List of Phase Models' Parameters				
Parameter	Value	Parameter of the 3rd Gen	Value	Comment
of the		Prototype		
phase				
Model				
ω_k	$24\ 2\pi\ 10^9 Hz$	$\omega_k = 2\pi f_k$	$24 \ 10^9 Hz$	intrinsic SLL fre-
				quency
K_k^{VCO}	$2\pi 754,64 \ 10^6 Hz/V$	$K_{VCO}^{prebias}$	$754,64*10^6 Hz/V$	sensitivity of the
				VCO at f_{VCO}^{out}
A_k^{bias}	2.12V	$A_k^{prebias}$	2.12V	pre-bias voltage of
				the VCO at f_{VCO}^{out}
$ au^{cc}$	010ns	$ au^{cc}$	010ns	crosscoupling time-
				delay
A_k^{PD}	1.6V	$A_k^{PD} \!=\! A_k^{PD,max} \!-\! A_k^{PD,min} \!=\!$	0.8 - (-0.8) = 1.6V	voltage of the PD
		$\overline{V_{A-ar{A}},max} - \overline{V_{A-ar{A}},min}$ $A_k^{PD,off}$		
$A_k^{PD,off}$	$-A_k^{PD}/2$	$A_k^{PD,off}$	0V	offset voltage of
				the PD
$G_k^{a,1}$	0.010.85 1	$G_k^{a,1}$	-20dB1.5dB	gain (damping) of
				the first adder
$G_k^{a,2}$	1	$G_k^{a,2}$	0 dB	gain of the second
				adder
$\frac{G_k^{LF}}{\tau_m^c ax *}$	1	G_k^{LF} $\tau^c = \frac{1}{\omega_c} = \frac{1}{2\pi f_c}$	0 dB	loop filter gain
$\tau_m^c ax *$	$1/(2\pi * 120 * 10^6)Hz^{-1}$	$\tau^{c} = \frac{1}{c} = \frac{1}{2\pi f}$	120MHz	maximum cut off
		wc Znjc		frequency given by
				VCO
v_k	1512	v_k	1512	division of the
				VCO's frequency
K_k	$2\pi \ 301.856 \ 10^6 \ G_k^{a,1} Hz/V$	$K_k = K_k^{VCO} G_k^{a,1} G_k^{a,2} A_k^{PD} / 2$		coupling strength

 $^{^{1}}$ For the conference paper IMS $\boldsymbol{G}_{k}^{a,1}=1.$