МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «МОСКОВСКИЙ АВИАЦИОННЫЙ ИНСТИТУТ (национальный исследовательский университет)»

ОТЧЕТ ПО КУРСОВОЙ РАБОТЕ

по дисциплине «Программные технологии построения управляющих оболочек СДО»

Выполнил студент группы М80-101М-21

Дюсекеев А.Е.

Руководитель:

Мхитарян Г. А.

Содержание

Содержание	2
Задание	3
Выполнение	4
Задание 1	4
Задание 2	5
Задание 3	6
Задание 4	6
Задание 5	8
Вывод	12
Приложение	13

Задание

- 1. Получить набор данных: студент-задание-время.
- 2. Построить гистограмму по выборке.
- 3. Сформулировать гипотезу о принадлежности выборки распределению.
- 4. Проверить гипотезу о соответствии выбранному распределению.
- 5. Получить параметры подходящего гамма-распределения.

Выполнение

Задание 1

1. Исходные данные

Загрузим набор данных:

Судя по результату метода head(), файл с данными имеет следующую структуру:

- Строки № задания (i = 1, 2, ...)
- Стобцы № студента (j = 1, 2, ...)
- Ячейки время выполнения і-го задания ј-м студентом

Транспонируем данные для удобства обработки

	= df.tran .head()	spose()								
	0	1	2	3	4	5	6	7	8	9
0	362.495451	631.398467	281.413007	246.741026	706.856361	1400.250476	569.530312	748.308126	566.932393	602.551469
1	261.912010	710.765846	239.861253	774.327973	691.299675	1558.808482	351.989841	1187.227164	280.782629	321.303545
2	452.409086	605.316568	574.897845	533.211943	609.206074	2159.848391	201.780903	554.533211	282.885275	436.671619
3	346.583589	1216.133860	334.552514	501.859696	362.399712	1905.817175	430.995262	313.674779	274.613090	455.943324
4	454.259111	1134.422486	343.164792	446.271275	787.262660	1230.104503	321.084511	1157.835703	260.521006	408.721661

Задание 2
Построим гистграммы распределения времени по каждому из заданий:

Можно заметить, что большинство распределений по форме отчетливо напоминают распределение хиквадрат Пирсона.

Задание 3

Так как все задания имеют схожие распределения, исследуем гипотезы на задании 0.

По классической схеме, выдвенем нулевую гипотезу H0 и альтернативную H1:

- H0: Время выполнения задания 0 имеет принадлежность к закону распределния Xи квадрат -Пирсона.
- Н1: Распределение времени отлично от закона распределения Хи квадрат -Пирсона.

И сразу же установим уровень значимости $\alpha=0.05$

Задание 4

Чтобы проверить данную гипотезу можно воспользоватья критерием согласия хи-квадрат. При этом, так как мы проверяем сложную гипотезу (хотим проверить принадлежность к целому классу распределений), то нам необходимо сначала оценить параметры данного распределения. Сделаем это с помощью метода максимального правдоподобия (теоретически доказано, что это лучший способ оценки параметров для таких задач) по таблице частотности.

Составим таблицу частотности - разобьем выборку по заданию на 10 интервалов (воспользуемся 10-ю последовательными квантилями), а затем посчитаем частоты попадания в каждый интервал:

```
# Разбиваем на интервалы
task_number = 0 # Номер задания, для которого проверяем гипотезу
intervals = [df[task_number].min()]
x_ = [0.]
for q in np.arange(0.1, 1, 0.1):
    intervals.append(round(np.quantile(df[task_number], q), 0))
    x_.append(q)
intervals.append(df[task_number].max())
x_.append(1.)

fig, ax = plt.subplots(figsize = (10, 5))
labls = ("% ".join(list(map(str,np.round(np.arange(0, 1.1, 0.1) * 100, 2))))).split(' ')
plt.bar(np.arange(0, len(labls)), height = intervals) # Полученные границы интервалов
ax.set_xticks(np.arange(0, len(labls)), labls)
ax.set_ttile('Граница значений процентилей')
plt.show()
```


Оценим неизвестные параметры распределения хи-квадрат с помощью ММП (воспользуемся специальной функцией `stats.chi2.fit`):

```
df1, loc1, scale1 = stats.chi2.fit(df[task_number], fdf=10)
print(f'df1 = {df1}, loc1 = {loc1:.4}, scale1 = {scale1:.3}')
df1 = 10, loc1 = 117.4, scale1 = 26.7
```

Построим на графике эмпиричускую плотность распреления (наблюдаемую нами) и теоретическую (построенную с использованием оцененных параметров):

Видим, что мы довольно хорошо приближаем наблюдаемые значения распределением χ^2 с оцененными параметрами, поэтому вряд ли есть основания отвергать H_0 . Но все равно выполним статистическую проверку гипотезы методом χ^2 - для этого сформируем теоретический вектор частот и воспользуемся функцией ('stats.chisquare'):

```
# Составляем теоретический вектор частот

n = np.sum(observations)

theory = []

for i in range(len(intervals) - 2):

p = stats.chi2.cdf(x=intervals[i + 1], df=df1, loc=loc1, scale=scale1) - stats.chi2.cdf(x=interval theory.append(int(round(p*n, 0)))

p = 1 - stats.chi2.cdf(x=intervals[-2], df=df1, loc=loc1, scale=scale1)

theory.append(n - np.sum(theory))
```

```
# важно, чтобы суммы значений обоих векторов совпадали (иначе функция не заработает) sum(observations) == sum(theory)
```

True

```
# Проверяем гипотезу
stats.chisquare(
    f_obs=observations,
    f_exp=theory,
    ddof=2 # не забываем, что мы оценили 2 параметра по выборке
)
```

Power_divergenceResult(statistic=7.401716536060914, pvalue=0.38828416182152853)

Видим, что pvalue $> \alpha = 0.05$ -> у нас нет оснований отвергать H_0 . Можем сделать вывод о том, что время выполнения задания 0 подчиняется распределению χ^2 -Пирсона.

Залание 5

Получим параметры подходящих гамма-распределений и проверим гипотезу согласия наблюдаемых выборок полученным гамма-распределениям:

```
alpha = 0.05 # уровень значимости
to plot = []
intervals = [df[task_number].min()]
for q in np.arange(0.1, 1, 0.1):
    intervals.append(round(np.quantile(df[task_number], q), 0))
intervals.append(df[task_number].max())
# составляем вектор наблюдаемых частот
observations = []
for i in range(len(intervals) - 1):
   observations.append(len(df[task_number][(df[task_number] >= intervals[i]) & (df[task_number] <= ir
# Определяем оценки параметров Гамма-распределения методом ММП
a, loc1, scale1 = stats.gamma.fit(df[task_number])
# Составляем теоретических ветор частот
n = np.sum(observations)
theory = []
for i in range(len(intervals) - 2):
   p = stats.gamma.cdf(x=intervals[i + 1], a=a, loc=loc1, scale=scale1) - stats.gamma.cdf(x=intervals
   theory.append(int(round(p*n, 0)))
p = 1 - stats.gamma.cdf(x=intervals[-2], a=a, loc=loc1, scale=scale1)
theory.append(n - np.sum(theory))
# Проверяем гипотезу
stat, p_value = stats.chisquare(
   f_obs=observations,
    f exp=theory,
    ddof=2
if p_value > alpha:
    print(f'Для задания {task number} H0 не отвергнута (p value = {p value:.3f})')
    print(f'C параметрами a = {round(a,2)}; loc = {round(loc1,2)}; scale = {round(scale1,2)}')
    to_plot.append(task_number)
else:
    print(f'Для задания {task_number} H0 отвергнута (p_value = {p_value:.3f})')
Для задания 0 Н0 не отвергнута (p_value = 0.366)
```

Видим, что для задания 0 мы можем сделать вывод о том, что распределение времени выполнения задания соответствует закону Гамма-распределению с подобранными параметрами.

С параметрами a = 5.55; loc = 107.53; scale = 49.99

Отобразим полученное распределение:

Как видно, подобранное Гамма распределение достаточно хорошо описыват распределение времени выполнения задания 0

Залание 5

Получим параметры подходящих лог - нормальных распределений и проверим гипотезу согласия наблюдаемых выборок полученным лог-нормальным:

```
alpha = 0.05 # уровень значимости
to_plot = []
intervals = [df[task_number].min()]
for q in np.arange(0.1, 1, 0.1):
    intervals.append(round(np.quantile(df[task_number], q), 0))
intervals.append(df[task number].max())
# составляем вектор наблюдаемых частот
observations = []
for i in range(len(intervals) - 1):
    observations.append(len(df[task number][(df[task number] >= intervals[i]) & (df[task number] <= interv
# Определяем оценки параметров Гамма-распределения методом ММП
a, loc2, scale2 = stats.lognorm.fit(df[task_number])
# Составляем теоретических ветор частот
n = np.sum(observations)
theory = []
for i in range(len(intervals) - 2):
    p = stats.lognorm.cdf(x=intervals[i + 1], s=a, loc=loc2, scale=scale2) - stats.lognorm.cdf(x=intervals
    theory.append(int(round(p*n, 0)))
p = 1 - stats.lognorm.cdf(x=intervals[-2], s=a, loc=loc2, scale=scale2)
theory.append(n - np.sum(theory))
# Проверяем гипотезу
stat, p_value = stats.chisquare(
    f_obs=observations,
    f_exp=theory,
    ddof=2
df_results-aff_results.append({'Distribution':'Лог нормальное', 'difference_p_value':p_value}, ignore_index
if p_value > alpha:
    print(f'Для задания {task_number} H0 не отвергнута (p_value = {p_value:.3f})')
    print(f'C параметрами a = {round(a,2)}; loc = {round(loc1,2)}; scale = {round(scale1,2)}')
    to_plot.append(task_number)
else:
    print(f'Для задания {task_number} H0 отвергнута (p_value = {p_value:.3f})')
Для задания 0 Н0 не отвергнута (p_value = 0.355)
```

Видим, что для задания 0 мы можем сделать вывод о том, что распределение времени выполнения задания соответствует закону Гамма-распределению с подобранными параметрами.

Отобразим полученное распределение:

С параметрами a = 0.32; loc = 107.53; scale = 49.99

Как видно, подобранное Гамма распределение достаточно хорошо описыват распределение времени выполнения задания 0

Сравнение приближений

Если нас интересует, какой закон распределения лучше всего описывает распределение времени выполнения задания, то нужно выбрать распределение с наибольшим p_value, которое характеризует статистическую занчимость отличия одной выборки от другой.

То есть если p_value <= α, то выборки не однородны, иначе однородны, что нам и нужно.

di	isplay(df_results.sd	ort_values(' <mark>diffe</mark>
	Distribution	difference_p_value
0	Хи-квдарат Пирсона	0.388284
1	Гамма распределение	0.365969
2	Лог нормальное	0.355031

Как видно в таблице, Xu - квадрат Пирсона лучше всего описывает распределение времени выполнения задания 0

Вывод

Таким образом, в данной курсовой работе был исследован набор данных из системы дистанционного обучения, имеющий структуру студентзадание-время. Отобразив гистограммы распределений времени выполнения
заданий было предположено, что время выполнения задания всех студентов
описывает закон распределения Хи – квадрат Пирсона и с помощью функции
максимального правдоподобия нашли параметры распределения времени и
построили по ним предполагаемое распределение. Моделирование показало,
что время решения задания действительно хорошо описывает закон
распределения Хи – квадрат Пирсона. Аналогичный алгоритм был проведен
для закона Гамма – распределения и Логнормальное - распределения ,
которые тоже хорошо описывает распределение времени выполнения
задания, но лучший результат – наибольшее статистическое различие, имеет
приближение закона Хи – квадрат Пирсона. Все результаты сопровождены
иллюстрирующими графиками.

Приложение

```
# %%
import numpy as np
import pandas as pd
from scipy import stats
import seaborn as sns
import matplotlib.pyplot as plt
# %% [markdown]
# <h3><font face = 'Times New Roman'>1. Исходные данные</font></h3>
# %% [markdown]
# Загрузим набор данных:
df = pd.read_csv('first_task.csv', header=None)
display(df.head())
print('Shapes: ',df.shape)
# %% [markdown]
# <font size="4" face = 'Times New Roman'>
# Судя по результату метода <strong>head()</strong>, файл с данными имеет
следующую структуру: <br>
      <l
#
      Строки - № задания (i = 1, 2, ...)
      Стобцы - № студента (j = 1, 2, ...)
      Ячейки - время выполнения і-го задания ј-м студентом
      # </font>
# %% [markdown]
# <font size="4" face = 'Times New Roman'>Транспонируем данные для удобства
обработки</font>
# %%
df = df.transpose()
df.head()
# %% [markdown]
# <h3><font face = 'Times New Roman'>2. Распределение времени решения
заданий</font></h3>
#df.hist(figsize=(20, 20), bins = 25);
fig, ax = plt.subplots(4, 3, figsize = (15, 15))
n = len(df.columns.tolist())
cols = 0
for i in range(0, 4):
```

```
for j in range(0, 3):
       if (cols < n):</pre>
           sns.histplot(df.iloc[:, cols], stat='density', common_bins= False,
common norm= False, kde = True, ax = ax[i][j], bins = 20)
       cols += 1
plt.savefig('distrib.png')
# %% [markdown]
# <div><font size="4" face = 'Times New Roman'>Построим гистграммы распределения
времени по каждому из заданий:</font>
# <img src='https://github.com/JacKira/SDO/blob/main/distrib.png?raw=1' style =</pre>
"width:70%; height:70%; padding:0; border:0" hspace = "0" vspace="0"></div>
# %% [markdown]
# <font size="3" face = 'Times New Roman'>Можно заметить, что большинство
распределений по форме напоминают распределение хи-квадрат Пирсона.</font>
# %% [markdown]
# <h3><font face = 'Times New Roman'>3. Проверяемая гипотеза</font></h3>
# <font size="4" face = 'Times New Roman'>Так как все задания имеют схожие
распределения, исследуем гипотезы на задании 0.<br>
# По классической схеме, выдвенем нулевую гипотезу <font size = "5">H</font>0 и
альтернативную <font size = "5">H</font>1: <br>
#
     <u1>
     <font size = "5">H</font>0: Время выполнения задания 0 имеет
принадлежность к закону распределния Хи - квадрат -Пирсона.
     <font size = "5">H</font>1: Распределение времени отлично от закона
распределения Xи - квадрат -Пирсона.
     # И сразу же установим уровень значимости $\alpha=0.05$
# %% [markdown]
# <h3><font face = 'Times New Roman'>4. Проверка гипотезы</font></h3>
# %% [markdown]
# <font size="4"</pre>
face = 'Times New Roman'>Чтобы проверить данную гипотезу можно воспользоватья
критерием согласия хи-квадрат. При этом, так как мы проверяем сложную гипотезу
(хотим проверить принадлежность к целому классу распределений), то нам необходимо
сначала оценить параметры данного распределения. Сделаем это с помощью метода
максимального правдоподобия (теоретически доказано, что это лучший способ оценки
параметров для таких задач) по таблице частотности. <br>
# Составим таблицу частотности - разобьем выборку по заданию на 10 интервалов
(воспользуемся 10-ю последовательными квантилями), а затем посчитаем частоты
попадания в каждый интервал:
# </font>
#
```

```
# %%
df_results = pd.DataFrame({'Distribution':[], 'difference_p_value':[]})
df_results.Distribution = df_results.Distribution.astype(object)
df results.difference p value = df results.difference p value.astype(float)
# %%
# Разбиваем на интервалы
task_number = 0 # Номер задания, для которого проверяем гипотезу
intervals = [df[task_number].min()]
x = [0.]
for q in np.arange(0.1, 1, 0.1):
    intervals.append(round(np.quantile(df[task_number], q), 0))
    x_.append(q)
intervals.append(df[task_number].max())
x_a.append(1.)
# %%
fig, ax = plt.subplots(figsize = (10, 5))
labls = ("% ".join(list(map(str,np.round(np.arange(0, 1.1, 0.1) * 100,
2))))).split(' ')
plt.bar(np.arange(0, len(labls)), height = intervals) # Полученные границы
интервалов
ax.set_xticks(np.arange(0, len(labls)), labls)
ax.set_title('Граница значений процентилей')
plt.show()
# %%
# Сотавляем вектор наблюдений (таблица частотности)
observations = []
for i in range(len(intervals) - 1):
    observations.append(len(df[task_number][(df[task_number] >=
intervals[i])&(df[task_number] <=intervals[i + 1])]))</pre>
observations
# %%
fig, ax = plt.subplots(figsize = (10, 5))
plt.bar(np.arange(0, len(observations)), height = observations)
ax.set_title('Размер выборки в зависимости от интервала')
plt.show()
# %% [markdown]
# <h3><font face = 'Times New Roman'> 5. Получение оценок параметров</font><h3>
# %% [markdown]
# <font size = "4" face = 'Times New Roman'>
# Оценим неизвестные параметры распределения хи-квадрат с помощью ММП
(воспользуемся специальной функцией `stats.chi2.fit`):</font>
#
```

```
# %%
df1, loc1, scale1 = stats.chi2.fit(df[task number], fdf=10)
print(f'df1 = {df1}, loc1 = {loc1:.4}, scale1 = {scale1:.3}')
# %%
fig, ax = plt.subplots()
sns.histplot(data=df[task_number], color='b', element='poly', fill=False,
stat='density', label='task 0', ax=ax)
chi2_rv1 = stats.chi2(df1, loc1, scale1)
x = np.linspace(min(intervals), max(intervals), 1000)
sns.lineplot(x=x, y=chi2_rv1.pdf(x), color='r', label='pdf(task 0)', ax=ax)
ax.set xlabel('time');
plt.savefig('est_plot.png')
# %% [markdown]
# <font size = "3" face = 'Times New</pre>
Roman'>Построим на графике эмпиричускую плотность распреления (наблюдаемую нами)
и теоретическую (построенную с использованием оцененных параметров):</font>
# <div>
# <img src='https://github.com/JacKira/SDO/blob/main/est_plot.png?raw=1' style =</pre>
"width:40%; height:40%; padding:0; border:0" hspace = "0" vspace="0"></div>
# %% [markdown]
# <font size = "3" face = 'Times New</pre>
Roman'>Видим, что мы довольно хорошо приближаем наблюдаемые значения
распределением $\chi^2$ с оцененными параметрами, поэтому вряд ли есть основания
отвергать $H_0$.
# Но все равно выполним статистическую проверку гипотезы методом $\chi^2$ - для
этого сформируем теоретический вектор частот и воспользуемся функцией
(`stats.chisquare`):
# </font>
# 
# %%
# Составляем теоретический вектор частот
n = np.sum(observations)
theory = []
for i in range(len(intervals) - 2):
   p = stats.chi2.cdf(x=intervals[i + 1], df=df1, loc=loc1, scale=scale1) -
stats.chi2.cdf(x=intervals[i], df=df1, loc=loc1, scale=scale1)
   theory.append(int(round(p*n, 0)))
p = 1 - stats.chi2.cdf(x=intervals[-2], df=df1, loc=loc1, scale=scale1)
theory.append(n - np.sum(theory))
# %%
# важно, чтобы суммы значений обоих векторов совпадали (иначе функция не
заработает)
sum(observations) == sum(theory)
```

```
# %%
# Проверяем гипотезу
res = stats.chisquare(
   f_obs=observations,
   f_exp=theory,
   ddof=2 # не забываем, что мы оценили 2 параметра по выборке
)
df_results=df_results.append({'Distribution':'Хи-квдарат Пирсона',
'difference_p_value':res[1]}, ignore_index = True)
res
# %%
df results
# %% [markdown]
# <font size = "3" face = 'Times New</pre>
Roman'>Видим, что pvalue $ > \alpha=0.05$ -> у нас нет оснований отвергать $H_0$.
Можем сделать вывод о том, что время выполнения задания 0 подчиняется
pacпределению $\chi^2$-Пирсона.</font>
# %% [markdown]
# ### Гамма распределение
# %% [markdown]
# <font size = "3" face = 'Times New</pre>
Roman'>Получим параметры подходящих гамма-распределений и проверим гипотезу
согласия наблюдаемых выборок полученным гамма-распределениям:</font>
# %%
alpha = 0.05 # уровень значимости
to_plot = []
intervals = [df[task number].min()]
for q in np.arange(0.1, 1, 0.1):
    intervals.append(round(np.quantile(df[task number], q), 0))
intervals.append(df[task_number].max())
# составляем вектор наблюдаемых частот
observations = []
for i in range(len(intervals) - 1):
   observations.append(len(df[task_number][(df[task_number] >= intervals[i]) &
(df[task_number] <= intervals[i + 1])]))</pre>
# Определяем оценки параметров Гамма-распределения методом ММП
a, loc1, scale1 = stats.gamma.fit(df[task_number])
# Составляем теоретических ветор частот
n = np.sum(observations)
```

```
theory = []
for i in range(len(intervals) - 2):
    p = stats.gamma.cdf(x=intervals[i + 1], a=a, loc=loc1, scale=scale1) -
stats.gamma.cdf(x=intervals[i], a=a, loc=loc1, scale=scale1)
    theory.append(int(round(p*n, 0)))
p = 1 - stats.gamma.cdf(x=intervals[-2], a=a, loc=loc1, scale=scale1)
theory.append(n - np.sum(theory))
# Проверяем гипотезу
stat, p_value = stats.chisquare(
    f_obs=observations,
    f_exp=theory,
    ddof=2
df_results=df_results.append({'Distribution':'Гамма распределение',
'difference_p_value':p_value}, ignore_index = True)
if p_value > alpha:
    print(f'Для задания {task_number} НО не отвергнута (p_value =
{p_value:.3f})')
    print(f'C параметрами a = {round(a,2)}; loc = {round(loc1,2)}; scale =
{round(scale1,2)}')
    to_plot.append(task_number)
else:
    print(f'Для задания {task_number} H0 отвергнута (p_value = {p_value:.3f})')
# %% [markdown]
# <font size = "3" face = 'Times New</pre>
Roman'>Видим, что для задания 0 мы можем сделать вывод о том, что распределение
времени выполнения задания соответствует закону Гамма-распределению с
подобранными параметрами. <br><br></r>
# Отобразим полученное распределение:
# </font>
# 
# %%
intervals = [df[task_number].min()]
for q in np.arange(0.1, 1, 0.1):
    intervals.append(round(np.quantile(df[task_number], q), 0))
intervals.append(df[task_number].max())
observations = []
for i in range(len(intervals) - 1):
    observations.append(len(df[task_number][(df[task_number] >= intervals[i]) &
(df[task_number] <= intervals[i + 1])]))</pre>
a, loc1, scale1 = stats.gamma.fit(df[task_number])
n = np.sum(observations)
```

```
theory = []
for i in range(len(intervals) - 2):
   p = stats.gamma.cdf(x=intervals[i + 1], a=a, loc=loc1, scale=scale1) -
stats.gamma.cdf(x=intervals[i], a=a, loc=loc1, scale=scale1)
   theory.append(int(round(p*n, 0)))
p = 1 - stats.gamma.cdf(x=intervals[-2], a=a, loc=loc1, scale=scale1)
theory.append(n - np.sum(theory))
fig, ax = plt.subplots()
ax.set title(f'Задание {task number}')
sns.histplot(data=df[task_number], color='b', element='poly', fill=False,
stat='density', label=f'histplot task {task_number}', ax=ax)
gam = stats.gamma(a, loc1, scale1)
x = np.linspace(min(intervals), max(intervals), 1000)
sns.lineplot(x=x, y=gam.pdf(x), color='r', label=f'gamma pdf(task
{task_number})', ax=ax)
ax.set_xlabel('time');
plt.savefig('gamma_est_plot.png')
# %% [markdown]
# <font size = "3" face = 'Times New</pre>
Roman'>Отобразим полученное распределение:<br>Как видно, подобранное Гамма
распределение достаточно хорошо описыват распределение времени выполнения задания
0</font>
# <div>
# <img src='https://github.com/JacKira/SDO/blob/main/gamma est plot.png?raw=1'</pre>
style = "width:40%; height:40%; padding:0; border:0" hspace = "0"
vspace="0"></div>
# %% [markdown]
# ### Лог нормальное
# %% [markdown]
# <font size = "3" face = 'Times New</pre>
Roman'>Получим параметры подходящих лог - нормальных распределений и проверим
гипотезу согласия наблюдаемых выборок полученным лог-нормальным:</font>
alpha = 0.05 # уровень значимости
to plot = []
intervals = [df[task_number].min()]
for q in np.arange(0.1, 1, 0.1):
    intervals.append(round(np.quantile(df[task_number], q), 0))
intervals.append(df[task_number].max())
# составляем вектор наблюдаемых частот
observations = []
```

```
for i in range(len(intervals) - 1):
         observations.append(len(df[task_number][(df[task_number] >= intervals[i]) &
(df[task_number] <= intervals[i + 1])]))</pre>
# Определяем оценки параметров Гамма-распределения методом ММП
a, loc2, scale2 = stats.lognorm.fit(df[task_number])
# Составляем теоретических ветор частот
n = np.sum(observations)
theory = []
for i in range(len(intervals) - 2):
         p = stats.lognorm.cdf(x=intervals[i + 1], s=a, loc=loc2, scale=scale2) -
stats.lognorm.cdf(x=intervals[i], s=a, loc=loc2, scale=scale2)
         theory.append(int(round(p*n, 0)))
p = 1 - stats.lognorm.cdf(x=intervals[-2], s=a, loc=loc2, scale=scale2)
theory.append(n - np.sum(theory))
# Проверяем гипотезу
stat, p_value = stats.chisquare(
         f obs=observations,
         f_exp=theory,
         ddof=2
df_results=df_results.append({'Distribution':'Лог нормальное',
'difference_p_value':p_value}, ignore_index = True)
if p value > alpha:
         print(f'Для задания {task number} НО не отвергнута (p value =
{p value:.3f})')
         print(f'C параметрами a = \{round(a,2)\}; loc = \{round(loc1,2)\}; scale = \{round(a,2)\}; 
{round(scale1,2)}')
         to_plot.append(task_number)
else:
         print(f'Для задания {task_number} H0 отвергнута (p_value = {p_value:.3f})')
# %% [markdown]
# <font size = "3" face = 'Times New</pre>
Roman'>Видим, что для задания 0 мы можем сделать вывод о том, что распределение
времени выполнения задания соответствует закону Гамма-распределению с
подобранными параметрами. <br><br></ri>
# Отобразим полученное распределение:
# </font>
# 
# %%
intervals = [df[task number].min()]
for q in np.arange(0.1, 1, 0.1):
         intervals.append(round(np.quantile(df[task_number], q), 0))
```

```
intervals.append(df[task number].max())
observations = []
for i in range(len(intervals) - 1):
   observations.append(len(df[task number][(df[task number] >= intervals[i]) &
(df[task_number] <= intervals[i + 1])]))</pre>
# Составляем теоретических ветор частот
n = np.sum(observations)
theory = []
for i in range(len(intervals) - 2):
   p = stats.lognorm.cdf(x=intervals[i + 1], s=a, loc=loc2, scale=scale2) -
stats.lognorm.cdf(x=intervals[i], s=a, loc=loc2, scale=scale2)
   theory.append(int(round(p*n, 0)))
p = 1 - stats.lognorm.cdf(x=intervals[-2], s=a, loc=loc2, scale=scale2)
theory.append(n - np.sum(theory))
fig, ax = plt.subplots()
ax.set_title(f'Задание {task_number}')
sns.histplot(data=df[task_number], color='b', element='poly', fill=False,
stat='density', label=f'histplot task {task_number}', ax=ax)
lnorm = stats.lognorm(s=a, loc=loc2, scale=scale2)
x = np.linspace(min(intervals), max(intervals), 1000)
sns.lineplot(x=x, y=lnorm.pdf(x), color='r', label=f'LogNorm pdf(task
{task_number})', ax=ax)
ax.set_xlabel('time');
plt.savefig('lognorm_est_plot.png')
# %% [markdown]
# <font size = "3" face = 'Times New</pre>
Roman'>Отобразим полученное распределение:<br>Как видно, подобранное Гамма
распределение достаточно хорошо описыват распределение времени выполнения задания
0</font>
# <div>
# <img src='lognorm_est_plot.png' style = "width:40%; height:40%; padding:0;</pre>
border:0" hspace = "0" vspace="0"></div>
# %% [markdown]
# <h3><font face = 'Times New Roman'> Сравнение приближений</font></h3>
# %% [markdown]
# <font size = "3" face = 'Times New Roman'>Если
нас интересует, какой закон распределения лучше всего описывает распределение
времени выполнения задания, то нужно выбрать распределение с наибольшим p_value,
которое характеризует статистическую занчимость отличия одной выборки от другой.
<br>То есть если  p_value <= α, то выборки не однородны, иначе однородны, что нам
и нужно.</font>
```

```
# %%
display(df_results.sort_values('difference_p_value', ascending = False))

# %% [markdown]
# <font size = "3" face = 'Times New Roman'>Как
видно в таблице, Хи - квадрат Пирсона лучше всего описывает распределение времени
выполнения задания 0</font>
# %%
```