

The Copperbelt University

School of Mathematics And Natural Sciences

Department of Mathematics

MA 110: Mathematical Methods I

February 10, 2022

@Tutorial Worksheet 3

@ Academic year: 2021/22

BINARY OPERATIONS

- (1). Define an operation * on the set of real numbers by $x * y = x^2 + 2xy + y^2$
 - (a) Evaluate (-1 * 2) * 3.
 - (b) State whether or not the operation is commutative.
 - (c) State whether or not the operation is associative.
- (2). Consider the binary operation $x * y = (x + y)^2 2xy$, where x and y are real number.
 - (a) Find -1 * (2 * 5) and (-1 * 2) * 5.
 - (b) Is * commutative? Give a reason for your answer.
 - (c) Is * associative? Give a reason for your answer.

- (3). The operation * on the set of real numbers \mathbb{R} is defined by $x * y = x^2 + y^2 2$ where $x, y \in \mathbb{R}$
 - (a) Determine whether * is commutative.
 - (b) Detrmine whether * is associative.
 - (c) Evaluate (3*2)*5.
- (4). Determine whether the following operations are binary on the set of Irrational numbers.
 - (a) Addition (+).
- (b) Subtraction (-). (c) Multiplication (\times) .
- (d) Division (\div) .
- (5). Determine whether or not each of the definition of * given below gives a binary operation. In the event that * is not a binary operation, give justification for this.
 - (a) On \mathbb{Z}^+ , define by x * y = x y.
 - (b) On \mathbb{Z}^+ , define by x * y = xy.
 - (c) On \mathbb{R} , define by $x * y = xy^2$.
 - (d) On \mathbb{Z}^+ , define by x * y = |x y|.
- (6). For each operation * defined below, determine whether * is commutative or associative
 - (a) On \mathbb{Z} , define by x * y = x y.
 - (b) On \mathbb{Q} , define by x * y = xy + 1.
 - (c) On \mathbb{Q} , define by $x * y = \frac{xy}{2}$.
- (7). Define an operation * on the set of real numbers defined by $x * y = \frac{x}{y+1}$.
 - (a) Is * a binary operation on the set of real numbers.
 - (b) Is * commutative on set of real numbers.
 - (c) Is * associative on the set of real numbers.
- (8). Is the operation * defined by $x * y = \sqrt{x y}$ a binary operation on \mathbb{R} ?
- (9). Define an operation * on the set of real numbers defined by $x * y = \sqrt[x]{y}$ where x is the index of the radical and y is the radicand.
 - (a) Evaluate
 - (i) 3 * 216.
 - (ii) 2*(3*64).
 - (b) Solve 3 * (2x 3) = 3.

- (10). If a * b = 2a b where a and b are real numbers. Solve the equation:
 - (a) |x*5| = 1.
 - (b) 2x * (x * 3) = 5.
 - (c) $|1*\sqrt{x}| = 1$.

SKETCHING

- (11). (a) Sketch the following curves and indicate clearly the points of intersection with the axes
 - (i) y = (x+1)(1-x)(x+3). (ii) y = x(2x-1)(x+3). (iii) $y = x^3 + 5x^2 + 4x$.
 - (iv) y = (x+1)(x-2)(x-4). (v) $y = -x^3(x+2)^2(x-2)^2(x-5)$.
- (12). Sketch the following functions:
 - (a) $f(x) = (x+2)^2 3$. (b) $f(x) = (x-1)^3 + 2$. (c) $f(x) = -\frac{1}{x}$.
 - (d) f(x) = 4 |x+2|. (e) $f(x) = 2 + \sqrt{-x+1}$. (f) $f(x) = 2\sqrt{1-x} 3$.
- (13). Graph the following functions:
 - (a) $f(x) = x^2 + 1$. (b) $f(x) = -x^2 + 2$. (c) $f(x) = -(x-2)^2 + 3$.
 - (d) $f(x) = 2x^2 + 12x + 17$.
- (14). Let $f(x) = -2x^2 + 4x + 16$,
 - (a) Find the vertex of the graph of f.
 - (b) Find the range of f.
 - (c) Find the x-intercepts and y- intercept of the graph of f.
 - (d) Sketch the graph of f.
- (15). Suppose f is a quadratic function whose graph has a vertex at the point (-3,2) and has a y-intercept at the point (0,-16).
 - (a) Find the equation for the function f.
 - (b) Find the x- intercepts of the graph of f.
- (16). Write the function $f(x) = 1 6x x^2$ in the form $f(x) = a(x+h)^2 + k$ where a, h, k are constants.
- (17). Find the equation of a quadratic function whose graph has a vertical axis of symmetry x = -2, the range of f is given by the interval $[4, +\infty)$ and f(2) = 8.

(18). Graph the following rational functions:

(a)
$$f(x) = \frac{3}{x+1}$$

(a)
$$f(x) = \frac{3}{x+1}$$
. (b) $f(x) = \frac{12}{(x-1)(x+2)}$. (c) $f(x) = \frac{x}{x-3}$.

(c)
$$f(x) = \frac{x}{x-3}$$
.

(d)
$$f(x) = \frac{x^3 + 4}{(x - 3)(x + 2)}$$
. (e) $f(x) = \frac{x + 3}{x^2 - x - 6}$. (f) $f(x) = \frac{9}{x^2 - 9}$.

(e)
$$f(x) = \frac{x+3}{x^2 - x - 6}$$

(f)
$$f(x) = \frac{9}{x^2 - 9}$$
.

(19). Graph the following piecewise functions:

(a)
$$f(x) = \begin{cases} 2 & \text{if } x \ge 0 \\ -1 & \text{if } x < 0 \end{cases}$$

(a)
$$f(x) = \begin{cases} 2 & \text{if } x \ge 0 \\ -1 & \text{if } x < 0 \end{cases}$$
 (b) $f(x) = \begin{cases} 2x + 1 & \text{if } x \ge 0 \\ x^2 & \text{if } x < 0 \end{cases}$

(c)
$$f(x) = \begin{cases} 2x+3 & \text{if } x \ge 0 \\ x^2 & \text{if } x \le x < 2 \\ 1 & \text{if } x \ge 2 \end{cases}$$
.

- (20). Find the values of the constants in each of the following:
 - (a) f(x) = ax + b, a and b are constants, f(-2) = 7, f(1) = -1.
 - (b) $f(x) = ax^2 + bx + c$, a, b and c are constants, f(0) = 7, f(1) = 6 and f(-1) = 12.

FUNCTIONS

(21). Determine the domain and the range of the following functions:

(a)
$$f(x) = x^2 - 2x + 2$$
.

(b)
$$f(x) = \sqrt[3]{x^2 - 4}$$
.

(a)
$$f(x) = x^2 - 2x + 2$$
. (b) $f(x) = \sqrt[3]{x^2 - 4}$. (c) $f(x) = 2x + \sqrt{x^2 + 4x - 12}$.

(d)
$$f(x) = \sqrt{x} + \sqrt{x-1}$$
.

- (22). Given the function $f(x) = \begin{cases} x^2 6 & \text{if } x < 0 \\ 10 x & \text{if } x < 0 \end{cases}$
 - (a) Sketch f(x).
 - (b) Find the values of a such that f(a) = 43.
 - (c) Find the values of the domain that get mapped to themselves in the range.
- (23). Determine whether the functions f is even, odd or neither;

(a)
$$f(x) = x^2 + x$$
. (b) $f(x) = \sqrt{2 - x^2}$. (c) $f(x) = x^2$. (d) $f(x) = \frac{1}{x}$.

(e)
$$f(x) = 3x - 1$$
 (f) $f(x) = x^5 + x^3 + x$. (g) $f(x) = x^4 + x^2 + 1$.

(h)
$$f(x) = x^3 + 1$$
. (i) $f(x) = -x^3$.

- (24). Find $(f \circ g(x))$ and $(g \circ f)(x)$ and their domains for the following:

 - (a) f(x) = 2x, g(x) = 3x 1. (b) $f(x) = \frac{1}{x}$, g(x) = 3x 1.
 - (c) $f(x) = \sqrt{x-2}$, g(x) = 3x 1. (d) $f(x) = \frac{4}{x+2}$, $g(x) = \frac{3}{2x}$.
- (25). Solve each of the following:
 - (a) If $f(x) = x^2 2$ and g(x) = x + 4, find $(f \circ g)(2)$ and $(g \circ f)(-4)$.
 - (b) If $f(x) = \frac{1}{x}$ and g(x) = 2x + 1, find $(f \circ g)(1)$ and $(g \circ f)(2)$.
 - (c) If $f(x) = \sqrt{x+1}$ and g(x) = 3x-1, find $(f \circ g)(-4)$ and $(g \circ f)(-4)$.
 - (d) If f(x) = x + 7 and g(x) = |x|, find $(f \circ g)(2)$ and $(g \circ f)(2)$.
- (26). Show that $(f \circ g)(x) = x$ and $(g \circ f)(x) = x$.
 - (a) f(x) = 2x, $g(x) = \frac{1}{2x}$. (b) f(x) = 3x + 4, $g(x) = \frac{x 4}{3}$.
 - (c) f(x) = 4x 3, $g(x) = \frac{x+3}{4}$.
- (27). If f(x) = 3x 4 and g(x) = ax + b, find the conditions on a and b that guarantee that $(f \circ g)(x) = (g \circ f)(x)$.
- (28). Let $f(x) = \frac{x}{x+2}$ and g(x) = 2x 1.
 - (a) Find $(f \circ g)(x)$. (b) Evaluate $(g \circ f)\left(\frac{3}{4}\right)$. (c) Verify that $(f \circ g)^{-1} = g^{-1} \circ f^{-1}$.
- (29). Verify that the two given functions are inverses of each other:
 - (a) $f(x) = -\frac{1}{2}x + \frac{5}{6}$ and $g(x) = -2x + \frac{5}{3}$.
 - (b) $f(x) = \sqrt{2x-4}$ for $x \ge 0$ and $g(x) = \sqrt[3]{x-1}$.
 - (c) $f(x) = x^2 4$ for $x \ge 0$ and $g(x) = \sqrt{x+4}$ for $x \ge -4$.
- (30). State if the following functions is one to one or many to one:
 - (a) f(x) = 3x + 2 for the domain $\{x > 0\}$.
 - (b) $f(x) = x^2 + 5$ for the domain $\{x \ge 2\}$.
 - (c) $f(x) = \sqrt{x+2}$ for the domain $\{x \ge -2\}$.

- (31). Find f + g, f g, f.g and $\frac{f}{g}$ and determine their domain for the following:
 - (a) $f(x) = \sqrt{x-1}$, $g(x) = \sqrt{x}$. (b) $f(x) = \sqrt{x+2}$, $g(x) = \sqrt{3x-1}$.
 - (c) $f(x) = x^2 2x 24$, $g(x) = \sqrt{x}$. (d) $f(x) = x^2 2x 24$, $g(x) = \sqrt{x}$.
- (32). Determine the domain of the following functions:
 - (a) $f(x) = \frac{6}{\sqrt{6x-2}}$. (b) $g(y) = \sqrt{\frac{y}{y-8}}$. (c) $h(x) = \sqrt{x-7} + \sqrt{9-x}$.
 - (d) $f(x) = \sqrt{\frac{x+1}{x-1}}$. (e) $f(x) = \sqrt[3]{x}$.
- (33). In each of the following determine f is even, odd or neither
 - (a) $f(x) = x^4$. (b) $f(x) = x + x^3$. (c) $f(x) = x^3 x$.
 - (d) f(x) = 3x 5. (e) $f(x) = \frac{1}{1+x}$.
- (34). If $f(x) = x^2 + 1$ and $g(x) = \sqrt{x-1}$. Find the domain and inverse of $(f \circ g)(x)$ and $(g \circ f)(x)$.
- (35). If f(x) = 3 x and $g(x) = \frac{3x}{x 3}$, $x \neq 3$. Show that this function is its own inverse. Is $(f \circ g)(x)$ even, odd or neither.
- (36). If $f(x) = 1 x^2$ and $g(x) = \sqrt{x}$. Find $(g \circ f)(x)$ and $(f \circ g)(x)$ and their domains.
- (37). If $f(x) = x^2$ and g(x) = 3x 4, find $(g \circ f)(x)$ and $(f \circ g)(x)$ and determine its domain.
- (38). If $f(x) = \frac{2}{1-x}$ and $f(x) = \frac{1}{x}$, find $(g \circ f)(x)$ and determine its domain.
- (39). If $f(x) = 1 x^2$ and $g(x) = \sqrt{x}$, find $(f \circ g)(x)$ and determine its domain.

THE END

Approved by: Mr. Zimba, Mr. Lujebe, Mr. Mvula, Mr. Mubila and Mr. Kalunga