Linear Programming

Linear Programming, LP Duality Theorem, LP-Relaxation

Linear Program (LP)

- A set of linear equations/inequalities.
- Maximize or minimize a given linear objective function.

maximize
$$c_1x_1 + c_2x_2 + \cdots + c_nx_n$$

subject to $a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n \le b_1$
 $a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n \le b_2$
 \vdots
 $a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n \le b_m$
 $x_1, x_2, \dots, x_n \ge 0$

Example

- Suppose a factory can produce two kinds of products: oil and sugar.
- Profit for 1 tons of sugar: 1
- Profit for 1 tons of oil: 6
- Limited resources, can produce at most
 - 200 tons of sugar
 - 300 tons of oil
 - Overall weight is at most 400 tons
- Problem: maximize the profit

maximize
$$x_1 + 6x_2$$

subject to $x_1 \le 200$
 $x_2 \le 300$
 $x_1 + x_2 \le 400$
 $x_1, x_2 \ge 0$

Feasible Region

maximize $x_1 + 6x_2$ subject to $x_1 \le 200$ $x_2 \le 300$ $x_1 + x_2 \le 400$ $x_1, x_2 \ge 0$

Maximizing the Objective

Maximizing the Objective

Maximizing the Objective

maximize $x_1 + 6x_2$ subject to $x_1 \le 200$ $x_2 \le 300$ $x_1 + x_2 \le 400$ $x_1, x_2 \ge 0$

Optimum is obtained at vertex A, where $(x_1, x_2) = (100, 300)$ and c = 1900.

Another Example with Three variables

Another Example with Three variables

Another Example with Three variables

Important Observations

- 1. There always exists an optimum $x = (x_1, ..., x_n)$ at a vertex of the polytope.
 - Linear objective $\Rightarrow c = c_1 x_1 + \dots + c_n x_n$ is a hyperplane.
 - Optimum is obtained only when the whole feasible region is below the hyperplane and the hyperplane "barely" intersect the region by a point.
- 2. The feasible region is always convex.
 - Linear Constraints \Rightarrow feasible region is bounded by hyperplanes.
- 3. A local maximum is also a global maximum.
 - By the convexity of the feasible region...

- Choose an arbitrary starting vertex.
- Iteratively move to an adjacent vertex along an edge if such movement increase the objective.
- Terminate when we reach a local maximum.

maximize $x_1 + 6x_2$ subject to $x_1 \le 200$ $x_2 \le 300$ $x_1 + x_2 \le 400$ $x_1, x_2 \ge 0$

Starting from vertex O.

maximize $x_1 + 6x_2$ subject to $x_1 \le 200$ $x_2 \le 300$ $x_1 + x_2 \le 400$ $x_1, x_2 \ge 0$

Moving from *O* to *A* increases the objective.

maximize $x_1 + 6x_2$ subject to $x_1 \le 200$ $x_2 \le 300$ $x_1 + x_2 \le 400$ $x_1, x_2 \ge 0$

Moving from *A* to *B* increases the objective.

maximize $x_1 + 6x_2$ subject to $x_1 \le 200$ $x_2 \le 300$ $x_1 + x_2 \le 400$ $x_1, x_2 \ge 0$

Moving from B to C increases the objective.

maximize $x_1 + 6x_2$ subject to $x_1 \le 200$ $x_2 \le 300$ $x_1 + x_2 \le 400$ $x_1, x_2 \ge 0$

 ${\cal C}$ is a local maximum: Moving to either ${\cal D}$ or ${\cal B}$ decreases the objective.

Time Complexity for Simplex Method

- There are exponentially many vertices: $\binom{m}{n}$ for m constraints and n variables.
- Worst-case running time: exponential
 - Many attempts have failed.
 - e.g., choose neighbors with highest objective value, choose neighbors randomly, etc.
- [Teng & Spielman] Smoothed analysis
 - Average case polynomial time if add random Gaussian noise to the constraints.
- Runs fast in practice, and most commonly used

Polynomial Time Algorithms for LP

Ellipsoid Method

Interior Point Method

Standard Form LP

 Maximization as objective with "≤" constraints and nonnegative variables.

maximize
$$c_1x_1 + c_2x_2 + \cdots + c_nx_n$$

subject to $a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n \le b_1$
 $a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n \le b_2$
 \vdots
 $a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n \le b_m$
 $x_1, x_2, \dots, x_n \ge 0$

maximize $\mathbf{c}^{\mathsf{T}}\mathbf{x}$ subject to $A\mathbf{x} \leq \mathbf{b}$ $\mathbf{x} \geq \mathbf{0}$

Other Forms Reduce to Standard Form

Minimization to Maximization

$$- \min c_1 x_1 + \dots + c_n x_n \iff \max - c_1 x_1 - \dots - c_n x_n$$

≥-inequalities

$$-a_1x_1 + \dots + a_nx_n \ge b \quad \Longleftrightarrow \quad -a_1x_1 - \dots - a_nx_n \le -b$$

Inequality ⇔ Equality

$$-a_1x_1 + \dots + a_nx_n = b \Leftrightarrow \begin{cases} a_1x_1 + \dots + a_nx_n \le b \\ a_1x_1 + \dots + a_nx_n \ge b \end{cases}$$
$$-a_1x_1 + \dots + a_nx_n \le b \Leftrightarrow a_1x_1 + \dots + a_nx_n + s = b$$

- Variable with unrestricted signs
 - Introduce two variables x^+ and x^- with standard constraints $x^+, x^- \ge 0$
 - Replace x with $x^+ x^-$

Take-Home Message

- A linear program can be solved in a polynomial time.
- Whenever a problem can be formulated by a linear program, it is polynomial-time solvable.

Formulation as Linear Program

The maximum flow problem can be formulated by a linear program.

maximize
$$\sum_{u:(s,u)\in E} f_{su}$$
 subject to
$$0 \le f_{uv} \le c_{uv} \qquad \forall (u,v) \in E$$

$$\sum_{v:(v,u)\in E} f_{vu} = \sum_{w:(v,w)\in E} f_{uw} \qquad \forall u \in V \setminus \{s,t\}$$

Ford-Fulkerson Method implements the simplex method.

Part II: LP Duality

Motivation

- We have seen that the optimal solution for the LP below is $(x_1, x_2) = (100, 300)$, with value 1900.
 - Geometric argument, argument based on simplex method
- Let's try to prove it by some simple observations from the LP itself!

maximize
$$x_1 + 6x_2$$

subject to $x_1 \le 200$
 $x_2 \le 300$
 $x_1 + x_2 \le 400$
 $x_1, x_2 \ge 0$

Motivation

maximize
$$x_1 + 6x_2$$

subject to $x_1 \le 200$ (i)
 $x_2 \le 300$ (ii)
 $x_1 + x_2 \le 400$ (iii)
 $x_1, x_2 \ge 0$

- Let's try adding (i) to 6 times (ii): $x_1 + 6x_2 \le 200 + 6 \times 300 = 2000$
- We know that any solution (x_1, x_2) cannot yield objective value greater than 2000.
- Can we combine the inequality in a better way to show that the objective value is at most 1900?

Motivation

maximize
$$x_1 + 6x_2$$

subject to $x_1 \le 200$ (i)
 $x_2 \le 300$ (ii)
 $x_1 + x_2 \le 400$ (iii)
 $x_1, x_2 \ge 0$

- Can we combine the inequality in a better way to show that the objective value is at most 1900?
- Yes, we can:
 - Multiple (ii) by 5 and add to (iii): $x_1 + 6x_2 \le 300 \times 5 + 400 = 1900$.
- This proves that $(x_1, x_2) = (100, 300)$ with objective value 1900 is optimal!

Let's try this one...

- Suppose we multiple (i) by y_1 , (ii) by y_2 , (iii) by y_3 , and (iv) by y_4 .
- We have $(y_1 + y_3)x_1 + (y_2 + y_3 + y_4)x_2 + (y_3 + 3y_4)x_3 \le 200y_1 + 300y_2 + 400y_3 + 600y_4$.
- We need $y_1, y_2, y_3, y_4 \ge 0$ to keep the inequality.
- To find an upper bound to the objective $x_1 + 6x_2 + 13x_3$, we need to make sure $x_1 + 6x_2 + 13x_3 \le (y_1 + y_3)x_1 + (y_2 + y_3 + y_4)x_2 + (y_3 + 3y_4)x_3$ holds for every (x_1, x_2, x_3) .
- Since $x_1, x_2, x_3 \ge 0$, we must have:
 - $-y_1 + y_3 \ge 1$
 - $y_2 + y_3 + y_4 \ge 6$
 - $-y_3 + 3y_4 \ge 13$

maximize
$$x_1 + 6x_2 + 13x_3$$

subject to $x_1 \le 200$ (i)
 $x_2 \le 300$ (ii)
 $x_1 + x_2 + x_3 \le 400$ (iii)
 $x_2 + 3x_3 \le 600$ (iv)
 $x_1, x_2, x_3 \ge 0$

Let's try this one...

- $(y_1 + y_3)x_1 + (y_2 + y_3 + y_4)x_2 + (y_3 + 3y_4)x_3 \le 200y_1 + 300y_2 + 400y_3 + 600y_4$.
- Since $x_1, x_2, x_3 \ge 0$, we must have:
 - $y_1 + y_3 \ge 1$
 - $y_2 + y_3 + y_4 \ge 6$
 - $-y_3 + 3y_4 \ge 13$
- Now, we want to find the tightest possible upperbound to $x_1 + 6x_2 + 13x_3$.
- This means we want to minimize $200y_1 + 300y_2 + 400y_3 + 600y_4$.

maximize
$$x_1 + 6x_2 + 13x_3$$

subject to $x_1 \le 200$ (i)
 $x_2 \le 300$ (ii)
 $x_1 + x_2 + x_3 \le 400$ (iii)
 $x_2 + 3x_3 \le 600$ (iv)
 $x_1, x_2, x_3 \ge 0$

Dual Program

- The problem of finding the tightest upper-bound can be formulated by another linear program!
- This linear program is called the dual program, and the original one is called the primal program.

maximize
$$x_1 + 6x_2 + 13x_3$$

subject to $x_1 \le 200$
 $x_2 \le 300$
 $x_1 + x_2 + x_3 \le 400$
 $x_2 + 3x_3 \le 600$
 $x_1, x_2, x_3 \ge 0$

minimize
$$200y_1 + 300y_2 + 400y_3 + 600y_4$$

subject to $y_1 + y_3 \ge 1$
 $y_2 + y_3 + y_4 \ge 6$
 $y_3 + 3y_4 \ge 13$
 $y_1, y_2, y_3, y_4 \ge 0$

Dual Program

Factory Example:

maximize
$$x_1 + 6x_2$$

subject to $x_1 \le 200$
 $x_2 \le 300$
 $x_1 + x_2 \le 400$
 $x_1, x_2 \ge 0$

minimize
$$200y_1 + 300y_2 + 400y_3$$

subject to $y_1 + y_3 \ge 1$
 $y_2 + y_3 \ge 6$
 $y_1, y_2, y_3 \ge 0$

Dual program for standard form:

maximize
$$\mathbf{c}^{\mathsf{T}}\mathbf{x}$$
 subject to $A\mathbf{x} \leq \mathbf{b}$ $\mathbf{x} \geq \mathbf{0}$

minimize
$$\mathbf{b}^{\mathsf{T}}\mathbf{y}$$

subject to $A^{\mathsf{T}}\mathbf{y} \ge \mathbf{c}$
 $\mathbf{y} \ge \mathbf{0}$

Weak Duality Theorem

- By our motivation of dual program, we obtain the following theorem.
- Theorem [Weak Duality Theorem]. If \hat{x} is a feasible solution to (a) and \hat{y} is a feasible solution to (b), then $\mathbf{c}^{\mathsf{T}}\hat{x} \leq \mathbf{b}^{\mathsf{T}}\hat{y}$.

```
maximize \mathbf{c}^{\mathsf{T}}\mathbf{x} minimize \mathbf{b}^{\mathsf{T}}\mathbf{y} subject to A\mathbf{x} \leq \mathbf{b} (a) subject to A^{\mathsf{T}}\mathbf{y} \geq \mathbf{c} (b) \mathbf{x} \geq \mathbf{0} Primal GPT Dual OPT Dual feasible
```

Strong Duality Theorem: This gap is always closed!

Strong Duality Theorem

• Theorem [Strong Duality Theorem]. Let x^* be the optimal solution to (a) and y^* be the optimal solution to (b), then $\mathbf{c}^\mathsf{T} \mathbf{x}^* = \mathbf{b}^\mathsf{T} \mathbf{y}^*$.

maximize
$$\mathbf{c}^{\mathsf{T}}\mathbf{x}$$
 minimize subject to $A\mathbf{x} \leq \mathbf{b}$ (a) subject to $\mathbf{x} \geq \mathbf{0}$

minimize
$$\mathbf{b}^{\mathsf{T}}\mathbf{y}$$

subject to $A^{\mathsf{T}}\mathbf{y} \ge \mathbf{c}$ (b)
 $\mathbf{y} \ge \mathbf{0}$

Primal feasible

Primal OPT = Dual OPT

Dual feasible

Application of Strong Duality Theorem

- Max-Flow-Min-Cut Theorem
- Minimax Theorem
- Kőnig-Egerváry Theorem
- Design approximation algorithms:
 - Dual fitting
 - Primal-Dual Schema
- Economic interpretation: "resource allocation"-"resource valuation"

Today's Lecture

- Introduction to Linear Programming
- LP Duality Theorem

Not presented in the class. You may want to read it if you are interested.

- Theorem [Farkas Lemma]. Exactly one of the followings holds for matrix $A \in \mathbb{R}^{m \times n}$ and vector $\mathbf{b} \in \mathbb{R}^m$:
 - 1. There exists $\mathbf{x} \in \mathbb{R}^n$ with $\mathbf{x} \geq \mathbf{0}$ such that $A\mathbf{x} = \mathbf{b}$.
 - 2. There exists $\mathbf{y} \in \mathbb{R}^m$ such that $A^T \mathbf{y} \geq \mathbf{0}$ and $\mathbf{b}^T \mathbf{y} < 0$.
- $\{Ax \mid x \ge 0\}$ is the grey area.
- 1 says that b is inside the grey area.
- 2 says that we can separate the grey area and **b** by a hyperplane (defined by the normal vector **y**).
 - In this case **b** must be outside the grey area.

Illustration for $A = [\boldsymbol{c}_1 \ \boldsymbol{c}_2]$

A Corollary to Farkas Lemma

- Corollary. Exactly one of the followings holds for matrix $A \in \mathbb{R}^{m \times n}$ and vector $\mathbf{b} \in \mathbb{R}^m$:
 - 1. There exists $\mathbf{x} \in \mathbb{R}^n$ with $\mathbf{x} \geq \mathbf{0}$ such that $A\mathbf{x} \geq \mathbf{b}$.
 - 2. There exists $\mathbf{y} \in \mathbb{R}^m$ with $\mathbf{y} \leq \mathbf{0}$ such that $A^\mathsf{T} \mathbf{y} \geq \mathbf{0}$ and $\mathbf{b}^\mathsf{T} \mathbf{y} < 0$.

Case 1 of the Corollary

- $\{Ax \mid x \ge 0\}$ is the dark grey area.
- $\{x \mid x \ge b\}$ is the light grey area.
- 1 says that the two areas intersect.

Case 2 of the Corollary

- $\{Ax \mid x \ge 0\}$ is the dark grey area.
- $\{x \mid x \ge b\}$ is the light grey area.
- 2 describes that the two areas do not intersect.
- We can find a separating plane with normal vector y.
 - Thus, $A^{\mathsf{T}}\mathbf{y} \ge 0$ and $\mathbf{b}^{\mathsf{T}}\mathbf{y} < 0$
- We must have $y \le 0$:
 - If this fails for one entry: $y_i > 0$
 - $-\mathbf{z} = (\varepsilon, ..., \varepsilon, z_i = 1, \varepsilon, ..., \varepsilon)$ and \mathbf{y} on same side
 - z is in the first quadrant, and it will eventually intersect the light grey area after extension.
 - The two areas are on the same side with y.

Proof of the Corollary

- Define $A' \in \mathbb{R}^{m \times (n+m)}$ by A' = [A I].
- Apply Farkas Lemma on A' and b.
- Let P1 and P2 be 1 and 2 in Farkas Lemma; Q1 and Q2 be 1 and 2 in the corollary.
- We aim to show P1 \Leftrightarrow P2 and Q1 \Leftrightarrow Q2.

Proof of the Corollary

- Define $A' \in \mathbb{R}^{m \times (n+m)}$ by A' = [A I].
- P1 $\Leftrightarrow \exists \mathbf{x}' \in \mathbb{R}^{n+m}$ s.t. $\mathbf{x}' \geq \mathbf{0}$ and $A'\mathbf{x}' = \mathbf{b}$.
- (by writing $\mathbf{x}' = \begin{bmatrix} \mathbf{x} \\ \overline{\mathbf{x}} \end{bmatrix}$) \iff $\begin{bmatrix} A & -I \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \overline{\mathbf{x}} \end{bmatrix} = \mathbf{b}$ (where $\mathbf{x} \ge \mathbf{0}$, $\overline{\mathbf{x}} \ge \mathbf{0}$)
- \Leftrightarrow $A\mathbf{x} \overline{\mathbf{x}} = \mathbf{b} \iff A\mathbf{x} \ge \mathbf{b}$ (since $\overline{\mathbf{x}} \ge \mathbf{0}$)
- ⇔ Q1

Proof of the Corollary

- Define $A' \in \mathbb{R}^{m \times (n+m)}$ by A' = [A I].
- P2 $\Leftrightarrow \exists y \in \mathbb{R}^m \text{ s.t. } A'^{\mathsf{T}} y \geq \mathbf{0} \text{ and } \mathbf{b}^{\mathsf{T}} y < 0.$
- \Leftrightarrow $\begin{bmatrix} A^{\mathsf{T}} \\ -I \end{bmatrix} \mathbf{y} \ge \mathbf{0}$ and $\mathbf{b}^{\mathsf{T}} \mathbf{y} < 0$
- $\bullet \iff A^{\mathsf{T}}\mathbf{y} \ge \mathbf{0}, \quad -\mathbf{y} \ge 0, \quad \text{and } \mathbf{b}^{\mathsf{T}}\mathbf{y} < 0$
- ⇔ Q2

Now we are ready to prove strong duality theorem...

- Weak duality: $\mathbf{c}^{\mathsf{T}}\mathbf{x} \leq \mathbf{b}^{\mathsf{T}}\mathbf{y}^*$ holds for any $\mathbf{x} \geq \mathbf{0}$.
- Suppose strong duality fails: $\mathbf{c}^{\mathsf{T}}\mathbf{x} < \mathbf{b}^{\mathsf{T}}\mathbf{y}^*$.
- There does not exist $x \ge 0$ satisfying $Ax \le b$ and $c^Tx \ge b^Ty^*$.
- We cannot have $\begin{bmatrix} -A \\ \mathbf{c}^{\mathsf{T}} \end{bmatrix} \mathbf{x} \ge \begin{bmatrix} -\mathbf{b} \\ \mathbf{b}^{\mathsf{T}} \mathbf{y}^* \end{bmatrix}$ and $\mathbf{x} \ge \mathbf{0}$.
- Q1 in corollary fails for matrix $\begin{bmatrix} -A \\ \mathbf{c}^{\mathsf{T}} \end{bmatrix}$ and vector $\begin{bmatrix} -\mathbf{b} \\ \mathbf{b}^{\mathsf{T}} \mathbf{y}^* \end{bmatrix}$.
- Thus, Q2 must be true.

Now we are ready to prove strong duality theorem...

- Q2 is true for matrix $\begin{bmatrix} -A \\ \mathbf{c}^{\mathsf{T}} \end{bmatrix}$ and vector $\begin{bmatrix} -\mathbf{b} \\ \mathbf{b}^{\mathsf{T}} \mathbf{y}^* \end{bmatrix}$.
- There exist $\mathbf{y} \in \mathbb{R}^m$ and $w \in \mathbb{R}$ such that

$$[-A^{\mathsf{T}} \quad \mathbf{c}] \begin{bmatrix} \mathbf{y} \\ w \end{bmatrix} \ge \mathbf{0}, \quad [-\mathbf{b}^{\mathsf{T}} \quad \mathbf{b}^{\mathsf{T}} \mathbf{y}^*] \begin{bmatrix} \mathbf{y} \\ w \end{bmatrix} < 0, \quad \text{and} \quad \begin{bmatrix} \mathbf{y} \\ w \end{bmatrix} \le \mathbf{0}.$$

After matrix multiplications,

$$\begin{cases}
-A^{\mathsf{T}}\mathbf{y} + w\mathbf{c} \ge \mathbf{0} \\
-\mathbf{b}^{\mathsf{T}}\mathbf{y} + w\mathbf{b}^{\mathsf{T}}\mathbf{y}^* < 0 \\
\mathbf{y} \le \mathbf{0} \\
w \le 0
\end{cases}$$

$$\begin{cases}
-A^{\mathsf{T}}\mathbf{y} + w\mathbf{c} \ge \mathbf{0} \\
-\mathbf{b}^{\mathsf{T}}\mathbf{y} + w\mathbf{b}^{\mathsf{T}}\mathbf{y}^* < 0 \\
\mathbf{y} \le \mathbf{0} \\
w \le 0
\end{cases}$$

• Suppose w < 0. We divide w on both sides:

$$\begin{cases} -A^{\mathsf{T}} \left(\frac{\mathbf{y}}{w} \right) + \mathbf{c} \leq \mathbf{0} \\ -\mathbf{b}^{\mathsf{T}} \left(\frac{\mathbf{y}}{w} \right) + \mathbf{b}^{\mathsf{T}} \mathbf{y}^* > 0 \\ \left(\frac{\mathbf{y}}{w} \right) \geq \mathbf{0} \end{cases}$$

• $(\frac{y}{w})$ is a better solution than y^* in the dual LP, contradiction!

$$\begin{cases}
-A^{\mathsf{T}}\mathbf{y} + w\mathbf{c} \ge \mathbf{0} \\
-\mathbf{b}^{\mathsf{T}}\mathbf{y} + w\mathbf{b}^{\mathsf{T}}\mathbf{y}^* < 0 \\
\mathbf{y} \le \mathbf{0} \\
w \le 0
\end{cases}$$

- Let's then do the case w = 0.
- We have $-A^{\mathsf{T}}\mathbf{y} \geq \mathbf{0}$, $-\mathbf{b}^{\mathsf{T}}\mathbf{y} < 0$, and $\mathbf{y} \leq \mathbf{0}$.
- Q2 in Corollary holds for -A and -b.
- So Q1 must be false: $\exists x \ge 0 : (-A)x \ge -b$.
- The feasible region for the primal LP is empty!