

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

GEOESTADÍSTICA APLICADA

Dr. Martín A. Díaz Viera (mdiazv@imp.mx)

Dr. Ricardo Casar González (<u>rcasar@imp.mx</u>)

Análisis Exploratorio de Datos

- ¿Qué es el AED?
- Importancia del AED
- Etapas de cualquier AED
- Herramientas del AED
- Estadística univariada
- Estadística bivariada
- Estadística multivariada
- Regresión lineal y mínimos cuadrados

¿Qué es el AED?

• Es un conjunto de técnicas estadísticas y gráficas que permiten establecer un buen entendimiento básico del comportamiento de los datos y de las relaciones existentes entre las variables que se estudian.

Importancia del AED

- El análisis exploratorio de datos (AED) es un paso previo e indispensable para la aplicación exitosa de cualquier método estadístico.
- En particular permite la detección de fallos en el diseño y toma de datos, el tratamiento y/o la evaluación de datos ausentes, la identificación de valores atípicos y la comprobación de los supuestos requeridos por parte de las técnicas geoestadísticas.

Etapas de un AED

- Realizar un examen gráfico de la naturaleza de las variables individuales y un análisis descriptivo numérico que permita cuantificar algunos aspectos gráficos de los datos.
- Realizar un examen gráfico de las relaciones entre las variables y un análisis descriptivo numérico que cuantifique el grado de interrelación existente entre ellas.
- Evaluar algunos supuestos básicos subyacentes a muchas técnicas estadísticas, por ejemplo, normalidad, linealidad y homocedasticidad.
- Identificar los posibles valores atípicos (*outliers*) y evaluar el impacto potencial que puedan ejercer en análisis estadísticos posteriores.
- Evaluar, el impacto potencial que pueden tener los datos ausentes (*missing*) sobre la representatividad de los datos analizados.

Herramientas del AED

• Estadística univariada

• Estadística bivariada

• Regresión lineal y mínimos cuadrados

Variable Aleatoria (V.A.): Es una variable \mathbb{Z} que puede tomar una serie de valores o realizaciones (z_i) cada una de las cuales tienen asociadas una probabilidad de ocurrencia (p_i) .

Ejemplo: Al lanzar un dado puede resultar {1, 2, 3, 4, 5 o 6} con una probabilidad de ocurrencia igual a 1/6.

Las probabilidades cumplen las condiciones:

(a)
$$p_i \ge 0$$
, $\forall i$ (b) $\sum_i p_i = 1$

Variable Aleatoria Discreta: cuando el número de ocurrencias es finito o contable, se conoce como variable aleatoria discreta.

Ejemplo: tipos de facies en un yacimiento.

Variable Aleatoria Continua: si el número de ocurrencias posibles es infinito.

Ejemplo: el valor de la porosidad de un medio se encuentra en el intervalo [0,100%].

Función de Distribución de Probabilidad (FDP)

La **FDP** caracteriza completamente a la **VA**.

Se define como: $F(z) = \Pr\{Z \le z\} \in [0,1]$

Su gráfica es el histograma acumulativo

CG2-Análisis Exploratorio de Datos

Función de Densidad de Probabilidad (fdp).

Se define como:

$$f(z) = \frac{dF(z)}{dz}$$

Su gráfica es el histograma.

Percentiles o cuantiles de una distribución.

• El percentil de una distribución F(z) es el valor z_p de la **V.A.** que corresponde a un valor p de probabilidad acumulada, es decir:

$$F(z_p) = p$$

• Si existe la función inversa se puede expresar como:

$$z_p = F^{-1}(p)$$

Algunos cuantiles de interés:

• Mediana, p=0.5

$$M = F^{-1}(0.5)$$

- Cuartiles
- (primer cuartil o inferior) p=0.25

$$z_{0.25} = F^{-1}(0.25)$$

• (tercer cuartil o superior) p=0.75

$$z_{0.75} = F^{-1}(0.75)$$

• Rango o intervalo intercuartil (IR)

$$[z_{0.25}, z_{0.75}]$$

Ejemplo de cuartiles y rango intercuartil

Valor esperado o esperanza matemática de una VA.

Es el valor más probable que puede tomar una VA. Se conoce también como valor medio o media. Se define como:

$$m = E[Z] = \int_{-\infty}^{\infty} z dF(z) = \int_{-\infty}^{\infty} z f(z) dz$$

Su estimador más común es el promedio de todas las observaciones de la variable Z

$$m^* = \frac{1}{N} \sum_{i=1}^{N} z_i$$

Este estimador es muy sensible a los valores atípicos (outliers)

• Momento de orden r de una FDP

$$m_r = E[Z^r] = \int_{-\infty}^{+\infty} z^r dF(z) = \int_{-\infty}^{+\infty} z^r f(z) dz$$

• Momento central de orden r de una FDP

$$\mu_r = E\left[\left(Z - m\right)^r\right] = \int_{-\infty}^{+\infty} \left(z - m\right)^r dF(z) = \int_{-\infty}^{+\infty} \left(z - m\right)^r f(z) dz$$

Varianza de una VA (2do momento central)

- Se define como $\sigma^2 = \text{Var}[Z] = E[(Z m)^2] \ge 0$
- Y caracteriza la dispersión de la distribución alrededor de la media.
- Su estimador es $\left(\sigma^2\right)^* = \frac{1}{N-1} \sum_{i=1}^{N} \left(z_i m\right)^2$

- Distribución Normal o Gaussiana.
- Esta distribución está completamente caracterizada por sus dos parámetros: media y varianza y se designa mediante $N(m, \sigma^2)$
- La fdp normal o Gaussina está dada por

$$g(z) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{1}{2}\left(\frac{z-m}{\sigma}\right)^2\right]$$

• Es simétrica respecto a la media

Ejemplos de distribuciones Gaussianas

- Distribución LogNormal
- Una VA positiva Y se dice que tiene una distribución lognormal si su logaritmo ln(Y) esta normalmente distribuido.

$$Y > 0 \rightarrow \log N(m, \sigma^2)$$
, $si \ X = \ln Y \rightarrow N(\alpha, \beta^2)$

• Muchas distribuciones experimentales en Ciencias de la Tierra tienden a ser asimétricas y la mayoría de las variables toman valores no negativos.

Ejemplos de distribuciones Lognormales

• Desviación Estándar

$$\sigma = \sqrt{\operatorname{Var}[Z]}$$

Coeficiente de variación (dispersión relativa)

$$CV = \sigma / m$$

• Coeficiente de simetría (medida de la simetría)

$$\alpha_1 = \frac{\mu_3}{\mu_2^{3/2}}$$

• Coeficiente de curtosis (medida del achatamiento)

$$\alpha_2 = \frac{\mu_4}{\mu_2^2} - 3$$

Simetría y Curtosis de una distribución

BOX PLOT

BOX PLOT

Histograma (Porosidad)

Histograma (Permeabilidad)

Transformación logarítmica de la Permeabilidad

Q-Q Plot de la Permeabilidad

Antes de transformar

Q-Q Plot de la Permeabilidad

Después de transformar

Con valores atípicos (outliers)

Con valores atípicos (outliers)

Sin valores atípicos (outliers)

Sin valores atípicos (outliers)

¿Serán valores atípicos?

¿Serán valores atípicos?

Después de eliminar los valores atípicos

- Hasta el momento, sólo hemos considerado a las variables aleatorias por separado, sin que exista ninguna interrelación entre éstas.
- En muchos campos de aplicación y en particular, en las Ciencias de la Tierra, es frecuentemente más importante conocer el patrón de dependencia que relaciona a una variable aleatoria *X* (porosidad) con otra variable aleatoria *Y* (permeabilidad).
- Por lo que le dedicaremos especial atención al análisis conjunto de dos variables aleatorias, conocido como análisis bivariado.

Función de Distribución de Probabilidad Bivariada

 La distribución de probabilidad conjunta de un par de variables aleatorias X y Y se define como:

$$F_{XY}(x,y) = \Pr\{X \le x, Y \le y\}$$

• En la práctica se estima mediante la proporción de pares de valores de X y Y que se encuentran por debajo del umbral x, y respectivamente.

- Diagrama de Dispersión (Scattergram)
- El equivalente bivariado del histograma es el diagrama de dispersión o scattergram, donde cada par (x_i, y_i) es un punto.
- El grado de dependencia entre dos variables aleatorias *X* y *Y* puede ser caracterizado por el diagrama de dispersión alrededor de cualquier línea de regresión.

- Covarianza
- Se define la covarianza de manera análoga a los momentos centrales univariados, como

$$Cov(X,Y) = \sigma_{XY} = E\{(X - m_X)(Y - m_Y)\}$$

Se calcula como

$$\sigma_{XY} = \frac{1}{N} \sum_{i=1}^{N} (x_i - m_X) (y_i - m_Y) = \frac{1}{N} \sum_{i=1}^{N} x_i y_i - m_X m_Y$$

- Semivariograma
- Es el momento de inercia del diagrama de dispersión con respecto a una línea con pendiente de 45° y se define como

$$\gamma_{XY} = \frac{1}{N} \sum_{i=1}^{N} [d_i]^2 = \frac{1}{2N} \sum_{i=1}^{N} [x_i - y_i]^2$$

Permite caracterizar la carencia de dependencia

Semivariograma

Mientras mayor sea el valor del semivariograma más dispersos estarán los valores en el diagrama de dispersión y menor será la dependencia entre las dos variables aleatorias.

- Coeficiente de correlación lineal de Pearson
- Se define como:

$$r_{XY} = \frac{\sigma_{XY}}{\sigma_X \sigma_Y} = \frac{Cov\{X, Y\}}{\sqrt{Var\{X\}Var\{Y\}}} \in [-1, 1]$$

- Caracteriza el grado de dependencia lineal entre dos variables aleatorias.
- Por ejemplo si Y=aX+b, entonces se cumple que:

$$r_{XY} = \begin{cases} 1, \ para \ a > 0 \\ -1, \ para \ a < 0 \end{cases}$$

Diagrama de Dispersión (Scattergram)

Coeficiente de correlación=0.716875

Diagrama de Dispersión (Scattergram)

Coeficiente de correlación=0.8819055

Después de transformar

Estadística multivariada

Existen muchas técnicas multivariadas:

- Análisis de Regresión
- Análisis de Conglomerados
- Análisis de Componentes Principales
- Análisis Factorial
- Análisis Discriminante, etc

Regresión lineal y Mínimos cuadrados

- La *regresión* trata de establecer relaciones funcionales entre variables aleatorias.
- En particular la *regresión lineal* consiste en establecer una relación descrita mediante una recta.
- Los *modelos de regresión* nos permiten hacer predicciones o pronósticos a partir del modelo establecido.
- El método que se emplea para estimar los parámetros del modelo de regresión es el de los *Mínimos Cuadrados*

- Dados N valores de dos v.a. X y Y.
 Suponemos que:
- 1. X es una variable independiente
- 2. Y depende de X en forma lineal Modelo lineal: $Y = \beta_0 + \beta_1 X$

Donde

$$y_i = \beta_0 + \beta_1 x_i + e_i, i=1,...,N$$

 β_0, β_1 – son los parámetros del modelo

 e_i – errores o residuos del modelo

Condiciones que deben cumplir los residuos

$$E\{e_i\} = 0$$
, (valor esperado cero)

$$Var\{e_i\} = \sigma_e^2$$
, (varianza constante)

$$Cov\{e_i, e_j\} = 0, \quad \forall i \neq j, \text{ (no correlacionados)}$$

$$e \sim N(0, \sigma_e^2)$$
, (distribución normal)

Mínimos Cuadrados Ordinarios (MCO)

• Mínimos Cuadrados Ordinarios consiste en hallar los parámetros del modelo de manera que la suma de los cuadrados de los errores sea mínima.

$$\left| SCR = \sum_{i=1}^{N} e_i^2 = \sum_{i=1}^{N} \left[y_i - \hat{y}_i \right]^2 = \sum_{i=1}^{N} \left[y_i - \left(\hat{\beta}_0 + \hat{\beta}_1 x_i \right) \right]^2 \right|$$

• Sistema de ecuaciones a resolver

$$\frac{\partial SCR}{\partial \beta_0} = 0, \quad \frac{\partial SCR}{\partial \beta_1} = 0$$

Mínimos Cuadrados Ordinarios (MCO)

Coeficiente de determinación R^2

- Para los modelos lineales
- 1. Mide el grado de la bondad del ajuste

2. Es igual al coeficiente de correlación lineal al cuadrado.

3. Representa la proporción de varianza explicada por la regresión lineal.

Mínimos Cuadrados Ordinarios (MCO)

Criterios de la bondad del ajuste

- Si $R^2 \approx 1$, el ajuste es bueno (Y se puede calcular de modo bastante aproximado a partir de X y viceversa).
- Si $R^2 \approx 0$, las variables X y Y no están relacionadas (linealmente al menos), por tanto no tiene sentido hacer un ajuste lineal.
- Sin embargo no es seguro que las dos variables no posean ninguna relación en el caso *r*=0, ya que si bien el ajuste lineal puede no ser procedente, tal vez otro tipo de ajuste sí lo sea.

Y=Permeabilidad, X=Porosidad

Regression coefficient = 2080.0 (SE = 298.1, r2 = 0.514, y intercept = -7550.6945

Y=logPermeabilidad, X=Porosidad

Regression coefficient = 0.50 (SE = 0.04, r2 = 0.778, y intercept = 4.31, n = 48)

Y=logPermeabilidad, X=Porosidad

Y=logPermeabilidad, X=Porosidad Análisis de los residuos

Estadística Residuos

Min: -2.600848e+000

1st Qu.: -6.021758e-001

Mean: 1.156482e-018

Median: -1.075592e-001

3rd Qu.: 6.815479e-001

Max: 1.815937e+000

Total N: 4.800000e+001

Variance: 7.146409e-001

Std Dev.: 8.453644e-001

SE Mean: 1.220178e-001

Skewness: 1.878733e-001

Kurtosis: 6.868942e-001