PREDICTING AIR POLLUTION COMPOSITIONS

Shanika Iroshi Nanayakkara

¹ Xi'an Shiyou University, China
 ² Deakin University, Australia

Introduction

Air pollution is significant problem which arises due to many reasons. Among them technological evolution takes high priority. However, people need to move on with the technical world while keeping sustainable environment for the future generation. For that, almost all industrialization production processes need to concern on their emissions into the environment. For example, many industries tend to left different types of air particles into the atmosphere as a result of their production process. Though it does not seems to have quick threat on environment and the human life, it has long life impact. Consequently, people tend to find the solutions to mitigate these pollution in order to enhance the best balance between the industrialization and the environment protection. Initially, data is the major asset for everything in the world. Because, every application had data driven structure to analyse the current trends in order to predict the future impacts or enhancements. Machine learning and Artificial intelligent play vital role in the data driven applications. Therefore, in such studies present prediction and detection models based on the existing data.

In this study we reveals the high performing prediction model, using supervised learning model called regression, to predict the air pollution. For that, we use temperature values, relative and absolute humidity, and 5 sensor values as predictor variable for several months. The given target variables are compositions of carbon monoxide, benzene, and nitros oxide.

Group Outlying Aspects Mining

- It aims to identify a subset of aspects (or subspace) which makes the query group, rather than the single object, obviously different. What we are interested in the task of group outlying aspects mining is to explain which aspects make the query group distinctive different from the other groups.
- Group Outlying Aspects Mining, Outlying Aspects Mining and Outlier Detection are different with each other.

Group Outlying Aspects Mining

Outlying Aspects Mining

Outlier Detection

GOAM Algorithm

We propose the GOAM algorithm to solve the research problem of Group Outlying Aspects Mining. The GOAM algorithm includes three major steps.

Group Feature Extraction Let f_1 , f_2 , f_3 represent three features of G_q . We count the frequency of each value for one feature. Then use the histogram to represent each feature. Similarly, we can extract other features for each group.

Histogram of G_q on f_1 Histogram of G_q on f_2

Histogram of G_q on f_3

Outlying Degree Scoring In this step, we first calculate the *earth mover distance* (EMD) of one feature among different groups. The earth mover distance reflects the minimum mean distance between groups on one feature. So, we utilize the EMD to measure the difference between groups of each feature.

GOAM Algorithm

Second, based on the earth move distance, we calculate the outlying degree.

where G_q is the query group, n is the number of compare groups, and h_{k_s} is the histogram representation of G_k in the subspace s.

Outlying Aspects Identification In this step, based on the value of outlying degree we will identify the group outlying aspects. If a feature's outlying degree is greater than a threshold, the more likely the feature is group outlying aspect. When the dimensionality of features is high, we adopt a stage-wise candidate subspace construction strategy to alleviate the exponential explosion.

Experiment

Synthetic Dataset contains 10 groups and 8 features. Each group consists of 10 members, and each member has 8 features.

Method	Truth Outlying Aspects	Identified Aspects	Accuracy
GOAM	$\{F_1\}, \{F_2F_4\}$	$\{F_1\}, \{F_2F_4\}$	100%
Arithmetic Mean based OAM	$\{F_1\}, \{F_2F_4\}$	$\{F_4\}, \{F_2\}$	0%
Median based OAM	$\{F_1\}, \{F_2F_4\}$	$\{F_2\}, \{F_4\}$	0%

It can be observed that the GOAM method can identify the trivial outlying features and non-trivial outlying subspaces correctly and is obvious from the table that the accuracy of GOAM is the best, which is (100%).

NBA Dataset was collected from Yahoo Sports website (http://sports.yahoo.com.cn/nba). The data include all teams from the six divisions, and each player in the team has 12 features.

Teams	Trivial Outlying Aspects	NonTrivial Outlying Aspects
Cleveland Cavaliers	{3FA}	{FGA, FT%}, {FGA, FG%}
Orlando Magic	{Stl}	None
Milwaukee Bucks	{To}, {FTA}	{FGA, FTA}, {3FA, FTA}
New Orleans Pelicans	{FT%}, {FTA}	{FTA, Stl}, {FTA, To}

New Orleans Pelicans on FT%

New Orleans Pelicans on FTA

New Orleans Pelicans has more players with lower {free throw percentage}, {free throws attempted}.

Conclusion

Problem Definition Formalize the problem of Group Outlying Aspects Mining by extending outlying aspects mining.

GOAM algorithm Propose GOAM algorithm to solve the *Group Outlying Aspects Mining* problem.

Strategies Utilize the pruning strategies to reduce time complexity.

Jies to

Acknowledgement

Acknowledgement

Operation

Online Cooperation

Of IIE, Chinese Academy of Sciences

Of IIE, Chinese Academy

