Technicka Univerzita v Kosiciach Fakulta elektrotechniky a informatiky

Meranie a interakcia kvantových obvodov

Diplomová práca

2020 Marián Sabat

Technicka Univerzita v Kosiciach Fakulta elektrotechniky a informatiky

Meranie a interakcia kvantových obvodov

Diplomová práca

Študijný program: Informatika

Študijný odbor: 9.2.1 Informatika

Školiace pracovisko: Katedra počítačov a informatiky (KPI)

Školiteľ: prof. Ing. Ján Kollár, CSc.

Konzultant:

Košice 2020 Marián Sabat

Názov práce: Meranie a interakcia kvantových obvodov

Pracovisko: Katedra počítačov a informatiky, Technicka Univerzita v Ko-

siciach

Autor: Marián Sabat

Školiteľ: prof. Ing. Ján Kollár, CSc.

Konzultant:

Dátum: 1. 1. 2020

Kľúčové slová: Kvantove pocitace a ine klucove slova

Abstrakt: ABSTRAKT

Thesis title: Measurement and interaction of quantum circutis

Department: Department of Computers and Informatics, Techincal Univer-

sity of Kosice

Author: Marián Sabat

Supervisor: prof. Ing. Ján Kollár, CSc.

Tutor:

Date: 1. 1. 2020

Keywords: Quantum comuters and other key words

Abstract: ABSTRAKT

Tu vložte zadávací list pomocou príkazu \thesisspec{cesta/k/suboru/so/zadavacim.listom} v preambule dokumentu.

Čestné vyhlásenie	
Vyhlasujem, ze vsetko som pisal sam	
Košice, 1.1.2020	
	Vlastnoručný podpis

Obsah

Ú۱	Úvod		
1	Ciel	le prace (Formulacia ulohy)	2
2	Mat	tematické základy kvantových systémov	3
	2.1	Matice	3
		2.1.1 Násobenie matice skalárom	3
		2.1.2 Násobenie matíc	4
		2.1.3 Transpozícia matice	4
		2.1.4 Tenzorový súčin matíc	4
	2.2	Komplexné čísla	4
		2.2.1 Operácie na množine komplexých čísel	5
		2.2.2 Základné charakteristiky komplexných čísel	6
	2.3	Vektory	6
	2.4	Pojmi a definície	7
3	Teo	retické základy kvantových systémov	9
	3.1	Základné definície	9
	3.2	Systém s jedným kvantovým bitom	11
	3.3	System s viacerymi kvantovymi bitmy	11
	3.4	Princip merania	11
4	Kva	intovy system	12
	4.1	IBM QX	12
		4.1.1 Stavy a ich zapis	12
		4.1.2 Operacie kvantovych hradiel	12

_	_		
5	Prav	depodobnostná analýza kvantových obvodov	13
	5.1	Analýza nepreviazaných stavov	13
	5.2	Analýza previazaných stavov	14
6	Mer	ranie kvantových obvodov	16
	6.1	Princíp merania kvantových obvodov	16
	6.2	Fiktívne meranie	16
		6.2.1 Experiment 1	16
		6.2.2 Experiment 2	16
		6.2.3 Experiment 3	16
7	Prav	depodobnostný model kvantového výpočtu - návrh a realizácia	17
	7.1	Definícia vstupu	17
8	Kva	ntová teleportácia	19
9	Cell	kové vyhodnotenie	20
10	Záv	er	21
Lit	eratí	íra	22

Zoznam obrázkov

2.1	Zobrazenie komplexného čísla z: x - reálna os, y - imagináran os	5
5.1	Jednotduchý kvantový obvod (namodelovaný v IBM Quantum Expe-	
	rience)	13
7.1	Konceptuálny návrh programu	17

Úvod

Na uvod, je uvod

1 Ciele prace (Formulacia ulohy)

2 Matematické základy kvantových systémov

Na pochopenie problematiky kvantových počítačov je nutná znalosť aspoň základnej lineárnej algebry. V tejto kapitole je opýsaný matematický aparát využívaný ako teoretický základ celej práce.

2.1 Matice

Maticou typu $m \times n$ je nazývaná sústava prvkov zapísaných do schémy s m riadkami a n stľpcami, kde $n, m \in \mathbb{N}$ [1]. Teda:

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & & & & \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}$$

2.1.1 Násobenie matice skalárom

Toto násobenie je vykonané násobením každého prvku matice danou skalárnou hodnotou [1]. Majme maticu A typu 2×2 a skalárnu hodnotu k, potom platí

$$kA = k \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} = \begin{bmatrix} ka_{11} & ka_{12} \\ ka_{21} & ka_{22} \end{bmatrix}$$

Operácia násobenia matice skalárnou hodnotou je komutatívna, čiže na poradí operandov nezáleží. Nech B je matica a α, β sú skalárne hodnoty, potom

$$(\alpha + \beta)B = \alpha B + \beta B,$$
$$(\alpha \beta)B = \alpha(\beta B)$$

2.1.2 Násobenie matíc

Nech je daná matica A typu $m \times n$ a matica B typu $n \times p$, potom výsledná matica C = AB je typu $m \times p$ a pre jej prvky platí

$$c_{ij} = \sum_{k=1}^{n} A_{ik} B_{kj} = A_{i1} B_{ij} + \dots + A_{in} B_{nj},$$

kde $i=1,\ldots,m$, a $j=1,\ldots,p$ [1]. Pre túto operáciu neplatí komutatívnosť.

2.1.3 Transpozícia matice

Ak A je matica typu $m \times n$, potom jej transponovaná matica A^T je typu $n \times m$ a platí [1]

$$(A^T)_{ij} = A_{ji}$$

2.1.4 Tenzorový súčin matíc

Nech A je matica typu $m \times n$ a B je typu $r \times s$. Tenzorový súčin alebo Kroneckerov súčin, označený ako $A \otimes B$ je definovaný ako [2]

$$A \otimes B = \begin{bmatrix} a_{11}B & a_{12}B & \dots & a_{1n}B \\ a_{21}B & a_{22}B & \dots & a_{2n}B \\ \dots & & & & \\ a_{m1}B & a_{m2}B & \dots & a_{mn}B \end{bmatrix}$$

Nakoľko je $a_{ij}B$ submatica typu $r \times s$, je zjavné, že výsladná matica je typu $mr \times ns$.

2.2 Komplexné čísla

Množinou komplexných čísel $\mathbb C$ je nazývaná množina $\mathbb R^2$ spolu s operáciami sčítania a násobenia. Ľubovoľný prvok $z=(a,b)\in\mathbb C$ je nazývaný komplexné číslo [3]. Komplexné čísla možno reprezentovať nie len ako usporiadanú dvojicu, ale aj pomocou:

1. Algebraickej formy

$$z = a + bi$$

, kde
$$a, b \in \mathbb{R}$$
 a $i^2 = -1$.

Obr. 2.1: Zobrazenie komplexného čísla z: x - reálna os, y - imagináran os

2. Polárnych súradníc ρ a φ ,

kde $\rho, \varphi \in \mathbb{R}$ a $\rho > 0$. V geometrickej reprezenácii (Obr. 2.1) je ρ veľkosť vektora \vec{Oz} , kde O je počiatok súradnicovej sústavy, a φ je uhol medzi osou x a daným vektorom.

Je zrejme, že pre vyjadrenie pomocou polárnych súradníc platí $a=\rho\cos\varphi$ a $b=\rho\sin\varphi$ [3]. Potom je možné zapísať

$$z = \rho e^{i\varphi}$$

,kde $z\in\mathbb{C}$, $\rho,\varphi\in\mathbb{R}$ a $\rho>1$. $e^{i\varphi}$ je komplexná jednotka, inak povedané jej absolútna hodnota je rová 1.

$$|e^{i\varphi}| = 1$$

A z Eulerovho vzťahu platí

$$e^{i\varphi} = \cos\varphi + i\sin\varphi$$

2.2.1 Operácie na množine komplexých čísel

Súčet komplexných čísel

- (a+bi) + (c+di) = (a+c) + (b+d)i
- $\rho_1 e^{i\varphi_1} + \rho_2 e^{i\varphi_2} = \rho_1(\cos\varphi_1 + i\sin\varphi_1) + \rho_2(\cos\varphi_2 + i\sin\varphi_2) = (\rho_1\cos\varphi_1 + \rho_2\cos\varphi_2) + i(\rho_1\sin\varphi_1 + \rho_2\sin\varphi_2)$

Násobenie komplexných čísel

- $\bullet (a+bi)(c+di) = ac + adi + bci bd = (ac bd) + (ad + bd)i$
- $\bullet \ \rho_1 e^{i\varphi_1} . \rho_2 e^{i\varphi_2} = \rho_1 \rho_2 e^{i(\varphi_1 \varphi_2)}$

Operácie rozdielu a podielu sú ľahko odvoditeľné obnomným spôsobom.

2.2.2 Základné charakteristiky komplexných čísel

Nech α je komplexné číslo $\alpha=a+bi, \alpha\in\mathbb{C}$. Potom hovoríme, že a,b sú zložky komplexného čísla α , pričom a je reálna a b je imaginárna zložka. Pri reprezenácií pomocou polárnych súradníc $\alpha=\rho e^{i\varphi}$ je ρ nazývané amplitúda (veľkosť, norma) komplexného čísla a φ je fáza komplexného čísla.

Pre komplexné číslo $\alpha \in \mathbb{C}$ je číslo α^{\dagger} ($\overline{\alpha}$ alebo α^{*}) nazývané združeným komplexným číslom (angl. conjugate of complex number) [3], pričom ak $\alpha = a + bi$, potom

$$\alpha^{\dagger} = a - bi$$

$$\alpha^{\dagger} = \rho e^{-i\varphi}.$$

Z geometrickej reprezentácie komplexného čísla na Obr. 2.1 je zrejmé, že $\rho=\sqrt{a^2+b^2}$. Bolo už spomenuté, že ρ sa nazýva aj norma komplexného čísla. Normu komplexného čísla α možno označiť aj ako $|\alpha|$ a platí

$$|\alpha| = \sqrt{\alpha^{\dagger} \alpha}.$$

Dôkaz:

$$|\alpha| = \sqrt{\alpha^{\dagger} \alpha} = \sqrt{\rho e^{-i\varphi} \cdot \rho e^{i\varphi}} = \sqrt{\rho^2} = \rho$$

2.3 Vektory

Vektor rozmeru n je usporiadaný súbor prvkov. Vo všeobecnosti je možné vektor A označiť ako

$$A = \begin{pmatrix} a_1 \\ a_2 \\ \dots \\ a_n \end{pmatrix}$$

No je žiadúce označovať vektory pomocou Diracovho (Bra-ket) zápisu. Čiže vektory $u=\binom{\alpha}{\beta}$ a $v=\binom{\gamma}{\delta}$ je lepšie označiť ako

$$|\psi_1\rangle = \begin{pmatrix} \alpha_1 \\ \beta_1 \end{pmatrix}$$

$$|\psi_2\rangle = \begin{pmatrix} \alpha_2 \\ \beta_2 \end{pmatrix}$$

Toto označenie popisuje vektory v Hilbertovom priesotre (viac v kapitole 3.1), pričom platí nasledovné:

Ak $|\psi\rangle = \binom{\alpha}{\beta}$ je ket-vektor, potom

$$\langle \psi | = \begin{pmatrix} \alpha \\ \beta \end{pmatrix}^{\dagger} = (\alpha^{\dagger} \beta^{\dagger})$$

je bra-vektor, kde $(\alpha, \beta, \alpha^\dagger, \beta^\dagger \in \mathbb{C})$ a $\alpha^\dagger, \beta^\dagger$ sú združené komplexné čísla ku α a β . $\langle \psi |$ je teda združenou transpozíciou (angl. transposed conjugate), a platí

$$\langle \psi^{\dagger} | = | \psi \rangle$$

$$\left|\psi^{\dagger}\right\rangle = \left\langle\psi\right|$$

2.4 Pojmi a definície

Vektor je **normalizovaný**, ak jeho norma (veľkosť) je rovná 1.

$$\left\| \begin{pmatrix} \alpha \\ \beta \end{pmatrix} \right\| = \sqrt{|\alpha|^2 + |\beta|^2} = 1$$

Vektory ψ_1 a ψ_2 sú navzájom **ortogonálne**, ak ich skalárny súčin je rovný 0. Ortogonálnosť (angl. orthogonality) je v tomto ponímaní teda možné zameniť s kolmosťou.

Dva vektory sú **ortonormálne**, ak sú zároveň ortogonálne a normalizované.

Pre príklad nech $|0\rangle=\binom{1}{0}$ a $|1\rangle=\binom{0}{1}$, $(|0\rangle\,,|1\rangle\in\mathbb{C}^2)$. Tieto vektory sú ortonormálne, pretože platí

1.
$$\langle 0 | 1 \rangle = \langle 0 | . | 1 \rangle = \left| 0^{\dagger} \right\rangle . \left| 1 \right\rangle = (10). \binom{0}{1} = 0,$$

2.
$$\| |0\rangle \|^2 = \langle 0 | 0\rangle = (10). \binom{1}{0} = 1$$

 $\| |1\rangle \|^2 = \langle 1 | 1\rangle = (01). \binom{0}{1} = 1$.

Pre skalárny súčin dvoch vektorov platí

$$\langle \psi_1 | \psi_2 \rangle = \langle \psi_1 | . | \psi_2 \rangle = (\alpha_1^{\dagger} \beta_1^{\dagger}). \begin{pmatrix} \alpha_2 \\ \beta_2 \end{pmatrix} = \alpha_1^{\dagger} \alpha_2 + \beta_1^{\dagger} \beta_2.$$

Normu vektora $|\psi\rangle$ pomocou skalárneho súčinu je možné vypočítať ako

$$\| |\psi\rangle \| = \sqrt{\langle \psi | \psi \rangle},$$

pretože platí
$$\langle \psi | \psi \rangle = \alpha^{\dagger} \alpha + \beta^{\dagger} \beta = |\alpha|^2 + |\beta|^2 = ||\psi\rangle||^2$$
.

Operácia tenzorového súčinu dvoch vektorov je definovaná ako

$$|\psi_1\rangle \otimes |\psi_2\rangle = |\psi_1\rangle \cdot \langle \psi_2| = \begin{pmatrix} \alpha_1 \\ \beta_1 \end{pmatrix} \cdot (\alpha_2\beta_2) = \begin{pmatrix} \alpha_1(\alpha_2\beta_2) \\ \beta_1(\alpha_2\beta_2) \end{pmatrix} = \begin{pmatrix} \alpha_1\alpha_2 & \alpha_1\beta_2 \\ \beta_1\alpha_2 & \beta_1\beta_2 \end{pmatrix}$$

3 Teoretické základy kvantových systémov

V nasledujúcej kapitole sú uvedené poznatky z teórie kvantových výpočtov a kvantových obvodov.

3.1 Základné definície

Hilbertov priestor

Hilbertov priestor (angl. Hilber space) je úplný konečnorozmerný vektorový priestor, v ktorom je definovaná operácia skalárneho súčinu $\langle u\,|\,v\rangle$, kde u,v sú N-rozmerné vektory s komplexnými zložkami [4]. Konečnorozmerným vektorovým priestorom nazývame taký priestor, ktorého báza je množina lineárne nezávislých vektorov, a ktorá generuje celý tento priestor. Pre úplný priestor platí, že existuje Cauchyho postupnosť, ktorou je dosiahnuteľný ľubovoľný stav, charakterizovateľný N-rozmerným vektorom $|\psi\rangle\in\mathbb{C}^N$, ktorý je vždy normalizovaý.

Unitárne zobrazenie

Unitárne zobrazenie (angl. Unitary map) je rotáciou, čiže zmenou ortonormálnej bázy.

Kvantový bit

Za kvantový bit je možné považovať objekt, ktorý popisuje stav kvantového systému. Z matematického pohľadu je to vektor v dvojrozmernom Hilberovom priesotre \mathbb{C}^2 . No v reále ide o fotón. Budeme sa zaoberať dvojstavovými kvantovými systémami, kde je fotón nútený skolabovať do jedného z dvoch stavov. A teda vektor, ktorý bude popisovať tento kvantový bit vyjadríme ako

 $u=\binom{\alpha}{\beta}$, $(\alpha,\beta\in\mathbb{C})$ a $u\in\mathbb{C}^2$ [5]. No vhodnejším sa javí vyjadrenie tohto vektora superpozíciou, teda lineárnou kombináciou základných stavov $|0\rangle$, $|1\rangle$, ktoré zodpovedajé klasickým bitom 0,1. Teda

$$u = \begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \alpha \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \beta \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \alpha |0\rangle + \beta |1\rangle,$$

kde monožina $\{|0\rangle\,, |1\rangle\} = \{\binom{1}{0}, \binom{0}{1}\}$ je nazývaná základná báza. Väčšinou je využívaná základná báza $\{|0\rangle\,, |1\rangle\}$, no je možné sa stretnúť aj s bázami $\{|+\rangle\,, |-\rangle\}$ a $\{|\circlearrowright\rangle\,, |\circlearrowleft\rangle\}$. Tieto bázy sú dosiahnuteľné zo základnej bázy unitárnymi transformáciami.

Superpozícia

Superpozíciou (angl. superposition) dvoch vektorov je vyjadrený stav kvantového bitu $|\psi\rangle$, $|\psi\rangle\in\mathbb{C}^2$. Ide o lineárnu kombináciu a teda vo všeobecnosti tieto vektory môžu byť dva ľubovoľné, no lineárne nezávislé vektory u a v. Čiže

$$|\psi\rangle = \alpha u + \beta v.$$

Pre kvantové výpočty, ale má väčší význam využitie ortonormálnych vektorov.

$$\begin{aligned} |\psi\rangle &= \alpha |0\rangle + \beta |1\rangle \,, \\ |\psi\rangle &= \alpha |+\rangle + \beta |-\rangle \,, \\ |\psi\rangle &= \alpha |\circlearrowright\rangle + \beta |\circlearrowleft\rangle \,, \end{aligned}$$

kde $\alpha, \beta \in \mathbb{C}$ a platí $|\alpha|^2 + |\beta|^2 = 1$.

Previazanosť kvantových bitov

(Quantum Computation and Quantum Information) Majme stav dvoch qbitov

$$|\psi\rangle = \frac{|00\rangle + |11\rangle}{\sqrt{2}}$$

Pre tento stav neexistuje taká dvojica stavov $|a\rangle$ a $|b\rangle$, že platí $|\psi\rangle = |a\rangle$ $|b\rangle$. Hovoríme, že stav zloženého systému, ktorý nemožno zapísať ako súčin stavov jeho komponentov sa nazýva previazaným (angl. entagled) stavom.

V prípade jednoduchého n-bitového kvantového systému môžme jeho celkový stav $|\psi\rangle$ vyjadriť tenzorovým súčinom vektorov stavov jednotlivých bitov $|\psi_0\rangle$, $|\psi_1\rangle$, ..., $|\psi_{n-1}\rangle$. Čiže

$$|\psi\rangle = |\psi_0\rangle \otimes |\psi_1\rangle \otimes \cdots \otimes |\psi_{n-1}\rangle$$

Toto však neplatí, ak dva alebo viac kvantových bitov je navzájom previazaných. Pretože previazané bity sú charakteristické rovnakými vektormi, a to počas celého výpočtu a aj pri meraní.

3.2 Systém s jedným kvantovým bitom

$$|\psi\rangle = \begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \begin{pmatrix} \alpha \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ \beta \end{pmatrix} = \alpha \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \beta \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \alpha |0\rangle + \beta |1\rangle,$$

kde $\alpha, \beta \in \mathbb{C}$ a $|\psi\rangle \in \mathbb{C}^2$. Čiže stav kvantového systému $|\psi\rangle$ je superpozíciou stavov $|0\rangle$ a $|1\rangle$.

$$|\psi\rangle = \begin{pmatrix} \alpha \\ \beta \end{pmatrix}$$

$$\langle \psi | = (\alpha^{\dagger}\beta^{\dagger})$$

$$\langle \psi | \psi \rangle = (\alpha^{\dagger}\beta^{\dagger}) \begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \alpha^{\dagger}\alpha + \beta^{\dagger}\beta = |\alpha|^2 + |\beta|^2 = ||\psi\rangle|^2$$

3.3 System s viacerymi kvantovymi bitmy

3.4 Princip merania

4 Kvantovy system

- 4.1 IBM QX
- 4.1.1 Stavy a ich zapis
- 4.1.2 Operacie kvantovych hradiel

5 Pravdepodobnostná analýza kvantových obvodov

V predošlých kapitolách bola vysvetlená problematika kvantových obvodov. Našou úlohou je merať stavy kvantových bitov v rôznych časových okamihoch. Je možné zostrojiť nekonečné množstvo rôznych kvantových obvodov, a preto v tejto kapitole priblížime spôsob tohto merania. Vo všeobecnosti môžme rozdeliť kvantové obvody na dva druhy, v ktorých meranie má iný charakter. Sú to obvody s nepreviazanými bitmi a obvody s previazanými kvantovými bitmi.

5.1 Analýza nepreviazaných stavov

Na obrázku 5.1 je vygenerovaný jednoduchý kvantový obvod pomocou nástroja IBM Quantum Experience. Označili sme dva časové úseky t_1 a t_2 . V tomto obvode sú dva kvantové bity, ktoré prechádzajú hradlom CNOT. Pre zachovanie notácie budeme ďalej označovať tieto bity ako ψ_0 a ψ_1 . Z kvantového obvodu je zrejmé, že v čase t_1 sú oba kvantové bity v stave $|0\rangle$, to ale nebudeme brať v úvahu. Zaujíma

Obr. 5.1: Jednotduchý kvantový obvod (namodelovaný v IBM Quantum Experience)

nás pravdepodobnosť namerania stavov $|00\rangle$, $|01\rangle$, $|10\rangle$ a $|11\rangle$.

Vieme, že platí $|\psi_0\rangle=\binom{\alpha_0}{\beta_0}$ a $|\psi_1\rangle=\binom{\alpha_1}{\beta_1}$, a teda pre celkový stav ψ platí

$$|\psi\rangle = |\psi_0\rangle \otimes |\psi_1\rangle = \begin{pmatrix} \alpha_0 \\ \beta_0 \end{pmatrix} \otimes \begin{pmatrix} \alpha_1 \\ \beta_1 \end{pmatrix} = \begin{pmatrix} \alpha_0\alpha_1 \\ \alpha_0\beta_1 \\ \beta_0\alpha_1 \\ \beta_0\beta_1 \end{pmatrix}$$

Z toho vyplíva, že celkový stav $|\psi\rangle$ v čase t_1 nadobúda hodnoty

- $|00\rangle$ s pravdepodobnosťou $||\alpha_0\alpha_1||^2$
- $|01\rangle$ s pravdepodobnosťou $||\alpha_0\beta_1||^2$
- $|10\rangle$ s pravdepodobnosťou $||\beta_0\alpha_1||^2$
- $|11\rangle$ s pravdepodobnosťou $||\beta_0\beta_1||^2$

Toto tvrdenie platí, pretože platí $|\psi_0\rangle=\alpha_0\,|0\rangle+\beta_0\,|1\rangle$, čiže $|\alpha_0|^2+|\beta_0|^2=1$, z čoho vyplíva, že

- $|\psi_0\rangle$ nadobúda hodontu 0 s pravdepodobnosťou $|\alpha_0|^2$ a
- $|\psi_0\rangle$ nadobúda hodontu 1 s pravdepodobnosťou $|\beta_0|^2$.

Obdobne to platí aj pre $|\psi_1\rangle$. K rovnakému záveru sa dopracujeme aj pomocou

$$|\psi\rangle = |\psi_0\rangle \otimes |\psi_1\rangle = (\alpha_0 |0\rangle + \beta_0 |1\rangle) \otimes (\alpha_1 |0\rangle + \beta_1 |1\rangle) =$$

$$\alpha_0\alpha_1(|0\rangle\otimes|0\rangle) + \alpha_0\beta_1(|0\rangle\otimes|1\rangle) + \beta_0\alpha_1(|1\rangle\otimes|0\rangle) + \beta_0\beta_1(|1\rangle\otimes|1\rangle)$$

, čo by sme mohli vyjadriť aj iným zápisom ako $\alpha_{00} |00\rangle + \alpha_{01} |01\rangle + \alpha_{10} |10\rangle + \alpha_{11} |11\rangle$, pričom súčet noriem musí byť rovný 1.

$$|\alpha_{00}|^2 + |\alpha_{01}|^2 + |\alpha_{10}|^2 + |\alpha_{11}|^2 = 1$$

5.2 Analýza previazaných stavov

Pri meraní stavov v čase t_2 , už nemožno dostať výsledný stav ψ priamim využitím tenzorového súčinu. Pri prechode hradom CNOT môžu nastať dve situácie:

- 1. Kvantový bit ψ_0 , ktorý je kontrólnym bitom, je v stave $|1\rangle$ a teda nastane preklopenie bitu ψ_1 , čo je cieľoým bitom, pomocou hradla X,
- 2. Kvantový bit ψ_0 nie je v stave $|1\rangle$ a teda bit ψ_1 pokračuje bez zmeny.

Z toho je jasné, že v kažom prípade sa stav $|\psi_0\rangle$ nemení no stav $|\psi_1\rangle$ nadobúda hodnotu:

- $|\psi_1\rangle$ s pravdepodobnosťou $|\alpha_0|^2$,
- $X | \psi_1 \rangle$ s pravdepodobnosťou $|\beta_0|^2$.

Berme v úvahu to, že v príklade sme využili hradlo CNOT. Pri pohľade na viacbitový systém s využitím haradla CCNOT, kde máme viacero kontrólnych bitov, zisťujeme, že odvodzovanie je netriviálne a tento problém je nutné riešiť pomocou pravdepodobnostného rozhodovacieho stromu (o tom v ďalších kapitolách).

6 Meranie kvantových obvodov

Jediným spôsobom ako zistiť skutočný stav kvnatového obvodu je meraním. Merať možno všetky bity súčasne ako aj jednotlivé kvantové bity samostatne.

6.1 Princíp merania kvantových obvodov

Kvantový bit môže existovať v nekonečnom množstve stavov. Meranie si môžme predstaviť ako prevod stavov kvantových bitov do stavu klasického digitálneho systému [4]. Pre príklad môžeme reprezentovať kvantový stav $\alpha \, |0\rangle + \beta \, |1\rangle$ pomocou nulového a excitovaného stavu atómu. Skutočný kvantový počítač by tak mohol merať tieto stavy. Pri meraní by daný atóm skolaboval do jedného zo stavov $|0\rangle$ alebo $|1\rangle$. Pre kolabovanie samozrejme rovnako platí to, že do jednotlivých stavov by sa atóm dostal s pravdepodobnosťami $|\alpha|^2$ respektíve $|\beta|^2$.

Pri každom fyzikálnom meraní nastáva určitá nepresnosť merania. Takisto pri meraní môže dokonca nastať zničenie obvodu. To vyplíva z toho, že pri skolabovanom kvantovom bite nastáva zmena fizykálnych vlastností daného bitu.

6.2 Fiktívne meranie

Našim cieľom je navrhnúť pravdepodobnostný model, ktorý by umožnil merať stavy kvantových obvodov aj bez kolabovania jednotlivých kvantových bitov.

- **6.2.1** Experiment 1
- 6.2.2 Experiment 2
- 6.2.3 Experiment 3

7 Pravdepodobnostný model kvantového výpočtu - návrh a realizácia

Cieľom je vytvoriť v jazyku Haskell model, ktorý by dokázal merať stavy kvantových bitov aj bez ich kolabovania. Na rozdiel od IBM Quantum Experience tento model môže realizovať unitárne operácie aj paralelne.

Pri pohľade na jednoduchý konceptuálny model (obrázok 7.1) je zrejmé čo cheme dosiahnuť. Na vstupe je očakávaný kvantový obvod. Samotný program prebehne tímnto obvodom ako interpreter a zároveň pomerá stavy na daných miestach v obvode. Nakoniec vypíše výstup v zrozumiteľnej podobe.

7.1 Definícia vstupu

Celý kvantový obvod je možné rozdeliť do vertikálnych blokov alebo levelov. Každý level obsahuje hradlá, ktorých počet je maximálne rovný počtu kvantových bitov, s ktorými daný obvod pracuje. Ak v danom levely nechceme aplikovať žiadnu operáciu nad bitom, môžme definovať prázdny element.

Čiže kvantový obvod môžeme definovať ako list levelov, pričom level je datová

Obr. 7.1: Konceptuálny návrh programu

štruktúra, ktorá obsahuje list hradiel. Okrem hradiel každý level bude obsahovať prepínač, ktorý siganlizuje či má nastať meranie po aktivácií hradiel v leveli.

8 Kvantová teleportácia

9 Celkové vyhodnotenie

10 Záver

Literatúra

- [1] Lieven Vandenberghe Stephen Boyd. *Introduction to Applied Linear Algebra*. Cambridge University Press, 2018.
- [2] Alexander Graham. *Kronecker Products and Matrix Calculus with Applications*. Ellis Horwood limited, 1981.
- [3] Dorin Andrica Titu Andreescu. *Complex Numbers from A to...Z.* Birkhäuser, 2006.
- [4] Issac L. Chuang Michael A. Nielsen. *Quantum Computation and Quantum Information*. Cambridge University Press, 2010.
- [5] Michele Mosca Phillip Kaye Raymond LaFlamme. *An Introduction to Quantum Computing*. Oxford University Press, 2007.