Fine-Tuning can Distort Pretrained Features and Underperform Out-of-Distribution

Докладчик: Фролова Анна

Содержание

- Введение
- Теория
- Эксперименты
- Заключение

Введение

Fine-Tuning может привести к искажению предобученных функций и снижению производительности в OOD

Out-of-distribution (OOD)

- В статье Out-of-distribution используется как данные которые не использовались для обучения модели
- К примеру, ImageNet была обучена на датасете CIFAR-10, тогда
 - CIFAR-10: In-Distribution (ID)
 - STL : Out-of-Distribution (OOD)

Transfer Learning

- Transfer Learning это исследовательская задача в области машинного обучения,
 которая фокусируется на хранении знаний, полученных при решении одной проблемы,
 и применении их к другой, но связанной проблеме.
- Существуют два основных метода ТL:
 - Fine-Tuning
 - ✓ Обновляет все параметры модели
 - Linear Probing
 - ✓ Обновляет параметры только последнего линейного слоя

Fine-Tuning VS Linear Probing

- Хорошо известно, что Fine-Tuning почти всегда дает больше ассигасу, чем Linear Probing.
- При некоторых обстоятельствах, однако, Fine Tuning может показывать accuracy ниже Linear Probing.
 - ✓ Когда?
 - Когда сдвиг распределения между ID и ООО большой
 - ✓ Почему?
 - Потому что Fine Tuning искажает признаки

Теория

- Обучить предиктор l, чтобы сопоставьте входные данные с выходными
- Оценить предикторы на данных In-Distribution и Out-of-Distribution

$$L_{\mathsf{id}}(f) = \underset{(x,y) \sim P_{\mathsf{id}}}{\mathbb{E}} [\ell(f(x),y)] \text{ and } L_{\mathsf{ood}}(f) = \underset{(x,y) \sim P_{\mathsf{ood}}}{\mathbb{E}} [\ell(f(x),y)]$$

- Предиктор параметризован следующим образом: $f_{v,B}(x) = v^{ op}g_B(x)$ В feature extractor, $g_B(x) \in \mathbb{R}^k$, v linear head
- Предположим, что feature extractor B₀ получен при обучении на большом количестве данных.
 - ✓ Linear Probing минимизирует loss, сохранив исходный feature extractor
 - ✓ Fine-tuning минимизирует loss обновляя и feature extractor, и linear head

Теория

• Для анализа, статья фокусируется на задаче регрессии:

$$\mathcal{Y} = \mathbb{R}$$
 and $\ell(\widehat{y}, y) = (\widehat{y} - y)^2$

- ullet Предположим, что feature extractor линейный: $f_{v,B}(x) = v^ op B x$ $B \in \mathcal{B} = \mathbb{R}^{k imes d}$ v linear head
- Good pretrained model
 - 🗸 $\,$ Для простоты мы предполагаем, что модели хорошо определены $\,y=v_\star^ op B_\star x\,$
 - 🗸 $\;\;$ Для любой матрицы вращения U, $\;(Uv_\star)^T(UB_\star)x=v_\star^TB_\star x$
 - ✓ Предположим, что у нас есть предобученный feature extractor \mathbf{B}_0 очень близкий к \mathbf{B}_\star , так ч1 $d(B_0,B_\star) \leq \epsilon$, г $d(B,B') = \min_U \|B UB'\|_2$
 - ✓ Предобучение было на большом количестве данных, таким образом В₀ становится хорошей предобученной моделью

Когда почему происходит искажение признаков?

Эксперименты

Данные и архитектура

ID	DomainNet	Living-17	FMoW Geo-Shift (North America)	CIFAR-10	CIFAR-10	ImageNet-1K
OOD	DomainNet	Entity-30	FMoW Geo-Shift (Africa ,Europe)	STL	CIFAR-10.1	ImageNet V2 ImageNet-R ImageNet-A ImageNet-Sketch
Architecture	ResNet-50	ResNet- 50	ResNet-50	ResNet-50	ResNet-50	CLIP pretrained ViT- B/16

- Метод обучения:
 - Fine-Tuning
 - ✓ Cosine learning rate schedule
 - ✓ Batch size of 64
 - ✓ Early stop and choose the best learning rate using ID validation accuracy

Эксперименты

- Метод обучения:
 - Linear probing
 - ✓ Обучаем логистическую регрессию с L₂- регуляризатором frozen features from the penultimate layer
 - ✓ Выбираем лучший L₂- регуляризатор как гиперпараметр основанный на ID validation accuracy
- Для всех датасетов гиперпараметры подбирались исходя из 3 запусков эксперимента
- ImageNet слишком большой датасет, поэтому эксперимент запускался 1 раз
- OOD данные использовались только для оценивания

Результаты

- Fine-Tuning дал лучшие результаты чем Linear Probing на 5/6 ID датасетах
- Linear Probing дал лучшие результаты чем Fine-Tuning на 8/10 OOD датасетах
- Результаты подтверждают предположения статьи почти во всех случаях
 - Исключение в случае датасетов CIFAR-10.1 и ImageNetV2
 - Это как раз может происходить из-за небольшого различия между ID и OOD данными (CIFAR-10 ↔ CIFAR-10.1, ImageNet ↔ ImageNetV2)
- LP-FT инициализирует голову нейронной сети, используя линейное Linear Probing, а затем Fine-Tuning модели
- LP-FT подсчитывается аналогично тому, как это делалось для Fine-Tuning
- LP-FT дал лучшие результаты на 5/6 ID датасетах и на 10/10 ООО датасетах

Результаты

ID Accuracy

	CIFAR-10	Ent-30	Liv-17	DomainNet	FMoW	ImageNet	Average
FT	97.3 (0.2)	93.6 (0.2)	97.1 (0.2)	84.5 (0.6)	56.5 (0.3)	81.7 (-)	85.1
LP	91.8 (0.0)	90.6 (0.2)	96.5 (0.2)	89.4 (0.1)	49.1 (0.0)	79.7 (-)	82.9
LP-FT	97.5 (0.1)	93.7 (0.1)	97.8 (0.2)	91.6 (0.0)	51.8 (0.2)	81.7 (-)	85.7

OOD Accuracy

	STL	CIFAR-10.1	Ent-30	Liv-17	DomainNet	FMoW
FT	82.4 (0.4)	92.3 (0.4)	60.7 (0.2)	77.8 (0.7)	55.5 (2.2)	32.0 (3.5)
LP	85.1 (0.2)	82.7 (0.2)	63.2 (1.3)	82.2 (0.2)	79.7 (0.6)	36.6 (0.0)
LP-FT	90.7 (0.3)	93.5 (0.1)	62.3 (0.9)	82.6 (0.3)	80.7 (0.9)	36.8 (1.3)

	ImNetV2	ImNet-R	ImNet-Sk	ImNet-A	Average
FT	71.5 (-)	52.4 (-)	40.5 (-)	27.8 (-)	59.3
LP	69.7 (-)	70.6 (-)	46.4 (-)	45.7 (-)	66.2
LP-FT	71.6 (-)	72.9 (-)	48.4 (-)	49.1 (-)	68.9

Изучение теории искажения признаков

- Ранняя остановка не уменьшает искажения функций
 - Можно подумать что дообучаясь на ID данных, модель сильно подстраивается под них, поэтому дает плохие результаты, поэтому ранняя остановка может помочь не переобучиться
 - Но Fine-Tuning все равно показывает худшие результаты, чем Linear Probing
 - Даже если модель выбирать исходя из OOD accuracy то это все равно не ничего не меняет
- ID-OOD features искажаются из-за fine-tuning
- Предобученные функции должны быть хорошими, но ID-OOD должны быть далеко друг от друга

Резюме

- Искажение настроек, вызванное Fine-Tuning-ом модели снижает точность OOD
- Сохранение функций может быть важно для надежности предсказаний
 - ✓ Показано теоретически и экспериментально в статье
- LP-FT может уменьшить разницу между ID и OOD ассuracy