PATIENT Chang, Wei-Wei TUMOR TYPE
Unknown primary
adenocarcinoma
COUNTRY CODE
TW

REPORT DATE 22 Nov 2021

ORD-1240190-01

ABOUT THE TEST FoundationOne®Liquid CDx is a next generation sequencing (NGS) assay that identifies clinically relevant genomic alterations in circulating cell-free DNA

PATIENT

DISEASE Unknown primary adenocarcinoma

NAME Chang, Wei-Wei

DATE OF BIRTH 02 July 1981

SEX Female

MEDICAL RECORD # 47543986

PHYSICIAN

ORDERING PHYSICIAN Chen, Ming-Huang

MEDICAL FACILITY Taipei Veterans General Hospital

ADDITIONAL RECIPIENT None

MEDICAL FACILITY ID 205872

PATHOLOGIST Not Provided

SPECIMEN

SPECIMEN ID WWC 7/2/1981

SPECIMEN TYPE Blood

DATE OF COLLECTION 10 November 2021

SPECIMEN RECEIVED 15 November 2021

Biomarker Findings

Blood Tumor Mutational Burden - 0 Muts/Mb Microsatellite status - MSI-High Not Detected Tumor Fraction - Cannot Be Determined

Genomic Findings

For a complete list of the genes assayed, please refer to the Appendix.

KRAS A146V GNAS R201H MUTYH splice site 892-2A>G TET2 Q232*

O Therapies with Clinical Benefit

THER A DIEC VALITHE CHANCAL

10 Clinical Trials

THER A DIEC VALLET CHANCAL

O Therapies with Resistance

BIOMARKER FINDINGS

Blood Tumor Mutational Burden - 0 Muts/Mb

Microsatellite status - MSI-High Not Detected

Tumor Fraction - Cannot Be Determined

GENOMIC FIN	DINGS	VAF %
KRAS -	A146V	1.3%
10 Trials see		

THERAPY AND CLINICAL TRIAL IMPLICATIONS

No therapies or clinical trials. See Biomarker Findings section

MSI-High not detected. No evidence of microsatellite instability in this sample (see Appendix section).

Tumor fraction is an estimate of the percentage of circulating-tumor DNA (ctDNA) present in a cell-free DNA (cfDNA) sample based on observed aneuploid instability.

RELEVANCE (IN PATIENT'S TUMOR TYPE)	RELEVANCE (IN OTHER TUMOR TYPE)		
None	None		

VARIANTS TO CONSIDER FOR FOLLOW-UP GERMLINE TESTING IN SELECT CANCER SUSCEPTIBILITY GENES

Findings below have been previously reported as pathogenic germline in the ClinVar genomic database and were detected at an allele frequency of >30%. See appendix for details.

This report does not indicate whether variants listed above are germline or somatic in this patient. In the appropriate clinical context, follow-up germline testing would be needed to determine whether a finding is germline or somatic.

PATIENT Chang, Wei-Wei TUMOR TYPE
Unknown primary
adenocarcinoma
COUNTRY CODE
TW

REPORT DATE 22 Nov 2021

ORD-1240190-01

VARIANTS THAT MAY REPRESENT CLONAL HEMATOPOIESIS (CH)

Genomic findings below may include nontumor somatic alterations, such as CH. The efficacy of targeting such nontumor somatic alterations is unknown. This content should be interpreted based on clinical context. Refer to appendix for additional information on CH.

GENOMIC FINDINGS WITH NO REPORTABLE THERAPEUTIC OR CLINICAL TRIAL OPTIONS

For more information regarding biological and clinical significance, including prognostic, diagnostic, germline, and potential chemosensitivity implications, see the Genomic Findings section.

GNAS - R201H p. 5 TET2 - Q232* p. 6

MUTYH - splice site 892-2A>G p. 6

NOTE Genomic alterations detected may be associated with activity of certain approved therapies; however, the therapies listed in this report may have varied clinical evidence in the patient's tumor type. Therapies and the clinical trials listed in this report may not be complete and/or exhaustive. Neither the therapies nor the trials identified are ranked in order of potential or predicted efficacy for this patient, nor are they ranked in order of level of evidence for this patient's tumor type. This report should be regarded and used as a supplementary source of information and not as the single basis for the making of a therapy decision. All treatment decisions remain the full and final responsibility of the treating physician and physician should refer to approved prescribing information for all therapies. Therapies contained in this report may have been approved by the US FDA or other national authorities; however, they might not have been approved in your respective country. In the appropriate clinical context, germline testing of APC, ATM, BAP1, BRCA2, BRIP1, CHEK2, FH, FLCN, MEN1, MLH1, MSH2, MSH6, MUTYH, NF1, NF2, PALB2, PMS2, POLE, PTEN, RAD51C, RAD51D, RB1, RET, SDHA, SDHB, SDHC, SDHD, SMAD4, STK11, TGFBR2, TP53, TSC1, TSC2, VHL, and WT1 is recommended.

Variant Allele Frequency is not applicable for copy number alterations.

Foundation Medicine, Inc. · 1.888.988.3639

Variant Allele Frequency Percentage (VAF%)

HISTORIC PATIENT FIN	DINGS	ORD-1240190-01 VAF%		
Blood Tumor Mutational Burden		0 Muts/Mb		
Microsatellite status		MSI-High Not Detected		
Tumor Fraction	ı	Cannot Be Determined		
KRAS	● A146V	1.3%		
GNAS	● R201H	0.30%		
MUTYH	splice site 892-2A>G	50.8%		
TET2	• Q232*	3.0%		

NOTE This comparison table refers only to genes and biomarkers assayed by prior FoundationOne®Liquid CDx, FoundationOne®Liquid, FoundationOne®, or FoundationOne®CDx tests. Up to five previous tests may be shown

For some genes in FoundationOne Liquid CDx, only select exons are assayed. Therefore, an alteration found by a previous test may not have been confirmed despite overlapping gene lists. Please refer to the Appendix for the complete list of genes and exons assayed. The gene and biomarker list will be updated periodically to reflect new knowledge about cancer biology.

As new scientific information becomes available, alterations that had previously been listed as Variants of Unknown Significance (VUS) may become reportable.

Tissue Tumor Mutational Burden (TMB) and blood TMB (bTMB) are estimated from the number of synonymous and non-synonymous single-nucleotide variants (SNVs) and insertions and deletions (indels) per area of coding genome sampled, after the removal of known and likely oncogenic driver events and germline SNPs. Tissue TMB is calculated based on variants with an allele frequency of \geq 5%, and bTMB is calculated based on variants with an allele frequency of \geq 0.5%.

Not Tested = not baited, not reported on test, or test preceded addition of biomarker or gene

Not Detected = baited but not detected on test

Detected = present (VAF% is not applicable)

VAF% = variant allele frequency percentage

 ${\sf Cannot\,Be\,Determined\,=\,Sample\,is\,not\,of\,sufficient\,data\,quality\,to\,confidently\,determine\,biomarker\,status}$

BIOMARKER FINDINGS

ORDERED TEST # ORD-1240190-01

BIOMARKER

Blood Tumor Mutational Burden

RESULT 0 Muts/Mb

POTENTIAL TREATMENT STRATEGIES

- Targeted Therapies -

On the basis of clinical evidence in NSCLC and HSNCC, increased bTMB may be associated with greater sensitivity to immunotherapeutic agents, including anti-PD-L1¹⁻² and anti-PD-1³ therapies. In NSCLC, multiple clinical trials have shown patients with higher bTMB derive clinical benefit from immune checkpoint inhibitors following single agent or combination treatments with either CTLA4 inhibitors or chemotherapy, with reported high bTMB cutpoints ranging from 6 to 16 Muts/Mb¹. In HNSCC, a Phase 3 trial showed that bTMB ≥16 Muts/Mb (approximate equivalency ≥8 Muts/Mb as measured by this assay) was associated with improved survival

from treatment with a PD-L1 inhibitor alone or in combination with a CTLA-4 inhibitor⁴.

FREQUENCY & PROGNOSIS

Average bTMB levels in solid tumors other than NSCLC have not been evaluated (cBioPortal, COSMIC, PubMed, Mar 2021)5-7. Published data investigating the prognostic implications of TMB have mainly been investigated in the context of tissue TMB. In patients with NSCLC, increased TMB is associated with higher tumor grade and poor prognosis8, as well as with a decreased frequency of known driver mutations in EGFR, ALK, ROS1, or MET (1% of high-TMB samples each), but not BRAF (10.3%) or KRAS (9.4%)9. Although some studies have reported a lack of association between smoking and increased TMB in NSCLC 8,10 , several other large studies did find a strong link11-14. In CRC, elevated TMB is associated with a higher frequency of BRAF V600E driver mutations¹⁵⁻¹⁶ and with microsatellite instability (MSI)¹⁶, which in turn has been reported to correlate with better prognosis $^{17-24}$. Although increased TMB is associated with increased tumor grade in endometrioid endometrial carcinoma²⁵⁻²⁸ and bladder cancer29, it is also linked with

improved prognosis in patients with these tumor types 26 .

FINDING SUMMARY

Blood tumor mutational burden (bTMB, also known as mutation load) is a measure of the number of somatic protein-coding base substitution and insertion/deletion mutations from circulating tumor DNA in blood. TMB is affected by a variety of causes, including exposure to mutagens such as ultraviolet light in melanoma30-31 and cigarette smoke in lung cancer³²⁻³³, treatment with temozolomide-based chemotherapy in glioma³⁴⁻³⁵, mutations in the proofreading domains of DNA polymerases encoded by the POLE and POLD1 genes 15,26,36-38, and microsatellite instability (MSI) 15,26,38 . High bTMB levels were not detected in this sample. It is unclear whether the bTMB levels in this sample would be predicted to be associated with sensitivity to PD-1- or PD-L1-targeting immune checkpoint inhibitors, alone or in combination with other agents¹⁻³. Depending on the clinical context, TMB testing of an alternate sample or by another methodology could be considered.

BIOMARKER

Tumor Fraction

RESULT

Cannot Be Determined

POTENTIAL TREATMENT STRATEGIES

- Targeted Therapies -

Specimens with high tumor fraction values have high circulating-tumor DNA (ctDNA) content, and thus higher sensitivity for identifying genomic alterations. Such specimens are at a lower risk of false negative results³⁹. However, if tumor fraction is not detected as high, it does not exclude the presence of disease burden or compromise the confidence of reported alterations. Tumor fraction levels currently have limited implications for diagnosis, surveillance, or therapy and should not be overinterpreted or compared from one blood

draw to another. There are currently no targeted approaches to address specific tumor fraction levels. In the research setting, changes in tumor fraction estimates have been associated with treatment duration and clinical response and may be a useful indicator for future cancer management⁴⁰⁻⁴⁵.

FREQUENCY & PROGNOSIS

Detectible ctDNA levels have been reported in a variety of tumor types, with higher tumor fraction levels reported for patients with metastatic (Stage 4) tumors compared with patients with localized disease (Stages 1 to 3)⁴⁶. Elevated tumor fraction levels have been reported to be associated with worse prognosis in a variety of cancer types, including pancreatic cancer⁴⁷, Ewing sarcoma and osteosarcoma⁴⁸, prostate cancer⁴³, breast cancer⁴⁹, leiomyosarcoma⁵⁰, esophageal cancer⁵¹, colorectal cancer⁵², and gastrointestinal cancer⁵³.

FINDING SUMMARY

Tumor fraction provides an estimate of the percentage of ctDNA present in a cell-free DNA (cfDNA) sample. The tumor fraction estimate for this sample is based on the observed level of aneuploid instability. The tumor fraction algorithm utilized for FoundationOne Liquid CDx uses the allele frequencies of approximately 1,000 singlenucleotide polymorphism (SNP) sites across the genome. Unlike the maximum somatic allele frequency (MSAF) method of estimating ctDNA content⁵⁴, the tumor fraction metric does not take into account the allele frequency of individual variants but rather produces a more holistic estimate of ctDNA content using data from across the genome. The amount of ctDNA detected may correlate with disease burden and response to therapy⁵⁵⁻⁵⁶. However, the tumor fraction estimate in this sample could not be determined with confidence.

GENOMIC FINDINGS

ORDERED TEST # ORD-1240190-01

GENE KRAS

ALTERATION A146V

TRANSCRIPT ID NM_004985

CODING SEQUENCE EFFECT 437C>T

POTENTIAL TREATMENT STRATEGIES

- Targeted Therapies -

Preclinical and clinical data suggest that KRAS mutations may predict clinical benefit from SHP2 inhibitors⁵⁷⁻⁵⁸. A Phase 1 study of RMC-4630 for relapsed/refractory solid tumors reported a DCR of 58% (23/40) for patients with NSCLC and KRAS mutations and a DCR of 75% (12/16) for patients with NSCLC and KRAS G12C mutations⁵⁹. Interim results from a Phase 1/2 study of RMC-4630 plus cobimetinib reported tumor reduction in 3 of 8 patients with KRASmutated colorectal cancer⁶⁰. Preclinical evidence suggests that KRAS activation may predict sensitivity to MEK inhibitors, such as trametinib, binimetinib, cobimetinib, and selumetinib⁶¹⁻⁶⁶. Preclinical data suggest that KRAS mutation may confer sensitivity to SOS1 inhibitors⁶⁷⁻⁶⁸. Phase 1

studies of the SOS1 inhibitor BI 1701963 alone or in combination with MEK inhibitors, KRAS G12C inhibitors, or irinotecan are recruiting for patients with solid tumors harboring KRAS mutations⁶⁹⁻⁷⁰ . While clinical responses have been reported for patients with KRAS-mutated ovarian71-74, cervical small cell neuroendocrine75, or uterine cancer73 treated with MEK inhibitor monotherapy, multiple clinical trials have not demonstrated increased response rates for patients with KRASaltered tumors including KRAS-mutated CRC76-79, pancreatic cancer⁸⁰⁻⁸², and NSCLC^{77,83-84}. A Phase 2 study of trametinib and uprosertib for patients with recurrent cervical cancer reported no responses for patients with KRAS-mutated (2/2 SDs) or KRAS-amplified (1/1 SD) cancer85. Clinical responses have been reported for combination treatment strategies including MEK inhibitors with PI3K or AKT inhibitors for patients with KRAS-mutated ovarian cancer86-88 and KRASmutated endometrioid adenocarcinoma89.

FREQUENCY & PROGNOSIS

KRAS mutations have been observed in 18% of tumor samples analyzed in the COSMIC database, including 53% of pancreatic, 45% of peritoneal, 32% of colorectal, 21% of small intestinal, 18% of biliary tract, and 15% of lung tumors (Jul 2021)7. Mutations in KRAS have been reported in 32-54% of colorectal cancer cases, with the G12C, G12V,

and G13D mutations specifically identified in 7-11%, 26-32%, and 16-24% of cases, respectively⁹⁰⁻⁹⁵. Additionally, an activating KRAS mutation has been reported in more than 80% of pancreatic adenocarcinomas, with the majority of mutations found at codon 1296-99. KRAS mutations, particularly G12D, have been associated with decreased median survival time in patients with pancreatic ductal adenocarcinoma⁹⁷. KRAS mutation in lung adenocarcinoma has been correlated with disease progression, poorly differentiated tumors, and aggressive tumor behavior (NCCN NSCLC Guidelines, v4.2021)¹⁰⁰⁻¹⁰². However, the prognostic value of KRAS mutation in lung adenocarcinoma may differ among ethnic groups and may depend upon the specific allelic variant present¹⁰³.

FINDING SUMMARY

KRAS encodes a member of the RAS family of small GTPases. Activating mutations in RAS genes can cause uncontrolled cell proliferation and tumor formation^{62,104}. KRAS alterations affecting amino acids G12, G13, Q22, P34, A59, Q61, and A146, as well as mutations G10_A11insG, G10_A11insAG (also reported as G10_A11dup and G12_G13insAG), A18D, L19F, D33E, G6o_A66dup/E62_A66dup, E62K, R68S, and K117N have been characterized as activating and oncogenic62,105-127.

GENE

GNAS

ALTERATION R201H

TRANSCRIPT ID

NM_000516

CODING SEQUENCE EFFECT

602G>A

POTENTIAL TREATMENT STRATEGIES

- Targeted Therapies -

There are no therapies targeted to GNAS mutation in cancer. However, there is limited data indicating that a patient with appendiceal adenocarcinoma and a GNAS mutation (R201H) benefited from trametinib for 4 months¹²⁸. Additionally, a patient with GNAS-mutated Erdheim-Chester disease exhibited a PR following treatment with singleagent trametinib¹²⁹.

FREQUENCY & PROGNOSIS

The highest incidences of GNAS mutations have been reported in intraductal papillary mucinous neoplasms (40-66%)¹³⁰⁻¹³¹ and appendiceal mucinous neoplasms $(50-72\%)^{\overline{132-133}}$ as well as in tumors affecting the peritoneum (22%), pituitary gland (20%), bone (15%), pancreas (12%), and small intestine (12%)(COSMIC, 2021)7. Amplification of GNAS has been reported in ovarian epithelial carcinomas (12-30%)¹³⁴⁻¹³⁶, colorectal adenocarcinoma (9%)15, stomach adenocarcinoma (7%)¹³⁷, lung adenocarcinoma (6.5%)¹³⁸, breast invasive carcinoma (6.5%)¹³⁹, pancreatic adenocarcinoma (6%)140, and sarcomas (5.8%)141. GNAS mutations are rare in hematological malignancies generally (COSMIC, 2021)7,142-143. Activating GNAS mutations have been identified in gastrointestinal polyps in 75% (3/4) of patients with McCune-Albright syndrome144. Amplification of GNAS has been associated with

shorter progression-free survival in patients with ovarian cancer135-136, while activating GNAS mutations have been correlated with tumor progression and poor prognosis in patients with gastric cancer¹⁴⁵.

FINDING SUMMARY

GNAS encodes the alpha subunit of the stimulatory G protein (Gs-alpha)146. Gs-alpha is a guanine-nucleotide binding protein (G protein) that is involved in hormonal regulation of adenylate cyclase¹⁴⁶. GNAS has been reported to be amplified in cancer⁶ and may be biologically relevant in this context147-148. GNAS alterations that have been shown to result in constitutive activation of adenylyl cyclase and an increase in cellular cAMP concentration149-154 are predicted to be activating. Mutations at R201 specifically are commonly associated with McCune-Albright syndrome, a disease that can co-occur with various cancers in patients with GNAS activating $mutations ^{155\text{-}157}.$

GENOMIC FINDINGS

GENE

MUTYH

ALTERATION splice site 892-2A>G

TRANSCRIPT ID NM 001048171

CODING SEQUENCE EFFECT

892-2A>G

POTENTIAL TREATMENT STRATEGIES

- Targeted Therapies -

There are no therapies or clinical trials available to address MUTYH alterations in cancer.

FREQUENCY & PROGNOSIS

In general, somatic MUTYH mutations are infrequently reported across cancer types (COSMIC, 2021)⁷. Monoallelic MUTYH mutation occurs in 1-2% of the general population¹⁵⁸⁻¹⁵⁹.

There is conflicting data regarding the impact of monoallelic mutations on the risk of developing CRC¹⁶⁰⁻¹⁶². Patients with MUTYH-mutant CRC were reported to have significantly improved overall survival compared to patients without MUTYH mutation¹⁶³.

FINDING SUMMARY

MUTYH (also known as MYH) encodes an enzyme involved in DNA base excision repair, and loss of function mutations in MUTYH result in increased rates of mutagenesis and promotion of tumorigenesis¹⁶⁴. The two most frequently reported MUTYH loss of function mutations are G382D (also referred to as G396D) and Y165C (also referred to as Y179C)^{158-159,165-167}. Numerous other MUTYH mutations have also been shown to result in loss of function¹⁶⁵⁻¹⁶⁸.

POTENTIAL GERMLINE IMPLICATIONS

One or more of the MUTYH variants observed here has been described in the ClinVar database as

a likely pathogenic or pathogenic germline mutation (by an expert panel or multiple submitters) associated with MUTYH-associated polyposis (ClinVar, Sep 2021)¹⁶⁹. Follow-up germline testing would be needed to distinguish whether the finding in this patient is somatic or germline. Germline biallelic MUTYH mutation causes MUTYH-associated polyposis (also known as MYH-associated polyposis or MAP), an autosomal recessive condition characterized by multiple colorectal adenomas and increased lifetime risk of colorectal cancer (CRC)^{158,170-172}. MAP accounts for approximately 0.7% of all CRC cases and 2% of early-onset CRC cases $^{158}.\ In$ contrast to CRC, the role of MUTYH mutation in the context of other cancer types is not well established¹⁷³⁻¹⁷⁷. Estimates for the prevalence of MAP in the general population range from 1:5,000-1:10,000¹⁵⁹. Therefore, in the appropriate clinical context, germline testing of MUTYH is recommended.

GENE

TET2

ALTERATION

Q232*

TRANSCRIPT ID NM 001127208

CODING SEQUENCE EFFECT

694C>T

POTENTIAL TREATMENT STRATEGIES

- Targeted Therapies -

There are no targeted therapies available to address genomic alterations in TET2 in solid tumors.

FREQUENCY & PROGNOSIS

TET2 alterations have been reported at relatively

low frequencies in solid tumors and are more prevalent in hematological malignancies (cBioPortal, Jan 2021)⁵⁻⁶. Published data investigating the prognostic implications of TET2 alterations in solid tumors are limited (PubMed, Jan 2021).

FINDING SUMMARY

TET2 encodes a tumor suppressor involved in reversing DNA methylation marks, a process critical for proper gene regulation¹⁷⁸⁻¹⁷⁹. Alterations such as seen here may disrupt TET2 function or expression¹⁸⁰⁻¹⁸⁴.

POTENTIAL CLONAL HEMATOPOIESIS IMPLICATIONS

Variants seen in this gene have been reported to occur in clonal hematopoiesis (CH), an age-related process in which hematopoietic stem cells acquire

somatic mutations that allow for clonal expansion¹⁸⁵⁻¹⁹⁰. CH in this gene has been associated with increased mortality, risk of coronary heart disease, risk of ischemic stroke, and risk of secondary hematologic malignancy¹⁸⁵⁻¹⁸⁶. Clinical management of patients with CH in this gene may include monitoring for hematologic changes and reduction of controllable risk factors for cardiovascular disease¹⁹¹. Comprehensive genomic profiling of solid tumors detects nontumor alterations that are due to CH^{189,192-193}. Patient-matched peripheral blood mononuclear cell sequencing is required to conclusively determine if this alteration is present in tumor or is secondary to CH.

CLINICAL TRIALS

IMPORTANT Clinical trials are ordered by gene and prioritized by: age range inclusion criteria for pediatric patients, proximity to ordering medical facility, later trial phase, and verification of trial information within the last two months. While every effort is made to ensure the accuracy of the information contained below, the information available in the public domain is continually updated and should be investigated by the physician or

research staff. This is not a comprehensive list of all available clinical trials. There may also be compassionate use or early access programs available, which are not listed in this report. Foundation Medicine displays a subset of trial options and ranks them in this order of descending priority: Qualification for pediatric trial \Rightarrow Geographical proximity \Rightarrow Later trial phase. Clinical trials are not ranked in order of potential or predicted efficacy for this patient or

in order of level of evidence for this patient's tumor type. Clinical trials listed here may have additional enrollment criteria that may require medical screening to determine final eligibility. For additional information about listed clinical trials or to conduct a search for additional trials, please see clinicaltrials.gov. However, clinicaltrials.gov does not list all clinical trials that might be available.

GENE KRAS

ALTERATION A146V **RATIONALE**

KRAS activating mutations or amplification may predict sensitivity to inhibitors of MAPK pathway

components, including MEK inhibitors.

NCT04803318	PHASE 2
Trametinib Combined With Everolimus and Lenvatinib for Recurrent/Refractory Advanced Solid Tumors	TARGETS mTOR, FGFRs, KIT, PDGFRA, RET, VEGFRs, MEK

LOCATIONS: Guangzhou (China)

NCT03498521	PHASE 2
A Phase II Randomized Study Comparing the Efficacy and Safety of Targeted Therapy or Cancer Immunotherapy Versus Platinum-Based Chemotherapy in Patients With Cancer of Unknown Primary Site	TARGETS ALK, RET, SMO, AKTS, PARP, PD-L1, EGFR, VEGFA, MEK, BRAF, ERBB2, ERBB3, ROS1, TRKA, TRKB, TRKC

LOCATIONS: Fukuoka (Japan), Ehime (Japan), Seoul (Korea, Republic of), Aichi (Japan), Tokyo (Japan), Chiba (Japan), Bangkok (Thailand), Blacktown (Australia), St Leonards (Australia), Helsinki (Finland)

NCT03989115	PHASE 1/2
Dose-Escalation and Dose-Expansion of RMC-4630 and Cobimetinib in Relapsed/Refractory Solid Tumors	TARGETS SHP2, MEK
LOCATIONS: Seoul (Korea, Republic of), Oregon, California, Colorado, Arizona, Wisconsin, Illinois	

NCT03284502	PHASE 1
Cobimetinib and HM95573 in Patients With Locally Advanced or Metastatic Solid Tumors	TARGETS MEK, RAFs

LOCATIONS: Hwasun (Korea, Republic of), Pusan (Korea, Republic of), Seongnam (Korea, Republic of), Seoul (Korea, Republic of), Goyang-si (Korea, Republic of)

CLINICAL TRIALS

NCT04801966	PHASE NULL		
Safety and Oversight of the Individually Tailored Treatment Approach: A Novel Pilot Study	TARGETS CDK4, CDK6, PI3K-alpha, PD-L1, MEK, PARP, PD-1, BRAF		
LOCATIONS: Melbourne (Australia)			
NCT03905148	PHASE 1/2		
Study of the Safety and Pharmacokinetics of BGB-283 and PD-0325901 in Patients With Advanced or Refractory Solid Tumors	TARGETS RAFs, EGFR, MEK		
LOCATIONS: Nedlands (Australia), Blacktown (Australia), Randwick (Australia), Melbourne (Austral	lia), Texas		
NCT02079740	PHASE 1/2		
Trametinib and Navitoclax in Treating Patients With Advanced or Metastatic Solid Tumors	TARGETS BCL-W, BCL-XL, BCL2, MEK		
LOCATIONS: Massachusetts			
NCT04111458	PHASE 1		
A Study to Test Different Doses of BI 1701963 Alone and Combined With Trametinib in Patients With Different Types of Advanced Cancer (Solid Tumours With KRAS Mutation)	TARGETS KRAS, SOS1, MEK		
LOCATIONS: Frankfurt am Main (Germany), Köln (Germany), Utrecht (Netherlands), Rotterdam (Net Carolina	therlands), Massachusetts, Tennessee, Texas, North		
NCT02407509	PHASE 1		
Phase I Trial of RO5126766	TARGETS RAFs, MEK, mTOR		
LOCATIONS: London (United Kingdom), Sutton (United Kingdom)			
NCT04800822	PHASE 1		
PF-07284892 in Participants With Advanced Solid Tumors	TARGETS SHP2, ROS1, ALK, BRAF, EGFR, MEK		

TUMOR TYPE
Unknown primary
adenocarcinoma

REPORT DATE 22 Nov 2021

FOUNDATIONONE® LIQUID CDx

ORDERED TEST # ORD-1240190-01

APPENDIX

Variants of Unknown Significance

NOTE One or more variants of unknown significance (VUS) were detected in this patient's tumor. These variants may not have been adequately characterized in the scientific literature at the time this report was issued, and/or the genomic context of these alterations makes their significance unclear. We choose to include them here in the event that they become clinically meaningful in the future.

 ARID1A
 DDR1
 IRS2
 KMT2A (MLL)

 V1982I
 R649W
 A512T
 I3186T

 MSH3
 POLE
 PTCH1
 SPEN

 A58V
 R1839C
 R1303C
 G1286W

APPENDIX

Genes assayed in FoundationOne®Liquid CDx

FoundationOne Liquid CDx interrogates 324 genes, including 309 genes with complete exonic (coding) coverage and 15 genes with only select non-coding coverage (indicated with an *); 75 genes (indicated in bold) are captured with increased sensitivity and have complete exonic (coding) coverage unless otherwise noted.

ABL1 Exons 4-9	ACVR1B	AKT1 Exon 3	AKT2	AKT3	ALK Exons 20-29, Introns 18, 19	ALOX12B	AMER1 (FAM123B)	APC
AR	ARAF Exons 4, 5, 7, 11, 13, 15	ARFRP1	ARID1A	ASXL1	ATM	ATR	ATRX	AURKA
AURKB	AXIN1	AXL	BAP1	BARD1	BCL2	BCL2L1	BCL2L2	BCL6
BCOR	BCORL1	BCR* Introns 8, 13, 14	BRAF Exons 11-18, Introns 7-1	BRCA1 0 Introns 2, 7, 8, 12, 16, 19, 2	BRCA2 0 Intron 2	BRD4	BRIP1	BTG1
BTG2	BTK Exons 2, 15	C11orf30 (EMSY)	C17orf39 (GID4)	CALR	CARD11	CASP8	CBFB	CBL
CCND1	CCND2	CCND3	CCNE1	CD22	CD70	CD74* Introns 6-8	CD79A	CD79B
CD274 (PD-L1)	CDC73	CDH1	CDK12	CDK4	CDK6	CDK8	CDKN1A	CDKN1B
CDKN2A	CDKN2B	CDKN2C	СЕВРА	СНЕК1	СНЕК2	CIC	CREBBP	CRKL
CSF1R	CSF3R	CTCF	CTNNA1	CTNNB1 Exon 3	CUL3	CUL4A	CXCR4	CYP17A1
DAXX	DDR1	DDR2 Exons 5, 17, 18	DIS3	DNMT3A	DOT1L	EED	EGFR Introns 7, 15, 24-27	EP300
ЕРНАЗ	ЕРНВ1	ЕРНВ4	ERBB2	ERBB3 Exons 3, 6, 7, 8, 10, 12, 20, 21, 23, 24, 25	ERBB4	ERCC4	ERG	ERRFI1
ESR1 Exons 4-8	ETV4* Intron 8	ETV5* Introns 6, 7	ETV6* Introns 5, 6	EWSR1* Introns 7-13	EZH2 Exons 4, 16, 17, 18	EZR* Introns 9-11	FAM46C	FANCA
FANCC	FANCG	FANCL	FAS	FBXW7	FGF10	FGF12	FGF14	FGF19
FGF23	FGF3	FGF4	FGF6	FGFR1 Introns 1, 5, Intron 17	FGFR2 Intron 1, Intron 17	FGFR3 Exons 7, 9 (alternative designation exon 10),		FH
FLCN	FLT1	FLT3 Exons 14, 15, 20	FOXL2	FUBP1	GABRA6	14, 18, Intron 17 GATA3	GATA4	GATA6
GNA11 Exons 4, 5	GNA13	GNAQ Exons 4, 5	GNAS Exons 1, 8	GRM3	GSK3B	НЗГЗА	HDAC1	HGF
HNF1A	HRAS Exons 2, 3	HSD3B1	ID3	IDH1 Exon 4	IDH2 Exon 4	IGF1R	IKBKE	IKZF1
INPP4B	IRF2	IRF4	IRS2	JAK1	JAK2 Exon 14	JAK3 Exons 5, 11, 12, 13, 15, 16	JUN	KDM5A
KDM5C	KDM6A	KDR	KEAP1	KEL	KIT Exons 8, 9, 11, 12, 13, 13 Intron 16	KLHL6 7,	KMT2A (MLL) Introns 6, 8-11, Intron 7	KMT2D (MLL2)

APPENDIX

Genes assayed in FoundationOne®Liquid CDx

FoundationOne Liquid CDx interrogates 324 genes, including 309 genes with complete exonic (coding) coverage and 15 genes with only select non-coding coverage (indicated with an *); 75 genes (indicated in bold) are captured with increased sensitivity and have complete exonic (coding) coverage unless otherwise noted.

KRAS	LTK	LYN	MAF	MAP2K1 (MEK1) Exons 2, 3	MAP2K2 (MEK2) Exons 2-4, 6,	MAP2K4 7	МАРЗК1	МАРЗК13
МАРК1	MCL1	MDM2	MDM4	MED12	MEF2B	MEN1	MERTK	MET
MITF	MKNK1	MLH1	MPL Exon 10	MRE11A	MSH2 Intron 5	MSH3	MSH6	MST1R
МТАР	MTOR Exons 19, 30, 39, 40, 43-45, 47, 48, 53, 56	MUTYH	MYB* Intron 14	MYC Intron 1	MYCL (MYCL1)	MYCN	MYD88 Exon 4	NBN
NF1	NF2	NFE2L2	NFKBIA	NKX2-1	NOTCH1	NOTCH2 Intron 26	NOTCH3	NPM1 Exons 4-6, 8, 10
NRAS Exons 2, 3	NSD3 (WHSC1L1)	NT5C2	NTRK1 Exons 14, 15, Introns 8-11	NTRK2 Intron 12	NTRK3 Exons 16, 17	NUTM1* Intron 1	P2RY8	PALB2
PARK2	PARP1	PARP2	PARP3	PAX5	PBRM1	PDCD1 (PD-1)	PDCD1LG2 (PD-L2)	PDGFRA Exons 12, 18, Introns 7, 9, 11
PDGFRB Exons 12-21, 23	PDK1	PIK3C2B	PIK3C2G	PIK3CA Exons 2, 3, 5-8, 10, 14, 19, 21 (Coding Exons 1		PIK3R1	PIM1	PMS2
POLD1	POLE	PPARG	PPP2R1A	2, 4-7, 9, 13, 18, 20) PPP2R2A	PRDM1	PRKAR1A	PRKCI	РТСН1
PTEN	PTPN11	PTPRO	QKI	RAC1	RAD21	RAD51	RAD51B	RAD51C
RAD51D	RAD52	RAD54L	RAF1 Exons 3, 4, 6, 7, 10, 14, 15, 17, Introns 4-8	RARA Intron 2	RB1	RBM10	REL	RET Introns 7, 8, Exons 11, 13-16, Introns 9-11
RICTOR	RNF43	ROS1 Exons 31, 36-38, 40, Introns 31-35	RPTOR	RSPO2* Intron 1	SDC4* Intron 2	SDHA	SDHB	SDHC
SDHD	SETD2	SF3B1	SGK1	SLC34A2* Intron 4	SMAD2	SMAD4	SMARCA4	SMARCB1
SMO	SNCAIP	SOCS1	SOX2	SOX9	SPEN	SPOP	SRC	STAG2
STAT3	STK11	SUFU	SYK	TBX3	TEK	TERC*	TERT* Promoter	TET2
TGFBR2	TIPARP	TMPRSS2* Introns 1-3	TNFAIP3	TNFRSF14	TP53	TSC1	TSC2	TYRO3
U2AF1	VEGFA	VHL	WHSC1	WT1	XPO1	XRCC2	ZNF217	ZNF703

ADDITIONAL ASSAYS: FOR THE DETECTION OF SELECT CANCER BIOMARKERS

Microsatellite (MS) status

Blood Tumor Mutational Burden (bTMB)

Tumor Fraction

APPENDIX

About FoundationOne®Liquid CDx

FoundationOne Liquid CDx fulfills the requirements of the European Directive 98/79 EC for in vitro diagnostic medical devices and is registered as a CE-IVD product by Foundation Medicine's EU Authorized Representative, Qarad b.v.b.a, Cipalstraat 3, 2440 Geel, Belgium. The CE-IVD regulatory status of FoundationOne Liquid CDx is applicable in countries that accept and/or recognize the CE mark.

ABOUT FOUNDATIONONE LIQUID CDX

FoundationOne Liquid CDx was developed and its performance characteristics determined by Foundation Medicine, Inc. (Foundation Medicine). FoundationOne Liquid CDx may be used for clinical purposes and should not be regarded as purely investigational or for research only. Foundation Medicine's clinical reference laboratories are qualified to perform highcomplexity clinical testing.

Please refer to technical information for performance specification details.

INTENDED USE

FoundationOne Liquid CDx is a next generation sequencing based in vitro diagnostic device that analyzes 324 genes. Substitutions and insertion and deletion alterations (indels) are reported in 311 genes, copy number alterations (CNAs) are reported in 310 genes, and gene rearrangements are reported in 324 genes. The test also detects the genomic signatures blood tumor mutational burden (bTMB), microsatellite instability (MSI), and tumor fraction. FoundationOne Liquid CDx utilizes circulating cell-free DNA (cfDNA) isolated from plasma derived from the anti-coagulated peripheral whole blood of cancer patients. The test is intended to be used as a companion diagnostic to identify patients who may benefit from treatment with targeted therapies in accordance with the approved therapeutic product labeling. Additionally, FoundationOne Liquid CDx is intended to provide tumor mutation profiling to be used by qualified health care professionals in accordance with professional guidelines in oncology for patients with malignant neoplasms.

TEST PRINCIPLES

The FoundationOne Liquid CDx assay is performed exclusively as a laboratory service using circulating cell-free DNA (cfDNA) isolated from plasma derived from anti-coagulated peripheral whole blood from patients with solid malignant neoplasms. The assay employs a single DNA extraction method to obtain cfDNA from plasma from whole blood. Extracted

cfDNA undergoes whole-genome shotgun library construction and hybridization-based capture of 324 cancer-related genes including coding exons and select introns of 309 genes, as well as only select intronic regions or non-coding regions of 15 genes. Hybrid-capture selected libraries are sequenced with deep coverage using the NovaSeq® 6000 platform. Sequence data are processed using a customized analysis pipeline designed to accurately detect genomic alterations, including base substitutions, indels, select copy number variants, and select genomic rearrangements. Substitutions and insertion and deletion alterations (indels) are reported in 311 genes, copy number alterations (CNAs) are reported in 310 genes, and gene rearrangements are reported in 324 genes. The assay also reports tumor fraction, and genomic signatures including MSI and bTMB. A subset of targeted regions in 75 genes is baited for increased sensitivity.

THE REPORT

Incorporates analyses of peer-reviewed studies and other publicly available information identified by Foundation Medicine; these analyses and information may include associations between a molecular alteration (or lack of alteration) and one or more drugs with potential clinical benefit (or potential lack of clinical benefit), including drug candidates that are being studied in clinical research. Note: A finding of biomarker alteration does not necessarily indicate pharmacologic effectiveness (or lack thereof) of any drug or treatment regimen; a finding of no biomarker alteration does not necessarily indicate lack of pharmacologic effectiveness (or effectiveness) of any drug or treatment regimen.

QUALIFIED ALTERATION CALLS (EQUIVOCAL)

All equivocal calls, regardless of alteration type, imply that there is adequate evidence to call the alteration with confidence. However, the repeatability of equivocal calls may be lower than non-equivocal calls.

RANKING OF THERAPIES AND CLINICAL TRIALS

Ranking of Therapies in Summary Table Therapies are ranked based on the following criteria: Therapies with clinical benefit (ranked alphabetically within each evidence category), followed by therapies associated with resistance (when applicable).

Ranking of Clinical Trials Pediatric trial qualification → Geographical proximity → Later trial phase.

LIMITATIONS

- 1. For in vitro diagnostic use.
- 2. For prescription use only. This test must be ordered by a qualified medical professional in accordance with clinical laboratory regulations.
- 3. A negative result does not rule out the presence of a mutation below the limits of detection of the assay. Patients for whom no companion diagnostic alterations are detected should be considered for confirmation with an appropriately validated tumor tissue test, if available.
- 4. The FoundationOne Liquid CDx assay does not detect heterozygous deletions.
- **5.** The test is not intended to provide information on cancer predisposition.
- 6. Performance has not been validated for cfDNA input below the specified minimum input.
- 7. Tissue TMB and blood TMB (bTMB) are estimated from the number of synonymous and nonsynonymous single-nucleotide variants (SNVs) and insertions and deletions (indels) per area of coding genome sampled, after the removal of known and likely oncogenic driver events and germline SNPs. Tissue TMB is calculated based on variants with an allele frequency of ≥5%, and bTMB is calculated based on variants with an allele frequency of ≥0.5%.
- 8. Tumor fraction is the percentage of circulatingtumor DNA (ctDNA) present in a cell-free DNA (cfDNA) sample. The tumor fraction estimate is computationally derived from observed aneuploid instability in the sample.
- 9. Microsatellite instability (MSI) is a condition of genetic hypermutability that generates excessive amounts of short insertion/deletion mutations in the tumor genome; it generally occurs at microsatellite DNA sequences and is caused by a deficiency in DNA mismatch repair (MMR) in the tumor. The MSI algorithm is based on genome wide analysis of 1765 microsatellite loci and not based on the 5 or 7 MSI loci described in current clinical practice guidelines for solid tissue testing.
- 10. Genomic findings from circulating cell-free DNA (cfDNA) may originate from circulating tumor DNA fragments, germline alterations, or non-tumor somatic alterations, such as clonal hematopoiesis of indeterminate potential (CHIP). Genes with alterations that may be derived from CHIP include, but are not limited to: ASXL1, ATM, CBL, CHEK2, DNMT3A, JAK2, KMT2D (MLL2), MPL, MYD88, SF3B1, TET2, *TP*53, and *U*2*AF*1.
- 11. Alterations reported may include somatic (not

APPENDIX

About FoundationOne®Liquid CDx

inherited) or germline (inherited) alterations; however, the test does not distinguish between germline and somatic alterations. If a reported alteration is suspected to be germline, confirmatory testing should be considered in the appropriate clinical context.

 The test is not intended to replace germline testing or to provide information about cancer predisposition.

VARIANTS TO CONSIDER FOR FOLLOW-UP GERMLINE TESTING

The variants indicated for consideration of followup germline testing are 1) limited to reportable short variants with a protein effect listed in the ClinVar genomic database (Landrum et al., 2018; 29165669) as Pathogenic, Pathogenic/Likely Pathogenic, or Likely Pathogenic (by an expert panel or multiple submitters), 2) associated with hereditary cancer-predisposing disorder(s), 3) detected at an allele frequency of >30%, and 4) in select genes reported by the ESMO Precision Medicine Working Group (Mandelker et al., 2019; 31050713) to have a greater than 10% probability of germline origin if identified during tumor sequencing. The selected genes are ATM, BAP1, BRCA1, BRCA2, BRIP1, CHEK2, FH, FLCN, MLH1, MSH2, MSH6, MUTYH, PALB2, PMS2, POLE, RAD51C, RAD51D, RET, SDHA, SDHB, SDHC, SDHD, TSC2, and VHL, and are not inclusive of all cancer susceptibility genes. The content in this report should not substitute for genetic counseling or follow-up germline testing, which is needed to distinguish whether a finding in this patient's tumor sequencing is germline or somatic. Interpretation should be based on clinical context.

VARIANTS THAT MAY REPRESENT CLONAL HEMATOPOIESIS

Variants that may represent clonal hematopoiesis (CH) are limited to select reportable short variants in defined genes identified in solid tumors only. Variant selection was determined based on gene tumor-suppressor or oncogene status, known role in solid tumors versus hematological malignancies, and literature prevalence. The defined genes are ASXL1, ATM, CBL, CHEK2, DNMT3A, IDH2, JAK2, KMT2D (MLL2), MPL, MYD88, SF3B1, TET2, and U2AF1 and are not inclusive of all CH genes. The content in this report should not substitute for dedicated hematological workup. Comprehensive genomic profiling of solid tumors detects nontumor alterations that are due to CH. Patientmatched peripheral blood mononuclear cell sequencing is required to conclusively determine if this alteration is present in tumor or is secondary to CH. Interpretation should be based on clinical

context.

NATIONAL COMPREHENSIVE CANCER NETWORK® (NCCN®) CATEGORIZATION

Biomarker and genomic findings detected may be associated with certain entries within the NCCN Drugs & Biologics Compendium® (NCCN Compendium®) (www.nccn.org). The NCCN Categories of Evidence and Consensus indicated reflect the highest possible category for a given therapy in association with each biomarker or genomic finding. Please note, however, that the accuracy and applicability of these NCCN categories within a report may be impacted by the patient's clinical history, additional biomarker information, age, and/or co-occurring alterations. For additional information on the NCCN categories, please refer to the NCCN Compendium®. Referenced with permission from the NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®). © National Comprehensive Cancer Network, Inc. 2021. All rights reserved. To view the most recent and complete version of the guidelines, go online to NCCN.org. NCCN makes no warranties of any kind whatsoever regarding their content, use or application and disclaims any responsibility for their application or use in any

LEVEL OF EVIDENCE NOT PROVIDED

Drugs with potential clinical benefit (or potential lack of clinical benefit) are not evaluated for source or level of published evidence.

NO GUARANTEE OF CLINICAL BENEFIT

This report makes no promises or guarantees that a particular drug will be effective in the treatment of disease in any patient. This report also makes no promises or guarantees that a drug with potential lack of clinical benefit will in fact provide no clinical benefit.

NO GUARANTEE OF REIMBURSEMENT

Foundation Medicine makes no promises or guarantees that a healthcare provider, insurer or other third party payor, whether private or governmental, will reimburse a patient for the cost of FoundationOne Liquid CDx.

TREATMENT DECISIONS ARE THE RESPONSIBILITY OF PHYSICIAN

Drugs referenced in this Report may not be suitable for a particular patient. The selection of any, all or none of the drugs associated with potential clinical benefit (or potential lack of clinical benefit) resides entirely within the discretion of the treating physician. Indeed, the information in this Report must be considered in

conjunction with all other relevant information regarding a particular patient, before the patient's treating physician recommends a course of treatment. Decisions on patient care and treatment must be based on the independent medical judgment of the treating physician, taking into consideration all applicable information concerning the patient's condition, such as patient and family history, physical examinations, information from other diagnostic tests, and patient preferences, in accordance with the standard of care in a given community. A treating physician's decisions should not be based on a single test, such as this test or the information contained in this report.

Certain sample of variant characteristics may result in reduced sensitivity. These include: low sample quality, deletions and insertions >4obp, or repetitive/high homology sequences. FoundationOne Liquid CDx is performed using cell-free DNA, and as such germline events may not be reported.

SELECT ABBREVIATIONS

ABBREVIATION	DEFINITION
CR	Complete response
DCR	Disease control rate
DNMT	DNA methyltransferase
HR	Hazard ratio
ITD	Internal tandem duplication
MMR	Mismatch repair
Muts/Mb	Mutations per megabase
NOS	Not otherwise specified
ORR	Objective response rate
os	Overall survival
PD	Progressive disease
PFS	Progression-free survival
PR	Partial response
SD	Stable disease
ткі	Tyrosine kinase inhibitor

MR Suite Version 5.1.1

APPENDIX

References

- 1. Gandara DR, et al. Nat. Med. (2018) pmid: 30082870
- 2. Wang Z, et al. JAMA Oncol (2019) pmid: 30816954
- Aggarwal C, et al. Clin. Cancer Res. (2020) pmid: 32102950
- 4. Li et al., 2020; ASCO Abstract 6511
- 5. Cerami E, et al. Cancer Discov (2012) pmid: 22588877
- 6. Gao J, et al. Sci Signal (2013) pmid: 23550210
- Tate JG, et al. Nucleic Acids Res. (2019) pmid: 30371878
- 8. Xiao D, et al. Oncotarget (2016) pmid: 27009843
- 9. Spigel et al., 2016: ASCO Abstract 9017
- 10. Shim HS, et al. J Thorac Oncol (2015) pmid: 26200269
- 11. Govindan R. et al. Cell (2012) pmid: 22980976
- 12. Ding L, et al. Nature (2008) pmid: 18948947
- 13. Imielinski M, et al. Cell (2012) pmid: 22980975
- 14. Kim Y, et al. J. Clin. Oncol. (2014) pmid: 24323028
- 15. Nature (2012) pmid: 22810696
- 16. Stadler ZK, et al. J. Clin. Oncol. (2016) pmid: 27022117
- 17. Samowitz WS, et al. Cancer Epidemiol. Biomarkers Prev. (2001) pmid: 11535541
- 18. Elsaleh H, et al. Clin Colorectal Cancer (2001) pmid: 12445368
- 19. Brueckl WM, et al. Anticancer Res. () pmid: 12820457
- 20. Guidoboni M, et al. Am. J. Pathol. (2001) pmid:
- 21. Gryfe R. et al. N. Engl. J. Med. (2000) pmid: 10631274
- 22. Sinicrope FA, et al. Gastroenterology (2006) pmid: 16952542
- 23. Guastadisegni C, et al. Eur. J. Cancer (2010) pmid: 20627535
- 24. Laghi L, et al. Dig Dis (2012) pmid: 22722556
- 25. Mehnert JM, et al. J. Clin. Invest. (2016) pmid: 27159395
- Cancer Genome Atlas Research Network, et al. Nature (2013) pmid: 23636398
- 27. Hussein YR, et al. Mod. Pathol. (2015) pmid: 25394778
- 28. Church DN, et al. Hum. Mol. Genet. (2013) pmid: 23528559
- 29. Cazier JB, et al. Nat Commun (2014) pmid: 24777035
- **30.** Pfeifer GP, et al. Mutat. Res. (2005) pmid: 15748635
- 31. Hill VK, et al. Annu Rev Genomics Hum Genet (2013) pmid: 23875803
- 32. Pfeifer GP, et al. Oncogene (2002) pmid: 12379884
- 33. Rizvi NA, et al. Science (2015) pmid: 25765070
- 34. Johnson BE, et al. Science (2014) pmid: 24336570
- 35. Choi S, et al. Neuro-oncology (2018) pmid: 29452419 36. Briggs S, et al. J. Pathol. (2013) pmid: 23447401
- 37. Heitzer E, et al. Curr. Opin. Genet. Dev. (2014) pmid: 24583393
- 38. Roberts SA, et al. Nat. Rev. Cancer (2014) pmid: 25568919
- 39. Li et al., 2021; AACR Abstract 2231
- 40. Bronkhorst AJ, et al. Biomol Detect Quantif (2019) pmid: 30923679
- 41. Raja R, et al. Clin. Cancer Res. (2018) pmid: 30093454
- 42. Hrebien S, et al. Ann. Oncol. (2019) pmid: 30860573
- 43. Choudhury AD, et al. JCI Insight (2018) pmid: 30385733
- 44. Goodall J, et al. Cancer Discov (2017) pmid: 28450425
- Goldberg SB, et al. Clin. Cancer Res. (2018) pmid: 29330207
- 46. Bettegowda C, et al. Sci Transl Med (2014) pmid: 24553385
- 47. Lapin M, et al. J Transl Med (2018) pmid: 30400802
- 48. Shulman DS, et al. Br. J. Cancer (2018) pmid: 30131550
- 49. Stover DG, et al. J. Clin. Oncol. (2018) pmid: 29298117
- 50. Hemming ML, et al. JCO Precis Oncol (2019) pmid: 30793095
- Egyud M, et al. Ann. Thorac. Surg. (2019) pmid: 31059681

- **52.** Fan G, et al. PLoS ONE (2017) pmid: 28187169
- 53. Vu et al., 2020; DOI: 10.1200/PO.19.00204
- 54. Li G, et al. J Gastrointest Oncol (2019) pmid: 31602320 55. Zhang EW, et al. Cancer (2020) pmid: 32757294
- 56. Butler TM, et al. Cold Spring Harb Mol Case Stud (2019) pmid: 30833418
- 57. Lu H, et al. Mol Cancer Ther (2019) pmid: 31068384
- 58. Mainardi S. et al. Nat Med (2018) pmid: 29808006
- 59. Koczywas et al., 2021; AACR Abstract LB001
- 60. Bendell et al., 2020; EORTC-NCI-AACR Abstract 5
- 61. Nakano H, et al. Proc. Natl. Acad. Sci. U.S.A. (1984) pmid: 6320174
- 62. Pylayeva-Gupta Y, et al. Nat. Rev. Cancer (2011) pmid: 21993244
- 63. Yamaguchi T, et al. Int. J. Oncol. (2011) pmid: 21523318
- 64. Watanabe M, et al. Cancer Sci. (2013) pmid: 23438367
- Gilmartin AG, et al. Clin. Cancer Res. (2011) pmid:
- 66. Yeh JJ, et al. Mol. Cancer Ther. (2009) pmid: 19372556
- 67. Hillig RC, et al. Proc Natl Acad Sci U S A (2019) pmid: 30683722
- 68. Hofmann MH, et al. Cancer Discov (2021) pmid: 32816843
- 69. Hofmann et al., 2021; AACR Abstract CT210
- 70. Gort et al., 2020; ASCO Abstract TPS3651
- 71. Monk BJ, et al. J Clin Oncol (2020) pmid: 32822286
- 72. Farley J, et al. Lancet Oncol. (2013) pmid: 23261356
- 73. Slosberg ED, et al. Oncotarget (2018) pmid: 29765547
- 74. Han C, et al. Gynecol Oncol Rep (2018) pmid: 29946554
- 75. Lyons YA, et al. Gynecol Oncol Rep (2014) pmid: 26075998
- 76. Infante JR, et al. Lancet Oncol. (2012) pmid: 22805291
- 77. Zimmer L, et al. Clin. Cancer Res. (2014) pmid: 24947927
- 78. Bennouna J, et al. Invest New Drugs (2011) pmid: 20127139
- 79. Weekes CD, et al. Clin. Cancer Res. (2013) pmid: 23434733
- 80. Van Laethem JL, et al. Target Oncol (2017) pmid:
- 81. Infante JR, et al. Eur. J. Cancer (2014) pmid: 24915778 82. Van Cutsem E, et al. Int. J. Cancer (2018) pmid: 29756206
- 83. Blumenschein GR, et al. Ann. Oncol. (2015) pmid:
- 84. Leijen S, et al. Clin. Cancer Res. (2012) pmid: 22767668
- 85. Liu JF, et al. Gynecol. Oncol. (2019) pmid: 31118140
- 86. Spreafico et al., 2014: ASCO Abstract 5506
- 87. Juric et al., 2014; ASCO Abstract 9051
- 88. Banerii et al., 2014: ASCO Abstract e13559
- 89. Shapiro GI, et al. Invest New Drugs (2019) pmid:
- 90. Lièvre A, et al. Cancer Res. (2006) pmid: 16618717
- 91. De Roock W, et al. Lancet Oncol. (2011) pmid: 21163703
- 92. Huang CW, et al. BMC Cancer (2013) pmid: 24330663
- 93. Kosmidou V, et al. Hum. Mutat. (2014) pmid: 24352906
- 94. Maus MK, et al. Lung Cancer (2014) pmid: 24331409 95. Peeters M. et al. J. Clin. Oncol. (2013) pmid: 23182985
- 96. Feldmann G, et al. J Hepatobiliary Pancreat Surg (2007)
- pmid: 17520196
- 97. Rachakonda PS, et al. PLoS ONE (2013) pmid: 23565280
- 98. Hruban RH, et al. Am. J. Pathol. (1993) pmid: 8342602
- Maitra A, et al. Best Pract Res Clin Gastroenterol (2006) pmid: 16549325
- 100. Yip PY, et al. J Thorac Oncol (2013) pmid: 23392229
- 101. Rekhtman N, et al. Mod. Pathol. (2013) pmid: 23619604
- 102. Scoccianti C, et al. Eur. Respir. J. (2012) pmid: 22267755

- 103. Curr Opin Oncol (2014) pmid: 24463346
- 104. Kahn S, et al. Anticancer Res. () pmid: 3310850
- 105. Akagi K, et al. Biochem. Biophys. Res. Commun. (2007) pmid: 17150185
- 106. Bollag G, et al. J. Biol. Chem. (1996) pmid: 8955068
- 107. Buhrman G. et al. Proc. Natl. Acad. Sci. U.S.A. (2010) pmid: 20194776
- 108. Sci. STKE (2004) pmid: 15367757
- 109. Edkins S, et al. Cancer Biol. Ther. (2006) pmid: 16969076
- 110. Feig LA, et al. Mol. Cell. Biol. (1988) pmid: 3043178
- 111. Gremer L, et al. Hum. Mutat. (2011) pmid: 20949621
- 112. Janakiraman M, et al. Cancer Res. (2010) pmid: 20570890
- 113. Kim E, et al. Cancer Discov (2016) pmid: 27147599
- 114. Lukman S, et al. PLoS Comput. Biol. (2010) pmid: 20838576
- 115. Naguib A, et al. J Mol Signal (2011) pmid: 21371307
- 116. Prior IA, et al. Cancer Res. (2012) pmid: 22589270
- 117. Privé GG, et al. Proc. Natl. Acad. Sci. U.S.A. (1992) pmid: 1565661
- 118. Scheffzek K, et al. Science (1997) pmid: 9219684
- 119. Scholl C, et al. Cell (2009) pmid: 19490892
- 120. Smith G, et al. Br. J. Cancer (2010) pmid: 20147967
- 121. Tyner JW, et al. Blood (2009) pmid: 19075190
- 122. Valencia A, et al. Biochemistry (1991) pmid: 2029511
- 123. White Y, et al. Nat Commun (2016) pmid: 26854029
- 124. Wiest JS, et al. Oncogene (1994) pmid: 8058307
- 125. Angeles AKJ, et al. Oncol Lett (2019) pmid: 31289513
- 126. Tong JH, et al. Cancer Biol. Ther. (2014) pmid: 24642870
- 127. Loree JM, et al. Clin Cancer Res (2021) pmid: 34117033
- 128. Ang C, et al. Case Rep Oncol () pmid: 28868010
- 129. Saunders IM, et al. Oncologist (2019) pmid: 31740567 130. Furukawa T, et al. Sci Rep (2011) pmid: 22355676
- 131. Wu J, et al. Sci Transl Med (2011) pmid: 21775669
- 132. Nishikawa G, et al. Br. J. Cancer (2013) pmid: 23403822
- 133. Singhi AD, et al. Hum. Pathol. (2014) pmid: 24925222
- 134. Nature (2011) pmid: 21720365
- 135. Kan Z, et al. Nature (2010) pmid: 20668451 136. Tominaga E, et al. Gynecol. Oncol. (2010) pmid:
- 20537689
- 137. Nature (2014) pmid: 25079317
- 138. Nature (2014) pmid: 25079552 139. Nature (2012) pmid: 23000897
- 140. Witkiewicz AK, et al. Nat Commun (2015) pmid: 25855536
- 141. Barretina J, et al. Nat. Genet. (2010) pmid: 20601955
- 142. Lohr JG, et al. Cancer Cell (2014) pmid: 24434212
- 143. Chapman MA, et al. Nature (2011) pmid: 21430775
- 144. Zacharin M, et al. J. Med. Genet. (2011) pmid: 21357941 145. Alakus H, et al. World J. Gastroenterol. (2009) pmid:
- 20027678 146. Hayward BE, et al. Proc. Natl. Acad. Sci. U.S.A. (1998)
- pmid: 9860993
- 147. Zack Tl. et al. Nat. Genet. (2013) pmid: 24071852
- 148. Beroukhim R, et al. Nature (2010) pmid: 20164920 149. Masters SB, et al. I. Biol. Chem. (1989) pmid: 2549064
- 150. Graziano MP, et al. J. Biol. Chem. (1989) pmid: 2549065
- 151. Jang IS, et al. Exp. Mol. Med. (2001) pmid: 11322485

154. Mariot V, et al. Bone (2011) pmid: 20887824

- 152. Landis CA, et al. Nature (1989) pmid: 2549426 153. Tobar-Rubin R, et al. J. Mol. Endocrinol. (2013) pmid:
- 155. Weinstein LS, et al. N. Engl. J. Med. (1991) pmid: 1944469 156. Collins MT, et al. J. Clin. Endocrinol. Metab. (2003)

© 2021 Foundation Medicine, Inc. All rights reserved.

pmid: 12970318

APPENDIX

References

- **157.** Nault JC, et al. J. Hepatol. (2012) pmid: 21835143
- 158. Hegde M, et al. Genet. Med. (2014) pmid: 24310308
- 159. Aretz S, et al. Eur. J. Hum. Genet. (2013) pmid: 22872101
- **160.** Win AK, et al. Gastroenterology (2014) pmid: 24444654
- **161.** Lubbe SJ, et al. J. Clin. Oncol. (2009) pmid: 19620482
- 162. Jones N, et al. Gastroenterology (2009) pmid: 19394335
- **163.** Nielsen M, et al. J. Natl. Cancer Inst. (2010) pmid: 21044966
- **164.** David SS, et al. Nature (2007) pmid: 17581577
- 165. Molatore S, et al. Hum. Mutat. (2010) pmid: 19953527
- 166. Kundu S, et al. DNA Repair (Amst.) (2009) pmid: 19836313
- D'Agostino VG, et al. DNA Repair (Amst.) (2010) pmid: 20418187
- 168. Ali M, et al. Gastroenterology (2008) pmid: 18534194

- Landrum MJ, et al. Nucleic Acids Res. (2018) pmid: 29165669
- 170. Sampson JR, et al. Lancet (2003) pmid: 12853198
- 171. Sieber OM, et al. N. Engl. J. Med. (2003) pmid: 12606733
- 172. Al-Tassan N, et al. Nat. Genet. (2002) pmid: 11818965
- 173. Rennert G, et al. Cancer (2012) pmid: 21952991
- 174. Zhang Y, et al. Cancer Epidemiol. Biomarkers Prev. (2006) pmid: 16492928
- von der Thüsen JH, et al. J. Clin. Oncol. (2011) pmid: 21189386
- 176. Casper M, et al. Fam. Cancer (2014) pmid: 24420788
- 177. Smith LM, et al. Pancreatology (2009) pmid: 20110747
- 178. Ito S, et al. Nature (2010) pmid: 20639862
- 179. Guo JU, et al. Cell (2011) pmid: 21496894
- 180. Iyer LM, et al. Cell Cycle (2009) pmid: 19411852
- 181. Ko M, et al. Nature (2010) pmid: 21057493

- **182.** Yang H, et al. Oncogene (2013) pmid: 22391558
- 183. Hu L, et al. Cell (2013) pmid: 24315485
- 184. Wang Y, et al. Mol. Cell (2015) pmid: 25601757
- 185. Jaiswal S, et al. N. Engl. J. Med. (2014) pmid: 25426837
- Genovese G, et al. N. Engl. J. Med. (2014) pmid: 25426838
- 187. Xie M, et al. Nat. Med. (2014) pmid: 25326804
- 188. Acuna-Hidalgo R, et al. Am. J. Hum. Genet. (2017) pmid: 28669404
- 189. Severson EA, et al. Blood (2018) pmid: 29678827
- 190. Fuster JJ, et al. Circ. Res. (2018) pmid: 29420212
- 191. Hematology Am Soc Hematol Educ Program (2018) pmid: 30504320
- 192. Chabon JJ, et al. Nature (2020) pmid: 32269342
- 193. Razavi P, et al. Nat. Med. (2019) pmid: 31768066