

مبانی بینایی کامپیوتر

مدرس: محمدرضا محمدی

14.7

استخراج شکل

Shape Extraction

البته فضای (m,c) به دلیل آنکه m می تواند نامحدود باشد مناسب نیست ullet

• هر نقطه در فضای تصویر معادل با چه منحنی در فضای (ρ,θ) خواهد بود؟

$$x \cos(\theta) + y \sin(\theta) = \rho$$

مستطيل

شبه کد تبدیل Hough

- Initialize accumulator H to all zeros
- For each edge point (x, y) in the image For $\theta = 0$ to 180 $\rho = x \cos \theta + y \sin \theta$ $H(\rho, \theta) = H(\rho, \theta) + 1$
- Find the value(s) of (ρ, θ) where $H(\rho, \theta)$ is a large local maximum

H: accumulator array (votes)

شبه کد تبدیل Hough

- H: accumulator array (votes)
- ho θ

- H: accumulator array (votos
- Initialize accumulator H to all zeros
- For each edge point (x, y) in the image

For
$$\theta = 0$$
 to 180

if
$$\left|\cos(\theta - dir(x, y))\right| > threshold$$

$$\rho = x \cos \theta + y \sin \theta$$

$$H(\rho, \theta) = H(\rho, \theta) + 1$$

• Find the value(s) of (ρ, θ) where $H(\rho, \theta)$ is a large local maximum

- هدف از این الگوریتم یافتن نقاط ابتدا و انتهای پارهخطهای موجود در تصویر است
 - هر پارهخط بجای ۲ پارامتر توسط ۴ پارامتر مشخص می شود
 - مزیت اصلی الگوریتم LSD آن است که به خوبی از جهت گرادیان استفاده می کند

Gradient Level-Line

Image

Level-line Field

Line Support Regions

تشخیص دایره

$$(x-a)^2 + (y-b)^2 = r^2$$

• معادله دايره

- مقدار بهینه این ۳ پارامتر برای تعدادی نقطه با بهینهسازی مربعات خطا قابل محاسبه هستند
 - برای مقابله با outlier می توان از ایده RANSAC استفاده نمود
 - می توان از ایده Hough استفاده کرد
 - می توان زاویه گرادیان را هم دخیل کرد

تبدیل Hough دایروی

$$r$$
 و b و a بعدی خواهد بود: $oldsymbol{\bullet}$

- هر نقطه در فضای هاف؟
- تقاطع منحنیهای مربوط به نقاط یک دایره

 $(x-a)^2 + (y-b)^2 = r^2$

تبدیل Hough دایروی

ELSD

• ELSD الگوریتمی قوی برای تشخیص پارهخط و کمان است که از زاویه گرادیان استفاده می کند

فضاهای رنگی

Color Spaces

تصویر رنگی و سطح خاکستری

img = cv2.imread("Cube.png", cv2.IMREAD_COLOR)
cv2.imshow("Color", img)

• اگر یک پرتو از نور سفید از یک منشور شیشهای عبور کند، نور خارج شده یک طیف پیوسته از رنگها شامل بنقش در یک طرف و قرمز در طرف دیگر خواهد بود

- رنگ مشاهده شده از یک شیئ بستگی به نور بازتاب شده توسط آن دارد
- سطحی که نور بازتاب شده از آن در تمام طول موجهای مرئی متعادل است، سفید دیده میشود
 - اشیاء سبز، نور با طول موجهای محدوده 500nm تا 570nm را بازتاب میدهند

- حسگرهای حساس به رنگی که در چشم انسان وجود دارند در سه گروه قرار می گیرند:
 - سلولهای حساس به رنگ قرمز، سبز، آبی

مدلهای رنگ

• مدل رنگ اصولا مشخصهای از یک سیستم مختصات است به نحوی که هر رنگ یک نقطه درون یک زیرفضا در این سیستم مختصات است

• مدل رنگ RGB

مدل رنگ RGB

• اگر هر یک از مولفههای G ،R و B توسط ۸ بیت نشان داده شوند، هر پیکسل رنگی دارای عمق ۲۴ بیت خواهد بود

 $2^{24} = 16,777,216$: تعداد کل رنگهای متمایز برای هر پیکسل

مدل رنگ RGB

• تمایز بین رنگهای اصلی در نور و رنگهای اصلی در مواد رنگی مهم است

• مفهوم رنگ اصلی در مواد رنگی بدین صورت است که یکی از رنگهای اصلی نور توسط این مواد جذب و دو رنگ دیگر بازتاب میشوند

- CMY رنگهای اصلی
- RGB رنگهای ثانویه
- در پرینترهای رنگی از فضای رنگ CMY استفاده میشود

