표준대기압 단위환산

1atm = 760 mmHg = 76 cmHg = 0.76 mHg

=
$$1.0332 \text{ kgf/cm}^2 = 1.0332 \times 10^4 \text{ kgf/m}^2$$

$$= 1033.2 \text{ mmAq} = 10.332 \text{ mAq} = 10.332 \text{ m}$$

$$= 1013 \text{ mbar} = 1.013 \text{ bar}$$

= 101325
$$Pa(N/m^2)$$
 = 101.325 $KPa(KN/m^2)$ = 0.101325 $MPa(MN/m^2)$

= 14.7 PSI(Pound per Square Inch)(Ib/in²)

드라이펜던트형 스프링클러헤드

목적 :겨울철 동파방지

구조 :롱니플 속에 부동액 등이 봉입되어 평상시 물의 유입을 방지하는 구조

버터플라이 밸브를 사용하면 안되는 배관

배관 :펌프의 흡입측 배관

이유 :버터플라이밸브는 난류를형성하고 마찰손실이 커서 공동현상 발생

건식밸브

평상시 :체크밸브 기능

화재시:자동경보 기능

과압배출구의 면적 계산공식

$$A = \frac{239Q}{\sqrt{P}}$$

릴리프밸브의 개방압력 설정 방법

- 1. 주밸브(V₁)를 폐쇄한다
- 2. 제어반에서 주펌프를 수동으로 기동 한다
- 압력계(P₁)를 확인하여 체절압력을 확 인한다
- 4. 개폐밸브(V₂)를 완전히 개방하고 유량 조절밸브(V₃)를 서서히 개방하여 압력 계(P₁)의 압력이 체절압력의 90%가 되도록 한다

- 5. 릴리프밸브를 천천히 개방하여 압력수가 토출되도록 한다.
- 6. 제어반에서 주 펌프를 정지한다
- 7. 가압송수장치를 정상상태로 복구한다(V₁개방, V₂및 V₃폐쇄,주펌프 운전스위치 자동위치로 한다)

출입문 개방에 필요한 힘

$$F(N) = F_{dc} + F_{P}$$
$$F_{P} = \frac{K_{d} \times W \times A \times \Delta P}{2(w - d)}$$

연결살수설비의 종합정밀점검표 중 헤드의 점검항목

- 1. 설치장소,헤드상호간 거리의 적부
- 2. 살수장애 여부
- 3. 가연성가스시설인 경우 살수범위의 적부
- 4. 헤드설치제외의 적용 적부

스프링클러설비의 화재안전기준 중 조기반응형 스프링클러헤드를 설치해야 하는 장소

- 1. 노유자시설의 거실
- 2. 숙박시설의 침실

- 3. 오피스텔
- 4. 공동주택
- 5. 병원시설의 입원실

소화수조 또는 저수조의 저수량

Q = K x 20m2이상

 $K = \frac{\partial \mathcal{D}^{A}}{\partial \mathcal{E}^{A}} (2 + 2 + 2 + 3)$

소방대상물의 구분에 따른 기준면적

소방대상물의 구분	면적
1층, 2층 바닥면적 합계가 15,000m² 이상인 소방대상물	7,500m ²
그 밖의 소방대상물	12,500m ²

채수구 설치기준, 가압송장치 설치기준

소요수량	20m³이상~40m³미만	40m³이상~100m³미만	100m³이상
채수구의 수	1개	2개	3개
가압송수장치의 1분당 양수량	1100L	2200L	3300L

지하에 설치하는 소화용수설비의 흡수관투입구 설치기준

한 변이 0.6m 이상이거나 직경이 0.6m 이상인 것으로 하고,

소요수량이 80m3 미만인 것은 1개 이상,

소요수량이 80m3 이상인 것은 2개 이상을 설치하여야 하며

"흡관투입구"라고 표시한 표지를 할 것

특정소방대상물의 보와 가장 가까운 스프링클러헤드의 설치기준

스프링클러헤드의 반사판 중심과	스프링클러헤드의 반사판 높이와
보의 수평거리	보의 하단 높이의 수직거리
0.75 m 미만	보의 하단보다 낮을 것
0.75 m 이상 ~ 1 m 미만	0.1 m이하
1 m 이상 ~ 1.5 m 미만	0.15 m 이하

1.5 m 이상

0.3 m 이하

성능시험배관상 유량조절밸브가 설치된 경우 펌프성능시험방법

- ① 무부하운전=체절운전(No Flow Condition)
 - → 펌프의 토출측 개폐밸브① 폐쇄
 - ① 제어반에서 충압펌프 및 주펌프 운전스위치를 수동(Manual)위치로 한다.
 - © 성능시험 배관 상 유량조절밸브®완전 폐쇄 후 개폐밸브③완전 개방
 - ② 제어반에서 주펌프 수동기동
 - ① 릴리프밸브 작동압력을 압력계④로 확인(만약 릴리프밸브가 체절압력미만에서 개 방되지 않으면 릴리프밸브를 서서히 개방하여 체절압력미만에서 압력수가 토출되 도록 한다)
- ② 정격부하운전=설계점운전(Rated Load)
 - ① 펌프가 기동한 상태에서 성능시험 배관상 유량조절밸브® 서서히 개방하여 유량계 ①의 유량이 정격토출량이 되도록 한다.
 - © 압력계④의 눈금을 읽어 압력을 확인
- ③ 피크부하운전=최대운전(Peak Load)
 - ① 성능시험 배관상 유량조절밸브⑧를 더 개방하여 유량계⑦의 유량이 정격토출량의 150%가 되도록 한다.
 - € 압력계④의 눈금을 읽어 압력을 확인

펌프의 성능시험배관 설치기준 2가지

- 1. 펌프의 토출측에 설치된 개폐밸브 이전에서 분기하여 설치하고 유량측정장치를 기준으로 전단 직관부에 개폐밸브, 후단 직관부에는 유량조절밸브를 설치
- 2. 유량측정장치는 성능시험배관의 직관부에 설치하되 펌프의 정격토출량의 175%까지 측정할 수 있는 성능이 있을 것

할로겐화합물소화설비 소화약제량 산출 공식

$$W = \frac{V}{S} \times \left(\frac{C}{100 - C}\right)$$

불활성기체소화설비 소화약제량 산출 공식

$$X(m^3 / m^3) = 2.303 \times \frac{V_s}{S} \times \log \left(\frac{100}{100 - C}\right)$$

여기서, X: 공간 체적당 더해진 소화약제의 부피(m³)

V_S: 20℃에서 소화약제의 비체적(K₁ + K₂ * 20)(m³/kg)

S: 소화약제별 선형상수(K₁ + K₂ * t(기준온도))(m³/kg)

C: 체적에 따른 소화약제의 설계농도(%)

[C=소화농도(%) x K(안전계수, A, C급 = 1.2, B급 =1.3)]

할로겐화합물 및 불활성기체 소화약제의 저장용기 설치기준

저장용기의 약제량 손실이 (5%)를 초과하거나 압력손실이 (10%)를 초과할 경우에는 재충전하거나 저장용기를 교체할 것. 다만,불활성기체 소화약제 저장용기의 경우에는 압력손실이 (5%)를 초과할 경우 재충전하거나 저장용기를 교체하여야 한다

할로겐화합물 소화약제의 저장용기 설치장소기준

- 1. 방호구역외의 장소에 설치할 것, 다만, 방호구역 내에 설치할 경우에는 피난 및 조작이 용이 하도록 피난구 부근에 설치 할 것
- 2. 온도가 55℃ 이하이고 온도의 변화가 작은 곳에 설치할 것
- 3. 직사광선 및 빗물이 침투할 우려가 없는 곳에 설치할 것
- 4. 저장용기를 방호구역 외에 설치한 경우에는 방화문으로 구획된 실에 설치할 것
- 5. 용기의 설치장소에는 해당 용기가 설치된 곳임을 표시하는 표지를 할 것
- 6. 용기간의 간격은 점검에 지장이 없도록 3초 이상의 간격을 유지할 것
- 7. 저장용기와 집합관을 연결하는 연결배관에는 체크밸브를 설치할 것. 다만, 저장용기가 하나의 방호구역만을 담당하는 경우에는 그러하지 아니한다.

배관구경산정 조건

할로겐화합물 소화약제가 10초 이내에 최소설계농도의 95%이상 방출되도록 하여야 한다 불활성기체 소화약제가 A,C급화재 2분, B급화재 1분 이내에 최소설계농도의 95%이상 방출되도 록 하여야 한다

할로겐화합물 소화약제의 방사시간을 10초이내로 제한하는 이유

약제 방사시 열분해하여 생성되는 독성물질을 최소화하기 위하여

할로겐화합물 소화약제의 구비조건

- 1. ODP(오존파괴지수)가 낮을 것
- 2. GWP(지구온난화지수)가 낮을 것
- 3. 소화능력이 우수할 것
- 4. 독성이 낮을 것
- 5. 가격이 적당할 것
- 6. 유지관리측면에서 경제적일 것

옥상수조를 없애면 추가되는 설비 2가지

- 1. 주펌프와 동등이상의 성능이 있는별도의 펌프로서 내연기관의 기동과 연동하여 작동하거나 비상 전원을 연결하여 설치한 예비펌프
- 2. 자가발전설비 또는 축전지설비에 따른 비상전원

볼류트펌프와 터빈펌프 특징 비교

	볼류트펌프	터빈펌프
임펠러 안내날개(유,무)	무	유
송출 유량(대,소)	대	소
송수 압력(고,저)	저	고

연소방지설비에 관한 화재안전기준

- 1. 연소방지설비전용헤드를 사용하는 경우 하나의 배관에 부착하는 살수헤드의 개수가 4개 또는 5 개인 경우 배관의 구경은 (65)mm 이상의 것으로 하되,연소방지설비 전요 헤드 및 (스프링클러 헤드)를 향하여 상향으로 (1/1000) 이상의 기울기로 설치하여야 한다
- 2. 연소방지 설비에 있어서의 수평주행배관의 구경은 (100)mm 이상의 것으로 한다
- 3. 방수헤드간의 수평거리는 연소방지설비 전용헤드의 경우에는 (2)m 이하,스프링클러헤드의 경우엔느(1.5)m 이하로 할 것
- 4. 살수구역은 지하구의 길이 방향으로 (350)m 이하마다 또는 환기구 등을 기준으로 (1)개 이상설치하되,하나의 살수구역의 길이는 (3)m 이상으로 할 것

피난설비는 피난기구와 인명구조기구로 나뉜다. 인명구조기구의 종류

- 1. 방열복 또는 방화복(안전헬멧,안전화,보호장갑 등 포함)
- 2. 공기호흡기
- 3. 인공소생기

소방대상물의 설치장소별 피난기구의 적응성

	지하층	1층	2층	3층	4층이상10층이하
노유자시설	피난용 트 랩		미 끄럼대, 구 조대, 피난 교 ,		피 난교, 다 수인피난장비
			다 수인피난장비, 승 강식피난기		승 강식피난기
의료시설	피난용 트 랩			미 끄럼대, 피난용 트 랩,	피난용 트 랩, 구 조대, 피난 교
				구 조대, 피난 교 ,	다 수인피난장비, 승 강식피난기
				다 수인피난장비, 승 강식피난기	

피난기구 설치기준

소화활동상 유효한 개구부(가로 0.5m 이상 세로 1m 이상인 것), 이 경우 개부구 하단이 바닥에서 1.2m 이상이면 발판 등을 설치하여하고 밀폐된 창문은 쉽게 파괴할 수 있는 파괴장치를 비치하여야 한다.

제연설비의 설치장소

- 1. 하나의 제연구역의 면적은 (1000)m²이내로 할 것
- 2. 거실과 통로(복도를 포함)는 (상호제연구획) 할 것
- 3. 통로상의 제연구역은 보행중심선의 길이가 (60)m를 초과하지 아니할 것
- 4. 하나의 제연구역은 직경 (60)m 원내에 들어갈 수 있을 것
- 5. 하나의 제연구역은 (2개) 이상 층에 미치지 아니하도록 할 것 다만,층의 구분이 불명확한 부분은 그 부분을 다른 부분과 별도로 제연구획 하여야 한다

● 배출구의 설치기준

예상제연구역의 각 부분으로부터 하나의 배출구까지의 수평거리는 (10)m 이내가 되도록 하여 야 한다

● 유입풍도등

유입풍도안의 풍속은 (20)m/s 이하로 하고 풍도의 강판두께는 기준이상으로 설치하여야 한다

분말약제의 전역방출방식

종별	체적계수	개구부 면적계수 k ₂ (kg/m ²)
	$k_1(kg/m^3)$	자동폐쇄장치 미설치 개구부
제1종	0.6	4.5
제2종, 제3종	0.36	2.7
제4종	0.24	1.8

가압용 또는 축압용 가스량

구분	질소가스(N₂) 사용시	이산화탄소(CO ₂) 사용시
가압용 가스	40L/1kg 이상(35℃, 1기압 기준)	20g/1kg + 배관청소에 필요한 양
축압용 가스	10L/1kg 이상(35℃, 1기압 기준)	20g/1kg + 배관청소에 필요한 양

분말소화설비의 약제저장량 방사시간

1. 전역방출방식: 30초 이내

2. 국소방출방식: 30초 이내

분말소화설비

1. 정압작동장치

가압용 가스용기로부터 가스가 분말약제 저장용기에 유입되어 분말약제를 혼합 유동 시킨 후 설정된 방출압력이 된 후 메인밸브(주 밸브)를 개방 시키기 위한 장치이다

2. 클리닝장치

분말약제 방사 후 배관내에 남아 있는 분말약제를 청소하기 위한 장치

탄소소수나트륨계의 분말약제의 비누화현상-주방의 식용유 화재에 유효

비누화현상 : 알칼리를 작용하면 가수분해 되어서 그 성분의 산의 염과 알코올이 되는 변화

소화효과 : 질식효과, 부촉매효과(억제효과)

스프링클러설비

	기능	설치대상
개방형헤드	헤드의 방수구가 개방된 상태	무대부
	감열부가 없다	연소할 우려가 있는 개구부
폐쇄형헤드	헤드의 방수구가 폐쇄된 상태	근린생활시설의 사무실
	감열부가 있다	아파트의 거실

미분무소화설비의 화재안전기준

"미분무"란 물만을 사용하여 소화하는 방식으로 최소설계압력에서 헤드로부터 방출되는 물입자 중 (99)%의 누적체적분포가(400) μ m 이하로 분무되고 (A, B, C급)화재에 적응성을 갖는 것을 말한다

스프링클러설비 및 옥내소화전설비 겸용 충압펌프가 평상시 자주 기동과 정지를 반복하는 발생원인과 방 지대책

원인	방지대책
옥상수조의 배관상 체크밸브가 완전 폐쇄되지	체크밸브를 분해하여 시트를 청소하거나 교체
않는 경우	
펌프의 토출측 주배관상 설치된 스모렌스키	스모렌스키 체크밸브를 점검하여 수리하거나
체크밸브의 바이패스밸브가 개방된 경우	교체
연결송수구의 배관상 체크밸브의 고장	체크밸브를 점검하여 수리하거나 교체
스프링클러설비의 경우 알람밸브에 설치한 드	드레인밸브 및 말단시험밸브를 점검하여 수리

레인밸브 또는 말단시험 장치함의 시험밸브가	하거나 교체
완저히 폐쇄되지 않은 경우	
소화설비의 배관 및 밸브 등에서 누수가 발생	설비를 점검하여 수리하거나 교체
하는 경우	

특별피난계단의 계단실 및 부속실 제연설비의 화재안전기준

- 1) 제연구역과 옥내와의 사이에 유지하여야 하는 최소차압은 (40)Pa(옥내에 스프링클러설비가 설치된 경우에는 (12.5)Pa) 이상으로 하여야 한다
- 2) 제연설비가 가동되었을 경우 출입문의 개방에 필요한 힘은 (110)N 이하로 하여야 한다
- 3) 출입문이 일시적으로 개방되는 경우 개방되지 아니하는 제연구역과 옥내와의 차압은 제1항의 기준에 불구하고 제1항의 기준에 따른 차압의 (70)%미만이 되어서는 아니 된다
- 4) 계단실과 부속실을 동시에 제연하는 경우 부속실의 기압은 계단실과 같게 하거나 계단실의 기압 보다 낮게 할 경우에는 부속실과 계단실의 압력차이는 (5)Pa 이하가 되도록 하여야 한다

특별피난계단의 계단실 및 부속실 제연설비의 제연구역의 선정 기준

- 1. 계단실 및 그 부속실을 동시에 제연하는 것
- 2. 부속실만 단독으로 제연하는 것
- 3. 계단실만 단독으로 제연하는 것
- 4. 비상용승강기의 승강장만 단독 제연하는 것

(앵글밸브): 글로브밸브의 일종이며 수류의 방향을 90도로 변환시켜주는 밸브

(개폐표시형밸브): 밸브의 개폐여부를 외부에서 식별이 가능하면서, 또한 밸브의 개폐여부를 제어반에 신호로써 전달할 수 있는 스위치가 부착되어 소방용으로 사용하는 밸브

(스트레이너): 펌프의 흡입 측에 설치하여 물속의 이물질을 제거하는 기능

(릴리프밸브) : 펌프의 체절운전 시 펌프 및 배관을 보호하기 위하여 설치하는 안전밸브로 체절압력 미만 에서 작동하는 밸브

(프랜지이음): 배관 중간에 설치한 밸브류,펌프,계기 등 각종 기기의 수리,배관해체 시 편리하다.볼트 체결 시에는 대각선 방향으로 천천히 조여 체결한다

헤드간의 수평거리

정방형설치 S = 2Rcos45

설치장소	수평거리(R)
무대부,특수가연물	1.7m이하
비내화구조	2.1m 이하
내화구조	2.3m 이하
렉크식창고	2.5m 이하
아파트	3.2m 이하

배관의 정격토출량 계산공식

 $Q = 0.653 \times d^2 \sqrt{10P}$

성능시험 시 유량의 150%, 압력의 65%

알람체크밸브가 설치된 습식스프링클러설비에서유수검지장치가 작동하는 경우 경보가 발령되지 않을 경우 원인을 찾기 위하여 확인하여야 할 사항(단,알람체크밸브에는리타딩챔버가 설치되어 있는 것으로 한다)

- 1. 알람체크밸브에 설치된 신호정지밸브가 폐쇄되어 있는 경우
- 2. 알람체크밸브에 설치된 압력스위치가 단선인 경우
- 3. 해당 방호구역의 싸이렌이 고장인 경우
- 4. 수신기의 싸이렌 또는 지구경종스위치가 정지상태로 있는 경우

소방대상물별 소화기구의 능력단위기준

소방대상물	소화기구의 능력단위
위락시설	바닥면적 30㎡ 마다 능력단위 1단위 이상
공연장,집회장,관람장,문화재,장례식장,의료시	바닥면적 50m²
설	
근린생활시설,판매시설,운수시설	바닥면적 100m²
숙박시설,노유자시설,전시장	
공동주택,업무시설,방송통신시설	
공장,창고,항공기 및 자동차관련시설	
관광휴계시설	
그 밖의 것	바닥면적 200m²

주의) 소화기구의 능력단위를 산출함에 있어서 건축물의 주요구조부가 내화구조이고벽 및 반자의 실내에

면하는 부분이 불연재료,준불연재료 또는 난연재료로 된 특정소방대상물에 있어서는 위 표의 기준면적의 2배를 해당 특정소방대상물의 기준면적으로 한다

르샤트리에 공식

$$\frac{V}{L_{m}} = \frac{V_{1}}{L_{1}} + \frac{V_{2}}{L_{2}} + \frac{V_{3}}{L_{3}} + \dots + \frac{V_{n}}{L_{n}}$$

스프링클러설비의 배관방식

- 1. 트리형 배관 :소화수의 흐름이 주배관→ 교차배관 → 가지배관 → 헤드 순서의 단일방향으로 급수가 되며 일반적인 배관방식
- 2. 루프형 배관 :교차배관과 교차배관이 서로 연결되는 배관방식으로 소화수가 두 방향 이상으로 급수되며 가지관은 서로 연결되지 않는다
- 3. 격자형 배관 :교차배관이 헤드가 설치된 다중가지배관에 연결되어 소화수공급시 가지배관의 양쪽 방향으로 급수가 이루어지며 발화위험 공장 등에 많이 적용

오리피스의 유량공식

$$Q = \frac{c_0 A_2}{\sqrt{1-m}} \sqrt{2g \frac{r_1 - r_2}{r_2} R}$$
$$m = \frac{A_2}{A_1} = \left(\frac{D_2}{D_1}\right)^2$$

U자관 유량공식

$$V = C_0 \sqrt{2g\frac{r_1 - r_2}{r_2}R}$$

스프링클러설비를 설치해야 하는 층

- 1. 지하층, 무창층(축사는 제외) 또는 층수가 4층 이상인 층으로서 바닥면적 1000m² 이상인 층
- 2. 층수가 6층 이상인 특정소방대상물의 경우에는 모든 층

폐쇄형헤드를 사용하는 경우 설치장소별 스프링클러헤드의 기준개수

스프링클러설비 설치장소				
지하층을	공장 또는 창고	특수가연물을저장,취급하는 것	30	
제외한	(랙크식 창고 포함)	그 밖의 것	20	
층수가	근린생활시설,판매시설,운수	판매시설 또는 복합건축물	30	
10층 이하	시설 또는 복합건축물	그 밖의 것	20	
	그 밖의 것	헤드의 부착높이가 8m 이상인 것	20	
		헤드의 부착높이가 8m 미만인 것	10	
아파트				
지하층을 제외한 층수가 11층 이상인 소방대상물(아파트 제외)				
지하가 또는 지하역사				

폐쇄형 스프링클러헤드의 선정

설치장소의 최고 주위 온도	표시온도	
39℃ 미만	79℃ 미만	
39℃ 이상 ~ 64℃ 미만 (+25)	79℃ 이상 ~ 121℃ 미만 (+42)	
64℃ 이상 ~ 106℃ 미만 (+42)	121℃ 이상 ~ 162℃ 미만 (+41)	
106℃ 이상	162℃ 이상	

신축이음의 종류

1. 굴곡관형(루프형) 2. 슬리브형 3. 벨로우즈형 4. 스위블형 5. 볼 죠인트형

글로브 밸브 :유체의 흐름을 수평방향(180도)로 흐르게 하면서 유량을 조절.셈세한 유량조절이 가능하다 앵글 밸브 :유체의 흐름을 90도 방향으로 전환시켜 흐르게 하면서 유량을 조절.섬세한유량조절이 힘들다

연결송수관설비의송수구 설치기준

- 1. 연결 송수관의 수직배관마다 설치
- 2. 송수구 부근에 자동배수밸브 및 체크밸브 설치
- 3. 송수구 가까운 보기 쉬운 곳에 연결송수관 설비 송수구 표지 설치
- 4. 소방펌프 자동차가 쉽게 접근할 수 있고 노출된 장소에 설치
- 5. 지면으로부터 0.5m 이상 1m 이하의 위치에 설치

6. 구경 65mm의 쌍구형으로 할 것

체크밸브의 종류

1. 리프트형 체크밸브(수평 배관용) :수평배관에만 사용하며 설치시 유체의 흐름방향에 주의를 요한다

2. 스윙형 체크밸브(수평,수직배관용) :핀을 축으로 회전하여 개폐하므로 유체의 마찰손실이 리프트형보다 작다

탬퍼스위치(급수개폐밸브 작동표시스위치)

1) 설치목적 :급수를 차단할 수 있는 개폐밸브의 개폐상태를 감시제어반에서 확인할 수 있도록 하기 위하여

2) 설치위치

- 1. 주펌프 및 충압펌프의 흡인측 개폐밸브
- 2. 주펌프 및 충압펌프의토출측 개폐밸브
- 3. 연결송수구와 수직배관사이 연결배관상 개폐밸브
- 4. 유수검지장치 및 일제개방밸브의 1차측 및 2차측 개폐밸브
- 5. 옥상수조와 수직배관의 연결배관상 개폐밸브
- 6. 그 밖에 수조로부터 말단 방수구까지의 사이에 급수를 차단할 수 있는 개폐밸브

3) 설치기준

- 1. 급수개폐밸브가 잠길 경우 탬퍼 스위치의 동작으로 인하여 감시제어반 또는 수신기에 표시되어야 하며 경보음을 발할 것
- 2. 탬퍼 스위치는 감시제어반 또는 수신기에서 동작의 유무확인과 동작시험,도통시험을 할 수 있을 것
- 3. 급수개폐밸브의 작동표시 스위치에 사용되는 전기배선은 내화전선 또는 내열전선으로 설치할 것

(스트레이너): 펌프의 흡입측에 설치하여 물속의 이물질을 제거하는 기능

(엘보): 관 속을 흐르느 유체의 방향을 갑자기 변경하는데 사용하는 관이음

(리듀셔): 지름이 서로 다른 관과 관을 접속하는 데 사용하는 관 이음쇠

(앵글밸브): 옥내소화전의 방수구에 사용하는 밸브로서 유체의 입구와 출구의 방향이 직각으로 되어 있는 밸브

(릴리프밸브) : 펌프의 체절운전 시 펌프 및 배관을 보호하기 위하여 설치하는 안전밸브로 체절압력 미만 에서 작동하는 밸브

합성수지배관 사용할 수 있는 경우

- 1. 배관을 지하에 매설하는 경우
- 2. 다른 부분과 내화구조로 구획된 덕트 또는 피트의 내부에 설치하는 경우
- 3. 천장과 반자를 불연재료 또는 준불연재료로 설치하고 그 내부에 습식으로 배관을 설치하는 경우

배관의 설치기준

배관 이음은 각 배관과 동등 이상의 성능에 적합한 배관이음쇠를 사용하고 배관용 스테인리스강 관(KS D 3576)의 이음을 용접으로 할 경우에는 알곤용접방식에 따른다

- (1) 배관 내 사용압력이 1.2MPa 미만일 경우
 - 1. 배관용 탄소강관
 - 2. 이음매 없는 구리 및 구리합금관, 습식의 배관에 한함
 - 3. 배관용 스테인리스강관 또는 일반배관용 스테인리스강관
 - 4. 덕타일 주철관
- (2) 배관 내 사용압력이 1.2MPa 이상일 경우
 - 1. 압력배관용탄소강관
 - 2. 배관용 아크용접 탄소강관

옥내소화전설비의 감시제어반의 기능

- 1. 각 펌프의 작동여부를 확인할 수 있는 표시등 및 음향경보기능이 있어야 할 것
- 2. 각 펌프를 자동 및 수동으로 작동시키거나 중단시킬 수 있어야 할 것
- 3. 비상전원을 설치한 경우에는 상용전원 및 비상전원의 공급여부를 확인할 수 있어야 할 것

- 4. 수조 또는 물올림 탱크가 저수위로 될 때 표시등 및 음향으로 경보할 것
- 5. 각 확인회로(기동용수압개폐장치의압력스위치회로,수조 또는 물올림탱크의 감시회로를 말한다)마다 도통시험 및 작동시험을 할 수 있어야 할 것
- 6. 예비전원이 확보되고 예비전원의 적합여부를 시험할 수 있어야 할 것

NPSH(Net Positive Suction Head)

흡입상 유효 NPSH = Ha - HP - HS - HL

압입상 유효 NPSH = Ha - HP + HS - HL

Ha:대기압두(m)

H_p:그 수온에서 포화 수증기압두(m)

Hs:흡입(압입) 실양정(m)

H_i :흡입관애손실수두(m)

관의 두께

관의 두께 $(t) = \frac{PD}{2SE} + A$

P: 최대허용압력 (⊮a)

D: 배관의 바깥지름(mm))

SE: 최대허용응력 (區)(배관재질 인장강도의 1/4값과 항복점의 2/3 값중 적은 값

×배관이음효율×1.2)

A: 나사이음,홈이음 등의허용값(mm) (헤드설치부분은 제외한다)

·나사이음 : 나사의 높이 ·절단홈이음 : 홈의 깊이

·용접이음 : 0 ※ 배관이음효율

·이음매 없는 배관 : 1.0 ·전기저항 용접배관 : 0.85 ·가열맞대기 용접배관 : 0.60

배액밸브

- 1. 목적 :포 약제 방출 후 배관 안의 액을 배출하기 위하여
- 2. 배관설치방법 :배관의 가장 낮은 부분에 설치하며 적당한 기울기를 유지하도록 한다

준비작동식 스프링클러설비 작동연계

- 1. 감지기 A, B 작동
- 2. 수신반 화재신호 수신
- 3. 전자밸브 작동
- 4. 준비작동식 밸브 개방
- 5. 압력스위치 동작
- 6. 수신반준비작동밸브작동표시등 점등

물올림장치

물계통의 소화설비에서 수원의 수위가 펌프보다 낮은 위치에 있는 가압송수장치에 필요

- 1. 물올림장치에는 전용의 탱크를 설치할 것
- 2. 탱크의 유효수량은 100% 이상으로 할 것
- 3. 구경 15mm 이상의 급수배관에 의하여 당해 탱크에 물이 계속 보충되도록 할 것

스프링클러설비 시험장치의 시험밸브 개방으로 확인할 수 있는 사항

- 1. 수신기 화재표시등 점등여부 확인
- 유수검지장치의 압력스위치 작동으로 음향장치 경보 확인
- 3. 수신기에 밸브개방확인표시등 점등 확인
- 4. 배관내 압력감소로 소화펌프 기동 확인
- 5. 규격방수압 및 규격방수량 확인

이산화탄소소화설비의 종합정밀점검표에 의한 점검항목 중 수동식기동장치의 점검항목 (방 조 /전 음 방)

1. 방호구역별 또는 방호대상별 설치위치(높이 포함)및 기능

- 2. 조작부의 보호판 및 기동장치의 표지상태
- 3. 전원 및 위치표시등 상태
- 4. 음향경보장치와 연동기능
- 5. 방출지연비상스위치 작동상태

이산화탄소소화설비의 기동장치 설치기준

(1) 수동식 기동장치

- 1. 수동식 기동장치의 부근에는 소화약제의 방출을 지연시킬 수 있는 비상스위치를 설치할 것
- 2. 전역방출방식은 방호구역마다,국소방출방식은 방호대상물마다 설치할 것
- 3. 해당방호구역의 출입구부분 등 조작을 하는 자가 쉽게 피난할 수 있는장소에 설치
- 4. 기동장치의 조작부는 바닥으로부터 높이 0.8m이상 1.5m 이하의 위치에 설치하고,보호판 등에 따른 보호장치를 설치할 것
- 5. 기동장치에는 그 가까운 곳의 보기 쉬운 곳에 "이산화탄소소화설비 기동장치"라고 표시한 표 지를 할 것
- 6. 전기를 사용하는 기동장치에는 전원표시등을 설치할 것
- 7. 기동장치의 방출용 스위치는 음향경보장치와 연동하여 조작될 수 있는 것으로 할 것

(2) 자동식 기동장치

- 1. 자동화재탐지설비의 감지기의 작동과 연동하는 것으로서 할 것
- 2. 자동식 기동장치에는 수동으로도 기동할 수 있는 구조로 할 것
- 3. 전기식 기동장치로서 7병 이상의 저장용기를 동시에 개방하는 설비는 2병 이상의 저장용기에 전자 개방밸브를 부착할 것
- 4. 기계식 기동장치는 저장용기를 쉽게 개방할 수 있는 구조로 할 것

이산화탄소소화설비의 작동기능점검 중 솔레노이드밸브 작동방법

- 1. 수동조작함의 기동스위치 작동
- 2. 감시제어반에서 솔레노이드밸브 기동스위치 작동
- 3. 감시제어반에서 감지기 2개회로(교차회로) 동작

- 4. 해당 방호구역 감지기 2개회로(교차회로) 작동
- 5. 솔레노이드밸브의 수동 기동스위치 작동

이산화탄소소화설비 표면화재(1분이내) 방호대상물

방호구역체적	방호구역 체적계수	최저한도량	개구부면적계수
45m³미만	1.0	45kg	
45~150m³미만	0.9		5
150~1450m³미만	0.8	135kg	
1450m³이상	0.75	1125kg	

이산화탄소소화설비 심부화재(7분이내-2분이내 설계가스농도의 30% 도달) 방호대상물

방호대상물	체적계수	설계농	개구부 가산량(K ₂ :kg/m²)
	(K ₁ :kg/m ³)	도(%)	자동폐쇄장치 미설치시
유압기기를 제외한 전기설비,케이블실	1.3	50%	
체적 55m³미만의 전기설비	1.6	50%	10
서고,전자제품창고,목재가공품창고,박물관	2.0	60%	
고무류,면화류,모피,석탄창고,집진설비	2.7	75%	

 $Q(kg)=V(m^3) \times K1(kg/m^3) + A(m^2) \times K2(kg/m^2)$

이산화탄소 소화설비의 분사헤드 설치제외 장소

- 1. 방재실, 제어실 등 사람이 (상시근무) 하는 장소
- 2. 니트로 셀룰로오스, 셀룰로이드제품 등 (자기연소성 물질)을 저장, 취급하는 장소
- 3. 나트륨, 칼륨, 칼슘 등 (활성금속물질)을 저장, 취급하는 장소
- 4. 전시장 등의 관람을 위하여 다수인이 (출입), 통행하는 통로 및 전시실 등

피스톤릴리이져 - 이산화탄소 및 할론 소화설비의 설치부품

기동용가스 또는 약제저장용기의 가스압력에 의하여 저장용기 또는 선택밸브를 개방하거나 개구 부를 자동으로 폐쇄시키는 기능을 한다 분사헤드의 분구(분출구)면적(mm²)

펌프의 정격토출압력:펌프 제작 시 펌프의 명판에 표시되는 토출압력 펌프의 정격토출량:펌프 제작 시 펌프의 명판에 표시되는 토출량 펌프의 자연압:최고위 방수구로부터 펌프의 중심선까지의 수직거리 펌프의 설정압력:펌프의 기동압력이며 정지는 수동으로 한다

밸브의 급격한 폐쇄인 경우의 수격압(Pa)

 $P = \rho \alpha V$

P:밸브의 급격한 폐쇄인 경우의 수격압

ρ:유체의 밀도

α:압력파의 전파속도

V :유속 u

수격작용에 의한 수격압

1. 수격작용에 의한 수격압 발생조건

T ≤2L

여기서,T:폐쇄시간,L: 수격압이 전달되는 관 길이

- 2. 밸브의 폐쇄시간 T가 수격압이 전달되는 관길이L을 왕복하는 시간보다 짧은 경우,
 - 즉, T ≤2L의 경우를 급격한 폐쇄라 한다
- 3. 수격작용에 의한 압력(수격압)은 유속에 비례하여 상승하기 때문에 배관내 유속은 2m/s를 넘지 않도록 제한하고 있다

펌프의 성능

● 체절운전 시 정격토출압력의140%를 초과하지 아니할 것

- 정격토출량의150%로 운전 시 정격토출압력의65% 이상이 되어야 할 것
- 1. 체절점
 - 체절점 양정 = 정격 토출양정x 1.4(140%)
 - 체절점 유량 = 펌프의 토출측 밸브가 모두 폐쇄된 상태 운전 즉,토출유량이0
- 2. 설계점
 - 설계점 양정 = 정격 토출양정x 1.0(100%)
 - 설계점토출량= 정격 토출량x 1.0(100%)
- 3. 운전점
 - 운전점의 양정 = 정격 양정 x 0.65(65%)
 - 운전점 유량 = 정격토출량x 1.5(150%)

저압식 이산화탄소소화설비 저장용기

자동냉동장치: -18 °C 2.1MPa

압력경보장치 :1.9MPa ~ 2.3MPa

안전밸브 :내압시험압력 0.64배 ~ 0.8배

봉판:내압시험압력 0.8배 ~ 내압시험압력

분사헤드의 방사압력이 21°C에서 고압식 2.1MPa

(저압식은 1.05MPa) 이상의 것으로 할 것

음향경보장치는 약제방사 개시 후 1분 이상 경보를 계속할 수 있을 것

이산화탄소 소화약제의 저장용기는 다음 각 호의 기준에 따라 설치하여야 한다. <개정 2012. 8. 20.>

- 1. 저장용기의 충전비는 고압식은 1.5 이상 1.9 이하, 저압식은 1.1 이상 1.4 이하로 할 것 <개정 2012. 8. 20.>
- 2. 저압식 저장용기에는

내압시험압력의 0.64 배부터 0.8 배의 압력에서 작동하는 안전밸브와 내압시험압력의 0.8 배부터 내압시험압력에서 작동하는 봉판을 설치할 것 <개정 2012. 8. 20.>

3. 저압식 저장용기에는

액면계 및 압력계와

2.3 WPa 이상 1.9 WPa 이하의 압력에서 작동하는 압력경보장치를 설치할 것

- 4. 저압식 저장용기에는 용기내부의 온도가 섭씨 영하 18℃ 이하에서
 - 2.1 씨의 압력을 유지할 수 있는 자동냉동장치를 설치할 것
- 5. 저장용기는

고압식은 25 MPa 이상,

저압식은 3.5 № 이상의 내압시험압력에 합격한 것으로 할 것

스프링클러설비에 설치된 기동용수압개폐장치의 압력챔버

1. 압력챔버의 주요기능

소화설비의 배관내 압력변동을 검지하여 자동적으로 펌프를 기동 또는 정지시키는 것

2. 안전밸브의 작동압력

호칭압력 ~ 호칭압력의 1.3배

토너먼트 배관방식

스프링클러설비에는 수격작용으로 인하여 배관파손의 우려가 있어서 사용하면 안된다

적용소화설비

주로 가스계소화설비의 배관방식으로 동시에 방사하는 헤드의 방사압력을 일정하게 유지하기 위하여 적용한다.

- 1. 이산화탄소 소화설비
- 2. 할론 소화설비
- 3. 할로겐화합물 및 불활성기체 소화설비
- 4. 분말 소화설비

솔레노이드 댐퍼

댐퍼의 개구부 면적이 적어서 3~4개의 날개를 이용하여 댐퍼를 작동시킬 수 있는 곳에 설치하는 방연댐퍼로 연기에 의하여 작동하며 솔레노이드가 누르게핀을 이동하여 작동

모터 댐퍼

댐퍼의 개구부 면적이 넓어 다수의 날개를 이용하여 댐퍼를 작동시킬 수 있는 곳에 설치

하는방연댐퍼로 연기에 의하여 작동하며 모터가 누르게핀을 이동하여 작동

휴즈 댐퍼

폐쇄형 헤드의 휴즈블링크의 작동원리와 같으며 온도에 의하여 휴즈가 용융되어 자동으로 폐쇄되는 댐퍼이다.

공동현상(Cavitation)

빠른 속도로 액체가 운동할 때 액체의 압력이 증기압 이하로 낮아져서 액체 내에 증기 기포가 발생하는 현상

발생원인

- 1. 펌프의 흡입측 수두가 클 경우
- 2. 펌프의 흡입배관 마찰손실이 클 경우
- 3. 펌프의 임펠러속도가 클 경우
- 4. 펌프의 흡입관경이 작을 경우
- 5. 펌프의 흡입압력이 유체의 증기압보다 낮을 경우
- 6. 배관 내 유체가 고온일 경우

방지대책

- 1. 펌프의 설치 위치를 수원보다 낮게 한다
- 2. 펌프의 흡입측 수두 및 마찰손실을 적게 한다
- 3. 펌프의 임펠러속도를 작게 한다
- 4. 펌프의 흡입관경을 크게 한다
- 5. 양 흡입 펌프 사용
- 6. 펌프를 2대 이상 설치

NPSH_{av}(유효흡입양정)과 NPSH_{re}(필요흡입양정)의 관계

(1) 캐비테이션 발생한계조건(임계조건) NPSH_{av} = NPSH_{re}

(2) 캐비테이션 발생 방지조건 NPSH_{av}>NPSH_{fe}

(3) 캐비테이션 발생방지 설계조건 NPSH_{av}>NPSH_{re}X 1.3

$$\text{NPSH}_{av}\left(\text{유효흡입양정}\right) = \frac{P_a}{\gamma} - \frac{P_v}{\gamma} \pm H_s - f \frac{V_s^2}{2g}$$

P_a :대기압(N/m²)

P_v: 포화증기압(N/m²=Pa)

γ: 비중량(N/m³)

H_s: (+) 압입양정(m), H_s: (-) 흡입양정(m)

 $f\frac{V_s^2}{2g}$: 흡입배관 총마찰손실수두(m)

동일실 제연방식 : 일반적으로 소규모 화재구역에서 화재시 급기 및 배기를 동시에 실시하는 방식 인접구역 상호제연방식 : 화재시 화재구역은 연기를 배기하고 인접구역은 외부공기를 급기하는 방식

자연제연방식

$$\frac{V_{\rm s}^2}{2{\rm g}}\gamma_{\rm s}=(\gamma_{\rm a}-\gamma_{\rm s}){\rm H}$$

$$v_S = 2gH\left(\frac{\gamma_a}{\gamma_s} - 1\right)$$

$$\gamma = \frac{PM}{RT}$$

여기서

V₅:연기의 유출속도(m/sec)

g :중력 가속도(9.8m/sec²)

r_S :연기의 비중량(kg/m³)

ra:화재실 외부의 공기 비중량(kg/m³)

H:연기층과 공기층과의 높이차(m)

연기의 동압= 외부풍의 동압

$$\frac{\gamma_S}{2g} \times V_s^2 = \frac{\gamma_a}{2g} \times V_0^2$$

$$v_0 = \sqrt{\frac{\gamma_s}{\gamma_a}} \times V_S$$

제3종 기계제연방식

자연제연방식을 변경하여 화재실 상부에 배연기(배풍기)를 설치하여 연기를 배출하는 형식

제연방식의 종류

- (1) 자연제연방식
- (2) 스모그타워 제연방식
- (3) 기계제연방식

기동용 압력챔버 공기를 재충전하려고 할 때의 조작순서

- (1) 주펌프와 충압펌프의 운전스위치를 정지한다
- (2) 밸브 A를 폐쇄한 후 밸브 B와 밸브 C를개방하고 배수한다
- (3) 밸브 B와 밸브 C를 폐쇄하고 충압펌프를자동기 동시킨다
- (4) 밸브 A를개방하여 압력탱크를 가압한다
- (5) 펌프를 압력탱크의 압력스위치에 의하여 정지 되도록 한다

(6) 압력챔버의 공기가 재충전 완료되면 주펌프의 운전스위치를 자동으로 위치한다

펌프 성능시험 배관관경 계산공식

$$Q = 0.653 \times d^2 \sqrt{10P}$$

성능시험 시 유량의 150%, 압력의 65%

$$D = \sqrt{\frac{1.5Q}{0.653\sqrt{0.65 \times 10P}}}$$

펌프의 성능

- (1) 체절운전 시 정격토출압력의140%를 초과하지 아니 할 것
- (2) 정격토출량의150%로 운전 시 정격토출압력의65% 이상이 되어야 할 것

펌프의 성능시험배관

- (1) 성능시험배관은 펌프의 토출측에 설치된 개폐밸브 이전에서 분기하여 설치
- (2) 유량측정장치를 기준으로 전단 직관부에 개폐밸브를 후단 직관부에는 유량조절밸브를 설치할 것
- (3) 유량측정장치는 성능시험배관의 직관부에 설치하되,펌프의 정격토출량의175%이상 측정할 수 있는 성능이 있을 것

노즐에서 운동량 때문에 발생하는 반발력

$$F = Q\Delta U\rho = Q(U_2 - U_1)\rho$$

F:운동량 때문에발생하는 반발력

Q :유량(m³/sec)

U1:소방용호스에서 유속(m/sec)

U2 :노즐에서 유속(m/sec)

ρ :밀도(물의 밀도 : 1000kg/m³또

는 102kgf·sec²/m⁴)

소방호스에 부착된 프랜지 볼트에 작용하는 힘

$$F_{x} = \frac{\gamma A_{1} Q^{2}}{2g} \left(\frac{A_{1} - A_{2}}{A_{1} A_{2}} \right)^{2}$$

Fx: 플랜지 볼트에 작용하는 힘

ν:비중량(kgf/m³)

Q:유량(m³/sec)

g :중력가속도(9.8m/sec²)

A :단면적(m²)

노즐선단에서 방수압 측정요령

노즐선단에서 노즐내경(d)의 1/2만큼 떨어진 곳에서 피토관 입구를 수류의 중심선과 일치토록 하여 게이지상의 압력을 읽고 다음 공식에 의하여 방수량을 구한다

- $Q = 0.653D\sqrt[2]{10P}$
- Q :방수량(I/분)
- D : 노즐내경(mm)
- P: 방수압(MPa)

부압식 스프링클러설비

가압송수장치에서 준비작동식유수검지장치의 1차측까지는 항상 정압의 물이 가압되고, 2차측 폐쇄형 스프링클러헤드까지는 소화수가 부압으로 되어 있다가 화재 시 감지기의 작동에 의해 정압으로 변하여 유수가 발생하면 작동하는 스프링클러설비

1차측 : 배관 내에 항상 정압의 물이 가압되어 있는 상태

2차측 : 배관 내에 소화수가 부압으로 있는 상태

써징현상(맥동현상, Surging)

펌프 운전시 규칙적으로 운동, 양정, 토출량이 변화하는 현상, 즉 송출 압력과 송출 유량의 주기적인 변동이 발생하는 현상

- 1) 써징(맥동) 현상 발생 원인
 - ㄱ. 펌프의 양정 곡선이 산형 특성이며 사용범위가 우상특성일 것
 - ㄴ. 토출배관에 수조, 공기저장기가 있을 때
 - ㄷ. 토출량 조절 밸브가 수조, 공기저장기보다 아래에 있을 때
- 2) 써징(맥동) 현상 방지 대책
 - ㄱ. 펌프의 양수량을 증가
 - ㄴ. 펌프의 임펠러 회전수를 변화시킨다
 - ㄷ. 배관내의 공기제거
 - ㄹ. 배관의 단면적 조절
 - ㅁ. 배관내의 유속의 조절
 - ㅂ. 배관내의 유량의 조절

Range와 Diff

Range : 펌프의 작동정지점이다. 즉, 펌프가 가동되어 압력이 충전되어 설정압력 범위 내가 되면 펌프가 정지되는 점이다.

Diff: Range에 설정된 압력에서 Diff에 설정된 압력만큼 떨어지면 펌프가 기동되는 압력의 차이를 뜻한다

엑셀레이터(Accelater), 익져스터(Exhauster) – 배기가속장치

건식 스프링클러 소화설비는 건식밸브 2차측이 압축공기나 압축질소 가스로 채워져 있어 설비작동 시 습식설비보다 물을 방수하는데 시간이 걸린다. 이를 방지하기 위해 설치하는 기구

가압송수장치의 체절운전방법

- 1) 주 펌프이 토출 측 개폐밸브를 폐쇄한다
- 2) 동력제어반(MCC제어반)에서 펌프를 수동으로 기동시킨다
- 3) 릴리프밸브의 작동압력이 체절압력 미만인지 확인한다

내진설계기준에 맞게 설치해야 하는 소방시설

- 1) 옥내소화전설비
- 2) 스프링클러설비
- 3) 물분무등소화설비

관로망

달시공식(Darcy weisbach 식)

$$h_L = f \cdot \frac{\ell}{D} \cdot \frac{V^2}{2g}$$

여기서, h_L: 수두손실(m)

f: 마찰계수

ℓ : 수로길이(m)

D: 관의 직경(m)

V: 유속(m/sec)

g: 중력가속도(9.8 m/sec²)

$$\Delta h1_L = \Delta h2_L$$
 따라서, $f \cdot \frac{l_1}{D_1} \cdot \frac{{V_1}^2}{2g} = f \cdot \frac{l_2}{D_2} \cdot \frac{{V_2}^2}{2g} - > \frac{l_1}{D_1} \cdot \frac{{V_1}^2}{1} = \frac{l_2}{D_2} \cdot \frac{{V_2}^2}{1}$

음향경보장치는 약제방출 개시 후 1분 이상 경보를 계속할 수 있어야 한다

약제저장용기의 개방밸브 작동방식

- 1) 전기식 2) 가스압력식 3) 기계식

관이 급격히 축소하는 경우 마찰손실(Δh_L)

$$\Delta h_{L}(m) = k \frac{u_{2}^{2}}{2g}$$

여기서, $k\left(\frac{4}{3}\right) = \left(\frac{1}{Ac} - 1\right)^2$ 의 함수

할론1301 소화약제 저장량

1. 전역방출방식은 다음 각 목의 기준에 따라 산출한 양 이상으로 할 것 <개정 2012. 8. 20.> 가. 방호구역의 체적(불연재료나 내열성의 재료로 밀폐된 구조물이 있는 경우에는 그 체적을 제외한다) 1 ㎡에 대하여 다음 표에 따른 양

소방대상물 또는 그 부분		소화약제의 종별	방호구역의 체적 1㎡ 당소화약제의 양
	통신기기실·전산실 기타 이 가 설치되어 있는 부분	할론 1301	0.32kg이상 0.64kg이하
	가연성고체류·가연성액체 류	할론 2402 할론 1211	0.40kg이상 1.1 kg이하 0.36kg이상 0.71kg이하
소방기본법시행 령 별표 2의 특	면화류-나무껍질 및 대팻	할론 1301	0.32㎏이상 0.64㎏이하
수가연물을 저장· 취급하는 소방	밥·넝마 및 종이부스러기· 사류·볏짚류·목재가공품	할론 1211 할론 1301	0.60㎏이상 0.71㎏이하 0.52㎏이상 0.64㎏이하
대상물 또는 그 부분	및 나무부스러기를 저장· 취급하는 것	<u>≥</u>	0.52kg018 0.04kg010f
	합성수지류를 저장·취급 하는 것	할론 1211 할론 1301	0.36kg이상 0.71kg이하 0.32kg이상 0.64kg이하

나. 방호구역의 개구부에 자동폐쇄장치를 설치하지 아니한 경우에는 "가"목에 따라 산출한 양에 다음 표에 따라 산출한 양을 가산한 양

소방대상물 또는 그 부분		소화약제의 종별	가산량(개구부의 면적 1 m ¹ 당 소화약제의 양)
차고·주차장·전기실·동신기기실·전산실·기타 이 와 유사한 전기설비가 설치되어 있는 부분		할론 1301	2.4kg
	가연성고체류 · 가연성액	할론 2402	3.0kg
	체류	할론 1211	2.7kg
A ML T M M 11 40	Аπ	할론 1301	2.4kg
소방기본법시행	면화류·나무껍질 및 대팻		
령 별표 2의특수 가연물을 저장취	밥·넝마 및 종이부스러기· 사류·볏짚류·목재가공품 및	할론 1211	4.5kg
급하는 소방대상	나무부스러기를 저장취급	할론 1301	3.9kg
물 또는 그 부분	하는 것		
	합성수지류를 저장취급하	할론 1211	2.7kg
	는 것	할론 1301	2.4kg

- 2. 국소방출방식은 다음 각 목의 기준에 따라 산출한 양에 할론 2402 또는 할론 1211은 1.1을, 할론 1301은 1.25를 각각 곱하여 얻은 양 이상으로 할 것 <개정 2012. 8. 20.>
 - 가. 윗면이 개방된 용기에 저장하는 경우와 화재시 연소면이 1 면에 한정되고 가연물이 비산할 우려가 없는 경우에는 다음 표에 따른 양

소화약제의 종별	방호대상물의 표면적 1 m ¹ 에 대한 소화약제의 양
할론 2402	8.8kg
할론 1211	7.6kg
할론 1301	6.8kg

나. 가목외의 경우에는 방호공간(방호대상물의 각부분으로부터 0.6m의 거리에 따라 둘러싸인 공간을 말한다. 이하 같다)의 체적 1 ㎡에 대하여 다음의 식에 따라 산출한 양

 $Q = X - Y \frac{a}{\Lambda}$

Q : 방호공간 1㎡에 대한 할론소화약제의 양(kg/㎡)

a : 방호대상물의 주위에 설치된 벽의 면적의 합계(m)

A : 방호공간의 벽면적(벽이 없는 경우에는 벽이 있는 것으로 가정한 당해 부분의 면적)의 합계(m)

X 및 Y : 다음표의 수치

소화약제의 종별	X의 수치	Y의 수치
할론 2 4 02	5.2	3.9
할론 1211	4.4	3.3
할론 1301	4.0	3.0

3. 호스릴할론소화설비는 하나의 노즐에 대하여 다음 표에 따른 양 이상으로 할 것 <개정 2012. 8. 20., 2018. 11. 19.>

소화약제의 종별	소화약제의 양
할론 2402 또는 1211	50kg
할론 1301	45kg

할론 소화설비에서 사용하는 soaking time

할론 소화약제는 표면화재의 화재초기에 저농도(5~10%)로 사용되나 심부화재에 적용할 경우 고 농도를 일정시간 유지시켜 주어야 소화가 된다. 이때 필요한 시간을 말한다.

할론 소화설비의 배관

하나의 구역을 담당하는 소화약제 저장용기의 소화약제량의 체적합계보다 그 소화약제 방출시 방출경로 가 되는 배관(집합관 포함)의 내용적이 1.5배 이상일 경우에는 당해 방호구역에 대한 설비는 별도 독립방 식으로 하여야 한다

전역방출방식 : 화재 발생시 밀폐된 실내에 미리 설치된 소화설비에 의하여 저장된 할론 소화약제를 방사하여 실내의 연소반응을 억제하여 연소를 중단시키는 방법이다

옥외 소화전함 등 설치 기준

옥외소화전 설치개수	10개 이하	11개 이상 30개 이하	31개 이상
소화전함 설치기준	옥외소화전마다 5m 이내의	11개의 소화전함을 분산	옥외소화전 3개마다
	장소에 1개 이상 설치	설치	1개이상 설치

질량유량 m̄ = Auρ

중량유량 $\overline{G} = Au\gamma$

유량 Q = Au

소방대 연결송수구와 체크밸브 사이에 자동배수장치를 설치하는 이유

소화작업 후 배관내의 물을 자동으로 배수하여 동파방지 및 배관부식 방지

방출된 CO2가스량 산출공식

 $G(방출된\ CO_2$ 가스량 $(m^3) = rac{21-Q(물질의\ 연소한계\ 산소농도(\%)}{Q(물질의\ 연소한계\ 산소농도(\%)} imes V(방호구역체적<math>(m^3)$

스프링클러설비 방식과 사용되는 유수검지장치 또는 일제개방밸브의 종류

상사의 법칙

유량
$$Q_2 = Q_1 * \left(\frac{N_2}{N_1}\right) * \left(\frac{D_2}{D_1}\right)^3$$

양정
$$H_2 = H_1 * \left(\frac{N_2}{N_1}\right)^2 * \left(\frac{D_2}{D_1}\right)^2$$

압력
$$P_2 = P_1 * \left(\frac{N_2}{N_1}\right)^3 * \left(\frac{D_2}{D_1}\right)^5$$

연돌효과(굴뚝효과)에 의한 압력차

$$\Delta P = 3460 H \left(\frac{1}{T_a} - \frac{1}{T_i} \right)$$

여기서, ΔP: 연돌효과(굴뚝효과)에 의한 압력차(Pa)

H: 중성대로부터 높이(m)

Ta: 외부공기의 절대온도 (273+℃)[K]

T_i: 실내공기의 절대온도 (273+℃)[K]

헤이젼-윌리엄스 공식

$$\Delta P_m = 6.053 \times 10^4 \times \frac{Q^{1.85}}{C^{1.85} \times D^{4.87}}$$

여기서, ΔP_m : 배관 1m당 마찰손실압력(MPa)

Q: 유량(I/min)

C: 조도(배관의 거칠음 계수)

D : 배관내경(mm)

이상기체 상태방정식

$$PV = \frac{W}{M}RT$$

PVM = WRT

$$\rho\left(\frac{W}{V}\right) = \frac{PM}{RT}$$

여기서, P: 압력(atm) M: 분자량 R: 기체상수(0.082atm*m³/kg-mol*K)

T : 절대온도(273+℃)[K]

물분무소화설비의 수원의 양

소방대상물	수원의 저수	량(m³)	
	설계부분(m²)	표준방수량(l/m²*분)	방수시간
특수가연물 저장, 취급	바닥면적(최대방수구역기준 최소 50m²)		
절연유 봉입 변압기	표면적	10	
콘베이어벨트 등 벨트부분의 바닥면적			20분
케이블 트레이, 닥트	트레이, 닥트 투영된 바닥면적		
차고, 주차장	바닥면적(최대방수구역기준 최소 50m²)	20	

물분무헤드와 전기기기와의 이격거리

전압(KV)	거리(cm)	전압(KV)	거리(cm)
66 이하	70 이상	154 초과 ~ 181 이하	180 이상
66 초과 ~ 77 이하	80 이상	181 초과 ~ 220 이하	210 이상
77 초과 ~ 110 이하	110 이상	220 초과 ~ 275 이하	260 이상
110 초과 ~ 154 이하	150 이상		

스케듈 수

안전율 =
$$\frac{\textit{인장강도}(kg/cm^2)}{\textit{허용응력}(kg/cm^2)}$$

증발에 필요한 열량

 $Q = mC\Delta t + rm$

여기서, P: 압력(atm) V: 체적(m³) Q: 필요한 열량(kJ) m: 질량(kg)

C: 비열(kJ/kg*℃) Δt: 온도차(℃) r: 기화잠열(kJ/kg)

1. 1 kcal = 4.186 kJ

2. 물의 비열 = 1 kcal/kg*℃ = 4.186 kJ/kg*℃

3. 물의 기화열(증발잠열) = 539 kcal/kg = 2256 kJ/kg

PORV(Pressure Operated Relief Valve) 작동원리 - 준비작동식 스프링클러설비의 주요구성부품

- 1. 작동원리 : 2차측 가압수가 피스톤을 눌러 중간챔버로 가는 배관을 폐쇄시켜 중간챔버의 압력을 낮은 상태로 유지되며 밸브가 열린 상태로 유지된다
- 2. 설치하지 않을 경우 문제점 : 작동된 준비작동식밸브가 1차측 가압수의 압력으로 인해 다시 복구 (시트 닫힘)될 수 있음

옥내소화전설비의 종합정밀점검표에 의한 점검항목 중 전동기의 점검항목

- 1. 베이스에 고정 및 커플링 결합상태
- 2. 원활한 회전 여부(진동 및 소음상태)
- 3. 본체의 방청의 보존상태

옥내소화전 설비 계통

1. 옥상수조의 최소유효저수량은 유효수량의 1/3 이상이다

2. 다음 A~E의 명칭

- A. 소화수조
- B. 기동용 수압개폐장치 펌프의 자동기동 및 정지
- C. 수격방지기 배관 내 수격작용 방지
- D. 옥상수조
- E. 옥내소화전 문짝의 면적은 0.5 m² 이상

불연재료로 된 특정소방대상물 또는 그 부분으로서 옥내소화전 방수구를 설치하지 아니할 수 있는 곳

- 1. 냉장창고 중 온도가 영하인 냉장실, 또는 냉동창고의 냉동실
- 2. 고온의 노가 설치된 장소 또는 물과 격렬하게 반응하는 물품의 저장 또는 취급 장소
- 3. 발전소, 변전소 등으로서 전기시설이 설치된 장소
- 4. 식물원, 수족관, 목욕실, 수영장(관람석 부분을 제외) 또는 그 밖의 이와 비슷한 장소
- 5. 야외음악당, 야외극장 또는 그 밖의 이와 비슷한 장소

간이 스프링클러 설비

- 1. 상수도직결형의 경우에는 수돗물
- 2. 수조(캐비닛형 포함)를 사용하는 경우에는 1개 이상의 자동급수장치를 설치

헤드 수	시간		방수량	방수압
2	10분		50 L/min	0.1 MPa 이상
5	20분	근린생활시설(1000m2 이상) 생활형 숙박시설(600m2 이상) 복합건출물(1000m2 이상)	80 L/min : 주차장(표준반응형 스프링클러헤드 사용)	

베르누이 정리

$$\frac{{U_1}^2}{2g} + \frac{P_1}{r} + Z_1 = \frac{{U_2}^2}{2g} + \frac{P_2}{r} + Z_2 + \Delta h_L$$

할론 소화약제 방사시 지구촌에 미치는 영향

1. 오존층 파괴로 지구촌에 자외선이 증가하여 환경파괴

2. 지구의 온난화 현상 초래

반응시간지수(Response Time Index) : 기류의 온도, 속도, 작동시간에 대하여 스프링클러헤드의 반응을 예상한 지수

 $RTI = \tau \sqrt{u}$

여기서, RTI : 반응시간지수((m s) $^{0.5}$), τ : 감열체의 시간상수

U: 기류속도(m/sec)

감도에 따른 분류	RTI값의 범위	비고		
표준반응형 헤드	80 초과 ~ 350 이하	가장 일반적으로 사용하는 헤드		
특수반응형 헤드	50 초과 ~ 80 이하	특수용도에 사용하는 헤드		
조기반응형 헤드	50 이하	기류온도 및 기류속도에 조기에 반응하는 헤드		

스프링클러의 급수배관 구경을 구할 때 유속

가지배관 : 6m/s 이하

그 밖의 배관 : 10m/s 이하

옥상수조 설치 예외 사항

- 1. 지하층만 있는 건축물
- 2. 고가수조를 가압송수장치로 설치한 소화설비
- 3. 수원이 건축물의 최상층에 설치된 방수구보다 높은 위치에 설치된 경우
- 4. 건축물의 높이가 지표면으로부터 10m 이하인 경우
- 5. 주펌프와 동등 이상의 성능이 있는 별도의 펌프로서 내연기관의 기동과 연동하여 작동되거 나 비상전원을 연결하여 설치한 경우
- 6. 가압수조를 가압송수장치로 설치한 소화설비

스모렌스키 체크밸브

용도: 바이패스(by-pass)기능(역류 기능)

주거용 주방자동소화장치 설치기준

구분	공기보다 가벼운 가스	공기보다 무거운 가스
탐지부	천장 면으로부터 30cm 이하	바닥 면으로부터 30cm 이하

<u>폐쇄형체드를 설치하는 방식에서 헤드가 모두 화재에 의하여 개방된 사애라고 가정하여 펌프의 양정을</u> 계산하여 펌프의 사양을 선정하기 때문에 배관상 티를 **분류티(축류티)**로 하는 것이 올바른 방법

옥내소화전설비의 경우에는 각층의 **주배관상에 설치된 티는 직류티**로 계산하고 **최상층의 티는 분류티**로 하는 것은 최상층만을 하나의 방수구역으로 하기 때문입니다

하나의 방수구역에 설치된 수평주행배관상의 티는 분류티(축류티)입니다.

팽창비 = 발포 후 포의 부피 (L) 발포 전 포수용액의 부피 (L)

고발포 : 팽창비가 80이상 1000미만인 것

1. 합성계면활성제포

저발포 : 팽창비가 20이하인 것

1, 단백포 2. 합성계면활성제포 3. 수성막포 4. 알코올포 5. 불화단백포

포소화약제의 시험방법

25% 환원시간시험 : 포약제의 환원을 시험하는 간단한 방법으로 발포된 포의 25%가 수용액으로 되는데 걸리는 시간을 분으로 나타낸다. 단백포와 수성막포는 60초 이상, 합성계면활성제포는 30 초 이상이다

포소화설비

1. 포헤드의 수량

정방형 설치시 헤드간의 거리(r=2.1)

정방형설치 S = 2Rcos45

2. 수원의 저수량(m³)

Q(l) = A(m²)(**최대 200m²**) x K(표준방사량) x T(min)(방사시간) x S_w(물의 농도)

3. 포헤드의 방식

소방대상물	수원의 양							
차고, 주차장	1. 포워터스프링클러설비 = 포워터스프링클러헤드수 x 75ℓ/분 x 10분							
및 항고기	2.	포헤드설비 :						
격납고	ŀ	바닥면적(200m² 이상인 경우 200) x 표준방사량(K값) + 10분						
	표준방사량 K값(l/m²·분)							
		포소화약제의 종류	바닥면적 1m²당 방사량					
		단백포	6.5 ℓ 이상]				
		합성계면활성제포	8.0 ℓ 이상]				
		수성막포	3.7 ℓ 이상]				
특수가연물		포소화약제의 종류	바닥면적 1m²당 방사량					
저장,		단백포	6.5 ℓ 이상]				
취급장소		합성계면활성제포	6.5 ℓ 이상	1				
		수성막포	6.5 ℓ 이상	1				

- ① **잘못된 부분**: 충압펌프 및 주펌프의 흡입배관에 압력계 설치 수정방법: 충압펌프 및 주펌프의 흡입배관에 진공계(연성계) 설치
 - ② **잘못된 부분**: 주펌프 토출측 배관상 설치된 압력계 위치 **수정방법**: 주펌프와 체크밸브 사이에 설치
 - ③ 잘못된 부분: 충압펌프의 토출측 체크밸브와 게이트밸브 설치위치 수정방법: 체크밸브와 게이트밸브 설치위치를 바꾼다.
 - ④ **잘못된 부분**: 주펌프의 성능시험배관상 유량조절밸브 1개 누락됨 수정방법: 성능시험 배관상 유량계 다음에 유량조절밸브 설치

소 방 시 설 도 시 기 호

분류	명	칭	도시기호	분류	명칭	도시기호
	일반배관		· · · · · · · ·		스프링클리헤드폐쇄형 상향식(평면도)	-
	옥내・외소화전		—н—		스프링클리헤드폐쇄형 하향식(평면도)	+++++++++++++++++++++++++++++++++++++++
	스프링클리		— SP—		스프링클리혜드개방형 상향식(평면도)	-101-
明	물분	:무	— ws —		스프링클러헤드개방형 하향식(평면도)	-181-
	至仝	:화	— F —		스프링클리헤드폐쇄형 상향식(계통도)	₹
관	배수관		— D —		스프링클러혜드폐쇄형 하향식(입면도)	₹
	전 선 관	입상	1		스프링클러혜드폐쇄형 상·하향식(입면도)	ħ
		입하	~	혜	스프링클러혜드 상향형(입면도)	Ŷ
		통과	ZE	- 에 드	스프링클러헤드 하향형(입면도)	Ą
	후렌지		$\dashv\vdash$	류	분말·탄산가스· 할로겐혜드	♣ ₹
	유니온				연결살수혜드	+
	플러그				물분무혜드(평면도)	$-\otimes$
관	90°엘보		t,		물분무혜드(입면도)	$\stackrel{ ightharpoonup}{ ightharpoonup}$
이 음 쇠	45°엘보		Х,		드랜쳐헤드(평면도)	$- \bigcirc -$
	目		_+_		드랜쳐헤드(입면도)	
	크로스		-+-		포헤드(평면도)	•
	맹후렌지				포혜드(입면도)	\$
	킨	1			감지혜드(평면도)	<u> </u>

분 류	명칭	도시기호	甚异	명 칭	도시기호
-31 1	감지해드(입면도)	\Diamond		릴리프밸브 (이산화탄소용)	•
혜 드 -	천정소화약제방출해드 (평면도)	•		필리프밸브 (일반)	*
큐	청정소화약제방출해드 (임면도)	Î.		동체코밸브	->+
	체크밸브	- N -		예글밸브	→
	가스체크밸브	\rightarrow		FOOT領地	\boxtimes
	게이트밸브(상시개방)	$-\bowtie$	₩	弄頭耳	-D&J-
	게이트밸브(상시폐쇄)	\rightarrow	耳	배수밸브	*
量	선택밸브		井	자동배수밸브	
	조작밸브(일반)	-S-		여자망	
	조작밸브(전자식)			자동밸브	©
旦	조작밸브(가스식)	*		간압밸브	
	경보텔브(습식)	- (-		공기조절밸브	
류	경보밸브(건식)	-Ø -		암력계	Z
	프리색선ভ	-10-	계기류	연성계	8
	정보펠튜지밸브	© >		유랗계	₩
	프리액션밸브수동포작항	SVP		유내소화전함	
-	플레시블조인크	-[////]-		육내소화전 방수용기구병설	
	송레노이트웰브	S	소화전	유의소화전	<u>–</u> Ĥ–
	보더벨브	89		포말소화전	- - - - -

분 류	명 칭	도시기호 분 류		명 칭	도시기호
દ એ જો	송수구	XI —		차동식스포트형감지기	
소화전	방수구	- QQ -		보상식스포트형감지기	
스 트	A.al			정온식스포트형감지기	
레이너	Uij	-		연기감지기	S
	고가수조 (물을림장치)			감지선	-•
저 장 탱크류	압력챔버			공기관	
	포말원액탱크	(今平) (今平)	경	열전대	
	편심례듀셔		보	열반도체	\otimes
레듀셔	원심례듀셔	\rightarrow	설	차동식분포형 감지기의검출기	X
	프레져푸로포셔너	₽	비	발신기셋트 단독형	969
			7]	발신기셋트 옥내소화전내장형	P.B.C
혼합장 치류	라인푸로포셔너	├ 인푸로포셔너 ├		경계구역번호	Δ
	프레져사이드 푸로포셔너		7]	비상용누름버튼	(F)
	기 타	\multimap	류	비상전화기	ET
	일반펌프	₽		비상벨	B
점프류	펌프모터(수평) █ █ M			싸이렌	\boxtimes
	펌프모토(수직)			모터싸이렌	∞ <
저 장	분말약제 저장용기	P.D		전자싸이렌	
용 기	저장 용 기	^		조작장치	ΕP
帮	.1001			중폭기	AMP

분 류	명 칭	도시기호	분 류	명 칭		도시기호
	기동누름버튼	Œ	경보설비 기기류		종단저항	Ω
	이온화식감지기 (스포트형)	S		수동식제어		
	광전식연기감지기 (아나로그)	SA			천장용배풍기	@
	광전식연기감지기 (스포트형)	S			벽부착용 배풍기	8
	감지기간선, HIV1.2mm×4(22C)	— F -///-		배	일반배풍기	&
	감지기간선, HIV1.2mm×8(22C)	— F -///-////	제연설비	풍 기	관로배풍기	\overline{C}
경	유도등간선 HIV2.0mm×3(22C)	EX			화재댐퍼	Ŧ
보	경보부저	(BZ)		댐 퍼	연기댐퍼	7
	제어반	$\Rightarrow \in$			화재/연기	Ŧ
설	표시반	\blacksquare			댐퍼	8
нJ	회로시험기	•	1 01 -1 =	압력스위치 탬퍼스위치		(PS)
기	화재경보벨	B	스위치류			TS
기	시각경보기 (스트로브)			연	기감지기(전용)	S
류	수신기	\bowtie		9	결감지기(전용)	
"	부수신기	\blacksquare	방연	자동폐쇄장치		E R
	중계기		방화문	연동제어기		
	6 AI AI			배연창기동 모터		M
	표시등	•		배연창수동조작함		8
	피난구유도등	•		피뢰부(평면도)		•
	통로유도등	→	피뢰침			•
	표시판	ightharpoons		3	피뢰부(입면도)	Ĵ
	보조전원	TR			피뢰도선 및 지붕위 도체	

분 류	명 칭	도시기호	분 류	명 칭	도시기호
제연	접 지	Ť		비상콘센트	⊙③
설비	접지저항 측정용단자	\otimes		비상분전반	
	ABC소화기	7]		가스계소화설비의 수동조작함	RM
소	자동확산 소화기	(4)		전동기구동	М
화	자동식소화기	<u>\$</u>		엔진구동	Е
기	이산화탄소 소화기	©	타	배관행거	ş/\$
류	할로겐화함물 소화기			기압계	*
기 타	안테나	\forall		배기구	-1-
	스피커	₽		바닥은폐선	
	연기 방연벽			노출배선	
	화재방화벽			소화가스 패키지	PAC
	화재 및 연기방벽	711111			