Отчет пол лабораторной работе №6

Простейший вариант

Михальский Кирилл Алексеевич

Содержание

1	Цель работы	5
2	Задание	e
3	Теоретическое введение	7
4	Выполнение лабораторной работы	8
5	Выполнение задания для самостоятельной работы.	13
6	Выводы	14
Список литературы		15

Список иллюстраций

4.1	Создание	8
4.2	Изменение	8
4.3	Компиляция	9
4.4	Запуск	9
4.5	Создание	10
4.6	Изменения	10
4.7	Изменения	10
4.8	Создарние и ввод	10
4.9	Запуск	11
4.10	Изменение и запуск	11
4.11	Работа с файлом	11
г 1	Doğuma o doğumayı	1 ก
	Работа с файлом	
5.2	Работа с файлом	13

Список таблиц

1 Цель работы

Освоение арифметических инструкций языка ассемблера NASM

2 Задание

- 1. Символьные и численные данные в NASM
- 2. Выполнение арифметических операций в NASM

3 Теоретическое введение

Большинство инструкций на языке ассемблератребуютобработки операндов. Адрес опе ранда предоставляетместо, где хранятся данные, подлежащие обработке. Это могутбыть данные хранящиеся в регистре или в ячейке памяти. Далее рассмотрены все существующие способы задания адреса хранения операндов—способы адресации. Существуеттри основных способа адресации: * Регистровая адресация—операндых ранятся врегистрах и в команде используются имена этих регистров, например: mov ax, bx. * Непосредственная адресация—значение операнда задается непосредственно в ко манде, Например: mov ax, 2. * Адресация памяти—операндзадаетадресвпамяти. Вкомандеуказывается символи ческое обозначение ячейки памяти, над содержимым которойтребуется выполнить операцию.

4 Выполнение лабораторной работы

1. Создал каталог и файл lab6-1.asm.

Рис. 4.1: Создание

2. Вставил текст программы и запустил.

Рис. 4.2: Изменение

```
kmikhalsky@vbox:~/work/arch-pc/lab06$ nasm -f elf lab6-1.asm
kmikhalsky@vbox:~/work/arch-pc/lab06$ ld -m elf_i386 -o lab6-1 lab6-1.o
kmikhalsky@vbox:~/work/arch-pc/lab06$ ./lab6-1
j
kmikhalsky@vbox:~/work/arch-pc/lab06$
```

Рис. 4.3: Компиляция

3. Внес необзодимые изменения и запустил. Код соответствует пустому символу перевода строки, который и отображался на экране.

```
kmikhalsky@vbox:~/work/arch-pc/lab06$ mc

kmikhalsky@vbox:~/work/arch-pc/lab06$ nasm -f elf lab6-1.asm

kmikhalsky@vbox:~/work/arch-pc/lab06$ ld -m elf_i386 -o lab6-1 lab6-1.o

kmikhalsky@vbox:~/work/arch-pc/lab06$ ./lab6-1

kmikhalsky@vbox:~/work/arch-pc/lab06$ |
```

Рис. 4.4: Запуск

4. Создал файл lab6-2.asm, вставил текст программы и запустил исполняемый файл.

```
kmikhalsky@vbox:-/work/arch-pc/lab06$ nasm -f elf lab6-2.asm
kmikhalsky@vbox:-/work/arch-pc/lab06$ ld -m elf_i386 -o lab6-2 lab6-2.o
kmikhalsky@vbox:-/work/arch-pc/lab06$ ./lab6-2
106
kmikhalsky@vbox:-/work/arch-pc/lab06$
```

Рис. 4.5: Создание

5. Внес изменения в файл lab6-2.asm. 6 + 4 = 10. Заменил функцию iprintLF на iprint и запустил исполняемый файл. Не отобразился перевод строки.

```
kmikhalsky@vbox:~/work/arch-pc/lab06$ gedit lab6-2.asm
kmikhalsky@vbox:~/work/arch-pc/lab06$ nasm -f elf lab6-2.asm
kmikhalsky@vbox:~/work/arch-pc/lab06$ ld -m elf_i386 -o lab6-2 lab6-2.o
kmikhalsky@vbox:~/work/arch-pc/lab06$ ./lab6-2
10kmikhalsky@vbox:~/work/arch-pc/lab06$
```

Рис. 4.6: Изменения

```
kmikhalsky@vbox:~/work/arch-pc/lab06$ gedit lab6-2.asm
kmikhalsky@vbox:~/work/arch-pc/lab06$ nasm -f elf lab6-2.asm
kmikhalsky@vbox:~/work/arch-pc/lab06$ ld -m elf_i386 -o lab6-2 lab6-2.o
kmikhalsky@vbox:~/work/arch-pc/lab06$ ./lab6-2.asm
bash: ./lab6-2.asm: Permission denied
kmikhalsky@vbox:~/work/arch-pc/lab06$ ./lab6-2
10
```

Рис. 4.7: Изменения

6. Создал файл lab6-3.asm. Ввел текст программы. Исправил текст программы.

Рис. 4.8: Создарние и ввод

```
kmikhalsky@vbox:~/work/arch-pc/lab06
Q = ×
kmikhalsky@vbox:~/work/arch-pc/lab06$ ld -m elf_i386 -o lab6-3 lab6-3.o
kmikhalsky@vbox:~/work/arch-pc/lab06$ ./lab6-3
Результат: 4
Остаток от деления: 1
kmikhalsky@vbox:~/work/arch-pc/lab06$
```

Рис. 4.9: Запуск

```
kmikhalsky@vbox:-/work/arch-pc/lab06$ gedit lab6-3.asm
kmikhalsky@vbox:-/work/arch-pc/lab06$ nasm -f elf lab6-3.asm
kmikhalsky@vbox:-/work/arch-pc/lab06$ ^C
kmikhalsky@vbox:-/work/arch-pc/lab06$ ld -m elf_i386 -o lab6-3 lab6-3.o
kmikhalsky@vbox:-/work/arch-pc/lab06$ ./lab6-3
Результат: 5
Остаток от деления: 1
kmikhalsky@vbox:-/work/arch-pc/lab06$
```

Рис. 4.10: Изменение и запуск

7. Создал файл variant.asm, ввел текст и запустил.

```
kmikhalsky@vbox:~/work/arch-pc/lab06$ touch variant.asm
kmikhalsky@vbox:~/work/arch-pc/lab06$ gedit variant.asm
kmikhalsky@vbox:~/work/arch-pc/lab06$ gedit variant.asm
kmikhalsky@vbox:~/work/arch-pc/lab06$ nasm -f elf variant.asm
kmikhalsky@vbox:~/work/arch-pc/lab06$ ld -m elf_i386 -o variant variant.0
ld: cannot find variant.0: No such file or directory
kmikhalsky@vbox:~/work/arch-pc/lab06$ ld -m elf_i386 -o variant variant.o
kmikhalsky@vbox:~/work/arch-pc/lab06$ ./variant
BBedMre Me crygeHHeckoro билета:
1132246748
Baw вариант: 9
kmikhalsky@vbox:~/work/arch-pc/lab06$

kmikhalsky@vbox:~/work/arch-pc/lab06$
```

Рис. 4.11: Работа с файлом

- 1. mov eax, rem call sprint
- 2. Инструкция mov ecx, x используется, чтобы положить адрес вводимой строки ки x в регистр ecx mov edx, 80 запись в регистр edx длины вводимой строки

- call sread вызов подпрограммы из внешнего файла, обеспечивающей ввод сообщения с клавиатуры
- 3. call atoi используется для вызова подпрограммы из внешнего файла, которая преобразует ascii-код символа в целое число и записывает результат в регистр eax
- 4. xor edx,edx ; обнуление edx для корректной работы div mov ebx,20 ; $ebx = 20 \ div \ ebx$; eax = eax/20, edx остаток от деления inc edx ; <math>edx = edx + 1
- 5. При выполнении инструкции div ebx остаток от деления записывается в регистр edx
- 6. Инструкция inc edx увеличивает значение регистра edx на 1
- 7. mov eax,edx call iprintLF

5 Выполнение задания для самостоятельной работы.

1. Копировал файл lab6-4, исправил текст программы для работы по условию, проверил правильность используя переменные из задачи. Вариант 9

```
| 1 Section | 1 Se
```

Рис. 5.1: Работа с файлом

```
kmikhalsky@vbox:~/work/arch-pc/lab06$ nasm -f elf lab6-4.asm
kmikhalsky@vbox:~/work/arch-pc/lab06$ ld -m elf_i386 -o lab6-4 lab6-4.o
kmikhalsky@vbox:~/work/arch-pc/lab06$ ./lab6-4
Введите значение переменной:
3
Результат: 98
kmikhalsky@vbox:~/work/arch-pc/lab06$ ./lab6-4
Введите значение переменной:
1
Результат: 36
kmikhalsky@vbox:~/work/arch-pc/lab06$
```

Рис. 5.2: Работа с файлом

6 Выводы

Я освоил арифметические конструкции языка ассемблера.

Список литературы