Tutorial on Turing-like bifurcations for neural fields

Daniele Avitabile*

DA: Tutorial: Add data folder to solutions

1. Introduction. We will study the emergence of spatially-periodic stationary solutions in the following Neural Field Equation (NFE)

(1.1)
$$\partial_t u(x,t) = -u(x,t) + \int_{\mathbb{R}} w(x-y) f(u(y,t)) \, dy \qquad (x,t) \in \mathbb{R} \times \mathbb{R}_{>0}.$$

Recall that for functions $u \in L^1(\mathbb{R})$, the space of integrable functions on \mathbb{R} , we define its Fourier Transform as

$$\hat{u}(\xi) = \int_{\mathbb{R}} u(x)e^{-i\xi x} dx, \qquad \xi \in \mathbb{R}.$$

We henceforth assume that $w \in L^1(\mathbb{R})$.

2. Tutorial questions - nonlinear analysis.

Question 1. Let u_* be a spatially homogeneous equilibrium of the NFE (1.1). Setting $u(x,t) = u_* + v(x,t)$, and using a Taylor expansion of f show formally that small perturbations v(x,t) to the homogeneous steady state u_* evolve according to the linear integro-differential equation

(2.1)
$$\partial_t v(x,t) = -v(x,t) + f'(u_*) \int_{\mathbb{R}} w(x-y)v(y,t) \, dy \qquad (x,t) \in \mathbb{R} \times \mathbb{R}_{>0}$$

Question 2. Assuming w is an even function, show that (2.1) admits solutions of the form $v(x,t) = e^{\lambda t}e^{i\xi x}$ for any (ξ,λ) satisfying the dispersion relation

$$\lambda(\xi) = -1 + f'(u_*)\hat{w}(\xi), \qquad \xi \in \mathbb{R},$$

and deduce that if $\lambda(\xi) < 0$ for all $\xi \in \mathbb{R}$, then u_* is linearly stable to perturbations $v(x,0) = e^{i\xi x}$.

Question 3. Consider the NFE (1.1) with synaptic kernel and firing rate given by

$$(2.2) \ w(x) = AW(x), \qquad W(x) = \frac{1}{\sqrt{\pi}}e^{-x^2} - \frac{1}{\sigma\sqrt{\pi}}e^{-x^2/\sigma^2}, \qquad f(u) = \frac{1}{1 + e^{-\mu u + \theta}} - \frac{1}{1 + e^{\theta}},$$

respectively, where $A \in \mathbb{R}_{\geq 0}$, $\sigma \in \mathbb{R}_{>1}$, $\mu \in \mathbb{R}_{>0}$ and $\theta \in \mathbb{R}$. Plot these functions for A = 1, $\sigma = 1.5$, $\mu = 10$, and $\theta = 0.5$. Discuss whether the synaptic kernel models excitation, inhibition, or both. Perturb the three parameters to see the effect they have on the functions.

^{*}Vrije Universiteit Amsterdam, Department of Mathematics, Faculteit der Exacte Wetenschappen, De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands. MathNeuro Team, Inria branch of the University of Montpellier, 860 rue Saint-Priest 34095 Montpellier Cedex 5 France. (d.avitabile@vu.nl, www.danieleavitabile.com).

2 D. AVITABILE

In preparation for the upcoming question, show that for arbitrary values A, σ, μ, θ , the kernel is balanced, that is,

$$\int_{\mathbb{R}} w(x) \, dx = 0.$$

Question 4. Show that the NFE (1.1) with synaptic kernel and firing rate given by (2.2) admits the trivial steady state $u(x,t) \equiv 0$ for any values of the parameters A, σ, μ, θ .

Plot the Fourier Transform of W

$$\hat{W}(\xi) = e^{-\xi^2/4} - e^{-\sigma^2 \xi^2/4}, \xi \in \mathbb{R},$$

for the parameters given in Question 3. Show that \hat{W} admits global maxima at $\xi = \pm \xi_c$, with $\xi_c = \sqrt{8 \ln(\sigma)/(\sigma^2 - 1)}$ and $\hat{W}_c := \hat{W}(\pm \xi_c)$.

Using the result in Question 1 deduce that, if the coupling parameter is sufficiently large,

(2.3)
$$A > \frac{1}{\hat{W}_c f'(0)} =: A_c,$$

the trivial steady state $u(x,t) \equiv 0$ is linearly unstable to perturbations $e^{i\xi x}$, for $\pm \xi$ in an interval including ξ_c . At $A = A_c$ the system undergoes a Turing-like bifurcation. In an experiment where A is set slightly higher than A_c , we expect that spatially-periodic patterns with wavelength ξ_c emerge (albeit this may occur transiently).

3. Tutorial questions - numerical experiment. In this section we will produce numerical evidence of the Turing-like bifurcation discussed in section 2, and perform a time simulation of a neural field equation. Instead of posing the neural field an unbounded cortex, we shall consider a neural field equation posed on a large but finite cortex D. More specifically, we will take $D = \mathbb{R} \setminus 2L\mathbb{Z}$, that is, a ring of width 2L with L large, much larger than the characteristic timescale σ of the synaptic kernel. To fix the ideas, one could set D = [-L, L), and identify L and -L. For PDEs, one would naturally speak about periodic boundary conditions, but this is misleading for neural field equations, for which boundary conditions need not be specified. The system reads

(3.1)
$$\partial_t u(x,t) = -u(x,t) + \int_D w_p(x-y) f(u(y,t)) dy, \qquad (x,t) \in D \times [0,T]$$
$$u(x,0) = \varphi(x),$$

where f is given in (2.2), and w_p is the 2L-periodic extension of the function w in (2.2), that is, a 2L-periodic function such that $w_p(x) = w(x)$ for all $x \in [-L, L)$.

We discretise the cortex D using n evenly spaced points given by

$$x_j = -L + (j-1)h,$$
 $j = 1, ..., n,$ $h = 2L/n.$

Henceforth we shall assume that the integer n is even. The grid size h is such that the closed interval [-L, L] is split into n equal strips and n + 1 evenly-spaced points, of which the first n are taken to discretise [-L, L). This slightly awkward indexing is common when dealing with periodic functions: we approximate u(x, t) only for $x \in [-L, L)$ and u(L, t) is redundant, because it is equal to u(-L, t).

A numerical scheme for approximating (3.1) is heuristically obtained as follows: we evaluate the system at the node set $\{x_i\}_{i=1}^n$, to obtain

$$\partial_t u(x_i, t) = -u(x_i, t) + \int_{-L}^{L} w_p(x_i - y) f(u(y, t)) \, dy, \quad i = 1, \dots, n, \quad t \in [0, T],$$

$$u(x_i, 0) = \varphi(x_i), \qquad i = 1, \dots, n$$

and approximate the integral in the variable y using the composite trapezium rule with n strips. For a 2L-periodic function q the rule is given by

$$\int_{-L}^{L} g(y) \, dy = g(x_1) \frac{h}{2} + \sum_{j=2}^{n} g(x_j) h + g(x_{n+1}) \frac{h}{2} = \sum_{j=1}^{n} g(x_j) h,$$

from which we get confirmation that only function evaluations at nodes $\{x_i\}_{i=1}^n$ are required. One can show that the scheme above approximates (3.1) via the system n ODEs

(3.2)
$$U'(t) = -U(t) + AMF(U), \qquad t \in [0, T], \qquad U(0) = \Phi$$

where $U(t) \in \mathbb{R}^n$ for all $t \in [0,T]$ is a vector with components $U_i(t) \approx u(x_i,t)$, the vector $\Phi \in \mathbb{R}^n$ has components $\Phi_i = \varphi(x_i)$, and the nonlinear function $F : \mathbb{R}^n \to \mathbb{R}^n$, has components $(F(U))_i = f(u_i)$. Finally the matrix $M \in \mathbb{R}^{n \times n}$ is expressed by setting $W_i = W(x_i)$ and

$$f(u_{i}). \text{ Finally the matrix } M \in \mathbb{R}^{n \times n} \text{ is expressed by setting } W_{i} = W(x)$$

$$\begin{bmatrix}
1 & 2 & \cdots & n/2+1 & \cdots & n \\
hW_{n/2+1} & hW_{n/2+2} & \cdots & hW_{1} & \cdots & hW_{n/2} \\
hW_{n/2} & hW_{n/2+1} & \cdots & hW_{n} & \cdots & hW_{n/2-1} \\
\vdots & \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\
hW_{2} & hW_{3} & \cdots & hW_{n/2+2} & \cdots & hW_{1} \\
hW_{1} & hW_{2} & \cdots & hW_{n/2+1} & \cdots & hW_{n} \\
hW_{1} & hW_{2} & \cdots & hW_{n/2+1} & \cdots & hW_{n} \\
hW_{n} & hW_{1} & \cdots & hW_{n/2+3} & \cdots & hW_{n-1} \\
\vdots & \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\
hW_{n/2+2} & hW_{n/2+3} & hW_{2} & \cdots & hW_{n/2+1}
\end{bmatrix} = M.$$
To navigate the circulant matrix M and to relate (3.2) to (3.1) is to recall

One way to navigate the *circulant* matrix M and to relate (3.2) to (3.1) is to recall that the grid has nodes $x_1 = -L$, $x_{n/2+1} = 0$, and $x_n = L - h$. The equation

$$\partial_t u(0,t) = -u(0,t) + \int_{-L}^{L} w_p(0-y) f(u(y,t)) dy,$$

for instance, is approximated by the ODE

$$U'_{n/2+1}(t) = -U_{n/2+2} + h \sum_{j=1}^{n} w(-x_j) f(U_j) h = -U_{n/2+1} + Ah \sum_{j=1}^{n} W_j f(U_j) h,$$

and the corresponding row of the matrix M is highlighted in red. Similarly

$$\partial_t u(h,t) = -u(h,t) + \int_{-L}^L w_p(h-y) f(u(y,t)) \, dy,$$

4 D. AVITABILE

is approximated by

$$U'_{n/2+2}(t) = -U_{n/2+2} + h \sum_{j=1}^{n} w(h - x_j) f(U_j) h = -U_{n/2+2} + h \sum_{j=1}^{n} w(x_{j-1}) f(U_j) h,$$

which, upon recalling that $x_0 = x_n$ by periodicity, gives row n/2 + 2 of the matrix. The fact that M is circulant descends from the integral in (3.1) being a circular convolution, a convolution between periodic functions with the same period.

Question 5. We will now work towards the construction of code to timestep the neural field equation. Assume the following setup: $A=1, \ \sigma=1.5, \ \mu=10, \ \theta=0.5, \ L=10\pi, \ n=2^{10}$.

Write a code that, for generic number of nodes n, stores the nodes $\{x_j\}_{j=1}^n$ in a vector, and forms the n-by-n matrix M. You may want to test the matrix M for low n, and known values of w. Ultimately you can download a file containing the matrix for the parameter above at this link

Question 6. Use the matrix M in Question 5 to time step the set of ODEs (3.2). You can use any off-the-shelf timestepper available on your platform for time step, or write your own. In the solutions I have used Matlab's in-built ode45 which is 4the order and time-adaptive.

Question 7. Produce numerical evidence that, with the parameters given in Question 5, the trivial steady state $u(x,t) \equiv 0$ is linearly stable. To do this, you can set the initial condition Φ to be a random vector with small norm (which models small random perturbations around 0), and observe the initial perturbations decay.

Question 8. From section 2 we know that, upon increasing A above a critical value A_c , we should reach a Turing-like bifurcation. Calculate A_c from (2.3), set $A > A_c$ and repeat the numerical simulation: you should see the formation of patterns.

Question 9. From section 2 we know that emerging patterns should have a specific wavelength ξ_c . Verify that, when $A > A_c$, patterns are formed at the predicted wavelength ξ_c . One way to do that is to set a deterministic initial condition with wavelength ξ_c , for instance $\varphi(x) = \cos(\xi_c x)$, instead of a random one, and observe the perturbations decay or amplify when A is above or below the critical value, respectively.

Question 10. As for ODEs, bifurcations of stationary states in a neural field equation can be super- or sub-critical. The analysis of the previous section does not address the criticality of the Turing-like bifurcation, but we can do so numerically, using the code. The main idea is to time-step the system for various values $\{A_k\}$ in the interval [1,3], keeping an identical initial condition in the form of a small perturbation of the trivial state, say $\varphi(x) = \varepsilon \cos(\xi_c x)$.

The expectation is that T be sufficiently large that each simulation has reached an equilibrium, either the trivial state, when $A < A_c$ or the patterned state when $A > A_c$.

At the end of the simulation for $A = A_k$, we record a solution measure of the corresponding final state $u_k(x,T)$, for instance the infinity norm $||u_k(\cdot,T)||_{\infty} = \max_{x \in [-L,L]} |u_k(x,T)|$.

We plot the set of points with coordinates $(A_k, ||u_k(\cdot, T)||_{\infty})$ to obtain a crude bifurcation diagram, displaying branches of stable steady states as A varies in [1,3]. Is the Turing-like bifurcation sub- or super-critical?

DA: Provide link

Question 11. The most expensive operation when timestepping a neural field is the matrix-vector multiplication featuring in the right-hand side of (3.2). The n-by-n matrix M is full, and multiplying it to the right by an n-vector takes $O(n^2)$ operations. This becomes expensive on large-scale computations.

When the matrix M is circulant, one can use Fast Fourier Transforms (FFTs) to perform matrix-vector multiplications in $O(n \log n)$ operations. Amend your code to carry out the matrix-vector multiplication using FFTs, and compare its performance with the old code.