■ Bigdata fintech 4<sup>th</sup>

□ 기계학습 4조

■ 김태훈 남경혜 방수영 이상윤 정재영

기존 고객 대상 아웃바운드 콜의

# 자동차 보험 계약 성사 예측 모형





☐ CH1 분석목적

**□** 01-1

### 분석 목적



기존 은행이 보험으로 사업을 다각화하면서, 기존 고객들에게 보험 마케팅 콜을 했을 때의 계약 성사 여부를 학습하여 생성한 데이터를 바탕으로 새로운 마케팅에서 **계약 성사 가능성이 높은 고객을 분류 하는 것**이 목적

### **아웃바운드(outbound)콜**의 '선택' 과 '집중'이 가능해짐

→ 실적과 직결되기 때문에 실제 현업에서 중요하게 여기는 지표



아웃바운드(Outbound) : 상품 구매를 유도하는 전화 영업의 형태(전화를 거는 것)



인바운드(Inbound): 고객에게서 걸려온 문의를 처리 및 응대(전화를 받는 것)

☐ CH1 분석목적

**1** 01-2

### 사전 지표 언정



But, 아웃바운드 콜 대상 고객의 pool이 아주 커져 분류 의미가 사라짐.

Recall과 accuracy를 주요 지표로 삼아 모델의 퍼포먼스를 평가하자



#### **1** 02-1

## Data 탐색

| 변수명 데이터형             | 태 상세설명                         |                       |
|----------------------|--------------------------------|-----------------------|
| ID 이산형               | 고객 식별 번호                       |                       |
| Age 연속형              | 고객의 나이                         |                       |
| Job 범주형              | 고객의 직업(admin/ blue-collar/…/등  | 등 10개 범주)             |
| Marital 범주형          | 결혼여부(divorced/married/single)  |                       |
| Education 범주형        | 학력(primary/secondary/tertiary) |                       |
| Default 범주형          | 파산여부(yes/no)                   |                       |
| Balance 연속형          | 평균잔고                           |                       |
| HHisurance 범주형       | 가계보험가입여부(yes/no)               |                       |
| Carloan 범주형          | 자동차대출여부(yes/no)                |                       |
| Communication 범주형    | 상담방식 (cellular/telephone/NA)   |                       |
| Lastcontactmonth 범주형 | 최근 접촉 월                        |                       |
| Lastcontactday 범주형   | 최근 접촉 일                        | : 데이터 스ㆍ//// 하 * 10억  |
| Callstart 연속형        | 통화 시작 시각                       | · 데이터 수 : 4000행 * 19열 |
| Callend 연속형          | 통화 종료 시각                       |                       |
| Noofcontacts 연속형     | 현재 마케팅에서의 접촉 횟수                |                       |
| Dayspassed 연속형       | 이전 마케팅에서의 접촉 후 경과 시간           |                       |
| Prevattempts 연속형     | 현재 마케팅 이전 접촉 횟수                |                       |
| Outcome 범주형          | 이전 마케팅으로 인한 결과(성공/실패/보         | 류/NA)                 |
| Carinsurance 범주형     | 보험가입여부                         | 종속변수 Y                |

출처 : Kaggle/car-insurance-cold-calls

**D** 02-2

데이터시각화 T-SNE/PCA를 이용하여 구현해본 데이터 분포





#### **D** 02-3

### 변수 생성 및 삭제



통화 시작/종료 시각이 아닌 통화 지속 시간이 **관심도를 반영** 



접촉 후 경과 시간이 아닌 **접촉 여부**가 유의미한 변수라고 판단

Callstart, Callend, Daypassed 변수 삭제/Call\_duration, Daypass 변수 생성

#### **1** 02-4

### 결측치 확인 및 처리

| 변수명              | missing_value |                                                               |
|------------------|---------------|---------------------------------------------------------------|
| ID               | 0             |                                                               |
| Age              | 19            |                                                               |
| Job              | 0             |                                                               |
| Marital          | 169           |                                                               |
| Education        | 0             | → <mark>최빈값</mark> 으로 대체                                      |
| Default          | 0             |                                                               |
| Balance          | 0             |                                                               |
| Hhnsurance       | 0             |                                                               |
| Carloan          | 902           |                                                               |
| Communication    | 0             | , 경치되네요 200/ 이사이다                                             |
| Lastcontactmonth | 0             | → 결측치 비율 20% 이상이나,<br>MCAR(Missing completely at Random)으로 판단 |
| Lastcontactday   | 0             | MCAR(MISSING COMPLETERY at Handom)—— Li                       |
| Callstart        | 0             |                                                               |
| Callend          | 0             |                                                               |
| Noofcontacts     | 0             |                                                               |
| Dayspassed       | 0             |                                                               |
| Prevattempts     | 0             | <b>겨</b> え計이 HI으∩I <mark>0: 760/</mark> ○I                    |
| Outcome          | 3042          | → 결측치의 비율이 <mark>약 76%</mark> 인 'Outcome(소득)'은 삭제하는 것이 맞다고 판단 |

#### 02-5

### 범주별 종속변수 분포 확인- Default/Carloan(재정상래 관련 변수)





상대적으로 <mark>재정상황이 양호한</mark> default ==0 & car loan == 0이 계약 성사율이 높았음

#### **D** 02-6

### 범주별 종속변수 분포 확인- Daypass, NoOfContact(마케팅 관련 지표)







#### **D** 02-7

### 범주별 종속변수 분포 확인- HHInsurance

#### HHInsurance(가계보험 가입여부)



Car Insurance 0 1 Percentage Enrolled

**HHInsurance** 

| 0 | 1016 1013 | 49.93 |
|---|-----------|-------|
| 1 | 1380 591  | 29.98 |

#### 가계보험?



출처:두산백과



즉, 보장을 받고 있는 보험이 없다는 것. 그러므로 **아웃바운드 콜의 효과 증대 예상** 

#### **D** 02-8

### 변수별 상관관계 확인



02-9

### 범주형 변수 처리: Onehot 인코딩

### 범주형 변수

JOB

Marital

education

LastContactMonth

### 더미 변수

job\_bluecollar/job\_entreprenrur/job\_housemaid/job\_retired/job\_management/job\_selfemployed/job\_services/job\_student/job\_technician/job\_unemployed(총10개)

Marital\_married/Marital\_single/Marital\_divorced(총 3개)

Education\_primary/Education\_secondary/Education\_tertiary(총 3개)

LastContactMonth\_jan - dec(총 12개)

#### **1** 02-10

### 최종변수 확인 (1/4)

| 변수명              | 데이터형태 | 상세설명                           |
|------------------|-------|--------------------------------|
| Age              | 연속형   | 고객의 나이                         |
| default          | 범주형   | 파산여부(yes/no)                   |
| balance          | 연속형   | 평균잔고                           |
| HHinsurance      | 범주형   | 가계보험가입여부(yes/no)               |
| Carloan          | 범주형   | 자동차대출여부(yes/no)                |
| Communication    | 범주형   | 상담방식 (cellular/telephone)      |
| lastcontactmonth | 범주형   | 최근 접촉 월                        |
| Lastcontactday   | 범주형   | 최근 접촉 일                        |
| noofcontacts     | 연속형   | 해당 캠페인 기간 동안의 접촉 수             |
| dayspassed       | 연속형   | 이전 캠페인으로부터 고객의 마지막 접촉 이후 지난 기간 |
| prevattempts     | 연속형   | 캠페인 이전에 접촉 수                   |
|                  |       |                                |

#### **1** 02-11

### 최종변수 확인 (2/4)

| 변수명              | 데이터형태 | 상세설명             |
|------------------|-------|------------------|
| job_bluecollar   | 더미형   | 고객의 직업(생산직 종사자)  |
| job_entreprenrur | 더미형   | 고객의 직업(기업가)      |
| job_housemaid    | 더미형   | 고객의 직업(주부)       |
| job_retired      | 더미형   | 고객의 직업(은퇴자)      |
| job_management   | 더미형   | 고객의 직업(경영인)      |
| job_selfemployed | 더미형   | 고객의 직업(자영업)      |
| job_services     | 더미형   | 고객의 직업(서비스직 종사자) |
| job_student      | 더미형   | 고객의 직업(학생)       |
| job_technician   | 더미형   | 고객의 직업(기술자)      |
| job_unemployed   | 더미형   | 고객의 직업(실직자)      |

#### **1** 02-12

### 최종변수 확인 (3/4)

| 변수명                  | 데이터형태 | 상세설명             |  |
|----------------------|-------|------------------|--|
| Marital_married      | 더미형   | 혼인여부(기혼)         |  |
| Marital_single       | 더미형   | 혼인여부(미혼)         |  |
| Marital_divorced     | 더미형   | 혼인여부(이혼)         |  |
| Education_primary    | 더미형   | 고객의 학력수준(고졸이하)   |  |
| Education_secondary  | 더미형   | 고객의 학력수준(대졸)     |  |
| Education_tertiary   | 더미형   | 고객의 학력수준(대학원졸이상) |  |
| LastContactMonth_jan | 더미형   | 마지막접촉 월(1월)      |  |
| LastContactMonth_feb | 더미형   | 마지막접촉 월(2월)      |  |
| LastContactMonth_mar | 더미형   | 마지막접촉 월(3월)      |  |
| LastContactMonth_apr | 더미형   | 마지막접촉 월(4월)      |  |

#### **D** 02-13

### 최종변수 확인 (4/4)

| <br>변수명              | 데이터형태 | 상세설명         |
|----------------------|-------|--------------|
| LastContactMonth_may | 더미형   | 마지막접촉 월(5월)  |
| LastContactMonth_jun | 더미형   | 마지막접촉 월(6월)  |
| LastContactMonth_jul | 더미형   | 마지막접촉 월(7월)  |
| LastContactMonth_aug | 더미형   | 마지막접촉 월(8월   |
| LastContactMonth_sep | 더미형   | 마지막접촉 월(9월)  |
| LastContactMonth_oct | 더미형   | 마지막접촉 월(10월) |
| LastContactMonth_nov | 더미형   | 마지막접촉 월(11월) |
| LastContactMonth_dec | 더미형   | 마지막접촉 월(12월) |

총 데이터 수 : 4000행 \* 40열

**1** 02-14

### Scailing

목적: 계약을 할 고객인지 분류 작업 -> 각 Feature의 값이 일정 범위에 있어야 함 -> 스케일링 필요



Age, Balance, Call\_Duration, NoOfContacts, LastContactDay (이상 연속형 변수)



0과 1사이의 값으로 조정

#### **1** 02-15

### **Resampling/DataSplitting**





불균형도가 크지 않아 굳이 resampling을 하지 않는 것이 낫다고 판단



Train/test set를 8:2 비율로 split

(교차검증을 할 것이기 때문에 validation set은 불필요)

**D** 02-16

### 차원 축소

모형의 복잡도를 낮춰 예측 모델의 정확도와 학습 속도를 개선할 목적

Feature extraction

데이터 내의 중복되고 상관없는 feature를 제거하고 종속변수에 유의한 feature를 선택

PCA

- kernelPCA(linear)
  kernelPCA(rbf)

Feature selection

기존 feature들의 조합으로 서로 중복되지 않고 종속변수에 유의한 feature를 생성

SelectKBest



#### **1** 03-1

### 모델링

- Raw
- PCA
- kernelPCA(linear)
- kernelPCA(rbf)
- SelectKBest

- Logistic regression
- Ridge
- Bagging
- RandomForest
- SVM(SVC)
- XGBoosting
- AdaBoosting
- Gaussian Naïve Bayes

차원축소

분류모델



총 40가지 조합 비교

**3** 03-2

### **Logistic regression**

정확도(accuracy): 0.8250 / 재현율(recall): 0.7610





**O**3-3

### Ridge

정확도 (accuracy): 0.8175 / 재현율(recall): 0.7044



**1** 03-4

### **Bagging**

정확도(accuracy): 0.8363 / 재현율(recall): 0.7982



**O**3-5

### RandomForest

정확도(accuracy): 0.8300 / 재현율(recall): 0.7925



**3** 03-6

### SVM(SVC)

정확도(accuracy): 0.8175 / 재현율(recall): 0.7704



**1** 03-7

## XGBoosting

정확도(accuracy): 0.8538 / 재현율(recall): 0.8365



**O**3-8

### AdaBoosting

정확도(accuracy): 0.8237 / 재현율(recall): 0.7421



### Gaussian Naïve Bayes

정확도(accuracy): 0.8037 / 재현율(recall): 0.6635





**1** 04-1

### 주요지표비교

### [Raw] - XGBoosting이 최우수

| RAW       | AdaBoosting | XGBoosting | Bagging | Random<br>Forest | Logit  | Ridge  | SVM    | Gaussian<br>Naive<br>Bayes |
|-----------|-------------|------------|---------|------------------|--------|--------|--------|----------------------------|
| Accuracy  | 0.8137      | 0.8538     | 0.8363  | 0.8287           | 0.8250 | 0.8175 | 0.8100 | 0.8037                     |
| Recall    | 0.7579      | 0.8365     | 0.8145  | 0.7799           | 0.7610 | 0.7044 | 0.7296 | 0.6635                     |
| Precision | 0.7700      | 0.8036     | 0.7825  | 0.7873           | 0.7908 | 0.8116 | 0.7785 | 0.8084                     |
| F1        | 0.7639      | 0.8197     | 0.7982  | 0.7836           | 0.7756 | 0.7542 | 0.7532 | 0.7288                     |
| AUC       | 0.8042      | 0.8508     | 0.8325  | 0.8204           | 0.8141 | 0.7983 | 0.7963 | 0.7799                     |

### [PCA] - Bagging이 최우수

| PCA       | AdaBoosting | XGBoosting | Bagging | Random<br>Forest | Logit  | Ridge  | SVM    | Gaussian<br>Naive<br>Bayes |
|-----------|-------------|------------|---------|------------------|--------|--------|--------|----------------------------|
| Accuracy  | 0.8200      | 0.8263     | 0.8313  | 0.8275           | 0.8213 | 0.8175 | 0.8137 | 0.7800                     |
| Recall    | 0.7799      | 0.8019     | 0.8113  | 0.8019           | 0.7453 | 0.7044 | 0.7358 | 0.5629                     |
| Precision | 0.7702      | 0.7704     | 0.7748  | 0.7727           | 0.7926 | 0.8116 | 0.7826 | 0.8287                     |
| F1        | 0.7750      | 0.7858     | 0.7926  | 0.7870           | 0.7682 | 0.7542 | 0.7585 | 0.6704                     |
| AUC       | 0.8132      | 0.8221     | 0.8279  | 0.8231           | 0.8083 | 0.7983 | 0.8005 | 0.7431                     |

**1** 04-2

### 주요지표비교

### [KernelPCA(Linear)] - XGBoosting이 최우수

| KernelPCA(Linear) | AdaBoosting | XGBoosting | Bagging | Random<br>Forest | Logit  | Ridge  | SVM    | Gaussian<br>Naive<br>Bayes |
|-------------------|-------------|------------|---------|------------------|--------|--------|--------|----------------------------|
| Accuracy          | 0.8200      | 0.8387     | 0.8275  | 0.8300           | 0.8213 | 0.8175 | 0.8137 | 0.7800                     |
| Recall            | 0.7799      | 0.8145     | 0.8082  | 0.7925           | 0.7453 | 0.7044 | 0.7358 | 0.5629                     |
| Precision         | 0.7702      | 0.7872     | 0.7695  | 0.7826           | 0.7926 | 0.8116 | 0.7826 | 0.8287                     |
| F1                | 0.7750      | 0.8006     | 0.7883  | 0.7875           | 0.7682 | 0.7542 | 0.7585 | 0.6704                     |
| AUC               | 0.8132      | 0.8346     | 0.8242  | 0.8236           | 0.8083 | 0.7983 | 0.8005 | 0.7431                     |

### [KernelPCA(rbf)] - Logit이 최우수, 모형 불문 전반적 performance 저하

| KernelPCA(rbf) | AdaBoosting | XGBoosting | Bagging | Random<br>Forest | Logit  | Ridge  | SVM    | Gaussian<br>Naive<br>Bayes |
|----------------|-------------|------------|---------|------------------|--------|--------|--------|----------------------------|
| Accuracy       | 0.6837      | 0.7050     | 0.7163  | 0.6587           | 0.7863 | 0.7825 | 0.7712 | 0.6475                     |
| Recall         | 0.3994      | 0.3962     | 0.4434  | 0.2138           | 0.7358 | 0.7296 | 0.7013 | 0.1509                     |
| Precision      | 0.6720      | 0.7412     | 0.7382  | 0.7473           | 0.7290 | 0.7250 | 0.7170 | 0.8000                     |
| F1             | 0.5010      | 0.5164     | 0.5540  | 0.3325           | 0.7324 | 0.7273 | 0.7091 | 0.2540                     |
| AUC            | 0.6354      | 0.6525     | 0.6698  | 0.5831           | 0.7777 | 0.7735 | 0.7593 | 0.5630                     |

**1** 04-3

### 주요지표비교

### [selectKBest] - XGBoosting이 최우수

| selectKBest | AdaBoosting | XGBoosting | Bagging | Random<br>Forest | Logit  | Ridge  | SVM    | Gaussian<br>Naive<br>Bayes |
|-------------|-------------|------------|---------|------------------|--------|--------|--------|----------------------------|
| Accuracy    | 0.8237      | 0.8175     | 0.7638  | 0.7738           | 0.8137 | 0.8050 | 0.8175 | 0.7925                     |
| Recall      | 0.7421      | 0.7862     | 0.7296  | 0.7327           | 0.7264 | 0.6667 | 0.7704 | 0.6038                     |
| Precision   | 0.8000      | 0.7622     | 0.6925  | 0.7082           | 0.7884 | 0.8092 | 0.7704 | 0.8276                     |
| F1          | 0.7700      | 0.7740     | 0.7106  | 0.7202           | 0.7561 | 0.7310 | 0.7704 | 0.6982                     |
| AUC         | 0.8099      | 0.8122     | 0.7579  | 0.7668           | 0.7989 | 0.7815 | 0.8095 | 0.7604                     |

04-4

### **Best model**

| Accuracy Best | Recall Best | Best combination      |
|---------------|-------------|-----------------------|
| 0.8538        | 0.8365      | Raw Data & XGBoosting |

**1** 04-5

### 추후 과제



Raw data와 차원축소 데이터의 XGBoosting의 퍼포먼스가 **아주 작은 차이**를 보임





좀 더 세밀한 하이퍼 파라미터 튜닝으로 accuracy와 recall 상승 가능성 모색 필요

☐ Bigdata fintech 4<sup>th</sup>

□ 기계학습 4조

