Primeira Lista de Exercícios GEOMETRIA ANALÍTICA

Vetores e operações

- 1. (Camargo–Boulos) Verifique se é verdadeira ou falsa cada afirmação e justifique sua resposta.
 - (a) $\overrightarrow{AB} = \overrightarrow{CD} \Longrightarrow AC \cap BD = \emptyset$.
 - (b) $\|\overrightarrow{AB}\| = \|\overrightarrow{CD}\| \Longrightarrow \overrightarrow{AB} = \overrightarrow{CD}$.
 - $\text{(c)} \ \overrightarrow{AB} = \overrightarrow{CD} \Longrightarrow \left\| \overrightarrow{AB} \right\| = \left\| \overrightarrow{CD} \right\|.$
 - (d) Se $\overrightarrow{AB} = \overrightarrow{CD}$, então existe um único plano contendo A, B, C, D.
- 2. (Camargo–Boulos) Vale a igualdade $\|\vec{u} + \vec{v}\| = \|\vec{u}\| + \|\vec{v}\|$ para quaisquer vetores \vec{u} e \vec{v} ? Justifique sua resposta. E quanto a $\|\vec{u} \vec{v}\| = \|\vec{u}\| \|\vec{v}\|$?
- 3. Mostre que a norma de vetores satisfaz a desigualdade triangular, ou seja, $\|\vec{u} + \vec{v}\| \le \|\vec{u}\| + \|\vec{v}\|$.
- 4. (Camargo–Boulos) Prove que $\overrightarrow{BC} \overrightarrow{BA} = \overrightarrow{AC}$.
- 5. (Camargo–Boulos) Prove que se $\overrightarrow{AB}+\overrightarrow{AC}=\overrightarrow{BC},$ então A=B.
- 6. Determine a soma dos vetores indicados em cada caso da figura abaixo.
- 7. Considere o paralelepípedo ABCDEFGH representado na figura abaixo.
 - (a) Sendo $\vec{u} = \overrightarrow{AB}$, $\vec{v} = \overrightarrow{AD}$ e $\vec{w} = \overrightarrow{AE}$, escreva \overrightarrow{AG} , \overrightarrow{EC} , \overrightarrow{HB} , \overrightarrow{DF} em função de \vec{u} , \vec{v} , \vec{w} .
 - (b) Determine os vetores

$$\vec{u} = \overrightarrow{GH} - \overrightarrow{HE} - \overrightarrow{FE} + \overrightarrow{AE} + \overrightarrow{AB}$$
 e $\vec{v} = \overrightarrow{HD} - \overrightarrow{CF} + \overrightarrow{DG} + \overrightarrow{BC} + \overrightarrow{AF} - \overrightarrow{BE}$.

8. Os hexágonos abaixo são regulares. Determine a soma dos vetores indicados em cada caso.

- 9. Dado \vec{u} não nulo, obtenha \vec{v} de comprimento 7 tal que \vec{u} e \vec{v} sejam paralelos e de mesmo sentido.
- 10. Se $\|\vec{u}\| = \frac{3}{4}$, determine o versor de \vec{u} .
- 11. (Camargo–Boulos) O hexágono \overrightarrow{ABCDEF} é regular, de centro O. Prove que $\overrightarrow{AB} + \overrightarrow{AC} + \overrightarrow{AD} + \overrightarrow{AE} + \overrightarrow{AF} = 6\overrightarrow{AO}$.
- 12. (Camargo–Boulos) Prove que, se $a \neq 0$, então $a\vec{u} = a\vec{v} \Rightarrow \vec{u} = \vec{v}$.
- 13. (Camargo–Boulos) Prove que, se $\vec{v} \neq \vec{0}$, então $a\vec{u} = b\vec{v} \Rightarrow a = b$.
- 14. (Camargo–Boulos) Resolva, na incógnita \vec{x} , a equação $2\vec{x} 3\vec{u} = 10\,(\vec{x} + \vec{v})$.
- 15. (Camargo–Boulos) Suponha que $\vec{u} = \lambda \vec{v}$. Se $\vec{v} \neq \vec{0}$, mostre que $|\lambda| = \frac{\|\vec{u}\|}{\|\vec{v}\|}$.
- 16. (Camargo–Boulos) Sejam A e B pontos distintos. Mostre que o ponto X pertence ao segmento de reta AB se, e somente se, existe λ real tal que $\overrightarrow{AX} = \lambda \overrightarrow{AB}$.
- 17. (Camargo–Boulos) Sejam B e C dois pontos distintos e M o ponto médio do segmento BC. Prove que, se A é um ponto qualquer, então $\overrightarrow{AB} + \overrightarrow{AC} = 2$ \overrightarrow{AM} .
- 18. (Camargo–Boulos) Sendo M ponto médio de AC, N o de BD e $\vec{x} = \overrightarrow{AB} + \overrightarrow{AD} + \overrightarrow{CB} + \overrightarrow{CD}$, prove que $\vec{x} \parallel \overrightarrow{MN}$.

19. (Camargo–Boulos) Os pontos A,B,C,D são tais que $A\neq B,\,C\neq D,$ e os segmentos de retas AB e CD não são paralelos. Prove que $\overrightarrow{aAB}=\overrightarrow{bCD}\Rightarrow a=b=0.$