#### BUT 2

## **Emulation / Virtualisation / Conteneurisation**

**Samuel Delepoulle** 

# Émulation



Wikimedia - CC BY-SA 3.0

• L'émulateur est un programme qui simule entièrement la machine ciblée = le logiciel se substitue à un matériel.

#### • Exemples :

- émulateur de terminal (xterm émule une console VT100)
- conception électronique =
  tester un microprocesseur qui n'existe pas encore
- console de jeu (*retro-gaming*)

# La virtualisation c'est quoi et pourquoi?

- Définition : faire fonctionner plusieurs systèmes sur une même machine physique comme s'ils fonctionnaient sur des machines physiques distinctes.
- Côté développement
  - Avoir un environnement de développement/test conforme à celui de production
  - Typiquement si l'on travaille sur différents projets
- Côté maintenance / déploiement
  - Mutualisation
  - Migration / installation facile
  - All-In-One : tout le nécessaire est inclus dans la Machine Virtuelle

### Virtualisation

- prendre en charge une abstraction de machine
- nécessite un moniteur de machine virtuelle ou hyperviseur
- objectif:
  - faire cohabiter plusieurs systèmes différents
  - créer un code portable pour une machine fictive (ex : machine virtuelle Java)
- Deux types:
  - type 1 : Hyperviseur natif = accès direct à la machine hôte sans passer par son système d'exploitation (ex : KVM)
  - type 2 : Hyperviseur hébergé = utilise l'environnement du système d'exploitation hôte.

# Virtualisation de type 2 (proche de l'émulation)



- Niveau supplémentaire
- Pour faire des tests
- Exemples: Oracle Virtual Box,
  VMware Workstation (payant),
  VMWare Workstation player
  (gratuit)

Wikimedia - CC BY-SA 3.0

# Virtualisation de type 1 (natif)



Wikimedia - CC BY-SA 3.0

- Les systèmes (y compris l'OS de l'hôte) utilisent l'hyperviseur ⇒ nécessite adaptation de l'OS
- Les OS invités ont un accès direct à l'hyperviseur sans passer par l'OS de l'hôte.
- Nécessite que la virtualisation soit intégrée au processeur (AMD-V et Intel VT).
- Exemples: VMware ESXi et la suite vSphere, Proxmox VE (Linux KVM), Microsoft Hyper-V Server, Citrix Xen Server

### **Conteneurs**



- Conteneur = enveloppe virtuelle pour l'application et toutes les ressources nécessaires : code source, environnement d'exécution, bibliothèques, outils, fichiers
- environnements isolés (docker est un *isolateur*).
  - Comme pour une Machine
    Virtuelle
  - Virtualisation légère

### **Conteneurs**



- Pas d'OS invité = on s'appuie directement sur le système hôte
- Le kernel partage les ressources du système hôte et interagit avec le(s) containeur(s)
  - Techniquement : Docker n'est pas une VM
  - Utilisation : Docker peut-être apparenté à une VM.
  - Pratiquement : Docker plus rapide moins gourmand en ressources

### Conteneurisation

### **Avantages**

- 1. Portabilité
- 2. Agilité
- 3. Vitesse
- 4. Isolation des erreur
- 5. Efficacité
- 6. Facilité de gestion
- 7. Sécurité

#### **Inconvénients**

- 1. Incompatibilité avec certaines tâches
- 2. Gestion et orchestration parfois délicate
- 3. Isolation relative