4 Describing relationships between variables

This chapter provides methods that address a more involved problem of describing relationships between variables and require more computation. We start with relationships between two variables and move on to more.

4.1 Fitting a line by least squares

We would like to use an equation to describe how a dependent (response) variable, y, changes in response to a change in one or more independent (experimental) variable(s), x.

4.1.1 Line review

Recall a linear equation of the form y = mx + b

In statistics, we use the notation $y = \beta_0 + \beta_1 x + \epsilon$ where we assume β_0 and β_1 are unknown parameters and ϵ is some error.

po: intercept
$$\mathcal{E}$$
: error.

The goal is to find estimates b_0 and b_1 for the parameters. (sometimes $\hat{\beta}_0$ and $\hat{\beta}_1$)

by: intercept $\hat{\beta}_0$: slope

Example 4.1 (Plastic hardness). Eight batches of plastic are made. From each batch one test item is molded and its hardness, y, is measured at time x. The following are the 8 measurements and times:

time	32	72	64	48	16	40	80	56
hardness	230	323	298	255	199	248	359	305

Step 1: look at a scatterplot to determine if a linear relationship seems appropriate.

- describe strength, direction, and form:
There is a strong, positive, linear
relationship between time and hardness.

How do we find an equation for the line that best fits the data?

A straight line will not pass through every data point, so when we estimate a line, we will have predicted values (g) instead of the observed data (y)

The filled equation is then $\hat{y} = b_0 + b_1 \times$

Definition 4.1. A residual is the vertical distance between the actual data point and a fitted line, $e = y - \hat{y}$. $= y - \hat{y}_0 - \hat{y}_0 - \hat{y}_0$

We choose the line that has the smallest residuals.

The *principle of least squares* provides a method of choosing a "best" line to describe the data.

Definition 4.2. To apply the *principle of least squares* in the fitting of an equation for y to an n-point data set, values of the equation parameters are chosen to minimize

$$\sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

where y_1, y_2, \ldots, y_n are the observed responses and $\hat{y}_1, \hat{y}_2, \ldots, \hat{y}_n$ are corresponding responses predicted or fitted by the equation.

We want to choose b_0 and b_1 to minimize

$$\sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{n} (y_i - b_0 - b_1 x_i)^2$$

Take derivatives and set them to zero:

$$6 = \frac{3}{3b_0} \sum_{i=1}^{n} (y_i - b_0 - b_i x_i)^2 = -2 \sum_{i=1}^{n} (y_i - b_0 - b_i x_i)$$

$$6 = \sum_{i=1}^{n} (y_i - b_0 - b_i x_i)$$

$$0 = \frac{3}{3b_i} \sum_{i=1}^{n} (y_i - b_0 - b_i x_i)^2 = -2 \sum_{i=1}^{n} x_i (y_i - b_0 - b_i x_i)$$

$$0 = \sum_{i=1}^{n} x_i (y_i - b_0 - b_i x_i)$$

Solving for b_0 and b_1 , we get

$$b_0 = \overline{y} - b_1 \overline{x}$$

$$b_1 = \frac{\sum (x_i - \overline{x})(y_i - \overline{x})}{\sum (x_i - \overline{x})^2} = \frac{\sum x_i y_i - \frac{1}{n} \sum x_i \sum y_i}{\sum x_i^2 - \frac{1}{n} (\sum x_i)^2}$$
easier to remember easier to compute

Example 4.2 (Plastic hardness, cont'd). Compute the least squares line for the data in Example 4.1.

$$\int_{1} = \frac{\sum x_{i} y_{i} - \frac{1}{n} \sum x_{i} \sum y_{i}}{\sum x_{i}^{2} - \frac{1}{n} (\sum x_{i})^{2}} = \frac{120832 - \frac{1}{8} (408)(2217)}{24600 - \frac{1}{8} (408)^{2}} = 2.433$$

$$b_0 = \bar{y} - b_1 \bar{x} = \frac{2217}{8} - 2.433 \frac{468}{8} = 153.66$$

Now we have the filled line: $\hat{y} = 153.06 + 2.433 \times$

We can use this to 0 get interpretations of estimates and 0 compute a predicted/sitted value for a given x :

 0 : What is the predicted hardness for time $0 = 24?$

$$\hat{y} = 153,06 + 2.433(24) = 211.452$$

Interpreting slope and intercept

put interpretations in iontest of the problem

ALWAYS to

· Slope: For every 1 (unit) increase in (x) we expect a (b) -> increase / decrease in (y)
(b, positive) (b, negative)

• Intercept

When (br) is O (units), we expect (y) to be (b.).

Interpreting the intercept is nonsense when

1. A value of 0 for x is not practical (i.e. measuring heights of adult humans)
2. Extrapolation would have to be used to get the predicted value of y (i.e. get a negative intercept for any measure net).

Note: this doesn't mean the intercept is wrong! It's just not interpretable.

Example 4.3 (Plastic hardness, cont'd). Interpret the coefficients in the plastic hardness example. Is the interpretation of the intercept reasonable?

Slope: (b, = 2.433) For every 1 hour nacrease in time, we expect the hardness to increase by 2.433 units.
(b, positive) (b,) (wits)

Intercept: (bo = 153,06) At time 0, we expect the hardness to be 153.06 units.

The intercept interpretation is NOT reusonable, Secourse at the O, the plastic is molten so expecting a hardness of 153, 06 units is un enlistic.

x=size of house (m3) y= cost of house (#)

When making predictions, don't extrapolate.

Definition 4.3. Extrapolation is when a value of x beyond the range of our actual observations is used to find a predicted value for y. We don't know the behavior of the line beyond our collected data.

Definition 4.4. Interpolation is when a value of x within the range of our observations is used to find a predicted value for y.

correlated

Visually we can assess if a fitted line does a good job of fitting the data using a scatterplot.

However, it is also helpful to have methods of quantifying the quality of that fit.

Definition 4.5. Correlation gives the strength and direction of the linear relationship /4550ciation between two variables.

Definition 4.6. The sample correlation between x and y in a sample of n data points (x_i, y_i)

is correlation $r = \frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum (x_i - \overline{x})^2 \sum (y_i - \overline{y})^2}} = \frac{\sum x_i y_i - \frac{1}{n} \sum x_i \sum y_i}{\sqrt{\sum x_i^2 - \frac{1}{n} (\sum x_i)^2} \sqrt{\sum y_i^2 - \frac{1}{n} (\sum y_i)^2}}$ $\sum (x_i - \overline{x})(y_i - \overline{y}) \qquad \text{contribution to } \Gamma$ $\Rightarrow x \qquad 0 \ge (+) (+) \qquad \Theta$ $\Rightarrow x \qquad 0 \ge (+) (-) \qquad \Theta$ $\Rightarrow x \qquad 0 \ge (-) (+) \qquad \Theta$ $\Rightarrow x \qquad 0 \ge (-) (-) \qquad \Theta$

Properties of the sample correlation:

- -1 < r < 1
- r = -1 or r = 1 if all points lie exactly on the fitted line
- The closer r is to 0, the weaker the linear relationship; the closer it is to 1 or -1, the stronger the linear relationship.
- Negative r indications negative linear relationship; Positive r indications positive linear (linear slope) relationship (linear slope, b,)
- Interpretation always need 3 things
 - 1. Strength (strong, moderate, weak)
 - 2. Direction (positive or negative)
 - 3. Form (linear relationship or no linear relationship) \Longrightarrow looking at Scattorplot & cosidval plots

Note:

- ① strong = 0.7 ≤ r ≤ 1 or -1 ≤ r ≤ -0.7 moderate = 0,3 ≤ r < 0,7 or -0.7 < r < -0.3 weak = -0.3 < r < 0.3
- @ r= 0 => No linear relationship blun x and y.

 (There could be some other form of relationship
 blun x and y)

Example 4.4 (Plastic hardness, cont'd). Compute and interpret the sample correlation for the plastic hardness example. Recall, $\sum \chi$ is a short-cut for $\sum_{i=1}^{n} \chi_i$

$$\sum x = 408, \sum y = 2217, \sum xy = 120832, \sum x^2 = 24000, \sum y^2 = 634069$$

$$r = \frac{\sum xiyi - \frac{1}{n} \sum xi \sum yi}{\sqrt{\sum xi^2 - \frac{1}{n} (\sum xi)^2} \sqrt{\sum yi^2 - \frac{1}{n} (\sum yi)^2}} = \frac{120,832 - \frac{1}{8} (408 \cdot 2,217)}{\sqrt{(24,000) - \frac{1}{8} (408)^2 \cdot \sqrt{(634,009 - \frac{1}{8}(24)^2)}}} = 0.9796$$

there is a Ostrong, Opositive, Olinear relationship blue time and hardness of plastic.

look like fis except for small fluctuations explainable only 95 random variation

4.1.4 Assessing models

When modeling, it's important to assess the (1) validity and (2) usefulness of your model.

E = y - ŷ = (abserved y) (predicted y)

To assess the validity of the model, we will look to the residuals. If the fitted equation is the good one, the residuals will be:

- 2. centered at Zero
- 3. Bell shaped

Definition 4.7. A <u>residual plot</u> is a plot of the residuals, $e = y - \hat{y}$ vs. x (or \hat{y} in the case of multiple regression, Section 4.2).

To check if residuals have a Normal distribution,

To assess the usefulness of the model, we use \mathbb{R}^2 , the coefficient of determination.

Definition 4.8. The *coefficient of determination*, R^2 , is the proportion of variation in the response that is explained by the model.

Total amount of variation in the response

$$Var(y) =$$

Sum of squares breakdown:

Properties of \mathbb{R}^2 :

- R^2 is used to assess the fit of other types of relationships as well (not just linear).
- Interpretation fraction of raw variation in y accounted for by the fitted equation.
- $0 \le R^2 \le 1$
- The closer R^2 is to 1, the better the model.
- For SLR, $R^2 = (r)^2$

Example 4.5 (Plastic hardness, contd). Compute and interpret \mathbb{R}^2 for the example of the relationship between plastic hardness and time.

4.1.5 Precautions

Precautions about Simple Linear Regression (SLR)

- r only measures linear relationships
- R^2 and r can be drastically affected by a few unusual data points.

4.1.6 Using a computer

You can use JMP (or R) to fit a linear model. See BlackBoard for videos on fitting a model using JMP.

4.2 Fitting curves and surfaces by least squares

The basic ideas in Section 4.1 can be generalized to produce a powerful tool: **multiple linear** regression.

4.2.1 Polynomial regression

In the previous section, a straight line did a reasonable job of describing the relationship between time and plastic hardness. But what to do when there is not a linear relationship between variables?

Example 4.6 (Cylinders, pg. 132). B. Roth studied the compressive strength of concrete-like fly ash cylinders. These were made using various amounts of ammonium phosphate as an additive.

ammonium.phosphate	strength	ammonium.phosphate	strength
0	1221	3	1609
0	1207	3	1627
0	1187	3	1642
1	1555	4	1451
1	1562	4	1472
1	1575	4	1465
2	1827	5	1321
2	1839	5	1289
2	1802	5	1292

Table 1: Additive concentrations and compressive strengths for fly ash cylinders.

Figure 1: Scatterplot of compressive strength of concrete-like fly ash cylinders for various amounts of ammonium phosphate as an additive with a fitted line.

Figure 2: Residual plots for linear fit of cylinder compressive strength on amounts of ammonium phosphate.

A natural generalization of the linear equation

$$y \approx \beta_0 + \beta_1 x$$

is the polynomial equation

$$y \approx \beta_0 + \beta_1 x + \beta_2 x^2 + \dots + \beta_{p-1} x^{p-1}.$$

The p coefficients are again estimated using the *principle of least squares*, where the function

$$S(b_0, \dots, b_{p-1}) = \sum_{i=1}^n (y_i - \hat{y})^2 = \sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_i - \dots - \beta_{p-1} x_i^{p-1})^2$$

must be minimized to find the estimates b_0, \ldots, b_{p-1} .

Example 4.7 (Cylinders, cont'd). The linear fit for the relationship between ammonium phosphate and compressive strength of cylinders was not great $(R^2 = 2.8147436 \times 10^{-5})$. We can fit a quadratic model.

Call:

```
lm(formula = strength ~ ammonium.phosphate + I(ammonium.phosphate^2),
    data = cylinders)
```

Residuals:

```
Min 1Q Median 3Q Max
-95.983 -70.193 -7.895 51.548 137.419
```

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1242.893 42.982 28.917 1.43e-14 ***

ammonium.phosphate 382.665 40.430 9.465 1.03e-07 ***

I(ammonium.phosphate^2) -76.661 7.762 -9.877 5.88e-08 ***

--
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

Residual standard error: 82.14 on 15 degrees of freedom
Multiple R-squared: 0.8667, Adjusted R-squared: 0.849

F-statistic: 48.78 on 2 and 15 DF, p-value: 2.725e-07

Example 4.8 (Cylinders, cont'd). How about a cubic model.

Call:

Residuals:

```
Min 1Q Median 3Q Max
-70.677 -27.353 -3.874 24.579 93.545
```

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	1188.050	28.786	41.272	5.03e-16	***
ammonium.phosphate	633.113	55.913	11.323	1.96e-08	***
<pre>I(ammonium.phosphate^2)</pre>	-213.767	27.787	-7.693	2.15e-06	***
<pre>I(ammonium.phosphate^3)</pre>	18.281	3.649	5.010	0.000191	***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 $\,$

Residual standard error: 50.88 on 14 degrees of freedom

Multiple R-squared: 0.9523, Adjusted R-squared: 0.9421

F-statistic: 93.13 on 3 and 14 DF, p-value: 1.733e-09

4.2.2 Multiple regression (surface fitting)

The next generalization from fitting a line or a polynomial curve is to use the same methods to summarize the effects of several different quantitative variables x_1, \ldots, x_{p-1} on a response y.

$$y \approx \beta_0 + \beta_1 x_1 + \dots + \beta_{p-1} x_{p-1}$$

Where we estimate $\beta_0, \ldots, \beta_{p-1}$ using the least squares principle. The function

$$S(b_0, \dots, b_{p-1}) = \sum_{i=1}^{n} (y_i - \hat{y})^2 = \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_{1,i} - \dots - \beta_{p-1} x_{p-1,i})^2$$

must be minimized to find the estimates b_0, \ldots, b_{p-1} .

Example 4.9 (New York rivers). Nitrogen content is a measure of river pollution. We have data from 20 New York state rivers concerning their nitrogen content as well as other characteristics. The goal is to find a relationship that explains the variability in nitrogen content for rivers in New York state.

Variable	Description
\overline{Y}	Mean nitrogen concentration (mg/liter) based on samples taken at regular
	intervals during the spring, summer, and fall months
X_1	Agriculture: percentage of land area currently in agricultural use
X_2	Forest: percentage of forest land
X_3	Residential: percentage of land area in residential use
X_4	Commercial/Industrial: percentage of land area in either commercial or indus-
	trial use

Table 2: Variables present in the New York rivers dataset.

We will fit each of

$$\hat{y} = b_0 + b_1 x_1$$

$$\hat{y} = b_0 + b_1 x_1 + b_2 x_2 + b_3 x_3 + b_4 x_4$$

and evaluate fit quality.

Call:

lm(formula = Y ~ X1, data = rivers)

Residuals:

Min 1Q Median 3Q Max -0.5165 -0.2527 -0.1321 0.1325 1.0274

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.926929 0.154478 6.000 1.13e-05 ***

X1 0.011885 0.006401 1.857 0.0798 .

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.411 on 18 degrees of freedom $\,$

Multiple R-squared: 0.1608, Adjusted R-squared: 0.1141

F-statistic: 3.448 on 1 and 18 DF, p-value: 0.07977

Call:

 $lm(formula = Y \sim X1 + X2 + X3 + X4, data = rivers)$

Residuals:

Min 1Q Median 3Q Max -0.49404 -0.13180 0.01951 0.08287 0.70480

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.722214 1.234082 1.396 0.1832

X1 0.005809 0.015034 0.386 0.7046

X2 -0.012968 0.013931 -0.931 0.3667

X3 -0.007227 0.033830 -0.214 0.8337

X4 0.305028 0.163817 1.862 0.0823 .

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.2649 on 15 degrees of freedom

Multiple R-squared: 0.7094, Adjusted R-squared: 0.6319

F-statistic: 9.154 on 4 and 15 DF, p-value: 0.0005963

There are some more residual plots we can look at for multiple regression that are helpful:

- 1.
- 2.
- 3.
- 4.
- 5.

Bonus model:

Call:

 $lm(formula = Y \sim X1 + X2 + X3 + X4 + I(X4^2), data = rivers)$

Residuals:

Min 1Q Median 3Q Max -0.34446 -0.07579 -0.00299 0.10060 0.23920

Coefficients:

Estimate Std. Error t value Pr(>|t|) (Intercept) 1.294245 0.765169 1.691 0.112880 X1 0.004900 0.009266 0.529 0.605206 0.008599 -1.217 0.243847 X2 -0.010462 ХЗ 0.073779 0.026304 2.805 0.014045 * Х4 1.271589 0.216387 5.876 4.03e-05 *** $I(X4^2)$

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.1632 on 14 degrees of freedom Multiple R-squared: 0.897, Adjusted R-squared: 0.8602 F-statistic: 24.39 on 5 and 14 DF, p-value: 1.9e-06

4.2.3 Overfitting

Equation simplicity (parsimony) is important for

