INT104 ARTIFICIAL INTELLIGENCE

L9- Unsupervised Learning I Clustering

Fang Kang Fang.kang@xjtlu.edu.cn

(A)

CONTENT

- ➤ K-Means
- K-means dusteringCentroid initialization methods
 - Parameters and Evaluation
- ➤ Hierarchical Clustering
- **▶** DBSCAN

(A)

Supervised learning

· The correct labels for each training example are known

O

Training data Supervised vs. unsupervised Unsupervised Training data Training data

.0 Semi-supervised

Unsupervised learning

Labels are unknown

Need to automatically discover the *clustering* pattern and structure in data

Real world clustering example

Clustering on text documents

Streaming services often use clustering analysis to identify viewers who have similar behavior.

®1

(O)

K-means clustering algorithm

Term first used by James MacQueen, 1967 Algorithm proposed by Stuart Lloyd, 1957, published in 1982.

K-means clustering algorithm

Goal: Assign all data points to 2 clusters

Step 1: Pick 2 random initial cluster centroids

Step 2: Paint the data points that are closer to red centroid red, and those closer to blue centroid blue

(A)

K-means clustering algorithm

Goal: Assign all data points to 2 clusters

Step 1: Pick 2 random initial cluster centroids

Step 2: Paint the data points that are closer to red centroid red, and those closer to blue centroid blue

Step 3: Update the positions of centroids
Red centroid := average of current red points
Blue centroid := average of current blue points

K-means clustering algorithm

Goal: Assign all data points to 2 clusters

Step 1: Pick 2 random initial cluster centroids

Step 2: Paint the data points that are closer to red centroid red, and those closer to blue centroid blue

Step 3: Update the positions of centroids
Red centroid := average of current red points
Blue centroid := average of current blue points

®

Repeat

(A)

K-means clustering algorithm

Step 2: Paint the data points that are closer to red centroid red, and those closer to blue centroid blue

Step 2: Paint the data points that are closer to red centroid red, and those closer to blue centroid blue

Step 1: Pick 2 random initial cluster centroids Goal: Assign all data points to 2 clusters

K-means clustering algorithm

Step 3: Update the positions of centroids
Red centroid := average of current led points
Blue centroid := average of current blue poin

Goal: Assign all data points to 2 clusters

Step 1: Pick 2 random initial cluster centroids

Step 3: Update the positions of centroids
Red centroid := average of current red points
Blue centroid := average of current blue points

Until no more pointes need to be repainted, i.e., the centroids no longer change

Clustering is done

(A)

®1

K-means formal definition

Given a dataset $\{x^{(1)},\cdots,x^{(m)}\}, x^{(i)}\in\mathbb{R}^n,$ and want to group the data into k clusters

1. Initialize k cluster centroids $\mu_1,\mu_2,\cdots,\mu_k\in\mathbb{R}^n$ randomly

Usually, Euclidean distance is the best option Assign x^(f) to the closest cluster j 2. Repeat until convergence: { $For \ i=1,\cdots,m: \\ c^{(i)}:=\arg\min_j \left\|x^{(i)}-\mu_j\right\|^2$

For $j = 1, \cdots, k$: $\mu_j := \frac{\sum_{i=1}^{m} 1(c^{(i)} = j)x^{(i)}}{\sum_{i=1}^{m} 1(c^{(i)} = j)}$

Update centroid μ_j with mean of all within-cluster data From a machine learning perspective, K-means minimize the cost function:

guaranteed to converge

 $J(c, \mu) = \sum_{i=1}^{m} ||x^{(i)} - \mu_{c^{(i)}}||^2$

(A)

How to initialize centroids?

Randomly pick k data points as the initial centroids Sometimes it leads to different clustering results

 $\sum_{j=1}^{k} |a_j - b_j|$

Solutions:

Run multiple times with different initializations and evaluate initializations and evaluate R-means++ (Arrhur & Vassilvitskii, 2007)

O

Arthur & Vassilvitskii, 2007 Better initialization with K-means++

How to choose K?

- Choose one centroid uniformly at random from data points
- For each $x^{(l)}$, compute $D(x^{(l)})$, the distance between $x^{(l)}$ and the nearest centroid that has already been chosen. 1.
- Choose one new data point at random as a new centroid, where the probability of choosing point $x^{(l)}$ is *proportional* to $D(x^{(l)})$. e.
 - Repeat until k centroids have been chosen.

©

By intuitive observation

Parameters and Evaluation

- The number of clusters k is a hyperparameter. How do we find a good k?
- 1. Elbow method:
- Start with a small k value and increase it until adding another cluster does not result in a much lower distortion value. In other words, the new cluster does not explain so much the variance in data
- 2. Silhouette Coefficient:
- A measure of how tight each cluster is and how far apart clusters are from each other Choose a value of k that results in clustering with a large silhouette coefficient

Silhouette /,siloo'et/: contour, outline

The Elbow Method

Choose k such that adding another cluster will not explain the variance in data by much (i.e. does not give a much lower distortion value)

.

0000 m

(A)

The Silhouette Coefficient

A good clustering algorithm: $\{\frac{high}{low} \text{ similarity } within \text{ cluster} \}$

silhouette coefficient Measures the tightness of clusters and separation between clusters:

$$S = \frac{1}{m} \sum_{i=1}^{m} s(x_i)$$

$$s(x_i) = \frac{b(x_i) - a(x_i)}{\max\{a(x_i), b(x_i)\}}$$

- $\alpha(x_i)$ is the average distance between x_i and all other points in the same cluster $b(x_i)$ is the average distance between x_i and all other points in the next neighbor cluster (i.e., the average distance to the nearest neighboring cluster) where:

The Silhouette Coefficient

Choose k that gives the highest mean silhouette

K-means: pros and cons

- Pros:
- Easy to implement
- Scales to very large datasets

• Cons:

- Difficult to choose K.
 Only works on spherical, convex clusters.

Hierarchical clustering

- Hierarchical Clustering is a set of clustering methods that aim at building a hierarchy of clusters
 - A cluster is composed of smaller clusters
- There are two strategies for building the hierarchy of clusters:
- Agglomerative (bottom-up): we start with each point in its own cluster and we merge pairs of clusters until only one cluster is formed.
- Divisive (top-down): we start with a single cluster containing the entire set of points and we recursively split until each point is in its own cluster.
- The most popular strategy in practical use is bottom-up (agglomerative)!

©

®(1)

Hierarchical clustering- Agglomerative

Hierarchical clustering example

Idea: make sure nearby data points end up in the same cluster

- Initialize a collection C of m singleton clusters, i.e., $c^{(\ell)}=\{x^{(\ell)}\}$ Reneat until only one should be supposed in the same of the same
 - Repeat until only one cluster is left:
 - Find a pair of clusters that is closest: $\arg\min_{i,j} D(c^{(i)},c^{(j)})$
 - Merge the two clusters $c^{(i)}$, $c^{(j)}$ into a new cluster $c^{(ikj)}$.
 Remove $c^{(i)}$, $c^{(j)}$ from the collection C, and add $c^{(ikj)}$ Produce a *dendrogram*: a hierarchical *tree* of clusters

Need to define *distance*

(A)

(A)

.0 Hierarchical clustering example In this case, distance between clusters is defined by the **closest** pair Dendrogram Distance

Hierarchical clustering

- Distance options:

 single linkage (closest pair):

 the minimum distance between samples in sub-clusters

 complete linkage (farthest pair):

 maximum distance between samples in sub-clusters

 average linkage (average of all pairs):

 average linkage (average of all pairs):

 clusters

 There are also other grouping strategies (such as centroid linkage)

Hierarchical clustering

Exercise Given the following table that shows the distance between samples ("city block distance"), using agglomerative clustering method with *single linkage*, draw the final dendrogram obtained.

city block distance : A (3,5) B(2,7) -> D(A,B) = |3-2|+|5-7|=3

(A)

Hierarchical clustering: pros and cons

Pros

- Hierarchical structure is more informative than flat clusters (K-means)
 Easier to decide the number of clusters

• Cons:

- Slow to compute. Time complexity $O(n^3)$. Sensitive to outliers, because it tries to connect all data points.

Density-based clustering

 $\label{local} \emph{Idea}: Clustering based on density (local clustering criterion), e.g., number of <math display="inline">\underline{\textit{densely}}$ connected points.

Most well-known algorithm: DBSCAN (Density-based spatial clustering of applications with noise)

Ester, et al (1996) DBSCAN

- DBSCAN classifies all points as core points, (density-)reachable points and outliers (or noise points):
- A point p is a core point if at least minPts points are within distance ɛ (e is the maximum radius)
 A point q is <u>directly reachable</u> from p if point q is within distance ɛ from point p and p must be a core point.
 A point q is <u>reachable</u> from p if there is a path p_L, ..., p, with p₁ = p and p_n = q, where each p_{p,1} is directly reachable from p.
 All points not reachable from any other point are <u>outliers</u>.

(A)

DBSCAN breakdown

minPts = 4

Start from p_1 p_1 is a \underline{core} point. Create a new **cluster C1** There are 4 neighbor points and they all become candidates to expand

Add p_{2} to C1 Found a new candidate p_{3}

Add p_3 to C1 Found a new neighbor p_4 , but it cannot be a candidate Because p_3 is not a core point.

DBSCAN breakdown (cont.)

(A)

 $\label{eq:Add} \operatorname{Add} p_5 \text{ to C1} \\ \operatorname{No new candidate is found} \\$

Add p_6 to C1 A new candidate p_7 is found

 $\label{eq:Add} \operatorname{Add} p_8 \text{ to C1} \\ \operatorname{No new candidate is found} \\$

(A)

DBSCAN breakdown (cont.)

Add p_9 to C1 A new candidate p_{10} is found

Add p_{10} to C1 p_{10} is not core point, stop expanding

Mark noise points

.0

O

DBSCAN breakdown (cont.)

Final output

• Pros: • Pretty fast. Time complexity is $O(n\log n)$ when optimized. • Can find arbitrarily shaped clusters • Robust to outliers (recognized as noise points)

DBSCAN pros and cons

- Cannot work well if density varies in different regions of data - Choosing a proper distance threshold ε can be difficult

• Cons: