

DESIGN DE ESTRUTURAS AEROESPACIAIS

Daniel Afonso

Escola Superior Aveiro Norte, Universidade de Aveiro Centro de Tecnologia Mecânica e Automação (TEMA) dan@ua.pt www.ua.pt/pt/p/16609746

SUMÁRIO

Mecanismos conformáveis

- Conceito
- Vantagens de mecanismos conformáveis
- Desenvolvimento e aplicações

Mecanismos baseados em origami

- Desenvolvimento de estruturas e mecanismos baseados em origami
- Aplicações baseadas em origami

Mecanismos com deformação controlada de peças

Flexibilidade da peça permite o movimento do mecanismo - explora a deformação elástica do material

Simplicidade - Reduzido número de peças permite o desenvolvimento de sistemas mais simples

Mecanismos composto por uma única peça

Comportamento cinemático análogo a um mecanismo de corpos rígidos Força de entrada é transportada ao longo da peça até uma saída Movimento de entrada é transportado para um movimento de saída

Small-Length Flexure

Fixed-Guide Segment

End Moment Loading

Número de peças reduzido

- Número de peças de um mecanismo significativamente reduzido
- Juntas e molas são substituídas por elementos flexíveis numa única parte

Precisão de movimento

- Inexistência de folgas de montagem possibilita movimento mais preciso
- Inexistência de desgaste de peças móveis não altera o movimento do mecanismo

Facilidade de Fabrico

- Compatíveis com vários processo de fabrico
- Muitos desenhos cortados a partir de placas planas

Baixo custo

 Reduzido número de peças, facilidade de fabrico e dispensa de montagem minimiza custos

Desempenho e manutenção

- Ausência de contacto entre peças elimina o atrito
- Ausência de contacto elimina necessidade de lubrificação

Escalável

Geometrias escaláveis, até dimensões muito reduzidas

Portabilidade

 Redução do número de peças contribui para diminuição do tamanho e massa de um mecanismo

Estabilidade

 Possibilidade de mecanismo naturalmente estável em uma ou mais posições

LIMITAÇÕES DE MECANISMOS CONFORMÁVEIS

Complexidade do sistema

- O desenvolvimento de sistemas complexos é mais difícil em mecanismos conformáveis do que em mecanismos de corpos rígidos
- Há necessidade de maior conhecimento sobre comportamento dos materiais e necessidade de análise (simulação) do comportamento do mecanismo

Análise do mecanismo

- Análise do comportamento cinetostático diferente do comportamento de deformação estática conhecido devido a grandes deformações – dificuldade na análise do mecanismo
- Muitos mecanismos desenvolvidos por métodos iterativos de tentativa e erro

Acumulação de energia

• Energia necessária para a deformação do mecanismo pode diminuir a sua eficiência

LIMITAÇÕES DE MECANISMOS CONFORMÁVEIS

Fadiga de elementos flexíveis

- Carregamentos cíclicos de mecanismos pode provocar uma rotura prematura por fadiga
- A análise do comportamento cinetostático é ainda mais complicada para contabilizar a resistência à fadiga

Movimento limitado

- A amplitude de movimento é genericamente menor do que em mecanismos de corpo rígido
- Movimento de elementos flexíveis é limitado pela resistência do material
- Mecanismos flexíveis não permitem movimento contínuo, como uma junta rotacional

Rigidez limitada

• Apesar de possível desenhar o mecanismo de forma a que a rigidez numa direção seja mais elevada do que no plano do movimento, a rigidez é genericamente mais baixa

Rotational Compliant Element

Adjustable Impedance Mechanism

Adjustable Stiffness Mechanism

Adjustable Damping Mechanism

PROJETO DE MECANISMOS CONFORMÁVEIS

Modelo de corpos pseudo-rígidos

 Aproxima o mecanismo a um conjunto de corpos rígidos e traduz o movimento por uma analogia a juntas com rigidez (mola)

Otimização topológica

 Utiliza simulação computacional para calcular o comportamento de peças e determinar a utilização ótima de material para suportar esforços

PROJETO DE MECANISMOS CONFORMÁVEIS

Garantir o movimento desejado para o mecanismo

- Garantir a amplitude de movimento
- Garantir a relação de força / binário

Minimizar força/binário de atuação

 Minimizar energia acumulada na deformação dos elementos flexíveis

Evitar colisões entre elementos geométricos

- Garantir que zonas "rígidas" não colidem
- Garantir rigidez na direção onde não se pretende movimento

Garantir resistência dos componentes

- Garantir operação dentro do limite elástico
- Prevenir fadiga no material

MECANISMOS CONFORMÁVEIS BI-ESTÁVEIS

Desenho do mecanismo permite duas posições estáveis

- Input energético permite mudar de posição
- Mecanismo mantem múltiplas configurações, sem consumo de energia, e suportando pequenos distúrbios

MECANISMOS CONFORMÁVEIS BI-ESTÁVEIS

APLICAÇÕES DE MECANISMOS CONFORMÁVEIS

APLICAÇÕES DE MECANISMOS CONFORMÁVEIS

APLICAÇÕES DE MECANISMOS CONFORMÁVEIS

ESTRUTURAS E MECANISMOS ORIGAMI

Engenharia de origami

ESTRUTURAS DE CASCA DOBRADA

TESSELAÇÕES DE ORIGAMI (ORIGAMI TESSELATION)

Dobras aumentam a resistência do material

Criação de montanhas e vales aumenta o momento de inercia de um painel

Aumento do momento de inercia aumenta rigidez do painel enquanto permite flexibilidade controlada

Dobras de painéis planos

- A soma dos ângulos alternados em torno de um vértice é de 180° (teorema de Kawasaki-Justin)
- Em cada vértice, o número de dobras entre montanhas e vales difere em 2 (teorema de Maekawa-Justin)

TESSELAÇÕES DE ORIGAMI

(ORIGAMI TESSELATION)

- a) padrão de dobra Miura-ori de vértice único. As dobras de montanha e vale são representadas como linhas contínuas e tracejadas, respetivamente; P é o único vértice de grau 4.
- b) configuração dobrada do padrão do vinco Miura-ori. m e v representam dobras de montanha e vale, respetivamente

TESSELAÇÕES DE ORIGAMI (ORIGAMI TESSELATION)

Dobras alteram direção do plano do painel

Diferentes distancias entre vértices permitem criar estruturas curvas a partir de painéis planos

Possibilidade de criação de estruturas complexas

Geometria de painéis planos

- Plano médio do painel pode assumir uma forma global de geometria livre
- Dobras permitem expansão/contração local

TESSELAÇÕES DE ORIGAMI (ORIGAMI TESSELATION)

TESSELAÇÕES DE ORIGAMI

(ORIGAMI TESSELATION)

Miura sheet

TESSELAÇÕES DE ORIGAMI (ORIGAMI TESSELATION)

TESSELAÇÕES DE ORIGAMI (ORIGAMI TESSELATION)

Painel com dobras rígidas permite criação de estruturas

• Aplicações como núcleo de painéis sandwich

Painel com dobras flexíveis comporta-se como um mecanismo conformável

• Aplicações em estruturas reconfiguráveis ou adaptáveis

TESSELAÇÕES DE ORIGAMI — PAINEL DE MIURA

(ORIGAMI TESSELATION)

Expande em todas as direções quando sujeito a uma tração axial

Coeficiente de Poisson negativo

oposto

Coeficiente de

Comprime num

sentido quando

fletido no sentido

TESSELAÇÕES DE ORIGAMI — PAINEL DE CAIXA DE OVOS (ORIGAMI TESSELATION)

Comprime na direção oposta a uma axial

Poisson positivo

Coeficiente de

Expande num sentido quando fletido no sentido oposto

Coeficiente de Poisson negativo

APLICAÇÕES DE ORIGAMI

Aplicações como mecanismos conformáveis

Aplicações como estruturas reconfiguráveis ou adaptáveis

APLICAÇÕES DE ORIGAMI EM DESIGN E ENGENHARIA

Fidelity Continuum of Origami-Based Design

