CLAIMS

2

1	1.	A method of determining a route for transmitting a signal through a network, the method
2	compr	ising:
3		obtaining network data, including link type data, spare capacity data, vendor data, and
4	comm	on mileage data;
5		obtaining demand data, including origination node data, termination node data, and
6	divers	ity requirement data;
] [7		storing the network data and the demand data;
		processing the demand data using a shortest path routing method to obtain an initial
9	route;	
10		updating the network data by decreasing the spare capacity data in accordance with the
<u>1</u> 1	initial route;	
11 12 13		computing an initial cost based on the initial route;
- -13		updating the network data by increasing the spare capacity data in accordance with
14	deletii	ng the initial route;
15		re-processing the demand data using a constrained diverse shortest path routing method
16	until a	a stop criterion is satisfied and obtaining a final route;
17		computing a final cost based on the final route; and
18		outputting the final route and the final cost.
1	2 Th	e method of claim 1 wherein the constrained diverse shortest path routing method

minimizes use of optical transponders in obtaining the final route.

- 1 3. The method of claim 2, wherein the constrained diverse shortest path routing method
- 2 minimizes use of optical transponders according to

$$\sum_{k \in K} \frac{n_k}{\max_k} \le 1$$

- where n_k denotes a cumulative total count of optical transponders along a path $k \in K$, K denotes
- a set of possible vendor/release combinations and max k is a predetermined parameter specified
- for each $k \in K$.

- 4. The method of claim 1, wherein the initial cost and the total cost are based on one or more of a diversity cost, a capacity overload cost and a routing cost.
- 5. The method of claim 4, wherein the initial cost and the final cost are computed as *Total Cost(R)* as follows:

$$Total \ Cost(R) = Div \ Cost(R) + Overload \ Cost(R) + Routing \ Cost(R)$$
.

- 6. The method of claim 5, where $Div_Cost(R)$ is as follows:
- $2 Div_Cost(R) = \alpha_{div_count} \times Div_Count(R) + \alpha_{div_miles} \times Div_Mileage(R),$
- 3 where Div_Count(R) represents a total number of diversity violations, Div_Mileage(R)
- 4 represents a total violation mileage, and α_{div_count} and α_{div_miles} are predetermined parameters that
- 5 weigh Div_Count(R) and Div_Mileage(R) respectively.

- 7. The method of claim 6, wherein Div_Count(R) and Div_Mileage(R) are as follows:
- $2 Div_Count(R) = \frac{1}{2} \sum_{T_i \in T} \sum_{T_i \in D_i} 1_{\{Common_miles(R_i, R_j) > \max_allowed\}} \text{ and }$
- 3 Div_Mileage(R) = $\frac{1}{2} \sum_{T_i \in T} \sum_{T_i \in D_i} Common_miles(R_i, R_j)$,
- where $Common_miles(R_i, R_j)$ measures common fiber span mileage of routes R_i and R_j and
- 5 max_allowed is a predetermined parameter that allows flexibility to ignore short fiber span
 - 8. The method of claim 5, wherein Overload_Cost is as follows:

$$Overload _Cost(R) = \alpha_{overload} \times \sum_{e \in E} \sum_{p \in P} \beta_e \max\{0, load(e, p) - cap(e, p)\},\$$

wherein

diversity violations.

 $\alpha_{overload}$ is a predetermined parameter denoting relative importance of capacity violation,

- β_e is a predetermined parameter denoting relative importance of a link $e \in E$,
- load(e, p) denotes a total load on the link e in a period $p \in P$, and
- cap(e, p) denotes a total spare capacity of the link e in the period p.
- 9. The method of claim 5, wherein *Routing_Cost* is as follows:

2 Routing
$$Cost(R) = \alpha_{route} \times \sum_{R_i \in R} \sum_{e \in R_i} Link Cost(e)$$

- 3 where α_{route} is a predetermined parameter denoting relative importance of Routing_Cost in
- 4 Total Cost and Link Cost is a constant plus link mileage.

1 10. The method of claim 9, wherein Link_Cost is as follows:

$$2 \quad Link_Cost(e) = \begin{cases} 1 + \alpha_{route_miles} \times Mileage(e) \\ : if \ e \ is \ a \ simple \ link \\ \alpha_{proj}(No_of_DWDMU_CrossSections + \alpha_{route_miles} \times Mileage(e)) \\ : if \ e \ is \ a \ composite \ link \end{cases}$$

- 3 where α_{route_miles} is a predetermined parameter denoting relative importance of mileage,
- 4 Mileage(e) is mileage of a link e, α_{proj} is a predetermined parameter denoting a discount value for
- using an existing project link and *No_of_DWDMU_CrossSections* is a number of dense wavelength division multiplexing unit cross sections.
 - 11. The method of claim 1 wherein the demand data includes project integrity data.
 - 12. A method of determining routes for transmitting signals through a network, the method comprising:
 - obtaining a plurality of demands T, each demand T_i having diversity requirements D_i ;
- T_i processing each demand T_i consecutively using a shortest path routing method to obtain a
- corresponding initial route R_i which satisfy the diversity requirements D_i if network parameters
- 6 permit;
- 7 updating the network parameters based upon the initial routes R;
- 8 computing an initial cost solution based on the initial routes R;
- $_{i}$ re-processing each demand T_{i} using a constrained diverse shortest path method to obtain
- 10 a corresponding final route R_i ' until a stop criterion is satisfied;
- computing a final cost solution based on the final routes R'; and

12	outputting the final routes R ' and the final cost solution.
	1. C. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1	13. The method of claim 12, wherein the constrained diverse shortest path method includes:
2	assigning a cost c_e to each of a plurality of links in the network;
3	determining a shortest route R_i ' from an origination node A_i to a termination node Z_i
4	based on link costs c_e ;
5	determining if route R_i ' satisfies an optical transponder constraint; and
[6	determining if route R_i ' satisfies the diversity requirements.
다 다 다 다 다 다 다 1 1 1 1 1 1 1 1 1 1 1 1 1	14. The method of claim 12, wherein the constrained diverse shortest path method includes:
∐ 2	creating an initial partial path pn having parameters node(pn), cost(pn), violation_set(pn)
≡ [≟≟3	and parent(pn) wherein
# 3 	$node(pn)$ is set equal to A_i ,
= 5	cost(pn) is set equal to zero,
6	violation_set(pn) is set equal to null, and
7	<pre>parent(pn) is set equal to null;</pre>
8	storing initial partial path pn in memory;
9	initializing a value $Heap$ that indicates whether there is an established pathway to Z_i ; and
10	determining whether the established pathway is compliant with an optical transponder
11	constraint, if <i>Heap</i> is equal to null.

15. The method of claim 12, wherein the constrained diverse shortest path method includes: 1 creating a partial path pn having parameters node(pn), cost(pn), $violation_set(pn)$ and 2 3 parent(pn) wherein node(pn) is set equal to a termination node of a previous partial path pre-pn, 4 cost(pn) is equal to a current total cost of the partial path pn, 5 violation_set(pn) is a collection of violated diversity requirements of the partial 6 path pn and 7 parent(pn) is the previous partial path pre-pn. 16. The method of claim 12, wherein the constrained diverse shortest path method includes: selecting a partial path pn_i , having parameters $node(pn_i)$, $cost(pn_i)$, $violation_set(pn_i)$ and $parent(pn_i)$ from one or more partial paths, where $cost(pn_i)$ is minimal in comparison to costs associated with other partial paths, when a Heap value is not equal to null; and equating partial path pn_i with a route A_i - Z_i if $node(pn_i)$ is equal to Z_i . 17. The method of claim 12, wherein the constrained diverse shortest path method includes: 1 selecting a partial path pn_i , having parameters $node(pn_i)$, $cost(pn_i)$, $violation_set(pn_i)$ and 2 $parent(pn_i)$ from one or more partial paths, where $cost(pn_i)$ is minimal in comparison to costs 3 associated with other partial paths, when a Heap value is not equal to null; 4 if $node(pn_i)$ is not equal to a termination node Z_i , identifying a link adjacent to $node(pn_i)$; 5 creating a new partial path pn_i ' from $node(pn_i)$ to the identified link; 6 determining if the new partial path pni' satisfies an optical transponder constraint; and 7

updating the *Heap* value with the new partial path pn_i if the new partial path pn_i does 8 satisfy the optical transponder constraint. 9 18. The method of claim 17 further comprising: 1 discarding the new partial path pn_i if the new partial path pn_i does not satisfy the optical 2 transponder constraint. 3 19. The method of claim 17, wherein the determining step includes determining whether the cumulative jitter noise along the new partial path pn_i from an origination node A_i to $node(pn_i)$ plus cumulative jitter noise from $node(pn_i)$ to the termination node Z_i is below a predetermined threshold. 20. A method of determining routes for transmitting signals through a network, the method -2 comprising: obtaining a plurality of demands T, each demand T_i having diversity requirements D_i ; 3 processing each demand T_i consecutively using a shortest path routing method to obtain a 4

corresponding initial route R_i considering the diversity requirements D_i ; and

corresponding final routes R' until a stop criterion is satisfied.

5

6

7

re-processing demands T using a constrained diverse shortest path method to obtain