Boosting Adaptivo (AdaBoost)

Fernando Lozano

Universidad de los Andes

16 de septiembre de 2014

Algorithm 1 AdaBoost

 $D_1(i) = 1/n \text{ para } \overline{i = 1 \dots n}.$

Algorithm 2 AdaBoost

 $D_1(i) = 1/n \text{ para } i = 1 \dots n.$ for t = 1 to T do

Algorithm 3 AdaBoost

 $D_1(i) = 1/n$ para $i = 1 \dots n$. for t = 1 to T do $h_t \leftarrow A(S, D_t)$.

Algorithm 4 AdaBoost

$$D_1(i) = 1/n \text{ para } i = 1 \dots n.$$

for $t = 1$ to T do
 $h_t \leftarrow A(S, D_t).$
 $\epsilon_t = \sum_{i:h_t(X_i) \neq y_i} D_t(i).$

Algorithm 5 AdaBoost

$$D_1(i) = 1/n \text{ para } i = 1 \dots n.$$
for $t = 1$ to T do
$$h_t \leftarrow A(S, D_t).$$

$$\epsilon_t = \sum_{i:h_t(X_i) \neq y_i} D_t(i).$$

$$\alpha_t = \frac{1}{2} \ln \left(\frac{1 - \epsilon_t}{\epsilon_t} \right)$$

Algorithm 6 AdaBoost

$$\begin{aligned} D_1(i) &= 1/n \text{ para } i = 1 \dots n. \\ \text{for } t &= 1 \text{ to } T \text{ do} \\ h_t &\leftarrow A(S, D_t). \\ \epsilon_t &= \sum_{i:h_t(X_i) \neq y_i} D_t(i). \\ \alpha_t &= \frac{1}{2} \ln \left(\frac{1 - \epsilon_t}{\epsilon_t} \right) \\ \text{Actualice } D: D_{t+1}(i) &= \frac{D_t(i) \exp(-\alpha_t y_i h_t(x_i))}{Z_t} \end{aligned}$$

Algorithm 7 AdaBoost

$$D_1(i) = 1/n \text{ para } i = 1 \dots n.$$
for $t = 1$ to T do
$$h_t \leftarrow A(S, D_t).$$

$$\epsilon_t = \sum_{i:h_t(X_i) \neq y_i} D_t(i).$$

$$\alpha_t = \frac{1}{2} \ln \left(\frac{1 - \epsilon_t}{\epsilon_t} \right)$$
Actualice $D: D_{t+1}(i) = \frac{D_t(i) \exp(-\alpha_t y_i h_t(x_i))}{Z_t}$
Donde Z_t normalize D de manera que $\sum_{i=1}^t D_{t+1}(i) = 1$.

Algorithm 8 AdaBoost

$$D_1(i) = 1/n \text{ para } i = 1 \dots n.$$
for $t = 1$ to T do
$$h_t \leftarrow A(S, D_t).$$

$$\epsilon_t = \sum_{i:h_t(X_i) \neq y_i} D_t(i).$$

$$\alpha_t = \frac{1}{2} \ln \left(\frac{1 - \epsilon_t}{\epsilon_t} \right)$$
Actualize $D: D_{t+1}(i) = \frac{D_t(i) \exp(-\alpha_t y_i h_t(x_i))}{Z_t}$
Donde Z_t normaliza D de manera que $\sum_{i=1}^t D_{t+1}(i) = 1.$
end for

Algorithm 9 AdaBoost

$$\begin{aligned} &D_1(i) = 1/n \text{ para } i = 1 \dots n. \\ &\textbf{for } t = 1 \text{ to } T \textbf{ do} \\ &h_t \leftarrow A(S, D_t). \\ &\epsilon_t = \sum_{i:h_t(X_i) \neq y_i} D_t(i). \\ &\alpha_t = \frac{1}{2} \ln \left(\frac{1 - \epsilon_t}{\epsilon_t} \right) \\ &\text{Actualice } D: D_{t+1}(i) = \frac{D_t(i) \exp(-\alpha_t y_i h_t(x_i))}{Z_t} \\ &\text{Donde } Z_t \text{ normaliza } D \text{ de manera que } \sum_{i=1}^t D_{t+1}(i) = 1. \end{aligned}$$
 end for

→ロト→団ト→ミト→ミークへ(

Retorne $f(x) = \sum_{t=1}^{T} \alpha_t h_t(x)$

Algorithm 10 AdaBoost

$$D_1(i) = 1/n \text{ para } i = 1 \dots n.$$

for $t = 1$ to T do

$$h_t \leftarrow A(S, D_t).$$

$$n_t \leftarrow A(S, D_t).$$

$$\epsilon_t = \sum_{i:h_t(X_i) \neq y_i} D_t(i).$$

$$\alpha_t = \frac{1}{2} \ln \left(\frac{1 - \epsilon_t}{\epsilon_t} \right)$$

Actualize
$$D: D_{t+1}(i) = \frac{D_t(i) \exp(-\alpha_t y_i h_t(x_i))}{Z_t}$$

Donde Z_t normaliza D de manera que $\sum_{i=1}^t D_{t+1}(i) = 1$.

Retorne
$$f(x) = \sum_{i=1}^{T} \alpha_t h_t(x)$$

• Deducción de AdaBoost para clasificadores binarios.

$$h \in \mathcal{H}, \quad h: \mathcal{X} \to \{-1, 1\}$$

• Deducción de AdaBoost para clasificadores binarios.

$$h \in \mathcal{H}, \quad h: \mathcal{X} \to \{-1, 1\}$$

Predictores con confianza:

$$h \in \mathcal{H}, \quad h: \mathcal{X} \to \mathbb{R}$$

• Deducción de AdaBoost para clasificadores binarios.

$$h \in \mathcal{H}, \quad h: \mathcal{X} \to \{-1, 1\}$$

Predictores con confianza:

$$h \in \mathcal{H}, \quad h: \mathcal{X} \to \mathbb{R}$$

ightharpoonup Predice clase con sign(h(x)).

• Deducción de AdaBoost para clasificadores binarios.

$$h \in \mathcal{H}, \quad h: \mathcal{X} \to \{-1, 1\}$$

Predictores con confianza:

$$h \in \mathcal{H}, \quad h: \mathcal{X} \to \mathbb{R}$$

- ightharpoonup Predice clase con sign(h(x)).
- \blacktriangleright |h(x)| es confianza en la predicción.

Algorithm 11 AdaBoost

$$D_1(i) = 1/n \text{ para } i = 1 \dots n.$$

Algorithm 12 AdaBoost

$$D_1(i) = 1/n \text{ para } i = 1 \dots n.$$

for t = 1 to T do

Algorithm 13 AdaBoost

$$D_1(i) = 1/n \text{ para } i = 1 \dots n.$$

for $t = 1$ to T do
 $h_t \leftarrow A(S, D_t).$

Algorithm 14 AdaBoost

$$D_1(i) = 1/n \text{ para } i = 1 \dots n.$$

for $t = 1$ to T do
 $h_t \leftarrow A(S, D_t).$
Escoja α_t

Algorithm 15 AdaBoost

$$D_1(i) = 1/n \text{ para } i = 1 \dots n.$$

for $t = 1$ to T do
 $h_t \leftarrow A(S, D_t).$

Escoja α_t

Actualice
$$D$$
: $D_{t+1}(i) = \frac{D_t(i) \exp(-\alpha_t y_i h_t(x_i))}{Z_t}$

Algorithm 16 AdaBoost

$$D_1(i) = 1/n \text{ para } i = 1 \dots n.$$

for t = 1 to T do

 $h_t \leftarrow A(S, D_t).$

Escoja α_t

Actualice D: $D_{t+1}(i) = \frac{D_t(i) \exp(-\alpha_t y_i h_t(x_i))}{Z_t}$

Donde Z_t normaliza D de manera que $\sum_{i=1}^t D_{t+1}(i) = 1$.

Algorithm 17 AdaBoost

$$D_1(i) = 1/n \text{ para } i = 1 \dots n.$$

for t = 1 to T do

 $h_t \leftarrow A(S, D_t).$

Escoja α_t

Actualize D: $D_{t+1}(i) = \frac{D_t(i) \exp(-\alpha_t y_i h_t(x_i))}{Z_t}$

Donde Z_t normaliza D de manera que $\sum_{i=1}^t D_{t+1}(i) = 1$.

Algorithm 18 AdaBoost

$$D_1(i) = 1/n \text{ para } i = 1 \dots n.$$

for
$$t = 1$$
 to T do

$$h_t \leftarrow A(S, D_t).$$

Escoja α_t

Actualize
$$D: D_{t+1}(i) = \frac{D_t(i) \exp(-\alpha_t y_i h_t(x_i))}{Z_t}$$

Donde Z_t normaliza D de manera que $\sum_{i=1}^t D_{t+1}(i) = 1$.

Retorne
$$f(x) = \sum_{i=1}^{T} \alpha_t h_t(x)$$

Algorithm 19 AdaBoost

$$D_1(i) = 1/n \text{ para } i = 1 \dots n.$$

for
$$t = 1$$
 to T do

$$h_t \leftarrow A(S, D_t).$$

Escoja α_t

Actualice
$$D: D_{t+1}(i) = \frac{D_t(i) \exp(-\alpha_t y_i h_t(x_i))}{Z_t}$$

Donde Z_t normaliza D de manera que $\sum_{i=1}^t D_{t+1}(i) = 1$.

Retorne
$$f(x) = \sum_{i=1}^{T} \alpha_t h_t(x)$$

$$\frac{1}{n} \sum_{i=1}^{n} I_{\{y_i f(\mathbf{x}_i) \le 0\}} \le \prod_{t=1}^{T} Z_t$$

$$\frac{1}{n} \sum_{i=1}^{n} I_{\{y_i f(\mathbf{x}_i) \le 0\}} \le \prod_{t=1}^{T} Z_t$$

Demostración.

$$D_{t+1}(i) = \frac{e^{-\sum_{t} \alpha_t y_i h_t(\mathbf{x}_i)}}{n \prod_{t=1}^{T} Z_t}$$

$$\frac{1}{n} \sum_{i=1}^{n} I_{\{y_i f(\mathbf{x}_i) \le 0\}} \le \prod_{t=1}^{T} Z_t$$

Demostración.

$$D_{t+1}(i) = \frac{e^{-\sum_{t} \alpha_{t} y_{i} h_{t}(\mathbf{x}_{i})}}{n \prod_{t=1}^{T} Z_{t}} = \frac{e^{-y_{i} f(\mathbf{x}_{i})}}{n \prod_{t=1}^{T} Z_{t}}$$

$$\frac{1}{n} \sum_{i=1}^{n} I_{\{y_i f(\mathbf{x}_i) \le 0\}} \le \prod_{t=1}^{T} Z_t$$

Demostración.

$$D_{t+1}(i) = \frac{e^{-\sum_{t} \alpha_{t} y_{i} h_{t}(\mathbf{x}_{i})}}{n \prod_{t=1}^{T} Z_{t}} = \frac{e^{-y_{i} f(\mathbf{x}_{i})}}{n \prod_{t=1}^{T} Z_{t}}$$

$$\frac{1}{n} \sum_{i=1}^{n} I_{\{y_i f(\mathbf{x}_i) \le 0\}} \le \frac{1}{n} \sum_{i=1}^{n} e^{-y_i f(\mathbf{x}_i)}$$

5 / 1

$$\frac{1}{n} \sum_{i=1}^{n} I_{\{y_i f(\mathbf{x}_i) \le 0\}} \le \prod_{t=1}^{T} Z_t$$

Demostración.

$$D_{t+1}(i) = \frac{e^{-\sum_{t} \alpha_{t} y_{i} h_{t}(\mathbf{x}_{i})}}{n \prod_{t=1}^{T} Z_{t}} = \frac{e^{-y_{i} f(\mathbf{x}_{i})}}{n \prod_{t=1}^{T} Z_{t}}$$

$$\frac{1}{n} \sum_{i=1}^{n} I_{\{y_i f(\mathbf{x}_i) \le 0\}} \le \frac{1}{n} \sum_{i=1}^{n} e^{-y_i f(\mathbf{x}_i)}$$

$$= \sum_{i=1}^{n} D_{t+1}(i) \left(\prod_{t=1}^{T} Z_t \right)$$

$$\frac{1}{n} \sum_{i=1}^{n} I_{\{y_i f(\mathbf{x}_i) \le 0\}} \le \prod_{t=1}^{T} Z_t$$

Demostración.

$$D_{t+1}(i) = \frac{e^{-\sum_{t} \alpha_{t} y_{i} h_{t}(\mathbf{x}_{i})}}{n \prod_{t=1}^{T} Z_{t}} = \frac{e^{-y_{i} f(\mathbf{x}_{i})}}{n \prod_{t=1}^{T} Z_{t}}$$

$$\frac{1}{n} \sum_{i=1}^{n} I_{\{y_i f(\mathbf{x}_i) \le 0\}} \le \frac{1}{n} \sum_{i=1}^{n} e^{-y_i f(\mathbf{x}_i)}$$

$$= \sum_{i=1}^{n} D_{t+1}(i) \left(\prod_{t=1}^{T} Z_t \right) = \prod_{t=1}^{T} Z_t$$

• Idea: Minimizar $\prod_{t=1}^{T} Z_t$ de manera greedy.

- Idea: Minimizar $\prod_{t=1}^{T} Z_t$ de manera greedy.
- Sea $u_i \equiv y_i h_t(x_i), Z \equiv Z_t, D \equiv D_t, \alpha \equiv \alpha_t$

- Idea: Minimizar $\prod_{t=1}^{T} Z_t$ de manera greedy.
- Sea $u_i \equiv y_i h_t(x_i), Z \equiv Z_t, D \equiv D_t, \alpha \equiv \alpha_t$
- e^{-z} es convexa:

- Idea: Minimizar $\prod_{t=1}^{T} Z_t$ de manera greedy.
- Sea $u_i \equiv y_i h_t(x_i), Z \equiv Z_t, D \equiv D_t, \alpha \equiv \alpha_t$
- e^{-z} es convexa:

$$Z = \sum_{i=1}^{n} D(i)e^{-\alpha u_i}$$

Cómo escoger α_t ?

- Idea: Minimizar $\prod_{t=1}^{T} Z_t$ de manera greedy.
- Sea $u_i \equiv y_i h_t(x_i), Z \equiv Z_t, D \equiv D_t, \alpha \equiv \alpha_t$
- e^{-z} es convexa:

$$Z = \sum_{i=1}^{n} D(i)e^{-\alpha u_i} \le \sum_{i=1}^{n} D(i) \left(\frac{1 + u_i}{2} e^{-\alpha} + \frac{1 - u_i}{2} e^{\alpha} \right)$$

$$\alpha = \frac{1}{2} \ln \left(\frac{\sum_{i=1}^{n} D(i) \frac{1+u_i}{2}}{\sum_{i=1}^{n} D(i) \frac{1-u_i}{2}} \right)$$

$$\alpha = \frac{1}{2} \ln \left(\frac{\sum_{i=1}^{n} D(i) \frac{1+u_i}{2}}{\sum_{i=1}^{n} D(i) \frac{1-u_i}{2}} \right) = \frac{1}{2} \ln \left(\frac{1+r}{1-r} \right)$$

donde $r = \sum_{i=1}^{n} D(i)u_i$ es correlación entre pesos y márgenes.

$$\alpha = \frac{1}{2} \ln \left(\frac{\sum_{i=1}^{n} D(i) \frac{1+u_i}{2}}{\sum_{i=1}^{n} D(i) \frac{1-u_i}{2}} \right) = \frac{1}{2} \ln \left(\frac{1+r}{1-r} \right)$$

donde $r = \sum_{i=1}^{n} D(i)u_i$ es correlación entre pesos y márgenes.

• Reemplazando:

$$Z \le \sum_{i=1}^{n} D(i) \left(\frac{1+u_i}{2} e^{-\frac{1}{2}\ln\left(\frac{1+r}{1-r}\right)} + \frac{1-u_i}{2} e^{\frac{1}{2}\ln\left(\frac{1+r}{1-r}\right)} \right)$$

$$\alpha = \frac{1}{2} \ln \left(\frac{\sum_{i=1}^{n} D(i) \frac{1+u_i}{2}}{\sum_{i=1}^{n} D(i) \frac{1-u_i}{2}} \right) = \frac{1}{2} \ln \left(\frac{1+r}{1-r} \right)$$

donde $r = \sum_{i=1}^{n} D(i)u_i$ es correlación entre pesos y márgenes.

• Reemplazando:

$$Z \leq \sum_{i=1}^{n} D(i) \left(\frac{1+u_i}{2} e^{-\frac{1}{2}\ln\left(\frac{1+r}{1-r}\right)} + \frac{1-u_i}{2} e^{\frac{1}{2}\ln\left(\frac{1+r}{1-r}\right)} \right)$$
$$= \frac{1}{2} (1+r) \sqrt{\frac{1-r}{1+r}} + \frac{1}{2} (1-r) \sqrt{\frac{1+r}{1-r}}$$

$$\alpha = \frac{1}{2} \ln \left(\frac{\sum_{i=1}^{n} D(i) \frac{1+u_i}{2}}{\sum_{i=1}^{n} D(i) \frac{1-u_i}{2}} \right) = \frac{1}{2} \ln \left(\frac{1+r}{1-r} \right)$$

donde $r = \sum_{i=1}^{n} D(i)u_i$ es correlación entre pesos y márgenes.

• Reemplazando:

$$Z \le \sum_{i=1}^{n} D(i) \left(\frac{1+u_i}{2} e^{-\frac{1}{2}\ln\left(\frac{1+r}{1-r}\right)} + \frac{1-u_i}{2} e^{\frac{1}{2}\ln\left(\frac{1+r}{1-r}\right)} \right)$$
$$= \frac{1}{2} (1+r) \sqrt{\frac{1-r}{1+r}} + \frac{1}{2} (1-r) \sqrt{\frac{1+r}{1-r}} = \sqrt{1-r^2}$$

$$\alpha = \frac{1}{2} \ln \left(\frac{\sum_{i=1}^{n} D(i) \frac{1+u_i}{2}}{\sum_{i=1}^{n} D(i) \frac{1-u_i}{2}} \right) = \frac{1}{2} \ln \left(\frac{1+r}{1-r} \right)$$

donde $r = \sum_{i=1}^{n} D(i)u_i$ es correlación entre pesos y márgenes.

• Reemplazando:

$$Z \leq \sum_{i=1}^{n} D(i) \left(\frac{1+u_i}{2} e^{-\frac{1}{2}\ln\left(\frac{1+r}{1-r}\right)} + \frac{1-u_i}{2} e^{\frac{1}{2}\ln\left(\frac{1+r}{1-r}\right)} \right)$$
$$= \frac{1}{2} (1+r) \sqrt{\frac{1-r}{1+r}} + \frac{1}{2} (1-r) \sqrt{\frac{1+r}{1-r}} = \sqrt{1-r^2}$$

• Obtener h_t maximizando r_t .

• Sea $Z(\alpha) = \sum_{i=1}^n D(i)e^{-\alpha u_i}$.

- Sea $Z(\alpha) = \sum_{i=1}^n D(i)e^{-\alpha u_i}$.
- Derivando:

- Sea $Z(\alpha) = \sum_{i=1}^n D(i)e^{-\alpha u_i}$.
- Derivando:

$$\frac{dZ}{d\alpha} =$$

- Sea $Z(\alpha) = \sum_{i=1}^n D(i)e^{-\alpha u_i}$.
- Derivando:

$$\frac{dZ}{d\alpha} = -\sum_{i=1}^{n} D(i)u_i e^{-\alpha u_i}$$

- Sea $Z(\alpha) = \sum_{i=1}^n D(i)e^{-\alpha u_i}$.
- Derivando:

$$\frac{dZ}{d\alpha} = -\sum_{i=1}^{n} D(i)u_i e^{-\alpha u_i} = -Z(\alpha) \sum_{i=1}^{n} D_{t+1}(i)u_i$$

- Sea $Z(\alpha) = \sum_{i=1}^n D(i)e^{-\alpha u_i}$.
- Derivando:

$$\frac{dZ}{d\alpha} = -\sum_{i=1}^{n} D(i)u_i e^{-\alpha u_i} = -Z(\alpha) \sum_{i=1}^{n} D_{t+1}(i)u_i$$

• Para minimizar $Z(\alpha)$ se escoge α de tal forma que

$$\mathbf{E}_{D_{t+1}} \left[y_i h_t(x_i) \right] = \sum_{i=1}^n D_{t+1} u_i = 0$$

- Sea $Z(\alpha) = \sum_{i=1}^n D(i)e^{-\alpha u_i}$.
- Derivando:

$$\frac{dZ}{d\alpha} = -\sum_{i=1}^{n} D(i)u_i e^{-\alpha u_i} = -Z(\alpha) \sum_{i=1}^{n} D_{t+1}(i)u_i$$

• Para minimizar $Z(\alpha)$ se escoge α de tal forma que

$$\mathbf{E}_{D_{t+1}}[y_i h_t(x_i)] = \sum_{i=1}^n D_{t+1} u_i = 0$$

Es decir, la correlación entre las etiquetas y la predicción con respecto a la nueva distribución es cero.

• $h_t(x) \in \{-1, 0, 1\}.$

- $h_t(x) \in \{-1, 0, 1\}.$
- Sea $W_0 = \sum_{i:u_1=0} D(i), W_+ = \sum_{i:u_1=1} D(i),$ $W_{-} = \sum_{i:u_{1}=-1} D(i),$

- $h_t(x) \in \{-1, 0, 1\}.$
- Sea $W_0 = \sum_{i:u_1=0} D(i), W_+ = \sum_{i:u_1=1} D(i),$ $W_{-} = \sum_{i:u_{1}=-1} D(i),$

$$Z = \sum_{i=1}^{n} D(i)e^{-\alpha u_i} = W_0 + W_- e^{\alpha} + W_+ e^{-\alpha}$$

- $h_t(x) \in \{-1, 0, 1\}.$
- Sea $W_0 = \sum_{i:u_1=0} D(i), W_+ = \sum_{i:u_1=1} D(i),$ $W_{-} = \sum_{i:u_{1}=-1} D(i),$

$$Z = \sum_{i=1}^{n} D(i)e^{-\alpha u_i} = W_0 + W_- e^{\alpha} + W_+ e^{-\alpha}$$

• Derivando e igualando a cero,

- $h_t(x) \in \{-1, 0, 1\}.$
- Sea $W_0 = \sum_{i:u_1=0} D(i), W_+ = \sum_{i:u_1=1} D(i),$ $W_{-} = \sum_{i:u_{1}=-1} D(i),$

$$Z = \sum_{i=1}^{n} D(i)e^{-\alpha u_i} = W_0 + W_- e^{\alpha} + W_+ e^{-\alpha}$$

• Derivando e igualando a cero,

$$\alpha = \frac{1}{2} \ln \left(\frac{W_+}{W_-} \right)$$

$$y Z = W_0 + 2\sqrt{W_+W_-}$$

 \bullet \mathcal{Y} : posibles etiquetas.

- \mathcal{Y} : posibles etiquetas.
- $\bullet \ |\mathcal{Y}| = k \ge 2.$

- \mathcal{Y} : posibles etiquetas.
- $|\mathcal{Y}| = k \ge 2$.
- Multiclase:
 - $(x,y), y \in \mathcal{Y}.$

- \mathcal{Y} : posibles etiquetas.
- $|\mathcal{Y}| = k \ge 2$.
- Multiclase:
 - $(x,y), y \in \mathcal{Y}.$
 - ▶ Meta de aprendizaje: minimizar $\mathbf{P}_{\mathcal{D}}[h(x) \neq y]$.

- \mathcal{Y} : posibles etiquetas.
- $|\mathcal{Y}| = k \ge 2$.
- Multiclase:
 - $(x,y), y \in \mathcal{Y}.$
 - ▶ Meta de aprendizaje: minimizar $\mathbf{P}_{\mathcal{D}}[h(x) \neq y]$.
- Multiclase y multietiqueta:

- \mathcal{Y} : posibles etiquetas.
- $|\mathcal{Y}| = k \ge 2$.
- Multiclase:
 - $(x,y), y \in \mathcal{Y}.$
 - Meta de aprendizaje: minimizar $\mathbf{P}_{\mathcal{D}}[h(x) \neq y]$.
- Multiclase y multietiqueta:
 - \blacktriangleright $(x,Y), Y \subset \mathcal{Y}.$

- \mathcal{Y} : posibles etiquetas.
- $|\mathcal{Y}| = k \ge 2$.
- Multiclase:
 - $(x,y), y \in \mathcal{Y}.$
 - Meta de aprendizaje: minimizar $\mathbf{P}_{\mathcal{D}}[h(x) \neq y]$.
- Multiclase y multietiqueta:
 - \blacktriangleright $(x,Y), Y \subset \mathcal{Y}.$
 - ► Meta?

- \mathcal{Y} : posibles etiquetas.
- $|\mathcal{Y}| = k \ge 2$.
- Multiclase:
 - $(x,y), y \in \mathcal{Y}.$
 - ▶ Meta de aprendizaje: minimizar $\mathbf{P}_{\mathcal{D}}[h(x) \neq y]$.
- Multiclase y multietiqueta:
 - $(x,Y), Y \subseteq \mathcal{Y}.$
 - Meta? depende del problema.

• Hipótesis $h: \mathcal{X} \to 2^{\mathcal{Y}}$

- Hipótesis $h: \mathcal{X} \to 2^{\mathcal{Y}}$
- Función de pérdida de Hamming:

$$\operatorname{hloss}_{\mathcal{D}}(h) = \frac{1}{k} \mathbf{E}_{\mathcal{D}} \left[|h(x) \triangle Y| \right]$$

- Hipótesis $h: \mathcal{X} \to 2^{\mathcal{Y}}$
- Función de pérdida de Hamming:

$$\operatorname{hloss}_{\mathcal{D}}(h) = \frac{1}{k} \mathbf{E}_{\mathcal{D}} \left[|h(x) \triangle Y| \right]$$

ullet Promedio del error en k problemas binarios.

- Hipótesis $h: \mathcal{X} \to 2^{\mathcal{Y}}$
- Función de pérdida de Hamming:

$$\operatorname{hloss}_{\mathcal{D}}(h) = \frac{1}{k} \mathbf{E}_{\mathcal{D}} \left[|h(x) \triangle Y| \right]$$

- \bullet Promedio del error en k problemas binarios.
- Para $Y \subseteq \mathcal{Y}$ definimos:

$$Y[l] = \begin{cases} +1 & \text{si } l \in Y \\ -1 & \text{si } l \notin Y \end{cases}$$

- Hipótesis $h: \mathcal{X} \to 2^{\mathcal{Y}}$
- Función de pérdida de Hamming:

$$\operatorname{hloss}_{\mathcal{D}}(h) = \frac{1}{k} \mathbf{E}_{\mathcal{D}} \left[|h(x) \triangle Y| \right]$$

- Promedio del error en k problemas binarios.
- Para $Y \subseteq \mathcal{Y}$ definimos:

$$Y[l] = \begin{cases} +1 & \text{si } l \in Y \\ -1 & \text{si } l \notin Y \end{cases}$$

• Identificamos función $h: \mathcal{X} \to 2^{\mathcal{Y}}$ con $h: \mathcal{X} \times \mathcal{Y} \to \{-1, +1\}$, con h(x,l) = h(x)[l].

- Hipótesis $h: \mathcal{X} \to 2^{\mathcal{Y}}$
- Función de pérdida de Hamming:

$$\operatorname{hloss}_{\mathcal{D}}(h) = \frac{1}{k} \mathbf{E}_{\mathcal{D}} \left[|h(x) \triangle Y| \right]$$

- \bullet Promedio del error en k problemas binarios.
- Para $Y \subseteq \mathcal{Y}$ definimos:

$$Y[l] = \begin{cases} +1 & \text{si } l \in Y \\ -1 & \text{si } l \notin Y \end{cases}$$

- Identificamos función $h: \mathcal{X} \to 2^{\mathcal{Y}}$ con $h: \mathcal{X} \times \mathcal{Y} \to \{-1, +1\}$, con h(x, l) = h(x)[l].
- Dato $(x_i, Y_i) \longrightarrow k$ datos $((x_i, l), Y_i[l])$

Algorithm 20 AdaBoost.MH

$$D_1(i, l) = 1/(nk)$$
 para $i = 1 ... n$.

Algorithm 21 AdaBoost.MH

 $D_1(i, l) = 1/(nk)$ para i = 1 ... n. for t = 1 to T do

Algorithm 22 AdaBoost.MH

$$D_1(i, l) = 1/(nk)$$
 para $i = 1 \dots n$.
for $t = 1$ to T do
 $h_t \leftarrow A(S, D_t)$.

Algorithm 23 AdaBoost.MH

$$D_1(i, l) = 1/(nk)$$
 para $i = 1 \dots n$.
for $t = 1$ to T do
 $h_t \leftarrow A(S, D_t)$.
Escoja α_t

Algorithm 24 AdaBoost.MH

$$D_1(i, l) = 1/(nk)$$
 para $i = 1 ... n$.

for
$$t = 1$$
 to T do

$$h_t \leftarrow A(S, D_t).$$

Escoja α_t

Actualize
$$D: D_{t+1}(i, l) = \frac{D_t(i, l) \exp(-\alpha_t Y_i[l] h_t(x_i, l))}{Z_t}$$

Algorithm 25 AdaBoost.MH

$$D_1(i, l) = 1/(nk)$$
 para $i = 1 ... n$.

for t = 1 to T do

$$h_t \leftarrow A(S, D_t).$$

Escoja α_t

Actualice $D: D_{t+1}(i,l) = \frac{D_t(i,l) \exp(-\alpha_t Y_i[l]h_t(x_i,l))}{Z_t}$

Donde Z_t normaliza D de manera que sea una distribución.

Algorithm 26 AdaBoost.MH

$$D_1(i, l) = 1/(nk) \text{ para } i = 1 \dots n.$$

for
$$t = 1$$
 to T do

$$h_t \leftarrow A(S, D_t).$$

Escoja α_t

Actualice D:
$$D_{t+1}(i,l) = \frac{D_t(i,l) \exp(-\alpha_t Y_i[l]h_t(x_i,l))}{Z_t}$$

Donde Z_t normaliza D de manera que sea una distribución.

Algorithm 27 AdaBoost.MH

$$D_1(i, l) = 1/(nk) \text{ para } i = 1 \dots n.$$

for
$$t = 1$$
 to T do

$$h_t \leftarrow A(S, D_t).$$

Escoja α_t

Actualice D:
$$D_{t+1}(i,l) = \frac{D_t(i,l) \exp(-\alpha_t Y_i[l]h_t(x_i,l))}{Z_t}$$

Donde Z_t normaliza D de manera que sea una distribución.

Retorne
$$f(x) = \sum_{i=1}^{T} \alpha_i h_i(x, l)$$

Algorithm 28 AdaBoost.MH

$$D_1(i, l) = 1/(nk)$$
 para $i = 1 \dots n$.

for
$$t = 1$$
 to T do

$$h_t \leftarrow A(S, D_t).$$

Escoja α_t

Actualice D:
$$D_{t+1}(i,l) = \frac{D_t(i,l) \exp(-\alpha_t Y_i[l]h_t(x_i,l))}{Z_t}$$

Donde Z_t normaliza D de manera que sea una distribución.

Retorne
$$f(x) = \sum_{i=1}^{T} \alpha_t h_t(x, l)$$

Teorema

$$\underset{\mathcal{D}}{\text{hloss}}(f) \leq \prod_{t=1}^{T} Z_t$$

• Si h_t es binaria, $\alpha_t = \frac{1}{2} \ln \left(\frac{1+r}{1-r} \right)$, donde

$$r_t = \sum_{l=1}^{k} \sum_{i=1}^{n} D_t(i, l) Y_i[l] h_t(x_i, l)$$

• Si h_t es binaria, $\alpha_t = \frac{1}{2} \ln \left(\frac{1+r}{1-r} \right)$, donde

$$r_t = \sum_{l=1}^{k} \sum_{i=1}^{n} D_t(i, l) Y_i[l] h_t(x_i, l)$$

$$Z_t = \sqrt{1 - r_t^2}$$

• Si h_t es binaria, $\alpha_t = \frac{1}{2} \ln \left(\frac{1+r}{1-r} \right)$, donde

$$r_t = \sum_{l=1}^{k} \sum_{i=1}^{n} D_t(i, l) Y_i[l] h_t(x_i, l)$$

• $Z_t = \sqrt{1 - r_t^2} \Rightarrow$ clasificador débil maximiza $|r_t|$

• Hipótesis asigna ranking a las etiquetas.

- Hipótesis asigna ranking a las etiquetas.
- Queremos que etiquetas correctas reciban ranking más alto.

- Hipótesis asigna ranking a las etiquetas.
- Queremos que etiquetas correctas reciban ranking más alto.
- Hipótesis $f: \mathcal{X} \times \mathcal{Y} \to \mathbb{R}$.

- Hipótesis asigna ranking a las etiquetas.
- Queremos que etiquetas correctas reciban ranking más alto.
- Hipótesis $f: \mathcal{X} \times \mathcal{Y} \to \mathbb{R}$.
- Para un x dado la etiqueta l_1 tiene un ranking más alto que la etiqueta l_2 si $f(x, l_1) > f(x, l_2)$.

- Hipótesis asigna ranking a las etiquetas.
- Queremos que etiquetas correctas reciban ranking más alto.
- Hipótesis $f: \mathcal{X} \times \mathcal{Y} \to \mathbb{R}$.
- Para un x dado la etiqueta l_1 tiene un ranking más alto que la etiqueta l_2 si $f(x, l_1) > f(x, l_2)$.
- Para un dato (x, Y) consideramos pares de etiquetas cruciales: $l_1, l_2 : l_1 \notin Y, l_2 \in Y$

- Hipótesis asigna ranking a las etiquetas.
- Queremos que etiquetas correctas reciban ranking más alto.
- Hipótesis $f: \mathcal{X} \times \mathcal{Y} \to \mathbb{R}$.
- Para un x dado la etiqueta l_1 tiene un ranking más alto que la etiqueta l_2 si $f(x, l_1) > f(x, l_2)$.
- Para un dato (x, Y) consideramos pares de etiquetas cruciales: $l_1, l_2: l_1 \notin Y, l_2 \in Y$
- f desordena (l_1, l_2) si $f(x, l_1) \geq f(x, l_2)$.

- Hipótesis asigna ranking a las etiquetas.
- Queremos que etiquetas correctas reciban ranking más alto.
- Hipótesis $f: \mathcal{X} \times \mathcal{Y} \to \mathbb{R}$.
- Para un x dado la etiqueta l_1 tiene un ranking más alto que la etiqueta l_2 si $f(x, l_1) > f(x, l_2)$.
- Para un dato (x, Y) consideramos pares de etiquetas cruciales: $l_1, l_2 : l_1 \notin Y, l_2 \in Y$
- f desordena (l_1, l_2) si $f(x, l_1) \geq f(x, l_2)$.
- Meta:

- Hipótesis asigna ranking a las etiquetas.
- Queremos que etiquetas correctas reciban ranking más alto.
- Hipótesis $f: \mathcal{X} \times \mathcal{Y} \to \mathbb{R}$.
- Para un x dado la etiqueta l_1 tiene un ranking más alto que la etiqueta l_2 si $f(x, l_1) > f(x, l_2)$.
- Para un dato (x,Y) consideramos pares de etiquetas cruciales: $l_1, l_2 : l_1 \notin Y, l_2 \in Y$
- f desordena (l_1, l_2) si $f(x, l_1) \geq f(x, l_2)$.
- ullet Meta: Encontrar f con pocos pares cruciales desordenados.

- Hipótesis asigna ranking a las etiquetas.
- Queremos que etiquetas correctas reciban ranking más alto.
- Hipótesis $f: \mathcal{X} \times \mathcal{Y} \to \mathbb{R}$.
- Para un x dado la etiqueta l_1 tiene un ranking más alto que la etiqueta l_2 si $f(x, l_1) > f(x, l_2)$.
- Para un dato (x, Y) consideramos pares de etiquetas cruciales: $l_1, l_2 : l_1 \notin Y, l_2 \in Y$
- f desordena (l_1, l_2) si $f(x, l_1) \ge f(x, l_2)$.
- ullet Meta: Encontrar f con pocos pares cruciales desordenados.

$$\operatorname{rloss}_{\mathcal{D}}(f) = \mathbf{E}_{\mathcal{D}} \left[\frac{|\{(l_1, l_2) \in (\mathcal{Y} - Y) \times Y : f(x, l_1) \ge f(x, l_2)\}|}{|Y| |\mathcal{Y} - Y|} \right]$$

Algorithm 29 AdaBoost.MR

$$D_1(i, l_1, l_2) = \begin{cases} \frac{1}{n|Y_i||\mathcal{Y} - Y_i|} & \text{si } l_1 \notin Y_i, l_2 \in Y_i \\ 0 & \text{en otro caso} \end{cases}$$

Algorithm 30 AdaBoost.MR

$$D_1(i, l_1, l_2) = \begin{cases} \frac{1}{n|Y_i||\mathcal{Y} - Y_i|} & \text{si } l_1 \notin Y_i, l_2 \in Y_i \\ 0 & \text{en otro caso} \end{cases}$$
 for $t = 1$ to T do

Algorithm 31 AdaBoost.MR

$$D_1(i, l_1, l_2) = \begin{cases} \frac{1}{n|Y_i||\mathcal{Y} - Y_i|} & \text{si } l_1 \notin Y_i, l_2 \in Y_i \\ 0 & \text{en otro caso} \end{cases}$$

$$\mathbf{for} \ t = 1 \ \text{to} \ T \ \mathbf{do}$$

$$h_t \leftarrow A(S, D_t).$$

Algorithm 32 AdaBoost.MR

$$D_1(i, l_1, l_2) = \begin{cases} \frac{1}{n|Y_i||\mathcal{Y} - Y_i|} & \text{si } l_1 \notin Y_i, l_2 \in Y_i \\ 0 & \text{en otro caso} \end{cases}$$

$$\mathbf{for} \ t = 1 \ \text{to} \ T \ \mathbf{do}$$

$$h_t \leftarrow A(S, D_t).$$
Escoja α_t

Algorithm 33 AdaBoost.MR

$$D_1(i, l_1, l_2) = \begin{cases} \frac{1}{n|Y_i||\mathcal{Y} - Y_i|} & \text{si } l_1 \notin Y_i, l_2 \in Y_i \\ 0 & \text{en otro caso} \end{cases}$$

$$\mathbf{for} \ t = 1 \ \text{to} \ T \ \mathbf{do}$$

$$h_t \leftarrow A(S, D_t).$$

Escoja α_t

Actualize
$$D: D_{t+1}(i, l_1, l_2) = \frac{D_t(i, l_1, l_2) \exp(\frac{1}{2}\alpha_t(h_t(x_i, l_1) - h_t(x_i, l_2)))}{Z_t}$$

Algorithm 34 AdaBoost.MR

$$D_1(i, l_1, l_2) = \begin{cases} \frac{1}{n|Y_i||\mathcal{Y} - Y_i|} & \text{si } l_1 \notin Y_i, l_2 \in Y_i \\ 0 & \text{en otro caso} \end{cases}$$
for $t = 1$ to T do

 $h_t \leftarrow A(S, D_t).$

Escoja α_t

Actualice D: $D_{t+1}(i, l_1, l_2) = \frac{D_t(i, l_1, l_2) \exp(\frac{1}{2}\alpha_t(h_t(x_i, l_1) - h_t(x_i, l_2)))}{Z_t}$ Donde Z_t normaliza D de manera que sea una distribución.

Algorithm 35 AdaBoost.MR

$$D_1(i, l_1, l_2) = \begin{cases} \frac{1}{n|Y_i||\mathcal{Y} - Y_i|} & \text{si } l_1 \notin Y_i, l_2 \in Y_i \\ 0 & \text{en otro caso} \end{cases}$$

for t = 1 to T do

 $h_t \leftarrow A(S, D_t).$

Escoja α_t

Actualice $D: D_{t+1}(i, l_1, l_2) = \frac{D_t(i, l_1, l_2) \exp\left(\frac{1}{2}\alpha_t(h_t(x_i, l_1) - h_t(x_i, l_2))\right)}{Z_t}$ Donde Z_t normaliza D de manera que sea una distribución.

Donde Z_t normanza D de manera que sea una distribución.

Algorithm 36 AdaBoost.MR

$$D_1(i, l_1, l_2) = \begin{cases} \frac{1}{n|Y_i||\mathcal{Y} - Y_i|} & \text{si } l_1 \notin Y_i, l_2 \in Y_i \\ 0 & \text{en otro caso} \end{cases}$$

for t = 1 to T do

$$h_t \leftarrow A(S, D_t).$$

Escoja α_t

Actualice $D: D_{t+1}(i, l_1, l_2) = \frac{D_t(i, l_1, l_2) \exp\left(\frac{1}{2}\alpha_t(h_t(x_i, l_1) - h_t(x_i, l_2))\right)}{Z_t}$ Donde Z_t normaliza D de manera que sea una distribución.

Retorne
$$f(x) = \sum_{i=1}^{T} \alpha_t h_t(x, l)$$

Algorithm 37 AdaBoost.MR

$$D_1(i, l_1, l_2) = \begin{cases} \frac{1}{n|Y_i||\mathcal{Y} - Y_i|} & \text{si } l_1 \notin Y_i, l_2 \in Y_i \\ 0 & \text{en otro caso} \end{cases}$$

for t = 1 to T do

 $h_t \leftarrow A(S, D_t).$

Escoja α_t

Actualice $D: D_{t+1}(i, l_1, l_2) = \frac{D_t(i, l_1, l_2) \exp\left(\frac{1}{2}\alpha_t(h_t(x_i, l_1) - h_t(x_i, l_2))\right)}{Z_t}$ Donde Z_t normaliza D de manera que sea una distribución.

Retorne
$$f(x) = \sum_{i=1}^{T} \alpha_t h_t(x, l)$$

Teorema

$$rloss_{\mathcal{D}}(f) \leq \prod_{t=1}^{T} Z_{t}$$