Logarithm and ExponentialMATH 312 Final Project

May 2024

Ming Gong

Bard College at Simon's Rock

INTRO

- $x^n = (x \cdot x \cdot \cdot x)_{n \text{ times}}$.
- $\bullet \ x^{n/m} = \sqrt[m]{x^n} = \sup\{y \in \mathbb{R} : y^m < x^n\}.$
- How to define x^r , $r \in \mathbb{R}$?
- How to differentiate x^r , r^x , x^x ?

The Logarithm

Proposition

There exists a unique function $L:(0,\infty)\to\mathbb{R}$ such that

- 1. L(1) = 0;
- 2. *L* is differentiable and $L'(x) = \frac{1}{x}$;
- 3. L(xy) = L(x) + L(y) for all $x, y \in (0, \infty)$;
- 4. If $q \in \mathbb{Q}$ and x > 0, $L(x^q) = qL(x)$;
- 5. L is strictly increasing, bijective, and

$$\lim_{x\to\infty} L(x) = -\infty, \lim_{x\to\infty} L(x) = \infty.$$

Proof

Let

$$L(x) = \int_{1}^{x} \frac{1}{t} dt.$$

- 1. $L(1) = \int_{1}^{1} \frac{1}{t} dt = 0$.
- 2. By fundamental thm., $L'(x) = \frac{1}{x}$.

For uniqueness, suppose *L* and *M* both satisfy 1 and 2.

$$L'(x) - M'(x) = \frac{1}{x} - \frac{1}{x} = 0$$
. $(L - M)(x)$ is a constant function.

$$(L-M)(x) = (L-M)(1) = 0. L = M.$$

Arithmetic Properties

$$L(xy) = \int_{1}^{xy} \frac{1}{t} dt$$

$$= \int_{1}^{x} \frac{1}{t} dt + \int_{x}^{xy} \frac{1}{t} dt$$

$$\text{Let } t = xu, dt = xdu.$$

$$= \int_{1}^{x} \frac{1}{t} dt + \int_{1}^{y} \frac{1}{u} du$$

$$= L(x) + L(y).$$

For $m, n \in \mathbb{N}$,

- $L(x^n) = L(x \cdot x \cdot x...)_{n \text{ times}} = nL(x);$
- $L(x^{1/m}) = \frac{1}{m} m L(x^{1/m}) = \frac{1}{m} L(x);$
- $\bullet \ \, L(x^{-1}) = L(xx^{-1}) L(x) = L(1) L(x) = -L(x). \\$

For all $m, n \in \mathbb{Z}$, $L(x^{n/m}) = \frac{n}{m}L(x)$.

Bijection

The Expoential

Proposition

There exists a unique function $E : \mathbb{R} \to (0, \infty)$ such that

- 1. E(0) = 1;
- 2. *E* is differentiable and E'(x) = E(x);
- 3. E(x + y) = E(x)E(y) for all $x, y \in \mathbb{R}$;
- 4. If $q \in \mathbb{Q}$, then $E(qx) = E(x)^q$;
- 5. *E* is strictly increasing, bijective, and

$$\lim_{x \to -\infty} E(x) = 0, \lim_{x \to \infty} E(x) = \infty.$$

Proof

Let

$$E(x) = L^{-1}(x).$$

- E(0) = 1;
- Bijection;
- Strictly increasing.

Inverse Function Theorem

Proposition

If $f: I \to J$ is strictly monotone, onto, differentiable at $x_0 \in I$, and $f'(x_0) \neq 0$, then f^{-1} is differentiable at $y_0 = f(x_0)$.

EXPONENTIAL

$$(f^{-1})'(y_o) = \frac{1}{f'(f^{-1}(y_o))} = \frac{1}{f'(x_o)}.$$

Proof

Let y = f(x). If $x \neq x_0$ and $y \neq y_0$,

$$\frac{f^{-1}(y)-f^{-1}(y_{\circ})}{y-y_{\circ}} = \frac{f^{-1}(f(x))-f^{-1}(f(x_{\circ}))}{f(x)-f(x_{\circ})} = \frac{x-x_{\circ}}{f(x)-f(x_{\circ})}.$$

Inverse Function Theorem

Let
$$Q(x) = \begin{cases} \frac{x - x_0}{f(x) - f(x_0)} & \text{if } x \neq x_0, \\ \frac{1}{f'(x_0)} & \text{if } x = x_0. \end{cases}$$

$$\lim_{x \to x_0} Q(x) = \lim_{x \to x_0} \frac{x - x_0}{f(x) - f(x_0)} = \frac{1}{f'(x_0)} = Q(x_0).$$

EXPONENTIAL

Q is continuous at x_0 . f^{-1} is continuous, so $Q(f^{-1}(y))$ is continuous at y_0 .

$$(f^{-1})'(y_{o}) = \lim_{y \to y_{o}} \frac{f^{-1}(y) - f^{-1}(y_{o})}{y - y_{o}}$$

$$= \lim_{y \to y_{o}} Q(f^{-1}(y))$$

$$= Q(f^{-1}(y_{o})) = \frac{1}{f'(f^{-1}(y_{o}))}.$$

Properties of the Exponential

Let
$$x = L(a)$$
 and $y = L(b)$.

$$E(x + y) = E(L(a) + L(b))$$
 $E(qx) = E(qL(a))$
= $E(L(ab))$ = $E(L(a^q))$
= ab = a^q
= $E(x)E(y)$; = $(E(x))^q$.

Uniqueness

Let E and F be two functions satisfying E(o) = F(o) = 1 and E'(x) = E(x), F'(x) = F(x).

$$\frac{d}{dx}(E(x)F(-x)) = E'(x)F(-x) + E(x)F'(-x)$$

$$= E(x)F(-x) - E(x)F(-x)$$

$$= 0.$$

E(x)F(-x) is a constant function. For all x.

$$E(x)F(-x) = E(0)F(0) = 1$$

$$E(x)F(-x) - F(x)F(-x) = 1 - 1$$

$$(E(x) - F(x))F(-x) = 0.$$

$$F(-x) > 0$$
 for all x , so $E(x) - F(x) = 0$ and $E(x) = F(x)$.

Exponentiation

Definition

- \bullet In(x) = L(x);
- \bullet exp(x) = E(x);
- $e = \exp(1)$.

For $q \in \mathbb{Q}$, $x^q = \exp(\ln(x^q)) = \exp(q \ln(x))$. Now we can define x^y for all $y \in \mathbb{R}$.

Definition

If x > 0 and $y \in \mathbb{R}$, let

$$x^y = \exp(y \ln(x)).$$

Power Rule

Now, we can derive the power rule for any real power:

$$\frac{d}{dx}(x^r) = \frac{d}{dx}(\exp(r \ln x))$$

$$= \exp(r \ln x)(r \cdot 1/x)$$

$$= x^r \cdot r/x$$

$$= rx^{r-1}.$$

Derivatives of the Exponential

$$\frac{d}{dx}(b^x) = \frac{d}{dx}(\exp(x \ln(b)))$$

$$= \exp(x \ln(b)) \ln(b)$$

$$= \ln(b)b^x.$$

$$\frac{d}{dx}(x^x) = \frac{d}{dx}(\exp(x\ln(x)))$$

$$= \exp(x\ln(x))(\ln(x) + \frac{x}{x})$$

$$= x^x(\ln(x) + 1).$$

Works Cited I

Basic Analysis.

2019.

The Bright Side of Mathematics.

Real analysis 57 | integration by substitution, Mar 2022.