Departamento de Economia Universidade de São Paulo EAE-1301 - Lista 5

Prof.: Pedro Forquesato 2º semestre de 2025

Instruções: Os workshops são resolvidos em grupo **durante a aula** com a ajuda dos colegas e do docente, mas cada aluno deve *escrever e entregar a lista separadamente*. Constitui **violações do código de ética** da disciplina:

- Olhar as resoluções escritas dos colegas;
- Escrever na lista dos colegas ou trocar anotações de respostas;
- Trazer para a aula qualquer tipo de resoluções dos exercícios do workshop.

Workshop 5. Jogos bayesianos

- 1. (O paradoxo bizantino) Os gregos do Império Bizantino (a.k.a. Império Romano do Oriente) eram muito cuidadosos, tanto que tinham dificuldade em coordenar-se para qualquer coisa. Em uma história, dois generais bizantinos estão em morros próximos cercando um inimigo no vale. Dada a sua vantagem estratégica ("I have the high ground!"), eles podem vencer os inimigos, mesmo estes sendo muito mais numerosos, mas apenas se atacarem ao mesmo tempo. Se atacarem sozinhos serão dizimados pelo exército numeroso no vale. O primeiro general então manda um mensageiro para avisar o segundo do horário do ataque. Algum tempo depois, o mensageiro volta dizendo que a mensagem foi passada com sucesso. Ainda assim, chegada a hora da batalha nenhum dos generais avança. Explique.
- 2. (Arrumando briga com um desconhecido) Em uma festa universitária, Ana, uma aluna de teoria dos jogos, esbarra em uma desconhecida. Percebendo que a desconhecida é menor que ela, Ana sabe que venceria certamente uma briga, a não ser que a desconhecida seja especialista em alguma arte marcial (como BJJ), o que não tem como saber apenas olhando (mas a desconhecida é claro sabe se é especialista ou não). O prior de Ana de que a desconhecida saiba lutar é α.

Irritadas, ambas as mulheres devem decidir pedir desculpas ou brigar, e se qualquer uma pedir desculpas o seu payoff é 0 (independentemente da habilidade de luta da desconhecida). Por outro lado, se alguma decidir brigar e a outra jogadora pedir desculpas, seu payoff é 1. Já se ambas decidirem lutar, o resultado depende da habilidade da adversária: se ela não souber jiu-jitsu, Ana vence a briga, com payoffs (1,-1), caso contrário ela perde, com payoffs (-1,1).

Descreva o jogo de informação incompleta: jogadores, tipos, conjuntos de informação, estratégias e funções de *payoff*. Transforme em um jogo em forma extensiva de informação imperfeita (usando o método de Harsanyi) e encontre o EN do jogo se $\alpha < 1/2$ e se $\alpha > 1/2$.

- 3. (Seleção adversa) Duas crianças são dadas envelopes vermelhos com um valor inteiro entre 1 e 10. Esse valor é definido aleatoriamente (equiprováveis) e independentemente entre as duas. Elas olham o valor do seu pacote e decidem se querem trocar ou não. Se ambas decidem trocar, então a troca é realizada, caso contrário ambas ficam com os seus pacotes iniciais.
 - Descreva o jogo de informação incompleta: jogadores, tipos, conjuntos de informação, estratégias e funções de *payoff*. Caracterize os equilíbrios de Nash bayesianos do jogo.
- 4. (Mais informação pode ser ruim) Em um problema de decisão individual, mais informação nunca pode ser ruim: o agente (se estritamente racional, é verdade) pode sempre escolher ignorar a informação. Em relações estratégicas isso nem sempre é verdade. Considere o jogo abaixo em que ambos os jogadores estão incertos sobre se o estado da natureza é ω_1 ou ω_2 , e faça $\epsilon = \frac{1}{3}$.
 - (a) Qual é o único equilíbrio de Nash bayesiano desse jogo?
 - (b) Agora imagine que o jogador 2 sabe o estado da natureza (e isso é conhecimento comum). Qual é o único ENB desse novo jogo?
 - (c) É melhor para o jogador 2 saber o estado da natureza ou não? Interprete.

- 5. (Leilões com preço de reserva) Dois jogadores com valoração para um bem de 0, 1 ou 2 (cada situação com probabilidade igual), que eles sabem qual é, mas é desconhecida para o outro participante, participam de um leilão de segundo preço (como na primeira lista do curso). A diferença aqui (fora as valorações desconhecidas, já que na primeira lista era conhecimento comum) é que o leiloeiro pode definir um valor de reserva r. Se apenas um bid está acima do valor de reserva, aquele participante vence e paga r, se ambos proporem menos que r ninguém ganha e o bem é destruído.
 - (a) Descreva o jogo de informação incompleta: jogadores, tipos, conjuntos de informação, estratégias e funções de *payoff*. Transforme em um jogo em forma extensiva de informação imperfeita (usando o método de Harsanyi).

- (b) Qual é a receita esperada do leiloeiro no ENB quando r=0? Ainda é fracamente dominante apostar a sua valoração (como no caso de informação completa da lista 1)?
- (c) E quando r = 1, qual é a receita esperada do leiloeiro?
- 6. (A maldição do vencedor) Os exemplos que vimos até agora de leilões eram todos em que cada participante tinha uma valoração própria para o bem sendo leiloado, o que chamamos de leilões de valores privados. Mas frequentemente o item sendo leiloado tem um valor comum, como um poço de petróleo, um ativo qualquer ou uma concessão pública, e diferentes agentes têm sinais privados sobre o valor desse bem.

Um poço de petróleo vale 20, 30 ou 40 (bilhões). A probabilidade de ser o valor médio é 1/2, e o dos extremos 1/4 cada. Cada petroleira tem os seus estudos geológicos, que dão um sinal baixo ou alto para a rentabilidade do poço: se o poço vale pouco, o sinal sempre é baixo e se vale muito o sinal é alto, mas no caso médio o sinal pode ser ambos com probabilidade igual. O poço é leiloado em um leilão de segundo preço.

- (a) Descreva o jogo de informação incompleta: jogadores, tipos, conjuntos de informação, estratégias e funções de *payoff*. Transforme em um jogo em forma extensiva de informação imperfeita (usando o método de Harsanyi).
- (b) Alguma petroleira propor a sua rentabilidade esperada é uma estratégia boa? Explique.
- (c) Ache o ENB do leilão de segundo preço com valor comum.
- 7. (Incerteza sobre o que o oponente sabe) Em jogos de informação incompleta, a incompletude informacional pode ser não apenas sobre as características do jogo, mas também sobre o que o outro sabe das características do jogo. Um exemplo está na figura abaixo, que representa os possíveis estados da natureza $(\alpha, \beta \in \gamma)$, assim como os conjuntos informacionais de cada jogador.

(a) O que cada jogador sabe e não sabe sobre as características do jogo? Escreva esse jogo em forma extensiva de informação imperfeita (a la Harsanyi.

- (b) Mostre que o jogo abaixo tem apenas um equilíbrio bayesiano (e encontre-o).
- 8. (Batalha dos sexos entre ansiosos) Vimos em aula o caso da batalha dos sexos em que Ana (jogador 1) estava incerta se Bernardo (jogador 2) gostaria de encontrá-la ou não. Quais são os equilíbrios de Nash bayesianos do jogo abaixo em que ambos os jogadores estão ansiosos sobre a sua relação?

9. **(Poker)** Sendo um jogo de soma-zero com informação incompleta, o Poker certamente pode ser analisado pela teoria dos jogos. Infelizmente, o tamanho do jogo (13 possibilidades de cartas, com centenas de combinações) faz ele ser demasiado intratável para uma lista de exercícios de um curso de graduação. Analisemos então uma versão extremamente simplificada do jogo inventada pelo matemático (e teorista de jogos) Harold Kuhn.¹ Nesse jogo, o baralho contém apenas o rei K, a dama Q e o valete J. Cada jogador aposta 1 real (ante), e então pega a sua carta. Sabendo as suas cartas, o jogador 1 pode dar check ou raise. Se ele der check, o jogador 2 precisa dar call e ganha quem tiver a melhor carta. Se ele der raise, então o jogador 2 decide se da call (e vemos quem tem a maior carta) ou fold, e o jogador 1 ganha.

Descreva o jogo extensivo de informação imperfeita: jogadores, tipos, forma extensiva, conjuntos de informação, estratégias e funções de *payoff*. Encontre o único equilíbrio de Nash bayesiano do jogo.

¹Alunos que já fizeram microeconomia I devem se lembrar dele pelas condições de Karush-Kuhn-Tuker de otimização restrita.

10. (Usar ou não usar a informação) Considere um jogo de soma-zero que pode ser dado por uma das duas matrizes de estágio abaixo (cada uma com probabilidade inicial de 1/2).

O jogador 1 sabe qual é a matriz correta, mas o jogador 2 não sabe. O jogo é repetido por 100 períodos (o estado da natureza é definido antes do começo do jogo e nunca muda), e os *payoffs* são pagos só no final do jogo.

$$G^1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \qquad G^2 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}.$$

- (a) Qual é o melhor *payoff* que o jogador informado (i.e., 1) pode garantir usando uma estratégia separadora, i.e., que em equilíbrio o jogador 2 imediatamente descobre o estado da natureza?
- (b) E se o jogador 1 escolher uma estratégia que não informe ao jogador 2 o estado da natureza (pooling)? Interprete.
- (c) E se substituirmos 1 por -1 nas matrizes de *payoff*, o resultado acima se mantém? Explique.
- 11. (Muitos equilíbrios) Sabemos (pelo teorema do índice) que jogos finitos de informação completa com matriz de *payoffs* não degenerada possuem um número finito (e ímpar) de equilíbrios de Nash. Para jogos de informação incompleta, entretanto, isso não é mais verdade.

Considere por exemplo o jogo abaixo, em que o jogador I sabe se o jogo correto é o da esquerda ou da direita (abaixo), mas o jogador II não sabe, dando probabilidade 1/2 para cada um.

		Player II				Play	er II
		L	R			L	R
Player I	T_1	1, 0	0, 2		T_2	0, 2	1, 1
	$B_1 = 0, 3 = 1, 0$	Player I	B_2	1, 0	0, 2		

Caracterize os infinitos equilíbrios de Nash bayesianos do jogo.

12. (Incerteza sobre o que o oponente pode fazer) Em jogos de informação incompleta, a incompletude informacional também pode incluir as ações do oponente (mas não a do próprio jogador, é claro). Considere o jogo entre Harry e William, em que Harry tem informação completa sobre o jogo, mas William não sabe se o estado do jogo é o da esquerda ou da direita, isto é, se Harry tem 2 ou 3 ações.

- (a) Escreva o jogo de informação incompleta em forma extensiva como um jogo de informação imperfeita do modo proposto por Harsanyi.
- (b) Se a probabilidade subjetiva de cada estado da natureza for 1/2 para William, ache os equilíbrios de Nash bayesianos do jogo.

						William		
		Wil	liam			t	b	
		t	b		T	1, 1	1, 0	
Harry	T	1, 0	0, 2	Harry	\boldsymbol{C}	0, 2	1, 1	
	В	0, 3	1, 0		В	1, 0	0, 2	

13. (Incerteza sobre o número de oponentes) Outro caso possível é o que um jogador não sabe nem quantos jogadores estão participando do jogo. Nessa situação, com probabilidade 1/2 o jogo é jogado por André (jogador 1) e Beatriz (jogador 2), e com probabilidade 1/2 com André, Beatriz e Claudia (jogador 3). Os Beatriz e Claudia sabem qual é o caso, mas André não sabe se a sua interação estratégica envolve apenas uma das meninas ou ambas. Se o jogo tem 2 jogadores, ele é da forma abaixo:

	L	R
T	0, 0	2, 1
В	2, 1	0, 0

Já se tem 3 jogadores, o jogo tem a seguinte forma normal:

	V	V		E		
	L	R		L	R	
T	1, 2, 4	0, 0, 0	T	2, 1, 3	0, 0, 0	
B	0, 0, 0	2, 1, 3	В	0, 0, 0	1, 2, 4	

(a) Quantos estados da natureza há nesse jogo? Quantas estratégias puras cada jogador tem? Escreva o jogo de informação incompleta na forma de jogo de informação imperfeita sugerida por Harsanyi.

- (b) Ache dois equilíbrios de Nash bayesianos em estratégias puras.
- (c) Ache um ENB adicional identificando o vetor de estratégias tal que todos os jogadores estão indiferentes entre as suas duas ações.
- 14. (Crenças inconsistentes) O modelo de jogo de informação incompleta de Harsanyi requer que as crenças subjetivas dos jogadores sobre os estados da natureza sejam consistentes entre si (colocado de outra forma, que *os priors sejam comuns* entre os jogadores).

Quase todos os modelos estudados na prática seguem a prescrição de Harsanyi, pois esses modelos podem ser escritos na forma extensiva com informação imperfeita e na forma normal. Mas é importante ressaltar que o conceito de equilíbrio bayesiano ainda vale mesmo para *priors* inconsistentes dos jogadores!

Considere um jogo de informação incompleta com 3 estados da natureza dados pelas formas normais abaixo.

No estado da natureza s_3 , ambos os jogadores sabem que estão em s_3 . No estado da natureza s_1 , o jogador 1 não sabe se está em s_1 ou s_2 (probabilidade 1/2 cada), enquanto o jogador 2 sabe que está em s_1 . Agora, no estado s_2 , o jogador 1 ainda não sabe se está em s_1 ou s_2 , como acima, mas o jogador 2 ainda crê estar em s_1 !

Ache os equilíbrios de Nash bayesianos do jogo.

15. (Jogo do e-mail de Rubinstein) O jogo do e-mail foi inventado por Rubinstein em 1989 (quando mal existia e-mail!) e é uma versão em jogo de informação incompleta do paradoxo bizantino do exercício 1.

Dois jogadores buscam coordenar as suas ações em um perfil de ações que dá payoff elevado M. Infelizmente para eles, o estado do jogo pode ser s=1, quando querem coordenar em (A,A), e s=2, quando querem coordenar em (B,B). O jogador 1 observa sabe qual é o real estado da natureza, mas o jogador 2 não. (As duas formas do jogo estão descritas na figura abaixo.) Considere que L>M, por exemplo, L=10, M=5, e p<1/2.

		Play	er II			Player II		
		A	B			A	B	
Player I	A	M, M	1, -L	Player I	A	0, 0	0, -L	
	B	-L, 0	0, 0		В	-L, 1	M, M	
Tr.		C	1					

The state game for s = 1

The state game for s = 2

O jogador 1 então envia um e-mail para o jogador 2 avisando se s é 1 ou 2, mas é conhecimento comum que o e-mail, assim como as confirmações abaixo, falha com uma probabilidade ϵ (lembrem-se que isso é em 1980). Para tentar contornar isso, o sistema automaticamente manda uma confirmação de recebimento, tanto do e-mail original quanto das confirmações anteriores. Todo esse processo leva milésimos de segundo, e antes de escolher a sua estratégia cada um recebe um número T_i (bem alto) de e-mails e confirmações que foram enviados.

- (a) Escreva essa situação como um jogo de informação incompleta, em que o tipo de cada jogador é indexado pelo número de mensagens de e-mail que recebeu T_i .
- (b) Argumente que no único equilíbrio de Nash bayesiano no qual o jogador 1 joga A quando s=1, temos ambos os jogadores jogando A não importa qual seja o estado da natureza.
- (c) Como você jogaria se recebesse 100 e-mails de confirmação? Explique.