Homework 1

Hsin-Wei, Chen Introduction to Analysis II

June 27, 2024

Problem 1.

- (a) Must a contraction on any metric space have a fixed point? Prove it or give a counterexample.
- (b) Let $f: X \to X$, where X is a complete metric space satisfies d(f(x), f(y)) < d(x, y) for all $x, y \in X$ such that $x \neq y$. Must f have a fixed point? Prove it or give a counterexample.
- (c) Let $f: X \to X$, where X is a complete compact metric space satisfies d(f(x), f(y)) < d(x, y) for all $x, y \in X$ such that $x \neq y$. Must f have a fixed point?

Proof.

- (a) No, the contraction map need not have a fix point. Let $X = \{x \in \mathbb{Q} \mid x > 0\}$, and define metric d(p,q) = |p-q|, where $p, q \in X$
 - 1. We first show that (X, d) is metric space. Given $p, q, r \in X$
 - (1) d(p,q) = |p-q|, d(p,p) = 0.
 - (2) d(p,q) = d(q,p) = |p-q|
 - (3) $d(p,r) \le d(p,q) + d(q,r)$
 - 2. Let $T(x) = x \frac{x^2 2}{x + 2} = \frac{2p + 2}{p + 2}$, Take $p, q \in X$
 - (1) $T(p) = \frac{2p+2}{p+2} \in X$
 - (2)

$$T(p) - T(q) = 2\left(\frac{p+1}{p+2} - \frac{q+1}{q+2}\right) = \frac{2(p-q)}{(p+2)(q+2)} \le \frac{1}{2}(p-q)$$

Hence T is a contraction in X.

3. Pick an arbitrary $x_1 \in X$ and $x_{n+1} = T(x_n)$

$$|x_{n+1}^2 - 2| = 2 \left| \frac{x_n^2 - 2}{(x_n + 2)^2} \right| \le |x_n^2 - 2|$$

$$\Rightarrow |x_{n+1}^2-2| \leq (\frac{1}{2})^n|x_1^2-2| \Rightarrow \limsup_{n \to \infty} |x_n^2-2| = 0$$

Since $x_n > 0$ for all $n \in \mathbb{N}$,

$$\lim_{n \to \infty} x_n = \sqrt{2}$$

, but $\sqrt{2} \notin X$

(b) Consider $f(x) = x + e^{-x}$ and metric space $X = \mathbb{R}$ with regular metric d(x, y) = |x - y|By MVT,

$$\frac{|f(x) - f(y)|}{|x - y|} = 1 - e^{\xi} < 1 \Rightarrow |f(x) - f(y)| < |x - y|$$

, where $x < \xi < y$

But $f(x) > x, \forall x \in X$, hence f has no fix point in X

(c) Following from the hint, consider g(x) = d(x, f(x))Given $\epsilon > 0$, choose $\delta = \frac{\epsilon}{2}$, such that if $d(x, y) < \delta$,

$$|g(x) - g(y)| = |d(x, f(x) - d(y, f(y)))| \le d(x, y) + d(f(x), f(y)) < 2d(x, y) < \epsilon$$

Hence g(x) is uniformly continuous on X.

Since X is compact, by EVT, $\inf_{x \in X} g(x) = g(x_m)$, for some $x_m \in X$.

Suppose $g(x_m) > 0$, then $g(f(x_m)) < g(x_m) \rightarrow \leftarrow$

Therefore, $g(x_m) = 0 \Rightarrow x_m = f(x_m)$. Hence f(x) must have a fix point.

Problem 2. Consider the initial value problem,

$$\begin{cases} 5x'(t) = \sin(tx(t)) \\ x(0) = 0 \end{cases}$$

- (a) Use the Contraction Mapping Principle to solve the IVP in $X=C^1[0,\pi/2]$
- (b) Write out the first three terms of the Picard iteration scheme for x(t). And find the solution of the IVP.

Proof. (a) By FCT1, since x(t) is continuous.

$$x(t) = \frac{1}{5} \int_0^t \sin(ux(u)) \, du$$

Let $M = (C^1[0, \pi/2], ||.||_{\infty})$ and $\phi(x) = \frac{1}{5} \int_0^t \sin(ux(u)) du$.

- 1. If $x(t) \in C^1[0, \pi/2]$, then by FCT1 and continuity of sin(x) and $x \Rightarrow \phi(x) \in C^1[0, \pi/2]$. Then $\phi(x) : C^1[0, \pi/2] \to C^1[0, \pi/2]$.
- 2.

$$\begin{split} ||\phi(x) - \phi(y)|| &= \frac{1}{5} \sup_{t \in [0, \pi/2]} |\int_0^t \sin(ux(u)) - \sin(uy(y)) du| \\ &\leq \frac{1}{5} \int_0^{\pi/2} ||\sin(ux) - \sin(uy)|| du \leq \frac{1}{5} \int_0^{\pi/2} ||ux - uy|| du \leq \frac{1}{5} (\frac{\pi}{2})^2 ||x - y|| \end{split}$$

And since $\frac{\pi^2}{20} < 1$, then $\phi(x)$ is a contraction map.

By Banach Fixed point theorem, there is a unique solution.

(b) Let $x_0 = 0$, then

$$x_1 = \int_0^t \sin(x_0 t) dt = 0, \quad x_2 = \int_0^t \sin(x_1 t) dt = 0, \quad x_3 = \int_0^t \sin(x_2 t) dt = 0$$

Problem 3.

(a) (Weierstass Approximation theorem) If $f:[a,b]\to\mathbb{R}$ is a continuous function, then there exist a sequence of polynomials $p_n:[a,b]\to\mathbb{R}$ such that $p_n\rightrightarrows f(x)$ on [a,b]

(b) Let $f:[-1,1] \to \mathbb{R}$, be an even continuous function. Show that there exist a sequence of even polynomials $p_n:[-1,1] \to \mathbb{R}$ such that $p_n \rightrightarrows f(x)$ on [-1,1]

Proof. (a) Without loss of generality, Suppose $f:[0,1]\to\mathbb{R}$, we can do this by defining a function g(x)=f(a+(b-a)), which is a continuous function on [0, 1], outside of this interval g(x)=0.

Define kernel function $k_n(x) = c_n(1-x^2)^n$, where $c_n \int_{-1}^1 (1-x^2)^n dx = 1$, when $x \in [-1,1]$ and outside of this interval $k_n(x) = 0$.

1.
$$\int_{-1}^{1} (1-x^2)dx = 2 \int_{0}^{1} (1-x^2)^n dx \ge 2 \int_{0}^{1} (1-x)^n dx = \frac{2}{n+1} \Rightarrow c_n \le \frac{n+1}{2}$$

2.

$$\int_{1>|x|>\delta} c_n (1-x^2)^n dx = 2 \int_{\delta}^1 c_n (1-x^2)^n dx \le \int_{\delta}^1 c_n (1-\delta^2)^n dx \le (n+1)(1-\delta^2)^n (1-\delta)$$

$$\Rightarrow \lim_{n \to \infty} \int_{1 > |x| > \delta} c_n (1 - x^2)^n dx = 0$$

3. $(f * k_n)(x) = \int_{-1}^1 f(x+t)k_n(t)dt = \int_0^1 f(t)k_n(x-t)dt = \int_0^1 f(t)[c_n(1-(x-t)^2)^n]dt$, which is a polynomial of at most 2n degree.

Let $\sup_{x \in [0,1]} |f(x)| = M$.

Given $\epsilon > 0$ there exist $\delta > 0$ and $N \in \mathbb{N}$ such that :

- (1) $|f(x)-f(y)| < \epsilon$, if $|x-t| < \delta$
- (2) $\int_{1\geq |x|\geq \delta} c_n (1-x^2)^n dx < \frac{\epsilon}{2M}$, if $n\geq N$

Then

$$\left| (f * k_n)(x) - f(x) \right| = \left| \int_{-1}^{1} [f(x+t) - f(x)] k_n(t) dt \right|$$

$$\leq \int_{1>|x|>\delta} |f(x+t) - f(t)|k_n(t)dt + \int_{-\delta}^{\delta} |f(x+t) - f(x)|k_n(t)dt \leq 2M \int_{1<|x|<\delta} k_n(t) + \epsilon \leq 2\epsilon$$

It follows that $(f * k_n)(x) \rightrightarrows f(x)$ on [0, 1], letting $p_n(x) = (f * k_n)(x)$, we are done.

(b) Method 1: Do expansion on $(f * k_n)(x)$ we get:

$$(f * k_n)(x) = \int_{-1}^{1} f(t)[1 - (x - t)^2]^n dt = \int_{-1}^{1} \sum_{k=0}^{n} \binom{n}{k} f(t)(-1)^k (t - x)^2 k dt$$

$$= \sum_{k=0}^{n} {n \choose k} (-1)^k \sum_{m=0}^{2k} {2k \choose m} (-x)^{2k-m} \int_{-1}^{1} f(t) t^m dt$$

If m is odd, then since f(t) is even, $\int_{-1}^{1} f(t)t^{m}dt = 0$. Hence $p_{n}(x)$ is the sum of even polynomials, therefore p_{n} is even.

Method 2: By Weierstass approximation theorem, $\exists p_n$ is a sequence of polynomial s.t. $p_n(x) \Rightarrow f(x)$ as $n \to \infty$, put $q_n(x) = 1/2(p_n(x) + p_n(-x))$, then $q_n(x) \Rightarrow 1/2(f(x) + f(-x)) = f(x)$ as $n \to \infty$. Since q_n is even functions, we are done.

Problem 4. Consider the initial value problem,

(E)
$$\begin{cases} x'(t) = x^2(t) + t^2 \\ x(0) = 0 \end{cases}$$

On the region $R = \{(x,t) : |x| \le 1, |t| \le 1\}$. Note that $M = \max_{R} \{x^2 + t^2\} = 2$ and $\alpha = \frac{1}{2}$

- (a) Construct the ϵ approximate solution $\phi(t)$ of (E) on $|t| \leq \alpha$ such that $\phi(0) = 0$ for $\epsilon = 1$.
- (b) Does the ϵ approximate solution $\phi(t)$ of (E) unique? Explain your answer.

Proof. (a) Let $P = \{x_0 = -\alpha < x_1 < ... < x_n = \alpha\}$ be a partition on $[-\alpha, \alpha]$, such that mesh(P) < 1/8. By Euler's method of broken line, define $\phi(t)$ be a continuous function on $[-\alpha, \alpha]$ such that : (1) $x_n(0) = 0$ (2) $x'_n(t) = x_n^2(t_i) + t_i^2$ ($t_i < t < t_{i+1}$)

Given $\epsilon=1$, Since R is compact, then $f(x,t)=x^2+t^2$ is uniformly continuous, hence $|f(x,t)-f(y,s)|=|x^2-y^2+s^2-t^2|\leq |x^2-y^2|+|t^2-s^2|\leq 2|x-y|+2|t-s|<1$, if $|x-y|,|t-s|<\frac{1}{4}$.

Since $\phi'(t) = \phi^2(t_i) + t_i^2 \le 2$ $(t_i \le t < t_{i+1})$, then $|\phi(t) - \phi(s)| \le 2|t - s|$, where $t, s \in [-\alpha, \alpha]$

And since $|t_i - t_{i+1}| < 1/8 < 1/4$, $|\phi(t_i) - \phi(t)| < 1/4$, then

$$|\phi'(t) - f(\phi(t), t)| = |f(\phi(t_i), t_i) - f(\phi(t), t))| < 1$$

, when $t \in [t_i, t_{i+1}],$.

(b) No. Consider refinement P' of the partition P, then the ϵ approximate solution is distinct from the ϵ approximate solution constructed above.