COMP - 285 Advanced Analysis of Algorithms

Welcome to COMP 285

Lecture 1: CS Job Hunting (Resume),

Pseudocode and Recursion

HW0 is out!

Due Thursday @ 11:59PM !!!!

Homework Assignments

Homework 0: Logistics + Getting to Know You

Release: Aug 18, 3:30 PM - Due: Aug 25, 11:59 PM

- PDF Version: [Link]
- Repl.it: [Starter code]

Big Questions!

08/23/22 - Session

- How to get started with career prep?
- How to write a compelling technical resume?
- How to multiply integers?
- How to conquer? Do we divide?
- How fast is fast enough?

Big Questions!

08/23/22 - Session

- How to get started with career prep?
- How to write a compelling technical resume?

- How to conquer? Do we divide?
- How fast is fast enough?

Recruitment Process?

Big Questions!

08/23/22 - Session

- How to get started with career prep?
- How to write a compelling technical resume?
- How to multiply integers?
- How to conquer? Do we divide?
- How fast is fast enough?

Resumes!!!

EVERYONE CAN WRITE A POLISHED AND COMPELLING RESUME!

EVERYONE CAN WRITE A POLISHED AND COMPELLING RESUME!

(it will just take some time and effort)

- 1 page!
- Personal information (name, phone # and/or email)
- No pictures, selfies
- 10-12pt font, Times New Roman, Arial, etc.
- Standardized sections: Education, Experience, Other, Software Projects, Skills & Interests
- CONCISE! SKIMMABLE!

CASHIER, CHICK-FIL-A, GREENSBORO, NC | 06/17 - 09/17

• I would help customers by taking their orders then would ensure they received their correct order.

CENTRE-STORE STOCKER, FOOD LION, GREENSBORO, NC | 06/18 - 09/18

• I would find and retrieve stock then place it on allocated shelves in an efficient way.

"RATE EM" IOS APP, NCAT HACKATHON, GREENSBORO, NC | 10/19

• We worked on an app to rate professors and cafeteria food on-campus using "Rate Me" tokens.

Using pronouns

What makes a strong, technical resume?

CASHIER, CHICK-FIL-A, GREENSBORO, NC | 06/17 - 09/17

I would help customers by taking their orders then would ensure they received their correct order.

CENTRE-STORE STOCKER, FOOD LION, GREENSBORO, NC | 06/18 - 09/18

I would find and retrieve stock then place it on allocated shelves in an efficient way.

"RATE EM" IOS APP, NCAT HACKATHON, GREENSBORO, NC | 10/19

• We worked on an app to rate professors and cafeteria food on-campus using "Rate Me" tokens.

CASHIER, CHICK-FIL-A, GREENSBORO, NC | 06/17 - 09/17

• I would help customers by taking their orders then would ensure they received their correct order.

What did I do? Was I good at the job?

CENTRE-STORE STOCKER, FOOD LION, GREENSBORO, NC | 06/18 - 09/18

• I would find and retrieve stock then place it on allocated shelves in an efficient way.

"RATE EM" IOS APP, NCAT HACKATHON, GREENSBORO, NC | 10/19

• We worked on an app to rate professors and cafeteria food on-campus using "Rate Me" tokens.

What did I do? Was I good at the job?

How to quantify? Why does it matter?

CASHIER, CHICK-FIL-A, GREENSBORO, NC | 06/17 - 09/17

• I would help customers by taking their orders then would ensure they received their correct order.

CENTRE-STORE STOCKER, FOOD LION, GREENSBORO, NC | 06/18 - 09/18,

• I would find and retrieve stock then place it on allocated shelves in an efficient way.

"RATE EM" IOS APP, NCAT HACKATHON, GREENSBORO, NC | 10/19

• We worked on an app to rate professors and cafeteria food on-campus using "Rate Me" tokens.

How to quantify? Why does it matter?

CASHIER, CHICK-FIL-A, GREENSBORO, NC | 06/17 - 09/17

• I would help customers by taking their orders then would ensure they received their correct order.

CENTRE-STORE STOCKER, FOOD LION, GREENSBORO, NC | 06/18 - 09/18

• I would find and retrieve stock then place it on allocated shelves in an efficient way.

"RATE EM" IOS APP, NCAT HACKATHON, GREENSBORO, NC | 10/19

• We worked on an app to rate professors and cafeteria food on-campus using "Rate Me" tokens.

What does this "token" mean?

How to quantify? What makes a strong, technical resum Usina Why does it matter? pronouns CASHIER, CHICK-FIL-A, GREENSBORO, NC | 06/17 - 09/17 • I would help customers by taking their orders then would ensure they received their correct order. What did / do? Was I good at the job? CENTRE-STORE STOCKER, FOOD LION, GREENSBORO, NC | 06/18 - 09/18 I would find and retrieve stock then place it on allocated shelves in an efficient way. "RATE EM" IOS APP, NCAT HACKATHON, GREENSBORO, NC | 10/19 • We worked on an app to rate professors and cafeteria food on-campus using "Rate Me" tokens. How to quantify? Why What did / do? Was What does this does it matter? I good at the job? "token" mean?

How to quantify? What makes a strong, technical re-Using hy does it matter? pronouns CASHIER, CHICK-FIL-A, GREENSBORG • I would help customers by to rrect order. hat did / do? Was good at the job? CENTRE • I would "RATE EM" ENSBORO, NC | 10/19 • We worked d sors and cafeteria food on-campus using "Rate Me" tokens. How to quantif why What did I do? Was What does this does it matter? I good at the job? "token" mean?

CASHIER, CHICK-FIL-A, GREENSBORO, NC | 06/17 - 09/17

• I would help customers by taking their orders then would ensure they received their correct order.

CASHIER, CHICK-FIL-A, GREENSBORO, NC | 06/17 - 09/17

- I would help customers by taking their orders then would ensure they received their correct order.
- Utilized F2F order management system to successfully input over 50 orders/hr then mentored two new hires to achieve same level of productivity

CENTRE-STORE STOCKER, FOOD LION, GREENSBORO, NC | 06/18 - 09/18

• I would find and retrieve stock then place it on allocated shelves in an efficient way.

CENTRE-STORE STOCKER, FOOD LION, GREENSBORO, NC | 06/18 - 09/18

• I would find and retrieve stock then place it on allocated shelves in an efficient way.

• Managed stock of 300+ items and was recognized by senior management for ability to debug inconsistencies in the inventory counts logged in tracking software versus

actual supply

"RATE EM" IOS APP, NCAT HACKATHON, GREENSBORO, NC | 10/19

• I worked on an app to rate professors and cafeteria food on-campus using "Rate Me" tokens.

"RATE EM" IOS APP, NCAT HACKATHON, GREENSBORO, NC | 10/19

• I worked on an app to rate professors and cafeteria food on-campus using "Rate Me" tokens.

• Developed iOS app to allow students to rate +250 professors and +7 on-campus cafeterias, requiring data from multiple university APIs; managed team of 4 and won third place award from Citadel sponsor

ACTION VERB

WHAT YOU DID

RESULTS, WHY IT'S IMPORTANT

OVERLY TECHNICAL JARGON

How to "fluff"?

• Consider side projects! (Github, Kaggle, Leetcode)

- Consider side projects! (Github, Kaggle, Leetcode)
- Consider your extracurriculars here at NCAT! (leadership positions, impact that you've had, etc.)

- Consider side projects! (Github, Kaggle, Leetcode)
- Consider your extracurriculars here at NCAT! (leadership positions, impact that you've had, etc.)
- Consider your course projects and assignments! (Turn into side project!)

- Consider side projects! (Github, Kaggle, Leetcode)
- Consider your extracurriculars here at NCAT! (leadership positions, impact that you've had, etc.)
- Consider your course projects and assignments! (Turn into side project!)
- Consider your part time work experience!

- Consider side projects! (Github, Kaggle, Leetcode)
- Consider your extracurriculars here at NCAT! (leadership positions, impact that you've had, etc.)
- Consider your course projects and assignments! (Turn into side project!)
- Consider your part time work experience!
- Take time to breathe and reflect! Everyone starts somewhere and you have more experiences than you think!

EVERYONE CAN WRITE A POLISHED AND COMPELLING RESUME!

Big Questions!

08/23/22 - Session

- How to get started with career prep?
- How to write a compelling technical resume?
- How to multiply integers?
- How to conquer? Do we divide?
- How fast is fast enough?

Recall where we ended last lecture...

What's an algorithm anyhow?

- Al-Khwarizmi was a 9th-century scholar, born in present-day Uzbekistan, who studied and worked in Baghdad during the Abbassid Caliphate.
- Among many other contributions in mathematics, astronomy, and geography, he wrote a book about how to multiply with Arabic numerals.
- His ideas came to Europe in the 12th century.

_

What's an algorithm anyhow?

Originally, "Algorisme" [old French]
 referred to just the Arabic number system,
 but eventually it came to mean
 "Algorithm" as we know today.

This was kind of a big deal!

$$XLIV \times XCVII = ?$$

Integer multiplication!

44

× 97

Integer multiplication!

n

1233925720752752384623764283568364918374523856298 4562323582342395285623467235019130750135350013753

(How many one-digit operations?)

About n² one-digit operations

(How many one-digit operations?)

About n² one-digit operations

Multiply each one of the n-digits in the first number with each one of the n-digits in the second number (n * n)

(How many one-digit operations?)

Our Guiding Questions...

Big Questions!

08/23/22 - Session

- How to get started with career prep?
- How to write a compelling technical resume?
- How to multiply integers?
- How to conquer? Do we divide?
- How fast is fast enough?

Can we do better? Let's dig into our algorithmic toolkit!

A technique to know! - Divide & Conquer

Break problem up into smaller (easier) sub-problems

Big Problem!

A technique to know! - Divide & Conquer

Break problem up into smaller (easier) sub-problems

Big Problem!

Smaller Problem

Smaller Problem

A technique to know! - Divide & Conquer

Break problem up into smaller (easier) sub-problems

12 * 34

$$12 = 1 * 10 + 2$$

 $34 = 3 * 10 + 4$

$$12 = 1 * 10 + 2$$

 $34 = 3 * 10 + 4$

$$12 * 34 = (1 * 10 + 2)(3 * 10 + 4)$$

$$12 = 1 * 10 + 2$$

 $34 = 3 * 10 + 4$

$$12 * 34 = (1 * 10 + 2)(3 * 10 + 4)$$

= $(1 * 10)(3 * 10) + 2*(3 * 10) + 4 * (1 * 10) + 2 * 4$

$$12 = 1 * 10 + 2$$

 $34 = 3 * 10 + 4$

$$12 * 34 = (1 * 10 + 2)(3 * 10 + 4)$$

= $(1 * 10)(3 * 10) + 2*(3 * 10) + 4 * (1 * 10) + 2 * 4$
= $(1 * 3) * 100 + (2 * 3 + 4 * 1) * 10 + 2 * 4$

12 = 1 * 10 + 2

34 = 3 * 10 + 4

$$12 * 34 = (1 * 10 + 2)(3 * 10 + 4)$$

$$= (1 * 10)(3 * 10) + 2*(3 * 10) + 4 * (1 * 10) + 2 * 4$$

$$= (1 * 3) * 100 + (2 * 3 + 4 * 1) * 10 + 2 * 4$$

$$12 = 1 * 10 + 2$$

 $34 = 3 * 10 + 4$

$$12 * 34 = (1 * 10 + 2)(3 * 10 + 4)$$

$$= (1 * 10)(3 * 10) + 2*(3 * 10) + 4 * (1 * 10) + 2 * 4$$

$$= (1 * 3))* 100 + (2 * 3) + (4 * 1))* 10 + (2 * 4)$$

One 2-digit problem -> Four 1-digit problems

One 2-digit problem -> Four 1-digit problems

One 2-digit problem -> Four 1-digit problems

1234 * 5678

1234 * 5678

$$1234 = 12 * 100 + 34$$

 $5678 = 56 * 100 + 78$

1234 * 5678

And in general!

Break up an n-digit integer x:

$$[x_1, x_2,...,x_n] = [x_1, x_2, ..., x_{n/2}]*10^{n/2} + [x_{n/2+1}, x_{n/2+2},...,x_n]$$

And in general!

Break up an n-digit integer x:

$$[x_1, x_2, ..., x_n] = [x_1, x_2, ..., x_{n/2}]*10^{n/2} + [x_{n/2+1}, x_{n/2+2}, ..., x_n]$$

$$x \times y = (a \times 10^{n/2} + b)(c \times 10^{n/2} + d)$$
$$= (a \times c)10^{n} + (a \times d + c \times b)10^{n/2} + (b \times d)$$

And in general!

$$[x_1, x_2,...,x_n] = [x_1, x_2, ... x_{n/2}]*10^{n/2} + [x_{n/2+1}, x_{n/2+2},...,x_n]$$

$$x \times y = (a \times 10^{n/2} + b)(c \times 10^{n/2} + d)$$

$$= (a \times c)10^{n} + (a \times d + c \times b)10^{n/2} + (b \times d)$$

One n-digit problem -> Four (n/2)-digit problems

x,y are n-digit numbers Multiply(x, y):

x,y are n-digit numbers Multiply(x, y):

return answer

x,y are n-digit numbers Multiply(x, y):

If n =1:

return x*v

Base case: we have 1-digit multiplication, cannot break into subproblems

return answer

Multiply(*x*, *y*):

If n = 1:

return x*y

Compute a, b, c, d from x, y

x,y are n-digit numbers

Base case: we have 1-digit multiplication, cannot break into subproblems

a, b, c, d are

n/2-digit numbers

X,y are n-digit numbers

Multiply(X, y):

Base case: we have 1-digit multiplication, cannot break into subproblems

return x*y

Compute a, b, c, d from x, y

Compute ac, ad, bc, bd from ???

return answer

```
x,y are n-digit numbers
Multiply(x, y):
                                  Base case: we have 1-digit multiplication,
                                  cannot break into subproblems
       If n = 1:
                                             a, b, c, d are
           return x*v
       Compute a, b, c, d from x, y \leftarrow
                                         n/2-digit numbers
       Compute ac, ad, bc, bd from recursion
           ac = Multiply(a,c)
           ad = Multiply(a,d)
                                      —— Recursive cases
           bc= Multiply(b,c)
           bd = Multiply(b,d)
```

return answer

```
x,y are n-digit numbers
Multiply(x, y):
                                 Base case: we have 1-digit multiplication,
                                 cannot break into subproblems
      If n = 1:
                                          a, b, c, d are
           return x*v
      Compute ac, ad, bc, bd from recursion
           ac = Multiply(a,c)
           ad = Multiply(a,d)
                                    —— Recursive cases
           bc= Multiply(b,c)
           bd = Multiply(b,d)
      Calculate xy using results
           answer = ac 10^{n} + (ad + bc) 10^{n/2} + bd
      return answer
```

Let's code

itll

Is it fast?

- We saw that multiplying 2 digit numbers took 4 multiplications.
- We saw that multiplying 4 digit numbers takes 16 multiplications.
- What about 8 digit numbers? What about 16 digit numbers?
- How many operations as a function of n?

There are ??? 1-digit multiplications

Note: this is just a cartoon – I'm not going to draw all 4^t circles!

• • •

How many problems on the last level?

- For each "**level**", we multiply the number of problems by **4**
- So for the tth level
 (where the first level is
 t=0), we will have 4^t
 problems
- The problems on the **last** level are of size (1)

So what's the index of the last level?

- We start with **size n**
- Then go down to sizen/2
- Then go down to(n/2)/2 = n/4
- Then (n/4)/2 = n/8
- And so on...
- On the last level, we must have n/2^t = 1

So what's the index of the last level?

• • •

• • •

$$\frac{n}{2^t} = 1$$

$$\implies n=2$$

$$\implies t = \log_2 n$$

So how many problems on the last level?

• • •

• • •

$$4^t = 4^{\log_2 n}$$

$$= (2^2)^{\log_2 n}$$

$$=2^{2\log_2 n}$$

$$= (2^{\log_2 n})^2$$

$$= n^2$$

Darn, that's sad:(

Big Questions!

08/23/22 - Session

- How to get started with career prep?
- How to write a compelling technical resume?
- How to multiply integers?
- How to conquer? Do we divide?
- How fast is fast enough?

But wait!!!

Let's recall our algorithm!

Break up an n-digit integer:

$$[x_1x_2\cdots x_n] = [x_1x_2\cdots x_{n/2}] \times 10^{n/2} + [x_{n/2+1}x_{n/2+2}\cdots x_n]$$

$$x \times y = (a \times 10^{n/2} + b)(c \times 10^{n/2} + d)$$

$$= (a \times c)10^{n} + (a \times d + c \times b)10^{n/2} + (b \times d)$$

What if we did less work?

Break up an n-digit integer:

$$[x_1x_2\cdots x_n] = [x_1x_2\cdots x_{n/2}] \times 10^{n/2} + [x_{n/2+1}x_{n/2+2}\cdots x_n]$$

$$x \times y = (a \times 10^{n/2} + b)(c \times 10^{n/2} + d)$$

$$= (a \times c)10^{n} + (a \times d + c \times b)10^{n/2} + (b \times d)$$

What if we recursed 3 times instead of 4?

Break up an n-digit integer:

$$[x_1x_2\cdots x_n] = [x_1x_2\cdots x_{n/2}] \times 10^{n/2} + [x_{n/2+1}x_{n/2+2}\cdots x_n]$$

$$x \times y = (a \times 10^{n/2} + b)(c \times 10^{n/2} + d)$$

$$= (a \times c)10^{n} + (a \times d + c \times b)10^{n/2} + (b \times d)$$

This is what Karatsuba figured out!

- It feels like we need four multiplications
 - ac
 - bd
 - bc
 - ad

This is what Karatsuba figured out!

- It feels like we need four multiplications
 - ac
 - bd
 - bc
 - ad

1) (2) (3

- Karatsuba figured out that's not true!! You only need **three**!
 - ac
 - bd
 - (a+b)(c+d)

- These are the "values" we need
 - ac
 - bd
 - bc
 - ad

- Karatsuba says
 - ac (just do it!)

These are the "values" we need

- ac
- bd
- bc
- ad

- Karatsuba says

- ac (just do it!)
- bd (just do it!)
- _

- These are the "values" we need
 - ac
 - bd
 - bc
 - ad

- Karatsuba says
 - ac (just do it!)
 - bd (just do it!)
 - we want (ad + bc),
 could we compute it another way?

$$(a+b)(c+d) = ac + bd + bc + ad$$

- These are the "values" we need
 - ac
 - bd
 - bc
 - ad

- Karatsuba says
 - ac (just do it!)
 - bd (just do it!)
 - Do (a+b)(c+d)

 instead! Then
 subtract ac and bd!

$$(a+b)(c+d) = ac + bd + bc + ad$$

So what is our algorithm in pseudocode?

```
x,y are n-digit numbers
Multiply(x, y):
                                 Base case: we have 1-digit multiplication,
                                 cannot break into subproblems
      If n = 1:
                                          a, b, c, d are
           return x*v
      Compute ac, ad, bc, bd from recursion
           ac = Multiply(a,c)
           ad = Multiply(a,d)
                                    —— Recursive cases
           bc= Multiply(b,c)
           bd = Multiply(b,d)
      Calculate xy using results
           answer = ac 10^{n} + (ad + bc) 10^{n/2} + bd
      return answer
```

So what is our algorithm in pseudocode?

```
x,y are n-digit numbers
Karatsuba(x, y):
                             Base case: we have 1-digit multiplication,
                             cannot break into subproblems
     If n = 1:
                                     a, b, c, d are
         return x*v
     ac = Karatsuba(a,c)
         bd = Karatsuba(b,d)
                                —— Recursive cases
         z = Karatsuba(a+b,c+d)
     Calculate xy using results
         answer = ac 10^{n} + (z - ac - bd)10^{n/2} + bd
      return answer
```

Let's code

itll

What's the running time?

1 problem of size n

3 problems of size n/2

• • •

• • •

$$\frac{n^{1.6}}{\text{of size 1}}$$
 problems

$$3^t = 3^{\log_2 n}$$

$$= (2^{\log_2 3})^{\log_2 n}$$

$$= (2^{\log_2 n})^{\log_2 3}$$

$$= n^{\log_2 3}$$

$$\approx n^{1.6}$$

Can we do even better?

- **Toom-Cook** (1963): instead of breaking into three n/2 sized problems, break into five n/3-sized problems.
 - Runs in $O(n^{1.465})$
- Schönhage-Strassen (1971)
 - Runs in I(n log (n))log log (n)
- **Furer** (2007)
 - Runs in n log(n) * 2^{O(log*(n))}
- Harvey and van der Hoeven (2019)
 - Runs in time O(n log (n))

Can you?

- Describe

- The components of a compelling, technical resume
- The Karatsuba Integer Multiplication optimization

- Practice

- Applying action verb + what *you* did + results/significance formula to your resume
- Designing an efficient algorithm for integer multiplication

How was the pace today?

Wrap-Up

- **Everyone** can write a polished and compelling resume.
 - Action verb + what you did + results
- **Divide and conquer** is a tool we use to decompose large problems into smaller, easier-to-solve subproblems.
- **Karatsuba optimization**: n^{1.6} is better than n² operations; we reduced the number of nodes we needed to execute.

Announcements

- HW 0 is out!
 - Due Thursday 08/25 @ 11:59PM
- Google Tech Exchange
 - Deadline Monday 09/12

Next time!

- (More) formal big-O introduction!
- Space/time complexity practice
- Space/time complexity with recursion.

COMP - 285 Advanced Analysis of Algorithms

Welcome to COMP 285

Lecture 1: CS Job Hunting (Resume),

Pseudocode and Recursion

