Miniature faking

In close-up photo, the depth of field is limited.

http://en.wikipedia.org/wiki/File:Jodhpur_tilt_shift.jpg

Miniature faking

Miniature faking

http://en.wikipedia.org/wiki/File:Oregon_State_Beavers_Tilt-Shift_Miniature_Greg_Keene.jpg

Review

- Previous section:
 - Model fitting and outlier rejection

Review: Hough transform

Algorithm:

- 1. **Sample** (randomly) the number of points required to fit the model (#=2)
- 2. **Solve** for model parameters using samples
- 3. **Score** by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

Review: 2D image transformations

Name	Matrix	# D.O.F.	Preserves:	Icon
translation	$oxed{egin{bmatrix} I & I & I \end{bmatrix}_{2 imes 3}}$	2	orientation $+ \cdots$	
rigid (Euclidean)	$igg igg[oldsymbol{R} igg oldsymbol{t} igg]_{2 imes 3}$	3	lengths + · · ·	
similarity	$\left[\begin{array}{c c} sR & t\end{array}\right]_{2\times 3}$	4	$angles + \cdots$	\Diamond
affine	$igg igg[oldsymbol{A} igg]_{2 imes 3}$	6	parallelism + · · ·	
projective	$\left[egin{array}{c} ilde{m{H}} \end{array} ight]_{3 imes 3}$	8	straight lines	

This section – multiple views

- Today Intro to multiple views and Stereo. Camera Calibration (if we have time).
- Wednesday
 — Epiplar Geometry and Fundamental Matrix. Stereo Matching (if there is time).
- Both lectures are the core of what you need for project 3.
- Next Monday Optical Flow
- Next Wednesday Quiz 1

Oriented and Translated Camera

Degrees of freedom

$$\mathbf{x} = \mathbf{K} \begin{bmatrix} \mathbf{R} & \mathbf{t} \end{bmatrix} \mathbf{X}$$

$$\begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} \alpha & s & u_0 \\ 0 & \beta & v_0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} r_{11} & r_{12} & r_{13} & t_x \\ r_{21} & r_{22} & r_{23} & t_y \\ r_{31} & r_{32} & r_{33} & t_z \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

How to calibrate the camera?

Multiple views

stereo vision structure from motion optical flow

Why multiple views?

Structure and depth are inherently ambiguous from single views.

Why multiple views?

 Structure and depth are inherently ambiguous from single views.

 What cues help us to perceive 3d shape and depth?

Shading

Focus/defocus

Images from same point of view, different camera parameters

3d shape / depth estimates

Texture

[From A.M. Loh. The recovery of 3-D structure using visual texture patterns. PhD thesis]

Perspective effects

Motion

Occlusion

Rene Magritt'e famous painting *Le Blanc-Seing* (literal translation: "The Blank Signature") roughly translates as "free hand". 1965

If stereo were critical for depth perception, navigation, recognition, etc., then this would be a problem

Multi-view geometry problems

• Structure: Given projections of the same 3D point in two or more images, compute the 3D coordinates of that point

Multi-view geometry problems

• Stereo correspondence: Given a point in one of the images, where could its corresponding points be in the other images?

Multi-view geometry problems

 Motion: Given a set of corresponding points in two or more images, compute the camera parameters

Human eye

Rough analogy with human visual system:

Pupil/Iris – control amount of light passing through lens

Retina - contains sensor cells, where image is formed

Fovea – highest concentration of cones

Human stereopsis: disparity

From Bruce and Green, Visual Perception, Physiology, Psychology and Ecology

Human eyes **fixate** on point in space – rotate so that corresponding images form in centers of fovea.

Human stereopsis: disparity

From Bruce and Green, Visual Perception, Physiology, Psychology and Ecology

Disparity occurs when eyes fixate on one object; others appear at different visual angles

Stereo photography and stereo viewers

Take two pictures of the same subject from two slightly different viewpoints and display so that each eye sees only one of the images.

Invented by Sir Charles Wheatstone, 1838

Image from fisher-price.com

http://www.johnsonshawmuseum.org

Copyright 2001 Johnson-Shaw Stereoscopic Museum

http://www.johnsonshawmuseum.org

Public Library, Stereoscopic Looking Room, Chicago, by Phillips, 1923

http://www.well.com/~jimg/stereo/stereo_list.html

Autostereograms

Exploit disparity as depth cue using single image.

(Single image random dot stereogram, Single image stereogram)

Autostereograms

Estimating depth with stereo

- Stereo: shape from "motion" between two views
- We'll need to consider:
 - Info on camera pose ("calibration")
 - Image point correspondences

Stereo vision

Two cameras, simultaneous views

Single moving camera and static scene

Camera parameters

Extrinsic parameters:
Camera frame 1 ←→ Camera frame 2

Intrinsic parameters:
Image coordinates relative to camera ←→ Pixel coordinates

- Extrinsic params: rotation matrix and translation vector
- Intrinsic params: focal length, pixel sizes (mm), image center point, radial distortion parameters

We'll assume for now that these parameters are given and fixed.

Geometry for a simple stereo system

 First, assuming parallel optical axes, known camera parameters (i.e., calibrated cameras):

Geometry for a simple stereo system

 Assume parallel optical axes, known camera parameters (i.e., calibrated cameras). What is expression for Z?

Similar triangles (p_l, P, p_r) and (O_l, P, O_r) :

$$\frac{T - x_l + x_r}{Z - f} = \frac{T}{Z}$$

$$Z = f \frac{T}{x_l - x_r}$$
 disparity

Depth from disparity

image I(x,y)

Disparity map D(x,y)

image I'(x',y')

$$(x',y')=(x+D(x,y), y)$$

So if we could find the **corresponding points** in two images, we could **estimate relative depth**...

Where do we need to search?

Intermission...

Casual 3D Photography

Peter Hedman UCL Suhib Alsisan Facebook Rick Szeliski Facebook Johannes Kopf Facebook

This video has an audio narration

Where do we need to search?

How do we calibrate a camera?

World vs Camera coordinates

Projection matrix

$$x = K[R \ t]X$$

x: Image Coordinates: (u,v,1)

K: Intrinsic Matrix (3x3)

R: Rotation (3x3)

t: Translation (3x1)

X: World Coordinates: (X,Y,Z,1)

Projection matrix

- Unit aspect ratio
- Optical center at (0,0)
- No skew

Intrinsic Assumptions Extrinsic Assumptions

- No rotation
- Camera at (0,0,0)

$$\mathbf{x} = \mathbf{K} \begin{bmatrix} \mathbf{I} & \mathbf{0} \end{bmatrix} \mathbf{X} \implies \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} f & 0 & 0 & 0 \\ 0 & f & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

Slide Credit: Saverese

Remove assumption: known optical center

- Unit aspect ratio
- No skew

Intrinsic Assumptions Extrinsic Assumptions

- No rotation
- Camera at (0,0,0)

$$\mathbf{x} = \mathbf{K} \begin{bmatrix} \mathbf{I} & \mathbf{0} \end{bmatrix} \mathbf{X} \implies w \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} f & 0 & u_0 & 0 \\ 0 & f & v_0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

Remove assumption: square pixels

No skew

Intrinsic Assumptions Extrinsic Assumptions

- No rotation
- Camera at (0,0,0)

$$\mathbf{x} = \mathbf{K} \begin{bmatrix} \mathbf{I} & \mathbf{0} \end{bmatrix} \mathbf{X} \implies w \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} \alpha & 0 & u_0 & 0 \\ 0 & \beta & v_0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

Remove assumption: non-skewed pixels

Intrinsic Assumptions Extrinsic Assumptions

- No rotation
- Camera at (0,0,0)

$$\mathbf{x} = \mathbf{K} \begin{bmatrix} \mathbf{I} & \mathbf{0} \end{bmatrix} \mathbf{X} \implies w \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} \alpha & s & u_0 & 0 \\ 0 & \beta & v_0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

Note: different books use different notation for parameters

Oriented and Translated Camera

Allow camera translation

Intrinsic Assumptions Extrinsic Assumptions
• No rotation

$$\mathbf{X} = \mathbf{K} \begin{bmatrix} \mathbf{I} & \mathbf{t} \end{bmatrix} \mathbf{X} \implies w \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} \alpha & s & u_0 \\ 0 & \beta & v_0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & t_x \\ 0 & 1 & 0 & t_y \\ 0 & 0 & 1 & t_z \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

3D Rotation of Points

Rotation around the coordinate axes, counter-clockwise:

$$R_{x}(\alpha) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \alpha & -\sin \alpha \\ 0 & \sin \alpha & \cos \alpha \end{bmatrix}$$

$$R_{y}(\beta) = \begin{bmatrix} \cos \beta & 0 & \sin \beta \\ 0 & 1 & 0 \\ -\sin \beta & 0 & \cos \beta \end{bmatrix}$$

$$R_{z}(\gamma) = \begin{bmatrix} \cos \gamma & -\sin \gamma & 0 \\ \sin \gamma & \cos \gamma & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Allow camera rotation

$$\mathbf{x} = \mathbf{K} \begin{bmatrix} \mathbf{R} & \mathbf{t} \end{bmatrix} \mathbf{X}$$

$$w\begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} \alpha & s & u_0 \\ 0 & \beta & v_0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} r_{11} & r_{12} & r_{13} & t_x \\ r_{21} & r_{22} & r_{23} & t_y \\ r_{31} & r_{32} & r_{33} & t_z \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

Degrees of freedom

$$\mathbf{x} = \mathbf{K} \begin{bmatrix} \mathbf{R} & \mathbf{t} \end{bmatrix} \mathbf{X}$$

$$\begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} \alpha & s & u_0 \\ 0 & \beta & v_0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} r_{11} & r_{12} & r_{13} & t_x \\ r_{21} & r_{22} & r_{23} & t_y \\ r_{31} & r_{32} & r_{33} & t_z \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

Beyond Pinholes: Radial Distortion

- Common in wide-angle lenses or for special applications (e.g., security)
- Creates non-linear terms in projection
- Usually handled by through solving for non-linear terms and then correcting image

Corrected Barrel Distortion

How to calibrate the camera? (also called "camera resectioning")

Calibrating the Camera

Use an scene with known geometry

- Correspond image points to 3d points
- Get least squares solution (or non-linear solution)

Known 2d image coords

$$\begin{bmatrix} su \\ sv \\ s \end{bmatrix} = \begin{bmatrix} m_{11} & m_{12} & m_{13} & m_{14} \\ m_{21} & m_{22} & m_{23} & m_{24} \\ m_{31} & m_{32} & m_{33} & m_{34} \end{bmatrix} \begin{bmatrix} A \\ Y \\ Z \\ 1 \end{bmatrix}$$

Known 3d

locations

Unknown Camera Parameters

How do we calibrate a camera?

Known 2d Known 3d Incations

Estimate of camera center

$$sv = m_{21}X + m_{22}Y + m_{23}Z + m_{24}$$

$$s = m_{31}X + m_{32}Y + m_{33}Z + m_{34}$$

$$u = \frac{m_{11}X + m_{12}Y + m_{13}Z + m_{14}}{m_{31}X + m_{32}Y + m_{33}Z + m_{34}}$$

$$v = \frac{m_{21}X + m_{22}Y + m_{23}Z + m_{24}}{m_{31}X + m_{32}Y + m_{33}Z + m_{34}}$$

 $su = m_{11}X + m_{12}Y + m_{13}Z + m_{14}$

$$m_{31}uX + m_{32}uY + m_{33}uZ + m_{34}u = m_{11}X + m_{12}Y + m_{13}Z + m_{14}$$

 $m_{31}vX + m_{32}vY + m_{33}vZ + m_{34}v = m_{21}X + m_{22}Y + m_{23}Z + m_{24}$

$$0 = m_{11}X + m_{12}Y + m_{13}Z + m_{14} - m_{31}uX - m_{32}uY - m_{33}uZ - m_{34}u$$

$$0 = m_{21}X + m_{22}Y + m_{23}Z + m_{24} - m_{31}vX - m_{32}vY - m_{33}vZ - m_{34}v$$

Known 2d image coords
$$\begin{bmatrix} su \\ sv \\ s \end{bmatrix} = \begin{bmatrix} m_{11} & m_{12} & m_{13} & m_{14} \\ m_{21} & m_{22} & m_{23} & m_{24} \\ m_{31} & m_{32} & m_{33} & m_{34} \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$
 Known 3d locations

 m_{32}

 m_{33}

 m_{34}

$$0 = m_{11}X + m_{12}Y + m_{13}Z + m_{14} - m_{31}uX - m_{32}uY - m_{33}uZ - m_{34}u$$

$$0 = m_{21}X + m_{22}Y + m_{23}Z + m_{24} - m_{31}vX - m_{32}vY - m_{33}vZ - m_{34}v$$

 Method 1 – homogeneous linear system. Solve for m's entries using linear least squares

Thear least squares
$$\begin{bmatrix} X_1 & Y_1 & Z_1 & 1 & 0 & 0 & 0 & -u_1X_1 & -u_1Y_1 & -u_1Z_1 & -u_1 \\ 0 & 0 & 0 & 0 & X_1 & Y_1 & Z_1 & 1 & -v_1X_1 & -v_1Y_1 & -v_1Z_1 & -v_1 \\ \vdots & & & & & & & \\ X_n & Y_n & Z_n & 1 & 0 & 0 & 0 & -u_nX_n & -u_nY_n & -u_nZ_n & -u_n \\ 0 & 0 & 0 & 0 & X_n & Y_n & Z_n & 1 & -v_nX_n & -v_nY_n & -v_nZ_n & -v_n \end{bmatrix} \begin{bmatrix} M & = \text{reshape}(M, [], 3) '; \\ m_{21} \\ m_{22} \\ m_{23} \\ m_{31} \\ m_{32} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 0 \end{bmatrix}$$
For python, see numpy.linalg.svd

$$\begin{bmatrix} m_{11} \\ m_{12} \\ m_{13} \\ m_{14} \\ m_{21} \\ m_{22} \\ m_{23} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$
 [U, S, V] = svd(A);
M = V(:,end);
M = reshape(M,[],3)'

Known 2d image coords
$$\begin{bmatrix} su \\ sv \\ s \end{bmatrix} = \begin{bmatrix} m_{11} & m_{12} & m_{13} & m_{14} \\ m_{21} & m_{22} & m_{23} & m_{24} \\ m_{31} & m_{32} & m_{33} & m_{34} \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$
 Known 3d locations

Method 2 – nonhomogeneous linear system. Solve for m's entries using linear least squares

$$M = A \setminus Y;$$

$$M = [M; 1];$$

$$M = reshape(M, [], 3)'$$

Calibration with linear method

- Advantages
 - Easy to formulate and solve
 - Provides initialization for non-linear methods
- Disadvantages
 - Doesn't directly give you camera parameters
 - Doesn't model radial distortion
 - Can't impose constraints, such as known focal length
- Non-linear methods are preferred
 - Define error as difference between projected points and measured points
 - Minimize error using Newton's method or other non-linear optimization