

INFORMATIQUE POUR LA ROBOTIQUE 2

Cours n°4: Le Fine Tuning

Enseignants:

Maëva LECAVELIER -Michael CHATOEV - maeva.lecavelier@gmail.com michaelchatoev@gmail.com

Sommaire

01

Rappels

Docker, Machine Learning...

02

Ne pas réinventer

la roue

Le Fine Tuning

03

Exercicé guidé

Reconnaître des chats et chiens

04

Aller plus loin

Le fine tuning en autonomie

7

Rappels

Docker, Machine Learning...

Rappels

Python: un langage sans prétention, complet et largement utilisé dans l'industrie, la recherche et le développement. Une large variété de librairies optimisées pour le Machine Learning

Docker : une solution de conteneurisation légère et facile à configurer, idéale pour déployer son code sur toutes les plateformes

Le Machine Learning : Avoir des données en entrée, traiter ces données pour les exploiter et les faire passer dans un réseau de neurones afin d'en déduire un résultat

Rappel plus en détail : le Machine Learning

Étape 1 : Charger les données Étape 2 : Préparer les données

Étape 3 : Construire le modèle

Étape 4 : Compiler le modèle

Étape 5 : Entraîner le modèle

Étape 6 : Évaluer le modèle

Étape 7 : Faire des prédictions

Étape 8 : Mesurer des métriques

(optionnel)

Rappel plus en détail : le Machine Learning

Étape 1 : Charger les données

Étape 2 : Préparer les données

Étape 3 : Construire le modèle

Étape 4 : Compiler le modèle

Étape 5 : Entraîner le modèle

Étape 6 : Évaluer le modèle

Étape 7 : Faire des prédictions

Étape 8 : Mesurer des métriques

(optionnel)

Ne pas réinventer la roue

Le Fine Tuning

Qu'est-ce que le Fine Tuning?

Les avantages du Fine Tuning

- 1. Gain de temps et de ressources : Entraînement rapide et nécessitant peu de données.
- 2. Précision améliorée : Performant même avec des datasets limités.
- **3. Réutilisation des connaissances :** Exploite les caractéristiques générales déjà apprises (ex. motifs, textures).
- 4. Adaptabilité : Facile à ajuster pour des tâches ou domaines spécifiques (ex. médical).
- **5. Réduction du surapprentissage** : Entraîne uniquement les couches nécessaires sur les nouvelles données.
- **6. Efficacité pour ressources limitées :** Idéal pour appareils comme Jetson Nano ou environnement contraint.
- 7. Amélioration continue : Modèle ré-ntraînable à mesure que de nouvelles données arrivent.

Exercice guidé

Reconnaître des chats et des chiens

Exercice guidé : reconnaître des chats et chiens

Exercice: https://www.tensorflow.org/tutorials/images/transfer_learning?hl=fr

Utiliser Google Collab: https://colab.research.google.com/

TD à rendre à la fin du cours :

https://docs.google.com/document/d/1yOTLO0u2nwuLYNvJmuL-niVyeo9wDdCBkpRWCHFW 4Zc/edit?usp=sharing

Fine tuning du modèle MobileNetV2

Transfer Learning

Aller plus loin

Le Fine Tuning en autonomie

Détecter les cas de pneumonies

À partir d'un modèle existant, développer un classifieur permettant de définir une nouvelle fonctionnalité sur un dataset choisi.

Document à rendre contenant :

- La définition de l'objectif du classifieur
- Le modèle initial utilisé
- Les performances initiales du modèles
- Le dataset spécialisé choisi
- Les couches modifiées et comment elles l'ont été
- Les performances finales

Suggestion:

Fine tuning pour reconnaître les cas de pneumonies :

- modèle: https://huggingface.co/google/vit-base-patch16-224-in21k
- dataset :

https://www.kaggle.com/datasets/paultimothymooney/chest-xray-pneumonia?resource=download

Merci!

Des questions?