FIZIKA

EMELT SZINTŰ ÍRÁSBELI VIZSGA

2017. május 22. 8:00

Időtartam: 240 perc

Pótlapok sz	záma
Tisztázati	
Piszkozati	

EMBERI ERŐFORRÁSOK MINISZTÉRIUMA

Fontos tudnivalók

A feladatlap megoldásához 240 perc áll rendelkezésére.

Olvassa el figyelmesen a feladatok előtti utasításokat, és gondosan ossza be idejét!

A feladatokat tetszőleges sorrendben oldhatja meg.

Használható segédeszközök: zsebszámológép, függvénytáblázatok.

Ha valamelyik feladat megoldásához nem elég a rendelkezésre álló hely, kérjen pótlapot!

A pótlapon tüntesse fel a feladat sorszámát is!

1714 írásbeli vizsga 2 / 20 2017. május 22.

ELSŐ RÉSZ

Az alábbi kérdésekre adott válaszok közül minden esetben pontosan egy jó. Írja be a helyesnek tartott válasz betűjelét a jobb oldali fehér négyzetbe! Ha szükségesnek tartja, kisebb számításokat, rajzokat készíthet a feladatlapon.

- 1. Melyik magyar tudós nevéhez köthető a nukleáris láncreakció szabadalma?
 - A) Teller Ede
 - B) Szilárd Leó
 - C) Wigner Jenő

- 2. Két azonos térfogatú, egyformán sima felületű, de különböző tömegű gömböt egyszerre ejtünk le azonos magasságból. Melyik ér le előbb, ha a közegellenállás nem hanyagolható el?
 - A) A nagyobb tömegű.
 - **B)** Egyszerre érnek földet.
 - C) A kisebb tömegű.
 - D) Ezen információk alapján nem lehet eldönteni.

3. Egy mindkét oldalán domború műanyag lencsét vízbe merítünk az ábrán látható módon. A lencse a folyadékban az optikai tengelyével párhuzamosan haladó fénysugarakat szétszórja. Mit állíthatunk a fény terjedési sebességéről a műanyagban és a vízben?

- A) A fény terjedési sebessége a vízben nagyobb, mint a műanyagban.
- **B)** A fény terjedési sebessége a műanyagban nagyobb, mint a vízben.
- C) A megadott információk alapján nem lehet eldönteni, hogy hol nagyobb a fény terjedési sebessége.

2 pont	
--------	--

4. Egy 30 kg tömegű, 3 méter hosszú, homogén rúd a harmadolópontjaiban van alátámasztva. Mekkora maximális függőleges irányú erővel terhelhetjük a rúd végét anélkül, hogy a rúd lebillenne? $(g = 10 \text{ m/s}^2)$

- **A)** 100 N
- **B)** 150 N
- **C)** 200 N

2 pont

5. Különböző keresztmetszetű, csővel összekötött, vizet tartalmazó hengereket dugattyúk zárnak el az ábrán látható módon. A vízoszlop magassága mindhárom hengerben azonos. Mit állapíthatunk meg a hengerekbe zárt levegő nyomásáról, ha a dugattyúkra nehezékeket helyeztünk: az A-ra 0,5 N, a B-re 1 N, míg a C-re 3 N súlyút?

A)

 $p_A < p_B < p_C$

B)

 $p_A > p_B > p_C$

C)

- $p_A = p_B = p_C$
- **D)** A megadott adatok alapján a nyomásértékek viszonya nem eldönthető.

- 6. Az univerzumban találhatóak úgynevezett kettőscsillagok. Ezek olyan rendszerek, amelyekben két csillag van egymástól körülbelül olyan távolságban, mint a mi Naprendszerünkben a Nap és egy távoli bolygója. Hogyan mozoghatnak ezek a csillagok egymáshoz képest?
 - A) Mindig a kisebb tömegű csillag kering a nagyobb tömegű csillag körül.
 - **B)** Legtöbbször a kisebb tömegű csillag kering a nagyobb tömegű körül, de néha pont fordítva történik.
 - C) Mindkét csillag áll, a csillagok nem keringenek egy másik csillag körül.
 - **D)** A két csillag a közös tömegközéppont körül kering.

T: 11		-		1	1	1	1	 	 	
Fizika	Azonosító								1	
emelt szint	jel:									

7. Szigetelőállványok közé rézdrótot feszítünk ki. A vezeték végeire állandó feszültséget kapcsolunk, és áramerősségmérő műszerrel mérjük az áramkörben folyó áram erősségét. Miután egy ideje már állandó áramerősséget mérünk, a rézdrótot melegíteni kezdjük. Hogyan változik eközben a mért áramerősség?

A	ι Δ	mel	egítés	hatására	27	áram	erőss	éσ	nő
\boldsymbol{H}	, A	HICI	cgnes	Hatasara	az	arann	C1023	ocg.	IIO.

- B) A melegítés hatására az áramerősség csökken.
- C) A melegítés hatására a mért áramerősség nem változik.

2 pont	
--------	--

8. Ideálisnak tekinthető héliumgázt –15 °C hőmérsékletről +15 °C hőmérsékletre melegítünk állandó nyomáson. Miután a gázt –15 °C-ra visszahűtjük, állandó térfogaton is elvégezzük a melegítést. Melyik folyamatban nőtt többet a gáz belső energiája?

- A) Az állandó nyomáson történt melegítés során.
- B) Az állandó térfogaton történt melegítés során.
- C) A két esetben a belső energia változása azonos.

9. Egy $N = 10^{15}$ db radioaktív magot tartalmazó mintában az izotóp felezési ideje 2 nap. Várhatóan hányad része bomlik el az izotópnak 1 nap alatt?

- A) Kevesebb, mint a negyede.
- B) Körülbelül a negyede.
- C) Több, mint a negyede.
- **D)** Több is, kevesebb is elbomolhat, mint a negyede.

pont	

1714 írásbeli vizsga 5 / 20 2017. május 22.

10. A hagyományos elektromos csengőkben általában két tekercs van, amelyeket sorba kötnek, és amelyek esetén a tekercselés körüljárási iránya ellentétes, ahogyan az ábra is mutatja. Mit mondhatunk a tekercsek mágneses indukciójáról és az áramkör megszakadásakor a bennük indukálódó feszültségről?

A tételkészítő bizottság a feladatot az alábbiak szerint módosította:

Az ábrán látható elektromos csengőben két tekercs van, amelyeket sorba kötöttek. Mit mondhatunk a tekercsek mágneses indukciójáról és az áramkör megszakadásakor a bennük indukálódó feszültségről?

- A) A tekercsekben a mágneses indukció azonos irányú (jobbról balra mutat), a bennük indukálódó feszültségek az áramkörben erősítik egymást.
- A tekercsekben a mágneses indukció azonos irányú, a bennük indukálódó B) feszültségek az áramkörben gyengítik egymást.
- A tekercsekben a mágneses indukció ellentétes irányú (az egyikben jobbról C) balra, a másikban balról jobbra mutat), a bennük indukálódó feszültségek az áramkörben gyengítik egymást.
- A tekercsekben a mágneses indukció ellentétes irányú, a bennük D) indukálódó feszültségek az áramkörben erősítik egymást.

2 pont

11. Egy autó egy darabig egyenes vonalban egyenletesen halad, majd állandó lassulással megáll. Melyik ábra mutatja helyesen a mozgás út-idő grafikonját?

- **A**) Az A) ábra.
- AB) ábra. B)
- C) A C) ábra.
- D) A D) ábra.

2 pont

D)

- A) Igen, ha a bolygó sugara kisebb, mint a Földé.
- B) Igen, ha a bolygó sugara nagyobb, mint a Földé.
- Nem, mivel a gravitációs törvény értelmében egy nagyobb tömeg vonzása mindenképpen nagyobb.

2 pont

15. A bal oldali grafikon egy hullám kitérés-hely függvényét mutatja egy adott pillanatban, a jobb oldali a kitérés-idő függvényt egy adott helyen. A grafikonok segítségével állapítsa meg a vizsgált hullám sebességét!

- **A)** c = 1,25 m/s.
- **B)** c = 2.5 m/s
- C) c = 0.625 m/s.

2 pont

t(s)

MÁSODIK RÉSZ

Az alábbi három téma közül válasszon ki egyet és fejtse ki másfél-két oldal terjedelemben, összefüggő ismertetés formájában! Ügyeljen a szabatos, világos fogalmazásra, a logikus gondolatmenetre, a helyesírásra, mivel az értékelésbe ez is beleszámít! Mondanivalóját nem kell feltétlenül a megadott szempontok sorrendjében kifejtenie. A megoldást a következő oldalakra írhatja.

1. Nukleonok

Az atom főtömegében állhat rendes anyagból (bármilyen ismeretlen entitás is rejtőzzék ezen megszokott kifejezés mögött), amellyel kellő mennyiségű pozitív elektromosság van csatolva (bármi legyen is ez az elektromosság), hogy kompenzálja azt a töltést, ami az elektronhoz vagy elektronokhoz tartozik, amely elektronok kétség kívül léteznek egy-egy atomhoz kapcsolva.

Lodge, 1906.

Simonyi Károly: A fizika kultúrtörténete Budapest, 1981.

Mit nevezünk nukleonnak? Nevezze meg és jellemezze a nukleonok típusait! Mutassa be az atommagot összetartó kölcsönhatást, adja meg a legfontosabb jellemzőit! Ismertesse a tömegdefektus jelenségét! Adja meg a kötési energia fogalmát, kapcsolatát a tömegdefektussal! Adja meg grafikonnal az egy nukleonra jutó kötési energia alakulását az atommag nukleonszámának függvényében! Nevezze meg azokat az alapvető magfizikai folyamatokat, amelyekben az atommag összetétele, illetve az egy nukleonra jutó kötési energia változhat! Nevezzen meg két példát, amikor a folyamat külső beavatkozás nélkül lejátszódik! Milyen feltétele van ennek?

Mutasson be három különböző példát, amikor a magfizikai folyamatokat a gyakorlati életben használjuk!

1714 írásbeli vizsga 9 / 20 2017. május 22.

2. Galaxisok

Számát az álló tsillagoknak tsak a puszta szem is szörnyűnek mutattya, hát ha még tsőkkel tekéntjük meg a tsillagos eget, akkor bámulunk el ezen tündöklő pontotskáknak a seregén, s ahol a puszta szem egy kettőt alig látott, ott a tsők sok ezreket mutat, mellyeknek számát nints olyan halandó, ki meghatározhassa.

Varga Márton: A tsillagos égnek és a Föld golyóbissának ... megesmértetése. Nagyvárad, 1809.

Mi a galaxis? Nevezze meg galaxisunkat! Ismertesse galaxisunk hozzávetőleges szerkezetét, jellemző mozgását! Határozza meg a Naprendszer közelítő helyét galaxisunkban! Nevezzen meg egy másik galaxist is! Adja meg az Univerzumban lévő galaxisok (galaxishalmazok) számának közelítő nagyságrendjét! Ismertesse a fényév fogalmát, és segítségével adja meg a galaxisok kölcsönös távolságának nagyságrendjét! Ismertesse az ősrobbanás-elmélet lényegét, magyarázza el, hogy milyen megfontolások vezettek az elmélethez, valamint ismertesse az ebből adódó következtetéseket a Világegyetem korára és kiinduló állapotára vonatkozóan!

1714 írásbeli vizsga 10 / 20 2017. május 22.

3. A falkirki vízikerék

Olvassa el figyelmesen az alábbi szöveget, és a benne található információk segítségével válaszoljon az alábbi kérdésekre!

Skócia egyik büszkesége a falkirki vízikerék, az a hajólift, amely két, 24 méteres szintkülönbséggel találkozó csatorna között váltotta ki 2002-ben a 150 évig működő zsiliprendszert.

Zsilipeléskor egy kamrába beúszik a hajó az alsó csatorna szintjén, majd a kamrába annyi vizet engednek, hogy a vízszint a felső csatorna szintjére emelkedjen. Ekkor kiúszhat a hajó a kamrából a felső csatornába. Vagy fordítva, ha felülről alulra tart. Minthogy nagy tömegű vizet kell megmozgatni, ez hosszadalmas folyamat. Nagy szintkülönbségek esetén lépcsőzetes rendszert alakítanak ki. A falkirki zsiliprendszeren az átkelés 8 órán át tartott.

A hajólift ezzel szemben egyetlen 35 méter hosszú, kétkarú emelő, amely mindkét karján egy vízzel teli, hatalmas, majdnem 300 m³-es kádat, úgynevezett gondolát hordoz. A csatornákból alul és felül is beúszhat egy-egy hajó az alsó, illetve a felső gondolába, ahol a vízszint eközben nem változik. Ezután átfordítják az emelő karjait, melyek 15 perc alatt helyet cserélnek. Közben egy fogaskerékrendszer biztosítja, hogy a gondolák végig vízszintes helyzetben maradjanak, nehogy kifolyjon belőlük a víz. Az alsó kar nem vízbe érkezik le, hanem egy szárazon tartott kamrába, hogy csökkentsék a közegellenállással járó veszteségeket.

Ha átfordultak a karok, a hajók kiúszhatnak a gondolákból, és a nagy szintkülönbséget leküzdve folytathatják útjukat. A folyamat mindössze 1,5 kWh energiát igényel, hiszen a kerék végig egyensúlyban van.

https://en.wikipedia.org/wiki/Falkirk Wheel

https://britishheritage.com/all-aboard-the-falkirk-wheel/

- a) Ismertesse Arkhimédész törvényét! Mutassa be, hogy mi egy test úszásának feltétele, mitől függ, hogy milyen mélyen merül a vízbe az úszó test!
- b) Ismertesse egy kétkarú emelő egyensúlyának feltételeit!
- c) Hogy lehet az, hogy a vízikerék végig egyensúlyban van, akkor is, ha esetleg csak az egyik gondolájában van hajó?
- d) Ismertesse, hogyan változik a kerék mechanikai energiáinak nagysága egy átfordulás során!
- e) Milyen magasra lehetne 1,5 kWh munkával felemelni a 150 tonnás hajót a bemutatott eljárás nélkül, közvetlenül?

1714 írásbeli vizsga 11 / 20 2017. május 22.

Tartalom	Kifejtés	Összesen
18 pont	5 pont	23 pont

HARMADIK RÉSZ

Oldja meg a következő feladatokat! Megállapításait – a feladattól függően – szövegesen, rajzzal vagy számítással indokolja is! Ügyeljen arra is, hogy a használt jelölések egyértelműek legyenek!

1. Egy 42 V egyenfeszültségű hálózatra egy 24 W teljesítményű lámpát kapcsolunk. A lámpa kivezetéseit 1 mm átmérőjű rézvezeték köti a hálózathoz, a vezetési elektronok koncentrációja a vezetékben $8,47\cdot10^{28}\frac{1}{m^3}$.

Mekkora sebességgel mozognak a vezetékben az elektronok?

(Az elektron töltése $-1,6\cdot10^{-19}\,\mathrm{C}$, a vezeték ellenállása elhanyagolható.)

1714 írásbeli vizsga 13 / 20 2017. május 22.

Fizika	Azonosító							
emelt szint	jel:						i l	

Összesen

11 pont

1714 írásbeli vizsga $14 \, / \, 20$ 2017. május 22.

- 2. Egy bányában egy M=200 kg tömegű csille (sínen guruló teherkocsi) elszabadult, és legurult egy h=6 m magas lejtőről. A lejtő alján egy m=150 kg tömegű ütköző test állította meg, amely egy D=150000 N/m rugóállandójú rugóhoz volt erősítve. A kocsi és az ütközőtest találkozását pillanatszerű, tökéletesen rugalmatlan ütközésnek tekinthetjük.
 - *a)* Határozza meg, hogy az ütközés következtében mekkora volt a rugó maximális összenyomódása!
 - b) Az ütközés után a rugó milyen magasra lökte vissza a kocsit a lejtőn?

(A folyamat során a súrlódást elhanyagolhatjuk, a kocsi és az ütközőtest az ütközés következtében nem ragad össze. $g = 9.8 \frac{\text{m}}{\text{s}^2}$)

1714 írásbeli vizsga 15 / 20 2017. május 22.

a)	b)	Összesen
10 pont	4 pont	14 pont

3. A hidrogénatom Bohr-modellje szerint az elektronok diszkrét pályákon keringhetnek a pozitív töltésű atommag körül. Az atommaghoz legközelebbi körpálya sugara R. A következő körpálya sugara 4R.

Hányszor annyi idő alatt kerüli meg az atommagot az elektron a külső pályán, mint a belső pályán?

Összesen

12 pont

1714 írásbeli vizsga 17 / 20 2017. május 22.

4. Egy asztalon egy üres, m = 20 cm magas, D = 40 cm hosszú, átlátszatlan anyagból készült kád áll. Ennek aljára, pontosan középre, kicsiny pénzérmét helyezünk el. A kádtól kicsit távolabb helyezkedünk el úgy, hogy az üres kád aljának távolabbi végét még éppen látjuk a kádfal pereme fölött, de a kádban lévő érmét már nem. Ezután egy segítőnk lassan cukrozott vizet tölt a kádba, és amikor a folyadékszint eléri a 17,57 cm-es magasságot, megpillantjuk az érmét. Mekkora a cukoroldat törésmutatója? Az alábbi grafikon segítségével állapítsa meg a cukoroldat koncentrációját!

(Feltehetjük, hogy a cukoroldat felülete végig sima, nem hullámzik.)

1714 írásbeli vizsga 18 / 20 2017. május 22.

Fizika	Azonosító								
emelt szint	jel:							1	

Összesen

10 pont

1714írásbeli vizsga $19\,/\,20$ 2017. május 22.

Figyelem! Az értékelő tanár tölti ki!

	pontszám			
	maximális	elért		
I. Feleletválasztós kérdéssor	30			
II. Témakifejtés: tartalom	18			
II. Témakifejtés: kifejtés módja	5			
III. Összetett feladatok	47			
Az írásbeli vizsgarész pontszáma	100			

dátum	javító tanár

	pontszáma egész számra kerekítve	
	elért	programba beírt
I. Feleletválasztós kérdéssor		
II. Témakifejtés: tartalom		
II. Témakifejtés: kifejtés módja		
III. Összetett feladatok		

dátum	dátum		
javító tanár	jegyző		