TRANSFORMADA DE HOUGH (DETECÇÃO DE CÍRCULOS & OUTRAS FORMAS)

ES235 - Aula 15 João Marcelo Teixeira Willams Costa

DEFINIÇÃO

- Funciona de maneira "parcialmente" análoga à transformada de Hough de linhas
- Originalmente, 3 parâmetros seriam necessários (grid volumétrico)

$$(x-x_{center})^2+(y-y_{center})^2=r^2$$
 where $(x_{center},y_{center})^2$

 Utiliza informação de gradiente das arestas ao invés de 3 parâmetros (Hough Gradient Method)

HOUGH GRADIENT METHOD :: STEP BY STEP

- Edge detection in the image, such as Canny edge detection.
- Calculate the local gradient for the edge points using Sobel operator.
- Use an accumulator to count the possible circle center on the normal direction of edge points' tangent.
- Choose the peak circle center and circle radius for the circle general equation.

EXEMPLOS

- 1. In detecting lines
- The parameters r and q were found out relative to the origin (0,0)
- 2. In detecting circles
- The radius and center were found out
- 3. In both the cases we have knowledge of the shape
- 4. We aim to find out its location and orientation in the image
- 5. The idea can be extended to shapes like ellipses, parabolas, etc.

Carran Harren T

GENERALIZED HOUGH TRANSFORM		
Analytic Form	Parameters	Equation

 ρ , θ

 X_0, Y_0, ρ

 X_0, Y_0, ρ, θ

 x_0 , y_0 , a, b, θ

 $x\cos\theta + y\sin\theta = \rho$

 $(x-x_0)^2+(y-y_0)^2=r^2$

 $(y-y_0)^2 = 4\rho(x-x_0)$

 $(x-x_0)^2/a^2+(y-y_0)^2/b^2=1$

Line

Circle

Parabola

Ellipse

- 1.The Generalized Hough transform can be used to detect <u>arbitrary</u> shapes
- 2. Complete specification of the exact shape of the target object is required
- 3. The Shape is specified in the form of the R-Table
- 4.Information that can be extracted are
 - 1.Location
 - 2.Size
 - 3.Orientation
 - 4. Number of occurrences of that particular shape

- Algorithm to create the R-Table
 - 1.Choose a reference point
 - 2.Draw a vector from the reference point to an edge point on the boundary
 - 3. Store the information of the vector against the gradient angle in the R-Table
 - 4. There may be more than one entry in the R-Table corresponding to a gradient value

- 1. Form an Accumulator array to hold the candidate locations of the reference point
- 2. For each point on the edge
- 1.Compute the gradient direction and determine the row of the R-Table it corresponds to
- 2. For each entry on the row calculate the candidate location of the reference point $x_c = x_i + r \cos \theta$
- 3.Increase the Accumulator value for that $y_c = y_i + r \sin \theta$ 3.The reference point location is given by $y_c = y_i + r \sin \theta$ lue in the
- accumulator array

- 1. The size and orientation of the shape can be found out by simply manipulating the R-Table
- 2.For scaling by factor S multiply the R-Table vectors by S
- 3.For rotation by angle q, rotate the vectors in the R-Table by angle q

REFERÊNCIAS

Rafael C. Gonzalez and Richard E. Woods. 2006. Digital Image Processing (3rd Edition). Prentice-Hall, Inc., Upper Saddle River, NJ, USA.

http://www-cs.ccny.cuny.edu/~wolberg/capstone/opencv/LearningOpenCV.pdf

https://www.researchgate.net/publication/297194759_An_image_localization_system_base d_on_Gradient_Hough_Transform

http://www.itriacasa.it/generalized-hough-transform/

http://web.cecs.pdx.edu/~mperkows/CLASS_479/lectures_2012_479/2011.%201009.%20Generalized%20Hough%20Transform%202.ppt