Dysarthria Classification

Vo Tran Hien - 23125056 Pham Minh Duc - 20125080 Vu Mai Thuy - 23125046 Nguyen Dang Huu Thinh - 20125071

Univerisy of Science, Viet Nam National Univerisy, HCMC Institution of Information Technology

MÊS / ANO

Dysarthria and Non-Dysarthria Speech Classification

- 1 Introduction
 Dysarthria
 MFCC
- 2 Related Works
- 3 Experiments
 Dataset
 Baseline
- 4 Exemplos com texto
- 5 Exemplos com equações e imagens
- 6 Exemplos com código
- Conclusão

What is Dysarthria?

- **Dysarthria** is a motor speech disorder caused by damage to the nervous system.
- It affects the muscles that control speech, leading to slurred or unclear speech.
- It does not impact intelligence but can create significant communication challenges.

Symptoms of Dysarthria

- Slurred speech, weak voice, or inability to control volume.
- Speaking too fast or too slow, difficulty regulating speech rhythm.
- Difficulty swallowing, increased risk of choking while eating.

Prevalence of Dysarthria

- Around 25% of stroke patients exhibit symptoms of Dysarthria.
- In Parkinson's disease, about 70% 80% of patients experience speech disorders.

Patient Group	Prevalence of Dysarthria
Stroke	25%
Parkinson's disease	70% - 80%
Traumatic brain injury	50%
ALS (Amyotrophic Lateral Sclerosis)	90%
Cerebral palsy	50% - 60%

Table: Prevalence of Dysarthria by Patient Group

Geographical Distribution of Dysarthria

- Dysarthria affects approximately 2% 3% of the global population.
- In developed countries (USA, Canada, Europe), Dysarthria is more common due to longer life expectancy and a higher incidence of neurodegenerative diseases.
- In developing countries, Dysarthria is underdiagnosed due to limited healthcare infrastructure.

Diagnosis Methods

- Speech assessment and neurological examination.
- MRI and CT scan to identify brain damage.

What is MFCC?

- MFCC (Mel-frequency Cepstral Coefficients) is a set of feature coefficients extracted from audio signals.
- Based on the Mel scale, mimicking how the human ear perceives sound frequencies.
- Applications: Speech recognition, audio classification, emotion analysis.

MFCC Computation Process - Overview

- The MFCC extraction process consists of 7 main steps.
- Goal: Convert audio signals into compact feature coefficients.
- Steps are performed sequentially on each signal frame.

- **1 Pre-emphasis:** Enhances high frequencies to balance the spectrum. Formula: y(n) = x(n) 0.97x(n-1).
- **2 Framing:** Divides the signal into short frames (20-40ms) with overlap.
- **3 Windowing:** Applies a Hamming window to reduce edge effects.
- Fast Fourier Transform (FFT): Converts the signal to the frequency domain, yielding the power spectrum.

MFCC Computation Process

5 Mel Filterbank: Applies triangular filters on the Mel scale:

$$m(f) = 2595 \log_{10}(1 + \frac{f}{700})$$

_ :

6 Logarithm: Compresses filterbank energies with

$$\log S_m$$

•

Discrete Cosine Transform (DCT): Produces MFCC coefficients, typically keeping 12-13. Formula: $(\pi n(m-0.5))$

$$c_n = \sum \log S_m \cos \left(\frac{\pi n(m-0.5)}{M} \right).$$

Total Participants: 13

- Female Without Dysarthria: 2 participants
- Female With Dysarthria: 3 participants
- Male Without Dysarthria: 4 participants
- Male With Dysarthria: 4 participants

After excluding participants with no valid .wav files, the dataset effectively contains **11 participants**.

Female Without Dysarthria: 2 participants

- FC01: 1 session
 - FC03: 3 sessions (1 missing .wav files, effectively 2 sessions)

Female With Dysarthria: 3 participants

- F01: 1 session
- F03: 3 sessions
- F04: 1 session (no .wav files available)

Male Without Dysarthria: 4 participants

- MC01: 1 session (no .wav files)
- MC02: 1 session
- MC03: 1 session (missing .txt, but .wav available)
- MC04: 2 sessions

Male With Dysarthria: 4 participants

- M01: 3 sessions
- M03: 2 sessions
- M04: 2 sessions
- M05: 1 session

New Dataset Overview

Total Participants: 15 **Recording Method:** Array Microphones and Head Microphones The dataset is divided into:

- Female Without Dysarthria: 3 participants
- Female With Dysarthria: 3 participants
- Male Without Dysarthria: 4 participants
- Male With Dysarthria: 5 participants

Female Without Dysarthria: 3 participants

- FC01: (Array Mic: 1 session, Head Mic: 1 session)
- FC02: (Array Mic: 2 sessions, Head Mic: 1 session)
- FC03: (Array Mic: 3 sessions, Head Mic: 3 sessions)

Female With Dysarthria: 3 participants

- F01: (Array Mic: 1 session, Head Mic: 1 session)
- F03: (Array Mic: 3 sessions, Head Mic: 3 sessions)
- F04: (Array Mic: 2 sessions, Head Mic: 1 session)

Male Without Dysarthria: 4 participants

- MC01: (Array Mic: 3 sessions, Head Mic: 3 sessions)
- MC02: (Array Mic: 2 sessions, Head Mic: 2 sessions)
- MC03: (Array Mic: 2 sessions, Head Mic: 2 sessions)
- MC04: (Array Mic: 2 sessions, Head Mic: 1 session)

Male With Dysarthria: 5 participants

- M01: (Array Mic: 2 sessions, Head Mic: 2 sessions)
- M02: (Array Mic: 2 sessions, Head Mic: 2 sessions)
- M03: (Array Mic: 1 session, Head Mic: 1 session)
- M04: (Array Mic: 2 sessions, Head Mic: 1 session)
- M05: (Array Mic: 1 session, Head Mic: 2 sessions)

Introduction Related Works **Experiments** Exemplos com texto coopo com equações e imagens Exemplos com códig

Baseline

Frame Title

Texto corrido

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nullam ipsum velit, cursus quis ligula eu, malesuada aliquet massa. Quisque non convallis felis, a auctor eros. Etiam sit amet turpis a sapien pulvinar malesuada quis quis nisi. Quisque scelerisque volutpat ligula vel mollis. Nam sit amet tristique erat, sit amet cursus mi.

Texto em tópicos numerados

Lorem ipsum dolor sit amet, consectetur adipiscing elit:

- 1 Lorem ipsum dolor sit amet.
- 2 Lorem ipsum dolor sit amet.

Texto em tópicos

Lorem ipsum dolor sit amet, consectetur adipiscing elit:

- Lorem ipsum dolor sit amet.
- Lorem ipsum dolor sit amet.

Uma imagem

Figure: Legenda da imagem

Duas imagens

(a) Legenda 1

(b) Legenda 2

Equações

Equações de Navier-Stokes Forma expandida (3D):

$$\rho\left(\frac{\partial u}{\partial t} + u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial y} + w\frac{\partial u}{\partial z}\right) = -\frac{\partial p}{\partial x} + \mu\left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2}\right) + f_x$$

$$\rho\left(\frac{\partial v}{\partial t} + u\frac{\partial v}{\partial x} + v\frac{\partial v}{\partial y} + w\frac{\partial v}{\partial z}\right) = -\frac{\partial p}{\partial y} + \mu\left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} + \frac{\partial^2 v}{\partial z^2}\right) + f_y$$

$$\rho\left(\frac{\partial w}{\partial t} + u\frac{\partial w}{\partial x} + v\frac{\partial w}{\partial y} + w\frac{\partial w}{\partial z}\right) = -\frac{\partial p}{\partial z} + \mu\left(\frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial y^2} + \frac{\partial^2 w}{\partial z^2}\right) + f_z$$

onde $\mathbf{v} = (u, v, w)$ é o campo de velocidade, p é a pressão, ρ é a densidade, μ é a viscosidade dinâmica e \mathbf{f} representa forças externas.

Python

```
def calcular_dobro(x):
    """Retorna o dobro do número"""
    return 2 * x

# Testando a função
numero = 5
resultado = calcular_dobro(numero)
print(f"O dobro de {numero} é {resultado}")
```

C

```
#include <stdio.h>

int main() {
   int numero = 5;
   int dobro = 2 * numero;

printf("O dobro de %d eh %d\n", numero, dobro);
   return 0;
}
```

C++

```
1 #include <iostream>
2 using namespace std;
4 int main() {
      int numero = 5;
      int dobro = 2 * numero;
6
     cout << "O dobro de " << numero;
8
     cout << " eh " << dobro << endl;
     return 0;
11 }
```

```
# Função para calcular o dobro
calcular_dobro <- function(x) {
   return(2 * x)
}

# Testando a função
numero <- 5
resultado <- calcular_dobro(numero)
print(paste("O dobro de", numero, "é", resultado))</pre>
```

Java

Referências

- [Lor63] Edward N. Lorenz. "Deterministic Nonperiodic Flow". In: Journal of the Atmospheric Sciences 20.2 (1963), pp. 130–141.
- [Rud76] Walter Rudin. *Principles of Mathematical Analysis*. 3rd ed. New York: McGraw-Hill, 1976. ISBN: 007054235X.
- [Tao06] Terence Tao. "Nonlinear Evolution Equations". Ph.D. Thesis. Princeton, New Jersey: Princeton University, 2006.

Fim da apresentação!