Date: May 21 Made by Eric

0. Notation

Definition 1. We call a commutative ring with unity that have no zero-divisor an integral domain D

Definition 2. Suppose $x, y \in D$. Then

$$x|y \implies \exists z \in D, y = xz \tag{1}$$

1. Associations Class

1.1 Definition of Associate and Association Class

Lemma 1. For all integral domain D, we can partition the elements of D into equivalence classes by means of gathering two elements into the same class if they are **associate**, that is, there exists an unit that can multiply one of them, thus becoming the other.

Proof. Observe

$$a = 1a \tag{2}$$

$$b = au \implies a = bu^{-1} \tag{3}$$

$$b = au, c = bu_1 \implies c = auu_1 \tag{4}$$

Definition 3. Elements a, b of an integral domain D are **associate** in D if there exists unit d such that b = ad, and the equivalent class given by association is called **association class**, and written by [x] if it contain x.

Lemma 2.

$$a \text{ and } b \text{ are associate } \iff a|b \text{ and } b|a$$
 (5)

Proof. Suppose b=au. Observe $a=bu^{-1}$, and we see a|b and b|a. Suppose b=ax and a=by. Observe $ab=abxy \implies xy=1 \implies x$ and y are units $\implies a$ and b are associate.

1.2 Structure of Association Class

Lemma 3. Suppose u is an unit.

[u] contains all units.

Proof. Suppose a, b are units. Observe

$$b = a(a^{-1}b) \tag{6}$$

where

$$(a^{-1}b)^{-1} = ab^{-1} (7)$$

imply that $a^{-1}b$ is a unit.

Lemma 4. We can "well-define" multiplication on the set of all association classes by means of

$$[x_1][x_2]\cdots[x_n] = [x_1\cdots x_n] \tag{8}$$

Proof. Suppose $x_i' = u_i x_i$. Observe

$$x_1' \cdots x_n' = (u_1 \cdots u_n)(x_1 \cdots x_n) \in [x_1 \cdots x_n] \tag{9}$$

Corollary 4.1.

$$[u][x] = [x] \tag{10}$$

Corollary 4.2.

$$[a] = [x_1] \cdots [x_n] \iff a = ux_1 \cdots x_n \text{ for some unit } u$$
 (11)

Proof. (\longleftarrow)

$$[a] = [u][x_1] \cdots [x_n] = [x_1] \cdots [x_n]$$

$$(12)$$

$$[a] = [x_1] \cdots [x_n] \implies a \in [x_1 \cdots x_n] \implies a = ux_1 \cdots x_n \text{ for some unit } u$$
(13)

Definition 4. Suppose $x, y \in D$. Then

$$[x]|[y] \iff \exists z \in D, [y] = [x][z] \tag{14}$$

Corollary 4.3.

$$p|a \iff [p]|[a] \tag{15}$$

Proof. From left to right is obvious. From right to left , Observe $[p]|[a] \implies \exists z \in D, pz = ua \implies u^{-1}pz = a \implies p|a.$

Lemma 5. Suppose u is a unit. Then

$$[u] = [x][y] \iff [x] = [u] = [y] \tag{16}$$

Proof. From right to left is obvious. From left to right, we arbitrarily pick $u_1 = x_1y_1$, and observe

$$x_1(y_1u_1^{-1}) = 1 = y_1(x_1u_1^{-1}) (17)$$

2. Irreducibles and Primes

2.1 Definition of Irreducibles and Primes

Definition 5. An non-zero non-unit element p is an **irreducible** if

for all expression p = cd, that c or d is a unit.

Definition 6. A non-zero non-unit element p is an **prime** if $p|ab \implies p|a$ or p|b

2.2 Inner Structure of Irreducibles and Primes

Lemma 6. All irreducibles form some association classes.

Proof. Suppose p is an irredubile and u is an unit. Arbitrarily factorize pu in the form pu=mn. We see $p=(u^{-1}m)n$. Suppose n is not a unit, then by the definition of irreducibility of p, we know $u^{-1}m$ is a unit u_c , then $m=uu_c$ is a unit. In conclusion, either m or n is a unit. Then we have deduced pu is irreducible.

Lemma 7. All primes form some association classes.

Proof. Suppose p is a prime and u is an unit, and suppose pu|cd. Because $p|u^{-1}cd$, we know $p|u^{-1}c$ or p|d, if $p|u^{-1}c$ is true, then pu|c finish our proof. If p|d, then we express d in the form d=px and see $d=(pu)u^{-1}x$, which implies pu|d.

Definition 7. The association class containing irreducible/prime is called a **irreducible/prime association class**.

2.3 Outer Structure of Irreducibles and Primes*

Lemma 8. The set of prime association class are a subset of the set of irreducible association classes.

Proof. Suppose p is a prime and arbitrarily factorize p in the form p=cd.

$$p = cd \implies p|cd \implies p|c \text{ or } p|d$$
 (18)

WOLG, suppose p|c, and express c in the form c = px

Then we see p = cd = p(xd), which implies xd = 1, then d is a unit.

3. Existence and Uniqueness of Factorization

3.1 Definition of Existence and Uniqueness of Factorization

Definition 8. An integral domain D satisfy the property "existence of factorization" if

For all non-zero non-unit element $a \in D$ we can factorize a in some **completely** reduced form

$$a = up_1 p_2 \cdots p_n \tag{19}$$

where p_i are irreducibles and u is a unit.

Also we call such integral domain D an **atomic domain**.

Corollary 8.1. For all non-zero non-unit association class [a] in an atomic domain D, we can facatorize [a] in some completely reduced form

$$[a] = [p_1] \cdots [p_n] \tag{20}$$

Definition 9. An integral domain D is unique factorization domain, UFD, if D it satisfy "existence of factorization" and it satisfy "uniqueness of factorization"; that is

Any two factorization of a

$$a = up_1p_2 \cdots p_n \text{ and } a = u'p'_1p'_2 \cdots p'_m \tag{21}$$

are "only switch of order and of pick of element from irreducible association class", that means n=m and we can switch the order of (p'_1,\ldots,p'_n) to some order $(p'_{N(1)},\ldots,p'_{N(n)})$ so that $[p_i]=[p'_{N(i)}]$

Corollary 8.2. Suppose D is an UFD, then the **factorization** $[a] = [p_1] \cdots [p_n]$ is unique.

3.2 Factorize elements of UFD into completely reduced from

Lemma 9. Suppose D is an UFD, $p \in D$ is an irreducible. Then

$$p|a \iff [p]|[a] \iff [p]$$
 appears in the factorization of $[a]$

Lemma 10. If D is UFD, then the set of irreducible association classes and the set of prime association classes are the same.

Proof. Lemma 8 states that in all integral domain, a prime must be an irreducible. We only have to show in UFD, an irreducible must also be a prime.

Let p be an irreducible and suppose p|ab. By the "existence of factorization" and Lemma 9, we can express [ab] in the form

$$[ab] = [p][p_1] \cdots [p_n] \tag{22}$$

Factorize [a] and [b] in the form

$$[a] = [p_{a_1}] \cdots [p_{a_m}] \text{ and } [p_{b_1}] \cdots [p_{b_{n-m}}]$$
 (23)

We see

$$[p][p_1]\cdots[p_n] = [ab] = [a][b] = [p_{a_1}]\cdots[p_{a_m}][p_{b_1}]\cdots[p_{b_{n-m}}]$$
(24)

Because the factorization is unique, we know $[p] = [p_{a_i}]$ or $[p_{b_i}]$ for some i; that is [p] appears in the factorization of [a] or [b], which indicate that p|a or p|b.

4. PID is UFD

4.1 Definition of PID

Definition 10. An integral domain D is **principal ideal domain**, PID, if D satisfy

Every ideal N is generated by some element a, that is

$$N = \langle a \rangle = \{ax | x \in D\} \tag{25}$$

4.2 PID satisfy "existence of factorization"

Lemma 11. Suppose $N_1 \subset N_2 \subset \cdots$ be an ascending chain of ideals N_i in D. Then $N = \bigcup N_i$ is an ideal of D.

Proof. Arbitrarily pick a, b from N and c from D, and WOLG, suppose $a \in N_j$ and $b \in N_k$ and $j \le k$.

$$a \in N_i \subseteq N_k \implies a + b \in N_k \subseteq N$$
 (26)

$$ac \in N_i \implies ac \in N$$
 (27)

Lemma 12. Suppose D is a PID and $N_1 \subset N_2 \subset \cdots$ is an ascending chain of ideals N_i in D. Then the ascending chain N_i must be finite.

Proof. Suppose $N = \bigcup N_i = \langle c \rangle$ and suppose $c \in N_r$.

Assume $\exists N_{r+1}, x \in N_{r+1} \setminus N_r$

$$x \in N_{r+1} \subseteq N = \langle c \rangle \implies x = cd, \exists d \in D \implies x \in N_r \text{ CaC}$$
 (28)

Lemma 13.

$$\langle a \rangle \subseteq \langle b \rangle \iff b | a \tag{29}$$

Proof. Express a in the form a=bd. Arbitrarily pick x from $\langle a \rangle$ and express x in the form x=ac, then we see $x=bdc \implies x \in \langle b \rangle$. For another direction, observe $a \in \langle b \rangle$

Corollary 13.1.

$$\langle a \rangle = \langle b \rangle \iff a | b \text{ and } b | a \iff a, b \text{ are associate}$$
 (30)

Theorem 14. (Existence of Factorization for PID) Suppose D is an PID. Then

All non-zero and non-unit element a can be expressed as a finite product of irreducibles p_i

Proof. Our goal here is simple, we find an algorithm to faztorize a into a finite product of irreducibles. We first try to find an irreducible that divides x with the following algorithm.

"Find **one** factor Algorithm (input: *x*)"

Step 0: Let $x_0 = x$ and i = -1.

Step 1: Let i increase by 1. Test if x_i is irreducible. If it is, terminate and output x_i , if not, go to step 2.

Step 2: Because x_i is reducible, we can express x_i in the form $x_i = x_{i+1}y_{i+1}$ for some non-units x_{i+1}, y_{i+1} . Repeat step 1.

We now show that this algorithm terminate eventually, and the output is an irreducible factor of the input x.

Assume the algorithm never terminate.

Then there exists a sequence of $\{x_i\}$ of infinite length, where $x_{i+1}y_{i+1}=x_i$ and y_{i+1} are non-unit.

We know $x_i \not| x_{i+1}$ because if $x_i | x_{i+1}$, then y_{i+1} is a unit. Then by Lemma 13, we know $\langle x_i \rangle \subset \langle x_{i+1} \rangle$. So, we know there is an ascending chain $\langle x_0 \rangle \subset \langle x_1 \rangle \subset \cdots$ of infinite length, which CaC to Lemma 12.

Suppose the output is x_m . Obviously, x_m is irreducible, and we see

$$x_m|x_{m-1} \text{ and } x_{m-1}|x_{m-2} \text{ and } \cdots \text{ and } x_1|x_0 = x \text{ (done)}$$
 (31)

Now we try to completely reduce x with another algorithm.

"Completely Reducing Algorithm (input: x)"

Step 0: Let $x_0 = x$ and i = -1.

Step 1: Let i increase by 1. Operate "Find **one** factor Algorithm" with input x_i , and obtain the output y_i , and express $x_i = x_{i+1}y_i$

Step 2: Test if $\Pi_{j=0}^i y_j = x$. If true, output $\Pi_{j=0}^i y_j$ and terminate. If not, go to Step 1.

We now show that this algorithm terminate eventually, and obviously if it does, it output a finite product of irreducibles that is x.

Assume the algorithm never terminate.

Then there exists a sequence $\{x_i\}$ of infinite length, where $x_i = x_{i+1}y_i$, which indicate $x_{i+1}|x_i$

Because y_i is irreducible, so it is non-unit. Then by Lemma 13, we know $\langle x_i \rangle \subset \langle x_{i+1} \rangle$. So, we know there is an ascending chain $\langle x_0 \rangle \subset \langle x_1 \rangle \subset \cdots$ of infinite length, which CaC to Lemma 12. (done)

4.3 PID satisfy "uniqueness of factorization"

Lemma 15. In PID, an ideal $\langle p \rangle$ is maximal if and only if p is irreducible.

Proof.
$$(\longrightarrow)$$

Assume p is reducible and express p in the form p=cd where c,d are non-unit. $\langle c \rangle$ are proper because c is non-unit, and because d is non-unit, we know $p \not | c$. Then by c|p and Lemma 13, we know $\langle p \rangle \subset \langle c \rangle \subset D$ CaC

$$(\longleftarrow)$$

Assume $\langle p \rangle$ is not maximal, that is there exists $\langle p \rangle \subset \langle c \rangle \subset D$. Then by Lemma 13, we know c|p. Express p in the form p=cd. We know c is a non-unit because $\langle c \rangle \subset D$. We deduce d is a non-unit, since if d is a unit, then $c=pd^{-1}$, which indicate p|c, which further indicate, by Lemma 13, $\langle p \rangle = \langle c \rangle$. If c,d are both non-unit, then we see p=cd are reducible. CaC

Lemma 16. In PID, the set of irreducible association classes and the set of prime association classes are the same.

Proof. Lemma 8 states that in all integral domain, a prime must be an irreducible. We only have to show in PID, an irreducible must also be a prime.

Suppose p is an irreducible, and suppose p|ab. Notice that $\langle p \rangle$ is a maximal ideal, so it is a prime ideal, and notice $ab \in \langle p \rangle$, so we know either $a \in \langle p \rangle$ or $b \in \langle p \rangle$. In other words, either p|a or p|b.

Corollary 16.1.

$$p|a_1\cdots a_n \implies \exists a_i, p|a_i$$
 (32)

Theorem 17. (Uniqueness of Factorization for PID) Suppose D is an PID. Then

All any two factorization of a

$$up_1p_2\cdots p_n = a = u'p'_1p'_2\cdots p'_m$$
 (33)

are "only switch of order and of pick of element from irreducible association class", that means n=m and we can "switch the order" of p_i so that each of their counterparts are in the same irreducible association class. More precisely, that is

$$\exists$$
 (bijective) $N: \{1, 2, \dots, n\} \rightarrow \{1, 2, \dots, n\}, \forall 1 \leq i \leq n, [p_i] = [p'_{N(i)}]$

Proof. We know $p_1|a=(u')(p'_1\cdots p'_m)$, and by Lemma 5, we know it will never happens that $p_1|u'$, so we can deduce $p_1|p'_1\cdots p'_m$, and deduce $p_1|p'_i$ for some p'_i .

Factorize $[p'_i]$ and assume that the output contain more than one irreducible association class. That is, $[p'_i] = [p_j][p_k]$.

Observe $\exists u, p'_i = (up_j)p_k$, and we immediately draw our contradiction. CaC

So we know the factorization of $[p_i']$ is $[p_i']$ and we know by $p_1|p_i'$ that $[p_1]$ takes part in the factorization of $[p_i']$. Then we can deduce $[p_1] = [p_i']$. So, we define N(1) = i, and observe that $[p_1] = [p_i'] = [p_{N(1)}']$.

Express $p_{N(1)}'$ in the form $p_{N(1)}' = u_1 p_1$ for some unit u_1 , and express a in the form

$$up_1p_2p_3\cdots p_n = a = u'(u_1p_1)p'_1\cdots p'_m$$
 (34)

By Cancellation Law in Integral domain, we see

$$up_2p_3\cdots p_n = (u'u_1)p_1'\cdots p_m' \tag{35}$$

Where $p'_{N(1)}$ is not in the RHS of the equation. Notice $p_2|(u'u_1)p'_1\cdots p'_m$, and repeat what we do to complete the proof. Notice that if m < n or n < m, we will run into the situation of $\Pi p_i = 1$.

5. D[x] is UFD if D is UFD

5.0 Definition of primitive polynomial and content

Lemma 18. Suppose D is UFD, and $\{[x_i]\}$ is finite. Then

There exists a unique greatest element $[d_m]$ in the set $S := \{[d] | \forall i, [d] \text{ divides } [x_i] \}$, as we define greatest by $\forall [d] \in S, [d] \text{ divides } [d_m]$

Proof. We first prove the existence of the greatest element in S by explicitly giving one.

Because D is UFD, and $\{[x_i]\}$ is finite, we can express every element $[x_c] \in \{[x_i]\}$ in the form $[x_c] = \prod_{j=1}^n [p_j]^{e_j^c}$ for fixed values n and $e_j^c \in \mathbb{Z}_0^+$. Observe that $[d_m] := \prod_{j=1}^n [p_j]^{e_j^m}$ where e_j^m is given by $min(\{e_j^i\})$, satisfy $\forall i, [d_m] | [x_i]$, since $\forall i, \forall 1 \leq j \leq n, e_j^m \leq e_j^i$; in other words, $[d_m] \in S$. (Exactly the same concept of finding gcd in natural number with primes)

To see that $[d_m]$ is "a" greatest element. Arbitrarily pick $[d_r]$ from S, and express $[d_r]$ in the form $[d_r] = \prod_{j=1}^n [p_j]^{e_j^r}$, to observe

$$\forall i, [d_r] \text{ divides } [x_i] \implies \forall i, \forall 1 \le j \le n, e_j^r \le e_j^i$$
 (36)

$$\implies \forall 1 \le j \le n, e_i^r < min(\lbrace e_i^i \rbrace) = e_i^m \implies [d_r] | [d_m] \text{ (done)}$$
 (37)

To see that $[d_m]$ is unique, assume that there exists another distinct maximal element $[d_{m'}]$, and observe

$$[d_m]|[d_{m'}]$$
 and $[d_{m'}]|[d_m] \implies \exists (y,z) \in D^2, [d_{m'}] = [d_m][y], [d_m] = [d_{m'}][z]$
(38)

$$\implies [d'_m d_m] = [d'_m d_m][y][z] \implies [y][z] = [u] \tag{39}$$

$$\implies [y] = [u] \implies [d_m] = [d_{m'}] \text{ CaC (done)}$$
 (40)

Definition 11.

$$gcd(\{[x_i]\}) := [d_m] \tag{41}$$

Definition 12. Suppose D is UFD, and suppose $f(x) = c_n x^n + \cdots + c_1 x_1 + c_0 \in D[x]$. The contents of f(x) is $gcd(\{[c_i]\})$ and f(x) is a primitive polynomial if

$$gcd(\{[c_i]\}) = [u] \tag{42}$$

Theorem 19. That a non-constant polynomial $f(x) \in D[x]$ is irreducible is possible only if it is f(x) primitive.

Proof. Suppose $f(x) = c_n x^n + \cdots + c_0$ is not primitive, that is $\exists [p], \forall c_i, [p] | [c_i]$. In other word, $f(x) = p(d_n x^n + \cdots + d_0)$, where $c_i = pd_i$. Because p and $d_n x^n + \cdots + d_0$ are non-units, we have deduced f(x) is reducible.

5.1 The HARD Ass proof of D[x] being UFD

Lemma 20. Suppose D is a UFD, and $f(x) = a_0 + a_1x + \cdots + a_nx^n, g(x) = b_0 + b_1x + \cdots + b_mx^m \in D[x]$. Then

$$f(x)$$
 and $g(x)$ are primitive $\implies fg(x)$ is primitive (43)

Proof. Express fg(x) in the form $fg(x) = \sum_{i=1}^{n+m} c_0 x^i$, and observe

$$gcd(\{[c_i]\}) = [u] \iff$$
 no irreducible p divides all c_0, \ldots, c_{n+m}

So we only have to prove the latter.

Arbitrarily pick irreducible p and pick r, s that satisfy

$$p \not| a_r \text{ and } \forall 0 \le i < r, p | a_i \text{ and } p \not| b_s \text{ and } \forall 0 \le i < s, p | b_i$$
 (44)

Notice that we can pick r, s because by premise, $gcd(\{[a_i]\}) = [u] = gcd(\{[b_i]\})$, so no irreducible p can divide all a_i (and b_i). (Do an experiment of case of [p] does not appear in any factorization of $[a_i]$ and see what is going on. Try to deduce that $[a_r]$ is the first coeffcient counting from 0 to n of which [p] does not appear in the factorization.)

Observe

$$c_{r+s} = (a_0b_{r+s} + \dots + a_{r-1}b_{s+1}) + a_rb_s + (a_{r+1}b_{s-1} + \dots + a_{r+s}b_0)$$
 (45)

where some first or last few terms should be deleted if r+s>m or r+s>r.(You don't have to worry about this, as you see in the following.)

By equation (44), we see

$$p|(a_0b_{r+s} + \cdots + a_{r-1}b_{s+1}) \text{ and } p|(a_{r+1}b_{s-1} + \cdots + a_{r+s}b_0)$$
 (46)

Then by equation (45), and that p / a_r and p / b_s , we see

$$p / a_r b_s$$
 which give us p / c_{r+s} (47)

If p does not divides c_{r+s} , then p does not divides all c_0, \dots, c_{n+m} . (done)

Corollary 20.1. The finite product of primitive polynomials of D[x] is again primitive.

Theorem 21. Let D be a UFD and \mathbb{F} be the field of quotient of D, and let $f(x) \in D[x]$ be a non-constant polynomial.

$$f(x)$$
 is irreducible $\iff f(x)$ is irreducible in $\mathbb{F}[x]$ and $f(x) \in D[x]$ is primitive (48)

Proof. From right to left it hold true because $D[x] \subseteq \mathbb{F}[x]$.

So we only have to prove from left to right. Notice that by Theorem 19, we have already proven f(x) is primitive. Suppose f(x) is reducible in $\mathbb{F}[x]$ and express f(x) = r(x)s(x), where $r(x), s(x) \in \mathbb{F}[x]$ are non-constant.

Suppose [d] is the least common multiple of $\{[d_i]\}$ where $\{d_i\}$ are denominators of coefficients of r(x) or s(x). Observe

$$(d)f(x) = r_1(x)s_1(x) (49)$$

Where the coefficients of $r_1(x)$ and $s_1(x)$ are respectively the nominator of coefficients of r(x) and s(x). Factorize f(x), $r_1(x)$, $s_1(x)$ in the form

$$f(x) = [c]g(x)$$
 and $r_1(x) = [c_1]r_2(x)$ and $r_2(x) = [c_2]s_2(x)$ (50)

Where [c], $[c_1]$, $[c_2]$ are respectively the contents of f(x), $r_1(x)$, $r_2(x)$.

Then we express equation (50) in the form

$$I := [cd]g(x) = [c_1c_2]r_2(x)s_2(x)$$
(51)

Because $r_2(x)s_2(x)$ are primitive, given by Lemma 20, and g(x) are primitive, and contents of I is unique, we see $g(x) = ur_2(x)s_2(x)$ for some unit u.

By f(x) = [c]g(x), we know $f(x) = cu_1g(x)$ for some unit u_1 .

Then
$$f(x) = (cu_1u)r_2(x)s_2(x)$$
 is reducible.

Corollary 21.1. Suppose D is a UFD and $f(x) \in D[x]$

$$f(x)$$
 is reducible $\iff f(x)$ is reducible in $\mathbb{F}[x]$ (52)