CSE 544, Fall 2018, Probability and Statistics for Data Science

Assignment 4: Statistical Inference

(7 questions, 70 points total)

I/We understand and agree to the following:

- (a) Academic dishonesty will result in an 'F' grade and referral to the Academic Judiciary.
- (b) Late submission, beyond the 'due' date/time, will result in a score of 0 on this assignment.

(write down the name of all collaborating students on the line below)

1. More on Wald's test

(Total 5 points)

Due: 11/12, in class

Suppose the null hypothesis is H₀: θ = θ ₀, but the true value of θ is θ *. Show that, under Wald's test, the probability of a Type II error is $\varphi(\frac{\theta_0-\theta_*}{\widehat{se}}+z_{\alpha/2})-\varphi(\frac{\theta_0-\theta_*}{\widehat{se}}-z_{\alpha/2})$.

(Hints: (i) might help to draw a figure; (ii) think about the distribution of the estimate.)

Let $X_1, X_2, ..., X_n$ be distributed as Normal(θ, σ^2), where σ is assumed to be known. You are also given that the prior for θ is Normal(a, b^2).

(a) Show that the posterior of θ is Normal(x, y^2), such that:

$$x = \frac{b^2 \bar{X} + se^2 a}{b^2 + se^2}$$
 and $y^2 = \frac{b^2 se^2}{b^2 + se^2}$; where $\bar{X} = \frac{1}{n} \sum_{i=1}^n X_i$ and $se^2 = \frac{\sigma^2}{n}$.

(Hint: less messier if you ignore the constants, but please justify why you can ignore them)

(b) Compute the $(1-\alpha)$ posterior interval for θ .

(3 points)

3. Consistency of MLE

(Total 5 points)

Let X_1, X_2, \dots, X_n be distributed as Exponential $(\frac{1}{\beta})$, all i.i.d. Show that the MLE $(\hat{\beta})$ will converge to the unknown parameter β . Prove this by showing that bias $(\hat{\beta})$ and se $(\hat{\beta})$ tends to 0 as n tends to ∞ .

4. Practice with MLE (Total 10 points)

- (a) Let $X_1, X_2, ..., X_n$ be distributed as Poisson(λ). Find the MLE of λ . (3 points)
- (b) Let $X_1, X_2, ..., X_n$ be a sample from the distribution whose density function is given by $f(x) = \frac{1}{2}e^{-|x-\theta|}$, $-\infty < x < \infty$. Determine the MLE of θ and comment on it. (4 points)
- (c) Let $X_1, X_2, ..., X_n \sim \text{Normal}(\theta, 1)$. Let $\delta = E[I_{X_1 > 0}]$. Use the Equivariance property to show that the MLE of δ is $\varphi(\frac{1}{n}\sum_{i=1}^n X_i)$. You can assume the MLE of the Normal as derived in class. (3 points)

5. Bayesian Inference in action

(Total 15 points)

You will need the q5_sigma3.dat and q5_sigma100.dat files for this question; these files are on the class website. Each file contains 5 rows of 100 samples each. Refer back to Q 2 (a); you can use its result even if you have not solved that question.

- (a) Assume that σ = 3 (meaning σ^2 = 9). Let the prior be the standard Normal (mean 0, variance 1). Read in the 1st row of q5_sigma3.dat and compute the new posterior. Now, assuming this posterior is your new prior, read in the 2nd row of q5_sigma3.dat and compute the new posterior. Repeat till the 5th row. Please provide your steps here and draw a table with your estimates of the mean and variance of the posterior for all 5 steps (table should have 5 rows, 2 columns). Also plot each of the 5 posterior distributions on a single graph and attach this graph. What do you observe? (7 points)
- (b) Now assume that σ = 100 and repeat part (a) above but with q5_sigma100.dat. Assume the same prior of a standard Normal. Provide the table and final graph. What do you observe? (7 points)
- (c) Based on the comparison of answers of (a) and (b), what can you conclude? (1 point)

6. Hypothesis Testing for a single population

(Total 13 points)

- (a) Consider the following 10 samples: $\{1.87, 1.29, 2.01, 0.93, 1.02, 2.78, 2.33, 1.65, 0.50, 0.99\}$. Use the K-S test to check whether these samples are from the Uniform(0, 3) distribution or not. First, set up the hypotheses. Then, create a 10 X 6 table with entries: $[x, \hat{F}_{-}(x), \hat{F}_{+}(x), F_{0}(x), |\hat{F}_{-}(x) F_{0}(x)|$, $|\hat{F}_{+}(x) F_{0}(x)|$, where $\hat{F}_{-}(x)$ and $\hat{F}_{+}(x)$ are the values of the empirical distribution function to the left and right of x, and $F_{0}(x)$ is the CDF of Uniform(0, 3) at x. Finally, compare the max of the last two columns with the α = 0.05 threshold of 0.41 to Reject/Accept. (5 points)
- (b) Assuming that the 10 samples are normally distributed, use the t-test to decide the null hypothesis that the population mean is 1.5. Use the α = 0.05 threshold of 2.228 to Reject/Accept. (3 points)
- (c) You observe 46 successes in 100 trials of a coin. If the null hypothesis is that the coin is unbiased, use the Wald's test with the MLE/MME with α = 0.05 to Reject/Accept the null. What is the p-value? What if the null hypothesis is that the coin has p=0.7? What is the p-value? (5 points)

7. Hypothesis Testing for two populations

(Total 12 points)

You will need q7_X.dat and q7_Y.dat available at the class website for this question. Each contains 1000 samples for X and Y drawn from two independent Normal distributions. In the following, test whether the population means of X and Y are same (null) or not (alternative). Show your steps, but feel free to use any software to compute mean and variance, etc.

- (a) Use Wald's 2-population test with $\alpha = 0.05$. Is this test applicable here? (4 points)
- (b) Use Welch's test with $\alpha = 0.05$ threshold of 1.962. Is this test applicable here? (4 points)
- (c) Assume X and Y are dependent. Use the paired t-test with α = 0.05 threshold of 1.962. Is this test applicable here? (4 points)