Package 'isopleuros'

November 22, 2024

```
Title Ternary Plots
Version 1.3.0
Maintainer Nicolas Frerebeau < nicolas.frerebeau@u-bordeaux-montaigne.fr>
Description Ternary plots made simple. This package allows to create
      ternary plots using 'graphics'. It provides functions to display the
      data in the ternary space, to add or tune graphical elements and to
      display statistical summaries. It also includes common ternary
      diagrams which are useful for the archaeologist (e.g. soil texture
      charts, ceramic phase diagram).
License GPL (>= 3)
URL https://packages.tesselle.org/isopleuros/,
      https://github.com/tesselle/isopleuros
BugReports https://github.com/tesselle/isopleuros/issues
Depends R (>= 3.5)
Imports graphics, grDevices, methods, stats, utils
Suggests interp, rsvg, svglite, tinysnapshot, tinytest
Encoding UTF-8
LazyData true
RoxygenNote 7.3.2
Collate 'AllGenerics.R' 'coordinates.R' 'data.R'
      'isopleuros-internal.R' 'isopleuros-package.R'
      'ternary_arrows.R' 'ternary_axes.R' 'ternary_box.R'
      'ternary_contour.R' 'ternary_crosshairs.R' 'ternary_density.R'
      'ternary_ellipse.R' 'ternary_grid.R' 'ternary_hull.R'
      'ternary_image.R' 'ternary_labels.R' 'ternary_lines.R'
      'ternary_mean.R' 'ternary_pairs.R' 'ternary_pca.R'
      'ternary_plot.R' 'ternary_points.R' 'ternary_polygon.R'
      'ternary_segments.R' 'ternary_text.R' 'ternary_title.R'
      'ternary_window.R' 'triangle_phase.R' 'triangle_soil.R' 'zzz.R'
```

2 arctic

Author Nicolas Frerebeau [aut, cre] (https://orcid.org/0000-0001-5759-4944),
Brice Lebrun [ctb] (https://orcid.org/0000-0001-7503-8685>, Logo designer),
Université Bordeaux Montaigne [fnd],
CNRS [fnd]

Repository CRAN

Date/Publication 2024-11-22 14:30:07 UTC

Contents

arct	ic	Arcti	c La	ke S	Sedi	men	ts C	Con	ıpo.	sitic	ons									
Index																				35
	arangio_son			•	• •		•			• •	•	 •	•	• •	•	•	 •	•	 	. 55
	triangle_pnase_eas																			
	triangle_phase_cas																			
	ternary title																			
	ternary_text																			
	ternary segments .																			
	ternary_polygon																			
	ternary_points																			
	ternary_plot																			
	ternary_pca																			
	ternary_pairs																			
	ternary mean																			
	ternary_lines																			
	ternary_labels																			
	ternary_hull ternary_image																			
	ternary_grid																			
	ternary_ellipse																			
	ternary_density																			
	ternary_crosshairs .																			
	ternary_contour																			
	ternary_box																			
	ternary_axis																			
	ternary_arrows											 							 	
	lava											 							 	4
	boxite											 							 	3

Description

Sand, silt, clay compositions of 39 sediment samples at different water depths in an Arctic lake.

boxite 3

Usage

arctic

Format

A data. frame with 4 variables:

sand

silt

clay

depth Water depth (m).

Source

Aitchison, J. (1986). *The Statistical Analysis of Compositional Data*. London: Chapman and Hall. doi:10.1007/9789400941090.

See Also

Other datasets: boxite, lava

boxite

Boxite Compositions

Description

Compositions of 25 specimens of boxite.

Usage

boxite

Format

A data. frame with 5 variables:

- A albite.
- B blandite.
- C cornite.
- D daubite.
- E endite.

Source

Aitchison, J. (1986). *The Statistical Analysis of Compositional Data*. London: Chapman and Hall. doi:10.1007/9789400941090.

4 ternary_arrows

See Also

Other datasets: arctic, lava

lava

Skye Lavas Compositions

Description

AFM compositions of 23 aphyric Skye lavas.

Usage

lava

Format

A data. frame with 3 variables:

```
A Na2O + K2O (percent).
```

F Fe2O3 (percent).

M MgO (percent).

Source

Aitchison, J. (1986). *The Statistical Analysis of Compositional Data*. London: Chapman and Hall. doi:10.1007/9789400941090.

See Also

Other datasets: arctic, boxite

ternary_arrows

Add Arrows to a Ternary Plot

Description

Draw arrows between pairs of points.

```
ternary_arrows(x0, y0, z0, ...)
## S4 method for signature 'numeric, numeric, numeric'
ternary_arrows(x0, y0, z0, x1 = x0, y1 = y0, z1 = z0, ...)
```

ternary_axis 5

Arguments

x0, y0, z0	A numeric vector giving the x, y and z ternary coordinates of points from which to draw.
	Further arguments to be passed to graphics::arrows().
x1, y1, z1	A numeric vector giving the x, y and z ternary coordinates of points to which to draw.

Value

ternary_arrows() is called it for its side-effects.

Author(s)

N. Frerebeau

See Also

```
graphics::arrows()
Other geometries: ternary_crosshairs(), ternary_image(), ternary_labels(), ternary_lines(),
ternary_points(), ternary_polygon(), ternary_segments(), ternary_text()
```

Examples

ternary_axis

Add an Axis to a Ternary Plot

Description

Adds an axis to the current plot.

```
ternary_axis(
    side,
    at = NULL,
    labels = TRUE,
    tick = TRUE,
    center = getOption("isopleuros.center"),
    scale = getOption("isopleuros.scale"),
    font = NA,
    lty = "solid",
    lwd = 1,
```

6 ternary_axis

```
lwd.ticks = lwd,
col = NULL,
col.ticks = NULL,
...
)
```

Arguments

side	An integer specifying which side of the plot the axis is to be drawn on. The axis is placed as follows: 1=below, 2=right and 3=left.
at	A numeric vector giving the points at which tick-marks are to be drawn.
labels	A logical scalar specifying whether (numerical) annotations are to be made at the tickmarks, or a character vector of labels to be placed at the tickpoints. If this is not logical, at should also be supplied and of the same length.
tick	A logical scalar: should tickmarks and an axis line be drawn?
center	A numeric vector giving the center. If NULL (the default), data are assumed not centered.
scale	A numeric vector giving the scale factor. If NULL (the default), data are assumed not scaled.
font	font for text. Defaults to par("font.axis").
lty	A character string or numeric value specifying the line type for both the axis line and the tick marks.
lwd, lwd.ticks	A non-negative numeric value specifying the line widths for the axis line and the tick marks.
col,col.ticks	Colors for the axis line and the tick marks respectively. Defaults to par("col.axis").
•••	Other graphical parameters may also be passed as arguments to this function, particularly, cex.axis, col.axis and font.axis for axis annotation.

Value

ternary_axis() is called it for its side-effects.

Author(s)

N. Frerebeau

See Also

```
Other graphical elements: ternary_box(), ternary_grid(), ternary_pairs(), ternary_plot(), ternary_title()
```

```
## Add axis
ternary_plot(NULL, axes = FALSE)
ternary_axis(side = 1, col = "red")
ternary_axis(side = 2, col = "blue")
```

ternary_box 7

```
ternary_axis(side = 3, col = "green")
## Add box and grid
ternary_plot(NULL, axes = FALSE)
ternary_box(lty = "dashed", col = "red")
ternary_grid(lty.primary = "dotted")
```

ternary_box

Draw a Box around a Ternary Plot

Description

Draw a Box around a Ternary Plot

Usage

```
ternary_box(lty = "solid", ...)
```

Arguments

1ty A character string or numeric value specifying the line type of the box.... Other graphical parameters may also be passed as arguments to this function, particularly, col or lwd.

Value

ternary_box() is called it for its side-effects.

Author(s)

N. Frerebeau

See Also

```
Other graphical elements: ternary_axis(), ternary_grid(), ternary_pairs(), ternary_plot(), ternary_title()
```

```
## Add axis
ternary_plot(NULL, axes = FALSE)
ternary_axis(side = 1, col = "red")
ternary_axis(side = 2, col = "blue")
ternary_axis(side = 3, col = "green")

## Add box and grid
ternary_plot(NULL, axes = FALSE)
ternary_box(lty = "dashed", col = "red")
ternary_grid(lty.primary = "dotted")
```

8 ternary_contour

ternary_contour

Contour Lines

Description

Computes and draws contour lines.

Usage

```
ternary_contour(x, y, z, ...)
## S4 method for signature 'numeric, numeric, numeric'
ternary_contour(
 х,
 у,
  Ζ,
  value,
  n = 50,
  nlevels = 10,
  levels = pretty(range(value, na.rm = TRUE), nlevels),
  ilr = TRUE,
 method = "linear",
  extrapolate = FALSE,
  palette = function(i) grDevices::hcl.colors(i, "YlOrRd", rev = TRUE),
)
## S4 method for signature 'ANY, missing, missing'
ternary_contour(
  Х,
  value,
 n = 50,
  nlevels = 10,
  levels = pretty(range(value, na.rm = TRUE), nlevels),
  ilr = TRUE,
 method = "linear",
  extrapolate = FALSE,
 palette = function(i) grDevices::hcl.colors(i, "YlOrRd", rev = TRUE),
)
```

Arguments

x, y, z A numeric vector giving the x, y and z ternary coordinates of a set of points. If y and z are missing, an attempt is made to interpret x in a suitable way (see grDevices::xyz.coords()).

... Further arguments to be passed to ternary_lines().

ternary_contour 9

value A	A numeric vector giving the values to be plotted.
n A	A length-one numeric specifying the number of grid points.
	A length-one numeric vector specifying the number of contour levels desired. Only used if levels is NULL.
levels A	A numeric vector of levels at which to draw contour lines.
	A logical scalar: should interpolation be computed in ILR space? If FALSE, nterpolation is computed in Cartesian space.
method A	A character string: specifying the method for interpolation (see interp::interp()).
·	A logical scalar: should extrapolation be used outside of the convex hull de- ermined by the data points (see interp::interp())?
palette A	A color palette function that takes a single integer argument (the number of

Details

Contour are computed from a bivariate interpolation onto a grid, after an isometric log ratio transformation of the original data.

levels) and returns a vector of colors.

Value

```
ternary_contour() is called it for its side-effects.

Invisibly returns a list with elements levels (the contour levels) and colors (the contour colors) that can be used for a legend.
```

Note

The **interp** package needs to be installed on your machine.

Author(s)

N. Frerebeau

See Also

```
interp::interp(), grDevices::contourLines()
Other statistics: ternary_density(), ternary_ellipse(), ternary_hull(), ternary_mean(),
ternary_pca()
```

```
## Add density
## Data from Aitchison 1986
ternary_plot(arctic, panel.first = ternary_grid())
levels <- ternary_contour(arctic, value = arctic$depth, n = 100, nlevels = 10)
## Add a legend
legend_image <- grDevices::as.raster(rev(levels$colors))
graphics::rasterImage(legend_image, 0.85, 0.75, 0.9, 1)
graphics::text(x = 0.9, y = c(0.75, 1), labels = range(levels$levels), pos = 4)</pre>
```

10 ternary_crosshairs

ternary_crosshairs

Add Cross-Hairs to a Ternary Plot

Description

Draw lines that intersect at a point.

Usage

```
ternary_crosshairs(x, y, z, ...)
## S4 method for signature 'numeric,numeric,numeric'
ternary_crosshairs(x, y, z, x_mark = TRUE, y_mark = TRUE, z_mark = TRUE, ...)
## S4 method for signature 'ANY,missing,missing'
ternary_crosshairs(x, x_mark = TRUE, y_mark = TRUE, z_mark = TRUE, ...)
```

Arguments

x, y, z

A numeric vector giving the x, y and z ternary coordinates of a set of points.

If y and z are missing, an attempt is made to interpret x in a suitable way (see grDevices::xyz.coords()).

Further graphical parameters (see graphics::par()) may also be supplied as arguments, particularly, line type, lty, line width, lwd and color, col. Also the line characteristics lend, ljoin and lmitre.

 x_mark, y_mark, z_mark

A logical scalar: should the x, y or z axis component be drawn?

Value

ternary_crosshairs() is called it for its side-effects.

Author(s)

N. Frerebeau

See Also

```
Other geometries: ternary_arrows(), ternary_image(), ternary_labels(), ternary_lines(), ternary_points(), ternary_polygon(), ternary_segments(), ternary_text()
```

```
## Add cross-hairs
## Data from Aitchison 1986
ternary_plot(lava, panel.first = ternary_grid())
ternary_crosshairs(lava)
```

ternary_density 11

```
ternary_plot(lava, panel.first = ternary_grid())
ternary_crosshairs(lava, y_mark = FALSE, z_mark = FALSE, col = "red")

ternary_plot(lava, panel.first = ternary_grid())
ternary_crosshairs(lava, x_mark = FALSE, z_mark = FALSE, col = "green")

ternary_plot(lava, panel.first = ternary_grid())
ternary_crosshairs(lava, x_mark = FALSE, y_mark = FALSE, col = "blue")
```

ternary_density

Density Contour Lines

Description

Computes and draws density contour lines.

Usage

```
ternary_density(x, y, z, ...)
## S4 method for signature 'numeric, numeric'
ternary_density(
 х,
 у,
 Ζ,
 h = NULL
 n = 25,
 nlevels = 10,
 levels = NULL,
 palette = function(i) grDevices::hcl.colors(i, "YlOrRd", rev = TRUE),
)
## S4 method for signature 'ANY, missing, missing'
ternary_density(
 Х,
 h = NULL,
 n = 25,
 nlevels = 10,
 levels = NULL,
 palette = function(i) grDevices::hcl.colors(i, "YlOrRd", rev = TRUE),
)
```

Arguments

x, y, z A numeric vector giving the x, y and z ternary coordinates of a set of points. If y and z are missing, an attempt is made to interpret x in a suitable way (see grDevices::xyz.coords()).

12 ternary_density

	Further arguments to be passed to ternary_lines().
h	A length-one numeric vector giving the bandwidth.
n	A length-one numeric specifying the number of grid points.
nlevels	A length-one numeric vector specifying the number of contour levels desired. Only used if levels is NULL.
levels	A numeric vector of levels at which to draw contour lines.
palette	A color palette function that takes a single integer argument (the number of levels) and returns a vector of colors.

Details

Two-dimensional kernel density estimation with an axis-aligned bivariate normal kernel. Normal kernel is evaluated on a square grid, after an isometric log ratio transformation of the original data.

Value

```
ternary_density() is called it for its side-effects.
```

Invisibly returns a list with elements levels (the contour levels) and colors (the contour colors) that can be used for a legend.

Note

This must be considered as experimental and subject to major changes in a future release.

Author(s)

N. Frerebeau

Source

Two-dimensional kernel density estimation is adapted from MASS::kde2d().

See Also

```
grDevices::contourLines()
Other statistics: ternary_contour(), ternary_ellipse(), ternary_hull(), ternary_mean(),
ternary_pca()
```

```
## Add density
## Data from Aitchison 1986
ternary_plot(lava, panel.first = ternary_grid())
levels <- ternary_density(lava, n = 500, nlevels = 10)

## Add a legend
legend_image <- grDevices::as.raster(rev(levels$colors))
graphics::rasterImage(legend_image, 0.85, 0.75, 0.9, 1)
graphics::text(x = 0.9, y = c(0.75, 1), labels = range(levels$levels), pos = 4)</pre>
```

ternary_ellipse 13

ternary_ellipse

Add an Ellipse to a Ternary Plot

Description

Computes and draws a confidence/tolerance ellipse.

Usage

```
ternary_ellipse(x, y, z, ...)

ternary_confidence(x, y, z, ...)

## S4 method for signature 'numeric,numeric,numeric'
ternary_ellipse(x, y, z, radius = 1, ...)

## S4 method for signature 'ANY,missing,missing'
ternary_ellipse(x, radius = 1, ...)

## S4 method for signature 'numeric,numeric,numeric'
ternary_confidence(x, y, z, level = 0.95, ...)

## S4 method for signature 'ANY,missing,missing'
ternary_confidence(x, level = 0.95, ...)

## S4 method for signature 'numeric,numeric,numeric'
ternary_tolerance(x, y, z, level = 0.95, ...)

## S4 method for signature 'ANY,missing,missing'
ternary_tolerance(x, level = 0.95, ...)
```

Arguments

x, y, z	A numeric vector giving the x, y and z ternary coordinates of a set of points. If y and z are missing, an attempt is made to interpret x in a suitable way (see grDevices::xyz.coords()).
	Further arguments to be passed to graphics::polygon().
radius	A numeric vector specifying the scaling of the half-diameters.
level	A numeric vector specifying the confidence/tolerance level.

Details

Ellipse coordinates are computed after an isometric log ratio transformation of the original data.

14 ternary_grid

Value

ternary_ellipse() is called it for its side-effects.

Author(s)

N. Frerebeau

See Also

```
graphics::polygon()
Other statistics: ternary_contour(), ternary_density(), ternary_hull(), ternary_mean(),
ternary_pca()
```

Examples

```
## Ellipses
## Data from Aitchison 1986
ternary_plot(lava, panel.first = ternary_grid(5, 10))
ternary_tolerance(lava, level = 0.95, border = "blue", lty = 2)
ternary_confidence(lava, level = 0.95, border = "red", lty = 3)
```

ternary_grid

Add Grid to a Ternary Plot

Description

Adds a triangular grid to an existing plot.

```
ternary_grid(
  primary = NULL,
  secondary = NULL,
  center = getOption("isopleuros.center"),
  scale = getOption("isopleuros.scale"),
  col.primary = "darkgray",
  col.secondary = "lightgray",
  lty.primary = "dashed",
  lty.secondary = "dotted",
  lwd.primary = 1,
  lwd.secondary = lwd.primary
)
```

ternary_grid 15

Arguments

primary	An integer specifying the number of cells of the primary grid in x, y and z direction.
secondary	An integer specifying the number of cells of the secondary grid in x, y and z direction.
center	A numeric vector giving the center. If NULL (the default), data are assumed not centered.
scale	A numeric vector giving the scale factor. If NULL (the default), data are assumed not scaled.
col.primary, co	l.secondary
	A character string specifying the color of the grid lines.
lty.primary,lt	y.secondary A character string or numeric value specifying the line type of the grid lines.
lwd.primary,lwo	

Value

ternary_grid() is called it for its side-effects.

Author(s)

N. Frerebeau

See Also

```
Other graphical elements: ternary_axis(), ternary_box(), ternary_pairs(), ternary_plot(), ternary_title()
```

```
## Data from Aitchison 1986
ternary_plot(lava, center = FALSE, scale = FALSE, col = "red", pch = 16)
ternary_grid(5)

## Center
z <- ternary_plot(lava, center = TRUE, col = "blue", pch = 16)
ternary_grid(5, center = z$center)

## Center and scale
z <- ternary_plot(lava, center = TRUE, scale = TRUE, col = "green", pch = 16)
ternary_grid(5, center = z$center, scale = z$scale)</pre>
```

16 ternary_hull

ternary_hull

Convex Hull of a Set of Points

Description

Computes and draws the convex hull of the set of points specified.

Usage

```
ternary_hull(x, y, z, ...)
## S4 method for signature 'numeric,numeric,numeric'
ternary_hull(x, y, z, center = FALSE, scale = FALSE, ...)
## S4 method for signature 'ANY,missing,missing'
ternary_hull(x, center = FALSE, scale = FALSE, ...)
```

Arguments

x, y, z	A numeric vector giving the x, y and z ternary coordinates of a set of points. If y and z are missing, an attempt is made to interpret x in a suitable way (see grDevices::xyz.coords()).
	Further arguments to be passed to graphics::polygon().
center	A logical scalar specifying wether the data should be centered, or a numeric vector giving the center.
scale	A logical scalar specifying wether the data should be scaled, or a numeric vector giving the scale factor.

Value

ternary_hull() is called it for its side-effects.

Author(s)

N. Frerebeau

See Also

```
grDevices::chull(), graphics::polygon()
Other statistics: ternary_contour(), ternary_density(), ternary_ellipse(), ternary_mean(),
ternary_pca()
```

```
## Convex hull
## Data from Aitchison 1986
ternary_plot(lava, panel.first = ternary_grid(5, 10))
ternary_hull(lava, border = "red")
```

ternary_image 17

ternary_image

Display a Color Image

Description

Creates a grid of colored triangles with colors corresponding to the output of a function.

Usage

```
ternary_image(f, ...)
## S4 method for signature 'function'
ternary_image(f, n = 48, palette = NULL, ...)
```

Arguments

f A function that takes three arguments (x, y and z coordinates) and returns a

numeric vector.

... Further parameters to be passed to f.

n A length-one integer vector specifying the maximum number of tiles on each

axis.

palette A function that takes a single numeric vector (the output of f) as argument

and returns a vector of color. If NULL, the default color scheme will be used. If

FALSE, the output of f is used as colors.

Value

ternary_image() is called it for its side-effects.

Author(s)

N. Frerebeau

See Also

```
Other geometries: ternary_arrows(), ternary_crosshairs(), ternary_labels(), ternary_lines(), ternary_points(), ternary_polygon(), ternary_segments(), ternary_text()
```

```
## RGB
ternary_plot(NULL, xlab = "Red", ylab = "Green", zlab = "Blue")
ternary_image(f = rgb, n = 20, palette = FALSE)
```

18 ternary_labels

ternary_labels

Non-Overlapping Text Labels

Description

Optimize the location of text labels to minimize overplotting text.

Usage

```
ternary_labels(x, y, z, ...)

## S4 method for signature 'numeric,numeric,numeric'
ternary_labels(
    x,
    y,
    z,
    center = FALSE,
    scale = FALSE,
    labels = seq_along(x),
    type = c("text", "shadow"),
    ...
)

## S4 method for signature 'ANY,missing,missing'
ternary_labels(x, center = FALSE, scale = FALSE, labels = seq_along(x$x), ...)
```

Arguments

x, y, z	A numeric vector giving the x, y and z ternary coordinates of a set of points. If y and z are missing, an attempt is made to interpret x in a suitable way (see grDevices::xyz.coords()).
	Further graphical parameters (see <pre>graphics::par()</pre>) may also be supplied as arguments, particularly, character expansion, cex and color, col.
center	A logical scalar specifying wether the data should be centered, or a numeric vector giving the center.
scale	A logical scalar specifying wether the data should be scaled, or a numeric vector giving the scale factor.
labels	A character vector or expression specifying the text to be written.
type	A character string specifying the shape of the field. It must be one of "text" or "shadow". Any unambiguous substring can be given.

Value

ternary_labels() is called it for its side-effects.

ternary_lines 19

Author(s)

N. Frerebeau

See Also

```
graphics::text()
Other geometries: ternary_arrows(), ternary_crosshairs(), ternary_image(), ternary_lines(),
ternary_points(), ternary_polygon(), ternary_segments(), ternary_text()
```

Examples

```
## Compositional data
coda <- data.frame(
    X = c(41.0, 40, 39.0),
    Y = c(19.5, 20, 20.5),
    Z = c(39.5, 40, 40.5)
)

## Add text
ternary_plot(NULL, panel.first = ternary_grid())
ternary_points(coda)
ternary_labels(coda, labels = c("A", "B", "C"))</pre>
```

ternary_lines

Add Connected Line Segments to a Ternary Plot

Description

Add Connected Line Segments to a Ternary Plot

Usage

```
ternary_lines(x, y, z, ...)
## S4 method for signature 'numeric,numeric,numeric'
ternary_lines(x, y, z, type = "l", ...)
## S4 method for signature 'ANY,missing,missing'
ternary_lines(x, type = "l", ...)
```

Arguments

x, y, z

A numeric vector giving the x, y and z ternary coordinates of a set of points.

If y and z are missing, an attempt is made to interpret x in a suitable way (see grDevices::xyz.coords()).

Further graphical parameters (see graphics::par()) may also be supplied as arguments, particularly, line type, lty, line width, lwd, color, col and for type = "b", pch. Also the line characteristics lend, ljoin and lmitre.

20 ternary_mean

type

A character string indicating the type of plotting; actually any of the types as in graphics::plot.default().

Value

ternary_lines() is called it for its side-effects.

Author(s)

N. Frerebeau

See Also

```
graphics::lines()
Other geometries: ternary_arrows(), ternary_crosshairs(), ternary_image(), ternary_labels(),
ternary_points(), ternary_polygon(), ternary_segments(), ternary_text()
```

Examples

```
## Compositional data
coda <- data.frame(
    X = c(20, 60, 20, 20),
    Y = c(20, 20, 60, 40),
    Z = c(60, 20, 20, 40)
)

## Add lines
ternary_plot(NULL, panel.first = ternary_grid())
ternary_lines(coda, col = "red", lwd = 2)</pre>
```

ternary_mean

Compositional Mean

Description

Computes and draws the closed geometric mean of the set of points specified.

```
ternary_mean(x, y, z, ...)
## S4 method for signature 'numeric, numeric, numeric'
ternary_mean(x, y, z, ...)
## S4 method for signature 'ANY, missing, missing'
ternary_mean(x, y, z, ...)
```

ternary_pairs 21

Arguments

x, y, z A numeric vector giving the x, y and z ternary coordinates of a set of points. If y and z are missing, an attempt is made to interpret x in a suitable way (see grDevices::xyz.coords()).

. Further arguments to be passed to graphics::points().

Value

ternary_mean() is called it for its side-effects.

Author(s)

N. Frerebeau

See Also

```
Other statistics: ternary_contour(), ternary_density(), ternary_ellipse(), ternary_hull(), ternary_pca()
```

Examples

```
## Mean
## Data from Aitchison 1986
ternary_plot(lava, panel.first = ternary_grid())
ternary_mean(lava, pch = 16, col = "red")
ternary_confidence(lava, level = 0.95, border = "red", lty = 1)
```

ternary_pairs

Ternary Plot Matrices

Description

Produces a matrix of ternary plots.

```
ternary_pairs(x, ...)
## S4 method for signature 'matrix'
ternary_pairs(x, margin = NULL, ...)
## S4 method for signature 'data.frame'
ternary_pairs(x, margin = NULL, ...)
```

22 ternary_pca

Arguments

x A matrix or a data. frame. Columns are converted to numeric in the same way that data.matrix() does.

... Further graphical parameters.

margin A character string or an integer giving the index of the column to be used as

the third part of the ternary plots. If $\ensuremath{\mathsf{NULL}}$ (the default), marginal compositions

will be used (i.e. the geometric mean of the non-selected parts).

Value

ternary_pairs() is called it for its side-effects: it results in a graphic being displayed. Invisibly returns x.

Author(s)

N. Frerebeau

See Also

```
Other graphical elements: ternary_axis(), ternary_box(), ternary_grid(), ternary_plot(), ternary_title()
```

Examples

```
## Data from Aitchison 1986
## Ternary plots with marginal compositions
ternary_pairs(boxite)
## Ternary plots with endite
ternary_pairs(boxite, margin = "E")
```

ternary_pca

Principal Component Analysis

Description

Computes and draws principal component.

```
ternary_pca(x, y, z, ...)
## S4 method for signature 'numeric,numeric,numeric'
ternary_pca(x, y, z, axis = 1, ...)
## S4 method for signature 'ANY,missing,missing'
ternary_pca(x, axis = 1, ...)
```

ternary_plot 23

Arguments

x, y, z
A numeric vector giving the x, y and z ternary coordinates of a set of points. If y and z are missing, an attempt is made to interpret x in a suitable way (see grDevices::xyz.coords()).
... Further arguments to be passed to graphics::lines().
axis
An integer specifying the dimension to be plotted.

Value

ternary_pca() is called it for its side-effects.

Author(s)

N. Frerebeau

See Also

```
Other statistics: ternary_contour(), ternary_density(), ternary_ellipse(), ternary_hull(), ternary_mean()
```

Examples

```
## PCA
## Data from Aitchison 1986
ternary_plot(lava, panel.first = ternary_grid())
ternary_pca(lava, axis = 1, col = "red", lty = 2)
```

ternary_plot

Ternary Plot

Description

Produces a ternary plot.

```
ternary_plot(x, y, z, ...)
## S4 method for signature 'numeric, numeric, numeric'
ternary_plot(
    x,
    y,
    z,
    center = FALSE,
    scale = FALSE,
    xlim = NULL,
    ylim = NULL,
```

24 ternary_plot

```
zlim = NULL,
 xlab = NULL,
 ylab = NULL,
 zlab = NULL,
 main = NULL,
 sub = NULL,
 ann = graphics::par("ann"),
 axes = TRUE,
  frame.plot = axes,
 panel.first = NULL,
 panel.last = NULL,
)
## S4 method for signature 'ANY, missing, missing'
ternary_plot(
 Х,
 xlim = NULL,
 ylim = NULL,
 zlim = NULL,
 xlab = NULL,
 ylab = NULL,
 zlab = NULL,
 main = NULL,
 sub = NULL,
 ann = graphics::par("ann"),
 axes = TRUE,
 frame.plot = axes,
 panel.first = NULL,
 panel.last = NULL,
)
```

Arguments

x, y, z	A numeric vector giving the x, y and z ternary coordinates of a set of points. If y and z are missing, an attempt is made to interpret x in a suitable way (see grDevices::xyz.coords()).
	Other graphical parameters may also be passed as arguments to this function.
center	A logical scalar: should the data be centered?
scale	A logical scalar: should the data be scaled?
xlim	A length-three $numeric$ vector giving the x limits in the range $[0,1]$.
ylim	A length-three $\operatorname{numeric}$ vector giving the y limits in the range $[0,1]$.
zlim	A length-three numeric vector giving the z limits in the range $[0,1]$.
xlab, ylab, zlab	A character string giving a label for the x, y and z axes.
main	A character string giving a main title for the plot.

ternary_plot 25

sub	A character string giving a subtitle for the plot.
ann	A logical scalar: should the default annotation (title and x , y and z axis labels) appear on the plot?
axes	A logical scalar: should axes be drawn on the plot?
frame.plot	A logical scalar: should a box be drawn around the plot?
panel.first	An an expression to be evaluated after the plot axes are set up but before any plotting takes place. This can be useful for drawing background grids.
panel.last	An expression to be evaluated after plotting has taken place but before the axes, title and box are added.

Value

ternary_plot() is called it for its side-effects: it results in a graphic being displayed. Invisibly returns a list with the components:

```
    x A numeric vector of x values.
    y A numeric vector of y values.
    z A numeric vector of z values.
    center A numeric vector giving the center.
    scale A numeric vector giving the scale factor.
```

Author(s)

N. Frerebeau

See Also

```
Other graphical elements: ternary_axis(), ternary_box(), ternary_grid(), ternary_pairs(), ternary_title()
```

```
## Blank plot
ternary_plot(NULL)

## Compositional data
coda <- data.frame(
    X = c(20, 60, 20, 1/3),
    Y = c(20, 20, 60, 1/3),
    Z = c(60, 20, 20, 1/3)
)

## Ternary plot
ternary_plot(coda, pch = 16, col = "red")

## Add a grid
ternary_plot(coda, panel.first = ternary_grid(5, 10))</pre>
```

26 ternary_points

ternary_points

Add Points to a Ternary Plot

Description

Add Points to a Ternary Plot

Usage

```
ternary_points(x, y, z, ...)
## S4 method for signature 'numeric,numeric,numeric'
ternary_points(x, y, z, center = FALSE, scale = FALSE, type = "p", ...)
## S4 method for signature 'ANY,missing,missing'
ternary_points(x, center = FALSE, scale = FALSE, type = "p", ...)
```

Arguments

x, y, z	A numeric vector giving the x, y and z ternary coordinates of a set of points. If y and z are missing, an attempt is made to interpret x in a suitable way (see grDevices::xyz.coords()).
•••	Further graphical parameters (see graphics::par()) may also be supplied as arguments, particularly, plotting character, pch, character expansion, cex and color, col.
center	A logical scalar specifying wether the data should be centered, or a numeric vector giving the center.
scale	A logical scalar specifying wether the data should be scaled, or a numeric vector giving the scale factor.
type	A character string indicating the type of plotting; actually any of the types as in graphics::plot.default().

ternary_polygon 27

Value

ternary_points() is called it for its side-effects. Invisibly returns a list with the components:

```
    x A numeric vector of x values.
    y A numeric vector of y values.
    z A numeric vector of z values.
    center A numeric vector giving the center.
    scale A numeric vector giving the scale factor.
```

Author(s)

N. Frerebeau

See Also

```
graphics::points()
Other geometries: ternary_arrows(), ternary_crosshairs(), ternary_image(), ternary_labels(),
ternary_lines(), ternary_polygon(), ternary_segments(), ternary_text()
```

Examples

```
## Add points
## Data from Aitchison 1986
ternary_plot(NULL, panel.first = ternary_grid())
ternary_points(lava, col = "red", pch = 16)

## Center and scale
ternary_plot(NULL, axes = FALSE, frame.plot = TRUE)
ternary_points(lava, col = "red", pch = 16)
ternary_points(lava, center = TRUE, col = "blue", pch = 16)
ternary_points(lava, center = TRUE, scale = TRUE, col = "green", pch = 16)
```

ternary_polygon

Polygon Drawing

Description

Draws the polygons whose vertices are given in x, y and z.

```
ternary_polygon(x, y, z, ...)
## S4 method for signature 'numeric,numeric,numeric'
ternary_polygon(x, y, z, ...)
## S4 method for signature 'ANY,missing,missing'
ternary_polygon(x, y, z, ...)
```

28 ternary_segments

Arguments

x, y, z A numeric vector giving the x, y and z ternary coordinates of a set of points. If y and z are missing, an attempt is made to interpret x in a suitable way (see grDevices::xyz.coords()).

Further arguments to be passed to graphics::polygon().

Value

ternary_polygon() is called it for its side-effects.

Author(s)

N. Frerebeau

See Also

```
graphics::polygon()
Other geometries: ternary_arrows(), ternary_crosshairs(), ternary_image(), ternary_labels(),
ternary_lines(), ternary_points(), ternary_segments(), ternary_text()
```

Examples

```
## Compositional data
coda <- data.frame(
    X = c(20, 60, 20),
    Y = c(20, 20, 60),
    Z = c(60, 20, 20)
)

## Add a polygon
ternary_plot(NULL, panel.first = ternary_grid())
ternary_polygon(coda, density = 5, border = "red")</pre>
```

ternary_segments

Add Line Segments to a Ternary Plot

Description

Draw line segments between pairs of points.

```
ternary_segments(x0, y0, z0, ...)
## S4 method for signature 'numeric,numeric,numeric'
ternary_segments(x0, y0, z0, x1 = x0, y1 = y0, z1 = z0, ...)
```

ternary_text 29

Arguments

x0, y0, z0	A numeric vector giving the x, y and z ternary coordinates of points from which to draw.
	Further graphical parameters (see graphics::par()) may also be supplied as arguments, particularly, line type, lty, line width, lwd and color, col. Also the line characteristics lend, ljoin and lmitre.
x1, y1, z1	A numeric vector giving the x, y and z ternary coordinates of points to which to draw.

Value

ternary_segments() is called it for its side-effects.

Author(s)

N. Frerebeau

See Also

```
graphics::segments()
Other geometries: ternary_arrows(), ternary_crosshairs(), ternary_image(), ternary_labels(),
ternary_lines(), ternary_points(), ternary_polygon(), ternary_text()
```

Examples

ternary_text

Add Text to a Ternary Plot

Description

Draws the strings given in the vector labels at the coordinates given by x, y and z.

```
ternary_text(x, y, z, ...)
## S4 method for signature 'numeric, numeric, numeric'
ternary_text(
    x,
    y,
    z,
    center = FALSE,
```

30 ternary_text

```
scale = FALSE,
labels = seq_along(x),
...
)

## S4 method for signature 'ANY, missing, missing'
ternary_text(x, center = FALSE, scale = FALSE, labels = seq_along(x$x), ...)
```

Arguments

x, y, z	A numeric vector giving the x, y and z ternary coordinates of a set of points. If y and z are missing, an attempt is made to interpret x in a suitable way (see grDevices::xyz.coords()).
	Further arguments to be passed to graphics::text().
center	A logical scalar specifying wether the data should be centered, or a numeric vector giving the center.
scale	A logical scalar specifying wether the data should be scaled, or a numeric vector giving the scale factor.
labels	A character vector or expression specifying the text to be written.

Value

ternary_text() is called it for its side-effects.

Author(s)

N. Frerebeau

See Also

```
graphics::text()
Other geometries: ternary_arrows(), ternary_crosshairs(), ternary_image(), ternary_labels(),
ternary_lines(), ternary_points(), ternary_polygon(), ternary_segments()
```

```
## Compositional data
coda <- data.frame(
    X = c(20, 60, 20),
    Y = c(20, 20, 60),
    Z = c(60, 20, 20)
)

## Add text
ternary_plot(NULL, panel.first = ternary_grid())
ternary_text(coda, labels = c("A", "B", "C"), col = "red", cex = 2)</pre>
```

ternary_title 31

ternary_title

Ternary Plot Annotation

Description

Ternary Plot Annotation

Usage

```
ternary_title(
  main = NULL,
  sub = NULL,
  xlab = NULL,
  ylab = NULL,
  zlab = NULL,
  line = NA,
  outer = FALSE,
  ...
)
```

Arguments

main A character string specifying the main title (on top).

sub A character string specifying the sub-title (at bottom).

xlab, ylab, zlab A character string giving a label for the x, y and z axes.

line Specifying a value for line overrides the default placement of labels, and places them this many lines outwards from the plot edge.

outer A logical scalar: should the titles be placed in the outer margins of the plot?

Other graphical parameters may also be passed as arguments to this function, particularly, font.main, cex.main, col.main and font.sub, cex.sub, col.sub for title annotation; font.lab, cex.lab and col.lab for axis label.

Value

ternary_title() is called it for its side-effects.

Author(s)

N. Frerebeau

See Also

```
Other graphical elements: ternary_axis(), ternary_box(), ternary_grid(), ternary_pairs(), ternary_plot()
```

32 triangle_phase_cas

Examples

triangle_phase_cas

Ceramic Phase Diagram

Description

Ceramic Phase Diagram

Usage

```
triangle_phase_cas(labels = TRUE, symbol = FALSE, mol = FALSE, ...)
triangle_phase_ceramic(labels = TRUE, symbol = FALSE, mol = FALSE, ...)
```

Arguments

labels A logical scalar: should labels be displayed?

Symbol A logical scalar: should symbol be used instead of full labels? Only used if labels is TRUE.

mol A logical scalar: should molarity be used instead of molar mass?

Further arguments to be passed to graphics::polygon().

Author(s)

N. Frerebeau

See Also

```
Other charts: triangle_soil
```

```
## Ceramic phase diagram
ternary_plot(NULL, xlab = "CaO", ylab = "Al2O3", zlab = "SiO2")
triangle_phase_ceramic(symbol = TRUE, mol = TRUE, pch = 16)

ternary_plot(NULL, xlab = "CaO", ylab = "Al2O3", zlab = "SiO2")
triangle_phase_ceramic(symbol = TRUE, mol = FALSE, pch = 16)

## CAS diagram
```

triangle_soil 33

```
ternary_plot(NULL, axes = FALSE, ann = FALSE, frame.plot = TRUE)
triangle_phase_cas(mol = FALSE, pch = 16)
```

triangle_soil

Soil Texture Triangle

Description

Soil Texture Triangle

Usage

```
triangle_soil_hypres(labels = TRUE, symbol = FALSE, ...)
triangle_soil_folk(labels = TRUE, symbol = FALSE, ...)
triangle_soil_shepard(labels = TRUE, symbol = FALSE, ...)
triangle_soil_usda(labels = TRUE, symbol = FALSE, ...)
```

Arguments

labels A logical scalar: should labels be displayed?

symbol A logical scalar: should symbol be used instead of full labels? Only used if

labels is TRUE.

... Further arguments to be passed to graphics::polygon().

Author(s)

N. Frerebeau

See Also

```
Other charts: triangle_phase_cas()
```

```
## HYPRES soil texture
ternary_plot(NULL, xlab = "sand", ylab = "silt", zlab = "clay")
triangle_soil_hypres()

## USDA (1951) soil texture
ternary_plot(NULL, xlab = "sand", ylab = "silt", zlab = "clay")
triangle_soil_usda(symbol = TRUE)

## Folk (1954) soil texture
ternary_plot(NULL, xlab = "sand", ylab = "silt", zlab = "clay")
triangle_soil_folk(symbol = TRUE)
```

34 triangle_soil

```
## Shepard (1954) soil texture
ternary_plot(NULL, xlab = "sand", ylab = "silt", zlab = "clay")
triangle_soil_shepard()
```

Index

* charts	data.matrix(), 22
triangle_phase_cas,32	
triangle_soil,33	expression, $18,30$
* datasets	
arctic, 2	function, <i>9</i> , <i>12</i> , <i>17</i>
boxite, 3	
lava, 4	graphical parameters, 6, 7, 22, 24, 31
* geometries	graphics::arrows(), 5
ternary_arrows, 4	graphics::lines(), 20 , 23
ternary_crosshairs, 10	graphics::par(), 10, 18, 19, 26, 29
ternary_image, 17	<pre>graphics::plot.default(), 20, 26</pre>
ternary_labels, 18	graphics::points(), 21, 27
ternary_lines, 19	graphics::polygon(), 13, 14, 16, 28, 32, 33
ternary_points, 26	<pre>graphics::segments(), 29</pre>
ternary_polygon, 27	graphics::text(), <i>19</i> , <i>30</i>
ternary_segments, 28	grDevices::chull(), <i>16</i>
ternary_text, 29	<pre>grDevices::contourLines(), 9, 12</pre>
* graphical elements	grDevices::xyz.coords(), 8, 10, 11, 13, 16,
ternary_axis,5	18, 19, 21, 23, 24, 26, 28, 30
ternary_box, 7	
ternary_grid, 14	integer, <i>6</i> , <i>15</i> , <i>17</i> , <i>22</i> , <i>23</i>
ternary_pairs, 21	interp::interp(),9
ternary_plot, 23	
ternary_title, 31	lava, <i>3</i> , <i>4</i> , 4
* statistics	list, 9, 12, 25, 27
ternary_contour, 8	logical, 6, 9, 10, 16, 18, 24–26, 30–33
ternary_density, 11	
ternary_ellipse, 13	MASS::kde2d(), <i>12</i>
ternary_hull, 16	matrix, 22
ternary_mean, 20	
ternary_pca, 22	numeric, 5-13, 15, 16, 18, 19, 21, 23-30
arctic, 2, 4	ternary_arrows, 4, 10, 17, 19, 20, 27-30
	ternary_arrows,numeric,numeric,numeric-method
boxite, <i>3</i> , <i>3</i> , <i>4</i>	(ternary_arrows),4
	ternary_arrows-method(ternary_arrows),
character, 6, 7, 9, 15, 18, 20, 22, 24–26, 30,	4
31	ternary_axis, 5, 7, 15, 22, 25, 31
	ternary_box, $6, 7, 15, 22, 25, 31$
data.frame, <i>3</i> , <i>4</i> , <i>22</i>	ternary_confidence(ternary_ellipse), 13

36 INDEX

```
ternary_confidence, ANY, missing, missing-methodternary_labels-method (ternary_labels),
              (ternary_ellipse), 13
ternary_confidence, numeric, numeric, numeric-methodary_lines, 5, 10, 17, 19, 19, 27-30
              (ternary_ellipse), 13
                                                                                  ternary_lines(), 8, 12
ternary_contour, 8, 12, 14, 16, 21, 23
                                                                                  ternary_lines, ANY, missing, missing-method
ternary_contour, ANY, missing, missing-method
                                                                                                 (ternary_lines), 19
              (ternary_contour), 8
                                                                                  ternary_lines, numeric, numeric, numeric-method
ternary_contour, numeric, numeric, numeric-method
                                                                                                 (ternary_lines), 19
              (ternary_contour), 8
                                                                                  ternary_lines-method(ternary_lines), 19
{\tt ternary\_contour-method}
                                                                                  ternary_mean, 9, 12, 14, 16, 20, 23
              (ternary_contour), 8
                                                                                  ternary_mean, ANY, missing, missing-method
ternary_crosshairs, 5, 10, 17, 19, 20, 27–30
                                                                                                 (ternary_mean), 20
ternary\_crosshairs, ANY, missing\_method ternary\_mean, numeric, numeric\_method ternary\_mean, numeric\_mean, numeri
              (ternary_crosshairs), 10
                                                                                                 (ternary_mean), 20
ternary_crosshairs,numeric,numeric,numeric-methoddary_mean-method(ternary_mean), 20
              (ternary_crosshairs), 10
                                                                                  ternary_pairs, 6, 7, 15, 21, 25, 31
ternary_crosshairs-method
                                                                                  ternary_pairs,data.frame,missing,missing-method
              (ternary_crosshairs), 10
                                                                                                 (ternary_pairs), 21
ternary_density, 9, 11, 14, 16, 21, 23
                                                                                  ternary_pairs,data.frame-method
ternary_density, ANY, missing, missing-method
                                                                                                 (ternary_pairs), 21
              (ternary_density), 11
                                                                                  ternary_pairs, matrix-method
ternary_density, numeric, numeric, numeric-method
                                                                                                 (ternary_pairs), 21
              (ternary_density), 11
                                                                                  ternary_pairs-method(ternary_pairs), 21
ternary_density-method
                                                                                  ternary_pca, 9, 12, 14, 16, 21, 22
              (ternary_density), 11
                                                                                  ternary_pca, ANY, missing, missing-method
ternary_ellipse, 9, 12, 13, 16, 21, 23
                                                                                                 (ternary_pca), 22
ternary_ellipse, ANY, missing, missing-method
                                                                                  ternary_pca, numeric, numeric, numeric-method
              (ternary_ellipse), 13
                                                                                                 (ternary_pca), 22
ternary_ellipse, numeric, numeric, numeric-methodernary_pca-method (ternary_pca), 22
              (ternary_ellipse), 13
                                                                                  ternary_plot, 6, 7, 15, 22, 23, 31
ternary_ellipse-method
                                                                                  ternary_plot, ANY, missing, missing-method
              (ternary_ellipse), 13
                                                                                                 (ternary_plot), 23
ternary_grid, 6, 7, 14, 22, 25, 31
                                                                                  ternary_plot, numeric, numeric, numeric-method
ternary_hull, 9, 12, 14, 16, 21, 23
                                                                                                 (ternary_plot), 23
ternary_hull, ANY, missing, missing-method
                                                                                  ternary_plot-method(ternary_plot), 23
              (ternary_hull), 16
                                                                                  ternary_points, 5, 10, 17, 19, 20, 26, 28–30
ternary_hull, numeric, numeric, numeric-method
                                                                                  ternary_points, ANY, missing, missing-method
              (ternary_hull), 16
                                                                                                 (ternary_points), 26
ternary_hull-method(ternary_hull), 16
                                                                                  ternary_points, numeric, numeric, numeric-method
ternary_image, 5, 10, 17, 19, 20, 27-30
                                                                                                 (ternary_points), 26
ternary_image, function-method
                                                                                  ternary_points-method(ternary_points),
              (ternary_image), 17
ternary_image-method(ternary_image), 17
                                                                                  ternary_polygon, 5, 10, 17, 19, 20, 27, 27,
ternary_labels, 5, 10, 17, 18, 20, 27–30
ternary_labels, ANY, missing, missing-method
                                                                                  ternary_polygon, ANY, missing, missing-method
              (ternary_labels), 18
                                                                                                 (ternary_polygon), 27
ternary_labels,numeric,numeric,numeric-methodternary_polygon,numeric,numeric,numeric-method
              (ternary_labels), 18
                                                                                                 (ternary_polygon), 27
```

INDEX 37

```
ternary_polygon-method
        (ternary_polygon), 27
ternary_segments, 5, 10, 17, 19, 20, 27, 28,
ternary_segments, numeric, numeric, numeric-method
        (ternary_segments), 28
ternary_segments-method
        (ternary_segments), 28
ternary_text, 5, 10, 17, 19, 20, 27-29, 29
ternary_text, ANY, missing, missing-method
        (ternary_text), 29
ternary_text, numeric, numeric, numeric-method
        (ternary_text), 29
ternary_text-method(ternary_text), 29
ternary_title, 6, 7, 15, 22, 25, 31
ternary_tolerance (ternary_ellipse), 13
ternary_tolerance,ANY,missing,missing-method
        (ternary_ellipse), 13
ternary_tolerance,numeric,numeric,numeric-method
        (ternary_ellipse), 13
triangle_phase_cas, 32, 33
triangle_phase_ceramic
        (triangle_phase_cas), 32
triangle_soil, 32, 33
triangle_soil_folk(triangle_soil), 33
triangle_soil_hypres(triangle_soil), 33
triangle_soil_shepard(triangle_soil),
        33
triangle_soil_usda (triangle_soil), 33
```