

Geodatenanalyse I: Interpolation – Deterministische Verfahren

Kathrin Menberg

Stundenplan

	08:30 – 12:30 Uhr	13:30 – 17:30 Uhr
Montag	Tag 1 / Block 1	Tag 1 / Block 2
Dienstag	Tag 2 / Block 1	Tag 2 / Block 2
Mittwoch	Tag 3 / Block 1	Tag 3 / Block 2
Donnerstag	Tag 4 / Block 1	Tag 4 / Block 2
Freitag	Tag 5 / Block 1	Tag 5 / Block 2

▶ 2.10 Interpolation: Deterministische Verfahren

2.11 Interpolation: Kriging

▶ 2.12 Gauß-Prozesse

Lernziele Block 2.10

Am Ende der Stunde werden die Teilnehmer:

- mit den mathematischen Grundlagen der Interpolation vertraut sein.
- verschiedene Methoden zur Interpolation voneinander abgrenzen können.
- in Python deterministische Methoden zur Interpolation von Datensätzen anwenden und die Ergebnisse graphisch darstellen können.

Interpolation

- Motivation
 - $> X_i \rightarrow f(x)$
 - räumliche Interpolation

https://rbf.readthedocs.io/

https://datascience.stackexchange.com/

https://innolitics.com/

Interpolation vs. Extrapolation

- Interpolation: Schätzung von Werten zwischen bekannten Datenpunkten
- Extrapolation: Schätzung von Werten außerhalb bekannter
 Datenpunkte

Deterministische Interpolation

- Interpolation mittels festgelegter (z.B. linearer) Funktion
- Eindeutiges, immer gleiches Ergebnis
- Einfache Berechnung, aber keine Aussage zur Qualität der Interpolation möglich
- Beispiele:
 - Triangulation
 - Nearest Neighbour
 - Natural Neighbour
 - Spline Interpolation
 - Polynomische Interpolation
 - Inverse Distance Weighting
 - USW.

exakte vs. approximierte Interpolation

Funktion verläuft durch alle Datenpunkte

Funktion verläuft näherungsweise durch die Stützpunkte

Approximierte Werte an Stützpunkte ≠ Messwerte

lokal vs. globale Interpolation

Ermittlung anhand Teilmenge aller Datenpunkte

Ermittlung anhand <u>aller</u> Datenpunkte

Nearest Neighbour

- Verbindung jeweils dreier benachbarter Punkte mittels **Delaunay-Triangulation**
- Mittelsenkrechten der Dreiecksmaschen ergeben sog. Thiessen-Polygone oder auch Voronoi-Polygone
- Zuordnung des jeweils nächstgelegenen Messwertes ("nearest neighbour") für das ganze Polygon

Radiale Basisfunktionen (RBF)

- Reelle Funktion φ , deren Wert nur vom Abstand zum Ursprung abhängt
- Abstand: Euklidische Distanz
- Verschiedene Funktionstypen:
 - Linear
 - Multi-quadratisch $\varphi(r) = \sqrt{1 + (ar)^2}$
 - Spline $\varphi(r) = r^k$, $\varphi(r) = r^k \ln(r)$
 - Gauss $\varphi(r) = e^{-(ar)^2}$
 - **•** ...
- Annahme Formparameter a, bzw. k

- Approximation von Werten zwischen Stützpunkten
 - Interpolation
 - Maschinelles Lernen (z.B. Neuronale Netze)

Inverse Distance Weighting

Interpolationswert \hat{Z} an Stelle x_0 wird berechnet aus den Messwerten $Z(x_i)$ der benachbarten Punkte $x_1...x_i$

$$\hat{Z}(x_0) = \sum_{i=1}^n \lambda_i \cdot Z(x_i)$$

 λ_i ist die Gewichtung, mit dem der Wert x_i an Punkt i in die Berechnung einfließt

$$\lambda_i = \frac{d_{i0}^{-p}}{\sum_{i=1}^n d_{i0}^{-p}}$$

Mit zunehmender Entfernung d nimmt das Gewicht ab.

https://rafatieppo.github.io/

11.03.2021

Inverse Distance Weighting

- p "Power" ist ein Maß für Abnahme (i.d.R. > 1, z.B. 2)
- Einfluss des Wertes p
- Welches der optimale p-Wert ist, kann man über Validierungsverfahren feststellen.

Inverse Distance Weighting

Anzahl der bei der Interpolation berücksichtigten Punkte

- Welche Methode man wählt, hängt sehr stark von der Verteilung der Messpunkte ab
- Bei homogener Verteilung liefern beide Methoden das gleiche Ergebnis

Übung 2.10: Interpolation I

- ▶ Interpolation von Grundwasserdaten in Karlsruhe
 - Delauney Triangulation
 - Nearest Neighbour
 - Radiale Basisfunktionen
 - Visualisierung

Menberg et al. (2013)

Aufgaben in Jupyter Notebook: geodatenanalyse_1-2-10

11.03.2021

Explorative Datenanalyse: räumliche Darstellung

Delaunay-Triangulation

Vergleich verschiedener Methoden in "scipy.interpolate.griddata"

11.03.2021

Exakte Interpolation mit ".Rbf", und "smooth=0.2"

Literatur

- Bivand, Pebesma & Gomez-Rubio (2008): Applied Spatial Data Analysis with R, Springer
- Menberg et al. (2013): Subsurface urban heat islands in German cities, Sci. Tot. Environ. 442 (2013) 123-133.

