Xente Fraud Detection

Background

 Xente is an e-commerce and financial service app serving 10,000+ customers in Uganda

- **Dataset**: 95K transactions, and among them 193 are frauds.

 Our Goal: detect fraudulent transactions and save money

Evaluation Metric: F1-score

EDA & Feature engineering

Feature engineering

- direction of transaction (incoming/outgoing)
- 2. account fraud history (True/False)
- 3. transaction hour of day & day of week

Number of transactions

	Incoming	Outgoing	Percentage of Incoming
fraud	188	5	97.4%
non-fraud	57285	38184	60%

Feature engineering

 direction of transaction (incoming/outgoing)

2. account fraud history (True/False)

3. transaction hour of day & day of week

Average number of frauds per fraudulent account id:

3.71

non-fraudulent

Feature engineering

- direction of transaction (incoming/outgoing)
- 2. account fraud history (True/False)
- 3. transaction hour of day & day of week

fraudulent

non-fraudulent

Feature engineering

- direction of transaction (incoming/outgoing)
- 2. account fraud history (True/False)
- 3. transaction hour of day & day of week

fraudulent

Baseline Model

Baseline model

Value > $2,400,000 \rightarrow \text{fraud!}$

Baseline model

Value > $2,400,000 \rightarrow \text{fraud!}$

	precision	recall	F1 score
fraud	1.00	0.19	0.32

Our Models

Logistic regression

	precision	recall	F1 score
fraud	0.62	0.34	0.44

Decision tree

- Gini index
- Entrophy

	precision	recall	F1 score
fraud	1.00	0.74	0.85

Random forest

	precision	recall	F1 score
fraud	0.94	0.82	0.88

Dealing with imbalanced dataset

Data is highly imbalanced

SMOTE

Synthetic Minority Oversampling Technique

- randomly pick a point from the minority class
- compute the k-nearest neighbors for this point.
- The synthetic points are added between the chosen point and its neighbors.

Synthetic Minority Oversampling Technique

SMOTE with random forest

Fraud : Non-fraud = 1 : 2

	precision	recall	F1 score
fraud	0.90	0.89	0.89

Before:

0 95469

1 193

After:

0 66832

1 33416

Ensemble methods

- AdaBoost algorithm: iterative approach to learn from the mistakes of weak classifiers
- SMOTE dataset
- Base estimator: Decision tree

		precision	recall	F1 score
fra	ud	0.95	0.90	0.93

Loss prevented by using our final model

Money saved

We successfully prevented 56 fraud cases out 59. (94.9% of total fraud cases)

We prevented 90.6M loss by detecting fraud. (95.4% of total fraud value)

Error Analysis

Error Analysis

all of the 9 misclassified records are of

- Product Category 2,
- Pricing Strategy 2,
- Value category 0 (incoming),
- Fraud history 1 (has fraud history),

so it is advisable to be extra careful with transactions with these characteristics.

Thank you!