МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ САМАРСКИЙ ГОСУДАРСТВЕННЫЙ АЭРОКОСМИЧЕСКИЙ УНИВЕРСИТЕТ имени академика С.П.КОРОЛЕВА

Л.Г. ЗУБРИНА, Н.Ю. ПОНИКАРОВА, Ю.Н. ХРАМОВА

ЛИНЕЙНАЯ АЛГЕБРА С ПРИЛОЖЕНИЯМИ К АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ

Учебное пособие

Зубрина Л.Г., Поникарова Н.Ю., Храмова Ю.Н. Линейная алгебра с приложениями к аналитической геометрии: Учеб.пособие / Самар. гос. аэрокосм. ун-т. Самара, 2004. 99 с.

ISBN

Учебное пособие содержит краткие теоретические сведения, задачи для проведения практических занятий, выполнения домашних заданий, варианты контрольных и расчетно-графических работ по линейной алгебре с приложениями к аналитической геометрии. Приведены примеры решения типовых задач.

Учебное пособие выполнено на кафедре высшей математики и предназначено для студентов первого курса Самарского государственного аэрокосмического университета.

Табл. 1. Ил. 44. Библиогр.: 4 назв.

Печатается по решению редакционно-издательского совета Самарского государственного аэрокосмического университета имени академика С.П.Королева.

Рецензенты: кандидат физико-математических наук, доцент Горелова Е.Я., кандидат технических наук, доцент Аксенова Н.Л.

[©] Самарский государственный аэрокосмический университет, 2004

Содержание

1	. Оп	ределители, их вычисление и свойства	4
2	. Ал	гебра матриц	10
3.		темы линейных уравнений	
	3.1	Формулы Крамера	17
	3.2	Решение линейной системы с помощью обратной матрицы	18
	3.3	Метод Гаусса	18
	3.4	Однородная система линейных уравнений	19
	Векторная алгебра		26
	4.1	Основные определения	26
	4.2	Линейные операции над векторами	27
	4.3	Декартовы прямоугольные координаты векторов в пространстве	28
	4.4	Деление отрезка в данном отношении	30
	4.5	Скалярное произведение векторов.	34
	4.6	Векторное произведение векторов	39
	4.7	Смешанное произведение векторов.	44
	Варианты контрольной работы № 1		47
	Расчетно-графическая работа № 1		49
5.	Пря	мая на плоскости	51
6.	Пло	скость в пространстве	56
7.	Пря	мая в пространстве	62
8.	Линии второго порядка		70
	8.1	Окружность	70
	8.2	Эллипс	73
	8.3	Гипербола	77
	8.4	Парабола	81
	8.5	Преобразование уравнения линии второго порядка	
		к каноническому виду	84
9.	Поверхности второго порядка		87
	9.1	Канонические уравнения поверхностей	87
	9.2	Цилиндрические поверхности	91
		Поверхности вращения	
	Варианты контрольной работы № 2		95
	Расчетно-графическая работа № 2		97
	Список литературы		99

1. Определители, их вычисление и свойства

Определитель n - го порядка обозначается символом:

где a_{ij} - элементы определителя, горизонтальные ряды элементов определителя называются его строками, вертикальные – столбцами. Для элемента a_{ij} индекс i - номер строки, j- номер столбца, на пересечении которых находится этот элемент. Элементы $a_{11}, a_{22}, \ldots, a_{nn}$ составляют главную диагональ, а элементы $a_{1n}, a_{2n-1}, \ldots, a_{n1}$ - побочную диагональ.

Минором M_{ij} элемента a_{ij} определителя n-го порядка называется определитель (n-1)-го порядка, который получается из данного определителя вычеркиванием i - ой строки и j - го столбца.

Алгебраическим дополнением A_{ij} элемента a_{ij} называется его минор M_{ij} , взятый со знаком $(-1)^{i+j}$, т. е. $A_{ij}=(-1)^{i+j}\cdot M_{ij}$.

При n=1 определитель состоит из одного элемента a_{11} и равен значению этого элемента: $\Delta=a_{11}$.

При $n \ge 2$ определителем n-го порядка называется число, равное сумме произведений элементов любой строки или столбца на их алгебраические дополнения. Например, запишем разложение определителя по элементам первой строки:

$$\Delta = \begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{vmatrix} = a_{11}A_{11} + a_{12}A_{12} + \dots + a_{1n}A_{1n}$$
 (1)

Применяя формулу (1), можно получить формулу для вычисления определителей второго и третьего порядков.

$$\Delta = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11} \cdot a_{22} - a_{12} \cdot a_{21}.$$

Определитель второго порядка равен произведению элементов главной диагонали минус произведение элементов побочной диагонали.

Определитель третьего порядка вычисляется по формуле треугольников:

$$\Delta = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{13}a_{22}a_{31} - a_{13}a_{22}a_{33} + a_{13}a_{23}a_{33} - a_{13}a_{23}a_{23}a_{33} - a_{13}a_{23}a_{23}a_{33} - a_{13}a_{23}a_{23}a_{33} - a_{13}a_{23}a_{23}a_{23} - a_{13}a_{23}a_{23}a_{23} - a_{13}a_{23}a_{23}a_{23} - a_{13}a_{23}a_{23}a_{23} - a_{13}a_{23}a_{23}a_{23} - a_{13}a_{23}a_{23}a_{23} - a_{13}a_{23}a_{23}a_{23}a_{23}a_{23}a_{23}a_{23} - a_{13}a_{23$$

$$-a_{12}a_{21}a_{33}-a_{11}a_{23}a_{32}$$
.

Определитель третьего порядка равен сумме шести слагаемых, каждое из которых является произведением трех элементов, взятых по одному из каждой строки и каждого столбца. Знак плюс имеют произведения элементов главной диагонали и два произведения элементов, образующих треугольники с основаниями, параллельными главной диагонали (схема I, рис. 1). Знак минус имеют произведение элементов побочной диагонали и два произведения элементов, образующих треугольники с основаниями, параллельными побочной диагонали (схема II, рис. 1).

Рис. 1

Свойства определителей

(верны для определителей любого порядка)

1) При транспонировании, т. е. замене всех строк определителя на столбцы с теми же номерами, величина определителя не изменится (равноправность строк и столбцов).

$$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{21} \\ a_{12} & a_{22} \end{vmatrix}$$

2) При перестановке двух столбцов (строк) определитель меняет знак.

$$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = - \begin{vmatrix} a_{12} & a_{11} \\ a_{22} & a_{21} \end{vmatrix}$$

- 3) Определитель равен нулю, если
 - а) все элементы какого-либо столбца (строки) равны нулю;
 - б) элементы двух столбцов (строк) одинаковы;
 - в) элементы двух столбцов (строк) пропорциональны.
- 4) Умножение всех элементов какого-либо столбца (строки) определителя на одно и то же число λ равносильно умножению на λ определителя.

$$\begin{vmatrix} \lambda a_{11} & a_{12} \\ \lambda a_{21} & a_{22} \end{vmatrix} = \lambda \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}$$

5) Если каждый элемент какого-либо столбца (строки) представлены в виде суммы двух слагаемых, то определитель можно представить в виде суммы двух определителей следующим образом:

6

$$\begin{vmatrix} a_{11} + b_{11} & a_{12} \\ a_{21} + b_{21} & a_{22} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} + \begin{vmatrix} b_{11} & a_{12} \\ b_{21} & a_{22} \end{vmatrix}$$

6) Определитель не изменится, если к элементам какого-либо столбца (строки) прибавить соответствующие элементы другого столбца (строки), умноженные на любой общий множитель λ .

$$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = \begin{vmatrix} a_{11} + \lambda a_{12} & a_{12} \\ a_{21} + \lambda a_{22} & a_{22} \end{vmatrix}$$

Шестое свойство применяется при вычислении определителей любого порядка ($n \ge 2$) по формуле (1). Оно позволяет все элементы какого-либо столбца (строки), кроме одного, сделать равными нулю. Затем определитель вычисляется разложением по элементам этого столбца (строки). Тем самым сводят его вычисление к нахождению определителя меньшего порядка. Повторяя этот прием, получают определитель второго или третьего порядка, который вычисляется непосредственно.

- **1.** Вычислить определитель третьего порядка $\Delta = \begin{vmatrix} 1 & -1 & -2 \\ 3 & -4 & -5 \\ 1 & 3 & -4 \end{vmatrix}$
 - 1) по правилу треугольников;
 - 2) разложив его по элементам первой строки;
 - 3) создав нули в первом столбце и затем разложив определитель по элементам этого столбца.

Решение.

1) Вычислим определитель по правилу треугольников

$$\Delta = \begin{vmatrix} 1 & -1 & -2 \\ 3 & -4 & -5 \\ 1 & 3 & -4 \end{vmatrix} = 1 \cdot (-4) \cdot (-4) + (-1) \cdot (-5) \cdot 1 + (-2) \cdot 3 \cdot 3 - (-4) \cdot (-4) \cdot (-4) + (-1) \cdot (-5) \cdot 1 + (-2) \cdot 3 \cdot 3 - (-4) \cdot (-4) \cdot$$

$$-(-2)\cdot(-4)\cdot 1 - 1\cdot(-5)\cdot 3 - (-1)\cdot 3\cdot(-4) = 16 + 5 - 18 - 8 + 15 - 12 = -2$$
.

2) Вычислим определитель, разложив его по элементам первой строки

$$\Delta = \begin{vmatrix} 1 & -1 & -2 \\ 3 & -4 & -5 \\ 1 & 3 & -4 \end{vmatrix} = a_{11}A_{11} + a_{12}A_{12} + a_{13}A_{13} =$$

$$= 1 \cdot (-1)^{1+1} \cdot \begin{vmatrix} -4 & -5 \\ 3 & -4 \end{vmatrix} + (-1) \cdot (-1)^{1+2} \cdot \begin{vmatrix} 3 & -5 \\ 1 & -4 \end{vmatrix} + (-2) \cdot (-1)^{1+3} \cdot \begin{vmatrix} 3 & -4 \\ 1 & 3 \end{vmatrix} =$$

$$= 1 \cdot (16+15) + (-12+5) - 2 \cdot (9+4) = 31 - 7 - 26 = -2.$$

3) Вычислим определитель, создав нули в первом столбце и затем разложив определитель по элементам этого столбца. Воспользуемся шестым свойством определителей для создания нулей в первом столбце. Для этого к элементам второй строки прибавим соответствующие элементы первой строки, умноженные на (-3); из элементов третьей строки вычтем соответствующие элементы первой строки. Затем разложим полученный определитель по элементам первого столбца.

$$\Delta = \begin{vmatrix} 1 & -1 & -2 \\ 3 & -4 & -5 \\ 1 & 3 & -4 \end{vmatrix} = \begin{vmatrix} 1 & -1 & -2 \\ 0 & -1 & 1 \\ 0 & 4 & -2 \end{vmatrix} = a_{11}A_{11} + a_{21}A_{21} + a_{31}A_{31} = a_{11}A_{11} + a_{21}A_{21} + a$$

2. Вычислить определители:

1)
$$\begin{vmatrix} 2 & -1 \\ 3 & 0 \end{vmatrix}$$
; 2) $\begin{vmatrix} -2 & 5 \\ -3 & 1 \end{vmatrix}$; 3) $\begin{vmatrix} 4 & 0 \\ -2 & -1 \end{vmatrix}$;
4) $\begin{vmatrix} \sqrt{a} & a \\ 1 & \sqrt{a} \end{vmatrix}$; 5) $\begin{vmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{vmatrix}$.

Omsem: 1) 3; 2) 13; 3) -4; 4) 0; 5) 1.

3. Вычислить определители тремя способами:

- 1) по правилу треугольников;
- 2) разложив его по элементам какого-либо столбца (строки);
- 3) создав нули в каком-либо столбце (строке) и затем разложив определитель по элементам этого столбца (строки):

$$\begin{vmatrix}
-1 & 1 & 2 \\
-3 & 4 & 5 \\
1 & 3 & -2
\end{vmatrix}; 2) \begin{vmatrix}
-1 & 2 & 5 \\
2 & 7 & 4 \\
1 & -3 & 8
\end{vmatrix}; 3) \begin{vmatrix}
2 & 0 & 5 \\
1 & 3 & 16 \\
1 & 4 & 6
\end{vmatrix}; 4) \begin{vmatrix}
3 & -2 & 1 \\
-2 & 1 & 3 \\
2 & 0 & -2
\end{vmatrix}.$$

Omeem: 1) -4; 2) -157; 3) -87; 4) -12.

- **4.** Проверить на определителе третьего порядка, взятом наугад, свойства определителя при транспонировании и перестановке столбцов.
- **5.** Взять произвольный определитель третьего порядка с двумя одинаковыми столбцами. Убедиться в том, что он равен нулю.
- 6. Решить уравнение

$$\begin{vmatrix} x^2 & 4 & 9 \\ x & 2 & 3 \\ 1 & 1 & 1 \end{vmatrix} = 0.$$

Ombem: x = 2, y = 3.

7. Доказать, что

$$\begin{vmatrix} 1 & 1 & 1 \\ x & y & z \\ x^2 & y^2 & z^2 \end{vmatrix} = (x - y)(y - z)(z - x).$$

8. Вычислить определители:

9

Omsem: 1) -12; 2) -16; 3) 2; 4) -38; 5) $(a-1)^4(a+4)$.

2. Алгебра матриц

Mатрицей размеров m,n называется таблица из $m \cdot n$ чисел \mathcal{A}_{ij} , расположенных в m строк и n столбцов:

$$A = (a_{ij})_{m,n} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}.$$

Две матрицы $A = (a_{ij})_{m,n}$ и $B = (b_{ij})_{m,n}$ одного размера называются pавными, если все соответствующие их элементы равны, то есть $a_{ij} = b_{ij}$ (i = 1,2,...,m; j = 1,2,...,n).

Cуммой двух матриц $A = (a_{ij})_{m,n}$ и $B = (b_{ij})_{m,n}$ одного размера называется новая матрица A + B имеющая те же размеры, и элементы которой равны суммам соответствующих элементов матриц A и B, то есть

$$A + B = (a_{ij} + b_{ij})_{m,n}$$
.

 $A+B=(a_{ij}+b_{ij})_{m,n}\,.$ Произведением матрицы $A=(a_{ij})_{m,n}$ на число λ называется новая матрица λA , элементы которой равны произведению элементов данной матрицы на число λ , то есть $\lambda A = (\lambda a_{ij})_{m,n}$.

Пусть даны две матрицы $A = (a_{ij})_{m,n}$ и $B = (b_{ij})_{n,p}$, причем число столбцов первой матрицы равно числу строк второй матрицы.

 Π роизведением матрицы A на матрицу B называется новая матрица $C = A \cdot B = (c_{ij})_{m,\,p}$, число строк которой равно числу строк матрицы A,

а число столбцов — числу столбцов матрицы B. Чтобы получить элемент c_{ij} матрицы $C = A \cdot B$, надо элементы i-ой строки матрицы A умножить на соответствующие элементы j-го столбца матрицы B и результаты сложить.

$$c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \dots + a_{in}b_{nj}.$$

Перестановочным свойством умножение матриц не обладает.

Матрица A^{-1} называется *обратной* квадратной матрице A, если выполняется равенство: $A\cdot A^{-1}=A^{-1}\cdot A=E$,где E — единичная матрица. Для того чтобы матрица A имела обратную матрицу, необходимо и достаточно,чтобы она была невырожденной, то есть чтобы определитель $\Delta(A)\neq 0$.

Обратная матрица определяется по формуле:

$$A^{-1} = \frac{1}{\Delta(A)} \cdot \begin{pmatrix} A_{11} & A_{21} & \dots & A_{n1} \\ A_{12} & A_{22} & \dots & A_{n2} \\ \dots & \dots & \dots & \dots \\ A_{1n} & A_{2n} & \dots & A_{nn} \end{pmatrix},$$

где A_{ij} - алгебраические дополнения элементов a_{ij} в определителе $\Delta = (A)$. Отметим, что алгебраические дополнения A_{ij} входят в обратную матрицу в транспонированном порядке по сравнению с элементами a_{ij} данной матрицы A.

С помощью обратной матрицы решаются матричные уравнения вида AX = B и YA = B (при $\Delta(A) \neq 0$). Умножая первое уравнение на A^{-1} слева, а второе уравнение на A^{-1} справа, получим их решение в виде: $X = A^{-1}B$ и $Y = BA^{-1}$.

Элементарными преобразованиями первого рода матрицы A называется следующие действия:

- 1) перестановка двух строк;
- 2) умножение какой-либо строки на число $\lambda \neq 0$;
- 3) прибавление к элементам одной строки соответствующих элементов другой строки, умноженных на число λ .

Элементарными преобразованиями второго рода матрицы A называются аналогичные действия со столбцами.

Pангом матрицы A называется максимальный порядок r (r ang A = r) отличных от нуля миноров матрицы A.

Ранг матрицы A можно вычислить последовательным нахождением его миноров, начиная с максимальных. Однако удобнее использовать свойство ранга: ранг матрицы не меняется при любых элементарных преобразованиях этой матрицы.

9. Найти A+B и 2A, если

$$A = \begin{pmatrix} 3 & 2 & -1 \\ 0 & -5 & 4 \end{pmatrix}, \qquad B = \begin{pmatrix} 1 & -3 & -4 \\ -2 & 2 & 5 \end{pmatrix}.$$

Решение.

$$A+B = \begin{pmatrix} 3+1 & 2-3 & -1-4 \\ 0-2 & -5+2 & 4+5 \end{pmatrix} = \begin{pmatrix} 4 & -1 & -5 \\ -2 & -3 & 9 \end{pmatrix}.$$

$$2A = \begin{pmatrix} 2 \cdot 3 & 2 \cdot 2 & 2 \cdot (-1) \\ 2 \cdot 0 & 2 \cdot (-5) & 2 \cdot 4 \end{pmatrix} = \begin{pmatrix} 6 & 4 & -2 \\ 0 & -10 & 8 \end{pmatrix}.$$

10. Найти $A \cdot B$ и $B \cdot A$, если

$$A = \begin{pmatrix} 2 & -1 \\ 0 & 4 \end{pmatrix} \quad \mathbf{H} \qquad B = \begin{pmatrix} 1 & 4 & -2 \\ 2 & 3 & -1 \end{pmatrix}.$$

Решение.

$$A_{2,2} \cdot B_{2,3} = C_{2,3} = \begin{pmatrix} 2 \cdot 1 + (-1) \cdot 2 & 2 \cdot 4 + (-1) \cdot 3 & 2 \cdot (-2) + (-1) \cdot (-1) \\ 0 \cdot 1 + 4 \cdot 2 & 0 \cdot 4 + 4 \cdot 3 & 0 \cdot (-2) + 4 \cdot (-1) \end{pmatrix} = \begin{pmatrix} 0 & 5 & -3 \\ 8 & 12 & -4 \end{pmatrix}.$$

Произведение $B_{2,3} \cdot A_{2,2}$ не существует, т. к. число столбцов первой матрицы B не равно числу строк второй матрицы A.

11. Найти обратную матрицу
$$A^{-1}$$
, если $A = \begin{pmatrix} 1 & -1 & -2 \\ 3 & -4 & -5 \\ 1 & 3 & -4 \end{pmatrix}$.

Решение. Так как $\Delta(A) = -2 \neq 0$ (пример 1), то данная матрица A невырожденная и, следовательно, существует обратная матрица

$$A^{-1} = \frac{1}{\Delta(A)} \cdot \begin{pmatrix} A_{11} & A_{21} & A_{31} \\ A_{12} & A_{22} & A_{32} \\ A_{13} & A_{23} & A_{33} \end{pmatrix}.$$

Вычислим алгебраические дополнения:

$$A_{11} = (-1)^{1+1} \cdot \begin{vmatrix} -4 & -5 \\ 3 & -4 \end{vmatrix} = 31, \quad A_{12} = (-1)^{1+2} \cdot \begin{vmatrix} 3 & -5 \\ 1 & -4 \end{vmatrix} = 7,$$

$$A_{13} = (-1)^{1+3} \cdot \begin{vmatrix} 3 & -4 \\ 1 & 3 \end{vmatrix} = 13.$$

Аналогично, находим:

$$A_{21} = -10, \quad A_{22} = -2, \quad A_{23} = -4, \quad A_{31} = -3, \quad A_{32} = -1, \quad A_{33} = -1.$$

Таким образом
$$A^{-1} = -\frac{1}{2} \cdot \begin{pmatrix} 31 & -10 & -3 \\ 7 & -2 & -1 \\ 13 & -4 & -1 \end{pmatrix} = \begin{pmatrix} -\frac{31}{2} & 5 & \frac{3}{2} \\ -\frac{7}{2} & 1 & \frac{1}{2} \\ -\frac{13}{2} & 2 & \frac{1}{2} \end{pmatrix}$$
.

Найдем произведение

$$A^{-1} \cdot A = -\frac{1}{2} \cdot \begin{pmatrix} 31 & -10 & -3 \\ 7 & -2 & -1 \\ 13 & -4 & -1 \end{pmatrix} \cdot \begin{pmatrix} 1 & -1 & -2 \\ 3 & -4 & -5 \\ 1 & 3 & -4 \end{pmatrix} = -\frac{1}{2} \cdot \begin{pmatrix} -2 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -2 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = E.$$

Следовательно, обратная матрица найдена верно.

12. Найти ранг матрицы
$$A = \begin{pmatrix} 1 & 2 & -3 \\ 2 & -1 & 4 \\ -3 & -1 & -1 \end{pmatrix}$$
.

Решение.

 $1\ cnocoб$. Используя определение, найдем ранг матрицы A:

$$\Delta(A) = \begin{vmatrix} 1 & 2 & -3 \\ 2 & -1 & 4 \\ -3 & -1 & -1 \end{vmatrix} = 1 - 24 + 6 + 9 + 4 + 4 = 0.$$

Отсюда следует, что $rang A \neq 3$. Найдем какой-либо минор второго порядка.

$$M_{33} = \begin{vmatrix} 1 & 2 \\ 2 & -1 \end{vmatrix} = -5 \neq 0.$$

Максимальный порядок отличного от нуля минора – второй.

Следовательно, rang A = 2.

 $2\ cnoco\delta$. Применим метод элементарных преобразований матриц. Используя эти преобразования, матрицу можно привести к такому виду, когда все ее элементы, кроме $a_{11}, a_{22}, ..., a_{rr}\ (r \le \min(m,n))$, равны нулю.

$$A = \begin{pmatrix} 1 & 2 & -3 \\ 2 & -1 & 4 \\ -3 & -1 & -1 \end{pmatrix} \sim \begin{pmatrix} 1 & 2 & -3 \\ 0 & -5 & 10 \\ 0 & 5 & -10 \end{pmatrix} \sim \begin{pmatrix} 1 & 2 & -3 \\ 0 & 1 & -2 \\ 0 & 0 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & -2 \\ 0 & 0 & 0 \end{pmatrix} \sim \begin{pmatrix} 4 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

где (1) – к второй строке прибавили первую, умноженную на (-2), а к третьей строке прибавили первую строку, умноженную на (-3);

- (2) к третьей строке прибавили вторую, а вторую строку разделили на (-5);
- (3) к второму столбцу прибавим первый, умноженный на (-2), а к третьему столбцу прибавим первый, умноженный на 3;
- (4) к третьему столбцу прибавим второй столбец, умноженный на 2.

Получим новую матрицу, ранг которой равен рангу данной матрицы A.

$$rang\ A=2$$
 , так как минор второго порядка $egin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}
eq 0$.

13. Найти: 1) A+B; 2) 3A; 3) 3A-2B; 4) матрицу X из уравнения $2A+\frac{1}{2}X=B$,

если
$$A = \begin{pmatrix} 1 & 1 & -3 \\ 0 & 1 & 4 \end{pmatrix}$$
 и $B = \begin{pmatrix} 2 & 1 & 5 \\ 3 & 2 & 1 \end{pmatrix}$.

Ответ: $1 \begin{pmatrix} 3 & 2 & 2 \\ 3 & 3 & 5 \end{pmatrix}$; $2 \begin{pmatrix} 3 & 3 & -9 \\ 0 & 3 & 12 \end{pmatrix}$; $3 \begin{pmatrix} -1 & 1 & -19 \\ -6 & -1 & 10 \end{pmatrix}$; $4 \begin{pmatrix} 0 & -2 & 22 \\ 6 & 0 & -14 \end{pmatrix}$.

14. Найти: 1)*A-B*; 2)2*B*; 3)4*A-3B*; 4) матрицу *X* из уравнения $A - \frac{1}{3}X = 2B$,

если
$$A = \begin{pmatrix} 2 & 1 \\ -3 & 0 \end{pmatrix}$$
 и $B = \begin{pmatrix} 1 & -2 \\ 5 & 3 \end{pmatrix}$.

Ответ. 1) $\begin{pmatrix} 1 & 3 \\ -8 & -3 \end{pmatrix}$; 2) $\begin{pmatrix} 2 & -4 \\ 10 & 6 \end{pmatrix}$; 3) $\begin{pmatrix} 5 & 10 \\ -27 & -9 \end{pmatrix}$; 4) $\begin{pmatrix} 0 & 15 \\ -39 & -18 \end{pmatrix}$.

15. Найти: 1)
$$A \cdot B$$
; 2) $B \cdot A$; 3) A^2 , если $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ и $B = \begin{pmatrix} 2 & 1 \\ 3 & 2 \end{pmatrix}$. Ответ: 1) $\begin{pmatrix} 5 & 3 \\ 3 & 2 \end{pmatrix}$; 2) $\begin{pmatrix} 2 & 3 \\ 3 & 5 \end{pmatrix}$; 3) $\begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$.

16. Найти произведения матриц:

1)
$$\begin{pmatrix} 1 & 3 \\ -1 & 4 \\ 7 & 0 \end{pmatrix} \cdot \begin{pmatrix} 2 & 3 & -5 \\ 0 & 1 & -1 \end{pmatrix};$$
 2) $\begin{pmatrix} 2 & 3 & -5 \\ 0 & 1 & -1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 3 \\ -1 & 4 \\ 7 & 0 \end{pmatrix};$

3)
$$\begin{pmatrix} 3 & 1 & -1 \\ 2 & 1 & 1 \\ -2 & 3 & 2 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}$$
; 4) $(2 \ 1 \ 1) \cdot \begin{pmatrix} 3 & 1 & -1 \\ 2 & 1 & 1 \\ -2 & 3 & 2 \end{pmatrix}$;

5)
$$(1 \ 2 \ 3) \cdot \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix}$$
; 6) $\begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix} \cdot (1 \ 2 \ 3)$; 7) $\begin{pmatrix} 2 & 1 \\ 4 & 5 \end{pmatrix} \cdot (1 \ -4)$.

Omsem: 1)
$$\begin{pmatrix} 2 & 6 & -8 \\ -2 & 1 & 1 \\ 14 & 21 & -35 \end{pmatrix}$$
; 2) $\begin{pmatrix} -36 & 18 \\ -8 & 4 \end{pmatrix}$; 3) $\begin{pmatrix} 6 \\ 6 \\ 1 \end{pmatrix}$;

4)
$$(6 \ 6 \ 1);$$
 5) $(13);$ 6) $\begin{pmatrix} 2 & 4 & 6 \\ 1 & 2 & 3 \\ 3 & 6 & 9 \end{pmatrix};$ 7) не существует.

17. Найти $2A^2 + 3A + 5E$,

если E - единичная матрица второго порядка, матрица $A = \begin{pmatrix} 1 & -1 \\ 1 & 3 \end{pmatrix}$.

Omeem: $\begin{pmatrix} 8 & -11 \\ 11 & 30 \end{pmatrix}$.

18. Даны матрицы:

$$A = \begin{pmatrix} 3 & 5 \\ 6 & -1 \end{pmatrix}, \quad B = \begin{pmatrix} 2 & 1 \\ -3 & 2 \end{pmatrix}, \quad C = \begin{pmatrix} 3 \\ 2 \end{pmatrix}.$$

Проверить: 1) $(A+B)\cdot C=A\cdot C+B\cdot C$ (распределительный закон);

- 2) $(A \cdot B) \cdot C = A \cdot (B \cdot C)$ (сочетательный закон); 3) $(A \cdot B)^T = B^T \cdot A^T$.
- **19.** Найти обратную матрицу A^{-1} и проверить, что $A \cdot A^{-1} = E$, если

$$1) \quad A = \begin{pmatrix} 3 & 2 \\ 4 & -5 \end{pmatrix};$$

$$2) \quad A = \begin{pmatrix} 3 & 4 \\ 5 & 7 \end{pmatrix};$$

1)
$$A = \begin{pmatrix} 3 & 2 \\ 4 & -5 \end{pmatrix}$$
; 2) $A = \begin{pmatrix} 3 & 4 \\ 5 & 7 \end{pmatrix}$; 3) $A = \begin{pmatrix} -2 & 2 \\ 0 & 1 \end{pmatrix}$;

4)
$$A = \begin{pmatrix} 3 & -4 & 5 \\ 2 & -3 & 1 \\ 3 & -5 & -1 \end{pmatrix}$$
; 5) $A = \begin{pmatrix} 1 & 2 & -1 \\ 3 & 0 & 2 \\ 4 & -2 & 5 \end{pmatrix}$; 6) $A = \begin{pmatrix} 1 & 3 & 4 \\ 2 & 0 & 3 \\ -2 & 1 & -3 \end{pmatrix}$.

$$5) \quad A = \begin{pmatrix} 1 & 2 & -1 \\ 3 & 0 & 2 \\ 4 & -2 & 5 \end{pmatrix}$$

$$A = \begin{pmatrix} 1 & 3 & 4 \\ 2 & 0 & 3 \\ -2 & 1 & -3 \end{pmatrix}.$$

Omsem: 1)
$$\begin{pmatrix} \frac{5}{23} & \frac{2}{23} \\ \frac{4}{23} & -\frac{3}{23} \end{pmatrix}$$
; 2) $\begin{pmatrix} 7 & -4 \\ -5 & 3 \end{pmatrix}$; 3) $\begin{pmatrix} -\frac{1}{2} & 1 \\ 0 & 1 \end{pmatrix}$;

$$2) \quad \begin{pmatrix} 7 & -4 \\ -5 & 3 \end{pmatrix};$$

$$3) \quad \begin{pmatrix} -\frac{1}{2} & 1 \\ 0 & 1 \end{pmatrix};$$

4)
$$\begin{pmatrix} -8 & 29 & -11 \\ -5 & 18 & -7 \\ 1 & -3 & 1 \end{pmatrix}$$
; 5) $\begin{pmatrix} -1 & 2 & -1 \\ \frac{7}{4} & -\frac{9}{4} & \frac{5}{4} \\ \frac{3}{2} & -\frac{5}{2} & \frac{3}{2} \end{pmatrix}$; 6) $\begin{pmatrix} -\frac{3}{5} & \frac{13}{5} & \frac{9}{5} \\ 0 & 1 & 1 \\ \frac{2}{2} & -\frac{7}{2} & -\frac{6}{2} \end{pmatrix}$.

20. Решить матричные уравнения:

1)
$$\begin{pmatrix} 3 & 1 \\ 2 & -1 \end{pmatrix} \cdot X = \begin{pmatrix} 1 & 2 \\ -1 & 0 \end{pmatrix}$$

$$2) \quad X \cdot \begin{pmatrix} 3 & 1 \\ 2 & -1 \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ -1 & 0 \end{pmatrix} ;$$

1)
$$\begin{pmatrix} 3 & 1 \\ 2 & -1 \end{pmatrix} \cdot X = \begin{pmatrix} 1 & 2 \\ -1 & 0 \end{pmatrix};$$
 2) $X \cdot \begin{pmatrix} 3 & 1 \\ 2 & -1 \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ -1 & 0 \end{pmatrix};$
3) $\begin{pmatrix} 1 & 2 \\ -1 & 3 \end{pmatrix} \cdot X = \begin{pmatrix} 3 & -4 \\ 0 & 1 \end{pmatrix};$ 4) $X \cdot \begin{pmatrix} 1 & 2 \\ -1 & 3 \end{pmatrix} = \begin{pmatrix} 3 & -4 \\ 0 & 1 \end{pmatrix}.$

$$4) \quad X \cdot \begin{pmatrix} 1 & 2 \\ -1 & 3 \end{pmatrix} = \begin{pmatrix} 3 & -4 \\ 0 & 1 \end{pmatrix}.$$

Omeem: 1) $\begin{pmatrix} 0 & \frac{2}{5} \\ 1 & \frac{4}{1} \end{pmatrix}$; 2) $\begin{pmatrix} 1 & -1 \\ -\frac{1}{2} & -\frac{1}{2} \end{pmatrix}$; 3) $\begin{pmatrix} \frac{9}{5} & -\frac{14}{5} \\ \frac{3}{2} & -\frac{3}{2} \end{pmatrix}$; 4) $\begin{pmatrix} 1 & -2 \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}$.

21. Найти ранги следующих матриц:

1)
$$\begin{pmatrix} 1 & 4 \\ 2 & -1 \end{pmatrix}$$
; 2) $\begin{pmatrix} 2 & 3 \\ 4 & 6 \end{pmatrix}$; 3) $\begin{pmatrix} 1 & 4 & -1 \\ 2 & -1 & 4 \\ 1 & 10 & -6 \end{pmatrix}$; 4) $\begin{pmatrix} 2 & 7 & 3 \\ 3 & 5 & 2 \\ 9 & 4 & 1 \end{pmatrix}$; 5) $\begin{pmatrix} 1 & 3 & -1 & 2 \\ 2 & -1 & 3 & 5 \\ 1 & 10 & -6 & 1 \end{pmatrix}$; 6) $\begin{pmatrix} 2 & 2 & -1 & 1 \\ 4 & 3 & -1 & 2 \\ 8 & 5 & -3 & 4 \\ 3 & 3 & -2 & 2 \end{pmatrix}$.

Ответ: 1) 2; 2) 1; 3) 3; 4) 2; 5) 2; 6) 4.

3. Системы линейных уравнений

Система *m* линейных уравнений с *n* неизвестными имеет вид:

$$\begin{cases}
a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1, \\
a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2, \\
\dots \\
a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m.
\end{cases}$$
(1)

Система линейных уравнений называется неоднородной, если хотя бы один свободный член не равен нулю.

3.1 Формулы Крамера

Если число уравнений линейной системы равно числу неизвестных (m = n) и главный определитель системы

$$\Delta = \Delta(A) = \begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{vmatrix} \neq 0,$$

то система имеет единственное решение, которое может быть найдено по формулам Крамера:

$$x_1 = \frac{\Delta_1}{\Delta}, \quad x_2 = \frac{\Delta_2}{\Delta}, \quad \dots, x_n = \frac{\Delta_n}{\Delta},$$

где определитель n-го порядка Δ_i (i=1,2,...,n) получается из главного

определителя системы Δ путем замены i-го столбца столбцом свободных членов b_1, b_2, \ldots, b_n .

3.2 Решение линейной системы с помощью обратной матрицы

Пусть дана система n линейных уравнений с n неизвестными. Ее можно записать в матричной форме AX=B, где $A=(a_{ij})_{n,m}$ - матрица из коэффициентов при неизвестных, а B и X - столбцы, составленные соответственно из свободных членов и из неизвестных. Если матрица A невырожденная, т. е. определитель $\Delta = \Delta(A) \neq 0$, то умножая обе части матричного уравнения AX=B на обратную матрицу A^{-1} слева, получаем решение системы в матричной форме $X=A^{-1}B$.

3.3 Метод Гаусса

Метод Гаусса — метод последовательного исключения неизвестных. Он применим для любого числа уравнений с любым числом неизвестных. Этот метод позволяет выяснить, имеет ли система единственное решение, множество решений или не имеет решений. Критерий совместности линейной системы m уравнений с n неизвестными (1) можно установить с помощью понятия ранга матрицы.

Теорема Кронекера – Капелли.

Для того чтобы система (1) была совместна, необходимо и достаточно, чтобы ранг матрицы A из коэффициентов при неизвестных был равен рангу расширенной матрицы (A|B), полученной из матрицы A приписыванием столбца свободных членов.

Практически эту теорему удобно применять следующим образом. Выписать расширенную матрицу (A|B) и, производя над ней элементарные преобразования только первого рода (что равносильно соответствующим действиям над уравнениями системы (1)), привести ее к треугольному виду

$$(\widetilde{A} \,|\, \widetilde{B}) = \begin{pmatrix} 1 & \widetilde{a}_{12} & \dots & \widetilde{a}_{1r} & \dots & \widetilde{a}_{1n} & | & \widetilde{b}_1 \\ 0 & 1 & \dots & \widetilde{a}_{2r} & \dots & \widetilde{a}_{2n} & | & \widetilde{b}_2 \\ \dots & \dots & \dots & \dots & \dots & | & \dots \\ 0 & 0 & \dots & 1 & \dots & \widetilde{a}_{rn} & | & \widetilde{b}_r \\ 0 & 0 & \dots & 0 & \dots & 0 & | & \widetilde{b}_{r+1} \\ 0 & 0 & \dots & 0 & \dots & 0 & | & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots & | & \dots \\ 0 & 0 & \dots & 0 & \dots & 0 & | & 0 \end{pmatrix} .$$

Если в матрице $\left(\widetilde{A} \mid \widetilde{B}\right)$ окажется, что $\widetilde{b}_{r+1} \neq 0$, то данная система (1) несовместна, так как $rang\ A \neq rang\ (A \mid B) \quad (rang\ A = r, \quad rang\ (A \mid B) = r+1).$ Если же $\widetilde{b}_{r+1} = 0$, то система совместна, и ее решение можно найти из треугольной системы $\widetilde{A} \cdot X = \widetilde{B}$.

3.4 Однородная система линейных уравнений

Система линейных уравнений (1) называется *однородной*, если все свободные члены $b_1 = b_2 = \ldots = b_m = 0$.

Однородная система всегда *совместна*, т. к. она всегда имеет нулевое решение $x_1 = x_2 = \ldots = x_n = 0$.

Если главный определитель однородной системы n уравнений с n неизвестными $\Delta = \Delta(A) \neq 0$, то система имеет единственное нулевое решение. Если же $\Delta = \Delta(A) = 0$, то однородная система линейных уравнений имеет множество решений.

22. Решить систему линейных уравнений:

$$\begin{cases} x - y - 2z = 3, \\ 3x - 4y - 5z = 12, \\ x + 3y - 4z = -7 \end{cases}$$

тремя способами:

- 1) по формулам Крамера;
- 2) матричным способом;
- 4) методом Гаусса.

Решение. 1) Найдем решение данной системы по формулам Крамера.

Главный определитель системы

$$\Delta = \begin{vmatrix} 1 & -1 & -2 \\ 3 & -4 & -5 \\ 1 & 3 & -4 \end{vmatrix} = -2 \neq 0$$
 (пример 1),

следовательно, система имеет единственное решение, которое может быть определено по формулам Крамера:

$$x = \frac{\Delta_1}{\Delta}, \quad y = \frac{\Delta_2}{\Delta}, \quad z = \frac{\Delta_3}{\Delta}.$$

Определители Δ_1 , Δ_2 , Δ_3 получаются из определителя Δ при помощи замены соответственно его первого, второго, третьего столбца столбцом свободных членов данной системы. Вычислим эти определители:

$$\Delta_{1} = \begin{vmatrix} 3 & -1 & -2 \\ 12 & -4 & -5 \\ -7 & 3 & -4 \end{vmatrix} = 48 - 35 - 72 + 56 - 48 + 45 = -6,$$

$$\Delta_2 = \begin{vmatrix} 1 & 3 & -2 \\ 3 & 12 & -5 \\ 1 & -7 & -4 \end{vmatrix} = -48 - 15 + 42 + 24 - 35 + 36 = 4,$$

$$\Delta_3 = \begin{vmatrix} 1 & -1 & 3 \\ 3 & -4 & 12 \\ 1 & 3 & -7 \end{vmatrix} = 28 - 12 + 27 + 12 - 36 - 21 = -2.$$

Тогда
$$x = \frac{-6}{-2} = 3$$
, $y = \frac{4}{-2} = -2$, $z = \frac{-2}{-2} = 1$.

Omeem: x = 3, y = -2, z = 1.

5) Решим данную систему матричным способом.

$$\begin{cases} x - y - 2z = 3, \\ 3x - 4y - 5z = 12, \\ x + 3y - 4z = -7. \end{cases}$$

Запишем систему в матричном виде:

$$\begin{pmatrix} 1 & -1 & -2 \\ 3 & -4 & -5 \\ 1 & 3 & -4 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 3 \\ 12 \\ -7 \end{pmatrix}$$
 или $A \cdot X = B$,

где $A = \begin{pmatrix} 1 & -1 & -2 \\ 3 & -4 & -5 \\ 1 & 3 & -4 \end{pmatrix}$, $B = \begin{pmatrix} 3 \\ 12 \\ -7 \end{pmatrix}$, $X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$.

Найдем матрицу X из матричного уравнения AX=B, умножив обе части этого уравнения на обратную матрицу A^{-1} слева:

$$A^{-1}\cdot (AX)=A^{-1}\cdot B,$$
 $(A^{-1}A)\cdot X=A^{-1}\cdot B,$ $E\cdot X=A^{-1}\cdot B$ или $X=A^{-1}\cdot B$.

Главный определитель системы $\Delta = \Delta(A) = -2 \neq 0$ (пример 1), следовательно, для матрицы A существует единственная обратная матрица

$$A^{-1} = -\frac{1}{2} \cdot \begin{pmatrix} 31 & -10 & -3 \\ 7 & -2 & -1 \\ 13 & -4 & -1 \end{pmatrix}$$
 (пример 11).

Найдем искомую матрицу

$$X = A^{-1} \cdot B = -\frac{1}{2} \cdot \begin{pmatrix} 31 & -10 & -3 \\ 7 & -2 & -1 \\ 13 & -4 & -1 \end{pmatrix} \cdot \begin{pmatrix} 3 \\ 12 \\ -7 \end{pmatrix} =$$

$$= -\frac{1}{2} \cdot \begin{pmatrix} 31 \cdot 3 & -10 \cdot 12 & -3 \cdot (-7) \\ 7 \cdot 3 & -2 \cdot 12 & -1 \cdot (-7) \\ 13 \cdot 3 & -4 \cdot 12 & -1 \cdot (-7) \end{pmatrix} = -\frac{1}{2} \cdot \begin{pmatrix} -6 \\ 4 \\ -2 \end{pmatrix} = \begin{pmatrix} 3 \\ -2 \\ 1 \end{pmatrix} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}.$$

Отсюда x = 3, y = -2, z = 1.

4) Решим систему методом Гаусса.

$$\begin{cases} x - y - 2z = 3, \\ 3x - 4y - 5z = 12, \\ x + 3y - 4z = -7. \end{cases}$$

Приведем систему уравнений к треугольному виду. Для этого выписываем расширенную матрицу (A|B), отделяя чертой столбец свободных членов. Затем применяем элементарные преобразования первого рода: делаем нули в первом столбце; прибавляем к третьей строке вторую, умноженную на 4; умножаем вторую строку на (-1) и делим третью строку на 2.

$$(A \mid B) = \begin{pmatrix} 1 & -1 & -2 & 3 \\ 3 & -4 & -5 & 12 \\ 1 & 3 & -4 & -7 \end{pmatrix} \sim \begin{pmatrix} 1 & -1 & -2 & 3 \\ 0 & -1 & 1 & 3 \\ 0 & 4 & -2 & -10 \end{pmatrix} \sim \begin{pmatrix} 1 & -1 & -2 & 3 \\ 0 & -1 & 1 & 3 \\ 0 & 0 & 2 & 2 \end{pmatrix} \sim$$

$$\sim \begin{pmatrix} 1 & -1 & -2 & 3 \\ 0 & 1 & -1 & -3 \\ 0 & 0 & 1 & 1 \end{pmatrix} = (\widetilde{A} \mid \widetilde{B}) .$$

Так как $rang\ A = rang\ (A\ |\ B) = 3$, то система совместна и имеет единственное решение. Записываем эквивалентную систему с матрицей $\left(\widetilde{A}\ |\ \widetilde{B}\right)$:

$$\begin{pmatrix} 1 & -1 & -2 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 3 \\ -3 \\ 1 \end{pmatrix}$$

ИЛИ

$$\begin{cases} x - y - 2z = 3, \\ y - z = -3, \\ z = 1. \end{cases}$$

Из полученной системы находим x = 3, y = -2, z = 1.

23. При каком значении параметра λ система уравнений имеет множество решений? Найти это множество решений и найти какое-нибудь частное решение системы

$$\begin{cases} 3x - 2y + z = 0, \\ \lambda x - 14y + 15z = 0, \\ x + 2y - 3z = 0. \end{cases}$$

Решение. Дана однородная система трех линейных уравнений с тремя неизвестными. Найдем главный определитель системы

$$\Delta = \begin{vmatrix} 3 & -2 & 1 \\ \lambda & -14 & 15 \\ 1 & 2 & -3 \end{vmatrix} = 20 - 4\lambda.$$

Если определитель системы $\Delta = 20 - 4\lambda = 0$, то она имеет бесчисленное множество решений.

$$20-4\lambda=0$$
, $\lambda=5$.

При $\lambda=5$ данная однородная система имеет множество решений. При $\lambda=5$ система имеет вид

$$\begin{cases} 3x - 2y + z = 0, \\ 5x - 14y + 15z = 0, \\ x + 2y - 3z = 0. \end{cases}$$

Решим систему уравнений методом Гаусса. Приведем ее к треугольному виду. Выписываем расширенную матрицу и применяем элементарные преобразования первого рода: переставляем первую и третью строки; создаем нули в первом столбце; делим вторую строку на 6, а третью строку делим на 2; вычитаем вторую строку из третьей.

$$(A \mid B) = \begin{pmatrix} 3 & -2 & 1 \mid 0 \\ 5 & -14 & 15 \mid 0 \\ 1 & 2 & -3 \mid 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 2 & -3 \mid 0 \\ 5 & -14 & 15 \mid 0 \\ 3 & -2 & 1 \mid 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 2 & -3 \mid 0 \\ 0 & -24 & 30 \mid 0 \\ 0 & -8 & 10 \mid 0 \end{pmatrix} \sim$$

$$\sim \begin{pmatrix} 1 & 2 & -3 \mid 0 \\ 0 & -4 & 5 \mid 0 \\ 0 & -4 & 5 \mid 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 2 & -3 \mid 0 \\ 0 & -4 & 5 \mid 0 \\ 0 & 0 & 0 \mid 0 \end{pmatrix} = (\widetilde{A} \mid \widetilde{B})$$

Записываем эквивалентную систему с матрицей $\left(\widetilde{A}\mid\widetilde{B}\right)$:

$$\begin{pmatrix} 1 & 2 & -3 \\ 0 & -4 & 5 \\ 0 & 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$
 или
$$\begin{cases} x + 2y - 3z = 0, \\ -4y + 5z = 0. \end{cases}$$

Получили систему двух уравнений с тремя неизвестными. Поэтому одно неизвестное, например z, надо принять за параметр.

Пусть
$$z = t$$
. Тогда
$$\begin{cases} x + 2y = 3t, \\ -4y = -5t. \end{cases}$$

Отсюда находим
$$y = \frac{5t}{4}$$
, $x = \frac{t}{2}$.

Итак, при $\lambda=5$ система имеет бесчисленное множество решений, зависящее от одного параметра t .

Общее решение системы:
$$x = \frac{t}{2}$$
, $y = \frac{5t}{4}$, $z = t$, где $-\infty < t < \infty$.

Найдем какое-нибудь частное решение системы. Возьмем, например, t = 4. Тогда x = 2, y = 5, z = 4 - частное решение системы.

24. Решить следующие системы уравнений тремя способами:

а) по формулам Крамера; б) матричным способом; в) методом Гаусса:

1)
$$\begin{cases} 3x + 2y = 7, \\ 4x - 5y = 40. \end{cases}$$
 2)
$$\begin{cases} 5x + 2y = 4, \\ 7x + 4y = 8. \end{cases}$$

2)
$$\begin{cases} 5x + 2y = 4, \\ 7x + 4y = 8. \end{cases}$$

3)
$$\begin{cases} 2x + 2y + 3z = 11, \\ x - y = 3, \\ -x + 2y + z = -1. \end{cases}$$
 4)
$$\begin{cases} 2x - 4y + 3z = 1, \\ x - 2y + 4z = 3, \\ 3x - y + 5z = 2. \end{cases}$$
 5)
$$\begin{cases} 3x + 5y - 2z = 4, \\ x - 3y + 2z = 2, \\ 6x + 7y - 3z = 7. \end{cases}$$

4)
$$\begin{cases} 2x - 4y + 3z = 1, \\ x - 2y + 4z = 3, \\ 3x - y + 5z = 2. \end{cases}$$

5)
$$\begin{cases} 3x + 5y - 2z = 4 \\ x - 3y + 2z = 2 \\ 6x + 7y - 3z = 7 \end{cases}$$

Omeem: 1)
$$x = 5$$
, $y = -4$; 2) $x = 0$, $y = 2$; 3) $x = 2$, $y = -1$, $z = 3$; 4) $x = -1$, $y = 0$, $z = 1$; 5) $x = 1$, $y = 1$, $z = 2$.

25. Решить системы уравнений методом Гаусса:

1)
$$\begin{cases} 9x - 6y + 3z = 1, \\ 5x - 8y + 9z = 3, \\ 2x + y - 3z = -1. \end{cases}$$

2)
$$\begin{cases} 2x - 3y + 4z = 1, \\ 3x + y - 2z = 4, \\ 5x - 2y + 2z = 3. \end{cases}$$

$$\begin{cases} 3x_1 + 2x_2 - 3x_3 + 4x_4 = 1, \\ 2x_1 + 3x_2 - 2x_3 + 3x_4 = 2, \\ 5x_1 + 5x_2 - 5x_3 + 7x_4 = 3. \end{cases}$$

$$\begin{cases} 3x_1 + 2x_2 - 3x_3 + 4x_4 = 1, \\ 2x + y - z = 5, \\ x - 3y + 3z = 7, \\ 5x - 3y + 3z = 7. \end{cases}$$

4)
$$\begin{cases} 2x + y - z = 5, \\ x - 3y + 3z = 7, \\ 5x - 3y + 3z = 7. \end{cases}$$

5)
$$\begin{cases} x_1 + 4x_2 - 7x_3 + 6x_4 = 0, \\ x_1 - 3x_2 - 6x_4 = 9, \\ 2x_1 + x_2 - 5x_3 + x_4 = 8, \\ 2x_2 - x_3 + 2x_4 = -5. \end{cases}$$
 6)
$$\begin{cases} x_1 + 2x_2 + 3x_3 + 4x_4 = 7, \\ x_1 + 2x_3 + 2x_4 = 5, \\ 4x_1 + x_2 - x_3 = 3, \\ 2x_1 + x_2 + x_3 = 1. \end{cases}$$

6)
$$\begin{cases} x_1 + 2x_2 + 3x_3 + 4x_4 = 7 \\ x_1 + 2x_3 + 2x_4 = 5 \\ 4x_1 + x_2 - x_3 = 3 \\ 2x_1 + x_2 + x_3 = 1 \end{cases}$$

Ответ:

1) Система имеет бесконечное множество решений:

$$x = \frac{5t}{11}$$
, $y = t$, $z = \frac{1}{3} + \frac{7t}{11}$, $t \in (-\infty, \infty)$.

- 2) Система не имеет решений.
- 3) Система имеет бесконечное множество решений:

$$x_1 = \frac{-1 + 5u - 6v}{5}, \quad x_2 = \frac{4 - v}{5}, \quad x_3 = u, \quad x_4 = v, \qquad u \in (-\infty, \infty), \quad v \in (-\infty, \infty).$$

- 4) Система не имеет решений.
- 5) $x_1 = 3$, $x_2 = -4$, $x_3 = -1$, $x_4 = 1$.
- 6) $x_1 = 1$, $x_2 = -1$, $x_3 = 0$, $x_4 = 2$.
- **26.** Определить при каком значении λ система однородных уравнений имеет множество решений. Найти это множество решений.

1)
$$\begin{cases} x - y - z = 0, \\ x + \lambda y + 2z = 0, \\ 3x + 7y + 3z = 0. \end{cases}$$
 2)
$$\begin{cases} \lambda x - 2y + z = 0, \\ 5x - 14y + 15z = 0, \\ x + 2y - 3z = 0. \end{cases}$$

Ответ:

- 1) При $\lambda = 4$ система уравнений имеет бесчисленное множество решений: x = 2t, y = -3t, z = 5t, $t \in (-\infty, \infty)$.
- 2) При $\lambda = 3$ система уравнений имеет бесчисленное множество решений: x = 2t, y = 5t, z = 4t, $t \in (-\infty, \infty)$.

25

4 Векторная алгебра

4.1 Основные определения

Геометрическим вектором или просто *вектором* называется направленный отрезок. Он определяется заданием начала A и конца B. Обозначается вектор \overline{AB} или \overline{a} .

Вектор называется нулевым, если его начало и конец совпадают.

Модуль вектора $|\overline{AB}|$ или $|\overline{a}|$ - это его длина, вычисленная при выбранном масштабе.

Если $|\overline{a}|=1$, то вектор называется единичным.

Два вектора называются *коллинеарными* $(\overline{a} \| \overline{b})$, если они лежат на одной прямой или на параллельных прямых.

Два вектора называются pавными $(\overline{a} = \overline{b})$, если $|\overline{a}| = |\overline{b}|$ и $\overline{a} \uparrow \uparrow \overline{b}$.

Два вектора называются противоположными $(\overline{a} = -\overline{b})$, если $|\overline{a}| = |\overline{b}|$ и $\overline{a} \uparrow \downarrow \overline{b}$.

В определении равенства векторов не участвует точка приложения векторов. Такие векторы называются *свободными*. Свободные векторы можно переносить в любую точку пространства. Например, несколько свободных векторов можно привести к общему началу (рис.2) или расположить их в цепь друг за другом (рис.3).

Векторы $\bar{a}, \bar{b}, \bar{c}$ называются *компланарными*, если они после приведения к общему началу лежат в одной плоскости.

4.2 Линейные операции над векторами

Суммой двух векторов \overline{a} и \overline{b} , расположенных в цепь, называется замыкающий вектор $\overline{c} = \overline{a} + \overline{b}$, идущий из начала первого вектора \overline{a} в конец второго вектора \overline{b} (правило треугольника). (Рис. 4).

Рис. 4

Правило треугольника распространяется на любое число слагаемых: суммой векторов, расположенных в цепь, является замыкающий вектор (рис. 5).

Рис. 5

Если векторы \overline{a} и \overline{b} приведены к общему началу, то их суммой является диагональ параллелограмма, построенного на данных векторах, как на сторонах, и исходящая из их общего начала (правило параллелограмма). (Рис. 6).

Рис. 6

Pазностью приведенных к общему началу векторов \overline{a} и \overline{b} является вектор \overline{a} - \overline{b} , идущий из конца вычитаемого вектора \overline{b} в конец уменьшаемого вектора \overline{a} (рис. 7).

Рис. 7

Произведением вектора \overline{a} на число λ называется новый вектор $\overline{b} = \lambda \overline{a}$, который удовлетворяет трем условиям:

- 1) $|\overline{b}| = |\lambda| \cdot |\overline{a}|$;
- 2) $\bar{b} \parallel \bar{a}$;
- 3) $\overline{b} \uparrow \uparrow \overline{a}$, если $\lambda > 0$, $\overline{b} \uparrow \downarrow \overline{a}$, если $\lambda < 0$.

Если ненулевой вектор $\overline{a}\neq 0$ разделим на число $|\overline{a}|$, то получим единичный вектор направления \overline{a} , т. е. $\overline{1}_a=\frac{\overline{a}}{|\overline{a}|}$.

4.3 Декартовы прямоугольные координаты векторов в пространстве

Декартова прямоугольная система координат в пространстве определяется заданием единицы масштаба и трех пересекающихся в точке О (точка О - начало координат) взаимно перпендикулярных осей: Оx - ось абсцисс, Оy- ось ординат, Оz- ось аппликат. Положение координатных осей Оx, Оy, Оz задается с помощью единичных векторов $\bar{i}, \bar{j}, \bar{k}$, которые называются базисными векторами или ортами (рис. 8).

Рис. 8

В пространстве вектор \overline{a} может быть разложен по базису \overline{i} , \overline{j} , \overline{k} , т. е. может быть представлен в виде:

$$\overline{a} = a_x \overline{i} + a_y \overline{j} + a_z \overline{k}$$
.

Коэффициенты этого разложения называются координатами вектора $\overline{a} = (a_x\,, a_y\,, a_z)\,.$

Геометрически координаты вектора \overline{a} являются проекциями вектора \overline{a} на координатные оси: $a_x = np_{Ox}\overline{a}$, $a_y = np_{Oy}\overline{a}$, $a_z = np_{Oz}\overline{a}$ (рис. 8). Если даны координаты точек $M_1(x_1,y_1,z_1)$ и $M_2(x_2,y_2,z_2)$, то координаты вектора $\overline{M_1M_2}$ получаются вычитанием из координат его конца M_2 соответствующих координат начала M_1 :

$$\overline{M_1M}_2 = (x_2 - x_1, y_2 - y_1, z_2 - z_1).$$

Если над векторами производятся линейные операции (сложение, вычитание, умножение на число), то такие же действия производятся и над их координатами.

Если векторы $\overline{a}=(a_x,a_y,a_z)$ и $\overline{b}=(b_x,b_y,b_z)$ коллинеарны $(\overline{b}=\lambda\overline{a})$, то их координаты пропорциональны:

$$\frac{a_x}{b_x} = \frac{a_y}{b_y} = \frac{a_z}{b_z}.$$

Длина вектора $\overline{a} = (a_x, a_y, a_z)$ вычисляется по формуле:

$$|\overline{a}| = \sqrt{a_x^2 + a_y^2 + a_z^2}$$
.

Единичный вектор направления \overline{a} имеет координаты:

$$\bar{1}_{a} = \frac{\overline{a}}{|\overline{a}|} = \left(\frac{a_{x}}{\sqrt{a_{x}^{2} + a_{y}^{2} + a_{z}^{2}}}, \frac{a_{y}}{\sqrt{a_{x}^{2} + a_{y}^{2} + a_{z}^{2}}}, \frac{a_{z}}{\sqrt{a_{x}^{2} + a_{y}^{2} + a_{z}^{2}}}\right).$$

Направление вектора \overline{a} определяется углами α , β , γ , которые образует вектор \overline{a} с осями координат. Направляющие косинусы $\cos \alpha$, $\cos \beta$, $\cos \gamma$ служат координатами единичного вектора:

$$\cos \alpha = \frac{a_x}{\sqrt{a_x^2 + a_y^2 + a_z^2}}, \quad \cos \beta = \frac{a_y}{\sqrt{a_x^2 + a_y^2 + a_z^2}}, \quad \cos \gamma = \frac{a_z}{\sqrt{a_x^2 + a_y^2 + a_z^2}}.$$

Направляющие косинусы связаны соотношением:

$$\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1.$$

4.3 Деление отрезка в данном отношении

Пусть точка M(x,y,z) делит отрезок между точками $M_1(x_1,y_1,z_1)$ и $M_2(x_2,y_2,z_2)$ в отношении λ , тогда радиус-вектор точки M выражается через радиусы-векторы $\overline{r_1}$ и $\overline{r_2}$ его концов по формуле: $\overline{r} = \frac{\overline{r_1} + \lambda \overline{r_2}}{1 + \lambda}$.

Отсюда получаются координатные формулы:

$$x = \frac{x_1 + \lambda x_2}{1 + \lambda}$$
, $y = \frac{y_1 + \lambda y_2}{1 + \lambda}$, $z = \frac{z_1 + \lambda z_2}{1 + \lambda}$.

В частности, если точка M делит отрезок $M_1 M_2$ пополам, то $\lambda = 1$ и $\ddot{r} = \frac{\ddot{r}_1 + \ddot{r}_2}{2}$,

то есть
$$x = \frac{x_1 + x_2}{2}$$
, $y = \frac{y_1 + y_2}{2}$, $z = \frac{z_1 + z_2}{2}$.

27. В правильном шестиугольнике даны векторы, совпадающие со сторонами (рис. 9). Указать векторы: 1) равной длины; 2) коллинеарные; 3) равные; 4) противоположные.

Рис. 9

Ответ:

1) Все векторы;

2)
$$\bar{a} \parallel \bar{d}$$
, $\bar{b} \parallel \bar{e}$, $\bar{c} \parallel \bar{f}$;

3)
$$\bar{c} = \overline{f}$$
;

4)
$$\overline{a} = -\overline{d}$$
, $\overline{b} = -\overline{e}$.

28. В параллелограмме \overrightarrow{OACB} даны векторы $\overrightarrow{OA} = \overrightarrow{a}$, $\overrightarrow{OB} = \overrightarrow{b}$. Выразить через \overrightarrow{a} и \overrightarrow{b} векторы \overrightarrow{MO} , \overrightarrow{MA} , \overrightarrow{MB} , \overrightarrow{MC} , где M- точка пересечения диагоналей параллелограмма.

Omeem:
$$\overline{MO} = -\frac{\overline{a} + \overline{b}}{2}$$
; $\overline{MA} = \frac{\overline{a} - \overline{b}}{2}$; $\overline{MB} = \frac{\overline{b} - \overline{a}}{2}$; $\overline{MC} = \frac{\overline{a} + \overline{b}}{2}$.

29. Дан правильный шестиугольник \overrightarrow{OABCDE} со стороной 4 единицы. \overrightarrow{m} , \overrightarrow{n} , \overrightarrow{p} единичные векторы направлений \overrightarrow{OA} , \overrightarrow{AB} , \overrightarrow{BC} . Найти зависимость между \overrightarrow{m} , \overrightarrow{n} , \overrightarrow{p} . Выразить через \overrightarrow{m} и \overrightarrow{n} векторы \overrightarrow{OB} , \overrightarrow{EO} , \overrightarrow{OD} , \overrightarrow{DA} .

Ответ:

$$\overline{p} = \overline{n} - \overline{m};$$
 $\overline{OB} = 4\overline{m} + 4\overline{n};$ $\overline{EO} = 4\overline{m} - 4\overline{n};$ $\overline{OD} = 8\overline{n} - 4\overline{m};$ $\overline{DA} = 8\overline{m} - 8\overline{n}.$

30. Треугольник ABC построен на векторах $\overline{BC} = \overline{a}$ и $\overline{CA} = \overline{b}$. Разложить по векторам \overline{a} и \overline{b} векторы \overline{AM} , \overline{BN} , \overline{CP} , совпадающие с медианами треугольника.

Omeem:
$$\overline{AM} = -\frac{\overline{a}}{2} - \overline{b}$$
; $\overline{BN} = \overline{a} + \frac{\overline{b}}{2}$; $\overline{CP} = \frac{\overline{b} - \overline{a}}{2}$.

31. Три ребра прямоугольного параллелепипеда $OABCO_1A_1B_1C_1$ имеют длины: $|\overline{OA}| = 2$, $|\overline{OC}| = 4$, $|\overline{OO}_1| = 6$. Пусть \bar{i} , \bar{j} , \bar{k} - единичные векторы направлений \overline{OA} , \overline{OC} , \overline{OO}_1 . Найти координаты векторов \overline{OB}_1 , \overline{AC}_1 , \overline{BO}_1 , $\overline{B_1C}$. Ответ: $\overline{OB}_1 = (2,4,6)$; $\overline{AC}_1 = (-2,4,6)$; $\overline{BO}_1 = (-2,-4,6)$; $\overline{BO}_1 = (-2,0,-6)$.

32. Построить точку M (5,-3,4) и ее радиус-вектор $\overline{OM} = \overline{r}$. Найти координаты, модуль и направление вектора \overline{r} .

Omeem:
$$\bar{r} = (5, -3, 4)$$
; $|\bar{r}| = 5\sqrt{2}$; $\cos \alpha = \frac{\sqrt{2}}{2}$; $\cos \beta = -\frac{3}{5\sqrt{2}}$; $\cos \gamma = \frac{4}{5\sqrt{2}}$.

33. Даны точки A(1,2,3) u B(3,-4,6). Разложить вектор $\overline{a} = \overline{AB}$ по базису, найти его модуль и направление.

Omeem:
$$\overline{a} = 2\overline{i} - 6\overline{j} + 3\overline{k}$$
; $|\overline{a}| = 7$; $\cos \alpha = \frac{2}{7}$; $\cos \beta = -\frac{6}{7}$; $\cos \gamma = \frac{3}{7}$.

34. Найти единичный вектор направления $\overline{a} = (6, -2, -3)$.

Ombem:
$$\overline{l}_a = \left(\frac{6}{7}; -\frac{2}{7}; -\frac{3}{7}\right)$$
.

35. Вектор \overline{a} образует с осями координат Оу и Оz углы $\beta = 60^{\circ}$, $\gamma = 120^{\circ}$. Какой угол он образует с осью Ох ?

 $Omeem: \alpha = 45^{\circ}$ или $\alpha = 135^{\circ}$.

36. Определить, при каких значениях α и β векторы $\overline{a}=-2\,\overline{i}+3\,\overline{j}+\beta\,\overline{k}$ и $\overline{b}=\alpha\,\overline{i}-6\,\overline{j}+2\,\overline{k}$ коллинеарны.

Omsem: $\alpha = 4$, $\beta = -1$.

37. Даны три вершины параллелограмма A(1,-2,3), B(3,2,1), C(6,4,4). Найти координаты четвертой машины D(x,y,z), координаты точки K пересечения диагоналей, длину диагонали AC.

Omsem:
$$D(4,0,6)$$
; $K\left(\frac{7}{2},1,\frac{7}{2}\right)$; $|\overline{AC}| = \sqrt{62}$.

38. Доказать, что четырехугольник с вершинами A(2,1,-4), B(1,3,5), C(7,2,3) и D(8,0,-6) есть параллелограмм. Найти точку K пересечения диагоналей, длины его сторон и диагоналей.

Omsem:
$$K\left(\frac{9}{2}; \frac{3}{2}; -\frac{1}{2}\right); \quad \sqrt{86}; \quad \sqrt{41}; \quad 5\sqrt{3}; \quad \sqrt{179}.$$

39. Определить координаты центра тяжести треугольника ABC, если A(5,1,12), B(11,3,8), C(2,5,0).

Omsem:
$$\left(6, 3, \frac{20}{3}\right)$$
.

Указание: Центр тяжести треугольника находится в точке пересечения медиан. Медианы треугольника делятся точкой пересечения в отношении 2:1, считая от вершины.

40. Даны два вектора $\overline{a}=(3,-2,6)$ и $\overline{b}=(-2,1,0)$. Найти координаты векторов: 1) $2\overline{a}$; 2) $-\frac{1}{2}\overline{b}$; 3) $\overline{a}+\overline{b}$; 4) $\overline{a}-\overline{b}$; 5) $2\overline{a}+3\overline{b}$; 6) $\frac{1}{3}\overline{a}-\overline{b}$.

Omsem: 1)
$$(6,-4,12)$$
; 2) $(1,-\frac{1}{2},0)$; 3) $(1,-1,6)$;

4)
$$(5,-3,6)$$
; 5) $(0,-1,12)$; 6) $(3,-\frac{5}{3},2)$.

41. Даны: $|\overline{a}| = 11$, $|\overline{b}| = 23$, $|\overline{a} - \overline{b}| = 30$. Найти $|\overline{a} + \overline{b}|$.

Omsem: $|\overline{a} + \overline{b}| = 20$.

42. На плоскости даны три вектора $\overline{a}=(3,-2)$, $\overline{b}=(-2,1)$ и $\overline{c}=(7,-4)$. Проверить, что векторы \overline{a} и \overline{b} образуют базис плоскости и найти координаты вектора \overline{c} в этом базисе.

Решение: Векторы \overline{a} и \overline{b} не являются коллинеарными, так как $\frac{3}{-2} \neq \frac{-2}{1}$.

Следовательно, векторы \overline{a} и \overline{b} образуют базис плоскости. Координаты вектора \overline{c} в базисе \overline{a} и \overline{b} являются коэффициентами разложения вектора \overline{c} по векторам \overline{a} и \overline{b} , то есть $\overline{c} = \alpha \, \overline{a} + \beta \, \overline{b}$. Запишем это равенство в координатной форме

$$\begin{cases}
7 = 3\alpha - 2\beta, \\
-4 = -2\alpha + \beta.
\end{cases}$$

Решая систему, находим $\alpha = 1$, $\beta = -2$.

Итак, $\overline{c} = \overline{a} - 2\overline{b}$.

43. На плоскости даны два вектора $\overline{p}=(2,-3)$ и $\overline{q}=(1,2)$. Найти разложение вектора $\overline{a}=(9,4)$ по базису \overline{p} и \overline{q} .

Omeem: $\overline{a} = 2\overline{p} + 5\overline{q}$.

44. Даны три вектора $\bar{p}=(3,-2,1), \quad \bar{q}=(-1,1,-2)$ и $\bar{r}=(2,1,-3).$ Найти разложение вектора $\bar{c}=(11,-6,5)$ по базису \bar{p} , \bar{q} , \bar{r} .

Omsem: $\overline{c} = 2\overline{p} - 3\overline{q} + \overline{r}$.

4.5 Скалярное произведение векторов

Скалярным произведением $(\overline{a}\ \overline{b})$ двух векторов \overline{a} и \overline{b} называется число (скаляр), равное произведению их модулей на косинус угла между ними

$$(\overline{a}\ \overline{b}) = |\overline{a}| \cdot |\overline{b}| \cdot \cos(\overline{a}, \overline{b}).$$

Скалярное произведение силы \overline{F} на вектор \overline{S} равно работе A этой силы при перемещении материальной точки по прямолинейному пути \overline{S} , то есть $A = (\overline{F} \ \overline{S}).$

Свойства и приложения скалярного произведения

- 1) $(\overline{a} b) = (b \overline{a}).$
- 2) $(\overline{a} + \overline{b}) \overline{c} = (\overline{a} \overline{c}) + (\overline{b} \overline{c}).$
- 3) $((\lambda \, \overline{a}) \, \overline{b}) = \lambda (\overline{a} \, \overline{b}).$
- 4) Если \overline{a} и \overline{b} ненулевые векторы, то $(\overline{a}\ \overline{b})=0$ тогда и только тогда, когда $\overline{a}\perp \overline{b}$.

5) Если $\overline{a} = \overline{b}$, то $(\overline{a}\ \overline{a}) = \overline{a}^2 = |\overline{a}|^2$, то есть скалярный квадрат вектора равен квадрату его модуля. Отсюда следует формула

$$|\overline{a}| = \sqrt{\overline{a}^2} = \sqrt{(\overline{a}\overline{a})}.$$

6) Если $\overline{a}=(a_X,a_Y,a_Z),\ \overline{b}=(b_X,b_Y,b_Z),$ то скалярное произведение векторов \overline{a} и \overline{b} выражается через координаты перемножаемых векторов по формуле

$$(\overline{a}\ \overline{b}) = a_{\mathcal{X}}b_{\mathcal{X}} + a_{\mathcal{Y}}b_{\mathcal{Y}} + a_{\mathcal{Z}}b_{\mathcal{Z}}.$$

7) Косинус угла между векторами \bar{a} и \bar{b} определяется по формуле

$$\cos(\overline{a}, \overline{b}) = \frac{(\overline{a} \overline{b})}{|\overline{a}| \cdot |\overline{b}|} = \frac{a_x b_x + a_y b_y + a_z b_z}{\sqrt{a_x^2 + a_y^2 + a_z^2} \cdot \sqrt{b_x^2 + b_y^2 + b_z^2}}.$$

8) Скалярное произведение двух векторов равно произведению модуля одного вектора на проекцию на него другого вектора

$$(\overline{a}\ \overline{b}) = |\ \overline{a}\ | \cdot np_{\ \overline{a}}\ \overline{b} = |\ \overline{b}\ | \cdot np_{\ \overline{b}}\ \overline{a}.$$

Отсюда следует, что

$$np_{\bar{b}} \bar{a} = \frac{(\bar{a} \bar{b})}{|\bar{b}|} = \frac{a_x b_x + a_y b_y + a_z b_z}{\sqrt{b_x^2 + b_y^2 + b_z^2}}.$$

45. Векторы \overline{a} и \overline{b} образуют угол $\frac{2\pi}{3}$. Зная, что $|\overline{a}|=3, |\overline{b}|=2$, найти:

1)
$$(\overline{a} \overline{b})$$
; 2) \overline{a}^2 ; 3) $(2\overline{a} - 3\overline{b})^2$; 4) $|2\overline{a} - 3\overline{b}|$.

Решение:

1)
$$(\overline{a}\ \overline{b}) = |\overline{a}| \cdot |\overline{b}| \cdot \cos(\overline{a}, \overline{b})$$
.

Отсюда
$$(\overline{a}\ \overline{b}) = 3 \cdot 2 \cdot \cos \frac{2\pi}{3} = 3 \cdot 2 \cdot \left(-\frac{1}{2}\right) = -3.$$

- 2) Так как $a^2 = |\bar{a}|^2$, то $\bar{a}^2 = 3^2 = 9$.
- 3) Найдем скалярный квадрат вектора

$$(2\overline{a} - 3\overline{b})^2 = 4\overline{a}^2 - 12(\overline{a}\overline{b}) + 9\overline{b}^2 = 4|\overline{a}|^2 - 12(\overline{a}\overline{b}) + 9|\overline{b}|^2 = 4 \cdot 9 - 12 \cdot (-3) + 9 \cdot 4 = 108.$$

4) Так как
$$|\bar{a}| = \sqrt{\bar{a}^2}$$
, то $|2\bar{a} - 3\bar{b}| = \sqrt{(2\bar{a} - 3\bar{b})^2} = \sqrt{108} = 6\sqrt{3}$.

46. Даны векторы $\overline{a} = (1,-1,2)$ и $\overline{b} = (2,-2,1)$.

Найти: 1) $\cos(\overline{a}, \overline{b})$; 2) $np_{\overline{b}}(3\overline{a} - \overline{b})$.

Решение:

1) По формуле
$$\cos(\overline{a}, \overline{b}) = \frac{(\overline{a} \overline{b})}{|\overline{a}| \cdot |\overline{b}|} = \frac{a_x b_x + a_y b_y + a_z b_z}{\sqrt{a_x^2 + a_y^2 + a_z^2} \cdot \sqrt{b_x^2 + b_y^2 + b_z^2}}$$

получим $\cos\left(\overline{a}, \overline{b}\right) = \frac{1 \cdot 2 + (-1) \cdot (-2) + 2 \cdot 1}{\sqrt{1^2 + (-1)^2 + 2^2} \cdot \sqrt{2^2 + (-2)^2 + 1^2}} = \frac{\sqrt{6}}{3}.$

2) Обозначим вектор $\bar{c}=3\bar{a}-\bar{b}$ и найдем его координаты

$$\overline{c} = 3\overline{a} - \overline{b} = (3 \cdot 1 - 2, 3 \cdot (-1) - (-2), 3 \cdot 2 - 1)$$
 или $\overline{c} = (1, -1, 5).$

По формуле
$$np_{\overline{b}} \overline{c} = \frac{(\overline{b} \overline{c})}{|\overline{b}|} = \frac{b_x c_x + b_y c_y + b_z c_z}{\sqrt{b_x^2 + b_y^2 + b_z^2}}$$

$$np_{\bar{b}} (3\overline{a} - \overline{b}) = np_{\bar{b}} \ \overline{c} = \frac{2 \cdot 1 + (-2) \cdot (-1) + 1 \cdot 5}{\sqrt{2^2 + (-2)^2 + 1^2}} = 3.$$

47. Векторы \overline{a} и \overline{b} образуют угол $\frac{\pi}{6}$. Зная, что $|\overline{a}|=3$, $|\overline{b}|=4$, найти:

1)
$$(\overline{a}\ \overline{b})$$
; 2) $\overline{a}^2 = (\overline{a}\ \overline{a})$; 3) $(\overline{a} + \overline{b})^2$; 4) $|\overline{a} + \overline{b}|$; 5) $(3\overline{a} - 2\overline{b})(\overline{a} + 2\overline{b})$.

Omeem: 1)
$$6\sqrt{3}$$
; 2) 9; 3) $25 + 12\sqrt{3}$; 4) $\sqrt{25 + 12\sqrt{3}}$; 5) $37 + 24\sqrt{3}$.

48. Векторы \overline{a} и \overline{b} взаимно перпендикулярны, вектор \overline{c} образует с ними углы, равные $\frac{\pi}{3}$. Зная, что $|\overline{a}| = 3$, $|\overline{b}| = 5$, $|\overline{c}| = 8$, найти: 1) $(\overline{a}|\overline{c})$;

2)
$$\overline{a}^2 = (\overline{a} \ \overline{a});$$
 3) $(\overline{a} + \overline{b}) \overline{c};$ 4) $(3\overline{a} - 2\overline{b})(\overline{b} + 3\overline{c});$ 5) $(2\overline{a} - \overline{b})^2;$

7)
$$|2\overline{a}-\overline{b}|$$
.

Omeem: 1) 12; 2) 9; 3) 32; 4) -62; 5) 61; 6) $\sqrt{61}$.

49. Найти: 1) $(\bar{c}\ \bar{d});$ 2) $|\bar{c}|;$ 3) $|\bar{d}|;$ 4) $(\bar{c},\bar{d}),$ если $\bar{c}=2\bar{a}-\bar{b},$

 $\overline{d} = 3\overline{a} - 2\overline{b}$, $|\overline{a}| = 1$, $|\overline{b}| = 2$, $(\overline{a}, \overline{b}) = \frac{2\pi}{3}$.

Omsem: 1) 21; 2) 4; 3) $\sqrt{37}$; 4) $\arccos \frac{21}{4\sqrt{37}}$.

50. Раскрыть скобки и вычислить:

1) $(2\bar{i} - \bar{j})\bar{j} + (\bar{j} - 2\bar{k})\bar{k} + (\bar{i} - 2\bar{k})^2$;

2) $(3\bar{i} + \bar{j})\bar{k} + (\bar{i} - \bar{j})\bar{j} + (\bar{i} + 2\bar{k})^2$.

Ответ: 1) 2; 2) 4.

51. Даны векторы $\overline{a} = (4,-2,4)$ и $\overline{b} = (6,-3,2)$.

Найти: 1) $(\overline{a}\ \overline{b})$; 2) $\cos(\overline{a},\overline{b})$; 3) $(2\overline{a}-3\overline{b})(\overline{a}+2\overline{b})$.

Omsem: 1) 38; 2) $\frac{19}{21}$; 3) -184.

52. Даны векторы $\overline{a} = \overline{i} + 2\overline{j} + 3\overline{k}$ и $\overline{b} = 4\overline{i} - \overline{j} + 2\overline{k}$.

Найти: 1) $(\overline{a}\ \overline{b})$; 2) $\cos(\overline{a},\overline{b})$; 3) $np_{\overline{b}}\ \overline{a}$; 4) $\overline{a}(3\overline{a}-\overline{b})$.

Omsem: 1) 8; 2) $\frac{8}{7\sqrt{6}}$; 3) $\frac{8}{\sqrt{21}}$; 4) 34.

53. Даны вершины четырехугольника A(1,2,3), B(7,3,2), C(-3,0,6) и D(9,2,4). Доказать, что его диагонали перпендикулярны.

54. При каком значении λ векторы $\overline{a} = (\lambda, 2, 2)$ и $\overline{b} = (2, 3, -2)$ перпендикулярны ?

Omeem: $\lambda = -1$.

55. Найти вектор \bar{x} , коллинеарный вектору $\bar{a} = (2,1,-1)$ и удовлетворяющий условию $(\bar{x}\ \bar{a}) = 3$.

Omsem:
$$\bar{x} = \left(1, \frac{1}{2}, -\frac{1}{2}\right)$$
.

56. Даны вершины треугольника A(4,1,0), B(2,2,1) и C(6,3,1).

Найти: 1)
$$\angle BAC$$
; 2) $np_{A\overline{B}} \overline{AC}$; 3) $np_{A\overline{B}} (\overline{AC} + 2\overline{BC})$;

4)внешний угол треугольника при вершине B.

Omsem: 1)
$$\arccos\left(-\frac{1}{3\sqrt{6}}\right)$$
; 2) $-\frac{1}{\sqrt{6}}$; 3) $-\frac{15}{\sqrt{6}}$; 4) $\arccos\left(-\frac{7}{\sqrt{102}}\right)$.

57. Даны точки A(-2,3,4), B(3,2,5), C(1,-1,2) и D(3,2,-4).

Найти: 1) $\angle ABC$; 2) $np_{C\overline{D}} \overline{AB}$.

Omsem: 1)
$$\arccos\left(-\frac{10}{3\sqrt{66}}\right)$$
; 2) $\frac{1}{7}$.

58. Найти косинус угла между диагоналями параллелограмма, построенного на векторах $\bar{a} = \bar{i} + 2 \, \bar{j} - \bar{k}$ и $\bar{b} = \bar{i} - 4 \, \bar{j} + 2 \, \bar{k}$, как на сторонах.

Ombem:
$$-\frac{\sqrt{5}}{3}$$
.

59. Вычислить работу силы $\overline{F} = (3,-2,-5)$ вдоль вектора \overline{AB} , если A(2,-3,5) и B(3,-2,-1).

Ответ: A = 31.

60. Даны три силы $\overline{F}_1=(3,-4,2),\ \overline{F}_2=(2,3,-5)$ и $\overline{F}_3=(-3,-2,4),$ приложенные к одной точке. Вычислить, какую работу производит равнодействующая этих сил, если ее точка приложения перемещается прямолинейно из точки $M_1(5,3,-7)$ в точку $M_2(4,-1,-4)$.

Ответ: A = 13.

4.6 Векторное произведение векторов

Векторным произведением вектора \overline{a} на вектор \overline{b} называется такой третий вектор $\overline{c} = [\overline{a} \ \overline{b}]$, модуль и направление которого определяются условиями:

- 1) $|\bar{c}| = |[\bar{a} \cdot \bar{b}]| = |\bar{a}| \cdot |\bar{b}| \cdot \sin(\bar{a}, \bar{b});$
- $2) \ \overline{c} \perp \begin{cases} \overline{a} \ , \\ \overline{b} \ ; \end{cases}$
- 3) Векторы \overline{a} , \overline{b} , \overline{c} образуют правую тройку, те есть если смотреть с конца вектора \overline{c} , то кратчайший поворот вектора \overline{a} к вектору \overline{b} совершается против часовой стрелки (рис.10).

Рис.10

Если \overline{F} - сила, приложенная к точке B, то момент \overline{M} этой силы относительно точки A равен векторному произведению векторов \overline{AB} и \overline{F} , то есть $\overline{M}=[\overline{AB}\;\overline{F}].$

Свойства и приложения векторного произведения

- 1) $[\overline{a}\overline{b}] = -[\overline{b}\overline{a}].$
- 2) $[(\overline{a} + \overline{b})\overline{c}] = [\overline{a}\overline{c}] + [\overline{b}\overline{c}].$
- 3) $[(\lambda \, \overline{a}) \, \overline{b}] = \lambda [\overline{a} \, \overline{b}].$
- 4) Если $\overline{a} \parallel \overline{b}$, то $[\overline{a} \ \overline{b}] = 0$. В частности, $[\overline{a} \ \overline{a}] = 0$.
- 5) Если $\overline{a}=(a_X,a_Y,a_Z), \ \overline{b}=(b_X,b_Y,b_Z),$ то векторное произведение векторов \overline{a} и \overline{b} выражается через координаты перемножаемых векторов по формуле

$$[\overline{a}\,\overline{b}] = \begin{vmatrix} \overline{i} & \overline{j} & \overline{k} \\ a_{x} & a_{y} & a_{z} \\ b_{x} & b_{y} & b_{z} \end{vmatrix}.$$

6) Если векторы \bar{a} и \bar{b} неколлинеарны и приведены к общему началу, то модуль векторного произведения равен площади построенного на них параллелограмма (рис.10)

$$S_{nap} = |[\overline{a}\,\overline{b}\,]|.$$

Площадь треугольника, построенного на векторах \overline{a} и \overline{b} , как на сторонах, вычисляется по формуле

$$S_{\Delta} = \frac{1}{2} S_{nap} = \frac{1}{2} |[\overline{a} \ \overline{b}]|.$$

- **61.** Векторы \overline{a} и \overline{b} образуют угол $\frac{5\pi}{6}$. Зная, что $|\overline{a}| = 6$, $|\overline{b}| = 5$, найти площадь параллелограмма, построенного:
- 1) на векторах \overline{a} и \overline{b} ;
- 2) на векторах $\overline{c}=2\overline{a}+3\overline{b}$ и $\overline{d}=2\overline{a}-3\overline{b}$, как на сторонах. *Решение:*
- 1) По формуле $S_{nap}=|[\overline{a}\ \overline{b}\]|=|\overline{a}\ |\cdot|\overline{b}\ |\cdot\sin(\overline{a},\overline{b})$ находим площадь параллелограмма, построенного на векторах \overline{a} и \overline{b} , как на сторонах:

$$S_{nap} = 6 \cdot 5 \cdot \sin \frac{5\pi}{6} = 6 \cdot 5 \cdot \frac{1}{2} = 15.$$

2)Используя свойства, найдем векторное произведение

$$[\overline{c}\ \overline{d}] = [(2\overline{a} + 3\overline{b})(2\overline{a} - 3\overline{b})] = [2\overline{a} \cdot 2\overline{a}] + [3\overline{b} \cdot 2\overline{a}] - [2\overline{a} \cdot 3\overline{b}] - [3\overline{b} \cdot 3\overline{b}] =$$

$$= 4[\overline{a}\ \overline{a}] + 6[\overline{b}\ \overline{a}] - 6[\overline{a}\ \overline{b}] - 9[\overline{b}\ \overline{b}] = 4 \cdot 0 - 6[\overline{a}\ \overline{b}] - 6[\overline{a}\ \overline{b}] - 9 \cdot 0 = -12[\overline{a}\ \overline{b}].$$

Вычислим модуль векторного произведения

$$|[\overline{c}\ \overline{d}]| = |[(2\overline{a} + 3\overline{b})(2\overline{a} - 3\overline{b})]| = |-12[\overline{a}\ \overline{b}]| = 12|[\overline{a}\ \overline{b}]| =$$

$$= 12|\overline{a}| \cdot |\overline{b}| \cdot \sin(\overline{a}, \overline{b}) = 12 \cdot 6 \cdot 5 \cdot \sin\frac{5\pi}{6} = 180.$$

По формуле $S_{nap}=|[\overline{c}\ \overline{d}\,]|$ найдем площадь параллелограмма, построенного на векторах \overline{c} и \overline{d} : $S_{nap}=180$.

- **62.** Даны вершины треугольника A(1,2,0), B(3,0,-3) и C(5,2,6). Найти:
- 1) площадь $\triangle ABC$;
- 2) высоту $\triangle ABC$, опущенную из вершины B.

Решение: 1) Площадь ΔABC равна половине площади параллелограмма, построенного на векторах \overline{AB} и \overline{AC} (рис.11):

$$S_{\Delta} = \frac{1}{2} | [\overline{AB} \cdot \overline{AC}] |.$$

Рис.11

Найдем координаты векторов \overline{AB} и \overline{AC} :

$$\overline{AB} = (2,-2,-3), \quad \overline{AC} = (4,0,6).$$

Их векторное произведение

$$[\overline{AB} \cdot \overline{AC}] = \begin{vmatrix} \bar{i} & \bar{j} & \bar{k} \\ 2 & -2 & -3 \\ 4 & 0 & 6 \end{vmatrix} =$$

$$= \bar{i} (-1)^{1+1} \begin{vmatrix} -2 & -3 \\ 0 & 6 \end{vmatrix} + \bar{j} (-1)^{1+2} \begin{vmatrix} 2 & -3 \\ 4 & 0 \end{vmatrix} + \bar{k} (-1)^{1+3} \begin{vmatrix} 2 & -2 \\ 4 & 0 \end{vmatrix} =$$

$$= -12\bar{i} - 24\bar{j} + 8\bar{k}.$$

Найдем модуль векторного произведения

$$|[\overline{AB} \cdot \overline{AC}]| = \sqrt{(-12)^2 + (-24)^2 + 8^2} = 28.$$

Тогда $S_{\Delta} = \frac{1}{2} \cdot 28 = 14$ кв.ед.

3) Найдем высоту $|\overline{BD}|$ треугольника ABC, опущенную из вершины B (рис.11).

$$S_{\Delta} = \frac{1}{2} |\overline{AC}| \cdot |\overline{BD}|$$

Отсюда, $|\overline{BD}| = \frac{2S_{\Delta}}{|\overline{AC}|}$.

Итак,
$$\overline{|BD|} = \frac{2 \cdot 14}{\sqrt{4^2 + 0^2 + 6^2}} = \frac{28}{\sqrt{52}} = \frac{14}{\sqrt{13}}.$$

63. Найти векторное произведение векторов:

- 1) $[(2\bar{i} + 3\bar{j})(3\bar{j} + 2\bar{k})];$
- 2) $\lceil \overline{i} (\overline{j} + \overline{k}) \rceil \lceil \overline{j} (\overline{i} + \overline{k}) \rceil + \lceil \overline{k} (\overline{i} + \overline{j} + \overline{k}) \rceil$.

Omeem: 1) $6\bar{i} - 4\bar{j} + 6\bar{k}$; 2) $-2\bar{i} + 2\bar{k}$.

- **64.** Векторы \overline{a} и \overline{b} образуют угол 45° . Зная, что $|\overline{a}| = |\overline{b}| = 5$, найти площадь треугольника, построенного:
- 1) на векторах \bar{a} и \bar{b} ;
- 2) на векторах $\overline{c} = \overline{a} 2\overline{b}$ и $\overline{d} = 3\overline{a} + 2\overline{b}$, как на сторонах.

Omeem: 1) $\frac{25\sqrt{2}}{4}$; 2) $50\sqrt{2}$.

65. Векторы \overline{a} и \overline{b} образуют угол $\frac{\pi}{2}$. Зная, что $|\overline{a}| = 6$, $|\overline{b}| = 5$, найти векторного произведения $|[\overline{a}\overline{b}]|$. Чему равна модуль параллелограмма, построенного на векторах $\ \overline{a}$ и $\ \overline{b}$?

 $|[\bar{a}\,\bar{b}\,]| = 30;$ $S_{nap} = 30\,$ кв.ед. Ответ:

- **66.** Векторы \overline{a} и \overline{b} образуют угол $\frac{\pi}{6}$. Зная, что $|\overline{a}| = 3$, $|\overline{b}| = 4$, вычислить:
- 1) $|[(\overline{a} + \overline{b})(\overline{a} \overline{b})]|;$
- 2) $|[(3\overline{a} \overline{b})(\overline{a} 2\overline{b})]|$.

Ответ: 1) 12; 2) 30.

67. Даны векторы $\overline{a} = 3\overline{i} - \overline{j} + 2\overline{k}$ и $\overline{b} = \overline{i} + 2\overline{j} - \overline{k}$.

Найти: 1) $[\overline{a}\,\overline{b}];$ 2) $|[\overline{a}\,\overline{b}]|;$ 3) $[(2\overline{a}+\overline{b})\overline{b}];$

- 4) $|[(2\overline{a} + \overline{b})\overline{b}]|;$ 5) $[(2\overline{a} \overline{b})(2\overline{a} + \overline{b})].$

Omeem: 1) $-3\bar{i}+5\bar{j}+7\bar{k}$; 2) $\sqrt{83}$; 3) (-6,10,14);

4)
$$2\sqrt{83}$$
; 5) $(-12,20,28)$.

68. Найти площадь треугольника ABC и высоту треугольника, опущенную из вершины B, если A (1,-1,2), B (5,-6,2) и C (1,3,-1).

Omeem:
$$S_{\Delta} = \frac{25}{2}$$
; $h = 5$.

69. Даны вершины треугольника A(1,2,3), B(-1,3,2) и C(3,5,0).

Найти длину медианы AM и высоты AH.

Omsem:
$$AM = 2\sqrt{2}$$
; $AH = \frac{4}{\sqrt{3}}$.

70. Найти единичный вектор \overline{l}_n , перпендикулярный векторам $\overline{a}=(1,-2,1)$ и $\overline{b}=(2,0,1)$, чтобы тройка векторов $\overline{a},\overline{b},\overline{l}_n$ была: 1) правой; 2) левой.

Omsem: 1)
$$\left(-\frac{2}{\sqrt{21}}, \frac{1}{\sqrt{21}}, \frac{4}{\sqrt{21}}\right)$$
; 2) $\left(\frac{2}{\sqrt{21}}, -\frac{1}{\sqrt{21}}, -\frac{4}{\sqrt{21}}\right)$.

71.Сила $\overline{F} = 3\overline{i} + 2\overline{j} - 4\overline{k}$ приложена к точке B(2,-1,1). Найти момент силы \overline{F} относительно начала координат.

Omsem:
$$\overline{M} = 2\overline{i} + 11\overline{j} + 7\overline{k}$$
.

72. Показать, что момент силы $\overline{F} = 2\,\overline{i} + 3\,\overline{j} - \overline{k}$, приложенной к точке $B(4\,,2\,,-3)$, относительно точки $A(7\,,3\,,-1)$ является вектором, перпендикулярным вектору $\overline{c} = (1,5\,,-4)$.

4.7 Смешанное произведение векторов

Смешанным (или векторно-скалярным) произведением трех векторов называется число, равное скалярному произведению одного из векторов на векторное произведение двух других

$$(\overline{a}\ \overline{b}\ \overline{c}) = [\overline{a}\ \overline{b}\]\overline{c} = \overline{a}\ [\overline{b}\ \overline{c}\].$$

Если $\overline{a}=(a_{X},a_{Y},a_{Z}), \ \overline{b}=(b_{X},b_{Y},b_{Z}), \ \overline{c}=(c_{X},c_{Y},c_{Z}),$ то смешанное произведение $(\overline{a}\,\overline{b}\,\overline{c})$ выражается через координаты перемножаемых векторов по формуле

$$(\overline{a}\,\overline{b}\,\overline{c}) = \begin{vmatrix} a_{x} & a_{y} & a_{z} \\ b_{x} & b_{y} & b_{z} \\ c_{x} & c_{y} & c_{z} \end{vmatrix} \tag{1}$$

Если некомпланарные векторы \overline{a} , \overline{b} , \overline{c} приведены к общему началу, то абсолютная величина смешанного произведения равна объему параллелепипеда, построенного на векторах \overline{a} , \overline{b} , \overline{c} , как на ребрах:

$$V_{nap-\partial a} = |(\overline{a}\,\overline{b}\,\overline{c})|.$$

Объем треугольной пирамиды вычисляется по формуле

$$V_{mp.nup.} = \frac{1}{6} V_{nap-\partial a} = \frac{1}{6} |(\overline{a} \, \overline{b} \, \overline{c})|.$$

Необходимым и достаточным условием компланарности трех векторов \overline{a} , \overline{b} , \overline{c} является равенство нулю их смешанного произведения: $(\overline{a}\ \overline{b}\ \overline{c}) = 0$.

73. Даны вершины пирамиды A(1,2,0), B(3,0,-3), C(5,2,6) и D(2,1,-1).

Найти:

- 1) объем пирамиды;
- 2) высоту пирамиды, опущенную из вершины D.

Решение:

1) Объем треугольной пирамиды, построенной на приведенных к общему началу векторах $\overline{a}, \overline{b}, \overline{c}$ (рис.12), вычисляется по формуле $V_{mp.nup.} = \frac{1}{6} |(\overline{a} \, \overline{b} \, \overline{c})|$.

Puc.12

Найдем координаты векторов $\overline{a} = \overline{AB} = (2,-2,-3), \quad \overline{b} = \overline{AC} = (4,0,6),$ $\overline{c} = \overline{AD} = (1,-1,-1)$ и их смешанное произведение по формуле (1):

$$(\overline{AB} \cdot \overline{AC} \cdot \overline{AD}) = \begin{vmatrix} 2 & -2 & -3 \\ 4 & 0 & 6 \\ 1 & -1 & -1 \end{vmatrix} = -12 + 12 + 12 - 8 = 4.$$

Тогда объем пирамиды *DABC*

$$V_{mp.nup.} = \frac{1}{6} |(\overline{AB} \cdot \overline{AC} \cdot \overline{AD})| = \frac{4}{6} = \frac{2}{3}.$$

2) Найдем высоту H пирамиды, опущенную из вершины D (рис.12).

$$V_{mp.nup.} = \frac{1}{3} \cdot S_{och.} \cdot H.$$

Отсюда, $H = \frac{3 V_{mp.nup.}}{S_{och.}}$.

Площадь основания пирамиды $S_{och.} = S_{\Delta ABC} = 28$ (см. задачу 60).

Итак,
$$H = \frac{3 \cdot \frac{2}{3}}{28} = \frac{2}{28} = \frac{1}{14}$$
.

74. Построить пирамиду с вершинами O(0,0,0), A(5,2,0), B(2,5,0), C(1,3,4) и найти ее объем.

Omeem: $V_{nup.} = 14$.

75. Четыре точки A(1,2,-1), B(0,1,z), C(-1,2,1) и D(2,1,3) лежат в одной плоскости. Найти аппликату точки B.

Ответ: z = 5.

76. Найти расстояние d от точки P(-5,-4,8) до плоскости, проходящей через три точки $M_1(2,3,1), M_2(4,1,-2), M_3(6,3,7).$

Ответ: d = 11.

77. Показать, что векторы $\overline{a} = -\overline{i} + 3\overline{j} + 2\overline{k}$, $\overline{b} = 2\overline{i} - 3\overline{j} - 4\overline{k}$, $\overline{c} = -3\overline{i} + 12\overline{j} + 6\overline{k}$ компланарны, и разложить вектор \overline{c} по векторам \overline{a} и \overline{b} . Ответ: $\overline{c} = 5\overline{a} + \overline{b}$.

78. Найти смешанное произведение векторов $(\overline{a}\,\overline{b}\,\overline{c}) = [\overline{a}\,\overline{b}\,]\overline{c}$, если $\overline{c} \perp \overline{a}, \ \overline{c} \perp \overline{b}, \ |\overline{c}| = 5, \ \overline{a} = (3,-1,0), \ \overline{b} = (-1,2,1).$

Ответ: $\pm 5\sqrt{35}$.

79. Четыре точки A(1,y,-1), B(0,1,5), C(-1,2,1) и D(2,1,3) лежат в одной плоскости. Найти ординату точки A.

Ombem: y = 2.

80. Объем пирамиды V = 5, три его вершины находятся в точках A(2,1-1), B(3,0,1) и C(2,-1,3). Найти координаты четвертой вершины, если она находится на оси Ov.

Ответ: (0,8,0) или (0,-7,0).

81. Составить уравнение плоскости, проходящей через три точки:

1)
$$A(1,2,3)$$
, $B(0,-2,4)$, $C(-1,3,0)$;

2)
$$A(-1,0,4)$$
, $B(1,-2,3)$, $C(2,0,5)$.

Указание. В плоскости *АВС* возьмем произвольную точку M(x,y,z). Тогда векторы \overline{AM} , \overline{AB} , \overline{AC} компланарны и, следовательно, смешанное произведение $(\overline{AM} \cdot \overline{AB} \cdot \overline{AC}) = 0$.

Omeem: 1) 11x - 5y - 9z + 26 = 0;

2)
$$2x + 5y - 6z + 26 = 0$$
.

Варианты контрольной работы № 1

Вариант 1

1. Выполнить действия $5A^{-1}B + C$, где

$$A = \begin{pmatrix} -1 & -2 \\ 4 & 3 \end{pmatrix}, \qquad B = \begin{pmatrix} 2 & 0 & -1 \\ 0 & 1 & 3 \end{pmatrix}, \qquad C = \begin{pmatrix} 5 & 6 & -7 \\ 1 & -2 & 3 \end{pmatrix}.$$

2. Решить систему уравнений

$$\begin{cases} x + 2y - 4z = 1, \\ 2x + y - 5z = -1, \\ x - y - z = -2. \end{cases}$$

3. Найти работу вектора $\overline{F}=\overline{a}+2\overline{b}$ вдоль вектора $\overline{S}=3\overline{a}-\overline{b}$, если $|\overline{a}|=2$,

$$|\overline{b}| = 1$$
 и $(\overline{a}, \overline{b}) = \frac{\pi}{4}$.

- 4. Найти большую высоту параллелограмма, построенного на векторах $\overline{a} = (4, -5, 0)$ и $\overline{b} = 4\overline{j} 3\overline{k}$, как на сторонах.
- 5. Точки A(1,2,-1), B(0,1,5), C(x,2,1), D(2,1,3) лежат в одной плоскости. Найти абсциссу точки C.

Ответы:

1.
$$\begin{pmatrix} 11 & 8 & -4 \\ -7 & -3 & 4 \end{pmatrix}$$
.

2. Система имеет бесчисленное множество решений

$$x = 2t - 1$$
, $y = t + 1$, $z = t$, $t \in (-\infty, \infty)$.

3.
$$A = 10 + 5\sqrt{2}$$
.

4.
$$h = 5$$
.

5.
$$x = -1$$
.

Вариант 2

- 1. Решить матричное уравнение $X \cdot \begin{pmatrix} 1 & -2 \\ 4 & -3 \end{pmatrix} = \begin{pmatrix} 0 & 3 \\ -1 & 2 \end{pmatrix}$.
- 2. Решить систему матричным способом

$$\begin{cases} 2x - y + 3z = 5, \\ x + 2y - z = 0, \\ 3x + y - 2z = -7. \end{cases}$$

3. Даны три вектора $\bar{a} = 3\bar{i} - 6\bar{j} - \bar{k}$, $\bar{b} = \bar{i} + 4\bar{j} - 5\bar{k}$, $\bar{c} = 3\bar{i} - 4\bar{j} + 12\bar{k}$.

Вычислить 1) $np_{\overline{c}}(\overline{a}+\overline{b});$ 2) $\cos(\overline{a},\overline{b}).$

- 4. Найти площадь треугольника, построенного на векторах $\overline{c}=\overline{a}-3\overline{b}$ и $\overline{d}=2\overline{a}+\overline{b}$, если $|\overline{a}|=2$, $|\overline{b}|=3$, $(\overline{a},\overline{b})=\frac{\pi}{4}$.
- 5. Найти объем пирамиды с вершинами A(5,1,-4), B(1,2,-1), C(3,3,-4) и D(2,2,2).

Ответы:

1.
$$X = \begin{pmatrix} -\frac{12}{5} & \frac{3}{5} \\ -1 & 0 \end{pmatrix}$$
.

2.
$$x = -1$$
, $y = 2$, $z = 3$.

3.
$$np_{\overline{c}}(\overline{a} + \overline{b}) = -4;$$
 $\cos(\overline{a}, \overline{b}) = -\frac{16}{7\sqrt{42}}.$

$$4. \quad S_{\Delta} = \frac{21\sqrt{2}}{2}.$$

5.
$$V_{nup.} = 4$$
.

Расчетно – графическая работа № 1

Решение систем линейных уравнений. Векторная алгебра.

1. Решить систему уравнений тремя способами:

- 1) по формулам Крамера;
- 2) методом Гаусса;
- 3) матричным способом.

$$\begin{cases} ax + 3y - 3z = a^{2} - 3a, \\ 2x + y - 2z = -b, \\ (a+1)x - by + (b-a)z = a. \end{cases}$$

2. При каком значении λ система уравнений имеет множество решений? Найти это множество решений и найти какое-либо частное решение системы.

$$\begin{cases} 2x - y + \lambda z = 0, \\ x + y - 3az = 0, \\ -2x + y + 3bz = 0. \end{cases}$$

3. Даны координаты вершин пирамиды $A_1A_2A_3A_4$.

Определить:

- 1) длину ребра A_1A_4 ;
- 2) площадь грани $A_1 A_2 A_3$;
- 3) объем пирамиды;
- 4) высоту треугольника $A_1A_2A_3$, опущенную из вершины A_3 ;
- 5) высоту пирамиды, опущенную из вершины A_4 ;
- 6) угол между ребрами $A_{1}A_{2}$ и $A_{3}A_{4}$;
- 7) проекцию вектора $\overline{A_1}\overline{A_2}$ на направление вектора $\overline{A_3}\overline{A_4}$;
- 8) уравнение плоскости $A_1 A_2 A_3$.

Исходные данные к задаче № 3

1.
$$A_1(a+2,a-1,a-1), A_2(a+5,a-1,a+2), A_3(a+3,a,a-3), A_4(a+6,a,a-1).$$

2.
$$A_1(a,a,a)$$
, $A_2(a+3,a+4,a-1)$, $A_3(a+2,a+3,a+5)$, $A_4(a+6,a,a-3)$.

3.
$$A_1(a+2, a-4, a+5), A_2(a-1, a-3, a+4), A_3(a+5, a+5, a-1), A_4(a+1, a-2, a+2).$$

4.
$$A_1(a+5,a+1,a-4), A_2(a+1,a+2,a-1), A_3(a+3,a+3,a-4), A_4(a+2,a+2,a+2).$$

49

```
5. A_1(a+2,a+1,a-2), A_2(a+3,a+3,a+3), A_3(a+1,a+1,a+2), A_4(a-1,a-2,a-3).
```

6.
$$A_1(a+2,a-1,a+1), A_2(a+5,a+5,a+4), A_3(a+3,a+2,a-1), A_4(a+4,a+1,a+3).$$

7.
$$A_1(a+2, a+3, a+1), A_2(a+4, a+1, a-2), A_3(a+6, a+3, a+7), A_4(a-5, a-4, a+8).$$

8.
$$A_1(a+2,a+1,a-1)$$
, $A_2(a+3,a,a+1)$, $A_3(a+2,a-1,a+3)$, $A_4(a,a+8,a)$.

9.
$$A_1(a+1,a+2,a-1)$$
, $A_2(a,a+1,a+5)$, $A_3(a-1,a+2,a+1)$, $A_4(a,a-1,a+3)$.

10.
$$A_1(a+1, a-1, a+2)$$
, $A_2(a+5, a-6, a+2)$, $A_3(a+1, a+3, a-1)$, $A_4(a, a, a)$.

11.
$$A_1(a+3,a,a)$$
, $A_2(a+6,a,a+3)$, $A_3(a+4,a+1,a-2)$, $A_4(a+7,a+1,a)$.

12.
$$A_1(a+1,a+1,a+1)$$
, $A_2(a+4,a+5,a)$, $A_3(a+3,a+4,a+6)$, $A_4(a+7,a+1,a-2)$.

13.
$$A_1(a+3,a-3,a+6)$$
, $A_2(a,a-2,a+5)$, $A_3(a+6,a+6,a)$, $A_4(a+2,a-1,a+3)$.

14.
$$A_1(a+6, a+2, a-3)$$
, $A_2(a+2, a+3, a)$, $A_3(a+4, a+4, a-3)$, $A_4(a+3, a+3, a+3)$.

15.
$$A_1(a+3,a+2,a-1)$$
, $A_2(a+4,a+4,a+4)$, $A_3(a+2,a+2,a+3)$, $A_4(a,a-1,a-2)$.

16.
$$A_1(a+1,a-2,a)$$
, $A_2(a+4,a+4,a+3)$, $A_3(a+2,a+1,a-2)$, $A_4(a+3,a,a+2)$.

17.
$$A_1(a+3, a+4, a+2)$$
, $A_2(a+5, a+2, a-1)$, $A_3(a+7, a+4, a+8)$, $A_4(a-3, a-4, a+9)$.

18.
$$A_1(a+3,a+2,a)$$
, $A_2(a+4,a+1,a+2)$, $A_3(a+3,a,a+4)$, $A_4(a+1,a+9,a+1)$.

19.
$$A_1(a+2, a+3, a)$$
, $A_2(a+1, a+2, a+6)$, $A_3(a, a+3, a+2)$, $A_4(a+1, a, a+4)$.

20.
$$A_1(a+2,a,a+3)$$
, $A_2(a+6,a-5,a+3)$, $A_3(a+2,a+4,a)$, $A_4(a-1,a-1,a-1)$.

21.
$$A_1(a+1, a-2, a-2)$$
, $A_2(a+4, a-2, a+1)$, $A_3(a+2, a-1, a-4)$, $A_4(a+5, a-1, a-2)$.

22.
$$A_1(a-1, a-1, a-1)$$
, $A_2(a+2, a+3, a-2)$, $A_3(a+1, a+2, a+4)$, $A_4(a+5, a-1, a-4)$.

23.
$$A_1(a+1, a-5, a+4)$$
, $A_2(a-2, a-4, a+3)$, $A_3(a+4, a+4, a-2)$, $A_4(a, a-3, a+1)$.

24.
$$A_1(a+4, a, a-5)$$
, $A_2(a, a+1, a-2)$, $A_3(a+2, a+2, a-5)$, $A_4(a+1, a+1, a+1)$.

25.
$$A_1(a+1,a,a-3)$$
, $A_2(a+2,a+2,a+2)$, $A_3(a,a,a+1)$, $A_4(a-2,a-3,a-4)$.

26.
$$A_1(a+1,a-2,a)$$
, $A_2(a+4,a+4,a+3)$, $A_3(a+2,a+1,a-2)$, $A_4(a+3,a,a+2)$.

27.
$$A_1(a+1,a+2,a)$$
, $A_2(a+3,a,a-3)$, $A_3(a+5,a+2,a+6)$, $A_4(a-6,a-5,a+7)$.

28.
$$A_1(a+1, a, a-2), A_2(a+2, a-1, a), A_3(a+1, a-2, a+2), A_4(a-1, a+7, a-1).$$

29.
$$A_1(a, a+1, a-2)$$
, $A_2(a-1, a, a+4)$, $A_3(a-2, a+1, a)$, $A_4(a-1, a-2, a+2)$.

30.
$$A_1(a, a-2, a+1)$$
, $A_2(a+4, a-7, a+1)$, $A_3(a, a+2, a-2)$, $A_4(a-1, a-1, a-1)$.

В данных задачах: a – последняя цифра номера группы на потоке; b – номер студента в групповом списке.

5. Прямая на плоскости

В декартовых координатах каждая прямая на плоскости задается уравнением первой степени относительно текущих координат x и y. И, обратно, всякое линейное уравнение определяет прямую. Уравнение вида Ax + By + C = 0 называется общим уравнением прямой в плоскости.

Уравнение прямой, разрешенное относительно y, называется уравнением с угловым коэффициентом:

$$y = kx + b$$
,

где угловой коэффициент $k = tg \alpha$, α - угол наклона прямой к оси Оx (рис.13), параметр b равен величине отрезка OB, отсекаемого прямой от оси Оy.

Рис. 13

Уравнение прямой в отрезках имеет вид

$$\frac{x}{a} + \frac{y}{b} = 1$$
,

где a и b – величины отрезков, которые прямая отсекает на координатных осях.

Уравнение прямой, проходящей через данную точку $M_1(x_1,y_1)$ и имеющей угловой коэффициент k, находится по формуле

$$y - y_1 = k(x - x_1).$$

Уравнение прямой, проходящей через две данные точки $M_1(x_1,y_1)$ и $M_2(x_2,y_2)$, имеет вид

$$\frac{x - x_1}{x_2 - x_1} = \frac{y - y_1}{y_2 - y_1}.$$

Один из смежных углов ϕ между прямыми $y=k_1x+b_1$ и $y=k_2x+b_2$ вычисляется по формуле

$$tg \ \varphi = \frac{k_2 - k_1}{1 + k_1 k_2} \ .$$

Vсловием параллельности двух прямых является равенство их угловых коэффициентов $k_1 = k_2$.

Условием перпендикулярности двух прямых является соотношение

$$k_1 k_2 = -1$$
 или $k_2 = -\frac{1}{k_1}$.

82. Построить прямую 2x - y - 3 = 0.

Решение. Для построения прямой достаточно знать координаты двух любых точек прямой.

Рис.14

Пусть x = 0, тогда из уравнения прямой найдём y = -3.

Если y = 0, то x = 1,5.

Через полученные точки A (0,-3) и B (1,5;0) проводим прямую (рис.14).

Точки A и B являются точками пересечения прямой с координатными осями.

83. Через точку M_1 (2,-1) провести прямую параллельно прямой 2x + 3y - 3 = 0.

Peшение. В задаче дана точка M_1 на искомой прямой, поэтому для нахождения ее уравнения можно воспользоваться формулой

$$y - y_1 = k(x - x_1),$$

где угловой коэффициент k прямой неизвестен. Найдем его из условия параллельности двух прямых. Сначала найдем угловой коэффициент k_1 данной прямой, разрешив ее уравнение относительно y: $y = -\frac{2}{3}x + 1$. Отсюда $k_1 = -\frac{2}{3}$.

Угловой коэффициент параллельной прямой тот же самый: $k=k_1=-\frac{2}{3}$.

Подставляя в уравнение $y - y_1 = k(x - x_1)$ значение $k = -\frac{2}{3}$ и координаты

точки M_1 (2,-1), найдем уравнение параллели к данной прямой

$$y+1=-\frac{2}{3}(x-2)$$
 или $2x+3y-1=0$.

84. Найти точку B, симметричную точке A(-2,4) относительно прямой 3x + y - 8 = 0.

Pешение. Симметричные точки A и B расположены на одном перпендикуляре к данной прямой на одинаковом расстоянии от нее (рис. 15).

Угловой коэффициент данной прямой k = -3.

Угловой коэффициент перпендикулярной к ней прямой

$$k = -\frac{1}{k_1} = \frac{1}{3}$$
.

Рис.15

Уравнение перпендикуляра *АВ* к данной прямой

найдем по формуле $y - y_1 = k(x - x_1)$.

Тогда $y-4=\frac{1}{3}(x+2)$ или x-3y+14=0.

Найдём теперь точку C пересечения данной прямой с перпендикулярной прямой, решая совместно их уравнения

$$\begin{cases} 3x + y - 8 = 0, \\ x - 3y + 14 = 0. \end{cases}$$

Отсюда x = 1, y = 5; C(1,5)

Точка C является серединой отрезка AB. Зная координаты точек A и C, из формул $x_C = \frac{x_A + x_B}{2}$, $y_C = \frac{y_A + y_B}{2}$ находим координаты искомой точки B: $1 = \frac{-2 + x_B}{2}$, $x_B = 4$; $5 = \frac{4 + y_B}{2}$, $y_B = 6$.

Ответ: В (4,6).

- **85.** На плоскости xOy построить прямые и определить их угловые коэффициенты:
 - 1) x-2y-6=0; 2) 2x+3y+6=0; 3) 3x+y=0;
 - 4) x-4=0; 5) 2y+3=0; 6) x=0; 7) y=0.

Ответ: 1) $k = \frac{1}{2}$; 2) $k = -\frac{2}{3}$; 3) k = -3; 4) k не существует; 5) k = 0;

- 6) k не существует; 7) k = 0.
- **86.** Написать уравнение прямой, проходящей через точку A (2,3) и наклоненной к оси Оx под углом: 1) $\alpha = 135^\circ$; 2) $\alpha = 0^\circ$; 3) $\alpha = 90^\circ$. Ответ: 1) y = -x + 5; 2) y = 3; 3) x = 2.

87. Составить уравнение прямой, проходящей через начало координат и образующей с осью Ох углы: 1) $\alpha = 45^{\circ}$; 2) $\alpha = 180^{\circ}$; 3) $\alpha = -60^{\circ}$.

Omeem: 1) y = x; 2) y = 0; 3) $y = -\sqrt{3}x$.

- **88.** Дана прямая 2x + 3y + 4 = 0. Составить уравнение прямой, проходящей через точку A (2,1):
- 1) параллельно данной прямой;
- 2) перпендикулярно данной прямой.

Omeem: 1) 2x + 3y - 7 = 0; 2) 3x - 2y - 4 = 0.

89. Точка, двигаясь равномерно и прямолинейно, за 4c переместилась из положения A(6,-7) в положение B(-4,5). Где находилась точка в момент времени t=2 c?

Ответ: C(1,-1).

- **90.** Даны вершины треугольника A (-2,0), B (2,6), C (4,2). Составить уравнения:
- 1) стороны AC; 2) медианы BM; 3) высоты BH; 4) прямой BE, параллельной стороне AC.

Omeem: 1) x-3y+2=0; 2) 5x-y-4=0;

3) 3x + y - 12 = 0; 4)x - 3y + 16 = 0.

91. Луч света направлен по прямой 2x - 3y - 12 = 0. Дойдя до оси абсцисс, он от нее отразился. Определить точку встречи луча с осью Ox и уравнение отражённого луча.

Omeem: B(6,0), 2x + 3y - 12 = 0.

92. Даны уравнения двух сторон прямоугольника x - 2y = 0, x - 2y + 15 = 0 и уравнение одной из его диагоналей 7x + y - 15 = 0. Найти координаты вершин прямоугольника.

Ответ: (2,1), (4,2), (-1,7), (1,8).

93. Даны уравнения сторон треугольника AB: 3x - 2y + 4 = 0, AC: x - 2y + 4 = 0, BC: 2x + y - 16 = 0. Составить уравнение высоты треугольника, опущенной на сторону AC.

Ombem: 2x + y - 16 = 0.

94. Даны уравнение прямой ℓ : 3x - 2y + 1 = 0 и точка A (-2,4). Найти: 1) уравнение прямой, проходящей через точку A перпендикулярно прямой ℓ ; 2) проекцию точки A на прямую ℓ ; 3) точку C, симметричную точке A относительно прямой ℓ .

Omeem: 1) 2x + 3y - 8 = 0; 2) (1,2); 3) (4,0).

95. Найти проекцию точки P (-6,4) на прямую 4x - 5y + 3 = 0.

Ответ: (-2,-1).

96. Найти точку B, симметричную точке A(1,4) относительно прямой 2x-3y-3=0 .

Ответ: В (5,-2).

97. Определить угол ф между двумя прямыми:

1)
$$5x - y + 7 = 0$$
, $3x + 2y = 0$;

2)
$$3x - 2y + 7 = 0$$
, $2x + 3y - 3 = 0$;

3)
$$x-2y-4=0$$
, $2x-4y+3=0$;

4)
$$3x + 2y - 1 = 0$$
, $5x - 2y + 3 = 0$.

Omsem: 1)
$$\varphi = \frac{\pi}{4}$$
; 2) $\varphi = \frac{\pi}{2}$; 3) $\varphi = 0$; 4) $\varphi = arctg \frac{16}{11}$.

6. Плоскость в пространстве

В декартовых координатах каждая плоскость задается уравнением первой степени относительно текущих координат x, y, z. И, обратно, всякое линейное уравнение определяет плоскость в пространстве. Уравнение вида

$$Ax + By + Cz + D = 0$$

Рис.16

называется общим уравнением плоскости в пространстве. Вектор $\overline{N}=(A,B,C)$ перпендикулярен плоскости и называется нормальным вектором плоскости (рис. 16). Уравнение плоскости, проходящей через данную точку $M_1(x_1,y_1,z_1)$, перпендикуляр-

но вектору
$$\overline{N}=(A,B,C)$$
 имеет вид
$$A(x-x_1)+B(y-y_1)+C(z-z_1)=0\,.$$

Уравнением плоскости в отрезках называется уравнение вида

$$\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1,$$

где a,b,c-величины отрезков,которые плоскость отсекает на координатных осях. Угол ϕ между двумя плоскостями

$$A_1x + B_1y + C_1z + D_1 = 0$$
 $A_2x + B_2y + C_2z + D_2 = 0$

вычисляется по формуле

$$\cos \varphi = \frac{\left(\overline{N}_1 \cdot \overline{N}_2\right)}{\left|\overline{N}_1\right| \cdot \left|\overline{N}_2\right|} = \frac{A_1 A_2 + B_1 B_2 + C_1 C_2}{\sqrt{A_1^2 + B_1^2 + C_1^2} \cdot \sqrt{A_2^2 + B_2^2 + C_2^2}}.$$

Условием параллельности двух плоскостей является коллинеарность их нормальных векторов

$$\overline{N}_1 \parallel \overline{N}_2$$
 или $\frac{A_1}{A_2} = \frac{B_1}{B_2} = \frac{C_1}{C_2}$.

Условием перпендикулярности двух плоскостей является равенство нулю скалярного произведения их нормальных векторов

$$(\overline{N}_1 \cdot \overline{N}_2) = 0$$
 или $A_1 A_2 + B_1 B_2 + C_1 C_2 = 0$.

98. Построить плоскости, заданные уравнениями

1)
$$5x + 2y + 3z - 15 = 0$$
; 2) $3x + 2y - 6 = 0$.

Решение. 1) Из данного уравнения видно, что плоскость не проходит через начало координат ($D=-15 \neq 0$). Чтобы построить эту плоскость, надо найти отрезки, отсекаемые плоскостью на осях координат. Найдём точку пересечения плоскости с осью Ох. Для этого примем в данном уравнении y=0 и z=0, тогда 5x-15=0, x=3. Аналогично, если x=0 и z=0, то y=7,5; если x=0 и y=0, то z=5. Плоскость, проведённая через найденные точки $M_1(3,0,0)$, $M_2(0;7,5;0)$, $M_3(0,0,5)$, будет искомой. Прямые M_1M_2 , M_2M_3 , M_1M_3 являются следами данной плоскости в координатных плоскостях (рис. 17).

2) Уравнение плоскости 3x + 2y - 6 = 0 не содержит слагаемого с координатой z (C = 0). Нормальный вектор плоскости $\overline{N} = (3, 2, 0)$ перпендикулярен оси Oz, следовательно, данная плоскость параллельна оси Oz. Найдём точки пересечения данной плоскости с осями координат Ox и Oy: $M_1(2,0,0)$ и $M_2(0,3,0)$. Следом данной плоскости в плоскости xOy является прямая M_1M_2 , а в плоскостях xOz и yOz — прямые, параллельные оси Oz и проходящие через точки M_1 и M_2 (рис. 18).

Рис.17 Рис.18

99. Даны точки $M_1(3,0,-4)$ и $M_2(4,5,-8)$. Написать уравнение плоскости, проходящей через точку M_1 перпендикулярно вектору $\overline{M_1M}_2$.

Pешение. Точка M_1 лежит в искомой плоскости, поэтому для нахождения уравнения плоскости воспользуемся формулой

$$A(x-x_1) + B(y-y_1) + C(z-z_1) = 0$$
.

В качестве нормального вектора плоскости примем вектор $\overline{N} = \overline{M_1 M}_2$ (рис.19). Подставляя в уравнение плоскости координаты точки M_1 и координаты нормального вектора $\overline{N} = \overline{M_1 M}_2 = (1,5,-4)$, получим уравнение искомой плоскости:

$$1 \cdot (x-3) + 5(y-0) - 4(z+4) = 0$$
 или $x + 5y - 4z - 19 = 0$.

100. Составить уравнение плоскости, проходящей через точки $M_1(3,0,-4)$ и $M_2(4,5,-8)$ перпендикулярно плоскости 2x+4y-z-7=0.

Решение. Уравнение искомой плоскости, проходящей через точку $M_1(3,0,-4)$, находим в виде A(x-3)+B(y-0)+C(z+4)=0. Нормальный вектор искомой плоскости перпендикулярен вектору $\overline{N}_2=(2,4,-1)$ данной плоскости и вектору $\overline{M}_1\overline{M}_2=(1,5,-4)$ (рис. 20).

Рис. 20

Поэтому в качестве нормального вектора \overline{N}_1 можно принять векторное произведение двух векторов \overline{N}_2 и $\overline{M_1M}_2$:

$$\overline{N}_{1} = \left[\overline{N}_{2} \cdot \overline{M}_{1} \overline{M}_{2} \right] = \begin{vmatrix} \overline{i} & \overline{j} & \overline{k} \\ 2 & 4 & -1 \\ 1 & 5 & -4 \end{vmatrix} = -11\overline{i} + 7\overline{j} + 6\overline{k}.$$

Подставляя координаты нормального вектора $\overline{N}_1 = (-11,7,6)$ в уравнение A(x-3)+B(y-0)+C(z+4)=0, получим уравнение искомой плоскости -11(x-3)+7(y-0)+6(z+4)=0 или 11x-7y-6z-57=0.

101. Указать особенности в расположении относительно системы координат, построить плоскости и определить их нормальные векторы:

1)
$$2x - y + z - 6 = 0$$
; 2) $y - 2z + 8 = 0$; 3) $2y - 5 = 0$;

4)
$$2x - y - 2z = 0$$
; 5) $x = 0$.

Ответ:

- 1) плоскость общего положения, $\overline{N} = (2, -1, 1)$;
- 2) плоскость параллельна оси Ox, $\overline{N} = (0,1,-2)$;
- 3) плоскость параллельна плоскости xOz, $\overline{N} = (0, 2, 0)$;
- 4) плоскость проходит через начало координат, $\overline{N} = (2, -1, -2)$;
- 5) плоскость $yOz, \ \overline{N} = (1,0,0).$
- **102.** Вычислить объём пирамиды, ограниченной плоскостью 2x + 6y 3z 12 = 0 и координатными плоскостями.

Ответ: 8 куб. ед.

103. Составить уравнение плоскости, которая проходит через точку $M_1(1,2,-2)$ и имеет нормальный вектор $\overline{N}=(1,-3,2)$.

Omeem: x - 3y + 2z + 9 = 0.

104. Составить уравнение плоскости, проходящей через точку $M_1(3,4,-5)$, параллельно двум векторам $\overline{a}=(3,1,-1)$ и $\overline{b}=(1,-2,1)$.

Omeem: x + 4y + 7z + 16 = 0.

105. Составить уравнение плоскости, проходящей через три точки $M_1(3,0,4)$,

$$M_2(5,2,6)$$
 и $M_3(2,3,-3)$.

Omeem: 5x - 3y - 2z - 7 = 0.

106. Составить уравнение плоскости, которая проходит:

- 1) через точку $M_1(2,1,-3)$ параллельно плоскости xOy;
- 2) через точку $M_1(1,-3,4)$ параллельно плоскости yOz;
- 3) через точку $M_1(4,5,6)$ параллельно плоскости xOz.

Omeem: 1) z + 3 = 0; 2) x - 1 = 0; 3) y - 5 = 0.

107. Составить уравнение плоскости, которая проходит:

- 1) через ось Оx и точку $M_1(4,-1,2)$;
- 2) через ось Оz и точку $M_1(3,1,-1)$;
- 3) через ось Оу и точку $M_1(2,-2,3)$.

Omeem: 1) 2y + z = 0; 2) x - 3y = 0; 3) 3x - 2z = 0.

108. Составить уравнение плоскости, которая проходит:

- 1) через точки $M_1(7,2,-3)$ и $M_2(5,6,-4)$ параллельно оси Ox;
- 2) через точки $M_1(3,-2,5)$ и $M_2(2,3,1)$ параллельно оси Oz.

Omeem: 1) y + 4x - 10 = 0; 2) 5x + y - 13 = 0.

109. Определить, при каких значениях ℓ и m следующие пары уравнений будут определять параллельные плоскости:

- 1) $2x + \ell y + 3z 5 = 0$; mx 6y 6z + 2 = 0;
- 2) mx + 3y 2z 1 = 0; $2x 5y \ell z = 0$.

Omeem: 1) $\ell = 3$, m = -4; 2) $\ell = -\frac{10}{3}$, $m = -\frac{6}{5}$.

2)
$$\ell = -\frac{10}{3}$$
, $m = -\frac{6}{5}$.

110. Определить, при каких значениях ℓ следующие пары уравнений будут определять перпендикулярные плоскости:

- 1) $3x 5y + \ell z 3 = 0$, x + 3y + 2z + 5 = 0;
- 2) 5x + y 3z 3 = 0, $2x + \ell y 3z + 1 = 0$.

Omsem: 1) $\ell = 6$; 2) $\ell = -19$.

111. Определить двугранные углы, образованные пересечением следующих плоскостей:

1)
$$2x + 3y - z + 15 = 0$$
, $3x - 5y - 9z + 1 = 0$;

2)
$$x - \sqrt{2}y + z - 1 = 0$$
, $x + \sqrt{2}y - z + 3 = 0$;

3)
$$x + 2y - 3z + 4 = 0$$
, $x - 3y - 2z = 0$.

Omsem: 1)
$$\frac{\pi}{2}$$
 u $\frac{\pi}{2}$; 2) $\frac{\pi}{3}$ u $\frac{2\pi}{3}$; 3) $\arccos \frac{1}{14}$ u $\pi - \arccos \frac{1}{14}$.

112. Составить уравнение плоскости, которая проходит через начало координат параллельно плоскости 5x - 6y + 7z - 8 = 0.

Omeem: 5x - 6y + 7z = 0.

113. Написать уравнение плоскости, которая проходит через точку $M_1(1,2,-2)$ параллельно плоскости 3x-y+z-4=0

Omeem: 3x - y + z + 1 = 0.

114. Составить уравнение плоскости, проходящей через точку M_1 перпендикулярно двум плоскостям α_1 и α_2 :

1)
$$M_1(1,1,-2)$$
, $\alpha_1: 2x-z+1=0$, $\alpha_2: x+2y=0$;

2)
$$M_1(2,-1,1)$$
, $\alpha_1: 2x-z+1=0$, $\alpha_2: y=0$.

Omeem: 1)
$$2x - y + 4z + 7 = 0$$
; 2) $x + 2z - 4 = 0$.

115. Плоскость проходит через точку $M_1(6,-10,1)$ и отсекает на оси абсцисс отрезок a=-3 и на оси аппликат отрезок c=2. Составить уравнение плоскости.

Omeem: 4x + 3y - 6z + 12 = 0.

116. Составить уравнение плоскости, параллельной вектору $\overline{\ell} = (2,1,-1)$ и отсекающей на координатных осях Ох и Оу отрезки a = 3, b = -2.

Omeem: 2x - 3y + z - 6 = 0.

Общими уравнениями прямой в пространстве называется уравнения вида

$$\begin{cases} A_1 x + B_1 y + C_1 z + D_1 = 0, \\ A_2 x + B_2 y + C_2 z + D_2 = 0, \end{cases}$$

если не выполняются условия $\frac{A_1}{A_2} = \frac{B_1}{B_2} = \frac{C_1}{C_2}$.

Прямая здесь задана как пересечение двух плоскостей.

Если известна одна точка $M_1(x_1,y_1,z_1)$ прямой и направляющий вектор $\overline{S}=(m,n,p)$, то прямая в пространстве может быть определена каноническими уравнениями (рис. 21)

$$\frac{x-x_1}{m} = \frac{y-y_1}{n} = \frac{z-z_1}{p} .$$

Обозначив буквой t каждое из равных отношений в канонических уравнениях, получим

$$\frac{x - x_1}{m} = \frac{y - y_1}{n} = \frac{z - z_1}{p} = t.$$

Рис.21

Отсюда

$$\begin{cases} x = x_1 + mt, \\ y = y_1 + nt, \\ z = z_1 + pt \end{cases} - \infty < t < \infty.$$

Эти уравнения называются параметрическими уравнениями прямой.

Канонические уравнения прямой, проходящей через две данные точки $M_1(x_1,y_1,z_1)$ и $M_2(x_2,y_2,z_2)$, имеют вид

$$\frac{x-x_1}{x_2-x_1} = \frac{y-y_1}{y_2-y_1} = \frac{z-z_1}{z_2-z_1}.$$

Пусть даны две прямые в пространстве каноническими уравнениями:

$$\frac{x - x_1}{m_1} = \frac{y - y_1}{n_1} = \frac{z - z_1}{p_1}, \qquad \frac{x - x_2}{m_2} = \frac{y - y_2}{n_2} = \frac{z - z_2}{p_2}.$$

Угол между двумя прямыми в пространстве вычисляется по формуле

$$\cos \varphi = \frac{\left(\overline{S}_{1} \cdot \overline{S}_{2}\right)}{\left|\overline{S}_{1}\right| \cdot \left|\overline{S}_{2}\right|} = \frac{m_{1}m_{2} + n_{1}n_{2} + p_{1}p_{2}}{\sqrt{m_{1}^{2} + n_{1}^{2} + p_{1}^{2}} \cdot \sqrt{m_{2}^{2} + n_{2}^{2} + p_{2}^{2}}}.$$

Условием параллельности двух прямых в пространстве является коллинеарность их направляющих векторов

$$\overline{S}_1 \parallel \overline{S}_2$$
 или $\frac{m_1}{m_2} = \frac{n_1}{n_2} = \frac{p_1}{p_2}$.

Условием перпендикулярности двух прямых в пространстве является равенство нулю скалярного произведения их направляющих векторов

$$\left(\overline{S}_1\cdot\overline{S}_2\right)=0$$
 или $m_1m_2+n_1n_2+p_1p_2=0$.

Пусть даны прямая $\frac{x-x_1}{m} = \frac{y-y_1}{n} = \frac{z-z_1}{p}$ и плоскость Ax + By + Cz + D = 0.

Угол между прямой и плоскостью определяется по формуле

$$\sin \varphi = \frac{\left(\overline{N} \cdot \overline{S}\right)}{\left|\overline{N}\right| \cdot \left|\overline{S}\right|} = \frac{Am + Bn + Cp}{\sqrt{A^2 + B^2 + C^2} \cdot \sqrt{m^2 + n^2 + p^2}}.$$

Условие параллельности прямой и плоскости

$$(\overline{N}\cdot\overline{S})=0$$
 или $Am+Bn+Cp=0$.

Условие перпендикулярности прямой и плоскости

$$\overline{N} \parallel \overline{S}$$
 или $\frac{A}{m} = \frac{B}{n} = \frac{C}{p}$.

117. Написать канонические уравнения перпендикуляра, опущенного из точки $M_1(1,-2,3)$ на плоскость 4x - y + 2z - 3 = 0.

Рис.22

Решение. Нормальный вектор $\overline{N}=(4,-1,2)$, перпендикулярный данной плоскости, параллелен искомой прямой (рис.22). Поэтому его можно считать направляющим вектором этой прямой $\overline{S}=\overline{N}$. Подставляя координаты точки $M_1(1,-2,3)$ и координаты направляющего вектора $\overline{S}=(4,-1,2)$ в канонические уравнения прямой

$$\frac{x-x_1}{m}=\frac{y-y_1}{n}=\frac{z-z_1}{p},$$

получим искомое уравнение прямой

$$\frac{x-1}{4} = \frac{y+2}{-1} = \frac{z-3}{2}$$
.

118. Найти точку пересечения прямой $\frac{x-1}{1} = \frac{y+1}{-2} = \frac{z}{6}$ и плоскости 2x + 3y + z - 1 = 0.

Решение. Чтобы найти точку пересечения P прямой и плоскости, надо решить совместно их уравнения (рис.23). Для этого сначала приведем канонические уравнения прямой к параметрическому виду

Отсюда

Рис.23

$$\frac{x-1}{1} = \frac{y+1}{-2} = \frac{z}{6} = t.$$

 $\begin{cases} x = 1 + t, \\ y = -1 - 2t, \\ z = 6t \end{cases}$

Подставляя x, y, z в уравнение плоскости, получим

$$2(1+t)+3(-1-2t)+6t-1=0$$
, $t=1$.

Искомая точка пересечения прямой и плоскости имеет координаты

$$x = 1 + 1 = 2$$
, $y = -1 - 2 = -3$, $z = 6$ или $P(2,-3,6)$.

119. Привести к каноническому виду общие уравнения прямой

$$\begin{cases} x - 2y + 3z - 4 = 0, \\ 3x + 2y - 5z - 4 = 0. \end{cases}$$

Решение. Чтобы перейти от общих уравнений прямой к ее каноническим уравнениям

$$\frac{x-x_1}{m}=\frac{y-y_1}{n}=\frac{z-z_1}{p},$$

надо на прямой найти какую-нибудь точку $M_1(x_1,y_1,z_1)$ и определить направляющий вектор $\overline{S}=(m,n,p)$ прямой. Точку M_1 находят так: задают произвольно, например, z=0 и из общих уравнений прямой находят x и y:

$$\begin{cases} x - 2y - 4 = 0, \\ 3x + 2y - 4 = 0. \end{cases}$$

Отсюда x=2, y=-1 или $M_1(2,-1,0)$.

Направляющий вектор \overline{S} прямой перпендикулярен нормальным векторам $\overline{N}_1 = (1,-2,3)$ и $\overline{N}_2 = (3,2,-5)$ данных плоскостей (рис.24).

$$\overline{S} = [\overline{N}_1 \cdot \overline{N}_2] = \begin{vmatrix} \overline{i} & \overline{j} & \overline{k} \\ 1 & -2 & 3 \\ 3 & 2 & -5 \end{vmatrix} = 4\overline{i} + 14\overline{j} + 8\overline{k}.$$

Рис.24 Тогда канонические уравнения данной прямой

примут вид
$$\frac{x-2}{4} = \frac{y-1}{14} = \frac{z}{8}$$
 или $\frac{x-2}{2} = \frac{y-1}{7} = \frac{z}{4}$.

120. Составить канонические уравнения прямой, проходящей через точку $M_1(2,0,-3)$ параллельно:

1) вектору
$$\overline{S} = (2, -3, 5);$$
 2) прямой $\frac{x-1}{5} = \frac{y+2}{2} = \frac{z+1}{-1};$

Omsem: 1)
$$\frac{x-2}{2} = \frac{y}{-3} = \frac{z+3}{5}$$
; 2) $\frac{x-2}{5} = \frac{y}{2} = \frac{z+3}{-1}$; 3) $\frac{x-2}{1} = \frac{y}{0} = \frac{z+3}{0}$;
4) $\frac{x-2}{0} = \frac{y}{1} = \frac{z+3}{0}$; 5) $\frac{x-2}{0} = \frac{y}{0} = \frac{z+3}{1}$.

121. Составить канонические уравнения прямой, проходящей через точку
$$M_1(1,-5,3)$$
 и образующей с осями координат углы $60^\circ,45^\circ,120^\circ$.

Omsem:
$$\frac{x-1}{1} = \frac{y+5}{\sqrt{2}} = \frac{z-3}{-1}$$
.

122. Написать уравнение прямой, проходящей через две точки $M_1(-1,2,3)$ и $M_2(2,6,-2)$. Найти направляющие косинусы прямой.

Omsem:
$$\frac{x+1}{3} = \frac{y-2}{4} = \frac{z-3}{-5}$$
; $\cos \alpha = \frac{3}{5\sqrt{2}}$, $\cos \beta = \frac{4}{5\sqrt{2}}$, $\cos \gamma = -\frac{\sqrt{2}}{2}$.

123. Через точки $M_1(-6,6,-5)$ и $M_2(12,-6,1)$ проведена прямая. Найти точки пересечения этой прямой с координатными плоскостями.

Omeem:
$$(9,-4,0), (3,0,-2), (0,2,-3).$$

124. Привести к каноническому виду общие уравнения прямых:

1)
$$\begin{cases} x - 2y + 3z + 1 = 0, \\ 2x + y - 4z - 8 = 0; \end{cases}$$
 2)
$$\begin{cases} 2x - 3y - 3z = 9, \\ x - 2y + z = 3. \end{cases}$$

Omeem:
$$1)\frac{x-3}{1} = \frac{y-2}{2} = \frac{z}{1};$$
 $2)\frac{x-9}{9} = \frac{y-3}{5} = \frac{z}{1}.$

125. Написать канонические уравнения прямой, проходящей через точку $M_1(2,0,-3)$ параллельно прямой $\begin{cases} 3x-y+2z-7=0,\\ x+3y-2z+3=0. \end{cases}$

Omsem:
$$\frac{x-2}{-2} = \frac{y}{4} = \frac{z+3}{5}$$
.

126. При каком значении m прямые

$$\begin{cases} x = -2 + mt \,, \\ y = 1 - 2t \,, \end{cases}$$
 и
$$\begin{cases} x + y - z &= 0 \,, \\ x - y - 5z - 8 = 0 \end{cases}$$
 параллельны?

Omвет: m = 3.

127. При каком значении m прямые

$$\begin{cases} x = 1 + 2t, \\ y = -2 + 3t, \\ z = 1 - 6t \end{cases}$$
 и
$$\frac{x - 5}{3} = \frac{y + 1}{m} = \frac{z - 2}{2}$$
 перпендикулярны?

Omвет: m = 2.

128. Найти острый угол между прямыми

1)
$$\frac{x-3}{1} = \frac{y+2}{-1} = \frac{z}{\sqrt{2}}$$
 u $\frac{x+2}{1} = \frac{y-3}{1} = \frac{z+5}{\sqrt{2}}$;

2)
$$\begin{cases} x = -2 + 3t, \\ y = 0, \\ z = 3 - t \end{cases}$$

$$x = -1 + 2t, \\ y = 0, \\ z = -3 + t.$$

Omsem: 1) 60° ; 2) 45° .

129. Определить косинус угла между прямыми

$$\begin{cases} x - y - 4z - 5 = 0, \\ 2x + y - 2z - 4 = 0 \end{cases} \quad \text{if} \quad \frac{x - 1}{6} = \frac{y + 1}{3} = \frac{z - 2}{-2}.$$

Ombem: $\cos \varphi = \pm \frac{4}{21}$.

130. При каком значении m прямая $\frac{x+1}{3} = \frac{y-2}{m} = \frac{z+3}{-2}$ параллельна плоскости x-3y+6z+7=0 ?

Ответ: m = -3.

131. Выяснить, лежит ли прямая $\begin{cases} x = 3 + 4t \ , \\ y = 1 - 4t \ , \$ в плоскости $3x + 2y - 4z - 23 = 0 \ . \\ z = -3 + t \end{cases}$

Ответ: прямая лежит в плоскости.

132. Найти угол между прямой и плоскостью:

1)
$$\frac{x-1}{1} = \frac{y-2}{0} = \frac{z}{-2}$$
, $2x-5y+z-7=0$;

2)
$$\frac{x+2}{3} = \frac{y}{0} = \frac{z-3}{-1}$$
, $2x+z-4=0$.

Ответ: 1) 0° , 2) 45° .

133. Составить уравнения прямой, проходящей через точку M_1 перпендикулярно плоскости α :

1)
$$M_1(-1, 2, -3)$$
, $\alpha: 5x - 4y + 2z = 0$;

2)
$$M_1(2, 0, -4)$$
, $\alpha: x - 3y - 7 = 0$.

Omsem: 1)
$$\frac{x+1}{5} = \frac{y-2}{-4} = \frac{z+3}{2}$$
; 2) $\frac{x-2}{1} = \frac{y}{-3} = \frac{z+4}{0}$.

134. Написать уравнение плоскости, проходящей через точку

$$M_1(3,4,0)$$
 и прямую $\frac{x-2}{1} = \frac{y+1}{2} = \frac{z+2}{2}$.

Ombem: 2x - z - 6 = 0.

135. Составить уравнение плоскости, проходящей через точку

$$M_1(3, 4, 5)$$
 перпендикулярно прямой $\frac{x-1}{2} = \frac{y+2}{-4} = \frac{z}{5}$.

Omsem: 2x - 4y + 5z - 15 = 0.

136. Доказать, что прямые
$$\frac{x-1}{2} = \frac{y+2}{-3} = \frac{z-5}{4}$$
 и
$$\begin{cases} x = 3t+7, \\ y = 2t+2, \\ z = -2t+1 \end{cases}$$

лежат в одной плоскости, и составить уравнение этой плоскости.

Omeem:
$$2x - 16y - 13z + 31 = 0$$
.

137. Даны точка P (-2, 0, 3) и уравнение плоскости α : 2x - 2y + 10z + 1 = 0 .

Найти:

- 1) уравнения прямой ℓ ,проходящей через точку P перпендикулярно плоскости α ;
- 2) проекцию точки P на плоскость α ;
- 3) расстояние от точки P до плоскости α ;
- 4) точку Q, симметричную точке P относительно плоскости α .

Omsem: 1)
$$\frac{x+2}{1} = \frac{y}{-1} = \frac{z-3}{5}$$
; 2) $\left(-\frac{5}{2}; \frac{1}{2}; \frac{1}{2}\right)$; 3) $\frac{3\sqrt{3}}{2}$; 4) $Q(-3, 1, -2)$.

138. Найти проекцию точки M_1 (4, -3, 1) на плоскость x + 2y - z - 3 = 0 и вычислить расстояние от точки M_1 до плоскости.

Ombem: P(5, -1, 0); $d = \sqrt{6}$.

139. Найти точку P, симметричную точке Q(1,3,-4) относительно плоскости 3x + y - 2z = 0.

Ответ: P(-5, 1, 0)

140. Даны уравнения прямой ℓ : $\frac{x}{3} = \frac{y+7}{5} = \frac{z-2}{2}$ и точка P(2, -1, 3).

Найти:

- 1) уравнение плоскости, проходящей через точку P перпендикулярно прямой ℓ ;
- 2) проекцию точки P на прямую ℓ ;
- 3) расстояние от точки P до прямой ℓ ;
- 4) точку Q, симметричную точке P относительно прямой ℓ .

Omeem: 1) 3x + 5y + 2z - 7 = 0; 2) (3, -2, 4); 3) $\sqrt{3}$; 4) Q(4, -3, 5).

141. Найти проекцию точки $M_1(2, -1, 3)$ на прямую $\begin{cases} x = 3t, \\ y = -7 + 5t, \\ z = 2 + 2t. \end{cases}$

Ответ: Р (3, -2, 4).

142. Вычислить расстояние d от точки $M_1(1, -1, -2)$ до прямой $\frac{x+3}{3} = \frac{y+2}{2} = \frac{z-8}{-2}.$

Oтвет: d = 7

143. Даны уравнения движения точки M(x,y,z) : $\begin{cases} x = 5 - 2t, \\ y = -3 + 2t, \\ z = 5 - t. \end{cases}$

Определить расстояние d, которое пройдет эта точка за промежуток времени от $t_1 = 0$ до $t_2 = 7$.

Ответ: d = 21.

8. Линии второго порядка

8.1 Окружность

Каноническое уравнение окружности с центром в точке $C(x_0,y_0)$ и радиусом R имеет вид $(x-x_0)^2+(y-y_0)^2=R^2$.

В частности, если центр окружности лежит в начале координат, то есть $x_0=y_0=0$, то уравнение окружности примет простейший вид $x^2+y^2=R^2$. Общее алгебраическое уравнение второй степени

$$Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0$$

определяет уравнение окружности, если A = C, B = 0.

Следовательно, общее уравнение окружности имеет вид:

$$Ax^2 + Ay^2 + Dx + Ey + F = 0$$

Разделив это уравнение на A и выделив полные квадраты по x и по y, приведем его к каноническому виду.

144. Составить уравнение окружности, если точки A(3, 2) и B(-1, 6) являются концами одного из диаметров окружности.

Решение. Каноническое уравнение окружности имеет вид:

$$(x-x_0)^2 + (y-y_0)^2 = R^2$$
,

где координаты центра С (x_0,y_0) и радиус R пока неизвестны (рис.25). Найдем координаты центра окружности как координаты середины отрезка AB:

$$x_C = \frac{x_A + x_B}{2} = \frac{3 - 1}{2} = 1,$$

$$y_C = \frac{y_A + y_B}{2} = \frac{2+6}{2} = 4, \quad C(1,4).$$

Рис.25

Радиус R определим по формуле расстояния между двумя точками

$$R = |\overline{CA}| = \sqrt{(x_A - x_C)^2 + (y_A - y_C)^2} = \sqrt{(3-1)^2 + (2-4)^2} = 2\sqrt{2}.$$

70

Таким образом, искомая окружность имеет уравнение

$$(x-1)^2 + (y-4)^2 = 8.$$

145. Привести к каноническому виду общее уравнение окружности $2x^2 + 2y^2 - 3x + 4y + 2 = 0$. Найти центр и радиус окружности.

Решение. Разделим все члены данного уравнения на 2.

$$x^{2} + y^{2} - \frac{3}{2}x + 2y + 1 = 0.$$

Сгруппируем члены, содержащие только x и только y, и дополним их до полных квадратов

$$(x^{2} - \frac{3}{2}x) + (y^{2} + 2y) + 1 = 0,$$

$$\left[x^{2} - 2 \cdot \frac{3}{4}x + \left(\frac{3}{4}\right)^{2}\right] - \left(\frac{3}{4}\right)^{2} + \left[y^{2} + 2y + 1\right] - 1 + 1 = 0.$$

Отсюда
$$\left(x-\frac{3}{4}\right)^2 + \left(y+1\right)^2 = \frac{9}{16}$$
.

Таким образом, уравнение окружности приведено к каноническому виду.

Ответ: центр окружности $C(\frac{3}{4}, -1)$, радиус $R = \frac{3}{4}$.

146. Построить окружности. Записать уравнения полуокружностей, расположенных в верхней, нижней, правой и левой полуплоскостях системы координат xOy

1)
$$x^2 + y^2 = 9$$
; 2) $x^2 + y^2 = 25$.

Omsem: 1)
$$y = \sqrt{9 - x^2}$$
, $y = -\sqrt{9 - x^2}$, $x = \sqrt{9 - y^2}$, $x = -\sqrt{9 - y^2}$;
2) $y = \sqrt{25 - x^2}$, $y = -\sqrt{25 - x^2}$, $x = \sqrt{25 - y^2}$, $x = -\sqrt{25 - y^2}$.

147. Построить окружности. Записать уравнения полуокружностей, расположенных в верхней и нижней полуплоскостях относительно горизонтального диаметра окружности

1)
$$(x-2)^2 + y^2 = 4$$
; 2) $x^2 + (y-3)^2 = 25$.

Omeem: 1)
$$y = \sqrt{4 - (x - 2)^2}$$
, $y = -\sqrt{4 - (x - 2)^2}$;

$$y = -\sqrt{4 - (x - 2)^2};$$

2)
$$y = 3 + \sqrt{25 - x^2}$$
, $y = 3 - \sqrt{25 - x^2}$.

$$y = 3 - \sqrt{25 - x^2}$$
.

148. Составить каноническое уравнение окружности, если

- 1) окружность проходит через начало координат, и ее центр совпадает с точкой C(6,-8);
- 2) окружность проходит через точку A (5,-8), и ее центр находится в точке C(0,4);
- 3) окружность проходит через точки O(0,0), A(2,0), B(0,4);
- 4) окружность касается оси Ох в начале координат и пересекает ось Оу в точке A(0,10).

Omsem: 1)
$$(x-6)^2 + (y+8)^2 = 100$$
;

2)
$$x^2 + (y-4)^2 = 169$$
;

3)
$$(x-1)^2 + (y-2)^2 = 5$$
;

4)
$$x^2 + (y-5)^2 = 25$$
.

149. Найти центр и радиус каждой из следующих окружностей:

1)
$$x^2 + y^2 + 4x - 6y - 3 = 0$$
;

4)
$$x^2 + y^2 - 6y = 0$$
;

2)
$$x^2 + y^2 - x + 2y - 1 = 0$$
;

5)
$$3x^2 + 3y^2 - 4x + 6y - 15 = 0$$
;

3)
$$x^2 + y^2 + 4x = 0$$
;

6)
$$2x^2 + 2y^2 + 8x - 3y - 2 = 0$$
.

1)
$$C(-2,3)$$
, $R=4$;

Omeem: 1)
$$C(-2,3)$$
, $R=4$; 4) $C(0,3)$, $R=3$;

2)
$$C(\frac{1}{2},-1)$$
, $R=\frac{3}{2}$

2)
$$C(\frac{1}{2},-1)$$
, $R = \frac{3}{2}$; 5) $C(\frac{3}{2},-1)$, $R = \frac{\sqrt{58}}{3}$;

3)
$$C(-2,0)$$
, $R=2$;

6)
$$C(-2, \frac{3}{4}), R = \frac{\sqrt{89}}{4}.$$

150. В точке A(0,3) провести касательную к окружности $x^2 + y^2 - 2x - 3y = 0.$

Omeem: 2x - 3y + 9 = 0.

151. Найти точки пересечения прямой и окружности

1)
$$v = x + 2$$

1)
$$y = x + 2$$
 $x^2 + y^2 - 4x - 12 = 0$;

2)
$$x + y = 0$$

2)
$$x + y = 0$$
 $x^2 + y^2 + 5x = 0$.

Omsem: 1)
$$(2,4);$$
 $(-2,0);$ 2) $(0,0);$ $\left(-\frac{5}{2},\frac{5}{2}\right).$

2)
$$(0,0);$$
 $\left(-\frac{5}{2},\frac{5}{2}\right)$

152. Показать, что прямая $y = \sqrt{3} x$ касается окружности $x^2 + y^2 - 4x + 1 = 0$. Найти точку касания.

Omsem:
$$\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$$
.

8.2 Эллипс

Каноническое уравнение эллипса имеет вид

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \qquad (a > b).$$

 $|\overline{A_1A_2}|$ = 2a - большая ось эллипса;

 $|\overline{B_1B_2}|$ =2b - малая ось эллипса;

 $|\overline{F_1F_2}| = 2c$ - расстояние между двумя фокусами, где $c^2 = a^2 - b^2$.

Начало координат O - центр симметрии эллипса, оси координат — оси симметрии эллипса.

 $F_{1}\left(-c\,,0\right)$ и $F_{2}\left(\,c\,,0\right)$ - фокусы эллипса.

 $A_1(-a\,,0\,),\ A_2(a\,,0\,),\ B_1(0\,,-b\,),\ B_2(0\,,b\,)$ - вершины эллипса (рис.26).

 $\varepsilon = \frac{c}{c} < 1$ называется эксцентриситетом эллипса. Величина Oн

характеризует форму (вытянутость) эллипса.

Рис.26

Окружность можно считать частным случаем эллипса, у которого a=b, следовательно, c=0 и $\mathcal{E}=0$.

153. Дан эллипс $9x^2 + 25y^2 = 225$.

Найти: 1) его полуоси; 2) координаты вершин и центра; 3)координаты фокусов; 4) эксцентриситет; 5) построить эллипс.

Решение.

Разделив все члены данного уравнения на 225, приведем уравнение эллипса к каноническому виду

$$\frac{x^2}{25} + \frac{y^2}{9} = 1.$$

- 1) Из уравнения следует, что большая полуось a = 5, малая полуось b = 3.
- 2) Вершины эллипса $A_1(-5,0)$, $A_2(5,0)$, $B_1(0,-3)$, $B_2(0,3)$, центр эллипса O(0,0).
- 3) Из формулы $c^2=a^2-b^2$ находим $c=\sqrt{25-9}=4$. Следовательно, $F_1(-4,0)$ и $F_2(4,0)$ фокусы эллипса.
- 4) Эксцентриситет эллипса $\varepsilon = \frac{c}{a} = \frac{4}{5} < 1$.
- 5) Построить эллипс (рис.27).

Рис.27

154. Составить уравнение эллипса, если эксцентриситет $\varepsilon = \frac{4}{5}$, а малая ось равна 12.

Pешение. По условию задачи $\varepsilon = \frac{4}{5}$, 2b = 12. Но $\varepsilon = \frac{c}{a}$, поэтому имеем систему уравнений

$$\begin{cases} c^2 = a^2 - b^2, \\ \frac{c}{a} = \frac{4}{5}, \\ b = 6. \end{cases}$$

Решая эту систему, получим a = 10, b = 6.

Следовательно, каноническое уравнение эллипса примет вид

$$\frac{x^2}{100} + \frac{y^2}{36} = 1.$$

155. Дан эллипс $x^2 + 4y^2 = 16$. Найти:

- 1) полуоси эллипса;
- 2) координаты вершин и центра;
- 3) координаты фокусов;
- 4) эксцентриситет;
- 5) построить эллипс.

Omeem: 1) a = 4, b = 2; 2) $A_1(-4,0)$, $A_2(4,0)$, $B_1(0,-2)$, $B_2(0,2)$;

3)
$$F_1(-2\sqrt{3},0)$$
, $F_2(2\sqrt{3},0)$; 4) $\varepsilon = \frac{\sqrt{3}}{2}$.

156. Построить эллипс $\frac{x^2}{25} + \frac{y^2}{16} = 1$. Найти его фокусы и эксцентриситет.

Ответ: $F_1(-3,0)$ и $F_2(3,0)$; $\varepsilon = \frac{3}{5}$.

157. Найти каноническое уравнение эллипса, зная, что:

- 1) фокусное расстояние равно 8, малая полуось равна 3;
- 2) большая полуось равна 6, эксцентриситет $\varepsilon = 0.5$;
- 3) расстояние между фокусами равно 12, эксцентриситет $\varepsilon = \frac{3}{5}$;
- 4) расстояние одного из фокусов эллипса до концов его большой оси равно 1 и 7.

1)
$$\frac{x^2}{25} + \frac{y^2}{9} = 1$$
;

Omeem: 1)
$$\frac{x^2}{25} + \frac{y^2}{9} = 1$$
; 3) $\frac{x^2}{100} + \frac{y^2}{64} = 1$;

$$2) \frac{x^2}{36} + \frac{y^2}{27} = 1$$

2)
$$\frac{x^2}{36} + \frac{y^2}{27} = 1$$
; 4) $\frac{x^2}{16} + \frac{y^2}{7} = 1$.

158. Составить уравнение эллипса, если известны:

- 1) точка $M_1(-2\sqrt{5},2)$ эллипса и его малая полуось b=3;
- 2) точка $M_1(2,-2)$ эллипса и его большая полуось a=4.

1)
$$\frac{x^2}{36} + \frac{y^2}{9} = 1$$
;

Omsem: 1)
$$\frac{x^2}{36} + \frac{y^2}{9} = 1$$
; 2) $\frac{x^2}{16} + \frac{y^2}{16/3} = 1$.

159. Определить эксцентриситет эллипса, если его малая ось видна из фокусов под углом в 60° .

Ответ: $\varepsilon = \frac{\sqrt{3}}{2}$.

160.Найти точки пересечения прямой x + 2y - 7 = 0 и эллипса $x^2 + 4y^2 = 25$.

Ответ: $(4,\frac{3}{2})$ и (3,2).

8.3 Гипербола

Каноническое уравнение гиперболы имеет вид

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1.$$

 $|\overline{A_1 A_2}| = 2a$ - действительная ось гиперболы;

 $|\overline{B_1B_2}|=2b$ - мнимая ось гиперболы;

$$|\overline{F_1F_2}| = 2c$$
 - расстояние между фокусами, где $c^2 = a^2 + b^2$.

Оси координат Оx и Оy - оси симметрии гиперболы, начало координат — центр симметрии гиперболы.

Гипербола пересекает ось абсцисс в точках $A_1(-a,0)$ и $A_2(a,0)$, которые называются ее вершинами.

 $F_1(-c\,,0\,)$ и $F_2(c\,,0\,)$ - фокусы гиперболы.

Для построения гиперболы целесообразно построить точки $B_1(0,-b), B_2(0,b)$ и прямоугольник со сторонами 2a и 2b, параллельными координатным осям и с центром в начале координат. Его диагонали $y=\pm\frac{b}{a}x$ являются асимптотами гиперболы, то есть прямыми, к которым неограниченно приближаются ветви гиперболы (рис.28).

Эксцентриситет гиперболы $\varepsilon = \frac{c}{a} > 1$ характеризует ее форму.

Если a = b, то гипербола называется равносторонней, ее каноническое уравнение имеет вид $x^2 - y^2 = a^2$. Гипербола, которая определяется уравнением $-\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, называется сопряженной к гиперболе $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$.

Ее вершины и фокусы лежат на оси Оу (рис.29).

Рис.28

Рис.29

161.Дана гипербола $16x^2 - 9y^2 = 144$. Найти:

1) полуоси;

- 2) координаты вершин и центра;
- 3) координаты фокусов; 4) эксцентриситет;
- 5) уравнения асимптот; 6) уравнение сопряженной гиперболы;
- 7) построить данную и сопряженную гиперболы.

Решение. Разделив все члены уравнения на 144, приведем данное уравнение гиперболы к каноническому виду

$$\frac{x^2}{9} - \frac{y^2}{16} = 1.$$

- 1) Из уравнения следует, что действительная полуось a = 3, мнимая полуось b = 4. Действительная ось гиперболы и ее фокусы расположены на оси Ox.
- 2) Вершины гиперболы $A_1(-3,0)$ и $A_2(3,0)$; центр гиперболы O(0,0).
- 3) Найдем c по формуле $c^2=a^2+b^2$; $c=\sqrt{a^2+b^2}=\sqrt{9+16}=5$. Следовательно, координаты фокусов $F_1(-5,0)$ и $F_2(5,0)$.
- 4) Эксцентриситет гиперболы $\mathcal{E} = \frac{c}{a} = \frac{5}{3} > 1$.
- 5) По формулам $y = \pm \frac{b}{a}x$ находим уравнения асимптот гиперболы $y = \pm \frac{4}{3}x$.
- 6) Уравнение сопряженной гиперболы $-\frac{x^2}{9} + \frac{y^2}{16} = 1$.

7) Для построения гиперболы через точки A_1 , A_2 , $B_1(0,-4)$ и $B_2(0,4)$ проводим прямые, параллельные координатным осям. Получим прямоугольник. Его диагонали $y=\pm\frac{4}{3}x$ являются асимптотами гиперболы. Построим их. Затем через вершины A_1 и A_2 проводим ветви данной гиперболы, приближая их к асимптотам. Сопряженная гипербола отмечена пунктирной линией (рис.30).

Рис.30

162. Составить каноническое уравнение гиперболы, если она проходит через точку $M_1(-5,3)$, а ее эксцентриситет равен $\varepsilon = \sqrt{2}$.

Решение. Каноническое уравнение гиперболы имеет вид

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$
,

где полуоси a и b неизвестны. Точка $M_1(-5,3)$ лежит на гиперболе, следовательно, ее координаты удовлетворяют уравнению гиперболы, то есть $\frac{25}{a^2} - \frac{9}{b^2} = 1$. По условию задачи $\varepsilon = \frac{c}{a} = \sqrt{2}$. Отсюда получим систему

уравнений:

$$\begin{cases} \frac{25}{a^2} - \frac{9}{b^2} = 1, \\ c^2 = a^2 + b^2, \\ \frac{c}{a} = \sqrt{2}. \end{cases}$$

Решая эту систему, получим $a^2 = b^2 = 16$. Следовательно, искомое уравнение гиперболы имеет вид

$$\frac{x^2}{16} - \frac{y^2}{16} = 1.$$

163. Дана гипербола $x^2 - 4y^2 = 16$.

Найти:

- 1) полуоси;
- 2) координаты вершин и центра;
- 3) координаты фокусов;
- 4) эксцентриситет;
- 5) уравнения асимптот;
- 6) уравнение сопряженной гиперболы;
- 7) построить данную и сопряженную гиперболы.

Ответ:

1)
$$a = 4$$
, $b = 2$;

$$2) A_1(-4,0), A_2(4,0), O(0,0);$$

3)
$$F_1(-2\sqrt{5},0)$$
, $F_2(2\sqrt{5},0)$;

4)
$$\varepsilon = \frac{\sqrt{5}}{2}$$
; 5) $y = \pm \frac{1}{2}x$; 6) $-\frac{x^2}{16} + \frac{y^2}{4} = 1$.

164. Построить гиперболу $\frac{x^2}{9} - \frac{y^2}{4} = 1$. Найти ее эксцентриситет, уравнения асимптот и угол между асимптотами.

Omeem:
$$\varepsilon = \frac{\sqrt{13}}{3}$$
; $y = \pm \frac{2}{3}x$; $\varphi = arctg \frac{12}{5}$.

165. Составить каноническое уравнение гиперболы, зная, что:

- 1) расстояние между вершинами равно 8, фокальное расстояние равно 10;
- 2) действительная ось равна 6, гипербола проходит через точку $M_1(9,-4)$;
- 3) расстояние между фокусами равно 6, эксцентриситет $\varepsilon = \frac{3}{2}$;
- 4) действительная ось равна 16, эксцентриситет $\varepsilon = \frac{5}{4}$;
- 5) уравнения асимптот $y = \pm \frac{4}{3}x$ и расстояние между фокусами равно 20.

Omsem: 1)
$$\frac{x^2}{16} - \frac{y^2}{9} = 1;$$
 2) $\frac{x^2}{9} - \frac{y^2}{2} = 1;$ 3) $\frac{x^2}{4} - \frac{y^2}{5} = 1;$

4)
$$\frac{x^2}{64} - \frac{y^2}{36} = 1;$$
 5) $\frac{x^2}{36} - \frac{y^2}{64} = 1$

166. Составить уравнение гиперболы, проходящей через две точки $M_1(6,-1)$ и $M_2(-8,2\sqrt{2}\,)$.

Omsem:
$$\frac{x^2}{32} - \frac{y^2}{8} = 1$$
.

167. Найти точки пересечения прямой 2x - y - 10 = 0 и гиперболы $\frac{x^2}{20} - \frac{y^2}{5} = 1$.

Ответ:
$$(6,2)$$
 и $\left(\frac{14}{3}, -\frac{2}{3}\right)$.

8.4 Парабола

Каноническое уравнение параболы имеет вид $y^2 = 2px$ (p > 0), где p — расстояние от фокуса до директрисы параболы. Начало координат O является вершиной параболы, а ось абсцисс — ее осью симметрии. Координаты фокуса $F\left(\frac{p}{2},0\right)$, уравнение директрисы параболы $x = -\frac{p}{2}$. Эксцентриситет параболы $\mathcal{E} = 1$. (Puc.31)

Рис.31

Рассмотрим параболы, заданные уравнениями $y^2 = -2px$ (рис.32,a), $x^2 = 2py$ (рис.32, δ), $x^2 = -2py$ (рис.32, δ).

На рис.32,a парабола симметрична относительно оси Ox и направлена в отрицательную сторону. На рис.32, δ ,e осью симметрии параболы является ось Oy. Координаты фокусов для этих парабол следующие:

$$F\left(-\frac{p}{2};0\right)$$
 (рис.32, a), $F\left(0,\frac{p}{2}\right)$ (рис.32, δ), $F\left(0,-\frac{p}{2}\right)$ (рис.32, ϵ).

Уравнения директрис имеют следующий вид:

$$x = \frac{p}{2}$$
 (рис.32,*a*), $y = -\frac{p}{2}$ (рис.32,*b*), $y = \frac{p}{2}$ (рис.32,*b*).

168. Построить параболу $y^2 = -4x$. Найти координаты фокуса и уравнения директрисы.

Решение. Осью симметрии данной параболы является отрицательная полуось Оx, вершиной — начало координат О. Сравнивая уравнение $y^2 = -4x$ с уравнением параболы $y^2 = -2px$, находим, что параметр данной параболы p = 2. Фокус имеет координаты F(-1,0), а директриса определяется уравнением x = 1.

Для построения параболы найдем несколько ее точек, придавая x значения, 0, -1, -4. Тогда парабола $y^2 = -4x$ проходит через точки (0,0), (-1,2), (-1,-2), (-4,4), (-4,-4) (puc.33).

169. Парабола с вершиной в начале координат проходит через точку $M_1(1,-2)$ и симметрична относительно оси Оу. Написать ее уравнение, найти фокус и директрису.

Решение. Данная парабола симметрична относительно оси Оу, проходит через точку с отрицательной ординатой, поэтому ее уравнение имеет вид $x^2 = -2py$. Подставляя координаты точки $M_1(1,-2)$ в это уравнение, получим $1=4p, p=\frac{1}{4}$. Следовательно, искомое уравнение параболы $x^2 = -\frac{1}{2}y$, фокус параболы

 $F(0,-\frac{1}{8})$, директриса $y = \frac{1}{8}$. (Рис.34).

Рис.33

Рис.34

170. Даны уравнения парабол:

1)
$$x^2 = 8y$$
; 2) $y^2 = -4x$; 3) $x^2 = 6y$; 4) $y^2 = x$.

3)
$$x^2 = 6y$$
;

Для каждой из них найти параметр p, расположение относительно координатных осей, координаты фокуса, уравнение директрисы, построить параболу.

Ответ:

1)
$$p = 4$$
, $F(0, 2)$, $y = -2$;

2)
$$p = 2$$
, $F(-1, 0)$, $x = 1$;

3)
$$p=3$$
, $F\left(0,\frac{3}{2}\right)$, $y=-\frac{3}{2}$;

4)
$$p = \frac{1}{2}$$
, $F\left(\frac{1}{4}, 0\right)$, $x = -\frac{1}{4}$.

171. Написать каноническое уравнение параболы, если

- 1) парабола симметрична относительно положительной полуоси О*x*, и расстояние от фокуса до директрисы равно 6;
- 2) парабола симметрична относительно оси Ox и проходит через точку A(-2,4);
- 3) парабола симметрична относительно оси Oy и проходит через точку A(1,4);
- 4) фокус параболы находится в точке F(0, 2).

Omsem: 1)
$$y^2 = 12x$$
; 2) $y^2 = -8x$; 3) $x^2 = \frac{1}{4}y$; 4) $x^2 = 8y$.

172. Найти точки пересечения парабол $y = x^2$ и $x = y^2$. Сделать чертеж. *Ответ*: (0,0) и (1,1).

173. Найти точки пересечения параболы $y^2 = 4x$ и прямой 2x + y - 4 = 0. *Ответ:* (1,2) и (4,-4).

8.5 Преобразование уравнения линии второго порядка к каноническому виду

Общее уравнение линии второго порядка имеет вид

$$Ax^{2} + Bxy + Cy^{2} + Dx + Ey + F = 0$$

где коэффициенты A,B и C одновременно в нуль не обращаются.

Если в уравнении коэффициент B = 0 ,то оно имеет вид

$$Ax^2 + Cy^2 + Dx + Ey + F = 0.$$

Это уравнение приводится к каноническому виду методом выделения полных квадратов аналогично тому, как это делалось выше для окружности.

174. Привести к каноническому виду уравнение линии второго порядка и построить кривую $16x^2 - 9y^2 - 64x - 54y - 161 = 0$.

Решение. Группируем члены, содержащие только x и только y, вынося коэффициенты при x^2 и y^2 за скобку

$$16(x^2 - 4x) - 9(y^2 + 6y) - 161 = 0.$$

Дополняем выражения в скобках до полных квадратов

$$16(x^{2} - 4x + 4 - 4) - 9(y^{2} + 6y + 9 - 9) - 161 = 0;$$

$$16[(x - 2)^{2} - 4] - 9[(y + 3)^{2} - 9] - 161 = 0;$$

$$16(x - 2)^{2} - 64 - 9(y + 3)^{2} + 81 - 161 = 0;$$

$$16(x - 2)^{2} - 9(y + 3)^{2} = 144;$$

$$\frac{(x - 2)^{2}}{9} - \frac{(y + 3)^{2}}{16} = 1.$$

Итак, данная линия второго порядка есть гипербола с полуосями $a=3,\ b=4.$ Центр гиперболы находится в точке C(2,-3). (Рис.35)

Рис.35

175. Упростить уравнение и построить кривую $3y^2 + 5x + 6y + 13 = 0$.

Решение. Так как член с x^2 отсутствует, то надо выделить полный квадрат только по y:

$$3(y^{2} + 2y) + 5x + 13 = 0;$$

$$3(y+1)^{2} + 5x + 10 = 0;$$

$$3(y+1)^{2} = -5(x+2);$$

$$(y+1)^{2} = -\frac{5}{3}(x+2).$$

Отсюда следует, что данная линия есть парабола с вершиной в точке B (-2,-1). Ось симметрии параболы параллельна оси Ox. Парабола направлена в отрицательную сторону оси Ox (рис.36).

176. Привести к каноническому виду уравнение линии второго порядка, построить кривые:

1)
$$9x^2 - 16y^2 + 90x + 32y - 367 = 0$$
;

2)
$$5x^2 + 9y^2 - 30x + 18y + 9 = 0$$
;

3)
$$2v^2 - x - 12v + 14 = 0$$
;

4)
$$16x^2 - 9y^2 - 64x - 18y - 89 = 0$$
;

5)
$$16x^2 + 25y^2 + 32x - 100y - 284 = 0$$
;

6)
$$4x^2 - 8x - y + 7 = 0$$
.

Omeem: 1)
$$\frac{(x-5)^2}{64} - \frac{(y-1)^2}{36} = 1;$$
 2) $\frac{(x-3)^2}{9} + \frac{(y+1)^2}{5} = 1;$

3)
$$(y-3)^2 = \frac{1}{2}(x+4);$$
 4) $\frac{(x-2)^2}{9} - \frac{(y+1)^2}{16} = 1;$

5)
$$\frac{(x+1)^2}{25} + \frac{(y-2)^2}{16} = 1;$$
 6) $(x-1)^2 = \frac{1}{4}(y-3).$

9. Поверхности второго порядка

9.1 Канонические уравнения поверхностей

Поверхность второго порядка задается в декартовых координатах уравнением второй степени

$$Ax^{2} + By^{2} + Cz^{2} + Dxy + Exz + Fyz + Gx + Hy + Kz + L = 0$$
.

Общее уравнение сферы получается при $A = B = C \neq 0$, D = E = F = 0:

$$Ax^{2} + Ay^{2} + Az^{2} + Gx + Hy + Kz + L = 0$$

Делением на коэффициент A и выделением полных квадратов по x, y, z уравнение приводится к виду

$$(x-x_0)^2 + (y-y_0)^2 + (z-z_0)^2 = R^2$$

где R – радиус сферы, (x_0, y_0, z_0) - координаты центра.

В частности, каноническое уравнение сферы $x^2 + y^2 + z^2 = R^2$ получается в том случае, когда начало координат находится в центре сферы (таблица 1).

177. Установить вид поверхности $x^2 + y^2 = 4 - z$ и построить ее.

Решение. Данное уравнение определяет круговой параболоид с вершиной в точке (0,0,4). Рассмотрим сечения данной поверхности координатными плоскостями и плоскостями, параллельными координатным плоскостям.

1) Сечение плоскостью $xOy\ (z = 0)$:

$$\begin{cases} z = 0, \\ x^2 + y^2 = 4. \end{cases}$$

Получим окружность в плоскости xOy с центром в начале координат и радиусом 2.

Канонические уравнения поверхностей второго порядка

Таблица 1

Название поверхности	Каноническое уравнение поверхности	Вид поверхности
Сфера	$x^2 + y^2 + z^2 = R^2$	Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z
Эллипсоид	$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$	2 c c c c c c c c c c c c c c c c c c c
Однополостный гиперболоид	$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$	2 2
Двуполостный гиперболоид	$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = -1$	Y Y
Конус	$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 0$	x y
Эллиптический параболоид	$\frac{x^2}{p} + \frac{y^2}{q} = 2z$ $(p > 0; q > 0)$	
Гиперболический параболоид (седло)	$\frac{x^2}{p} - \frac{y^2}{q} = 2z$ $(p > 0; q > 0)$	Z X

2) Сечение плоскостью xOz (y = 0):

$$\begin{cases} y = 0, \\ x^2 = 4 - z. \end{cases}$$

Эта кривая является параболой в плоскости xOz с вершиной в точке (0,0,4) и осью симметрии Oz, ветвь параболы направлена вниз.

3) Сечение плоскостью yOz (x = 0):

$$\begin{cases} x = 0, \\ y^2 = 4 - z. \end{cases}$$

Эта кривая является параболой в плоскости yOz с вершиной в точке (0,0,4), ось симметрии параболы — отрицательная полуось Oz.

4) Сечения плоскостями, параллельными плоскости хОу:

$$\begin{cases} z = h, \\ x^2 + y^2 = 4 - h, & h < 4. \end{cases}$$

Получим множество окружностей, центры которых имеют координаты (0,0,h) и радиусы $\sqrt{4-h}$.

Таким образом, исследуемая поверхность является параболоидом вращения, который изображен на рис.37.

Рис.37

178. Установить вид поверхности и построить ее:

1)
$$\frac{x^2}{6} - \frac{y^2}{5} + z^2 - 1 = 0$$
;

2)
$$x^2 + y^2 = 2z$$
;

3)
$$x^2 - y^2 = z^2$$
;

4)
$$\frac{x^2}{4} + \frac{y^2}{9} + \frac{z^2}{4} = 1;$$

5)
$$\frac{x^2}{4} + \frac{y^2}{9} - \frac{z^2}{4} = -1;$$

6)
$$x^2 + y^2 = z + 2$$
.

Ответ:

- 1) однополостный гиперболоид с осью Оу;
- 2) круговой параболоид с вершиной в начале координат и осью Оz;
- 3) гиперболический параболоид;
- 4) эллипсоид с полуосями a = 2, b = 3, c = 2;
- 5) двуполостный гиперболоид;
- 6) круговой параболоид с вершиной в точке (0,0,-2) и осью Oz.

179. Найти центр и радиус сферы, заданной уравнением

1)
$$x^2 + y^2 + z^2 - 2x + 4y - 4z - 7 = 0$$
;

2)
$$x^2 + y^2 + z^2 + 4x - 6y + z - 5 = 0$$
.

Omsem: 1)
$$C(1,-2,2)$$
, $R=4$; 2) $C(-2,3,-\frac{1}{2})$, $R=\frac{\sqrt{73}}{2}$.

180. Сфера проходит через точку M(4,2,2) и имеет центр в точке C(1,-1,-1). Составить ее уравнение.

Omeem:
$$(x-1)^2 + (y+1)^2 + (z+1)^2 = 27$$
.

181. Составить уравнение сферы, если известно, что точки A(2,5,-7) и B(6,-1,3) являются концами одного из ее диаметров.

Omsem:
$$(x-4)^2 + (y-2)^2 + (z+2)^2 = 38$$
.

9.2 Цилиндрические поверхности

Уравнение с двумя переменными вида F(x,y) = 0 в пространственной системе координат определяет цилиндрическую поверхность с образующими, параллельными оси Oz, то есть оси отсутствующей координаты.

Аналогично, уравнения F(x,z) = 0 и F(y,z) = 0 определяют цилиндрические поверхности с образующими, параллельными оси Oy и Ox. Например, на рис. 38, 39, 40 изображены эллиптический, гиперболический и параболический цилиндры, заданные своими каноническими уравнениями:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1, \qquad \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1, \qquad y^2 = 2px.$$

Рис.38 Рис.39

Рис.40

182. Установить вид поверхности, заданной уравнением $x^2 + 2x - z + 1 = 0$, и построить ее.

Pешение. Данное уравнение не содержит y, поэтому оно определяет цилиндр с образующими, параллельными оси Oy.

Его направляющая
$$\begin{cases} x^2 + 2x - z + 1 = 0, \\ y = 0 \end{cases}$$
 или $\begin{cases} (x+1)^2 = z, \\ y = 0 \end{cases}$ есть парабола на

плоскости xOz с вершиной в точке (-1,0,0), направленная в положительную сторону оси Ox. Таким образом, данная поверхность является параболическим цилиндром (рис.41).

183. Установить вид поверхности и построить ее:

1)
$$x^2 + y^2 = 4$$
;

2)
$$z^2 - y^2 = 4$$
;

3)
$$x^2 + y^2 - 6y = 0$$
;

3)
$$y^2 = 4x$$
;

5)
$$x^2 - 4x - z = 0$$
.

Ответ:

- 1) круговой цилиндр с образующими, параллельными оси Оz;
- 2) гиперболический цилиндр с образующими, параллельными оси Ох;

- 3) круговой цилиндр с образующими, параллельными оси Оz;
- 4) параболический цилиндр с образующими, параллельными оси Оz;
- 5) параболический цилиндр с образующими, параллельными оси Оу.

9.3 Поверхности вращения

Чтобы получить уравнение поверхности, образованной вращением линии $\begin{cases} x=0, \\ F(y,z)=0, \end{cases}$ лежащей в плоскости yОz, вокруг оси Оy, нужно в уравнении этой линии координату y, одноименную с осью вращения Оy, оставить без изменения, а координату z заменить на $\pm \sqrt{x^2+z^2}$. Искомое уравнение поверхности вращения будет иметь вид

$$F(y, \pm \sqrt{x^2 + z^2}) = 0.$$

Аналогичные правила имеют место и по отношению к поверхностям, полученным вращением линий вокруг других координатных осей.

184. Гипербола $\frac{y^2}{9} - \frac{z^2}{16} = 1$ вращается вокруг оси Оz. Составить уравнение поверхности вращения.

Решение.

Чтобы написать уравнение поверхности, полученной от вращения данной гиперболы вокруг оси Oz, следует в уравнении гиперболы переменную z, соответствующую оси вращения, оставить без изменения. Вторую же переменную y в уравнении гиперболы заменить на $\pm \sqrt{x^2 + y^2}$. Тогда уравнение поверхности вращения запишется следующим образом:

$$\frac{(\pm\sqrt{x^2+y^2})^2}{9} - \frac{z^2}{16} = 1$$
 или
$$\frac{x^2}{9} + \frac{y^2}{9} - \frac{z^2}{16} = 1.$$

Итак, искомая поверхность является однополостным гиперболоидом вращения (рис.42).

Рис.42

Составить уравнение поверхности, образованной вращением данной 185. линии вокруг указанной оси:

1) эллипса
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
 вокруг оси Оу;

- 2) прямой 2y z = 0 вокруг оси Oz;
- 3) параболы $x^2 = y$ вокруг оси Oy.

Ответ:

1) эллипсоид вращения
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{a^2} = 1;$$

- 2) круговой конус $4x^2 + 4y^2 = z^2$;
- 3) круговой параболоид $x^2 + z^2 = y$.

186. Построить тело, ограниченное поверхностями

1)
$$x^2 + y^2 = 3 - z$$
, $z = 0$ (puc.43);

2)
$$x^2 = y$$
, $z = 0$, $x = 0$, $z = 4$, $y = 1$ (puc.44).

Варианты контрольной работы № 2

Вариант 1

- 1. Даны вершины треугольника A(1,4), B(3,-9) и C(-5,2). Составить уравнение медианы, проведенной из вершины B.
- 2. Найти острый угол между прямой $\begin{cases} x = 3t 2, \\ y = 0, & \text{и плоскостью } 2x + z 5 = 0 \,. \\ z = -t + 3 \end{cases}$
- 3. Даны две точки $M_1(1,-2,3)$ и $M_2(2,0,5)$. Составить уравнение плоскости, проходящей через точку M_1 перпендикулярно вектору $\overline{M_1M}_2$.
- 4. Составить уравнение плоскости, проходящей через точку $M_1(-1,0,3)$, перпендикулярно двум плоскостям 2x-y+5=0 и x-3y+4=0.
- 5. Найти точку Q, симметричную точке P(6,-4,-2) относительно плоскости x+y+z-3=0 .

Ответы:

- 1. 12x + 5y + 9 = 0;
- 2. $\alpha = 45^{\circ}$;
- 3. x + 2y + 2z 3 = 0;
- 4. 3x + 6y + z = 0;
- 5. Q(8,-2,0).

Вариант 2

- 1. Через точку M(3,5) провести прямую так, чтобы ее отрезок, заключенный между осями координат, делился в точке M пополам. Составить уравнение этой прямой.
- 2. Вычислить объем пирамиды, ограниченной плоскостью 3x 6y + 4z 24 = 0 и координатными плоскостями. Построить данную плоскость.
- 3. Составить уравнение плоскости, которая проходит через точку $M_1(5,-1,2)$ параллельно плоскости 2y+z-6=0.
- 4. Составить уравнение плоскости, проходящей через три точки $M_1(4,0,3),\ M_2(1,2,3)$ и $M_3(4,-1,-2).$
- 5. Найти точку Q, симметричную точке P(3,-1,4) относительно прямой $\begin{cases} 2x-2y+z-3=0,\\ 2x+y-2z+3=0. \end{cases}$

Ответы:

- 1. 5x + 3y 30 = 0;
- 2. V = 32 куб.ед.
- 3. 2y + z = 0;
- 4. 10x + 15y 3z 31 = 0;
- 5. Q(-1,3,2).

Расчетно-графическая работа № 2

Плоскости и прямые в пространстве.

Кривые и поверхности второго порядка.

- 1. Составить уравнение плоскости, проходящей через точку $M_1(a,-a,b)$ и имеющей нормальный вектор $\overline{N}=(A,B,C)$. Построить искомую плоскость.
- 2. Составить уравнение плоскости, отсекающей на координатных осях отрезки a_1,b_1,c_1 , где $a_1=B,\ b_1=C,\ c_1=-D$. Построить искомую плоскость.
- 3. Указать особенности плоскостей в расположении относительно системы координат, определить их нормальные векторы и построить плоскости:

3.1
$$Ax + By + D = 0$$
;

3.2
$$Ax + Cz + D = 0$$
;

3.3
$$By + Cz + D = 0$$
;

3.4
$$Ax + D = 0$$
;

3.5
$$By + D = 0$$
;

3.6
$$Cz + D = 0$$
;

3.7
$$x = 0$$
;

3.8
$$y = 0$$
;

3.9
$$z = 0$$
.

- 4. Составить канонические и параметрические уравнения прямой,проходящей через две точки $M_1(a,-a,b)$ и $M_2(-a,0,b-2)$. Построить прямую в системе координат.
- 5. Указать названия кривых и построить их в плоскости xOy:

$$5.1 \quad x^2 + y^2 = a^2;$$

5.2
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
;

5.3
$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1;$$

$$5.4 \quad x^2 + y^2 - bx = 0;$$

$$5.5 \quad x^2 + y^2 + bx = 0;$$

5.6
$$x^2 + y^2 - by = 0$$
;

$$5.7 \quad x^2 + y^2 + by = 0;$$

5.8
$$v^2 = ax$$
;

5.9
$$x^2 = ay$$
;

$$5.10 \ x^2 = ay + b$$
.

- 6. Построить цилиндры, заданные уравнениями, записанными в задаче 5. Указать названия цилиндров и особенности их в расположении относительно системы координат.
- 7. Исследовать и построить поверхности методом сечений:

7.1
$$x^2 + y^2 = z^2$$
;

7.2
$$x^2 + y^2 = az$$
;

7.3
$$x^2 + y^2 = a^2 - z$$
;

7.4
$$\frac{x^2}{a^2} + \frac{y^2}{(a+1)^2} + \frac{z^2}{(a+2)^2} = 1$$
.

8. Найти центр и радиус сферы. Построить сферу.

$$x^{2} + v^{2} + z^{2} - 2ax - 2av - 2bz + a^{2} + b^{2} = 0$$

В задачах A = 4, B = a, C = a + 1, D = -b, где

а - последняя цифра номера группы на потоке,

b - номер студента в групповом списке.

Список литературы

Беклемишев Д.В. Курс аналитической геометрии и линейной алгебры. М.: Наука, 1999.- 273 с.

Клетеник Д.В. Сборник задач по аналитической геометрии. М.: Наука, 2001.- 254 с.

Сборник задач и упражнений по специальным главам высшей математики / Под ред. *Г.И. Кручковича*. М.: Высшая школа,2000.- 576 с.

Проскуряков И.В. Сборник задач по линейной алгебре. М.: Наука, 2001.- 300 с.