Notes

January 30, 2015

f is Riemann integrable if and only if $m*(D_f)=0$ (we did this with contrapositive last time).

proof of converse

 $D_r = \{x : \omega_f(x) \ge \frac{1}{n}\}$

 $D_f = \bigcup_{n \in \mathbb{N}} J_{\frac{1}{n}}$ because $m * (D_f) = 0$ we know that $m * (J_{\frac{1}{n}}) = 0$

Let P be a partition with #(P) < S (mesh P is max Δ_i).

if $\epsilon > 0$ with $w_f(x) < \epsilon$ for all $x \in [a,b]$ there exists S > 0 such that $\Omega_f(T) < \epsilon$. If T is any closed interval with m * (T) < S.

? So if m * (T) < S then $\Omega_f(T) < \frac{1}{n}$

break

$$U(P,f) - L(P,f) = \sum_{i} (M_i - m_i)\Delta_i + \sum_{i} (M_i - m_i)\Delta_i$$

$$\begin{split} U(P,f) - L(P,f) &= \sum_{S_1} (M_i - m_i) \Delta_i + \sum_{S_2} (M_i - m_i) \Delta_i \\ S_1 &= \{ [x_i, x_{i+1}] : J_{1/n} \cap (x_i, x_{i+1}) \neq \emptyset \} \ S_2 = \{ [x_i, x_{i+1}] : J_{1/n} \cap (x_i, x_{i+1}) = \emptyset \} \\ \text{oscillation on } S_1 \text{ is small, maybe big on } S_2 \end{split}$$

on
$$S_2$$
 we have $M_i - m_i < \frac{1}{n}$ and $\sum_{S_2} (M_i - m_i) \Delta_i < \frac{1}{n} \sum_{i=1}^n \Delta_i \le \frac{1}{n} (b-a)$

on S_2 we have $M_i - m_i < \frac{1}{n}$. and $\sum_{S_2} (M_i - m_i) \Delta_i < \frac{1}{n} \sum_{i=1}^n \Delta_i \leq \frac{1}{n} (b-a)$ function is bounded and so $M_i \leq M$ where M is upper bound for f and $m_i > m$ is lower bound so on S_1 we havve $\sum_{S_1} (M_i - m_i) \Delta_i \leq (M - m) \sum_{S_1} \Delta_i \leq (M - m) \frac{1}{n}$ these intervals cover $J_{1/n}$. $m * (J_{1/n}) \leq \sum_{S_1} (x_i - x_{i-1})$.

Any cover $U(a_i, b_i) \subseteq J_{1/n}$ with $|b_i - a_i| \subset S \to m * (J_{1/n}) \le \sum b_i - a_i \le m * (J_{1/n}) + \frac{1}{n}$ we choose a partition so that the subpartition reflects above. and then go through calculations and ge $U(Pf) - L(P,f) \le \frac{(M-m)+(b-a)}{n}$

facts

1. if f is piecewise continuous on [a, b] then f is Riemann integrable

2.
$$\chi_s(x) = \begin{cases} 1 & x \in S \\ 0 & x \notin S \end{cases}$$

where χ_s is discontinuous for any point on ∂S and continuous everywhere else

$$\partial S = \overline{S}/S^{\circ}$$

$$\chi_C = \overline{C} = C \setminus \emptyset$$

$$\partial(\chi_C) = C$$

and now $\chi_{\mathbb{Q}}$ and so boundary of rationals $\partial \mathbb{Q} = \mathbb{R}$

note that
$$\int \chi_s dm = m * (S)$$

f is simple if

1. range of $f = \{\alpha_1, \alpha_2, \dots, \alpha_k\}$ is finite

2.
$$E_k = \{x : \varphi(x) = \alpha_k\}$$
 is measurable.

notice that
$$\varphi(x) = \sum_{i=1}^{k} \alpha_k \chi_{E_i}(x)$$

notice that $\varphi(x) = \sum_{i=1}^k \alpha_k \chi_{E_i}(x)$ this is the canonical representation of φ and is unique. $\sum_{i=1}^3 \frac{1}{i} \chi_{E_i} \text{ with } E_1 = \left[0, \frac{1}{3}\right] E_2 \text{ and } E_3 \text{ are other two thirds. no zeros in function, pairwise disjoint sets means canonical}$