國立成功大學

工程科學系

112 學年度第二學期 電子學實驗課程

第一次實驗報告

工程科學系 2 年級 E94114073 張哲維

繳交日期: 2024/3/1

一、 實驗目的

利用電路學中所學的 R、L、C 相關電路,觀察頻率響應,並與理論應證,同時熟悉麵包板與實驗儀器的使用。

CHI

二、 實驗步驟

RC 電路

- 1. 將 RC 電路接妥
- 2. 在示波器觀察上觀察 Vi 和 Vo 紀錄時間常數
- 3. 使用正弦波去紀錄 Vi 和 Vo相位角 45°時的頻率
- 4. 比較高低頻的 Vo值
- 5. 將 R、C 位置調換並重複步驟 3、4

RL 電路

- 1. 將 RL 電路接妥
- 2. 在示波器觀察上觀察 Vi 和 Vo 紀錄時間常數
- 3. 使用正弦波去紀錄 Vi 和 Vo相位角 45°時的頻率
- 4. 比較高低頻的 Vo值
- 5. 將 R、L 位置調換並重複步驟 3、4

CHI Vi — Ikn CH2

CHZ

RCL 電路

- 1. 觀察不同頻率時, Vo 振幅及其最大值的頻率
- 2. 找出 Vi 相位領先及落後 Vo 相位角 45° 時的頻率

三、 實驗結果

RC 電路

實際電路圖與波型:

時間常數 $\tau = R*C = 1K * 0.1 \mu = 100 \mu$

5τ(ideal)	5τ(test)	error
500 μ s	472 μ s	5.60%

相位角 45°的頻率:1831.6HZ

不同頻率的 Vo 值

方波(HZ)	500
Vo(V)	2.04

正弦波 ω(HZ)	500	1000	1500	2000	2500	3000
Vo(V)	1.88	1.68	1.4	1.24	1.08	0.92

RC 電路(R、C 調換位置)

實際電路圖與波型:

相位角 45°的頻率:1630HZ

不同頻率的 Vo 值

方波(HZ)	500
Vo(V)	0.28

正弦波 ω(HZ)	500	1000	1500	2000	2500	3000
Vo(V)	0.616	1.04	1.32	1.5	1.6	1.69

RL 電路

實際電路圖與波型:

時間常數 τ = L/R = 100m / 1K = 100 μ

5τ(ideal)	5τ(test)	error
500 μ s	485 μ s	3%

相位角 45°的頻率:432.1HZ

不同頻率的 Vo 值

方波(HZ)	500
Vo(V)	0.2

正弦波 ω(HZ)	500	1000	1500	2000	2500	3000
Vo(V)	0.56	0.92	1.22	1.43	1.56	1.68

RL 電路(R、L 調換位置)

實際電路圖與波型:

相位角 45°的頻率:1598HZ

不同頻率的 Vo值

方波(HZ)	500
Vo(V)	1.5

正弦波 ω(HZ)	500	1000	1500	2000	2500	3000
Vo(V)	1.46	1.32	1.2	1.02	0.92	0.82

RLC 電路

實際電路圖與波型:

不同頻率的 Vo 值

正弦波 ω(HZ)	500	1000	1500	2000	2500	3000
Vo(V)	0.656	1.27	1.6	1.6	1.32	1.13

 V_0 最大值為 1.64V,頻率為 1770HZ

相位角 0°、45°、-45°:

	ω(test)(HZ)
相位角 0°	1670
相位角 45°	875
相位角-45°	3000

相位角 0°實驗值與理論值比較:

理論值= $1/(2\pi\sqrt{LC})=1/(2\pi\sqrt{(100m*0.1\mu)})=1591.55HZ$,而實驗值為

1670HZ, 誤差為 5%。

四、 問題與討論

1. 電路接完無多餘地方接上示波器與波形產生器

»使用針腳插在麵包板,讓鱷魚夾或碳棒勾牢固接上,也會使波型較穩 定。

2. 示波器上波型持續抖動

»先確認電路無接觸不良或接錯,之後調整示波器觸發電平,或者調整 波型產生器至適合的觀察頻率。

3. 當接上 RLC 串聯電路後所觀察到的方波並不完美

»波型可能會受到阻尼效應、共振效應以及電感和電容的影響,造成畸變。要解決這些問題,需要調整電路或添加元件以改善信號的品質。

五、 心得

在實驗的過程中因為不同電路和變數皆會影響到波形,所以要適時的調整示波器的參數,例如波形的基準、振幅、最小時間差,運用示波器內建的測量工具輔助實驗時需要紀錄的數據。實驗的過程中也有因為波形不穩定而導致無法測量,因此也花費不少時間在找尋問題,所幸也順利的完成了這次實驗。這次的實驗讓我更加熟悉示波器和波形產生器的運用,對於使用麵包板接電路也是信手捻來,相信之後的實驗應該也能得心應手。