

1

SEQUENCE LISTING

<110> Mitsuhashi, Kazuya
Yamamoto, Hiroaki
Matsuyama, Akinobu
Tokuyama, Shinji

<120> D-AMINOACYLASE AND GENE ENCODING THE SAME

<130> 06501-072001

<140> US 09/770,517
<141> 2001-01-26

<150> JP 2000-019080
<151> 2000-01-27

<150> JP 2000-150578
<151> 2000-05-22

<160> 27

<170> PatentIn Ver. 2.0

<210> 1
<211> 1677
<212> DNA
<213> Hypomyces mycophilus

<400> 1
atgcggactg aaattcttccactcagcc actgttatca cggcgatga agcagcccag 60
ccctttgtgg ccgatgtgct ggttcgaag ggactgattt ccaagattgg taaccccggt 120
tccatcaatg caactccaga tacgcggcat ctcgacgtca caggctacat tctatctcct 180
ggtttcatcg atatgcacgc gcatttcagac ctctacctac tctctcatcc tgaccacgag 240
gccaatataca cccaaaggatg cacaacggaa gttgtggcc aagacggat atcatatgca 300
ccaattcgta atgttagacca gttgagggcg atccgagaac agattgctgg atggaatggc 360
aatcctacag atgaggagtg ccggacaact ctcaaaggcg ttggcatgtt tgaatggcag 420
actattgggg aataacttggaa ttgtttggag agaaaacagga cggccactaa tgtcgccatg 480
ttggttccgc aaggcaacct gagattattt gcatgtggcc catacgatac tccagcatct 540
gcagaagaga ttcaagatca aatccagctc ttgcgagagg ctatggctca gggtgctgtc 600
gggatgtctca gtggctcac ttatacaccc ggcatgtatg cttccacgtc ggaactagct 660
tctctgtcgca cggccctcgca acaagaattt ccaggtgcatt tctatgcgcc acatcataga 720
agttatgggt tccaggccat cgaaagttt gccgaaatgt tggatctcg agagtcaaca 780
ggctgtccca ttcatcttac acatgcaacg ctcaactttt cagaaaataa gggtaaagct 840
cctgtccctca tctctatggt tgataaatct ctgtgcag gctggatgt cacacttgat 900
acgtatccat acttgcagg ctgtacaact ctggctgcatt tggatctcgat ttggcatct 960
gctggccggcc cacaagagac gctaaaagg ctggaggatg cagaatcgag agaaaaagatt 1020
cgatagccg tggaaatcaa agggtgtat ggcggccatg gtattccaac caactggac 1080
gaaatccaga tcgggacgac taatgaacca tcaatgcatt cgtattctgg tcgcaggcta 1140
tcagaagtgg cacagtctgt tggaaagccg accatcgaag tcttttcga gattctgaa 1200
aaggataagc tcgcaacgac ctgtatcatg catgttggca atgaagaaaa cgtccgacag 1260
atcatgcacgc atcgggtcca tatggcaggc agtgtatggc tcttgcacgg gcagacgcta 1320

TECH CENTER 1600/2900

SEP 13 2001

RECEIVED

Ala Gly Gly Pro Gln Glu Thr Leu Lys Arg Leu Glu Asp Ala Glu Ser
 325 330 335
 Arg Glu Lys Ile Arg Ile Ala Val Glu Ile Lys Gly Cys Asp Gly Gly
 340 345 350
 His Gly Ile Pro Thr Asn Trp Asp Glu Ile Gln Ile Gly Thr Thr Asn
 355 360 365
 Glu Pro Ser Ile Ala Ser Tyr Ser Gly Arg Arg Leu Ser Glu Val Ala
 370 375 380
 Gln Ser Val Gly Lys Pro Thr Ile Glu Val Phe Phe Glu Ile Leu Gln
 385 390 395 400
 Lys Asp Lys Leu Ala Thr Ser Cys Ile Met His Val Gly Asn Glu Glu
 405 410 415
 Asn Val Arg Gln Ile Met Gln His Arg Val His Met Ala Gly Ser Asp
 420 425 430
 Gly Ile Leu His Gly Gln Thr Leu His Pro Arg Ala Tyr Gly Thr Phe
 435 440 445
 Thr Arg Tyr Leu Gly His Tyr Ser Arg Glu Leu Ser Leu Val Ala Leu
 450 455 460
 Pro Ser Met Ile Ala His Leu Thr Ser Arg Pro Ala Lys Arg Leu Ser
 465 470 475 480
 Val Tyr Pro Tyr Arg Gly Leu Ile Ala Glu Gly Ser Ala Ala Asp Ile
 485 490 495
 Val Val Phe Asn Pro Glu Thr Val Lys Asp Met Ser Thr Tyr Glu Glu
 500 505 510
 Pro Lys Val Pro Ser Arg Gly Ile Arg Phe Val Leu Val Asn Gly Gln
 515 520 525
 Ile Ala Val Asp Glu Gly Lys Met Thr Gly Thr Arg Gly Gly Lys Thr
 530 535 540
 Leu Arg Arg Ser Thr Asp Gly Lys Val Lys Ala Arg Asp Glu
 545 550 555

<210> 3
 <211> 20
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Artificially Synthesized Primer Sequence

<400> 3
 cccggcttca tcgacatgca

20

<210> 4
 <211> 20
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Artificially Synthesized Primer Sequence

<220>
 <221> misc. feature
 <222> 18

<223> n is a, t, c, or g

<400> 4

ttcatcgaca tgcaygcnca

20

<210> 5

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Artificially Synthesized Primer Sequence

<220>

<221> misc. feature

<222> 3, 6, 15

<223> n is a, t, c, or g

<400> 5

tgnngngcrt craangcytg

20

<210> 6

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Artificially Synthesized Primer Sequence

<220>

<221> misc. feature

<222> 3, 9

<223> n is a, t, c, or g

<400> 6

aangcytngng grtaytcrtc

20

<210> 7

<211> 321

<212> DNA

<213> Hypomyces mycophilus

<400> 7

ttcatcgaca tgcatgcgca gctggatggt caaccttgac aactacaaca agatactctc 60
 tgttagacaaa aaatcgaaaa tcgtggtcat gcagagcgcc attcgactat acaccctttg 120
 cgaagagctg gagctacatg gcctggcaat gccgaacctg ggcagtataa acgagcaatc 180
 catcgccggc gccatatcta caggcacaca cggcagcagc atccaccacg gcctcatgtc 240
 tgaggatatt ctcgctctga aaatcactct cgccggcgcc aagacggagg catgctccaa 300
 agacgaataac ccccaaggct t 321

<210> 8

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Artificially Synthesized Primer Sequence

<400> 8

aggccaaaat cacccaagga

20

<210> 9

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Artificially Synthesized Primer Sequence

<400> 9

attggggaat acttggattg

20

<210> 10

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Artificially Synthesized Primer Sequence

<400> 10

ctggttcttt ccgcctcaga

20

<210> 11

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Artificially Synthesized Primer Sequence

<400> 11

attaaccctc actaaaggc

20

<210> 12

<211> 1325

<212> DNA

<213> Hypomyces mycophilus

<400> 12

caggacggcc actaatgtcg ccatgttgt tccgcaaggc aacctgagat tattggcatg 60
tggcccatac gatactccag catctgcaga agagattcaa gatcaaatcc agctcttcg 120
agaggctatg gctcagggtg ctgtcggtt gtcttagtgt ctcacttata caccggcat 180
gtatgcttc acgtcgaaac tagttctt gtgcgcggcc ctcgcacaag aatttccagg 240
tgcattctat ggcgcacatc atagaagttt tgggttccag gccatcgaaa gttatgccga 300
aatgttggat ctcggagagt caacaggctg tcccattcat cttacacatg caacgctcaa 360

ctttcagaa aataaggta aagtcctgt cctcatctct atggttgata aatcttgc	420
tgcaggcgtg gatgtcacac ttgatacgtt tccatacttg ccaggctgtt caactctggc	480
tgcattgctg ccaagtcccc catctgctgg cgccccacaa gagacgttta aaaggcttga	540
ggatgcagaa tcgagagaaa agattcgat agccgtggaa atcaaagggt gtatggcgg	600
ccatggtatt ccaaccaact gggacgaaat ccagatcggtt acgactaatg aaccatcaat	660
cgcacatgtat tctggtcgca gcgttatcaga agtgcacag tctgttgaa agccgaccat	720
cgaagtcttt ttcgagattc tgcaaaagga taagctcgca acgagctgtt tcatgcattgt	780
tggcaatgaa gaaaacgtcc gacagatcat gcagcatcggtt gtccatatgg caggcagtga	840
tggatcttgcacggcaga cgctacacc acgagcttgcaccc ggcacattca cgccgtattt	900
aggacactat tctcgtaac tctcgcttgcaccc tgcgttatgc tccatgtatgc ctcacccat	960
atcacggccc gccaacgcac ttccgtata tccatatcgcc ggtctgattt ctgaaggatc	1020
cgcgtccgac attgtggttt ttaaccccgaa aacgtaaag gatatgtcga cgtatgaaga	1080
gccaaagggtt ccaagtcccc gcatttagatt tgttcttagtt aacggccaga tagctgtggaa	1140
cgaaggcaag atgacaggca caagaggggg taaaacactg agaagaagca ccgatggcaa	1200
ggtaaggca agagatgagt aaagtctcgatccgc cgtgcacccaaac aacaggatca	1260
atcgatcaca gcatgatacg gcaggcttgcagtagatac catgtcatgg gggaaatgg	1320
caata	1325

<210> 13

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Artificially Synthesized Primer Sequence

<400> 13

cgagagtcgca acaggctgtc c

21

<210> 14

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Artificially Synthesized Primer Sequence

<400> 14

cgcaggctat cagaagtggc

20

<210> 15

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Artificially Synthesized Primer Sequence

<400> 15

atcgccctca actggcttac

20

<210> 16

<211> 20

<212> DNA
<213> Artificial Sequence

<220>
<223> Artificially Synthesized Primer Sequence

<400> 16
catatgatat cccgtcttgg

20

<210> 17
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Artificially Synthesized Primer Sequence

<400> 17
gattttggcc tcgtggcag

20

<210> 18
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Artificially Synthesized Primer Sequence

<400> 18
cctcagtggaa tgttgccttt ac

22

<210> 19
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Artificially Synthesized Primer Sequence

<400> 19
gcctgtacgg aagtgttact

20

<210> 20
<211> 253
<212> DNA
<213> Hypomyces mycophilus

<400> 20
gtgagagagt aggttagaggt ctgaatgcgc atgcataatcg atgaaaccag gagatagaat 60
gtagcctgtg acgtcgagat gccgcgtatc tggagttgca ttgatggAAC cggggttacc 120
aatcttggca atcagtcct tcgaaaccag cacatcgGCC acaaaggGCT gggctgcttc 180
atcgccggtg ataacagtgg ctgagtggaa gagaattca gtccgcatacg ttggcaatgg 240

gaattcttct ggt
<210> 21
<211> 32
<212> DNA
<213> Artificial Sequence

<220>
<223> Artificially Synthesized Primer Sequence

<400> 21
gagaagctta cagaattctc tccattattg ac 32

<210> 22
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> Artificially Synthesized Primer Sequence

<400> 22
gagaagctta ccagaagaat tcccattgcc 30

<210> 23
<211> 32
<212> DNA
<213> Artificial Sequence

<220>
<223> Artificially Synthesized Primer Sequence

<400> 23
gagaagcttg tacgatgaat aaatatatgt gt 32

<210> 24
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> Artificially Synthesized Primer Sequence

<400> 24
gagaagctta ttgaccattt cccccatgac 30

<210> 25
<211> 1897
<212> DNA
<213> Hypomyces mycophilus

<400> 25
agcttgcacca tgattacgaa ttcgagctcg gtacccgggg atcctctaga gtcgacacctgc 60

aggcatgcaa	gcttaccaga	agaattccca	ttgccaacga	tgcgactga	aattctcttc	120
cactcagcca	ctgttatcac	cggcgatgaa	gcagccccgc	ccttgcggc	cgatgtgctg	180
gtttcgaagg	gactgattgc	caagattgt	aaccccgtt	ccatcaatgc	aactccagat	240
acgcggcata	tcgacgtcac	aggctacatt	ctatctcctg	gtttcatcga	tatgcacatgc	300
cattcagacc	tctacctact	ctctcatcct	gaccacgagg	ccaaaatcac	ccaaggatgc	360
acaacggaaag	ttgtggcca	agacgggata	tcatatgcac	caattcgtaa	tgttagaccag	420
ttgagggcga	tccgagaaca	gattgctgga	tggaatggca	atcctacaga	tgaggagtgc	480
cgacaactc	tcaaaggcgt	tggcatgtt	aatggcaga	ctattggga	atacttggat	540
tgtttggaga	gaaacaggac	gccactaat	gtcgcctatgt	tggtccgca	aggcaacctg	600
agattattgg	catgtggccc	atacgatact	ccagcatctg	cagaagagat	tcaagatcaa	660
atccagctct	tgcgagaggc	tatggctcag	ggtgctgtcg	ggatgtctag	tggctctact	720
tatacacccg	gcatgtatgc	ttccacgtcg	gaactagctt	ctctgtgcgc	ggccctcgca	780
caagaatttc	caggtgcatt	ctatgcgcac	catcatagaa	gttatgggtt	ccaggccatc	840
gaaagttatg	ccgaaatgtt	ggatctcgcg	gagtcacacg	gctgtcccat	tcatcttaca	900
catgcaacgc	tcaactttc	agaaaataag	ggtaaagctc	ctgtcctcat	ctctatggtt	960
gataaaatctc	ttgctgcagg	cgtggatgtc	acacttgata	cgtatccata	cttgcaggc	1020
tgtacaactc	tggctgcatt	gttgc当地	tggcatctg	ctggcggccc	acaagagacg	1080
cttaaaaggc	ttgaggatgc	agaatcgaga	gaaaagattc	gtatagccgt	gaaaatcaaa	1140
gggtgtgatg	gccccatgg	tattccaacc	aactgggacg	aatccagat	cgggacgact	1200
aatgaaccat	caatcgcatc	gtattctgtt	cgcaggctat	cagaagtggc	acagtctgtt	1260
gaaaagccg	ccatcgaagt	cttttcgag	attctgcaaa	aggataagct	cgcaacgagc	1320
tgtatcatgc	atgttggcaa	tgaagaaaac	gtccgacaga	tcatgcagca	tcgggtccat	1380
atggcaggca	gtgatggat	cttgcacggg	cagacgctac	acccacgagc	ttatggcaca	1440
ttcacgcgg	atttaggaca	ctattctcgt	gaactctcgc	tttgtct	gccgtccatg	1500
atcgctcacc	ttacatcacg	gccccccaaa	cgacttccgg	tatattccata	tcgcggctcg	1560
attgctgaag	gatccgcgtc	cgacattgtg	gttttaacc	ccgaaacccgt	aaaggatatg	1620
tcgacgtatg	aagagccaaa	gtgtccaaat	cgggcatta	gatttgtct	agttAACGGC	1680
cagatagctg	tggacgaagg	caagatgaca	ggcacaagag	ggggtaaaac	actgagaaga	1740
agcaccgatg	gcaagggtgaa	gcacaaagat	gagtaaagtc	tcgatctgca	tccgcgtgcc	1800
caacaacagg	atcaagtcgt	cacagcatga	tacggcaggc	tttggagtag	ataccatgtc	1860
atggggaaaa	tggtaataa	gcttggcaact	ggccgtc			1897

<210> 26

<211> 25

<212> PRT

<213> Hypomyces mycophilus

<400> 26

Gly Phe Ile Leu Ser Pro Gly Phe Ile Asp Met His Ala His Ser Asp

1 5 10 15

Leu Tyr Leu Leu Ser His Pro Thr His

20 25

<210> 27

<211> 20

<212> PRT

<213> Hypomyces mycophilus

<400> 27

Val Leu Ala Asp Glu Tyr Pro Gln Ala Phe Tyr Ala Pro His Ala Tyr

1 5 10 15

Ser Arg Gly Phe

20