山东大学<u>计算机科学与技术</u>学院 大数据分析与实践 课程实验报告

学号:姓名: 于佳杭班级: 23 数据实验题目:实验日期:2025.9.13

实验步骤与内容:

1. 库的导入与数据的读入

Python

import pandas as pd
from pandas importDataFrame
importnumpyas np

primitive_data=pd.read_csv("data-sample-and-filter.csv")
primitive_data

读入结果如下图:

	from_dev	from_port	from_city	from_level	to_dev	to_port	to_city	to_level	traffic	bandwidth
0	47.0	71.0	通辽	一般节点	1756.0	585.0	北京	网络核心	3.677962e+10	1.000000e+11
1	47.0	74.0	通辽	一般节点	1756.0	776.0	北京	网络核心	3.660713e+10	1.000000e+11
2	47.0	240.0	通辽	一般节点	1756.0	802.0	北京	网络核心	3.603489e+10	1.000000e+11
3	47.0	241.0	通辽	一般节点	1997.0	464.0	天津	网络核心	4.233391e+10	1.000000e+11
4	47.0	242.0	通辽	一般节点	474.0	672.0	哈尔滨	一般节点	1.130008e+10	1.000000e+11
	***	•••	***	***						***
1142	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
1143	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
1144	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
1145	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
1146	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN

1147 rows × 10 columns

可以看到数据底部有较多的空行

2. 删除多余的空行并进行过滤

采用 dropna 方法并指定参数为 any 删除多余的空行

Python

primitive_data_1=primitive_data.dropna(how='any')
primitive_data_1

接下来过滤得到 traffic 不等于 0 且 from level=一般节点的数据

```
Python
data_before_filter=primitive_data_1
data_after_filter_1=data_before_filter.loc[data_before_filter["tra
ffic"]!=0]
data_after_filter_2=data_after_filter_1.loc[data_after_filter_1["f
rom_level"]=='一般节点']
data_after_filter_2
```

3. 对数据进行抽样

采取不同的采样方式采取 50 个样本并比较采样结果

• 加权采样: to level 的值为一般节点与网络核心的权重之比为 1:5

```
Python
data_before_sample=data_after_filter_2
columns=data_before_sample.columns
weight_sample=data_before_sample.copy()
weight_sample['weight']=0
foriinweight_sample.index:
if weight_sample.at[i,'to_level']=='一般节点':
weight=1
else:
```

```
weight=5
weight_sample.at[i,'weight']=weight
weight_sample_finish=weight_sample.sample(n=50,weights='weight')
#data_before_sample=data_before_sample[columns]
weight_sample_finish=weight_sample[columns]
weight_sample_finish
```

	from_dev	from_port	from_city	from_level	to_dev	to_port	to_city	to_level	traffic	bandwidth
674	591.0	586.0	绥化	一般节点	47.0	243.0	通辽	一般节点	2.310000e+11	1.000000e+11
51	96.0	156.0	呼和浩特	一般节点	3227.0	103.0	济南	网络核心	3.504423e+10	1.000000e+11
16	47.0	427.0	通辽	一般节点	1997.0	213.0	天津	网络核心	4.349038e+10	1.000000e+11
309	96.0	99.0	呼和浩特	一般节点	2360.0	76.0	太原	网络核心	1.810000e+11	1.000000e+11
587	96.0	141.0	呼和浩特	一般节点	3213.0	246.0	重庆	网络核心	9.794152e+10	1.000000e+11
277	47.0	240.0	通辽	一般节点	3213.0	246.0	重庆	网络核心	9.794152e+10	1.000000e+11
365	180.0	260.0	呼和浩特	一般节点	1756.0	788.0	北京	网络核心	1.280000e+11	1.000000e+11
660	63.0	224.0	通辽	一般节点	2701.0	71.0	大连	网络核心	9.786992e+09	1.000000e+11
286	47.0	259.0	通辽	一般节点	4561.0	1087.0	成都	网络核心	1.140000e+11	1.000000e+11
349	180.0	52.0	呼和浩特	一般节点	3227.0	449.0	济南	网络核心	6.987232e+10	1.000000e+11
44	96.0	127.0	呼和浩特	一般节点	1756.0	1027.0	北京	网络核心	8.917187e+10	1.000000e+11
494	47.0	252.0	通辽	一般节点	1536.0	86.0	鄂尔多斯	网络核心	4.103025e+10	1.000000e+11
452	787.0	325.0	玉溪	一般节点	2701.0	181.0	大连	网络核心	9.501373e+09	1.000000e+11
1107	36036.0	52.0	长春	一般节点	1129.0	171.0	上海	网络核心	2.760267e+10	1.000000e+11
172	787.0	63.0	玉溪	一般节点	1536.0	1882.0	广州	网络核心	1.040000e+11	1.000000e+11

• 随机抽样

Python

```
random_sample=data_before_sample
random_sample_finish=random_sample.sample(n=50)
random_sample_finish=random_sample_finish[columns]
random_sample_finish
```

	from_dev	from_port	from_city	from_level	to_dev	to_port	to_city	to_level	traffic	bandwidth
148	591.0	558.0	绥化	一般节点	36036.0	499.0	长春	一般节点	6.475345e+10	1.000000e+11
533	47.0	252.0	通辽	一般节点	1536.0	585.0	广州	网络核心	6.885369e+10	1.000000e+11
57	96.0	379.0	呼和浩特	一般节点	1756.0	1187.0	北京	网络核心	9.186782e+10	1.000000e+11
346	180.0	38.0	呼和浩特	一般节点	2549.0	1487.0	沈阳	网络核心	1.010000e+11	1.000000e+11
172	787.0	63.0	玉溪	一般节点	1536.0	1882.0	广州	网络核心	1.040000e+11	1.000000e+11
127	474.0	1399.0	哈尔滨	一般节点	4360.0	468.0	南京	一般节点	2.294405e+10	1.000000e+11
497	47.0	260.0	通辽	一般节点	36422.0	350.0	天津	网络核心	4.117194e+10	1.000000e+11
412	591.0	23.0	绥化	一般节点	2701.0	71.0	大连	网络核心	9.786992e+09	1.000000e+11
414	591.0	29.0	绥化	一般节点	235.0	1649.0	北京	网络核心	4.744260e+10	1.000000e+11
281	47.0	249.0	通辽	一般节点	1536.0	1882.0	广州	网络核心	1.040000e+11	1.000000e+11
775	96.0	134.0	呼和浩特	一般节点	180.0	98.0	呼和浩特	一般节点	4.473394e+10	1.000000e+11
313	96.0	111.0	呼和浩特	一般节点	2360.0	197.0	太原	网络核心	1.800000e+11	1.000000e+11
161	591.0	1266.0	绥化	一般节点	235.0	1950.0	北京	网络核心	5.840438e+10	1.000000e+11
7	47.0	250.0	通辽	一般节点	2473.0	762.0	吉林	一般节点	7.720147e+09	1.000000e+11

• 分层抽样:根据 to_level 的值进行分层采样根据比例一般节点抽 17 个,网络核心抽 33 个

```
Python
```

ybjd=data_before_sample.loc[data_before_sample['to_level']=='一般节点']

wlhx=data_before_sample.loc[data_before_sample['to_level']=='网络核心']

after_sample=pd.concat([ybjd.sample(17),wlhx.sample(33)])
after_sample

• 还可以自行实现系统抽样,整群抽样等方法

整群抽样:

```
[11]: def cluster_sampling(df, cluster_col, num_clusters):
       对DataFrame进行整群抽样
        rparam df: 数据框

:param cluster_col: 用于分群的列名

:param num_clusters: 要抽取的群数量

:return: 抽样结果
        # 获取所有唯一的群标签
       clusters = df[cluster_col].unique()
       if num clusters > len(clusters)
           raise ValueError("抽取的群数量不能超过总群数")
       chosen_clusters = np.random.choice(clusters, size=num_clusters, replace=False)
       # 抽取所有属于这些群的样本
       return df[df[cluster_col].isin(chosen_clusters)]
     # 执行整群抽样,断机抽取3个城市的全部数据
     cluster_sample_finish = cluster_sampling(data_before_sample, 'from_city', 3)
cluster_sample_finish
       from_dev from_port from_city from_level to_dev to_port to_city to_level
                                                                traffic bandwidth
                   71 通辽 一般节点 1756 585
                                                   北京 网络核心 49636052613 1.000000e+11
    1 47 74 通辽 一般节点 1756 776 北京 网络核心 50056871412 1.000000e+11
                 240 通辽 一般节点 1756 802 北京 网络核心 49453581081 1.000000e+11
    3 47 241 通辽 一般节点 1997 464 天津 网络核心 49733361585 1.000000e+11
             47 242 通辽 一般节点 474 672 哈尔滨 一般节点 50492573662 1.000000e+11
    5 47 243 通辽 一般节点 96 124 呼和浩特 一般节点 49942713747 1.000000e+11
      6
             47 249 通辽 一般节点 1997 85 天津 网络核心 50499586948 1.000000e+11
    7 47 250 通辽 一般节点 2473 762 吉林 一般节点 49108721007 1.000000e+11
            47 251 通辽 一般节点 2549 839 沈阳 网络核心 50755299504 1.000000e+11
    9 47 252 通辽 一般节点 96 134 呼和浩特 一般节点 50256475808 1.000000e+11
            47 258 通辽 一般节点 1997 122
                                                  天津 网络核心 49594312223 1.000000e+11
```

系统抽样:

```
[10]: def systematic_sampling(df, n):
              c == 0:
raise ValueError("样本量过大,无法进行系统抽样")
          # 生成始序索引
indices = np.arange(start_index, total_rows, k)
         return df.iloc[indices]
         tematic_sample_finish = systematic_sampling(data_before_sample.reset_index(drop=True), 50)
tematic_sample_finish
[10]: from_dev from_port from_city from_level to_dev to_port to_city to_level

4 47 242 端订 — 前节点 474 672 除尔泽 — 形节点
                                                       672 哈尔滨 一般节点 50492573662 1.000000e+11
     15 47 425 通辽 一般节点 1756 1018 北京 网络核心 50796899329 1.000000e+11

    26
    63
    74
    瀬江
    一般符点
    2701
    181
    大连
    网络核心
    5054636480
    1,00000e+11

    37
    96
    108
    呼和浩特
    一般特点
    2360
    236
    太原
    网络核心
    48210462086
    1,00000e+11

                        141 呼和浩特 一般节点 474
                                                       422 哈尔滨 一般节点 49429192047 1.000000e+11
      59 96 391 呼和浩特 一般节点 47 417 通辽 一般节点 51570663870 1.000000e+11
                         36 呼和浩特 一般节点 2194 406
                                                               唐山 网络核心 50973267302 1.000000e+11
      81 180 202 呼和浩特 一般节点 36272 247 太原 网络核心 49867223584 1.000000e+11
                       272 呼和浩特 一般节点 3443
                                                              青岛 网络核心 52854391127 1.000000e+11
      103 474 614 哈尔滨 一般节点 3227 724 济南 网络核心 51504522549 1.000000e+11
                      1238 哈尔滨 一般节点 1756 1008
                                                               北京 网络核心 51270474683 1.000000e+11
                               绥化 一般节点 36036
                                                               长春 一般节点 48627355195 1,000000e+11
      147 591 586 绥化 一般节点 180 192 呼和浩特 一般节点 49061517661 1.000000e+11
            591 1290 绥化 — 樹节点 2194 180 唐山 网络核心 49788461056 1.000000e+11
787 324 玉溪 — 劍节点 1536 1941 广州 网络核心 48712502205 1.000000e+11
```

结论分析与体会:

本次实验让我深刻体会到,在数据预处理的基础上,必须根据具体的分析目标来选择最恰当的抽样方法,才能确保分析结果的有效性和针对性。