

401	(1) 52 +105-24 (5+6) (5+4)					
1 kg/	$0 \zeta(5) = \frac{5^2 + 105 + 24}{5^2 + 3s + 2} = \frac{(5+6)(5+4)}{(5+2)(5+1)}$					
	$k = \frac{-1}{G(5)}$					
	$=\frac{1}{G(\phi)}$					
$\frac{dk}{d\sigma} = \frac{d\sigma^2 - 3\sigma - 2}{d\sigma^2 + 10\sigma + 24}$ $= (-2\sigma - 3)(\sigma^2 + 10\sigma + 24) + (\sigma^2 + 3\sigma + 2)(\sigma^2 + 2\sigma + 10\sigma + 24)^2$ $= (\sigma^2 + 10\sigma + 24)^2$						
	= -263-2002-480-302-3007720+203+602+40+1002+300					
= (-20+6+1-3+10)02+(-47-30+4+30)0+(-72+20)						
	= -70 ² + -440 - 52					
	70-2+440+52=0					
	$(40+1.577)(0+4.707)=0$ $(0(1)^{\frac{22+2\sqrt{33}}{7}})(0+\frac{2^{2}-2\sqrt{33}}{7})=0$					
	-1 -6 -5 -4 -3 -2 -1					
	Zeros.					

System is type I as phase starts at -90°
J 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
225
Step in out 'O
2 316.23 : SSE = 316.23 = 3.16 ×10
/ Namp input. Ku where key = 28174 for
parabolic input: 00
per agence projection.
10 /
See affached graph
J. P.

and the State of Audit and				Brado/s
2e	G(5) = <u>20000</u> S(5+10)(5+10)	On.	huggers	at ~ Boradofs
and the second section of the	5(5+13)(5+10)		41	
	= 2064			
	48005(5 +1) (5+41)			
	5+150	5+15		
	end conjursator =	8+150		
ayay ayaan ay magaan ay ay ay ahaa ahaa ahaa ahaa ahaa ah				

(c) (5 points) For the Bode plot displayed below, give the type of the system and the steady state error for a step, ramp and parabolic input. Show or explain how you got your result.

(d) (5 points) For the Bode plot displayed below, give the approximate gain and phase margin, as well as the approximate damping ratio.

Initial Phase Margin of 30 Final Phase Margin of 75 degrees

- Plant
- Compensator = (s+15)/(s+150)
- Phase Margin Indicator
- Combined