

M. Sc. Bionics Engineering

ADVANCED MATERIALS FOR BIONICS LECTURE 2: MATERIALS STRUCTURE 1

BONDING

Prof. Francesco Greco

AY 2024-25

L2 - 27.09.2024

Course SECTIONS

Section 1:

Refresh of Basics Materials Science (Lectures ≈ 2 - 10)

- Materials structure & properties
- Materials classes

Section 2:

Advanced Concepts

+ Technology &Bionics applications (Lectures ≈11 - 18)

- Biological materials science
- Bioinspiration biomimetics
- Smart materials
- Nanotechnology
- Fab/patterning
- Additive Manufacturing
- Robotics
- Bioelectronics
- Biomedicine

MATERIALS STRUCTURE

QUESTIONS

 What characteristics of atoms/molecules promote interatomic/intermolecular bonding?

 What types of interatomic/intermolecular bonds exist?

 What properties of materials depend on the magnitude of interatomic/intermolecular bonds?

Francesco Greco

Advanced Materials for Bionics

TED-Ed and Periodic Videos

TEDEd TED

A lesson about every single element on the periodic table

Created by the Periodic Videos team using the TED-Ed platform.

+ Lanthanide Series

* Actinide Series

Alkali Metals

Alkaline Earth Metals

Transitions Metals

Other Metals

Rare Earth Metals

Non-Metals

L2.1

INTERATOMIC BONDS

Francesco Greco

THE PERIODIC TABLE

Elements in each column: Similar valence electron structure

Electropositive elements:

Readily give up electrons to become + ions

Electronegative elements:

Readily acquire electrons to become - ions

Francesco Greco

Advanced Materials for Bionics

ELECTRONEGATIVITY

- Ranges from 0.7 to 4.0,
- Large values: tendency to acquire electrons.

IA																	0
Н																	He
2.1	IIA											IIIA	IVA	VA	VIA	VIIA	_
Li	Be											В	C	N	0	F	Ne
1.0	1.5											2.0	2.5	3.0	3.5	4.0	_
Na	Mg							VIII				Αl	Si	Р	S	Cl	Ar
0.9	1.2	IIIB	IVB	VB	VIB	VIIB				IB	IIB	1.5	1.8	2.1	2.5	3.0	_
K	Ca	Sc	Ti	٧	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
0.8	1.0	1.3	1.5	1.6	1.6	1.5	1.8	1.8	1.8	1.9	1.6	1.6	1.8	2.0	2.4	2.8	_
Rb	Sr	Υ	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	-	Xe
0.8	1.0	1.2	1.4	1.6	1.8	1.9	2.2	2.2	2.2	1.9	1.7	1.7	1.8	1.9	2.1	2.5	_
Cs	Ва	La-Lu	Hf	Ta	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Ро	At	Rn
0.7	0.9	1.1-1.2	1.3	1.5	1.7	1.9	2.2	2.2	2.2	2.4	1.9	1.8	1.8	1.9	2.0	2.2	_
Fr	Ra	Ac-No															
0.7	0.9	1.1-1.7															

—

Smaller electronegativity

Larger electronegativity

Francesco Greco

Advanced Materials for Bionics

ELECTRONEGATIVITY

From J. E. Brady and F. Senese, Chemistry: Matter and Its Changes, 4th edition, 2004. This material is reproduced with permission of John Wiley & Sons, Inc.

BONDING FORCE

$$F_N = F_A + F_R$$

 r_0 equilibrium distance

$$F_A + F_R = 0$$

Francesco Greco

BONDING ENERGY

BONDING ENERGY AND MATERIALS

 $\rightarrow E_0$ 2 atoms bonding energy

In solids? Many atoms, much more complex!

But analogous E_{Ω} can be defined for each atom in a solid

IN APPENDIX Cohesive energy

E(r) , E_0 depend on type of interatomic bond

Many properties of materials depend on E(r), E_0

- phase (gas, liquid, solid)
- melting temperature T_m
- Elastic modulus
- thermal exp. coeff.

HydrogenVan der Waals

L2.1.1

PRIMARY INTERATOMIC BONDS

IONIC BONDING

$$E_A = -\frac{A}{r} \qquad A = \frac{(|Z_1|e)(|Z_2|e)}{4\pi\varepsilon_0}$$

Coulomb's law

$$E_R = \frac{B}{r^n}$$
 typ. $n \approx 8$
B: experimentally determined

- Btw. metal and non-metal
- non-directional bond
- High E (600 1500 KJ/mol)
- High T_m (melting)

IONIC BONDING

Predominant bonding in Ceramics

Larger electronegativity

Smaller electronegativity

IONIC BONDING

Predominant bonding in Ceramics

- hard and brittle
- electrically and thermally insulative

Bonding Energies and Melting Temperatures for Various Substances

Substance	Bonding Energy (kJ/mol)	Melting Temperature (°C)			
	Ionic				
NaCl	640	801			
LiF	850	848			
MgO	1000	2800			
CaF ₂	1548	1418			

COVALENT BONDING

- Similar electronegativities share electrons
- Bonds involve valence electrons normally s and p orbitals are involved

directional bonding

Fig. 2.12, Callister & Rethwisch 10e.

molecular orbitals

Proper phys. description

Molecules of non-metal elements: H₂, Cl₂, F₂

Heteroatomic molecules: HNO₃, CH₄, H₂0,...

Solid elements: C (diamond), Si, Ge, Bi

Compounds: AsGa, InSb, SiC,...

COVALENT BONDING

MATERIALS with COVALENT BONDING

Great variability!

C (diamond) $T_m = 3550$ °C

AAAS Science

commons.wikimedia.org

Electrical properties: insulators or semiconductors

Mech. Properties: difficult prediction of typ properties!

Substance	Bonding Energy (kJ/mol)	Melting Temperature (°C)
	Ionic	
NaCl	640	801
LiF	850	848
MgO	1000	2800
CaF ₂	1548	1418
	Covalent	
Cl ₂	121	-102
Si	450	1410
InSb	523	942
C (diamond)	713	>3550
SiC	1230	2830
	Metallic	
Hg	62	-39
Al	330	660
Ag	285	962
W	850	3414
	van der Waalsª	
Ar	7.7	–189 (@ 69 kPa)
Kr	11.7	-158 (@ 73.2 kPa)
CH ₄	18	-182
Cl ₂	31	-101
	Hydrogen <u>a</u>	
HF	29	-83
NH ₃	35	-78
H ₂ O	51	0

COVALENT BONDING: BOND HYBRIDIZATION IN CARBON

electronic configuration C: 1s²2s²2p²

Fig. 2.13, Callister & Rethwisch 10e.

Francesco Greco

Advanced Materials for Bionics

COVALENT BONDING: BOND HYBRIDIZATION IN CARBON

electronic configuration C: 1s²2s²2p²

Fig. 2.13, Callister & Rethwisch 10e.

Carbon can form

4 degenerate sp³ hybrid orbitals

Fig. 2.14, Callister & Rethwisch 10e. (Adapted from J.E. Brady and F. Senese, Chemistry: Matter and Its Changes, 4th edition. Reprinted with permission of John Wiley and Sons, Inc.)

sp³ Hybridization in Carbon

Hybrid *sp*³ bonding involving carbon

Electronegativities of C and H are similar so electrons are shared in sp^3 hybrid covalent bonds.

- angle btw adjacent bonds: 109.5°
- zig-zag main chain in polymers!

Example: CH₄

Fig. 2.15, Callister & Rethwisch 10e. (Adapted from J.E. Brady and F. Senese, Chemistry: Matter and Its Changes, 4th edition. Reprinted with permission of John Wiley and Sons, Inc.)

sp² Hybridization in Carbon

3 degenerate sp² hybrid orbitals (in plane) 1 pz orbital (out of plane)

Chemistry: Matter and Its Changes, 4th edition, 2004. Reprinted with permission of John Wiley & Sons, Inc.

HYBRIDIZATION AND CARBON ALLOTROPES

Bonding Energies and Melting Temperatures for Various Substances

Substance	Bonding Energy (kJ/mol)	Melting Temperature (°C)			
	Ionic				
NaCl	640	801			
LiF	850	848			
MgO	1000	2800			
CaF ₂	1548	1418			
	Covalent				
Cl ₂	121	-102			
Si	450	1410			
InSb	523	942			
C (diamond)	713	>3550			
SiC	1230	2830			

Francesco Greco

Advanced Materials for Bionics

METALLIC BONDING

Electrons delocalized to form an "electron cloud"

Complete picture: electron levels in a periodic potential

BAND structure

as studied in Physics subjects: Structure of Matter, Solid State Physics

METALLIC BONDING

- non-directional bonding
- Typ in groups IA, IIA, metals
- as a consequence of free electrons, metals are good electrical and thermal conductors
- ductile rupture at rt (=rupture after large permanent deformation)
- E₀, T_m not so high as in ionic
- Exceptions, e.g. W

Substance	Bonding Energy (kJ/mol)	Melting Temperature (°C)				
	Ionic					
NaCl	640	801				
LiF	850	848				
MgO	1000	2800				
CaF ₂	1548	1418				
	Covalent					
${\rm Cl}_2$	121	-102				
Si	450	1410				
InSb	523	942				
C (diamond)	713	>3550				
SiC	1230	2830				
	Metallic					
Hg	62	-39				
Al	330	660				
Ag	285	962				
W	850	3414				
	van der Waals ^{<u>a</u>}					
Ar	7.7	-189 (@ 69 kPa)				
Kr	11.7	-158 (@ 73.2 kPa)				
CH ₄	18	-182				
Cl ₂	31	-101				
	Hydrogen <u>a</u>					
HF	29	-83				
NH ₃	35	-78				
H ₂ O	51	0				

Substance	Bonding Energy (kJ/mol)	Melting Temperature (°C)				
	Ionic					
NaCl	640	801				
LiF	850	848				
MgO	1000	2800				
CaF ₂	1548	1418				
	Covalent					
Cl ₂	121	-102				
Si	450	1410				
InSb	523	942				
C (diamond)	713	>3550				
SiC	1230	2830				
	Metallic					
Hg	62	-39				
Al	330	660				
Ag	285	962				

Francesco Greco

Advanced Materials for Bionics

L2.1.2

SECONDARY BONDS

- extremely weaker than primary
- typ. 4-30 KJ/mol
- always present btw. atoms, molecules! but sometimes negligible in presence of primary bonding
- intermolecular

van der Waals forces

due to dipolar interactions between atoms, molecules

Atomic or molecular dipoles

1. Fluctuating Induced Dipole Bonds (Dispersion Forces)

attractive forces, which are temporary and fluctuate with time, may exist between large numbers of atoms or molecules

- liquefaction of inert gases and other electrically neutral and symmetric molecules (H₂, Cl₂, ...)
- extremely low melting and boiling temperatures
- of all possible intermolecular bonds, these are the weakest

2. Polar Molecule-Induced Dipole Bonds

polar molecule: a molecule having a pemanent dipole moment, due to asymettric arrangement of positive and negative charges

bonding E larger than for fluctuating induced dipole

3. Permanent Dipole Bonds

bonding E significantly greater than induced dipoles

SPECIAL CASE: Hydrogen BONDING

strongest secondary bonding (E up to 51 KJ/mol)

VDW FORCES IN ACTION!

(08:54)

YOUTUBE VIDEO - Be Smart Channel «The Lizard That Uses Nanotechnology to Walk Upside Down"

https://youtu.be/p6QmV1EbVnI

HYDROGEN BONDING: WATER

- extremely important for water properties!
- biomaterials

$$H^{\delta+}$$
 O
 O
 δ
 δ
 H
 δ
 δ
 δ
 δ

Hydrogen Bonding

YOUTUBE VIDEO (09:00)
Hydrogen bonding and common mistakes

https://youtu.be/PyC5r2mB4d4

QUESTION

Why do icebergs float?

WHY DOES ICE FLOAT IN WATER?

https://youtu.be/UukRgqzk-KE

WATER DENSITY AND CN

CN: 4

d=0.917 g/ml

CN: 4.5

d=1.0 g/ml

HYDROGEN BONDING: POLYMERS

Polypeptides (Proteins)

THE CELL, Fourth Edition, Figure 2.19 © 2006 ASM Press and Sinauer Associates, Inc.

HYDROGEN BONDING: POLYMERS

Polysaccharides: Cellulose

- polymer-polymer interaction
- polymer-water interaction

Cellulose molecular chains

Frontiers En. Res. 2021 https://doi.org/10.3389/fenrg.2021.608825

HYDROGEN BONDING: POLYMERS

DNA

DNA strands (double helix) are held together by H-bond btw. bases

Francesco Greco

Substance	Bonding Energy (kJ/mol)	Melting Temperature (°C)
	van der Waalsª	
Ar	7.7	-189 (@ 69 kPa)
Kr	11.7	-158 (@ 73.2 kPa)
CH ₄	18	-182
Cl_2	31	-101
	Hydrogen ^{<u>a</u>}	
HF	29	-83
NH ₃	35	-78
H ₂ O	51	0

Molecules: Condensed States

- liquid and solid state of molecules:
 - \circ elemental diatomic molecules (F_2 , O_2 , H_2 , I_2 etc.)
 - compounds (H₂O, CO₂, HNO₃, C₆H₆, CH₄, etc.)
- bonds between molecules are weak secondary ones

van der Waals forces
dipole-dipole interactions
quadrupole interactions
π-π interactions
hydrogen bonding/halogen bonding
London dispersion forces

Ex: Sucrose

physicsstackexchange.org

Molecular Solids

- small molecules: soft, often volatile, low T_m , electrical insulators
- larger molecules: less volatile, higher T_m
- extreme: modern polymers

dispersion forces increase with the larger number of atoms

Melting points of some molecular solids[41][42] hide		
Formula	T _m °C	
<u>H</u> ₂	-259.1	
<u>F</u> ₂	-219.6	
<u>O</u> 2	-218.8	
<u>N</u> ₂	-210.0	
CH ₄	-182.4	
<u>C₂H₆</u>	-181.8	
<u>C₃H₈</u>	-165.0	
<u>C₄H₁₀</u>	-138.3	
<u>C₅H₁₂</u>	-129.8	
<u>Cl₂</u>	-101.6	
<u>C₆H₁₄</u>	-95.3	
<u>HBr</u>	-86.8	
<u>HF</u>	-80.0	
NH ₃	-80.0	
<u>HI</u>	-50.8	
<u>C₁₀H₂₂</u>	-29.7	
<u>HCI</u>	-27.3	
Br ₂	-7.2	
<u>H₂O</u>	0.0	
<u>C₆H₆</u>	5.5	
<u>l</u> 2	113.7	
<u>S</u> ₈	119.0	
C ₆ Cl ₆	220.0	

MIXED BONDING

Most common mixed bonding type is Covalent-Ionic mixed bonding

% ionic character =
$$\left(1 - e^{-\frac{(X_A - X_B)^2}{4}}\right) x (100 \%)$$

 X_A , X_B : electronegativities of the two elements participating in the bond

Example: MgO
$$X_{Mg} = 1.2$$

 $X_{O} = 3.5$

% ionic character =
$$\left(1 - e^{-\frac{(3.5-1.2)^2}{4}}\right) x (100\%) = 73.3\%$$

A SIMPLE RECAP ON INTERMOLECULAR FORCES

YOUTUBE VIDEO (10:55)
Channel «Professor Dave explains»
Intermolecular Forces and Boiling Points

https://youtu.be/08kGgrqaZXA

L2.1.3

Bonds and Materials Classes

Mixed Bonding – Materials Classes

Bonding tetrahedron

Materials-type tetrahedron

Properties Related to Bonding I: Melting Temperature (T_M)

• Bond length, *r*

Bond energy, E_o

Melting Temperature, T_m

The larger E_o , the higher T_m

Properties Related to Bonding II:

COEFF. OF THERMAL EXPANSION

$$T_1 < T_2$$

$$\frac{\Delta L}{L_0} = \alpha_l (T_2 - T_1)$$

The smaller E_0 , the larger α_l

- increase in bond length due to asymmetry of the E (r) curve \rightarrow incr. α_I
- as E_0 increases this asymmetry decreases

SOLIDS & PROPERTIES

classifications of solids based on bonding

- var. T_m
- var. hardness
- conductors

rel. high T_m

semiconductors

hard

insul/

Metallic solids

Extended networks of atoms held together by metallic bonding (Cu, Fe)

Covalent-network solids

Extended networks of atoms held together by covalent bonds (C, Si)

- high T_m
- hard, brittle
- insulators

Ionic solids

Extended networks of ions held together by ion–ion interactions (NaCl, MgO)

- low T_m
- insulators

Molecular solids

Discrete molecules held together by intermolecular forces (HBr, H₂O)

SOLIDS & PROPERTIES

classifications of solids based on materials classes

Ceramics

(Ionic & covalent bonding):

Large bond energy high T_m large E small α_l

Metals

(Metallic bonding):

Variable bond energy moderate T_m moderate E moderate α_l

Polymers

(Covalent & Secondary):

```
Weak bond energy (between chains) Secondary bonding responsible for most physical properties low T_m small E large \alpha_l
```


SOLID OR LIQUID?

YOUTUBE video 1 https://youtu.be/2mYHGn Pd5M?t=13

YOUTUBE video 2 https://youtu.be/BleCJJAKkgw?t=4

"Normal" condensed matter

More on this in next lectures

"Soft" condensed matter

....more difficult to classify

SUMMARY L2

- A material's chemical, electrical, thermal, and optical properties are determined by electronic configuration (valence electrons in outermost unfilled shells).
- **Primary bonding** types include: covalent, ionic, and metallic bonding.
- Secondary or van der Waals bonds are weaker than the primary bonding types.
- The percent ionic character of a covalent-ionic mixed bond between two elements depends on their electronegativities.
- Knowing the bonding in a solid we can have a rough estimate of its properties

Additional Resources, Readings

VIDEO/INTERACTIVE RESOURCES:

• The Periodic Videos, by TEDEd – https://ed.ted.com/periodic-videos
a video for each element of the periodic table!

- Youtube video «Hydrogen bonding and common mistakes https://youtu.be/PyC5r2mB4d4
- just for fun...tons of funny/instructive videos on YouTube about «strange» fluids: non-newtonian fluids, magnetorheological, electrorheological fluids

READINGS:

Callister Rethwisch – Chapter 2

ADDITIONAL RESOURCES

for going much more in depth (not necessary for the exam!)

Molecular Solid - WIKIPEDIA

Madelung Constant (Ionic solids) - WIKIPEDIA

Bulk modulus (microscopic origin)- WIKIPEDIA

COHESIVE ENERGY IN SOLIDS

SLIDES from Course «Solid State Physics», Prof. Peter Hadley, TUGraz

ΚI

3.1.3 From the interatomic potential (pair of atoms) to the cohesive energy (the crystal)

Cohesive energy (neglecting kinetic energy of the noble gas atoms):

$$U_{tot} = \frac{1}{2}N4\varepsilon \left\{ \sum_{j} \left(\frac{\sigma}{p_{ij}R} \right)^{12} - \sum_{j} \left(\frac{\sigma}{p_{ij}R} \right)^{6} \right\} \begin{array}{l} \textit{Independent of the chosen "i" !} \\ \textit{with:} \\ \textit{r}_{ij} = p_{ij}R \end{array}$$

add energetic contributions of all atoms, but avoid double counting

distance between reference atom i and all other atoms (R ... nearest-neighbor distance)

Evaluate for fcc structure:
$$\sum_{j}^{'} \frac{1}{p_{ij}^{12}} = 12.1318$$
 $\sum_{j}^{'} \frac{1}{p_{ij}^{6}} = 14.4539$

Close to number of nearest neighbors in fcc structure (i.e., 12)

→ the nearest neighbours count primarily !

Fundamentals of Solid State Physics

RESERVE SLIDES

Atoms, orbitals

3 p orbitals

Francesco Greco

Advanced Materials for Bionics

AN 11

Francesco Greco

Advanced Materials for Bionics

From K. M. Ralls, T. H. Courtney, and J. Wulff, *Introduction to Materials Science and Engineering*, p. 22. Copyright © 1976 by John Wiley & Sons, New York. Reprinted by permission of John Wiley & Sons, Inc.

Francesco Greco

Advanced Materials for Bionics

Adapted from W. G. Moffatt, G. W. Pearsall, and J. Wulff, *The Structure and Properties of Materials*, Vol. I, *Structure*, John Wiley & Sons, 1964. Reproduced with permission of Janet M. Moffatt.