COMP 445 Data Communications & Computer networks Winter 2022

Link Layer – Control plane

- ✓ Introduction
- ✓ Multiple access protocols
- ✓ Error detection and correction
- ✓ Switched local area networks
- ✓ Link virtualization
- ✓ Data center networking

Learning objectives

- To understand the principles behind link layer services, including error detection/correction, access coordination in shared channels, link layer addressing
- To evaluate the performance of different multiple access protocols
- To explain the way Local Area Networks work and its integration with other layers

Link Layer – Control plane

- ✓ Introduction
- ✓ Multiple access protocols
- ✓ Error detection and correction
- ✓ Switched local area networks
- ✓ Link virtualization
- ✓ Data center networking

Link layer: introduction

terminology:

- hosts and routers: nodes
- communication channels that connect adjacent nodes along communication path: links
 - wired
 - wireless
 - IANs
- layer-2 packet: frame, encapsulates datagram

link layer has responsibility of transferring datagram from one node to physically adjacent node over a link

Link layer: context

- datagram transferred by different link protocols over different links:
 - e.g., WiFi on first link, Ethernet on next link
- each link protocol provides different services

e.g., may or may not provide reliable data transfer over link

RDT (optional)

transportation analogy:

- trip from Princeton to Lausanne
 - limo: Princeton to JFK
 - plane: JFK to Geneva
 - train: Geneva to Lausanne
- tourist = datagram
- transport segment = communication link
- transportation mode = link-layer protocol
- travel agent = routing algorithm

PPP

Link layer: services

- (framing) (link access):
 - encapsulate datagram into frame, adding header, trailer
 - channel access if shared medium
 - "MAC" addresses in frame headers identify source, destination (different from IP address!)
- reliable delivery between adjacent nodes
 - we already know how to do this!
 - seldom used on low bit-error links
 - wireless links: high error rates
 - Q: why both link-level and end-end reliability?

Link layer: services (more)

- flow control:
 - pacing between adjacent sending and receiving nodes
- error detection:
 - errors caused by signal attenuation, noise.
 - receiver detects errors, signals retransmission, or drops frame
- error correction:)
 - receiver identifies and corrects bit error(s) without retransmission
- half-duplex and full-duplex:
 - with half duplex, nodes at both ends of link can transmit, but not at same time

Where is the link layer implemented?

- in each-and-every host
- link layer implemented in network interface card (NIC) or on a chip
 - Ethernet, WiFi card or chip
 - implements link, physical layer
- attaches into host's system buses
- combination of hardware, software, firmware

Interfaces communicating

sending side:

- encapsulates datagram in frame
- adds error checking bits, reliable data transfer, flow control, etc.

receiving side:

- looks for errors, reliable data transfer, flow control, etc.
- extracts datagram, passes to upper layer at receiving side

Link Layer – Control plane

- ✓ Introduction
- ✓ Multiple access protocols
- ✓ Error detection and correction
- ✓ Switched local area networks
- ✓ Link virtualization
- ✓ Data center networking

Multiple access links, protocols

two types of "links":

- point-to-point
 - point-to-point link between Ethernet switch, host
 - PPP for dial-up access
- broadcast (shared wire or medium)
 - old-fashioned Ethernet
 - upstream HFC in cable-based access network
 - 802.11 wireless LAN, 4G/4G. satellite

shared wire (e.g., cabled Ethernet)

shared radio: 4G/5G

shared radio: WiFi

shared radio: satellite

humans at a cocktail party (shared air, acoustical)

Multiple access protocols

- single shared broadcast channel
- two or more simultaneous transmissions by nodes: interference
 - collision if node receives two or more signals at the same time

multiple access protocol

- distributed algorithm that determines how nodes share channel,
 i.e., determine when node can transmit
- communication about channel sharing must use channel itself!
 - no out-of-band channel for coordination

An ideal multiple access protocol

given: multiple access channel (MAC) of rate R bps desiderata:

- 1. when one node wants to transmit, it can send at rate R.
- 2. when M nodes want to transmit, each can send at average rate R/M
- 3. fully decentralized:
 - no special node to coordinate transmissions
 - no synchronization of clocks, slots
- 4. simple

MAC protocols: taxonomy

three broad classes:

- channel partitioning
 - divide channel into smaller "pieces" (time slots, frequency, code)
 - allocate piece to node for exclusive use
- --- random access
 - channel not divided, allow collisions
 - "recover" from collisions
- "taking turns"
 - nodes take turns, but nodes with more to send can take longer turns

Channel partitioning MAC protocols: TDMA

TDMA: time division multiple access

- access to channel in "rounds"
- each station gets fixed length slot (length = packet transmission time) in each round
- unused slots go idle
- example: 6-station LAN, 1,3,4 have packets to send, slots 2,5,6 idle

R/M ~ Ø

Channel partitioning MAC protocols: FDMA

FDMA: frequency division multiple access

- channel spectrum divided into frequency bands
- each station assigned fixed frequency band
- unused transmission time in frequency bands go idle
- example: 6-station LAN, 1,3,4 have packet to send, frequency bands 2,5,6 idle

Random access protocols

- when node has packet to send
 - transmit at full channel data rate R.
 - no a priori coordination among nodes
- two or more transmitting nodes: "collision"
- random access MAC protocol specifies:
 - how to detect collisions
 - how to recover from collisions (e.g., via delayed retransmissions)
- examples of random access MAC protocols:
- ALOHA, slotted ALOHA
- CSMA, CSMA/CD, CSMA/CA

Slotted ALOHA

assumptions:

- all frames same size
- time divided into equal size slots (time to transmit 1 frame)
- nodes start to transmit only slot beginning
- nodes are synchronized
- if 2 or more nodes transmit in slot, all nodes detect collision

operation:

- when node obtains fresh frame, transmits in next slot
 - *if no collision:* node can send new frame in next slot
- if collision: node retransmits
 frame in each subsequent
 slot with probability p until
 success

randomization – why?

Slotted ALOHA

Pros:

- single active node can continuously transmit at full rate of channel
- highly decentralized: only slots in nodes need to be in sync
- simple

Cons:

- collisions, wasting slots
- idle slots
- nodes may be able to detect collision in less than time to transmit packet

C: collision

S: success

E: empty

clock synchronization

Slotted ALOHA: efficiency

efficiency: long-run fraction of successful elots (many nodes, all with many frames to send)

- suppose: N nodes with many frames to send, each transmits in slot with probability p
 - prob that given node has success in a slot = $p(1-p)^{(1-p)}$
 - prob that any node has a success = $Np(1-p)^{N-1}$
 - max efficiency; find p^* that maximizes $Np(1-p)^{N-1}$
 - for many nodes, take limit of $Np^*(1-p^*)^{N-1}$ as N goes to infinity, gives:

max efficiency =
$$1/e \in .37$$

at best: channel used for useful transmissions 37% of time!

Slotted ALOHA: efficiency

Pure ALOHA

- unslotted Aloha: simpler, no synchronization
 - when frame first arrives: transmit immediately
- collision probability increases with no synchronization:
 - frame sent at t₀ collides with other frames sent in [t₀-1,t₀+1]

Pure ALOHA

P(success by given node) = P(node transmits)

P(no other node transmits in $[t_0-1,t_0]$

P(no other node transmits in $[t_0,t_0+1]$

$$= p \cdot (1-p)^{N-1} \cdot ((-p)^{N-1})$$

$$= p \cdot (1-p)^{2(N-1)}$$

Pure ALOHA

... choosing optimum p and then letting N $ightharpoonup \infty$

even worse than slotted Aloha!

CSMA (carrier sense multiple access)

simple CSMA: listen before transmit:

- if channel sensed idle: transmit entire frame
- if channel sensed busy: defer transmission
- human analogy: don't interrupt others!

CSMA/CD: CSMA with collision detection

- collisions detected within short time
- colliding transmissions aborted, reducing channel wastage
 - collision detection easy in wired, difficult with wireless
- human analogy: the polite conversationalist

CSMA: collisions

- collisions can still occur with carrier sensing:
 - propagation delay means two nodes may not hear each other's juststarted transmission
- collision: entire packet transmission time wasted
 - distance & propagation delay play role in determining collision probability

CSMA/CD:

- CSMA/CD reduces the amount of time wasted in collisions
 - transmission aborted on collision detection

Ethernet CSMA/CD algorithm

1. NIC receives datagram from network layer, creates frame

- → 2. If NIC senses channel:
 - if idle: start frame transmission.
 - if busy: wait until channel idle, then transmit
 - 3. If NIC transmits entire frame without collision, NIC is done with frame! 🗸
 - 4. If NIC detects another transmission while sending: abort, send jam signal (48)
 - 5. After aborting, NIC enters binary (exponential) backoff:

bit times)

- after mth collision, NIC chooses K at random from $(0,1)2, ..., 2^m-1$. NIC waits K.512 bit times, returns to Step 2

• more collisions: longer backoff interval
$$m = 2$$
 (limit (0))

CSMA/CD efficiency

- T_{prop} = max prop delay between 2 nodes in LAN
- t_{trans} = time to transmit max-size frame

$$efficiency = \frac{1}{1 + 5t_{prop}/t_{trans}}$$

- efficiency goes to 1
 - as t_{prop} goes to 0
 - as t_{trans} goes to infinity
- better performance than ALOHA: and simple, cheap, decentralized!

"Taking turns" MAC protocols

channel partitioning MAC protocols:

- share channel efficiently and fairly at high load
- inefficient at low load: delay in channel access, 1/N bandwidth allocated even if only 1 active node!

random access MAC protocols

- efficient at low load: single node can fully utilize channel
- high load: collision overhead

look for best of both worlds!

"Taking turns" MAC protocols

polling:

- master node "invites" other nodes to transmit in turn
- typically used with "dumb" devices
- concerns:
 - polling overhead
 - latency
 - single point of failure (master)

"Taking turns" MAC protocols

token passing:

- control token passed from one node to next sequentially.
- token message
- concerns:
 - token overhead
- → latency
- single point of failure (token)

Cable access network: FDM, TDM and random access!

- multiple downstream (broadcast) FDM channels: up to 1.6 Gbps/channel
 - single CMTS transmits into channels
- multiple upstream channels (up to 1 Gbps/channel)
 - multiple access: all users contend (random access) for certain upstream channel time slots; others assigned TDM

Cable access network:

| MAP frame for Interval (1/2) | Downstream channel i
| Upstream channel i | Residences with cable modems
| Assigned minislots containing cable modem

DOCSIS: data over cable service interface specificaiton

minislots request frames

- FDM over upstream, downstream frequency channels
- TDM upstream: some slots assigned, some have contention
 - downstream MAP frame: assigns upstream slots
 - request for upstream slots (and data) transmitted random access (binary backoff) in selected slots

upstream data frames

Summary of MAC protocols

- channel partitioning, by time, frequency or code
 - Time Division, Frequency Division
- random access (dynamic),
 - ALOHA, S-ALOHA, CSMA, CSMA/CD
 - carrier sensing: easy in some technologies (wire), hard in others (wireless)
 - CSMA/CD used in Ethernet
 - CSMA/CA used in 802.11
- taking turns
 - polling from central site, token passing
 - Bluetooth, FDDI, token ring

-> CDMA

Link Layer – Control plane

- ✓ Introduction
- ✓ Multiple access protocols
- ✓ Error detection and correction
- ✓ Switched local area networks
- ✓ Link virtualization
- ✓ Data center networking

Error detection

EDC: error detection and correction bits (e.g., redundancy)

D: data protected by error checking, may include header fields

Error detection

Simple example: error correction is to send every packet 3 times.

Receiver uses majority of vote on each bit Assume bit errors are independent

BER (BH From Rate)

Link Layer: 6-39

Parity checking

single bit parity:

detect single bit errors

Even parity: set parity bit so there is an even number of 1's

two-dimensional bit parity:

• detect and correct single bit errors

^{*} Check out the online interactive exercises for more examples: http://gaia.cs.umass.edu/kurose_ross/interactive/