201720970_권대한

강원대학의 농구 코치는 <대학농구연맹전> 결승전에서 뛸 스타팅 라인업 5 명을 고르려고 한다. 지금까지의 각 선수의 전적은 다음 표와 같다.

코치는 다음과 같은 4개의 목표를 가지고 있다.

- 1. 출전선수들의 평균신장은 193cm 이상 이어야 한다.
- 2. 각 선수의 게임당 평균 리바운드의 합은 23 이상이어야 한다.
- 3. 각 선수의 게임당 평균 득점의 합은 58 이상이어야 한다.
- 4. 각 선수의 게임당 평균 어시스트의 합은 13 이상이어야 한다.

코치는 다음의 제약조건들을 가지고 있다.

- a. 적어도 가드 한 명은 뛰어야 한다.
- b. 센터는 한 명만 뛴다.
- c. 1 번이나 4 번이 뛰면 6 번은 뛸 수 없다.
- d. 농구는 5명이 하는 운동이다.

해당 문제의 목표는 가지는 조건을 최대한 만족하는 선수 5명을 출전시키고자 한다.

<문제 풀이>

먼저 의사결정 변수를 정하고자 한다. 4 개의 목표에 대해 V1, V2, V3, V4 라는 이진 결정 변수를 설정하겠다. 선수들의 출전 여부를 저장하는 이진 결정 변수는 X1, X2, X3, X4, X5, X6, X7, X8 로 설정하겠다.

이 목표를 최대 충족시키기 위해서 결론적으로는 목적함수는 max V1 + V2 + V3 + V4 이 될 것이며, 제약식에 따라 모두 만족하는 경우(Best Case), 4 의 값을 가지게 될 것이며, 이 외의 경우 4 보다 작은 값을 가지게 될 것이므로, LINDO에서 추가적인 제약을 하지 않았다.

전적 표에 따라 목표 1의 경우(182x1 + 175x2 + 185x3 + 190x4 + 196x5 + 201x6 + 203x7 + 208x8) / 5 >= 193 로 표현할 수 있으며, LINDO 에서는 변수와 비교 연산자, 산술 연산자가 아닌 다른 기호가 들어왔을 때, 변수 인식하지 못하므로, 182x1 + 175x2 + 185x3 + 190x4 + 196x5 + 201x6 + 203x7 + 208x8 - 965 >= 0 로 표현 할 수 있다.

여기서 목표 1 에 따른 제약조건이 충족되는 경우, V1 이 무조건 충족되며, 1 의 값을 가져야 하므로, V1 기준으로 이항하였을 때, - 182x1 - 175x2 - 185x3 - 190x4 - 196x5 - 201x6 - 203x7 - 208x8 + 965v1 <= 0 와 같이 표현할 수 있다. 위와 같이 표현한다면, 출전 선수 5 명의 키가 평균 193cm 을 넘을 때, 이진 의사 결정 변수인 V1 이무조건 1을 가지게 된다.

목표 2, 3, 4 의 경우 "각자 선수의" 라는 말이 무색하지만, 선수가 가지는 게임당 평균 전적을 더한 값이 목표 값과 같거나, 초과해야 한다고 하는 것으로 이해하였다.

목표 2의 경우 - x1 - 3x2 - 3x3 - 4x4 - 2x5 - 6x6 - 3x7 - 9x8 + 23v2 <= 0.

목표 3의 경우 4x1 + 16x2 + 4x3 + 10x4 + 12x5 + 8x6 + 6x7 + 22x8 - 58v3 >= 0

목표 4의 경우 5x1 + 2x2 + x3 + 2x4 + 3x5 + x6 + 5x7 + x8 - 13v4 >= 0로 정의 하였다.

그리고 무조건적으로 지켜져야 하는 제약 조건 4가지가 있다.

가드인 1번 선수, 2번 선수, 3번 선수는 최소 한 명 출전해야 한다.

조건 1에 따라, 1번 선수, 2번 선수, 3번 선수의 이진 의사 결정 변수 중 하나는 무조건 1을 가지게 될 것이다.

제약 1. x1 + x2 + x3 >= 1

센터 선수인 7번,8번 선수는 한 명만 뛰어야 한다고 한다.

농구 규칙을 잘 모르지만, 센터 선수가 무조건 필요한 것으로 보이지만, 문제의 제약식에서 "최소" 한 명은 뛰어야 한다고 언급하지 않았으므로, 아래와 같은 제약을 설정하였다. (최소의 조건을 추가하여도 결과는 같다..)

제약 2. x7 + x8 = 1

아래 식에 따라 1번, 4번 선수가 출전한다면, 6번 선수는 절대 출전하지 못한다.

제약 3. x1 + x4 + 2x6 <= 2

농구는 5명이 하는 운동이므로, 제약 조건에 따라 5명이 출전할 때, 제약 조건이 만족된다.

제약 4. x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 = 5

```
<수리 계획 모델>
```

$$max v1 + v2 + v3 + v4$$

st

$$-x1 - 3x2 - 3x3 - 4x4 - 2x5 - 6x6 - 3x7 - 9x8 + 23v2 <= 0$$

$$4x1 + 16x2 + 4x3 + 10x4 + 12x5 + 8x6 + 6x7 + 22x8 - 58v3 >= 0$$

$$5x1 + 2x2 + x3 + 2x4 + 3x5 + x6 + 5x7 + x8 - 13v4 >= 0$$

$$x1 + x2 + x3 >= 1$$

$$x7 + x8 = 1$$

$$x1 + x4 + 2x6 \le 2$$

$$x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 = 5$$

end

int v1

int v2

int v3

int v4

int x1

int x2

int x3

int x4

int x5

int x6

int x7

int x8

<수리 계획 모델 캡쳐>

```
max v1 + v2 + v3 + v4
- 182x1 - 175x2 - 185x3 - 190x4 - 196x5 - 201x6 - 203x7 - 208x8 + 965v1 <= 0
-x1 - 3x2 - 3x3 - 4x4 - 2x5 - 6x6 - 3x7 - 9x8 + 23v2 <= 0
4x1 + 16x2 + 4x3 + 10x4 + 12x5 + 8x6 + 6x7 + 22x8 - 58x3 >= 0
5x1 + 2x2 + x3 + 2x4 + 3x5 + x6 + 5x7 + x8 - 13v4 >= 0
x1 + x2 + x3 >= 1
x7 + x8 <= 1
x1 + x4 + 2x6 \le 2
x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 = 5
end
int v1
int v2
int v3
int v4
int x1
int x2
int x3
int x4
int x5
int x6
int x7
int x8
```

NEW INTEGER SOLUTION OF 3.00000000 AT BRANCH 0 PIVOT 30 RE-INSTALLING BEST SOLUTION...

OBJECTIVE FUNCTION VALUE

1) 3.000000

VALUE	REDUCED COST
1.000000	-1.000000
1.000000	-1.000000
1.000000	-1.000000
0.000000	-1.000000
0.000000	0.000000
1.000000	0.000000
1.000000	0.000000
0.000000	0.000000
1.000000	0.000000
1.000000	0.000000
0.000000	0.000000
1.000000	0.000000
	1.000000 1.000000 1.000000 0.000000 1.000000 1.000000 0.000000 1.000000 1.000000

ROW SLACK OR SURPLUS DUAL PRICES

2)	0.000000	0.000000	
3)	0.000000	0.000000	
4)	4.000000	0.000000	
5)	8.000000	0.000000	
6)	1.000000	0.000000	
7)	0.000000	0.000000	
8)	0.000000	0.000000	
9)	0.000000	0.000000	

NO. ITERATIONS= 30 BRANCHES= 0 DETERM.= 1.000E 0