Zadanie 1. (0-1)

Różnica $\cos^2 165^\circ - \sin^2 165^\circ$ jest równa

$$\mathbf{B.} - \frac{\sqrt{3}}{2}$$

c.
$$-\frac{1}{2}$$

D.
$$\frac{\sqrt{3}}{2}$$

Zadanie 2. (0-1)

Na rysunku przedstawiono fragment wykresu funkcji f określonej dla każdej liczby rzeczywistej x.

Jeden spośród podanych poniżej wzorów jest wzorem tej funkcji. Wskaż wzór funkcji f.

$$\mathbf{A.}\ f(x) = \frac{\cos x + 1}{|\cos x| + 1}$$

$$\mathbf{B.}\ f(x) = \frac{\sin x + 1}{|\sin x| + 1}$$

$$\mathbf{C.}\ f(x) = \frac{|\cos x| - 2}{\cos x - 2}$$

$$\mathbf{D.}\ f(x) = \frac{|\sin x| - 2}{\sin x - 2}$$

Zadanie 3. (0-1)

Wielomian $W(x) = x^4 + 81$ jest podzielny przez

A.
$$x - 3$$

B.
$$x^2 + 9$$

C.
$$x^2 - 3\sqrt{2}x + 9$$
 D. $x^2 + 3\sqrt{2}x - 9$

D.
$$x^2 + 3\sqrt{2}x - 9$$

Zadanie 4. (0-1)

Liczba różnych pierwiastków równania 3x + |x - 4| = 0 jest równa

A. 0

B. 1

C. 2

D. 3

Zadanie 5. (0-2)

Oblicz granicę
$$\lim_{n\to\infty} \frac{\left(3n+2\right)^2-\left(1-2n\right)^2}{\left(2n-1\right)^2}$$
.

W poniższe kratki wpisz kolejno – od lewej do prawej – cyfrę jedności i pierwsze dwie cyfry po przecinku skończonego rozwinięcia dziesiętnego otrzymanego wyniku.

Zadanie 6. (0-3)

Niech $\log_2 18 = c$. Wykaż, że $\log_3 4 = \frac{4}{c-1}$.

Zadanie 7. (0-3)

Rozwiąż nierówność:

$$\frac{2x-1}{1-x} \le \frac{2+2x}{5x}$$

Zadanie 8. (0-3)

Dany jest trójkąt równoboczny ABC. Na bokach AB i AC wybrano punkty – odpowiednio – D i E takie, że $|BD| = |AE| = \frac{1}{3}|AB|$. Odcinki CD i BE przecinają się w punkcie P (zobacz rysunek).

Wykaż, że pole trójkąta *DBP* jest 21 razy mniejsze od pola trójkąta *ABC*.

Zadanie 9. (0-4)

Ze zbioru wszystkich liczb naturalnych czterocyfrowych losujemy jedną liczbę. Oblicz prawdopodobieństwo zdarzenia polegającego na tym, że wylosowana liczba jest podzielna przez 15, jeśli wiadomo, że jest ona podzielna przez 18.

Zadanie 10. (0-4)

Prosta przechodząca przez punkty A=(8,-6) i B=(5,15) jest styczna do okręgu o środku w punkcie O=(0,0). Oblicz promień tego okręgu i współrzędne punktu styczności tego okręgu z prostą AB.

Zadanie 11. (0-5)

Wyznacz wszystkie wartości parametru m, dla których trójmian kwadratowy

$$4x^2 - 2(m+1)x + m$$

ma dwa różne pierwiastki rzeczywiste x_1 oraz x_2 , spełniające warunki:

$$x_1 \neq 0$$
, $x_2 \neq 0$ oraz $x_1 + x_2 \leq \frac{1}{x_1} + \frac{1}{x_2}$

Zadanie 12. (0-5)

Rozwiąż równanie $\cos 2x = \frac{\sqrt{2}}{2}(\cos x - \sin x)$ w przedziale $(0, \pi)$.

Zadanie 13. (0-4)

Dany jest trójkąt prostokątny ABC. Promień okręgu wpisanego w ten trójkąt jest pięć razy krótszy od przeciwprostokątnej tego trójkąta. Oblicz sinus tego z kątów ostrych trójkąta ABC, który ma większą miarę.

Zadanie 14. (0-6)

Dane są parabola o równaniu $y=x^2$ oraz punkty A=(0,2) i B=(1,3) (zobacz rysunek). Rozpatrujemy wszystkie trójkąty ABC, których wierzchołek C leży na tej paraboli. Niech m oznacza pierwszą współrzędną punktu C.

- a) Wyznacz pole P trójkąta ABC jako funkcję zmiennej m.
- b) Wyznacz wszystkie wartości m, dla których trójkąt ABC jest ostrokątny.

Zadanie 15. (0-7)

Pewien zakład otrzymał zamówienie na wykonanie prostopadłościennego zbiornika (całkowicie otwartego od góry) o pojemności 144 m³. Dno zbiornika ma być kwadratem. Żaden z wymiarów zbiornika (krawędzi prostopadłościanu) nie może przekraczać 9 metrów. Całkowity koszt wykonania zbiornika ustalono w następujący sposób:

- -100 zł za 1 m^2 dna
- 75 zł za 1 m² ściany bocznej.

Oblicz wymiary zbiornika, dla którego tak ustalony koszt wykonania będzie najmniejszy.

ODPOWIEDZI

1.D 2.C 3.C 4.B 5.125

$$x\in\left(-\infty,-\frac{1}{4}\right)\cup\left(0,\frac{2}{3}\right)\cup(1,+\infty).$$

$$P(A|B) = \frac{18}{90} = \frac{1}{5}$$

$$r = 5\sqrt{2}, \ P = (7,1).$$

$$m \in (-\infty, -1) \cup (0, 1) \cup (1, 4).$$

$$\frac{\pi}{4}$$
, $\frac{7\pi}{12}$.

$$m\in \left(\frac{-1-\sqrt{17}}{2},\ -2\right)\cup \left(1,\frac{-1+\sqrt{17}}{2}\right).$$

6 m x 6 m x 4 m.