Лекция 6

Основные методы интегрирования.

1) Непосредственное интегрирование

Заключается в нахождении неопределенных интегралов с помощью основных свойств неопределенных интегралов и таблицы интегралов.

Примеры:

1)
$$\int \left(\frac{4}{x} - x^3 + \sqrt{x} + \frac{1}{\sqrt[3]{x^2}}\right) dx = 4 \int \frac{dx}{x} - \int x^3 dx + \int x^{\frac{1}{2}} dx + \int x^{-\frac{2}{3}} dx = 4 \ln|x| - \frac{x^4}{4} + \frac{2x^{\frac{3}{2}}}{3} + 3x^{\frac{1}{3}} + C;$$

2)
$$\int \frac{dx}{x^2 + 5} = \int \frac{dx}{x^2 + (\sqrt{5})^2} = \frac{1}{\sqrt{5}} \ arctg \frac{x}{\sqrt{5}} + C.$$

Отметим, что переменную x, входящую в формулы $1 \div 12$, можно заменить любой другой.

Например, вместо $\int \cos x \, dx = \sin x + C$ можно написать $\int \cos t \, dt = \sin t + C$.

2) Замена переменной в неопределенном интеграле.

Этот метод основан на теореме:

Теорема. Пусть F(x)— первообразная функции f(x) на промежутке X, $x = \varphi(t)$ — дифференцируемая на промежутке T функция, значения которой принадлежат X. Тогда $F(\varphi(t))$ — первообразная функции $f(\varphi(t)) \cdot \varphi'(t)$, $t \in T$. Следовательно, $\int f(\varphi(t)) \cdot \varphi'(t) dt = \int f(x) dx$.

◄ Рассмотрим функцию F(x), где $x = \varphi(t)$, т.е. рассмотрим сложную функцию $F(\varphi(t))$.

 $F'(x) = \left(Fig(arphi(t)ig)
ight)' = fig(arphi(t)ig)\cdotarphi'(t) \implies F(x) = Fig(arphi(t)ig) -$ первообразная функции $fig(arphi(t)ig)\cdotarphi'(t)$, значит $\int fig(arphi(t)ig)\cdotarphi'(t)\,dt = Fig(arphi(t)ig) + C = F(x) + C = \int f(x)dx$, что и требовалось доказать.

Отсюда, если известен $\int f(x)dx = F(x) + C$, то $\int f(\varphi(t)) \cdot \varphi'(t)dt = F(\varphi(t)) + C$.

Эта формула позволяет свести нахождение интеграла $\int f(\varphi(t)) \cdot \varphi'(t) dt$ к нахождению интеграла $\int f(x) dx$.

Этот прием распадается на два случая:

А) Подведение под знак дифференциала.

Если подынтегральное выражение f(x)dx удалось представить в виде

$$f(x)dx = g(\varphi(x))\varphi'(x)dx$$
, тогда $\int f(x)dx = \int g(\varphi(x))\varphi'(x)dx$.

Полагая $\varphi(x) = t$, получим $\int f(x)dx = \int g(t)dt$.

Если первообразная g(x) известна и равна G(x), то

$$\int f(x)dx = \int g(t)dt = G(t) + C = G(\varphi(x)) + C, \text{ r.e.}$$

$$\int f(x)dx = \int g(\varphi(x)) \cdot \varphi'(x)dx = \int g(\varphi(x))d\varphi(x) = |\varphi(x)| = t = \int g(t)dt = G(t) + C = G(\varphi(x)) + C.$$

Примеры:

3)
$$\int \sin\frac{x}{5} dx = 5 \int \sin\frac{x}{5} \cdot \frac{1}{5} dx = 5 \int \sin\frac{x}{5} d\left(\frac{x}{5}\right) = \left|t = \frac{x}{5}\right| = 5 \int \sin t \, dt = -5 \cos t + C = -5 \cos\frac{x}{5} + C$$

$$4) \int \frac{dx}{3x+1} = |(3x+1)' = 3| = \frac{1}{3} \int \frac{3dx}{3x+1} = \frac{1}{3} \int \frac{d(3x+1)}{3x+1} = |t = 3x+1| = \frac{1}{3} \int \frac{dt}{t} = \frac{1}{3} \ln|t| + C = \frac{1}{3} \ln|3x+1| + C;$$

Вообще говоря, если

$$\int f(x)dx = F(x) + C, \quad \text{TO}$$

$$\int f(ax+b)dx = \frac{1}{a}F(ax+b) + C$$

5)
$$\int \frac{xdx}{1+x^4} = \left| \left(\frac{x^2}{2} \right)' = x \right| = \int \frac{\left(\frac{x^2}{2} \right)'dx}{1+x^4} = \frac{1}{2} \int \frac{\left(x^2 \right)'dx}{1+x^4} = \frac{1}{2} \int \frac{dx^2}{1+x^4} = |t = x^2| = \int \frac{dt}{1+t^2} = \frac{1}{2} \arctan t dt + C = \frac{1}{2} \arctan t dt + C;$$

6)
$$\int tg \, x \, dx = \int \frac{\sin x}{\cos x} dx = \int \frac{(-\cos x)'}{\cos x} dx = -\int \frac{d(\cos x)}{\cos x} = |\cos x = u| = -\int \frac{du}{u} = -\ln|u| + C = -\ln|\cos x| + C;$$

7)
$$\int e^{tg^{2}x} \frac{\sin x}{\cos^{3}x} dx = \int e^{tg^{2}x} tg x \frac{dx}{\cos^{2}x} = \int e^{tg^{2}x} tg x d tg x = |tg x = t| =$$

$$= \int e^{t^{2}} t dt = \int \frac{1}{2} e^{t^{2}} dt^{2} = |y = t^{2}| = \frac{1}{2} \int e^{y} dy = \frac{1}{2} e^{y} + C = \frac{1}{2} e^{t^{2}} + C = \frac{1}{2} e^{tg^{2}x} + C.$$

Б) Метод подстановки В других случаях в подынтегральное выражение f(x)dx непосредственно подставляют вместо x дифференцируемую функцию x = s(t) от новой переменной t и получают выражение

$$f(x)dx = f(s(t))s'(t)dt = g(t)dt.$$

Если $t = \omega(x)$ — обратная функция для x = s(t), то

$$\int f(x)dx = \int g(t)dt = G(t) + C = G(\omega(x)) + C.$$

Такой метод замены переменной называют также подстановкой.

Пример. Найти $\int x(2x+1)^{2017} dx$.

◄ Сделаем подстановку t = 2x + 1. Тогда x = (t - 1)/2, $dx = \frac{1}{2}dt$,

$$\int x(2x+1)^{2017} dx = \int \frac{t-1}{2} t^{2017} \frac{dt}{2} = \frac{1}{4} \int t^{2018} dt - \frac{1}{4} \int t^{2017} dt = \frac{t^{2019}}{4 \cdot 2019} - \frac{t^{2018}}{4 \cdot 2018} + C = \frac{t^{2019}}{4 \cdot 2018} + C = \frac{t^{2019}}{4$$

$$= \frac{\left(2x+1\right)^{2019}}{4 \cdot 2019} - \frac{\left(2x+1\right)^{2018}}{4 \cdot 2018} + C. \blacktriangleright$$

Пример.
$$\int \frac{\sqrt{x}dx}{1+x} = \begin{vmatrix} x = t^2; & \sqrt{x} = t \\ dx = 2tdt \end{vmatrix} = 2 \int dt - 2 \int \frac{dt}{1+t^2} = 2t - 2 \arctan t + C = 2\sqrt{x} - 2 \arctan \sqrt{x} + C$$

 $Пример. \int \sin x dx = -\cos x + C,$

$$\int \sin(x+1) dx = \int \sin(x+1) d(x+1) = -\cos(x+1) + C,$$

$$\int \sin(2x)dx = \frac{1}{2}\int \sin(2x)d(2x) = -\frac{1}{2}\cos 2x + C,$$

$$\int \sin(2x+1)dx = \frac{1}{2}\int \sin(2x+1)d(2x+1) = -\frac{1}{2}\cos(2x+1) + C.$$

3) Метод интегрирования по частям

Теорема. Пусть функции u(x) и v(x) имеют непрерывные производные u'(x) и v'(x). Тогда

$$\int u(x)v'(x)dx = u(x)v(x) - \int v(x)u'(x)dx.$$

или, короче,

$$\int udv = uv - \int vdu.$$

Эти формулы носят название формул интегрирования по частям.

Доказательство. По формуле дифференцирования произведения

$$(u(x)v(x))' = u'(x)v(x) + u(x)v'(x).$$

Возьмем неопределенный интеграл от обеих частей этого равенства:

$$\int (u(x)v(x))' dx = \int u'(x)v(x)dx + \int u(x)v'(x)dx.$$

ИЛИ

$$u(x)v(x) = \int u'(x)v(x)dx + \int u(x)v'(x)dx.$$

откуда

$$\int u(x)v'(x)dx = u(x)v(x) - \int v(x)u'(x)dx$$
$$\int udv = uv - \int vdu.$$

Формулы интегрирования по частям применяются к интегралам вида $\int x^n e^{\alpha x} dx, \int x^n \cos \beta x dx, \int x^n \sin \beta x dx, \int e^{\alpha x} \cos \beta x dx, \int e^{\alpha x} \sin \beta x dx, \int x^n \ln x dx$ и т.д.

Примеры.

1. Найти $\int xe^x dx$.

$$\blacktriangleleft \int xe^x dx = \begin{vmatrix} u = x, \\ du = dx \\ dv = e^x dx \end{vmatrix} = xe^x - \int e^x dx = xe^x - e^x + C. \blacktriangleright$$

2. Найти $\int x \sin x dx$.

3. Найти $\int \arctan x dx$.

$$\blacktriangleleft \int \operatorname{arctg} x dx = \begin{vmatrix} u = \operatorname{arctg} x, \\ du = \frac{dx}{1+x^2} \\ dv = dx \\ v = x \end{vmatrix} = x \cdot \operatorname{arctg} x - \int \frac{x dx}{1+x^2} = x \cdot \operatorname{arctg} x - \frac{1}{2} \ln(1+x^2) + C$$

Действительно,

$$\int \frac{xdx}{1+x^2} = \frac{1}{2} \int \frac{2xdx}{1+x^2} = \frac{1}{2} \int \frac{d(x^2+1)}{x^2+1} = \frac{1}{2} \ln(x^2+1) + C.$$

Замечание.

Вообще интегралы вида $\int x^k e^{ax} dx$, $\int x^k \cos ax \, dx$, $\int x^k \sin ax \, dx$, $k \in \mathbb{N}$, $a \in \mathbb{R}$ вычисляются последовательным применением метода интегрирования по частям k раз, причем за $u = x^k$.

$$4. \int x \ln x dx = \begin{vmatrix} u = \ln x; \ du = \frac{1}{x} dx \\ dv = x dx; \ v = \frac{x^2}{2} \end{vmatrix} = \frac{x^2}{2} \ln x - \int \frac{1}{2} x^2 \frac{1}{x} dx = \frac{1}{2} x^2 \ln x - \frac{1}{2} x^2 \ln x$$

Теорема. Если функция f(x) непрерывна на промежутке I, то f(x) имеет первообразную на промежутке I.

Замечание. Если производная любой элементарной функции снова является элементарной функцией, то первообразная элементарной функции не обязательно будет элементарной функцией. Например, неопределенные интегралы

$$\int e^{-x^2} dx, \int \frac{\sin x}{x} dx, \int \frac{\cos x}{x} dx, \int \frac{dx}{\ln x}$$

и другие не выражаются через элементарные функции. Операция взятия неопределенного интеграла приводит к появлению новых функций, не являющихся элементарными.