# Compositional analysis of high throughput sequencing data

Greg Gloor
03 April, 2018

## Contents

| 1 | About this document                                          | 5  |
|---|--------------------------------------------------------------|----|
|   | Reproducing the analysis                                     | 5  |
|   | R packages required                                          | 5  |
| 2 | Introduction                                                 | 7  |
|   | Outline of the material                                      | 7  |
| 3 | The nature of sequencing data                                | 9  |
|   | A constrained random sample                                  | 9  |
|   | Constrained and un-constrained environments                  | 11 |
|   | Modeling constrained and un-constrained samples              | 12 |
|   | Instrument capacity                                          | 14 |
|   | Example calculation of fragment number                       | 14 |
|   | Sequencing post processing                                   | 15 |
|   | Mapping                                                      | 15 |
|   | OTU generation                                               | 15 |
| 4 | Random sampling by sequencing                                | 17 |
| _ | Formal description                                           | 18 |
|   | Definitions and notation                                     | 18 |
| 5 | DNA sequencing data are compositions                         | 23 |
|   | High throughput sequencing generates compositional data      | 23 |
|   | Compositional data                                           | 24 |
|   | CoDa pathologies                                             | 24 |
|   | Negative correlation bias in compositions                    | 25 |
|   | Spurious correlations:                                       | 25 |
|   | Sub-compositions                                             | 26 |
|   | So can I analyze compositional data? How?                    | 27 |
|   | Basic idea of CoDa analysis                                  | 27 |
| 6 | Data transforms in high throughput sequencing                | 29 |
| _ | Why transform data?                                          | 29 |
|   | Sequencing changes the shape of all but the most ideal data: | 30 |
|   | Commonly used transformations are misleading                 | 30 |
|   | Other data transformations                                   | 32 |
|   | Notation                                                     | 32 |
|   | The proportional transformation                              | 33 |
|   | The RPKM and TPM transformations                             | 33 |
|   | The median of ratios count normalization                     | 34 |
|   | Log-ratio transformations                                    | 35 |
|   | The centered log-ratio transformation                        | 35 |

4 CONTENTS

|    | Comparison of transformations                                             | 37                         |  |  |  |  |  |
|----|---------------------------------------------------------------------------|----------------------------|--|--|--|--|--|
| 7  | Distances in high throughput sequencing Distance or dissimilarity metrics | 41<br>41<br>41<br>45<br>45 |  |  |  |  |  |
| 8  | Exploring compositional data: the compositional biplot                    | 49                         |  |  |  |  |  |
| 9  | Analyzing 16S rRNA gene sequencing experiments                            |                            |  |  |  |  |  |
| 10 | HMP oral microbiota exploration                                           | <b>53</b>                  |  |  |  |  |  |
| 11 | References                                                                | 59                         |  |  |  |  |  |

## About this document

This document is an .Rmd document and can be found at: github.com/ggloor/book

The generation of this document requires R and an installation of LATEX to work properly. This document contains interspersed markdown and R code that may be compiled into a pdf document and supports the figures and assertions in the main article. R code is (almost always) exposed in the pdf document so that the interested reader can work through the example code themselves. Code that is not exposed is in the chunk directory.

### Reproducing the analysis

From an R command prompt you can compile this document into PDF if you have LATEX and pandoc installed:

bookdown::render\_book("index.Rmd") or you can open the file in RStudio and compile in that environment.

### R packages required

We will need the following R packages, several functions are defined in a dedicated functions section.

- 1. knitr (CRAN)
- 2. bookdown (CRAN)
- 3. vegan (CRAN)

## Introduction

"What really is the point of trying to teach anything to anybody?"

This question seemed to provoke a murmur of sympathetic approval from up and down the table.

Richard continued, "What I mean is that if you really want to understand something, the best way is to try and explain it to someone else. That forces you to sort it out in your mind. And the more slow and dim-witted your pupil, the more you have to break things down into more and more simple ideas. And that's really the essence of programming. By the time you've sorted out a complicated idea into little steps that even a stupid machine can deal with, you've learned something about it yourself. The teacher usually learns more than the pupils. Isn't that true?" [Richard MacDuff]  $^a$ 

Let us think the unthinkable, let us do the undoable, let us prepare to grapple with the ineffable itself, and see if we may not eff it after all. [Dirk Gently]  $^b$ 

This booklet is intended for use in teaching graduate student courses and conference workshops on using compositional data analysis methods to examine high throughput sequencing datasets. The approach taken here is largely intuitive and hands on. Formulas for basic methodologies are presented, but the intuitive reason for using them takes precedence. The methods presented here have been used for 16S rRNA gene sequencing, transcriptomics, metagenomics and in-vitro selection (selex) experiments.

The first section is background and theory using toy examples. The second section is application of what we have learned using practical examples. I hope you find this useful.

### Outline of the material

• I begin with a brief overview of sequencing technologies, an overview of the types of data we are likely to encounter, and describe how and why these instruments generate

 $<sup>^</sup>a \mbox{Douglas}$ Adams, 1987 in Dirk Gently's Holistic Detection Agency, William Heinemann Ltd, London  $^b \mbox{ibid}$ 

- data that are constrained to a constant count.
- I introduce sequencing as a stochastic process, explain why we need to estimate our technical variance and show how this can be done technical variance
- I next semi-formally introduce compositional data, and show with examples the pathologies associated with this type of data.
- I then introduce common data transforms and distances used in the high throughput sequencing literature, and demonstrate that none of the transforms affects the compositional nature of the data, and that in fact, many of the transforms affect the data in non-intuitive ways
- I begin the practical part with exploratory data analysis using the compositional biplot
- I describe the properties of three types of plots to examine high dimensional data: Bland-Altman plots (MA plots), volcano plots, and effect plots
- I describe compositionally appropriate methods to estimate differential abundance with an emphasis on ALDEx2 and to a lesser extent ANCOM
- I describe compositional association as a replacement for correlation using the propr R package

## The nature of sequencing data

There are a tremendous number of high throughput sequence analysis tools in the literature. The vast majority of these are recommended for use in only one domain. Domain specific tools are found in all experimental designs and are often touted as 'optimized for' a particular design. Another, less charitable way of describing a domain-specific tool is 'over-parameterized'. It is important to make as few assumptions as possible when examining data, and to ensure that the data being analyzed and the assumptions of the analysis tools are met (Box 1976).

Since all models are wrong the scientist cannot obtain a "correct" one by excessive elaboration. On the contrary following William of Occam he should seek an economical description of natural phenomena. Just as the ability to devise simple but evocative models is the signature of the great scientist so overelaboration and overparameterization is often the mark of mediocrity.  $^a$ 

### A constrained random sample

All high throughput gene sequencing datasets share a common origin and it is important to understand the source of the data, and the standard workflow. In essence, an arbitrarily large population of DNA molecules is randomly sampled from an environment and a small, fixed number of those molecules are sequenced.

There is a frequent assertion that data generated by high throughput sequencing instruments are counts. On the surface, this makes sense because we map reads to intervals and we observe the number of counts per interval. However, immediately problems arise. One pervasive issue is that the results are strongly influenced by the total read count per sample, and this is the primary reason for almost all tools using 'count normalization' methods that are introduced later.

The 'un-constrained Random Sample' panel in Figure 3.1 shows how random sampling is usually thought of. We start with an imaginary population containing four different randomly distributed entities, tigers, ladybugs, aliens and rabbits. We want to infer the abundance of each entity in the population by taking a random sample. This is done by choosing a particular area (or volume) to sample and counting the number of each entity in the area. Doing this, we observe 14 rabbits, 1 alien, 24 ladybugs and 6 tigers. We can use this random sample to infer something about the abundances of the entities in the population.

A single random sample will of course limit the precision of estimation of the population

 $<sup>^</sup>a\mathrm{George}$  Box 1976 Science and Statistics. J. Am. Stat. Soc. 71:791



Figure 3.1: DNA sequencing is a defined-limit random sample of the environment. We start with a population of four entities randomly distributed; rabbits, aliens, ladybugs and tigers. The standard approach to randomly sample a fixed area of the field. This is an 'un-constrained random sample' since the *number* of entities found inside the sampling area is a direct readout of the sampled area. In contrast, DNA sequencing is constrained by the number of fragments that the machine can accommodate. This is akin to filling the squares on a checker board, where only one entity is allowed per square. This is shown in the 'constrained random sample' box.

characteristics. The reason that we replicate experimental measurements is to estimate and to place limits on the precision of the estimates of population parameters. A second random sample is shown on the right and is labeled as a 'constrained random sample' (the constraint will be explained shortly). The second random sample, with the same area contains 12 rabbits, one alien, 26 ladybugs and 4 tigers. The first estimate had a total of 45 entities, and the second had a total of 43 entities. Two important points need to be made. First, we are comparing the numbers of each type of entity, and second, the total number of entities identified in each sample is free to vary. In theory, we could sample a the same area that is very densely populated by ladybugs (perhaps it is mating season) and identify thousands of ladybugs in a very small area.

DNA sequencing is not a counting exercise because the total number of entities found is constrained by the capacity of the instrument. Imagine the worlds worst high throughput sequencer, the GS16<sup>TM</sup> (GregSeq16<sup>TM</sup>). The GS16 has a total capacity of 16 molecules, any more and it fails, any fewer and the customer is upset because they did not receive the number of reads promised by the very slick sales brochure. The process of filling the 16 slots proceeds by a random process whereby the first entity to occupy a slot is sequenced, and any subsequent entities are unable to bind to the proprietary surface. As outlined later this is akin to the processes involved in all current high throughput sequencing instruments. Applying this random process to the entities in the second sample, we observe that the GS16<sup>TM</sup> delivers 6 rabbits, 0 aliens, 8 ladybugs and 4 tigers. In the event that we sample from the area where the ladybugs were mating, we would recognize only that there were 16 ladybugs in the area, and miss entirely that the area was a seething mass of ladybugs: that is, we would be unable to distinguish if the sample just happened to be from a site that was missing the other entities, or from a site that contained a vast number of ladybugs.

### Constrained and un-constrained environments.

There are two types of environments. In the un-constrained environment the total number of entities in the environment is free to change. A constrained environment, in contrast is operating at some pre-determined limit or carrying capacity.

In Figure 3.1 we were modelling what happens when the environment is un-constrained, that is, the environment can contain arbitrarily greater or fewer numbers of any entity. Two real-world examples spring to mind of such an un-constrained environment. The first example would be the consortium of organisms that inhabit the human vagina and which occur in at least two major states. The first state is dominated by one or a small number of species from the genus Lactobacillus. The second state is dominated by a mixed population of anaerobic species. The total numbers of bacteria (bacterial load) in the second state is about 100-fold greater than in the second state (Zozaya-Hinchliffe et al. 2010). When comparing either DNA or RNA molecules from these two populations we would need to ensure that we account for the un-constrained nature of the system and not assume that the total number of molecules sampled is equivalent. The second example of an un-constrained environment would be in-vitro selection experiments as published in (McMurrough et al. 2014; Wolfs et al. 2016) where there are two different classes of genes; inactive genes where the absolute abundance of the corresponding DNA molecules remains unchanged over time, and active genes where the absolute abundance of the corresponding DNA molecules increases exponentially. In both these types of experiment, the absolute number of molecules is free to change.

A constrained environment arises when the underlying system is operating at some fixed limit. As an example, a culture of *Escherichia coli*, a common lab strain of bacteria, that is growing in the lab under controlled conditions has a near constant number of RNA molecules in each cell (Bernstein et al. 2002). Moreover, when a new gene is induced to make new mRNA molecules under these standard conditions the number of RNA molecules of very

highly expressed genes is reduced to compensate (Taniguchi et al. 2010). Thus, under a given condition, the total number of mRNA molecules in a cell has a fixed limit: the cell cannot exceed this limit under the given condition. In this case all mRNA molecules in the system are inherently coupled, a change in absolute abundance of one molecule is compensated for by a change in absolute abundance by one or more others to ensure that the total number of molecules in the system is relatively constant. In the language of sports analogies "a single cell cannot give 110% effort". It is assumed that mRNA molecular abundance in most lab cultures of most cell types behave similarly.

Obviously many real datasets exist on a continuum between these example extremes, but it is not always obvious at which extreme a given sample lay. For example, when comparing gene expression in liver and kidney cells do we expect the same number of underlying molecules per cell? What about comparing liver and red blood cells? Here the choice is more obvious since the red blood cells are much less metabolically active and express far fewer unique mRNA molecules than does the typical liver cell. Knowing if the samples are from a constrained or un-constrained system has important implications for analysis as outlined below. As we shall see in the practical examples, most tools work acceptably well with constrained data, but fail in unexpected ways on un-constrained data.

### Modeling constrained and un-constrained samples

A simple thought experiment should clarify the importance of knowing the difference between constrained and un-constrained systems. In this example I generate a test dataset composed of 100 features in 20 samples—modelled as a time series with 20 steps. There are two situations. In the 'constrained' situation, one feature increase exponentially in each time step and one other feature decreases to compensate . In the 'un-constrained' situation, only one feature increases while the remainder of the features remain at a constant total abundance.

```
num.one = 90 # base number of features
m.dub <- prop.m <- clr.m <- m.dub.u <- prop.m.u <- clr.m.u <-
    matrix(data=NA, nrow=20, ncol=num.one + 10)
in.put <- c(10,10000,1,5,10,20,50,100,200,1000) # arbitrary data
# ensure feature 3 is arbitrarily large and get the constrained total
total.sum <- sum(in.put + 1) * 1000
# one feature increases exponentially and one feature decreases to compensate
for(i in 0:19){
    # un-constrained data, feature 1 exponentially increases
    m.dub[i+1,] < -m.dub.u[i+1,] < -in.put * c(2^i, rep(1,num.one + 9))
    prop.m.u[i+1,] <- m.dub.u[i+1,]/sum(m.dub.u[i+1,])</pre>
    clr.m.u[i+1,] <- 2^(log2(prop.m.u[i+1,]) - mean(log2(prop.m.u[i+1,])))
    # now constrain the data, feature 3 decreases to compensate
    m.dub[i+1,3] \leftarrow total.sum - sum(m.dub[i+1,])
    prop.m[i+1,] <- m.dub[i+1,] / sum(m.dub[i+1,])</pre>
    clr.m[i+1,] \leftarrow log2(prop.m[i+1,]) - mean(log2(prop.m[i+1,]))
}
```

Of course DNA sequencing is not the same as our synthetic example. When collecting samples and sequencing them, there are many more features, and significantly more noise because of random sampling that modelled in Figure 3.2. There are many sources of sampling



Figure 3.2: Constrained and un-constrained data are very different. The 'Constrained count' column shows a synthetic dataset where the total number of counts is a constant and this is plotted as counts on top and on a log10 scale on the bottom. Here we see that the orange and black features are compensating and perfectly negatively correlated. These same data are next converted to proportions or relative abundances and plotted in the 'Constrained prop' column. Both the count and proportional data are the same, except for the scale, when the data are constrained. The un-constrained data behave differently. The 'un-constrained count' and 'un-constrained prop' columns are distinct and the proportional data are severely distorted. The un-constrained counts are all independent, but the exponentially increasing feature in black is negatively correlated with the constant features in the un-constrained proportion plot. Only 5 of the 100 features are shown for clarity.

error or even sampling bias. Nevertheless, this example serves as an instructive starting point.

### Instrument capacity

So how is sequencing a constrained operation? Each instrument has its own specific capacity issues that must be taken into account.

The Ion Torrent and Ion Proton systems have a chip with a predetermined number of pores on the sequencing chip (10 of thousands to 10s of millions, depending on the chip) that can accept a library fragment. No signal is returned from an empty pore, and the signal is rejected if a pore contains two or more different fragments. Sequencing is successful only when the pore is occupied by a single fragment from the library. This is directly analogous to the Constrained Random Sample panel in Figure 3.1

The Illumina sequencing instruments attach the DNA fragments to a glass slide and then each fragment is amplified into millions of identical fragments called clusters which appear as randomly distributed spots under a microscope. Each different Illumina instrument accommodates a characteristic maximum number of clusters, and if two or more clusters overlap they are rejected by the software. Thus, there is a fixed number of spots that can be accommodated on the Illumina sequencing chip just as there are a fixed number of slots on the Ion platforms or the GregSeq.

Thus, regardless of instrument, the technician must apply a precise number of DNA molecules that maximizes the number of fragments on the sequencing instrument without overloading it. It should be obvious that loading a DNA sequencer is akin to filling the squares on a checkerboard where the goal is to have as many checkers as possible, without overlapping the pieces. DNA sequencing instruments have an upper bound on the number of fragments they can sequence, and as we shall see later, any arbitrary upper bound is equivalent to a proportion. This means that high-throughput sequencing affects the shape of the data differently on constrained and un-constrained data as shown on Figure 3.2.

We assume that the abundance of each input DNA species that is observed after sequencing reflects in some linear way a random sample of the input molecules. This is likely to be the case if the total number of molecules in the input sample is constrained. Such a constraint would be met if, for example, an increase in one or more DNA species was balanced with an equivalent decrease in one or more different species. However, as we shall see, the analysis of un-constrained data will be a problem if the limited output of the sequencing platform is not accounted for.

#### Example calculation of fragment number

The number of fragments after sequencing is determined by the instrument; an Ilumina MiSeq delivers  $\sim 20 \mathrm{M}$  fragments whereas an Illumina NextSeq delivers  $\sim 400 \mathrm{M}$  and an Illumina HiSeq can deliver  $\sim 250 \mathrm{M}$  reads per lane on each of 8 lanes. The commonly used Nextera DNA library kit is optimized to require 50 ng of DNA per sample. Thus, the number of fragments of DNA (or RNA) molecules in the underlying environment, in general, vastly outnumbers the number of sequence fragments from which the library is made, and the number of fragments in the library in turn outnumbers the number of fragments from which sequencing data are ultimately derived. We can do a simple back of the envelope calculation for an example metagenomics sequencing run to show this.

Assume that we have a mixture of bacterial species with a mean genome size of 4 Mb. One mole of genomes would have a mass of  $2.64 \times 10^9$  grams. A typical environmental bacterial density when collecting a metagenome sample would be on the order of at least  $10^7$  bacteria

per ml of sample, so if we take a 1 ml sample, this is  $10^7$  genomes, which corresponds to about 44 ng of DNA.

If the DNA concentration after isolation is 1 ng/ $\mu$ l, and one  $\mu$ l of DNA is taken, this corresponds to  $(1 \times 10^{-9} \text{ g})/(2.64 \times 10^9 \text{ g/mole}) \times (6.02 \times 10^{23} \text{ genomes/mole}) = 228,000 \text{ genomes}$ . The Illumina Nextera XT kit can be used to make a library with this amount of DNA. Recall that the DNA is fragmented, typically into 500 bp or smaller sizes. Using a fragment size of 500 bp, this corresponds to approximately  $1.8 \times 10^9$  DNA fragments.

In the scenario where a single sample is prepared and the maximum number of fragments are loaded and run, this still results in only 1% of DNA fragments in the library being sequenced on the Illumina MiSeq, and only 22% of the DNA fragmments being sequenced on the Illumina NextSeq.

An even smaller proportion of each sample is typically sequenced. DNA sequencing rarely involves a single sample, but instead samples are 'multiplexed' on the sequencing run by mixing two or more libraries together. When this occurs the samples have a unique tag, or barcode, attached so that the samples can be uniquely identified post sequencing (Parameswaran et al. 2007; Andersson et al. 2008; Gloor et al. 2010). Barcodes can be added by ligation or by incorporation into PCR primers that are used to amplify the library. Obviously, increasing the number of samples through multiplexing will result in an even smaller proportion of the fragments in each library being sequenced.

### Sequencing post processing

After sequencing fragments are grouped in some way

### Mapping

Fragments generated from metagenomic or RNA-seq experiments are aligned to reference sequences corresponding to genes, transcripts or genetic intervals (generically genes). The total number of fragments mapping to a given gene is said to be the read count for that gene and the read count for all genes in a system ranges from 0 (no fragments align to that gene) to the total number of fragments in the sample. The output from these types of experiments is a table of read counts per gene per sample.

Expand this to outline methods

### OTU generation

Fragments generated from tag-sequencing are often merged into operational taxonomic units (OTUs) at some predefined percent identity, or tabulated by the number of identical fragments observed (ASUs). The output from these types of experiments is a table of counts per OTU per sample.

# Random sampling by sequencing

In Chapter 3 we saw that DNA sequencing is not a counting operation but is instead a random sampling operation from a large pool, akin to sampling different colored balls from an urn that contains more balls than are sampled. A counting operation always allows the addition of 'one more observation'. In the context of DNA sequencing this would equate to loading the samples onto an Illumina MiSeq chip to the optimal fragment density and then adding in 'one more fragment' repeatedly until the number of fragments loaded exceed the capacity of the chip. The sequencing reaction will fail when the number of frangments exceeds the chip capacity. Stated bluntly, one cannot purchase an Illumina MiSeq run and expect to receive data equivalent to an Illumina NextSeq or HiSeq run. This self-evident fact is completely overlooked in the literature.

The random sampling can be direct at the level of sampling from the environment. In the case of genomics or metagenomics DNA is made directly from the sample. Sampling can be indirect in the case of RNA-seq where RNA molecules are sampled after they have been converted to DNA via reverse transcription. Note that an environment may not be uniform. For example, it has been observed that different microbial compositions are observed when collecting stool samples if a sample is taken from the interior or exterior of the stool (Gorzelak et al. 2015). Sampling can also be indirect in the case of tag-sequencing or single cell sequencing. In tag-sequencing, most typically applied to 16S rRNA gene sequencing, a small defined region is amplified by the PCR, and the amplimer size is usually compatible with the sequencing instrument. In single cell sequencing the molecules from a single cell are fragmented and amplified as a mixture.

Fragment sampling occurs because as noted above the fragments actually sequenced are a random sample of the fragments that are in the sequencing library. There are always more fragments in the library than can be accommodated on the instrument, and there are almost always more molecules in the environment than can be accommodated in the library. The sole exception to this rule would be when sequencing is used to investigate low biomass environments—however in this case the library protocols always have an amplification step that increases the number of fragments above the number that can be accommodated on the instrument. The fragment sampling occurs by a multivariate Poisson process (Fernandes et al. 2013) as outlined below. After the DNA is made and fragmented, an aliquot of the population of DNA fragments are used to make a sequencing library by attaching standard sequences that permit the DNA fragments to be bound to the solid phase of the sequencing chip that is particular to a given platform. Fragmentation is not typically employed in tag-sequencing since the amplified DNA fragments are typically small.

Finally, a sample of the library is loaded onto a sequencing platform. At this point two or more independent libraries are usually mixed together into a multiplex library, and this adds a third level of randomness into the process. The number of fragments in each library is one of the strongest influences on the apparent information in the sample (Horner-Devine et al. 2004; Weiss et al. 2017). In other words, the number of fragments identified in a sample post sequencing is a confounding variable. The number of fragments observed post sequencing is termed the 'library size' or the 'depth of coverage'. It is important to remember, again, as outlined in Chapter 3 that all sequencing platforms in widespread use contain a fixed number of locations to which the DNA fragments can bind.

If the number of DNA fragments sequenced has an arbitrary upper bound determined by the machine, and the number of fragments in the library is always larger than the machine capacity, then it should be obvious that the number of fragments sequenced can contain no information about the number of fragments in the library pool, nor can the number of fragments contain information about the number of molecules in the original DNA sample from the environment. The univariate logical equivalent is to only know the percentage that a suit is marked down to, without knowing the original price: the customer would have no idea whatsoever about how much money it costs, only that they were getting a helluva deal. The multivariate intuition is that we cannot know the number of balls of different colour in the urn, we can only infer their proportions.

Looking back at the GregSeq example in Figure 3.1, if we always recover 16 entities, and all of them are ladybugs, we cannot know if the sample was from a high or low density of ladybugs. All we can say is that we only recovered ladybugs. Therefore, the only information available is the relative proportion of individual fragments in the library, which is assumed to approximate the relative proportion of fragments in the DNA sample from the environment. We will revisit this issue when we discuss normalizations in common use.

### Formal description

### Definitions and notation

- 1. sample vector  $\vec{\mathbf{s}}_i$
- 2. samples  $i = 1 \dots n$
- 3. feature vector  $\vec{\mathbf{f}}_j$
- 4. features or parts  $j = 1 \dots D$
- 5. feature value  $\mathbf{s}_{ij}$
- 6. the environment  $\Omega$
- 7. sample geometric means  $g_i = (\prod_1^D s_i)^{1/D}$ 8. random instances of the data  $k = 1 \dots m$

It is worth recalling that essentially all HTS data come from underpowered experimental designs, in the sense that there are more features than there are samples: indeed it is common, because of cost to conduct and analyze only pilot-scale experiments. Therefore, we collect far fewer samples than required for true statistical power. Thus, the strength of evidence for statistical inference must be weak. Paradoxically, the features that are identified as differentially abundant must appear to be very different, much more so than the actual data support (Colquhoun 2014; Halsey et al. 2015). The combination of small sample sizes, large numbers of variables and the mis-use of the null-hypothesis testing framework are a deadly combination (Gelman and Loken, n.d.).

Any results can only be validated by independent replication, meta-analysis assuming all experiments are published, or by an orthogonal method (Cumming 2008). All of which are rare in both the transcriptome and microbiome fields.

When estimating differential abundance it is important to properly estimate the dispersion,  $\tau$ , of the  $j^{th}$  feature for all samples; dispersion of a feature can be represented by the following simple model:

$$\tau_j = \nu_j + \epsilon_j \tag{4.1}$$

where  $\nu$  represents the underlying biological variation and  $\epsilon$  represents the stochastic error from all the steps involved in the collection, preparation, and sequencing of the dataset outlined above. All these steps involve some kind of random sampling from a larger pool of molecules, and so can be approximated by a model of drawing different colors of balls from an urn that contains many more balls than are drawn. Under this assumption, repeated sampling of each feature would be expected to be distributed according to a Poisson distribution. Given that the samples are multivariate, we expect a multivariate Poisson sampling process to be appropriate, and this is equivalent to sampling from a Dirichlet distribution with a uniform prior (Fernandes et al. 2013).

The majority of extant analysis tools utilize point estimates of both parameters and there are several underlying similarities in these models. First, it is generally assumed that  $\epsilon$  is small relative to  $\nu$ . Second, it is assumed that there is some underlying similarity in the distribution of  $\nu$  and  $\epsilon$  for all features in all samples at a given relative abundance level. That is, if the n features were ordered by abundance, that the expected value of  $\nu_j$  would be approximately

$$\sum \nu_{j-m} \dots \nu_{j+m}/2m \tag{4.2}$$

where m is some small offset in the abundance index. Similar logic applies to estimating the expected value of  $\epsilon$ , but many tools offer more complex additional models to estimate these parameters for troublesome data. Third, the data are observed to be over-dispersed; that is, the data are observed to have a greater variance than expected from Poisson sampling alone.

The overdispersion has led many tools to model the dispersion using a negative-binomial model, where the dispersion can be greater than the mean. The negative-binomial model is very attractive and widely used in both transcriptome and microbiome studies (Gierliński et al. 2015; McMurdie and Holmes 2014; Kvam, Liu, and Si 2012; Robinson, McCarthy, and Smyth 2010). Fortunately negative binomial based models work well when the samples are collected from environments near the constrained end of the spectrum. Unfortunately, these models do not fare as well at the un-constrained end of the spectrum (Gloor, Macklaim, et al. 2016; Fernandes et al. 2014, 2013; Macklaim et al. 2013), and even worse, tools based on these models rarely fail gracefully with a helpful error.

So why are sequence count data over-dispersed? That there is overdispersion is noted, why is rarely discussed. I suggest that the overdispersion is a consequence of the sequence constraint, and I will revisit in greater detail when we introduce compositional data in Chapter 5. However, as shown in Figure ??, the variance can be measured in different ways.

When absolute variance is measured and plotted vs. sample count, the variance approximates the count as shown by the dotted grey line of equivalence. This is what is expected from a multivariate Poisson process. However, as we shall see in Chapter 5, actual variance is usually somewhat greater than the mean in real datasets.

When the variance of the ratio of the random samples to the actual data is plotted vs. the sample count the relationship between variance and sample count is exactly reversed. Here the variance is greatest at the low count margin and least at the high count margin. We will return to this point in Chapter 5, but at this point, the reader needs to know that HTS data are relative and ratio data by construction.



### Relative variance



Figure 4.1: Variance in constrained data is not what we expect. Numbers between 1 and 1000 were generated (the sample) and converted to 50 random instances using a multivariate Poisson process by sampling from the Dirichlet distribution (the instances). The absolute variance of 50 random instances was determined and plotted as the absolute variance of the instances vs. the sample count value. The data was transformed by converting each count to the ratio of the instance count to the sample count (relative value) and the variance of these relative values were plotted. The relative variance is greatest at the low count margin and smallest at the high count margin as is observed for actual sequencing data (Fernandes et al. 2013; ???).

```
n.sam <- 50 # samples
max.num <- 100000 # max value
# semi-random vector
z <- floor(runif(n.sam, 1, max.num)) # get random integer values
z[1:2] \leftarrow c(1,2) # ensure always 1 and 2 values
z[3:10] <- floor(runif(8,3,20)) # some small values
z[11:20] <- floor(runif(10,21,50)) # some intermediate values</pre>
# samples by row, features, by column
# random counts from multivariate Poisson
z.dir <- rdirichlet(n.sam, z) * sum(z)</pre>
abs.var <- apply(z.dir, 2, var)
# relative counts
z.r <- t(apply(z.dir, 1, function(x) x / z) )</pre>
par(mfrow=c(1,2))
plot(log10(z), apply(z.dir, 2, var), main="Absolute variance", log = "y",
    ylab="Variance", xlab="log10(count)")
abline(0,1, lty=2, col="grey")
plot(log10(z), apply(z.r, 2, var), main="Relative variance", log="y",
    ylab="Variance", xlab="log10(count)")
abline(0,-1, lty=2, col="grey")
```

We observed that  $\epsilon$  can be exponentially larger than  $\nu$  at the low count margin when measured on a relative scale (Fernandes et al. 2013; Gloor, Macklaim, et al. 2016), and that properly accounting for this realization alone can result in an excellent fit to even problematic data. Thus, a reliable analysis can be obtained by incorporating an 'in silico' technical replication which explicitly models the variation in  $\epsilon$  as a probability density function on a per feature, per sample basis; in other words that  $\tau_j = \nu_j + f(\epsilon_j)$ . This approach is implemented in the ALDEx2 Bioconductor package and substantially reduces the false positive identification rate in microbiome and transcriptome data while maintaining an acceptable true positive identification rate (Thorsen et al. 2016).

The differences between groups, dispersion within groups and relative abundance were calculated using the ALDEx2 R package that uses Bayesian modelling that generates a probability function for  $\epsilon_j$  that can be used to place bounds on the uncertainty of the the observed data (Fernandes et al. 2013; Gloor, Macklaim, et al. 2016). If there are two groups, A and B, this requires that the data comparison is properly centred on the difference between these groups. ALDEx2 has been shown to give meaningful and reproducible results, even on sparse, asymmetric datasets using many different experimental designs (Fernandes et al. 2013, 2014; Macklaim et al. 2013; McMurrough et al. 2014), although as shown here the asymmetry can still affect the outcome.

The starting point for analysis is an n samples  $\times D$  features array. The sample vector contains the number of reads mapped to any of the j features in the  $i^{th}$  sample,  $\mathbf{s}_i = [j_1, j_2 \dots j_D]$ , where  $i = 1 \dots n, j = 1 \dots D$ . The total number of counts is irrelevant and determined by the machine (Gloor and Reid 2016; Gloor, Wu, et al. 2016). These data are compositional and are an example of an equivalence class with  $\alpha_i = \sum \mathbf{s}_i$ . In theory, the vector  $\mathbf{s}_i$  can be adjusted to a unit vector of proportions,  $\mathbf{p}_i = [p_1, p_2 \dots p_D]$ , i.e.  $\alpha = 1$ , without loss of information by the maximum likelihood (ML) estimate  $\mathbf{p}_i = \mathbf{s}_i/\alpha_i$ . In this representation, the value of the  $j^{th}$  feature is a ML estimate of the probability of observing the counts conditioned on the fractional f that the feature represents in the underlying data and on the total read depth for the sample; i.e.,  $\mathbb{P}_{i,j}(f_{i,j}|\alpha_i)$ . However, the maximum likelihood estimate will be exponentially inaccurate when the dataset contains many values near or at the low count margin (Newey and McFadden 1994) as is common in sparse HTS data. Instead we use a standard Bayesian approach (Jaynes and Bretthorst 2003) to infer a posterior distribution of the unit vector directly from  $\mathbf{s}_i$ , by drawing k random Monte-Carlo instances from the Dirichlet distribution with a uniform, uninformative prior of 0.5, i.e.:

$$P_{i(1...k)} = \begin{pmatrix} \mathbf{p}_1 \\ \mathbf{p}_2 \\ \vdots \\ \mathbf{p}_k \end{pmatrix} = \begin{pmatrix} p_{i,11} & p_{i,21} & p_{i,31} & \dots & p_{i,D1} \\ p_{i,12} & p_{i,22} & p_{i,32} & \dots & p_{i,D2} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ p_{i,1k} & p_{i,2k} & p_{i,3k} & \dots & p_{i,Dk} \end{pmatrix} \sim Dirichlet_{(1...k)}(\mathbf{s}_i + 0.5)$$

$$(4.3)$$

This approach has consistent sampling properties and removes the problem of taking a logarithm of 0 when calculating the CLR because the count 0 values are replaced by positive non-zero values that are consistent with the observed count data (Fernandes et al. 2013; Gloor, Macklaim, et al. 2016). Each of the Monte-Carlo instances, by definition, conserves proportionality and accounts for the fact that there is more information when  $\alpha_i$  is large than when it is small. This partially restores scale invariance to the data by providing a distribution of values where the uncertainty of features scales inversely with the read depth (Fernandes et al. 2013; Gloor, Macklaim, et al. 2016).

The apparent solution to the sequencing depth problem is to normalize the read count values across samples in some way. One method of normalization to is by subsampling, often termed rarefaction, as this is observed to reduce the influence of sequencing depth on variation in  $\alpha$  and  $\beta$  diversity metrics (Horner-Devine et al. 2004; Weiss et al. 2017). Another is to convert the data to proportions or percentages; these latter values are widely spoken of

in the literature as 'relative abundances'. Subsampling is frequently used to estimate the associated sampling error. Some groups have begun advocating the use of normalization methods prevalent in the RNA-seq field (McMurdie and Holmes 2014) but still treat the data as point estimates of the true abundance. There are many other normalizations that are used in the ecological and high throughput sequencing literature and the purpose and effect of these on simulated data are explored in the section on Data Transformations.

# DNA sequencing data are compositions

# High throughput sequencing generates compositional data

In the Chapter 3 we saw that the capacity of the sequencing instrument imposed an upper bound on the total number of fragments that could be obtained from a given sequencing run. We also saw that the process of sequencing is essentially a random sampling of an environment where the environment contains more fragments than can possibly be sequenced in Chapter 4. Finally, the data obtained are read counts per genetic interval (gene or OTU) per sample.

The read counts per sample range from 0 to, as a maximum, the total number of reads in the sample. Thus the data are positive integer data with an arbitrary maximum. While the data have an arbitrary maximum, the majority of current tools assume the data are counts and ignore the arbitrary maximum constraint. This assumption is the basis of methods grounded in distributions such as the zero inflated Gaussian (ZIG) (Paulson et al. 2013), negative binomial (Robinson, McCarthy, and Smyth 2010) and Poisson based models (Auer and Doerge 2011). Recent benchmarking has demonstrated that such methods are unpredictable when dealing with highly sparse data (Thorsen et al. 2016), do not control the false discovery rate (Gloor, Macklaim, et al. 2016; Hawinkel et al. 2017), and behave poorly when un-constrained datasets are examined (Fernandes et al. 2013; ???; Gloor, Macklaim, et al. 2016).

Data of this type are called count compositions, and a number of groups have started to work on developing appropriate methods to deal with high throughput datasets as count compostions (Friedman and Alm 2012; Fernandes et al. 2013, 2014; Lovell et al. 2015; Mandal et al. 2015; Kurtz et al. 2015; Gloor and Reid 2016; Erb and Notredame 2016; Gloor, Wu, et al. 2016; Tsilimigras and Fodor 2016; Washburne et al. 2017; T. Quinn et al. 2017; Silverman et al. 2017; T. P. Quinn et al. 2017; Kaul et al. 2017; Erb et al. 2017; Egozcue, Pawlowsky-Glahn, and Gloor 2018).

So what is compositional data (CoDa), and what are its properties with respect to high throughput sequencing that make this an important issue?

### Compositional data

Data from high throughput sequencing have the following properties; the data are counts, the data are non-negative, and the data has an upper bound imposed by the instrument. This fits with the definition of compositional data: compositional data contain D features (OTUs, genes, etc), where the count of each feature is non-negative, and the sum of the parts is known or arbitrary (Aitchison 1986, pg25). Note that the data do not have to sum to a predetermined amount, it is sufficient that the sum of the parts be known and be bounded.

A vector containing D features where the sum is 1 can be formally stated as:  $\vec{X} = \{(x_1, x_2, x_3, \dots x_D); x_i \geq 0; \sum_{x=1}^D = 1\}$ . The sum of the parts is usually set to 1 or 100, but can take any value; i.e., any composition can be scaled to any arbitrary sum such as a ppm. Compositional data are equivalence classes since one vector can be scaled into another through multiplication by an arbitrary constant (Barceló-Vidal, Martín-Fernández, and Pawlowsky-Glahn 2001). In the lexicon of high throughput sequencing the vector is the sample and the features are the OTUs or genes or genomic intervals. The total sum is the total number of fragments observed for the sample; i.e., the sequencing depth.

### CoDa pathologies

Compositional data have a number of built-in pathologies: a negative correlation bias, sub-compositional incoherence, and spurious correlations. A proper analysis of compositional data must as a minimum account for these pathologies.

Formally, compositional datasets have the property that they are described by D-1 features (Aitchison 1986). In other words, if we know that all features sum to a constant, then the value of any individual feature can be known by subtracting the sum of all other parts from that constant; i.e.,  $x_D = 1 - \sum_{x=1}^{D-1}$ .

Graphically, this means that compositional data inhabit a space called a Simplex that contains 1 fewer dimensions than the number of features. The distances between parts on the Simplex are not linear. This is important because all parametric statistical tests assume that differences between parts are linear (or additive). Thus, while standard tests will produce output, the output will be misleading because distances on the simplex are non-linear and bounded (Martín-Fernández et al. 1998). Chapter 6 on Data Transformations contains an intuitive demonstration of how data are moved to the Simplex when a the data are compositional.

It is not always apparent when the data are compositional. This is especially true for large multivariate datasets such as those generated in high throughput sequencing. Aitchison (1986) indicated that a compositionally appropriate analysis should fulfil a number of properties, and when these properties are not met with traditional analyses, the data are likely compositional.

- A compositionally appropriate analysis should be scale invariant, that is, the results should not depend on the total count or scale of the sample. This first principle of CoDa data analysis indicates that all count normalization, or sequencing depth adjustments are either unnecessary or counterproductive. There is substantial resistance to the idea the high throughput sequencing data are compositional, and indeed many analysts believe that the data can be made non-compositional with the 'correct' transform that restores the scale. The is belief is exposed to be false in Chapter 6.
- A compositionally appropriate analysis should also not depend on the order of the features in the dataset. This almost goes without saying, but is included because of the way that one particular transformation, the alr, was formulated.

CODA PATHOLOGIES 25

A compositionally appropriate analysis should exhibit subcompositional coherence,
or the results of analysis of a sub-composition should be the same as for the entire
composition. In practice, this is difficult to achieve, and we settle for least subcompositional dominance where the distances between features in the full composition
are equal to or greater than the distances in the sub-composition. In later chapters where
we examine real datasets, I show how to determine if sub-compositional dominance is
fulfilled by the analysis.

### Negative correlation bias in compositions



The values of the parts of compositional datasets are constrained because of the constant sum, and this constraint has been known for a very long time [(???);1896]. The features in a composition have a negative correlation bias since an increase in the value of one part must be offset by a decrease in value of one or more other parts. In the illustration above, we see that 'V' and 'M' are perfectly balanced on the fulcrum because they have the same mass. If M becomes heavier, then V will rise even though the mass of V has not changed. The same principle operates in compositional data. If V is the amount of money spend on vegetables, and M is the amount of money spent on meat, and the total food budget is a constant, then the only way that more meat could be consumed would be to spend less on vegetables. Therefore, the amount of money spent on V and M will be perfectly negatively correlated if the total food budget is constrained. This example generalizes to any number of items in the shopping basket as long as the total budget is constrained. When there are more items, then an increase in one item (say shoes) must be offset by a decrease in another item, but it could be a decrease in meat, vegetables or both.

### Spurious correlations:

In addition to a negative correlation bias, compositional data has the problem of spurious correlation (Pearson 1897); in fact spurious correlation was the first troubling issue identified with compositional data. This phenomenon is best illustrated with the following example from Lovell et. al (2015), where they show how simply dividing two sets of random numbers (say abundances of OTU1 and OTU2), by a third set of random numbers (say abundances of OTU3) results in a strong correlation. Note that this phenomenon depends only on there being a common denominator.



Figure 5.1: Spurious correlation in compositional data. Two random vectors drawn from a Normal distribution, were divided by a third vector also drawn at random from a Normal distribution. The two vectors have nothing in common, they should exhibit no correlation, and yet they exhibit a correlation coefficient of > 0.65 when divided by the third vector. See the introductory section of the Supplementary Information of Lovell (2015) for a more complete description of this phenomenon.

### **Sub-compositions**

Compositional data have the third property of sub-compositional incoherence of correlation metrics as illustrated in Chapter 6. That is, correlations calculated on compositional datasets are unique to the particular dataset chosen (Aitchison 1986). This is problematic because high throughput sequencing experimental designs are always sub-compositions. Inspection of papers in the literature provide many examples. For example, in the 16S rRNA gene sequencing literature it is common practice to discard rare OTU species prior to analysis and to re-normalize by dividing the counts for the remaining OTUs by the new sample sum. It is also common to use only one or a few taxonomic groupings to determine differences between experimental conditions. In the case of RNA-seq only the fraction of RNA of interest is sequenced, usually mRNA but other sub-fractions such as miRNA may be sequenced. All of these practices expose the investigator to the problem of non-coherence between sub-compositions. We must use compositionally-appropriate measures of correlation—more formally, we are attempting to find features that are compositionally associated. Compositional association as a more restricted measure of correlation and is explained more completely in the chapter on data transformations.

To summarize, compositional data has the following pathologies:

- The negative correlation bias means that any negative correlation observed in compositional data must be treated as suspect because it could arise simply because a different feature (or features) changed their abundance. There is currently no theoretically valid approach to identify true negative correlations in compositional data (Egozcue, Pawlowsky-Glahn, and Gloor 2018).
- The spurious correlation problem means that we can observe apparent postive correlations simply by chance. I describe recent work that shows that spurious correlation is tractable.

• The sub-compositional incoherence of correlation is perhaps the most insidious property, but also the easiest to recognize. Here the correlation depends on the *exact* set of features present in the dataset. If the observed correlations change when the data are subset, then sub-compositional incoherence is in play.

Thus, one major reason to use compositional data methods is that you are more likely to report robust results, and the later practical chapters demonstrate the robustness of a compositional data analysis.

Practically speaking the negative correlation bias, the occurrence of spurious correlation, and the problem of sub-compositional incoherence means that every microbial correlation network that has ever been published is suspect, as is every gene co-occurrence or co-expression network unless compositionally appropriate compositional association metric was used (Lovell et al. 2015; Erb and Notredame 2016; T. P. Quinn et al. 2017). These approaches themselves have limitations and as originally constituted cannot deal with sparse data. However, recasting the data from count compositions to probability distributions allows these methods to be adapted to sparse data with some success (Bian et al., n.d.; T. P. Quinn et al. 2017).

### So can I analyze compositional data? How?

Much of the high throughput sequencing analysis literature seems to assume that data derived from high throughput sequencing are in some way unique, and that purpose-built tools must be used. However, there is nothing special about high-throughput sequencing data from the point of view of the analysis. Fortunately, the analysis of compositional datasets has a well-developed methodology (Pawlowsky-Glahn, Egozcue, and Tolosana-Delgado 2015; Van den Boogaart and Tolosana-Delgado 2013), much of which was worked out in the geological sciences.

Atichison (1986), Pawlsky-Glahn (2006), and Egozcue (2005), have done much work to develop rigorous approaches to analyze compositional data (Pawlowsky-Glahn and Buccianti 2011). The essential step is to reduce the data to ratios between the D. This step does not move the data from the Simplex but does transform the data on the Simplex such that the distances between the ratios of the features are linear. The investigator must keep in mind that the distances are between ratios between features, not between counts of features (re-read this several times to wrap your head around it). Several transformations are in common use, but the one I believe is most applicable to HTS data is the centred log-ratio transformation or clr. The clr, and other common data transformations are explained in the next Chapter—I bet you can't wait!

### Basic idea of CoDa analysis

We want to answer the question: Have the abundances of the taxa changed? But we cannot, because as we have seen the actual abundances are not available. Instead we have relative abundances, that is the ratios between the features, and the following is a simple example.

We sequence, and have a total count of about 100 (it is a second generation GregSeq machine!)

So we get: 
$$A_s = [71, 7, 4, 18], B_s = [1, 25, 12, 62]$$

Note that these values appear to be very different between the groups. However, if we take one feature as a reference, say feature 4, and determine a ratio, i.d.:

$$A_r = [74/18, 7/18, 4/18] = [4.1, 0.39, 0.22]$$

$$B_r = [1/62, 25/62, 12/62] = [0.02, 0.40, 0.20]$$

Here we can see that if we assume one feature is constant (feature 4), then the last two are seen to be very similar in abundance relative to feature 4. Now we can infer that the majority of change is in the first feature assuming feature 4 is invariant. We cannot compare the last feature because it is assumed to be constant, that is, the assumed change in the last feature is 0. This approach is the one used by ANCOM, a recently developed tool to assess change in microbiome datasets (Mandal et al. 2015).

Since we cannot know which feature, if any, is constant, we can assume that a large number of the taxa exhibit only random change. Then rather than using one feature as a reference we can use the geometric mean abundance of all features. Note: this approach works poorly if there are only a small number of taxa (less than about 50) or if the taxa are very asymmetrically distributed between groups. This approach is the one used by ALDEx2 (Fernandes et al. 2013, 2014), and is the method that we will use.

One complication is that a genometric mean cannot be determined if any of the values have a count of 0. For pairwise comparisons

## Data transforms in high throughput sequencing

This chapter introduces data transformations and distance (or dissimilarity) metrics that are prevalent in the ecological literature, and that have been extensively used in analyzing high throughput sequencing datasets. It is not intended to be a comprehensive analysis of data transformations. In some cases, only one transformation is demonstrated when several transformations are obviously related.

This chapter is rather information dense, but the lessons in it are very important to understand the limitations of data analysis whenever the data are compositional. I have tried to make it easy and intuitive, but in the end you must work through the examples as best you can. All the source code needed to explore the data are included either directly here, or in an external file when the amount of code would break the flow of the narrative.

### Why transform data?

Data are transformed for a variety of reasons. The first reason, is to make the data amenable to statistical assumptions for parametric tests that require the data be normally distributed with similar standard deviations in all groups. Can we transform the data to approximate a Gaussian distribution? This mode of thinking leads to the use of square-root, arcsine or Hellinger transformations since they appear to transform the data into a distribution that can be interpreted. However, as we shall see below, none of these univariate transformations is suitable, and many of these historically common transformations have recently fallen out of favour, e.g., (Warton and Hui 2011).

The logaritmic transformation is now commonly used after one of the 'count normalization' methods described below. As we shall see below, neither count normalized, nor log count normalized data is generally the best option. The second reason for normalization is to remove or adjust the compositional nature of the data (Weiss et al. 2017), again, as we shall see this is not possible. The assumption is that any conclusion made on the transformed data represents in some way changes in the underlying abundance of the input DNA molecules as outlined in Chapter 3. As we shall see, this is not possible, but using a CoDa-based approach we can determine if changes in the relative values of DNA molecules are altered; the question is "relative to what?".

Fundamentally, the goal of any experiment is to determine something about the environment that was sampled. After all, we are attempting to use HTS to determine something of interest about the underlying environment. Thus, we need to have some equivalence between the samples before sequencing and the samples after sequencing. The simplest case would be that there would be a linear relationship between the data that we could obtain from the environment, and the data that was actually collected by HTS.

# Sequencing changes the shape of all but the most ideal data:

We have seen that high throughput sequencing as currently practiced is constrained by the capacity of the instrument. Let us revisit the toy example in Figure ??, where we had an unconstrained random sample of counts and see how well common data transformations work to recapitulate the overall shape of the data.

the In this section I show that the practical consequence of the instrument constraint can be severe in all but the most idealized datasets. An idealized dataset is one where the total number of molecules is the same per sampling effort in all the samples taken from the the environment. An example of such an idealized would be if the samples were taken from a cell culture experiment with a treatment and control group where the treatment was expected to alter only a small number of features. This would be an example of a constrained dataset: the total number of DNA molecules in the samples in the two groups would be expected to be substantially the same except for random variation. This assumption is implicit in all differential abundance tools in use.

An example of a less than ideal experiment would be comparing the total gene content in DNA isolated from two different ecosystems.

It is more desirable to think about HTS data in a multivariate way as a 'composition' because the total count of molecules in the underlying sample (the environment) is always a confounding variable (Lovén et al. 2012). This way of thinking led to multivariate data normalizations.

### Commonly used transformations are misleading

The vegan R package manual (Oksanen et al. 2017) has a very good description of many data transformations and I recommend it to the interested reader: note that the transforms in the vegan package are not compositionally appropriate, and I do not recommend them in general for the reasons outlined below.

Current practice is to examine the datasets using 'relative abundance' values, that is, the proportional abundance of the features either before or after normalization for read depth. This approach is equivalent to examining the input unconstrained data of the type seen in Figure 3.2 in the relative abundance sample space in the bottom right panel of the figure after normalizing the total number of reads to be approximately constant. This approach will obviously lead to incorrect assumptions in at least some cases. For example, depending upon the steps chosen to compare, the blue feature, that has constant counts in the input, will be seen to either increase or decrease in abundance. Conversely, the black feature, that is always decreasing in abundance will be seen to be constant if comparing samples 1-8.

The ecological literature offers many different transformations for such data, often as a way of making the data appear 'more normal'. Figure 6.1 shows the results of a few such transformations that are in the vegan R package.



Figure 6.1: The effect of ecological transformations on unconstrained high throughput sequencing datasets. Data generated as in Figure 3.2 were normalized to a (near) constant total number of reads, converted to proportions, then transformed with five different approaches implemented in the vegan ecological analysis package. The 'Counts' panel shows the original data, the other panels begin with a 'v:' and indicate the vegan package transformation. The transformation in the MR panel is described below.

- The frequency transform divides the each feature value by the largest feature count, and then divides the resulting values by the number of features in the sample that had non-zero counts. This is the often referred to as 'relative abundance' and is a simple proportion.
- The Hellinger transformation that takes the square root of the relative abundance (proportion) value.
- The log transform divides each feature count in a sample by the minimum non-zero count value, then takes the logarithm of the resulting value and adds 1. Counts of 0 are assigned a value of 0 to avoid taking the logarithm of 0.

The MR and CLR transforms are not instantiated in vegan, and are described below.

It is obvious that the Frequency, Hellinger, and Log transformations result in data that badly mis-represents the shape of the actual count data. All other transformations instantiated in the vegan package deliver data that is transformed even more extremely. The log transformation would be suitable *if* the total counts observed after sequencing was directly proportional to the total counts in the environment, however, we have seen that this condition cannot be met for high throughput sequencing. Thus, none of these transformations, though widely used, are suitable when analyzing high throughput sequencing data.

The MR and CLR transforms appear to most closely recapture the shape of the original data and appear very similar. We will discuss these below.

Comparison of 'differential abundance' is problematic for compositional data (Fernandes et al. 2013, 2014). Since the apparent abundance of every value depends on the apparent abundance of every other value, we can get into real difficulties if we are not careful. If we refer back to Figure 6.1:Counts, and we compare the relative abundances of features between sample 1 and sample 20, we observe that only the black feature has changed in absolute abundance and that the count of all other features is unchanged. Note that we would be very wron in our inferences if we use the Frequency, Hellinger or Log transforms, since we would infer that the black feature increased, but that all other features had decreased in abundance. The MR and CLR transformations do a better job of controlling for the interdependence between features. Both transforms have the black feature increasing, but the other features increase or decrease only marginally, and apparently at random.

### Other data transformations

I will introduce each of the transformations in turn, and then we will examine the effect of each transformation on the data. Let us see which, if any of the transforms fulfills the basic requirements set out above.

### Notation

We use the following notation throughout.

- Column vectors contain samples  $\vec{\mathbf{s}}$  and row vectors contain features  $\vec{\mathbf{f}}$
- There are D features and n samples, thus the data are contained in matrix of dimension  $M = D \times n$
- The  $j^{th}$  sample is denoted as  $\vec{\mathbf{s}}_i$
- The  $i^{th}$  feature of all samples is denoted as  $\vec{\mathbf{f}}_{i-}$
- The value for the  $i^{th}$  feature of the  $j^{th}$  sample is referred to as  $s_{ij}$  We will consider the following transformations

### The proportional transformation

This simple normalization is to determine the relative abundance (rAB), or proportion, of the i<sup>th</sup> feature in a sample as in Eq. 6.1. This normalization is also referred to as the total sum scaling (TSS) normalization. The effect is shown in panel Frequency in Figure 6.1.

$$rAB_i = \frac{s_i}{\sum \vec{\mathbf{s}}} \tag{6.1}$$

The rAB measure requires only the read count observed for the feature  $s_{ij}$  and the total read count of the sample  $\sum \vec{s}$ . Since this measure is generally skewed, it is often log-transformed prior to analysis.

#### The RPKM and TPM transformations

A further normalization was proposed early in the RNA-seq field where the reads per kilobase per million mapped (RPKM)(Mortazavi et al. 2008) method was used initially to place the read counts for each feature within and between samples on a common scale.

For this we also needed to know a scaling factor K, and the length of the feature  $L_i$ ; from this, the RPKM value for the i<sup>th</sup> feature for each sample was calculated as in Eq. 6.2.

$$RPKM_i = \frac{K \cdot s_i}{\sum \vec{\mathbf{s}} \cdot L_i} \tag{6.2}$$

When the equation is placed in this form it is obvious that RPKM is simply a scaled rAB where each rAB value is divided by its length and multiplied by a constant. In compositional terms, RPKM is an unclosed perturbation of the original data; the data appear to be real numbers, but are actually proportions multiplied by a constant.

Further research suggested that RPKM was not appropriate for comparison of features between samples. The goal of RPKM was to 'count' reads per feature per cell. In the original paper the authors supplied an equivalence and an RPKM value of 1 RPKM equalled one transcript in each cell in the C2C12 cell line, but in liver cells, a value of 3 RPKM equalled one transcript per cell. Thus, from the start, this normalization was unable to normalize between-condition read counts.

The transcripts per million (TPM) normalization was advocated next (Li et al. 2010). Patcher (Pachter 2011) showed the equivalence between RPKM and TPM, and in compositional terms TPM is simply a compositionally closed form of RPKM multiple by a constant as in Eq. 6.3.

$$TPM_i = \frac{RPKM_i}{\sum RPKM} \cdot K \tag{6.3}$$

The rAB, RPKM and TPM normalizations are thus all very similar, differing only in the scaling of individual features, and do not allow normalization between conditions unless the samples in the environment contain *exactly* the same input number of RNA molecules. These normalizations deliver proportional data, scaled or perturbed to make the data appear as if they are numerical, and not proportional. Thus, these transformations deliver data with the same properties as shown in Figure 6.1, except that the scale of the y axis is altered.

A related transformation is 'rarefaction' or subsampling without replacement to a defined persample read count. This transformation was widely used in the 16S rRNA gene sequencing field. Rarefaction to a common read count gives a composition, that is scaled such that low

count features often are replaced by 0 values (McMurdie and Holmes 2014). For this reason, rarefaction has now been largely replaced with the median of ratios method described below.

### The median of ratios count normalization

Further work found that none of these methods were appropriate, since the read count per sample continued to confound the analyses (Lovén et al. 2012). In other words, the TMM, RPKM, TPM methods are not scale invariant.

Thus, the scaling normalization methods were proposed (White, Nagarajan, and Pop 2009; Robinson and Oshlack 2010), reviewed in (Dillies et al. 2013). There are several scaling normalizations, but all operate on the common assumption that by normalizing all counts in a sample to a per-sample midpoint value the normalization can impute, or at least approximate, the *number* of each feature in the underlying environment. The approaches differ largely in how the midpoint is determined. The median of ratios method (MR) is instantiated in DESeq2 (and others), the trimmed mean of M values (TMM) method is used by edgeR (and others), and the Cumulative Sum Scaling (CSS) method is used by metaGenomeSeq (White, Nagarajan, and Pop 2009) among others. The MR method will be demonstrated and used, but the TMM and CSS methods give substantially similar results, and uses the same basic logic since sample values are linearly scaled by a per-sample feature-wise midpoint.

The MR method calculates the ratio of the features to the geometric mean,  $g\tilde{\mathbf{f}}_{i-}$ , of each feature across all samples, and then takes as the normalization factor the median ratio per sample as the scaling factor. Each feature is then divided by the scaling factor to place each sample on an 'equivalent' count scale. The idea is that the MR normalization 'opens' the data from being compositional to being scaled counts. It is impossible to open the data, and while the scaled counts may have some useful properties, we see below that removing compositional constraints are not among them.

The multi-step normalization MR normalization attempts to normalize for sequencing depth thus 'opening' the data, and proceeds as in the multistep Eq. 6.4. Here we start with two sample vectors  $\vec{\mathbf{s}}_1$  and  $\vec{\mathbf{s}}_2$ , and calculate a vector of geometric means of the features  $\vec{\mathbf{g}}$ . Ratio vectors,  $\vec{\mathbf{r}}_j$  are calculated by dividing the sample vectors by the geometric mean vector, and the median of the ratio vectors is determined. Finally, the sample vectors are divided by the median of the ratio vector for each sample.

$$\vec{\mathbf{g}} = g\vec{\mathbf{f}}i - \vec{\mathbf{r}}_j = \vec{\mathbf{s}}_j/\vec{\mathbf{g}}$$

$$\vec{\mathbf{d}}_j = \vec{\mathbf{s}}_j/Md(\vec{\mathbf{r}}_j)$$
(6.4)

A sample calculation is given in Table 6.1, and we can see that the median ratio for each sample  $\vec{\mathbf{r}}_j$  samples may be different in each sample, and that the particular feature that is the median may itself be different, the median feature is in boldface in the table. Thus, by construction the feature values in each sample can be scaled by different amounts in each sample.

The MR normalization has the attractive property that it approaches the shape of the underlying count data when the dataset is relatively well behaved. We can see this in panel MR in Figure 6.1. Here, only the extreme samples at points 15-20 diverge strongly from the values observed in the underlying count data. The MR normalization is now widely used in both the 16S rRNA gene sequencing field [REF] and in the RNA-seq field [REF]. However, we can see that the normalization fails at the margin without warning. Thus, we can never be sure if we are comparing values correctly. An additional issue is that the MR normalization is not compositionally appropriate, and even though it (nearly) recapitulates the overall

shape of the data, it does not recapitulate the *relationships* between the data. Nevertheless, the MR transformation may be useful in ideal, or nearly ideal cases if interpreted carefully.

|         | Table 6.1: Example calculation of MR normalization |                    |                  |                    |                    |                    |                    |  |  |  |
|---------|----------------------------------------------------|--------------------|------------------|--------------------|--------------------|--------------------|--------------------|--|--|--|
| Feature | $ec{\mathbf{s}}_1$                                 | $ec{\mathbf{s}}_2$ | $ec{\mathbf{g}}$ | $ec{\mathbf{r}}_1$ | $ec{\mathbf{r}}_2$ | $ec{\mathbf{d}}_1$ | $ec{\mathbf{d}}_2$ |  |  |  |
| F1      | 1500                                               | 1000               | 1224.7           | 1.22               | 0.81               | 1219.5             | 1234.6             |  |  |  |
| F2      | 25                                                 | 15                 | 19.4             | 1.29               | 0.77               | 20.3               | 18.5               |  |  |  |
| F3      | 1000                                               | 500                | 707.1            | 1.41               | 0.71               | 813.0              | 617.3              |  |  |  |
| F4      | 75                                                 | 50                 | 61.2             | 1.23               | 0.82               | 61.0               | 61.7               |  |  |  |
| F5      | 500                                                | 1500               | 866.0            | 0.58               | 1.73               | 406.5              | 1851.9             |  |  |  |

Table 6.1: Example calculation of MR normalization

### Log-ratio transformations

Aitchison (1986) introduced the concept of the log-ratio transformation.

There are three main log-ratio transformations; the additive log-ratio (alr), centred log-ratio (clr) and the isometric log-ratio (ilr) (Aitchison 1986; Pawlowsky-Glahn, Egozcue, and Tolosana-Delgado 2015).

Using the same notation as above for a sample vector  $\vec{\mathbf{s}}$  of D 'counted' features (taxa, operational taxonomic units or features, genes, etc.)  $\vec{\mathbf{s}} = [s_1, s_2, ...s_D]$ :

The alr is the simply the elements of the sample vector divided by a presumed invariant feature, which by convention here is the last one:

$$\vec{\mathbf{x}}_{alr} = [log(x_1/x_D), log(x_2/x_D), \dots log(x_D - 1/x_D]$$
(6.5)

This is similar to the concept used in quantitative PCR, where the relative abundance of the feature of interest is divided by the relative abundance of a (presumed) constant 'housekeeping' feature. Of course there are two major drawbacks. First, that the experimentalist's knowledge of which, if any, features are invariant is necessarily incomplete. Second, is that the choice of the (presumed) invariant feature has a large effect on the result if the presumed invariant feature is not invariant, or if it is correlated with any other features in the dataset. Interestingly, an early proposal was to use the geometric mean of a number of internal controls (Vandesompele et al. 2002), leading to the next transformation.

### The centered log-ratio transformation.

The clr is performed by taking the logarithm of the the ratio between the count value for each part and the geometric mean count: i.e., for D features in sample vector  $\vec{\mathbf{s}} = [s_1, s_2, s_3, \dots s_D]$ :

$$\vec{\mathbf{s}}_{clr} = [log(\frac{s_1}{g\vec{\mathbf{s}}}), log(\frac{s_2}{g\vec{\mathbf{s}}}) \dots log(\frac{s_D}{g\vec{\mathbf{s}}})]$$
(6.6)

where  $g\vec{\mathbf{s}} = \sqrt[D]{x_1 \cdot x_2 \cdot \ldots \cdot x_D}$ , the geometric mean of  $\vec{\mathbf{x}}$ .

The clr transformation is formally equivalent to a matrix of all possible pairwise ratios, but is a more tractable form.

The clr transform is scale invariant because the same clr values are obtained from the raw counts and from the table of counts after conversion to proportions. The clr transform is sub-compositionally dominant (Pawlowsky-Glahn, Egozcue, and Tolosana-Delgado 2015). Thus, the clr transform fulfils the

The clr is often criticized since it has the property that the sum of the clr vector must equal 0. This constraint causes a singular covariance matrix; i.e., the sum of the covariance matrix is always a constant (Pawlowsky-Glahn, Egozcue, and Tolosana-Delgado 2015). However the clr has the advantage of being readily interpretable, a value in the vector is its abundance relative to a mean value.

The ilr is the final transformation, and is a series of sequential log-ratios between two groups of features. For example, the philr transformation is the series of ratios between features partitioned along the phylogenetic tree (Silverman et al. 2017), although any other sequential binary partitioning scheme is also possible (Pawlowsky-Glahn, Egozcue, and Tolosana-Delgado 2015). The ilr transformation does not suffer the drawbacks of either the alr or clr, but does not allow for insights into relationships between single features in the dataset. Nevertheless, ilr transformations permit the full-range of multivariate tools to be used, and are recommended whenever possible.

The ilr and clr are directly comparable in a two important ways: First, the distances between samples computed using an ilr and clr transformation are equivalent. Second, the clr approaches the ilr in other respects as the number of features becomes large. In this respect, the large number of features—hundreds in the case of features, thousands in the case of genes—in a typical experiment works in our favour. Thus, while not perfect, the clr is the most widely used transformation. However, care must be taken when interpreting its outputs since single features must always be interpreted as a ratio between the feature and the denominator used for the clr transformation. The problems of using clr are apparent when some subcomposition or group of taxa is analysed for further insight since the geometric mean of the subcomposition is not necessarily equal to that of the original composition, leading to potential inconsistencies.

Log-ratio values of any type do not need to be normalized since the total sum is a term in both the numerator and the denominator. Thus, the same log-ratio value will be obtained for the vector of raw read counts, or the vector of normalized read counts, or the vector of proportions calculated from the counts. Thus, log-ratios are said to be equivalence classes such that there is no information in the total count (aside from precision) (Barceló-Vidal, Martín-Fernández, and Pawlowsky-Glahn 2001).

Attempts to 'open' the data, such as with the MR transformation, are doomed to failure because the data cannot be moved from the simplex to Euclidian space. The total count delivered by the sequencing instrument is a function of the instrument and not the number of molecules sampled from the environment, thus the total count has no geometric meaning. If the data are collected in such a way that the total count represents the actual count in the environment, then the data are not compositional and issues regarding compositional data disappear. However, at present all sequencing platforms deliver a fixed-sum, random sample of the proportion of molecules in the environment. Note that this does not mean that the read depth is irrelevant since more reads for a sample translate into greater precision when estimating the proportions (Fernandes et al. 2013).

### Comparison of transformations

#### A benchmark random dataset

I now set up an even simpler random dataset, composed of only four features (T, L, R, A) and 50 random samples with mean values of 100 tigers, 10000 ladybugs, 1000 Rabbits and 5 space aliens drawn from a Normal distibution—although a random uniform distribution or any other distribution will give the qualitatively the same results. I am not attempting to mimic a distribution found in a real dataset, but instead desire to show the general properties of the transformations with a simple to understand dataset. I use the dataset to show how the most common transforms compare when calculated on simulated counts, on proportions (i.e. as relative abundances after sequencing ), or MR or CLR transformed data

```
set.seed(13)
T <- rnorm(50, mean=100, sd=25)
L <- rnorm(50, mean=10000, sd=2500)
R <- rnorm(50, mean=1000, sd=250)
A <- rnorm(50, mean=5, sd=2.5)
ran.dat <- cbind(T,L,R,A)
ran.dat[ran.dat <=0] <- 0.1</pre>
```

The first row in Figure 6.2 shows the relationships between three features in the benchmark dataset as counts. We can see that the features are randomly normally distributed and uncorrelated in the scatter plots of counts. Most tools attempt to infer something about this numerical dataset using the dataset after sequencing, which we have seen does not deliver counts, but delivers a fixed sum dataset. For a proper analysis after sequencing, the data transforms must be linearly related in some way to this underlying count data from the environment.

The second row in Figure 6.2 shows the same pairs of features in the same data after being converted to proportions: note that this is exactly comparable to sequencing and being constrained by an arbitrary sum as discussed in Chapter 5. Here we see that the the proportional data have a radically different internal structure. The two most relatively abundant features, R and L, which are uncorrelated in the actual data are now almost perfectly negatively correlated as proportions, R.p vs L.p. This is because the proportional data are now not real numbers, but are instead are constrained by the arbitrary sum of 1: the data are now compositional data.

Recall from Figure 6.1 that the MR and CLR transformations appeared to restore most of the underlying structure to the data. Using this simplified dataset, we can see that this was an illusion. The MR transformation shown in row 3 of Figure 6.2 seems to fix the problem caused by converting the data from numbers to proportions since the points are more spread out. However, closer inspection shows that this is not the case: compare L.MR vs T.MR in row 3 with L vs T in row 1. It should be clear that the MR transformation simply spreads the points out without restoring the actual structure of the underlying count data. This is unfortunate and misleading since the stated purpose of the MR transformation is to recover the underlying count structure of the environmental sample after sequencing [REFS]. In the absence of a solid theoretical foundation, it is difficult to say exactly how we should interpret these MR-transformed data. The above MR plots were generated on the proportional dataset, however only the scale of the MR axes would change if the MR normalization was conducted on the original numerical data. Thus, conclusions derived from data that are MR-normalized actually tell us little about the underlying counts from environment—despite the pervasive use of this, and related, transformations in the biomedical literature.

The last row in Fig 6.2 shows the proportional data transformed by the clr transformation. Again, we see that the transformed data are not similar to the actual count data. Thus,



Figure 6.2: Scatter plots of Ladybugs (L) vs. Tigers (T), Rabbits (R) vs. Ladybugs and Aliens (A) vs. Rabbits for simulated random Normal data. Plots are shown for the actual count data, for the proportional data, and for the proportional data after the MR or CLR transformation.

conclusions made on clr-transformed data also cannot be directly related to the count values of the actual dataset. So at this point we have a conundrum: no transformation on post-sequencing data recapitulates the pre-sequencing data that we want to examine.

#### The CLR transform contains relative information

We are now in a position to realize that recovering the actual counts in the environment from the post-sequencing data is impossible without additional information. Some advocate the use of a spike-in of known numbers of a molecule that can be used to normalize. However, in practice one would need to include a sufficient number of these molecules so that the random sampling error was very small, thus decreasing the sequencing depth of the molecules being measured in the experiment. In addition, practical examination of spike-in experiments indicates that there is considerable variation in the spike-in molecules that is attributed to batch effects [BARTON], making their use suspect.

Two transforms, the MR and clr transforms come closest to recapitulating the overall shape of the univariate data as shown in Figure 6.1, and so appear to be promising. However, both transformations (and all others) fail to recapitulate the multivariate nature of the data as shown in Figure 6.2. There is a way forward as long as we are willing to change our point of view from absolute numbers to relative values.

Interestingly, both the MR transform and the clr transform are based on ratios. These transforms share the insight that we need to examine the abundance of a feature relative to the abundance of some other feature or group of features. The MR transform uses as the reference a median value calculated as in Equation 6.4. Two aspects of this normalization are troubling. First, that the midpoint feature chosen as the reference is likely different for each sample. Second, that the values are scaled and interpreted as counts, even though the transformed values are now ratios. Third, that the transformed values will be different if the features have a different scale; i.e., if the features are multiplied by a constant.

In contrast, the clr tranform has a firm theoretical foundation based on compositional data analysis (Aitchison 1986). Data transformed by the clr are the same whether they are counts, or proportions or are multiplied by an arbitrary constant: they are what is called 'scale invariant'. We can demonstrate that the clr tranform provides the same relative information on the actual count data by transforming the count data, or the proportion data by the clr and plotting the result as shown in Figure 6.3. Further, clr-transformed data are explicitly interpreted as the ratio between the count (or proportion) of a feature and the geometric mean count (or proportion) of all features. We can further modify the clr tranformation to use only those features that have particular properties (such as non-0, low variance, etc) in all samples [JIA] to avoid including features with a count of 0 in the denominator. However, in this case we must keep in mind to interpret the transformed values as the ratio between the feature and the denominator.



Figure 6.3: Plot of Ladybugs vs. Tigers, Rabbits vs. Ladybugs and Aliens vs. Rabbits for simulated random Normal data after the MR normalization (top row). Plot of input numerical and MR normalized data for Tigers, Ladybugs and Rabbits (bottom row)

# Distances in high throughput sequencing

### Distance or dissimilarity metrics

The microbiome and transcriptome literature are replete with distance metrics, and it is common to find that a single study will use several distance metrics to report their findings. This is a problem since it suggests that practitioners are unsure of the reason to use a metric; consequently, the use of more than one metric leads to data dredging and research degrees of freedom—both of which increase the chances of finding false positives in the data to a surety.

Distance metrics can be broadly divided into those that require partitioning and those that do not. The UniFrac (Lozupone et al. 2011; Lozupone and Knight 2005) and philr (Silverman et al. 2017) both require a phylogenetic tree, making these metrics applicable only to situations where the features can be so partitioned. For example, these distances are useful when examining 16S rRNA gene sequencing experiments. We have found that the unweighted UniFrac method is unreliable, and should be used with caution [Wong, Wu, and Gloor (2016)], a point that was made in the original UniFrac paper and subsequently forgotten. The philr metric is a drop-in replacement for the weighted UniFrac distance metric and should be used whenever possible, since philr is an ilr transformation of the data where the sequential binary partitions are made along the phylogenetic tree. The philr transformation is thus compositionally appropriate. In practice, the weighted UniFrac distance metric provides similar results to the Aitchison distance, described below, and the ilr distance calculated using the philr transform approaches the Aitchison distance when the number of features is large.

Several non-phylogenetic distances are in widespread use in the literature, and since the phylogenetic (or partitioning) distances are difficult to apply to RNA-seq data, we will not illustrate these. Non-phylogenetic distance metrics will be discussed in turn below, and their effects on distances between a random samples illustrated.

### Distances in counts and proportion}

Ideally, we use distance metrics to inform us as to something of relevance in the actual sample. That is, if we collect our data on the numbers of tigers, ladybugs, Rabbits and space aliens, what can we infer about the actual data *after sequencing*? which as we have seen,



Figure 7.1: Two primary distance metrics are Euclidian and Manhattan. Euclidian distance is simply the straight-line distance between two points, A and B. Manhattan distance, also called city block distance, is the distance parallel to the axes of the co-ordinate system. Many other distances are in use, but these two and their derivatives are the most widespread.

is the same as asking what can we infer after converting the data to relative abundances (proportions)?

There are two main ways to think about distances: Euclidian and Manhattan. The Euclidian distance is the straight-line distance between two points. If we have a rectangular room, the Euclidian distance between two corners would be the distance travelled by walking diagonally across the room from one corner to the other. The Manhattan distance would be the distance travelled by walking along the walls between the two corners. Obviously, the Manhattan distance will always be larger than the Euclidian distance. So how do these two simple metrics, and others derived from them, compare when calculate on numbers and on compositions?

In an ideal world when dealing with compositions, we would like a distance metric that gives us an interpretable and stable measure of distance between samples. Distances between samples should be:

- scale invariant (S): that is the distance between samples should not differ if we use proportions or percentages (or any other denominator).
- subcompositional dominant (D): that is the distance between samples that contain all the features should be equal to or greater than the distance between the samples when one or more features are removed.
- perturbation invariant (P): that is the distance between samples should be unchanged if we translate or rotate them in space.

Martin-Fernandes (1998) provide a very simple test that can be used to determine if a distance metric is compositionally appropriate. We start with four samples, x1 to x4 that contain three features each, and measure the distance between the samples following a perturbation, or following feature subsetting. The perturbed samples are labeled p1 to p4, and the subset samples containing only the first two features are called s1 to s4.

```
x1 <- c(1,2,7) * 0.1
x2 <- c(2,1,7) * 0.1
x3 <- c(3,4,3) * 0.1
x4 <- c(4,3,3) * 0.1
x <- rbind(x1,x2,x3,x4)
s <- apply(x[,1:2], 1, function(x) x/sum(x))</pre>
```

```
s <- rbind(s,c(0,0,0,0))
x.p <- t( t(x) * c(8,1,1) ) # perturbation, samples by row
p <- t(apply(x.p, 1, function(z) z/sum(z)))</pre>
```

This dataset is constructed so that the x1:x2 distance is greater than the x3:x4 distance (Martín-Fernández et al. 1998). This is a bit counterintuitive when examining the vectors since in both, the only difference is in the first two features, and so these features determine the distance. In both cases the two first features differ by 0.1, and so if we treat these as non-compositional data we would infer that the x1:x2 distance is equal to the x3:x4 distance. However, since the data are compositional we must interpret the relative values: the first feature in x1 is 0.5 that of the first feature in x2 whereas the first feature in x3 is x4 is 0.75 that of the first feature in x4. The second feature is the inverse relative difference. Thus, since the fold difference between the first two features of x1 and x2 are larger than the fold difference between the first two features of x3 and x4, the distances between the pairs of samples must be correspondingly different. When dealing with the subcomposition, the distances are unchanged, because the ratios between the first two features is unchanged, we have only dropped the non-informative last feature.

The relationships between the full composition and the subcomposition can be observed in Figure 7.2. The perturbed dataset is simply a translation of the data on the simplex and should not change the distance between samples. The ternary plot shows that our visual intuition breaks down when examining data on a simplex because the features are not linearly different in a composition. It is helpful to think that a simplex is akin to a distorted map projection where we are trying to show the relationships between the continents on a globe but projected onto a flat map.

Table 7.1: Distance metrics on the simplex. The x1,x2 distance should be larger than the x3,x4 distance, the distance should be the same if we change the scale (S), the perturbation should not change the distances since it is simply a translation (P), and the distance between sample subcompositions should be no larger than the full composition (D). Among the distances compared, only the Aitchison distance—the Euclidian distance of the clr values—fulfills these properties.

| Metric (SDP)     | d(x1,x2) | d(p1,p2) | d(s1,s2) | d(x3,x4) | d(p3,p4) | d(s3,s4) |
|------------------|----------|----------|----------|----------|----------|----------|
| Euclidian (—)    | 0.14     | 0.24     | 0.47     | 0.14     | 0.09     | 0.20     |
| Manhattan (—)    | 0.20     | 0.40     | 0.67     | 0.20     | 0.14     | 0.29     |
| Bray-Curtis (S-) | 0.10     | 0.20     | 0.33     | 0.10     | 0.06     | 0.14     |
| JSD (SD-)        | 0.13     | 0.15     | 0.13     | 0.08     | 0.06     | 0.08     |
| Aitchison (SDP)  | 0.98     | 0.98     | 0.98     | 0.41     | 0.41     | 0.41     |

Table 7.1 shows the properties of several distance metrics on the synthetic vectors. By definition, the Euclidian and Manhattan distances are not scale invariant, perturbation invariant, nor are they subompositionally dominant. These metrics should *never* be used for proportional (compositional) data. The Bray-Curtis dissimilarity (or if symmetrized Bray-Curtis distance) is scale invariant by definition since all values are scaled between 0 and 1. However, the Bray-Curtis dissimilarity is not subcompositionally dominant, nor is it perturbation invariant. Thus, the Bray-Curtis metric will be sensitive to the choice of features that are included in the analysis, and raw and normalized data are expected to give different results.

The Jensen-Shannon Distance is a symmetrized version of the Kulback-Leibler divergence metric that is widely used when comparing probability vectors [REF, REF]. This metric is



Figure 7.2: Ternary plot of toy data showing compositional properties. The simplex is the natural space of proportional data, or equivalently, probabilistic data, and contains one fewer dimension than does the data. The location of the four samples on the simplex are shown, along with their location after perturbation. The proportion of each feature in each sample determines the location of the feature on the simplex plot. The proportion of 1 is at the vertex with the label for each feature. The pink dashed line shows the projection of the data onto the F1-F2 proportion when feature 3 (F3) is removed. Distances on the simplex are not necessarily intuitive, since the x1, x2 distance is about twice that of the x3, x4 distance, although on the plot the distances appear similar. This is because distances are non-linear and become more distorted as the margin of the plot is approached: see [@martin1998measures] for an explanation of this.

both scale invariant and subcompositionally dominant. Thus, the JSD would be expected to give results consistent with the whole when used on subsets of the data. However, the JSD metric is not perturbation invariant, and so will not give the same results on the raw and transformed data.

The Aitchison distance is the Euclidian distance calculated on the log-ratio transformed data; here we use the clr transform. The Aitchison distance fulfills all properties and so is expected to give consistent results when a dataset is subsetted, when the dataset is scaled, or when the dataset is transformed. Thus, this distance metric should be used whenever possible. The utility of the distance metrics are illustrated more fully below.

### Graphical demonstration of distance pathologies

I return now to the simple the Ladybugs (L), Tigers (T), Rabbits (R), and Aliens (A) dataset and examine the distance between samples using different metrics. Recall that we desire to find a distance metric that when used on the compositional data obtained after sequencing tells us something about the count data from the environment before sequencing. Thus, we should obtain a linear relationship between the count and compositional data if the distance metric is generally useful, and we compare the counts to both simple proportions and proportions after the DM transformation for all distance metrics.

We first examine the simple Euclidian and Manhattan distances.

We can see that the Euclidian and Manhattan distances are generally correlated, but not identical, when comparing distances in the original set of random samples only, or when the data in the samples are converted to proportions. However, the distances between samples are very different when comparing the numerical and proportional data. This tells us that the inferences we make from sequencing data can not translate to inferences about the actual abundances of features in the environment, but only to their relative abundances. So which distance metric should we use for proportional data? It turns out that neither are suitable because these distance metrics assume linear differences between features, and this is not true in proportional data (Aitchison 1986).

Data normalizations are often touted as removing the compositionality of the data. We shall see that this is not true, and inappropriate data transformations confound, rather than providing clarity.

Plotting three of the possible combinations, we can see that the features are essentially uncorrelated with each other and each sample is a random distances from any other. Any inference we make from transformations of this data must be relatable to this 'ground truth'. I now run through each of the transformations in turn, and illustrate the difference between the actual data, and the transformed data.

#### **Bray-Curtis Dissimilarity**

The Bray-Curtis dissimilarity is a modified Manhattan distance normalized to range between 0 and 1, thus the Manhattan distance and the Bray-Curtis (BC) distances are essentially linearly related changing only the scale of the measure. One quirk of the BC dissimilarity is that it cannot be calculated if any of the values in the matrix are less than, making it incompatible with logarithmic or log-ratio transformed data.



Figure 7.3: Scatter plot of the distances computed on numeric, proportional and DM-normalized data. The X-axis has the distances computed on the original numeric data, and the Y-axis has the distances computed on the same data converted to proportions, or when the proportions are count-normalized using the DM normalization. The distances for the count data and the proportions or the DM normalized data are obviously not linearly related.



Figure 7.4: Scatter plot of Bray-Curtis dissimilarities, or Jensen-Shannon divergence of numerical vs. proportional and DM normalized data.



Figure 7.5: Scatter plot of Euclidian distances of the clr transformed numeric or proportional data. As above, DM indicates proportional data scaled by the DM normalization.

#### Distances of clr transformed data

```
The blah blah blah
```

```
plot_ly(x=ran.dat[,"L"], y=ran.dat[,"T"], z=ran.dat[,"R"])
plot_ly(x=ran.dat.prop[,"L"], y=ran.dat.prop[,"T"], z=ran.dat.prop[,"R"])
plot_ly(x=ran.dat.DM[,"L"], y=ran.dat.DM[,"T"], z=ran.dat.DM[,"R"])
```

# Exploring compositional data: the compositional biplot

There are three main data analysis issues that must be acknowledged.

First, the nature of these data are misunderstood. As outlined above, the number of counts observed per OTU are determined entirely by the capacity of the instrument and provide no information about the number of molecules in the input sample. Recall that both bacterial growth, and PCR are doubling processes and not linear processes, and so would be better modelled as log<sub>2</sub> differences.

Understanding that we are dealing with fold-change data is an explicit acknowledgement that the data do not map to normal Euclidian space where differences are linear. Commonly used statistical tests expect linear differences between values and so are compromised to some degree, often catastrophically (Aitchison 1986, vanden Boogaart 2008320) Therefore, the often-used approaches of converting the OTU count values to proportions or percentages and conducting statistical tests on those values, or of using data reduction strategies such as Principle Component Analysis on the values are inappropriate because the differences between values are not linear. An alternative approach is to convert the OTU counts to ratios (Aitchison 1986; Aitchison and J. Egozcue 2005; Pawlowsky-Glahn and Egozcue 2006; Pawlowsky-Glahn and Buccianti 2011) which makes the differences between the ratios of values linear, and so allows the use of common statistical tests.

However the user must interpret the output as ratios between feature abundances rather than absolute differences(Pawlowsky-Glahn and Buccianti 2011) This approach is described below.

Second, high throughput sequencing (HTS) data represent samples of an unknown underlying large number of molecules. Thus, there is a large and unappreciated error of estimation that is problematic when dealing with these data(Fernandes et al. 2013) The high error of estimation often results in false positive identification of differences, in fact, the statistical result can often be explained entirely by sampling variation. This error is not captured by rarefaction or even acknowledged by other normalization methods and should be estimated and accounted for when deciding what is a significant difference.

Third, 16S rRNA gene sequencing surveys, and similar experiments, contain many variables in each sample. Thus, any analysis that attempts to characterize the individual differences between groups must correct for the many hypotheses that are being tested. This step is often ignored, even in work published in very high profile journals subject to rigorous peer review.

#### 50CHAPTER 8. EXPLORING COMPOSITIONAL DATA: THE COMPOSITIONAL BIPLOT

The purpose of these notes is to show why HTS data for 16S rRNA gene sequencing, and any similar experiments such as RNA-seq, should be treated as ratio data and that it is possible to do so simply. We show that this approach accurately recapitulates the shape of the data for both constrained and unconstrained datasets. We show that converting the data to ratios can accurately model the very high variability at the low count margins, and that rarefaction under-estimates this variability. We use an example from the literature to show how ignoring these factors leads to improper conclusions.

# Analyzing 16S rRNA gene sequencing experiments

The human microbiome project has initiated the large-scale culture-independent analysis of microbial communities, and transcriptome analysis has led to the study of the transcriptional response to many different disease and ecological states.

However, many studies fail to replicate earlier studies even when the same technologies and strategies are used. As just one example, a multitude of studies have examined the link between autism and the human gut microbiota. These have variously implicated x,y,...,and z microbe as being linked to the condition. In a recent high-profile paper by Hsiao et al. (2013), Bacillus fragilis was suggested to restore the gut microbiome of a mouse autism model from 'autistic-like' to 'normal'. Examination of the dataset shows that the conclusion was likely due to chance alone (Gloor, Wu, et al. 2016; Gloor and Reid 2016). While the autism dataset serves as a facile example, the literature are replete with other examples.

# HMP oral microbiota exploration

This example was first presented as part of the CoDa microbiome tutorial in Hinxton, UK in September 2016 at the Human-host microbe interactions conference. Dr. Jean Macklaim co-wrote and did trouble-shooting of this tutorial. It has been modified for clarity and completeness for this book.

We start the differential abundance analysis using a simple dataset derived from the original HMP oral microbiota dataset. This dataset is used because it is exceedingly sparse and so a good test of the method.

The first task is to read in the data and to generate the ALDEx2 output. The data contains 187 attached keratinized gingeva (ak) and 186 outside plaque (op) samples.

```
# The Basic ALDEx2 workflow for two conditions
# this has been modified to reduce the number of Dir monte-carlo instances
# I suggest generating sufficient Dir MCI to get at least 4000 when
# the product of the number of samples in the smallest group x DMCI
# this process can be slow, so I have pre-computed and saved the file
# read the dataset
d.subset <- read.table(paste(tutorial_data, "ak_vs_op.txt", sep=""),</pre>
   row.names=1, header=T)
# make a vector containing the two names of the conditions
# in the same order as in the column names
d.conds <- c(rep("ak", length(grep("ak", colnames(d.subset))) ),</pre>
    rep("op", length(grep("op", colnames(d.subset)))) )
# generate Monte-Carlo instances of the probability of observing each count
# given the actual read count and the observed read count.
# this returns a set of clr values, one for each MC instance, which
# constitutes a distribution of clr values
# note that the latest version of ALDEx2 requires conds explicitly
```

We display the results using a number of different plots in Figure ?? to show how each plot gives a different way of exploring the data.

The mainstay that we advocate is the effect plot (Gloor, Macklaim, and Fernandes 2016), that plots the constituents of normalized change, or effect size. The effect plot shows the relationship between the between group difference and the within-group dispersion for each feature. The Bland-Altman plot (Altman and Bland 1983) shows the relationship between the between group difference and the relative abundance of each feature. The volcano plot (Cui and Churchill 2003) shows the relationship between fold-change and the logarithm of the p-value. Finally, the effect vs. p-value plot shows the relationship between effect size and p-value.

Let's get a visual idea what is meant by the effect size as used in ALDEx2 using two significant features. OTU 3760 has an effect size of 1.04, ol 0.107, we.eBH 5.2e-31, wi.eBH 7.6e-38, and OTU 7805 is still significant but has an effect size of about 0.25, ol 0.37, we.eBH 0.0055, wi.eBH 0.0002.



Figure 10.1: (#fig:hmp\_aldex\_plot)Plotted here are taxa with no difference between groups (grey), a statistically difference between groups (red), and with an effect larger than 1 (blue circles). These are plotted using different plots (described clockwise from top left). The effect plot (Gloor, Macklaim, and Fernandes 2016) illustrates the difference between groups vs. the dispersion (variance) within groups. If the effect is greater than one (outside the grey lines), then, on average the taxa are separable by eye when plotted; roughly, they would be seen to have a greater difference than standard deviation. Effect is a more robust measure of difference than are P values, since the latter depend on sample size; large sample sizes will always give low P values (Halsey et al. 2015). We can see this here where the large sample size means that even highly variable OTUs are significantly different. The Bland-Altman plot (Altman and Bland 1983) compares difference and abundance, and is often seen in RNA-Seq data. The Volcano plot (Cui and Churchill 2003) shows the association between difference and P value, and the final plot shows the association between effect and P value.



Figure 10.2: (#fig:hmp\_aldex\_effect)Histograms showing the separation between groups when choosing OTUs with large effect sizes (left), or OTUs with small effect size (right). OTUs with the largest effect are the 'most reliably different' between groups, and should be chosen over those that are 'most significantly different' whenever possible.

# References



Figure 10.3: The same plots for the supra and subgingival plaque samples. We see that we have statistical significance, but the biological relevance is difficult to defend because of the very small effect sizes.

## References

Aitchison, J. 1986. The Statistical Analysis of Compositional Data. London, England: Chapman & Hall.

Aitchison, J., and J. J. Egozcue. 2005. "Compositional Data Analysis: Where Are We and Where Should We Be Heading?" *Mathematical Geology* 37 (7). Springer:829–50.

Altman, D. G., and J. M. Bland. 1983. "Measurement in Medicine: The Analysis of Method Comparison Studies." *Journal of the Royal Statistical Society. Series D (the Statistician)* 32 (3). Wiley for the Royal Statistical Society:pp. 307–17. http://www.jstor.org/stable/2987937.

Andersson, Anders F, Mathilda Lindberg, Hedvig Jakobsson, Fredrik Bäckhed, Pål Nyrén, and Lars Engstrand. 2008. "Comparative Analysis of Human Gut Microbiota by Barcoded Pyrosequencing." *PLoS One* 3 (7):e2836. https://doi.org/10.1371/journal.pone.0002836.

Auer, Paul L, and Rebecca W Doerge. 2011. "A Two-Stage Poisson Model for Testing RNA-seq Data." Statistical Applications in Genetics and Molecular Biology 10 (1).

Barceló-Vidal, Carles, Josep A Martín-Fernández, and Vera Pawlowsky-Glahn. 2001. "Mathematical Foundations of Compositional Data Analysis." In *Proceedings of IAMG*, 1:1–20.

Bernstein, Jonathan A, Arkady B Khodursky, Pei-Hsun Lin, Sue Lin-Chao, and Stanley N Cohen. 2002. "Global Analysis of mRNA Decay and Abundance in Escherichia Coli at Single-Gene Resolution Using Two-Color Fluorescent Dna Microarrays." *Proceedings of the National Academy of Sciences* 99 (15). National Acad Sciences:9697–9702.

Bian, Gaorui, Gregory B Gloor, Aihua Gong, Changsheng Jia, Wei Zhang, Jun Hu, Hong Zhang, et al. n.d. "The Gut Microbiota of Healthy Aged Chinese Is Similar to That of the Healthy Young." *mSphere* 2 (5):e00327–17. https://doi.org/10.1128/mSphere.00327-17.

Box, George EP. 1976. "Science and Statistics." Journal of the American Statistical Association 71 (356). Taylor & Francis:791–99.

Colquhoun, David. 2014. "An Investigation of the False Discovery Rate and the Misinterpretation of P-Values." R Soc Open Sci 1 (3):140216. https://doi.org/10.1098/rsos.140216.

Cui, Xiangqin, and Gary A Churchill. 2003. "Statistical Tests for Differential Expression in cDNA Microarray Experiments."  $Genome\ Biol\ 4\ (4):210.1-210.10.$ 

Cumming, Geoff. 2008. "Replication and P Intervals: P Values Predict the Future Only Vaguely, but Confidence Intervals Do Much Better." Perspect Psychol Sci 3 (4):286–300. https://doi.org/10.1111/j.1745-6924.2008.00079.x.

Dillies, Marie-Agnès, Andrea Rau, Julie Aubert, Christelle Hennequet-Antier, Marine Jeanmougin, Nicolas Servant, Céline Keime, et al. 2013. "A Comprehensive Evaluation of

Normalization Methods for Illumina High-Throughput RNA Sequencing Data Analysis." *Brief Bioinform* 14 (6):671–83. https://doi.org/10.1093/bib/bbs046.

Egozcue, JJ, and V. Pawlowsky-Glahn. 2005. "Groups of Parts and Their Balances in Compositional Data Analysis." *Mathematical Geology* 37 (7). Springer:795–828.

Egozcue, Juan José, Vera Pawlowsky-Glahn, and Gregory B. Gloor. 2018. "Linear Association in Compositional Data Analysis." Austrian Journal of Statistics 47 (1):3–31.

Erb, Ionas, and Cédric Notredame. 2016. "How Should We Measure Proportionality on Relative Gene Expression Data?" *Theory in Biosciences* 135 (1):21–36.

Erb, Ionas, Thomas Quinn, David Lovell, and Cedric Notredame. 2017. "Differential Proportionality - a Normalization-Free Approach to Differential Gene Expression." bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/134536.

Fernandes, Andrew D, Jean M Macklaim, Thomas G Linn, Gregor Reid, and Gregory B Gloor. 2013. "ANOVA-Like Differential Expression (Aldex) Analysis for Mixed Population Rna-Seq." *PLoS One* 8 (7):e67019. https://doi.org/10.1371/journal.pone.0067019.

Fernandes, Andrew D, Jennifer Ns Reid, Jean M Macklaim, Thomas A McMurrough, David R Edgell, and Gregory B Gloor. 2014. "Unifying the Analysis of High-Throughput Sequencing Datasets: Characterizing RNA-Seq, 16S RRNA Gene Sequencing and Selective Growth Experiments by Compositional Data Analysis." *Microbiome* 2:15.1–15.13. https://doi.org/10.1186/2049-2618-2-15.

Friedman, Jonathan, and Eric J Alm. 2012. "Inferring Correlation Networks from Genomic Survey Data." *PLoS Comput Biol* 8 (9):e1002687. https://doi.org/10.1371/journal.pcbi. 1002687.

Gelman, Andrew, and Eric Loken. n.d. "The Garden of Forking Paths: Why Multiple Comparisons Can Be a Problem, Even When There Is No 'Fishing Expedition' or 'P-Hacking' and the Research Hypothesis Was Posited Ahead of Time." http://www.stat.columbia.edu/~gelman/research/unpublished/p\_hacking.pdf.

Gierliński, Marek, Christian Cole, Pietà Schofield, Nicholas J Schurch, Alexander Sherstnev, Vijender Singh, Nicola Wrobel, et al. 2015. "Statistical Models for Rna-Seq Data Derived from a Two-Condition 48-Replicate Experiment." *Bioinformatics* 31 (22):3625–30. https://doi.org/10.1093/bioinformatics/btv425.

Gloor, Gregory B., Jean M. Macklaim, and Andrew D. Fernandes. 2016. "Displaying Variation in Large Datasets: A Visual Summary of Effect Sizes." *Journal of Computational and Graphical Statistics* 25 (3):971–9.

Gloor, Gregory B, Ruben Hummelen, Jean M Macklaim, Russell J Dickson, Andrew D Fernandes, Roderick MacPhee, and Gregor Reid. 2010. "Microbiome Profiling by Illumina Sequencing of Combinatorial Sequence-Tagged PCR Products." *PLoS One* 5 (10):e15406. https://doi.org/10.1371/journal.pone.0015406.

Gloor, Gregory B, Jean M Macklaim, Michael Vu, and Andrew D Fernandes. 2016. "Compositional Uncertainty Should Not Be Ignored in High-Throughput Sequencing Data Analysis." *Austrian Journal of Statistics* 45:73–87. https://doi.org/doi:10.17713/ajs.v45i4.122.

Gloor, Gregory B, and Gregor Reid. 2016. "Compositional Analysis: A Valid Approach to Analyze Microbiome High-Throughput Sequencing Data." Can J Microbiol 62 (8):692–703. https://doi.org/10.1139/cjm-2015-0821.

Gloor, Gregory B, Jia Rong Wu, Vera Pawlowsky-Glahn, and Juan José Egozcue. 2016. "It's All Relative: Analyzing Microbiome Data as Compositions." *Ann Epidemiol* 26 (5):322–9. https://doi.org/10.1016/j.annepidem.2016.03.003.

Gorzelak, Monika A, Sandeep K Gill, Nishat Tasnim, Zahra Ahmadi-Vand, Michael Jay, and Deanna L Gibson. 2015. "Methods for Improving Human Gut Microbiome Data by Reducing Variability Through Sample Processing and Storage of Stool." *PLoS One* 10 (8):e0134802. https://doi.org/10.1371/journal.pone.0134802.

Halsey, Lewis G, Douglas Curran-Everett, Sarah L Vowler, and Gordon B Drummond. 2015. "The Fickle P Value Generates Irreproducible Results." *Nat Methods* 12 (3):179–85. https://doi.org/10.1038/nmeth.3288.

Hawinkel, Stijn, Federico Mattiello, Luc Bijnens, and Olivier Thas. 2017. "A Broken Promise: Microbiome Differential Abundance Methods Do Not Control the False Discovery Rate." *Briefings in Bioinformatics*. Oxford University Press, bbx104.

Horner-Devine, M Claire, Melissa Lage, Jennifer B Hughes, and Brendan J M Bohannan. 2004. "A Taxa-Area Relationship for Bacteria." *Nature* 432 (7018):750–3. https://doi.org/10.1038/nature03073.

Hsiao, Elaine Y, Sara W McBride, Sophia Hsien, Gil Sharon, Embriette R Hyde, Tyler McCue, Julian A Codelli, et al. 2013. "Microbiota Modulate Behavioral and Physiological Abnormalities Associated with Neurodevelopmental Disorders." *Cell* 155 (7):1451–63. https://doi.org/10.1016/j.cell.2013.11.024.

Jaynes, E. T, and G. Larry Bretthorst. 2003. *Probability Theory: The Logic of Science*. Cambridge, UK: Cambridge University Press. http://www.loc.gov/catdir/samples/cam033/2002071486.html.

Kaul, Abhishek, Siddhartha Mandal, Ori Davidov, and Shyamal D Peddada. 2017. "Analysis of Microbiome Data in the Presence of Excess Zeros." Front Microbiol 8:2114. https://doi.org/10.3389/fmicb.2017.02114.

Kurtz, Zachary D, Christian L Müller, Emily R Miraldi, Dan R Littman, Martin J Blaser, and Richard A Bonneau. 2015. "Sparse and Compositionally Robust Inference of Microbial Ecological Networks." *PLoS Comput Biol* 11 (5):e1004226. https://doi.org/10.1371/journal.pcbi.1004226.

Kvam, Vanessa M, Peng Liu, and Yaqing Si. 2012. "A Comparison of Statistical Methods for Detecting Differentially Expressed Genes from RNA-seq Data."  $Am\ J\ Bot\ 99\ (2):248-56.$  https://doi.org/10.3732/ajb.1100340.

Li, Bo, Victor Ruotti, Ron M Stewart, James A Thomson, and Colin N Dewey. 2010. "RNA-Seq Gene Expression Estimation with Read Mapping Uncertainty." *Bioinformatics* 26 (4):493–500. https://doi.org/10.1093/bioinformatics/btp692.

Lovell, David, Vera Pawlowsky-Glahn, Juan José Egozcue, Samuel Marguerat, and Jürg Bähler. 2015. "Proportionality: A Valid Alternative to Correlation for Relative Data." *PLoS Comput Biol* 11 (3):e1004075. https://doi.org/10.1371/journal.pcbi.1004075.

Lovén, Jakob, David A Orlando, Alla A Sigova, Charles Y Lin, Peter B Rahl, Christopher B Burge, David L Levens, Tong Ihn Lee, and Richard A Young. 2012. "Revisiting Global Gene Expression Analysis." *Cell* 151 (3):476–82. https://doi.org/10.1016/j.cell.2012.10.012.

Lozupone, Catherine, and Rob Knight. 2005. "UniFrac: A New Phylogenetic Method for Comparing Microbial Communities." Applied and Environmental Microbiology 71 (12). Am Soc Microbiol:8228–35.

Lozupone, Catherine, Manuel E Lladser, Dan Knights, Jesse Stombaugh, and Rob Knight. 2011. "UniFrac: An Effective Distance Metric for Microbial Community Comparison." *ISME* J 5 (2):169–72. https://doi.org/10.1038/ismej.2010.133.

Macklaim, M Jean, D Andrew Fernandes, M Julia Di Bella, Jo-Anne Hammond, Gregor Reid, and Gregory B Gloor. 2013. "Comparative Meta-RNA-Seq of the Vaginal Microbiota

and Differential Expression by  $Lactobacillus\ Iners$  in Health and Dysbiosis."  $Microbiome\ 1:15.\ https://doi.org/doi.\ 10.1186/2049-2618-1-12.$ 

Mandal, Siddhartha, Will Van Treuren, Richard A White, Merete Eggesbø, Rob Knight, and Shyamal D Peddada. 2015. "Analysis of Composition of Microbiomes: A Novel Method for Studying Microbial Composition." *Microb Ecol Health Dis* 26:27663.

Martín-Fernández, JA, C Barceló-Vidal, V Pawlowsky-Glahn, A Buccianti, G Nardi, and R Potenza. 1998. "Measures of Difference for Compositional Data and Hierarchical Clustering Methods." In *Proceedings of IAMG*, 98:526–31.

McMurdie, Paul J, and Susan Holmes. 2014. "Waste Not, Want Not: Why Rarefying Microbiome Data Is Inadmissible." *PLoS Comput Biol* 10 (4):e1003531. https://doi.org/10.1371/journal.pcbi.1003531.

McMurrough, Thomas A, Russell J Dickson, Stephanie M F Thibert, Gregory B Gloor, and David R Edgell. 2014. "Control of Catalytic Efficiency by a Coevolving Network of Catalytic and Noncatalytic Residues." *Proc Natl Acad Sci U S A* 111 (23):E2376–83. https://doi.org/10.1073/pnas.1322352111.

Mortazavi, Ali, Brian A Williams, Kenneth McCue, Lorian Schaeffer, and Barbara Wold. 2008. "Mapping and Quantifying Mammalian Transcriptomes by RNA-seq." *Nat Methods* 5 (7):621–8. https://doi.org/10.1038/nmeth.1226.

Newey, Whitney K., and Daniel McFadden. 1994. "Large Sample Estimation and Hypothesis Testing." In *Handbook of Econometrics*, edited by Robert Engle and Daniel McFadden, 4:2111—2245. Elsevier Science.

Oksanen, Jari, F. Guillaume Blanchet, Michael Friendly, Roeland Kindt, Pierre Legendre, Dan McGlinn, Peter R. Minchin, et al. 2017. "Vegan: Community Ecology Package." 2017. https://CRAN.R-project.org/package=vegan.

Pachter, Lior. 2011. "Models for Transcript Quantiffication from RNA-seq." ArXiv 1104.3889 (v2).

Parameswaran, Poornima, Roxana Jalili, Li Tao, Shadi Shokralla, Baback Gharizadeh, Mostafa Ronaghi, and Andrew Z Fire. 2007. "A Pyrosequencing-Tailored Nucleotide Barcode Design Unveils Opportunities for Large-Scale Sample Multiplexing." *Nucleic Acids Res* 35 (19):e130. https://doi.org/10.1093/nar/gkm760.

Paulson, Joseph N, O Colin Stine, Héctor Corrada Bravo, and Mihai Pop. 2013. "Differential Abundance Analysis for Microbial Marker-Gene Surveys." *Nat Methods* 10 (12):1200–1202. https://doi.org/10.1038/nmeth.2658.

Pawlowsky-Glahn, V., and J. J. Egozcue. 2006. "Compositional Data and Their Analysis: An Introduction." *Geological Society, London, Special Publications* 264 (1):1–10. https://doi.org/10.1144/GSL.SP.2006.264.01.01.

Pawlowsky-Glahn, Vera, and Antonella Buccianti. 2011. Compositional Data Analysis: Theory and Applications. John Wiley & Sons.

Pawlowsky-Glahn, Vera, Juan José Egozcue, and Raimon Tolosana-Delgado. 2015. *Modeling and Analysis of Compositional Data*. John Wiley & Sons.

Pearson, Karl. 1897. "Mathematical Contributions to the Theory of Evolution. – on a Form of Spurious Correlation Which May Arise When Indices Are Used in the Measurement of Organs." *Proceedings of the Royal Society of London* 60:489–98.

Quinn, Thomas P., Ionas Erb, Mark F. Richardson, and Tamsyn M. Crowley. 2017. "Understanding Sequencing Data as Compositions: An Outlook and Review." bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/206425.

Quinn, Thomas, Mark F Richardson, David Lovell, and Tamsyn Crowley. 2017. "Propr: An R-Package for Identifying Proportionally Abundant Features Using Compositional Data Analysis." bioRxiv. Cold Spring Harbor Labs Journals. https://doi.org/10.1101/104935.

Robinson, Mark D, Davis J McCarthy, and Gordon K Smyth. 2010. "EdgeR: A Bioconductor Package for Differential Expression Analysis of Digital Gene Expression Data." *Bioinformatics* 26 (1):139–40. https://doi.org/10.1093/bioinformatics/btp616.

Robinson, Mark D, and Alicia Oshlack. 2010. "A Scaling Normalization Method for Differential Expression Analysis of RNA-seq Data." *Genome Biol* 11 (3):R25.1–R25.9. https://doi.org/10.1186/gb-2010-11-3-r25.

Silverman, Justin D, Alex D Washburne, Sayan Mukherjee, and Lawrence A David. 2017. "A Phylogenetic Transform Enhances Analysis of Compositional Microbiota Data." *Elife* 6 (February):21887. https://doi.org/10.7554/eLife.21887.

Taniguchi, Yuichi, Paul J Choi, Gene-Wei Li, Huiyi Chen, Mohan Babu, Jeremy Hearn, Andrew Emili, and X Sunney Xie. 2010. "Quantifying E. Coli Proteome and Transcriptome with Single-Molecule Sensitivity in Single Cells." *Science* 329 (5991):533–8. https://doi.org/10.1126/science.1188308.

Thorsen, Jonathan, Asker Brejnrod, Martin Mortensen, Morten A Rasmussen, Jakob Stokholm, Waleed Abu Al-Soud, Søren Sørensen, Hans Bisgaard, and Johannes Waage. 2016. "Large-Scale Benchmarking Reveals False Discoveries and Count Transformation Sensitivity in 16S RRNA Gene Amplicon Data Analysis Methods Used in Microbiome Studies." *Microbiome* 4 (1):62. https://doi.org/10.1186/s40168-016-0208-8.

Tsilimigras, Matthew C B, and Anthony A Fodor. 2016. "Compositional Data Analysis of the Microbiome: Fundamentals, Tools, and Challenges." *Ann Epidemiol* 26 (5):330–5. https://doi.org/10.1016/j.annepidem.2016.03.002.

Van den Boogaart, K Gerald, and Raimon Tolosana-Delgado. 2013. Analyzing Compositional Data with R. Springer, London, UK.

Vandesompele, Jo, Katleen De Preter, Filip Pattyn, Bruce Poppe, Nadine Van Roy, Anne De Paepe, and Frank Speleman. 2002. "Accurate Normalization of Real-Time Quantitative Rt-Pcr Data by Geometric Averaging of Multiple Internal Control Genes." *Genome Biol* 3 (7):RESEARCH0034.

Warton, David I, and Francis K C Hui. 2011. "The Arcsine Is Asinine: The Analysis of Proportions in Ecology." *Ecology* 92 (1):3–10.

Washburne, Alex D, Justin D Silverman, Jonathan W Leff, Dominic J Bennett, John L Darcy, Sayan Mukherjee, Noah Fierer, and Lawrence A David. 2017. "Phylogenetic Factorization of Compositional Data Yields Lineage-Level Associations in Microbiome Datasets." *PeerJ* 5:e2969. https://doi.org/10.7717/peerj.2969.

Weiss, Sophie, Zhenjiang Zech Xu, Shyamal Peddada, Amnon Amir, Kyle Bittinger, Antonio Gonzalez, Catherine Lozupone, et al. 2017. "Normalization and Microbial Differential Abundance Strategies Depend Upon Data Characteristics." *Microbiome* 5 (1):27. https://doi.org/10.1186/s40168-017-0237-y.

White, James Robert, Niranjan Nagarajan, and Mihai Pop. 2009. "Statistical Methods for Detecting Differentially Abundant Features in Clinical Metagenomic Samples." *PLoS Comput Biol* 5 (4):e1000352. https://doi.org/10.1371/journal.pcbi.1000352.

Wolfs, Jason M, Thomas A Hamilton, Jeremy T Lant, Marcon Laforet, Jenny Zhang, Louisa M Salemi, Gregory B Gloor, Caroline Schild-Poulter, and David R Edgell. 2016. "Biasing Genome-Editing Events Toward Precise Length Deletions with an Rna-Guided Tevcas9 Dual Nuclease." *Proc Natl Acad Sci U S A*, December. https://doi.org/10.1073/pnas.1616343114.

Wong, Ruth G, Jia R Wu, and Gregory B Gloor. 2016. "Expanding the UniFrac Toolbox." *PLoS One* 11 (9):e0161196. https://doi.org/10.1371/journal.pone.0161196.

Zozaya-Hinchliffe, Marcela, Rebecca Lillis, David H Martin, and Michael J Ferris. 2010. "Quantitative Pcr Assessments of Bacterial Species in Women with and Without Bacterial Vaginosis." *J Clin Microbiol* 48 (5):1812–9. https://doi.org/10.1128/JCM.00851-09.