Разработка модели классификации патологий ВНЧС по снимкам с использованием нейронной сети YOLO.

05 апреля, 2024

Выполнила: Анелия Михалькевич

Введение

Объект исследования: Изображения с патологиями ВНЧС

Предмет исследования: Детектирование и классификация патологий ВНЧС.

Цель работы: Создание модели анализа данных с использованием глубокой сверточной нейро нной сети YOLO для автоматизированной диагностики патологий ВНЧС по медицинским изобра жениям.

Задачи работы:

- 1. Изучить снимки с патологиями, выбрать метод обработки данных.
- 2. Определить основные принципы выбранного метода анализа данных, метрики для оценки пр оизводительности и параметры работы сети.
- 3. Сформировать, промаркировать и описать набор данных, выделить классы заболеваний, уча ствующие в исследовании.
- 4. Выполнить предобработку данных.
- 5. Обучить нейронную сеть YOLOv8.
- 6. Протестировать обученную модель.
- 7. Создать отчет о проделанной работе.

Актуальность

Применение искусственного интеллекта (ИИ) и компьютерного зрения в медицинской д иагностике патологий ВНЧС является перспективной и актуальной областью исследований. Эти технологии могут существенно улучшить качество и скорость диагностики, предоставляя врачам мощные инструменты для анализа медицинских изображений.

Детекция патологий: ИИ может помочь в выявлении аномалий на разных стадиях, даж е если они не очевидны для человеческого глаза. Алгоритмы могут обучаться на больших набо рах данных, чтобы определять наличие патологий с высокой точностью.

Классификация заболеваний: После детекции аномалии ИИ может также классифицир овать тип патологии, определяя её характер и возможную серьёзность. Это дает возможность для более целенаправленного лечения.

Анализ динамики: Использование ИИ позволяет отслеживать изменения в состоянии ВНЧС со временем, предоставляя детальный анализ прогрессирования заболевания или эффек-тивности лечения.

Помощь в клинических исследованиях: ИИ может анализировать большие объемы данных быстрее и точнее, чем это могли бы делать специалисты вручную, что особенно ценно при исследованиях новых методик лечения или при оценке эффективности применяемой терапии.

Формирование и описание набора данных

Общий объем набора данных составля ет 100 изображений .png с патологиями ВНЧС разделенных на 11 классов:

- 1. sagittal_distal_position (SDP)
- 2. sagittal_distraction (SD)
- 3. sagittal_compression (SC)
- 4 sagittal_mesial_position (SMP)
- 5. sagittal_norma (SN)
- 6. axial_lateral_position (ALP)
- 7. axial_medial_position (AMP)
- 8. axial_norma (AN)
- 9. coronal_lateral_position (CLP)
- 10. coronal_medial_position (CMP)
- 11. coronal_norma (CN)

Разделение набора данных на выборки

Разделение данных на выборки производилось в следующем соотношении:

80% данных будут использованы для обучения (train) и 20% данных будут выделены для тестиров ания,

50% из которых будет выделены для тестовой выборки (test), а оставшиеся 50% останутся в вали дационной выборке (val).

Результаты обучения нейронной сети YOLOv8

- На текущем наборе данных модель демонстрирует хорошую тенденцию к обучению и обобщению на основ е снижения потерь и улу чшения метрик точности и полноты.
- Повышенное внимание с ледует уделить балансу классов и увеличению ч исла обучающих пример ов.

Результаты обучения нейронной сети YOLOv8

Class	Р	R	mAP50	mAP50-95
all	0.932	0.831	0.995	0.848
axial_lateral_position	0.929	1	0.995	0.995
axial_medial_position	0.927	1	0.995	0.895
coronal_norma	1	0.548	0.995	0.785
coronal_lateral_position	0.879	1	0.995	0.895
coronal_medial_position	0.932	1	0.995	0.946
sagittal_norma	1	0	0.995	0.796
sagittal_compression	1	0.935	0.995	0.825
sagittal_distraction	0.82	1	0.995	0.697
sagittal_distal_position	0.899	1	0.995	0.796

- Модель показывает высокую производительность по большинству классов по основным метрикам оценки mAP50 и mAP50-95, учитывающими точность предсказания классов, и точность локализации объектов на изображении.
- Как видно на гистограмме, mAP50 везде составляет 0.995, что указывает на высокую то чность модели при пороге IoU 0.5.
- mAP50-95 варьируется, что отражает различия в точности модели при разных уровнях с трогости IoU.

Результаты обучения нейронной сети YOLOv8

- На представленной матрице ош ибок (Confusion Matrix) видно, чт о большинство классов были ид еально классифицированы моде лью, что показывает нормализов анное значение 1.00 по диагона ли, что означает 100% точность классификации для этих классов
- Требуется провести дополнител ьную работу для разрешения пу таницы между классами sagittal_ norma и sagittal_distraction.
- Это может включать более дета льный анализ этих классов, воз можно улучшение аннотаций обу чающего набора или введение д ополнительных данных для обуч ения.

Примеры результатов на обучающем наборе данных

Примеры результатов на валидационном наборе данных

Истинные метки

Предсказанные метки

 Мы видим истинные метки и соответствующие предсказанные метки. Эти примеры наглядно демонстрируют, как модель справляется с задачей детекции и классифик ации различных патологий.

Результаты тестирования нейронной сети YOLOv8

Class	Р	R	mAP50	mAP50-95
all	0.932	0.831	0.995	0.848
axial_lateral_position	0.929	1	0.995	0.995
axial_medial_position	0.926	1	0.995	0.895
coronal_norma	1	0.549	0.995	0.785
coronal_lateral_position	0.879	1	0.995	0.895
coronal_medial_position	0.932	1	0.995	0.946
sagittal_norma	1	0	0.995	0.796
sagittal_compression	1	0.934	0.995	0.825
sagittal_distraction	0.82	1	0.995	0.697
sagittal_distal_position	0.899	1	0.995	0.796

 На тестовом наборе данных модель также показывает высокую производительност ь по большинству классов по основным метрикам оценки mAP50 и mAP50-95, учит ывающими точность предсказания классов, и точность локализации объектов на из ображении.

Примеры результатов на тестовом наборе данных

 Изображения предсказанных меток показывают, что модель способна локализоват ь, классифицировать и оценить, насколько алгоритм уверен в каждой конкретной к лассификации различных типов патологий ВНЧС.

Заключение

В результате исследовательской работы реализована модель анализа данных для идентификации и классифик ации патологий ВНЧС на основе сверточной нейронной сети YOLOv8.

Исследование показало, что мы можем использовать модель YOLO для диагностики патологий ВНЧС, но для дальнейшего прогресса и развития модели необходимо расширить набор уникальных данных в разрезе каждой патологии.

Текущие высокие результаты обучения были получены на наборе данных состоящем из 100 изображений, и из 5-6 уникальных в каждой патологии. Этих данных недостаточно, чтобы получить адекватную оценку производительн ости и дать положительное заключение, что разработанная модель успешно справится с новыми данными. Но пред посылки для этого есть.

Полученные в результате обучения и тестирования данные указывают на то, что модель хорошо обобщается на различные классы и способна обнаруживать объекты с высокой точностью и полнотой. Некоторые классы, такие к ак sagittal_norma, могут требовать дополнительной настройки для улучшения производительности, так как полнота в данном случае равна 0.0, что может свидетельствовать о том, что модель не обнаруживает объекты этого класса. В ысокий показатель mAP 99.5% указывает на высокую точность модели в предсказаниях для различных уровней IoU. Рекомендуется проанализировать ложные срабатывания и упущенные объекты для дальнейшего улучшения модел

Спасибо за внимание!

Мои контакты:

@hakunaaa_matataaaaa anelia.education@yahoo.com