Linear Filters

• General process:

 Form new image whose pixels are a weighted sum of original pixel values, using the same set of weights at each point.

Properties

- Output is a linear function of the input
- Output is a shift-invariant function of the input (i.e. shift the input image two pixels to the left, the output is shifted two pixels to the left)

- Example: smoothing by averaging
 - form the average of pixels in a neighborhood
- Example: smoothing with a Gaussian
 - form a weighted average of pixels in a neighbourhood
- Example: finding a derivative
 - form a weighted average of pixels in a neighbourhood

Mean filtering

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

0	0		•				
0	20 40 60	40	60				
٠ آ	40			90	90		
0	60			90	90		
	40				10		
	V						
	0						
	Q						

F[x, y]

R[x,y]

Mean filtering

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

0	10	20	30	30	30	20	10	
0	20	40	60	60	60	40	20	
0	30	60	90	90	90	60	30	
0	30	50	80	80	90	60	30	
0	30	50	80	80	90	60	30	
0	20	30	50	50	60	40	20	
10	20	30	30	30	30	20	10	
10	10	10	0	0	0	0	0	
								·

F[x,y]

R[x,y]

Convolution

- Represent these weights as an image, H
- H is usually called the **kernel**
- Operation is called **convolution**
 - it's associative

- Notice wierd order of indices
 - all examples can be put in this form
 - it's a result of the derivation expressing any shift-invariant linear operator as a convolution.

Innear operator as a convolution.

$$(I) * (f)(x,y) \equiv \sum_{-\infty}^{\infty} \sum_{-\infty}^{\infty} I(x-u,y-v) \ f(u,v)$$

$$(I) * (f)(x,y) \equiv \sum_{-\infty}^{\infty} \sum_{-\infty}^{\infty} I(x-u,y-v) \ f(u,v)$$

Example: Smoothing by Averaging

Smoothing with a Gaussian

- Smoothing with an average actually doesn't compare at all well with a defocussed lens
 - Most obvious difference is that a single point of light viewed in a defocussed lens looks like a fuzzy blob; but the averaging process would give a little square.

 A Gaussian gives a good model of a fuzzy blob

An Isotropic Gaussian

• The picture shows a smoothing kernel proportional to

$$G_{\sigma}(x,y) = \frac{1}{2\pi\sigma^2} \exp\left(-\frac{(x^2+y^2)}{2\sigma^2}\right)$$

(which is a reasonable model of a circularly symmetric fuzzy blob)

Smoothing with a Gaussian

Differentiation and convolution

Recall

$$\frac{\partial f}{\partial x} = \lim_{\epsilon \to 0} \frac{f(x + \epsilon, y) - f(x, y)}{\epsilon}$$

• We could approximate this as

$$\frac{f(x_{n+1},y)-f(x_n,y)}{Dx}$$

• Now this is linear and shift invariant, so must be the result of a convolution.

(which is obviously a convolution; it's not a very good way to do things, as we shall see)

This is the same as a convolution, where the convolution kernel is

$$\mathcal{H} = \left\{ egin{array}{ccc} 0 & 0 & 0 \ 1 & 0 & -1 \ 0 & 0 & 0 \end{array}
ight\}$$

Finite differences

Noise

- Simplest noise model
 - independent stationary additive
 Gaussian noise
 - the noise value at each pixel is given by an independent draw from the same normal probability distribution

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}},$$

Issues

- this model allows noise values that could be greater than maximum camera output or less than zero
- for small standard deviations,
 this isn't too much of a
 problem it's a fairly good
 model
- independence may not be justified (e.g. damage to lens)
- may not be stationary (e.g. thermal gradients in the ccd)

sigma=1

sigma=16

Finite differences and noise

- Finite difference filters respond strongly to noise
 - obvious reason: image noise results in pixels that look very different from their neighbours
- Generally, the larger the noise the stronger the response

- What is to be done?
 - intuitively, most pixels in images look quite a lot like their neighbours
 - this is true even at an edge;
 along the edge they're similar,
 across the edge they're not
 - suggests that smoothing the image should help, by forcing pixels different to their neighbours (=noise pixels?) to look more like neighbours

Finite differences responding to noise

Increasing noise -> (this is zero mean additive gaussian noise)

Smoothing reduces noise

- Generally expect pixels to "be like" their neighbours
 - surfaces turn slowly
 - relatively few reflectance changes
- Generally expect noise processes to be independent from pixel to pixel

- Implies that smoothing suppresses noise, for appropriate noise models
- Scale
 - the parameter in the symmetric
 Gaussian
 - as this parameter goes up,
 more pixels are involved in the average
 - and the image gets more blurred
 - and noise is more effectively suppressed

Edges as Image Features

Gradients and edges

- Points of sharp change in an image are interesting:
 - change in reflectance
 - change in object
 - change in illumination
 - noise
- Sometimes called **edge points**

- General strategy
 - determine image gradient
 - now mark points where gradient magnitude is particularly large wrt neighbors (ideally, curves of such points).

$$\mathbf{G} = \sqrt{\mathbf{G}_x^2 + \mathbf{G}_y^2}$$

$$\Theta = \arctan\left(\frac{\mathbf{G}_y}{\mathbf{G}_x}\right)$$

Image gradient

$$\int_{S} \theta$$

$$\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right]$$

It points in the direction of most rapid change in intensity

 $abla f = \left[\frac{\partial f}{\partial x}, 0 \right]$ The gradient direction is given by:

$$\theta = \tan^{-1} \left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x} \right)$$

- how does this relate to the direction of the edge?

The *edge strength* is given by the gradient magnitude

$$\|\nabla f\| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$$

$$\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right]$$

Smoothing and Differentiation

- Issue: noise
 - smooth before differentiation
 - two convolutions to smooth, then differentiate?
 - actually, no we can use a derivative of Gaussian filter
 - because differentiation is convolution, and convolution is associative

1 pixel 3 pixels 7 pixels

The scale of the smoothing filter affects derivative estimates, and also the semantics of the edges recovered.

There are three major issues:

- 1) The gradient magnitude at different scales is different; which should we choose?
- 2) The gradient magnitude is large along thick trail; how do we identify the significant points?
- 3) How do we link the relevant points up into curves?

We wish to mark points along the curve where the magnitude is biggest. We can do this by looking for a maximum along a slice normal to the curve (non-maximum suppression). These points should form a curve. There are then two algorithmic issues: at which point is the maximum, and where is the next one?

While there are points with high gradient that have not been visited

Find a start point that is a local maximum in the direction perpendicular to the gradient erasing points that have been checked

while possible, expand a chain through the current point by:

- predicting a set of next points, using the direction perpendicular to the gradient
- finding which (if any) is a local maximum in the gradient direction
- testing if the gradient magnitude at the maximum is sufficiently large
- leaving a record that the point and neighbours have been visited

record the next point, which becomes the current point

end

end

Remaining issues

- Check that maximum value of gradient value is sufficiently large
 - drop-outs? use **hysteresis**
 - use a high threshold to start edge curves and a low threshold to continue them.

Notice

- Something nasty is happening at corners
- Scale affects contrast
- Edges aren't bounding contours

Scale Issues

fine scale high threshold

The Laplacian of Gaussian

- Another way to detect an extremal first derivative is to look for a zero second derivative
- Appropriate 2D analogy is rotation invariant
 - the Laplacian

$$(
abla^2 f)(x,y) = rac{\partial^2 f}{\partial x^2} + rac{\partial^2 f}{\partial y^2}$$

- Bad idea to apply a Laplacian without smoothing
 - smooth with Gaussian, applyLaplacian
 - this is the same as filtering with a Laplacian of Gaussian filter
- Now mark the zero points
 where there is a sufficiently
 large derivative, and enough
 contrast

The Laplacian of Gaussian

We still have unfortunate behaviour at corners

Corners

Types of windows

- Constant windows, where the grey level is approximately constant;
- Edge windows, where there is a sharp change in image brightness that runs along a single direction within the window;
- Flow windows, where there are several fine parallel stripes
 say hair or fur— within the window;
- And 2D windows, where there is some form of 2D texture
 say spots, or a corner within the window.

Harris Detector: Basic Idea

"flat" region: no change in all directions

"edge": no change along the edge direction

"corner": significant change in all directions

C.Harris, M.Stephens. "A Combined Corner and Edge Detector". 1988

Change of Intensity

The intensity change along some direction can be quantified by sum-of-squared-difference (SSD).

$$D(u, v) = \sum_{i, j} (I(i + u, j + v) - I(i, j))^{2}$$

Change Approximation

If u and v are small, by Taylor theorem:

$$I(i+u, j+v) \approx I(i, j) + I_x u + I_y v$$
 where
$$I_x = \frac{\partial I}{\partial x} \quad and \quad I_y = \frac{\partial I}{\partial y}$$

therefore

$$(I(i+u, j+v) - I(i, j))^{2} = (I(i, j) + I_{x}u + I_{y}v - I(i, j))^{2}$$

$$= (I_{x}u + I_{y}v)^{2}$$

$$= I_{x}^{2}u^{2} + 2I_{x}I_{y}uv + I_{y}^{2}v^{2}$$

$$= [u \quad v] \begin{bmatrix} I_{x}^{2} & I_{x}I_{y} \\ I_{x}I_{y} & I_{y}^{2} \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix}$$

Gradient Variation Matrix

$$D(u,v) = \begin{bmatrix} u & v \end{bmatrix} \begin{bmatrix} \sum I_x^2 & \sum I_x I_y \\ \sum I_x I_y & \sum I_y^2 \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix}$$

$$C = \begin{bmatrix} \sum I_x^2 & \sum I_x I_y \\ \sum I_x I_y & \sum I_y^2 \end{bmatrix}$$

Matrix *C* characterizes how intensity changes in a certain direction.

Eigenvalue Analysis – simple case

First, consider case where:

$$C = \begin{bmatrix} \sum I_x^2 & \sum I_x I_y \\ \sum I_x I_y & \sum I_y^2 \end{bmatrix} = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}$$

This means dominant gradient directions align with x or y axis

If either λ is close to 0, then this is **not** a corner, so look for locations where both are large.

Slide credit: David Jacobs

General Case

It can be shown that since C is symmetric:

$$C = Q^T \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} Q$$

So every case is like a rotated version of the one on last slide.

Corner Detection Summary

- if the area is a region of constant intensity, both eigenvalues will be very small.
- if it contains an edge, there will be one large and one small eigenvalue (the
 eigenvector associated with the large eigenvalue will be parallel to the
 image gradient).
- if it contains edges at two or more orientations (i.e., a corner), there will be two large eigenvalues (the eigenvectors will be parallel to the image gradients).

Corner Detection Algorithm

Algorithm

Input: image f, threshold t for λ_2 , size of Q

- Compute the gradient over the entire image f
- (2) For each image point p:
 - (2.1) form the matrix C over the neighborhood Q of p
 - (2.2) compute λ_2 , the smaller eigenvalue of C
 - (2.3) if $\lambda_2 \ge t$, save the coordinates of p in a list L
- (3) Sort the list in decreasing order of λ₂
- (4) Scanning the sorted list top to bottom: delete all the points that appear in the list that are in the same neighborhood Q with p

Orientation representations

- The gradient magnitude is affected by illumination changes
 - but it's direction isn't
- We can describe image patches by the swing of the gradient orientation

- Important types:
 - constant window
 - small gradient mags
 - edge window
 - few large gradient mags in one direction
 - flow window
 - many large gradient mags in one direction
 - corner window
 - large gradient mags that swing

