Problem Set 4 Due date 26th March 2025

Shuddhodan Kadattur Vasudevan

March 10, 2025

1. In this problem you will prove the following theorem due to Grothendieck:

Theorem 0.0.1 (Grothendieck). Let X be a Noetherian topological space. Then $H^p(X, \mathscr{F}) = 0$ for any $p > \dim(X)$ and any abelian sheaf \mathscr{F} on X^1 .

We shall do this in steps.

- (a) Show that we may assume X is finite dimensional and prove the theorem for $\dim(X) = 0$. We now assume $\dim(X) = d > 0$ and the result known for all X with $\dim(X) \leq d 1$.
- (b) Use Lemma 6.1.0.2 from the class notes and induction on the number of irreducible components of X, to reduce to the case where X is irreducible.
- (c) Since X is irreducible, show that \mathbb{Z}_X is flasque and hence $H^p(X,\mathbb{Z}_X)=0^2$ for p>0. Use this and induction hypothesis to conclude that $H^p(X,j_!\mathbb{Z}_U)=0$ for $p>\dim(X)$ where $j:U\hookrightarrow X$ is an open immersion.
- (d) Next recall that for any sheaf \mathscr{F} , there exists a surjection

$$\bigoplus_{(j:U\hookrightarrow X,s\in\mathscr{F}(U))}j_!\mathbb{Z}_U\to\mathscr{F}.$$

Let A denote the indexing subset of the above direct sum i.e elements of A consists of a pair $U \hookrightarrow X$ and an element $s \in \mathscr{F}(U)$. For any finite subset $S \subset A$, denote by \mathscr{F}_S , the image of

$$\bigoplus_{(U,s)\in S} j_! \mathbb{Z}_U \to \mathscr{F}.$$

Now let I be the collection of all finite subsets of A ordered by inclusion. Show that I is filtered and that

$$\varinjlim_{i\in I} \mathscr{F}_i \simeq \mathscr{F}.$$

Observe that this is half of what you see in topology. For example when $X=\mathbb{P}^1_{\mathbb{C}}$, then the closed points of X, $X(\mathbb{C})\simeq S^2$, hence $H^2(X(\mathbb{C}),\mathbb{Z})\neq 0$.

²This is the only place where we "compute" cohomology!

(e) Using the fact that cohomology commutes with filtered limits of sheaves on a Noetherian topological space (see Tag 01FF) to reduce to the case where $\mathscr{F}=\mathscr{F}_S$, where $S\subset A$ is a finite set. Next induct on the number of elements in S to reduce to the case where #S=1. Hence we may assume there exists a short exact sequence

$$0 \to \mathscr{G} \to j_! \mathbb{Z}_U \to \mathscr{F} \to 0,$$

where $j:U\hookrightarrow X$ is an open immersion.

- (f) Let $\eta \in X$ be the unique generic point. Show that $\mathscr{G}=0$ iff $\mathscr{G}_{\eta}=0$. Conclude that is $\mathscr{G}_{\eta}=0$, then we are done by step (c) above.
- (g) Now suppose $\mathscr{G}_{\eta} = d\mathbb{Z} \subseteq \mathbb{Z}$ with d > 0. Show that the map $\mathscr{G} \to j_! \mathbb{Z}_U$, factors through the sub sheaf $j_! d\mathbb{Z}_U \subseteq j_! \mathbb{Z}_U$. Thus we have an exact sequence

$$0 \to \mathscr{G} \to j_! d\mathbb{Z}_U \to \mathscr{F}' \to 0.$$

- (h) Next show that $\mathscr{F}'_{\eta}=0$ and hence³ conclude that $\mathscr{F}'=i'_{*}\mathscr{F}''$ for some proper closed subset $i':Z'\subset U$. Combined with step (c) this show that $H^{p}(X,\mathscr{G})=0$ for $p>\dim(X)$.
- (i) Conclude the proof by combining steps (c), (e) and (h).
- 2. Let X be a Noetherian scheme. Prove that
 - (a) X is affine iff X_{red} is affine.
 - (b) X is affine iff its irreducible components (with any scheme structure) are affine.

Finally show that if $f: Y \to X$ is a finite surjective morphism. Then Y is affine iff X is affine⁴.

- 3. Let X be a proper scheme over a Noetherian ring A and $\mathcal{L} \in Pic(X)$. Prove that
 - (a) \mathscr{L} is ample iff $\mathscr{L}|_{X_{red}}$ is ample.
 - (b) \mathscr{L} is ample iff its restriction to each irreducible component (with any scheme structure) is ample.

Finally show that if $f: Y \to X$ be a finite surjective morphism. Then \mathscr{L} is ample iff $f^*\mathscr{L}$ is.

4. Prove that every one-dimensional proper scheme X over an algebraically closed field k is projective i.e has an ample line bundle. You may assume that the natural map $Pic(X) \rightarrow Pic(X_{red})$ is a surjection. For hints on how to proceed see [1, Chapter III, Exercise 5.8]

 $^{^3}$ This step uses the fact that \mathscr{F}' is "generated" by a single element.

⁴For hints see [1, Chapter III, Exercise 4.2]

References

[1] Robin Hartshorne. *Algebraic Geometry*, volume 52 of *Graduate Texts in Mathematics*. Springer-Verlag, 1977. 2, 3