# Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського" Факультет інформатики та обчислювальної техніки Кафедра інформатики та програмної інженерії

Звіт
з лабораторної роботи № 5 з дисципліни
«Алгоритми та структури даних-1.
Основи алгоритмізації»
«Дослідження складних циклічних алгоритмів»

Варіант\_\_16\_\_

Виконав студент \_\_IП-15, Куманецька І. В.\_\_\_ Перевірив Вечерковська А. С.\_\_\_\_

# Лабораторна робота 5

### Дослідження складних циклічних алгоритмів

**Мета** — дослідити особливості роботи складних циклів та набути практичних навичок їх використання під час складання програмних специфікацій.

# Індивідуальне завдання

# Варіант 16

16. З чисел Фібоначі в інтервалі від 1 до 100 визначити тільки прості числа, а також їх порядкові номери в ряду Фібоначі.

#### Постановка задачі

Знайти числа Фібоначі в інтервалі від 1 до 100 та визначити прости серед них. Результатом виведення має бути саме число та його порядковий номер в ряду Фібоначі.

# Побудова математичної моделі

| Змінна                | Тип             | Ім'я     | Призначення   |
|-----------------------|-----------------|----------|---------------|
| Можливі дільники      | Ціле натуральне | i        | Проміжні дані |
| числа                 |                 |          |               |
| Сума усіх дільників   | Ціле натуральне | sum_i    | Проміжні дані |
| числа                 |                 |          |               |
| Максимальне число     | Ціле натуральне | max_fib  | Вхідні дані   |
| Фібоначі              |                 |          |               |
| Передостаннє знайдене | Ціле натуральне | sec_last | Проміжні дані |
| число Фібоначі        |                 |          |               |
| Останнє знайдене      | Ціле натуральне | last     | Проміжні та   |
| число Фібоначі        |                 |          | кінцеві дані  |

| Нове підраховане число | Ціле натуральне | new     | Проміжні дані |
|------------------------|-----------------|---------|---------------|
| Фібоначі               |                 |         |               |
| Номер останнього       | Ціле натуральне | num_new | Проміжні та   |
| числа Фібоначі в       |                 |         | кінцеві дані  |
| загальному ряду        |                 |         |               |

Вводяться початкові значення num\_sec=0 та num\_last=sec\_last=last=1, після чого кожне наступне нове число з ряду Фібоначі розраховується як сума двох попередніх. У зовнішньому циклі замінюються значення num\_new, sec\_last, last та new, у внутрішньому циклі перевіряється умова, чи  $\epsilon$  знайдене число простим. Через sqrt() позначається знаходження квадратного кореня від числа. Через a+=b позначається операція a = b + a. Через % позначається операція знаходження остачі від ділення.

#### Розв'язання

Програмні специфікації запишемо у псевдокоді та графічній формі у вигляді блок-схеми.

Крок 1. Визначимо основні дії.

Крок 2. Створення і присвоєння початкових значень num\_new=sec\_last=last=new=1.

Крок 3. Деталізуємо дію розрахування нового new та заміни значень last, num\_new, sec\_last, присвоєння початкового значення і та sum\_i.

Крок 4. Деталізуємо дію перевірки умови, чи  $\epsilon$  new простим числом.

#### Псевдокод

Крок 1

#### початок

присвоєння створення початкових значень num\_new=sec\_last=last=new=1 розрахування нового new та заміни значень last, num\_new, sec\_last, присвоєння початкового значення і та sum\_i перевірка умови, чи  $\epsilon$  new простим числом виведення new та num\_ new Крок 2 початок new := 1num\_new := 1  $sec_last := 1$ last := 1розрахування нового new та заміни значень last, num\_new, sec\_last, присвоєння початкового значення і та sum\_i перевірка умови, чи є пем простим числом виведення new та num\_ new кінець Крок 3 початок new := 1 $num_new := 1$ 

кінець

```
sec_last := 1
    last := 1
    поки (last + sec_last) <= max_fib
     повторити
          new = last + sec_last
          num_new += 1
          sec_last = last
          last = new
          sum_i := 0
          перевірка умови, чи \epsilon new простим числом
    все повторити
     виведення new та num_new
кінець
Крок 4
початок
    new := 1
    num\_new := 1
    sec_last := 1
    last := 1
    поки (last + sec_last) <= max_fib
    повторити
```

```
new = last + sec\_last
```

 $num_new += 1$ 

 $sec_last = last$ 

last = new

 $sum_i := 0$ 

## повторити

для і від 1 до sqrt(new)

якщо new % i = 0

 $sum_i += i$ 

все якщо

все повторити

**якщо** sum\_i = 1

виведення new та num\_new

все якщо

все повторити

кінець

Блок-схема







Крок 4





# Випробування

| Дія              |
|------------------|
| Початок          |
| new := 1         |
| num_new := 1     |
| sec_last := 1    |
| last := 1        |
| 2 <= 100 істина  |
| new = 2          |
| num_new = 2      |
| sec_last = 1     |
| last = 2         |
| sum_i := 0       |
| i = 1            |
| 2 % 1 = 0 істина |
| sum_i = 1        |
| sum_i = 1 істина |
| виведення 2 та 2 |
| 3 <= 100 істина  |
| new = 3          |
| num_new = 3      |
| sec_last = 2     |
| last = 3         |
| sum_i := 0       |
| i = 1            |
| 3 % 1 = 0 істина |
| sum_i = 1        |
|                  |

| sum_i = 1 істина |
|------------------|
| виведення 3 та 3 |
| 5 <= 100 істина  |
| new = 5          |
| num_new = 4      |
| sec_last = 3     |
| last = 5         |
| sum_i := 0       |
| i = 1            |
| 5 % 1 = 0 істина |
| $sum_i = 1$      |
| i = 2            |
| 5 % 2 = 0 хиба   |
| sum_i = 1 істина |
| виведення 5 та 4 |
| 8 <= 100 істина  |
| new = 8          |
| num_new = 5      |
| sec_last = 5     |
| last = 13        |
| sum_i := 0       |
| i = 1            |
| 5 % 1 = 0 істина |
| sum_i = 1        |
| i=2              |
| 5 % 2 = 0 істина |
| sum_i = 3        |
|                  |

| (зовнішній цикл 4)    | sum_i = 1 хиба    |
|-----------------------|-------------------|
| 9 (зовнішній цикл 5)  | 13 <= 100 істина  |
|                       | new = 13          |
|                       | num_new = 6       |
|                       | sec_last = 8      |
|                       | last = 13         |
|                       | sum_i := 0        |
| (внутрішній цикл 1)   | i = 1             |
|                       | 13 % 1 = 0 істина |
|                       | $sum_i = 1$       |
| (внутрішній цикл 2)   | i = 2             |
|                       | 13 % 2 = 0 хиба   |
| (внутрішній цикл 3)   | i = 3             |
|                       | 13 % 3 = 0 хиба   |
| (зовнішній цикл 5)    | sum_i = 1 істина  |
|                       | виведення 13 та 6 |
|                       |                   |
| 13 (зовнішній цикл 9) | 89 <= 100 істина  |
|                       | new = 89          |
|                       | num_new = 10      |
|                       | sec_last = 55     |
|                       | last = 89         |
|                       | sum_i := 0        |
| (внутрішній цикл 1)   | i = 1             |
|                       | 89 % 1 = 0 істина |
|                       | sum_i = 1         |
| (внутрішній цикл 2)   | i=2               |

|                     | 89 % 2 = 0 хиба    |
|---------------------|--------------------|
|                     |                    |
| (внутрішній цикл 9) | i = 9              |
|                     | 89 % 9 = 0 хиба    |
| (зовнішній цикл 9)  | sum_i = 1 істина   |
|                     | виведення 89 та 10 |
| 14                  | 144 <= 100 хиба    |
|                     | Кінець             |

#### Висновок

Було досліджено особливості роботи складних циклів та набуто практичних навичок їх використання під час складання програмних специфікацій. В результаті виконання лабораторної роботи було знайдено прості числа Фібоначі від 1 до 100 та їх номери в ряду, розділивши задачу на 4 кроки: визначення основних дій, створення і присвоєння початкових значень num\_new=sec\_last=last=new=1, деталізація дії розрахування нового new та заміни значень last, num\_new, sec\_last, присвоєння початкового значення і та sum\_i, деталізація дії перевірки умови, чи є new простим числом. В процесі випробування було розраховано результат: 2 2, 3 3, 5 4, 13 6, 89 10.