The Lustre Storage Architecture

Linux Clusters for Super Computing Linköping 2003

Peter J. Braam

braam@clusterfs.com

http://www.clusterfs.com

Tim Reddin

tim.reddin@hp.com

Topics

- History of project
- High level picture
- Networking
- Devices and fundamental API's
- File I/O
- Metadata & recovery
- Project status
- Cluster File Systems, Inc

Lustre's History

Project history

- 1999 CMU & Seagate
 - Worked with Seagate for one year
 - Storage management, clustering
 - Built prototypes, much design
 - Much survives today

2000-2002 File system challenge

- First put forward Sep 1999 Santa Fe
- New architecture for National Labs
- Characteristics:
 - 100's GB's/sec of I/O throughput
 - trillions of files
 - 10,000's of nodes
 - Petabytes
- From start Garth & Peter in the running

2002 - 2003 fast lane

- 3 year ASCI Path Forward contract
 - with HP and Intel

- MCR & ALC, 2x 1000 node Linux Clusters
- PNNL HP IA64, 1000 node Linux cluster
- Red Storm, Sandia (8000 nodes, Cray)
- Lustre Lite 1.0
- Many partnerships (HP, Dell, DDN, ...)

2003 - Production, perfomance

- Spring and summer
 - LLNL MCR from no, to partial, to full time use
 - PNNL similar
 - Stability much improved
- Performance
 - Summer 2003: I/O problems tackled
 - Metadata much faster
- Dec/Jan
 - Lustre 1.0

High level picture

Lustre Systems – Major Components

Clients

- Have access to file system
- Typical role: compute server

OST

- Object storage targets
- Handle (stripes of, references to) file data

MDS

- Metadata request transaction engine.
- Also: LDAP, Kerberos, routers etc.

Networking

Lustre Networking

- Currently runs over:
 - TCP
 - Quadrics Elan 3 & 4
 - Lustre can route & can use heterogeneous nets
- Beta
 - Myrinet, SCI
- Under development
 - SAN (FC/iSCSI), I/B
- Planned:
 - SCTP, some special NUMA and other nets

Lustre Network Stack - Portals

0-copy marshalling libraries,
Service framework,
Client request dispatch,
Connection & address naming,
Generic recovery infrastructure

Move small & large buffers, Remote DMA handling, Generate events

Sandia's API, CFS improved impl.

Network Abstraction Layer for TCP, QSW, etc. Small & hard Includes routing api.

NIO API

Portal Library

Portal NAL's

Device Library (Elan, Myrinet, TCP,...)

Devices and API's

Lustre Devices & API's

- Lustre has numerous driver modules
 - One API very different implementations
 - Driver binds to named device
 - Stacking devices is key
 - Generalized "object devices"
- Drivers currently export several API's
 - Infrastructure a mandatory API
 - Object Storage
 - Metadata Handling
 - Locking
 - Recovery

Lustre Clients & API's

Object Storage Api

- Objects are (usually) unnamed files
- Improves on the block device api
 - create, destroy, setattr, getattr, read, write
- OBD driver does block/extent allocation
- Implementation:
 - Linux drivers, using a file system backend

Bringing it all together

File I/O

File I/O – Write Operation

- Open file on meta-data server
- Get information on all objects that are part of file:
 - Objects id's
 - What storage controllers (OST)
 - What part of the file (offset)
 - Striping pattern
- Create LOV, OSC drivers
- Use connection to OST
 - Object writes to OST
 - No MDS involvement at all

I/O bandwidth

- 100's GB/sec => saturate many100's OSTs
- OST's:
 - Do ext3 extent allocation, non-caching direct I/O
 - Lock management spread over cluster
- Achieve 90-95% of network throughput
 - Single client, single thread Elan3: W 269MB/sec
 - OST's handle up to 260MB/sec
 - W/O extent code, on 2 way 2.4GHz Xeon

Metadata

Intent locks & Write Back caching

- Clients MDS: protocol adaptation
- Low concurrency write back caching
 - Client in memory updates
 - delayed replay to MDS
- High concurrency (mostly merged in 2.6)
 - Single network request per transaction
 - No lock revocations to clients
 - Intent based lock includes complete request

a) Conventional mkdir

b) Lustre mkdir

Lustre 1.0

- Only has high concurrency model
- Aggregate throughput (1,000 clients):
 - Achieve ~5000 file creations (open/close) /sec
 - Achieve ~7800 stat's in 10 x1M file directories
- Single client:
 - Around 1500 creations or stat's /sec
- Handling 10M file directories is effortless
- Many changes to ext3 (all merged in 2.6)

Metadata Future

■ Lustre 2.0 – 2004

- Metadata clustering
 - Common operations will parallelize

- 100% WB caching in memory or on disk
 - Like AFS

Recovery

Recovery approach

- Keep it simple!
- Based on failover circles:
 - Use existing failover software
 - Left working neighbor is failover node for you
- At HP we use failover pairs
 - Simplify storage connectivity
- I/O failure triggers
 - Peer node serves failed OST
 - Retry from client routed to new OST node

OST Server – redundant pair

Configuration

Lustre 1.0

- Good tools to build configuration
- Configuration is recorded on MDS
 - Or on dedicated management server
 - Configuration can be changed,
 - 1.0 requires downtime
- Clients auto configure
 - mount –t lustre –o ... mds://fileset/sub/dir /mnt/pt
- SNMP support

Futures

Advanced Management

- Snapshots
 - All features you might expect
- Global namespace
 - Combine best of AFS & autofs4
- HSM, hot migration
 - Driven by customer demand (we plan XDSM)
- Online 0-downtime re-configuration
 - Part of Lustre 2.0

Security

- Authentication
- POSIX style authorization
- NASD style OST authorization
 - Refinement: use OST ACL's and cookies
- File crypting with group key service
 - STK secure file system

Project status

Lustre Feature Roadmap

Lustre (Lite) 1.0	Lustre 2.0 (2.6)	Lustre 3.0
(Linux 2.4 & 2.6)		
2003	2004	2005
Failover MDS	Metadata cluster	Metadata cluster
Basic Unix security	Basic Unix security	Advanced Security
File I/O very fast	Collaborative read	Storage
(~100's OST's)	cache	management
Intent based	Write back	Load balanced MD
scalable metadata	metadata	
POSIX compliant	Parallel I/O	Global namespace

Cluster File Systems, Inc.

Cluster File Systems

- Small service company: 20-30 people
 - Software development & service (95% Lustre)
 - contract work for Government labs
 - OSS but defense contracts
- Extremely specialized and extreme expertise
 - we only do file systems and storage
- Investments not needed. Profitable.
- Partners: HP, Dell, DDN, Cray

Lustre – conclusions

- Great vehicle for advanced storage software
 - Things are done differently
 - Protocols & design from Coda & InterMezzo
 - Stacking & DB recovery theory applied
- Leverage existing components
- Initial signs promising

HP & Lustre

- Two projects
 - ASCI PathForward Hendrix
 - Lustre Storage product
 - Field trial in Q1 of 04

Questions?

