Disciplina: Cálculo I - 2024/1 Curso de Ciência da Computação

Prof^a: Divane Marcon

3^a Lista de Exercícios - Limites

1. Ache os seguintes limites:

a)
$$\lim_{t\to 2} (t^2 + 6t + 5)$$
 Resp: 21

b)
$$\lim_{x\to 0} (x^2 + 6x + 3)$$
 Resp. 3

c)
$$\lim_{y \to 5} \left(\frac{3y - 5}{y - 2} \right)$$
 Resp: $\frac{10}{3}$

d)
$$\lim_{x\to 2} (x^3 - 3x + 5)$$
 Resp: 7

e)
$$\lim_{x \to -1} \left(\frac{x^2 + 1}{x^2 + x + 1} \right)$$
 Resp: 2

$$\mathbf{f}$$
) $\lim_{x \to \infty} \left(4 - \frac{2}{x+1} \right)$ Resp: 4

g)
$$\lim_{x\to 0^+} \left(\frac{1}{1+2^{\frac{1}{x}}}\right)$$

h)
$$\lim_{t\to 2} \left(\frac{t^2+4}{(t+2)(t+3)}\right)$$
 Resp. $\frac{2}{5}$

i)
$$\lim_{x \to 4} \left(\frac{x^2 - 16}{(x - 4)^2} \right)$$

j)
$$\lim_{x \to -4} \left(\frac{x^2 - 16}{(x - 4)^2} \right)$$

1)
$$\lim_{x\to 4} \left(\frac{x^2-16}{(x+4)^2}\right)$$

m)
$$\lim_{t\to\infty} \left(\frac{t^3 + 4t^2 + 10}{5t^2 + 12t} \right)$$

$$\mathbf{n)} \lim_{t \to 2} \left(\frac{t^2 - 6t + 8}{t^2 - 5t + 6} \right)$$

$$\mathbf{o)} \lim_{h \to \infty} \left(\frac{h^4 + 5h^5}{3h + 2h^6} \right)$$

p)
$$\lim_{t\to -3} \left(\frac{t^2-t-12}{t^2+4t+3}\right)$$

q)
$$\lim_{x\to 0} \left(\frac{x^2 + 2ax + a^2}{a^3} \right)$$

r)
$$\lim_{h\to 0} \frac{(2+h)^4 - 16}{h}$$
 Resp. 32

s)
$$\lim_{t \to 0} \frac{\sqrt{25+3t}-5}{t}$$
 Resp: $\frac{3}{10}$

t)
$$\lim_{h \to -4} \frac{\sqrt{2(h^2 - 8)} + h}{h + 4}$$
 Resp: -1

u)
$$\lim_{x\to 0} \frac{\sqrt{1+x}-1}{-x}$$
 Resp: $-\frac{1}{2}$

2. Seja
$$f(x) = \begin{cases} x - 1, x \le 3 \\ 3x - 7, x > 3 \end{cases}$$

Calcule:

a)
$$\lim_{x \to 3^{-}} f(x)$$
 Resp. 2

b)
$$\lim_{x\to 3^+} f(x)$$
 Resp. 2

c)
$$\lim_{x\to 3} f(x)$$
 Resp. 2

d)
$$\lim_{x\to 5^-} f(x)$$
 Resp. 8

e)
$$\lim_{x \to 5^+} f(x)$$
 Resp: 8

$$\mathbf{f)} \lim_{x \to 5^{-}} f(x) \qquad \text{Resp: 8}$$

3. Seja
$$g(x) = \begin{cases} \frac{|x-3|}{x-3}, & x \neq 3 \\ 0, & x = 3 \end{cases}$$

a) Esboce o gráfico de
$$g(x)$$
;

b) Encontre, se existir:
$$\lim_{x\to 3^{-}}g\left(x\right)$$
, $\lim_{x\to 3+}g\left(x\right)$ e $\lim_{x\to 3}g\left(x\right)$ Resp: $-1,1$ e \nexists

4. Ache os seguintes limites:

a)
$$\lim_{h \to 1} \frac{\sqrt{h-1}}{h-1}$$
 Resp: $\frac{1}{2}$

b)
$$\lim_{h \to 0} \frac{\sqrt[3]{8+h}-2}{h}$$
 Resp: $\frac{1}{12}$

c)
$$\lim_{x \to a} \frac{\sqrt[3]{x} - \sqrt[3]{a}}{x - a} a \neq 0$$
 Resp: $\frac{1}{3} \sqrt[3]{a^2}$

d)
$$\lim_{x \to 1} \frac{\sqrt[3]{x^2} - 2\sqrt[3]{x} + 1}{(x-1)^2}$$
 Resp: $\frac{1}{9}$

e)
$$\lim_{x\to 0} \frac{\sqrt{1+x} - \sqrt{1-x}}{x}$$
 Resp: 1

f)
$$\lim_{x \to +\infty} \frac{t^2 - 2t + 3}{2t^2 + 5t - 3}$$
 Resp: $\frac{1}{2}$

g)
$$\lim_{t \to \infty} \left(2 - \frac{1}{x} + \frac{4}{x^2}\right)$$
 Resp: 2

$$\mathbf{h)} \lim_{x \to -\infty} \frac{t+1}{t^2+1} \qquad \text{Resp: } 0$$

i)
$$\lim_{x \to -\infty} \frac{3x^5 - x^2 + 7}{2 - x^2}$$
 Resp: $+\infty$

$$\mathbf{j)} \lim_{\to +\infty} \frac{v\sqrt{v} - 1}{3v - 1}$$
 Resp: $+\infty$

$$\mathbf{k}) \lim_{t \to -\infty} \frac{\sqrt{x^2 + 1}}{x + 1}$$
 Resp: -1

1)
$$\lim_{x \to -\infty} \frac{\sqrt{2x^2 - 7}}{x + 3}$$
 Resp: $-\sqrt{2}$

m)
$$\lim_{s \to +\infty} \sqrt[3]{\frac{3s^7 - 4s^5}{2s^7 + 1}}$$
 Resp: $\sqrt[3]{\frac{3}{2}}$

k)
$$\lim_{t \to -\infty} \frac{\sqrt{x^2 + 1}}{x + 1}$$
 Resp: -1
l) $\lim_{x \to -\infty} \frac{\sqrt{2x^2 - 7}}{x + 3}$ Resp: $-\sqrt{2}$
m) $\lim_{s \to +\infty} \sqrt[3]{\frac{3s^7 - 4s^5}{2s^7 + 1}}$ Resp: $\sqrt[3]{\frac{3}{2}}$
n) $\lim_{y \to +\infty} \frac{3 - y}{\sqrt{5 + 4y^2}}$ Resp: $-\frac{1}{2}$

o)
$$\lim_{x \to +\infty} (\sqrt{x^2 + 1} - \sqrt{x^2 - 1})$$
 Resp: 0

$$\mathbf{p)} \lim_{s \to +\infty} \frac{8-s}{\sqrt{s^2+7}}$$
 Resp: -1

q)
$$\lim_{x\to 3^-} \frac{x}{x-3}$$
 Resp: $-\infty$

r)
$$\lim_{x \to 4^+} \frac{3-x}{x^2 - 2x - 8}$$
 Resp: $-\infty$

5. Calcule os limites aplicando os limites fundamentais:

a)
$$\lim_{x\to 0} \frac{tgax}{x}$$
 Resp: a

b)
$$\lim_{x \to 0} \frac{\sin 4x}{3x}$$
 Resp. $\frac{4}{3}$

b)
$$\lim_{x\to 0} \frac{\sin 4x}{3x}$$
 Resp: $\frac{4}{3}$
c) $\lim_{x\to 0} \frac{\sin^{3(\frac{x}{2})}}{x^3}$ Resp: $\frac{1}{8}$

d)
$$\lim_{x \to -1} \frac{tg^3(\frac{x+1}{4})}{(x+1)^3}$$
 Resp: $\frac{1}{64}$
e) $\lim_{x \to 0} \frac{1-\cos x}{x^2}$ Resp: $\frac{1}{2}$
f) $\lim_{x \to 0} \frac{1-2\cos x+\cos 2x}{x^2}$ Resp: -1
g) $\lim_{x \to 2} \frac{5^x-25}{x-2}$ Resp: $25 \ln 5$

e)
$$\lim_{x \to 0} \frac{1-\cos x}{x^2}$$
 Resp: $\frac{1}{2}$

f)
$$\lim_{x \to 0} \frac{1 - 2\cos x + \cos 2x}{x^2}$$
 Resp: -1

g)
$$\lim_{x \to 2} \frac{5^x - 25}{x - 2}$$
 Resp: $25 \ln 5$

$$\mathbf{h)} \lim_{x \to 0} \frac{1 - \cos x}{x} \qquad \text{Resp: } 0$$

6. Investigue a continuidade nos pontos indicados:

a)
$$f(x) = \begin{cases} \frac{\sin x}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$
 no ponto $x = 0$. Resp: não é contínua
b) $f(x) = \begin{cases} \frac{x^3 - 8}{x^2 - 4}, & x \neq 2 \\ 3, & x = 2 \end{cases}$ no ponto $x = 2$ Resp: é contínua

b)
$$f(x) = \begin{cases} \frac{x^3 - 8}{x^2 - 4}, & x \neq 2 \\ 3, & x = 2 \end{cases}$$
 no ponto $x = 2$ Resp: é contínua

7. Faça o esboço do gráfico e analise a continuidade das seguintes funções:

a)
$$f(x) = \begin{cases} 0, x \le 0 \\ x, x > 0 \end{cases}$$

b)
$$f(x) = \begin{cases} \frac{x^2 - 4}{x + 2}, & x \neq -2\\ 1, & x = -2 \end{cases}$$

c)
$$f(x) = \begin{cases} \frac{x}{|x|}, & x \neq 0 \\ -1, & x = 0 \end{cases}$$

8. Determine, se existirem, os pontos onde as seguintes funções não são contínuas:

a)
$$f(x) = \frac{x}{(x-3)(x+7)}$$

Resp:
$$3, -7$$

a)
$$f(x) = \frac{x}{(x-3)(x+7)}$$

b) $f(x) = \sqrt{(3-x)(6-x)}$

Resp:
$$x \in]3, 6[$$

c)
$$f(x) = \frac{1}{1 + 2\sin x}$$

c)
$$f(x) = \frac{1}{1+2\sin x}$$
 Resp: $x = -\frac{\pi}{6} + 2k\pi, x = \frac{7\pi}{6} + 2k\pi, k \in \mathbb{Z}$

d)
$$f(x) = \frac{x^2 + 3x - 1}{x^2 - 6x + 10}$$
 Resp. \nexists