Aut gp (Z/nZ) = ?

enough to a nower Autgr (Z/prZ) = ?

Lemm. $|A_{u_{\mathcal{F}}}(W)|$ is wen because $\frac{z}{w} \cong w$

 $\int_{S} ds = \frac{1}{2} \int_{S} ds =$

 $p: odd \Rightarrow (yeli'c of order p^{-1}(p-1) = \phi(p^r)$

 $P=2 \Rightarrow \mathbb{Z}/_{2}\mathbb{Z} \times \mathbb{Z}/_{2}^{-2}\mathbb{Z}$.

· 5 has order 2 ; i.e. $\frac{7}{2}$ i.e. $\frac{7}{2}$ applied 2^{r-2} true is id, but nothing less.

⇒ Aut(Z/2·Z) = Z/2·Z ·· Z/2·Z

· 2 t | are elements of order 2.

· $\left(2^{r-1}\pm\right)^2 \equiv 1 \pmod{2^r}$

So 1 - 2^{r-1} 2 different are maps of order 2,

So the group count be \\\ \frac{2}{2^{-1}} \bigz \tag{6nly his 1 elt of order 2).

Classify all groups of order $18 = 2.3^2$ (say G is one)

Sylow theorems: JPEG W/ IPI=2, and JQEG W/ IQI=9.

Q \leq G reason 1: Sylow than 3: $N_s = 1 \text{ mod 3}$, $N_a \mid 2 \Rightarrow N_a = 1$. Peason 2: if $H' \leq H$ st. |H/H'| = 2, then $|H' \leq H|$.

PnQ = {e} relatively prime order

$$PQ = QP = G \qquad |PQ| \text{ is div. by } 2 \text{ and } 9.$$

$$Q = Q \times P \qquad \text{for some } \infty.$$

$$Q : P \longrightarrow \text{Aut}_{y}(Q) \qquad \text{recall} \quad |H| = P' \Rightarrow Z(H) \neq \{s\}$$

$$P = \mathbb{Z}_{2}Z ; \quad Q \cong \mathbb{Z}_{4}Z \qquad (\mathbb{Z}_{5}Z)^{2}$$

$$Case 1: \qquad pownlor \not \uparrow \text{ Aut}_{y}(Q)$$

$$S = \mathbb{Z}_{4}Z \qquad (\mathbb{Z}_{5}Z)^{2}$$

$$S = \mathbb{Z}_{4}Z \qquad \text{solve } G, \text{ and } G$$

$$S = \mathbb{Z}_{4}Z \qquad \mathbb{Z}_{6}Z \qquad (\mathbb{Z}_{5}Z)^{2}$$

$$S = \mathbb{Z}_{4}Z \qquad \mathbb{Z}_{6}Z \qquad \mathbb{Z}_{$$

Aut (Q)
$$\cong$$
 GL₂(F₃)

$$\begin{bmatrix}
\alpha & \beta \\
\gamma & S
\end{bmatrix} \text{ represents an automorphism sending} \\
(1,0) \longmapsto (\alpha, 8) \\
(0,1) \longmapsto (\beta, \delta)$$
always a homomorphism, isomorphism iff $\alpha S - \beta S \neq 0$

So count all mentrices which square to identity. We still country gp-hom's α: P→ Andgr(a) = GLz(F3) gunter W s.f. x=1. $(dat X)^2 = 1$ gives no into: $det X = \pm 1 = F_3 \setminus \{\delta\}$. $X = X^{-1}$: $\begin{bmatrix} \alpha & \beta \\ \gamma & \delta \end{bmatrix} = \frac{1}{2} \begin{bmatrix} \delta & -\beta \\ -\gamma & \cdots \end{bmatrix}$ So if $Vet X = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ or $\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$ if det X = 1 tun x+8 = 0, x8 - 88 - - 1 $\alpha = \S = 0 \implies \times = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \text{ or } \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix} \\
\alpha = 1, \S = 1 \implies \times = \begin{bmatrix} 1 & 0 \\ x & -1 \end{bmatrix} \text{ or } \begin{bmatrix} 1 & x \\ 0 & -1 \end{bmatrix}$ $\alpha = -1, \S = 1 \implies \times = \begin{bmatrix} -1 & 0 \\ x & 1 \end{bmatrix} \text{ or } \begin{bmatrix} -1 & x \\ 0 & 1 \end{bmatrix}$ $\alpha = -1, \S = 1 \implies \times = \begin{bmatrix} -1 & 0 \\ x & 1 \end{bmatrix} \text{ or } \begin{bmatrix} -1 & x \\ 0 & 1 \end{bmatrix}$ $\alpha = -1, \S = 1 \implies \times = \begin{bmatrix} -1 & 0 \\ x & 1 \end{bmatrix} \text{ or } \begin{bmatrix} -1 & x \\ 0 & 1 \end{bmatrix}$ $\alpha = -1, \S = 1 \implies \times = \begin{bmatrix} -1 & 0 \\ x & 1 \end{bmatrix} \text{ or } \begin{bmatrix} -1 & x \\ 0 & 1 \end{bmatrix}$ $\alpha = -1, \S = 1 \implies \times = \begin{bmatrix} -1 & 0 \\ x & 1 \end{bmatrix} \text{ or } \begin{bmatrix} -1 & x \\ 0 & 1 \end{bmatrix}$ $\alpha = -1, \S = 1 \implies \times = \begin{bmatrix} -1 & 0 \\ x & 1 \end{bmatrix} \text{ or } \begin{bmatrix} -1 & x \\ 0 & 1 \end{bmatrix}$ $\alpha = -1, \S = 1 \implies \times = \begin{bmatrix} -1 & 0 \\ x & 1 \end{bmatrix} \text{ or } \begin{bmatrix} -1 & x \\ 0 & 1 \end{bmatrix}$ $\alpha = -1, \S = 1 \implies \times = \begin{bmatrix} -1 & 0 \\ x & 1 \end{bmatrix} \text{ or } \begin{bmatrix} -1 & x \\ 0 & 1 \end{bmatrix}$ $\alpha = -1, \S = 1 \implies \times = \begin{bmatrix} -1 & 0 \\ x & 1 \end{bmatrix} \text{ or } \begin{bmatrix} -1 & x \\ 0 & 1 \end{bmatrix}$ $\alpha = -1, \S = 1 \implies \times = \begin{bmatrix} -1 & 0 \\ x & 1 \end{bmatrix} \text{ or } \begin{bmatrix} -1 & x \\ 0 & 1 \end{bmatrix}$ $\alpha = -1, \S = 1 \implies \times = \begin{bmatrix} -1 & 0 \\ x & 1 \end{bmatrix} \text{ or } \begin{bmatrix} -1 & x \\ 0 & 1 \end{bmatrix}$ $\alpha = -1, \S = 1 \implies \times = \begin{bmatrix} -1 & 0 \\ x & 1 \end{bmatrix} \text{ or } \begin{bmatrix} -1 & x \\ 0 & 1 \end{bmatrix}$ $\alpha = -1, \S = 1 \implies \times = \begin{bmatrix} -1 & 0 \\ x & 1 \end{bmatrix} \text{ or } \begin{bmatrix} -1 & x \\ 0 & 1 \end{bmatrix}$ $\alpha = -1, \S = 1 \implies \times = \begin{bmatrix} -1 & 0 \\ x & 1 \end{bmatrix} \text{ or } \begin{bmatrix} -1 & x \\ 0 & 1 \end{bmatrix}$ $\alpha = -1, \S = 1 \implies \times = \begin{bmatrix} -1 & 0 \\ x & 1 \end{bmatrix} \text{ or } \begin{bmatrix} -1 & x \\ 0 & 1 \end{bmatrix}$ $\alpha = -1, \S = 1 \implies \times = \begin{bmatrix} -1 & 0 \\ x & 1 \end{bmatrix} \text{ or } \begin{bmatrix} -1 & x \\ 0 & 1 \end{bmatrix}$ $\alpha = -1, \S = 1 \implies \times = \begin{bmatrix} -1 & 0 \\ x & 1 \end{bmatrix} \text{ or } \begin{bmatrix} -1 & x \\ 0 & 1 \end{bmatrix}$ $\alpha = -1, \S = 1 \implies \times = \begin{bmatrix} -1 & 0 \\ x & 1 \end{bmatrix} \text{ or } \begin{bmatrix} -1 & x \\ 0 & 1 \end{bmatrix}$ $\alpha = -1, \S = 1 \implies \times = \begin{bmatrix} -1 & 0 \\ x & 1 \end{bmatrix} \text{ or } \begin{bmatrix} -1 & x \\ 0 & 1 \end{bmatrix}$ $\alpha = -1, \S = 1 \implies \times = \begin{bmatrix} -1 & 0 \\ x & 1 \end{bmatrix} \text{ or } \begin{bmatrix} -1 & x \\ 0 & 1 \end{bmatrix}$ $\alpha = -1, \S = 1 \implies \times = \begin{bmatrix} -1 & 0 \\ x & 1 \end{bmatrix} \text{ or } \begin{bmatrix} -1 & x \\ 0 & 1 \end{bmatrix}$ $\alpha = -1, \S = 1 \implies \times = \begin{bmatrix} -1 & 0 \\ x & 1 \end{bmatrix} \text{ or } \begin{bmatrix} -1 & x \\ 0 & 1 \end{bmatrix}$ $\alpha = -1, \S = 1 \implies \times = \begin{bmatrix} -1 & 0 \\ x & 1 \end{bmatrix} \text{ or } \begin{bmatrix} -1 & x \\ 0 & 1 \end{bmatrix}$ $\alpha = -1, \S = 1 \implies \times = \begin{bmatrix} -1 & 0 \\ x & 1 \end{bmatrix} \text{ or } \begin{bmatrix} -1 & x \\ 0 & 1 \end{bmatrix}$ $\alpha = -1, \S = 1 \implies \times = \begin{bmatrix} -1 & 0 \\ x & 1 \end{bmatrix}$ $\alpha = -1, \S = 1 \implies \times = \begin{bmatrix} -1 & 0 \\ x & 1 \end{bmatrix}$ $\alpha = -1, \S = 1 \implies \times = \begin{bmatrix} -1 & 0 \\ x & 1 \end{bmatrix}$ $\alpha = -1, \S = 1 \implies \times = \begin{bmatrix} -1 & 0 \\ x & 1 \end{bmatrix}$ $\alpha = -1, \S = 1 \implies \times = \begin{bmatrix} -1 & 0 \\ x & 1 \end{bmatrix}$ $\alpha = -1, \S = 1 \implies$ all are conjugate Lemm: Let H&N be two groups, α, β: H - Andyr(N) or norms Assume J TeAntyr (N) s.t. $\alpha(h)(n) = T(\beta(h)(T^{-1}(n))) \forall h \in H, n \in N.$ i.e. thet, a(h) = T.B(h).T" Then NXH = NXH (T(n), N) \((n, N) : f is an isomorphism D So $P \longrightarrow Aut_{gp}(Q) \cong GL_2(\mathbb{F}_3)$ has three options.

greator XThese relts on just $\rho \in Q$.

if X = (i, i), $Q \neq \rho = (x, y_1, y_2)$ $xy_1x^2 = y_1, y_2 = y_2y_1$ $xy_1x^2 = y_1, xy_2x^2 = y_2$ $xy_1x^2 = y_1, xy_2x^2 = y_2$ $xy_1x^2 = y_1, xy_2x^2 = y_2$

Another approach: