{\infty} \lambda P_j : P_j \in \mathcal{P}_{\mathbb{Q}^m} \land \bigcup_{j=1}^{\infty} P_j \supset e\}$, нарезаем P_j на кубические ячейки.

11. Если $m \geq 2$, то гиперплоскость $H_k(c) := \{x \in \mathbb{R}^m : x_k = c\}$ имеет нулевую меру.

Доказательство. $E_n := H_k(c) \cap (-n, n]^m, \ H_k(c) = \bigcup_{n=1}^{\infty} E_n.$ Достаточно доказать, что $\lambda E_n = 0.$ $E_n \subset Y := (-n, n] \times \ldots (-n, n] \times (c - \epsilon, c] \times (-n, n] \times \ldots$

$$\lambda E_n \leq \lambda Y = (2n)^{m-1} \cdot \epsilon$$
, так как n фиксированное, а ϵ – произвольное $\implies \lambda E_n = 0$.

Любое мн-во, содержащееся в не более чем счетном объединение таких гиперплоскостей, имеет нулевую меру.

12. $\lambda(a,b] = \lambda[a,b] = \lambda(a,b)$ – по предыдущему свойству.

Замечание. Свойства (5) и (6) – справедливы для любой полной меры.

Замечание. 1. Существуют несчетные множества нулевой меры.

Если $m \ge 2$, то пример это гиперплоскость $H_1(c)$ подходит.

Если m = 1, то подходит Канторого множество.

$$\lambda K = \underbrace{\lambda[0,1] - \sum_{k=1}^{\infty} \lambda I_k}_{1 - \frac{1}{3} - 2 \cdot \frac{1}{9} - 4 \cdot \frac{1}{27} \dots = 1 - \sum_{k=1}^{\infty} \frac{2^{k-1}}{3^k} = 1 - \frac{1}{3} \cdot \frac{1}{1 - \frac{2}{3}} = 0$$

K — несчетно, $K = \{x \in [0,1]:$ в троичной записи нет цифр $1\}$, а у таких чисел есть биекция между [0,1], просто троичную переводим в двоичную, где просто все двойки заменяем на единички.

2. Существует неизмеримые мн-ва. Более того, любое мн-во положительной меры содержит неизмеримые подмножества.

Теорема 1.19. (Регулярность меры Лебега).

Если E – измеримое, то найдется G – открытое, такое что оно накрывает E и мера зазора $<\epsilon$, то есть $E\subset G \ \land \ \lambda(G\setminus E)<\epsilon$.

Доказательство. $\lambda E = \inf\{\sum_{j=1}^{\infty} \lambda P_j : P_j - \text{ячейка и } E \subset \bigcup_{j=1}^{\infty} P_j\}.$

(1): Пусть $\lambda E < +\infty$. Возьмем покрытие, для которого $\sum \lambda P_i < \lambda E + \epsilon$.

 $(a_j,b_j]\subset (a_j,b_j'),$ хотим $\lambda(a_j,b_j')<\lambda(a_j,b_j]+rac{\epsilon}{2^j}.$

Тогда $G:=\bigcup_{j=1}^{\infty}(a_j,b_j')$ – открытое и $E\subset G.$

 $\lambda G \leq \sum_{j=1}^{\infty} \lambda(a_j, b_j') < \sum_{j=1}^{\infty} \left(\lambda(a_j, b_j] + \frac{\epsilon}{2^j} \right) = \epsilon + \sum_{j=1}^{\infty} \lambda(a_j, b_j] < \lambda E + 2\epsilon \implies \lambda(G \setminus E) < 2\epsilon$

(2): Пусть $\lambda E = +\infty$. $E = \bigsqcup_{n=1}^{\infty} E_n$, такие что $\lambda E_n < +\infty$.

Возьмем G_n – открытое $\supset E_n$, такое что $\lambda(G_n \setminus E_n) < \frac{\epsilon}{2^n}$.

$$G := \bigcup_{n=1}^{\infty} G_n$$
 – открытое $G \supset E$.
$$G \setminus E \subset \bigcup_{n=1}^{\infty} G_n \setminus E_n \implies \lambda(G \setminus E) \le \sum \lambda(G_n \setminus E_n) < \underbrace{\sum \frac{\epsilon}{2^n}}_{E}.$$

1. Если E – измеримо, то найдется $F \subset E$ – замкнутое, такое что $\lambda(E \setminus F) < \epsilon$. Следствие.

Доказательство. $G \supset \mathbb{R}^m \setminus E$, такое что $\lambda \underbrace{(G \setminus (\mathbb{R}^m \setminus E))}_{=E \setminus (\mathbb{R}^m \setminus G) = E \setminus F} < \epsilon$, где $F := \mathbb{R}^m \setminus G$ – замкнутое

и $F \subset E$.

2. Если E – измеримо, то

 $\lambda E = \inf \{ \lambda G : G - \text{ открытое и } G \supset E \}.$

 $\lambda E = \sup \{ \lambda F : F - \text{замкнуто и } F \subset E \}$

 $\lambda E = \sup \{ \lambda K : K - \text{компакт и } K \subset E \}$

Доказательство. $\lambda(G \setminus E) < \epsilon \implies \lambda E < \lambda G < \lambda E + \epsilon$

$$\lambda(E \setminus F) < \epsilon \implies \lambda E \ge \lambda F > \lambda E - \epsilon$$

Возьмем F – замкнутое из второго вывода и $K_n := [-n, n]^m \cap F$ – компакт. $\bigcup_{n=1}^\infty K_n = F$ и $K_n \subset K_{n+1} \implies \lambda F = \lim \lambda K_n$

Если $\lambda F = +\infty$, то есть K_n со сколь угодно большой мерой.

Если $\lambda F < +\infty$, то есть K_n , такие что $\lambda F < \lambda K_n + \epsilon$

3. Если E – измеримо, то сузествует последовательность компактов K_n , такая что компакты $K_n \subset K_{n+1}$ и $E = \bigcup_{n=1}^{\infty} K_n \cup e$, где $\lambda e = 0$.

Доказательство. (1) Пусть $\lambda E < +\infty$. Возьмем $\tilde{K_n} \subset E \wedge \lambda E < \lambda \tilde{K_n} + \frac{1}{n}$

$$K_n := \bigcup_{j=1}^n \tilde{K}_j \subset E, \ \lambda E < \lambda \tilde{K}_n + \frac{1}{n} \le \lambda K_n + \frac{1}{n}.$$

$$e := E \setminus \bigcup_{n=1}^{\infty} K_n, \ \lambda e = \lambda E - \lambda \left(\bigcup_{n=1}^{\infty} K_n \right) < \lambda E - \lambda K_n < \frac{1}{n} \implies \lambda e = 0.$$

(2) Пусть $\lambda E = +\infty$. Берем $E = \bigsqcup_{j=1}^{\infty} E_j : \lambda E_j < +\infty$.

$$E_j = \bigcup_{n=1}^{\infty} \underbrace{K_{jn}}_{\text{компакт}} \cup e_j \ (\lambda e_j = 0) \implies E = \bigcup_{j=1}^{\infty} \bigcup_{n=1}^{\infty} K_{jn} \cup e,$$
где $e = \bigcup_{j=1}^{\infty} e_j \land \lambda e = 0.$

Нам не хватает вложенности, давайте просто пообъединяем их и получим новые компакты (вроде так, поправьте, если нет).

Упражнение. E – измеримое. Д-ть, что $\exists G_n$ – открытое $\supset E,\ G_n\supset G_{n+1},\ \text{т.ч.}\ E=\bigcap_{n=1}^\infty G_n\setminus e,$ где $\lambda e = 0$.

Теорема 1.20. При сдвиге мн-ва на верктор \vec{v} измеримость сохраняется и мера не изменяется.

Доказательство. $\mu E := \lambda(E + \vec{v}), \, \mu, \, \lambda$ заданы на ячейках и на них совпадают $\implies \mu = \lambda$ по елдинственности продолжения.

Теорема 1.21. μ -мера на \mathscr{L}^m , т.ч.

- 1. μ инвариантна относительно сдвигов.
- 2. μ конечна на ячейках = μ конечна на огр. измер. мн-вах.

Тогда $\exists k \in [0; +\infty)$, т.ч. $\mu = k \cdot \lambda$ (т.е. $\mu E = k\lambda E \ \forall E \in \mathscr{L}^m$)

Доказательство. $Q := (0,1]^m, \ k := \mu Q, \ k \in [0,+\infty)$

Рассмотрим случаи:

1. k=1. Надо доказать, что $\mu=\lambda$, достаточно доказать, что $\mu=\lambda$ на $\mathcal{P}^m_{\mathbb{O}}$ \Longrightarrow достаточно доказать на $(0,\frac{1}{n}]^m$.

Q можно сложить из n^m сдвигов $(0,\frac{1}{n}]^m$.

$$\mu(0, \frac{1}{n}]^m = \frac{1}{n^m} \mu Q = \frac{1}{n^m} \lambda Q = \lambda(0, \frac{1}{n}]^m.$$

- 2. k > 0. $\nu E := \frac{1}{k} \mu E$. Тогда $\nu Q = \lambda Q \implies \nu = \lambda$.
- 3. k=0. Покажем, что $\mu\equiv 0$. $\mu Q = 0, \ \mathbb{R}^m$ – счетное объединение сдвигов $Q \implies \mu \mathbb{R}^m = 0.$

Теорема 1.22. $G \subset \mathbb{R}^m$ – открытое, $\Phi : G \to \mathbb{R}^m$ непрерыно дифференцируема. Тогда

- 1. Если $e \subset G$, т.ч. $\lambda e = 0$, то $\Phi(e)$ мн-во нулевой меры.
- 2. Если E измеримое, то $\Phi(E)$ измеримое.

Замечание. Для Φ – непрер. или даже дифф. это неверно.

Доказательство. Пункт (1):

Случаи:

1. $e \subset P \subset CLP \subset G, P$ – ячейка $\Longrightarrow ||\Phi'||$ непрерывно на $G \supset Cl\ P$ – компакт $\Longrightarrow ||\Phi'|| \le M$ на $Cl\ P$ (норма ограничена на замыкании P).

$$||\Phi(x) - \Phi(y)|| \leq ||\Phi'(c)|| \cdot ||x - y||, \text{ где } x, y \in P; \ c \in P \implies ||\Phi(x) - \Phi(y)|| \leq M||x - y||$$

Существуют кубические ячейки, такие что Q_j , т.ч. $e \subset \bigcup_{i=1}^{\infty} Q_j$ и $\sum_{j=1}^{\infty} \lambda Q_j < \epsilon$

Рассмотрим $\Phi(Q_i)$

Пусть a_i – стороная кубика Q_i . $x, y \in Q_i \implies ||x-y|| < \sqrt{m} \cdot a_i$ (расстояние между точками меньше, чем главная диагональ, так как у нас ячейка) $\implies ||\Phi(x) - \Phi(y)|| \le M\sqrt{m}a_i$.

Зафиксируем x и меняем $y \implies \Phi(Q_i)$ содержится в шаре с центром в $\Phi(x)$ и радиусом $M\sqrt{m}a_j \implies \Phi(Q_j)$ содержатся в ячейке R_j со стороной $2M\sqrt{m}a_j$.

$$\Phi(Q_j) \subset R_j \implies \Phi(e) \subset \bigcup_{j=1}^{\infty} R_j$$

 $\sum_{j=1}^\infty \lambda R_j = \sum_{j=1}^\infty (2M\sqrt{m})^m a_j^m = (2M\sqrt{m})^m \sum_{j=1}^\infty \lambda Q_j < (2M\sqrt{m})^m \cdot \epsilon \implies \Phi(e)$ измеримо и $\lambda(\Phi(e)) = 0.$

2. e – произвольное $\subset G$, $\lambda e=0$. Представим G как $\bigsqcup_{j=1}^{\infty} P_j$, где P_j – ячейка $Cl\ P_j\subset G$. $e=igsqcup_{j=1}^\infty(e\cap P_j)\implies \Phi(e)=igcup_{j=1}^\infty\Phi(e\cap P_j)$ – м
н-ва нулевой меры $\implies \lambda(\Phi(e))=0.$

 Π ункт (2):

$$E$$
 – измеримое $\Longrightarrow E = \bigcup_{n=1}^{\infty} K_n \cup e, \ \lambda e = 0, \ K_n$ – компакт $\Longrightarrow \Phi(E) = \bigcup_{n=1}^{\infty} \Phi(K_n) \cup \Phi(e).$ $\lambda(\Phi(e)) = 0$ и $\Phi(K_n)$ – компакт \Longrightarrow измеримое.

Теорема 1.23. λ – инвариантна относительно движения.

Доказательство. Движение – это сдвиг и поворот.

Про сдвиг уже знаем, что λ не меняется. Проверим поворот:

пусть $U: \mathbb{R}^m \to \mathbb{R}^m$ (считаем, что крутим относительно нуля, так как можно в ноль сдвинуть).

$$\mu E := \lambda$$
 (UE) , μ, λ – заданы на \mathscr{L}^m .

 μ – инварианта относительно сдвига. $\mu(E+\vec{v}) = \lambda(U(E+\vec{v})) = \lambda(UE+U\vec{v}) = \lambda(UE) = \mu E$. μ конечна на ограниченных измеримых мн-вах. Тогда $\mu = k\lambda$.

Хотим показать, что k=1. Но на единичном шаре $B, \lambda B=\mu B \implies k=1 \implies \mu=\lambda \implies$ $\lambda E = \lambda(UE).$

Теорема 1.24. (Об изменении меры Лебега при линейном отображении).

 $T:\mathbb{R}^m\to\mathbb{R}^m$ – линейное, E – измеримое. Тогда $\lambda(TE)=|det T|\cdot \lambda E$

Доказательство. $\mu E := \lambda$, μ инвариантно относительно сдвига и измеримое, так как ${
m T}$ – лин. отображ. конечно на огр. мн-вах. $\Longrightarrow \mu k \cdot \lambda$, где $k=\lambda(T[0,1]^m)=|det T|$

Пример. неизмеримое мн-во в \mathbb{R} .

 $x \sim y$ если $(x - y) \in \mathbb{Q}$ – отношение эквивалентности.

Разобьем \mathbb{R} на классы эквивалентности и в каждом классе выберем своего представителя, сдвинем их всех в ячейку (0,1].

A – получившееся мн-во. Докажем, что A не может быть измеримым.

От противного. Если $\lambda A=0,$ то $(0,1]\subset\bigcup_{r\in\mathbb{Q}}(A+r)=\mathbb{R}.$ Но тогда $\lambda A=0\implies\lambda(A+r)=$ $0 \implies \lambda \mathbb{R} = 0$ – противоречие.

Если $\lambda A>0$. $\bigsqcup_{r\in\mathbb{Q},\ 0\leq r\leq 1}\subset(0,2]\Longrightarrow\sum_{r\in\mathbb{Q},\ 0\leq r\leq 1}\lambda(A+r)\leq 2\Longrightarrow$ противоречие (так как сумма, на самом деле, должна быть бесконечна и никак не меньше 2).

То есть мы построили пример неизмеримого множества.

2. Интеграл Лебега

2.1. Измеримые функции

Определение 2.1. $f: E \to \bar{\mathbb{R}}$, лебеговы мн-ва функции f:

$$E\{f \le a\} := \{x \in E : \ f(x) \le a\} = f^{-1}([-\infty, a])$$

$$E\{f < a\} := \{x \in E : f(x) < a\} = f^{-1}([-\infty, a))$$

$$E\{f \ge a\} := \{x \in E : f(x) \ge a\}$$

$$E\{f > a\} := \{x \in E : f(x) > a\}$$

Теорема 2.1. E – измеримое, $f: E \to \bar{\mathbb{R}}$, тогда равносильны:

- 1. $E\{f \leq a\}$ измеримы $\forall a \in \mathbb{R}$
- 2. $E\{f < a\}$ измеримы $\forall a \in \mathbb{R}$
- 3. $E\{f \geq a\}$ измеримы $\forall a \in \mathbb{R}$
- 4. $E\{f>a\}$ измеримы $\forall a\in\mathbb{R}$

Доказательство. 1. $(1) \Leftrightarrow (4) : E\{f > a\} = E \setminus E\{f \le a\}$

- 2. (2) \Leftrightarrow (3) : $E\{f < a\} = E \setminus E\{f \ge a\}$
- 3. $(1) \Rightarrow (2)$: $E\{f < a\} = \bigcup_{n=1}^{\infty} E\{f \le a \frac{1}{n}\}$
- 4. (3) \Rightarrow (4) : $E\{f > a\} = \bigcup_{n=1}^{\infty} E\{f \ge a + \frac{1}{n}\}$

Определение 2.2. $f: E \to \bar{\mathbb{R}}$ – измеримая $\forall a \in \mathbb{R}$ все ее лебеговы мн-ва измер.

Замечание. E – должно быть измеримое и достаточно измеримости любого множества одного типа.

Пример. 1. f = const, лебеговы множества: \varnothing , X.

- 2. $E \subset X$ измеримое, $f = \mathbb{1}_E(x) = 1$, если $x \in E$, иначе 0. Лебеговы множества: $\emptyset, X, E, X \setminus E$.
- 3. \mathscr{L}^m лебеговская σ -алгебра на \mathbb{R}^m $f \in C(\mathbb{R}^m)$ измеримая. $f^{-1}(\underbrace{(-\infty,a)})$ открытое \implies измеримое.

Свойства. 1. $f: E \to \bar{\mathbb{R}}$ – измеримая $\implies E$ – измеримое.

2. Если $f:E \to \bar{\mathbb{R}}$ измеримая и $E_0 \subset E \implies g:=f|_{E_0}$ – измеримое.

Доказательство.
$$E_0\{g\leq c\}=E\{\underbrace{f\leq c}_{\text{измеримое}}\}\cap\underbrace{E_0}_{\text{измеримое}}$$
 .

3. Если f – измеримая, то прообраз любого промежутка – измеримое мн-во.

Доказательство.
$$E\{a \leq f \leq b\} = E\{\underbrace{a \leq f}\} \cap E\{\underbrace{f \leq b}\}.$$

Глава #2

4. Если f – измеримая, то прообраз любого открытого мн-ва – измеримое.

Доказательство.
$$U \subset \mathbb{R}$$
 — открытое мн-во $\Longrightarrow U = \bigcup_{n=1}^{\infty} (a_n, b_n] \Longrightarrow f^{-1}(U) = \bigcup_{n=1}^{\infty} f^{-1} \underbrace{(a_n, b_n]}_{\text{измеримое}}.$

5. Если f – измеримая, то |f| и -f – измеримы.

Доказательство.
$$E\{-f \le c\} = E\{f \ge -c\}, \ E\{|f| \le c\} = E\{-c \le f \le c\}.$$

6. Если $f,g:E\to \bar{\mathbb{R}}$ измеримы, то $max\{f,g\}$ и $min\{f,g\}$ – измеримы. В частности, $f_+=max\{f,0\}$ и $f_-=max\{-f,0\}$ – измеримы.

Доказательство.
$$E\{max\{f,g\} \le c\} = E\{f \le c\} \cap E\{g \le c\}$$

7. Если $E = \bigcup_{n=1}^{\infty} E_n, \ f|_{E_n}$ – измерима $\forall n \implies f$ – измеримая. $f: E \to \bar{\mathbb{R}}.$

Доказательство.
$$E\{f \leq c\} = \bigcup_{n=1}^{\infty} E_n\{f \leq c\}.$$

8. Если $f:E \to \bar{\mathbb{R}}$ измерима, то найдется $g:X \to \bar{\mathbb{R}}$ – измеримая, такая что $f=g|_E$

Доказательство.
$$g(x) := 0$$
, если $x \notin E$, $f(x)$, иначе.

Теорема 2.2. Пусть $f_n: E \to \bar{\mathbb{R}}$ – последовательность измеримых функций. Тогда:

- 1. $\sup f_n$, $\inf f_n$ измеримые.
- 2. $\underline{\lim} f_n$ и $\overline{\lim} f_n$ измеримые.
- 3. Если существуют $\lim f_n$, то он измеримый.

Доказательство. 1. $E\{\sup f_n \le c\} = \bigcap_{n=1}^{\infty} E\{f_n \le c\}$

- 2. $\underline{\lim} f_n = \sup_n \inf_{k \geq n} f_k$ и $\overline{\lim} f_n = \inf_n \sup_{k \geq n} f_k$
- 3. Если существует $\lim f_n$, то $\lim f_n = \underline{\lim} f_n$.

Теорема 2.3. Пусть $f_1, \ldots, f_m: E \to H \subset \mathbb{R}$ – измеримые, $\phi \in C(H)$, тогда $g: E \to \mathbb{R}, \ g(x) := \phi(f_1(x), \ldots, f_m(x))$ – измеримая.

Доказательство.
$$E\{g < c\} = g^{-1}(-\infty,c) = \vec{f}^{-1}(U) = \vec{f}^{-1}(G)$$
 $U := \phi^{-1}(-\infty,c)$ — открытое в $H \implies \exists G$ — открытое в \mathbb{R}^m , т.ч. $U = H \cap G$ $\implies G = \bigcup_{n=1}^{\infty} \underbrace{(a_n,b_n]}_{\text{ячейки в }\mathbb{R}^m}$

Достаточно понять для ячейки $(\alpha, \beta]$, что $\vec{f}^{-1}(\alpha, \beta]$ – измерима, $\bigcup_{k=1}^n E\{\alpha_k < f_k \le \beta_k\}$

 ${\it Cnedcmeue.}$ Если в теореме ϕ – поточечный предел непрерывных, то g – измерима.

Доказательство. $\phi = \lim \phi_n, \ \phi_n \vec{f}$ – измер. и поточечно стремится к $\phi_0 \vec{f}$

Арифметические операции в \mathbb{R} :

- 1. Если $x \in \mathbb{R}$, то $x + (+\infty) = +\infty$, $x + (-\infty) = -\infty$ и т.д.
- 2. $(+\infty) + (-\infty) = 0$, $(+\infty) (+\infty) = 0$, $(-\infty) (-\infty) = 0$
- 3. Если $0 \neq x \in \mathbb{R}$, то $x \cdot (\pm \infty) = \pm \infty$, где знак $\pm : \pm = +, \ \pm : \mp = -$
- 4. $0 \cdot \pm \infty = 0$ и $\frac{x}{+\infty} = 0$, $\forall x \in \mathbb{R}$, т.е. $\frac{\pm \infty}{+\infty} = 0$.
- 5. Делить на 0 не умеем.

Теорема 2.4. 1. Произведение и сумма измеримых функций – измеримая.

- 2. Если $f: E \to \mathbb{R}$ измеримая и $\phi \in C(\mathbb{R})$, то $\phi \circ f$ измеримая.
- 3. Если $f \ge 0$ измеримая, то $f^p \ (p > 0)$ измеримая, $(+\infty)^p = +\infty$
- 4. Если $f:E o ar{\mathbb{R}}$ измеримая, $\tilde{E}:=E\{f
 eq 0\}$, то $\frac{1}{f}$ измерима на $\tilde{E}.$

Доказательство. 1. f + g. Для каждой функции рассмотрим три множества:

$$E\{f \neq \pm \infty\}, E\{f = +\infty\}, E\{f = -\infty\}$$

 $E\{g \neq \pm \infty\}, \underbrace{E\{g = +\infty\}}_{=\bigcup_{n=1}^{\infty} E\{g \ge n\}}, E\{g = -\infty\}$

Для конечного случая $(E\{f \neq \pm \infty\} \cap E\{g \neq \pm \infty\})$ можем сослаться на предыдущую теорему, взяв в качестве непрерывной $\phi(f,g) = f + g$.

На остальных случаях тоже рассматриваем f + g: измеримость будет, т.к. f + g = const.

- 2. Частный случай предыдущей теоремы.
- 3. $E\{f^p \le c\} = E\{f \le c^{\frac{1}{p}}\}$
- 4. $f|_{\tilde{E}}$ измерима и $\neq 0$

$$\tilde{E}\left\{\frac{1}{f} \le c\right\} = \begin{cases} \tilde{E}\{f \ge \frac{1}{c}\} \cup \tilde{E}\{f < 0\}, \text{ при } c > 0\\ \tilde{E}\{f < 0\}, \text{ при } c = 0\\ \tilde{E}\{f \ge \frac{1}{c}\} \cap \tilde{E}\{f < 0\}, \text{ при } c < 0 \end{cases}$$
(3)

Следствие. 1. Произведение конечного числа измер. – измер.

- 2. Натуральная степень измер. функции измер.
- 3. Линейная комбинация измер. функций измер.

Теорема 2.5. $E \subset \mathbb{R}^m$ – измеримое, $f \in C(E)$. Тогда f – измер. относительно меры Лебега.

Доказательство.
$$U:=f^{-1}(-\infty,c)$$
 – открытое мн-во в $E \implies \exists G \subset \mathbb{R}^m$ – открытое, т.ч. $U=\underbrace{G}_{\text{измер.}} \cap \underbrace{E}_{\text{измер.}} (E$ измеримо по условию, а G измеримо в σ -алгебре)

Oпределение **2.3.** Измеримая функция – простая, если она принимает лишь конечное число значений.

Допустимое разбиение X – разбиение X на конечное число измеримых множеств, таких что на каждом множестве простая функция константна.

Следствие. 1. Если X разбито на конечное число измер. мн-в и f постоянна (то есть сужение на каждом кусочке X это какая-та константа) на каждом из них, то f – простая.

2. Если f и g – простые функции, то у них существует общее допустимое разбиение.

Доказательство.
$$X = \bigsqcup_{k=1}^m A_k = \bigsqcup_{j=1}^n B_j \implies X = \bigsqcup_{k=1}^m \bigsqcup_{j=1}^n (A_k \cap B_j)$$
 – допустимое для f и g .

- 3. Сумма и произведение простых функций простая функция.
- 4. Линейная комбинация простых функций простая функция.
- 5. тах и тіп конечного числа простых функций простая функция.

Теорема 2.6. (О приближении измеримых функций простыми)

 $f: X \to \mathbb{R}$ – неотрицательная измеримая функция, тогда \exists последовательность простых функций $\phi_1, \phi_2 \dots$, такие что $\phi_i \leq \phi_{i+1} : \forall i$ в каждой точке и $\lim \phi_n = f$. Более того, если f – ограничена сверху, то можно выбрать ϕ_n так, что $\phi_n \rightrightarrows f$ на X.

Доказательство. $\Delta_k^{(n)} := [\frac{k}{n}, \frac{k+1}{n})$ при $k = 0, \dots, (n^2 - 1)$ и $\Delta_{n^2}^{(n)} := [n, +\infty]$. $[0, +\infty) = \bigsqcup_{k=0}^{n^2} \Delta_k, \ A_k^{(n)} := f^{-1}(\Delta_k^{(n)}) - \text{измер. мн-во.}$ $\phi_n \text{ на } A_k \text{ равно } \frac{k}{n} \implies 0 \le \phi_n(x) \le f(x) \ \forall x \text{ и } f(x) \le \phi_n(x) + \frac{1}{n} \text{ при } x \notin A_{n^2}.$ $\phi_n(x) \to f(x):$

- 1. если $f(x)=+\infty$, то $x\in A_{n^2}^{(n)}\ \forall n\implies \phi_n(x)=n\to +\infty=f(x)$
- 2. если $f(x) \neq +\infty$, то $x \notin A_{n^2}^{(n)}$ при больших $n \implies f(x) \frac{1}{n} \leq \phi_n(x) \leq f(x)$

Для добавления монотонности берем не каждое n, а только степени двойки, тогда нам нужно взять $\psi_n = \max\{\phi_1, \phi_2, \dots, \phi_n\}$ (тут должна быть картинка)

Равномерность: если f ограничена, начиная с некоторого момента A_{n^2} пусто \Longrightarrow все $x \notin A_{n^2} \Longrightarrow \forall x \in E \ f(x) - \frac{1}{n} < \phi_n(x) \leqslant f(x) \Longrightarrow |\phi_n(x) - f(x)| < \frac{1}{n} \Longrightarrow$ есть равномерная сходимость.

2.2. Последовательности измеримых функций

Напоминание. $f_n, f: E \to \mathbb{R}$.

Поточечная сходимость: $f_n \to f$, $\forall x \in E : f_n(x) \to f(x)$

Равномерная сходимость: $f_n \rightrightarrows f$ на E, $\sup_{x \in E} |f_n(x) - f(x)| \to 0$

Определение 2.4. $f_n, f: E \to \mathbb{R}$ – измеримые.

 f_n сходится к f почти везде, если $\exists e \subset E, \ \mu e = 0, \text{ т.ч. } \forall x \in E \setminus e, \ f_n(x) \to f(x)$

Замечание. Обозначение: $\mathscr{L}(E,\mu)=\{f:E o\overline{\mathbb{R}}-\$ измеримые, $\mu E\{f=\pm\infty\}=0\}$

Пусть $f_n, f \in \mathcal{L}(E, \mu), f_n$ сходится к f почти везде.

$$\exists e \subset E, \ \mu e = 0, \text{ T.q. } \forall x \in E \setminus x, \ f_n(x) \to f(x)$$

Определение 2.5. $f_n, f \in \mathcal{L}(E, \mu), f_n$ сходится по мере μ к f, если $\forall \varepsilon > 0$, $\mu E\{|f_n - f| > \varepsilon\} \rightarrow_{n \to \infty} 0, f_n \Rightarrow_{\mu} f$

Замечание. Зависимость: равномерная \implies (поточечная \implies почти везде) | (сходимость по мере).

Равномерная ⇒ поточечная – знаем.

Поточечная \implies почти везде – у нас уже есть сходимость во всех точках, поэтому для "почти везде" ничего не надо выкидывать.

Равномерная \implies сходимость по мере – начиная с некоторого момента $E\{|f_n - f| > \varepsilon\}$ будет пустым множеством по определению равномерной сходимости.

Утверждение 2.7. 1. Если f_n сходится к f п.в. (почти везде) и f_n сходится к g п.в., то f=g (за исключением мн-ва нулевой меры)

2. Если $f_n \Rightarrow_{\mu} f$ и $f_n \Rightarrow_{\mu} g$, то f = g за исключением мн-ва нулевой меры.

Доказательство. 1. Берем $e \subset E$, $\mu e = 0$ и $\lim f_n(x) = f(x)$, $\forall x \in E \setminus e$

$$\tilde{e} \subset E, \mu \tilde{e} = 0$$
 и $\lim f_n(x) = g(x), \forall x \in E \setminus \tilde{e}$

Тогда на $E \setminus (e \cup \tilde{e}) \lim f_n(x) = g(x)$ и $\lim f_n(x) = f(x) \implies f(x) = g(x) \forall x \in E \setminus (e \cup \tilde{e})$

2.
$$\mu E\{f \neq g\} = 0, E\{f \neq g\} = \bigcup_{k=1}^{\infty} E\{|f - g| > \frac{1}{k}\}.$$

Достаточно доказать, что $\mu E\{|f-g| \ge \epsilon\} = 0.$

$$E\{|f-g| \ge \epsilon\} \subset E\{|f_n-f| \ge \frac{\epsilon}{2}\} \cup E\{|f_n-g| \ge \frac{\epsilon}{2}\}$$

$$E\{|f-g| \ge \epsilon\} \subset \bigcap_{n=1}^{\infty} E\{|f_n - f| \ge \frac{\epsilon}{2}\} \cup \bigcap_{n=1}^{\infty} E\{|f_n - g| \ge \frac{\epsilon}{2}\}$$

Знаем, что $\mu E\{|f_n-f|\geq \frac{\epsilon}{2}\} \to 0$

 $\bigcap_{n=1}^N E\{|f_n-f|\geq \frac{\epsilon}{2}\}$ вложены по убыванию

$$\implies \bigcap_{n=1}^{\infty} \dots = \lim_{N} \left(\mu \bigcap_{n=1}^{N} E\{ |f_n - f| \ge \frac{\epsilon}{2} \} \right) \le \lim_{N} \left(\mu E\{ |f_N - f| \ge \frac{\epsilon}{2} \} \right) = 0$$

Теорема 2.8. Лебега.

$$f_n, f \in \mathcal{L}(E, \mu)$$

Пусть $\mu E < +\infty$ и f_n сходится к f почти везде.

Тогда f_n сходится к f по мере μ .

Доказательство. Найдется $e \subset E$, $\mu e = 0$, т.ч. $\forall x \in \subset E \setminus e$, $f_n(x) \to f(x)$.

Выкинем e и будем говорить про поточечную сходимость.

Надо доказать, что $A_n := E\{|f_n - f| > \epsilon\}, \ \mu A_n \to 0.$

1. Частный случай $(f_n \searrow 0)$: $A_n = E\{f_n > \epsilon\} \supset A_{n+1}$.

$$\lim \mu A_n = \mu \bigcap_{n=1}^{\infty} A_n = \mu \varnothing = 0.$$

Пусть $x \in \bigcap_{n=1}^{\infty} A_n \implies 0 \leftarrow f_n(x) > \epsilon \ \forall n \in \mathbb{N} \implies$ таких x не существует.

2. Общий случай: $g_n(x) := \sup_{k \ge n} \{ |f_k(x) - f(x)| \}$. $g_n(x) \searrow$, т.к. множество уменьшается.

$$\lim g_n(x) = \lim_n \sup_{k \ge n} \{\dots\} = \overline{\lim_n |f_n(x) - f(x)|} = \lim |f_n - f| = 0$$

$$\Longrightarrow \underbrace{\mu E\{g_n > \epsilon\}}_{\to 0} \ge \mu E\{|f_n - f| > \epsilon\}$$

$$E\{g_n > \epsilon\} \supset E\{|f_n - f| > \epsilon\}$$

Замечание. 1. Условие $\mu E < +\infty$ существенно.

$$E = \mathbb{R}, \ \mu = \lambda, \ f_n = \mathbb{1}_{[n, +\infty)} \underbrace{\longrightarrow}_{\text{поточечно}} f \equiv 0$$

$$\lambda E\{f_n > \epsilon\} = +\infty \not\to 0.$$

2. Обратное неверно. Более того, может быть сходимость по мере и расходимость во всех точках вообще: $E = [0,1), \ \mu = \lambda$

$$\mathbbm{1}_{[0,1)}\,\mathbbm{1}_{[0,\frac{1}{2})}\,\mathbbm{1}_{[\frac{1}{2},1)}\,\mathbbm{1}_{[0,\frac{1}{3})}\,\mathbbm{1}_{[\frac{1}{3},\frac{2}{3})}\,\mathbbm{1}_{[\frac{2}{3},1)}$$
 – ни для какого аргумента нет предела: $[0,\frac{1}{n})\,[\frac{1}{n},\frac{2}{n})\dots[\frac{n-1}{n},1)$

Теорема 2.9. Рисса.

 $f, f_n \in \mathscr{L}(E, \mu)$. Если $f_n \Rightarrow_{\mu} f$, то существует подпоследовательность f_{n_k} , т.ч. f_{n_k} сходится к f почти везде.

Доказательство. $\mu E\{|f_n-f|>\frac{1}{k}\}\underbrace{\longrightarrow}_{n\to\infty}0$

Выберем n_k так, что $n_k > n_{k-1}$, и $\mu \underbrace{E\{|f_{n_k} - f| > \frac{1}{k}\}}_{=:A_k} < \frac{1}{2^k}$

$$B_n := \bigcup_{k=n}^{\infty} A_k, \ \mu B_n \le \sum_{k=n}^{\infty} \mu A_k < \sum_{k=n}^{\infty} \frac{1}{2^k} = \frac{1}{2^{n-1}} \to 0$$

 $B_1\supset B_2\supset\cdots\implies\underbrace{\mu B}_{\mu B_n\to 0}=0$, проверим, что если $x\notin B$, то $f_{n_k}(x)\to f(x)$, где $B:=\bigcap_{n=1}^\infty B_n$

$$x \notin B \implies \exists m, \text{ T.H. } x \notin B_m = \bigcup_{k=m}^{\infty} A_k$$

$$\implies x \notin A_k \ \forall k \ge m \implies \forall k \ge m \ \underbrace{|f_{n_k}(x) - f(x)|}_{\rightarrow_{k \to 0} 0} \le \frac{1}{k}$$

Следствие. Если $f_n \leq g$ и $f_n \Rightarrow_{\mu} f$, то $f \leq g$ за исключением мн-ва нулевой меры.

Доказательство. Выберем f_{n_k} сходится к f почти везде. Пусть e – исключ. мн-во $\mu e=0$.

$$\lim_{\leq g(x)} f(x): \ \forall x \in E \setminus e \implies f(x) \leq g(x) \ \text{при} \ x \in E \setminus e$$

Теорема 2.10. Фреше.

Если $f:\mathbb{R}^m\to\mathbb{R}$ измерима относительно λ_m (мера Лебега), то $\exists f_n\in C(\mathbb{R}^m)$, т.ч. f_n сходится к f почти везде.

Теорема 2.11. Егорова.

Пусть $\mu E < +\infty$, $f_n, f \in \mathcal{L}(E, \mu)$. Если f_n сходится к f почти везде, то найдется $e \subset E$, $\mu e < \epsilon$, т.ч. $f_n \Rightarrow f$ на $E \setminus e$.

Теорема 2.12. Лузина.

 $E \subset \mathbb{R}^m$ — измеримо, $f: E \to \mathbb{R}$ — измерима (относительно λ_m — мера Лебега). Тогда найдется $e \subset E, \ \mu e < \epsilon,$ т.ч. $f|_{E \setminus e}$ — непрерывна.

 Φ реше + Егоров \implies Лузин:

$$f: \mathbb{R}^m \to \mathbb{R}$$
 – измеримое $\underset{\Phi_{\mathrm{peine}}}{\Longrightarrow} \exists f_n \in C(\mathbb{R}^m), \ f_n \ \mathrm{cxoдитcs} \ \mathrm{k} \ f$ почти везде $\underset{\mathrm{Eropob}}{\Longrightarrow} \exists e: \ \lambda_m e < \epsilon,$

т.ч. $f_n \underset{\mathbb{R}^m \setminus e}{\longrightarrow} f$, равномерный предел непрерывной функции – непрерывная функция.

2.3. Определение интеграла

Лемма. Пусть $f \ge 0$ простая функция A_1, \dots, A_n и B_1, \dots, B_m – допустимые разбиения.

 a_1,\ldots,a_n и b_1,\ldots,b_m значения f на соответственных мн-вах.

Тогда
$$\sum_{k=1}^{n} a_k \mu(E \cap A_k) = \sum_{j=1}^{m} b_j \mu(E \cap B_j).$$

Доказательство.
$$\sum_{k=1}^{n} a_k \mu(E \cap A_k) = \sum_{k=1}^{n} \sum_{j=1}^{m} a_k \mu(E \cap A_k \cap B_j) = (1)$$

$$\sum_{j=1}^{m} b_{j} \mu(E \cap B_{j}) = \sum_{j=1}^{m} \sum_{k=1}^{n} b_{j} \mu(E \cap B_{j} \cap A_{k}) = (2)$$

$$(1) \underbrace{=}_{?} (2)$$

$$a_k \mu(E \cap A_k \cap B_j) = b_j \mu(E \cap A_k \cap B_j)$$

если
$$A_k \cap B_j \neq \emptyset$$
, то $a_k = b_j$, если $A_k \cap B_j = \emptyset$, то $\mu(\dots) = 0$.

Условие $f \geq 0$ важно, т.к. в ином случае могли бы получится ∞ разных знаков и равенство зависело бы от порядка сложения.

Определение 2.6. $f \ge 0$ простая, $\int_E f d\mu := \sum_{k=1}^n a_k \mu(E \cap A_k)$, где A_1, \dots, A_n – допустимые разбиения $(\bigsqcup_{k=1}^n A_k = X), \ a_1, \dots, a_n$ – соответст. значения.

Свойства. 1. $\int_E cd\mu = c\mu E, \ c \geq 0$

- 2. Если f, g простые и $0 \le f \le g$, то $\int_E f d\mu \le \int_E g d\mu$
- 3. Если $f,g \geq 0$ простые, то $\int_E (f+g) d\mu = \int_E f d\mu + \int_E g d\mu$
- 4. Если $c \geq 0$ и $f \geq 0$ простая, то $\int_E cfd\mu = c \cdot \int_E fd\mu$

Доказательство. $\bigsqcup_{k=1}^{n} A_k = X$ – общее допустимиое разбиение, a_k, b_k – значения на A_k .

3.
$$\int_{E} (f+g)d\mu = \sum (a_k + b_k)\mu(E \cap A_k) = \sum a_k \mu(A_k \cap E) + \sum b_k \mu(A_k \cap E) = \int_{E} df \mu + \int_{E} g d\mu$$

2.
$$\int_E f d\mu = \sum a_k \mu(A_k \cap E) \le \sum b_k \mu(A_k \cap E) = \int_E g d\mu$$

Определение 2.7. Интеграл от неотриц. измеримой ф-ции $f:E o \overline{R}, f\geq 0.$

$$\int_E f d\mu := \sup \{ \int_E \phi d\mu : \phi - \text{простая и } 0 \le \phi \le f \}$$

Определение 2.8. Интеграл от измеримой функции

$$\int_E f d\mu := \int_E f_+ d\mu - \int_E f_- d\mu$$
 (если тут $+\infty - (+\infty)$, то интеграл не определен)

Замечание. Новое определение на простых функциях совпадает со старым.

Доказательство. $f \ge 0$ – простая \implies

- (1): $\phi = f$ подходит (новое \geq старое, т.к. берем супремум).
- (2): $\phi \leq f \implies \int_{E} \phi d\mu \leq \int_{E} f d\mu$ (sup \leq старое, т.к. задали $\phi : 0 \leqslant \phi \leqslant f$).
- (3): В определении для произвольных измеримых: $\int_{E} (f)_{-} d\mu = 0$

Свойства. 1. Если $0 \le f \le g \implies \int_E f d\mu \le \int_E g d\mu$

- 2. Если $\mu E = 0 \implies \int_E f d\mu = 0$
- 3. f измеримая $\implies \int_E f d\mu = \int_X \mathbb{1}_E f d\mu$

Доказательство. Проверим для f_{\pm} :

$$\int_E f_+ d\mu = \sup\{\int_E \phi d\mu : \phi$$
 – простая $0 \le \phi \le f_+\} = \sup\{\int_X \phi d\mu : \phi$ – простая $0 \le \phi \le \mathbb{1}_E f_+\} = \int_X \mathbb{1}_E f_+ d\mu$ (в одном случае сужаем ϕ на множество E , в другом – дополняем нулями на $X \setminus E$)

4. Если $f \ge 0$ – измеримая, $A \subset B$, то $\int_A f d\mu \le \int_B f d\mu$.

Доказательство.
$$\int_A f d\mu = \int_X \mathbb{1}_A f d\mu \underbrace{\leq}_{\mathfrak{I}_B f} \int_X \mathbb{1}_B f d\mu = \int_B f d\mu.$$

Упражнение. Доказать, что $\int_{[1:+\infty)} \frac{\sin x}{x} d\lambda_1$ не определен.

Теорема 2.13. Беппо Леви.

Пусть $f_n \ge 0$ – измеримые функции, $f_n : E \to \overline{R}$, последовательность поточечно возрастающая $f_0 \le f_1 \le f_2 \le \dots$ $f(x) := \lim f_n(x)$ – поточечный предел.

Тогда $\int_E f d\mu = \lim \int_E f_n d\mu$.

Доказательство. (1): $f_n \leq f \implies \int_E f_n d\mu \leq \int_E f d\mu$

- (2): $f_n \le f_{n+1} \implies \int_E f_n d\mu \le \int_E f_{n+1} d\mu$
- (1) и (2) $\implies \exists L := \lim \int_E f_n d\mu \le \int_E f d\mu$

Осталось проверить, что $L \geq \int_E f d\mu$ (можно считать, что $L < +\infty$ т.е. конечна, иначе утверждение очевидно).

$$\int_{E} f d\mu = \sup \{ \int_{E} \phi d\mu : \ 0 \le \phi \le f, \ \phi - \text{простая} \}$$

Достаточно доказать, что $L \ge \int_E \phi d\mu$ для ϕ – простая и $0 \le \phi \le f$.

Возьмем $0 < \theta < 1$ и докажем, что $L \ge \int_E \theta \phi d\mu$:

$$E_n:=E\{f_n\geq \theta\phi\}, f_n\nearrow \Longrightarrow E_n\subset E_{n+1}.$$
 Покажем, что $E=\bigcup_{n=1}^\infty E_n.$

Пусть $x \in E$:

- 1. если $\phi(x) = 0$, то $\forall n : x \in E_n$
- 2. если $\phi(x) > 0$, то $\lim f_n(x) = f(x) \ge \phi(x) > \theta \phi(x)$ $\underset{\text{при больших } n}{\Longrightarrow} f_n(x) > \theta \phi(x)$ $\underset{\text{при больших } n}{\Longrightarrow} x \in E_n$

Посмотрим на
$$\underbrace{\int_E f_n d\mu}_{(*)} \ge \int_{E_n} f_n d\mu \ge \underbrace{\int_{E_n} \theta \phi d\mu}_{(**)}.$$

Переходим к пределу
$$n \to \infty$$
 : L $\geq \int_E \theta \phi d\mu$ это нужно понять для (**)

Осталось понять, что
$$\underbrace{\int_{E_n} \phi d\mu}_{\sum_{k=1}^m a_k \mu(E_n \cap A_k)} \to \underbrace{\int_{E} \phi d\mu}_{\sum_{k=1}^m \mu(E \cap A_k)}.$$

Поймем, что $\mu(E_n \cap A_k) \to \mu(E \cap A_k)$ – непрерывность меры снизу, $E_n \cap A_k \subset E_{n+1} \cap A_k$ и $\bigcup_{k=1}^{\infty} (E_n \cap A_k) = E \cap A_k$.

Свойства. Продолжаем писать свойства:

5.
$$f, g \ge 0$$
 – измеримые $\implies \int_{E} (f+g) d\mu = \int_{E} f d\mu + \int_{E} g d\mu$ – аддитивность.

6.
$$f \geq 0, \alpha \geq 0 \implies \int_E \alpha f d\mu = \alpha \int_E f d\mu$$
 – однородность.

7.
$$\alpha, \beta \geq 0, \ f,g \geq 0$$
 — измеримые, тогда $\int_E (\alpha f + \beta g) d\mu = \alpha \int_E f d\mu + \beta \int_E g d\mu$

Доказательство. 5. $f \ge 0$ измеримая $\implies \exists 0 \le \phi_1 \le \phi_2 \le \dots$ – простые, причем $\phi_n \to f$ поточечно.

 $g \geq 0$ измеримая $\implies \exists 0 \leq \psi_1 \leq \psi_2 \leq \dots$ – причем $\psi_n \to g$ поточечно.

$$\implies 0 \le \phi_1 + \psi_1 \le \dots$$
 простые и $\phi_n + \psi_n \to f + g$.

$$\underbrace{\int_{E} (\phi_n + \psi_n) d\mu}_{\to \int_{E} (f+g) d\mu} = \underbrace{\int_{E} \phi_n d\mu}_{J_E d\mu} + \underbrace{\int_{E} \psi_n d\mu}_{\to \int_{E} g d\mu}$$

Свойства. Продолжаем свойства.

8. Аддитивность по мн-ву. Если
$$A\cap B=\varnothing,\ f\geq 0$$
 измеримая, то
$$\underbrace{\int_{A\cup B}fd\mu}_{(*)}=\underbrace{\int_{A}fd\mu}_{(***)}+\underbrace{\int_{B}fd\mu}_{(***)}$$

Доказательство. $(*) = \int_X \mathbb{1}_{A \cup B} f d\mu$

$$(**) = \int_X \mathbb{1}_A f d\mu$$

$$(***) = \int_X \mathbb{1}_B f d\mu$$

$$\mathbb{1}_{A\cup B}f = \mathbb{1}_Af + \mathbb{1}_Bf$$

9. Если $\mu E > 0$ и f > 0 измери., то $\int_E f d\mu > 0$.

Доказательство. $E_n := E\{f \geq \frac{1}{n}\}, E_n \subset E_{n+1}, E = \bigcup_{n=1}^{\infty} E_n$

$$\implies \lim \mu E_n = \mu E > 0 \implies \mu E_n > 0$$
 для больших n

$$\implies \int_E f d\mu \ge \int_{E_n} f d\mu \ge \int_{E_n} \frac{1}{n} d\mu = \frac{1}{n} \cdot \mu E_n > 0.$$

Пример. $T = \{t_1, t_2, \dots\}$ - не более чем счетное, $w_1, w_2, \dots \ge 0$.

$$\mu A := \sum_{k: t_k \in A} w_k - \text{Mepa.}$$

$$\int_E f d\mu = \sum_{k: \ t_k \in E} w_k = (*).$$

Пусть
$$f=\mathbbm{1}_A$$
, тогда $\int_E f d\mu = \int_E \mathbbm{1}_A d\mu = \mu(E\cap A) = \sum_{k:\ t_k \in E\cap A} = \sum_{k:\ t_k \in E} \mathbbm{1}(t_k) w_k = (*).$

⇒ равенство есть и на простых функциях

Пусть
$$f \geq 0$$
 измерим. $\phi_n = f \cdot \mathbb{1}_{\{t_1, t_2, \dots, \phi_n\}}, 0 \leq \phi_1 \leq \dots \leq f$.

$$\underbrace{\lim \int_E \phi_n d\mu}_{=\lim \sum_{k < n: \ t_k \in E} f(t_k) w_k = \sum_{k: \ t_k \in E} f(t_k) w_k} = \int_E \underbrace{\lim \phi_n}_{\leq f} d\mu \leq \int_E f d\mu$$

Проверим, что
$$\underbrace{\int_{E} f d\mu}_{\sup\{\dots\}} \le \sum_{f(t_k)w_k}$$
. Берем $0 \le \underbrace{\phi}_{\text{простая}} \le f$ и проверяем, что $\underbrace{\int_{E} \phi d\mu}_{\sum_{k:\ t_k \in E} \phi(t_k)w_k} \le \sum_{k:\ t_k \in E} \frac{\phi(t_k)w_k}{\phi(t_k)w_k}$

 $\sum_{k:\ t_k \in E} f(t_k) w_k$

Замечание. $T=\mathbb{N},\ w_n\equiv 1.$

$$\mu A = \#\{A \cap \mathbb{N}\}\$$
$$\int_{\mathbb{N}} f d\mu = \sum_{n=1}^{\infty} f(n)$$

Определение 2.9. P(x) – св-во, зависящее от точки. P(x) выполняется **почти везде**, если на E (для **почти всех** точек из E), если $\exists e \subset E$, $\mu e = 0$ и P(x) выполнено $\forall x \in E \setminus e$.

Замечание. P_1, P_2, \ldots последовательность св-в, каждое из котороых верно почти везде на E, то они все вместе верны почти везде на E.

Теорема 2.14. (Неравенство Чебышева).

$$f\geq 0$$
 измер., $t,p>0$. Тогда $\mu E\{f\geq t\}\leq \frac{1}{t^p}\cdot \int_E f^p d\mu$.

Доказательство.
$$\int_E f^p d\mu \ge \int_{E\{f \ge t\}} f^p d\mu \ge \int_{E\{f \ge t\}} t^p d\mu = t^p \cdot \mu E\{f \ge t\}.$$

Свойства. Свойства интеграла, связанные с понятием "почти везде".

- 1. Если $\int_E |f| d\mu < +\infty$, то f почти везде конечна.
- 2. Если $\int_{E} |f| d\mu = 0$, то f = 0 почти везде.
- 3. Если $A\subset B$ и $\mu(B\setminus A)=0$, то $\int_A f d\mu$ и $\int_B f d\mu$ либо определены, либо нет одновременно. И если определены, то равны.
- 4. Если f=g почти везде на E, тогда $\int_E f$ и $\int_E g$ либо определены, либо нет одновременно. И если определены, то равны.

Доказательство. 1.
$$E\{|f|=+\infty\}\subset E\{|f|\geq t\}$$

$$\mu E\{|f|=+\infty\} \leq \mu E\{|f|\geq t\} \leq \frac{\int_E |f|d\mu}{t} \underset{t\rightarrow +\infty}{\longrightarrow} 0$$

- 2. Если $\mu E\{f>0\}>0$, то $\int_E f d\mu = \int_{E\{f>0\}} f d\mu > 0$ (св-во. 9 из уже доказанных выше).
- 3. $\int_B f_{\pm} d\mu = \int_{B \setminus A} f_{\pm} d\mu + \int_A f_{\pm} d\mu = \int_A f_{\pm} d\mu$
- 4. $A:=E\{f=g\}, \mu(E\setminus A)=0$ $\int_E f d\mu=\int_A f d\mu=\int_A g d\mu=\int_E g d\mu$

2.4. Суммируемые функции

Определение 2.10. f – суммируема на мн-ве E, если f измерима и $\int_E f_{\pm} d\mu < +\infty$.

Замечание. В этом случае $\int_E f d\mu$ конечен.

 ${\it Ceoйcmea.}$ 1. f – суммируема на $E \Leftrightarrow \int_E |f| d\mu < +\infty$ и f – измерима.

В этом случае $|\int_E f d\mu| \le \int_E |f| d\mu$

Доказательство. $0 \le f_{\pm} \le |f| = f_{+} + f_{-}$

"\Rightarrow":
$$\int_E |f| d\mu = \int_E f_+ d\mu + \int_E f_- d\mu < +\infty$$

"\(= \)":
$$\int_E f_{\pm} d\mu \leq \int_E |f| d\mu < +\infty$$

Нер-во:
$$-\int_{E} |f| d\mu = -\int_{E} f_{+} d\mu - \int_{E} f_{-} d\mu \leq \underbrace{\int_{E} f_{+} d\mu - \int_{E} f_{-} d\mu}_{\int_{E} f d\mu} \leq \int_{E} f_{+} d\mu + \int_{E} f_{-} d\mu = \int_{E} |f| d\mu$$

- $2. \ f$ суммируема на $E \Longrightarrow f$ почти везде конечна на E.
- 3. Если $A \subset B$ и f суммируема на B, то f суммируема на A.

Доказательство.
$$\int_A |f| d\mu \le \int_B |f| d\mu < +\infty$$

4. Ограниченная функция суммируема на мн-ве конечной меры.

Доказательство.
$$|f| \leq M \implies \int_{E} |f| d\mu \leq \int_{E} M d\mu = M \cdot \mu E < +\infty$$

5. Если f и g суммируемы и $f \leq g$, то $\int_E f d\mu \leq \int_E g d\mu$

Доказательство.
$$f_+ - f_- = f \le g = g_+ - g_- \implies 0 \le f_+ + g_- \le f_- + g_+ \implies \int_E f_+ d\mu + \int_E g_- d\mu \le \int_E f_- d\mu + \int_E g_+ d\mu$$
 — переносим слагаемые в нужные стороны и чтд.

6. f и g – суммируемы $\implies f+g$ суммируема и $\int_E (f+g) d\mu = \int_E f d\mu + \int_E g d\mu$

Доказательство. $|f+g| \le |f| = |g| \implies f+g$ суммируема.

$$h := f + g, \ h_+ - h_- = f_+ - f_- + g_+ - g_-$$

$$\implies h_+ + f_- + g_- = f_+ + g_+ + h_- \ge 0$$

$$\implies \int_E h_+ d\mu + \int_E f_- d\mu + \int_E g_- d\mu = \int_E f_+ d\mu + \int_E g_+ d\mu + \int_E h_- d\mu$$
 – далее просто переносим нужные слогаемые через равно.

7. f – суммируема, $\alpha \in \mathbb{R} \implies \alpha f$ суммируема и $\int_E \alpha f d\mu = \alpha \int_E f d\mu$

Доказательство. $|\alpha f| = |\alpha| \cdot |f| \implies |\alpha f|$ – суммируема.

Если
$$\alpha>0$$
, то $(\alpha f)_+=\alpha\cdot f_+$ и $(\alpha f)_-=\alpha\cdot f_-$ и $\int_E (\alpha f)_\pm d\mu=\alpha\cdot \int_E f_\pm d\mu$ Если $\alpha=-1$, то $(-f)_+=f_-$ и $(-f)_-=f_+\implies \int_E (-f)d\mu=\int_E f_--\int_E f_+=-\int_E f d\mu$

8. Линейность.

Если f,g – суммируемы, $\alpha,\beta\in\mathbb{R}$, то $\alpha f+\beta g$ – суммируема и $\int_E (\alpha f+\beta g)d\mu=\alpha\int_E fd\mu+\beta\int_E gd\mu.$

9. Пусть $E = \bigcup_{k=1}^{n} E_k$. Тогда f – суммируема на $E \Leftrightarrow f$ – суммируема на E_k : $\forall k = 1, \dots, n$. А если f суммируема на $E = \bigcup_{k=1}^{n} E_k$, то $\int_E f d\mu = \sum_{k=1}^{n} \int_{E_k} f d\mu$

Доказательство.
$$\mathbb{1}_{E_k}|f| \leq \mathbb{1}_{E}|f| \leq \sum_{k=1}^{n} \mathbb{1}_{E_k}|f| \implies \int_{E_k}|f|d\mu \leq \sum_{k=1}^{n} \int_{E_k}|f|d\mu$$
. Если $E = \bigsqcup_{k=1}^{n} E_k$, то $\mathbb{1}_{E} = \sum_{k=1}^{n} \mathbb{1}_{E_k} \implies \mathbb{1}_{E} f_{\pm} = \sum_{k=1}^{n} \mathbb{1}_{E_k} f_{\pm} \implies \int_{E} f_{\pm} d\mu = \sum_{k=1}^{n} \int_{E_k} f_{\pm} d\mu$

10. Интегрирование по сумме мер. Пусть μ_1 и μ_2 – меры, заданные на одной σ -алгебре, $\mu:=\mu_1+\mu_2$.

Если $f \ge 0$ измерима, то $\int_E f d\mu = \int_E f d\mu_1 + \int_E f d\mu_2(*)$.

f – суммируема относительно $\mu \Leftrightarrow f$ – суммируема относительно μ_1 и μ_2 и в этом случае есть равенство (*).

Доказательство. (*) для $f \ge 0$:

(*) есть для простых
$$\phi \ge 0$$
, $\int_E \phi d\mu = \sum_{k=1}^n a_k \underbrace{\mu(E \cap A_k)}_{\mu_1(E \cap A_k) + \mu_2(E \cap A_k)} = \int_E \phi d\mu_1 + \int_E \phi d\mu_2$.

 $f \ge 0$ – измеримая \implies возьмем $0 \le \phi \le \cdots \le \phi_n$ – простые, $\phi_n \to f$.

$$\int_E \phi_n d\mu = \int_E \phi_n d\mu_1 + \int_E \phi_n d\mu_2$$
 по т. Леви получаем (предельнй переход) $\int_E f d\mu = \int_E f d\mu_1 + \int_E f d\mu_2$

Определение 2.11. Интеграл от комплекснозначной функции $f: E \to \mathbb{C}$.

Re(f) и Im(f) – измеримые функции.

$$\int_E f d\mu := \int_E Re(f) d\mu + i \cdot \int_E Im(f) d\mu$$

Замечание. Все св-ва, связанные с равенствами, сохраняются:

Доказательство.
$$Re(if) = -Im(f), \ Im(if) = Re(f)$$

$$\int_E if d\mu = i \int_E f d\mu$$

Замечание. $\left|\int_{E}fd\mu\right|\leq\int_{E}|f|d\mu$

Доказательство.
$$\left|\int_E f d\mu\right| = e^{i\alpha} \cdot \int_E f d\mu = \int_E e^{i\alpha} f d\mu = \int_E Re(e^{i\alpha}f) d\mu + i \cdot \int_E Im(e^{i\alpha}f) d\mu = \int_E Re(e^{i\alpha}f) d\mu \le \int_E \left|Re(e^{i\alpha}f) d\mu\right| \le \int_E \left|R$$

 $\int_{E} |f| d\mu$.

$$|Re(f)|, |Im(f)| \le |f|$$

$$|f| \le |Re(f)| + |Im(f)|$$

Теорема 2.15. (О счетной аддитивности интеграла).

Пусть
$$f \ge 0$$
 – измеримая и $E = \bigsqcup_{n=1}^{\infty} E_n$.

Тогда
$$\int_E f d\mu = \sum_{n=1}^{\infty} \int_{E_n} f d\mu$$

Доказательство.
$$\sum_{n=1}^{\infty} \int_{E_n} f d\mu = \lim \sum_{k=1}^n \int_{E_k} f d\mu = \lim \int_{\bigsqcup_{k=1}^n E_k} f d\mu = \lim \int_E \left(\underbrace{\mathbb{1}_{\bigsqcup_{k=1}^n E_k} f}_{:=g_n} d\mu\right) = 0$$

$$\lim \int_E g_n d\mu \underbrace{=}_{\text{T. } \Pi_{\text{PBM}}} \int_E f d\mu$$

$$0 \le g_1 \le g_2 \le \dots$$
, $\lim g_n = f$, $g_n(x) = f(x)$ если $x \in \bigsqcup_{k=1}^n E_k$.

Следствие. 1. Если $f \geq 0$ — измеримая, то $\nu E := \int_E f d\mu$ — мера, заданная на той же σ -алгебре, что и μ .

- 2. Если $f \geq 0$ и $E_1 \subset E_2 \subset \ldots$, $E = \bigcup_{n=1}^{\infty} E_n$, то $\int_E f d\mu = \lim \int_{E_n} f d\mu$
- 3. Если f суммируема и $E_1\supset E_2\supset\dots,\ E=\bigcap_{n=1}^\infty E_n,$ то $\int_E f d\mu=\lim\int_{E_n} f d\mu$
- 4. Если f суммируема на $E,\ \epsilon>0,$ то $\exists A\subset E:\ \mu A<+\infty \land \int_{E\backslash A}|f|d\mu<\epsilon$

Доказательство. 1. $\nu\varnothing = \int_{\varnothing} f d\mu = 0 + \text{счетная аддитивность из теоремы: } \int_{E} f_{\pm} d\mu = \sum_{n=1}^{\infty} \int_{E_{n}} f_{\pm} d\mu$ все конечно, поэтому можно вычитать.

2. $\nu A := \int_A f d\mu$ – мера $\implies \nu A$ непрерывна снизу.

$$\underbrace{\nu E}_{\int_E f d\mu} = \underbrace{\lim \nu E_n}_{\lim \int_{E_n} f d\mu}$$

- 3. $\nu_{\pm}A:=\int_A f_{\pm}d\mu,\ \nu_{\pm}A$ конечные меры $\implies \nu_{\pm}$ непрерывна сверху. $\implies \int_E f_{\pm}d\mu=\nu_{\pm}E=\lim\nu_{\pm}E_n=\lim\int_{E_n} f_{\pm}d\mu$
- 4. $E_n := E\{|f| \le \frac{1}{n}\} \implies E_n \supset E_{n+1}$ $\bigcap_{n=1}^{\infty} E_n = E\{f = 0\} \implies \lim_{n \to \infty} \int_{E_n} |f| d\mu = \int_{E\{f = 0\}} |f| d\mu = 0 \implies \exists n : \epsilon > \int_{E_n} |f| d\mu \ge \left| \int_{E_n} f d\mu \right|$

$$A := E \setminus E_n = E\{|f| > \frac{1}{n}\}$$

$$\mu A \underbrace{\leq}_{\text{Use where}} \frac{\int_E |f| d\mu}{\frac{1}{n}} < +\infty$$

Теорема 2.16. (Абсолютная непрерывность интеграла).

f – суммируема на E, тогда $\forall \epsilon: \ \exists \delta>0,$ т.ч. $\forall e$ – измер. $\mu e<\delta \implies |\int_e f d\mu|<\epsilon$

Доказательство. $\int_E |f| d\mu < +\infty \implies \exists \underbrace{\phi}_{\leq f}$ – неотрицательная простая, т.ч.

$$\int_{E} |f| d\mu < \int_{E} \phi d\mu + \epsilon.$$

Пусть C – наибольшее значение ϕ . Возьмем $\delta = \frac{\epsilon}{C}$.

Если $\mu e < \delta$, то $\int_e |f| d\mu < \underbrace{\int_e \phi d\mu + \epsilon}_{\leq \int_e C d\mu + \epsilon \leq \epsilon + \epsilon}$ – это следует из того, что $|f| - \phi \geq 0$,

$$\int_{e} (|f| - \phi) d\mu \le \int_{E} (|f| - \phi) d\mu < \epsilon.$$

Следствие. Если f суммируема на E и $\mu A_n \to 0, \ A_n \subset E, \ {
m To} \ \int_{A_n} f d\mu \to 0.$

Доказательство. Берем $\epsilon>0$ и $\delta>0$ для него из теоремы, тогда если $\mu A_n<\delta$, то $|\int_{A_n}fd\mu|<\epsilon$

Определение 2.12. Пусть μ и ν меры на одной σ -алгебре \mathcal{A} . Если существует измеримая функция $w \geq 0$, т.ч. $\forall A \in \mathcal{A}, \ \nu A = \int_A w d\mu$.

Тогда w плотность меры ν относительно меры μ .

Замечание. Если w существует, то ν обладает свойством: если $\mu e=0$, то $\nu e=0$.

Теорема 2.17. Пусть f,g – суммируемые функции. Если $\forall A$ – измерим. $\int_A f d\mu = \int_A g d\mu$, то f=g почти везде.

Доказательство. $h := f - g, \ E_+ := E\{f \ge g\}, \ E_- := E\{f < g\}$

$$\int_{E} |h| d\mu = \underbrace{\int_{E_{+}} h d\mu}_{=0} - \underbrace{\int_{E_{-}} h d\mu}_{=0} = 0 \implies h = 0 \text{ почти везде.}$$

Теорема 2.18. (Единственность плотности).

Если ν – σ -конечная мера (на σ -алгебре \mathcal{A}) и w – плотность ν относительно μ , то w – единственна с точностью до **почти везде**.

Доказательство. Так как наша мера – σ -конечна, то все пространство представляется как $X = \bigsqcup_{n=1}^{\infty} X_n$, т.ч. $\nu X_n < +\infty \implies$ т.к. w – плотность $\nu|_{X_n}$ относительно $\mu|_{X_n} \implies w$ – суммируема на X_n .

Пусть w_1, w_2 – плотности ν относительно μ на сужении одного кусочка, тогда по определению плотности верно, что $\forall A \in \mathcal{A} : \nu A = \int_A w_1 d\mu = \int_A w_2 d\mu$ \Longrightarrow $w_1 = w_2$ почти везде.

Ну если две плотности на каждом из кусочков отличаются на множество нулевой меры, тогда и на объединении кусочков тоже будут отличаться на множество нулевой меры, тогда плотность единственна почти везде и на всей σ -алгебре.

Определение 2.13. ν, μ – меры, заданные на одной σ -алгебре. ν абсолютно непрерывна относительно μ , если $\forall e$ – измер., т.ч. $\mu e = 0 \implies \nu e = 0$.

Обозначение $\nu \prec \mu$ или $\nu \ll \mu$.

Теорема 2.19. (Радона-Никодима).

Пусть меры μ и ν заданы на одной σ -алгебре. Тогда $\nu \prec \mu \Leftrightarrow$ существует плотность меры ν относительно μ .

Теорема 2.20. w – плотность ν относительно μ . Тогда

- 1. Если $f \geq 0$, то $\int_E f d\nu = \int_E f w d\mu : (*)$
- 2. fw суммируема, относительно $\mu\Leftrightarrow f$ суммируема относительно ν , и в этом случае есть формула (*)

Доказательство. 1. Пусть $f = \mathbb{1}_A$, тогда $\int_E f d\nu = \nu(A \cap E) = \int_{A \cap E} w d\mu = \int_E \mathbb{1}_A w d\mu$. По линейности (*) верна для неотрицательный простых.

Пусть $f \ge 0$ – измер. Тогда найдутся простые $0 \le \phi_1 \le \phi_2 \le \dots$ ($0 \le w\phi_1 \le w\phi_2 \le \dots$) и $\phi_n \to f$ поточечно. $\underbrace{\int_E \phi_n d\nu}_{f \circ f \circ f \circ f} = \underbrace{\int_E \phi_n w d\mu}_{f \circ f \circ f \circ f \circ f}$ — по т. Леви.

2. $\int_E |f| d\nu = \int_E |f| w d\mu \implies f$ – суммируема относительно $\nu \Leftrightarrow fw$ суммируема относительно μ $\int_E f_\pm d\nu = \int_E f_\pm w d\mu$ и вычитаем.

Свойства. Неравенство Гельдера.

Пусть
$$p,q>1$$
 и $\frac{1}{p}+\frac{1}{q}=1$. Тогда $\int_{E}|fg|d\mu\leq \left(\int_{E}|f|^{p}d\mu\right)^{\frac{1}{p}}\cdot \left(\int_{E}|g|^{q}d\mu\right)^{\frac{1}{q}}=A\cdot B$

Доказательство. Пусть $f, g \ge 0$ (просто чтобы не писать модули), $A^p := \int_E f^p d\mu$, $B^q := \int_E g^q d\mu$.

Случай $A=0. \implies f^p=0$ почти везде $\implies f=0$ почти везде $\implies fg=0$ почти везде $\implies \int_E fg d\mu=0.$

Можно считать, что A, B > 0.

Случай $A = +\infty$. Очевидно.

Можно считать $0 < A, B < +\infty$.

$$u := \frac{f}{A}, \ v := \frac{g}{B}$$

 $\int_E u^p d\mu = 1 = \int_E v^q d\mu$, $uv \leq \frac{u^p}{p} + \frac{v^q}{q}$ верно (Упражнение, ну конечно. Фиксируем одну из переменных как параметр и исследуем нер-во по второй переменной).

Интегрируем полученное нер-во:
$$\frac{1}{AB} \int_E fg d\mu = \int_E uv d\mu \le \frac{1}{p} \underbrace{\int_E u^p d\mu}_{=1} + \frac{1}{q} \underbrace{\int_E v^q d\mu}_{=1} = \frac{1}{p} + \frac{1}{q} = 1$$

Свойства. Неравенство Минковского.

$$p \geq 1$$
, тогда $\left(\int_{E} |f+g|^{p} d\mu\right)^{\frac{1}{p}} \leq \left(|f|^{p} d\mu\right)^{\frac{1}{p}} + \left(|g|^{p} d\mu\right)^{\frac{1}{p}}$

Доказательство. Можно считать, что $f, g \ge 0$, также можно считать, что $\int_E f^p d\mu$ и $\int_E g^p d\mu < +\infty$.

Проверим, что $\int_E (f+g)^p d\mu < +\infty$:

$$f + g \le 2 \max\{f, g\} \implies (f + g)^p \le 2^p \max\{f^p, g^p\} \le 2^p (f^p + g^p)$$

$$\underbrace{\int_E (f+g)^p d\mu}_{=:C^p} \le 2^p \left(\int_E f^p d\mu + \int_E g^p d\mu\right) < +\infty - \text{показали, что левая часть конечна.}$$

Можем считать, что $0 < C < +\infty$:

$$C^p = \int_E (f+g)^p d\mu = \int_E (f+g)(f+g)^{p-1} d\mu = \int_E f(f+g)^{p-1} d\mu + \int_E g(f+g)^{p-1} d\mu$$

Пусть $\frac{1}{p} + \frac{1}{q} = 1$, $q = \frac{p}{p-1}$, (p-1)q = p, тогда:

$$\int_{E} f \cdot (f+g)^{p-1} d\mu \underbrace{\leq}_{\text{нер-во Гельдера}} \left(\int_{E} f^{p} d\mu \right)^{\frac{1}{p}} \cdot \left(\int_{E} ((f+g)^{p-1})^{q} d\mu \right)^{\frac{1}{q}} = \left(\int_{E} f^{p} d\mu \right)^{\frac{1}{p}} \cdot \underbrace{\left(C^{p} \right)^{\frac{1}{q}}}_{=C^{p-1}} \leq \left(\int_{E} f^{p} d\mu \right)^{\frac{1}{p}} C^{p-1} + \underbrace{\left(\int_{E} f^{p} d\mu \right)^{\frac{1}{p}} \cdot \left(\int_{E} f^{p} d\mu \right)^{\frac{1}{p}}}_{=C^{p-1}} C^{p-1}$$

$$\left(\int_E g^p d\mu\right)^{\frac{1}{p}} \cdot C^{p-1}$$
 – сокращаем на C^{p-1} .

2.5. Предельный переход под знаком интеграла

Теорема 2.21. Леви.

$$0 \leq f_1 \leq f_2 \leq \dots$$
 и $f = \lim f_n$, тогда $\lim \int_E f_n d\mu = \int_E f d\mu$.

Следствие. Пусть $u_n \ge 0$. Тогда $\int_E \sum_{n=1}^\infty u_n d\mu = \sum_{n=1}^\infty \int_E u_n d\mu$

Доказательство.
$$s_n := \sum_{k=1}^n u_k, \ 0 \le s_1 \le s_2 \le \dots$$
 и $s_n \to s := \sum_{n=1}^\infty u_n.$
$$\int_E s d\mu = \lim \int_E s_n d\mu = \lim \int_E \sum_{k=1}^n u_k d\mu = \lim \sum_{k=1}^n \int_E u_k d\mu = \sum_{k=1}^\infty \int_E u_k d\mu$$

Следствие. Если $\sum_{n=1}^{\infty} \int_{E} |f_n| d\mu < +\infty$, то $\sum_{n=1}^{\infty} f_n(x)$ сходится при почти всех $x \in E$.

Доказательство.
$$+\infty > \sum_{n=1}^{\infty} \int_{E} |f_{n}| d\mu = \int_{E} \sum_{n=1}^{\infty} |f_{n}| d\mu \implies \sum_{n=1}^{\infty} |f_{n}| - \text{суммир.}$$

 $\Longrightarrow \sum_{n=1}^{\infty} |f_n|$ почти везде конечна $\Longrightarrow \sum_{n=1}^{\infty} f_n(x)$ абс. сходится при почти всех $x \in E$ \Longrightarrow сходится при почти всех $x \in E$.

Лемма. Фату.

Если
$$f_n \ge 0$$
, то $\int_E \underline{\lim} f_n d\mu \le \underline{\lim} \int_E f_n d\mu$.

Доказательство.
$$\underline{\lim} f_n = \lim \underbrace{\inf \{f_n, f_{n+1}, \dots\}}_{=:a_n}$$

$$0 \le g_1 \le g_2 \le \dots$$
 и $g_n \to \underline{\lim} f_n$

$$\underset{\text{теорема Леви}}{\Longrightarrow} \lim_{\substack{\int_E g_n d\mu \\ = \underline{\lim} \int_E g_n d\mu \leq \underline{\lim} \int_E f_n d\mu}} = \int_E \underline{\lim} f_n d\mu$$

$$g_n \le f_n \implies \int_E g_n d\mu \le \int_E f_n d\mu \implies \underline{\lim} \int_E g_n d\mu \le \underline{\lim} \int_E f_n d\mu$$

Замечание. Равенства может и не быть:

$$\mu=\lambda,\ E=\mathbb{R},\ f_n=\mathbb{1}_{[n,+\infty)}$$
 $\int_E f_n d\mu=+\infty,\ \mathrm{Ho}\ f_n o 0$

Из этих двух условие следует, что $\int_E \underline{\lim} f_n d\mu = \int_E 0 d\mu = 0$

Следствие. (Усиленный вариант теоремы Леви).

Пусть $0 \le f_n \le f$ и $f = \lim f_n$. Тогда $\lim \int_E f_n d\mu = \int_E f d\mu$

Доказательство. $f_n \leq f \implies \int_E f_n d\mu \leq \int_E f d\mu \implies \int_E f d\mu = \int_E \underline{\lim} f_n d\mu \leq \underline{\lim} \int_E f_n d\mu \leq \underline{\lim} f_n d\mu$ $\overline{\lim} \int_E f_n d\mu \le \int_E f d\mu$

$$\implies \underline{\lim} = \overline{\lim} = \int_E f d\mu \implies \lim \int_E f_n d\mu = \int_E f d\mu$$

Теорема 2.22. Лебега о предельном переходе (о мажорируемой сходимости).

Пусть
$$f = \lim f_n$$
 и $|f_n| \le \underbrace{F}_{\text{суммируемая мажоранта}} - \text{суммируема на } E.$

Тогда $\lim_{E} \int_{E} f_n d\mu = \int_{E} f d\mu$, более того $\lim_{E} \int_{E} |f_n - f| d\mu = 0$

Доказательство. $g_n := 2F - |f_n - f| \le 2F$ и $g_n \to 2F$.

$$g_n \ge 2F - |f_n| - |f| \ge 0.$$

Тогда предел $\lim \int_E g_n d\mu = 2 \int_E F d\mu$

$$\int_{E} g_n d\mu = \int_{E} 2F d\mu - \int_{E} |f_n - f| d\mu$$

Из двух строчек выше делаем вывод, что
$$\underbrace{\int_E |f_n - f| d\mu}_{\geq |\int_E (f_n - f) d\mu| = |\int_E f_n d\mu - \int_E f d\mu|}_{\geq |f_n - f| d\mu|} \to 0$$

Замечание. 1. Без суммир. мажоранты неверно:

$$f_n = n \cdot \mathbb{1}_{[0,\frac{1}{n}]} \to f = \begin{cases} +\infty, & \text{в точке } 0\\ 0, otherwise \end{cases}$$

$$\tag{4}$$

$$\int_{[0,1]} f d\lambda = 0$$
, $\int_{[0,1]} f_n d\lambda = 1$, $F := \sup f_n$, $F(x) = n$ при $\frac{1}{n+1} < x \le \frac{1}{n}$

2. Поточечную сходимость можно заменить на сходимость почти везде, можно заменить и на сходимость по мере.

Теорема 2.23. Пусть $f \in C[a,b]$. Тогда $\int_a^b f = \int_{[a,b]} f d\lambda$.

Доказательство. $a = x_0$

$$b = x_n$$
 $S_* := \sum_{k=1}^n \min_{t \in [x_{k-1}, x_k]} f(t) \cdot (x_k - x_{k-1})$
 $S^* := \sum_{k=1}^n \max_{t \in [x_{k-1}, x_k]} f(t) \cdot (x_k - x_{k-1})$
Если мелкость дробления $\to 0$, то $S_*, S^* \to \int_a^b f$.

 $g_*(x) := \min_{t \in [x_{k-1}, x_k]} f(t)$ при $x \in [x_{k-1}, x_k]$
 $g^*(x) := \max_{t \in [x_{k-1}, x_k]} f(t)$ при $x \in [x_{k-1}, x_k]$
 $\int_{[a,b]} g_* d\lambda = S_*, \ \int_{[a,b]} g^* d\lambda = S^*$
 $g_* \le f \le g^*$ почти везде.

 $S_* = \int_{[a,b]} g_* d\lambda \le \int_{[a,b]} f d\lambda \le \int_{[a,b]} g^* d\lambda = S^* \Longrightarrow \int_{[a,b]} f d\lambda = \int_a^b f$

Замечание. На самом деле это верно для любой функции, интегрир. по Риману на [a,b].

Теорема 2.24. (Критерий Лебега интегрированности по Риману).

 $f:[a,b] \to \mathbb{R}$, тогда f – интегрируема по Риману \Leftrightarrow множество точек разрыва f имеет нулевую меру Лебега.

Пример. Возьмем $f:[0,1] \to \mathbb{R}, \ f=\mathbb{1}_{[0,1]\cap \mathbb{Q}}.$ f=0 почти везде $\Longrightarrow \int_{[0,1]} f d\lambda = 0$, но точки разрыва – весь отрезок [0,1].

2.6. Произведение мер

Определение 2.14. (X, \mathcal{A}, μ) и (Y, \mathcal{B}, ν) – простариства с σ -конечными мерами.

$$\mathcal{P}=\{A\times B:\ A\in\mathcal{A},\ B\in\mathcal{B},\ \mu A<+\infty\ \land\ \nu B<+\infty\}$$
 $m_0(A\times B)=\mu A\cdot \nu B<+\infty,\ A\times B$ – измеримый прямоугольник.

Теорема 2.25. \mathcal{P} – полукольцо, а m_0 – σ -конечная мера на нем.

Доказательство. $\{A \in \mathcal{A} : \mu A < +\infty\}$ и $\{B \in \mathcal{B} : \nu B < +\infty\}$ – полукольца (проверяем определение полукольца для обоих множеств).

 \mathcal{P} – декартово произведение полуколец, то есть тоже полукольцо (эта по теореме, которая была выше).

Проверяем, что m_0 – мера. Пусть $A \times B = \bigsqcup_{k=1}^{\infty} A_k \times B_k$. $\mathbb{1}_A(x) \times \mathbb{1}_B(y) = \mathbb{1}_{A \times B}(x,y) = \sum_{k=1}^{\infty} \mathbb{1}_{A_k \times B_k}(x,y) = \sum_{k=1}^{\infty} \mathbb{1}_{A_k}(x) \times \mathbb{1}_{B_k}(y)$ $\int_Y \mathbb{1}_A(x) \cdot \mathbb{1}_B(Y) d\nu(y) = \sum_{k=1}^{\infty} \int_Y \mathbb{1}_{A_k}(x) \cdot \mathbb{1}_{B_k}(y) d\nu(y) = \sum_{k=1}^{\infty} \mathbb{1}_{A_k}(x) \cdot \nu B_k$ $\int_X \mathbb{1}_A(x) \nu B d\mu(x) = \sum_{k=1}^{\infty} \int_X \mathbb{1}_{A_k}(x) \cdot \nu B_k d\mu(x) = \sum_{k=1}^{\infty} \mu A_k \cdot \nu B_k = \sum_{k=1}^{\infty} m_0(A_k \times B_k)$ σ -конечность m_0 : $X = \bigsqcup_{j=1}^{\infty} X_j$, $Y = \bigsqcup_{j=1}^{\infty} Y_j$, $\mu X_j < +\infty$, $\nu Y_k < +\infty$ $X \times Y = \bigsqcup_{k,j=1}^{\infty} X_j \times Y_k$ $m_0(X_j \times Y_k) < +\infty$.

Определение 2.15. (X, \mathcal{A}, μ) и (Y, \mathcal{B}, ν) – пространства с σ -конечными мерами. Произведения мер μ и ν – стандратное продолжение меры m_0 .

Обозначение: $\mu \times \nu$, $\mathcal{A} \otimes \mathcal{B} - \sigma$ -алгебра, на которую продолжили. $(X \times Y, \mathcal{A} \otimes \mathcal{B}, \mu \times \nu)$

Следствие. 1. Декартово произвдедение измер мн-в – измеримо.

2. Если $\mu e = 0$, то $(\mu \times \nu)(e \times Y) = 0$.

Доказательство. 1.
$$A \in \mathcal{A} \implies A = \bigcup_{n=1}^{\infty} A_n, \ \mu A_n < +\infty$$
 $B \in \mathcal{B} \implies B = \bigcup_{n=1}^{\infty} B_n, \ \nu B_n < +\infty$ $A \times B = \bigcup_{k,n=1}^{\infty} \underbrace{A_k \times B_k}_{\in \mathcal{D}}$ – измер.

2.
$$Y = \bigsqcup_{k=1}^{\infty} Y_k, \ \nu Y_k < +\infty$$

 $e \times Y = \bigsqcup_{k=1}^{\infty} e \times Y_k, \ (\mu \times \nu)(e \times Y_k) = \mu e \cdot \nu Y_k = 0$

Замечание. Обозначения: $C \subset X \times Y, x \in X$.

$$C_x := \{ y \in Y : (x, y) \in C \}$$
 – сечения мн-ва C .
 $C^y := \{ x \in X : (x, y) \in C \}$

$$C^s := \{x \in X : (x,y) \in C\}$$

Cnedcmeue. 1.
$$\left(\bigcup_{\alpha\in I} C_{\alpha}\right)_{x} = \bigcup_{\alpha\in I} (C_{\alpha})_{x}$$

2.
$$\left(\bigcap_{\alpha \in I} C_{\alpha}\right)_{x} = \bigcap_{\alpha \in I} (C_{\alpha})_{x}$$

Определение 2.16. Пусть функция f задана на мн-ве E, за исключением некоторого мн-ва e, $\mu e = 0$. Если f измерима на $E \setminus e$, то f измерима на E в **широком смысле**.

Определение 2.17. Система мнжеств – монотонный класс, если

1.
$$E_1 \subset E_2 \subset E_3 \subset \dots$$
, $E_n \in \epsilon \implies \bigcup_{n=1}^{\infty} E_n \in \epsilon$

2.
$$E_1 \supset E_2 \supset E_3 \supset \dots, E_n \in \epsilon \implies \bigcap_{n=1}^{\infty} E_n \in \epsilon$$

Теорема 2.26. Если монотонный класс содержит алгебру \mathcal{A} , то он содержит и $\mathcal{B}(\mathcal{A})$.

Доказательство. Докажем, что минимальный монотонный класс \mathcal{M} , содержащий $\mathcal{A}-\sigma$ -алгебра.

Рассмотрим $A \in \mathcal{A}$, $\mathcal{M}_A := \{B \in \mathcal{M}: A \cap B \in \mathcal{M} \land A \cap (X \setminus B) \in \mathcal{M}\}$ – монотонный класс, содержащий \mathcal{A} .

Если
$$B \in \mathcal{A}$$
, то $B \cap A \in \mathcal{A} \subset \mathcal{M}$ и $A \cap (X \setminus B) \in \mathcal{A} \subset \mathcal{M} \implies \mathcal{M}_A \supset \mathcal{A}$

$$E_1 \subset E_2 \subset \dots, E_n \in \mathcal{M}_A \implies E_n \cap A \in \mathcal{M} \implies \bigcup_{E_n} \cap A = \bigcup (E_n \cap A) \in \mathcal{M}$$

Следовательно
$$\mathcal{M}_A = \mathcal{M} \implies \forall B \in \mathcal{M}, \ A \cap B \in \mathcal{M} \land A \setminus B \in \mathcal{M}$$

 $\implies \mathcal{M}$ – симметричная структура.

Рассмотрим $B \in \mathcal{M}$: $\mathcal{N}_B := \{C \in \mathcal{M} : B \cap C \in \mathcal{M}\}$ – монотонный класс, содержащий \mathcal{A} (проверка по аналогии с предыдщуим случаем).

$$\implies \mathcal{N}_B = \mathcal{M} \implies \forall C \in \mathcal{M}, \ B \cap C \in \mathcal{M} \implies \mathcal{M}$$
 – алгебра.

$$A = \bigcup_{n=1}^{\infty} A_n, \ E_n = \bigcup_{k=1}^n A_k \in \mathcal{M}, \ E_1 \subset E_2 \subset \dots$$

$$\Longrightarrow \bigcup_{i=1}^{n-1} E_n \in \mathcal{M}$$
, так как \mathcal{M} – монотонный класс.

Теорема 2.27. Принцип Кавальери.

 $(X, A, \mu), (Y, B, \nu)$ - пространства с полными σ -конечными мерами.

$$C \in \mathcal{A} \otimes \mathcal{B}, \ m = \mu \times \nu.$$
 Тогда

- 1. $C_x \in \mathcal{B}$ при почти всех $x \in X$.
- 2. $\phi(x) := \nu C_x$ измеримая в широком смысле.

3.
$$mC = \int_{Y} \nu C_x d\mu(x)$$

Доказательство. Меры конечны и $C \in$

$$\mathscr{B}$$
 $(\mathcal{A} \times \mathcal{B}).$

борелевская оболочка (см. определение 1.7)

 \mathcal{E} – система мн-в, в $\mathscr{B}(\mathcal{A} \times \mathcal{B})$, такая что, если $E \in \mathcal{E}$, то $E_x \in \mathcal{B} \ \forall x \in X$ и $\phi(x) = \nu E_x$ – измеримая функция.

Шаг 1.
$$\mathcal{E} = \mathcal{B}(\mathcal{A} \times \mathcal{B})$$

 \mathbf{a} . \mathcal{E} – измеримая система.

$$(X \times Y \setminus E)_x = Y \setminus E_x \in \mathcal{B}, \ \nu(Y \setminus E_x) = \nu Y - \phi(x)$$
 – измеримая.

б. $E_1 \subset E_2 \subset E_3 \subset \dots$ из $\mathcal{E} \implies \bigcup E_n \in \mathcal{E}$.

$$\left(\bigcup_{n=1}^{\infty} E_n\right)_x = \bigcup_{n=1}^{\infty} \underbrace{\left(E_n\right)_x}_{\in \mathcal{B}}$$

 $\nu\left(\bigcup_{n=1}^{\infty}(E_n)_x\right)=\lim \nu(E_n)_x$ – измеримая функция.

в. $E_1 \supset E_2 \supset E_3 \supset \dots$ из $\mathcal{E} \implies \bigcap_{n=1}^{\infty} E_n \in \mathcal{E}$ (можно переходить к дополнениям).

 \mathbf{r} . (б) + (в) $\Longrightarrow \mathcal{E}$ - монотонный класс.

д.
$$\mathcal{E} \supset$$
 измеримый прямоугольник $E = \mathcal{A} \times \mathcal{B} \implies E_x = \begin{cases} B, \text{ если } x \in \mathcal{A} \\ \varnothing, \text{ иначе} \end{cases}$,

$$u E_x = \begin{cases} 0 \\ \nu \mathcal{B} \end{cases}$$
 – измеримая функция.

e. Если E и $\tilde{E} \in \mathcal{E}$, то $E \sqcup \tilde{E} \in \mathcal{E}$.

$$(E \sqcup \tilde{E})_x = \underbrace{E_x}_{\in \mathcal{B}} \sqcup \underbrace{\tilde{E}_x}_{\in \mathcal{B}} \in \mathcal{B}$$

$$u\left((E\sqcup \tilde{E})_x\right)=\nu E_x+\nu \tilde{E}_x$$
 – сумма измеримых функций.

ж. \mathcal{E} содержит дизъюнктивное объединение всевозможных изм. прямоугольников $\implies \mathcal{E}$ содержит кольцо $\implies \mathcal{E}$ содержит алгебру $\implies \mathcal{E} \supset \mathscr{B}(\mathcal{A} \times \mathcal{B}).$

по т. о монотонном классе

Мы сейчас проверили, что если $C \in \mathcal{B}(\mathcal{A} \times \mathcal{B})$, то первые два пункта теоремы выполнены. Давайте для этой эе упрощенной ситуации проверять 3-ий пункт.

Шаг 2. Формула (3) для $C \in \mathcal{B}(\mathcal{A} \times \mathcal{B})$.

Рассмотрим $\int_X \nu E_x d\mu(x) =: \tilde{m}E$ – хотим сказать, что это мера на $\mathscr{B}(\mathcal{A} \times \mathcal{B})$.

Пусть E_n – дизъюнктны \Longrightarrow $\tilde{m}(\bigsqcup E_n) = \int_X \nu\left(\bigsqcup(E_n)_x\right) d\mu(x) = \int_X \sum_{n=1}^\infty \nu(E_n)_x d\mu(x) = \sum_{n=1}^\infty \int_X \nu(E_n)_x d\mu(x) = \sum_{n=1}^\infty \tilde{m} E_n.$

 $m=\tilde{m}$ на измеримых прямоугольниках \implies они совпадают. Получили, что хотели.

Шаг 3.
$$mC=0,\ C\in\mathcal{A}\otimes\mathcal{B}\implies$$
 найдется $\tilde{C}\in\mathscr{B}(\mathcal{A}\times\mathcal{B}),$ т.ч. $C\subset\tilde{C}$ и $m\tilde{C}=0.$

$$0 = m\tilde{C} = \int_{X} \nu \tilde{C}_{x} d\mu(x) \implies \nu \tilde{C}_{x} = 0$$
 при почти всех $x \in X$.

 $C_x \subset \tilde{C}_x \implies C_x \in \mathcal{B}$ при почти всех $x \in X$ и $\nu C_x = 0$ при потчи всех $x \in X$.

$$mC = 0 = \int_X \nu C_x d\mu(x).$$

Шаг 4. $C \in \mathcal{A} \otimes \mathcal{B} \implies C = \tilde{C} \sqcup e, \ \tilde{C} \in \mathscr{B}(\mathcal{A} \times \mathcal{B}), \ me = 0.$

$$C_x = \underbrace{\tilde{C}_x}_{\text{изм. } \forall x \in X} \sqcup \underbrace{e_x}_{\text{изм. при почти всех } x}, \ \nu C_x = \nu \tilde{C}_x + \nu e_x = \nu \tilde{C}_x.$$

$$mC = m\tilde{C} + me = m\tilde{C} = \int_X \nu \tilde{C}_x d\mu(x) = \int_X \nu C_x d\mu(x).$$

IIIar 5.
$$X = \bigsqcup_{n=1}^{\infty} X_n, Y = \bigsqcup_{k=1}^{\infty} Y_k, \mu X_n < +\infty.$$

$$X \times Y = \bigsqcup_{n,k=1}^{\infty} X_n \times Y_k$$

 $C \in \mathcal{A} \otimes \mathcal{B}, \ C_{nk} = C \cap X_n \times Y_k \implies C_{nk}$ удовлетворяет теореме.

$$C_x = \bigsqcup_{n,k=1}^{\infty} (C_{nk})_x$$

$$mC = \sum_{n,k=1}^{\infty} mC_{nk} = \sum_{n,k=1}^{\infty} \int_{X} \nu(C_{nk})_x d\mu(x) = \int \sum \dots = \int_{X} \nu C_x d\mu.$$

Замечание. 1. Нужна лишь полнота ν .

2. Измеримость всех C_x не гарантирует измеримость C.

Доказательство.
$$\mathbb{R}^2$$
, $E \subset \mathbb{R}$ – неизмеримое, $E \times [0,1]$

3. Среди C_x могут попадаться неизмеримые.

Доказательство.
$$\mathbb{R}^2$$
, $E \subset \mathbb{R}$ – неизмеримые, $\{0\} \times E$

4. Хочется интегрировать не по X, а по проекции, то есть $P := \{x \in X : C_x \neq \emptyset\}$. Но P может быть неизмеримо.

Доказательство. $E \subset \mathbb{R}$ — неизмеримое, решение проблемы, это взять $\tilde{P} := \{x \in X : \nu C_x > 0\}$ — измеримое.

Определение 2.18. (X, \mathcal{A}, μ) – пр-во с σ -конечной мерой.

$$f:X o \overline{\mathbb{R}},\ f\geq 0,\ E\in \mathcal{A},\ m=\mu imes$$
одномерная мера Лебега

График функции над мн-вом E:

$$\Gamma_f(E) := \{ (x, y) \in X \times \mathbb{R} : y = f(x) \}$$

$$\mathcal{P}_f(x) := \{(x, y) \in X \times \mathbb{R} : 0 \le y \le f(x)\}$$

Лемма. (Лемма 1).

Если f – измеримая, то $m\Gamma_f = 0$.

Доказательство. Пусть $\mu X < +\infty$. Возьмем $\epsilon > 0$ и $A_n := X\{\epsilon \cdot n \le f < \epsilon \cdot (n+1)\}$

$$\Gamma_f \subset \bigsqcup_{n \in \mathbb{Z}} (A_n \times [\epsilon \cdot n, \epsilon \cdot (n+1)]) =: A.$$

$$mA = \sum_{n \in \mathbb{Z}} m \left(A_n \times [\epsilon \cdot n, \epsilon \cdot (n+1)] \right) = \epsilon \cdot \sum_{n \in \mathbb{Z}} \mu A_n = \epsilon \cdot \mu X$$
 – сколь угодно маленькое.

Пусть μ – σ -конечна. $X = \bigsqcup_{n=1}^{\infty} X_n, \ \mu X_n < +\infty,$

$$\Gamma_f = \bigsqcup_{n=1}^{\infty} \Gamma_f(X_n)$$
 – нулевой меры.

Лемма. (Лемма 2).

 $f \geq 0$ – измерима в широком смысле $\implies \mathcal{P}_f$ – измеримое мн-во.

Доказательство. 1. Пусть f – простая $\implies f = \sum_{k=1}^{n} a_k \mathbb{1}_{A_k} \implies \mathcal{P}_f = \bigsqcup_{k=1}^{n} A_k \times [0, a_k]$ – измеримое.

2. Пусть f – измеримая $\implies 0 \le \phi_1 \le \phi_2 \le \cdots \le \phi_n \to f$ – простые $\phi_i, \mathcal{P}_{\phi_n} \subset \mathcal{P}_f$.

$$\mathcal{P}_f \setminus \Gamma_f \subset \bigcup_{n=1}^{\infty} \mathcal{P}_{\phi_n} \subset \mathcal{P}_f.$$

Берем $x \in X$.

Если

(a) $f(x) = +\infty$, то $\phi_n(x) \to +\infty$, над точкой x, $[0, \phi_n(x)]$ их объединие будет луч.

(b)
$$f(x) < +\infty$$
, to $\phi_n(x) \to f(x)$, $\bigcup [0, \phi_n(x)] \supset [0, f(x)]$

Теорема 2.28. (О мере подграфика).

 (X,\mathcal{A},μ) – пространство с σ -конечной мерой, $f\geq 0,\ f:X\to\overline{\mathbb{R}},\ m=\mu\times\lambda_1.$

Тогда f – измеримая в широком смыслке $\Leftrightarrow \mathcal{P}_f$ – измер. и в этом случае $\int_X f d\mu = m \mathcal{P}_f$.

Доказательство. "⇒": Лемма 2.

" \Leftarrow ": принцип Кавальери для \mathcal{P}_f :

$$(\mathcal{P}_f)_x = \begin{cases} [0, +\infty), \text{ при } f(x) = +\infty\\ [0, f(x)), \text{ при } f(x) < +\infty \end{cases}$$
 (5)

$$\phi(x) := \lambda_1(\mathcal{P}_f)_x = \underbrace{f(x)}_{}$$

$$\phi(x):=\lambda_1(\mathcal{P}_f)_x=\underbrace{f(x)}_{ ext{измеримая в широком смысле}}$$
 $m\mathcal{P}_f=\int_X \underbrace{\lambda\left((\mathcal{P}_f)_x\right)}_{=f(x)} d\mu(x)$ — получили, что хотели.

Теорема 2.29. Тонелли.

 $(X, A, \mu), (Y, B, \nu)$ – пространства с полными σ -конечными мерами.

 $f: X \times Y \to \overline{\mathbb{R}} \geq 0$, измеримая, $m = \mu \times \nu$.

Тогда:

- 1. $f_x(y) := f(x,y)$ измерима, относительно ν в широком смысле при почти всех $x \in X$.
- 2. $\phi(x) := \int_{V} f(x,y) d\nu(y)$ измерима относительно ν .
- 3. $\int_{X \times Y} f dm = \int_{Y} \phi d\mu = \int_{Y} \left(\int_{Y} f(x, y) d\nu(y) \right) d\mu(x)$

Доказательство. 1. Пусть $f = \mathbb{1}_C$ (характеристическая функция мн-ва C), тогда $f_x(y) =$ $\mathbb{1}_{C_{r}}(y)$.

$$\int_Y f_x(y) d\nu(y) = \int_Y \mathbb{1}_{C_x}(y) d\nu(y) = \nu C_x$$

$$\int_{X\times Y} f dm = \int_{X\times Y} \mathbb{1}_C dm = mC = \int_X \nu C_x d\mu(x) = \int_X \phi d\mu.$$

- 2. Пусть $f \ge 0$ простая, тогда $f = \sum_{k=1}^{n} a_k \mathbb{1}_{A_k}$
- 3. Пусть $f \ge 0$ измеримая, тогда берем последовательность простых функций $0 \le f_1 \le f_2 \le$ \dots , $\lim f_n = f$.

 $(f_n)_x(y)$ – измерим. при почти всех x.

 $(f_n)_x \nearrow f_x$ – измерим. при почти всех x.

$$\phi_n(x) = \int_Y f_n(x,y) d\nu(y)$$
 – измерим. и $0 \le \phi_1 \le \phi_2 \le \dots$

$$\lim \phi_n(x) = \int_Y \lim f_n(x,y) d\nu(y) = \int_Y f(x,y) d\nu(y) = \phi(x) - \text{измерим.}$$

$$\int_{X \times Y} f dm \underset{\text{т. Леви}}{\longleftarrow} \int_{X \times Y} f_n dm = \int_X \phi_n d\mu \to \int_X \phi d\mu.$$

Теорема 2.30. Фубини.

 $(X, A, \mu), (Y, B, \nu)$ – пространства с полными σ -конечными мерами.

 $f: X \times Y \to \overline{\mathbb{R}} \ge 0$, суммируема, $m = \mu \times \nu$.

Тогда:

- 1. $f_x(y) := f(x,y)$ суммируема, относительно ν в широком смысле при почти всех $x \in X$.
- 2. $\phi(x) := \int_{V} f(x,y) d\nu(y)$ суммируема относительно ν .
- 3. $\int_{X\times Y} fdm = \int_X \phi d\mu = \int_X \left(\int_Y f(x,y) d\nu(y) \right) d\mu(x)$

Доказательство. (*): $\int_{X\times Y} |f| dm < +\infty$ – следует из суммируемости f.

$$(*) \underbrace{=}_{\text{т. Тонелли}} = \int_X \underbrace{\int_Y |f(x,y)| d\nu(y)}_{:=\alpha(x)} d\mu(x)$$

$$lpha(x) = \underbrace{\int_Y |f(x,y)| d
u(y)}_{\Rightarrow f_x - \text{суммируема при почти всех } x \in X.$$

$$\int_X |\phi| d\mu = \int_X \left| \int_Y f(x,y) d\nu(y) \right| d\mu(x) \le \int_X \int_Y |f(x,y)| d\nu(y) d\mu(x) = \int_{X \times Y} |f| dm < +\infty$$
 $\Longrightarrow \phi$ – суммируема.

$$\int_{X\times Y} f_{\pm} dm = \int_X \left(\int_Y f_{\pm}(x, y) d\nu(y) \right) d\mu(x) \text{ и вычтем } f = f_+ - f_-.$$

Следствие. Если $f \ge 0$ и измеримая или f – суммируемая, то

(**):
$$\int_X \left(\int_Y f(x,y) d\nu(y) \right) d\mu(x) = \int_Y \left(\int_X f(x,y) d\mu(x) \right) d\nu(y).$$

Следствие. $(X, \mathcal{A}, \mu), (Y, \mathcal{B}, \nu)$ – пространства с полными σ -конечными мерами.

 $f: X \to \overline{\mathbb{R}}$ – суммируема по $\mu, q: Y \to \overline{\mathbb{R}}$ – суммируема по ν .

Тогда $h(x,y)=f(x)\cdot g(y)$ суммируема по $m=\mu\times \nu$ и $\int_{X\times Y}hdm=\int_Xfd\mu\cdot\int_Ygd\nu.$

Доказательство.
$$\int_{X \times Y} |h| dm = \int_{T. \text{ Тонелли}} = \int_{X} \left(\int_{Y} |f(x)| |g(y)| d\nu(x) \right) d\mu(x) = \int_{X} \int_{X} \int_{X} |f(x)| d\mu(x) d\mu(x) d\mu(x) d\mu(x)$$

$$=\int_X |f(x)|\cdot \int_Y |g(y)| d\nu(y) d\mu(x) = \int_Y |g| d\nu \cdot \int_X |f| d\mu < +\infty \implies h$$
 – суммируема.

По Фубини пишем все без модулей.

- 1. Суммируемости $f_x(y) = f(x,y), \ f^y(x) = f(x,y), \ \phi(x) = \int_X f_x d\nu, \ \psi(y) = \int_X f^y d\mu$ не хватает для суммируемости f по мере m.
 - 2. Без суммируемости f по m равенства (**) может не быть.

Пример.
$$\mathbb{R}^2$$
, $f(x,y) = \frac{x^2 - y^2}{(x^2 + y^2)^2}$, $g(x,y) = \frac{2xy}{(x^2 + y^2)^2}$

Первообразные:

1.
$$\int f(x,y)dx = -\frac{x}{x^2+y^2}$$

2.
$$\int g(x,y)dx = -\frac{y}{x^2+y^2}$$

Подставляем:

1.
$$\int_{[-1,1]} f(x,y) dx = -\frac{x}{x^2 + y^2} \Big|_{x=-1}^{x=1} = \frac{-2}{y^2 + 1}$$

$$\int_{[-1,1]} \int_{[-1,1]} f(x,y) dx dy = -2 \int_{[-1,1]} \frac{dy}{y^2 + 1} = -2 \cdot \arctan(y)|_{-1}^1 = -\pi$$

 $\int_{[-1,1]} \int_{[-1,1]} f(x,y) dy dx = \pi$ – не совпали из-за отсутствия суммируемости.

2.
$$\int_{[-1,1]} g(x,y)dx = -\frac{y}{x^2+y^2}|_{x=-1}^{x=1} = 0$$

Теорема 2.31. (X,\mathcal{A},μ) – пространство с σ -конечной мерой, $f:X\to\overline{\mathbb{R}}$ – измерим.

 $\int_X |f| d\mu = \int_0^{+\infty} \mu X\{|f| \geq t\} dt$ (с кобках это функция распределения).

Доказательство. $m = \mu \times \lambda_1$.

$$\int_{X} |f| d\mu = m \mathcal{P}_{|f|} = \int_{[0,+\infty]} \left(\int_{X} \underbrace{\mathbb{1}_{\mathcal{P}_{|f|}}(x,t)}_{=1 \Leftrightarrow |f(x)| \geq t} d\mu(x) \right) d\lambda_{1}(t) = \int_{[0,+\infty]} \mu X\{|f| \geq t\} d\lambda_{1}(t).$$

Следствие. 1. В условии теоремы $\int_X |f| d\mu = \int_0^{+\infty} \mu X\{|f| > t\} dt$

Доказательство. $g(t) := \mu X\{|f| \ge t\}$ – монотонно возраст., не более чем счтеное число точек разрыва.

$$\mu X\{|f|>t\}=\lim \mu X\{|f|\geq t+\frac{1}{n}\}=\lim_{n\to\infty}g(t+\frac{1}{n})=\lim_{s\to t+}g(s)=g(t)$$
 при почти всех $t.$
$$X\{|f|>t\}=\bigcup_{n=1}^{\infty}X\{|f|\geq t+\frac{1}{n}\}$$

2.
$$\int_X |f|^p d\mu = \int_0^{+\infty} pt^{p-1} \mu X\{|f| \ge t\} dt$$
 при $p > 0$.

Доказательство. $\int_X |f|^p d\mu = \int_0^{+\infty} \mu X\{|f|^p \ge t\} dt = \int_0^{+\infty} \mu X\{|f| \ge t^{\frac{1}{p}}\} dt = \int_0^{+\infty} g(t^{\frac{1}{p}}) dt = \int_0^{+\infty} p s^{p-1} g(s) ds$

Где
$$t = s^p$$
, $s = t^{\frac{1}{p}}$, $dt = ps^{p-1}ds$.