YOLACT: Phân vùng Thực thể Thời gian thực

Nguyễn Tấn Phúc - 220101035

Tóm tắt

- Họ và Tên: Nguyễn Tấn Phúc
- MSHV: 220101035
- Lớp: CS2205.APR2023
- Link Github:
 phucnguyen250300/CS2205
 (github.com)
- Link YouTube video: https://youtu.be/9odfH74w4Hw

Giới thiệu

- Bài toán Phân vùng Thực thể:
 - Định nghĩa

Object Detection

Semantic Segmentation

Instance Segmentation

Nguồn: Towards Data Science [https://towardsdatascience.com/single-stage-instance-segmentation-a-review-1eeb66e0cc49]

Giới thiệu

Bài toán Phân vùng Thực thể: YOLACT

Hình 1. Đầu vào và đầu ra của YOLACT

Mục tiêu

- Giảm thời gian thực thi: Tiến hành thử nghiệm song song 2 tác vụ sinh mặt nạ mẫu và dự đoán hệ số mặt nạ. Sau đó, thử nghiệm các cách kết hợp 2 đầu ra kể trên sao cho tối ưu hóa cho quá trình thực thi thời gian thực.
- Cải thiện độ chính xác: Tiến hành nghiên cứu lại cách bảo toàn lượng thông tin mất mát ở các lớp pooling mà những phương pháp SOTA sử dụng.
- Mang tính khái quát: Ý tưởng sinh mặt nạ mẫu và hệ số mặt nạ có thể được áp dụng vào đa số các phương pháp phân vùng thực thể.

Nội dung và Phương pháp

1. Sinh mẫu

Sinh ra một tập các "mặt nạ mẫu" có kích thước bằng với ảnh đầu vào.

Hình 2. Sinh mẫu

Nội dung và Phương pháp

- 2. Hệ số mặt nạ
- Dự đoán hệ số mặt nạ cho mỗi thực thể.

Nội dung và Phương pháp

3. Kết hợp

 Tạo ra mặt nạ kết quả cho mỗi thực thể bằng cách kết hợp tuyến tính mặt nạ mẫu và hệ số mặt nạ.

Hình 4. Kết hợp

Kết quả dự kiến

- Thời gian thực thi được rút ngắn: Các tác vụ được thực hiện song song cùng với bước kết hợp tuyến tính đơn giản.
- Mặt nạ kết quả bao phủ đúng thực thể: Thông tin không gian bị mất mát ở các tầng pooling đã được bảo toàn.
- Có tính khái quát: Ý tưởng triển khai được trên hầu hết những phương pháp thuộc phạm vi bài toán nhận dạng đối tượng.

Tài liệu tham khảo

- [1] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick, "Mask R-CNN." arXiv, Jan. 24, 2018. Accessed: Jul. 16, 2023. [Online]. Available: http://arxiv.org/abs/1703.06870
- [2] Yi Li, Haozhi Qi, Jifeng Dai, Xiangyang Ji, and Yichen Wei, "Fully Convolutional Instance-aware Semantic Segmentation." arXiv, Apr. 10, 2017. Accessed: Jul. 16, 2023. [Online]. Available: http://arxiv.org/abs/1611.07709
- [3] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun, "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks." arXiv, Jan. 06, 2016. Accessed: Jul. 16, 2023. [Online]. Available: http://arxiv.org/abs/1506.01497
- [4] Jifeng Dai, Yi Li, Kaiming He, and Jian Sun, "R-FCN: Object Detection via Region-based Fully Convolutional Networks," in Advances in Neural Information Processing Systems, Curran Associates, Inc., 2016. Accessed: Jul. 16, 2023. [Online]. Available: https://papers.nips.cc/paper_files/paper/2016/hash/577ef1154f3240ad5b9b413aa7346a1e-Abstract.html
- [5] Joseph Redmon and Ali Farhadi, "YOLO9000: Better, Faster, Stronger." arXiv, Dec. 25, 2016. Accessed: Jul. 16, 2023. [Online]. Available: http://arxiv.org/abs/1612.08242
- [6] Joseph Redmon and Ali Farhadi, "YOLOv3: An Incremental Improvement." arXiv, Apr. 08, 2018. Accessed: Jul. 16, 2023. [Online]. Available: http://arxiv.org/abs/1804.02767
- [7] Wei Liu et al., "SSD: Single Shot MultiBox Detector," 2016, pp. 21–37. doi: 10.1007/978-3-319-46448-0_2.
- [8] Tsung-Yi Lin, Piotr Dollar, Ross Girshick, Kaiming He, Bharath Hariharan, and Serge Belongie, "Feature Pyramid Networks for Object Detection," in 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI: IEEE, Jul. 2017, pp. 936–944. doi: 10.1109/CVPR.2017.106.
- [9] K. He, X. Zhang, S. Ren, and J. Sun, "Deep Residual Learning for Image Recognition." arXiv, Dec. 10, 2015. Accessed: Jul. 17, 2023. [Online]. Available: http://arxiv.org/abs/1512.03385
- [10] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollar, "Focal Loss for Dense Object Detection," in 2017 IEEE International Conference on Computer Vision (ICCV), Venice: IEEE, Oct. 2017, pp. 2999–3007. doi: 10.1109/ICCV.2017.324.
- J. Deng, W. Dong, R. Socher, L.-J. Li, Kai Li, and Li Fei-Fei, "ImageNet: A large-scale hierarchical image database," in 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL: IEEE, Jun. 2009, pp. 248–255. doi: 10.1109/CVPR.2009.5206848.