POLITECNICO DI MILANO

Corso di Laurea Specialistica in Ingegneria Informatica Dipartimento di Elettronica e Informazione

Mitosis detection in histological images.
Algorithms based on machine learning and their performance compared to humans.

Relatore: Prof. Vincenzo Caglioti Correlatore: Ing. Alessandro Giusti

> Tesi di Laurea di: Claudio G. Caccia, matricola 751302

Anno Accademico 2012-20013

Abstract

Acknowledgements

....

Contents

A	bstra	net	i
A	ckno	wledgments	iii
Li	st of	Figures	vii
Li	st of	Tables	ix
\mathbf{G}	lossa	ry	xi
1	Intr	roduction	1
2	Sta	te of the art	3
	2.1	Detection Problems	3
	2.2	Feature extraction problems and classifiers	3
	2.3	Mitosis Detection	3
	2.4	Benchmarks	4
		2.4.1 Humans	4
		2.4.2 Algorithms	4
3	Pro	blem Definition	5
	3.1	From Detection to Classification	5
	3.2	Definition of Classification	5
	3.3	Classification Assessment	5
		3.3.1 Algorithms	5
		3.3.2 Humans	6
	3.4	Performance	6
4	Des	sign of a Mitosis Detection algorithm	7
	4.1	Structure	7
	4.2	Feature Extraction	7
	13	Classifiers	7

5	Design of a User Study	9
	5.1 Test Design	9
	5.1.1 Dataset	9
	5.1.2 User Interface	9
	5.2 Data collection	9
6	Experimental Results	11
	6.1 Accuracy of the Detection Algorithm	11
	6.2 Accuracy of Humans	11
	6.3 Accuracy of Algorithms	11
7	Conclusions	13
\mathbf{A}	Documentazione del progetto logico	15
Bi	bliography	15
В	Documentazione della programmazione	17
\mathbf{C}	Listings	19
D	Website Implementation	21
\mathbf{E}	Use case	23
\mathbf{F}	Datasheet	25

List of Figures

List of Tables

Glossary

is a generic term referring to the family of Unix-like computer operating systems that use the Linux kernel. xiv

computer is a programmable machine that receives input, stores and manipulates data, and provides output in a useful format. xiv

Introduction

"Quote 1"

Author 1

First part topics

- Detection problems in Computer Vision and in particular in biomedical imaging
- Relation between detection and classification
- Mitosis Detection as a component in breast cancer assessment
- Machine Learning used to automate the mitotic count task
- The validation problem:
 - from clinical point of view
 - from ML point of view

Second part topics

- General overview of the work: automatic Mitosis Detection in breast cancer histological images and comparison of the performances between humans and algorithms.
 - some literature
 - specificity of this work
 - achievements

- research directions

Third part topics

- Structure of the work
 - Section 1: state of the art...
 - Section 2: approach to the problem and model
 - Section 3: design of a mitosis detection algorithm
 - Section 4: design of a user study
 - Section 5: experimental results
 - Section 6: Conclusions
 - Appendixes: implementation details

Test riferimenti [?]

Naïve people don't know about alternative computer operating systems: Linuces, BSDs and ${\rm GNU/Hurd.}$

State of the art

"Rem tene, verba sequentur"
(Know the subject, the words will follow)

Marcius Porcius Cato Censorius

2.1 Detection Problems

General overview of the detection problems.

2.2 Feature extraction problems and classifiers

General description of the feature extraction based approach and classification

2.3 Mitosis Detection

Some biological background:

- What is a mitosis
- Why it is important in breast cancer classification
- Methods of classification of breast cancer

2.4 Benchmarks

2.4.1 Humans

Agreement between different histologists

2.4.2 Algorithms

Benchmarking of different detection algorithms and comparison with human performance. $\,$

Problem Definition

"Quote 3"

Author 3

3.1 From Detection to Classification

The process of detection and classification....

3.2 Definition of Classification

Definition of classification:

- \bullet input
- output
- classes

3.3 Classification Assessment

3.3.1 Algorithms

The role of features and classifiers

3.3.2 Humans

 ${\bf Experience, \, agreement...}$

3.4 Performance

Definition of performance

Design of a Mitosis Detection algorithm

"Ab uno disces omnis" (Learn everything from one)

Publius Vergilius Maro (Aeneis II, 65-66)

4.1 Structure

General structure of a Mitosis Detection algorithm.

4.2 Feature Extraction

(Qui o prima bisogna esplicitare che utilizziamo un subset di immagini)

4.3 Classifiers

Design of a User Study

"O"

Πρωταγόρας (Protagoras)

5.1 Test Design

5.1.1 Dataset

(NB: il set di immagini usate deve esser già stato descritto)

5.1.2 User Interface

Description of the website used to collect data from users.

5.2 Data collection

Description of the data collected by the website

Experimental Results

"Quote 6"

Author 6

- 6.1 Accuracy of the Detection Algorithm
- 6.2 Accuracy of Humans
- 6.3 Accuracy of Algorithms

(rif. paper)

Conclusions

"Quote 7"

Author 7

Appendix A

Documentazione del progetto logico

Documentazione del progetto logico dove si documenta il progetto logico del sistema e se è il caso si mostra la progettazione in grande del SW e dell'HW. Quest'appendice mostra l'architettura logica implementativa (nella Sezione 4 c'era la descrizione, qui ci vanno gli schemi a blocchi e i diagrammi).

Appendix B

Documentazione della programmazione

Documentazione della programmazione in piccolo dove si mostra la struttura ed eventualmente l'albero di Jackson.

Appendix C

Listings

Il listato (o solo parti rilevanti di questo, se risulta particolarmente esteso) con l'autodocumentazione relativa.

Appendix D

Website Implementation

Manuale utente per l'utilizzo del sistema

Appendix E

Use case

Un esempio di impiego del sistema realizzato.

Appendix F

Datasheet

Eventuali Datasheet di riferimento.