Tarea 2

Álgebra lineal

1. Determinar si los siguientes sistemas de ecuaciones son compatibles o incompatibles. En caso de que sea compatible, resolverlo

2. Hallar los valores de α que hacen que los siguientes sistemas sean compatibles. Para dichos casos, dar la solución en función de α

3. Discutir, en función del parámetro α , el siguiente sistema de ecuaciones y obtener la norma de la solución o soluciones

$$\begin{array}{ccccc}
x & +y & -z & = 3 \\
3x & +\alpha y & +\alpha z & = 5 \\
4x & +\alpha y & = 5
\end{array}$$

4. Encontrar los valores de α para que el sistema a) tenga solución **única**. b) sea compatible.

$$\alpha x + y + z = 1
x + \alpha y + z = \alpha
x + y + \alpha z = \alpha^{2}$$

Matrices

5. Sean A y S dos matrices cuadradas, S es simétrica. Analizar si se verifica que

- a) $A^t A$ es simétrica.
- b) A^tSA es simétrica.
- c) Si A es antisimétrica entonces A^2 es simétrica.
- d) A es invertible $(A^{-1})^n = (A^n)^{-1}$.

6. Encontrar los valores de a tal que M(a) sea invertible.

$$M(a) = \begin{bmatrix} a & 1 & 1 \\ 1 & a & 1 \\ 1 & 1 & a \end{bmatrix}$$

En dichos casos, encontrar la inversa, como función de a.

7. Sea A una matriz cuadrada tal que $A^3 = \mathbf{O}$. Considere al siguiente subconjunto de matrices.

$$\mathcal{M}(A) = \left\{ M \in \mathcal{M}^n : M = M(\lambda) = \mathbf{I}_n + \lambda A + \frac{\lambda^2}{2} A^2, \text{ para algún } \lambda \in \mathbb{R} \right\}$$

1

a) El conjunto $(M(\lambda), \cdot)$ con la multiplicación es cerrado (es decir si $M, N \in \mathcal{M}(A)$ entonces $MN \in \mathcal{M}(A)$)

- 8. Sea A y B dos matrices cuadradas de tamaño $n \times n$, se dice que A es **semejante** con B y se escribe $A \sim B$ si existe una matriz invertible P tal que $B = P^{-1}AP$. Demostrar que
- a) Si $A \sim B$ entonces $A^n \sim B^n$
- b) ~ es una relación de equivalencia. Es decir, es una relación reflexiva, simétrica y transitiva.
- 9. Explicar por qué si A es un producto de N matrices elementales y es invertible, entonces A^{-1} también es un producto de N matrices elementales.
- 10. Expresar a A como un producto de matrices elementales

$$A = \begin{bmatrix} 2 & 1 & 2 \\ 4 & 3 & 2 \\ 1 & 1 & 1 \end{bmatrix} \qquad B = \begin{bmatrix} 1 & -3 & 2 \\ 4 & -2 & 1 \\ 1 & 4 & 1 \end{bmatrix} \qquad C = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 & 3 \\ 3 & 8 & 7 \end{bmatrix}$$
$$D = \begin{bmatrix} 2 & 6 \\ 4 & -7 \end{bmatrix}$$

- 11. Hallar los valores de p tal que la matriz $A=\begin{bmatrix}1&2&1\\2&0&1\\2&3&p\end{bmatrix}$ sea invertible
- 12. Hallar la inversa de $A = \begin{bmatrix} 2 & 1 & 3 \\ 1 & -1 & 1 \\ 1 & 4 & 2 \end{bmatrix}$,
- b) Identificando las operaciones elementales, expresar a A como producto de matrices elementales.
- 13. Calcular la inversa de la matriz

14. Resolver las siguientes ecuaciones matriciales

$$X \cdot \begin{pmatrix} 5 & 3 & -1 \\ 1 & -3 & -2 \\ -5 & 2 & 1 \end{pmatrix} = \begin{pmatrix} -8 & 3 & 0 \\ -5 & 9 & 0 \\ -2 & 15 & 0 \end{pmatrix}, \qquad \begin{pmatrix} 3 & -1 & 2 \\ 4 & -3 & 3 \\ 1 & 3 & 0 \end{pmatrix} \cdot X = \begin{pmatrix} 3 & 9 & 7 \\ 1 & 11 & 7 \\ 7 & 5 & 7 \end{pmatrix}$$

15. ¿Para que valores de $x \in \mathbb{R}$ la matriz tiene inversa?

$$A = \begin{pmatrix} 1 & x & 1 \\ 0 & 1 & x \\ 1 & 0 & 1 \end{pmatrix}$$

Factorización LU

16. Obtener la factorización LU de las siguientes matrices.

$$\begin{bmatrix} 1 & 3 \\ 2 & 7 \end{bmatrix} \qquad \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

2

17. Encontrar la factorización LU de cada una de las siguientes matrices

a)
$$\begin{bmatrix} 1 & -1 & -1 \\ 3 & 4 & -2 \\ 2 & -3 & -2 \end{bmatrix}$$
 b)
$$\begin{bmatrix} 1 & 3 & -1 \\ 2 & 5 & 1 \\ 3 & 4 & 2 \end{bmatrix}$$
 c)
$$\begin{bmatrix} 2 & 3 & 6 \\ 4 & 7 & 9 \\ 3 & 5 & 4 \end{bmatrix}$$
 d)
$$\begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 7 \\ 3 & 7 & 10 \end{bmatrix}$$

$$b) \quad \begin{bmatrix} 1 & 3 & -1 \\ 2 & 5 & 1 \\ 3 & 4 & 2 \end{bmatrix}$$

$$d) \quad \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 7 \\ 3 & 7 & 10 \end{bmatrix}$$

- 18. Sea A la matriz de a) del problema anterior. Encontrar X_1, X_2, X_3, X_4 en donde
 - a) X_1 es la solución de $AX_1 = b_1$ con $b_1 = (1, 1, 1)^T$.
 - b) Para $k=2,3,4,\,X_k$ es la solución de $AX_k=b_k$ con $b_k=b_{k-1}+X_{k-1}$
- 19. En los siguientes ejercicios encuentre una matriz de permutación P y una factorización LU de PA.

$$1) \quad \begin{pmatrix} 0 & 3 \\ -5 & 4 \end{pmatrix}$$

1)
$$\begin{pmatrix} 0 & 3 \\ -5 & 4 \end{pmatrix}$$
 2) $\begin{pmatrix} 0 & 1 & 1 \\ -1 & 2 & -4 \\ 2 & -5 & 1 \end{pmatrix}$ 3) $\begin{pmatrix} -1 & 2 & 1 \\ 4 & -5 & -5 \\ -7 & 5 & 5 \end{pmatrix}$

$$3) \quad \begin{pmatrix} -1 & 2 & 1\\ 4 & -5 & -5\\ -7 & 5 & 5 \end{pmatrix}$$

- 20. Demuestre que el produto de dos matrices triangulares ingerior es una matriz triangular inferior. proceda por inducción
- 21. Utilice la factorización LU de los ejercicios anteriores para resolver los siguientes sistemas de ecuaciones.

1)
$$\begin{pmatrix} 0 & 3 \\ -5 & 4 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} -3 \\ -1 \end{pmatrix}$$

1)
$$\begin{pmatrix} 0 & 3 \\ -5 & 4 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} -3 \\ -1 \end{pmatrix}$$
 2) $\begin{pmatrix} 0 & 1 & 1 \\ -1 & 2 & -4 \\ 2 & -5 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 2 \\ 4 \\ -8 \end{pmatrix}$ 3) $\begin{pmatrix} 0 & 3 & -1 \\ 0 & 0 & 1 \\ 2 & -6 & 1 \end{pmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{pmatrix} 1 \\ 2 \\ -10 \end{pmatrix}$

3)
$$\begin{pmatrix} 0 & 3 & -1 \\ 0 & 0 & 1 \\ 2 & -6 & 1 \end{pmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{pmatrix} 1 \\ 2 \\ -10 \end{pmatrix}$$

Determinantes

- 22. Calcular el determinante de la matriz M(a) de la sección anterior.
- 23. Calcular los determinantes

1)
$$\begin{vmatrix} 1 & 1 & 1 & 1 \\ 1 & -1 & 1 & 1 \\ 1 & 1 & -1 & 1 \\ 1 & 1 & 1 & -1 \end{vmatrix}$$

$$2) \quad \begin{vmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{vmatrix}$$

1)
$$\begin{vmatrix} 1 & 1 & 1 & 1 \\ 1 & -1 & 1 & 1 \\ 1 & 1 & -1 & 1 \\ 1 & 1 & 1 & -1 \end{vmatrix}$$
 2)
$$\begin{vmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{vmatrix}$$
 3)
$$\begin{vmatrix} 2 & -5 & 1 & 2 \\ -3 & 7 & -1 & 4 \\ 5 & -9 & 2 & 7 \\ 4 & -6 & 1 & 2 \end{vmatrix}$$

4)
$$\begin{vmatrix} 3 & 1 & -1 & 2 \\ -5 & 1 & 3 & -4 \\ 2 & 0 & 1 & -1 \\ 1 & -5 & 3 & -3 \end{vmatrix}$$
 5)
$$\begin{vmatrix} 2 & 1 & -5 & 1 \\ 1 & -3 & 0 & -6 \\ 0 & 2 & -1 & 2 \\ 1 & 4 & -7 & 6 \end{vmatrix}$$
 6)
$$\begin{vmatrix} 3 & 2 & -4 \\ 4 & 1 & -2 \\ 5 & 2 & -3 \end{vmatrix}$$

7)
$$\begin{vmatrix} 3 & 1 & -1 & 2 \\ -5 & 1 & 3 & -4 \\ 2 & 0 & 1 & -1 \\ 1 & -5 & 3 & -3 \end{vmatrix}$$
 8)
$$\begin{vmatrix} 2 & 1 & -5 & 1 \\ 1 & -3 & 0 & -6 \\ 0 & 2 & -1 & 2 \\ 1 & 4 & -7 & 6 \end{vmatrix}$$
 9)
$$\begin{vmatrix} 3 & 2 & -4 \\ 4 & 1 & -2 \\ 5 & 2 & -3 \end{vmatrix}$$

8)
$$\begin{vmatrix} 2 & 1 & -5 & 1 \\ 1 & -3 & 0 & -6 \\ 0 & 2 & -1 & 2 \\ 1 & 4 & -7 & 6 \end{vmatrix}$$

9)
$$\begin{vmatrix} 3 & 2 & -4 \\ 4 & 1 & -2 \\ 5 & 2 & -3 \end{vmatrix}$$

24. Aplicando las propiedades de los determinantes, calcular

1)
$$\begin{vmatrix} \alpha & 2 & 0 & 3 \\ 1 & 2 & 3 & 3 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 3 \end{vmatrix}$$
 2)
$$\begin{vmatrix} \alpha & 1 & 1 \\ 1 & \alpha & 1 \\ 1 & 1 & \alpha \end{vmatrix}$$
 3)
$$\begin{vmatrix} 0 & \alpha & \alpha \\ 1 & 0 & \alpha \\ 1 & 1 & 0 \end{vmatrix}$$

$$2) \quad \begin{vmatrix} \alpha & 1 & 1 \\ 1 & \alpha & 1 \\ 1 & 1 & \alpha \end{vmatrix}$$

$$3) \quad \begin{vmatrix} 0 & \alpha & \alpha \\ 1 & 0 & \alpha \\ 1 & 1 & 0 \end{vmatrix}$$

25. Encuentra las soluciones a la ecuación det(AB) = 0 con

$$A = \begin{pmatrix} x & 1 \\ 2 & 0 \end{pmatrix} \quad \mathbf{y} \quad B = \begin{pmatrix} -1 & x \\ x+1 & -1 \end{pmatrix}$$

26. Dadas las matrices $A = \begin{pmatrix} 1 & 4 & 0 \\ 1 & -1 & 1 \\ 3 & 1 & 0 \end{pmatrix}$ y $B = \begin{pmatrix} 2 & 3 & 0 \\ -1 & 1 & 4 \\ 0 & 3 & -1 \end{pmatrix}$. Calcular el determinante de

- a) det(A) b) det(B) c) det(2A) d) $det(AB^2)$
- b) $\det(A^{-1}B)$ f) $\det(A^tB^{-1})$
- 27. Demostrar que

a)
$$\det \begin{pmatrix} 1 & a & a^2 \\ 1 & b & b^2 \\ 1 & c & c^2 \end{pmatrix}$$
 b) $\det \begin{pmatrix} 1 & 1 & 1 \\ a & b & c \\ a^3 & b^3 & c^3 \end{pmatrix}$ c) $\det \begin{pmatrix} 1 & 1 & 1 & 1 \\ x & y & z & w \\ x^2 & y^2 & z^2 & w^2 \\ x^3 & y^3 & z^3 & w^3 \end{pmatrix}$