AKADEMIA NAUK STOSOWANYCH W NOWYM SĄCZU

Wydział Nauk Inżynieryjnych Katedra Informatyki

OBRONA CZĘSTOCHOWY

SYSTEMY OPERACYJNE

Wielki Finał Trylogii

Autor:

Adrian "Gargi" Gargisonovsky

Prowadzący:

dr inż. Plichta Stanisława

Nowy Sącz 2025

I. Zadania i rodzaje SO.

System operacyjny to środowisko, w którym użytkownik może wykonywać programy a jego podstawowym zadaniem jest, aby był **wygodny** w użyciu i **wydajny**. Wyróżniamy **trzy** rodzaje systemów operacyjnych:

Systemy Równoległe	Systemy Rozproszone	Systemy czasu rzeczywistego
-Wyposażone w wiele procesorów wykonujących obliczenia równolegle (wyróżniamy procesory symetryczne i asymetryczne), -Przy czym procesory mogą być: • ściśle powiązane (współdzielą magistrale, pamięć itp.), • luźno powiązane (każdy procesor posiada własną pamięć, magistrale itd.),	-To szczególny przypadek systemu równoległego, -Wiele komputerów połączonych sieć tworzy jeden system, -Zalety: Przetwarzanie bezpośrednie, Przyśpieszenie obliczeń, Podział zasobów na prywatne i publiczne, Przejęcie zadań uszkodzonej jednostki przez inne), Łączność między	-Działa w określonych ograniczeniach czasowych, -Wyróżniamy dwie klasy takich systemów: • Rygorystyczne (znajduje zastosowanie jako sterownik urządzenia specjalnego przeznaczenia), • Łagodne (ma mniej napięte ograniczenia czasowe i nie zapewnia planowania w terminach nieprzekraczalnych),
	uszkodzonej jednostki przez inne),	

Do zadań systemu operacyjnego należy:

- Zarządzanie procesami,
- Zarządzanie pamięcią operacyjną,
- Zarządzanie plikami,
- Zarządzanie systemem I/O,
- Zarządzanie pamięcią pomocniczą,
- Zapisywanie zasobów komputerowych,
- Planowanie prac,
- Ochrona zasobów,
- Umożliwienie wielodostępności,
- Umożliwienie dobrego sposobu komunikowania się z operatorem,

II. Systemy plików Windows i Linux.

System operacyjny **Windows** wykorzystuje różne systemy plików do zarządzania danymi przechowywanymi na dyskach twardych, SSD, pamięciach USB i innych nośnikach. Najważniejsze systemy plików stosowane w **Windows** to:

Windows		
FAT	NTFS	ReFS
-Starszy system plików stosowany głównie w pamięciach USB i starszych systemach operacyjnych,	-Domyślny system plików w Windows. -Obsługuje duże pliki i partycje.	-Zaprojektowany do obsługi dużych systemów magazynowania danychOdporny na uszkodzenia i
-Warianty:	-Zawiera funkcje takie jak:	zoptymalizowany pod kątem wydajności.
• FAT16,	 uprawnienia dostępu, 	
• FAT32,	• szyfrowanie,	- Stosowany głównie w środowiskach serwerowych i macierzach dyskowych.
• exFAT,	 dokumentowanie zmian, 	
-FAT32 obsługuje pliki do 4 GB i partycje do 2 TB,	-Zapewnia większą stabilność i bezpieczeństwo niż FAT,	

Główne funkcje systemu plików Windows:

- Zarządzanie przestrzenią dyskową,
- Organizacja danych w katalogach i podkatalogach,
- Ochrona dostępu do plików i katalogów,
- Obsługa metadanych (np. uprawnień, daty utworzenia, atrybutów plików),
- Mechanizmy szyfrowania i kompresji danych,
- Odzyskiwanie danych po awarii systemu,
- Uprawnienia są przydzielane na poziomie użytkowników i grup z większą kontrolą dostępu,

Każdy plik jest **zbiorem danych**, które użytkownik traktuje jako pewną całość, a sam plik jest jednostką **logiczną**. System operacyjny **Linux** obsługuje wiele różnych systemów plików, dostosowanych do różnych zastosowań. Najważniejsze z nich to:

Linux		
Ext	Brtfs	XFS
-Najczęściej używany system plików w systemach Linux, -Warianty:	-Zapewnia zaawansowane funkcje, takie jak migawki, kompresja i kontrola integralności danych,	-Wysokowydajny system plików przeznaczony do dużych serwerów i dużych systemów plików,
• Ext2,	-Umożliwia łatwe skalowanie systemu plików oraz zarządzanie	-Obsługuje dokumentowanie i dynamiczne alokowanie
• Ext3,	dyskami w trybie RAID ,	przestrzeni dyskowej,
• Ext4,		
-Ext3 wprowadza dokumentowanie, co poprawia niezawodność,		
-Ext4 oferuje większą wydajność, obsługę dużych plików i lepszą optymalizację pamięci,		

Główne funkcje systemu plików Linux:

- Obsługa wielu systemów plików w jednym systemie operacyjnym,
- Mechanizmy dokumentowania zapewniające bezpieczeństwo danych,
- Zaawansowane zarządzanie uprawnieniami użytkowników,
- Możliwość montowania systemów plików zdalnie (np. NFS, SMB),
- Wsparcie dla migawkowych kopii zapasowych i elastycznego zarządzania przestrzenią dyskową,
- Optymalizacja pod kątem wydajności i stabilności,
- Uprawnienia są przydzielane na poziomie właściciela, grupy i innych użytkowników, w postaci trzech grup znaków rwx (read, write, execute),

III. Dowiązania w systemach Windows i UNIX.

W różnych częściach systemu możemy utworzyć linki, które będą wskazywać na jeden plik. Nie musimy w ten sposób tworzyć wielu kopii tego samego pliku i możemy zaoszczędzić miejsce na dysku.

Dla Windows:

- Windows obsługuje dowiązania symboliczne i dowiązania twarde w systemie NTFS,
- Dowiązania symboliczne wskazują na ścieżkę pliku lub katalogu,
- **Dowiązania twarde** umożliwiają wiele nazw dla tego **samego pliku** na tej **samej partycji**,
- Skróty najprostszy typ dowiązań w systemie Windows,

Dla UNIX:

- Dowiązania twarde umożliwia tworzenie kilku nazw dla jednego i-węzła,
- Dowiązania symboliczne jest plikiem, który wskazuje na nazwę innego pliku,

IV. Sposoby zarządzania wolną przestrzenią.

Ponieważ obszar dysku jest ograniczony, więc w miarę możliwości należy dbać o wtórne zagospodarowanie dla nowych plików przestrzeni po plikach usuniętych. Lista wolnych obszarów może być implementowana w postaci:

- Wektor bitowy:

- Każdy blok dyskowy jest reprezentowany przez jeden bit w wektorze,
- Wartość 1 oznacza, że dany blok jest wolny, natomiast 0 oznacza, że dany blok jest zajęty,
- To rozwiązanie jest mało wydajne i nadaje się tylko dla małych dysków,

Lista powiązana:

- Powiązanie wszystkich wolnych bloków w ten sposób, że w bloku poprzednim znajduje się indeks bloku następnego,
- Indeks pierwszego bloku znajduje się w specjalnym miejscu w systemie plików,
- To rozwiązanie jest mało wydajne, ponieważ aby przejrzeć listę trzeba odczytać każdy blok,

- Grupowanie:

- Pierwszy wolny blok zawiera indeksy n innych wolnych bloków,
- Umożliwia szybkie odnajdywanie większej liczby wolnych bloków,
- To rozwiązanie jest wydajne,

- Zliczanie:

- W przypadku kilku kolejnych (przylegających do siebie) wolnych bloków pamiętany jest tylko indeks pierwszego z nich oraz liczba wolnych bloków znajdujących się bezpośrednio za nim,
- To rozwiązanie jest wydajne dla dużych ciągłych obszarów,

V. Co się dzieje z procesem od jego utworzenia do zakończenia?

Stany procesu:

- Nowy tworzenie procesu i przydzielenie mu zasobów,
- Gotowy proces czeka na przydział procesora,
- Aktywny proces otrzymał czas CPU i działa,
- Czekający proces czeka na jakieś zdarzenie np. Operacje I/O.
- Zakończony proces kończy działanie, zasoby są zwalniane,

Procesy przechodzą między tymi stanami zgodnie z **decyzjami planisty** i **występującymi zdarzeniami. System operacyjny** dynamicznie **zarządza procesami**, decydując, które mają zostać wykonane i w jakiej kolejności.

VI. Zadania planistów w systemie UNIX i Windows.

Celem planowania procesów jest jak najlepsze wykorzystanie procesora - szczególnie ważne w systemach wieloprogramowych z podziałem czasu. Planista decyduje, który proces dostanie dostęp do CPU oraz na jak długo. Planowanie odbywa się według kryteriów planowania:

- Planowanie nie wywłaszczeniowe:

- Proces, który dostał procesor, nie odda go aż do swego zakończenia lub przejścia w stan czekania,
- Nie wymaga wsparcia sprzętowego,

- Planowanie wywłaszczeniowe:

Kosztowne – wymaga mechanizmów koordynacji,

System UNIX		
Długoterminowy	Średnioterminowy	Krótkoterminowy
-Decyduje, które procesy mogą zostać załadowane do pamięci RAM i rozpocząć wykonywanie,	-Może wstrzymywać procesy, -Używany w systemach z	-Najważniejszy dla wydajności systemu,
-Odpowiada za liczbę aktywnych procesów,	ograniczoną pamięcią RAM, -Odpowiedzialny za wymianę procesów między pamięcią	-Decyduje jaki proces zostanie wykonany przez procesor w danej chwili,
-Ważny w systemach wsadowych,	RAM a dyskiem,	-Wybiera procesy z określonym algorytmem,
-Dobranie dobrej mieszanki procesów,		

W systemie Windows planowanie procesów jest realizowane przez **planistę** jądra, który zarządza przydziałem procesora do wątków (Windows operuje głównie na wątkach, a nie na procesach). Główne zadania planistów obejmują:

System Windows		
Długoterminowy	Średnioterminowy	Krótkoterminowy
-Decyduje, które procesy mogą zostać załadowane do pamięci operacyjnej i rozpocząć	-Jeśli pamięć RAM się zapełnia, rzadziej używane procesy mogą być tymczasowo przenoszone	-Dba o efektywne przydzielanie zasobów,
wykonywanie,	na dysk ,	-Decyduje jaki proces zostanie wykonany przez procesor w
-Odpowiada za liczbę aktywnych procesów,	-Odpowiedzialny za wymianę procesów między pamięcią	danej chwili,
	RAM a dyskiem,	-Priorytetowe są procesy
- W Windows nie istnieje		systemowe i wątk i o wysokim
wyraźnie wydzielony planista	-W Windows planista	priorytecie użytkownika,
długoterminowy, ponieważ	średnioterminowy nie jest	
system automatycznie zarządza	wyraźnie wydzielony, ponieważ	
procesami i pamięcią w sposób	system samodzielnie zarządza	
dynamiczny,	wstrzymywaniem i	
	wznawianiem procesów w	
	zależności od dostępnych	
	zasobów,	

VII. Pojęcie wątku, czym różni się wątek od procesu?

Wątek to **najmniejsza jednostka wykonywania programu**, która działa wewnątrz **procesu**. Każdy proces może składać się z jednego lub wielu wątków współdzielących te same zasoby, takie jak pamięć czy pliki.

Wątek
-To j ednostka wykonawcza w procesie,
-Wątki współdzielą pamięć i zasoby procesu,
-Szybsze (dzielą zasoby procesu),
-Może odbywać się przez zmienne współdzielone,
-Stosowany np. w bazach danych,

Główna różnica to fakt, że **proces to odrębna jednostka** wykonawcza z własną pamięcią, a wątek to lekka jednostka wykonawcza **działająca wewnątrz procesu**, który współdzieli jego zasoby.

VIII. Sposoby radzenia sobie z zakleszczeniami.

Zakleszczenia - to sytuacja, w której grupa procesów blokuje się nawzajem, ponieważ każdy z nich trzyma zasoby potrzebne innym i jednocześnie czeka na zasoby zajęte przez pozostałe procesy. Jest zjawiskiem niepożądanym w systemie, dlatego opracowano metody na radzenie sobie z tym. Oto główne z nich:

Zapobieganie zakleszczeniom	Unikanie zakleszczeń	Wykrywanie zakleszczeń i odtwarzanie
-Zapobieganie zakleszczeniom polega na zaprzeczeniu co najmniej jednemu z czterech warunków koniecznych zakleszczenia: Brak wzajemnego wykluczenia, Brak przetrzymywania i oczekiwania, Wywłaszczanie, Wykluczenie czekania cyklicznego,	-Wszystkie warunki muszą być prawdziwe, -Nie dopuszczamy do zakleszczeń poprzez badanie stanu systemu przed każdym żądaniem przydziału zasobów, -Przed każdym żądaniem sprawdza, czy jego spełnienie może doprowadzić do czekania cyklicznego, -Może odbywać się za pomocą np. algorytmu bankiera,	-System okresowo sprawdza, czy nie doszło do zakleszczenia, -Gdy wykryje zakleszczenie, podejmuje następujące działania: • Zabijanie procesów, • Cofanie operacji, • Stopniowe zwalnianie zasobów,

Algorytm przydziału procesora to metoda decydująca, który proces otrzyma dostęp do procesora oraz na jak długo. Wyróżniamy różne algorytmy w zależności od systemu. Oto kilka:

UNIX	Windows
-Planowanie metodą FCFS (First Come First Served):	-Planowanie metodą MLFQ (Multilevel Feedback Queue):
 Proces, który pierwszy zamówił procesor pierwszy go otrzyma, Implementacja za pomocą kolejki FIFO, Średni czas oczekiwania bywa bardzo długi, Planowanie metodą SJF (Shortest Job First): Najpierw wykonywane są procesy o najkrótszym czasie trwania, Minimalizuje średni czas oczekiwania, Możliwość zagłodzenia długich procesów, Planowanie metodą PS (Priority Scheduling): Każdy proces ma priorytet – procesor przydzielany jest procesowi o najwyższym priorytecie, Są dwa rodzaje – z wywłaszczaniem i bez wywłaszczania, Nisko priorytetowe procesy mogą być głodzone, 	 Procesy rozpoczynają w kolejce o wyższym priorytecie i stopniowo są przenoszone do niższych kolejek, jeśli działają długo, Procesy interaktywne, Sprawiedliwy podział procesora dostosowywany dynamicznie, Planowanie metodą CFS (Completely Fair Scheduler): Każdy proces dostaje proporcjonalny czas procesora, zależny od jego priorytetu, Płynniejsze działanie systemu, Nie zawsze działa optymalnie dla procesów w tle, Planowanie metodą PPS (Preemptive Priority Scheduling): Każdy proces ma przypisany priorytet (od 0 do 31), Procesy o wyższym priorytecie mogą wywłaszczać procesy o niższym priorytecie,
 Planowanie metodą RR (Round Robin): Każdy proces otrzymuje przydział czasu, po którym jest przesuwany na koniec kolejki, Zapewnia sprawiedliwy podział czasu pomiędzy procesami, Może obciążać system, 	Nisko priorytetowe procesy mogą być głodzone, -Planowanie metodą RR (Round Robin): Każdy proces otrzymuje przydział czasu, po którym jest przesuwany na koniec kolejki, Zapewnia sprawiedliwy podział czasu pomiędzy procesami,
	Może obciążać system,