

Knuth-Bendix Completion

Equality Saturation SS25 Michael Schifferer

Axioms:

A1: 0+X = X

A2: X = X + 0

A3: -X + X = 0

A4: (X+Y)+Z = X+(Y+Z)

Goal: --a = a

Axioms:

$$A1: 0+X = X$$

A2:
$$X = X + 0$$

A3:
$$-X+X = 0$$

A4:
$$(X+Y)+Z = X+(Y+Z)$$

Goal:
$$-a = a$$

$$--a = a$$

 $= 0+a$ A1
 $= (--a+(-a))+a$ A3
 $= --a+((-a)+a)$ A4
 $= --a+0$ A3
 $= --a$ A2

Axioms:

A1:
$$0+X = X$$

A2:
$$X = X + 0$$

A3:
$$-X + X = 0$$

A4:
$$(X+Y)+Z = X+(Y+Z)$$

Goal:
$$-a = a$$

$$-a = a$$

 $= 0+a$ A1
 $= (-a+(-a))+a$ A3
 $= -a+((-a)+a)$ A4
 $= -a+0$ A3
 $= -a$ A2

Axioms:

A1:
$$0+X = X$$

A2:
$$X = X + 0$$

A3:
$$-X + X = 0$$

A4:
$$(X+Y)+Z = X+(Y+Z)$$

Goal:
$$-a = a$$

$$-a = a$$

 $= 0+a$ A1
 $= (-a+(-a))+a$ A3
 $= -a+((-a)+a)$ A4
 $= -a+0$ A3
 $= -a$ A2

Axioms:

A1:
$$0+X = X$$

A2:
$$X = X + 0$$

A3:
$$-X + X = 0$$

A4:
$$(X+Y)+Z = X+(Y+Z)$$

Goal:
$$-a = a$$

$$-a = a$$

 $= 0+a$ A1
 $= (-a+(-a))+a$ A3
 $= -a+((-a)+a)$ A4
 $= -a+0$ A3
 $= -a$ A2

Axioms:

A1:
$$0+X = X$$

A2:
$$X = X + 0$$

A3:
$$-X + X = 0$$

A4:
$$(X+Y)+Z = X+(Y+Z)$$

Goal:
$$-a = a$$

$$-a = a$$

 $= 0+a$ A1
 $= (-a+(-a))+a$ A3
 $= -a+((-a)+a)$ A4
 $= -a+0$ A3
 $= -a$ A2

Axioms:

A1:
$$0+X = X$$

A2:
$$X = X + 0$$

A3:
$$-X+X = 0$$

A4:
$$(X+Y)+\bar{Z} = X+(Y+Z)$$

Goal:
$$-a = a$$

Proof:

$$--a = a$$

 $= 0 + a$
 $= (--a+(-a))+a$
 $= --a+((-a)+a)$
 $= --a+0$
 $= --a$
 $= -a$
A1
A3
A4
A3
A3

Unification:

1. Matching yields 0+a = (-X+X)+a

Axioms:

A1:
$$0+X = X$$

A2:
$$X = X + 0$$

A3:
$$-X+X = 0$$

A4:
$$(X+Y)+Z = X+(Y+Z)$$

Goal:
$$-a = a$$

Proof:

$$-a = a$$

 $= 0+a$ A1
 $= (--a+(-a))+a$ A3
 $= --a+((-a)+a)$ A4
 $= --a+0$ A3
 $= --a$ A2

Unification:

- 1. Matching yields 0+a = (-X+X)+a
- 2. Instantiation required

Solution: Confluent Rewrite System

Rewrite System

Axioms(undirected):

A1: 0 + X = X

A2: X = X + 0

A3: -X+X = 0

A4: (X+Y)+Z = X+(Y+Z)

Rewrite Rules(d

R1: $0+X \rightarrow X$

R2: $X+0 \rightarrow X$

R3: $-X+X \rightarrow 0$

R4: (X+Y)+Z -

Given terms s, t, admissible weight function w, and ordering > on function symbols, we have $s>_{\rm kbo} t$ iff

Read: Number of occurrences of x in s $\#(x,\,s) \geq \#(x,\,t) \ \ \text{for all variables} \ x$

Given terms s, t, admissible weight function w, and ordering > on function symbols, we have $s>_{\rm kbo} t$ iff

Read: Number of occurrences of x in s
$$\#(x,\,s) \geq \#(x,\,t) \ \ \text{for all variables} \ x$$

Axioms(undirected):

$$A1: 0+X = X$$

 $A2: X = X+0$
 $A3: -X+X = 0$
 $A4: (X+Y)+Z = X+(Y+Z)$

Fixes Unification problem!

Given terms $s,\,t,$ admissible weight function w, and ordering > on function symbols, we have $s>_{\rm kbo} t$ iff

$$\#(x, s) \ge \#(x, t)$$
 for all variables x and

1)
$$w(s) > w(t)$$
 or

Given terms $s,\,t,$ admissible weight function w, and ordering > on function symbols, we have $s>_{\rm kbo} t$ iff

$$\#(x, s) \ge \#(x, t)$$
 for all variables x and

- 1) w(s) > w(t) or
- 2) w(s) = w(t) and

Given terms s, t, admissible weight function w, and ordering > on functi symbols, we have $s >_{kbo} t$ iff

$$\#(x, s) \ge \#(x, t)$$
 for all variables x and

- 1) w(s) > w(t) or
- 2) w(s) = w(t) and

a)
$$t = x$$
, $s = f^{n}(x)$

a)
$$t = x$$
, $s = f^n(x)$ e.g. $-0 >_{kbo} 0$, $--a >_{kbo} a$

Given terms $s,\,t,$ admissible weight function w, and ordering > on function symbols, we have $s>_{\rm kbo} t$ iff

$$\#(x, s) \ge \#(x, t)$$
 for all variables x and

- 1) w(s) > w(t) or
- 2) w(s) = w(t) and
 - a) t = x, $s = f^n(x)$ or
 - b) $s = f(s_1,...,s_n)$, $t = g(t_1,...,t_m)$ and f > g e.g. $2*2 >_{kbo} 2+2$

Given terms $s,\,t,$ admissible weight function w, and ordering > on function symbols, we have $s>_{\rm kbo} t$ iff

$$\#(x, s) \ge \#(x, t)$$
 for all variables x and

- 1) w(s) > w(t) or
- 2) w(s) = w(t) and
 - a) t = x, $s = f^n(x)$ or
 - b) $s=f(s_1,...,s_n)$, $t=g(t_1,...,t_m)$ and f>g or
 - c) $s=f(s_1,...,s_n)$, $t=f(t1,...,t_n)$ and $(s_1,...,s_n)$ $(>_{kbo})_{lex}$ $(t_1,...,t_n)$
 - e.g. $(X+Y)+Z>_{kbo}X+(Y+Z)$

Properties:

- Well-foundedness: No infinite descending chains
- Monotonicity: $s > t \Rightarrow f(s) > f(t)$ for all f
- Stability under substitution: $s>t\Rightarrow s\sigma>t\sigma$ $\;$ for all σ
- Subterm property: $\mathrm{s}>\mathrm{s}^{\prime}$ for all proper subterms s

Properties:

- Well-foundedness: No infinite descending chains
- Monotonicity: $s > t \Rightarrow f(s) > f(t)$ for all f
- Stability under substitution: $s>t\Rightarrow s\sigma>t\sigma$ $\;$ for all σ
- Subterm property: $\mathrm{s}>\mathrm{s}^{\prime}$ for all proper subterms s

Properties guarantee **Termination** of the rewrite system

Rewrite Rules:

R1: $0+X \rightarrow X$

R2: $X+0 \rightarrow X$

R3: $-X+X \rightarrow 0$

R4: $(X+Y)+Z \rightarrow X+(Y+Z)$

Goal: -a = a

$$-a = ?$$

$$a = ?$$

Solution: Confluent Rewrite System

Confluence

Formally: $\forall u,s,t.\ u \stackrel{*}{\longrightarrow} s \wedge u \stackrel{*}{\longrightarrow} t \Rightarrow \exists v.\ s \stackrel{*}{\longrightarrow} v \wedge t \stackrel{*}{\longrightarrow} v$

Fixes Strategy problem!

Confluence

Formally: $\forall u, s, t. \ u \xrightarrow{*} s \land u \xrightarrow{*} t \Rightarrow \exists v. \ s \xrightarrow{*} v \land t \xrightarrow{*} v$

Rewrite Rules:

R1:
$$0+X \rightarrow X$$

R2:
$$X+0 \rightarrow X$$

R3:
$$-X+X \rightarrow 0$$

R4:
$$(X+Y)+Z \rightarrow X+(Y+Z)$$

Goal:
$$-a = a$$

Knuth-Bendix Completion

(The data consists of: the axiom set, a set of equations initially containing the given axioms; and the rule set, an initially em of rewrite rules.)

```
while the axiom set is not empty do begin
```

Select and remove an axiom from the axiom set;

Normalize the selected axiom;

if the normalized axiom is not of the form x = x then begin

Order the axiom using the reduction ordering and introduce it as a new rule in the rule set;

Superpose the new rule on all existing rules (including itself) and introduce each critical pair into the axiom set; end

end.

Knuth-Bendix Completion

(The data consists of: the axiom set, a set of equations initially containing the given axioms; and the rule set, an initially en of rewrite rules.)

while the axiom set is not empty do begin

Select and remove an axiom from the axiom set;

Normalize the selected axiom;

if the normalized axiom is not of the form x = x then begin

Order the axiom using the reduction ordering and introduce it as a new rule in the rule set;

Superpose the new rule on all existing rules (including itself) and introduce each critical pair into the axiom set;

end

end.

Superposing R4 on R3 yields:

Rewrite Rules:

R1: $0+X \rightarrow X$

R2: $X+0 \rightarrow X$

 $R3: \underline{-X+X} \rightarrow 0$

R4: $(X+Y)+Z \rightarrow X+(Y+Z)$

Normalizing using existing rules yields:

Rewrite Rules:

R1: $0+X \rightarrow X$

R2: $X+0 \rightarrow X$

R3: $-X+X \rightarrow 0$

R4: $(X+Y)+Z \rightarrow X+(Y+Z)$

Normalizing using existing rules yields:

Rewrite Rules:

R1: $0+X \rightarrow X$

R2: $X+0 \rightarrow X$

R3: $-X+X \rightarrow 0$

R4: $(X+Y)+Z \rightarrow X+(Y+Z)$

Superposing R5 on R3 yields:

X = -X as a critical pair

Rewrite Rules:

R1: $0+X \rightarrow X$

R2: $X+0 \rightarrow X$

R3: $\underline{-X+X} \rightarrow 0$

R4: $(X+Y)+Z \rightarrow X+(Y+Z)$

R5: $-X+(X+Z) \rightarrow Z$

Normalization and ordering yields:

Rewrite Rules:

R1:
$$0+X \rightarrow X$$

R2:
$$X+0 \rightarrow X$$

R3:
$$-X+X \rightarrow 0$$

R4:
$$(X+Y)+Z \rightarrow X+(Y+Z)$$

R5:
$$-X+(X+Z) \rightarrow Z$$

Rewrite Rules:

R1: $0+X \rightarrow X$

R2: $X+0 \rightarrow X$

R3: $-X+X \rightarrow 0$

R4: $(X+Y)+Z \rightarrow X+(Y+Z)$

R5: $-X+(X+Z) \rightarrow Z$

R6: $-X \rightarrow X$

Proof:

$$-a = a$$

R6

Rewrite Rules:

R1: $0+X \rightarrow X$

R2: $X+0 \rightarrow X$

R3: $-X+X \rightarrow 0$

R4: $(X+Y)+Z \rightarrow X+(Y+Z)$

R5: $-X+(X+Z) \rightarrow Z$

R6: $-X \rightarrow X$

Proof:

$$-a = a$$

R6

Still not confluent!

Knuth-Bendix Completion

The algorithm may

- Terminate, when confluence is reached
 - i.e. all critical pairs are trivial after normalization
- Fail, when encountering an unorientable axiom

- e.g.
$$x + y = y + x$$

- Diverge, if no finite confluent TRS exists

Limitations

- Failure
 - → Unfailing Knuth-Bendix Completion
- Divergence
 - → Becomes a semi-decision procedure
- Finding > and w for KBO
- Computationally expensive as Number of critical pairs explodes
- Partial functions e.g. division by 0
 - → Special encoding can help

Questions?

Admissible Weight Function

The Knuth-Bendix Ordering

Let $\Sigma = (\Omega, \Pi)$ be a finite signature, let > be a strict partial ordering ("precedence") on Ω , let $w: \Omega \cup X \to \mathbb{R}^+_0$ be a weight function, such that the following admissibility conditions are satisfied:

$$w(x) = w_0 \in \mathbb{R}^+$$
 for all variables $x \in X$;

$$w(c) \ge w_0$$
 for all constants $c/0 \in \Omega$.

If
$$w(f) = 0$$
 for some $f/1 \in \Omega$, then $f \ge g$ for all $g \in \Omega$.

w can be extended to terms as follows:

$$w(t) = \sum_{x \in \mathsf{Var}(t)} w(x) \cdot \#(x,t) + \sum_{f \in \Omega} w(f) \cdot \#(f,t).$$

https://rg1-teaching.mpi-inf.mpg.de/eqlogic-ss03/v8.pdf

Term ordering. We alw with all functions having ordered so that more occuring functions are

https://smallbone.se/papers/twee.pdf