Deep Learning for Brain Tumor
Detection Using MRI

Leo Yao Tianyu Zhao Yumo Li yy3959@nyu.edu tz2263@nyu.edu yl10192@nyu.edu

Table of CONTENTS

Introduction	Introduction of Data, Methodology Used, and Paper Referenced
Data Preprocessing & Augmentation	TorchIO and Canny Edge Detector
Baseline Model	resnet
Other Models	unet, rcnn

01

Introduction

Aim

- High-impact domain
- Motivation
- Clinical focus
- Data availability
- Project goal
- Method stack

About our data

(a) No Tumor Sample Images

(d) Glioma RGB Pixel Intensity Distribution

Methodology Used

 Data Augmentation and Data Preprocessing

- ResNet
- U-Net and Faster R-CNN

Paper Referenced

- Abdusalomov et al., 2023:
 - Brain Tumor Detection Based on Deep Learning Approaches and Magnetic Resonance Imaging
 - The original paper that we referenced
- Ronneberger et al., 2015:
 - U-Net paper
- Shaoqing Ren et al., 2015:
 - Faster R-CNN paper

DATA AUGMENTATION

adding variation, e.g. noise, blur, motion, etc.

DATA PREPROCESSING

content removal / downsizing

02

Data Augmentation and Data Preprocessing

Data Augmentation (+)

- TorchIO:
 - Random noise
 - Random blur
 - Random motion
 - Mix of the above

- Canny Edge Detector:
 - Edge augmentation

Data Preprocessing (-)

Skull Stripping

03

Baseline Model

Baseline ResNet Model - Pipeline & Dataset Preparation

- Data Transforms & Augmentation:
 - Training set:
 - Resize, random rotation, affine shift, horizontal flip
 - Normalize to standard mean and std
 - Validation/Test set:
 - Resize and normalize only
- BrainTumorDataset:
 - Walks through class folders
 - Loads and labels images (OpenCV + RGB + PIL)
 - Applies specified transforms

Training, Monitoring & Evaluation

Model Architecture:

- Pre-trained ResNet-50 (ImageNet weights)
- Replaced final layer with:
 - o Dropout + Linear head → **4-class output**

Training Configuration:

- Loss: CrossEntropyLoss
- Optimizer: Adam
- LR Scheduler: ReduceLROnPlateau
- Monitoring: Loss, accuracy, confusion matrix (per epoch)

Training Loop:

- Epoch-wise:
 - \circ Train \rightarrow Evaluate \rightarrow Log metrics \rightarrow Adjust LR
 - Save model if val loss improves > 0.001
 - Early stopping after patience epochs of no improvement

Final Evaluation:

- Load best model → Run on test set
- Report
 - Loss, accuracy
 - Confusion matrix
 - o **Precision, recall, F1-score** per class

Comparison of Data Augmentation Techniques

Comparison of Data Preprocessing Techniques

Baseline

Canny Edge Detector + Skull Stripping

04 OTHER MODELS

UNET and Faster R-CNN

Test accuracy: 0.3750

Test accuracy: 0.2283

THANKS!