Confusion Matrix for NOAA and CCI predictability of Coral Bleaching

Vanessa Hui Fen Neo

2021-10-28

ĸ	
F.	

		Table 1: (Confusi	ion Matrix	for predict	tability	of bleachi	ng using	Degree E	Ieating W	eek value	s from C	CI data		
Reef	Balanced	Accuracy	F1	Sensitivit	Specificity	Pos	Neg	AUC	Lower	Upper	Kappa	MCC	Detection	on Detection	nPrevalence
	Accu-					Pred	Pred		CI	CI			Rate	Preva-	
	racy					Value	Value							lence	
Browse	0.90	0.81	0.22	1.00	0.80	0.12	1.00	0.90	0.85	0.95	0.18	0.32	0.03	0.22	0.03
Island															
Cocos	0.84	0.92	0.67	0.75	0.94	0.60	0.97	0.84	0.68	1.00	0.62	0.62	0.08	0.14	0.11
(Keel-															
ing)															
Is-															
lands															
Houtman	n = 0.93	0.86	0.29	1.00	0.86	0.17	1.00	0.93	0.89	0.97	0.25	0.38	0.03	0.17	0.03
Abrol-															
_hos															
Ningaloo	0.58	0.87	0.17	0.25	0.90	0.13	0.95	0.58	0.41	0.74	0.11	0.12	0.01	0.10	0.06
Reef															
Scott	0.55	0.78	0.20	0.25	0.84	0.17	0.90	0.55	0.47	0.62	0.08	0.08	0.03	0.17	0.11
Reef															

•	ď	•
_	٠	J

	,	Table 2: Co	onfusio	n Matrix f	or predict	ability o	f bleachin	g using I	Degree He	ating We	ek values	from NO	AA data		
Reef	Balanced	Accuracy	F1	Sensitivit	Specificit	y Pos	Neg	AUC	Lower	Upper	Kappa	MCC	Detection	onDetection	nPrevalence
	Accu-					Pred	Pred		CI	CI			Rate	Preva-	
	racy					Value	Value							lence	
Browse	0.82	0.66	0.15	1.00	0.65	0.08	1.00	0.82	0.76	0.88	0.10	0.23	0.03	0.38	0.03
_Island															
Cocos	0.62	0.91	0.40	0.25	1.00	1.00	0.90	0.62	0.46	0.79	0.37	0.48	0.03	0.03	0.12
(Keel-															
ing)															
Is-															
lands															
Houtmai	0.93	0.86	0.31	1.00	0.85	0.18	1.00	0.93	0.88	0.97	0.27	0.39	0.03	0.17	0.03
Abrol-															
hos															
Ningaloc	0.57	0.86	0.18	0.25	0.90	0.14	0.95	0.57	0.41	0.74	0.11	0.12	0.02	0.11	0.06
_Reef															
Scott	0.73	0.72	0.40	0.75	0.71	0.27	0.95	0.73	0.65	0.81	0.26	0.32	0.09	0.35	0.12
Reef															

	N
١	_

		Table 3: C	onfusio	n Matrix f	or predicta	ability o	f bleachin	g using I	Degree He	eating Mo	onths value	es from (CCI data		
Reef	Balanced	lAccuracy	F1	Sensitivit	Specificity	Pos	Neg	AUC	Lower	Upper	Kappa	MCC	Detection	nDetectio	nPrevalence
	Accu-					Pred	Pred		CI	CI			Rate	Preva-	
	racy					Value	Value							lence	
Browse	0.83	0.67	0.14	1.00	0.66	0.08	1.00	0.83	0.77	0.88	0.10	0.22	0.03	0.36	0.03
Island															
Cocos	0.73	0.72	0.38	0.75	0.72	0.25	0.96	0.73	0.56	0.90	0.25	0.31	0.08	0.33	0.11
(Keel-															
ing)															
Is-															
lands															
Houtman	n 0.87	0.75	0.18	1.00	0.74	0.10	1.00	0.87	0.82	0.92	0.14	0.27	0.03	0.28	0.03
Abrol-															
$_{ m hos}$															
Ningaloo	0.72	0.82	0.27	0.60	0.84	0.18	0.97	0.72	0.56	0.88	0.20	0.25	0.03	0.19	0.06
Reef															
Scott	0.62	0.72	0.29	0.50	0.75	0.20	0.92	0.62	0.54	0.71	0.15	0.18	0.06	0.28	0.11
Reef															

r		
_	•	

	T	able 4: Co	nfusion	Matrix for	r predicta	ability of	bleaching	using D	egree Hea	ting Mon	ths values	s from NO	OAA data	ı	
Reef	Balanced	Accuracy	F1	Sensitivit	S pecificit	y Pos	Neg	AUC	Lower	Upper	Kappa	MCC	Detection	nDetectio	nPrevalence
	Accu-					Pred	Pred		CI	CI			Rate	Preva-	
	racy					Value	Value							lence	
Browse	0.76	0.53	0.12	1.00	0.52	0.06	1.00	0.76	0.70	0.82	0.06	0.18	0.03	0.50	0.03
Island															
Cocos	0.71	0.88	0.50	0.50	0.93	0.50	0.93	0.71	0.53	0.90	0.43	0.43	0.06	0.12	0.12
(Keel-															
ing)															
Is-															
lands															
Houtman	0.90	0.81	0.25	1.00	0.81	0.14	1.00	0.90	0.85	0.95	0.21	0.34	0.03	0.22	0.03
Abrol-															
hos															
Ningaloo	0.69	0.86	0.31	0.50	0.89	0.23	0.96	0.69	0.53	0.86	0.25	0.27	0.03	0.14	0.06
Reef															
Scott	0.69	0.64	0.34	0.75	0.63	0.22	0.95	0.69	0.61	0.77	0.19	0.25	0.09	0.42	0.12
Reef															

			Table 5: De	egree Heating	Week Confusio	n Matrix			
		CCI DHW					NOAA DHW		
Reef	Balanced	Sensitivity	Specificity	AUC	Reef	Balanced	Sensitivity	Specificity	AUC
	Accuracy					Accuracy			
Browse	0.90	1.00	0.80	0.90	Browse	0.82	1.00	0.65	0.82
Island					Island				
Cocos	0.84	0.75	0.94	0.84	Cocos	0.62	0.25	1.00	0.62
(Keeling)					(Keeling)				
Islands					Islands				
Houtman	0.93	1.00	0.86	0.93	Houtman	0.93	1.00	0.85	0.93
Abrolhos					Abrolhos				
Ningaloo	0.58	0.25	0.90	0.58	Ningaloo	0.57	0.25	0.90	0.57
Reef					Reef				
Scott Reef	0.55	0.25	0.84	0.55	Scott Reef	0.73	0.75	0.71	0.73

			Table 6: Deg	ree Heating	Month Confusio	on Matrix			
		CCI DHM					NOAA DHM		
Reef	Balanced	Sensitivity	Specificity	AUC	Reef	Balanced	Sensitivity	Specificity	AUC
	Accuracy					Accuracy			
Browse	0.83	1.00	0.66	0.83	Browse	0.76	1.00	0.52	0.76
_Island					Island				
Cocos	0.73	0.75	0.72	0.73	Cocos	0.71	0.50	0.93	0.71
(Keeling)					(Keeling)				
Islands					Islands				
Houtman	0.87	1.00	0.74	0.87	Houtman	0.90	1.00	0.81	0.90
Abrolhos					Abrolhos				
Ningaloo	0.72	0.60	0.84	0.72	Ningaloo	0.69	0.50	0.89	0.69
Reef					Reef				
Scott Reef	0.62	0.50	0.75	0.62	Scott Reef	0.69	0.75	0.63	0.69