(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

| 1831 | 1831 | 1831 | 1831 | 1831 | 1831 | 1831 | 1831 | 1831 | 1831 | 1831 | 1831 | 1831 | 1831 | 1831 | 1831 |

(43) International Publication Date 2 June 2005 (02.06.2005)

PCT

(10) International Publication Number WO 2005/050630 A2

(51) International Patent Classification⁷:

G11B 7/00

(21) International Application Number:

PCT/IB2004/052285

(22) International Filing Date:

3 November 2004 (03.11.2004)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data: 03104261.7

18 November 2003 (18.11.2003) E

- (71) Applicant (for all designated States except US): KONIN-KLIJKE PHILIPS ELECTRONICS N.V. [NL/NL]; Groenewoudseweg 1, NL-5621 BA Eindhoven (NL).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): YIN, Bin [CN/NL]; c/o Prof. Holstlaan 6, NL-5656 AA Eindhoven (NL). IMMINK, Albert, H., J. [NL/NL]; c/o Prof. Holstlaan 6, NL-5656 AA Eindhoven (NL). PADIY, Alexander [NL/NL]; c/o Prof. Holstlaan 6, NL-5656 AA Eindhoven (NL). COENE, Willem, M., J., M. [BE/NL]; c/o Prof. Holstlaan 6, NL-5656 AA Eindhoven (NL).

- (74) Agents: UITTENBOGAARD, Frank et al.; Prof. Holst-laan 6, NL-5656 AA Eindhoven (NL).
- (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Declaration under Rule 4.17:

— as to applicant's entitlement to apply for and be granted a patent (Rule 4.17(ii)) for the following designations AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ,

[Continued on next page]

(54) Title: APPARATUS AND METHOD FOR READING INFORMATION FROM AN INFORMATION CARRIER

(57) Abstract: ABSTRACT: In modem optical disc systems, inter-track spacing is chosen relatively small in order to allow high storage densities. As a result, the optical spot has a radius comparable with the track pitch, and the data written on neighboring tracks appear in the target track signal in the form of inter-track interference (cross-talk). To tackle the cross-talk problem, cross-talk canceling schemes are normally employed. These schemes use three spots, one spot on the main track and two satellite spots on adjacent tracks. The read signal (C) is improved by minimizing the cross-talk between the satellite signals (S⁺,S⁻) and the read signal (C). However, due to the decreasing inter-track spacing, the decorrelation concept fails since the satellite spots read too much central track information and become strongly correlated with the read signal (C), which causes "leakage" in the decorrelation. The present invention solves this problem with an additional circuit for outputting improved satellite signals (S⁺, S⁻) which circuit suppresses cross-talk of the main track present in the satellite signals (S⁺,S⁻) by minimizing a correlation between the satellite signals (S⁺,S⁻) and the improved satellite signals (S⁺,S⁻) being subsequently fed to the first circuit which is arranged to suppress the cross-talk of the read signal (C) by minimizing a correlation between the improved read signal (C) and the improved satellite signals (C) and the improved satellite signals (C) and the improved satellite signals (C).

CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VC, VN, YU, ZA, ZM, ZW, ARIPO patent (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU,

IE, IS, IT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG)

Published:

 without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.