實驗四

B1121141 葉彥辰

B1121126 郭亮佑

B1121128 蘇昱嘉

(1) 請繪出圖 4-5 之實際系統方塊圖。

(1) 請繪出圖 4-5 之實際系統方塊圖。

P = P1 (不含A5的五倍)

(2) 完成表 4-1。

表4-1 P控制對速度控制系統之影響

衰減器 P1	輸入信號 E _a (v)	穩態響應值 ω _{t,ss} (v)	時間常數 TC	穩態誤差 e _{ss}
50%	5.39	3.94	0.195	0.45
100%	5.47	4.64	0.174	0.83

實驗4-1(P1=50% 模擬)

實驗4-1(P1=50% 驗證)

實驗4-1(P1=100% 模擬)

實驗4-1(P1=100% 驗證)

(1) 請繪出圖 4-6 之實際系統方塊圖。

P = 1 , I = P5 * 1/0.8(不含A5的五倍)

(2) 完成表 4-2。

表4-2 PI 控制對速度控制系統之影響

衰減器 P5	輸入信號 E _a (v)	穩態響應值 ω _{t,ss} (v)	時間常數 TC	穩態誤差 e _{ss}
50%	5.07	4.16	0.158	0.89
100%	5.07	4.66	0.164	0.41

實驗4-2 (50% 模擬)

實驗4-2 (50% 驗證)

實驗4-2 (100% 模擬)

實驗4-2 (100% 驗證)

(1) 請繪出圖 4-7 之實際系統方塊圖。

P = 1 ,D = P5 * 0.2 (不含A5的五倍)

(2) 完成表 4-3。

表 4-3 PD 控制對速度控制系統之影響

衰減器 P4	輸入信號 E _a (v)	穩態響應值 ω _{t,ss} (v)	時間常數 TC	穩態誤差 e _{ss}
10%	5.07	4.26	0.148	0.81
30%	5.07	4.18	0.154	0.89

實驗4-3 (10% 模擬)

實驗4-3 (10% 驗證)

實驗4-3 (30% 模擬)

實驗4-3 (30% 驗證)

(1) 請繪出圖 4-8 之實際系統方塊圖。

$$P = 1$$
 , $D = 0.2 * P4$, $I = P5 * 1/0.4$ (不含A5的五倍)

(2) 完成表 4-4 輸入步階(+5V), 調整 P4=10%、P5=50%。

表 4-4 PID 控制對速度控制系統之影響

衰減器	輸入信號	穩態響應值	時間常數	穩態誤差	穩態轉速
P4, P5	E _a (v)	ω _{t,ss} (v)	TC	e _{ss}	ω _{ss} (rpm)
10%, 50%	+5V	4.66	0.182	0.34	296

實驗4-4 (模擬)

實驗4-4 (驗證)

問題討論

1. 請敘述 PID 控制器之比例、積分、微分各有何功能?

比例器:提高 K_p 值,降低時間常數,讓系統快速達到穩態響應

積分器:控制步階訊號,消除穩態誤差

微分器:提高KD值,使時間常數變大,暫態響應變

慢

問題討論

2. 試述比例微分控制器之優點與缺點。

優點:響應快,誤差值小,能增加系統穩定性

缺點:容易產生穩態誤差

問題討論

3. 試數比例積分控制器之優點與缺點。

優點:能消除穩態誤差

缺點:控制慢,系統穩定性會變差