MATH 21: ANALYTIC GEOMETRY AND CALCULUS

CHAPTER 2: Conic Sections, its Equations and Graph

PARABOLA

Opens up or down	Opens left or right	
Equation: $(x - h)^2 = 4p(y - k)$	Equation: $(y - k)^2 = 4p(x - h)$	
Vertex:=(h,k)		
Focus (p units from vertex)	Focus (p units from vertex)	
(h, k+p)	(h + p, k)	
Directrix (p units from vertex, other side)	Directrix (p units from vertex, other side)	
y = k - p	x = h - p	
Principal axis: $x = h$	Principal axis: $y = k$	
Endpoints of L.R: (2p units from focus)	Endpoints of L.R: (2p units from focus)	
$(h\pm 2p, k+p)$	$(h + p, k\pm 2p)$	

ELLIPSE

If the principal axis is a horizontal line:	If the principal axis is a vertical line:	
Equation: $\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1$	Equation: $\frac{(y-k)^2}{a^2} + \frac{(x-h)^2}{b^2} = 1$	
Center: (<i>h</i> , <i>k</i>)		
Vertices: $(h\pm a, k)$	Vertices: $(h, k \pm a)$	
Endpoints of minor axis: $(h, k \pm b)$	Endpoints of minor axis: $(h\pm b, k)$	
Principal axis: $y = k$	Principal axis: $x = h$	
Length of major axis: 2a		
Length of minor axis: 2b		
Foci: $(h \pm c, \ k)c = \sqrt{a^2 - b^2}$	Foci: $(h, k \pm c)c = \sqrt{a^2 - b^2}$	
Eccentricity: $e = \frac{c}{a}$		
Equation for directrices: $x = h \pm \frac{a}{e}$	Equation for directrices: $y = k \pm \frac{a}{e}$	

HYPERBOLA

If the principal axis is a horizontal line:	If the principal axis is a vertical line:
Equation: $\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1$	Equation: $\frac{(y-k)^2}{a^2} - \frac{(x-h)^2}{b^2} = 1$
Center: (<i>h</i> , <i>k</i>)	
Vertices: $(h\pm a, k)$	Vertices: $(h, k \pm a)$
Foci (c units away from vertex)	Foci (c units away from vertex)
$c = \sqrt{a^2 + b^2}$	$c = \sqrt{a^2 + b^2}$
$((h\pm a)\pm c, k))$	$(h, (k\pm a)\pm c)$
Principal axis: $y = k$	Principal axis: $x = h$
Endpoints of conjugate axis: $(h, k \pm b)$	Endpoints of conjugate axis: $(h\pm b, k)$
Length of transverse axis: 2a	
Length of conjugate axis: 2b	
Eccentricity: $e = \frac{c}{a}$	
Equation for directrices: $x = h \pm \frac{a}{e}$	Equation for directrices: $y = k \pm \frac{a}{e}$