고치트는 시기 뽕누에에 의한 ¹⁴CO₂의 흡수리용특성

계중삼, 박영기, 안재석

위대한 령도자 김정일동지께서는 다음과 같이 교시하시였다.

《과학과 기술이 매우 빨리 발전하고있는 오늘의 현실은 기초과학을 발전시킬것을 더욱 절실하게 요구하고있습니다.》(《김정일선집》 중보판 제11권 138폐지)

지금까지 뿡누에($Bombyx\ mori$)를 비롯한 누에에서 누에와 누에알에 미치는 CO_2 의 부정적영향에 대해서는 일정하게 연구[1, 2]되였으나 누에가 CO_2 을 어떻게 리용하는가에 대하여서는 거의나 연구되지 않았다.

누에가 고치를 틀기 전과 고치를 트는 시기에 먹이를 먹지 않으므로 이 시기에 CO_2 을 주입하여 고치틀기에 CO_2 이 실제로 리용되는가를 밝히는것은 고치생산과 관련되는 중요한 문제라고 볼수 있다.

우리는 선행연구자료[5]에 기초하여 뽕누에가 고치트는 시기에 ¹⁴CO₂을 주입하고 고치를 튼 다음 마른 고치껍데기와 고치솜의 방사능을 측정함으로써 CO₂이 실제로 어디에 리용되는가를 밝히기 위한 연구를 하였다.

재료와 방법

재료로는 뽕누에품종 《201》호를 리용하였다.

뽕누에가 고치를 틀기 3일전인 5살 6일째부터 누에를 굶긴 다음 길이, 너비가 각각 25cm, 높이 10cm인 밀페된 비닐그릇에 넣어 고치를 틀게 하였다.

14CO₂주입시험은 다음과 같이 하였다.

 ${\rm Ba^{14}CO_3~10mg}$ 을 $10{\rm mL}$ 들이 유리병에 넣고 그것을 $5{\rm L}$ 들이 수지그릇안에 넣어 고정한 다음 밀폐하고 주사기로 10% HCl용액을 충분히 넣어 $^{14}{\rm CO_2}$ 을 발생시켰으며 매일 2차에 걸쳐 $100{\rm mL}$ 씩 뽑아 누에가 들어있는 밀폐된 그릇에 주입하였다.

피브로인섬유는 선행방법[3, 4]에 따라 액화하였고 액체세리신과 피브로인의 방사능은 액체섬광계수장치(《LS6000TA》)로 반복측정하였다.

결과 및 론의

대조구와 시험구의 고치껍데기와 고 치솜을 β선측정기로 측정한데 의하면 방 사능에서 현저한 차이가 있었다. 그리하 여 먼저 고치의 기본성분단백질들인 세리 신과 피브로인을 갈라내고 액화한 다음 세 리신용액의 방사능을 측정하였다.(표 1)

표 1에서 보는바와 같이 대조구 1과 2 의 세리신용액의 ¹⁴C방사능은 각각 5.2, 5.4 개/(mL·min)으로서 차이가 없었지만 시험

표 1. 세리신용액의 ¹⁴C방사능

구분	대조구 1	대조구 2	시험구
¹⁴ C방사능 /(개·mL ⁻¹ ·min ⁻¹)	5.2±0.0	5.4±0.0	120.2±10.1
대조구 1에 비한 비률/%	100.0	103.8	2 311.5

n=3, 대조구 1은 5살 6일부터 굶긴 누에를 밀폐된 그 롯에서 고치를 틀게 한것, 대조구 2는 이미 튼 고치를 시험구와 같이 밀폐된 그릇에 넣고 ¹⁴CO₂을 주입한것, 시험구는 5살 6일부터 굶긴 누에를 밀폐된 그릇에 넣고 ¹⁴CO₂을 주입하면서 고치를 틀게 한것.

구에서는 120.2개/(mL·min)으로서 대조구들보다 현저히 높았다.(약 23배) 다음으로 피브로인용액의 ¹⁴C방사능을 측정한 결과는 표 2와 같다.

표 2. 피브로인용액이 ¹⁴C방사능

구분	대조구 1	대조구 2	시험구	
¹⁴ C방사능 /(개·mL ⁻¹ ·min ⁻¹)	2.1±0.0	2.4±0.0	3.4±0.0	
대조구 1에 비한 비률/%	100.0	114.3	161.9	

n=3, 대조구와 시험구들에서의 고치틀기조건은 표 1에서와 같음. 표 2에서 보는바와 같이 대조구 1과 대조구 2의 피브로인용액의 ¹⁴C방사능은 각각 2.1, 2.4개/(mL·min)으로서 차이가 없었지만 시험구에서는 3.4개/(mL·min)으로서 대조구들보다 높았다.(약 1.6배)

실험결과들을 종합해보면 ¹⁴CO₂이 고치실에 흡착된것이 아니라 세리신단백질과 피브로인단백질의 조성에 들어가며 굶은 누에가 고치를 틀 때 부족되는 단백질합성에 ¹⁴CO₂을 리용한다는것을 보여준다.

특히 뒤부실선(후부사선)에서 합성되는 피브로인단백질보다 가운데부실선(중부사선)에서 합성되는 세리신단백질합성에 많이 리용된다고 볼수 있다. 여기에 대해서는 보다 깊이있는 연구가 진행되여야 한다고 본다.

맺 는 말

고치트는 시기 뽕누에가 흡수한 $^{14}CO_2$ 의 탄소(^{14}C)가 고치껍데기와 고치솜을 이루는 세리신단백질과 피브로인단백질에서 검출되는것으로 보아 부족되는 단백질합성에 $^{14}CO_2$ 을 리용한다고 볼수 있다.

참 고 문 헌

- [1] 계원삼; 가잠, 농업출판사, 54~56, 1963.
- [2] 조필호 등; 잠업전서 1, 농업출판사, 309~311, 주체101(2012).
- [3] Hong Wang et al.; International Journal of Biological Macromolecules, 36, 66, 2005.
- [4] Maobin Xie et al.; Biomaterials, 103, 33, 2016.
- [5] 馬移遺石; 化学と生物, 41, 774, 2003.

주체109(2020)년 4월 5일 원고접수

Characteristics of Utilization of ¹⁴CO₂ Absored by Silkworms in Cocooning Period

Kye Jung Sam, Pak Yong Gi and An Jae Sok

Carborn(¹⁴C) of ¹⁴CO₂ absorbed by silkworms in cocooning period is detected in the sericin and fibroin proteins which make cocoon shell and floss. Therefore, absorbed ¹⁴CO₂ seems to be used in synthesis of insufficient proteins.

Keywords: silkworm, cocoon, ¹⁴CO₂