Многокритериальные методы, учитывающие предпочтения ЛПР при построении решающего правила.

В терминах классификации, приведенной во введении, мы рассматриваем задачу принятия решений в условиях определенности

Три типа методов:

- Методы, основанные на попарном сравнении вариантов и критериев
- Методы, использующие построение функции ценности и, в том числе, формальные методы, основанные на том, что формулируются специальные предположения о свойствах предпочтения, выполнение которых гарантирует существование функции ценности конкретного вида.
- Аксиоматический метод, отражающий понятие важности критериев.

Метод анализа иерархий (АНР)

- Порядок применения метода анализа иерархий заключается в следующем:
- 1. Построение качественной модели проблемы в виде иерархии, включающей цель, альтернативные варианты достижения цели и критерии для оценки качества альтернатив.
- 2. Определение приоритетов всех элементов иерархии, построенной в п.1, с использованием метода парных сравнений.
- 3. Синтез глобальных приоритетов альтернатив путем линейной свертки приоритетов элементов на иерархии.
- 4. Проверка суждений на согласованность.
- 5. Принятие решения на основе полученных результатов.

На следующем слайде описка в слове оборудование, но не могу исправить, это текст до правок. Есть и другие погрешности.

Простейшая схема иерархии

1 этап.

Пусть A_1, \ldots, A_k - альтернативы, K_1, \ldots, K_n - критерии, по которым они оцениваются. Эксперту последовательно предъявляются пары альтернатив (A_i, A_j) и предлагается оценить степень d_{ij} преимущества альтернативы A_i над альтернативой A_j относительно некоторого качественного критерия K_t . При этом, если эксперту была предъявлена пара (A_i, A_j) , и он определил степень превосходства d_{ij} , то пара (A_j, A_i) уже не предъявляется, а степень превосходства d_{ji} определяется из соотношения

$$d_{ii} = 1/d_{ij}. (*)$$

Таким образом, при наличии k альтернатив эксперт должен выполнить k(k-1)/2 сравнений. Отметим, что соотношение (*) является фундаментальным для метода Саати определения относительных весов альтернатив. Предлагается определять эти числа следующим образом: «Число d_{ij} показывает, во сколько раз альтернатива A_i превосходит альтернативу A_j относительно общего свойства или критерия. В нашем случае считаем, что все альтернативы сравнимы, то есть интенсивность больше нуля, т.е. $d_{ij} > 0$.

Интенсивность	Определение	Объяснение
относительной важности		
0	Несравнимы	Эксперт затрудняется в сравнении
1	n.	n. v
1	Равная важность	Равный вклад двух альтернатив в цель
3	Умеренное превосходство одного над другим	Опыт и суждения дают легкое превосходство
	s meperinoe ripescentode iso ognoro mad apyrmin	одной альтернативы над другой
		одной альтернативы над другой
5	Существенное или сильное превосходство	Опыт и суждения дают сильное превосходство
3	Существенное изи сизыное превосходство	одной альтернативы над другой
		одной альтернативы над другой
7	Значительное превосходство	Одной из альтернатив дается настолько
,	эна ительное превосходетью	_
		сильное превосходство, что оно становится
		практически значительным
9	Очень сильное превосходство	Очевидность превосходства одной
	1	альтернативы над другой подтверждается
		наиболее сильно
		nunoosiee ensibilo
2,4,6,8	Проможетонные рашания можети приле	Применяются в компромиссиом стинес
2,4,0,8	Промежуточные решения между двумя	Применяются в компромиссном случае
	соседними суждениями	
2.5		
Обратные величины	Если при сравнении одной альтернативы с	
приведенных выше чисел	другой получено одно из вышеуказанных	
	чисел, то при сравнении второй альтернативы	
	с первой получим обратную величину	

mining the minimum moved commissing and

Элементы d_{ij} , i,j=1,...,k образуют положительную квадратную матрицу парных сравнений D:

$$D = \begin{pmatrix} d_{11}d_{12} \cdots d_{1k} \\ d_{21}d_{22} \cdots d_{2k} \\ \vdots \\ d_{k1}d_{k2} \cdots d_{kk} \end{pmatrix} = \begin{pmatrix} \frac{w_1 \ w_1}{w_1 \ w_2} & \frac{w_1}{w_k} \\ \frac{w_2 \ w_2}{w_1 \ w_2} & \frac{w_2}{w_k} \\ \vdots & \vdots \\ \frac{w_k \ w_k}{w_1 \ w_2} & \frac{w_k}{w_k} \end{pmatrix}$$

Предлагается элемент d_{ij} трактовать как отношение весов альтернатив A_i и A_j , т.е. $d_{ij} = \frac{w_i}{w_i}$.

Наша задача — определить вектор $w = (w_1, ..., w_k)$ весов (приоритетов) альтернатив, исходя из значений матрицы D.

m

В предположении, что D является согласованной, то есть что при наличии основного массива данных все остальные данные могут быть логически получены из них, матрица парных сравнений удовлетворяет условию

$$d_{ij} = \frac{w_i}{w_j} = \frac{w_i w_h}{w_j w_h} = \frac{w_i}{w_h} \frac{w_h}{w_j} = d_{ih} d_{hj}, i, j = 1, \dots, k,$$
 (**)

то есть D является положительной обратно симметричной матрицей ранга один.

Пример. Пусть матрица парных сравнений альтернатив A_1 , A_2 , A_3 относительно некоторого фактора (критерия) задана таблицей.

Матрица удовлетворяет условиям (*) и (**) и поэтому является согласованной обратно симметричной

Альтернативы	A_1	A_2	A_3
A_1	1	5	4
A_2	1/5	1	4/5
A_3	1/4	5/4	1

Для вектора весов может быть выбран собственный вектор, соответствующий наибольшему собственному значению матрицы D.

Для согласованной обратно симметричной матрицы D выполняются условия (*) и (**), тогда

$$d_{ij} \cdot \frac{w_j}{w_i} = 1, i, j = 1, \dots, k$$
, и, следовательно,

$$\sum_{j=1}^k d_{ij}w_j \cdot \frac{1}{w_i} = k, i = 1, \dots, k$$
 или $\sum_{j=1}^k d_{ij}w_j = kw_i, i = 1, \dots, k,$

то есть Dw = kw и $w = (w_1, ..., w_k)$ – собственный вектор матрицы D, соответствующий собственному значению k.

С другой стороны, из теории матриц известно, что у положительной обратно симметричной матрицы, имеющей ранг равный 1, максимальное собственное число равно размерности этой матрицы, то есть $\lambda_{max} = k$.

В реальной ситуации вычисленное максимальное собственное число λ_{max} будет отличаться от соответствующего собственного числа для идеальной матрицы и всегда $\lambda_{max} > k$.

Для нахождения вектора весов матрицы парных сравнений D нужно найти собственный вектор w матрицы D, соответствующий максимальному собственному значению λ_{max} :

$$D \cdot w = \lambda_{max} \cdot w$$
.

Для нахождения нормализованного решения заменим вектор w на $\frac{1}{\alpha}w$, где $\alpha=\sum_{i=1}^k w_i$, что обеспечит выполнение условия $\sum_{i=1}^k w_i=1$.

Так как малые изменения в d_{ij} вызывают малые изменения λ_{max} , отклонения последнего от k являются мерой согласованности.

Индекс согласованности

$$MC = \frac{\lambda_{max} - k}{k - 1}.$$

Для оценки достаточности степени согласованности использовать *отношение согласованности*, которое равно:

$$OC = \frac{\text{MC}}{\text{MC*}},$$

где UC^* – среднее значение UC, вычисленных для большого количества случайным образом сгенерированных по шкале от 1 до 9 обратно симметричных матриц парных сравнений. Средние UC^* (вторая строка) для матриц различных порядков (первая строка) , определенные так, как описано выше:

 $1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad 9 \quad 10 \quad 11 \quad 12 \quad 13 \quad 14 \quad 15$ $0.00 \quad 0.00 \quad 0.58 \quad 0.90 \quad 1.12 \quad 1.24 \quad 1.32 \quad 1.41 \quad 1.45 \quad 1.49 \quad 1.51 \quad 1.48 \quad 1.56 \quad 1.57 \quad 1.59$ Результирующий вектор считается приемлемым, если OC не превышает 0.20.

Система линейных уравнений, соответствующая характеристическому уравнению матрицы, имеет следующий вид:

$$\begin{cases} (1-\lambda)w_1 + 5w_2 + 4w_3 = 0; \\ \frac{1}{5}w_1 + (1-\lambda)w_2 + \frac{4}{5}w_3 = 0; \\ \frac{1}{4}w_1 + \frac{4}{5}w_2 + (1-\lambda)w_3 = 0. \end{cases}$$
(3.4)

Характеристическое уравнение $\lambda^2(3-\lambda)=0$ имеет корни $\lambda_1=\lambda_2=0$, $\lambda_3=3$. Подставляя λ_{\max} в (3.4), решаем систему, и после нормирования собственного вектора получаем $w_1=0,6897$; $w_2=0,1379$; $w_3=0,1724$, При этом UC=OC=0, что подгверждает полную согласованность матрицы.

Проверьте согласованность матрицы парных сравнений

Γ 1	5	5	1	57
1/5	1	1	1/5	1
1/5	1	1	1/5	1 5
1	5	5	1	5
1/5	1	1	1/5	1

- 1. Суммировать элементы каждой строки и нормализовать делением каждой суммы на сумму всех элементов; сумма полученных результатов будет равна единице. Первый элемент результирующего вектора будет приоритетом первой альтернативы, второй второй альтернативы и т. д.
- 2. Суммировать элементы каждого столбца и получить обратные величины этих сумм. Нормализовать их так, чтобы их сумма равнялась единице, разделить каждую обратную величину на сумму всех обратных величин.
- 3. Разделить элементы каждого столбца на сумму элементов этого столбца, то есть нормализовать столбец, затем сложить элементы каждой полученной строки и разделить эту сумму на число элементов строки.
- 4. Перемножить n элементов каждой строки и извлечь корень n-й степени. Нормализовать полученные числа.

По первому из указанных способов результат: w_1 =0.69; w_2 =0.14; w_3 =0.17.

2 этап.

Провести аналогичные процедуры для матриц парных сравнений критериев (факторов) K_1, \ldots, K_n и матриц парных сравнений альтернатив A_1, \ldots, A_k по отдельным критериям. Получим вектор весов $v = (v_1, \ldots, v_n)$ критериев с точки зрения достижения поставленной цели и набор векторов $w^{(j)} = (w_1^{(j)}, \ldots, w_k^{(j)}), \ j = 1, \ldots n$ весов (приоритетов) альтернатив, рассмотренный по отношению к каждому критерию. Синтез полученных результатов осуществляется путем аддитивной свертки по формуле

$$S_i = \sum_{j=1}^n w_i^{(j)} v_j, \ i = 1, ..., k$$
 (3)

где S_i - глобальный приоритет i-ой альтернативы , $w_i^{(j)}$ - вес (приоритет) альтернативы A_i , рассмотренный по отношению критерия K_j , v_j - вес (приоритет) критерия K_j с точки зрения поставленной цели.

• Выбор и оценка автомобиля

- В салоне подержанных автомобилей представлено пять автомобилей *A*, *B*, *C*, *D*, *E* одной и той же модели В этом примере проведем сравнение этих автомобилей с точки зрения привлекательности для покупки по четырем характеристикам (критериям):
- K_1 величина пробега, K_2 разница в годе выпуска, K_3 состояние ходовой части, K_4 изношенность салона. Оцениваете по девятибалльной шкале: например для автомобиля пробег в 20000 κM и 30000 κM равноважны, а разница в 10 месяцев в годе выпуска составляет умеренное превосходство по сравнению с более новым автомобилем.

	K_1	<i>K</i> ₂	<i>K</i> ₃	K_4
<i>K</i> ₁	1	3	5	9
K ₂	1/3	1	3	5
<i>K</i> ₃	1/5	1/3	1	3
K ₄	1/9	1/5	1/3	1

Для определения максимального собственного значения и собственного соответствующего вектора ОНЖОМ воспользоваться любым вычислительным сервисом. Для этой матрицы λ_{max} =4.076, что достаточно близко от значения в случае согласованности, которое равно 4, то есть порядку матрицы; $\mathit{HC} = 0.0245$; $\mathit{OC} = 0.028$, то есть матрица хорошо согласована. Вектор приоритетов (весов) $v = (v_1, v_2, v_3, v_4)$ этой матрицы, критериев соответствующий собственному значению получается равным

• v = (0.581; 0.255; 0.114; 0.049).

Величина пробега	A	В	С	D	E
A	1	4	4	7	4
В	1/4	1	1/4	3	1
C	1/4	4	1	7	4
D	1/7	1/3	1/7	1	1/3
E	1/4	1	1/4	3	1

• $\lambda_{max} = 5.047$, вектор весов $w^{(1)} = (0.37; 0.11; 0.37; 0.04; 0.11)$

Разница в годе выпуска	A	В	С	D	E
A	1	5	1/5	5	5
В	1/5	1	1/9	1	1
С	5	9	1	9	9
D	1/5	1	1/9	1	1/3
E	1/5	1	1/9	3	1

• $\lambda_{max} = 5.130$, вектор весов $w^{(2)} = (0.22; 0.06; 0.60; 0.06; 0.06)$

Состояние ходовой части	A	В	С	D	E
A	1	5	5	1	5
В	1/5	1	1	1/5	1
С	1/5	1	1	1/5	1
D	1	5	5	1	5
Е	1/5	1	1	1/5	1

• $\lambda_{max} = 5$, вектор весов $w^{(3)} = (0.38; 0.08; 0.08; 0.38; 0.08)$

•

Изношенно	A	В	C	D	E
сть салона					
A	1	7	5	7	7
В	1/7	1	1/3	1	1
C	1/5	3	1	3	3
D	1/7	1	1/3	1	1
E	1/7	1	1/3	1	1

• $\lambda_{max} = 5.71$, вектор весов $w^{(4)} = (0.59; 0.07; 0.20; 0.07; 0.07)$

lacktriangle

Общую оценку каждого автомобиля получим, используя формулу (3.5):

$$\begin{pmatrix} S_A \\ S_B \\ S_C \\ S_D \\ S_E \end{pmatrix} = \begin{pmatrix} 0,37 & 0,22 & 0,38 & 0,59 \\ 0,11 & 0,06 & 0,08 & 0,07 \\ 0,37 & 0,06 & 0,08 & 0,20 \\ 0,04 & 0,06 & 0,38 & 0,07 \\ 0,11 & 0,06 & 0,08 & 0,07 \end{pmatrix} \cdot \begin{pmatrix} 0,581 \\ 0,581 \\ 0,0225 \\ 0,114 \\ 0,049 \end{pmatrix} = \begin{pmatrix} 0,338 \\ 0,090 \\ 0,370 \\ 0,084 \\ 0,090 \end{pmatrix}$$

Отсюда наиболее предпочтительным по этим характеристикам для покупки является автомобиль C, его общая оценка $S_c = 0,370$, автомобили B и E одинаковы по предпочтительности, их общая оценка $S_B = S_E = 0,090$, оценка автомобиля A $S_A = 0,338$.

Предположим для сокращения количества вычислений, что ранжирование критериев K_1 , K_2 , K_3 , K_4 в виде вектора приоритетов

$$v = (0.581; 0.255; 0.114; 0.049)$$

отражает не только ваше мнение, но и совпадает с мнением экспертов-оценщиков, а приоритеты каждого автомобиля A, B, C, D и E определяются вектором (0.338; 0.090; 0.370; 0.084; 0.090). Салон успешно продал автомобиль B за 215 тыс. рублей, C за 405 тыс. рублей, D за 205 тыс. рублей и E за 250 тыс. рублей. Салону предложили для оценки автомобиль A. Какую адекватную рассмотренной структуре предпочтений стоимость надо назначить за этот автомобиль? Оценку стоимости можно рассчитать, например, по формуле

$$\frac{215000 \cdot 0.090 + 405000 \cdot 0.370 + 205000 \cdot 0.084 + 250000 \cdot 0.090}{1 - 0.338} = 316360$$

Следовательно, можно оценить автомобиль A в 316 тыс. рублей.