المدة: ساعتان اختبار مادة: الرياضيات

العلامة		71.30			
مجموع	مجزأة	عناصر الإجابة			
		التمرين الأول: (03 نقاط)			
		A نبین أن A عدد طبیعي :			
	4×0.25	$A=3 imes 4$: ومنه : $A=3\sqrt{8} imes 2$. این : $A=3\sqrt{8} imes \sqrt{2}$. ومنه : $A=3\sqrt{8} imes \sqrt{2}$			
		A=12 : وبالتالي			
		:حيث a على شكل $a\sqrt{3}$ حيث a عدد طبيعى $a\sqrt{3}$			
	0,5	$B = 2\sqrt{9 \times 3} - 2\sqrt{3} + \sqrt{4 \times 3}$: ومنه $B = 2\sqrt{27} - 2\sqrt{3} + \sqrt{12}$: لدينا			
03	0,5	$B = 6\sqrt{3}$: ومنه $B = 6\sqrt{3} - 2\sqrt{3} + 2\sqrt{3}$: وأي			
	0,5	$\frac{A}{B} = \frac{2\sqrt{3}}{3}$: نبین أن ز			
	1	B 3			
		$\frac{A}{B} = \frac{2\sqrt{3}}{3}$: ومنه $\frac{A}{B} = \frac{12\sqrt{3}}{18}$: أي $\frac{A}{B} = \frac{12 \times \sqrt{3}}{6\sqrt{3} \times \sqrt{3}}$: ومنه $\frac{A}{B} = \frac{12}{6\sqrt{3}}$			
		$D S \qquad D 18 \qquad D 6\sqrt{3} \times \sqrt{3} \qquad D 6\sqrt{3}$			
		التمرين الثاني: (03 نقاط)			
	0,25 0,5 0,25	1) التحقق بالنشر:			
		(3x+1)(x-4)=3x(x-4)+1(x-4) : لدينا			
		$(3x+1)(x-4) = 3x^2 - 12x + x - 4$:			
03		$(3x+1)(x-4) = 3x^2 - 11x - 4$:			
03		:غلیل العبارة E إلى جداء عاملین ($oldsymbol{2}$			
	0,5 0,5	$E = (3x+1)(x-4)+(3x+1)^2$ و منه: $E = 3x^2-11x-4+(3x+1)^2$: لدينا			
		E = (3x+1)(x-4+3x+1) : $E = (3x+1)[(x-4)+(3x+1)]$: ومنه			
		E = (3x+1)(4x-3)			
		3) حل المتراجحة:			
	0,25	$3x^2 - 11x - 4 \le 3x^2 + 7$: أي $(3x+1)(x-4) \le 3x^2 + 7$			
		$-11x \le 11$: $3x^2 - 3x^2 - 11x \le 7 + 4$:			
	0,25×3	$x \ge -1$: أي أن $x \ge \frac{11}{11}$			
		-11 °			

المدة: ساعتان اختبار مادة: الرياضيات

		∠ ♥ 1 ♥ ♥ △ ♠ │				
		التمرين الثالث: (03 نقاط)				
	0,25×4	: AC حساب الطول AC :				
		بتطبیق نظریة فیتاغورث علی المثلث القائم ADC : $AC^2 = AD^2 + DC^2$				
		$AC^2 = AD^2 + DC^2$ $AC^2 = 6^2 + 8^2$				
		$AC^2 = 36 + 64 = 100$				
		$AC = \sqrt{100} = 10cm$				
03		(EF)//(AC) إثبات أن $(2$				
	0,5	$\frac{BE}{BA} = \frac{2}{8} = \frac{1}{4}$				
	0.5	i iii ii				
	0,5	$\frac{BF}{BC} = \frac{1,5}{6} = \frac{15}{60} = \frac{1}{4}$				
	0,25	. اأن: $rac{BE}{BA} = rac{BF}{BC}$ فإن المستقيمين (EF) و (EF) متوازيان حسب عكس خاصية طالس				
		\widehat{BEF} حساب قيس الزاوية \widehat{BEF} بالتدوير إلى الوحدة:				
	0,5	$\tan \widehat{BEF} = \frac{BF}{BE} = \frac{1.5}{2} = 0.75$				
	3,0					
	0,25	$\widehat{BEF} \simeq 37^{\circ}$				
		التمرين الرابع: (03 نقاط)				
	0.25	1) نوع المثلث <i>TIC</i> :				
	0,25 0,25×3	$CI^2 = 13^2 = 169$: لديتا $TC^2 + TI^2 = 12^2 + 5^2 = 144 + 25 = 169$				
	0,25	$TC^2 + TI^2 = 12^2 + 5^2 = 144 + 25 = 169$ المثلث TIC قائم في T حسب عكس نظرية فيتاغورث $CI^2 = TC^2 + IT^2$: بما أن				
		به ۱۰ . ۱۱ + ۱۱ عو المسك ۱۱ فادم في ۱ حسب محتس تطريد فيما فورت				
		حساب مساحة المثلث TIC :				
03	0,50	•				
		$S = \frac{TC \times TI}{2} = \frac{12 \times 5}{2} = \frac{60}{2} = 30 \text{Cm}^2$				
		: TH الطول (2				
	0,50	$S = \frac{TH \times CI}{2}$: لدينا $S = 30 Cm^2$: لدينا				
	0,25×3	$TH = \frac{30 \times 2}{13} = 4,6cm$: $\frac{TH \times 13}{2} = 30$: $\frac{TH \times CI}{2} = 30$				

اختبار مادة: الرياضيات المدة: ساعتان

الجزء الثانى: (08 نقاط) المسألة:

الجزء (1):

.
$$200 \times 120 + 20000 = 24000 + 20000 = 44000DA$$
: راتب عبد الله

.
$$100 \times 120 + 30000 = 12000 + 30000 = 42000 DA$$
: راتب محمد

$$oldsymbol{x}$$
: x التعبير عن $oldsymbol{y}_1$ و عن $oldsymbol{y}_2$ بدلالة

$$y_2 = 100x + 30000$$
 $y_1 = 200x + 20000$

الجزء (2):

$$h(x) = 100x + 30000$$
 و $g(x) = 200x + 20000$ رسم مستقيما الدالتين $g(x) = 200x + 20000$

X	0	50
h(x)	30000	35000

x	0	50
g(x)	20000	30000

ملاحظة : تأخذ بعين الاعتبار كل النقط المختارة من طرف التلميذ

اختبار مادة: الرياضيات المدة: ساعتان

ومنه
$$y = 200x + 20000 = 100x + 30000$$
 ومنه $y = 200x + 20000$ ومنه $y = 100x + 30000$

$$x = 100$$
 , $x = \frac{10000}{100}$: ومنه $x = 10000$ ومنه $x = 200x - 100x = 30000 - 20000$

تعويض قيمة x في المعادلة الأولى:

$$y = 200 \times 100 + 20000 = 20000 + 20000 = 40000$$

للجملة حل واحد هو : (100;4000)

التفسير البياني لحل الجملة:

حل هذه الجملة هو إحداثيتا نقطة تقاطع المستقيمين $\left(D_{1}
ight)$ و $\left(D_{2}
ight)$ الني تمثل تساوي الراتبين عند صنع

ــ من التمثيل البياني يكون راتب عبد الله اكبر من راتب محمد عند صنع اكثر من 100 لعبة.

المدة: ساعتان

الإجابة النموذجية لموضوع امتحان شهادة التعليم المتوسط اختبار مادة: الرياضيات

شبكة التقويم

العلامة				-	1	3
مجموع	مجزأة	التنقيط	المؤشرات	المعيار	السؤال	المسألة
1,5	0,75	0,5إن وفق في مؤشر 0,75 إن وفق في مؤشرين	- كتابة العبارة : 20000 + 120×200 . - كتابة العبارة : 100×120+30000 .	م1		
	0,75	0,5 إن وفق في مؤشر 0,75 إن وفق في مؤشرين	- حساب العبارة 20000 + 120×2000 بشكل صحيح. - حساب العبارة 30000 + 120×100 بشكل صحيح	2۴	1	الجزء
1	0,5	0,25 إن وفق في مؤشر واحد 0,5 إن وفق في مؤشرين	x بدلالة y_2 و عن y_1 بدلالة y_2	م1 - ا	2	الجزء الأول
	0,5	0,25 إن وفق في مؤشر واحد 0,5 إن وفق في مؤشرين	التعبير عن y_1 و عن y_2 بشكل صحيح - التعبير	م2	2	
1,5	0,75	0,25 إن وفق في مؤشر واحد 0,5 إن وفق في مؤشرين 0,5 إن وفق في مؤشرين 0,75 إن وفق في ثلاث مؤشرات على الأقل	انشاء المعلم المناسب. اختيار نقطتين لتمثيل الدالة g . g مثيل الدالة g . g مثيل الدالة g . g اختيار نقطتين لتمثيل الدالة h .	1۴	1	
	0,75	0,5 إن وفق في مؤشر واحد 0,75 إن وفق في مؤشرين على الأقل	h تمثیل الدالة h - تعلیم النقط المختارة بشکل صحیح - تمثیل الدالة g بشکل صحیح تمثیل الدالة h بشکل صحیح تمثیل الدالة h بشکل صحیح.	2۾		الجزء الثانا
2,5	1, 25	0,5 إن وفق في مؤشر واحد 1,25 إن وفق في مؤشرين على الأقل	- اختيار طريقة لحل الجملة - القراءة البيانية بإسقاط نقطة التقاطع - ربط الراتبين بوضعية المستقيمين	1م		ثائي
	1,25	0,5 إن وفق في مؤشر واحد 75; 0 إن وفق في مؤشرين 1,25 إن وفق في مؤشرين 1,25 القل الاقل	- الحل الصحيح للجملة - كتابة الحل (الثنائية) - التفسير الصحيح لحل جملة المعادلتين - تحديد عدد اللعب (يفوق 100 لعبلة)	2۴	2	
1,5	1	0,25 إن وفق في مؤشر واحد 0,5 إن وفق في مؤشرين 1 إن وفق في ثلاث مؤشرات	- التسلسل المنطقي . - معقولية النتائج . - احترام وحدات القياس .	_ التسا		حل المسالة
	0,5	0,25 إن وفق في مؤشر واحد 0,55 إن وفق في مؤشرين	- المقروئية. - عدم التشطيب و صياغة النتائج بوضوح.	4	3-	

م1: التفسير السليم للوضعية. م2: الاستعمال السليم للأدوات الرياضية. م3: انسجام النتائج م4: تقييم الورق