Odessa State Environmental University, Ukraine

http://odeku.edu.ua

Supercomputación de Castilla y León, España

http://www.scayle.es

A Generalized Neighborhood for Cellular Automata

Dmitry Zaitsev

http://member.acm.org/~daze

Basic references

- Zaitsev D.A. A generalized neighborhood for cellular automata, Theoretical Computer Science, 666 (2017), 21-35.
- Zaitsev D.A. hm, hn, hmn Generators of canvas for Petri net models of hypertorus (hypercube) grid with Moore's, von-Neumann's, and generalized neighborhoods, respectively, 2015, https://github.com/dazeorgacm/hmn
- Zaitsev D.A. htgen Generator of hypertorus Petri net models, 2015, https://github.com/dazeorgacm/htgen
- Zaitsev D.A. ts Torus Simulator: simulator of traffic within multidimensional torus interconnect, 2020, https://github.com/dazeorgacm/ts
- Zaitsev, D.A., Tymchenko, S.I., Shtefan, N.Z. Switching vs Routing within Multidimensional Torus Interconnect, PIC&ST2020, October 6-9, 2020, Kharkiv, Ukraine, http://picst.org

Neighborhood in hypercube (hypertorus) for microelectronics and telecommunications

- Connection of nodes in square (multidimensional) lattice
- Network-on-chip, 2D, 3D
- Interconnect for supercomputers and clusters, 3D, 5D, 6D

Torus interconnect

- Three-dimensional torus network: IBM Blue Gene/L and Blue Gene/P, and the Cray XT3
- Five-dimensional torus network: IBM Blue Gene/Q
- Six-dimensional torus network: Fujitsu K computer, PRIMEHPC FX10 – threedimensional torus 3D mesh interconnect Tofu
- Fugaku, ~0.5 exaflops TOFU interconnect D

Fugaku (Fujitsu, RIKEN)

A64FX

A64FX® Microarchitecture Manual http://github.com/fujitsu/A64FX

A64FX block diagram

Neighborhood of torus interconnect

- Von Neumann neighborhood
- Mixed mesh and von Neumann interconnect
- Moore neighborhood is too dense in multidimensional space
- Generalized neighborhood is flexible, density is adjusted using a parameter
- Cross-By-Pass-Torus can by implemented as a generalized neighborhood with radius > 1

Neighborhoods in 2D torus

Von Neumann

Moore

Cellular Automata

- Lattice of cells in d-dimensional space
- Cell state in the next tact depends on the states of its neighbors in the current tact
- 1D, elementary ({0,1}), rule 110 Turingcomplete
- 2D Game of Life
- 3D Simulation of Flows of Water
- Synchronous, Asynchronous, Totalistic,
 Stochastic etc

2D CA simulation example

FiatLux simulator, Nazim Fatès http://fiatlux.loria.fr

Applications of Cellular Automata

- Network Routing
- Cracks in metal constructions
- Spreading of viruses
- Spreading of insects (mosquito)
- Modelling climate change
- Cloud dynamics simulation
- Artificial brain dynamics

Conventional neighborhoods for cellular automata

- Von Neumann Manhattan distance of 1
- Moore Chebyshev distance of 1
- Using radius r
- Diamond shaped

Chebyshev distance – maximal distance on coordinates: $L^{\infty}(\vec{i'}, \vec{i}) = \max_{j} \left(|\vec{i'} - \vec{i}| \right)$ Manhattan distance – sum of distances on coordinates (taxicab): $L^{1}(\vec{i'}, \vec{i}) = \sum_{i} \left(|\vec{i'} - \vec{i}| \right)$

Generalized k-neighborhood in d-dimensional lattice

- Sharp k-neighborhood exactly k coordinates change, their differences belong to {-1,1} (Chebyshev distance of 1 restricted by Manhattan distance of k)
- k-neighborhood no more than k coordinates change, their differences belong to {-1,1}
- Parameter k: $1 \le k \le d$
- 1-neighborhood = von Neumann
- d-neighborhood = Moore

2D case

1-neighborhood, sharp 1-neighborhood, von Neumann neighborhood 4 neighbors

2-neighborhood, Moore neighborhood 8 neighbors

sharp 2-neighborhood 4 neighbors

3D case

1-neighborhood, sharp 1-neighborhood, von Neumann neighborhood 6 neighbors

2-neihgborhood 18 neighbors

3-neighborhood, Moore neighborhood 26 neighbors

sharp 2-neighborhood, 12 neighbors

sharp 3-neighborhood 8 neighbors

4D case

1-neiborhood von Neumann	2-neiborhood	3-neiborhood	4-neiborhood Moore						
sharp 1	sharp 1 + sharp 2	sharp 1 + sharp 2 + sharp 3 = 2-neighborhood + sharp 3	sharp 1 + sharp 2 + sharp 3 + sharp 4 = 3-neighborhood + sharp 4						
Sharp neighborhoods									
Sharp 1	Sharp 2	Sharp 3	Sharp 4						
(-1,0,0,0), (1,0,0,0), (0,-1,0,0), (0,1,0,0), (0,0,-1,0), (0,0,1,0), (0,0,0,-1), (0,0,0,1) <u>8 neighbors</u>	(-1,-1,0,0), $(-1,1,0,0)$, $(1,-1,0,0)$, $(1,-1,0,0)$, $(1,1,0,0)$, $(-1,0,-1,0)$, $(-1,0,1,0)$, $(1,0,-1,0)$, $(1,0,0,-1)$, $(-1,0,0,1)$, $(1,0,0,-1)$, $(1,0,0,1)$, $(0,-1,-1,0)$, $(0,-1,1,0)$, $(0,1,-1,0)$, $(0,-1,0,1)$, $(0,1,0,-1)$, $(0,1,0,1)$, $(0,0,-1,1)$, $(0,0,-1,1)$, $(0,0,-1,1)$, $(0,0,-1,1)$, $(0,0,-1,1)$, $(0,0,1,-1)$, $(0,0,1,1)$	(-1,-1,-1,0), $(-1,-1,1,0)$, $(-1,1,-1,1,0)$, $(-1,1,-1,0)$, $(-1,1,-1,0)$, $(1,-1,-1,0)$, $(1,-1,-1,0)$, $(1,-1,-1,0)$, $(1,1,-1,0)$, $(1,1,-1,0)$, $(-1,1,0,-1)$, $(-1,1,0,1)$, $(-1,1,0,-1)$, $(-1,1,0,1)$, $(1,-1,0,-1)$, $(1,1,0,-1)$, $(1,1,0,-1)$, $(-1,0,-1,1)$, $(-1,0,-1,-1)$, $(-1,0,1,1)$, $(-1,0,1,-1)$, $(-1,0,1,1)$, $(1,0,-1,-1)$, $(1,0,-1,1)$, $(1,0,1,-1)$, $(0,-1,-1,1)$, $(0,-1,1,-1)$, $(0,-1,1,1)$, $(0,1,-1,-1)$, $(0,1,-1,1)$, $(0,1,-1,1)$, $(0,1,-1,1)$, $(0,1,1,-1)$, $(0,1,1,1)$	(-1,-1,-1,-1), (-1,-1,-1,1), (-1,-1,1,1), (-1,-1,1,1), (-1,1,-1,1), (-1,1,1,-1), (-1,1,1,1), (1,-1,-1,-1), (1,-1,-1,1), (1,-1,1,1), (1,-1,1,1), (1,-1,1,1), (1,1,-1,1), (1,1,-1,1),						

(1, 1, 1, 1)

16 neighbors

Tasks solved

The number of neighbors in k-neighborhood for d-dimensional lattice counted for:

- Infinite lattice
- Finite hypercubes and hypertoruses
- k-neighborhood of radius r

Connection with oeis.org

- The On-Line Encyclopedia of Integer Sequences
- OEIS A005843 von Neumann
- OEIS A024023 Moore
- OEIS A013609 sharp k-neigborhood
- New: OEIS A265014 k-neigborhood
- New: OEIS A266213 sharp, radius r, diamond shaped
- OEIS A008288 Delannoy numbers partial sums of a new OEIS A266213

Generator of canvas for finite grids

https://github.com/dazeorgacm/hmn

k-neighborhood in finite d-cubes

An example of 2-neighborhood in a 3-cube

on 2-cube bound, (a square) 13 neighbors

on 1-cube bound, (a segment) 9 neighbors

on 0-cube bound, (a point) 6 neighbors

Neighborhoods of radius r

Moore's – for k=d, an example for d=3

r=1 26 neighbors

r=2 124 neighbors

r=3 342 neighbors

Neighborhoods of radius r

Narrow von Neumann's – for k=1, an example for d=3

r=1
6 neighbors

r=2 12 neighbors

r=3 18 neighbors

Neighborhoods of radius r

Diamond-shaped von Neumann's – Manhattan distance r, an example for d=3

r=1
6 neighbors

r=2 24 neighbors

r=3 56 neighbors

k-neighborhoods of radius r

An example of 2-neighborhood in 3-dimensional lattice

r=1 18 neighbors

r=2 60 neighbors

r=3 126 neighbors

List of derived formulae

- K(d,k) number of neighbors in a kneighborhood
- M(d,k,m) number of neighbors in a kneighborhood for a cell situated at a (d - m)-cube bound
- T(d,k,n) the number of connections for a kneighborhood in a d-dimensional lattice of size n
- R_{diamond} (d, r) number of neighbors in a diamond-shaped neighborhood of radius r
- R(d, k, r) number of neighbors in a kneighborhood of radius r

2-neighborhood in 3-dimensional case

$$(0,0,-1), (0,0,1), (0,-1,0), (0,1,0), (-1,0,0), (1,0,0),$$

 $(0,-1,-1), (0,-1,1), (0,1,-1), (0,1,1), (-1,0,-1), (-1,0,1),$
 $(1,0,-1), (1,0,1), (-1,-1,0), (-1,1,0), (1,-1,0), (1,1,0)$

Number of neighbors in *k*-neighborhood

$$\hat{K}(d,k) = |S(d,k)| = 2^k C_d^k$$
 Known OEIS A013609

$$K(d,k) = |G(d,k)| = \sum_{j=1}^{k} \hat{K}(d,j) = \sum_{j=1}^{k} 2^{j} C_{d}^{j}$$

$$K(d,k) = K(d,k-1) + K(d-1,k) + K(d-1,k-1) - 2K(d-1,k-2),$$

$$K(d,k) = 2K(d-1,k-1) + K(d-1,k) + 2.$$

A new OEIS sequence OEIS A265014

Number of Neighbors

Table 1 The number of (d-k)-cube bounds in a d-hypercube – the number of neighbors in a sharp k-neighborhood.

d k	1	2	3	4	5	6	7	8	
1	2								
2	4	4							
3	6	12	8						
4	8	24	32	16					
5	10	40	80	80	32				
6	12	60	160	240	192	64			
7	14	84	280	560	672	448	128		
8	16	112	448	1120	1792	1792	1024	256	

Table 2 The number of neighbors in a generalized k-neighborhood, from von Neumann's (k = 1) to Moore's (k = d).

d	1	2	3	4	5	6	7	8	
1	2								
2	4	8							
3	6	18	26						
4	8	32	64	80					
5	10	50	130	210	242				
6	12	72	232	472	664	728			
7	14	98	378	938	1610	2058	2186		
8	16	128	576	1696	3488	5280	6304	6560	
•••									

Finite hypercube

Von Neumann

Moore

2-neighborhood in 3-dimensional case

Number of neighbors and connections

$$\hat{M}(d, k, m) = \sum_{\substack{k_1 + k_2 = k \\ k_1 \le m \\ k_2 \le d - m}} C_m^{k_1} C_{d-m}^{k_2} 2^{k_2}$$

$$M(d, k, m) = \sum_{j=1}^{k} \hat{M}(d, j, m) = \sum_{j=1}^{k} \sum_{j_1 = \max(0, m+j-d)}^{\min(j, m)} C_m^{j_1} C_{d-m}^{j-j_1} 2^{j-j_1}$$

$$T(d, k, n) = \frac{\sum_{m=0}^{d} C_d^m 2^m (n-2)^{d-m} M(d, k, m)}{2}$$

Radius

Decomposition of Delannoy numbers

$$\hat{R}_{diamond}(d,r) = \sum_{k=1}^{\min(d,r)} C_{r-1}^{k-1} C_d^k 2^k$$

A new OEIS sequence OEIS A266213

$$R_{diamond}(d,r) = \sum_{k=1}^{\min(d,r)} C_r^k C_d^k 2^k$$

$$D(d, r) = R_{diamond}(d, r) + 1$$
 Known OEIS A008288

Number of neighbors in a generalized k-neighborhood of radius r

$$R(d, k, r) = \sum_{j=1}^{\kappa} C_d^{j} (2r)^{j}$$

$$R(3,2,2) = C_3^1 4^1 + C_3^2 4^2 = 3 \cdot 4 + 3 \cdot 16 = 60$$

$$(-2,-2,0), (-2,2,0), (2,-2,0), (2,2,0), (-2,0,-2), (-2,0,2),$$

$$(2,0,-2), (2,0,2), (0,-2,-2), (0,-2,2), (0,2,-2), (0,2,2),$$

$$(-2,-1,0), (-2,1,0), (2,-1,0), (2,1,0), (-2,0,-1), (-2,0,1),$$

$$(2,0,-1), (2,0,1), (0,-2,-1), (0,-2,1), (0,2,-1), (0,2,1),$$

$$(-1,-2,0), (-1,2,0), (1,-2,0), (1,2,0), (-1,0,-2), (-1,0,2),$$

$$(1,0,-2), (1,0,2), (0,-1,-2), (0,-1,2), (0,1,-2), (0,1,2).$$

Conclusions

- k-neighborhood introduced in d-dimensional lattice
- its extreme cases give von Neumann's (sparsest) and Moore's (densest) neighborhoods
- number of neighbors counted for infinite lattice and finite hypercubes and hypertoruses
- number of neighbors counted for k-neighborhoods of radius r
- two new sequences A265014 and A266213 accepted by OEIS; partials sums of A266213 produce Delannoy numbers

Future research directions

- Modify and adjust ts
- Register new OEIS sequences
- Routing via CA
- Combine hypertorus, hypercube with meshes
- Use 2 parameters: (k,k')-neighborhood
- Use reverse definition of k'-neigborhood decreasing from Moore neighborhood
- Specify sequences using hypergeometric

