### **README: Climate Data and Visualization for LM**

07/05/2021

Zexuan Xu, Satyarth Praveen, Erica Woodburn, Haruko Wainwright, Ken Williams
Lawrence Berkeley National Laboratory

## Overview

This folder includes the climate datasets (historical/projection) and visualization for the 71 DOE-LM sites identified through the LM Site Questionnaire that were deemed to have some level of potential shifting associated with future climate change in terms of altering system performance and/or exceeding design requirements. We use the Coupled Model Intercomparison Project (CMIP) climate models (Taylor et al., 2012), which are the standard global climate model ensembles used in the US Global Change Research Program and the Intergovernmental Panel on Climate Change (IPCC). Both historical and future projection datasets (Thrasher et al., 2012) are downscaled to 28 km (0.25 degree) from the coarser 1-degree resolution GCM output.

We define the shifting score based on the historical mean, projected mean, and historical standard deviation, when the climate metrics follow a statistically normal distribution, following the approach of Werth (2016). When the distribution is skewed, we define the shifting score based on the distribution quantile.

## **Detailed information**

- Data source:
  - https://developers.google.com/earth-engine/datasets/catalog/NASA\_NEX-GDDP#image-properties
- Scripts and tools we used to download the datasets: https://pypi.org/project/climate-resilience/
- Climate scenarios:
  - Historical (1950-2005, referred as "historical" in our dataset)
  - o Projection RCP4.5 (2006-2099, referred as "rcp45" in our dataset)
  - o Projection RCP8.5 (2006-2099, referred as "rcp85" in our dataset)
- Climate models: 21 global climate models, including 'ACCESS1-0', 'bcc-csm1-1',
   'BNU-ESM', 'CanESM2', 'CCSM4', 'CESM1-BGC', 'CNRM-CM5', 'CSIRO-Mk3-6-0',
   'GFDL-CM3', 'GFDL-ESM2G', 'GFDL-ESM2M', 'inmcm4', 'IPSL-CM5A-LR',
   'IPSL-CM5A-MR', 'MIROC-ESM', 'MIROC-ESM-CHEM', 'MIROC5', 'MPI-ESM-LR',
   'MPI-ESM-MR', 'MRI-CGCM3', 'NorESM1-M'
- Climate variables:
  - Average annual total precipitation (mm/day)
  - Average daily maximum two-meter surface temperature (tasmax, Celsius degree)
  - Extreme precipitation days, defined as the number of days with precipitation in the top 1% of all days having recordable precipitation (EPA definition)
  - Maximum daily precipitation (mm/day): defined as the maximum daily precipitation in each year

- Standardized Precipitation-Evapotranspiration Index (SPEI): a diagnostic of long-term drought severity index. They are calculated in monthly temporal frequency. Negative values indicates drier. The data are provided by Florida Institute of Technology.
- Extreme degree days: similar definition to the growing degree days
   (<a href="https://mrcc.purdue.edu/gismaps/info/gddinfo.htm#:~:text=Growing%20Degree%20Days%20(GDD)%20are.or%20base%20temperature%20(TBASE)</a>.), with Tbase = 93F.

- Wildfire: The wildfire data are EU classes (low, medium, high, etc.) based on the CFWI (Canadian Fire Weather Index). The wildfire data are provided by the Argonne National Laboratory.
- Flooding (will be available soon if historical data can be found that is of relevance to the study)
- Groundwater elevation and uranium concentrations (will be available soon if historical data can be found that is of relevance to the study)

#### Climate metrics:

- Hist\_mean: The mean of each climate variable over 56 years of the historical period (1950-2005)
- Hist\_std: The standard deviation of each climate variable over 56 years of the historical periods
- 1990\_2019\_mean: The mean of each climate variable over the recent 30 years (1990-2019). The period of 1990-2005 uses the "historical" scenario, the period of 2007-2019 uses the "rcp85" scenario.
- Rcp45\_mean: The mean of each climate variable over the 94 years of the rcp45 scenarios (2006-2099)\*
- Rcp45\_max: The maximum of each climate variable over the 94 years of the rcp45 scenarios (2006-2099)\*\*
- Rcp85\_mean: The mean of each climate variable over the 94 years of the rcp45 scenarios (2006-2099)
- Rcp85\_max: The maximum of each climate variable over the 94 years of the rcp45 scenarios (2006-2099)
- Shifting\_rcp45: The shifting of each climate variable in the rcp45 scenario compared to the historical period. The shifting\_index is defined as the z-score, which is computed as (rcp45\_mean - hist\_mean)/hist\_std. The shifting\_index is quantified as \*\*\*

- shifting\_index < 0, labeled as 0 or "negative" (rcp45\_mean < hist\_mean)
- 0<shifting\_index<1, labeled as 1 or "low" (hist\_mean < rcp45\_mean < hist\_mean + 1\* hist\_std)</li>
- 1<shifting\_index<2, labeled as 2 or "medium" (hist\_mean + 1\* hist\_std < rcp45\_mean < hist\_mean + 2\* hist\_std)
- shifting\_index > 2, labeled as 3 or "high" (rcp45\_mean > hist\_mean + 2\*hist\_std)
- Shifting\_rcp85: Same for shifting\_rcp45, but with rcp85\_mean for rcp85 scenario.

### **Exceptions:**

- \* The rcp26\_mean and rcp26\_max are presented because our SPEI dataset only has historical, rcp26 and rcp85 scenarios
- \*\* The minimum value is reported here for SPEI because negative value indicates drier condition by the definition of SPEI.
- \*\*\* For the extreme precipitation days and maximum daily precipitation, we used the median value because these two climate variables are not normally distributed. The shifting\_index is computed by the median, 70 percentile and 95 percentile of the historical period to be consistent with the shifting index for other variables
  - shifting\_index < 0, labeled as 0 or "negative" (rcp45\_median < hist\_median)</p>
  - 0<shifting\_index<1, labeled as 1 or "low" (hist\_median < rcp45\_median < hist\_70percentile)</li>
  - 1<shifting\_index<2, labeled as 2 or "medium" (hist\_70percentile < rcp45\_median < hist\_95percentile)
  - shifting\_index > 2, labeled as 3 or "high" (rcp45\_median > hist\_95percentile)

#### Calculation methods:

- The ensemble mean among 21 climate models are calculated and reported (for average total precipitation, average daily maximum temperature and average SPEI)
- For extreme precipitation days and maximum daily precipitation, the climate variables are computed for each individual climate model first, then the mean of those ensemble models are reported. This is because the daily extreme precipitation will be diminished if ensemble mean is used for computing those variables directly.
- Sites: Please see the appendix at the end of this README, and please refer to the LMsites\_handoff.csv file for more information
- File organization:
  - LMsites handoff.csv
  - Climate variable database
    - Annual average tmax stats.csv
    - Annual\_total\_precipitation\_stats.csv

- Drought\_index\_stats.csv
- Extreme\_precipitation\_days\_stats.csv
- Maximum\_daily\_precipitation\_stats.csv
- Extreme degree days stats.csv
- Heating degree days stats.csv
- Cooling degree days stats.csv
- One directory per site
  - Aggregated climate metrics in the historical and projection periods for five climate variables in csv format (stat matrix.csv)
  - Color-coded shifting\_index in HTML format (stat\_matrix\_static\_colors.html, you may need to download it and open with any browser)
  - Visualization of annual total precipitation (annual\_total\_precipitation\_timeseries.png)
  - Visualization of annual average Tmax (annual\_average\_tmax\_timeseries.png)
  - Visualization of extreme precipitation days (extreme\_precipitation\_days\_timeseries.png)
  - Visualization of maximum daily precipitation (maximum\_daily\_precipitation\_timeseries.png)
  - Visualization of drought index (drought\_index\_timeseries.png)
- Wildfire
  - LM\_CFWI\_euClass\_RCP85\_RCP45.csv
  - LM\_extracted\_CFWI\_timeseries\_RCP4.5\_annual\_mean.csv
  - LM\_extracted\_CFWI\_timeseries\_RCP8.5\_annual\_mean.csv

# **Examples**

All table and figures are shown in Ambrosia Lake, NM site):

|                                      | hist_mean | hist_std | 1990_2019_mean | rcp45_mean | rcp45_max | rcp85_mean | rcp85_max | shifting_rcp45 | shifting_rcp85 |
|--------------------------------------|-----------|----------|----------------|------------|-----------|------------|-----------|----------------|----------------|
| Annual precipitation (mm/day)        | 0.83      | 0.04     | 0.81           | 0.86       | 1.01      | 0.83       | 0.93      | low            | negative       |
| Extreme precipitation day            | 1.06      | 1.05     | 1.15           | 1.31       | 5.43      | 1.27       | 5.14      | low            | low            |
| Annual avg Tmax (C)                  | 18.71     | 0.39     | 19.43          | 21.17      | 22.82     | 22.26      | 26.38     | high           | high           |
| Maximum Daily Precipitation (mm/day) | 28.81     | 12.74    | 28.56          | 30.35      | 83.21     | 29.45      | 71.09     | low            | low            |
| SPEI                                 | -0.02     | 0.33     | -0.13          | -0.38      | -1.03     | -0.70      | -1.62     | medium         | high           |
| <b>Heating Degree Days</b>           | 6180.67   | 351.01   | nan            | 5096.57    | 6211.47   | 4695.22    | 6297.89   | negative       | negative       |
| Extreme Degree Days                  | 0.00      | 0.00     | nan            | 0.00       | 0.00      | 0.00       | 0.02      | high           | high           |
| Cooling Degree Days                  | 195.31    | 84.66    | nan            | 564.59     | 1023.54   | 818.87     | 1837.96   | high           | high           |

Table 1. Color-coded shifting index for five climate variables in RCP45 and RCP85 scenarios



Figure 1. The trend of annual total precipitation (mm/day) in historical and projection periods at the Ambrosia Lake, NM site. This is the average among multiple models.



Figure 2. The trend of daily maximum two-meter surface temperature (tasmax, Celsius degree) in historical and projection periods at the Ambrosia Lake, NM site.



Figure 3. The trend of extreme precipitation days in historical and projection periods at the Ambrosia Lake, NM site.



Figure 4. The trend of maximum daily precipitation (mm/day) in historical and projection periods at the Ambrosia Lake, NM site.



Figure 5. The trend of SPEI in historical and projection periods at the Ambrosia Lake, NM site.

# References:

Taylor, K. E., Stouffer, R. J., & Meehl, G. A., 2012: An overview of CMIP5 and the experiment design, B. Am. Meteorol. Soc., 93, 485–498, https://doi.org/10.1175/BAMS-D-11-00094.1 Thrasher, B., Maurer, E. P., McKellar, C., & Duffy, P. B., 2012: Technical Note: Bias correcting climate model simulated daily temperature extremes with quantile mapping. Hydrology and Earth System Sciences, 16(9), 3309-3314. <a href="doi:10.5194/hess-16-3309-2012">doi:10.5194/hess-16-3309-2012</a> Werth, D., (2016), Climate Change Resilience Planning at the Savannah River Site, Part 2, SRNL-STI-2016-00601

# **Appendix**

| Name                                   | Name Abbreviation | StateCode |
|----------------------------------------|-------------------|-----------|
| Ambrosia Lake, NM, Disposal Site       | AMB               | NM        |
| Amchitka, AK, Site                     | AMC               | AK        |
| Bluewater, NM, Disposal Site           | BLU               | NM        |
| BONUS, PR, Decommissioned Reactor Site | BON               | PR        |
| Bronco, CO, Site                       | BRO               | CO        |
| Burrell, PA, Disposal Site             | BUR               | PA        |
| Burris Park, CA, Site                  | BRP               | CA        |
| Canonsburg, PA, Disposal Site          | CAN               | PA        |

| Casper, WY, Calibration Model                           | CSC | WY |
|---------------------------------------------------------|-----|----|
| Central Nevada Test Area, NV                            | CNT | NV |
| Colonie, NY, Site                                       | CLN | NY |
| Durango, CO, Disposal Site                              | DUD | CO |
| Durango, CO, Processing Site                            | DUP | СО |
| Edgemont, SD, Disposal Site                             | EDG | SD |
| Falls City, TX, Disposal Site                           | FCT | TX |
| Fernald Preserve, OH, Site                              | FER | ОН |
| Gasbuggy, NM, Site                                      | GSB | NM |
| George West, TX, Calibration Model                      | GWC | TX |
| Gnome-Coach, NM, Site                                   | GNO | NM |
| Grand Junction Regional Airport, CO, Calibration Model  | GAC | СО |
| Grand Junction, CO, Calibration Model                   | GJC | СО |
| Grand Junction, CO, Disposal Site                       | GRJ | СО |
| Grand Junction, CO, Processing Site                     | GJT | СО |
| Grand Junction, CO, Site                                | GJO | СО |
| Grants, NM, Calibration Model                           | GNC | NM |
| Green River, UT, Disposal Site                          | GRN | UT |
| Gunnison, CO, Disposal Site                             | GUD | СО |
| Gunnison, CO, Processing Site                           | GUP | СО |
| Hallam, NE, Decommissioned Reactor Site                 | HAL | NE |
| L-Bar, NM, Disposal Site                                | BAR | NM |
| Laboratory for Energy-Related Health Research, CA, Site | LEH | CA |
| Lakeview, OR, Disposal Site                             | LKD | OR |
| Lakeview, OR, Processing Site                           | LKP | OR |
| Lowman, ID, Disposal Site                               | LOW | ID |
| Maxey Flats, KY, Disposal Site                          | MAX | KY |
| Maybell West, CO, Disposal Site                         | MAW | СО |
| Maybell, CO, Disposal Site                              | MAY | СО |

| Mexican Hat, UT, Disposal Site                | HAT | UT |
|-----------------------------------------------|-----|----|
| Monticello, UT, Disposal and Processing Sites | MNT | UT |
| Monument Valley, AZ, Processing Site          | MON | ΑZ |
| Mound, OH, Site                               | MND | ОН |
| Naturita, CO, Disposal Site                   | NAD | CO |
| Naturita, CO, Processing Site                 | NAP | СО |
| Parkersburg, WV, Disposal Site                | PKB | WV |
| Pinellas County, FL, Site                     | PIN | FL |
| Piqua, OH, Decommissioned Reactor Site        | PIQ | ОН |
| Pre-Gondola and Trencher, MT, Site            | PGD | MT |
| Pre-Schooner II, ID, Site                     | PSC | ID |
| Rifle New, CO, Processing Site                | RFN | СО |
| Rifle Old, CO, Processing Site                | RFO | СО |
| Rifle, CO, Disposal Site                      | RFL | СО |
| Rio Blanco, CO, Site                          | RBL | СО |
| Riverton, WY, Processing Site                 | RVT | WY |
| Rocky Flats, CO, Site                         | RFS | СО |
| Rulison, CO, Site                             | RUL | СО |
| Salmon, MS, Site                              | SAL | MS |
| Salt Lake City, UT, Disposal Site             | SLD | UT |
| Salt Lake City, UT, Processing Site           | SLP | UT |
| Sherwood, WA, Disposal Site                   | SHE | WA |
| Shiprock, NM, Disposal Site                   | SHP | NM |
| Shirley Basin South, WY, Disposal Site        | SBS | WY |
| Shoal, NV, Site                               | SHL | NV |
| SiteAPlotM, IL, Decommissioned Reactor Site   | SAM | IL |
| Slick Rock East, CO, Processing Site          | SRE | СО |
| Slick Rock West, CO, Processing Site          | SRW | СО |
| Slick Rock, CO, Disposal Site                 | SRD | СО |
| Spook, WY, Disposal Site                      | SPK | WY |

| Tonopah Test Range, NV, Site | TTR | NV |
|------------------------------|-----|----|
| Tuba City, AZ, Disposal Site | TUB | AZ |
| Utah, UT, Site               | UTA | UT |
| Weldon Spring, MO, Site      | WEL | МО |