Magnetic Circuit

Magnetic Flux

Magnetic Effects of Electric Current

Magnetic Circuit

B-H Curves

Calculations

What is a Magnet?

- A coil of wire carrying an electric current can be used to magnetise a piece of iron or steel
- A magnetised piece of iron or steel will attract other pieces of iron or steel
- This property of iron or steel to attract other items of iron or steel is called magnetism
 - A material that displays magnetism is called a magnet

Iron filings Cardboard Magnet

Pattern of iron filings

Magnetic Field

- Sprinkle iron filings on cardboard and then place a horseshoe magnet under the cardboard:
 - Iron filings line up in a peculiar pattern
 - The shape of the pattern will depend on how the magnet is placed under the cardboard
- The iron filings appear to assemble in lines

Iron filings Cardboard Magnet

Magnetic Field

- The iron filings assembled in lines gives rise to the concept of **magnetic lines of force**
- The pattern of magnetic lines of force is called a **magnetic field**

Pattern of iron filings

Magnetic Poles

- A bar magnet is has two **poles**
 - North pole
 - South pole
- A north pole must always have an accompanying south pole
 - This is known as a magnetic **dipole**

Magnetic Flux

- Magnetic lines of force are visualised as flowing through the space surrounding a magnet
 - Magnetic lines of force are also known as magnetic flux lines
 - Flux = flow of lines
- Magnetic flux lines always form closed loops
- Magnetic flux lines come out of the north pole and go into the south pole and back to the north pole
 - North South

Attraction Between Unlike Poles

- When unlike poles of two magnets are placed close together there will be a force of attraction between them
- The flux lines **join** to be **continuous** between the unlike poles of the two magnets

Repulsion Between Like Poles

- When like poles of two magnets are placed close together there will be a force of repulsion between them
- The flux lines will **not be continuous** between the like poles of the two magnets

Additional Properties of Magnetic Flux Lines

- Flux lines **never** cross
- Flux lines follow the path of **least resistance**
 - Magnetic materials will distort the magnetic field
- Flux lines in the **same** direction **repel** each other
- Flux lines in the **opposite** directions **attract** each other

Magnetic Effects of Electric Current

- A conductor carrying an electric current will be surrounded by a magnetic field
- A conductor may be wound into a coil to increase the strength of the magnetic field
- An **iron core** placed inside the coil will greatly increase the strength magnetic field

Flux Density

- The strength of a magnetic field is given by flux density B
 - Flux density ${\bf B}$ is the number of (imaginary) flux lines ${\bf \Phi}$ passing though a unit area ${\bf A}$

$$B = \Phi / A$$

B = Tesla(T)

 Φ = Weber (Wb)

A = square metres (m²)

Number of flux lines

Calculation

 \bullet For the values of flux Φ and area A calculate the flux density B

Solution

$$B = \frac{\Phi}{A}$$

$$= \frac{6 \times 10^{-5} \text{ Wb}}{1.2 \times 10^{-3} \text{ m}^2}$$

$$= 5 \times 10^{-2} \text{ T}$$

Permeability

- To permeate means to penetrate or pass through
- The permeability of a magnetic material is a measure of how easy it is for a magnetic field to pass through it.
 - Iron has a very high permeability
 - It is easy for magnetic flux to pass through it
 - Air has a low permeability
 - It is hard for magnetic flux to pass through it

Permeability

- \bullet The permeability of a material is given the Greek symbol μ
- Permeability of free space:

$$\mu_0 = 4\Pi \times 10^{-7} \text{ Wb/(At.m)}$$

• Relative permeability is the permeability of the material compared to the permeability of free space:

$$\mu_{\rm r} = \frac{\mu}{\mu_{\rm 0}}$$

Magnetic Circuit

A complete magnetic loop is known as a magnetic circuit

MagnetoMotive Force MMF

 A magnetomotive force (MMF) is required to propel magnetic flux around a loop

wire) multiplied by

- Compare this to EMF in an electric circuit
- MMF = number of current loops (turns of the current in the wire

MMF = NI ampere turns (At)

Calculation

• Calculate the MMF for the magnetic circuit below

Solution

Magnetising Force H

- Imagine two magnetic circuits each with the same MMF (say 500At)
 - The loop length of circuit A is shorter than the loop length of circuit B **flux travels a shorter distance**
 - The MMF per unit length over the loop will be greater for A than B
 - The **field strength** will be **greater** in A than B

Magnetising Force H

- Magnetising force takes into account the loop length as well as the MMF
- Magnetising Force is given the symbol H
 H = MMF/length

$$\mathbf{H} = \frac{\mathbf{NI}}{\mathbf{I}} \qquad \begin{aligned} \mathbf{I} &= \text{current (A)} \\ \mathbf{N} &= \text{turns (t)} \\ \mathbf{I} &= \text{length of} \\ \text{magnetic circuit (m)} \end{aligned}$$

Calculation

• Calculate H for the magnetic circuit below:

Solution

B versus H for Non Magnetic Materials

- Magnetising force H propels the magnetic flux around the circuit
- The larger the H the stronger (denser) the flux
- For a **vacuum** and (approx) for **non magnetic** materials:

B =
$$\mu_0$$
H
 μ_0 = $4\Pi \times 10^{-7}$ Wb/(At.m)

Calculation

 \bullet Calculate the flux density B and the flux Φ in the wooden ring below.

Assume
$$\mu_{wood} = \mu_0 = 4\Pi \times 10^{-7}$$

$$N = 100$$

$$I = 5A$$

$$Mean length = 0.2m$$

$$Area = 0.05m2$$

Solution

• B =
$$\mu_0$$
H (T)
= μ_0 NI / I
= $4\Pi \times 10^{-7} \times 100 \times 5 / 0.2$
= 0.00314 T

$$B = \Phi / A$$

$$\Phi = BA \text{ (Wb)}$$

$$= 3.14 \times 10^{-3} \times 5 \times 10^{-2}$$

$$= 1.57 \times 10^{-4}$$

$$= 157 \mu\text{Wb}$$

B versus H

• $B = \mu H$

Important: μ is not constant for magnetic materials

 Magnetic materials exhibit a phenomenon known as saturation

Graphical Solution Using B-H Curves

- Because μ is not a constant for magnetic materials the relationship B = μ H cannot be used for calculations with magnetic materials
- The solution is obtained graphically

Magnetising Ferro Magnetic Materials

- A ferro magnetic material is an alloy of the element iron and other elements such as nickel and cobalt.
- Ferro magnetic materials exhibit a non linear magnetisation (B-H) curve

Domain Theory of Magnetisation

- An electron spinning around a nucleus produces a magnetic field
- In most elements the electron spins are randomly aligned resulting in a zero net magnetic field
- In ferro magnetic materials the magnetic fields of atoms are aligned in groups
 - These groups are called domains
- The domains themselves are randomly aligned resulting in a zero net magnetic field
- An external MMF can be used to align the domains
 - Aligned domains produce a strong magnetic field

Domain Theory of Magnetisation

Non magnetised material

Material magnetised by external magnetic field

Domain Theory of Magnetisation

- Magnetic field strength B increases as more domains become aligned
- Once all the domains are aligned the can be no more increase in B no matter how much the magnetising force H increases
- The phenomenon is known as saturation

Electromagnets

- Coil of wire wound onto a core of non magnetised ferro magnetic material
- Current is passed through the coil
- Ferro magnetic core becomes magnetised
- When current is removed ferro magnetic core is no longer magnetised
 - Magnetism is not retained

Permanent Magnets

- Coil of wire wound onto a core of non magnetised ferro magnetic material
- Current is passed through the coil
- Ferro magnetic core becomes magnetised
- When current is removed ferro magnetic core remains magnetised
 - A permanent magnet has been created

Hysteresis

- When an non-magnetised magnetic material is placed in a magnetic field it becomes magnetised
- When the external field is removed the originally non-magnetised material retains some permanent magnetism
- An external magnetic field has to be applied in the opposite direction to remove the residual magnetism

Hysteresis

Choice of Magnetic Materials

- Magnetic materials are chosen for applications based on their hysteresis curve
- Permanent magnets need materials with a very broad hysteresis curve
- Transformer cores need materials with a very narrow hysteresis curve
 - Energy losses are proportional to width of curve

Types of Calculations

- In this course you will be required to perform calculations on two types of materials:
 - Non magnetic

Use
$$\mathbf{B} = \mu_0 \mathbf{H}$$

• Magnetic

Use **B-H** graph

Calculations on Magnetic Materials

- In this course you will be required to perform calculations on magnetic circuits consisting of:
 - One type of magnetic material
 - **Two or more** types of magnetic material in the one magnetic circuit
- Make yourself thoroughly familiar with the requirements and approaches for each type of circuit

Material 2

Calculation - B is Known B to H

- Using B-H graphs calculate the value of current to establish a flux density of 0.3T if the ring is made of:
 - Cast iron
 - Cast steel
 - Sheet steel

$$N = 100$$
I?
Mean length = 0.2m

- On the B-H curve draw a horizontal line at B = 0.3T. Drop vertical projections where the B = 0.3T crosses each of the sheet steel, cast steel and cast iron graphs
- Transposing H = NI / I solve for I

$$I = H I / N$$

- From the graph (use expanded graph for greater accuracy):
 - H_{cast iron} = 700 At
 - H_{cast steel} = 200 At
 - H_{shhet steel} = 50 At

•
$$I_{cast iron} = HI / N$$

= 700 x 0.2 / 100
= 1.4A

Calculation of Flux if MMF is Known - H to B

 Calculate the flux in the toroid for the values and material given

• From B-H graph for cast iron and H = 2600

$$B = 0.6 T$$

$$\Phi = BA (Wb)$$

$$= 6 \times 10^{-1} \times 5 \times 10^{-2}$$

$$= 30 \times 10^{-3}$$

Calculation With Two Magnetic Materials

- Calculate the number of turns for the magnetic circuit below with mean dimensions as shown
 - Magnetic path: steel = iron = 10cm
 - Area: steel = iron = 4cm²

- General approach:
 - Knowing B find H_{cast steel} and H_{cast iron} from B-H graph
 - From N = HI / I calculate the number of turns required for each of the steel and iron sections
 - Add the turns required for the steel and the iron to obtain the total number of turns

- Because the cross sectional area is the same for both the cast steel and the cast iron B will be the same for both
- B is given to be 0.4T

```
From B-H graph:
```

```
H_{\text{cast steel}} = 240At
```

(use expanded graph)

 $H_{\text{cast iron}} = 1000 \text{At}$

•
$$H = NI/I$$
 $\therefore N = HI/I$

•
$$N_{cast steel} = 240 \times 0.1 / 2$$

•
$$N_{cast iron} = 1000 \times 0.1 / 2$$

$$= 12 + 50$$

Calculation With an Air Gap

- Sheet steel is of uniform cross section
- Assume no fringing in air gap
- The mean path length for sheet steel = 100mm
- Air gap = 3mm
- Calculate the current required

$$N = 100t$$
 $B = 1.2T$

Air gap

Sheet steel

- General approach:
 - Knowing B find H_{sheetsteel} from B-H graph
 - From B = μ_0 H calculate H in air gap
 - From I = HI / N calculate the current required for each of the steel and air sections
 - Add the current contributions required for the steel and the air to obtain the total current

• From (expanded) B-H graph

$$H_{\text{sheet steel}} = 375 \text{ At}$$

•
$$B_{air gap} = \mu_0 H$$
 :: $H = B_{air gap} / \mu_0$
 $H_{air gap} = 1.2 / 4\Pi \times 10^{-7}$
 $= 9.55 \times 10^5 \text{ At}$

Important: what do you notice about $H_{\text{sheet steel}}$ and $H_{\text{air gap}}$ Why?

- Calculate current requirement for each section
- H = NI / I $\therefore I = H I / N$
- $I_{air} = 9.55 \times 10^5 \times 3 \times 10^{-3} / 100$ = 28.65 A
- I_{air} = 375 x 0.1 / 100 = 0.375 A
- I = 28.65 + 0.375= 29.03 A

Formulae and Constants

- $B = \Phi / A$
- MMF = NI
- H = MMF / I = NI / I
- B = $\mu_0 H$
- $\mu_0 = 4\Pi \times 10^{-7}$
- $\mu_r = \mu / \mu_0$