Student Name: Toh Yi Kang

Group : SCS1

Date : 28/03/2024

LAB 4: ANALZING NETWORK DATA LOG

You are provided with the data file, in .csv format, in the working directory. Write the program to extract the following informations.

EXERCISE 4A: TOP TALKERS AND LISTENERS

One of the most commonly used function in analyzing data log is finding out the IP address of the hosts that send out large amount of packet and hosts that receive large number of packets, usually know as TOP TALKERS and LISTENERS. Based on the IP address we can obtained the organization who owns the IP address.

List the TOP 5 TALKERS

Rank	IP address	# of packets	Organisation
1	193.62.192.8	3041	European Bioinformatics Institute
2	155.69.160.32	2975	Nanyang Technological University
3	130.14.250.11	2604	National Library of Medicine
4	14.139.196.58	2452	Indian Institute of Technology
5	140.112.8.139	2056	AS17716 National Taiwan University

TOP 5 LISTENERS

Rank	IP address	# of packets	Organisation	
1	103.37.198.100	3841	A*STAR	
2	137.132.228.15	3715	National University of Singapore	
3	202.21.159.244	2446	Rpnet	
4	192.101.107.153	2368	Battelle Memorial Institute, Pacific Northwest Division	
5	103.21.126.2	2056	Indian Institute of Technology Bombay	

EXERCISE 4B: TRANSPORT PROTOCOL

Using the IP protocol type attribute, determine the percentage of TCP and UDP protocol

	Header value	Transport layer protocol	# of packets	%
1	6	TCP	56064	80.818798
2	17	UDP	9462	13.639902

EXERCISE 4C: APPLICATIONS PROTOCOL

Using the Destination IP port number determine the most frequently used application protocol. (For finding the service given the port number https://www.adminsub.net/tcp-udp-port-finder/)

Rank	Destination IP port number	# of packets	Service
1	443	13423	HTTPS
2	80	2647	HTTP
3	52866	2068	Dynamic/Private Ports
4	45512	1356	Unassigned
5	56152	1341	Dynamic/Private Ports

EXERCISE 4D: TRAFFIC

The traffic intensity is an important parameter that a network engineer needs to monitor closely to determine if there is congestion. You would use the IP packet size to calculate the estimated total traffic over the monitored period of 15 seconds. (Assume the sampling rate is 1 in 2048)

Mainly summing up all packet size (in bytes already) together, which is the total size for one sample. Total traffic wil be the $(sum*2048 \text{ samples})/(2^20) - 2^20$ conversion to convert to MB.

-	
Total Traffic(MB)	126519.184 MB

EXERCISE 4E: ADDITIONAL ANALYSIS

Please append ONE page to provide additional analysis of the data and the insight it provides. Please limit your results within one page (and any additional results that fall beyond one page limit will not be assessed).

Top 5 Communication Pairs based on number of packets between organizations:

	src_IP	Source Organisation	dst_IP	Destination Organisation	No. of Packets
0	193.62.192.8	European Bioinformatics Institute	137.132.228.15	National University of Singapore	3041
1	130.14.250.11	National Library of Medicine	103.37.198.100	A*STAR	2599
2	14.139.196.58	Indian Institute of Technology	192.101.107.153	Battelle Memorial Institute, Pacific Northwest	2368
3	140.112.8.139	AS17716 National Taiwan University	103.21.126.2	Indian Institute of Technology Bombay	2056
4	137.132.228.15	National University of Singapore	193.62.192.8	European Bioinformatics Institute	1910

Visualization of top 5 communications pairs:

Although we state out the top 5 communication pairs, there are only 4 shown in the graph. This is mainly because the first and fifth communication paris have the same IP hosts but in different directions. Since the graph shown is non-directional, we can only display mainly first to fourth communication pairs since the fifth pair is technically same as the first pair.

EXERCISE 4F: SOFTWARE CODE

Please also submit your code to the NTULearn lab site.

SC2008 Lab4 ¶

Insertion of Data

```
In [2]:
data_df = pd.read_csv('Data_3.csv', header = None, names = format)
data_df.drop('???', axis = 1, inplace = True) #Dropping columns with null value
                   type sflow_agent_address inputPort outputPort src_MAC dst_MAC ethernet_type in_vlan out_vlan
          0 FLOW 203.30.38.251 137 200 d404ff55fd4d 80711fc76001 0x0800 919 280 130.246.176.22 140.115.32.81
                              203.30.38.251
                                                             193 609c9f851b00 0031466b23cf
                                                                                                    0x0800
                                                                                                                      919 155.69.160.32 64.233.188.128
          2 FLOW 203.30.38.251 137 200 d404ff55fd4d 80711fc76001 0x0800 919 280 130.246.176.53 140.115.32.83
              3 FLOW
                               203.30.38.251
                                                 129
                                                             135 609c9f851b00 002688cd5fc7
                                                                                                   0x0800
                                                                                                               11
                                                                                                                       919 155.69.160.32 54.169.174.79
          4 FLOW 203.30.38.251 130 199 00239cd087c1 544b8cf9a7df 0x0800 919 600 137.132.228.15 193.62.192.8
          69365 FLOW 203.30.38.251 258 199 204e71cf1b0f ccef48570144 0x0800 537 601 207.241.228.157 210.48.222.9
                                                 131
                                                             193 00a742233e9e 0031466b23cf
                                                                                                                       919 192.122.131.36 216.58.203.234
           69366 FLOW
                              203.30.38.251
                                                                                                    0x0800
                                                                                                              43
           69367 FLOW 203.30.38.251 130 199 00239cd087c1 544b8cf9a7df 0x0800 919 600 137.132.228.15 193.62.192.8

        69368
        FLOW
        203.30.38.251
        129
        193
        699c9851b00
        0031466b23cf
        0x0800
        11
        919
        155.69.196.9
        74.125.56.6

        69369
        FLOW
        203.30.38.251
        137
        200
        d404ff55fd4d
        80711fc76001
        0x0800
        919
        280
        14.139.196.58
        192.101.107.153

          69370 rows × 20 columns
```

Exercise 4A: Top Talkers and Listeners

```
In [3]: #Function to find Organisation Given IP
def find_organisation(ip_address):
    url = f"http://ip-api.com/json/{ip_address}?fields=4255743"
    try:
        response = requests.get(url)
        response.raise_for_status()
        data = response.json()
        org = data.get('org')
        if org == "":
            org = data.get('as')
        return org
    except requests.exceptions.RequestException as e:
        print(f"Error occurred: {e}")
        return None
```

Top 5 Talkers

```
In [4]: #Top 5 unique IP addresses sorted by number of packet sent (Top 5 talkers)
top5talkers_df = data_df['src_IP'].value_counts().nlargest(5).to_frame()

top5talkers_df = top5talkers_df.reset_index()
top5talkers_df.rename(columns={'index': 'IP_Address', 'src_IP': 'Number of Packets'}, inplace=True)
top5talkers_df['Organisation'] = top5talkers_df['IP_Address'].apply(find_organisation)
top5talkers_df
```

				Out[4]:
Organisation	Number of Packets	IP_Address		
European Bioinformatics Institute	3041	193.62.192.8	0	
Nanyang Technological University	2975	155.69.160.32	1	
National Library of Medicine	2604	130.14.250.11	2	
Indian Institute of Technology	2452	14.139.196.58	3	
AS17716 National Taiwan University	2056	140.112.8.139	4	

Top 5 Listeners

```
In [5]: #Top 5 unique IP addresses sorted by number of packet sent (Top 5 Listeners)
top5listeners_df = data_df['dst_IP'].value_counts().nlargest(5).to_frame()

top5listeners_df = top5listeners_df.reset_index()
top5listeners_df.rename(columns={'index': 'IP_Address', 'dst_IP': 'Number of Packets'}, inplace=True)
top5listeners_df['Organisation'] = top5listeners_df['IP_Address'].apply(find_organisation)
top5listeners_df
```

Out[5]:

Organisation	Number of Packets	IP_Address	
A*STAR	3841	103.37.198.100	0
National University of Singapore	3715	137.132.228.15	1
Rpnet	2446	202.21.159.244	2
le Memorial Institute, Pacific Northwest	2368	192.101.107.153	3
Indian Institute of Technology Bombay	2056	103.21.126.2	4

Exercise 4B: Transport Protocol

```
In [6]: tprotocol_df = data_df['IP_protocol'].value_counts().to_frame()
    tprotocol_df = tprotocol_df.reset_index().rename(columns={'index':'Header Value (Type of IP Protocol)', 'IP_protocol':'Number of
    proportion = []
    for i in range(len(tprotocol_df)):
        proportion.append(tprotocol_df['Number of Packets'][i] * 100/len(data_df))
    tprotocol_df['%'] = proportion
    tprotocol_df
```

Out[6]:

	Header Value (Type of IP Protocol)	Number of Packets	%
0	6	56064	80.818798
1	17	9462	13.639902
2	50	1698	2.447744
3	0	1261	1.817789
4	47	657	0.947095
5	41	104	0.149921
6	1	74	0.106674
7	381	45	0.064870
8	58	4	0.005766
9	103	1	0.001442

Proportion of TCP and UDP packets

```
In [7]: #Heoder Value 6 == TCP
#Header Value 17 == UDP
UDP = tprotocol_df[[tprotocol_df['Header Value (Type of IP Protocol)'] == 17]
TCP = tprotocol_df[tprotocol_df['Header Value (Type of IP Protocol)'] == 6]

tframe = [TCP, UDP]
combined_df = pd.concat(tframe)
combined_df
```

Out[7]:

	Header Value (Type of IP Protocol)	Number of Packets	%
0	6	56064	80.818798
4	17	9462	13 639902

Exercise 4C: Application Protocol

```
In [8]: #Top 5 used application protocol
application_df = data_df['dst_transport_port'].value_counts().nlargest(5).to_frame()
application_df = application_df.reset_index().rename(columns={'index':'Destination Port', 'dst_transport_port':'Number of Packets
            port_mapping = {45512: 'Unassigned',
                                 (45512: 'Unassigned',
443: 'HTTPS',
80: 'HTTP',
52866: 'Dynamic/Private Ports',
56152: 'Dynamic/Private Ports',
0: 'Reserved Port'}
           service = []
            for i in application_df['Destination Port']:
                try:
service.append(port_mapping[i])
                 except:
service.append('Unknown')
            application_df['Service'] = service
           application df
           4
Out[8]:
                Destination Port Number of Packets
            0
                         443
                                                 13423
                                                                       HTTPS
                              80
                                                 2647
                                                                        HTTP
            2
                           52866
                                                2068 Dynamic/Private Ports
                           45512
                                                 1356
            3
                                                                 Unassigned
                                   1341 Dynamic/Private Ports
```

Exercise 4D: Traffic

```
in [12]: total_traffic = sum(data_df['IP_size'])
    total_traffic_Mb = (total_traffic*2048)/(pow(2,20))
    print(f"Total Traffic in MB = {total_traffic_Mb:.3f} MB")

Total Traffic in MB = 126519.184 MB
```

Exercise 4E: Additional Analysis

Top 5 Communication Pairs

```
In [10]: # Top 5 unique communication pairs
top5cp_df = data_df.groupby(['src_IP', 'dst_IP']).size().sort_values(ascending = False).to_frame()
top5cp_df.columns = ['No. of Packets']
top5cp_df = top5cp_df.reset_index()
top5cp_df = top5cp_df.head(5)

top5cp_df['Source Organisation'] = top5cp_df['src_IP'].apply(find_organisation)
top5cp_df['Destination Organisation'] = top5cp_df['dst_IP'].apply(find_organisation)

top5cp_df = top5cp_df[['src_IP', 'Source Organisation', 'dst_IP', 'Destination Organisation', 'No. of Packets']]

Out[10]:
src_IP Source Organisation dst_IP Destination Organisation No.of Packets
```

	src_IP	Source Organisation	dst_IP	Destination Organisation	No. of Packets
0	193.62.192.8	European Bioinformatics Institute	137.132.228.15	National University of Singapore	3041
1	130.14.250.11	National Library of Medicine	103.37.198.100	A*STAR	2599
2	14.139.196.58	Indian Institute of Technology	192.101.107.153	Battelle Memorial Institute, Pacific Northwest	2368
3	140.112.8.139	AS17716 National Taiwan University	103.21.126.2	Indian Institute of Technology Bombay	2056
4	137.132.228.15	National University of Singapore	193.62.192.8	European Bioinformatics Institute	1910

Visualization of top 5 communications pairs between different IP hosts

```
In [78]:
# Group data_df by source and destination IP addresses
communication_dataset = data_df.groupby([data_df["src_IP"], data_df["dst_IP"]]).size().nlargest(5).sort_values(ascending=False)

# Create an empty DataFrame to store communication pairs
communication_dataframe = pd.DataFrame()

# Extract source and destination IP addresses from the grouped dataset
sources = []
destinations = []
for (source_ip, dest_ip), count in communication_dataset.items():
    sources.append(source_ip)
    destinations.append(dest_ip)

# Assign source and destination IP addresses to DataFrame columns
communication_dataframe["source"] = sources
communication_dataframe["source"] = destinations

# Create a network graph from DataFrame edges
graph = nx.from_pandas_edgelist(communication_dataframe, "source", "destination")

# Visualize the network graph
plt.figure(figsize=(10,10))
graph_positions = nx.spring_layout(graph)
nx.draw_networkx_edges(graph, graph_positions, node_color="grey")
nx.draw_networkx_nodes(graph, graph_positions)
nx.draw_networkx_labels(graph, graph_positions, font_size=15)
plt.show()
```

```
137.137.228.15

193.67.192.8

192.101.107.12

14.139.196.58

103.21.126.2

140.117.8.139

103.37.198.10

130.143.50.11
```