Lista 3 - Topologia 2022

- **Ćw.** 1 F-cja $h:(0,1)\setminus\{\frac{1}{n}:n\in\mathbb{N}\}\to Y,\,h(x)=\frac{1}{x}+\left[\frac{1}{x}\right]$ jest homeomorfizmem. Znajdź Y.
- Ćw. 2 Czy $f: \{0,1\}^{\mathbb{N}} \to \mathbb{R}$, $f(x) = \sum_{n=0}^{\infty} \frac{x(n)}{2^{n+1}}$ jest ciągła? Czy jest '1-1'? (Znajdź jej obraz.)
- **Zad. 1** Oznaczmy przez C zbiór Cantora. Na potrzeby tego zadania cząstkami będziemy nazywać przedziały powstające w toku konstrukcji zbioru Cantora (np. [0,1/3], [4/9,5/9], [4/27,5/27], ...). Niech $h: \{0,1\}^{\mathbb{N}} \to C$ będzie funkcją zdefiniowaną na wykładzie. Pokaż, że zbiory postaci $A \cap C$, gdzie A jest cząstką, tworzą bazę zbioru Cantora. Wywnioskuj, że funkcja h jest ciągła. Pokaż, że h^{-1} jest ciągła.
- **Zad. 2** Ustalmy X i topologię \mathcal{T} na X. Pokaż, że $\mathcal{B} \subseteq \mathcal{T}$ jest bazą topologii \mathcal{T} wtedy i tylko wtedy, gdy dla każdego $x \in X$ i dla każdego zbioru otwartego $U \ni x$ istnieje $B \in \mathcal{B}$ taki, że $x \in B \subseteq U$.
- **Zad. 3** Udowodnij, że jeśli X jest przestrzenią metryzowalną ośrodkową, to X ma bazę przeliczalną. (Wskazówka. Przyjmij oznaczenia: niech d oznacza metrykę generującą topologię na X; niech $A = \{a_1, a_2, \ldots\}$ będzie przeliczalnym zbiorem gęstym. Zdefiniuj bazę posługując się kulami...)
- **Zad. 4** Posługując się stwierdzeniem udowodnionym w powyższym zadaniu pokaż, że strzałka nie jest metryzowalna. (Wskazówka: najtrudniej pokazać, że strzałka nie ma bazy przeliczalnej. Żeby to zobaczyć rozważ otoczenia x postaci [x,x+1) i użyj charakteryzacji bazy z poprzednich zadań).
- **Zad. 5** Pokaż, że przestrzeń C[0,1] jest ośrodkowa (korzystając z twierdzenia Weierstrassa o aproksymowaniu funkcji ciągłych wielomianami).
- **Zad. 6** Płaszczyzna Sorgenfreya to \mathbb{R}^2 wyposażona w topologię zadaną bazą: $\{[a,b) \times [c,d): a < b, c < d\}$.
 - Pokaż, że płaszczyzna Sorgenfreya jest ośrodkowa.
 - Znajdź podprzestrzeń $D\subseteq\mathbb{R}^2$ mocy $\mathfrak c$ taką, że D jest przestrzenią dyskretną, tzn. jej singletony są otwarte. Wywnioskuj, że D nie jest ośrodkowa.
- **Zad. 7** Powiemy, że przestrzeń (X,d) jest *całkowicie ograniczona*, jeżeli dla każdego $\varepsilon > 0$ istnieje ε -sieć, a więc zbiór skończony F o własności:

$$\forall x \in X \ \exists y \in F \ d(x,y) < \varepsilon.$$

Pokaż, że przestrzenie całkowicie ograniczone są ośrodkowe, lecz niekoniecznie na odwrót.

Zadanie trudniejsze i rekreacyjne.

- **Zad. 8** Przestrzeń Baire'a definiujemy w następujący sposób. Na zbiorze $\mathbb{N}^{\mathbb{N}}$ (wszystkich ciągów liczb naturalnych) generujemy topologię zbiorami postaci $B_s = \{x \in \mathbb{N}^{\mathbb{N}} : \forall i \leq n \ x(i) = s(i)\}$, gdzie s jest ciągiem liczb naturalnych długości n. (Zauważ podobieństwo tych zbiorów do zbiorów bazowych w kostce Cantora.).
 - Pokaż, że przestrzen Baire'a jest metryzowalna.
 - \bullet (*) Pokaż, że przestrzeń Baire'a jest homeomorficzna z $\mathbb{R}\setminus\mathbb{Q}$ z metryką euklidesową.
- **Zad. 9** Pokaż, że zbiór Cantora C jest homeomorficzny z $C \times C$ (tutaj $C \times C$ traktujemy jako podprzestrzeń \mathbb{R}^2 z metryką euklidesową).
- **Zad. 10** Podaj przykład takiej metryki na \mathbb{R}^2 , która daje przestrzeń ośrodkową, w której $\mathbb{Q} \times \mathbb{Q}$ nie jest zbiorem gestym.