Homework 11

Introduction to Model Theory

Due 2021-12-16

- 1. Show that the field \mathbb{C} is strongly $|\mathbb{C}|$ -homogeneous. You may assume the statements on last week's homework assignment.
- 2. Show that the field \mathbb{R} is strongly κ -homogeneous for any cardinal κ . *Hint:* \mathbb{R} doesn't even have automorphisms.
- 3. Let $S = \{0, 1\} \times \mathbb{Z}$ and let \leq be the lexicographic order on S:

$$(0,x) < (1,y)$$
$$(0,x) \le (0,y) \iff x \le y$$
$$(1,x) \le (1,y) \iff x \le y.$$

Show that (S, \leq) is not strongly ω -homogeneous, but some expansion of (S, \leq) is strongly ω -homogeneous.

In the following problems, let T be the complete theory of the structure $(\mathbb{R}, +, \cdot, 0)$. So a model of T is a structure $(M, +, \cdot, 0)$ that is elementarily equivalent to \mathbb{R} .

- 4. Suppose $M \models T$. Show that there is at most one linear order \leq on M such that the following hold:
 - If $x \le y$, then $x + z \le y + z$.
 - If $x \leq y$, and $0 \leq z$, then $xz \leq yz$.

(The idea is that these properties are the implicit definition of \leq .)

Hint: if you get stuck; do problem 5 first and use the solution as a guide.

5. Write down an explicit definition of \leq in $(\mathbb{R}, +, \cdot)$, that is, a formula $\phi(x, y)$ in the language $\{+, \cdot, 0\}$ such that $\mathbb{R} \models \phi(a, b)$ iff $a \leq b$.