

Department of ECE, Bennett University

EECE105L: Fundamentals of Electrical and Electronics Engineering

Tutorial Sheet-8

1. Consider the signals given in (a) - (g). In each case, two waves f(t) and g(t) are described by corresponding equations. From the wave equations, find which wave leads and which wave lags. Also find the angle of leading/lagging.

$$f(t) = 10\sin(\omega t + 30^{0})$$

$$g(t) = 10\sin(\omega t + 40^{0})$$
(a)

$$f(t) = 10\sin(\omega t + 20^{0})$$

$$g(t) = 10\sin(\omega t - 80^{0})$$
(b)

$$f(t) = 10\sin(\omega t - 20^{\circ})$$

$$g(t) = 10\cos(\omega t + 80^{\circ})$$
(c)

$$f(t) = -10\sin(\omega t + 20^{\circ})$$

$$g(t) = 10\sin(\omega t - 80^{\circ})$$
(d)

$$f(t) = 10\sin(\omega t - 20^{0})$$

$$g(t) = -10\sin(\omega t + 80^{0})$$
(e)

$$f(t) = -A\sin(\omega t + \theta)$$

$$g(t) = B\cos(\omega t - \phi)$$
(f)

$$f(t) = A\sin(\omega t + \theta)$$

$$g(t) = B\sin(\omega t + \phi)$$
(g)

- 2. Consider the wave form shown in fig. 1 through fig. 4. Answer the following questions.
 - a. Peak value, peak amplitude, peak to peak value
 - b. Average value and RMS over one period
 - c. Average value over half period

- 3. Consider the signals shown in fig. 5 through fig. 8. Evaluate
 - a. Peak value, peak amplitude, peak to peak value
 - b. Over one period, find average value and RMS value

Fig. 6

- Fig. 8
- 4. For the waveforms shown in fig. 9 and 10. Evaluate
 - a. Peak value, peak amplitude, peak to peak value
 - b. Over one period, find average value and RMS value

Fig. 9

----- END OF QUESTIONS -----

Answers:

Q. 1: No answers are provided, as answer is the complete solution.

Q. 2:

	Peak value	Peak	Peak to	Average value	RMS Value	Average
		amplitude	peak	over one	over one	value over
			value	period	period	half period
Fig. 1	V_0	V_0	$2V_0$	0	V_0	V_0
Fig. 2	V_0	V_0	$2V_0$	0	V₀/√3	V ₀ /4
Fig. 3	V_0	V_0	$2V_0$	0	V ₀ /√3	$(V_0^2/2)-V_0$
Fig. 4	V_0	V_0	$2V_0$	0	$V_0/\sqrt{2}$	$V_0/(\pi/2)$

Q. 3

	Peak value	Peak	Peak to	Average value	RMS Value
		amplitude	peak	over one	over one
			value	period	period
Fig. 5	2V ₀	V_0	2V ₀	V ₀	$V_0\sqrt{(3/2)}$
Fig. 6	2V ₀	V_0	$2V_0$	V_0	2V₀/√3
Fig. 7	2V ₀	V_0	2V ₀	V_0	2V ₀ /√3
Fig. 8	2V ₀	V_0	2V ₀	Vo	V_0

Q. 4

	Peak value	Peak	Peak to	Average value	RMS Value
	(V)	amplitude	peak	over one	over one
		(V)	value (V)	period (V)	period (V)
Fig. 9	6	36/7	9	6/7	3.2
Fig. 10	12	12	20	0	8.16