Introduzione

L'informatica e la logica condividono origini comuni poiché entrambe si sono sviluppate inizialmente con l'obiettivo di descrivere e/o emulare le capacità cognitive umane, tra cui il ragionamento. Sebbene attualmente lo studio dell'intelligenza artificiale si basi principalmente su metodi di apprendimento piuttosto che sulla deduzione, la logica rimane comunque uno strumento estremamente utile, in grado di descrivere in modo preciso il linguaggio matematico. La dimostrazione automatica di teoremi è un'importante branca dell'informatica e della logica, trovando largo utilizzo nell'ambito della verifica formale di software e hardware. I sistemi ATP (Automated Theorem Prover) sono utilizzati come strumento di supporto nella ricerca matematica, per affinare o verificare dimostrazioni formali.

I primi tentativi di realizzare un sistema di dimostrazione automatica risalgono agli anni '50, quando i ricercatori Allen Newell, Herbert A. Simon e Cliff Shaw progettarono il primo dimostratore automatico il Logic Theorist che, tramite varie euristiche, tentava di dimostrare teoremi simulando il ragionamento umano. Da quel momento la ricerca si è spostata su metodi più formali e rigorosi, meno ispirati ai ragionamenti umani e più adatti ad essere eseguiti da un calcolatore. Gli studi moderni si basano principalmente sulla tecnica chiamata Resolution.

Vampire è un moderno ATP, basato su Resolution, creato da Andrei Voronkov e Alexandre Riazanov presso l'Università di Manchester. Uno dei suoi punti di forza è l'efficienza. Il team di sviluppo infatti partecipa annualmente al CASC (una competizione tra sistemi ATP), vincendo in almeno una categoria ogni anno. La sua implementazione è open-source ed è sviluppato in C++.

Il problema di dimostrare se una formula è un teorema o meno è riconducibile al problema di determinare se una formula è soddisfacibile. Una formula è soddisfacibile se esiste un'interpretazione che la rende vera. Il problema è decidibile per la logica proposizionale, nel senso che esiste un algoritmo che, dato in input una formula, restituisce una risposta positiva o negativa, ma diventa indecidibile per la logica del primo ordine. Per queste ragioni, la ricerca si è concentrata sull'individuazione di frammenti sintattici della logica del primo ordine decidibili rispetto al problema della soddisfacibilità. Tra questi, vi sono i frammenti Binding che sono oggetto di studio di questa tesi. L'algoritmo di decisione per i frammenti Binding non è basato su Resolution, ma risolve il problema utilizzando la teoria dell'unificazione, in combinazione ad un algoritmo di decisione per la logica proposizionale.

Questa tesi si propone di implementare l'algoritmo di decisione per i frammenti Binding all'interno del sistema di dimostrazione automatica Vampire e di valutarne le prestazioni, in confronto ad un metodo di decisione generale basato su Resolution per l'intera logica del primo ordine.

La tesi è strutturata come segue:

- Nel capitolo 1 verrà data un'introduzione alla logica proposizionale, alla logica del primo ordine, al problema della soddisfacibilità, ai teoremi di incompletezza di Gödel e al problema della dimostrazione automatica.
- Nel capitolo 2 verranno presentati i frammenti Binding e l'algoritmo di decisione.

- Nel capitolo 3 verranno descritte le componenti principali di Vampire, con particolare attenzione a quelle necessarie per l'implementazione dell'algoritmo di decisione per i frammenti Binding.
- Nel capitolo 4 verrà descritto in che modo le componenti studiate nel capitolo precedente sono state utilizzate per implementare l'algoritmo di decisione.
- Nel capitolo 5 verranno presentati i risultati sperimentali ottenuti dall'esecuzione dell'algoritmo e verrà fatto un confronto con l'algoritmo di decisione generale basato su Resolution.