1	Compute the period of the linear congruential generator $X_{n+1} = 3X_n + 2 \mod 23$ with various	Xnti = (a Xn+c) mod m	ocacm, osc <m< th=""></m<>
1.	Compute the period of the linear congruential generator $X_{n+1} = 3X_n + 2$ mod 23 with various		
	initial value X ₀		

 $X_0 = 1$ $X_1 = (3 \cdot 1 + 2) \mod 23 = 5$, $X_2 = (3 \cdot 5 + 2) \mod 23 = 17$, $X_3 = (3 \cdot 17 + 2) \mod 23 = 7$, $X_4 = 0$, $X_5 = 2$, $X_6 = 8$, $X_7 = 3$, $X_8 = [1, X_9 = 12]$, $X_{10} = 15$, $X_{11} = [1, 1]$ 1 = 2 X1 = (3.2+2) mod 23 = 8, X2 = (3.8+2) mod 23 = 3, X3 = (3.8+2) mod 23 = 11, X4 = 12, X5 = 15, X6 = 1, X7 = 5, X8 = 17, X6 = 0, X11 = 2, ... $X_0 = 4$ $X_1 = 14$, $X_2 = 21$, $X_3 = 19$, $X_4 = 13$, $X_5 = 18$, $X_b = 10$, $X_7 = 9$, $X_8 = 0$, $X_4 = 20$, $X_{10} = 16$, $X_{11} = 4$, ... period= 11 with Xo=22 period=1

2. Compute the 16 output bits of the LFSR $B_2X^2 + B_0X^4$ with initial values $B_3B_2B_1B_0 =$ 1010 and 1011. What are their periods?

state		B3	B 2	Bi	Bo	Bo AB2	output	state	B3	B ₂	B	Bo	Bo AB2	output
nitial o		l	0	1	0	D	0	initial o	l	0	1	1	1	
1		0		0	-	0	1]	1	0		D	
-2		0	0	-	-0-	0	0	2	0			0		0
-3		0	0	0	-	1	1	3	_	0	1	-		1
4		1	D	0	D	0	0	4)	1	0	+	0	
5		0	1	0	ס	ι	0	5	0			D		D
f		1	D	I	0	0	O	Ь	١	0	1	1	1	1
7		0	1	O	1	٥	ı	7	1	1	O	1	D	1
8		0	0	-	0	0	0	8	0]	1 (D	(D
9		0	0	0		ı	1	9	1	0			1	1
10	2	I	0	0	Ö	D	D	10	ı	1	0		0	1
V.		0	J	U	0	1	D	11	0	1) ()	1	D
ι7	L	l	U	1	0	D	0	رک	1	0			-	1
17		p	1	0	1	0		۱۶	١	1	0		0	1
14		U	0	1	D	0	0	14	D	1	I D		1	0
ıs		р	_O	D		1		ıs	1	O	1 1			1

berigg : 010 1000 ld 1000 tol	period: 1101101101101	

period: 010 1000 10 1000 101

3. Suppose you have an entropy source that produces independent bits, where bit 1 is generated with probability 0.5+p and bit 0 is generated with probability 0.5-p, where 0<p<0.5. Consider the conditioning algorithm that examines the output bit stream as a sequence of non-overlapping pairs. Discard all 00 and 11 pairs. Replace each 01 pair with 0 and each 10 pair with 1. a. What is the probability of occurrences of each pair in the original sequence? What is the distribution of occurrences of bits 0 and 1 in the modified sequence? What is the expected number of input bits in order to generate an output bit probability of OD: (0.5-P) probability of o1: (0.5-P) (0.6+P) probability of 10: (0.5+p) (0.5-p) probability of 11: (0.5tp)2 b. Since of pair is replaced with 0 and 10 pair with 1, and 01 and 10 have same probability, so the distribution are 0: 0-25-p2 since each pair consists of 2 bits the expected number P(01)+P(10) is puostpuois (0.5-P) 10-5+P) + (0.5-P) 10-5+P) 4. Consider the RSA encryption system. Let $n = 29 \times 43 = 1247$ and e = 17. a. What is the private key d? b. What is the plaintext of ciphertext C=1123? $h = 29 \times 43 = 1247$ 10(h) = (29-1)(43-1) = 11761176 a. d= e mod \$(h) = 17 mod 1176 = 761 17n=11761c+1 (n=761. k=11) 3 - 5 346 1176-415=761 6 -415 b. $M = [123]^{761} \mod [24] = [104]$ 5. Consider RSA encryption with n=136127. Assume that Alice has key pair $PU_A = (17, n)$ and $PR_A = (79553, n)$. Alice knows that Bob uses the same n to set up his key pair and $PU_B = (31, n)$. Alice intercepts a ciphertext C=3761 which is sent to Bob by Carol. Show that Alice can decrypt C without factoring n. k \$ (n) = 7.9583 x17-1 = 18 52 400 kø (n) = ead p-1 dr = ee nod kpan) 31 mod 1352 400 = 1134271 modn 1352400 Mer (Køani) modn 31 43625 1 -43625 2 43626 KIK - M modn 3 -218129 mod 136127 = 33745

~ M