Technion CS-236756

Introduction to Machine Learning

Welcome to the course!

Lecturer: Dr. Yonatan Belinkov.

Teaching assistants: Itay, Arkadi, Yonatan, Shani, and Edan.

Introduction

- Updates & Materials: in the webcourse
- · Questions & Discussions: in the Piazza forum
- Grade
 - 74% Exam (must pass)
 - 18% Major programming assignments (3 assignments in pairs)
 - 8% Short assignments (4 assignments, submitted individually)

Short assignment 1 is already published

Longer than the other short assignments, but shorter than the major "wet" assignments.

- 1. Get familiar with important python libraries for data science
- 2. Two probability questions
- 3. Two algebra questions

Major wet assignments

- 3 assignments, each is 6% of the final grade.
- · Submissions in pairs only.
- Let you experience the more practical aspects of learning while applying ideas and algorithms learned in class.
- Rough partition:
 - 1. Data preparation
 - 2. Algorithm implementation
 - 3. Modeling & Classification

Technion CS-236756

Introduction to Machine Learning

Tutorial 1: Data Exploration with Python

Ronen Nir & Itay Evron

Tutorial outline

- The learning pipeline
- Overview and motivations
- Steps of Data Exploration
 - Variable Identification
 - Univariate Analysis
 - o Bi-variate Analysis

The learning pipeline

Data Exploration Overview

- Analyze datasets to reveal their main characteristics
- · Find what the data can tell us
 - Some patterns can be revealed through visualizations and charts
- Heina etatictical methode to identify variables

osing statistical methods to identity variables

Motivation

- · With a new dataset in hand, the first thing you do is data exploration
 - Data exploration and data preparation take up to 80% of the time in many ML projects
- Exploring the data gives insights about what you can and cannot do
- · Garbage in, garbage out
 - o Exploring the data can help you make it better later on
 - o More data beats cleverer algorithms, better data beats more data
 - (Peter Norvig)

Data Exploration Steps

- 1. Understanding the data
 - Variable Identification
 - Variable Analysis
- 2. Improving the data
 - Missing values
 - Outliers
 - Variable Engineering

Packages Relevant to Data Exploration

First, import relevant packages.

```
import pandas as pd # data analysis and manipulation tool
import numpy as np # Numerical computing tools
import seaborn as sns # visualization library
import matplotlib.pyplot as plt # another visualization library
import warnings
warnings.filterwarnings('ignore')
```

Step I: Understanding the Data

Throughout this tutorial we shall use the tips dataset for demonstration and examples from Kaggle's visualization tutorial.

Variable Identification

What do we need to know about the variables in a dataset?

tips.head()

	total_bill	tip	sex	smoker	day	time	size
0	16.99	1.01	Female	No	Sun	Dinner	2
1	10.34	1.66	Male	No	Sun	Dinner	3
2	21.01	3.50	Male	No	Sun	Dinner	3
3	23.68	3.31	Male	No	Sun	Dinner	2
4	24.59	3.61	Female	No	Sun	Dinner	4

Variable Types

We focus on two types of variables:

- Continuous variables (total_bill, tip)
- Categorical variables (sex, smoker, day, time)

Discussion

How would you treat the 'size' variable?

```
tips['size'].value_counts()
```

```
size
2   156
3   38
4   37
5   5
1   4
6   4
Name: count, dtype: int64
```

tips['size'].hist()

Features & Target Variables

- Target variables are what we care about, and we want to infer from the features (predictor variables)
- ullet The features are often denoted as X and target variables are denoted y

Discussion

What variables are the *predictor variables* and what variables are *target variables*?

tips.sample(5)

	total_bill	tip	sex	smoker	day	time	size
103	22.42	3.48	Female	Yes	Sat	Dinner	2
127	14.52	2.00	Female	No	Thur	Lunch	2
7	26.88	3.12	Male	No	Sun	Dinner	4
210	30.06	2.00	Male	Yes	Sat	Dinner	3
32	15.06	3.00	Female	No	Sat	Dinner	2

Data Understanding - Important Tip

- Pandas assumes a certain variable type to each column
- Doublecheck it with the attribute dtypes

tips.dtvpes

total_bill float64
tip float64
sex category
smoker category
day category
time category
size int64
dtype: object

Univariate Analysis

Explores the variables one by one

- Continuous variables
 - Use statistical metrics and visualization methods to understand the nature of the variable
- Categorical variables
 - o Tables that describe distribution of each category
- Univariate Analysis (Continuous Variables)

```
fig, axes = plt.subplots(1,3, figsize=(18, 5))

tips['total_bill'].plot(ax=axes[0]) # don't do that
axes[0].set_title("Inappropriate plot type", fontsize=21)

tips.total_bill.plot(kind='hist', bins=20, ax=axes[1]) # better
axes[1].set_title("Histogram (with pandas)", fontsize=21)

sns.histplot(tips.total_bill, kde=True, ax=axes[2]) # prettier with seaborn
axes[2].set_title("Prettier histogram (with seaborn)", fontsize=21)

for ax in axes:
    ax.grid(alpha=0.5)
```


Univariate Analysis (Categorical Variables)

```
tips['sex'].value_counts()
```

sex

Male 157

Female 87 Name: count, dtype: int64

tips.groupby('sex').smoker.value_counts()

 sex
 smoker

 Male
 No
 97

 Yes
 60

 Female
 No
 54

 Yes
 33

 Name:
 count, dtype:
 int64

Visualization of Categorical Variables

```
fig, (ax1, ax2) = plt.subplots(ncols=2, sharey=True, figsize=(15,4))
tips["size"].plot(kind="hist", ax=ax1) # plot with pandas
ax1.grid(alpha=0.5)
```

```
ax1.set_title("With pandas", fontsize=18)
sns.countplot(data = tips, x="size", ax=ax2) # prettier with seaborn
ax2.grid(alpha=0.5)
ax2.set_title("With seaborn", fontsize=18)

plt.suptitle("Distribution of table sizes", fontsize=24)
_ = plt.tight_layout()
```


Bi-variate Analysis

Explore the relationship between two variables

- 1. Continuous and continuous
- 2. Categorical and continuous
- 3. Categorical and categorical

Bi-Variate Analysis of 2 Continuous Variables

- 1. Your first visualization of 2 variables should be a scatter plot
 - 1. Keep it simple!
- 2. Use statistical methods to check the relationship between two variables
 - 1. e.g. computing the correlation between 2 variables

fig, axes = plt.subplots(1,2, figsize=(14, 6))

tips.plot(x='total_bill', y='tip', kind='scatter', ax=axes[0]) # plot with panc axes[0].set_title("Regular scatter plot", fontsize=18)

sns.scatterplot(x='total_bill', y='tip', hue=tips.sex.to_list(), data=tips, ax=
axes[1].set_title("Scatter plot, grouped by 'sex'", fontsize=18)

for ax in axes:
 ax.grid(alpha=0.5)

Correlation

- Tests how strongly pairs of variables are linearly related
 - o For example, height and weight are related
- The Correlation between two variables (X,Y) is defined to be: $\frac{Cov(X,Y)}{\sqrt{Var(X)Var(Y)}}$

```
x = tips.total_bill
y = tips.tip
# Compute correlation
print("Correlation is: {:.3f}".format(tips['total_bill'].corr(tips['tip'])))
g = sns.jointplot(data=tips, x="total_bill", y="tip", kind="reg")
_ = g.ax_joint.grid(alpha=0.5)

Correlation is: 0.676
Correlation
```


Discussion (feature selection)

What will you do if you find two correlative variables? Delete them? Keep them? It depends!

Correlation between continuous variables in tips

tips.corr(numeric_only=True)

	total_bill	tip	size
total_bill	1.000000	0.675734	0.598315
tip	0.675734	1.000000	0.489299
size	0.598315	0.489299	1.000000

```
f = plt.figure()
plt.matshow(tips.corr(numeric_only=True), fignum=f.number)
plt.xticks(range(3), ['bill', 'tip', 'size'], fontsize=14)
plt.yticks(range(3), ['bill', 'tip', 'size'], fontsize=14)
cb = plt.colorbar()
cb.ax.tick_params(labelsize=14)
_ = plt.title('Correlation Matrix', fontsize=18)
```


Bi-Variate Analysis of 2 Categorical Variables

- 1. Two-way table
- 2. Stacked Bar Chart
- 3. Statistical tests like Chi-square (out of scope)

Examples of Bi-Variate Analysis in tips

print(tips.groupby('time')['smoker'].value_counts(normalize=True))
pd.crosstab(tips['time'], tips['smoker'])

Lunch 23 45

Dinner 70 106

Analysis of Categorical and Continuous with Box plots

Credit: towards data science

> Box Plots in tips

```
_ = tips.boxplot(by='time', column='tip', grid=True)
#_ = tips.boxplot(by='day', column='tip', grid=True)
```


(Bonus) Creating New Variables

- Use expert/common knowledge to improve the data
- E.g. Humans like round numbers so customers tend to round the payment
 - Can we design a variable that emphasizes this?

bill_with_tip = tips['total_bill'] + tips['tip']

fig, (ax1, ax2) = plt.subplots(ncols=2, sharey=True, figsize=(15,4))

sns.histplot((tips.total_bill - np.floor(tips.total_bill)), ax=ax1, kde=True, t ax1.set_title("Cents in bill", fontsize=22)

sns.histplot(bill_with_tip - np.floor(bill_with_tip), ax=ax2, kde=True, bins=20 ax2.set_title("Cents in bill with tip", fontsize=22)

 $_{-}$ = ax1.grid(alpha=0.5), ax2.grid(alpha=0.5)

Step II: Improving the data

In major assignment 1