

Dr. Shaikh Asif Mahmood Associate professor, BUET

Adjunct Faculty, ECE, NSU

BASIC LAWS

- •Wye-Delta Transformations.
- •Series-Parallel Networks.
- Ladder Network

WYE-DELTA TRANSFORMATIONS

Figure 2.47

Two forms of the same network: (a) Y, (b) T.

$$R_{12}(Y) = R_1 + R_3$$

 $R_{12}(\Delta) = R_b \| (R_a + R_c)$

Setting $R_{12}(Y) = R_{12}(\Delta)$ gives

$$R_{12} = R_1 + R_3 = \frac{R_b(R_a + R_c)}{R_a + R_b + R_c}$$

Similarly,

$$R_{13} = R_1 + R_2 = \frac{R_c(R_a + R_b)}{R_a + R_b + R_c}$$

$$R_{34} = R_2 + R_3 = \frac{R_a(R_b + R_c)}{R_a + R_b + R_c}$$

Figure 2.48

Two forms of the same network: (a) Δ , (b) Π .

WYE-DELTA TRANSFORMATIONS

$$R_1 = \frac{R_b R_c}{(R_a + R_b + R_c)}$$

$$R_2 = \frac{R_c R_a}{(R_a + R_b + R_c)}$$

$$R_3 = \frac{R_a R_b}{(R_a + R_b + R_c)}$$

Star (Wye) -> Delta

$$R_a = \frac{R_1 R_2 + R_2 R_3 + R_3 R_1}{R_1}$$

$$R_b = \frac{R_1 R_2 + R_2 R_3 + R_3 R_1}{R_2}$$

$$R_c = \frac{R_1 R_2 + R_2 R_3 + R_3 R_1}{R_3}$$

EXAMPLE 8.29 Find the total resistance of the network of Fig. 8.80, where $R_A = 3 \Omega$, $R_B = 3 \Omega$, and $R_C = 6 \Omega$.

Solution:

Two resistors of the Δ were equal; therefore, two resistors of the Y will be equal.

$$R_{1} = \frac{R_{B}R_{C}}{R_{A} + R_{B} + R_{C}} = \frac{(3 \Omega)(6 \Omega)}{3 \Omega + 3 \Omega + 6 \Omega} = \frac{18 \Omega}{12} = 1.5 \Omega$$

$$R_{2} = \frac{R_{A}R_{C}}{R_{A} + R_{B} + R_{C}} = \frac{(3 \Omega)(6 \Omega)}{12 \Omega} = \frac{18 \Omega}{12} = 1.5 \Omega$$

$$R_{3} = \frac{R_{A}R_{B}}{R_{A} + R_{B} + R_{C}} = \frac{(3 \Omega)(3 \Omega)}{12 \Omega} = \frac{9 \Omega}{12} = 0.75 \Omega$$

Replacing the Δ by the Y, as shown in Fig. 8.81, yields

$$R_{T} = 0.75 \Omega + \frac{(4 \Omega + 1.5 \Omega)(2 \Omega + 1.5 \Omega)}{(4 \Omega + 1.5 \Omega) + (2 \Omega + 1.5 \Omega)}$$

$$= 0.75 \Omega + \frac{(5.5 \Omega)(3.5 \Omega)}{5.5 \Omega + 3.5 \Omega}$$

$$= 0.75 \Omega + 2.139 \Omega$$

$$R_{T} = 2.889 \Omega$$

FIG. 8.80 Example 8.29.

FIG. 8.81
Substituting the Y equivalent for the bottom Δ of Fig. 8.80.

$$R_{ab} = (7.292 + 10.5) \parallel 21 = \frac{17.792 \times 21}{17.792 + 21} = 9.632 \Omega$$

Then

$$i = \frac{v_s}{R_{ab}} = \frac{120}{9.632} = 12.458 \text{ A}$$

Converting the \$\Delta\$ configuration of Fig. 8.82 to a Y configuration.

The network then appears as shown in Fig. 8.84.

$$R_T = 2 \left[\frac{(2 \Omega)(9 \Omega)}{2 \Omega + 9 \Omega} \right] = 3.2727 \Omega$$

b. Converting the Y to a Δ:

$$R_{\Delta} = 3R_{Y} = (3)(9 \ \Omega) = 27 \ \Omega \qquad \text{(Fig. 8.85)}$$

$$R'_{T} = \frac{(6 \ \Omega)(27 \ \Omega)}{6 \ \Omega + 27 \ \Omega} = \frac{162 \ \Omega}{33} = 4.9091 \ \Omega$$

$$R_{T} = \frac{R'_{T}(R'_{T} + R'_{T})}{R'_{T} + (R'_{T} + R'_{T})} = \frac{R'_{T}2R'_{T}}{3R'_{T}} = \frac{2R'_{T}}{3}$$

$$= \frac{2(4.9091 \ \Omega)}{3} = 3.2727 \ \Omega$$

which checks with the previous solution.

SERIES-PARALLEL NETWORKS

Example

$$I_{4} = \frac{E}{R_{B}} = \frac{E}{R_{4}} = \frac{12V}{8\Omega} = 1.5 A$$

$$R_{D} = R_{2} // R_{3} = 3\Omega // 6\Omega = 2\Omega$$

$$V_{2} = \frac{R_{D} E}{R_{D} + R_{C}}$$

$$= \frac{(2\Omega)(12V)}{2\Omega + 4\Omega} = 4V$$

$$R_{1||2} = \frac{R}{N} = \frac{6 \Omega}{2} = 3 \Omega$$

$$R_{A} = R_{1||2||3} = \frac{(3 \Omega)(2 \Omega)}{3 \Omega + 2 \Omega} = \frac{6 \Omega}{5} = 1.2 \Omega$$

$$R_{B} = R_{4||5} = \frac{(8 \Omega)(12 \Omega)}{8 \Omega + 12 \Omega} = \frac{96 \Omega}{20} = 4.8 \Omega$$

The reduced form of Fig. 7.13 will then appear as shown in Fig. 7.15, and

$$R_T = R_{1||2||3} + R_{4||5} = 1.2 \Omega + 4.8 \Omega = 6 \Omega$$

 $I_5 = \frac{E}{R_T} = \frac{24 \text{ V}}{6 \Omega} = 4 \text{ A}$
 $V_1 = I_5 R_{1||2||3} = (4 \text{ A})(1.2 \Omega) = 4.8 \text{ V}$

with
$$V_1 = I_s R_{1||2||3} = (4 \text{ A})(1.2 \Omega) = 4.8 \text{ V}$$

 $V_5 = I_s R_{4||5} = (4 \text{ A})(4.8 \Omega) = 19.2 \text{ V}$

Applying Ohm's law,

$$I_4 = \frac{V_5}{R_4} = \frac{19.2 \text{ V}}{8 \Omega} = 2.4 \text{ A}$$

$$I_2 = \frac{V_2}{R_2} = \frac{V_1}{R_2} = \frac{4.8 \text{ V}}{6 \Omega} = 0.8 \text{ A}$$

$$V_1 = \frac{R_1 E}{R_1 + R_2} = \frac{(5 \Omega)(12 \text{ V})}{5 \Omega + 3 \Omega} = \frac{60 \text{ V}}{8} = 7.5 \text{ V}$$

$$V_3 = \frac{R_3 E}{R_2 + R_4} = \frac{(6 \Omega)(12 \text{ V})}{6 \Omega + 2 \Omega} = \frac{72 \text{ V}}{8} = 9 \text{ V}$$

The open-circuit voltage V_{ab} is determined by applying Kirchhoff's voltage law around the indicated loop of Fig. 7.17 in the clockwise direction starting at terminal a.

$$+V_1-V_3+V_{ab}=0$$

and

$$V_{ab} = V_3 - V_1 = 9 \text{ V} - 7.5 \text{ V} = 1.5 \text{ V}$$

By Ohm's law,

$$I_1 = \frac{V_1}{R_1} = \frac{7.5 \text{ V}}{5 \Omega} = 1.5 \text{ A}$$

$$I_3 = \frac{V_3}{R_3} = \frac{9 \text{ V}}{6 \Omega} = 1.5 \text{ A}$$

Applying Kirchhoff's current law,

$$I_5 = I_1 + I_3 = 1.5 \text{ A} + 1.5 \text{ A} = 3 \text{ A}$$

FIG. 7.19
Network of Fig. 7.18 redrawn.

and
$$V_1 = E_2 + E_1 = 18 \text{ V} + 6 \text{ V} = 24 \text{ V}$$

Applying Kirchhoff's current law to node a yields

$$I = I_1 + I_2 + I_3$$

$$= \frac{V_1}{R_1} + \frac{E_1}{R_4} + \frac{E_1}{R_2 + R_3}$$

$$= \frac{24 \text{ V}}{6 \Omega} + \frac{6 \text{ V}}{6 \Omega} + \frac{6 \text{ V}}{12 \Omega}$$

$$= 4 \text{ A} + 1 \text{ A} + 0.5 \text{ A}$$

$$I = 5.5 \text{ A}$$

Example 7.9.

Solution: Redrawing the network after combining series elements yields Fig. 7.23, and

$$I_5 = \frac{E}{R_{(1,2,3)|4} + R_5} = \frac{72 \text{ V}}{12 \text{ k}\Omega + 12 \text{ k}\Omega} = \frac{72 \text{ V}}{24 \text{ k}\Omega} = 3 \text{ mA}$$

with

$$V_7 = \frac{R_{7\parallel(8,9)}E}{R_{7\parallel(8,9)} + R_6} = \frac{(4.5 \text{ k}\Omega)(72 \text{ V})}{4.5 \text{ k}\Omega + 12 \text{ k}\Omega} = \frac{324 \text{ V}}{16.5} = 19.6 \text{ V}$$

$$I_6 = \frac{V_7}{R_{7\parallel(8,9)}} = \frac{19.6 \text{ V}}{4.5 \text{ k}\Omega} = 4.35 \text{ mA}$$

and

$$I_5 = I_5 + I_6 = 3 \text{ mA} + 4.35 \text{ mA} = 7.35 \text{ mA}$$

Since the potential difference between points a and b of Fig. 7.22 is fixed at E volts, the circuit to the right or left is unaffected if the network is reconstructed as shown in Fig. 7.24.

FIG. 7.24

An alternative approach to Example 7.9.

We can find each quantity required, except I_5 , by analyzing each circuit independently. To find I_5 , we must find the source current for each

FIG. 7.25 Example 7.10.

EXAMPLE 7.10 This example demonstrates the power of Kirchhoff's voltage law by determining the voltages V_1 , V_2 , and V_3 for the network of Fig. 7.25. For path 1 of Fig. 7.26,

$$E_1-V_1-E_3=0$$

and

$$V_1 = E_1 - E_3 = 20 \text{ V} - 8 \text{ V} = 12 \text{ V}$$

For path 2,

$$E_2 - V_1 - V_2 = 0$$

and

$$V_2 = E_2 - V_1 = 5 \text{ V} - 12 \text{ V} = -7 \text{ V}$$

indicating that V_2 has a magnitude of 7 V but a polarity opposite to that appearing in Fig. 7.25. For path 3,

$$V_3 + V_2 - E_3 = 0$$

and
$$V_3 = E_3 - V_2 = 8 \text{ V} - (-7 \text{ V}) = 8 \text{ V} + 7 \text{ V} = 15 \text{ V}$$

Note that the polarity of V_2 was maintained as originally assumed, requiring that -7 V be substituted for V_2 .

EXAMPLE (LADDER NETWORK)

FIG. 7.27 Ladder network.

FIG. 7.29
Calculating R_T and I_s.

FIG. 7.30
Working back toward I₆.

$$R_T = 5 \Omega + 3 \Omega = 8 \Omega$$

 $I_s = \frac{E}{R_T} = \frac{240 \text{ V}}{8 \Omega} = 30 \text{ A}$

Working our way back to I_6 (Fig. 7.30), we find that

and
$$I_1 = I_s$$

$$I_3 = \frac{I_s}{2} = \frac{30 \text{ A}}{2} = 15 \text{ A}$$

and, finally (Fig. 7.31),

$$I_6 = \frac{(6 \Omega)I_3}{6 \Omega + 3 \Omega} = \frac{6}{9}(15 \text{ A}) = 10 \text{ A}$$

 $V_6 = I_6 R_6 = (10 \text{ A})(2 \Omega) = 20 \text{ V}$

FIG. 7.32

An alternative approach for ladder networks.

The assigned notation for the current through the final branch is I_6 :

or
$$I_6 = \frac{V_4}{R_5 + R_6} = \frac{V_4}{1 \Omega + 2 \Omega} = \frac{V_4}{3 \Omega}$$
 or
$$V_4 = (3 \Omega)I_6$$
 so that
$$I_4 = \frac{V_4}{R_4} = \frac{(3 \Omega)I_6}{6 \Omega} = 0.5I_6$$
 and
$$I_3 = I_4 + I_6 = 0.5I_6 + I_6 = 1.5I_6$$

$$V_3 = I_3R_3 = (1.5I_6)(4 \Omega) = (6 \Omega)I_6$$
 Also,
$$V_2 = V_3 + V_4 = (6 \Omega)I_6 + (3 \Omega)I_6 = (9 \Omega)I_6$$
 so that
$$I_2 = \frac{V_2}{R_2} = \frac{(9 \Omega)I_6}{6 \Omega} = 1.5I_6$$
 and
$$I_5 = I_2 + I_3 = 1.5I_6 + 1.5I_6 = 3I_6$$
 with
$$V_1 = I_1R_1 = I_5R_1 = (5 \Omega)I_5$$
 so that
$$E = V_1 + V_2 = (5 \Omega)I_5 + (9 \Omega)I_6$$

$$= (5 \Omega)(3I_6) + (9 \Omega)I_6 = (24 \Omega)I_6$$
 and
$$I_6 = \frac{E}{24 \Omega} = \frac{240 \text{ V}}{24 \Omega} = 10 \text{ A}$$
 with
$$V_6 = I_6R_6 = (10 \text{ A})(2 \Omega) = 20 \text{ V}$$