ME698A

HW-4 Report

Name: Omkar Chavan

Roll No: 210280

(a) Problem Statement:

From given data file containing three columns: θ (angular displacement), θ (angular velocity) and θ (angular acceleration) at different time instants, finding the governing equation of the simple pendulum from the experimental data.

(b)Plots:

Correlation

Heatmap:

From these scatter plots, we can see that theta_double_dot has linear dependancy on theta and sin_theta. Also theta and sin_thet have similar variation (i.e. they have almost similar values- consistent with small angle approximation)

From these scatter plots we can see that there's no linear relation between theta_double_dot and theta , theta_dot. But there can be some polynomial relation between them.

(c) Solution Procedure:

- 1. As θ can be a function of θ , θ , θ and θ , we will first calculate the values of θ and θ .
- 2. From the correlation heatmap, we can see that there is almost -1 negative correlation between $\boldsymbol{\theta}^{\text{"}}$ and $\boldsymbol{sin\theta}$, $\boldsymbol{\theta}^{\text{"}}$ and $\boldsymbol{\theta}$. Also $\boldsymbol{sin\theta}$ and $\boldsymbol{\theta}$ are also closely related to each other (obvious from small angle approximation). So we can generate model with either one of $\boldsymbol{sin\theta}$ and $\boldsymbol{\theta}$.

3. Hypothesis Selection:

Selected 3 hypothesis:

- (i) Assumed that $\boldsymbol{\theta}$ is a function of $\boldsymbol{\theta}$ only. Direct correlation between $\boldsymbol{\theta}$ and $\boldsymbol{\theta}$ (i.e. dropping $\boldsymbol{\theta}$, $\boldsymbol{sin\theta}$, $\boldsymbol{\theta}$ and then fitting our equations)
- (ii) Assumed that θ is a function of θ , $\sin \theta$, θ (dropping θ)
- (iii) Assumed that θ is a function of $sin\theta$ only. Direct correlation between θ and θ (i.e. dropping θ , θ , θ and then fitting our equations). As for such a small angles $sin\theta$ can be approximated as

theta and there's strong negative correlation(-0.94) between $sin\theta$ and θ , assuming direct correlation between both(i.e. deleting all columns except $sin\theta$ and θ)

4. For each hypothesis, we have trained a **Linear Regression** model with **Ridge Regularization**. The hyperparameters in our model are **degree of polynomial** and **values of lambda in Ridge Regularization**. To find the optimal value of hyper-parameters, we have use **Grid Search k-fold Cross Validation** with **k=5** on the training data and selected the parameters for which the model has the highest R^2 score.

(d) Results:

1. Hypothesis 1

2. Hypothesis 2

3. Hypothesis 3:

Hypothesis	Cross Validation Mean Score	MSE
1	0.8844216346284585	0.018396359254199992
2	0.8833787960128191	0.018922838419323882
3	0.8834803527772529	0.018770371034009976

(d) Conclusion:

Clearly hypothesis 1 is the one with highest score and least mean square error. So in conclusion the model will be:

$$\theta$$
 = $w_0 + w_1 \theta$

This is consistent with actual equation(for small ${\pmb{\theta}}$) which is:

$$\frac{d^2\theta}{dt^2} + \frac{g}{L}\theta = 0$$

We will get similar results if we had put $\sin \theta$, instead of θ , as they have close correlation and for small θ , $\sin \theta$ is almost equal to θ .