Plusieurs formes pour un même polynôme

Exercice 1

Donner la forme développée des fonctions définies sur R par :

$$f(x) = (x-1)(x-2).$$

·
$$l(x) = 7(x+2)(x-5)$$
.

•
$$k(x) = (x - \sigma_1)(x - \sigma_2)$$

où σ_1 et σ_2 sont deux réels.

$$g(x) = (x-3)(x-4).$$
 $m(x) = -3x(x-2).$

$$m(x) = -3x(x-2)$$

Exercice 2

Donner la forme développée des fonctions définies sur R par :

$$f(x) = (x+1)^2 + 1$$

$$h(x) = -2(x+7)^2 + 2.$$

$$\cdot l(x) = (x - \alpha)^2 + \beta$$

•
$$g(x) = 3(x-1)^2 + 7$$
.

•
$$k(x) = \left(x - \frac{1}{2}\right)^2 + \frac{3}{4}$$
.

où α et β sont deux réels.

Exercice 3

Regrouper les expressions égales

$$2x^2 - 10x + 12$$

•
$$2(x-2)(x-5)$$

•
$$2(x-4)^2-2$$

•
$$2x^2 - 14x + 20$$

•
$$2(x-2)(x-3)$$

$$\cdot 2\left(x-\frac{7}{2}\right)^2-\frac{9}{2}$$

$$2x^2 - 16x + 30$$

•
$$2(x-3)(x-5)$$

$$\cdot 2\left(x-\frac{5}{2}\right)^2-\frac{1}{2}$$

Exercice 4

Suivre le modèle suivant pour écrire les polynômes suivants sous forme canonique.

Modèle:

$$f(x) = x^{2} + 2x + 7$$

$$= (x^{2} + 2x) + 7$$

$$= (x^{2} + 2 \times x \times 1) + 7$$

$$= (x^{2} + 2 \times x \times 1 + 1^{2} - 1^{2}) + 7$$

$$= ((x+1)^{2} - 1) + 7$$

$$= (x+1)^{2} + 6$$

on isole les 2 premiers termes; entre parenthèses, on voit le début d'une identité remarquable; il manque juste le 12, donc on écrit et grâce à cette astuce rassemblons les constantes; et voilà une forme canonique!

$$f(x) = x^2 + 2x - 3.$$

$$f(x) = x^2 + 2x - 3.$$
 $f(x) = x^2 + 6x - 9.$ $f(x) = x^2 - 8x + 10.$

$$l(x) = x^2 - 8x + 10$$

•
$$g(x) = x^2 + 4x + 1$$
.

$$k(x) = x^2 - 2x - 1$$

•
$$g(x) = x^2 + 4x + 1$$
. • $k(x) = x^2 - 2x - 1$ • $m(x) = x^2 + 7x - 1$.

Exercice 5 - Utiliser la forme factorisée pour résoudre une inéquation liée au signe

On considère la fonction définie sur **R** par $f(x) = 3x^2 + 12x - 15$

- 1. Montrer que pour tout $x \in \mathbf{R}$ on a f(x) = 3(x-1)(x+5).
- 2. À l'aide d'un tableau de signes, résoudre l'inéquation $f(x) \leq 0$.
- 3. Montrer que pour tout $x \in \mathbb{R}$ on a f(x) + 24 = 3(x+3)(x+1).
- **4.** Résoudre $f(x) \geqslant -24$.

Exercice 6 - Utiliser la forme canonique

On considère la fonction g définie sur \mathbf{R} par $g(x) = -0, 5(x-4)^2 + 5.$

- 1. Donner le tableau de variation de g sur \mathbf{R} .
- 2. Compléter le tableau de valeurs suivant :

x	4	6	8
g(x)			

3. Représenter \mathcal{C}_g dans le repère ci-dessous :

- **4.** Résoudre graphiquement g(x) = 0, 5.
- 5. Retrouver ce résultat par le calcul.

Des paraboles

Exercice 7

Voici les expressions de quatre fonctions polynôme du second degré :

$$f(x) = \frac{1}{5}(x-1)^2 - 2$$

$$g(x) = (x+1)^2 - 1$$

$$\cdot h(x) = -\frac{1}{2}(x+1)^2 - 2$$

$$k(x) = -(x-2)^2 + 3$$

Associer chaque fonction à sa courbe représentative.

Exercice 8

Voici les expressions de quatre fonctions polynôme du second degré

$$f(x) = -\frac{1}{5}(x-4)(x-1)$$

$$g(x) = -(x-3)(x+2)$$

$$\cdot h(x) = (x+1)^2$$

•
$$k(x) = 2(x+4)(x+3)$$

Associer chaque fonction à sa courbe représentative.

Exercice 9

Voici les expressions de trois fonctions polynôme du second degré

•
$$f(x) = \frac{1}{2}(x-2)^2 - 3$$

•
$$g(x) = 2(x-2)^2 - 3$$

•
$$h(x) = (x-2)^2 - 3$$

Associer chaque fonction à sa courbe représentative.

Exercice 10

Résoudre dans **R** les équations suivantes :

1.
$$(x+1)^2 - 3 = 0$$

3.
$$2(x+3)^2 - 50 = 0$$

2.
$$(x-7)^2 - 8 = 0$$

4.
$$3(x-2)^2 + 7 = 0$$

Exercice 11

f est une fonction polynôme du second degré.

Quelle est la forme la plus adaptée (développée, factorisée ou canonique) permettant de répondre aux questions suivantes?

1. Déterminer l'image de 0 par f.

2. Démontrer le sens de variation de f.

3. Résoudre f(x) = 0.

4. Résoudre f(x) = c.

5. Déterminer l'extremum de f.

Exercice 12

f est une fonction polynôme du second degré.

On donne les informations suivantes :

- Les antécédents de 0 par f sont -2 et 3.

• L'image de 4 par f est -5.

Déterminer une expression de f en fonction de x.

Exercice 13

L'unité est le centimètre.

AB=10 et M est un point de [AB].

AMNP est un carré, MBCQ est un rectangle et BC=4.

4

On pose AM = x.

On note f(x) la somme des aires de AMNP et MBCQ en fonction de x.

- **1.** Quel est l'ensemble de définition de f?
- **2.** Faire une figure pour x = 3.
- 3. Quelle est, en fonction de x, l'aire du carré AMNP?
- **4.** Que vaut, en fonction de x, la distance MB?
- **5.** En déduire l'aire du rectangle MBCQ.
- **6.** Montrer que pour tout $x \in \mathcal{D}_f$ on a $f(x) = x^2 4x + 40$.
- 7. Montrer que pour tout $x \in \mathcal{D}_f$ on a $f(x) = (x-2)^2 + 36$.
- **8.** Donner le tableau de variation de f sur \mathcal{D}_f .
- **9.** Pour quelle valeur de x la somme des aires est-elle minimale?
- **10.** Y a-t-il des valeurs de x pour lesquelles la somme des aires vaut 85cm²?
- 11. Représenter C_f sur la calculatrice, avec une fenêtre convenable.

Forme factorisée et racines d'un polynôme

Exercice 14

Donner les formes factorisées (si elles existent) des fonctions définies sur R par :

$$f(x) = 2x^2 - 5x + 3$$
 $h(x) = x^2 + x + 1$

$$h(x) = x^2 + x + 1$$

•
$$k(x) = -3x^2 + x + 1$$

$$g(x) = 3x^2 + 2x + 4$$

$$g(x) = 3x^2 + 2x + 4$$
 $f(x) = 3x^2 - 2x + \frac{1}{3}$ $f(x) = 4x^2 - 4x + 15$

$$l(x) = 4x^2 - 4x + 15$$

Exercice 15

Résoudre les équations suivantes dans R:

1.
$$7x^2 + 5x + 1 = 0$$
 6. $2(x^2 + x) = -3$

6.
$$2(x^2 + x) = -3$$

11.
$$2 + 9x^2 = 0$$

2.
$$0.5x^2 + 2.5x + 15 = 0$$

7.
$$15x^2 - 6x + \frac{3}{5} = 0$$

2.
$$0, 5x^2 + 2, 5x + 15 = 0$$
 7. $15x^2 - 6x + \frac{3}{5} = 0$ **12.** $20x^2 - 8x + \frac{4}{5} = 0$

$$3. \ 2x^2 - 7x + 3 = 0$$

8.
$$3x^2 - 2x = 0$$

13.
$$2(x^2 - x) = -5$$

4.
$$15x^2 - 8x - 12 = 0$$
 9. $x^2 + \sqrt{2}x - 4 = 0$ **14.** $5x^2 = x$

9.
$$x^2 + \sqrt{2}x - 4 = 0$$

14.
$$5x^2 = x$$

5.
$$x^2 - 8 = 0$$

10.
$$12x^2 + 8x - 15 = 0$$
 15. $x^2 + 2\sqrt{3}x - 9 = 0$

5

15.
$$x^2 + 2\sqrt{3}x - 9 = 0$$

Exercice 16

Léna a écrit le script Python ci-dessous :

Python

```
a = float(input("entrez a"))
b = float(input("entrez b"))
c = float(input("entrez c"))
delta = b ** 2 - 4 * a * c
if delta > 0 :
    print(2)
elif delta == 0 :
    print(1)
else :
    print(0)
```

- 1. À quoi correspond le nombre affiché par ce script lorsqu'on entre les valeurs 2, 5 et 1?
- 2. Proposer un script en Python qui permet d'afficher les éventuelles racines réelles d'un polynôme du second degré à partir de ses coefficients.

Aide : En Python, on calcule la racine carrée de x en tapant sqrt(x).

Tu peux saisir ce script dans ta calculatrice, et l'utiliser pour vérifier tes calculs.

Exercice 17 Somme et produit des racines d'un polynôme du second degré

Soient x_1 et x_2 deux nombres réels.

On se donne une fonction polynôme du second degré f définie sur ${\bf R}$ par :

$$f(x) = (x - x_1)(x - x_2).$$

- **1.** Que représentent x_1 et x_2 pour f?
- 2. Montrer que la forme développée de f est donnée par $f(x) = x^2 sx + p$ avec s et p deux

Que représentent les réels s et p pour f?

- 3. Application:
 - a. Déterminer deux réels dont la somme est -24 et le produit est 135.
 - **b.** Déterminer deux réels dont la somme est $\frac{5}{2}$ et le produit est $-\frac{3}{2}$.

Inéquations du second degré

Exercice 18

Résoudre les inéquations suivantes :

1.
$$2x^2 - 3x - 2 \ge 0$$

1.
$$2x^2 - 3x - 2 \ge 0$$
 3. $-3x^2 + 30x - 75 > 0$ **5.** $-2x^2 + 3x - 1 \le 0$

5.
$$-2x^2 + 3x - 1 \le 0$$

2.
$$5x^2 - 6x < 0$$

4.
$$-x^2 + 6x - 9 \le 0$$

Mise en équations

Exercice 19

La longueur d'un rectangle surpasse sa largeur de 7 cm. Sa surface est de 228 cm². Quelles sont ses dimensions?

Exercice 20

On doublera la surface d'un jardin rectangulaire 16×24 m si on l'entoure d'une bande de x m de large. Déterminer x.

Exercice 21

Un drapeau d'inspiration danoise a pour dimensions 3 m sur 2 m, la croix, blanche sur fond rouge, est composée de deux bandes de même largeur.

Quelle largeur doivent avoir ces bandes pour que l'aire de la croix soit égale à celle du fond rouge?

Exercice 22 *

Un père et son fils travaillent chez le même entrepreneur. Après un certain nombre d'heures de travail, le père reçoit 500 €.

Le fils, qui a travaillé 5 heures de moins et dont le salaire horaire est inférieur de 8 € à celui de son père, ne reçoit que 240 €.

Le but de l'exercice est de déterminer le salaire horaire de chacun et le nombre d'heures qu'ils ont travaillé.

On appelle x le salaire horaire du père et n le nombre d'heures effectuées par le père.

- **1.** Exprimer n en fonction de x.
- **2.** Exprimer le salaire horaire du fils en fonction de x.
- 3. Exprimer le nombre d'heures effectuées par le fils en fonction de x.
- **4.** Montrer que l'équation du problème est $(x-8)\left(\frac{500}{x}-5\right)=240.$
- 5. Résoudre cette équation.
- **6.** Sachant que le père et le fils on travaillé un nombre **entier** d'heures, déterminer le salaire horaire de chacun et le nombre d'heures qu'ils ont travaillées.

7

Pour approfondir

Exercice 23

Résoudre dans R les équations suivantes :

1.
$$\frac{x-1}{2x-5} = \frac{x+1}{x-1}$$

$$2. \ \frac{2x^2 - 3x - 2}{x - 2} = x + 1$$

Exercice 24

Résoudre dans **R** les inéquations suivantes :

1.
$$\frac{x^2}{x+2} > 1$$

$$2. \ \frac{-3x+1}{2-x} \leqslant \frac{-4x+5}{x+3}$$

Exercice 25

Pour quelle(s) valeur(s) du réel a l'équation $x^2 + ax + 1 = 0$ admet-elle deux racines distinctes dans $\bf R$?

Exercice 26 Équation bicarré

On veut résoudre dans R l'équation

$$(E): x^4 - 3x^2 - 4 = 0$$

- 1. Poser $X=x^2$ et résoudre l'équation obtenue en remplaçant x^2 par X dans (E).
- **2.** En déduire les solutions de (E).