Semantics and Verification

Lecture 5

1 March 2010

Overview

Last lecture:

Weak bisimilarity

This lecture:

Hennessy-Milner logic

Next lecture:

Tarski's fixed-point theorem

Hennessy-Milner Logic

- Equivalence Checking vs. Model Checking
- Modal and Temporal Properties
- Hennessy-Milner Logic
- 4 HML and Strong Bisimilarity

Verifying Correctness of Reactive Systems

Equivalence Checking Approach

$Impl \equiv Spec$

- ullet \equiv is an abstract equivalence, e.g. \sim or pprox
- Spec is often expressed in the same language as Impl
- Spec provides the full specification of the intended behaviour

Model Checking Approach

Impl |= *Property*

- ullet \models is the satisfaction relation
- Property is a particular feature, often expressed via a logic
- Property is a partial specification of the intended behaviour

Model Checking Properties HML Strong Bisimilarity

Model Checking of Reactive Systems

Our Aim

Develop a logic in which we can express interesting properties of reactive systems.

Logical Properties of Reactive Systems

Modal Properties – what can happen now (possibility, necessity)

- drink a coffee (can drink a coffee now)
- does not drink tea
- drinks both tea and coffee
- drinks tea after coffee

Temporal Properties – behaviour in time

- never drinks any alcohol (safety property: nothing bad can happen)
- eventually will have a glass of wine (liveness property: something good will happen)

Hennessy-Milner Logic: Syntax

Syntax of the Formulae ($a \in Act$)

$$F, G ::= tt \mid ff \mid F \wedge G \mid F \vee G \mid \langle a \rangle F \mid [a]F$$

Intuition:

- tt all processes satisfy this property
- ff no process satisfies this property
- ∧, ∨ usual logical AND and OR
- ⟨a⟩F there is at least one a-successor that satisfies F
- [a]F all a-successors have to satisfy F

Remark

Temporal properties like *always/never in the future* or *eventually* are not included. (Wait for Lecture 7.)

Let $(Proc, Act, \{\stackrel{a}{\longrightarrow} | a \in Act\})$ be an LTS.

Validity of the logical triple $p \models F$ ($p \in Proc, F$ a HML formula)

$$p \models tt$$
 for each $p \in Proc$
 $p \models ff$ for no p (we also write $p \not\models ff$)
 $p \models F \land G$ iff $p \models F$ and $p \models G$
 $p \models F \lor G$ iff $p \models F$ or $p \models G$
 $p \models \langle a \rangle F$ iff $p \stackrel{a}{\Longrightarrow} p'$ for some $p' \in Proc$ such that $p' \models F$
 $p \models [a]F$ iff $p' \models F$, for all $p' \in Proc$ such that $p \stackrel{a}{\Longrightarrow} p'$

We write $p \not\models F$ whenever p does not satisfy F.

What about Negation?

For every formula F we define the formula F^c as follows:

- $tt^c = ff$
- $ff^c = tt$
- $\bullet (F \wedge G)^c = F^c \vee G^c$
- $\bullet (F \vee G)^c = F^c \wedge G^c$
- $(\langle a \rangle F)^c = [a]F^c$
- $\bullet ([a]F)^c = \langle a \rangle F^c$

Theorem (F^c is equivalent to the negation of F)

For any $p \in Proc$ and any HML formula $F: p \models F \iff p \not\models F^c$

Hennessy-Milner Logic: Denotational Semantics

For a formula F let $\llbracket F \rrbracket \subseteq Proc$ contain all states that satisfy F.

Denotational Semantics: $[\![_]\!]$: Formulae \rightarrow 2^{Proc}

- [[tt]] = *Proc*
- $\bullet \ \llbracket \mathit{ff} \rrbracket = \emptyset$
- $\bullet \ \llbracket F \lor G \rrbracket = \llbracket F \rrbracket \cup \llbracket G \rrbracket$
- $\bullet \ \llbracket F \wedge G \rrbracket = \llbracket F \rrbracket \cap \llbracket G \rrbracket$
- $\bullet \ \llbracket \langle a \rangle F \rrbracket = \langle \cdot a \cdot \rangle \llbracket F \rrbracket$
- $\bullet \ \llbracket [a]F \rrbracket = [\cdot a \cdot] \llbracket F \rrbracket$

where $\langle \cdot a \cdot \rangle, [\cdot a \cdot] : 2^{Proc} \rightarrow 2^{Proc}$ are defined by

$$\langle \cdot a \cdot \rangle S = \{ p \in Proc \mid \exists p'. \ p \xrightarrow{a} p' \text{ and } p' \in S \}$$

 $[\cdot a \cdot] S = \{ p \in Proc \mid \forall p'. \ p \xrightarrow{a} p' \implies p' \in S \}$

Fact: $p \models F$ iff $p \in \llbracket F \rrbracket$

Image-Finite Labelled Transition System

Image-Finite System

Let $(Proc, Act, \{\stackrel{a}{\longrightarrow} | a \in Act\})$ be an LTS. We call it image-finite iff for every $p \in Proc$ and every $a \in Act$ the set

$$\{p' \in Proc \mid p \stackrel{a}{\longrightarrow} p'\}$$

is finite.

Relationship between HML and Strong Bisimilarity

Hennessy-Milner Theorem

Let $(Proc, Act, \{ \stackrel{a}{\longrightarrow} | a \in Act \})$ be an image-finite LTS and $p, q \in Proc$. Then

$$p \sim q$$

if and only if

for every HML formula $F: (p \models F \iff q \models F)$.

- One says that HML is adequate with respect to strong bisimilarity for image-finite LTS.
- Image-finiteness is only needed for the back implication.

Model Checking Properties HML Strong Bisimilarity