Introduction au machine learning

Présenté par : Viktor Iliev et Elian Strozyk

1er février 2024

Qu'est-ce que le machine learning?

Le machine learning :

- C'est un sous-domaine de l'intelligence artificielle
- Consiste à prédire statistiquement des patterns à partir de données

Les approches du machine learning

Figure – Différentes approches du machine learning [1]

Exemple simple de classification

Figure – Prédiction d'une variable catégorielle (couleur) selon 2 variables quantitatives (Variable 1 et Variable 2) [2]

Étapes pour entraîner un modèle

Matrice de confusion

Figure – Principe d'une matrice de confusion [3]

Matrice de confusion

Métriques de performance

PREDICTIVE VALUES

POSITIVE (1) NEGATIVE (0)

ACTUAL VALUES POSITIVE (1)

NEGATIVE (0)

1 00111112 (1)	HEOMITTE (0)
TP	FN
FP	TN

$$Accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$

$$Precision = \frac{TP}{TP + FP}$$

$$Recall = \frac{TP}{TP + FN}$$

$$F_1 = 2 \cdot \frac{Precision \cdot Recall}{Precision + Recall}$$

Ce workshop a pour objectif de :

- Présenter des algorithmes d'apprentissage supervisé pour de la classification
- Comprendre les grandes lignes de l'entraînement de modèles de machine learning
- Optimiser l'entraînement de modèles

Outils

On va utiliser:

- Python
- La bibliothèque Scikit-Learn

Description générale

Jeu de données modèle de classification sur le cancer du sein

- N = 569 instances
- 2 classes : bénigne (benign ou 0) et maligne (malignant ou 1)
- Instances par classe :
 - N = 357 pour la classe bénigne
 - N = 212 pour la classe maligne
- 30 features (= dimensions)

Features

- radius
- texture
- perimeter
- area
- smoothness

- compactness
- concavity
- concave points
- symmetry
- fractal dimension

Pour chaque feature, on a

- La mesure moyenne (mean)
- L'écart-type des valeurs (error)
- La moyenne des 3 valeurs les plus élevées (worst)

Exemple: mean radius; radius error; worst radius

Introduction Démarche et objectifs Programmation Jeu de données Algorithmes de classification

Naive Bayes Machine à vecteurs de support Random forest XGboost Perceptron multi-couche Classification par modèle

Figure – Classification Naive Bayes : classification selon la classe qui maximise la fonction de probabilité fonctionnelle

Machine à vecteurs de support (SVM)

Figure – Exemple d'une vaste marge (hyperplan) discriminant 2 classes [4]

Forêt d'arbres décisionnels

Figure – Exemple d'une forêt d'arbres décisionnels [5]

Extreme Gradient Boosting

Figure – Exemple de construction d'arbres décisionnels optimisés itérativement [6]

Multi-layer perceptron (MLP)

Figure – Exemple des couches d'un MLP pour diagnostiquer une maladie thyroïdienne [7]

Classification selon différents modèles

Figure – Exemples de classification pour différentes distributions de données et de modèles [8]

References I

Junjie Peng, Elizabeth Jury, Pierre Dönnes, and Coziana Ciurtin.

Machine learning techniques for personalised medicine approaches in immune-mediated chronic inflammatory diseases: Applications and challenges.

Frontiers in Pharmacology, 12, 09 2021.

Juliano Morimoto and Fleur Ponton.

Virtual reality in biology: could we become virtual naturalists? Evolution: Education and Outreach, 14, 05 2021.

References II

Classification par méthodes d'apprentissage supervisé et faiblement superviséd'images multimodales pour l'aide au diagnostic du lentigo malin en dermatologie.

PhD thesis, 02 2021.

Random forests, 2023.

Xgboost vs lightgbm : How are they different, 2023.

References III

Mehdi Hosseinzadeh, Omed Hassan Ahmed, Marwan Yassin Ghafour, Fatemeh Safara, Hawkar kamaran hama, Saqib Ali, Bay Vo, and Hsiu-Sen Chiang.

A multiple multilayer perceptron neural network with an adaptive learning algorithm for thyroid disease diagnosis in the internet of medical things.

The Journal of Supercomputing, 77(4):3616–3637, Apr 2021.

Classifier comparison, 2024.