Large deviations of random projections

Steven S. Kim, Brown University

(joint with Nina Gantert & Kavita Ramanan)

Motivation: geometric view

Let $X^{(n)} = (X_1, \dots, X_n)$ iid random vector.

The empirical mean of (X_i)

 $projection ext{ of } X^{(n)} ext{ onto}$ $\mathbf{1}_n \doteq \frac{1}{\sqrt{n}}(1, \cdots, 1) \in \mathbb{S}^{n-1};$

i.e.,

$$rac{1}{\sqrt{n}}\langle X^{(n)}, \mathbf{1}_n
angle = rac{1}{n}\sum_{i=1}^n X_i.$$
e.g., $X^{(n)}\sim \mathrm{Unif}([-1,1]^n).$

A lot known for projections of high-dimensional product measures onto $\mathbf{1}_n$ – e.g., LLN, CLT, LDP.

QUESTIONS:

I. General $\theta^{(n)} \in \mathbb{S}^{n-1}$? i.e., weighted sums

$$\frac{1}{n}\sum_{i=1}^n X_i \sqrt{n}\theta_i^{(n)} = \frac{1}{\sqrt{n}} \langle X^{(n)}, \theta^{(n)} \rangle.$$

II. $X^{(n)}$ uniform on other convex body B_n ? (in general, this imposes dependence of the coordinates X_1, \dots, X_n)

Known

Known: CLT for random proj. of convex body.

Let $X^{(n)} \sim \text{Unif}(B_n)$ for convex $B_n \subset \mathbb{R}^n$, and $\Theta^{(n)} \sim \text{Unif}(\mathbb{S}^{n-1})$.

Then, for large n, $\langle X^{(n)}, \Theta^{(n)} \rangle \approx \text{Gaussian!!}$ [Diaconis + Freedman, Klartag, Bobkov, Meckes, ...]

Known: LDP for $\mathbf{1}_n$ proj. of product measure. For $X^{(n)}$ iid \Rightarrow Cramér's theorem.

Q: LDP for random projection of convex body?

Review: large deviations

MAIN IDEA: $\mathbb{P}(W_n \geq w) pprox \exp(-n\mathbb{I}(w))$.

Let \mathcal{X} a topological space. A sequence of \mathcal{X} -valued r.v. $(W_n)_{n\in\mathbb{N}}$ satisfies a large deviations principle (LDP) with rate function \mathbb{I} if for all measurable A,

$$egin{aligned} &-\inf_{w\in A^\circ}\mathbb{I}(w)\leq \liminf_{n o\infty}rac{1}{n}\log\mathbb{P}(W_n\in A^\circ)\ &\leq \limsup_{n o\infty}rac{1}{n}\log\mathbb{P}(W_n\in ar{A})\leq -\inf_{w\in ar{A}}\mathbb{I}(w) \end{aligned}$$

The rate function \mathbb{I} is a *good rate function* if level sets are compact.

Setup: ℓ^p balls

For LDP, need a sequence of r.v. e.g.,

 $X^{(n,p)}$ uniform on $B_{n,p}$, the ℓ^p unit ball of \mathbb{R}^n . $\Theta^{(n)}$ uniform on \mathbb{S}^{n-1} .

(Note: for $p \neq \infty$ and large n, law of $X^{(n,p)}$ is a high-dimensional non-product measure)

Aside: a spherical Sanov's thm

Let $\alpha^{(n)} = (\alpha_1^{(n)}, \dots, \alpha_n^{(n)})$ uniform on $\sqrt{n}\mathbb{S}^{n-1}$, and $L_n^{\alpha} \doteq \frac{1}{n} \sum_{i=1}^n \delta_{\alpha_i^{(n)}}$ the empirical measure.

Lem. (Poincaré) $L_n^{\alpha} \Rightarrow \mu_2 \sim N(0, 1)$.

$$\mathbb{H}(
u) \doteq \left\{egin{array}{c} ext{relative entropy} & ext{2nd moment} \ \int_{\mathbb{R}} \log\left(rac{d
u}{d\mu_2}
ight) d
u + rac{1}{2}[1 - \int_{\mathbb{R}} x^2
u(dx)], \ ext{if }
u \ll \mu_2 ext{ and } \int x^2
u(dx) \leq 1 ext{ ;} \ +\infty, ext{ else.} \end{array}
ight.$$

LEM. Let r < 2. Then, $(L_n^{\alpha})_{n \in \mathbb{N}}$ satisfies an LDP in $\mathcal{P}(\mathbb{R})$ equipped with the Wasserstein-r topology, with the good rate function \mathbb{H} .

(Note: Similar LDP holds for cone measure on $n^{1/q}\partial B_{n,q}$)

Variational formula

Results: the LDP

Q: LDP for $(W_{n,p})_{n\in\mathbb{N}}$, where $W_{n,p} \doteq \kappa_{n,p} \langle X^{(n,p)}, \Theta^{(n)} \rangle$?

THEOREM. Let $p \in [2, \infty)$. Let $\kappa_{n,p} \doteq \frac{n^{1/p} n^{1/2}}{n}$. (Note: this scaling so that $W_{n,p}$ is of "order $\frac{1}{n}$ ") ("annealed") $(W_{n,p})_{n \in \mathbb{N}}$ satisfies an LDP with a quasiconvex good rate function $\mathbb{I}_p^{\mathsf{an}}$.

("quenched") For a.e. $\theta^{(n)} \in \mathbb{S}^{n-1}$, conditioning on fixed directions $\Theta^{(n)} = \theta^{(n)}$ for all $n \in \mathbb{N}$, $(W_{n,p})_{n \in \mathbb{N}}$ satisfies an LDP with a quasiconvex good rate function $\mathbb{I}_{p,\mu_2}^{qu}$.

(relationship) The annealed and quenched rate functions are related through a variational formula.

(Note: the a.e. quenched rate function \mathbb{I}_p^{qu} does not depend on the particular $\theta^{(n)}!$)

$\mathbf{V}(n,p) = \mathbf{V}(n,p)$

Prop. For p>2, $\mathbb{I}_p^{\sf an}(w)=$

$$\inf_{\substack{\nu \in \mathcal{P}(\mathbb{R}) \\ \text{w/ density}}} \{\mathbb{I}_{p,\nu}^{\mathsf{qu}}(w) + \int_{\mathbb{R}} \log\left(\frac{d\nu}{dx}\right) d\nu\} + \log\sqrt{2\pi e} \;.$$

For p=2, $\mathbb{I}_p^{\mathsf{an}}=\mathbb{I}_{p,\mu_2}^{\mathsf{qu}}$.

Proof ingredients: let $R_n \doteq \frac{1}{n} \sum_{i=1}^n (\alpha_i^{(n)} Y_i, |Y_i|^p)$.

- 1. Let $\bar{\Phi}_p$ be the Gärtner-Ellis "pressure functional" for (R_n) .,
- 2. For r < 2, compute LDP for $L_n^{\alpha} \doteq \frac{1}{n} \sum_{i=1}^n \delta_{\alpha_i^{(n)}}$ in Wasserstein-r topology.
- 3. LDP of 2. + Varadhan's lem to relate $\Psi_{p,\nu}$ and $\bar{\Phi}_p$ via a variational formula.
- 4. Show $\bar{\Phi}_p^*$ is good rate function for (R_n) by a convexity argument. \square

(Note: Both p=2 equality and step 4. of proof rely on rotation invariance: i.e., $\langle \Theta^{(n)}, u \rangle \stackrel{\text{(d)}}{=} \langle \Theta^{(n)}, v \rangle$ for all $u, v \in \mathbb{S}^{n-1}$.)

Representations of ℓ^p ball

Let $\mu_p(dy) \propto \exp(-|y|^p/p) dy$.

• Let $Y^{(n)} = (Y_1, \dots, Y_n) \stackrel{\text{iid}}{\sim} \mu_p$, and U an independent Uniform[0, 1]. Then,

$$X^{(n,p)}\stackrel{ ext{(d)}}{=} U^{1/n} rac{Y^{(n)}}{||Y^{(n)}||_p}.$$

• Let $Z^{(n)} = (Z_1, \cdots, Z_n) \stackrel{\text{iid}}{\sim} N(0, 1)$. Then,

$$\Theta^{(n)} \stackrel{ ext{(d)}}{=} rac{Z^{(n)}}{||Z^{(n)}||_2}$$
 .

[Schectmann, Zinn '90 and Rachev, Rusendorf '91]

LEM. Mult. by $U^{1/n}$ does not affect LDP; i.e., LDP for $(W_{n,p})$ reduces to LDP for :

$$rac{n^{1/p}n^{1/2}}{n}\left\langle rac{Y^{(n)}}{||Y^{(n)}||_p}, rac{Z^{(n)}}{||Z^{(n)}||_2}
ight
angle \ .$$

Annealed + quenched

Let $p \geq 2$. Define certain analogs of log moment generating functions: for $t_0 < \frac{1}{2}$, $t_1 \in \mathbb{R}$, $t_2 < \frac{1}{p}$,

$$egin{aligned} \Phi_p(t_0,t_1,t_2) &\doteq \log \mathbb{E}_{Y\sim \mu_p,oldsymbol{Z}\sim \mu_2}[e^{t_0oldsymbol{Z}^2+t_1oldsymbol{Z}Y+t_2|Y|^p}]; \ \Psi_{p,oldsymbol{
u}}(t_1,t_2) &\doteq \int_{\mathbb{R}} \log \mathbb{E}_{Y\sim \mu_p}[e^{t_1oldsymbol{z}Y+t_2|Y|^p}] oldsymbol{
u}(doldsymbol{z}). \end{aligned}$$

(Note: $p \geq 2$ condition used for bounds on log-mgf of $Y \sim \mu_p$) Let $\Psi_{p,\nu}^*$ and Φ_p^* be their Legendre transforms, and

$$\mathbb{I}_p^{\mathsf{an}}(w) \doteq \inf \left\{ \Phi_p^*(au_0, au_1, au_2) : w = au_0^{-1/2} au_1 au_2^{-1/p}
ight\};$$
 $\mathbb{I}_{p, m{
u}}^{\mathsf{qu}}(w) \doteq \inf \left\{ \Psi_{p, m{
u}}^*(au_1, au_2) : w = au_1 au_2^{-1/p}
ight\}.$

PROP. Let $p \in [2, \infty)$: annealed rate function is \mathbb{I}_p^{an} ; quenched rate function $\mathbb{I}_{p,\mu_2}^{qu}$.

Ongoing work

- 1. the case $p \in [1, 2)$;
- 2. moderate deviations;
- 3. other sequences.