Name: Solutions

Solve **both** of the following two questions:

1. Suppose that $S, T \in \mathcal{L}(V)$ are such that ST = TS. Prove that range S is invariant under [5]

Solution: Let $w \in \text{range } S$. Then w = Sv for some $v \in V$. Thus, assuming that ST = TS, we have

$$Tw = T(Sv) = S(Tv) \in \text{range } S$$
,

which shows that range S is invariant under T.

- 2. Let $T \in \mathcal{L}(\mathbb{R}^2)$ be defined by T(x,y) = (-3y,x).
- [3] (a) What are the eigenvalues of T?

Solution: λ is an eigenvalue of T provided that $T(x,y) = (-3y,x) = \lambda(x,y)$ for some nonzero vector v = (x,y). Thus, we must have $-3y = \lambda x$ and $x = \lambda y$, which gives us the system

$$\lambda x + 3y = 0$$
$$x - \lambda y = 0$$

To have a non-trivial solution the second equation must be a multiple of the first equation. If we multiply the second equation by λ we have $\lambda x - \lambda^2 y = 0$, which tells us that we must have

$$\lambda^2 = -3.$$

However, this is impossible if λ is a real number, so T does not have any real eigenvalues.

[2] (b) Does your answer change if we view T as an operator on \mathbb{C}^2 rather than \mathbb{R}^2 ?

Solution: Yes – over the complex numbers, the argument above shows that we have the eigenvalues $\lambda = \pm i\sqrt{3}$.