Семинар 18

Вычеты

Пусть z_0 — ИОТ однозначной функции f(z), причём $z_0 \neq \infty$. Тогда в некоторой проколотой окрестности точки z_0 функция f(z) раскладывается в ряд Лорана:

$$f(z) = \sum_{n=-\infty}^{+\infty} a_n (z - z_0)^n$$
, $0 < |z - z_0| < R$.

О. Вычетом функции f(z) в ИОТ $z_0 \neq \infty$ называется коэффициент ряда Лорана a_{-1} : $\operatorname{res}[f(z), z_0] = a_{-1}$ (от «residuum» — «остаток», лат.).

Сразу можно заметить, что если точка $z_0 \neq \infty$ — УОТ, то вычет в ней равен нулю, поскольку ряд Лорана не содержит членов с отрицательными степенями $(z-z_0)$.

Если же бесконечно удалённая точка $z_0 = \infty$ — ИОТ однозначной функции f(z), то в некоторой окрестности точки $z_0 = \infty$ функция f(z) раскладывается в ряд Лорана:

$$f(z) = \sum_{n=-\infty}^{+\infty} a_n z^n, \qquad |z| > R.$$

О. Вычетом функции f(z) в ИОТ $z_0 = \infty$ называется число $-a_{-1}$, где a_{-1} — соответствующий коэффициент ряда Лорана:

$$\operatorname{res}[f(z), \infty] = -a_{-1}.$$

Т. Пусть однозначная функция f(z) является аналитической на всей комплексной плоскости, кроме конечного числа ИОТ: $z_1, z_2, ..., z_N, \infty$. Тогда

$$\sum_{k=1}^{N} \operatorname{res}[f(z), z_k] + \operatorname{res}[f(z), \infty] = 0.$$

О. Однозначная аналитическая функция $\chi(z)$ имеет в точке z_0 нуль n-го порядка, если $\chi(z_0)=0, \chi'(z_0)=0, ..., \chi^{(n-1)}(z_0)=0$, но $\chi^{(n)}(z_0)\neq 0$.

Если однозначная аналитическая функция $\chi(z)$ имеет в точке z_0 нуль n-го порядка, то в окрестности точки z_0 функция $\chi(z)$ представима в виде $\chi(z) = (z-z_0)^n \psi(z)$, где $\psi(z)$ — однозначная аналитическая функция и $\psi(z_0) \neq 0$.

Т. (о вычете в полюсе первого порядка). Пусть $f(z) = \frac{\varphi(z)}{\chi(z)}, z_0 \neq \infty,$ причём

- 1) $\varphi(z)$ однозначная аналитическая функция в окрестности точки z_0 , причём $\varphi(z_0) \neq 0$;
- 2) $\chi(z)$ однозначная аналитическая функция в окрестности точки z_0 , которая имеет в точке z_0 нуль первого порядка.

 Тогда точка z_0 — полюс первого порядка функции f(z) и

$$\operatorname{res}[f(z), z_0] = \frac{\varphi(z_0)}{\chi'(z_0)}.$$

Т. (о вычете в полюсе *m***-го порядка).** Пусть $f(z) = \frac{\varphi(z)}{\chi(z)}, z_0 \neq \infty,$ причём

- 1) $\varphi(z)$ однозначная аналитическая функция в окрестности точки z_0 , причём $\varphi(z_0) \neq 0$;
- 2) $\chi(z)$ однозначная аналитическая функция в окрестности точки z_0 , которая имеет в точке z_0 нуль m-го порядка.

Тогда точка z_0 — полюс m-го порядка функции f(z) и

$$\operatorname{res}[f(z), z_0] = \frac{1}{(m-1)!} \lim_{z \to z_0} \frac{d^{m-1}}{dz^{m-1}} [(z - z_0)^m f(z)].$$

Заметим, что эта формула верна и для m=1, т. е. она является обобщением формулы для полюса первого порядка.

А именно, для полюса первого порядка получаем:

res
$$[f(z), z_0] = \lim_{z \to z_0} [(z - z_0)f(z)],$$

 $\overline{{
m res}[f(z),z_0]}=\lim_{z o z_0}[(z-z_0)f(z)],$ откуда по правилу Лопиталя будет следовать выписанная выше формула

res[
$$f(z), z_0$$
] = $\frac{\varphi(z_0)}{\chi'(z_0)}$.

Пример 1 (самостоятельно). Найти вычеты во всех ИОТ функции $f(z) = \frac{1}{z-z^3}$.

$$f(z) = \frac{1}{z - z^3} = \frac{1}{z(1 - z^2)} = \frac{1}{z(1 - z)(1 + z)}.$$

1) $z_1 = 0$ — полюс первого порядка.

res[
$$f(z)$$
, 0] = $\frac{1}{(z-z^3)'}\Big|_{z=0} = \frac{1}{1-3z^2}\Big|_{z=0} = 1.$

2) $z_2 = 1$ — полюс первого порядка

res[f(z), 1] =
$$\frac{1}{(z-z^3)'}\Big|_{z=1} = \frac{1}{1-3z^2}\Big|_{z=1} = -\frac{1}{2}$$
.

3) $z_3 = -1$ — полюс первого порядка.

$$\operatorname{res}[f(z), -1] = \frac{1}{(z - z^3)'} \Big|_{z = -1} = \frac{1}{1 - 3z^2} \Big|_{z = -1} = -\frac{1}{2}.$$

4) $z_0 = \infty$.

$$res[f(z), \infty] = 0 - res[f(z), 0] - res[f(z), 1] - res[f(z), -1] = -1 + \frac{1}{2} + \frac{1}{2} = 0.$$

Omsem:
$$\operatorname{res}\left[\frac{1}{z-z^3},0\right]=1,\,\operatorname{res}\left[\frac{1}{z-z^3},\pm 1\right]=-\frac{1}{2},\,\operatorname{res}\left[\frac{1}{z-z^3},\infty\right]=0.$$

Пример 2 (самостоятельно). Найти вычеты во всех ИОТ функции $f(z) = \frac{z}{\sin z}$.

ИОТ:
$$z_k = \pi k, k \in \mathbb{Z}$$
. Точка $z = \infty$ является НОТ.
1) $z_0 = 0$ — УОТ для $f(z)$, т. к. $\lim_{z \to 0} \frac{z}{\sin z} = 1$. Поэтому $\operatorname{res}[f(z), 0] = 0$.

2) $z_k = \pi k$, $k \neq 0$. Числитель дроби $f(z) = \frac{z}{\sin z}$ не обращается в нуль при $z = \pi k$, а знаменатель имеет нуль первого порядка, т. к. $\sin \pi k = 0$,

$$(\sin z)'|_{z=\pi k} = \cos \pi k = (-1)^k \neq 0.$$

Поэтому

$$\operatorname{res}[f(z), \pi k] = \frac{z}{(\sin z)'}\Big|_{z=\pi k} = (-1)^k \pi k.$$

Omeem: res $\left[\frac{z}{\sin z}, \pi k\right] = (-1)^k \pi k$.

Пример 3 (самостоятельно). Найти вычеты во всех ИОТ функции $f(z) = \frac{\cos \sqrt{z}}{z^3}$ OT: $z_1 = 0, z_0 = \infty$.

Функция \sqrt{z} является двузначной, причём две её ветви отличаются друг от друга только знаком: если $z = \rho e^{i\varphi}$, то

$$\sqrt{z} = \sqrt{\rho} e^{i\left(\frac{\varphi}{2} + \pi k\right)} = \begin{bmatrix} \sqrt{\rho} e^{i\frac{\varphi}{2}}, \\ \sqrt{\rho} e^{i\left(\frac{\varphi}{2} + \pi\right)} = -\sqrt{\rho} e^{i\frac{\varphi}{2}}. \end{bmatrix}$$

Но поскольку косинус — функция чётная: $\cos(-z) \equiv \cos z$, то $\cos\sqrt{z}$ — функция однозначная, поэтому ОТ $z_1=0$ и $z_0=\infty$ для функции f(z) — не точки ветвления, а ИОТ. При |z| > 0 справедливо разложение:

$$f(z) = \frac{1 - \frac{\left(\sqrt{z}\right)^2}{2!} + \frac{\left(\sqrt{z}\right)^4}{4!} - \frac{\left(\sqrt{z}\right)^6}{6!} + \dots}{z^3} = \frac{1}{z^3} - \frac{1}{2z^2} + \frac{1}{24z} - \frac{1}{720} + \dots$$

Тогда, по определения

$$\operatorname{res}[f(z), 0] = \frac{1}{24} \implies \operatorname{res}[f(z), \infty] = -\frac{1}{24}.$$

$$\operatorname{Omsem:} \operatorname{res}\left[\frac{\cos\sqrt{z}}{z^3}, 0\right] = \frac{1}{24}, \operatorname{res}\left[\frac{\cos\sqrt{z}}{z^3}, \infty\right] = -\frac{1}{24}.$$

Пример 4 (самостоятельно). Найти вычеты во всех ИОТ функции $f(z) = \frac{z^2}{(z^2+1)^2}$

$$f(z) = \frac{z^2}{(z^2 + 1)^2} = \frac{z^2}{(z + i)^2 (z - i)^2}.$$

$$\operatorname{res}[f(z), i] = \frac{1}{1!} \lim_{z \to i} \frac{d}{dz} \left(\frac{z^2}{(z+i)^2} \right) = \lim_{z \to i} \frac{2z \cdot (z+i)^2 - z^2 \cdot 2(z+i)}{(z+i)^4} = \frac{-8i + 4i}{16} = \frac{-i}{4}.$$

2) $z_2 = -i$ — полюс второго порядка.

$$\operatorname{res}[f(z), -i] = \frac{1}{1!} \lim_{z \to -i} \frac{d}{dz} \left(\frac{z^2}{(z-i)^2} \right) = \lim_{z \to -i} \frac{2z \cdot (z-i)^2 - z^2 \cdot 2(z-i)}{(z-i)^4} = \frac{8i - 4i}{16} = \frac{i}{4}.$$

3) $z_0 = \infty$.

$$res[f(z), \infty] = -res[f(z), i] - res[f(z), -i] = \frac{i}{4} - \frac{i}{4} = 0.$$

Ombem: res $\left[\frac{z^2}{(z^2+1)^2}, \pm i\right] = \mp \frac{i}{4}$, res $\left[\frac{z^2}{(z^2+1)^2}, \infty\right] = 0$.

Пример 5 (самостоятельно). Найти вычеты во всех ИОТ функции $f(z) = \frac{\exp z}{z^2(z^2+9)}$. $f(z) = \frac{\exp z}{z^2(z^2+9)} = \frac{\exp z}{z^2(z+3i)(z-3i)}.$

$$f(z) = \frac{\exp z}{z^2(z^2+9)} = \frac{\exp z}{z^2(z+3i)(z-3i)}.$$

1) $z_1 = 3i$ — полюс первого порядка (т. к. $\exp(3i) \neq 0$).

$$\operatorname{res}[f(z), 3i] = \lim_{z \to z_1} [(z - z_1)f(z)] = \lim_{z \to 3i} \left[\frac{\exp z}{z^2(z + 3i)} \right] = \frac{\exp(3i)}{-9 \cdot 6i} = \frac{i \exp(3i)}{54}.$$

2) $z_2 = -3i$ — полюс первого порядка (т. к. $\exp(-3i) \neq 0$).

$$\operatorname{res}[f(z), -3i] = \lim_{z \to z_2} [(z - z_2)f(z)] = \lim_{z \to -3i} \left[\frac{\exp z}{z^2(z - 3i)} \right] = \frac{\exp(-3i)}{9 \cdot 6i} = -\frac{i \exp(-3i)}{54}.$$

3) $z_3 = 0$ — полюс второго порядка (т. к. $\exp 0 \neq 0$).

$$\operatorname{res}[f(z), 0] = \frac{1}{1!} \lim_{z \to 0} \frac{d}{dz} \left(\frac{\exp z}{z^2 + 9} \right) = \lim_{z \to 0} \frac{\exp z \cdot (z^2 + 9) - \exp z \cdot 2z}{(z^2 + 9)^2} = \frac{1}{9}.$$

4) $z_0 = \infty$. $\operatorname{res}[f(z), \infty] = -\operatorname{res}[f(z), 3i] - \operatorname{res}[f(z), -3i] - \operatorname{res}[f(z), 0] =$ $= -\frac{i \exp(3i)}{54} + \frac{i \exp(-3i)}{54} - \frac{1}{9} = \frac{e^{3i} - e^{-3i}}{2i \cdot 27} - \frac{1}{9} = \frac{\sin 3}{27} - \frac{1}{9}.$ Ombem: $\operatorname{res}\left[\frac{\exp z}{z^2(z^2+9)}, \pm 3i\right] = \pm \frac{i \exp(\pm 3i)}{54}, \operatorname{res}\left[\frac{\exp z}{z^2(z^2+9)}, 0\right] = \frac{1}{9}, \operatorname{res}\left[\frac{\exp z}{z^2(z^2+9)}, \infty\right] = \frac{\sin 3}{27} - \frac{1}{9}.$

Пример 6 (самостоятельно). Найти $\operatorname{res}\left[\frac{\sin z}{(z-b)^5}, b\right]$.

- 1) Пусть $\sin b \neq 0$, т. е. $b \neq \pi k$, где $k \in \mathbb{Z}$. Тогда точка $z_0 = b$ полюс пятого порядка. $\operatorname{res} \left[\frac{\sin z}{(z-b)^5}, b \right] = \frac{1}{4!} \lim_{z \to b} \frac{d^4}{dz^4} (\sin z) = \frac{\sin b}{24}.$
- 2) Теперь пусть $\sin b = 0$, т. е. $b = \pi k$, $k \in \mathbb{Z}$. Сделаем замену: $z \pi k = t$. Тогда $f(z) = \frac{\sin z}{(z-b)^5} = \frac{\sin(t+\pi k)}{t^5} = \frac{\sin t \cos \pi k + \cos t \sin \pi k}{t^5} = (-1)^k \frac{\sin t}{t^5}$.

Разложение в ряд Лорана в проколотой окрестности точки $z = b = \pi k$, т. е. при |t| > 0:

$$f(z)=(-1)^k\frac{\sin t}{t^5}=(-1)^k\frac{t-\frac{t^3}{3!}+\frac{t^5}{5!}-\cdots}{t^5}=(-1)^k\left(\frac{1}{t^4}-\frac{1}{6t^2}+\frac{1}{120}-\cdots\right)=\\=(-1)^k\left(\frac{1}{(z-\pi k)^4}-\frac{1}{6(z-\pi k)^2}+\frac{1}{120}-\cdots\right),\qquad |z-\pi k|>0.$$
 Отсюда $\operatorname{res}[f(z),b]=a_{-1}=0.$

Ответ: $\operatorname{res}[f(z), b] = \frac{\sin b}{24}$.

ДЗ 18. Волк № 4.79, 4.81, 4.83, 4.84, 4.86, 4.96.