CS201: Data Structures and Discrete Mathematics I

Introduction to trees and graphs

Trees

What is a tree?

- Trees are structures used to represent hierarchical relationship
- Each tree consists of nodes and edges
- Each node represents an object
- Each edge represents the relationship between two nodes.

Some applications of Trees

Organization Chart

Expression Tree

Terminology I

- For any two nodes u and v, if there is an edge pointing from u to v, u is called the parent of v while v is called the child of u. Such edge is denoted as (u, v).
- In a tree, there is exactly one node without parent, which is called the root. The nodes without children are called leaves.

u: parent of vv: child of u

Terminology II

 In a tree, the nodes without children are called leaves. Otherwise, they are called internal nodes.

Terminology III

- If two nodes have the same parent, they are siblings.
- A node u is an ancestor of v if u is parent of v or parent of parent of v or ...
- A node v is a descendent of u if v is child of v or child of child of v or ...

v and w are siblingsu and v are ancestors of xv and x are descendents of u

Terminology IV

A subtree is any node together with all its descendants.

A subtree of T

Terminology V

- Level of a node n: number of nodes on the path from root to node n
- Height of a tree: maximum level among all of its node

11/13/05

Binary Tree

- Binary Tree: Tree in which every node has at most 2 children
- Left child of u: the child on the left of u
- Right child of u: the child on the right of u

x: left child of uy: right child of uw: right child of v

z: left child of w

11/13/05 CS201 10

Full binary tree

- If T is empty, T is a full binary tree of height 0.
- If T is not empty and of height h >0, T is a full binary tree if both subtrees of the root of T are full binary trees of height h-1.

Property of binary tree (I)

A full binary tree of height h has 2^h-1 nodes

No. of nodes
$$= 2^0 + 2^1 + ... + 2^{(h-1)}$$

 $= 2^h - 1$

Level 1: 20 nodes

Level 2: 2¹ nodes

Level 3: 2² nodes

Property of binary tree (II)

 Consider a binary tree T of height h. The number of nodes of T ≤ 2^h-1

Reason: you cannot have more nodes than a full binary tree of height h.

Property of binary tree (III)

 The minimum height of a binary tree with n nodes is log(n+1)

```
By property (II), n \le 2^h-1
Thus, 2^h \ge n+1
That is, h \ge \log_2 (n+1)
```

Binary Tree ADT

Representation of a Binary Tree

- An array-based representation
- A reference-based representation

An array-based representation

−1: empty tree

nodeNum	item	leftChild	rightChild
0	d	1	2
1	b	3	4
2	f	5	-1
3	а	-1	-1
4	С	-1	-1
5	е	-1	-1
6	?	?	?
7	?	?	?
8	?	?	?
9	?	?	?
	••••		••••

root

0

free

6

Reference Based Representation

NULL: empty tree

You can code this with a class of three fields:

Object element;

BinaryNode left;

BinaryNode right;

11/13/05 CS201 18

Tree Traversal

- Given a binary tree, we may like to do some operations on all nodes in a binary tree. For example, we may want to double the value in every node in a binary tree.
- To do this, we need a traversal algorithm which visits every node in the binary tree.

Ways to traverse a tree

- There are three main ways to traverse a tree:
 - Pre-order:
 - (1) visit node, (2) recursively visit left subtree, (3) recursively visit right subtree
 - In-order:
 - (1) recursively visit left subtree, (2) visit node, (3) recursively right subtree
 - Post-order:
 - (1) recursively visit left subtree, (2) recursively visit right subtree, (3) visit node
 - Level-order:
 - Traverse the nodes level by level
- In different situations, we use different traversal algorithm.

Examples for expression tree

By pre-order, (prefix)
 + * 2 3 / 8 4

- By post-order, (postfix)23*84/+
- By level-order,
 + * / 2 3 8 4
- Note 1: Infix is what we read!
- Note 2: Postfix expression can be computed efficiently using stack

Pre-order

Pre-order example

Time complexity of Pre-order Traversal

- For every node x, we will call pre-order(x) one time, which performs O(1) operations.
- Thus, the total time = O(n).

In-order and post-order

```
Algorithm in-order(BTree x)
If (x is not empty) {
   in-order(x.getLeftChild());
   print x.getItem(); // you can do other things!
   in-order(x.getRightChild());
Algorithm post-order(BTree x)
If (x is not empty) {
   post-order(x.getLeftChild());
   post-order(x.getRightChild());
   print x.getItem(); // you can do other things!
```

In-order example

d b a c

Post-order example

d b c a

Time complexity for in-order and postorder

 Similar to pre-order traversal, the time complexity is O(n).

Level-order

Level-order traversal requires a queue!

```
Algorithm level-order(BTree t)
Queue Q = new Queue();
BTree n;
Q.enqueue(t); // insert pointer t into Q
while (! Q.empty()){
  n = Q.dequeue(); //remove next node from the front of Q
  if (!n.isEmpty()){
     print n.getItem(); // you can do other things
Q.enqueue(n.getLeft()); // enqueue left subtree on rear of Q
Q.enqueue(n.getRight()); // enqueue right subtree on rear of Q
```

Time complexity of Level-order traversal

- Each node will enqueue and dequeue one time.
- For each node dequeued, it only does one print operation!
- Thus, the time complexity is O(n).

General tree implementation

because we do not know how many children a node has in advance.

 Traversing a general tree is similar to traversing a binary tree

Summary

- We have discussed
 - the tree data-structure.
 - Binary tree vs general tree
 - Binary tree ADT
 - Can be implemented using arrays or references
 - Tree traversal
 - Pre-order, in-order, post-order, and level-order

Graphs

What is a graph?

- Graphs represent the relationships among data items
- A graph G consists of
 - a set V of nodes (vertices)
 - a set E of edges: each edge connects two nodes
- Each node represents an item
- Each edge represents the relationship between two items

Examples of graphs

Molecular Structure

Computer Network

Other examples: electrical and communication networks, airline routes, flow chart, graphs for planning projects

Formal Definition of graph

- The set of nodes is denoted as V
- For any nodes u and v, if u and v are connected by an edge, such edge is denoted as (u, v)

- The set of edges is denoted as E
- A graph G is defined as a pair (V, E)

Adjacent

Two nodes u and v are said to be adjacent if (u, v)
 ∈ E

Path and simple path

• A path from v_1 to v_k is a sequence of nodes $v_1, v_2, ...$, v_k that are connected by edges $(v_1, v_2), (v_2, v_3), ..., (v_{k-1}, v_k)$

A path is called a simple path if every node appears

at most once.

 $- v_{2} v_{3} v_{4} v_{2} v_{1}$ is a path

- v_{2} , v_{3} , v_{4} , v_{5} is a path, also it is a simple path

Cycle and simple cycle

- A cycle is a path that begins and ends at the same node
- A simple cycle is a cycle if every node appears at most once, except for the first and the last nodes

- v₂, v₃, v₄, v₅, v₃, v₂ is a cycle

- v_{2} , v_{3} , v_{4} , v_{2} is a cycle, it is also a simple cycle

Connected graph

 A graph G is connected if there exists path between every pair of distinct nodes; otherwise, it is disconnected

This is a connected graph because there exists path between every pair of nodes

Example of disconnected graph

This is a disconnected graph because there does not exist path between some pair of nodes, says, v_1 and v_7

Connected component

• If a graph is disconnect, it can be partitioned into a number of graphs such that each of them is connected. Each such graph is called a connected component.

Complete graph

 A graph is complete if each pair of distinct nodes has an edge

Complete graph with 4 nodes

Subgraph

A subgraph of a graph G =(V, E) is a graph H = (U, F) such that U ⊆ V and F ⊆ E.

Weighted graph

 If each edge in G is assigned a weight, it is called a weighted graph

Directed graph (digraph)

- All previous graphs are undirected graph
- If each edge in E has a direction, it is called a directed edge
- A directed graph is a graph where every edges is a directed edge

11/13/05 46

More on directed graph

- If (x, y) is a directed edge, we say
 - y is adjacent to x
 - y is successor of x
 - x is predecessor of y
- In a directed graph, directed path, directed cycle can be defined similarly

Multigraph

- A graph cannot have duplicate edges.
- Multigraph allows multiple edges and self edge (or loop).

Property of graph

- A undirected graph that is connected and has no cycle is a tree.
- A tree with n nodes have exactly n-1 edges.
- A connected undirected graph with n nodes must have at least n-1 edges.

Implementing Graph

- Adjacency matrix
 - Represent a graph using a two-dimensional array
- Adjacency list
 - Represent a graph using n linked lists where n is the number of vertices

Adjacency matrix for directed graph

1 2 3 4 5

•	" 1
2	V_2
3	V_3
4	V_4
5	V ₅

0	1	0	0	0
0	0	0	1	0
0	1	0	1	0
0	0	0	0	0
0	0	1	1	0

Adjacency matrix for weighted undirected graph

Matrix[i][j] =
$$w(v_i, v_j)$$
 if $(v_i, v_j) \in E$ or $(v_j, v_i) \in E$
 ∞ otherwise

 V_3 5 ∞ ∞ ∞ V_1 2 **V**₂ ∞ ∞ 3 2 3 ∞ V_3 3 V_4 ∞ ∞ 8 V_5 ∞

Adjacency list for directed graph

1	V ₁	\rightarrow	V_2	\rightarrow	
2	V_2	$\bigg \to$	V_4		
3	V_3	$\bigg \longrightarrow$	V_2	\rightarrow	V_4
4	V_4				
5	V_5	$\bigg \longrightarrow$	V_3	\rightarrow	V_4

Adjacency list for weighted undirected graph

Pros and Cons

- Adjacency matrix
 - Allows us to determine whether there is an edge from node i to node j in O(1) time
- Adjacency list
 - Allows us to find all nodes adjacent to a given node j efficiently
 - If the graph is sparse, adjacency list requires less space

Problems related to Graph

- Graph Traversal
- Topological Sort
- Spanning Tree
- Minimum Spanning Tree
- Shortest Path

Graph Traversal Algorithm

- To traverse a tree, we use tree traversal algorithms like preorder, in-order, and post-order to visit all the nodes in a tree
- Similarly, graph traversal algorithm tries to visit all the nodes it can reach.
- If a graph is disconnected, a graph traversal that begins at a node v will visit only a subset of nodes, that is, the connected component containing v.

Two basic traversal algorithms

- Two basic graph traversal algorithms:
 - Depth-first-search (DFS)
 - After visit node v, DFS strategy proceeds along a path from v as deeply into the graph as possible before backing up
 - Breadth-first-search (BFS)
 - After visit node v, BFS strategy visits every node adjacent to v before visiting any other nodes

Depth-first search (DFS)

- DFS strategy looks similar to pre-order. From a given node v, it first visits itself. Then, recursively visit its unvisited neighbours one by one.
- DFS can be defined recursively as follows.

Algorithm dfs(v)

```
print v; // you can do other things!
mark v as visited;
for (each unvisited node u adjacent to v)
    dfs(u);
```

DFS example

Start from v₃

Non-recursive version of DFS algorithm

Algorithm dfs(v)

```
s.createStack();
s.push(v);
mark v as visited;
while (!s.isEmpty()) {
   let x be the node on the top of the stack s;
   if (no unvisited nodes are adjacent to x)
          s.pop(); // blacktrack
   else {
          select an unvisited node u adjacent to x;
          s.push(u);
          mark u as visited;
11/13/05
```

Non-recursive DFS example

	visit	stack
->	V_3	V_3
->	V_2	V_3, V_2
->	V_1	V_3, V_2, V_1
→	backtrack	V_3, V_2
->	V_4	V_3, V_2, V_4
->	V_5	V_3, V_2, V_4, V_5
->	backtrack	V_3, V_2, V_4
->	backtrack	V_3, V_2
->	backtrack	V ₃
→	backtrack	empty

Breadth-first search (BFS)

- BFS strategy looks similar to level-order. From a given node v, it first visits itself. Then, it visits every node adjacent to v before visiting any other nodes.
 - 1. Visit v
 - 2. Visit all v's neigbours
 - 3. Visit all v's neighbours' neighbours
 - **–** ...
- Similar to level-order, BFS is based on a queue.

Algorithm for BFS

```
Algorithm bfs(v)
q.createQueue();
q.enqueue(v);
mark v as visited;
while(!q.isEmpty()) {
   w = q.dequeue();
   for (each unvisited node u adjacent to w) {
        q.enqueue(u);
        mark u as visited;
```

BFS example

 Start from v₅ Visit Queue (front to back) V_5 empty V_3 V_3 , V_4 V_4 V_2 V_4 , V_2 V_2 G empty V_1 empty

CS201

11/13/05

Topological order

Consider the prerequisite structure for courses:

- Each node x represents a course x
- (x, y) represents that course x is a prerequisite to course y
- Note that this graph should be a directed graph without cycles (called a directed acyclic graph).
- A linear order to take all 5 courses while satisfying all prerequisites is called a topological order.
- E.g.
 - a, c, b, e, d
 - c, a, b, e, d

Topological sort

Arranging all nodes in the graph in a topological order

Algorithm topSort

```
n = IVI;
for i = 1 to n {
    select a node v that has no successor;
    aList.add(1, v);
    delete node v and its edges from the graph;
}
return aList;
```

Example

d has no successor!
 Choose d!

1. Both b and e have no successor! Choose e!

a

- \bigcirc
- 1. Both b and c have no successor! Choose c!
- Only b has no successor! Choose b!

Choose a!
 The topological order is a,b,c,e,d

Topological sort algorithm 2

This algorithm is based on DFS

```
Algorithm topSort2
```

```
s.createStack();
for (all nodes v in the graph) {
    if (v has no predecessors) {
             s.push(v);
             mark v as visited;
while (!s.isEmpty()) {
    let x be the node on the top of the stack s;
    if (no unvisited nodes are adjacent to x) { // i.e. x has no unvisited successor
             aList.add(1, x);
             s.pop(); // blacktrack
    } else {
             select an unvisited node u adjacent to x;
             s.push(u);
             mark u as visited;
return aList;
```

Spanning Tree

• Given a connected undirected graph G, a spanning tree of G is a subgraph of G that contains all of G's nodes and enough of its edges to form a tree.

DFS spanning tree

Generate the spanning tree edge during the DFS traversal.

Algorithm dfsSpanningTree(v)

```
mark v as visited;
for (each unvisited node u adjacent to v) {
    mark the edge from u to v;
    dfsSpanningTree(u);
}
```

• Similar to DFS, the spanning tree edges can be generated based on BFS traversal.

Example of generating spanning tree based on DFS

		stack
->	V_3	V_3
->	V_2	V_3, V_2
—>	V_1	V_3, V_2, V_1
→	backtrack	V_3, V_2
->	V_4	V_3, V_2, V_4
->	V_5	V_3, V_2, V_4, V_5
->	backtrack	V_3, V_2, V_4
->	backtrack	V ₃ , V ₂
->	backtrack	V ₃
→	backtrack	empty

Minimum Spanning Tree

- Consider a connected undirected graph where
 - Each node x represents a country x
 - Each edge (x, y) has a number which measures the cost of placing telephone line between country x and country y
- Problem: connecting all countries while minimizing the total cost
- Solution: find a spanning tree with minimum total weight, that is, minimum spanning tree

Formal definition of minimum spanning tree

- Given a connected undirected graph G.
- Let T be a spanning tree of G.
- $cost(T) = \sum_{e \in T} weight(e)$
- The minimum spanning tree is a spanning tree T which minimizes cost(T)

Prim's algorithm (I)

Start from v_5 , find the minimum edge attach to v_5

Find the minimum edge attach to v_3 and v_5

Find the minimum edge attach to v_2 , v_3 and v_5

Find the minimum edge attach to v_2 , v_3 , v_4 and v_5

Prim's algorithm (II)

Algorithm PrimAlgorithm(v)

- Mark node v as visited and include it in the minimum spanning tree;
- while (there are unvisited nodes) {
 - find the minimum edge (v, u) between a visited node v and an unvisited node u;
 - mark u as visited;
 - add both v and (v, u) to the minimum spanning tree;

Shortest path

- Consider a weighted directed graph
 - Each node x represents a city x
 - Each edge (x, y) has a number which represent the cost of traveling from city x to city y
- Problem: find the minimum cost to travel from city x to city y
- Solution: find the shortest path from x to y

Formal definition of shortest path

- Given a weighted directed graph G.
- Let P be a path of G from x to y.
- $cost(P) = \sum_{e \in P} weight(e)$
- The shortest path is a path P which minimizes cost(P)

Dijkstra's algorithm

- Consider a graph G, each edge (u, v) has a weight w(u, v) > 0.
- Suppose we want to find the shortest path starting from v₁ to any node v_i
- Let VS be a subset of nodes in G
- Let cost[v_i] be the weight of the shortest path from v₁ to v_i that passes through nodes in VS only.

	٧	VS	cost[v ₁]	cost[v ₂]	cost[v ₃]	cost[v ₄]	cost[v ₅]
1		[V ₁]	0	5	8	8	8

	V	VS	cost[v ₁]	cost[v ₂]	cost[v ₃]	cost[v ₄]	cost[v ₅]
1		[V ₁]	0	5	8	8	8
2	V ₂	[V ₁ , V ₂]	0	5	8	9	8

	V	VS	cost[v ₁]	cost[v ₂]	cost[v ₃]	cost[v ₄]	cost[v ₅]
1		[V ₁]	0	5	∞	∞	8
2	V ₂	$[V_1, V_2]$	0	5	∞	9	∞
3	V ₄	$[V_1,V_2,V_4]$	0	5	12	9	17

	V	VS	cost[v ₁]	cost[v ₂]	cost[v ₃]	cost[v ₄]	cost[v ₅]
1		[V ₁]	0	5	∞	∞	∞
2	V ₂	$[V_1, V_2]$	0	5	∞	9	∞
3	V ₄	$[V_1,V_2,V_4]$	0	5	12	9	17
4	V ₃	$[V_1, V_2, V_4, V_3]$	0	5	12	9	16
5	V ₅	$[V_1, V_2, V_4, V_{3}, V_5]$	0	5	12	9	16

Dijkstra's algorithm

Algorithm shortestPath()

```
n = number of nodes in the graph;
for i = 1 to n
     cost[v_i] = w(v_1, v_i);
VS = \{ v_1 \};
for step = 2 to n {
     find the smallest cost[v<sub>i</sub>] s.t. v<sub>i</sub> is not in VS;
     include v<sub>i</sub> to VS;
     for (all nodes v<sub>i</sub> not in VS) {
             if (cost[v_i] > cost[v_i] + w(v_i, v_i))
                           cost[v_i] = cost[v_i] + w(v_i, v_i);
                                                         CS201
```

Summary

- Graphs can be used to represent many real-life problems.
- There are numerous important graph algorithms.
- We have studied some basic concepts and algorithms.
 - Graph Traversal
 - Topological Sort
 - Spanning Tree
 - Minimum Spanning Tree
 - Shortest Path