# Monotone decomposition of functions of bounded Variation

Manuel Hinz

August 31, 2022

#### Introduction

In my seminar talk about functions of bounded variations I talked about the following theorems:

**Theorem 1.** A function  $f:[a,b] \to \mathbb{R}$  is of bounded variation if and only if there exist two monotone functions  $f_1, f_2:[a,b] \to \mathbb{R}$  s.t.

$$f = f_1 - f_2.$$

If f is continuous we can require that both  $f_1$  and  $f_2$  are continuous.

**Remark.**  $f_1 := V_a^x(f)$  and  $f_2 = f_1 - f$  are used in the (constructive) proof of this theorem.

**Theorem 2.**  $f \in \mathcal{L}^1[a,b]$  and  $F(x) := \int_a^x f(t)dt$  implies  $F \in BV[a,b]$  and

$$V_a^b F = \int_a^b |f(t)| dt.$$

### Examples

 $\sin$ 

$$f_1(x) = V_a^x(\cos)$$

Therefore:



Figure 1: A monotone decomposition of sin

### Polynomials

Let  $P(x) := x^3 - 6x^2 + 4x + 12$ . Therefore  $P'(x) = 3 \cdot x^2 - 12 \cdot x + 4$ :



Figure 2: A monotone decomposition of P

## Code

You can find the code used to generate the plots **here**. You can also produce your own plot using **generate\_plot**. generate\_plot needs both a function and the derivative of the function to work.