YIHENG LI

Background: Biomedical Informatics @ Stanford University

★ li.terry710@gmail.com I (650)-665-3654 I linkedin.com/in/yiheng-li I terryli710.github.io

EDUCATION

Stanford University

M.Sc. in Biomedical Informatics

09/2019-06/2021

- Research interests: deep learning application in medical imaging; multimodal data fusion; head impact analysis and deep learning brain injury prediction; meta-learning application in patient outcome prediction; natural language processing for clinical free text; genomic sequence embedding and activator prediction.

Shanghai Jiao Tong University

B.Sc. in Resource and Environmental Science

09/2015-06/2019

University of California, Berkeley International Exchange Program

01/2018-05/2018

PUBLICATIONS AND MEETINGS

Deep Learning-Based Multi Contrast MRI Registration Model with a Realistic Flow Field and Reduced Over-Smoothing Effect - Role: first author	2023 Subtle Medical	ISMRM 2023
Deep Learning based Image Co-Registration Quality Control - Role: first author	2022 Subtle Medical	ISMRM 2022 ASNR 2022 RSNA 2022
A 3D Lung Lesion Variational Auto-Encoder - Role: first author	2022 Stanford	RSNA 2022 Cell Press Community (in-process) https://papers.ssrn.com/sol3/ papers.cfm?abstract_id=4342994
Al-based analysis of CT images for rapid triage of COVID-19 patients - Role: main programmer, main author	2021 Stanford	npj Digital Medicine https://doi.org/10.1038/ s41746-021-00446-z
Predictive Factors of Kinematics in Traumatic Brain Injury from Head Impacts Based on Statistical Interpretation - Role: first author, experiment designer, main programmer	2021 Stanford	Annals of Biomedical Engineering https://link.springer.com/article/10.1007/ s10439-021-02813-z
The Relationship between Brain Injury Criteria and Brain Strain Across Different Types of Head Impacts Can Be Different Role: first author, experiment designer	2021 Stanford	Journal of the Royal Society Interface https://pubmed.ncbi.nlm.nih.gov/ 34062102/
Photosynthesis and Related Physiological Parameters Differences Affected the Isoprene Emission Rate among 10 Typical Tree Species in Subtropical Metropolises	2019 Shanghai	International journal of environmental research and public health https://doi.org/10.3390/ijerph18030954

EXPERIENCES

- Role: experimenter

Deep Learning Research Scientist at Subtle Medical Inc.

- Deep Learning based Image Co-Registration Quality Control

- Built a self-supervised classification model to QC the co-registration performance for pairs of 3D MRI images.

- Developed a data augmentation pipeline including affine and deformable movement to generate pseudo data pairs to tackle the data challenges of obtaining labelled well-registered MRI data pairs.

- To achieve multi-contrast prediction, compared two technical approaches: augmented contrasts vs. modality invariant representation. Menlo Park, CA 08/2021-07/2023

> 08/2021-02/2022 Meeting accepted: **ISMRM 2022 ASNR 2022 RSNA 2022**

- Deep Learning-Based Multi Contrast MRI Registration Model with a Realistic Flow Field and Reduced Over-Smoothing Effect
 - Developed a deep learning based co-registration model that can be applied to multi-contrast MRI images of multiple anatomies.
 - Novel attempts, using "Jacobin loss" and "cycle consistent loss", to deal
 with unrealistic flow field and over-smoothing effect of deep learningbased registration methods, especially in the "VoxelMorph" and
 "SynthMorph" framework.
 - Converted TensorFlow based "SynthMorph" code and trained PyTorch versions of "SynthMorph" and other variations of the model.
 - Improved the SSIM and PSNR of the registered image on BraTS and Lumbar-Spine Open Dataset by ~40% and ~50% respectively.
- A Self-Supervised Key Point Detection Framework For Multiple Applications
 - Explore, adapted, developed and assessed multiple technical workflows for self-supervised key point detection in medical images.
 - Developed a two-step rule-based pipeline for brain MRI autoformatting, using ANTs affine registration and SIFT key point matching.
 - Guiding a intern to adopted and optimized the performance of the "KeyMorph", an automatic key point generator with registration training mechanism, by customizing the loss with distance and applying additional mask.
 - Start with the replication of a real-time self-supervised key point detector paper in PyTorch Lightning. Optimize over the original paper's result by ~30% on a private self-curated test dataset with modified training strategy and grid loss search. A multi-purpose training framework is introduced by adding a tail to provide binary prediction of the key point existence. Transformer-based encoder replaced the CNN based encoder. Reinforced learning and iterative predictions are both tested for finer prediction.
- <u>Creation and Maintenance of a PyTorch-Lightning and MONAI based</u>
 <u>Deep Learning Training, Logging and Inference Helper Package: Lumos-</u>
 <u>ToolKit</u>
 - Created and maintained a toolkit which includes pipelines for the key steps and pain point in deep learning model development for medical imaging: dataset curation and testing; image affine, deformable and other spatial transformations; logging and documentation of the model hyper-parameters, figures and performances; management of the training settings and configurations; image preprocessing pipeline; complicated loss settings and combinations of losses.
 - The whole package dynamically integrates the following packages: "pydantic", "argdantic", "PyTorch-Lightning", "MONAI", "rich", etc.

Machine Learning Researcher at Gevaert Lab at Stanford DBDS

- Unsupervised Lung Nodule Encoder Based on 3D Variational Auto-Encoder
 - Implemented a 3D Beta-VAE network based on PyTorch. Trained the network with cropped lung nodule patches in public datasets and evaluated on Stanford lung cancer dataset.
 - With demonstrated ability to accurately reconstruct lung nodule patches, the model's bottleneck embeddings were extracted and used to train models for downstream tasks predictions.
 - Analysis results showed that VAE models trained combinedly on public datasets and target datasets can do best in downstream tasks, including classification of T/N stage etc.

02/2022-09/2022 Meeting accepted: ISMRM 2023

09/2022-07/2023

09/2022-07/2023

03/2020-12/2022

Stanford, CA

01/2021-present

- Patient Treatment Evaluation and Prediction Based on Multimodal Data Fusion of NSCLC
 - Implemented patient information data extract pipeline from clinical texts, pharmacy tables and CT headers, and constructed a scalable visualization tool using seaborn and matplotlib for patient timeline.
 - Built SNP translation and annotation pipeline using web APIs, tools and databases including myvariant, wANNOVAR, dbSNP, REVEL, etc.
 - Extracted lung cancer lesion CT segmentations radiological features using PyRadiomics in batches.
 - Performed association analysis over extracted features and patient treatment responses with statistical tests including one-way ANOVA and visualizations including PCA and Manhattan plot.
- Al-Based Analysis of CT Images for Rapid Triage of COVID-19 Patients

- Cleaned, queried, matched various data types (CT images, lab results, clinical notes) with Python and R for data fusion.

- Applied statistical methods for data resampling (SMOTEENN) and feature selection (univariate selection methods based on F-test or mutual information).

- Implemented multiple statistical learning models with extensive cross-validated hyperparameter tuning. Evaluated the models with bootstrapping.
- Performed survival analysis with Kaplan-Meier estimator, Log-rank test, and Cox proportional hazards model with R, to illustrate efficacy of model performance.
- Visualized various data types using ComplexHeatmap with customized clustering.

Research Assistant at Chaudhari Lab at Stanford AIMI

- Osteoporosis Risk Prediction Model Based on Abdominal and Pelvis CTs

- Adopted and implemented deep models from recent research for L3 vertebral level prediction and segmentation that are based on TensorFlow on custom datasets.
- Cropped, reoriented, and visualized Dicom images with ITK.
- Independently implemented preprocessing and segmentation pipeline for trabecular bone abdomen-pelvis CTs based on UNet.

Research Assistant at Camarillo Lab at Stanford Bioengineering

- <u>Predictive Factors of Kinematics in Traumatic Brain Injury from Head Impacts Based on Statistical Interpretation</u>

- Implemented 6 types of linear regression feature importance interpretation methods in Python, either from theory or transplanted from R.

- Crafted a novel perspective of interpreting contributors of linear statistical models by feature groups (defined as factors) without the difficulty of collinearity.
- Built pipeline for visualization of input data in heatmaps and then visualized the results in various types of bar plots and tables using R and LaTeX.
- <u>The Relationship between Brain Injury Criteria and Brain Strain across Different Types of Head Impacts Can Be Different</u>

Researcher at Prof. Yin Shan's Lab at Department of Resource and Environment at Shanghai Jiao Tong University

- Photosynthesis and Related Physiological Parameters Differences Affected the Isoprene Emission Rate among 10 Typical Tree Species in Subtropical Metropolises

- Established the continuous observation platform, which monitored biogenic VOC and secondary organic aerosol; 9 categories of meteorological data and 6 categories of air contamination data.
- Optimized various data collecting methods to achieve the automation of data collecting system to achieve continuous observation.
- Selected a tree-based model to provide predictions to multi-dimensional data's influence on BVOC as well as secondary organic aerosol emission and transformation patterns; hyperparameter tuning is conducted using MATLAB.

p Published:

npj digital medicine

03/2020-07/2020

07/2020-12/2022

07/2020-07/2021

07/2020-07/2021

Stanford, CA

Stanford, CA 11/2020-04/2021

09/2020-01/2021

Published: Annals of Biomedical

Biomedical Engineering

11/2020-02/2021 Published: Royal Society

04/2018-06/2019

04/2018-06/2019

Published:
International journal
of environmental
research and public
health

Research Intern at Shanghai Academy of Environmental Sciences

Shanghai, China

Shanghai, China

07/2018-07/2019

- Responsible for calibrating PTR-ToF-MS instrument, making research on how sensitivity, 04/2018-07/2019 humidity influence, sampling method could influence the sensitivity and detection limit.

- Learned the knowledge about proton-transfer reactions, principle of time-of-flight mass spectrometry, physical and chemical properties of biogenic volatile organic compounds.
- Used linear regression with Excel and R to fit the data; analyze the reasons for the bad fitting; calculated various values.

SKILLS

Technical: Python, R, PyTorch, TensorFlow, Bash, git, GCP, AWS, Azure, C++, SPSS, MATLAB, SQL

Language: English (proficient), Chinese (native)

OTHER PROJECTS

Research Assistant at Camarillo Lab at Stanford Bioengineering Stanford, CA	11/2020-04/2021
- Predictive Factors of Kinematics in Traumatic Brain Injury from Head Impacts Based on	09/2020-01/2021
 Statistical Interpretation Implemented 6 types of linear regression feature importance interpretation methods in Python, either from theory or transplanted from R. Crafted a novel perspective of interpreting contributors of linear statistical models by feature groups (defined as factors) without the difficulty of collinearity. Built pipeline for visualization of input data in heatmaps and then visualized the results in various types of bar plots and tables using R and LaTeX. 	Published: Annals of Biomedical Engineering
- The Relationship between Brain Injury Criteria and Brain Strain across Different Types of Head Impacts Can Be Different	11/2020-02/2021 Published: Royal Society
Researcher at Prof. Yin Shan's Lab at Department of Resource and Environment at Shanghai Jiao Tong University Shanghai, China	04/2018-06/2019
- Photosynthesis and Related Physiological Parameters Differences Affected the Isoprene Emission Rate among 10 Typical Tree Species in Subtropical Metropolises	04/2018-06/2019
 Established the continuous observation platform, which monitored biogenic VOC and secondary organic aerosol; 9 categories of meteorological data and 6 categories of air contamination data. Optimized various data collecting methods to achieve the automation of data collecting system to achieve continuous observation. Selected a tree-based model to provide predictions to multi-dimensional data's influence on BVOC as well as secondary organic aerosol emission and transformation patterns; hyperparameter tuning is conducted using MATLAB. 	Published: International journal of environmental research and public health
Research Intern at Shanghai Academy of Environmental Sciences Shanghai, China	07/2018- 07/2019

07/2018- 07/2019 04/2018-07/2019

- Responsible for calibrating PTR-ToF-MS instrument, making research on how sensitivity, humidity influence, sampling method could influence the sensitivity and detection limit.
- Learned the knowledge about proton-transfer reactions, principle of time-of-flight mass spectrometry, physical and chemical properties of biogenic volatile organic compounds.
- Used linear regression with Excel and R to fit the data; analyze the reasons for the bad fitting; calculated various values.