

MATERIALS FOR INDIVIDUAL CHEMICAL/BIOLOGICAL PROTECTION

Dr. Eugene Wilusz
Chemical Technology Team
Natick Soldier Center
U.S. Army Soldier and Biological Chemical Command

ATTN: AMSSB-RIP-C(N)
Natick, MA 01760
COM: (508) 233-5486
FAX: (508) 233-4994
EMAIL: ewilusz@natick-emh2.army.mil

**APBI - 23 Jun
99**

OUTLINE

- **Objectives/Technical Challenges**
 - Material Concepts
 - Performance Goals
 - Closure Systems
 - Indicators/Sensors
 - Plans
 - Summary

OBJECTIVES/TECHNICAL CHALLENGES

- **Develop CB protective materials that:**
 - Protect against CB warfare agents in liquid, vapor, and aerosol forms
 - Are waterproof and have high evaporative cooling potentials
 - Are flexible, durable, thin, lightweight, low-noise,
- **low-cost,
and launderable**
- **Develop advanced techniques for characterization of membrane barrier/transport properties**

Develop a lightweight CB protective duty uniform that will be more durable, 30% lighter in weight, and less bulky than the JSLIST duty uniform and overgarment

TYPES OF MATERIALS

This is the
major thrust
of our
program.

MATERIAL CONCEPT

Water vapor molecules selectively dissolve into the coating or membrane material, diffuse across it, and desorb into the environment, while organic vapor molecules are prevented from permeating through the polymeric material structure.

Selectively Permeable
Membrane

Relative Size of Water and Soman Chemical Warfare Agent Molecules

Water (H_2O)

Soman (GD)

Molecular Weights of Water and Chemical Agents

Molecules	MW (g/mol)	Molecules
	MW (g/mol)	
Water (H ₂ O)	18	Blister Agents (Skin):
		Mustard (HD) 159
Nerve Agents (Nervous Systems):	170	Nitrogen Mustard (HN-1)
Soman (GD) 93	182	Nitrogen Mustard (HN-2)
Sarin (GB) 205	140	Nitrogen Mustard (HN-3)
Tabun (GA)	162	Phosgene Oxime (CX) 123
CMPF (GF)	180	Lewisite (L) 208
VX	267	Phenyldichloroarsine (PD)
	224	
VE	239	Ethyldichloroarsine (ED)
	175	
	161	Methyldichloroarsines (MD)
Choking Agents (Respiratory):		
Phosgene (CG)	99	Stimulators (Nose & Throat)
Diphosgene	198	Diphenylchloroarsine (DA)
	267	Adamite (DN) 282

PERFORMANCE GOALS

Chemical Agent Protection: Blister agents (HD), Nerve agents (GB, GD, VX)

Biological Agent Protection: ALL Bacteria and viruses (size: 10 to 10 $^{-3}$ μm)

Water Vapor Flux @ 32°C $\geq 1800 \text{ g.m}^{-2}/24 \text{ h}$
[or Intrinsic Water Vapor Resistance $\leq 300 \text{ s/m}^*$]

Hydrostatic Resistance $\geq 35 \text{ lb/in}^2$

Bonding Strength $\geq 10 \text{ lb/in}^2$

Stiffness $\leq 0.01 \text{ lb}$

Weight $\leq 7 \text{ oz/yd}^2$

Thickness $\leq 18 \text{ mils}$

Torsional Flexibility: Pass

*Natick Dynamic Moisture Vapor Permeation Cell.
Water Permeability after flexing at 70 °F and -25 °F: Pass

U.S. Army Soldier Systems Center • Natick, MA

Natick Soldier Center

A Closure System is Required

Relative Vapor Penetration on Uniforms:

- █ A
- █ B Lowest
- █ C
- █ D
- █ E
- █ F
- █ G Highest

Residual Life Indicator

Technology Search - FY99

- o Organic vapor sensors**
- o Chemiresistor sensors**
- o Conductive polymers**
- o Probe molecules**
- o pH and chemical devices**
- o Electron spin resonance**
- o Dielectric change**
- o Radiation adsorption**
- o Spectroscopy**

Downselect and demonstrate - FY00-01

Microclimate Cooling

- **Lightweight , efficient, power sources**
 - **100-150 watts (24 volts DC)**
 - **Current battery pack weighs 11 pounds and provides 4 hours of cooling**
- **Vapor cycle component development (size and weight reduction)**
 - **Compressor**
 - **Heat exchangers (condenser, evaporator)**
- **Alternate technologies**
 - **220-300 watts of cooling**
 - **Weigh less than 7 pounds**

Plans (FY99 - 01)

FY99:

- Thermal and water vapor transport properties of fabrics
- Physical properties and live agent testing of fabrics
- Improved closure systems - CB protective clothing integration
- Protection factor (PF) testing of complete prototype ensemble
- Preliminary assessment of ensemble durability and user acceptability

FY00-01

- Development of a flame resistant, CB protective duty uniform
- System test (MIST) for liquid and semi-volatile aerosol protection
- Garment durability and user acceptability limited field evaluations
- Other applicable technologies
 - o Agent reactive catalysts
 - o Biocides
 - o Microclimate cooling

Industry Participation Opportunities

FY	98	99	00	01	02
		Advanced Light Weight CB Protection			
		Monopack			
		JSLIST P3I			
		CB Closures/Interfaces permselective Membranes			
		Improved Test Methods (Heat stress, abrasion, FR)			
		New Analysis Tools for			
		Heat & Aerosol Threat Mediation Transf			
		Residual Life Indicator			
			JS CB		
			JPACE		
			Land Warrior, Air Warrior, Mounted Warrior		

SUMMARY/CHALLENGE TO INDUSTRY

✓ **Novel carbon-containing breathable fabrics and non-carbon based CB protective fabric systems have been developed collaboratively by Natick and industry.**

✓ **Selectively permeable fabrics have excellent dual use in CB/environmental protective clothing for emergency responders, pesticide and industrial chemical handlers, medical personnel, and environmental clean-up personnel.**

Collaborative work is sought with industry, academia, and other

U.S. Army Soldier Systems Center • Natick, MA

Natick Soldier Center government agencies especially in development of selectively permeable