SUITES ET SÉRIES DE FONCTIONS

- 1. Soit (f_n) une suite de fonctions continues sur \mathbb{R} , convergeant uniformément vers f. Étudier la convergence simple puis la convergence uniforme de la suite $(f_n \circ f_n)$.
- **2.** Soit (f_n) une suite de fonctions k-lipschitziennes, convergeant simplement sur [a,b] vers une fonction f. Prouver que f est k-lipschitzienne, et que la convergence est uniforme.
- 3. <u>Théorème de Dini</u>: Soit K un compact d'un e.v.n. E, et (f_n) une suite croissante de fonctions numériques continues sur K, convergeant simplement vers une fonction continue f. Le théorème de Dini affirme que cette convergence est uniforme.
 - **a.** Prouver qu'une intersection décroissante de fermés non vides inclus dans *K* est non vide.
- **b.** On fixe $\varepsilon > 0$, et on pose $K_n = \{x \in K \mid f_n(x) \le f(x) \varepsilon\}$. Prouver que la suite (K_n) est une suite décroissante de fermés, d'intersection vide.
 - c. Conclure.
- **4.** On note E l'espace des fonctions continues sur [0,1] à valeurs dans \mathbb{C} , que l'on munit de la norme $\|\cdot\|_{\infty}$ de la convergence uniforme. Soit (f_n) une suite de Cauchy d'éléments de E.
 - **a.** Prouver que la suite (f_n) converge simplement sur [0,1] vers une certaine fonction f.
 - **b.** Prouver que la convergence de la suite (f_n) est uniforme.
 - **c.** Prouver que *E* est complet.
- **5.** Soit (f_n) une suite de fonctions périodiques de \mathbb{R} dans \mathbb{C} , convergeant simplement vers une certaine fonction f.
 - **a.** On suppose toutes les f_n T-périodiques. Prouver que f est T-périodique.
- **b.** On suppose que, pour tout entier n, la fonction f_n est T_n -périodique, et que la suite (T_n) converge vers une certaine limite non nulle T. Quelles sont les hypothèses naturelles à imposer permettant d'affirmer que f est T-périodique ?
- **c.** On suppose que l'on se place sous les hypothèses inventées dans la question **b.**, mais on ne suppose plus la suite (T_n) convergentes. En revanche, on suppose que les T_n sont toutes dans un même segment [a,b] de \mathbb{R} , avec a>0. Prouver que f est périodique.
- **d.** Prouver que la conclusion de la question **c.** reste vraie en supposant que les T_n sont toutes dans un même intervalle de la forme]0,b].
 - **e.** On pose, pour x réel :

$$S_N(x) = \sum_{n=1}^N \frac{\cos \frac{x}{n}}{2^n}$$
 et $S(x) = \sum_{n=1}^{+\infty} \frac{\cos \frac{x}{n}}{2^n}$.

Prouver que chaque fonction S_N est périodique, que la suite $(S_N)_N$ converge uniformément vers la fonction continue S, mais que S n'est pas périodique.

6. On définit par récurrence sur $I = [-\frac{1}{2}, \frac{1}{2}]$ une suite de fonctions en posant $f_0 = 0$ et, pour $n \ge 0$:

$$f_{n+1}(x) = \frac{x^3}{3} + \int_{0}^{x} f_n^2(t) dt$$
.

a. Prouver que $|f_n(x)| \le \frac{5}{6}$ pour tout x de I.

- **b.** Prouver que pour tout $n \ge 1$, on a $||f_{n+1} f_n||_{\infty} \le \frac{5}{6} ||f_n f_{n-1}||_{\infty}$
- **c.** Qu'en déduire concernant la série de fonctions $\sum (f_{n+1} f_n)$? Prouver que la suite (f_n) converge uniformément sur I. Soit f sa limite.
- **d.** Prouver que f est une solution sur I de l'équation différentielle $y' = x^2 + y^2$ satisfaisant à f(0) = 0.
- 7. Pour x > 0, on pose $\psi(x) = \sum_{n=1}^{+\infty} \frac{(-1)^{n-1}}{n^x}$. On pose de même, pour x > 1, $\zeta(x) = \sum_{n=1}^{+\infty} \frac{1}{n^x}$.
 - **a.** Donner une relation reliant $\psi(x)$ et $\zeta(x)$ pour x > 1.
 - **b.** Prouver que ψ est de classe C^{∞} sur \mathbb{R}^{+*} et donner ses dérivées successives (attention !).
 - c. Retrouver l'équivalent de ζ au voisinage de 1.

On pose, pour x élément de]1,2] et n > 0, $u_n(x) = \frac{1}{n^x} - \int_{n}^{n+1} \frac{dt}{t^x}$.

- **d.** Prouver que la série $\sum u_n$ converge normalement sur]1,2] et exprimer sa somme à l'aide de la fonction ζ .
- **b.** Déterminer la limite en 1 de la fonction u_n et en déduire $\lim_{x\to 1+} \left(\zeta(x) \frac{1}{x-1}\right)$.
- **8.** On pose, quand c'est possible, $f(x) = \sum_{n=1}^{+\infty} \frac{\sin nx}{n^2 \ln n}$ et $g(x) = \sum_{n=1}^{+\infty} \frac{\cos nx}{n \ln n}$
 - a. Donner le domaine de définition de f.
 - **b.** Prouver que pour tout x de $\mathbb{R} 2\pi\mathbb{Z}$ et tous entiers p et q avec q > p, on a $\left| \sum_{k=p+1}^{q} \cos kx \right| \le \frac{1}{\sin x/2}$. En déduire que

la série définissant g(x) converge pour tout x de $\mathbb{R} - 2\pi\mathbb{Z}$, et que la convergence est uniforme sur tout intervalle de la forme $[\alpha, 2\pi - \alpha]$ avec $\alpha > 0$. Qu'en conclure concernant f?

- **c.** En écrivant $g(x) = \sum_{n=1}^{\lfloor \frac{1}{\lambda} \rfloor} \frac{\cos nx}{n \ln n} + \sum_{n=\lfloor \frac{1}{\lambda} \rfloor}^{+\infty} \frac{\cos nx}{n \ln n}$ (les crochets désignant la partie entière), déterminer la limite de g en 0.
- 9. Soit $\sum c_n z^n$ une série entière de rayon de convergence R > 0, f sa fonction somme définie sur le disque D(0, R) du plan complexe. Soit a un élément de D(0, R), et r un réel tel que |a| < r < R.
 - **a.** Pour θ dans $[0, 2\pi]$, représenter $f(re^{i\theta})$ et $\frac{1}{1 \frac{a}{r}e^{-i\theta}}$ sous forme de séries.

En déduire un développement en série de $g(\theta) = \frac{f(re^{i\theta})}{1 - \frac{a}{r}e^{-i\theta}}$.

b. Prouver que la convergence de la série ainsi obtenue est normale sur $[0,2\pi]$, et en déduire la formule intégrale de Cauchy :

$$f(a) = \frac{1}{2\pi} \int_{0}^{2\pi} \frac{f(re^{i\theta})}{1 - \frac{a}{r}e^{-i\theta}} d\theta.$$

c. Soit réciproquement une fonction continue f sur D(0,R), qui pour tous a et r vérifiant |a| < r < R, satisfait à la formule intégrale précédente.

Grâce au développement en série de $\frac{1}{1-\frac{a}{r}e^{-\mathrm{i}\theta}}$, puis à une intégration terme à terme bien justifiée, prouver que f est développable en série entière sur D(0,R).

d. Soit (f_n) une suite de fonctions définies sur D(0,R), développables en série entière sur ce disque, et convergeant uniformément sur tout disque D(0,r) avec r < R, vers une fonction f.

Prouver que f est définie et continue sur D(0,R), et qu'elle vérifie, pour tous a et r vérifiant |a| < r < R, la formule intégrale de Cauchy. Conclure.