The Hong Kong University of Science & Technology MATH3423 - Statistical Inference Final Examination - Fall 2014/2015

Answer <u>ALL</u> Questions Date: 12 December 2014

Full marks: 80 + 10 for Bonus Time Allowed: 3 hours

- DO NOT open the exam paper until instructed to do so.
- It is a closed-book examination.
- Five questions are included in this paper.
- Give detailed explanation how to obtain the final answer. NO mark will be given if only the final answer is written down.
- Unless specified, numerical answers should be EITHER exact OR corrected to 6 decimal places.
- You may write on the both sides of the examination booklet.
- Cheating is a serious offense. Students caught cheating are subject to a zero score as well as additional penalties.

Name :		
Student Nu	mber : _	
Signature :		

For marking use only:

Question No.	Marks	Out of
		20
1		20
2		20
2		20
3		20
4		20
5		10

- 1. Let $X_1, ..., X_n$ be a random sample from the Bernoulli(θ), where θ is the unknown parameter.
 - (a) (2 marks) Find the complete and sufficient statistic for θ . Find its distribution.

Answer

$$f_X(x;\theta) = \theta^x (1-\theta)^{1-x}$$

$$= \exp\{x \log \theta + (1-x) \log \theta\}$$

$$= \exp\left\{\log(1-\theta) + x \log \frac{\theta}{1-\theta}\right\}$$

$$\therefore a(\theta) = \log(1-\theta), b(X) = 0, c(\theta) = \log(\frac{\theta}{1-\theta}), d(X) = X,$$

 \therefore Bin(1, θ) belongs to the exponential family and $\sum_{i=1}^{n} d(X_i) = \sum_{i=1}^{n} X_i$ is complete and sufficient for θ .

$$E(e^{t\sum X_i}) = \prod_{i=1}^n E(e^{tX_i})$$
$$= \prod_{i=1}^n (1 - \theta + \theta e^t)$$
$$= (1 - \theta + \theta e^t)^n$$

 $\Rightarrow \sum_{i=1}^{n} X_i \sim \text{Bin}(n\theta).$

(b) (3 marks) Find the UMVUE for θ^2 .

$$E((\sum_{i=1}^{n} X_{i})^{2}) = Var(\sum_{i=1}^{n} X_{i}) + (E(\sum_{i=1}^{n} X_{i}))^{2}$$

$$= n\theta(1-\theta) + n^{2}\theta^{2}$$

$$= n\theta + n(n-1)\theta^{2}$$

$$= nE(\frac{\sum_{i=1}^{n} X_{i}}{n}) + n(n-1)\theta^{2}$$

$$\Rightarrow E\left(\frac{(\sum_{i=1}^{n} X_{i})^{2} - (\sum_{i=1}^{n} X_{i})}{n(n-1)}\right) = \theta^{2}$$

(c) (3 marks) Find the CRLB for θ^2 . Is the variance of the UMVUE for θ^2 equal to its CRLB? Explain in details.

Answer

$$\log f(X;\theta) = X \log \theta + (1-X) \log(1-\theta)$$

$$\frac{\partial}{\partial \theta} \log f(X;\theta) = \frac{X}{\theta} - \frac{1-X}{1-\theta}$$

$$\frac{\partial^2}{\partial \theta^2} \log f(X;\theta) = \frac{-X}{\theta^2} - \frac{1-X}{(1-\theta)^2}$$

$$E\left[\frac{\partial^2}{\partial \theta^2} \log f(X;\theta)\right] = E\left[\frac{-X}{\theta^2} - \frac{1-X}{(1-\theta)^2}\right]$$

$$= -\frac{1}{\theta^2} E[X] - \frac{1}{(1-\theta)^2} E[1-X]$$

$$= -\frac{1}{\theta^2} \theta - \frac{1}{(1-\theta)^2} (1-\theta)$$

$$= -\frac{1}{\theta(1-\theta)}$$

$$\Rightarrow \text{The CRLB} = \frac{(2\theta)^2}{-nE\left[\frac{\partial^2}{\partial \theta^2} \log f(X;\theta)\right]} = \frac{4\theta^3 (1-\theta)}{n}$$

$$\frac{\partial}{\partial \theta} \sum_{i=1}^n \log f(x) = \frac{(1-\theta) \sum_{i=1}^n x_i - (n-\sum_{i=1}^n x_i)\theta}{(1-\theta)\theta}$$

$$= \frac{n}{\theta(1-\theta)} (\bar{x} - \theta)$$

Hence, CRLB for θ^2 cannot be achieved.

(d) (2 marks) Find the limiting distribution of the maximum likelihood estimator for θ^2 as $n \to \infty$ by Delta method. What phenomenon do you observe?

Answer

$$\hat{\theta} = \bar{x} \ \Rightarrow \ \widehat{\theta^2} = \bar{X}^2$$

As $n \to \infty$,

$$\bar{X} \to N\left(\theta, \frac{\theta(1-\theta)}{n}\right)$$

$$\Rightarrow \sqrt{n}\left(\frac{1}{n}\sum_{i=1}^{n}X_{i} - \theta\right) \to N\left(0, \frac{\theta(1-\theta)}{n}\right)$$

$$\bar{X}^{2} \to N\left(\theta^{2}, \frac{4\theta^{3}(1-\theta)}{n}\right)$$

$$\Rightarrow \sqrt{n}\left(\bar{X}^{2} - \theta^{2}\right) \to N\left(0, \frac{4\theta^{3}(1-\theta)}{n}\right)$$

As $n \to \infty$, the maximum likelihood estimator of θ^2 is unbiased, normally distributed and fully efficiency, i.e., its variance is equal to C-R lower bound.

(e) (5 marks) Find the UMVUE of $P(X_1 + X_2 + X_3 = 1)$.

Answer

$$P(X_1 + X_2 + X_3 = 1) = {3 \choose 1} \theta (1 - \theta)^2 = 3\theta (1 - \theta)^2$$

$$E(h(y)) = 3\theta (1 - \theta)^2$$

$$\Rightarrow \sum_{y=0}^{n} h(y) {n \choose y} \theta^y (1 - \theta)^{n-y} = 3\theta (1 - \theta)^2$$

$$\Rightarrow \sum_{y=0}^{n} h(y) {n \choose y} \frac{1}{3} \theta^{y-1} (1 - \theta)^{n-2-y} = 1$$

Set h(y) = 0 for y = 0, n, n - 1.

$$\Rightarrow \sum_{y=1}^{n-2} h(y) \binom{n}{y} \frac{1}{3} \theta^{y-1} (1-\theta)^{n-2-y} = 1$$

Let x = y - 1

$$\Rightarrow \sum_{x=0}^{n-3} h(x+1) \binom{n}{x+1} \frac{1}{3} \theta^{x} (1-\theta)^{n-3-x} = 1$$

$$\Rightarrow \sum_{x=0}^{n-3} h(x+1) \frac{\binom{n}{x+1}}{\binom{n-3}{x}} \frac{1}{3} \binom{n-3}{x} \theta^{x} (1-\theta)^{n-3-x} = 1$$

$$\Rightarrow h(x+1) = \frac{3\binom{n-3}{x}}{\binom{n}{x+1}}$$

$$\Rightarrow h(y) = \begin{cases} \frac{3\binom{n-3}{y-1}}{\binom{n}{y}} & \text{for } y = 1, 2, \dots, n-2 \\ 0 & \text{for } y = 0, n, n-1 \end{cases}$$

(f) (5 marks) Find the maximum likelihood estimator for the variance of $\sum X_i$, i.e., $n\theta(1-\theta)$. Is it unbiased? Hence or otherwise, find the UMVUE for the variance of $\sum X_i$.

Answer

The maximum likelihood estimator for the variance of $\sum X_i$ is $n\bar{X}(1-\bar{X})$.

$$E(n\bar{X}(1-\bar{X})) = E(\sum_{i=1}^{n} X_{i}(1-\bar{X}))$$

$$= \frac{1}{n}E(\sum_{i=1}^{n} X_{i}(n-\sum_{i=1}^{n} X_{i}))$$

$$= \frac{1}{n}E(Y(n-Y)) \text{ where } Y = \sum_{i=1}^{n} X_{i}$$

$$= \frac{1}{n}[E(nY) - E(Y^{2})]$$

$$= \frac{1}{n}[nE(Y) - Var(Y) - [E(Y)]^{2}]$$

$$= \frac{1}{n}[n \cdot n\theta - n\theta(1-\theta) - n^{2}\theta^{2}]$$

$$= \frac{1}{n}[n^{2}\theta + n\theta^{2} - n\theta - n^{2}\theta^{2}]$$

$$= \frac{1}{n}[n^{2}\theta + n\theta^{2} - n\theta - n^{2}\theta^{2}]$$

$$= \theta(n-1) - \theta^{2}(n-1)$$

$$= (n-1)\theta(1-\theta)$$

$$\therefore E[\frac{n^{2}}{n-1}\bar{X}(1-\bar{X})] = n\theta(1-\theta)$$

Since $\frac{n^2}{n-1}\bar{X}(1-\bar{X})$ is function of complete sufficient statistic $\sum_{i=1}^n X_i$, it is the UMVUE for $n\theta(1-\theta)$.

2. Let $X_1, ..., X_n$ be a r.s. from the continuous uniform distribution in the interval $(\theta, 2\theta), \theta \in (0, \infty)$.

Hint:

$$f(y_1, y_n) = n(n-1)(y_n - y_1)^{n-2}/\theta^n$$
 $\theta \le y_1 \le y_n \le 2\theta$

and

$$Cov(Y_1, Y_n) = \frac{\theta^2}{(n+1)^2(n+2)}$$
.

(a) (3 marks) Find the method of moments estimator, $\tilde{\theta}$, for θ . Is it unbiased? Hence or otherwise, find an unbiased estimator of θ as a function of $\tilde{\theta}$. What is its corresponding variance?

Answer

$$f_X(x) = \frac{1}{2\theta - \theta} = \frac{1}{\theta}$$

and

$$F_X(x) = \int_{\theta}^{x} \frac{1}{\theta} dt = \left[\frac{t}{\theta}\right]_{\theta}^{x} = \frac{x}{\theta} - 1 = \frac{1}{\theta}(x - \theta)$$

Method of moments estimator for θ :

$$\widetilde{E(X)} = \frac{1}{n} \sum_{i=1}^{n} X_{i}$$

$$\Rightarrow \frac{3\tilde{\theta}}{2} = \bar{X}$$

$$\Rightarrow \tilde{\theta} = \frac{2\bar{X}}{3}$$

$$E(\tilde{\theta}) = \theta \Rightarrow \text{Unbiased}$$

$$Var(\tilde{\theta}) = \frac{\theta^2}{27n}$$

(b) (3 marks) Find $E(Y_1)$, where $Y_1 = \min(X_1, \dots, X_n)$. Hence or otherwise, find an unbiased estimator of θ as a function of Y_1 .

$$f_{Y_1}(y_1) = \frac{n!}{(1-1)!(n-1)!} [F_X(y_1)]^{1-1} [1 - F_X(y_1)]^{n-1} f_X(y_1)$$

$$= n \left(1 - \frac{1}{\theta}(y_1 - \theta)\right)^{n-1} \frac{1}{\theta}$$

$$= \frac{n}{\theta} \left[2 - \frac{y_1}{\theta}\right]^{n-1} \qquad \theta < y_1 < 2\theta$$

$$\Rightarrow E(Y_1) = \int_{\theta}^{2\theta} y_1 f_{Y_1}(y_1) dy_1$$

$$= \frac{n}{\theta} \int_{\theta}^{2\theta} y_1 \left(2 - \frac{y_1}{\theta}\right)^{n-1} dy_1$$

$$= \frac{n}{\theta^n} \int_{\theta}^{2\theta} y_1 (2\theta - y_1)^{n-1} dy_1$$

$$= \frac{n}{\theta^n} \int_{\theta}^{0} -(2\theta - z) z^{n-1} dz, \qquad \text{let } z = 2\theta - y_1, dz = -dy_1$$

$$= \frac{n}{\theta^n} \int_{0}^{\theta} (-z^n + 2\theta z^{n-1}) dz$$

$$= \frac{n}{\theta^n} \left[\frac{-1}{n+1} z^{n+1} + \frac{2\theta}{n} z^n \right]_{0}^{\theta}$$

$$= \frac{n}{\theta^n} \left[\frac{-\theta^{n+1}}{n+1} + \frac{2\theta^{n+1}}{n} \right]$$

$$= \frac{-n\theta}{n+1} + 2\theta$$

$$= \frac{n+2}{n+1} \theta$$

$$\Rightarrow U_a = \frac{n+1}{n+2} Y_1$$

(c) (2 marks) Find $E(Y_n)$, where $Y_n = \max(X_1, \dots, X_n)$. Hence or otherwise, find an unbiased estimator of θ as a function of Y_n .

$$f_{Y_n}(y_n) = \frac{n!}{(n-1)!(n-n)!} [F_X(y_n)]^{n-1} [1 - F_X(y_n)]^{n-n} f_X(y_n)$$

$$= n \left(1 - \frac{1}{\theta}(y_n - \theta)\right)^{n-1} \frac{1}{\theta}$$

$$= \frac{n}{\theta} \left[\frac{y_n}{\theta} - 1\right]^{n-1} \qquad \theta < y_n < 2\theta$$

$$E(Y_n) = \int_{\theta}^{2\theta} y_n f_{Y_n}(y_n) dy_n$$

$$= \frac{n}{\theta} \int_{\theta}^{2\theta} y_n \left(\frac{y_n}{\theta} - 1\right)^{n-1} dy_n$$

$$= \frac{n}{\theta^n} \int_{\theta}^{2\theta} y_n (y_n - \theta)^{n-1} dy_n$$

$$= \frac{n}{\theta^n} \int_{0}^{\theta} (z + \theta) z^{n-1} dz, \qquad \text{let } z = y_n - \theta, dz = dy_n$$

$$= \frac{n}{\theta^n} \int_{0}^{\theta} (z^n + \theta z^{n-1}) dz$$

$$= \frac{n}{\theta^n} \left[\frac{1}{n+1} z^{n+1} + \frac{\theta}{n} z^n \right]_{0}^{\theta}$$

$$= \frac{n}{\theta^n} \left[\frac{\theta^{n+1}}{n+1} + \frac{\theta^{n+1}}{n} \right]$$

$$= \frac{n\theta}{n+1} + \theta$$

$$= \frac{2n+1}{n+1} \theta$$

$$\Rightarrow U_b = \frac{n+1}{2n+1} Y_n$$

(d) (9 marks) Define the unbiased estimators of θ in parts (b) and (c) as U_a and U_b , respectively. Find a constant k so that the unbiased estimator, $kU_a + (1-k)U_b$, has the smallest variance. What is the variance of this unbiased estimator?

$$E(Y_1^2) = \int_{\theta}^{2\theta} y_1^2 f_{Y_1}(y_1) dy_1$$

$$= \frac{n}{\theta} \int_{\theta}^{2\theta} y_1^2 \left(2 - \frac{y_1}{\theta}\right)^{n-1} dy_1$$

$$= \frac{n}{\theta^n} \int_{\theta}^{2\theta} y_1^2 (2\theta - y_1)^{n-1} dy_1$$

$$= \frac{n}{\theta^n} \int_{\theta}^{0} -(2\theta - z)^2 z^{n-1} dz, \qquad \text{let } z = 2\theta - y_1, dz = -dy_1$$

$$= \frac{n}{\theta^n} \int_{0}^{\theta} (z^{n+1} - 4\theta z^n + 4\theta^2 z^{n-1}) dz$$

$$= \frac{n}{\theta^n} \left[\frac{1}{n+2} z^{n+2} - \frac{4\theta}{n+1} z^{n+1} + \frac{4\theta^2}{n} z^n \right]_{0}^{\theta}$$

$$= \frac{n}{\theta^n} \left[\frac{\theta^{n+2}}{n+2} - \frac{4\theta^{n+2}}{n+1} + \frac{4\theta^{n+2}}{n} \right]$$

$$= \left[\frac{n}{n+2} - \frac{4n}{n+1} + 4 \right] \theta^2$$

$$Var(Y_1) = E(Y_1^2) - [E(Y_1)]^2$$

$$= \left(\frac{n}{n+2} - \frac{4n}{n+1} + 4\right) \theta^2 + \left[\left(\frac{n+2}{n+1}\right) \theta\right]^2$$

$$= \left(\frac{n}{n+2} - \frac{4n}{n+1} + 4 - \left(1 + \frac{1}{n+1}\right)^2\right) \theta^2$$

$$= \left(\frac{n}{n+2} - \frac{4n}{n+1} + 4 - 1 - \frac{2}{n+1} - \frac{1}{(n+1)^2}\right) \theta^2$$

$$= \left(\frac{n}{n+2} - \frac{4n}{n+1} + 3 - \frac{1}{(n+1)^2}\right) \theta^2$$

$$= \frac{n\theta^2}{(n+1)^2(n+2)}$$

$$E(Y_n^2) = \int_{\theta}^{2\theta} y_n^2 f_{Y_n}(y_n) \, dy_n$$

$$= \frac{n}{\theta} \int_{\theta}^{2\theta} y_n^2 \left(\frac{y_n}{\theta} - 1\right)^{n-1} \, dy_n$$

$$= \frac{n}{\theta^n} \int_{\theta}^{2\theta} y_n^2 (y_n - \theta)^{n-1} \, dy_n$$

$$= \frac{n}{\theta^n} \int_{0}^{\theta} (z + \theta)^2 z^{n-1} \, dz, \qquad \text{let } z = y_n - \theta, dz = dy_n$$

$$= \frac{n}{\theta^n} \int_{0}^{\theta} (z^{n+1} + 2\theta z^n + \theta^2 z^{n-1}) \, dz$$

$$= \frac{n}{\theta^n} \left[\frac{1}{n+2} z^{n+2} + \frac{2\theta}{n+1} z^{n+1} + \frac{\theta^2}{n} z^n \right]_{0}^{\theta}$$

$$= \left[\frac{n}{n+2} + \frac{2n}{n+1} + 1 \right] \theta^2$$

$$Var(Y_n) = E(Y_n^2) - [E(Y_n)]^2$$

$$= \left(\frac{n}{n+2} + \frac{2n}{n+1} + 1\right)\theta^2 - \left(\frac{2n+1}{n+1}\theta\right)^2$$

$$= \left(\frac{n}{n+2} + \frac{2n}{n+1} + 1 - \left(2 - \frac{1}{n+1}\right)^2\right)\theta^2$$

$$= \left(\frac{n}{n+2} + \frac{2n}{n+1} + 1 - 4 + \frac{4}{n+1} - \frac{1}{(n+1)^2}\right)\theta^2$$

$$= \left(\frac{n}{n+2} + \frac{2n+4}{n+1} - 3 - \frac{1}{(n+1)^2}\right)\theta^2$$

$$= \frac{n\theta^2}{(n+1)^2(n+2)}$$

$$Cov(Y_1, Y_n) = \frac{\theta^2}{(n+1)^2(n+2)}$$

$$\Rightarrow Var(U_a) = \left(\frac{n+1}{n+2}\right)^2 Var(Y_1)$$

$$= \left(\frac{n+1}{n+2}\right)^2 \cdot \frac{n\theta^2}{(n+1)^2(n+2)}$$

$$Var(U_b) = \left(\frac{n+1}{2n+1}\right)^2 Var(Y_n)$$

$$= \left(\frac{n+1}{2n+1}\right)^2 \cdot \frac{n\theta^2}{(n+1)^2(n+2)}$$

$$Cov(U_a, U_b) = \frac{(n+1)^2}{(n+2)(2n+1)} Cov(Y_1, Y_n)$$

$$= \frac{(n+1)^2}{(n+2)(2n+1)} \cdot \frac{\theta^2}{(n+1)^2(n+2)}$$

Thus,

$$k^{2}Var(U_{a}) + (1-k)^{2}Var(U_{b}) + 2k(1-k)Cov(U_{a}, U_{b})$$

$$= \left\{ \frac{k^{2}n}{(n+2)^{2}} + \frac{(1-k)^{2}n}{(2n+1)^{2}} + \frac{2k(1-k)}{(n+2)(2n+1)} \right\} \cdot \frac{(n+1)^{2}\theta^{2}}{(n+1)^{2}(n+2)}$$

$$\Rightarrow \frac{kn}{(n+2)^{2}} - \frac{(1-k)n}{(2n+1)^{2}} + \frac{1-2k}{(n+2)(2n+1)} = 0$$

$$\Rightarrow k = \frac{n+2}{5n+4}$$

Therefore, the unbiased estimator has the smallest variance is

$$kU_a + (1-k)U_b = \frac{n+2}{5n+4}U_a + \frac{2(2n+1)}{5n+4}U_b$$

$$= \frac{n+1}{5n+4}Y_1 + \frac{2(n+1)}{5n+4}Y_n$$

$$= \frac{n+1}{5n+4}(Y_1 + 2Y_n)$$

$$\Rightarrow Var\left(\frac{n+1}{5n+4}(Y_1 + 2Y_n)\right) = \frac{\theta^2}{(5n+4)(n+2)}$$

(e) (3 marks) Does the UMVUE for θ exist? If yes, find it; if no, explain in details.

Answer

No. UMVUE for θ doesn't exist.

$$E\left(\frac{n+1}{n+2}Y_1\right) = \theta \& E\left(\frac{n+1}{2n+1}Y_n\right) = \theta$$

$$\Rightarrow E\left(\frac{n+1}{n+2}Y_1 - \frac{n+1}{2n+1}Y_n\right) = 0$$
But
$$\frac{n+1}{n+2}Y_1 - \frac{n+1}{2n+1}Y_n \neq 0$$

Therefore, (Y_1, Y_n) is not complete.

3. Individuals were classified according to gender and according to whether or not they were color-blind as follows:

	Male	Female
Normal	x_{11}	x_{12}
Color-blind	x_{21}	x_{22}

Let $X = (X_{11}, X_{12}, X_{21}, X_{22}) \sim \text{multinomial } (n, P_{11}, P_{12}, P_{21}, P_{22}).$

- (a) Test the hypothesis $H_0: P_{11} = \frac{p}{2}, P_{12} = \frac{p^2}{2} + pq, P_{21} = \frac{q}{2}, P_{22} = \frac{q^2}{2}$, where q = 1 p, against $H_1: (P_{11}, P_{12}, P_{21}, P_{22})$ takes any other value in $[0, 1]^4$ at the level of significance α .
 - i. (4 marks) Find the likelihood ratio statistic and then derive the approximate large sample likelihood ratio test.

Answer

The likelihood function is $L(P_{11}, P_{12}, P_{21}, P_{22}) = \text{constant} \cdot \prod_{i=1}^{2} \prod_{j=1}^{2} P_{ij}^{x_{ij}}$

Under H_0 ,

$$L_o = \text{constant} \times \left(\frac{p}{2}\right)^{x_{11}} \left(\frac{p^2}{2} + pq\right)^{x_{12}} \left(\frac{q}{2}\right)^{x_{21}} \left(\frac{q^2}{2}\right)^{x_{22}}$$
$$= \text{constant} \times p^{x_{11}} (p^2 + 2pq)^{x_{12}} q^{x_{21}} q^{2x_{22}}$$

$$\ln(L_o) = \text{constant} \times x_{11} \ln(p) + x_{12} \ln(p^2 + 2p(1-p)) + (x_{21} + 2 x_{22}) \ln(1-p)$$

= \text{constant} \times (x_{11} + x_{12}) \ln(p) + x_{12} \ln(2-p) + (x_{21} + 2 x_{22}) \ln(1-p)

$$\frac{\partial \ln(L_o)}{\partial p} = \frac{x_{11} + x_{12}}{p} - \frac{x_{12}}{2 - p} - \frac{x_{21} + 2x_{22}}{1 - p} = 0$$

$$\Rightarrow (x_{11} + 2x_{12} + x_{21} + 2x_{22})p^2 - (3x_{11} + 2x_{21} + 4(x_{12} + x_{22}))p + 2(x_{11} + x_{12}) = 0$$

Let
$$x_1 = x_{11} + x_{12}$$
, $x_2 = x_{21} + 2x_{22}$

$$\Rightarrow (x_1 + x_2 + x_{12})p^2 - (3x_1 + x_{12} + 2x_2)p + 2x_1 = 0$$

$$\Rightarrow \hat{p} = \frac{(3x_1 + x_{12} + 2x_2) - \sqrt{(x_1 + x_{12} + 2x_2)^2 - 4x_1x_{12}}}{2(x_1 + x_2 + x_{12})}$$

The numerator of the likelihood ratio

$$\sup\{L(\theta, \mathbf{x}) : \theta \in \Theta_o\} = \text{constant } \times \prod_{i=1}^2 \prod_{j=1}^2 \hat{P}_{ij}^{x_{ij}}$$

where
$$\hat{P}_{11} = \frac{\hat{p}}{2}, \hat{P}_{12} = \frac{\hat{p}^2}{2} + \hat{p}(1-\hat{p}), \hat{P}_{21} = \frac{1-\hat{p}}{2}, \hat{P}_{22} = \frac{(1-\hat{p})^2}{2}$$

The denominator of the likelihood ratio involves finding the MLE for θ

$$\sup\{L(\theta, \mathbf{x}) : \theta \in \Theta\} = \text{constant} \times \prod_{i=1}^{2} \prod_{j=1}^{2} \left(\frac{x_{ij}}{n}\right)^{x_{ij}}$$

$$\Rightarrow \lambda(\mathbf{x}) = \prod_{i=1}^{2} \prod_{j=1}^{2} \left(\frac{n\hat{P}_{ij}}{x_{ij}} \right)^{x_{ij}}$$

The approximate large sample likelihood ratio test

$$C_1 = \left\{ \mathbf{x} : 2\sum_{i=1}^2 \sum_{j=1}^2 x_{ij} \log \frac{x_{ij}}{n\hat{P}_{ij}} \ge \chi_{\alpha}^2(2) \right\} \quad \text{for large} \quad n$$

ii. (2 marks) Write down the Pearson's goodness of fit test statistic and state the critical region for this test.

Answer

$$C_1 = \left\{ \mathbf{x} : G = \sum_{i=1}^{2} \sum_{j=1}^{2} \frac{(x_{ij} - n\hat{P}_{ij})^2}{n\hat{P}_{ij}} \ge \chi_{\alpha}^2(2) \right\}$$
 for large n

- (b) Suppose $x_{11} = 442, x_{12} = 514, x_{21} = 38, x_{22} = 6$. Perform the following tests at $\alpha = 0.05$. State clearly the hypothesis statements, value of test statistic, critical value and your conclusion for each test.
 - i. (6 marks) Test whether the null hypothesis $H_0: P_{11} = \frac{p}{2}, P_{12} = \frac{p^2}{2} + pq, P_{21} = \frac{q}{2}, P_{22} = \frac{q^2}{2}$ is true by the two tests derived above.

Since
$$x_1 = 442 + 514 = 956$$
, $x_2 = 38 + 2 * 6 = 50$ and $x_{12} = 514$

$$\hat{p} = \frac{(3x_1 + x_{12} + 2x_2) - \sqrt{(x_1 + x_{12} + 2x_2)^2 - 4x_1x_{12}}}{2(x_1 + x_2 + x_{12})}$$

$$= \frac{3482 - 2\sqrt{124841}}{3040}$$

$$= 0.912942$$

	Male	Female
Normal	442 (456.471)	514 (496.210)
Color-blind	38 (43.529)	6 (3.78955)

The test statistics of tests derived above

$$2\sum_{i=1}^{2} \sum_{j=1}^{2} x_{ij} \log \frac{x_{ij}}{n\hat{P}_{ij}} = 2.92128$$

$$G = \sum_{i=1}^{2} \sum_{j=1}^{2} \frac{(x_{ij} - n\hat{P}_{ij})^{2}}{n\hat{P}_{ij}} = 3.08818$$

Since both test statistics are smaller than $\chi^2_{\alpha}(2) = 5.991$, H_0 can't be rejected.

ii. (4 marks) Test the hypothesis that color blindness is independent of gender. No need to make the Yates's Correction.

Answer

	Male	Female	
Normal	442	514	956
Color-blind	38	6	44
	480	520	1000

$$G = \sum_{i=1}^{2} \sum_{j=1}^{2} \frac{(x_{ij} - \frac{a_{i}b_{j}}{n})^{2}}{\frac{a_{i}b_{j}}{n}}$$

$$= n \left(\sum_{i=1}^{2} \sum_{j=1}^{2} \frac{x_{ij}^{2}}{a_{i}b_{j}} - 1 \right)$$

$$= 27.1387 > \chi_{0}^{2}.05(1) = 3.841$$

 H_0 is rejected and conclude that color blindness and gender are not independent.

iii. (4 marks) Test whether the probabilities of color-blind individuals for male and female are equal by z test. No need to make the continuity correction.

Answer

Let P_1 and P_2 be the probabilities of color-blind individuals for male and female, respectively. Let P be the probability of color-blind individuals under H_0 .

Then
$$\hat{P}_1 = \frac{38}{442 + 38}$$
, $\hat{P}_2 = \frac{6}{514 + 6}$ and $\hat{P} = \frac{38 + 6}{442 + 514 + 38 + 6}$.

$$z = \frac{\hat{P}_1 - \hat{P}_2}{\sqrt{\hat{P}(1 - \hat{P})(\frac{1}{n_1} + \frac{1}{n_2})}}$$

$$= \frac{\frac{38}{442 + 38} - \frac{6}{514 + 6}}{\sqrt{\frac{38 + 6}{442 + 514 + 38 + 6}(1 - \frac{38 + 6}{442 + 514 + 38 + 6})(\frac{1}{480} + \frac{1}{520})}}$$

$$= 5.20949 > z_{0.025} = 1.96$$

 H_0 is rejected and conclude that the probabilities of color-blind individuals for male and female are not equal.

- 4. If X_1, X_2, \ldots, X_n are independently and normally distributed with the same unknown mean μ but different known variances $\sigma_1^2, \sigma_2^2, \ldots, \sigma_n^2$.
 - (a) (4 marks) Find the maximum likelihood estimator of μ . Hence, find its distribution.

Answer

$$f_{\mathbf{X}}(\mathbf{x}) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi}\sigma_{i}} \exp\left\{-\frac{(x_{i} - \mu)^{2}}{2\sigma_{i}^{2}}\right\}$$

$$= (2\pi)^{-n/2} \prod_{i=1}^{n} (\sigma_{i}^{2})^{-1/2} \exp\left\{-\frac{1}{2} \sum_{i=1}^{n} \frac{(x_{i} - \mu)^{2}}{\sigma_{i}^{2}}\right\}$$

$$\log L(\mu) = -\frac{n}{2} \log(2\pi) - \frac{1}{2} \sum_{i=1}^{n} \log(\sigma_{i}^{2}) - \frac{1}{2} \sum_{i=1}^{n} \frac{(x_{i} - \mu)^{2}}{\sigma_{i}^{2}}$$

$$\frac{\partial \log L(\mu)}{\partial \mu} = 0 \Rightarrow \hat{\mu} = \frac{\sum_{i=1}^{n} \frac{x_{i}}{\sigma_{i}^{2}}}{\sum_{j=1}^{n} \frac{1}{\sigma_{j}^{2}}}$$

$$X_{i} \sim N(\mu, \sigma_{i}^{2})$$

$$\frac{X_{i}}{\sigma_{i}^{2}} \sim N\left(\frac{\mu}{\sigma_{i}^{2}}, \frac{1}{\sigma_{i}^{2}}\right)$$

$$\sum_{i=1}^{n} \frac{X_{i}}{\sigma_{i}^{2}} \sim N\left(\mu \sum_{i=1}^{n} \frac{1}{\sigma_{i}^{2}}, \sum_{i=1}^{n} \frac{1}{\sigma_{i}^{2}}\right)$$

$$\hat{\mu} = \frac{\sum_{i=1}^{n} \frac{X_{i}}{\sigma_{i}^{2}}}{\sum_{j=1}^{n} \frac{1}{\sigma_{i}^{2}}} \sim N\left(\mu, \frac{1}{\sum_{j=1}^{n} \frac{1}{\sigma_{i}^{2}}}\right)$$

(b) (6 marks) Construct the UMP test for testing $H_0: \mu \leq \mu_0$ against $H_1: \mu > \mu_0$ at a significance level of α .

Answer

The MP test for testing $H_0: \mu = \mu_0$ against $H_1: \mu = \mu_1$, where $\mu_1 > \mu_0$ has the critical region

$$C_{1} = \left\{ \mathbf{x} : \frac{f_{\mathbf{X}}(\mathbf{x}, \mu_{0})}{f_{\mathbf{X}}(\mathbf{x}, \mu_{1})} \le k \right\}$$

$$\frac{f_{\mathbf{X}}(\mathbf{x}, \mu_{0})}{f_{\mathbf{X}}(\mathbf{x}, \mu_{1})} = \exp \left\{ -\frac{1}{2} \left[\sum_{i=1}^{n} \frac{(x_{i} - \mu_{0})^{2}}{\sigma_{i}^{2}} - \sum_{i=1}^{n} \frac{(x_{i} - \mu_{1})^{2}}{\sigma_{i}^{2}} \right] \right\}$$

$$= \exp \left\{ \frac{1}{2} \left[\sum_{i=1}^{n} \frac{\mu_{1}^{2} - \mu_{0}^{2} - 2x_{i}(\mu_{1} - \mu_{0})}{\sigma_{i}^{2}} \right] \right\} \le k$$

Take logarithm,

$$\frac{1}{2} \left[\sum_{i=1}^{n} \frac{\mu_1^2 - \mu_0^2 - 2x_i(\mu_1 - \mu_0)}{\sigma_i^2} \right] \leq \log k$$

$$\Rightarrow \frac{\mu_1 - \mu_0}{2} \left[\frac{n(\mu_1 + \mu_0)}{\sigma_i^2} - 2 \sum_{i=1}^{n} \frac{x_i}{\sigma_i^2} \right] \leq \log k$$

$$\Rightarrow \frac{\sum_{i=1}^{n} \frac{x_i}{\sigma_i^2}}{\sum_{j=1}^{n} \frac{1}{\sigma_j^2}} \geq K$$

$$\Rightarrow C_1 = \left\{ \mathbf{x} : \frac{\sum_{i=1}^{n} \frac{x_i}{\sigma_i^2}}{\sum_{j=1}^{n} \frac{1}{\sigma_j^2}} \geq K \right\}$$
Since
$$\frac{\sum_{i=1}^{n} \frac{X_i}{\sigma_i^2}}{\sum_{j=1}^{n} \frac{1}{\sigma_j^2}} \sim N\left(\mu, \frac{1}{\sum_{j=1}^{n} \frac{1}{\sigma_j^2}}\right)$$

$$Pr\left(\frac{\sum_{i=1}^{n} \frac{X_i}{\sigma_i^2}}{\sum_{j=1}^{n} \frac{1}{\sigma_j^2}} \geq K; \mu_0\right) = \alpha$$

$$\Rightarrow \frac{K - \mu_0}{\sqrt{\frac{1}{\sum_{j=1}^{n} \frac{1}{\sigma_j^2}}}} = z_{\alpha}$$

$$\Rightarrow K = \mu_0 + z_{\alpha} \sqrt{\frac{1}{\sum_{j=1}^{n} \frac{1}{\sigma_j^2}}}$$

$$\therefore C_1 = \left\{ \mathbf{x} : \frac{\sum_{i=1}^{n} \frac{x_i}{\sigma_i^2}}{\sum_{j=1}^{n} \frac{1}{\sigma_j^2}} \geq \mu_0 + z_{\alpha} \sqrt{\frac{1}{\sum_{j=1}^{n} \frac{1}{\sigma_j^2}}} \right\}$$

Since the critical value of C_1 doesn't depend on the value of μ under the alternative hypothesis, C_1 is the UMP test for testing $H_0: \mu = \mu_0$ against $H_1: \mu > \mu_0$.

$$\sup \left\{ Pr(\mathbf{X} \in C_{1}) : \mu \in \Theta_{0} \right\}$$

$$= \sup \left\{ Pr\left(\frac{\sum_{i=1}^{n} \frac{X_{i}}{\sigma_{i}^{2}}}{\sum_{j=1}^{n} \frac{1}{\sigma_{j}^{2}}} \ge \mu_{0} + z_{\alpha} \sqrt{\frac{1}{\sum_{j=1}^{n} \frac{1}{\sigma_{j}^{2}}}} \right) : \mu \le \mu_{0} \right\}$$

$$= \sup \left\{ Pr\left(Z \ge \frac{\mu_{0} + z_{\alpha} \sqrt{\frac{1}{\sum_{j=1}^{n} \frac{1}{\sigma_{j}^{2}}}} - \mu}{\sqrt{\frac{1}{\sum_{j=1}^{n} \frac{1}{\sigma_{j}^{2}}}}} \right) : \mu \le \mu_{0} \right\}$$

$$= \sup \left\{ Pr\left(Z \ge z_{\alpha} + \frac{\mu_{0} - \mu}{\sqrt{\frac{1}{\sum_{j=1}^{n} \frac{1}{\sigma_{j}^{2}}}}} \right) : \mu \le \mu_{0} \right\}$$

$$= \alpha \quad \text{when } \mu = \mu_{0}$$

Thus, C_1 is the UMP test for testing $H_0: \mu \leq \mu_0$ against $H_1: \mu > \mu_0$.

(c) (2 marks) Based on the test in part (b), calculate the power of test at $\mu_1 = 1$, where $\mu_1 \in \Theta_1$, when $\alpha = 0.05$, $\mu_0 = 0$, n = 10, $\sigma_1^2 = \ldots = \sigma_5^2 = 1$ and $\sigma_6^2 = \ldots = \sigma_{10}^2 = 2$. Round the value to two decimal places before finding the probability.

$$Pr(\mathbf{X} \in C_{1} : \mu = \mu_{1})$$

$$= Pr\left(\frac{\sum_{i=1}^{n} \frac{X_{i}}{\sigma_{i}^{2}}}{\sum_{j=1}^{n} \frac{1}{\sigma_{j}^{2}}} \ge \mu_{0} + z_{\alpha} \sqrt{\frac{1}{\sum_{j=1}^{n} \frac{1}{\sigma_{j}^{2}}}} : \mu = \mu_{1}\right)$$

$$= Pr\left(Z \ge \frac{\mu_{0} + z_{\alpha} \sqrt{\frac{1}{\sum_{j=1}^{n} \frac{1}{\sigma_{j}^{2}}}} - \mu_{1}}{\sqrt{\frac{1}{\sum_{j=1}^{n} \frac{1}{\sigma_{j}^{2}}}}}\right)$$

$$= Pr\left(Z \ge z_{\alpha} + \frac{\mu_{0} - \mu_{1}}{\sqrt{\frac{1}{\sum_{j=1}^{n} \frac{1}{\sigma_{j}^{2}}}}}\right)$$

$$= Pr(Z \ge -1.09361)$$

$$= 0.8621$$

- (d) Assuming that $\mu = 0$ and all σ_j^2 , for j = 1, ..., n, are equal to σ^2 but unknown, consider another hypothesis testing problem with $H_0: \sigma^2 = \sigma_0^2$ versus $H_1: \sigma^2 \neq \sigma_0^2$ at the level of significance α .
 - i. (4 marks) Find the expression of the likelihood ratio statistic.

Answer

$$f_{\mathbf{X}}(\mathbf{x}) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi}\sigma} \exp\{-\frac{x_i^2}{2\sigma^2}\}$$
$$= (2\pi\sigma^2)^{-n/2} \exp\{-\sum_{i=1}^{n} \frac{x_i^2}{2\sigma^2}\}$$
$$\log L(\sigma^2) = -\frac{n}{2} \log(2\pi\sigma^2) - \sum_{i=1}^{n} \frac{x_i^2}{2\sigma^2}$$

Under H_a ,

$$\log L(\sigma^2) = -\frac{n}{2}\log(2\pi\sigma^2) - \sum_{i=1}^n \frac{x_i^2}{2\sigma^2}$$

$$\frac{\partial \log L(\sigma^2)}{\partial \sigma^2} = 0n \Rightarrow \hat{\sigma}^2 = \frac{1}{n}\sum_{i=1}^n x_i^2 = S_n^2$$

$$\lambda(\mathbf{x}) = \frac{\sup\{L(\theta, \mathbf{x}) : \theta \in \Theta_o\}}{\sup\{L(\theta, \mathbf{x}) : \theta \in \Theta\}}$$

$$= \frac{(2\pi\sigma_0^2)^{-n/2} \exp\{-\frac{1}{2\sigma_0^2} \sum_{i=1}^n x_i^2\}}{(2\pi\hat{\sigma}^2)^{-n/2} \exp\{-\frac{1}{2\hat{\sigma}^2} \sum_{i=1}^n x_i^2\}\}}$$

$$= \left(\frac{S_n^2}{\sigma_0^2}\right)^{n/2} \exp\{-\frac{1}{2\sigma_0^2} \sum_{i=1}^n x_i^2 + \frac{n}{2}\}$$

ii. (4 marks) Hence, derive the exact likelihood ratio test at the significance level of α .

Answer

$$\lambda(\mathbf{x}) \leq K$$

$$\Rightarrow \left(\frac{\sum_{i=1}^{n} x_i^2}{n\sigma_0^2}\right)^{n/2} \exp\left\{-\frac{1}{2\sigma_0^2} \sum_{i=1}^{n} x_i^2 + \frac{n}{2}\right\} \leq K$$

$$\Rightarrow \left(\frac{\sum_{i=1}^{n} x_i^2}{\sigma_0^2}\right)^{n/2} \exp\left\{-\frac{1}{2\sigma_0^2} \sum_{i=1}^{n} x_i^2\right\} \leq K$$

Let $y = \frac{\sum_{i=1}^{n} x_i^2}{\sigma_0^2}$. Consider

$$g(y) = x^{n/2} \exp\{-y/2\}$$

$$g'(y) = \frac{n}{2} x^{\frac{n}{2} - 1} e^{-\frac{n}{2}} - \frac{1}{2} x^{\frac{n}{2}} e^{-\frac{n}{2}}$$

$$= x^{\frac{n}{2} - 1} e^{-\frac{n}{2}} (\frac{n}{2} - \frac{x}{2})$$

$$g'(y) = 0 \implies x = n$$

$$\implies g'(x) > 0 \text{ when } x < n$$

$$g'(x) < 0 \text{ when } x > n$$

g(x) attain maximum at x = n, decrease when x > n and increase when x < n.

$$g(y) \le K \implies x \le k_1 \text{ or } x \ge k_2$$

 $\lambda(\mathbf{x}) \le K \implies \frac{\sum_{i=1}^n x_i^2}{\sigma_0^2} \le k_1 \text{ or } \frac{\sum_{i=1}^n x_i^2}{\sigma_0^2} \ge k_2$

Under
$$H_0$$
, $\frac{\sum_{i=1}^n x_i^2}{\sigma_0^2} \sim \chi^2(n)$ and $Pr\left(\frac{\sum_{i=1}^n x_i^2}{\sigma_0^2} \le k_1\right) = Pr\left(\frac{\sum_{i=1}^n x_i^2}{\sigma_0^2} \le k_1\right) = \frac{\alpha}{2}$ $\Rightarrow k_1 = \chi_{1-\frac{\alpha}{2}}^2(n), \quad k_2 = \chi_{\frac{\alpha}{2}}^2(n)$

5. (Bonus: 10 marks) Consider a random sample of a fixed size n, $\{X_1, \ldots, X_n\}$, from a p.m.f. given by

$$p_{-1} = P(X_i = -1) = \frac{1-\theta}{2}, \quad p_0 = P(X_i = 0) = \frac{1}{2}, \quad p_1 = P(X_i = 1) = \frac{\theta}{2},$$

where $0 \le \theta \le 1$. Define $n_{-1} = \sum_{i=1}^{n} I_{\{X_i = -1\}}$, $n_0 = \sum_{i=1}^{n} I_{\{X_i = 0\}}$, and $n_1 = \sum_{i=1}^{n} I_{\{X_i = 1\}}$. Given that $(n_{-1}, n_0, n_1) \sim \text{multinomial}(n, p_{-1}, p_0, p_1)$.

Find the maximum likelihood estimator, $\hat{\theta}$, for θ . Find $E(\hat{\theta})$. Hence or otherwise, find an unbiased estimator for θ

Answer

Since

$$\ln L(\theta) = \ln c + n_{-1} \ln(1 - \theta) - n_{-1} \ln 2 - n_0 \ln 2 + n_1 \ln \theta - n_1 \ln 2,$$

$$0 = \frac{d}{d\theta} \ln L(\theta) \Big|_{\theta = \hat{\theta}} = -\frac{n_{-1}}{1 - \hat{\theta}} + \frac{n_1}{\hat{\theta}} \implies \hat{\theta} = \frac{n_1}{n_1 + n_{-1}} \in [0, 1],$$

which is a unique critical point and inside the parameter space of θ .

Also,

$$\frac{d^2}{d\theta^2} \ln L(\hat{\theta}) = -\frac{n_{-1}}{(1-\hat{\theta})^2} - \frac{n_1}{\hat{\theta}^2} < 0.$$

Hence, $\hat{\theta}$ is a MLE of θ .

Note that

$$\begin{split} E(\hat{\theta}) &= E\Big(\frac{n_1}{n_1 + n_{-1}}\Big) = E_{n_1 + n_{-1}} \Big[E\Big(\frac{n_1}{n_1 + n_{-1}} \Big| n_1 + n_{-1}\Big) \Big] \\ &= E_{n_1 + n_{-1}} \Big[\frac{1}{n_1 + n_{-1}} E\Big(n_1 \Big| n_1 + n_{-1}\Big) \Big]. \end{split}$$

Now we consider the conditional pmf of n_1 given $n_1 + n_{-1}$.

Since $n_0 = \sum_{i=1}^n I_{\{X_i=0\}} \sim Bin(n, p_0),$

$$n_{-1} + n_1 = n - n_0 \sim Bin(n, 1 - p_0 = 1/2)$$

because
$$n - n_0 = n - \sum_{i=1}^n I_{\{X_i = 0\}} = \sum_{i=1}^n [1 - I_{\{X_i = 0\}}] = \sum_{i=1}^n I_{\{X_i \neq 0\}} \sim Bin(n, EI_{\{X_i \neq 0\}}) = P(X_i \neq 0) = 1 - P(X_i = 0)).$$

Since

$$P(n_{1} = t | n_{1} + n_{-1} = s) = \frac{P(n_{1} = t, n_{1} + n_{-1} = s)}{P(n_{1} + n_{-1} = s)}$$

$$= \frac{P(n_{1} = t, n_{-1} = s - t, n_{0} = n - s)}{P(n_{1} + n_{-1} = s)}$$

$$= \frac{\binom{n}{s - t, n - s, t} p_{-1}^{s - t} p_{0}^{n - s} p_{1}^{t}}{\binom{n}{s} (\frac{1}{2})^{s} (\frac{1}{2})^{n - s}}$$

$$= \frac{s!}{t!(s - t)!} \theta^{t} (1 - \theta)^{s - t}.$$
19

Thus, $n_1|n_1 + n_{-1} \sim Bin(n_1 + n_{-1}, \theta)$.

Hence,
$$E(n_1|n_1+n_{-1}) = (n_1+n_{-1})\theta$$
 and $E(\hat{\theta}) = E_{n_1+n_{-1}}\left[\frac{1}{n_1+n_{-1}}(n_1+n_{-1})\theta\right] = \theta$.

****** END ******