Lecture 12-13 20-21.2.2025

Today's agenda:

Primitive recursive functions Design of arithmetic operations

Basic functions:

pass any number of arguments, the output basic functions $N = \{0, 1, \dots, \}$ include zero, will always be 0. (a) For any $k \geq 0$, $\frac{zero_k(n_1\cdots n_k)=0}{}$ for all $n_1\cdots n_k\in N$ [k-ary zero function] identity and

j will vary from 1 to k (b) For any $k \ge j > 0$, $id_{\{k,j\}}(n_1 \cdots n_k) = n_j$ for all $n_1 \cdots n_k \in N$

[k-ary identity function]

successor function

(c) succ(n) = n + 1 for all $n \in N$

Complex functions:

- (1) Let $k, l \ge 0$, $g: N^k \mapsto N$ (g: k-ary), h_1, \dots, h_k be l-ary function. Composition of g with h is a I-ary function f: $f(n_1, \dots, n_l) = g(h_1(n_1, \dots, n_l), \dots, h_k(n_1, \dots, n_l))$
- (2) let $k \ge 0$, g: k-ary, h: k+2 ary, f: k+1 ary recursively defined $f(n_1,\cdots,n_k,0)=g(n_1,\cdots,n_k)$ $f(n_1, \dots, n_k, m+1) = h(n_1, \dots, n_k, m, f(n_1, \dots, n_k, m))$ for all $n_1 \dots n_k \in N$

Complex functions include composition and recursion. Also, g and h will be one of the basic or complex functions.

Primitive recursive functions are all basic functions and all functions that can be obtained by any number of successive applications of composition and recursion.

Examples:

- 1. plus2(n) = n + 2in (1) let l=1, k=1, $g=h_1=succ$ plus2 is a composition so use 4th rule. plus2(n) = succ (succ(n))
- 2. plus(n,m) = n + min (2), k=1, $g = id_{\{1,1\}}$ $plus(n,0) = id_{\{1,1\}}(n) = n$ plus(n, m + 1) = h(n, m, plus(n, m)) $h(n, m, plus) = succ \left(id_{\{3,3\}} (m, n, plus)\right)$ plus(n, m + 1) = succ(plus(n, m))

plus is a recursion in lambda calculus and hence, use 5.

- 3. $mult(m, n) = m \cdot n$ mult(m, 0) = zero(m) = 0mult(m, n + 1) = h(m, n, mult(m, n)) $h = plus\left(m, id_{\{3,3\}}\left(m, n, mult\right)\right)$ mult(m, n + 1) = plus(m, mult(m, n))
- 4. $\exp(m, 0) = \operatorname{succ}(\operatorname{zero}(m)) = 1$ $\exp(m, n + 1) = mult(m, \exp(m, n))$

we want to add first and third argument here. Hence, plus $(n,m) = add (id \{3,1\} (n,m-1,plus(n,m-1)), id \{3,3\} (n,m-1,plus(n,m-1)))$

The above result formed by applying composition after recursion. Same can be done for exponent.

We can now define less than function, remember that predecessor of 0 will give always 0

Arithmetic

```
0 = \lambda f. \lambda y. y 1 = \lambda f. \lambda y. f y 2 = \lambda f. \lambda y. f (f y) n = \lambda f. \lambda y. f (f....(fy))...) n times
```

 $S = \lambda n. \lambda f. \lambda y. f (n f y)$ successor function

plus = λm . λn . λf . λy . m f (n f y)

multiply = $\lambda m. \lambda n. \lambda f. \lambda y. n (m f) y$

exponent = λm . λn . n m (to encode m^n) Note: there is no λf . λy

Consider any primitive recursive function encoding given above. Can we design a TM for the function, i.e. a TM encoding? Yes. Can we give an encoding in pure LC? Yes. From this we can say that LC and TM are equivalent.

To put it simply, whatever can be done using one of them can also be done using the other. Moreover, if something cannot be done in one of them, then it cannot be done in the other.

Given the above encodings for numerals, how to prove 1+1 = 2?

Method1: LHS: use successor of 1 and verify that the result is the encoding of 2 (RHS).

Method2: LHS: use plus and verify that the result is the encoding of 2 (RHS).

--

Design of the plus function:

 $S = \lambda n. \lambda f. \lambda y. f (n f y)$ successor function let plus = $\lambda m. \lambda n. \lambda f. \lambda y. M N$ now, plus(m,n) will have (m+n)-f s. we know how to extract n-f s. so N = (n f y). if we have a placeholder to replace it with these n-f s, then we are done. now, $m = \lambda f. \lambda y. f(f....(fy))...)$ m times, after consuming m and n in plus we have: $\lambda f. \lambda y. M N$

Since m has to occur in (M N), so let M = m; now we get $\lambda f.\lambda y.$ $\lambda f.\lambda y.$ $\lambda f.\lambda y.$ $\lambda f.\lambda y.$ $\lambda f.\lambda y.$

We need to get rid of the inner λf and λy . We need two arguments: now we have one –i.e., N. so introduce the argument f to consume λf . N will consume λy . We now have (m+n)-number of f s. thus M = m f and so we have $\frac{1}{2} \sum_{n=1}^{\infty} \frac{1}{2} \sum_{n=1}^{$

End of lecture