第7章 存储管理

- 7.1内存管理功能
- 7.2物理内存管理
- 7.3虚拟内存管理
- 7.4 Intel CPU与Linux内存管理

7.2 物理内存管理

- 7.2.1分区内存管理
- 7.2.2分区放置策略
- 7.2.3内存覆盖技术
- 7.2.4内存交换技术
- 7.2.5 内存碎片

《操作系统原理》

7.2.2 分区放置策略

教师: 苏曙光

华中科技大学软件学院

分区的分配

空闲区表:描述内存空闲区的位置和大小的数据结构

分区的分配

■ 分配过程(假定用户要求的空间大小为s)

- (1)从空闲区表的第1个区开始,寻找≥s的空闲区
- (2)找到后从分区中分割出大小为s的部分给用户使用。
- (3)分割后的剩余部分作为空闲区仍然登记在空闲区表中。
- 注意:分割空闲区时一般从底部分割。

空闲[
位置	大小	
30K	20K	
66K	24K	
120K	8K	

空闲区表如何排序——放置策略

放置策略(空闲区表排序原则)

- 按空闲区位置(首址)递增排序◆ 首次适应算法
- 按空闲区位置(首址)递减排序
- 按空闲区大小的递增排序
 - ◆ 最佳适应算法 —
- 按空闲区大小的递减排序
 - ◆最坏适应算法 —

空闲区表

位置	大小
66K	24K
30K	20K
120K	8K

大小的递减

首次适应法

空闲区表

■ 空闲区表按首址递增排序

位置	大小
30K	20K
66K	24K
120K	8K

- ■尽可能地先使用低地址空间。
- 当需要较大分区时在高地址空间有较大的满足可能性。

最佳适应法

空闲区表

■ 空闲区表按大小递增排序

位置	大小
120K	8K
30K	20K
66K	24K 🗸

📕 特点/优点

- 尽可能地先使用较小的空闲区,保留大的空闲区。
- 当需要较大分区时有较大的满足可能性。

最坏适应法

空闲区表

■ 空闲区表按大小递减排序

位置	(大小)
66K	24K
30K	20K
120K	8K 🅢

一 优点

■ 大空闲区分割后剩下部分还是很大, 还能装下较大的程序。

■ 特点

■ 仅作一次查找就可找到所要分区。

分区的回收

■ 功能

■ 回收程序释放分区(释放区),登记到空闲区表中,以便再分配。

回 回收算法

- 要考虑释放区与现有空闲区是否相邻?
- 若释放区与现有空闲区不相邻,则直接插入空闲区表。
- 若释放区与现有空闲区相邻,则与空闲区合并居更新<u>空闲区</u>表。

位置	大小
30K	20K
66K	24K
120K	8K

华中科技大学, 苏曙光老师, 《操作系统原理》 MOOC课程组版权所有

