Module 3

Measuring the microbiome using amplicon sequencing

Module Outcomes

- 1. Define what the microbiome is and why it is important
- 2. Describes the steps involved in Amplicon Sequencing
- 3. Explain what are the possible outputs (ie. files and data) from amplicon sequencing

Microbiota

Community of microorganisms living in a certain environment

Microbiome

- Combined genetic material of all the microbes in the microbiota
- From this you can infer the different species and overall diversity of the community

NIH Human Microbiome Project

- Began in 2008 as an extension to the Human Genome Project
- Goal: to analyze the microbial communities in the 5 different parts of the body in over 300 individuals
 - Skin, mouth, nose, colon, and vagina
- Project lasted 5 years and cost \$150 million US dollars
- https://www.hmpdacc.org/

What is the 16S rRNA gene?

- Gene on the bacterial chromosome that encodes a rRNA molecule
- 16S rRNA is essential for the SSU of the ribosome needed for translation

Why did we choose this gene?

- This gene is conserved in almost all species of bacteria that we have cultured today
- 2. It is highly essential so it accrues changes slowly
- 3. But changes are still present enough to distinguish between different taxa

Carl Woese

16S rRNA

Advantage to PCR

 Design primers that bind to the constant regions to help amplify the variable regions

16S Sequence Analysis Pipeline

Generating the data

Your Microbial Community Sample 1 16S rRNA gene

PCR Amplify 16S gene

High Throughput Sequencing

Microbe 1

Microbe 2

Microbe 3

Microbial Communities Across Different Samples

	-nicrobe 1	Microber	wicrobe 3
Sample 1	3	1	2
Sample 2	1	0	5
Sample 3	0	1	2

16S rRNA gene

Constant regions

16S rRNA gene

16S rRNA gene

High Throughput Sequencing – Illumina MiSeq (overview)

https://api.intechopen.com/media/chapter/49419/media/image2.png

Illumina sequencing by synthesis

Repeat cycles of sequencing to determine the sequence of bases in a given fragment a single base at time.

Watch this video!

https://youtu.be/fCd6B5HRaZ8

Sequence File Formats

Phred Quality Score	Probability of incorrect base call	Base call accuracy
10	1 in 10	90%
20	1 in 100	99%
30	1 in 1000	99.9%
40	1 in 10,000	99.99%
50	1 in 100,000	99.999%
60	1 in 1,000,000	99.9999%