

# 红外二氧化碳传感器

# CM1106



#### 描述

CM1106是一款基于非分光红外吸收原理的二氧化碳传感器,能够实时监测并显示二氧化碳浓度。本传感器具有精度高、性能优越、结构小巧、易于安装等特点。 适应于室内CO2浓度检测、空气质量控制及节能控制等应用。如新风系统、空调控制、空气品质监测仪、植物培养等。

#### 工作原理

CO2、CO等由异种原子构成的分子在红外线波长区域具有吸收光谱,其吸收强度遵循郎伯—比尔定律。当对应某一气体特征吸收波长的光波通过被测气体时,其强度将明显减弱,强度衰减程度与该气体浓度有关,两者之间的关系遵守朗伯-比尔定律。

NDIR传感器的基本原理结构如下图所示,



# 基本数学模型如下:

大部分有机和无机多原子分子气体在红外区有特定吸收波长。 当红外光通过时,这些气体分子对特定波长的透过光强。可由 朗伯-比尔定律表示: I = I0e-kpl,吸收光强i可表示为: i=I0-I= I0(1-e-kpl)。式中,I0为入射光强;I为透过光强;I为气体 介质厚度,p为气体浓度,k为吸收系数。

#### 产品特性

- ◆ 采用非分光红外技术(NDIR)
- ◆ 全量程温度范围修正
- ◇ 产品结构体积紧凑小巧,易于安装
- ◆ 寿命长,自动校准,免维护

# 主要应用

- ♦ 新风系统、中央空调
- ◆ 农业种植、植物培养
- ◇ 仓储、冷链运输

# 表 1.规格参数

| 红外二氧化碳传感器规格 |                                                 |  |  |  |
|-------------|-------------------------------------------------|--|--|--|
| 检测原理        | 非分光红外吸收原理                                       |  |  |  |
| 检测范围        | 400-2000ppm<br>400-5000ppm                      |  |  |  |
| 检测精度        | 士(50ppm+5%读数)                                   |  |  |  |
| 上电稳定时间      | 120s                                            |  |  |  |
| 数据刷新频率      | 1s                                              |  |  |  |
| 工作条件        | -10~50°C; 0~95%RH以下(非凝结)                        |  |  |  |
| 存储条件        | -20~60°C; 0~95%RH以下(非凝结)                        |  |  |  |
| 工作电压        | DC (5.0±0.1)V,纹波<50mV                           |  |  |  |
| 平均工作电流      | <70mA                                           |  |  |  |
| 通讯接口        | 1. UART_TTL(3.3V)<br>2. PWM(3.3V)<br>3. IIC(定制) |  |  |  |
| 产品尺寸        | W33*H19.7*D8.9 mm                               |  |  |  |
| 产品寿命        | ≥10年                                            |  |  |  |





图 1 CM1106 引脚定义图

# 表 2. 引脚定义表

| CON4 |     |              | CON5 |       |                    |  |
|------|-----|--------------|------|-------|--------------------|--|
| 序号   | 引脚  | 描述           | 序号   | 引脚    | 描述                 |  |
| 1    | +5V | 电源输入端(+5V端)  | 1    | +3.3V | 电源输出端(+3.3V/100mA) |  |
| 2    | GND | 电源输入端(接地端)   | 2    | RX    | 串口接收端(+3.3V)       |  |
| 3    | А   | 报警输出端 ( 预留 ) | 3    | TX    | 串口发送端(+3.3V)       |  |
| 4    | PWM | 脉宽调制         | 4    | R/T   | RS485 控制端(预留)      |  |
|      |     |              | 5    | CA    | 手动校准端(预留)          |  |



# 应用场景 1: UART TTL 3.3V 串口输出



图2 UART 通讯连接电路示意

# 应用场景 2: UART 3.3V 电平转换成 5V 电平通讯电路



图3 UART 3.3V 通讯电平转换成 5V 电平通讯电路参考原理图





# ◆UART 通讯协议

# 1 协议概述

- 1) 波特率: 9600, DataBits: 8, StopBits: 1, Parity: No, Flow Control: No
- 2) 本协议数据,均为16进制数据。如"46"为十进制的[70];
- 3) [xx]为单字节数据(无符号, 0-255); 双字节数据高字节在前, 低字节在后;

# 2 串口通讯协议格式

# 上位机发送格式

| 起始符  | 长度  | 命令号 | 数据 1  | ••••• | 数据 n  | 校验和 |
|------|-----|-----|-------|-------|-------|-----|
| HEAD | LEN | CMD | DATA1 |       | DATAn | CS  |
| 11H  | XXH | XXH | XXH   |       | XXH   | XXH |

# 协议格式详细说明

| 协议格式 | 详细说明                           |  |  |  |
|------|--------------------------------|--|--|--|
| 起始符  | 上位机发送固定为[11H],模块应答固定为[16H]     |  |  |  |
| 长度   | 帧字节长度,=数据长度+1(包括 CMD+DATA)     |  |  |  |
| 命令号  | 指令号                            |  |  |  |
| 数据   | 读取或者写入的数据,长度可变                 |  |  |  |
| 校验和  | 数据累加和,=256-(HEAD+LEN+CMD+DATA) |  |  |  |

#### 3 串口协议命令号表

| 编号 | 功能名称                  | 命令号  |
|----|-----------------------|------|
| 1  | 读取 CO2 测量结果           | 0x01 |
| 2  | CO2 浓度值单点校准           | 0x03 |
| 3  | 读取软件版本号               | 0x1E |
| 4  | 开启/关闭零点自校准以及零点自校准参数设置 | 0x10 |
| 5  | 查询仪器编号                | 0x1F |

#### 4 协议详细描述

#### 4.1 读取 CO2 测量结果

**发送:**11 01 01 ED

应答: 16 05 01 DF1- DF4 [CS]

**功能**:读取 CO2 测量结果 (单位:ppm) **说明**:CO2 测量值 = DF1\*256 + DF2

注意: DF3-DF4 预留





# 通讯协议

应答实例:

应答: 16 05 01 02 58 00 00 8B

说明:

十六进制换算为十进制: 02 即 02; 58 即 88 CO2 测量值 = 02\*256 + 88=600ppm

### 4.2 CO2 浓度值单点校准

发送: 11 03 03 DF1 DF2 CS

**应答:** 16 01 03 E6

功能: CO2 浓度值单点校准

说明:

1、 单点校准目标值= DF1\*256 + DF2。单位为 ppm, 范围为 (400 ~ 1500 ppm)

2、 进行 CO2 单点校准之前,请确认当前环境 CO2 值为单点校准目标值,稳定时间最少 2 分钟以上。

例如:

当需要将模块单点校准到 600ppm 时,发送命令: 11 03 03 02 58 8F

十六进制换算为十进制: 02 即 02; 58 即 88

CO2 测量值 = 02\*256 + 88=600ppm

#### 4.3 读取模块固件版本号

发送:11 01 1E D0

应答: 16 0C 1E DF1-DF11 CS

功能:读取模块固件版本号

说明: DF1-DF10 表示详细版本号的 ASCII 码, DF11 预留。

例如: 当模块版本号为 CM V0.0.20 时,应答数据:

16 OC 1E 43 4D 20 56 30 2E 30 2E 32 30 00 97

**₹** 

CM V0.0.20

十六进制换算为 ASCII 码:

注意: 20 换算为 ASCII 码为空格。

#### 4.4 开启/关闭零点自校准以及零点自校准参数设置

发送: 11 07 10 DF1 DF2 DF3 DF4 DF5 DF6 CS

**应答:** 16 01 10 D9





# 说明:

| 字符  | 说明                    |  |  |
|-----|-----------------------|--|--|
| DF1 | 预留 ( 默认 100 )         |  |  |
| DF2 | 校准使能(0:开启;2:关闭)       |  |  |
| DF3 | 校准周期(1——15 可选,一般默认为7) |  |  |
| DF4 | 基准值高位 (2个字节)          |  |  |
| DF5 | 基准值低位(2个字节)           |  |  |
| DF6 | 预留(一般默认 100)          |  |  |

注意: DF4 和 DF5 默认值为 400,即 DF4:01; DF5:90

# 4.4.1 开启零点自校准并设置参数

发送:11 07 10 64 00 07 01 90 64 78

**应答:**16 01 10 D9

4.4.2 关闭零点自校准

发送:11 07 10 64 02 07 01 90 64 76

**应答:**16 01 10 D9

# 4.5 查询仪器编号

**发送:** 11 01 1F CF

**应答:** 16 0B 1F (SN1) (SN2) (SN3) (SN4) (SN5) [CS]

功能:读取模块固件版本号

**说明**: 输出软件的仪器编号。SNn 范围为 0~9999, 5 个整数型构成 20 位编号。



# ◆PWM 输出

PWM 周期: 1004ms

**正向脉宽:**2000 量程:(PPM/2)+2ms;5000 量程:(PPM/5)+2ms

CO2 浓度检测值: 2000 量程: (PWM 正向脉宽-2)\*2;5000 量程: (PWM 正向脉宽-2)\*5

PWM 输出图示:



图 4 2000 量程 PWM 输出图示



图 5 5000 量程 PWM 输出图示

#### 说明:

- 1. 需在引脚 P 口与 5V 之间加 5K-10K 上拉电阻;
- 2. 400-2000 量程的 PWM 输出图示从 400ppm 开始, 400-5000 量程的 PWM 输出图示从 400ppm 开始。









# 可靠性测试

| 测试项目   | 试验要求                                                                              | 判定标准                                       | 供试数 n<br>故障数 c |
|--------|-----------------------------------------------------------------------------------|--------------------------------------------|----------------|
| 温度影响曲线 | 分别在-10±2℃、0±2℃、10±2℃、20±2℃、30±2℃、40±2℃、<br>50±2℃环境条件,传感器上电运行,检测传感器的测量误差。          | CO2 准确度:<br>±(50ppm + 5%读数)                | n=10<br>c=0    |
| 低温贮存   | -20℃±2℃环境条件,不上电储存96H后,放置到常温环境下测量传感器的测量误差。                                         | 常温环境中恢复 2 小时后,传感器<br>应能正常工作                |                |
| 低温运行   | 室内温度要求为:-10±2℃环境条件,传感器上电运行96H后,放置到常温环境下检测不同二氧化碳浓度下传感器的测量误差。                       | 常温环境中恢复 2 小时后,传感器<br>应能正常工作                |                |
| 高温贮存   | 60℃±2℃环境条件,不上电储存 96H 后,放置到常温环境下测量传感器的测量误差。                                        | 常温环境中恢复 2 小时后,传感器<br>应能正常工作                | n=5            |
| 高温运行   | 室内温度要求为:50±2℃环境条件,传感器上电运行96H后,<br>放置到常温环境下检测不同二氧化碳浓度下传感器的测量误差。                    | 常温环境中恢复 2 小时后,传感器<br>应能正常工作                | c=0            |
| 高低温冲击  | -20℃ 保持 60 分钟后,在 10s 内切换至 60℃再保持 60 分钟视为一个周期,一共 10 个周期,样品试验期间不上电                  | 常温环境中恢复 2 小时后,传感器<br>精度应能满足规格书标准           |                |
| 高温高湿工作 | 传感器放置于 40±2℃, 95%RH 的高温高湿环境下, 通以额定电压,运行 500H后,放置到常温环境下测量传感器的测量误差。                 | 常温环境中恢复 2 小时后,传感器<br>精度应能满足规格书标准           |                |
| 盐雾试验   | 按 GB/T2423.17 进行,放置在温度为35℃的盐雾箱内用浓度为5%氯化钠溶液喷雾24小时,实验后用蒸馏水进行冲洗,然后用气流吹干。             | 标准环境下恢复不少于1h且不超过 2h,外观应无不良,无腐蚀             | n=2<br>c=0     |
| 振动测试   | 裸机在 X/Y/Z 轴方向应能承受如下所规定的振动试验,频率范围 10~55~10Hz/min,振幅为 1.5mm,扫描循环 2 小时。              | 试验后外观应无不良,传感器均满足基本性能测试标准。                  | n=4<br>c=0     |
| 包装跌落   | 跌落高度:按照 GB/T 4857.18 规定的重量对应高度进行设定。依 GB/T4857.5 包装运输包装件 跌落试验方法进行测试。跌落试验顺序为一角三棱六面。 | 包装跌落试验后传感器外观应无<br>不良,无元器件脱落,传感器应<br>能正常工作。 | n=1箱<br>c=0    |











附表 4. 包装说明

| 毎层数量 | 包装层数 | 包装数量  | 纸箱尺寸                  | 包装材质  |
|------|------|-------|-----------------------|-------|
| 60个  | 18 层 | 1080个 | W400 * L300 * H480 mm | 红色珍珠棉 |



# 咨询及售后

联系电话: 86-27-8162 8813

联系地址:武汉市东湖高新技术开发区凤凰产业园凤凰园三路3号

邮政编码:430205

传 真: 86-27-8740 1159

网 址:http://www.gassensor.com.cn

E-mail: info@gassensor.com.cn

