## Работа 3.3.4

# Эффект Холла в полупроводниках

# Малиновский Владимир galqiwi@galqiwi.ru

**Цель работы:** измерение подвижности и концентрации носителей заряда в полупроводниках

**В работе используются:** электромагнит с источником питания, амперметр, миллиамперметр, реостат, цифровой аольтметр, источник питания (1.5B), образцы легированного германия

#### Идея

Эффект хола заключается в возникновении разницы потенциалов на поверхности материала при протекании тока через этот материал, если этот материал помещен в магнитное поле. Собственно, в этой работе мы будем помещать образец легированного германия в магнитное поле и измерим зависимость разницы потенциалов между контактами 3-4 от внешнего поля B, вызванного электромагнитами. Также, используя зависимость разницы потенциалов между точками 3-4 от I, мы найдем проводимость  $\sigma$ , из которой вычеслим постоянную Холла.



Рис. 1. Схема установки для исследования эффекта Холла в полупроводниках

## Метод, результаты и обработка

#### 1-4

Проверим работу электромагнита и прокалибруем его, измерив зависимость  $\Phi$  потока через милливеберметр от тока  $I_{\text{м}}$  через магнит. Из нее найдем поле  $B=\Phi/(NS)$ , идущее через милливеберметр с  $NS=75\,\mathrm{cm}^2$ .

| I, A   | 0.20 | 0.40 | 0.60 | 0.80 | 1.00 | 1.20 | 1.40 | 1.60 |
|--------|------|------|------|------|------|------|------|------|
| Ф, мВб | 1.10 | 2.20 | 3.30 | 4.40 | 5.20 | 5.80 | 6.30 | 6.60 |
| В, мТл | 147  | 293  | 440  | 587  | 693  | 773  | 840  | 880  |

$$\Delta I = 0.005 \,\mathrm{A}, \Delta \Phi = 0.05 \,\mathrm{mB6}, \Delta B = 13 \,\mathrm{mT}$$
л



**5** 

Измерим ЭДС Холла. Для фиксированного тока через образец I в электромагните измерим зависимость напряжения  $U_{34}$  от тока  $I_M$  на электромагните.

| I, MA        |                       |      |      |      |      |      |      |      |       |
|--------------|-----------------------|------|------|------|------|------|------|------|-------|
| 0.26         | 0.30                  | 0.40 | 0.50 | 0.60 | 0.70 | 0.80 | 0.90 | 1.00 | -1.00 |
| $U_{34}$ , N | $U_{34},\mathrm{MkB}$ |      |      |      |      |      |      |      |       |
| 40           | 46                    | 63   | 78   | 93   | 109  | 125  | 141  | 157  | 172   |
| 22           | 23                    | 32   | 40   | 48   | 57   | 62   | 73   | 80   | 248   |
| 1            | 2                     | 1    | 1    | 4    | 1    | 2    | 5    | 4    | 329   |
| -16          | -19                   | -25  | -33  | -39  | -45  | -51  | -57  | -65  | 405   |
| -31          | -37                   | -50  | -63  | -75  | -89  | -103 | -113 | -127 | 466   |
| -45          | -52                   | -70  | -87  | -104 | -123 | -141 | -156 | -175 | 520   |
| -52          | -61                   | -82  | -104 | -124 | -125 | -165 | -185 | -206 | 554   |
| -58          | -68                   | -91  | -115 | -137 | -161 | -183 | -206 | -228 | 580   |
| -62          | -72                   | -96  | -122 | -145 | -170 | -193 | -217 | -241 | 593   |

$$\Delta I=0.01\,\mathrm{mA}, \Delta U_{34}=1\,\mathrm{mkB}$$

| $I_M$ , A | L    |      |      |      |      |      |      |      |      |
|-----------|------|------|------|------|------|------|------|------|------|
| 0.00      | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 0.20      | 0.20 | 0.20 | 0.20 | 0.20 | 0.20 | 0.20 | 0.20 | 0.20 | 0.20 |
| 0.40      | 0.40 | 0.40 | 0.40 | 0.40 | 0.40 | 0.40 | 0.40 | 0.40 | 0.40 |
| 0.60      | 0.60 | 0.60 | 0.60 | 0.60 | 0.60 | 0.60 | 0.60 | 0.60 | 0.60 |
| 0.80      | 0.80 | 0.80 | 0.80 | 0.80 | 0.80 | 0.80 | 0.80 | 0.80 | 0.80 |
| 1.00      | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| 1.20      | 1.20 | 1.20 | 1.20 | 1.20 | 1.20 | 1.20 | 1.20 | 1.20 | 1.20 |
| 1.40      | 1.40 | 1.40 | 1.40 | 1.40 | 1.40 | 1.40 | 1.40 | 1.40 | 1.40 |
| 1.60      | 1.59 | 1.57 | 1.56 | 1.56 | 1.56 | 1.55 | 1.55 | 1.55 | 1.54 |

$$\Delta I_M = 0.01\,\mathrm{A}$$

Пересчитаем значения поля В с помощью калибровочных данных.

| В, мТл |     |     |     |     |     |     |     |     |     |
|--------|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 0      | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   |
| 147    | 147 | 147 | 147 | 147 | 147 | 147 | 147 | 147 | 147 |
| 293    | 293 | 293 | 293 | 293 | 293 | 293 | 293 | 293 | 293 |
| 440    | 440 | 440 | 440 | 440 | 440 | 440 | 440 | 440 | 440 |
| 587    | 587 | 587 | 587 | 587 | 587 | 587 | 587 | 587 | 587 |
| 693    | 693 | 693 | 693 | 693 | 693 | 693 | 693 | 693 | 693 |
| 773    | 773 | 773 | 773 | 773 | 773 | 773 | 773 | 773 | 773 |
| 840    | 840 | 840 | 840 | 840 | 840 | 840 | 840 | 840 | 840 |
| 880    | 878 | 875 | 873 | 873 | 873 | 871 | 871 | 871 | 869 |

 $\Delta B = 13 \,\mathrm{MT}$ л



Построим график k=f(I), рассчитаем угловой коэффициент и по формуле  $U_{34}=-R_x\cdot \frac{IB}{a}$  рассчитаем постоянную Холла  $R_X$ .



| I, MA | k, м $T$ л/ $A$ | $\Delta k$ , м $\mathrm{T}\pi/\mathrm{A}$ |
|-------|-----------------|-------------------------------------------|
| 0.26  | -0.115          | 0.003                                     |
| 0.30  | -0.133          | 0.003                                     |
| 0.40  | -0.180          | 0.004                                     |
| 0.50  | -0.227          | 0.005                                     |
| 0.60  | -0.271          | 0.005                                     |
| 0.70  | -0.31           | 0.01                                      |
| 0.80  | -0.361          | 0.008                                     |
| 0.90  | -0.408          | 0.008                                     |
| 1.00  | -0.45           | 0.01                                      |

$$\Delta I = 0.01 \,\mathrm{mA}$$

Из графика

$$\frac{Rx}{a} = (0.4519 \pm 0.0011) \frac{\text{M}^2}{\text{K}\pi}.$$

В нашей установке a = 2.2мм.

$$Rx = (0.994 \pm 0.002) \cdot 10^{-3} \frac{\text{M}^3}{\text{K}_{\text{J}}}.$$

Определим, что наши частицы движутся к клемме 4 образца. Зная направление магнитного поля в электромагните и тока через образец, мы определяем, что наши частицы заряжены отрицательно, т.е. являются электронами.

Теперь определим концентрацию электронов:

$$n = \frac{1}{Rx \, e} = (6.28 \pm 0.01) \cdot 10^{21} \, \frac{1}{\text{M}^3}$$

По формуле  $\sigma=\frac{IL_{35}}{U_{35}al}$  рассчитаем удельную проводимость материала образца для максимального тока  $I=1,00\pm0,02$  мА, напряжения  $U_{35}=552\pm1$  мкВ и  $L_{35}=6.0$  мм, a=2.2 мм, l=7 мм:

$$\sigma = 706 \pm 15 \frac{1}{\text{Om} \cdot \text{m}}$$

Подвижность электронов:

$$b = \frac{\sigma}{en} = (0.70 \pm 0.02) \frac{\text{m}^2}{\text{B} \cdot \text{c}}$$

## Вывод

Мы изучили явление эффекта Холла в полупроводниках, измерили для нашего образца (Германий) такие величины как постоянная Холла, концентрацию электронов, удельную проводимость и подвижность электронов.