SRGS: Super-Resolution 3D Gaussian Splatting

概要

- タスクはHRNVS(High Resolution Novel View Synthesis)
- 低画質画像で最適化するとsparsityとtexture deficiencyが問題
- 上記の問題を解決するためにSRGSを提案
 - Super-Resolution Gaussian Densification
 - Texture-Guided Gaussian Learning
- Mip-NeRF 360とTanks&TemplatesというデータセットにおいてSoTA達成
- HRNVSで初めて3DGSを使用
- 要約するとsplattingするときに解像度を上げて、2Dの学習済みモデルで生成したものを正解としたlossを定義しただけで、gaussianの最適化アルゴリズムは特にいじってない

(論文より引用)

Related work

HRNVSに対してNeRFを使ったもの

- NeRF-SR
- CROC(sota)
- Mip-NeRF

3DGS復習

- 3DGSは3D colored Gaussian primitivesの集合である $\mathcal{G} = \{\mathbf{g}_1, \mathbf{g}_2, \cdots, \mathbf{g}_N\}$ を学習する
- $\mathbf{g} \in \mathcal{G}$ は以下のように書ける

$$\mathbf{g}^{3D}\left(\mathbf{x}\mid\mu,oldsymbol{\Sigma}
ight)=\exp\left(-rac{1}{2}\left(\mathbf{x}-\mu
ight)^{ op}oldsymbol{\Sigma}^{-1}\left(\mathbf{x}-\mu
ight)
ight)$$

- Σ はscaling matrix Sとrotation matrix Rを用いて $\Sigma = RSS^{ op}R^{ op}$ と分解できる
- ここからRasterization renderingの説明
- カメラポーズの情報としてextrinsic matrix ${f T}$ とprojection matrix ${f K}$ が与えられたときに2D screen spaceにおけるposition $\hat{m \mu}$ と $\hat{m \Sigma}$ は以下で定まる

$$\hat{oldsymbol{\mu}} = \mathbf{K} \mathbf{T} \left[\mu, 1
ight]^{ op}, \quad \hat{oldsymbol{\Sigma}} = \mathbf{J} \mathbf{T} oldsymbol{\Sigma} \mathbf{T}^{ op} \mathbf{J}^{ op}$$

- ここで**J**はヤコビ行列
- このときピクセルuでのgaussianは以下で定まる

$$\mathbf{g}^{2D}\left(\mathbf{u}\mid\boldsymbol{\hat{\mu}},\boldsymbol{\hat{\Sigma}}\right) = \exp\left(-\frac{1}{2}\left(\mathbf{u}-\boldsymbol{\hat{\mu}}\right)^{\top}\boldsymbol{\hat{\Sigma}}^{-1}\left(\mathbf{u}-\boldsymbol{\hat{\mu}}\right)\right)$$

このときピクセルuの色は以下で定まる

$$\mathbf{C}(\mathbf{u}) = \sum_{i \in N} T_i \mathbf{g}_i^{2D} \left(\mathbf{u} \mid \hat{\boldsymbol{\mu}}_i, \hat{\boldsymbol{\Sigma}}_i \right) \alpha_i \mathbf{c}_i$$

$$T_i = \prod_{j=1}^{i-1} \left(1 - \mathbf{g}_j^{2D} \left(\mathbf{u} \mid \hat{\boldsymbol{\mu}}_j, \hat{\boldsymbol{\Sigma}}_j \right) \alpha_j \right)$$
(1)

• lossは以下

$$\mathcal{L}_{qs} = (1 - \lambda) \mathcal{L}_1 + \lambda \mathcal{L}_{D-SSIM}$$

ullet また、以下の勾配abla gが閾値を超えるablaGaussianをablasplitting, cloningの対象とする

$$abla g = rac{1}{M^i} \sum_{k=1}^{M^i} \sqrt{\left(rac{\partial L_k}{\partial u_{ndc,x}^{i,k}}
ight)^2 + \left(rac{\partial L_k}{\partial u_{ndc,y}^{i,k}}
ight)^2} > au_{pos}$$

• M^i はi番目のgaussianが関与している視点の個数

提案手法1. Super-Resolution Gaussian Densification

- Screen spaceに射影された2D Gaussian $\{\mathcal{G}_k^{2D} \mid k=1,\cdots,K\}$ を超解像してHR novel views \mathcal{I}_{HR} を生成
- lossについては生成された画像をaverage kernelでダウンサンプリングしてgtと比較する
- あるピクセルpについてダウンサンプリング後の値は以下のように定義される

$$\mathcal{F}^p = rac{1}{s^2} \sum_{r \in \mathcal{R}_s(p)} I^r_{HR}.$$

- sは超解像の倍率で \mathcal{R}_s はpの近傍ピクセルの集合(これをsub pixelという)
- このときlossは以下のように定義される

$$\mathcal{L}_{1}^{sp} = \frac{1}{|p|} \sum_{p \in p} \|\mathcal{F}^{p} - \mathcal{I}_{LR}^{p}\|$$

$$\mathcal{L}_{D-SSIM}^{sp} = 1 - \text{SSIM}(\mathcal{F}, I_{LR})$$

$$\mathcal{L}_{sp} = (1 - \lambda) \mathcal{L}_{1}^{sp} + \lambda \mathcal{L}_{D-SSIM}^{sp}$$
(2)

提案手法2. Texture-Guided Gaussian Learning

- 学習済み2D SRモデルの出力を正解とするアイディア
- 学習済み2D SRモデルを \mathcal{M}_s として、その出力を $\mathcal{I}_{ref} = \mathcal{M}_s\left(\mathcal{I}_{LR}\right)$ とする
- このときlossを以下で定義

$$\mathcal{L}_{tex} = (1 - \lambda) \, \mathcal{L}_1 \left(\mathcal{I}_{ref}, \mathcal{I}_{HR}
ight) + \lambda \mathcal{L}_{D-SSIM} \left(\mathcal{I}_{ref}, \mathcal{I}_{HR}
ight)$$

損失関数

以上まとめて損失関数は以下

$$\mathcal{L} = (1 - \lambda_e) \mathcal{L}_{sp} + \lambda_e \mathcal{L}_{tex}$$

experiments

datasetはSYnthetic NeRF, Tanks & Temples, Mip-NeRF 360

• 比較対象は以下

	Synthetic NeRF ×2			Synthetic NeRF ×4			Tanks & Temples ×2			Tanks & Temples ×4		
Method	PSNR↑	SSIM↑	LPIPS↓	PSNR↑	SSIM↑	LPIPS↓	PSNR↑	SSIM [↑]	LPIPS↓	PSNR↑	SSIM↑	LPIPS↓
TensoRF [22]	31.45	0.952	0.049	28.01	0.910	0.113	27.14	0.907	0.148	26.82	0.896	0.174
NeRF-SR [48]	30.08	0.939	0.050	28.90	0.927	0.099	26.78	0.897	0.152	26.36	0.887	0.182
CROC [3]	_	_	_	30.71	0.945	0.067	_	_	_	_	_	_
3DGS [2]	24.64	0.923	0.064	20.31	0.852	0.121	25.84	0.937	0.093	24.02	0.905	0.125
Mip-splatting [56]	31.37	0.957	0.048	28.44	0.930	0.087	27.31	0.947	0.085	26.40	0.929	0.108
SRGS (Ours)	32.67	0.965	0.036	30.83	0.948	0.056	28.44	0.950	0.085	28.18	0.938	0.102
HR-3DGS	33.32	0.974	0.023	33.32	0.974	0.023	28.90	0.953	0.082	28.90	0.953	0.082

	Mip-l	NeRF 3	60 ×4	Mip-NeRF 360 ×8			
Method	PSNR↑	$SSIM \!\!\uparrow$	$LPIPS\!\!\downarrow$	PSNR↑	$SSIM \!\!\uparrow$	$LPIPS\!\!\downarrow$	
Mip-NeRF 360 [51]	24.16	0.670	0.370	24.10	0.706	0.428	
Zip-NeRF [50]	20.87	0.565	0.421	20.27	0.559	0.494	
3DGS [2]	20.71	0.619	0.394	19.59	0.619	0.476	
Mip-splatting [56]	26.43	0.754	0.305	26.22	0.765	0.392	
SRGS (Ours)	26.88	0.767	0.286	26.57	0.775	0.377	

(論文より引用)

英単語

• facilitate: 促進する

• densification : 高密度化

• outperform:上回る

• long-standing : 長く続いている

• intricate:複雑な