(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平11-156568

(43)公開日 平成11年(1999)6月15日

(51) Int.Cl.⁶

識別記号

FΙ

B 2 3 K 26/00 H01S 3/00 B 2 3 K 26/00

В

H01S 3/00

В

審査請求 未請求 請求項の数4 OL (全 5 頁)

(21)出願番号

特願平10-243439

(22)出願日

平成10年(1998) 8月28日

(31)優先権主張番号 特願平9-277921

(32)優先日 (33)優先権主張国 平9 (1997) 9月26日 日本 (JP)

(71)出願人 000002107

住友重機械工業株式会社

東京都品川区北品川五丁目9番11号

(72) 発明者 林 健一

神奈川県平塚市夕陽ケ丘63番30号 住友重

機械工業株式会社総合技術研究所内

(74)代理人 弁理士 高橋 敬四郎 (外1名)

(54) 【発明の名称】 透明材料のマーキング方法

(57)【要約】

【課題】 薄い透明基板へのマーキングに適したマーキ ング方法を提供する。

【解決手段】 マーキング対象物を準備する。マーキン グ対象物を形成する材料を透過する波長域のレーザ光 を、fθレンズを用いて該マーキング対象物の内部に集 光させることにより、該マーキング対象物の内部にマー キングを行う。

10

【特許請求の範囲】

【請求項1】 マーキング対象物を準備する工程と、 前記マーキング対象物を形成する材料を透過する波長域 のレーザ光を、f θ レンズを用いて該マーキング対象物 の内部に集光させることにより、該マーキング対象物の 内部にマーキングを行う工程とを有するマーキング方 法。

【請求項2】 前記マーキング対象物が、ガラスもしく はPMMAで形成されている請求項1に記載のマーキン グ方法。

【請求項3】 前記マーキングを行う工程において、前 記マーキング対象物を形成する材料の屈折率を考慮し て、レーザ光の集光点が前記マーキング対象物の内部に 位置するように、前記マーキング対象物の表面から前記 レーザ光の集光点までの深さを制御する請求項1または 2に記載のマーキング方法。

【請求項4】 前記マーキング対象物が板状の形状を有 し、前記マーキングを行う工程において、前記マーキン グ対象物の厚さ方向の中心位置よりも深い位置に前記レ ーザ光を集光させる請求項1~3のいずれかに記載のマ 20 ーキング方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、透明材料のマーキ ング方法に関し、特にレーザ光を用いた透明材料のマー キング方法に関する。

[0002]

【従来の技術】レーザ光によるアブレーション(爆触) 現象を利用して、例えば透明ガラス基板等のマーキング 対象物の表面に窪みを形成することによりマーキングを 30 行う方法が知られている。この方法によると、マーキン グ対象物の表面に微小な割れが生じ、その破片が生産ラ インに混入するおそれがある。さらに、アブレーション 現象を利用してマーキングを行うと、形成されたマーク の近傍に「デブリ」と称される付着物が付着する。この デブリを除去するために、ガラス基板表面を洗浄する必 要がある。

【0003】特公平7-69524号公報に、透明なプ ラスチックの内部にレーザ光を集光させ、焼け焦げを生 じさせて、プラスチック材料の内部に模様を現出させる 方法が開示されている。この方法は、マーキング対象物 がレーザ照射により焼け焦げを生じる材料、例えばプラ スチック等で形成されている場合に制限される。

【0004】特開平3-124486号公報に、ガラス の内部にレーザ光を集光させて、その表面に損傷を与え ることなくマーキングを行う方法が開示されている。こ の方法では、内部の破壊しきい値が表面の破壊しきい値 の5~20倍のガラス材料の内部に、表面においてはそ の破壊しきい値を超えることなく、内部においてその破 壊しきい値を超えるようにレーザ光を照射する。その実 50 とき、ガラス基板の内部に幅約100μmの面内方向の

施例においてはマーキング対象物としてプラスチックが 使用されており、集光点近傍に、直径20~40μm、 深さ100~250μm程度の範囲にわたって、溶融及 び変質等が生じるとされている。

【0005】しかし、内部と表面との破壊しきい値が同 程度のガラス材料の内部においてのみしきい値を超える ようにレーザ光を集光させることは困難である。表面に おいて破壊しきい値を超えると、表面にクラックが発生 してしまう。

【0006】特開平4-71792号公報に、透明基板 の内部に焦点を結ぶようにレーザ光を照射し、透明基板 の内部を選択的に不透明にするマーキング方法が開示さ れている。この方法では、絶縁破壊により透明材料を不 透明化する。その実施例では、数百μmの幅にわたって 厚さ約2.3mmの石英基板の内部が不透明になり、と れを表面から見ると白い符号として識別することができ る。レーザ光の焦点の深さを精密に制御することは困難 であるため、薄い透明材料へのマーキングには適さな 61

【0007】また、特表平6-500275号公報に は、比較的厚肉の材料をマーキングの対象とした三次元 マーキングの可能性が示唆されている。

[0008]

【発明が解決しようとする課題】上述の透明材料内部へ のマーキング方法では、十分厚い透明材料にマーキング することはできるが、薄い透明基板等へのマーキングに は適さない。

【0009】本発明の目的は、薄い透明基板へのマーキ ングに適したマーキング方法を提供することである。 [0010]

【課題を解決するための手段】本発明の一観点による と、マーキング対象物を準備する工程と、前記マーキン グ対象物を形成する材料を透過する波長域のレーザ光 を、fθレンズを用いて該マーキング対象物の内部に集 光させることにより、該マーキング対象物の内部にマー キングを行う工程とを有するマーキング方法が提供され

 ${0011}$ f θ レンズを用いているため、レーザ光の 光軸を振った場合にも、マーキング対象物の表面から集 光点までの深さをほぼ一定に維持することができる。こ のため、マーキング対象物のある範囲内のほぼ一定の深 さの位置にマーキングすることが可能になる。

[0012]

【発明の実施の形態】本発明の実施例を説明する前に、 本願発明者の行った評価実験について説明する。焦点距 離100mmの凸レンズを使用してNd:YLFレーザ の4倍高調波(波長262nm)をガラス基板内部に集 光させた。4倍高調波のレーザ光のビーム径は3mm、 1ショットあたりのエネルギは0.4mJである。この

クラックが生じるとともに、そのクラックを起点として ガラス基板の厚さ方向にも長さ約500μmのクラック が生じていることが判明した。

【0013】厚さ1~2mmのガラス基板にマーキング を行うと、基板内部のみならず、表面にもクラックが発 生してしまうことが判明した。基板表面にクラックが発 生すると、基板の機械的強度が低下するとともに、基板 からパーティクルが飛散する。

【0014】基板表面にもクラックが発生する原因とし て、以下のことが考えられる。第1に、ガラス基板の表 10 面にもともと存在している凹凸や微細な傷が要因とな り、クラックが発生してしまう。第2に、基板表面に付 着しているゴミがレーザ光を吸収するため、基板表面に おいて予想以上のエネルギのレーザ光が吸収される。基 板表面にクラックを生じさせることなく基板内部にマー キングを行うためには、レーザ光の集光点の深さ方向の 位置制御をより厳密に行う必要があると考えられる。

【0015】本発明の実施例によると、レーザ光の集光 点の位置制御の精度を高めることができる。以下、本発 明の実施例について説明する。

【0016】図1は、本発明の実施例で用いるマーキン グ装置の斜視図を示す。マーキング装置10は、レーザ 光源11、ビーム整形器12、ガルバノミラー13、f θレンズ14を含んで構成される。レーザ光源11から 出射したレーザ光がビーム整形器 12で整形され、ガル バノミラー13で反射し、fθレンズ14で収束されて 収束光線束3となる。収束光線束3が、透明ガラス基板 1を照射する。

【0017】レーザ光源11は、例えばNd:YLFレ ーザの4倍高調波(波長262nm)を出力する。出力 30 されるレーザ光のパルス幅は約10mgである。 f θ レ ンズ14として、例えば焦点距離50mmのものを使用 する。透明ガラス基板1として、例えば厚さ10mmの 合成石英基板を使用する。

【0018】図2は、レーザ光の伝搬の様子を示すため の透明ガラス基板1の断面図である。透明ガラス基板1 の屈折率をnとする。透明ガラス基板1の屈折率を1と 仮定したとき、fθレンズ14で収束された収束レーザ 光3の集光点Pの基板表面2からの深さをH1とする。 実際のガラス基板の屈折率nは1よりも大きいため、基 40 板1の表面におけるレーザ光の屈折により、実際の集光 点Qの深さH2は、H1×nになる。特に、薄い基板に マーキングを施す場合には、屈折による集光点の深さの 変動が無視できない量になる。従って、ガラス基板1の 屈折率を考慮して、集光点がガラス基板1の内部に位置 するようにレーザ光3とガラス基板1との相対位置関係 を制御することが好ましい。

【0019】レーザ光3を集光点Qに集光させ、集光点 Qの位置に光学的損傷(Optical Damage)あるいは光学 的絶縁破壊(Optical Breakdown)を起こさせる。本願 50 片及びパーティクルの発生を防止することができる。こ

発明者の実験によると、集光点Qの位置に基板面内方向 のクラック5が発生するとともに、クラック5から基板 表面に向かって延びるクラック6が観測された。クラッ ク5及び6が発生するのは、レーザ光3を集光すること により、レーザ光の非線型的な吸収が生ずるためと考え られる。このように、クラック5と6とにより、マーク 7が形成される。図1に示すガルバノミラー13を揺動 させて1ショットごとにレーザ光の集光点を移動させる ことにより、基板1の面内方向に分布する複数のマーク 7を形成することができる。なお、ガルバノミラー13 を揺動させる代わりに、基板1を面内方向に移動させて もよい。

【0020】クラック6が基板表面2まで到達するとガ ラス基板1が割れ易くなるため、クラック6が基板表面 2まで到達しないように、集光点Qの深さ、及びレーザ 光3のエネルギを制御する必要がある。また、クラック 6の長さは、 $f\theta$ レンズ14の焦点距離によっても影響 を受ける。

【0021】マーク7の視認性を高めるためには、マー ク7を大きくすることが好ましい。しかし、マーク7を 大きくすると、クラック6が基板表面2まで到達し易く なる。レーザ光のエネルギを下げてマーク7を小さく し、基板面内におけるマーク7の分布密度を高くすると とにより、クラック6を基板表面2に到達させることな く、かつ視認性を髙めることができる。

【0022】また、クラック6は、集光点Qからレーザ 光の入射する基板表面2に向かって延びるため、集光点 Qの深さH2を、基板1の厚さの1/2よりも深くする ことが好ましい。

【0023】次に、レーザ光の収束光学系としてf θ レ ンズを用いた効果について説明する。

【0024】図3(A)は、通常の凸レンズを用いた場 合のレーザ光の収束の様子を示し、図3(B)は、 $f\theta$ レンズを用いた場合のレーザ光の収束の様子を示す。

【0025】図3(A)に示すように、通常の凸レンズ を用いた場合には、レーザ光の光軸がレンズの光軸に対 して傾くと、凸レンズの収差の影響により集光点17が 浅い位置に移動する。このため、広い範囲にマークを形 成することが困難である。

【0026】図3(B)に示すように、f θ レンズを用 いると、レーザ光の光軸が基板面に対して傾いた場合に も、その集光点Qまでの深さをほぼ一定に保つことがで きる。このため、基板表面を損傷させることなく、薄い ガラス基板の比較的広い範囲にマークを形成することが できる。また、集光点Qの面内方向の移動距離が、f θ レンズ入射前のレーザ光の光軸の傾きの変化に比例する ため、歪の少ない模様を描くことが可能になる。

【0027】上記実施例では、ガラス基板の表面ではな く、その内部にマークを形成するため、ガラス基板の破

のため、清浄な状態でマーキングを行うことができ、生 産ラインへのパーティクル等の混入を防止することがで

【0028】上記実施例では、Nd:YLFレーザの4 倍高調波を用いた場合を説明したが、加工対象物との関 係で適当なレーザ装置を用いることができる。例えば、 石英ガラスに対しては、赤外線領域、可視光領域あるい は紫外線領域のレーザ光を用いることができる。紫外線 を透過させない一般的な板ガラスに対しては、赤外線領 域あるいは可視光領域のレーザ光を用いることができ

【0029】レーザ光源としては、操作し易いNd:Y AGレーザ、Nd:YLFレーザ等のレーザダイオード 励起固体レーザを用いるのが便利である。例えば、波長 1. 064 μ m の N d: Y A G レーザを用いる場合、波 長変換器で2倍高調波に変換すれば可視光領域のレーザ 光を得ることができる。3倍高調波あるいは4倍高調波 に変換すれば、紫外線領域のレーザ光を得ることができ る。なお、使用するレーザ光の波長を短くすれば解像度 が高くなるため、より小さなマークを形成することが可 20 能になる。

【0030】さらに、レーザ光源として、パルス発振の ものを用いることにより、制御性よくマーキングを行う ことができる。上記実施例では、パルス幅10msのレ ーザ光を使用したが、バルス幅15nsのものを使用し てもガラス基板に同様のマーキングを行うことができ た。パルス幅を短くすることにより、レーザ照射による 熱的効果による影響を少なくし、マークの深さ方向の位 置を均一に近づけることができる。パルス幅が1ns以 下のレーザ光源を用いることが好ましい。

【0031】上記実施例では、ガラス基板にマーキング を行う場合を説明した。次に、ポリメチルメタクリレー ト(PMMA)基板にマーキングを行う他の実施例につ いて説明する。使用したマーキング装置の基本構成は、 図1に示すものと同様である。ただし、f θ レンズ14 として、焦点距離28mmのものを用い、レーザ光とし てNd:YLFレーザの2倍高調波を用いた。レーザ光 の1ショットあたりのエネルギは、0.5mJである。 厚さ2mmのPMMA基板にマーキングを行ったとこ ろ、基板表面に損傷を与えることなく、基板内部にのみ $40 14 f \theta レンズ$ マークを形成することができた。

【0032】PMMAに顔料を混入させて着色したり、 紫外線吸収剤を混入させることができる。着色されたあ るいは紫外線吸収剤を混入させたPMMAにマーキング を行う場合には、そのPMMAに対して透過率の大きな 波長域のレーザ光を用いることが好ましい。透過率の大 きな波長域のレーザ光を用いることにより、表面近傍で のレーザ光の吸収を少なくし、基板の内部までレーザ光 を到達させることができる。基板内部でPMMAの破壊 しきい値を超えると、そこで光学的損傷が生じ、マーク 10 を形成することができる。

【0033】以上実施例に沿って本発明を説明したが、 本発明はこれらに制限されるものではない。例えば、種 々の変更、改良、組み合わせ等が可能なことは当業者に 自明であろう。

[0034]

【発明の効果】以上説明したように、本発明によれば、 レーザ光を透明材料の内部に集光させることにより表面 に達しないクラックを発生させることができる。クラッ クが表面に達しないため、マーキングによる透明材料の 破片や粉末の発生を防止できる。

【0035】また、f θレンズを用いてレーザ光を集光 しているため、レーザ光を走査しても集光点の深さをほ ば一定に保つことができる。さらに、歪の少ない模様を 描くことが可能になる。

【図面の簡単な説明】

【図1】本発明の実施例で用いるマーキング装置の斜視 図である。

【図2】マーキング対象物の断面図である。

【図3】通常の凸レンズを用いた場合と、f θ レンズを 30 用いた場合の、レーザ光の伝搬の様子を示す図である。

【符号の説明】

- 1 透明材料
- 2 透明材料表面
- 3 レーザ光
- 5、6 クラック
- マーク
- 11 レーザ光源
- 12 ビーム整形器
- 13 ガルバノミラー

【図3】

(A) 通常のレンズを用いた場合

(B) f θ レンズを用いた場合

