Mister Counter

Time limit: 1000 ms Memory limit: 128 MB

Do you know Mr. Counter? Well, he is obsessed with counting. For instance, he counts the number of distinct configurations that a phone number might have with k digits, also the number of ways he can dress up with his current clean clothes. This time he has been thinking of a more complicated task.

For any array a of **distinct** integers, Mr. Counter denotes by F_a an array that has the following properties:

- 1. It contains the same elements as a
- 2. F_a is lexicographically greater than a
- 3. From all the arrays that respect property 2, F_a is the lexicographically smallest one.
- 4. If there no array lexicographically greater than a, F_a is equal to a.

An array a is considered smaller than another array b if and only if there is a position i that satisfies $a_1=b_1, a_2=b_2, ..., a_{i-1}=b_{i-1}, a_i< b_i$.

Mr. Counter also defines the cost of an array a as the number of indices where a differs from F_a .

Now it's your turn to help with a special task. Mr. Counter has an array a consisting of n distinct integers and he asks you q queries. Each query consists of two indices l and r ($1 \le l \le r \le n$). Find the cost of the subarray $a_{l...r}$.

Standard input

The first line contains an integer n representing the number of elements a.

The second line contains the n elements of a.

The third line contains the number of gueries q.

Each of the next q lines contains two numbers l and r ($1 \le l \le r \le n$).

Standard output

Print the answer for each query on a different line.

Constraints and notes

- $1 \le n \le 250000$
- $0 < a_i < 10^9$
- $1 \le q \le 250\,000$

Input	Output
5 5 4 3 2 1	0 0
2 1 5 2 4	
2 4	
6 0 2 7 5 4 3	2 5
2 1 2	