Numerical analysis of superconducting phases in the extended Hubbard model with non-local pairing

University of Pisa, a.y. 2025-2026

Alessandro Gori*

Thesis for the Master's degree in Physics

Abstract

[To be continued. . .]

Contents

1	Mean-field theory solution				
	1.1	Mean-	Field theory real space description	1	
		1.1.1	Mean-field treatment of the non-local term	1	
		1.1.2	Mean-field treatment of the local term	3	
		1.1.3	Topological correlations	4	
	1.2	Mean-	Field theory reciprocal space description		
		1.2.1	Kinetic term	5	
		1.2.2	Non-local attraction	5	
		1.2.3	Local interaction and gap function	8	
		1.2.4	Nambu formalism and Bogoliubov transform	9	
		1.2.5	A short comment on self-consistency	11	
	1.3	Result	s of the HF algorihtm	11	
Bi	bliog	graphy		13	

 $Draft:\ August\ 28,\ 2025$

^{*}a.gori23@studenti.unipi.it / nepero27178@github.com

Chapter 1

Mean-field theory solution

This chapter is devoted to develop a rough mean field approximation of the Extended Hubbard model of Eq. (??),

$$\hat{H} = -t \sum_{\langle ij \rangle} \sum_{\sigma} \hat{c}^{\dagger}_{i\sigma} \hat{c}_{j\sigma} + \underbrace{U \sum_{i} \hat{n}_{i\uparrow} \hat{n}_{i\downarrow}}_{\hat{H}_{U}} - \underbrace{V \sum_{\langle ij \rangle} \sum_{\sigma\sigma'} \hat{n}_{i\sigma} \hat{n}_{j\sigma'}}_{-\hat{H}_{V}}$$

Mean Field Theory (MFT) is a widely used and simple theoretical tool, often sufficient to describe the leading orders in phase transition phenomena of Many-Body Physics. Here MFT is employed following the path of Bardeen-Cooper-Schrieffer (BCS) theory in describing conventional s-wave superconductivity. As will be thoroughly described, the lattice spatial structure directly influences the topology of the gap function, giving rise to anisotropic pairing. Sec. 1.1 studies the non-local attraction in real-space, while Sec. 1.2 moves to reciprocal space and gives a self-consistent MFT solution. Finally, numerical results are exposed in Sec. 1.3.

1.1 Mean-Field theory real space description

In this section, an analytic discussion of the real-space hamiltonian of Eq. (??) is given. The first part focuses on the non-local interaction V, expected to be source of superconductivity; the second part on the local interaction U, known to be source of Slater-like anti-ferromagnetism, as described in App. ??.

1.1.1 Mean-field treatment of the non-local term

Consider the non-local term,

$$\hat{H}_V \equiv -V \sum_{\langle ij \rangle} \sum_{\sigma\sigma'} \hat{n}_{i\sigma} \hat{n}_{j\sigma'} \tag{1.1}$$

Figure 1.1 Schematic representation of the four NNs of a given site i for a planar square lattice.

Evidently the hamiltonian can be decomposed in various spin terms,

$$\begin{split} \hat{H}_{V} &= \sum_{\sigma\sigma'} \hat{H}_{V}^{\sigma\sigma'} \\ &= \underbrace{\hat{H}_{V}^{\uparrow\uparrow} + \hat{H}_{V}^{\downarrow\downarrow}}_{\text{Ferromagnetic}} + \underbrace{\hat{H}_{V}^{\uparrow\downarrow} + \hat{H}_{V}^{\downarrow\uparrow}}_{\text{Anti-ferromagnetic}} \end{split}$$

Evidently, to carry out a summation over nearest neighbors $\langle ij \rangle$ of a square lattice means precisely to sum over all links of the lattice. Then we can identify the generic AF term $\hat{H}_{V}^{\sigma\bar{\sigma}}$ as the one collecting the σ operators of sublattice \mathcal{S}_{a} and $\bar{\sigma}$ operators of sublattice \mathcal{S}_{b} . At half-filling, as described in Sec. ??, the ground-state leading contribution will be the antiferromagnetic state, with the square lattice decomposed in two oppositely polarized square lattices with spacing increased by a factor $\sqrt{2}$. Then, it is to be expected that on this configuration the ferromagnetic contributions are suppressed¹. Anyways, the calculation will be carried out considering both terms. The AF non-local interactions can be written as a sum of terms over just one of the two sublattices \mathcal{S}_{a} and \mathcal{S}_{b} , oppositely polarized in the AF configuration (see Fig. ??)

itely polarized in the AF configuration (see Fig. ??)
$$\hat{H}_{V}^{(\mathrm{AF})} = \sum_{i \in \mathcal{S}_{a}} \hat{h}_{V}^{(i)} + \sum_{i \in \mathcal{S}_{b}} \hat{h}_{V}^{(i)} \qquad \qquad \hat{h}_{V}^{(i)} = -V \sum_{\ell=x,y} (\hat{n}_{i\uparrow} \hat{n}_{i+\delta_{\ell}\downarrow} + \hat{n}_{i\uparrow} \hat{n}_{i-\delta_{\ell}\downarrow})$$

$$= \sum_{i \in \mathcal{S}} \hat{h}_{V}^{(i)}$$

Here the notation of Fig. ?? is used. The two-dimensional lattice is regular-square. For each site i in a given sublattice, the nearest neighbors sites are four – all in the other sublattice. The notation used is $i \pm \delta_x$, $i \pm \delta_y$ as in Fig. 1.1. Similarly, the Ferromagnetic hamiltonian decomposes as

$$\hat{H}_{V}^{(\mathrm{F})} = -V \sum_{i \in \mathcal{S}_{a}} \sum_{\ell = x, y} \sum_{\sigma} \left(\hat{n}_{i\sigma} \hat{n}_{i + \delta_{\ell}\sigma} + \hat{n}_{i\sigma} \hat{n}_{i - \delta_{\ell}\sigma} \right)$$

Note here the summation only on one sublattice. As will be shown in Sec. 1.2.5, under MFT it makes sense to approximate

$$\hat{H}_V \simeq \hat{H}_V^{(AF)}$$

thus neglecting ferromagnetic contribution to Cooper instability. The non-local interaction contribution to energy, as a function of the T=0 full hamiltonian ground-state² $|\Psi\rangle$, is given by

$$\begin{split} E_{V}[\Psi] &= \langle \Psi | \hat{H}_{V} | \Psi \rangle \\ &= -V \sum_{i \in \mathcal{S}} \sum_{\ell = x, y} \langle \hat{n}_{i\uparrow} \hat{n}_{i+\delta_{\ell}\downarrow} + \hat{n}_{i\uparrow} \hat{n}_{i-\delta_{\ell}\downarrow} \rangle \end{split}$$

Shorthand notation has been used: $\langle \Psi | \cdot | \Psi \rangle = \langle \cdot \rangle$. Consider one specific term, say, $\hat{n}_{i\uparrow}\hat{n}_{i+\delta_x\downarrow}$. Wick's Theorem states that, if the expectation value is performed onto a coherent state,

$$\begin{split} \langle \hat{n}_{i\uparrow} \hat{n}_{i+\delta_x\downarrow} \rangle &= \langle \hat{c}_{i\uparrow}^\dagger \hat{c}_{i+\delta_x\downarrow}^\dagger \hat{c}_{i+\delta_x\downarrow} \hat{c}_{i\uparrow} \rangle \\ &= \underbrace{\langle \hat{c}_{i\uparrow}^\dagger \hat{c}_{i+\delta_x\downarrow}^\dagger \rangle \langle \hat{c}_{i+\delta_x\downarrow} \hat{c}_{i\uparrow} \rangle}_{\text{Cooper}} - \underbrace{\langle \hat{c}_{i\uparrow}^\dagger \hat{c}_{i+\delta_x\downarrow} \rangle \langle \hat{c}_{i+\delta_x\downarrow}^\dagger \hat{c}_{i\uparrow} \rangle}_{\text{Fock}} + \underbrace{\langle \hat{c}_{i\uparrow}^\dagger \hat{c}_{i\uparrow} \rangle \langle \hat{c}_{i+\delta_x\downarrow}^\dagger \hat{c}_{i+\delta_x\downarrow} \rangle}_{\text{Hartree}} \end{split}$$

As a first approximation, the theorem is assumed to hold (which, in a BCS-like fashion, is equivalent to assuming for the ground-state to be a coherent state). The last two terms account for single-particle interactions with a background field; they are relevant in the Hartree-Fock scheme, being

¹This is also due to superexchange stabilization: the triplet contribution to hamiltonian is suppressed, and this cancels out the ferromagnetic terms $\hat{H}_V^{\sigma\sigma}$ while privileging the singlet configuration of the anti-ferromagnetic terms $\hat{H}_V^{\sigma\sigma}$.

 $[\]hat{H}_{V}^{\sigma\bar{\sigma}}$.

2Extensions to finite temperatures is simple: minimization must be carried out on free energy, while expectation values must be taken in a thermodynamic fashion.

direct-exchange contributions to single particle energies. The first term accounts for non-local electrons pairing, mimicking the Cooper term of BCS theory. The core assumption, here, is that only one of the HF and Bogoliubov pairings survive. Appendix ?? shows a situation dominated by HF terms. Here, I assume the symmetry to be broken by a Cooper term. Energy then is cast to the form

$$E_{V}[\Psi] = -V \sum_{i \in \mathcal{S}} \sum_{\ell=x,y} \left[\langle \hat{c}_{i\uparrow}^{\dagger} \hat{c}_{i+\delta_{\ell}\downarrow}^{\dagger} \rangle \langle \hat{c}_{i+\delta_{\ell}\downarrow} \hat{c}_{i\uparrow} \rangle + \langle \hat{c}_{i\uparrow}^{\dagger} \hat{c}_{i-\delta_{\ell}\downarrow}^{\dagger} \rangle \langle \hat{c}_{i-\delta_{\ell}\downarrow} \hat{c}_{i\uparrow} \rangle \right]$$

The ground-state must realize the condition

$$\frac{\delta}{\delta \langle \Psi |} E[\Psi] = 0$$

being $E[\Psi]$ the total energy (made up of the three terms of couplings t, U and V). [Expand derivation?] The functional derivative must be carried out in a variational fashion including a Lagrange multiplier, the latter accounting for state-norm conservation, as is done normally in deriving the Hartree-Fock approximation for the eigenenergies of the electron liquid [4, 5]. This approach leads to the conclusion that the (coherent) ground-state of the system must be an eigenstate of the mean-field effective hamiltonian:

$$\hat{H}^{(e)} = -t \sum_{\langle ij \rangle} \sum_{\sigma} \hat{c}_{i\sigma}^{\dagger} \hat{c}_{j\sigma} + U \sum_{i \in \mathcal{S}} \hat{n}_{i\uparrow} \hat{n}_{i\downarrow}$$

$$-V \sum_{i \in \mathcal{S}} \sum_{\ell=x,y} \sum_{\delta=+\delta_{\ell}} \left[\langle \hat{c}_{i\uparrow}^{\dagger} \hat{c}_{i+\delta\downarrow}^{\dagger} \rangle \hat{c}_{i+\delta\downarrow} \hat{c}_{i\uparrow} + \text{h.c.} \right]$$
(1.2)

The pairing correlation function is defined across each bond as the pairing expectation

$$g_{ij} \equiv \langle \hat{c}_{i\uparrow}^{\dagger} \hat{c}_{j\downarrow}^{\dagger} \rangle$$

The effective hamiltonian reads:

$$\hat{H}^{(e)} = -t \sum_{\langle ij \rangle} \sum_{\sigma} \hat{c}_{i\sigma}^{\dagger} \hat{c}_{j\sigma} + U \sum_{i \in \mathcal{S}} \hat{n}_{i\uparrow} \hat{n}_{i\downarrow} - V \sum_{\langle ij \rangle} \left[g_{ij} \hat{c}_{j\downarrow} \hat{c}_{i\uparrow} + g_{ij}^* \hat{c}_{i\uparrow}^{\dagger} \hat{c}_{j\downarrow}^{\dagger} \right]$$
(1.3)

As in standard BCS theory, this hamiltonian – being quadratic in the electronic operators – can be diagonalized via a Bogoliubov rotation. Superconducting pairing can arise both from the local U term and from the non-local V term. In next sections it is assumed the V term generates dominant superconductivity via its weak non-local pairing.

1.1.2 Mean-field treatment of the local term

The mean-field description of the local (on-site) U interaction is given in detail in App. ??, along with a simple numerical analysis of the insurgence of antiferromagnetic ordering in a Hartree-Fock approximation scheme. Here the Cooper pairing is likewise assumed to dominate. Performing an analysis analogous to the one carried out in last section, we get the decoupling

$$U \sum_{i \in S} \hat{n}_{i\uparrow} \hat{n}_{i\downarrow} \simeq U \sum_{i\sigma} \left[f_i \hat{c}_{i\downarrow} \hat{c}_{i\uparrow} + f_i^* \hat{c}_{i\uparrow}^{\dagger} \hat{c}_{i\downarrow}^{\dagger} \right]$$

being

$$f_i \equiv \langle \hat{c}_{i\uparrow}^{\dagger} \hat{c}_{i\downarrow}^{\dagger} \rangle$$

Collect f and g in the unique function of two variables:

$$C(i,j) = \begin{cases} f_i & \text{if } i = j \\ g_{ij} & \text{if } |i - j| = 1 \\ (\cdots) & \text{otherwise} \end{cases}$$

Figure 1.2 Form factors at different topologies, as listed in Tab. 1.1. In figures five sites are represented: the hub site i and its four NN. Solid lines represent non-zero values for φ_{δ} , while dashed lines represent vanishing factors.

which expresses the generic correlator $\langle \hat{c}^{\dagger}_{i\uparrow}\hat{c}^{\dagger}_{j\downarrow}\rangle$. The correlator for |i-j|>1 is left unexpressed, and supposed to be subdominant. The decoupled hamiltonian, apart from pure energy shifts and suppressed terms, is given by

$$\hat{H}^{(e)} = -t \sum_{\langle ij \rangle} \sum_{\sigma} \hat{c}_{i\sigma}^{\dagger} \hat{c}_{j\sigma} + U \sum_{i} \left[f_{i} \hat{c}_{i\downarrow} \hat{c}_{i\uparrow} + f_{i}^{*} \hat{c}_{i\uparrow}^{\dagger} \hat{c}_{i\downarrow}^{\dagger} \right]$$

$$-V \sum_{\langle ij \rangle} \left[g_{ij} \hat{c}_{j\downarrow} \hat{c}_{i\uparrow} + g_{ij}^{*} \hat{c}_{i\uparrow}^{\dagger} \hat{c}_{j\downarrow}^{\dagger} \right]$$

$$(1.4)$$

[To be continued...]

1.1.3 Topological correlations

Topology plays an important role in establishing SC, giving rise to anisotropic pairing as well as real space structures for the Cooper pairs. The correlator g_{ij} is a function of position, specifically of its variables difference $\boldsymbol{\delta} \equiv \mathbf{x}_j - \mathbf{x}_i$. Over the square lattice with NN interaction, the latter can assume four values: $\boldsymbol{\delta} = \pm \boldsymbol{\delta}_x$, $\pm \boldsymbol{\delta}_y$. For a function of space defined over the four rim sites $\mathbf{x}_i \pm \boldsymbol{\delta}_\ell$ of Fig. 1.1, various symmetry structures can be defined under the planar rotations group SO(2). In other words, the function $g_{\boldsymbol{\delta}}$ can be decomposed in planar harmonics (which are simply the sine-cosine basis). Equivalently, given two NN sites i, j

$$g_{ij} = \sum_{\gamma} g^{(\gamma)} \varphi_{ij}^{(\gamma)}$$

where $g^{(\gamma)}$ are the g_{ij} symmetries-decomposition coefficients while $\varphi_{ij}^{(\gamma)}$ are the form factors listed in Tab. 1.1, a simple orthonormal rearrangement of the harmonics basis.

SC is established with a given symmetry – which means, symmetry breaking in the phase transition proceeds in a specific channel. Conventional BCS superconductivity arises from the only possible spatial structure of the local pairing, s-wave – here appearing as a local term (Fig. 1.2a) and extended on a non-local term (Fig. 1.2b). Cuprates exhibit a tendency towards $d_{x^2-y^2}$ SC, while other materials towards p-wave types – eventually with some chirality, as is the case for $p_x \pm ip_y$ SCs. To establish SC under a certain symmetry γ means that Cooper pairs acquire said symmetry – which implies, for correlations, $g^{(\gamma')} = g^{(\gamma)} \delta_{\gamma\gamma'}$. and $g_{ij} \propto \varphi_{ij}^{(\gamma)}$.

Structure	Form factor	Graph
s-wave	$arphi_{ij}^{(s)} = \delta_{ij}$	Fig. 1.2a
Extended s -wave	$\varphi_{ij}^{(s^*)} = \delta_{j=i+\delta_x} + \delta_{j=i-\delta_x} + \delta_{j=i+\delta_y} + \delta_{j=i-\delta_y}$	Fig. 1.2b
p_x -wave	$\varphi_{ij}^{(p_x)} = \delta_{j=i+\delta_x} - \delta_{j=i-\delta_x}$	Fig. 1.2c
p_y -wave	$\varphi_{ij}^{(p_y)} = \delta_{j=i+\delta_y} - \delta_{j=i-\delta_y}$	Fig. 1.2d
$d_{x^2-y^2}$ -wave	$\varphi_{ij}^{(d)} = \delta_{j=i+\delta_x} + \delta_{j=i-\delta_x} - \delta_{j=i+\delta_y} - \delta_{j=i-\delta_y}$	Fig. 1.2e

Table 1.1 First four spatial structures for the correlation function C(i, j). In the middle column, all spatial dependence is included in the δs , while $f^s, g^{(\gamma)} \in \mathbb{C}$. The last column indicates the graph representation of each contribution given in Fig. ??. Subscript $x^2 - y^2$ is omitted for notational clarity.

1.2 Mean-Field theory reciprocal space description

In this BCS-like approach, a self-consistent equation for the gap function must be retrieved in order to further investigate the model and extract the conditions for the formation of a superconducting phase with a given pairing topology. In order to do so, let me take a step back and perform explicitly the Fourier-transform of the various terms of Eq. ??.

1.2.1 Kinetic term

The kinetic part is trivial to transform. The followed convention is

$$\hat{c}_{j\sigma} = \frac{1}{\sqrt{L_x L_y}} \sum_{\mathbf{k} \in BZ} e^{-i\mathbf{k} \cdot \mathbf{x}_j} \hat{c}_{\mathbf{k}\sigma}$$

Calculation is carried out in App. ??. Let

$$\epsilon_{\mathbf{k}} \equiv -2t \left[\cos(k_x \delta_x) + \cos(k_y \delta_y) \right]$$

then we have

$$\begin{split} -t \sum_{\langle ij \rangle} \sum_{\sigma} \hat{c}_{i\sigma}^{\dagger} \hat{c}_{j\sigma} &= \sum_{\mathbf{k}\sigma} \epsilon_{\mathbf{k}} \hat{c}_{\mathbf{k}\sigma}^{\dagger} \hat{c}_{\mathbf{k}\sigma} \\ &= \sum_{\mathbf{k}} \epsilon_{\mathbf{k}} \left[\hat{c}_{\mathbf{k}\uparrow}^{\dagger} \hat{c}_{\mathbf{k}\uparrow} + \hat{c}_{\mathbf{k}\downarrow}^{\dagger} \hat{c}_{\mathbf{k}\downarrow} \right] \\ &= \sum_{\mathbf{k}} \epsilon_{\mathbf{k}} \left[\hat{c}_{\mathbf{k}\uparrow}^{\dagger} \hat{c}_{\mathbf{k}\uparrow} - \hat{c}_{-\mathbf{k}\downarrow} \hat{c}_{-\mathbf{k}\downarrow}^{\dagger} \right] \end{split}$$

In last passage I used fermionic anti-commutation rules and reversed the sign of the mute variable. This will become useful later.

1.2.2 Non-local attraction

Consider a generic bond, say, the one connecting sites j and $j \pm \delta_{\ell}$ (variable i is here referred to as the imaginary unit to avoid confusion). \mathbf{x}_{j} is the 2D notation for the position of site j, while δ_{ℓ} is the 2D notation for the lattice spacing previously indicated as δ_{ℓ} . Fourier transform it according to the convention

$$\hat{c}_{j\sigma} = \frac{1}{\sqrt{L_x L_y}} \sum_{\mathbf{k} \in BZ} e^{-i\mathbf{k} \cdot \mathbf{x}_j} \hat{c}_{\mathbf{k}\sigma}$$

Then:

$$\begin{split} \hat{n}_{j\uparrow}\hat{n}_{j\pm\delta_{\ell}\downarrow} &= \hat{c}_{j\uparrow}^{\dagger}\hat{c}_{j\pm\delta_{\ell}\downarrow}^{\dagger}\hat{c}_{j\pm\delta_{\ell}\downarrow}\hat{c}_{j\uparrow} \\ &= \frac{1}{(L_{x}L_{y})^{2}}\sum_{\nu=1}^{4}\sum_{\mathbf{k}_{\nu}\in\mathrm{BZ}}e^{i[(\mathbf{k}_{1}+\mathbf{k}_{2})-(\mathbf{k}_{3}+\mathbf{k}_{4})]\cdot\mathbf{x}_{j}}e^{\pm i(\mathbf{k}_{2}-\mathbf{k}_{3})\cdot\boldsymbol{\delta}_{\ell}}\hat{c}_{\mathbf{k}_{1}\uparrow}^{\dagger}\hat{c}_{\mathbf{k}_{2}\downarrow}^{\dagger}\hat{c}_{\mathbf{k}_{3}\downarrow}\hat{c}_{\mathbf{k}_{4}\uparrow} \end{split}$$

It follows,

$$\begin{split} \hat{h}_{V}^{(j)} &= -\frac{V}{(L_{x}L_{y})^{2}} \sum_{\ell=x,y} \sum_{\nu=1}^{4} \sum_{\mathbf{k}_{\nu} \in \mathrm{BZ}} e^{i[(\mathbf{k}_{1}+\mathbf{k}_{2})-(\mathbf{k}_{3}+\mathbf{k}_{4})] \cdot \mathbf{x}_{j}} \\ & \times \left(e^{i(\mathbf{k}_{2}-\mathbf{k}_{3}) \cdot \boldsymbol{\delta}_{\ell}} + e^{-i(\mathbf{k}_{2}-\mathbf{k}_{3}) \cdot \boldsymbol{\delta}_{\ell}} \right) \hat{c}_{\mathbf{k}_{1}\uparrow}^{\dagger} \hat{c}_{\mathbf{k}_{2}\downarrow}^{\dagger} \hat{c}_{\mathbf{k}_{3}\downarrow} \hat{c}_{\mathbf{k}_{4}\uparrow} \\ &= -\frac{2V}{(L_{x}L_{y})^{2}} \sum_{\ell=x,y} \sum_{\nu=1}^{4} \sum_{\mathbf{k}_{\nu} \in \mathrm{BZ}} e^{i[(\mathbf{k}_{1}+\mathbf{k}_{2})-(\mathbf{k}_{3}+\mathbf{k}_{4})] \cdot \mathbf{x}_{j}} \cos\left[(\mathbf{k}_{2}-\mathbf{k}_{3}) \cdot \boldsymbol{\delta}_{\ell} \right] \hat{c}_{\mathbf{k}_{1}\uparrow}^{\dagger} \hat{c}_{\mathbf{k}_{2}\downarrow}^{\dagger} \hat{c}_{\mathbf{k}_{3}\downarrow} \hat{c}_{\mathbf{k}_{4}\uparrow} \end{split}$$

The full non-local interaction is given by summing over all sites of S. This gives back momentum conservation,

$$\frac{1}{L_x L_y} \sum_{i \in \mathcal{S}} e^{i[(\mathbf{k}_1 + \mathbf{k}_2) - (\mathbf{k}_3 + \mathbf{k}_4)] \cdot \mathbf{x}_j} = \delta_{\mathbf{k}_1 + \mathbf{k}_2 = \mathbf{k}_3 + \mathbf{k}_4}$$

Let $\mathbf{k}_1 + \mathbf{k}_2 = \mathbf{k}_3 + \mathbf{k}_4 = \mathbf{K}$, and define \mathbf{k} , \mathbf{k}' such that

$$\mathbf{k}_1 \equiv \mathbf{K} + \mathbf{k}$$
 $\mathbf{k}_2 \equiv \mathbf{K} - \mathbf{k}$ $\mathbf{k}_3 \equiv \mathbf{K} - \mathbf{k}'$ $\mathbf{k}_4 \equiv \mathbf{K} + \mathbf{k}'$ $\delta \mathbf{k} \equiv \mathbf{k} - \mathbf{k}'$

Sums over these variables must be intended as over the Brillouin Zone (BZ). Then, finally

$$\begin{split} \hat{H}_{V} &\simeq \sum_{j \in \mathcal{S}} \hat{h}_{V}^{(j)} \\ &= -\frac{2V}{L_{x}L_{y}} \sum_{\ell=x,y} \sum_{\mathbf{K},\mathbf{k},\mathbf{k}'} \cos\left(\delta \mathbf{k} \cdot \boldsymbol{\delta}_{\ell}\right) \hat{c}_{\mathbf{K}+\mathbf{k}\uparrow}^{\dagger} \hat{c}_{\mathbf{K}-\mathbf{k}\downarrow}^{\dagger} \hat{c}_{\mathbf{K}-\mathbf{k}'\downarrow} \hat{c}_{\mathbf{K}+\mathbf{k}'\uparrow} \\ &= -\frac{2V}{L_{x}L_{y}} \sum_{\ell=x,y} \sum_{\mathbf{K},\mathbf{k},\mathbf{k}'} \left[\cos\left(\delta k_{x}\delta_{x}\right) + \cos\left(\delta k_{y}\delta_{y}\right)\right] \hat{c}_{\mathbf{K}+\mathbf{k}\uparrow}^{\dagger} \hat{c}_{\mathbf{K}-\mathbf{k}\downarrow}^{\dagger} \hat{c}_{\mathbf{K}-\mathbf{k}'\downarrow} \hat{c}_{\mathbf{K}+\mathbf{k}'\uparrow} \end{split}$$

Eventually, in the second passage the prefactor 2 can be absorbed by reintroducing the spin DoF³. Taking in the mean-field approximation (with Cooper pair symmetry breaking), we get

$$\hat{c}^{\dagger}_{\mathbf{K}+\mathbf{k}\uparrow}\hat{c}^{\dagger}_{\mathbf{K}-\mathbf{k}\downarrow}\hat{c}_{\mathbf{K}-\mathbf{k}'\downarrow}\hat{c}_{\mathbf{K}+\mathbf{k}'\uparrow} \simeq \langle \hat{c}^{\dagger}_{\mathbf{K}+\mathbf{k}\uparrow}\hat{c}^{\dagger}_{\mathbf{K}-\mathbf{k}\downarrow}\rangle \hat{c}_{\mathbf{K}-\mathbf{k}'\downarrow}\hat{c}_{\mathbf{K}+\mathbf{k}'\uparrow} + \hat{c}^{\dagger}_{\mathbf{K}+\mathbf{k}\uparrow}\hat{c}^{\dagger}_{\mathbf{K}-\mathbf{k}\downarrow}\langle \hat{c}_{\mathbf{K}-\mathbf{k}'\downarrow}\hat{c}_{\mathbf{K}+\mathbf{k}'\uparrow}\rangle + \cdots$$

Take e.g. $\langle \hat{c}^{\dagger}_{\mathbf{K}+\mathbf{k}\uparrow} \hat{c}^{\dagger}_{\mathbf{K}-\mathbf{k}\downarrow} \rangle$: the only non-zero contribution can come from the $\mathbf{K}=\mathbf{0}$ term, as will be discussed self-consistently in Sec. 1.2.5. Then finally:

$$\hat{H}_V \simeq -\sum_{\mathbf{k},\mathbf{k}'} V_{\mathbf{k}\mathbf{k}'} \left[\langle \hat{\phi}_{\mathbf{k}}^{\dagger} \rangle \hat{\phi}_{\mathbf{k}'} + \langle \hat{\phi}_{\mathbf{k}} \rangle \hat{\phi}_{\mathbf{k}'}^{\dagger} \right]$$

having I defined the pairing operator

$$\hat{\phi}_{\mathbf{k}} \equiv \hat{c}_{-\mathbf{k}\downarrow} \hat{c}_{\mathbf{k}\uparrow} \qquad \hat{\phi}^{\dagger}_{\mathbf{k}} \equiv \hat{c}^{\dagger}_{\mathbf{k}\uparrow} \hat{c}^{\dagger}_{-\mathbf{k}\downarrow}$$

and the two-body potential

$$V_{\mathbf{k}\mathbf{k}'} = \frac{2V}{L_x L_y} \left[\cos \left(\delta k_x \delta_x \right) + \cos \left(\delta k_y \delta_y \right) \right]$$

Now, consider the term

$$\cos(\delta k_x \delta_x) + \cos(\delta k_y \delta_y) = \cos(k_x \delta_x) \cos(k_x' \delta_x) + \sin(k_x \delta_x) \sin(k_x' \delta_x) + \cos(k_y \delta_y) \cos(k_y' \delta_y) + \sin(k_y \delta_y) \sin(k_y' \delta_y)$$

For the sake of readability, the notations

$$c_{\ell} \equiv \cos(k_{\ell}\delta_{\ell})$$
 $s_{\ell} \equiv \sin(k_{\ell}\delta_{\ell})$ $c'_{\ell} \equiv \cos(k'_{\ell}\delta_{\ell})$ $s'_{\ell} \equiv \sin(k'_{\ell}\delta_{\ell})$

³Justification can be given in two ways: either commutating appropriately the \hat{c} operators, or by carrying out the previous space sums independently over the two sublattices.

Structure	Structure factor	Graph
s-wave	$\varphi_{\mathbf{k}}^{(s)} = 1$	Fig. 1.2a
Extended s -wave	$\varphi_{\mathbf{k}}^{(s^*)} = \cos k_x + \cos k_y$	Fig. 1.2b
p_x -wave	$\varphi_{\mathbf{k}}^{(p_x)} = i\sqrt{2}\sin k_x$	Fig. 1.2c
p_y -wave	$\varphi_{\mathbf{k}}^{(p_y)} = i\sqrt{2}\sin k_y$	Fig. 1.2d
$d_{x^2-y^2}$ -wave	$\varphi_{\mathbf{k}}^{(d)} = \cos k_x - \cos k_y$	Fig. 1.2e

Table 1.2 Structure factors derived from the correlation structures of Tab. ??. The functions hereby defined are orthonormal, and define the various components of the non-local topological effective potential.

are used. Group the four terms above,

$$\underbrace{\left(c_x c_x' + c_y c_y'\right)}_{\text{Symmetric}} + \underbrace{\left(s_x s_x' + s_y s_y'\right)}_{\text{Anti-symmetric}} \tag{1.5}$$

The first two exhibit inversion symmetry for both arguments \mathbf{k} , \mathbf{k}' ; the second two exhibit antisymmetry. Decoupling the symmetric part,

$$c_x c_x' + c_y c_y' = \frac{1}{2} (c_x + c_y)(c_x' + c_y') + \frac{1}{2} (c_x - c_y)(c_x' - c_y')$$

which finally gives:

$$\cos(\delta k_x \delta_x) + \cos(\delta k_y \delta_y) = \frac{1}{2} (c_x + c_y) (c'_x + c'_y) \qquad (s^*\text{-wave})$$

$$+ s_x s'_x \qquad (p_x\text{-wave})$$

$$+ s_y s'_y \qquad (p_y\text{-wave})$$

$$+ \frac{1}{2} (c_x - c_y) (c'_x - c'_y) \qquad (d_{x^2 - y^2}\text{-wave})$$

In other words, the two-body potential decomposes as

$$V_{\mathbf{k}\mathbf{k}'} = \sum_{\gamma} V^{(\gamma)} \varphi_{\mathbf{k}}^{(\gamma)} \varphi_{\mathbf{k}'}^{(\gamma)*} \qquad \text{where} \quad \gamma = s^*, p_x, p_y, d_{x^2 - y^2}$$
$$= \frac{V}{L_x L_y} \sum_{\gamma} \varphi_{\mathbf{k}}^{(\gamma)} \varphi_{\mathbf{k}'}^{(\gamma)*}$$

being $\varphi_{\mathbf{k}}^{(\gamma)}$ the reciprocal-space expressions for the form factors of Tab. 1.1, listed explicitly in Tab. 1.2, and $V_{\mathbf{k}\mathbf{k}'}^{(\gamma)}$ the symmetry-resolved components of the non-local attraction. Then the two-body potential has been decomposed in its planar symmetry components, each of which will naturally couple only to identically structured parameters in the full hamiltonian.

Define now the non-local gap function

$$V_{\mathbf{k}} \equiv \sum_{\mathbf{k}'} V_{\mathbf{k}\mathbf{k}'} \langle \hat{\phi}_{\mathbf{k}'}^{\dagger} \rangle \tag{1.6}$$

one gets immediately

$$\hat{H}_V \simeq -\sum_{\mathbf{k}} \left[\mathcal{V}_{\mathbf{k}} \hat{\phi}_{\mathbf{k}} + \mathcal{V}_{\mathbf{k}}^* \hat{\phi}_{\mathbf{k}}^{\dagger} \right]$$
 (1.7)

To assume symmetry is broken in a specific symmetry channel γ means precisely to assume $g_{ij} \propto \varphi_{ij}^{(\gamma)}$, which in turn implies $\langle \hat{\phi}_{\mathbf{k}} \rangle \propto \varphi_{\mathbf{k}}^{(\gamma)}$. Of course, in Eq. (1.6) only the γ component of the potential survives, implying the gap function acquires the same symmetry,

$$\mathcal{V}_{\mathbf{k}} \propto \sum_{\mathbf{k}'} \frac{V}{L_x L_y} \varphi_{\mathbf{k}}^{(\gamma)} \varphi_{\mathbf{k}'}^{(\gamma)*} \varphi_{\mathbf{k}'}^{(\gamma)}$$
$$\propto \varphi_{\mathbf{k}}^{(\gamma)}$$

where I used orthonormality of the $\varphi_{\mathbf{k}}^{(\gamma)}$ functions.

1.2.3 Local interaction and gap function

A very similar argument can be carried out for the local U term. Without delving in too many details, the local gap $\mathcal{U}_{\mathbf{k}}$ is given by

$$\mathcal{U}_{\mathbf{k}} \equiv \frac{U}{2L_x L_y} \sum_{\mathbf{k}} \langle \hat{\phi}_{\mathbf{k}} \rangle \tag{1.8}$$

evidently independent of \mathbf{k} , correctly. Identical considerations as in the above section hold for the local gap. The local part of the hamiltonian then gets

$$\hat{H}_U \simeq \sum_{\mathbf{k}} \left[\mathcal{U}_{\mathbf{k}} \hat{\phi}_{\mathbf{k}} + \mathcal{U}_{\mathbf{k}}^* \hat{\phi}_{\mathbf{k}}^{\dagger} \right]$$
 (1.9)

and the full gap function is simply

$$\Delta_{\mathbf{k}} \equiv \mathcal{V}_{\mathbf{k}} - \mathcal{U}_{\mathbf{k}} \tag{1.10}$$

Notice here that the only possible topology here is s-wave; define trivially the s-wave component of the total two-body interaction,

$$V^{(s)} = -\frac{U}{2L_x L_y}$$

Then the full effective interaction is collected in

$$\begin{split} \hat{H}_{U} + \hat{H}_{V} &\simeq -\sum_{\gamma} \sum_{\mathbf{k}, \mathbf{k}'} V^{(\gamma)} \varphi_{\mathbf{k}}^{(\gamma)} \varphi_{\mathbf{k}'}^{(\gamma)*} \left[\langle \hat{\phi}_{\mathbf{k}}^{\dagger} \rangle \hat{\phi}_{\mathbf{k}'} + \langle \hat{\phi}_{\mathbf{k}} \rangle \hat{\phi}_{\mathbf{k}'}^{\dagger} \right] \\ &= -\sum_{\mathbf{k}} \left[\Delta_{\mathbf{k}} \hat{\phi}_{\mathbf{k}} + \Delta_{\mathbf{k}}^{*} \hat{\phi}_{\mathbf{k}}^{\dagger} \right] \end{split}$$

The full self-consistency equation is given by

$$\Delta_{\mathbf{k}} \equiv \sum_{\mathbf{k}'} \left[V^{(s)} + V_{\mathbf{k}\mathbf{k}'} \right] \langle \hat{\phi}_{\mathbf{k}'}^{\dagger} \rangle \tag{1.11}$$

The gap function decomposes in symmetry channels as well,

$$\Delta_{\mathbf{k}} = \sum_{\gamma} \Delta^{(\gamma)} \varphi_{\mathbf{k}}^{(\gamma)}$$

If SC arises in a specific symmetry channel, $\Delta_{\mathbf{k}}$ will show the same symmetry. It follows, due to orthonormality and using Eq. (1.11),

$$\Delta^{(\gamma)} = \frac{1}{L_x L_y} \sum_{\mathbf{k}} \varphi_{\mathbf{k}}^{(\gamma)*} \Delta_{\mathbf{k}}$$

$$= \frac{1}{L_x L_y} \sum_{\mathbf{k}} \varphi_{\mathbf{k}}^{(\gamma)*} \sum_{\mathbf{k}'} \left[V^{(s)} + V_{\mathbf{k}\mathbf{k}'} \right] \langle \hat{\phi}_{\mathbf{k}'}^{\dagger} \rangle$$

$$= \frac{1}{L_x L_y} \sum_{\mathbf{k}} \varphi_{\mathbf{k}}^{(\gamma)*} \sum_{\mathbf{k}' \gamma'} V^{(\gamma')} \varphi_{\mathbf{k}'}^{(\gamma')} \varphi_{\mathbf{k}'}^{(\gamma')*} \langle \hat{\phi}_{\mathbf{k}'}^{\dagger} \rangle$$

$$= V^{(\gamma)} \sum_{\mathbf{k}} \varphi_{\mathbf{k}}^{(\gamma)*} \langle \hat{\phi}_{\mathbf{k}}^{\dagger} \rangle$$
(1.12)

This result provides a set of self-consistency equations for each symmetry channel, listed in Tab. 1.3. Notice that to reconstruct self-consistently the full s-wave phase transition, the actual gap function is given by

 $\Delta^{(s)} + \Delta^{(s^*)}(c_x + c_y)$

The s-wave transition is the only one equipped of both the local and the non-local parts. Within this structure, we are finally able to move to Nambu formalism.

Structure	Self-consistency equation	Graph
s-wave	$\Delta^{(s)} = -\frac{U}{2L_x L_y} \sum_{\mathbf{k}} \langle \hat{\phi}_{\mathbf{k}}^{\dagger} \rangle$	Fig. 1.2a
Extended s -wave	$\Delta^{(s^*)} = \frac{V}{L_x L_y} \sum_{\mathbf{k}} (c_x + c_y) \langle \hat{\phi}_{\mathbf{k}}^{\dagger} \rangle$	Fig. 1.2b
p_x -wave	$\Delta^{(p_x)} = -i\sqrt{2}\frac{V}{L_x L_y} \sum_{\mathbf{k}} s_x \langle \hat{\phi}_{\mathbf{k}}^{\dagger} \rangle$	Fig. 1.2c
p_y -wave	$\Delta^{(p_y)} = -i\sqrt{2}\frac{V}{L_x L_y} \sum_{\mathbf{k}} s_y \langle \hat{\phi}_{\mathbf{k}}^{\dagger} \rangle$	Fig. 1.2d
$d_{x^2-y^2}$ -wave	$\Delta^{(d)} = \frac{V}{L_x L_y} \sum_{\mathbf{k}} (c_x - c_y) \langle \hat{\phi}_{\mathbf{k}}^{\dagger} \rangle$	Fig. 1.2e

Table 1.3 Symmetry resolved self-consistency equations for the MFT parameters $\Delta^{(\gamma)}$, based on Eq. (1.11) and (1.12). By computing $\langle \hat{\phi}_{\mathbf{k}}^{\dagger} \rangle$, it is possible to reconstruct the various components of the gap function.

1.2.4 Nambu formalism and Bogoliubov transform

Define the Nambu spinor⁴ as in BCS

$$\hat{\Psi}_{\mathbf{k}} \equiv \begin{bmatrix} \hat{c}_{\mathbf{k}\uparrow} \\ \hat{c}_{-\mathbf{k}\downarrow}^{\dagger} \end{bmatrix}$$

Evidently,

$$\phi_{\mathbf{k}} = \hat{\Psi}_{\mathbf{k}}^{\dagger} \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \hat{\Psi}_{\mathbf{k}} \qquad \phi_{\mathbf{k}}^{\dagger} = \hat{\Psi}_{\mathbf{k}}^{\dagger} \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \hat{\Psi}_{\mathbf{k}}$$
 (1.13)

The full hamiltonian is then given by:

$$\hat{H} = \sum_{\mathbf{k}} \hat{\Psi}_{\mathbf{k}} h_{\mathbf{k}} \hat{\Psi}_{\mathbf{k}} \qquad h_{\mathbf{k}} \equiv \begin{bmatrix} \epsilon_{\mathbf{k}} & -\Delta_{\mathbf{k}}^* \\ -\Delta_{\mathbf{k}} & -\epsilon_{\mathbf{k}} \end{bmatrix}$$
(1.14)

Let τ^{α} for $\alpha = x, y, z$ be the Pauli matrices. Define:

$$\hat{s}_{\mathbf{k}}^{\alpha} \equiv \hat{\Psi}_{\mathbf{k}}^{\dagger} \tau^{\alpha} \hat{\Psi}_{\mathbf{k}} \quad \text{for} \quad \alpha = x, y, z$$

As can be shown easily, these operators realize spin-1/2 algebra. \hat{H} represents an ensemble of $L_x L_y$ independent spins subject to pseudo-magnetic fields. Note that, differently form App. ?? where the chemical potential is inserted later (because in Nambu formalism it accounts for a diagonal term) here the chemical potential is part of the z component of the pseudo-magnetic field, since

$$\hat{n}_{\mathbf{k}\uparrow} + \hat{n}_{-\mathbf{k}\downarrow} = \hat{c}^{\dagger}_{\mathbf{k}\uparrow} \hat{c}_{\mathbf{k}\uparrow} + \hat{c}^{\dagger}_{-\mathbf{k}\downarrow} \hat{c}_{-\mathbf{k}\downarrow}
= \hat{c}^{\dagger}_{\mathbf{k}\uparrow} \hat{c}_{\mathbf{k}\uparrow} - \hat{c}_{-\mathbf{k}\downarrow} \hat{c}^{\dagger}_{-\mathbf{k}\downarrow} + \mathbb{I}
= \hat{\Psi}^{\dagger}_{\mathbf{k}} \tau^{z} \hat{\Psi}_{\mathbf{k}} + \mathbb{I}$$
(1.15)

and then it follows

$$\begin{split} -\mu \hat{N} &= -\mu \sum_{\mathbf{k} \in \mathrm{BZ}} \left[\hat{n}_{\mathbf{k}\uparrow} + \hat{n}_{-\mathbf{k}\downarrow} \right] \\ &= -\mu \sum_{\mathbf{k} \in \mathrm{BZ}} \hat{\Psi}_{\mathbf{k}}^{\dagger} \tau^z \hat{\Psi}_{\mathbf{k}} - \mu L_x L_y \end{split}$$

⁴Notice that the spinor is here differently defined with respect to App. ??, where because of the HF prevalence in mean-field decoupling the spinor components were homogeneously fermions creations or destructions.

Then, adding a term $-\mu \hat{N}$ to \hat{H} , apart from an irrelevant total energy increase, changes the pseudo-field whose explicit form becomes

$$\mathbf{b_k} \equiv \begin{bmatrix} -\operatorname{Re}\{\Delta_{\mathbf{k}}\} \\ -\operatorname{Im}\{\Delta_{\mathbf{k}}\} \\ \epsilon_{\mathbf{k}} - \mu \end{bmatrix}$$
 (1.16)

This hamiltonian behaves as an ensemble of spins in local magnetic fields precisely as in Eq. (??),

$$\hat{H} - \mu \hat{N} = \sum_{\mathbf{k} \in BZ} \mathbf{b_k} \cdot \hat{\mathbf{s}_k} \quad \text{where} \quad \hat{\mathbf{s}_{k\sigma}} = \begin{bmatrix} \hat{s}_k^x \\ \hat{s}_k^y \\ \hat{s}_k^z \end{bmatrix}$$
(1.17)

Proceed as in App. ?? and diagonalize via a rotation,

$$d_{\mathbf{k}} \equiv \begin{bmatrix} -E_{\mathbf{k}} & \\ & E_{\mathbf{k}} \end{bmatrix}$$
 being $E_{\mathbf{k}} \equiv \sqrt{\xi_{\mathbf{k}}^2 + |\Delta_{\mathbf{k}}|^2}$

and $\xi_{\mathbf{k}} \equiv \epsilon_{\mathbf{k}} - \mu$. Given the pseudoangles

$$\tan(2\theta_{\mathbf{k}}) \equiv \frac{|\Delta_{\mathbf{k}}|}{\epsilon_{\mathbf{k}}} \qquad \tan(2\zeta_{\mathbf{k}}) \equiv \frac{\mathrm{Im}\{\Delta_{\mathbf{k}}\}}{\mathrm{Re}\{\Delta_{\mathbf{k}}\}}$$

the general diagonalizer will be an orthogonal rotation matrix

$$W_{\mathbf{k}} = e^{i\left(\theta_{\mathbf{k}} - \frac{\pi}{2}\right)\tau^{y}} e^{i\zeta_{\mathbf{k}}\tau^{z}}$$

$$= \begin{bmatrix} -\sin\theta_{\mathbf{k}} & -\cos\theta_{\mathbf{k}} \\ \cos\theta_{\mathbf{k}} & -\sin\theta_{\mathbf{k}} \end{bmatrix} \begin{bmatrix} e^{i\zeta_{\mathbf{k}}} \\ e^{-i\zeta_{\mathbf{k}}} \end{bmatrix}$$

$$= \begin{bmatrix} -\sin\theta_{\mathbf{k}}e^{i\zeta_{\mathbf{k}}} & -\cos\theta_{\mathbf{k}}e^{-i\zeta_{\mathbf{k}}} \\ \cos\theta_{\mathbf{k}}e^{i\zeta_{\mathbf{k}}} & -\sin\theta_{\mathbf{k}}e^{-i\zeta_{\mathbf{k}}} \end{bmatrix}$$
(1.18)

given by a rotation of angle $\zeta_{\mathbf{k}}$ around the z axis, to align the x axis with the field projection onto the xy plane, followed by a rotation around the y axis to anti-align with the pseudo-field. The MFT-BCS solution is given by a degenerate Fermi gas at ground state, whose quasi-particles occupy two bands $\pm E_{\mathbf{k}}$ and their fermionic operators are given by

$$\hat{\gamma}_{\mathbf{k}}^{(-)} \equiv \left[W_{\mathbf{k}} \hat{\Psi}_{\mathbf{k}} \right]_{1} \qquad \hat{\gamma}_{\mathbf{k}}^{(+)} \equiv \left[W_{\mathbf{k}} \hat{\Psi}_{\mathbf{k}} \right]_{2}$$

The diagonalization operators are given by

$$\hat{\Gamma}_{\mathbf{k}} \equiv W_{\mathbf{k}} \hat{\Psi}_{\mathbf{k}} \quad \text{where} \quad \hat{\Gamma}_{\mathbf{k}} = \begin{bmatrix} \hat{\gamma}_{\mathbf{k}}^{(-)} \\ \hat{\gamma}_{\mathbf{k}}^{(+)} \end{bmatrix}$$

then, using Eq. (??),

$$\left\langle [\hat{\Psi}_{\mathbf{k}}^{\dagger}]_{i} [\hat{\Psi}_{\mathbf{k}}]_{j} \right\rangle = [W_{\mathbf{k}}]_{1i} [W_{\mathbf{k}}^{\dagger}]_{j1} f\left(-E_{\mathbf{k}}; \beta, 0\right) + [W_{\mathbf{k}}]_{2i} [W_{\mathbf{k}}^{\dagger}]_{j2} f\left(E_{\mathbf{k}}; \beta, 0\right)$$

where in the Fermi-Dirac function chemical potential was set to zero, because it already was included in the diagonalized hamiltonian. Recalling Eq. (??), it follows

$$\langle \phi_{\mathbf{k}}^{\dagger} \rangle = [W_{\mathbf{k}}]_{11} [W_{\mathbf{k}}^{\dagger}]_{21} f\left(-E_{\mathbf{k}}; \beta, 0\right) + [W_{\mathbf{k}}]_{21} [W_{\mathbf{k}}^{\dagger}]_{22} f\left(E_{\mathbf{k}}; \beta, 0\right)$$

$$(1.19)$$

$$= \frac{1}{2}\sin(2\theta_{\mathbf{k}})e^{i2\zeta_{\mathbf{k}}}\tanh\left(\frac{\beta E_{\mathbf{k}}}{2}\right)$$
 (1.20)

The last passage has been obtained by computing the matrix element from the explicit form of $W_{\mathbf{k}}$ of Eq. (1.18) and by the simple relation

$$\frac{1}{e^{-x} + 1} - \frac{1}{e^x + 1} = \frac{e^x - 1}{e^x + 1}$$
$$= \tanh\left(\frac{x}{2}\right)$$

Eqns. (1.19), (1.20) give us both the algorithmic formula (first row) and its theoretical counterpart (second row) to compute the order parameters in the HF approach at each point in k-space (k_x, k_y) . We can finally derive the BCS self-consistency equation

$$\Delta_{\mathbf{k}} \equiv \frac{1}{2} \sum_{\mathbf{k}'} \left[V^{(s)} + V_{\mathbf{k}\mathbf{k}'} \right] \frac{|\Delta_{\mathbf{k}}|}{\sqrt{\xi_{\mathbf{k}}^2 + |\Delta_{\mathbf{k}}|^2}} e^{i \operatorname{Im}\{\Delta_{\mathbf{k}}\}/\operatorname{Re}\{\Delta_{\mathbf{k}}\}} \tanh\left(\frac{\beta}{2} \sqrt{\xi_{\mathbf{k}}^2 + |\Delta_{\mathbf{k}}|^2}\right)$$
(1.21)

The whole point of the HF algorithm is to find an iterative solution for each symmetry channel, using the self-consistency equation projection of Tab. 1.3.

Notice that the z component of the spin operators is related to density: using Eq. (??),

$$\langle \hat{\Psi}_{\mathbf{k}}^{\dagger} \tau^z \hat{\Psi}_{\mathbf{k}} \rangle = \left\langle [\hat{\Psi}_{\mathbf{k}}^{\dagger}]_1 [\hat{\Psi}_{\mathbf{k}}]_1 \right\rangle - \left\langle [\hat{\Psi}_{\mathbf{k}}^{\dagger}]_2 [\hat{\Psi}_{\mathbf{k}}]_2 \right\rangle$$

I proceed in as done previously, and from Eq. (1.15),

$$\langle \hat{n}_{\mathbf{k}\uparrow} \rangle + \langle \hat{n}_{-\mathbf{k}\downarrow} \rangle = 1 + \langle \hat{\Psi}_{\mathbf{k}}^{\dagger} \tau^{z} \hat{\Psi}_{\mathbf{k}} \rangle$$

$$= 1 + \left(|[W_{\mathbf{k}}]_{11}|^{2} - |[W_{\mathbf{k}}]_{12}|^{2} \right) f \left(-E_{\mathbf{k}}; \beta, 0 \right)$$

$$+ \left(|[W_{\mathbf{k}}]_{21}|^{2} - |[W_{\mathbf{k}}]_{22}|^{2} \right) f \left(E_{\mathbf{k}}; \beta, 0 \right)$$

$$= 1 - \cos(2\theta_{\mathbf{k}}) \tanh\left(\frac{\beta E_{\mathbf{k}}}{2}\right)$$

$$(1.23)$$

The expectation value for the density is needed in order to extract the optimal chemical potential μ for the target density we aim to simulate at the given parametrization. This is numerically obtained by using Eq. (1.22) directly on the diagonalization matrix of $h_{\mathbf{k}}$.

1.2.5 A short comment on self-consistency

The Bogoliubov fermions in spinor representation satisfy obviously $\hat{\Psi}_{\mathbf{k}} = W_{\mathbf{k}}^{\dagger} \hat{\Gamma}_{\mathbf{k}}$. Consider e.g.

$$\langle \hat{c}_{\mathbf{k}\sigma}^{\dagger} \hat{c}_{-\mathbf{k}\sigma}^{\dagger} \rangle$$

which is a spin-symmetric anomalous Cooper pair. For simplicity, take $\sigma = \uparrow$. Expand:

$$\langle \hat{c}_{\mathbf{k}\uparrow}^{\dagger} \hat{c}_{-\mathbf{k}\uparrow}^{\dagger} \rangle = \left\langle [\hat{\Psi}_{\mathbf{k}}^{\dagger}]_{1} [\hat{\Psi}_{-\mathbf{k}}^{\dagger}]_{1} \right\rangle$$
$$= \left\langle [W_{\mathbf{k}} \hat{\Gamma}_{\mathbf{k}}^{\dagger}]_{1} [W_{-\mathbf{k}} \hat{\Gamma}_{-\mathbf{k}}^{\dagger}]_{1} \right\rangle$$

This expectation value is taken over the ground-state, the latter being the vacuum of Γ fermions. Evidently the above expectation cannot assume non-zero values. Obviously the same holds for $\sigma = \downarrow$, and this argument explains why the Ferromagnetic terms of the hamiltonian decomposition do not contribute to Cooper instability. An identical argument, with the exchange

$$(\sigma, \sigma) \to (\uparrow, \downarrow)$$
 and $(\mathbf{k}, -\mathbf{k}) \to (\mathbf{K} + \mathbf{k}, \mathbf{K} - \mathbf{k})$ with $\mathbf{K} \neq \mathbf{0}$

justifies why in Sec. 1.2.4 the only relevant contribution was given by $\mathbf{K} = \mathbf{0}$. In the next sections, the results of the self-consistent HF algorithm are exposed.

1.3 Results of the HF algorihtm

[To be continued...]

Bibliography

- [1] Zhangkai Cao et al. p-wave superconductivity induced by nearest-neighbor attraction in the square-lattice extended Hubbard model. en. arXiv:2408.01113 [cond-mat]. Jan. 2025. DOI: 10. 48550/arXiv.2408.01113. URL: http://arxiv.org/abs/2408.01113 (visited on 03/15/2025).
- [2] Piers Coleman. Introduction to Many-Body Physics. Cambridge University Press, 2015.
- [3] Michele Fabrizio. A Course in Quantum Many-Body Theory. Springer, 2022.
- [4] Gabriele Giuliani and Giovanni Vignale. Quantum Theory of the Electron Liquid. Cambridge University Press, 2005.
- [5] Giuseppe Grosso and Giuseppe Pastori Parravicini. *Solid State Physics*. Second Edition. Academic Press, 2014.
- [6] J. E. Hirsch. "Two-dimensional Hubbard model: Numerical simulation study". In: *Phys. Rev. B* 31 (7 Apr. 1985), pp. 4403-4419. DOI: 10.1103/PhysRevB.31.4403. URL: https://link.aps.org/doi/10.1103/PhysRevB.31.4403.
- [7] Robin Scholle et al. "Comprehensive mean-field analysis of magnetic and charge orders in the two-dimensional Hubbard model". In: *Phys. Rev. B* 108 (3 July 2023), p. 035139. DOI: 10.1103/PhysRevB.108.035139. URL: https://link.aps.org/doi/10.1103/PhysRevB.108.035139.