Champ magnétique

#chapitre28 #magnetique

Champ

Tout fonction de l'espace et du temps que représente la valeur d'une grandeur physique.

Champ scalaire:

Caractérisé par une nombre (et unité):

Champ vectoriel:

Grandeur caractérisé par une direction. Dans l'espace, il est équivalente à 3 champs scalaires.

Uniforme:

Si sa valeur est la même pour tout point.

Stationnaire:

Si la valeur en tout point de l'espace ne dépend que de t.

Lignes de champs :

Courbes tangentes au vecteur \vec{S} en tout point et orienté dans la direction du vecteur.

• Pas d'angles, peuvent pas se croiser, pas d'info sur la norme.

Champ magnétique

Cartographie du champ \vec{B}

Champ créé par un fil rectiligne

• Plus on s'éloigne du fil, moins le champ génère est intense.

Champ créé par une spire

Champ créé par un solénoïde

Champ créé par un aimant permanent

Propriétés des lignes de champ

- Ils sont des courbes fermés.
- Ils s'enroulent autour de leur sources.
- L'intensité du champ augmente si les lignes voisins se rapprochent.

Symétries et invariances d'un champ magnétique créé par une distribution de courante.

99 Principe de Curie >

"Lorsque certaines causes produisent certains effets, les éléments de symétrie des causes doivent se retrouver dans les effets produits"

Symétries

- Un plan de symétrie de la distribution de courante est un plan d'antisymetrie du champ \vec{B} crée par ces courantes.
- Un plan d'antisymétrie de la distribution de courante est un plan de symétrie du champ \vec{B} crée par ces courantes.

Invariances

• Le champ créé par une distribution invariante par translation le long d'un axe (oz) ne dépend pas de la coordonné z:

$$ec{B}=ec{B}(x,y,z_1)=ec{B}(x,y,z_2)=ec{B}(x,y).$$

• La norme du champ crée par une distribution invariante par rotation autour d'un axe (oz) ne dépend pas de la coordonné θ :

$$\|ec{B}(r, heta_1,z)\| = \|ec{B}(r, heta_2,z)\| = rac{\partial B}{\partial heta}(r, heta,z) = 0$$

Conséquence sur la direction du champ

• Le champ \vec{B} en tout point d'un plan d'antisymetrie de la distribution de courant est compris dans ce plan (le vecteur).

• Le champ \vec{B} en tout point d'un plan de symétrie de la distribution de courant est normal à ce plan (le vecteur).

Moment magnétique

Moment d'une spire :

$$ec{\mu} = I ec{S} = I S ec{n}$$
 en $A \cdot m^2$

• \vec{S} surface du cercle selon la règle de la main droite.

Moment d'une solénoïde :

Somme du moment de chaque spire.

Moment magnétique d'une aimant :

$$ec{M}=rac{ec{\mu}}{V}$$

 L'aimantation est au moment magnétique ce que la masse volumique est à la masse