PSEUDONYMISATION AND K-ANONYMITY

Pseudonymisation

Raw Data

Name	UPI	Age	Gender	Disease
Jhon	dgre6789	29	М	Cancer
Kate	spea6271	22	F	Infection
Alice	jgib9592	35	F	AIDS
Ellen	hbar4405	38	F	AIDS
Mary	mhan6405	41	F	Cancer

Pseudonymised Data

ID	Age	Gender	Disease
P001	29	М	Cancer
P002	22	F	Infection
P003	35	F	AIDS
P004	38	F	AIDS
P005	41	F	Cancer

ID	Name	UPI
P001	Jhon	dgre6789
P002	Kate	spea6271
P003	Alice	jgib9592
P004	Ellen	hbar4405
P005	Mary	mhan6405

Mapping Table

Pseudonym

PETs Pseudonymisation - Steps

- 1. Preprocess data
- 2. Identify direct identifiers
- 3. Replace direct identifiers with a pseudonym column
- 4. Create a mapping table if needed
- 5. Secure the mapping table

Pseudonymisation – Step 2 Generate a Pseudonym Column

- Counter
- Random Number Generator (RNG)
- Cryptographic Hashing
- Message Authentication Code (MAC)
- Encryption

Which one does not need a mapping table?

Let's Code

PETS K-Anonymity

ID	Age	Zip	Gender	Disease	
P001	22	2141	М	Cancer	
P002	24	2141	F	Infection	
P003	31	2138	F	AIDS	
P004	32	2139	F	AIDS	
P005	41	2243	М	Cancer	
P006	41	2245	М	Infection	
P007	48	6534	М	Infection	
	I Quasi Identifiers Sensitive D				

2-Anonymous Data (k=2)

ID	Age	Zip	Gender	Disease
P001	21 – 30	2141	Human	Cancer
P002	21 – 30	2141	Human	Infection
P003	31 – 35	213*	F	AIDS
P004	31 – 35	213*	F	AIDS
P005	41 - 50	*	М	Cancer
P006	41 - 50	*	М	Infection
P007	41 - 50	*	М	Infection

Suppression
Generalisation

k = 2 => at least 2 rows in each group
QIDs {Age, Zip, Gender} in each group is the same

K-Anonymity - Steps

- 1. Preprocess data
- 2. Identify Quasi Identifiers (QIDs)
- 3. Partition the dataset: Each group at least K rows
- 4. Anonymise values
 For each QID
 For each partition

ID	Age		
P001	22	Partition 1	
P002	24		Step 3
P003	31	Partition 2	
P004	32		
	QID		

ID	Age
P001	20 - 25
P002	20 - 25
P003	30 - 35
P004	30 - 35

K-Anonymity - Step 3 Partitioning

How would you partition this for 3-Anonymity?

ID	Age
ID01	24
ID02	23
ID03	21
ID04	20
ID05	22
ID06	24
ID07	20
ID08	21
ID09	22
ID10	23

- Sort 'Age' -> loop -> break into size 3 groups?
- Sort 'Age' -> loop -> break into groups >= 3?
- What happens when you have multiple QIDs?

We need a fairer way to partition

PETs

Mondrian Algorithm

K-Anonymity - Step 3 Partitioning (Mondrian Algorithm)

A. Select a partition P (at the start: all the rows)

```
If size(P) >= 2 * K
```

B. Select the most diverse QID in the partition (why?)

Find the median of the QID values (M)

Split the P into 2 sub partitions

LHS < M and RHS >= M

If size(LHS) < K OR size(RHS) < K

If more QIDs exist

Step B for P: remaining QIDs

else

Add P to final_partitions

else

Step A for P = LHS and P = RHS

else

Add P to final_partitions

Row Index	ID	Age	Gender
0	ID01	24	М
1	ID02	23	М
2	ID03	21	М
3	ID04	20	F
4	ID05	22	М
5	ID06	24	F
6	ID07	20	М
7	ID08	21	F
8	ID09	22	F
9	ID10	23	F
		(

K-Anonymity - Mondrian Algorithm

Median

- 1. Numerical Data (e.g., Age)
 - Sort
 - Find the middle point
- 2. Categorical Data (e.g., Gender)
 - Find the unique values ['M', 'F']
 - Divide the unique values into 2 groups
 G1 = ['M']
 G2 = ['F']
 - Match the rows into the correct group

$$G1 = ['M'] [0,1,2,4,6]$$

$$G2 = ['F'] [3,5,7,8,9]$$

Row Index	ID	Age	Gender
0	ID01	24	М
1	ID02	23	М
2	ID03	21	М
3	ID04	20	F
4	ID05	22	М
5	ID06	24	F
6	ID07	20	М
7	ID08	21	F
8	ID09	22	F
9	ID10	23	F
		(

Partitioning - Visualise

Assume K = 3

Row Index	ID	Age	Gender
0	ID01	24	М
1	ID02	23	М
2	ID03	21	М
3	ID04	20	F
4	ID05	22	М
5	ID06	24	F
6	ID07	20	М
7	ID08	21	F
8	ID09	22	F
9	ID10	23	F

A. Partition (P): 0 1 2 3 4 5 6 7 8 9

B. Select the most diverse QID in the partition

Age – 5/10 unique values (more diverse) Gender – 2/10 unique values

qid_variability = ['Age', 'Gender']

Select 'Age'

Partitioning - Visualise

Assume K = 3

Row Index	ID	Age	Gender
0	ID01	24	М
1	ID02	23	М
2	ID03	21	М
3	ID04	20	F
4	ID05	22	М
5	ID06	24	F
6	ID07	20	М
7	ID08	21	F
8	ID09	22	F
9	ID10	23	F

Find the median (M)

Split the P into 2 sub partitions

Partitioning - Visualise

Assume K = 3

Row Index	ID	Age	Gender
0	ID01	24	М
1	ID02	23	М
2	ID03	21	М
3	ID04	20	F
4	ID05	22	М
5	ID06	24	F
6	ID07	20	М
7	ID08	21	F
8	ID09	22	F
9	ID10	23	F

LHS				RH	IS					
3	6	2	7		4	8	1	9	0	5

Step A for
$$P = LHS$$
 and $P = RHS$

Partitioning - Visualise

Assume K = 3

Row Index	ID	Age	Gender
0	ID01	24	М
1	ID02	23	М
2	ID03	21	М
3	ID04	20	F
4	ID05	22	М
5	ID06	24	F
6	ID07	20	М
7	ID08	21	F
8	ID09	22	F
9	ID10	23	F

LHS

Add P to final_partitions

3 6

Partitioning - Visualise

Assume K = 3

Row Index	ID	Age	Gender
0	ID01	24	М
1	ID02	23	М
2	ID03	21	М
3	ID04	20	F
4	ID05	22	М
5	ID06	24	F
6	ID07	20	М
7	ID08	21	F
8	ID09	22	F
9	ID10	23	F
8	ID09	22	F

3 6 2 7

LHS

Add P to final_partitions

3 6 2 7

Step A for P = RHS

RHS

4 8 1 9 0 5

B. Select the most diverse QID in RHS Age – 3/6 unique values Gender – 2/6 unique values

```
qid_vaiability = ['Age', 'Gender']
Select 'Age'
```

Continue...

Partitioning - Visualise

Assume K = 3

Row Index	ID	Age	Gender
0	ID01	24	М
1	ID02	23	М
2	ID03	21	М
3	ID04	20	F
4	ID05	22	М
5	ID06	24	F
6	ID07	20	М
7	ID08	21	F
8	ID09	22	F
9	ID10	23	F

Step B on RHS

5

Continue..

Partitioning - Visualise

Assume K = 3

Row Index	ID	Age	Gender
0	ID01	24	М
1	ID02	23	М
2	ID03	21	М
3	ID04	20	F
4	ID05	22	М
5	ID06	24	F
6	ID07	20	М
7	ID08	21	F
8	ID09	22	F
9	ID10	23	F

LHS

7

Step A for P = RHS

B. Select the most diverse QID in RHS qid_vaiability = ['Age', 'Gender']

Select 'Gender'

Find the median (M) of RHS

If size(LHS) >= 2 * 34 >= 6 false

Add P to final_partitions

3 6

Continue..

Partitioning - Visualise

Assume K = 3

Row Index	ID	Age	Gender
0	ID01	24	М
1	ID02	23	М
2	ID03	21	М
3	ID04	20	F
4	ID05	22	М
5	ID06	24	F
6	ID07	20	М
7	ID08	21	F
8	ID09	22	F
9	ID10	23	F
8	ID09	22	F

LHS

If size(LHS) >= 2 * 3

Add P to final_partitions

6

2 7

4 >= 6

false

3

7

Find the median (M)

КПО						
4	8	1	9	0	5	
М	F	М	F	М	F	

Split the RHS into 2 sub partitions

Partitioning - Visualise

Assume K = 3

Row Index	ID	Age	Gender
0	ID01	24	М
1	ID02	23	М
2	ID03	21	М
3	ID04	20	F
4	ID05	22	М
5	ID06	24	F
6	ID07	20	М
7	ID08	21	F
8	ID09	22	F
9	ID10	23	F

PETs K-Anonymity

Assume K = 3

final_partitions

3 6 2

4 1 0

8 9 5

original

Row Index	ID	Age	Gender
0	ID01	24	М
1	ID02	23	М
2	ID03	21	М
3	ID04	20	F
4	ID05	22	М
5	ID06	24	F
6	ID07	20	М
7	ID08	21	F
8	ID09	22	F
9	ID10	23	F

partitioned

Row Index	ID	Age	Gender
3	ID04	20	F
6	ID07	20	М
2	ID03	21	М
7	ID08	21	F
4	ID05	22	М
1	ID02	23	М
0	ID01	24	М
8	ID09	22	F
9	ID10	23	F
5	ID06	24	F

anonymised

Row Index	ID	Age	Gender
3	ID04	20.5	*
6	ID07	20.5	*
2	ID03	20.5	*
7	ID08	20.5	*
4	ID05	23	М
1	ID02	23	М
0	ID01	23	М
8	ID09	23	F
9	ID10	23	F
5	ID06	23	F

PETs In the Jupyter Exercise

def mondrian(k)

```
Select a partition P (at the start: all the rows)
If size(P) >= 2 * K
         Select the most diverse QID in the partition
                                                                           def get_qid_variability(partition)
    Find the median of the QID values (M)
                                                                           def split(partition, column)
     Split the partition into 2 sub partitions
          LHS < M and RHS >= M
          If size(LHS) < K OR size(RHS) < K
               If more QIDs exist
                   Step B for P: for remaining QIDs
               else
                   Add P to final_partitions
          else
               Step A for P = LHS and P = RHS
else
     Add P to final_partitions
```

Let's Code

