CHEMISTRY PP1 2024 KCSE MOCK

TOP RANK KCSE PREDICTION MOCK 2024 SERIES

TOPLIGHT PUBLISHERS KENYA 2024 PANELKCSE PROJECTION WORKS

WE HAVE ALL SUBJECTS REACH US 0729 125 181 TO HAVE YOUR SUBJECT

- FOR QUESTIONS IN WORD AND MARKING SCHEME CALL SIR ABRAHAM 0729125181
- N/B;WE DON'T OFFER FREE MARKING SCHEME
- ALL PAYMENTS SHOULD BE PAID TO OUR TILL NO:8264076
- EMAIL US; toplightpublisherskenya@gmail.com

NAME		ADM
SCHOOL		INDEX
DATE	SIGN	TARGET
		233/1

CHEMISTRY Theory Paper 1

Time: 2 Hours

SERIES 1 2024 KCSE PREDICTION MOCK

Kenya Certificate of Secondary Education.

INSTRUCTIONS TO CANDIDATES:

- (a) Write your **name**, **class** and **admission number** in the spaces provided above.
- (b)Answer **ALL** the questions in the spaces provided in the question paper
- (c) KNEC Mathematical tables and electronic calculators may be used for calculations
- (d) All working **MUST** be clearly shown where necessary
- (e) This paper consists of 10 printed pages
- (f) Candidates should check the question paper to ascertain that **all the pages are printed** as indicated and that **no questions are missing**
- (g) Candidates should answer the questions in English

FOR EXAMINER'S USE ONLY

Question	Maximum score	Candidate's score
1-29	80	

Turn Over

1. Ar	element	Y has the electronic configuration	ration 2	.8.5		
a)	Identify	its period			(1mk)	
b)	b) Write a formula of the most stable anion formed when Y ionizes.					
c) E	xplain the o	differences between the atomic	radius o	of element Y and its ionic radius	s. (2mks)	
2. T	he table b	elow shows tests carried out	on a sa	mple of water and the results	s obtained.	
		Test		Results		
Ι	Addition	of sodium hydroxide solution	on	White precipitate which dis	solves in excess	
II	Addition	n of excess aqueous ammoni	ia	Colourless solution obtained	d	
III	Addition	of dilute hydrochloric acid	and	White precipitate		
	barium c	hloride				
a) Io	lentify the	anion present in the water.			(1mark)	
		•••••			•••••	
b)V	Vrite an io	nic equation for the reaction	in III.		(1mark)	
		• • • • • • • • • • • • • • • • • • • •			•••••	
3. S	olutions c	an be classified as acids base	es or ne	utral. The table below shows	solutions and	
their	рН					
V	alues.	Solution		PH - VALUES		
		K		1.5		
		L		7.0		
		M		14.0		
(i)	Select a	ny pair that would react to f	form a s	olution of pH 7.	1mark)	

4. a) State G	raham's Law of diffus	sion.		(1mk)
		d through a porous partit		- -
	ons? (S = 32.0, O = 16		•	marks)
5. Study the	e flow chart below a	and answer the question	ns that follow.	
5. Study the	e flow chart below a	white precipitate X	ns that follow. Add excess NHs (aq	Colourless solution Y
al oxide		White precipitate X	Add excess NH _{3 (aq}	Colourless solution Y
al oxide	Add NH _{3 (aq}	White precipitate X	Add excess NH _{3 (aq}	(1mk)

(a) The hazard symbol shown in Figure below is on bottles containing barium metal.

	State the meaning of th	(1mk			
(b) Give the names of the	elements comb	oined in ba	rium sulfide.	(1mk)
(c taken			sonous. Sat	te one safety precauti	
	when handling hydroge	en sulphide.			(1mk)
 7. Stı	udy the information in th	e table and an	swer questi	ions that follow:	
	Isotope	69 R ₁	R ₂		
	Relative abundance %	61.3	38.7		
(a)	Determine the number of	f neutrons of F			(1mk)
(b) Calculate the relative atc	omic mass of ele	ement R .		(2mks)
			• • • • • • • • • • • • • • • • • • • •		

8. a) Identify the type of bond formed compound below.

 $(1mk) \qquad \qquad \bigcup_{H} \qquad \bigcirc \qquad \bigcup_{H} \qquad \bigcup_{H}$

b) Using dots (•) and crosses (x) to represent electrons show bonding in magnesium oxide (2mks)

- 9. Show the products formed when the following salts are heated by writing a balanced chemical equation.(2 marks)
 - (i) KNO_{3(s)} Heat
 - (ii) (NH₄)₂ CO_{3(s)} Heat
- 10. Explain why when one is stung by a bee application of a little solution of sodium

hydrogen carbonate helps to relieve the pain. (2 marks)

11. The following table gives the melting point of oxides of the third period elements.

Study it and answer the questions that follow.

Formula of oxides	Na₂O	MgO	Al ₂ O ₃	S _i O ₂	P ₄ O ₁₀	SO ₂
Melting point (°O)	1190	3080	3050	1730	560	-73

(a) Explain the large difference in the melting points of Na₂O and P₄O₁₀. (2 mark)

(b) Write the equation for the reaction between Al_2O_3 with	
(i) NaOH	(1 mark)
(ii) HCl	
12. A hydrocarbon slowly decolourlises bromine in presence of	
acidified potassium permanganate. Name and draw the str	ructural formula of the fourth member
the series to which the hydrocarbon belongs.	(2 marks)
13. Distinguish between ionization energy and electron affinit	cy. (2mks)
14. The set-up below was used to prepare a carbon (IV) oxide	gas.

(b) Complete the diagram to show hov (c)Write the equation for the reaction	w the dry gas can be collected.	(2mks)
· · ·	v the dry gas can be collected.	
(c)Write the equation for the reaction		
		(1mk)
sulphur (IV) oxide measured at 182°c and 722 r	ch on complete combustion would yield 7	
24dm ³ at r.t.p).		(3 mks)
16. Form two students from Achiever's the table below	's secondary school reacted three element	s as shown in
Element Reaction with Oxygen	Reaction with water	
X Formed acidic oxide	No reaction	
Y Formed basic oxide	Formed soluble hydroxide gave off hydrogen gas	
Z Formed acidic oxide	Dissolved to form an acidic solution	
Which element (s) is likely to be: i) Non-metal (s)		(3mks)

	•••••		•••••	
iii)				
	mer has the following s			
	CH ₂ — CH — C	CH ₂ — CH — (CH ₂ — CH	
	I	I	I	
	CN	CN	CN	
A sampl	e of this polymer is fou	and to have a mo	olecular mass of 5194. D	etermine the number
of mond	omers on the polymer.	(H = 1.0, C = 12	2.0, N = 14.0)	(2 marks)
			ysis of molten potassiu	
ŕ	• •	•	•	(½mk)
				(½mk)
	ite the equations that			(2mks)
Anode	2			
•••••				
Cathod	le		•••••	
19. Give t	wo reasons why heliu	m is used in we	eather balloons.	(2mks)
20. A Bun	isen burner produces	a yellow flame	when airhole is close.	Explain. (2mks)

21. In an experiment, a boiling tube full of chlorine gas was inverted into a trough of water as shown

below.

- a) State and explain the observations. (2mks)

 b) If the experiment is repeated with tetrachloromethane instead of water.

 i) State the observations made. (1mk)

 ii) Explain your observations in b(i) above. (1mk)
- 23. Study the flow chart below and answer the questions that follow.

	substances			(½ mark)
	ganic compound K reacted varial formula of K.			
24. Starting wit prepared.	h copper metal describe how	a solid sample	e of copper (II) carbona	te can be (3 marks)
	nformation in the table below ne actual symbols of the elem	and answer th		
Element	Electrical conductivity	Ductility	Action of water	
Α	Good	Good	No reaction	-
В	Good	Poor	No reaction	-
С	Good	Good	Reacts	
	ement which is	abla		(1/ mark)
(a) Likely to t	e in group II of the periodic to	able.		(½ mark)
(b) Could be	used to make electric cables.			(½mark)

(½ mark)

(c) Likely to be graphite.

	•••••
26. In an investigation, sulphur (IV) oxide gas was bubbled through acidified bromine wa	ter. This was
followed by drops of barium nitrate solution.	
(a) State the property of sulphur (IV) oxide under investigation. (7	∕₂ mark)
(b) i) State the observation that were made on addition on sulphur (IV) oxide in bromine water.	to the
	(1mk)
ii) Explain the observation.	(1mk)
	• • • • • • • • • • • • • • • • • • • •
27. Study the flow chart below and answer the questions that follow	
Platinum Nitrogen O ₂ Nitrogen H ₂ O	G& J
Gas X (II) oxide (IV) oxide	(aq)
Gus A	
a) Identify gas X	(1mk)
b) Write an equation for the reaction between ammonia and gas X	(1mk)
c) Write an equation to show the formation of G and J	(1mk)

28. (a) Define pollution.	(1 mark)
(b) Mention one pollutant that is	
(i) A Particle	(½ mark)
(ii) Gaseous	(½ mark)
29. Hydrogen gas was burnt in air to form a colourless liquid.	
a) Describe a chemical test to identify the colourless liquid.	(2mk)
b) State how the purity of the colourless liquid can be determined.	(1mk)

THIS IS THE LAST PRINTED PAGE

NAME		ADM
SCHOOL		INDEX
DATF	.SIGN	TARGET

233/1

CHEMISTRY Theory Paper 1 Time: 2 Hours

SERIES 2 2024 KCSE PREDICTION MOCK

Kenya Certificate of Secondary Education.

INSTRUCTIONS TO CANDIDATES:

- (a) Write your name, class and admission number in the spaces provided above.
- (b)Answer ALL the questions in the spaces provided in the question paper
- (c) KNEC Mathematical tables and electronic calculators may be used for calculations
- (d) All working **MUST** be clearly shown where necessary
- (e) This paper consists of 10 printed pages
- (f) Candidates should check the question paper to ascertain that **all the pages are printed** as indicated and that **no questions are missing**
- (g) Candidates should answer the questions in English

FOR EXAMINER'S USE ONLY

Question	Maximum score	Candidate's score
1-29	80	

Turn Over

			mic number 11.		
(a) Write down	the electronic co	onfigurations of	elements T and V	•	
T				(¹ / ₂ m	nark)
V				(¹ / ₂ m	ark)
(b) State the typ	e of bond forme	d when T and V	combine.	(1 ma	ark)
The table below s	hows the Ph val	ues of solutions	I, II, III, and IV.		
Solution	I	II	III	IV	
PH	2	7	11	14	
	tions made.			(2 ma	arks)
Iron roofs usual				rmation of rust on	·····
Iron roofs usual surfaces.	ly turn brown a	ifter some time	as a result of fo		 their
Iron roofs usual surfaces.	ly turn brown a	ifter some time	as a result of fo	rmation of rust on	 their
Iron roofs usual surfaces. Explain whethe	ly turn brown a	ofter some time	as a result of fo	rmation of rust on	 their

water i	t produces a ga	s W that turns moist re	d litmus paper to blue	. Identify;
a)	Solid Q			(1 mark)
b)	Solid P			(1 mark)
c)	gas W			(1 mark)
	ements X and Stivity of elements		of 12 and 13 respective	vely, compare the electrical (1mark)
	•••••			
b) Exp	lain your answe	er in (a) above.		(2mark)
	table below sho	ows some properties of Action with water	substances A, B, C a Melting point	Thermal conductivity
	A B	Un reactive Reactive	High High	Poor Poor
	C	Unreactive	High	Good
	D	Unreactive	Low	Good
	Select the subs	stance that would be me	ost suitable	
	a) For ma	king electrical cables.		(1mark
	a) For making	g cooking pot handle.		(1mark)
8. Prop	oane reacts with	one mole of chlorine	gas under a certain co	naition.
a)	What is that co	ondition necessary for t	he above reaction to t	ake place? (1mark)

5 When magnesium is heated in air, it forms a solid Q and solid P. when solid Q is reacted with

b)	Draw the structural formula and name the compound formed.	(2marks)
9. (a)	What is meant by solubility?	(1 Mark)
(b)	In an experiment to determine the solubility of solid x in water at 30° obtained;	
Ma Ma Usi	ass of evaporating dish $= 26.2g$ ass of evaporating dish $+$ saturated solution $= 42.4g$ ass of evaporating dish $+$ dry solid x $= 30.4g$ ang the information, determine the solubility of solid x at 30° C in g/100g v	
	strong heating, sodium nitrate produces oxygen gas. In the spaces	
	d diagram of a set-up that could be used for heating sodium nitrate n gas liberated.	and collecting the (3marks)
	lorine and iodine are elements in the same group in the periodic tab v while aqueous iodine; $I_2(aq)$ is brown.	le. Chlorine gas is
a) Wh	at observation would be made if chlorine gas is bubbled through aq	ueous
sodiuı	m iodide? Explain using an equation.	(2marks)

	ertain conditions chlorine and iodine react to give iodine chloride, ICl ₃ (s) of bonding would you expect to exist in iodine trichloride? Explain. (2marks)
	e the name of each of the processes described below which takes place when the
following sa i)	Anhydrous copper sulphate becomes wet. (3marks)
ii)	Magnesium chloride forms an aqueous solution.
iii)	Fresh crystals of sodium carbonate, Na ₂ CO ₃ . 10H ₂ O forms white powder.

13. In an experiment, chlorine gas was passed into moist hydrogen sulphide contained in a boiling tube as shown in the diagram

a)	What	observation was made	e in the boiling	tube?		(1mark)
b)	Write	e an equation for the ab	ove reaction.			(1mark)
c) 	What	precaution should be tak	en in carrying o	ut this experime	nt? Give a reaso	on. (1mark)
14.Us bondi	ing dot ng in H	ss (.)and crosses (x) to a I ₃ O+ (Atomic numbers	represent outer; H = 1.0, O =	most electrons 8).	, draw diagram	s to show the (2marks)
•••••	• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •			
15. explai		ond and graphite are a	llotropes of car	rbon. In terms	of structure an	d bonding
	the fo	ollowing.				
	(a)	Diamond is used in o	drilling througl	h hard rocks.		(1mark)
	(b)	Graphite is used as a	ı lubricant.			(1mark)
 16. Th eleme		e below gives the energ	y required to r	emove the oute	ermost electron	for some group I
Elem	ent		I	II	III	IV
Ener	gy kJn	nol-1	494	418	519	376

a) Arrange the elements in order of their reactivity starting with the most reactive.	(1mark)
b) suggest possible identity of element IV.	(1mark)
17. X gm of potassium hydroxide were dissolved in distilled water to make 100cm ³ solution. 50cm ³ of the solution- required 50cm ³ of 2 M nitric acid for complete neutralization. Calculate the mass X, of potassium hydroxide. (Relative formula mas KOH = 56). (3marks)	of
18. State and explain how the rate of reaction between zinc granules and steam can be	
	emarks)
19. The apparatus shown below was set to prepare and collect hydrogen sulphide	

a) Name solid C2.	(1mark)
b) Give a reason why warm water is used.	(1mark)
(c)What observation would be made if hydrogen sulphide gas was bubble lead (II) nitrate?	ed into a solution of (1mark)
	(" ,
20. Concentrated pitric (V) acid was added to iron (II) sulphote acidified	with culphuria (VI)
20. Concentrated nitric (V) acid was added to iron (II) sulphate acidified acid and the mixture heated. The solution turned from pale green to yello	
brown gas. Explain these observations.	(3marks)
	•••••
	•••••
21. Describe how a solid sample of Zinc (II) carbonate can be prepared in	the laboratory
starting with zinc oxide.	(3marks)

22. But -2- ene undergoes addition hydrogenation when reacted with hydrogen gas.

(a) Name the product formed when but -2 – ene reacts with hydrogen gas.	(1mark)
b) Name the conditions necessary for hydrogenation process.	(1mark)
c)State one industrial use of hydrogenation.	(1mark)
23. The sketch below shows substance H being converted to substance J. study it an question that follows.	d answer the
Why do the two curves become horizontal after sometime?	(2marks)

24. In an experiment to investigate the conductivity of substances, a student used the set – up shown below. The Student noted that the bulb did not light What had been omitted in the set- up? (1mark) (a) (b) Explain why the bulb lights when the omission is corrected. 25. a) State the Graham's law diffusion. (1mark) b) The molar masses of gases W and X are 16.0 and 44.0 respectively. If the rate of diffusion of W through a porous material is 12cm³s⁻¹ calculate the rate of diffusion of X through the same material. (2marks)

26.When solid B_1 was heated, a gas which formed a white precipitate when passed through lime water was produced. The residue was dissolved in dilute nitric (V) acid to form a colourless solution B_2 . when dilute hydrochloric acid was added to solution B_2 a white precipitate which dissolved on warning was formed.

a)	Writ	e the formula of the;	
	I	Cation in solid B ₁	(1mark)
	II	anion in solid B_1	(1mark)
b) Write an	ionic eq	uation for the reaction between the residue and dilute nitric	(V) acid (1mark)
27. Hardness	of water	may be removed by either boiling or addition of chemicals	i.
a) writ	te an equ	nation to show how boiling removes hardness of water.	(1 mark)
b) Nar	ne two	chemicals that are used to remove hardness of water.	(2 marks)
			•••••

28. Study the information in the table below and answer the questions below the table.

Bond	Bond energy (kJmol-1)
С-Н	414
Cl-Cl	244
C-Cl	326
H-Cl	431

Calculate the enthalpy change of the reaction:						
$CH_4(g) + Cl_2(g) \rightarrow CH_3Cl(g) + HCl(g)$						
stinguished between dilute acid and a weak acid. Give an example in each.	,					

THIS IS THE LAST PRINTED PAGE

NAME		ADM
SCHOOL		INDEX
DATE	SIGN	TARGET
		233/1

CHEMISTRY Theory Paper 1

Time: 2 Hours

SERIES 3 2024 KCSE PREDICTION MOCK

Kenya Certificate of Secondary Education.

INSTRUCTIONS TO CANDIDATES:

- (a) Write your **name**, **class** and **admission number** in the spaces provided above.
- (b)Answer **ALL** the questions in the spaces provided in the question paper
- (c) KNEC Mathematical tables and electronic calculators may be used for calculations
- (d) All working **MUST** be clearly shown where necessary
- (e) This paper consists of 10 printed pages
- (f) Candidates should check the question paper to ascertain that **all the pages are printed** as indicated and that **no questions are missing**
- (g) Candidates should answer the questions in English

FOR EXAMINER'S USE ONLY

Question	Maximum score	Candidate's score
1-29	80	

Turn Over

1. a) Name another gas, which is used together with oxygen in welding.	(1 mark)
(b). Explain the change in mass that occurs when the following substances are separate	
heated in open crucibles.	
(i) Copper metal.	(1mark)
(ii) Copper (II) nitrate.	(1mark)
2. Aluminum metal is a good conductor and is used for overhead cables. State any o	other two
properties that make aluminum suitable for this use.	(2marks)
3. Give two reasons why helium is used in weather balloons.	(2marks)
4. Draw two positional isomers of the third member of alkyne series.	(3marks)

5.The apparatus shown below was used to investigate the effect of carbon (ii) oxide on copper (II) oxide.

a) 	State the observation that was made in the combustion tube at the end of the ex-	xperiment. (1mark)
b)	Write an equation for the reaction that took place in the combustion tube	(1mark)
) Why is it necessary to burn the gas coming out of tube K?	(1mark)
5.G	ive a reason why) Phosphorus is stored under water.	(1mark)
 i	i) Chlorine gas is prepared in the fume chamber.	(1mark)
iii) Concentrated sulphuric acid is not used to dry ammonia gas.	(1mark)

7. A certain matchstick head contains potassium chlorate and Sulphur. On striking	g, the two
substances react to produce Sulphur (iv) oxide and potassium chloride. State the	
environmental effect of using such matches in large numbers.	(2marks)
	•••••
8. When a sample of concentrated sulphuric acid was left in an open beaker in a re	
two days, the volume was found to have increased slightly.	
a) What property of concentrated sulphuric acid was being investigated.	(1mark)
b) State one use of concentrated sulphuric acid that depends on the property name	
	(1mark)
9. The following two tests were carried out on chlorine water contained in two test	
a) A piece of colored flower was dropped into the first – tube. Explain why the flower was	
b) The second test- tube was corked and exposed to sunlight after a few days, it was	as found to
contain a gas that rekindled a glowing splint. Write an equation for the reaction wh	nich
produced the gas.	(1mark)
10. In the Haber process, the optimum yield of ammonia is obtained when a tempe	rature of
450°C, a pressure of 200 atmospheres and iron catalysts are used	
$N_2(g) + 3H_2(g)$ \longrightarrow $2NH_3(g); \Delta H = -92kJ.$	
a) How would the yield of ammonia be affected if the temperature was raised to 60	00^{0} C?
Explain.	(2marks)
	•••••

b) Give two use of ammonia.	(1mark)

11. The set – up below was used to prepare hydrogen chloride gas and react it with iron powder. Study it and answer the questions that follow.

At the end of the reaction, the iron powder turned into a light green solid.

a) Identify the light green solid.	(1mark)
b) At the beginning of the experiment, the pH of the solution in con	
the end, the pH was found to be 2. Explain.	(2marks)

12. Below is part of the Thorium decay series.

$$\begin{array}{c} 232 \\ 90 \\ \end{array} \\ \begin{array}{c} \text{Th} \\ \end{array} \\ \begin{array}{c} (i) \\ 88 \\ \end{array} \\ \begin{array}{c} 228 \\ 89 \\ \end{array} \\ \begin{array}{c} (ii) \\ 90 \\ \end{array} \\ \begin{array}{c} 228 \\ 88 \\ \end{array} \\ \begin{array}{c} (iv) \\ 88 \\ \end{array} \\ \begin{array}{c} 224 \\ 88 \\ \end{array} \\ \begin{array}{c} \text{Ra} \\ \end{array}$$

(i) Write an overall nuclear equation for the conversion of Th-232 to Ra-224. (1mark)

) Give any two uses	of radio isotopes in medicine.	(2marks)
	elow shows a series of reactions star	rting with ethanol, Study it and
swer the questions	s that follow.	
Ethanoic a	cid NaOH (aq)	C Soda lime heat Methane
Conc H₂SO ₄ ↓	Gas B High Pressure Polymer	
Name: I.	Process A	(1ma
II.	Substances B and C	(1/2m

C.....(½mark)

(1mark)

ii) Write the equation for the reaction leading to formation of methane.

14. Study the flow chart below and answer the questions that follow.

b)	What property of zinc oxide is shown by the reactions in (a) above?	
7. 0	.84 g of aluminum reacted completely with chlorine gas. Calculate the volu	ume of
	chlorine gas used (Molar gas volume is $24 \mathrm{dm}^3$, al = 27).	(3 marks)
••••		
••••		
	Proper use of soaps in washing hands has proven to control the spread of co	
	Write the formula of the grey insoluble substance left in the washing basin v	when one (1mark)
ses s	soap with tap water given that the formula of the soap is $C_{17}H_{35}COONa$.	` /
ises s	soap with tap water given that the formula of the soap is C ₁₇ H ₃₅ COONa.	
b) \$	State two advantages of Soapy detergents over soapless detergents.	(2marks)
ses (State two advantages of Soapy detergents over soapless detergents.	(2marks)
ses (State two advantages of Soapy detergents over soapless detergents.	(2marks)
b) \$	State two advantages of Soapy detergents over soapless detergents.	(2marks)
ses (State two advantages of Soapy detergents over soapless detergents. Use the information given below to draw a labeled diagram of an electro that can be constructed to measure the electromotive force between G an	(2marks)
b) \$	State two advantages of Soapy detergents over soapless detergents. Use the information given below to draw a labeled diagram of an electro	(2marks)
b) \$\frac{1}{2}\$	State two advantages of Soapy detergents over soapless detergents. Use the information given below to draw a labeled diagram of an electro that can be constructed to measure the electromotive force between G an $G2+(aq)+2e \rightarrow G(s)$; $E^{\theta}=-0.74 \text{ V}$	(2marks)
b) \$\frac{1}{2}\$	State two advantages of Soapy detergents over soapless detergents. Use the information given below to draw a labeled diagram of an electro that can be constructed to measure the electromotive force between G an $G2+(aq)+2e \rightarrow G(s)$; $E^{\theta}=-0.74$ V $J2+(aq)+2e \rightarrow J(s)$; $E^{\theta}=-0.14$ V	(2marks) chemical cell d J. (2marks)
b) \$	State two advantages of Soapy detergents over soapless detergents. Use the information given below to draw a labeled diagram of an electro that can be constructed to measure the electromotive force between G an $G2+(aq)+2e \rightarrow G(s)$; $E^{\theta}=-0.74 \text{ V}$ $J2+(aq)+2e \rightarrow J(s)$; $E^{\theta}=-0.14 \text{ V}$ Calculate the E^{θ} value for the cell constructed in (a) above.	(2marks) chemical cell d J. (2marks) (1marks)
b) S	State two advantages of Soapy detergents over soapless detergents. Use the information given below to draw a labeled diagram of an electro that can be constructed to measure the electromotive force between G an $G2+(aq)+2e \rightarrow G(s)$; $E^{\theta}=-0.74$ V $J2+(aq)+2e \rightarrow J(s)$; $E^{\theta}=-0.14$ V Calculate the E^{θ} value for the cell constructed in (a) above.	(2marks) chemical cell d J. (2marks) (1marks)

b) Study the fo	ollowing	equilibrium	reaction	and answer	the questions	that follow: -
1	HI (ag) + I	H2O(1) —		H ₂ O ⁺ (aq) I	-(ag)	

Given that in an acid solution, $H_3O^+_{(aq)}$ act in place of hydrogen ions, H^+ , according to the equation.

$$H_3O^+_{(aq)} + OH^-_{(aq)} \longrightarrow 2H_2O_{(l)}$$

Explain what would be observed when potassium hydroxide solution is added to the above		
equilibrium mixture.	(2marks)	

21. The table below gives information on four elements K, L, M and N. Study it and answer the questions that follow. The letters do not represent the actual symbols of the elements.

Element	Electron	Atomic radius	Ionic
	arrangement	(nm)	radius(nm)
K	2, 8, 2	0.136	0.065
L	2, 8, 7	0.099	0.181
M	2, 8, 8, 1	0.203	0.133
N	2, 8, 8, 2	0.174	0.099

a) Which two elements have similar chemical properties? Explain.	(2marks)
	•••••
b) Which element is a non-metal? Explain.	(1mark)

22.In an experiment to determine the heat of combustion of methanol, a student used the setup below.

Volume of water = 500cm³

Final temperature of water = 27.0°C

Initial temperature of water = 20.0°C

Final mass of lamp + methanol = 22.11g

Initial mass of lamp+ methanol = 22.98g

Density of water = 1.0g/cm³

Specific heat capacity = 4.2kJ/g/k

Calculate: (i)The number of moles of methanol used in this experiment given that the R.F.M	
(ii) The heat of combustion per mole of methanol.	(2mark)
23. Using dots (.) and crosses (x) to represent outermost electrons, draw diagent bonding in, CO_2 and H_3O^+ . (Atomic numbers; $H = 1.0, C = 14.0, O = 14.0$)	C
i) CO _{2.}	(1mark)

ii) H_3O^+ (2marks)

24. The diagram below shows a set- up that was used to prepare and collect a sample of nitric (v) acid

a)Give a reason why it is possible to generate nitric (v) acid from sulphuric(vi) acid	in the
set - up.	(1mark)
	(1mark)
c) Give two use of nitric (v) acid.	(1mark)
25. When a hydrocarbon was completely burnt in oxygen, 4.2g of carbon (IV) oxide g of water were formed. Determine the empirical formula of the hydrocarbon (H= 1.0 ; C= 12.0 ; $0=16.0$).	(3marks)

26 Starting with 50 cm ³ of 2.8M sodium	nydroxide describe how a sample of pure sodium
sulphate crystals can be prepared.	(3 marks)
27. The graph below shows the behavior	of a fixed mass of a gas at constant temperature.
Pressure (atmospheres)	
	Volume (littes
a) What is the relationship between t	he volume and the pressure of the gas? (1mark)

b) Three litres of oxygen gas at one atmosphere pressure were compressed to two

Atmospheres at a constant temperature calculate the volume occupied by the oxyg	gen gas (2marks)
28. Explain the following observations	
i) Very little amount of hydrogen gas is collected when dilute sulphuric aci	d react with
calcium metal.	(1mark)
ii) When hydrogen chloride gas is dissolved in water, the solution turns blu	
red, while when hydrogen chloride gas is dissolved in methyl benzene; the	resulting solution
has no effect on the blue litmus paper.	(2marks)
	• • • • • • • • • • • • • • • • • • • •

THIS IS THE LAST PRINTED PAGE

NAME		ADM
SCHOOL		INDEX
DATE	SIGN	TARGET
		233/1

CHEMISTRY Theory Paper 1

Time: 2 Hours

SERIES 4 2024 KCSE PREDICTION MOCK

Kenya Certificate of Secondary Education.

INSTRUCTIONS TO CANDIDATES:

- (a) Write your **name**, **class** and **admission number** in the spaces provided above.
- (b)Answer ALL the questions in the spaces provided in the question paper
- (c) KNEC Mathematical tables and electronic calculators may be used for calculations
- (d) All working **MUST** be clearly shown where necessary
- (e) This paper consists of 10 printed pages
- (f) Candidates should check the question paper to ascertain that **all the pages are printed** as indicated and that **no questions are missing**
- (g) Candidates should answer the questions in English

FOR EXAMINER'S USE ONLY

Question	Maximum score	Candidate's score
1-29	80	

Turn Over

1. List three differences between a conductor and an electrolyte		(3mks)	
CONDUCTOR	ELECTROLYTE		
2. Describe how you can prepare ethane starts	ing with calcium carbide and water	(3mks)	
3. Define the following terms			
i. covalent bond		(1mk)	
n covarent bond		(IIIII)	
	•••••	• • • • • • • • • • • • • • • • • • • •	
	•••••	• • • • • • • • • • • • • • • • • • • •	
ii. Coordinate bond		(1mk)	
		• • • • • • • • • • • • • • • • • • • •	
		• • • • • • • • • • • • • • • • • • • •	
iii. Draw a dot(o) and cross(x) diagram of an	nmonium chloride (N=14, H=1, Cl=	:17) (2mks)	
		, , ,	
		••••••	
		••••••	
		••••••	
		••••••	
	•••••	••••••	
4. State two functions of a school laboratory		(2mks)	

	dentify substances with the following properties	(1mk)
i.	it is an ionic compound, an electrolyte and can be used as a food additive	(1mk)
i.	Relights a glowing splint, has a slight smell, slightly less dense than air, and	
•	in cold water	(1mk)
	H d	. ('')1-1
iii. to v	Has a density of 1.84 g/cm ³ , an oily liquid, changes blue hydrated coppe white	r (11) sulph (1mk)
		, ,
6. a	Define the term fermentation	(1mk)
		` /
b)]	Name the compounds formed when potassium metal reacts with	(2mks)
i.	ethanol	
•	ethanoic acid	
	A hydrated salt of copper has the formula CuSO ₄ .nH ₂ O. About 25g of the salt	
	il all the water evaporated. If the mass of the anhydrous salt is 16.0g, find the $i=64.0$, $S=32.0$, $O=16.0$, $H=1$)	value of f
	(3 mks)	

8. sodiui	When 100 cm ³ of 0.5 M sulphuric acid solution, H ₂ SO ₄ , r m hydroxide solution, NaOH, the temperature rises by 6.85	
	cm^3 , specific heat capacity = $4.2kJkg^{-1}K^{-1}$). Calculate the mobed by the equation:	olar heat of neutralization
H ₂ SO	$_{4(aq)} + 2NaOH_{(aq)} \rightarrow Na_2SO_{4(aq)} + 2H_2O_{(l)}$	(3 mks)
• • • • • • •		
 9. Nar	me the catalysts used in the following	(3mks)
i.	Esterification	,
ii.	Ostwald process	
Pr	reparation of hydrogen in the laboratory	
10.	a) State Gay Lussac's law	(1ml

(2mks)

atmosphere and 25°C, calculate the volume of the resulting gaseous mixture.

11. The set	t-up below	vas used to prepare Nitric(V)a	cid.	
G Sodium nitrat	lass retort		+	Tap water
(i) Gi name of lic (1mk)		Liquid I Heat		the R. Nitric acid
(ii) Wr	ite an equat	on for the reaction which take	es place in the retort flask	(1mk)
(iii) Sta	te the role o	f tap water.		(1mk)
12. Study t	the information	ion given in the table below a	nd answer the questions tha	t follow.
	Bond	Bond energy (KJ mol)		
	С-Н	413		
	Br-Br	193		
	C-Br	280		
	H-Br	365		
(a)				
Calculate t	he Enthalpy	changes for the reaction belo	W	(2mks)

 $\longrightarrow CH_3Br(g) + HBr(g)$

 $CH_4(g) + Br_2(g)$

b) Nam	ne two other me	thod used in softening ha	ard water	(2mks) ls A,B, C and D and their Action of heat on its nitrate Oxide formed
b) Nam	ne two other me	thod used in softening ha	me reactions of meta	(2mks) ls A,B, C and D and their Action of heat on
b) Nam	ne two other me	thod used in softening ha	ard water	(2mks)
b) Nam	ne two other me	thod used in softening ha	ard water	(2mks)
•••••				
		٠		()
	er sometimes the whow Zeolite is		and cease to soften w	ater. Write an equation to (1mk)
			•	
		₂ X (aq)	$CaX_{(s)} + 2Na$	+ ()
		is a complex compound the equation below.	used to soften nard w	ater in the ion-exchange
14 \ 5	7 1'. (NI X7)		1. 6. 1. 1	
				, ,
13. Dif	ferentiate betwe	een hydrolysis and sapon	ification	(2mks)
(b) Sta	ite whether the i	reaction is exothermic or	endothermic. Explai	n (1mk)
	• • • • • • • • • • • • • • • • • • • •			
	• • • • • • • • • • • • • • • • • • • •			
•••••			•••••	
	•••••			

Arrange the metals in order of decreasing activity

NO reaction

Hydrogen evolved

Hydrogen evolved

NO reaction

(3mks)

Oxide formed Oxide formed

C D

16. Elements X, Y and Z have atomic numbers 9, 11 and 18 respectively.	
(a) Which element can be used in electric light bulbs?	(1mark)
(b) Which two elements react to form an ionic compound?	(1 Mark)
(c) Write an equation for the reaction between element B and water?	(1mark)
17. (a) What is a universal indicator?	(1mark)
(b) State one advantage of universal indicator over other commercial indicators.	(1mark)
18. Explain how solid calcium sulphate can be prepared from solid samples of ca carbonate and sodium sulphate. All other reagents and apparatus are provided.	ulcium (3 marks)
19. A heavy metal (P) was dissolved in dilute nitric acid to form a solution of P(NO₃)₂. Portions of the resulting solution were treated as follows:	of compoun

- - a) To the first portion a solution of dilute hydrochloric acid is added, where a white precipitate (S) is formed, which dissolves on warming.

- b) The second portion is treated with two drops of 2M Sodium hydroxide solution where a white precipitate (**T**) is formed. The white precipitate dissolved in excess sodium hydroxide to form a colourless solution.
- c) A solution of potassium iodide is added to the third portion where a yellow precipitate (U) is formed.
- d) When the resulting solution is evaporated to dryness and heated strongly a yellow solid (V) is formed and a brown gas (W) and a colourless gas (X) are formed.

I. Identify the substances P, S, T, U, V, W. P	(3 marks)
U	
S	
V	
T	
W	

20. Sodium thiosulphate was reacted with dilute hydrochloric acid in a round bottomed flask shown below. The gas evolved was collected by downward delivery in a gas jar. as Dilute hydrochloric acid Cardboard cover moisty filter paper soaked in acidified potassium chromium . (vi) solution sodium thiosulphate a. Write an equation to show the reaction going on in the reaction in vessel.(1 mark) 21. State the observation noted on the filter paper. Give a reason for your answer (1 mark) a. Give a reason why the filter paper soaked in the acidified potassium chromium (VI) is used at the top of the flask 22. State one use of each of the following apparatus in the laboratory i) Conical flask (1mk) ii) Desiccator (1mk) iii) Crucible (1mk) 22 i. Define Vulcanisation (1mk)

ii. What is the importance of the ab	pove defined process	(2mks)
23. Two gas jar containing hydrogen chas shown below	aloride gas and ammonia gas were clo	ose to each other
Hydrogen	<u> </u>	
 State and explain the observe 	ation made	(2mks)
ii) State the significance of	the above experiment	(1mk)
24. Unknown substances had PH values	s as shown in the table below.	
Substance	PH values	
A	6.0	
В	2.0	
С	8.0	
	o ha	
State which substance is likely to i. Lemon juice		(1mk)
i. Lemon juice	t would be a better electrolyte? Expla	
i. Lemon juice		

25. The scheme below shows some reaction sequence starting with solid M.	
$\begin{array}{c c} & H_2SO_4 \\ \hline Solid M & \longrightarrow & Solution N \\ \end{array} + Gas \ burns \ with \ a$	'pop'sound
Few drops NH ₃ Excess NH ₃ (aq)	
Colourless Soln Q White ppt	
i. Name solid M (1mk	<u>(</u>)
ii. Write the formula of a complex ion present in solution \mathbf{Q} (1mk)
ii. Write an ionic equation of the reaction between lead (ii) nitrate and solution N	(1mk)
26. Describe how you can separate a mixture of water and hexane	(3mks)
27. A solid p was suspected to be a sulphate of sodium, describe the tests that we carried out to determine whether the sold was actually sodium sulphate	(3mks)
28. Define the term chemistry	(1mk)

THIS IS THE LAST PRINTED PAGE

NAME		ADMADM
SCHOOL		INDEX
DATE	SIGN	TARGET
		-
		233/1

CHEMISTRY Theory Paper 1

Time: 2 Hours

SERIES 5 2024 KCSE PREDICTION MOCK

Kenya Certificate of Secondary Education.

INSTRUCTIONS TO CANDIDATES:

- (a)Write your name, class and admission number in the spaces provided above.
- (b)Answer **ALL** the questions in the spaces provided in the question paper
- (c) KNEC Mathematical tables and electronic calculators may be used for calculations
- (d) All working **MUST** be clearly shown where necessary
- (e) This paper consists of 10 printed pages
- (f) Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing
- (g) Candidates should answer the questions in English

FOR EXAMINER'S USE ONLY

Question	Maximum score	Candidate's score
1-29	80	

Turn Over

1. The diagram below shows a set-up of apparatus used to separate immiscible liquids.

o)	Name the parts labelled A and B.	
<i>a</i> 1	Name the Dans labelled A and D.	

(1 mark)

A-

B-

b) State the function of the part labelled A . (1 mark)

2. Element K (not actual symbol of the element) has isotopes with relative abundance as shown below.

Isotope	abundance %
$\frac{10}{5}K$	18.69%
$\frac{11}{5}K$	81.28%

Calculate the relative atomic mass of K. (2 marks)

3. The table below gives the ionization energies of the alkali metals.

Element	1st ionization energy kJ mol
A	494
В	418
С	519

	Whic	ch of the three metals is the least reactive. Give a reason.	(1mark)
	4. A jar f	Full of moist chlorine was inverted over a jar of hydrogen sulph	nide as shown
		Moist chlorine	
		Hydrogen sulphide	
_	(a)	State the observation made.	(1 mark)
-	(b)	Write the equation for the reaction and show using oxidatio	n numbers that th
	(0)	reaction above is redox.	(2 marks)
		ece of burning Magnesium was introduced into a gas jar of nitradded to the products. The resultant solution was tested with li	
	(i)	Explain the observation.	(1mark)
	(ii)	Write an equation for the formation of the final solution.	(1mark)

6.	State one reagent that can be used to distinguish between the pairs of ions.				
	(a)	Pb ²⁺ (aq)	$Al^{3+}(aq)$		
		Reagent			
		Observation	(2	marks)	
••••					
	(b)	SO^{2-4} and $SO3^{2-}$			
		Reagent			
		Observation		(2marks)	
			 2 NaCl + CO₂ + H₂O n of sodium carbonate in grams per litre. 	(3 marks)	
8.		electronic arrangemen	t of ions of a certain element represented by		
	P^{2-}	2:8:8			
	Q^{2+}	2:8			
	R^+	2:8			
	S	2:8:8			
	a)	Explain why S is no	ot represented as an ion.	(1mark)	

b) WI	nich element	has the larges	t atomic radius	? Explain	(1mark)
		•		owing informat	tion;
·	-		·		/A 1 1
Determine	the molarity	of the solutio	n.		(4 marks)
•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •	
•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •			
	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •			
T DU 1		1	. 1 1	• • • • • • • • • • • • • • • • • • • •	•••••
	14.0	1.0	8.0	6.5	7.0
Calution) / (т	N.T.	D	77
Solution	M	L	N	P	Z
			owest concen	tration of hy	drogen ion. Gi (1mk)
	• • • • • • • • • • • • • • • • • • • •				upset. Give for yo
	A label on Density 1. Determine The PH value PH Solution	A label on a bottle of F Density 1.134gm and p Determine the molarity The PH values of some some some phenomena phe	A label on a bottle of Hydrochloric at Density 1.134gm and percentage pur Determine the molarity of the solution. The PH values of some solutions are given by the PH by the property of the solution of the	A label on a bottle of Hydrochloric acid has the following Density 1.134gm and percentage purity 37% Determine the molarity of the solution. The PH values of some solutions are given below PH 14.0 1.0 8.0 Solution M L N	A label on a bottle of Hydrochloric acid has the following informated Density 1.134gm and percentage purity 37% Determine the molarity of the solution. The PH values of some solutions are given below PH 14.0 1.0 8.0 6.5 Solution M L N P

b)	Name the type of bond and explain whether the compound would conduct				
	electricity.	(2 marks)			
12.	A given volume of a gas G diffuses through a membrane in 10 secondition an equal volume of oxygen diffuses for 12.5sec. Determinant mass of G. (2 marks)				
13. (a)	Using an equation explain the observation made when sodium hydraluminum oxide dropwise until in excess.	roxide is added to (2 marks)			
(b) Na	me the product of the reaction	(1mark)			
14. (a)	Cynogen is a gaseous compound of carbon and Nitrogen only. On	250cm ³ Cynogen.			
	complete combustion in oxygen. 750cm ³ of nitrogen (iv) Oxide and	1000cm ³ of the rest			
	of product. Determine the formula of cynogen.	(3 marks)			

b)	Complete the reaction by indicating the polymer.	(1mark)
15.	A stream of Ammonia was bubbled in water contain	ining litmus papers.
	Arnonia gas	water blue litmus
	a) State one physical property of the gas	(1mark)
	b) Explain the observation made during the ex	periment. (1mark)
16.	The diagram below is a section of a model of the s	tructure of element K
		Key + charged nucleus - electron
a)	State the type of bonding that exist in K	(1mk)

•••••	•••••		
		ch group of the periodic table does element K belong. Give a reason	(2mks)
 17.	Prope	ene and propane both decolourises bromine liquid at different	conditions.
a) 	Expla	ain with an equation how the hydrocarbons decolourises bron	nine(4 marks)
	•••••		
	b)	Complete the reaction by indicating the polymer	(1mark)
		$C_2H_4 \longrightarrow$	
	c)	State type of reaction and calculate the value of n given the	
		polymer is 33600.	(4 marks)
 18.		w is a chemical reaction	
	$2SO_2$	$+ O_2 \longrightarrow 2SO_3 \triangle H$ -ve	
used.	Using	g an energy level diagram represent the reaction when vanadi	um (V) oxide is (2 marks)
useu.			(2 marks)
		ect of increase temperature to the equilibrium	(1mark)

Stud	y the test below	w and answer the	questions.	
(i)	Test		Observation	
	P is heated up	ntil no further	A colourless liquid condens	ed on the coole
	change	itii iio tuttiei	parts of the test tube	ed on the coole
			- A colourless gas which tur	rns Aqueous
			potassium chromate (VI) gr	•
			out and red-brown residue I	R was left.
(ii)				
` /	Chlorine gas	was bubbled	Solution turn from green to	yellow
	through an ac			
a)	Identify	P		
		R		1mark)
b)	Describe ho	w a student wou	ld test for onion in solid P.	(3 marks

20.	Name the main ores of.	(2 marks)
a)	Iron	
b)	Copper	
c)	Sodium	
d)	Aluminium	
21.	Calculate the oxidation number of P given the following P ₂ O ₅	(1mark)
22.	State and explain observation made when chlorine gas bubble through a potassium iodine.	a solution of (2 marks)
23.	Sketch the bond formed between the complex of tetramine copper(II) is	ons. (1mark)

24. Explain why graphite is used as a lubricant in machines.	(3 marks)
25. Study the set up below and answer the questions that flows	
Switch Carbon electrodes Moltem lead (ii) bromide	
State all the observations that would be made when the circuit is co	ompleted 3mks
26. Most natural water occurs as permanent hard water or temporary l a. Name two compounds that cause;	
i. Temporary hardness ii. Permanent hardness	(1mk) (1mk)
b. How is temporary hardness removed from water?	(1mk)

c. State one disadvantage of using hard water in boilers.	(1mk)
27. Use the information below to answer the questions that fo	llow.
$H2(g) \xrightarrow{+1_2} O_2 \longrightarrow H_2O(1)$	ΔH_{I} = -286KJ/Mol
$C(s) + O_2(g) \longrightarrow CO_2(g)$	$\Delta H_2 = -384 KJ/Mol$
$C(s) +4H_2(g) + {}^{1}_{2}O_2(g) \longrightarrow C_3H_7OH$	$\Delta H3 = -2686.6 \text{KJ/Mol}$
a. Define 'enthalpy of formation'	(1mk)
b. Determine the molar enthalpy of formation of propanol.	(2mks)
b. Determine the motar enthalpy of formation of propanol.	` '

THIS IS THE LAST PRINTED PAGE

Page 62 of 125

NAME		ADMADM	
SCHOOL		INDEX	
DATE	SIGN	TARGET	
		233/1	

CHEMISTRY Theory Paper 1

Time: 2 Hours

SERIES 6 2024 KCSE PREDICTION MOCK

Kenya Certificate of Secondary Education.

INSTRUCTIONS TO CANDIDATES:

- (a) Write your **name**, **class** and **admission number** in the spaces provided above.
- (b)Answer ALL the questions in the spaces provided in the question paper
- (c) KNEC Mathematical tables and electronic calculators may be used for calculations
- (d) All working **MUST** be clearly shown where necessary
- (e) This paper consists of 10 printed pages
- (f) Candidates should check the question paper to ascertain that **all the pages are printed** as indicated and that **no questions are missing**
- (g) Candidates should answer the questions in English

FOR EXAMINER'S USE ONLY

Question	Maximum score	Candidate's score
1-29	80	

Turn Over

1. a) Name and provide the function of the following pieces of apparatus.

	1

Name: (½ Mark)

Function ½ mark

b) Name	·	(1/2	Mar	k)
---------	---	-------	-----	----

Function ½ mark

2. A mixture consists of sulphur and iron filings.

a)	Describe how to	obtain sulphur	from the mixture	using methylbenzene.	(2 marks)

b)	Is the mixture homogenous or heterogeneous? Explain.	(1 mark)

3. Proteins are obtained from amino acid monomers. Complete the equation below to show

how the polymer is formed.

H₂N CH₂ COOH + H₂N CH₂CH₂COO₩

b) Name the type of polymerization shown above.	(1 mark)	

4. The energy level diagram below is for the reversible reaction.

$$X_2(g) + 3 Y_{2(g)}$$
 2 XY_{3 (g}

(1 mark)

a)Explain how the decrease in temperature will affect the above reaction	(2 marks)
b) Sketch on the same axes the energy level diagram for a catalyzed reaction a	assuming that

- b) Sketch on the same axes the energy level diagram for a catalyzed reaction assuming that the above energy level diagram is for uncatalysed reaction.
- (1 mark)
- 5. The set-up below shows how nitrogen gas is prepared in the laboratory.

a) Describe how nitrogen gas is formed in the flask.

(2 marks)

b) Nitrogen gas is inert. State one use of the gas based on thi	s property. (1 mark)
6. Unstable nuclide had the equation below occurring. Study the	equation and answer the qu
that follows: ${}^{1}_{O}n \longrightarrow {}^{1}_{1}P + Y$	
a) Name particle Y	(1 mark)
b) What is the effect of particles towards a magnetic field?	(1 mark)
c) Precisely classify the radioactive process above.	(1 mark)
7. Starting with copper turnings describe how a sample of copper	(II) carbonate can be
prepared.	
	(3 marks)
8. When dilute hydrochloric acid was added to iron (II) sulphide,	a colourless gas W with a
characteristic smell of rotten eggs was produced.	(1)
a) Name gas W.	(½ mark)
b) Explain how the above gas can be collected.	(1 ½ mark)

c) Give the test for gas W.	(1 mark)
9. a) Name the chief ore from which lead is extracted and give its chemical form	
b) Describe the froth floatation process in the extraction of lead metal.	
10. a) Determine the oxidation number of sulphur in $S_2O_8^{2-}$ hence write the arrangement of sulphur.	ne electron (2 marks)
b) The standard electrode potentials of a metal G and iron are given below $Fe^{2+}(aq) + 2e^{} \qquad Fe_{(s)} - 0.44V$ $G^{2+}_{aq} + 2e^{} \qquad G_{(s)} - 0.91V$ A piece of iron is coated with metal G. If the coating is scratched, would protected from rusting. Explain.	
protected from rusting. Explain.	
11. Study the equation below	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
a) Name process Q.	(1 mark)
b) Of what application is this equation?	(1 mark)
c) List two other substances which show this process.	(1 mark)

12. R – OO Na and R – CH₂ OSO₃ Na represent two types of cleansing agents. (1 mark) a) Name the class of cleansing agent to which each belongs. $R - COO^{-} - Na^{+}$ (½ mark) $R - CH_2 OSO_3^- Na^+$ (½ mark) b) Which of the above cleansing agent is likely to pollute the environment? Explain 13. Ammonia gas in solution dissociates according to the equation below. $NH_{3(g)} + H_2 O_{(L)}$ $NH_4^+ + OH^$ a) Identify the acidic species in the forward reaction. Explain. (1 mark) b) Write the formula of the complex formed when ammonia is added to copper (II) sulphate solution until in excess. (1 mark) c) What observation is made in (b) above. (1 mark)

14. The graph below represents the solubility curve of a gas in water.

	(a) State and explain the conclusion that can be drawn from this curv	e about the solubility
	of the gas.	(1mark)
))	Study the information in the table below on solubility and answer the	questions that

follow.

Salt	Solubility (g 1 100 g H ₂ O	
	At 60 ⁰ C	At 40 °C
Cu SO4	40	28
Pb (N0 ₃) ₂	99	79

Calculate the mass of copper (II) sulphate that will crystalize if 40g of a saturated solution is cooled from 60 $^{\circ}$ C to 40 $^{\circ}$ C. (2 marks)

15. Carbon is known to occur in different forms is solid form. Study the diagram below and answer the question that follow.

a) Name the natural phenomena exhibition by the path.

i) P	(1 mark)
ii) Q	(1 mark)
b) Give one use of $^{14}_{6}c$	(1 mark)

c) Provide an explanation why graphite is used in the HB pencil. (1 mark)

16. a) The diagram below represent the Frasch process.

Name the substances that pass through A and C.

A	(1	mark)

b)Study the flow chart below and answer the questions that follow.

a) Name gas X.	(1 mark)
----------------	----------

b) State the observation made when gas X is bubbled through a tube containing Iron (III) chloride (1 mark)

.....

17. Study the flow chart below and answer the questions that follow.

White solid B+ Black specs

Alkaline solution C

Write the formula of substances A, B and C	(3 marks)
A B	
C	
19. Below is a sketch required to investigate the reaction between chlorine an	d heated iron.
Use it to answer the question that follow.	
Chlorine Iron A	В
Heat	
a) Name a suitable drying agent shown above.	(1 mark)
b) The iron powder is heated before chlorine is passed over it. What would b	
when chlorine comes in contact with hot iron.	(1 mark)
e) Write an equation for the reaction in A.	(1 mark)
19. In Turkana, gnawing chalk was used to fight excess stomach acid. A patie from intestinal ulcer released 30 cm ³ of 1M hydrochloric acid in his stomach.	ent suffering
of impure chalk to neutralize the acid released. ($Ca = 40$, $C = 12$, $O = 16$)	
a) Write a balanced equation for the reaction that took place.	(1 mark)
c) Calculate the number of moles of calcium carbonate used up.	(1 mark)
o, carearate the number of motes of carefulli carbonate used up.	(1 11141 K)

c) Calculate the percentage impurity of calcium carbonate (chalk) used.	(1 mark)
20. The table below show elements represented by letters P, Q, R, S, T, U and V a	nd their
atomic numbers.	

Elements	P	Q	R	S	T	U	V
Atomic	11	12	13	14	15	16	17
number							

,	In which period of the periodic table do these elements belong	,
b)	How does the atomics radius of P compared with that of U?	(2 marks)
	Which of these ions P^+ and Q^+ is more stable? Explain.	(1 ½ marks)

21. The diagram below represents the industrial manufacture of hydrochloric acid, study it and answer the questions that follow.

Chlorine

a) Name one source of hydrogen and chlorine in this process.Hydrogen	(1 mark)
Chlorine	(1 mark)
b) The reaction between chlorine and hydrogen can be explosive.	
c) What is the role of glass beads in the absorption chamber?	(1 mark)
d) Explain why copper reacts with concentrated nitric (v) acid bu	
concentration hydrochloric acid.	(1 mark)
22. Draw a well labelled diagram of an electrolytic cell that can copper metal.	
23. A mixture of phenolphthalein and methyl orange was separate	
a) Name the method used in the separation of the mixture.	(1 mark)
b) State the colour of methyl orange in this experiment.	(1 mark)

c) Phenolphthalein is usually colourless. Explain why it is pink in this experimental experiments.	ment? (1 mark)
24. Calcium reacts with cold water. Explain two observations during the above react	ion. (2 marks)
25. a) M grams of a radioactive isotope decayed to 5 grams in 100 days. The	
a) Define the term half life.	(1 mark)
c) Calculate the initial mass of M of the radioactive isotope.	(2 marks)
26 a) A student set up experiments as illustrated by the diagrams below. Befeach metal into the solution it was cleaned.	ore introducing
A B Zinc metal	Heavy meta
Copper (II) sulphate Dilute sulphuric (VI) acid Dilute sulphuric	(VI) acid
Copper (II) sulphate Dilute sulphuric (VI) acid Dilute sulphuric Dilute sulphuric Why is it necessary to clean the metal pieces before introducing them into their respective beakers 1. provide the function of the following pieces of apparatus.	

i) What observation were made immediately the metal pieces were introduced into the			
beakers A, B and C?	(3 marks)		

THIS IS THE LAST PRINTED PAGE

NAME		ADM
SCHOOL		INDEX
DATE	SIGN	TARGET
		233/1

CHEMISTRY Theory Paper 1

Time: 2 Hours

SERIES 7 2024 KCSE PREDICTION MOCK

Kenya Certificate of Secondary Education.

INSTRUCTIONS TO CANDIDATES:

- (a) Write your **name**, **class** and **admission number** in the spaces provided above.
- (b)Answer **ALL** the questions in the spaces provided in the question paper
- (c) KNEC Mathematical tables and electronic calculators may be used for calculations
- (d) All working **MUST** be clearly shown where necessary
- (e) This paper consists of 10 printed pages
- (f) Candidates should check the question paper to ascertain that **all the pages are printed** as indicated and that **no questions are missing**
- (g) Candidates should answer the questions in English

FOR EXAMINER'S USE ONLY

Question	Maximum score	Candidate's score	
1-29	80		

Turn Over

1.	Using reagents provided only, explain how you could prepare a salt of Zinc carbonate solid. Dilute nitric(v) acid, zinc, sodium carbonate	(3mks)
2.	The diagram below shows a Bunsen burner when in use	
	С	
	Describe an experiment that would confirm that region labeled C is unsuitable for	• ·
	heating.	(2mk
		• • • • • • • • • • • • • • • • • • • •
3.	a) On the grid provided sketch a graph of pressure against volume for fixed mass gas at constant temperature	
	†	(Time)

Calculate the gas v	olume that the gas w	ould occupy at 41°	C and 750mmHg
pressure. $(0^{\circ} = 273 \text{k})$			2mks
	eutralisation of 0.1g	of a dibasic acid. C	sodium hydroxide were Calculate the relative formula (3mks)
	•••••		
•••••	•••••		
The diagram below rep	resents a laboratory	avnariment to inves	4144141 14
0 1		experiment to mives	tigate the reaction between
hydrogen - sulphide gas	-	-	tigate the reaction between
hydrogen - sulphide gas Hydrogen	s and an aqueous iro	-	
hydrogen - sulphide gas	s and an aqueous iro	-	
hydrogen - sulphide gas Hydrogen	s and an aqueous iro	-	
hydrogen - sulphide gas Hydrogen	s and an aqueous iro	-	To fume chamber
hydrogen - sulphide gas Hydrogen	s and an aqueous iro	-	
hydrogen - sulphide gas Hydrogen	s and an aqueous iro	-	To fume chamber
hydrogen - sulphide gas Hydrogen	s and an aqueous iro	-	To fume chambe
hydrogen - sulphide gas Hydrogen _ sulphide gas	Boiling tube.	n (III) chloride.	To fume chamber To fume chamber Iron (III) chloride solution
hydrogen - sulphide gas Hydrogen _ sulphide gas	Boiling tube.	n (III) chloride.	To fume chamber
hydrogen - sulphide gas Hydrogen _ sulphide gas	Boiling tube.	n (III) chloride.	To fume chamber To fume chamber Iron (III) chloride solution
hydrogen - sulphide gas Hydrogen sulphide gas a) Write chemical equa	Boiling tube	which takes place in	To fume chamber To fume chamber Iron (III) chloride solution
hydrogen - sulphide gas Hydrogen sulphide gas a) Write chemical equa	Boiling tube	which takes place in	To fume chamber ——Iron (III) chloride solution in the boiling tube. (1mk)
hydrogen - sulphide gas Hydrogen sulphide gas a) Write chemical equa	Boiling tube	which takes place in	To fume chamber ——Iron (III) chloride solution in the boiling tube. (1mk)
hydrogen - sulphide gas Hydrogen sulphide gas a) Write chemical equa	Boiling tube	which takes place in	To fume chamber ——Iron (III) chloride solution in the boiling tube. (1mk)
hydrogen - sulphide gas Hydrogen sulphide gas a) Write chemical equa	Boiling tube.	which takes place in	To fume chamber ——Iron (III) chloride solution in the boiling tube. (1mk)

• • • • • • • • • • • • • • • • • • • •		
 c) 	Describe a laboratory chemical test for a sample of hydrogen sulphide gas.	(1mk)
 6.	A group of compounds called chlorofluorocarbons have a wide range of uses I have harmful effects on the environment. State and explain one harmful effect chlorofluorocarbons on the environment.	
 7.	X grams of a radioactive isotope takes 120 days to decay to 3.5 grams. The ha period of the isotope is 20 days. a) Calculate the initial mass of the isotope	lf-life (2mks)
	b) State the application of radioactivity in agriculture.	(1mk)
8. 	Sulphur and sodium belong to the same period on the periodic table. State and difference in M.P of the oxide of sulphur and the oxide of sodium.	explain the (3mks)

9.	a) Water is an example of a polar solvent. What is a polar solvent?	(1mk)
		• • • • • • • • • • • • • • • • • • • •
		• • • • • • • • • • • • • • • • • • • •
•••		
•••		
	b) Explain the following observations HCl gas dissolves in water to for electrolyte, while the same chloride dissolves in methylbenzene to form electrolyte (1mk)	n a non-
10	. a)Define the term deposition	(1mk)
	b) Describe how you can obtain copper powder from a mixture containing zinc powder.	copper and (2mks)
		•••••
11	. a) Name the main ore from which iron is extracted.	(1mk)
		• • • • • • • • • • • • • • • • • • • •
b)	Name two substances that convert iron (III) oxide to iron in the blast furnace. (2r	mks)
•••		
•••		
•••		
12	. a)Write an equation showing how boiling can remove temporary water hard	dness.(1mk)
•••		

b) Name one method that can be used to remove both temporally and pern hardness.	(1mk)
c) Other than wastage of soap during cleaning, state one other disadvantag water.(1mk)	
13. a)Name two pure allotropes of carbon.	(1mk)
b)State and explain using relevant equations the observation made when carbon(IV) oxi bubbled through calcium hydroxide solution for a long time. (2mks)	de is
14. When $Na_2CO_3.xH_2O$ is strongly heated it loses 63.2% of its mass. Determine x in the compound($Na=23,O=16,H=1$)	the value of (3mks)
15. Dry ammonia was passed over a heated lead(II) oxide in a combustion tube as	shown

Page 81 of 125

Lead (II) oxide

a)	What observations would be made in the combustion tube	(1mk)
b)	Write a chemical equation for the reaction in the combustion tube	(1mk)
c)	State one industrial use of ammonia	(1mk)
	n of P ²⁺ has a configuration of 2.8 Name the family to which P belong	(1mk)
b)	Compare the atomic and ionic radius of P. Explain	(2mks)
	ain why alkanes are used as fuel	(1mk)
	Draw the structure of the following compounds 3-methylbut – 1 yne	(2mks)

ii) But -2 –ene

a) Name solid Z

12	a)	Define	col	liih	i 1	itx
10.	a	Denne	SO	ιuυ	11.	IΙV

(1mk)

b) Study the information in the table and answer the questions below

	Solubility (g) 100g water		
Salt	At 40 ⁰ C	At 60°C	
CUSO ₄	28	38	
Pb(NO ₃) ₂	79	98	

i)Calculate the mass of CuSO₄ that would saturate 200g of water at 60^oC (1mk)

ii) A solution containing 80g of $Pb(NO_3)_2$ in 100g of water at 60^0 C was cooled to 40^0 C. Calculate the mass of $Pb(NO_3)_2$ that crystallized (1mk)

19.	. Dilute hydrochloric acid was added to a compound Z of copper. The solid reacted with
	the acid to form a colourless gas which formed a white precipitate when bubbled through
	lime water

State the observation that would be made if a similar	

Explain. (2mks)

20. a)Explain why the reactivity of group(VII) elements decrease down the group (2mks)

(1mk)

	t blue litmus and dry blue litmus paper were introduce. State the observations that would be made.	ed into gas jars of dry 1mk)
. a)Name the	reagents that are commonly used in the preparation of	of hydrogen (1mk)
b) Study	the diagram below and answer the questions that fol	llow
	Copper (II) oxide Anhydrous copp (II) oxide	Burning §

	•••••	Ctate and explain the charmation made in the enhance	
	ii)	State and explain the observation made in the anhydro after sometime	(1mk)
 22.	a) State	two physical properties of sulphur (IV) oxide	(1mk)

Heat

(1mk)

Name gas x

i)

b) Explain why when sulphur (IV) oxide is bubbled into acidi (VI) the solution changes colour from orange to green. Explai	_
c) In the contact process of manufacture of sulphuric(VI) by SO ₂ is reduced.	acid, explain how pollution (1mk)
23. Study the setup below and answer questions that follow Compound A Nitrogen (I) oxide Liquid B	
a) Name i) Compound A	(1mk)
ii) Liquid B	
b) Why is the boiling tube tilted downwards	(1mk)

24. Explain w a) Al	why luminium is commonly used for making cooking pots and pans.	(1mk)
b) Si	licon(IV) oxide is a poor conductor of heat and electricity	(1mk)
25. The set up	p below was used to show electrolysis in molten lead(II) iodide	
	Molten Lead (II) iodide. Heat	
i)	On the diagram label the cathode	(1mk)
ii)	State the observation that was made at the anode during the elect	rolysis. Give
	a reason for your answer	(2mks)

- 26. 100cm³ of carbon (II) oxide gas was reacted with 100cm³ of oxygen. (All volume were measured under the same conditions of temple and pressure.
 - a) Determine

i)	Volume of the product formed	(1mk)
	The gas which was in excess and by what volume	

27. a) Using a dot(.) and cross(x) diagram of carbon(II) oxide, differentiate between a covalent and a co-ordinate bond (1mk)

.....

- b) Use dot (.) and cross(x) diagrams to show bonding in between the elements represented by the following symbols. (2mks)
- i) $\frac{24}{12}X \text{ and } \frac{19}{9}Y$
- 28. Study the flow diagram below

	Name i)	Gas A	(½ mk)
 		Process B	(½ mk)
 	iii)	Substance D	(½ mk)
 	iv)	Gas E	(½ mk)
		the equation for the reaction in chamber C	(1mk)
 · • • • •			

NAME		ADM
SCHOOL		INDEX
DATE	SIGN	TARGET
		233/1

CHEMISTRY Theory Paper 1

Time: 2 Hours

SERIES 8 2024 KCSE PREDICTION MOCK

Kenya Certificate of Secondary Education.

INSTRUCTIONS TO CANDIDATES:

- (a) Write your **name**, **class** and **admission number** in the spaces provided above.
- (b)Answer ALL the questions in the spaces provided in the question paper
- (c) KNEC Mathematical tables and electronic calculators may be used for calculations
- (d) All working **MUST** be clearly shown where necessary
- (e) This paper consists of 10 printed pages
- (f) Candidates should check the question paper to ascertain that **all the pages are printed** as indicated and that **no questions are missing**
- (g) Candidates should answer the questions in English

FOR EXAMINER'S USE ONLY

Question	Maximum score	Candidate's score
1-29	80	

Turn Over

1 (a) What is a universal indicator?				(1mark)	
(b)	State one a	advantage of universal indicator over other	er commercial indicators.	(1mark)	
2. (Complete th	ne diagram below on identification and us	ses of some laboratory appara	tus.	
	Diagram			%	
	Name	(a)	(c)		
		(1/2		(1/2	
	-	mark)	mark)		
	Purpose	(b)	(d)		
		(1mark)	(1mark)		
		periment, sulphur was heated in a deflagra Explain the observations made.		ourn then lowered (2 marks)	
•••					
 (b)	Explain the	e role of oxygen in steel making.		(2 marks)	
 4 (aham's law of diffusion.		(1mark)	
	At what ter	mperature, in K, assuming constant pressit?	ure, is the volume of a fixed r	mass of gas at (2 marks)	

•••••		
5 (a) Distinguish b	etween a temporary physical change and temporary chem	nical change. (2 marks)
		• • • • • • • • • • • • • • • • • • • •
	nt, the following substances were heated in separate test t	•
to state the observa	ations and classifying the type of change that occurs.	(3 marks)
Solid	Observations on heating	Type of change
CuSO ₄ .5H ₂ O	Observations on neuring	Type of change
W C		
KMnO ₄		
6. Explain how you	u would distinguish between ethane and ethyne.	(2 marks)
•••••		
•••••		
7. Explain how sol	id calcium sulphate can be prepared from solid samples of	of calcium carbonate and
sodium sulphate. A	All other reagents and apparatus are provided.	(3 marks)
8 (a) A metal react	s with dilute hydrochloric acid to produce a gas. Explain	how to identify the gas.
		(1-mont-)
		(1mark)

(b) The diagram below shows the set up used for the reaction between magnesium and steam. Wet sand Zinc powder (i) Explain the observations made. (2 marks) (ii) Explain why the wet sand must be heated first before the zinc powder is heated. 9 (a) Distinguish between covalent bond and co-ordinate bond. (2 marks) (b) The diagram below shows the structure of a covalent compound containing the element hydrogen, H, and the unknown elements X, Y and Z. To which groups of the Periodic Table do these three elements, X, Y and Z, belong? $(1\frac{1}{2} \text{ ma})$ 10. In an experiment silicon (IV) chloride is dissolved in water in a boiling tube. (a) Write an equation for the reaction that occurs. (1mark)

	• • • • • • • • • • • • • • • • • • • •
(b) Explain the observations that were made during the experiment.	(3 marks)
11. A standard solution of potassium hydroxide (KOH) is prepared in a 250 cm ³ volumed During a titration, 12.5 cm ³ of this solution neutralizes 25 cm ³ of a 0.16 moldm ⁻³ ethanosolution. The balanced equation for the reaction is: $CH_3COOH_{(aq)} + KOH_{(aq)} \rightarrow CH_3COOK_{(aq)} + ICCOULUMED CALCULATE CALCULATE THE PROPERTY OF THE PROPERTY OF$	oic acid
volumetric flask. $(K = 39, O = 16.0, H = 1.)$	(3 marks)
	• • • • • • • • • • • • • • • • • • • •
12. Ammonia gas was burnt in oxygen as shown in the diagram below.	
Wide glass tube — Green yellow flame Wet glass wool	
Dry oxygen → Dry ammonia	a
(a) State the role of the glass wool.	(1mark)
(b) State the observations made during the experiment.	(1mark)
(c) Write an equation for the reaction that occurs.	(1mark)

13. Study the following reaction at equilibrium at a certain temperature.	
$2SO_{3(g)} \rightleftharpoons O_{2(g)} + 2SO_{2(g)} \Delta H > 0$	
(a) State two optimum conditions for this reaction.	(1mark)
	• • • • • • • • • • • • • • • • • • • •
(b) State two ways of increasing the yield of $SO_{3(g)}$.	(2 marks)
(b) State two ways of increasing the yield of $SO_{3(g)}$.	(2 marks)
14 (a) Write the equation for the reaction between chlorine and cold dilute sodium hydro	xide.(1mark)
	,
(b) When chlorine gas reacts with hot concentrated calcium hydroxide, one of the produc calcium hypochlorite (CaOCl ₂). This commonly referred to as bleaching powder.	ets formed is
Explain the bleaching action of calcium hypochlorite.	(2 marks)
	• • • • • • • • • • • • • • • • • • • •

15. The diagram below shows an apparatus for the laboratory preparation of carbon (II) oxide.

(a) Identify two mistakes in the set up.	(2 marks)
(b) Write an equation for the reaction between concentrated sulphuric (VI) acid and reag	
(c) State one use of carbon (II) oxide.	
16. The structures of four organic compounds are shown. 1 2 3 4	•••••
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	=C_H
(a) Which compounds decolourize bromine water?	(1mark)

(b) Explain **one** chemical test that can be used to distinguish between compounds 1 and 2. (2 marks)

number of carbon, hydrogen and oxygen atoms in the alcohol and car compound was derived?	nn ester differ from the total boxylic acid from which the
r	(1½ marks)
	•••••
	•••••
	•••••
18. The diagram shows a reaction scheme.	
Step I	
$ \begin{array}{c c} \textbf{Ethene + Steam} & \xrightarrow{\textbf{Step 1}} & \textbf{Compound X} \\ \hline & \textbf{Catalyst D} & \end{array} $	
Step II $H^+/K_2Cr_2O_{7(aq)}$	
Compound Y Step III Compound I	Compound Z
(a) Name:	
(i) Catalyst D	
(ii) Reaction II (iii) Reaction III	
(iv) Compound Z	(4 marks)
(h) State the observations made in stan II	(1morts)
(b) State the observations made in step II.	(1mark)
	(1,42)
	(1mark)
(c) Write an equation for the reaction that occurs in step III.	
(c) Write an equation for the reaction that occurs in step III.	(1mark)

- - reaction 1: 10 g of magnesium ribbon with excess 2.0 mol / dm³ dilute hydrochloric acid
- reaction 2: 5 g of magnesium powder with excess 2.0 mol / dm³ dilute hydrochloric acid In both experiments, the volume of hydrogen produced, V, is measured against time, t, and the results plotted graphically.
- (a) On the grid below, sketch a graph that would be obtained is volume of hydrogen produced is plotted against time for both reactions 1 and 2. (2 marks)

$$\begin{array}{l} Zn_{(s)} \rightarrow Zn^{2+}{}_{(aq)} + 2e; \, E^{\Theta} + 0.76V \\ Cu_{(s)} \rightarrow Cu^{2+}{}_{(aq)} + 2e; \, E^{\Theta} - 0.34V \end{array}$$

equilibrium is			
		$f_{(aq)} \rightleftharpoons 2Ag_{(s)} + Fe^{3+}_{(aq)}$	
	(Green)	(Yellow)	
Explain the eff	fect of addition o	of silver nitrate to the equilibrium mixture.	(2 marks)
•••••	• • • • • • • • • • • • • • • • • • • •		
22 (a) One of t	the ores of sodium	m is saltpetre. Give the formula of saltpetre.	(1mark)
reactive electronic	ode and would m	de is made of carbon while the cathode is made of nake the electrolytic process faster. Explain why it	
anode despite	this advantage.		(1mark)
			,
(c) Write two	equations that oc	ccur at the anode during the electrolysis process.	(2 marks)
23 (a) What is	half life as used	in radioactivity?	(1mark)
(u) 11 Hat 15	man mic as asca	iii iudiouctivity.	(1111ul K)

21. When a solution containing silver ions is added to a solution containing iron (II) ions, an

(b) A certain nuclide has a half-life of 1.5 seconds.

(i) What is a nuclide? (1mark)

	•••••	
(ii) What percentage of a given mass	of the nuclide will be left after 7.5 hours?	(2 marks)
		•••••
24. The potential energy graph for a h	hypothetical chemical reaction is shown below.	
	†	
o ⁻¹	c	
Potential energy (kJ·mol ⁻¹)		
)y (k		
g	products	
a e	b	
enti	a reactants	
Po		
	Course of reaction	
(a) What type of reaction is taking pla	ace?	(1mark)
		•••••
(b) What are the correct methods to c	alculate ΔH and E_a ?	(2 marks)
		•••••
A		
25. The diagram shows the apparatus	used to electrolyse lead (II) bromide using inert ele	ctrodes.
. Г		
lamp		
L		
) (
	日国日	
	lead(II) bromide	
	<u></u>	
Why does the lamp light up only whe	en the lead (II) bromide is melted?	(2 marks)

•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •

NAME		ADM	
SCHOOL		INDEX	
DATE	SIGN	TARGET	
<i>DATE</i>		233/1	
		, _	

CHEMISTRY Theory Paper 1

Time: 2 Hours

SERIES 9 2024 KCSE PREDICTION MOCK

Kenya Certificate of Secondary Education.

INSTRUCTIONS TO CANDIDATES:

- (a) Write your **name**, **class** and **admission number** in the spaces provided above.
- (b)Answer **ALL** the questions in the spaces provided in the question paper
- (c) KNEC Mathematical tables and electronic calculators may be used for calculations
- (d) All working **MUST** be clearly shown where necessary
- (e) This paper consists of 10 printed pages
- (f) Candidates should check the question paper to ascertain that **all the pages are printed** as indicated and that **no questions are missing**
- (g) Candidates should answer the questions in English

FOR EXAMINER'S USE ONLY

Question	Maximum score	Candidate's score
1-29	80	

Turn Over9

1.	a)	A hydrocarbon consists of 92.3% carbon. Its molecular mass i Molecular formula.	s 26. Calcul (2 mai	
	b)	Draw the structure of the hydrocarbon.		(1 mark)
2.	a) 	Explain why melting point of chlorine gas is greater than that	of Argon.	(I mark)
b)	Using o	dot(•) and cross (×) to represent electrons draw a diagram to sl carbon (iv) oxide.	(I mark))
	c)	In terms of structure and bonding. Explain why Graphite is us	ed as a lub	ricant. (1 mark)
3. soluti	a) on	What is observed when a few drops of phenolphthalein indic whose pH value is 3.0?	ator is addo	
	b)	Write an equation for the reaction between Lead (ii) oxide ar	nd dilute Ni (I ma	

State and explain the observation that would be made when zinc powder is heated with

4.

	copper (II) oxide.	(2 marks)
5. 	Why is it dangerous to run a motor car engine in a closed garage?	(2 marks)
6.	2 grams of sodium hydroxide is added to 30 cm3 of IM sulphuric (VI) acid. Wh of 0. 1M potassium hydroxide solution will be needed to neutralize the exces (Na23,016,H1)	
7.	An aqueous solution of hydrogen chloride gas reacts with manganese (IV) oxic chlorine gas while a solution of hydrogen chloride gas in methylbenzene does manganese (iv) oxide. Explain	
8.	A small piece of potassium Manganate (VII) was placed in a glass of water and standing for 6 hrs without shaking. State and explain the observations made.	d was left (2 marks)
9.	Magnessium reacts with both dilute and concentrated sulphuric (VI) acid. Wr balanced equation for the two reactions.	ite a (2 marks)

10. The table below gives the atomic numbers of elements **W**, **X**, **Y** and **Z**.

Element	W	Х	У	Z
Atomic number	14	17	16	19

a١	Name the type of bondi	ng that exists in the con	anound formed whe	n Y and 7 reacts
d)	mame the type of bondi	ng that exists in the con	ipouna formea whe	n 🛪 anu 🗸 reacts

(1 mark)

representing the strongest reducing agent. Give a reason for your	Select the letter	b)
(2 marks)	answer.	

11. Ethyne reacts with hydrogen as shown below

Use the bond energies below to calculate the enthalpy changes for the above reaction.

(3 marks)

BOND	ENERGY
H-H	435
C-H	413
C≡C	835
C=C	611

12. a) Explain the role of common salt in defrosting ice on roads in ice cold countries.

			(1 mark)			
b)	Explair	n why the long term effects of use of common salt is costly to motorists.	(1 mark)			
 13.	Given	the equation below				
	NH _{3(aq)}	+ $H_2O_{(I)}$ $\longrightarrow NH_4^+_{(aq)} + OH^{(aq)}$				
	Identi	Identify the species that acts as;				
	i) A base. Explain (1 m		ark)			
	ii) An a	acid. (½ ma	ark)			
14.	a)	State Grahams law of diffusion.	(1mark)			
	b)	The rate of diffusion of sulphur(IV)oxide gas through a porous material in Calculate the rate of diffusion of carbon(IV)oxide gas through the same				
		material (S=32,O=16,C=12)	(2 marks)			
15.	Descri	be how a solid sample of lead(II) chloride can be prepared using the follow	ving			
	reage	nts : dilute nitric acid, dilute hydrochloric acid and lead carbonate	(3 marks)			

16.	The production of ammonia is given by the equation $3H2(g) + N_2(g) = 2NH_3(g); \Delta H = -ve$	
	(i) State and explain the effect of addition of dilute hydrochloride acid on	equilibrium.
		(2 marks
	(ii) Explain the effect of increase in temperature on the yield of ammonia	(2 marks)
 17.	$Cr_2O_7^{2-}$ + 14 H ⁺ (aq) + 6Fe ²⁺ Cr_2^{3+} + 7H ₂ O(I) + 6Fe ³⁺ . The above equation show a redox reaction	
	•	(2 marks)
	(b) What is the role of H ⁺ in the above reaction.	(1 mark)
19.	a) Define the standard heat of formation.	(1 mark)

b) Draw energy cycle diagram to show how the standard heat of formation of ethanol (C_2H_5OH) can be determined from standard heats of combustion of its elements. (2 marks)

C) Given that $\Delta H_C(C) = -393 \text{kJmole}^{-1}$, $\Delta H_C(H_2) = -286 \text{kJmole}^{-1}$ and $\Delta H_C(C_2H_5OH) = -1368 \text{kJmole}^{-1}$. Calculate the enthalpy of formation of C_2H_5OH .	(2 marks)
water		
	A steady current of 0.2 Amperes was passed through molten silver bromide for 80 alculate the quantity of electricity that passed through the set up.	minutes. (1 mark)
b)	Calculate the mass of product deposited at the cathode. (1F = 96500C; Ag = 108, Br = 80)	(2 marks)
 c)	If a sample of cobalt has an activity of 1000 counts per minute, determine the ti	

take for its activity to decrease to 62.50 if the half-life of the element is 30 minutes. (2 marks)

22.	The apparatus set up below was used to prepare an anhydrous solid P	
	Dry agent M Chlorine gas	Solid F
	a) Write an equation for formation of solid P	(1 mark)
	b) Suppose the gas used in the set up was dry hydrogen chloride gas; what product obtained after the reaction? Give a reason for your answer.	it would be the (1 mark)
23.	Aluminium is obtained from the ore with the formula Al_2O_3 . $2H_2O$. The ore is refined to obtain pure aluminium oxide (Al_2O_3). The oxide is then elect Aluminium and oxygen gas using carbon anodes and carbon as cathode. a) Give the common name of the ore from where aluminium is extracted from	trolysed to get
	b) What would be the importance of heating the ore first before refining it?	(1 mark)

	c)	The refined ore has to be dissolved in cryolite first before electrolysis. W	hy is this
		necessary?	(1 mark)
	d)	Why are the carbon anodes replaced every now and then in the cell aluminium oxide?	for electrolysin _i (1 mark
 24. l		he cell representation below to answer the questions that follow) / V^{3+} (aq) //Fe $^{2+}$ (aq) /Fe(s)	
	i.	Write the equation for the cell reaction	(1 mark)
	ii.	If the E.M.F of the cell is 0.30 volts and the E^{θ} value for $V^{3+}aq / V$ (s) is -the E^{θ} of $Fe^{2+}(aq)/Fe(s)$	D.74V, calculate (2 marks)
25. acid, tireacted	he	nen 50cm ³ 1M potassium hydroxide was reacted with 50cm ³ of 1M h temperature rose by 8°C. When the same volume of Potassium 1 th 50cm ³ of 1M Pentanoic acid, the temperature rose by 3°C. Give reasons for the above difference in temperature.	
ii)	Write an equation to show dissociation of pentanoic acid?	(1 mark)
26.	Th	e following is structural formula of polyester.	

$$\begin{bmatrix} 0 & 0 & 0 \\ 0 & -CH_2 - CH_2 - 0 - C - CH_2 - C \end{bmatrix}$$

a)	Draw the structural formula and name the alkanoic acid and alkanol that	react to form
	the polymer.	(2 marks)

b) Give one use of polyester.	(1 mark)

- 27. A heavy metal P was dissolved in dilute nitric acid to form a solution of compound P(NO₃)₂. Portions of the resulting solution were treated as follows:
 - a) To the first portion a solution of dilute hydrochloric acid is added, where a white precipitate (S) is formed, which dissolves on warming.
 - b) The second portion is treated with two drops of 2M Sodium hydroxide solution where a white precipitate T is formed. The white precipitate dissolved in excess sodium hydroxide to form a colourless solution.
 - c) A solution of potassium iodide is added to the third portion where a yellow precipitate (U) is formed.
 - d) When the resulting solution is evaporated to dryness and heated strongly a yellow solid (V) is formed and a brown gas (W) and a colourless gas (X) are formed.

i.	Identify the substances P, S, T, U, V, W.	(3 marks)
••••		

28. The graphs below were drawn when 15g of marble chips in different physical states were reacted with 50cm³ of 2M Hydrochloric acid. They are drawn by measuring the volume of carbon (iv) oxide produced with time.

a) Which curves corresponds to the reactions involving powdered calcium carbonate and large sized marble chips with the dilute acid? Powdered calcium carbonate (½ mark)

All the graphs eventually flatten out at the same level but at different time. Why do b) the graphs flatten out at the same level?

c) Why is curve A very steep at any given point compared to the other curves.

Large sized calcium carbonate

(i)

(ii)

29. Sodium thiosulphate was reacted with dilute hydrochloric acid in a round bottomed flask as shown below. The gas evolved was collected by downward delivery in a gas jar.

,	write an equation to snow the reaction going		,
b)	State the observation noted on the filter	paper. Give a reason for your	answer.
			(1 mark)
c)	Give a reason why the filter paper soaked	in the acidified potassium ch	romium (VI) is
	used at the top of the flask	(1 mar	k)

NAME		ADM
SCHOOL		INDEX
DATE	SIGN	TARGET
		233/1

CHEMISTRY Theory Paper 1

Time: 2 Hours

SERIES 10 2024 KCSE PREDICTION MOCK

Kenya Certificate of Secondary Education.

INSTRUCTIONS TO CANDIDATES:

- (a) Write your **name**, **class** and **admission number** in the spaces provided above.
- (b)Answer **ALL** the questions in the spaces provided in the question paper
- (c) KNEC Mathematical tables and electronic calculators may be used for calculations
- (d) All working **MUST** be clearly shown where necessary
- (e) This paper consists of 10 printed pages
- (f) Candidates should check the question paper to ascertain that **all the pages are printed** as indicated and that **no questions are missing**
- (g) Candidates should answer the questions in English

FOR EXAMINER'S USE ONLY

Question	Maximum score	Candidate's score
1-29	80	

Turn Over

1 (a) What is a	universal indicator?		(1mark)
• • •				
(b)	State one a	advantage of universal indicator over other co	mmercial indicators.	(1mark)
	Complete th	ne diagram below on identification and uses o	of some laboratory apparatu	
۷. ۱	Diagram	and diagram below on identification and uses to	r some raporatory apparatu	
	Name	(a) (½	(c)	(1/2
	Purpose	mark) (b)	mark) (d)	
		eriment, sulphur was heated in a deflagrating Explain the observations made.	(1mark) spoon until it begins to but	rn then lowered (2 marks)
 (b)	Explain the	e role of oxygen in steel making.		(2 marks)
 4 (a) State Gra	ham's law of diffusion.		(1mark)

(b) At what temper 127°C doubled?	ature, in K, assuming constant pressure, is the volume of	of a fixed mass of gas at (2 marks)
-	etween a temporary physical change and temporary che	-
	nt, the following substances were heated in separate test tions and classifying the type of change that occurs.	
Solid	Observations on heating	Type of change
	Observations on heating	Type of change
CuSO ₄ .5H ₂ O KMnO ₄	Observations on nearing	Type of change
CuSO ₄ .5H ₂ O KMnO ₄	would distinguish between ethane and ethyne.	(2 marks)
CuSO ₄ .5H ₂ O KMnO ₄ 6. Explain how you 7. Explain how soli		(2 marks) of calcium carbonate and (3 marks)

8 (a) A metal reacts with dilute hydrochloric acid to produce a gas. Explain how to identify	fy the gas.
	(1mark)
(b) The diagram below shows the set up used for the reaction between magnesium and stee Wet sand Zinc powder Gas G Water	eam.
Heat Heat (i) Explain the observations made.	(2 marks)
(ii) Explain why the wet sand must be heated first before the zinc powder is heated.	(1mark)
9 (a) Distinguish between covalent bond and co-ordinate bond.	(2 marks)

(b) The diagram below shows the structure of a covalent compound containing the element hydrogen,

Page 116 of 125

H, and the unknown elements X, Y and Z.

To which groups of the Periodic Table do these three elements, X, Y and Z, belong?	(1½ marks)
10. In an experiment silicon (IV) chloride is dissolved in water in a boiling tube.(a) Write an equation for the reaction that occurs.	(1mark)
(h) Eveloin the cheanistics that were made desired the associated	
(b) Explain the observations that were made during the experiment.	(3 marks)
11. A standard solution of potassium hydroxide (KOH) is prepared in a 250 cm ³ volum During a titration, 12.5 cm ³ of this solution neutralizes 25 cm ³ of a 0.16 moldm ⁻³ ethanosolution.	
The balanced equation for the reaction is: $CH_3COOH_{(aq)} + KOH_{(aq)} \rightarrow CH_3COOK_{(aq)} + Calculate the mass of potassium hydroxide used to prepare the solution above in the 25$	
volumetric flask. $(K = 39, O = 16.0, H = 1.)$	(3 marks)
	•••••
12. Ammonia gas was burnt in oxygen as shown in the diagram below.	

(a) State the role of the glass wool.	(1mark)
(b) State the observations made during the experiment.	(1mark)
	• • • • • • • • • • • • • • • • • • • •
	• • • • • • • • • • • • • • • • • • • •
(c) Write an equation for the reaction that occurs.	(1mark)
13. Study the following reaction at equilibrium at a certain temperature.	
$2SO_{3(g)} \rightleftharpoons O_{2(g)} + 2SO_{2(g)} \Delta H > 0$	
(a) State two optimum conditions for this reaction.	(1mark)
	• • • • • • • • • • • • • • • • • • • •
(b) State two ways of increasing the yield of SO _{3(a)} .	(2 marks)

	•••••
14 (a) Write the equation for the reaction between chlorine and cold dilute sodium hyd	lroxide.(1mark)
(b) When chlorine gas reacts with hot concentrated calcium hydroxide, one of the production hypochlorite (CaOCl ₂). This commonly referred to as bleaching powder.	
Explain the bleaching action of calcium hypochlorite.	(2 marks)
15. The diagram below shows an apparatus for the laboratory preparation of carbon (II	l) oxide.
Conc. Suphuric (VI) acid	
Delivery tube	
Flask	
Reagent C Gas jar	
(a) Identify two mistakes in the set up.	(2 marks)

(b) Write an equation for the reaction between concentrated sulphuric (VI) acid and reagent C.(1mark)

(c) State one use of carbon (II) oxide.	(1mark)
	• • • • • • • • • • • • • • • • • • • •
16. The structures of four organic compounds are shown.1234	
$H = \begin{array}{ccccccccccccccccccccccccccccccccccc$	EC H
(a) Which compounds decolourize bromine water?	(1mark)
(b) Explain one chemical test that can be used to distinguish between compounds 1 and	2.(2 marks)
17. How does the number of carbon, hydrogen and oxygen atoms in an ester differ from number of carbon, hydrogen and oxygen atoms in the alcohol and carboxylic acid from number of carbon, hydrogen and oxygen atoms in the alcohol and carboxylic acid from number of carbon, hydrogen and oxygen atoms in the alcohol and carboxylic acid from number of carbon, hydrogen atoms in the alcohol and carboxylic acid from number of carbon, hydrogen atoms in the alcohol and carboxylic acid from number of carbon, hydrogen atoms in the alcohol and carboxylic acid from number of carbon, hydrogen atoms in the alcohol and carboxylic acid from number of carbon, hydrogen atoms in the alcohol and carboxylic acid from number of carbon, hydrogen atoms in the alcohol and carboxylic acid from number of carbon, hydrogen atoms in the alcohol and carboxylic acid from number of carbon, hydrogen atoms in the alcohol and carboxylic acid from number of carbon, hydrogen atoms in the alcohol and carboxylic acid from number of carbon, hydrogen atoms in the alcohol and carboxylic acid from number of carbon, hydrogen atoms in the alcohol and carboxylic acid from number of carbon, hydrogen atoms in the alcohol and carboxylic acid from number of carbon, hydrogen atoms in the alcohol and carboxylic acid from number of carbon, hydrogen atoms in the alcohol and carboxylic acid from number of carbon, hydrogen atoms in the alcohol and carboxylic acid from number of carbon, hydrogen atoms in the alcohol and carboxylic acid from number of carbon, hydrogen atoms in the alcohol and carboxylic acid from number of carbon, hydrogen atoms in the alcohol and carboxylic acid from number of carbon, hydrogen atoms in the alcohol and carboxylic acid from number of carbon, hydrogen atoms in the alcohol and carboxylic acid from number of carbon, hydrogen atoms in the alcohol and carboxylic acid from number of carbon, hydrogen atoms in the alcohol and carboxylic acid from number of carbon, hydrogen atoms in the alcohol acid from number of carbon, hydrogen atoms in the alcoh	
compound was derived?	(1½ marks)
	• • • • • • • • • • • • • • • • • • • •
	•••••
	• • • • • • • • • • • • • • • • • • • •

18. The diagram shows a reaction scheme.

Ethene + Steam	Step I Catalyst D	Compo	ound X				
		Step II		Cr ₂ O _{7(aq)} Step II	II C	omnound 7	7
(a) Name: (i) Catalyst D (ii) Reaction II (iii) Reaction III (iv) Compound Z		Compo	ound Y	Compour	nd X 1	ompound Z (4 mar	
		•••••	•••••		• • • • • • • • • • • • • • • • • • • •		
(b) State the observat	ions made in st	tep II.					(1mark)
(c) Write an equation	for the reaction	n that oc	curs in ste	ep III.			(1mark)
	g of magnesium g of magnesium the volume of l	ım ribbo n powde hydrogen	r with exc produce	cess 2.0 mol d, V, is mea	/ dm³ dilu sured agai	nst time, t, a	oric acid nd the results
plotted against time f	or both reaction	ns1 and 2	2.				(2 marks)

$$\begin{split} Zn_{(s)} &\rightarrow Zn^{2+}{}_{(aq)} + 2e; \, E^\Theta + 0.76V \\ Cu_{(s)} &\rightarrow Cu^{2+}{}_{(aq)} + 2e; \, E^\Theta - 0.34V \end{split}$$

21. When a solution containing silver ions is added to a solution containing iron (II) is equilibrium is set up. $2Ag^{+}_{(aq)} + Fe^{2+}_{(aq)} \rightleftharpoons 2Ag_{(s)} + Fe^{3+}_{(aq)}$ (Green) (Yellow)	ons, an
Explain the effect of addition of silver nitrate to the equilibrium mixture.	(2 marks)
	• • • • • • • • • • • • • • • • • • • •
	• • • • • • • • • • • • • • • • • • • •
22 (-) One of the case of a linear is saltered as Given the formula of allowers	
22 (a) One of the ores of sodium is saltpetre. Give the formula of saltpetre.	(1mark)
(b) In the Down's cell, the anode is made of carbon while the cathode is made of stee reactive electrode and would make the electrolytic process faster. Explain why it is not anode despite this advantage.	
anoue despite this advantage.	(1mark)
(c) Write two equations that occur at the anode during the electrolysis process.	(2 marks)
23 (a) What is half life as used in radioactivity?	(1mark)

(b) A certain nuclide has a half-life of 1.5 seconds. (i) What is a nuclide?	(1mark)
(ii) What percentage of a given mass of the nuclide will be left after 7.5 hours?	(2 marks)
24. The potential energy graph for a hypothetical chemical reaction is shown below. Course of reaction	
(a) What type of reaction is taking place?	(1mark)
(b) What are the correct methods to calculate ΔH and $E_a?$	(2 marks)

25. The diagram shows the apparatus used to electrolyse lead (II) bromide using inert electrodes.

Why does the lamp light up only when the lead (II) bromide is melted?	(2 marks)
	• • • • • • • • • • • •
	• • • • • • • • • • • • • • • • • • • •