Bayesian Network Learning

Last time:

- Conditional independence in Bayesian Networks
- Sampling from Bayesian Networks

Today:

- Given a Bayesian Network and some values, how do we calculate the probability of other values?
- Given data, how do we fit a Bayesian network?

Bayesian Network

Structure

Parameters

B battery failure

S solar panel failure

E electrical system failure

D trajectory deviation

C communication loss

P(B) P(S) E $P(E \mid B, S)$ $P(C \mid E)$

B battery failure
S solar panel failure
E electrical system failure
D trajectory deviation
C communication loss

Inference

Inputs

- Bayesian network structure
- Bayesian network parameters
- Values of evidence variables

Outputs

Posterior distribution of query variables

Given that you have detected a trajectory deviation, and the battery has not failed what is the probability of a solar panel failure?

$$P(S = 1 \mid D = 1, B = 0)$$

Exact

Approximate

Exact Inference

Exact Inference

B battery failure
S solar panel failure
E electrical system failure
D trajectory deviation
C communication loss

$$P(S=1 \mid D=1, B=0)$$
 $P(S=1, D=1, B=0)$ $P(S=1, D=1, B=0)$ $P(S=1, D=1, B=0) = \sum_{e,c} P(B=0, S=1, E=e, D=1, C=c)$ $P(B=0, S=1, E, D=1, C)$ $P(B=0, S=1, E, D=1, C)$ $P(B=0, S=1) P(S=1) P(S=1)$

 $2^5 = 32$ possible assignments, but quickly gets too large

Exact Inference

B battery failure
S solar panel failure
E electrical system failure
D trajectory deviation
C communication loss

Product

Condition

Marginalize

 $2^5 = 32$ possible assignments, but quickly gets too large

Exact Inference: Variable Elimination

 $P(B \mid d^1, c^1)$

Start with

$$\phi_1(B), \phi_2(S), \phi_3(E, B, S), \phi_4(D, E), \phi_5(C, E)$$

Eliminate D and C (evidence) to get $\phi_6(E)$ and $\phi_7(E)$

Eliminate E

$$\phi_8(B,S) = \sum_e \phi_3(e,B,S)\phi_6(e)\phi_7(e)$$

Eliminate S

$$\phi_9(B) = \sum_s \phi_2(s)\phi_8(B,s)$$

B battery failure
S solar panel failure
E electrical system failure
D trajectory deviation
C communication loss

$$P(B \mid d^{1}, c^{1}) \propto \phi_{1}(B) \sum_{s} \left(\phi_{2}(s) \sum_{e} \left(\phi_{3}(e \mid B, s) \phi_{4}(d^{1} \mid e) \phi_{5}(c^{1} \mid e) \right) \right)$$

VS

$$P(B \mid d^1, c^1) \propto \sum_{s} \sum_{e} \phi_1(B) \phi_2(s) \phi_3(e \mid B, s) \phi_4(d^1 \mid e) \phi_5(c^1 \mid e)$$

Choosing optimal order is NP-hard

Approximate Inference

Approximate Inference: Direct Sampling

B battery failure

S solar panel failure

E electrical system failure

D trajectory deviation

C communication loss

$$P(b^1 \mid d^1, c^1) \approx \frac{\sum_i (b^{(i)} = 1 \land d^{(i)} = 1 \land c^{(i)} = 1)}{\sum_i (d^{(i)} = 1 \land c^{(i)} = 1)}$$

В	S	Ε	D	С
0	0	1	1	0
0	0	0	0	0
1	0	1	0	0
1	0	1	1	1 ←
0	0	0	0	0
0	0	0	1	0
0	0	0	0	1
0	1	1	1	1 ←
0	0	0	0	0
0	0	0	1	0

Analogous to **unweighted particle filtering**

Approximate Inference: Weighted Sampling

B battery failure
S solar panel failure
E electrical system failure
D trajectory deviation
C communication loss

$$P(b^{1} | d^{1}, c^{1}) \approx \frac{\sum_{i} w_{i}(b^{(i)} = 1 \wedge d^{(i)} = 1 \wedge c^{(i)} = 1)}{\sum_{i} w_{i}(d^{(i)} = 1 \wedge c^{(i)} = 1)}$$
$$= \frac{\sum_{i} w_{i}(b^{(i)} = 1)}{\sum_{i} w_{i}}$$

В	S	Е	D	С	Weight
1	0	1	1	1	$P(d^1 e^1)P(c^1 e^1)$
0	1	1	1	1	$P(d^1 e^1)P(c^1 e^1)$
0	0	0	1	1	$P(d^1 e^0)P(c^1 e^0)$
0	0	0	1	1	$P(d^1 \mid e^0)P(c^1 \mid e^0)$
0	0	1	1	1	$P(d^1 \mid e^1)P(c^1 \mid e^1)$

Analogous to weighted particle filtering

Approximate Inference: Gibbs Sampling

B battery failure
S solar panel failure
E electrical system failure
D trajectory deviation
C communication loss

Markov Chain Monte Carlo (MCMC)

Learning

Bayesian Network Learning

Inputs

- Data, D
- Priors (?)

Outputs

- ullet Bayesian network structure, G
- Bayesian network parameters, θ

Counting Parameters

For discrete R.V.s:

$$\dim(heta_X) = (|\mathrm{support}(X)| - 1) \prod_{Y \in Pa(X)} |\mathrm{support}(Y)|$$

Structure Learning Example

Parameter Learning

Maximum Likelihood

$$\hat{\theta} = \underset{\theta}{\operatorname{arg\,max}} P(D \mid \theta)$$

$$P(D \mid \theta) = \prod_{i} P(o_i \mid \theta)$$

$$\hat{\theta} = \arg\max_{\theta} \sum_{i} \log P(o_i \mid \theta)$$

Multinomial:

$$\hat{\theta}_i = \frac{n_i}{\sum_{j=1}^k n_j}$$

Bayesian

$$\hat{\theta} = \mathbb{E}_{\theta \sim p(\cdot \mid D)}[\theta] = \int \theta p(\theta \mid D) \, d\theta$$

Multinomial:

$$p(\theta_{1:n} \mid \alpha_{1:n}, m_{1:n}) = Dir(\theta_{1:n} \mid \alpha_1 + m_1, \dots, \alpha_n + m_n)$$

$$\frac{\alpha_i}{\sum_{j=1}^n \alpha_j}$$

Structure Learning

$$P(G \mid D) \propto P(G)P(D \mid G)$$

$$= P(G) \int P(D \mid \theta, G)p(\theta \mid G) d\theta$$

$$P(G \mid D) = P(G) \prod_{i=1}^{n} \prod_{j=1}^{q_i} \frac{\Gamma(\alpha_{ij0})}{\Gamma(\alpha_{ij0} + m_{ij0})} \prod_{k=1}^{r_i} \frac{\Gamma(\alpha_{ijk} + m_{ijk})}{\Gamma(\alpha_{ijk})}$$

$$\log P(G \mid D)$$

$$= \log P(G) + \sum_{i=1}^{n} \sum_{j=1}^{q_i} \left(\log \left(\frac{\Gamma(\alpha_{ij0})}{\Gamma(\alpha_{ij0} + m_{ij0})} \right) + \sum_{k=1}^{r_i} \log \left(\frac{\Gamma(\alpha_{ijk} + m_{ijk})}{\Gamma(\alpha_{ijk})} \right) \right)$$

NP-Hard

Markov Equivalence Class

Markov Equivalent iff

- 1. Same undirected edges
- 2. Same set of immoral vstructures

Recap

Inference Learning