Lunar Meteoroid Ejecta Engineering Model

Anthony M. DeStefano NASA MSFC EV44

February 18, 2022

Contents

1	Exe	cutive Summary				
2	Lun	Lunar Regolith Properties				
	2.1					
	2.2	Density				
	2.3	Strength				
	2.4	Particle Size Distribution				
	2.5	Scaling Law Properties				
3	Prin	nary Flux Environment				
•	3.1					
	0	3.1.1 Ephemeris Definition				
		3.1.2 Selenographic Extent				
	3.2					
	0.2	3.2.1 Angular Distribution				
		3.2.2 Density Distribution				
		3.2.3 Mass Distribution				
	3.3					
	0.0	3.3.1 Speed Distribution				
		3.3.2 Mass Distribution				
	3.4	Meteoroid Showers				
1	Soo	ondary Flux Environment				
4	4.1	•				
	4.1					
		4.1.1 Speed Distribution				
		4.1.2 Zenith Distribution				
	4.0	4.1.3 Azimuth Distribution				
	4.2	Mass Distribution				

Anthony M. DeStefano	For internal NASA use only –	NASA MSFC EV44
	.3 Orbital Mechanics	Surface 4 or above Surface 4
5	Crater Size – Strength & Gravity Regime Minimum & Maximum Ejected Speed Maximum Ejected Particle Mass Mass Ejected from Crater	
Re	erences	5
List of Figures		
List of Tables		
	Porosity for various depths	

1 Executive Summary

2 Lunar Regolith Properties

2.1 Porosity

The lunar regolith porosity is related to the amount of free space between individual grains. The greater the porosity, the more void space is present. Table 3.4.2.3.4-1 of the DSNE gives values of the porosity as a function of depth down to 60 cm derived from Apollo core measurements (copied from Table 9.5 of the Lunar Sourcebook) and shown here in Table 1.

Table 1: Porosity for various depths.

Depth Range (cm)	Average Porosity, n (%)
0 - 15	52 ± 2
0 - 30	49 ± 2
30 - 60	44 ± 2
0 - 60	46 ± 2

2.2 Density

The bulk density (ρ) of the lunar regolith is defined as the mass of material in a given volume, which relates the particle density (ρ_p) and porosity (n) to the bulk density as (see Section 3.4.2.3.1 of the DSNE or Chapter 9 of the Lunar Sourcebook)

$$\rho = \rho_p(1-n). \tag{2.1}$$

The DSNE suggests using $\rho_p=3.1$ g/cm³ for the average particle density over the entire Moon. Otherwise, the typical highlands particle density is $\rho_p=2.75\pm0.1$ g/cm³ whereas the typical mare particle density is $\rho_p=3.35\pm0.1$ g/cm³.

The bulk density¹ as a function of depth, fit to Apollo data, is given by

$$\rho(z) = 1.92 \frac{z + 12.2}{z + 18},\tag{2.2}$$

where z is the depth in cm and ρ is in units of g/cm 3 . At the surface (z=0), the density is 1.30 g/cm 3 , and increases to 1.92 g/cm 3 for large depths. This expression is fairly reasonable down to 3 m (the limit reached by Apollo drill core samples). In order to get an up-to-depth average of the bulk density, take

$$\rho_{avg}(z) = \frac{1}{z} \int_0^z dz' \rho(z'),$$
(2.3)

 $^{^{-1}}$ Found to follow the average particle density of $3.1~{\rm g/cm^3}$ for all depths with a porosity depth dependence following Table 1.

which gives

$$\rho_{avg}(z) = 1.92 \left[1 + \frac{5.8 \ln \left(\frac{18}{z+18} \right)}{z} \right].$$
(2.4)

For example, the average bulk density of the regolith with a depth range of 0-60 cm would be $\rho_{avg}(60)$ = 1.65 g/cm 3 . This expression is useful for computing the ejected mass from a crater, given a crater depth z.

- 2.3 Strength
- 2.4 Particle Size Distribution
- 2.5 Scaling Law Properties

3 Primary Flux Environment

- 3.1 Space-Time Dependence of Environment
- 3.1.1 Ephemeris Definition
- 3.1.2 Selenographic Extent
- 3.2 Sporadic Meteoroid Complex
- 3.2.1 Angular Distribution
- 3.2.2 Density Distribution
- 3.2.3 Mass Distribution
- 3.3 Near-Earth Objects
- 3.3.1 Speed Distribution
- 3.3.2 Mass Distribution
- 3.4 Meteoroid Showers

4 Secondary Flux Environment

- 4.1 Ejecta Distribution
- 4.1.1 Speed Distribution
- 4.1.2 Zenith Distribution
- 4.1.3 Azimuth Distribution
- 4.2 Mass Distribution
- 4.3 Orbital Mechanics
- 4.3.1 Crater on Surface to Observer at Surface
- 4.3.2 Crater on Surface to Observer at or above Surface
- 4.4 Selenographic Distance & Bearing
- 5 Scaling Laws
- 5.1 Crater Size Strength & Gravity Regime
- 5.2 Minimum & Maximum Ejected Speed Lunar Meteoroid Ejecta Engineering Model
- 5.3 Maximum Ejected Particle Mass
- 5.4 Mass Ejected from Crater

References