Various Network Programs

Degree (Twitter Example)

- in-degree (# of people tweeting about you)
 - sum of all edges going to a node
- out-degree (# of people you tweet about)
 - sum of all edges going out of a node
- weighted in-degree (# tweets about you)
 - sum of all edges going to a node multiplied by their weights
- weighted out-degree (# tweets about other people)
 - sum of all edges going out from a node multiplied by their weights
- degree (# of people you connect to)
 - sum of all edges
- weighted degree (# times connect to people)
 - sum of all edges multiplied by their weights

Global Network Analysis

- connected components
 - weakly connected = undirected
 - requires 1 edge connecting two nodes, more are optional
 - strongly connected = directed
 - requires enough edges for effective 2-way travel between two nodes
 - will be more than 1 edge, even if path "back" is not direct
- network density
 - how close is the network to complete? e.g. what percentage of edges are extant?
- network diameter
 - what is the longest shortest path between two nodes?

Node "Centrality" Measures

- betweenness centrality:
 - the number of the shortest paths through the network that go through a node
- closeness centrality:
 - the average distance from a node to all other nodes in the network
- eccentricity:
 - the distance from a node to the farthest node from it in the network
 - the center of the graph is the node(s) with the minimum eccentricity
 - the maximum eccentricity is also the diameter

How Can You Analyze Them?

E.g. in a social network

- who knows the most people?
- who knows the most highly connected people?
- how many disconnected subnetworks are there?
- whose removal severs the network into disconnected subnetworks?
- how many "hops" does it take to get from one person in the network to another?
- who do most of the shortest hops go through?
- are there any smaller cliques or "communities" within the network?

Eigenvector Centrality

- we call our adjacency matrix $A=(a_{v,t})$
 - each a_{v,t} corresponds to the o or 1 at the intersection of row v and column t
- eigenvector centrality for a vertex v is

$x_v = rac{1}{\lambda} \sum_{t \in M(v)} x_t$	$=rac{1}{\lambda}\sum_{t\in G}a_{v,t}x_t$
--	--

	And	Bil	Car	Dan	Ele	Fra	Gar
Andy		1	0	1	0	0	1
Bill	1		1	0	1	0	0
Carol	1	1		1	1	0	0
Dan	1	1	1		0	0	0
Elena	0	0	0	0		1	0
Frank	0	0	0	0	1		0
Garth	1	1	0	0	0	0	

Some (But Not All!) Network Programs

Web-Based Options

- Palladio hdlab.stanford.edu/palladio/
- Network Navigator http://dh-web.hss.cmu.edu/network_navigator/
- NodeGoat nodegoat.net

Application Options

- Gephi gephi.org
- Cytoscape www.cytoscape.org
- Pajek mrvar.fdv.uni-lj.si/pajek/ (Windows only)
- NodeXL nodexl.codeplex.com (Excel, Windows only)

Programming Options

- Python's NetworkX library
- R's Tidyverse/Tidygraph libraries
- JavaScript's D₃ library (visualization only)