

General information

Designation

Betula alleghaniensis (L)

Typical uses

Furniture; boxes; baskets; crates; woodenware; cooperage; interior finish; doors. As veneer in plywood: flush doors; furniture; paneling; radio & television cabinets; aircraft.

Composition overview

Compositional summary

Cellulose/Hemicellulose/Lignin/12%H2O					
Material family	Natural				
Base material	Wood (ha	Wood (hardwood)			
Renewable content	100	100			
Composition detail (polymers and natura	l materials)				
Wood	100			%	
Price					
Price	* 0.304	-	0.608	USD/lb	
Physical properties					
Density	0.0224	-	0.0275	lb/in^3	
Mechanical properties					
Young's modulus	* 1.99	-	2.44	10^6 psi	
Yield strength (elastic limit)	* 7.35	-	8.98	ksi	
Tensile strength	* 13.9	-	17	ksi	
Elongation	* 1.88	-	2.3	% strain	
Compressive strength	7.35	-	8.99	ksi	
Flexural modulus	1.81	-	2.2	10^6 psi	
Flexural strength (modulus of rupture)	14.9	-	18.3	ksi	
Shear modulus	* 0.146	-	0.18	10^6 psi	
Shear strength	1.7	-	2.07	ksi	
Bulk modulus	* 0.149	-	0.167	10^6 psi	
Poisson's ratio	* 0.35	-	0.4		
Shape factor	5.3				
Hardness - Vickers	* 6.54	-	7.99	HV	
Hardness - Brinell	* 7.92	-	9.67	ksi	
Hardness - Janka	* 1.47e3	-	1.8e3	lbf	
Fatigue strength at 10^7 cycles	* 4.48	-	5.48	ksi	

Birch (betula alleghaniensis) (I)

BIEDOFIACK							
Mechanical loss coefficient (tan delta)	* 0.0064	-	0.0078				
Differential shrinkage (radial)	0.18	-	0.24	%			
Differential shrinkage (tangential)	0.26	-	0.31	%			
Radial shrinkage (green to oven-dry)	6.6	-	8	%			
Tangential shrinkage (green to oven-dry)	8.6	-	10.5	%			
Volumetric shrinkage (green to oven-dry)	15.1	-	18.5	%			
Work to maximum strength	1.56	-	1.91	ft.lbf/in^3			
Impact & fracture properties							
Fracture toughness	* 5.19	-	6.28	ksi.in^0.5			
Thermal properties							
Glass temperature	171	-	216	°F			
Maximum service temperature	248	-	284	°F			
Minimum service temperature	* -99.4	-	-9.4	°F			
Thermal conductivity	* 0.173	-	0.214	BTU.ft/hr.ft^2.°F			
Specific heat capacity	0.396	-	0.408	BTU/lb.°F			
Thermal expansion coefficient	* 1.11	-	6.11	µstrain/°F			
Electrical properties							
Electrical resistivity	3.05e14	-	3.73e14	µohm.cm			
Dielectric constant (relative permittivity)	* 6.85	-	8.37	•			
Dissipation factor (dielectric loss tangent)	* 0.08	-	0.098				
Dielectric strength (dielectric breakdown)	* 10.2	-	15.2	V/mil			
Manuatiannanatiaa							
Magnetic properties	Non ma	Non-magni-ti-					
Magnetic type	Non-ma(Non-magnetic					
Optical properties							
Transparency	Opaque	Opaque					
Durability							
Water (fresh)	Limited	Limited use					
Water (salt)	Limited	Limited use					
Weak acids	Limited	Limited use					
Strong acids	Unaccep	otable)				
Weak alkalis	Accepta	Acceptable					
Weak aikalis	Unacceptable						
Strong alkalis	Unaccer	πασι	Acceptable				
Strong alkalis		ble					

Reference Shape

		Highly flammable				
Primary production energy, CO2 and water						
Embodied energy, primary production		4.99e3	-	5.5e3	BTU/lb	
Sources 0.5 MJ/kg (Ximenes, 2006); 2 MJ/kg (Ximenes, 2006); 9.1 MJ/kg (Hammond and MJ/kg (Ecoinvent v2.2); 26 MJ/kg (Ecoinvent v2.2)	d Jon	es, 2008); 1	1.6 M	J/kg (Hubbar	d and Bowe, 2010); 23.7	
CO2 footprint, primary production		0.574	-	0.633	lb/lb	
Sources 0.229 kg/kg (Ecoinvent v2.2); 0.412 kg/kg (Ecoinvent v2.2); 0.862 kg/kg (Hamn	nond a	and Jones.	2008)	: 0.909 kg/kg	(Hubbard and Bowe.	
Water usage		1.84e4	-	2.03e4	in^3/lb	
Processing energy, CO2 footprint & water						
Coarse machining energy (per unit wt removed)	*	538	-	594	BTU/lb	
Coarse machining CO2 (per unit wt removed)	*	0.0938	-	0.104	lb/lb	
Fine machining energy (per unit wt removed)	*	3.54e3	-	3.91e3	BTU/lb	
Fine machining CO2 (per unit wt removed)	*	0.618	-	0.683	lb/lb	
Grinding energy (per unit wt removed)	*	6.88e3	-	7.6e3	BTU/lb	
Grinding CO2 (per unit wt removed)	*	1.2	-	1.33	lb/lb	
Recycling and end of life						
Recycle		×				
Recycle fraction in current supply		8.55	-	9.45	%	
Downcycle		✓				
Combust for energy recovery		✓				
Heat of combustion (net)	*	8.49e3	-	9.16e3	BTU/lb	
Combustion CO2	*	1.69	-	1.78	lb/lb	
Landfill		✓				
Landini		✓				