Characters and Maschke's Theorem

WDRP - Representation Theory

- 1. Recall the two isomorphic representations of D_3 from the **week 1 notes**, as well as the two non-isomorphic representations from the **week 1 exercises**. Determine the characters of these representations (One rep is repeated so you only need to compute three characters). How do these compare?
- 2. These questions pertain to the character of the regular representation of a finite group.
 - (a) Determine the characters χ_1, χ_2, χ_3 of the following one-dimensional complex representations of \mathbb{Z}_3 .

$$\rho_1(1) = 1$$
 $\rho_2(1) = e^{2\pi i/3}$ $\rho_3(1) = e^{4\pi i/3}$

- (b) Determine the character of the representation $\rho = \rho_1 \oplus \rho_2 \oplus \rho_3$.
- (c) Determine the character of the left regular rep of \mathbb{Z}_3 .
- (d) For any finite group G determine the character of the left regular rep.
- (e) Let X be a finite set on which G acts, and ρ the induced representation G. Show that the character of this representation $\chi_X(g)$ is the number of elements of X fixed by $g \in G$. (Hint: You may want to think of the permutation representation of G).
- 3. Recall the quaternion group $Q = \{1, -1, i, -i, j, -j, k, -k\}$.
 - (a) Construct three non-trivial, non-isomorphic one-dimensional representations of Q. (Hint: What normal subgroups does Q have?)
 - (b) What are the characters of these representations?
- 4. These questions pertain to the dual and Hom representations of a finite group.
 - a) Let ρ be a representation of a finite group G with character χ . Then the dual representation is ρ' . Give an explicit definition of the character χ' of the dual representation.
 - b) Let (ρ_1, V) , (ρ_2, W) be representations of G with characters χ_V and χ_W . Then determine a formula for the character of the Hom representation ρ_{Hom} . Call it χ_{Hom} .
- 5. Let χ be the character of an irreducible representation (ρ, W) of G. Show that if $z \in Z(G)$ (the center of G), then $\chi(z) = n\omega$ where $n = \dim W$ and ω is a root of unity (not necessarily primitive).
- 6. Show that the converse of Maschke's theorem holds as well. That is, if p divides the order of G then there exists a representations which is not completely reducible.
 - Remark. Notice that this completely characterizes the completely reducible representations of a finite group G.