Student	ID:_		
Seat No	.:		

CITY UNIVERSITY OF HONG KONG

Course code & title

CS3103 Operating Systems

Session

Semester A 2006/07

Time allowed

Two hours

This paper has SEVEN pages (including this cover page).

- 1. This paper consists of 5 questions in 2 sections A & B
- 2. Question 1 and 2 are compulsory. Answer any 3 questions out of 4 in section B.
- 3. Answer question 1 and 2 on the question paper.
- 4. Start a new page for each question in section B.

Materials, aids & instruments permitted to be used during examination:

1. Approved calculator

Section A (40%)

Attempt \underline{ALL} questions from this Section

Question 1 (i)A monolithic kernel con	tains	,	whereas a mic	rokernel
is a	of t	the operating sy	ystem.	
				2 marks
(ii) Applications use syste	m calls to inv	oke		
The system call res		ansfer from _		to
				2 marks
(iii) For the following pr medium-term and shor			in terms of lo	ng term,
 New Ready Ready Suspended Running Blocked Blocked Suspended Exit/Terminated (iv) Draw the state trans 		Medium-term		marks states
New New	· ·			marks
Ready/ suspend Rea	ady	Running	Exit)
Blocked/ suspend Bloc	sked			

(v)	Define the following CPU scheduling performance measures:	
	(1) Turnaround time	
	(2) Throughput	
	(3) CPU Utilization	
	(6) 616 601112401611	3 marks
(vi)	The jobs in a multiprogramming system are identical. For a each job, half of it goes to I/O & the other half to CPU. If each for N periods & assuming Round Robin scheduling with I/O overlate turnaround time (TAT) and processor utilization for Turnaround Time CPU utilizated 1 job	ach job runs ap, compute
	2 jobs	
		2 marks
(vii) If the disk system under MSDOS has the following parameter	s:
	Block size = 512 bytes Blocks/cluster= 4 The number of entries in the FAT table is	
		2 marks
(vi	ii) Show the timing for double buffering with the help of a timi where	ng diagram,
	TAi = Time to transfer i th data block into buffer A TBi = Time to transfer i th data block into buffer B MAi=Time to move block i from buffer A to work area MBi= Time to move block i from buffer B to work area Pi = Time to process block i	

Question 2

Give three of the advantages of user-level threads over kernel-level threads:

1.	
2.	2 marks
3.	2 marks

2 marks

(A) For the following processes A, B, C & D with arrival and processing times as given in the table:

Process Name	Arrival Time	(T_a) Processing Time (T_s)
A	0	1
В	1	9
С	2	1
D	3	9

Compute the finished times, average turnaround time & normalized turnaround time for the following Scheduling Algorithms:

- 1. FCFS (same as FIF0)
- 2. RR (time quantum = 4)
- 3. SPN (same as SJF)
- 4. SRT
- 5. HRRN

Draw the schedule for each algorithm using squares (with each square represents one time unit); the name in the square refers to the currently-running process.

14 marks

FCFS RR, q = 4 SPN SRT HRRN

If T_f is the finished time, T_r is the turnaround time and T_r/T_s the normalized turnaround time, fill in the table for the different scheduling algorithms:

		Α	В	С	D	
	T_a	0	1	2	3	
	T_s	1	9	1	9	
FCFS	T_{f}					
	T_r					
	T_r/T_s					
RR q = 4	T_f					
	T_r					
	T_r/T_s					
SPN	T_{f}					
	T_r					
	T_r/T_s					
SRT	T_f	_				
	T_r					
	T_r/T_s					
HRRN	T_f					
	T_r					
	T_r/T_s					

Section B (60%)

Attempt THREE questions from this Section

Question 3

(A) The processes in the ready queue is given in the order below together with the run-times, calculate the waiting time and also the ratio wait-time/run-time for the FCFS and SPN (shortest process next). Comment on the significance of the ratio

7 marks

Process	Run-time
1	10
2	50
3	2
4	100
5	5

(B) The following formulas are adopted by most UNIX scheduling systems:

$$CPU_j(i) = CPU_j(i-1)/2$$

$$P_j(i) = Base_j + CPU_j(i)/2 + nice_j$$

Where $CPU_j(i)$ = Processor utilization by process j through interval i

 $P_i(i)$ = Priority of j at beginning of interval i; lower has higher Priority

 $Base_{j} = base priority of process j$

Nice; = user adjustable factor

The nice values are assumed to be zero for 3 processes A, B and C and each with base priority 60. $CPU_j(i)$ is measured in terms of the value of a counter that is incremented by the clock that interrupts the system 60 times per second (priority is increased by one for every interrupt). Both $CPU_j(i)$ & Pj are recomputed every second. Give the running process for the first 5 seconds and the priorities of A, B and C at the start of the 5^{th} second.

13 marks

Question 4

(A) Describe with the help of pseudo-code, how one can solve the producer consumer problem with the help of semaphores. Three semaphores are used

12 marks

<u>Semaphores</u>	Purpose	<u>Initial</u>	value
free	Mutual exclusion for buffer access		1
space	space available in buffer	l	N
data	data available in buffer	(0

(B) A system with three processes has the following resource needs

Process	Maximum Need	Current Usage
P1	8	3
P2	5	1
P3	8	2

If the available resources at this point are 4, show that the above is in safe state.

8 marks

Question 5

- (A) In a segmentation-page system, the virtual address consists of 32 bits of which 12 bits are the offset, 11 bits are a segment number and 9 bits are a page number, calculate
 - (a) Page size
 - (b) Maximum segment size
 - (c) Maximum number of segments
 - (d) Maximum number of pages

6 marks

(B) A process contains 8 virtual pages on disk & is assigned 4 page frames in main memory. The page reference trace is:

1 0 2 2 1 7 6 7 0 1 2 0 3 0 4 5 1 5 2 4 5 6 7 6 7 2 4 2 7 3 3 2 3

Show the pages residing in the 4 frames using LRU and FIFO replacement policies. Compare the effectiveness of the two replacement strategies & compute their hit ratios.

14 marks

Question 6

(A) Define the seven RAID levels

10 marks

(B) Analyze the following disk scheduling policies: FIFO, SSTF, SCAN, C-SCAN. The assumption is that the disk has 200 tracks and the disk requests queue has random requests in it, in the order of the following sequence of disk track requests:

27, 129, 110, 186, 147, 41, 10, 64, 120

Disk head is initially moving in the direction of decreasing track number.

10 marks

- END -

City University of Hong Kong