Verjetnost 1

Zapiski po predavanjih prof. dr. Romana Drnovška Napisal: Jon Pascal Miklavčič

Kazalo

1	Nef	ormalni uvod v verjetnost]
2	Aksiomatična definicija verjetnosti		ţ
	2.1	Dogodki	ļ
	2.2	Verjetnostna preslikava	,
3	Pogojna verjetnost		
	3.1	Pogojna verjetnost	1
	3.2	Formula o popolni verjetnosti	13
4	Zap	oredja neodvisnih ponovitev poskusa	17
	4.1	Bernoullijeva formula	1
	4.2	Aproksimacije Bernoullijeve formule	18
5	Slu	čajne spremenljivke	23
	5.1	Diskretne slučajne spremenljivke	26
	5.2	Zvezne slučajne spremenljivke	29
6 Slučajni vektorji in neodvisnost		čajni vektorji in neodvisnost	37
	6.1	Slučajni vektorji	3'
	6.2	Neodvisnost	40
7	Ma	tematično upanje oz. pričakovana vrednost	43
8	Dis	perzija, kovarjanca in korelacijski koeficient	5 1

•	T. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7.
lV	KAZALO

	8.1	Disperzija in standardni odklon	51			
	8.2	Kovarianca	58			
	8.3	Korelacijski koeficient	60			
9	Pog	ojna porazdelitev in pogojno matematično upanje	63			
10	10 Rodovne funkcije					
11	Višj	i momenti in vrstilne karakteristike	73			
	11.1	Momenti	73			
	11.2	Vrstilne karakteristike	75			
12	Mor	nentno rodovna funkcija	79			

Poglavje 1

Neformalni uvod v verjetnost

Začetki verjetnosti so v 17. stoletju, iz iger na srečo (kartanje, kockanje, ...):

- 17. stol.: Fermat, Pascal, Bernoulli;
- 18./19. stol.: Laplace, Poisson, Čebišev, Markov;
- 20. stol.: Kolmogorov.

Izvajamo poskus in opazujemo določen pojav, ki ga imenujemo dogodek. Ta se lahko zgodi ali ne.

Zgled. Poskus je met kocke. Da pade šestica, da pade sodo število pik, pa sta dogodka.

Poskus ponovimo n-krat. Opazujemo dogodek A. S $k_n(A)$ označimo frekvenco dogodka A, t.j. število tistih ponovitev poskusa, pri katerih se je dogodek A zgodil. Naj bo $f_n(A) = \frac{k_n(A)}{n}$ relativna frekvenca dogodka A. Dokazati je mogoče, da zporedje $\{f_n(A)\}_n$ konvergira k nekemu številu $p \in [0,1]; f_n(A) \xrightarrow{n \to \infty} p$. Dobimo:

Statistično definicijo verjetnosti:

$$P(A) := p$$

Pogosto lahko verjetnost določimo vnaprej in sicer s:

Klasično definicijo verjetnosti:

$$P(A) := \frac{\# \text{ ugodnih izidov za dogodek } A}{\# \text{ vseh izidov}}$$

 \Diamond

pri pogoju, da imajo vsi izidi enake možnosti.

Zgled. Met poštene kocke:

$$P(\text{sodo število pik}) = \frac{3}{6} = \frac{1}{2}$$

Zgled. Kolikšna je verjetnost, da pri metu dveh poštenih kock znaša vsota pik 7?

Možne vsote so: $2, 3, 4, \ldots, 12$. Opazimo, da je vseh vsot 11 in od tega 1 ugodna. Ali to pomeni, da $P(A) = \frac{1}{11}$? Ne! Izidi niso enakoverjetni.

Na primer 2 lahko dobimo samo kot 2=1+1, 5 pa kot 5=2+3=1+4=4+1=3+2. Torej vsi možni izidi bodo urejeni pari (x,y), kjer $x,y\in[1,6]\subseteq\mathbb{N}$:

$$(1,1)$$
 $(1,2)$ \cdots $(1,6)$
 $(2,1)$ $(2,2)$ \cdots $(2,6)$
 \vdots \cdots \vdots
 $(6,1)$ $(6,2)$ \cdots $(6,6)$

Vseh izidov je torej 36 in od tega je 6 ugodnih. Torej $P(A) = \frac{6}{36} = \frac{1}{6}$.

Če je izidov neskončno, si lahko pomagamo s **Geometrijsko definicijo verjetno**sti.

Zgled. Osebi se dogovorita za srečanje med 10. in 11. uro. Čas prihoda je slučajen. Vsak od njiju po prihodu čaka največ 20 minut. Če v tem času drugega ni, odide. Najdlje čaka do 11. ure. Kolikšna je verjetnost srečanja?

Čas začnemo šteti ob 10. uri. Vsi izidi so urejeni pari $(x,y)\in [0,1]\times [0,1].$ Ugodni izidi so $|x-y|\leq \frac{1}{3}.$ Torej:

1)
$$x \ge y : x - \frac{1}{3} \le y$$

2) $x \le y : y - x \le \frac{1}{3} \iff y \le x + \frac{1}{3}$

Torej je

$$P(\text{srečanja}) = \frac{1 - (\frac{2}{3})^2}{1} = \frac{5}{9}$$

Slika 1.1: Prostor vseh možnih izidov

 \Diamond

Teorija mere se ukvarja z splošnim zapisom geometrijske definicije.

Zgled. Vzamemo $m, n \in \mathbb{N}$, m > n. n kroglic slučajno razporedimo v m posod. Kolikšna je verjetnost dogodka, da so vse kroglice v prvih n posodah, v vsaki ena?

To je pomanjkljivo zastavljena naloga. Ne vemo namreč, ali med seboj kroglice razlikujemo, ali ne. Za dodatno predpostavko se ponujajo 3 možnosti:

1. Kroglice razlikujemo:

Število vseh izidov v tem primeru je ravno število *variacij* m elementov na n mestih s ponavljanjem. Za vsako od n-tih kroglic imamo m možnosti, torej je vseh možnosti $m \cdot m \cdots m = m^n$.

Število ugodnih izidov pa je ravno število permutacij n kroglic v prvih n posodah. Torej je ugodnih možnosti $n(n-1)\ldots 2\cdot 1=n!$.

Torej je:

$$P(A) = \frac{n!}{m^n}$$

2. Kroglic ne razlikujemo:

V vsaki posodi je lahko več kroglic. Število vseh izidov je ravno število kom-binacij s ponavljanjem. Število kombinacij m elementov s ponavljanjem na n mestih je:

$$\binom{n+m-1}{n} = \binom{n+m-1}{m-1}$$

Postavimo n kroglic in med njih razporedimo m-1 črtic, ki predstavljajo stene posod:

$$\left|\underbrace{\circ \left| \circ \left| \circ \circ \right| \circ \circ \cdots \circ \circ \right|}_{n \text{ kroglic, } m-1 \text{ črtic}}\right|$$

Na n + m - 1 mestih moramo določiti n kroglic. Ugoden izid je samo eden:

Torej je:

$$P(A) = \frac{1}{\binom{n+m-1}{n}}$$

3. Kroglic ne razlikujemo, v vsaki posodi je kvečjemu ena kroglica:

Število vseh izidov je ravno število kombinacij brez ponavljanja $\binom{m}{n}$. Ugoden izid je eden.

Torej je:

$$P(A) = \frac{1}{\binom{m}{n}}$$

Opomba. V fiziki so kroglice delici (atomi, molekule, ...), posode pa fazna stanja, v katerih so lahko delci. Glede na zgornje primere ločimo:

- 1. Maxwell-Boltzmannovo statistiko, ki velja npr. za molekule plina.
- 2. Bose-Einsteinovo statistiko, ki velja za delce, imenovane bozoni.
- 3. Fermi-Diracovo statistiko, ki velja za fermione.

Diracovo izključitveno načelo.

Poglavje 2

Aksiomatična definicija verjetnosti

2.1 Dogodki

Imamo prostor vseh izidov oz. $vzorčni \ prostor \ \Omega$ (možna oznaka je tudi \mathcal{G}). Dogodki so nekatere (ne nujno vse) podmnozice Ω .

Zgled. Met kocke. Vzorčni prostor je $\Omega = \{1, 2, 3, 4, 5, 6\}$, dogodki pa so poljubne podmnožice Ω , to je $\mathcal{P}(\Omega) = 2^{\Omega}$. Na primer $A = \{2, 4, 6\}$ je dogodek, da pade sodo število pik.

Računanje z dogodki:

1. Vsota dogodkov oz. unija dogodkov (zgodi se vsaj eden od dogodkov):

$$A + B = A \cup B$$

2. Produkt dogodkov oz. presek dogodkov (zgodita se oba dogodka hkrati):

$$A \cdot B = A \cap B$$

3. Nasprotni dogodek oz. komplement dogodka (dogodek se ne zgodi):

$$\bar{A} = A^c$$

Pravila za računanje z dogodki:

1. idempotentnost:

$$A \cup A = A = A \cap A$$

 $2. \ komutativnost:$

$$A \cup B = B \cup A$$
, $A \cap B = B \cap A$

 $3. \ asociativnost:$

$$(A \cup B) \cup C = A \cup (B \cup C)$$
$$(A \cap B) \cap C = A \cap (B \cap C)$$

4. distributivnost:

$$(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$$
$$(A \cap B) \cup C = (A \cup C) \cap (B \cup C)$$

5. de Morganova zakona:

$$(A \cap B)^c = A^c \cup B^c$$
$$(A \cup B)^c = A^c \cap B^c$$

Še več:

$$\left(\bigcap_i A_i\right)^c = \bigcup_i A_i^c, \quad \left(\bigcup_i A_i\right)^c = \bigcap_i A_i^c$$

V splošnem ni vsaka podnožica množice Ω dogodek. Neprazna družina podmnožic (dogodkov) \mathcal{F} v Ω je σ -algerba, če zanjo velja:

- 1. $\Omega \in \mathcal{F}$
- 2. $A \in \mathcal{F} \implies A^c \in \mathcal{F}$

3.
$$A_1, A_2, \ldots \in \mathcal{F} \implies \bigcup_{i=1}^{\infty} A_i \in \mathcal{F}$$

Elementi v \mathcal{F} so dogodki. Če v točki 3. zahtevamo manj:

$$3^*$$
. $A, B \in \mathcal{F} \implies A \cup B \in \mathcal{F}$.

potem pravimo, da je \mathcal{F} algebra.

V algebri imamo potem tudi zaprtost za končne unije (dokažemo z indukcijo):

$$A_1, A_2, \dots, A_n \in \mathcal{F} \implies A_1 \cup A_2 \cup \dots \cup A_n \in \mathcal{F}$$

Ker po de-Morganu velja $\bigcap_i A_i = (\bigcup_i A_i^c)^c$, je algebra zaprta za končne preseke, σ -algebra pa celo za števne preseke. Ker velja $A \setminus B = A \cap B^c$, je algebra zaprta za razlike.

Vsaka algebra vsebuje $\{\emptyset, \Omega\}$. Ker je \mathcal{F} neprazna, obstaja $A \in \mathcal{F}$ in je zato tudi $\Omega = A \cup A^c \in \mathcal{F}$ in $\emptyset = \Omega^c \in \mathcal{F}$. Tako dobimo, da je $\{\emptyset, \Omega\}$ najmanšja možna $(\sigma$ -)algebra, $\mathcal{P}(\Omega)$ pa največja možna $(\sigma$ -)algebra.

Zgled. Za $A \neq \emptyset \neq \Omega$ je najmanjša $(\sigma$ -)algebra, ki vsebuje A, enaka $\{\emptyset, A, A^c, \Omega\}$. Za $\Omega = \{1, 2, 3\}$ in $A = \{1, 2\}$, je potem taka σ -algebra $\{\emptyset, \{3\}, \{1, 2\}, \{1, 2, 3\}\}$. \Diamond

Dogodka A in B sta disjunkta oz. nezdružljiva, če je $A \cap B = \emptyset$.

Zaporedje $\{A_i\}_i$ (končno ali števno mnogo) je popoln sistem dogodkov, če velja:

$$\bigcup_{i} A_i = \Omega \quad \text{in} \quad A_i \cap A_j = \emptyset \quad \text{za} \quad i \neq j.$$

2.2 Verjetnostna preslikava

Definicija 1. Naj bo \mathcal{F} σ-algebra na Ω . Verjetnost na (Ω, \mathcal{F}) je preslikava $P : \mathcal{F} \to \mathbb{R}$ z lastnostmi:

- 1. Za vsak $A \in \mathcal{F}$: $P(A) \geq 0$
- 2. $P(\Omega) = 1$
- 3. Za poljubne paroma nezdružljive dogodke $\{A_i\}_{i=1}^{\infty}$ velja števna aditivnost:

$$P\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} P\left(A_i\right)$$

Lastnosti verjetnosti P:

(a) $P(\emptyset) = 0$.

Dokaz. V lastnosti 3. vzamemo $A_i = \emptyset$ za vsak i:

$$P(\emptyset) = P\left(\bigcup_{i} \emptyset\right) = P(\emptyset) + P(\emptyset) + P(\emptyset) + \cdots,$$

kar velja le v primeru, ko je $P(\emptyset) = 0$.

(b) P je končno aditivna, t.j. za končno mnogo paroma nezdružljivih dogodkov $\{A_i\}_{i=1}^n$ velja:

$$P(A_1 \cup \cdots \cup A_n) = P(A_1) + \cdots + P(A_n)$$

Dokaz. V lastnosti 3. vzamemo $A_{n+1}=A_{n+2}=\cdots=\emptyset$ in upoštevamo lastnost (a).

(c) P je monotona, t.j. velja:

$$A \subseteq B \implies P(A) \le P(B)$$

Še več: iz $A \subseteq B$ sledi $P(B \setminus A) = P(B) - P(A)$.

Dokaz. Ker je
$$B = A \cup (B \setminus A)$$
 in $A \cap (B \setminus A) = \emptyset$, je $P(B) = P(A) + P(B \setminus A)$ zaradi lastnosti (b).

(d) $P(A^c) = 1 - P(A)$

Dokaz. V lastnosti (c) vzamemo
$$B = \Omega$$
.

(e) P je zvezna, t.j.:

(i)
$$A_1 \subseteq A_2 \subseteq A_3 \subseteq \cdots \implies P\left(\bigcup_{i=1}^{\infty} A_i\right) = \lim_{n \to \infty} P\left(A_n\right)$$

(ii)
$$B_1 \supseteq B_2 \supseteq B_3 \supseteq \cdots \implies P\left(\bigcap_{i=1}^{\infty} B_i\right) = \lim_{n \to \infty} P\left(B_n\right)$$

Dokaz.

(i) Definiramo $C_1 = A$ in $C_i = A_i \setminus A_{i-1}$ za $i = 2, 3, \dots$ Potem je:

$$A_n = \bigcup_{i=1}^n C_i, \quad C_i \cap C_j = \emptyset \text{ za } i \neq j \quad \text{in} \quad \bigcup_{i=1}^\infty A_i = \bigcup_{i=1}^\infty C_i$$

Torej je:

$$P\left(\bigcup_{i=1}^{\infty} A_i\right) = P\left(\bigcup_{i=1}^{\infty} C_i\right)$$

$$= \sum_{i=1}^{\infty} P(C_i)$$

$$= \lim_{n \to \infty} \sum_{i=1}^{n} P(C_i)$$

$$= \lim_{n \to \infty} P\left(\bigcup_{i=1}^{n} C_i\right)$$

$$= \lim_{n \to \infty} P(A_n)$$

(ii) Ker $B_1 \supseteq B_2 \supseteq B_3 \supseteq \cdots$, je potem $B_1^c \subseteq B_2^c \subseteq B_3^c \subseteq \cdots$. Po (i) potem velja:

$$P\left(\bigcup_{i=1} B_i^c\right) = \lim_{i \to \infty} P\left(B_i^c\right)$$

Potem velja:

$$\bigcup_{i=1}^{\infty} B_i^c = \left(\bigcap_{i=1}^{\infty} B_i\right)^c \implies 1 - P\left(\bigcap_{i=1}^{\infty} B_i\right) = \lim_{i \to \infty} \left(1 - P(B_i)\right)$$

Od koder sledi željena enakost.

Verjetnostni prostor je trojica (Ω, \mathcal{F}, P) .

Zgled (Končni ali števni verjetnostni prostor). $\Omega = \{\omega_2, \omega_2, \omega_3, \ldots\}$ končno ali števno mnogo izidov. $\{\omega_1\}, \{\omega_2\}, \{\omega_3\}, \ldots$ je popoln sistem dogodkov, vsaka podmnožica v Ω je končna ali števna unija teh dogodkov. Torej $\mathcal{F} = \mathcal{P}(\Omega)$. Vzamemo:

$$A = \bigcup_{i:\omega_i \in A} \{\omega_i\}$$

Če označimo $P(\{\omega_i\}) = p_i \ge 0$, potem je:

$$\sum_{i} p_i = 1 \quad \text{in} \quad P(A) = \sum_{i:\omega_i \in A} p_i$$

Če ima Ω n elementov in $p_i = \frac{1}{n}$ za $i = 1, 2, \dots, n$, potem je:

$$P(A) = \frac{|A|}{n} = \frac{\text{moč}(A)}{n}$$

To je klasična definicija verjetnosti.

Zgled (Neskončni neštevni verjetnostni prostor). Primer srečanja dveh oseb, kjer $\Omega = [0,1] \times [0,1]$. Za σ -algebro \mathcal{F} ne moremo vzeti vseh podmnožic, radi pa bi jih vzeli čim več.

 \mathcal{F} naj bo najmanjša σ -algebra, ki vsebje vse odprte pravokotnike $(a, b) \times (c, d)$ (izkaže se, da je isto, če vzamemo zaprte pravokotnike). \mathcal{F} imenujemo Borelova σ -algebra.

 \Diamond

Slika 2.1: Odprt pravokotnik v Ω

Verjetnost definiramo na pravokotnikih kot:

$$P((a,b) \times (c,d)) = (b-a)(d-c)$$

Ni lahko videti, da lahko P razširimo do verjetnosti na \mathcal{F} . P pa ne moremo razširiti na $\mathcal{P}(\Omega)$. Problem je števna aditivnost. To je geometrijska definicija verjetnosti. \Diamond

Poglavje 3

Pogojna verjetnost

3.1 Pogojna verjetnost

Definicija 2. Naj bo (Ω, \mathcal{F}, P) verjetnostni prostor. Fiksirajmo dogodek B s P(B) > 0. Pogojna verjetnost dogodka A glede na dogodek B je:

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$

Slika 3.1: Verjetnostni prostor Ω

Zgled. V posodi sta dve beli in ena črna kroglica. Dvakrat zaporedoma izvlečemo kroglico. Kolikšna je verjetnost, da smo drugič izbrali belo kroglico, če smo prvič izbrali belo?

(a) Kroglice vrečamo.

Vseh izidov je 9:

$$\begin{array}{cccc} B_1B_1 & B_1B_2 & B_1\check{C} \\ B_2B_1 & B_2B_2 & B_2\check{C} \\ \check{C}B_1 & \check{C}B_2 & \check{C}\check{C} \end{array}$$

$$\begin{split} &P(\text{prvič belo}) = \frac{6}{9} = \frac{2}{3} \\ &P(\text{prvič in drugič belo}) = \frac{4}{9} \\ &P(\text{drugič belo} \mid \text{prvič belo}) = \frac{4/9}{6/9} = \frac{4}{6} = \frac{2}{3} \\ &P(\text{drugič belo}) = \frac{6}{5} = \frac{2}{3} \end{split}$$

(b) Kroglic ne vračamo.

Vseh izidov je 6:

$$B_1B_2$$
 $B_1\check{C}$ B_2B_1 $B_2\check{C}$ $\check{C}B_1$ $\check{C}B_2$

$$P(\text{prvič belo}) = \frac{4}{6} = \frac{2}{3}$$

$$P(\text{prvič in drugič belo}) = \frac{2}{6} = \frac{1}{3}$$

$$P(\text{drugič belo} \mid \text{prvič belo}) = \frac{2/6}{4/6} = \frac{1}{2} = \frac{2}{4}$$

$$P(\text{drugič belo}) = \frac{4}{6} = \frac{2}{3}$$

 \Diamond

Iz definicije pogojne verjetnosti dobimo:

$$P(A \cap B) = P(A \mid B) \cdot P(B)$$

Za 3 dogodke A, B, C, kjer velja $P(B \cap C) > 0$, dobimo:

$$P(A \cap B \cap C) = P(A \mid B \cap C) \cdot P(B \cap C) = P(A \mid B \cap C) \cdot P(B \mid C) \cdot P(C)$$

Če to posplošimo na n dogodkov, dobimo:

$$P(A_1 \cap A_2 \cap \cdots \cap A_n) = P(A_1) \cdot P(A_2 \mid A_1) \cdots P(A_n \mid A_1 \cap \cdots \cap A_{n-1})$$

Če desno stran razpišemo, res dobimo:

$$P(A_1)\cdots P(A_n \mid A_1 \cap \cdots \cap A_{n-1}) = P(A_1) \cdot \frac{P(A_1 \cap A_2)}{P(A_1)} \cdots \frac{P(A_1 \cap \cdots \cap A_n)}{P(A_1 \cap \cdots \cap A_{n-1})}$$
$$= P(A_1 \cap A_2 \cap \cdots \cap A_n)$$

Zgled. V posodi imamo 6 modrih, 5 rdečih in 4 zelene kroglice. Brez vračanja izberemo 3 kroglice. Kolikšna je verjetnost, da so vse rdeče?

Označimo z A_k dogodek, da je k-ta kroglica rdeča za k=1,2,3. Nalogo lahko rešimo na dva načina:

1.

$$P(A_1 \cap A_2 \cap A_3) = P(A_1) \cdot P(A_2 \mid A_1) \cdot P(A_3 \mid A_1 \cap A_2)$$
$$= \frac{5}{15} \cdot \frac{4}{14} \cdot \frac{3}{13} = \frac{2}{7 \cdot 13} = \frac{2}{91}$$

2.

$$P(\text{vse rdeče}) = \frac{\binom{5}{3}}{\binom{15}{3}} = \frac{\frac{5 \cdot 4 \cdot 3}{3!}}{\frac{15 \cdot 14 \cdot 13}{3!}} = \frac{2}{91}$$

 \Diamond

3.2 Formula o popolni verjetnosti

Imejmo poskus, ki ga opravimo v 2 korakih (fazah).

- 1. V prvem koraku se zgodi natanko eden izmed paroma nezdružljivih dogodkov H_1, H_2, H_3, \ldots (končno ali števno mnogo).
- 2. V drugem koraku pa nas zanima dogodek A. Izrazimo P(A) z verjetnostmi:

$$P(H_i)$$
 in $P(A | H_i)$ za $i = 1, 2, 3, ...$

Ker je $\{H_i\}_i$ popoln sistem dogodkov, je:

$$A = A \cap \Omega = A \cap \left(\bigcup_{i} H_{i}\right) = \bigcup_{i} A \cap H_{i}$$

Zato velja:

$$P(A) = \sum_{i} P(A \cap H_i) = \sum_{i} P(H_i) \cdot P(A \mid H_i)$$

To je formula za popolno verjetnost.

Zgled. Pri srečelovu je n srečk, od tega je m dobitnih (m < n). Ali imamo večje možnosti za dobitek, če izbiramo prvi ali drugi?

Če izbiramo prvi, je:

$$P(\text{dobitka}) = \frac{m}{n}$$

Če izbiramo drugi, je:

$$\begin{split} P(\text{dobitka}) &= P(\text{prvi dobi}) \cdot P(\text{dobitka} \mid \text{prvi dobi}) \\ &\quad + P(\text{prvi ne dobi}) \cdot P(\text{dobitka} \mid \text{prvi ne dobi}) \\ &= \frac{m}{n} \cdot \frac{m-1}{n-1} + \frac{n-m}{n} \cdot \frac{m}{n-1} = \frac{m}{n} \end{split}$$

Pogosto nas v dvofaznem poskusu zanima:

$$P(H_k \mid A) = \frac{P(H_k \cap A)}{P(A)} = \frac{P(H_k) \cdot P(A \mid H_k)}{\sum_i P(H_i) \cdot P(A \mid H_i)}$$

To je Bayesova formula.

Zgled. Test s poligrafom (detektorjem laži). Resnicoljub opravi test s poligrafom z verjetnostjo 0.95. Z enako verjetnostjo poligraf prepozna lažnivca. Izmed 1000 oseb, med kateremi je natanko en lažnivec, slučajno izberemo eno osebo, za katero poligraf pravi, da je lažnivec. Kolikšna je pogojna verjetnost, da je oseba zares lažnivec?

Označimo z L dogodek, da je izbrana oseba lažnivec, L_p pa dogodek, da poligraf za osebo pravi, da je lažnivec. Potem:

$$P(L_p \mid L) = 0.95, \quad P(L_p \mid L^c) = 0.05 \text{ in } P(L) = 0.001$$

Zanima nas $P(L \mid L_p)$. Po Bayesovi formuli je:

$$P(L \mid L_p) = \frac{P(L) \cdot P(L_p \mid L)}{P(L) \cdot P(L_p \mid L) + P(L^c) \cdot P(L_p \mid L^c)}$$

$$= \frac{0.95 \cdot 0.001}{0.95 \cdot 0.001 + 0.05 \cdot 0.999}$$

$$= \frac{95}{5090} \approx \frac{1}{50} = 0.02$$

Dogodka A in B sta neodvisna, če velja:

$$P(A \cap B) = P(A) \cdot P(B)$$

Če je P(B) > 0, to enakost lahko zapišemo kot:

$$P(A) = \frac{P(A \cap B)}{P(B)} = P(A \mid B)$$

 \Diamond

 \Diamond

Če imamo več dogodkov, so dogodki $\{A_i\}_i$ neodvisni, če za poljuben končen nabor različnih dogodkov $A_{i_1},A_{i_2},\ldots,A_{i_k}$ velja:

$$P(A_{i_1} \cap A_{i_2} \cap \ldots \cap A_{i_k}) = P(A_{i_1}) \cdot P(A_{i_2}) \cdots P(A_{i_k})$$

Če zahtevamo to le za k=2, torej A_i in A_j sta neodvisna za vsak $i \neq j$, potem rečemo, da so dogodki paroma neodvisni. To je šibkejši pogoj kot neodvisnost.

Zgled. Met tetraedra.
$$\Omega = \{1, 2, 3, 4\}$$
 in $P(\{i\}) = \frac{1}{4}$ za $i = 1, 2, 3, 4$.

Če označimo $A=\{1,2\}, B=\{1,3\}, C=\{1,4\},$ vidimo $A\cap B=A\cap C=B\cap C=\{1\}$ kar implicira $P(A\cap B)=P(A\cap C)=P(B\cap C)=\frac{1}{4}=\frac{1}{2}\cdot\frac{1}{2}.$ To implicira, da so dogodki $\{A,B,C\}$ paroma neodvisni. Toda $P(A\cap B\cap C)=P(\{1\})=\frac{1}{4}\neq\frac{1}{2}\cdot\frac{1}{2}\cdot\frac{1}{2},$ zato dogodki niso neodvisni.

Trditev 1. Če sta dogodka A in B neodvisna, potem sta neodvisna tudi dogodka A in B^c , dogodka A^c in B, ter dogodka A^c in B^c .

Dokaz.

(iii)

(i) Ker je $A \cap B^c = A \setminus A \cap B$ velja:

$$P(A \cap B^c) = P(A) - P(A \cap B)$$

$$= P(A) - P(A) \cdot P(B)$$

$$= P(A)(1 - P(B))$$

$$= P(A) \cdot P(B^c)$$

 $= P(A^c) \cdot P(B^c)$

(ii) Za A^c in B dokažemo na podoben način.

$$P(A^{c} \cap B^{c}) = 1 - P(A \cup B)$$

$$= 1 - P(A) - P(B) + P(A \cap B)$$

$$= P(A^{c}) - P(B) + P(A) \cdot P(B)$$

$$= P(A^{c}) - P(B)(1 - P(A))$$

$$= P(A^{c}) - P(B) \cdot P(A^{c})$$

Poglavje 4

Zaporedja neodvisnih ponovitev poskusa

4.1 Bernoullijeva formula

Imejmo zaporedje n neodvisnih ponovitev poskusa, določenega z verjetnostnim prostorom (Ω, \mathcal{F}, P) , v katerem je možen dogodek A s P(A) = p. Označimo še $q := P(A^c) = 1 - p$.

 $Z A_n(k)$ označimo dogodek, da se v n ponovitvah poskusa, dogodek A zgodi natanko k-krat, za $k = 0, 1, 2, \ldots, n$. Izračunajmo verjetnost:

$$P_n(k) := P\left(A_n(k)\right)$$

 $A_n(k)$ je dijunktna unija $\binom{n}{k}$ dogodkov, da se A zgodi na predpisanih k mestih, na ostalih pa A^c . Verjetnost teh dogodkov je $p^k \cdot q^{n-k}$. Zato je:

$$P_n(k) = \binom{n}{k} \cdot p^k \cdot q^{n-k} \quad \text{za} \quad k = 0, 1, 2, \dots, n$$

To je Bernoullijeva formula.

Zgled. Kaljivost semen je 0.95. Kolikšna je verjetnost, da izmed 1000 semen v zavojčku vzkali točno 950 semen?

Aje dogodek, da seme vzkali. Potem je p=P(A)=0,05, q=0.95, k=50. Zato:

$$P_{1000}(50) = {1000 \choose 50} \cdot 0.05^{50} \cdot 0.95^{950} = 0.05779$$

To je težko izračunati, tudi če bi uporabljali Stirlingovo formulo: $n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$.

Kjer:

$$a_n \sim b_n \iff \lim_{n \to \infty} \frac{a_n}{b_n} = 1$$

Torej:

$$\lim_{n \to \infty} \frac{\sqrt{2\pi n}}{n!} \left(\frac{n}{e}\right)^n = 1$$

4.2 Aproksimacije Bernoullijeve formule

Aproksimativne formule za $P_n(k)$:

(a) Poissonova formula:

Če je p blizu 0 in n velik, potem je:

$$P_n(k) \approx \frac{\lambda^k}{k!} e^{-\lambda}$$
, kjer je $\lambda = np$

Dokaz.

$$P_n(k) = \frac{n(n-1)\cdots(n-k+1)}{k!}p^k(1-p)^{n-k}$$

$$= \frac{n(n-1)\cdots(n-k+1)}{k!} \left(\frac{\lambda}{n}\right)^k \left(1-\frac{\lambda}{n}\right)^{n-k}$$

$$= \frac{\lambda^k}{k!} \frac{n(n-1)\cdots(n-k+1)}{\underbrace{n\cdot n\cdot n\cdot n}} \left(1-\frac{\lambda}{n}\right)^n \left(1-\frac{\lambda}{n}\right)^{-k}$$

$$\approx \frac{\lambda^k}{k!} e^{-\lambda}$$

Zadnja aproksimacija velja v limiti.

Zgled (Kaljivost semen).

$$P_{1000}(50) = {1000 \choose 50} \cdot 0.05^{50} \cdot 0.95^{950}$$

$$\approx \frac{50^{50}}{50!} \cdot e^{-50}$$

$$= \frac{1}{50!} \left(\frac{50}{e}\right)^{50}$$

$$\approx \frac{1}{\sqrt{2\pi \cdot 50}}$$

$$\approx 0.05642$$

(b) Laplaceova lokalna formula:

Za velike n velja:

$$P_n(k) \approx \frac{1}{\sqrt{2\pi npq}} \cdot e^{-\frac{(k-np)^2}{2npq}}$$

Kasneje boste dokazali še splošnejši izrek (centralni limitni izrek).

Narišimo zaporedje $\{P_n(k)\}_{k=0}^n$, kjer je n fiksen. Dobimo:

$$P_n(0) = \binom{n}{0} p^0 q^n = q^n$$

$$P_n(1) = \binom{n}{1} p^1 q^{n-1}$$

$$\vdots$$

Kdaj velja $P_n(k) \leq P_n(k+1)$?

$$\frac{P_n(k+1)}{P_n(k)} \ge 1 \qquad \iff \qquad \\ \frac{n-k}{k+1} \cdot \frac{p}{q} \ge 1 \qquad \iff \qquad \\ np - kp \ge (k+1)q \quad \iff \qquad \\ np - kp \ge kq + q \qquad \iff \qquad \\ np \ge k + q \qquad \iff$$

Funkcija $f(x) = \frac{1}{\sqrt{2\pi}} \cdot e^{-\frac{x^2}{2}}$ aproksimira ta graf. To je premaknjena in raztegnjena "normalna porazdelitev".

Slika 4.1: Graf $P_n(k)$

Zgled (Kaljivost semen). p = 0.05, np = 50:

$$P_{1000}(50) \approx \frac{1}{\sqrt{2\pi \cdot 50 \cdot 0.95}} = \frac{1}{\sqrt{95 \cdot \pi}} = 0.05788$$

(c) Laplaceova integralska formula:

Zanima nas dogodek $B_n(k_1, k_2)$, da se v n ponovitvah poskusa dogodek A zgodi vsaj k_1 -krat in manj kot k_2 -krat, za $0 \le k_1 < k_2 \le n$. Potem je:

$$B_n(k_1, k_2) = A_n(k_1) \cup A_n(k_1 + 1) \cup \cdots \cup A_n(k_2 - 1)$$

Ti dogodki so med seboj nezdružljivi, torej je:

$$P_n(k_1, k_2) := P(B_n(k_1, k_2)) = \sum_{k=k_1}^{k_2-1} P(A_n(k)) = \sum_{k=k_1}^{k_2-1} P_n(k)$$

Po Laplaceovi lokalni formuli je potem:

$$P_n(k_1, k_2) \approx \frac{1}{\sqrt{2\pi npq}} \sum_{k=k_1}^{k_2-1} e^{-\frac{1}{2}x_k^2}, \text{ kjer je } x_k = \frac{k-np}{\sqrt{npq}}$$

Vpeljemo:

$$\Delta x_k = x_{k-1} - x_k = \frac{k+1-np}{\sqrt{npq}} - \frac{k-np}{\sqrt{npq}} = \frac{1}{\sqrt{npq}}$$

Potem dobimo:

$$P_n(k_1, k_2) \approx \frac{1}{\sqrt{2\pi}} \sum_{k=k_1}^{k_2-1} e^{-\frac{1}{2}x_k^2} \Delta x_k$$

To je Riemannova vsota za funkcijo $f(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}$ in za delitev intervala [a,b] na $k_2 - k_1$ enakih delov, kjer je $a = x_{k_1} = \frac{k_1 - np}{\sqrt{npq}}$, $b = x_{k_2} = \frac{k_2 - np}{\sqrt{npq}}$.

$$a = x_{k_1} \qquad x_k \qquad b = x_{k_2}$$

Torej za velike n imamo:

$$P_n(k_1, k_2) \approx \int_a^b f(x) dx = \frac{1}{\sqrt{2\pi}} \int_{\frac{k_1 - np}{\sqrt{npq}}}^{\frac{k_2 - np}{\sqrt{npq}}} e^{-\frac{x^2}{2}} dx$$

Slika 4.2: $P_n(k_1, k_2)$

Definicija 3. Verjetnostni integral oziroma funkcija napake je:

$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_0^x e^{-\frac{t^2}{2}} dt \quad \text{za} \quad x \in \mathbb{R}$$

 Φ je zvezno odvedljiva, liha in naraščojoča, $\Phi(0) = 0$.

Izračunajmo $\lim_{x\to\infty} \Phi(x)$. S pomočjo Γ funkcije dobimo:

$$\lim_{x \to \infty} \Phi(x) = \frac{1}{\sqrt{2\pi}} \int_0^\infty e^{-\frac{t^2}{2}} dt \qquad (\star)$$

$$= \frac{1}{\sqrt{2\pi \cdot 2}} \int_0^\infty u^{-\frac{1}{2}} e^{-u} du$$

$$= \frac{1}{2\sqrt{\pi}} \Gamma\left(\frac{1}{2}\right)$$

$$= \frac{1}{2}$$

Kjer smo v (\star) vrstici uporabili substitucijo $u=\frac{t^2}{2},\ du=t\,dt,$ oziroma $t=\sqrt{2u},\ dt=\frac{du}{\sqrt{2u}}.$

Slika 4.3: Graf funkcije Φ

Laplaceovo integralsko formulo sedaj razpišemo kot:

$$P_n(k_1, k_2) = \Phi(b) - \Phi(a) = \Phi\left(\frac{k_2 - np}{\sqrt{npq}}\right) - \Phi\left(\frac{k_1 - np}{\sqrt{npq}}\right)$$

Zgled. Kolikšna je verjetnost, da vzkali vsaj 950 semen v zavojčku s 1000 semeni?

Anaj bo dogodek, da seme ne vzkali. Označimo $p=P(A)=0.05, q=0.95, n=1000, k_1=0, k_2=50$ in np=50. Dobimo:

$$P_{1000}(0,50) = \Phi\left(\frac{50 - 50}{\sqrt{50 \cdot 0.95}}\right) - \Phi\left(\frac{0 - 50}{\sqrt{50 \cdot 0.95}}\right) \approx \Phi(7.36) \approx 0.500$$

Poglavje 5

Slučajne spremenljivke

Danemu poskusu priredimo številsko količino, katere vrednost je odvisna od slučaja. Imenujemo jo slučajna spremenljivka.

Zgled.

- 1. Met kocke; število pik je slučajna spremenljivka.
- 2. Streljanje v tarčo; razdalja zadetka od središča tarče je slučajna spremenljivka. Na primer, verjetnost, da je razdalja $\leq x$ je sorazmerna z x^2 .

 \Diamond

Definicija 4. Realna slučajna spremenljivka na verjetnostnem prostoru (Ω, \mathcal{F}, P) je funkcija $X : \Omega \to \mathbb{R}$, z lastnostjo, da je za vsak $x \in \mathbb{R}$ množica:

$$\{\omega\in\Omega:X(\omega)\leq x\}$$

v \mathcal{F} , se pravi dogodek.

Oznaka:

$$\{\omega \in \Omega : X(\omega) \le x\} \equiv X^{-1}((-\infty, x]) \equiv (X \le x)$$

Definicija 5. Naj bo X slučajna spremenljivka. Funkcija $F_X : \mathbb{R} \to \mathbb{R}$, definirana s predpisom:

$$F_X(x) := P(X \le x)$$

Je porazdelitvena funkcija slučajne spremenljivke X.

Dogovor: $P((X \le x)) \iff P(X \le x)$.

Lastnosti porazdelitvene funkcije $F \equiv F_X$:

- 1. $0 \le F(x) \le 1$ za vsak $x \in \mathbb{R}$.
- 2. F je naraščojoča funkcija:

$$x_1 < x_2 \implies F(x_1) \le F(x_2)$$

Dokaz. Sledi iz $(X \leq x_1) \subseteq (X \leq x_2)$ in monotonosti preslikave P.

3.

$$\lim_{x \to \infty} F(x) = 1, \quad \lim_{x \to -\infty} F(x) = 0$$

Dokaz. Naj bo $\{x_n\}_n\subseteq\mathbb{R}$ ne
omejeno strogo naraščojoče zaporedje. Potem je:

$$\lim_{x \to \infty} F(x) = \lim_{n \to \infty} F(x_n)$$

$$= \lim_{n \to \infty} P(X \le x_n)$$

$$= P\left(\bigcup_{n=1}^{\infty} (X \le x_n)\right) \tag{**}$$

$$= P(\Omega) = 1 \tag{**}$$

Kjer smo v (\star) vrstici uporabili zveznost P, v $(\star\star)$ vrstici pa dejstvo, da $\forall \omega \in \Omega : \exists n : X(\omega) \leq x_n$, torej $\omega \in (X \leq x_n)$.

Podobno se dokaže tudi druga limita (treba je vzeti preseke). □

4. F je z desne zvezna, t.j.:

$$F(x+) = F(x)$$
, kjer je $F(x+) = \lim_{\substack{h>0\\h\to 0}} F(x+h)$

Dokaz. Naj zaporedje $\{x_n\}_n \subseteq \mathbb{R}$ strogo pada proti x. Potem je:

$$F(x+) = \lim_{n \to \infty} F(x_n)$$

$$= \lim_{n \to \infty} P(X \le x_n)$$

$$= P\left(\bigcap_{n=1}^{\infty} (X \le x_n)\right)$$

$$= P(X \le x)$$

$$= F(x)$$

$$(**)$$

Kjer (\star) velja, zaradi zveznosti P, $(\star\star)$ pa velja saj je:

$$\bigcap_{n=1}^{\infty} (X \le x_n) = (X \le x)$$

Tukaj je:

⊇: očitna

 \subseteq :

$$\exists \omega \in \bigcap_{n=1}^{\infty} (X \le x_n) : X(\omega) \le x_n \quad \forall n$$

$$\implies X(\omega) \le x, \text{ t.j. } \omega \in (X \le x)$$

5. •
$$P(x_1 < X \le x_2) = P(X \in (x_1, x_2])$$

 $= P((X \le x_2) \setminus (X \le x_1))$
 $= P(X \le x_2) - P(X \le x_1)$
 $= F(x_2) - F(x_1)$

•
$$P(x_1 < X < x_2) = P(X < x_2) - P(X \le x_1)$$

= $F(x_2 -) - F(x_1)$

Saj je:

$$P(X < x) = P\left(\bigcup_{n=1}^{\infty} \left(X \le x - \frac{1}{n}\right)\right)$$
$$= \lim_{n \to \infty} P\left(X \le x - \frac{1}{n}\right)$$
$$= F(x-)$$

•
$$P(x_1 \le X \le x_2) = P(X \le x_2) - P(X < x_1)$$

= $F(x_2) - F(x_1-)$

•
$$P(x_1 \le X < x_2) = P(X < x_2) - P(X < x_1)$$

= $F(x_2-) - F(x_1-)$

Oglejmo si dva najpomembnejša razreda slučajnih spremenljivk.

5.1 Diskretne slučajne spremenljivke

Slučajna spremenljivka X je diskretno porazdeljena, če je njena zaloga vrednosti končna ali števna množica števil $\{x_1, x_2, x_3, \ldots\}$.

Tedaj vpeljemo verjetnostno funkcijo:

$$p_k = P(X = x_k)$$
 za $k = 1, 2, 3, ...$

in shemo:

$$X: \left(\begin{array}{ccc} x_1 & x_2 & x_3 & \cdots \\ p_1 & p_2 & p_3 & \cdots \end{array}\right), \quad \sum_k p_k = 1$$

Tukaj je $\{(X = x_k)\}_k$ popoln sistem dogodkov.

Porazdelitvena funkcija je:

$$F(x) = P(X \le x) = P\left(\bigcup_{k: x_k \le x} (X = x_k)\right) = \sum_{k: x_k \le x} p_k$$

Torej je F odsekoma konstantna.

Na primer za $x_1 < x_2 < x_3$ in $p_1 + p_2 + p_3 = 1$:

$$X: \left(\begin{array}{ccc} x_1 & x_2 & x_3 \\ p_1 & p_2 & p_3 \end{array}\right)$$

Slika 5.1: Porazdelitvena funkcija F

Pomembnejše diskretne porazdeitve:

1. Enakomerna diskretna porazdelitev na n
 točkah x_1, x_2, \dots, x_n :

$$X: \left(\begin{array}{cccc} x_1 & x_2 & \dots & x_n \\ \frac{1}{n} & \frac{1}{n} & \dots & \frac{1}{n} \end{array}\right)$$

 \Diamond

Zgled. Met poštene kocke, n = 6:

$$X: \left(\begin{array}{cccccc} 1 & 2 & 3 & 4 & 5 & 6 \\ \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} \end{array}\right)$$

2. Bernoullijeva porazdelitev $Ber(p), p \in (0,1), q = 1 - p$:

$$X: \left(\begin{array}{cc} 0 & 1 \\ q & p \end{array}\right)$$

(X = 1) je dogodek, da se dogodek A zgodi.

(X = 0) je dogodek, da se dogodek A ne zgodi.

Indikatorska funkcija:

$$\mathbb{1}_{A}(\omega) = \begin{cases} 1 & ; w \in A \\ 0 & ; w \notin A \end{cases}$$

3. Binomska porazdelitev $Bin(n, p), n \in \mathbb{N}, p \in (0, 1)$:

$$X: \begin{pmatrix} 0 & 1 & 2 & 3 & \cdots & n \\ p_0 & p_1 & p_2 & p_3 & \cdots & p_n \end{pmatrix}$$

$$p_k = P(X = k) = \binom{n}{k} p^k q^{n-k}$$
, kjer je $q = 1 - p$

(X=k)je dogodek, da se dogodek Azgodi natanko $k\text{-}\mathrm{krat}$ vnponovitvah poskusa.

Zgled. Mečemo kocko. X je število šestic v n metih. $X \sim \text{Bin}(n, \frac{1}{6})$.

4. Poissonova porazdelitev $Poi(\lambda), \lambda > 0$:

$$p_k = P(X = k) = \frac{\lambda^k}{k!} e^{-\lambda}, \text{ za } k = 0, 1, 2, \dots$$

Res velja:

$$\sum_{k=0}^{\infty} p_k = e^{-\lambda} \left(\sum_{k=0}^{\infty} \frac{\lambda^k}{k!} \right) = e^{-\lambda} e^{\lambda} = 1$$

Zgled. Število klicev v telefonskem omrežju v minuti. n je število naročnikov. Recimo, da je $n=10^6$ in vsak se z verjetnostjo p odloči, da bo klical. Ker je n velik in p majhen, lahko aproksimiramo $X \sim \text{Bin}(n,p) \approx \text{Poi}(np)$. Primer je tudi število napačnih črk v časopisu.

5. Geometrijska porazdelitev $geo(p), p \in (0, 1)$:

Ponavljamo poskus in opazujemo dogodek A s P(a) = p. X je število potrebnih ponovitev, da se zgodi A prvič.

(X = k) je dogodek, da se A zgodi prvič k k-ti ponovitvi poskusa:

$$\underline{\bar{A}}\underline{\bar{A}}\underline{\bar{A}}\dots\underline{\bar{A}}A$$

$$p_k = P(X = k) = pq^{k-1}$$
, za $k = 1, 2, 3, ...$

Res velja:

$$\sum_{k=1}^{\infty} p_k = p \sum_{k=1}^{\infty} q^{k-1} = p \frac{1}{1-q} = 1$$

Zgled. Mečemo kocko. X je število potrebnih metov, da pade šestica prvič. $X \sim \text{geo}(\frac{1}{6})$.

6. Pascalova oz. nenegativna binomska porazdelitev $\operatorname{Pas}(m,p), m \in \mathbb{N}, p \in (0,1)$: X je število potrebnih ponovitev poskusa, da se dogodek A zgodi m-krat. (X = k) je dogodek, da se A zgodi m-tič v k-ti ponovitvi.

$$\underbrace{AA\bar{A}A\bar{A}\dots\bar{A}A}_{m-1}\underbrace{A}_{k-m}\underbrace{A}$$

$$p_k = P(X = k) = {k-1 \choose m-1} p^m q^{k-m}, \text{ za } k = m, m+1, m+2, \dots$$

 $\sum_{k=m}^{\infty}p_k=1$ se dokaže računsko z(m-1)-kratnim odvajanjem vrste $1+q+q^2+\cdots=\frac{1}{1-q}$ ali pa direktno z uporabo vrste $(1-q)^{-m}=\sum_{j=0}^{\infty}\binom{-m}{j}(-q)^j.$

Geometrijska porazdelitev je poseben primer Pascalove: Pas(1, p) = geo(p)

Zgled. Mečemo kocko. X je število potrebnih metov, da šestica pade m krat. $X \sim \operatorname{Pas}(m, \frac{1}{6})$.

7. Hipergeometrijska porazdelitev $\operatorname{Hip}(n; M, N)$, $n \leq \min\{M, N - M\}$: V posodi imamo M belih in (N - M) črnih kroglic. Slučajno izvlečemo n kroglic. X naj bo število belih kroglic med izvlečenimi:

$$p_k = P(X = k) = \frac{\binom{M}{k} \binom{N-M}{n-k}}{\binom{N}{n}}$$

Ker je $\{(X=k)_{k=0}^n$ popoln sistem dogodkov, je $\sum_{k=0}^n p_k = 1$. Torej velja:

$$\sum_{k=0}^{n} \binom{M}{k} \binom{N-M}{n-k} = \binom{N}{n}$$

Računsko lahko enakost $\sum_{k=0}^{n} p_k$ preverimo takole:

$$(1+x)^N = (1+x)^M (1+x)^{N-M}$$

Za vsakega od teh faktorjev se uporabi binomski obrazec in se primerja koeficiente pri x^n :

$$\sum_{k=0}^{N} \binom{N}{k} x^k = \left(\sum_{i=0}^{M} \binom{M}{i} x^i\right) \cdot \left(\sum_{j=0}^{N-M} \binom{N-M}{j} x^j\right)$$
$$= \sum_{i} \sum_{j=0}^{M} \binom{M}{i} \binom{N-M}{j} x^{i+j}$$

Koeficient pri x^n na levi je $\binom{N}{n}$, na desni pa:

$$\sum_{i+j=n} \binom{M}{i} \binom{N-M}{j} = \sum_{k=0}^{m} \binom{M}{k} \binom{N-M}{n-k}$$

Tako je vsota res 1.

Zgled. V jezeru je N rib, od tega je M krapov. Ulovimo n rib. Naj bo X število ujetih krapov. $X \sim \text{Hip}(n; M, N)$.

Vzemimo, da je $n \ll \min\{M, N-M\}$. Tedaj ne naredimo velike napake, če kroglice vrečamo. Tedaj je $X \sim \text{Bin}(n, \frac{M}{N})$ ozirioma $p_k = \binom{n}{k} \left(\frac{M}{N}\right)^k \left(\frac{N-M}{N}\right)^{n-k}$ za $k = 0, 1, \ldots, n$.

5.2 Zvezne slučajne spremenljivke

Slučajna spremenljivka X je zvezno porazdeljena, če obstaja nenegativna integrabilna funkcija p_X , imenovana gostota verjetnosti, da za vsak $x \in \mathbb{R}$ velja:

$$F_X(x) = \int_{-\infty}^x p_X(t) dt$$

Opomba. Pogosto se gostota označuje s f_X .

Tedaj je $F_X = F$ zvezna funkcija. Toda obstajajo tudi zvezne porazdelitvene funkcije, ki nimajo gostote.

Ker je $\lim_{x\to\infty} F(x) = 1$, je:

$$\int_{-\infty}^{\infty} p(t) \, dt = 1$$

Če je p zvezna v točki x, potem je F odvedljiva v x in velja F'(x) = p(x).

Za vsak $x \in \mathbb{R}$ velja P(X = x) = F(x) - F(x-) = 0. Če je $x_1 \le x_2$, je potem:

$$P(x_1 \le X_1 \le x_2) = F(x_2) - F(x_1 -) = \int_{x_1}^{x_2} p(t) dt$$

Pomembnejše zvezne porazdelitve:

1. Enakomerna zvezna porazdelitev na [a, b], a < b:

$$p(x) = \begin{cases} \frac{1}{b-a} & ; \text{ \'e } a \le x \le b\\ 0 & ; \text{ sicer} \end{cases}$$

Slika 5.2: $p_X(x)$ za enakomerno porazdelitev

$$F(x) = \int_{-\infty}^{x} p(t) dt = \begin{cases} 0 & ; \text{ \'e } x \le a \\ \frac{x-a}{b-a} & ; \text{ \'e } a \le x \le b \\ 1 & ; \text{ \'e } x \ge b \end{cases}$$

Slika 5.3: $F_X(x)$ za enakomerno porazdelitev

2. Normalna ali Gaussova porazdelitev $N(\mu, \sigma), \mu \in \mathbb{R}, \sigma > 0$:

$$p(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$$

Slika 5.4: $p_X(x)$ za normalno porazdelitev

Če je σ majhen:

Če je σ velik:

$$F(x) = \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2} dt \stackrel{(\star)}{=} \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\frac{x-\mu}{\sigma}} e^{-\frac{1}{2}s^2} ds = \frac{1}{2} + \Phi\left(\frac{x-\mu}{\sigma}\right)$$

Kjer smo v enakosti (*) uvedli novo spremenljivko $s=\frac{t-\mu}{\sigma}.$ Tukaj je:

$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_0^x e^{-\frac{1}{2}t^2} dt$$

Slika 5.5: $F_X(x)$ za normalno porazdelitev

 \Diamond

N(0,1) je standardna normalna porazdelitev:

$$p(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$$

Laplaceova integralska formula pove, da za velike n velja:

$$Bin(n, p) \approx N(np, \sqrt{npq})$$

Zgled. Sistolični krvni tlak je na populaciji približno normalno porazdeljen:

Slika 5.6: Sistolični krvni tlak

Osenčen del je delež ljudi, ki imajo tlak med 120 in 130 mm Hg.

3. Eksponenta porazdelitev $\text{Exp}(\lambda)$, s parametrom $\lambda > 0$:

$$p(x) = \begin{cases} \lambda e^{-\lambda x} & ; \text{ \'e } x \ge 0\\ 0 & ; \text{ sicer} \end{cases}$$

Slika 5.7: $p_X(x)$ za eksponentno porazdelitev

$$F(x) = \begin{cases} 1 - e^{-\lambda x} & ; \text{ \'e } x \ge 0\\ 0, & ; \text{ sicer} \end{cases}$$

 \Diamond

Slika 5.8: $F_X(x)$ za eksponentno porazdelitev

Zgled. Radioaktivni razpad - potreben čas, da se nekaj zgodi.

4. Porazdelitev gama (pomembna v statistiki), $\Gamma(b,c)$, b>0, c>0:

$$p(x) = \begin{cases} \frac{c^b}{\Gamma(b)} x^{b-1} e^{-cx} & ; \text{ \'e } x > 0\\ 0 & ; \text{ sicer} \end{cases}$$

Velja:

$$\int_{-\infty}^{\infty} p(x) dx = \frac{c^b}{\Gamma(b)} \int_{-\infty}^{\infty} x^{b-1} e^{-cx} dx = \frac{1}{\Gamma(b)} \underbrace{\int_{-\infty}^{\infty} (cx)^{b-1} e^{-cx} d(cx)}_{\Gamma(b)} = 1$$

Eksponentna je poseben primer gama porazdelitve: $\Gamma(1,\lambda) = \text{Exp}(\lambda)$.

5. Porazdelitev $\chi^2(n)$ (poseben primer porazdelitve gama), $n\in\mathbb{N}$ prostostna stopnja:

$$p(x) = \begin{cases} \frac{1}{2^{\frac{n}{2}} \Gamma(\frac{n}{2})} x^{\frac{n}{2} - 1} e^{-\frac{x}{2}} & ; \text{ \'e } x > 0\\ 0 & ; \text{ sicer} \end{cases}$$

Velja: $\chi^2(n) = \Gamma\left(\frac{n}{2}, \frac{1}{2}\right)$.

6. Cauchyjeva porazdelitev:

$$p(x) = \frac{1}{\pi (1 + x^2)}, \quad \text{za} \quad x \in \mathbb{R}$$

Slika 5.9: $p_X(x)$ za Cauchyjevo porazdelitev

$$F(x) = \int_{-\infty}^{x} \frac{dt}{\pi (1 + t^2)} = \frac{1}{\pi} \arctan t dt \Big|_{-\infty}^{x} = \frac{1}{\pi} \arctan x + \frac{1}{2}$$

Slika 5.10: $F_X(x)$ za Cauchyjevo porazdelitev

Imeli smo:

$$P(x_1 \le X \le x_1) = \int_{x_1}^{x_2} p(x) dx \quad \text{oziroma}$$
$$P(X \in [x_1, x_2]) = \int_{[x_1, x_2]} p(t) dt$$

Možno je videti, da to velja za vsako Borelovo množico $A \subseteq \mathbb{R}$:

$$P(X \in A) = \int_A p(t) dt$$

Velja, da če je A dovolj »lepa« množica, recimo števna/končna unija intervalov, je verjetnost, da X zavzame vrednost v A ravno ploščina pod p(x) na množici A.

Zgled. Primer slučajne spremenljivke, ki ni niti diskretno niti zvezno porazdeljena. Vržemo pošten kovanec. Če pade grb, postavimo X = 1. Če pa pade cifra, naj bo X slučajno izbrano število na intervalu [0, 2].

Izračunajmo $F(x) = P(X \le x)$:

- 1. Če je x < 0, je F(x) = 0. Če je x > 2, je F(x) = 1.
- 2. Vzemimo, da je $0 \le x \le 2$. Potem je:

$$F(x) = P(\text{grb}) \cdot P(X \le x \mid \text{grb}) + P(\text{cifra}) \cdot P(X \le x \mid \text{cifra})$$

Če je
$$x < 1$$
, je $F(x) = \frac{1}{2} \cdot \frac{x}{2} = \frac{x}{4}$.

Če je
$$x \ge 1$$
, je $F(x) = \frac{1}{2} + \frac{1}{2} \cdot \frac{x}{2} = \frac{1}{2} + \frac{x}{4}$.

Torej je:

$$F(x) = \begin{cases} 0 & \text{; \'e } x < 0 \\ \frac{x}{4} & \text{; \'e } 0 \le x < 1 \\ \frac{1}{2} + \frac{x}{4} & \text{; \'e } 1 \le x \le 2 \\ 1 & \text{; \'e } x > 2 \end{cases}$$

Slika 5.11: Porazdelitvena funkcija $F_X(x)$

KerFni zvezna, Xni zvezno porazdeljena. KerFni odsekoma konstantna, Xni diskretno porazdeljena. \diamondsuit

Poglavje 6

Slučajni vektorji in neodvisnost

6.1 Slučajni vektorji

Definicija 6. Slučajni vektor je n-terica slučajnih spremenljivk $X = (X_1, \ldots, X_n)$, to je preslikava $X : \Omega \to \mathbb{R}^n$ z lastnostjo, da je množica:

$$(X_1 \le x_1, \dots, X_n \le x_n) := \{ \omega \in \Omega : X_1(\omega) \le x_1, \dots, X_n(\omega) \le x_n \}$$

dogodek, za vsako *n*-terico $x = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$.

Definicija 7. Porazdelitvena funkcija $F_X: \mathbb{R}^n \to \mathbb{R}$ je definirana s:

$$F_X(x) \equiv F_{(X_1,...,X_n)}(x_1,...,x_n) = P(X_1 \le x_1,...,X_n \le x_n)$$

Za vsak $x \in \mathbb{R}^n$ je $F(x) \in [0, 1]$.

Glede na vsako spremenljivko je F naraščojoča in z desne zvezna:

$$\lim_{x_{i} \to \infty} F(x_{1}, \dots, x_{n}) = 1$$
$$\lim_{x_{i} \to \infty} F(x_{1}, \dots, x_{n}) = 0$$

Če pošljemo proti ∞ samo nekatere spremenljivke, dobimo porazdelitvene funkcije podvektorjev, na primer:

$$\lim_{\substack{x_n \to \infty \\ x_2 \to \infty}} F_{(X_1, \dots, X_n)} (x_1, \dots, x_n) = F_{(X_1, \dots, X_{n-1})} (x_1, x_2, \dots, x_{n-1})$$

$$\lim_{\substack{x_2 \to \infty \\ x_2 \to \infty}} F_{(X_1, \dots, X_n)} (x_1, x_2, \dots, x_n) = F_{X_1} (x_1)$$

$$\vdots$$

Take porazdelitvene funkcije za X_i imenujemo tudi, robne (marginalne) porazdelitve.

Oglejmo si dvorazsežen primer (n = 2):

$$(X,Y): \Omega \to \mathbb{R}^2$$

 $\omega \mapsto (X(\omega), Y(\omega))$

Porazdelitvena funkcija je:

$$F_{(X,Y)}(x,y) = P(X \le x, Y \le y)$$

Slika 6.1: Verjetnost, da zavzamemo vrednost znotraj tega kvadrata

Robni porazdelitvi sta:

$$F_X(x) = \lim_{y \to \infty} F_{(X,Y)}(x,y)$$
$$F_Y(y) = \lim_{x \to \infty} F_{(X,Y)}(x,y)$$

Izpeljimo analog formule $P(x_1 < X \le x_2) = F(x_2) - F(x_1)$, t.j. s pomočjo porazdelitvene funkcije $F_{(X,Y)} = F$ izračunajmo verjetnost:

$$P(a < X \le b, c < Y \le d)$$

Najprej si oglejmo:

$$\begin{split} P(a < X \leq b, Y \leq d) &= P\left((X \leq b, Y \leq d) \setminus (X \leq a, Y \leq d)\right) \\ &= P(X \leq b, Y \leq d) - P(X \leq a, Y \leq d) \\ &= F(b, d) - F(a, d) \end{split}$$

V splošnem primeru:

$$P(a < X \le b, c < Y \le d) = P(a < X \le b, Y \le d) - P(a < X \le b, Y \le c)$$

$$= F(b, d) - F(a, d) - (F(b, c) - F(a, c))$$

$$= F(b, d) - F(a, d) - F(b, c) + F(a, c)$$

Slika 6.2: $P(a < X \le b, c < Y \le d)$

Omejimo se na diskretne porazdelitve:

Zaloga vrednosti slučajnih vektorjev $X = (X_1, \ldots, X_n)$ je največ števna množica v \mathbb{R}^n . Verjetnostno funkcijo definiramo s:

$$p_{k_1,k_2,\dots,k_n} = P(X_1 = x_{k_1}, X_2 = x_{k_2}, \dots, X_n = x_{k_n}) \ge 0$$
 in $\sum_{k_1,\dots,k_n} p_{k_1,\dots,k_n} = 1$

Omejimo se na n=2: $(X,Y):\Omega\to\mathbb{R}^2$ z največ števno zalogo vrednosti. Naj bo $\{x_1,x_2,\ldots\}$ zaloga vrednosti za $X,\{y_1,y_2,\ldots\}$ pa zaloga vrednosti za Y. Očitno je zaloga vrednosti (X,Y) vsebovana v množici:

$$\{(x_i, y_j) : i = 1, 2, \dots, j = 1, 2, \dots\}$$

Verjetnostna funkcija:

$$p_{ij} := P(X = x_i, Y = y_j)$$
 za $i = 1, 2, ...$ in $j = 1, 2, ...$

$$p_i = P(X = x_i) = \sum_j P(X = x_i, Y = y_j) = \sum_j p_{ij}$$

 $q_j = P(Y = y_j) = \sum_j p_{ij}$

Zgled. Met dveh kock:

$X \setminus Y$	1	2		6	X
1	$\frac{1}{36}$	$\frac{1}{36}$		$\frac{1}{36}$	$\frac{1}{6}$
2	$\frac{\frac{1}{36}}{\frac{1}{36}}$	$\frac{1}{36}$	• • •	$\frac{1}{36}$	$\begin{array}{c c} \frac{1}{6} \\ \frac{1}{6} \end{array}$
:	:	:	٠	:	÷
6	$\frac{1}{36}$	$\frac{1}{36}$	• • •	$\frac{1}{36}$	$\frac{1}{6}$
\overline{Y}	$\frac{1}{6}$	$\frac{1}{6}$		$\frac{1}{6}$	1

6.2 Neodvisnost

Slučajne spremenljivke X_1, X_2, \dots, X_n so neodvisne, če velja:

$$F_{(X_1,X_2,...,X_n)}(x_1,x_2,...,x_n) = F_{X_1}(x_1) \cdot F_{X_2}(x_2) \cdot \cdot \cdot F_{x_n}(x_n)$$

za vse $(x_1, x_2, \dots x_n) \in \mathbb{R}^n$, torej dogodki $(X_1 \leq x_1), (X_2 \leq x_2), \dots, (X_n \leq x_n)$ so neodvisni.

Trditev 2. Naj bo (X,Y) diskretno porazdeljen slučajni vektor. Naj bo $p_{ij} = P(X = x_i, Y = y_j), p_i = P(X = x_i), q_j = P(Y = y_j)$ za i = 1, 2, ..., j = 1, 2, ... Potem sta X in Y neodvisni slučajni spremenljivki $\iff p_{ij} = p_i \cdot q_j \quad \forall i, \forall j$.

Dokaz.

 (\Longrightarrow) :

$$p_{ij} = \lim_{h \to 0+} P(x_i - h < X \le x_i, y_j - h < Y \le y_j)$$

$$= \lim_{h \to 0} (F(x_i, y_j) - F(x_i - h, y_j) - F(x_i, y_j - h) + F(x_i - h, y_j - h))$$

$$= \lim_{h \to 0} (F_X(x_i) \cdot F_Y(y_j) - F_X(x_i - h) \cdot F_Y(y_j) - F_X(x_i) \cdot F_Y(y_j - h) + (\star)$$

$$+ F_X(x_i - h) \cdot F_Y(y_j - h))$$

$$= \lim_{h \to 0} (F_X(x_i) - F_X(x_i - h)) \cdot (F_Y(y_j) - F_Y(y_j - h))$$

$$= P(X = x_i) \cdot P(Y = y_j)$$

$$= p_i \cdot q_j$$

Kjer smo v vrstici (⋆) uporabili neodvisnost.

 (\Longleftarrow) :

$$F_{(X,Y)}(x,y) = \sum_{\{i,j:x_i \le x_1, y_j \le y\}} p_{ij}$$

$$= \sum_{\{i,j:x_i \le x, y_j \le y\}} p_i \cdot p_j$$

$$= \left(\sum_{\{i:x_i \le x\}} p_i\right) \cdot \left(\sum_{\{j:y_j \le y\}} q_j\right)$$

$$= P(X \le x) \cdot P(Y \le y)$$

$$= F_X(x) \cdot F_Y(y)$$

Poglavje 7

Matematično upanje oz. pričakovana vrednost

Definicija 8. Za končno slučajno spremenljivko $X: \begin{pmatrix} x_1 & x_2 & \cdots & x_n \\ p_1 & p_2 & \cdots & p_n \end{pmatrix}$ je matematično upanje definirano kot:

$$E(X) := \sum_{k=1}^{n} x_k p_k$$

Tako je v primeru $p_1=p_2=\cdots=p_n=\frac{1}{n}$ matematično upanje enako povprečni vrednosti: $E(X)=\frac{x_n+x_2+\cdots+x_n}{n}$.

Naj ima sedaj X neskončno zalogo vrednosti.

Definicija 9. Če je X diskretna slučajna spremenljivka, s $p_k = P(X = x_k)$ za $k \in \mathbb{N}$, potem ima X matematično upanje, če je:¹

$$\sum_{k=1}^{\infty} |x_k| \, p_k < \infty$$

Tedaj je matematično upanje definirano kot vsota vrste:

$$E(X) := \sum_{k=1}^{\infty} x_k p_k$$

¹Absolutno konvergenco zahtevamo zato, ker če vrsta konvergira le pogojno, potem lahko zamenjamo vrstni red členov in se vsota spremeni. To pri slučajnih spremenljivkah lahko vedno počnemo, saj slučajna spremenljivka ostaja enaka. Definicija matematičnega upanja tedaj ne bi bila enolična.

Definicija 10. Če je X zvezna slučajna spremenljivka, z gostoto p(x), ima X matematično upanje, če je:

$$\int_{-\infty}^{\infty} |x| p(x) \, dx < \infty$$

Tedaj je matematično upanje definirano kot:

$$E(X) = \int_{-\infty}^{\infty} x \, p(x) \, dx$$

Zgled.

1.
$$X \sim \text{Ber}(p), p > 0, X : \begin{pmatrix} 0 & 1 \\ q & p \end{pmatrix} : E(X) = 0 \cdot q + 1 \cdot p = p$$

2. *Izrojena* ali degenerirana slučajna spremenljivka: $\exists x_0 \in \mathbb{R} : P(X = x_0) = 1$, t.j.: $X : \begin{pmatrix} x_0 \\ 1 \end{pmatrix}$: $E(X) = x_0 \cdot 1 = x_0$

3.
$$X \sim \text{Poi}(\lambda), \lambda > 0, p_k = \frac{\lambda^k}{k!} e^{-\lambda} \text{ in } x_k = k, \text{ za } k = 0, 1, 2, \dots$$

$$E(X) = \sum_{k=0}^{\infty} x_k p_k$$

$$= \sum_{k=0}^{\infty} k \frac{\lambda^k}{k!} e^{-\lambda}$$

$$= e^{-\lambda} \lambda \sum_{k=1}^{\infty} \frac{\lambda^{k-1}}{(k-1)!}$$

$$= e^{-\lambda} \lambda e^{\lambda} = \lambda$$

4. Enakomerna zvezna porazdelitev na [a, b]:

$$E(X) = \int_{-\infty}^{\infty} x p(x) dx$$

$$= \int_{a}^{b} x \frac{1}{b-a} dx$$

$$= \frac{1}{b-a} \int_{a}^{b} x dx$$

$$= \frac{1}{b-a} \frac{x^{2}}{2} \Big|_{a}^{b}$$

$$= \frac{b^{2} - a^{2}}{(b-a) \cdot 2}$$

$$= \frac{a+b}{2}$$

5.
$$X \sim N(0,1), p(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}$$
:

$$\int_{-\infty}^{\infty} |x| p(x) dx = \int_{-\infty}^{\infty} |x| e^{-\frac{x^2}{2}} dx$$

$$= 2 \int_{0}^{\infty} x e^{-\frac{x^2}{2}} dx$$

$$= 2 \int_{0}^{\infty} e^{-u} du \qquad (\star)$$

$$= 2 \left(-e^{-u} \right) \Big|_{0}^{\infty} = 2 < \infty$$

 $\Longrightarrow X$ ima matematično upanje. V vrstici (\star) smo vpeljali novo spremenljivko $u=\frac{x^2}{2}.$

$$E(X) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} x e^{-\frac{x^2}{2}} dt \stackrel{\text{liha}}{=} 0$$

6. Cauchyjeva porazdelitev, $p(x) = \frac{1}{\pi(1+x^2)}$:

$$\int_{-\infty}^{\infty} |x| \frac{1}{\pi (1+x^2)} dx = \frac{2}{\pi} \int_{0}^{\infty} \frac{x}{1+x^2} dx = \frac{1}{\pi} \ln (1+x^2) \Big|_{0}^{\infty} = \infty$$

 $\implies X$ nima matematičnega upanja.

7. $1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \dots$ je pogojno konvergentna vrsta. Če vzamemo:

$$x_k p_k = \frac{(-1)^{k+1}}{k}$$
, za $k = 1, 2, \dots$

$$p_k = 2^{-k} = \frac{1}{2^k}, \quad \sum_{k=1}^{\infty} p_k = 1, \quad x_k = \frac{(-1)^{k+1}}{k} 2^k$$

X nima matematičnega upanja, ker vrsta ne konvergira absolutno.

 \Diamond

Trditev 3. Naj bo $f : \mathbb{R} \to \mathbb{R}$ funkcija:

(a) Če je
$$X: \begin{pmatrix} x_1 & x_2 & x_3 & \cdots \\ p_1 & p_2 & p_3 & \cdots \end{pmatrix}$$
, potem je:

$$E(f \circ X) = \sum_{k} f(x_k) p_k$$

če matematično upanje obstaja, t.j. vrsta absolutno konvergira.

(b) Če je X zvezno porazdeljena z gostoto p(x), potem je:

$$E(f \circ X) = \int_{-\infty}^{\infty} f(x)p(x) dx$$

če je integral absolutno konvergenten.

Dokaz. (samo (a)) 2

$$f \circ X \equiv f(X) : \begin{pmatrix} f(x_1) & f(x_2) & f(x_3) & \cdots \\ p_1 & p_2 & p_3 & \cdots \end{pmatrix}$$
$$E(f \circ X) = \sum_{h} f(x_k) p_k$$

Posledica 1. Slučajna spremenljivka X ima matematično upanje \iff |X| ima matematično upanje. Tedaj velja:

$$|E(X)| \le E(|X|)$$

Dokaz.

$$|E(X)| = \left| \sum_{k} x_k p_k \right| \le \sum_{k} |x_k| \, p_k = E(|X|)$$

Posledica 2. Za $a \in \mathbb{R}$ in slučajno spremenljivko X z matematičnim upanjem velja:

$$E(a \cdot X) = a \cdot E(X)$$

Torej je upanje homogeno.

Dokaz. Vzamemo:

$$f(x) = a \cdot x$$

Podobno kot zadnjo trditev se dokaže:

Trditev 4. Naj bo $f: \mathbb{R}^2 \to \mathbb{R}$ funkcija, (X,Y) pa diskretno porazdeljen slučajni vektor:

$$p_{ij} = P(X = x_i, Y = y_j), \quad za \quad i, j = 1, 2, \dots$$

Potem je $f(X,Y): \Omega \to \mathbb{R}$ slučajna spremenljivka in velja:

$$E(f(X,Y)) = \sum_{i} \sum_{j} f(x_i, y_j) p_{ij}$$

če vrsta absolutno konvergira.

 $[\]overline{^2 {\rm V}}$ definiciji matematičnega upanja dopuščamo, da v $\{f(x_k)\}_k$ niso sama različna števila.

Trditev 5. Če imata X in Y matematično upanje, ga ima tudi X + Y in velja:

$$E(X+Y) = E(X) + E(Y)$$

Torej je upanje aditivno.

Dokaz. (samo diskreten primer)

$$E(X + Y) = \sum_{i} \sum_{j} (x_i + y_j) p_{ij}$$

$$= \sum_{i} x_i \sum_{j} p_{ij} + \sum_{j} y_j \sum_{i} p_{ij}$$

$$= \sum_{i} x_i p_i + \sum_{j} y_j q_j$$

$$= E(X) + E(Y)$$

Posledica 3. Za slučajne spremenljivke X_1, X_2, \dots, X_n , ki imajo matematično upanje, velja:

$$E(a_1X_1 + a_2X_2 + \ldots + a_nX_n) = a_1E(X_1) + a_2E(X_2) + \cdots + a_nE(X_n)$$

 $kjer\ so\ a_1, a_2, \ldots, a_n \in \mathbb{R}.$

Zgled.

1. Naj ima X matematično upanje. Potem je:

$$E(X - E(X)) = E(X) - E(\underbrace{E(X)}_{\text{konst.}}) = E(X) - E(X) = 0$$

2.
$$X_k \sim \mathrm{Ber}(p)$$
, torej $X_k: \begin{pmatrix} 0 & 1 \\ 1-p & p \end{pmatrix}$ za $k=1,2,\ldots,X:=X_1+\cdots+X_n$:
$$E(X)=E(X_1)+\cdots+E(X_n)=np$$

Posebej: imejmo Bernoullijevo zaporedje neodvisnih ponovitev poskusa in A dogodek, sP(A) = p. $X_k : \begin{pmatrix} 0 & 1 \\ 1-p & p \end{pmatrix}$ in $(X_k = 1)$, če se dogodek A zgodi v k-ti ponovitvi poskusa. Potem je $X = X_1 + \cdots + X_n$ frekvenca dogodka A v n ponovitvah. Tedaj je $X \sim \text{Bin}(n, p)$.

 \Diamond

 \Diamond

Torej je E(X) = np. To se lahko vidi tudi direktno:

$$E(X) = \sum_{k=0}^{n} k \binom{n}{k} p^k q^{n-k}$$

$$= \sum_{k=1}^{n} k \frac{n}{k} \binom{n-1}{k-1} p^k q^{n-k}$$

$$= np \sum_{k=1}^{n} \binom{n-1}{k-1} p^{k-1} q^{n-k}$$

$$= np(p+q)^{n-1}$$

$$= np$$

Zgled. $X \sim N(\mu, \sigma), \ \mu \in \mathbb{R}, \sigma > 0$:

$$p(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$$

Na vajah boste pokazali: $Y = \frac{X - \mu}{\sigma} \sim N(0, 1)$. Ker je E(Y) = 0, je:

$$E(X) = E(\sigma Y + \mu) = \sigma E(Y) + \mu = \mu$$

 $\textbf{Trditev 6.} \ \ \check{C}e \ obstajata \ E\left(X^2\right) \ in \ E\left(Y^2\right), \ potem \ obstaja \ tudi \ E(|XY|) \ in \ velja:$

$$E(|XY|) \le \sqrt{E(X^2) E(Y^2)}$$

To je Cauchy-Schwarzova neenakost. Enakost velja ⇔

$$|Y| = \sqrt{\frac{E(Y^2)}{E(X^2)}}|X|$$
 z verjetnostjo 1.

Dokaz. Za poljubni nenegativni števili \boldsymbol{u} in \boldsymbol{v} velja:

$$uv \le \frac{1}{2} \left(u^2 + v^2 \right) \qquad \left(\iff (u - v)^2 \ge 0 \right)$$

Torej za nanegativni slučajni spremenljivki U in V velja:

$$UV \le \frac{1}{2} \left(U^2 + V^2 \right)$$

kjer velja enačaj, le za $\omega \in \Omega$, v katerih je $U(\omega) = V(\omega)$.

Če vstavimo U = a|X| in $V = \frac{1}{a}|Y|$ za a > 0, dobimo neenakost:

$$|XY| \leq \frac{1}{2} \left(a^2 X^2 + \frac{1}{a^2} Y^2\right)$$

in zato:

$$E(|XY|) \leq \frac{1}{2} \left(a^2 E\left(X^2\right) + \frac{1}{a^2} E\left(Y^2\right) \right)$$

Če vstavimo $a^2 = \sqrt{\frac{E(Y^2)}{E(X^2)}}$, je desna stran enaka:

$$\frac{1}{2}\left(\sqrt{\frac{E\left(Y^{2}\right)}{E\left(X^{2}\right)}}E\left(X^{2}\right)+\sqrt{\frac{E\left(X^{2}\right)}{E\left(Y^{2}\right)}}E\left(Y^{2}\right)\right)=\sqrt{E\left(X^{2}\right)E\left(Y^{2}\right)}$$

torej je:

$$E(|XY|) \le \sqrt{E(X^2) E(Y^2)}$$

Enačaj velja, če je $a|X| = \frac{1}{a}|Y|$, torej je:

$$|Y| = a^2 |X| = \sqrt{\frac{E(Y^2)}{E(X^2)}} |X|$$

Posledica 4. Če obstaja $E(X^2)$, potem obstaja tudi E(|X|) in velja:

$$(E(|X|))^2 \le E\left(X^2\right)$$

Dokaz. Vzamemo $Y \equiv 1$.

Trditev 7. Naj bosta X in Y neodvisni slučajni spremenljivki, ki imata matematično upanje. Potem obstaja tudi matematično upanje za XY in velja:

$$E(XY) = E(X)E(Y)$$

Dokaz. (samo diskreten primer) Po trditvi, kjer je $p_{ij} = P(X = x_i, Y = y_j)$ dobimo:

$$E(XY) = \sum_{i} \sum_{j} x_i y_j p_{ij}$$

Zaradi neodvisnosti je $p_{ij}=p_iq_j$, kjer je $p_i=P\left(X=x_i\right)$ in $q_j=P\left(Y=y_j\right)$. Torej je:

$$E(XY) = \sum_{i} \sum_{j} x_i y_j p_i q_j = \left(\sum_{i} x_i p_i\right) \left(\sum_{j} y_j q_j\right) = E(X)E(Y)$$

Definicija 11. Če za X in Y velja E(XY) = E(X)E(Y), potem sta X in Y nekorelirani slučajni spremenljivki. Sicer sta korelirani.

Po trditvi iz neodvisnosti sledi nekoreliranost. Obrat ne velja.

Zgled.

$$U: \begin{pmatrix} 0 & \frac{\pi}{2} & \pi \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{pmatrix}$$

$$X = \sin U: \begin{pmatrix} 0 & 1 & 0 \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ \frac{2}{3} & \frac{1}{3} \end{pmatrix}$$

$$Y = \cos U: \begin{pmatrix} -1 & 0 & 1 \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{pmatrix}$$

Velja:

$$XY = \sin U \cdot \cos U \equiv 0 \Rightarrow E(XY) = 0$$

 $E(X) = \frac{1}{3}, \quad E(Y) = -\frac{1}{3} + 0 + \frac{1}{3} = 0$

 $\implies X, Y$ sta nekorelirani.

Poglejmo še neodvisnost:

 \Diamond

X, Y sta odvisni slučajni spremenljivki.

Domača naloga: Za:

$$X: \left(egin{array}{cc} x_1 & x_2 \\ p_1 & p_2 \end{array}
ight), \quad Y: \left(egin{array}{cc} y_1 & y_2 \\ q_1 & q_2 \end{array}
ight)$$

dokaži: X in Y sta nekorelirani \iff neodvisni.

Poglavje 8

Disperzija, kovarianca in korelacijski koeficient

8.1 Disperzija in standardni odklon

Definicija 12. Naj obstaja $E(X^2)$. *Disperzija* oz. *varianca* je definirana kot:

$$D(X) \equiv \operatorname{Var}(X) := E\left((X - E(X))^2\right)$$

D(X) meri razpršenost okoli E(X). Velja tudi:

$$\begin{split} E\left((X - E(X))^{2}\right) &= E\left(X^{2} - 2E(X)X + (E(X))^{2}\right) \\ &= E\left(X^{2}\right) - 2E(X)E(X) + (E(X))^{2} \\ &= E\left(X^{2}\right) - (E(X))^{2} \end{split}$$

Zato je:

$$D(X) = E\left(X^2\right) - \left(E(X)\right)^2$$

Lastnosti D(X):

1.
$$D(X) \ge 0$$
 in $D(X) = 0 \iff P(X = E(X)) = 1$, t.j.: $X : \begin{pmatrix} E(X) \\ 1 \end{pmatrix}$.

- 2. $D(aX) = a^2 D(X)$ za $a \in \mathbb{R}$.
- 3. Za vsak $a \in \mathbb{R}$ je $E\left((X-a)^2\right) \geq D(X)$. Enačaj velja $\iff a = E(X)$.

Dokaz.

$$E((X - a)^{2}) = E(X^{2} - 2aX + a^{2})$$

$$= E(X^{2}) - 2aE(X) + a^{2}$$

$$= (a - E(X))^{2} - (E(X))^{2} + E(X^{2})$$

$$= (a - E(X))^{2} + D(X) \ge D(X)$$

Definicija 13. Standardna deviacija oz. standardni odklon je definirana kot:

$$\sigma(X) := \sqrt{D(X)}$$

Zanjo velja $\sigma(aX) = |a| \sigma(X)$ za $a \in \mathbb{R}$.

Pregled nakaterih E(X) in D(X):

- 1. Enakomerna diskretna porazdelitev, $X: \begin{pmatrix} x_1 & x_2 & \cdots & x_n \\ \frac{1}{n} & \frac{1}{n} & \cdots & \frac{1}{n} \end{pmatrix}$: $E(X) = \frac{x_1 + \cdots + x_n}{n}, \qquad D(X) = \frac{x_1^2 + \cdots + x_n^2}{n} \left(\frac{x_1 + \cdots + x_n}{n}\right)^2$
- 2. Bernoullijeva porazdelitev, Ber(p): E(X) = p, D(X) = pq

Dokaz.

$$E(X) = 0 \cdot q + 1 \cdot p = p \qquad E(X^2) = 0^2 \cdot q + 1^2 \cdot p = p$$

$$\implies D(X) = E(X^2) - (E(X))^2 = p - p^2 = pq$$

3. Binomska porazdelitev, Bin(n, p): E(X) = np, D(X) = npq

Dokaz.

$$E(X) = \sum_{k=0}^{n} k \binom{n}{k} p^k q^{n-k}$$

$$= \sum_{k=1}^{n} k \frac{n}{k} \binom{n-1}{k-1} p^k q^{n-k}$$

$$= np \sum_{k=1}^{n} \binom{n-1}{k-1} p^{k-1} q^{n-k}$$

$$= np(p+q)^{n-1}$$

$$= np$$

$$E\left(X^{2}\right) = \sum_{k=0}^{n} k^{2} \binom{n}{k} p^{k} q^{n-k}$$

$$= \sum_{k=0}^{n} kn \binom{n-1}{k-1} p^{k} q^{n-k}$$

$$= np \sum_{k=1}^{n} k \binom{n-1}{k-1} p^{k-1} q^{(n-1)-(k-1)}$$

$$= np \sum_{j=0}^{m} (j+1) \binom{m}{j} p^{j} q^{m-j}$$

$$= np \left(\sum_{j=0}^{m} j \binom{m}{j} p^{j} q^{m-j} + \sum_{j=0}^{m} \binom{m}{j} p^{j} q^{m-j}\right)$$

$$= np \left(\sum_{j=0}^{m} m \binom{m-1}{j-1} p^{j} q^{m-j} + \sum_{j=0}^{m} \binom{m}{j} p^{j} q^{m-j}\right)$$

$$= np \left((n-1)p \sum_{j=1}^{m} \binom{m-1}{j-1} p^{j-1} q^{(m-1)-(j-1)} + \sum_{j=0}^{m} \binom{m}{j} p^{j} q^{m-j}\right)$$

$$= np \left((n-1)p(p+q)^{m-1} + (p+q)^{m}\right)$$

$$= np((n-1)p+1)$$

$$= n^{2}p^{2} + np(1-p)$$

$$\implies D(X) = E(X^{2}) - (E(X))^{2} = n^{2}p^{2} + np(1-p) - (np)^{2} = npq$$

4. Poissonova porazdelitev, Poi(λ): $E(X) = D(X) = \lambda$

Dokaz.

$$\begin{split} E\left(X^2\right) &= \sum_{k=0}^{\infty} k^2 \frac{1}{k!} \lambda^k e^{-\lambda} \\ &= \lambda e^{-\lambda} \sum_{k=1}^{\infty} k \frac{1}{(k-1)!} \lambda^{k-1} \\ &= \lambda e^{-\lambda} \left(\sum_{k=1}^{\infty} (k-1) \frac{1}{(k-1)!} \lambda^{k-1} + \sum_{k=1}^{\infty} \frac{1}{(k-1)!} \lambda^{k-1} \right) \\ &= \lambda e^{-\lambda} \left(\lambda \sum_{k=2}^{\infty} \frac{1}{(k-2)!} \lambda^{k-2} + \sum_{k=1}^{\infty} \frac{1}{(k-1)!} \lambda^{k-1} \right) \\ &= \lambda e^{-\lambda} \left(\lambda \sum_{i=0}^{\infty} \frac{1}{i!} \lambda^i + \sum_{j=0}^{\infty} \frac{1}{j!} \lambda^j \right) \\ &= \lambda e^{-\lambda} \left(\lambda e^{\lambda} + e^{\lambda} \right) \\ &= \lambda (\lambda + 1) \end{split}$$

$$E(X) = \sum_{k=0}^{\infty} x_k p_k$$

$$= \sum_{k=0}^{\infty} k \frac{\lambda^k}{k!} e^{-\lambda}$$

$$= e^{-\lambda} \lambda \sum_{k=1}^{\infty} \frac{\lambda^{k-1}}{(k-1)!}$$

$$= e^{-\lambda} \lambda e^{\lambda} = \lambda$$

$$\implies D(X) = E(X^2) - (E(X))^2 = \lambda(\lambda+1) - (\lambda)^2 = \lambda$$

5. Geometrijska porazdelitev, geo(p): $E(X) = \frac{1}{p}$, $D(x) = \frac{q}{p^2}$

Dokaz.

$$E(X) = \sum_{k=1}^{\infty} kpq^{k-1}$$

$$= p \sum_{k=1}^{\infty} kq^{k-1}$$

$$= p \left(\sum_{k=0}^{\infty} q^k\right)'$$

$$= p \left(\frac{1}{1-q}\right)'$$

$$= p \frac{1}{(1-q)^2} = \frac{1}{p}$$

$$E(X(X+1)) = \sum_{k=1}^{\infty} k(k+1)pq^{k-1}$$

$$= p \sum_{k=1}^{\infty} (k+1)kq^{k-1}$$

$$= p \left(\sum_{k=-1}^{\infty} q^{k+1}\right)''$$

$$= p \left(\frac{1}{1-q}\right)''$$

$$= p \left(\frac{1}{(1-q)^2}\right)'$$

$$= p \frac{2}{(1-q)^3} = \frac{2}{p^2}$$

$$\implies D(X) = E(X(X+1)) - E(X) - (E(X))^2 = \frac{2}{p^2} - \frac{1}{p} - \frac{1}{p^2} = \frac{1}{p^2} - \frac{1}{p} = \frac{q}{p^2} \quad \Box$$

- 6. Pascalova porazdelitev, $\operatorname{Pas}(m,p)$: $E(X) = \frac{m}{p}, \quad D(X) = \frac{mq}{p^2}$
- 7. Hipergeometrijska porazdelitev, Hip(n; M, N):

$$E(X) = n\frac{M}{N}, \qquad D(X) = n\frac{M}{N}\frac{N-M}{N}\frac{N-n}{N-1}$$

8. Enakomerna zvezna porazdelitev na [a,b]: $E(X) = \frac{a+b}{2}$, $D(X) = \frac{(b-a)^2}{12}$

Dokaz.

$$E(X) = \int_{-\infty}^{\infty} x p(x) dx$$

$$= \int_{a}^{b} x \frac{1}{b-a} dx$$

$$= \frac{1}{b-a} \int_{a}^{b} x dx$$

$$= \frac{1}{b-a} \frac{x^{2}}{2} \Big|_{a}^{b}$$

$$= \frac{b^{2} - a^{2}}{(b-a) \cdot 2}$$

$$= \frac{a+b}{2}$$

$$E(X^{2}) = \int_{-\infty}^{\infty} x^{2} p(x) dx$$

$$= \int_{a}^{b} x^{2} \frac{1}{b-a} dx$$

$$= \frac{1}{b-a} \int_{a}^{b} x^{2} dx$$

$$= \frac{1}{b-a} \frac{x^{3}}{3} \Big|_{a}^{b}$$

$$= \frac{b^{3} - a^{3}}{(b-a) \cdot 3}$$

$$= \frac{4(b-a)(a^{2} + ab + b^{2})}{12(b-a)}$$

$$= \frac{4a^{2} + 4ab + 4b^{2}}{12}$$

$$\implies D(X) = E(X^2) - (E(X))^2 = \frac{4a^2 + 4ab + 4b^2}{12} - \frac{(a+b)^2}{2^2} = \frac{b^2 - 2ab + a^2}{12} = \frac{(b-a)^2}{12} \quad \Box$$

9. Normalna porazdelitev, $N(\mu, \sigma)$: $E(X) = \mu$, $D(X) = \sigma^2$, $\sigma(x) = \sigma$

Dokaz.

$$\begin{split} E(X) &= \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{\infty} x e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2} \, dx \\ &= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} (\sigma t + \mu) e^{-\frac{1}{2}t^2} \, dt \\ &= \frac{\mu}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{1}{2}t^2} \, dt + \underbrace{0}_{\text{libs fun}} = \mu \end{split}$$

$$D(X) = E\left((X - E(X))^{2}\right)$$

$$= \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{\infty} (x - \mu)^{2} e^{-\frac{1}{2}\left(\frac{x - \mu}{\sigma}\right)^{2}} dx$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \sigma^{2} t^{2} e^{-\frac{1}{2}t^{2}} dt$$

$$= \frac{\sigma^{2}}{\sqrt{2\pi}} \int_{-\infty}^{\infty} t^{2} e^{-\frac{t^{2}}{2}} dt$$

$$= \frac{\sigma^{2}}{\sqrt{2\pi}} \cdot 2 \int_{0}^{\infty} \sqrt{2u} \cdot e^{-u} du = \sigma^{2}$$

$$(*)$$

Kjer smo v (*) vrstici vpeljali novo spremenljivko $x = \sigma t + \mu$.

10. Eksponenta porazdelitev, $\text{Exp}(\lambda)$: $E(X) = \frac{1}{\lambda}$, $D(x) = \frac{1}{\lambda^2}$

Dokaz.

$$E(X) = \int_0^\infty x \lambda e^{-\lambda x} dx$$

$$= -x \exp(-\lambda x) \Big|_0^\infty + \int_0^\infty e^{-\lambda x} dx$$

$$= (0 - 0) + -\frac{1}{\lambda} e^{-\lambda x} \Big|_0^\infty$$

$$= 0 + \left(0 + \frac{1}{\lambda}\right)$$

$$= \frac{1}{\lambda}$$
(*)

$$E(X^{2}) = \int_{0}^{\infty} x^{2} \lambda e^{-\lambda x} dx$$

$$= -x^{2} e^{-\lambda x} \Big|_{0}^{\infty} + \int_{0}^{\infty} 2x e^{-\lambda x} dx$$

$$= 0 + 2\frac{1}{\lambda} \int_{0}^{\infty} x \lambda e^{-\lambda x} dx$$

$$= 2\frac{1}{\lambda} E(X)$$

$$= 2\left(\frac{1}{\lambda}\right)^{2}$$

$$(*)$$

Kjer smo v (\star) vrsticah uporabili metodo per-partes.

$$\implies D(X) = E(X(X+1)) - E(X) - (E(X))^2 = 2\left(\frac{1}{\lambda}\right)^2 - \left(\frac{1}{\lambda}\right)^2 = \frac{1}{\lambda^2} \qquad \Box$$

11. Porazdelitev gama, $\Gamma(b,c)$: $E(X) = \frac{b}{c}$, $D(X) = \frac{b}{c^2}$

Dokaz.

$$E(X) = \frac{c^b}{\Gamma(b)} \int_0^\infty x^b e^{-cx} dx$$

$$= \frac{c^b}{\Gamma(b)} \int_0^\infty \left(\frac{t}{c}\right)^b e^{-t} \frac{dt}{c}$$

$$= \frac{c^b}{c^{b+1}\Gamma(b)} \int_0^\infty t^b e^{-t} dt$$

$$= \frac{\Gamma(b+1)}{c\Gamma(b)}$$

$$= \frac{b\Gamma(b)}{c\Gamma(b)}$$

$$= \frac{b}{c}$$

$$D(X) = \frac{c^b}{\Gamma(b)} \int_0^\infty x^{b+1} e^{-cx} dx$$

$$= \frac{c^b}{\Gamma(b)} \int_0^\infty \left(\frac{t}{c}\right)^{b+1} e^{-t} \frac{dt}{c}$$

$$= \frac{c^b}{c^{b+2}\Gamma(b)} \int_0^\infty t^{b+1} e^{-t} dt$$

$$= \frac{\Gamma(b+2)}{c^2\Gamma(b)}$$

$$= \frac{(b+1)b}{c^2}$$

$$\implies D(X) = E(X(X+1)) - E(X) - (E(X))^2 = \frac{(b+1)b}{c^2} - (\frac{b}{c})^2 = \frac{b}{c^2}$$

12. Porazdelitev $\chi^2(n)$: E(X) = n, D(X) = 2n

Zgled. Met kocke. X je število potrebnih metov, da pade prva šestica. $X \sim \gcd(\frac{1}{6})$.

$$E(X) = 6,$$
 $D(X) = \frac{\frac{5}{6}}{\frac{1}{36}} = 30,$ $\sigma(X) = \sqrt{30}$

Slika 8.1: Graf P(X = k) za k = 1, 2, 3, ...

$$p_1 = p, \quad p_2 = pq, \quad p_3 = pq^2, \quad p_4 = pq^3, \quad \dots$$

8.2 Kovarianca

Definicija 14. Kovarianca slučajne spremenljivke X in Y se definira kot:

$$K(Y,X) \equiv \text{Cov}(X,Y) := E((X - E(X))(Y - E(Y)))$$

$$= E(XY - E(X)Y - XE(Y) + E(X)E(Y))$$

$$= E(XY) - E(X)E(Y) - E(Y)E(X) + E(X)E(Y)$$

$$= E(XY) - E(X)E(Y)$$

Lastnosti kovariance:

- 1. K(X, X) = D(X)
- 2. X in Y sta nekorelirani $\iff K(X,Y) = 0$
- 3. K je simetrična in bilinearna funkcija:

$$K(X,Y) = K(Y,X)$$

$$K(aX + bY, Z) = aK(X,Z) + bK(Y,Z), \quad \text{za} \quad a,b \in \mathbb{R}$$

4. Kovarianca obstaja, če obstaja D(X) in D(Y). Tedaj velja:

$$|K(X,Y)| \le \sqrt{D(X)D(Y)} = \sigma(X)\sigma(Y),$$

kar sledi iz Cauchy-Schwarzove neenakosti za X-E(X) in Y-E(Y).

Enakost velja
$$\iff Y - E(Y) = \pm \frac{\sigma(Y)}{\sigma(X)} (X - E(X))$$
 z verjetnostjo 1.

5. Če imata X in Y disperzijo, potem jo ima tudi X + Y in velja:

$$D(X + Y) = D(X) + D(Y) + 2K(X, Y)$$

Če sta X in Y nekorelirani, je potem:

$$D(X+Y) = D(X) + D(Y)$$

Dokaz. Sledi iz enakosti:

$$(X + Y - E(X + Y))^{2} = ((X - E(X)) + (Y - E(Y)))^{2}$$
$$= (X - E(X))^{2} + (Y - E(Y))^{2} +$$
$$+ 2(X - E(X))(Y - E(Y))$$

6. Posplošitev zadnje lastnosti:

$$D(X_1 + \dots + X_n) = \sum_{k=1}^{n} D(X_k) + 2\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} K(X_i, X_j)$$

Posebej: če so $X_1, \ldots X_n$ paroma nekorelirane, potem je:

$$D(X_1 + \dots + X_n) = D(X_1) + \dots + D(X_n)$$

Zgled. Za $X \sim \text{Bin}(n, p)$, je $X = X_1 + \cdots + X_n$, kjer velja:

$$X_k : \begin{pmatrix} 0 & 1 \\ q & p \end{pmatrix}$$
, oziroma $X_k = \begin{cases} 1, & \text{zgodi se } A \text{ v } k\text{-ti ponovitvi} \\ 0, & \text{sicer} \end{cases}$

 $X_1, \ldots X_n$ so neodvisne slučajne spremenljivke, zato je:

$$D(X_k) = E(X_k^2) - (E(X_k))^2 = p - p^2 = p(1-p) = pq$$

in potem:

$$D(X) = D(X_1 + \dots + X_n) = D(X_1) + \dots + D(X_n) = npq$$

 \Diamond

Definicija 15. Standardizacija slučajne spremenljivke X je slučajna spremenljivka:

$$X_s = \frac{X - E(X)}{\sigma(X)}$$

Tedaj je $E(X_s) = 0$ in $D(X_s) = 1$, saj je:

$$D(X_s) = \frac{1}{\sigma(X)^2} \underbrace{D(X - E(X))}_{D(X)} = 1$$

Zgled. Na vajah boste pokazali:

$$X \sim N(\mu, \sigma) \implies X_s = \frac{X - \mu}{\sigma} \sim N(0, 1)$$

 \Diamond

8.3 Korelacijski koeficient

Definicija 16. Korelacijski koeficient slučajnih spremenljivk X in Y je:

$$r(X,Y) = \frac{K(X,Y)}{\sigma(X)\sigma(Y)} = \frac{E((X - E(X))(Y - E(Y))}{\sigma(X)\sigma(Y)} = E(X_sY_s)$$

Lastnosti:

1. $r(X,Y) = 0 \iff X \text{ in } Y \text{ sta nekorelizani.}$

$$2. -1 < r(X, Y) < 1$$

Dokaz. Sledi iz lastnosti (4) za K.

3. $r(X,Y) = 1 \iff Y = \frac{\sigma(Y)}{\sigma(X)}(X - E(X)) + E(Y)$ z verjetnostjo 1. $r(X,Y) = -1 \iff Y = -\frac{\sigma(Y)}{\sigma(X)}(X - E(X)) + E(Y)$ z verjetnostjo 1.

Zgled. Vržemo 2 kocki. X je število pik na prvi kocki in Y število pik na drugi kocki. Zaradi neodvisnosti je K(X,Y)=0.

Definiramo Z = X + Y. Izračunajmo r(X, Z):

$$E(X) = E(Y) = \frac{7}{2}$$

$$E(X^{2}) = \frac{1}{6}(1 + 4 + 9 + 16 + 25 + 36) = \frac{91}{6}$$

$$D(X) = E\left(X^2\right) - (E(X))^2 = \frac{91}{6} - \frac{49}{4} = \frac{182 - 147}{12} = \frac{35}{12}$$

$$K(X, Z) = K(X, X + Y) = K(X, X) + K(X, Y) = D(X) + 0 = \frac{35}{12}$$

$$D(Z) = D(X) + D(Y) = 2 \cdot \frac{35}{12} = \frac{35}{6}, \text{ ker sta } X \text{ in } Y \text{ neodvisni.}$$

$$r(X, Z) = \frac{K(X, Z)}{\sqrt{D(X)D(Z)}} = \frac{\frac{35}{12}}{\sqrt{\frac{35}{12} \cdot \frac{35}{6}}} = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}$$

Poglavje 9

Pogojna porazdelitev in pogojno matematično upanje

Definicija 17. Fiksirajmo dogodek $B ext{ s } P(B) > 0$. *Pogojna porazdelitvena funkcija* slučajne spremenljivke X gleda na pogoj B je:

$$F_X(x \mid B) = P(X \le x \mid B) = \frac{P((X \le x) \cap B)}{P(B)}$$

Ima enake lastnosti kot porazdelitvena funkcija $F_X(x)$. Pogosto je B povezan z neko drugo slučajno spremenljivko, npr. Y.

Omejimo se na diskretne porazdelitve:

Naj bo (X, Y) diskreten slučajni vektor:

$$p_{ij} = P(X = x_i, Y = y_j), \quad B := (Y = y_j), \quad P(B) = P(Y = y_j) = q_j$$

Potem je pogojna porazdelitvena funkcija slučajne spremenljivke X glede na $Y=y_j$:

$$F_X(x \mid y_j) = F_X(x \mid Y = y_j)$$

$$= P(X \le x \mid Y = y_j)$$

$$= \frac{1}{q_j} P((X \le x) \cap (Y = y_j))$$

$$= \frac{1}{q_j} \sum_{i: x_i \le x} p_{ij}$$

Vpeljemo pogojno verjetnostno funkcijo:

$$p_{i|j} = P(X = x_i \mid Y = y_j) = \frac{P(X = x_i, Y = y_j)}{P(Y = y_j)} = \frac{p_{ij}}{q_j}$$

Tedaj je:

$$F_X(x \mid Y = y_j) = \sum_{i: x_i \le x} p_{i|j}$$

 $Pogojno\ matematično\ upanje\ slučajne\ spremenljivke\ X\ glede\ na\ Y=y_j$ je matematično upanje te porazdelitve:

$$E(X \mid y_j) \equiv E(X \mid Y = y_j) = \sum_{i} x_i p_{i|j} = \frac{1}{q_j} \sum_{i} x_i p_{ij}$$

Tako dobimo novo slučajno spremenljivko.

Definicija 18. Slučajno spremenljivko $E(X \mid Y)$ imenujemo pogojno matematično upanje slučajne spremenljivke X glede na slučajno spremenjivko Y. Ima porazdelitev:

$$E(X \mid Y) : \begin{pmatrix} E(X \mid y_1) & E(X \mid y_2) & \cdots \\ q_1 & q_2 & \cdots \end{pmatrix}$$

Definicija 19. Označimo $\varphi\left(y_{j}\right):=E\left(X\mid y_{j}\right)$ za vse j in dobimo:

$$E(X \mid Y) := \varphi(Y) : \begin{pmatrix} \varphi(y_1) & \varphi(y_2) & \cdots \\ q_1 & q_2 & \cdots \end{pmatrix}$$

 φ je regresijska funkcija. Definirana je na zalogi vrednosti slučajne spremenljivke Y.

Za $E(X \mid Y)$ velja zveza:

$$E(E(X \mid Y)) = \sum_{j} E(X \mid y_{j}) q_{j}$$

$$= \sum_{j} \sum_{i} x_{i} p_{ij}$$

$$= \sum_{i} x_{i} \left(\sum_{j} p_{ij}\right)$$

$$= \sum_{i} x_{i} p_{i}$$

$$= E(X)$$

Vzemimo, da sta X in Y neodvisni. Tedaj:

$$p_{i|j} = \frac{p_{ij}}{q_j} = p_i \implies E(X \mid y_j) = \sum_i x_i \, p_i = E(X)$$

Torej je $E(X \mid Y)$ v tem primeru izrojena slučajna spremenljivka.

Zgled. Kokš znese N jajc, kjer je N slučajna spremenljivka, porazdeljena Poissonovo, t.j. $N \sim \text{Poi}(\lambda)$ za $\lambda > 0$. Iz vsakega jajca se zvali piščanec z verjetnostjo $p \in (0,1)$, neodvisno od drugih jajc.

Naj bo K število izvaljenih piščancev. Določimo $E(K \mid N), E(K)$ in $E(N \mid K)$.

$$P(N=n) = \frac{\lambda^n}{n!} e^{-\lambda}, \quad \text{za} \quad n = 0, 1, 2, \dots$$

$$P(K=k \mid N=n) = \binom{n}{k} p^k q^{n-k}, \quad q = 1-p \quad \text{in za} \quad k = 0, 1, 2, \dots$$

$$E(K \mid N=n) = \sum_{k=0}^n k \cdot P(K=k \mid N=n) = E(\text{Bin}(n,p)) = np =: \varphi(n)$$

$$E(K \mid N) = pN = \varphi(N)$$

$$E(K) = E(E(K \mid N)) = E(pN) = pE(N) = p\lambda$$

Dokažimo, da je $K \sim \text{Poi}(\lambda)$:

$$P(K = k) = \sum_{n=k}^{\infty} P(K = k \mid N = n) P(N = n)$$

$$= \sum_{n=k}^{\infty} \binom{n}{k} p^k q^{n-k} \frac{\lambda^n}{n!} e^{-\lambda}$$

$$= e^{-\lambda} \frac{p^k}{k!} \lambda^k \sum_{n=k}^{\infty} \frac{q^{n-k} \lambda^{n-k}}{(n-k)!}$$

$$= e^{-\lambda} \frac{(p\lambda)^k}{k!} e^{q\lambda} = \frac{(p\lambda)^k}{k!} e^{-p\lambda}$$

Vzemimo zdaj n > k:

$$P(N = n \mid K = k) = \frac{P(N = n, K = k)}{P(K = k)}$$

$$= \frac{P(K = k \mid N = n)P(N = n)}{P(K = k)}$$

$$= \binom{n}{k} p^k q^{n-k} \frac{\lambda^n}{n!} e^{-\lambda} \frac{k!}{(p\lambda)^k} e^{p\lambda}$$

$$= \frac{1}{(n-k)!} q^{n-k} \lambda^{n-k} e^{-q\lambda}$$

$$= \frac{(q\lambda)^{n-k}}{(n-k)!} e^{-q\lambda}$$

Kjer smo v (\star) dejansko uporabili Bayesovo formulo. Dobimo torej Poissonova porazdelitev, premaknjeno za k v desno: $k + \text{Poi}(q\lambda)$. Zato je regresijska funkcija:

$$\varphi(k) = E(N \mid K = k) = E(k + \text{Poi}(q\lambda)) = k + q\lambda$$

66

torej je:

$$E(N \mid K) = \varphi(K) = K + q\lambda$$

Preizkus:

$$E(E(N \mid K)) = E(K + q\lambda) = E(K) + q\lambda = p\lambda + q\lambda = \lambda = E(N)$$

Poglavje 10

Rodovne funkcije

Naj bo X slučajna spremenljivka z vrednostmi v $\mathbb{N} \cup \{0\}$:

$$p_k = P(X = k), \text{ za } k = 0, 1, 2, \dots, p_k \ge 0, \sum_{k=0}^{\infty} p_k = 1$$

Definicija 20. Rodovna funkcija slučajne spremenljivke X je:

$$G_X(s) := p_0 + p_1 s + p_2 s^2 + p_3 s^3 + \dots = \sum_{k=0}^{\infty} p_k s^k$$

za vse $s \in \mathbb{R}$, za katere vrsta absolutno konvergira.

Očitno je $G_X(0)=p_0,\,G_X(1)=\sum_{k=0}^{\infty}p_k=1$ in $G_X(s)=E\left(s^X\right),$ saj je:

$$s^X: \left(\begin{array}{ccccc} s^0 & s^1 & s^2 & s^3 & \cdots \\ p_0 & p_1 & p_2 & p_3 & \cdots \end{array}\right)$$

Za $s \in [-1, 1]$ velja $|p_k s^k| \le p_k$ in $\sum_{k=0}^{\infty} p_k = 1$, zato vrsta $\sum_{k=0}^{\infty} |p_k s^k|$ konvergira. Torej je konvergenčni radij vrste vsaj 1.

Zgled.

1. $X \sim \text{geo}(p), p_k = P(X = k) = p q^{k-1}$ za k = 1, 2, 3, ...:

$$G_X(s) = \sum_{k=1}^{\infty} p \, q^{k-1} s^k = ps \sum_{k=1}^{\infty} (qs)^{k-1} = ps \frac{1}{1 - qs} = \frac{ps}{1 - qs}$$

za vse $s \in \mathbb{R},$ za katere je |qs| < 1,torej je konvergenčni radij $\frac{1}{q}.$

2.
$$X \sim \text{Poi}(\lambda), p_k = p(X = k) = \frac{\lambda^k}{k!} e^{-\lambda} \text{ za } k = 0, 1, 2, ...$$
:
$$G_X(s) = \sum_{k=0}^{\infty} \frac{\lambda^k}{k!} e^{-\lambda} s^k = e^{-\lambda} \sum_{k=0}^{\infty} \frac{(\lambda s)^k}{k!} = e^{-\lambda} e^{\lambda s} = e^{\lambda(s-1)}$$

za vse $s \in \mathbb{R}$.

 \Diamond

Iz teorije Taylorjevih vrst dobimo izrek o enoličnosti.

Izrek 1. Naj imata X in Y rodovni funkciji G_X in G_Y . Potem za $s \in [-1, 1]$ velja:

$$G_X(s) = G_Y(s) \iff P(X = k) = P(Y = k)$$
 za vse $k = 0, 1, 2, \dots$

Tedaj velja:

$$P(X = k) = \frac{1}{k!}G_X^{(k)}(0)$$

Dokaz. Sledi iz teorije Taylorjevih vrst.

Velja:

$$G_X(s) = \sum_{k=0}^{\infty} p_k s^k, \quad G'_X(s) = \sum_{k=1}^{\infty} p_k k s^{k-1}$$

za vse $s \in (-1, 1)$. Od koder sledi:

$$\lim_{s \uparrow 1} G_X'(s) = \sum_{k=1}^{\infty} p_k k = E(X)$$

Izrek 2. Naj ima X rodovno funkcijo G_X in $n \in \mathbb{N}$. Potem je:

$$G_X^{(n)}(1-) = E(X(X-1)(X-2)\cdots(X-n+1))$$

kjer je: $G_X^{(n)}(1-) = \lim_{s \uparrow 1} G_X^{(n)}(s)$

Dokaz. Za $s \in [0, 1)$ je:

$$G_X^{(n)}(s) = \left(\sum_{k=0}^{\infty} p_k \, s^k\right)^{(n)} = \sum_{k=0}^{\infty} k(k-1)\cdots(k-n+1)s^{k-n} \, p_k$$

Ko gre $s \uparrow 1$, z uporabo Abelove leme³ dobimo:

$$\lim_{s \uparrow 1} G_X^{(n)}(s) = \sum_{k=n}^{\infty} k(k-1) \cdots (k-n+1) \, p_k = E(X(X-1)(X-2) \cdots (X-n+1))$$

³Naj bo $G(x) = \sum_{k=0}^{\infty} a_k x^k$ potenčna vrsta z realnimi koeficienti a_k in konvergenčnim radijem 1. Naj $\sum_{k=0}^{\infty} a_k$ konvergira. Abelova lema pravi, da je G(x) z leve zvezna pri x=1, t.j.: $\lim_{x\to 1-} G(x) = \sum_{k=0}^{\infty} a_k$.

Posledica 5.

$$E(X) = G'_X(1-)$$

$$D(X) = E(X(X-1)) + E(X) - (E(X))^2$$

$$= G''_X(1-) + G'_X(1-) - (G'_X(1-))^2$$

Izrek 3. Naj bosta X in Y neodvisni slučajni spremenljivki z rodovnima funkcijama G_X in G_Y . Potem je za $s \in [-1,1]$:

$$G_{X+Y}(s) = G_X(s) G_Y(s)$$

Dokaz.

$$G_{X+Y}(s) = E\left(s^{X+Y}\right)$$

$$= E(s^X \cdot s^Y)$$

$$= E(s^X) E(s^Y)$$

$$= G_X(s) G_Y(s)$$
 (\star)

Enakost (\star) velja, saj sta s^X in s^Y neodvisni slučajni spremenljivki. \square

Posplošitev: Če je $S_n = X_1 + \cdots + X_n$ vsota neodvisnih slučajnih spremenljivk z vrednostmi v $\mathbb{N} \cup \{0\}$, potem je za $s \in [-1, 1]$:

$$G_{S_n}(s) = G_{X_1}(s) G_{X_2}(s) \cdots G_{X_n}(s)$$

Posebej: če so X_1, \ldots, X_n enako porazdeljene, potem je:

$$G_S(s) = (G_X(s))^n$$

Kakšna je rodovna funkcija slučajne spremenljivke $S_N = X_1 + X_2 + \cdots + X_N$, kjer so X_1, X_2, \ldots enako porazdeljene in N slučajna spremenljivka z rodovno funkcijo G_N ?

Izrek 4. Naj bodo za vsak $n \in \mathbb{N}$ slučajne spremenljivke N, X_1, X_2, \dots, X_n neodvisne. Naj ima N rodovno funkcijo G_N , X_n pa rodovno funkcijo G_X za vsak $n \in \mathbb{N}$. Potem ima slučajna spremenljivka $S = X_1 + X_2 + \dots + X_N$ rodovno funkcijo:

$$G_S(s) = G_N(G_X(s))$$
 za $s \in [-1, 1]$

Dokaz. Zaradi neodvisnosti imamo:

$$P(S = k) = \sum_{n=1}^{\infty} P(S = k, N = n)$$

$$= \sum_{n=1}^{\infty} P(N = n, X_1 + X_2 + \dots + X_n = k)$$

$$= \sum_{n=1}^{\infty} P(N = n) P(X_1 + \dots + X_n = k)$$
(*)

Kjer vrstica (\star) velja zaradi neodvisnosti. Zato je:

$$G_S(s) = \sum_{k=0}^{\infty} P(S=k)s^k$$

$$= \sum_{n=1}^{\infty} P(N=n) \sum_{k=0}^{\infty} P(X_1 + \dots + X_n = k) s^k$$

$$= \sum_{n=1}^{\infty} P(N=n) G_{X_1 + \dots + X_n} (s)$$

$$= \sum_{n=1}^{\infty} P(N=n) (G_X(s))^n$$

$$= G_N (G_X(s))$$

Posledica 6. Waldova enakost:

$$E(S) = E(N) E(X)$$

Dokaz.

$$E(S) = G'_{S}(1-)$$

$$= G'_{N}(\underbrace{G_{X}(1-)}_{1-}) G'_{X}(1-)$$

$$= E(N) E(X)$$

Zgled (Kokoš, jajca, piščanci). N jajc, $N \sim \text{Poi}(\lambda)$, $\lambda > 0$. K je število izvaljenih piščancev. Vpeljemo slučajne spremenljivke X_1, X_2, \ldots , kjer $(X_i = 1)$, če se iz i-tega jajca izvali piščanec, sicer pa je $(X_i = 0)$. Potem je:

$$X_i: \begin{pmatrix} 0 & 1 \\ q & p \end{pmatrix}, \quad K = X_1 + X_2 + \dots + X_N$$

 \Diamond

Ker je $G_N(s) = e^{\lambda(s-1)}$ in $G_X(s) = q + ps$ je:

$$G_K(s) = G_N(G_X(s)) = e^{\lambda(q+ps-1)} = e^{\lambda p(s-1)}$$

od koder sledi
$$K \sim \text{Poi}(\lambda p)$$
.

Poglavje 11

Višji momenti in vrstilne karakteristike

11.1 Momenti

Definicija 21. Naj bo $k \in \mathbb{N}$ in $a \in \mathbb{R}$. Moment reda k glede na a je:

$$m_k(a) = E\left((X-a)^k\right)$$

če obstaja.

Za a običajno vzamemo:

1.
$$a = 0$$
: $z_k = m_k(0) = E(X^k)$; začetni moment.

2.
$$a = E(X)$$
: $m_k = m_k(E(X)) = E((X - E(X))^k)$; centralni moment reda k.

Očitno je $z_1 = E(X)$ in $m_2 = D(X)$.

Trditev 8. Če obstaja $m_n(a)$, potem obstaja tudi $m_k(a)$ za vsak k < n.

Dokaz. (samo diskreten primer)

$$E(|X - a|^{k}) = \sum_{i} |x_{i} - a|^{k} p_{i}$$

$$= \sum_{i:|x_{i} - a| \le 1} \underbrace{|x_{i} - a|^{k}}_{\le 1} p_{i} + \sum_{i:|x_{i} - a| > 1} |x_{i} - a|^{k} p_{i}$$

$$\leq \sum_{i} p_{i} + \sum_{i} |x_{i} - a|^{n} p_{i}$$

$$= 1 + E(|X_{i} - a|^{n}) < \infty$$

saj
$$m_n(a)$$
 obstaja.

Trditev 9. Če obstaja začetni moment z_n , potem obstaja tudi $m_n(a)$ za poljuben $a \in \mathbb{R}$.

Dokaz.

$$E(|X - a|^n) \le E((|X| + |a|)^n)$$

$$= \sum_{n=0}^h \binom{n}{k} |a|^{n-k} E(|X|^k) < \infty$$

saj $E(|X|^k) < \infty$ po prejšnji trditvi.

Velja:

$$m_n(a) = E((X - a)^n) = \sum_{k=0}^n \binom{n}{k} (-a)^{n-k} \underbrace{E(X^k)}_{x_k}$$

Tako lahko vse (tudi centralne) momente izračunamo z začetnimi momenti:

$$m_n = \sum_{k=0}^{n} \binom{n}{k} (-1)^{n-k} z_1^{n-k} z_k$$

Denimo, da imamo porazdelitev, ki ima vse začetne momente z_1, z_2, z_3, \ldots (torej obstajajo vsi momenti). Vprašanje: ali obstajata dve različni porazdelitvi z istim zaporedjem začetnih momentov, ali je porazdelitev X s temi začetnimi momenti natančno določena. V splošnem ne, vendar z dodatnimi predpostavkami dobimo naslednji izrek, ki je naveden brez dokaza.

Izrek 5. Naj obstajajo z_1, z_2, z_3, \ldots in naj vrsta $\sum_{k=0}^{\infty} \frac{t^k}{k!} z_k$ konvergira absolutno pri nekem t > 0. V tem primeru je porazdelitev za X enolično določena.

Asimetrija slučajne spremenljivke X je:

$$A(X) := E\left(X_s^3\right) = E\left(\left(\frac{X - E(X)}{\sigma(X)}\right)^3\right) = \frac{m_3}{m_2^{3/2}}$$

Na primer: $A(N(\mu, \sigma)) = 0$, $A(\lambda X) = A(X)$ za $\lambda > 0$.

Sploščenost (kurtozis) slučajne spremenljivke X je:

$$K(X) := E\left(X_s^4\right) = E\left(\left(\frac{X - E(X)}{\sigma(X)}\right)^4\right) = \frac{m_4}{m_2^2}$$

Na primer: $K(N(\mu, \sigma)) = 3$, $K(\lambda X) = K(X)$ za $\lambda > 0$.

Slika 11.1: Porazdelitev s K(X) > 3

Nekateri definirajo sploščenost kot K(X) - 3, torej je v primeru $N(\mu, \sigma)$ enaka 0.

11.2 Vrstilne karakteristike

Za razliko od momentov vrstilne karakteristike vedno obstajajo.

Definicija 22. Mediana slučajne spremenljivke X je vsaka vrednost $x \in \mathbb{R}$, za katero velja:

$$P(X \le x) \ge \frac{1}{2}$$
 in $P(X \ge x) \ge \frac{1}{2}$

Ker je $P(X \ge x) = 1 - P(X < x) = 1 - F(x-)$, lahko pogoj za mediano zapišemo kot:

$$F(x-) \le \frac{1}{2} \le F(x)$$

Če je X zvezno porazdeljena, je pogoj enak:

$$F(x) = \frac{1}{2} \iff \int_{-\infty}^{x} p_X(x) dx = \frac{1}{2}$$

Te vrednosti (lahko jih je več) označimo z $x_{\frac{1}{2}}.$

Zgled.

1.
$$X: \begin{pmatrix} 0 & 1 \\ \frac{1}{5} & \frac{4}{5} \end{pmatrix}, x_{\frac{1}{2}} = 1, E(X) = \frac{4}{5}$$
:

Slika 11.2: Mediana te diskretne porazdelitve

2.
$$X: \begin{pmatrix} -1 & 0 & 1 \\ \frac{1}{4} & \frac{1}{4} & \frac{1}{2} \end{pmatrix}$$
, mediane so na $[0,1]$:

Slika 11.3: Mediana te diskretne porazdelitve

3.
$$X \sim N(\mu, \sigma), x_{\frac{1}{2}} = \mu = E(X)$$

Slika 11.4: Mediana te zvezne porazdelitve

4.

Slika 11.5: Mediana te zvezne porazdelitve

 \Diamond

Definicija 23. Kvantil redapje vsaka vrednost $\boldsymbol{x}_p,$ za katero velja:

$$P(X \le x_p) \ge p$$
 in $P(X \ge x_p) \ge 1 - p$

Oziroma ekvivalentno:

$$F(x_p-) \le p \le F(x_p), \quad 0$$

Če je X zvezno porazdeljena, je pogoj za kvantil:

$$F(x_p) = p \iff \int_{-\infty}^{x_p} p_X(t) dt = p$$

Slika 11.6: Kvantil reda p

Kvartil: $x_{\frac{1}{4}}, x_{\frac{2}{4}} = x_{\frac{1}{2}}, x_{\frac{3}{4}}$

Slika 11.7: Kvartili porazdelitve

Centil (oz. percentil): $x_{\frac{1}{100}}, x_{\frac{2}{100}}, \dots, x_{\frac{99}{100}}$

 ${\bf Zgled.}$ Telesna višina odraslih moških je porazdeljena normalno, s povprečjem $178\,\mathrm{cm}$ in standardnim odklonom $7\,\mathrm{cm}$:

Slika 11.8: Porazdelitev višine odraslih moških

(Semi)kvartilni razmik je:

$$s = \frac{1}{2} \left(x_{\frac{3}{4}} - x_{\frac{1}{4}} \right)$$

To pomeni razpršenost, ki je nadomestek za standardno deviacijo.

Slika 11.9: Kvartilni razmik

Zgled.

1. Pri $X \sim N(0,1)$ je $s = x_{\frac{3}{4}}$ (zaradi simetrije).

$$s = \frac{1}{2} \left(x_{\frac{3}{4}} - x_{\frac{1}{4}} \right) = x_{\frac{3}{4}} \approx 0.67$$

Medtem ko je $\sigma(X) = 1$.

2. Cauchyjeva porazdelitev, $p(x)=\frac{1}{\pi(1+x^2)}$ nima momentov. Zaradi simetrije velja $x_{\frac{1}{2}}=0.$

$$\int_0^{x_{\frac{3}{4}}} \frac{1}{\pi (1+x^2)} \, dx = \frac{1}{4}$$

$$\frac{1}{\pi} \operatorname{arctg} x \Big|_{0}^{x_{\frac{3}{4}}} = \frac{1}{4} \implies \operatorname{arctg} x_{\frac{3}{4}} = \frac{\pi}{4}$$

Torej je:

$$x_{\frac{3}{4}} = 1 = s$$
 in $x_{\frac{1}{4}} = -1$

Slika 11.10: Cauchyjeva porazdelitev

Poglavje 12

Momentno rodovna funkcija

Definicija 24. Momentno rodovna funkcija slučajne spremenljivke X je:

$$M_X(t) = E\left(e^{tX}\right)$$

za tiste $t \in \mathbb{R}$, za katere obstaja matematično upanje, t.j.: $E\left(e^{tX}\right) < \infty$.

Kadar ima X vrednosti v $\mathbb{N} \cup \{0\}$, je:

$$M_X(t) = E\left(\left(e^t\right)^X\right) = G_X\left(e^t\right)$$

torej, gre za posplošitev rodovne funkcije.

Če je X zvezno porazdeljena z gostoto p(x), je:

$$M_X(t) = \int_{-\infty}^{\infty} e^{tx} p(x) dx$$

kar je $Laplaceova\ transformacija\ funkcije\ p.$

Zgled. Naj bo $X \sim N(0,1)$. Potem je:

$$\begin{split} M_X(t) &= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{tx} \, e^{-\frac{x^2}{2}} \, dx \\ &= e^{\frac{t^2}{2}} \underbrace{\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{1}{2}(x-t)^2} \, dx}_{\text{gostota za } N(t,1)} \\ &= e^{\frac{t^2}{2}} \end{split}$$

Od kod ime?

$$M_X(t) = E\left(1 + tX + \frac{t^2}{2!}X^2 + \frac{t^3}{3!}X^3 + \cdots\right)$$

$$= 1 + tE(X) + \frac{t^2}{2!}E(X^2) + \frac{x^3}{3!}E(X^3) + \cdots$$

$$= 1 + z_1t + \frac{z_2}{2!}t^2 + \frac{z_3}{3!}t^3 + \cdots$$

Kjer je $z_n = E(X^n)$ začetni moment.

Izrek 6. Naj obstaja $\delta > 0$, da je $M_X(t) < \infty$, za vse $t \in (-\delta, \delta)$. Potem je porazdelitev X natanko določena z M_X , vsi začetni momenti obstajajo:

$$z_k = E\left(X^k\right) = M_X^{(k)}(0) \quad za \ vse \quad k \in \mathbb{N}$$
$$M_X(t) = \sum_{k=0}^{\infty} \frac{z_k}{k!} t^k \quad za \ vse \quad t \in (-\delta, \delta)$$

Dokaz. (skica)

$$M_X(t) = E\left(e^{tX}\right)$$

$$= E\left(\sum_{k=0}^{\infty} \frac{X^k}{k!} t^k\right)$$

$$= \sum_{k=0}^{\infty} \frac{E\left(X^k\right)}{k!} t^k$$

$$= \sum_{k=0}^{\infty} \frac{z_k}{k!} t^k$$

Trditev 10.

$$M_{aX+b}(t) = e^{bt} M_X(at)$$
 za $a \neq 0, b \in \mathbb{R}$

Dokaz.

$$M_{aX+b}(t) = E\left(e^{t(aX+b)}\right)$$
$$= E\left(e^{(at)X}e^{bt}\right)$$
$$= e^{bt}M_X(at)$$

Trditev 11. Za $X \sim N(\mu, \sigma)$ velja:

$$M_X(t) = e^{\mu t + \frac{\sigma^2 t^2}{2}}$$

Dokaz. Definiramo: $U:=\frac{X-\mu}{\sigma}\sim N(0,1),$ zato $X=\sigma U+\mu$:

$$M_X(t) = M_{\sigma U + \mu}(t)$$

$$= e^{\mu t} M_U(\sigma t)$$

$$= e^{\mu t} e^{\frac{\sigma^2 t^2}{2}}$$

$$= e^{\mu t + \frac{\sigma^2 t^2}{2}}$$

Izrek 7. Če sta X in Y neodvisni slučajni spremenljivki, potem je:

$$M_{X+Y}(t) = M_X(t) M_Y(t)$$

Dokaz.

$$M_{X+Y}(t) = E\left(e^{t(X+Y)}\right)$$

$$= E\left(e^{tX} e^{tY}\right)$$

$$= E\left(e^{tX}\right) E\left(e^{tY}\right)$$

$$= M_X(t) M_Y(t)$$
(*)

Kjer smo v (\star) vrstici upoštevali neodvisnost.

Trditev 12. Imejmo $X \sim N(\mu_X, \sigma_X)$ in $Y \sim N(\mu_Y, \sigma_Y)$ neodvisni slučajne spremenljivki. Potem je:

$$X + Y \sim N\left(\mu_X + \mu_Y, \sqrt{\sigma_X^2 + \sigma_Y^2}\right)$$

Opomba.

$$E(X + Y) = E(X) + E(Y) = \mu_X + \mu_Y$$

 $D(X + Y) = D(X) + D(Y) = \sigma_X^2 + \sigma_Y^2$

Dokaz.

$$\begin{split} M_{X+Y}(t) &= M_X(t) \, M_Y(t) \\ &= e^{\mu_X t + \frac{\sigma_X^2 t^2}{2}} \, e^{\mu_Y t + \frac{\sigma_Y^2 t^2}{2}} \\ &= e^{(\mu_X + \mu_Y)t + \frac{\sigma_X^2 + \sigma_Y^2}{2}t^2} \end{split}$$

Od koder zaradi enoličnosti sledi:

$$X + Y \sim N\left(\mu_X \mu_Y, \sqrt{\sigma_X^2 + \sigma_Y^2}\right)$$

Zgled. Za N(0,1) izračunajmo vse momente:

$$\begin{split} M_X(t) &= e^{\frac{t^2}{2}} \\ &= \sum_{k=0}^{\infty} \frac{1}{k!} \left(\frac{t^2}{2}\right)^k \\ &= \sum_{k=0}^{\infty} \frac{t^{2k}}{2^k \, k!} \end{split}$$

$$\implies z_{2k+1} = 0 \quad \forall k$$

Po drugi strani pa je:

$$M_X(t) = \sum_{k=0}^{\infty} \frac{z_k}{k!} t^k$$

Po primerjavi koeficientov dobimo:

$$\frac{z_{2k}}{(2k)!} = \frac{1}{2^k \, k!}$$

Od tod sledi:

$$z_{2k} = \frac{(2k)!}{2^k k!} = \frac{1 \cdot 2 \cdot 3 \cdots 2k}{2 \cdot 4 \cdot 6 \cdots 2k} = 1 \cdot 3 \cdot 5 \cdot 7 \cdots (2k-1) = (2k-1)!!$$

