Dependent Variable: Homicide Rate per 100,000 inhabitants

 $Panel\ A \colon Log(Municipality\ Employees\ in\ 2006)$

	100km		75km		$50 \mathrm{km}$	
	(1)	(2)	(3)	(4)	(5)	(6)
Spillover	-9.049 (12.97) [0.575]	-6.980 (11.05) [0.598]	-0.459 (10.92) [0.968]	2.105 (9.001) [0.791]	-14.12 (11.43) [0.076]	-11.42 (10.79) [0.072]
Spillover \times High Capacity	3.143* (1.218) [0.158]	2.831* (0.923) [0.157]	1.940* (0.726) [0.165]	1.564* (0.638) [0.173]	2.948 (2.023) [0.138]	$ \begin{array}{c} 2.548 \\ (2.040) \\ [0.134] \end{array} $
Log Population		15.08 (16.50) [0.644]		15.42 (20.00) [0.649]		22.32 (19.94) [0.554]

Panel B: Log(Municipality Employees in 2006 > Median)

	Tance D. Log(Maniespassing Employees in 2000 > Median)							
	$100 \mathrm{km}$		$75 \mathrm{km}$		$50 \mathrm{km}$			
Spillover	2.572 (6.887) [0.924]	3.281 (6.423) [0.922]	4.170 (7.257) [0.933]	4.821 (6.765) [0.926]	-2.372 (3.596) [0.522]	-1.527 (2.965) [0.626]		
Spillover \times High Capacity	13.51** (2.393) [0.140]	12.35*** (1.174) [0.040]	11.07*** (1.043) [0.011]	10.11*** (1.431) [0.053]	10.20*** (0.690) [0.015]	9.121** (1.585) [0.045]		
Log Population		17.93 (16.52) [0.605]		15.65 (18.56) [0.664]		23.47 (17.01) [0.338]		
Municipality FE	Yes	Yes	Yes	Yes	Yes	Yes		
Year FE	Yes	Yes	Yes	Yes	Yes	Yes		
Observations	10,088	10,088	8,629	8,629	$6,\!655$	6,655		
R-squared	0.720	0.721	0.732	0.733	0.655	0.658		