CONCEPTOS CLAVE HASTA AQUÍ

Modelo de ML Aprendizaje Supervisado, No Supervisado y por Refuerzo Problemas de Clasificación y de Regresión.

Datasets

- Labeling
- Training + Validation + Test
- Cross Validation

Entrenamiento e
Inferencia
Minimizar el error de
entrenamiento (pero
generalizando!)
Underfitting y
Overfitting

Parámetros de una red neuronal

- Capas de entrada y de salida
- Cantidad de neuronas en capas ocultas
- Pesos
- Función de activación
- Batch
- Learning rate
- Algoritmo de convergencia
- Optimizadores

Redes convolucionales

- Capas de convolución
- Filtros (kernels)
- Feature map
- Capas de pooling
- AVG y MAX
- Softmax
- Dropout
- DNN populares
 - LeNet, AlexNet, VGG-16, GoogLeNet (Inception v3), ResNet-50

Otras arquitecturas

- RNN: agregan persistencia
 - Lazos"
 - Usadas con series y variables temporales
- LSTM
- GAN
 - Generadora + Discriminadora
 - Múltiples aplicaciones

Adversarial Examples

- Cuestionan la confiabilidad de las DNN.
- Indistinguibles al ojo humano.
- Distintos ataques.
- Distintas defensas.

29/11/2019 MACHINE LEARNING: FUNDAMENTOS Y APLICACIONES

EJEMPLO DE UN SISTEMA ML ACTUAL

Input Data

Deep Learning System

Detección de enfermedades de la piel (Sep2019).

• Juntaron datos e imágenes durante 9 años, para recién poder entrenar y validar el sistema.

EJEMPLO DE UN SISTEMA DE ML ACTUAL

OPCIONES DE UN SISTEMA DE ML

LIMITACIONES DE MACHINE LEARNING

POCOS DATOS

- O pocos datos de calidad.
- Se usa mucho una técnica conocida como **Data Augmentation**.

Not so well when it is this:

EL CÍRCULO VIRTUOSO DE MACHINE LEARNING

The Virtuous Cycle of AI

LIMITACIONES DE MACHINE LEARNING

Falta de interpretabilidad

- A fin de cuentas, son como grandes cajas negras.
- Muy difíciles de hacer un debug.
- Muy difíciles de auditar.

LIMITACIONES DE MACHINE LEARNING

Desviaciones algorítmicas (bias)

- Un algoritmo de DL es tan bueno como los datos con los que es entrenado.
- Puede haber desviaciones más evidentes, y otras mucho más difíciles de detectar.

Falta de Generalización

- Muy específicos.
- Dos tipos de generalización: interpolación y extrapolación.

No aplicables a problemas relacionados a razonamiento.

¿Quién es más alto, mi hijo o yo?

¿FUTURO

de

Machine Learning?

TIENEN UN GRAN PRESENTE!!!

Cada vez habrá más aplicaciones

Cada vez más novedosas.

INVESTIGACIONES SOBRE MACHINE LEARNING

Obtener idéntica precisión con muchos menos datos.

Obtener idéntica precisión con mucho menos procesamiento y usando mucha menos memoria.

AlexNet to AlphaGo Zero: A 300,000x Increase in Compute (Log Scale)

INVESTIGACIONES SOBRE MACHINE LEARNING

Ponerlo en funcionamiento en dispositivos embebidos autónomos (independientes de grandes servidores).

Comprender cómo funcionan las capas de una red profunda.

PROYECTO — OBJETIVO

Clasificación binaria de imágenes de perros en dos razas distintas

Partiendo de un dataset, de un código para preprocesamiento de las imágenes, y de una arquitectura de dada, mejorar el resultado de la arquitectura original mediante distintas técnicas de optimización.

PROYECTO — DATASET

20.500 Imágenes de perros tomadas de ImageNet, clasificadas en 120 razas diferentes

Training set: 50 %

Test set: 50 %

Archivo csv que realiza un mapeo entre las razas y los nombres (ids) de las imágenes

PROYECTO — ARQUITECTURA DEL MODELO

Entrada: 300 x 300 pixeles

5 Bloques Convolucionales

2 Bloques Totalmente Conectados

2 Neuronas de Salida

Precisión base del modelo: 75 %

PROYECTO — TAREA

Probar y mejorar la precisión del modelo en el conjunto de entrenamiento a través de la aplicación de estrategias de mejora.

Propuestas:

- Mayor Dropout
- Modificar los parámetros de la red convolucional
- Modificar los parámetros de la red totalmente conectada
- Aumentar la cantidad de datos
- Recortar el fondo de las imágenes

PROYECTO — ENTREGA

Compartirnos su notebook, o enviarnos el link.

- gdeamicis 1 1@gmail.com
- nickmpad@gmail.com

Fecha límite propuesta: Lunes 09/12

Consultas por mail, o en el grupo de Facebook

REPASO OBJETIVOS DEL CURSO

- Conocer y manejar los distintos parámetros que intervienen en el diseño de un sistema de machine learning
- Conocer y manejar distintos tipos de redes neuronales, según el tipo de aplicación
- Desarrollar 2 proyectos sencillos de reconocimiento de imágenes utilizando redes neuronales profundas
- Desarrollar un proyecto de complejidad media de machine learning

CONCEPTOS CLAVE HASTA AQUÍ

Modelo de ML Aprendizaje Supervisado, No Supervisado y por Refuerzo Problemas de Clasificación y de Regresión.

Datasets

- Labeling
- Training + Validation + Test
- Cross Validation

Entrenamiento e Inferencia Minimizar el error de entrenamiento (pero generalizando!) Underfitting y Overfitting

Parámetros de una red neuronal

- Capas de entrada y de salida
- Cantidad de neuronas en capas ocultas
- Pesos
- Función de activación
- Batch
- Learning rate
- Algoritmo de convergencia
- Optimizadores

Redes convolucionales

- Capas de convolución
- Filtros (kernels)
- Feature map
- Capas de pooling
- AVG y MAX
- Softmax
- Dropout
- DNN populares
- LeNet, AlexNet, VGG-16, GoogLeNet (Inception v3), ResNet-50

Otras arquitecturas

- RNN: agregan persistencia
 - · "Lazos"
 - Usadas con series y variables temporales
- LSTM
- GAN
 - Generadora + Discriminadora
 - Múltiples aplicaciones

Adversarial Examples

- Cuestionan la confiabilidad de las DNN.
- Indistinguibles al ojo
- Distintos ataques.
- Distintas defensas.

29/11/2019 MACHINE LEARNING: FUNDAMENTOS Y APLICACIONES

CONCLUSIONES

Vivimos en una "era de Machine Learning"

Hardware + Datos + Algoritmos

Distintos tipos de ML

Entrenamiento e Inferencia

Diferentes problemas → Diferentes soluciones

- Imágenes → CNN
- Audio, NLP → RNN
- Otros \rightarrow ...

BIBLIOGRAFÍA Y REFERENCIAS

Libros

- Machine Learning; Tom Mitchel
- Deep Learning Book; Ian Goodfellow, Yoshua Bengio, Aaron Courville
- Deep Learning with Python; François Chollet
- The Hundred-Page Machine Learning Book; Andriy Burkov
- Y más...

Cursos Online

- Machine Learning, Andrew Ng (Stanford Coursera)
- coursera.org, deeplearning.ai, udacity.com, udemy.com, edx.org
- medium.com
- Y muchos, muchos, muchos más...

23

iMUCHAS GRACIAS!

29/11/2019 MACHINE LEARNING: FUNDAMENTOS Y APLICACIONES