SIMULADOR DE TRELIÇAS PLANAS

Projeto N2

Apresentação do Modelo Matemático

Esta apresentação tem como objetivo apresentar a lógica por trás da construção do modelo matemático que utiliza das seguintes ferramentas:

- Método de Rigidez Direta (*Global Stiffness System*)
- Contabilização por Matriz
- Cálculo de Determinantes de Matriz
- Cálculo de Matrizes Inversas
- Cálculo do Produto de 2 (duas) Matrizes

O primeiro passo para se calcular as forças aplicadas em todos os membros de uma treliça (e consequentemente as incógnitas de reação de apoio) deve-se criar uma matriz de duas dimensões.

A primeira contém:

- Cada membro (barra) do sistema
- Cada reação de apoio

A segunda contém:

■ Cada relação angular (seno e cosseno) para X e Y de cada nó

Treliça de 3 (três) barras

Utilizaremos esta treliça de exemplo

Treliça de 3 (três) barras

	Barra (A)(C)	Barra (C)(B)	Barra (B)(A)	RA_Y	RA_X	RB_Y
A_X	Cosseno(Ângulo)	0	Cosseno(Ângulo)	RAY_AX	RAX_AX	RBY_AX
A_Y	Seno(Ângulo)	0	Seno(Ângulo)	RAY_AY	RAX_AY	RBY_AY
C_X	Cosseno(Ângulo)	Cosseno(Ângulo)	0	RAY_CX	RAX_XX	RBY_XX
C_Y	Seno(Ângulo)	Seno(Ângulo)	0	RAY_CY	RAX_CY	RBY_CY
B_X	0	Cosseno(Ângulo)	Cosseno(Ângulo)	RAY_BX	RAX_BX	RBY_BX
B_Y	0	Seno(Ângulo)	Seno(Ângulo)	RAY_BY	RAX_BY	RBY_BY

Barra (A)(C) Barra (C)(B) Barra (B)(A) RA_Y RA_X RB_Y A_X 0,242536 0 1 0 A_Y 0,970143 0 0 0 0 C_X -0,24254 0,707107 0 0 C_Y 0 0 -0,97014 0 0 -0,70711 0 0 0 B_X 0 -0,70711 -1 B_Y 0 0 0 0 1 0,707107

A segunda etapa está em encontrar a matriz inversa da matriz que acabamos de calcular. Para isso calculamos o determinante matriz atual e utilizamos o método de Eliminação de Gauss-Jordan.

	Barra (A)(C)	Barra (C)(B)	Barra (B)(A)	RA_Y	RA_X	RB_Y
A_X	0,242536	0	1	0	1	0
A_Y	0,970143	0	0	1	0	0
C_X	-0,24254	0,707107	0	0	0	0
C_Y	-0,97014	-0,70711	0	0	0	0
B_X	0	-0,70711	-1	0	0	0
B_Y	0	0,707107	0	0	0	1

	Barra (A)(C)	Barra (C)(B)	Barra (B)(A)	RA_Y	RA_X	RB_Y
A_X	0,242536	0	1	0	1	0
A_Y	0,970143	0	0	1	0	0
c_x	-0,24254	0,707107	0	0	0	0
C_Y	-0,97014	-0,70711	0	0	0	0
B_X	0	-0,70711	-1	0	0	0
B_Y	0	0,707107	0	0	0	1

$$x(\frac{0,970143}{0,242536}) \approx 4$$

■ Nessa etapa tornamos 0 (zero) todos os valores abaixo dos pivôs (marcados em verde). Subtraindo cada valor daquele na mesma coluna, mas na linha do pivô, e multiplicado pelo pivô dividido pelo valor em sua respectiva coluna.

	Barra (A)(C)	Barra (C)(B)	Barra (B)(A)	RA_Y	RA_X	RB_Y
A_X	0,242536	0	1	0	1	0
A_Y	0	0	-4	1	-4	0
C_X	-0,24254	0,707107	0	0	0	0
C_Y	-0,97014	-0,70711	0	0	0	0
B_X	0	-0,70711	-1	0	0	0
B_Y	0	0,707107	0	0	0	1

$$x(\frac{-0,24254}{0,242536}) \approx 1$$

	Barra (A)(C)	Barra (C)(B)	Barra (B)(A)	RA_Y	RA_X	RB_Y
A_X	0,242536	0	1	0	1	0
A_Y	0	0	-4	1	-4	0
C_X	0	0,707107	1	0	1	0
C_Y	-0,97014	-0,70711	0	0	0	0
B_X	0	-0,70711	-1	0	0	0
B_Y	0	0,707107	0	0	0	1

$$x(\frac{-0.97014}{0.242536}) \approx -4$$

	Barra (A)(C)	Barra (C)(B)	Barra (B)(A)	RA_Y	RA_X	RB_Y
A_X	0,242536	0	1	0	1	0
A_Y	0	0	-4	1	-4	0
C_X	0	0,707107	1	0	1	0
C_Y	0	-0,70711	4	0	4	0
B_X	0	-0,70711	-1	0	0	0
B_Y	0	0,707107	0	0	0	1

■ Com todos os números abaixo do pivô sendo zero, podemos seguir para o próximo pivô e repetir o processo.

	Barra (A)(C)	Barra (C)(B)	Barra (B)(A)	RA_Y	RA_X	RB_Y	
A_X	0,242536	0	1	0	1	0	
A_Y	0	0	-4	1	-4	0	
C_X	0	0,707107	1	0	1	0	
C_Y	0	-0,70711	4	0	4	0	
B_X	0	-0,70711	-1	0	0	0	
B_Y	0	0,707107	0	0	0	1	

■ Um pivô não pode ser zero (porque não pode ser usado na divisão) então vamos substituir a linha do pivô pela próxima linha abaixo em que o valor na mesma coluna não seja zero. Multiplicando esta segunda por -1 (um negativo).

	Barra (A)(C)	Barra (C)(B)	Barra (B)(A)	RA_Y	RA_X	RB_Y
A_X	0,242536	0	1	0	1	0
A_Y	0	-0,707107	-1	0	-1	0
C_X	0	0	-4	1	-4	0
C_Y	0	-0,70711	4	0	4	0
B_X	0	-0,70711	-1	0	0	0
B_Y	0	0,707107	0	0	0	1

■ Um pivô não pode ser zero (porque não pode ser usado na divisão) então vamos substituir a linha do pivô pela próxima linha abaixo em que o valor na mesma coluna não seja zero.

	Barra (A)(C)	Barra (C)(B)	Barra (B)(A)	RA_Y	RA_X	RB_Y
A_X	0,242536	0	1	0	1	0
A_Y	0	-0,707107	-1	0	-1	0
C_X	0	0	-4	1	-4	0
C_Y	0	-0,70711	4	0	4	0
B_X	0	-0,70711	-1	0	0	0
B_Y	0	0,707107	0	0	0	1

■ Repetimos o processo com todos os pivôs até todos os valores abaixo deles serem iguais a zero.

	Barra (A)(C)	Barra (C)(B)	Barra (B)(A)	RA_Y	RA_X	RB_Y	
A_X	0,242536	0	1	0	1	0	
A_Y	0	-0,707107	-1	0	-1	0	
C_X	0	0	-4	1	-4	0	
C_Y	0	0	0	1,25	0	0	+
B_X	0	0	0	0	1	0	4/
B_Y	0	0	0	0	0	1	4

- Terminando o processo, encontramos o produto de todos os pivôs. Este valor será o determinante da matriz.
- (+0,24)*(+0,70)*(-4,00)*(+1,25)*(+1,00)*(+1,00) = 0.8574

A segunda etapa está em encontrar a matriz inversa da matriz que acabamos de calcular. Para isso calculamos o determinante matriz atual e utilizamos o método de Eliminação de Gauss-Jordan.

	Barra (A)(C)	Barra (C)(B)	Barra (B)(A)	RA_Y	RA_X	RB_Y
A_X	0,242536	0	1	0	1	0
A_Y	0	-0,707107	-1	0	-1	0
C_X	0	0	-4	1	-4	0
C_Y	0	0	0	1,25	0	0
B_X	0	0	0	0	1	0
B_Y	0	0	0	0	0	1

Para calcular a matriz inversa, iremos tomar como pivô cada valor de cada linha e coluna; então montamos uma nova matriz igual a original, mas excluindo a linha e coluna do pivô para calcular o determinante desta nova matriz.

	Barra (A)(C)	Barra (C)(B)	Barra (B)(A)	RA_Y	RA_X	RB_Y
A_X	0,242536	0	1	0	1	0
A_Y	0,970143	0	0	1	0	0
C_X	-0,24254	0,707107	0	0	0	0
C_Y	-0,97014	-0,70711	0	0	0	0
B_X	0	-0,70711	-1	0	0	0
B_Y	0	0,707107	0	0	0	1

	Barra (A)(C)	Barra (C)(B)	Barra (B)(A)	RA_Y	RA_X	RB_Y
A_X	0,242536	0	1	0	1	0
A_Y	0,970143	0	0	1	0	0
C_X	-0,24254	0,707107	0	0	0	0
C_Y	-0,97014	-0,70711	0	0	0	0
B_X	0	-0,70711	-1	0	0	0
B_Y	0	0,707107	0	0	0	1

0	0	1	0	0
0,707107	0	0	0	0
-0,70711	0	0	0	0
-0,70711	-1	0	0	0
0,707107	0	0	0	1

	Barra (A)(C)	Barra (C)(B)	Barra (B)(A)	RA_Y	RA_X	RB_Y
A_X	0,242536	<u>0</u>	1	0	1	0
A_Y	0,970143	0	0	1	0	0
C_X	-0,24254	0,707107	0	0	0	0
C_Y	-0,97014	-0,70711	0	0	0	0
B_X	0	-0,70711	-1	0	0	0
B_Y	0	0,707107	0	0	0	1

0,970143	0	1	0	0
-0,24254	0	0	0	0
-0,97014	0	0	0	0
0	-1	0	0	0
0	0	0	0	1

	Barra (A)(C)	Barra (C)(B)	Barra (B)(A)	RA_Y	RA_X	RB_Y
A_X	0,242536	0	<u>1</u>	0	1	0
A_Y	0,970143	0	0	1	0	0
C_X	-0,24254	0,707107	0	0	0	0
C_Y	-0,97014	-0,70711	0	0	0	0
B_X	0	-0,70711	-1	0	0	0
B_Y	0	0,707107	0	0	0	1

0,970143	0	1	0	0
-0,24254	0,707107	0	0	0
-0,97014	-0,70711	0	0	0
0	-0,70711	0	0	0
0	0,707107	0	0	1

	Barra (A)(C)	Barra (C)(B)	Barra (B)(A)	RA_Y	RA_X	RB_Y
A_X	0,242536	0	<u>1</u>	0	1	0
A_Y	0,970143	0	0	1	0	0
C_X	-0,24254	0,707107	0	0	0	0
C_Y	-0,97014	-0,70711	0	0	0	0
B_X	0	-0,70711	-1	0	0	0
B_Y	0	0,707107	0	0	0	1

0,970143	0	0	0	0
-0,24254	0,707107	0	0	0
-0,97014	-0,70711	0	0	0
0	-0,70711	-1	0	0
0	0,707107	0	0	1

	Barra (A)(C)	Barra (C)(B)	Barra (B)(A)	RA_Y	RA_X	RB_Y
A_X	0,242536	0	<u>1</u>	0	1	0
A_Y	0,970143	0	0	1	0	0
C_X	-0,24254	0,707107	0	0	0	0
C_Y	-0,97014	-0,70711	0	0	0	0
B_X	0	-0,70711	-1	0	0	0
B_Y	0	0,707107	0	0	0	1

0,970143	0	0	1	0
-0,24254	0,707107	0	0	0
-0,97014	-0,70711	0	0	0
0	-0,70711	-1	0	0
0	0,707107	0	0	1

	Barra (A)(C)	Barra (C)(B)	Barra (B)(A)	RA_Y	RA_X	RB_Y
A_X	0,242536	0	<u>1</u>	0	1	0
A_Y	0,970143	0	0	1	0	0
C_X	-0,24254	0,707107	0	0	0	0
C_Y	-0,97014	-0,70711	0	0	0	0
B_X	0	-0,70711	-1	0	0	0
B_Y	0	0,707107	0	0	0	1

0,970143	0	0	1	0
-0,24254	0,707107	0	0	0
-0,97014	-0,70711	0	0	0
0	-0,70711	-1	0	0
0	0,707107	0	0	0

Montamos então uma matriz utilizando os determinantes calculados, cada determinante assumindo o lugar do pivô que foi usado para excluir linha e coluna. Invertemos o sinal de alguns e transpomos a matriz (linhas viram colunas e vice-versa).

	Barra (A)(C)	Barra (C)(B)	Barra (B)(A)	RA_Y	RA_X	RB_Y
A_X	0	0	-0,6803	-0,6803	0	0
A_Y	0	0	0,9334	-0,2333	0	0
C_X	0	0	-0,66	0,165	-0,825	0
C_Y	0	0,825	0,66	0,66	0	0
B_X	0,825	0	0,825	0	0,825	0
B_Y	0	0	-0,66	0,165	0	0,825

■ O sinal de um valor que tenha a soma de suas posições como um número ímpar, deve ter seu sinal invertido. Um número na Linha 1 (um) e Coluna 2 (dois) teria soma ímpar 3 (três). Então seu sinal é invertido.

Terminamos de achar a matriz invertida ao dividir cada valor pela determinante da matriz original (encontrada no início da inversão).

	Barra (A)(C)	Barra (C)(B)	Barra (B)(A)	RA_Y	RA_X	RB_Y
A_X	0	0	-0,82462	-0,82462	0	0
A_Y	0	0	1,131371	-0,28284	0	0
C_X	0	0	-0,8	0,2	-1	0
C_Y	0	1	0,8	0,8	0	0
B_X	1	0	1	0	1	0
B_Y	0	0	-0,8	0,2	0	1

Na etapa seguinte, multiplicamos a matriz inversa por um nova matriz contendo as forças atuantes no eixo de seu respectivo nó; invertendo seu sinal.

	Barra (A)(C)	Barra (C)(B)	Barra (B)(A)	RA_Y	RA_X	RB_Y
A_X	0	0	-0,82462	-0,82462	0	0
A_Y	0	0	1,131371	-0,28284	0	0
C_X	0	0	-0,8	0,2	-1	0
C_Y	0	1	0,8	0,8	0	0
B_X	1	0	1	0	1	0
B_Y	0	0	-0,8	0,2	0	1

F
0
0
-30
50
0
0

Por fim, encontramos as forças aplicada em cada membro da treliça e as forças de reação.

	F
Barra (A)(C)	-16,4924
Barra (C)(B)	-48,0833
Barra (B)(A)	34
RA_Y	16
RA_X	-30
RB_Y	34

- Forças positivas em barras significa tração.
- Forças negativas em barras significa compressão.
- Forças de reação positivas significam que a força está direcionada para (cima/direita).
- Forças de reação negativas significam que a força está direcionada para (baixo/esquerda).