SENTIMENT ANALYSIS OF TWEETS

Sopnesh Gandhi (2018201064) Rushitkumar Jasani (2018201034) Priyendu Mori (2018201103) Niharika Khare (2018201002)

APPROACH

- Collection and analysis of dataset.
- 2. Preprocessing of data.
- 3. Extracting features from cleaned tweets.
- 4. Model Building.
- 5. Performance comparison.

Dataset Analysis

We have dataset of 1.6M tweets with data splitted equally among positive and negative class.

Pre-processing

- 1. Decoding HTML.
- 2. Removing username and tickers.
- 3. Removing hyperlinks.
- 4. Removing words of length less than two.
- 5. Removing punctuations.
- 6. Stemming. (ex:- changing playing to play)

Used regex to achieve above written things and Implemented porter stemming algorithm.

Model Building

- 1. Naive Bayes
- 2. Logistic Regression
- 3. SVM

Trained each models considering:

- 1. Bag of words and TF-IDF
- 2. Unigram and Bigram
- 3. Keeping and removing stop words

Performance of SVM

Logistic Regression Performance

Naive Bayes Performance

Testing

- Tested on twitter data.
- Tested on facebook comments.
- Tested on amazon reviews.

Last two are add-ons and were not asked to implement.

Performance on FB comments and Amazon reviews

	SVM	Logistic Regression
Facebook comments	84.00	89.15
Amazon reviews	77.52	72.10

Challenges

- 1. Understanding how to work with text and pre-process data.
- 2. Implementing stemming and other functions that are inbuilt in NLTK etc.
- 3. Deciding the models for training.
- 4. Working with huge data leads to huge training time especially on a low computing device like a personal computer.

Thank You