Санкт-Петербургский Государственный Университет Аэрокосмического Приборостроения

Исследование Дисперсии и Затухания Волн в Волноводе Прямоугольного Печения с H_{10} .

Отчет по Лабораторной работе №7

Выполнил: Студент факультета №5 Группы 5025 кафедры 52 Соколовский Роман Александрович

1. Цель Работы

- Изучение явления дисперсии и затухания волн в волноводе.
- Изучение методов измерения параметров, характеризующих дисперсию и затухание.
- Экспериментальное исследование изменения фазовой и групповой скоростей, а также затухания в зависимости от частоты генерируемых колебаний.
- Исследование математической зависимости затухания, фазовой и групповой скоростей от поперечных размеров волновода, диэлектрической проницаемости заполнения и удельной проводимости стенок в заданном частотном диапазоне.

2. Схема Лабораторной Установки

Схема лабораторной установки представлена на Рис. 1.

Рис. 1. Принципиальная схема лабораторной установки

3. Результаты измерений и вычислений

3.1. Измерения и вычисления.

 $3.1.1. \Delta \varphi_{\text{расч}}.$

$$\lambda_{d} = \frac{\lambda}{\sqrt{1 - (\lambda/2\alpha)^{2}}}$$

$$\varphi_{\tau} = \frac{2\pi}{\lambda_{d}}d$$

$$\varphi_{n} = \frac{2\pi}{\lambda}d$$

$$\lambda = \frac{c}{f}$$

$$\Delta\varphi_{\text{pacu}} = \varphi_{\tau} - \varphi_{n}$$

$$\lambda_{d} = 3 \cdot 10^{8} m/s$$

$$f = 11.96 \cdot 10^{9} Hz$$

$$\alpha = 20 \cdot 10^{-3} m$$

$$d = 24 \cdot 10^{-3} m$$

$$\Delta\varphi_{\text{pacu}} = -1.32$$

 $3.1.2.~\Delta \varphi_{\text{изм}}$. Значение сдвига фаз, полученное на основе экспериментальных данных, вычисляется по формуле:

$$\Delta \varphi = \arctan\left[\frac{2r}{(1+r^2)\sin^2\beta_0}\right] \tag{3.1}$$

На основе данных таблицы 3 протокола измерений (см. Приложение 1) были получены следующие значения сдвига фаз:

$$\begin{split} \Psi &= 15^{\circ} & \Delta \varphi_{_{\text{ИЗМ}}} = 1.25 \\ \Psi &= -15^{\circ} & \Delta \varphi_{_{\text{ИЗМ}}} = 1.31 \\ \Psi &= 30^{\circ} & \Delta \varphi_{_{\text{ИЗМ}}} = -0.95 \\ \Psi &= -30^{\circ} & \Delta \varphi_{_{\text{ИЗМ}}} = -0.89 \end{split} \tag{3.2}$$

Хорошо видно, что значение смещения очень точно совпадает с теоретической оценкой для $\Psi=15^\circ$ и довольно сильно расходится при $\Psi=30^\circ$. Это может объясняться накопленной погрешностью измерительных приборов и увеличением влияния окружающих неучтеных препятствий с увеличением угла отклонения.

3.1.3. Коэффициент эллиптичности без учета различного затухания составляющих вектора.

$$\lambda = \frac{\Lambda}{\sqrt{1 + \left(\frac{\Lambda}{2a}\right)^2}}$$

$$r_1 = \sqrt{\frac{\alpha_{+45}}{\alpha_{-45}}}$$

$$B = \sqrt{\frac{\alpha_n}{\alpha_\tau}}$$

$$\Rightarrow \begin{vmatrix} r_1 = \sqrt{\frac{46}{42}} = 1.0465 \\ r_1 B = \sqrt{\frac{40}{32}} \cdot 1.0465 = 1.17 \end{vmatrix}$$
(3.3)

3.2. Таблицы результатов измерений и вычислений. Результаты исследования линейно поляризованной волны приведены в таблице 1. Полученные характеристики эллиптически поляризованных волн сведены в эту же таблицу для компактности и удобства. Графы таблиц, дублирующие таблицы протокола измерений (см. Приложение 1), здесь приведены не будут.

freq	z1	z2	z1'	z2'	11	12	L	lambda	KBv	lKBv	alpha	Vgroup	Vphase
3000	1.4	1.7	8.6	8.3	1.55	8.45	13.8	9.92	0.094	20.44	59.20	$2.17 \cdot 10^{8}$	$4.14 \cdot 10^8$
3200	0.5	2.3	6.6	8.4	1.4	7.5	12.2	9.27	0.609	4.293	12.44	$2.26 \cdot 10^{8}$	$3.97 \cdot 10^{8}$
3600	2.3	3.3	7.3	8.4	2.8	7.85	10.1	8.24	0.380	8.382	24.26	$2.45 \cdot 10^{8}$	$3.67 \cdot 10^{8}$
4000	1.5	1.6	5.8	5.9	1.55	5.85	8.6	7.36	0.042	27.40	79.34	$2.57 \cdot 10^{8}$	$3.50 \cdot 10^{8}$
4200	1.9	2.0	6.1	6.2	1.95	6.15	8.4	7.24	0.043	27.25	78.90	$2.58 \cdot 10^{8}$	$3.48 \cdot 10^{8}$

ТАБЛИЦА 1. Исследование линейно и эллиптически поляризованных волн.

3.3. Графики и рисунки. Наиболее наглядным способом демонстрации и анализа поляризованных волн являются поляризационные диаграммы. На рисунках 2 и 4 представлены диаграммы для линейно и эллиптически поляризованных волн. Они хорошо согласуются с теоретическими формами кривых, что подтверждает корректность проведенных измерений и обработки их результатов.

Рис. 2. Поляризационная диаграмма линейно поляризованной волны

Рис. 3. График зависимости эллиптичности от угла поворота поляризационной решетки

Рис. 4. Поляризационная диаграмма эллиптически поляризованной волны