Advanced Topics in Statistics 2020/2021 Homework set 4

- 1. Using the definition, show that (\bar{X}, S^2) is sufficient for (μ, σ^2) in the context of a random sample of size n from a $N(\mu, \sigma^2)$ population, where $\mu \in \mathbb{R}$ and $\sigma > 0$. Show the same result using the factorization criterion.
- 2. Consider a random sample of size 3 from a $B(1,\theta)$ population. Define the sample space and show that the following statistics are all equivalent:

$$T = (X_{(1)}, X_{(2)}, X_{(3)})$$

$$U = (X_1 + X_2 + X_3, X_1X_2 + X_1X_3 + X_2X_3, X_1X_2X_3)$$

$$V = (X_1 + X_2 + X_3, X_1^2 + X_2^2 + X_3^2, X_1^3 + X_2^3 + X_3^3)$$

- 3. Let $\Pi^1 = \{\Pi^1_\alpha : \alpha \in A\}$ e $\Pi^2 = \{\Pi^2_\beta : \beta \in B\}$ denote two partitions of the sample space \mathcal{X} . We say that Π^1 is finer than Π^2 iff for all $\alpha \in A$ there exists $\beta \in B$ such that $\Pi^1_\alpha \subset \Pi^2_\beta$. Show that if Π^1 is induced by the statistics T_1 and T_2 is induced by the statistic T_2 , than to say that T_2 is finer that T_2 is equivalent to state that $T_2(x) = g(T_1(x))$ for all $x \in \mathcal{X}$, that is, that T_2 is a function of T_1 .
- 4. Determine minimal sufficient statistics in the context of random samples of size n extracted from the following models:
 - (a) Shifted exponential: $f(x \mid \lambda, \delta) = \delta e^{-\delta(x-\lambda)} I_{[\lambda, +\infty)}(x), \ \lambda, \delta > 0$
 - (b) Logistic: $f(x \mid \lambda) = e^{-(x-\lambda)}/[1 + e^{-(x-\lambda)}]^2$, $\lambda \in \mathbb{R}$
 - (c) Double exponential, or Laplace: $f(x \mid \lambda) = \frac{1}{2}e^{-|x-\lambda|}, \lambda \in \mathbb{R}$
 - (d) Cauchy: $f(x \mid \lambda) = {\pi[1 + (x \lambda)^2]}^{-1}, \lambda \in \mathbb{R}$
- 5. Show that the family of distributions of X is part of the location-scale family with location parameter λ and scale parameter δ if and only if the distribution of the random variable $(X \lambda)/\delta$ does not depend on the unknown parameters (λ, δ) .
- 6. Show that in the context of a statistical model $\mathcal{F} = \{f(\cdot \mid \theta) : \theta \in \Theta\}$ the class of sufficient and complete statistics is either empty or it coincides with the class of minimal sufficient statistics.
- 7. Show that in the context of the Cauchy model defined by

$$f(x \mid \lambda) = {\pi[1 + (x - \lambda)^2]}^{-1}, \ \lambda \in \mathbb{R}$$

the statistic $T = (T_1, \ldots, T_n)$ with $T_i = X_{(n)} - X_{(i)}$, $i = 1, \ldots, n-1$ and $T_n = X_{(n)}$ is minimal sufficient and n-1 of its components are ancillary. What can we say about the completeness of T?