Package 'RRmorph'

May 14, 2025

col2mesh

Index																				1	5
	tri2verts .			 				 				 								1	.3
	shapeDiff			 				 				 								1	2
	rate.map .			 				 				 								1	0
	plotLegend			 				 				 									9
	plotland .			 				 				 									7

col2mesh

Color a mesh according to provided values

Description

The function colors a mesh according to a vector of continuous values related to individual vertices.

Usage

```
col2mesh(mesh,values,pal,from=NULL,to=NULL,NAcol="gray90")
```

Arguments

mesh a mesh3d object.

values a vector of continuous values associated to individual vertices of the mesh.

pal a vector of colors to be passed to colorRampPalette.

from, to lower and upper values to be associated to the ends of pal.

NAcol the color associated to NA values.

Value

A mesh3d object colored according to values.

Author(s)

Marina Melchionna, Silvia Castiglione

```
da<-"https://github.com/pasraia/RRmorph_example_data/raw/refs/heads/main/RRmorphdata.rda"
download.file(url=da,destfile = paste0(tempdir(),"/RRmorphdata.rda"))
load(paste0(tempdir(),"/RRmorphdata.rda"))
require(rgl)
require(Morpho)
require(Rvcg)

pca<-procSym(endo.set)
ldm<-endo.set[,,"Homo_sapiens"]
sur<-endo.sur[["Homo_sapiens"]]</pre>
```

conv.map 3

conv.map

Mapping morphological convergence on 3D surfaces

Description

Given vectors of RW (or PC) scores for some converging species, the function selects the RW (PC) axes which best account for convergence and maps convergent areas on the corresponding 3D surfaces.

Usage

```
conv.map(x1,x2=NULL,scores, pcs, mshape,focal=NULL,mshape_sur=NULL,
  refmat = NULL,refsur = NULL, k = 4, exclude = NULL, out.rem = TRUE, plot =
  TRUE, col = "blue", NAcol = "gray", names = TRUE, nsim = 1000)
```

Arguments

x1, x2	vectors of convergent species. When convergence within a single clade was found, x1 represents the vector of species belonging to the clade (x2=NULL). When convergence between groups/clades was found, x1 and x2 are the two convergent groups/clades.
scores	data frame (or matrix) with the RW (or PC) scores returned by RWA/PCA. Species not included in x1 or x2 are ignored.
pcs	RW (or PC) vectors (eigenvectors of the covariance matrix) returned by RWA/PCA.
mshape	the consensus configuration.
focal	vector of species included in $x1/x2$ to be plotted. To be provided if refsur=NULL and refmat=NULL.
mshape_sur	a mesh3d object used as a reference for mesh reconstruction. The vertices of mshape_sur must be the consensus configuration. If NULL, it is automatically generated by applying vcgBallPivoting on mshape.
refmat	a named list of landmark sets corresponding to refsur.

4 conv.map

a named list of mesh3d objects for species in x1/x2 to be plotted. If focal is refsur not NULL this is ignored. k the argument k passed to interpolMesh. exclude integer: the index numbers of the RWs (or PCs) to be excluded from the comparison. logical: if TRUE triangles with outlying area difference are removed. out.rem logical: if TRUE, the pairwise comparisons are plotted. For more than 5 pairwise plot comparisons, the plot is not shown. col character: the color for plotting. NAcol the argument NAcol passed to col2mesh. logical: if TRUE, the names of the groups or species are displayed in the 3d plot. names nsim the number of iterations to evaluate significance.

Details

After selecting the RW (PC) axes which best account for convergence, conv.map uses such axes (and related scores) within restoreShapes (Morpho) to reconstruct landmark matrices for each convergent species (in x1/x2). The reconstruction of species 3d surfaces is based on mshape_sur, either provided by the user or generated within the function. Finally, the area differences between corresponding triangles of reconstructed 3d meshes for each possible pair of convergent species are calculated. In the calculation of differences, the possibility to find and remove outliers is supplied (out.rem=TRUE, we suggest considering this possibility if the mesh may contain degenerate facets).

If the combination of focal species (or species within refsur/refmat) contains a number equal or lower then 5 items, conv.map returns a rgl plot mapping the convergence on the 3D models. If lists of refsur/refmat are not provided, the area differences are plotted onto reconstructed surfaces. If refsur/refmat are available, difference values are interpolated by means of interpolMesh to be plotted onto real surfaces. When species in either x1 or x2 are missing from focal or refmat/refsur, conv.map plots the reconstructed surface of the species having the smallest \$selected angle with the focal (see angle.compare in the description of outputs).

conv.map further gives the opportunity to exclude some RW (or PC) axes from the analysis because, for example, in most cases the first axes are mainly related to high-order morphological differences driven by phylogeny and size variations.

Value

The function returns a list including:

- **\$angle.compare**: a data frame including the real angles between species shape vectors **\$real.angle**, the angles computed between vectors of the selected RWs (or PCs) **\$selected**, the angles between vectors of the non-selected RWs (or PCs) **\$others**, the differences selected-others and its p-values.
- \$selected.pcs RWs (or PCs) axes selected for convergence.
- **\$average.dist** symmetric matrix of pairwise distances between 3D surfaces.
- **\$suface1** list of colored surfaces representing convergence between mesh A and B charted on mesh A.

conv.map 5

• **\$suface2** list of colored surfaces representing convergence between mesh A and B charted on mesh B.

• **\$scale** the value used to set the color gradient, computed as the maximum of all differences between each surface and the mean shape.

Author(s)

Marina Melchionna, Antonio Profico, Silvia Castiglione, Carmela Serio, Gabriele Sansalone, Pasquale

References

Schlager, S. (2017). Morpho and Rvcg-Shape Analysis in R: R-Packages for geometric morphometrics, shape analysis and surface manipulations. In: Statistical shape and deformation analysis. Academic Press.

Melchionna, M., Profico, A., Castiglione, S., Serio, C., Mondanaro, A., Modafferi, M., Tamagnini, D., Maiorano, L., Raia, P., Witmer, L.M., Wroe, S., & Sansalone, G. (2021). A method for mapping morphological convergence on three-dimensional digital models: the case of the mammalian sabretooth. *Palaeontology*, 64, 573–584. doi:10.1111/pala.12542

See Also

```
search.conv vignette; relWarps; procSym
```

```
da<-"https://github.com/pasraia/RRmorph_example_data/raw/refs/heads/main/RRmorphdata.rda"
download.file(url=da,destfile = paste0(tempdir(),"/RRmorphdata.rda"))
load(paste0(tempdir(),"/RRmorphdata.rda"))
require(Morpho)
pca<-procSym(endo.set)</pre>
ldm_homo<-endo.set[,,"Homo_sapiens"]</pre>
sur_homo<-endo.sur[["Homo_sapiens"]]</pre>
ldm_macaca<-endo.set[,,"Macaca_fuscata"]</pre>
sur_macaca<-endo.sur[["Macaca_fuscata"]]</pre>
# Convergence within group plotted on reconstructed surfaces
cm1<-conv.map(x1=c("Pan_troglodytes", "Gorilla_gorilla", "Pongo_abelii"),</pre>
               scores=pca$PCscores,pcs=pca$PCs,mshape=pca$mshape,
               focal=c("Pan_troglodytes", "Gorilla_gorilla"))
# Convergence between group plotted on reconstructed surfaces
cm2<-conv.map(x1=c("Pongo_abelii"),x2=c("Alouatta_caraya"),</pre>
               scores=pca$PCscores,pcs=pca$PCs,mshape=pca$mshape,
               focal="Alouatta_caraya")
# Convergence within group plotted on real surfaces
cm3<-conv.map(x1=c("Homo_sapiens", "Gorilla_gorilla", "Pongo_abelii"),</pre>
```

6 interpolMesh

```
scores=pca$PCscores,pcs=pca$PCs,mshape=pca$mshape,
    refsur=list("Homo_sapiens"=sur_homo),
    refmat=list("Homo_sapiens"=ldm_homo))

# Convergence between group plotted on real surfaces
cm3<-conv.map(x1=c("Homo_sapiens","Pongo_abelii"),x2=c("Macaca_fuscata"),
    scores=pca$PCscores,pcs=pca$PCs,mshape=pca$mshape,
    refsur=list("Homo_sapiens"=sur_homo,"Macaca_fuscata"=sur_macaca),
    refmat=list("Homo_sapiens"=ldm_homo,"Macaca_fuscata"=ldm_macaca))</pre>
```

interpolMesh

Interpolate values on a 3d mesh

Description

The function takes a reconstructed mesh3d object (sur) with some related values (to either triangles or vertices of the mesh) and transfers such values to the real mesh (refsur) from which sur was derived.

Usage

```
interpolMesh(sur,values,refsur,refmat,element=c("triangles","vertices"),k=4)
```

Arguments

sur	a reconstructed mesh3d object with vertices matching to refmat.
values	the vector of values related to sur to be interpolated. values can be related to either triangles or vertices (see element).
refsur	the reference mesh (mesh3d object) to interpolate the values on.
refmat	the landmark set related to refsur.
element	one of "triangles" or "vertices", depending on which of them values is related to.
k	the number of nearest neighbor vertices used for interpolation (see details).

Details

The function starts by locating a set of points (NNps) on refsur, each being the single nearest neighbor for each vertex of sur (or barycenter if element="triangles"). Then, interpolation is performed by identifying the k points among NNps being the closest to each vertex of refsur and computing the mean of their values weighted by their distance.

Value

The vector of values related to each vertex of refsur.

plotland 7

Author(s)

Marina Melchionna, Silvia Castiglione

Examples

```
da<-"https://github.com/pasraia/RRmorph_example_data/raw/refs/heads/main/RRmorphdata.rda"
download.file(url=da,destfile = paste0(tempdir(),"/RRmorphdata.rda"))
load(paste0(tempdir(),"/RRmorphdata.rda"))
require(rgl)
require(Morpho)
require(Rvcg)
pca<-procSym(endo.set)</pre>
ldm<-endo.set[,,"Homo_sapiens"]</pre>
sur<-endo.sur[["Homo_sapiens"]]</pre>
rec<- vcgBallPivoting(pca$mshape, radius = 0)</pre>
rec$vb[1:3,]<-t(ldm)
val1<-rnorm(ncol(rec$vb))</pre>
# Interpolate values associated to vertices
val1<-rnorm(ncol(rec$vb))</pre>
interp1<-interpolMesh(sur = rec,refsur = sur,refmat = ldm,</pre>
                        values = val1,element ="vertices",k = 4)
colmesh1<-col2mesh(mesh = sur, values = interp1, pal = heat.colors(5))</pre>
open3d()
shade3d(colmesh1, specular="black")
# Interpolate values associated to triangles
val2<-rnorm(ncol(rec$it))</pre>
interp2<-interpolMesh(sur = rec,refsur = sur,refmat = ldm,</pre>
                        values = val2,element ="triangles",k = 4)
colmesh2<-col2mesh(mesh = sur,values = interp2,pal = heat.colors(5))</pre>
open3d()
shade3d(colmesh2,specular="black")
```

plotland

Plot landmarks importance on 3d mesh

Description

The function relates PCA loadings of a single PC axis to individual landmarks and plots them on a 3d mesh by means of interpolation.

8 plotland

Usage

```
plotland(pca,sel=1,refsur=NULL,refmat=NULL,k=5,pal=NULL,
    defo=FALSE,radius=0.001)
```

Arguments

pca	the result of a relative warp analysis. Classes relwarps and nosymproc are supported.
sel	numeric indicating the focal RW/PC axis.
refsur	the mesh3d object to plot on. If NULL, the mesh is reconstructed by means of vcgBallPivoting from the consensus configuration derived from pca.
refmat	the landmark set related to refsur. If NULL, the consensus configuration derived from pca is used.
k	the argument k passed to interpolMesh.
pal	a vector of colors to be passed to colorRampPalette.
defo	when refsur and refmat are provided, defo = TRUE warps refsur on the consensus shape.
radius	argument radius passed to spheres3d

Value

A list including a mesh3d object colored according to landmarks importance and a matrix of landmarks importance on each RW/PC axis. Additionally, the function returns a 3d plot of the mesh.

Author(s)

Marina Melchionna, Silvia Castiglione, Carmela Serio, Giorgia Girardi

```
da<-"https://github.com/pasraia/RRmorph_example_data/raw/refs/heads/main/RRmorphdata.rda"
download.file(url=da,destfile = paste0(tempdir(),"/RRmorphdata.rda"))
load(paste0(tempdir(),"/RRmorphdata.rda"))
require(rgl)
require(Morpho)

pca<-procSym(endo.set)
ldm<-endo.set[,,"Homo_sapiens"]
sur<-endo.sur[["Homo_sapiens"]]
plotland(pca=pca,sel=1,refsur = sur,refmat = ldm)</pre>
```

plotLegend 9

plotLegend	Plot legend for colored mesh.	

Description

Assuming a mesh is colored according to a vector of values, the function takes the color sequence from the mesh and plots it associated to values.

Usage

```
plotLegend(mesh, values, main)
```

Arguments

mesh a mesh3d object

values a vector of continuous values associated to individual vertices of the mesh.

main plot title.

Value

A plot of the color sequence associated to values on the mesh.

Author(s)

Marina Melchionna, Silvia Castiglione

```
da<-"https://github.com/pasraia/RRmorph_example_data/raw/refs/heads/main/RRmorphdata.rda"
download.file(url=da,destfile = paste0(tempdir(),"/RRmorphdata.rda"))
load(paste0(tempdir(),"/RRmorphdata.rda"))
require(rgl)
require(Morpho)
require(Rvcg)
pca<-procSym(endo.set)</pre>
ldm<-endo.set[,,"Homo_sapiens"]</pre>
sur<-endo.sur[["Homo_sapiens"]]</pre>
rec<- vcgBallPivoting(pca$mshape, radius = 0)</pre>
rec$vb[1:3,]<-t(ldm)
val<-rnorm(ncol(rec$vb))</pre>
interp<-interpolMesh(sur = rec,refsur = sur,refmat = ldm,</pre>
                       values = val,element ="vertices",k = 4)
colmesh<-col2mesh(mesh = sur, values = interp,pal = heat.colors(5))</pre>
plotLegend(mesh = colmesh,values = interp, main = "Pan troglodytes")
```

10 rate.map

```
open3d()
shade3d(colmesh,specular="black")
```

rate.map

Mapping rate and direction of phenotypic change on 3D surfaces.

Description

Given vectors of RW (or PC) scores, the function selects the RW (PC) axes linked to highest (and lowest) evolutionary rate values and reconstructs the morphology weighted on them. In this way, rate.map shows where and how the phenotype changed the most between any pair of taxa.

Usage

```
rate.map(x, RR, scores, pcs, mshape, mshape_sur=NULL,refsur=NULL,
  refmat=NULL, k=4,out.rem = TRUE, plot=TRUE, pal=NULL,
  NAcol="gray90",from=NULL, to=NULL,show.names=TRUE)
```

Arguments

x	the species/nodes to be compared; it can be a single species, or a vector containing two species or a species and any of its parental nodes.
RR	an object generated by using the RRphylo function.
scores	RW or PC scores.
pcs	RW (or PC) vectors (eigenvectors of the covariance matrix) returned by RWA/PCA.
mshape	the consensus configuration.

mshape_sur a mesh3d object used as a reference for mesh reconstruction. The vertices of

mshape_sur must be the consensus configuration. If NULL, it is automatically

generated by applying vcgBallPivoting on mshape.

refsur a list of mesh3d to be provided for all species in x.

refmat a list of landmark sets to be provided for all species in x.

k the argument k passed to interpolMesh.

out.rem logical: if TRUE mesh triangles with outlying area difference are removed.

plot logical indicating if the 3d plot must be shown.

pal a vector of colors to be passed to colorRampPalette.

NAcol the argument NAcol passed to col2mesh.

from, to lower and upper limits to be associated to the ends of pal.

show.names logical: if TRUE, the names of the species are displayed in the 3d plot.

rate.map 11

Details

After selecting the RW (PC) axes, rate.map automatically builds a 3D mesh on the mean shape calculated from the Relative Warp Analysis (RWA) or Principal Component Analysis (PCA) (Schlager 2017) by applying the function vcgBallPivoting (Rvcg). The reconstruction of species 3d surfaces is based on mshape_sur, either provided by the user or generated within the function. Finally, for each species in x, the function computes the area differences between corresponding triangles of its reconstructed 3D mesh and the surface of the ancestor (most recent common ancestor in the case of two species in x). In the calculation of differences, the possibility to find and remove outliers is supplied (out.rem=TRUE, we suggest considering this possibility if the mesh may contain degenerate facets).

Finally, rate.map returns a 3D plot showing such comparisons displayed on shape of the ancestor/mrca used as the reference. The color gradient goes from blue to red, where blue areas represent expansion of the mesh, while the red areas represent contraction of the mesh triangles. If a list refsur (and refmat) is provided, convergence is plotted onto them (see interpolMesh for further details).

Value

The function returns a list including:

- \$selected a list of RWs/PCs axes selected for higher evolutionary rates for each species.
- **\$surfaces** a list of reconstructed colored surfaces of the given species/node and the most recent common ancestor.
- **differences** a list area differences between corresponding triangles of species reconstructed 3d mesh and the surface of the ancestor.
- **lmks** if refmat is not NULL, this is the landmark configuration rotated on the reconstructed surface.

Author(s)

Marina Melchionna, Antonio Profico, Silvia Castiglione, Gabriele Sansalone, Pasquale Raia

References

Schlager, S. (2017). Morpho and Rvcg-Shape Analysis in R: R-Packages for geometric morphometrics, shape analysis and surface manipulations. In: Statistical shape and deformation analysis. Academic Press.

Castiglione, S., Melchionna, M., Profico, A., Sansalone, G., Modafferi, M., Mondanaro, A., Wroe, S., Piras, P., & Raia, P. (2021). Human face-off: a new method for mapping evolutionary rates on three-dimensional digital models. *Palaeontology*, 65, 1. doi:10.1111/pala.12582

Melchionna, M., Castiglione, S., Girardi, G., Serio, C., Esposito, A., Mondanaro, A., Profico, A., Sansalone, G., & Raia, P. (2024). RRmorph—a new R packageto map phenotypic evolutionary rates and patterns on 3D meshes. *Communications Biology*, 7, 1009.

See Also

RRphylo vignette; relWarps; procSym

12 shapeDiff

Examples

```
da<-"https://github.com/pasraia/RRmorph_example_data/raw/refs/heads/main/RRmorphdata.rda"
download.file(url=da,destfile = paste0(tempdir(),"/RRmorphdata.rda"))
load(paste0(tempdir(),"/RRmorphdata.rda"))
require(Morpho)
require(Rvcg)
pca<-procSym(endo.set)</pre>
ldm_homo<-endo.set[,,"Homo_sapiens"]</pre>
sur_homo<-endo.sur[["Homo_sapiens"]]</pre>
ldm_macaca<-endo.set[,,"Macaca_fuscata"]</pre>
sur_macaca<-endo.sur[["Macaca_fuscata"]]</pre>
cc<- 2/parallel::detectCores()</pre>
RR<-RRphylo::RRphylo(tree.prima,pca$PCscores,clus=cc)
# plotting on reconstructed surfaces
Rmap1<-rate.map(x=c("Homo_sapiens","Macaca_fuscata"),RR=RR, scores=pca$PCscores,</pre>
                 pcs=pca$PCs, mshape=pca$mshape)
# plotting on real surfaces
Rmap2<-rate.map(x=c("Homo_sapiens","Macaca_fuscata"),RR=RR, scores=pca$PCscores,</pre>
                 pcs=pca$PCs, mshape=pca$mshape,
                 refsur=list("Homo_sapiens"=sur_homo, "Macaca_fuscata"=sur_macaca),
                 refmat=list("Homo_sapiens"=ldm_homo, "Macaca_fuscata"=ldm_macaca))
```

shapeDiff

Shape difference between 3d meshes

Description

The function reconstructs two specimens' meshes (x) by using their superimposed configurations (from within pca), calculates the shape difference between them, and plots such differences on provided meshes (refsur).

Usage

```
shapeDiff(x,pca,refsur,refmat,mshape_sur = NULL,
pal=NULL,NAcol="gray90",show.names=TRUE)
```

Arguments

x a vector of specimens pair.

pca the result of a relative warp analysis. Classes relwarps and nosymproc are both

accepted.

refsur a list of two mesh3d objects to be provided in the same order as x.

tri2verts 13

refmat a list of two landmark sets related to refsur to be provided in the same order as

х.

mshape_sur a mesh3d object used as a reference for mesh reconstruction. The vertices of

mshape_sur must be the consensus configuration. If NULL, it is automatically generated by applying vcgBallPivoting on the consensus configuration de-

rived from pca.

pal a vector of colors to be passed to colorRampPalette.

NAcol the color associated to refsur vertices falling outside the range of refmat (not

involved in interpolation).

show. names logical: if TRUE, the names of the specimens as in x are displayed in the 3d plot.

Value

Two mesh3d objects colored according to shape differences. Additionally, the function returns 3d plots of the meshes.

Author(s)

Marina Melchionna, Silvia Castiglione

Examples

tri2verts

Triangles to vertices

Description

The function transfers values associated to triangles of a mesh3d object to its vertices.

Usage

```
tri2verts(mesh, values)
```

14 tri2verts

Arguments

mesh a mesh3d object.

values a vector of continuous values associated to individual triangles of the mesh.

Value

A vector of continuous values associated to individual vertices of the mesh.

Author(s)

Marina Melchionna, Silvia Castiglione

```
da<-"https://github.com/pasraia/RRmorph_example_data/raw/refs/heads/main/RRmorphdata.rda"
download.file(url=da,destfile = paste0(tempdir(),"/RRmorphdata.rda"))
load(paste0(tempdir(),"/RRmorphdata.rda"))
require(Morpho)
require(Rvcg)

pca<-procSym(endo.set)
ldm<-endo.set[,,"Homo_sapiens"]
sur<-endo.sur[["Homo_sapiens"]]

rec<- vcgBallPivoting(pca$mshape, radius = 0)
rec$vb[1:3,]<-t(ldm)
val<-rnorm(ncol(rec$vb))</pre>
vertval<-tri2verts(rec,val)
```

Index

```
col2mesh, 2, 4, 10
colorRampPalette, 2, 8, 10, 13
conv.map, 3
interpolMesh, 4, 6, 8, 10, 11
plotland, 7
plotLegend, 9
procSym, 5, 11
rate.map, 10
relWarps, 5, 11
restoreShapes, 4
RRphylo, 10
shapeDiff, 12
spheres3d, 8
tri2verts, 13
vcgBallPivoting, 3, 8, 10, 11, 13
```