

Marine Data Science

Data Analysis with R

17 - Functions and Iteration 1 (Loops)

Saskia A. Otto Postdoctoral Researcher

Functions

Functions are the core of reproducible research

- Help you to structure your work.
 - Reading in data
 - Data processing
 - Visualisation
- Divide complex problems into small "simple" units.
- Re-use your functions whenever you need them!
- Share your work with others!

Function components

Lexical scoping

Scoping is the set of rules that govern how R looks up the value of a symbol.

```
x <- 10
x
## [1] 10 How does R know that x equals 10?
```

Principles of Lexical Scoping

- 1. Name masking
- 2. Functions vs. variables
- 3. A fresh start
- 4. Dynamic lookup

1. Name masking

```
f <- function() {
    x <- 2
    y <- 3
    x * y
}

f()

## [1] 6</pre>
```

- value for **x** found in f
- value for **y** found in f

```
x <- 2
g <- function() {
  y <- 3
  x + y
}
g()
## [1] 5</pre>
```

- value for **x NOT** found in f
 - check global environment → value for x
 found
- value for **y** found in f

1. Name masking - Nested functions

```
x <- c(4, 3)
h <- function() {
   y <- 5
   i <- function() {
      z <- c(1, 2)
      c(z, sort(x), y)
   }
   i()
}
h()
## [1] 1 2 3 4 5</pre>
```

1. Name masking - Nested functions

```
formal: z
x < -c(4, 3)
                                      value for z found in i()
h <- function() {
                                      no search for z in h()
                                      no search for z in globalenv()
   y < -5
   i <- function() {</pre>
                                      formal: y
      z < -c(1, 2)
                                      value for y not found in i() <
     c(z, sort(x), y)
                                      value for y found in h()
                                      no search for y in globalenv()
   i()
                                      formal: x
                                      value for x not found in i() value for x not found in h()
h()
                                      value for x found in globalenv()
## [1] 1 2 3 4 5
```

1. Name masking - Variables exist locally

```
add_one <- function(x) {</pre>
  add_this <- 1</pre>
  x + add_this
add_one(5)
## [1] 6
add_this
## Error in eval(expr, envir, enclos): object 'add_this' not found
Environment History Connections Build
                                                       • x and add_this are not present in the
🚮 🔚 🌃 Import Dataset 🗸 🎻
■ Global Environment -
                                                          global environment
Functions
 add_one
                        function (x)
                                                       • they exist locally in add_one()
```


2. Functions vs. variables

```
1 <- function(x) {</pre>
  x + 1
m <- function() {</pre>
  1 <- function(x) {</pre>
    x * 2
  1(10)
m()
## [1] 20
```

2. Functions vs. variables

```
1 <- function(x) {
    x + 1
}

m <- function() {
    1 <- function(x) {
        x * 2
    }
    1(10)
}</pre>
```

[1] 20

Functions work like variables

- I() does exist in globalenv().
- I() does exist in m().

call m()

- I() is found in m().
 - no search for I() in globalenv()

2. Functions vs. variables - Exception

```
n <- function(x) {
  x / 2
}

o <- function() {
  n <- 10
   n(n)
   n(n)
}

n(n)

function, therefore R will ignore other objects than functions while searching

o()

## [1] 5</pre>
```

Try to avoid this whenever possible.

3. A fresh start

```
j <- function() {</pre>
                                    check if object "a"
     if (!exists("a")) {
                                    does NOT (!) exist
         a <- 1
                               perform this in
     } else {
                               case of TRUE
         a < -a + 1
                    perform this in
                    case of FALSE
j()
## [1] 1
                 Object "a" is never
j()
                 part of globalenv().
## [1] 1
                 Each function call
                 is independant of
                 previous calls.
```

What gets returned each time?

```
j()
a <- j()
j()
j()
a <- j()
j()</pre>
```

3. A fresh start

```
j <- function() {</pre>
                                    check if object "a"
    if (!exists("a")) {
                                    does NOT (!) exist
         a <- 1
                               perform this in
     } else {
                               case of TRUE
         a < -a + 1
                    perform this in
                   case of FALSE
j()
## [1] 1
                 Object "a" is never
j()
                 part of globalenv().
## [1] 1
                 Each function call
                 is independant of
                 previous calls.
```

What gets returned each time?

```
j()
## [1] 1
a <- j()
j()
## [1] 2
j()
## [1] 2
a <- j()
j()
## [1] 3
```

4. Dynamic lookup

R looks for values when the function is run, not when it's created.

```
my_mean <- function(x) {</pre>
    sum(x) / count
count <- 10
my_mean(rep(2, times = 10))
## [1] 2
my_mean(rep(2, times = 5))
## [1] 1
```

→ Hard to spot because occurring errors depend on the global environment.

Your turn...

What is the output of the following code snippets?

```
func1 <- function(y) {
   func2(z = y)
}
func2 <- function(z) {
   3 * z
}
func1(4)
z <- 3
func1(4)</pre>
```

```
y <- 3
func <- function(x, y) {
    x ^ y
}
func(2, 2)
x
y
func(3)</pre>
```

```
x1 <- 10
func <- function() {
    x1 * 2
}
func()
x1 <- 5
func()</pre>
```

```
f <- function(x) {
    f <- function(x) {
        f <- function(x) {
            x ^ 2
        }
        f(x) + 1
    }
    f(x) * 2
}
x <- 10
f(x)</pre>
```

The 4 Golden Rules

Every function should be...

- selfcontained,
- able to **solve one** particular **problem**,
- as small as possible and as complex as needed,
- properly **documented**

Which functions are selfcontained?

```
func1 <- function(y) {
   func2(z = y)
}
func2 <- function(z) {
   3 * z
}
func1(4)
z <- 3
func1(4)</pre>
```

```
y <- 3
func <- function(x, y) {
    x ^ y
}
func(2, 2)
x
y
func(3)</pre>
```

```
x1 <- 10
func <- function() {
    x1 * 2
}
func()
x1 <- 5
func()</pre>
f <- function(x) {</pre>
```

```
f <- function(x) {
    f <- function(x) {
        f <- function(x) {
            x ^ 2
        }
        f(x) + 1
    }
    f(x) * 2
}
x <- 10
f(x)</pre>
```

How to convert code to a function?

Replace -99 with NA

How to convert code to a function?

Can you spot all mistakes?

Try to downscale the problem

Find repetitive code sections

```
df$a[ df$a == -99] <- NA
df$b[ df$b == -99] <- NA
df$c[ df$c == -99] <- NA
df$d[ df$d == -99] <- NA
df$e[ df$e == -99] <- NA
df$f[ df$f == -99] <- NA</pre>
```

equal in every line

different in every line

Convert to generic function

```
replace_value <- function(x) {
    x[ x == -99] <- NA
    x
}</pre>
no changes
set to x
```

Try to downscale the problem

Test your function

```
replace_value(c(2, 5, -99, 3, -99))
## [1] 2 5 NA 3 NA
```

Use your function

```
df$a <- replace_value(df$a)
df$b <- replace_value(df$b)
df$c <- replace_value(df$c)
df$d <- replace_value(df$d)
df$e <- replace_value(df$e)
df$f <- replace_value(df$f)</pre>
```

Still prone to error but much better!

Easy to customise

Imagine the value changes from -99 to -999

```
## a b c d e f

## 1 3 -999 8 5 3 6

## 2 5 8 5 9 5 7

## 3 7 7 9 -999 1 6

## 4 10 1 6 3 5 3

## 5 3 3 8 8 10 10

## 6 10 2 -999 2 4 8
```

Simply change your function

```
replace_value2 <- function(x) {
    x[x == -999] <- NA
    x
}</pre>
```

Or add an additional argument

```
replace_value2 <- function(x, rep_na) {
    x[x == rep_na] <- NA
    x
}</pre>
```

Return values

```
replace_value <- function(x) {</pre>
   x[x == -99] <- NA
   return(x)
replace_value(c(2, 5, -99, 3, -99))
## [1] 2 5 NA 3 NA
replace_value <- function(x) {</pre>
   x[x == -99] <- NA
   invisible(x)
replace_value(c(2, 5, -99, 3, -99))
```

No output in the console due to the invisible() call within the function

Return values

```
replace_value <- function(x) {
    x[x == -99] <- NA
    x
}</pre>
```

exactly the same behaviour

```
replace_value <- function(x) {
   x[x == -99] <- NA
   return(x)
}</pre>
```

This is sometimes regarded as bad programming due to the additional function call! However, for beginners it can be useful to clearly indicate which value is returned by this function!

Only one return value per function

```
complex_function <- function(x) {
   out_mean <- mean(x)
   out_median <- median(x)
   out_min <- min(x)
   out_max <- max(x)
   result <- list(out_mean, out_median,
      out_min, out_max)
   return(result)
}</pre>
```

list()

is used here to combine intermediate results to one returned list object.

```
complex_function(1:10)

## [[1]]
## [1] 5.5
##

## [[2]]
## [1] 5.5
##

## [[3]]
## [1] 1
##

## [[4]]
## [1] 10
```

Your turn...

Exercise 1: Write your first functions!

- 1. Write a function to calculate the standard error.
- 2. Write a function to plot the weight-length relationship (W = a^*L^b) of any fish species! Test your function with
- *Gadus morhua*, a = 0.0077, b = 3.07
- *Anguilla anguilla*, a = 0.00079, b = 3.23

Iterations

Iteration or so-called loop functions in R

2 types

- 1. for loop family: execute for a prescribed number of times, as controlled by a **counter** or an index, incremented at each iteration cycle
- 2. while or repeat family of loops: are based on the onset and verification of a logical **condition**. The condition is tested at the start or the end of the loop construct.

source: www.datacamp.com/community/tutorials/tutorial-on-loops-in-r (licensed under CC-BY-NC-ND 4.0)

for loop

```
counter
(index)

for (i in c(2, 4, 7)) {
  print(i)
}
  body: Action performed
repeatedly, each time with a
  different value for i.
```

for loop

```
for (i in c(2, 4, 7)) {
   print(i)
                               3. iteration: i = 7 \rightarrow \text{output } \# [1] 7
print(i)
                          2. iteration: i = 4 \rightarrow \text{output } \# [1] 4
                      1. iteration: i = 2 → output ## [1] 2
      outside the loop, last state of i:
            i = 7 \rightarrow \text{ output } \# [1] 7
```

for loop - Styles

```
x <- c(2, 4, 7)
become
counter
values

for (i in x) {
  print(i)
}</pre>
```

Only access to the object itself

Access to both, the object and the position!

Best practice for the counter: seq_along(x)

 \rightarrow a safe version of the familiar 1:length(x)

```
x \leftarrow c(2, 4, 7)
y <- numeric(0)</pre>
 for (i in 1:length(x)) {
                                                    for (i in seq_along(x)) {
    print(x[i])
                                                        print(x[i])
1:length(x)
                                                    seq_along(x)
                                                    ## [1] 1 2 3
## [1] 1 2 3
1:length(y)
                                                    seq_along(y)
## [1] 1 0
                                                    ## integer(0)
                                                   → If the counter is NULL seq_along() does
→ 1:length() iterates at least once!
                                                   not execute any iteration!
```


Best practice for the output

- Before you start the loop, you must always allocate sufficient space for the output.
- If you grow the for loop at each iteration using c() (for example), your for loop will be very slow:

```
# Grow objects
grow_obj <- function(x){
   y <- numeric()
   for (i in 1:x) {
      y <- c(y, i)
   }
}</pre>
```

```
# Better: Indexing
index_obj <- function(x){
   y <- vector("integer", length(x))
   for (i in 1:x){
     y[i] <- i
   }
}</pre>
```

Here, an empty vector with the **length of the counter** is created before the loop runs.

Best practice for the output

```
# Let's test the speed of both functions
microbenchmark::microbenchmark(unit = "ms", times = 5,
   grow_obj(500), grow_obj(5000), index_obj(500), index_obj(5000))
## Unit: milliseconds
                        min
                                                   median
                                  lq
                                           mean
              expr
                                                                uq
##
    grow obj(500) 0.557673 0.568017 0.5879908 0.574069 0.595132
    grow obj (5000) 38.881681 47.168098 50.5571232 47.825416 50.714506
    index obj(500) 0.110457 0.115062 0.1173862 0.118125 0.120946
   index obj(5000) 0.908436 0.919034 1.6393442 0.930583 0.989413
##
         max neval cld
##
    0.645063
                5 a
   68.195915
   0.122341 5 a
   4,449255
```

Look at the **mean** column: As you can see, indexing is much faster than growing objects, particularly when iterating many times!

Previous example: Replace repetitive code

Replace a specific value in a **vector**!

```
replace_value <- function(x) {
    x[ x == -99] <- NA
    x
}</pre>
```

Use your function:

```
df$a <- replace_value(df$a)
df$b <- replace_value(df$b)
df$c <- replace_value(df$c)
df$d <- replace_value(df$d)
df$e <- replace_value(df$e)
df$f <- replace_value(df$f)</pre>
```

Still prone to error but much better!

Possible solution

Replace a specific value in a data frame!

```
replace_value <- function(df) {
    df has 6 columns:
        c(1,2,3,4,5,6)

    for (i in seq_along(df)) {
        df[df[, i] == -99, i] <- NA
     }
        row index: every
        row within column
        i that equals -99
}</pre>
```

```
replace_value(df)

## a b c d e f
## 1 3 NA 8 5 3 6
## 2 5 8 5 9 5 7
## 3 7 7 9 NA 1 6
## 4 10 1 6 3 5 3
## 5 3 3 8 8 10 10
## 6 10 2 NA 2 4 8
```

Test user input

What happens if the input is a **matrix** and not a data frame?

```
mat <- matrix(c(1:5, -99), ncol=3)
replace_value(mat)

## Error in df[, i]: subscript out of bounds

seq_along(mat)

## [1] 1 2 3 4 5 6</pre>
```

• seq_along() counts each element in matrices and not the columns!

Test user input - Solutions

- Either adjust code for various types of input
- or test the input type and return error message if not correct type:

```
replace_value <- function(df) {</pre>
  if(is.data.frame(df)) {
    for (i in seq_along(df)) {
      df[df[, i] == -99, i] <- NA
    return(df)
  } else {
    stop("Input has to be a data frame.")
replace_value(mat)
## Error in replace_value(mat): Input has to be a data frame.
```


Combine functions

Instead of using a loop within the replace function you can combine 2 functions:

```
replace_value <- function(x) {
    x[x == -99] <- NA
    x
}

apply_to_column <- function(df) {
    for (i in seq_along(df)) {
        df[, i] <- replace_value(df[, i])
      }
    return(df)
}</pre>
```

```
a b c d e f

1 3 -99 8 5 3 6

2 5 8 5 9 5 7

3 7 7 9 -99 1 6

4 10 1 6 3 5 3

5 3 3 8 8 10 10

6 10 2 -99 2 4 8
```

```
## a b c d e f
## 1 3 NA 8 5 3 6
## 2 5 8 5 9 5 7
## 3 7 7 9 NA 1 6
## 4 10 1 6 3 5 3
## 5 3 3 8 8 10 10
## 6 10 2 NA 2 4 8
```

Your turn...

Exercise 2: Write your first for loops!

- 1. Determine the type of each column in the FSA::Mirex dataset
- 2. Compute the mean of every column in the FSA::PikeNY dataset

Think about the output, sequence, and body before you start writing the loop.

Exercise 3: Combine loops with functions

- Write a function to fit a linear model (y ~ x) to each of the 100 datasets in the "data/functions" folder ("dummyfile_1.csv" - "dummyfile_100.csv") and plot all slopes together as a histogram.
 - What are the parameters of your function (filename, data frame, folder, ...)?
 - Is the iteration outside of your function or part of the function call?
 - Should the plotting be part of your function?
- Do the same with the intercepts! (for solution code see the last slide of the presentation)


```
functions: function(), return(), invisible()
loops: for(var in seq) expr, while(cond) expr, repeat expr, seq_along()
conditions: if(cond) expr, if(cond) cons.expr else alt.expr
exists(), microbenchmark::microbenchmark()
```

Overview of functions you learned today

How do you feel now....?

Totally confused?

Try out the exercises and read chapter 21 on iterations in R for Data Science.

Totally bored?

We just scratched the surface of R functional programming. If you want to learn more on how to write R functions I highly recommend the book Advanced R by Hadley Wickham.

Totally content?

Then go grab a coffee, lean back and enjoy the rest of the day...!

Thank You

For more information contact me: saskia.otto@uni-hamburg.de

http://www.researchgate.net/profile/Saskia_Otto http://www.github.com/saskiaotto

(cc)) BY-SA

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License except for the borrowed and mentioned with proper *source*: statements.

Image on title and end slide: Section of an infrared satallite image showing the Larsen C ice shelf on the Antarctic Peninsula - USGS/NASA Landsat: A Crack of Light in the Polar Dark, Landsat 8 - TIRS, June 17, 2017 (under CC0 license)

Solution exercise 3

The following code demonstrates one approach for exercise 3 in which the slopes and intercepts are computed together in one function:

```
files <- stringr::str_c("data/functions/dummyfile_", 1:100, ".csv")</pre>
# The iteration will be here part of the function:
get coefs <- function(filenames) {</pre>
  # Create empty output vectors
  intercept <- vector("double", length = length(filenames))</pre>
  slopes <- vector("double", length = length(filenames))</pre>
  for (i in seq_along(files)) {
    dat <- readr::read csv(filenames[i]) # import single file</pre>
    m_{dat} \leftarrow lm(y \sim x, data = dat) # fit linear model
    intercept[[i]] <- coef(m_dat)[1] # save the intercept</pre>
    slopes[[i]] <- coef(m_dat)[2] # save the slope</pre>
  # Since output can be only 1 object:
  out <- tibble(a = intercept, b = slopes)</pre>
  return(out)
```

```
# Apply function
all_coefs <- get_coefs(files) %>%
    print(n =5)

## # A tibble: 100 x 2
## a b
## <dbl> <dbl>
## 1 3.12 0.794
## 2 2.64 0.800
## 3 1.95 0.828
## 4 3.08 0.755
## 5 1.07 0.922
## # ... with 95 more rows
```



```
# Create histograms
p <- ggplot(all_coefs) +</pre>
  theme_classic()
p_a \leftarrow p + geom_histogram(aes(x = a),
    bins = 10, fill = "white",
  colour = "black") +
  ggtitle("Histogram of intercepts")
p_b <- p + geom_histogram(aes(x = b),</pre>
    bins = 10, fill = "white",
  colour = "black") +
  ggtitle("Histogram of slopes")
gridExtra::grid.arrange(p_a, p_b,
  ncol=2)
```