Paul Gustafson

Texas A&M University - Math 637

Instructor: Zoran Sunik

HW 1

1 Show that every faithful and transitive action of a group G on a set X, where G is abelian, is free (and therefore equivalent to a regular one).

Proof. If X is empty, the conclusion is trivial. Otherwise, let $x \in X$. Suppose gx = x for some $g \in G$. To show that the action is free, it suffices to show that g = 1.

Let $y \in X$. Since the action is transitive, y = hx for some $h \in G$. Thus gy = ghx = hgx = hx = y. Since y was arbitrary, g fixes all of X. Thus g = 1 since the action is faithful.

 ${\bf 2}$ Consider the following three subspaces of \mathbb{R}^2 with metric that is inherited from the Euclidean metric

$$R = \{(x,0)|x \in \mathbb{R}\}$$

$$L = \{(x,0)|x \in \mathbb{R}, x \ge 0\} \cup \{(0,y)|y \in \mathbb{R}, y \ge 0\}$$

$$H = \{(x,0)|x \in \mathbb{R}, x > 0\}.$$

Which of these spaces are quasi-isometric?

Proof. I claim that R and L are quasi-isometric to each other, but H is not quasi-isometric to the others.

For the former, define $\phi: L \to R$ by sending (x,0) to itself and sending (0,y) to (-y,0).

Suppose $p, q \in L$. Then $d(p,q) = d(\phi(p), \phi(q))$ unless p, q are on different axes. In this case, WLOG assume p = (x,0) and q = (0,y) for $x,y \ge 0$. Then $d(p,q) = (x^2 + y^2)^{1/2} \le x + y = d(\phi(p), \phi(q))$. On the other hand, $d(\phi(p), \phi(q)) = x + y = (x^2 + 2xy + y^2)^{1/2} \le (x^2 + 2(x^2 + y^2) + y^2)^{1/2} = \sqrt{3}(x^2 + y^2)^{1/2} = \sqrt{(3)}d(x,y)$. Hence, L and R are quasi-isometric.

To see that R and H are not quasi-isometric, it suffices to show that \mathbb{Z} and \mathbb{N} are not quasi-isometric. Suppose $\phi: \mathbb{N} \to \mathbb{Z}$ is a quasi-isometry. Then $C^{-1}d(p,q) - K \leq d(\phi(p),\phi(q)) \leq Cd(p,q) + K$ for all $p,q \in \mathbb{N}$ for some $C \geq 1$ and $K \geq 0$. In particular, we have $d(\phi(n),\phi(n+1)) \leq C + K$ for all $n \in \mathbb{N}$. Since ϕ takes on infinitely many positive values and infinitely many negative values, this implies $\phi(n) \in [0,C+K]$ for infinitely many n. Pick any $p \in \mathbb{N}$ with $\phi(p) \in [0,C+K]$. Pick q with $\phi(q) \in [0,C+K]$ and q so large that $C^{-1}d(p,q) - K > C + K \geq d(\phi(p),\phi(q))$, a contradiction.