Predictive Modeling of Tanzanian Water Well Functionality

Nancy Ho

Summary

 Use of machine learning models to provide method of predicting functionality of Tanzanian wells based on descriptive information about various wells within the region

Outline

- Business Problem
- Data Understanding
- Model Creation
- Model Evaluation
- Next Steps

Business Problem

- Water crisis in Tanzania, many non-profit organizations have focused on drilling wells to provide clean water to Tanzanian villages
- While developing new wells is important, we must also pay attention to condition of existing water wells
 - Need to ensure Tanzanian villages have consistent, sustainable access to clean water
- Goal: create a model that can predict condition of wells in Tanzania based on descriptive information
 - Can assist in allocating resources towards well maintenance and upkeep

Data Understanding

- Information about water wells in Tanzania
 - o Provided by DrivenData, derived from Taarifa software and Tanzania Ministry of Water
 - Contains large amount of information about each well -- will only use information most relevant to predicting water well condition (e.g. extraction type, water quality)
 - Class imbalance may lead to error later, but data is left as is for identification purposes

Model Evaluation

- Logistic regression
 - Measures the difference in probabilities among each class
- F1 score (average of precision and recall): 0.70
 - Metric based on how well model minimizes
 misclassifying wells as false positive or false negative
- Shows more bias towards identifying functional wells
 - o May be result of imbalance in data

Model Evaluation

- Random forest
 - Aggregates multiple decision tree classifiers to improve overall accuracy of model
- F1 score: 0.72
- Shows greater balance in identifying non-functional/functional needs repair wells

Model Evaluation

- Gaussian Naive Bayes
 - Assumes all features are independent, estimates overall probability given conditional probabilities of each feature
- F1 score: 0.22
- Shows significant bias towards marking most wells as "needs repair"

Model Evaluation and Conclusion

- Random forest classifier predicts well condition most accurately, performs even better with optimal parameters
- Still shows some bias towards functional wells due to categorical imbalance
- While model does not perform exceptionally well, it still provides a satisfactory baseline model to perform predictions on a well's condition

Next Steps

- Attempt to re-train models on balanced data
- Create model that can process more specific attributes of water wells rather than subcategories of attributes
- Doing more research on potential geological and ecological factors that impact well condition and water quality
- Possibly use model to assist other well maintenance efforts across Africa?

Thank you!

Email: nancyho83@yahoo.com

GitHub: @nancyho83

LinkedIn: linkedIn: linkedIn: linkedIn: linkedIn: linkedin.com/in/nho3/