About 2025 Portfolio

데이터를 통해 사용자와 세상을 연결하는 인재, 나리나입니다.

나리나 Na Rina

Phone +82 10-6381-3274

mail skery@naver.com

Github https://github.com/Na-Rina

Education

2020 오금고등학교 졸업

2025 한국외국어대학교 재학 중

- 프랑스학과, AI & Software 융합 전공

2025 - 산업은행 디지털전략부 AI개발팀 AI인턴

Certificate & Award

2020 컴퓨터활용능력 2급

2021 Flex (프랑스어 읽기, 쓰기)

2021 통일부 장관상 최우수상, 송파구 국회의원 남인순 우수상

2024 TOEIC 785

2024 Opic IH (Intermediate High)

2024 DAsP (데이터아키텍처전문가)

2024 ADsP (데이터분석준전문가)

2024 SQLD (SQL 개발자)

2024 Google Ads Search Certification

2024 Google 애널리틱스 individual Qualification

2025 한경협 ESG 전문가 자격증

2025 빅데이터분석기사

Activities

2022. 01 ~ 2022. 12 한국외국어대학교 외대학보

2022. 03 ~ 2022. 12 ICT 봉사단 마다가스카르 대학교

2022. 05 ~ 2024. 06 송파부모연대 장애인활동지원사

2023. 09 ~ 2024. 05 한국심리상담복지학회 논문 작성

1

Project 01 2025 Portfolio

강화학습을 이용한 장바구니 추천 시스템 앱 개발 🕶

프로젝트 개요 및 목표

신세계 API와 강화학습 모델을 결합해 사용자 맞춤형 장바구니 추천 시스템을 개발하고, AWS 기반의 안정적인 서버 환경에서 성능 극대화를 목표로 진행한 프로젝트입니다.

프로젝트 기간

- 2024. 01 ~ 2024. 06 (5개월)

프로젝트 팀 구성

- 총 4명: Frontend, Backend, DB, 머신 러닝 역할 분담

프로젝트 목표

- 신세계 API를 활용해 **사용자 맞춤형 장바구니 추천 시스템** 개발
- 강화학습 모델을 적용하여 추천의 정확도 향상
- AWS 클라우드 인프라로 안정적인 운영 환경 확보

Project 01 2025 Portfolio

강화학습을 이용한 장바구니 추천 시스템 앱 개발

시스템 구성 및 프로젝트 성과

프로젝트 기여도

60%

- 데이터 처리 : 더미 데이터 생성 및 전처리
- 모델 구현 : 강화학습 AI 모듈 개발
- AWS 활용: EC2, RDS, S3 서버 구성 및 데이터 연계
- 문서화 및 발표: 프로젝트 문서 작성 및 발표 자료 제작
- * 기술 스택 : Python, AWS, Docker, Node js ...

프로젝트 성과

- 강화학습을 통해 추천 정확도 10% 개선
- AWS를 이용한 안정적인 클라우드 기반 배포
- 사용자 맞춤형 추천 시스템 초기 버전 구현 완료

WFSU 앱 개발 (공공 와이파이 보안 강화 및 이상 탐지 서비스) ◀ 제 시회

프로젝트 개요 및 목표

서울특별시 공공 와이파이 데이터를 활용하여 AI 기반으로 비정상 AP를 탐지하고, QGIS를 통해 위험도를 시각화하여 디지털 약자의 안전한 와이파이 이용을 지원하는 서비스를 개발한 프로젝트입니다.

프로젝트 기간

- 2024. 03 ~ 2024. 08 (5개월)

프로젝트 팀 구성

- 총 4명: Frontend, Backend, Data AI, 클라우드 역할 분담

프로젝트 목적

- 디지털 약자를 위한 공공 와이파이 보안 강화 및 이상 탐지
- 이상 AP(Access Point) 탐지 및 서비스 개선을 위한 지도 기반 시각화

주요 작업 목표

서울특별시 공공 와이파이 데이터를 분석 및 활용

- 이상 사용량을 탐지하여 위험 AP를 식별
- Al 기반 Isolation Forest 알고리즘으로 이상치(비정상 AP) 탐지

결과를 QGIS 기반으로 시각화

- 자치구별 공공 와이파이 AP 분포 정보 제공
- 이상치 AP를 위험 수준별 색상 구분으로 표시하여 직관적인 위험도 전달

Project 02 2025 Portfolio

WFSU 앱 개발 (공공 와이파이 보안 강화 및 이상 탐지 서비스)

프로젝트 결과 & 기술 스택

프로젝트 기여도

60%

- 데이터 처리 : 서울 공공 와이파이 AP 데이터 수집 및 전처리
- AI 모델링 : 이상치 탐지 모듈 (Isolation Forest) 작성
- 지도 시각화: QGIS 활용, 공공 와이파이 분포 및 위험도 통합 시각화
- 문서화 및 발표 : 최종 보고서 작성 및 결과 발표 진행
- * 기술 스택 : Python, AI, GCP, QGIS

프로젝트 성과: 사용자 보안을 강화한 서비스 설계 및 구현

- 와이파이 10,191건 중 Isolation Forest로 이상 AP 510건 탐지
- QGIS 지도 기반 시각화: 자치구별 와이파이 분포를 맵핑 및 위험 AP를 색상으로 구분
- GCP를 활용한 안정적 데이터 처리 및 분석 환경 구축
- 디지털 약자를 위한 안전 와이파이 사용 인식 개선 및 경고 시스템 제공

Project 03 2025 Portfolio

농산물 데이터 예측(LSTM) ◀ 제

프로젝트 개요 및 목표

본 프로젝트는 캐글 "제주 특산물 가격 예측 AI 경진대회" 데이터를 활용하여 LSTM 기반 예측 모델을 개선하고,

평균 제곱 오차(MSE)를 약 74% 감소시키며 농산물 가격 예측의 정확성을 크게 향상시켰습니다.

프로젝트 기간

- 2023. 12 ~ 2024. 07 (8개월)

프로젝트 목표

- 캐글 "제주 특산물 가격 예측 AI 경진대회" 데이터를 활용하여 정확도가 높은 농산물 가격 예측 모델을 개선

프로젝트 내용

- GPU 기반 학습: 디바이스 설정을 통해 학습 속도와 효율성을 향상.
- 손실 함수: 평균 제곱 오차(MSE)를 활용하여 예측 오차를 최소화.
- 옵티마이저: Adam 옵티마이저로 학습 안정성과 최적화 효과를 극대화.

2025 Portfolio

농산물 데이터 예측(LSTM)

프로젝트 성과 및 세부 사항

프로젝트 결과

- 모델 성능 향상 모델 구조 변경 및 하이퍼파라미터 튜닝으로 예측 정확도 대폭 향상 평균 제곱 오차(MSE)가 크게 감소 (약 74% 감소).
- * 기술 스택 : Python, RNN, LSTM, AutoML

	기존 모델	개선된 모델
모델 구조	입력크기 50, 레이어 수 1	RNN · LSTM 기반 다층 구조
MSE	2,177,767.0118	565,082.1202

본 프로젝트를 통해 농산물 가격 예측 모델의 신뢰성과 활용 가능성을 크게 증대

분포 그래프 분석

코드 설명 영상

그래프 설명

위의 그래프는 Train 데이터셋의 price(원/kg) 열에 대한 가격 분포를 보여줌. 가격은 한국 원(KRW) 단위로 측정되었으며, x죽은 가

분석 결과

1. 가격 분포의 집중:

- 그래프에서 볼 수 있듯이, 가격이 0인 데이터 포인트가 매우 많이 분포하고 있음. 이는 공급량이 0이거나 가격 정보가 누락된 경 우일 수 있음.
- 대다수의 데이터 포인트는 저가 구간에 몰려 있으며, 특히 0에 매우 높은 빈도수가 집중되어 있음.

- 그래프는 오른쪽으로 긴 꼬리를 가지고 있으며, 이는 고가 데이터 포인트가 존재하지만 빈도가 매우 낮음을 나타냄.
- 대부분의 가격이 0에서 5,000 KRW/kg 사이에 분포되어 있으며, 그 이후의 가격은 상대적으로 적음.

- 가격 분포의 표준편차가 크다는 것을 알 수 있음. 이는 가격 데이터의 변동성이 크다는 것을 의미함.
- 저가부터 고가까지 넓은 범위의 가격이 존재함.

- 데이터 전처리 필요성:
- 가격이 0인 데이터 포인트에 대한 추가적인 분석이 필요함. 이 데이터들이 실제로 의미 있는 값인지, 아니면 오류나 누락된 데이
- 가격 변동성이 큰 데이터의 특성을 고려하여 모델링 시 적절한 스케일링이나 변환을 적용하는 것이 필요할 수 있음.
- 저가 구간에 데이터 포인트가 집중되어 있으므로, 모델링 시 이 부분에 대한 정확한 예측이 중요함.
- 고가 구간의 데이터 포인트는 적지만 중요한 정보를 포함할 수 있으므로, 이들을 적절히 다룰 필요가 있음.

5. 성능 비교 및 결론

기존 모델

- 은닉 상태 크기: 50
- LSTM 레이어 수: 1
- 학습률: 0.001
- 에포크 수: 100
- 평균 제곱 오차 (MSE): 2177767.0118

- 은닉 상태 크기: 100 (은닉 상태 크기를 증가시켜 모델의 용량을 확장)
- LSTM 레이어 수: 2 (더 많은 레이어를 추가하여 모델의 깊이를 증가)
- 학습률: 0.001 (기존과 동일)
- 에포크 수: 200 (더 많은 에포크 수를 사용하여 모델을 더 오래 학습)
- 평균 제곱 오차 (MSE): 565082.1202
- 모델 구조 변경: 더 깊은 LSTM 레이어와 더 큰 은닉 상태 크기를 사용한 개선된 모델은 기존 모델에 비해 더 나은 성능을 보였습니다.
- 하이퍼파라미터 튜닝: 에포크 수를 늘려 더 오래 학습시킨 결과, 개선된 모델의 예측 성능이 크게 향상됨
- 평가 결과: 개선된 모델의 MSE가 기존 모델의 MSE보다 크게 낮아, 데이터의 패턴을 더 잘 학습했음을 알 수 있음

이와 같은 개선을 통해 LSTM 모델의 예측 성능을 효과적으로 향상시킬 수 있음을 확인할 수 있었음