Bit-Parallel Word-Serial Multiplier in GF(2²³³) and Its VLSI Implementation

Supervisors: Dr. Huapeng Wu

Dr. M. Ahmadi

Student: Wenkai Tang

Contents

- Introduction to Finite Field
- Research Motivations
- Proposed Multipliers
- VLSI Design
- Conclusions
- References

Introduction to Finite Field

- Finite field
 - A set of finite number of elements where addition and multiplication are defined, denoted as GF

Example 1:
$$GF(2) = \{0, 1, "+", "*"\}$$

*	* 0	
0	0	0
1	0	1

Multiplication

+	0	1
0	0	1
1	1	0

Addition

Example 2: $GF(2^2)$ can be generated by $F(x)=x^2+x+1$ where $\{1,x\}$ is called a polynomial basis

Four elements are:

$$\begin{array}{rcl}
0 & = & (00) \\
1 & = & (01) \\
x & = & (10) \\
x + 1 & = & (11)
\end{array}$$

Finite Field Multiplication

Let
$$A = (a_{m-1}, a_{m-2}, ..., a_0) = \sum_{i=0}^{m-1} a_i x^i$$
 and $B = (b_{m-1}, b_{m-2}, ..., b_0) = \sum_{i=0}^{m-1} b_i x^i$

be any two field elements in GF(2^m), where $a_i, b_i \in \{0,1\}$

Then the product
$$C = (c_{m-1}, c_{m-2}, ..., c_0) = AB = \sum_{i=0}^{m-1} a_i x^i \sum_{j=0}^{m-1} b_j x^j \mod F(x)$$

This is what we want to implement

Example: $GF(2^2)$ is generated by $F(x)=x^2+x+1$

Let
$$A = (11) = x + 1$$

 $B = (10) = x$

Then

$$C = AB = (x+1)x \operatorname{mod} F(x)$$

$$= (x^2 + x) \operatorname{mod} F(x)$$

$$= (x^2 + x + 1) + 1 \operatorname{mod} F(x)$$

$$= 1$$

$$= (01)$$

Finite field multipliers C=AB

Bit-parallel finite field multiplier

AND gates: m²

XOR gates: m^2-1

Operand A

A, B, C \in GF(2⁵)

Operand B

Bit-serial finite field multiplier

AND gates: m

XOR gates: m+1

m-bit registers:

One multiplication needs m clock cycles

A, B, C \in GF(2⁵)

Product C

Product C

Bit-parallel squarer C=A²

Architecture Operand A a_o \mathbf{a}_{4} $\mathbf{a}_{\scriptscriptstyle 1}$ \mathbf{a}_2 **21**, Squaring C \mathbf{C}_{0} C3 C4 \mathbf{C}_1 \mathbb{C}_2

Bit-parallel squarer in $GF(2^5)$

■ Gate counts 3 XOR gates

Research Motivations

- Smart card and applications
 - Usually a plastic card that contains a security processor and has many security related applications
 - E-Commerce
 - Personal finance
 - Health care
 - Campus badges and access
 - Telecommuting and corporate network security
 - GSM cell phones
 - Limitations
 - Low frequency, limit memory size
 - Software implementation of security application is slow and insecure
 - Area constraint

Smart card and public key cryptosystem

- Public key cryptosystem
 - key exchange, digital signature and encryption/decryption
- Elliptic Curve (EC) over RSA
 - Shorter key length than RSA with the same security strength
 - Very suitable for VLSI implementation
 - EC is more suitable for smart card
- EC operations
 - Finite field multiplication
 - Finite field squaring
 - Finite field addition
- We will design a finite field multiplier for smart card

Proposed Multipliers

• Choose a finite field

Degree	Polynomial
163	$F(x) = x^{163} + x^7 + x^6 + x^3 + 1$
233	$F(x) = x^{233} + x^{74} + 1$
283	$F(x) = x^{283} + x^{12} + x^7 + x^5 + 1$
409	$F(x) = x^{409} + x^{87} + 1$
571	$F(x) = x^{571} + x^{10} + x^5 + x^2 + 1$

Finite fields recommended by NIST for elliptic curve systems

Bit-Parallel Word-Serial (BPWS) Multiplier

Let $\{1,x,x^2,...,x^{232}\}$ be the polynomial basis for $GF(2^{233})$.

Let A and B be any two field elements and

$$A = \sum_{i=0}^{232} a_i x^i$$
, where $a_i \in GF$ (2)

$$B = \sum_{i=0}^{232} b_i x^i$$
, where $b_i \in GF$ (2)

The product is

$$C = AB \mod F(x)$$

$$= \sum_{i=0}^{232} a_i x^i B \mod F(x)$$

Bit-Parallel Word-Serial (BPWS) Multiplier (Cont'd)

Algorithm:

$$A = (\underbrace{0000000}_{A_{29}} \underbrace{a_{231} \dots a_{224}}_{A_{28}} \dots \underbrace{a_{7} a_{6} \dots a_{0}}_{A_{0}})$$

Let
$$A_j = a_{8j+7}x^7 + a_{8j+6}x^6 + ... + a_{8j}$$
, for $j = 0,1,...,29$

Then
$$A = \sum_{i=0}^{232} a_i x^i = (...(A_{29}x^8 + A_{28})x^8 + ... + A_1)x^8 + A_0$$

$$C = AB \mod F(x)$$

= $(...((A_{29}Bx^8 + A_{28}B)x^8 + A_{27}B)x^8 + ... + A_1B)x^8 + A_0B \mod F(x)$

Let
$$D_j = A_{29-j}B$$
, for $j = 0,1,...,29$ $C_j = C_{j-1}x^8 + D_j$, for $j = 0,1,...,29$, and $C_{-1} = 0$

Then
$$C = C_{29}$$

Architecture:

M1: 8 x 233 Partial product generator

M2: 233-bit Adder

M3: Constant multiplier

M4: 233-bit Register

Generating the Product

$$D_{j} = A_{29-j}B$$
, for $j = 0,1,...,29$
 $C_{j} = C_{j-1}x^{8} + D_{j}$, for $j = 0,1,...,29$, and $C_{-1} = 0$

Clock cycle	Output of M1	Output of M4	Output
0	D_0	0	$C_0 = D_0$
1	D_1	$C_0 x^8$	C_1
2	D_2	$C_1 x^8$	C_2
•••	•••	•••	•••
28	D ₂₈	C ₂₇ x ⁸	C ₂₈
29	D_{29}	$C_{28}x^{8}$	$C_{29}=C$

M1: 8 x 233 Partial product generator

M2: 233-bit Adder

M3: Constant multiplier

M4: 233-bit Register

M3: Constant multiplier $\gamma = x^8 \alpha$

Logic equation

$$\gamma_{i} = \begin{cases} \alpha_{225+i} & i = 0,1,...7 \\ \alpha_{i-8} & i = 8,9,...73 \\ \alpha_{i-8} + \alpha_{151+i} & i = 74,75,...81 \\ \alpha_{i-8} & i = 82,83,...232 \end{cases}$$

Circuit

- Gate count
 - 8 XOR gates

M1: 8 x 233 Partial product generator A_jB

• Function

$$A_{j}B = (a_{0} + a_{1}x + ... + a_{7}x^{7})B$$

= $a_{0}B + a_{1}xB + ... + a_{7}x^{7}B$

Components

- Seven constant multipliers
- Eight AND networks
- A XOR network

Architecture

- Constant multipliers $x^{j}\alpha$, j=1,2,...,7.
 - Similar architecture as M3 ($x^8\alpha$)

• AND network

- XOR network
 - 7 XOR sub networks

M: Sub XOR network

Alternative BPWS finite field multiplier

- Least significant word (LSW) first architecture
- One additional m-bit register needed
- One multiplication still needs 30 clock cycles

Architecture:

M3: 8 x 233 Partial product generator

M4: 233-bit Adder M5: 233-bit Register

General BPWS finite field multiplier

Finite field: GF(2^m)

Word size: p

M1: p x m Partial product generator

M2: m-bit Adder

M3: Constant multiplier

M4: m-bit Register

Components:

- -One p x m partial product generator
- -One adder (m XOR gates)
- -One constant FFM
- -One m-bit register

Comparisons

Multiplier	Finite	Speed	Circuit complexity
	field	(Clock cycle)	
Parallel	GF(2 ²³³)	1	233 ² AND gates
			233 ² -1 XOR gates
Serial		233	two 233-bit registers
			233 AND gates
			234 XOR gates
Proposed		30	8*233 AND gates
BPWS			8*233+36 XOR gates
			one 233-bit register
Alternative		30	8*233 AND gates
BPWS			8*233 +36 XOR gates
			Two 233-bit registers
General BPWS	GF(2 ^m)	Ceiling function	p*m AND gates
Trinomail		of (m/p)	p*m+(p+1)p/2 XOR gates
(1 <k<m 2<="" td=""><td></td><td></td><td>One m-bit register</td></k<m>			One m-bit register
p word width)			

VLSI Design

- Target
 - ASIC chip which can perform multiplication and squaring in $GF(2^{233})$
- Specifications
 - Frequency: 50MHz
 - Gate counts: 14000
- Design flow
 - CMC digital design flow
- Technology
 - TSMC 0.18 μm CMOS technology

Hardware schematic

Final results and comparisons

Multiplier	Frequency (MHz)	Field size	# of cells	Gate counts	Area (μm²)	VLSI technology
BPWS 8x233	50 (max. 130)	2 ²³³	3029	4893	189297.06439	TSMC 0.18µm CMOS
Squarer			293	293	6437.15746	
Classical 233x233 [1]	77	2 ²³³	37296 LUTs 37552 FFs	528427	N/A	Xilinx FPGA XC2V6000- ff1517-4
Hans et al MSD 64x256 [2]	66.4	≤2 ²⁵⁶	14797 LUTs 2948 FFs	136064	N/A	Xilinx FPGA Virtex-II XCV2000E-7
Souichi et al 8x288 [3]	3	≤2 ⁵⁷⁶	2*8*288 ANDs 2*8*288 XORs 3*(8+288) FFs	14544	N/A	ALTERA FPGA EPF10K250AG C5992

Chip Layout

Conclusions

- Bit-parallel word-serial multiplier architectures are proposed.
- The proposed architectures are not only useful for smart card but also beneficial to other security processors.
- An ASIC chip which has the proposed BPWS multiplier and bit parallel squarer is implemented.
- A novel 8x233 partial product generator is designed.
- Future work expected is to use this multiplier in security processor for smart card.

References

- [1] Grabbe C.,Bednara M., Teich J.,Von Zur Gathen J., Shokrollahi J, "FPGA designs of parallel high performance GF(2^233) multipliers", Circuits and Systems, 2003. ISCAS '03. Proceedings of the 2003 International Symposium on , Volume: 2 , 25-28 May 2003
- [2] Hans Eberle, Sheueling Chang, Nils Gura, Sumit Gupta, Dniel Finchelstein, Edouard Goupy, Douglas Stebila, "An End-to-End Systems Approach to Elliptic Curve Cryptography" Sun Microsytems Laboratories 2002-2003
- [3] Souichi Okada, Naoya Torii, Kouichi Itoh, Masahiko Takenaka, "Implementation of Elliptic Curve Cryptographic Coprocessor over GF(2^m) on an FPGA", C.K. Koc and C. Paar (Eds.): CHES 2000, LNCS 1965, pp. 25-40, 2000. Springer-Verlag Berlin Heidelberg 2000

Question?

THANK YOU!