Таблица основных неопределенных интегралов

$$\int x^n dx = \frac{x^{n+1}}{n+1} + C \quad (n \neq -1). \ \text{В частности:} \ \int dx = x + C. \eqno(1.6)$$

$$\int \frac{dx}{x} = \ln|x| + C. \tag{1.7}$$

$$\int a^x dx = \frac{a^x}{\ln a} + C$$
 (a > 0, a \neq 1). В частности: $\int e^x dx = e^x + C$. (1.8)

$$\int \sin x dx = -\cos x + C. \tag{1.9}$$

$$\int \cos x dx = \sin x + C. \tag{1.10}$$

$$\int \frac{dx}{\cos^2 x} = \operatorname{tg} x + C. \tag{1.11}$$

$$\int \frac{dx}{\sin^2 x} = -\operatorname{ctg} x + C. \tag{1.12}$$

$$\int \frac{dx}{\sin x} = \ln\left|\operatorname{tg}\frac{x}{2}\right| + C. \tag{1.13}$$

$$\int \frac{dx}{\cos x} = \ln\left|\operatorname{tg}\left(\frac{x}{2} + \frac{\pi}{4}\right)\right| + C. \tag{1.14}$$

$$\int \frac{dx}{x^2 + a^2} = \frac{1}{a} \arctan \frac{x}{a} + C \quad (a \neq 0).$$
 (1.15)

$$\int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \ln \left| \frac{x+a}{x-a} \right| + C. \tag{1.16}$$

$$\int \frac{dx}{\sqrt{a^2 - x^2}} = \arcsin\frac{x}{a} + C, \quad |x| < |a|. \tag{1.17}$$

$$\int \frac{dx}{\sqrt{x^2 - a^2}} = \ln \left| x + \sqrt{x^2 - a^2} \right| + C, \quad |x| > |a|. \tag{1.18}$$

$$\int \frac{dx}{\sqrt{x^2 + a^2}} = \ln(x + \sqrt{x^2 + a^2}) + C. \tag{1.19}$$

$$\int \sinh x dx = \cosh x + C. \tag{1.20}$$

$$\int \operatorname{ch} x dx = \operatorname{sh} x + C. \tag{1.21}$$

$$\int \frac{dx}{\cosh^2 x} = \tanh x + C. \tag{1.22}$$

$$\int \frac{dx}{\sinh^2 x} = -\coth x + C. \tag{1.23}$$

Таблица производных основных элементарных функций

$$(x^a)' = ax^{a-1}, \quad a \neq 0.$$
 (1.24)

$$(a^x)' = a^x \ln a, \quad a > 0.$$
 В частности: $(e^x)' = e^x.$ (1.25)

$$(\log_a x)' = \log_a e \cdot \frac{1}{x}, \quad a > 0, \ a \neq 1.$$
 В частности: $(\ln x)' = \frac{1}{x}.$ (1.26)

$$(\sin x)' = \cos x. \tag{1.27}$$

$$(\cos x)' = -\sin x. \tag{1.28}$$

$$(\operatorname{tg} x)' = \frac{1}{\cos^2 x}.\tag{1.29}$$

$$(\operatorname{ctg} x)' = -\frac{1}{\sin^2 x}.$$
 (1.30)

$$(\arcsin x)' = -(\arccos x)' = \frac{1}{\sqrt{1-x^2}}.$$
 (1.31)

$$(\operatorname{arctg} x)' = -(\operatorname{arcctg} x)' = \frac{1}{1+x^2}.$$
 (1.32)

1.3 Интегрирование по частям

Пусть u(x), v(x) – дифференцируемые функции.

$$\int udv = uv - \int vdu. \tag{1.33}$$

2.2 Интегрирование рациональных дробей

Рациональная дробь есть отношение двух полиномов:

$$\frac{P_m(x)}{Q_n(x)} = \frac{a_0 x^m + a_1 x^{m-1} + \dots + a_m}{b_0 x^n + b_1 x^{n-1} + \dots + b_n}.$$

Дробь называется правильной, если n>m и неправильной, если $n\leq m$. Интегрирование правильной рациональной дроби осуществляется с помощью ее разложения на простейшие.

Простейшими дробями называются дроби вида:

$$\frac{A}{x-a}$$
, $\frac{A}{(x-a)^k}$, $\frac{Ax+B}{x^2+px+q}$, $\frac{Ax+B}{(x^2+px+q)^k}$,

где
$$D=p^2-4q<0$$
 $A\,,\,B\,,\,a\,,\,p\,,\,q\,=const.$

 $D < 0 \Rightarrow$ знаменатель $x^2 + px + q$ нельзя разложить на вещественные множители.

2.3 Процедура интегрирования рациональной дроби

Опишем процедуру интегрирования рациональной дроби общего вида: $\int \frac{P_m(x)}{Q_n(x)} \, dx$

1) Пусть $m \ge n$ (то есть дробь неправильная: степень числителя \ge степени знаменателя). Тогда в дроби $\frac{P_m(x)}{Q_n(x)}$ нужно выделить целую часть. Это можно сделать с помощью деления многочленов в столбик. Например:

$$\frac{x^4 + 3x^2 + x + 2}{x^2 + 1} = x^2 + 2 + \frac{x}{x^2 + 1}.$$

2) Мы получим правильную дробь $\frac{P_m(x)}{Q_n(x)}$ (степень числителя меньше степени знаменателя). Разложим правильную дробь на простейшие. Для этого нужно разложить знаменатель на множители:

$$Q_n(x) = a_0(x - a_1)^{k_1} \cdot (x - a_2)^{k_2} \cdot \ldots \cdot (x^2 + p_1 x + q_1)^{s_1} \cdot \ldots$$

 $\frac{P_m(x)}{Q_n(x)}$ представляется в виде суммы простейших дробей с неопределёнными коэффициентами. При этом каждому множителю в знаменателе отвечают следующие слагаемые:

$$\frac{1}{(x-a_1)^{k_1}} \longmapsto \frac{A_1}{x-a_1} + \frac{A_2}{(x-a_1)^2} + \dots + \frac{A_{k_1}}{(x-a_1)^{k_1}},$$

$$\frac{1}{(x^2+p_1x+q_1)^{s_1}} \mapsto \frac{M_1x+N_1}{x^2+p_1x+q_1} + \frac{M_2x+N_2}{(x^2+p_1x+q_1)^2} + \dots + \frac{M_{s_1}x+N_{s_1}}{(x^2+p_1x+q_1)^{s_1}}.$$

3.1 Интегралы вида $\int \sin^m x \cos^n x dx$

- **a)** Если хотя бы одно из чисел m или n нечётное положительное число, тогда:
- 1. Отделяем от нечётной степени один сомножитель.
- **2.** С помощью формулы $\sin^2 x + \cos^2 x = 1$ выражаем оставшуюся чётную степень через дополнительную функцию и приходим к табличному интегралу.

Пример

$$\int \frac{\sin^3 x}{\sqrt[4]{\cos x}} dx = \int \frac{\sin^2 x}{\sqrt[4]{\cos x}} \sin x dx = -\int \frac{1 - \cos^2 x}{\sqrt[4]{\cos x}} d(\cos x) =$$

$$= -\int \frac{d(\cos x)}{\sqrt[4]{\cos x}} + \int \frac{\cos^2 x}{\sqrt[4]{\cos x}} d(\cos x) = -\frac{4}{3} \sqrt[4]{\cos^3 x} + \frac{4}{11} \sqrt[4]{\cos^{11} x} + C.$$

б) Если m и n - чётные неотрицательные числа, тогда степени понижаются посредством перехода к двойному аргументу с помощью формул:

$$\cos^2 x = \frac{1 + \cos 2x}{2},\tag{3.1}$$

$$\sin^2 x = \frac{1 - \cos 2x}{2},\tag{3.2}$$

$$\sin x \cos x = \frac{1}{2} \sin 2x. \tag{3.3}$$

3.2 Интегралы вида $\int R(\sin x, \cos x) dx$

 $R(\sin x,\cos x)\,dx$ — рациональная функция (то есть функция, которая получается из $\sin x$ и $\cos x$ только действиями "+", "—", ":").

Универсальная замена (срабатывает всегда):

$$tg\frac{x}{2} = t;$$
(3.4)

$$\sin x = \frac{2t}{1+t^2}; \quad \cos x = \frac{1-t^2}{1+t^2}; \tag{3.5}$$

$$x = 2 \operatorname{arctg} t; \quad dx = \frac{2dt}{1 + t^2}.$$
 (3.6)

Более простые замены (но работают не всегда!):

- а) Если $R(-\sin x,\cos x)=-R(\sin x,\cos x)\Rightarrow$ делаем замену: $\cos x=t$.
- б) Если $R(\sin x, -\cos x) = R(\sin x, \cos x) \Rightarrow$ делаем замену: $\sin x = t$.
- в) Если $R(-\sin x, -\cos x) = R(\sin x, \cos x) \Rightarrow$ делаем замену:

$$\operatorname{tg} x = t, \, \operatorname{тогда:} \, \cos x = \frac{1}{\sqrt{1+t^2}}; \, \sin x = \frac{t}{\sqrt{1+t^2}}; \, dx = \frac{dt}{1+t^2}$$

Пример

$$\begin{split} &\int \frac{dx}{4\cos x + 3\sin x + 5} = 2\int \frac{dt}{\left(4 \cdot \frac{1 - t^2}{1 + t^2} + 3 \cdot \frac{2t}{1 + t^2} + 5\right)(1 + t^2)} = \\ &= 2\int \frac{dt}{4 - 4t^2 + 6t + 5 + 5t^2} = 2\int \frac{dt}{t^2 + 6t + 9} = 2\int \frac{dt}{(t + 3)^2} = \\ &= -\frac{2}{t + 3} + C = -\frac{2}{\lg \frac{x}{2} + 3} + C. \end{split}$$

3.3 Интегрирование произведений синусов и косинусов

$$\cos \alpha \cos \beta = \frac{1}{2}(\cos(\alpha - \beta) + \cos(\alpha + \beta)) \tag{3.7}$$

$$\sin \alpha \sin \beta = \frac{1}{2}(\cos(\alpha - \beta) - \cos(\alpha + \beta)) \tag{3.8}$$

$$\sin \alpha \cos \beta = \frac{1}{2} (\sin(\alpha - \beta) + \sin(\alpha + \beta)) \tag{3.9}$$

4.1 Интегралы вида $\int R\left(x, \sqrt[n]{\frac{ax+b}{cx+d}}\right) dx$

 $R\left(x,\sqrt[n]{rac{ax+b}{cx+d}}
ight)$ — рациональная функция от x и $\sqrt[n]{rac{ax+b}{cx+d}},$ где $a,\ b,\ c,\ d\in\mathbb{R},\ n$ — натуральное число.

Сделаем замену:

$$\sqrt[n]{\frac{ax+b}{cx+d}} = t.$$

Пример

$$\int \frac{dx}{(5+x)\sqrt{1+x}} = \int \sqrt{1+x} = t \implies 1+x = t^2 \iff x = t^2 - 1$$

$$= \int \frac{2tdt}{(5+t^2-1)t} = 2\int \frac{dt}{4+t^2} = 2 \cdot \frac{1}{2} \arctan \frac{t}{2} + C = \arctan \frac{\sqrt{1+x}}{2} + C.$$

4.2 Интегралы вида $\int R\left(x, \left(\frac{ax+b}{cx+d}\right)^{\frac{m_1}{n_1}}, \left(\frac{ax+b}{cx+d}\right)^{\frac{m_2}{n_2}}, \ldots\right) dx$

Здесь $R(x,y,z,\ldots)$ — рациональная функция своих аргументов. $m_1,\ m_2,\ n_1,\ n_2,\ldots$ — целые числа.

Сделаем подстановку:

 $rac{ax+b}{cx+d}=t^s$, где s — общий знаменатель дробей $rac{m_1}{n_1},rac{m_2}{n_2},\dots$

4.3 Интегралы вида $\int R(x, \sqrt{ax^2 + bx + c}) dx$

Здесь R – рациональная функция двух аргументов.

- а) Выделяем полный квадрат в квадратном трёхчлене.
- б) Заменяем переменную: $a = x + \frac{b}{2a}$.

Тогда исходный интеграл сведётся к интегралу одного из следующих типов:

1)
$$\int R\left(u,\sqrt{l^2-u^2}\right)du \Rightarrow \text{Замена: } u=l\sin t; \tag{4.1}$$

2)
$$\int R\left(u,\sqrt{l^2+u^2}\right)du \Rightarrow \text{Замена: } u=l \operatorname{tg} t; \tag{4.2}$$

3)
$$\int R\left(u,\sqrt{u^2-l^2}\right)du \Rightarrow 3$$
амена: $u=l\sec t$, где $\sec t=\frac{1}{\cos t}$. (4.3)

Здесь l — некоторая постоянная.

После подстановки интеграл сведётся к интегралу вида:

$$\int R(\sin t, \cos t) dt.$$

5.1 Формула Ньютона-Лейбница

$$\int_{a}^{b} f(x)dx = F(x)\Big|_{a}^{b} = F(b) - F(a),$$

где F(x) – первообразная функция f(x).

5.2 Свойства определенного интеграла

В основном свойства определенного интеграла сходны со свойствами неопределенного. Выделим уникальное свойство.

Addumuвность

$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx$$

Рис. 3: Аддитивность интеграла

5.3 Замена переменной в определенном интеграле

Сделаем замену $x=\varphi(t)$ в интеграле $\int\limits_a^b f(x)dx$:

$$\int_{a}^{b} f(x)dx = \int_{t_{1}}^{t_{2}} f(\varphi(t))d\varphi(t) = \int_{t_{1}}^{t_{2}} f(\varphi(t))\varphi'(t)dt,$$

где t_1 и t_2 находятся из условий: $a=\varphi\left(t_1\right),\ b=\varphi\left(t_2\right).$

5.4 Интегрирование по частям

$$\int\limits_{a}^{b}udv=uv\Big|_{a}^{b}-\int_{a}^{b}vdu\Big|_{a}$$

Пример

$$\int_{1}^{e} \ln x dx = x \ln x \Big|_{1}^{e} - \int_{1}^{e} x \cdot \frac{1}{x} dx = e - x \Big|_{1}^{e} = 1.$$

$$/ u = \ln x \quad du = \frac{1}{x} dx /$$

$$v = x \quad dv = dx$$

Площадь фигуры, граница которой задана параметрически

Рис. 8: Фигура, граница которой задана параметрически

Пусть кривая, ограничивающая фигуру, задана параметрически:

$$\left\{egin{array}{l} x=x(t) \ y=y(t) \end{array}
ight.$$
, где $t_1\leq t\leq t_2$

Пусть кривая, ограни $\begin{cases} x = x(t) \\ y = y(t) \end{cases}, \text{ где } t_1 \leq t \leq t_2$ Тогда ее площадь можно посчитать по формуле: $S = \int\limits_{t_1}^{t_2} y(t) x'(t) dt.$

Формула $S=\int\limits_{t_1}^{t_2}y(t)x'(t)dt$ работает и в случае замкнутой кривой, если при изменении t от t_1 до t_2 граница обходится по часовой стрелке.

Рис. 9: Фигура, ограниченная замкнутой кривой

Площадь фигуры, заданной в полярных координатах

Рис. 11: Полярная система координат

$$\begin{cases} x = r\cos\varphi \\ y = r\sin\varphi \end{cases}$$

В полярных координатах точка задается двумя параметрами: расстоянием от начала координат r и углом φ .

Найдем площадь следующего сектора:

Рис. 12: Площадь сектора

$$S = rac{1}{2} \int\limits_{lpha}^{eta} r^2(arphi) darphi$$

5.6 Длина дуги кривой

Если гладкая кривая задана уравнением y=f(x), то длина ее дуги l равна:

$$l = \int\limits_{a}^{b} \sqrt{1 + (y')^2} dx$$

(где a и b - абсциссы концов дуги).

Если кривая задана параметрическими уравнениями x=x(t),

$$y = y(t), \quad t_1 \le t \le t_2$$
, to:

$$l = \int\limits_{t_1}^{t_2} \sqrt{{(x_t')}^2 + {(y_t')}^2} dt$$

В трехмерном случае аналогично.

Кривая задана параметрическим уравнением $x = x(t), \ y = y(t),$

$$z = z(t), \ t_1 \le t \le t_2.$$

$$l = \int_{t_1}^{t_2} \sqrt{(x_t')^2 + (y_t')^2 + (z_t')^2} dt$$

Если кривая задана в полярных координатах $r=r(\varphi), \quad \alpha \leq \varphi \leq \beta,$ то:

$$l = \int_{\alpha}^{\beta} \sqrt{r^2 + (r')^2} d\varphi$$

5.7 Несобственные интегралы. Интегралы с бесконечными пределами

$$\int_{a}^{+\infty} f(x)dx \stackrel{def}{=} \lim_{b \to +\infty} \int_{a}^{b} f(x)dx$$

Если предел существует и конечен, то интеграл называется сходящимся.

Рис. 16: Интеграл с бесконечным верхним пределом

Если предел не существует или бесконечен, то интеграл называется расходящимся.

5.8 Интегралы от неограниченных функций

Рассмотрим случай, когда подынтегральная функция имеет особенность на границе промежутка интегрирования: $f(b) = +\infty$. Тогда интеграл можно определить следующим образом:

$$\int\limits_{a}^{b}f(x)dx\stackrel{def}{=}\lim\limits_{\varepsilon\to 0}\int\limits_{0}^{b-\varepsilon}f(x)dx$$

Рис. 18: Интеграл от неограниченной функции. Точка разрыва лежит на границе промежутка интегрирования

Если предел существует и конечен, то интеграл называется сходящимся. Если предел не существует или равен бесконечности, интеграл называется расходящимся.

Рис. 19: Интеграл от неограниченной функции. Точка разрыва лежит внутри промежутка интегрирования

В случае, когда $c \in (a,b)$ – точка разрыва и $f(c) = \infty$:

$$\int_{a}^{b} f(x)dx = \lim_{\varepsilon_1 \to 0} \int_{a}^{c-\varepsilon_1} f(x)dx + \lim_{\varepsilon_2 \to 0} \int_{c+\varepsilon_2}^{b} f(x)dx$$

6.3 Частные производные

Пусть задана некоторая функция нескольких переменных. Найдем от нее частные производные первого и второго порядков.

6.4)
$$z = x^5 + y^5 - 5x^3y^3$$

Считая, что y = const, получим:

$$\frac{\partial z}{\partial x} = 5x^4 - 15x^2y^3$$

Считая, что x = const, получим:

$$\frac{\partial z}{\partial y} = 5y^4 - 15y^2x^3$$

Найдем производные второго порядка:

$$\begin{split} &\frac{\partial^2 z}{\partial x^2} = \frac{\partial}{\partial x} \left(\frac{\partial z}{\partial x} \right) = 20x^3 - 30xy^3 \\ &\frac{\partial^2 z}{\partial y^2} = \frac{\partial}{\partial y} \left(\frac{\partial z}{\partial y} \right) = 20y^3 - 30yx^3 \\ &\frac{\partial^2 z}{\partial x \partial y} = \frac{\partial}{\partial x} \left(\frac{\partial z}{\partial y} \right) = -45y^2x^2 \\ &\frac{\partial^2 z}{\partial y \partial x} = \frac{\partial}{\partial y} \left(\frac{\partial z}{\partial x} \right) = -45x^2y^2 \end{split}$$
 Смешанные частные производные

Как видим, результат многократного дифференцирование не зависит от очередности дифференцирования (при условии, что возникающие при этом смешанные частные производные непрерывны (как функции двух переменных)).

6.4 Дифференциал функции одной переменной

Рассмотрим дифференцируемую функцию y = f(x).

Приращение для такой функции:

$$\Delta y = f(x + \Delta x) - f(x)$$

$$\frac{\Delta y}{\Delta x} = \frac{f(x + \Delta x) - f(x)}{\Delta x} \stackrel{def}{=} f'(x) + \underbrace{\alpha(\Delta x)}_{\Delta x \to 0}$$

Здесь $\alpha(\Delta x)$ – некоторая функция, зависящая от Δx .

$$\Delta y = f'(x) \cdot \Delta x + \alpha(\Delta x) \cdot \Delta x$$

Обозначим Δx за dx.

$$\Delta y = \underbrace{f'(x)dx}_{=dy} + \alpha(\Delta x) \cdot dx$$

Итак, дифференциал функции y по определению равен: dy = f'(x)dx. Это главная линейная часть приращения функции y.

6.5 Дифференциал функции нескольких переменных

Рассмотрим функцию u = f(x, y, z). Здесь всё аналогично.

$$\Delta u = f(x + \Delta x, y + \Delta y, z + \Delta z) - f(x, y, z)$$
$$du \stackrel{\text{def}}{=} \frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy + \frac{\partial f}{\partial z} dz$$

6.6 Дифференцирование сложной функции нескольких переменных

Рассмотрим функцию $u=u\left(t,x,y\right) ,$ где $x=x\left(t\right) ,\quad y=y\left(t\right) .$

Тогда $\frac{du}{dt}$ можно посчитать по формуле:

$$\frac{du}{dt} = \frac{\partial u}{\partial t} + \frac{\partial u}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial u}{\partial y} \cdot \frac{dy}{dt}.$$

6.14) Найти $\frac{du}{dt}$, если $u=\frac{yz}{x}$, где $x=e^t,\ y=\ln t,\ z=t^2-1.$

$$\begin{split} &\frac{\partial u}{\partial t} = \frac{\partial}{\partial t} \left(\frac{yz}{x} \right) = 0. \\ &\frac{\partial u}{\partial x} = -\frac{yz}{x^2}, \quad \frac{\partial u}{\partial y} = \frac{z}{x}, \quad \frac{\partial u}{\partial z} = \frac{y}{x}. \\ &\frac{dx}{dt} = e^t, \quad \frac{dy}{dt} = \frac{1}{t}, \quad \frac{dz}{dt} = 2t. \\ &\frac{du}{dt} = -\frac{yz}{x^2} \cdot e^t + \frac{z}{x} \cdot \frac{1}{t} + \frac{y}{x} \cdot 2t. \end{split}$$

6.7 Дифференцирование неявной функции одной переменной

Пусть функция y=y(x) задана неявно, что есть с помощью уравнения: f(x,y)=0. Найдем $\frac{dy}{dx}$. Согласно формуле дифференцирования сложной функции:

$$\frac{df}{dx} = \frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} \cdot \frac{dy}{dx} = 0 \Rightarrow \frac{dy}{dx} = -\frac{\frac{\partial f}{\partial x}}{\frac{\partial f}{\partial y}}$$

Пример

Рассмотрим кривую: $x^2+y^2=1$. Найдём $\frac{dy}{dx}$.

Первый способ.

$$x^{2} + y^{2} = 1 \Leftrightarrow y = \pm \sqrt{1 - x^{2}}$$
$$y' = \frac{-2x}{\pm 2\sqrt{1 - x^{2}}} = \left/ y = \pm \sqrt{1 - x^{2}} \right/ = -\frac{x}{y}$$

1.2 Правила вычисления двойных интегралов

Рис. 4: Пределы интегрирования

$$\iint\limits_{D}f(x,y)dxdy=\int\limits_{a}^{b}dx\int\limits_{arphi_{1}(x)}^{arphi_{2}(x)}f(x,y)dy.$$

Отметим, что сначала следует вычислить внутренний интеграл $\int\limits_{-\infty}^{\varphi_2(x)} f(x,y) dy,$ в котором x считается постоянным. И только затем вычисляют внешний

1) Вычислить $\iint_D x \ln y dx dy$, если область D – прямоугольник $\begin{cases} 0 \le x \le 4, \\ 1 \le y \le e. \end{cases}$

$$\iint\limits_D x \ln y dx dy = \int\limits_0^4 x dx \int\limits_1^e \ln y dy =$$

Учитывая, что: $\int \ln y dy = y \ln y - \int y \cdot \frac{1}{y} dy = y \ln y - y,$ $/ u = \ln y, \quad du = \frac{1}{y} /$ $v = y, \quad dv = dy$

$$\left\langle \begin{array}{l} u = \ln y, \quad du = \frac{1}{y} \\ v = y, \quad dv = dy \end{array} \right\rangle$$

интеграл примет следующий вид:

$$\int_{0}^{4} x dx \cdot (y \ln y - y) \Big|_{1}^{e} = \int_{0}^{4} x dx \cdot (e - e + 1) = \int_{0}^{4} x dx = \frac{x^{2}}{2} \Big|_{0}^{4} = 8.$$

1.3 Замена переменных в двойном интеграле

Перейдем в интеграле от координат x,y к новым координатам u,v. Пусть замена переменных выглядит следующим образом:

$$\begin{cases} x = \varphi(u, v), \\ y = \psi(u, v). \end{cases}$$

Тогда интеграл в новых координатах примет следующий вид:

$$\iint_{C} f(x,y) dxdy = \iint_{\Gamma} f(\varphi(u,v),\psi(u,v)) |J(u,v)| dudv, \qquad (1.1)$$

Здесь Γ – это обозначение области G, переписанной в новых координатах. J(u,v) – якобиан перехода к новым переменным:

$$J(u,v) = \begin{vmatrix} \frac{\partial \varphi}{\partial u} & \frac{\partial \varphi}{\partial v} \\ \frac{\partial \psi}{\partial u} & \frac{\partial \psi}{\partial v} \end{vmatrix} \neq 0.$$

1.4 Переход к полярным координатам

Введем систему полярных координат:

$$\begin{cases} x = r\cos\varphi, \\ y = r\sin\varphi. \end{cases}$$

Тогда якобиан J перехода от координат (x,y) к новым координатам (r,φ) примет вид:

$$J = \left| \begin{array}{cc} \cos \varphi & -r \sin \varphi \\ \sin \varphi & r \cos \varphi \end{array} \right| = r.$$

Согласно (1.1), интеграл в новых координатах примет следующий вид:

$$\iint_{C} f(x,y)dxdy = \iint_{\Gamma} f(r\cos\varphi, r\sin\varphi) \, rdrd\varphi \tag{1.2}$$

1.5 Приложения двойных интегралов

Выражения для площади области G.

В декартовых координатах:

$$S = \iint_{C} dx dy. \tag{1.3}$$

В криволинейных координатах:

$$S = \iint_{\Gamma} |J| \, du dv,$$
 где $J = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix} \neq 0.$ (1.4)

В полярных координатах:

$$S = \iint_{\Gamma} r dr d\varphi. \tag{1.5}$$

2.1 Тройной интеграл в прямоугольных координатах

$$\iiint_{T} f(x,y,z) dxdydz = \lim_{\substack{\max \\ k} d_k \to 0} \sum_{k=1}^{n} f(x_k,y_k,z_k) \triangle V_k, \qquad (2.1)$$

где $(x_k, y_k, z_k) \in \triangle V_k$, $\triangle V_k$ – элементарный объём, d_k – диаметр области.

2.2 Вычисление тройного интеграла

Пусть область T ограничена поверхностями $z = \psi_1(x,y)$ и $z = \psi_2(x,y)$ снизу и сверху соответственно и цилиндром с боков (с сечением G). Тогда:

$$\iiint_{T} f(x,y,z) dxdydz = \iint_{G} dxdy \int_{\psi_{1}(x,y)}^{\psi_{2}(x,y)} f(x,y,z) dz$$
 (2.2)

Запишем двойной интеграл по области G(x,y) в виде повторного. Пусть область G(x,y) ограничена линиями:

$$x = a, \ x = b, \ y = \varphi_1(x), \ y = \varphi_2(x).$$

Тогда тройной интеграл (2.2) примет вид:

$$\iiint_T f(x,y,z) dxdydz = \int_a^b dx \int_{\varphi_1(x)}^{\varphi_2(x)} dy \int_{\psi_1(x,y)}^{\psi_2(x,y)} f(x,y,z) dz.$$

В случае, когда область G(x,y) ограничена по-другому:

$$y = c, y = d, x = \varphi_1(y), x = \varphi_2(y),$$

формулу (2.2) для тройного интеграла можно переписать в следующем виде:

$$\iiint\limits_T f\left(x,y,z\right) dx dy dz = \int\limits_c^d dy \int\limits_{\varphi_1(y)}^{\varphi_2(y)} dx \int\limits_{\psi_1(x,y)}^{\psi_2(x,y)} f\left(x,y,z\right) dz.$$

_

2.3 Замена переменных в тройном интеграле

Рассмотрим интеграл $\iiint_T f(x,y,z) \, dx \, dy \, dz$ и сделаем в нем замену переменных по следующему правилу:

$$\begin{cases} x = x (u,v,w) \\ y = y (u,v,w) \\ z = z (u,v,w) \end{cases}$$

Если якобиан

$$J = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} & \frac{\partial x}{\partial w} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} & \frac{\partial y}{\partial w} \\ \frac{\partial z}{\partial u} & \frac{\partial z}{\partial v} & \frac{\partial z}{\partial w} \end{vmatrix} \neq 0,$$

то справедлива формула:

$$\mathop{\iiint}\limits_{T} f\left(x,y,z\right) dx dy dz = \mathop{\iiint}\limits_{T_{1}} f\left(x\left(u,v,w\right),y\left(u,v,w\right),z\left(u,v,w\right)\right) |J| \, du dv dw$$

При решении задач помимо декартовых координат, наиболее часто испольуются цилиндрические и сферические координаты.

Цилиндрические координаты связаны с декартовыми следующими соотношениями:

$$\begin{cases} x = r\cos\varphi \\ y = r\sin\varphi \\ z = z \end{cases}$$

Рис. 28: Цилиндрические координаты

Полные пределы изменения координат z, r, φ :

$$\begin{cases}
-\infty < z < \infty \\
0 \leqslant r < \infty \\
0 \leqslant \varphi < 2\pi
\end{cases}$$

Якобиан перехода к цилиндрическим координатам: J = r.

Тогда переход в тройном интеграле от декартовых коориднат в цилиндрические выглядит следующим образом:

$$\iiint_{T} f(x,y,z) dxdydz = \iiint_{T_{1}} f(r\cos\varphi, r\sin\varphi, z) r dr d\varphi dz.$$
 (2.4)

Сферические координаты связаны с декартовыми соотношениями:

$$\begin{cases} x = r \cos \varphi \cos \theta \\ y = r \sin \varphi \cos \theta \\ z = r \sin \theta \end{cases}$$

Рис. 29: Сферические координаты

Полные пределы изменения координат r, φ, θ :

$$\begin{cases} 0 \leqslant r < \infty \\ 0 \leqslant \varphi < 2\pi \\ -\frac{\pi}{2} \leqslant \theta \leqslant \frac{\pi}{2} \end{cases}$$

Якобиан перехода к сферическим координатам:

$$J = r^2 \cos \theta$$
.

Тогда переход в тройном интеграле от декартовых коориднат в сферические выглядит следующим образом:

$$\iiint_{T} f(x,y,z) dxdydz = \iiint_{T_{1}} f(r\cos\varphi\cos\theta, r\sin\varphi\cos\theta, r\sin\theta) r^{2}\cos\theta dr d\varphi d\theta.$$
(2.5)

2.4 Приложения тройных интегралов

Объем V пространственной области T равен:

$$V = \iiint_T dx dy dz. \tag{2.6}$$

3.2 Вычисление криволинейного интеграла 1 рода

Криволинейный интеграл 1 рода считается по разному в зависимости от способа задания кривой.

1) Кривая задана параметрически:

$$\begin{cases} x = x(t) \\ y = y(t) \end{cases}, \quad t_1 \leqslant t \leqslant t_2.$$

Тогда:

$$\int_{L} f(x,y)dS = \int_{t_{1}}^{t_{2}} f(x(t),y(t)) \underbrace{\sqrt{(x'(t))^{2} + (xy(t))^{2}}}_{dS} dt.$$
 (3.2)

2) Кривая задана в декартовых координатах:

$$y = g(x), \quad a \leqslant x \leqslant b.$$

Тогда:

$$\int_{L} f(x,y)dS = \int_{a}^{b} f(x,g(x))\sqrt{1 + (g'(x))^{2}}dx$$
 (3.3)

3) Кривая задана в полярных координатах:

$$r = r(\varphi), \quad \alpha \leqslant \varphi \leqslant \beta.$$

В этом случае:

$$\int_{L} f(x,y)dS = \int_{\alpha}^{\beta} f(r(\varphi)\cos\varphi, r(\varphi)\sin\varphi) \cdot \sqrt{r^{2}(\varphi) + (r'(\varphi))^{2}}d\varphi.$$
 (3.4)

4) В трёхмерном случае возможно только параметрическое задание кривой (другие способы задания кривой неудобны):

$$\int_{L} f(x,y,z)dS = \int_{t_1}^{t_2} f(x(t),y(t),z(t))\sqrt{(x'(t))^2 + (y'(t))^2 + (z'(t))^2}dt. \quad (3.5)$$

Приложения криволинейного интеграла 1 рода

Длина кривой: $L = \int_{\mathbf{r}} dS$.

Масса кривой с плотностью $\rho(x,y,z)$: $M=\int\limits_{L}\rho(x,y,z)dS$.

3.3 Криволинейный интеграл 2 рода

В криволинейном интеграле 1-го рода на кривой задавалась скалярная функцияf(x,y). Теперь мы будем задавать на кривой векторную функцию \vec{a} .

Рис. 36: На кривой AB задана векторная функция \vec{a}

В каждой точке кривой AB задан вектор \vec{a} . Разобьём кривую AB на части. Для каждой части дуги построим вектор перемещения $d\vec{r_i}$. Криволинейным интегралом 2-го рода по дуге AB называется

$$\int_{AB} (\vec{a}, d\vec{r}) = \lim_{\max|d\vec{r_i}| \to 0} \sum_{i=1}^{n} \vec{a}_i \cdot d\vec{r_i}$$

и обозначается

$$\int_{AB} (\vec{a}, d\vec{r}) = \int_{AB} (a_x dx + a_y dy + a_z dz).$$

Этот криволинейный интеграл 2-го рода называется линейным интегралом векторного поля \vec{a} по кривой AB. В случае замкнутой кривой интеграл называется циркуляцией векторного поля \vec{a} по замкнутой кривой AB. Физический смысл линейного интеграла — работа силового поля $\vec{a} = \vec{a}(\vec{r})$ при перемещении в нём материальной точки по кривой AB из точки A в точку B.

3.4 Вычисление криволинейного интеграла 2 рода

Пусть заданы a_x, a_y, a_z . Кривая AB задана параметрически:

$$x = x(t), y = y(t), z = z(t).$$

Тогда:

$$\int_{AB} (\vec{a}, d\vec{r}) = \int_{t_0}^{t_1} (a_x(x(t), y(t), z(t))x'(t) + a_y(x(t)), y(t), z(t))y'(t) + a_z(x(t), y(t), z(t))z'(t)) dt.$$
(3.6)

Свойство:

$$\int_{BA} (\vec{a}, d\vec{r}) = -\int_{AB} (\vec{a}, d\vec{r}).$$

3.5 Восстановление функции по её полному дифференциалу

Пусть мы знаем дифференциал функции F:

$$df = \frac{\partial f}{\partial x}dx + \frac{\partial f}{\partial y}dy$$

Тогда

$$f(x,y) = \int_{L} \left(\frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy \right)$$

где L – произвольная кривая, соединяющая некоторую фиксированную точку (x_0,y_0) с точкой (x,y), точка (x_0,y_0) выбирается произвольным образом. Единственное условие – чтобы в точке (x_0,y_0) не нарушилось условие существования дифференциала $\frac{\partial a_x}{\partial y} = \frac{\partial a_y}{\partial x}$.