# **Cantris**

## **Search Strategy: MCTS(Monte Carlo tree search)**

Node



。 state: 紀錄board的狀態

∘ next\_to\_move: 紀錄下一步換player1 or player2

。 score: 紀錄player1贏player2多少分(負代表輸多少分)

。 n: 在Backpropagation中,通過該node幾次

。 win: 勝利的次數

。 lose: 失敗的次數

• MCTS Step1: Selection



### Parent node用以下公式選擇children node

$$\frac{q}{n} + c_{param} * \sqrt{\frac{2 * logN}{n}}$$

n為children node的n; N為 parent node的n q有兩種算法(根據children node)

- $\circ$  q = win
- o q = win lose

c param為hyperparamter,之後實驗中,會測試1.0及1.4

MCTS Step2: Expansion



從state1進行expansion到state2時,會進行game simulation,並求得從state1到state2的得分為x分,

若parent node的next\_to\_move為1,則child node的score = parent node的score + x 若parent node的next\_to\_move為2,則child node的score = parent node的score - x

MCTS Step3: Rollout

### 採用隨機策略進行遊戲

- MCTS Step4: Backpropagation
  - 1. 判斷勝負: 以leafnode的score進行判斷
    - a. score > 0: player1 win
    - b. score = 0: tie
    - c. score < 0: player2 win
  - 2. 若parent node的next\_to\_move與勝方相同,則win+1,若與勝方相反,則llose+1
  - 3. n+1
- 8x4(6x3)與10x5的區別

player1 player1 player1 player2 player2

## **Experiments**

- 接下來的實驗中,都會使用到以下的基礎設定
  - 。 模擬10000場對決
  - 。 兩個玩家: al(implemented by myself) and oponent
  - 。 oponent一律採取random moves
  - 。 6x3跟8x4相似,所以只會針對8x4及10x5進行實驗
  - 。 先後手隨機決定(因為先後手會影響勝率,先手勝率如下表所示)
    - 8x4

| win    | tie    | lose   |
|--------|--------|--------|
| 0.5453 | 0.0287 | 0.4260 |

■ 10x5

| win    | tie    | lose   |
|--------|--------|--------|
| 0.5929 | 0.0187 | 0.3884 |

。 每次模擬都是隨機產生一個合法的盤面(使用助教提供的程式碼)

```
#make board

tmp = (np.arange(row)/2)+1
while(1):
    for i in range(col):
        np.random.shuffle(tmp)
        self.board[:,i] = tmp
    if self.checkstable() == True:
        break
```

- exp 0:
  - setting:
    - al採取random moves

### result:

### ■ 8x4

| win    | tie    | lose   |
|--------|--------|--------|
| 0.4881 | 0.0281 | 0.4838 |

### ■ 10x5

| win    | tie    | lose   |
|--------|--------|--------|
| 0.4940 | 0.0175 | 0.4885 |

### • exp 1:

- setting:
  - al採取MCTS
  - 每步進行的MCTS模擬次數 = 500 for 8x4 and 250 for 10x5
  - c\_param=1.0(when doing MCTS); c\_param=1.0(when selecting best move after MCTS)

### 。 變因:

- 1. q = win count
- 2. q = win count lose count
- result:
  - 8x4

|   | win    | tie    | lose   |
|---|--------|--------|--------|
| 1 | 0.8790 | 0.0048 | 0.1162 |
| 2 | 0.9486 | 0.0046 | 0.0468 |

### ■ 10x5

|   | win    | tie    | lose   |
|---|--------|--------|--------|
| 1 | 0.7865 | 0.0062 | 0.2073 |
| 2 | 0.9043 | 0.0041 | 0.0916 |

。 conclusion: q=win-lose結果較好。傳統的MCTS只會計算win count,但我認為lose count也一樣重要,而結果也確實如此。

### exp 2:

- setting:
  - al採取MCTS
  - 每步進行的MCTS模擬次數 = **500** for 8x4 and **250** for 10x5
  - q=win-lose

### 。 變因:

- c\_param=1.0(when doing MCTS); c\_param=1.0(when selecting best move after MCTS)
- 2. c\_param=**1.0**(when doing MCTS); c\_param=**0.0**(when selecting best move after MCTS)

#### result:

#### ■ 8x4

|   | win    | tie    | lose   |
|---|--------|--------|--------|
| 1 | 0.9486 | 0.0046 | 0.0468 |
| 2 | 0.9884 | 0.0014 | 0.0102 |

### ■ 10x5

|   | win    | tie    | lose   |
|---|--------|--------|--------|
| 1 | 0.9043 | 0.0041 | 0.0916 |
| 2 | 0.9856 | 0.0014 | 0.0130 |

。 conclusion: c\_param=**1.0**(when doing MCTS); c\_param=**0.0**(when selecting best move after MCTS)結果較好。在下方式子中,右項是為了確保在進行 Selection時,能選擇較少被visit的node,所以c\_param設為1。但在MCTS結束並要 選擇最好的node(move)時,右項就不需要被考慮,所以c\_param設為0。

$$\frac{q}{n} + c_{param} * \sqrt{\frac{2 * logN}{n}}$$

# **Final Settings**

- maximum search time = 25s
- c\_param=1.0(when doing MCTS); c\_param=0.0(when selecting best move after MCTS)
- q = win count lose count

## Reference

https://github.com/int8/monte-carlo-tree-search