Строеж на атома

1. Квантово-механичен модел на водородния атом

Стационарното уравнение на Шрьодингер за електрона във водородоподобния атом има вида

$$\Delta \Psi + \frac{8m\pi^2}{h^2} (E - U)\Psi = 0, \qquad (1)$$

където $\psi = \psi(r)$ е вълновата функция на електрона, E е пълната му енергия, $U = -Ze^2/4\pi\varepsilon_0 r$ е потенциалната енергия на електрона в кулоновото поле на ядрото със заряд +Ze, а r е разстоянието между електрона и ядрото. Кулоновото поле на ядрото е централно-симетрично и по тази причина уравнението на Шрьодингер се решава в сферични координати. Решението му дава резултати близки до тези, които следват от теорията на Бор. Основен извод от решаването на уравнението е, че за пълно описание на електрона е необходим набор от четири квантови числа (n - r -

2. Главно квантово число. Енергия на електрона.

Главното квантово число n съвпада с това от постулатите на Бор ($n=1,\,2,\,3,\,...$) и е свързано с енергията на електрона

$$E_{\rm n} = -\frac{me^4}{\pi^2 h^2 \varepsilon_0^2} \cdot \frac{1}{{\rm n}^2} \,. \tag{2}$$

Състоянието с главно квантово число n=1 се нарича **основно**, а останалите се наричат **възбудени**. Сравняването на формулата за енергията на електрона във водородния атом, получена при решаване на уравнението на Шрьодингер, с израза за енергията, фигуриращ в теорията на Бор, показва единствената разлика, че вместо осмицата в знаменателя фигурира $\pi^2 = 9,86$.

Вълновата функция, описваща състоянието на електрона в основно състояние е сферичносиметрична, т.е. вероятността да бъде открит електронът в дадена точка в атома зависи само от

разстоянието му до ядрото. Съгласно теорията на Бор вероятността да бъде открит електронът в състояние с n=1 е различна от нула, само когато радиусът на орбитата му е точно равен на a_0 , т.е. когато електронът се намира на първа борова орбита.

Съгласно квантовата механика, обаче тази вероятност е максимална при $r=a_0$, $w(a_0)=w_{\rm max}$ и е различна от нула в цялото пространство. На фиг. 1 са представени вероятностите да бъде открит електронът на различни разстояния от ядрото по теорията на Бор и съгласно квантовата механика. Казано по друг начин, боровските орбити на електрона са геометричното място на точки, в които с най-голяма вероятност може да бъде открит електронът.

3. Орбитален момент на импулса

Орбиталното квантово число l е цяло число, което заема стойности $\ell=0, 1, 2,...,$ n-1. То е свързано с орбиталния момент на импулса на електрона в атома. Съгласно теорията на Бор моментът на импулса $L=mVr=n\hbar$. От уравнението на Шрьодингер следва

$$L = \hbar \sqrt{\ell(\ell+1)} \tag{3}$$

и при $\ell = 0, 1, 2, 3, \dots$ се получава съответно $L = 0\hbar$; $1,414\hbar$; $2,449\hbar$; $3,464\hbar$, ...

Състоянията на електрона с различни моменти на импулса се означават, както следва: при $\ell = 0 - \mathbf{s}$ -състояние; $\ell = 1 - \mathbf{p}$ -състояние; $\ell = 2 - \mathbf{d}$ -състояние; $\ell = 3 - \mathbf{f}$ -състояние.

На фиг. 2 е представена вероятността w(r) да бъде открит електронът във водородния атом като функция от разстоянието до ядрото за три различни квантови състояния 1s, 2s и 3s. За състоянията с по-висока енергия максимумът на вероятността отговаря на по-големи разстояния от ядрото, което показва, че възбуденият атом има по-големи размери.

4. Пространствено квантуване. Магнитно квантово число

Опитът показва, че моментът на импулса L на електрона се ориентира в пространството така, че проекциите му върху посоката на външно магнитно поле заемат стойности кратни на \hbar . Така орбиталният момент на импулса се квантува не само по големина, но и по посока. Това явление в квантовата механика е известно като пространствено квантуване. То е свързано с третото квантово число m_f , наречено магнитно квантово число, което заема стойности

$$m_{\ell} = 0, \pm 1, \pm 2, \pm 3, \dots, \pm \ell.$$
 (4)

Орбиталният момент на импулса така се ориентира спрямо дадено физически обособено направление в пространството z (например по посока на магнитно поле), че проекцията му $L_{\rm z}$ в това направление заема само стойности, определени с равенството

$$L_{z} = m_{\ell} \, \hbar \,. \tag{5}$$

На фиг. 3 са представени ориентациите за вектора на орбиталния момент на импулса в рсъстояние на електрона ($\ell=1$). Възможните ориентации на L са $2\ell+1=3$ на брой а големината му е $L=\hbar\sqrt{2}$. Векторът на момента на импулса се ориентира така спрямо z, че L_z да заеме стойностите $1\hbar$, $0\hbar$ и $+1\hbar$. При това компонентите на орбиталния момент на импулса по направленията x и y са неопределени.

Ако електронът в атома на водорода се намира в **d**-състояние ($\ell=2$) големината на момента на импулса му е

$$L = \hbar \sqrt{\ell(\ell+1)} = \hbar \sqrt{6} . \tag{19.6}$$

Ако в дадена посока на пространството z е въведено магнитно поле (фиг. 4), възможните посоки на момента на импулса L се определят от ъгъла θ , който моментът на импулса сключва с оста z . Ъгълът се определя от равенствата

$$L_{\tau} = L\cos\theta = m_{\ell} \,\hbar\,,\tag{7}$$

Фиг. 3 Фиг. 4

$$\cos\theta = \frac{\mathbf{m}_{\ell}\hbar}{L} = \frac{\mathbf{m}_{\ell}}{\sqrt{\ell(\ell+1)}} = \frac{\mathbf{m}_{\ell}}{\sqrt{6}}.$$
 (8)

Възможните стойности на магнитното квантово число са $m_\ell=0,\pm 1,\pm 2,$ или общо $2\ell+1=5$ стойности. Ако

$$\mathbf{m}_{\ell} = 0, \ \theta_0 = \arccos \theta = 90^{\circ}; \tag{9}$$

$$m_{\ell} = \pm 1, \ \theta_1 = \arccos \pm \frac{1}{\sqrt{6}} = \pm 73.2^{\circ};$$
 (10)

$$m_{\ell} = \pm 2, \ \theta_2 = \arccos \pm \frac{2}{\sqrt{6}} = \pm 54.7^{\circ}.$$
 (11)

Според квантовата механика на всяко енергетично състояние съответства вълнова функция, с която се определя вероятността за намиране на частицата в дадена област. За различните области на атома вероятността е различна. При движение около ядрото електронът, като че ли е "размазан" в целия обем на атома и понятието електронна орбита за него е неприложимо. В този случай се говори за електронен облак, чиято плътност характеризира вероятността за намиране на електрона в атома. Квантовите числа n и ℓ определят формата и размерите на електронния облак, а магнитното квантово число m_ℓ определя ориентацията му в пространството.

Спектърът на излъчване и поглъщане на водородния атом се описва с помощта на квантовите числа, които съответно се изменят при преходите между различните енергетични състояния. При това не всички енергетични преходи са възможни, защото трябва да са изпълнени правилата на отбор

$$\Delta \ell = \pm 1, \tag{12}$$

$$\Delta m_{\ell} = 0, \pm 1. \tag{13}$$

5. Спин и спинов магнитен момент на електрона

През 1922 г. в Университета в Хамбург Ото Щерн и Валтер Герлах извършват експерименти по изучаване на магнитните моменти на атомите на различни химични елементи. Атомите на елементите от първа група на Периодичната система на Менделеев имат по един електрон в найвъншния електронен слой. Магнитните моменти на всички останали електрони взаимно са компенсирани. Това позволява по взаимодействието на атомите на елементите от първа група на Периодичната система с магнитно поле да се определи магнитният момент на техните най-външни електрони.

Щерн и Герлах използват нееднородно магнитно поле с много висок градиент dB/dz, приложено перпендикулярно на сноп от сребърни, литиеви и др. атоми (фиг. 5). Атомният сноп се получава чрез изпарение във вакуумна пещ и преминаване на атомите през фин процеп. В такова поле атомите изпитват сила

$$F = \mu_{\ell z} \frac{\mathrm{d}B}{\mathrm{d}z} \,, \tag{14}$$

където $\mu_{\ell z}$ е проекцията на магнитния момент на атома по направление на магнитното поле. Тази сила отклонява атомите по направление на оста z по време на прелитане през магнитното поле, като отклонението им е правопропорционално на градиента на магнитното поле и големината на $\mu_{\ell z}$.

Ако моментът на импулса на атома и съответно магнитния му момент имат всевъзможни ориентации в магнитното поле, то върху фотографската плака, служеща като екран, би трябвало да попадат атоми с непрекъснато разпределение, с най-голяма плътност в средата на екрана, намаляваща с отдалечаване от нея (фиг. 5 а). На фотоплаката обаче се регистрират само две резки линии (фиг. 5 б), което означава, че магнитните моменти на атомите имат в магнитно поле само две възможни ориентации. За атомите на среброто се получава, че проекцията на магнитния момент на атомите по направление на магнитното поле е равна на един магнетон на Бор $\mu_{\ell z} = \mu_{\rm b}$. Така Щерн и Герлах откриват пространственото квантуване на магнитните моменти на атомите и доказват, че те се измерват в магнетони на Бор. Но атомите на среброто са в основно състояние (n = 1 и ℓ = 0). Следователно външният електрон не притежава орбитален момент на импулса и би трябвало и магнитният момент също да е нула и атомите да преминават без да взаимодействат с магнитното

поле, т.е. да не се наблюдава разцепване на снопа. Възниква въпросът, какво всъщност измерват Щерн и Герлах? Наблюдаваното разцепване не може да се обясни с трите квантови числа n, ℓ и m_{ℓ} .

За обяснение на резултатите от опитите на Щерн и Герлах през 1925 г. Джордж Уленбек и Самуел Гаудсмит, докторанти в Университета в Лайден, допускат хипотезата за четвърто квантово число за електроните, наречено **спиново квантово число s**, свързано с нова характеристика на електрона, наречена **спин** \vec{S} . Първоначално се предполагало, че спинът е обусловен от въртене на електрона около своята ос. Но тази хипотеза за "въртящото се заредено топче" не е допустима и може да се използва само при популярно изложение на свойствата на атомите.

Спинът на електрона няма аналог в класическата физика, той не е свързан с движение на електрона в пространството, а е негово вътрешно присъщо свойство, както зарядът и неговата маса.

Спинът се квантува и стойностите му се определят от уравнението

$$S = \hbar \sqrt{s(s+1)}, \tag{15}$$

където s = 1/2, от което следва, че големината на електронния спин е $S = \frac{\hbar}{2} \sqrt{3}$.

Проекцията на спина S_z се квантува и може да има 2s+1=2 възможни ориентации спрямо определена ос в пространството z

$$S_{z} = \mathbf{m}_{s} \hbar \,, \tag{16}$$

където спиновото квантово число m_s може да приеме само две стойности (-1/2) и (+1/2) (m_s е аналог на магнитното квантово число m_t , свързано с орбиталното движение на електрона в атома) (фиг. 6 а).

Със спина на електрона \vec{S} е свързан магнитният спинов момент

$$\vec{\mu}_{\rm s} = -\frac{e}{m_{\ell}} \vec{S} = -\gamma_{\rm s} \vec{S} \,, \tag{17}$$

където $\gamma_{\rm s} = e/m_\ell$ е спиновото жиромагнитно отношение за електрона, което е два пъти по-голямо от орбиталното жиромагнитно отношение γ_ℓ .

Наличието на магнитен спинов момент на електрона определя, че при поставяне на атома във външно магнитно поле енергетичното ниво на всеки електрон се разцепва на две поднива с енергетична разлика, която зависи от големината на външното магнитно поле (фиг. 6 б).

Фиг. 6

В крайна сметка квантовото състояние на електроните във всеки атом се определя с набора от четири квантови числа – главно квантово число; орбитално квантово число; магнитно квантово число и спиново квантово число.

6. Принцип на Паули. Електронна структура на атома

Принципът на Паули, формулиран през 1925 г. няма аналог в класическата физика. Той гласи, че в един атом не може да има два електрона с еднакъв набор квантови числа n, ℓ , m_ℓ и s. Това означава, че в една квантовомеханична система във всяко разрешено енергетично състояние може да се намира не повече от един електрон, т.е. в сила е условието

$$Z(n, \ell, m_{\ell}, s) = 0$$
 или 1, (18)

където Z (n, ℓ , m_{ℓ} , s) е броят на електроните в състояние с този набор от квантови числа.

Тъй като при дадено n орбиталното квантово число ℓ може да се изменя от 0 до n - 1, а на всяка стойност на ℓ съответстват $2\ell+1$ възможни стойности на магнитното квантово число m_{ℓ} , то общият брой на възможните състояния при дадено n е

$$\sum_{\ell=0}^{n-1} (2\ell+1) = n^2.$$
 (19)

Спиновото квантово число може да приема две стойности, следователно максималният брой на електроните в състояние с главно квантово число n е

$$\sum_{\ell=0}^{n-1} 2(2\ell+1) = 2n^2. \tag{20}$$

Например в състояние с главно квантово число n=3, орбиталното квантово число може да приеме стойностите $\ell=0,1,2$. При $\ell=2$ възможните стойности на магнитното квантово число са $m_\ell=2,1,0,-1,-2$, което определя пет възможни състояния на електрона, във всяко от които спинът му може да заема две стойности $s=+\frac{1}{2}$, $-\frac{1}{2}$. Поради това електронът в състояние с $\ell=2$ има (5.2)=10 възможни състояния. Състоянията на електрона с орбитално квантово число $\ell=1$ се определят от три възможни стойности на m_ℓ (1,0,-1), на всяко от които съответстват по две възможни стойности на спина или общо шест състояния. Ако $\ell=0$, възможните състояния са две, отговарящи на двете спинови състояния и общият брой на възможните състояния на електрона с главно квантово число n=3 е $(10+6+2)=18=2.3^2$.

В сложните атоми електроните с еднакво главно квантово число n образуват **атомен слой**. Ако n=1 атомният слой се нарича K-слой; при n=2, L-слой; n=3, M-слой; n=4, N-слой; n=5, Ослой и т.н.

Електроните с еднакви орбитални квантови числа ℓ , принадлежащи към един и същи слой, образуват електронните подслоеве в атома. Електроните, за които $\ell=0$ образуват s-подслой; при $\ell=1$ те образуват p-подслой; $\ell=2$ - d-подслой; $\ell=3$ - f-подслой и т.н. Тъй като орбиталното квантово число може да заема стойности от 0 до n – 1, броят на подслоевете е равен на поредния номер на слоя n. За всеки подслой съществуват $2\ell+1$ възможни стойности на магнитното квантово число m_ℓ . Състоянието, което се характеризира с три определени квантови числа n, ℓ и m_ℓ , се нарича орбитала. Върху една орбитала може да се разположат най-много два електрона.

Електронната конфигурация в даден електронен подслой се означава символично във вида $n(\ell)^\#$, където # означава броя на електроните в подслоя с орбитално квантово число ℓ и с главно квантово число n. Електроните, които имат еднакви квантови числа n и ℓ се наричат еквивалентни.

Разпределението на електроните по енергетични състояния се извършва на принципа, че всеки следващ електрон в електронната обвивка заема състоянието с най-ниска възможна енергия.

В основно състояние на атома на хелия (Z = 2), двата електрона са в състояния с еднакви главно, орбитално и магнитно квантови числа (n = 1, ℓ = 0, m_{ℓ} = 0), но спиновете им се различават s_1 = + 1/2, s_2 = - 1/2.

Атомът на лития има три електрона, два от които са в състояние с n=1. За третия електрон n не може да бъде единица поради нарушаване на принципа на Паули и за него n=2. Тъй като нивото, за което n=2 и $\ell=0$, е с по-ниска енергия от нивото n=2 и $\ell=1$, квантовите числа за третия електрон са n=2, $\ell=0$, $m_\ell=0$, s=+1/2 или -1/2. Възможно е наборът да бъде n=3, $\ell=1$, $m_\ell=-1$ и s=+1/2, но тогава атомът е във възбудено състояние с по-висока енергия, поради което той преминава в по-ниско енергетично състояние, изпускайки фотон, чиято енергия е равна на разликата в енергиите на възбуденото и основното състояние на третия електрон. Електронната конфигурация за атома на лития е $1s^22s^1$.

Атомът на берилия, който има четири електрона е със запълнени подслоеве 1s и 2s, чието означение е $1s^22s^2$.

При атома на бора (Z=5) петият електрон се намира в 2р-подслой. Електронната конфигурация е $1s^22s^22p^1$.

От Таблица 1 се вижда, че p-подслоят е в състояние да "настани" шест електрона, което позволява запълването на този подслой до атома на неона (Z=10) и от следващия атом (натрий) започва запълването на слоя с n=3 и т.н.

В многоелектронните атоми след аргона (Z=18) върху външните електрони се проявява екраниращият ефект на вътрешните електрони, поради което енергетичното състояние 4s има пониска енергия от 3d-състоянията и при калия (Z=19) вместо да се реализира очакваната електронна структура $1s^22s^22p^63s^23p^63d^1$ се наблюдава структурата $1s^22s^22p^63s^23p^64s^1$, т.е. преди да завърши изграждането на M-слоя, започва изграждане на N-слоя. Калцият (Z=20) има два електрона в най-външния слой, намиращи се в 4s-състояние.

Следващите десет елемента (от скандия до цинка) се наричат **преходни**. Техните най-външни електрони са 4s-електрони. При тези елементи завършва изграждането на M-слоя.

			Таблица 1
Атомен номер, Z	Химичен елемент	Електронна конфигурация	Йонизационна енергия, eV
1 2	H He	$\frac{1s_2^4}{1s^2}$	13.60 24,60
3	Li	$1s^22s^1$	5,390
4 5	Be	$\frac{1s^22s^2}{1s_1^22s_2^22p_1^1}$	9.320
5	В	$1s_{2}^{2}2s_{2}^{2}2p_{3}^{1}$	8,296
6	C	$1s^22s^22p^2$ $1s^22s^22p3$	11.26
7	N		14,55
8 9	O	$1s_{2}^{2}2s_{2}^{2}2p_{5}^{4}$	13.61
9	F	$1s^22s^22p^5$	17,42
10	Ne	$1s^22s^22p^6$	21,56
11	Na	$1s^2s^22p^63s^1$	5,138
12	Mg	$1s^22s^22p^63s^2$	7,644
13	ΑĪ	$1s^22s^22p^63s^23p^1$	5,984
14	Si	$1s^22s^22p^63s^23p^2$	8,149
15	P	$1s^22s^22p^63s^23p^3$	10,48
16	S	$1s^22s^22p^63s^23p^4$	10,36
17	Cl	$1s^22s^22p^63s^23p^5$	13,01
18	Ar	$1s^22s^22p^63s^23p^6$	15,76

За атомите от галия (Z=31) до криптона (Z=36) се повтаря начинът на изграждане на външния електронен слой, подобно на атомите от алуминия (Z=13) до аргона (Z=18), като се запълва орбитала 4р.

Елементът рубидий (Z=37) има близки химични свойства до тези на натрия и калия. Неговият валентен електрон се намира в състояние 5s в О-електронния слой (n=5).

От итрия (Z=39) до паладия (Z=46) се запълват с електрони 4d-състоянията, а от среброто (Z=47) и кадмия (Z=48) отново се запълват с електрони 5s-състоянията. От индия (Z=49) до ксенона (Z=54) започва да се запълва подслой 5р и т. н. Повторението в изграждането на електронните обвивки при многоелектронните атоми е причина за близостта на свойствата на атомите с подобни електронни конфигурации.

7. Периодична система

Химичните свойства на атомите се определят от най-външните им електрони, наречени валентни, тъй като те основно влизат във взаимодействие и връзката им с ядрото е най-слаба. Затова атомите с еднакъв брой електрони в най-външния електронен слой имат сходни свойства. Например атомите на лития и натрия лесно отдават своите външни електрони на други атоми, поради което притежават висока химична активност. Атомите на неона и аргона са с изцяло запълнени най-външни обвивки (по осем електрона), йонизационната им енергия е висока и те нямат склонност да обменят електрони с други атоми. Затова те се наричат инертни атоми. Флуорът и хлорът проявяват сходни свойства, защото във външния им електронен слой не достига един електрон за цялостното му изграждане, поради което те са склонни лесно да приемат електрони.

На фиг. 7 е представена Периодичната система на елементите.

Дмитрий Менделеев въвежда понятието **пореден атомен номер** на химичния елемент, който е равен на броя на протоните в ядрото и съответно на броя на електроните в електронната обвивка на атома. Организацията на Менделеевата таблица (1869 г.) е подчинена на логиката на изграждане на електронната структура на атомите. Във вертикалните ѝ колони се съдържат елементи с еднакъв брой електрони във външния електронен слой. Всеки период започва с химичен елемент, чиято найвъншна обвивка съдържа един s-електрон, такива са водородът и алкалните метали (Li, Na, K, Rb, Cs, Fr).

1 Н водород 1.0	4	1										5	6	7	8	9	2 Не хелий 4.0	
Li литий	Ве берилий											B 60p	С въглерод	N 830T	О кислород	F флуор	Ne HeOH	
11 Na	9.0 12 Mg	1										10.8 13 A I	12.0 14 Si	14.0 15 P	16.0 16 S	19.0 17 CI	20.2 18 A r	
натрий 23.0	магнезий 9.0											алуминий 27.0	силиций 28.1	фосфор 31.0	сяра 32.1	хлор 35.5	аргон 40.0	
K	Ca	Sc 21	Ti	V 23	Cr	Mn	Fe	Co	Ni Ni	Ĉu	Žn	Ğa	Ğe	Ås	Se	₿r	³⁶ Kr	
калий 39.1 37	калций 40.2 38	скандий 45.0 39	титан 47.9 40	ванадий 50.9 41	хром 52.0 42	Манган 54.9 43	желязо 55.9	кобалт 58.9 45	никел 58.7 46	мед 63.5	цинк 65.4 48	галий 69.7 49	германий 72.6 50	арсен 74.9 51	селен 79.0 52	бром 79.9 53	криптон 83.8 54	
Rb	Sr	Υ	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	Ï	Xe	
рубидий 85.5	стронций 87.6 66	итрий 88.9 67-71	Цирконий 91.2 72	ниобий 92.9 73	молибден 95.9 74	технеций 99 75	рутений 101.0 76	родий 102.9 77	паладий 106.4 78	сребро 107.9	Кадмий 112.4 80	индий 114.8 81	калай 118.7 82	антимон 121.8 83	телур 127.6 84	ЙОД 126.9 85	КСЕНОН 131.3 86	
Cs	Ba		Hf	Ta	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn	
цезий 132.9 87	барий 137.4 88	89-103	хафний 178.5 104	181.0	волфрам 183.9 106	рений 186.2 107	0СМИЙ 190.2 108	иридий 192.2 109	платина 195.1 110	злато 197.0	живак 200.6 112	талий 204.4	0ЛОВО 207.2	бисмут 209.0	ПОЛОНИЙ 210.0	210.0	радон 222.0	
Fr	Ra	00-100	Rf ръдърфор- дии 261	DЪ	Sg	Bh	Hs	Mt	Uun	Uun	Uun							
франций 223.0	радий 226.0		дии 261	дубний 262	сиборгий 263	борий 262	хасий 265	майтнериі 266	[271]	[272]	[285]					етали		
											ни метали							
														метали				
														и				
La								Lu	Актиноиди									
лантан 138.9	цезий 140.1	празеодим 140.9	неодим 144.2	прометий 147.0	самарий 150.4	европий 152.0	гадолиний 157.3	тербий 158.9	диспросий 162.5	холмий 164.9	ербий 167.3	ТУЛИЙ 168.9	итербий 173.0	лютеций 175.0	Полуметали			
Ac	_m	Pa	92 U	Np	94 Pu	۸m	cm	Bk	°° f	es Es	Fm	Md	No	103 Lr	Неметали			
актиний 132.9	торий 232.0	Ра протакти- ний 231.0	уран 238.0	нептуний 237.0	плутоний 242.0	америций 243.0	кюрий 247.0	берклий 247.0	Сf калифор- ний 251.0	айнщайний 254.0	фермий 253.0	Мd менделее вий 256.0		лоуренсий 257.0	Ши	нертни га	зове	

Фиг. 7

Елементите Be, Mg, Ca, Sr, Ba, Ra имат по два външни електрона в s-състояние, докато халогенните елементи (F, Cl, Br, I, At) са с по един електрон по-малко в най-външния слой от инертните газове (He, Ne, Ar, Kr, Xe, Rn), за които s- и p-състоянията на външния електронен слой са запълнени.

Периодичността в химичните свойства на елементите се дължи на повторяемостта в структурата на най-външните електронни слоеве. Първият период се състои от два елемента, защото ls-орбиталата не може да приеме повече от два електрона. Вторият период съдържа осем елемента, което се определя от запълването на 2s- и 2p-орбитали. Третият период е подобен на втория, но със запълнени 3s- и 3p-подслоеве. Четвъртият и петият периоди започват със запълване съответно на подслоеве 4s и 5s. Шестият период започва с елемента цезий (Z = 55) и изграждането на 6p-подслой.

Елементите от лантана (Z = 57) до лютеция (Z = 71) образуват групата на лантаноидите (La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Dy и др.), където с елемента церий започва изграждането на 4f-подслой. Той може да "поеме" 14 електрона. Тези елементи имат близки свойства, понеже най-външните им електрони са 6s-електрони. За тях външният P-слой ($6s^2$) е еднакъв.

От елемента хафний (Z = 72) до златото (Z = 79) се запълва подслоя 5d. При живака (Z = 80) завършва запълването на подслоя 6s, а от атома на талия (Z = 81) до радона (Z = 86), с който

завършва шестият период от таблицата на Менделеев, се запълва подслоя 6р. Подслоят 7s на Q-електронния слой се запълва при франция (Z=87) и радия (Z=88).

Групата на актиноидите включва елементите от актиния (Z=89) до лоуренсия (Z=103), както и трансурановите елементи нептуний (Z=93), плутоний (Z=94), америций (Z=95), кюрий (Z=96), които са радиоактивни. За тях еднакъв е Q-слоят $(7s^2)$, а се допълват с електрони слоевете 5d, 5f, 6d, 6f и т.н.

Периодичността в свойствата на елементите се изразява и в изменение на **йонизационната им енергия** (фиг. 8). Максимум на йонизационната енергия имат инертните газове, а минимум – алкалните елементи.

