IMAGE PROCESSING (EDGE DETECTION)

David Esparza Alba Ritsumeikan University

Introduction

Ritsumeikan University

David Esparza Alba

Introduction

- Edges occur at boundaries between regions of different color, intensity, or texture.
- An edge is a location of rapid intensity variation.
- Detecting edges can be helpful for segmenting an image into coherent regions.
- Reduce the amount of data to be processed, disposing less relevant information.
- Important to feature detection and feature extraction.

Edge Detection and Segmentation using graph searches

Ritsumeikan University

David Esparza Alba

Visualization

□ If we see an image as a graph, with te pixels as vertices, we can do a search in the image in the same way that we do in a graph.

a _{1,1}	a _{1,2}	a _{1,3}
a _{2,1}	a _{2,2}	a _{2,3}
a _{3,1}	a _{3,2}	a _{3,3}

Edge Detection

- Visit each vertex and edge of the graph asking if there is a significant change in the intensity in at least one of its neighbors.
- If a certain pixel has at least one neighbor with a significant change in the intensity level, then consider that pixel as an edge.
- Noise can be interpreted as an edge with this approach.

Edge Detection

Segmentation

- Define an initial node and mark it with a color.
- Start a Depth First Search (DFS) starting in that node.
- If the intensity of current node does not present a significant change with the intensity of the initial node, then mark it with the same color.
- The algorithm depends in the selection of the initial vertex.

Segmentation

Ritsumeikan University

David Esparza Alba

- Commonly used in edge detection algorithms.
- Computes an approximation of the gradient of the image intensity.
- At each point od the image, the magnitude of the gradient is calculated by:

$$|G| = \sqrt{G_x^2 + G_y^2}$$

 \square Where G_x and G_y are the first derivates in x-direction and y-direction respectively.

To obtain the first derivates in both directions, the Sobel operator use the following kernels

$$K_{Gx} = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix} \qquad K_{Gy} = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{bmatrix}$$

The sobel operator convolve an image with the kernels to find the points where the intensity change abruptly.

X Derivate

Y Derivate

Sobel Operator (Final Result)

Ritsumeikan University

David Esparza Alba

- Developed by John F. Canny (JFC) in 1986.
- One of the most used algorithms in image processing for detecting edges.
- □ The goal of JFC was to implement the optimal edge detection algorithm, based on the following points:

- Good Detection: The algorithm must be able to detect as many real edges as possible in the image.
- Good Localization: The detected edges should be marked as close as possible to the real edges.
- Minimal Response: A real edge must not result in more than one detected edge, and image noise must not affect in the detection of new edges.

- Canny Edge Detector functionality is based in these five steps:
 - Smoothing
 - 2. Gradient Detection
 - 3. Non-maximum supression
 - 4. Double Thresholding
 - 5. Edge Tracking

Test Image

Smoothing

- Gaussian Filter is used to reduce the amount of noise in the image.
 - Noise can be detected as edges by the algorithm.
- □ The image is then convolved with the Gaussian Filter.
- \Box One commonly used kernel with standard deviation of σ = 1.4 is the following:

$$\frac{1}{159} \begin{bmatrix} 2 & 4 & 5 & 4 & 2 \\ 4 & 9 & 12 & 9 & 4 \\ 5 & 12 & 15 & 12 & 5 \\ 4 & 9 & 12 & 9 & 4 \\ 2 & 4 & 5 & 4 & 2 \end{bmatrix}$$

Smoothing

Original Image

Smoothed Image

Gradient Detection

- Sobel operator is applied to the image.
 - Calculates the gradient of the image intensity.
 - The gradient points in the direction of the largest possible intensity increase.
 - Areas where intensity changes are notorious, like edges, are detected.
- Each point in the image is replaced by the magnitude of the gradient in the given point.
- The gradient is composed by the first derivates in the x-direction (Gx) and y-direction (Gy).

Gradient Detection

The Sobel Filter uses these two kernels to convolve the image and calculate the first derivates of the image:

$$K_{Gx} = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix} \qquad K_{Gy} = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{bmatrix}$$

The magnitude of the gradient (G) is given by

$$|G| = \sqrt{G_x^2 + G_y^2}$$

Gradient Detection

Before Sobel Operator

After Sobel Operator

- Each point is compared with it's neighbors, depending on the direction of the gradient in the given point.
- For each point in the image, the direction of the gradient is calculated using the following expression:

$$\theta = \tan^{-1} \left(\frac{|G_x|}{|G_y|} \right)$$

- \square Round the gradient direction θ to the nearest 45°.
- Compare its value with the neighbor located in that direction and also in the opposite direction.
- □ If the intensity of the image in the given point is not greater than the intensity of its two neighbors, the value is supressed.

- □ The objective of doing this is to convert "blurred" edges into "sharp" edges.
- Edge pixels are preserved where the gradient has local maxima.

Before Non-maximum Supression

After Non-maximum Supression

Double Thresholding

- \Box A high threshold value H_{th} is defined.
- \Box A low threshold value L_{th} ($L_{th} < H_{th}$) is defined.
- Values bigger or equal to H_{th} are painted in white (strong edge).
- \Box Values between L_{th} and H_{th} are painted in gray (weak edge).
- \square Values smaller or equal to L_{th} are supressed.

Double Thresholding

Before Double Threshoding

After Double Thresholding

Edge Tracking

- If a certain pixel of weak edge is not connected directly or indirecty to a strong edge, is supressed. Otherwise is marked as a strong edge.
- □ The image can be seen as a graph, with each pixel representing a vertex connected to its neighbors.
- □ A depth first search (DFS) can be used to track the edges

Edge Tracking

Before Edge Tracking

After Edge Tracking

Result

Original Image

Image after applying Canny Edge Detector

Future Work

Ritsumeikan University

David Esparza Alba

Future Work

- Study and implement the most common methods for image processing
 - Edge Detection
 - Corner Detection
 - Segmentation
 - Filters
 - Etc.
- Continue studying about the Dirichlet Process and machine learning techniques to apply them in image segmentation algorithms.