Include a title here

Include your name here

2023-07-22

Contents

- Heading 1
- Heading 2
- Heading 3
- Heading 4
- Heading 5
- Heading 6
- Heading 7
- References

- According to bla, bla, bla (Wickham et al., 2023)
 - The citation use the file r_for_data_science_2_edition_umng.bib
 - The citation applies the apa style with the file apa.csl
- This is an **inline** r code¹
 - My age is 37 years

• This is a table using kableExtra:

Table 1: US economic time series

Date	Consumption	Population	Saving rate	Unemployment	Unemployed
1967-07-01	506.7	198712	12.6	4.5	2944
1967-08-01	509.8	198911	12.6	4.7	2945
1967-09-01	515.6	199113	11.9	4.6	2958
1967-10-01	512.2	199311	12.9	4.9	3143
1967-11-01	517.4	199498	12.8	4.7	3066

• This is a simple plot using ggplot2:

• This is an image

Figure 1: What you will learn (Wickham et al., 2023, fig. 1.1)

• This is illustrated well by Figure 1

- This is an line equation:
 - The solution to $\sqrt{x} = 26$ is x = 676
- This is a centered equation:

$$A = \frac{\pi r^2}{2}$$
$$= \frac{1}{2}\pi r^2$$

This is a R code chunk

```
# Using R as a calculator
result <- 2 + 3
result</pre>
```

[1] 5

This is a Python code chunk

```
# Creating a numpy array
np_array = np.array([*range(1,4)])
np_array
```

array([1, 2, 3])

• From R to Python

```
np_array + r.result
array([6., 7., 8.])
```

• From Python to R

[1] 6 7 8

References I

Wickham, H., Çetinkaya-Rundel, M., & Grolemund, G. (2023). *R for data science: Import, tidy, transform, visualize, and model data* (2nd edition). O'Reilly Media, Inc. https://r4ds.hadley.nz/

10 / 10