Broad Trajectory Searches Using Monte Carlo Tree Search with the Inclusion of $\Delta VEGA$ Trajectories

Authors: Burton Yale*†
Rohan Patel*‡
Jehosafat Cabrera*§

Advisor: Navid Nakhjiri Ph.D* ¶

^{*} Aerospace Engineering, Cal Poly Pomona, 3801 W Temple Ave., Pomona, California, 91786, USA

[†] Undergraduate Student, E-mail: bayale@cpp.edu

[‡] Undergraduate Student, E-mail: rohanpatel@cpp.edu

[§] Undergraduate Student, E-mail: jehosafatc@cpp.edu

[¶] Assistant Professor, E-mail: nnakhjiri@cpp.edu

Introduction

- Solution Space Complexity
 - With each additional flyby, another dimension is added to the solution space
- Broad Search Role
 - Reduce solution space to only areas of interest
 - Solve for sequences with rough timings to be converged in later steps

Broad searches are one of the first steps in trajectory design, by creating regions of interest

Previous Broad Search Algorithms

- Evolutionary Algorithms
 - Improves ability to search after each generation
 - Examples:
 - Particle Swarm Optimization
 - Differential Evolution
 - Genetic Algorithms
- Grid Search
 - Evenly Searches Solution Space
 - Examples:
 - Beam Search
 - Breadth-First Search
 - Depth-First Search
 - Lazy Race Tree Search

Genetic Algorithm Training

Grid searches are computationally expensive, but using heuristics reduces the cost

Objectives

 Create a tool to find multi-flyby sequences given solution space

Rank solutions based off their viability for optimization

• Include the option for a $\Delta VEGA$ orbit in the solution space

The inclusion of Δ VEGA orbits provides a diverse set of possible trajectories to explore

Intro to Monte Carlo Tree Searches (MCTS)

- Used in competitive game AI (GO, Chess, etc.)
- Each node, O, is one possible state
- Lines are transitions between states
- Uses heuristics to narrow search options to optimal candidates

MCTS works best in environments with random behavior and minimal observability

- Goal
 - Explore only the sequences that show promise while ignoring sequences that break constraints
- Angular Grid
 - Angular grids patterns better suit orbit conics than Cartesian grid patterns
- Node Properties
 - State: (Planetary NAIF ID, Encounter Epoch)
 - ΔV used to reach point in trajectory
- Constraints
 - Flyby Altitude/Bending Angle
 - ΔV Budget
 - Maximum C3
- Tree is built using a loop of four steps
 Selection → Expansion → Simulation → Backprop

Each node in a sequence is connected by a Lambert arc

- Paths down the tree to find leaf a node
- Estimates value of node through UCB1 function: [1]

$$X + C_p \sqrt{\ln n/N}$$

- X: Future reward from child node
- C_p: Exploration-Exploitation Parameter
- n: Number of visits to current node
- N: Number of visits to child node

Selection — Expansion — Simulation — Backprop

The C_p parameter was found to have the best results when set to $1/\sqrt{2}$ [1]

Creates a new layer of nodes to explore

- Checks each child for feasibility
 - Calculates unoptimized ΔV using powered flyby assumption [2]
 - If node exceeds △V budget, it is made terminal,
- Selects lowest ΔV child by convention

Selection — Expansion — Simulation — Backprop

Powered flyby approximations are used to mitigate the coarse nature of the grid search

 Run Monte Carlo simulations from leaf node to determine future reward, X

- Takes random steps through possible decision and returns reward once terminal condition reached
 - Either the ΔV budget is exceeded or destination planet reached

Selection — Expansion — Simulation — Backprop

A small bonus is provided to simulations that terminate early, corresponding to depth

 Propagates simulated reward back through branch

- New rewards are weighted against previously received rewards
- Creates a more accurate picture of the branches as the tree builds

Selection — Expansion — Simulation — Backprop

At the end of backpropagation, the loop continues until the iteration budget is gone

Implementation of $\Delta VEGA$

- $k:1^{+/-}$ resonance of Earth (2, 3, and 4)
- Pre-DSM orbit properties determined from k
- Earth intercept point held fixed and a Lambert arc is used to determine DSM ΔV and EGA incoming relative velocity.
- Minimizer used to reduce normal (in-plane) component of ΔV by adjusting the pre-DSM orbit.^[3]
- Solutions stored in lookup table and evenly spaced set of MCTS nodes correspond to each k and intercept true anomaly.

A lookup table method prevents the need of calculating the DSM during the tree search.

This estimate serves as an initial condition for the optimization process.

Europa Clipper (1/2)

- Simulation Goal
 - Find EELV Europa Clipper trajectory (EEVEEJ) as described by Buffington^[4]
 - Assess algorithm's ability to find long flyby sequences

Tree Search Inputs

Input	Value
Arrival Planet	Jupiter
Launch Window	March 01 — September 01, 2022
Iterations	75,000
ΔV Budget	10~km/s
Max C3	$10 \ km^2/s^2$
Detail (d)	24

After the run completed, the tree search found 275 trajectories from 1.9B possibilities

Europa Clipper (2/2)

The tree search results (left) are within 30 days of their optimized counterparts (right) excluding Jupiter encounter. This confirms the algorithm's ability to find multi-flyby trajectories

Trajectories to Neptune (1/2)

- Simulation Goal
 - Find trajectories to Neptune via a JGA and Earth orbit leveraging
 - Test Δ VEGA trajectories and the predicted required DSM Δ V

Tree Search Inputs

Input Name	Input Value
Arrival Planet	Neptune
Launch Window	Jan 01, 2029 — Jan 01, 2030
Iterations	15,000
ΔV Budget	$3 \ km/_s$
Max C3	$60~km^2/s^2$
Detail (d)	16

Various \triangle VEGA trajectory options exist for the EEJN search space.

Trajectories to Neptune (2/2)

The MCTS results with Earth leveraging make for useful initial guesses for the optimizer, and the DSM ΔV estimate is <0.3 km/s of the predicted for all tested cases.

Conclusion

Created a multi-flyby broad search tool using MCTS

 Good balance between exploration and exploitation of the search space

 Implemented ΔVEGA orbit leveraging using a lookup table solution

 Demonstrated algorithm's capability to find multiflyby sequences to Jupiter and Neptune

Future Work: V_∞ leveraging of Venus, 3-D Flybys

EVVEJ

EVEEJ

EEVEJ

EVEJ

For any questions regarding the paper

Please join Virtual Room Trajectory Design and Optimization IV on August 12, 2020 at 11:20 AM EST.

Thank you

References

- [1] D. Hennes and D. Izzo, "Interplanetary trajectory planning with Monte Carlo tree search," IJCAI International Joint Conference on Artificial Intelligence, Vol. 2015-Janua, No. Ijcai, 2015, pp. 769–775.
- [2] S. Wagner and B. Wie, "Hybrid algorithm for multiple gravity-assist and impulsive Delta-V maneuvers," *Journal of Guidance, Control, and Dynamics*, Vol. 38, No. 11, 2015, pp. 2096–2107, 10.2514/1.G000874.
- [3] A. Sims, Jon; Longuski, James; Staugler, "V(infinity) Leveraging for Interplanetary Missions Multiple-Revolutuion Orbit Techniques," Journal of Guidance, Control, and Dynamics, Vol. 20, No. 3, 1997, pp. 409–415.
- [4] B. Buffington, "Trajectory design for the europa clipper mission concept," AIAA/AAS Astrodynamics Specialist Conference 2014, 2014.