

$\mu(x) = a + bx$ 一元线性回归问题

假设对于x的每一个值有 $Y \sim N(a + bx, \sigma^2), a$, b, σ^2 都是不依赖于x的未知参数.

记
$$\varepsilon = Y - (a + bx)$$
,那么

未知参数a,b的估计

 $Y = a + bx + \varepsilon$, $\varepsilon \sim N(0, \sigma^2)$. 对于样本 $(x_1, Y_1), (x_2, Y_2), \cdots, (x_n, Y_n)$

 $Y_i = a + bx_i + \varepsilon_i$, $\varepsilon_i \sim N(0, \sigma^2)$, 各 ε_i 相互独立. 于是 $Y_i \sim N(a + bx_i, \sigma^2)$, $i = 1, 2, \dots, n$.

根据 Y_1,Y_2,\cdots,Y_n 的独立性可得到联合密度函数为

$$L = \prod_{i=1}^{n} \frac{1}{\sigma \sqrt{2\pi}} \exp \left[-\frac{1}{2\sigma^2} (y_i - a - bx_i)^2 \right]$$
$$= \left(\frac{1}{\sigma \sqrt{2\pi}} \right)^n \exp \left[-\frac{1}{2\sigma^2} \sum_{i=1}^{n} (y_i - a - bx_i)^2 \right].$$

用最大似然估计估计未知参数 a,b.

对于任意一组观察值 y₁, y₂,…,y_n, 样本的似然

函数为
$$L = \left(\frac{1}{\sigma\sqrt{2\pi}}\right)^n \exp\left[-\frac{1}{2\sigma^2} \sum_{i=1}^n (y_i - a - bx_i)^2\right]$$

L取最大值等价于

取最小值.
$$Q(a,b) = \sum_{i=1}^{n} (y_i - a - bx_i)^2$$
取最小值.
$$\frac{\partial Q}{\partial a} = -2\sum_{i=1}^{n} (y_i - a - bx_i) = 0$$

$$\frac{\partial Q}{\partial b} = -2\sum_{i=1}^{n} (y_i - a - bx_i)x_i = 0$$

$$na + (\sum_{i=1}^{n} x_{i})b = \sum_{i=1}^{n} y_{i}$$

$$(\sum_{i=1}^{n} x_{i})a + (\sum_{i=1}^{n} x_{i}^{2})b = \sum_{i=1}^{n} x_{i}y_{i}$$
]正规方程组

$$\begin{vmatrix} n & \sum_{i=1}^{n} x_{i} \\ \sum_{i=1}^{n} x_{i} & \sum_{i=1}^{n} x_{i}^{2} \end{vmatrix} \neq 0, \qquad \hat{b} = \frac{\sum_{i=1}^{n} (x_{i} - \overline{x})(y_{i} - \overline{y})}{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}, \\ \hat{a} = \overline{y} - \hat{b}\overline{x},$$

其中
$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i, \bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i.$$

$$\mu(x) = a + bx$$

 $\hat{\mu}(x) = \hat{a} + \hat{b}x$ Y 关于 x 的经验回归函数

 $\hat{y} = \hat{a} + \hat{b}x$ Y 关于 x 的经验回归方程

回归方程 回归直线

由于 $\hat{a} = \bar{y} - \hat{b}\bar{x}$,

$$\hat{y} = \overline{y} + \hat{b}(x - \overline{x}),$$

回归直线通过散点图的几何中心 (\bar{x},\bar{y}) .

记
$$S_{xx} = \sum_{i=1}^{n} (x_i - \overline{x})^2,$$

$$S_{yy} = \sum_{i=1}^{n} (y_i - \overline{y})^2,$$

$$S_{xy} = \sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y}),$$

$$\hat{b} = \frac{S_{xy}}{S_{xx}}, \qquad \hat{a} = \frac{1}{n} \sum_{i=1}^{n} y_i - (\frac{1}{n} \sum_{i=1}^{n} x_i) \hat{b}.$$

非线性回归与曲线回归

一、非线性回归模型的类型

(一) 抛物线模型(二次曲线模型)

- (二) 双曲线模型 Y=β₀+β₁ (1/X) +ε
- (三) 幂函数模型

$$Y = \beta_0 X_1^{\beta_1} X_2^{\beta_2} \cdot \dots \cdot X_p^{\beta_p} e^{\varepsilon}$$

(五) 对数函数模型 **Υ=**β₀+β₁**InX**+ε

(四)指数函数模型 $Y = \beta_{\circ} e^{\beta_{\circ} X + \varepsilon}$

(六)逻辑曲线模型

$$Y = \frac{L}{1 + \beta_0 e^{-\beta_1 X + \varepsilon}} \quad (L > 0)$$

(七) 多项式模型

$$Y = \beta_0 + \beta_1 X + \beta_2 X^2 + \dots + \beta_p X^p + \varepsilon$$

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_1 X_2 + \beta_4 X_1^2 + \beta_5 X_2^2 + \varepsilon$$

二,可化为一元线性回归的问题

方法——通过适当的变量变换,化成一元线性 回归问题进行分析处理.

(一) 倒数变换

$$Y = \beta_0 + \beta_1 (1/X) + \epsilon$$

令 X =1/X

(二) 半对数变换

 $Y = \beta_0 + \beta_1 I n X + \epsilon$

令 X = InX, 可得: Y=β₀+β₁X + ε

(三) 双对数变换

$$Y = \beta_0 X_1^{\beta_1} X_2^{\beta_2} \cdots X_p^{\beta_p} e^{\varepsilon}$$

两边求对数,可得:

InY=In
$$\beta$$
 0+ β 1InX1+ β 2InX2+...+ β pInXp+ ϵ

$$\Rightarrow$$
 $Y^* = InY; \quad \beta^*_0 = In \beta_0; X^*_1 = InX_1, \cdots, \quad X^*_k = InX_k,$

可得:
$$Y^* = \beta_0^* + \beta_0 X_1^* + \beta_1 X_2^* + \cdots + \beta_p X_p^*$$

(四) 多项式变换

$$\begin{split} Y &= \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_1 X_2 + \beta_4 X_1^2 + \beta_5 X_2^2 + \varepsilon \\ &\Leftrightarrow \textbf{X}_2^* = \textbf{X}_1, \textbf{X}_3^* = \textbf{X}_2, \textbf{X}_4^* = \textbf{X}_1 \textbf{X}_2, \textbf{X}_5^* = \textbf{X}_1^2, \textbf{X}_6^* = \textbf{X}_2^2 \end{split}$$

可得:

$$Y = \beta_{0} + \beta_{1}X_{2}^{*} + \beta_{2}X_{3}^{*} + \beta_{3}X_{4}^{*} + \beta_{4}X_{5}^{*} + \beta_{5}X_{6}^{*}$$

例: 1996 年我国城镇居民收入情况如所表所示: 表中资料共有16 组, X 是各组的人均生活费收入, Y 是各组的人均生活费收入, Y 是各组的人均生活费支出。试建立Y 对X 的回归模型。

(单位:元)

			(甲位: 兀)
Υ	Х	Υ	Х
1493.47	1017.52	4996.12	6160.77
1762.82	1643.86	5692.75	6785.27
2298.40	2300.04	6102.06	7503.47
2784.98	2917.52	5712.40	8106.87
3345.43	3567.42	6886.65	8814.28
3769.01	4205.01	8877.78	9427.21
3981.00	4881.93	6561.70	10001.90
4805.03	5521.33	8311.68	12582.52

从如下的散点图可以看出,人均生活费支出先是随着人均生活费收入的提高而快速提高,但当收入达到一定水平后,生活费支出的增幅明显趋缓。因此,用线性回归模型表示Y和X的关系是不恰当的。

对Y和X分别取自然对数InY和InX,画出InY和InX的散点图。

可以看出,InY 和InX 在散点图上近似为线性关系。 于是把回归模型高定为幂函数模型:

$$Y = \beta_{\scriptscriptstyle 0} X^{\beta_{\scriptscriptstyle 1}} e^{\varepsilon}$$

并进行双对数变换,得

$$\ln Y = \ln \, \beta_{_0} \, + \beta_{_1} \ln X + \varepsilon$$

分别令 $Y^* = \ln Y$, $\beta_0^* = \ln \beta_0$, $X^* = \ln X$, 得到线性回归模型:

$$\boldsymbol{Y}^* = \boldsymbol{\beta}_{\scriptscriptstyle 0}^* + \boldsymbol{\beta}_{\scriptscriptstyle 1} \boldsymbol{X}^* + \boldsymbol{\varepsilon}$$

回归结果如下:

p,值:0.000 0.000

 $R^2 = 0.973$ F = 509.847 $p_F = 0.000$

模型通过参数显著性检验。注意到这里的 \hat{eta}_1 是弹性值,即人均生活费收入每提高1%,人均生活费支出平均增加0.748%。

三、曲线估计

非线性模型方程式

名 称		方程式
Linear (一元线性)	LIN	Y=β ₀ +β ₁ t
Quadratic(二次函数)	QUA	$Y=\beta_0+\beta_1t+\beta_2t^2$
Compoound(复合函数)	COM	$Y=\beta_0(\beta_1)^t$
Growth(生长函数)	GRO	$Y = e^{(\beta_0 + \beta_1 t)}$
Logarithmic(对数函数)	LOG	Y=β ₀ +β ₁ Int
Cubic(三次函数)	CUB	$Y = \beta_0 + \beta_1 t + \beta_2 t^2 + \beta_3 t^3$
S(S形曲线)	S	$Y = e^{(\beta_0 + \beta_1/t)}$

		•••
Exponential(指数函数)	EXP	$Y = \beta_0 e^{\beta_l t}$
Inverse(逆函数)	INV	$Y = \beta_0 + \beta_1 / t$
Power(幂函数)	POW	Y = β ₀ t ^{β1}
Logistic(逻辑函数)	LGS	$Y = \frac{1}{\frac{1}{u} + \beta_0(\beta_1 t)}$

表中, \mathbf{t} 为时间或自变量, β_0 为常数项, β_1 为回归参数, \mathbf{e} 表示自然对数的底, \mathbf{ln} 表示以 \mathbf{e} 为底的自然对数。

小结

研究变量之间的相关关系

- 2.一元线性回归的步骤
- (2) 建立回归模型; (4) 进行假设检验; (1) 推测回归函数;
- (3) 估计未知参数; (5) 预测与控制.
- 3. 非线性回归,可化为一元线性回归的问题
- 4. 曲线回归

