Reading 5: The Behavioral Finance Perspective

- 1. Expected utility (U) = Σ (U values of outcomes × Respective Prob)
- 2. Subjective expected U of an individual = Σ [u (xi) × Prob (xi)]
- 3. Bayes' formula = $P(A|B) = [P(B|A) / P(B)] \times P(A)$
- 4. Risk premium = Certainty equivalent Expected value
- 5. Perceived value of each outcome = = $U = w(p_1) v(x_1) + w(p_2) v(x_2) + ... + w(p_n) v(x_n)$
- 6. Abnormal return (R) = Actual R Expected R

Reading 8: Managing Individual Investor Portfolios

- 1. After-tax (AT)Real required return (RR) %

 = Client's required expenditures in Year n

 Net Investable Assets

 Projected needs in Year n

 Net Investable Assets
- 2. ATNominal RR % = Projected needs in Year n
 Net Investable Assets
 + Current Annual (Ann) Inflation (Inf) % =
 AT real RR% + Current Ann Inf% Or

ATNominal RR% =
$$(1 + AT Real RR\%)$$

× $(1 + Current Ann Inf\%) - 1$

- 3. Total Investable assets = Current Portfolio
 -Current year cash outflows + Current year cash inflows
- 4. Pre-tax income needed = AT income needed / (1-tax rate)
- 5. Pre-tax Nominal RR = (Pre-tax income needed / Total investable assets) + Inf%

If Portfolio returns are tax-deferred:

- 6. Pre-tax projected expenditure \$ = AT projected expenditure \$ / (1 tax rate)
- 7. Pre-tax real RR % = Pre-tax projected expenditures \$ / Total investable assets
- 8. Pre-tax nominal RR = $(1 + \text{Pre-tax real RR}) \times (1 + \text{Inflation rate}) 1$

If Portfolio returns are NOT tax-deferred:

- 9. AT real RR% = AT projected expenditures \$ / Total Investable assets
- 10. AT nominal RR% = $(1 + AT \text{ real RR\%}) \times (1 + Inf\%) 1$
- 11. Procedure of converting nominal, pre-tax figures into real, after-tax return:
 - Real AT R = [Expected total R –
 (Expected total R of Tax-exempt Invst
 × wt of Tax-exempt Invst)] × (1 tax

rate) + (Expected total R of Taxexempt Invst × wt of Tax-exempt Invst) – Inf rate

Or

• Real AT R =[(Taxable R of asset class 1 × wt of asset class 1) + (Taxable R of asset class 2 × wt of asset class 2) + ...+ (Taxable return of asset class n × wt of asset class n)] × (1 – tax rate) + (Expected total R of Tax-exempt Invst × wt of Tax-exempt Invst) – Infrate

Reading 9: Taxes and Private Wealth Management in a Global Context

- Average tax rate = Total tax liability / Total taxable income
- 2. AT Return = $r \times (1 t_i)$
- 3. AT Future Accumulations after n years = $FVIF_i$ = Initial Invst × $[1 + r(1 t_i)]^n$
- 4. Tax drag (\$) on capital accumulation =
 Acc capital without tax Acc capital with
 tax
- 5. Tax drag (%) on capital accumulation =
 (Acc capital without tax Acccapital with
 tax) / (Acc capital without tax Initial
 investment)
- 6. Returns-Based Taxes: Deferred Capital Gains:

- AT Future Accumulations after n years = $FVIF_{cg}$ = InitialInvst. × [(1 + r) n (1 t_{cg}) + t_{cg}]
- Value of a capital gain tax deferral =
 AT future accumulations in deferred
 taxes AT future accumulations in
 accrued annually taxes

7. Cost Basis

- Capital gain/loss = Selling price –
 Cost basis
- AT Future Accumulation = FVIF_{cgb}=
 Initial Invst × [(1 + r) ⁿ (1 t_{cg}) + t_{cg} (1 B) t_{cg}] = Initial Invst × [(1 + r) ⁿ (1 tcg) + (tcg × B)]
 Where, B = Cost basis
 tcg × B = Return of basis at the end of the Invst.horizon.

When cost basis = initial Invst \rightarrow B=1, FVIF_{cg}=Initial investment × [(1 + r)ⁿ (1 - t_{cg}) + t_{cg}]

8. Wealth-Based Taxes

- AT Future Acc = FVIF $_{w}$ = Initial Invst $[(1 + r) (1 t_{w})]^{n}$ Where, t_{w} = Ann wealth tax rate
- 9. Blended Taxing Environments
 - a) Proportion of total return from Dividends (p_d) which is taxed at a rate of t_d .

p_d = Dividends (\$) / Total dollar return

b) Proportion of total return from Interest income (p_i) which is taxed at a rate of t_i .

- $p_i = Interest (\$) / Total dollar return$
- c) Proportion of total return from Realized capital gain (p_{cg}) which is taxed at a rate of t_{cg} . $p_{cg} = Realized \ Capital \ gain \ (\$) \ / \ Total \ dollar \ return$
- d) Unrealized capital gain return: Total Dollar Return = Dividends + Interest income + Realized Capital gain + Unrealized capital gain Total realized tax rate = $[(p_i \times t_i) + (p_d \times t_d) + (p_{cg} \times t_{cg})]$
- 10. Effective Ann AT R = $r^* = r (1 p_i t_i p_d t_d p_{cg} t_{cg}) = r (1 total realized tax rate)$ Where, r = Pre-tax overall return on the portfolio and $r^* = Effective$ ann AT R
- 11. Effective Capital Gains Tax = T* = t_{cg} (1 $p_i p_d p_{cg}$) / (1 $p_i t_i p_d t_d p_{cg} t_{cg}$)
- 12. Future AT acc. = FVIF $_{Taxable}$ = Initial Invst $[(1 + r^*)^n (1 T^*) + T^* (1 B) t_{cg}]$
- 13. Initial Invst (1 + Accrual Equivalent R)ⁿ = Future AT Acc
- 14. Accrual Equivalent R = (Future AT Acc / Initial Invst) ^{1/n} 1
- 15. Accrual Equivalent Tax Rates = $r (1 T_{AE})$ = R_{AE}

$$T_{AE} = 1 - \frac{R_{AE}}{R}$$

- 16. In Tax Deferred accounts (TDAs) Future AT Acc = FVIF $_{TDA}$ = Initial Invst[(1 + r) n (1 - T_{n})]
- 17. In Tax-exempt accounts FVIF $_{taxEx}$ = Initial Invst $(1 + r)^n$
 - FVIF $_{TDA} = FVIF_{taxEx} (1 T_n)$
- 18. AT asset wt of an asset class (%) = AT MV of asset class (\$) / Total AT value of Portfolio (\$)
- 19. AT Initial invst in tax-exempt accounts = $(1 T_0)$
- 20. FV of a pretax \$ invested in a tax-exempt account = $(1 T_0) (1 + r)^n$
- 21. FV of a pretax \$ invested in a TDA = $(1 + r)^n (1 T_n)$
- 22. Investors AT risk = S.D of pre-tax R $(1 \text{Tax rate}) = \sigma(1 \text{T})$
- 23. Tax alpha from tax-loss harvesting (or Tax savings) =Capital gain tax with unrealized losses Capital gain tax with realized losses Or

 Tax alpha from tax-loss harvesting =
 Capital loss × Tax rate
- 24. Pretax R taxed as a short-term gain needed to generate the AT R equal to long-term AT R = Long-term gain after-tax return / (1 –short-term gains tax rate)

Reading 10: Estate Planning in a Global Context

- Estate =Financial assets + Tangible personal assets + Immoveable property + Intellectual property
- 2. Discretionary wealth or Excess capital = Assets Core capital
- 3. Core Capital (CC) Spending Needs = $\sum_{j=1}^{N} \frac{p(Survival_{j}) \times Spending_{j}}{(1+r)^{j}}$
- 4. Expected Real spending = Real annual spending × Combined probability
- CC needed to maintain given spending pattern = Annual Spending needs / Sustainable Spending rate
- 6. Tax-Free Gifts = $RV_{TaxFreeGift}$ = $\frac{\left[1+r_g(1-t_{ig})\right]^n}{\left[1+r_e(1-t_{ie})\right]^n(1-T_e)}$
- 7. Relative value of the tax-free gift = 1/(1 Te)
- 8. Taxable Gifts = $RV_{TaxableGift}$ = $\frac{\left[1+r_g(1-t_{ig})\right]^n(1-T_g)}{\left[1+r_e(1-t_{ie})\right]^n(1-T_e)}$

- 9. Value of a taxable gift (if gift & asset (bequeathed) have equal AT R) = $(1 T_g)$ / $(1 T_e)$
- 10. The relative after-tax value of the gift when the donor pays gift tax and when the recipient's estate will not be taxable (assuming $r_g = r_e$ and $t_{ig} = t_{ie}$):

$$\begin{aligned} RV_{TaxableGift} &= \frac{FV_{Gift}}{FV_{Bequest}} \\ &= \frac{\left[1 + r_g(1 - t_{ig})\right]^n (1 - T_g + T_g T_e)}{[1 + r_e(1 - t_{ie})]^n (1 - T_e)} \end{aligned}$$

- 11. Size of the partial gift credit = Size of the gift $\times T_g T_e$
- 12. Relative value of generation skipping = $1 / (1 T_1)$
- 13. Charitable Gratuitous Transfers =

$$RV_{CharitableGift} = \frac{FV_{CharitableGift}}{FV_{Bequest}}$$

$$= \frac{(1+r_g)^n + T_{ai} \left[1+r_e(1-t_{ie})\right]^n (1-T_e)}{\left[1+r_e(1-t_{ie})\right]^n \left(1-T_e\right)}$$

- 14. Credit method = $T_C = Max [T_R, T_S]$
- 15. Exemption method = $T_E = T_S$
- 16. Deduction method = $T_D = T_R + T_{S-} T_R T_S$

Reading 12: Lifetime Financial Advice: Human Capital, Asset Allocation, & Insurance

- 1. Human Capital $HC_0 = \sum_{t=1}^{N} \frac{w_t}{(1+r)^t}$ extended model $HC_0 = \sum_{t=1}^{N} \frac{p(S_t) \, W_{t-1}(1+g_t)}{(1+r_f+y)^t}$
- 2. Income yield (payout) =
 total ongoing annual income
 initial purchase price

Reading 13: Managing Institutional Investor Portfolio

Defined-Benefit Plans:

- Funded Status of Pension Plan (PP) = MV
 of PP assets PV of PP liabilities
- Min RR for a fully-funded PP = Discount rate used to calculate the PV of plan liabilities
- Desired R for a fully-funded PP =
 Discount rate used to calculate the PV of plan liabilities + Excess Target return
- Net cash outflow = Benefit payments Pension contributions

Foundations

 Min R requirement (req) = Min Ann spending rate + InvstMgmtExp+ Expected Inf rate
 Or

- Min Rreq = $[(1 + Min Ann spending rate) \times (1 + Invst Mgmt. Exp) \times (1 + Expected Inf rate)] -1$
- 6. Foundation's liquidity req = Anticipated cash needs (captured in a foundation's distributions prescribed by minimum spending rate*) + Unanticipated cash needs (not captured in a foundation's distributions prescribed) Contributions made to the foundation.
 - * It includes Minimum annual spending rate (including "overhead" expenses e.g. salaries) + Investment management expenses

Endowments

- 7. Ann Spending (\$) = % of an endowment's current MV Or
 AnnSpending (\$) = % of an endowment's avg trailing MV
- 8. Simple spending rule = Spending t = Spending rate × Endowment's End MV_{t-1}
- 9. Rolling 3-yr Avg spending rule =Spending_t = Spending rate × Endowment's Avg MV of the *last 3 fiscal yr-ends i.e.*
 - ⇒ Spending $_{t}$ = Spending rate × (1/3) [Endowment's End MV $_{t-1}$ + Endowment's End MV $_{t-2}$ + Endowment's End MV $_{t-3}$]
- Geometric smoothing rule = Spending_t = WghtAvg of the prior yr's spending

- adjusted for Inf + Spending rate × Beg MV of the *prior fiscal yr i.e.*
- → Spending t = Smoothing rate ×

 [Spendingt-1 × (1 + Inft-1)] + (1
 Smoothing rate) × (Spending rate × Beg

 MVt-1 of the endowment)
- 11. Min ReqRoR = Spending rate + Cost of generating Invst R + Expected Infrate Or
 Min ReqRoR = [(1 + Spending rate) × (1 + Cost of generating Invst R) × (1 + Expected Inf rate)] -1
- Liquidity needs = Ann spending needs +
 Capital commitments + Portfolio
 rebalancing expenses Contributions by
 donor
- 13. Neutrality Spending Rate = Real expected R = Expected total R Inf

Life Insurance Companies

- 14. Cash value = Initial premium paid + Any accrued interest on that premium
- 15. Policy reserve = PV of future benefits PV of future net premiums
- Surplus = Total assets of an insurance company - Total liabilities of an insurance company

Non-Life Insurance Companies

17. Combined Ratio = (Total amount of claims paid out + Insurer's operating costs) / Premium income

Banks

- 18. Net interest margin =

 (Interest Income-Interest Expense)

 Avg Earning Assets

 Net Interest Income

 Avg Earning Assets
- Interest spread = Avg yield on earning assets – Average percent cost of interestbearing liabilities
- 20. Leverage-adjusted duration gap (LADG) = $D_A (k \times D_L)$ Where, k= MV of liabilities / MV of assets = L/A
- 21. Change in MV of net worth of a bank (resulting from interest rate shock) ≈
 LADG × Size of bank × Size of interest rate shock

Reading 14: Linking Pension Liabilities to Assets

- 1. Value of liability = $V_L = \sum_t \frac{B_t}{(1+r_t)^t}$ where, B_t = Benefit payments at time t
- 2. Value of an asset = $V_B = \sum_{t} \frac{CF_t}{(1+r_t)^t}$
- 3. Intrinsic value of Future wage liability =

$$V_{L-FW} = \frac{B}{r-g} \times \frac{((1+g)^s - 1) \times ((1+r)^{d-s} - 1)}{(1+r)^d}$$

where, s = yrs till retirement d = yrs till demise and subsequent termination of the obligation

Reading 15: Capital Market Expectations

- 1. Precision of the estimate of the population mean $\approx 1 / \sqrt{\text{no of obvs}}$
- 2. Multiple-regression analysis: $A = \beta_0 + \beta_1 B + \beta_2 C + \epsilon$
- 3. Time series analysis: $A = \beta_0 + \beta_1$ Lagged values of $A + \beta_2$ Lagged values of $B + \beta_2$ Lagged values of $C + \epsilon$
- 4. Shrinkage Estimator = (Wt of historical estimate × Historical parameter estimate) + (Wt of Target parameter estimate × Target parameter estimate)

- 5. Shrinkage estimator of Cov matrix = (Wt of historical Cov × Historical Cov) + (Wt of Target Cov × Target Cov)
- 6. Vol in Period $t = \sigma_t^2 = \beta \sigma_{t-1}^2 + (1 \beta) \varepsilon_t^2$
- 7. Multifactor Model: R on Asset $i = R_i = a_i + b_{i1}F_1 + b_{i2}F_2 + ... + b_{iK}F_K + \varepsilon_i$
- 8. Value of asset at time t_0 $= \sum_{t=1}^{\infty} \frac{CF \text{ at time } t}{(1+Discount \text{ rate})^t}$
- 9. Expected RoR on Equity =

 Div per share at time 0 (1+LT g rate)

 Current share price

 = Div Yield + Capital Gains Yield
- 10. Nominal GDP = Real g rate in GDP + Expected long-run Inf rate
- 11. Earnings g rate = Nominal GDP g rate + Excess Corp g (for the index companies)
- 12. Expected RoR on Equity $\approx \frac{D}{P} \Delta S + i + g + \Delta PE$
- -ΔS = Positive repurchase yield +ΔS = Negative repurchase yield ΔPE = Expected Repricing Return
- 13. Labor supply g = Pop g rate + Labor force participation g rate
- 14. Expected income $R = D/P \Delta S$
- 15. Expected nominal earnings g R = i + g

- Expected Capital gains R = Expected nominal earnings grate + Expected repricing R
- 17. Asset's expected return E (R_i) = Rf + $(RP)_1 + (RP)_2 + ... + (RP)_K$
- 18. Expected bond R [E (R_b)] = Real Rf + Inf premium + Default RP + Illiquidity P + Maturity P+ Tax P
- 19. Inf P = AvgInf rate expected over the maturity of the debt + P (or discount) for the prob attached to higher Inf than expected (or greater disinflation)
- Inf P = Yield of conventional Govt. bonds (at a given maturity) – Yield on Infindexed bonds of the same maturity
- 21. Default RP = Expected default loss in yield terms + P for the non-diversifiable risk of default
- 22. Maturity P = Interest rate on longermaturity, liquid Treasury debt - Interest rate on short-term Treasury debt
- 23. Equity RP = Expected ROE (e.g. expected return on the S&P 500) YTM on a long-term Govt. bond (e.g. 10-year U.S. Treasury bond R)
- 24. Expected ROE using Bond-yield-plus-RP method = YTM on a LT Govt bond + Equity RP

25. Expected ROA E (R_i) = Domestic Rf R + $(\beta_i) \times [$ Expected R on the world market portfolio – Domestic Rf rate of R]

Where, β_i = The asset's sensitivity to R on the world mktportf = Cov (R_i, R_M) / Var (R_M)

26. Asset class RP_i= Sharpe ratio of the world market portfolio \times Asset's own volatility $(\sigma_i) \times$ Asset class's correlation with the world mktportf $(\rho_{i,M})$

$$RP_{i} = (RP_{M} / \sigma_{M}) \times \sigma_{i} \times \rho_{i,M}$$

Where, Sharpe Ratio of the world market portfolio = Expected excess R / S.D of the world mktportf \rightarrow represents systematic or non-diversifiable risk = RP_M / σ_M

- 27. RP for a completely segmented market (RP_i) = Asset's own volatility $(\sigma_i) \times Sharpe$ ratio of the world mktportf
- 28. RP of the asset class, assuming partial segmentation = (Degree of integration × RP under perfectly integrated markets) + ({1 Degree of integration} × RP under completely segmented markets)
- 29. Illiquidity P = Required RoR on an illiquid asset at which its Sharpe ratio = mkt's Sharpe ratio ICAPM required RoR
- 30. Cov b/w any two assets = Asset 1 beta × Asset 2 beta × Var of the mkt

- 31. Beta of asset $1 = \left(\frac{\sigma_1 \times \rho(1, m)}{\sigma_m}\right)$
- 32. Beta of asset $2 = \left(\frac{\sigma_2 \times \rho(2, m)}{\sigma_m}\right)$
- 33. GDP (using expenditure approach) =
 Consumption + Invst + Δ in Inventories +
 Govt spending + (Expo- Impo)
- 34. Output Gap = Potential value of GDP Actual value of GDP
- 35. Neutral Level of Interest Rate = Target Inf Rate + Eco g
- 36. Taylor rule equation: $R_{optimal} = R_{neutral} + [0.5 \times (GDPg_{forecast} GDPg_{trend})] + [0.5 \times (I_{forecast} I_{target})]$
- 37. Trend g in GDP = g from labor inputs + g from Δ in labor productivity
- 38. g from labor inputs = g in potential labor force size + g in actual labor force participation
- 39. g from Δ in labor productivity = g from capital inputs + TFP g*
 - TFP g = g associated with increased efficiency in using capital inputs.

40. GDP $g = \alpha + \beta_1$ Consumer spending $g + \beta_2$ Investment g

CFA Level III 2017

- 41. Consumer spending $g = \alpha + \beta_1 Lagged$ consumer income $g + \beta_2 Interest$ rate
- 42. Investment $g = \alpha + \beta_1 Lagged GDP g + \beta_2 Interest rate$
- 43. Consumer Income g = Consumer spending growth lagged one period

Reading 16: Equity Market Valuation

1. Cobb-Douglas Production Function $Y = A \times K^{\alpha} \times L^{\beta}$

Where,Y = Total real economic output

A = Total factor productivity (TFP)

K = capital stock

 α = Output elasticity of K

L = Labor input

 β = Output elasticity of L

- 2. Cobb-Douglas Production Function Y (assuming constant R to Scale) = $\ln (Y) = \ln (A) + \alpha \ln (K) + (1 \alpha) \ln (L)$ Or $\frac{\Delta Y}{Y} \approx \frac{\Delta A}{A} + \alpha \frac{\Delta K}{K} + (1 \alpha) \frac{\Delta L}{L}$
- 3. Solow Residual = $\%\Delta TFP = \%\Delta Y \alpha$ ($\%\Delta K$) - $(1 - \alpha)$ $\%\Delta L$

- 4. H-Model: Value per share at time $0 = \frac{D0}{Discount rate-LT sustainble Div g rate} \times \left[(1 + LT sustainable Div g rate) + \frac{Super normal g period}{2} \times (ST higher Div g rate LT sustainable Div g rate) \right]$
- 5. Gordon g Div discount model: Value per share at time $0 = \frac{(D_0) \times (1+g)}{r-g}$
- 6. Forward justified P/E = $\frac{Intrinsic \, value}{Yr \, ahead \, expected \, Earnings}$
- 7. Fed Model:

 Fwd Operating Earnings (E1)
 Index Level (P0)
 Treasury securities

8. Yardeni Model: =
$$\frac{E_1}{P_0}$$
 = $y_B - d \times LTEG$

Where,E₁/P₀=Justified (forward) earnings yield on equities

y_B=Moody's A-rated corporate bond yield LTEG= Consensus 5-yr earnings g forecast for the S&P 500

d=Discount or Weighting factor that represents the weight assigned by the market to the earnings projections 9. Yardeni estimated fair value of P/E ratio =

$$\frac{P_0}{E_1} = \frac{1}{y_B - d \times LTEG}$$

10. Fair value of equity mkt under Yardeni

Model (P₀) =
$$P_0 = \frac{E_1}{y_B - d \times LTEG}$$

11. Discount/weighting factor (d) =

$$d = \frac{y_B - \frac{E_1}{P_0}}{LTEG}$$

12. 10-year Moving Average Price/Earnings [P / 10-year MA (E)] =

Real (or Inf-adjusted*)S&P 500 Price Index

Moving Avg of preceding 10 yrs of Real or Inf adj Earnings

- *The stock index and reported earnings are adjusted for Inflation using the CPI
- 13. Real Stock Price Index $_{t}$ = (Nominal SPI $_{t} \times CPI_{base vr}$) / CPI $_{t}$
- 14. Real Earnings $_{t}$ = (Nominal Earnings $_{t}$ × $_{t}$ CPI $_{t}$ base vear) / CPI $_{t+1}$
- 15. Tobin's $q = \frac{\text{MVof debt+MV of equity}}{\text{Replacement cost of assets}}$ $Equity \ q = \frac{\text{Equity MKt Cap}}{\text{Net Worth}} = \frac{\text{Price per share} \times \text{No of Shares O/S}}{\text{Replacement cost of assets-MV of liabilities}}$

Reading 17: Asset Allocation

- Req R = [(1 + Spending rate) × (1 + Expected Inf %) × (1 + Cost of earning Invst R)] – 1
- Risk-adj Expected R = Expected return for mix 'm'* - (0.005 × Investor's risk aversion × Var of R for mix 'm'*)
- 3. Risk Penalty = 0.005 × Investor's risk aversion × Var of R for mix 'm'*

 *expressed as % rather than as decimals
- 4. Safety First Ratio =

 Expected Portfolio R- Threshold level

 Portfolio S.D.
- 5. Include asset in the portfolio when: $\frac{F(P_n)}{P_n}$

$$\frac{\frac{E(R_{new}) - R_F}{\sigma_{new}}}{\left[\frac{E(R_{new}) - R_F}{\sigma_{new}}\right] Corr(R_{new}, R_p)}$$

- 6. Contribution of Currency risk =
 Vol of asset R in domestic ¢ Vol of asset R in local ¢
 Where Vol = volatility
- 7. Funding Ratio =

 Market Value of Pension Assets

 Present Value of Pension Liabilities
- 8. $U_m^{ALM} = E(SR_m) 0.005R_A\sigma^2(SR_m)$
 - U^{ALM}_m = Surplus objective function's expected value for a particular asset mix m, for a particular investor with the specified risk aversion.

- E (SR_m)= Expected surplus return for asset mix 'm' =
 Δ in asset value-Δ in liability value
 Initial Asset Value
- σ^2 (SR_m)=Varof the surplus R for the asset mix m in %.
- R_A=Risk-aversion level
- 9. Human Capital (t)

$$= \sum_{j=t}^{T} \frac{\text{Expected Earnings at age } j}{(1 + \text{discount rate})^{j-t}}$$

t = current age T = life expectancy

Reading 18: Currency Management: An Introduction

- 1. Bid Fwd rate = Bid Spot exchange (X) rate $+ \frac{\text{Bid Fwd points}}{10,000}$
- 2. Offer Fwd rate = Offer Spot X rate + Offer Fwdd points
 10,000
- 3. FwdPrem/Disc % = $\frac{\text{spot X rate} (\frac{\text{fwd pnts}}{10,000})}{\text{spot X rate}}$ -
- 4. To convert spot rate into a forward quote when points are represented as %,

 Spot X rate × (1 + % prem)

Spot X rate
$$\times$$
 (1 + % prem)
Spot X rate \times (1 - % disct)

5. Mark-to-MV on dealer's position = $\frac{\text{Settlement day CF}}{1 + \text{Disct rate}*\left(\frac{t}{T}\right)}$

- 6. CF at settlement = Original contract size × (All-in-fwd rate for new, offsetting fwd position Original fwd rate)
- 7. Hedge Ratio =

 Nominal Value of derivatives contract

 MV of the hedged asset
- 8. $R_{DC} = (1 + R_{FC})(1 + R_{FX})-1$
- 9. R_{DC} (for multiple foreign assets) =

$$\sum_{i=1}^{n} \omega_{i} (1 + R_{FC,i}) (1 + R_{FX,i}) - 1$$

10. Total risk of DC returns =

$$=\sigma^2(R_{DC})\approx\sqrt{\frac{\sigma^2(R_{FC})+\sigma^2(R_{FX})+}{[2\sigma(R_{FC})\sigma(R_{FX})\rho(R_{FC},R_{FX})]}}$$

- 11. % Δ in spot X rate (% $\Delta S_{H/L}$) = Interest rate on high-yield currency (i_H) Interest rate on low-yield currency (i_L)
- 12. Forward Rate Bias = $\frac{F_{P/B} S_{P/B}}{S_{P/B}} = \frac{\frac{(i_P i_B)(\frac{t}{360})}{1 + i_B(\frac{t}{360})}}$
- 13. Net delta of the combined position = Option delta + Delta hedge
- 14. Size of Delta hedge (that would set net delta of the overall position to 0) =Option's delta × Nominal size of the contract

- 15. Long Straddle = Long atm put opt (with delta of -0.5) + Long atm call opt (with delta of +0.5)
- Short Straddle = Short ATM put opt (with delta of -0.5) + Short ATM call opt (with delta of +0.5)
 ATM = at the money opt = option
- 17. Long Strangle: Long OTM put option + Long OTM call optOTM = out of the money
- 18. Long Risk reversal = Long Call opt + Short Put opt
- 19. Short Risk reversal = Long Put opt + Short Call opt
- 20. Short seagull position = Long protective (ATM) put + Short deep OTM Call opt + Short deep OTM Put opt
- Long seagull position = Short ATM call + Long deep-OTM Call opt + Long deep-OTM Put opt
- 22. Hedge ratio =

 Principal face value of the derivatives

 contract used as a hedge

 Principal face of the hedged asset

23. Min or Optimal hedge ratio = ρ (R_{DC}; R_{FX}) $\times \left[\frac{\text{S.D } (R_{DC})}{\text{S.D } (R_{FX})} \right]$

Reading 19: Market Indexes and Benchmarks

- 1. Periodic R (Factor model based) = $Rp = a_p$ + $b_1F_1 + b_2F_2 + ... + b_KF_K + \varepsilon_p$
- 2. For one factor model $Rp = a_p + \beta_p R_I + \epsilon_p$ Where, R_I = periodic R on mktindex a_p = "zero factor" β_p = beta = sensitivity ϵ_p = residual return
- 3. MV of stock = No of Shares Outstanding × Current Stock Mkt Price
- 4. Stock wgt(float-weighted index) = Mktcap wght × Free-float adjustment factor
- 5. Price-weighted index (PWI) = $(P_1+P_2+...+P_n)/n$

Reading 20: Fixed-Income Portfolio Management – Part I

- 1. Steps to calculate PVdistribution (PVD) of CFs:
- a) Wght of Index's total MV attributable to

 CFs in each period =

 PV of CFs from B index for specific period

 PV of Total CFs from B

 where B = Benchmark

- b) Contribution of each period's CFs to portfolio D = D of each period × Wght of index CFs in specific period
- c) Benchmark's PVD =

 Cont of each period's CFs to portfolio D

 sum of all the periods' D cont
- 2. Active R = Portfolio's R B Index's R
- 3. Tracking Risk = S.D of Active R = $\left(\frac{\sum (\text{Active R-Mean Active R})^2}{n-1}\right)^{\frac{1}{2}}$
- 4. Semi-annual Total R = $\left(\frac{\text{Total Future Dollars}}{\text{Full Price of the Bond}}\right)^{\frac{1}{n}} 1$
- 5. Dollar D = D \times Portfolio Value \times 0.01
- 6. Portfolio's Dollar D = Sum of dollar D of securities in portfolio
- 7. Rebalancing Ratio = $\frac{\text{Original Dollar D}}{\text{New Dollar D}}$
- 8. Cash required for rebalancing = (Rebalancing ratio 1) × (total new MV of portfolio)
- 9. Controlling Position = Target Dollar D Current Dollar D
- 10. Contribution of bond/sector to the portfolio $D = \left(\frac{\text{MV of bond or sector in the Portfolio}}{\text{Total Portfolio Value}}\right) \times$ Effective D of bond or sector

- 11. Spread D of a Portfolio = Market wgtdavg of the sector spread D of the individual securities
- 12. Net safety rate of return (Cushion Spread) = Immunized Rate – Min acceptable R
- Dollar safety margin = Current bond portfolio value - PV of the required terminal value at new interest rate
- 14. Economic Surplus = MV of assets PV of liabilities
- 15. Confidence Interval =Target Return +/- (k) × (S.D of Target R) where, k = number of S.D around the expected target R

Reading 22: Fixed-Income Portfolio Management – Part II

- 1. $D ext{ of Equity} = \frac{(D ext{ of Assets} \times Assets) (D ext{ of Liab} \times Liab)}{Equity}$
- 2. $R_{p} = Portfolio RoR = \frac{Profit on borrowed funds + Profit on Equity}{Amount of Equity} = \frac{Profit on Equity}{Profit on Equity} = \frac{Profit on Equity}{Profit on$
- 3. Dollar interest =

 Amount borrowed × Repo rate × Repo term

- 4. New bond MV = $\frac{\text{Dollar D of Old Bond}}{\text{Duration of New Bond}} \times 100$
- 5. New bond Par value = $\frac{\text{Dollar D of Old Bond}}{\text{New Dollar D per Bond}} \times 100$
- 6. Shortfall risk = $\frac{\text{No of obs below the Target R}}{\text{Total No of Observations}}$
- 7. Target dollar D = Current dollar D without futures + Dollar D of futures position
- 8. No of Futures Contracts =

 Target \$D-Current \$D without futures

 D per futures contract
- 9. Dollar duration of futures contract =

 \$ D of Cheapest to
 Deliver issue
- 10. Hedge Ratio =

Factor exposure of the bond (portfolio)to be hedged
Factor exposure of Hedging instrument

or

Hedge Ratio =

(Conversion factor for CTD bond)

- 11. Basis = Cash (spot) price Futures price
- 12. Yield on bond to be hedged = a + (Yield Beta × yield on CTD Issue) + Error

- 13. Hedge ratio = $\frac{D_H P_H}{D_{CTD}P_{CTD}} \times Conversion$ factor for CTD Issue × Yield Beta
- 14. Interest rate Swap (fixed-rate receiver/floating rate payer) = Long a fixed-rate bond + Short a floating-rate bond
- 15. \$ D of a swap for a fixed-rate receiver (floating rate payer) = \$ D of a fixed-rate bond \$ D of a floating-rate bond OR
 \$ D of a swap for a fixed-rate receiver ≈ \$ D of a fixed-rate bond
- 16. Interest Rate Swap (*fixed-rate* payer/floating rate receiver) = Long a floating-rate bond + short a fixed-rate bond
- 17. \$ D of a swap for a fixed-rate payer = \$ D of a floating-rate bond \$ D of a fixed-rate bond
 OR
 \$ D of a swap for a fixed-rate payer ≈ -\$ D of a fixed-rate bond
- 18. \$ D of a portfolio that includes a swap = \$ D of assets \$ D of liabilities + \$ D of a swap position
- 19. D for an Option = Delta of Option × D of Underlying Instrument × (Price of underlying) / (price of Opt instrument) where Opt = Option

- 20. Payout to Opt Buyer or Opt value = MAX [(Strike value Value at maturity), 0]
- 21. Credit spread call Opt value/Payoff = Max [(Spread at the opt maturity Strike spread) × NP × Risk factor, 0]
- 22. Credit Forward Payoff = (Credit spread at the forward contract at maturity – Contracted credit spread) × NP× Risk factor
- 23. Change in Foreign bond Value (In terms of change in foreign yield only) = Duration × Δ Foreign yield × 100
- 24. Change in Foreign bond Value (when domestic rates change) = Duration \times Yield beta \times Δ Domestic yield \times 100
- 25. \triangle Yield Foreign = α + Yield beta or country beta (β) (\triangle yield Domestic) + ε
- 26. Estimated % Δ Value Foreign = Yield beta \times Δ Domestic yield
- 27. D Cont of Domestic Bond = Wght of domestic bond in Portfolio × D of Domestic Bond
- 28. D Cont of Foreign Bond = Wght of foreign bond in Portfolio × D of Foreign Bond × Country beta

- 29. Portfolio D = D Cont of Domestic Bond + D Cont of Foreign Bond
- 30. Interest rate parity = $F = S_0 \times [(1 + i_D) \div (1 + i_F)]$
- 31. Forward Premium = $(F-S_0) / S_0 = (i_D-i_F) / (1+i_F)$
- 32. Forward Premium (as first order linear approx) = $(F S_0) / S_0 \approx i_D i_F$
- 33. Unhedged R = Foreign bond R in local curr + curr return (or FC appreciation)
- 34. Hedged R (HR) = Foreign bond R in local curr + Forward discount (premium)
- 35. HR = Domestic risk-free rate + bond's local premium = HR = i_d + $(r_1 i_f)$
- 36. Bond's local risk premium = Bond's return local risk-free rate $(r_1 i_f)$
- 37. Breakeven Spread change = $\frac{\% \Delta Price}{D} \times 100$

Reading 23: Equity Portfolio Management

- 1. Active R = Portf's R B's return B = benchmark
- 2. Tracking Risk (active risk) = ann S.D of active R

- 3. Information Ratio =

 Active R

 Tracking Risk or Active Risk
- 4. Passive investment using Equity Index futures = Long cash + Long futures on the underlying index
- 5. Passive investment using Equity total return swaps = Long cash + Long swap on the index
- 6. R on Portf = $b_0 + (b_1 \times R \text{ on Index style 1})$ + $(b_2 \times R \text{ on Index style 2}) + \dots (b_n \times R \text{ on Index style n}) + \epsilon$
- 7. RoR of Equitized Mkt neutral strategy = (G/L on long & short securities positions + G/L on long futures position + Interest earned on cash from short sale) / Portfolio Equity
- 8. Active wgt = Stock's wgt in actively managed portf Stock's wgt in B
- 9. Info Ratio ≈ Info Coefficient × √Info Breadth
- 10. Risk-adjusted Expected Active R= $U_A = r_A \lambda_A \times \sigma^2_A$
- 11. Portfolio Active R = $\sum_{i=1}^{n}$ Wgt assigned to ith Mngr (hAi) × Active R of the ith Mngr (rAi)

12. Portfolio Active Risk =

$$\sum_{i=1}^{n} \text{Wgt assigned to ith Mnger}^2 \times \\ \text{Active R of ith Manager}^2$$

- 13. Mngr's "true" active R = Mngr's R Mngr's Normal B
- 14. Mnger's "misfit" active R = Mnger's normal B R Investor's B
- 15. Total Active Risk =

$$(True\ Active\ Risk)^2 + \\ (Misfit\ Active\ Risk)^2$$
Where,
$$True\ active\ risk = S.D\ of\ true\ active\ R$$

Misfit risk = S.D of misfit active R

- 16. True Information Ratio =

 Mngr's True Active R

 Mngr's True Active risk
- 17. Investors' net of fees alpha = Gross of fees alpha (or mngr's alpha) Investment mgmt fees

Reading 24: Alternative Investments Portfolio Management

Minority interest discount (\$) = marketable controlling interest value (\$) × minority interest(%) discount = (investor's interest in equity × total equity value) × minority interest discount(%)

- Marketable minority interest (\$) =
 Marketable controlling interest value (\$) minority interest discount (\$)
- 3. Marketability discount (\$) = Marketable minority interest (\$) × marketability discount (%)
- Non-Marketable minority interest (\$) =
 Marketable minority interest (\$) marketability discount (\$)
- 5. Total R on Commodity Index = Collateral R + Roll R + Spot R
- 6. Monthly Roll R = Δ in futures contract price over the month Δ in spot price over the month
- Compensation structure of Hedge Funds (comprises of) Management fee (or AUM fee) + Incentive fee
- 8. Management fee= % of NAV (net asset value generally ranges from 1-2%)
- 9. Incentive fee = % of profits (specified by the investment terms)
- 10. Incentive fee (when High Water mark Provision) = (positive difference between ending NAV and HWM NAV) × incentive fee %.
- 11. Hedge Fund R = [(End value) (Beg value)] / (Beg value)

- 12. Rolling $R = RR_{n,t} = (R_t + R_{t-1} + R_{t-2} + ... + R_{t-(n-1)} / n$
- 13. Downside Deviation = =

$$\sqrt{\frac{\sum_{i=1}^{n}[min(r_t-r^*,0)]^2}{n-1}}$$
where, $r^* = threshold$

14. Semi-deviation = =

$$\sqrt{\frac{\sum_{i=1}^{n}[\min(r_{t}-avg.\ monthly\ return,0)]^{2}}{n-1}}$$

- 15. Sharpe ratio = (Annualized RoR Annualized Rf rate) / Annualized S.D.
- 16. Sortino Ratio = (Annualized RoR Annualized Rf*) / Downside Deviation
- 17. Gain-to-loss Ratio = $\left(\frac{\text{No of months with+ve R}}{\text{No of months with-ve R}} \right) \times \left(\frac{\text{Avg up month R}}{\text{Avg down month R}} \right)$
- 18. Calmar ratio = Compound Annualized ROR / ABS* (Maximum Drawdown)
- 19. Sterling ratio= Compound Annualized ROR / ABS*(Average Drawdown 10%)where, *ABS = Absolute Value

Reading 25: Risk Management

- 1. Delta Normal Method: VAR = E(R) zvalue (S.D)
 - Daily E(R) = Annual E(R) / 250

- Daily S.D = Annual S.D. $/\sqrt{250}$
- Monthly E(R) = Annual E(R) / 12
- Monthly S.D = Annual S.D. $/\sqrt{12}$
- Daily E(R) = Monthly E(R) / 22
- Daily S.D = Monthly S.D. $/\sqrt{22}$
- Annual VAR = Daily VAR $\times \sqrt{250}$
- 2. Diversification effect = Sum of individual VARs Total VAR
- Incremental VAR=Portf's VAR inclu a specified asset – Portf's VAR exclu that asset.
- 4. Tail Value at Risk (TVAR) or Conditional
 Tail Expectation = VAR + expected loss in
 excess of VAR
- 5. Value $_{Long} = Spot_{t} [Forward / (1 + r)^{n}]$
- 6. Swap $Value_{Long} = PV_{inflows} PV_{outflows}$
- 7. Fwd contract value_{Long=} $\frac{Spot Rate_{D/F}}{(1+RF_F)^{Total time}} \frac{Fwd Rate}{(1+RF_p)^{Total time}} \times NP$
- 8. Sharpe Ratio = $\frac{\text{Mean portf R-Rf}}{\text{S.D. of portf R}}$
- 9. Sortino Ratio = $\frac{\text{Mean portf R-Min acceptable R}}{\text{Downside deviation}}$
- 10. Risk Adjusted R on Capital = Expected R on an invst capital at risk measure

11. R over Max Drawdown =

Expected Average R on an invst in a given yr

max drawdown

Reading 26: Risk Management Applications of Forward and Futures Strategies

- 1. $\beta = \text{Cov}_{SI} / \sigma^2_I$
 - Cov_{SI}= covariance b/w stock portf& index
 - σ^2 = var of index.
- 2. $\$\beta$ of stock portf = β of stock portf \times MV of stock portf = β_s S
- 3. Future $\beta = \beta_f \times f$ where, $\beta_f = F$ utures contract beta
- 4. Target level of beta exposure: $\beta_T S = \beta_s S + N_f \beta_f f$

$$\begin{aligned} N_f &= \binom{B_T - B_S}{B_f} \binom{S}{F} \\ N_f &= \frac{\text{Desired Beta Change}}{\text{Futures Beta}} \times \\ &\underbrace{\frac{\text{Portfolio Value}}{\text{Portfolio Value}}} \end{aligned}$$

Futures contract Price

*Actual futures price = Quoted futures price × Multiplier

- 5. Reducing β to zero: $N_f = \left(\frac{-B_S}{B_f}\right) \left(\frac{S}{f}\right)$ and β_T
- 6. Effective β = Combined position R in % / Market R in %

- 7. Synthetic Cash: Long Stock + Short Futures = Long risk-free bond
- 8. Synthetic Stock: Long Stock = Long Rf bond + Long Futures
- 9. Creating a Synthetic Index Fund:
- No of futures contract = N_f^* = $\{V \times (1 + r)^T\}/(q \times f)$ where, $N_f^* = No \ of futures \ contracts$ q = multiplier $V = Portfolio \ value$
- Amount needed to invest in bonds = V* = $(N_f^* \times q \times f) / (1 + r)^T$
- Equity purchased = $(N_f^* \times q) / (1 + \delta)^T$ where, $\delta = dividend \ yield$
- Pay-off of N_f* futures contracts = N_f*× q
 ×(S_T-f)
 where,S_T = Index value at time T

Reading 27: Risk Management Applications of Options Strategies

- 1. Covered Call = Long stock position + Short call position
 - a) Value at expiration = $V_T = S_T max(0, S_T X)$
 - b) Profit = $V_T S_0 + c_0$
 - c) Maximum Profit = $X S_0 + c_0$
 - d) Max loss (when $S_T = 0$) = $S_0 c_0$
 - e) Breakeven = S_T * = $S_0 c_0$
- 2. Protective Put = Long stock position + Long Put position

- a) Value at expiration: $V_T = S_T + max(0, X S_T)$
- b) Profit = $V_T S_0 p_0$
- c) Maximum Profit = ∞
- d) Maximum Loss = $S_0 + p_0 X$
- e) Breakeven = S_T * = $S_0 + p_0$
- 3. Bull Call Spread = Long Call (lower exercise price) + Short Call (higher exercise price)
 - a) Initial value = $V_0 = c_1 c_2$
 - b) Value at expiration: V_T = value of long call Value of short call = max $(0, S_T X_1)$ max $(0, S_T X_2)$
 - c) Profit = $V_T c_1 + c_2$
 - d) Maximum Profit = $X_2 X_1 c_1 + c_2$
 - e) Maximum Loss = $c_1 c_2$
 - f) Breakeven = $S_T^* = X_1 + c_1 c_2$
- 4. Bull Put spread = Long Put (lower XP) +
 Short Put (higher XP). Identical to the sale
 of Bear Put Spread
 XP = exercise price
- 5. Bear Put Spread = Long Put (higher XP) + Short Put (lower XP)
 - a) Initial value = $V_0 = p_2 p_1$
 - b) Value at expiration: V_T = value of long put value of short put = max (0, X₂.S_T) max (0, X₁.S_T)
 - c) Profit = $V_T p_2 + p_1$
 - d) Max Profit = $X_2 X_1 p_2 + p_1$
 - e) $MaxLoss = p_2 p_1$

- f) Breakeven = $S_T^* = X_2 p_2 + p_1$
- 6. Bear Call Spread = Short Call (lower XP)+ Long Call (higher XP). Identical to the sale of Bull Call Spread.
- Long Butterfly Spread (Using Call) = Long Butterfly Spread = Long Bull call spread + Short Bull call spread (or Long Bear call spread)

Long Butterfly Spread = (Buy the call with XP of X_1 and sell the call with XP of X_2) + (Buy the call with XP of X_3 and sell the call with XP of X_2).

where, $X_1 \le X_2 \le X_3$ and Cost of $X_1(c_1) \ge$ Cost of $X_2(c_2) \ge$ Cost of $X_3(c_3)$

- a) Value at expiration: $V_T = max (0, S_T X_1) 2 max (0, S_T X_2) + max (0, S_T X_3)$
- b) Profit = $V_T c_1 + 2c_2 c_3$
- c) Max Profit = $X_2 X_1 c_1 + 2c_2 c_3$
- d) Maximum Loss = $c_1 2c_2 + c_3$
- e) Two breakeven points
 - i. Breakeven = S_T * = X_1 + net premium = X_1 + c_1 - $2c_2$ + c_3
 - ii. Breakeven = S_T * = $2X_2 X_1$ Net premium = $2X_2 - X_1 - (c_1 - 2c_2 + c_3) = 2X_2 - X_1 - c_1 + 2c_2 - c_3$
- 8. Short Butterfly Spread (Using Call) = Selling calls with XP of X_1 and X_3 and buying two calls with XP of X_2 .

- Max Profit = $c_1 + c_3 2c_2$
- 9. Long Butterfly Spread (Using Puts) = (Buy put with XP of X_3 and sell put with XP of X_2) + (Buy the put with XP of X_1 and sell the put with XP of X_2) where, $X_1 < X_2 < X_3$ and Cost of $X_1(p_1) < Cost$ of $X_2(p_2) < Cost$ of $X_3(p_3)$
- 10. Short Butterfly Spread (Using Puts) = Short butterfly spread = Selling puts with XPs of X_1 and X_3 and buying two puts with XP of X_2 .
 - Max Profit = $p_3 + p_1 2p_2$
- 11. For zero-cost collar
 - a) Initial value of position = $V_0 = S_0$
 - b) Value at expiration: $V_T = S_T + max (0, X_1 S_T) max (0, S_T X_2)$
 - c) Profit = $V_T V_0 = V_T S_0$
 - d) Max Profit = $X_2 S_0$
 - e) Max Loss = $S_0 X_1$
 - f) Breakeven = S_T * = S_0
- 12. Straddle = Buying a put and a call with same strike price on the same underlying with the same expiration; both options are at-the-money.
 - a) Value at expiration: $V_T = max (0, S_T X) + max (0, X S_T)$
 - b) Profit = $V_T p_0 c_0$
 - c) Max Profit = ∞
 - d) Max Loss = $p_0 + c_0$
 - e) Breakeven = $S_T^* = X \pm (p_0 + c_0)$

- 13. Short Straddle: Selling a put and a call with same strike price on the same underlying with the same expiration; both options are at-the-money.
 - Adding call option to a straddle "Strap".
 - Adding put option to a straddle "Strip".
- 14. Long Strangle = buying the put and call on the same underlying with the same expiration but with *different exercise prices*.
- 15. Short Strangle = selling the put and call on the same underlying with the same expiration but with *different exercise prices*.
- 16. Box-spread = Bull spread + Bear spread
- 17. Long Box-spread= (buy call with XP of X_1 and sell call with XP of X_2) + (buy put with XP of X_2 and sell put with XP of X_1).
 - a) Initial value of the box spread = Net premium = $c_1 c_2 + p_2 p_1$.
 - b) Value at expiration: $V_T = X_2 X_1$
 - c) Profit = $X_2 X_1 (c_1 c_2 + p_2 p_1)$
 - d) Max Profit = same as profit
 - e) Max Loss = no loss is possible given fair option prices

- f) Breakeven = S_T* = no break-even; the transaction always earns Rf rate, given fair option prices.
- 18. Pay-off of an interest rate Call Option=
 (NP) × max (0, Underlying rate at expiration X-rate) ×

 (Days in underlying rate)
 360
- 19. Pay-off of an interest rate Put Option=
 (NP) × max (0, X-rate Underlying rate at expiration) × $\left(\frac{\text{Days in underlying rate}}{360}\right)$
- 20. Loan Interest payment = NP × (LIBOR on previous reset date + Spread) × $\left(\frac{\text{Days in settlement period}}{360}\right)$
- 21. Cap Pay-Off = NP × (0, LIBOR on previous reset date X rate) × $\left(\frac{\text{Days in settlement period}}{360}\right)$
- 22. Floorlet Pay-Off = NP × (0, X rate LIBOR on previous reset date) × $\left(\frac{\text{Days in settlement period}}{360}\right)$
- 23. Effective Interest = Interest received on the loan + Floorlet pay-off
- 24. Delta = $\frac{\text{Change in Option Price}}{\text{Change in Underlying Price}} = \frac{\Delta C}{\Delta S}$
- 25. Size of the Long position = Nc / Ns = -1 / $(\Delta C / \Delta S) = -1 / Delta$

- where, Nc = No of call optionsNs = No of stocks
- 26. Hedging using non-identical option:
- a) One option has a delta of $\Delta 1$.
- b) Other option has a delta of $\Delta 2$.
- c) Value of the position = $V = N_1 c_1 + N_2 c_2$ where, N = option quantity & c = optionprice
- d.) To delta hedge: Desired Quantity of option 1 relative to option $2 = \frac{\text{Delta of option 2}}{\text{Delta of option 1}}$ $N_1 / N_2 = -\Delta c_2 / \Delta c_1$
- 27. Gamma = $\frac{\text{Change in delta}}{\text{Change in underlying price}}$
- 28. Gamma hedge = Position in underlying + Positions in two options
- $29. \quad Vega = \frac{\text{Change in Option price}}{\text{Change in Volatility of the underlying}}$

Reading 28: Risk Management Applications of Swap Strategies

- 1. NP of a swap (to manage D of portf.) = $NP = V_P \left(\frac{MD_{target} MD_B}{MD_{swap}} \right)$
- 2. Inverse Floater Coupon rate = b LIBOR
- 3. When LIBOR > b, inverse floater issuer should buy an interest rate cap with the following features:

- exercise rate of b
- NP = NP of inverse floater
- Each caplet expires on the interest rate reset date of the swap/loan
- Whenever Libor > b, Caplet payoff = $(L - b) \times NP$
- 4. Synthetic Dual-currency Bond = Ordinary bond issued in one currency Currency swap (with no principal payments)

Reading 29: Execution of Portfolio Decisions

- 1. Bid-ask Spread = Ask price Bid price
- Inside/Mkt bid-ask spread = Inside/Mkt Ask Price – Inside/Mkt Bid Price
- 3. Mid-Quote = $\frac{\text{Mkt Bid Price} + \text{Mkt Ask Price}}{2}$
- 4. Effective Spread = 2 × (Actual Execution Price MidQuote)
- 5. Avg Effective Spread (ES) =

 ES of order 1+ ES of order 2 +···+ ES of order n
- 6. Share Volume Wgtd (VW) ES = [(V of shares traded for order 1 × ES of order 1) + (V of shares traded for order 2 × ES of order 2) + ····+ (V of shares traded for order n × ES of order n)/n

- VW Avg price = Avg P (security traded during the day)
 Where, weight is the fraction of the day's volume associated with the trade
- Mkt-adj Implementation Shortfall (IS) = I cost Predicted R estimated using Mkt model
- 9. Trade Size relative to Available Liquidity $= \frac{\text{Order size}}{\text{Avg daily volume}}$
- 10. Realized profit/loss = Execution price Relevant decision price
- 11. Delay costs = $\frac{\text{No of shares actually traded}}{\text{Total No of shares in an order}} \times \frac{\text{Actual trading price on Day t} CP \text{ on day t} 1}{\text{Benchmark (closing)price on day t}_0}$ where $CP = closing \ price$
- 12. Missed Trade Opp Cost =

 No of shares not traded
 Total no of shares in an order
 Cancellation price -Original B price
 Original B price
 where B = benchmark
- 13. IC = Commissions & Fees as % + Realized profit or loss + Delay costs + Missed trade opp costs
- 14. Estimated Implicit Costs for "Buy" = Trade Size × (Trade Price B Price)
- 15. Estimated Implicit Costs for "Sale" = Trade Size × (B Price Trade Price)

Reading 30: Monitoring and Rebalancing

- 1. Buy and Hold Strategy:
- Portfolio value = Investment in stocks + Floor value
- Portfolio R = % in stock $\times R$ on stocks
- Cushion = Investment in stocks = Portfolio value - Floor value
- Target Investment in Stocks under Constant Mix Strategy = Target proportion in stocks × Portfolio Value
- Target Investment in Stocks under Constant Proportion Strategy = Target proportion in stocks × (Portfolio Value – Floor value)

Reading 31: Evaluating Portfolio Performance

- 1. Account's rate of return during evaluation period 't'

 - when a contribution received (start of the period) =
 MV (end of period)-(MV (beg of period)+contribution)
 MV (beg of period)+ Contribution
 - when a withdrawal is made (start of the period) =

 MV (end of period) (MV (beg of period) contribution)

 MV (beg of period) Contribution

- when a contribution is received at the end of the evaluation period =
 (MV (end of period) contribution) MV (beg of period)
 MV (beg of period)
- when a withdrawal is made at the end of the evaluation period =
 (MV (end of period) + contribution)-MV (beg of period)

 MV (beg of period)
- 2. TWR (when no external CFs) =

 Mkt value at end of period–Mkt value at beginning of period

 Mkt value at beginning of period
- 3. TWR (entire evaluation period) = $(1 + r_{t,1})$ $\times (1 + r_{t,2}) \times ... \times (1 + r_{t,n}) - 1$
- 4. $MWR = MV_1 = MV_0(1+R)^m + CF_1(1+R)^m$ $L^{(1)} + ... + CF_n(1+R)^{m-L(n)}$ where, m = No of time units in evaluation period L(i) = No of time units by which the i^{th} CF is separated from beg of evaluation period
- 5. Compound g rate or geometric mean $R = (1 + r_{t,1}) \times (1 + r_{t,2}) \times ... \times (1 + r_{t,n})^{1/n} 1$ Where, n = No of yrs in measurement period
- 6. Style = Manager's B portf Mrkt index
- 7. Active Mgmt = Manager's portf B
- 8. Portf R = MrkeIndex + Style + Active Mgmt

- 9. Periodic R on an a/c (factor-based model) = $\alpha p + (b_1 \times F_1) + (b_2 \times F_2) + ... + (b_k \times F_k) + \epsilon p$
- 10. Benchmark coverage =

 MV of securities that are present in both B & portf

 Total MV of portf
- 11. Active position = Wght of a security in an account Wght of the same security in B
- 12. Value-added R on a long-short portf = Portf R B
- 13. RoR for a long-short portf =

 P/L resulting from hedge fund strategy =

 Amount of assets at risk
- 14. P/L resulting from hedge fund strategy
 Absolute value of all (long positions + short positions)
- 15. Fundamental rule of Active Mgmt: Impact = (active) wght × R
- 16. Δ in value of fund = Total amount of net contributions
- 17. Ending value of a fund under the Net Contributions investment strategy = Beginning value + Net contributions
- 18. Δ in Fund's value = End value of a fund under the Rf asset Invst strategy Begvalue (i.e. ending value of the fund under the Net Contributions investment strategy)

- 19. R-metric perspective: Incremental R contribution of the Asset Category investment strategy = $\sum_{i=1}^{A} W_i \times (R_{Ci} R_f)$
- 20. Value-metric perspective: Incremental contribution of the Asset Category investment strategy = Sum [(Each asset category's policy proportion of the Fund's beg value and all net external cash inflows) × (Asset category's B RoR Rf rate)]
- 21. Aggregate manager B R under B level invstmnt strategy = Wghtd* Avg of IndMngr's B R
- 22. Return-metric perspective: Incremental return contribution of the B strategy = $\sum_{i=1}^{A} \sum_{j=1}^{M} W_i \times W_{ij} \times (r_{Bij} r_{Ci})$
- 23. Value-metric perspective: Incremental contribution of the B strategy = Sum [each manager's policy proportion of the total fund's beg value and net external cash inflows × (manager's B R R of manager's asset category)]
- 24. Misfit R or Style bias = R generated by the aggregate of the managers' B R generated by the aggregate of the asset category B
- 25. Return to the Investment managers level = Sum (active managers' returns their benchmark returns)

- 26. Return-metric perspective: Contribution of the Investment Managers strategy = $r_{IM} = \sum_{i=1}^{A} \times \sum_{j=1}^{M} W_i \times W_{ij} \times (r_{Aij} r_{Bij})$
- 27. Allocation Effects incremental contribution = Fund's ending value Value calculated at the Investment Managers level
- 28. Value-added/active return = Portf R B R
- 29. Security-by-security analysis: $r_i = \sum_{i=1}^{n} [(W_{pi} W_{Bi}) \times (r_i r_B)]$
- 30. Value-added return under Holdings-based or "buy-and-hold" attribution= $\sum_{j=1}^{S} W_{pj} \times r_{pj} \sum_{j=1}^{S} W_{Bj} \times r_{Bj}$
- 31. Value-added Return = Pure sector allocation + Allocation/selection interaction + Within sector selection
- 32. Pure sector Allocation = $\sum_{i=1}^{n} (W_{pj} W_{Bj}) \times (r_{Bj} r_{B})$
- 33. Within sector Selection = $\sum_{j=1}^{S} W_{Bj} (r_{Pj} r_{Bj})$
- 34. Allocation/selection Interaction = $\sum_{i=1}^{n} (W_{Pi} W_{Bi}) \times (r_{Pi} r_{Bi})$

- 35. Interest rate Mgmt contribution = Agg R(re-priced securities) R of entire Treasury universe
- 36. Sector/quality return = Gross R External interest rate effect Interest rate Mgmt effect
- 37. Security selection effect for each security = Total R of a security all the other components.
- 38. Portf security selection effect = Mkt value WghtdAvg of all individual security selection effects
- 39. Trading activity = Total Portf R (Interest rate mgmt effect + sector/quality effect + security selection effect)
- 40. Alpha = $\alpha = r_P [r_f + \beta_P (r_M r_f)]$
- 41. Treynor's measure = $T_A = \frac{\overline{R}_A \overline{r}_f}{\widehat{\beta}_A}$
- 42. Sharpe ratio = $\frac{\overline{R}_A \overline{r}_f}{\widehat{\sigma}_A}$
- 43. $M^2 = \bar{r}_f + \left[\frac{R_A \bar{r}_f}{\hat{\sigma}_A}\right] \hat{\sigma}_M$
- 44. Information ratio = $IR_A = \frac{\bar{R}_A \bar{R}_B}{\hat{\sigma}_{A-B}}$