TROPICAL CYCLONE

- ☐ These are the atmospheric disturbances that are developed over the tropical oceans and seas.
- ☐ The formation of the cyclone is a combined phenomenon of atmosphere and ocean surface temperature.
- ☐ The release of heat (latent heat of condensation) from the moist winds, and the Coriolis effect on the convergent air are the main drivers of tropical cyclones.
- □ Cyclones are given many names in the different regions of the world as follows:

Part of the World	Tropical Cyclone
Eastern Australian Part	Willy Willy
Japan	Taifu
Philippines	Baiguois
South China Sea (North West Pacific)	Typhoons
Caribbean Sea, North East Pacific, West Indies	Hurricane
North and South Indian Ocean	Tropical Cycle
USA, West Africa	Tornadoes

Classification Based on Speed

Type of	Wind Speed	Wind Speed		
Disturbance	(in Km/hr)	(in Knots)		
Low Pressure	<31	<17		
Depression	31-49	17-27		
Deep Depression	49-61	27-33		
Cyclonic storm	62-88	47-63		
Severe Cyclonic Storm	89-118	47-63		
Cyclone	120-221	48-119		
Super Cyclone	>221	>120		

Prerequisites for the formation of Tropical cyclones

□ (a) Tropical Cyclones can only form when the sea surface water temperature (60 m depth) is 26 degrees or more.

(b) The low-pressure centre attracts winds from the surrounding. ☐ (c) Significant pressure gradient shall intensify the wind velocity. (d) These high-velocity winds are subjected to a higher degree of Coriolis effect. Note: In the latitude 0-5 degrees North-South, there is a minimum Coriolis effect; thus, tropical cyclones cannot form at the equator. The low pressure required for the tropical cyclone is filled rather than getting intensified in the equatorial region. (e) The latent heat of condensation is considered the driving energy source for tropical cyclones. ☐ This is provided by the warm moist winds that move up the eye wall, condense, and release energy. As the cyclone enters the land, it is cut off from the source of moist winds resulting in landfall. Cyclones are generally formed along the eastern coast of the continents (The western part of the Ocean), and not the western coast. This is because the cold currents do not facilitate the required sea surface temperature. ☐ As the intertropical convergence Zone starts moving from the tropics to the equator, it facilitates the formation of tropical cyclones as it can intensify the low pressure (October- November east coast of India). During May-June, tropical cyclones of Undisturbed Winds lower intensity are also formed. ☐ These cyclones have an average diameter compared to temperate Steering Wind Flow cvclones. Subsiding Warm Air Tropical cyclones' diameter extends to 300 km on average. ☐ The low-pressure centre has very few clouds and is calm. This is the eye of the cyclone. It is surrounded by an eye wall. ☐ The low-pressure centre attracts moist winds of higher velocity toward it. In this process, the winds push water along the centre. Thus the centre exhibits a slight increase in water level. This on reaching the coast results in Direction of the Storm inundation or flooding of the coastal Fig: Vertical section of the tropical cyclone region. This is known as a storm surge. Such coastal flooding shall result in a loss of life and property, and a negative impact on the fertility of land, and water resources. ☐ Tropical cyclones are under the influence of trade winds and the Coriolis effect concerning their direction and movement.

Thus, tropical cyclone curves as they move from east to west in the Northern Hemisphere.

Vulnerability Zone in India

- In India, four eastern coastal states and one western coastal state are significantly prone to tropical cyclones.
- These states are Tamil Nadu, Odisha, Andhra Pradesh, West Bengal, and Gujarat.
- Coastal Andhra and Odisha experience a higher degree of impact from tropical cyclones.
- Thus, it results in severe disaster in thickly populated areas across the Mahanadi Delta to Krishna Godavari Delta.

: Coastal districts considered by IMD for issue of warning bulletins during

Anthropogenic Impacts on Cyclones

- ☐ The phenomenon of global warming increases the sea surface temperature which in turn results in an increased frequency of tropical cyclones.
- ☐ Further, an increase in the global average temperature can nullify the impact of cold currents on tropical sea surface temperatures.
- ☐ This would result in the formation of tropical cyclones on western coast of continents in tropical region.

Impact of Tropical Cyclone

- ☐ (a) Cyclone brings loss to lives and livestock.
- □ It has been characterized by the destructive results on infrastructure, due to its high-velocity winds.
- (b) Heavy rainfall and storm surges result in coastal flooding and inundation of low-lying areas.
- (c) Soil erosion of the beaches, embankments, and others.
- (d) The first impact of the cyclones is taken by mangroves and corals, which shall have a consequential effect on ecology, economy, and livelihood.
- □ Such natural disasters impact the Indian GDP by close to 2%, and specifically it affects 12 % of the central government income.
- (e) Storm surges and inundations are responsible for the salinization of the land, reducing soil fertility, contaminating water resources with saline water, and more.

The naming of the Tropical Cyclone

- □ World Meteorological Organization/United Nations Economic and Social Commission for Asia and Pacific Panel on tropical cyclones held its session in Muscat.
- ☐ In the session, they decided to start naming the cyclones of the Bay of Bengal and the Arabian Sea.
- ☐ The panel members' names are listed alphabetically countrywide.

	The name wou			•	•			se.						
	 In total, it amounts to 169 cyclone names. The Initial member countries in 2000 were Bangladesh, India, Maldives, Myanmar, 													
							Bangia	idesn,	India,	, iviaid	ives, i	viyann	nar,	
	Oman, Pakista													
	The grouping		ded by	/ inclu	ding 5	more	coun	tries,	Iran, C	Latar, S	saudi <i>i</i>	Arabia	a <i>,</i>	
	Yemen, and U	AE.												
	and the same												Th	P
	New List	of N	ame	s fo	r Tro	pico	al Cy	/cloi	ne o	ver			W	eather
	North Inc	dian	Oce	an									Ch	annel
	110 100 100 100 100 100 100 100 100 100													
	Place	List 1	List 2	List 3	List 4	List 5	List 6	List 7	List 8	List 9	List 10	List 11	List 12	List 13
	Bangladesh	Nisarga	Biparjoy	Arnab	Upakul	Barshon	Rajani	Nishith	Urmi	Meghala	Samiron	Pratikul	Sarobor	Mahanisha
	India	Gati	Tej	Murasu	Aag	Vyom	Jhar	Probaho	Neer	Prabhanjan	Ghurni	Ambud	Jaladhi	Vega
	Iran	Nivar	Hamoon	Akvan	Sepand	Booran	Anahita	Azar	Pooyan	Arsham	Hengame	Savas	Tahamtan	Toofan
	Maldives	Burevi	Midhili	Kaani	Odi	Kenau	Endheri	Riyau	Guruva	Kurangi	Kuredhi	Horangu	Thundi	Faana
	Myanmar	Tauktae Yaas	Michaung Remal	Ngamann Sail	Kyarthit	Sapakyee	Wetwun	Mwaihout	Kywe	Pinku	Yinkaung	Linyone Al-jarz	Kyeekan	Bautphat Raad
	Pakistan	Gulab	Asna	Sahab	Afshan	Manahil	Shujana	Parwaz	Manjour	Sarsar	Badban	Sarrab	Gulnar	Waseq
	Qatar	Shaheen	Dana	Lulu	Mouj	Suhail	Sadaf	Reem	Rayhan	Anbar	Oud	Bahar	Seef	Fanar
	Saudi Arabia	Jawad	Fengal	Ghazeer	Asif	Sidrah	Hareed	Faid	Kaseer	Nakheel	Haboob	Bareq	Alreem	Wabil
	Sri Lanka	Asani	Shakhti	Gigum	Gagana	Verambha	Garjana	Neeba	Ninnada	Viduli	Ogha	Salitha	Rivi	Rudu
	Thailand	Sitrang	Montha	Thianyot	Bulan	Phutala	Aiyara	Saming	Kraison	Matcha	Mahingsa	Phraewa	Asuri	Thara
	United Arab Emirates	Mandous	Senyar	Afoor	Nahhaam	Quffal	Daaman	Deem	Gargoor	Khubb	Degl	Athmad	Boom	Saffar
	Yemen	Mocha	Ditwah	Diksam	Sira	Bakhur	Ghwyzi	Hawf	Balhaf	Brom	Shuqra	Fartak	Darsah	Samhah
	ance of naming													
	(a) With the n			•				•		5.				
	(b) It helps the	•		•				•						
	(c) It helps in t	•	oid diss	semin	ation	of the	warn	ing to	increa	ase cor	nmun	ity		
	preparedness.													
	(d) It doesn't o	confus	e the p	oublic	or otl	her sta	keho	ders v	vhen t	there i	s more	e than	one	
	tropical cyclor	ne in th	ne sam	ne area	а.									
	(e) Local and i	nterna	itional	media	a can	becon	ne foc	used o	on a p	articul	ar tro	pical		
	cyclone.													
Colour	Coding of the	Cyclor	ne											
	It was given by	/ IMD	for the	e first	time d	during	the c	yclone	Yaas.					
	IMD provides	four co	olour-d	coded	warn	ings ar	าd ad	visorie	s in Ir	ıdia.				
	Several depart	tments	s use t	hese v	warnii	ngs to	signif	y the i	ntens	ity of t	he sit	uatior	and	
	the warning as					J	J	•		•				
	These warning				ng oh	iective	es:							
	(a) Preparedne				_	-		rning t	he di	saster	mana	gemei	nt	
	team.	200 101		ייים מייי	_ 0,01	3.103		ь (41.			5001		
	(b) Alert the co	ommo	n nac	nla of	hazar	dous d	ondit	ions +l	hat ha	wa tha	noto	ntial +	0	
Ц	damage their		-	-				וטווט נו	iat IId	ועב נוופ	potei	iiliai li	J	
	uamage mell	hiohg	icy all(a micul	1033	or me.								

☐ For colour codes are:

Colour Code	Warning	Description			
Green	All is well	No adverse weather conditions and no advisories were issued.			
Yellow	Be Aware	It indicates the bad weather spanning for several days. It also suggests that the weather could change for the worse disrupting the day to day activities. It is also a signal to the disaster management teams to be prepared.			
Orange or amber	Be prepared	It is issued as a warning for bad weather with the potential to disrupt the lifeline infrastructure, i.e. closure of rail and road, and interruption to the power supply. It is to alert the DM team and keep the necessities ready.			
Red	Take Action	It is the highest level of warning in the worst weather conditions indicating a significant risk to life.			

Reasons behind the non-occurrence of Tropical Cyclones during South-West Monsoons

, ,
South-West monsoonal winds are strong surface winds that are pushed upwards.
In Addition, there is the presence of strong upper air circulation (Tropical Easterly Jet
Streams) this reduces the chances of the formation of clouds.
There is also a wind shear movement. On top of that, there is significant turbulence
which prevents the formation of tropical cyclones.

AIR MASSES

- ☐ When a huge pile of air exhibits uniform properties both horizontally and up to a limited vertical extent i.e. temperature, humidity, and pressure.
- Prerequisites for the genesis of airmasses-
- □ 1) They should form over a homogeneous area of land or sea
- 2) Atmospheric pressure conditions should be stable as it is important to facilitate adoption of the uniform properties such as temperature, humidity, and pressure of the region.
- □ 3) Atmospheric low pressure has persistent instability, then the formation of airmass is not possible in such areas due to frequent changes in the factors of the atmosphere.
- ☐ Thus, atmospheric stability is needed.
- □ 4)Airmasses should be exposed to the region for at least 3 to 5 days to acquire the properties of that region.

Important air masses-

- □ 1) Cold continental areas of Canada
- □ 2) Cold Continental areas of Russia
- □ 3) Cold maritime region of the Atlantic
- □ 4) Cold maritime region of the Pacific
- □ 5) Tropical and Sub-Tropical interior of Sahara and Sub-Sahar desert
- □ 6) Maritime regions of the Pacific, Atlantic, and Indian Ocean
- □ Since very few regions in the world develop airmasses such regions of development are known as source regions.
- ☐ The above-mentioned are important source regions.

CLASSIFICATION OF AIR MASS

- □ Based on Temperature-
- ☐ Airmasses are considered cold and warm based on their impact on the destination area.
- □ Cold air masses are those whose temperatures are lesser than the area they visit.
- □ Warm air masses are those with temperatures greater than the area it visits.

	For instance, the air mass that brings ease to the considered a warm air mass.	ne extreme winter of the British Isle is						
	Based on origin-							
	Continental air mass- these originate over the land surface and adopt their properties							
	Maritime air mass- these originate over the water bodies and adopt their properties.							
	It can modify the weather conditions at the destination							
	For instance the British type of climate experiences comparatively warmer winters							
	than the rest of Europe under the influence of warm air mass.							
	Air masses are moved from source to destination under the influence of permanent winds.							
	Air masses helped in the formation of Fronts ar	nd Temperate Cyclones.						
FRON	TS							
	The sloping boundary between the two contras	ting air masses is called a Front						
	Prerequisites for the formation of fronts-							
	7 0							
	of temperature, pressure and humidity)							
	g							
	Frontolysis is the breakdown or the death of th temperate cyclone.	e front signifying the end of a						
TYPES	OF FRONTS							
	Warm front							
	Cold front							
	Occluded front							
	Stationary front							
WAR	M FRONT							
	The warm front is developed when a warm	Warm Front						
	air mass actively flows into the territory of							
	the cold air mass.							
	Since the warm air is lighter, at the zone of							
	convergence it is gently lifted up forming a	Warm air Cold air						
	gradual slope of the warm front	Amalian						
	Since the rise of warm air is gentle, it	200 miles						
	condenses to form Nimbostratus clouds.	warm air advances, pushing the cold air to retreat. Cold air is brassier thus more difficult for the warm air to displace.						
	Nimbostratus clouds are characterized by	 Slope is 1:200, i.e., the frontal surface rise 1 km in height over 200 km distance on the graund. Light-to-moderate rain over large area for an extended period. 						
	gentle to moderate precipitation over a large							
	area for a longer duration.							

COLD FRONT

☐ These are formed when the active cold air flows into the territory of warm air mass.

- Since the cold airmass is denser, at the zone of convergence this cold airmass throws the warm air mass vertically upward.
- This led to the formation of the Cumulonimbus clouds, Nimbostratus, Altostratus, Cirrostratus, and Cirrus clouds.
- Cumulonimbus clouds result in heavy precipitation along with lightning and thunder over a small area for a limited duration.
- ☐ The steep slope formed between the warm and cold air mass is called the **Cold Front**

OCCLUDED FRONT

- ☐ In this situation, the warm air mass is completely displaced from the ground.
- □ **NOTE** Warm air is trapped between two colder airmasses and forced upwards by the cold air mass.
- ☐ The cold front completely takes over the warm air mass.

STATIONARY FRONT

- ☐ This is formed when two air masses are completely flowing parallel to each other instead of converging.
- These are characterized by cloudy weather with some amount of precipitation.

STRUCTURE OF TEMPERATE CYCLONES

☐ Temperate cyclones are under the influence of **Polar Jet Streams and**Westerlies which make them move from west to east.

Ш	these can originate either over the sea or land as a result of two contrasting air
	masses converging.
	They originate all across the year when the prerequisites are fulfilled.
	But they become stronger and more frequent during the winter.
	NOTE - the impact of global warming shall nullify the contrasting temperature and
	pressure factors. This can affect the year-long formation of temperate cyclones.
	The winds generally flow with lower velocity due to a lesser pressure gradient.
	Temperate cyclones are s[spread over 1000 to 3000 km in diameter exhibiting
	different weather conditions across different regions of the cyclone. (as mentioned in
	the diagram)
	Rainfall in temperate cyclones is only defined along the fronts.
	Unlike tropical cyclones, the isobars are not closed. Therefore they are
	generally referred to as V

Weather conditions-

As the temperate cyclones arrive there is the presence of cirrus clouds in the sky.
 As the cold sector approaches, one can witness a decrease in temperature clear weather, and atmospheric stability.
 As the warm front arises, temperature shall increase and it is accompanied by gentle showers (Nimbostartus)
 Further increase in temperature shall be witnessed for a brief period along with clear sky.
 With the advent of the cold front, there shall be heavy precipitation, lightning, and thunder that is facilitated by cumulonimbus clouds.
 Finally, the arrival of the cold sector again reduces the temperature and establishes a cloudless clear sky.

ANTI CYCLONES

These are high-pressure centres with decreasing pressure outwards
 They shall facilitate the movement of winds outwards from the centre.
 The movement of winds is subject to the Coriolis effect (thus clockwise direction in the northern hemisphere and anti-clockwise in the southern hemisphere)

Characteristics-

1)These are high-pressure centres in the zone of descending air
 2)It facilitates a clear sky and no precipitation.
 3)Such atmospheric stability is the reason behind dry weather conditions.

 $\hfill \Box$ 4) Sub-tropical high-pressure belts and polar high-pressure belts are the regions of

anti-cyclone.