Measure Theory

Alec Zabel-Mena

 $\underline{\text{Text}}$

Real Analysis (4^{th} edition) P.M. Fitzpatrick & H.L. Royden

January 10, 2023

Contents

1	The Real Numbers		5
	1.1	Open Sets, and σ -Algebras	5
	1.2	Sequences of Real Numbers	7
	1.3	Continuous Functions of a Real Variable	9
2	Lebesgue Measure		11
	2.1	Lebesgue Outermeasure	11
	2.2	Lebesuge Measurable Sets	13
	2.3	Inner and Outer Approximations	16
	2.4	The Borel-Cantelli Lemma	17
	2.5	Nonmeasurable Sets, The Cantor Set, and The Cantor-Lebesgue Function . $$.	19
3	Lebesgue Measurable Functions		23
	3.1	Properties of Lebesgue Measurable Functions	23
	3.2	Sequential Pointwise Limits, and Simple Approximation	26

4 CONTENTS

Chapter 1

The Real Numbers

1.1 Open Sets, and σ -Algebras

Definition. We call a set U of real numbers **open** provided for any $x \in U$, there is an r > 0 such that $(x - r, x + r) \subseteq U$.

Lemma 1.1.1. The set of real numbers \mathbb{R} , together with open sets defines a topology on \mathbb{R} .

Proof. Notice that both \mathbb{R} and \emptyset are open sets. Moreover, if $\{U_n\}$ is a collection of open sets, then so is thier union. Now, consider the fintic collection $\{U_k\}_k = 1^n$ and let $U = \bigcap_{k=1}^n U_k$. If U is empty, we are done. Otherwise, let $x \in U$. Then $x \in U_k$ for every $1 \le k \le n$, and since each U_k is open, choose an $r_k > 0$ for which $(x - r_k, x + r_k) \subseteq U_k$. Then let $r = \min\{r_1, \ldots, r_n\}$. Then r > 0, and we have $(x - r, x + r) \subseteq U$, which makes U open in \mathbb{R}

Lemma 1.1.2. Every nonempty set is the disjoint union of a countable collection of open sets.

Proof. Let U be nonempty and open in \mathbb{R} . LEt $x \in U$. Then there is a y > x for which $(x,y) \subseteq U$ and there is a z < x for which $(z,x) \subseteq U$. Now, let $a_x = \inf\{z : (z,x) \subseteq U\}$ and $b_x = \sup\{y : (x,y) \subseteq U\}$, and let $I_x = (a_x,b_x)$. Then we have

$$x \in I_x$$
 and $a_x \notin I_x$ and $b_x \notin I_x$

Let $w \in I_x$ such that $x < w < b_x$. Then there is a y > w such that $(x,y) \subseteq U$ so that $w \in U$. Now, if $b_x \in U$, then there is an r > 0 for which $(b_x - r, b_x + r) \subseteq U$, in particular, $(x, b_x + r) \subseteq U$. But b_r is the least upperbound of all such numbers, and $b_x < b_x + r$, a contradiction. Thus $b_x \notin U$, and hence $b_x \notin I_x$. A similar argument shows that $a_x \notin I_x$.

Consider now the collection $\{I_x\}_{x\in U}$. Then $U=\bigcup I_x$ and since $a_x,b_x\notin I_x$ for each x, the collection $\{I_x\}$ is a disjoint collection. Lastly, by the density of $\mathbb Q$ in $\mathbb R$ there is a 1–1 mapping between this collection and $\mathbb Q$, making it countable.

Definition. Let $E \subseteq \mathbb{R}$ a set. We call a point $x \in \mathbb{R}$ a **point of closure** of E if every open interval containing x also contains a point of E. We call the collection of all such points the **closure** of E, and denote it $\operatorname{cl} E$. If $E = \operatorname{cl} E$, then we say that E is **closed**.

Lemma 1.1.3. For any set E of real numbers, $\operatorname{cl} E$ is closed; i.e. $\operatorname{cl} E = \operatorname{cl} (\operatorname{cl} E)$. Moreover, $\operatorname{cl} E$ is the smallest closed set containing E.

Lemma 1.1.4. Every set E of rea numbers is open if, and only if $\mathbb{R}\setminus E$ is closed.

Definition. Let $E \subseteq \mathbb{R}$ a set. We call a collection $\{E_{\lambda}\}$ a **cover** of E if $E \subseteq \bigcup E_{\lambda}$. If each E_{λ} is open, then we call this collection an **open cover** of E.

Theorem 1.1.5 (Heine-Borel). For any closed and bounded set F of \mathbb{R} , every open cover of F has a finite subcover.

Proof. Suppose first that F = [a, b], for $a \leq b$ real numbers. Then F is closed and bounded. Let \mathcal{F} be an open cover of [a, b], and deifne $E = \{x \in [a, b] : [a, x] \text{ has a finite subcover by sets in } \mathcal{F}\}$. Notice that $a \in E$, so that E is nonempty. Now, since E is bounded by b, by the completeness of \mathbb{R} , let $c = \sup\{E\}$. Then $c \in [a, b]$ and there is a set $U \in \mathcal{F}$ with $c \in U$. Since U is open, there exists an $\varepsilon > 0$ such that $(c - \varepsilon, c + \varepsilon) \subseteq U$. Now, $c - \varepsilon$ is not an upperbound of E, so there is an $x \in E$ with $c - \varepsilon < x$, and a finite collection of open sets $\{U_i\}_{i=1}^k$ covering [a, x]. Then the collection $\{U_i\}_{i=1}^k \cup U$ covers [a, x] so that c = b, and we have found a finite subcover of F.

Now, let F be closed and bounded. Then it is contained in a closed bounded interval [a, b]. Now, let $U = \mathbb{R} \setminus F$ open and \mathcal{F} an open cover of F. Let $\mathcal{F}' = \mathcal{F} \cup U$. Since \mathcal{F} covers F, \mathcal{F}' covers [a, b]. By above, there is a finite subcover of [a, b], and hence of F by sets in \mathcal{F}' . Removine U from \mathcal{F}' , we get a finite subcover of F by sets in F.

Theorem 1.1.6 (The Nested Set Theorem). Let $\{F_n\}$ be a descending collection of nonempty closed sets of \mathbb{R} , for which F_1 is bounded. Then

$$\bigcap F_n \neq \emptyset$$

Proof. Let $F = \bigcap F_n$, and suppose to the contrary that F is empty. Then for all $x \in \mathbb{R}$, there is an $n \in \mathbb{Z}^+$ for which $x \notin F_n$. So that $x \in U_n = \mathbb{R} \setminus F_n$. TYhen $U_n = \mathbb{R}$, and each U_n is open. So $\{U_n\}$ is an open cover of \mathbb{R} , and hence F_1 . By the theorem of Heine-Borel, there is an N > 0 such that $F \subseteq \bigcup_{n=1}^N U_n$. Since $\{F_n\}$ is descending, the collection $\{U_n\}$ is ascending, and hence $\bigcup U_n = U_N = \mathbb{R} \setminus F_N$ which makes $F_1 \mathbb{R} \setminus F_N$, a contradiction.

Definition. Let X be a set. We call a collection \mathcal{A} of subsets of X σ -algebra if

- $(1) \emptyset \in \mathcal{A}.$
- (2) For any $A \in \mathcal{A}$, $X \setminus A \in \mathcal{A}$.
- (3) If $\{A_n\}$ is a countable collection of elements of \mathcal{A} , then their union is an element of \mathcal{A} .

Lemma 1.1.7. Let \mathcal{F} a collection of subsets of a set X. The intersection of all σ -algebras containing \mathcal{F} is a σ -algebra. Moreover, it is the smallest such σ -algebra.

Definition. We define the **Borel sets** of \mathbb{R} to be the σ -algebra of \mathbb{R} cotnaining all open sets in \mathbb{R}

Lemma 1.1.8. Every closed set of \mathbb{R} is a Borel set.

Definition. We call a countable intersection of open sets of \mathbb{R} a G_{δ} -set and we call a countable union of closed sets of \mathbb{R} an F_{σ} -set.

1.2 Sequences of Real Numbers

Definition. A sequence $\{a_n\}$ of real numbers is said to **converge** to a point a, if, for every $\varepsilon > 0$, there is an N > 0 such that

$$|a - a_n| < \varepsilon$$
 whenever $n \ge N$

We call a the **limit** of $\{a_n\}$ and write $\{a_n\} \to a$, or

$$\lim_{n \to \infty} \{a_n\} = a$$

Lemma 1.2.1. Let $\{a_n\} \to a$ a sequence of real numbers converging to $a \in \mathbb{R}$. Then the limit of $\{a_n\}$ is unique, $\{a_n\}$ is bounded, and for any $c \in \mathbb{R}$, if $a_n \leq c$ for all n, then $a \leq c$.

Theorem 1.2.2 (The Monoton CVonvergence Theorem). A monotone sequence of real numbers converges to a point if, and only if it is bounded.

Proof. Without loss of generality, suppose that the sequence $\{a_n\}$ is increasing. If $\{a_n\} \to a$, by lemma 1.2.1, $\{a_n\}$ is bounded. On the otherhand, suppose that $\{a_n\}$ is bounded. Let $S = \{a_n : n \in \mathbb{Z}^+\}$, then by the completeness of \mathbb{R} , let $a = \sup S$. Let $\varepsilon > 0$. Notice that $a_n \leq a$ for all n. Now, since $a - \varepsilon$ is not an upperbound, there exists an N > 0 for which $a_N > a - \varepsilon$, then since $\{a_n\}$ is increasing, $a_n > a - \varepsilon$ whenever $n \geq N$. So we get

$$|a - a_n| < \varepsilon$$
 whenever $n \ge N$

Which makes $\{a_n\} \to a$.

Theorem 1.2.3 (Bolzano-Weierstrass). Every bounded sequence has a convergent subsequence.

Proof. Let $\{a_n\}$ be a bounded sequence, and let M>0 such that $|a_n|\geq M$ for all $n\in\mathbb{Z}^+$. Define $E_n=\operatorname{cl}\{a_j:j\geq n\}$. Then $EE\subseteq [-M,M]$. Thus $\{E_n\}$ is a decreasing sequence of closed, bounded, and nonempty sets of \mathbb{R} . By the nested set theorem, the intersection $E=\bigcap E_n$ is nonempty. Choose an $a\in E$. Then for every $k\in\mathbb{Z}^+$, a is a point of closure of the set $\{a_j:j\geq k\}$. SO that $a_j\in(a-\frac{1}{k},a+\frac{1}{k})$ whenever $j\geq k$. By induction, construct a strictly increasing sequence $\{n_k\}$ of natural numbers for which $|a-a_{n_k}|<\varepsilon$. Then by the principle of Archimedes, $\{a_{n_k}\}\to a$, and we have a convergent subsequence.

Definition. We call a sequence $\{a_n\}$ Cauchy if for every $\varepsilon > 0$, there is an N > 0 for which

$$|a_m - a_n| < \varepsilon$$
 whenever $m, n \ge N$

Theorem 1.2.4 (The Cauchy Convergence Criterion). A sequence of real numbers converges if, and only if it is Cauchy.

Proof. Suppose that the sequence $\{a_n\} \to a$ converges to $a \in \mathbb{R}$. Then for any $m, n \in \mathbb{Z}^+$, notice that $|a_m - a_n| \le |a_m - a| + |a - a_n|$. Let $\varepsilon > 0$ and choose N > 0 such that $|a - a_n| < \frac{\varepsilon}{2}$, and $|a_m - a| < \frac{\varepsilon}{2}$. Then if $n, m \ge N$, we get $|a_m - a_n| < \varepsilon$, which makes $\{a_n\}$ Cauchy.

Conversely, suppose that $\{a_n\}$ is Cauchy. Let $\varepsilon=1$ and choose N>0 such that if $m,n\geq N$, then $|a_m-a_n|<1$. Then we get $|a_n|\leq 1+|a_N|$ for all $n\geq N$. Define $M=1+\max\{|a_1|,\ldots,|a_N|\}$. Then $|a_n|\leq M$ for all n. This makes $\{a_n\}$ bounded. By the theorem of Bolzano-Weierstrass, $\{a_n\}$ has a convergent subsequence $\{a_{n_k}\}\to a$. Let $\varepsilon>0$, since $\{a_n\}$ is Cauchy, choose an N>0 such that $|a_m-a_n|<\frac{\varepsilon}{2}$ whenever $n,m\geq N$. Likewise, we get $|a-a_{n_k}|<\frac{\varepsilon}{2}$ and $n_k\geq N$. Thus we observe that $|a_n-a|\leq |a_n-a_{n_k}|+|a-a_{n_k}|<\varepsilon$ and so $\{a_n\}\to a$.

Theorem 1.2.5. Let $\{a_n\} \to a$ and $\{b_n\} \to b$ be convergent sequences. Then for any $\alpha, \beta \in \mathbb{R}$, we have that the sequence $\{\alpha a_n + \beta b_n\}$ converges and that

$$\lim_{n \to \infty} \{\alpha a_n + \beta b_n\} = \alpha a + \beta b$$

Definition. We say a sequence $\{a_n\}$ of real numbers **converges to infinity** $\infty \in \mathbb{R}_{\infty}$ if for every $c \in \mathbb{R}$, there is an N > 0 such that $a_n \geq c$ whenver $n \geq N$. We write $\{a_n\} \to \infty$, or

$$\lim_{n \to \infty} \{a_n\} = \infty$$

Definition. Let $\{a_n\}$ be a sequence of real numbers. We define the **limit superior** of $\{a_n\}$ to be

$$\lim \sup \{a_n\} = \lim_{n \to \infty} (\sup \{a_k : k \ge n\})$$

Similarly, we define the **limit inferiro** of $\{a_n\}$ to be

$$\lim\inf\left\{a_n\right\} = \lim_{n \to \infty} \left(\inf\left\{a_k : k \ge n\right\}\right)$$

Theorem 1.2.6. For any sequences $\{a_n\}$ and $\{b_n\}$ of real numbers, the following are true:

- (1) $\limsup \{a_n\} = l \in \mathbb{R}_{\infty}$ if, and only if for every $\varepsilon > 0$, there exists infinitely many $n \in \mathbb{Z}^+$ such that $a_n > l \varepsilon$ and finitely many $n \in \mathbb{Z}^+$ for which $a_n > l + \varepsilon$.
- (2) $\limsup \{a_n\} = \infty$ if, and only if $\{a_n\}$ is not bounded above.
- (3) $\limsup \{a_n\} = -\liminf \{-a_n\}$
- (4) $\{a_n\} \to a \in \mathbb{R}_{\infty}$ if, and only if $\limsup \{a_n\} = \liminf \{a_n\}$.
- (5) If $a_n \leq b_n$ for all n, then $\limsup \{a_n\} \leq \limsup \{b_n\}$.

Definition. Let $\{a_n\}$ a sequence of real numbers. We call the series $\sum_{k=1}^{\infty} a_k$ summable if the sequence of partial sums $\{s_n = \sum_{k=1}^n a_k\} \to s$ converges to a point $s \in \mathbb{R}$.

Lemma 1.2.7. Let $\{a_n\}$ a sequence of real numbers. Then the following are true.

(1) The series $\sum a_k$ is summable if, and only if for every $\varepsilon > 0$, there is an N > 0 such that

$$|\sum_{k=n}^{n+m} a_k| < \varepsilon \text{ for all } m \in \mathbb{Z}^+ \text{ whenever } n \ge N$$

- (2) If $\sum |a_k|$ is summable, then so is $\sum a_k$.
- (3) If $a_k \geq 0$, then $\sum a_k$ is summable if, and only if the sequence of partial sums $\{s_n\}$ is bounded.

1.3 Continuous Functions of a Real Variable.

Definition. A real-valued function f on a domain E is said to be **continuous** at a point $x \in E$ provided for any $\varepsilon > 0$ there is a $\delta > 0$ for which

$$|f(x) - f(y)| < \varepsilon$$
 whenever $|x - y| < \delta$ for any $y \in E$

We call f continuous on E if it is continuous at every point in E. We call f Lipschitz continuous if there is a $c \ge 0$ for which

$$|f(x) - f(y)| \le c|x - y|$$
 for all $x, y \in E$

Lemma 1.3.1. A Lipschitz continuous function on a domain is continuous on that domain.

Lemma 1.3.2 (The Sequential Criterion). A realvalued function f defined on a domain E is continuous at a point $x \in E$ if, and only if for any sequence $\{x_n\} \to x$ of points in E, converging to x, that the sequence $\{f(x_n)\} \to f(x)$ converges to f(x).

Theorem 1.3.3 (The Extreme Value Theorem). A continuous realvalued function defined on a nonempty, closed and bounded domain takes on a maximum value, and a minimum value on that domain.

Proof. Let f be a continuous realvalued function defined on the domain E, where E is nonempty, closed, and bounded. Let $x \in E$ and $\delta > 0$ and $\varepsilon = 1$. Define the open interval $I_x = (x - \delta, x + \delta)$. Then if $y \in E \cap I_x$, then |f(x) - f(y)| < 1. So that $|f(y)| \le |f(x)| + 1$. Notice also that the collection $\{I_x\}$ is an open cover of E. By the theorem of Heine-Borel, there is a finite subcover of E, $\{I_{x_k}\}_{k=1}^n$. Define, then, $M = 1 + \max\{|f(x_1)|, \dots, |f(x_n)|\}$. Then we get that $|f(x)| \le M$ and f is bounded.

Now, let $m = \sup f(E)$. If f does not take the value m for any points in E, then the function $x \to \frac{1}{f(x)-m}$ is a contoinuous unbounded function on E; which is impossible. So there is an $x \in E$ with f(x) = m and m is a maximum value. Now, since f is continuous, then so is -f, and hence -m defines a minimum value on f.

Theorem 1.3.4 (The Intermediate Value Theorem). If f is a continuous realvalued function on a closed bounded interval [a, b], for which f(a) < c < f(b), then there exists an $x_0 \in (a, b)$ for which $f(x_0) = c$.

Proof. Define $a_1 = a$ and $b_1 = b$ and let m_1 be the midpoint of the interval $[a_1, b_1]$. If $c < f(m_1)$, define $a_2 = a_1$ and $b_2 = m_1$, otherwise define $a_2 = m_1$ and $b_2 = m_1$, so that in either case we get $f(a_2) \le c \le f(b_2)$ and $b_2 - a_2 = \frac{b-a}{2}$. By induction, construct the collection of closde bounded intervals $\{[a_n, b_n]\}$ such that $f(a_n) \le c \le f(b_n)$ and $b_n - a_n = \frac{b-a}{2^{n-1}}$. This collection is a descending collection, so by the nested set theorem, the intersection $I = \bigcap [a_n, b_n]$ is nonempty. Choose an $x_0 \in I$, and observe that

$$|a_n - x_0| \le b_n - a_n = \frac{b - a}{2^{n-1}}$$

So the sequence $\{a_n\} \to x_0$. By the sequential criterion, since f is continuous at x_0 , we get the sequence $\{f(a_n)\} \to f(x_0)$. Since $f(a_n) \le c$, and $(-\infty, c]$ is closed, we also get $f(x_0) \le c$.

By similar reasoning to the argument provided above, we also get that $f(x_0) \ge c$ so that equality is established.

Definition. A real valued function f on a domain E is said to be **uniformly continuous** if for every $\varepsilon > 0$ there is a $\delta > 0$ such that

$$|f(x) - f(y)| < \varepsilon$$
 whenever $|x - y| < \delta$ for all $x, y \in E$

Lemma 1.3.5. If f is a uniformly continuous function on a domain E, then it is continuous on E.

Theorem 1.3.6. A continuous realvalued function on a closed and bounded domain is uniformly continuous.

Proof. Let f be continuous on E, and E a closed and bounded domain. Let $\varepsilon > 0$. For every $x \in E$, there is a $\delta_x > 0$ for which $|f(x) - f(y)| < \varepsilon$ whenever $|x - y| < \delta_x$ for some $y \in E$. Define $I_x = (x - \frac{\delta_x}{2}, x + \frac{\delta_x}{2})$. Then $\{I_x\}$ is an open cover for E, so that by the theorem of Heine-Borel, there is a finite subcover $\{I_{x_k}\}_{k=1}^n$ of E. Define $\delta = \frac{1}{2}\min\{\frac{\delta_{x_1}}{2}, \dots, \frac{\delta_{x_n}}{2}\}$. Then $\delta > 0$ moreover, if $x, y \in E$, with $|x - y| < \delta$, then asince $\{I_{x_k}\}$ covers E, there is a k > 0 such that

$$|x - x_k| < \frac{\delta_{x_k}}{2} \text{ and } |x_{x_k} - y| < \frac{\delta_{x_k}}{2}$$

Then we have $|f(x) - f(x_k)| < \frac{\varepsilon}{2}$ and $|f(x_k) - f(y)| < \frac{\varepsilon}{2}$ so that $|f(x) - f(y)| < \varepsilon$, which makes f uniformly continuous.

Chapter 2

Lebesgue Measure

2.1 Lebesgue Outermeasure

Definition. Let I be a nonempty interval of \mathbb{R} . We define the **lenght** of I, denoted l(I), to be the difference of its endpoints, if I is bounded, and ∞ otherwise.

Definition. Let A a subset of \mathbb{R} . We define the **Lebesgue outer measure** of A to be

$$m^*(A) = \inf \left\{ \sum l(I_k) \right\}$$

Where $\{I_k\}$ is a countable collection of bounded open sets, covering A.

Lemma 2.1.1. The emptyset has Lebesgue outermeasure 0. Moreover, the Lebesgue outermeasure is monotone; that is, if $A, B \subseteq \mathbb{R}$ such that $A \subseteq B$, then $m^*(A) \leq m^*(B)$.

Proof. Notice that the singleton $\{a\} = [a, a]$ covers the emptyset. Moreover l([a, a]) = a - a = 0, so by definition $m^*(\emptyset) = 0$.

Now, let A, B subsets of \mathbb{R} such that $A \subseteq B$. Then if $\{I_k\}$ is a countable collection of bounded open sets covering B, they also cover A, hence by definition, we get $m^*(A) \leq m^*(B)$.

Corollory. Lebesgue outermeasure is nonnegative. That is, $0 \le m^*(E)$ for any set $E \subseteq \mathbb{R}$.

Proof. Notice the length of any interval I is nonnegative.

Example 1. Countable sets have measure 0. Let C be a countable set with enumeration $\{c_k\}$. Let $\varepsilon > 0$ and define $I_k = (c_k - \frac{\varepsilon}{2^{k+1}}, c_k + \frac{\varepsilon}{2^{k+1}})$. Then $\{I_k\}$ is a countable collection of bounded open sets covering $C = \{c_k\}$. Hence we get that

$$0 \le m^*(C) \le \sum I_k \le \sum \frac{\varepsilon}{2^k} = 0$$

So that $m^*(C) = 0$.

Lemma 2.1.2. For any nonempty interval I, $m^*(I) = l(I)$.

Proof. Consider first, the closed bounded interval [a,b], where a < b. Let $\varepsilon > 0$. Notice that $[a,b] \subseteq (a-\varepsilon,b+\varepsilon)$, so that $m^*([a,b]) \le l((a-\varepsilon,b+\varepsilon)) = b-a+2\varepsilon$. Hence $m^*([a,b]) \le b-a$. It remains to show that $b-a \le m^*([a,b])$.

Let $\{I_k\}$ a countable collection of open bounded intervals covering [a, b]. By the theorem of Heine-Borel, there is a finite subcover $\{I_k\}_{k=1}^n$ of [a, b]. Notice that since $a \in \bigcup I_k$, at least one I_k contains a. Hence choose an interval (a_1, b_1) in this cover for which $a_1 < a < b_1$. Now, if $b < b_1$, we are done as

$$\sum_{k=1}^{n} l(I_k) \ge b_1 - a_1 > b - a$$

Otherwise, $b_1 \in [a, b_1)$. In this case, choose an interval (a_2, b_2) , distinct from (a_1, b_1) for which $a_2 < b_1 < b_2$. If $b_2 \ge b$, then we are done by similar reasoning as above. Otherwise, continue the process of choosing intervals. This process terminates as we eventually exhaust the endpoints of each I_k in the open cover. Thus, we get a subcollection $\{(a_k, b_k)\}_{k=1}^N$ for which $a_1 < a$ and $a_{k+1} < b_k$ for all $1 \le k \le N - 1$. We also have a $b_N > b$. Then we have

$$\sum_{k=1}^{N} l(I_k) \ge \sum_{k=1}^{N} l((a_k, b_k)) = (b_N - a_N) + \dots + (b_1 - a_1) \ge b - a$$

so that we get $b - a \le m^*([a, b])$.

Now, let I be any bounded interval. Notice that there exist closed bounded intervals J_1 and J_2 for which

$$J_1 \subset I \subset J_2$$

and for some $\varepsilon > 0$,

$$l(I) - \varepsilon < l(J_1) \le l(I) \le l(J_1) < l(I) + \varepsilon$$

Then since J_1 and J_2 are closed and bounded intervals, and by monotonicity of m^* , we have

$$l(I) - \varepsilon < m^*(J_1) \le m^*(I) \le m^*(J_1) < l(I) + \varepsilon$$

so that $l(I) - \varepsilon < m^*(I) < l(I) + \varepsilon$ for all $\varepsilon > 0$. This establishes equality.

Lemma 2.1.3. The Lebesgue outermeasure is translation invariant. That is, if $A \subseteq \mathbb{R}$, and $y \in \mathbb{R}$, then $m^*(A) = m^*(A + y)$.

Proof. Notice that a countable collection of open bounded intervals $\{I_k\}$ covers A if, and only if the collection $\{I_k + y\}$ of open bounded intervals covers A + y. Moreover, notice that $l(I_k) = l(I_k + y)$, so that we get

$$\sum l(I_k) = \sum l(I_k + y)$$

the rest follows from definition.

Lemma 2.1.4. The Lebesgue outermeasure is countable subadditive; that is, if $\{E_k\}$ is a collection of subsets of \mathbb{R} , then

$$m^*(\bigcup E_k) \le \sum m^*(E_k)$$

Proof. Let $\{E_k\}$ a countable collection of sets, and let $E = \bigcup E_k$. Notice that if at least one E_k has infinite measure, then we are done. Suppose then that for all k, $m^*(E_k)$ is finite. Let $\varepsilon > 0$. Then for all k, there exists a countable collection of open bounded intervals $\{I_{k,i}\}$ covering E_k , and $\sum_i l(I_{k,i}) < m^*(E_k) + \frac{\varepsilon}{2^k}$. By definition, we get

$$m^*(E) \le \sum_{k} l(I_{k,i}) = \sum_{k} \sum_{i} l(I_{k,i}) < \sum_{k} (m^*(E_k) + \frac{\varepsilon}{2^k}) = \sum_{k} m^*(E_k) + \varepsilon$$

for all $\varepsilon > 0$. This inequality also holds for $\varepsilon = 0$.

Corollory. The Lebesque outermeasure is finitely subadditive.

Proof. Recall that finite collections are also countable collectuions.

2.2 Lebesuge Measurable Sets

Definition. We call a set E of \mathbb{R} Lebesuge measurable, provided for any subset A of \mathbb{R} ,

$$m^*(A) = m^*(A \cap E) + m^*(A \cap \mathbb{R} \setminus E)$$

Lemma 2.2.1. A set E is Lebesuge measurable if, and only if for any subset A of \mathbb{R} ,

$$m^*(A) \ge m^*(A \cap E) + m^*(A \cap \mathbb{R} \backslash E)$$

Proof. We have $A = (A \cap E) \cup (A \cap \mathbb{R} \setminus E)$, so by finite subadditivity, $m^*(A) \leq m^*(A \cap E) + m^*(A \cap \mathbb{R} \setminus E)$.

Lemma 2.2.2. Any set of Lebesuge outer measure 0 is Lebesgue measurable.

Proof. Let E have $m^*(E) = 0$ and let $A \subseteq \mathbb{R}$. Notice that $A \cap E \subseteq E$ and $A \cap \mathbb{R} \setminus E \subseteq E$, so that $m^*(A \cap E) \leq m^*(E) = 0$ and $m^*(A \cap \mathbb{R} \setminus E) \leq m^*(A)$. Then we have

$$m^*(A) \ge m^*(A \cap \mathbb{R} \setminus E) = 0 + m^*(A \cap \mathbb{R} \setminus E) = m^*(A \cap E) + m^*(A \cap \mathbb{R} \setminus E)$$

Corollory. Countable sets are measurable.

Lemma 2.2.3. The union of two measurable sets is measurable.

Proof. Let E_1 and E_2 be measurable sets and $A \subseteq \mathbb{R}$. Then $m^*(A) = m^*(A \cap E_1) + m^*(A \cap \mathbb{R} \setminus E_1) = m^*(A \cap E_1) + m^*((A \cap \mathbb{R} \setminus E_1) \cap E_2) + m^*((A \cap \mathbb{R} \setminus E_1) \cap \mathbb{R} \setminus E_2)$. Moreover, notice that

$$(A \cap \mathbb{R} \setminus E_1) \cap \mathbb{R} \setminus E_2 = A \cap \mathbb{R} \setminus (E_1 \cup E_2)$$
 and $(A \cap E_1) \cup (A \cap \mathbb{R} \setminus E_1 \cap E_2) = A \cap (E_1 \cup E_2)$

Then we get

$$m^*(A) = m^*(A \cap E_1) + m^*((A \cap \mathbb{R} \setminus E_1) \cap E_2) + m^*(A \cap \mathbb{R} \setminus (E_1 \cup E_2)) \ge m^*(A \cap (E_1 \cup E_2)) + m^*(A \cap \mathbb{R} \setminus (E_1 \cup E_2))$$

which makes E_1 and E_2 measurable.

Corollory. The union of a finite collection of measurable sets is measurable.

Proof. Let $\{E_k\}_{k=1}^n$ a finite collection of measurable sets. By induction on n, we showed that this is true for n=1 and n=2. Now, consider the collections $\{E_k\}_{k=1}^{n+1}$ and suppose that the union $E=\bigcup_{k=1}^n E_k$ is measurable. Notice, then that

$$\bigcup_{k=1}^{n+1} E_k = E \cup E_{n+1}$$

both of which are measurable. Hence measurability of the union of $\{E_k\}_{k=1}^{n+1}$ follows by above.

Lemma 2.2.4. Let A a subset of \mathbb{R} and $\{E_k\}_{k=1}^n$ a finite, disjoint collection of measurable sets. Then

$$m^*(A \cap \bigcup_{k=1}^n E_k) = \sum_{k=1}^n m^*(A \cap E_k)$$

Proof. By induction on n, for n=1 it is true. Now, suppose that it is true for n, and consider the collection $\{E_k\}_{k=1}^{n+1}$ of disjoint measurable sets. Then we have $A \cap (\bigcup_{k=1}^n E_k) \cap E_{n+1} = A \cap E_{n+1}$ and $A \cap (\bigcup_{k=1}^n) \cap \mathbb{R} \setminus E_{n+1} = A \cap \bigcup_{k=1}^n E_k$. Since E_{n+1} is measurable we get

$$m^*(A \cap \bigcup_{k=1}^{n+1} E_k) = m^*(A \cap E_{n+1}) + m^*(A \cap \bigcup_{k=1}^{n} E_k) = \sum_{k=1}^{n+1} m^*(A \cap E_k)$$

Definition. We call a collection of subsets of \mathbb{R} an **algebra** if it contains \mathbb{R} and it is closed under complements (with respect to \mathbb{R}) and finite unions.

Lemma 2.2.5. Any algebra of \mathbb{R} is closed under finite intersections.

Proof. By DeMorgan's laws.

Theorem 2.2.6. The collection of all measurable sets of \mathbb{R} forms an algebra.

Lemma 2.2.7. The union of a countable collection of measurable sets is measurable.

Proof. Without loss of generality, let $\{E_k\}$ a countable disjoint collection of measurable sets, and let $E = \bigcup E_k$. Let A a subset of \mathbb{R} and define $F_n =_{k=1}^n E_k$. Then F_n is measurable by lemma 2.2.3, and $\mathbb{R} \setminus E_n \subseteq \mathbb{R} \setminus F_n$. Then

$$m^*(A) = m^*(A \cap F_n) + m^*(A \cap \mathbb{R} \backslash F_n) \ge m^*(A \cap F_n) + m^*(A \cap \mathbb{R} \backslash E_n)$$

hence $m^*(A \cap F_n) = \sum_{m=0}^{\infty} (A \cap E_k)$ so that

$$m^*(A) \ge \sum m^*(A \cap E_k) + m^*(A \cap \mathbb{R} \setminus E)$$

By countable subadditivity of m^* we have

$$m^*(A) \ge m^*(A \cap E) + m^*(A \cap \mathbb{R} \backslash E)$$

Definition. We call a collection of subsets of \mathbb{R} a σ -algebra if it forms an algebra, and it is closed under countable unions.

Lemma 2.2.8. Any σ -algebra of \mathbb{R} is closed under countable intersections.

Theorem 2.2.9. The collection of measurable sets of \mathbb{R} forms a σ -algebra.

Lemma 2.2.10. Every interval of \mathbb{R} is measurable.

Proof. Consider an interval of the form (a, ∞) , for any $a \in \mathbb{R}$. Let $A \subseteq \mathbb{R}$, such that $A \notin A$; otherwise, just take $A \setminus \{a\}$. Then since $m^*(A)$ is a greatest lower bound, it is sufficient to show that for any countable collection $\{I_k\}$ of open, bounded intervals covering A, that

$$m^*(A_1) + m^*(A_2) \le \sum l(I_k)$$

where

$$A_1 = A \cap (-\infty, a)$$
 and $A_2 = A \cap (a, \infty)$

Indeed, let $\{I_k\}$ be such a collection, and define

$$I_{k,1} = I_k \cap (-\infty, a) \text{ and } I_{k,2} = I_k \cap (a, \infty)$$

Then $\{I_{k,1}\}$ and $\{I_{k,2}\}$ are collections of open, bounded intervals which cover A_1 and A_2 respectively, Hence, by definition of m^* , we have $m^*(A_1) \leq \sum l(I_{k,1})$ and $m^*(A_2) \leq \sum l(I_{k,2})$; moreover, notice that $l(I_k) = l(I_{k,1}) + l(I_{k,2})$. Therefore, we get

$$m^*(A_1) + m^*(A_2) \le \sum l(I_{k,1}) + \sum l(I_{k,1}) = \sum l(I_k)$$

and we are done.

Corollory. Open sets, and closed sets of \mathbb{R} are measurable.

Definition. We define the intersection of all σ -algebras of \mathbb{R} to be the **Borel** σ -algebra, and call its elements **Borel sets**.

Theorem 2.2.11. The σ -algebra of all measurable sets of \mathbb{R} contains the Borel σ -algebra of \mathbb{R} . Moreover, it contains every interval of \mathbb{R} , open and closed sets, as well as G_{δ} and F_{σ} sets.

Lemma 2.2.12. Lebesgue measurable sets are translation invariant. That is, if E is Lebesuge measurable, and $y \in \mathbb{R}$, then E + y is Lebesuge measurable.

Proof. Let E be measurable, $y \in \mathbb{R}$, and $A \subseteq \mathbb{R}$ Then

$$m^*(A) = m^*(A \setminus y) = m^*(A \setminus y \cap E) + m^*(A \setminus y \cap \mathbb{R} \setminus E) = m^*(A \cap (E+y)) + m^*(A \cap \mathbb{R} \setminus (E+y))$$

2.3 Inner and Outer Approximations

Lemma 2.3.1 (Excision). If A and B are sets, with A Lebesgue measurable of finite outer measure, and $A \subseteq B$, then

$$m^*(B\backslash A) = m^*(B) - m^*(A)$$

Theorem 2.3.2 (The Outer Approximation Theorem). Let $E \subseteq \mathbb{R}$. The following are equivalent.

- (1) E is Lebesgue measurable.
- (2) For all $\varepsilon > 0$ there is an opne set U of \mathbb{R} containing E such that $m^*(U \setminus E) < \varepsilon$.
- (3) There exists a G_{δ} set G containing E for which $m^*(G \backslash E) = 0$.

Proof. Suppose first that E is measurable and let $\varepsilon > 0$. Now, if $m^*(E)$ is finite, then there is a countable collection $\{I_k\}$ of open intervals covering E, for which, by definition of m^* as a greatest lower bound,

$$\sum l(I_k) < m^*(E) + \varepsilon$$

Let $U = \bigcup I_k$, then $E \subseteq U$, and U is open in \mathbb{R} . Thus by definition of m^* again, we have

$$m^*(U) \le \sum l(I_k) < m^*(E) + \varepsilon$$

so that $m^*(U) - m^*(E) < \varepsilon$. Now, since E is measurable of finite outer measure, by excision, we get $m^*(U \setminus E) = m^*(U) - m^*(E) < \varepsilon$.

Now, if $m^*(E)$ is infinite, then let $\{E_k\}$ be a countable disjoint collection of measurable sets each of finite outer measure, and let $E = \bigcup E_k$. Then by above there exist open sets U_k containing E_k , for each k such that $m^*(U_k \backslash E_k) < \frac{\varepsilon}{2^k}$. Let $U = \bigcup U_k$, then U is open in \mathbb{R} , and $E \subseteq U$. Moreover observe that

$$U\backslash E = \bigcup U_k\backslash E_k$$

Then we get by subadditivity

$$m^*(U \backslash E) \le \sum m^*(U_k \backslash E_k) < \sum \frac{\varepsilon}{2^k} = \varepsilon$$

Now, suppose that assertion (2) holds, and choose an open set U_k containing E for which $m^*(U_k \setminus E) < \frac{1}{k}$. Define $G = \bigcup U_k$. Then G is a G_δ set, and $E \subseteq G$. Moreovoer we have that

$$G \backslash E \subseteq U_k \backslash E$$
 for all k

so by monotonicity

$$m^*(G\backslash E) \le m^*(U_k\backslash E) < \frac{1}{k}$$

Then as $k \to \infty$, this outer measure approaches 0.

Now if (3) holds, since $m^*(G\backslash E)=0$, the set $G\backslash E$ is measurable. Since the space of all measurable sets is a σ -algebra, then the set $E=G\cap \mathbb{R}\backslash (G\backslash E)$ is measurable.

Corollory (The Inner Approximation Theorem). The following are equivalent.

- (1) E is Lebesque measurable.
- (2) For all $\varepsilon > 0$ there is a closed set V of \mathbb{R} contained in E such that $m^*(E \setminus V) < \varepsilon$.
- (3) There exists an F_{σ} set F contained in E for which $m^*(E \backslash F) = 0$.

Proof. One can apply DeMorgan's laws.

Theorem 2.3.3. Let E a Lebesgue measurable set of finite outer measure. then for every $\varepsilon > 0$ there is a finite disjoint collection $\{I_k\}$ of open intervals for which if $U = \bigcup I_k$, then

$$m^*(E \backslash U) + m^*(U \backslash E) < \varepsilon$$

Proof. By the outer approximation theorem, there is an open set V containing E for which $m^*(V \setminus E) < \frac{\varepsilon}{2}$. Now, since E is measurable of finite outer measure, by excision we have

$$m^*(V) - m^*(E) < \frac{\varepsilon}{2}$$

so that $m^*(V)$ is also finite. Now, recall that every open set of real numbers is the disjoint collection of open intervals, hence let $V = \bigcup I_k$. Each I_k is measurable with $m^*(I_k) = l(I_k)$. Thereofre, by lemma 2.2.4 and monotonicity,

$$\sum_{k=1}^{n} l(I_k) \le m * (V) \text{ is finite}$$

So $\sum I_k$ is finite. Now, choose an $n \in \mathbb{Z}^+$ for which $\sum_{k=n+1} I_k < \frac{\varepsilon}{2}$ and define $U = \bigcup_{k=1}^n I_k$. Then $U \setminus E \subseteq V \setminus E$ so by monotonicity, $m^*(U \setminus E) < \frac{\varepsilon}{2}$. Moreover, we have $E \setminus U \subseteq V \setminus U = \bigcup_{k=n+1} I_k$ so that $m^*(E \setminus U) < \frac{\varepsilon}{2}$. Therefore, we see that

$$m^*(U \backslash E) + m^*(E \backslash U) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

2.4 The Borel-Cantelli Lemma

Definition. We define the **Lebesgue measure** m to be the restriction of the Lebesgue outer measure, m^* to the space of all Lebesgue measurable sets. That is, if E is Lebesgue measurable, the

$$m(E) = m^*(E)$$

Lemma 2.4.1 (Countable additivity). The Lebesgue measure is countable additive. That is, if $\{E_k\}$ is a countable collection of disjoint measurable sets, then

$$m(\bigcup E_k) = \sum m(E_k)$$

Proof. Since the space of Lebesgue measurable sets forms a σ -algebra, and are closed under countable unions, the set $E = \bigcup E_k$ is Lebesgue measurable. Moreover, by subadditivity of m^* , and definition of m,

$$m(E) \le \sum_{k} = 1^{\infty} m(E_k)$$

Notice, however, that $\bigcup_{k=1}^n E_k \subseteq E$, so that by monotonicity, $\sum_{k=1}^n m(E_k) \leq m(E)$. Then as $n \to \infty$, this sum converges to $\sum_{k=1}^\infty E_k$ so

$$\sum_{k=1}^{\infty} E_k \le m(E)$$

and equality is established.

Corollory. The Lebesque measure is finitely additive.

Theorem 2.4.2. The Lebesgue measure assignes to intervals thier lengths, is translation invariant, and countable additive.

Theorem 2.4.3 (Continuity). The following are true for the Lebesgue measure.

(1) If $\{A_k\}$ is an increasing sequence of Lebesgue measurable sets, then

$$m(\bigcup A_k) = \lim_{k \to \infty} m(A_k)$$

(2) If $\{B_k\}$ is an decreasing sequence of Lebesgue measurable sets for which $m(B_1)$ is finite, then

$$m(\bigcap B_k) = \lim_{k \to \infty} m(B_k)$$

Proof. If $k_0 \in \mathbb{Z}^+$ is such that $m(A_{k_0})$ is infinite, then by monotonicity, $m(\bigcup A_k)$ is infinite so that $m(A_k)$ is infinite for all $k \geq k_0$. Suppose then, that $m(A_k)$ is finite for all k and define $A_0 = \emptyset$. Furthermore, define $C_k = A_k \setminus A_{k-1}$ for all $k \geq 1$. then since $\{A_k\}$ is a disjoint collection of measurable sets, then so is C_k , and $\bigcup A_k = \bigcup C_k$. By countable additivity, we have

$$m(\bigcup A_k) = m(\bigcup C_k) = \sum m(A_k \backslash A_{k-1})$$

By excision, we get

$$\sum_{k=1}^{n} m(A_k) - m(A_{k-1}) = \lim_{n \to \infty} \sum_{k=1}^{n} m(A_k) - m(A_{k-1}) = \lim_{n \to \infty} (m(A_n) - m(A_0)) = \lim_{n \to \infty} m(A_n)$$

since $m(A_0) = 0$.

Now, define $D_k = B_1 \backslash B_k$. Since $\{B_k\}$ is decreasing, the sequence $\{D_k\}$ of measurable sets is increasing. Then by above,

$$m(\bigcup D_k) = \lim_{k \to \infty} m(D_k)$$

By DeMorgan's laws, $\bigcup D_k = B_1 \setminus \bigcap B_k$. On the otherhand, by excision, since $m(B_1)$ is finite, we get

$$m(D_k) = m(B_1) - m(B_k)$$

so that

$$m(B_1 \setminus \bigcap B_k) = \lim_{n \to \infty} (m(B_1) - m(B_n))$$

By excision again, we are done.

Definition. We say a property holds **almost everywhere** on a measurable set E if there exists a measurable set $E_0 \subseteq E$ with $m(E_0) = 0$ for which the property holds for all $x \in E \setminus E_0$.

Lemma 2.4.4 (Borel-Cantelli). Let $\{E_k\}$ a countable collection of measurable sets such that the sum $\sum m(E_k)$ is finite. Then almost all $x \in \mathbb{R}$ belong to at most finitely many of the E_k .

Proof. By countable subadditivity, we have $m(\bigcup E_k) \leq \sum_{k=n} m(E_k)$ is finite. Thus, by continuity, we have

$$m(\bigcap_{n=1} (\bigcup_{k=n} E_k)) = \lim_{n \to \infty} m(\bigcup_{k=n} E_k) \le \lim_{n \to \infty} \sum_{k=n} m(E_k) = 0$$

so that almost all x does not belong to the intersection $\bigcap_{n=1} \bigcup_{k=n} E_k$ and hence belongs to at most finitely many of the E_k .

2.5 Nonmeasurable Sets, The Cantor Set, and The Cantor-Lebesgue Function

Definition. We call a set E of real numbers **nonmeasurable** if it is not measurable.

Lemma 2.5.1. If E is a bounded measurable set of real numbers, and there is a countably infinite disjoint collection of translates $\{E + \lambda\}$, then m(E) = 0.

Proof. Since E is measurable, so is $\mathbb{E} + \lambda$ for every λ . Then by countable additivity, we have

$$m(\bigcup E + \lambda) = \sum m(E + \lambda) = \sum m(E)$$

Now, since E is bounded, so is each $E + \lambda$, and hence, so is $\bigcup E + \lambda$ so that $m(\bigcup E + \lambda)$ is finite Therefore, m(E) is finite. Moreover, since the collection $\{E + \lambda\}$ is countably infinite, and m(E) is finite, this forces m(E) = 0.

Definition. We call two real numbers $x, y \in \mathbb{R}$ rationally equivalent if $x - y \in \mathbb{Q}$.

Lemma 2.5.2. Rational equivalence is an equivalence relation on \mathbb{R} .

Theorem 2.5.3 (Vitali's Theorem). Any set E of real numbers with positive outer measure contains a nonmeasurable set.

Proof. Consider rational equivalence on E, which partitions E into equivalence classes. Define C_E a choice set of the equivalence classes on E consisting of exactly one member from each class, such that

- (1) For all $x, y \in \mathcal{C}_E$, $x y \notin \mathbb{Q}$.
- (2) For all $x \in E$, there exists a $c \in \mathcal{C}_E$ for which x = c + q for some $q \in \mathbb{Q}$.

Now, by countable subadditivity, suppose that E is bounded, and consider the choice set \mathcal{C}_E (defined above) of E. Then \mathcal{C}_E is nonmeasurable.

Suppose otherwise. Let Λ_0 a bounded countably infinite set of rational numbers. Then each $\{C_E + \lambda\}$ is measurable for each $\lambda \in \Lambda_0$. Then we have a countably infinite disjoint collection of bounded translates, hence by lemma 2.5.1, $m(C_E) = 0$. That is,

$$m(\bigcup C_E + \lambda) = \sum m(C_E + \lambda) = 0$$

Since E is bounded, choose $\Lambda_0 = [-2b, 2b] \cap \mathbb{Q}$, for some $b \in \mathbb{R}$. If $x \in E$, there exists a $c \in \mathcal{C}_E$ and a $q \in \mathbb{Q}$ such that x = c + q. That is $x, c \in [-b, b]$ and $q \in [-2b, 2b]$ so that $E \subseteq \bigcup \mathcal{C}_E + \lambda$. But m(E) is positive, which yields a contradiction as $m(\mathcal{C}_E) = 0$. Therefore \mathcal{C}_E can't possibly be measurable.

Theorem 2.5.4. There exist disjoint sets A and B of real numbers such that

$$m^*(A \cup B) < m^*(A) + m^*(B)$$

Definition. We define the **Cantor set** to be the intersection

$$C = \bigcap C_k$$

where $\{C_k\}$ is a decreasing sequence of closed sets such that for every k, C_k is the disjoint union of 2^k closed intervals of length $\frac{1}{3^k}$

Theorem 2.5.5. The Cantor set is a closed uncountable set of measure 0.

Proof. Since \mathcal{C} is an arbitrary intersection of closed sets, it is closed in \mathbb{R} . Moreover, since each C_k is the disjoint union of closed intervals, which are measurable, and since measurable sets form a σ -algebra, then each C_k is measurable, which makes \mathcal{C} measurable.

Now, by definition of C_k , by finite additivity, we have

$$m(C_k) = (\frac{2}{3})^k$$

so that by monotonicity of measure,

$$m(\mathcal{C}) \le m(C_k) = (\frac{2}{3})^k$$

now, as $k \to \infty$, $m(C_k) \to 0$ so that $m(\mathcal{C}) = 0$. It remains to show that \mathcal{C} is uncountable.

Suppose C is countable, and let $\{c_k\}$ be an enumeration of C. Now, there is a disjoint interval F_1 in C_1 which fails to contain the point c_1 ; similarly, there is a disjoint interval F_2 in C_2 , whose union is F_1 , that fails to contain c_2 . Proceeding inductively, we obtain a countable collection $\{F_k\}$ such that

- (1) Each F_k is closed.
- (2) $F_k \subseteq C_k$.
- (3) $c_k \notin F_k$.

by the nested set theorem, the intersection $F = \bigcap F_k$ is nonempty. Now, let $x \in F$, then we get that $x \in C_k$ for some k. But since C_k is countable, and enumerated by $\{c_k\}$, then $x = c_n$ for some n. That is, $c_n \in F$ which contradicts that $c_n \notin F_n$. Therefore C is uncountable.

Definition. Define $U_k = [0,1] \setminus C_k$ and $\mathcal{U} = \bigcup U_k$, so that $\mathcal{C} = [0,1] \setminus \mathcal{U}$. Define the function $\phi: U_k \to \mathbb{R}$ to be the increasing function, which is constant on each of the $2^k - 1$ open intervals, and which takes the values of the form $\frac{2^k - 1}{2^k}$ in each of the intervals. We define the **Cantor-Lebesgue function** to be the extension of ϕ to [0,1] by defining it on \mathcal{C} as follows

$$\phi(0) = 0$$
 for all $x \in \mathcal{U}$ and $\phi(x) = \sup \{ \phi(t) : t \in U \cap [0, x) \text{ if } x \in \mathcal{C} \setminus 0 \}$

Lemma 2.5.6. The Cantor-Lebesgue function is increasing continuous whos image is the interval [0,1]. Moreover, ϕ is differentiable on \mathcal{U} , with $\phi'=0$ on \mathcal{U} , where $m(\mathcal{U})=1$.

Proof. By definition, $\phi|_{U_k}$ is increasing so the extension ϕ is increasing as well. Likewise, $\phi|_{U_k}$ is continuous, hence so is the extension ϕ .

Now, consider $x_0 \in \mathcal{C}$ such that $x_0 \neq 0, 1$. Then $x \notin U_k$, and for k large enough, x_0 is between two consecutive intervals of U_k . Let a_k be in the lower of these two intervals, and b_k in the upper. Since ϕ is increasing, inparticular, by $\frac{1}{2^k}$, we get $a_k < x_{bk}$ and $\phi(b_k) - \phi(a_k) = \frac{1}{2^k}$. Then as $k \to \infty$ $\phi(b_k) - \phi(a_k) \to 0$ so that ϕ has no jump discontinuities at x_0 . This makes ϕ continuous at x_0 . Now, if $x_0 = 0$ or $x_0 = 1$, a similar argument follows. Now, since ϕ is constant on \mathcal{U} , and continuous on \mathcal{U} , it is differentiable on \mathcal{U} , whith derivative $\phi'(x) = 0$ for all $x \in \mathcal{U}$. Moreover, since \mathcal{C} is measurable with $m(\mathcal{C} = 0)$, and $\mathcal{U} = [0, 1] \setminus \mathcal{C}$, by excision, we get $m(\mathcal{U}) = 1$. Finally, notice that since $\phi(0) = 0$, and $\phi(1) = 1$, and by continuity, by the intermediate value theorem, $\phi([0, 1]) = [0, 1]$.

Lemma 2.5.7. Let ϕ be the Cantor-Lebesgue function and define $\psi : [0,1] \to \mathbb{R}$ by $\psi(x) = \phi(x) + x$ for all $x \in [0,1]$. Then ψ is strictly increasing, and takes [0,1] onto [0,2]. Moreover

- (1) ψ maps \mathcal{C} onto a measurable set of positive measure.
- (2) ψ maps a measurable subset of C onto a nonmeasurable set.

Proof. ψ is continuous since it is the sum of two continuous functions. Moreover, since ϕ is increasing and the function f(x) = x is strictly increasing then so is ψ . Notice, also, that $\psi(0) = 0$ and $\psi(1) = 2$ so by the intermediate value theorem, $\phi([0,1]) = [0,2]$.

Now, since $[0,1] = \mathcal{U} \cup \mathcal{C}$ (where \mathcal{U} is defined in the definition of the Cantor-Lebesgue function), we have $[0,2] = \psi(\mathcal{U}) \cup \psi(\mathcal{C})$. Since [0,2] is measurable, and measurable sets are closed under unions, then $\psi(\mathcal{C})$ is measurable; moreover, since ψ is continuous and increasing, it has continuous inverse, and hence maps \mathcal{C} to a measurable set $\psi(\mathcal{C})$. Moreover, $\psi(\mathcal{C})$ is closed, and $\psi(\mathcal{U})$ is open.

Now, let $\{I_k\}$ a collection of intervals of \mathcal{U} , i.e. $\mathcal{U} = \bigcup I_k$. Since ϕ is continuous on each I_k , ψ takes I_k onto translates of I_k , and since ψ is 1–1, the collection $\{\psi(I_k)\}$ is disjoint. Therefore, by countable additivity

$$m * (\psi(\mathcal{U})) = \sum l(\psi(I_k)) = \sum l(I_k + \lambda) = \sum l(I_k) = m(\mathcal{U})$$

since $m(\mathcal{C}) = 0$ and $m(\mathcal{U}) = 1$, $m(\psi(\mathcal{U})) = 1$ and $m(\psi(\mathcal{C})) = 1$ as well.

Finally, by Vitali's theorem, there exists a nonmeasurable set $W \subseteq \psi(\mathcal{C})$, with $\psi^{-1}(W)$ measurable with $m(\psi^{-1}(W)) = 0$.

Theorem 2.5.8. There exists a measurable subset of C which is not Borel.

Chapter 3

Lebesgue Measurable Functions

3.1 Properties of Lebesgue Measurable Functions

Lemma 3.1.1. Let f be an extended realvalued function on a measurable domain E. Then the following are equivalent.

- (1) for some $c \in \mathbb{R}$, the set $\{x \in E : f(x) > c\}$ is measurable.
- (2) for some $c \in \mathbb{R}$, the set $\{x \in E : f(x) \ge c\}$ is measurable.

Proof. Let $E_1 = \{x \in E : f(x) > 0\}$ and $E_2 = \{x \in E : f(x) \ge c\}$. Suppose that S is measurable, then notice that

$$T = \bigcap \left\{ x \in E : f(x) > c - \frac{1}{k} \right\}$$

Now, each of the sets in this intersection is measurable, and since measurable sets form a σ -algebra, T must also be measurable. Likewise, if T is measurable, notice that

$$S = \bigcup \left\{ x \in E : f(x) > c + \frac{1}{k} \right\}$$

is measurable by the same argument.

Corollory. The followingh are equivalent

- (1) for some $c \in \mathbb{R}$, the set $\{x \in E : f(x) < c\}$ is measurable.
- (2) for some $c \in \mathbb{R}$, the set $\{x \in E : f(x) \leq c\}$ is measurable.

Proof. Notice that these statements are the contrapostives of the statements above.

Corollory. For some $c \in \mathbb{R}$, the set $\{x \in E : f(x) = x\}$ is measurable.

Proof. Let $E_3 = \{x \in E : f(x) = c\}$. If c is finite, notice that $E_3 = \{x \in E : f(x) \ge c\} \cap \{x \in E : f(x) \le x\}$, which makes E_3 measurable. Now, if $c = \infty$, then $\{x \in E : f(x) = \infty\} = \{x \in E : f(x) > k\}$ for some k, which is again, measurable.

Definition. Let f be an extended real-valued function on a measurable domain. We say f is **Lebesgue measurable** if it statisfies one of the conditions of lemma 3.1.1 (or its corollories).

Lemma 3.1.2. Let f be an extended realvalued function on a measurable domain E. Then f is measurable if, and only if, there exists an open set U, such that $f^{-1}(U)$ is measurable.

Proof. Suppose that U is open in \mathbb{R} such that $f^{-1}(U)$ is measurable. Then the interval (c, ∞) is open, which makes $f^{-1}((c, \infty))$ measurable. Notice that $f^{-1}((c, \infty)) = \{x \in E : f(x) > c\}$. This makes f measurable.

Conversely, suppose that f is measurable, and let U be open in \mathbb{R} . Then $U = \bigcup I_k$ for some countable collection of bounded open intervals $\{I_k\}$. Let $I_+ = B_k \cap A_k$ where

$$B_k = (-\infty, b_k)$$
 and $A_k = (a_k, \infty)$ for some $a_k, b_k \in \mathbb{R}$

Since f is measurable, then the preimages $f^{-1}(A_k)$ and $f^{-1}(B_k)$ are measurable. Hence, so is the union

$$\bigcup (f^{-1}(B_k) \cap f^{-1}(A_k)) = f^{-1}(I_l) = f^{-1}(\bigcup I_k) = f^{-1}(U)$$

Corollory. A realvalued function continuous on a measurable domain is measurable.

Lemma 3.1.3. Monotone functions defined on an interval are measurable.

Lemma 3.1.4. Let f be an extended realvalued function on a measurable domain E. The following are true

- (1) If f is measurable on E, and f = g almost everywhere on E, for some extended realvalued function g on E, then g is measurable on E.
- (2) If $D \subseteq E$ is measurable, then f is measurable if, and only if the restrictions $f|_D$ and $f|_{E\setminus D}$ are measurable.

Proof. Suppose that f is measurable and that g is an extended real-valued function on E for which f = g a.e. on E. Let $A = \{x \in E : f \neq g\}$. Observe that

$$E_1 = \{x \in E : g(x) > c\} = \{x \in A : g > c\} \\ z \cup \{x \in E : f > c\} \cap E \setminus A$$

Since f = g a.e. on E, then m(A) = 0, so that $\{x \in A : g > c\}$ is measurable. Then since measurable sets are a σ -algebra, E_1 is measurable. This makes g measurable.

Now, observe, also, that for every $c \in \mathbb{R}$, and $D \subseteq E$ measurable, that

$$\{x \in E : f > c\} = \{x \in D : f > c\} \cup \{x \in E \backslash D : f > c\}$$

So that if f is measurable, so are its restirctions $f|_D$ and $f|_{E\setminus D}$, and vice versa.

Theorem 3.1.5. Let f and g be measurable functions on a measurable domain, for which f and g are finite almost everywhere on E. Then

- (1) For all $\alpha, \beta \in \mathbb{R}$, the function $\alpha f + \beta g$ is measurable.
- (2) fg is measurable.

Proof. Suppose, without loss of generality, that f and g are finite on all E. If $\alpha=0$ and $\beta=0$, the $\alpha f=0$ and we are done. Now, take $\alpha\neq 0$ and $\beta=0$. Then observe that if $\alpha>0$ then $\{x\in E:\alpha f>c\}=\{x\in E:f>\frac{c}{\alpha}\}$, where as if $\alpha<0$ then $\{x\in E:\alpha f>c\}=\{x\in E:f<\frac{c}{\alpha}\}$. Since f is measurable, both these sets are measurable, which makes αf measurable.

Now, take $\alpha = \beta = 1$ and observe the function f + g. If f + g < c for all $x \in E$, then f < c - g, and by the density of \mathbb{Q} in \mathbb{R} , there is a rational number q for which f < q < c - g. Then notice that

$$\{x \in E : f + g < c\} = \bigcup_{q \in \mathbb{Q}} \{x \in E : g < c - q\} \cap \{x \in E : f < q\}.$$

then since f and g are both measurable, this countable union is measurable.

Lastly, notice that $fg = \frac{1}{2}((f+g)^2 - f^2 - g^2)$ so that it suffices to show that f^2 is measurable. Indeed, for $c \ge 0$ $\{x \in E : f^2 > c\} = \{x \in E : f > \sqrt{c}\}$ and for c < 0, $\{x \in E : f^2 > c\} = \{x \in E : f < -\sqrt{c}\}$. In either case, f^2 is measurable. Hence, by linearity, so is fg.

Definition. We define the **Characteristic function** for a set A of real numbers to be the function $\chi_A : A \to \{0,1\}$ defined by

$$\chi_A = \begin{cases} 1, & \text{if } x \in A \\ 0, & \text{if } x \notin A \end{cases}$$

Example 2. Consider the function $\psi:[0,1]\to\mathbb{R}$ given by $\psi(x)=\phi(x)+x$, where ϕ is the Cantor-Lebesgue function. Then ψ is strictly increasing and maps a measurable subset $A\subseteq[0,1]$ to a nonmeasurable set $\psi(A)$. Extending ψ to the function $\Psi:\mathbb{R}\to\mathbb{R}$, Ψ^{-1} is continuous, and hence, measurable. Now, since A is also measurable, so is the characteristic function for A, χ_A . However, let I be an open interval with $1\in I$ but $0\notin I$. Then $(\chi_A\circ\Phi^{-1})^{-1}(A)=\Phi(\chi_A^{-1}(I))=\Psi(A)$. Since Ψ is an extension of ψ , $\Psi(A)$ is nonmeasurable, so that the function $\chi_A\circ\Psi^{-1}$ is nonmeasurable; despite being the composition of two measurable functions.

Lemma 3.1.6. Let g a measurable function on a measurable E and f a continuous function on \mathbb{R} . Then $f \circ g$ is measurable in E.

Proof. Let U be open in \mathbb{R} , by continuity, $f^{-1}(U) = V$ is open, and since g is measurable, $g^{-1}(V) = g^{-1}(f^{-1}(U)) = (f \circ g)^{-1}(U)$ is measurable, which makes $f \circ g$ measurable.

Corollory. If f is measurable, then so is the function $|f|^p$ on E, for all p > 0.

Lemma 3.1.7. For a finite collection $\{f_k\}_{k=1}^n$ of measurable functions with common measurable domain E, the functions $\overline{f} = \max\{f_1, \ldots, f_n\}$ and $f = \min\{f_1, \ldots, f_n\}$ are measurable.

Proof. For all
$$c \in E$$
, notice that $\{x \in E : \overline{f} > c\} = \bigcup_{k=1}^{n} \{x \in E : f_k > c\}$ and $\{x \in E : f > c\} = \bigcup_{k=1}^{n} \{x \in E : f_k < c\}$.

3.2 Sequential Pointwise Limits, and Simple Approximation

Definition. Let $\{f_n\}$ a sequence of functions on a common domain E, and f a function on E. Let $A \subseteq E$. We say that $\{f_n\}$ **converges pointwise** to f on A provided that $\lim f_n(x) = f(x)$ on A for all $x \in A$ as $n \to \infty$. We write $\{f_n\} \xrightarrow{pointwise} f$, or simply $\{f_n\} \to f$. We sya $\{f_n\}$ converges **uniformly** to f if for every $\varepsilon > 0$, there is an N > 0 for which

$$|f - f_n| < \varepsilon$$
 for all $n \ge N$

Lemma 3.2.1. If a sequence $\{f_n\}$ of measurable functions with common measurable domain E converge pointwise almost everywhere to f on E, then f is measurable.

Proof. Let $E_0 \subseteq E$ with $m(E_0) = 0$, and suppose that $\{f_n\} \xrightarrow{pointwise} f$ on $E \setminus E_0$. Then f is measurable if, and only if $f_|E \setminus E_0$ is measurable. Hence, suppose that $\{f_n\} \to f$ on all E.

Let $c \in \mathbb{R}$ and observe for all $x \in E$, since $\lim f_n = f$, then f(x) < c if, and only if there exists $n, k \in \mathbb{Z}^+$ such that $f_j(x) < c - \frac{1}{n}$ for all $j \ge k$. Then since f_j is measurable, we get $\{x \in E : F_j < c - \frac{1}{n}\}$ is measurable, and for all k,

$$\bigcap_{j=k} \{ x \in E : f_j < c - \frac{1}{n} \}$$

is measurable. Then notice that

$$\{x \in E : f < c\} = \bigcup \left(\bigcap_{j=k} \{x \in E : f_j < c - \frac{1}{n}\}\right)$$

Definition. A real-valued function ϕ on a measurable domain E is said to be **simple** if it is measurable, and takes only finitely many values. If ϕ takes the values c_1, \ldots, c_n , we define the **canonical representation** iof ϕ to be the representation of the form

$$\phi = \sum c_k \chi_{E_k}$$

where $E_k = \phi^{-1}(c_k)$.

Lemma 3.2.2 (The Simple Approximation Lemma). Let f be a measurable function bounded on its domain E. The for every $\varepsilon > 0$, there exists simple functions ϕ_{ε} and ψ_{e} on E for which

$$\phi_{\varepsilon} < f < \psi_{\varepsilon} \text{ and } 0 < \psi_{\varepsilon} - \phi_{e} < \varepsilon$$

Proof. Let (c,d) be the open bounded interval containing f(E), and let

$$c = y_0 < y_1 < \dots < y_{n-1} < y_n = d$$

be a partition of [c,d] such that $y_k - y_{k-1} < \varepsilon$ for all $1 \le k \le n$. Define $I_k = (y_{k-1}, y_k)$, and $E_k = f^{-1}(I_k)$. Since f is measurable, so is each E_k . Noiw, define ϕ_{ε} and ψ_e by

$$\phi_{\varepsilon} = \sum_{n=1}^{n} y_{k-1} \chi_{E_k}$$

$$\psi_{\varepsilon} = \sum_{n=1}^{n} y_k \chi_{E_k}$$

Then ϕ_{ε} and ψ_{ε} are simple functions. Then for $x \in E$, there exist a unique $1 \le k \le n$ such that $y_{k-1} \le f(x) \le y_k$. So that $\phi_e = y_{k-1} \le f(x) < y_k = \psi_{\varepsilon}$. Moreover, since 3each $y_k - y_{k-1} < \varepsilon$, we get $0 \le \psi_{\varepsilon} - \phi_{\varepsilon} < \varepsilon$.

Theorem 3.2.3 (The Simple Approximation Theorem). An extended realvalued function f on a measurable domain E is measurable if, and only if there exists an sequece $\{\phi_n\}$ on E, of simple functions such that $\{\phi\} \xrightarrow{pointwise} f$ and $|\phi_n| \leq |f|$ on E for all n.

Proof. Since simple functions are measurable, by definition, $\{\phi_n\} \to f$ implies that f is also measurable.

Conversly suppose that f is measurable, and that $f \geq 0$ on E. Let $n \in \mathbb{Z}^+$ and define $E_n = \{x \in E : f \leq n\}$. Then E_n is measurable, and $f|_{E_n}$ is measurable, nonnegative, and bounded. By the simple approximation lemma, choose $\varepsilon = \frac{1}{n}$ and take ϕ_n , ψ_n simple functions on E such that

$$\phi_n \le f \le \psi_n \text{ and } 0 \le \psi_n - \phi_n < \frac{1}{n}$$

Then observe that $0 \le \phi_n \le f$ and $0 \le f - \phi_n \le \psi_n - \phi_n < \frac{1}{n}$ on E_n . a So that $0 \le f - \phi_n < \frac{1}{n}$. Now, extend ϕ_n to a function Φ_n on E, defined by

$$\Phi_n(x) = 0$$
 if $f(x) > n$ and $\Phi_n = \phi_n$ otherwise

Then Φ_n is a simple function on E with $0 \le \Phi \le f$ on E. Now, let $x \in E$, if f(x) is finite, choose an N > 0 such that f < N. Then $0f - \Phi_n < \frac{1}{n}$ for all $n \ge N$, making $\lim \Phi_n = f$. On the otherhand, if f(x) is infinite then $\Phi(x) = n$ for all n so that $\lim \Phi_n = f$.

Bibliography

- [1] W. R. Wade, An introduction to analysis. Upper Saddle River, NJ: Pearson Education, 2004.
- [2] W. Rudin, Principles of mathematical analysis. New York: McGraw-Hill, 1976.