Seminar 5

Remember: If $x^n = 1$ or nx = 0 (depending on the operation), then ord(x) = n. Also, the order of the identity element is 1.

- 1. For \mathbb{Z}_8 we compute the order of an element \hat{x} as the smallest $k \in \mathbb{N}^*$ such that $k \cdot \hat{x} = \hat{0}$.
 - For U_6 we compute the order of an element ϵ as the smallest $k \in \mathbb{N}^*$ such that $\epsilon^k = 1$.
- 2. For (K, \cdot) we have $\forall x \in K \setminus \{e\}$, ord(x) = 2. The order of the elements of (S_3, \circ) are 1, 2 or 3.

We have $(Q, \cdot) = \{\pm 1, \pm i, \pm j, \pm k\}$, hence ord(1) = 1, ord(-1) = 2 and $\forall x \in Q \setminus \{\pm 1\}$, ord(x) = 4.

They are not cyclic, as there is no element whose order is equal to the order of the group.

- 3. (i) By computing matrix multiplications, we easily get: ord(A) = 4, ord(B) = 2, $ord(A \cdot B) = \infty$, $ord(B \cdot A) = \infty$.
 - (ii) Take (\mathbb{C}^*, \cdot) group, with $ord(2) = \infty, ord(\frac{1}{2}) = \infty$, but $ord(2 \cdot \frac{1}{2}) = ord(1) = 1 < \infty$.
- 4. Let a = [m, n] and d = (m, n). If m = m'd and n = n'd, then a = m'n'd = mn' = m'n.
 - (i) From $(xy)^a = x^a \cdot y^a = (x^m)^{n'} \cdot (y^n)^{m'} = 1$, so ord(xy) is finite and divides a.
 - (ii) If ord(xy) = b, then $x^b \cdot y^b = (xy)^b = 1$, so $x^b = y^{-b}$. But $x^b \in \langle x \rangle$ and $y^{-b} \in \langle y \rangle \Rightarrow x^b = y^{-b} = 1$. As ord(x) = m and ord(y) = n and $m \mid b$, $n \mid b$, so $a \mid b$, together with (i) we get ord(xy) = [m, n].
 - (iii) From Lagrange's theorem we have $|\langle x \rangle \cap \langle y \rangle|$ divides $|\langle x \rangle| = m$ and $|\langle y \rangle| = n$. As (m,n) = 1, we have $|\langle x \rangle \cap \langle y \rangle| = 1$. So $\langle x \rangle \cap \langle y \rangle = \{1\}$. So, together with (ii) we get that ord(xy) = [m,n] = mn.

5. Suppose $ord(xy) = m < \infty$. Then $(xy)^m = 1 \iff xy \cdot xy \dots xy = 1$ (m times) $\iff x \cdot (yx)^{m-1} \cdot y = 1$.

If we multiply on the left by y and on the right by y^{-1} , then we get: $(yx)^m = 1$.

This means that $ord(yx) < \infty$ and $ord(yx) \mid m$.

Doing the same for $ord(yx) = n \Rightarrow ord(xy) < \infty$ and $ord(xy) \mid n$.

In the end ord(xy) = ord(yx).

Also, if we take $ord(xy) = \infty$ and suppose $ord(yx) < \infty$. With the same method we'll have $ord(xy) < \infty$, which is a contradiction.

- 6. (i) To check if t(G) is a subgroup of G, we need to check:
 - i. $t(G) \neq \emptyset$
 - ii. $\forall x,y \in t(G)$, i.e. $ord(x), ord(y) < \infty \Rightarrow x \cdot y \in t(G)$, i.e. $ord(xy) < \infty$.
 - iii. $\forall x \in t(G) \Rightarrow x^{-1} \in t(G)$, i.e. $ord(x^{-1}) < \infty$.

Remember that if G is abelian, $(xy)^m = x^m \cdot y^m$.

- (ii) If G is not abelian, the property is not true. (See exercise 4)
- 7. If $(G, \cdot) \simeq (G', \cdot) \Rightarrow \exists f : G \to G'$ group isomorphism.

Take $g: t(G) \to t(G')$ with g(x) = f(x). Then g is a group homomorphism and it is injective.

We need to prove that g is surjective.

Let $y \in t(G') \subseteq G'$, say ord(y) = n. Then $\exists x \in G$ such that y = f(x) as f is bijective. Then $y^n = 1 \iff f(x)^n = 1 \iff f(x^n) = f(1) \iff x^n = 1$. Hence ord(x) = ord(y) = m, and so $x \in t(G)$. Hence g is surjective.

8. (i)
$$t(\mathbb{Q},+) = \{x \in \mathbb{Q} \mid ord(x) < \infty\} = \{0\}$$

$$t(\mathbb{Q}^*,\cdot) = \{x \in \mathbb{Q}^* \mid ord(x) < \infty\} = \{-1,1\}$$

But $t(\mathbb{Q}, +) \ncong t(\mathbb{Q}^*, \cdot) \Rightarrow (\mathbb{Q}, +) \ncong (\mathbb{Q}^*, \cdot)$.

(ii) As above.

- 9. (i) Let $ord(x) = n \in \mathbb{N}^*$. Then $x^n = 1$. As f is a group homomorphism, $[f(x)]^n = f(x^n) = f(1) = 1' \Rightarrow ord(f(x)) < \infty$ and $ord(f(x)) \mid n \iff ord(f(x)) \mid ord(x)$.
 - (ii) Using (i), we consider f to be injective. Let $ord(f(x)) = m \Rightarrow f(x^m) = [f(x)]^m = 1' = f(1) \Rightarrow x^m = 1$, but $ord(x) = n \Rightarrow n \mid m$. We know from (i) that $ord(f(x)) \mid ord(x)$. Hence, $n = m \iff ord(x) = ord(f(x))$.
- 10. We have

$$\begin{split} \mathbb{Z}_4 &= \{\hat{0}, \hat{1}, \hat{2}, \hat{3}\}, \\ \mathbb{Z}_2 \times \mathbb{Z}_2 &= \{(\overline{0}, \overline{0}), (\overline{0}, \overline{1}), (\overline{1}, \overline{0}), (\overline{1}, \overline{1})\}. \end{split}$$

If there is a group homomorphism $f: \mathbb{Z}_4 \to \mathbb{Z}_2 \times \mathbb{Z}_2$, then f is injective, and so ord(x) = ord(f(x)) for every $x \in \mathbb{Z}_4$ by Ex. 9.

But $ord(z_1) = 4$ and $\mathbb{Z}_2 \times \mathbb{Z}_2$ has no element of order 4. Hence, these groups can't be isomorphic.