The dielectric constant data for formic acid solutions, 52 piperidine, 53 pyridine, 54 and water were obtained either directly from the literature, interpolated from reported values, or estimated by graphical interpolation.

Plots of the various log k's versus 1/D and versus mole fraction of water, N_{H2O}, illustrate that only the k₂ values have a linear relationship (see figures 10, 11, 12 and 13). The k_s values for the same coordinates show a non-linear relationship (see figures 11 and 13).

221 1, 3501

TABLE IV

PHYSICAL CONSTANTS DATA

pH read- ing	7.1	7.1	7.1	o. C. 8.7.			
% H20	. 005	. 004	. 005	eading at 25 0	m1		
94 P	. 7922	. 7922	. 7922	dization re	-1 ohm 9-		
00 gu	1,3310	1,3311	1.3310	buffer standardization r	1.2 x 10 6 ohm	6.92	1.3330
o. B.p. C. / mm. Hg	64.5/760	64.5/760	64.5/760	er reading at 25°C., buf	*		
Approximate M. p., C.	-98	-97.8	-97.8	pH meter readi	Specific conductivity	pH25°C.	uD
Sample of Methanol				*Beckmann pH met	Water		

TABLE V

PHYSICAL CONSTANTS DATA

n-Butyl bromide:

Approximate, M. p., °C. B, p., °C./mm. Hg	-112.5 101.5/76	0
np toc.	27)
d4 27	1.2685	
MrD calculated: observed:	28.437	1

Methanol-water mixtures:

Weight per cent MeOH	75; 50; 25
n p	1.3381; 1.3411; 1.3381
t° C.	26.5; 26.5; 26.0

Estimated from atomic refractions; b calculated from the Lorenz and Lorentz equation.

TABLE VI

ANALYSIS RODUCT OF REACTION BRIEF SUMMARY

BuocH3, g.	61.78 g.	3.598.	1.78.
Buoti, g.	28.1 g.	1.4 g.	.099 g. (trace)
(NaOH)	85 g. 3.26N	4.03 g.	4.02 g.
(BuBr)	95.9 g. 1.07M	13.7 g. 0.2 M	13.7 g. 0.4 M
emp. total vol.	650 ml.	500 ml.	250 ml.
remp.	(reflux)	300	300
time (approx.)	8 days	2 days	13 days
Solvent	50 wt. % MeOH- H2O	60 wt.% MeOH- 40% H ₂ O	90 wt.% MeOH- 10% H2O

TABLE VII

Kinetics of the Solvolysis of n-Butyl Bromide at 50° C. in 50 Weight % Aqueous Methanol and in the Presence of 0.1 N Sodium Hydroxide*

t _{min} .	HC1ª	AgNo3b ml.	(NaOH)° mole/1.	(Br) mole/1.	(BuBr)d mole/1.
		Run	2		
0 161 124 153 166 171 197 "**	44.80 35.30 33.33.33.33.33.33.33.33.33.33.33.33.33.	0.0 5.74 7.87 8.59 8.59 9.55 9.95 11.50***	.1382 .1178 .107 .1033 .1036 .1036 .0977 .0071	.0000 .0204 .0275 .0321 .0349 .0354 .0389 .0405	.1092 .0888 .0817 .0743 .0746 .0746 .0703 .0687

a 0.0617 N; titer, 20 ml. of reaction mixture.

b 0.1018 N; titer, 25 ml. of reaction mixture.

c (a-x)t, initially a is 0.1382 N.

d (b-x)t, initially b is 0.1092 N.

[&]quot;Methanol I; temperature, 500 ± .05.

[&]quot;Titer, 10 ml. of reaction mixture.

TABLE VIII

Kinetics of the Solvolysis of n-Butyl Bromide at 50° C. in 50 Weight % Aqueous Methanol and in the Presence of o.1 N Sodium Hydroxide

tmin.	HCT ml.	AgNo3	(NaOH) mole/1.	(Br) mole/1.	(BuBr) mole/1.
		Rı	m 3		
0 7 251 35 3 3 3 4 4 4 7 9 1 5 8 2 4 4 7 9 1 5 8 2 5 8 2 4 4 7 9 1 5 8 2	21.55 19.07 13.07 11.08 11.03 10.10 10.20 10.20 10.20	0.0 1.86 4.99 5.95 6.35 6.36 6.40 6.75 6.90	.1330 .1194 .0865 .0769 .0696 .0629 .0629 .0625	.0000 .0189 .0508 .0606 .0646 .0648 .0651 .0687	.1104 .0915 .0596 .0498 .0458 .0458 .0453 .0457 .0402
583 633	8.80	7.45	.0543	.0758	.0346
634	8.43	7.48	.0520	.0761	.0343
678 1440 1473	7.30	7.75	.0448	.0789	.0315
1473	0.02	10.84	.0001	.0894	.0001

a 0.0617 N; b 0.1018 N; c (a-x) initially, a is 0.1330 N; d (b-x), initially b is 0.1104 M.

Methanol I; temperature, 500 ± .05; titer, 10 ml.

of reaction mixture in all cases.

TABLE IX

Kinetics of the Solvolysis of n-Butyl Bromide at 50°C. in 75 Weight % Aqueous Methanol and in the Presence of O.1 N Sodium Hydroxide*

Run 4	
0 24.70 0.0 .1534 .0000 42 23.53 1.45 .1452 .0148 58 23.03 1.82 .1421 .0185 74 22.28 2.18 .1375 .0222 88 21.62 2.37 .1334 .0241 177 19.23 3.57 .1187 .0363 195 18.75 3.81 .1157 .0388 238 18.23 4.40 .1125 .0448 252 18.05 4.46 .1114 .0454 363 15.78 5.20 .0974 .0529 374 15.65 5.34 .0960 .0544 437 14.71 6.20 .0908 .0631 475 14.15 6.28 .0877 .0640 492 13.92 6.38 .0859 .0649 536 13.20 6.69 .0814 .0682 552 13.14 6.75 .0811 .0694 599 13.03 7.02 .0804 .0715	.1110 .0962 .0925 .0888 .0869 .0747 .0722 .0662 .0566 .0566 .0479 .0470 .0461 .0428 .0416 .0395 .0395 .0376 .0376 .0372 .0369 .0334

0.1534 N; d (b-x), initially b is 0.1110 M; "temperature, 50 ± .05; methanol II; titer, 10 ml. of
reaction mixture in all but one case; "" titer, 8 ml.
of reaction mixture.

TABLE X

Kinetics of the Solvolysis of n-Butyl Bromide at 50° C. in 75 Weight % Aqueous Methanol and in the Presence of O.1 N Sodium Hydroxide*

tmin.	HCla	AgNo ₃ b	(NaOH)°	(Br)	(BuBr)d
	ml.	ml. Ru	mole/1.	mole/1.	mole/1.
0 30 140 220 342 579 790 870 870 870 870 870 870 870 870 870 87	24.79 23.93 20.26 17.05 13.09 11.66 10.74 10.21	0.0 3.08 4.83 4.84 5.92 7.84 10.90	.1530 .1477 .1246 .1139 .1050 .0929 .0808 .0720 .0630	.0000 .0314 .0429 .0492 .0595 .0799 .0799 .0839 .1110	.1109 .0795 .0680 .0514 .0404 .0370 .0310

^{2 0.0617} N; titer, 10 ml. of reaction mixture.

desta me titor, 10 ml. renotion mixture.

b 0.1018 N; titer, 10 ml. of reaction mixture.

c (a-x), initially a is 0.1530 N.

d (b-x)t, initially b is 0.1109 M.

[&]quot; Methanol II; temperature, 50° ± .05.

TABLE XI

Kinetics of the Solvolysis of n-Butyl Bromide at 50° C. in 25 Weight % Aqueous Methanol and in the Presence of O.1 N Sodium Hydroxide*

tmin.	HCla ml.	AgNo3b ml.	(NaOH)C mole/1.	(Br) mole/1.	(BuBr)d mole/1.
		Run	1 5		
0 727346 8 27844 9 16 8 8 8 9 10 5 8 8 10 5 8 8 10 5 8 8 10 5 8 8 10 5 8 8 10 5 8 8 10 5 8 8 10 5 8 8 10 5 8 8 10 5 8 8 10 5 8 8 10 5 8 8 10 5 8 8 10 5 8 8 10 5 8 8 10 5 8 8 10 5 8 8 10 5 8 1	11.70 11.05 10.55 10.28 9.87 9.70 9.30 9.15 8.75 7.70 7.00	0.0 0.720 0.925 1.098 1.238 1.378 1.580 1.585 1.645 1.795 2.467 2.850	.0722 .0682 .0651 .0634 .0598 .0574 .0540 .0540 .0475 .0475	.0000 .0073 .0094 .0112 .0126 .0140 .0161 .0167 .0183 .0251 .0258 .0290	.0696 .0693 .0602 .0584 .0570 .0535 .0535 .0535 .0445 .0438

initially a to 0.0712 F.

a 0.0617 N; titer, 10 ml. reaction mixture.

b 0.1018 N; titer, 10 ml. reaction mixture.

c (a-x), initially a 1s 0.0722 N.

⁽b-x)t, initially b is 0.0696 M.

Methanol III; temperature, 500 ± .05; note that the concentrations of a and b are smaller than those in runs for other solvent mixtures.

TABLE XII

Kinetics of the Solvolysis of n-Butyl Bromide at 50° C. in 25 Weight % Aqueous Methanol and in the Presence of O.1 N Sodium Hydroxide*

t _{min} .	HCla ml.	AgNo3b ml.	(NaOH)c mole/1.	(Br ⁻) mole/1.	(BuBr)d mole/1.
		Run	1 6		
0 112 137 10 10 10 10 11 11 11 11 11 11 11 11 11	11.54 10.81 9.94 8.61 9.61 8.49 7.50	0.0 0.42 1.031 1.47 1.87 1.87 2.475	.0712 .0667 .0570 .0531 .0531 .0524 .0463	.0000 .0043 .0105 .0144 .0171 .0183 .0190 .0238 .0252	.0643 .0600 .0538 .0499 .0460 .0453 .0491

a 0.0617 N; titer, 10 ml. reaction mixture.

b 0.1018 N; titer, 10 ml. reaction mixture.

c (a-x)t, initially a is 0.0712 N.

d (b-x)t, initially b is 0.0643 M.

[&]quot;Methanol III; temperature, 500 ± .05; note that the concentrations of a and b are smaller than those in runs for other solvent mixtures.

Fig. 7. Kinetics of the Solvolysis of n-Butyl bromide in the presence of Sodium hydroxide in 25% Methanol-75% Water (by weight) at 50° C. (Br): ∠, run 5; □, run 6. (BuBr): ∠, run 5; ○, run 6. (OH): △, run 5; △, run 6.

part .

TABLE XIII

PER CENT REACTION SUMMARY

	[OH.] [BuBz]	[OH]	[OH]
** **	1540	2240	4540
# 14 B	934	1363	3552
4	840	1180	3160
大 B B	437	382	1649
A	400	380	1600
-/4 W	148	230	640
4	160	220	570
ent	MeOH	MeOH	MeOH
Solvent	20%	75%	25%

A values represent those from plots of log C versus t (in minutes), iming ideality; B values represent those calculated from the kg (least assuming ideality; squares) equations.

DES CERT REACTION SUMMARY

TABLE MARK

TABLE XIV

SUMMARY OF SOLVOLYTIC RATE CONSTANTS FOR n-BUTYL BROMIDE IN METHANOL-WATER MIXTURES AT 50

Run 2	Run 3	Run 4	Run 7	Run 5	Run 6	k value
2.34×10 ⁻²	2.44x10 ⁻²	1,61x10 ⁻²	1.61x10-2	6,11x10 ⁻²	8.41x10 ⁻³	k ₂
	2.39×10-2		1.61x10 ⁻²		(3.48×10 ⁻²)	avg.
2.13x10 ⁻³	1.61x10-3	1.23×10 ⁻³	1.85×10 ⁻³	5.80×10-4	4.15×10-4	k ₁ (a-x)
	1.86x10-3		1,54x10-3		4. 98×10-4	avg.
2,82x10 ⁻³				7.21x10-4		k ₁ (b-x)
	2.46×10-3		1.96×10 ⁻³		5.97x10-4	avg.
	2,16×10 ⁻³		1.75×10 ⁻³		5.48×10-4	klavg.
3.69×10-2	3.14×10-2	2.04×10-2	2.10×10 ⁻²	1.24x10-2	8.60×10-3	k ₂
	3.42×10-2		2.07×10-2		1,05×10-2	avg.

Runs	2-3: (a-x) (b-x) avg.	1.20x10 ⁻³ 1.78x10 ⁻³ 1.49x10 ⁻³	Runs 4-7: 9.63x10 ⁻⁴ 1.49x10 ⁻³ 1.23x10 ⁻³	3.69×10-4 4.38×10-4 4.04×10-4
k _s	(a-x) (b-x) avg.	1.40×10 ⁻³ 1.71×10 ⁻³ 1.56×10 ⁻³	9.72×10 ⁻⁴ 1.44×10 ⁻³ 1.21×10 ⁻³	3.78×10 ⁻⁴ 3.75×10 ⁻⁴ 3.76×10 ⁻⁴
E1	(n-x) (b-x) avg.	9.55×10-4 6.67×10-4 8.21×10-4	9.24×10-4 6.32×10-4 7.78×10-4	4. 44×10-4 2. 67×10-4 3. 16×10-4