

Recommended for acceptance by M. Mahoor.

Digital Object Identifier no. 10.1109/TAFFC.2021.3122146

가

: DGIST. 1

```
가
                                                                 : LBP[36]
                                                                             HOG[37]
                                                   CK+
                               가
                                                                                                          [38],[39],[40].
                                                                                          FER
                                                                                                   .Chen et al.[41]
                      FER
                                                                  FER
     2
    FER
       VTFF
                                    3
                                                                         HOG
                                                                                         , HOG-TOP(Histogram of Orient
        4
                                                             ed Gradients from Three Orthogonal Planes)
              가
                                    5
                                                                    Qian[42] LBP
                                                                         CNN
                                                                                                          가
                                                                                                                 Li et al
                                                             . [25] LBP
                                                                                CNN
2
2.1
     1
                                                                         CK+ [12]
                                                                                     Oulu-CASIA [14]
                                                                FER
            [3],[4],[5],[6],[7]
                                                                  LBP
                                                                              CNN
                   [32],[33]
                                                               (ASF)
                                     CNN
             , Tang[34]
                                                                                          가
                                                                                                 가
                   SVM
  ICML 2013
                        Li et al.[8]
                                                   CNN(D
LP-CNN)
                 가
                                [34],[8]
                                                       FE
R
                            FER
                  가
                                                             2.3
                                          .Wang
                                                    [10]
                                                             CNN
                                                                                             Transformers[43] NLP
                    FER
                                                                                           . Transformers
                                                       가
                            (RAN)
                                                                                              [44],
                                                                                                             [45],
               가
    Li[9]
                                                                             [46],
                                                                                                       [47],
                                                                                                                     [4
     FER
                                      CNN
                                                             81
                                                                                            Transformers
  .[9], [10]
                                                                          . Transformer
                                                                                          CNN
                                                                               . Vision Transformer(ViT)[49]
                                                                                                                가
                                                       FE
                                                                                       Transformer
R
                                                                        . [49]
                                                                                       ViT ImageNet[50]
                                           . Fan[24]
                                                                                    가
                                                                ResNet
               가 가
                                    Xu et al.[35]
                                                                            . Transformers
                                             FER
                                                                                                                 . CNN
                                                                                     Transformers
                                           Wang et al.[11]
                                                             Wang et al. [51]
            FER
                                          (SCN)
                                                                                                Pyramid Vision Transform
                              가
                                                             er(PVT)
                                                                                                                 Transf
                                                             ormers
                                                                                     [52], [53], [54]
  FER
              FER
                                               ( : LBP)
                                                                Transformers
                                                                                             Transformers
                                                                                                Transformer
     CNN
                                                                  Transformer
                                                                                                        FER
                                                                                                               Transfor
                                                             mers
                                                                    .Transformers
                                                                                       가
```

2.2 FER

1

,

2025 23 23 05:45:10 UTC IEEE Xplore . . .

2.

 $ken\ is\ added.\ We\ get\ embedded\ visual\ words \\ \ Authorized\ licensed\ use\ limited\ to:\ DGIST.\ Downloaded\ on\ January\ 23,2025\ at\ 05:45:10\ UTC\ from\ IEEE\ Xplore.\ Restrictions\ apply.$

Element-wise

Sigmoid

Broadcasting

Element-wise

Element-wise Multiplication

 \otimes

가

DGIST

3.3 2D $X_{\it fused}$ 1D 가 $H_d \times W_d$ Transformer $X_f 2 R$ $H_dW_d \times C_p$ H_dW_d 512 768 가 cls]가 . Transformer [cls] 가 1D 가 $G(U) = \sigma(\mathbb{BN}(Conv_G^2(\delta(\mathbb{BN}(Conv_G^1(\mathbb{AP}(U))))))),$ (2) $Z^{0} = [x_{cls}; x_{f}^{1}; x_{f}^{2}; x_{f}^{3}; \dots; x_{f}^{H_{d}W_{d}}] + PE(H_{d}W_{d} + 1; C_{p}),$ $L(U) = \sigma(\mathbb{BN}(Conv_I^2(\delta(\mathbb{BN}(Conv_I^1(U)))))).$ (3) (7)Eq. (2) U 2 $\mathbf{R}^{H_d \times W_d \times C_f}$ AP РЕ
ð $\mathbf{H}_d\mathbf{W}_d$ þ 1; С $_p$ Þ 2 R $^{(H_dW_d+1)\times C_p}$ [cls] \mathbf{Z}^0 Eq. (4) $\mathbb{AP}(U) = \frac{1}{H_d W_d} \sum_{i=1}^{H_d} \sum_{j=1}^{W_d} x_c(i, j), c = 1, 2, \dots, C_f,$ \mathbf{Z}^0 Transformer . Transformer (MHS 가 (SHSA) $\begin{array}{c} \text{Conv}_{G}^{1} \\ \overset{C_{f}}{\underset{f}{\sim}} \times C_{f} \times 1 \times 1, \underbrace{C_{f} \times \overset{C_{f}}{\underset{r}{\sim}} \times 1 \times 1}_{r} \times C_{f} \times 1 \times 1 \\ \text{onv}_{L}^{2} \\ \text{Conv}_{G}^{1} \\ \underbrace{C_{onv}_{L}^{1}}_{r} \end{array}$ **SHSA** $head_i = Attention(Q_i, K_i, V_i)$ $= softmax \left(\frac{Q_j K_j^T}{\sqrt{d}} \right) V_j$ (8) Conv_G^2 $= softmax \left(\frac{Z^0 W_j^Q (Z^0 W_j^K)^T}{\sqrt{d}} \right) Z^0 W_j^V,$ GởUÞ 2 $\mathbb{R}^{1 \times 1 \times C_f}$ $U 2 R^{H_d \times W_d \times C_f}$ $H_d \times W_d \times \frac{C_f}{r}$ $Conv_L^2$ $\begin{array}{cccc} & & & & . & \mathsf{Conv}_L^2 \\ \mathbf{W}_d \times \mathbf{1} & & . & . & \mathsf{Conv}_L^1 & \mathsf{Conv}_L^2 \\ & & - & \end{array}$ $H_d \times$ $MHSA(Z^{0}) = concat(head_{1},...,head_{N_{h}})W^{O},$ (9), concat d Transformer LðUÞ가 Transformer i 1/4 Eq. (5) $1; \ldots; N_l$ $GL(U) = G(U) \oplus L(U),$ (5) $\hat{Z}^{i} = MHSA(LN(Z^{i-1})) + Z^{i-1}$ (10) \oplus $Z^{i} = MLP(LN(\hat{Z}^{i})) + \hat{Z}^{i}$ (11) $\hat{\mathbf{Z}}^i$ \mathbf{Z}^{i} $X_{fused} = X_{LBP} \otimes \sigma(GL(U)) + X_{RGB} \otimes \sigma(1 - GL(U)),$. MLP **GELU** (6).LN

. 2025 1 23 05:45:10 UTC | IEEE Xplore

3,072	MLP . N [cls]	$egin{array}{c} MLP \ Z_0^{N_l} LN \end{array}$	・FERPlus 28, フト ・FERPlus RPlus 1 lus FER2013 ・RAF-DB	, Google 48	3,589 × 48 . FE FERP
$Z_0^{N_l}$ ${ m M}$. ${ m y}^i$	$Y = LN(Z_0^{N_l}),$ $y^i = \frac{e^{\theta_i^T Y}}{\sum_{i=1}^M e^{\theta_i^T Y}},$ $Z_l^N \qquad \qquad . \ \mathbf{u}$ $\mathbf{u}_i \mathbf{u} \mathbf{i}$ \mathbf{i} arg max	(12) (13) cls] Y .	AffectNet 7 7 7 et 7 7 7 FERPlus 87 , 287,652	1,000,000 (. AffectNet , 450,000 , 4,000	. AffectN , 가) ,
	, , RAF-DB, FERPlus CK+	フト F AffectNet) フト FER VTFF	Occlusion and Pose Nose-RAF-DB, Occlusion fectNet, Pose-AffectNet		Plus, Occlusion-Af AffectNet
Occlusion-RAF	フト TectNet) RAF-DB, FERPlus A -DB, Pose-RAF-DB, Occon-AffectNet, Pose-Affec		CK+ . CK+ 593 (Cohn-Kandade 123 7 , 32) (. 771 654	
가 40 DB	Flickr 29,672 . RAF-DB	315 . RAF-	7	MTCNN[19]	224× Res
7 (, , , 12,27	, , , , , , , , , , , , , , , , , , ,	77h) 8 FER2013	Net18 0.005 32 FERPlus 20,000	. 1,000 . Adam , AffectNet	. [61] RAF 40,000

가

DGIST

. 2025 1 23 05:45:10 UTC IEEE Xplore

1 RAF-DB

method	Year	Angry	Disgust	Fear	Нарру	Sad	Surprise	Neutral	Accuracy
VGG [8]	2018	66.05	25.00	37.84	73.08	51.46	53.49	47.21	69.34
baseDCNN [8]	2018	70.99	52.50	50.00	92.91	77.82	79.64	83.09	82.66
Center Loss [8]	2018	68.52	53.13	54.05	93.08	78.45	79.63	83.24	82.86
DLP-CNN [8]	2018	71.60	52.15	62.16	92.83	80.13	81.16	80.29	82.74
FSN [55]	2018	72.80	46.90	56.80	90.50	81.60	81.80	76.90	81.14
gACNN [9]	2018	-	-	-	-	-	-	-	85.07
ŘAN [10]	2020	-	-	-	-	-	-	-	86.90
SCN [11]	2020	-	-	-	-	-	-	-	87.03
DSAN-VGG-RACE [24]	2020	82.71	56.25	58.11	94.01	83.89	89.06	80.00	85.37
SPWFA-SE [56]	2020	80.00	59.00	59.00	93.00	84.00	88.00	86.00	86.31
Ours	2021	85.80	68.12	64.86	94.09	87.24	85.41	87.50	88.14

가

FERPlus Pytorch[62] **SCN** 0.96% 0.80% **RAN** NVIDIA GTX 1080Ti GPU 가 RAN^{\diamond} RAN **CNN** 4.3 VTFF RAN° **VTFF** RAF-DB, FERPlus AffectNet AffectNet AffectNet **RAF-DB** 4 AffectNet 61.85% . IPA2LT[60], gACNN[9] SPWFA-SE[56] . [8] [56] AffectNet 7 . SPWFA-SE . gACNN[9], RAN[10] SCN[11] AffectNet .R 가 . SPWFA-SE[56] AN[10] SCN[11] 4 RAF-DB **RAF-DB** 88.14% 2 FERPlus AffectNet 가 VTFF VGG SCN 18.8 (a) Results on FERPlus. .DSAN-VGG-RACE 1.11% 가 가 **RAF-DB** 가

[56] 가 9.12%

Method	Year	Accuracy
CSLD [15]	2016	83.85
ResNet+VGG [57]	2017	87.4
SHCNN [58]	2019	86.54
LDR [59]	2020	87.6
RAN° [10]	2020	88.55
RAN [10]	2020	87.85
SCN [11]	2020	88.01
Ours	2021	88.81

FERPlus	. 4	FERPlus	
	CSLD [15]	, ResNet+VGG [57	7], SHCNN [5
8], LDR [59]	CNN	가	
(RAN [10], SC	CN [11])		4
	VTFF FI	ERPlus 88.819	6

(b) Results on AffectNet.							
Method	Year	Accuracy					
IPA2LT [60]	2018	55.11					
gACNN [9]	2018	58.78					
SPWFA-SE [56]	2020	59.23					
RAN [†] [10]	2020	52.97					
RAN [10]	2020	59.50					
SCN [11]	2020	60.23					
Ours [†]	2021	56.13					
Ours	2021	61.85					

3 AffectNet-7

method	Year	Angry	Disgust	Fear	Нарру	Sad	Surprise	Neutral	Accuracy
MFMP+ [63]	2021	55.00	46.00	53.00	88.00	55.00	55.00	64.00	58.86
IDFL [64]	2021	31.00	65.00	49.00	95.00	59.00	43.00	73.00	59.20
WSFER [65]	2021	58.54	30.28	50.42	88.01	67.56	51.90	73.55	60.04
T21DST [66]	2021	18.00	40.00	53.00	96.00	62.00	62.00	79.00	60.12
SDW [67]	2021	53.00	56.00	61.00	86.00	58.00	53.00	59.00	61.11
ReCNN [68]	2021	59.00	54.40	65.60	87.60	59.40	60.00	62.40	64.06
Ours	2021	61.20	53.00	60.40	88.40	60.80	64.80	65.00	64.80

. 가 . RAN [10] RAN[†] 3. VTFF 16% RAN 6.53% 5.72% **FER RAN** AffectNet **VTFF** 가 WebEmotion AffectNet Occlusion-RAF-DB, Occlusion-FERPlus Occlusi **SCN SCN** 1.62% on-AffectNet **RAN** 1.23%, 1.16% 4.48% VTFF가 VTFF가 Af Pose-RAF-DB, Pose-FERPlus fectNet Pose-AffectNet **RAN** 가 가 30 1.23%, 6.06% 6.71% 45 Pose-FERPlus, Pose-AffectNet Pos e-RAF-DB 3.15%, 6.8% 7.81% **RAN VTFF** : AffectNet VTFF [63], [64], [65], [66], [67], [68] 3 AffectNet-7 가 가 5.94%~0.74% 가 61.2% 64.80% X. CK+ ia et al. [68] 가 Rela 가 tion Convolutional Neural Network 64.6% AffectNet RAF-DB, FERPlus Fear(64.6%) 가 T21DST[66] Neural(79.00%, 73.00%) Happy(9 IDFL[64] 4 6.00%, 95.00%) Angry(31.0 0%, 18.00%) Fear(49.00%, 53.00%) .[64], [66] Hayale et al.[67] (a) Results on Occlusion-RAF-DB, Pose-RAF-DB. Method Occlusion Pose(30) Pose(45) 가 Disgust(56.00%) Baseline [10] 80.19 84.04 83.15 가 . Zhang et al. [65] 85.20 **RAN** [10] 82.72 86.74 **FER** Sad (67.56%)Ours 83.95 87.97 88.35 VTFF가 3 (b) Results on Occlusion-FERPlus, Pose-FERPlus. VTFF Method Occlusion Pose(30) Pose(45) Baseline [10] 73.33 78.11 75.50

the experimental results under corresponding

-RAF-DB,

-AffectNet

4

-RAF-DB,

-FERPlus,

Authorized licensed use limited to: DGIST. Downloaded on January 23,2025 at 05:45:10 UTC from IEEE Xplore. Restrictions apply.

-FERPlus,

-AffectNet

RAN [10]

Ours

Method

Baseline [10]

RAN [10]

Ours

83.63

84.79

Occlusion

49.48

58.50

62.98

(c) Results on Occlusion-AffectNet, Pose-AffectNet.

82.23

88.29

Pose(30)

50.10

53.90

60.61

80.40

87.20

Pose(45)

48.50

53.19

61.00

가 LBP

ASF

, ASF

가

(b, c)

가 LBP

ASF

가

ASF

, ASF)

-DB, FERPlus

6

f)

 $H \times W \times 3$

LBP

가

SF

.43%

7

가

LBP

가

(ASF) 가. LBP

ASF

. ASF

ASF가

ResNet

(MTE)

MTE

 $N_1 \frac{1}{4} 4$

(a)

AffectNet

CNN

LBP

(a)

FER

CNN

(e, f)

LBP

CNN

(b, c)

(a, c)

CNN

. L_{LBP} L_{RGB}

가

0.61%, 0.38%, 1.23%

0.76%, 0.85%, 1

 $H \times W \times 4$

가

RAF

(c,

MTE

가

ASF

5 CK+ 가 Accuracy Method Train Test gACNN [9] RAF-DB CK+ 81.07 SPWFA-SE [56] RAF-DB CK+ 81.72 SPWFA-SE [56] CK+ 85.44 AffectNet-7 Ours RAF-DB CK+ 81.88 Ours **FERPlus** CK+ 83.79 Ours AffectNet-8 CK+ 86.24

5 CK+ . gACNN SPWFA-SE 7가

3 Affe ctNet CK+ 86.54% . gACNN SPWFA-SE 0.81% 0.16% 가 . AffectNet **RAF-DB FERPlus**

5

4.4 VTFF 2

. AffectNet

가

ASF) (MTE) **LBP** VTFF RAF, FERPlus AffectNet 6

(a) **ASF** LBP **CNN** LBP

FER LBP **LBP FER** LBP **RAF-DB** , RAF-DB

86.37% . RAF-DB LBP 가 0.16% (d, e) LBP **FERPlus** (a, b) Affec tNet 0.47% 0.20% LBP

6 RAF-DB, FERPlus AffectNet

MTE가

LBP

. MTE

가

 $N_h \frac{1}{4} 8$

(b, e)

(d)

MTE

(a, d),

, ASF MTE

ple rundom

Setting	LBP	ASF	MTE	RAF-DB	FERPlus	AffectNet
a	Х	Х	Х	86.37 ± 0.35	86.70 ± 0.24	58.45 ± 0.10
b	✓	X	X	86.53 ± 0.27	87.17 ± 0.30	58.65 ± 0.14
c	✓	✓	X	87.14 ± 0.39	87.55 ± 0.18	59.88 ± 0.21
d	X	X	✓	87.60 ± 0.12	87.65 ± 0.15	60.50 ± 0.09
e	✓	×	✓	87.83 ± 0.04	88.15 ± 0.23	60.90 ± 0.12
f	✓	1	✓	88.19 ± 0.21	88.70 ± 0.17	61.52 ± 0.07

 $N_l \stackrel{1}{\cancel{4}} 4 \qquad N_h \stackrel{1}{\cancel{4}} 8$

갸 DGIST . 2025 1 23 05:45:10 UTC IEEE Xplore ti-

	7 ASF	RAF-DB, FERPlus	Aff
ectNet		(±)

Method	RAF-DB	FERPlus	AffectNet
Ours w/ Concat	81.12 ± 0.25	83.97 ± 0.37	58.07 ± 0.15
Ours* w / Concat	87.35 ± 0.39	86.86 ± 0.16	59.85 ± 0.10
Ours w/ ASF	82.30 ± 0.31	84.71 ± 0.20	58.77 ± 0.09
Ours* w/ ASF	87.83 ± 0.04	88.15 ± 0.23	60.90 ± 0.12
* 7			

8 RAF-DB, FERPlus Affect

Net

Setting	N_l	N_h	Params(M)	RAF-DB	FERPlus	AffectNet
i	4	4	51.8	87.45	88.46	61.08
ii	4	8	51.8	88.14	88.69	61.55
iii	4	12	51.8	87.52	88.65	61.85
iv	8	4	80.1	87.22	88.14	60.82
v	8	8	80.1	87.61	88.81	61.23
vi	8	12	80.1	87.48	88.52	61.30
vii	12	4	108.5	87.23	88.20	60.85
viii	12	8	108.5	87.29	88.52	60.45
ix	12	12	108.5	87.09	88.21	61.50
-						

가

ASF 가 MTE 가

71

 $\begin{array}{cccc} \mathsf{MTE} & & . & & \mathsf{Transformer} \\ \mathsf{N}_l & & & . & \\ & & & \mathsf{N}_h & \end{array}$

.MTE , N N_h . 8 RAF-DB, FERPlus AffectNet 4 12 MTE . 8 /

 N_l

 N_l

 $egin{array}{c} \mathbf{N}_l \ . \ \mathbf{N}_h \end{array}$

. , N_l ½ 4 N ½ 8 RAF フト . N_l ¼ 12 N_h ¼ 12 MTE가 フト

9 ViT

VTFF

Setting	N_l	N_h	Params(M)	RAF-DB	FERPlus	AffectNet
ViT	12	12	85.8	47.55	47.72	27.87
ViT*	12	12	85.8	85.14	88.07	58.77
Ours	4	8	51.8	82.27	84.80	58.75
Ours*		8	51.8	88.14	88.69	61.55
p-values p-values*	- -	- -	- -	$\begin{array}{c} 3.47 \times e^{-6} \\ 6.68 \times e^{-5} \end{array}$	$7.30 \times e^{-6}$ $1.18 \times e^{-4}$	$\begin{array}{c} 3.39 \times e^{-6} \\ 2.57 \times e^{-5} \end{array}$

RAF-DB, FERPlus AffectNet

,

 $10 \; RAF\text{-}DB, \, FERPlus \qquad Affe$ ctnet $(GPU\text{-} \)$

Method	RAF-DB	FERPlus	AffectNet 0.36 0.35	
Ours Ours*	0.06 0.06	0.07 0.07		
6	MTE가	RAF		

. AffectNet

MTE

가 . 가 가

ViT*

ImageNet-21k

Imag

. V

ResNet18 가 9 ViT VTFF . 가 FER ViT-Base[49] [49] . ViT

eNet フト . ViT* Ours*

ViT

iT . 9 가

10 .

GPU I/O 7

가 .

가 . McNemar ViT

. 가 . 가 . 가 . 가

	* ***	
-11	ViT	ASF

Method	RAF-DB	FERPlus	AffectNet
ViT* w/o ASF	85.07 ± 0.30	87.93 ± 0.52	58.70 ± 0.09
ViT* w/ ASF	65.51 ± 0.39	69.03 ± 0.46	27.31 ± 0.18
Ours* w/o ASF	87.83 ± 0.04	88.15 ± 0.23	$60.90 \pm 0.12 \\ 61.52 \pm 0.07$
Ours* w/ ASF	88.19 ± 0.21	88.70 ± 0.17	

p- a ¼ 0:05 p- 9 . . . p 0.05 . フト , ViT . クト

ASF가 ViT VTFF ASF가 가 11 ViT(ASF가 ViT) (ASF가) . a) ViT 가 FER N_h N_h . b) vanilla ViT **FER FER** MS-Celeb-1M ResNet ASF Transformers **FER**

ASF ViT ASF가 가 , ASF 512 ViT . ASF 가 ViT 11 ViT w/o ASF ViT w/ ASF ASF가 ViT ASF가 ViT 11 ASF가

4.5

ASF

4. , MTE ,

. 4 ,

5 Visual T

ransformers with Feature Fusion(VTFF)

 $\label{eq:lbp} LBP \qquad CNN \qquad .$ $\label{eq:lbp} Transformer$

· VTFF가 가 가 가

: DGIST. 1

가

2025 23 23 05:45:10 UTC IEEE Xplore

RAF-DB, FERPlus, AffectNet. CK+フト

[1] C. Darwin P. Prodger. . [2] Y.-I. Tian, T. Kanade J. F. Cohn, " 1998 ", IEEE Trans. Pattern Anal. Mach. Intell., vol. 23, no. 2, pp. 97 – 115, 2001 2 . [3] N. Dalal B. Triggs, " ", Proc. IEEE Conf. Comput. Vis. Patt ern Recog- nit., 2005, pp. 886 – 893. [4] C. Shan, S. Gong P. W. McOwan, ", Proc. IEEE Int. Conf. I mage Process., 2005, pp. II – 370. [5] X. Feng, M. Pietikainen, A. Hadid, ' ., vol. 15, no. 2, 2005, Art. no. 546. [6] I. Buciu I. Pitas, ' roc. 17th Int. Conf. Pattern Recognit., 2004, pp. 288 – 291. [7] S. H. Lee, K. N . Plataniotis, Y. M. Ro, " ", IEEE Trans. Affective Comput., vol. 5, no. 3, pp. 340 – 351, 2014 3 . [8] S. Li W. Deng, " ", IEEE Trans. Image Process., vol. 28, no. 1, pp. 356 – 370, 2019 1 . [9] Y. Li, J. Zeng, S. Shan X. Chen, " ", IEEE Trans. Image Process., vol. 28, no. 5, pp. 2439 – 2450, 2019 5 . [10] K. Wang, X. Peng, J. Yang, D. Meng Y. Qiao, " ", IEEE Trans. Image Process., vol. 29, pp. 4057 – 4069, 2020 1 . [11 K. Wang, X. Peng, J. Yang, S. Lu, Y. Qiao, ' ", Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 202 0, pp. 6897 - 6906. [12] P. Lucey, J. F. Cohn, T. Kanade, J. Saragih, Z. Amba cohn-kanade dar, I. Matthews, " (CK+): ", Proc. IEEE Conf. Comput. Vi s. Pattern Recognit.-Workshops, 2010, pp. 94 – 101. [13] M. Valstar M. Pa ntic, " : mmi 7\rangle", Proc. 3rd Intern. Workshop EMOTION, Corpora Res. Emotion Affect, 2010, pp. 65 – 70. [14] G. Zhao, X. Huang, M. Taini, S. Z. Li M. Pietik €a Inen, " ", Image Vis. Comput., vol. 29, no. 9, pp. 607 – 619, 2011. [15] E. Barsoum, C. Zhang, C. C. Ferrer Z. Zha ng, ", Proc. 18th ACM Int. Conf. :Multimodal Inter-act., 2016, pp. 279 – 283. [16] A. Mollahosseini, B. Hasani, M. H. Mahoor, "AffectNet: , 가 ", IEEE Trans. Affec tive Comput., vol. 10, no. 1, pp. 18 – 31, 2019 1 . [17] Y. LeCun , " ", Neural Comput., vol. 1, no. 4, pp. 5 W. Deng, 41 - 551, 1989. [18] S. Li ". IEEE T Affective Comput., doi: 10.1109/TAFFC.2020.2981 446. [19] K. Zhang, Z. Zhang, Z. Li, Y. Qiao, " ", IEEE Signal Process. Lett., vol. 23, no. 10, pp. 1499 – 1503, 2016 10 . [20] B. Amos, B. Ludwiczuk, M. Satyanarayanan, "OpenFace: ", CMU School Comput. Sci., 2016 . [21] F. Bourel, C. C. A. A. Low, "가 Chibelushi ", Proc. Brit. A. Routray, " Mach. Vis. Conf., 2001, pp. 1 – 10. [22] S. Happy

```
", IEEE Trans. Affective Comp- Put.,
                                                                  , doi: 10.1
109/TAFFC.2020.2988264. [25] J. Li, K. Jin, D. Zhou, N. Kubota, and Z. Ju, "
                                             CNN", Neurocomputing, vol. 4
11, pp. 340 – 350, 2020. [26] W. Zheng, "
                           ", IEEE Trans. Affective Comp- Put., vol. 5, no. 1,
pp. 71 – 85, 2014 1
                         . [27] Y. Liu, J. Zeng, S. Shan, and Z. Zheng, "
                                                             ", Proc. 13th I
EEE Int. Conf. Autom. Face Gesture Recogn- nit., 2018, pp. 458 – 465. [28] F
. Zhang, T. Zhang, Q. Mao, and C. Xu, "
               ", Proc. IEEE Conf. Comput. Vis.
                                                        : Pattern Recognit.,
pp. 3359 - 3368, 2018 6 . [29] Y.-H. Lai S.-H. Lai, "
13th IEEE Int. Conf. Autom. Face Gesture Recognit., 2018, pp. 263 – 270. [30
] F. Zhang, T. Zhang, Q. Mao C. Xu, "
                ", IEEE Trans. Image Process., vol. 29, pp. 4445 – 4460, 2020
   2 . [31] N. Sun, Q. Lu, W. Zheng, J. Liu G. Han, "
                              ", IEEE Trans.
                                                 : Affective Comput.,
     , doi: 10.1109/TAFFC.2020.3029531. [32] K. He, X. Zhang, S. Ren,
Sun. "
                                             ", Proc. IEEE Conf. Comput. Vi
s. Pattern Recognit., 2016, pp. 770-778. [33] G. Huang, Z. Liu, L. Van Der Ma
                                                        ", Proc. IEEE Conf.
aten, K. Q. Weinberger, "
Comput. Vis. Pattern Recognit., 2017, pp. 4700-4708. [34] Y. Tang, "
                                ", 2013, arXiv:1306.0239. [35] T. Xu, J. Whit
e, S. Kalkan, H. Gunes, '
                                                                  ", Proc. E
ur. Conf. Comp-put. Vis., 2020, 506-523 . [36] S. Moore R. Bowden, "
                                                   ", Comput. Vis. Image Un
derstanding, vol. 115, no. 4, 541-558 , 2011. [37] Y. Hu, Z. Zeng, L. Yin, X.
Wei, X. Zhou, T. S. Huang, "
                                                        ", Proc. 8th IEEE Int.
Conf. Autom. Face Gesture Recognit., 2008, 1-6 . [38] K.-H. Pong K.-M.
Lam, "
                                                  ', Pattern Recognit., vol. 47
, no. 2, pp. 556 - 567, 2014. [39] T.-Y. Lin, P. Doll 'ar, R. Girshick, K. He, B.
Hariharan, and S. Belongie,
roc. IEEE Conf. Comput. Vis. Pattern Recognit., 2017, pp. 2117 – 2125. [40]
G. Lin, A. Milan, C. Shen, and I. Reid, "RefineNet:
                             ", Proc. IEEE Conf. Comput. Vis. Pattern Recog
nit., 2017, pp. 1925 – 1934. [41] J. Chen, Z. Chen, Z. Chi H. Fu, "
                                               ", IEEE Trans. Affective Com
p- Put., vol. 9, no. 1, pp. 38-50, 2016
                                             . [42] J. Shao
                                                            Y. Qian, "
                                3가
                                                            ', Neurocomputi
ng, vol. 355, pp. 82-92, 2019. [43] A. Vaswani et al., "
", 2017, arXiv: 1706.03762. [44] J. Beal, E. Kim, E. Tzeng, D. H. Park, A. Zh
     D. Kislyuk, "
                                                    ," 2020, arXiv: 2012.09
958. [45] S. Yang, Z. Quan, M. Nie,
                                      W. Yang, "TransPose:
                                       ," 2020, arXiv: 2012.14214. [46] P. E
sser, R. Rombach, B. Ommer, "
       ," 2020, arXiv:2012.09841. [47] Y. Wang et al., "
                              ' 2020, arXiv:2011.14503. [48] M. Bhat, J. Fra
       J. Oh, "Trajformer:
           ", 2020, arXiv:2011.14910.
```

[23] Y. Li, J. Zeng, S. Shan, and X. Chen, "가

9 - 2214. [24] Y. Fan, V. Li, and J. C. Lam, "

CNN", Proc. 24th Int. Conf. Pattern Recognit., 2018, pp. 220

omput., vol. 6, no. 1, pp. 1 – 12, 2014 1

", IEEE Trans. Affective C

Circuits Syst. Video Technol.,

Shen, "

e Comput.,

ns. Cogn. Devel. Syst.,

: [65] F. Zhang, M. Xu C. Xu, "

u, X. Wang, M. Jian, F.-Y. Wang, "

2018

[49] A. Dosovitskiy et al., " 16x16 가 가 ", 2020, arXiv:2010.11929. [50] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, L. Fei-Fei, "ImageNet: ", IEEE Conf. Comput. Vis. Pattern Recognit., 2009, pp. 248 - 255. [51] W. Wang et al., " ", 2021, arXiv:2102.12122. [52] Z. Chen, L. X ie, J. Niu, X. Liu, L. Wei, Q. Tian, "Visformer: ," 2021, a rXiv:2104.12533. [53] H. Wu , "CvT: ," 2021, arXiv:2103.15808. [54] Z. Liu , "ConvTransformer: ," 2020, arXiv: 2011.10185. [55] S. Zhao, H. Cai, H. Liu, J. Zhang, S. Chen, " CNN ," Proc. Brit. Mach. Vis. Conf., 2018, Art. no. 317. [56] Y. Li, G. Lu , J. Li, Z. Zhang, D. Zhang, " ", IEEE Trans. Affective Comput., , doi: 10.1109/TAFFC.2020.3031602. [57] C. Huang, " , 2017, 1-4 . [5 ", IEEE MIT 8] S. Miao, H. Xu, Z. Han, Y. Zhu, " ", IEEE Access, vol. 7, pp. 78 000 - 78 011, 2019. [59] X. Fan, Z. Deng, K. Wang, X. Peng, Y. Qiao, " ", Proc. IEEE Int. Conf. Image Process., 2020, pp. 903 – 90 7. [60] J. Zeng, S. Shan, X. Chen, " ", Proc. Eur. Conf. Comput. Vis., 2018, pp. 22 2 – 237. [61] D. P. Kingma J. Ba, "Adam: Xiv:1412.6980. [62] A. Paszke et al., "PyTorch: ," 2019, arXiv: 1912.01703. [63] S. Happy, A. Dantcheva, F. B remond, " ," Image Vis. Comput., vol. 105, 2021, Art. no. 104038. [64] Y. Li et al., "

, ,

," IEEE Trans.

", IEEE Trans. Affectiv

, d

L.

," IEEE Tra

, doi 10.1109/TCSVT.2021.3103760.

가

oi: 10.1109/TMM.2021.3072786. [66] W. Xie, H. Wu, Y. Tian, M. Bai

", IEEE Trans.Circuits Syst.Video Technol.,

: 10.1109/TCSVT.2021.3063052. [67] W. Hayale, P. S. Negi M. Mahoor, "

", IEEE Trans.Multimedia,

, doi: 10.1109/TAFFC.2021.3077248. [68] Y. Xia, H. Y

, doi: 10.1109/TCDS.2021.3100131.

" 7} www.comput er.org/csdl .