Package 'r2redux'

June 21, 2022

Title R2 Statistic **Version** 1.0.9

Description R2 statistic for significance test. Variance and covariance of R2 values used to assess the 95% CI and p-value of the R2 difference.
License GPL (>= 3)
Encoding UTF-8
RoxygenNote 7.1.2
NeedsCompilation no
Depends R (>= 2.10)
LazyData true
Author Hong Lee [aut, cph], Moksedul Momin [aut, cre, cph]
Maintainer Moksedul Momin <cvasu.momin@gmail.com></cvasu.momin@gmail.com>
Repository CRAN
Date/Publication 2022-06-21 10:20:01 UTC
R topics documented:
cc_trf
dat1
dat2
olkin12_1
olkin12_3
olkin12_34
olkin1_2
olkin_beta1_2
olkin_beta_inf
r2_diff
r2_enrich_beta
r2_var
Index 16

cc_trf

cc_trf	cc_trf function	

Description

This function transforms the predictive ability (R2) and its standard error (se) between the observed scale and liability scale

Usage

```
cc_trf(R2, se, K, P)
```

Arguments

R2	R2 or coefficient of determination on the observed or liability scale
se	Standard error of R2
K	Population prevalence
Р	The ratio of cases in the study samples

Value

This function will transform the R2 and its s.e between observed scale and liability scale.Output from the command is the lists of outcomes.

R21	Transformed R2 on the liability scale
sel	Transformed se on the liability scale
R20	Transformed R2 on the observed scale
se0	Transformed se on the observed scale

References

Lee, S. H., Goddard, M. E., Wray, N. R., and Visscher, P. M. A better coefficient of determination for genetic profile analysis. Genetic epidemiology, (2012). 36(3): p. 214-224.

```
#To get the transformed R2
output=cc_trf(0.06, 0.002, 0.05, 0.05)
output
#output$R21 (transformed R2 on the liability scale)
#0.2679337
#output$sel (transformed se on the liability scale)
#0.008931123
```

dat1 3

```
#output$R20 (transformed R2 on the observed scale)
#0.01343616

#output$se0 (transformed se on the observed scale)
#0.000447872
```

dat1

Phenotypes and 10 sets of PGSs

Description

A dataset containing phenotypes and multiple PGSs estimated from 10 sets of SNPs according to GWAS p-value thresholds

Usage

dat1

Format

A data frame with 1000 rows and 11 variables:

- V1 Phenotype, value
- **V2** PGS1, for p value threshold <=1
- **V3** PGS2, for p value threshold <=0.5
- **V4** PGS3, for p value threshold <=0.4
- **V5** PGS4, for p value threshold <=0.3
- **V6** PGS5, for p value threshold <=0.2
- V7 PGS6, for p value threshold <=0.1
- V8 PGS7, for p value threshold <=0.05
- **V9** PGS8, for p value threshold <=0.01
- V10 PGS9, for p value threshold <=0.001
- V11 PGS10, for p value threshold <=0.0001

0lkin12_1

dat2

Phenotypes and 2 sets of PGSs

Description

A dataset containing phenotypes and 2 sets of PGSs estimated from 2 sets of SNPs from regulatory and non-regulatory genomic regions

Usage

dat2

Format

A data frame with 1000 rows and 3 variables:

V1 Phenotype

V2 PGS1, regulatory region

V3 PGS2, non-regulatory region

olkin12_1

olkin12_1 function

Description

```
olkin12_1 function
```

Usage

```
olkin12_1(omat, nv)
```

Arguments

omat 3 by 3 matrix having the correlation coefficients between y, x1 and x2, i.e.

omat=cor(dat) where dat is N by 3 matrix having variables in the order of cbind

(y,x1,x2)

nv Sample size

Value

This function will be used as source code

olkin12_13 5

olkin12_13

 $olkin12_13$ function

Description

olkin12_13 function

Usage

```
olkin12_13(omat, nv)
```

Arguments

omat 3 by 3 matrix having the correlation coefficients between y, x1 and x2, i.e.

omat=cor(dat) where dat is N by 3 matrix having variables in the order of cbind

(y,x1,x2)

nv Sample size

Value

This function will be used as source code

olkin12_3

olkin12_3 function

Description

olkin12_3 function

Usage

```
olkin12_3(omat, nv)
```

Arguments

omat 3 by 3 matrix having the correlation coefficients between y, x1 and x2, i.e.

omat=cor(dat) where dat is N by 3 matrix having variables in the order of cbind

(y,x1,x2)

nv Sample size

Value

This function will be used as source code

6 olkin1_2

olkin12_34

 $olkin12_34$ function

Description

olkin12_34 function

Usage

```
olkin12_34(omat, nv)
```

Arguments

omat 3 by 3 matrix having the correlation coefficients between y, x1 and x2, i.e.

omat=cor(dat) where dat is N by 3 matrix having variables in the order of cbind

(y,x1,x2)

nv Sample size

Value

This function will be used as source code

olkin1_2

 $olkin1_2$ function

Description

olkin1_2 function

Usage

```
olkin1_2(omat, nv)
```

Arguments

omat 3 by 3 matrix having the correlation coefficients between y, x1 and x2, i.e.

omat=cor(dat) where dat is N by 3 matrix having variables in the order of cbind

(y,x1,x2)

nv Sample size

Value

This function will be used as source code

olkin_beta1_2

|--|

Description

This function derives Information matrix for beta 1^2 and beta 2^2 where beta 1 and 2 are regression coefficients from a multiple regression model, i.e. y = x1 beta 1 + x2 beta 2 + e, where y, x1 and x2 are column-standardised, (i.e. in the context of correlation coefficients, see Olkin and Finn 1995).

Usage

```
olkin_beta1_2(omat, nv)
```

Arguments

omat 3 by 3 matrix having the correlation coefficients between y, x1 and x2, i.e.

omat=cor(dat) where dat is N by 3 matrix having variables in the order of cbind

(y,x1,x2)

nv Sample size

Value

This function will give information (variance-covariance) matrix of beta1^2 and beta2^2. To get information (variance-covariance) matrix of beta1^2 and beta2^2. Where beta1 and beta2 are regression coefficients from a multiple regression model. The outputs are listed as follows.

info 2x2 information (variance-covariance) matrix

var1 Variance of beta1^2 var2 Variance of beta2^2

var1_2 Variance of difference between beta1^2 and beta2^2

References

Olkin, I. and J.D. Finn, Correlations redux. Psychological Bulletin, 1995. 118(1): p. 155.

```
#To get information (variance-covariance) matrix of beta1_2 and beta2_2 where
#beta1 and 2 are regression coefficients from a multiple regression model.
dat=dat1
omat=cor(dat)[1:3,1:3]
#omat
#1.0000000 0.1958636 0.1970060
#0.1958636 1.0000000 0.9981003
#0.1970060 0.9981003 1.0000000
nv=length(dat$V1)
output=olkin_beta1_2(omat,nv)
```

8 olkin_beta_inf

```
#output$info (2x2 information (variance-covariance) matrix)
#0.04146276 0.08158261
#0.08158261 0.16111124

#output$var1 (variance of beta1^2)
#0.04146276

#output$var2 (variance of beta2^2)
#0.1611112

#output$var1_2 (variance of difference between beta1^2 and beta2^2)
#0.03940878
```

olkin_beta_inf

output

olkin_beta_inf function

Description

This function derives Information matrix for beta1 and beta2 where beta1 and 2 are regression coefficients from a multiple regression model, i.e. y = x1 * beta1 + x2 * beta2 + e, where y, x1 and x2 are column-standardised (see Olkin and Finn 1995).

Usage

```
olkin_beta_inf(omat, nv)
```

Arguments

omat 3 by 3 matrix having the correlation coefficients between y, x1 and x2, i.e.

omat=cor(dat) where dat is N by 3 matrix having variables in the order of cbind

(y,x1,x2)

nv Sample size

Value

This function will generate information (variance-covariance) matrix of beta1 and beta2. The outputs are listed as follows.

info 2x2 information (variance-covariance) matrix

var1 Variance of beta1 var2 Variance of beta2

var1_2 Variance of difference between beta1 and beta2

References

Olkin, I. and J.D. Finn, Correlations redux. Psychological Bulletin, 1995. 118(1): p. 155.

r2_diff

Examples

```
#To get information (variance-covariance) matrix of beta1 and beta2 where
#beta1 and 2 are regression coefficients from a multiple regression model.
omat=cor(dat)[1:3,1:3]
#omat
#1.0000000 0.1958636 0.1970060
#0.1958636 1.0000000 0.9981003
#0.1970060 0.9981003 1.0000000
nv=length(dat$V1)
output=olkin_beta_inf(omat,nv)
output
#output$info (2x2 information (variance-covariance) matrix)
#0.2531406 -0.2526212
#-0.2526212 0.2530269
#output$var1 (variance of beta1)
#0.2531406
#output$var2 (variance of beta2)
#0.2530269
#output$var1_2 (variance of difference between beta1 and beta2)
#1.01141
```

r2_diff

r2_diff function

Description

This function estimates $var(R2(y\sim x[,v1]) - R2(y\sim x[,v2]))$ where R2 is the R squared value of the model, y is N by 1 matrix having the dependent variable, and x is N by M matrix having M explanatory variables. v1 or v2 indicates the ith column in the x matrix (v1 or v2 can be multiple values between 1 - M, see Arguments below)

Usage

```
r2_diff(dat, v1, v2, nv)
```

Arguments

dat	N by $(M+1)$ matrix having variables in the order of $cbind(y,x)$
v1	This can be set as $v1=c(1)$ or $v1=c(1,2)$
v2	This can be set as $v2=c(2)$, $v2=c(3)$, $v2=c(1,3)$ or $v2=c(3,4)$
nv	Sample size

10 r2_diff

Value

This function will estimate significant difference between two PGS (either dependent or independent and joint or single). To get the test statistics for the difference between $R2(y\sim x[,v1])$ and $R2(y\sim x[,v2])$. (here we define $R2_1=R2(y\sim x[,v1])$) and $R2_2=R2(y\sim x[,v2])$). The outputs are listed as follows.

rsq1	R2_1
rsq2	R2_2
var1	Variance of R2_1
var2	variance of R2_2
var_diff	Variance of difference between R2_1 and R2_2
r2_based_p	P-value for significant difference between R2_1 and R2_2
mean_diff	Differences between R2_1 and R2_2
upper_diff	Upper limit of 95% CI for the difference
lower_diff	Lower limit of 95% CI for the difference

```
#To get the test statistics for the difference between R2(y^{x}[,v1]) and
\#R2(y^x[,v2]). (here we define R2_1=R2(y^x[,v1])) and R2_2=R2(y^x[,v2]))
dat=dat1
nv=length(dat$V1)
v1=c(1)
v2=c(2)
output=r2_diff(dat,v1,v2,nv)
output
#r2redux output
#output$rsq1 (R2_1)
#0.03836254
#output$rsq2 (R2_2)
#0.03881135
#output$var1 (variance of R2_1)
#0.0001437583
#output$var2 (variance of R2_2)
#0.0001452828
#output$var_diff (variance of difference between R2_1 and R2_2)
#5.678517e-07
#output$r2_based_p (p-value for significant difference between R2_1 and R2_2)
#0.5514562
#output$mean_diff (differences between R2_1 and R2_2)
```

```
#-0.0004488044
#output$upper_diff (upper limit of 95% CI for the difference)
#0.001028172
#output$lower_diff (lower limit of 95% CI for the difference)
#-0.001925781
#To get the test statistics for the difference between R2(y^x[,v1]+x[,v2]) and
\#R2(y^x[,v2]). (here R2_1=R2(y^x[,v1]+x[,v2]) and R2_2=R2(y^x[,v1]))
dat=dat1
nv=length(dat$V1)
v1=c(1,2)
v2=c(1)
output=r2_diff(dat,v1,v2,nv)
#r2redux output
#output$rsq1 (R2_1)
#0.03896678
#output$rsq2 (R2_2)
#0.03836254
#output$var1 (variance of R2_1)
#0.0001475195
#output$var2 (variance of R2_2)
#0.0001437583
#output$var_diff (variance of difference between R2_1 and R2_2)
#2.321425e-06
#output$r2_based_p (p-value for significant difference between R2_1 and R2_2)
#0.4369177
#output$mean_diff (differences between R2_1 and R2_2)
#0.0006042383
#output$upper_diff (upper limit of 95% CI for the difference)
#0.004887989
#output$lower_diff (lower limit of 95% CI for the difference)
#-0.0005574975
```

12 r2_enrich_beta

Description

This function estimates var((t1/exp) - (t2/(1-exp))), where $t1 = beta1^2$ and $t2 = beta2^2$, and beta1 and 2 are regression coefficients from a multiple regression model, i.e. y = x1.beta1 + x2.beta2 + e, where y, x1 and x2 are column-standardised (see Olkin and Finn 1995). y is y is y 1 matrix having the dependent variable, and y 1 is y 1 matrix having the ith explanatory variables. y 2 is y 1 matrix having the jth explanatory variables. y 1 and y 2 indicates the ith and jth column in the data (y 1 or y 2 should be a single interger between 1 - y 3. Where y 4 is a single interger between 1 - y 4. Where y 3 is a single interger between 1 - y 4 is a single interger between 1 - y 5 is a single interger between 1 - y 6 is a single interger between 1 - y 6 is a single interger between 1 - y 8 is a single interger between 1 - y 8 is a single interger between 1 - y 8 is a single interger between 1 - y 8 is a single interger between 1 - y 8 is a single interger between 1 - y 8 is a single interger between 1 - y 8 is a single interger between 1 - y 8 is a single interger between 1 - y 8 is a single interger between 1 - y 8 is a single interger between 1 - y 8 is a single interger between 1 - y 8 is a single interger between 1 - y 8 is a single interger between 1 - y 8 is a single interger between 1 is a single interpretable interpretable interpretable interpretabl

Usage

```
r2_enrich_beta(dat, v1, v2, nv, exp1)
```

Arguments

dat	N by $(M+1)$ matrix having variables in the order of $cbind(y,x)$
v1	These can be set as $v1=1$, $v1=2$, $v1=3$ or any value between 1 - M based on combination
v2	These can be set as $v2=1$, $v2=2$, $v2=3$, or any value between 1 - M based on combination
nv	Sample size
exp1	The expectation of the ratio (e.g. ratio of # SNPs in genomic partitioning)

Value

This function will test the ratio which is significantly different from the expectation. To get the test statistic for the ratio which is significantly different from the expectation. var[(t1/exp)-(t2/(1-exp))], where $t1 = beta1^2$ and $t2 = beta2^2$. beta1 and beta2 are regression coefficients from a multiple regression model, i.e. y = x1.beta1 + x2.beta2 + e, where y, x1 and x2 are column-standardised. The outputs are listed as follows.

```
t1
beta1_sq
                  t2
beta2_sq
                  Variance of t1
var1
                  Variance of t2
var2
                  Variance of difference between t1 and t2
var1_2
                  Covariance between t1 and t2
cov
enrich_p2
                  P-value for testing the difference between t1/exp and t2/(1-exp)
mean_diff
                  Difference between t1/exp and t2/(1-exp)
                  Variance of difference, t1/exp - t2/(1-exp)
var_diff
                  Upper limit of 95% CI for the mean difference
upper_diff
                  Lower limit of 95% CI for the mean difference
lower_diff
```

References

Olkin, I. and J.D. Finn, Correlations redux. Psychological Bulletin, 1995. 118(1): p. 155.

r2_enrich_beta

```
#To get the test statistic for the ratio which is significantly
#different from the expectation.
\#var[(t1/exp) - (t2/(1-exp))], where t1 = beta1^2 and t2 = beta2^2.
#beta1 and beta2 are regression coefficients from a multiple regression model,
\#i.e. y = x1.beta1 + x2.beta2 +e, where y, x1 and x2 are column-standardised.
dat=dat2
nv=length(dat$V1)
v1=c(1)
v2=c(2)
expected_ratio=0.04
output=r2_enrich_beta(dat,v1,v2,nv,expected_ratio)
output
#r2redux output
#output$beta1_sq (t1)
#0.01118301
#output$beta2_sq (t2)
#0.004980285
#output$var1 (variance of t1)
#7.072931e-05
#output$var2 (variance of t2)
3.161929e-05
#output$var1_2 (variance of difference between t1 and t2)
#0.000162113
#output$cov (covariance between t1 and t2)
#-2.988221e-05
#output$enrich_p2 (p-value for testing the difference between t1/exp and t2/(1-exp))
#0.1997805
#output$mean_diff (difference between t1/exp and t2/(1-exp))
0.2743874
#output$var_diff (variance of difference, t1/exp - t2/(1-exp))
#0.04579649
#output$upper_diff (upper limit of 95% CI for the mean difference)
#0.6938296
#output$lower_diff (lower limit of 95% CI for the mean difference)
#-0.1450549
```

 $r2_var$

Description

This function estimates $var(R2(y\sim x[,v1]))$ where R2 is the R squared value of the model, where R2 is the R squared value of the model, y is N by 1 matrix having the dependent variable, and x is N by M matrix having M explanatory variables. v1 indicates the ith column in the x matrix (v1 can be multiple values between 1 - M, see Arguments below)

Usage

```
r2_var(dat, v1, nv)
```

Arguments

dat	N by $(M+1)$ matrix having variables in the order of cbind (y,x)
v1	This can be set as $v1=c(1)$, $v1=c(1,2)$ or possibly with more values
nv	Sample size

Value

This function will test the null hypothesis for R2. To get the test statistics for $R2(y\sim x[,v1])$. The outputs are listed as follows.

```
rsq R2
var Variance of R2
r2_based_p P-value under the null hypothesis, i.e. R2=0
upper_r2 Upper limit of 95% CI for R2
lower_r2 Lower limit of 95% CI for R2
```

```
#To get the test statistics for R2(y~x[,v1])
dat=dat1
nv=length(dat$V1)
v1=c(1)
output=r2_var(dat,v1,nv)
output

#r2redux output

#output$rsq (R2)
#0.03836254

#output$var (variance of R2)
```

```
#0.0001437583
#output$r2_based_p (P-value under the null hypothesis, i.e. R2=0)
#1.213645e-10
#output$upper_r2 (upper limit of 95% CI for R2)
#0.06435214
#output$lower_r2 (lower limit of 95% CI for R2)
#0.01763347
#To get the test statistic for R2(y^x[,v1]+x[,v2]+x[,v3])
dat=dat1
nv=length(dat$V1)
v1=c(1,2,3)
r2_var(dat,v1,nv)
#r2redux output
#output$rsq (R2)
#0.03917668
#output$var (variance of R2)
#0.0001499374
#output$r2_based_p (R2 based P-value)
#7.461267e-11
#output$upper_r2 (upper limit of 95% CI for R2)
#0.06538839
#output$lower_r2 (lower limit of 95% CI for R2)
#0.01821657
```

Index

D.	
* R2	r2_diff,9
cc_trf, 2	r2_var, 14
r2_diff,9	* multiple
r2_var, 14	r2_enrich_beta, 11
* Transformation	* observed
cc_trf, 2	cc_trf, 2
* and	* of
cc_trf, 2	cc_trf, 2
* a	olkin_beta1_2,7
r2_enrich_beta,11	olkin_beta_inf, 8
* beta^2	r2_enrich_beta, 11
r2_enrich_beta,11	* ratio
* between	r2_enrich_beta, 11
cc_trf, 2	* regression
r2_enrich_beta,11	r2_enrich_beta, 11
* context	* scale
olkin_beta1_2,7	cc_trf, 2
olkin_beta_inf, 8	* source
* correlation	olkin12_1,4
olkin_beta1_2,7	olkin12_13,5
olkin_beta_inf,8	olkin12_3,5
* datasets	olkin12_34,6
dat1, 3	olkin1_2, <mark>6</mark>
dat2, 4	* the
* from	olkin_beta1_2,7
r2_enrich_beta, 11	olkin_beta_inf, 8
* information	* variance
olkin_beta1_2,7	r2_diff,9
olkin_beta_inf, 8	r2_enrich_beta, 11
r2_diff,9	r2_var, 14
r2_var, 14	
* in	cc_trf, 2
olkin_beta1_2,7	d-+1 2
olkin_beta_inf, 8	dat1, 3
* liability	dat2, 4
cc_trf, 2	olkin12 1 4
* matrix	olkin12_1, 4
* matrix olkin_beta1_2,7	olkin12_13, 5 olkin12_3, 5
olkin_beta_inf, 8	olkin12_34,6

INDEX 17

```
olkin1_2,6
olkin_beta1_2,7
olkin_beta_inf,8
r2_diff,9
r2_enrich_beta,11
r2_var,14
```