Chapter 7, Solution 40.

(a) Before
$$t = 0$$
, $V = 12 V$.
After $t = 0$, $v(t) = v(\infty) + [v(0) - v(\infty)] e^{-t/\tau}$
 $v(\infty) = 4$, $v(0) = 12$, $\tau = RC = (2)(3) = 6$
 $v(t) = 4 + (12 - 4) e^{-t/6}$
 $v(t) = 4 + 8 e^{-t/6} V$

(b) Before t = 0, V = 12 V. After t = 0, $v(t) = v(\infty) + [v(0) - v(\infty)] e^{-t/\tau}$ After transforming the current source, the circuit is shown below.

$$v(0) = 12$$
, $v(\infty) = 12$, $\tau = RC = (2)(5) = 10$
 $v = 12$ V