Estructuras repetitivas

Ejercicio 1. Resolver la siguiente secuencia para n términos:

2255555225555225555...

Ejemplo: si n = 10 la secuencia es:

2255555225

Se inicia con el análisis del algoritmo:

Expresiones aritméticas:

$$p \leftarrow p+1$$
 $t \leftarrow 2$ $z \leftarrow 2+5$ $t \leftarrow z-t$

Expresiones de relación:

si p > t verdad t cambia de valor y p inicia en 1

El diagrama de flujo es el siguiente:

Se va generalizando para que el 2, 5 se almacenen en variables, y el diagrama se mas general:

Ejercicio 2. Resolver la siguiente secuencia para n términos. (sube baja)

12345432123454321234...

Ejemplo, para entender el problema, con n = 10

1234543212

Análisis del algoritmo:

Análisis del algoritmo:

t 1 2 3 4 5 4 3 2 1 2
$$\rightleftharpoons$$
 t término
i 1 2 3 4 5 6 7 8 9 10 \rightleftharpoons i contador automático
p 1 2 3 4 1 2 3 4 1 \rightleftharpoons p contador manual
controla cambio de 4

Expresiones aritméticas:

$$p \leftarrow p+1$$
 $t \leftarrow 1$ $t \leftarrow t+1$ $t \leftarrow t-1$
 $sig \leftarrow 1$ $sig \leftarrow sig * (-1)$ $t \leftarrow t+sig$

Expresiones de relación:

El diagrama de flujo es el siguiente:

Ejercicio 3. Resolver la secuencia de Fibonacci para n términos:

0 1 1 2 3 5 8 13 21 34 55 89 ...

Ejemplo, para entender el problema, con n = 7

0 1 1 2 3 5 8