ACA2021 - Final project Team 5: SBM for HFT

Simulated Bifurcation Machine for High-Frequency Trading

2021/6/29 游子緒、馬健凱、陳昱行

GitHub: https://github.com/e841018/SBM4HFT

Mathematical formulation: From exchange rates to Ising model

Derived by ourselves

Exchange rates -> QUBO -> Ising model

Inputs and outputs of SBM

- Input: log_cA matrix of log(exchange rate)
- Output: x
 - A matrix of activation
 - Should contain only 1 loop x[0][2] (0->2): 0.04218 x[2][1] (2->1): -0.16195 x[1][0] (1->0): 0.12034 sum(log c * x): 0.00057
- Objective function to minimize:

```
- sum(log_c * x) + constraints(x)
```

```
bool x[n][n] = {
      { 0, 0, 1},
      { 1, 0, 0},
      { 0, 1, 0},
};
```

Rewrite as QUBO

Constraint 1: For each node i. (outflux - influx) ≈ 0

Constraint 2: For each node i, outflux ≈ 0 or outflux ≈ 1

$$x = \operatorname*{argmin}_{x} \left\{ \sum_{i=0}^{n-1} \sum_{j=0}^{n-1} (-log_2(c_{ij})) x_{ij} + M_1 \sum_{i=0}^{n-1} \left(\sum_{j=0}^{n-1} x_{ij} - \sum_{j=0}^{n-1} x_{ji} \right)^2 \right| + M_2 \sum_{i=0}^{n-1} \left(\sum_{j=0}^{n-1} x_{ij} \right) \left(\sum_{j=0}^{n-1} x_{ij} - 1 \right) \right\}$$

Expand the 1st term:

$$\sum_{i=0}^{n-1} \sum_{j=0}^{n-1} (-log_2(c_{ij})) x_{ij}$$

$$=\sum_{i=1}^{n-1}\sum_{j=1}^{n-1}(-log_2(c_{ij}))x_{ij}x_{ij}$$

Expand the 2nd term:

$$M_1 \sum_{i=0}^{n-1} \left(\sum_{i=0}^{n-1} x_{ij} - \sum_{i=0}^{n-1} x_{ji}
ight)^2$$

$$=M_1\sum_{i=0}^{n-1}\left(\sum_{i=0}^{n-1}(x_{ij}-x_{ji})
ight)^2$$

$$= M_1 \sum_{i=0}^{n-1} \left(\sum_{i=0}^{n-1} (x_{ij} - x_{ji})
ight) \left(\sum_{k=0}^{n-1} (x_{ik} - x_{ki})
ight)$$

$$M_1 = M_1 \sum_{i=0}^{n-1} \sum_{j=0}^{n-1} \sum_{i=0}^{n-1} (x_{ij} - x_{ji}) (x_{ik} - x_{ki})^{-1}$$

$$M = M_1 \sum_{i=0}^{n-1} \sum_{i=0}^{n-1} \sum_{k=0}^{n-1} (x_{ij} x_{ik} - x_{ij} x_{ki} - x_{ji} x_{ik} + x_{ji} x_{ki})^{-1}$$

Expand the 3rd term:

$$M_2 \sum_{i=0}^{n-1} \left(\sum_{j=0}^{n-1} x_{ij}
ight) \left(\sum_{j=0}^{n-1} x_{ij} - 1
ight)$$

$$egin{aligned} & \overline{i=0} & igcap_{\overline{j=0}} & igcap igcap_{\overline{j=0}} & igcap \ & = M_2 \sum_{i=0}^{n-1} \left(\sum_{i=0}^{n-1} x_{ij}
ight) \left(\sum_{k=0}^{n-1} x_{ik} - 1
ight) \end{aligned}$$

$$M_1 = M_1 \sum_{i=0}^{n-1} \left(\sum_{j=0}^{n-1} (x_{ij} - x_{ji})
ight) \left(\sum_{k=0}^{n-1} (x_{ik} - x_{ki})
ight) \qquad = M_2 \sum_{i=0}^{n-1} \left(\sum_{j=0}^{n-1} \sum_{k=0}^{n-1} x_{ij} x_{ik} - \sum_{j=0}^{n-1} x_{ij}
ight)$$

$$=M_2\sum_{i=0}^{n-1}\left(\sum_{j=0}^{n-1}\sum_{k=0}^{n-1}x_{ij}x_{ik}-\sum_{j=0}^{n-1}x_{ij}x_{ij}
ight)$$

Change subscripts and rewrite QUBO as Ising model

- ullet Change subscripts: $x_{ab}
 ightarrow x_{a imes n+b}$ Now each expanded term is of the form $\,Q_{ij}x_ix_j$
- QUBO: matrix Q

$$egin{aligned} Q \in \mathbb{R}^{N imes N}, Q &= Q^T, x_i \in \{0,1\} \ & f_Q(Q,x) = \sum_{i=0}^{N-1} \sum_{j=0}^{N-1} Q_{ij} x_i x_j \ & x_{opt} = rgmin_x f_Q(Q,x) \end{aligned}$$

Ising model: matrix J and vector h

$$egin{aligned} J \in \mathbb{R}^{N imes N}, J &= J^T, h \in \mathbb{R}^N, s_i \in \{-1, 1\} \ H(J, h, s) &= -rac{1}{2} \sum_{i=0}^{N-1} \sum_{j=0}^{N-1} J_{ij} s_i s_j + \sum_{i=0}^{N-1} h_i s_i \ s_{opt} &= rgmin H(J, h, s) \end{aligned}$$

$$egin{aligned} \operatorname{Let} s_i &= 2x_i - 1 \ \operatorname{Let} J_{ij} &= rac{-Q_{ij}}{2}, h_i = \left(\sum_{j=0}^{N-1} rac{Q_{ij}}{4} + \sum_{j=0}^{N-1} rac{Q_{ji}}{4}
ight), C = \sum_{i=0}^{N-1} \sum_{j=0}^{N-1} rac{Q_{ij}}{4} \ f_Q(Q,x) &= -rac{1}{2} \sum_{i=0}^{N-1} \sum_{j=0}^{N-1} J_{ij} s_i s_j + \sum_{i=0}^{N-1} h_i s_i + C = H(J,h,s) + C \end{aligned}$$

Example: An Ising problem of 9 spins

M1 = M2 = 0.2

```
(0,0)(0,1)(0,2)(1,0)(1,1)(1,2)(2,0)(2,1)(2,2)
           0 -0.1000 -0.1000
                                 0 0.1000
      -0.1000 -0.2602 -0.2000
                          0.2000
                                                0.1000 -0.1000
      -0.1000 -0.2000 -0.1789
                           0.1000
                                  0 -0.1000
                                                0.2000
                                                       0.1000
                    0.1000 -0.1398 -0.1000 -0.2000 -0.1000
                                                       0.1000
                         0 -0.1000
                                      0 -0.1000
             0.1000 -0.1000 -0.2000 -0.1000 -0.1190 0.1000
           0 0.1000 0.2000 -0.1000
                                  0 0.1000 -0.2211 -0.2000 -0.1000
2, 1)
                    0.1000
                                  0 0.2000 -0.2000 -0.2810 -0.1000
           0 -0.1000
                           0.1000
                                0
                                             0 -0.1000 -0.1000
      (0,0)(0,1)(0,2)(1,0)(1,1)(1,2)(2,0)(2,1)(2,2)
                           0.1398 0.2000 0.1190
                    0.1789
```

Simulated Bifurcation Machine:

An algorithm that solves QUBO by simulating Ising models

We encountered some problems and haven't fully solved them...

Parameter tuning

- SBM involves a lot of parameters
 - The objective function involves 2 constants:
 - M1, M2
 - SBM involves 5 constants and 2 functions of time:
 - N_step, N_substep, alpha0, beta0, Delta_t
 - alpha(t), eta(t)
- We can't find a set of parameters that fits the example 9-spin problem...

Hypothesis 1: Inappropriate objective function

We tried another objective function from [1]

```
J =
            -0.5000 -0.2500 -0.2500 -0.2500
                                                       0 -0.2500
            -0.2500 -25.0753 -0.7500 0.5000 -0.2500
                                                   0.5000
            -0.2500 -0.7500 7.4355 0.5000
                                               0 -0.7500
            -0.2500 0.5000 0.5000 23.0673 -0.2500 -0.7500 -0.7500
                 0 -0.2500
                                0 -0.2500 -0.5000 -0.2500
                   0.5000 -0.7500 -0.7500 -0.2500 31.4154
           -0.2500 0.5000 0.5000 -0.7500
                                               0 0.5000 -9.4245 -0.7500 -0.2500
                 0 -0.7500 0.5000 0.5000 -0.2500 0.5000 -0.7500 -33.3891 -0.2500
    (2, 1)
   (2, 2)
                         0 -0.2500
                                               0 -0.2500 -0.2500 -0.2500 -0.5000
            (0,0)(0,1)(0,2)(1,0)(1,1)(1,2)(2,0)(2,1)(2,2)
                   25.5753 -6.9355 -22.5673 1.5000 -30.9154 9.9245 33.8891
```

The result was still not good enough...

```
maximize { obj0 + obj1 + obj2 + obj3 }
65.0055 - 2.0000 - 0.0000 - 0.0000 = 63.0055
```

```
activation =
0 0 1
1 0 0
0 0 0
```

Hypothesis 2: The 9-spin problem is too small

K2000: Weighted Max Cut problem for 2000-vertex complete graph

Simulated Bifurcation Machine

- Number of steps = 4000
- Number of substeps = 2
- Delta t = 0.7
- x_init_max = p_init_max = 0.001

https://upload.wikimedia.org/wikipedia/commons/thumb/c/cf/Max-cut.svg/1200px-Max-cut.svg.png

Simulated Annealing https://github.com/hariby/SA-complete-graph/releases

- thread = 1
- sync steps = 4000

Experimental result Experiments

SBM v.s. **SA** in different graph sizes

Best cut & **Run time** in different graph sizes (10, 20, ..., 1000, 2000) Our SBM can handle K2000 case, but suffers from poor solution results.

FPGA implementation of SBM

We did not find any existing open-source SBM library, so we implemented one.

Function blocks

N = n * n

: Packed and streamed

Inside MMTE

- MM (Matrix-vector multiplication)
- TE (Time evolution)

```
\circ \qquad FX(x_i,h_i) = \delta t * (-(lpha 0 - lpha + eta 0 * x_i * x_i) * x_i - \eta * h_i
```

```
\circ FP(p_i) = \delta t * p_i
```

```
// Matrix-Vector Multiplication (MM)  \begin{aligned} & \textbf{for} \ i = 1 \ \textbf{to} \ N \ \textbf{do} \\ & \Delta p_i \leftarrow \operatorname{JX}(\mathbf{J}_i, \mathbf{x}) \end{aligned}   & \textbf{end} \\ & \text{// Time Evolution (TE)} \\ & \textbf{for} \ i = 1 \ \textbf{to} \ N \ \textbf{do} \\ & p_i \leftarrow p_i + \Delta p_i \\ & \text{// Self Evolution} \\ & \textbf{for} \ m = 1 \ \textbf{to} \ M \ \textbf{do} \\ & p_i \leftarrow p_i + \delta p_i = p_i + \operatorname{FX}(x_i, h_i) \\ & x_i \leftarrow x_i + \delta x_i = x_i + \operatorname{FP}(p_i) \\ & \textbf{end} \end{aligned}
```


csynth report

- The host program for Vitis passed SW emulation but failed HW emulation
 - No csynth report generated for U50
 - (Update: we just passed HW emulation!)
- The testbench for Vivado HLS passed cosim
 - U50 can not be found in the device list of Vivado HLS 2019.2
 - The closest device is U280 (with HBM)

Display Name	Part	Family
Alveo U280 Data Center Accelerator Card	xcu280-fsvh2892-2L-e	virtexuplusHBM
Alveo U250 Data Center Accelerator Card	xcu250-figd2104-2L-e	virtexuplus
Alveo U200 Data Center Accelerator Card	xcu200-fsgd2104-2-e	virtexuplus

csynth report with device=U280, 16 currencies (256 spins)

We only added pragmas on interface ...

256 spins: C synth spent 35 mins

9 spins: Cosim result correct

 Module	Latency min	(absolute) max	++ Pipeline Type	
SBM QUBO2Ising	348 ms 5.791 ms	348 ms 5.791 ms		
total	354 ms	354 ms	none	

csynth report with device=U50, 3 currencies (9 spins)

We only added pragmas on interface ...

== Utilization Estimates

* Summary:

	LL	L .		L	L	L _	L
	Name	BRAM_18K	DSP	FF	LUT	URAM	
	DSP Expression FIFO Instance Memory Multiplexer Register	- - 10 0 - -	- - 63 - -	- 0 - 12343 98 - 3890	- 2781 - 12029 134 2713 416	- - - - - -	
•	Total	10	63	16331	18073	0	_
	Available SLR	1344	2976	871680	435840	320	
•	Utilization SLR (%)	~0	2	1	4	0	
	Available	2688	5952	1743360	871680	640	
	Utilization (%)	~0	1	~0	2	0	

Host program

For testing kernel on U50

OpenCL/C++

- Use Coordinate format to pass log(exchange rate) data
- Use Coordinate format to receive a sequence of book order.
- Some problems encoutered:
 - AXI4-Lite don't support custom data type directly
 - Use xdma + AXI4 Master instead, but would take 4096 bytes to aligned the memeory, though the actual data type size is only 12 bytes.

Interface reference from MM POC

- MM POC is designed for single-asset arbitration,
 while the currency exchange application is multi-asset
- An asset in currency exchange is an exchange rate
 - For example, 4 currencies will need (16 4 = 12) assets (symbolIndex)
- Each incoming orderBookResponse_t is regarded as an exchange rate update
 - 0 or multiple orderEntryOperation_t will be generated, instead of 1
- Changes are **not** required in OrderBook and OrderEntry
 - The interfaces to other IPs are unchanged

orderBookOperations Sequence XDMA + AXI4-Master Host Program SBM Exchange XDMA + AXI4-Master Rate Manager orderbookRespnse initial params update (COO)

Contributions

- 游子緒
 - Mathematical derivations
 - Backbone of kernel code
- 陳昱行
 - MM PoC interface
 - Host program
- 馬健凱
 - Kernel optimization and refactoring
 - Test the kernel with K2000 and compare with SA