StarGAN v2

Jonathon Chow * Ke Chern

(中国科学技术大学数学科学学院)

2022/7/11

1 目的

复现 Clova Research 研究团队的论文《StarGAN v2: Diverse Image Synthesis for Multiple Domains》[1],该论文被收录于 CVPR 2020。下称"文章"。

2 Abstract 部分翻译

原文的 Abstract 部分为

A good image-to-image translation model should learn a mapping between different visual domains while satisfying the following properties:1) diversity of generated images and 2) scalability over multiple domains. Existing methods address either of the issues, having limited diversity or multiple models for all domains. We propose StarGAN v2, a single framework that tackles both and shows significantly improved results over the baselines. Experiments on CelebA- HQ and a new animal faces dataset (AFHQ) validate our superiority in terms of visual quality, diversity, and scalability. To better assess image-to-image tr- anslation models, we release AFHQ, high-quality animal faces with large inter- and intra-domain differences. The code, pretrained models, and dataset are ava- ilable at https://github.com/clovaai/stargan-v2.

以下是我们对上面的翻译:

 $^{^*}$ E-mail: jonathonchow23@gmail.com

一个理想的图像转换器应该兼容不同视觉域的图像,并且需要满足以下性质: 1) 生成图像的多样性和 2) 多个视觉域的可扩展性。然而目前现有的方法都仅解决了其中一个问题,即要么生成的图像缺乏多样性,要么对所有视觉域采用各样模型。于是我们提出了 StarGAN v2 框架,它可以同时解决以上两个问题,并能够实现出比基础模型更加好效果。在 CelebAHQ 数据集和新动物面部数据集 (AFHQ) 上的测试验证了我们的框架在视觉质量、多样性和可扩展性方面的优势。为了更好地评估图像转换模型,我们发布了 AFHQ 数据集,它具有高质量的在视觉域间和域内有较大差异的动物面部数据。框架的代码、预训练模型以及数据集可以在 https://github.com/clovaai/stargan-v2 上获得。

3 文章的贡献与我们的创新

3.1 文章的贡献

文章中定义了"域"(domain):可以分组为视觉上有独特风格的不同组图片;"风格"(style):每组图片中的每张图片都有独特的外观和特征,这称之为风格。比如,可以根据性别将人分为男性和女性两个域,而人物的装扮,胡子,发型等特征可以视为风格。大概就是范围更大的可区分特征叫做域,范围小的叫做风格。一个理想的图像转换模型应该考虑域内的多样化的风格。但这种模型的设计和学习很困难,因为一种域内可以有大量的任意风格。这给我们的问题解决带来了很大的难度。

为了解决风格多样性问题,人们开展了大量关于图像对图像生成的研究。这些方法将低维的 latent code 注入到生成器(generator)中,该代码可以从标准高斯分布中随机抽样。它们特定于领域的解码器在生成图像时将 latent code 解释为各种风格的配方。但是,因为这些方法只考虑了两个域之间的映射,所以它们不能扩展到不断增加的域。例如,如果有 K 个域,这些方法需要训练 K(K-1) 个生成器来处理每个域之间的转换,从而限制了它们的实际使用。

为了解决可扩展性,一些研究提出了一些框架。StarGAN 是最早的模型之一,它使用单个生成器学习所有可行域之间的映射。生成器将域标签作为额外的输入,并学习将图像转换为相应的域。然而,StarGAN 仍然学习每个域的确定性映射,这没有捕获数据分布的多模态性质。这个限制是因为每个域都由一个预先确定的标签表示。

所以为了解决这两个问题,本文提出了 StarGANv2,它可以在多个域生成不同的图像。特别地,从 StarGAN 开始,用文章建议的域特定的 style code 替换它的域标签,该代码可以表示特定域的不同风格。为此,文章引入了两个模块,mapping network 和 style encoder。mapping network 学习将随机高斯噪声转换为 style code,而 style encoder 学习从给定的参考图像中提取 style code。考虑到多个域,两个模块都有多个输出分支,每个分

支都为特定域提供风格代码。最后,利用这些 style code, 我们的生成器将学习如何成功地在多个领域合成不同的图像。

3.2 我们的创新

首先,我们利用课程所提供的的算力平台 Bitahub,对论文给出的代码进行了复现,并提取出训练的部分,增加了代码功能的专一性。

其次,为了实现可视化监测训练过程,我们在代码中加入了在 TensorBoard 画出 Loss 曲线的代码。

再次,对论文提供的 CelebAHQ 数据集进行了训练,利用训练保存的 checkpoint 进行测试,直观的观察训练效果的变化。

接下来,我们利用预训练模型,选择了一些有特色的图片,比如不同肤色、不同发型、 不同人脸朝向,对训练效果进行评估。

最后,我们利用预训练模型复现了 CelebAHQ 数据集的评估,指标是 FID 和 LPIPS。

4 文章细节

4.1 框架

4.1.1 Generator

我们的 Generator G 将输入图像 \mathbf{x} 转换为一个输出图像 $G(\mathbf{x},\mathbf{s})$ 并且将其会反映出域内的 style codes 反映出域内年代风格的代码,这将会由 mapping network F 或 style encode E 提供。我们将利用自适应实例正常化方法 (AdaIN) 把 \mathbf{s} 融入到 G。我们观察到 \mathbf{s} 的目的是代表一个特定的域 (如 \mathbf{y}) 的风格,可见没有必要向 G 提供 \mathbf{y} 和允许 G 去综合所有域的图片。以下为 Generator 对 AFHQ 数据集的结构,4 个下采样块,4 个中间块以及4 个上采样块。对 CelebA HQ 数据集,下采样以及上采样块数加 1。

4.1.2 Mapping network

给定一个 latent code **z** 和一个域 y,我们的 Mapping network F 会生成一个 style code $\mathbf{s} = F_y(\mathbf{z})$,这里 $F_y(\cdot)$ 表示 F 对应于域 y 的输出。F 由一个 MLP 组成,它有多个输出分支,为所有可行的域提供 style code。F 可以通过对 latent 向量 $\in \mathcal{Z}$ 和域 $y \in \mathcal{Y}$ 随机抽样 从而产生多样的 style code。我们的多任务架构将允许 F 高效地学习所有域的 style 表示。以下为 Mapping network 的结构。

LAYER	RESAMPLE	Norm	OUTPUT SHAPE	
Image x	-	-	$256 \times 256 \times 3$	
Conv1×1	-	-	256 × 256 × 64	
ResBlk	AvgPool	IN	$128 \times 128 \times 128$	
ResBlk	AvgPool	IN	$64 \times 64 \times 256$	
ResBlk	AvgPool	IN	$32 \times 32 \times 512$	
ResBlk	AvgPool	IN	$16 \times 16 \times 512$	
ResBlk	-	IN	16 × 16 × 512	
ResBlk	-	IN	$16 \times 16 \times 512$	
ResBlk	-	AdaIN	$16 \times 16 \times 512$	
ResBlk	-	AdaIN	$16 \times 16 \times 512$	
ResBlk	Upsample	AdaIN	32 × 32 × 512	
ResBlk	Upsample	AdaIN	$64 \times 64 \times 256$	
ResBlk	Upsample	AdaIN	$128\times128\times128$	
ResBlk	Upsample	AdaIN	$256 \times 256 \times 64$	
$Conv1 \times 1$	-	-	$256 \times 256 \times 3$	

Түре	Layer	ACTVATION	OUTPUT SHAPE
Shared	Latent z	-	16
Shared	Linear	ReLU	512
Shared	Linear	ReLU	512
Shared	Linear	ReLU	512
Shared	Linear	ReLU	512
Unshared	Linear	ReLU	512
Unshared	Linear	ReLU	512
Unshared	Linear	ReLU	512
Unshared	Linear	-	64

4.1.3 Style encoder

给定图像 \mathbf{x} 及其对应的域 y,我们的 Style encoder E 提取 \mathbf{x} 的风格代码 $\mathbf{s} = E_y(\mathbf{x})$,这里 $E_y(\cdot)$ 表示 E 对应于域 y 的输出。与 F 类似,我们的 Style encoder E 受益于多任务学习的设置。E 可以使用不同的参考图像产生不同的 style code。这允许了 G 合成一个反映出参考图像 \mathbf{x} 的风格的输出图像。以下为 Style encoder 的结构,其中 D 和 K 分别代表输出维数和域的总数。

LAYER	RESAMPLE	Norm	OUTPUT SHAPE		
Image x	-	-	$256 \times 256 \times 3$		
Conv1×1	-	-	$256 \times 256 \times 64$		
ResBlk	AvgPool	-	$128\times128\times\ 128$		
ResBlk	AvgPool	-	$64 \times 64 \times 256$		
ResBlk	AvgPool	-	$32 \times 32 \times 512$		
ResBlk	AvgPool	-	$16 \times 16 \times 512$		
ResBlk	AvgPool	-	$8 \times 8 \times 512$		
ResBlk	AvgPool	-	$4 \times 4 \times 512$		
LReLU	-	-	4 × 4 × 512		
$Conv4 \times 4$	-	-	$1 \times 1 \times 512$		
LReLU	-	-	$1 \times 1 \times 512$		
Reshape	-	-	512		
Linear * K	-	-	D * K		

4.1.4 Discriminator

我们的鉴别器 D 是一个多任务鉴别器, 它由多个输出分支组成。它的每个分支 D_y 会学习一个二分类来鉴别一个图片 \mathbf{x} 是其域 y 的 real 图片还是由 G 生成的 fake 图片 $G(\mathbf{x},\mathbf{s})$ 。Discriminator 的结构与上面的 Style encoder 相同。

4.2 训练目标函数

文章引入了几个 Loss:

1.Adversarial Loss

$$\mathcal{L}_{adv} = \mathbb{E}_{\mathbf{x},y}[\log D_y(\mathbf{x})] + \mathbb{E}_{\mathbf{x},\tilde{y},\mathbf{z}}[\log (1 - D_{\tilde{y}}(G(e\mathbf{x}, \tilde{\mathbf{s}})))]$$

这是 GAN 的一般损失。

2.style reconstruction loss

$$\mathcal{L}_{adv} = \mathbb{E}_{\mathbf{x}, \tilde{\mathbf{y}}, \mathbf{z}}[\|\widetilde{\mathbf{s}} - E_{\tilde{\mathbf{y}}}(G(\mathbf{x}, \widetilde{\mathbf{s}}))\|_{1}]$$

style reconstruction loss 要求转换后的图片也能编码出一致的 style code,也就是强制要求 Generator G 去使用我们生成的 style code。

3. diversity sensitive loss

$$\mathcal{L}_{ds} = \mathbb{E}_{\mathbf{x}, \widetilde{\mathbf{y}}, \mathbf{z}_1, \mathbf{z}_2} [\|G(\mathbf{x}, \widetilde{\mathbf{s}_1}) - G(\mathbf{x}, \widetilde{\mathbf{s}_2})\|_1]$$

diversity sensitive loss 要求尽可能使合成图像多样性高,也就是我们要求 Generator G 去 生成更多样化的图片。

4.cycle consistency loss

$$\mathcal{L}_{cyc} = \mathbb{E}_{\mathbf{x},y,\tilde{y},\mathbf{z}}[\|\mathbf{x} - G(G(\mathbf{x}, \widetilde{\mathbf{s}}), \hat{\mathbf{s}})\|_1]$$

cycle consistency loss 保证两次转换后,图像能复原;这也是为了保证生成的图片能够正确地保持原域不变的特征。

我们最终的总损失函数为:

$$\min_{G,F,E} \max_{D} \mathcal{L}_{adv} + \lambda_{sty} \mathcal{L}_{sty} - \lambda_{ds} \mathcal{L}_{ds} + \lambda_{cyc} \mathcal{L}_{cyc}$$

4.3 训练过程

这里用图大概展示一下训练的流程。其中 G,M,S,D 分别代表 Generator、Mapping network、Style encoder、Discriminator。

4.3.1 训练 Discriminator

计算各个 loss 后, 更新 D 的参数。

4.3.2 训练 Generator

计算各个 loss 后, 更新 $E \times M \times G$ 的参数。

x_real: 源domain (y_org) 的真实图像

x_ref: 目标domain (y_trg) 的参考图像,用于生成目标domain的style code (s_trg) z_trg: 随机噪声,用于生成目标domain的style code (s_trg)

x_real: 源domain (y_org) 的真实图像

x_ref: 目标domain (y_trg) 的参考图像,用于生成目标domain的style code (s_trg)

z_trg: 随机噪声,用于生成目标domain的style code (s_trg)

5 代码结构描述

我们将官方代码改成得更加精简,只留下了训练数据集的部分,也就是去掉了 sample mode 和 eval mode。我们在算力平台 Bitahub 上执行的就是我们如此更改后的版本。下面我们描述一下各.py 文件的代码结构,以及一些代码细节。

5.1 main.py

def main(args)

函数输入的参数 args 为 python 标准库推荐的"命令行解析模块" command-line parsing module,它可以指定程序运行不同的设置。

cudnn.benchmark = True

这句代码对模型结构以及输入大小固定的算法有加速作用,其原理大概可以这样描述: 当该标识位设置为 True 时,cudnn 库会根据不同的模型设置与输入大小找出最优的卷积算 法,但如果模型是变化的,则每次都要重新优化找到最佳算法(候选算法包括有 GEMM, FFT 等),反复寻找反而会浪费时间;当该标识位设置为 False 时,cudnn 库会启发式地选 择卷积算法,执行速度不一定最快。

loaders = Munch(...)

Munch 类能实现属性风格的访问,类似于 Javascript,同时属于 Dictionary 的子类,有字典的所有特性。这里定义的 Munch 对象的 loaders 中包含了 src、ref 以及 val 的 dataloader,便于之后的训练过程调用。

5.2 model.py

class Discriminator(nn.Module)

鉴别器 Discriminator 有多个输出分支,每个分支对应一个 domain,每个分支输出一个值,即属于该 domain 的概率,最终 D 的输出为 x 是否属于 domain y 的概率。

class StyleEncoder(nn.Module)

其结构与鉴别器相同,区别在于结构图中最后一个 Linear 层,鉴别器是用一个 Conv1x1 实现, Style Encoder 则是用多个 nn.Linear() 代替。

class MappingNetwork(nn.Module)

Mapping network 有 8 层 MLP, 其输入为随机噪声 z 以及目标 domain y, 输出为对应的风格编码 s 。

5.3 solver.py

```
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
```

用于表示 torch.Tensor 在或者将会被分配到哪个设备上。

```
\label{lem:compute_moving_average} \# \ compute \ moving_average (nets.generator, nets_ema.generator, beta=0.999) \\ moving_average (nets.mapping_network, nets_ema.mapping_network, beta=0.999) \\ moving_average (nets.style_encoder, nets_ema.style_encoder, beta=0.999) \\
```

这个函数输入 model,是真正在训练的模型(参数一直更新); model_test (XXX_ema) 为滑动平均值,torch.lerp() 计算结果为 beta * (model_test- model)+ model。

```
self.nets, self.nets_ema = build_model(args)
```

在这个函数中定义了所有网络,包括 Generator, MappingNetwork, StyleEncoder, Discriminator。这里的 copy.deepcopy() 为深拷贝,对模型 generator 创建一个独立的复制 generator_ema。该复制用于之后训练时对模型参数做滑动平均,但是可惜的是,这里文章没有解释原因。

这句代码出现在初始化 solver 的时候。其中其实还定义了一个预训练好的人脸关键点模型 FAN(ICCV2019 AdaptiveWingLoss),其作用为产生关键部位的 mask,使得原图像 mask 区域在转换后仍能得以保留。

```
setattr(self, name, module)
```

这个 setattr 用于设置属性的值。self.nets 为字典对象, 里面包含了各个模型网络, 我们需要直接使各个模型为 Solver 类的属性, 以使得后续可使用 self.to(device) 将模型参数

分配到 GPU 上。经过测试,不加 setattr 确实对分配到 GPU 有影响。原因在于 self.to() 只能将 float 型参数移动到 GPU,无法移动字典类型。另外,nn.Module 的.to() 是 inplace 操作,而 Tensor 的.to() 是在拷贝上操作。

nn.Module

nn.Module 类中.named_children() 返回子模块名及子模块本身; .apply(fn) 将 fn 迭代地应用到该模块及其子模块,最典型的用法就是用于模型初始化。

def compute_d_loss()

用于训练鉴别器,分为两部分。以 latent code 为输入以及以 referrence 为输入。

其中的.requires_grad_() 表示让 autograd 开始记录该 Tensor 上的 operation。对 x_real 进行该操作是为了后续计算 r1_reg 需要求 out 对 x_real 的导数。

其中的 with torch.no_grad()下的内容不计算梯度,这样做是因为当前只训练鉴别器,除鉴别器外的其他模型无需产生梯度用于反向传播,故可以减少计算以显存占用。

def compute_g_loss()

这个函数类似上面的函数,用于训练生成器。同样分两部分,以 latent code 和 reference 为输入。值得注意的是,在以 latent_code 为输入时,优化了 generator、mapping_network 以及 style_encoder; 但在以 reference img 为输入时,只优化了 generator,为什么不优化 style_encoder? 文章同样没有解释。

def r1_reg()

这个函数源自 zero-centered gradient penalty [2], 其公式如下, 即鉴别器输出对真实 图像的导数的模的平方:

$$R_1(\psi) = \frac{\gamma}{2} E_{p\mathcal{D}(x)} \left[\|\nabla D_{\psi}(x)\|^2 \right]$$

5.4 checkpoint.py

其中定义的 CheckpointIO 类用于保存、加载模型。其中初始化参数 **kwargs 表示输入为多个关键词的参数(可以理解成字典),CheckpointIO 中对应输入为 Munch 类(属于字典类)的 self.nets 以及 self.optims。这个用法可增加代码灵活性。

5.5 data_loader.py

class InputFetcher

try 部分用于不断从 loader 中取出数据。第一次进入 try, 因为还没定义迭代器, 所以会产生 AttributeError, 进入 except 部分定义 self.iter; 当取完迭代器中所有数据后, 再次进入 try 取数据, 会产生 StopIteration 而进入 except 重新加载 loader 迭代器。含有next ()函数的对象都可以看成一个迭代器。可以使用 next()依次访问其中的内容。

def get_train_loader()

训练数据的预处理包括:

- 1. 随机裁剪后缩放到 256 固定大小;
- 2. 随机水平翻转;
- 3. 像素归一化(均值方差为 0.5)

所以在这个函数里,对应 source 的 dataset 函数使用 torchvision.datasets.ImageFolder 产生。数据集 CelebA HQ 的文件夹包括 female 和 male 两个文件夹,在文件夹下为对应的文件,因而该 dataset 函数返回为 (x,y) 对应取出来的图像以及其对应的 domain 标签。2、对应 source 的 dataset 函数使用 class ReferenceDataset 产生,它将返回两张参考图像 (ref) 以及其对应的 label,这是为了后续训练生成器时,计算 diversity sensitive loss。

6 对官方代码的修改

6.1 TensorBoard 部分

为了实现可视化检测,我们在函数 train() 中加入了用 TensorBoard 记录 Loss 的代码:

from torch.utils.tensorboard import SummaryWriter writer = SummaryWriter(log_dir="/data/JONATHONCHOW/celeba_hq/runs/result", flush secs=120)

write all the Loss values into tensorboard for key, value in all_losses.items(): writer.add_scalar('%s' % key, value, i)

6.2 删减部分

我们将所有与 mode sample 和 mode eval 的函数与参数都删减掉了,从而训练部分的代码结构更加清晰。

6.3 参数修改部分

我们修改了原代码中的以下参数: 1. 各种文件的读取和保存的地址:

```
# directory for training
parser.add_argument('-train_img_dir', type=str,
default='/data/JONATHONCHOW/celeba_hq/train',
help='Directory containing training images')
parser.add_argument('-val_img_dir', type=str,
default='/data/JONATHONCHOW/celeba_hq/val',
help='Directory containing validation images')
parser.add_argument('-sample_dir', type=str,
default='/data/JONATHONCHOW/celeba hg/expr/samples',
help='Directory for saving generated images')
parser.add_argument('-checkpoint_dir', type=str,
default='/data/JONATHONCHOW/celeba_hq/expr/checkpoints',
help='Directory for saving network checkpoints')
# face alignment
parser.add argument('-wing path', type=str,
default='/data/JONATHONCHOW/celeba_hq/expr/checkpoints/wing.ckpt')
parser.add_argument('-lm_path', type=str,
default='/data/JONATHONCHOW/celeba_hq/expr/checkpoints/celeba_lm_mea\psi.npz')
```

2. 将 ds_iter 从 100000 改为 500000, 将 total_iters 从 100000 改为 500000, 这是训练的迭代次数:

```
parser.add_argument('-ds_iter', type=int, default=500000, help='Number of iterations to optimize diversity sensitive loss') parser.add_argument('-total_iters', type=int, default=500000, help='Number of total iterations')
```

3. 将 batch size 从 8 改为 4,不然平台会显示"CUDA OUT OF MEMORY":

```
parser.add_argument('-batch_size', type=int, default=4, help='Batch size for training')
```

4. 将 save_every 从 10000 改为 5000, 这是相邻两次保存 Checkpoint 的迭代次数间隔:

```
parser.add_argument('-save_every', type=int, default=5000)
```

5. 将保存 Checkpoint 的文件名格式从 {:6d} 改为 {}(我们发现在 Windows 系统上跑 代码时会将冒号":"识别为路径从而因找不到路径而报错):

```
CheckpointIO(ospj(args.checkpoint_dir, '{}_nets.ckpt'),
data_parallel=True, **self.nets),
CheckpointIO(ospj(args.checkpoint_dir, '{}_nets_ema.ckpt'),
data_parallel=True, **self.nets_ema),
CheckpointIO(ospj(args.checkpoint_dir, '{}_optims.ckpt'),
**self.optims)]
```

6. 在以下代码中加了一个"False":

```
module.module.load_state_dict(module_dict[name], False)
```

7 训练过程描述

配置虚拟环境

```
conda create -n stargan-v2 python=3.6.7
conda activate stargan-v2
conda install pytorch==1.5.0 torchvision==0.6.0 cudatoolkit=10.1 -c pytorch
conda install -c conda-forge x264
conda install -c conda-forge ffmpeg=4.0.2
pip install opency-python==4.1.2.30 ffmpeg-python==0.2.0 scikit-image==0.16.2
pip install pillow==7.0.0 scipy==1.2.1 tqdm==4.43.0 munch==2.5.0
```

启动代码

```
python main.py -mode train -num_domains 2 -w_hpf 1
-lambda_reg 1 -lambda_sty 1 -lambda_ds 1 -lambda_cyc 1
-train_img_dir data/celeba_hq/train
-val_img_dir data/celeba_hq/val
```

7.1 BitaHub 训练

建立项目 StarGAN_v2: Python 3.6, PyTorch 1.4, celeba_hq。 创建数据集 celeba_hq: 分批手动传输数据集压缩包,并解压缩文件,然后移动文件 位置,重构数据集。

远程调试

```
ssh -i application_1657005726244_2313.txt -p 10001 root@10.11.0.11
```

启动代码

```
pip install pillow==7.0.0 scipy==1.2.1 tqdm==4.43.0 munch==2.5.0 python main.py -mode train -num_domains 2 -w_hpf 1
-lambda_reg 1 -lambda_sty 1 -lambda_ds 1 -lambda_cyc 1
-train_img_dir ../data/JONATHONCHOW/celeba_hq/train
-val_img_dir ../data/JONATHONCHOW/celeba_hq/val
```

7.2 测试

剪裁代码

```
python main.py -mode align
-inp_dir assets/representative/custom/female
-out_dir assets/representative/celeba_hq/src/female
```

人物启动代码

```
python main.py -mode sample -num_domains 2 -resume_iter 100000 -w_hpf 1 -checkpoint_dir expr/checkpoints/celeba_hq -result_dir expr/results/celeba_hq -src_dir assets/representative/celeba_hq/src -ref_dir assets/representative/celeba_hq/ref
```

动物启动代码

```
python main.py –mode sample –num_domains 3 –resume_iter 100000 –w_hpf 0 –checkpoint_dir expr/checkpoints/afhq –result_dir expr/results/afhq –src_dir assets/representative/afhq/src –ref_dir assets/representative/afhq/ref
```

7.3 评估

启动代码

```
python main.py -mode eval -num_domains 2 -w_hpf 1
-resume_iter 100000
-train_img_dir data/celeba_hq/train
-val_img_dir data/celeba_hq/val
-checkpoint_dir expr/checkpoints/celeba_hq
-eval_dir expr/eval/celeba_hq
```

8 测试结果

以下我们展示我们在训练到不同迭代次数 iter 时保存的模型所生成的图像结果:

图 1: iter=1000

图 2: iter=5000

图 3: iter=10000

图 4: iter=20000

图 5: iter=40000

图 6: iter=80000

图 7: iter=100000

图 8: CelebA-HQ, iter=100000

图 9: AFHQ, iter=100000

以下为 TensorBoard 中各参数随迭代次数的走势(迭代次数为 95000)。

图 10: latent

图 11: ref

图 12: 各 loss

图 13: 各 loss

图 14: 各 loss

从上面的图线可以看出,latent 和 ref 中 fake 和 real 图片属于其对应 domain 的概率 近乎为白噪声,这一点我们似乎没办法解释。但是后面的各种文章中定义的 loss 都明显呈 现下降趋势,但是大范围内起伏和波动有点大。

8.1 FID 和 LPIPS

文章中提到了 2 个评估指标:

1. Frechet inception distance (FID)

FID 用于衡量真实图像分布与合成图像分布之间的差异,具体是指不同图像在InceptionV3 分类器的高维特征空间中分布密度的差异,该差异用 Frechet Distance 进行计算,FID 值越小越好。Fréchet Distance 计算公式如下:

$$d^{2}((m, C), (m_{\omega}, C_{\omega})) = \|m - m_{\omega}\|_{2}^{2} + Tr(C + C_{\omega} - 2(CC_{\omega})^{1/2})$$

2.Learned perceptual image patch similarity (LPIPS)

LPIPS 用于衡量影像的多样性,其值越大代表多样性越高。其具体计算方法为:

$$d(x, x_0) = \sum_{l} \frac{1}{H_l W_l} \sum_{h, w} \| w_l \odot (\hat{y}_{h, w}^l - \hat{y}_{0, h, w}^l) \|_2^2$$

我们通过命令行也计算了我们的训练结果的这两个评估指标。

表 1: 评估指标 (celeba-hq)

	FID (latent)	LPIPS (latent)	FID (reference)	LPIPS (reference)	Elapsed time
Official	13.73 ± 0.06	0.4515 ± 0.0006	23.84 ± 0.03	0.3880 ± 0.0001	$49 \min 51s$
us	13.1756	0.452713	23.7035	0.389031	$152 \mathrm{min}~8 \mathrm{s}$

从上面的对比我们可以看到个指标我们的训练在前 2 为有效小数上都一样。遗憾的是 我们评估的耗时非常长。

9 本工作的分工

本次任务由 Jonathon Chow 和 Ke Chern 共同完成。

10 代码库链接

https://github.com/JONATHONCHOW/stargan-v2_train (其中我们也生成了改动报告)

参考文献

- [1] Y. Choi, Y. Uh, J. Yoo, and J.-W. Ha, "StarGAN v2: Diverse Image Synthesis for Multiple Domains," arXiv e-prints, p. arXiv:1912.01865, Dec. 2019.
- [2] L. Mescheder, A. Geiger, and S. Nowozin, "Which Training Methods for GANs do actually Converge?" arXiv e-prints, p. arXiv:1801.04406, Jan. 2018.