LIDRARY

Aog. No.

Max. Marks: 60

V Semester B.B.A. Examination, January/February 2025 of Mana

(NEP Scheme)
(Freshers/Repeaters)
AVIATION MANAGEMENT

5.1 : Operation Research

Time: 21/2 Hours

Instruction: Answers should be written in English only.

SECTION - A

Answer any 6 questions out of 8 questions.

 $(6 \times 2 = 12)$

- 1. a) Differentiate between pure and mixed strategies in game theory.
 - b) Expand PERT and CPM.
 - c) What is the objective of linear programming?
 - d) Define the term "initial basic feasible solution".
 - e) What do you mean by basic feasible solution?
 - f) What is meant by 2 person game?
 - g) List the advantages of PERT.
 - h) What is time scale analysis?

SECTION - B

Answer any 3 questions out of 5 questions.

 $(3 \times 4 = 12)$

2. A small manufacturer employs 5 skilled men and 10 semi skilled men and makes an article in 2 qualities, a deluxe model and an ordinary model, the making of deluxe model requires 2 hours work by skilled man and 2 hours work by semi skilled man. The ordinary model requires 1 hour work by a skilled man and 3 hours work by semi skilled man. By union rules no man can work for more than 8 hours per day. The manufacturers clear profit of the deluxe model in ₹ 10 and ordinary model by ₹ 8. Formulate the model of the problem.

3. Given the following transportation problem, find the Initial Basic Feasible Solution (IBFS) using North West Corner Rule.

	Factory 1	Factory 2	Factory 3	Supply
Warehouse A	5	8	6	70
Warehouse B	3	6	4	60
Warehouse C	7	2	5	50
Demand	60	70	50	

4. Solving a 2×2 game using graphical solution.

	Column 1	Column	
Row 1	3	1	
Row 2	2	4	

- 5. Define the following types of queuing system in queuing theory.
 - M/M/1 Queue
 - M/M/c Queue
- 6. Define and differentiate between early start, late start, early finish, late finish in project scheduling.

SECTION - C

2

Answer any 3 questions out of 5 questions.

 $(3 \times 12 = 36)$

- 7. Problem statement: A company spends its marketing budget on two types of campaigns: Online campaigns and print campaigns. The company has a total budget of ₹ 2,00,000. Each online campaign costs ₹ 20,000 and each print campaign costs ₹ 10,000. The company expects a return of ₹ 5,000 per online campaign and ₹ 2,000 per print campaign. The company wants to maximize its return on investment while keeping within the budget. Formulate linear programming problem and solve it using graphical method.
- 8. Explain the following in the context of assignment problem:
 - a) Balanced assignment problem.
 - b) The Hungarian method.
 - c) An infeasible assignment.

9. Solve the following two persons zero-sum game using the dominance property and find the optimal mixed strategies for both players.

	Column 1	Column 2	Column 3
Row 1	3	2	4
Row 2	1	5	2
Row 3	2	3	3

10. The following table provides the time duration and precedence relationships for the activities in a project; calculate total duration, slack and critical path.

Activity	Duration (in days)	Predecessor (s)
А	6	_
В	3	Α
С	4	A
D	5	В
E	2	С
F	8	D, E

11. In a project, the following activities have uncertain durations. Use PERT to calculate the probability of completing the project in 15 days.

Activity	Optimistic (O)	Most likely (M)	Pessimistic (P)
Α	3	5	7
В	2	4	6
С	4	5	8
D	2	3	5
E	1	3	4

Task:

- Calculate the expected duration (TE) and standard deviation (σ) for each activity.
- Find the critical path and the variance of total project duration.
- Calculate the probability of completing the project in 15 days or less using a normal distribution.