A Digital Circuit/System

Processing/Computing

數位電路都是由一連串的0或1的位元(bit)來表示輸入/輸出訊號,所以電路內的運算處理過程也應以二進制0或1的方式進行。電路設計者需要決定那些0或1代表什麼資訊、如何解釋。

- (1)如何透過輸入裝置將輸入訊號輸入系統中
- (2)電路如何執行所需0與1的計算
- (3)如何將結果展示於輸出裝置上

例如:按鍵被按住表示輸入1,按鍵被放開表示輸入0

輸出0101時, 螢幕秀出數字5; 輸出1001時, 螢幕秀出數字9。 或是輸出0表示某個LED燈要點亮, 輸出1表示某個 LED燈要熄滅。

Basic Elements of a Digital Circuit

Name	Graphic symbol	Algebraic function	Truth 真值表 input output
AND	<i>x</i>	F = xy	$ \begin{array}{c cccc} x & y & F \\ \hline 0 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \end{array} $
OR	$x \longrightarrow F$	F = x + y	$\begin{array}{c cccc} x & y & F \\ \hline 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \\ \end{array}$
Inverter	$x \longrightarrow F$	F = x'	$ \begin{array}{c cc} x & F \\ \hline 0 & 1 \\ 1 & 0 \end{array} $
Buffer	$x \longrightarrow F$	F = x	$ \begin{array}{c cc} x & F \\ \hline 0 & 0 \\ 1 & 1 \end{array} $

Figure 2.5 Digital logic gates (continued)

NAND

$$x = (xy)'$$
 $x = (xy)'$
 $x = (xy)'$

NOR

 $x = (xy)'$
 $x = ($

Figure 2.5 Digital logic gates

A Simple Digital Circuit --- Adder (1/3)

A Simple Digital Circuit --- Adder (2/3)

A Simple Digital Circuit --- Adder (3/3)

(a) S = xy' + x'yC = xy

Constructing Gates

How to implement the digital circuit? How to realize those different gates?

→ Semiconductor Technology

MOS電晶體示意圖 (semiconductor)

Transisto 通道長度L Gate Drain Source (正電壓) 電 金屬 高濃度N型矽 流 氧化物 電子通道 n+ 源極 汲極 n+ 基片 P型*矽*

Transistor (電晶體)

- A transistor has three terminals
 - A source (feed with 5 volts)
 - A base
 - An emitter, typically connected to a ground wire
- If the <u>base signal is high</u> (close to +5 volts), the source signal is grounded and the <u>output signal</u> is low (0). If the base signal is low (close to 0 volts), the source signal stays high and the output signal is high (1)

Circuits

Sony Ericsson

Gate (1 gate ~= 2~14 transistors)
 A combination of interacting transistors

Circuit

A combination of interacting gates designed to accombination → Integrated Circuit (IC)

- System
 - A combination of some circuits ???
 - → PCB (printed circuit board)

IC Design (with CMOS semiconductor technology)

One npn transistor and one pnp transistor are used to construct one inverter.

Packing, Testing

Chip/Circuit Everywhere!

Integrated Circuits 13 12 10 14 Marking [3] Power [1] [3] Ground

- •Multiple chips (gates) combined to a circuit to solve a specific problem(解決特定問題)
- 2. A dedicated chip (ASIC, application specific integrated circuit

Solderless Breadboard

- Example
 - VCC & GND must be connected

Check the data sheet !!!!!

Different ICs might require different voltages (5V, 3.3V, 1.8V,)

Specification (datasheet) of ICs

