CURRICULUM VITAE

Inseung Kang

inseung@mit.edu | inseungkang.github.io 43 Vassar St 2033A, Cambridge, MA, 02139

EDUCATION

Georgia Institute of Technology

Ph.D. in Mechanical Engineering

Aug 2021

- Dissertation Title: Adaptive User State Estimation for Assisting Human Locomotion Using Powered Hip Exoskeletons
- Advisor: Aaron J. Young Ph.D.

M.S. in Mechanical Engineering

May 2018

B.S. in Mechanical Engineering

May 2016

ACADEMIC POSITION

Postdoctoral Associate

Motor Control Lab (PI: Dr. Nidhi Seethapathi) Department of Brain and Cognitive Sciences Massachusetts Institute of Technology Jan 2022 - Current

EMPLOYMENT AND EXPERIENCE

Graduate Research Assistant

Aug 2018 – Aug 2021

School of Mechanical Engineering Georgia Institute of Technology

Graduate Teaching Assistant

Aug 2016 – Aug 2018

School of Mechanical Engineering Georgia Institute of Technology

CAD/CAM Instructor

Spring 2017, 2018

School of Biological Sciences Georgia Institute of Technology

Research Assistant

Summer 2017

Neuro-Robotic Rehabilitation Team | The Center for Bionics

Korea Institute of Science and Technology

PUBLICATIONS

Journal Articles (*indicates equal contribution)

 J11: I. Kang, R. Peterson, K. Herrin, A. Mazumdar, A. Young, Design and Validation of a Torque-Controllable Series Elastic Actuator-Based Hip Exoskeleton for Dynamic Locomotion, ASME Journal of Mechanisms and Robotics, June 2022

- J10: I. Kang, D. Molinaro, G. Choi, J. Camargo, A. Young, Subject-Independent Continuous Locomotion Mode Classification for Robotic Hip Exoskeleton Applications, IEEE Transactions on Biomedical Engineering, April 2022
- J9: D. Molinaro, I. Kang, J. Camargo, M. Gombolay, A. Young, Subject-Independent, Biological Hip Moment Estimation During Multimodal Overground Ambulation Using Deep Learning, IEEE Transactions on Medical Robotics and Bionics, January 2022
- J8: D. Lee, B. McLain, I. Kang, A. Young, Biomechanical Comparison of Assistance Strategies
 Using a Bilateral Robotic Knee Exoskeleton, IEEE Transactions on Biomedical Engineering,
 May 2021
- J7: I. Kang, D. Molinaro, S. Duggal, Y. Chen, P. Kunapuli, A. Young, Real-time gait phase estimation for robotic hip exoskeleton control during multimodal locomotion, IEEE Robotics and Automation Letters, February 2021
- J6: D. Lee, **I. Kang**, D. Molinaro, A. Yu, A. Young, Real-Time User-Independent Slope Prediction using Deep Learning for Modulation of Robotic Knee Exoskeleton Assistance, IEEE Robotics and Automation Letters, February 2021
- J5: SE. Lee, C. Kilpatrick, **I. Kang**, H. Hsu, W. Childers, A. Young, Investigating the Impact of the User Interface for a Powered Hip Orthosis on Metabolic Cost and User Comfort: A Preliminary Study, Journal of Prosthetics and Orthotics, June 2020
- J4: G. Sawicki, O. Beck, **I. Kang**, A. Young, The Exoskeleton Expansion: Improving Walking and Running Economy, Journal of NeuroEngineering and Rehabilitation, February 2020
- J3: D. Lee, EC. Kwak, B. McLain, **I. Kang,** A. Young, Biomechanical Effects of a Robotic Knee Exoskeleton during Incline and Decline Walking, IEEE Transactions on Neural Systems & Rehabilitation Engineering, February 2020
- J2: I. Kang*, P. Kunapuli*, A. Young, Real-Time Neural Network-based Gait Phase Estimation using a Robotic Hip Exoskeleton, IEEE Transactions on Medical Robotics and Bionics, December 2019
- J1: **I. Kang**, H. Hsu, A. Young, The Effect of Hip Assistance Levels on Human Energetic Cost Using Robotic Hip Exoskeletons, IEEE Robotics and Automations Letters, April 2019

Refereed Conference Proceedings

- C10: H. Cho, **I. Kang**, D. Park, D. Molinaro, A. Young, Real-Time Walk Detection for Robotic Hip Exoskeleton Applications, IEEE International Symposium on Medical Robotics, April 2022
- C9: H. Jin, **I. Kang**, G. Choi, D. Molinaro, A. Young, Wearable Sensor-Based Step Length Estimation During Overground Locomotion Using a Deep Convolutional Neural Network, IEEE International Conference of the Engineering in Medicine and Biology Society (EMBC), October 2021
- C8: G. Choi, D. Lee, I. Kang, A. Young, Effect of Assistance Timing in Knee Extensor Muscle Activation During Sit-To-Stand Using a Bilateral Robotic Knee Exoskeleton, IEEE International Conference of the Engineering in Medicine and Biology Society (EMBC), October 2021

- C7: **I. Kang**, D. Molinaro, G. Choi, A. Young, Continuous locomotion mode classification using a powered bilateral hip exoskeleton, IEEE International Conference on Biomedical Robotics and Mechatronics (BioRob), June 2020
- C6: D. Molinaro, I. Kang, J. Camargo, A. Young, Biological Hip Torque Estimation using a Robotic Hip Exoskeleton, IEEE International Conference on Biomedical Robotics and Mechatronics (BioRob), June 2020
- C5: **I. Kang**, P. Kunapuli, H. Hsu, A. Young, Electromyography (EMG) Signal Contributions in Speed and Slope Estimation Using Robotic Exoskeletons, IEEE International Conference on Rehabilitation Robotics (ICORR), June 2019
- C4: H. Zheng, T. Shen, R. Afsar, I. Kang, A. Young, X. Shen A Semi-Wearable Robotic Device for Sit-to-Stand Assistance, IEEE International Conference on Rehabilitation Robotics (ICORR), June 2019
- C3: I. Kang, H. Hsu, A. Young, Design and Validation of a Torque Controllable Hip Exoskeleton for Walking Assistance, ASME Dynamic Systems and Control Conference, October 2018
- C2: H. Hsu, I. Kang, A. Young, Design and Evaluation of a Proportional Myoelectric Controller for Hip Exoskeleton During Normal Walking, ASME Dynamic Systems and Control Conference, October 2018
- C1: S. Kim, X. Chen, G. Dreifus, J. Lindahl, I. Kang, A. Kim, M. Selim, D. Nuttal, A. Messing, A. Nycz, R. Minneci, J. Bowers, B. Braswell, A. Hassan, B. Pipes, V. Kunc, An Integrated Design Approach for Infill Patterning of Fused Deposition Modeling and its Application to an Airfoil, SAMPE Conference, February 2017

Conference Abstracts

- A5: I. Kang, N. Seethapathi, Mapping step-to-step exploration and energetic cost to comprehend human locomotor adaptation, Annual Meeting of the Neural Control of Movement, July 2022
- A4: **I. Kang**, D. Molinaro, G. Choi, A. Young, A biomechanical analysis of adaptive assistance strategy for uphill walking using a powered hip exoskeleton, American Society of Biomechanics Annual Conference, August 2020
- A3: D. Molinaro, I. Kang, J. Camargo, A. Young, Estimating biological hip torque during overground ambulation: A machine learning approach, American Society of Biomechanics Annual Conference, August 2020
- A2: Y. Pan, I. Kang, K. Herrin, A. Young, The Biomechanical Effect of Bilateral Assistance for Hemiparetic Gait Poststroke Using a Powered Hip Exoskeleton, American Society of Biomechanics Annual Conference, August 2020
- A1: C. Kilpatrick, SE. Lee, I. Kang, H. Hsu, L. Childers, A. Young, The Impact of Hip Exoskeleton User Interface on User Comfort and Metabolic Cost: A Pilot Study, American Academy of Orthotists & Prosthetists Conference, March 2019

Under Review

• J1: I. Kang*, Y. Pan*, J. Joh, P. Kim, K. Herrin, A. Young, Effects of Bilateral Assistance for Hemiparetic Gait Post-Stroke Using a Powered Hip Exoskeleton, Annals of Biomedical Engineering

PRESENTATION

Invited Seminar Talk

- T6: AI-driven robotic exoskeletons to augment humans for improved mobility during community ambulation, Drexel University Department of Mechanical Engineering and Mechanics, May 2022
- T5: Improving human locomotion using machine learning-based control of robotic hip exoskeletons, The Ohio State University Bioengineering Seminar, February 2022
- T4: Improving Human Locomotion Using a User State Adaptive Control of a Robotic Hip Exoskeleton, Yonsei University College of Medicine, January 2021
- T3: Robotic Exoskeleton for Improving Human Locomotion, NAVER LABS, December 2020
- T2: User State Adaptive Control of a Robotic Hip Exoskeleton to Improve Human Locomotion During Community Ambulation, Samsung Electronics, December 2020
- T1: User State Adaptive Assistance Strategy to Enhance Human Locomotion Using a Robotic Hip Exoskeleton, Georgia Tech IRIM RoboGrads Student Virtual Seminar Session, August 2020

Conference Talk

- T6: Inverting locomotor learning algorithms from data, Dynamic Walking Conference, June 2022
- T5: Real-time gait phase estimation for robotic hip exoskeleton control during multimodal locomotion, IEEE International Conference on Robotics and Automation, May 2021
- T4: Continuous locomotion mode classification using a powered bilateral hip exoskeleton, IEEE International Conference on Biomedical Robotics and Mechatronics (BioRob), December 2020
- T3: Electromyography (EMG) Signal Contributions in Speed and Slope Estimation Using Robotic Exoskeletons, IEEE International Conference on Rehabilitation Robotics (ICORR), June 2019
- T2: Design and Validation of a Torque Controllable Hip Exoskeleton for Walking Assistance, ASME Dynamic Systems and Control Conference, October 2018
- T1: Effects of Assistance Levels on Energetic Savings Using a Robotic Hip Exoskeleton, Dynamic Walking Conference, May 2018

Poster Presentation

- P9: I. Kang, N. Seethapathi, Mapping step-to-step exploration and energetic cost to comprehend human locomotor adaptation, Society for the Neural Control of Movement, July 2022
- P8: D. Molinaro, **I. Kang**, A. Young, CNN-Based Hip Moment Estimates for Hip Exoskeleton Control, IEEE International Conference on Robotics and Automation, May 2022
- P7: B. McLain, D. Lee, I. Kang, A. Young, EMG-informed neuromusculoskeletal model for knee joint load estimation with a powered knee exoskeleton during inclined walking, American Society of Biomechanics Annual Conference, August 2020
- P6: A. Groff, S. Thai, I. Kang, H. Hsu, A. Young, Control Strategies of a Powered Assist Hip Exoskeleton in Subject with Stroke, American Academy of Orthotists & Prosthetists Conference, March 2019
- P5: I. Kang, A. Young, Understanding the Optimal Assistance Levels for Human Augmentation Using Robotic Hip Exoskeletons, The Career, Research, and Innovation Development Conference, February 2019
- P4: P. Kunapuli, **I. Kang**, A. Young, Neural Network Based Estimation of Gait Phase in a Powered Hip Exoskeleton, Biomedical Engineering Society Conference, October 2018
- P3: EC. Kwak, D. Lee, I. Kang, A. Young, The Effect of Powered Assistance on Uphill Human Walking Using a Robotic Knee Exoskeleton, Biomedical Engineering Society Conference, October 2018
- P2: C. Kilpatrick, SE. Lee, I. Kang, H. Hsu, L. Childers, A. Young, Investigating the Impact of Hip Exoskeleton User Interface on User Comfort and Metabolic Cost, American Academy of Orthotists & Prosthetists Conference, February 2018
- P1: **I. Kang**, H. Hsu, D. Lee, A. Young, Robotic Human Augmentation using Exoskeleton Devices, NextFlex Workshop: Powering the Internet of Everything, November 2017

PROFESSIONAL WORKSHOPS

• I. Kang, A. Young, M. Shepherd, D. Molinaro, G. Evangelopoulos, Online Machine Learning-based Control of Lower-Limb Exoskeletons, IEEE International Conference on Robotics and Automation, May 2022 (correspondence and main lead)

PATENTS

- U.S. Patent PCT/US21/40068: "Powered Bilateral Knee Exoskeleton" Filed July 1, 2021
- U.S. Invention Disclosure: "Specialized AI systems for improving capability of wearable robotic systems" Provisional Patent filed May 6, 2022

CONTRIBUTED RESEARCH FUNDING

• National Institute of Health: R03 New Investigator Award

0	Title: Improving Community Ambulation for Stroke Survivors using
	Powered Hip Exoskeletons with Adaptive Environmental Controllers

•	National Science Foundation: National Robotics Initiative Award	Aug 2018
	o Title: Robotic Human Enhancement Enabled through Wearable Hip	
	Exoskeletons Capable of Community Ambulation	

AWARDS AND HONORS

•	VIP Mentor Award, Georgia Tech's Vertically Integrated Projects Program	2021
•	Outstanding Capstone Research Award, P&O Research Symposium	2018
•	Best Poster Award, AAOP Conference	2018
•	Highest honor upon graduation for bachelor's degree	2016
•	Georgia Tech Korean Student Association Scholarship	2015

OUTREACH PROGRAM

•	National Robotics Week, Georgia Tech	2017 - 2021
•	US-Japan Nakatani RIES Program, Georgia Tech	2019 - 2021

MENTORING

Dongho Park, PhD ME, Georgia Tech	Fall 2021
Patrick Kim, PURA Program, Georgia Tech	Summer 2021
Gayeon Choi, PURA Program, Georgia Tech	Spring 2021
• James Joh, PURA Program, Georgia Tech	Spring 2021
Reese Peterson, MSME, Georgia Tech	2020 - 2022
Julian Park, MSME, Georgia Tech	2019 - 2021
Henry Luk, MSME, Georgia Tech	2019 - 2020
Srijan Duggal, PURA Program, Georgia Tech	Fall 2020
 Emily Keller, NSF SURE Program, NCSU 	Summer 2019
Dawit Lee, MSME, Georgia Tech	2017 - 2018
Hsiang Hsu, MSME, Georgia Tech	2017 - 2019
 Michael Groff, MSCS, Georgia Tech 	2019
Bailey McLain, Petit Scholar Program, Georgia Tech	2019
Michelle Myrick, Petit Scholar Program, Georgia Tech	2017
 Harnjoo Kim, PURA Program, Georgia Tech 	Spring 2019
 Pratik Kunapuli, PURA Program, Georgia Tech 	Summer 2018
 Joonho Seo, PURA Program, Georgia Tech 	Spring 2017
 Alice Zou, NSF SURE Program, Johns Hopkins University 	Summer 2017

PROFESSIONAL MEMBERSHIPS AND SERVICES

INSEUNG KANG | CURRICULUM VITAE

•	Student Member, ASME	2013 – Present
•	Student Member, IEEE	2018 – Present
•	Member, Pi Tau Sigma	2014 – Present
•	Reviewer, IEEE Robotics and Automation Letters	2019 – Present
•	Reviewer, IEEE Transactions on Mechatronics	2018 – Present
•	Reviewer, IEEE Transactions on Robotics	2018 – Present
•	Reviewer, IEEE Transactions on Biomedical Engineering	2017 – Present
•	Reviewer, IEEE Transactions on Medical Robotics and Bionics	2019 – Present
•	Reviewer, IEEE Transactions on Neural Systems and Rehabilitation Engineering	
		2020-Present
•	Reviewer, Frontiers in Neurorobotics	2018-Present
•	Reviewer, Scientific Report	2021 – Present
•	Reviewer, President's Undergraduate Research Award, Georgia Tech	2017 - 2020
•	Mentor, Petit Undergraduate Research Scholars Program	2017 - 2019
•	Member, Korean Scientist and Engineers Association	2014 – Present
•	Co-Chair, KSEA Ygnite (Young Generation Technical and Leadership Conference	e 2022