Top DJIA Assets by Sharpe Ratio

- **Sharpe Ratio** = (Return-Risk-free Rate)/Volatility It quantifies the risk-adjusted return, with higher values indicating better performance.
- Interpretation:
 - Top 3: AAPL (0.059), UNH (0.051), MSFT (0.047) contribute the most risk-adjusted return.
 - Lower Sharpe ratios (e.g., WMT at 0.035) indicate less effective risk-adjusted performance.

Optimal Weights

- Weights: Proportions of capital allocated to each stock.
 - E.g., AAPL gets ~23.3%, UNH ~15.4%, while WMT gets only ~2.3%.
 - Stocks with higher Sharpe ratios (better risk-adjusted returns) are prioritized in allocation.

Portfolio Statistics

1. Expected Portfolio Return:

- Daily return: ~0.001 (0.1%).
- Annualized return: 0.001×252=0.2520.001 \times 252 = 0.2520.001×252=0.252 (~25.2%).
- Indicates strong performance compared to traditional benchmarks (e.g., S&P 500 annualized return ~8-10%).

2. Portfolio Variance and Volatility:

- Variance: ~0.00024.
- Annualized volatility: ~24.6% (variance×252\sqrt{\text{variance} \times 252\yariance×252).
- Moderate risk level for a portfolio with high expected return.

3. Sharpe Ratio:

 0.9820.9820.982 indicates excellent risk-adjusted return (closer to or above 1 is desirable).

Risk Management

1. Max Drawdown:

○ −31.66%-: Maximum observed loss from a portfolio's peak to its trough.

 Indicates potential vulnerability during adverse market conditions but is acceptable for a high-return portfolio.

Risk-Free Return

- **Definition**: The theoretical return on an investment with **zero risk** of financial loss.
- **Example**: Returns from U.S. Treasury bills are often used as the risk-free rate because they are backed by the government and considered extremely safe.
- **Role in Finance**: It sets the baseline for evaluating other investments. Any asset should ideally offer a higher return than the risk-free rate to compensate for the risk involved.

Risk-Adjusted Return

- **Definition**: A measure of the return on an investment after accounting for the risk taken to achieve it.
- Formula: Risk-adjusted return=Return-Risk-free return/Volatility
 - o **Return**: Average or expected return of the asset or portfolio.
 - Volatility: Standard deviation of returns, representing the risk.
- Purpose: To compare investments with varying risk levels. An investment with a high return might seem attractive, but if it carries excessive risk, its risk-adjusted return might be lower than a safer investment.

Sharpe Ratio and Risk-Adjusted Return

- The Sharpe Ratio is a commonly used metric for risk-adjusted return: Sharpe
 Ratio=Return-Risk-free returnVolatility\text{Sharpe Ratio} = \frac{\text{Return} \text{Risk-free return}}{\text{Volatility}}Sharpe Ratio=VolatilityReturn-Risk-free return
- Interpretation:
 - A Sharpe ratio > 1 indicates strong risk-adjusted returns (i.e., the investment rewards risk well).
 - A Sharpe ratio < 1 indicates that the returns may not justify the risk.

Example for Context

- 1. Risk-Free Return: Assume a Treasury bill offers an annual return of 2%.
- 2. Investment A: Offers a return of 10% but with high volatility (risk).

- 3. **Investment B**: Offers a return of **8%** with lower volatility. Using the Sharpe Ratio:
 - Investment A: (10%-2%)/Volatility of A(10\% 2\%) / \text{Volatility of A}(10\%-2\%)/Volatility of A
 - Investment B: (8%-2%)/Volatility of B(8\% 2\%) / \text{Volatility of B}(8\%-2\%)/Volatility of B
- 4. Even if Investment A has a higher raw return, Investment B might have a higher Sharpe Ratio if its volatility is much lower, making it a better risk-adjusted choice.

Summary

- Risk-Free Return: A baseline for no-risk investments.
- Risk-Adjusted Return: Evaluates how well an investment rewards the risk taken

Cumulative Returns Plot

Observation:

- This plot shows the cumulative return for the top DJIA assets identified by Sharpe ratio over the selected period.
- AAPL (Apple) has outperformed other stocks significantly, with the highest cumulative return.
- Other stocks such as UNH, MSFT, and CAT show consistent growth but at lower levels compared to AAPL.
- Stocks such as WMT and KO have had relatively lower performance over time, indicating more stable or defensive growth.

Insights:

- The portfolio might benefit from emphasizing AAPL and other high-growth stocks (e.g., MSFT, UNH), depending on risk tolerance.
- Stocks with lower growth (e.g., WMT, KO) might be suitable for stability and diversification.

2. Correlation Matrix

Observation:

- The heatmap shows the correlation coefficients between the selected stocks.
- Highly correlated pairs are shown in red, while low correlations are shown in blue.
- o For example:
 - AAPL and MSFT appear to have a moderate-to-high correlation.
 - CAT and GS or MRK and WMT show lower correlation, which can aid in diversification.

• Insights:

- To reduce risk, the portfolio should include assets with low or negative correlations (e.g., MRK vs. WMT).
- High correlation among tech stocks (e.g., AAPL, MSFT) indicates a potential risk if the tech sector faces a downturn.

3. Hierarchical Clustering Dendrogram

Observation:

- The dendrogram groups stocks based on similarity (measured by their correlation).
- MSFT and AAPL are closely clustered, indicating similar behavior.
- UNH, MRK, and KO form another group, which might reflect a more defensive or healthcare-oriented cluster.
- o **HD**, **CAT**, and **GS** cluster separately, representing industrial or financial diversity.

• Insights:

- The clustering supports a diversified strategy:
 - Allocate some weights to tech-heavy stocks (AAPL, MSFT) for growth.
 - Include defensive or uncorrelated stocks (MRK, KO, WMT) to hedge against volatility.
 - Consider industrials (CAT, HD) for balanced exposure.

Summary:

- The cumulative returns highlight growth leaders like AAPL and MSFT, while others provide diversification.
- The **correlation matrix** emphasizes pairing low-correlation stocks for risk mitigation.
- The **dendrogram** suggests diversification across tech, defensive, and industrial clusters for optimal balance.

Hierarchical Clustering Dendrogram

• **Purpose:** This dendrogram shows the clustering of the selected DJIA stocks based on their similarity (correlation of returns).

Observations:

- Stocks like MSFT (Microsoft) and AAPL (Apple) form a close cluster, indicating that they have similar return patterns.
- HD (Home Depot) and GS (Goldman Sachs) form another cluster, which suggests a correlation in their behavior.
- The dendrogram provides a hierarchical grouping of stocks that can be useful for diversification—selecting assets from different clusters reduces portfolio risk.

• Implications:

 Clustering supports better diversification strategies in portfolio optimization by showing which stocks are more correlated and which are distinct.

2. Correlation Matrix of Selected Assets

 Purpose: This heatmap displays the correlation between the returns of the top DJIA stocks.

Observations:

- Dark red cells indicate strong positive correlations between the corresponding stocks (e.g., AAPL and MSFT).
- Blue cells represent lower correlations, indicating less similar behavior between those stocks.

• Implications:

 For portfolio optimization, selecting assets with lower correlations (blue cells) reduces overall portfolio risk. The matrix helps identify such pairs, complementing the dendrogram analysis.

3. Cumulative Returns of Optimized Portfolio

 Purpose: This plot shows how the optimized portfolio's cumulative returns have evolved over time.

Observations:

- The portfolio exhibits steady growth over the analyzed period, with minor dips during market downturns (e.g., early 2020 during the COVID-19 pandemic).
- The cumulative return remains positive, reflecting the effectiveness of the optimization strategy in achieving growth while managing risk.

• Implications:

 The portfolio optimization strategy successfully balances risk and return, demonstrating the practical application of concepts like Sharpe ratio maximization, risk minimization, and diversification.

How These Graphs Support the Project

Integration with the Code:

- The dendrogram and correlation matrix are outputs of the data analysis stage, which involves analyzing stock return data to identify patterns and relationships.
- The cumulative return plot reflects the performance of the portfolio weights derived from quadratic programming optimization.

• Relevance to Class Scope:

 These graphs provide insights into key financial and statistical principles like correlation, diversification, portfolio risk management, and Sharpe ratio optimization.

0	They visually reinforce the outcomes of the project, showing the practical utility of data science and machine learning concepts in financial decision-making.