Alex Havrilla

alumhavr

Hw 5

Question 1(1.15):

Le Gall, 1.15

Prop 1. $t \to X_t$ on [0,1] into $L^2(\Omega)$ is $cts \iff K$ is cts on $[0,1]^2$, where $K(s,t) = COV(X_s, X_t) = \mathbb{E}(X_s X_t)$

Proof. Suppose $t \to X_t$ is continuous. Then K is the integral of a product of continuous functions and is thus continuous. Now suppose K continuous. Then in particular K(t,t) is continuous. So $t \to X_t$ via is continuous as $||X_t||_{L^2(\Omega)} = \mathbb{E}(X_t^2) = K(t,t)$

Prop 2. Let $h:[0,1] \to \mathbb{R}$ be measurable s.t. $\int_0^1 |h(t)| \sqrt{K(t,t)} dt < \infty$. Then a.e.

$$Z = \int_0^1 H(t) X_t(\omega) dt$$

is absolutely convergent.

Proof. Recall $K(t,t) = \mathbb{E}X_t^2$ Compute

$$\mathbb{E} \int_{0}^{1} |h(t)X_{t}| dt \leq \int_{0}^{1} |h(t)|\mathbb{E}|X_{t}| dt \leq \int_{0}^{1} |h(t)|||X_{t}||_{L^{2}} dt < \infty$$

where we have the first inequality via tonelli(since everything nonnegative).

Prop 3. Suppose h integrable. Then Z is the L² limit of $Z_n = \sum_{i=1}^n X_{\frac{i}{n}} \int_{(i-1)/n}^{i/n} h(t) dt$. Clearly it is then gaussian as the gaussian space is closed in L².

Proof. Write

$$\sum_{i=1}^{n} X_{\frac{i}{n}} \int_{(i-1)/n}^{i/n} h(t)dt = \int_{0}^{1} h(t) \sum_{i=1}^{n} 1_{(i-1/n,i/n)} X_{i/n} dt$$

so we can see pointwise $Z_n \to Z$ as $n \to \infty$ for fixed ω . By uniqueness of limits it STS the Z_n cauchy in L^2 .

NTF

Prop 4. Suppose $K \in \mathbb{C}^2$. Then $\forall t \in [0,1]$,

$$X_t' := \lim_{s \to t} \frac{X_s - X_t}{s - t}$$

exists in $L^2(\Omega)$. Further (X'_t) is a centered gaussian process.

Proof. NTF \Box

Question 2(1.16: Kalman Filtering):

Prop 5. $\hat{X}_{n+1/n} = a_n \hat{X}_{n/n}$ for every $n \ge 0$.

Proof.

$$\begin{split} \hat{X}_{n+1/n} &= E[X_{n+1}|Y_0,...,Y_n] = E[a_nX_n + \epsilon_{n+1}|Y_0,...,Y_n] \\ &= E[a_nX_n|Y_0,...,Y_n] + E[\epsilon_{n+1}|Y_0,...,Y_n] = a_nE[X_n|Y_0,...,Y_n] = a_n\hat{X}_{n/n} \end{split}$$

where we note ϵ_{n+1} ind. from $Y_0, ..., Y_n$;

Prop 6. $\forall n \geq 1$,

$$\hat{X}_{n/n} = \hat{X}_{n/n-1} + \frac{\mathbb{E}[X_n Z_n]}{\mathbb{E}[Z_n^2]} Z_n$$

where $Z_n := Y_n - c\hat{X}_{n/n-1}$

Proof.

$$\hat{X}_{n/n-1} = \mathbb{E}[X_n | Y_0, ..., Y_{n-1}]$$

 $Y_n = cX_n + \eta_n$

So compute

$$\hat{X}_{n/n} = \mathbb{E}[X_n|Y_0, ..., Y_n] = \Pi_n(X)$$

which we interpret as the orthogonal projection of X in $L^2(\Omega)$ onto the span of $Y_0,...,Y_n$. Compute

$$Z_n = Y_n - c\hat{X}_{n/n-1} = Y_n - c\mathbb{E}[X_n|Y_0, ..., Y_{n-1}]$$

$$= Y_n + \mathbb{E}[\eta_n - Y_n|Y_0, ..., Y_{n-1}] = Y_n + \mathbb{E}[\eta_n] - \mathbb{E}[Y_n|Y_0, ..., Y_{n-1}]$$

$$= Y_n - \Pi_{n-1}(Y_n)$$

Then

$$\begin{split} \hat{X}_{n/n} &= \mathbb{E}[X_n | Y_0, ..., Y_n] = \Pi_n(X_n) \\ &= \Pi_{n-1}(X_n) + \Pi_{Z_n}(X_n) = \mathbb{E}[X_n | Y_0, ..., Y_{n-1}] + \langle X_n, \hat{Z}_n \rangle \hat{Z}_n \\ &= \hat{X}_{n/n-1} + \frac{\mathbb{E}[X_n Z_n]}{\mathbb{E}[Z_n^2]} Z_n \end{split}$$

Question 3(1.18: Levy's Construction of Brownian Motion):