```
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt

# Load your uploaded file (correct file name used)
df = pd.read_csv("superstore.csv.csv")

# Show the first few rows
df.head()
```

₹		Row ID	Order ID	Order Date	Ship Date	Ship Mode	Customer ID	Customer Name	Segment	Country	City	•••	Postal Code	Region	Product ID	Category	Ci
	0	1	CA- 2017- 152156	08- 11- 2017	11- 11- 2017	Second Class	CG- 12520	Claire Gute	Consumer	Spain	Barcelona		42420.0	South	FUR-BO- 10001798	Furniture	Во
	1	2	CA- 2017- 152156	08- 11- 2017	11- 11- 2017	Second Class	CG- 12520	Claire Gute	Consumer	United States	Henderson	•••	42420.0	South	FUR-CH- 10000454	Furniture	
	2	3	CA- 2017- 138688	12- 06- 2017	16- 06- 2017	Second Class	DV- 13045	Darrin Van Huff	Corporate	United States	Los Angeles		90036.0	West	OFF-LA- 10000240	Office Supplies	
	3	4	US- 2016- 108966	11- 10- 2016	18- 10- 2016	Standard Class	SO- 20335	Sean O'Donnell	Consumer	Germany	Munich		33311.0	South	FUR-TA- 10000577	Furniture	
	4	5	US- 2016- 108966	11- 10- 2016	18- 10- 2016	Standard Class	SO- 20335	Sean O'Donnell	Consumer	United States	Fort Lauderdale		33311.0	South	OFF-ST- 10000760	Office Supplies	

5 rows × 21 columns

```
# Drop rows with missing or zero profit or quantity
df = df.dropna(subset=["Profit", "Quantity"])
df = df[(df["Profit"] != 0) & (df["Quantity"] != 0)]
```

Quick check
df[["Quantity", "Profit"]].describe()

_				
→ *		Quantity	Profit	
	count	5046.000000	5046.000000	ıl.
	mean	8.106025	85.918852	
	std	16.472979	165.053795	
	min	1.000000	10.000000	
	25%	1.000000	19.216000	
	50%	4.000000	40.354400	
	75%	9.000000	92.762400	
	max	452.000000	4527.696000	

```
# Correlation matrix

correlation = df[["Quantity", "Profit"]].corr()

print("Correlation between Quantity and Profit:")

print(correlation)

# Scatter plot

sns.scatterplot(x="Quantity", y="Profit", data=df)

plt.title("Quantity Sold vs. Profit")

plt.xlabel("Quantity Sold")

plt.ylabel("Profit")

plt.grid(True)

plt.show()

What can I help you build?
```

```
Correlation between Quantity and Profit:
Quantity Profit
Quantity 1.00000 0.99984
Profit 0.99984 1.00000
```



```
grouped = df.groupby("Sub-Category").agg({
        "Quantity": "sum",
        "Profit": "sum"
})
grouped["Profit_per_Unit"] = grouped["Profit"] / grouped["Quantity"]
grouped = grouped.sort_values("Profit_per_Unit")
grouped.plot(kind="barh", y="Profit_per_Unit", legend=False, figsize=(8, 6), title="Profit per Unit by Sub-Category")
plt.xlabel("Profit per Unit Sold")
plt.tight_layout()
plt.show()
```

