Optimization of Aspect Ratio for Cooling Channels in Rocket Engines

A Parametric Study on the RL10 Engine

Marco Nanni

August 2024

Introduction

- Objective: Find the optimal mass flow rate and aspect ratio (AR) for the cooling channels at the throat section of the RL10 engine.
- Context: Importance of aspect ratio in enhancing cooling performance and minimizing power loss.

Methodology

- Parametric Study: Conducted to determine the optimal AR by varying mass flow rate and observing the resulting pressure drop and power loss.
- Design: Channel height constant, width is twice the rib thickness.

Key Equations and Concepts

- Aspect Ratio (AR): Ratio of channel height to width.
- Heat Transfer Coefficient:
 - Coolant: Explained through the Dittus-Boelter correlation for the Nusselt number
 - Hot gas: Bartz correlation
- Wetted Perimeter and Hydraulic Diameter:
 Their role in pressure drop and heat transfer.

Requirements

- Cooling jackets outlet pressure: 5.6 Mpa
- Wall temperature < 1200K (Copper-Nickel Alloy)
- Coolant is subsonic in the cooling channels

Need for a parametric study

Results Overview

- Minimum pressure drop at AR=8, minimum power loss at AR=10.
- Current RL-10
 - mass flow rate = 4 lbm/s
 - Power consumption: 0.65 MW
- Optimized RL10
 - Hydrogen mass flow rate = 3.7 kg/s
 - Power consumption = 0.61 MW
- Power saving with optimized AR: 6%

Graphical Results

Coolant pressure drop, mass flow rate, and power required as a function of AR.

Discussion

- **Trade-offs**: Higher AR improves cooling but increases pressure losses.
- Manufacturing Considerations: Challenges in achieving high AR with conventional machining.

Conclusion

- Optimal AR: Identified as AR=7 for minimizing power loss while maintaining acceptable cooling.
- Future Work: Suggestions for further parametric studies with more variables.

References

- Pizzarelli, Trade-off analysis of high-aspectratio-cooling-channels for rocket engines.
- Haberbusch, Modeling the RL IO with Densified Liquid Hydrogen and Oxygen Propellants.
- NASA Sp8107, Turbopump systems for liquid rocket engines.
- Bartz, Technical notes.

Contact Information

- Marco Nanni
- Email: mnanni@purdue.edu
- LinkedIn: https://www.linkedin.com/in/marco-nanni-663180252/