Studies of charm mixing and CP violation in four-body decays

Jairus Tristan Patoc - Supervised by Guy Wilkinson University of Oxford | LHCb 2023 STFC HEP Summer School

What are you measuring with this study?

A feasibility study in measuring observables encoding charm mixing (x and y) and CP violation (|q/p| and ϕ) with the decay modes $D \to K^+K^-\pi^+\pi^-$ and $D \to \pi^+\pi^-\pi^+\pi^-$ using a binned-phase space approach. This is of interest as, in charm, only direct CP violation has been observed [1,2].

At the same time, the hadronic parameters are required and are calculated with an amplitude model. The c_i (s_i) are the cosine (sine) of the average ϕ in a phase space bin i, but the probability a D^0 (\bar{D}^0) decays in bin i is K_i ($\bar{K}_i = K_{-i}$). Then define:

$$T_{\pm i} = \frac{K_{\pm i}}{\sum_{i} K_{\pm i}}$$

How are the sensitivities obtained?

200 generator-level datasets (each with 2 million events) are produced using AmpGen [3] with the amplitude model of the respective decay. Then split by D^0 flavour, binned in phase space and time, then fit. The PDF's are:

$$\begin{split} P_{D^{0}}(t_{\alpha}, i) &= \Gamma e^{-\Gamma t_{\alpha}} \{ T_{+i} - \Gamma t_{\alpha} \sqrt{T_{+i} T_{-i}} [(y_{\text{CP}} + \Delta y) c_{i} + (x_{\text{CP}} + \Delta x) s_{i}] \} \\ P_{\bar{D}^{0}}(t_{\alpha}, i) &= \Gamma e^{-\Gamma t_{\alpha}} \{ T_{-i} - \Gamma t_{\alpha} \sqrt{T_{+i} T_{-i}} [(y_{\text{CP}} - \Delta y) c_{i} - (x_{\text{CP}} - \Delta x) s_{i}] \} \end{split}$$

The fit parameters x_{CP} , Δx , y_{CP} , Δy combine the charm mixing and CP violating observables. The sensitivity is then the average of the uncertainties of each toy.

Decay Mode	$\sigma(x_{\rm CP}) = \sigma(\Delta x) \ (\times 10^{-3})$	$\sigma(y_{\text{CP}}) = \sigma(\Delta y) \ (\times 10^{-3})$
$D \to K^+ K^- \pi^+ \pi^-$	1.22	0.83
$D \to \pi^+ \pi^- \pi^+ \pi^-$	1.19	1.03

What can you learn from this study?

The sensitivities are encouraging - especially as the statistical sensitivity in both modes is expected to decrease with increased LHCb statistics. However the fit exhibits a bias, especially in the mode $D \to \pi^+\pi^-\pi^+\pi^-$.

What is the outlook for the analysis?

Ongoing work on the generator-level study aims to explore fit biases and estimate sensitivities for various binning schemes. Soon, analysis of LHCb Run 2 data and Monte-Carlo will commence. The final measurement will be model-independent, with hadronic parameters determined by BESIII.

So to summarise, a feasibility study in measuring observables that encode charm mixing and CPV using the modes $D \to K^+K^-\pi^+\pi^-$ and $D \to \pi^+\pi^-\pi^+\pi^$ are presented. The study employed a binned-phase space approach with generator-level simulation and estimated hadronic parameters. The expected precisions are anticipated to improve, but further work is needed to address fit biases.

Fig 1: HFLAV group world averages of charm CP violating parameters

Fig 2: Model predictions of the hadronic parameters used in this analysis for $D \to K^+K^-\pi^+\pi^-$.

Fig 3: Pull distributions in $D \to \pi^+\pi^-\pi^+\pi^-$ from 200 AmpGen toys.

References