Модель Томпсона предполагала, что заряд распределен в атоме равномерно. После были изучены спектры разных элементов, в том числе спектр атома водорода. Формулы Бальмера, Лаймона, ... позволяют описать расстояния, отвечающие за энергию между уровнями. Серия бальмера: $\omega = R\left(\frac{1}{2^2} - \frac{1}{n^2}\right)$, Серия Лаймона: $\omega = R\left(\frac{1}{3^2} - \frac{1}{n^2}\right)$, Серия Пашена: $\omega = R\left(\frac{1}{3^2} - \frac{1}{n^2}\right)$, Серия Пфунда: $\omega = R\left(\frac{1}{3^2} - \frac{1}{n^2}\right)$, Серия Пфунда: $\omega = R\left(\frac{1}{5^2} - \frac{1}{n^2}\right)$. Энергия ионизации — энергия Рис. 14.1.3. Бальмеровская серия атома водорода. перехода из основного состояния в состояние $\omega = \infty$. Спектр атома водорода хорошо описывается атомарной теорией Бора.

Волновые свойства частиц

Корпускулярно-волновой дуализм — эффект, который заключается в том, что объект проявляет и корпускулярные, и волновые свойства. Де Бройль предложить распространить этот эффект на частицы: частица, имеющая импульс, может быть описана как волна с длиной, равной $\lambda_{_{\scriptstyle I}}=\frac{h}{p}$. Левой части соответствуют волновые свойства частицы, правой — корпускулярные. Если частица с зарядом q движется в каком-то силовом поле с ускоряющей разностью потенциалов U, то ее энергия будет определяться как E=qU или как $E=\frac{p^2}{2m}$, откуда можно выразить импульс частицы $p=\sqrt{2mE}=\sqrt{2mqU}$. Тогда **длина волны Де Бройля** есть $\lambda=\frac{h}{\sqrt{2mqU}}$. Длину волны Де Бройля можно вводить тогда, когда ее величина сопоставима с размером препятствия, т.е. только для микрочастиц. **Длину волны Де Бройля нельзя сопоставить ни с переносом энергии, ни с переносом сигналов**.

Опыт Девиссона-Джермера

Показал, что имеет место дифракция электронов. В качестве решетки использовался кристалл никеля с периодом решетки d=0.215нм. Для появления дифракционной картины необходимо, чтобы $\lambda_{\rm A}{\sim}d$. Условия максимума те же: $d\sin\theta=m\lambda_{\rm A}$. Если первый максимум, то m=1.

Свойства волны Де Бройля

Любая волна может характеризоваться фазовой и групповой скоростью. Фазовая скорость волны Де Бройля $V_{\varphi} = \frac{\omega}{k}$, где $k = \frac{2\pi}{\lambda}$ – волновое число. $E = \hbar \omega$, откуда $\omega = \frac{E}{\hbar}$. Но $E = \hbar v$, откуда $\omega = 2\pi v$. Получаем, что $V_{\varphi} = \frac{\omega}{k} = \frac{E\lambda}{\hbar 2\pi} = \frac{E}{p}$. Фазовая скорость это ненаблюдаемая величина, показывающая скорость геометрического места точек, имеющих одинаковую фазу. Групповая скорость волны Де Бройля $V_{\rm rp} = \frac{\partial \omega}{\partial k} = \frac{\partial}{\partial k} \left(\frac{E}{\hbar}\right) = \frac{\partial E}{\partial p} = \frac{\partial}{\partial p} \left(\frac{p^2}{2m}\right) = \frac{p}{m} = V$. Получилось, что групповая скорость волны де Бройля равна скорости частицы. Это уже наблюдаемая величина.

Посмотрим, имеет ли место явление дисперсии волны Де Бройля. $V_{\Phi} = \frac{E}{p} = \frac{E}{\sqrt{2mE}} = \sqrt{\frac{E}{2m}} = \sqrt{\frac{\hbar\omega}{2m}}$. Получаем, что фазовая скорость зависит от частоты. Т.е. частицу нельзя описывать как волновой пакет, так как волны Де Бройля зависят от частоты, частицы были бы ненаблюдаемы и нестабильны, пакет бы расплылся.

Волна Де Бройля — вероятностная волновая функция (пси-функция), описывает волну де Бройля как плоскую монохроматическую волну. $\psi(r,t)=A_0\exp\left(-\frac{i}{\hbar}[Et-(\vec{p}\vec{r})]\right)=\psi_0(r)\exp\left(-\frac{i}{\hbar}Et\right)=A_0\exp\left(-i\left(\omega t-(\vec{k}\vec{r})\right)\right)=\psi_0(r)\exp\left(-i\omega t\right)$, где ω — частота волнового процесса, $\vec{k}=\frac{\vec{p}}{\hbar}=\frac{2\pi}{\lambda}$ — волновой вектор. Волновая функция является математической абстракцией. Она не имеет физического смысла. $|\psi|^2=\psi*\bar{\psi}$ — имеет физический смысл — описывает плотность вероятности, свойством которой является $\int_{-\infty}^{+\infty}|\psi|^2dV=1$.

Стыковка Бора

По первому постулату Бора $L=n\hbar$. Тогда $mvr_n=n\frac{h}{2\pi}$, откуда $r_n=n\frac{h}{mv2\pi}$. Следовательно $2\pi r_n=n\frac{h}{mv}=n\lambda_{_{\! /\! L}}$. Получили, что длина боровской орбиты составляет n волн Де Бройля. $r_1=5*10^{-11}$ м, $r_n=n^2*r_1$.

Принцип неопределенности Гейзенберга

Нельзя одновременно точно измерить координату частицы и ее проекцию на эту ось. $\Delta x * \Delta p_x \geq \hbar$, $\Delta y * \Delta p_y \geq \hbar$, $\Delta z * \Delta p_z \geq \hbar$, $\Delta E * \Delta t \geq \hbar$. Если мы ограничим $\Delta x = b$, то мы уменьшим неопределенность по координате и получим схему Юнга и дифракционную картину. $b \sin \theta = \lambda$; $\Delta x \sin \theta = \lambda_{\rm H}$; $\Delta x = \frac{\lambda_{\rm H}}{\sin \theta}$; $\Delta p_x = p \sin \theta$; $\Delta x \Delta p_x = \frac{\lambda_{\rm H}}{\sin \theta} p \sin \theta = \lambda_{\rm H} p = \hbar$.

Пример: Атом излучает фотон $\lambda=5500$ А в течение времени t=0.01мкс. Найти неопределенность по длине волны. Решение: $\lambda=\frac{h}{p}$; $d\lambda=-\frac{h}{p^2}dp$; $p=\frac{h}{\lambda}$; $\Delta p=-\frac{h}{\lambda^2}\Delta\lambda$; $\Delta\lambda=\lambda^2\frac{\Delta p}{h}$. $\Delta p-?$ $p=\frac{E}{c}$; $\Delta p=\frac{\Delta E}{c}$. $\Delta E\Delta t=\hbar$; $\Delta E=\frac{\hbar}{\Delta t}$. Получаем, что $\Delta p=\frac{\Delta E}{c}=\frac{\hbar}{c\Delta t}$; $\Delta\lambda=\lambda^2\frac{\hbar}{c\hbar\Delta t}=\frac{\lambda^2}{c\Delta t}=\frac{(5500*10^{-10})^2}{3*10^6*10^{-8}}=10^{-12}$ м.